diff --git a/.github/workflows/black.yml b/.github/workflows/black.yml deleted file mode 100644 index b19db068..00000000 --- a/.github/workflows/black.yml +++ /dev/null @@ -1,25 +0,0 @@ -name: black-action -on: [pull_request] -jobs: - linter_name: - name: runner / black - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v2 - - name: Check files using the black formatter - uses: rickstaa/action-black@v1 - id: action_black - with: - black_args: "metobs_toolkit --verbose" - - name: Create Pull Request - if: steps.action_black.outputs.is_formatted == 'true' - uses: peter-evans/create-pull-request@v3 - with: - token: ${{ secrets.GITHUB_TOKEN }} - title: "Format Python code with psf/black push" - commit-message: ":art: Format Python code with psf/black" - body: | - There appear to be some python formatting errors in ${{ github.sha }}. This pull request - uses the [psf/black](https://github.com/psf/black) formatter to fix these issues. - base: ${{ github.head_ref }} # Creates pull request onto pull request or commit branch - branch: actions/blacktest \ No newline at end of file diff --git a/.github/workflows/draft-pdf.yml b/.github/workflows/draft-pdf.yml index 28b415fe..edb32943 100644 --- a/.github/workflows/draft-pdf.yml +++ b/.github/workflows/draft-pdf.yml @@ -1,4 +1,10 @@ -on: [push] +on: + push: + branches-ignore: + #cannot be ran on protected branches + - 'main' + - 'dev' + - 'gh-pages' jobs: paper: diff --git a/.github/workflows/main_workflow.yml b/.github/workflows/main_workflow.yml index f58b3b83..698b5e39 100644 --- a/.github/workflows/main_workflow.yml +++ b/.github/workflows/main_workflow.yml @@ -225,8 +225,8 @@ jobs: force_orphan: true -#---- Deploy documentation -----# - deploy_doc: +#---- Deploy documentation MAIN-----# + deploy_doc_main: name: Deploy main documentation needs: [doctests,run-tests,versiontest,mac_install_testing, windows_install_testing] runs-on: ubuntu-latest @@ -270,11 +270,58 @@ jobs: publish_dir: _build/ force_orphan: true +#---- Deploy documentation dev -----# + deploy_doc_dev: + name: Deploy Dev documentation + needs: [doctests,run-tests,versiontest,mac_install_testing, windows_install_testing] + runs-on: ubuntu-latest + if: | + github.ref == 'refs/heads/dev' + steps: + - uses: actions/checkout@v3 + - name: Set up Python39 + uses: actions/setup-python@v4 + with: + python-version: '3.9' + #cache: 'poetry' + # You can test your matrix by printing the current Python version + - name: Display Python version + run: python -c "import sys; print(sys.version)" + - name: install pandoc (system wide) + run: | + sudo apt-get -y install pandoc + - name: Download the package build + uses: actions/download-artifact@v3 + with: + name: package_build + - name: Install the package + run: | + python3 -m pip install ./metobs_toolkit-*.tar.gz + - name: get documentation requirements + uses: actions/download-artifact@v3 + with: + name: documentation_requirements + - name: install doc depending packages + run: | + pip install -r only_doc_req.txt + - name: Build documentation + run: | + sphinx-build -a -E docs _build + - name: deploy documentation + uses: peaceiris/actions-gh-pages@v3 + with: + publish_branch: gh-pages-dev + github_token: ${{ secrets.GITHUB_TOKEN }} + publish_dir: _build/ + force_orphan: true + + + # ---- delete artifacts that are not for storage ----- cleanup_artifacts: name: delete artifacts - needs: [doctests,run-tests,versiontest,mac_install_testing, windows_install_testing, deploy_doc] + needs: [doctests,run-tests,versiontest,mac_install_testing, windows_install_testing, deploy_doc_main] runs-on: ubuntu-latest steps: - uses: actions/checkout@v3 @@ -284,4 +331,3 @@ jobs: package_build documentation_requirements titan_requirements - diff --git a/.gitignore b/.gitignore index bd132357..4d84814a 100644 --- a/.gitignore +++ b/.gitignore @@ -22,19 +22,21 @@ docs/examples/*.py #Exclude local documentation builds docs/_* +!docs/_build #logs *log #exclude data -examples/*.csv -examples/testdata.csv +fairness_demo_exercises/*.csv +fairness_demo_exercises/testdata.csv tests/test_data/testdata_testday # exclued logs *log #exclude figures in test data -tests/**/*.png -tests/**/*.html +tests/*.png +tests/*.html + # pychache *.ipynb_checkpoints* @@ -51,4 +53,4 @@ GUI/cache/* #Development stuff development/* #Documentation (build online) -docs/_build +#docs/_build diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 00000000..8b1a2cd2 --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,31 @@ +repos: +- repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.4.0 + hooks: + - id: check-yaml + - id: check-toml + - id: end-of-file-fixer + - id: trailing-whitespace +- repo: https://github.com/psf/black + rev: 22.10.0 + hooks: + - id: black +- repo: https://github.com/macisamuele/language-formatters-pre-commit-hooks + rev: v2.12.0 + hooks: + - id: pretty-format-toml + args: [--autofix] + +#- repo: https://github.com/pycqa/flake8 +# rev: 6.1.0 +# hooks: +# - id: flake8 +# additional_dependencies: ['flake8-alphabetize', 'flake8-rst-docstrings'] +# args: ['--config=setup.cfg'] + +ci: + autofix_commit_msg: | + [pre-commit.ci] auto fixes from pre-commit.com hooks + + for more information, see https://pre-commit.ci + autofix_prs: true diff --git a/.readthedocs.yaml b/.readthedocs.yaml index 22e55c2e..2aa413ac 100644 --- a/.readthedocs.yaml +++ b/.readthedocs.yaml @@ -6,7 +6,7 @@ version: 2 # Set the version of Python and other tools you might need build: - os: ubuntu-20.04 + os: ubuntu-22.04 tools: {python: "3.10"} jobs: pre_create_environment: @@ -21,4 +21,4 @@ build: # Build documentation in the docs/ directory with Sphinx sphinx: configuration: docs/conf.py - fail_on_warning: true \ No newline at end of file + fail_on_warning: true diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index a2aa3bdd..654f9722 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -92,7 +92,7 @@ Make sure you have this software installed before proceeding. git checkout name-of-your-bugfix-or-feature ``` Now you can make local changes. - + 4. Test your changes locally. The [build_and_test.sh](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/deploiment/build_and_test.sh) script builds the package and runs a series of tests. All tests must be successful before your contributions can be merged in the dev branch. ``` @@ -126,4 +126,4 @@ After the code review, and all review marks are resolved, your contributions wil For general support or questions, you can refer them to @vergauwenthomas, or by mail to (thomas.vergauwen@meteo.be). ## Acknowledgement -This file is inspired by the [RavenPy](https://github.com/CSHS-CWRA/RavenPy) project. Thank you for the inspiration!”. +This file is inspired by the [RavenPy](https://github.com/CSHS-CWRA/RavenPy) project. Thank you for the inspiration!”. diff --git a/LICENSE b/LICENSE index 37f76361..3149bb3b 100644 --- a/LICENSE +++ b/LICENSE @@ -1,5 +1,6 @@ Copyright (c) 2023 Atmospheric Physics group Ghent University + Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights diff --git a/README.md b/README.md index d3f9ae91..b4b0a3d6 100644 --- a/README.md +++ b/README.md @@ -10,6 +10,7 @@ The MetObs-toolkit provides a comprehensive framework for scientists to process raw meteorological data for analysis. + This repo contains all the software for the [metobs_toolkit](https://test.pypi.org/project/metobs-toolkit/). ## Documentation @@ -19,7 +20,7 @@ Documentation can be found [here](https://vergauwenthomas.github.io/MetObs_toolk ## Installing the package Install the package using pip: -```bash +```bash pip3 install metobs-toolkit ``` To install the PyPi version of the toolkit. To install the github versions one can use these commands: @@ -43,21 +44,21 @@ pip3 install metobs-toolkit titanlib To use the package, import it in Python: -```python +```python import metobs_toolkit #Check your version metobs_toolkit.__version__ ``` ## Exercises and demos -In the context of a [FAIRNESS (COST action)](https://www.fairness-ca20108.eu/) summer school, a set of well-documented exercises and demos are made. +In the context of a [FAIRNESS (COST action)](https://www.fairness-ca20108.eu/) summer school, a set of well-documented exercises and demos are made. | Notebook | Description | | |:----------|:-------------|------:| -| [Introduction](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Introduction_01.ipynb) | Introduction to the toolkit | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/examples/Introduction_01.ipynb) | -| [Quality control](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Quality_control_excercise_02.ipynb) | Introduction to quality control methods | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/examples/Quality_control_excercise_02.ipynb)| -| [Filling gaps](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Gap_filling_excercise_03.ipynb) | Introduction to gap filling methods | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/examples/Gap_filling_excercise_03.ipynb)| -| [Analysis](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Urban_analysis_excercise_04.ipynb) | Introduction analysis methods | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/examples/Urban_analysis_excercise_04.ipynb)| +| [Introduction](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Introduction_01.ipynb) | Introduction to the toolkit | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Introduction_01.ipynb) | +| [Quality control](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Quality_control_excercise_02.ipynb) | Introduction to quality control methods | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Quality_control_excercise_02.ipynb)| +| [Filling gaps](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Gap_filling_excercise_03.ipynb) | Introduction to gap filling methods | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Gap_filling_excercise_03.ipynb)| +| [Analysis](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Urban_analysis_excercise_04.ipynb) | Introduction analysis methods | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vergauwenthomas/MetObs_toolkit/blob/master/fairness_demo_exercises/Urban_analysis_excercise_04.ipynb)| ## Related diff --git a/deploiment/build_and_test.sh b/deploiment/build_and_test.sh index 5e216e59..cee7f051 100755 --- a/deploiment/build_and_test.sh +++ b/deploiment/build_and_test.sh @@ -19,7 +19,8 @@ DOCEXAMPLEDIR=${WORKDIR}/docs/examples #1 install the package using poetry poetry update #to update the poetry.lock with the latest versions of the depending packages -poetry install --with documentation,dev,titan +poetry install --all-extras + #list all packages installed (for debugging) diff --git a/docs/MetObs_documentation.rst b/docs/MetObs_documentation.rst index 217623e7..399b7bca 100644 --- a/docs/MetObs_documentation.rst +++ b/docs/MetObs_documentation.rst @@ -14,4 +14,4 @@ the MetObs toolkit to be used by a user. metobs_toolkit.dataset metobs_toolkit.station metobs_toolkit.analysis - metobs_toolkit.modeldata \ No newline at end of file + metobs_toolkit.modeldata diff --git a/docs/_build/.buildinfo b/docs/_build/.buildinfo new file mode 100644 index 00000000..f686424e --- /dev/null +++ b/docs/_build/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 1dde347d84ddc46cb70aec8f405101e4 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/docs/_build/.doctrees/JOSS-paper/paper.doctree b/docs/_build/.doctrees/JOSS-paper/paper.doctree new file mode 100644 index 00000000..d231ee64 Binary files /dev/null and b/docs/_build/.doctrees/JOSS-paper/paper.doctree differ diff --git a/docs/_build/.doctrees/MetObs_documentation.doctree b/docs/_build/.doctrees/MetObs_documentation.doctree new file mode 100644 index 00000000..0c12efe3 Binary files /dev/null and b/docs/_build/.doctrees/MetObs_documentation.doctree differ diff --git a/docs/_build/.doctrees/MetObs_documentation_full.doctree b/docs/_build/.doctrees/MetObs_documentation_full.doctree new file mode 100644 index 00000000..24565980 Binary files /dev/null and b/docs/_build/.doctrees/MetObs_documentation_full.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.Analysis.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.Analysis.doctree new file mode 100644 index 00000000..d95dca15 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.Analysis.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.doctree new file mode 100644 index 00000000..3e6c6734 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.filter_data.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.filter_data.doctree new file mode 100644 index 00000000..fb98bc16 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.filter_data.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.get_seasons.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.get_seasons.doctree new file mode 100644 index 00000000..6a78808f Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.analysis.get_seasons.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.convert_to_toolkit_units.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.convert_to_toolkit_units.doctree new file mode 100644 index 00000000..3364d2d1 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.convert_to_toolkit_units.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.doctree new file mode 100644 index 00000000..8bc9f809 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.expression_calculator.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.expression_calculator.doctree new file mode 100644 index 00000000..fdf3412a Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.convertors.expression_calculator.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.check_template_compatibility.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.check_template_compatibility.doctree new file mode 100644 index 00000000..5a9fbfad Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.check_template_compatibility.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.compress_dict.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.compress_dict.doctree new file mode 100644 index 00000000..16702604 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.compress_dict.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.doctree new file mode 100644 index 00000000..31345155 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.extract_options_from_template.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.extract_options_from_template.doctree new file mode 100644 index 00000000..ab132284 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.extract_options_from_template.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.doctree new file mode 100644 index 00000000..5f9aad0b Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.import_data_from_csv.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.import_data_from_csv.doctree new file mode 100644 index 00000000..d8b45c67 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.import_data_from_csv.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.doctree new file mode 100644 index 00000000..caf704ba Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.read_csv_template.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.read_csv_template.doctree new file mode 100644 index 00000000..2360ba15 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.read_csv_template.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.template_to_package_space.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.template_to_package_space.doctree new file mode 100644 index 00000000..c8f346fc Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.template_to_package_space.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.wide_to_long.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.wide_to_long.doctree new file mode 100644 index 00000000..85efe9a6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.data_import.wide_to_long.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset.Dataset.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset.Dataset.doctree new file mode 100644 index 00000000..eb868687 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset.Dataset.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset.doctree new file mode 100644 index 00000000..06a226b4 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.doctree new file mode 100644 index 00000000..927fe53e Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.doctree new file mode 100644 index 00000000..f3a2e202 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.doctree new file mode 100644 index 00000000..2ba53043 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.concat_save.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.concat_save.doctree new file mode 100644 index 00000000..6cc76cd6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.concat_save.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.doctree new file mode 100644 index 00000000..357a1c56 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.doctree new file mode 100644 index 00000000..54a79385 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.doctree new file mode 100644 index 00000000..26cfcd4a Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.doctree new file mode 100644 index 00000000..7cbc179d Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.doctree new file mode 100644 index 00000000..11e3ded1 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.doctree new file mode 100644 index 00000000..a8152bd4 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.doctree new file mode 100644 index 00000000..30776518 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.doctree new file mode 100644 index 00000000..c6bea223 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_multiindex.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_multiindex.doctree new file mode 100644 index 00000000..46862b39 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_multiindex.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.doctree new file mode 100644 index 00000000..b040c72b Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.doctree new file mode 100644 index 00000000..25d2d1ce Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.doctree new file mode 100644 index 00000000..5dbe652d Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.doctree new file mode 100644 index 00000000..1b2e8fb7 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.doctree new file mode 100644 index 00000000..6efebb83 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.doctree new file mode 100644 index 00000000..8db7c9b1 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.subset_stations.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.subset_stations.doctree new file mode 100644 index 00000000..cf49f168 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.subset_stations.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.doctree new file mode 100644 index 00000000..4abb83bc Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.xs_save.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.xs_save.doctree new file mode 100644 index 00000000..b813b2bd Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.df_helpers.xs_save.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.doctree new file mode 100644 index 00000000..50bf0aa5 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.Gap.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.Gap.doctree new file mode 100644 index 00000000..bfaa1cc3 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.Gap.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.doctree new file mode 100644 index 00000000..a5e210fd Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.doctree new file mode 100644 index 00000000..87d7d7b3 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.doctree new file mode 100644 index 00000000..76049a79 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.gaps_to_df.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.gaps_to_df.doctree new file mode 100644 index 00000000..48a93bdf Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.gaps_to_df.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.doctree new file mode 100644 index 00000000..e78a9feb Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.get_station_gaps.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.get_station_gaps.doctree new file mode 100644 index 00000000..911c01c6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.get_station_gaps.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.make_gapfill_df.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.make_gapfill_df.doctree new file mode 100644 index 00000000..432957ba Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.make_gapfill_df.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.doctree new file mode 100644 index 00000000..4471a261 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.doctree new file mode 100644 index 00000000..17e3957b Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.doctree new file mode 100644 index 00000000..388df38d Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.doctree new file mode 100644 index 00000000..2b064607 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.doctree new file mode 100644 index 00000000..b0da0f2c Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.get_sample_size.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.get_sample_size.doctree new file mode 100644 index 00000000..0bb328a3 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.get_sample_size.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.doctree new file mode 100644 index 00000000..8eb41e64 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.doctree new file mode 100644 index 00000000..0b8a588d Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.doctree new file mode 100644 index 00000000..b1fba02c Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.doctree new file mode 100644 index 00000000..5e9e0f70 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.doctree new file mode 100644 index 00000000..16fc7b3f Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.doctree new file mode 100644 index 00000000..757bd103 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.doctree new file mode 100644 index 00000000..11bd8898 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.doctree new file mode 100644 index 00000000..d08db41c Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.doctree new file mode 100644 index 00000000..5f45ab69 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.doctree new file mode 100644 index 00000000..d05fab43 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.doctree new file mode 100644 index 00000000..62e8c31e Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.doctree new file mode 100644 index 00000000..96df29be Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.doctree new file mode 100644 index 00000000..94d9681b Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.doctree new file mode 100644 index 00000000..265d6edf Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.doctree new file mode 100644 index 00000000..e5985141 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.doctree new file mode 100644 index 00000000..f992c65f Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.doctree new file mode 100644 index 00000000..0eed33a5 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.height_extractor.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.height_extractor.doctree new file mode 100644 index 00000000..4f1ef4e6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.height_extractor.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.doctree new file mode 100644 index 00000000..48893958 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.doctree new file mode 100644 index 00000000..53adbea9 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.missingobs.Missingob_collection.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.missingobs.Missingob_collection.doctree new file mode 100644 index 00000000..a12576b9 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.missingobs.Missingob_collection.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.missingobs.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.missingobs.doctree new file mode 100644 index 00000000..beeee584 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.missingobs.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.modeldata.Modeldata.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.modeldata.Modeldata.doctree new file mode 100644 index 00000000..c624df33 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.modeldata.Modeldata.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.modeldata.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.modeldata.doctree new file mode 100644 index 00000000..65680c71 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.modeldata.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.doctree new file mode 100644 index 00000000..71c77e16 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.doctree new file mode 100644 index 00000000..6a68ceea Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.doctree new file mode 100644 index 00000000..18e57e05 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.doctree new file mode 100644 index 00000000..2d19ea71 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.doctree new file mode 100644 index 00000000..6ffb63b9 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstype_modeldata.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.Obstype.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.Obstype.doctree new file mode 100644 index 00000000..6c2b86d0 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.Obstype.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.doctree new file mode 100644 index 00000000..050efbbe Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.expression_calculator.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.expression_calculator.doctree new file mode 100644 index 00000000..aea5f840 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.obstypes.expression_calculator.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.doctree new file mode 100644 index 00000000..3379a8fc Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.doctree new file mode 100644 index 00000000..40f8487c Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.doctree new file mode 100644 index 00000000..67ff45ac Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.doctree new file mode 100644 index 00000000..4772f7b3 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.folium_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.folium_plot.doctree new file mode 100644 index 00000000..f34243fe Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.folium_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.doctree new file mode 100644 index 00000000..96ff9b15 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.doctree new file mode 100644 index 00000000..488024c9 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.doctree new file mode 100644 index 00000000..3825e1c1 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.doctree new file mode 100644 index 00000000..560a3127 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.map_obstype.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.map_obstype.doctree new file mode 100644 index 00000000..3a5d8a84 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.map_obstype.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.doctree new file mode 100644 index 00000000..22e60428 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.doctree new file mode 100644 index 00000000..606ef62a Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.doctree new file mode 100644 index 00000000..a9cce8ea Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.printing.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.printing.doctree new file mode 100644 index 00000000..f62543a6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.printing.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.printing.print_dataset_info.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.printing.print_dataset_info.doctree new file mode 100644 index 00000000..ebc1093c Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.printing.print_dataset_info.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.doctree new file mode 100644 index 00000000..e3441fc4 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.doctree new file mode 100644 index 00000000..8b41122d Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.doctree new file mode 100644 index 00000000..e89b9c36 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.doctree new file mode 100644 index 00000000..6fa63296 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.gross_value_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.gross_value_check.doctree new file mode 100644 index 00000000..186a7101 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.gross_value_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.doctree new file mode 100644 index 00000000..3f7cf968 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.doctree new file mode 100644 index 00000000..b056bf82 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.persistance_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.persistance_check.doctree new file mode 100644 index 00000000..a1627ed5 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.persistance_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.repetitions_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.repetitions_check.doctree new file mode 100644 index 00000000..ec12e9ec Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.repetitions_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.step_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.step_check.doctree new file mode 100644 index 00000000..afa5374b Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.step_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.doctree new file mode 100644 index 00000000..2548551e Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.doctree new file mode 100644 index 00000000..a4182b91 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.doctree new file mode 100644 index 00000000..171d1524 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.window_variation_check.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.window_variation_check.doctree new file mode 100644 index 00000000..5803981e Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_checks.window_variation_check.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_statistics.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_statistics.doctree new file mode 100644 index 00000000..90eeef11 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_statistics.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.doctree new file mode 100644 index 00000000..8c4b7196 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.settings.Settings.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.settings.Settings.doctree new file mode 100644 index 00000000..902908d9 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.settings.Settings.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.settings.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.settings.doctree new file mode 100644 index 00000000..f93814b6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.settings.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.station.Station.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.station.Station.doctree new file mode 100644 index 00000000..28957c3a Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.station.Station.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.station.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.station.doctree new file mode 100644 index 00000000..cc8477b6 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.station.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.writing_files.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.writing_files.doctree new file mode 100644 index 00000000..96923fe8 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.writing_files.doctree differ diff --git a/docs/_build/.doctrees/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.doctree b/docs/_build/.doctrees/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.doctree new file mode 100644 index 00000000..588fba00 Binary files /dev/null and b/docs/_build/.doctrees/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.doctree differ diff --git a/docs/_build/.doctrees/contributing_link.doctree b/docs/_build/.doctrees/contributing_link.doctree new file mode 100644 index 00000000..85e6756a Binary files /dev/null and b/docs/_build/.doctrees/contributing_link.doctree differ diff --git a/docs/_build/.doctrees/environment.pickle b/docs/_build/.doctrees/environment.pickle new file mode 100644 index 00000000..d88050b2 Binary files /dev/null and b/docs/_build/.doctrees/environment.pickle differ diff --git a/docs/_build/.doctrees/example.doctree b/docs/_build/.doctrees/example.doctree new file mode 100644 index 00000000..9c69c988 Binary files /dev/null and b/docs/_build/.doctrees/example.doctree differ diff --git a/docs/_build/.doctrees/examples/analysis_example.doctree b/docs/_build/.doctrees/examples/analysis_example.doctree new file mode 100644 index 00000000..58e78bc9 Binary files /dev/null and b/docs/_build/.doctrees/examples/analysis_example.doctree differ diff --git a/docs/_build/.doctrees/examples/doc_example.doctree b/docs/_build/.doctrees/examples/doc_example.doctree new file mode 100644 index 00000000..b4560ed1 Binary files /dev/null and b/docs/_build/.doctrees/examples/doc_example.doctree differ diff --git a/docs/_build/.doctrees/examples/filling_example.doctree b/docs/_build/.doctrees/examples/filling_example.doctree new file mode 100644 index 00000000..e7800654 Binary files /dev/null and b/docs/_build/.doctrees/examples/filling_example.doctree differ diff --git a/docs/_build/.doctrees/examples/gee_example.doctree b/docs/_build/.doctrees/examples/gee_example.doctree new file mode 100644 index 00000000..be797a3e Binary files /dev/null and b/docs/_build/.doctrees/examples/gee_example.doctree differ diff --git a/docs/_build/.doctrees/examples/include_paper_script.doctree b/docs/_build/.doctrees/examples/include_paper_script.doctree new file mode 100644 index 00000000..64e27930 Binary files /dev/null and b/docs/_build/.doctrees/examples/include_paper_script.doctree differ diff --git a/docs/_build/.doctrees/examples/index.doctree b/docs/_build/.doctrees/examples/index.doctree new file mode 100644 index 00000000..faf69f3f Binary files /dev/null and b/docs/_build/.doctrees/examples/index.doctree differ diff --git a/docs/_build/.doctrees/examples/qc_example.doctree b/docs/_build/.doctrees/examples/qc_example.doctree new file mode 100644 index 00000000..62c9f289 Binary files /dev/null and b/docs/_build/.doctrees/examples/qc_example.doctree differ diff --git a/docs/_build/.doctrees/examples/using_obstypes.doctree b/docs/_build/.doctrees/examples/using_obstypes.doctree new file mode 100644 index 00000000..207cebb5 Binary files /dev/null and b/docs/_build/.doctrees/examples/using_obstypes.doctree differ diff --git a/docs/_build/.doctrees/gee_authentication.doctree b/docs/_build/.doctrees/gee_authentication.doctree new file mode 100644 index 00000000..13e6938f Binary files /dev/null and b/docs/_build/.doctrees/gee_authentication.doctree differ diff --git a/docs/_build/.doctrees/gui.doctree b/docs/_build/.doctrees/gui.doctree new file mode 100644 index 00000000..9edca09c Binary files /dev/null and b/docs/_build/.doctrees/gui.doctree differ diff --git a/docs/_build/.doctrees/index.doctree b/docs/_build/.doctrees/index.doctree new file mode 100644 index 00000000..de8aa1d2 Binary files /dev/null and b/docs/_build/.doctrees/index.doctree differ diff --git a/docs/_build/.doctrees/intro.doctree b/docs/_build/.doctrees/intro.doctree new file mode 100644 index 00000000..b5c14574 Binary files /dev/null and b/docs/_build/.doctrees/intro.doctree differ diff --git a/docs/_build/.doctrees/nbsphinx/examples/analysis_example.ipynb b/docs/_build/.doctrees/nbsphinx/examples/analysis_example.ipynb new file mode 100644 index 00000000..e4d41d52 --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/examples/analysis_example.ipynb @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9116142e-ebf4-471f-af77-52efca4aa935", + "metadata": {}, + "source": [ + "# Demo example: Analysis\n", + "\n", + "This example is the continuation of the previous example: [filling gaps and missing observations](https://vergauwenthomas.github.io/MetObs_toolkit/examples/filling_example.html). This example serves as an introduction to the Analysis module." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e7593f73-c25b-4ac0-989e-77a03a8f4a92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
temptemp_final_label
namedatetime
vlinder012022-09-02 15:30:00+00:0026.453659gap_interpolation
2022-09-02 15:45:00+00:0026.207317gap_interpolation
2022-09-02 16:00:00+00:0025.960976gap_interpolation
2022-09-02 16:15:00+00:0025.714634gap_interpolation
2022-09-02 16:30:00+00:0025.468293gap_interpolation
............
vlinder282022-09-15 07:00:00+00:0014.114815gap_interpolation
2022-09-15 07:15:00+00:0014.251852gap_interpolation
2022-09-15 07:30:00+00:0014.388889gap_interpolation
2022-09-15 07:45:00+00:0014.525926gap_interpolation
2022-09-15 08:00:00+00:0014.662963gap_interpolation
\n", + "

5111 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " temp temp_final_label\n", + "name datetime \n", + "vlinder01 2022-09-02 15:30:00+00:00 26.453659 gap_interpolation\n", + " 2022-09-02 15:45:00+00:00 26.207317 gap_interpolation\n", + " 2022-09-02 16:00:00+00:00 25.960976 gap_interpolation\n", + " 2022-09-02 16:15:00+00:00 25.714634 gap_interpolation\n", + " 2022-09-02 16:30:00+00:00 25.468293 gap_interpolation\n", + "... ... ...\n", + "vlinder28 2022-09-15 07:00:00+00:00 14.114815 gap_interpolation\n", + " 2022-09-15 07:15:00+00:00 14.251852 gap_interpolation\n", + " 2022-09-15 07:30:00+00:00 14.388889 gap_interpolation\n", + " 2022-09-15 07:45:00+00:00 14.525926 gap_interpolation\n", + " 2022-09-15 08:00:00+00:00 14.662963 gap_interpolation\n", + "\n", + "[5111 rows x 2 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import metobs_toolkit\n", + "\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "#Update Gap definition\n", + "your_dataset.update_qc_settings(gapsize_in_records = 20) \n", + "\n", + "#Import the data\n", + "your_dataset.import_data_from_file()\n", + "\n", + "#Coarsen to 15-minutes frequencies\n", + "your_dataset.coarsen_time_resolution(freq='15T')\n", + "\n", + "#Apply default quality control\n", + "your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example\n", + "\n", + "#Interpret the outliers as missing observations and gaps.\n", + "your_dataset.update_gaps_and_missing_from_outliers(obstype='temp', \n", + " n_gapsize=None)\n", + "\n", + "#Fill missing observations (using default settings)\n", + "your_dataset.fill_missing_obs_linear(obstype='temp')\n", + "\n", + "#Fill gaps with linear interpolation.\n", + "your_dataset.fill_gaps_linear(obstype='temp')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "cfdf87f1-dcfd-4a13-b12a-7373e880e4cd", + "metadata": {}, + "source": [ + "## Creating an Analysis\n", + "\n", + "The built-in analysis functionality is centered around the [*Analysis*](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#analysis) class. First, create an *Analysis* object using the [get_analysis()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.get_analysis) method." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c69bfda4-8a5f-49b6-9a80-cce0ed2d3dbd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Analysis instance containing: \n", + " *28 stations \n", + " *['humidity', 'precip', 'precip_sum', 'pressure', 'pressure_at_sea_level', 'radiation_temp', 'temp', 'wind_direction', 'wind_gust', 'wind_speed'] observation types \n", + " *38820 observation records \n", + " *Coordinates are available for all stations. \n", + " \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:45:00+00:00 (total duration: 14 days 23:45:00) *Coordinates are available for all stations. " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "analysis = your_dataset.get_analysis(add_gapfilled_values=True)\n", + "analysis" + ] + }, + { + "cell_type": "markdown", + "id": "26990a49-157d-4a59-9dce-9cbb1523d177", + "metadata": {}, + "source": [ + "## Analysis methods\n", + "\n", + "An overview of the available analysis methods can be seen in the [Analysis documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis). The relevant methods depends on your data and your interest. As an example, a demonstration of the filter and diurnal cycle of the demo data.\n", + "\n", + "### Filtering data\n", + "\n", + "It is common to filter your data according to specific meteorological phenomena or periods in time. To do this you can use the [apply_filter()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis.apply_filter) method." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "036ffd8c-bb43-4667-8556-84622d2b5498", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
humidityprecipprecip_sumpressurepressure_at_sea_levelradiation_temptempwind_directionwind_gustwind_speed
namedatetime
vlinder012022-09-01 18:00:00+00:0047.00.00.0101453.0101717.0NaN22.945.04.81.8
2022-09-01 18:15:00+00:0048.00.00.0101448.0101712.0NaN22.445.04.81.7
2022-09-01 18:30:00+00:0050.00.00.0101461.0101725.0NaN21.845.03.20.6
2022-09-01 18:45:00+00:0055.00.00.0101468.0101733.0NaN20.345.00.00.0
2022-09-01 19:00:00+00:0058.00.00.0101460.0101726.0NaN18.845.00.00.0
....................................
vlinder282022-09-15 18:45:00+00:0076.00.017.8101314.0101266.0NaN15.715.08.10.8
2022-09-15 19:00:00+00:0076.00.017.8101320.0101272.0NaN15.515.04.80.6
2022-09-15 19:15:00+00:0077.00.017.8101325.0101277.0NaN15.35.00.00.0
2022-09-15 19:30:00+00:0078.00.017.8101339.0101291.0NaN15.165.04.80.9
2022-09-15 19:45:00+00:0079.00.017.8101343.0101295.0NaN15.065.00.00.0
\n", + "

6347 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " humidity precip precip_sum pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 47.0 0.0 0.0 101453.0 \n", + " 2022-09-01 18:15:00+00:00 48.0 0.0 0.0 101448.0 \n", + " 2022-09-01 18:30:00+00:00 50.0 0.0 0.0 101461.0 \n", + " 2022-09-01 18:45:00+00:00 55.0 0.0 0.0 101468.0 \n", + " 2022-09-01 19:00:00+00:00 58.0 0.0 0.0 101460.0 \n", + "... ... ... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 76.0 0.0 17.8 101314.0 \n", + " 2022-09-15 19:00:00+00:00 76.0 0.0 17.8 101320.0 \n", + " 2022-09-15 19:15:00+00:00 77.0 0.0 17.8 101325.0 \n", + " 2022-09-15 19:30:00+00:00 78.0 0.0 17.8 101339.0 \n", + " 2022-09-15 19:45:00+00:00 79.0 0.0 17.8 101343.0 \n", + "\n", + " pressure_at_sea_level radiation_temp \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 101717.0 NaN \n", + " 2022-09-01 18:15:00+00:00 101712.0 NaN \n", + " 2022-09-01 18:30:00+00:00 101725.0 NaN \n", + " 2022-09-01 18:45:00+00:00 101733.0 NaN \n", + " 2022-09-01 19:00:00+00:00 101726.0 NaN \n", + "... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 101266.0 NaN \n", + " 2022-09-15 19:00:00+00:00 101272.0 NaN \n", + " 2022-09-15 19:15:00+00:00 101277.0 NaN \n", + " 2022-09-15 19:30:00+00:00 101291.0 NaN \n", + " 2022-09-15 19:45:00+00:00 101295.0 NaN \n", + "\n", + " temp wind_direction wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 22.9 45.0 4.8 \n", + " 2022-09-01 18:15:00+00:00 22.4 45.0 4.8 \n", + " 2022-09-01 18:30:00+00:00 21.8 45.0 3.2 \n", + " 2022-09-01 18:45:00+00:00 20.3 45.0 0.0 \n", + " 2022-09-01 19:00:00+00:00 18.8 45.0 0.0 \n", + "... ... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 15.7 15.0 8.1 \n", + " 2022-09-15 19:00:00+00:00 15.5 15.0 4.8 \n", + " 2022-09-15 19:15:00+00:00 15.3 5.0 0.0 \n", + " 2022-09-15 19:30:00+00:00 15.1 65.0 4.8 \n", + " 2022-09-15 19:45:00+00:00 15.0 65.0 0.0 \n", + "\n", + " wind_speed \n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 1.8 \n", + " 2022-09-01 18:15:00+00:00 1.7 \n", + " 2022-09-01 18:30:00+00:00 0.6 \n", + " 2022-09-01 18:45:00+00:00 0.0 \n", + " 2022-09-01 19:00:00+00:00 0.0 \n", + "... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 0.8 \n", + " 2022-09-15 19:00:00+00:00 0.6 \n", + " 2022-09-15 19:15:00+00:00 0.0 \n", + " 2022-09-15 19:30:00+00:00 0.9 \n", + " 2022-09-15 19:45:00+00:00 0.0 \n", + "\n", + "[6347 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#filter to non-windy afternoons in the Autumn.\n", + "subset = analysis.apply_filter('wind_speed <= 2.5 & season==\"autumn\" & hour > 12 & hour < 20')\n", + "\n", + "subset.df" + ] + }, + { + "cell_type": "markdown", + "id": "93399221-9b4e-4a6b-9b00-51ab9bf32a7e", + "metadata": {}, + "source": [ + "## Diurnal cycle \n", + "\n", + "To make a diurnal cycle plot of your Analysis use the [get_diurnal_statistics()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis.get_diurnal_statistics) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e867c52c-72fa-49ac-ae00-98e9150b513c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAPgCAYAAAA4JE15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgsV1nv/1lr1dDdezpDTk5ykgAh5CLCvYDgRRAIaCCMGuUhDAqE8SqPA2JQ4v0xhClMooCo1+EBBAUEBBEvkwyGe0VULgiKjwRIGEJOkjPsoYca1vD7Y1VVd+/p7H3O3mdP6wMn3bu6urqqurt6fdf7vt9XOOccgUAgEAgEAoFAIBBYM3KrdyAQCAQCgUAgEAgEdhpBSAUCgUAgEAgEAoHAOglCKhAIBAKBQCAQCATWSRBSgUAgEAgEAoFAILBOgpAKBAKBQCAQCAQCgXUShFQgEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgnQQhFQgEAoFAIBAIBALrJAipQCAQCAQCgUAgEFgnQUgFAoHAafCOd7wDIQQ333zzVu/KnuHlL385QgiOHTu21bvScPPNNyOE4B3veMcp17366qu5y13uMrZMCMHLX/7yTdm3tXCXu9yFq6++uvn7c5/7HEIIPve5z23ZPq2Vxfu+Xdiu+xUIBDaeIKQCgcC2pBYq//Iv/7Ls4w972MO4173udZb3KhDYXP7hH/6Bl7/85czOzm71rgQCgUDgFERbvQOBQCAQCOxU7nznOzMYDIjj+LSePxgMiKLhT/E//MM/cN1113H11Vezb9++DdrLtfPQhz6UwWBAkiRn/bUDgUBgpxEiUoFAILAOer3eVu/CprMXjnGjEELQarVQSp3W81ut1piQ2mqklLRaLaTcmOFBlmVYazdkW4FAILDdCEIqEAjsGrTWvPKVr+SSSy4hTVPucpe78Fu/9VvkeT623kp1KYtrG+r0wr//+7/n+c9/Pueeey4XXnjhsq/9jGc8g3POOYeyLJc89shHPpK73/3uq+775z//eZ74xCdypzvdiTRNueiii/i1X/s1BoNBs84b3/hGhBB85zvfWfL8a6+9liRJOHnyZLPsi1/8Io961KOYmZmh0+lw2WWX8X//7/8de15dd/T1r3+dpz71qezfv58HP/jBAHz1q1/l6quv5q53vSutVovzzjuPZz3rWRw/fnzJ63/uc5/j/ve/P61Wi0suuYT/9b/+V7Ptxbz73e/mfve7H+12mwMHDvDkJz+Z733ve6uen1FmZ2ebiM3MzAzPfOYz6ff7zeOr1S0tfu/rffzGN77Bz//8zzMzM8OhQ4d4yUtegnOO733ve/z0T/8009PTnHfeefz2b//22PZWeq0Pf/jD3Ote96LVanGve92LD33oQ8sey+j+vPzlL+dFL3oRABdffDFCiKYO77LLLuPe9773stu4+93vzhVXXLHqOXPO8apXvYoLL7yQTqfDwx/+cP793/99yXrL1UitVPPzsIc9jIc97GFLnvve976X/+//+/+44IIL6HQ6zM/Pc/XVVzM5Ocktt9zClVdeyeTkJIcOHeKaa67BGDO23Te+8Y086EEP4uDBg7Tbbe53v/vxgQ98YNXjWw1rLW9+85v5r//1v9JqtTh06BCPetSjmrTh9ZzbU21rJWZnZ3nBC17ARRddRJqm3O1ud+N1r3tdEJmBwA4nCKlAILCtmZub49ixY0v+LSdYnvOc5/DSl76UH/mRH+F3fud3uOyyy7j++ut58pOffEb78PznP5+vf/3rvPSlL+XFL37xsus87WlP4/jx43ziE58YW3706FE+85nP8PM///Orvsb73/9++v0+v/iLv8hb3/pWrrjiCt761rfy9Kc/vVnnqquuQgjBX/7lXy55/l/+5V/yyEc+kv379wPwmc98hoc+9KHMz8/zspe9jNe85jXMzs7yEz/xE/zTP/3Tkuc/8YlPpN/v85rXvIbnPve5AHzqU5/i29/+Ns985jN561vfypOf/GTe+9738pjHPAbnXPPcL3/5yzzqUY/i+PHjXHfddTz72c/mFa94BR/+8IeXvM6rX/1qnv70p3PppZfypje9iRe84AV8+tOf5qEPfeia64KuuuoqFhYWuP7667nqqqt4xzvewXXXXbem567Ek570JKy1vPa1r+UBD3gAr3rVq/jd3/1dHvGIR3DBBRfwute9jrvd7W5cc8013HDDDatu65Of/CRPeMITEEJw/fXXc+WVV/LMZz7zlIPtn/3Zn+UpT3kKAL/zO7/Du971Lt71rndx6NAhnva0p/HVr36Vf/u3fxt7zj//8z83InA1XvrSl/KSl7yEe9/73rzhDW/grne9K4985CM3Jfr4yle+kr/927/lmmuu4TWveU2TJmiM4YorruDgwYO88Y1v5LLLLuO3f/u3+aM/+qOx57/5zW/mvve9L694xSt4zWteQxRFPPGJT+Rv//ZvT2t/nv3sZzci5nWvex0vfvGLabVa/OM//iPAus7tqba1HP1+n8suu4x3v/vdPP3pT+ctb3kLP/7jP861117LC1/4wtM6pkAgsE1wgUAgsA15+9vf7oBV/93znvds1v/KV77iAPec5zxnbDvXXHONA9xnPvOZZhngXvayly15zTvf+c7uGc94xpJ9ePCDH+y01svu30033eScc84Y4y688EL3pCc9aWy9N73pTU4I4b797W+verz9fn/Jsuuvv94JIdx3vvOdZtkDH/hAd7/73W9svX/6p39ygPuzP/sz55xz1lp36aWXuiuuuMJZa8de4+KLL3aPeMQjmmUve9nLHOCe8pSnrGmf3vOe9zjA3XDDDc2yxz/+8a7T6bhbbrmlWXbjjTe6KIrc6M/MzTff7JRS7tWvfvXYNr/2ta+5KIqWLF9Mva/Petazxpb/zM/8jDt48GDz90033eQA9/a3v33JNha/9/U2n/e85zXLtNbuwgsvdEII99rXvrZZfvLkSddut8c+I8u91n3ucx93/vnnu9nZ2WbZJz/5SQe4O9/5zqvuzxve8Iaxz1XN7Oysa7Va7jd/8zfHlv/Kr/yKm5iYcN1ud8mx1tx+++0uSRL32Mc+duzz8Fu/9VsOGDuez372sw5wn/3sZ5tli78XNZdddpm77LLLljz3rne965LPzjOe8QwHuFe84hVjy+973/su+Twvfm5RFO5e97qX+4mf+Imx5Svt1yif+cxnHOB+5Vd+Zclj9blY67ldy7aW269XvvKVbmJiwn3jG98Ye86LX/xip5Ry3/3ud1c9hkAgsH0JEalAILCtedvb3sanPvWpJf/+23/7b2Pr/e///b8Blszw/vqv/zrAac9mAzz3uc89ZQ2MlJKf+7mf4yMf+QgLCwvN8j//8z/nQQ96EBdffPGqz2+32839Xq/HsWPHeNCDHoRzji9/+cvNY0960pP40pe+xLe+9a1m2fve9z7SNOWnf/qnAfjKV77CjTfeyFOf+lSOHz/eRPF6vR4/+ZM/yQ033LAkpegXfuEXVt2nLMs4duwYP/ZjPwbA//t//w/wUYa/+7u/48orr+TIkSPN+ne729149KMfPba9v/qrv8Jay1VXXTUWXTzvvPO49NJL+exnP7vqOVppXx/ykIdw/Phx5ufn1/T85XjOc57T3FdKcf/73x/nHM9+9rOb5fv27ePud7873/72t1fczq233spXvvIVnvGMZzAzM9Msf8QjHsEP//APn/b+zczM8NM//dO85z3vaaKBxhje9773ceWVVzIxMbHic//u7/6Ooij45V/+5bFUyxe84AWnvT+r8YxnPGPsszPKcu/d4vM5+tyTJ08yNzfHQx7ykOYztx4++MEPIoTgZS972ZLH6nOx1nO7lm0tx/vf/34e8pCHsH///rHP/eWXX44x5pQRzkAgsH0JQioQCGxr/vt//+9cfvnlS/7VKWw13/nOd5BScre73W1s+Xnnnce+ffuWrStaK6cSQTVPf/rTGQwGTT3Mf/7nf/KlL32Jpz3taad87ne/+12uvvpqDhw40NSPXHbZZYBPb6x54hOfiJSS973vfYCvfXn/+9/Pox/9aKanpwG48cYbAT+gPXTo0Ni/P/mTPyHP87FtrnSMJ06c4Fd/9Vc5fPgw7XabQ4cONevVz7/99tsZDAZLzjuwZNmNN96Ic45LL710yX79x3/8B7fffvspzxPAne50p7G/68/CaH3Yelm8zZmZGVqtFuecc86S5au9Tv05u/TSS5c8dqo6uVPx9Kc/ne9+97t8/vOfB7xAuu222075+Vppnw4dOrTke7QRrPR9qWuKRtm/f/+S8/nRj36UH/uxH6PVanHgwAEOHTrEH/zBHyz5zK6Fb33rWxw5coQDBw6sut5azu1at7WYG2+8kY9//ONLPvOXX345wJo/94FAYPuxfayCAoFAYANYbWb4VCwueq9ZaXZ9MT/8wz/M/e53v6YW4t3vfjdJknDVVVed8nUf8YhHcOLECX7zN3+TH/qhH2JiYoJbbrmFq6++eix6dOTIER7ykIfwl3/5l/zWb/0W//iP/8h3v/tdXve61zXr1Ou/4Q1v4D73uc+yrzk5OXnKY7zqqqv4h3/4B170ohdxn/vch8nJSay1POpRjzqtInlrLUIIPvaxjy0b4Vu8TyuxUnSwjias9BlY6f1daZunep2zzRVXXMHhw4d597vfzUMf+lDe/e53c9555zUD8s1itfO53Dla6fuyFmfDz3/+8/zUT/0UD33oQ/n93/99zj//fOI45u1vfzt/8Rd/sb4dXwebeW6ttTziEY/gN37jN5Z9/L/8l/9yxq8RCAS2hiCkAoHAruDOd74z1lpuvPFG7nGPezTLb7vtNmZnZ7nzne/cLNu/f/8SY4OiKLj11lvPeD+e/vSn88IXvpBbb72Vv/iLv+Cxj33sKWf9v/a1r/GNb3yDd77znWPmEp/61KeWXf9JT3oSz3/+8/nP//xP3ve+99HpdHj84x/fPH7JJZcAMD09fdoDwZMnT/LpT3+a6667jpe+9KXN8jraVXPuuefSarX45je/uWQbi5ddcsklOOe4+OKLN3XwWJ/vxe/xmUQl10r9OVt8nsBHKE/FahMBSime+tSn8o53vIPXve51fPjDH15T2unoPt31rndtlt9xxx1riuIt930Bfz5Ht7cRfPCDH6TVavGJT3yCNE2b5W9/+9tPa3uXXHIJn/jEJzhx4sSqkaS1nNu1bmu5feh2u5sueAOBwNknpPYFAoFdwWMe8xgAfvd3f3ds+Zve9CYAHvvYxzbLLrnkkiV1CX/0R3+0asRirTzlKU9BCMGv/uqv8u1vf/uUbmownKkfjXQ453jzm9+87PpPeMITUErxnve8h/e///087nGPG6uRud/97scll1zCG9/4Rrrd7pLn33HHHae1T7D0/CqluPzyy/nwhz/MD37wg2b5N7/5TT72sY+NrfuzP/uzKKW47rrrlmzXObesrfrpMD09zTnnnLPkPf793//9Ddn+apx//vnc5z734Z3vfOdYKtqnPvUpvv71r5/y+fX7uJKD4dOe9jROnjzJ//gf/4Nut7umz9fll19OHMe89a1vHTvvi9/Llbjkkkv4x3/8R4qiaJZ99KMfXZdl/VpRSiGEGPsu3nzzzcs6QK6FJzzhCTjnlnV1XPwZPNW5Xc+2Rrnqqqv4whe+sMTRE/z7rLVe6+EEAoFtRohIBQKBXcG9731vnvGMZ/BHf/RHzM7Octlll/FP//RPvPOd7+TKK6/k4Q9/eLPuc57zHH7hF36BJzzhCTziEY/gX//1X/nEJz6xpB7mdKj7yrz//e9n3759YwJuJX7oh36ISy65hGuuuYZbbrmF6elpPvjBD64YLTj33HN5+MMfzpve9CYWFhZ40pOeNPa4lJI/+ZM/4dGPfjT3vOc9eeYzn8kFF1zALbfcwmc/+1mmp6f5m7/5m1X3aXp6moc+9KG8/vWvpyxLLrjgAj75yU9y0003LVn35S9/OZ/85Cf58R//cX7xF38RYwy/93u/x73udS++8pWvNOtdcsklvOpVr+Laa6/l5ptv5sorr2RqaoqbbrqJD33oQzzvec/jmmuuOeX5WgvPec5zeO1rX8tznvMc7n//+3PDDTfwjW98Y0O2fSquv/56HvvYx/LgBz+YZz3rWZw4cYK3vvWt3POe91xW2I5yv/vdD4D/+T//J09+8pOJ45jHP/7xjcC6733vy73udS/e//73c4973IMf+ZEfOeX+1P2arr/+eh73uMfxmMc8hi9/+ct87GMfW9Nn/jnPeQ4f+MAHeNSjHsVVV13Ft771Ld797nc3kc+N5LGPfSxvetObeNSjHsVTn/pUbr/9dt72trdxt7vdja9+9avr3t7DH/5wnva0p/GWt7yFG2+8sUlL/fznP8/DH/5wfumXfqlZ91Tndj3bGuVFL3oRH/nIR3jc4x7H1Vdfzf3udz96vR5f+9rX+MAHPsDNN9+8IdeeQCBw9gkRqUAgsGv4kz/5E6677jr++Z//mRe84AV85jOf4dprr+W9733v2HrPfe5z+c3f/E1uuOEGfv3Xf52bbrqJT33qU6s6n62HOj3vqquuGktPWok4jvmbv/kb7nOf+3D99ddz3XXXcemll/Jnf/ZnKz7nSU96EgsLC0xNTTXRuFEe9rCH8YUvfIH73//+/N7v/R6//Mu/zDve8Q7OO+88fu3Xfm1Nx/EXf/EXXHHFFbztbW/j2muvJY7jJVEm8IP/j33sY+zfv5+XvOQl/Omf/imveMUr+Mmf/ElardbYui9+8Yv54Ac/iJSS6667jmuuuYaPfOQjPPKRj+Snfuqn1rRfa+GlL30pz372s/nABz7Ab/zGb2CMWXbfN4NaSBtjuPbaa/mrv/or3v72t3P/+9//lM/90R/9UV75ylfyr//6r1x99dU85SlPWRJBrD9fazExqXnVq17Fddddx5e//GVe9KIX8a1vfYtPfvKTa/rMX3HFFfz2b/823/jGN3jBC17AF77wBT760Y+u2Jz6TPiJn/gJ/vRP/5SjR4/yghe8gPe85z287nWv42d+5mdOe5tvf/vbecMb3sBNN93Ei170Il7zmtcwGAx40IMetGTdU53b9WyrptPp8Pd///e86EUv4nOf+xy/+qu/ymtf+1puvPFGrrvuujF3x0AgsLMQbquqZgOBQGCX8td//ddceeWV3HDDDTzkIQ/Z6t3ZMq688kr+/d//fdl6ocDp8+Y3v5lf+7Vf4+abb17iNhg4M8K5DQQC6yEIqUAgENhgHve4x/Ef//EffPOb3zwjF8GdxGAwGHNru/HGG7nnPe/JM57xDP74j/94C/dsd+Gc4973vjcHDx5cc9+twNoI5zYQCKyXUCMVCAQCG8R73/tevvrVr/K3f/u3vPnNb94zIgrgrne9K1dffTV3vetd+c53vsMf/MEfkCTJipbPgfXR6/X4yEc+wmc/+1m+9rWv8dd//ddbvUu7hnBuA4HA6RIiUoFAILBBCCGYnJzkSU96En/4h39IFO2duapnPvOZfPazn+Xo0aOkacoDH/hAXvOa16zJDCFwam6++WYuvvhi9u3bx/Of/3xe/epXb/Uu7RrCuQ0EAqdLEFKBQCAQCAQCgUAgsE6Ca18gEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgneydBP5VsNbygx/8gKmpqT1VHB4IBAKBQCAQCATGcc6xsLDAkSNHkHLluFMQUsAPfvADLrrooq3ejUAgEAgEAoFAILBN+N73vrdq8/EgpICpqSnAn6zp6ekt3ptAIBAIBAKBQCCwVczPz3PRRRc1GmElgpCCJp1veno6CKlAIBAIBAKBQCBwypKfYDYRCAQCgUAgEAgEAuskCKlAIBAIBAKBQCAQWCdBSAUCgUAgEAgEAoHAOglCKhAIBAKBQCAQCATWSRBSgUAgEAgEAoFAILBOtlRI3XDDDTz+8Y/nyJEjCCH48Ic/PPa4c46XvvSlnH/++bTbbS6//HJuvPHGsXVOnDjBz/3czzE9Pc2+fft49rOfTbfbPYtHEQgEAoFAIBAIBPYaWyqker0e9773vXnb29627OOvf/3rectb3sIf/uEf8sUvfpGJiQmuuOIKsixr1vm5n/s5/v3f/51PfepTfPSjH+WGG27gec973tk6hEAgEAgEAoFAILAHEc45t9U7Ad6n/UMf+hBXXnkl4KNRR44c4dd//de55pprAJibm+Pw4cO84x3v4MlPfjL/8R//wQ//8A/zz//8z9z//vcH4OMf/ziPecxj+P73v8+RI0fW9Nrz8/PMzMwwNzcX+kgFAoFAIBAIBAJ7mLVqg21bI3XTTTdx9OhRLr/88mbZzMwMD3jAA/jCF74AwBe+8AX27dvXiCiAyy+/HCklX/ziF1fcdp7nzM/Pj/0LBAKBQCAQCAQCgbWybYXU0aNHATh8+PDY8sOHDzePHT16lHPPPXfs8SiKOHDgQLPOclx//fXMzMw0/y666KIN3vtAIBAIBAKBQCCwm9m2Qmozufbaa5mbm2v+fe9739vqXQoEAoFAIBAIBAI7iG0rpM477zwAbrvttrHlt912W/PYeeedx+233z72uNaaEydONOssR5qmTE9Pj/0LBAKBQCAQCAQCgbWybYXUxRdfzHnnncenP/3pZtn8/Dxf/OIXeeADHwjAAx/4QGZnZ/nSl77UrPOZz3wGay0PeMADzvo+BwKBQCAQCAQCgb1BtJUv3u12+eY3v9n8fdNNN/GVr3yFAwcOcKc73YkXvOAFvOpVr+LSSy/l4osv5iUveQlHjhxpnP3ucY978KhHPYrnPve5/OEf/iFlWfJLv/RLPPnJT16zY18gEAgEAoFAIBAIrJctFVL/8i//wsMf/vDm7xe+8IUAPOMZz+Ad73gHv/Ebv0Gv1+N5z3ses7OzPPjBD+bjH/84rVarec6f//mf80u/9Ev85E/+JFJKnvCEJ/CWt7zlrB9LIBAIBAKBQCAQ2Dtsmz5SW0noIxUIBAKBQCAQCARgF/SRCgQCgUAgEAgEAoHtShBSgUAgEAgEAoFAILBOgpAKBAKBQCAQCAQCgXUShFQgEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgnQQhFQgEAoFAIBAIBALrJAipQCAQCAQCgUAgEFgnQUgFAoFAIBAIBAKBwDoJQioQCAQCgUAgEAgE1kkQUoFAIBAIBAKBQCCwToKQCgQCgUAgEAgEAoF1Em31DgQCgUAgEAgEAoHdj3MWhx3eYrHONMsSNYkS8Vbv5poJQioQCAQCgUAgENijOOcaUeMFjmmEzqjIWXGd0ftW4zBYp/0/DNaVWOeXOQwOBziss4BrtikQHO7cmwPpJVt9StZMEFKBQCAQCAQCgcA2Y3kxU993ywseLG6R+KlFjG0ETolzBovGOF2t7wCLwzXbxjn/d7MtL4AWIxDVY/4+CIQQCJT/WwgEEoFACIlAApJIRCN/C7r6KM7Zs3iGz5wgpAKBQCAQCAQCgTWwWMDUQsVHWJYTPMsJnWH0xqKH0Rs3/Hu4jWH0xlFFcOr7I5EkECN7Wd93I0tkJW68aPECphY4shI7yssdWa0zIn6av8Xo62wsYgdaNwQhFQgEAoFAIBDYsSxNTTuFmBkRKT4yYxpRMiZqRlPTMP75TlfypH6dRRGbWmgtityMRm2GSxiJ1iwnWmqxo5BCNEJoKHxGnxPYCoKQCgQCgUAgEAhsKV641Clo5RJBY/DpaNpmaJdjbFGtV9ferDU1rY7eCOqIzWKRMxq9WU60+MiJQhIh5DA1bTTKU6e3BXY3QUgFAoFAIBAIBM6YWsAYVy6brlabDhhXYFyBthnG5WhXVGJIV1EfO4wU4RBIHK6pv5FCjURslqamIVeK8oToTWBjCUIqEAgEAoFAINDgnF0kgKqokCsbRzYvlsphhKiJEumqnqdOhTOLangcXgzJKmWtFkUKRUIkFRKFaJaHqE5g+xKEVCAQCAQCgcAuZNRyehglqtLhqO9rtM1HIkQ+WuSFkMVVdUJDZ7chw1S3WhD520jE/u9KDEmhtugMBAKbSxBSgUAgEAgEAtuYYf1QORYlasRRtczYvBFDpcsqYwQ7tLh2tkmX8/g6IS+IhpGgWhTFMvEW1kJWj4W0uEBglCCkAoFAIBAIBDaZleuHyiXpc8blVZTI31rMCvVDi3v4yCYS1IgiIpRMvDFCFT0K6XKBwMYQhFQgEAgEAoHAGlmufmhxZMhHh4rKSGEoiJp0uWXrh4Zpc6Npcl4cRUgSYhk19UShfigQ2HqCkAoEAoFAILDnaKy2GwFULptCp20lhqo6IuPyYU+iKjK0Wv1QHQmqbyMZj0SLQrpcILCTCUIqEAgEAoHArsI5S2n7FLZHaXtoV9UOVWKorh+yo5GhRfVDdcpcky5XRYIW1w+NWnEHAoG9RRBSgUAgEAgEdiza5pS2T2l7FLZHpmcZmJNoN8DYfFg/1BgmDOuHFDGRTEP9UCAQOC2CkAoEAoFAILDt8VGmAYXtUtoeuVlgYE5S2m5j3w2gRIwSKYmcIFIHQ6QoEAhsGkFIBQKBQCAQ2FYYW1RpeX0K2yXTs2RmltINMDar1hIomRCJFm21HyWTLd3nQCCw9whCKhAIBAKBwJZQR5nqtLzCdBmY4xSLokxSRESiRSI7KLU/NHgNBALbgiCkAoFAIBAIbDqjUabS9hiYKspk+1Utk7cBj2RKJFLaaj9SxKFmKRAIbFuCkAoEAoFAILBhOGfRLqMwPQrbraJMJyjswjJRpjREmQKBwI4lCKlAIBAIBAKnhXGlT8szPtI0MCfJzCzaDtA2G0aZREIkWyHKFAgEdhVBSAUCgUAgEFgV5xzaDSrB5CNNA32C3C74/kxNlEkRiRaRbNFS+0KUKRAI7GqCkAoEAoFAINBgna5S8nyUKTNVXyabYWyGxSAQqCrK1FL7UCIJUaZAILDnCEIqEAgEAoE9SB1l8hbjPQqzcIooU0pLzYQoUyAQCFQEIRUIBAKBwC7HR5l6jc14bubp6+PLRpmUTEOUKRAIBNZAEFKBQCAQCOwSfJQpG+vLlJmTZGYeYzO0ywEfZVIiJRItWvE0UoThQCAQCKyXcOUMBAKBQGAHYp0epuXZLrmZZ6BPUNoBxuZYNACRSFEyJVUzdESMEHKL9zwQCAR2B0FIBQKBQCCwjRmNMpW2T95EmeaqKFMBOISQvpZJpCHKFAgEAmeBcJUNBAKBQGCbMBplKptaphOUto9xOdb5KFPtmJeqaToiCVGmQCCwYynykvnjC9x24gckh45z8JJLt3qX1kwQUoFAIBAInGWccxiXjwgmH2XKzRza5Rib4xZHmVSIMgUCgd2BMZaF411m75jjxK0nGXQziuQY57ezrd61dRGuyIFAIBAIbCJ1lKmONDW1TK6HtstEmeQUSh0MUaZAILCr0MYyd3KBk8fmuf0HJ1hY6KOdI+4kyAMp85nhRBGEVCAQCAQCexJts6HNuOkxMCfJzex4lAlJJL1jXhJNoUS81bsdCAQCp422Fm0tpbFoayitpTQGbS2FNswt9Jg92eXkiQX6gxxtDCJWRBMRUkpAgzYUaHplsdWHsy6CkAoEAoFAYJ1YZxrzh/EoUx9tM6wroerLFMk0RJkCgcCOYyiQTCWSLKX1AinXmoHW5KWmtBbj/OPWOqxzGGPIujmD+QFFP8cWhjhWdNopSRQhBFgBJYYSS0bJgiw5ZvpbfdjrIgipQCAQCARWQdu86ctU2h59fWIYZXI5zi2OMk2GKFMgENiWOFcLJB850sZWt/7vTJdkWpNr0wgp4yzGWhzg/wNSCCIl/a2QpCoilY6il9Of6zM42SPPS5SQ7Ou0kFMKLSwFljlyBmhKLAaHwyERlMJinNvK07NugpAKBAKBwJ7Hmz8UGJc39Uy5mWdgTlDY3qIoU+wFk5wkEiHKFAgEtp5aIJWVIBq9XxpDrrUXSEZjrEVbh7EG4xzOgRB+OxKBUhIlBEpKWlGEkoJISkS90ujrWsegl9Od67JwYoGsX3hh1I6Q+1K0tCxQUGDQWCwOASgkMZIUgcRvt2Tp9rc7QUgFAoFAYFczKpKMK9A2HxFNAwrTpbR9LCXGlWibAw6BIJItlEjpROeEKFMgEDjrOAelNU3NUTlSi1QYQ1Z6cZRrjXHOCyRjsLgmgiSEQApQUhJJL5LakSJSCVKIZQXS6vvkKLKS/vyA+eML9Hp9cmsgVdh9kkI6NAUai6ASZ0jaKCS7a+IpCKlAIBAI7FiWF0n+fmn7FKY3JpKs1Vg0AtHYiytipIiQIiaVLTqhlikQCGwyXvQMTRmGt9YLpCrFrtA+amSquiPjHHXgRgBKSJSUKOkjSIkSROnpCaRToXPNwnyPEyfnme8OyEyBjgVuQuAigUVXokkQI2mhEDswyrQegpAKBAKBwLZkNZFU2D6l6VLaAYYC6zTW+oz7mqFI8kIplS2kikIvpkAgsGms5mCX6zrFrqQwVe2RcxjjU96ccwjhpYeSkqgSSbGStIRApSlKnj1h4pwjK0vm5rvMznU52evR0wVOgmgplJJEwosmH2va3aJpOcKvyTZD25LjxfeZjA4wEc1s9e4EAoHApuCcxbhyVZFUVJGkcZHkf6ilkEh8FEmJmFi2kSpGCrW1BxYIBHYli6NGZW3YYCyF8Q52WakXGTR4ceQEwxS3KnKkhCRRikhKpJBnVSCthLGWzGgyUzLX7XFyoct8b0BRljggiRXtiZRIeNG026NNayEIqW1GZrp8r/91AA7ERziYXsBUfDAMDgKBwI7Bi6RiST2ScUVTj1TYHhYvkIwrcVj8UMMhhfICiSCSAoHA5jHmYGeWRpIGuqwiSKYyaFjGwU54gTTqYHcqg4btgHOO3GpyY8hMSVfndLMBg0FOr5dhco2wkEQx+9udqt9TYDFBSG1DrNWk0QR35N/hWP5dpuNDnNO6iH3xYSKZbPXuBQKBPUwtknyD2ZG0O5dTmh6F9el2Fl+PNBRJniUiSXWq+qQgkgKBwMZQGzQ01t7rcbCDyqBh1MHOR4x2gkBaDucc2hlyY8itpq8LerqgdIa81BRZSdkvsJlGaGgpSZx0kFEQT6ciCKltSio7tNMptC1Y0MeZXbiNCbWPc9KL2J+eT0tNbPUuBgKBXYZztuqNVDQiSbu86aNUN6C1aIz1KXe1SBIIhJAjIikhVhNBJAUCgQ2nNJZ+WVZudj6C1NQfGU2htRdHtUFD3fyocrBTAuQGOdhtR4x15LYkN5rManplQW5LSmdxzoF1uMKi+yVlP8eU1ludpwmqHa7X6yEIqW1OJBNmknOxztDXc9zc+1eOZt/kYHohB5ILmIj27YovfSAQ2FysM026nbF5I5iGzWa7aDvAOI11JdaVtXnuuEgSMYogkgKBwNkjN4ZeXtArC04OMhbyjKzUqzrYRY1Bw+4RSMvhnKOwpkrT0/R0wcAUlFWEDSCSihiJKBzFoCRbGFAWGoA4jUgmk117fjabIKR2CFIoJuMDTET7yWyXHwxu5PbsZvYl53FOeiHT8aEwoAkE9ihDkeTT7YYiKaOoIklLRVJdkySQQqEqZ7tIpEgZRFIgENganINMl3SLgl5RcGKQ0SsKMl1inSNWilYUsb/TRu3Buh1t6xS9koHR9HROYQ2lNeBASUEsFB2VoKSkzEvyhZy5hYwiK3HOEcUR6UQLuQ0MLnY6QUjtMIQQtNUUbTVFYTNOFLdwPP8+U9FBDrXuxL7kMLFsbfVuBgK7Gm0tvbJAO8u+pLWpP+ZeJC1tJKttXomkLtpmy0aSxkVSTCRSlJxEiij0SQoEAtsC56BfFnSLkm6Rc7Lfp1dqCqOxQKoUaRRxMJnYFs52ZxPnnG+2a33KYs/kZFpTOoN1FoEklpJEKjoqbqJKujRkCxmDhYw8K7DaomJJ2k6QKlz7N5IgpHYwiWyRJOdhnKanT/LNhX+hE81wKL0T+5PzaUdTW72LgcCOxjpHryzolj6lZKHIOZb1mMszBlrjcEwnKRdOznCoPcHBdofJOF3H9vWyznY+ktRfRST5H0sloqaRbCRTFEEkBQKB7Y1xjl5R0CtKFvKcE4OBN37QGiEgVRGtKGKmle6pdLPFhhA9XdCvDCG09bWokZTEQjEp0yXRJGss2SAn62UMejmmMEglidMI1QnZBZtFEFK7ACUipuNDuMjSN/Pc3PsaR7NvcSA5woH0AqaiA2FgFQisgnOOgS7pVqKpW+acyAYcz/pNd3lbCZhUKVoqYiZtIYGFsuDLd/wA52AqSTnYbnPh5D72pwkzqUKgx5ztjM29BbjrU9rM90hy3gJ8lCCSAoHAbsAbQxR0i4L5LGc2GzDQvt+SRJBEik4csW+PCSdjbVPX5A0hcjKr0ZUhhBSCWEhaMiJS0tsILsJZR5EVDHo5WTejLDRCCOIkIpmK99T53CqCkNpFCCGZiPbRUTPkts/R7NvckX+XmfhczkkvYiY5FyXCWx7Y22RjgqngZCWYBrokM5rSGIBKMMVMxCkHWxNEI+l7zjkcBY6c/apkX+pNHPrlrdzSW+DmhR6RNLQUzCQRE0nERBTTUhEImnqkIJICgcBuozCGbl7QK0tmBwPm85ysLNHOooSkFUdMpymx2jtRktoQIrOawpT0dEm/MoSw1oLwKXqxULRVjFxFADmHr3vq5/QXMsq8hKruqRXqns46YVS9CxFC0FITtNQEpc2ZLY9yovgBk9EBzm3dmX3xYRLV3urdDAQ2lcKYKi0vp1sWzBUZxwY9umVBpjWFMQghiISgVYmcfWmLWA5/3IeCaZ7SZjgyjOti3QKOAksJlIDAOVAKZiKFIMLYiMw6jvYdtgepckzGgnNaE0ynLSbjlCTkqgcCgR1MbQzRK0tvDNEf0C0Kcu0d9WIpSfegMURtCJHZkoHW9E1ObqsUPee8IYRUTKgEFa/tvJSloajEU5EVWGNRsQp1T1tMEFK7nFim7KvqqPp6jm91v0RbTlX9qI4wEc1s9S4GAmdEbfxQ1zHNFxnHsj7zeUZmfNqEc6BGBNNUOyWRqkl7cM5WgmlhRDAtYF0XR46lAPwPIEIhSBDEKNpA5LezaBJQKUgUEAMOMqvpFgXHswESaMcx+9M2+1ttpuKUyThdLnMjEAgEtg3eGKL019y84MRgQL/0wsk6R1I56k10OnvGGMKOGELkRtPVObmpDSEcAuEFpVRMqnjZFL0Vt60t+aBg0M3IBhmmsFXdU4wKzXK3BUFI7RGUiJiKD/paEDPP9wdf57b8JvbH53MwvYDp+JyQVhTY1tTGD7VoWihyTmR9TuYDBkaT6bLpRt9SMa0o4kDaIVGqSZPwginHsoB2GdbVgmkBR1mJKYNwAoSsBFOCYgIhoiViac0IaKnIp/ZVxzLQJbf2Fvhed45EKibihEPtCaaTlKkkJVXh8hwIBLYWO2IM0c1zjg98fVNhNDhIo4g0Ukyne6O+qTaEyCrh1Nflugwh1vQaK9U9pRHJVOj3tN0Iv9R7DCEEnWiGTjRDbvrcnn+HY/l3mY4Pcah1J2biw0Qy3urdDOxhFhs/9MqC41mfE9mAgfZpeQY/y5dKP/s5k7Q43J5cVjAZN6CwAyy9JiXPiyaDcICIGsEkmUQIdfqCaY1IIZiIEybiBPBpiH1dcuPscQTQimJmEl+bNZUkTCYpKvx4BgKBTUZbS6/wEae5LGM2y3wqtNZIIUkjRSfaO8YQo4YQA+vPS241pbXA2gwh1oJzUGYF+aAYr3tKQt3TdicIqT1MqjqkqoO2BQv6OLMLR5mI9nMovTP7k/NIVWerdzGwy8m0plvmTZTpZD7gRNanV1bGD9YbPyTSF+AuNn7wgimrBFNWCaY6Jc8LJp+SB4gYQYyghWTqrAimtZIoRVIVXlvnyLTmWNbnaL9LJCXtKOacVoeZtMVUktJWcUgDDAQCZ0xhTBNxmssGzGY5uS7RziERtOKIqTgmarV2vXByzpFbQ240hS3p6oKBLpsUPaoUvXhRz6YzoSyquqfugGJQYm1V99RJkHuopmwnE4RUgEgmzCTnYp2hr+e4qftlblUTHEwv4kByhIlo366/gAY2l6Hxgzd/mC9yjg16LJQ5udbkxoDAz+wtY/zgnGkEk3MZmelj6VaCqfSCyfm0iqFgaiOZ3laCaS1IIejEMZ3YR4a1NfS15ub5kzh8iqC3We8wHfs0wCj84AYCgTWQae0jTkXBycGAbpEzKDXGWSLpr78z7faeuKaUlWjKrWagfbPbwuomRU+JyhBCJhtqlGG1Je8X9HsD8n6OKS0yCnVPO5UgpAINUigm4wNMRPvJTJcf9P+T27Ob2JecxznphUzHh5Bi79iVBtaPsXYsJa9pYFt4wZQZ3ytJsrzxg3MaS4aji20E0wLW9YYRpmpmcCiYOkhixC794Y+kYjpRTCepd8gyJbP5gDsGPS+6opgDrQ770hbTSUonSkK0KhAI4BwMamOIRjgV5NpUxhDS15LuAWMIYx2FLcmtITMlPV0sMYRIpCSVEZNnkKK3EtY6ikFB1st83VNphnVPrb1d9+Sc8z/rWGJZ4qpMlJ1CEFKBJQghaEdTtKMpCjvgePF9jue3MBUf5FB6J/Ylh4llutW7GdhCrHP0tf9xrqNMxwd9ZvOMvinJdekN7gSkKqYdRexPWyTK1zEtFky5rQVTfwXBlCCY2NWCaS0IAe0oph35aJWxloEpuaU7y3cXfArkZJJwsNVhOm0xHadNymAgENjdWOe8o15RspDnnBz06ZeaXGsQNI56U8npmSDsFJxzlG4YbeqVBQNTUliDcYsMIVS6as+mM9sPX/eU9QsG3QFl5icSoySiPdFC7PD3YCiAlt63/s74chzOOqyr17e0ZElLZXRUxnTSozVxknz+O1txOKdNEFKBVUlkmyRpY2xJz8zyrYXb6UQznJPeif3p+bTV5FbvYmATGTV+qFPzTmR9jmcDMl0yMD4lRACpjLzxQ5zSateCqfSCyXWxZBS2j2Ue6waVYNKVYJIjEaYJJMmO/5E5GygpmZTeOh1HM2g4kQ2QwptW7EvaHGi1mUpSJuNk0wYNgUDg7KKtpV8ZQyzkOScGGZkufY88IFXVNXmXG0MYa4cpenW0yQ5rbL0hhK+zjYTY8GjTYspce8vyhYHv92Sdr3uaSLdF3dPaBBCAv/UCyAv1en1nHQ5ffrx4/erekteVwtJRBRNRwUScsS/t0ZIFidQ4oCglbZXTL/NNPf6NJgipwJpQMmZaHsJGloGZ5zu9r3I0+yYH0gs4mFzAZHRgV1+o9wKZ1vT0MCVvNs84nvXol14wjRo/tFREJ0440OoQSYlzxYhgyilst4owZVUPpkowCdE45AmmqghT+NxsCMIPnNJFFuu39Re4pect1jtxzDmticq0IqGlgkNnILBTKI3vmdcrKke9ge+VVxqDqhz1JuKYfbvcGMI5523HTX5WDCHWgtWmijxlvu5J13VPyYbWPVmvbLxQqXyUXC14lggah+//O3zc1vdhzQII6jJj0WjQuneiQAz7KEqB8GuBAIWhrXJacsBENGA67pHIkkgYb+zhFAOnWNAtpAKRWiZTA0m2YefrbBCEVGBdSCGZiPbRUTPktsfRwTe5I/sOM8lhzkkuZCY5FyXCx2o7U1pTiSUvmuaKjOODHgtlQaZ9DrkAlPBucS3l7cVjpbCuwJHhXA9LhnY9cj1fGUGUQJ3SJ6voUoJiCoJgOusstlgvjWFgNN+aOwH4FMGpJOGclu9dNZEkRKGXXCCwbciNoZf76/TsIGM+z8nKEo0jQtCKY6bTlHgPpO822RE6Z7YcMDCVw10lmibl2Xe5s9aRD3Lybs6gl6GbuqeYpC3HRNyYyKkEEFRRHipxNBId8oJpKIRsJZx8YqJrvJVGo0bLsZIAAuGzEwR+grMSRSNPWh8OInyaXlvmTMZdpqIBaVyghMEKQWElfRRWRkjpQDqE0CSU1TkSKGVB2FO82PYijHgDp4UQgpaapKUmKW3ObHErJ/JbmIoOcKh1Z/Yl55HI1lbv5p6mNn7olQU9XTCfLzZ+0Di8xW0tmM5pTxALCaL04sh1cWQY16XQ3UowFYCfURJN09oYRRuIgmDapsRKEatx04qT2YDb+z2UlHSimIOtNjNpm6k4pRMFi/VA4GzhHGS6pFeW9PKC44MBvcL3zXPOESlJS0Xs77Q31EFuO+Oca1L1ZosBfVNgnfNOeipBxZt/HupIDs6LG2scRV6Q9XIG3QxdlFggihQyVjggLzU29+LGukUCaJgPNxRWK7y21ziVFGoEkDdrQjYr+L/rJ5wlrLMkrqStBrSjATNJl4k0oxUVSOEwQlAgGTiJERFC1MdpkE6CE2AlzolGPAIrnovtTBBSgTMmlin7kvMwTtPXs3yr+yU6appz0ovYn5xPJ5rZ6l3c1dTGD3WUqVvmnMgGnMz8rF2m/YVe4o0fWsobP8RSIUSJY1AJphzjFhjYbtXMtk7JA4QaiTAFwbTTWWxaoSvTiu8uzGLnZ0mVYjJOONSerGqrUhK1NwZvgcDZwDnol75/00KRc3IwoFeUFMbXiyRKkUYRB5Pd76g3inOOzGj6xounni4wzhBJRUcl67Jlr+t4rHVj6W1YH+FxdjTlDay13gyh/uesrw3CYUqDzjV5VqBLP5EopfRpewLK0kDp09/Ho0DVbRXxkYJKBI2nwW1rnMNZQ6oy2qpPJx6wr9WlkxS04hIhLdpJCqeYtwqH8EKpunVW4Nx2P8jTJwipwIahRMRUfE41izTP9/r/ztHs2+yPz+ec1oVMRQcRIXXotKl/YBYK38C2VxacqBrY1nVMtor3JzKiHUVMxynnpG2k1FWEqVdFmBbIxgSTrWqY1EiEqYMQ0fa/yAfOmEhKpmTKVOyjVbnVLBQFx7M7kEA7jtmfttnf8tGqyTgN0apAYB0Y5+gXBd3GUW/AQGuKylFvrxhDLIdvhOtrdGfLAX1doK3va9VWEUqkOGsxxlGUBmMtzlqfFleZIHjxY71osrZKn/MCqa4FGq0rWj72IRByKG6cdZhSU+baR56sQylJux37NMLd+DY5hxUaSUE7zmipHpPJgAPtPmmkSZVBCEduFbmJOGlauNKHx5zdjSfk1AQhFdhwhBB0ohk60Qy56XN7/h2O5d9lJjmXc9I7MROfSyRDkftq5EaPOeWdzAYcz/r0y4KB0ejK+CESinYU0Ylj9qctlKxd8no4crSbJ3c9rMkrlzyDcAKalLwExUQQTIEGIXzT39Yi04pbewt8rztHKv3n7VDb11ZNJWljcBEIBDzaWnqFbxExn3nznkFZUhqLFII0UnTiiH17UDhBNTFYlswVOXPFgG6ZUxiNdIIYibCC3JT0TYatHeNGIktDIVTFf6S/7035vBCSCFQT/RmaIqx2vp21lIWmHJQUWYHRFiEFcRIhd01U3oG0CGFwWJzQKJHTSfq0o4ypOGMmzWgpQyQdzkoKE5GZhPlCgdst52FjCL9+gU0lVR1S1UHbgvnyDk4WtzIR7edQemf2J+eRqs5W7+KWUhs/dKuGifNFxrFBn4UyJ9PezhXnIwatasZyOk6IlG4Ek3EDLD1yt4AzvgeTF0yAiBrBJINg2hgcDHoDuif7DLoDpJJEsSKKI2QkkUohlUQpiZQCqeTYv502aBozrXBQWENfl9w4exyBt1ifSVIOtiaYShImkxS1w44xEDhTCmPoFj5Vb24wYK42hnAWJSStONoTxhDWOqyxaGOb+8ZYrHFoYxmUOd0iZ17nDJymdBrhBJGVyMruIB8RREJ6UwSlBEJJhBQbfg11zkeeiqykGBQY7ScqVaRI28kO/c10IBxCWpCVgYPQIEqQmrjp31QwE+dMRiWpNEjAOkWuYxaKFtrt7s/rRhCEVOCsEMmEmeQw1hn6eo6bul/mVjXJwfRCDqRHmFD7dtwAcz0Ya+npqsN8mbNQ5Nwx6DFfeMGUGQ1QDUwj2irmYKvlu3yLHOf6lWBaoHA9cpP7prV1nkLTg6mFZAoh1A69+G9fdKnpzfWZP75Af36ANZYoifwMqXGNLS0C6upZIQVCekHlBwQSqQRRrFCV+FKxQspKaElZiTGJkhKhRLN8W1A19ayb/FrnyLTmWNbnaL9LJCWdOOZg2mFf2mYqSZo6rEBgt+CczxroFSXdqr6pWxRkpcY6RyQFaRSzr9NeV03PdqWuGzLGYqwXRcbWAslSaosuDWWpsdW1sE61cw4MlhzNQBhyqbHC+aiciGjLVpUmJ856unCdtpcPCnSpcdahIknSije919TG4RDSeLEkLUJahNQgNQjjrdHxzngdWdKSJfvigo7UpMqiBJROUpiYuaKF2cJok2tud5blRBBSgbOKFIrJ+AAT0X4ys8At/f/k9vxm9sfncTC9kOn4HKTY2TMgzrnGJW+uyDie9bm936OvC3KtMb4Uk5aqrcVjDikBIse5DOP6WLpo16W0pRdMtddpI5jaSKaDYNpsHAy6A7qzPeaPL1BkJSpStDotovjUn1NbdW+3pkpLsc4POPLS29pa64ufoRJgw1lYIYUXVtLPwtbiS0WKOI4QSiIjgapEmKhE2DAStvnfIykEnTimE9emFYa+1tw8fxLHSVoqYipJOdjuMB37NMDdMLAM7C2cg0FZNSYvCk70B/TKglz7gWosJa0o4kBnZxlDeHFkMMa70Vlj0dZ4oaQtZWnQxqC1HdYg1ZNGI8g6cqT8NSsSAiugEJBT0nMlJT7a0SbxqXtbJFSsMZS5phgUlIXGGuuzCpIIuW3fuyq6pAwIL5YQGhEZUAbhq8HA+d8TYyypNXRESUdVwinWpJFvbVLU9U15VI1GzuqRNGMWJ/znyApAOKwAJx2ZNGd1n86UIKQCW4IQgnY0TTuaprADjhXf41j+fabjgxxq3ZmZ+FximW71bq6JTGvmi4z5IudkNuC2wQLzec5AlxgckZBMRAmTkeJg6hCy9I1q3fGqaW2PgS1xFFUkQ4wIpk7VtDYMPs8muvDRp7nj8wzmM6x1pO2EqQOTw14ba8D36VCsJ7W+aZpoKtco4zDaNDOm9exwsxtVo+PhYGYYAVNRHflSqDiqRJZE1KmH1T9/XyDlmQnzSCqmk3GL9dl8wB2DHkp4m/0DrQ770hbTSUonSnbOxG9gz2Cdo1eU9IuShTzjRGUMkRufap1EyqdZp9uvvslZ54WRHYkeVel1xvjIkdaWUlfRI2uHjnVNRN3fSimR9a0URFGMkKxov26cZUDJwGp6rqB0fuAeo5gg2bJzVdc9FVlJWdU9SSlRsSJOt9EwWFTRJVFHl4wXT1JXkaaq/W5tsmHxNuvG0qZkItJMxgX7JnLakSZW/nei0F44LWQpZ2PmtRFLomoWPHorXPNYva4YfaJotrBj2EafoMBeJZFtkqSNsSU9M8vc/O10ohnOSe/E/vR82mpyq3exQVvLQuEjTXN5xtH+ArN5Rl+XlNbPuLWimI5y7EsdQmQY12sEU+YKnClXEEwzQTBtIc45BgsDFk72WDjZpayiT+2pFuos1jUIIXyNkQRY2+s6vLhypoqAVak1OitxvdyLr6rBo38RfL1xFe3y0S+fhqiUGkk9VEvrvqpZ51PVfS22WDeVxfot3Vm+u+BIVMRUnHCwNcF02mIqTpqUwUDgbKKtpV/4iNNClnEyyxhoTal9g9W0Ek5b5ajnqsas1njHOqsdxjqM9dEko42PHpUWXTvX1TVKi6NHVc2RqCZcIhWNpB6v/9iM82l7fVvScwUF20Q8OYcuNGVekg8KbGlAgIoj0vZW1go7H1VSFqRBCOujSkpXBhAWIUZ8BS1YK7GFwxiB1Y5IWNqyZCIumUpz9rVyWsoSKYtzgswo+iahLOtmUxt+BEuiSrVIcoyLpSVCya/Q9NzdDSOeIKQC2wYlY6blIWxkGZg5vtP7Krdl32J/eoSDyQVMRgfO6kXZOUe3LJirok139Lscy/pVSofGCUiVpKMsh1oaKQusW8C4eRwDMleAM9WVJKlMHyaQJKEH0zaizMum9mmwkGGdI22tP/q0lQiETyk6DfFFJbpcZRtcFiV5li+t+wJwbmndVz1bvYa6r1RKWlEbKaHEf7+OZwOk8BMQ+5I2B1ptppOUiTg5rYFdIDCKc9A18xQ2R1b/M84xKAyZ1izkJfN5TqEtxoIUklTFTMUxUau1qb85rqk7qiJIuqo7qpaXpUFrgy5Ns049STI6aS8EzXdSSUEkBSKKkcofz0bjxZNhYAu6rqSk6n21xeIJ6rqncqTuyZtGJO2zXPdUp+BVRg8+uqS9aBI+uuRGEuuclWAF1iisYZiVYC2JKOhEXjjNTGZMJyVpZFHCYawgN4r5MsUUG/denyoFz8/Eja/fBJMc3h3Y7g6hdCqCkApsO6SQTET76ah95LbH0cE3uSP7DjPJYQ6lFzEdH0KJjf/oZrpsRNOJbMBt/QUWipyBrguIoRNrZhJN1Cqw1KIppyAHQ7AV3yE4W0WfZnssnOhS5iUqVrSnWyi5N6IijfgC1hMI2ui6ryhWuEgxrwbcwUmshDSKmags1ve1O8y0WnRaKUqpkAoYWDN90+N4fgcn8mP0y4LCGrJSk+nSu8oBSihiKYmiiFgqQFAg0E4hjUTU8ksohFDV5Ip3mPMG2yP3hUA4UUWPqtQr46NHPprkvyu6NJS6EkdmpAnsaPRI+NRgOTJxEUdRtUye9e+BdY4MTWZLuq6gcFV9mJB0tlg8DeuecsrC+LqnSBIl8SbXPa1g9KB0VcfkmugSgHOyalArcVr63lbWjdSf+Xy9VqSZjko67ZIDrZyJqPT1TQK0FWQmYjaPsWdoDLFSCh4CbL3fcrju4siSsD7ktNcvyUFIBbYtQghaapKWmqS0ObPFUU4WP2BS7edQ687sS84jka3T2nZpDfNFznyeMZtn3DboMpsNmhS9SGpayvgLWlLixFzVzDbHoDG2bl6bVsYPIS1vJ1BmJd25PvPHFhj0BjgHaSdhamLnRJ+2mk2r+xoZRGbOcod0fNObeZFKxYSMmKmaBk+1UlqthDhNiGKJihRSKeJYISOFivwyVd3fbnUsgc0lNxknimPcOjjKQt6nn0sKDQ5BJBNaqk2kZBXxtJVLmGv+BxaDQbvh33WE1jpfS2RtJYDqwbBxQ/Fk/Wce60UVTvoZeueFlyJqIrYiligksVSNIKMRaSCc/3srrk/W+V88L55yCmewVd1vW0SbEu1aDn8uq3fHUjXY9ee8yAvKvNzEuqfljB4MItKN0YOQtl4TUTemdRJnRSWeqESTrfbbYo0/l9JaOrGmE5VMdkr2tzI6kSFR3nChMJLcRHSz5LSMIdyZpOAxFEthdLMyQUgFdgSxTNmXHMY4TV/P8u3u/6OtpnwdVXIenWhmxeda51gocuaLjLmRFL1+WVLYAkFBojQtpTnQyhFyAecGWHIchtIBTS+mKSAOqXk7CGstg4WMhRNdurM9irwgjiM60+09E33aas6k7ssaS241XWc4aXuIQZekK5iwkraRtKwkHhloNrVbldmGkL7PV5zGxGlMkkbeeCOSjQviqOhSka8TE1sw6x84M0pbciy/g1t6P+BEtkBWSKyRpJFkKo2Xpoo6h3XSRwO86VnT/NVaMTRp0LZpCOtFkq3GmaISWrXZixf+UgISmr7zwtfF+LSFUbm2aACLGI58Rz7TtZgCiXAS4RSiuu/Xq8MGVScmN7Ks7s7kKmF2iiGxq8TTwJb0XE4+Ip5SEaFOQzy5qj6zNkmAkckTW52R0Ya7tu5BVaUe18/3Tx3Znm/Eq6INqHs6hdED0iFG8inHoktm2OKhqWtqjsM7A9bHroRtRNNUXLCvVdBSmkR604/cKAZaMVckrOWA1puCN/bEbZSCV5VOAf5bspMIQiqwo1AiYio+xxsDmHm+2/83jmbf4kB8PgdbFzIVHWSgNfOVIcSJrM9t/S7dsmCgMxwZiSxJI1+kKUUXR9ZYjFshES5GkKLohNS8HUyRlfTmeswdmyfr5eAg7aRMT0yF6NMOoE49VFISE1FbzmgcuTP0MfScIxGCtoiYkQltFKlTqGbW1//L+5r+wqCxeF7yWpJh765INSlVKpaoKGqMN6LIux8OjTaGfb6U8m6IsrGfH3dFDFGxjaVJi3KOUpfckR/je73vc2wwS1FKcDEtpUh9QR6DIvc9jRoHO1O51o2Ytbh6Kr4SMFS1R4LGEVNFIETEuvTEyAz/qVbz8mr4JD/AtN7eGgPSjTzmGpO9en+HtSpyZKkYi24NBZmPkOEEpYPSWfqU5M5ihUMJRSoipBVeuFiDqep+awOM+v5SIeQnsbCnEEKL9t/vaNV0V9TLRNNrCvz3VTQProfFRg/Op+HVRg+Lo0tO4FwVVdIS55Z5QVufCztW11R3LImlYTopmYg1M2nOdFyQKk0kXSWcInplzKxd2RhiSQoelegQbkkK3pInbsMUvObTW0XC7Mj8gRMwqPpq7hS2vZBaWFjgJS95CR/60Ie4/fbbue9978ub3/xmfvRHfxTwH+CXvexl/PEf/zGzs7P8+I//OH/wB3/ApZdeusV7HthMhBB0ohkSMcVsMcfXe/9OZr5GXrbR5gCFTnCuQIqMNNakqs9EkgEFjqIyzVO4kJq3q7DW0p8bsDDbpXuyhy40URLRme6saNkb2FlECCIRMUGEE44CS89q5myOEJIUybSMmYxj2mlEu6lrWZk68mWNr6+w1jcc1QODNUPXQ1elcy0asjb3pRJNPZgcM+WoBFUVBYsaceaFmlSiiYKNirOl9vTDnmE7QZfZ5rwNB5emrq+rBtJ1b6I6/dPaofmJrZq+6koQG+P8/aqexFjLLLOc4Dg9umgD0qbEOCSWjHxkb4bDdSEkflwuGtOU+n3bSqqY6tJloyJszYJsKLh8VMfgqugSzmExaGfRGHJXovE1Y8L5kh/lg0XkxotWan8LO3JrvdDAeaME53wUzVX1Yk5V34UmXbGKlAmBcMoLo9GQykaxBqOH0RPprA8hLhtdGqWOno3VNVUCvFKJrcgwkWomYs3+VsZkVJAog6yMITKjmC/SJY1v15qCt4S6xeQ2E0s1zaewPhbANnVXrllJLJ3f2jFseyH1nOc8h3/7t3/jXe96F0eOHOHd7343l19+OV//+te54IILeP3rX89b3vIW3vnOd3LxxRfzkpe8hCuuuIKvf/3rtFqnVz8T2J5Y6xiYkn5ZMtAFs3nGfJmT6wHGZgjRR8p5IpmRJhGJnCQSKZIIRIxPz5us+jJtt8tN4EzIBwW9uV5V+5Qj8NGn9mQrRJ92MaKKHadSATEGR+4sd5ic2xgQC0VbKKZFwoSM6MiIeJmpWymrHlpraLK8EnX9Rp2WNLyt3BC1pciGj9V1NcsJMhh3YhsVZvV9FamRJs1RY9zRWNLL0RTHysK+3lYTOZOVJhRjjnBusaCpZ9xH+pjVAskYi9ZmifOcMT79rXaY87b8DKMWTSSDKmVK+AGjGxGpohI7VZSi7pVmccwxzwlxnIFcwDlBQodOFDXrglhf1Gg7U6UT4micNEcjQFBHh+paxNr63DbPrSMkGouWlkJatPD1PziBdBLpBEKAQVRC3fnrZ6WDhHD+nPoySR8dEyAwjeIbT1Ucx9XFOJVqcHUqo8OLsSZdrg6/jEaBRJWzVt2vn3c6Rg9WDpXLKtTf52Fdk/NCtBYvODqJYSIumYxL9iUZnbgkkd4YojSS3Ch6ZerbEY+KJTHsqzRq8rDk5C1KwdvOv2bLiqYqcjYqSkVz/oaRX6D5PK3hrdlWCNfYK20/BoMBU1NT/PVf/zWPfexjm+X3u9/9ePSjH80rX/lKjhw5wq//+q9zzTXXADA3N8fhw4d5xzvewZOf/OQ1vc78/DwzMzPMzc0xPT29KceyVrrlSb4+dwPTySGk2MP1G8438+yXJX1dMl/kzOZ9ctOnNAOELIhEQSwzImmQ0k+b+dkwhXG6yutuk4h9JHIGRXt7X4UC68IaQ39+wMLJLt3Zvo8+pTFpOwnRpwAO16QBFs4igERIJmXMlEjoSB+tktv0ojBalG4MVXPVOhIzkrpYRc/q+w6aGXIvZLyAgXqgI5r7o2lUYlSo1amIQlSCbhi1kUJCZavdRHRGomZ1GqOohE8tgJDeqETU2xTrjwLlRnNCz3GHuYO+mEcIaLkOkdzmc8KVkKxrZ4bpcIC1VWoh40KoMljwwnYohFxtgLHaDH6V+lank1oJRjlK6UWUrbSRahwHzxJiJErWpO2NRIcqsbZc2G1coIkqSiaaVLxmeW30UEfK1spYXZMbq2uqUdLSiQ0TiWYqytmX5rQiTSINDm8MkdmIwqhG862rXontGVVajBu5rVP06no/5CLRNCKcm+MS9QPV7YiAvPPkSb7y/R/iFY/6w808hDWxVm2wra8+WmuMMUsiS+12m//zf/4PN910E0ePHuXyyy9vHpuZmeEBD3gAX/jCF1YUUnmek+fDkP/8/PzmHEBgzZTG0NdeOHXLgpPZApnpUZg+ThQokZGIglZkmYh9KaIvmvX1TLgYMTL9qKoZHkPOwN5Obk8Qy2lSOeOrLXZCXkxgWfJ+Tm+uz9yxBbJ+jhSCpJPQmWxv9a4FthEC3+o69gUVWByFs8yagmNkRELSEoqZSlR1RER6GpNXPiWtHhiPRlrqqM0wWmUrdVNHcxxg6uhVEwUaih9nbSWMRgbeVBGG6r61jGQaiuFtFWkQkb8uipHoj48E1EoLHAZrGE4p4wf9dUSoPs56+7UwagQYXlB5sTSSnhipSmB5F8Vh2qNcNso22pesFnYO6OmC42WXE/YOcrmAUo4OHRRnqYZ1sRCijqwxLoSoG2PbxqVtsRDCjbjPrcQiISQkw3TOOjoHqx67FQ4tLIWwlNJS22NEzpuzbAluZMRcZ8MtXmW1p9d3RsTWaCremjlFXRMAEmLhmGhrJuKCqbhgJslJVUmkKmMIq+jaiFxHOFFFVCWgRl38hq8J2zcFbyVGznQTTGxEUxVRqxEAVowH1gRVXd/IbbNCfUEbfiZ2IttaSE1NTfHABz6QV77yldzjHvfg8OHDvOc97+ELX/gCd7vb3Th69CgAhw8fHnve4cOHm8eW4/rrr+e6667b1H0PrIy1joEu6emCXlFwMp+nr7sUZoBhgKRPJA2xNCTK+VlMInx1RMvfrkEI+We1iGQLQ0HhZinMLJGYIBX7iMU0Yi9H/XYQ1hi6cwO6JxbozvUxpSFOYyZmQu1TYG1IBC2haFXf+bKKVt3q+jjjo1VtFHEhmLARsRNNKpqpBsJ1uptxtcubrUsjqv5a/rVqIQX4aFA9ohoRI/VIo8lEq26FENUgmqbgXorhQFpUeVXDdUc2cJYYpue5RlC4pr+YRZcjj1fObNZVrmfNvlbCrolSVdEpAVJKrHAMpGUhKik6fURnQBQ5YpMACaXUlOixCBeycqarjQqqx0YzJ4fCdj1CaKQO5jSEEKchhE4Hi0NLR4mhUEPxpJwk2XJftg1kVJCdilPWNdF8VlqxoRP7xrfTScZkmtOSBiktBsHAKk4aRakT6ixFUTk01hMTOyEFbznc2O2Iq+RoNuaYaKoEoR1JnpduBdE0opBq0WTrB3c+21pIAbzrXe/iWc96FhdccAFKKX7kR36EpzzlKXzpS1867W1ee+21vPCFL2z+np+f56KLLtqI3Q0sxsFA+/S8Xpkzm8+zUM5TmAxtuwjhRVMkLZ24skiuo0xE3jVvA1AkKJH47iBuQNcujKT9TSNFuiGvE9hYsn5Od7bL/PEeeS9DSknaSYinOlu9a4Edjo9W+QkaKxwLWc73Bn0GuiSxiv1lzITxDVqrcflwwF4tk82AHaKq3mgogob3d1sEvI5CbQRekNgqtc0ycJYFVzIvSsp0gGr3iSKNLCJcT5E7A26w+kZrIVPnj40Iqdo9zlm38vNHBK2fUQchZFMfBMP3fqsZFU+ltBixS8XTGhmva6pSYBenQkoQClqRppOUdKKCmTRnIipIIo0UjhJJZhRdG6O1HAZQ6hS8bWAZfrqMJk82LoCMCCbAyXHRJBxNtKkRR3W0afQ7VoumJmQ1stFdyrYXUpdccgl///d/T6/XY35+nvPPP58nPelJ3PWud+W8884D4LbbbuP8889vnnPbbbdxn/vcZ8VtpmlKmoaB82ZQGkNPF/SLjPlygbl8jsz00baLY4AShlhaWpFACVUl37SA8dS8zUKikGISJyzGZfTtrWTuOKmYIZYzRHS2xY/jXqaOPi0cX6A318doH32a3D9x1hpABvYOeWno9nIGWUkk4GDcIosNcy2DsJIDNtmTA9KzhZDgnGCgDF1X0kNTphlJq0+SlAgbQZn6aNVafrbrMbMbDujq6GAd8YLtI4ROBwsYaSmwlXjyKkE5SbKeuqCdzip1Tc7noA6FcOJoRyWtuGAyztmX5ExEmlh6owxtfX3TQtHCVu6DdQreTs1bGa82WySYGNE3ctQkpPqv8+m/ok4TXiyaVkrN2+WiaTm2vZCqmZiYYGJigpMnT/KJT3yC17/+9Vx88cWcd955fPrTn26E0/z8PF/84hf5xV/8xa3d4T2AsZZeWdAr+3TLBeaKeQa6S2m7ODdACEMkLLFStKMIQVKl6MVb3lNFIIlEByXaWAoyewe5PUksJ0nkPiImz4qwCwwZdDPvvHe8S97PffRpIiWOd8xlKrCD0NbQ7ZX0+jnGOtI0QlXGBx0itHPMyoK+0By0KdMu3rAoTMDj+xZp5pwmQ0NcErcHtNPcz34XLT+gWw+iihSM/cbs/PfNAVpYSuEd90bFU+zULjjCNWKprPAt2ng7d+9450AJ7y8hQUjDRKTpxCWTquBAktNSmlQYnBPkNiLTEXMmXfK93mm//G7R7aqiaSzVrhZAAuEqR8Z6K6pOzXNnLTVP4PtuyR3mhb7tRyif+MQncM5x97vfnW9+85u86EUv4od+6Id45jOfiRCCF7zgBbzqVa/i0ksvbezPjxw5wpVXXrnVu76rcA76ZU637NErF1go51koFyjNPNblCFGihERJwUSUoEQbiAG15aJpNQQCRYqSKYaSws1TmHmUaJOKA8RiEilOo5g1sCZ0aejP95k/vkB/foDRhqQVM7l/0s8YBwIbjHGWfr+k288ptSWJFWm6dOgUIZh0ERmGW1VGz2oOupTU7dT56W2CcwywdJ1mAU2BIYo0aStHpAM/aCuSqnns3sYBRjhKYSq7cj/AlOxB8VT1FDPa4qzFRBbTook4RcILpwlVMhPl7IsLWtIQC4t13oY8KxLmFzW+3WnncKUo0+hj46Jp+Y3U9vbUBhlbkJoncSTSkEpNS5V0VMmhuMf+tLspr7dZbHshNTc3x7XXXsv3v/99Dhw4wBOe8ARe/epXE8d+cPsbv/Eb9Ho9nve85zE7O8uDH/xgPv7xj4ceUmfIoMzplQt0dY9uMc9COUthumibgTBIIYiFohXFRGLCp+jtcOMGRYwScVNH1bPfQ4nW0D491FFtDA4GvYzuyR4LJ7rkgxypJK1Oi+gM+vgEAqvhcAwyzXwvpyg0kRK0W/Gq5UsCQZsI4xzzUjNwhgM2YcYl29Y2fbtinGWAZd6V9DBYLIlyTKQZrj0AaaCMEXZvXwOG4slSSDMinsQeF0+1iQGYNtjIcSDKmVSafXHGdKxJpUbVjW+tYqFI0TtUkC+OMtWm4otFE4x4byz5cLgR0QRjVuNbkJqnsKTSkChNW/ratFhYlLBYBNopYuxY/6+dwLbuI3W22Ot9pHKd0S279MoFeuUC88VJCtOjtDlQgpBEIiJSKbFIfIreHogWOCzG5RiXI0VMIqartL/OrisePxvoUtOb7zN/bIH+QobVhqSdkLSSEH0KbBoOR1EY5vs52aBESEGaRKf1Fc4wFMIy5SIO2pS22/ZzkVtO4SxdV7KAJsP380qlQ7VybKsHyoCOEWZvCyg9Ip6MsFi8eIrcHpLsI+LJal/3BDR9zJx0lJGhneZc3FrgcDpACefrm4wiswq7A4XTalEmWCSemrqm5bbiEXBq17yzMPKPhCWVXuB2ooKW1MTCIIXDOkHpFNpK36y44i4Ts/zfH/wQv3rZezZ/B0/BrugjFdhYnLOUJqenF+iVPfrlPAvlCQZmQGlyrNMgIBIxkUyYUPtQYm1W47sRX0fVJhJtDDm5O0mufR1VKg8QMbHjo3CbjoNBd0B3tsfCiQXyQYmMFK12GqJPgU2n1IZuP6c3KMFBmka+39Fp0kKROElXGAayzwGXss/GqB1XVbG5OOcYYFhwmi6aEkuMZEJISDNcq4eNCzAR5EtrVPYKuu71VEWefMF/LZ72yDmp2goYa7DlqHiiagztpYWJLMQFF7R73KXVpaUMs3lKuYNSbZcTTLC8aIKh9fjKosmNWOpXi7bINU8AsTCkygunCVWQKE1cRVS9cJL0TIJb9NleYr2+am+B7UcQUrsU5wza5gx0l26xQE8v0C1P0tc9SltgrKl6WSTEMqEdzRDLZKt3e9uiSFEixQqNdl0Ks0BEm1TuJxbToY5qEbrU9Gar2qeFAdZY0nbC1P7JPSvMA2cPYy29QUG3l6ONI0kUkdoYsSMRTLmIAsvtMqNXmVFMOG+VvpcxztLDMO9K+hgcjtRfPSEtvIBKcoSVkLf2jlgYYZi252ueLA6JQDm5d9JFG/FksaVpxBMj4qnGCR+F2tfpc5f2POckBd0y4o5s+7bAWM38YfE6DaLybxi7TI0/Y0w0bbFr3lh9kyzpRCWx1ESVkDNOUlpJ5pYbG1ViWThkFTETOKRwKOWIIn1WjmGjCEJqF2BdibYZue5VKXqz9PSCF02mQDvvUiNEQiwSUjVBHEd78kfsTJFESDGNw6BdRs/cghJ3jNRRtcfWt86RW01u9NCCt+5WX/1XVI0ZltaHivr/w34mix+n7pfSrL7sayxebzNwzjHo1rVPCxRZiYoUrYkWUbRzZg0DOxfrHP2spNvNKbQhjiTt1uml8Z2KBEnsBH1huEX22e8S9tuEaK9Fp5wjr8wj5tHkGBSCNhIpBC72Asolmf8dKtL1O/HtcEwTefKue0PxJIj3yuelsiq3xmK0wZqVxVONUZYozblkcp4Lkz44uGPQrhJEtwenSstbbv0mULSSaBJupK6Js+aatxoK64VTVd/UViWx9M7MdX1TYSIGzefZiyMlfXRJCP+uSTn0EmzGI66RVogdWCMVhNQOwjnX1OyUpl+ZQZxkUPbomz6FLtDWoZ1AEBHJlEhO0JJR1eg2sFEIFLGYwAmHIWdgbyO3J4AJcJOUJqms4QtKY9DWoiLZiKZx3DLL/HqCpeVYdaPPpWsPn9P8LUYfYURsNe0qAT/LLurmovWjYmRbYlSIiWbmVCLQpSbv53Rne+S9AuccSRoT709wQmAwgBnbu8V7P9xnsWT5ep6zVD4uXnf51wnsbByOLNe+H1SuUWswktgIBIIJF1FiOSZzesJwjk2YdBG7PTplnaOPYaEyj9BYEiSTRF5ARSU27eHSDIQFnSDtHhENePFkhCWvxJOrBo7KyT0lnpxzlWHEYvEkVsxOcDhsbDh3aoE7teeZlJrZIqWwWzdkPZX5Q31/ya97rXvGzCBGtlYtHzOEaFY5e6l5ixmtb2qrgrZaXN8kKaxiQOSjSjik8sYRokrnE3UUrTox1tVLASerfm87/zoZhNQ2xTmDdjnaZmib0Svn6JWzZGbAQPcZmBJtvTuNIyISKbGaoBMplNwjF+lNxOGw1o40/HO+0Z9zOFO/P5ZSW0pnKLQms12sPIp1lrJI0EUHihbSSXCQJDGdyTbpREKcLB+hqaNWS+ZjXD2HM/L4iE/M0pSB0fX888bvu5FZoPEZtdG/3ehKo8udpcxLBv2CvJ9jtUEoSTzha+r6aHB6uANjPy/L/twsWbZY/Iz+tfxjSx9fbR3Z/DV8jljyuGh+4EYfr0WlFIIWESl7KC1nm1GUhoWqoS4C2mnkG6+eRWIkkRP0MdwiB8y4mIM23ZUD5tJZemjmXEmGQSBIkXSq9GYnNbbVx7ZGnfj2Rtq4rSJPufCNcn3kiSptb/d9FpbFgaua42pjscY2l/fVxFONFY7JTp8Lp+Y4N+mTlQm3Fx3O5sTEWswflp36rHTPMEVvPMrUZJVsg9S8UQRVfZM0pKqkowpSqaueTg6DwFhJjgI3jCpFGOL6GJrIkmiiS9bJ4TBlZwWZ1kUQUtsMbTNO5t/iePZNSp0zsBmZLimNo7QSh0KJhFhO0FKSKN5DRalrxDEUPtYCzhew1h3PcV4k+ccdWIexDmvM0u7ozvn1nUNjMc7/UJZYNA4nHFb4a6b0cSqkhHakEZ1ZbCvF6Q62bFMWhpN3zKFmFe3JlM5Ei6SVjA36xlPyRhBL7mwJZanJuzn9hQFFViAcTCUJqrNx6VPLGYmumlteLV2+cHe5bfkfAbPCtpa8lht/ZOxx59/7lIgJEdEWMSnhO3k20NbS7RXLNtQ97W1i6UUFqY1IrVrX+ygQTBChcZyUBQNhOGgTpnZDI9/KPKJO3/PmEf54a8dNJy0u7Y848UWIcve3IanFUzEingCivRR5qsWT9VblZlQ8yVOLJ78JRxSXXDg1y/kTPWIcJ7IOZhNd+JaYHCxavhL10dRmEG6xaJLD+2KbpOaNMqxvKmkpzUSckwpDLA1UESftBGXVYEoAKC+cnKuT8gTOga0/44tO2i7WTUsIQmqbcSI/yfe636U0bZyLESImFm1ipejsEdE0Fg2y1n9xF0WDbHXhds5VNqkWYxzO2uFzqgJW5/zfOMcyY3QAb68qQCB9NF06jHQY4QdXZWVH64T/jxSKFmKYEgdIfFhbCUskJEo4ItUjkrMoBNakaNMizyLygaDoK2yakk62iVttRBRjkdWFafu8z8468kHOYCFj0MvQpUFFiqSdnpED2kos96N76lfZuvNlnKPEcMxppMtJUUFUbSLGWfqDkm6voNSGJFq+oe56cDhyqVmICwppGNiStomZ1Mm6HfkivBlFhuEHKmPaGg66ZEc28jXO0sdW6XsaiyNBMcXQzdUJi0tyXKuLi0swatc78VkcWvrvfSktRvihpXSSZK+IJ4aRpzHxRCWe1Dref2E5ONHlgulZ9kUFc0WLebNxw9O1mj8sl8nQPHdZ0eRGUxuq1PftkZpXU9cptZSmJTUtVTARFSTSoISPKJtKNGVO+XTMkaiSGz2OU7CXxNMoQUhtM0pjKY2mE02RyJ3XAPZU0SDn7Mjja4sGuUoArdTyTIgq/UpUdT1CVNapAqSPE/moj2C5cb91DoOPOBUYiiry5LAoLJG0TAhHIiyx8BelqBJMSdUXIZbGiygsUjiksMixsL4BYf3laUbibIS1EUUuMVoishiVJkRpgowjrIvQRBinMNV9i8Q6Vd3Kkb+F39N62QYJsbLQ5L2c/nyfIvf20VES0Z5KdvEQaf0oIVDVpXQoqspGVE3KmDYRSRBVZ0TdUHehn5Pna2uouxYMjl6U01clAujoCCMcvaiklIZJnZ5WdKpNhHaOeVkwcHpHNfKtez/NoSmq0v4WkkgMRYLDVQJq1Ilv9wooC2jpsxG8ePJ1IMpJkh3Yu+h0acRT9Y/KqXrd4qliIsk4f2aWc9s9CqO4fTDBmfx+LZeWB0vF1GLRNCqcatFkR9LxxvoyAYgRE+8tTs2TleudECCFJZKGlvLRpiZNT9iqvgm0k5ROMbAKnGSxHfl62KviaZQgpLYpW5VP7ZzDumWiQbYWN6cXDWq6ki+iMTgQIKofad98D6SQ3tigWedMf6IdEgtC44QGYbCiBDSRMCTCkghNWxoSaUmqC4+kEkZi/HLjoBIvAuMk1gkKFNb6+3bs8jzyLOEQQnthlThE7LClxvUNolcSpxHtdkQnkSgFohJndbmSqO8LgXOiOqoqHxl/UfTiS6GdwrgYQzQmtMaFmG+IZ51EW0HW1wy6GdlI9Cltp2e97mQnslhUFRjusCUSSasSVa0gqtbFWEPdrESIjTOSKIRmISoolCG2ElUNiJUTtI2gkIbZeEDbxEzo9TvyRQgmXUSO5TaV0XfeKr21DRv51r2f5ivziKb3E2qsYbbD4aIC1+7jkgGO3evEZwEjbGNXPi6edl6E8XRxFqwxvlGusbhR8RSd3vseSc15kwucPzVHrAyzWXvdaXyjomk584fFLP5Frte1wkcZm6/3mGhyw2gTMO4ecXbwImloFV5P1nrhVI1dVEkqDW2hSZRBYRAMbci7LsFt4LgyCKgh2+9qHjhtzigapL2A2uhokETBKtGgMz1iWUWBlLD+vjBNep0SFkGJlCVKaoQosRiEMAhqgeQQVYoeApyTGIQXQk6inWxE0vLCaL0IcALnkuoIHEIYSDQiEThr6Bea7myEkClJ2iJpxah4uRnxqvcCtrrQ2kpGWRKZk1aySVTnCSeqtANRCTHfJM+h0NpS5IZsUFIUDh1J3P4EqxK09VExU4tGOxRj/twMz5GpxFzAi6r2iKjKMfRtiapE1UQQVadkSUPd5Mwa6tY4HH1V0osKLI7ULPf9EiQ2wgh7xtGpupHvQtXId/82auSrnaWPYc6VDDA4IEXSYmkzdu/E18elg13rxOeoez0Z8hHxJJ0kdmrPfFNXEk9CCtRpiifwomB/q88FM7PMtDIWypj5wdpr6VzzbzzatFxa3rLPE+CEq/TQeGpenZY39IGofvPPQn/Yuo+Sn1T2IkkJWxk72Gb8JHAkVRZMXAmnWBqi6mxoJymNYuCSDRc7Z0087TCVFoTUNsRa39DU+yLU0SDf7bmJBtXhdWuxmxINUr5QdMOiQWtDMhREckQQqUYkGWKpiYUmkqZZX1SRI4fB4nwOOw7twFSFk64a/FOFs604s5D2xiBwLgIXQSWq4pYGSqwZUJSSIk+JohZJ2iFOI4QcXvkdArNcseda8pmtweQFRVZgigJnNXEkaLVkNeOVIUW/SRmoX7H+0XJOYJH+thKadYROW4W2kb+o2wjr1Ijo8s8bF2G7W4gtFlUDDD2riRDeqELGfrAdRBWwuQ11NZZuXDBQJZGTpHb1yIJyckOiU3Uj3xzD7TKjXzXy7WxFdMo5Miy9kd5PEb73kxJLj8tJ7Y0k2rvTiW9UPNWNcsG/Z0E8nbl4qulEJUemZjl3sosG7hh01pQKt5x4qlkh78PfiqFwalzzRlLzmm2chShT/TsqRprPCjkSXRr5na2e0Bx4LA0JhkRpOlITSz9JCpVwsorBJkVIt0LT2B2mpIKQ2mb0uxn9+QH97gmEU9s4GrQ2xFi0aDmBZIiFrjpimyqFzg7T6UaznYWPwVgnsFZigMJBaSUFUFp8Clv1HFlFmvwpEot3bBtSiyoAf5FNWhrn+ljTY5DNkuct4qRDHLdR8XIdw0+NKTV5VlIMCkzp+zupKEEkLUqgWrQGhmmPYiQFMhKWRGlElI39QNS/C6J6bi3ErBOVGBumSWqnvBirbo1Ty0TAZBMlG1229eJ4dZQQdKpLr3aWAZqeLYiQpERV+p8i3jOiqsrvryZAsqyg2/cNddNIMNGSSFFWnyHX3DJyv27gKETjJ9UMWBhZv5SGQZSTSktiRdNfT9bps9W6s/kEJ/POiKgfRqf6TXQqIbXrb2yeooidpN9EpxIO2PWbWpwOde+nOn3PYEmRY+YRo+x2Jz4tXJW2Z/a0eHKVeDKLxJOMNuYKpITlcGeBI1PzpEnBrE4py2jVbZ9KPC1Zt4ooWcF4at6i5q6bKZqWiyo1ZQFVSt7YQdS+FPVEr/XrJ8KSCu3rnBrh5HydnlPk1qfsbyY7S8psLUFIbTOs9he0JFZEMqlE0nYa97ulaXSLUuuiKmIUV64w9SClvqDU2/H/FU00oh5UlzYaDrDrYVFlCGFwWCza2ep+vRX/P4WvS9j0TpybzngKoJQOqTTO9SjLBUodo/I2UdIhjlogVx/QOWspc00+KCjyEmsMSimi9ExqTYZRqNO56o6mI47OysVSk1IiomGNWhMJE2IkIgZmJCI2TMtUaCcbIeYjYstFwIZCbHTZ2RRikZBEyObzPSqqWmORqlPNNjYeS0MBQVVPx7i4qP9GDAVMvW4tchdvY+XlI9uv3j9fh8iIiK5nYK3P72f4vLpI2gFaa/LCixQ5CbGSw4j5yPEhaI6nScVpBiXVrHOdxurqlF1HIQ259Gm9kasNWRxjW3f+uI50ZjmZT3Brf9+YoFJOoproVHZG0alJF1FUjXz7wnDQpkw6xWZc7Vfq/RSL5QdjO9GJz1afBSeGQ2/fBNVihcNVQsniBZTGYaSfdpNOIJ1oPhGaNc8mrZHTO29re9b6t+2sw5nKrtz6lH8BEAtfm0wtYM50OO3Yn+TcaWKOfe0+PSS3Fy1Aglp5601JQfV3c4SLMu3G65r86428tP+81s4RG0QtimrRhHAo4ZDSp9U32RtieEmCqp7a1iUCQyJhaEnt67OVJpUlUXNdFD7aZOIlz9sMgng6PYKQ2qZIKTfFWnopbsy2e7k6o0hoIqmrWzNivjA0YGgGtzAiirwY0kT+AlINWk954XdgsY1oKrFoN35Zr/s2RQDLpKLsPgS4GEGMUA7nNMZ2MfkCZRERxW2iqINUKeD71jgcpjQUWUnRz9Han30VK+Jk67/6DoFzqupuvv7n1yYc9Q/aUIiVpKKqHatnAV098B4KsdF0RFdFxWohVto6IhZVdXJqLP2wFmGuOtOwXDSkOcph5ARGBMxQjIwJFWdxwmKEwfsxCtpCkEpFC0lciZThtke3MbL9YaL/yP6N/L2MUBp9rF46MnE6cn/0yEeXL7XNHak6qGZex/8ujSXLNUVhcAIimSAklE5Us+PD13FueFb934wc+fLXlRJLpkoKaYmdRK4hlUgJw760x/60x4l8gqP9fZzMJxpJmtgIW0Wniio61TqN6FSCJG4a+fbZ52IObFQj3yr61HWahab3kxzr/bTkKVROfGkPm26tE5+PMiwSR6IWTL41BVisHE6o0dS++OdLYZGqREY5QvrfFCeq3m91DYyTzYDXuVpEDD+ffp2RdLHRz9vo8ubrM/IZHXm8FvWr/v5t8kjWOYvvLGLrH9Emdb/+Xlt3GgVByxxSS2ouai9wpN3FScdtZYJzCj8ntPQ1VpNt9lRayFWRpg0wPFnJ2GFxVKn+CtXv+2hUaaXJOAFVvyZNIjUdVZJIn0cDfmJQW0nfqrMmaraLeHLVd/qYjRFKb/XurIutH00FNpy11xkZlNQorI8M1BcN6oC6vzh5e23ZGDAY6roXsSFW29b5JoYGMFW0ydc5eQR1s9u1Nfbb/QiE8D3GnHMYXaJ1FxV1iaIYqWKcTSkHUAzAGIdSkviMok/bD4fEjAc41/XsJg1jRIhJHEqWpCofmpE0QmwYv6ili62GmKORHRiZjWT47XDDvEaED32MLa+3PypAfMND0M6nvfkGiYpYKGIiVP2qIwLFC1TZbKc52kV/+9ce//tsxr6NdQzykjy3WBsRxylS+HTdjQgIOCCXmkxqnHAkdu2pksYpTuaTRMJwIO1xIO1xIp/k1v4Ms5Wgkk7SMoJSWubijMLGTJTrj06NNvI9IYsmOjXtIk7n/TDO0qvS9/peOizp/bQcNspHnPjYFCe+RhyJYcSjqWHBYYSrjADq67+tg/NLvuL1PIGoPtcC4ffXWkSkEVGJjApQ3mnWOAlOoBpBU+sa/0pCDF+v+S7XLzJm1FN/d0ejH+PiafExN1sc+Q7W39lGrOEnd4ZiYOk2R7/Di7e5+DpQ/YxjncMa5511q1G/FHLTfgsklsOtARd15plIC2ZNTKajqkRp+KL1KMM190d2aPG+LbrOn+muj9qFiyo1vY4q1cYOguHbXr98XVYwfrVf5XXwjW8TYUhUSUeWxNI2BQg+c0KSu/isC5qtFFC2Ek26+meqfwiYsx1UUmzh3q2fIKR2AEvrjCxyLGo0rDOqo0lrqjMaqS+xdtifaDNTm1w1IPRpehaNxbjhBdV/l8RItGkXjfw3ASEEKkrAOXRhyPsluAFCOZSUJBMJiBRMjLM+AhSAWnCcqRATVfrYsrPVG4wXVa5qiwoKQYIilT71b/WKg+2Dcd7OfJCVGGOJlCRON3bfDY6B0hRSI50gPoWhxEpopzhRC6pWlwOtLscHkxwd7GM27+Dw27bC0ldVdKo8vehU3ch3gOEHakDPxhx0yZpttnPno0+1eYRCLOn9tBxOldjW6TvxDcVQPf02FEeWShRVKVB25PFlNMcy4kj6+3Xdzgrn1AqLkxqiAhEXCKlBgLYSV8bNdAcsFws5U9zY/eFPVh2BHnl4LLXWjl8tGnHnhuu6SrANZ3GqTYuRx5cKuFFTqjpFTlSzNc3kyeJbO5JKP3Zoi6PLi5cPr3vTKudOnQXOaQ0YOMnRsgXOi9wm4lXvY3NOlpzQMxZMY8YOdf2urCNKI3W7YmSCy41HlU4nlU4JSyIMqTSksqQtfRaPqo7bOEVhFYNNrm9aibMv1qq6LgFGDkXTSuVpwsGkLMl2mBNoEFLbDEHBeekCk0CqvFuLFGa80etInVE9+7R8nZEYEUZbMMhyPoWgFk66StGzDEP4dYqetx/fGQPB7YSPSFmMNlhtq8nSGGf9YFKZkijRqEgihcTZGGcSnItwNnz9T5868nMWX1F48aRQjajK0AysRiFIK1EVb1NR5XAUpWGQacrSICUkidrQr70DSmHIlEYLS2TlhjTA1U5xIvOC6mC7y8FWl2PZJEf7+5grOkuiU7mNmTzN6FSnauQ7VzXy9dGpWgwsOt4qfW9hpPdTgmRylfS95rlS49IBttX3RhIjTnyr1htVy62wS8TTWsVRNfG/brHZ7LvwGQxWGIgKVFQglUZJi7MKq2OG03KbzZhSGrsmDCNGm8XITFDdrsTWw9eqz9No6m4tLoCmvnDxtkZFm2NVoVM/GAnLeemA85M+kbScMBEG6Kh8LNpUi6ex6Lgbj5Y30bdq+0sieYyf18V24V48jdqFVxHPEeHoxdLaokqrEVWiKRGGtipJZElcCTeLoLSS7CzVN63G2fiZqlPzarFU364U1JYOIgfKVrfOjwfv0ulzND9yFvZ44wgjqW2Gos+R1jyxcyDipj/PuuuMtoDFhhDlMil6AkEzVxuE02nTdJYvNdZWZhtSIOXIwM2Bs5K872fgotgSpTkyzgGJc8qLKhv7SNU6myEGto7Fosrg3f/6tagSilT4SNVW+485HLq0DIqSvDAIsfECCvwgLZclmdQIILFnnna8mEZQSc05ywiqOjo1UN40Y6JMaJ9mdKpu5HuryuhazTkuJa2iU3okfW9Q5UGmSNormUc0kSGwQuNaGaQ9bFSCVVircMpgo7KaLfbKx42PbRsEdXBFVH+fuThajTrVz2DR0iKURqqSJCqrCIPAGYUxu8eSfU04sNZC3RsSQOIde8E78m3WCwMIx4Ek46JWj+moYN5GDEzcrOKgMbjBgarFzTIfkTFzhjoQV0eM6ue45Y9n7LkOP6F8mlGl1UiEIZGaRBo6qiARhqgxManrm7aHc+xmiqfVUvOW2xHlhmJpKJpWPkdnc4JyIwhCapuyULYRcvv+KLiRaJPGVrVNdYqevxLWkaaQorcxLIk+4ZBSoJRa/gImqtQ/qXDWoUtHWfpZyiiGKDbIuO/XtQrr4ioFMAopgDsIISBCEsFQVDlN31XNf4Ui2SJRpY0ly0uyQoODOFLITdDrtaFEKS3RGg0lzgRtI05kk8RSc267yzmt3oigatMyilJa5pOMwpx+dKqFInaOBakZOM2EjVFG0MOQY5ACYuHbW1hhyIVpIkUGi5XWixDpr8sizhHJABGXOCtxJvJTw5X4HIoj72JXD0zPttmEw4s+g8VIf4swRJG3hI6UQQqHsQqrE7bjxOKm4XxPSWcXiadNNKcarVFzgBWCCVVwYavH4WSAdpKjuoUbLQ4d7u7IHxu3T02W48ZtcgyJI5aGdFF9kxrp36SdJLdnv75pJTZ6P04nNa8WS7VgUqdx/dgu53OtBCEVWBNDQ4jKNnaZaJOiKvjdEy56Z4lqpnFJ9EkNbWrXgm+0LKoolaXILboQyEiilETFIFUGKgMnQgrgDmU5UdVzmp7zkaqWiEiE3HRRZawjL0oGWYm1EEUSpTb+9RxQCM1AeUOJeB2GEhtBaSOON4JqwUeoBlMcHcwwX7SxOAYjtVOnik75gcvQcMFRCSJhOSYLvi8MykFHKFIETkDGeAoe4CdRKlEkABlponiAjEuckZC1z7o4Wg0/OK9aWwhf8+R9KR2J8rbQcVQipcVaiTWRN4/YK5wl8TQSZKw1dOOcWC+LheVI0ufCVp9UGGZ1QoEcpgKeJTb6paSwXjRJQ2vZ+qa68e3W1Detxkaci41KzTv964pb5t7OIIyQAktYqyGECtGmTcNHnwymrDrMnyr6tFYECOUTP3yUyqJLiywFUaRQSiKVQ8gSoXJwi1MAo5WvrIFtxfKiqqTnfOpYKiJSIYk3UFTZ2kgiLym1JVKCJNkchzCDI6sMJcQZGEpsBKOC6nBnjnPaC15Q9WeYK1MKaTmZ9unbiI6JkVXJhq16HHnhUAuoOiLjKDAU1CYNoJzACkffWYyNaDmJcsMkmcWDGKFKSAbI2LtguXLjnfhOh6Fwqn5n5LB21jtnWtJKPCnpUxeNVZTl6TkZ7khGxdPQMWLDxNNIwHFZwbTok4TAcTDOuSjtsT/O6RnF7ablM8KbGridQ1SJpkQY2rL0nzdhx+ubbOydFLchZ3K67QqiaaNS89bHMkey0z5LW70DgS3GjfZsCoYQW0odfSoNxpjTjj6tFSEFqopSWWMpTNmINRVFSOWnGIU0iJACuKM5laiqI1WnK6pqI4ks0xSVkUS6CXVQNUVlKFGKtfeGWhsOG5WVQYJEWAHIRZMHbmzmvklorgYk/bJNLEsOTB1jevIEt+UT3JJNM6sTMpmz4ASJVcROeUvoakOycmqwFgocJRZbVbskiySSAfIqatN2kmTxeyYNIhkgk9zXOuloS2sga+Hk6oyGKtXQ4sdudQp4pEqiqCRSGlFFn0odwTrTIncsK4kn34ju9DY5km1nqT+3K41U68/iOC2huSDtcX6rjwNuK1OcEDjptoUwXwtJ1fYlld4YIhWaqHJOHPZvirdFfdNKrFdf1N8xI0CfxdS8U+3VqbA7rEgqCKk9hnWuEk6r92yKCD2bzhbOVeJJG6xxGxd9WisCZFQ1orSOsjTo0iCVREUSFUUj3dpNSAHc4SwnqrquhBFRlQpJtEZRVWrLIC8pCt9EMYnVpvXIdkAmSzJpAEe6oYYSvi7HRSVW1o2sqnRYROUuJqvJJ7Homc3aAGgEg2KCVBqOtBc4nPa4LZvi1sEUs6ZFKR3COdo2QjlZ9Qiz5FjKSqhFSFZKIlKAdJISx4IsaTlF20lvvBDnyDQDpXE6hi2K1JlVhFPd4kIBSmmU1ERxgRIGh8QaiTXbL4Vqc3A4W4kn/+ECqsjTOj7ap0rLG0eM/HdlhLMcTgdc2OrSUZrZMqFA1W/ithVRAtfYkPvGtwVR1b8JfJredqtvWo217OPmp+bthDO1NYSRzy6mNoSoU/QWG0JUFU3BEGIrqJsk6rMTfVordZTKOVc5AxpkqVFxhJISqRQYPzATwoYUwB3OYlGlK1HVdX55q3L/i5BLRNWwoa6vg4rjzTGSqNGVoUQu6yjU6b6Ya5zpbNP8tU6rs0il/ZDBSS9ppPMz9GIol2Q9arWqmvKvolYjzVUBSiM5ZmJSqbmwM8/hVrcSVJMcJ6HAoKzCWh9lkngxu5YjE/hIlQUGqsSqksmkQCnjBVSRcnZmYjx2xFmvTtUbCqdhU3XwEzKR0kSR318hrE/d2zPGEauIpzW8+XYVwTSelrc2wTS2Z/7Dz3TkzSQOJRkDo7i9aDHsVMu2GleP1zdp2rJs6pscdeNbRbYN65tWYrXTu/GpeRvlCLLSNnc3QUjtFtzink2jhhD+A12n5wVDiK3D2Uo8aVPVPvkfTxVtrxQ5IQQiqmbjnaPMSzSVOUUk/f46OZIuFFIAdzpCQFxFQbyoMnSdF1YxsrFUV1ZSlpvbUHcUbyhhvFgQjmRNhhJupAbE4qSr0sts0w+p3jZUs7BWUCmBesnwv2PXy2oUKQBlKntnfIS26UwrcHUkyEpyq7g9mySVJRe05zgnXeCWrMN3sklOmoRYKFomOq20yjgqaKcZTpUMnCAqExI2pn/Waoxbkg+FEwzTwaspl2qp9eJJFagR4whjFG4HDXBPn0o8Oar0Pb90NfG0Wlre8nVMpydDa/HkzSQMF7T6HEn7RMJyvEgwQtbhim0xPhZAS5aklWhKpSaWvs2HQ6CtJLc7z5Bk8akdS82r0vPWmpo3ejsurOtXWc8buS4pvo51dwdBSO1QFvds0q6ucwJGok2qStML0aatxRqLLg1WV9EnIZBKbv/3RYxYqDuH1RajLVIaVFyZU0j/8z2a2rdiCqCNfLQqsK3xokotElWGWe1wpUWU+AbAScQmui77aIssvaEEYpneUKtFl3wF/HjanRc50ko/eLSAs1jrcM7gnEMJ41cefS1hh8/34Sk/aBW+MXOzSxJENaATka4mIiph5SQDC/NlQorhws4ch1tdjmZTfDefpFemxFYR2bXJKalKVJIRxQXOSVyZIIFCWIxzJEISuY0sCV9qST4qnASiSkUcf3+k1E3tk1IanNhDxhHLiyff8290rfWn5Z2pRKjFE1BFDh2HkoyLWl1mopJ5HTNnE79fcmTHtgiJ88JJlUyqnFQaJG5Y32R2YH2TG73rmn5Mo6JptdS8pp7JrjU1by1v4GlJ8dN4zlKMg++WUz66toMII5qdwCJDiLIyhBg1vK1nAH2K3s6ahdntWGMpsgJrHVJKVLwz35+xKJW1lHmJEbWFukJFw+NybjQF0IQUwJ2MAGkEuqx6mEmHSCUGQ+4sqfMD9miDYyClMAyUphSmEgQCI9YYXXICUf3zD/qZWN+71FJax2gTUyEEQoCQEiGrSJIYFwR+3OmqiJVdNHQQi25GogyyMjWXBpRFITBOcNLFpMJyl6njnN+Z4wfZJN/PpujnHRKz8tkUUhOlGapy4jM6biLDAoidwOAYCEOMI0GiTuM7VhtEGGw1C15bkq8mnOrjt6jljCPKmN1vHDEqnhyu/oxV4slWUab6XJ5pHdM6d60ZNdiRxVOq5KJWl3OTjNJJbi+qnlBbHIVSwjapepOqIJYGgUM7yeAsOuqt6fDXcY6a1Dy1Wa55myWY1vsap8Y6OOFa3GY7HHNtjJYciIoN2fbZIgipbYrGYJ1Z1RBCEQwhtjvOOoqsxFm37dL3ThvBmIW6qS3UVW2hPm424JyCJrVv56cA1hO52vpvpJRVyuwu/CpaC0WpKUvj035U5cTn/HkwWHrSIDAoJ0mdOG1R5QeX3g48V5qB8rYLEkEhzKrRpdGl9cacc9gqElCbuIwOagWg1NIIV8PYAVTzvGLZB0eeVjn64UWaHXlIGLzgESCEQwjHQMCgjGlLzSWTx7igM8steYdbBjPkWRtlY4ST/vsjDVGco5IcISzOxDi7vChR+Ia6pXAYDAnCuwSucO7rQ2gsyYX/N7Qkp8pwWH3Ge8w4Qhqc2yvGEcuIJ1m990qMRJxWrmXatMuHGyYD2kUPJcJyftrjgnRAIn1PKO3ksNRvC0RUJHydU0eVdGRBUhm/lE6dVtRpQ0XQai+9zGOLU/PqprbrT81bLcp0pju+Xs78A1GLp9tthztcGzMyudIR5Rlv/2wThNQ2o29KSmHpUWLdME8/GELsPJxzFHmJtXb3iKhFLG30WyKlRipJ1Fiojz1jlRRA6cXUNkwBdA6M9SlT2lqs9U2qARCghEQJQSQFUkqk2NnCyjkoS0OhNdaAUmJJ/xpBZVQxJqpA4CNIyTKiapi2ZLBUA/e6j5KwGOEolMYIh3T+uucc49Gl5UcsfgDr/HszOqiFWjiJ6vO4CW9ME/jyVRpmZKEcXWdEiDlHFRETdF1CN09oxyUXp/Ocn/a4NW/zg2yCrEiIpSWK/XDD6sjXX42kZomRdMPRl6ujU5mwaCAdiU7Vwmk1S/K6yfqqh76ScUS5240jhuLJN6yv3g3/xRhbb8gwyrSpZ2ZEPC1O6KoSsTkQ51zU7rI/KunqiPmy5Z8xGoU6SyIqacRTTkeVRMJHfEsb0TPpkt1wK/6xCusUQetlSWqeWHtqXu2cN56aNz5ttDWiqWZjxdMx10aPiKcEzWHZ57Ds8986d/DZubue8eudTbbPSCUAgHb+AhL5ZPut3p3A6VIZNJjSoCLlZ5BZ5aq601kUpdKlxZTFiIX68j2FtmsKYC2crHNo6zDWNcJJCIEUgrhKAasjH4Wz5MbhM2IkSlbCSvj7O0FYOQfaGIrCYIxDKojiU0eXFosqLSxd6c+XYsSJTgxrmtzIbLfApxoV0jvmJUax6oDA+TQ9auHkbCWk/FyTEF7gy3WkkVlAC5+utt5pDycYyxqoj+lUNBkF1U1mEo6ahI4quTjtcqTV5w4dc6xs0SsTjBO4qKhUkPSW7EZWJhnVCNiJKlWxin7hzdZKaSmxRMILpJUtyU+95z51z1TiaS8YR7jmv87564Jxw2X1x2w0wjT+99lh1DRiqXzzdKTmwnaXw0mGA+4oUhzirEehUqFpKc2EKmipkhiLRVBYRWbHP0NuyR2GB7UF19XTcc1b3J9pZde8xX+vnvq5eZzOh6Ca2BFV3NA5TrgWR+0Et9sOeuTK2kJzQbTAhdE8h2TfX7dxvgYuzjbkCM4WQUgFAptA04spkiAdIikQTmDLZPeKqYpho99FFupV2t/SKJVn+RTAHiCaFEBnYtiEFEDnwDiH/f/Z++8oSZLsvBP9mZl7iNSVmaW1rmo93T0903IEZnoERkAtCYp3wOU7D1xyl1yQfADB8wAS5BLEocJiySXBBbDEAoQgCZIQo7VoNT09M627RJfo0jIzK3VEuJvZ+8PMPTwiIzIjdWRVfudURWQId3MPF/ez797vGjM3ccIpCWWjMdamaX1CCJQPXq21RNpQ0UkgmyVWAiVlWxErC+jYUIk0sTZIOTeBSme8ReKQZ1LDh6TuwwhDLKCEa9yprCS0EmVEqlQZIJKaSGqElah0Wr+6IpeW54PYWeqbkhHbZLlCEAtB5P/Fda9lH7X/QZQtctRM0INmLhhPoJoFrQtF2UqGbY4uVWFfcZLNuTJXSp3cmO6kpEOXAyQdaSdIxqm9MgzWCJdSZ3HpdbgZYSthWnib9UgQWN9uQQhEsh2ZgLCm1guLlHoNGEdUf48M/cnk0iW0sYr6kVe/b1OF0Rr/V4b8u+BvGdPyWkAz8gS126UwbMlPs7MwScH3hIr8dXQlSJSg6rTXFTiziACDRlIxssaavClxWuEdveDUPJNRm2ikMtU/Z47XV3LDa8+ehBRJR7f9vc4/xx1XUlikT1e21nJdd3JR93Ap7ibKkicRsVONsTMYY0BOpxlWxiv01l/Bm9cNtifWidQ61rHEiCsxcTlCSumCPBUh/Oy8pHJHkCkAhEAGPrA1lqiiidFVC3XVWKXyX/YpgIFfVJICOA1WLToF0KXjOOIU1REnhEBliFMCY61zxzTV2WgpIPZBfmaz01BNeJJlrCGOoezfT8hUIN26lKyqBysNoy2VSBPFLiAPVC3Jc8G1d2gTziXUSlfPhPAhnEg+6RUR/6eyyrmGkig2lrIwODdlb7wgDEYaVGJrnqbpuRQ943vtRNYpRrGUaCmIQ0EkZC0pgvRvu0CmqoXkuOziXj1OcUZVycLVp1bgiIpTe6wVTER5JqIcHSpmX8cYWwuTjlBNdVGa0QDbE1hlEaHFihgpvEpnJcoTLIxEW9BSYmOL0jODFpH5TwpLGGrCMCIIY6S0GCOplINU9Vo5ZFQgqvTBJqlslpr3G3/dpt9MXxaQ9AmrISSmdoEuoGTVU+xbJU/+0/QFFXYVJhjIVZjSihuVAskFJyVRy5DK18xpL7aSyCimPXlqB+JUn5qXPLacmmcyqXnp9bC69NaxHBvtftxE9XHjNJ4U+efMJEUJWUoea4aX2aTYwjXd1ZA85YnZpsbZriYYkNPpqRPZYEWUz5XAOpFaxzqWECY2xOU4TS0SwiCC2FkgG4lQ+s4iUx41jX5j5/4200K9ORabAuiaUzuFLPZESFvjY3/fJkDN7E+UpPBo49zLrMGpNfVpt3WrTGayTSOS5VUDEWtnl41XqYQgJyVKyVSxWs4jxNqqkYS2FqUEQjoVqZG6ZEWSBGY9WXKkR/qq+rnm5ZM+dljXXHdSGkrCEgPGKowQRFYQizrVSApixIKCV2Etof8XWEsI7jH5u+5RYjnWUWBCBLylHJnKJcH7shIoQ6A0Srml67QGyq1lSodM6aBKqPJTXJ3u5Fqpk2mrfOsqH1gLt4+Fb0IkACmtO9aUAYxvwOya+WIEMlZI7fpgWT/dHiiNCiLCMEJJjTGCKJLV/lhO55pZnyVmGnOImoO52V6rJ0nJ/y51di6SVKMw1Z07idKWLCa7phlU2TRYkai+ZGe8OXMMjbdQzPLX3Ki3K29lWXmp2Z6fZFthCoHlZiWH8RLjcqlQrTjtrTZxstgasrTg1LzshojM85aw0I2dixQ5AqSwSGEQwl3XEmUpIUY1Q6gbss/FyChF/tqQ+ZKxcMN0cEl3c0V3NSBPE2xX4zXk6XbFOpFaxzqWCFY7cwkLrkcUgIqd3O1JgNXqjiVTQF2jX5M2+lXhTAv1ZpiZAhjXugCaEGtCdKzQRqJNlTxZ69MUhCQQ0hll1C8fV38TW+OaWlvSuqdWyxYTNcr/MWP5CHfjdQGiJcaRuimqilUgJIFyKYGhdL28BIubDLc4dSzSmnIco61GhAKk9bbMzdUlaVVDsmRxjuARjgBFeDKEIKp7TFQjvcCNULOQoEYkqd6TrxUcNeO8LnsoCcUx1cVdZqwm1lzKM1YI62qNfGNfbeQs1wTBlAmZrASuhqp7lM0dE1wqdXK10kHZBP53mvnNhBxlHc/ccWaxSmMDDVa4/SsNgXRqFoDRiliH6bHQ6BxICYqTehsPv8Z1g5odaTPMq9l+TklKgwmGDOdMnzvzBzvzM3XLk37wxs4cd7PDtFmobGd9fwHkK8Pp5laeqpBYNuWm2VmcpFPFjMUhZVMNdFMS1XxY80Ijpz0BVLzTXtKFbcaPu8y3v/mm5lFHlpq75vlfpOXxzzZ5sNykqHruG5ucp7KGFLWKhDxd1t1cvsPJUxbrRGod61gCOIe+So1Dn1Oj9AyL4pRM2QgThaxOQtcqQ4AQEiWptVCXgiCcaaE+24KsL0w21oKIMWIKKw06kOjY26uLEEWAlM0XWk3dMyTZTkoIgiW+I2RJlqybBU2VLANloynpqv+bFIJAJsTKPcrUVCFpEJsJJIX2t2lvaY0htprYGDQGETh1zdapS64Br1OBUiIkGxOiyD8uKI3OWgIc6XFEyKKS1zCeDEHOWHIGT4yW/1wJMRyxY7xBL5Mi4KTs4qCZWNLuRwJPoAJHoIwVGN2k7s/x2RpSMOkJVaeKOdAxxvb8FJdLHVyrdDRI+WsM6+QrBArpjSNyMiaQ1tVY2WQyyDgly7oI1FqZYU4iGaJXfaosJ0sq6hLpaj+QPq++UCWuVZOWVFWy1U/Yuh+lESdoGLMvgDw1WuZ8MG/yZWcqT7L27YboCSrszE+yMVeiYiU3KnlSkrqEKlTWaa+oIsKM09649o6NK0icklq2hCzNOzXPttLQdvYRACtMiqqK0XLBWLjpladm5GmbGmfwDiNPWawTqXWsY7FIHPriWptzEXg1qkGvF6sVInAGoHcsmfJoaKEuYmTQzELdwfhAyFib1tG4NDqFkAolLblQQz4Cq5yrWOwMK4xxxfEtp+6tEBKSVc/3LG6MkdZUNEzjb87SjVck/wQuhStxTRLu5htZSymGigWNRMvAmy80IEmwINlL1qtCxjhiZPxzaVHCpZXlrKGxvpXdYh8EeVlJW5caKmus0JcSXpWTkMNw0IxzQvYwKnKcEx3ssVNLcpY6AhUjhcFa53RXgwbEqTEEkzpkUgd0qZiDnaNsy09zqdzBtUrRKVSzjUNqAqkJw5hAGm+4IinH/ii0wpcN+Zn3pP5KOHJv/W9gEoJlwHoi3mjorVky1Nb9JOmKmbf9wvyTOqYh6teTDeAXSZ4Wi7lWkeWSyT6om2ch85EZuzgUmu35KbYXpshJw3CUQ2eZZkIqhK0qzfNEM6e9spGUTCbDYpmJU1LPFIv5p+Ylj3Nb6VRJTnOjhdZIkSCZAKhiNUhRq8iSpyu6i0qGPOUyytNykacGp2hbY51IrWMdi4G1ROWYuKJdWlpyH5EG1Ew1quarZp1M1UDQxEJdoAKFVM59zHriY7DVPkHC199kUvWsAY0C7dVBaQjz08A0OpZEcUAcK2ItATWv1L2Vg03TAKV07niRMMRSEGGpCJdGF3uVKHnU+BQ7KzCJSjBPV+pEJQotBP4xrHm03qHKqUfSG0NY18AJLzuCAqMMRoIwSaA717Eu0tgd64JpIyxGur+lFUjLkpEqF5i5f8mZ2I1mv5ngbdnFDVkgZwzb7cJteZXUqECjpMFagdZBsqlps9aFxQ+CCR0ykSFU2/NTXCx3cL3cQTnjcCmEJVCanG+cKyVoI6jEtXbzOg0Ks3KpyDxWZ9+lMNVIwup0g4zxv7PxAWJGnXBPbc2i573tDb4wQ/2aZaHtMHveiDwl6ajNhlfPUQSWwbDMruIEPUHEeBwwFudqvpA100h+x1b2twDyMqIoYzqDMnkZE2DdBIxRTPsJqZVSnCoCIgmVZhmwdWSpWs/kHS4TpUhUlaKEJMmmpGh2owVob1LUKqrkqcuTpyo9yNWl7c1R0jw/SEh2qC+3RK2xtpvrRGod61gE4kgTRa4BbfbOLILI3bhmIVJOgXFkSgA2yjX/7B0G4dPWrLVUtMHExpMJ4WyulSdOLUZD1kpnBx0b584nNTKIKYbJewFah2itfIrVytwALRAJiIULEmLp/nb/EsMF6UmSI0wLTaMLsT648Ol0ngylKhKQS8gTwt8sRU06kfERsTU2JU2Jw54WntBm5DStDFp6Iuhs/xawl1ohVY5YzZdUWa9CxSJJJKsd4QYi9tgp3hGdXJId5Ixho63Max1ZJ77ELtwpbQslTs1QJVTdKuZQR5VQDUV5jLTkAu2UMCA2EhtLqtSjdjROEfTBZI2CkdlLtj4rzwWgCIsMqnKR8ctwrb+kT1uTDZweslsz5+a2hOzsdruRJyDTx2v+Z0enithRmGRLbprYp/HVBO91KlQrEBiKMiavIrpVpcZpr2IU09nWE8u8PzWWinTkKarfQdZfr6wlh/sXJIQIi5TOgU5g03q/GmIksr+FTReeGC1Y8MYYcs2RolZhLAyZYpq2t+TkKf3NMkSpha8sOu90hbFOpNaxjgVCR4aoHPvgPhNmKI1QJuNuNQsyZAoLNr6DyZT1gS2k9uLGAsK5yWEsRlukcQ5iKDlrzVMCTTX1D+uCfWHCNIaT0nh3sgrGCKxVxFGINgFGK1cT0iI0eNe5hAglREmkBCn7/kJNF2RKhEhJUUKGlDUobVHG+Nd9LxM/cSw94cnCxRLVwD6uf9OTGN+YCPD7sY44pV8RjkQZaZ2g1rS6e75oRqrcb9s6qXKpQUZUXfia/cqbbJmykVyRRd4RnYTW0kc050il9E1rlSMu2nqT4WXukWIRjOmQcRR9QYX7em8yZSRXoyJXKwVKutrzSfgAcvY95ZwbZQ2ZakS9SE0jbPWP9FNSOHMLpEsNVOi06t94cmU9uVrKPdTu5GkhIrgShq35KXbmpyhIzUicI6q/TqUkijlJlPL1TgXvtJf3v5Fz2guq9XLLjMRNr+JVp/rLhrSWgrF0oumRFUKZ9Prz359FKUrJkK2SpTsRs5MnzTY1zjY1waCcmps8LYAo3Y5YJ1LrWMcCYLQhqriZaVEXSArlw9BWowELGIUMY2c3Gs8zB2utIkOcrLVp01CoDfrTvSurM4bWWGKtEcK4vlSqdrrSUE3/SyYbZTYFJQNjpOutg0ufE0KTz0+7NA1fV6W1QpsgJcfjEq6GMrXqTgiSWbDpAhnjBbx61Igsufca3bCsTVSi6j50T9Ld7QJ64/+qJ1ZCINL+TWAxWJMJmAV+wqC69uwMrwuzLVZatPLLN3OF6YvBwkiVFZa4BQKVxQ47TcVIhmSeU7KLo2aMziYNe4W0aRqfEIbYyrSeaKnQ7NIisChpCISzU4+F5UYc0ikNe3JTDKoKVypFbkTFmYF302W6Vr3JfnWvzTaG+tPMB7NO4qrZCse7LDLQ/lOufxaW1IrdJumBLY22fWDrnmSPt4UHnJb+sMLOwgT9YZlJHXA9KtR+pIZA0fSHUkJTlDFFVaErQ0oiK5nUza4ySw9TpzrVHSKE1lKwhi40HSoiVC4tT1tBZJWr0VvHrLAWbs5Cnrb6Pk8zyNM6UWoJ60RqHeuYJ6yxVEoR1lhkUKs6pWqUnuclx7qUFxlGjijcpmQq6efUEnFqAon7oOuBAzrSmDj5snCzmH65cp7NmFxdR+BCZOHSQ8JcmdCbhmifAhjbkJth48unSJ3naklRmCFDWbvuqj6wQFhnaW6q/YQbj6vuifVENkp2pLUJv/IBrkujbLQ4m3msxmkGoyxW+eUYlxaY6Fx1vI5FbnUdGpAqWSXSCaGykNKf+ZyhAthrJ4msZEyEnJTd3GXGyPvw2AJIi1IxgXL1eMbI1lTpBpgfabAo4c0jhEZ5/3NtBJHfyjGtmLCWLqU5VBxna26ay5UObkYFT6gapxkmBDqFT6dM3ljcL5hRrlKOVk27EtKQ9MS24MmU73O1TOrVYrE85MmhKGO25yfZWpgG4GalULUVT5CSqEapfJbQk6cOVUmd9gAqRjGROO0tMxKjiIpXnupvlcKn7BWtoZuYoopRvvm3tq42a8Z2r2MGEvKUWJWXM+F+iHZpe8E4g2oqTX1cJ0oLwzqRWsc65gPrekUZXevQ5990atRC7+xW3HZkqkqcqo9JNrorVF/4xVviStAsAm0s1mjX6BZvDd7E7a/1wTtLauMdi5IUQBWW6Uey1xadbS7OvSkwoIyopkDVNGtZBrRIoGq+khKNxBQi86Yfbrbw34WuIvt2+jz7aIV1JEramjQ+18undhUJZN2JUrvMxew3T6q88maAWGYUKJv0Dmq0DmeSoJTGUnt+S+CAmeCY7GZaBJyQ3RxhFEW1F5SSxhPu5h2sFnJ5aLakQBqnfknXZtVYiJrUZRohGDMB41rRpWIOFUfZmpviUqXIzbhQq1BlCXV2wP65FW7CoM6OYgmQkCu3khpyBb6lRLI/2ke9yqbuLSV5cssxbM6X2FmYoFPF3IpyVOxMgl61Ns+SKFvjtFdUMQEGgydPZuXI02xGEcpA3lo6rKbDj1eJ5L4hKZugrQhzu2JO8hSMs0ONs1G1kLa3jpaxTqTWsY5WYS2VcoyOtCNR9ZOByiCUTpvv1nzV4Gyp51xHQqZiV46i1xaZSlQOkxAnqnnrLoUMFmvIkwQq2q8rMYiTPmyxFrTWGOMa7kopZtQEzRvSEnsKaJGEWPaoCaTK3t6lb7Ar0UZirHQKl3XPrRU+DWWxBM/P6ibNrpqJbglPSohTXaNUkUiAs6+KKgVJ/PZqqY6VjkQhLNLM3YUleZyNZNU4ZWXemy/Jcul+VfIOLojTwtXOKW+AkW1iayMFUvuENlEds3AOdQcY5ziuYe8purhHDRH4PktaS+ZblD6/T7vCeSUNoYzxXQMwRrZQteVWZhGMm6rL35HiGGN6miuVDm5EeeIWUv6qsXqiYi5nVJYhRnXqlXvXqVei2qPbESuv8lv89Re5LPJVvV/GUk6f9AYVdhZcT6hprbheKcxcep0KJWzitBfRGVRmOu3ZRWvgLWFuowjIGUOnMHSIiFDplDxpJGWt1snTXBDuXjBkilyKu7msuynbdfK00lgnUutYR4uIIk2cOvTVv2sRQVxTC5FY/lrf60hYkELO6BE0A0m/nDB2wWYbk6k5iROwWGEIqsGKSwespiGlXCDrmChAoJw5hdFY4/viKImcz50kSQ2TBpsxCHCKi8QYlQmiPJHwwWUYxNQmvlVJljESvUCS1bQOimS/Wx9ImhmF16JuP7WCeuJSS6zAKotVvhZqjlqFmal9tcjuLUvjANU9zk2ynEGC7y0DDf0drEjSilwjT5UeZAKMRCifnlezAktoNYcY5Th9TJDjlO3lgB5tSNaXLm5x6lPg1ScBzuJ+viYeWcIoqoSqW8UcLo6yNRf6lL+5CVWNm7afzZj39jb6XVr9YPad7LHnfycpccYWwn3IGIOO5h/yNBDk5vz8YglATmi2F6bYnp9CCcvNSg7dSN8STg2WGAoiphBEdKmIwmxOe8uEuY0iIGegYA1FoSmImDDQKH/fiK0kWmAq7G2LhCAnT/3L1jrDiItRN5cakqcJtqsxNq0x8qSwbFCWQMxi59mGWCdS61hHC4gjTVyOkVLWOPQlECpGSKdGWePNzXyDVyFdrY5rqup6yDiVZJYVGomVBpmLMRWB1e1xqtYTJ6jWOS0lcYJqQJKaUWTIg0yezAYpkJ5QWcDEMUY4MiUTeWzGd2YjT7Otz00LJ2M0NfeBWpIVBG6GeF4kyziTiGwvHiypymRsXbGIoOFxuli41QpIUvmES+VLjgvh5bEs92h1FLN9tlWSlXwq+bl8C66Gy6slFRBJp9whQBpJLtRuvyZLsAKJJVSGjqDMUaN5Mx7kpukgFJY9arzBeFpHffAtcDV6SfqeFBZjBfFsLRXmg+QYEt7lLyVUY2zLBVwqO0LVMIDPLiZRiNInMDNtcrm1heyMgvu7RoAVFqks1mpMPL9gPVnySoR2AsumnEvj6wkixuKQUl1j5WSzlNAUgpiid9rLeRXVOe2pOqe95dn/BmY1iggs5IyrdypITV7GhMIdy9YKR55s8zTY2x5NiFIjpIYRsSNPpTrytDWYYIcaZ5OaXFPkycGyKYzZm6+Qk3Bf79hqD2heaI/obB3raGOY2BCXI6d0NLpCCQtBjNECo536BD7gz9qi48iTMS5gm1Od8mRKhC5pZzXI1FzECRxxWsrrdjZ1z6TSy0zlqWXIJCVNYY1Fe/t0IZxtvVQCIxqQJ1sfGSwUCyVZTnsx2pEobXwvLOPUK+PTl4yVy0ac6mHxKpTPhXP9hUQ1KAeoUQwXTqyymO17ye50aXw27RebjevnRIapCSHcZEgsUcq6YwXnghcojRAWY6Rr2CtHOWX6uGI7yRvNVjmVLm6+SNLVpKiqT9I7ZCwpgapdoYNw6XBjOkRoS7eKONIxxmgcpCl/cxEqR8r8coWdp8v7Yo/dOVZmwRqB8imYZg4zoKVQleaLLhWxqzDJ5tw0ZSu5XilQnyYaJE57YYVOVSEnqk57U9p1UWod89/nLRlFGAgNFNHkpSavYgKhkcIfx1Z5U587AJlmswu59iXKkyNPXZRsNTtl7ZMnh06p2V8o0xskxidwpVTgXas8rvlgnUitYx2zwBpnLmEtyKBBvxxjQUVgDTqSCGmdU9wskNKrU9qrU0mfpEYwElIyJRrWXy0lEuLk8tRXhjhBg9Q9xyMWTp6aQEiB8DYHRhiQxqV/Cd/g14p5N3Vd5IgakqwkHdQVd1iEtIRSg/IpVMJirUyLsY1xwaGx0hEsI7ya5dexBLDCpfFZaaGRrXl6XCQKTnVbFkqsGgW0M/925Cnbtmg2ZSszwurrKV+vjkxrhVIRoYpRyiCF8XVv1ZN1oyxRYZzzppt3TDc5NP2y3GSkzSEEzrJcagLp7J2NxZtWrBCSn80KxnQOoS09nlBtjYM05W9WQpXZwenTWXaDbfBsuWD9cSGUBsOsvZFmqoPLh9D3hNqRnyIvNcNxriatMhSaDhXTocrOaU9qQFAxckXMIloxishZCI2liCaUhnzgHAEFLgX1tiVPGaK0VGeqtTBsilychTxtV+NsUi7tc60iwLK7UGFrGHk7e3jtTAe//XNbOPSzBu5f7RG2jnUi1WbQPuhwDUmrMxmNMOfr7dCJcA3DWmdzbkytQ19a92QsBk2Yi7BGzKv+RuDIk8EtR1qnTjX8yVIyVQFyS0qmkrqaGU1wWV7i5NbaIHXPr2upCVQ63y8NrlwgkSxEyuIM1tcRWURTZrs8sP58t16FqzGGEBJ0td4ngcSCdK5eSuGaOqfLE0tGsiy4lEffG6ohiWoEkTw0J1buA42XNjNEaPBKErCL2QP2uiHVLqNR8O/T6nKBRimN1sorQonkUsVWMUFZSK7ZTt42fRwVQ/SIqKVgXAqXuhdKp3SBQM+ZRrrMSNVFwWiGUB3tGONWHHK5UmSoBUJlRfUUW3F5pwlcWrVFhQYbyepvX4eV2PsCS39YZldxgg1BxIQOGPU9oVxz3JjOoEJRRs4N0kLFZm3Kl2+UrRhFhN5pLye0+xc6R8C0x9PtYFO+DESpERx5Knjy1F1DnoK05mntkycHy+YwZk++Qs5nNlwaDfmNf7yN7/xhHwCV/7sMP7J6I5wv1olUm6FciTDWUoo1EGfeaZRS1tqlNPuZRrGpqEY8MwIk0eSPWQOpunGtSSJoLVE5Qsc6JVHWONKjMx7eQc65Rdl4YWOVPgI0xiXONU33WyoylaTqwaJ6OS0GiVubyaTuJVboy0aeJC6qSyM7UbXpTmfifZBvAXRaR7UcjmRZ4mSzBNbW/RizwOBIoGngg7hUJKsmlc8yb7XOZv6v41M1n2oUGogm/yffSFQosYg8rJqaM49AaXJBTKC0U2ZNtt5m5oqEgD1yjIpRjNgCJ3Q/96ibFEWThr0krntJzydXL6LbqdA+o+4lhEpqS08QcVfHKLfiXKpQNQuWRYN92w4xoDUCqSwqiIkXYD6xqHX7xw4Zs7MwyZb8NAa4WcmTkzH94TSdqkxeagLfzDmykmkdZDj8MlyPaM0oIjSQIyFPMbkgRnkJ2FhBxagZ6Yhti5QgLj9RaoSEPCU1T9O3NXly6PJpfD0+jW8ikvy33x/kP//SZnTFZfQ8/ueHGfzLbXQtbAHrRKrNkMQESoiWgspGM2qzpcJkP29nvLicJ+vKE8EZH22FCPqbVVyJ0JFGKEFsDUYnQa8P+KVASoMINTadqV4oBFL6/PPZzCgWSKaWognuYrFSqXuNyRNpACJmSS9xwxBVlU5br06532KhKpXFpueYMdUxZpGWTc2zgXAzzEayBNYZoGBRysxKsiJ8nZYRWG+CYcn65i1fclYNCfMjpy6NbzHxRepyKKrbEoYx+dA5LkbG2S+HgJB2RmpS/XXpgBzhmB5gghzHdD/3qKG0hgVASUMgNIEySCwmVZ/auA1mRk0yCG7FOSSOUB3tuMVonONSpYOhWQhVMumUValWA9nVak+mpNGYZUyXrt9UhWFLfppdhUk6VUzJSKTQ7CjeIi9cTVxsvNMePrBO7RFhKUmUqVOdGhtFuH+BMOSEJlQxeW98gnVpe21LnlaZKDWCtTCSUZ7qydNW3yR3821EnsCl8e0plNkSxggBsYXnX+zm3/z1nYxdc/tg72NTfOjvDfHgfSN86+rOVR7x/LBOpNY4GhOL+S5kwd9cNBZKBGs+s8RE0BhDFMW4aTaTxgE+mvZBryUINUIYfyNuvu55KXIik+5Xp04JcLbM0kBYAZv3JK4Wy9kEdz5IJgWy6leyHUtLoBLy5JWTGvLErOSpERJChUgUqnqVSs56piTEycKM3k2ZtaSfbaSKLCcs3kyhwQodybIgDSo06Q1C4J0ovcmFNq5WyHiSlSpayzZjXlWhkjS+ha4lWVb1JHA/QD6MyIWx267MeaWNJJTxnMqkEnBYDfOmHqRE4JSp4AZ5ZQhEnJ7LxkC86G5qK4g6zlxPqO7qGGUkznHFp/w1JFSZYzx92uLlelnCSeuUqSAwxMxtPjGPxTaEwLIhqLC7OM62/BQWgxSa3tAgsE51MuHMOiKvBC/FOTUfo4jQWgLh6jLzQezU07THk6Cs1ZKMaVFoQ6LUCLOTJ5MhT5O3FXlysGwJY/bky4T+BzpzOc///jd3cPKFLgD691T48N8b4sD7p9ZsNco6kVrHqqKtiKAFrQ1xJfbMIzGOaBBwSoNSMVbXBtWNLoN2jvebQVsD2lmnp8E9gBZIpSEsoyuhC/pslbhYqjffhDjNELfI3IeWGE1T95InSwbblDwxS2PY+SDpDZSqVMYC2ptWOOe/NE2PZsRJ1Kiv2bq0KktfPdQfnzY5MuLa0ERgEd5hUAVx+lPWk6zUwj2TKmhSQ42FbWyjNL56raohMoF7onA12uUFT6K0lr6fVxXGuG0SovHETxahsBxVw7yhB5gk5JTp44HwGuDI55pG9vyiSqgUhu4gYkNHhZE4x+VKkeFZCFXV2Y/5XRCXGIkqrpTrNWfnmbYKjYdfv5QuVeZgxxi7iuN0qIiKcedYZBWTOmys5gjI+MrPe1zJ6Cy0aBQBQYY85YQztXA9nrxN+aIzLxaAFapRWmok5OlS3M3FO448OXRJzYFimW7foG9sWvLb/3ILn//1jQAUejVP/c8jPPQXRlHt2yqzJawTqXXc8bDGqVCxNujY1TVIObvq4NQoZtx857rNzPc2lKTCySQDyQdzOpaIwGDCClE5TB2o0sywzExdo0oNMeO5mPF68vd8xrwSqXtWuv5Fbqew5OSpEdK0P3Bqk7ewb/LpGuKUIPluTXbfMsclrd+inUKT9gRuqPi4YFNbqA9rBBYyJCu3RCQrS6BmizcSa373Q9V/sFZSya5FYsnnIsJAE8eyaYqSNpIw0LMG24lxRKcs84CJ+H55K0Omg7cqGzkcDK/Z2dYaJMQ0s4tjJCOeUDmFqsJwnONKuchwPJNQJfzAZo6R1SJUab1UqF291BzjaIU4gSUvY3qCMruLY+wpTNClYqaNZDzOUZmrOW5LqXzNB6qhJaOInHHHfyBcvV5eVm3KrfUNcltoEr4oJIQxebp8a1p2pORJd3Mp7mYqQ56UJ087bnPyBBAIy558Jo3PwJc/t4F/97/uICpJZGB5+C+O8uTfGKHYV9udbSIO+b3r97FRjjdZentinUit486EV0u08UGxtRitXdrZrM2dnBollMbU26gtAyTV9LiaHD2AWDpb5nxMXA6wDW/Qdpa/qirWYiIZC6lhgoPwBIo0DZKad5n170YUZDXIUyM4PlWrUiXK32zI2spXF7RwLOTXah6SeRKVHGwLSJuzOMbTKslKlt+MZBmv4JisLV/dxjQmso0Up8Z7SwpLIVchUIY4VrPuU2Mc8atXpZoZR3QJzd3hTV6PNnJFd5EXMXuD1W8yuWThWwO+qjOEqjeI2NBZYSRyphTDcS4lqenXMnyhIf9dIRgtUMqC0sSZZr2zTJM0gKUoI7qDCr3hNJvCaTYXSnRJzbR21vFznlU1KtRco6j9RKtGEaF1x2wgNKEy5GVEIEy12XOdvf+icRsRpUaoJU9dTNlc+p7KKE9bbnPy5DAzje+t40X++U/v4sop50Z58AOTfOhnhxjYF9V8czzO8aVrh/ja9f2UTMhTG86s9OAXhXUitY47CtaA8eYRxnojAXxKlgUxB4kCUH6mZSGpIC2Pk9pbaJaQSOvNDxAutTAwBLmYuEIDMjW7Yja/LahSLkviMudryNI8L5EZb+33atc6W2JWEs174pSYRviAWtTZb892e1rOG3dNumUTLIRALSVJmnNdIqNELYBAtbSOeZKsZFzO+CJRwSSxEb4my9VmWd+YuB6NtqGeXClpKITOVjqKW6tXijOqVGPjiNptG1QlDtkRTsb9vBP3UUCzNZhsaV3ZcbctaoW+FFlC1RdU6A8rDEV5rlSKNYQqi9VWp7QBoQzSgp7DfKJ6Kls6VYXuoEJfOEWniiiImO5A0xUYhJXcqOTQrZxV9anJc8BAy0YR3nOWUGhClShPJl3Oono8pezIVp/e5rAWbpk8l3Q3F+PupuRps5okuO3Jk0O3cm58SRrf8KjiX//8Dl740z4ANh0q86GfH2LfY9M13xuN8nzx2iG+fmM/FePoyL6OYTbn1hWpdayjvdBAfZJCIJULfExsMMYg5kjnA5BKI5VZsuLkzBBr7qH1cbes+asaoEsBNpbIlEw5d7WlR9UsIrXpFoCQLXRUb/QB0ThmEMaTJ1sbqGVu9H7efz6DbzqaxgmNc3+vEWonkqv7y2KrtVYtrWl+610IUhVq1lS+5Yf16YLGghUyIz55b0ABUloCYsKg+i28apWkB8aeVFVNL2pJVnbbAqXJhzESSzQvxzZLIGLC0KQKZCPjiOxvvC2YoGQV53Uvx+N+QqEZUKV5rHMNoAkB0EiG4zwKw4agTH/gU/4aEaq6bLYVjz+ta5KulEkdKhtBYugMKnSrMhty03TIiEAaKkaSE4K+0NKpLNNaUZ4rhc+t1vcPY9aLg8X1katIV/M0u1GEn3sShlAaQqHJqYjAn+RmPj2eMkTJbf+dibnI05ZM2t6dQp7A1YTuyZfZknPOr1Es+G+/M8jv/NJWjBZ0DsS8738d5oEfH0dmToeRSoHPXzvMt27sI/Lnye6OET6x5Rg9kcaquNHq2hbrRGodty0aqk+iVnUy2riUvhZIFIAM9IwagQWNrW4R9cSplbGkqpAA4kSZiojLIXZJbnm2Vn3KjFIsgU13Gn8J4+7QiWkEkG2Uu9SYud8X9mM2nJC31WVWVZDGpHG1Zm/rU/lW8r5fvyqLH8cMeJt10+jX8SoWIDIkK/09LCnJ0lb6PlDun5KGXKjRRvgGu7NDYAmUS90LpEEqgxAWrZvXU9VjbzBK2SqumS7ejAZ5l7hGt4zm/uJaQhN1CqqEKhCGDUGF/qDCkCdUI40UKpFREFcyJrUCpHNjjSNSMqWEpktV6A7KbAinKaoYiaFiAiZ0ntBYNoYl+sMIjeBWHLR0bAhhZ01ptLRmFJEzkPTKTshTTkTklDOLAHc+NLQpryNKd4qq1Aqy5OlS3M3kOnnKwLI1jNldKBP6A+b7L3bxL/7aTkau51A5w2N/9RaP/7UR8l3VfXOz3MHnrx3mmZt7iD2B2tc5xKe2HKM0meP3vv9eRmyRJ/rO8NOPrsZ2LQzrRGodtxesC/q1MQ3VpxokJKpFTiCVRgYGE8+PpNi6x+zz+RCneqTfsd6FL1WmIuJK4xSaVpDYKGSbxaaNaZfgLjs7eVo7t/EZt84MiQLfbLmNsNIqVCPSVCNCNMjobFkbtL4NQUMnFTfXLoUllDE55RYeKoOUxtdjiarphZXeYVJ6pden7kmXCqV8mqGxgjgOCOT8GL4QcDgcphIpRkyR1yqbeDB3laJs3LB3TWMWYhBbyXCcIxCG/qDCgCdUlytFbmUJVeZyACtM9I1AKEshjCii6VYl+sISBRljsVRsyGicxyBRWPrDMpvCCjlpGNeqavoz14qapPLNzyjCQXqziJyMydXZlFeMwqYNA2s7wK1jJqyFUZPnYlPyNMn2YIwtdyR5cuhWmgOFMl0+je/atZB/9bd28uoz3QDc9bEJPvB3h9iwo6oqXS938tkrR3h+aDfaH7mHum7wqa3HKI/n+N2X3stNOgEQMVy5smGFt2pxWCdS67gtYK1z3nPqE0nLp+Y1T8aitQtk6hutNro8WixBoP1s9zzHlnlM1rTUN7NEMNKRJAgNAZV5kqmqm1xqbOGmOJfEbex2IU8NUZeZs7L2F61hKQwlZl9+3d9zLLy+pmOpxuLOA5lRUZ2qFAYaBMRJzzcBoTBU/dRd1Jr4ubiWARZtXBpUFsaCVMY1yG4RUsDd4U1ermxm0uZ4LdrEg7lrbgy3G2ZRp6ARoSpzM85zudLBaJyxA89cIpZLncouMq9iulSFXlWiJywTWo02kpIOGYmKNRvWoyI258r0BM6NbzQOaOkozhIof6zNzyjCrV8mPZ5EnBqdWCA2Ap1JKRSyaRL1OjzmIk+b1SQ7gnG2qIk7ljyBu17uyVfSNL5yRfB7v7aZ//pvNmG0YNu9JT7894fY+WA1dflKqYvPXjnCd4Z3YXz0c7T7Op/a+hblsRz/zwuPcV06AoWB/lsV3qMvsv+Biyu+fYvBOpFax5qGMQ3Up6TdRSKreKTpdLZKohACXZOMVf1sFkoZCDQ6ljPem+v2uRjVqVVklx1HEhUalCdTzde8vKl7tzV5gjoC5YLxdtyqpTaUmKGszrbA7IeT+DgTaC8nmQOX6pRTzhRCG1ltGNxgQiRJjUKAnqVOxliJNLOKLw0RCMt9uRv8oLyZaRvyemWQ+3PXUe140CwF5thBCaEKhWEwqDAYlLkRFbgSFWsJFdXjbKGEquFxai1F6clTUKJLVcjJGGMFJRMwZfMYrWpc7HJCszFXYSAsA7ScxgekJMrY+RpFuO8Gvt4pryJCYRDCYJFoK6isRo+nNYyEPCVpexMZ8iS98rROnhJYtoURuwsVAn+IPfPlHv7N393B6FBI9+aYD/7dIe75xATJnPSl6R4+c+UI3x3ZmZ4f9/Zc5ZNbjzE1UuA/PPsE14JOFxsY6BmKGTgWIa5JTrKdYmFt1ZGuE6l1tCds9X6ZjfFd4G+wxjXPTYKh5BZi/JTybJc+Y3TDJHyReVavUQWhTnOi1sLtSkcCFepUmaImKLFV8rTEqXu3PXmCJgSq/bZtsal8c6XmzfmFLOoCxqWOTRotTgpDLtAoaYhbMIdxp4OcO1C3C1OlAPJCOzJV2cyYLXAsGuTu8Obt0WOqEeZQpwAiKxnyhGpjrsRgWOJmVOBKpcgtHUIjQjWP48dmnkgsHSqiS1XoC6bpUBGh0MRWUtIBk7qqPAlhfSqoc0rdEEZsypUoSMOkVkQtmvpYLFrOYRRhE9XJ1/6Bq9dKejyJ2NXoYTBIYiObtLtYRzNYC2M2z8W4OXnaHoyzdZ08pejxbnxJGt+Fczn+5f+8i+M/6CQsGp76m8M8+ldvERbd/jo/1ctnrhzl+7e2pwTqgd7LfHLrMSaud/Bb33ySq7lOxzwsFK9bNrweUxgxCCT5QsRd91ymZ8vEam3ygrBOpNaxPJiFCGXfMdnP16VI1d99rbFp8G8sTnlKkx1qYzyflTYDRrup6Ox354IKXJG5adEmuT0g0JFEBhoVVtBRbtlS9+4I8pQgPUbbl0DBzFS+ueKCeZGm+cQYy0ygoPFwlDTkVIwQtiUSNe91esI1X1UKoFNG3BPe4LVoEzdNB6fjPg6Et5Z8jG2FFnZUZCVDUZ5QGDblSgxkCNVollCJhvNgM2ABJQw54Sy/O2REX1CiQ0UoYYiMYloHjNt84+9bgZCWnrDCgIrpVTGRdWYSc907DNYpThIq0ro6pQwCYwlxqlMgfMjpJzxCNKEw5GRCnnyPJyOxrKV70OrDkaecJ089TcnTFjVBuE6eUoTCsDdfYbNP45uelvyHf7qFz/72IMYI7vuRMd7/t4fp2ewye85ObuDPrhzlldFt6TIe6rvIJ7Yc5/Kpfv7Pz/0QQ7158Kda4Yal//WY4pBh845bHHjPVQ7cc5Ud+4bY1TnBt67uXPFtXgzWidQ6GiLbdLIZEUqUDQAy7lrNE+Rmg0j/T2tshUgND4yprksIQbCA2MhoizFmXiQKLDKIsWuSEAh0LJCBBiqYcuDZ5eJT9+4o8gQzjv+2J1CzqFAzSNNCVabZsMxpfAkaDS9QmtDb59b3dlqy9VqXViyVXdDxvkGVOcIQx6JBLuoe8kKzM1hbvVPmjRbUKXCE6qYnVJtzJQbDMjeiPFcTQmWrk2eJOpUQppyMXfqbT9nLSUdKlDcgKRvFhM6hW1CTQmEYCCoM5ioIaxmPcrNYhtvUntyl7NnMTJ5AWE+crCXnFa5kI4TFp+3F5GWMkgaBxRivPLXptaZdkZCnS7GzKp/IEGVZV/O0Tp7qYdmWi9idd2l81sJX/3sfv/EPtzM2HLDz4Wme/vmbbL2nAsCpiX7+7MpRXh/bCrh6vHf3XeSh6ArHnt/Fv9QfZXyLgg1u6blhy5YTJe7ffIkDn7jK/ruv0d23ttL4GmGdSN2OqFeD6l6bQYRs9f2FkSDIEqH0FpU2aZ3noqxL0bPakahk9nHufkXNYYzFWONzeFtfkAoNUtk1pkZlf0uJ1gYVuHTGuBIsmETdceQJ1kwaH8xUoWrHvsjUvPkgq0ItE4Hyi56BQMWEys2SmmUiUen6rQRrFqRKAWxWU5TtCGfiDZyON5AXmk1qaqmH2X5ocYclhConNFtyJTaGZYbiHMNRSMkKcsKkhCkvNIEwKGn8/cO5MkZWMmlCT5xaOxIFlt4gZlNYpkNpprSkIhRW2tpxC0skXLqeM4qozYmQnjTlaowiqmmDodCEMibvzSLAYlJzk/a8xrQzxkwuTdsbb0qeJm9Pg5clQI934+v0aXxnThT4tb+9kxOvdNC3I+LH/+FVjjw9iRBwYnyQP7tylLfGNwNuHx/Sw2x8K+L8iR38zr79TO4QWM8wChOa99gLfOih4+z4iWE3AXUbYZ1ItSkSgtM8Lc6lD6QvLYoIiZpn6QVfzHh7eWEcgapRn1gcgQI3q2KNYd4VTsKi1pga1fAWYSVWJ3VeEEcBWIloIc68I8lTgjWSxgdgpcUKT6LqCwcbfmEZBrECaXwJGi069CSqvhnvso3B+lopOf9aqQQ71ThlG3BJd3MsGiAnNH2yvMQjbUPMoU5JYQlxvbsCYbBoeoMKO3OjWAFTxqXYTRlFbBUxkpLOobU7COf166cfthSlZlNYpi+IiYFbRvn6URDSorGUrXDKk6A2Zc9aQgs5IKeZkYSXkKecjMkJV7sHTjWtmLU1UdcumIs8uZqndfI0G3I+jW+TT+ObnJD85j/axpf+sJ+ww/BDPzvEu/9ft1AhHBvfxJ9dOcqJiY0ACGsZvFgh91yeMbuZCwcDJp8A4zMoO+MKP7H/ZT5w8NTtWwfKOpFqO5QqEVZZYq1Tu8i50SAtLiFC7X7wpql7S6c+1SzegtHOl0/O80xWgUHI9lejqreILP2shbUCqwVBzu2LOArA4Kzf6z4+K3myYnmC8HZCnZLTbgQqu/utsI48ycybosmHlwvJIbFKKlRibx4q7d32Vu73skaml9qF7Goh4EAwQtkqbpoO3qhs5F25q3TKeO4v3waQwhBiUsIUCk1Bxk5dEhYlvMKEQFvBqAkRFgrK0B9YZCwYjgNKRlV/BJ+SVHMUZAuqRH39rPU9oSoMhhVCLBM6QOOMw2OgIgQVAXHdPUTUqU4yO5GRbJ/QPsUw9uRJePK0Hn7NF1Mm4Kbp4KYuclN3zKh52qSm2OENI9bJ0+wQPo1vl0/jMwa++Af9/Idf2crEqOJdf26M9/3NETr6Na+PbeGPT97NO2Wfo6ct3ScEPa8IjOxgdF/AxE4wnst2iTJ/7tDLPLnzDLLFGTXb5PlawPqZ3GYw1jfNE76hZ3vFcEuHZVKfamDBmoWRKNfhPsbo9vwBatXHBLOP1ViJ1IYw51Kf4kqAK24TvnHOHUyeoEka3+oi3e3CW9XXDyibsbTSccMK1UElaEiiGtqbrxyWQpUSAo6GQ7xaUYzZvGvYm79GXtw+DXslhlAaAp+CFwqTIUwG5VMqEsJkkJS08of0zKOqHCtnmx5G9AUxI3HASJxjyipPlNyBUL3sNzk4raVHaTYGFbqU6wk1YQMiHHkq16tOQGCta4prnVW5SIYoAGNR0pHDnHL1WlIYsIlNebg0O/QOgLUwaUNHmjx5msoQJ3BkYLOaZIcaZ2uwTp5aRa+K2V+opGl8J18r8q9/bgdvv9bBvsen+At/b4j+vRFfPXGYr5zYz3C+CICIofsYdL8ukEUYPRAyvl2i3dt0iAo/dvBVPrDzbQI598X4dgkr1olUm0LQIGha61hm9akexhhXEL6A+Eap2JGJNrOYXextIiFTuZxGAFGkXMd7ZatB+Z1EnhK0QRpfDWlqZffX9EtbxoE1wgqm8UHjzZuvvflyYbGqFIASlntyN3i5kvSY2sgDuWtrzoZ5TsLkt8cA2kqMkZRsUDVxmEe6cGQlt2LpbdMrbAgjbsUhIyZgOpsqlxYJ1i47LzSDYYUNQUQFuGJCykIQCWokq3qjiACfLp4sT1oCnKKWl67HkxTW12kJYrtOnlqBtTBuc6nadNMUKdXtO4GlT5YYVNMMyikG1fQ6eZoHcsKwt1BhU+gU77Fbit/637by5f/UT//eiE/+qxEqXb384fcf59i5fsr9AvIgIug+Ztk3PIbsFJzZN8DYdknse+kWRMSn9r/Oh3edJKfmngBaW1e1ubFOpNax/FgJ9al+ldqtb34OfQ5CGoLQYFYxOMuildS91mFd0GIhLEYQGmIduJl8k9FgbjcS3wyrkMZXcxNpgTTNyNQTVFP5VkGFqm8gutIqFDh781DFyGWyN58PqqqUXVTdYE4Y7guv84PKFiZsjjejQe4NbyzrdXKhqCdMifFDy4Sp6YLt3JM4GcUJIEYwqgNHqMIyG6gwEucYiUOmG0yESSx9QYWeIKYiLedsiK4z4FFJyp4nUfXnoBQWKdz2J9sthcFYSWzliqaXrlUkTXFvGkechnSRcl1IKrD0y+mUOPWr6XWnvQWgURrfZ393gN/5F1updHSz8yfzjOt+fv+NHm49CNEh9z0ZWfaPjPJw4RLXegb4wfguxjcKoh73fihiPrbnLT62+zgdYTTnOG7XX26dSK1jeWB9gGHsiqhPWRjtHPoWQqLAokLt1ajVC9Aax8cL3Xk+2hVV1cn1kpIESkNqs+uUQiHEzFqb2w0rlMZXX8/EPEhTw2UlJGqlVag2SONLsBL25vOFNcIpuyzuZylKzb25G7xS2cSIKXIy7udwMLxqhdqtEKbkUJwXYZoN/jzB+HNStHawRVZyS0tywrAxqNCnnEI1rENXQ4WhM4zJBZqygOuJHYTAGUVQqzo1Qog79vJSo9A+my8hT+2VvdBuMBZumQJDpsgNT5yiOksOiWEgIU5qin5ZSkn5OhaGPhWzv1CmwzvlvfVyJ//nv7yLUzd2IO7rQqN4vQNGH4Soz30nZzSPd57j3YOXePHCET5//EEmd0DlqHtfCc2Hdp7kE3vfpCc3uzlOq79eOVZ878puvntxLw/vOL2wjV0lrBOpdSwtvPpkTbXZ7koRKEhmh5Pb+PxXKqRFqdVTo5ZOYJhJnrJvgbMIlkIShDGWAK0lCEGiG4okar7dCJWtJ1BLs4Fz1jPVodW1tpsKtZRxzXwXtZL25vOBtQJjxKJVKYAeWeHu8CavRxu5qrvIo9kbji7RSBujMWGKCIT1assyEKYGqFlaCzUWjVCxkoonVP1hGRloRq1Cux7KlJO7g7XkM6pTo6NJAEHitJeQJ+HIU4RyypMV85ocsbO8dzvBWBgxhTRNb0gXieuIU4Ch36tNG9U0fevEacmQE4Z9hQobfRrfrZEcv/W7D/Dl7xx15lODMHEQxh42VLrc0d8hKzy9+W32To3x/HeO8hvXjjK5Hcr3uGVKDE9uP82n973BQGH2Vg2t/IrWwrnRfr59/gDfvbSH6djVwIVBZcHbvRpYJ1LrWBJYgyNP1jrHJOFvTCt4p0gc+lyK+0JW7C3CWVk1qjYuXowUNDd5mrFuK5BAGMZAgNYK4d2qbjt1aonroBzBmV9q3sLWweqQqCUkUEsRGq20vfl8sVSqFMCAKnHIDnMyHuCc7iUvYrYFk4seoxKulqcpYaJ6PGsjMVYyvQyECWY5L5IduMAdaYEIGENRts6+PFlZmFiUW0vQZAwSty8ceYqdEYawjjxZVZO25y6PFjELmZptE1aCMqzUmaKtYDghTrrIsCmi6+hpiGbAq02D0hGndkxdXcsQWDZUBIf6SoSBQRvBn33pCL/zRw8wOZUHZQienODygTyTKgdIuoIyH9l0kq23Sjz7xbv41lA/k9ugdK9N6wXfu+UdfnTfa2zpnL1xeCvH9EQlx3cu7uWZCwe4OLYhfX1jxzg/vPcYXR1rqzn5OpFax8JhXC8rq+vUp9WYKLYs3KHPQyqLVHpFZrqbx8PzT0WcL3maMRZPpgI/c+XIFLePOlWXxrcYApXWrUvbcPcu5e6xsDqGEotI41uOIa6mvfl8YJPeakugSgFsCyYp24BzupeTcT95oRlQpZa+2wphSlJ8tZHoZSRMCVpesq17bBEGKAkoCeFqnjyUtRR9yl6z5DtJ0iBXe/LkezwhqVjV1A0ymTS0CxjvSmG5hhVbwZAuMuQd9UZMYUbLlhxxmqY3KKfpleXbup/QaiEqK86e2IgYzfPRh8+xbfMEAG8c38T/+dvv4cypbrbtu86mv1zhB+FWbsXdAPQG03xk09v0XTc8+6dH+cZoD5PbYPo+69OIBA8MXuTHD7zKru5bTdffyjFmLBy/uYVnzh/gB1d3EntDmEBqHt56nid3neLQwDV2FSb55tWdi9wjK4t1IrWOeaNGffKB6UqrT7UDyjr0LVzNUYFmZjX90mJpBIUMecqqFf6thSBLplxtm7vIJaTD+oghVSXWws2wYR3UwgbuUvXsjENj2eqq2kGFmoVArRinW2V78/lCW4FiaVQpgD3BKCWruGa6eDMa5AFxnR5ZTXtpR8IELahNS4REfZqWggpU3faspWChMIvypHz/qryICaVGYrA4p72KDbzt+dyDdZdGO2eK31pHxUqGM1bkt0zBH+lVFETMoJxKVaduUZlBnBa6j9bCLWelYC0MXe3m1BtbOPXmZqaGOvjpv/h9nvzhUwAM3yrwm795D1//773c80NneNcv5fnKrUOMxQWIYUM4xdMb36ZwUfHcf72L4clOprbA9B6LVY5AHdlwjZ848AoH+242H0cLYx2e7uC5C/t49sJ+bk51p6/v7BnmqV2neM/2d+jMra1UvnqsE6l1tIZm6lMbTC8Zk3XoWxikMshAY+KlV6OWLHVPZAjUEpCneqRpfjlNVKmSKXCpkpYkbXMNpPstQRpfM/Vp2U0WEhK1wipUfRrfSq6+EWrszY1s2xn/LKwRPpXMLsmEjBBwOBwmihTDpsgblUGe6jjPBlWiIGPUKhOmdJytfnCJfkNNVX0ymXtQYC0FX/vU6EoeYAikJufVpyp5kkQ2Q7nE/I5+a913ZkvxW2soW8WQLqZ9nEZNnvpfukNEDHi1aVBN0SmiZVOclit9eq2gUlKcPb6J029u4dQbW7g11EkYaH7iE2/yF3/0VQp5jdaCP/2Dbfzurwyw46lRjvxrwddK9zFx03XKHchN8vTA23C2wPNfu5+JUp6pTTB9wGICR6D2dA/xEwdf4Z7+q01/y7mO8dhIXr22nWfOH+CN61ux/mwsBhXes/0sT+06ze6+4aXbOauMdSK1jlnRDrVPs8HZnC/UoS+Bd+qzYhHLqBtX3fKry11A6p5k2chTPZwBhfVkStSkOQqEd51r43S/GhWKBROolVKfsusEqrlHK6VCiQx5yxxTqx0MpvbmcvXtzecLbQVKmgURqZkKk6YgY3YWRvnixH6GdAcvlbbxyZ4TBNgVJ0ywcmpTPSxQAUp16lNiGlH06hO4VD0pbPVRGEI0gTSePLkGuTXkKd2OhW1EK/VS7YySUanadFN3MG7zMz7TKSppmt6gmqJDxqsw0plo93m9hcBauHGlh9NvbObUG1s4f2oQHVcnNx958Dx/6//9HTYPONOH17/Tyb/9/21nqjtg07/r4Bl5D5MTzrxhY26CD/WfpnKik2e+9CDTlZDpjTB9xKADlz++rXOUH9//Kg9tutCQQLVyTF8Z7+GZCwd4/sI+xiuF9PXDA9d4YucpHtp6nnxw+zQaT7BOpNYxE4n6ZCzGnz2rVvs0C6x1NufupF/4ZVQGBqkMJl6cfe2SkieBq7VYAfJUD+c+ZgjDmCgKZtSMtaUZRcM0vvkvYiXVp+x6VyOVr74fVLugxt58jZEoSFQpiRC2aT1XM8IUCIvKKky+qau2kqc6zvGlif2MmgJfHD/ABzrfWZGGvS0Tp2UailOfBCVBjfoUWkun1XR6G3YpDQqDko5ACf8vgUFimpGnZHsWsRHVeqmlUSOXG1MmSInTkO5gwuZmfKZblB1xUtMMyCmKsn2D4Ha4DS0W5emAs8c3uZS9N7YwNtJR837f4AQPP/oOP/nRY+wecOYzQ9cCfvMfb+PF13rp+Nk+XuvdxbQJQcOW/Bgf6D3L2Jt9fONzDxNpSXkASrs0lVABksHCBD+6/zUe2/oOssH1ZK4zohwrXrq8m2fOH+DUyKb09d78NI/vPM0TO0+zuWttmUfMF+tEah0pamufHNpJfcrCOfSZRTj0pUtytVELvPHdLuSpHsbIDJkKMXXF8467tokZxSLS+ByJsTO8AVZqM1bDUCIlbm2I1bY3lxhyKqaigxmF8/OBscIH9nbehKnSRGEqSM37O8/xlYl93NSdvDC1g8c7Liyp69m81KZlVp8iYZkWgoqo/g4SSw8RG0SFvLSImj3l/rK4/WmsTK5Oc69wiQhpQqawbTU3gbUwacM0TW9IF5maQZwsvbLMoJx26XpqmrxoX+LUCGuNTFkL1y/1csqrThdODdZc91Sg2XP4Bgfuucqhe69w344RduYqKAk6hj/5rY38/u9txf71fk7+ue2UTQgGthdGearzHDdfG+Rrb7zb1f31QWVvzHQYAIre3DSf2vcG79t+ilDOnL2b7fi1Fs7eGuCZ8wf47uXdlLxtuRSG+zZd4sldp7l30yXUAlsYrDWsE6k7Hc3Upza+GlnLoh36EqgFqFHLTp6Sxa4yqmQqakimoN6MYoUJ1SLS+FZLfcquf9VUqGVOwVooAhWTW2V7cyGgoGIiE8xjH1mUsIQZlSknNR1BZUGEaTb0qjJPdZ7jG5N7uBj38nIp5sHClQXXpay22pTsG5d+Z4mxTKIYd9pSuvJOYjbICl02BiFdLRgCa4OZQ5vvsbPEqp61ILxz42qdZtbCuM35GifXx6lkw5rPCCx9suSMIbxBRE6sdJO6pUe7k6nSVMiZY0mt02bGb9WqTv2bxjlwz1X2332NPYduEOY1G4KYfbkyHYE7ol59rpP/45/t4vIntnPun2xxKquBXcURHs1f5MoPtvCVk48AUOmxxPsrTIQ5IKAjKPPDe97iw7tOkFe1RHmu43WikuOFi3t55vwBLo1vSF/f1DnGkztP89jOM/QVphe9j9Ya1onUHYq1pD7VwJOoxTn0VRcmg9il4syBO4U81cMYiZJ6VjIFWTOKFUj3W2Aa32qrT7XjYEUNJdo1jQ9cQLcW7M1rCZNXmKQmL2NCYaqEyasiGoEBKmZpa5g2BVM8WrzIc9O7OFkZoENWOJofmvN7q6E2SVwzX4FFioQ4uVQ8JdxesdYyTsCQzTGdCUkCDN3EdBMTeveTiBYIbqtGH4tM5ZsNybVmpeqlrIUxk+emKaZ9nCp14Z3AskFOOztyOUW/mnb79TZEO5Epa+HqhT5OvbGF029u5sLpAWxGdQrCOFWdDtxzlf5N1X5xBWHYmy8zmHOE5+aVgH//q7v4yrYDXPvbm12DYwt7O4Z5SF7lwve28rV33g1A3Gmxh0vcCgpAjpyM+cju43xs91t0hlHtGGcZv7FwzNuWv5yxLQ9lzENbz/PUrlMcGrh+R9varxOpOwlrUH2qh3PoW5p6LRUapLIN1aiZ8e1CyFNmJ8OaIU/10EalZKoShU2J54qYUdh6AjX3wi0zzSNWMQNxRQ0l2jmND0AIQ6g0YVvZm1sUhlA6whQKQzgbYfIKU5QSpupxLxukzCwFduXGmLJXeLm0lVdKW+kQMbtzozWfWSm1SQqXwihEYvBgapU4rzilq7NgkUxbyS0bMk6YIZqWDjQ9xHSgFx6cJetrRqiWm0Bk6qWWg0wZC6Mm72ucXKpeVNclS2LolyVf4zTFBllakZq6dsFqkqnpyZAzb23m1JtbOP3GZibGijXvD2we48A91zhwz1V2H7pBENZeJySWHfkKO4IIpSCO4L/9/hb+r+H7uPixLRif7nqg8yb3xTc5/cJOvnnlQQB0hyE4OsWw6gQKBELzgR1v88m9b9Kbr+1DN9vRMDzdwbMX9vPs+f0MTXelr+/uHeJJb1veUUfIFos2vlXNinUidQfAGjfrZ8waU5/qsDQOfR7CourUqIWTpzrClNqUN/naGryXJWQqF8ZUomBWFW9ZzCjmmcaXzAhbUbu7V+uQXzUVqk3T+KA97M2dm5vrJxQKTUFG9OWmiYOSU1GaEqYWZnIsWCNcmtcy4HBuiEkTcrIyyHemt1OUEZuDqdoPLYHaJBOSlEnBU3hCKYwv8as1dkisHgxgrSTyhMZYGCdgnIByJvAPMPR49WlJg/1G6tQKkYmlNJ8wFkZMwZEmU2RIF50akYHC1KTpbZAl1B1EnBqher9Y5vUYuHJ+Q9rX6dKZgRplPczH7D183aXs3XOVDYNTzZZEf6DZE1TozDly9YMXu/mVlx/klUO7sbvddedw13WOTN/i5Ld28e2bOwAQHTG5uye4KHqwdCIwPLHtLD+y73UGi5OZNTRHbCSvXN3BM+f38+aNbSR9wopBhUd3nOWJXafY3Tuy8B3VBCIzMgsr6kK6FFgnUrcrbgP1KQtjnEPfkpAoXBGnkBYdy7oLy1zkybZOmJLF3SaokikoV4JZgwMBS2NGMc80vkbq00JWuxSwyX/J8SFZGRUqS6Da9PhbaXtzp5I4lSkUmkBoCipRmBwxSBAIQ9kKYqMWZTgBjlAIlq5BbwKBC9IfLFxl2oRciHv59uRuPtx9hj5Zzg6gJSSESAqTqkqJUYZIUvOy1z7rXPCSoMdYQX1z1nQIFspIxgiYIMh8ztKJpoeIImb5UoNWkUws1HxCW8GwKTDk0/SGTRFddyyG6LTx7YCcpk+W1uz9fbmxHOrU1HiO0285k4jTb21marxQ8/7GbaPsv9upTrsO3JyhOtWjIAx7ggobi86x9Ma1kH/x7H388Ya7sYfdb3+06xr7x8Y5/uU9PDe2C4Cgs0LHvWOcsRswtheAd28+x4/tf41tnWPp8mc7/i6P9/LM+f08f3EfEzW25Vd5atcpHtx6gZxaeuOR2mls4VO7wawxt9Z1InW7wYC5DdSnLJy5RDJHsbgNsYCQBhm65nUzb/6ZSOEOJUyzQRvlGlqGUIlmJ1OwCDOKhgSqSaCWPK6weYRt9kf2uWTFDCXauQ4qi0BqwmB57M0FVZe8JCWvIGNyQqOkRWV2jLaC2ArKVmG8JbYQhqKAyErsIkkUsCSq1GwpehJ4tOMipcmAG7qTb07s5umuMzP6+wjq+yp5spSmKs6uKhkriRDzOq60V5/GCIky+zLE0ENENzFqDd+XWkUrzXpjKxjSRYa8HfmIKcwg8TliZ0Pu+zj1yvIdXZcyXyyWTBkDl9/pT2udLr3TX3PRzeUj9h51qtOBu6/SO9Ca6YLEsiOssD0XESiIIsF//N5+fq3yCFP9zg3v7q6r7Bia5vi39/Kdqd0AFHum6bp3lJN6gMgMAHDvwGV+4sAr7OmpqkbNjrlSHKS25adHNqav9+aneGLnaR7fdZrNnRPz2UXzQlWFcv0qTebVtYa2JlJaa37pl36J3/u93+Pq1ats27aNv/JX/gq/8Au/kFpeW2v5h//wH/Kbv/mb3Lp1i8cff5xf//Vf5+DBg6s8+hXEbaY+ZeFmJxbn0Ocm5qsheRhol/ZlFfMmTMlC7mDEWTJVadKTpQ7zMqNISdTcBGql1KdmPCndjCz/zh5DK5TK1+5pfAmWzt7cEabEKS+UmrxwdUxKGoJ0pws0oI2kbJR3A1zZC+N8Van51jYFwvJUx3m+MrmXMVPgW1O7+XjPSYpCZ1LwMqpSBiYlS7OrSq3CWighGSNk0lVO+aE7570eYgrLqT61KwRAlUxVrGTYW5Hf1EVumcKMfZ8XMYPS2ZAPqim6ReXO229LjPmSqcmxPKff9LVOb25merK2SfGm7bfSWqed+2+igvlcgC0DgWYnFbqLjka8cHYj/+DaE5wtOWXp3q6rbL4acfwbu7lWdqSqt2+C3vtHeKOymXPRZgAO9l3nJw68ypEN19PtbLhGC2duDTrb8ku7KWvn5JjYlj+1+xT3bLy8rLbl7n7p0l2NlT5mTeJ5+MHYVnTbGg41RlsTqX/2z/4Zv/7rv87v/M7vcPfdd/O9732P//F//B/p7e3lb/2tvwXAP//n/5x//a//Nb/zO7/D3r17+cVf/EU+8pGP8NZbb1EoFOZYwxrHbag+1cCyYJvzevKUQAYGlfN9owKzIoRJCkteuBni2Eq0lWsuB7gesVGucWoOolbJFGJ2M4o6FaoRgVoJ9SlNyfMLbkSimiZ/Ck9qPEdYbjfhtZDGl6Bqb+4UjlaRNK8NvcqUkzEFGaOETz3zG24QaCOJjKK0CoSpKWZRpVomTQDWuQZmVSXhUxaVMPxIcJz/eusuRnSRb0/s5tM9x5HC4rQnl4oXL5OLXGxFWvuUVZ9y3jii6w5Rn5qhbFRqRX5DdzBq8tT/+kUROWMI6YhTp4jWidMyYDYyZQxcOjvgVKc3NnP5XH/N+/lCxL67rnl78qv0bCg1WdLsKEjDTl1hS4eLC66MFfkn59/Dl27sRgD3d16h74LlxFd3cSV2YfrGTbfov3eYl0tbeXva1UXt6h7mJ/a/yn2DlxGi+S1gvJxPbcsvT/Slr2/uHOOJXad4fMcZegsL25ZWUUOgTC2BMhZeGd/Kl4cOcKncyw91n17WsSw12ppIPf/883z605/mh3/4hwHYs2cPf/iHf8h3v/tdwKlRv/Zrv8Yv/MIv8OlPfxqA3/3d32Xz5s38yZ/8CT/5kz+5amNfNlhHnqyx3v3o9lGfamDBGDMvm/Ma8iT9KwIXwPi4KghjhDJorWq/uMTIi5i80hRlRDGICH1jQ22FC2iMoGICIivRRhEj0Ua4x3kEmauJWDtlinmQKWhiRsHsaXzLpT41conLXN9n3HTnXF+GRGFnptst1Wm6VtL4wKkRYaAJlMbMYm9eX8eUpOU1cspzExLuHFqSFLxlRlaVaggB2CpJElikbGwX3iwFr1uV+XjPSf5k9CgXoj6+PHGAD3SeXbZg3FqYQjFOwCSK5OgW2NS2PH8nqk9AySjfv8m56o2Z/IzPdIpKDXGqT8dcx/Ihe12fGM1z6s0tnHpjC2fe2kxpqrZR8ZadI+z3qtOOvUPzVJ1qIbFsMRG7OyoEAVRiyW9dvIdfP3cvJRNwf8dVOs8qTr2ym0s+Dtix7QYb7xviu5M7eHN8rxtTxxg/tv9V3r35PFI0nkczVvDWjS18+/wBXrm6A21dzJOTMQ9vO8cTu05zqH/5bctnpPBlbrDaCl4a3c5Xhg9wveKcAQsyomJb7+vZDmhrIvXYY4/xG7/xG5w8eZJDhw7x6quv8uyzz/Krv/qrAJw9e5arV6/yoQ99KP1Ob28v73nPe3jhhReaEqlyuUy5XC3IHRsba/i5tkIT9el2vUk5m3Pb1Oa8EWGyGcI0Y7dY0poAq9WSB5+B0OS9RXKXKhNKty6DILKSyVRCd7PKOakpyhiRKYQ2VqBJnMEUZaPQVhF7t7BEzVps+s1SQntlihCiaD5kCmdGkeljJkStlcRSqk81KlP2uaglTg3H2Soks6fXNZoxnCe5mm2s7YhG9uYCn5InE8c8Z/yQI1vH5G68ybHfslNeOyH9naq/uvRkKHHCU6mqVLULF/699NuWNCnPpeDVJ+hVMRhM83T3ab4wfpCT5UG6ZIVHOi4t6WZFGfUpzvwm+Yz6dNtN7M2BKRP4/k0uVW/CziRO3bLMoJxiYzDFgChRWCdOqwKjBRfPVFWnqxc21Lxf6KhUVae7rtHdtxRKjWUDml1E9PS5SdVvD23jH7/9Hs5Pd3Nf8RrhyTxn39ybfuPA3stsvvcmz4/t5gfDhwHoL0zyI/te54mtZ5ByZsYNwM2pTp7ztuXDpc709T3etvyRZbAtb4QaAoXEmOqrkZG8MLqTrw3tZzh2DYk7ZIX3bXiHv7j1dV66vm3Zx7eUaGsi9fM///OMjY1x5MgRlFJorfnlX/5l/tJf+ksAXL16FYDNmzfXfG/z5s3pe43wK7/yK/yjf/SPlm/gS4VUfXKz94kD0O1+k8ranKeXCn+/tsI/9/VMMwJsF21kX/GwqMAA1TqyxUBiycuYvIwpqoi8igiFSxWMjaRsFdqEM77nLJQBZs64yMRBTFhyKqI7qJJ960mWQRIZSUUrYpRLZUJijCsGn0/K1FLAAlorgsDdHOZDpiy1BMkpOF51WKD61JQw1S1oSXdTnQo13+/W74OmpWNrpA4qgRSajjAir2KEdapUUscUyFqnPDdRIFatjmlJkGaqGpSsc8EThsDbrCfK1Gx24WYRNQK7cqM81fkO35rcyw+mt9ElK9xVuLGoTbMWJr36NJVRn2SqPkXk7xCrbWth0oY1xGnK5uo/Ra8s+x5O0wzIKQqyzvVshZr1rgPGRgqc9qrT2WObKE/X/l5bdw+ntU7b9wwj1dL9MgVh2DoVs2NzBYCL0538k1OP8PUbO7ivcIO+03DxbUegBJa7Dl9g+73X+Nbwfp6/ei8A3WGJT+17g/dvf5tQzcwXj7TklWs7eOb8Ad66sTWdbO0Iyzy64yxP7jzFzt5bS7ZNs6Emha+OQJW04rlbu/n68D7GtCu96VZlPth/hif63qGgNN1BZUXGuZRoayL1X/7Lf+H3f//3+YM/+APuvvtuXnnlFX7mZ36Gbdu28VM/9VMLXu7f//t/n7/zd/5O+vfY2Bg7d+5ciiEvGta6U8BoS2xNTU3GUjShbXcYLEZqUGAyhCmLNFhOS5zmDjqktChlMGbhknFOaFefoSI6goic0Ehh3Yy5lUzomcRpPkgKLxvNFQmS3i2OwHWoqCYQ01ai/TIqRlExQY2K5Wb21bLcuFMypVojU66vysy0ubTnU6aWpCmpSP+rf7EOmWKmZQlaBH68S7SCZotp6zooS5BpYJuTmmIQ0RlUCKRGZk5hjTOZqBiFtq2T7vZCVU1K3e9kxgFP2NQFrwpv64tTl4xlWZXlo4WbTJgc35/ezjOTu+mUlRkNe1tBZAVjXn3K2m8XvG15J/q2n9izFsZtLiVNN3UHJVt7rRdY+tLmt85ZLzdLgeRyNutdB+hYcOH0YOqwd/1iX837xc4y++6+xoG7r7L/7mt09ZQbL2gRkFj6xzQHtpQJuy1lLfmNC/fym+/czUE5wpFjZS6e3+M+Kw0P3nOWXfdc5as3DvKN8w+7cQYVPr77LZ7edYJ8MFPBvDjWy7PnD/DCxb1MRFVPgCODV3hq12ke3HK+IfFaDtQoULaWQE3qkG+N7OFbw3uZMo7Ebgim+aGB0zzae57cMjUuXym0NZH62Z/9WX7+538+TdG79957OXfuHL/yK7/CT/3UT7FlyxYArl27xtatW9PvXbt2jQceeKDpcvP5PPn8TOm9HXBrcprePqhYN1+/UKe6dodNFSWTSYmymPrbiidM7tVWadOMtaWKSas3LYurT0hUp05VIS81gXQjjIxiWocrZhphEcQo4ibBtPTpQYEw5JRBBuVq7J2oWVYSWUVZy1TNcrVZ7nExs+AWn+Y3izJVT6DczJUfY6Yfa3ZiOx1SCypTfTHTsgcoiRK1jA5D2UUn/WhWE4raGqaciCkEMQGaUPq0NeHU5NhCpBWxTU7wtQOBS0uUGKQgJUiB1AQYhEw0pOp0gEX47AFB3KwiysJK9TV6uHiZCZPjRHkjXxnfz6d6T7ApmJzze8arT2OElDLKucKktU+521h9shZGTZ4h3cENb0letrWhksCywdc2bVTT9Ktpl5Ewj3UsVbPedTiMDhc5/YZXnY5volLKkF1h2b5nOO3rtHXPcM3EdHbCevGwdEwY9nTFDOxw06LfGNrBPz3+EF3lCttfM1y6shuAMIh55IFT7Lv3Ml+6epjPn3oMcHVMH951go/teYuusFahmY4DvntpD8+e38+ZW1Xb8g2FSR7feYYndp5m4zLaltdjthS+sTjHN4b38cytPZSNN80IJ3h64BQP915a2ubbq4i2JlJTU1PIOhlGKYVxvxR79+5ly5YtfO1rX0uJ09jYGC+++CJ//a//9ZUe7pKgPK2hN+EPJmNnLtL/ZfaVNr8GNyRMpBvlP+T+GZNE2TNn6RazmVIalNToBmpUtuZEYNM6p6KqUJQuXU/4dL2KlUzHi1OdlgsGScUCDYo0pVezpLQURESHMjW73ljpiJYRlG1AZFRGyZK+387cSp4FTEqmBFHkUoCcemRrCFRVfcoQqzqSmKhOM377JgfDisYjiRK1XCsVMxU7qCNWsGzEqmr84AhSXjinvFDq1PggWX1CxCfjwCm/0oCmqalEe8GrSxiUtIQipjOo0CErrtZSZI0dMlbhRmBYIEG0ICQNjU6WEkLAU53nmDI5LkS9fH7sID/ae4xe1Xj2vWIFY4SMO6qYDrYDTTcxnei2v98sBMbCqCl4R70iQ7qDqC71WmLoV9OpMUS/ml50ELjQZr3rcNCx4PzbGzn1xhZOvbGZm1d6a97v6C6x/65r7Pe1Th3dc6eMNbrmzgeqbOgrK+7a4SYsLkx38U+PP8zFq53Y17u5MuQNFfIVHn/4BAfuvsQXLh/lj9/8gPu+MLx/+yk+ue91+vLV2ixr4fTIIN8+f4DvXa7alithuH/zRZ7cdYp7Nl1BriAxmY1ADUcFvja0nxdGdxH52GFbfoynB97mXd1XbjsVu62J1Cc/+Ul++Zd/mV27dnH33Xfz8ssv86u/+qv81b/6VwEQQvAzP/Mz/JN/8k84ePBgan++bds2fuRHfmR1B79AWH93rclos37mSliMcOkx4INPg7ORFiI9OLMF+yL9b5nHnRImW03NSk7qGlVBVKPBzDlvvAth9k692GFb/78KnemDabDA0NdsOJOIShooaiuIrFp0ul47wLiqjYYNYQWkKYOBNOQpIzKuRMa6wFF7Navi1azYSHSiZmXs3I0FjCJQMdZCFKtqoJCoT5lDQNjmE/RzEqiVUJ2aYbn6DGS2qdHS5yRWMK+d4hrYOrKUE5pQeOMHGacGCMkijU9hjY1E25nnhZLGOfNlf+C2Qi1pcumIcZqil5AmJU16TFuzHGqaWH4W5aGE5cPdp/iz0SPc1J18fuwQP9J7jKI3OjAWJggYI6CcIQ9BRn0Kb5NZ4wTGwogppml6Q7pIXEecFMY1vvU9nDbIEmoZ9oO1OFdZs57i1yrK0wEvfXM/L371IFPj1XQ2ISzb9w1VVaddI4gFlEMshExZDZUbHbzvwA1C6dP4zt7DV9/cyegbGymNuXF2dU7z1CPHOHj3Jb5w4Sj/6ZUPY5EILI9tPcun973Opo6qmjRWzvPCxX08c/4AVyaqRHFL5yhP7jrNozvP0JtfXtvyetQSKIE1VfX9eqWTrwzt57ujO1JzoD2FEZ4eeJt7upbfIXC10NZE6t/8m3/DL/7iL/I3/sbf4Pr162zbto2/9tf+Gv/gH/yD9DM/93M/x+TkJD/90z/NrVu3eOKJJ/jiF7+49ntIZRmQqCn18PA0QYDxU/naUtNTNvmGzF4WZK2x9HyJ1mIJU82ycDcSZ6RhvWvb/GHr/srGcUoaZEaNSkwiCjKmQ1V84bvLHYysomTCRaW4rTVYIEb6lMHaYMKpnzY1wSiKiE5lMj1mRdVp0EgqVnk1S6EthGFMiRylOEwJVJpvOEcLr0bjTAe12lDAMqTk1LfVagUziFXmxVpi5YmDSvoxaQoyIq902oco+bz2KqRzjWxhIkF4EiXbiUTNRZqq15/EWdON25In9i0IljFlc4VUKYCcMHys523+ePQoo6bAF8cP8nTPydS63GYu3J1efeq4jdQna2HIFLnhzSGGdbGm3gsgRDPgSdOgmqJPllZs1tyds+v1UnNhajzHi18/yEtf35+aRXT2lNh/91UO3HOVfXddo9i5NG50rZKp2MKliwN8eN91Nh9yzXC/fm07v/2duzj36g4qvoHvht4J3v/etzh05BJfuHiU//jSx1I78oc2nefH9r/G9q5RwE1evnl9K89c2M8rV3em7VByKubd287x5M5THOi/seLnZ5VAkSFQ7p1LpW6+PHSAl8e3pdeTQx03eXrgbQ51DLU01mQSS9ZkAawNCGtXaGqsjTE2NkZvby+jo6P09PSs6lj+7Rf+PZu3/meujnVj5sVzbYNnmfSfRilS1KYMpl9I/9lqChM0kQ7mJwuk2VvJYeeJlGjxqpBdVZXUNYYEcmHFpyRZ19NJVch556zYOge8VtLW1lGL5BBJetykj8K7IvrfxQhBJXb1ZBUdEhunaMQ+bTA2ze3c03i8jo+vanznNnpJpbCFEKjZoIRTlwLpGtgmEwdJfU8yfGNFTQrngiAgkBoljXOMXJW7iSNNgU9frSFNWEdYcM02LYLZbdTdRIvL51/eI00Iu6K7aygu8FJpK5vzY/QE1VnsAEOPV59ul5qFBMbCD8pbOR/Xpn3liFO1aVBN0SvLq0ocRSJSrpOpGRi/VeA7XznE97+9j6jsYqLBrWM8/tHj3PPIhSV12KtHs0MiMpJXL27l8S0jPDLoCNT5yS7+7XP38cyzRzFlNwG1eeMtPvDomxw8eIkvXTjKl88foeJrhe7uv8KPH3iFfb3DANyY6uS58/t59sJ+RjK25Xv7bjrb8m3nKK6AbXk9ZiNQ70z38aWhA7wxsSX9/D2d13h68G32Fm+1tHyJRfkUciUMg0GZr17ew08/+pWl3ZAFoFVu0NaK1Drmg0YpcVXVqrbmQiB8grb11MamxGmGpFWFcQtJDTBavPGkGWVZzi4EGKdENVrODMIETSe66+/9gTAUZERnrkxvroQSzojB+HS9yThsGryvozUkhNgkahYze3M522ft+ghJg1UVZOaCbDL9scpaUbFBSrB0QnIzeuqq/2LJpMJSKS5zpPHNBZkYP3jClBMRRRUTCONVJpdTafANbI2ibLP1L5mhJErhvMZvCZVBipUkUY6sJzV/IY4wJqQpuXa5GibQTVJa2wFJJvNyTmVaCyUk4wRMKMnBThf0GSso6ZD9wSjF27RpbmwFL5a2c013IbBsC8adOYScoltW2mqb180nZuLWzQ6e/9JhXnluDzp2k51bdo7wxMePc+RdlxaUtjdf1CtTkZE8e2U3uwsV/uZdJwmkpaQV//F7R/iPn3+ESskpULu23eADj73Jvn1X+drFw/zWC59mKnYq2v7eG/zEgVc52n+NSEtevLSbZ88f4K2bVcO0zrDMozvO8OSu0+zoubX8G9oAzQiUtYKTUwN8eegAJ6c2+s9aHui+wtMDb7OjMN7C0t31OvSZDNLHZ3qNHvvrROq2houOatL3PFkyXmXK3kxEtpBlluDDZNSklodRvzKbJVEioXM1GYENF9NgnRJLXsUUVEynKlNQrig+UMb3pgmYXuH+Sncismll2KRnVkDslarYSrRW6QcS04Kccr24ELaa+efTy4x1KYNlHdSoWAnZWinXRGBJ66Lmo0JJ33/IpeQZclKTVxF5UWf8YEmJ6bRp7ihZk4GbfS7qPjPL+S2kc7ATwmLMcp1bLZAmm9QACke6U8l7DcAuhL22Bm1hnIAxQqKMAhdiiOKQb4/vI7IhuuMCDxSb91xcqygZxfOlHdwyRRSGRwqX2NqCY+FqYt18wuHm1S6e+8IRXn9xl69RhJ37b/LEx4+z/56rK06ALVAxim9c24upFPjbh15lU34agG+e2s6v/bf3cXXYqRUH917mg4+9ya6dN/jWpQP8X89/irFKEYAdXSP8+IFXeWDwEhfH+/iDNx7mOxf3MhlVHaTvGrzCk7tO8a4tF1bMtrweWQJlccY6CYF6c3ITX7p5kHdKGwB3b3p37yU+3H+KzflWzi9LIC0B2vfas2gEsS+9EGtUEV8nUrcN6uqUEoVJ+vdE7UfTPxOnFVHlTjWC0zyPa5v5v/pikpuVvGurgZuc+fk5gzicPWjSDLczcCYREusa1mrFFBIlzDIGeetIUJNKWv/T4y7ABlDKYH09FTiL6NjKqnsK1Yu48kG0FIZOqWtSkRI7d20lsVGUjfJ9iWpTBuvrIBaFJaqLmo1ACWyGMDkVryAi8jJ2dT6+jslYrwQaSdk2Nn6YcxytvN+gAEvgSFQoNWDTQGfxmD9pssnlzWMtzmUupSplLUwjGSdkItM0V2DpIqaHmDwGEU4zWbzC81O7+M7UTjplhYP54cUPoE0wYUKem97JpM2RI+ax4kX61coW5C8UznDpzqyXunqhl2c/f4RjP9iRXij3Hb3GEx8/xq5DN1dFQZzWAd+8sY+TI5v5e4d/wCN91wA4P9LFv/qTJ3nx+G4ElnsOn+eDj73Bti0jPHdlL//u+UcZ8ul5m4rj/Oj+17hv4BIvXd7DLx//KGdvDabr2FCY5Imdp3l812k2dqwe2a/NZBJoT6CMFbwyvpUvDx3gUtmlyAZC82jvBT40cJr+cLqFZbv6p1CatBF70pKlHlfOFNHtJBe3gHUitSaRIU1zEKbq8zlqmRpk2JlMil9CbhpNGMx8qfoll/Zd+wlrM+trMOlSE5j7RyUNBd8MtytwJhFKuMDc9XTKpSYRQrhAb23YL69dNPqdmn7W/xZJ017dJABPcq/j9OCp1q9V5wisb35qyauIDlWpmclKzBJ0pjlxZBOHQZVauresZqUSziKOp5rUWkeKQuHSGnLeObLgjU+UT7VKbmLJdkwvgDA1woIDNOF6RAXKmbPYBau8VdKk/OxkljQJYT35dumfMUkdnU2JU7Ps4zUHK5rUnraO2AqvPgXEGWqZ98YRXcSoup11X/EaEybHa6UtfGNiLx0yYnvYSkpOe2NEF3i+tIOyDegQFR4vXqBbrnxdyaLgb7Z3Cpm6eLqfZz9/lLdfr6a2Hbr/Mk98/Bjb946sypimdMDXrh/guet7+P/seZP/7cAXCaRlOlL8P19/kD/41gNoK3jovtN84NE32Tgwxveu7+LfvvAYV6Yc2ejLT/Hpva+ztTjGcxf287svv5eKdiG3EpoHtjjb8rs3Xl1R2/JGqKpQAmOkS4u2kpdGt/OV4QNcrzjb9ryMeaLvHB/sP0NPMHcTY4nvvSc1CusdgGdevUvjije/vIFXPjPApTe6ePjnhuD9S7uNy4l1ItXWmIUwJa/XfXROwjQPNFQXJNSUSNcnETdaTnYZLbq1CSx5pSmoiA5VZxJhJCWj0Caklul5kUsaEEs5W76OBK2Qp5rDpiab0ymfc5Gpudbt3AIVUbbkLvOpRM0KpCEvNUKUqk6DGTUr8kpWJdM3KyFcqZqVqKYLPKeUrPZjygnfwDZJPc3UpiTGD9ESEqZ6LOayIHAmFkq5CQrrVez6Fcw8JuZJmqzEiiq5kCK5/N2+IWWS4TyfLbQWplCMETCVUZ9kVn2ao0Hsox0XmDA5zlT6+dL4AX6k5zj9wdyzy+2Kq3EnL5a2o5H0yhKPFy5QkHruL7YbMvVStyuZshbeOb6JZz9/hHdObALcBOhdD1/g8Y8dZ/OOsVUZ10Qc8tXrB/nKtf18ZOMF/vSRz7LR24t/4429/B+feYyhiSKPvOtt3vfeY/T1TPL60Fb+7YuPcW58AICusMQP7TxJqA1fffsoVyd70+Vv7brlbMt3nKEnPzcRWW64ygqXaWGsxFiXxvid0Z18dWg/I3EHAB2ywvs2vMP7+s/SqeaamHBp+4GfKJSeQNWbehkNZ1/q5tXPDHLimV5UH+S3arZ8corp6bUVu60TqTaDQSOkRYSZQqWGKpNYsSLqaulUA5cp0exPMTPOMrPfEkKpKWTS9XJKozAYX+c0Hs3ipJUsWlqkNNhGTaPWsWDU/3LNhM+aNxvUq1gjQDoyZWHJUi+rq8moWVrNOFqyalZRRXRm1CzrU+ayalZZBC5N0NdlRZ5w1ZuVJA1sc1J7AucJk3D24onJhiUxfpCUbTBjOcuFRZOopEdUpmfIzA/aND1R4prbJqYXTUkTokZNd8TpdgwdZ4EV3sRk7o9GGfUpm7payKhPrdp2CwEf7DrD1FjI1bibz40f4kd73qJrzkCp/XAu6uEH5a1YBJvUJO8pXCKcg0i2M1LzidvsVLAW3n59K89+7giXzjriIaXhvkfP8dhHTzCweWKOJSwPxqIcX7l+iK9d38+e4ji/ff/XeLjPGbOcu9HLv/rTJ3jt/GYee+gETzxynK7OMm+PbOTffe8xTt5yRDCvIt41cIlKOeALx+5NbcvzKnK25btOsX/D6qQo1mOGAmWhpAOevbWbrw/vY1y79kHdqsQH+8/wRN85CmquSQlX/xSikdn6J6swFsooSjbg5lCBi2e6GL6VR22A4l/TvOcXhhAZntVZipdnw5cJ60SqzaBFff+OlSNMSXzk4t+G1U71H22IaiXU7J9TwqQmEV2qQl5FhMJggMgoSnGQXoxaRSCNNwRsg6vVbYBGCtQMflTPqua4+TsyZQmVJmLpyFTDdc3426lZccMx1qlZQUwv1doK4wtvNTJVsowVMxrYekNKtK9jKtn5H8dLhcXGYY5EOeMWY2RmeW5fKeH6foQiSUu0SGnTSNDtL9+nKZnckDjSJUDeaaSpCWZTpayFSa8+TdepT93E9BCRW2BqUCAsH+1+mz8ZO8otXeQL44f4VM9x8mtEybEWTkQDvFVx7mE7g1Eeyl9ZsR5Qy4nbqVmvMXDsBzt47vNHuHaxD4Ag1LzribM8+vQJegdWRwkdjfJ88dphvnFjH3mp+bn93+cvbTuBkpbpSsB/+NpDfPYHB3nvQyf5+596nmIh4tzYBn7j5Ud57eZ2tx1Cs7trhJHxDl46vzdd9r4NN3hy52nevf0dikF7EIMaAuUVqEmd41sje/jW8F6mjHMW3BBM8aGB07y39wI5OXsAKnC1zFrCtFUM2xxTcUjJBkxbR57KVlWL73uBd0E/tRM2EkNBaHplmQmTn7miNsY6kWpXNKz2XiJkCFP2sS5pr/7j8118Zqn+dUk6U98hK3QEFULh5lXTtKZsut48IdfVqCVDI0OxrBha8+IC7vLWSIQ0nky5gHsl0XjISdqfs7mt3zZXMOvS1DpURJfPEU8cBstWEZvQf3b1sXgS5e3NpQEDoYhnkqbUJq/anDnSdc1sfVqyEOtNB5qigSpV8erTOCE6s+eKaHqI6FyiprkFqfl490n+ZPQoQ7qDL0/s5+Pdbzv7/DaGtfBqZTNnog0AHAqHuDu38o1KlxNr3XxCx4I3vruLZ79whOFr3QDk8hEPvf8M7/3wSbp6Vie9baRS4AvXDvOtG/uIreTHtpzi5/Z+j4GCG89XX9vH73zrfu6++xz/3//pM4Sh5upkN7/92nv47rXdgLs+9gXTjE508M60I/JdYYlHd57lyV2n2N49uirb1gg1BAqJMTAWF/jG8F6eubXH982DjeEETw+c4uHeSzU95YyFCooyirJ1jxWke80qSpkJnmYDMGUoXVWUr0pyRrNp8zQ79k7QGcYUREzOGw1tDqf56sie5dsZy4B1InU7YxbCVI+U7CzxEALhnMcKKqYrLLvUJ2GqPZ10vpoqtMg7hVKuAGvdZGJhqDkGmuXyLZA4NYIxEulTxmLUipOpRnDzF76Jq6XWsR9BbERNQT+QGkn4p6uOxf48ytd05ZUmlLFrtqxMmnZns6TJNCJNbhTNDCFaGV877MeVhvVC3gSKMUIfnDgojFefYsJlIDg9qsLHe97mT0ePcCnq5ZsTe/hg19m2JSXaCl4qbeOy7gYs9+WucyA3strDWhasxXqpOJK88twenv/SYUaHnHtdoaPCIz/0No988BTFztVJH71Z7uAL1w7zzM09xFZxd9cQv7TnBd618SYA71zv47e+/gCDO4f4q3/5qyhlGZru4E9P3suzV/Z5lzlLYAwmUoyVOpFY7tp4mSd3neKBzRdXzba8EWpqoDyBGo6KfHXoAN8Z3Unk65a250f50ODbHOgcpoLiiu10hClDmua6KkssBWJUxTBxNuDK9zq4dSJP6YqidEXS013h/k8Ocd/Hh+nZtPbSh2fDOpFqM2jje8LM94uiNcI0y9eXBBJLQcbkVUxnUKYgXZ0IAiLfD2iqmS11feQ1c4Oar1c6ebkdgvG1hkR9SkSoGWLoEpKneqRkSmqfS73av59Ne7lkuWOKOs7QTgQK5v8zBcI11HVNfJ0hRqDc7yGwPv3DpTNGpgE1Sv9cHHGa6zvtsn+XC2UE4zZknGzDZEsHmh5iOpZIfZoNg8EUT3ef4vPjh3i7MkjXdIX3dFxa3pUuABUreWF6B0OmA4nh4fwVdtwGjoPNsJaa9VZKiu9/ez/f+fJBJsZc/6TOnhLv/fBJHnrfGfKF1Ulxu17u5HNXjvD80G5nRhKU+bubX+TPH3gbJS1T5YA/euEuSl1lPvSx7yEFjFXyfPbU3Xz9wqGqUYIGGQusDRgoTvDEzjM8vvM0g6toW94I9Sl8WsPlqJvvjO3gQrmXjrDCQ5vOM5ibpC83jZUQIzhu+2dZpiNKReH+5YWmQExBaIKK5vQ3enn1MwOcfak7PU5znZp7nh7m/r8zxI77Jtt2YmaxWCdSbQatq7VJplGlqah7bAm1eVpLGfwJXE+nrElEKHTagDXSihKzmETMtfD6gTYJ6lU6C3SbnqlLjJQsVTOzqrt1GYlTI9QoU3p1yZRowPFnG027HG2t/Fw1pElqcmikN4NIlNzE9LNigsa/wzIRp7lwOxIrQ6I+BZQz6lOQUZ+CFU6v25kb432d7/DNyb28PL2NLlnh7sKNFR3DbJgyAc+VdjJu8oRo3lu4xMZgarWHtexo92a905MhL33jAN/92gGmJ119S8+GKR77yAkeeOIsYW51VJorpS4+d+UI3xnehUEisPzFjmP87XtfZUOHq3999q0dXESx511nEAKmopAvnDvKF88dJfIpb45AuXPzXd62/K42sC1PYL2ZQ6IglWxAySpKVjFlQ9esXMH2DbfYzq3a7/qrqcCSR7t/wj0WiOmQMV2qTJEYK5whE1ZgLVx8vZOXPrORN7/cT3myeg3b8+4xHvjkEEc/OEJYaI99tJxYJ1JthrL26WnC1kw+LSYdJlv51EjwmS8CDAUVZUwians6Teocy1YN0UC1ksLVcayrUbOjYdldjQy1esiSqShWy3f8zAIh1+YFv9GonVue++ea+2qXoudJk7HCWcF7J0IgJVUGmNk5eGWJ01xYq8TKAmUkYwRMkD3OLZ2J+iRW1+jhSOEmEybH96a38+zkbjplhT251a/3GNV5nivtoGRDCiLi8cJFetXqW0ivFNrRfGJyLM93vnqQ731zP5WSqw/t3zTO4x89wb3vPYcKVmekl6Z7+OyVI3x3ZGd6jj1Uuc4v3vsS92xzEwMXbnRzfLKD/I5bbAPKWvG5M3fzxfNHqSQEyjgCta1jlKcOnuLRHWfpXgXb8ixRKqEoewOHUoY8Nb0KCveONi4+65Fl+lR5BmkKM+04JMY1h8/Yl2urwML4jZBXP9fPq58ZZOhcIV1N3/Yy939iiPs/MUTf1sqy75N2wjqRajNoo2fUNjULYBphrsvWQgIQiSUvk55OFYpBRE64Xk2xkZS1QlM1iVjJS6cQoJT1XCCZWVlHgqaeJe1yJ84gIVNhsBpkqg13yBzwQmJLpMnUkaZ6KOEKfd28sXB1YqyZQ6ftiZUGJrxteSWT2hx69ambuK1uxg8VLzNhchwvb+Sr4/v5ZM8JNoerl750Qxf5zvQOIhTdsszjhQt0yPZwQltJpDWcq1wvNTpc5IUvH+LlZ/YRR06J2LT9Fo9/7Dh3PXwRuUptgM5P9fKZK0f5/q0d6WtbRqb4mT2v82MPHENKmCoFHL/VwWSHJp+fpBwr/tOJB3nmyv5qCp+BnNE8uvUsT+0+zb6+5bUtn6koObLUElHySBSlWEsul3q4PN3LZJxjMsqxNz/C+zecZWdhthRYSyAsgdCoOvvyuCI4+e1eXvmzQU5/pyc19AoLmrs+NML9nxhi94MTDTM67gS007V7HYBpoh61grmCiUYX3mbfyQlNQcUUVYVOFZGTGiVM2l9n3M6errdSgYyUBiFNTfPddg+qVgINs+PaMQKuw+qQKQuySkzmgo7g7NfynP5igaDDMnAodv8OR3QMLO9OVktAmmphUcrietkLH+Lbuk+sPTQa80pfByxQ8urTZEZ9Ehn1qZCpiKp+USCkXdUeQkLAk53nmDQhF6I+vjB+kB/tPbYqCtDFuJvvlbZikAzIKR4tXnQTeXciMvVSq0Gmhq938vwXD/PqC3sw2l0ttu0Z5omPH+PQfVdWLZA+O7mBz1w5yiuj29LXuq7H/A9d5/hfPvJdejvdcXt2qMC1nKTSYbgy0c1/Pv4Qrw1vwyQDN7AlP87H9r7Je7afo7BEtuVLSZQKIq4+CpeinTOGE1ODfPnmYd4pbQCcqvRI70U+vO01NuWaT4I4N1pDKAxKOH9QVxMruXK8g1f/bIDXv9RPaaxKF3Y+MM4Dnxzirg+NkO+8Q8/FDNaJVJthvhfG+ZCG2d5TGAoqJi8juoKIgooIhKN1kVFM6TC95c8VkKxcwOIuAM3W28yr4nYlVjPI01qMgFl5MpXcQ7MZjo3WOH5Fcuy/FTn+34tMD1cjhlOfr36mOKA9qYpTgtW3RyMXcKVNCFNS0+RaBcwkTXHLpKkK4ZvnKlltlJtgjR42c2KlrgMa0qa5UUZ9ymHoIaaTOFMR1Xhc7dCIVQnL092n+dPRI9zUnXxu7BA/2nuM4goqQacrG3i1sgkQbFPjvLtwue1t2Zcbq2E+cf1SD8994QhvvrQzvVbsPnSdJz5+nL1Hr6+aicCpiX4+c+Uor49tdS9YS8c1eNfUKH/v6ee4a6dL4xueCLggQm7IHN8/v5PPnb2bi9N9JGZ0wlqO9l3jJw9/n129t+Y9jqUkSomJQ15oCkKTJyFMxvdHc8e/QaC14Afj2/jy0EEul3sA19fq0d4LfGjgNP1h8/5cMiFQUqMwPn1PMjkc8trn+3n1swNcP9WRfr5nc4X7fniIBz45RP/OOyelthWsE6k2g9bNXfuW8vYhSHo6RXTIqNrTSbieThWjmLaNezrNdxzLdY1V0vWxadbQtZkoczsRq4YOe7cBqmTKEMVy2chUti4qa8mSqFPWwKUXQ978Lx2c+1YuTWno2Kg58iMlVM4ydDJg6GTA6HnF9JDi4guKiy9UGwqqnGXD/jijXLnHfE913VXSpF1u+hKSJnDEKd06AVL4ZrjCtoFT4upgsdcBW/d8Gsm4V59IJ50sXWi6ick3Up+aLFcgPMGd56CWGKEwfLznJH88ehdjpsAXxg/yyZ4ThMusCFkLb1Y2cjIaAGBfOML9uWu3revXfJFtzbCcx8jldzbw7OePcOKV7elrB+65whMfP87OA0PLt+I5cCsq8P+ce4jXRh2BEtZSvCrYeMnyt973XT758HGkhHJFcEGHfGdkE8+cP8izl/YyLUJHoKSbQH5k0zv85bu+R2fY3JLbWtdHqVRHlJLnFeae8GtElNxzTd73UWp2fGeLJgyCWEu+O7qDrwwf4HqlC3Dx3JN97/CB/rP0BM2IjkViCb1TrvTX/3KkePvZXl79zCBvP9uL0W6NKmc4+oFb3P/Jm+x99zhSNVnsHY51ItVuqMY62T/n+/WGCIU3iZAx3UE5TdezVlCxigmdZ7ZwYrbLxGzrnWsbFnZv9M1357mDGok2Wvx9yQABAABJREFU7ZAGNB80rHu6TQhUFimZUhDp5SBTM3dasobSmODEnxY49kdFRs9XL5Pb3l3h7j83ze73l1Fh7XejaRh+25GqoRPucfjtgGhKcvNYyM1jtV/o3hqz6XCFLUfKbDlcYttdFbp3RlixONIEM4lTdnNFQqKw6z3XMkjJc+bvuRAjGEcxTlDTXyzvyVMXulmzhzkH0y6ndIeM+eGek/zx6FGux118bXwfT3ef8rPjSw9j4fvlrVyIewG4K3eDw+HQOomqw3LWS507Ociznz/Cmbe2uBeE5ci7LvHEx46zdfetJV7b/PD66GZ+6513Mx4XHIG6LCieDvnx+07wP/2NF+npdEYHF6dy/Kd3DvPFM0d4Z6wfE0AiBSuh+cD2t/nRA6/RGUZOUbKrR5SaLxOyeRLTseKF0V18dWg/I7FTizpkhff1n+V9G96hUzUjg43rny6d7OSVPxvk9S/0MzVSvT9tv2eC+z8xxD0fGaHQvbrmN2sB60Sq3eCZwVIYqSkseRlT9D2d8iomJzTWQoSipIOF3uaBhZO9eiyEaClpZlWjWkW7q1Y14xC1f98JcYUx0qUfsNRkyjbM579xLODN/1zk9BcLxCVfUNtpOPTJEnf/D9Ns2N/8phIWYfN9MZvvq6Y+SWuYvAzDnlzdPBFy/USO0csh41cCxq8EnP5mNX0i12EYPFRh0+EKmw5HbDpcYePBCrnO2c+SLHESyXFSwwgcRZASZ9lrWcJ9eZthjt1igSkU4yimMuqTxNLljSPyi7wqtpMqBdCnSny0+20+O3aYd6INPDu5myc7zy05uYms5MXSNq7rLgSWB/NX2R2uvmNgWyJh/ktEpqyF029u5tnPH+XCqUEAhDTc88gFHv/YcTZuXd1eXbER/PfL9/DFa4cBCMah65U89w/c4Gf/yrc4snsYgBvTOf798fv5w+P3U7EKE4DIWzrzZXqLUzyy9R3u3ngFFJylh1I0f6KU9/2TFkuUmq8rgfuRJ6OAZ27t4evD+xjXzimvW5X4YP8Znug7R0E1vi/V1j85FXliNOD1Lwzw6mcHuHKsM/1s10DEvR93qXsb95WWZkPmifbxo5wf1olUmyFexF1T4Ho6FVVMUVboDCJyQiOETU0ixuYwiZgPVuqQn0lqrHMY8zePpQ4HV1u1mrEu0fBp08+s0WtRUxgjEdIQAPESkaksiYrLcObLBd78L0Wuv16dles/GHP3n5/iwMfLhB1z79QkNU8Jk6bnKQyb9lv27gfz0cQIQjA9FnDjpCNV10/kuH48x423c1SmJJdfKXD5laqtLMKyYVfsyVWFTYfLbDpSoWdr7G7cdTMajVWmhEQZWGXHr7ZHk50TIRgnYBxVMwFV8OpT56KmpRqPo50Ew63hBD/UdYYvT+znrfImulWZdxWvLtnyS0bxfGknt0wBheE9hUtsCdqr0WnbYQnMJ6yB469s47kvHOHKOdeQVQWa+x97h8c+cpING1f/N7he7uTfn34P70y78RXOKXZcjPhfPvg1PvHEaQCmIsV/PHuUP728l45ChUfueZuu4jTdhRJd+TIyk8Z9nY4Z5/lKEqXZUFWhBONRnm8M7+VbI3uZMjkANgRTfGjgNO/tvUBONk6xlVgC6dLEFYYoFhx/oY9XPzvAiW/1oSPf8iIwHH5qlPs/dZMD7x1bUC3voiGsz5BwSNrorCWsE6m2Q+Kg1RqSnk5F5Zqm5ZVOezpVfE+n1jLz1w4SNUqbRh5jM7HYrV9u1arp+Be6wNss7c8CeGXKAnqRZCqpixq7KHnrj4qc+NMipVvJjcWy78Nl7v5z02x+IKq5cWZ/86BBTZPCpDfrpKYpshKrZ4bXhR7DzofL7Hy4mstuYhh+J0OuToRcP55j8mbAyLmQkXMhJ77cmVmGZuPhCpuPeIJ1pMLg/oggX/+Du4kHp0Stk6j5wAKTPnVvOmMRIbGpbXlumfaoBYRtH1UKYF9+hMfNeZ6b2s2LUzvplBUO5YcXvdwJE/Ls9E6mbI68iHm0cJF+tTqz4msNVfMJ5nWtN1rw5vd28Oznj3DzikujDHMxDz51hvd++CQ9G1Z3/1sLN07m+MqxvXxz81FsXtInp9h8LeL9+8/z1//CK3TlnRLzaqmHb04NMjVQ4cmBEw2X1y5EqRkEgL9Gj0RFvja0j2dv7aHse1ptyk3w4f5TvLv3UhPDFYsSNjUnksJy7UyRlz+zkdc/38/4jVz6yS2Hp7j/kze596PDdPStQupehjxZb3KRTIwbK9BmbVGTtTXaOwD5sMSGcIqoaJjSeSomIDIBkZFoJBJLQcbkVUynKlNUMaF0J0JsJWUdEJOdpr69kEjV8ymQXw6itRjVatbxLMfPdhsQq+QCG/gZuIWSKaMtF5/N8eZ/LnLh+Vw65d+5RXPXT0xz+EenayzME8UzUZpCoclJ14BatUiaWoUMYPBAxOCBCnd/Ilk7TA5Lrh/Pc/14QrDyDJ0JKY0pLrxU5MJLxXQZQlkG9kYpsdp8pMzmo2V6NsbrJGoeqCAYI2ScoGYiqphRn1bkCttmqhTAvcXrTJg8r5a28M2JvXTKiO3hwtO+hnWB56d3UCGgU1R4vHiBLtm88H8dM+HIVGsTJXEkee07u3n+C4cZuemNCgoR7/7gKR75obfp7F69ZqrDFwLOvtLBlfNFbk3niZ7qpvik5cfyr9GVKxEIy/seucl7iyMAXItzfGlyM5fiIsYIJsp5xksFJkpFOmSF+zZcYXtxjEIbEKVmyCpQN8qdfOXmfl4Y3ZX2tNqeH+XpgVM80H2lSV2iJZCWAFf/VBmXfO8rG3n5zwa59HpX+qmOvoh7PzbM/Z8cYsuh5m5+y4Ya8gTGSrS/dybxXFY1XEtYJ1JtBiEsyveH6VPTgEHirGglrr5BOSGfilFEJmAiDu6Yegcl3cXQmKXb3qUgWq2qVvWft/UvrATWKLGyVmAsBH7iYD5kanrEm0f81yLjl6vKwo7Hytz1P0yz68lK6kikqLUcD6RG4RSd6g1AEi2CNNVtmb/BZ8whMr9JZ79l72Ml9j5WnSGOK3DzVC6jXrn0wNKo4uapHDdP5Xjrc5llDMZsPlxh05Eymz3BGtgbrU4qR5vBAhpBBUGEYMrkmc7cGhWGbk+gwhU+WZwq5RWHNjpP39txgQmT43Slny+NH+DTPccZCOYfnF2JO/luaTsaSZ+c5rHCRQpyvbh9IbAA0iJMYzIVlRU/eHYvL3zpEOO3vFFBV5n3fOhtHn7/KQodK2drH1lByQaMjOW4frXAeClEFyW5raA+ChuADcTASPqdXhnxqc4r7Mi56+AXru7i/z51FCnh9K1Bbk13YhEc6rvOTxx4hUMbbqzY9iwEWQXqSqmbLw0d4KXRHT7igz2FET4y+DZ3dza2l0/rn6RGGMPZl3p5+TODHPv6BuKyW4ZQloOPjfLAp4Y4+MQoKlzhi0gL5Kke1rp007WE9dtoG0ICWFdzUVTO/SVQLtdVA9pIYquQUiO1QVmFtpLYqNsujS+LhahRS4FWLz31o5rT5bBdfqo1RKwsAmNkS8qUtXD99YC3/qjI6S/nMZH7XL7HcPhHShz98Wn6dusatSmUMYGwrjDX244nzW2XyuFOYP0+tw0YNS1JEEEOttxVYctd1dlja2H8mnLK1fEcN07muHY8x/C5kMmbAWduBpx5rmpsoXKGjQeiKrnytVfF3jV2F5sHNFBB+n+CCpII2eC6aelA042mY6XUp2awAttmvZOEgA90nWFqLOBK3MPnxw/xoz1v0dXUNWwm3ol6ebm8BYtgk5rgvYVLBG22nWsKCeGuM58oTQV871v7efGrB5ka90YFfdO898MnefCpM+Tyy0NctYUSAdM2oGTd42QcMGUCbOgnoTqB/ZDLfM9oGI8KjFaKjE4WmbrYyX0DQ/zP9/+AnlyF0XKOX339IU5M9XLy1hYmItdqYnf3MD9+4BXuHbjSlspTgiyBOj/dxxdvHOCV8W3pfexQxw0+MnCKgx2NnSqr9U+a0Ys5nvvMJl797CCjV6stNzbum+b+Tw5x38eG6BpcOYIMLIg8lacU514b4OzLg5x/eYC9f+46vG8Fx7xIrBOpNkNelehRZUReY4XEGJcyVIqyJhEWKVyPmc6ggvAKlbaC2CgqRhFbhfbpgLeHWmVRygW3dgnVqKVEyyFAxn1v3luynHGGH4wVdeNqs9jGkihTjclUNA2nv1jgzT8qMHS8ah4xeFfEvX9+isMfnaTQoQmlIRSxU3sTtcm4i35kw/rVLhgiDQ4bEKclZNRCQM8WTe+2KY58cBIS5XpKcOPtHNeO5bnmlavrJ/JUpiRX38pz9a18zXJ6tkVV9crXYG3YFTV0OWxXaCCqI0yVhoQpgSXEksPQKSKK1tIu5c7tqkoFwvLR7lP8ydhRRnSRz48f4tM9x8nPoShZCyeiAd6qbARgVzDKg/lmaUvrmA+yzXqnxvK8+PWDvPT1/ZSnHVXpG5zgsY+c4P7HzhGEi58wSRrRTnuiNE1Aybq/GzahVaQW5OVrMHVOwqihM4zp3Rzz3c59vHRrFxaJHJWEk4Kfe+hFfurIGwAcv7WBX3r1Ub57c2e6yC0do/zYgdd4eNP5tj6GsgTq9GQ/X7xxkDcmt6Tv39N1lacHTrG3eKvBt6v1T7pkeeurG/jBZwY594Oe9BOF7ph7PuJS97bdNbWyZFJQU9s/F3myFm68082ZHwxy9uVBLh3vw2hJz5ZJ3vNTxzn75rYVHPzisU6k2gxKWBSGklZomgVzAmMVxmZfcX2VQqkp+FlBbV3gUNaBI1ZrWLUSuLS+tu97kw2U61K06oe+oC1ZMdegWV5og2DOWoEBVFIfqCW33gl4648KnPxMgcqEi/pV3nLoI1M8+BfG2XnfVGO1ySztZEN9DydBJgBeVinSO/NlingBch2W7feX2X5/1djCGrh1MeDa8TzXjue45muwRi+HjPl/b3+jamwRdhg2Hayw+ahTrTYfLrPp0Ny27MsNA15VEjVKU3P/PEvgCVPOP4b+uassteRETMW2Wbq0FS4IazPkpebj3a7H1LDu4EvjB/jhnpNNiuHdefBKeTNn4w0AHApvcnfuZlsrCGsNYyMFXvjyIb7/7f1EZRfiDW4d4/GPHueeRy4g1fyOI9cuRTpViYBpWyVOJWY/T+JxmDormDonmT4nmHpHEFY0W3aW2PPgNLvfM03HBsPJ8UH+/ZlHuXWr6E7qsYCdcoL/46Nf5Z6BmwD85sn7+JdvPELka4cOb7jGU9tO894t76T1qu2IhEBZIzg2sYkv3TzAyamN/j3Lu7ov8/TA22wvjNPoZhtIQ4DhwisdvPqZQd74Sj/RtGejwrL/vWM88MkhDr/vVgOjoeXdsBryhESb5uSpNBHwzqsDnPnBRs6+PMDkSNWZNsjHPPXTb3L3x84hA0v/gxMrsglLhXUi1WbQ/sC087yzOEVKuZlYb98jhCXAONVKWF9jIohwqpU2ithK9BIHkksPr0bhunq39VATiLpHqrxqLQx/VszbQWN5YK3AxJJ3vp3jtf/UycXvVJWVvp0RD/3kGA/86Chd/XrZ1CaYSZzc4KqPK3Nuzc/eXEjYsCtmw66YI09X7Y1LY5LrJ1xK4LUT3uDiZI5oSnLp1QKXXq23ZU/UK29skbVlX0IYSMlSlFGZ4qaEydU25VLSZDxpsktrUb5CSBzZ2k2VAuhWFT7ec5I/HT3K5biHb07s5YNdZ2YcA9oKvlvaxhXdDVjuz11jf+7Wagz5tsStmx0898UjvPLcHnTsAu0tO0d44uPHOfKuS3MqytoKpr26VMooTNN2jn6T1sKoZeodwfCrAROnPGk6J4mGoXuzZs97pzn46BR7/sI0PVuqiqWx8N8v3s1nrx5xB3csYCTg49vP8E8f+TZdYcRwucDPfu/9fOPqbnZ3D/PeLe/wyJZzDBSmlmK3LRtSAmUFr41t5Ys3DvJOyU0gSAyP9F7kwwOn2ZRz2QMOLkIQnkBNXVN8/3Mbefkzg4xcrF57+3eVeOCTQ9z38SF6Nq+gMYsAkZmKn408WQNXz/Rw1qtOl0/21WQThfmYXfcNcf8nzrHtXdcRgdsHgTVcGB1YqS1aEqwTqdsWAmsFETIT5Nq0FqSgIlCuyNpYScUExJ5YtZtqJaVN1aj2GdXCsNbH3xQrrFpN3ZAc++MCb/xRBxPX/WVMWA69f5J3/+Qoex+fxgh3yS/phRAnWxcINtmgZUzVax1LZ29e6DHseneJXe+uGluYGIbeCbl+3KUGJurVxI2AkXM5Rs7lOP7lzDJ6NZsOOWKVEKyNBxrZsjfaEmaoS5FXnJrtV1WjLFXJ01okTLOiTVUpgMFgmqe7T/GF8YO8XRmga6rCezovpu9XrOT56R0Mmw4khncXrrA9WN0Gr7cLbl7p5rkvHOG1F3dhfUuQnQdu8sQPH+PAPVdr6qVMg1S8hDhVZk1mddbhRREjxg0TpxTXXwo499UCt44ryATIxV7N7vdMs+dT0+x57zT9e6KGEysnRjby78+8h1EK7tSekuRL8Ivvfoaf3HscgJdubuEfv/Ze9vVd558++hm2dY0tzU5bRiQEyljB929t50s3D3Kp3AtAKDSP9p7nhwZO0x+W6r7lruO2ZDj1rZ7/P3v/HSZXel73or+dKofOOaMBNHKcGWASQc6QQ85wKIoSSQ2pQCpYwbKudXTukY7vtc9z7Ss99nXQsS3JEi3TsihySImkGIecnAcYDOIgNIDOOVV3deW09/7uH7uquqoTuhvdQAPT63kKXai0d+3a4VvfWu96ufDDCnpP+/JWFpvLYM9Hgxx4OkDjgdjtU3EXIU+6aT0yP/QrHtLou1BhkacLFSTCtqLnKxojtB4O0HY4QN2eaUyHjplVEyUB6bQNp5Ignim2m292bBGpzQZbqsiyt77IqlYCrDkMS7VSELiUNJIisvUnErrI1VrJ+XqrO6NaibxNZHOrZlsowjoTK1kykTEZO6vx/rfc3HjJjalbC3GX6Rz6+RCHPxfGU2s1n86gkq9JEqskRfOx3Lrf8dSQje8RJatQ2Z6hsj2TjWW3EJtWmMgGW+TUq0CvlRw4+J6TwXmx7BVtGap2prJ9r1KU706jlVMU+pBehjDJBeqSVnB/s9QybTQ2syoF0GgL8yF3P6/G2jifrMWtpNjrmCJuqrydaCQi7GgYHHcOU6Hcgfjlewzjg37eem4XV8815AfbbbvHeejJTmq3z5BEZcJ0ETdVEkLLWvEWqVsqgIqBUzJwouOUrJs5YzJ2ysbA20763/UQHi2emNJcJk1H47Q8kKDleILqjvSS6pcpJC5N1vGP/XsZlLygWMqFiKm0OcL82cMv0eGfwRTw09EmJk3434+8dFdYP3MESjdlTgUbeWF6O1PpbLy8rPNIST8fLuvFp86Pl7fGOONXHFz6YRmXXygjFZ0bmrcctax7HR+Zxea8TUFAkmU7zF1RcsqTMY88mQaMdfmzdr0KxnvmiB+AzanTvH+atsMBWg8F8FUmEQgyqoEum3mbjs2QCSbtGJKM/y48N2wRqU2EqB6E+mFeSTVSL6L4pI2OgbVUKx3yPQtyqpUqG9jlDCBhYBUPZrJx65ZqlSvc3tgznCxbtV+bvjZqC8tjFcRKytYxWTcD4iZXfujhzLN+JrvmZqoaDiU4+oUwHU9EUXMTX5IAAaZp2dfEfC/lpiZFq4XVP4QNJFHLwV1u0PZQgraH5i58ehoCPVawRc4iGAmq2GtM/O063h0G2nYTo01ixrn4rKMkBDbJUpa0Alve8kPADwg2sSoFsNMxTdS08V6igbdjzUgIBgw/SaHhlDI85BjCp9y5PkX3AoZ6ynjrx7vo667CWZWg+miAxn2T1O6aBrfJmNAY0WuXfL+MiRMDhzRHlpzoOCQdTRIkQjIDp51cPumk/5ST6d5iVUHWBA0HkjQfS9B6PEHdviSKbYmFZRFN23hraBuv9O8goDnAbY1thC4hoio/29DNvzn0Ji5VJ24o3EjY8Hhn8Cz/sZsCOQKVNmXemmnhpUA7QT0bLy+nOVHWx6Ol/bgXJFoKEtMynT8t4/0fljPVNzfxVFKXslL3npymtP42HS8LyJOEYSoLyFN0xmapTucr6L9QQTJaTKyrWsO0HrKIU33HLIqamwgX6LJJRjXyJ3K7KaHoClNpG2khL1lbudmxRaQ2EQKpIRASYWEnjJ0SkaKJKM4NJ1SFWFq1cigZXEq6QLXKWgI3TLUS+WS2LTXqbsa8X6+If1tRqYps9W7SJKt3kywLJm9onP5GCRe/7ycds6Y4NafJ3qcjHHkmTM2uRS4wQrIKYGUZ04R7dehttQIQeQ/+nYYgGy1uk3HuMqnblaKCNO3LpIbqSQj3qIS6NEJdKqFuldkulVRApqI9k6+5ysWyq/dwLPtKkVOl5gfZbCYcdo4RNW10p8vozFQgS+CTkzzoGMYl3+Yo5rscZjZCPG6qjEyWMDJegmmH6i+M0OjrL3ptDLXIxu/IWvGcko5TzpIlFjamTcclhs46GHjXS99Jp5XiWXhOkQQ1u1O0HrfCIRqPJLG5VrbzDYVKeLl/J6eGW0mpEpToSGqWRCUVXCmd/3z8OT5SMwJAUFe4nrCTFpvfmJsjUElD5fWZVl6ebiNiWHVMPiXJR8p6eahkAIdSPH4zM9D7lpfLPyyl+6Q/Xzek2k12P25Z91qOROdUvQ0+ziVpefJk6BKj10vyCXuTfb6i99vdGVoOWna91oMBPGULr8uGZBEokbPxmeAXMhldYSKjkbkLfu/lsEWkNhFa3PthsJn29vP0GH5msRPCRpVIUE8M7Y6w9TnVigWqlYldtny+JrkEtJxqZdkDrQLEtQ30ZFlkQzLu7oPs3sIipKjguQUPLwjdsFIprShXizQp2Sh/gExK4vILXt57toTBM3MzdOVtaY48E2Lfp6M4vDlyvTgkJCt0IU+m7i1IsjWxAXeGRBX2YiqsZ1pJtHhhDZNpQkC3IacEmYREJKKgz8oYaZmJq3Ym5sey12ao2mklB96tsezrAiFZ58U7vR5LQJKg1T7DtHCAJKGbEgccE1skagksiBAvuBVFiJeDr7y4rkwrJEsFNwd6cRR4vsBFQk/D6CUHfSedDJxyMnzRke+xl0N5W5qWY5ZVr/m+BM6SlZ9IdVPi/HgjL/R20B2qtIYNbgPJY9VKCRMcQfjVjtP8ZscVPKqJEDCQsjGY1tjsk185AhXTNV6Z3sZrM63ETUuSK1XjPF7ew3H/EJo8t82EEEx1Objyw1KuPF9GIjQ39G48EOXgpwLsfjyI3bPIdt6ASZObkadwwJEPieh/v4x0vFh1qmkP0XrIIk+120NLJkHmbHxGNiwMAZouUypDVFeZyGjoS8Sj303YIlKbDabCflsATyLFACUEsTOBiwAOGkSMKhKboFfCfNUKJMksUq3Ail9fq2qVS62BTTvxeg/gVknRoh9ZdF/C6n2hSGYBcRL53kq5tJ+pURvn/t7HhX/wEQtYpyVJEex8PMbhZ0I0P5Bc8X5v9d0pJFN3/IBZJyweb75RyEWLF9cwycu0p7UIk0ZxWp621Jq6KIhltwaI82PZJ69bf0MjGuEx69b92sJY9qqOFNW7Nk8s+0Zis6tSXelSLqWrITtonsm4eTHSzs/6O3F+gMlURsgLyRJW0MNy4U56QiE+6SA55cDvTNDeNkm5N45D0lfUwFiYMHHNRt8pF/3vOBk86yQTL5598NVm8sSp5YEE3urVu2BCSQevDezgpcEdRA07QgZsAsmtI9mta7kSlfi42s3vPHmadmcKRYKUKXEtYSdkbO7haI5AhTJ2Xp5u541gCynTWucqW5SPlnVzn3+kyJ4WD8pce76USz8qZbJrrhm6tyrNgU9Oc+CT05Q3p7gp5ocarWX9lyFPekZipLPUUp3OVRAY8ha91+lL03rQsuu1HJzGXbK83VAg0BUTXTHy5ynFlLHrMl5FEM4oTOpzJCoesTPaU8loTyXjPRVUPzS+9i96B7C599wPMJySwQ5ChITGIB7iaAzgZQInTSJKCelNVYAphLwm1coiZAtVK0uNMjHFB6WU/Fax8aQo9//lZotU2cwqTiY22UDBtH5LskEm2QbTQkgIE/pOOjn7rI+uV9x5i4OnUufQ58Ic/FwYX/aCXrD4m6527vWSkCzSIXMPkKnVxZuvBoXR4oVK03LR4ioLa5jWI1p8NbHsU113Ppb9jmETqlJCwOV0JV0ZK7p4mzZDuzrD98K7CJsOngtv51P+62jSPSgTZ2EIiYRQSJIjS1qeNC13PEkIHFnrXXTMTe+ZWqa6S4hPOiEFR0/08ujHruPx3XzQLQTM9Gv0n3TSd8rFwLtOErPF11FXqUHzsUQ2ICJOadPajg0hoHumgu9176czWIMpS9bJWQEUE9mdIZf7UzuR4p8/8CqPNAao0ixCPaMrXE84yGwCe/JSkLL/TKcdvBDYzjuzTfma8np7iCfKuzngnWsobejQ946XKz8upftNP6ZhPaHYTDo+PMuBT07T9kAYeS1Dm1VOnixHnmYnnPSdq6D3fAWDl8rIJOfogCQLarfP5kMiaraFV6T8CwSmLMioet4dKpsSmq6gCgmPYhLSFYYiToZ7qxjtrmSkp5LghL/oc5wDmzvafj62iNQmh1/KsFcEmcLBEB6SqNygBB9pmkUE122tn1oNFlet5MVUKyQyhuWTNYSCbspW3Pkml/g3DpuDFN0M+domrFAIm2xa6Xq5lEUhWX2bTKVo8YmQzKXveTn7rI+Z/rkq5eYHEhx5JsSOx2Io8xLLV5JVsdhrpOx6CpmiHhZ3F9YnmW+xaHGrF9PS9tvCXkyFStPtdtMtFcs+M6Ax0bnCWHafYVkDO+aaClduX1ks+2bDZlOlTAFnU7UM6daAaI9tkh3aDJIET/lu8L3QLqYMDy9FtvGEt2sTuCrWDiEguYgVLylUUjcZUtmzoQ7zrXhqRnDh7VZeen4noWlLcXW40hx/rIv7H+vC6V6+V1B4XKH/lIu+bEBEZLz4BGpzmTTdn6D1eJyWYwmqdmRuyUGX0hV+2reLV4Z2ENKdc+QJcCopSp0xxlU3yCAn4KNqH1/65HvsdSVwKgIhoC9lY3iTW/kkYDzt5oWp7bwbasif+VqdM3ysvJs97sk8AZ3qsXPlR6Vc+Wkp8Zm57V+3J8bBpwPseSKI07cO47WbHPOF5EkgoWfJUyqhMHSljL7zFfSeqyA46i56n7s0lQ+JaDkwjdO7uv5UpiTIKDpmzuYnQNMVFFPGzMiMDZZz6VotN27UMDVSmo/qz6G8dpaG7ZPs29VPt7TVR2oL6wxJgiqSlIkUo7gYx0UYG5coo0okaLhj9VOrgxAyBmAUqFayZKIisKkpJARm9hQgZIm0oVp2QCFj3OV1Uvnh7yYlRSuBVddkkSZNNlCL1CZL9TGEvOTs4tgVG2ef9XPlRx70pPV72twm+z8d4fAzISrbV37iXumlNzfWVBAYEpsimGF1WD2JyhGmwsa1OZVpJdHihcRpM+vBsgoV2zJUbJsXyz4jWz2vrs2Rq0CvjWT45rHs1TtT1O2MYy8HaTN/edg0qlRGyJxK1jNluJEQHLGP0aTN9fspUVJ83NvND8M7GciU8FasmUfcA5taHRQCMixixRMqSdRlJ/lUzAKSlMnXLDmztuZCpJMKZ17fxqkXdxANWful25fk+Meuc+RDvdgdi1sh40GZgXedefJUOCEFoGiChkOWVa/1eILavcmiySmrVmn1kzLXpiv5x+4DdIUqMXMShQSKZLC/fJSDZSP8oH8P4zZrkO4P6fzentd5sGGCbY40sgRJU+JawkHY2LwHmAQMJb38NLCD8+G6/O+9wzXFE+XdbHdNI0mQCClce9HP5R+VMd45Z91zl2fY/+Q0B56epmpbcoml3OIKFvx4i5InIREYdudDIoaulKGn57a5JJvUd2RVp8MBqloia1MlEeiKga7MxZnLusJUfzl9N2rp66pmsL8CPVNMN/wVEeq2TVHfPkldWwCHO42CoMYZpq+ndA0b5c5hi0jdRVAlQRMxqkSCITzM4GASF9M4qBNxaojfZTN9EqZQMCF/UpAkE5uiW9awbNpNoSVQx1KsDORNPSiWrAIhrNRDlh753yFSdDPk1CYFgSrpaLJl11uoNi1f86anJK7+xM3ZZ/2MFtivqnakOPKFMHufjmx4PYvAGjjkydRdo0wtH28uAD1fv1RMmJb6TaRlCNPdslVuBneZSeuDCVofXBjLPp9gJUIKU12WTfDKj+Y+Q1YF3modX62Ov9b6m7v5a3V8dXo+9OROIh/vf4fOFwlT4Z1kIyHTgYLJMccw1epCW06NFuVxTw/PR9u5mqrCo6Q57By7A2tcDF1IJOc1p83djJtY8XKx4fPVpZVYFxMxjdOvtHP65e0kYlaoiq8szoNPXOPQw31otuLPSMckBs9YalP/KSfjncXJepIsqN2TsmqcjsdpPJREcy69UwgAWSCtgEzNJh38sHcvp8ZbiBn23AYABA2uWT7e0sn91QM8d2kvXxs5hOkBDLhfjPFbJ95mlztBpWZdywMZhRsJR1YF33yQgN5ECT+Z2sHlaE3+8X2ecT5W3k2LcxbTgP5THi79qIzu130YGWs/UVSTHY/Osv/pGdqPhxa4KtZ9XRchT8mESv/75fRmLXuhCVfRe7zlCash7qEAzftnsLvXXrMoEBjz4szDUx7efWEvV861kEoWk3uXN0Fd+xT12yapb5/CU3L39YtaCltE6i6EQzLZTpiwSDCQrZ8awsNktn6qlNSmnu1bDpYqJaMbc19AzoYVaIqRb0ZpYPWyyohcrZVcoHTdboi8j3oBccqSoztNjG6GnNokSyaarKOtUm2aj+CQyvlv+bjwbV/eny9rgl1PRDnyhTANh5K3dR8VwrrwKIK7QpkqjDc3hdUIcb66lF4mWlzKk6Ri4qR8QA2zqg1qdqWLIvOFgMiEkidVudqr4KCGqUuERjRCIxpDS3ymzW3ir9Px1WaKSVbuVq3ftL/OrcDiUFL+GL3diJg23k40EBc27JLOg44hSpWla3ha7bM8bA7yVryZ0/EGPHKaHfbp27KuCaEQL6hXylnx0stqrgL7Eql4dow1nb+iYTunXtzBmde2kU5aI+2yqggPfeIa+48N5HvuGGkYvuig/6SL/lNORi468g3Ic6jcnrICIo4laL4/gcO3CmIvsqqUJJAWmaRJ6Conx1p4cbCDsbiP/AVNgFtNcbymj09vv4RHSzMTcvHHr3ycoTIX2MGeNPnNlnd5pGmQXc4kDllgCuhN2RjdrFY+Adfj5fxkagc34pWAdQ495B3lY+Xd1DsizAzaeOOHNVz5SSnRqTmWVLMjzoGnA+z9RBB36caGqRT2eRJIZAyZySEf3Wcr6TtXwfDVUgx9bgJAUU0adgdpPTxF26EA5Y2xdbnumpJJAoGcJcizAQ8v/v399F5pyL/G4UzT3j5BXfskJa3T+Cujd+249GbYIlJ3MXzZ+qkADoZwk0KhCz9e0jSLKG7pbktIEsiKyEamz8EUMmahjJ21O9lkHXv2O5qiWLUyTBl9w1Sru5s45RIRLbXJsulZahOAWLHaNB+mAT1vujj7rI+eN1z5GVNfbYbDnw9z4OcjeCruXE2fyFqhFKwI781IpgwgI0kYkmXLSwkrLW+5aPHFapiWNx9tAayBpK/GwFcTZ/sJS0WRECimTnDSTmhUIzSmER5XCY+qhMZUwtlbYlYhHZPzatbiCxB4Kgx8dTq+mjkly1eb/X+djqtsbQPyPERWXbjNqtS04eBkopE0Cm4pzcPOIdzyza25e52TREwbF5O1vBZtwSVlaLCFb/q+tSJmqvQbfoLCseRrVhwhfgsIzTg5+fxOzr3Zhp6xyFtV/SwPP3mN3UeHQMBEpz1b4+Ri6KyDTKJYEfPXZ/I1Ti3HEngqb+1cKnJkCkvxzpgy7wfqeG14O1ema4oqIWVT0O6f4ue2X2Rn+WT+/a9e2Mm3pveRzpa0tBtB/vn9r7HdnaDVbln5EqZEZ9xB1NyEVj4Bl2JV/GRqB/2JMsBqWHy/f5iPlvfgTye49tMSXvvxNkbfn6spcpVk2PfxGfY/HaC2YwOsewWYT55iMRu9FyrpOWfVOkUCzqLX+6vjtB2y7HpNe2ewOdfnmhuL2hnsL0PzJajbNoksQzql8s5P9nPm1V1ICNp2jNO2fZztOyZoa5omaChM6/f+1WiLSN3lkCSozNZPjeFiFBcRbFymlEqRpIEYtrskJUmWreHizUiIQMIwpSLrhSyJvGqVG1TMqVZKPop9LapVkU3PeuCuIk6yNBdBrskGGkZebQIJw2RVatN8xIMyF7/j49w3fcwOz83UtT0c58gXQrR/KL62hKINwGYhU1a0uFXHlJGk/H1zyVF1cS8mDbF8tPgW1gxFtQiWt8akgcUVlnRcyhOs8LhKaDRLsgpIl5GWiU6pRKdURi8usSybuax90FejL9v89E6oUmO6h9PJOgxkSuUEDzqHsa8i9OiYa5iYaaM7Xc7z0XZ+xtdJhbq+Np+UUBgwvEyaLshuH1e2Xmm+HW8lEeJrxcykm7d/0sHFky2YhnW9qmud5uFPdFLuDTDwrovv/G0NA6edJEPFJ0l3uU7zMavGqeVYnNLG9Z8YNUyJ68Eq3h5t5fT4XJw3ACZ4lRQfabzBE22duLQ5ohwKO/nK649wrcKHKAHZEHyu6hJPtl5npyNJeVapmMpa+ZZumXBnIAScjdTx/NR2RlJWQIomGRz3D/KR0h6ilxTe+8sybrzqR09Zv5ukCLYfD3HwUwHaHwmj2jZuvykkT6aQGOn10322mt5zFYxcK8nvSwCqzaBx7wyt2aa4pXXxdVF+UkmVgd5Keruq6e+upH77JA8/dQGHy9oPrpxu5fqZVmrrQvziP3mdxpYAqmqiSSZ2WTCdUZn5AJAo2CJS9wwUSdBAjMps/dQ0DqZwMo2dOhGndrPXT0mWlWmtMdVWP6KCQsqsaqXJxgLVSjcVMlnVykDCnBdkcTcTp5zaJCPQllCbzDWoTfMhBIxetHP2WT9Xf+LGSFvb0OE3OPCZCIc/H6asZXWpP7cLRWRKLMhIXFfkosXnEyZjGcKk5glTsdK0mQ/fewor2NA2lxVSUdG2+D4uBMRnFMJjiqVqFahZoTGLbEUDCkZazicMLgWn31igZFlky7IUeisNZBu3RZXqy/g5n6oBJKqVKA84RlZNRCQJPuzpIxbWGNN9PBfewWf8nXiU5XvTrAS6kBg2vIyanryKWyHHaVbCOG9jwu3kiI+3nuvgyntN+cmahpYpGiv7id6I8/zvuYhMNhe9x+4xaLovaalOxxNUbt+YFidCQH+kjFNjLZwcayGULqijESAZsLNkkqfaLrOnaqxo3CAEnLq4jW8MHCKWdXGVmwn+t32vs9MTYpcziT1r5etJ2hnLqGwmK58hJE6HGng+sJ3JtAcAu6zzSEk/R9JD9P/Aw7efayE8Nnc8VrQmOPypKfZ+YuaWVcDlUEie4hEb3ecr6T5bSe/5SmLB4ubkpXWxfEhE454ZNHvBZPkazwG6LjPcX05vVzV9XdWMDJZjmjLNO8d48ktvU1k3C0Ak6CI26WPvzgmOHhgp+gxblkRNZUnUan77qGGjP1nBj4N78LI5xw5LYYtI3WOwSybthKkWcQbxEkVjuKB+qmxT1k9ZatL6fmJOtZpDoWrlzA46TCR0UyYtFMxss1FL6ZrzhG9m4rTRatN8pOMSV37s4eyzfiauzp3ca/YkOfqFMLufiqI5NunGKkCeTMmgm3CrF/u5aHGJjCRnyZOEvkzzDUUU9GGSTOxbhOmegSSBu9zAXW5Qu3dxgmCkITJZoGaNFdsHQ6Ma6ZhMIqSQCClMdNoX/RxJsYIx/EV1Wpk84fLV6jh85i2d94WAznQF1zIVADSrsxyyj695ck6RBB/3dvO9cAdBw8WPI9v5tO8adnltA1VTwJjpZsjw5fs1+aQUrUoI7wosh+uF0f5S3vzxLq5fqM8/5rdPIwbGGX0jzSgq4AMsNbLxcDKbrBendk8KeQNHZOMxLyfHWzg11sp43Df3RJY8OaUMJxq7+XDLDSrd0QXvD4WdfO3Fh7hYVorRYJ3jH/X284vtZ2h1pGmxW8Qvbkh0JhzENpGVL2PKvDPbxAvT7QQzFnF0yWke8fZRe3GGru/7efbctvzr7R6d/R+3Uvdq98SRNmjQlCNPwoSR7hK6z1XRfaaS0a6SolAkza7TtH8mb9krqVlGwV3hhIppSoyNlNCXJU4DvZVFyXq+sihP/MIp2vaMAlZIk82QqXRlqGqZWfB5dslEkwWTGZXgCkiUEDCtu+lNVtKbrGAiM7dPNhO8+RfYRNgiUvcovJLObhFkGjtDeEij0I0fT7Z+yrOJ6qckyWrAu9FNU4tUKxkkctHrBvbsDIhAxjQl0kKxotfZyFqr1UEqStKzQiHUDVCbFsN0r8a5b/m4+F0vqYi1DVW7ye4nrfCIun0r6M6+yZAjU+oqyFQuKS+DRFqS8+RJR2Kpkaos5mx4WsF9OfuJ69Ejagt3HxQblDTolDQsfS5ORuQ5++DYnJUwZx+MTKiYukR4VCM8unRMmM1lZklVMcGyLIQZfDU66hKimCngQqqGfr0EgJ1agN22wC1PyNllgye9XfxjaBdBw8XzkXae8t1YEBG+HISAgOmk3/Dlezg5ydCihimTbl+gzcCNCl7/wS76r9cUrNgs0uAEkZg16JUUQd2+FC3HrDqnxsPJDe9hNpty8u54MyfHWugLV8w9IUAyLQLV6A7yeNt1jjX0WUm5885DQsCZi2188/IRgtsFqAK70Pmt9lMcLR1lpzNFmWoR4Im0SnfSvmmsfElD5Y1gMy9PtxPJJg76lCSHk0PYf5Sg+wUvnfEs6ZUE2x4Ic+hTU+z80CyKI/cd1vu7CGQEsZDNIk7nKuk5V0kiXHwAVjRF8gl79buDqNoq9pVFyJQQEJj00tdVnbXrVZFMFE/OuL0Jtu0c4+iHO6lotiLeEaAYMpqhIC2xLeyydU2bzGjM6ktnwJpCYjTtpydZQW+ykrBRXN9Vq4U44B0mNONe9P2bFVtE6h6GJEEFKUpFivFs/VQUG1coo1wkaSSK/Y7XT1m9pDYccnZZRQ9aaWjWIFrJPmIlmzlkHUnKILC6gBtkgyyEFb1umPKGD3pvpjaZwrIqZDaox5apw41X3Zx71kffO3P2j9KmDId/IcT+n43gKr3T+8+tYTkylbPlpfO2PCsAQixDmDSyKlNWbdIQy+SCLR9vvoUtOLwmjp1pqnYurmqZBsQCypx1sKBeK6duxWdU0nGZQI+NQM/SFkJ3RXFtlr8ug6feYHJ/KUG3GxActE/Qps2u2/fzKmme9N3g++FdjOo+Xo228pind0UEaNa00W/4iQrrO9kwaFLCVMvrUyNyM2RScPqHTbz35k7C8RLrQSFgMog0OI6USFG1IxtJfixO033J2xKZH8tonJ1s4uRYC50z1QVXPSuyVDJAFYKjtYN8pPUa28um8turMHwCLBXqWz89znlnBald1rq3O6b5nR0naXFE2elMYZcFhoDupJ2JTWLli+karwZbeXW6jYRp7R8lcoLt3RMk/pdOb78dsEhEaWOSQ08HOPTJAJ7qTHZ7rT95woCRrhK6zlTRfbaSsR5/UYS9zanTcmCa1sNWU1xf5S2GWEgQCjrzxKnvRjWRcHEcut2RpnnbFG3bJ2jdPk553Sy6pudXSzYlNF1BXmaM4ciWEoxnNMLGQkqRNhUGUmX0JivpS5aTEnMTPgoGjfYg2xwBWh0BfEqKGmeYF2b23tp3v83YIlKbDBthIVMkqCdOpUgyhJsADqZxEMROrYhTSwzlDp37JElsjBq1KHGysNwmFjl1IWvpk7BSfFTJwKZaM8e5VDtdKEVBFvPTBlcDCbJqk5lVmwwUTCsCe4PVpvmITimc/wcf57/lIzKRPUVIgu0nrPCItocSLONYu+tgCskKf5AlEqaSV5oyS6lMwkrKmyNMYtW9mCRJWDPvktgUaucW7k7ICnirDbzVBg0HUyCLBSe4TEKaU7QKbIOFypaelIkFVGIBldFL1vuUEmj8UwWXW8JMCsb+lcFYlw9frasoEMNfY6la/lp9TT3hKtQET3i6eS6yne50OZ54mmPu4SVfPz+JT8GkXolSL0dXpWatFqYB41fs9J50cuXdBiYTTQhPdubcNGF8Br8xQvt9QVp+K0HLAwnc5benLittyFwM1HNqrJWLgXoyBbY6ycwRKAm/PcmJ1ht8qLmLUudCe1g+yS+rQn371BECu8F0mUhC8LN1l3my9hqtjjRNtgySBDFDpjNhJ74JrHzhjJ2XZtp4M9iaD84oycSpemOGxDcMJnQZsGFzGez+aJDDn5qk6WA0qxFJS4wY1gpBbMZG97lKus9W0XuhgmS0eCKjqjVsqU6HA9TtnM3H368V8ZiNvq6qvF1vespX9LyiGjS1BmjdPkHb9nFqG4IoisCUrH5QGdlaviRA01VkU1pShQJwyha5nsjYiBQ0WI4aNnqTFfQmKxhOlRUFgznkNK32adocUzTbZ9Dku3syFraI1KaDsYHFODbJZBsRarL9pyLYGMHNJA4aRYwKbm9vH0uNWqfvK+f8xostZe0QWOl/hpj7oJxqZZd1HFIGClIEi1WrpRujFqlNkoGa7XovSXNJPYaQMEzltigVQsDQGQdnn/Vx7QVPvmeJq8zg4M+HOfS58LIWpLsFuVqmVLYfUxqZVGG8+LzraM6WZ0OgiezfW6SykmztP1skagvrCQFIWYW18DKiOQXlrRnKW5cOxkgE5ayaZQVjzEZtRD5RAhUSRkQw9M8N4hcAbAQHl1a1HH6jIBAjU5RG6K/T8Vbpi9YBNdjCfMjTz6vRNi4ka/HIafY6J4tekxIyA4avKImvRo7RqEQ2JJlWCAh02+g/5bRiyU87STkrEI3V4HaCBzANyh1jHD7exa4Ts7f1HGkKiasz1Zwca+XsZCMJfe530SQdPa1a9j0hs610ksdar3O0bhD1JgPX2bCTf/jxMc7rNcQP6yBDiZLgd9pPstsboMOZoiRr5RtLq/Qk7cu0Z7g9mEk7eWG6nXdmm9Cz9n3fbBzXtyNob6VICmuPaToS4fCnAux9fBrVYWIiZ6fA1geGDiOd2Vqns5VM9PmLnre7M7Rk0/VaDwXwlN1awEo6pTDQW2mpTjeqGR8tLVK5JMmkrjGYJU4TNLYE0Gxz5F4gSCsGhmLm7YCqIaMuY+PLwSWbCGAioxHRlWy9k2XZK6x3AvArcdocAbY5AtTaQus37tsk2CJSH0C4JZ1dYpYgdgbxkEKhFx8TOGkWUbzS7SnOXbMaJQHS0nNHG32ILqZaSYuoVqaQyKCQMS3VSsrXNi2hNonbX4uVikpc+oGXc8/6i/rhNBxKcOQLYTqeiC5ZO7HZYUARWcpZ8xbXjSyCZM+m5GmmyNvy1u8XEcgy2XqozdnHagt3OUTROGpFkCRwlZm4ytLU7E4za9h5O1kJQsEpZXioegj336WJTObUrFydllakciXDCsmQdZu8vkQwhizwVM1Xs6wEQn9dhIPVI1wQ9bwVb8Itp2m1z97WJL7ZYTVLnFwMvOskOqVaVt7qMkRHNTit76UqGfbf38uJn7+Gx3fraYMrhRDQGy7n1FgL7463EErP1Zg4lDSmLqOnVQyhYpNNHmjo47HW67SULAwHWOyzz7zfxj++epTATolMpXUtO1IyzJebz1JvT7DTmcKWtfJ1JexM6kvX5d0OTKTcPD+9ndOzDfm+V+7BBK5/iOB4P4kE+GrT7H9qmsNPT1HRmMw6ENaPQIWm7PSeyybsXaggnSjYJpKgpj1M66EAbYenqN0eRlbWPkLRdZmRwTL6blh2veGBckyj+HtUVodo3WERp+b2SZzO7HiuYLECgSFbKlR+DtGQLBXqplc8gUs2yQiZs5FKriSq6EtWEppX71SjhWhzBGhzTFGm3h677Z3CFpH6gEKSoIwUJdn6qRFcxNC4SillIknThtdPrUKNusPE6Waw6FC2afB81UrScajFxPR2q02LYfKGjbPP+rj8fS/puLVlNafJ3qcjHH4mTM2u2zc4uFXkAiDmCJN1X19ij5GyhMmWv1mqU94ZLwlMWcoS/PU6++dIlLlVD7WFDYOlSs3Zs1aLSd3FqWQ9Ogo+OclDjmGcclaVqNcpqV9acUlFJcLZqPdQEeFS842NzYxEZFwjMq7B+cU/x/svktg/6eCF4Daaro3jOSyQsoX/rlSaVluIUnV9zk+xaYX+U848eZodmhsEC1lCbi5HaqrCkCwC5fKkeODxG9z34W4crtunPo3GfNm48lYmE9784w4ljVdJMxNxkxY2JCQqnFE+3HKDR5q68dpXFgIUCjv5znPHuBisJXI0g3BYzdq/2HSeE+V9NDvSNNmt61jUkOlMOEiYd87frZsyz47v59RsY94f4LiSwPeDMPZrKTS7yc5PzHLoUwHajoZQFZG349/ysjMyg1dK6D1rWfamhrxFz7v8KVoOZmudDgZw+dc+MW2aMDFako8kH+ipJJMuJq/+0hhtOyZo3T5Ba/sEXv8StVVZxcnI2vhEzsZnWjY+ZQW11ilTZiBZzsV4NZfjVSTNuVnW+fVO7nVoZ3C3YItIfcAhS1BHnEqRyMakO5gpqJ+qI74hvvNl1ahNTpxWgvmq1WaAkYbrL7k5+w0/g2fmZo/K29IceSbEvk9Hb0sx9K3AamQ7R5ZyStNSZju1gCzlyNNyLQJz9ihZEiBbF7JbJ1NbyXxbuI0QEmIN5+yhjI8zqVoEEhVKjOOOEbRVTKbZPYLK7Wkqty8+gBKmRVxy6YOF/bVypCsWUIn8/+KU7c5Qvy+O7UEAiViPRO+faky/7gD8uMutQAxLzdIXJBJ6KoxF6zhTUYmB0076T7roP+Vk8kaxciYpgtr9GdT2csZDjSST1vPekgTHn7jO4Ud6sdlvT93TTNLJu+MWeRqIlOUft8k69a4Q4biDYMzNTDY0YXfFGI+1XudA9XDW7XBzCAFn32/jey8eZaZJJnE0AxLUOUL8zrZTbHPPssORwq9Y+8FoWqMneWebNKRMhT/vfYDutJVC6DwXx/fDMPbeNPX7Y+z/f02z76PTuH0ZJMjXMN8KguNOes5W0nO2kr73y8mk5obOkiyo2zFL66EArUcC1LSF11xDLATMBDz03rCIU193NYlY8T7qcidp3T5p2fV2TFBaHl2R2iMQZNSsjc96AM1QUAx5WRtfWLdzNVHF1XglPYly9AIlzyFlaHUEaHMEaLLPYFtj+4LCtXTIOjb57ioj2CJSWwBAkwStRKgWcQbwEsbGKG6mcNAgYlSua/3UPDVqmWAI65kt3ArCYwrn/t7HhX/wEQtYh7ykCHY+HuPIMyGaH7jdtXE3h1WbZkWLF9YzZZaw5knZwAc7okBpWpt5Y33J1BaJ2sLtxVpUqa50GZfSVQDUq2GO2sfWfQJNksFTaeCpNKjfv7hSMp2y05fxk7RZs+4ZUyYQcpH6ShRp2EBzSWTiErFpldi0ytiVxZclawJf9Zxt0OEzGb3kYPSSHWEUH8vVHSlajsepPaQzFmrk3Ft7SU1kk94qojz0iWscOD6Aqt2OxD0b701YiXvXg9V5wiJLJtv9U9gw6A1UMhi3SIRDyfBgYy8fab1OvTe0qmXlVKjLI3VEDmbQS6xB8InKHn6h4SK1thQ7nCk0CXQBNxIOAvqdGzJKQCBg5/++/hDTpR6khEnlf5miYirK3idnOPDvAtS0JVAkM+v6WHv6XiYlM3CpnJ5zFfScq2R6xFP0vLs0SeuhadoOT9F8YAand+2qUzjkyIdD9N6oJjxbHP1ts2dobpvK2/WqameRV0HUBAJdNtEVI69KKaaMpi9eByUETGQ8XI1XcTVexVC6pOj5EiVO67rWOwm8SoYqe4xqWxynYtDun77Fz7y92CJSWyiCSzLoELPMYmMQD0lU+rL1U00iiv+W6qesA06WTWQ5d18s8oot3CqECf2nnJx91seNl9355n6eSp1Dnwtz8HNhfNW3Z2b1ZrhpAMQ8KPPIkj0bM76eXHB9yNRWvPkW7hBWqEoJAZfSVXRnLMWjXZthn23ytk+s5JP4JAfYrCS+KjnO6VgjIdVJ5f+l8Hn/NVRMkiG5IOZdy6tZudj3yKRlIZwd1pgd1oDi2o2yljQtDyRoOR6n5YEEhmzj5As7+OEPtpFJW0OiitowD3+ik733D91STctKkDIULkzlEvfqMArsZ9tLJml0BxmfLeH6eE3+8Wp3mI+0Xuehxh5c2uquyTkV6vsv3EeoRCH6YBqhgVNJ8+XmM9xfNkyLPU2DzVIFIobMtaSdpHFnUvkkID6r8NqzdTzfupt0kx05arDre4M88RsD7Dg+i00zkCWBuUb7nhAwPeKm55ylOg1cLkNPz32OrJjU78qqTocCVLVG1nyMJOIa/d1V+UjywGRxIIWiGDS0TGfteuPUN82grHEftGx8c3HmkilhM7Jx5gW9pgwhMZAq4Uq8mqvxKmb04pj0FnuQ3a5JarQZPEpiHc4PAo+SodoWp8oex6XMKVCmAKdy+5porwe2iNQWFkCSoJQ0fjHDBE5GcBNH4xqllIoUTURxrKjIV+THnlI2pcyK+c753bYGl+uNREjm0ve8nH3Wx0z/nH+5+YEER54JseOxGModrA9eSwBEjizZ8ta824NbIVNb8eZbuJNYiSplCImzqVqGdStha69tku3azG0lUTdL4iv3JfleaBdThpsXI9v4uLcLZ4mJsyRNdccSvbV0iEzNRbuHx1Ri0wpVO9K0HEvgr7MGbbMBF68+d5ALb7dg6NaguaYpyCNPdtJxaGRDWzwYpsSVmRpOjrVybrKRpDF3Um70BDlcNYTIyLw70sLr49WAdbXcXz3CY63X2F05lm3EvjrkVKirvfXEdukkG60B6zZ3gN9qe5cGR5QOZwpv1v41klbpS9msHUkSSLdxQkgC4iGZ039Xzannqxn5vVr0Og0tqvML5nke/ONR7IqOLK2t/imdUOi/VE73Gash7uxEMXnwlidoOxKg9XCA5n0z2N1rs5ul0wpDfRV5u97YcCmi0GooCWrrg/k6p6a2KWy2W5vkNBFkVB0zN1Gds/GZcza+lKlwI1HB1VgV1xKVxAvqnVQM2p3T7HZNcp9nHJucYTytkb4li6TAXUCe3AXkyRAS02kHM7odIQnOTDXyc7ewpNuNLSK1hSUhS1BLggqRZAQ3EzgJYmcWG9UiQT0x1PysZz5lwfojLV4cJGVfeyc91vcixq7YOPusnys/8qAnrZOdzW2y/9MRDj8TorL99s7w5AIgCslSCrmon0Qh5gdA2LNWvTvdrqqYTEmYpjUBsBy24s23sCkgrMHvYsgImVPJeqYMNxKCI/YxmrTwbVu1lSbxlSgpPu7t4ofhDgYzJbwZa+ZR98CyZE9WwZ/tc9W4yPOBMS9v/aSDS+82IbKBCY3tAR5+spP2veMbRiSFgJ5QBSeziXuRjCP/XIUjyrHaflo801yZqOeF63tIZ5uburUUjzR1c6LlBlXu6JqXffb9Nn7w4lEiqkbkwRSGxzrvPllzjU/XXaHGlmG7I4UqQUbAjYSdmVyD1RwpX0ss5CohAYmwzOm/q+LMtyqJeexM/h9VGJUqXiPJ/2PfSartMWTJskyvlEAJAVODHnrOWgl7g1fLMPW5K4yiGjTuDtJ6xFKdyhtja9oXDENidKgsT5yG+iow5ql5FVUhq85pxwQt2yZxudcnmEEg0BUDXS6IMzfn4szDup2r8So645V0J8uLtp1LTtPhnGKPa5LtzgAOWcermMRM+ZZIlFvJUGWzbHtudSF5mki7COlWUErcsFFuj91148MtIrWFm0KTBC1EqRIJBvEQws44LgI4aCBKFfGsZ3eRi3bhSTcbMLEZOp/fC9BTEp0/tcIjRi7OXZSrdqQ48oUwe5+OrKlB5moxFwAhF9U0rVcAxJ3GHJkyQZaXIVNb8eZb2DwQ2X/mq1IJU+WdZAMh04GKwTHHCFVq/LaskylgzHQzZHjzRes+KUWLEsInLz7ZU6PFeNzbw/ORdjpTVXjkNEdcY6te9vignzef20XnuYb8dalt9zgPP9lJ847AhhGokaifk2MtnBpvYaogcc+rJbm/ZoD7q/sJxV282r+Tn3Tuyz/f4Jvh8dbrPFDfh11du0IRijj5zo+PcbW7nmSjQXxXCiFL+LUE/6T1NHt8E7TZ09RlrXxhQ+Zawk5q3sA516w3d3+9IQGJiMx736jkvWerSMcU0vUa0/9nJYZXpVKL8bvbTlKmLZFKtwiSMZW+i+VWUMS5SsKBYptnSXWcbYenaD0SoGFPEJtz9dvZNGFy3J+PJB/oqSKdKrZ9+Eri+V5Ordsn8JUsbIZ8K8jHmSsFceamhKqrTKW9c/VOqZKi95WrMXa7JtntmqTZPpuvi5QQeBSTqCEzkdHIrJJEueQMVfY41bY4noLUYlPAdMbJRMpFIO3ERMYuZzCRiWXsJHQbatqKeb+bsEWktrBCCFySToc0y6zQGBReEmj0i1z/qTAlUmbZIifLirClRt0qZodVzn3Tx4Vv+0jMWoMRWRPseiLKkS+EaTi0MeERawmAKIwXz1n07q5TpIWbk6mtePMt3FkIkb2ZEkJIVl1kdjc1TSvOPyI0zlJLUlKxCZ2DmUlsSQgKN6YpZT9DKviM7P+FtMjzBcsS1v/N7P/JvtfMvtYUkPZDsk4gsiFkUgK0QZXUtI3rwr/052Ufq65OM9Fm571EA4MXqvCNG/nl5b6rOe/9ufeGZlz0dVbnt9XOgyM8/GQn9a3BDfktphMuTo1b5GmwIHHPrmQ4UjXEsZp+Gt1B3hpq5ytnHmU2adnKZMnkSO0gj7VeZ3vZrdWqFapQMd1G7FCaVLW1Q+zzjfHrre9RbUvQ4UzhyVr5hlIaA+mlK04tMrX+NZ+piMJ7z1bw3rNVpKLWNc31iMnkr1aQkVVq7WF+t/FdfOryce5CwHivL1/rNNRZklcdAVSbQfPeabYdDtByOIC/dm31PjMBtxUOkQ2JiEcdRc87XSla2ifzdr3yyrXXVN0MpmQRqEIb30y8hHPhRjrjVUzrxeEVjfbZPHmq1uYl/gnruu1VTSK6wkRGQ1/hhKCzgDx5F5AnB5MpN1MZZzYExKp1digZgjE33aO19AzVMTBSTSJlo6159Ja2ye3GFpHawhKYs+pJ+Von67FSyeo/NSFcDGcJ1TWznBKSNEuRxZskSrmkvi0StRaYBvS+5eLMN3z0vOHKz6j6ajMc/nyYAz8fwVOxfuERAvIR46sNgMipTOsdAHGnsTSZ2krmuxcgBFx5r5HBrgoMQy4elM8jEWYByWA+yViEaBQ/P48wmPPIS/Z1prmQEBSuhznv9TezXDlbYjT/+gCq2yA1aeP6X+3k3MyhDd+uJdtDtP9sP77mGACpWY2+HzcxdqoqH4KzUrg/PoP7RJjxdhvX3qwm0+28+ZuykCTBnvuGeOgTnVQ3rL+NMZq2cXqimZNjLdyYnSNtimSwv2KU47X9HKgYZjhcyit9HfzZaFM+WMJnS/Chli5ONN+g1HnrakVOhersbiBTYhI/nCBjk1Ekk5+vv8THqm9Qrem056x8JlxP2gkaNx8SCgBZIJm3fq5LR2Xe+1YF7329imQkG/TRnqDltxM8V7WHpKnR5Jjldxrfxb1EAEEiotF7oYLuM5X0nq8gGiwmNeX1UbYdmaLtUID6PUEU2+rXOhJ2WAERWbve7Exxip9m02lqm8orTjX1wVUl660FAkFGMTCyNj5TSFwP1/Lc1B4iBc1xVcmg3WHVO+1yTS1LRmVJ4JFNwhmFSf3mJMoh69mapxi+eeRpJmPZ9gJpV1H8fDjmZHyynMGJSvrHqpkOFYdtIMF0YN5jmxxbRGoLWcwnToudbKSiUqgaKUEFSUaEh3FczOJgVtipEXHqpShawWfkrH/31tB64xEPylz8jo9z3/RlE6gstD0c58gXQrR/KI58i2FKuQCIQpXpZgEQxQ1tb18AxJ3GYmRqi0Td/QgGXDz3tSP0FqgW9xK8e0M0/tIQsk0Q73cy+D+aMRMKimogyQJJshJUJSl3I/t49pa1rM49Nu/5gveT/TxHZZKKR6Zwt1q2QTMtETpXQuSSD5dhsn3f2KqXR1IwPSYTr5Up+9I4decyOGKm9XzWOr7g82SBopjsODBGefXaaoyWQkpXODfVyKmxFi5N1+Vn2wE6Sic4VtvHfVWD2BWdd0da+HdvP8FAqDz/mm2lkzzWep0jtYNoyq3HqwsBZy+18YMXjhJP2khtSxNrNxCSTKU9ym+1naLdPcM2e5qarJVvVpe5nrSvvAYmZxe9hfCJdEzmzLcqOP31KpJh6+pR3prkod+YwLjfxl+PHiVjKrQ7p/nNhtM4lOJJwkxK5sILLVx/p5rhG6VFhFxz6LTuD7DtyBStB6fx1SQxV2mzTiY0+nsq83a9qfGSoudl2aSheTofSV7fPI2q3p4ejDkbX1ox8mrS5XAdL0ztIaxbBMolp+lwTbHbNckOZwD7Cvo7yVk7X0i3SJSxxDZzyDpVtjjV9ji+gsbYpoBgljxNpZ3oQkEICIY9DE1UMpy9zUY9Cz5TZDed25PAaU/R0rJ66+6dxAdl/LOFBVgdcVoKqiRoliJUiTiDwksQB+O4mRJOGohSTRxFFsg5j8kWbgohYPSinbPP+rn6EzdG2rrAOfwGBz4T4fDnw5S1rD48YmEAhEwKaRUBEJbKdDda89YThWRKlqWtePO7GKYJp1/ezmvf30MmraJqBvef6MLuzuQH55JMfkA+nzQsNmhfjmQs+tplCMDcOhQ8X/j6RdYtt1w5+/4B4eOSUQlI1ChR7t9zHfVPz2/YNl0yic8dwfboMDx6a59vCIkfh3cwio/gA/Cz/ut4lfUp1l8JdFPi8nQdp8ZaODvZSNqcG0Y1eWc4XtvHAzUDlDviBOJuftq9hzcG24mmLaVElQ0eqO/jsdbrtJTMrNt6hSJWIl9nVwOmXZB+KEbUqwISD5QN8ivNZynX0nQ4krgVgRAwmNYYTGus9tqcq5dabfhEJi5z9h8qePdrVSRC1nYra0ny4K9NsPOxEO/Ha/ibkcMYyOx2T/Jr9WewyXMERZjQ+WYNb369ncjUnOpS2RSm/cgU245MUd8RQtJEnjythERlMjJD/RV54jQ6VFZkCQSoqQ/mm+A2tU1ht9/eprFCQMC0I2lp3KplqB9P+nhuch+DiXLK1DgP+/rZ45qg2TG7qj5wORI1qytMZTQMa2CYH//Zc+TJFsevzR1rQkAwY2ci7WYq7SRlqEwF/QxPVjI0XsnwRAWxZLFqLBDZqHrZ2nVUgVBBIBEWTsJJJ8rA3XU13SJSHxiI/LlySeJ0C8XxTslgpzRLSNgYEF7iaAwIHxO4aCFMuUjMVapuYVFkEhJXfuzhzDf8TFyd62ZesyfJ0S+E2f1UFM2xshNMYQBEqsCid7MACHtBTdNmDoC408iRqa1kvrsXE8M+fvS3Rxntt2pYmndM8slfOktt3Sxp4+7f+4WAzkw513WreWuLNstB2/iaYrNXgsWS+MqlBC1qaHG79xqhSIInvN18L9xB0HDxXGQHn/Z1rmjWfa0wBXTPVnJyrIXTE81ECxL3Kp0Rjtf2c6ymn3pPyNrugRq+8f59XBhvyE89lTujfLjlBo80deO1L1/rsxoUqlCJpB29KkPiUIqUpGKTdX6x6TwPl/dRo+lsc6RRJEibEteSdkK30BtqNeETmYTMuX8o59TXqkjMWs6K0qYUD/76BB2PzyIrcDpUz9fHDmAic8g7yi/XnS9IBYahy6W89jc7mOix4vp9FQke/WwX2+6bwlOexiBrueXmQT+GITE2XErvjRr6uqoY6q9AzxQPh8sqInni1NI+gdtz+8h6fj2FxECyhJ5kCdXuINs9kwDEDY1XAh1MJkrY5Zri58o6F9Y7rRAKApdiEsySqNyxa5N1qrQE1bYYJfPI06xuZyLlYjzhYSBQwfB4JUOTlYxMVJDK2Io+X5YN/L4oaV0jknRiKhJG0UnIui8ZAjUB9kwG320Kv1kvbBGpexIF/juWjiLfiBhTv5RmH9NM4WRIWA19rxlllGSTmdzS7Z3FuRsw3adx7ps+3v9HL8mwdWFT7Sa7n7TCI+r2LX3RzQVAFJKl1QRA5BSnD7rKtBZYqWh392D7gwg9I/Pmc7t45yc7MU0ZuyPD4599n0MP9S1oEH63whRwIV3NgF4CQIcWYJctYPVGWuevuJYkvluFXTZ4ytvFd0O7CBpOfhpp55O+G6uahV8JhiIlnBxv4d2xFgLJOUuSz5bggZoBjtf00eafRpIgoau80reDl/t2MhYtyb92V8UYj7Ve50D1cLaH4vqhUIUSkkA+HGa2ygaoNDpn+e22U9Q7w7Q7UlRrFtEM6jLXkw4y63DuErBsfyk9KXHuOxWc+tsq4jMWgSppSPHgr02w62OzyNkR6BvBZv5hwkosPOYf5Jma9/OEf2bExRt/u53u01UA2Bw6x36+lwc+1YfTqZMy1JumygkBU+O+fDhEf3cVqWTxgN/jS1g1TtmAiJLSOzOYT5kKXYkKrsSr6E6UcbBkkEcqu9FkA1NAT7SaVNrJE95+fKW3RsgVBG7FZEZXCGQ0VMmkyhanyhanRE0VEeVZ3c5owsPFkUZujNQxPFHB6FQ5ekFdnQA0LYPPH0NRDSJJF9GUg6lUtuYpV50gBGpaoMQllKRATQjsU3G08RjqbILSz66vBXejsWoi1dfXx5tvvsnAwADxeJzKykoOHTrE8ePHcTgcN/+ALWwAComTyO78t4c4LQZJgioSlJFkTHIxanqYFXYu6JVUy3GaZKvZ4gcZpg43XnVz7lkffe/MNQIsbcpw+BdC7P/ZCK7S4m00PwAiZ9FbOgBiIWG61wIgtrCF1WCou5wf/u0RpsetWe2dB0f4xBfO4y1ZeaTyZocuJE6n6pgwPIDgoG2CVi2ElLXZrddQ3rIaOek3fKSyQwknGVrUMGXSxiSHFsKjpHnKd4PvhXcxpvt4JdrK457eW17uVMLNqWxc+XC0NP+4Q0lztNpK3NtdNp4nRWNRH6/27eDtoW0kdGtwblcyPNjYy0dar1PvDd3aCi2C+SqU8OjwYIQp2bJRfaSym19ovEiJmqHDmcIlW1a+gbTG0BqsfEuvSPaj5pGpTFLiwnctAhWbtkbP/voUD/7aJLufCOYJFMCL09v4wdQuAD5U2sdnqq4gSxAPabzzrTYuPt+AMGUk2eTgx4Y5/gu9aD4TIWUDYZZYtdkZl0WcsgER0UixxczhTNPSPplXnSqqwnfMNBPW7XTGK7kar8r2d5Lp8Izz5aa3KbVZhC6RseMyYb89CPZbT5tUJYFTMpnVJWxyioPeYBF5AphJObg6Vc3bXdu5OtjE+HRxM2EB2Bxp3O4EQpYIJ5wkDY1krKR4YYbAIXTUqICwiprKNgxPprFNRNGmYsgZA82jU3d/GKniFgu/bzNWTKS+/vWv85//83/mzJkzVFdXU1dXh9PpZGZmhp6eHhwOB1/84hf5wz/8Q5qbmzdynbewIuJ08/qmjYYmm7TKYWrlOH2Gj2nhZMJ0EzCdNMhR6uTohtlMNiuiUwoXvu3l3Lf8RMazh58k2H7CCo9oeyiBJFsBEIlbCICwY3J3nYq2sIWNQyqp8sp393Lm9W0gJNy+JB9/5jy7Do/cU47jlFA4mawnaDpRMLnPPkqtGss/L+aCJm8Js6aNfsNPVFjEQcOgWQlTLcdv6/YsVxM84e3iufAOetLleOJpjruHV/054bSd0+PNnBxvoXu2Kv+4KhnsrxzhwZp+DlSOYMuGHphC4sJ4PS/3dXBlqi7/+mp3mI+0Xuehxh5c2saocYUqFIB71yzjLSop4cStpPnVlvc4XDpiWfnsaWQJUlkrX/gWrHxLoqBeykjKnP/Hck79r2qigSyBqk1x/Fcn2f1kEKVgxCkE/CiwkxemtwPwRPkNnqq4gZ6Wee/HTbz7nRbScesztt03yaO/3IW/PoVuShimjDovnCMWtdPXVZWPJQ8GvEXPq5pOU2sgT5xqG4J3TIEWAiYyHjrjVVyZ19+pwhbhU9UXaXJl6+cEaIaCQ5hI63Rw2SWDUjWBqqSpV9JFx+x41Mt7Ay08f2kfN0bq59YZQAK7K4XNniFtqsTTDhLYSMQL1D0hkHUJSQdFN3CGMxBTkXMjElOgTcfQJqP4/SHKd8cp3ZmgdGccT32aVv80bw10rMv3vF1YEZE6dOgQNpuNL33pS3znO9+hsbG4X3gqleLkyZN885vf5OjRo/zFX/wFn/3sZzdkhT+4EJueOM2Hkm2+a5cMOtQgITNGn+kjJmwMmD4mTBfNSpjy2zB7eSchBAydcXD2WR/XXvBg6taXdZUZHPxsiP3PRLDXCNLIjGMnvUwAhLxEzPiWNW8LW1gcXZdqeO7vDhMOWsrvwYf6ePzn38fp3piB7p1CzNR4O9lATNjQMDjuGKZcmVPacnV9krR2VSpmqvQbfoLCcp8omNQrUerl6Lrb6laKBi3CCU8/r0TbuJisxSOn2eecvOn7ErrKuclGTo23cHm6FjM70y4h2FU2zrGafo5WD+EuqA+Jpm28NdjOK/07CMS9+dfvrx7hsdZr7K4c27DJQSHg3KVWvv/CfSSSdmRNx/uhAD1qCQjY7pniN9vepcoWZ7sjRWXWyjetK9xI2lfcD2gtyKQk3v9+Ge/8zxoik9ag2leT5vivTrLnqZkiAgWWHfQ7E3t4Y7YVgJ+p7OSx0h463ygOkqhuC3Hiy13U7gmhmzJ6QQBEOqUw0FvHjRu19HVVMzFaWrQMSTapb5rJ2/UamgNo2p1zwuTqnXLNcef3d2q1B/hoVSe1zqA1HhKgmjKqoSCtg4IoY+JVk5SoSZzzyNNgsJTXrnXw4uV9TIT9edIkFHA4UkiqIJGxYQqZuLATT87VcJe4okgpiIVdoMtIhoScMtASAtmQkbKTLUoiRYkyQ2PLGJUfi1CyI47Ns8kGrWvEiojUv/23/5YnnnhiyeftdjsnTpzgxIkT/PEf/zH9/f3rtX4fbEhZG9aiNU6bjzgVQs6v89zR6pfTHJACTAknA4aPJCrXjTJ8UopWJYxHurcGNgB6Gr73B9Vcf9GD6jIp25eh9fE4zY8lcDcZZGSZELZF37sVALGFLawdsYiNF751kMunmwAorYjy1C+do3XXzQfZdxuChp2TyQZSqLikDA86hvAuUZ+0FlVqySQ+ZXPYtHfYp4maNk7HG3g73oRbztC2iP1JN2UuBWo5Od7K+cmGosS9Ft80x2v6ub+mnzJHcS+nwVApr/Tt5NRIK+lsTYhbS/FIUzcnWm5Q5d7Ymo75KlR5a5CZPQY9egkSgqdrr/Kpuk78ik6HM4VTFpgC+lM2RjJWct9GwMhIXPxBGe98tYbIhHUd81anOfalSfY9HUTRFu5khpB4dnw/74YakRB8rvoSzSMR/u7f3s9Et1VL4y1P8OgvdbP94Ul0ZHRzTknTdZnz77Ry8qUOkonia2dV7WyeODVvm8ThuLM12YX1TtfilcTNufVVMGl3TrPbNcEe7yiqLZn/mWRTQtNV5Fv83SzylMKnJnDPI089U5W82rmLN27sZCxUgpAB2cTmSWMgk8nu53HTDtm5BKctRW3JNH49SmJcY3KmgrjNm10WyAkDJS2hZCwjsYxBVfkU2w8N0rB/qsjSeS+lOK+ISC1HouajvLyc8vLym79wC4tCYFg9NGSzYMictXRtYuI0H3JWjVpA/ySokhKUS0lGTA8jppuwsHNRr6BKStCshDfFhflWIIAMEomUzMXnfVQ+nWH7/z6Jp9H6bXNIZ6XurQCIuwsyAp9i4FNMDCBuyiQMmaRYynq5hdsJIeDSu0288K0DJGJ2JEnwwONdfOhTV7DZNy7Z7U5hQndxOlWPjoxfTvKgfRjHEgl21ll55bVStyuJbz1wyDFG1LBxNVXFy9E2nPJ1arUouinRNVvFqfEW3htvIqbPzaZXu8Icr+nnWG0/te7iJr26KXFurIlX+nZyY2auv1iDb4bHW6/zQH0fdnVjt8ECFUrWaf7wMOdtlei6QomW4Ddb36XDN0mdptOatfIlTYlrCTsRc2MM3kZG4v0flvHOV6sJj1vb01OV5sEvT7LvU9PZAfPCc6EuJP7X6CEuROqQMfm0o5PAX5Zy6vROwAqSeODn+zjw1DCSRj68JLctrr9fxxvP7ck3xC0pjdG2c5zWbCNcj3f90hDXioX1TnPfwSmn2eWaYpdrkp3OAJqSIa0YiKzFUBKg6SrKSnt6LQIZE4+awqsk8ajp7KS2hZ7JSl6/3sEbXTsZDpeCYqJoJoYzN7sikzQssidLJtUls1Q6ZnFF4kgDOpErNiZEJROtLRgeG9gAIVCSJmpKQs66bcqqg+w4NEhTxxiabbFj5N66Tt5Sat+Pf/xjXnvtNQzD4KGHHuLnfu7n1mu9PrgotEfcpYlgi6lR86FIgiYlQrUcY8DwMSVcTAoXAd2Rr59SNvnXzyXmFQZA5BLzBBLYoeFTxSf2XABEYT3TVgDE5oaEwKuYlCgGJaqOTzEXte+YAhKmTMKULHKVvcVNeUNtNVuYw+y0i598/RDdl2sBqGqY5elfPktdy60XZ29GDGZ8nEvXIJColGM84BhFu9lEVK71zzKq1J1I4rtVSBI87B4gatoYzJTwg9kOIqMebgSqSRlzzcz9tgQP1PRzvLafVt/0Alt5KOng9YHtvDawg9mkZQeVJZMjtYM81nqd7WWTt8WKPl+FqmmYxrwvxnuJGhBwwD/Kr7W8R6mWYocjRXnWyhfIKHQl7egbcFUxdLj8ozLe/moNodEsgaq0FKgDPzODap+79ptm8Rggbcr89chROmNVKJgcvjLOuW+05YMkDnxshPs/14/dpyPmTcKO9Jfx6g/3MTpotSpw+xJ8+OOXOXasC126s1OOQsBkxs3VePWCeieAMjXObtcku12TtDiCKJJAIMgoBqlcnZcA1VBQTXlNNj4ZEzs6dqFT6YoW1Y/1BSp47cZOXu/OkScsG6st+86sXdLnilFbMoNfj2KfTJHuFAQ73YTCGjMOH/EWH4kdXoQtOwFsCpSkQElaCprdmaL14Ajb9g9RUrGUQrv0d5Mw8WpJPGocvz225Os2I9ZMpP7lv/yXfPe73+Wpp55CCMHv//7v89prr/Ff/+t/Xc/1++DiLlKfipBtBLmYGrUY7JLJDnWWWjNGn+knImwM5uunIlRIiU1RP2VAUeiDRZiWTswzkhC8rhHtV2g7EqeqIb0VAHHXQOCVTUpUgxLVwKcYC0h9ypSY1RVkSeCUBU7ZRJHArZi4FbD2mDlkTPLkqpBkJUxpi0avA0wTzry2jVf+cR+ZlIqiGjz6yU6Of+w6inq3nkyXhhDQlSnjSqYSgAYlzBH7yupzlquVyiXx5azXcHuT+NYC3ZToD5fTOVPNtWA13aEK2tvH8LqTqJVpzGkJt5biSJWVuLerbKJolh6s790TrOCVvg7eG23CyKoIPluCD7V0caL5BqXOxGKLX3fMV6EU2eDAh7o446liJlGFKhl8tuF9PlrVjU8x6HCmcGStfL0pG2MbYOUzdbj8XBlv/48aZkcsAuUuz3DsVyY58LPT8/obWgxdlufIVMJQ+crwfXQnylFMk+pnU0xetpxL2+6b5KFf7MFfn8wSqLl1DwbcvPGTPVx/3wo90DSd+090cd+HuvC6UtZY4w4c3jerd2qwzbLHPcku1yQ1Bf2dBIKMbKIrRv4nUgwZbQ11UImkSipuo9Qeo7V8GluBOjo4U8ZrXTt5vXcHfcG58BSy7Q80Rae2bMZSm8IJ6NOJvGVnts/FhOkArBrIjN9G/IiPZK0n3zRMNk2UOCjZ5L361gna9g1T3z6Joi43iVP8/RTJwKsl8dkS+LQEXi2ZPy7r3HfXxNeKidSZM2c4evRo/v/f+ta3uHjxIk6nVRT4pS99iRMnTmwRqQ84rLkNserBoVfOsE8KEBCOfJzuDaOUMclNqxxa0u+/3sg1ss0UqUxLhz/kEvNy6pKIwnP/z0oGXnPi8Jk889dj1DXcebvBFpaDwJ0jToqBXzVQ5+2+aVNi1lCY1a3bQhufwC4JXLKJUzZxKnP3HbJAk8Evm/iZF2kvICkk4kahgiWRMGXSW1bBFWFq1MuP/vYow73WwKyxPcAnf+ksFbWRO7xmGwMh4P10Fb26VVzfrs6w1za1OpKziCq1WZL4bgbdlOkLl3FtpprOYDVdwaqiWieAof4Kdu0YwWHP8NjBK3ym5Ap2eeEgL2PIvDvSwst9HQyE5koStpVO8VjrNY7UDqIpt89qHo44+c5zD3C1ywr0qq+dpvLRMV4MbUNkJKrtEX6r7RQt7iANtgwttozVw8qU6EzYia2zlc/U4cpPy3j7r2sIDlsEylVmEaiDn5lPoAph7ViSLBHNqPzF4DEGUyXIKUHF/9TRBmSq28I88itd1O4NI0QxgUrEbLzz8k7Ov9OGachIkmDffQM8/MRVPL47cz1Nmwo3EuVcjVfTuWS9k0We/OrCdTQkk4yq541GkilhMxTkFdr4ZmNO+scrUExBS8k0+xuGcFTM1YANBUt5rWcnr3V30DdTQeG1o8oXoqpkhhI9ijaeIt0pEbjmIRC0MdfcyYKzMoW2T2W6tIKZdEn+cTlj9XuS0+Dxxtl1Xx8te0ew+9PWspY9TCQ0Sc+TJp8tgXte1DpA2lDQhUI46V78YzYpVkykfuu3fouHH36YP/mTP8HlctHW1sZ//I//kc9+9rOk02n+23/7b+zYsWMj1/UDhbtyDnUJNWql12BJgkopSZmUZNT0MGx6iAgb7xuVVJpxmpUw9nWqn8rVMc1XmfQlI8bnwh9sBcSp0JYXnVL4xq/WMdVlw12u88xXx6jeefu7oW/hZrBUpJxVr0Qx0OZdyzICQlnSNGsoxE2Z5fdkiZSQSBkyQQMo4P0ylmJlESuri7wzS7JUCZySwCkbzFex9LxVUM4SrTnL4FJK6AcJhi7x1k86eOu5XZiGjM2R4bHPXOLIo73cYbfPhsEQEmdStYwaVoH3Ptsk7drqZ28LVanoJkziK8RKiJNHS9JROklH2QQdpRPUe2aJmHb+MbSLkHDwUnQbn/B25RW7QNzNa/07eGOwnWja+t6qbPBAfR8fab1Oa8nMbf2Oi6lQDz16lSsVfl4KtQPwYHk/v9h0Hp+aYYcjRVlWgZjMKHQn7RjreE4wDbj6fClv/3UNM4PW9nGVZrj/l6Y49PPT2JwruQ5LhDM2/tONhwlIbuSYoOqrGSpScR7+vR7aH5lCSBKiwPas6zLn3m7j5Ms7SWWDJFp3jnPiqStU1oaXWtCGIaLb8qrTYvVOHc4pdruteif7EnWJJoKMqmPmotazcebKMjY+IWAq7KVnrJrBiXK8WpLDTQN8etcFnLa5i8toyM+r3R281r2TnukqQMJtS7GnfoQmVxBXKE60G6ZOuQj2uIjoHmCusbSsmpRti1OxK0rJjjgBewWXe7cRCnusgAkhUFKgJgSKadK6Y5T9h7upaQsQN+zZCeZcQob13bKd6rHLOj5bEp8Wx2dL4FIXToYndI2w7iCccRJOuUjqGi3eGcaiZSv9iTYFVkyk3n33Xf7Df/gPHD58mH//7/89X/3qV/ln/+yf8ad/+qcYhsHDDz/MN77xjY1c1y1scsjZWPb5g7zcpXilp3lFgkYlSpUcZ9DwMSmcTAkX07qDejm2qgu8APRsHVNmRT2ZrG7fWkENU444LTc2C48pfP1LdcwM2PBU6Xzxb0apaNuctQQfPAgckshb9fyKgX1e/xBdQDhLmmZ1hehNidPKYSIRM5VFZosFNilHskSeXLkUE4ckUCXwKiZexZw/aUgyq1pZQRdz91MfEBVruLeMH/3tEaZGrZSv7ftH+cQXzuMvuz32qzuBtJB5N1lPwHQhIThqH6NBXbvqljJlBk0vE5ssiW/lxGmCjrLJPHGab2v0Kyk+4e3ih+GdDGVK+PrsAUqMFAOjFZzvb0JkjdZlzhgfbrnOI03d+Oy3X+2Yr0I11E6z//EbfDe4m2jUjl3W+eXmszxYPohfMdjpSGGXBUbWyje+jlY+04DOFy0CNd1vESinX+f+X5rk8GensblWvl/0DJbx38bvJ+HRUEKC+r9L8MiH+9j31AiKrdi1IgRcu1jPGz/ZQ2jGUiMqa0OceOoyrTtvX8pmYb3T1XgVQyl/0XouVu+05Gch0BUDXTbzyq9iLm7jM02J0ZkSeser6Bmron+igo6acR7deY3Pf/Q0btvchOxY2M9r3Tt5rWcnPYFKGsqCNJdNs8c3hDqWJnJNZewffVwNFJMmAEdpmspdUSp3RanoiFK+PUYs5eT8pe2cvHqEdCarspkCNQlqUuD3R9l1Xx/7D3fj9qSI6XYihoP5jgynksavJfBpSXxaAruyMDExlrFZpCntJKw7SQvVksYXC6a+i7BiIqUoCn/4h3/IZz/7WX77t38bt9vNn/3Zn1FXV3fzN2/h3ocksv7WpU/oqyVUdslkuzpLrYjRZ/gICztD2Qt/sxKmcl79VHEd05zKtJTNcH5aXu62WnNEcEjl61+qIzSi4a/L8MW/GaW06c7Grn7QYZPmrHolqoFjHnEyBISNOcUpaiy9n2wcJNJCIm3IhIz5z8zVXuXtgtn7mgwOWeCQDUrnqVhGQeDFHNGy/q7njPWdQjqp8Or393L6lXYQEi5vkic+f4E99w1vKvvZeiNhqryTbCAs7KgYHHOMUqnE1/RZupAYMT2bJolPN2V6Q+VcC1ZzbaaartnKZYjTBLtKJ6jzhFZUD1atxfiQq59XY23ETBsxyYZan+JgZS8irrDPPc7DlX231b6Xw2Iq1EcevcRUo8LfTh0CoNkV5LfaTlHjiNBoy9CctfLFDYnOpCOrlK/DupjQ+VIJb/33Gqb7rHINh1/n/i9OcfhzAezulW+feEjjp9/v4LX2JowSGXXG5ENdg5z41904fAv3r+G+cl790V7GCoIkHv34VfYcGUS+DcqyKWAgVcqV2FL1TiF2uybY7S6ud1oKAoGRrYPKiW3z48x1Q2ZoqpyeLHHqGa8iYyocbunn8Y6rPPhkFx77HHmaiHh5vWcnZ4eb0SWJOtcsB9U+9sZ7mHjPw8gND4OZ4rRsSRaUbotT2RGlYleEyl1R3FVzEeij4+U899o+unobELkearpATQpsGYNtu4bZfaiPhpZJ7IpORqiEMi7SpgIIPKpFmHI3bZ511hQQy1hqUyjtJJJxzil6ueuxmS8eu6ux6rCJtrY2nn/+eb72ta/x6KOP8vu///v803/6Tzdi3T6QMMXdGf29lBq1GFZLqDxShr3KNNPZ+qk0Cv2ml4Bkp0ROIklWM9ulB4oiT5a0ApVpPXoyTfdqfP3LdUQmVEqb0/zi34ziq91cscAfBGiSiT9LmkoUA5dSfGY2BUQMOa84hQ1lU4c8CCTiWSvf9Lzn1MJarCKiJVAk8CgmnkUCL9KmlK+/Kgy9SN4lgRc9V6r58d8dJjRtDXT2H+/no599H5fn3rbPhk0b7yQbSAgNh6TzoH0Yv7J65cQUMG66GTI9xUl8agjfbezhtxLi5NWS7FwDcSpEIO7m5b6dvDGwnaSh4i+JUVEZpqw8YkUy2wyuU0Z/yEezbZY22wwNWhj1NtgZwxEn3/nJA1y9MadCfeTjF/h2aDeDU1bt28eqbvDzDZdwKTo7HSlKs4X8ExmV7qRtXey9woTrr1gEaqonS6C8Ovd9cYojnw9g96x8PKKnZc7+sInX3tzG8DNOTK+EK5zhN+rP0PxgECFkTHNunWem3Lzx3B5uXM4GSdh0Hjhxg6Mf6sa2aGT2+uFm9U7bnNPsWabeaSmYkklGMfI2vlyceSat0TVRSc9YFd1j1fQHKsiYKrJqcKhpkN95/GUebu3C65hb1lTUw8WxBobDpSSCCspohvLOKUav+rg8XrJg2U5/hqY9Iep2R3DvjONpT6Da55EbU+JGbz3vndvFRGDOPienrfqnCn+IPR/qZce+ARzODJpsoEgmCUNDBqocs5bipCZQFkxOSkSyxCmccRLJOLKJgMXKVd7aY95dLX2Ww4qJ1OzsLH/yJ39CZ2cnBw4c4I/+6I948skn+YM/+AOOHTvGf//v/519+/Zt5LpuYbNiBWrUYrgZoSqqY5JkdMmkSgoXxZ0miwx3Fjlaro5pPTF53cY3frWW2LRKRXuaL3x1FG/VFom6HVAQReEQHmVhiEPElJnVFUK6QshQ7pm6Il1IhA2LDBbDsjA6lTlylbMM2mWBLXsrYeHMYXKRyPaEKZPJtbi/g4hHbbzw9we4dKoZAH95jKd+8Rzb9kzc0fW6HQgYTk4l68mg4JFSPOQYxiWvTu0WAgLCweC8JL5mJUyZlEKWBJKUbdS7AVgpccrVN3WUTVDnXj1xAus73Jiu4sXeXZwfb0Bkrw9V7jCP1V/nocYe7KrOaMZLX7qUvnQpCaFxI1XBjVQFGgZNtlnabEGabKGbR8mvYf3OXW7l+8/PqVAfffR9bDsi/PnwA6RMFY+a4tda3uNgyRglisFORxKbbKnN3Ukbk7p28wXdbD1MuPGan7f+ey2TXRaBsnt07vvCFEefWR2BEiZcfaOGN/9uO1MOF5Nf1jCdElVmlH966F08agay9XiSBLGonZMvZYMkTCtIYv/9/Tz0sc4NDZLI1Tt1xqvoWmO901LIxZkbWRufEDAzXcrZq9u5NlLPSLAEU5YREsiKyaGWQU60X+fhthv4Hcn854RTdvqmKxjq8zP4nofxq37GrnnQU8XnekkWVLTEqd8Tpm53hLrdIZqa4qSFzERGI2HKRSQlldJ4/2obZy50EE86sitt1T859AwduwbZdaiXqrogkmSRSZ8tjkPRscs6rnn9qMA6ri3SZJGnqO5YONKSsS4wSBarzIXbiHuHRMEqiNSv/MqvMDs7yzPPPMPLL7/Mb//2b/O1r32Nv/mbv+Hll1/m85//PE8//TT/7t/9u41c33sfd6EgZcnvK1OjFoOJVceUKbDj5ZLzFgziclK5EBjIxEwNXSjoyFRKCerk2G2ZURy7bOPZX6sjEVKo3pXimf8xirvsLvzx7hLIiDnFSTXwyOYCi0XUkPNWvZCu3BNWttVBIikkkrrM/PgBpTDwQsmGXmTJliKBSxG4lIWBFxkBCaOYXOVUrY1WsYSAK+818Py3DhKPOEAS3P+Rbj78M5exOe79CYsR3cOZVC0mMmVygmOO4VWH7YRMG/2mryiJr0mJUC0VJPEJCbGO58wccerMEqfuDSROOeTS917s3cVQeG6mfU/lKI+3XWNf1UjR5zfawjTawjwsBhjXPfSmy+hLlxIzbfSky+lJl6Ng0qiFaLMHadZmVz24no/5KlR9zTSf/uS7vJho453BXQB0eCf5J63vUmpL0GzL0Ji18sWyVr7ELVr5hICu1/289ZUaJm5YPbLsboOjz0xx9AtTOLyr278GL5fy2v/cwXi3n0SbROBXNEybRItjhl9vOIczWycjkDDSEmfeauedl3aSSlr7Y1vHOCeeukxFzfonbM7VO1VxNV69oN6pNFvvtGcF9U5LLiNr40vLJlJWoensb+Qf33yQYNyDyAoyst3kYN0AH2q/zqNtNygpiNJPpDX6+0u4+EYNp3/aSHDItWA5do9O3a4w9Xsi1O0OU9sRxe428mvhVUyShkWikmKORM2G3bz73m46u5sxcjW62fqnmpJp9h3vYfueIRz2NG41jUtN4VZTOGR90US9cMZJKKs4xQ0bK5pkk7F+DIl7xso3HysmUq+88grnz5+nvb2d3/iN36C9vT3/3GOPPca5c+f41//6X2/ISm5h80KSBPJNmu/mIJiLFy8kSyurYypWmXJ9fWKySp/hJyE0RoXGlOleOFBYZwyfs/PNf1JLKqpQdyDJL3xlDKd/6QuQKSAtFBy3eCH+IEFC4Cuw6nkXaYIbN3KR5CohQyGz1fR2SRhIRE2FqKlAkaBhxbY7CxWsrKJllwSaBJpq4lsitj1RUIOVSxVcj9j2cNDJc18/RNf7Vg1uZV2IT/7yWRrabm+a2p1Cb6aEi2krhatWiXCffWxVA72YUBkwfPkkPhkz2+g8tuBzrAQ/1qxKZUyZvlUSp3p3aF3Oz7NJJ6/27+C1/h1Esul7NkXneEMvj7deo94XWvb9sgR1WpQ6LcpDrkEmdTd96VJ606WETQf9mVL6M6XImNRrYdpsQVpsszhXoQoupUK1HhjhL/sfYCLlRULw6borfLK2E4ds0uFI4c9a+cbSKr2pW7PyCQHdb/l46yu1jHdaA3Wb2+Do56c4+oUATv/qrk3Twy5e/9vtdL9bDUB6nyDwCxqmLLHdFeDL9efzxFMI6LzQwOvPzQVJVNXOcuKTl2nZMbXm77QY1rveaTHkEvXGQh4qKqcp80eRgNHpUr5/8jg941YzcFk12Vc7wofbOzmx7Tp+55zylEioXHmvmje+18KVU9WYRjFBLm+OUbc7Qv3uCPV7wpQ1JpZIIrVIVCJLolJCRpgwNFLJWyf3MxYoJ3culnSBw8iwt6OXI/dfp756Jkuc0osGQyQMzVKb0hZxSpoaazqv595ics8RqBxWTKS2b9/OV77yFX7913+dF198kebm5qLnHQ4Hf/Inf7LuK7iFzQ1rFmahGjVHmIrT8pa+GFh1TPPT8m5Wx+SWdPYo0wSFnT7DTxKVHqOEMdy0KiFK5PWtn+g/5eDvf6eWTFym6WiCz/3lGHbP0meHiKlxOllPWNjYa5ti+xqiij8IkLIXhFw4hE8xFhCnZLYJbk51Sq+w/8YWlsNcbPvsvLFULra9KPQiS7KKYtvVhYEXczbBuR5Z8RXEtgsTzr7Rxsvf3Uc6qSErJo881clDH792TzbWnQ8h4GqmghvZwvEWdZYDtokVqzUpITNoeJkUc0l81XKcRvkmSXyrUKVWQ5x2FShO6zmx1Tdbxku9uzg90pxvnlvqiPFY63Uebe7CY1v9eV+SrHCKai3GA65hpg1nllSVETScDGVKGMqU8EZMUKtGaLMHabUFcS/T43AxFepzT7/DZSr5kxsfwRAyZbY4v9l6ih3eaUqz9VCabCWJdiftTOmrLmXPQwjoedvHW1+pYeyqRSo0p8HRzwe474tTOEtWR6DiIY23v7mNCz9tQJgykmxS9oUQF/ZUYSKzxzPBL9VezAcPDPWW88oP9+WDJDy+BB968gp7jgwA63P+Xkm9Uy5pbzX1TjmYpsRYsISrQ3VcHqonnLLz0fvOc2h7LwDxlI3nzx7hZGcHQkjc19TLk7vf50jDQNF+GItonHm5gdMvN3DtbGWePNlcOrUdVm1T/Z4wdbsiOLw3/12kbOP4WJZEJXSFc+d3cPbiTmIp59w2SJvsa+3l0Qffp6VhEo8tuSAYQghrO8YNOzNpNzMpz4Jjes3In1akor519xIkIVY2B3XhwgV+/dd/nc7OTg4ePMhf//Vfs2vXro1ev9uCcDiM3+8nFArh8/nu2HpMj8/yqw//b9TWhbGVGrjKDTzlOu6KDO5y3bpfnsFVqiOv0z5+K5CyfaPSSKTmqUz6Mg1s59cxaSuoY1rJNThXTD1oevMNdMukBC1KeF3SqHredPLt361BT8m0Phjns38+juZc+vAZ1r2cT9UUbYtdWoCd2vQ9nTC2Mgg8uSa42UhyZd42SeWIU9aql9wiTpsEAk0SxZHtBYEXy+3bqXyaYHGqYFJIBMZ8/OhrRxjqrgCgoW2aT/7yGSrrbk9j3Ywp0x8txSYbNLuD3O6D1BRwPl3DoG5Fuq/mXLFUEl/zKs590hK1UplcjdNMDdeCVXTNVpK5zcQJwDAlzo418VJvB93Bqvzj7aWTPN52jcO1g6jyxozSgoaD3pRVUxUwilWOajVCm80iVT7FGjgLAecvt/K9AhXq8UcucfT+G/zN4FEuhiyl9XDJCF9ueQ+vmqbFnqEh2yMoYshcS9jXfM4TAvpOeXnzr2oZvZwlUA6DI58PcN8vTuFaJYHKBUmc+nYrqbhVo9V2dArnMzF+kt6BQOKwd5RfqL2EIglmpjy89uM93LhkBUnY7Bke+PAN7v9QN5pNz+5nUlH4xM1gCImIYSNsOAgbduKmxkDKz41Exbx6p0y23mmCHc7Aqp0guiHTP1HO+f4WboxXMxn2oaOgajqP7r3M4wcvYtN0TAGnr+3k3I1tPNjax7HGHlr807gcc8Q6FtY493o9p19qoPO9KgxDprQ+Qd3uOZteRUsceZVRwVL2+hkzZbqmfbz8+mG6B+sxUFBkg6aqSXY3DHJ4Vw+NtZMLUimFsBSnmG4nadrIGDJxw05Mtxdty3VB7jcuJFHLHKYt3mne6d/F//cTz67veqwBK+UGKyZS9zI2C5HqOt/PPzuxAnukJHCV6Lgr9CzBsoiWO/vXU5HBXWY9v5q+D8sh148pg0RaslSmjCwtXseUhTKPLOWCH25lOLyS025GSAyZXsZMN7lZ2Vo5RqMcWXP91PWXXHz392swMxLbPxzjM//3BKp98c8yhMTldCW9upW+VCHHKVMS+Vnm7do0e7TAB4xMWTU5hQER2nwPtgmhrFVv1lBImB+Mnkj3EiQEjnmx7blGxLZlBrm6ITE86mNotITRSQ+++jDV2wMkRa5J9vojbSj0RMq5Fq7ieqiSnmh5niB0+CZ4pvU8zZ7ZDVn2fOhC4nSqjgnDg4TgoG2CFm15WxosncTXLIfxLaOULAYJy2GQNjYHccohmrbxxsB2XunfyUzCIgWKZHBf3QAfbbtGa+n8XMuNRdiw5ZWqCb24T0+FEqOeKFffauHaBcu1k1Ohwk6Nv+p7gNmME1UyeKbxIh+u7LGsfM4UvuxgdySt0peyrakGUQjof9fLm1+pYeR9a91Uu8mRzwW47xcncZetMkShIEgiPGWpHFVtYR7+lR566v38YMqaTD/uH+Qz1VdJxmy8/WJHUZDEgWN9PDwvSELCqpkxTashb8aUCRv2olskd1+3/sZM+5LreSv1Tsm0yuXBBi4MNNIfqCSUcGFKUsGlR7C7aZBPHXuXCp81qROOOpFnNKrMGHVVYXwlc98tHlU5/3o9p19u4MbFCiq3xajfHcmGQoRxldxaa5Sce+OdKy38+K2DBBNu2urH2dk4zI6GEdobRrHbipdhCom4biOm24gbduK6NRKzyQZIEM/YiK205mk1mE+UFyVT1gSOlP1ujd4ZTg508G+e+Nb6rssasK5ESgiBdA+P+jYLkUrGUvyff/57HCu7xPCYi+i0ndi0SnRaIzatEpvWiM2oCGPlv4XmNLIkq5BgZfIEzJVVupwlOrJi7dsGWERJyjaylSyVSSyxD8hFlrw54rTO8xpFWMkWiAuV/oI6ARWDJjlCjby6+qkrP/bw/f+jCmFI7Pp4lJ/59xMoSwQnxUyN06k6Zk1rmTu0aXZpAWQJujKlXE5bM6ltapD9tsl7mExZfZBypKlEMRYMpHUBoYImuLF1bIK7hc0HleJEQadsoukyLtXApi094ZM2WZAmGF9DbHvKUOiKVHA9VMX1cBW9kbIFs69eLUnSUMmYKhKCR6p7+bmm9/HbNi5NLCUU3knWM2s6UTC53z5KjRpb9j1LJ/FFKJOSqzqv5BWnYDXXlyBOPluiqI9TrTu84eeukYifl3o7ODncRtqw1sdrS3Ki5QYfbrlBiePON1+OGhr92ZqqMd1btD+mZ2xUG3Eebb3ByUALPxrbhUCi1hHmt9pO0eQKUa7qbHek0CQr2KUraWd6DVY+IWDgjIc3/6qW4QtzBOrQzwW4/5cm8VSs3pExeLmE1/7nTsa7LYXUU57kwS/2suORCV4KbuP56e0AnCjt5eMl3Zx9axsnX+4glbQujtt2jXHiqct4q+OEdUtFCukLCVLIcGTrb24OBROvksKnpihRk9TbQux0Ta2q3mkm4uJ0TxvXRuoYDZUQy9gWVZ8VyWBH7SiffOA9qsuDgEBLCUS/jbrKKBU1c33cEjGVC2/UcflcFeGUg5odMep2h6naFlu12rQcknGVd97dxWTMRXPDBDsbh2mpnUCdpzgZpkTMsGfJk52EUVzfJEtgkzNkhEIs4yC1Xja+HJZM5bPiz+XskzIg5WyGWTLV4Jzl5OBO/j8f/fv1Xac1YF2J1O7du/lX/+pf8ZnPfAabzbbk67q6uvhP/+k/0dzczB/90R+tbc3vADYLkQL4V9/9bb5w+FXGEg7MRUrYhAnxWcUiVdMqsYBFrqKBHNmyCFd0WiUTX/4I1jwGvrY0Je0p/O0pSjtS+FrSaEsl95gCTQhsksAuG9gxURHcyY48K1lu0LTTZ/hIYJ2snWRoVcKUyjcfHF38jpcf/b8rQUjs+5kIn/zjySVtlaO6h3OpGjIoaBgctY8tGBBZReRWgW6zOssh28Q9Q6bs85rg2hdpghvKNcHVFaJbxOkDi3RK4fUf7OHdl7YjIWhqCvL05y6ye/c4roJUwfn7UCHEvNj2wlTBjJBI6BpdkUquhSq5Hq6iP1qGMc8qVaIl2OmfZKdvkg7/FHXOEGHdztd7j/BuwFIUHEqGTzVc4aN1NxbUFtwqoqbGO8kGYsKGDZ3jjhHKlOSy71lREt8ysIhTBddmqrg2W033bMWmIE5gKWyXJut5qbeDK1N1+ccbfTN8tK2TB+r770jz3JshHHXw7RcfYNj04WmL4GyIFYUDJDMqMzEXTdosv1h3Aaeq02pPU59VDsJZK19qDVa+wbMe3virGobOeQFQbBaBOvbLk7jXQKCmh5288bc76MoGSWgOnaOfGeDg08OoNpMfTu3k9WArIHisrAfvqODM+W3E0BBuE3tVCl9TlIxNImzYSYuVDdI1ycCnJPEpaXxKMk+YfMrczSVn8vuhXdFxymnSy1jRTAHd41Wc622le7KKQNRj7esL9mWBW0tTXxKko36EbZ4x3LYYvuYIbtXALzK4kwZ+31zNUzKucONSBSPjfnSnQk1HFE/ZBvRjEybTUy5mw06qK2doqA4sqJnMmDIxfY44WcRo8QNWlU1UybCsfRlHvgxi3WBmZSdprr+oJOWsw4ucz7MPiWxIUZN75t4kUi+//DJ/+Id/SG9vLx/96Ec5evQodXV1OBwOgsEgV69e5a233uLKlSv87u/+Lv/iX/wL/H7/un6hjcTdRKRWg3RcthStGYVESiWNhGmXkL0m9goDW+niFyTTgOigjVCPjVCPPf83NqwhTAmb27DshBWWndBTUWApzP/N4PQbSyTNbAyWu84LAeOmi0HTm7fAlEpJWpQwLmlxqf3M1308/28qATj0+RCf+L8Ci34fU8CVdCXdulVQaxc69qQgmHIxk3YRSLmIGTZcSgankqHMHcXnSyBJIGfAl0njVjLW82oGl5LGlf3/eg/c1hOaNBcOUaIaOOcNek0BYWMuHCJibHxk9u2CYUj0DNTgdKSorwkib1Btxr2Ivs4qfvS1w8wGrJnzvfcP8rHPX8DtXRgQICOK6q8skmWpWvNr6goR1VV6oiX0xkrojfnpi/npjfkJZVRavEE6fJPs9E9S7SieyZYQ2BSdtKFyI1zJN/oO0Re1LLmVjiifb7nAkbLhdSEVQcPOO8kG0qi4pDQPOobxLmPHW00SXyGKiFOwmu7QUsRpko7SCXaVjVPnCd/6F1wFErrKO0PbeKm3g4mYdQ2WMDlUM8xH2zrZUb451fulaqEePNbJW5FmLsTq8DhSReeHVtssv1vZSY1mTeQNpzX6U6vvdjh03s2bf1XLwJksgdJMDn5mmuO/PIm7avX2sXhI451vtXHhp40Ypozwm7R+LEDTY9Mk7Sph3c6VWBUzugsJgSKJJV0q8+GUM/iUVAE5SuJTUvjVJD41hVdJYxPGqn7jxYhUJGHn4mAjl4caGJwuJ5xyLrpdFUxKXTFaKgLsrR+iIh5i8pqb0U4PrqoEj3y5h7qyGKVyGkdBSEsmLTMy6iOiO5DLQb71ll7zIJAlE1XOgGEiDBOvZ6HyOh3ykhQqwiaI63bSpsLNJiUlQFN0EJJFuow1pvAt+uFWyYYEWdK09LhF5NN1C5ZdcPq6Z4lUDm+99Rbf+ta3ePPNNxkYGCCRSFBRUcGhQ4d44okn+OIXv0hpaem6fIHbiXuFSOXqmCw7nmXJSyNZNQZLnKEUIdBME5ISxqxMckIlNqwSnbQtULhiAQ09tXJmJCsCV3kmH5Ixn3C5K+aeW6reaC1Y7tSgF9RPiaxhN1c/pRUMRk79Dz8v/3ur6P3+X5nlsT+cJmLYmU5nyVHaxXTKRUh34PPHcTusQWDPTDmdkzU3rQSr885yqG4IWYLRsI9zo42LvkeVjCypSuNSM3mC5VLSOJVMwWNz5MtVQMbWk4ipUqFVT8etzItRFtbMak51Ct9DTXBzMAyJs5faeOXtvczMWgMYpyNFe8s421vH2d46RlnJ2mJ173UkYhov/sN+Lr7TCoCvNM6TXzzH9v3ja/g0QdrQCCa9pHUbNkmiyp6kxR2iwRldllgki4Iu5hStlJCQIE+kBBKmgHemWvh2/wFmM1aNSIdvgi+0nafJPbuG9bYwrrs5narDQMYvJ3nQPrxkUfxqk/hWTpwmLPJUNkGta05xytVK3Y7q6amYh5f7dvLmYDsJ3VLYnGqaR5q6eaz1OpXu6MavxBoRjjr47nPHuDIvka+yMsw3hw7wypTVIqbNPc1TjVeZFi5q1AxfrujCKRtEDJWvTm8naki02oLUaZEV1fYMX3Dz5ldq6T9tnX9k1eTgz05z/Fcm8VTfnEDpQiKsOwjplq0umHLS1VXByGQJukfCLAHTByuNipTiEl45RY0/jF+ziJE/T5oswmRb5jo0v15qpVAlg8mgl7MDLVwfrWE87CdlLMJshMCu6FT7wuysGaOjbBiGBSNXvYxe8THR7cbUZfZ+ZJSnf+8KjTURnAXHlWFIhJIO4oqNqG6/xSrvBSuHIhmociZ/U+ZtK1PA8GQFPcN1JA2VmuYpNPvqruuyJLDJOmmhEs04yJhr9xtKeYXJIkxL5jDnm7kv/5uaBkTG3MwOupkd8pIcseO+L8F/+b2vrnkd1wtbYROrwN1GpArrmPLBD5K0fB2TEGgIbMIKfNCEVc+0mlOCEKDHJeJBhUhAswhWQFtAtqIBjcTs6kig3avjySlc5fOIVgEBc/hWPmu13MsSQqHf8DEjrMGRgkmpmcJIqZz6SQVXLpShV9jwHJAwazSm064F9RSV7giHa4ewqQYZQ+bCWAORhJMyW5zywps9hkdNkzRU4oZG3LCR0DWSsozqsRKMYkkbPROVxAwbCcNG3Fj9DOViuBUi5lXSVNgyedXJs0jyT9Sca4Ibvoeb4OqGzNn3LQIVDFlKituVxDBkkqliu3OpP8r21jG2t47R3jKB27Vx9TV3A4SAznP1/PTZQ8TCVmPdox/q4SOfuYzdsfKZ81DazvVwFddCVVwPVzISL1nwmhpHmD0l4zxQPsI+/xRV9mRRdPv8gJNCGMKqxUoKCOkqEUMhaliR7UlD5cfDu/jJSAe6UJAQPJqtn/Ktsn5qIOPjfLoGgUSVHON+x0jRJE4Oc0l8bszsmXqxJL60IdMXXjtxWgySJDYsqlgIuD5dzYu9HVwYb8hfhardIR5vu8ZDjb041FsryN9ILKZCPfbIJT7y4GUm0h7+svcYQ4kSAD5RfY3P1F/GJpu02dPUZq18A2kX/3lyDxMFfY7skk6LLUibLUiDFl5AqkYuuXjzr2rpO2WNUWTV5MDPzHD8yxN4swQqZSqEswQpVECWrPtWnVLUWDq0oRAyJl4ljUdJMZN2EtIdCAGOSxpaj4Ych4N7B3n0o524vbd2jluOTKUyKqGYk9moi+HpUvqnKhgL+wklnYuOYCRT4LUnaSybYVfdME1iimCXk5ErXkav+ohMzX3/mqYID36yn0d+tp+SgjAMU0DUsBPRHUR1e/74u3UIFElHU+aIkzzvd9YNmf6xam4M1XN9qIHgrI8HDt6gadsQ0hr4jyYbyJIgYdiIZeyrmNwUFpeWLHU4n79RKChlhwRihb0D9ZRMaNjN7JCH2UEPoUEPoREPpl64fQW1J6b4m//wFytcz43DFpFaBTYzkbII05y6lAt+MJe4CkpZwpQjSpoQ+eCHWx7iSiIfL3uz+RBDp6iOK0ey8oSrgIQZ6ZWfpBTNzCcU5ohXobLlrphLMVQ0a10lIGGoTKddBFJuZtJOptNuptMuDEXQUjadL1wOpRy8O9rCUKSU+VtMQlCiJSi3xWgqDeJyp5AksAmDnfI09fZIvpP7SjGhuziVqsdEplKOccwxgioJTAEpM0u8dFuWgGlFRKzw/9brrP+vlYg5ZJ0j/kmOl45xrHSMvZ7pBXHCAwkPndESeuJeBhNukMVtU8TuBHRD5szFNl59Z45AedwJThy/wrHDXSiKyfBYOd19Ndzoq2VwuGKug3wWddUzeWLV2jiFpn1wGjNHZh385BuHuH7BikEurwnz9C+fpbH95klrwZQzn6h3LVzFeGLhubnOGaIjW+O00z9FiW25+iKrwXBxXLt13yGLRSfgc5MFEUMmYigMxd38j97DvBtoAVZXPyUE3MiUcTVj2YUblRCH7eMLlnuzJD4rVa+Ca8FqrgWr6A5Vos/b51ZLnOZjI1SpjCFzaqSVF3s7GA6X5R/fUznKR9s62Vs1uuJ+WXcKS6lQtVWzvDndwtcHD5E2Vbxqkt9oPc0+/wRO2WSXI4lbsbbnUFpjIK1hCJnRjJfetBWrnhRzaoomGTRrs7Tagmjdad75qxp6LvoxyxSolKn9cIKqB1MknRoh3UlItxM2HCRWGtogTJSwwJySkUPgSOm07wywfccUPs2qR/IoaTJC4avDh+lOlIMOvhft2IcU2nePceKTl6movrXWBIYpEYk7mI2682RpJuImFHMxG3URjLqI63aEAkJmYespYX2XcneUbVWT7CofwTmdYOKam9GrXsavezEyxW+qbopw4rO9HPnQCJXVc4ERprD6PkYzTqK6Y53Ik8gTJi37d/5xmMkodA/UcW24gRsj9fSO1pLWVXY0jPMzD52nrGqGaf1mHTUXwlLXM5hCJqrbSRpL5xvkyFyujim/pNwdsTBsT0KyQiWWQCqqMjvoYXbIIkyzgx4iE6557xFIJSb2bUlce2KozRkoF/hn0vzZp/52Vd93I7BFpFaBzUKkEnqQ//LGb3Og6QZBw0YaBWOpq1+eMGUT87L/X/3htnLIkkCWzXW1awkBqYhSQLRywRka0YA693dGIxlaQqGTwPAqZMpV9DKNTJlKplxFVCnoFSppv4ZuX1ohkxBsL5vkaPUATs0iQrNBO6BRoiQpt1nkqdSWQBcy76VqCZjWTGKrGmSfbWpVcavzMWU4OZlswECmTI7zoGMEbbnmmSvASohY2lSotSdod0XY5Qmy0z2LNo849ce9nAzWcnK2lneDNUxnnEsscXFsJmviamARqG288vYeZsMWgfK6E5x48AoPHOrCtgQZSqVV+gar6OqvoauvlvHJYquzqhi0NE5mrYBj92x9lTDh/FutvPTt/aSSGrJs8tAnrvHwk9dQl0joCyRdRYrTZNJb9LyEoME1y07/VJ44+bT1Uvus2Ha3bOBTdVwSeBVz0ch2XcBkysHrU028OdXIxVAlBiafb7nI4bKRRQmLEHAxXUVftiXCYi0Qlkriq5eizIS9XF+GOPkLwiE6SieocUVu2V66XqpUMOnk1f4dvNa/g2jaqu+yKToPNvTwWNt16r2hW1vAbcByKlQahf81cIR3Z5oA2O2d4DdaT1NiS1KlZmh3pFEkK33yetLBrFH825kCIrqN/kwp/ekSAoabTEHmrWlCPK1ZKWwZ200H+DZJp0RN4lOT+LN1SP7sfWYEl77VQN+bVVbNjEPn6GcGOfj00AK7WDyj8l+6HmRKcSGlwfe8nUYlzEeevkRze2BF2yyR1ghFLVI0G3Nbf/P/dxGOOTELAjZybrAccRIL8ogEPnuSWv8s7ZWTNIgp0kMSY50eRq/4CI07FqyH05dh96MTHPvYEDv2BPB55s4ZQkBYaMwaNmJpJ9IKgzGWgoQ5R5yUDIqkLzgODUNmbLKc8+9v4/2+VvqClRjZ411VdB7Y081jR67SUBpmWleZzqx+VKfIAk3SSRsaUd1OJuumWdKWV8xtCg55qfDhuUfE3HNCQHzGnleYZoesW2Jm4W8h+Q2cO+O4dsdRmzIYpWBoC/dnfzrJXz66RaTWDS0tLQwMDCx4/Hd+53f48z//c5LJJH/wB3/AN7/5TVKpFE888QR/8Rd/QXV19YqXsVmIVCB5jR8M/vqCxxWRjRQv+Ls+xq9VYBVq1HojY8rMpJ1Mxt2MB71MRDwEki6CuouQ5CBms2PKN589kqMG2kwGdUZHm9HRpnXUmQyOaBrbbBoiOk2/nKDxi0kkDRAC56ROVTyGvzRNwq9xRq8jJVQUTA7Zx2lU16dZ6LTh4GSygQwKpXKCBx3Di9Y/3Bqs/hM5q55vkSa4yWwT3BldYTJtZyabBGQpXRuriC2G203EdF3mvYvbePWdvcyGLbLs9cT58INXeOBg96rVpEjUQXd/DV19FrEKRYqbeebqq9pbxtnRdm/UV01PePjx144wcMNSXupaZvjkL5+humEuwEAImEx6uB6u5HqoimvhKqZTxdtGwqTJPZtVnKbY4ZvCoy0MpFhPFIZNCMAuWceMVzHyfxcLuZhMOrkYqmQs6aTeE/j/s/ff0XGl150u/JxUOQIoFHImAKYmmx3VQZ3VynKQZMu2rmU5yPad8cx4zdwwa9bn8fWMJ17fufadGcljW7Jlq2WP3baVOqizOpOdGAESIEgiFICqQuV4wvv9cQoFFFAgwdQkJf/WKlSh4qlTJ7zPu/f+bVxauZ7magqJQ5VOFkw/ILjJscywlm54/UYnPskSZFM+3p3rZSrT/r6A0+Z1cXlRqdOpVp45vZODC/11t8QWd4GHBia4t38Kn+Pq/pZXStm8i8efuINjkzYorUahuqJpThfCfPn0ncQrPmQsfqL7KB/pmESVBCOuKtHaxFys6uSJVAeLVR/pjel2xkbnNLumx6dV8WqVBpdCIcCyZByWSUAuE14HSavA1KzWrphRee0vh3nnyV4sU0aSLfY8ssAdP3UGT2izwcmJUx38efomygEZqQxdL8OH7jzG7ptn64ZLhinXo0jpvLcOR+tBqapfOEImSRZuTwUUKFkautkIM0FPkZ1dMUY7FxmJLlNcUDj+VISTz7ZSymx4f0kQGSjStTvLjluT7LpliY7WxkwRISAnVFKWk7SpIZsaiiXbEZaLlITZkKanSJtLDywhU9EdnJmN8upruzl0ZAe6S8Z0Uq9dD3iL3H/LcW7fPUXAVcEpCZKGysolQJRDNpEli6LppGQ6ELAWZdoSmDY+2ChR+ytMmXzMU4el9DkfmVkf1cLm31nym/j2FHDvLKL06phhCUNtkoqJwCtV8EsV/HKFHe5lJhZ7+DcP/ZCaTVwLxeNxTHPtwHD06FEeeeQRnn/+ee6//35+7dd+je9+97t87WtfIxgM8o/+0T9ClmVeeeWVbX/G9QJShlXmK+9+iqFAgqohoQnpshvYXinJsu0mc6XNA1Y7bCernk2Xlbqhw4WjIBKCsFai1VmkRSsQFGW85QquQhUtZaDEdSrxmm18Yi3qVclvTjp2dpoM/nqeyEP2zJVRkEi850K6WUFSJIx5sL6p47XWHAp9GxwMnd6Lh6C06eSVmotXQC5zj2sOp3Q5aWAC74YmuOqGn69qSaRNhVTNkrx8gVzn7f76loCypTaFsKKxAcBMbR2YrT3//QQxJwazZ9s4erifQtaNrEsEnCUe+sAxbr8EgGomISC+EmBqxgar6bMdP1T1VaYh8fozo7z07V0YuoLmMLj/U8e4/aFTSBLESn4ms+21Pk4RUlVPw+tlLAZ8K4zXIk47Agk86lWwEz6PGkGq2fZnuwiuhyuvbDVNScsbMjlL4b1yCyeqYWK6k5udS3SrawYKRaFy2giQwZ69NUyZw7O9vDfbh7FuQPl+gNNG2QOvi4tKGZbE27E+vn96nOlUe/3+HS1LPDI0wc0dsyg3SARWCHj32AB/99TtFEuNUShJFnxvcYxvLe5CSBJBrcSdbedQFQufbPLLHZP0OIuYAv5ocRd/urTzvOdOCYFHVCFuUT0jIa+YKCsmvb1Zxh9KYYRUYoaPjOVueE2nmmPQYacAeuTNaeVGVeLtb/fx2l8PUSnag92BWxPc/flpWnuLm56fXPLx5NM38d5oEDMkkEuwdylNf8cKuZKnIaKUL7m2dYz2usqEfEVC3iIhX5GAt4iJxErRx3wqxHwq3BCVUhWD4Wicsc5FxjoWiQRyVIsKp15o4cRTbSxNrjVBdnoNunZl6dqVo3t3lr5dadoCRQJqGbeyduywU3Q1ViyNjHBgCBnFktFM5SIAas1Rz07Tq24yhgAwLQXd0jAsjflYK6+9vpN33xukZDkw3BKWY+3z+jvi3HfgOHtG7P3CIdktH+K6DVEXdOJbV7ckYeFUDAwhUzIcVETt9av24muv2ta3Nat2PVOqnprnJzvvxaxuHjPJAQP/vjzusRJyj44RkjDUZgVdAq9UrUFTGb9UxidVGzJ6+jwrvDI3xu/8A0hdPf3Tf/pP+c53vsOpU6fIZrNEIhG+8Y1v8OlPfxqAiYkJdu7cyWuvvcadd965rfe8XkAKrqz9+RXTZUSjLAEZ3VWvSapfatbgyapnW834HJJBq9M2b1hv5rB6O+woXXR6nVmFx/9ZlFPP+ZE1idt+PkO416o3Qdb9Mr6Pmbj67W9tConlQ26m/zcP4gLuhauNkFfBKthZZeSeDD37z9+gL2s5eLncS0Wo+KQK97hmcW/h5rVZAo8sCClGvQnuxqi5Lqj3cUqbKkVre0WibPtZV0Y3Aoh5VJ39wRgjvgvX+zSTaUn1+qpTM52cvYHrq2JnQ3znz25hcdZOXRvcucSBz55kQfbXwSm7IS1UkUyGfCuMBZcZD8QZCSRwXWSN4ZXWhUFqs2QEPsVCshTyVR897gL9ns2RaqtWb5XRFU7mQxythCk47Wb3liVxItbFO2cGKOkOgo4SO2vQNB5eIvo+gFMzbTcqla86ePHsDp6bGSNVtiOLimRye/cZHhmaYCC0cvUXdgsde7WbJ/9oHy6vTrijQDiap6WjYN/uKBBuL6A6Gs9s8ayXx1+8jamlKLgt/O15BkYXMRwyK7qb5aqvibGT4FMtM/yznndxyRbLVRe/dfYO3iu02k52apmQUl5LtatdjDnBu38U5tQztTRgSbD70RT3/PIiLX3VBgBLmS5mqiFmqmGSpqfhs6NqgUEtxaAjjU+qMPGDDl78+ijZuL3fRQZz3POFKXr3pqkaCplaDVI67yG+EuDUqQ6WKj6qtxfBLaAsoRzxIpW2PmGpimFD0jpQWvu/QNBXwqGa5EpOJmMdTCx0cjIWpVBpTPtqD2QZ74ox1rXIcHsch2oggNn3Ahx/IsL0y2GMir0csmIxcGeafR9ZYucdy6CAv5bK6NkAT0VTI2M6SaKi10JpsiWhmQryBXt2NTrqaYqOvCFLRAgwhYphaeimDU/FkpPDhwc4dGiEhVgLpgsMl4SozWJKksVNI+e478AJ+jvXUiSdkoUmC+JVlZSxGaJWU/JArIMnYS+nbKFKFpVaKp+5OSfyvKrm1XqEKX3OT2bWR27Rg7A2v4ca0gncnMM1WkLuNtCDErrSbKwq8NSgKSCV8csVfFLlguO0HwmQuu+++/jFX/xFPvOZz+B2X1y9xOWqWq3S1dXFb/7mb/Iv/+W/5LnnnuOhhx4ilUoRCoXqz+vv7+ef/tN/yj/7Z/+s6ftUKhUqlbWZ3mw2S29v7z+A1BaSFYFM82hU1ZLrQLQ+irT6f0r3bGqC2Uw+tUKro1ADpFL9doujSKuziE+pXtGBhFGRePw3oky96EXRBD/+/y4y+mCx4RsmTRcHK50IScKrrB0AHDkD9YhJeUapG2bk1xlrVM/TCNnbojP6QIbxh9P03pxvClU5S+OVci8loeGVqtzjmm062wgClyTqfZxCirmppsMQkKm56l1OE9wbLdvsQiCW0x3MLLZzdrmVKgpCBclp4vDqWCoXBWK3hWf5TPcR2pybZ3gvRjdifZVelXnx27t57fs7qARljF4L3805FlUfeaPRHUyVTIb9ybo5xLA/iVO5vsDwUkBqoyYzEZ5Z2sE9vWfZ4cnSoxYZ1Ap4mzjRlS2Z0yU/h5Y6iVfcSEqVHv/KNQOnjbpQVGo+G+T7Mzt5fW6Qai2CFnCUuH/gJA8MnCToOn9z4autyYMdPP5fbkNY9jlIIBBusIICEQArILCCAiViILeamAGoOBXMJilIzSRjEVZLdDryfKnzOLf57UmVcxU3B3N+XIqOT6k2jVjGp128/D86mFgHULseSXH3Ly/RNlC5YPZH1nQwUw0zUw2xbPoaH4xJ5N7yUpz0IAmZtr0FpCD1OqViZbNzn/CYmHsL4BRQklEPe/Ar1ToUhXxFwjVICtagyeuqNN1OTUviTLyNyYUOJmMdzK20NDzu1HRGO5bsqFNXjBbf2rEzn9A48VQbx5+OkFlYA66WvhI7Pxxn7KEk/nCVdmeWsFbEtc7AQQg7PTBruMiYDkoyWLVjpCRAM1RkIW0Rhbqwo54QYFg2OK1eBDJCwNmzEQ4dGuHYsT6qporhkjBc1G3kXY4qd+49xT37JggHGs8VTslCkwTLukbGVJBqX2jVzXAVmNYk1du3OGoTrQXDQdl0nPe4JQSUUs4aMNlpeelzforJzfVMAM5IGf/+HK4dZeQuE90vU2kKTdSgqVyPNvmkCuol1I7fiCB10SP1m2++mX/+z/85//gf/2M++9nP8ou/+Ivbjvxcrv7u7/6OdDrNF77wBQAWFxdxOBwNEAUQjUZZXNy6N8m/+3f/jt/+7d++ikv6wyEhoGBpZCpu2/FuHSStwlPWaL4DrpeMRdhR2hRFaq1BUoujiHPbUZfLV7Uo8df/awdnXvOguiw+/f8tMnSP7donsL/3aSPM0WoEgYSPKnuVBDkczFteqn6V6l0K7XeXOKAkcG6Ypao3Ql5NI0xqLE24OflikMKKxjt/08Y7f9OGp0Vn7IEMYw+l6bs5j1zbG/2yzr2uWV4u91AQDl4q93GPaxafrOOQ1lL1QqqJa8NA2hRrTXBTNfvmy43MXAfjuYuWLIFHMfBsiHDousIb747wxqvjZPMeXEBHoMADdx3ltn3TqKr9W24nIrZU8fPGSi8HU728k+7iw9GTfLRjAtclwoHTYTA+ssD4yALQvL5q6kwnU2c6efKFm69pfZUpJF4/NsiTr+8h6XNR/qzd7NuW7fDlkA1G/AnGgnHGA8sM+pPn7Sfzw6KAp0hPV4LTlo/34q28enqEqqFwf9dpHu2bot9ZoFMt06FUcMkWu7wZdg2tGS6ULanuEpgzZfLmtWsrILDduSREfRhnCTi81M0zp3dyPNFZf25fMMkjgxPc3n2moa7n/ZIlIGc6yRou0oaL0+faeOt4P+ZPWLj7ihA2yePEbNolvoklXBXkjISjYOE2dcoBhWWPG8uSCUslvth3iNFQAp9istNdwV2L3J2pasxVJdqdhabLmZhx8vL/6OTE90N1B7Pxh1Pc+yuLtA1VsATnhahSRSOV95LKe8nlPSh5N86Kg6ymYYVMXJEyUqfA//E8/o/nKaedJOb9ZOf8VDJOVo/oqmwiVUBUJPAYVG4qgQNa5SI/13+Yrr1Z1Iv4HVfyHiZjHUwudHJyMUplQ31UT8tKDZwWGYgkGlI8TV3i9Gshjj8Z4dxbwXokxOExGX0gwfiHkkTH8vi1Cm2OPGGt2AA5RdOGp5zhQhcyumJiKlZ9AkC1ZNRNaXyiwU2vmaOeDU5aPVXPsBqb2ObzTt59d4hDh4ZJJIJYChhuCdNF/XmtwRz37p/gtt1TuBzrzke1tDy3ZCFLgriukRdKbb2sXuyMEdHEIU+SLByyiW4pFE0n1Q0tD4QFuSVP3THPdtDzU803zwDydBUJ7M/hHKlAh4HuUyjLGhZQRIF1Biju1fS8WqTJL1VQr3hN942jS0rtMwyDb33rW/zpn/4pTzzxBCMjI3zxi1/k85///EWZPFysHn30URwOB9/+9rcB+MY3vsEv/MIvNESXAG6//XYeeOAB/sN/+A9N3+cfIlK2TCGR1l11KFrR3WuQpNvXFevCy+CUjcYIUg2QVmEppJWuG1vbSl7iL7/Uydxbbhwei898OUb/7WuzplUh806lg5hpO4Z1K1ludi7VXfQqQuasGSAu7LQKGYseOU+XnG9ahL5epi5x9qCPiWdDnHwhSDm7tm49YZ3R+zOMP5Sm7xYbqkqWyjvVDjq1CuPODLud6U29nOzBg1yrc1LJXgFw2qjr5Ke7LOm6wuvv7OCFV3eTK9iR9FATgLpYnSsG+ebsPibydj1IUCvx6e6jfKDl7BXd5i+mvmpkcJEdA4tXtL7KsCTO5FuYyLZzIhVlMh3B2BBOdck6OwLxuqveoC+FeoOB06VEpKqmwnSmjYlUO/O6n47uFRRZkMz6eGNiiN62FW4bmCFQi86Uqyqj2gq9Wg6vYhFYV2/lka2mg7niOgv2rGk3E36/7IYkAFlQ0lVePjfCszNjLBcCtccsDnTO8vDQBKMty1cN5A0hkzWcpGvmDGlz1ajBvi9juMiZ2+/345Wr9dQ6j1Ulu+Dj9FQnZl6DokxrNod6xqJa1NADsPgxlXKX/d6B90wiL5jIhuDTnz3G//IzR9BUQbag8fyJdgyXRShawOFqnFBJnnXyyh91cOzJcH1QPPZgmnt/JUZkpIwlJAxTIVNw10EplffY1zkv6YJ9u1zd2sYaQHEaBLpytPSncbaVWc+NTtPAnzOJvRhl+b1WJCS0HUXi95vokkKfK80v97zVkCK3lXRDYXo5wuSCnbK3nG0cO3mdZUY7l+yUvc5F/O7Nx6PEjJvjT0aYeLaV8jrjiO6bsuz6cJyRe1bweHVa1AItWqEh9bdsquQNJynD7vEoEJiyha6Y9ZOWbEl2FAppW456lpDqwKSbGqbYnGJnWRJTUx289dYIJ070YFoylgNMDw2RzKHuJT548wl2D82hKOv31lWrcXBJ9hRJXFfJWbVjzjZG5HbKoUXZdFAwHOi6SnbeuwZM53xk5nxN65kkWeDvy+O/KY9juAJRi6pXpiQ1QuKqXOi1eqZK/fpyXYW3lqDPk7rhIlKXXSO1vLzMH/7hH/Jv/+2/xTRNPvrRj/Ibv/EbPPjgg5fztpt09uxZhoaGePzxx/nUpz4FcMmpfRv1w1ojVbGUWs+kRjiy/3eT0t3bOvEE1HITSCrQUkvB8yqbZ3KuR5XSMt/85U5iR1y4AiY/9YcxuvevHdzTppM3K10UhQMZiz2OOINqeq2gc51ylsaMFSRXc9lyYDCg5GiTSttaF6YBZw/616CqZu3uCxjccv8K934qzs79OcK+xoiKEJCrNcFdTdm70gYg63UD/KznVVVXeP3tHbz42nqAyvPg3Ue5dd/pi5px3UpCwNvpLv5q7ibiVTvFZsCzwud632PHJdZPXUgXV1+1yGDv8kXVV+mWzOlca91V71SubdOMp1wVRI0CHxg5zZ62Rfp9qctqA3A9aDsgtR6cJlaiTGfaMITCUMcSewZnkSSIp/y4KyYDncvItX52uqHw+uwQk/EOu/9U7zEe6TzVAJtKrd7KBisbrjZGncGOPOfXRa1y5oWNYi5V8YKPZ8+M8fK5YUqGfbzzaBU+2DfFg4OTtHmaR162q7Kl1KNIdtPYdbdroFSwttdEVkLgpUpl3glpibCzxC23niHsWKtJCiiVupvnRke+rugKP/XJV+mKphACXlkY4C9i+ymj4TBN9k3HcR+XqGQ1fu2X3uGeu2cBeO31bn7vv9xJPr+2nL5wiXC0gNdfInVaYemYhoXAdEpEb6/Sc18Fw+1gZRWacl6yRff2DRw8RaS8IDvjhBwoJZOegRXu+fEp+obttN+KUJjT/ZzVgyzofqx1VGVmFNy6yaQcJlt1MexO8cWet5q6/kHNaTPrZ3Khk4mFDqaXIw2GKJJk0d+WZLxrkfGuGN0tqaaTSZWCwsnnWjj+VKTBOMLbWmXnhxLsejROqLtMUC3RquUJqOX6OdUUEitVL4mqDxMZt6xTFQqmZAOUWE3jsyScJjjltRontcn3Mi25IU3PFFt33EynPbz99jBvvTVMJuO12644Ab+o24vLssXNo2e478AJeqNrx/7V2qbafwhh97MDWK5q5K3zFE43SCDKEolzQRZOt5A4G7L7M8W8TeuZFIdJcCCHb08Bx3AF0W5RcSsUcTT9nk50AnIFn1QmINsRp6sHTfb3kTacM3rcaV6ZHePfPPwjAlJvvvkmX/3qV/nmN79JIBDgC1/4AvPz83zjG9/g13/91/nP//k/X+pbb9K//tf/mq985SvMzs6iqvbOm8lkiEQiPPbYY/zkT/4kAJOTk4yPj//Qm00IAXnT0VifVIsorYLTdjqYK+vS7lq09al3JdpcedochU1NWW9EFZIKj32xk+VJJ+6Qyef+ZIGOXbb9rhBwxghxpBrBQsYjVbnNuUBY2TyD1pAYUOv7ctYMUKn9Vn6pyqCcwS9vz21MQeCTTJSkTFg16eyqsNHJfSHm5LTbxwkrxGzVwwFnjLBy9WsPbmSIsgFqlBde20W+BlDhoA1Qt9x0ZQBqo3RL5pnlEb4d21k3ULk9PMunr0D91IVUrSqcPhfl1JkOpmY6iZ23vmqR7o6VhvqqqqkwnWutN8CdzreibwAnzTBxLEi4FgVRvcBnPvUmg2MX7idzo6hU1Pirr91NbC7MyNgiY3vn2bEzhuywmMq0MbESZSIV5XSmFUOsH/gIbh46Q1+HPXBql/KEtRKpmhOfjEW3nKdbLjCVbeMbMzdztmDXjERdOX564B32tyxsOQHjkCx8ikVgnQX7RvdNAN3CBitLJmsq5E0F/TwNM88nIWAiGeWZ0+O8t9RTH9x3+DI8MjjBB3pP42pS87XxPYqWthZFqkFSZvV2zQZ8O2ZDYNfYBZQKoVUgamLeUJp38Ni/uYdS3kH/rjif/d9fR3Ns3tc3OvLJssXD9xzmwbuPoiiCiqnw2Ow+XkwMAzDsTfCrQ2/Q5izil03G3RVcssC04LWJdl58o5vEop/lRJBk1kfJcmA6ZUyXjOmU7NtOmQumLWDvqyFvgbC/QNhXJOxbf50n7Ckw80Ybz//ZWFMjiY0q5Jy8/NRO3nunD8dQCfeuPJ7RAutbJgkLdjiTDDgydCj5OgCVqyqnFqNMLHQyGesgVWhsURD0FBnvijHetciOjiXcjubnPWHB3GE/x5+MMPWDFsxqzfhBtRj8QJrdj8bpuzWDW9Np1fK0aIWG1hV5w8GK7iVZ8WLVUsycioFTrlCUwVRMFCycmLgwcUjGBR31DEuruQVu/ZsYhszkZDeHDo0wNdWJEBKWbFt7G0653pbA46xw100nuWf/BCH/6rFeamIxDqumUBY2RBW2gCghoJh2snI2QPJcgNQ5P8mzAXJxb9PnO3w6wYEsvt0FHINVrIig7FIpiuZ1U0502wCi5p4XkCs4rmpzGztdsXmfPal+6fOu8PLZcX730W9exWXZnq4aSC0vL/P1r3+dr371q5w6dYpPfOIT/NIv/RKPPvpovUDu5Zdf5sMf/jD5fP4C77Y9WZbF4OAgn/vc5/j3//7fNzz2a7/2a3zve9/ja1/7GoFAgH/8j/8xAK+++uq23/96BKnZopuVqn9Tut1qNGlF92yaIW4ml6yvwZFWqkeV7P+LBLVy01kjSRL1HOYbKzlns3JLCt/4hS6Spx14IwY/8ycLRHbYB3xdSLxX6WDOtH/3DiXHAefitno4ra42U8CC5WPO8tUjfG1SkQElu6l+SkYQqNU3BRWTgLI5lSddUJg47OcH34rw1vMtZFMask/Q+58quHYKZNPiTuc87VdxcH6jQlS1qvDa26O8+HojQD10zxFu2XsaRbn6kwIZ3cnfLuzmB4lBBBKaZPLoZdZPXawu1L/K6anQOpJCiuikHQ5my6ENcAABrcxoYBlfwmT26Q7Eot1Y965HT/LBjx/fsrHujahc1sWff/k+FhfCWDJUwlBplSi3QjUkITYcJEPOIjvDS4yFl1DDVeJ4bGDSMlSk1VltQYdcpFfONRxPLCHx8vIAf332prqT4e7gIj89+A693gwXlsAti4beVr4tLNhLltQQtcqb8nkj2FVT4Y35AZ45Pc5cbg3G90TmeWR4gj3tC0is1SOt9kLK1NLtssY6UDKdm7apreSSdYJKmYC6DpSUcv12UC3jaVLDsl7JmJc//+17KGRcdO9Y4XP/8tVN6XVg7xt/s0UUCmC+FOC/T9/JfDmIhOCjHRN8susYpZKTDtXi5tYUigSJoos/ePUW3p7tIpXzki9vz3xLrlgoFQulImrXFnJ57X+/p2S7CkbXOQtGC7RG88RnfDzzJztZnAoC4G0pc9fPnmb8viU2ln7pVYWDL43w+nOjVCs2rO7Ys8D9HzvKtDPAk6kdBFxlWlylhgO+KkwcBYnEfJDT0x2Y66JOimzWrcnHu2JEg9nz/ia5uMaJpyMcf6qNbGydccRAkd014whfqEpIK9KqFfCpa5OXuiXb8KT7qFiaHbkQdhQJBE5nAU0p45BMnJKxKRrezFFvu81k4nE/b701wjvvDFKonUcsFZxtFXKmC1GboIiEM9x34AS37TqN4wITC7WlwitbGMgsV1WKNYgSFmSXPSTPBurgtHI2QDnXfDLc01omOJDFO15EG6xitQlKmkZBOJtCkwPDTstbl6LnqLdWEXbt2CVOupzvu26MNtn3grBsgw6BhLBg/QY44E/y8tmd/O6jj13h5bl4XTWQcjgcDA8P88UvfpEvfOELRCKRph/+qU99iueff/7il7yJnn76aR599FEmJycZHR1teGy1Ie9jjz3W0JC3o6Nj2+9/vYDUqUycn3vi/wPNIFF1b2unD6rlNTiqR5Rqxg5aEfclpt3Jio0EN/pQKTOv8o1f6CJ1TiPQqfMzX43RMmBDVMZycLDcRV44kRDscsQZUVMXvb5Wn14VEgumn6zkwCkJ3JJJl1KgQy7hqfVzCijmpgFPqdYEN20oZEyFas3l0DLg3Du1mqrng5RKKj2/W8Vzs4VVAe3vK+zascLAHTkU7coBwo0IUdWqwqtvjfHi67soFO0Tdksox0N3H+XA+wRQG3WuGOSx2f1M5u1jZEgr8ZPdR/hAy7n3tWZQCJiNt/DqzBDHU1EW8VH1Sptq652WwYAzzc0ds9zUFsOVN/nenx9gZsKue+3oS/GJnz9ER+92Bvs3jk4vtPFnf3sPK6obvVVQDUobGqSCUhK4VgTtZoH9XXPcunuGSE+ag9Vu4qYHj1LBp1Trg5hWqUS/ksV9nj5wJUPlO3O7eGphDEMoSFg80DHNj/UdJaBdXH2bVBug+WuTM37FxNNkm7cNhDbXW6VKHp4/M8qLZ3eQN5zIqoXTqTMWjTHQmsRSqKfd2fVIjouoR1ofRardVmoRpVpkaat0su0qE3fz9d++h2zSQ7Q/zc/8q1dx+xqjI+eLQlVNlVTOwwvxIZ7LD2FiN73tXSlhJFwIU+Zff+RFPjh8FoDvTwzx20/eT77aONBVhIGUMVDyOkpep60lx757lxgcTxHyFAn6ShglhdSSh9SSl5VFL6lFL+na7dIWA+eGL2EJZMmkZ1eK8Q/GaO0pEOoo4HTb61BYcPStPl56Yje5jA0BHb0pHvzEYfqGk7yS6uXx5d0A3BaY48PBU7y30s05PYjhEyjrInimLlNZcdJiVtgVWGJHdBmnev7fyqhKzLzezDjCYPSBFXZ9OE50LI9XqdLqKBDWCnUIEgKyhouk7qv1j2w0h5AkC5dSwaPmcSqbf99mjnrbVVVXOH6sj0OHRjhzpr32ieAIVpEDJunS2mTUjt4Y9x04zs7B+Ys4ltv7aElXmZwJszATqgPTyqwfo7J5YlySBKGuHC0DWVyjZaQ+A7MVioqDvHA0/X4aRs0AwgYnO9LUWA+2lmTIFQKo1bqvZsec1WhTzURlAzitqixU0qYbNMiu+PkvH/r6FViuy9NVA6kf/OAH3HvvvZe9gNeTrheQOpNb4cHvfLn+vyqZdpPZVTjSNvRO0koN4e8rJTsaZdmzBVf83d8/rZxV+cYXusjGNEI9Oj/ztQVCPfas0Vk9wOFqFBMZl6RzmzNGq1JEBVRJ1C+K1Ph/4+OgbHhsOxBW3gBOlQ328M3WuWXC3Ls+TjwfJHWHH9cBgVWFhd9yYByBHffZ7n8Dd+RQHZf3q91IIFWpqrz21mgDQLWGczx49xEO7Jm5JgC1Xqv1U385dxOJWv3UYK1+6lL7T21HBUPjZK2+aTIb4Uw+vOmk6xVV3HmBHnOipBSUEnVXq6CnQHlZQy6A06rywCePc8dDp5Cv8fq8XBmWzNlcmKl0G9OZCJPJ9qYNv8POAuPhZXrUDNKCQuxYG7MzbYjavqr6dHb8wklCXXm8SqU+mPJLFQbkLIFtpvYCLJe9/NWZ/RxK9gLgVqp8qvcYD2+on7pYKTRGrfyK3exzo0qmwrFcK8cLLRwvhzlRDrOkbxzEbpaMRUCtNESOAmqlId0uoF59N698ysnXf/seUks+Wrty/NxvvYw3UK0/LgTML4f5u2dv4/RcFCGDx1chEs1QqjpI5b0UTY3yQBWzxV5WJS3jnHEgGxL7u2P8+098n45Agaoh8yeH9nFwoZ2w3063c+plzj7tZvq7HkTRRunBO7Pc+6UYPTcV7XQwAds5spYLKqmlVbjyEJ/1c+54K4WM64InF7e/grPVJGP6KNX6NPn8Je798HFuuv0skgzPJgf5XmIMgF4jhzjrYX4lvBbFkAShSJbeoThaSwVTWTtmKFh0qzn6tAw9WnZT1kZixs3xJ2rGEdl1xhH7sux6NM7IvSlcbp0WrUCrVmhomFuxVJJVLyu6F11sBgpVruJVi7jVNbc+IcAQKrrpaOqodz6tr3teWAhx8NAI7703SLlcM/KQLcI9ObKWqx5pVBSTW8Zm+OCBE3RHUtv6nEpRZelskMUzAVbOBpk/GyI+58cyNwOQopmEe3O09GfxjhVw9FUwwxIp4SFjNa9nVzFtWFp1z5PLONlsorFetbV3mVEoUbdm3yhLyAir9gxB088oC5W05SZjuUnXLmWxts106Tm++vAfX+KyXTldNZB68MEHefzxxzdZjmezWX7sx36M55577pIW+FrqegGpqmnyS4//C35i/E2EMPCpxjVxu1MUO/njRotGSawBTm5O4ZX/0oJsQXSowt2/mMYbsOeZ88KJhYJbNvHJOgG5Wn/dlZAlwBASVSGRFxolS6EoFGZ1N2d1DyvrDvgKFioWCgJVarytIFCxavcL+7mShTDg0EonaZ8bYUgs/I6D/It2ioDDa7LjgzZUDd6ZQ3Ve3MD3RoGockXltbfGeOmNnQ0A9dA9R7h5z0yDte71IN2S+f7yDr4TG19XP3WOz/QcodVRuuz3z+kOJmv1TRPZduYKoU0pHhFXnvHAMmPBZcYCcSIu2yRgfX3ViZPdJFLBhtcpsslg39b1VdezUmU3U5k2pjNtTKUjnMm11Osa6hICT8nkwMA5dkZi7GpZJOwsbRq4FvJOTh7r4uTZdtwPrBAMFut9UopxF6XjAfpDK4zuiuH2bB+kVjWRifCNmQOcK9gpdR2uLD89+C77wlvXT637CnaritVUu3Wudqu3M4aTgKqzx7PCLs8Kuzwpxj0pvE2aICd1J6dKQc5WvCxW3aQNFYds2E1lNTui5FsHkNdKxayDP/+/7iYxHyDUXuCn/uVrlIXGzEI7pxY6mF8Js1JsPjhflek1KQ/rCKcAIejLF9mlJGj153lk+Cx3dS0jS1A0JSbKznpNS3ZJ47WvRXnv71oxdXuQO3B7jnu/FKN3f+GiAGq9JASWDge/NcCrfz1EtWgfL/puTrLrkUUEMpklD6lFL5llD+lFD/mCC8PnwHLWtm1LoBZ1lKKBBCitBqlHZDIjtcH4ghPm16zQu8IpxroWGe+0rclVxbJrgE0PZ/Ug5/QgebHmFihj0anm6TJzlF9RmPxOG8sn1xlHtFXZ9aE4Oz+UINRdxq+UaXUUCKrF+jZjCUgbHpJVX62ee4O9NxZutYRHLeBYB12GpVAyPOimA4ckqJ4vfVRaNRCH9VOUlYrGe+/18+bBHSwstNbv94fzeKNl5tNhqoa93n3uEnfddJK7900S8G5dm5xPOWvQFGTpTJCls0FSS76mz3V4q7T2ZQn3Z/HtKKL06lT9CmnhJmu5N0XEYQ2a1tzzyriaOA9uJbHu1sVD1BZpetuINlWEUoelNWhq5jwp8EsVepxp9KyT//rIn17E8l0dXTWQUhSFWCxGe3t7w/3Ly8t0d3ej6xd/ArnWul5ACq59Q95rF42y58vXR3vsKE+TyE/DY2tRo23U8W5LZg2EjNq1idTw/9qFdY+tPW4DqFSvJYhZXpLChSFkTGQMpG2nxZxXQmCt9pjICopnVSorCkZewshLUIFwtEJ0qETnSAGnZqHUYE212wg2HIRvBIgqV1RePWQDVLFkA1RbS5aH7j7C/j1nrjuA2qiM7uTx+T28nByo1099uGOSj0YnL6o5babqZDLbzkQt4jRfDG16TocrW7ciHw8u0+LcGtgMXeal7+zktafGMJCRAhaRsRwrBd+m+qr1/at2DMZoDb9//avOJ8OSOZcLM5Vpq0eckuXNhdk+rUyHnGflaAgtKTEcSvC5n3uJ5CkHs+94KSZVXEETT4uBt8Wwr8P29YrfxWkrWDfgsSoyM8/0cvqlvnoKkyxb9A/HGdszz/ieecKt23e1s4TED5YH+ZuzN5HV7e17V2iRT/Ydxa3pm13t1tUpNRt8NZMwwdQVLF1GNgW3hWM82HGG3f4VOrQSoS0m8IqmXW+Vt2RylnxFetRdrCwBuZybZNrP0lKQl76zk0zBjRWQIAgloWFpsOkLCHtyqqstRUdLhrC/QMhb4KQc4pVCHxYyEWeeXx16nSFvCk0SjLnKhGttEZZ1hamyExOJXFzlta9FeffxtjpA9d+a495fjdF3c74GUJfioChQhODoS5288PVRctswkshnnbz81C7ee2MAISQkyaK7K0nQlWWxEGRJBMj6nZi7dYjWonSzLuRzGs6kgTthECyXaAvnCUWLhKIF+7qjSChaxFVLjxQCViwX5/QgZ/UgWWut3kmYYByTMQ5KdFs59nwwTt8tGZyqQatWoMWRb+gTWTQ1klUfKd3bZJsVaLXok0stNUSfyqabou6hYjmRsM0mHJJB1VK2BKb1bnlCSJw9E+HgoRGOHO1H1+3xlayY9I3EqWgKM4vta8YqrSnuO3CCW8ZPo61rjyEsSC17bVg6E2TxrH1dyDTvqRlsLRLtz+DrzeEaKaJ0G5Q8Wj0iY7IZBFehybfOctwtXbo78sWl8p3PFEK2JwdWJwk2TBRUm0BTaQto8kkVQnKpfgnKJVTZYsC3wstndvK7H/4hrJE6fPgwAPv37+e5556jpWWtU7Vpmjz55JN85Stf4cyZM5e35NdA/wBSNUnUU0kuPholUGgCQhtS4pRmj9dg6UoNxgo5mXxGoVKR8XUbWApkLQcLhpeipaILiaiSxy3pTWHpavdhEtgDglWoWg9YBjKmWH/bvl5/2+T8BePbV23dswpYtdtYtd+lFiGr316NlDUHsaupckXjlYNj/ODNnRRLdh1BW0uWh+45wv7d1z9AbdTZYojHZvdxcl391Ke7j3DnFvVTqYq77qg3kW1nsbT5ONXtSTMWsMFpLBgn5Nies+O5U218588OkFyy33P85jk+/Ll38YfKF92/aqR/EZ/3yvWvOp/SFRdT6Ug94nQm27LJaVDCoseXZiSUYCSYYDiYIHa0lb//y9sRlkyrN0Fo6RyLx1xYxtYg4hk0GPmXOYK77YGlZUH2ORXzTXB7TQyXm5VqC0vpCJmsv+G10c40Y3ttqOrsWWlw5dQtuRYxctYjSVnDxYru5mwpRN50Isnb3898SoXgeic7pYKpS5xc7uBYrItKxQFCIuAscX//Se4fOEXQ2bidyA0W7Pa1u8n+ZTXUW8nkLIWSdSkA0ShdV1hJ+0imfSRTflZSPpJpP8mUj5W0D91QEQpYmm0A0AycJAQ+rUw0kGWgPc5Y3wI7+pfqqb7pqov/MXM7x3N2/d8dLef4+f63cCsGQcVk3FXBIQtMAdNlB0uGSj6h8dqf2gBlVOwfsfdAjg9+aZGBW/NYgLCkSzh/2OfFs0fDPPcn49sykqhWFA6+tIPXnxtFr6oIoG/vEm170sxmW5haakc3VUDAYAnadBDQOV+mf6aAWJTILHkopJsP/lfl9FZrgFXE46+QX1SIHXZT0mQcd5g47jBRBte2DQWTu7znuNM3S6e2ZkRhCImU7iVZtR0NN0rCxKOW8GgFNHktQqpbKkXdQ8nw1N36VteZS9Fxyga6pdhrvCFiUksrA/IFJ++8M8ShQyPE42vR9kgkTcdgirlsmIXE2nh2fGCe+w4cZ6wvhmVKJOb8LJ4J1aNNy+cCVEtNnCYlQWtnnuhAhmh/hsBwHlePSVx1Mq/7SJkejCbQpGASkkuElQKtagGvVEUyabCqvxxdOJVvq2iTDU5bmUJUhbwuPc9D2nJTbApN4JPKDdAUkJvYqsu2mciAd4VXTu/i337sG5f4ja+crjhIybJcd+Vr9hK3280f/MEf8MUvfvESF/na6R9AqtY/RbbQaiYTTWFIopZ21gyWrsxy2HnP1ACjMdJjrv7P5siQISTOvOPisV/uopxT6Lm5xGf/cBHNJzhajTBj2OkyrXKR25wLl13cfK1lCWzAEjITeguLph9JEvSoWcJyGUNIZFccpBNOinkVHKD6BKrfQvUL5O05Dp9X0mq64ca0xBqIraYtrkKZsuG2zIXheRWgXnpjJ6WyDVCR1owNULvO3jApZs0kBLyV7uav5vZuqJ96l5Babog4LZcbB+cSgh5vupaqF2c0EL9og4JKSeXZx/fy1ou2xbMvUOLDP/MOOw8sbPmai+1fNdC7jOMi+ldtJTvaFGI6E2Eq3cZUpo1keXPajFer1IApzkgowWAgiVs1qORl5t7z8spz40wn7e+rLGfQpmL18Ze/vUrvzXki/SXyaQeFFZWyqeB72CR0n44k1/q4xRyc+A0/1YXmKUWWS8Ns8WF2+jA7nQi/QPgshE8g+XS0UBUpaGC4ZSrq9nZEIcAyJbAkOl1ZdvgShNX1wFTGr1bqqYaWgMNL3Xx/ZpyJRGf9ffqDSR4enOC2rrNoF9ECQJUEfnkNrAKKidZknGcI6kYWuRpk6RtrQAUUii4SKR8rKRuQkuk1YMrmPI3PhzVwqsHTRnBSZJOe1hXGemLs7Fugvz3REEVYryOZKP9j5nZyhguHbPBzfe9wT+sZJEnQ59Dpc9gz/wVTYqLsIh538PqfRXn7r9cAqmdfnnt/NcbgbTmQJIQlXcLklg1QyXkPz31tnKk37CwfzWVw60+cY/8nZtGcGxqwW3D0UD8vPbGLbN6N7pPQuqroIchWGteb31NE3ZEn5XAiY/HTHUe4JRhreE61rJBZ8pCupQimlzykF72klz0UUueHLEUxCUaLhHfliN6+wp4d8+wLxvApa/VpZyohZsshsGR8m1JIBQ65ikcr4FbW+i8KASXDTdHwUrWa9zsCcCq63UeqiX24ZcHUdCeHDtWa5pr2czTNYOfuc6ghg6Nnesnk7Yi1phjcPHqGna1z6CsKyzVois8Gtqxnau/NEu3P0D6QwT9YQHRYpGU3ccNL3PRQbZJOqmARlEuElKINFUoRn1TGqZoIoKg7KV1ErdeFtBmitmMKsTnapNegafWSsdwURHNjFG+TSNMFe1HJAizJBil/8ocXpM6ePYsQgqGhId58880Gtz6Hw0F7ezuKst2mYteXbnyQ2pgW1wR05PM8dhXS4urpcWwBQw2wtAZGq2lxF6uZV938z1/vwCjL9N9Z5DP/dRHdrXKw0kW6loYwqiUZ1xLXPK//SksIOKZHmNLtWbVdWpxRx8ra4xYsHPMw+WyIyWdDZBc1ZAcofgt3m0HfXXn67iwQ2VUGjXrUy1gfDatFzgxsR7MrEbWTaB71UiQLDIm5uTZOTXVQyLvRyyp+V4Xb9kyze2QOh7zZ/fBGVdWU+buF3TwTH6nbRQtTQuhrPU4kLPq9acaCy4wHltkRSODTqud51/Pr5HudfO8vbiaXtgdfN99zmoc/fQTXRdb2VKsKM7PtnJzpbNq/SlFMBs/Tv2orbT/alGE4mGAkFGckmCDqySFJUM4qzL7j5dzbPmbf8bE46Ubvbcfosesh1PkVWipz9B/I03sgT9+BPKHuKrJkN+QtGhpzlp8Fy1tPwy1bKp6KQf/iCqmUh0TeTariJq27yOOkoDooOzUqXg0jqIBrmzPKFYGcNJFTJo68gaus4zUq+KkQUCq0uErkQm5eDoyxJNnnp6gzy+eG3mFfONYwGVHSNV6eHeK5mXGWi/76ejrQOcsjgxOMtMSvSBRZQuBULPw1p0C/bPe6anYeyZY1ziaDTC608u5MJwcneskUmvfCAXv8prp0nH4dU5XIG85NsC4ZAmde545bpzmw9wx9keQFe8MZlsTfzO/lyaWa2YI7za8NvU6n27anH3NVCNXga7GqcmTJw6t/GuWtv4rUAar7pjz3fmmRwTvs7exyAKqY0fjBN3fw7pM9WKaMJFvseSTGHT81gye0eT+cmYzwxJP7WSwHqQYkdF9jGocimwy2JxjvjDHUucxThSEmixEUyeLzne+y17+87SVMnHZz+DvtnHyx3Y5iqgpCkXEGAU2mUnTgcle5457TfPDhCUbG1947nXfz5kovB9VuEuba7+zTq/RpGUZ9cTqdKbxaoaFJrm5qFAw7+rQdtz2nouOSdfR120Y67eGtWtPcdHptoqWnO8HYnjkSZR9vTw7W659cSpWolUadM8nG3E0jNk6PTnQgTbTfBqfAYB6jDZLCU4MmL5XzQFNQKRGSbXDyyY3tZiTJwimbVC2FouncVkub7Wgtla8GTk0e38qCXBdygwlE+jzQ5NkATaHtQNNGrYMoBAwEfohB6odZ1wtICVHhvz31i3x850EyuoYsyU2iQs1h6EoNKtdDjbnutg09jZGgRliyb7/fOfMAp5738Pg/iWJWZYY/WOAnfn+JhOrlrUoHBgoODG5xLhJVt1+rcKNJCJjQW5nU2wAY1RLs1JKbBk1CQOy4h8lnQkw+FySzsHaA1FwmQ3fnGH8ozfDdWRye5gfE1cLSC6Ui2imTTW6vy2a/HMlcKOq1Filbb9axevtagZgQECv56+YQk9l2UlUPIJBUCxRRc5USDLlXeLT9JLtCy3jUy68/LWSdPPnN/Rw/ZDvEhSN5Pvb5txgcj1/2e8OF+1c1q68yhcS5XHhb0abhoJ2iNxKMMxi0o00ApbTCuXd8zL7t49zbXpZPrQ2KBKCPdGBGQyAJ9oyc5MEfO0aoq8raUGMt5TZm+YhZPqzazlO1FPKmk3TJw1whSNZoXgzeTC50vGYVd6WKVjAwEhqluIdiyo+ZcyDlJahKSALkbAllJYe8kkcub/6thQSZO4LEPxbB9NsDruCZHDvfOYvXbTA31MHZlg502X7MJVW5o/U0Dw1N0tWeu6JpuELY0eJk2k9yxcdK2k8q7cEjCaL+EoORNLt64gxGU5vSbi0LZpbDTC21MJfyES+6iJXc5AwXyaKPWCpUH+iuyu2oMtSxRGVGI3XYh7tc5af/j9fo37U958vlspcvn76TmaI92fRQ+yl+qucwmmwRVgzGXBU02Z4IPLbi5u++0sNbf9WGXrIH6Z27C9z7qzGGP5BFkqR1dVAXtdaQEZi6zJvf7ue1/zlMtWj/VgO3Jrj789O09jb2BixUHBw6Psir7+1gRXiwtMbPbPXlGe+KMda1yEh0GadmUDYV/nj+Fk6XWnBIBl/ofocx74XXUyWvMPlcK8efjLB8ah0ARSrs/FCCXY8mCHaW8SpVwnKBsKOAWkuVtCyJiRMdvPj9cd58cRjLkpH8Jo6byjj2l9FGywx54uz3zDHiWq7XPlV1haVYC7miHy1g4Qlsvw5oFaTKusqJiR4OHRrh1Kmueo8nl6vC/n0z+EJF3jvdz7nU2uS/UjTxLFZwrugNGYG+cImOWmpe+0CG4ECBclAmYdpRprjhbXCXW5WMRatSol3N06vl8UklTMuoH0OaSZFNVMmibDooGNtvJ7C11tWGydTBBLY2hTCETMZyNUBTXmw2/gDwSNV6hMkGw/W9qC5BEnY6piWt1ZJIdkTq1eld/JuP/5CB1Le+9S0+8pGPoGka3/rWt8773E9+8pMXv7TXWNcNSOnHEckfu/TXCzbBTrMUuE2X2usNuEK1N++fTjzp5e//eRTLkBh9JM8n//MSk0SYNuwTZotc4lbnAh55O83ybnydrLZwXLdPGMPqCnsc55mBFrB4ws3EsyEmngk1QJXqtBi6K8v4w2lG7tkaqi5FombSYdbgyxAyxarGidPdnJ5vB1WgOQ0CwSKdXSt4feXGGrIrBmJW8xqxpvVhG9IVL1AftnpUXR2cL5SCnMy2cSoXYSrXSt5wISNAsudeFdmk35tiyJ8k6CjxXq6T2VIISRIE1RIPt0+zJ7jIuuSM9efJ+gSG2PB4/T4hcW6qlWMHe9F1FUmxGNq1zI69MRS10Vzmgu+1oaS7/r/YvGyVqkau4CZfcFIouezBpyJAFQgNJM1C1PrXSrVcfQk79cSpGPZFNXDIBmrNBAfsgZtRlTB0GdOwU6skWYBcG0TIICsCSQEh1+yOL3KcUjEVSpZGxVKZybWxtK4uTULgU+yeSAGl0pBiF1QrBGq3HVvYl1sWxObCTBztYfJoF0sLjZG8gDdHxJ8kIKVQiiVKKZXCikoxpZItOog/ECF1Xxih2vmGUkVGKslIQsIRLxN8M0ngcBpZt38RWRF4WnQ84UYDDW9r432rtxVNYFoSmayHZGq1PmmtTimZ8m+qldsoTTPojqywf2SBPX1LjERTdIfy+B2bj8VlXWFyuY0jsShHY+1MJ0O4vUVGOpcZ6VqiK5ziyT/ex3sv9CMrFp/5528wvP/CEZas7uTZ5WGeXhqlbGl4lSpfHDjIgfACEoJ+h06v04bWbFXm61/t4ftf7qZatAGqY1eBe39lkZF77HqfS3PiswEKAUdf6uLFr+/Y0kjCsiRmky1MLHRwfK6LuVS44bMULEaiy+zqm2e8a5E2f77hkwqmxv+Yu5XZchCXrPOL3W8x5ElvvWQWzL3n5/iTEaZebsGs2juJrFoM3ZVi14cT9B3I4FBNWrQCLVoe97oUvbKpktR9rOjeejTdqMp2iuCSh2pOJtKeYmhsAX9wrRZvrhricKGHE+VOygkn+nsuqu+6kGMywfZig+HFqgGGJ1itH3OrVYVM0sPksW4OvjVSb5oL0B5O0+JMk8j5WKQF3V2L8giBI23gXqqg5Q1aOwpE+9M2OA1k8PcVKHi0epQpbngpbQFNLUqJiFogohSJqAVaFDsS45MtMqZCXNdq56nm24NTMTEFFA1nzcX1Us5n66JN615u1zZJ9Xq9VQtyQ0ibIk1bQZO7Bk3r0/OclwNNG7U6ubIKUauLUItIvTa9i9/5YQMpWZZZXFykvb0dWd76bCRJEqZ549WeXDcgZc6Tm/8QDlWnbMkXBiKr8X57zV/8DinLAlmybjiIOvotH9/+P9oRlsSuj+V4+N+t8LbZxYplH1SH1RV2O+I/NClg29W0HuJI1S6iHlRT3ORYbjroX3+XELA0UYOqZ0Ok5zZA1QeyjD2UZuTeLE7vlYOqYsnBy2+O8/LB8frALBpJ8/A9h9m7s7nxwiqIrUa37IjYVrfXYG31NduNJlxIq5YfzQDkxvBA/Ac1U8lQKZgOLElGCAlVh7C8BklBtYxfqdSbiF4JpZJeJo52M3m0m7PTESxrbRv1BUqM7V5gfM8cgzuWsWR4eXqIp8/tZEn1Qq1vnGRZDM8vMfbOOSpJhUJKpbiiUclvnXIvVBnT68DyOjA9tWuvA+HTMN2OCxYx+r1FWsN5WsI5WsN5WkO5+v9+bxlJgoquMrMYYWohyqmFKIW8h7Fokj2dy7XLEgHX5jRVXWDXWpkyLz09yHcf20M25+TH/8lBxu+INVmaNc2X/Dy1NMpryf76AH+HL86Xht6g1VHCKVmMuSsEa+mAh94O8h9+fZxCyh44R8eK3PulGDs+uApQXIIT35ohz5mjLTz3J2MsNTGSyJZdTMY6mVjo4GQsSmljk9+SoMOZ5f47jnPTyNyWKYxZw8lXZm9lserHq1T5lZ5D9LiyTZ+bW3Zw/Kk2TjwdIbu49nmtg0V2fzjO2ENJ3EGdgFqmVcsTVNdqmCwhkdI9JHUvhSa25bYRRBmPWsCpVBpel694mY9FOJHqYFH1kgupiHUF1lZGpvqei+q7bowpu+GspclYDhlcIHvBUBR0qxFwFEzUrI5UMKmENUpRB6JWxCeZgnA1x3jLAoODcaIDGQJ9BdKKqwZMdqSpmVGChLChSSnY4KQWaVHW2h6sSkbgVSwyhkLiPBAlSxaabFK1VAqGs75tbk9NwEmsTtbJ9QkzLDCt1UiTpw5NuS2gybUBmkJXGpo2qmYqgVgHUetW5w8tSP2w63oBKbgGZhO1+im4sfpGvfOXfp741xEQEvt+Msstv1Xgbb2TKioqJgeci3Sp+Qu/0Q+pzuhB3q1GAYk+NcPNjsVtW50LAUsn3Uw+Y0NVanbtRKs4LIY+YKf/jdybwem7tK2mWHLwgzd28sqhsTpAdURSPHzvEfaMNweoK6VGEFufdrhaB7a+Jqzx9hWzrl9bmgbb3tWvvf7/iqlSstR6OpFTMfArVRTJ2vx8ad3/QpBLu0kv+2yjAqAlkifUVqin1qy9vvln25Gizbn2Wz2/Yqgky16SZS+JkpdkyZ6pXk2DsoSdCx9yFmlzFXCbBkZWI73sJ5X2QS39RAgJSVi4rRJSvIIxV0XOVO2Bg1l7j64K0bEiHeMlOsaKeIL2yd+wZM5lgzzz+m6yqhOrzUSErXqrgPqAA3DKBh1aDtOSOF1sQQD72xfwaVVMS6LdKnJ3YPaKQtOFVCpqnDrRxcSRbqZOdFKp2INGwwmlPij2SOiyPQBzKjo7O2PMWz4Wy/a5q8Od5XMD77CvJYYlYCXhJTYXZGkxQDzhZyXjJ1vykq+60Tl/VAnTQi5WUQp67bqKXLsoxSqSKVA0a80qPqzjbBWUWnxkPEHihEhUQ5v2mYCnyEjXEju6lhjpWmSgJd3QONgnN0+9zRQ1qppVN7PIm2sOpkLA8Vw7Ty2OciS7ZrAx5E3yaPQkt4bnkCVoUQxG3RU0CcoVmd//VyO88C3b6KF9tMi9v7LI6P0ZG6DgEpz4VgFKEJ/z8fyfjjG9zkji5h+fJXhnial4lMmFTmLpUMOrZVOgZQVa1qI3kOLDH3+XnsGVJp+zphXdzZdnbyWpewmoZb7Uc5AOZ2Mqu1GVOP1amONPRDj3dqCe+urwGow9mGTXownaRws4ZYNWR54WrYBjXQ1TwXSQrHpJ6d6mx0BF0vGoRTxa0a5zraliOijqXkrm5ibPhpCYr/qZLrUQEz7MdRP1ZkmmNOWneMpH+ZwHNpg+SKaFXLbQ8jrCsihHnZTbtLoRiUcrc/voNHd94ARlp8pyLcqUMD3krc01PxKCkFIiohRpV21wam0CTZu+NwKvbJGuRaKaT0gLNNlEkqBkahQN5wW2qebQBPYxdDVNT2DXnWdXoclYhSZX0/d3SjrhdVGmkFzCJb2P2Trr66FWte62aUmUS07i2Rb+4499/f1bri30DyB1EfpRBilZEcjcWNGoN/8syDO/a9cCHfi5DH3/Ak4aLYBEUC5zu3MBr3z99DPbcBx83zRr+Hm70olAolvJcoszhixd5JyqgOVTLiZr6X8r59acnBTNYvDOnJ3+98EMrm1AVaHo4Adv7uSVg2NUqvYgrrM9xcP3Hmb32OwNET0UArKGg9eT/UzlWpnJtVI2tfoAXSDhlAwGfUlGAkl2+OP0e9OocmNS4sXUrKR1F4/P7+aVWv8ph2Tw4Y6TfKRjsqFHy6qW5wN8589uYX7GNlfo2xHn4//LW7RGr9zkgmFJzOXD9bqm6Uwb8ZJ/0/O8ql3bNFyzIB8KJuq1TWCvz8yCg8k3Wjh2tJu5lQhFbxDL0zjrLJsGbdoKOwYWueUDZ+nuz1AWKgsVP/OVAAvVAHOVIHHd23QQ4ZWrdDuz9sWRoduZJV7x8D+X9hKrBIi4c+xpi6HKgoqh8NZyLwXdSYtW5KHWae4OnWsYWL4fMgyZV46M8NzZMebkQH2jUUoC35zJuCPO2NgCkd4071a6eCk/QJlaI9Gcgeukipw7/3nE6ynTGsrREs7TEswTcBVwSSVcZhkKJqV0La1wRa1FuVQKKxrFlEq1oGA5ZKpRL5VOL9UOL3qre7OrXr6KY7GAI1YgUMgS1Ar4WvS1dMJWvZZquJpeWCXaXiVzOoycczA6mqSvd3N0RQjIWzJThQDPxAd4PtnPVCGIQOLm0Dwfjp5kxJes1xwOOKv01FILTx3z8u9+YyeLcy4iIyXu/ZUYYw9kkGVRqyO5WCMJG6BkWZBLO/nBYzs4/FQ3lilj+CTC95XR+1Rmkm0NNWASgnZvDnNJxVhwoBYEoZYC93/sKOP75i94nFiuevny7K1kDDctWpFf7TnY0OQ7Pu3m+JMRJp9to7xuW+jZn2HXhxOM3LOC5rQIqUVaHXn86pr7p2HJrOhekrqXchPbchC4Fdu23LnOrc+0ZIqGh6LhxawZMZiGxMqKj2QiQCLuJxEPkIgHSCb8dk8nWeDqK+AZzeMeyaO41+1rOjgSMp64hWvRRGQlikknBdVJ0htguWJH+mSHSe/IEiM7F9BCFeKWtyk0gSAkl+tRpohSoE0tXrRRgoLAI1ukDJWkoTbdXiQsHIppp7AbTiqWSnP7h+bRplULckusQVPGcpM2bdvxrLUFNKFvSs9zX8sSh40QVa/fgqVMiIlYNycXuyjpTg70nuGxL/y/12xRV3VFQer3f//3t/3Bv/Ebv7Ht514v+pEFqRswGvXqV0K88P/Yg8Pb/1Ea1y96SFi289igmmKPI/6+zB7bc2NrFSF2XQewWuNRm/tePYFbQqrlQr+/mjd8HKp0IZDoUHLc7oxd8voRAuJTLiZq7n/JM41QNXCHHanacV8Wl79xwFkoOnmpFoGqVu310Nm+wsP3HrlhAArsRrhPLYzx3OIOyuba7+lWqowG4owHlxkLxOn3pa7KdnimEOKbc2v9p8JakU93H+GOFnsdGrrMy0+M88oT41imjNOl89BPHubAvTMXXSO0UZmKqw5MU+kIZ7Itm1ymJATdvoxtP16Dpw5PtuH3FQJSs46aMYRtEJFd2jBIUwQteywc4y6KvgCLuVbKqNBiQNi+yG06lneLdZyXcKbhlsGz7GhJ0O3MElTK9UHpiu7m8aVdvJ3tRpEsdrfEiPpsyAzLJfZpi7yZ7uO55DA50x6I+ZQK97fMcH/LDB7l6k7UGJbMoYU+npkZZybdVr+/XckTTOpU5tyUKk4sGdZb5VmKoNhvUeyx68UQ4FmA7lSJaCBHSyhPa3j9dQGX8+K+S77kZHqx3U7Vm48SWwlvGsh5rBLBUgbvSg51oYARsyil1HrT4u1IBH3Qbte6BuQl+vpijO7JMzyep7e/TGdHBZ97M9iWa/brFaj3uJKAUUeFoMM+0/3tV7v46v89QKi3wr2/ssj4Q2lkeS0CdUkAJQmqFZU3vj3Aa387RNbrphx1YPQplLTGwbzfVWKsa5FOd4a5g+3MTdr7s9Nd5e5HJjhw92nULezb12uh7Ocrc7eSN51EHXm+1HOQoFahnFM4+Xwrx56MEN9gHLHrQwl2Ppog2FnBLVdpdeQJa0XUGkQIATnTRbLqJWN4mg7SVUnHoxXwqMWGprkV00m25Gc2FiVeByUbnFIrvoaU1fWSFYuWlhxtkRxtkSytkSxKtErGqzJnBRprlSwQSY306SD5tAdnaxl3Wwl/NA/u5seDoFyqA1NEtaHJcbHuchvXAQK3LFgxFJKG2nQ9KZKFKptUTI2C4ag13z1ftKm2NVlgCpms5bQjTaYdabKhafM6dGCsg6ZiPdJ0PTRKpzYu2ghR2aKbiVgPJ2LdpItr5kI+Z4kdkWW++Qv/5VosbYOuKEgNDg42/B+PxykWi4RCIQDS6TQej4f29nZOnz59eUt+DfSjClI3UjRKCHjp98O88t/tE+ud/yZH5SN+KqgoWNzsXKRHzV3y+zeCEXUIYh0M1RM8GmDpPMtcSyOSEZhIlMwLpNFcJS0aXt6sdGEh064UuMM5f8F0hQtJCEhMu+o1VcmZNaiSVYvBO3KMPZSh+/YSbx4fawCorugKD997mF2jczcMQCUrHp6YH+fFpaG6DXevJ8U90RnGA8v0ejP1AcXVlhBwKN3NX83dRLJqD5KGvEkelM7w3jd2kIjZx7DRfQt85GfeJhDeXmPe9dputMmjVhgOJhkJxhkOJRgKJPFojQNzIWDlrLMOTefe9pKPN+4LsiLo2FWkr2ZFHtijE1d9zFeCzFcCzFcCpE03TZWXIaXiKZno5xww56DDneHnf+1FAqFSw1N1S+aZ5DBPJnagC5Wgo8ht7bNICoBgVFthn2sR01IQSFQtmdfTfXw/OUxSt9e1Uza4J3SGh1pPE9Iuft02k27IpNI+ZhNhXo8NcjwfrUeWsATOtIQrAepWH2cJJNNOC5MsUPxVSvsNEn57v/SqFX6s9ygPdEzVJ8+2q2zRxdRClKlYlOlYO7GV8KbntAczjHQvMdK5xEjXEmFfcdNzhAWlzJppRiGpUkhptQjXasTL/j9bDmG21FzWkhmklUz9fartGqkHg2Q/4CcaKHOTP8F+5zIHWGR3Twp3E2McIeyJrlxa5ff+zx1MzXi455cX2flIGkUWtaL8i3XiW0vhMw2JF58d5aVXxkj7vJRbtQbAlSWLwUiCsa4Y412L+OQyrzy1iyMH+xFCQlYsbrl7mrsemcC9zRYEZ0oh/mjuFkqWRrczwy93HSJ91M2xJyNMvxzG1GvGEZrF8F0pdj2aoPdABk2xCGsFWh0FPOuiSFVLIal7Wan6mvZAkrBwqyU8agHHuomEYtnJ5FQfb749zsyZTrIZz6bXrsrh0GmL5GiNZGlry9bBKRQuoCgCw5BJpP0sJYP1y3IyQMkp4+vP4+/PofnOv34CcrkRmpRi06j95UiTBC5JkDQUVppClEBT7AyEoqFRqk3GbBVtMizIrZpArIs0NUuh1DAIKWvOeSGphFvavtvh1VdtzCStjp2sujNiseJgMtbN8YVeYum1JsiqbDDcvsRoR4w7+09ycGoX/+En/vQaLf+arlpq3ze+8Q3+23/7b/zxH/8xY2N2P4bJyUl++Zd/mS996Uv87M/+7OUt+TXQjyJISZKo29Je79EoIeDZ/9DKm18LgQS3/XGZwj4vIBGQKtzmWsAvNxYrb6w7WYMg6k5pq95idaew+n1bLEftHS1gvbXy2ic2lyxZCLhmIAUQNz28Xu7GRKZNLnKnaw7tCg78E6eddfe/xGk3lkOhPNJGeagF1JqFcGSFD91nA9T1c9A/v5ZKPr47t5NX4gOYtcLgIV+CT/YeZ1944Zp+D92SeXppB99Z3FlLFwHvKeg5WuYTP/YOO2+5cFrQqrJV51rfpnQbM9nWLaNNQzX78ZFggg5vdhMMCwsSp121Hk5eZt/2UVjZUByuWXTuLtJ7IE/4Vh1rRGVJ+Jmv2tCUM5s3A23TCnQ7snSoOaS0QuZsgDPTHU37Vw30xOuNgbuiKxwrtvPXi3tI6F4kBLe0zRH2FgAJt6RzizNGu1LEoRhUzcbBkSkk3s528XRihPlaGpGCxR2hWR5pnSLqPH9rBbsJrdN2vFttPruuEe2K7qHUJlEJsTqrg6SDK2lfFMsiFCjWo0mNkaU8MoJTJzqZPNrNqeOdlMv2sabUDun9gmrQ/i5RZ46fHX6bm8JbmzWk826mYtE6PC2ng5ue0xFO16FpuHOZkLeEJAuuRKHA8de6+Ps/uBUhJPZ9cIZ990xRTKmcyrdx0NnP2UBrPcXRs1Si7cUVnC8VkQwJWRZ0D5YYuynH2L4co3tzDI4VUTXB8bf9fOX/HmDnj6XY+UgKpW7mdrFOfDZAlaoaxxe6eOPoEBOxTnRH4/4S9hbq1uQ7oku4HAbVisIbL4zy5gs70Kv288f3zXHfR48Rbtt+e45ThRb+ZP4AVaHSq6S55c05pp9obTCOaBsqsmvVOCKg41MqtGp5QlqpPuljCcgYbpJVX22fa1wHwhJUigpupURbKIWm2kBimjKHjw3xyut7OHGyD7Gh6bLXW7ZhqQZKq9DkD9imFaYlsZL2sbSyCktBlpIBkmk/lmgetfK6y0Rb07T2ZNA6y5R99gRMRF0zgmhTCriucvqtJgmcNYhKNYGo1d5QOjJFw2EfR4VUN4WwLMiablK1xrZp074+PzSV6vBUh6aLiO5eOa2DJGpjJknAuppbYT+tPjlRrqpML3cwudDNuWSk/vtKCLrDSYbbFxloS6Ap9u82EI7z5snd/KdP/8k1+H6NumogNTw8zF//9V9z8803N9z/1ltv8elPf5qZmZlLW+JrqB9FkJIVCxlx3UejhAVP/U4bbz8WRAnBvr8wKHfYg6x+Nc0B5yKqZDVGjaQ1cDo/GFF/hlg3E3mlXdeuB5CSgITp5rVyNwYKYbnEXa65y05v2Kh8wcmTT+3lrYmRem68ki7hnljGGc8ycJud/jd6fwZ36Pp1+JwrBPnO3C7eSPTWUyl2Bpf4RM9xdgaXrhsQnDrSwd//zQHO7vCQHwMk0CSDj3ZM8uGOk01nYk1LYjYfYioTYboWcbrUaBPY++jyKTfn3rahafYdH6VM47FLcVh07S3QereOuk+m3OEgZtrQVGxSeyEhaNfy62qasnQ5s00HSYcP9fP4Y3egqwq+SAnLITX0r7J8Jvr+InrE3rPbtDx3dJyjWjNs6FGy7HMu4ZBsO4pmIFX/rgKO59t5KjnCVLGtvqz7/TEebpnCXzHqNuHrgWkl7avXBNbfC9ADUGoDY13bLL9VYdSZ4Ka2eSJhu3YpHCxcsOHsqgxD5ux0hMmj3Uwc7Sad8pIfgvQeWC0X6TGz/PTgO+zpjbGS89ahaWqhnUS28RwoIehsTdWtyIc7l/C7K5s+1x5QcVnFoKfejvI3v3c7limz/6EzPPLFw7yV6uGppVHOFNdmsG8Kxng0OslOv93ewTKxa7nW1XCtRr4qGQW3w6JlV5Fdj6bXAdTFOfFZlsRcMsyJWCdH57qZiUcathHJFHRoaW656Qy7e2NEAmu9uywLjrw5wEtP7qKQs89f3f1JHvjEkQsaSWzUsXyEP1vYjyEUQvMl/L9XRK40Gkfs/kicyEgRTTZp1WzjCNc62/KSqZHUbeMIQyi1+iV/vXYpl3HRHV3mpl3TdHeu9aBaiod49Y09vH5wJ7mCh1CoQFvbWjpeWyRHW1u2HlWzBKSz3jVYWrGBKb4S2NRkeVUuZ5Voa4b2lgzR1tqlJYvX07jNNWvIe7XlkCwcEiRqELXqxrM6KavIdmuMkqlRMJzopkLWdJKyPPUUvazVvA+diklIKa6l6CklPFK1+bnmqkGU3ZN0fRuK9Y22Vnfvel8qJExLqhtgWMJOizUFLCTbOBXr5Ew8im6unQ/afFlG2hcZal/C49js1nkjgtRFj9RjsRiGsblgzTRNlpaWLvbt/kHXQJK0OjS8tqPB9aDTGDWyYUiY8K1/FeWdx4N49sHIf4Wy24WCxe2ueYYdqU3vuebKRROUuk5Gv++zVr91m1LiHtccr5R7SFluXi73crdr7opYneYLTl54fTevvTVqFw4D3R1J7hw7gTFZYnI+xPKim5nXA8y8HuDJfy/ov7UGVQ9k8FwnUHU618K353bxzkpP/b594Xk+0XOckcD2mn++HyrkHDz9V/s4+kY/ADsqBQ7sm+QlrY9T+Tb+PrablxKDfKbnCDu9y5zOtDGVsSNOM5nm0aYub6ZmCLF1tAnsQevySTfnajVOc+96KWc3gJPLou3+Ku47wBpWyQQ8TOqRtTrBdZ4XMhYdjnwdmLqdWToduW0ZO7z+4g6e+NtbALh5/ww//jNvIMuCxIqf4zPdvFTsI9bisqM8lqCnUGTHaIyqrCAMaE9VGY+sbHtCoVzRCOYNHi7N0Zsrc0SOkPA6eSfXxTu5LpRlBe2kEyWuIDU53gT9BQKhAqWwzLzsrxfCy5LFgY5zPDI0wXA4cVmgrqoWw2NLDI8t8ZGfeJulhRATR7o5+l4Pk8EwuR0wpwT4z2fvw/kWOOIqkrkOCCSL7tYUI112qt5w5zLeJvbkmyQkJElcMkedOdrG4//lNixTZvSD80gfK/F/HP0oK1U7VUyVTO5uPcuHoifpcjemccsKeFtts4qttL5edXUQeCFlSi4mFjo5Pt/FiYVOCpXGSKmWNXAvV9jZE+PRHz9KsHUzYJ6eiPL8t/cQX7Qje6HWPPd/7ChjN118RPvFk/182xxHyBLu96oEvlpCMiR6b7aNI4bvXkF1WgTUEm1agcA623JTSCTKPqYWo0zNdtTNHhLxAKmUF2FJjAzNc/cdR7n5Q6dwaPb+p+sKx0/2M322h7LhpC2S46c+/wqtrXk0h/0cISBbcLOcDPLWxBBLKwGWkkHiKwGqevPaYIemE2nJ1kApQ7Q1S3trhoC3dN1MVK2XQ7LQJIgbChlTsSEDweoZVsUiVfUwWwmzbPhJmx4ylqtWF9UoFdN2zVtN0VNKeLeCpvUS0mVMVGyMJgm7915NGyHJAixTtqNoNUASQsKqQdzGyKEQsJL3MbXUyfRiB8Xq2r7ic5YYaV9kOLpI2LM57fdG10VHpD7xiU8wPz/PH/3RH3HgwAHAjkb9yq/8Ct3d3Rds2Hs96kctIqUodhzqaqT0XawJw1ZRI1OHv/oX3Rz5bpDWz0tEf0MGWcIvVbjbfY6QUuFGAaNrHZHauJYyppOXyz1UUfFLFe5xzV5yOkQu7+LF13fZAGXUaoc6Ezx87xHGRxpTy1bOOpl4LsjEMyGWT67l0UuKoO9AnvGH7UiVt+X9dxaazET49twujqZt22QJwa2ts3y85zj9vvT7vjxbSQg4+mYvT//lfop5J5IkuOPhU9z3yWM4nCaGKfH04ihPLI9RqEV6hCEhCmqDfbBbrTIctF30RkLxLaNNAKYBSxOeWo2Tl7l3fVQKa4MDoYA8IuG7W6DskSl1OEmoXvQmdRaqZNLpyNWBqduZpcORu+iaPSHg+Sf28OLTewC4496TfPjH37YNAwQczHbzt0u7yBh2XdUOLcGAJwUh+6iXnfcx9dQQlawNMl3RFUYGFxkdWKAzkmJ5JUQi5a81n11rRlsqb3YAM/0m+mgVo0evp+V5iiajpTTjrgSRkN1XSdckXprdwcvnhqnUjEo8WoX7+k/x4MBJWtxXfoAhBCxnAnbEqWYOkTLdVDpNjEDtOG2Aa04itGAy3B7n1r3T7No9j8N5cceE1UmwS4lKzZ0M89jv3kXRqSJ9pEysz12Hbr9a5sH2aR6MTBPQNoPKdiRL23PiM0yZmXgbx+e7OL7QxdxKS8PjGgaORR3ngo57qcrI7mXu/vw0rb2bf7ulhSDPf3sPZ07aPf1c7ip3f+gEN981sy0jiVWVcwqTz7by4twAZx8KgyzhfbNC/1Mr7H4kwc4PxQl2VnHKOq21prnaukbQc/Ewr7w3xnOv7yGR2Jym6fMVufPW49xz51HaI+n6/fmSm2zJj1BVpHX1XoWi065fqsHSaqRpqwbNimyuAVNrhvba7VCgcFk1su9XREoCnJKJKkHc0MiYCpZlN7dN6l6SppcVw0vc8GE0gSYFc11qXomgUsInVS4eFs8bhbqYlDu7LstcjSDV6rREDZiEwN5HtlkvmC87mV7qZGqxg1RhLbPBqeoMRpYYaV8kGshs+/veiBGpiwapeDzOz//8z/Pkk0+iabX+FobBo48+yte+9jXa29svb8mvgX6UQMqujbLqkZsL6WqaMIh1eenr0+mMqsRf/ZNOTr7hp/v/kvHfZy9Fn5rhNtfCRVuUXmtdS5Da6nfIWg5eKfdSFipeqco9rlk8F2GNmsu7eOG13bz+9o41gOpK8Mi9hxkbvvBMa2rWUTeqWJpYB1WyDVVjD6UZeyBz3hnmy5UQcCTdwXfmdnMyaxe2y1h8oP0sH+s+Tpfn0s1LroYySTff+4sDTB21Ya+9O80DP3uEQkBtEm0S4DKR3Gb9t4jIBe5rnWFfywKdW0SbAExdInbcU0/Vm3vPi16yBwhCA7NXRRpXcByQMAY0sj43ZhNLQIdk0OXINViOtzsKl+1maFkS3/3rAxx6dQcAD3zkCPd96BiSBLPlAH8V28t0yXb2jGgFPtoxwYripCw0JASj8grygsbUTCenZjob6qtU1cCy5C3dxQB83hKt62qUWsL2bcln8Ea5m1fTfXWIbHfk2eNYZjbWxrHl7vqRscuX5uGhCe7snsGpXrlorCVgMRViaqGd6VqdU67UaNKhyCb97Uk8kQLHRBsZyZ451rIQfhfcS6BqBkOjS4ztmWds9wL+wPZMNSS46FqpxZkg/+MP72V5j4P8qFyvf+pyZflQ9CR3tZ5tAIOL1Wo/qK1+02Tea0ec5juZXOygrDcep3tbkrQZOdIvuTFnJCQBkcEc93xhit696U3vl8u4eOmJXRw51A+rRhL3THP3wxO4tmkkISyYfTfA8SciTL8SJnWPm9RP2umq3dNpfqL9OL37s+RzbtymTk9whe7WtWXJ5Ny8cHA3z76xh/ml1ob39vlKtEay7Ns7zU07T9MRSdSPBZaQKBluioaXXMmzoYbJvhRKzesXZcmiNZSzYal1DZxagvl6PfaV1NUCqdXxDdgbjgOLtOVmohTiXDVAwrDBSW8yPlOwapGmYh2eLgmaNsriiqTcrfZEE9uEpK1U0VVm4lGmFjtYXGcaocgmvS0JRtoX6W1JXtLv/iMBUqs6efIkExMTAIyPjzM6OnppS3od6EcJpFTFrgNYDUhfSxOGZqqWJL75j7qZi3vp+Y8Kjm4JuebKN6KlrsuQ/4V0rUDqQqsqb2m8XO6lJDQ8UpV7XHMX7L+Vzbl54fVdvP72DowaQPV1xXnkg4cZHYpd0u+TmnMw+ZxtVLF4ohGqem/O19P/fG1XBqosAW+v9PCd2V2cKdgnAVUyuTd6mo92TxBxbb/o+/2QsODQC8M8+3d7yLscVCPg35sj53Ow3KS2aTXaNFxLzztcjPJGqg8Ah2zw0egkj66rnzIqEgvHPHU78vnDXoyKjHBKGP0q5qCGGFWQxhVKLU5EEwJzyXpDlKnbkaVNu7wZ52YyDJnH//xOjr3bhyQJPvqTb3H7PVMUTI1vLY/zcmqtz9ajbafoCmQ4bdig5JOq3OpcIKw0RjVyeRdTZzuYmumgb3iOUDjH88/egiYLWsM1UFrtsxTK43ScfzvMGQ6eTQzz/MoQem2GWhgSZtrBTmecDw1NsKtt8YocyywBC8lwg6teodw40FUVk4H2uJ2q17XMQHu8nrZlCokXF4d4/Nxe8ob9On/CwH9IRavNI0iSoLsvydieecb3zhOJZrdc9ouJSlkCXpge4W8m9lLsWDvX7fIv8WjHSfYEFi97+6mntVlrtVBVQ+HUUjsn5rs4Pt/FUrYxSuN3ldjZFWO8K4Y3Xeatb/SzNGWPC7wtZe762dOM37e0qZ1AtaLwxvOjvPlio5HE/R87Sqh1e9HG7JKD409FOPF0G7klJwLIfNRF5qP2cXEonaXjnIFPqXLL2Ax37Z/E667Wv+O7JwZ49o29vHV8EJ+/bBs9rDN8aI+maPFl8KhF1HVZCPmym9OxLt6dGmYu3spyMkgm39x9T0IQDubrkaXVS1sod1GRtsvVlQKpNXCyJ2kypouY7iem+1nWfSzoPspic3qigkmrWiAgl/BLVUJyEb98qdBUG3utwtIqJIlmkGQv53ZT7q6UTEtiNtnG1GIns8m2hhq3ztAKI9EYA21xnIrBJWcLCRho+RECqR8m3dggJVbrHc+bSidjD0xVyVyX1bvlO/J+mDBsVCUv8Re/1kOmz0v0N2Vkh4RXqnK3e5YW5crYDF8LXQuQ2u6vVLRUXi73UhAOXJLOPa5Z/E1gKpNz88Jru3njnZE6QPV3x3n43ksHqGZKzzuYrKX/xY6vGQYgCXr3Fxh/OM3Yg+lLgipTSLwR7+M7c7tYKNmDJ4ds8EDHFB/umiDsvL62sVzVydszvTzz5i7ispdKi4RQN6/oLm96XZpegk5vZtMAdKYQ5rHZfUwVbIOEgChx88xZlGfKxI560BUFc1DDGLTByRpWMTrUTY1VoXlj2xb16tc1VMoq3/yTezh9sgNFMfmJn3udXftneTnVz7fjOynU9q9bAvN8KHKSk1YLWcuGg0E1zR7H8nlTCA3JoqoatWCegiwufoC2UvLw/JlRXjy7g4LhQAlUUUOVejWyR65yX60XlV/dRt3RBpmWxHwiXHfVm461U6o2phtqqsFgNF6vcepvT6BdYIBbMDS+NbubZ2KjmEJGxmJcT+J9T2F5pjG9raUtV4eq3oEEitK4TlcHg1uNLMqmwsuJQZ5cGCVp2vu4ZAnuCJ/jI92T9HkyF7lWtlDtvCgsiYVMkONzdrreqcUoxrpBoG1NHmd39wK7u+fpbEmTnPPx0p/t4PSbdqRacxnc+hPn2P+JWTRn47q0TInDB/v5wXojiYEkD37yMN39m+t4N8qoSpx+JczhJ6OcO9WC5XJguTWEX6HwgERh3P68thMWH/JN8fAdxxjojtdfn0j5eXe6nzOJNlz+Km2RHC2tOTRtdTkFLqWMWyniUtd6qZWrGocmRvn+wZs5t9w8kyjoK9K+DpbaW+zUvFUQv5a6FJBaH20SAjKGk5juZ1H3s6D7WdwCmmQsWpQirWqeiJqnQ8vgQadoOtEveJyo1aRLq/XpovEELdaBEraDpO3ud3kpd1dCq81ypxY7mVmOUlnXSDrszTPSscBQdAm/Vq4t1yUsm6j/AWCgJcHBU3v4jz/5x5e9/JerKwpSv/mbv8nv/M7v4PV6+c3f/M3zPvf3fu/3Ln5pr7GuL5D6VX7mwAssll2IWvM2eXXnl+yeROtT7Oyo0fr4z1pa3SowWbVH1ixPLy9qdDVUysp8/R/1ID7hJfhhe0alW81yh2v+ijvLvd+6nkEKoGQpvFLuJSecODG42z1LsGYnn8muAtQODNM+YfT3LPPIvYfZMXhlZtW3Uiam1Zv/LhxthKqe/QXGH0wz9mAGf/v5o2i6JfPK8iDfnd9JvGzbo7mVKg93nuJDXZP4tYsf0F5pmZbEXCFUd9GbSkeaR5uUKsOhRB2choIJvFvUNq2qWpSZP+zl7Nte3sr0cPL2LmiTURULR1nHYRmItuaDgYBSbjCB2NjY9v1SIe/gL/7wPubPteJw6Pz0L74MvTp/tbiH2XIIgC5nls90HEFxmByrRrCQcWBwwLlIp3r+KKOFoKzqIIFTgGpo2zIjAHuwMZ1q45mZcd6K9dVnhNs8OR4amOTOnhmOFKN8PznCctXe/jTJ4O7wOR5qmabVUdryvU1T4lyi1YamhSjTixEqG1LPnJrOYMdy3VWvL5LctsPfRi2W/HxzZj/vproBu//UR9omiSxWOHW0m9Mno5jm2rbi8VbYsWuB8T3zDI8v4nQaW0alUlUXzyyP8EJ8mGLtWCiXBJ0zJX79Ey/RFb6yqbSyJDi1GOU7797ERKyr4bGwt8CurgV2dc8z3hnD69QxhUQ27ebVbw5y9OluLFNGki32PBLjjp+awRPa3B/t9ESU57+zh8R6I4mPH2Vsb/P0ZiGgkHeSiAeYOd7G6cMREgk/hsOBWGefLiRB8bYK+o4qNwfm+aRykrsG1pr0mpZEvOgni4uC5WT9EX/VWjybdxJyZxmMxvC51yaJJs5189K7ezk0uQO9NjC2rcVrsLSulsl9kc2a309tB6RWwWm1yfCC7quDU0z3UWriGKpgEdXydGk5vFIJf80MQpaEbYAjCUqGg4LhRCCtm8AW9d5JDRJrVuCWsFNMTVZ7SNXS76iZOwCSJXOZ2c+XrXTBw9RiJ1NLneTLa6nBHkeZ4Y5FRjpitPjy9lZncmkQtR491q20gXCcg1N7+I8/8UMGUg888AB/+7d/SygU4oEHHtj6zSSJ55577tKW+BrqegKp//Tk5/jxnW+xoqtYqyBVe2z9D7V6krdhXloH9VtszLLdeV2c7znXSIUVhT////Xh+pIb54CEJAT7XEuMackbMpVvo95vkLqUVVYRCq+Ue8hYLjRM9pnLvPXaKG+uA6iBXhugRgauLkA1U2ZRY/K5EJPPhJg/4m14rGdfrabqwQyB6NqJv2IqvLA0zJPz46Rqzl9+tcyj3ZM82DGFR712g4Rc1cl0pq3et+l0trVuQLBeWtai3Spw775T7O1aaBpt2qhKXmbuPbu+afpkkJgeQO/XMAY1O9oUaT7wCCplep3phvS8S4maXGmlUx6+/t/vI7EcxOOt8KlfepXXHV28mekFwC1X+Xj7JLeHZnm32sFyLcoRVfIccCxe0EhFIKgoBpYskAUEBOjmhUHKsGQOLfTxzMw4M+m2+v1jrYs8MjTBvuh8Q5NmS8B7uU6eSuzgXA3+ZCxuC87zSOsUXa4cuilzbrm1nqo3sxihajRuF25HlaHOZbuPU+cSPZGVK16DcjQd5bGZm5kv2svZ5c7wM4PvsMOdYHqyg4kj3Zw83kWpuBYNUxSzXlc1vneeYKiEEHCuGOSppVHeWOnDrEGmM2cSeEPQn8jy8//qZXyhSzOR2EqnlyN85919nFiwAUqWLMY6F9nVtcDO7hgdwTRKbdBrColS2cHb3+nl4N8MUC3aQDNwa2JrI4n5mpHEqZqRhKfC3Y9McOCu0yiqwLIgnfaSjAfqluKJ2u3KFqYMAF5PmbaODJVbStzSf5aPRCbodK5ZXBZNjWTVR0r3oAtlg7V4gETKR29kmXv2Hmf34Ln667IFNy8f2c2bJ8ZAli9oLX4jaCNIrQK8EJCznMSq/gZoatZmQcYiohbo1PJ0qDk6tBz9jhxIsFTVKAmlBkkWTsXAsCRKppPKqvtoPZok1yNGpiXVokhgsRpV2topUtgLwqoJ4LWCqGLFwenlDqYWO0nk1hOPT5YAAQAASURBVMbBmmIwEFlipGORzvCKbegDSBY2RDWxct9SDbgh1Qcr69dK/w8rSP2w63oCqf/n6c/yybF3SVS1WgPQKzBilewTCRKXXWR4pZWLK3zzq4N4f8GB7JJwGjr3BmZpU7aepb3R9H6C1OX8ulUh81Khj5zkxKjInPi7UfIxP4O9SzzywcMM918f/ZOyNaiaeDbI/GFfw2PdewsMPJJjaX8bL+ZGyOl2qk3YUeQj3RPcF53Gqby/aSmmJTFfCDKVjtThaam4+TjjUqqEylUqp1y4EhbhSpmPfvpddt82e971Xs4pnHvHy6kTYaaTYZKaF2NAwxjSEOHm0NSmFohoBeJlL9PZVgxTQZNMu/9UdBLHZRT3X0nFFwP82ZfvJ5v24G8pMvz5aV6q9FOxVCQEd4XO8cn2E+Rw8E4lShUVGYu9jjiDanpb26sum+iKCQLchopLMbfsIwWQqzh54ewOnj8zSqZSs+aWTe7snuHhwQl6g+nzfp4QMFlo46nkDiYLkfr9vrxJ9bQXK92YqudxVmwb8i67AW53Sxr5KhTvb5RdPzVcq5+yl2lfeJ6fHniXTk8O05SYnWlj4mg3k0e7WUmsRVAFAu/+LNlxQUxb20dH3AnUZzSMN9yEWot8/l//gEDrlUupnV6K8N33GgHqzpFpHt17lDZ/gdVmuqsAVTUUJl7u5JU/HyIXt2fez2ckkU27+cGTuzhyqK9mJGGy85Y5ekcSZLPeOjStJP0YxhaREiGQywZKpUpra46hvXFGb1km0p6l1ZejKiR2epfrEyaGkFgqBjm+0M3EfGfdAGK9tXhXa5IP7j/CXXuO4/fY69MSMLvczvxKBEM4iLTmrltr8UuRS9FxyVVShptYdTU1z4amgrXZXVPGok0t0qHlbHDSckS1Aqq0mrMj8EoWVSTiukrJUhBIKFioikVJ18jqbqqmisU6OKpFmtYqyrcvG6IEkiVdE4DSDYUziQjTi53Mr7TWj3mSZNHTkmSkI0Z/W7we4Rar7GNScxHcxvdtSN1rDk/r9Q8gdYPqegSp5YqGuFJmE9dpNGolpvH3bwzhfsj+nq2VAh9smW3aRPRG1vsFUpfzy6azHp5/ZTeHjg8y+vFpAj15LENiOJ9jX9f8dXvyzS1rdk3VsyHOTAVI3dtC6oNhLLc9iAnoRT7SeYKHd0xflvPXRhVKDk7NdiBLgqCvRNBXxO8tochi29GmTm+GkWCC4WAcZ0Jw8C/HyCTtaMreO87yoc++h8e/OSJUSCkcP9rG5Hwrc+UA2ZAbc0BDBDbPDEpC0CoX6PNmtmxsu7F+qkUr8pmew9wenrumv/vc2Rb+4g/vo1hw4tqTpXxvhXgt2jTgXuGzHUfpcWU4XG3nrBECICiXudUZIyBvL5JmYVFWDZDAYShoQt6yIe9sJsT3Z8Z5Y36wXmMTdBZ5YOAk9/efwu+88Kx+RVeZWYzUm9/OFMMY3TqizajvwEpWYqia40DLPDs6l+hoSV9x046L0cb6KUWyeKjjFJ/qO4q3FtUVAuJLAY4e6eHVxADnoh6MVQ8HC4KLJjdbixRf97By1osvVObzv/UyLR1XxthlejnCd9/dDkAJTCGjWwqzR1v4wZ+ObMtIIpt28dLTuzn6bq9dZC9LaG4D3VC3nJxUFBO3UsZMmlhpC7mkI5d02rsy7Hl0mbEHk7gCJi5Zp1XLE9YKDceoU8kILx8d56m395IteDe9v0PTuWPnBA/e8h4DHcv1+3VTpWS6KRmeelP0G11WLcqUMlykTfuStZzEdS+5JtAkIYioBTq0PJ1arg5NtuOvPeRt2L8FeGRB2ZJZrGgULRUBOGUTS0C26iavO9flB12+xGot+/sMUZYlMZ9qYWqxk7Px9oZ6wfZAmpGOGIPtS7gdG1JZJYEkpFoq3wXWw4a6p/Unkgsdym5EkLrovaxcLvMHf/AHPP/88ywvL2NZjYOTt99+++KX9h909VSrq6r/c51ods7DC6l+3A/JCFOwo5rklsj1EfH4UVIq4+H5V/dw8N3hugtP6e0gXe0p8g6NsyEPnaaHqHp9NtHzt+sM/3ieU3f0cC42RLU2cHAsVmj9fpLAO1nes7ws7x5m/KE0Yw9lCHVdWrpaKufh6FQvR6b7OD3XbvffQGC6wHCD6RWYXgtDa2IFLhv0eVOMhpcZa1lmOJTAp1Up5h18/3/exOHXBgAIthT46M+9zcgeu7m5JeBcIsCx6QgzmTBxxUu5w4nolqG78TMkSxCuFun1ZRgMprfd2HbQm+L/HHuBg6ke/uf8XpJVL1+ZuZNnlxN8rvc9Br0XLpi/0pqejPLNP76HklPB+FSOeFQFU8WvVPix6HHuCM6Stlw8VxqgIByAYIe2wi4tsW3oEAgqNYhSLAmlyeDAEhLvLnbzzMxOJpPR+v2DoQQPD05wa9c51PMAeqmq2eBUS9U7F2/dZMMdNgy6rTSFdjgjBTADMqfwUXJ24FVzRMlwGV04L1teVedzg+/yQMc0j83s571UN0/Hxng1PsCP9x3h/o5pCoaDV60enmsfJt9iD2wdwqRjuYz1uhcp62SafgCkiEXbrhUWYi14QhVcrkt342wGUB8YmeZDdYCyIxGyLDAtmaqpkpj38vKfjWwyktj38VkqVQdnZtpJJNbS8RYXQmvpeOtGTKvRIJerSlskS2skZ/cLW7ZYOuRi8W03Enbik9NvMPZgkl0fjtM+UqRaUXCYJp2k6fBl6++ZqHp4anmUZ164maUza+mi663Fx/vnuGnoNF0tCZTaticElE0XRcNLxWysmbpRtApLadNFeh0wpU0XGdOJtQXESAja1GIdmDq1PFEtX480UTNwEEJCF3KtFGJdCxYBftUkbygsVByULQVZErgUnYqpkq26KV/BSdDVVD7gfYMoISCRCzC12MH0UgdlfQ0+A+4iIx0xhqMxgp7NmUCrUSjJki6cyrdF3dONtzVenC46IvWzP/uzPP3003z6058mGo0ibRj5/tZv/dYVXcD3Qz/MESlJFusclK6PzfnofAuH1Q5kj4SZEtzpnGU4en317LmSej8iUhf7y6YyXp57ZTeH3lsDqOH+RR6+9zDD/cuYQuLNSheLpg8Jwe3OBbrU/AXe9f1VvOzle/Pj/GBpCKPmnNTvXeETvccZtRY59bzdp2r2HW+D01HHziLjD6cZfyhNqPv8ULWUDHBkuo8jU73MLtkDG1MT6H6QWquUHCpWE/qXK6AWQS1KqEVQKiDVfiWHphP0FVEti8yCB7MkI5uC0fEFxu6fJSsUZlN+Fg0/2YAb4WgSadIF/myJTjXHjmiSodb0JTW23aiqJfPU0ijfXRyv9aOCu1rO8JPdRwk73h9Xw6Pv9PI3j91Bbq9F6WYdIdstEO5vmeFjkUmcssFJvZUJ3U5FcUs6tzhjRC4yHbgqGxiKhSTAZWhItcJxh2KQLrt56dwOnjszSqJop6zJksUtned4eHCC4XCi6aRPseJgOtbOdKydqYUos4kWxAZAC/sKDHcu1V31IsFc/b1SuovnksO8nOqnUpsUaNMKPNw6xQdCs1c0qnqpOprq4LEz++36KUngdZapSkq9/qnVUeCR9inubZvBoxqUCipf/0/3EltoxXLKCHltfSiKyeCOZcb3zjG2x66r2o6aAdRdO+wIVItvNcolUCULS0jolkIu4+L1vxzkyNNdmIqK5ZKJ7Cni69VJZ3wkEn4q5a2P0TIWbe1Z+gbitLXnaGvL0hbJ4vFWSEx7OP5khMnnWqnka+dtSdB1IE/XvSW0XolE1o9b0tnXe44PjE7VZ/xNS+L1ZD/fS43xRqKXlkmFHkeuwVo8Esrgd+XxqEUcylqkwLAUioaXouHBugSXyfdbdv2SYw2SjPWw5MI8zyBdwSKklO2LWiKi2bVNYbmIQxK19itrKXarCXtN5yBq90kI/KpJ0ZRZqDqpWDKabKLJFnndSbbqqpVYXKHvD3Y9lFU7Z19liMqW3EwvdjC11EmmuBbVdGlVhqKLjERjRAJbtzOop/JZgLlFKt8VhqcbMSJ10SAVDAb53ve+x913333ZC3m96HoBqYJ+jmdmPolH0zFr4LN+Z9u4YUob/258XpNo1Pr32Oq9L3R783Jsb5cxhcQrS10seEMAVI+ZfGToNJH2a1/QfjV1tUHqYg5YK2kvz72yh7cOD9UBamQgxsP3HmGob7nhuZaAg5UuFkw/EoJbnTF61GsPvAtFP9+d28Vr8f76LOVoIM7He46xN7TZCCOfUDn5gp3+N/u2D7GuQ3zHzmItUpUm3FO1i+OXWjky1cfRqV6WU3Z+kukQ6AEBbTpFtTFNz6XoDAUT9HrStKsFAqJCteQgk/eQybvJ5D1kC/btUqU2EygLCBhIQQMpZF8TMJCanbOroKwIvPkqUbXAaDTJjmiCFn8R11Vy1UpVXfzN/B5eXRkA7IjaxzomeDR68qrWT73x8gh/+/Z+8nfoWH774DTmjfPZjiN0OvMULI1DlU5WLLuepUfJss+5dNHOnnWrc8BpqPVo1HLex3NnRnnp3I56OqZXq3Bf/ykeGDhJi7sxMpsvOevQNBWLspAMb0oJbA3kbGOIGji1Bi6czlYwNV5cGeT5lUEKpr3NBJQyD7Se5oPhM7iVq9eo+kISAo5mo/zl7D4WKmvnS7ek86muYzwUna43XRamxOO/fwsnD3ahOQ0++7+/Bg6ZiaM9TBzpJhlvPN929dr9qnbunSfatbnGbasI1Ef2HaHVl685JgpMXSKT9jI/FyY2G2b+TJjZ6VYMVcNyKE1t/cF2XvMHihhlhVLOYUO2o8pdD57gtnunUdS14VIpq3LyuVaOPdFG/IwXw6thBBwoHTLOfomyw0mm4MXvKfHQ3mM8uv8IfZFk/fWxVJDXzw7xuDHGvAjgkar8Utdb9Psyq2sah1zFoxZxqaW6cYkQUDLdFHUvVcvB9TJBuiohoGBppEx3U2C6ECwFV2GpBkxhtUyLUsQv6zV7cAnDlHHIJm6lumb8sO0FtK9WIapgyixUnFSFjEvVsSyZnO6ioDu37dy57Y99H+qhyrrGzLLdLHcpE67fr8gmA5FlhqOL9LQkL1xnufrVm9VDbcM04lL1IwFSu3bt4pvf/CY33XTTZS/k9aLrBaRy1VP8YP7Hr9nnX7K2AWOWkMgYTgzZtvw0lqAjUkR1iHrTua1euyUEcukwuPn21TsZXU2Q2u5SrwLUocPD9dSiHYMxHr73MIO98S1fZwl4u9rBrBEEBAcci/Rr2S2ffzV1Nh/i23O7eCvZWz/B7QnF+ETPccaCW3+H9Sok16Dq3Fs2VAkJ9HYv8l4PpWiIknCtpewFLUSrQUleO1lLCEZCcQ5EZtnTuki3L9PgzrZRVUthoepnvhzg3bM9zJaDWC0CmkCTqILIaJBREWkVkVEhv7XpjFPTCfiKdp2Wt0jQt/7SWLt1KTpdCPPY7H6mC62AHW34TPcRbrvC9VNCwLee289z1gB6tw1FYbXIpzuOsd8fA+CcEeBwNYqBjIrJfucSvZcA9gJBqWZ1rpoymqlyMtnO06d38t5ST33b6vKneXhwgju7Z3Cqdnpktuhaa367ECWWCm16//ZghpGu5XrUKey79LTYiqXwarqPZ5PDrOi2sYVL1vlg+AwPtJ4mqL5/bmuGJfFGqo+nlnYwVwoBtbQqrUC84MeyZBRJ8HDnST7ZewyPrPPtL9/MsZd7UVSTz/5vbzC4t3E/jS/5mTjSw8TRbubOtDXUG4Va8rYD4J55rIDgiSM3NQDUTZ1zjHkWKSVcJJb9pNM+8gUXJd2JcYFsDlU1aW2zm9WuXrudVY682cvxd2wjCUUxufWDU3zgoZO43PaEha5LHH+tg8OvdjE334LudWL4NUyv1gBnsmRxYOgMH9p/hDtHp+rF+ropE8uHyAoXMcPPl2dvJ2W4CaklfrX3IBFHERkTt1rCoxXQ5DVg1i2Vou6lZLhrjr7XTkJA0dJImY0peKvAZJxn+WQsgkplDZaUMiHVvvbLFWTJ3q5kSSDLotZ81jYGMVHqzZXdagWvUq1Hzre34PaVhCCgmuRMhVjFgYmEUzEomyqZqptqk5rWS1VjKt/VceUzTJlzyTama81yV1swSAi6wiu2aURkGYd64fpzQS2wJGish7qMuqeL0Y8ESD3xxBP8/u//Pl/+8pfp7++/7AW9HnS9gJRplfnKDz7DB/tPsvL/Z++/wyPL7/NO9HNS5YhUyN0NdAI6zkzP9GTOcBKjxCBSlChZsmlJtqW79tVeX+1alh5Ja1q21/Z69+61RFmWlZijRDHMcDIncGJP5wQ00IhVSJXTSb/941QVqpAaQKO7MSLf5ynUqXRw6lSdU7/3977f92uolT5SDsSyvyxTrRuWJWd2rRrPWXtcWuG5K71+leVtNvm1dag/P7CJ5TXIoCw5J0/b0racsF1rbfPJgKNAne6rI1BTPPbAaXauQaDqIQS8o8cYrRT0H3El6NNSm9/oDWIo08y3JwY5mVwsCrqtaYIPd5+jL7iwqXXqpsLps1386LV+RjMxLEVDIDB9YARsjJCN5Vk8/hTJYqApwbG2cY62ThBZpXlv0VaZKoeYLIeY1J3rGcPPSp+UlLFRRgzUUYMWPUdfU4p9+xfoOpLHVLSKolV/8daWM/k6desakCSboK/UQK7CgcIS4lVcVd0SAl5L9vC1iUO1wfxu/9bVT+UNlf/6owcYiQZBBlnYPNF6mSdahnDJFmUh8065nSnLsdg1ywWOuafxyRtXZeqjziVb4uTV3Tx1ZZCr6ebac26LjfHIrovsb0mQzntrzW+HpmPMpMLL1tkeTdUUp/6OGcL+rU8ctYTEG+kufjC/m+mKCqRKFvdExnm0eYhW142rYcyZGs/P9vPMbD9pw1ECXbLJA82jPBa7TJs7z1QhyJdHj9aO0YBaZt/EAtlvhFFkm4//5uvsuT2x9v/JeLh0rpNzp7oYvtSOYakYAYlim4wRrA7mBO6MwD0P1xTlbIFsWGgYeN06Pf3zDB6fpCWWIRIu1AIlyiWVHz27lzde2FNL2hs4Os6R91yhaLqZmQ8zMRlhYqKJjOkDeWVFxePWGdwxwaOHz3Bs1yiBuvCRvOViXveTNPzYyEyXA3xu/BhZy0OLluef9LxOzJ3GrxXwKIvJeraQKJle8qYP4yarT0JAQWjL6pWql7Ua0UqIRmWpcomqi2RppddU+2JKklPTpFsKhq1g2TJL3/uGiFTD77sgqJpkTZVp3YUkCZSKlS+re2sW1a3AjbTyCQHTqWilWW4bRh35aw5k2N0+TV8sgX8dITg1VDfSlpyLkG563dOPBZGanZ3lk5/8JC+++CI+nw9Na2TuCwubG9jcSmwXIgVbVyO1WBu1tV93UXcmuBbxsgUMG1EmrBASAmNUIL1S5P5fmEfzLF9P/T1rrnsNMriu5VtEBhVLxrWR2bNrYK23MZ8M8MxLB3n7dF9tdmpv3xSPPXCKHd1zG/5fQsBpvZVhswmAg64Z9mg3LoRACDifjvHtiUHOp50ifwmb4y3jfLD7HD3+9DXWsBzFksbZkW5OD/VwcbQL3VQRksDwgx010QNgKouDA0m3CVzK0jk/z/G+MY68d47mnYs/SgVLY6KOME2WQ8yby9O1AKSshJyQUaYltPN5ukrT9Pen6b09R/eRPO7Axu1yZUMlU0eu6olWOr9IuJaGG6wGd6V2KxwoEPIXl6lbXl+JV/M9fC+xrzZ4ua95lI91bq5+yhbwykIvX504jFEJ6OgpZ/mVA6/RUiEGM5aPt8rtlISGhGBAm2OvtrBpNawadW7ZEv//H76Py/MdgEMM7um+wu0t4+gFFxcmOxiaijGXafw9kBB0NCdrzW/7OxIEvTdPFbIFnMnFeHJuDyPFpto23RGa5LGWIXo8W6cWJ0oBnprZzcvzO2ufd0Qr8kjbEA+1XKkl9tXjdLKdL47cxlTRIZyueZuPNJ/hg/efRZLAtqFYdJFK+Uml/MzNBJmZDrMwHyCd9pEvedAtDdMjUWyWMP3Vk73AlQHPvFgkUKaNbFi4MfB5SgQDRcLRAk2xLLHuNC1dOYIt5QY7XsO+tCRO/GgnLz49SF73YGsSnuYy7rBBKu+rhUkshWTZBJUC3d0L7Ng5T0dLksHOKbqDSULa4nFgCpkF3ce8EaBU18NovBTiT8aPUbBd7PXN8Bs7XyLqyqDWhcLolkbBdNSnrUyKWwohoCRUR1lagTDpa6T+SQhCcpmwWiK6hDCFlHLN3rkWFslTZXsAS8hYtoxhKbXfrpWwbiJVtxlyhUSlTY24oaLJNoYtk9G9FE3Xu8LKt5ALVEIjOsiXPbX7A+6i0yw3Nk00sLE0zJoKBZV6KBbrim9yaMSPBZF69NFHGRsb4zOf+cyKYRO/9Eu/tLktvoX4e0ek5ErfqFrh5c1H3lZ5pdjDvO3MYM//lU3grSw/939P4vLehJiaNdBI0zamyK1LDVzy1zJlTJczUNZMBXULildX+1TnFgI8+/Ih3j69q/YjtK9vkkcfPM2Oro0TqHoIAeeMFi4Zzuz9gDa35U2ThYB3kp18e3yQKzkn3EGRLO5rHeUD3edp924s8CKd83JmuIfTQz0MTbRj2zJCFuhBoMmg5JcbPPt+rcyh0BRtUwuUnzYZ/5Ef21p8g9HDZfwfl0jtDzJOZMXjS56xUEYNlHGBVAggp9zIeZloMMl73n+KfffN4/LenNAAW0Cu4FlT3UrnfZTWaBJaD0my8YZLFHaYpMLOQFMVNrdrcR4Ij9ISzK2pblUxWozwpalDjJUdD7+Sknifd4gP3nYWcBSYc3oLQxXiHpB0jrmniCqbJy2zRS+eQAZFFnzpxL28PLIfj2wQk3PIWZn5VLBWN1j/frtbkk4fpw5HcfJ7bn1NpxAwVGjiqfk9nM0tpgkO+hM83jLEHt/mjksh4HKuhScTe3gn3Vn7fvd4UzwRu8Rd0XHUNWyipinzg68M8szkPhZuV7E9zusjKZ2mCwIz6V6zeN/0sIxA+eYNmpIFXNiUTbeToFfnAGjvSrLnwBT9B+LEutKrvu98wU1iPkxiPsSl4Q6ujrVSRgVllRfYNmrWqFzKdLSlOXTfJIfeM43LLfDKOk1ajiZXoS4hDjKmh3ndT9r0LTs/DBei/I/J29gfiPPB2BkGA9MN6lPR9FGoqU9bh5KtLNYsLSFM5TUj0gVBWSeqFGv2u+olvE6ytBRLyZMtJKxKkp4lZGxbrtn31sK6iNQKJCplaswaKopsUTRdZHTvxuyB18CilW/rSFS+5GY44YRGLOQW+7W5VINdbQl2x6ZpjyyvKVw36uuhqsl8W1j3tBH8WBApn8/Hq6++ypEjR657I7cL/r4RqRulRq0X02aAV0td6ELFygqmfs+mU87yyf9zCs19a0nUVsC2oZB1k0+7yaWd63zaU1muXGfc5FPOtWUq3POpM9z18QsYZYU3vzqIz2vR3JWlpStHuC2/mltkRaz0qc4uBHn2pYOcOFNHoPoneeyBU/R2za/wis3jot7EOcOJDt6jzXNAWznBbCOwhcQbc9383cQg4wVncK3JJu+JXeH9XRdodq/fujSbDHK6ElN+ddrZTlsR6CGQm3UKHqUhSjfqLnB72zh3tI2zLzLTUE9UTCuceamJNya7mIxFMAbdDQMvJWGgDJsoIybqiOFY9Qwbz2CING2AhMdX5omfPcmhu8e2bbz/ZtQtM2hT7DOwwpV8rJKE94qKNqfg0cwGRStUqeFy+XXelts4rVdURh2CJxV++c7X2D84BUDGdvFGqZOMcKyLu9QUB10zG04ktCyJ2XSQtyZ38Gaih1+473k6QilOTfXy3198BDUnoRYb6yNdqkFXc5L+DqfGqa99Fu8NCvTYKoyXQvxgbjdvZbpqA/dd3gWeaLnMwUBiXXHwlpB4M9nFk4m9jBaaavcfDk3zROwS+4OODbhUcpFK+Uil/KTTfubnAk59UtJPNuejqC/az2xNkNktyO8QzsDShsCoRHBIQikKJMNCNmxcso7SZJHq8JDxOBNvMjYH2iZ5YN9FIoESuqHWLvMLASbHmpmabCKZ9CMkp85RyBKay8Qb0nH7DBTNxjAVdEOlpGsUSytbYSUETeEsXr1E+SroYwI1Y6AUDMKxMgOPzzL4xBzBNh0Zm6iWp9mVx68sEmrdVpg3/CzogVVVnNFiiFlT4/6mIZrrrJhly0XB9FG6TvWpZCsr1iulLA8lsXbNT1AuL6tXcshS6bqTQGF18lRvo7NsGduW1r0Prkmk6jZbQeBXLVKGStKUsSXIVnpDrRarvhlspZVPN1VGZ9oYSrQzlWyielzJkk1Pyyy7Y3F6mudq9XcbRrUOqqEeyiGwt/Jn6t1IpDY8Ut+/fz/F4tZ7wH+CCioHnibbWFiVm9WeB1JDjPOKkBdro242bAFn9DbO6c7gtXjeZuK3bPYezvDx/30a9cb2o70umKZEIeMml/aQT7lrpCifWSRLubSHfNpNIePeMEl97SuDdOybp+fgLHsevMqX/9V7McvO4adoFk0dOVo6czR3Z2npzNLcnaOpPbeqLaWK2fkgz7x8iBNndtZilvfvnuDR+09vOYGqYp9rAVkSnNHbuGw0YwmZw66ZTZEE05Z4dXYn35kYIF5yTlQe2eC9HZd5ovMiYde1FQghYHKmidPDPZwe6iU+HwEqMeXNArlFJ69VG6w6A4p2X4Y7KuRpZ2h+2WCzaKucy7dxstDO5YEWrIHFH1vfTAme0dFeLqPMWqhum67DeXrvzaF+1MXrrx4gNRcA4MBdYzzxyZP4QzfP/rUZuDWT1miW1ujq4Q0rqVupnI+LmSYu+SLoHpnCoIGStrCGNcrJcC31UEgCq0fH3F2qfgTIkxruCy6igRyvDO3lbLwLb2+OcrsFkoQqLI4os/S617ZxWpYTLT2djDC9ECaRjDCVDDNVClH2y9gu+MSRV+kIpUgXvXzjB/cRKth0RFO096TpaErRHk3THk3RFMzhUVduyLtd0ePJ8I+63+bD+gWent/Nq6keRopN/PH4cTrcGR5rHuLO8OSK6kHBUnlxbhfPzOxmXndsqSoW+6UF+nIZxFWNl589zHdSfrJ5L4ZVjfaujbkW1XkJcFWWbYFk2YQuCPwTguwgFJtlcn2CYq9FbK5MNGtSRGMOP2Wpsl4hUMoSSknm8kIPly/0rP3mI403TVwUSy5Y0WkqkAxQDIFi2ezpm6a/dYLZH7kY+X4Ew5CRAb9ms/uBBQafmKP7aAZJFviVMs1anqhWqAXL2ALSppd5PUDW8rDyFJfAo5SwJYO7mydr5xnLlilaPgqGD/MaJKceui2TsjwrJuIVr7Eev6w7dUpKcRlh2gqytBTVwIgqbCFhVsiTsCUn7K0y4esoUddWodaNehIlCfyKRdJUyNgSBjLpsmPl20q9ZSusfJYtMbHQzFC8g7G51gaFvD2cZHf7NDvbEni060vtFFRCLyQcK58NCPldcsbbftiwIvXUU0/x+7//+3z2s5/l0KFDy2qkbrWisxlsJ0Xq9771j/m5oy8xq7sQyJWTkWMxcb7kjT/vonavQ7RkyfE83Gw1qmirvFrqZsZyfowXvmKR+D8Eh9+f5iN/GEe5BQ3W9bJSpxp5GpYXlSSHIJXyG2R5ksAX0PGHS/jDZQLhcuXaue0PlQlEyvjDJYLhIpIsmE6EcceyKC6LqXMtvPBnR1mYCmIaK1tdJNkmGsvT3JWrkauWzizNnTlSeb+jQJ1dJFADuyd49IHT9HTeGAK1FFeMCCcrysIONcVtrvU3VNZtmR8m+vju5ADzZec741fLPN5xiUc7L61Yf1EP25a4MtXqxJQP95DMBBAIbDcYYYHUbJBXGs9NO4LzNfLU6V/eO6NsK5wrtHEq186FQmuD5a/DleGwP86RQJwWrUApqzD2VgBf1KBjsIiuqzz99cO889IuAELRAu//9An2Hp5e3w55l6NsKzwZ38t34/vQhYqE4KAnwR1SgqliiLe0NvKV2Hg5LaOe9yCnFz8fl09n70NXiHY7NT4LY2EuvdCHUdRqtVshfwG32wDFqT8pGi4yBS/JvL9SjE6t5s0MQNVBdjA2xq/d9zQA8ckYYY9ONJhfteDdpby7iFQ9bAHzJR/PL/TxSqa3ZtsKSmUOMUt7tkQ+42Wm6OeKJ8Rs2I1dUVglHTzjKu4JBdmQGolS/Rh3k7KqHrYp9FpUkuuRS6DNKyhFGYTTa00pQTVdX1UsXJqJSzWd68pFUy0U1cKlWmiaWbtWZItc0sd8IsDsZBi9oDkWQBsQAtl0Bo97BiZptme48nyI3OyiStW2J8/g+2bZ+/A8nqCFKlk0azmatDyeumSLoqUxbzjBEeYqNkVFMvCrBbxaAaXO9jdSaCYoC/RVidciWVrpUriG5c8n68vqlaqkSdtgi4DNYJE8OaP0euVJ2FLlmBLIzke+bhvfSlhVkaob0aqSjU+xSZsyKUshZ7hIGz5Me4t7Q0mAtDkSJQTMZMIMxTu4MhOjbCx+xmFfjj3t0/TH4gS919/Hr8qdgEoClhMqId0i99JKeDcqUhsmUnLFg7S0NkoIgSRJWNa14xW3G7YTkfrdb/xTfv7255guerAbBEMnyaZKrJAEMqJ24qqm3aiyYOknWu294CzDVrteE6aPV0vdTkG4aTP+O4LMU4Jjn0rxod9LbMi2thaEgHJRJZdqJEWLqpGHXMVOl0+70UsbizCVZHs5KQo1EqRAxCFJvlAZRVnfoVMff25JNrpiguTUS8mWQmbWx9xUgPnJIHOTQeYnneVycfn2Wy6ZUqsbPazWBjRd0XkeuOMcAwem8AZurg3pqhHibb0dkOhRMtzunl7TSlSyVJ6L9/P9yf21BLCQVuR9nRd5uH0Ir7r6TJthylwa6+D0UC9nr3STL1Ziyr1gRWzs6NKYcpu9kVnuiI1ze+sELd7lBbi6LXOh0MrJfAfnC60NA6M2LceRwDSH/XFirtWLd8+/1cX3v3iUXMZ5P8ceGuK9Hz2D23vrev3cKizoXr4+eZBXF3aAJHBrRq03llcy8L3mQjrpobkly8d+6UegwaQRJB5yIxQJYUHmQoSJszEyRR+6pVVsW9QG9SvBlgVm0CFR1ePCLRnc1TbCx46/gqraoKv4pLVPRjeaSNkCDHPRpmYYCmVTxaizrukVO5qzXPdcc4XHq8/RnWvDXPzNEGpFBdxRhqql2pCw8wq6S6rtJzkv4Z5UcSWUDQ2oVNkhOpIQlNIakg3BcJFYVxpNM3HXEZ8qIUrpHl7N9TLnc9fi/6NWiY93nWKgJdFIlioWW4eISFi2jImEYavXnCgUNkyPR7l8tpPLZzqYS4RobkrhT84zd3KRPHmCJvsemWPwfbO09hcBQUgt0qzlCauL6XmWkEgaTnBEwVpNyRBObLmax11n+0vqPp5f2EOyHOLx5ivIEhhCJm25SZlL1CXLQ/4aZMkrGTU1qaYuVS43ssfbalgfeQIQSLLzfGFLmEJe1qx6I1hGpJb8HFdJVMaSmNU10oa30hvqBlj5Km9/IyQqXfAxFG9nKN5BtuSr3e91lemPxdndPk1zILtldvBGEkWtye6tNfItx7uRSG1YJ3juueeua8N+grVhr3ogSghRJUUrPS5QFRvDeZJDuirkSmaRaC09ZJzjX6r9MG2EaAkB5/QWzuhtCCS0lMH5fyShX4W7f2mB9/+r2WueBGwbijlXzTa3smq0WHdkraLerAZVs1ZXjeoJUriMx69vGelbDYqQUW0FU3HSw9xCIhIrEIkV2H3bYkNcISCXcjM/EWRuKsjYaDMXZ7vJ4K8NgLSMgWe2TKGk8eRLR3iSI/gjJUe16srR0rV47Q+Xb0h9zg4tgyIJ3ix3MG6FsMoSd7qnlpGpvKnx9NRenpreS950BjLN7jzv7zrPg20juJSVJ2BKZY3zo12cHurh/EgXZaMSU+4Hu9vADIuKLcix7amSxWBznDvaxrmtdYLQCtZAw5a5WGzhZM4hT/U1Dc1qniOBOEcC07RruTX3WTbl4XtfvI2LJ5zI5+ZYhg/9g7fo3XNzFMHtiCZXkV/e8RY+l84r6d7KuQUUS6C97EW6qNHZneQXfu0FNK/BG4UuZgNO8pSZUxl7q4uJiRbH0iLD0jGPIlv4XDqabCFsKKCR8WiYvjpiUAZ3ClxZlaNHRlFVm+mZJj73Vx9GkcXy2q2625FAnpC3SL7koWxqK5Ibw1QpV0jQUrKznPw0Pqee6NxoSAaowy6UKyr6Ph27R0fSBHLExC1AZBU8p1R8IwKPVsDvKREMFgmGygQjRcJNJaKteQKhMm5XozKkqRayLBg+2crX/uNxfFaZw+8Z4wO/8g4rcdUrMy189+Rhzk05x4pfsWjalWKSAEnFw/9I3MHjitN/ylOZTFEqo1NLyJgVJm3Z8rKJwpWgFxXMOQvPfJLWlIE+HKR4SqGIGyRB7x1pBt83R989SVSXwC0bNGl5mrU8Wl16Xs50MW8ESBm+VWtpVNnAr+bxqoWGprkTxSa+Gj/KuXwH/f4knd4M30gNkLI85Oy1Wxd4JKMWF75UXXLLt36yemXypGAJaUWLnlSZ7BVIWLayaRVqVSz5Tmh1JGq67CGt+yhtYW+o2r/coJWvqGtcqYRGzGbCtftVxWRX6wz9sWk6o8lrN8vdBBr2dqXJ7nYjUe9WbFiR+vuI7aJIFQydI3/9nzgUjdMXmGEgPEevP7Vms88qnOZ1dkWjWuFxoGoErBV+SiwhWesnWmVb4dVSF/FKbxfP5QInftmFKMH9v7rA3f8wW1GKKgQp43bUovowhrSHfMaFWGc8cxUur1EhRSXnul41qihGVYLk9pq3vMB/aUNegUCv9rIR4DZX7y+VmA3zzEuHOHVuR+3T2d83wdFdo0h5wfxUoKZiZeZ9K64DwOPTl5Gr5q4s4ebiigOfjWLKDPBGuQMbmZiS47h7CkUSZHQ335/ax7PxPbUfspgnw4e6z3NP61XUFWZQs3kPZ650c3qol8vj7ViW4li2AkCzQTkgYdT1WPMoBodbprijbZzDLZMrqlqmkLhUaOFUvp2z+VhDUlVULXDEH+dwIE6Xa7nlbyksU+LNF/p54W8HKRddyLLNve+7yAMfPI+q3fwZ4e0CIeB0LsbX4geZMxy7ZpuWYz7rJ18JjvBkbPZaKYQtETs8izdYRggYO9vByMmu2rnApRqVuqVqDZNTxxQN5rGFxJtTO3jqykBD/6c94RkOR6YI2TqZvI/mlnkOHRzGNGX+9IsfZGK67ebvlDXgUs2KNc1EVSznPF8Zm9qmjGXKGLqCXtawTAWEqM18189+1+6zBbJhI+s2ctkCYVPYI8gckTEiMiBQJRuvomNozvGjYHNXeJzHW4aIuTcWmTx2vpkv/7u7MQ2Fgbsn+anfeGvZRNRSAiVLNnfvHub9R07TEsgxVQjxhZHbOJ10Gu0GtRI/s+Mk720fBgmnh5CQkSWBZctYYvkAXNiQHPcwfT5A/FyA6fMBFq56l9UTh9rLDD4xy8DjTnCEhE1EK9Ks5QjWNTY2bJkFw8+CEaBkrxKBjo1XLeJV87iVRRdAznRzOt/FC+k9zJuBNc8lbslc0mNpUV3ybAOytBQrkyd5VfLkYFGFsmwZW0jXpULVo6ZIWY2TEy7JxqeaJE2F8aKftO5dMylyMxAbsPIZlszV2TaGEh1MLjTV3r8k2XQ3zbM7Fqe3dQZts6ERa6EaJCFwBoGVUAlpC3tlbTXejYrUhonUiy++uObjDz744EZWty2wXYjUDydH+cWnvtJwn08psz88y0AowWB4hphnBalXErVI2s0eitciWqYuUajY5uLlAEOxMKZLBhOy3/Qx8fUmUBW0oIJpbnzmxxusEqA6grRMNXKuNde7a7C6lEiBQ6bKqoGQQLYlXJbaQKbiMw6BOn1+kUAd3DfGo/efprM9ueL/KRcV5qccUjU3GayRrFTCv6oVRnObNHfkGshVS1eWaKyAvE7rYhUJ08ePyl3YyESkEpPxJl5I9GNUrBfdvhQf7j7LnS0TyyYH5tMBJ2lvqIfRKUfhtGWBEQS5RafgVRpqloJaidtaJ7i9bZzBpjiuFX6ELCExVGzmZK6ds4UYxbpBUVgpcjgQ54g/To979cjkpRg+G+Oprxxhbto5T3TsWODDv/QWse61AxH+viNR9vOV+CHO5x2y4rFNOlMl0kNhUmUfRoeF3m4iKYI9zTPsaZlBlqCc15g700JUKtcCHzqa0kQCy2uY8rqLF8d288zIPpIlh6hpssm9PVd4bNcFOoKLPZRsbEpqxUJrKWi2QtlQG9MI6xIKM0uSCSVErf5mUYWpq9WpLVu15aqdrfF5FhI25ZKLYsFFIe8in/WSSXvJZPykUj7SaR/2emo2TNshSoaFZFSWdQvZMgkHi0RbckRiRdROk+HOKGfcMYqVZA+/ovNQ6zDvbR0mopU4l2/lqbk9XC44LQYkBEeC0zzeMsROb+qamzI1FOGL//Ze9JLK7tvifOz//UZDMM5qBOp9h87QEsw5gUjVQR5wcqGDL47cxnSl/1SPL8knd51kX3gWWXKcGrbtmNnLOYX4BT/x8wGmzwVIXAhQzi1X+kIdJToGcrQP5OgYzNG6u4AkC7yyQbPLqX1S6hSkjOlh3giQMb0NU4qWkMhYblKWGyHZtLsX6PXM46qQHVNInM138np2F0OltobXyti0qIWKDa8xFc+7iYbSNxubI0+V11ZVqBsRJgF4lTIBVadcR6RckkVANUnoLkaLAQqGZ0stuuu18tkCphaaGEp0MDrbhlm3ja2hNLtj0/TF4nhdN8iKX3ds1UhUJVRiO5Mo+DEhUvIK3qf6eqmf1EhtHkII/vnX/jmdHRP8aK6bi5m2hsE3QNRVYCA0w0A4wUA4QdRVqqlR9gZOGEKAXlRrdrp8xk2hslyo3XbVHtOLGiBoeixJ68dmkVQoT7uY+lwn5cnlNgVZtvHVEaMaSYqUF8MY6oIZrpVO927GSkQKwJZsysriYE+1FaZnIjUCVcWh/Vd59P7TdMRSm/r/pi6zEPdXlKsgc5MB5qeCLEz7nZnulbZZsReTBCvkqrkrR3NHDnUNInup0MQZqxVJhvmcnx9d6ae3QqCONC1a/oSA6bkIp4d6OT3cw9SsE7lcjSlXWsvkXWqDnabJk3fCIlrH2ROZbYgpr8IWcKXUxMlcB6fzsYbi7KBS4rA/wZHANL3u1LpioatYmPHzg68e4dJJZ+bcFyjz8EfOcPT+kRtuB91usCyJ2UyQ6YUIE8kIJ6x24n43zogXpAk38pgbyV7cwQo2XbtmiN2WIOB3Zv+nMyF6yPC+2GW0NWo7EvkAT1/Zz8vj/ZQrqmbYXeThnRd5aMdlgu5G+6ZAUFJNhCSQbQn3kkmKtSBsZ/ArpEWr4FqwbcjlPKTT/kokuK/WbLZ6u1DwXHM9CLFIjgwLSXeWJcNCNi1CwQLR1gKRWJFQW5FwW5FIzLkOtpSRFcFYIcyTib28nuypxUq3ubM83naZ+5qv4l7BPnulEOWpud2cynXU7tvnn+WJ5svs86/c1mBmLMTn/7d7KeVd7Dgwyyf/5Wu1c8K1CFQVEiDV1fMqksCy4anpfXxz7CCFiv33aHSSx1wXKV5QmT4XIH4+wMLYcrVJ9VjE9uZpH8jRPpijYyCHL7pIVBQsolqBZlcOX52CVLYV5vUAc7qfedO/rF4pZXowkLgtMM5dwRE6XItkfUYP8Hp2F6fy3WiSIKyUmC4GGSuGsSyZJ5qHeDBy9ZY7IjaK6yFPDrYmTGKN1QPOJLNfWyRSXtnCq5pMlNyMFkLo1tbGBF/LyicEzOeCDMU7GE60U9QXx0VBT4Hd7dPsbo8T9q2/lcemUK9CVXe9zbYLlViK6i7dGZ3lzSuH+Pcf+dNbuj1wA4lUOt0482oYBidOnOB3fud3+OxnP8sjjzyyuS2+hdguRAoawyYMoTGai3I+E+N8uo2hbMuylKAOb4bBcJwDkQR7gzNIJYlCxrVIkCpx3fllJMm9alrcSpB9Fp3/cJrAUcf+YV3SmP8ffubPyAjD5OhPJzn4/iSBcIlAqIwvWEZRHAtEtX+EvILpsGpFFKLekrh9D/bNYDUiBWDKTq2UEPDcD47x4iuHa49dL4G6FmxLIjnjWyRX1bCLqQBGeeVaDkkShNsKtFTJVaejZJWiMk/N7eW1uV4iviL39A+jKRZu2+QR/whu2cYWcHWqtRZTPp92bKGWJjDCTkx5TtWo//w7/ela0t6O4MKKgxJbwGgpyql8O6fy7eSsxR8wv1zmcCDBYf80uzzJDZEngHJJ5aXv7ue1p/dgmQqybHPnw8M88KFzeP3bu7/Q9aKeMMWTYeLJCPGFCDPpIKYtI9oM7F2lWpCBNK/ivqrS6c1i5WQWroZRyoLjd17k8AeGOGPEMJGRhc3YQhMnZp1o6xZXnk92n+KOyGTt8xUCLi+08tSVAd6J99RmlbtDSR7vO89dnaOrWmF02cRUnIbk3jVssythadiEriuk074aUXIuvgbiZFnrOI9ads12V+2fVFOWdJtgsFAjRuHqdWU51FJC0Vb+mbYFnM6081RiL+ezi9bFvYFZnohd4kh47fCXKqZKQX4wv5s30l21yYteT4rHWy5zNLi4jvkpP3/9B/dTyLjp2rPAp/7XV3F5rBUJ1PH+K7z/8OkGAtWwryVnwC4jsJEwbYVcVmP4XBNPzu3nQiiGkCUwBU2v5mh5IYNSdvZDuLPkkKaK2tS8q7hkMk7gU3SCSomgWsKvlBejx4XE1VKUt/OdnCm0k7S8ZKyl/YQEfZ45jgdHOOibrBF9U8hMlJqYLUdAKESUMj7ZwBISfz19hNO5dmRsPtV+mjvC757EzpXIkykcK976laStDZNYCsuWKJgaedNF3nRhCokef4p2Tw6/auCSbK4W/Yzmg9hssZUPViVR2aLHaZYb7yBVCNTud2s6fW0JdrdP0xZav+th01iqQtWTqG0YKlFF/e6UcBSpt0cP84c/9d9u1SbVcMOI1Gp44YUX+M3f/E3eeuutrVjdTcV2JVI2KrYlUcg6xCid8jKUa2ZYb2ZMDrPg8jbOmtoCz6yNb8LGN2Hhnba5ltXa5THxVSx0vtCina7+th21uRBooojmNEpUZzn9r12c+3YQSRZ88LOzHP7o6v1noN46WJ86uEi0nOWViZYN8C4mWmsRqalEmLwt0d07Qyrl508+91Ps3pngkftP09F2a+xiwobMgreRXFXsgktj4kutMvPHVHJ9i8SrM5/hntAoYtDAUmTcpkXuRJSzF3eQLXidpD03WBELmk3ycuM6d4XmauSpw7/y90oIGCtHOJlzyFPGWpz198k6B/0Jjvjj9HkXVuyfs559cOq1Xp79xiFyaSeNr28wzuM/e5LWjrW/6+82rEWYrBUsZ8JvIfYUsEPO4NIvdB7yXOWetjGC3gLf/vJdnHxjFwCPffwE2p1Zpiq1lM1ygWPuaTySyWsLPXxt8hBJw6nt2xuY5ZNdJ5lNR3hqeIDRuvqnQ22TPN53noGW+JoDEkuyKVdq5NymirKBgZxtwzsndnHxYhfJZIBU2k8+vzE1aZEk2Uj64rI/WFqRJDnLpTVV3pWg2zKvzu/gqZk9TFf6r8nYHItO8ETsMrv8K9t/r4V53cszC/28nOzFqNQRtrlyPNY8xD5jji/9wX1kF7zEdqb4+d9+hal8ZMMECqhMrNnMXfUyfibC+LkwU2cDLIwt1nmWW1US74+Q3+N8Bh7T4EF5mMf2XyLQtNQWJ/DIBkG1jE8pE1RKy1TOsXKYFzJ9vJrtJb9C2IOCTaeW5s7QKAd8UwTVxbhp3dIomD6Kpm9Z6ptuy/z55G1cLLSiSDa/2PEOh4IzS1e/7bByn6eNkqfKuurCJNajQtnCiZGvkqLFS+N9BWtxubhKWMS9LaN8euc7pE2FyaL/hqTygROjX91dZUNlZCbGULyDeDpae74iW/S2zLK7fZrupvkVXRM3BPUqVHWbBYtK1DYcMy0lUNXzem/kx5hIXbhwgWPHjpHLrX7y3K7YLkTq5PlxfvlzX8FtG0iGgBKIkoSsC2Sj/mIjGwIhC4odCoUemUK3gh5tPIHIlqApX6TLyLJDWmCHP0mwRpJ0p97IvTrTEgJGzAhn9FZsZHySzh3KFM//ywgXnwogq4Kf+t8TDL5/Y0XKK6GqVjk1WTTEu2+MaG2/E8ZKRGoqHuXplw5x9mIvbrfOr/7q39DcnMUouQgqTgex7QYhoJBxMzcZ4OR0J69YvcT9wdqDgWGL5rcM3AsCPawi7zHZ9+lhXD6TQtLD28/so+hSsaIW5brGYrJksy8y4yTttU3Q7FnZ+iAETOghTuY6OJVvJ2V6a495ZIMDvhmOBKbZ453fFHmqYnIkypNfOsrkiDOQj7bmeOwTJ9l7ZPpdZ9OpRyNhqpCmNQgTLIY+dDSliEazjPoCnDVbEUi4JJP3tVzmkeZhNNlG1xW++hf3culsF7Js8/hn3iC1S3LaIiAY0ObYqzWqimVL4XuJfXwvvtcZuAsBBRWyKi4s7u0e4dG+83TW1T+tBoGgqBoggWrJuJb2l1kDCwt+vvrlexmbWCGQoqomLSFHVdIkGTbeoE6krWK7ixWJ1BGlUFsJl2drLO8Zw82zs/08N9tH1nQIhlc2eLB1hEfbLtPsKm7J/8maLl5Y2MXzC7tq9lg1b+N/RaY3nuWhX7vAM5cHNkSgSlmFqfNBps4FmToXYup8kHJ++WcU6SrSOZClfSBP60CORFOIb4wfJlFyzjXdvhQ/03uKnaF5NNkkrJVod2UJ1EWOA+QsF+eLrZwrxDhXbCNuBFFwLHj1/ZWiSpFOV5IWdxqPUqp9P20hUTS9FEw/ht2olFdRtFT+bPJ2rhSbcEkmv9x1gn3+7ZvauZXkyYFT61a2FDK6h6zpJmd4aoSosIwouchbGgXTtanaJQmBVzHwqzo+RWesEHUSgyWT25rHOBqdWDHAaDOo1UPZzl6xLImxuVaGEu2Mz7Vi1yZpBJ3RBXbH4uxsm8G1RguPLcdSFaqyzds5VGI1AlXFu5FIbTiL9dSpUw23hRBMT0/z7/7dv+Po0aMb3tCfYBHz2TyWLFOQ3c4n473mS9Bkk4CmE8sUcAsdIyDIuVTmJB9FRWMu5GMOHyeJ4VEM9nsTHPAlGAgkCLtW9+oaQuKdcjuTVqWoXslymATf/p9aGXrBj6IJPvpf4ux9ZGv8vtX6LhupcWalgqVEqz7anYpFZFWiJWCRht3akfBkPMrTPzzMuUs9la0R7O+fwm2pIEDz6FiWgryFDQO3EsN2lL+zDnDJ0wo4s8p3t17l/sAIY+V2zpldTGWasJERQvDW0wMcfewCvmiJox+8wCvn9lIuu5FMQSBh0JnLstc1S1dHmmYpi+wG20Wt7kgImNaDnMy3czLXwYK5OGPtkkwO+Gc44p9mr28O9TrIE0Au7ebZbx7i5Cs7ASeI44EPnOf4o5ffVWl8myFMbs2ohT0sJuU5oQ8ALyV38O3ZAfKmM6i+IzTJR2NnadKcWftiQeMLf/ogY1da0bw6D/y/ThAPu0BAQCpzzD1NVFkeRZ8ueSks+JBnXOAHfDb4LVS/weOxi3y48/ya9VNVCESt3lASEto1jh9hw9x4gPGzUd460c/VXAdClsEWuGcLyCUL2bCQddu5z2c41rveJWpS5drtu7G1wZPFID+Y2cMr8ztq9u5mV57H2oZ4oGUEr7K1g7egqvOhtos82jzk9H2b2ovhl0k/BmetAKeH7ocZ16oEyrZgfszH5FmHNE2eCzaoTVVoHov2/TnaB7J0DOboGMwSiBqVgb2MIWRkS+JTvre5mG0hoJY5HJriUCBOh6uRsOm2wqVSC2cLbYyUmshbbiJqiSalyD2+SSJqiaC8aPGTJROfWsCnFlDrrBuO+uSnaHrXVDfylsafjB9johzGIxv846632OVLXd+OvwHYCHkSwtmPVdKTW0KCcqZ7GTHKma46UrExeCqkyK/ozrWq41eNJbcXL17FqHx+gmZXiav5CP/9yh2MF6K8PtfHhXQH97YOsyuwcn3felG18mFJxJMRhhIdjMzE0OuCtJoCWXbHnGa5fs/yc9sNx1IVCupCJbZfPdRSAoV0q0djW4dNhU1IksTSl91999382Z/9Gfv379/SDbwZ2C6KVCqd59c/+wcM7hwjK6uYioohKehCJV/2kC+5yZXc5IrO8lonL4HAdoPltzEDAjMgWGob1mybqF2iXc7R607R6ssT8JRQfAbTQS8lWUVCcMA1S4+e4uu/0c7oqz5Ut83P/N9x+h7YmtnP60UtabB6vYRoVWu0bhXRkiWbselmvvP87Zy7vEigjhwY5b33nybW4sy2m5KFoVogwG1tzJZ0I2ELOLHQxbfHDzCad0IhVMnizug4XYUCV6/EuDLZhhByLaZcatEp+WUMFHzuMvceuIjfo1Muqox/vQPjVQ+SvkpfFs3CfyCPecQi2aOR9ywqeZpkMuCb5Uggzn7v7LoG2deCaci8/uxufvidgVoT58P3jPLej54hGLn+bvI3CltNmFaqpRkuNPGV+EHGSxEAOt0ZPtl+mr11s+7ZtIe/+tx7SExFCfdmGPhHFylpzhzdLjXJQddsA8kVAoYq9U8n6uufgkmO9I5xptzKaMH5nrW4cnyy+3RD/dRKMCq1hgjwmCrykgGwaUjEh8JMnIsycS7CxPkoRcNNsSuI5Xc+cyWv06tOsWvvHKFYiVBdoIMncPMT1oSAc9k2nkrs4XRmMQxil2+BJ2KXuCM6eV3K63pQyqt84bP3cjXdRPohGb3PBq9zzMlCcGdwgg+1X8BXMmpq0+S5INMXgugrqE3R7qJDnCqBEC27CsiqTVFoLJg+kpaHedPLvOEja2l0uLMMemc44J2h191Y42gJieFiE8PFFvK2C9NWCKtlomv2WhJ4lFKlaW65QX0qmD4Khh9TXDt1NmO6+dz4MeJ6EL+i86vdb9LtubZqerNQJU+GLZMzXGQND2nDQ9ZwkzXcjUTJaCRHxiajwl2y2Uh8qiRJ1fEtI0XOYw3f33V/lQVR1aBoK0yUvKQNjaFsG6/M9td6FHb7Fri/bYgm98YmeqsqVDLn58pUB8PxdnLlxRltn7vkkKf2OM2BW+S+WkmF2ub1UA0k6hoE6t2oSG2YSF29erXhtizLtLa24vGsw0u+TbFdiBQsr5FaDZIsKOsK2ZKXXNFNrlQhWsXF61zJTb7kIVd0ky25KaqqQ6r8AssvljW7lMuwI7jAgX1jKIqglHdx9sV+9LQbkTGxUxaKrtN/e4b2njx+T5mAp0TAW3aWvSUCnjJuzdgWFighcHqPmDK25VxbloxpKViWXLlIWKaCWbltmgqmpWCYzqW6bJoKhqVUHq88r/L4stumXLu/+lrdcH6cJcnm6IGrvPe+07S1NP7wCgSGYmHJmyuU32pYQuK12V6+MznAZCECOESmnxTSmJvEdCVpTxYYIVBayuQ9akNMechV5LbWCY60TTDnc5MXLjySyT3qBOaMxlxdwMVULkSi1UtpEOxY3WnJAO2ShOusRFuySFt7rqHpcFNHblPWKSHg8ukOfvCVwyzMOLahzp0LPPGpd+juW9j8jttiWJbETDpUq1+aXgiTSG6GMKWIBgrrOjbThptvzgzyetoh/l7ZUSgejI42DH4W5gL85R89RHLBT9fDU7S9N4GQJFyY3O6O06Eu2n5NW+Kt6R384Mp+RlIttfuX1j/ZAl5b6OVrkwdr9VP7ArN8quckO1aY8V8x6jyvMnEhwuS5COPnokxfDteaeQtAb/ZQjvlBllBki7uPXuCR95/G4zMbwiZuBUxb4rVkL08m9jBRjADOwPj2yCSPxy6z2z9/U86veknhv/3nhxh2tVJqrZ6/LPbsmyQVUJiRKoX1tsD/hk7o6RKu6cXjUPNYdAxk6T6QoXMgS/O+AkW/xoLlI2l6WbC8LFgekqaXktBQsNnlWWDQm2DQN8Mezzyq1DhRsmB4mTf8TBdDfHHkKCcWegGnHcJP9Zzj3tbRFSYEBKpk4q2oT0rd5EvZclEw/BQtL+udRFswvPzx+DHmDT8htcQ/6X5jwz24NgNLSOQNh/zkTDc5w0XedDu3jUXFKGcsXpdX6YN1LSiSRaBCegI18lMmoOkEtDJ+xcCjGPiURfK06UmtDYxAZQQR1SBrqYyXvBTqYsUNW+Ht+V5OJHuwhdPC4FB0gjubr+Jeh2KbL7u5MhNjeLqD+eziOFBTDHa1zbC7fZqOSPLWjm3WIlHbsMnutWx8K+HHgkj9fcS7jkhtsm+UYcoVVctDquBlONvClUITE0aYtHBxuGeC3mZnAJnIBHnn4k7slAs1J6Hk1y8VK7KF31PG59bxucp4XAZel45HNXBrJm7FRFNMNMVCky1U2caqkJsGolJHSqwKKbHqSEqVvFTJUY3AVImRqdyywdBSOARqlEfuP0Nr88ozl845cvPRzVsFw5Z5eWYn35kcZLbkDJZUYRFK2tijXmRTwlYFRkggt+rkNK1hP7d4crWwiN2RuZqtpCQUXi72kBFuXJjc55nAsmVOVWx7U/risScLm7ZskfCogXRKJXk1WIngXxnh1ryTINidrUW2N3fm8AZWTtabmw7y1FeOMHy2HQB/qMQjHzvN4buvbkmD4s3gVhCmpTCFxHPzfXx3bh9l21Gk742M8VNt5wmqjTUo0xMR/vpz76GESv+nruDd6cz+xpQct7vjeCRnUF0wNF68uoen6/o/qbLFvd1XeKzvAp3BlUNVFuun9mEIBQnB/c2jfKzrDGHNsdLUHy+FOQ8nvryHiXNNzIwGl0Vk+8JlWvYVmJJjLOSc71p//zQf/ehrRKPOQHhpat/NRM7UeH62n2dm+0kbziy4SzZ5oHmUx2KXabsJg/UqLk+18ufffoCkx/m8JGx22glaLi2QOu2iXFAp7VXJPO6ltH/xuGyLZ7nTnmBnfxJiEnOWjznTz7zhqE1Lk/G6XWkGvTMM+hIMeGfxLOmtVLYVcqbbCR2wNWykitpiI2EzV/YzkosgAT61TJO7QKc3jVfVK7W19rLjwLJlR30y/VhiY9UNibKfz03cSdr00KQV+Cfdb2yqLq0atpAzqkSo8TpfI0SLpGilsKL1QMZuUIMCWqM6FKiQpPrbLtlq2G8bDZNYNzYw+lQkm7BqkjQ0xote9FWUs7Tu4ZXZfkZyjv3cq+gcbxlh/woJlrqpOM1y4x1MLzTVjnlZsulunmN3+zS9zXOoN6JZ7kawEoGChlAJyd4eDhbYHIGqvmZHZJZ3Ro/w2Z/6kxuwZRvDDSVSzzzzDM888wwzMzPYduMX7M/+7M82vrW3GO82IiUrzg+EjYQQYNtSjUhYVQWlQiTWJiXO42VVJrfDBq/T1+PKVBtnZjtpOFHaAm/Bxlu00bIOsbJsGQvZabYnSZVu35s8udrCScSpJONI9pLlJdeb+S+ybKOqFqpioSrOsqLYaKqFolioqu08VnetKBaaYqGqFlrtfhNNtdFUE011HtdUs/K86nMWX+9SLdxeHWmNycH692MjKG2yaP56ULYUXkj0873J/SR1RwmQTYF7WsE9IyMUMMM2cotBVmn8Ue8OpLijbYzb2yboDaw+a1cWMi8We8kJN7YtcTbZQa5ix5Cx2eOd50ggzgFfoqHuQwjIJT0VBSvQ0A+rkFmewFWFP1JajGnvzhJqLnDpbBfvvLwL25aRFZvjj17mgQ+cx+29Ofat6yVMVTve9RCmlXAu18pX4wdJ6I46t9O7wCfbz6zYoHV0uJUv/LcH8PQV2PHxq8geGwWbg65ZdqkpJAlm8wF+MLKfl8YW+z+FXEXeu+sSD+24tKz/02qY1718beIQryUd9cEjGzzsvcKusRTBWIaeY7MUki6+8OsPUUwtfhci7QW6B5N0Dybp3JfkwtUdPP30YUxTxe02eN/73ubOO4caB4y3gEglSn5+MLOHl+Z3oleO9YhW5JG2IR5quYJfvXkx+8PxFr712m0Mp5wJBmyBfyRP+J0kWm7x+NC8Jm3H8oRuK1PaqzIRjJAWbue8Kju2ardk4pEN3LKBRzbwygYxLcuAd5Zed5pWtYBriYphCdCFVLmAXS2muE4IAWXLTcH0U7I8m1rnZCnIn0wcI2e5ibly/Fr3G4S1MkJAyVKXEKBFYpSvKEa5BvXIvemwBZ+qE6iqQzUCZOCrBDAEVKOOKJXxKuZ1nCMWI80t26mr2pJI8w2OOjXJJqiazJbdTJY9mOvYhvF8lJdmdpPUncmAVneW+2OXibmzTCw0Mxxv5+psW8M5ty2cqjTLTeDRtkl7i2uRqG0UKrFRArWsbgpHkTo5dpR/86HPbe3GbQI3jEj9/u//Pn/wB3/AsWPH6OjoaGjGC/DNb35zc1t8C7FdiFR8PsOv/qf/g67QHHldwzDVGhFaVF2W2NCuU3Vp3jdP/yOjKC4bPa9x+Xt9ZCZCWC6BERHoUediL3FuSiZoaQlX0rkoeSpzhYDsTAYL2WnsKqkCSRGL90tOqISNjMXmZrYU2cKjOUqXz6Xjc+v4PSX8Hp2At0jAWybkKxLyFQj7SwT8BdQbdK5ZjHav1mg5dVrV2VAJgS0kSqvYLFZ696ZkoavOjP5GY5w3iqKp8tTkPr4/uY+icAiSpINnWkbNSIiwjWhaHlPeH56tKU8x39p+8bTp5nS+nZO5dib0EAORBEFXGdOWyBU9DHrmOOhP4Fc2/uNVyLiYnwrUSFa18XB2YdHbLgChytguheq0pNddom9vnO6+BZorSlaoubhlitRKhCmejDCTDmGvMnt4MwjTUszpPr6WOMCprFOHE1TKfCR2juPh8RXrpi6c6eTrXzxO7PE4zcccBTsilzjmniYg6QwlW3lquLH+qSvo9H863rV6/6fVYJkSieEQbw5385xnF+mwczI6pEzya3e+AMC3f+9OinM+ugeSdB9I0rU/RbDZIWozMyG+8Y17GB937IR79kzxkY+8RiSyvH7iZhEpIeByroUnZ/bwTqqz9r96vCmeiF3iruh4zXVwI1FMq0ydD3LybCdvFXaTDIWQJRufWqI5mad1LIE/UiQ6UCDYX8bbZqAEbFAFLsnCUyFJHtmsESaPbOCWTOTKuc8lCVyASxKoS3apEKCzSJ4cqiYte45TyyojhFQJspErE4mVwT0yRVPjzflu3p7vIW+6KVsqtzVN8UDbKG7VWrbe1aBbSoMSlDNdjBfDvFbowkLGjUmTVaJUR5qsTZ6fvUpFEaqQooDqWOca7ysT1HSCWgm/WkaWJCzhTGTabDZt79qoqVCVhrxb8n828ZX2yBZe2SJe9jBd9tSCqdYDS0icSXbxRt0khVYUSEmt1jA87MvT3z7N7lickHd71H0Di7t6aaBEfT3UNgmV2AoCVcWPBZHq6OjgP/yH/8Av/uIvXvdGbhdsFyJ1ZXKeT/2rv7iudciS3aCGVJWXeqVFUW00zcR3MI2r1zlxiJSCctmNZgvMApz5lp/SvITHb3LXLyWRWiUmRZAJM8yYEaa0pCA3oJTZE5hlIDTDYCROzJ9DkZfbKpbCsiUKZTf5YiVIo1LTVa3tWlb7VfJgrqcB5hJIko3PrdfquPyV2q7acrXGy1uq1X5p6tbI+dWf2NXWttouqm8s6jG1LY9ET+QCfPXibZwodGBVYvLkEmjzMppkY0Vsiix+zopksz+acGLKWyeIetb+0cmaLoc85dsZLUVrg0UJQZ9nge5QEl1SULC52zNJm7K1Hd/LBZX5qQAX3+ngxCt95HMVYmXbyGUL2Vp+6tPcJs0Va2BL16JNMBorICsrnyrfLYRpKXRb4cm53fxgfjemUJCxeahphA+2Xlw1Be7Ea7t4+uVBen5mDHezDgj2agvsUeY5Ee/lB1cGGuqfDrZO8nj/eQav0f+pHuWCwtSliBMKcS7K1MUIpr5Y35Q5pFJ6v+D/e+/3CblKvB3fQbtUZndTY12bZUm89NIgzzxzCMtS8Hh03v/+t7jjjiurbsuNJlKWkHgz2cWTib21QA2Aw+Fpnmi7xP7g7HV+/tWWEfbipE7lGtummNYoJFX0vIxZlsAtobXaeIIGPncZn6bjvo74ZgmBhkOaXJJAW4E4lYVM0VYoWhpFoSKEjGkr1S2vECa5QpgWY4TWi8lCiK9fPcT5dAyAkFbiQ93naPXkK+pQRRlqUIwW7zOWOABk1cIdcIIpLFOmnHMvs40CuGVzsY6oQoj8S9SjeoLkV/U1yHKliX1dk9ybQZ6q/1uWK46xrbLxbXJOwK+YKJJgquRhRndveDsyBS9D8Q4uJzpIulzYflEhIYIOJcs9sWHagzehWe5GsZoKtc1CJTaaxLcWgarix4JINTc38/rrr9Pf33/dG7ldsF2IVCZf4jf+6+9z984L5GwZRaFCgqrkyMKtmSiKjbKUKFWeJ69jFjNva7xe7iRte3AGQvMMaE4B88JVlS/8cieZaY1It8HP//kUke7GH1ZbwFg+yvlUjHPpGJcyrbXZnipaPTkGwwkGwnEGIjOEtK2JBxXCaYa3SLSqpMtTI2IO8VokX0V9devXWnCpRoVslWphGvWhGotBG861x6WvOIO/FtY+6TiRzra8dfVSqZyXNy7v4pmZ3cS9vlqSo1QGd8nG1iT0OkupSzY52DzNHW3jHG2dxK8t1skIQcXqIdWus4aLc6U2zhRiXNUjDYPRLjXDPtcce1zz+DCxhMQlLUJacSMJwa5SlqBpOuuzK4MqW1r2P5xrsCuzpKL+dt3jxbybiyc7mR6LggSKarFzYJb2niTFvIt8xk0+66aYdVHIuSgWXIjqAEkCIS0uS7JA85q4fSYur4nmsVA9FlnDew3CpFdIUvqWEaalEAJOZDv4RuIAC9UwB/8sn2w/TYd7dWXxpWf3cTrXTuyhOJICXgwOqrOcmejmmSv7WdhA/VM98ikXE+eijJ+LMnkuQmIkiFiyPz0Bw1GbBpN0Dy4QGVhAUm2mCyH+w+n3YQqFB1pG+GjnWcJamUQizNe/fg+Tk04vsH37Jvnpn36NcHht8n+jiFTBUnlxzjnu5itWI02yuLf5Ko+1XabTm6n8f7uB/KxMiiq3V3zOlm0yuq1QsjXKQsWskBsJUBC4JBtNslEkG1fl4pVNPLK57Bw4UozyVrqLtzNdDBeauDM8xX2RsZpl0bTl2nFXDYK43n0vBJxJtfO1q4eYqfSf2ghUySKg6bhcOjlVBUkiJJU56kkQdpUqtUYVBUnV8WvlZTbFTWz1GuRJxqmiuJEnjUUbn7Cl2md+navc9AtDqoktYKLkY8FYf31YUdcYSTjNcmczkdr9qmzR1jZPyuMiaTrHYEgrcn/rEDtvUoDLulAlUUv3XXX7tkmT3Y0k8a2HQFXxY0Gkfuu3fotAIMDv/M7vXPdGbhdsFyIF8L98/p/yy/c9R7zkwVpSI1VtNHc9p+spM8Db5XZMFFyY3OGeJqY6SsDskMYX/2EnuVmVpl06n/7zKYKxa6ehGbbMlWwz5yrE6kq2eUlRMfT4kxVilWBfeBbPFvc9WQuWJZEvV5MMPQ3qV76ieuWWqF6rDYzXgizZjYSrjoB5XYZzbrQlx5JSRxCq5KCBKFQe97jLPHjXCTTNYmi0i1MX99SeWyUb1eeuTDgkyrpDPLOWi2xUxmiyF7u1GyDMit+yqhjZAk/JxlO0cZWcbRYr/M/aYEe1Udp05PYScpPRYI2z0ypW3I0Vd0N5uZIoyTYHHhimtTeJbUuc+2E/s2NNy5633bEdCdNKmCoF+Wr8IBcLTiF2k1bg47GzHA2u3mxYCHjy6UPMdav4e51zRYsoMDHWyg9H9zTUPz1cqX8KrVL/JAQkp301tWnifJTklH/Z80JtRboHkvQMJukaTNLSna99r+qjzkvFAF8ZP8rrdfVTA/kkM093YBsqHk+ZD33oLY4eHVnX57A5IuWMelYiNgVLYzgfJVEK4FIsfIpOSCvS6cnQ5CqgSFbda9b579aBckmlWNIomRoloVJSNEqqRgmNkl29qJRE3e2kRmnWQ1s0y86uJE1qkWa1iF/W67ZNOMqLUsav6Hhlo6FHETgELGtWmrNaHgqWxmvpbp5f6CNZaaLtkQ3ui4xxf3SUQF3AhCQ7sd2i0pLiemHaEi8k+nkxsQtFEo4SVFWMltQZBTSdoFrGr5VxyxYnsh18cfoQNjIHAwl+seOdG2C3XIk8yXXKE9xY8uRgy8Mkrms3Lcabjxe9ZK1rJw+aluw0y413MDHfXCOAEoLOpnknNKJ1Fs1lgQ2XM228MtNPwXImWXsrcenRNXpr3nCspkLBtqqH2oiNrz5YcL34e0ukfvM3f7O2bNs2f/EXf8Hhw4c5fPgwmtb4Jf/P//k/X8dm3xpsFyKVz5X4xD2/R9euFLvunKXvrjlaenNOvY3sDNQRK3VDujZsAWf1VoZMZ5DaJBc55p7CV/kRS5x38YV/1EkxqdC6t8zP/dk0gZbNNZksmiqXMq2cS8c4n4oxXog2PK5INn2BeQYjCQbDCfqC81vWjXwrIIQzq5WvtxmuES2fK7kpb2DGbKMY3HWVf/ChpwH4q+8+wtnhnRt6veUS6G0WRkQsntEswJArrFxCMkHNg5aXUIpce7ZLsZHbdJT2MnKz3kieMg55shNuKEnI1YbJkmOxlCWBLFcGELKNJNvsOjZBtCeDEDB5op3MZNh5jWzXXutcN96WKwOA6nU+42Z2KoRRVpGEwBco07kziT9QRpYXnyctea3zvyp9x2TRsG4JQbmoUsy4KKZd5NNu8ik3uQUPIiehFSz6ds/wyC+cJbZj+/SSqUfBUvnu7D6eX9iFjYwqWTzePMTjLUO4Vu25A6Yp8XevHcYc0FHcNsKEVCLEKxf3UG1W2hlM8Xjfee7uGllW/2RbEjMjQSbORxg/G2XyfJR8aolCLAlae3O1YIjugRSh1pX7d60UdQ5wOdfMX165nUkjDICSg4Fkis88/BLh8Hp7gQkUycStGJi2VJllvbZCxBaSoGo9UNXSJursbYvXMuWCQnwqyORMiHgqxJzhoxByU2pRKUddq5JAYYFR0DDzKjF3jmPtY6TfDPD2F3aDLvG+z5zktkeuNrxGk0x8itM01aeUlzW+Nm2ZrOUmZ3rImp5Kmtry/28JiROZDp5d6CNeCTRRJYtjwSneEx2lpTKI3SpV6nrwo1Q3X0scQCBxe3CKT3Wc3sKeXauTJwsJcZPIU21btjJM4jp3kYwgoulkTI2JopfCGkFLtoB4somheDujMzGMuij0lmCG/vZp+mJxfG69UrstkGyJ6seo2wpvzffyTsqJS5exORSd5M6mUdzKjW2wvQyrqVBQ12T31pKoG02gqvh7S6Qefvjhdf1TSZJ49tln17+V2wTbhUi9/fJlfvtX/nuD/zrSUWD3XTPsvydB574k0ka9Y0DBVnmj3MmC7cwG7lYXOOCarVkwJk+5+dI/7qCUUWg/UOLn/nQaX/TaxGa958yM7uZ8OlYjVrPlQMPjbtlgb2iWgUiCA+EE3f7Uhi1ytxr10fL1ylbVZljUXQ2D9oZBvNw4uF9KDmRZ0Nc7TnfnDKYpc/r8XnTdtbgu2ZnBnU8HmJxpYnKmiXzJg+kVlDoszFUIVFQrsj80w/5wgh5fCqW6HfLK22EiMaw3caHcyrDe1NAvqk3NcciX4LB/mjZXHqlClNY7wBQC3tbbGTPDgOCoK8Eu7dq2sCpmJkM8+eWjjF5oAyAYKfDIx09z8K7xG6YIlfIqr/zNXt78/i4sUwFJcPjBcR785HmC0VvQ6X4F2AJ+lOrhb2YGyVZmX48Ep/l47Gxt4Loa8rrK964MoPQ4ds5Myssb5/ZQLDnrOdg6xWN95znQuqhmGWWZqYtVtSnC1IUIeqlxMKSoNu170vRUiFPX/tS6Gt6u1hrANGVeeOEAzz1/gHw35A6aWJVwnP2BGT7Vc5Je30rfJYEiWaiyjiobqCuoKxuBEGDYKhnTTdrwUjBd5C03LsmizZOnSSsC9aRoKUmqHk+LX1hLSCzoHkYmo4zNhZktB8i6XFgtMvhW/2K7LZMWLY9b2ExONzMx1YKRVxElmeP9I7zv0GlaQzne+P4unv7LQwC899NnOf7BYRSsOuKkLyPatpDIWS6ypoec6aFoa2xsyGRzNtfO0/N9XC1FK+9YcDgQ5+HoCD2+TC3k4FbghYWd/O3sfgDuCY/xsdi5Lfg9Wpk8mRXl6eaSJwdbGiaxicNGCDAshaKhUTI0dFNFtmRmS16mi34Klft0U0M3VHRTpWxW7jOc++vJdsBTdEIj2uNE/IutAhyzRSOJqkdK9/LybD+jeae206vo3N1yhYHQ+us6N421VKj6eqhbGCpxswhUFX9vidTfd2wXIgXwL//6n3AgP8KbP+xm9FRzrYkkgD9SZvddM+w5PsOOwwuormuTnbjp561yOzoqGha3u+N0qot1EGNvevjyr3Wg52W6byvys38SxxO8serQTMlfswGeT8fIGo2RgAG1xEB4hoGKYtXmyW0re9T1YjNvpb5eShISHlPFNBUuXe3k9HAPZ4e7yZec/ViO2JS6LSxf3QpMwJTp8SU51jbO7W0TdAdS19yvhi1zodDKyXw75wttDV3v27Qch/1xjgSmibmuv8eNEHBSb2PEdAZXh1wJdmupNV9TzGs8/zcHeOuFfoSQUFSLe564xH3vu4DLfXNmFVMzPp7/0gDnf9QFOIEVxz84zPEPDW2qUfBWYbQY4SvThxitDFZjriyfaD/DYGD2mq+dKAb5Ua4bxWdj2xIXr3QxPNaOKtvcU6l/6gqmKWQ0Js87TW8nzkVJDIewrcZZU5fPoHsgVVGbknTsyazr3LUU9eEr1WbVk5NRvvGNe4jHnfd44MAYT3zobV7I7uTJxN5a/6kHWkb4WOcZoq58jTStRJycWjvFCTyoqD/XUohKpsrL87t4cmYfM5VJIkWyubtpjMfbLtOzIolrRMlWmDd9zJs+4rkA05kgSeGl6FVBWeUgtQWunEVElIj5c3Q3pWnRijSpBRLzEb578jBnJ53vpCzZHO+/UiNQACef7+G7f3IbHq/OR3/lDe56cASfoi/r5SQElGyNvOUiU1GdBJubGa/ub8Ny9uNIKcJzC31cqFhNAfb5Znmk5Qr9noX1z8RsAYSAp+Z389T8bgAeil7hQ62Xri86HBq+Y43k6Vb9qG1NmESVCJUqRKhKiEqGRtHUlt1fe9xcXLavU2FxqQZ9sQT97dPEwo2/Z9UE4Sp3vdYcydV8Ey/N7CZVqRttc2d4oG2Idu8NchmspUJtg1CJ9RKojdQ/rQc/IVLvUmwnIvWvvvVr/IOjLxAveSgW3YycaObK660MvdlKOb9oo3R5TPrumGXP3TP03zGH2788EOK80cIlwym2jsgl7nJP4ZcX46VHXvHylX/WjlmS2XG8yCf/6zQu/839OtgCJgthzqbaOZeOcTHduqwbe7M7z2A4wWDEqbGKuJZbdd4tX+LrOdHU95caHuni8996BN3QEAhMj8DssCg3CezqwKviqe71pLgnNsodbRO0XSOmHJymrBcLrZzMtXOu0IZe17SyWc1zJBDniH+adtfWE1wh4IzRypDhWFAHtVn2uRaWPc+2JN7+4S6e/5sDFPOOQrL/tgke/cQpoi23xuc+eTnKM58/wOQlZ9sDkRIPfvI8hx4cR76Jjoys6eJbMwO8mtoBOGliH2i5yMPNV5bZspbCEhI/SnczozmDiVzew9tn+xC6wsM7L3K7f5z0JR8T5x3VaX4isGwdgeaSozZVoshbenLIGw/abNwuyaZcSZNzmyrCUHnuuUO8+OIgti3j85X4qZ96g0OHxmqvmS97eC3ZhSybHAhNsy8YX2bZEULCtFVM24Vha9hCwaVY66qRSuoenpndzQuzfeQrzVL9is5DrcO8t3WY6JLzlBCQsdzMWz7mTa9DnAwfs2U/RXmNOpCiQEoI/EWDZrVAV1Oa/u4F2sP5ZZ/nyGzLNQkUCBLnQiSHgwwenqR//wzKktqfkqVSsF01AmUIFdNWsK9jVrxKKOrDJaqYKgd5PrmTd7Idtf2+w5PkvU0jDAZmbrhDQQj49uw+XkjuAuD9LZd4pGn1dMc11rRNyROsFCahm2oj4akQoKLeSHiWEaXKc1fre7cRyJKNT9NxqSayYuHSTFyqiUs1cKsmLs3ApZrOcuV+l2ri0ky8mr5iwNZKVr71wBISp1NdvD6/s5beuC8U556WK/iXNCTfNNZSoaChye6tCJVYbxLfVhOoKn5CpN6l2K5EykKt1HXYmLrM2NkmLv+ojcuvtZFbWFRxZNWm9+ACe+9OsPuuWbSoyRvlTuZsZzDUpyY56Jpt8Hhffs7H1/95DEuX6XugwM/8/+Jonlv/VTBtiZGcE1xxNh1jONuMtaSDeZcvVSNW+0MzeK8jrrceN/rdb/Zkk8l7ODPcw+mhHmzZ5hd/5ilkCb701IOcWNhBOSLQNbmWwIeAiFrkvbEhHuwcJuK+do2IKSQuF5s5levgbL6tId4+qhY57J/mSCBOlytzwyeJhYALRjMXDMdqsU+bq6VKAoxebOXJLx9hZiICQGtnmid+9iS7BmZu7IatA0LAxdc7eO6Lg6RmnBCFtt407/30WXYdmruh/9sSEi8s7OQ7s/srdiu4KzzOR9vOEb5GaqYQcDYV46zVgqvSmHh0oo3ESBMHzGn8F8pMn400nHeqaO7J1dSmnsEkobbSln5HBIJiXYPqmbE2vv71e5iZiQBw6NAoH/7wm/j9xZrSpMkGirS8EWnG8DCca8WvWMRchUrT88UnrSdsYqwQ5snEXl5P9tT6B7W5szzedpn7mq8iy4KFKlGqXC9Ulk3WGHguCJgCpiBQKhPz5djRnqZvzwItvWv3N1ubQGWdgAjZqXHySCbqklo23VYoWC7ylouC5UJIErLkKNKGrVy3clAlFosWspUxb3h5IbmTNzJdmJXzfsyV4+GmK9wemt7COqVF2AK+ljjAa+keAD7Sdp4Holev8ap6rEGeKoE/NwqmLVEyXDWSU9BdK6hALooVwlQ0XBT1xeebW0CEJITT01Ez8FQuXk13rtX6+yrL6uJys6eIVzGZ1jcXb74SNkui6lEwNX4018f5jNNbT5NMjjVf5UhkYtmkw4awlgoFtzxUYj1JfDeKQFXxEyL1LsX2JVJKLSWo/kMSNkwPhbn8WhuXf9TWMCvsHSzS9S9mkAMCRdjc7onTrWYb/sf57/v51v8nhm1K7Hssx0f+UwL1xmUlXBfKlsLFTCvnUo4N8Gq+MdFNxmZXcKFGrHYH59BucXDFagfURk46c6kAp4d6OT3Uw9XpVsdKJAkMPzz+njd49MBpyqbKf3jrA0wXI5X1CwZDCT616216Ate2I1hCYrjYxMl8O2fyMYr24pcgrJQ4HIhz2D9Nr/vW9Nm4pDdx1nAsP7vVBbpzeZ756mHOv90NgMen89BPneWO91xZtcfTrYJpyLz91E5e/uZeSgVnv/YfTfDenz9LS/e1VcGN4mK+ma/EDzFdds5fPZ4Un2w/Tb8vuebrLFvirXgPb2U7ae106uTKusr513cg/0DCfdls+N7Kik377kwtirxrIIUvtPEmyuuFQKArJpYswJZ4+ft38MILBxBCpq11gZ/9xA/ZtSOOugpxsoWMaWvolsabyR38xdVjNevO/uAMP9d9ssF6txqRsgWcybTzZGIv57NtgECRBX3BOQ5EEng1gwXLx4LpJWV5WPVoNwVM41ymQJoSuJIWnZEM3XsydA1m6RjI4gmszxI6OtvMd04eaSBQd/UN85HbTtAbTuJbJSAik/IwOR0lsitPwXYUp+r7V2SBZUuYQsGw5dXfyzrh2IJs7EqgwnqQNV28nO7l5VRvrZF5RC3ynqZRjocncK8RkLIRWELiC9OHeSfbgYTgE+1nOB6eXMcrt4Y8Wba0SHZWIkB1t4tLbpcMrSFgYbOQELjriI63QnaWkaOV7tMMXMry4+7acOLNLSExUfKS3IKwpqqVD0Cyr23lWw8SxSA/nN1DouScV8NawYlLDyx3SayJa6lQUBcqcfProdZj49uK+qf14CdE6l2K7UqkhKwgS/Y1T8rzEz4uvRbjqiuE66ESkgzlMY2p/7ONoFJm73GnrqpjT5ozfxfg2/9LG8KWOPDBLB/+dzMo104X3TbIGi4nuKJCrBJLeoS4ZJM9oTkGw3EGwwl2BFLXVUB+syAETM1GOT3Uw+nhXqbnnJoPIQv0AGhtJXIeFRMZSbH4jTufZqBpmul8mP/89uPc13aVD3RfWNH2WA9bwJVSEydz7ZzJt5OvI08BpVyredrh3h6BH8NGhFO601gz+UqUya91IQG3P3iFh376LL7AFtktbhAKWY2Xv7mXt3+wC9uSkWSbow+P8cDPXMQfvv5AigXDyzcSg7ydcQbSfqXMT7dd4N7I1TU/v4Kh8dzlvbw42U///mlamxziPTcRZvyLXXhPFZEtgctj0rnfqW/qGUzSsTeN5r55ExXVqHMh4Mmv3Y1kSuzpm+Tg4AjRyHJCatkKpq1hCg3TrtZgLO6IkqXw3fh+vp/Yi1mpn3qw0n8qpJWXEamSJfP8fD+vpHrJCxeaauFWTbyasdhnbAXIRRsxAWJSQppaVJqYE7T2FOgczNJ1IEvnQIbma6hNK8EhUIc5O+lMKjT7svzM7W/ynt2XaPbklk0mWUJiIePn2W8NcvqtHrxtZT76P71Vm4CQcEJrEGAI5bptfPWQJYFd6Ye0MQh0FF5N9vBCclctLMWn6DwQucr90TF8yuZJvGHL/OXUUc7l25Cx+XTHKY6G4mtuz1LypFsKubKbgu6iYLhqtrii4WogQEtVoipR0reACAF4VL2RCGkGXpdeUYZM3KqBRzVXJkLq8t5fS972lkJCENlgvPm1UKuHsitH+xZusxBwMRvj1dm+Wlz6Dv8897cOEXGt3ZcOuLYKdQvrobYTgariJ0TqXYrtSqSkSmHFtT6gslB4s9zBjOVYiQJxg+QXI1w90YxtLv54ub1litNFRDbPwcdn+NBnZ667duFWY67k41yFWJ1Lx8gY3obH/WqZ/eEZR7EKJ2j3ZrdNcIVtS4xOt9SUp4WMQwptRWCGBGpbmYymVXpyCVAFsmZjSxIBrchvH/s7wu4iwlTxidVPwLaAq+UIJ3MdnM7HyFqL9iy/rHPQH+dIIE6fZ2FbkKcqhICzb3Tzoys7afrgLJIMxgUPD8ZGae9ef6LfdsDCtJ/nvjTIpTccq4jLa3DPh4e48wPDaJsIXjBsmafn+/n+3B4MoTqEIDrKh9ou4F9lcJmZ9XD2TAcvxncz7GmltSPF4f2juDQLy5SY+H432R8GGegaZefBeboHk7TtzN0itU+AZIFawi2ZWEWFoH/5JIFlKxi2Q5pMW0OsZZ2rw1zZx1cnD/FG0rFzeWWDD7afpz8yx6zlZ7IcYqIcpoy6+vlCCLxlA2XWxhhW0IeURcKUdQYe7oBJ56CjNHUOZuncn8W9TrVpJVQJ1MhMK0c6x7m95yr377pMLNjoOhACirZG3nJTsFyMDLXwhc/eR7mo0Xckwcd/8w1UzfneyZKNLDm1S/oW2PjqUR8usZmhWDXRVLcU3sx08dzCLuYriqJLMrk7MsF7oiNENtjwvWwr/Nnk7QwVmlEli481nadLyVE0XBQMrWZ/a1CLKgSpYLgoVB7Xza2ZhXTXqT01W1ydTa6eJDnLegMhajxvLw2TADYTDnIDDvv6ePPxoo/iFlgLt8LKtx7olsKbCzs4mezGxolLPxKd4FjTVVwrxaWvR4WqkiiLm1oPtR0JVBU/NkTqr/7qr/jjP/5jRkZGePXVV9mxYwf/5b/8F3bt2sVP//RPX9eG3wpsRyI1o7sR0vKi3KWYt7y8Xu6gJDQUbI64EuzQnNnlcl5l+K2WWl2VZS6etNw+g/5jTljFrtvmcPtuXbrYVkEImCqGnPqqVDsXMm2Ulsx2NbkKtTTAwXCc6Drqh7YSpilzebyd00O9nLnSTa7gED9LE1hhC6XVIKPU94ERBH1FdFmhXCl+DWkl3td5gYc6L4KrvKynDjj7Yrwc5mS+g1O5GGlrkWB6ZZ2D/gRH/HH6vQs3pO7gejE9FuGpLx9h7LJj7et4T5zmn54BSaJLyXDMPb2tSN96MXa+iWc+f4D4FUdxDDUXeM/PXuDAvRPrUiWEgNO5GF+LH2TOcCZOdvvm+WT7abo9i3ZOYcPchJ+Js07T2wvTMSa6o+R2ulA0mwN7xujtdGq2CpNern5lJx2hND//ay/ivklph0veWSWKvJqopy9Tkm3bCYawUeuI0/UN+k9n2/hWYpCSrOFzl1cMBRECvMKgKV9AnhQUL6ik33JjjStI9ZxVErTsLFRIU4auA1maujeuNq2Eq7NRLkx00OQpcnv3KPvb4g21GkJA2VadGifbTcFa3DezE0E+/wf3Usy56dk/x8/+1mtobmuZjc+05WsGbGwEa4VLrBuSs40IRw+yhMSpbIxnF/qYqthYFWxuD03xcNMIMbeTHioEpIo+ptMh4pkwiWyIvO7UB+VNFwutEpbH6atlX/VD/vqUIZdi1sjNagSodp+rkTS5VfP66m5qWB4msameUDfo50CVbEKKSdLQGC/50K+TsC9a+W48iapHSvfy0uxuruadIC+vonNvyzD7QolFQnItFQoaQiWkDau1m8O1CNSNrn9aD34siNQf/dEf8bu/+7v8i3/xL/jsZz/LmTNn6Ovr48///M/5i7/4C5577rnr3vibje1IpOYMF5ZQVz0OhYAhM8pZ3amfCUhljnumCMnLrU4vfy7C8/+lGcnnI3aHRrEcamiKqWgWO4/Ms+f4DLvvmsUf2d52qfXCEhIjuSZHrUrFGMq21AqYq+jwpheDK8Iz+NWtrfcwLZl01sd4opnTwz2cG+mirLsQCGw3iKiJaDbJSo1NSrsDCwR9JUaLUYqVRLAmV54PdF/gwbYrtRmwqvUJ4aSZTZcjnMy1cyrfQdJcJE8eyeCAf4bDgWn2eOevmd52q5DPunj+Wwd5+6VdICRUzeS+91/knscvMiP7eKPciUCiQ8lyp/vGFJ/faAgbzr7SxQtfHiAz78yut/cleeTTZ+kdWN17nyj7+Wr8IOfyjtUxrBb5WOwcx0KT2KbE9FC4FkU+eT5KMa+R2+kiedBHKVapMwnlODY4hMdngIDECzHiz7Zz6OgYH/n511BumvrkNL+9VhR5ydJ48819tLQWaO9Ks6mZ9SVImR4ulZu5XGpmXA83kAfDlCmUXZRNFX9Rp+NMBulJm+zU8pANT9CgcyBL54EsXYMZOvblrkttaoTALZvoRRXblNgVncOjNYbq6LZSCYdwVCdrhX2zEPfz139wH/mUh47+JD/3r17B47WQZfuG2PiqWG+4xLrWJYtlfaWEgIuFFp6d38Vwsbl6L1FTR1tQSM4HKZkr1N0oNvKuPJLXRpgS9qgPiiqa4tg1fZreYImrhiM4y4vEyLdENdoaIrR51HpCIW0+0vwGvgWXZBNQTGZ0N5NlTy2k5XogbpCVb70YzTXx0uxu0tW4dE+GB9suE/NU1OH1kKibFCpxrSS+7UCgqvixIFKDg4P823/7b/nIRz5CMBjk5MmT9PX1cebMGR566CHm5m5sMtWNwHYlUqZYeZZMFzJvl9uZthwrWLeS4ag7jrbCQOSF/yvKy3/kBDQ88OsLPPAbSYQNU5citbCK5LR/8UWSoGt/ir13J9hzfIZoxzo8wO8SlC2Fy9mWWn3VaK6pYRAlYbMzkKwRqz3BuZUl+wqEgGLZRTLrJ5nxk8z6SVWuq/dl897a/xAILC9IzQZmxCbP4g+9hM3eyCwHWqZJWR5emdtZU9Niniwf7D7Hva1XUZfUPthCkJVBUw3Shpc/Gn2oVpztkkwGfTMcCcTZ6731IRxrwTIl3ny+nxe+PUi56OyXA3eO8cjHTxNuWvwOxk0/r5U7sZFpU/Icd09uW1J4LRi6zBvf6+PVv92DXnQ+s73Hpnno587R3LHYl6tkKXxvbi/PzvdjIaNg81D4CgcSc8ycCzFxLsr05TCm7kwSWJpEZp+H1EEPRsA5h6iSyXsOncfbXARJQirBpb/cQ/5qgLsfvMgTHzlxgyPaBapkNBCnZbOhAjJ5PxeGuuk7NIGOwls/PMCdR6/i8Wx+gkMISJgBLpUc8jRjNka2h4olwpMlpLOCy3IzadlH6JUi3lFj8ewgCVp3FRpselulNlW2Ek2yKk1wnWS9peeebNlN0XZhyRJ5y71sUmgp0nNe/voP7iMz56OtN83P/+tX8Acdpc+spPFtxYB2KTYTLrHm+ipNxwtljelMhOl0mOlMmHgmxHQ6TF5RkVvLSOFFoilyCsy6aJWLdIbSxEJpFLfFy1YnWeHGJ+l8quUMO3wpfC4drZJiaFa2+Uan7W0dqiqUE1zhbPcG9/kNPn16ZQuPbDFd9jBd9myJ6ikqRKDW3/gWwRISJ5PdvDm/oxbYsj80zd3NIyvHpdfXQ92kUIm1kvi2E4Gq4seCSHm9Xi5cuMCOHTsaiNTly5c5fPgwxeK7b+C9nYjUv/7bf8wvHn6JGd2NtYLfP2m5eb3cSUG4kLE57Jphp7o8VU0IeObfN/Pan0cAePh/nufeX0ktW58QMDfu5/KPYlx+rY34ULjh8ZYdWfYcn2Hv3QlifdunvmgrkDNcXMi01eqr4sXGz16VLHb5FujWMjRZRZSC7BCkvJ9U3kc676NsqSBR6Z7uzJItvS3LFlrQpOSXKKI1rH+wOc4dbePsDM/x0kwfLyT60SsWvm5fig91n+OulvFls/UJ3c/JXAen8u1kLBe/tuNFoq4CF3MxzqZ6OOJPsM83i2sbk6cqhs/GeOorR5ibdvZ/rCfJ+z51kt49K0/KzFg+flTqwkKmRS5wt2di2STCjYRtS1yZb+HiTDsuxaQtmKUtmKHFn6sNyDaCfNrFD7++j3ee3YGwZWTF5vZHR7n3oxc5K9r4ZuIAadNRRGILOdqe0sme9i3rSaO0W5TuVplojmBIznco4CrxUP9FQh1ZMjiqpzSpcvK/D2KXFd77gVM8+Ni5G3Bc26iyWbPpqSsm6kk1i16h7OG737uTk6d28iu/+S2CoSK5hQBtwc2p45aQGNfDnM+1cLnUTF6uU3xtgXxZIF4D3gZphf7EnpCjNlVteh37c7j9W2t5VCSrEkmu41fKyyY68rqLk1PdLBT9tLekCfjKrHe4k0u5+es/uI9kPEBTR45f+N2XCEdLN8zGVw/5OklU2VRIZBxLnkOYHNKULvlWfL6EoDmQoymapRCCuOyrvbdud5r3Nl+h053lc+N3kjS9RNQi/6z3ddoqTcTffeTJQU2FElKd8reB7b8Jp0y/YqIgmCx7mN1G8eZbCgnyhosfzfVxIdMOgCab3Nl0lcORiUXXxE0OlVjLxner6p/Wg3cjkdqwMXjXrl2888477Nixo+H+73//+wwMDGx8S3+CBkgsjzsHh/CMmBFO663YyPgknePuKSLK8iJbYcP3/7cW3v6iQ4oe/+1Z7vzFleOwJQlae/O09l7h3k9eITPr4fLrjlI1dibK3NUgc1eDvPqVfoItRScB8O4Zeg4kb2gRuhDOD5xhKc61rdRmUU3bieWtXlfvcx5f/pzqeozKcvWxsqlS1B0bj2WqBC2DsqxgyjK2AqascDnfymVaKxsFuABVgoBU+ZDWsw/kygvBoxgcbpnijrZxDrdMkjU8/N3kAH959fZav6xdgXk+3H2Oo02TDXVAs4aPU7l2TuY7iOuLaYWqZPHWwi7eGzvLvkCCg965hnqp7YqFGT8/+OoRLp3sBMAXKPPwR85w9P6RNdWRNqXAvZ4JXi11MWf7eLnUw72eCVzSjSONed3FuXgnp6a6ODvdSV5fbvWSJJsmX4G2QIa2YJZYMFNbbvHnVrX/+MM67/tHpzn2+AjPfnGQ4RPtvPJOH99t30W5x/kCqPOC6N+ZeC5oZCpkPNJeoHsgibLf4qI/xulUZ60upiOQ4tG+C/S0z3HWbCWDGxWL0qthzvzdHiRJ8KFPvMGd9w1vyf6RsBvUprWiyE1bqzW/BYnh4Rjf+MbdpFJ+fuYfPEswVARLojW4PuKgF2VSU15mJn0Ml5uY9gVJdXgQ3sqXSAZKAk6D9KaAd4Ccs+ZAS5mmo0WiXSWi3UWaugt07MoS6DBWrsC+DsjYlThyhzgtjfA2LJkz8S5OTOzgxGQP4UCBxw+dY3drlemtb3sKWY0v/eE9JOMBwi0FPv3bLxOKlDBspdIT6sYNn5wJH6liLVsbpiWTyAYrRKmiMGXCLBSWN3muIurL0xFK0x5K0x7O0BFKEwtmcKmL+zJpeHghuZPXUt1MlMP85dRtTt0QEq1ann/a+zohtUzZUt915MnBYpiEZSubC5O44QREEFZNTCFxteTbknhzZ61sOxKFAL+q80jsAgfCk/xwZg8z5RCvzPVzLt3B/a1D7KjGpd+EUIl3K4F6N2PDROo3f/M3+fVf/3VKpRJCCF5//XW++MUv8od/+If86Z/+6Y3Yxh97GELiRLmdScthxB1Kltvd8RUHjrYF3/nXrZz6ZggkwQf+YJbbPpFd9ryVYNkS7iaDfY/H6X90hmzGw5XTzYycbmHiUpSEFWT6VIjnz+5G81u07cnS0p8j0lPAlqU6MrNIWhoJ0OqEqOF1tnxN28oNg1W5GMI52ygCZOE0u5WoHDEVP4EQaMLGhYVPNvDIFqpsocn2smu/VuZQ8xSDTXFcis1kIcRfDB/jtbne2uB3X2iGD/ec5UB4sWh1wfByMt/OyVw7U/qiWqhgs8c3xxF/nAP+BB7ZcvafYmHIFrKQUG5BQ7/1oFxSeem7+3nt6T1YpoIs29z58DAPfOgcXv/6LFwtSpH7PRO8XOomaXt5qdTDfZ4J3NLWqAZCwHQmzOmpLk5PdzM819qQZubTygy0TwMwkw0xkwtSNjXm8wHm8wHOJxrXJ0s2Lf6co15VyFX1OuIuMDsSZOJ8BBuTzPsN0repIEtIOoReEoR+aBBrT9P7wSRdg0k69qe5rLfxgysDDCdbIeX8n8GWKR7vu8Ce1jgn9XZOmU49VRNFrn5tB8MnulAUi4//4o84cHR80/tHwmpsfrtCXx/Llmsx5KbtWh5FXlL5/vdv54039gBw70On2HdwDAR4bKVhsGHqEqkpD8lJLwvjXpKTXpKTHubSXvI73Yg7JDgAuOqGCGkBJ8B7waA5l6c5ViK6v0j0kSJN3UUinSVc3sZzaGP8+fVBQuCtKU46niV2RiEgo3t4Y2wXT104wOnpbgxL4a6+ET5xz5u0hdZ33q5HuaDy5X9/N7PjIQKREr/wr18i0FSmbGmYVZn8BqE+XKL+/1i2xFw+4ChMaYcwxbNh5nKBVRMCg+4i7aGMQ5hCDmHqjKTwuoxrEp+oVuIjbRd4tGmYl1K9vJzcQcF20eHK8pmut/BKJrq5NbHjNxdbECZxE8jHjYg3h21GourDJOq2pd2T5Wd63uZCpp1X5/tIGT7+buowO/1z3Nc8TFS9/pYXq+EnBOrWYVOpfZ///Of5vd/7PYaHndnMzs5Ofv/3f5/PfOYzW76BNwPbxdqnWxb/8lu/zgf2niRR9lC2NXJCY1L1Y8gKCEGgZKGWqrG/dWqMkNENhaFX/cxPuUGTaT+q44uJOpKymorjvH4rY2+3Gqpkoco2mmyhyRaKZC96pG0QloRlyVimgqkrGIYCtqMaVX3U0rLb4FINAp4yQU+JkK9I2Fcg4i8QDRRoCuYI+wu4FQtZspkuhriUaeVCOsalbAuG3fhjHPNkGKwkAg6EZwhoy21Jo7ko3x4f5K2Fntp9h6NTfLj7HHtCjpUtZXoqylM74+VI7XkyNru98xwJxDngS+BTGovPnealFpZsIwnwmNpN7UlxLQgbTr3Wy7PfOEQu7QRh9A3GefxnT9LasfFBI0DacvNSqRsdlaBU5n7POJ5NNus0LJmLM+018jSfb5wZ7wylONg5waGOSfpbZpelpmVKXhLZIDO5EDPZIDO5YI1krdk40xaoWRMlqmPuNqk48AhdMQg/Bcw5A5GuPQvc+6mLXHE18/TIfuaLzvapssXxrhEe77tAdyhFwvTxtt5BqRKLvlskeflPjjA11oLLZfCpz7xE/77EKhuzEgSyVFGcJN1RnFawjFZ7OBnriCK/fLmDb37zOOm0U5/58CPvcO/jJ0CCzJUA46+1kJz0sDDhJTnhJTPjrvhlQXQAd+CQp91QL9u6MiZtyTw7xQL9zQs0d5U2ZMlbrSHv+iDwyCY+pYxf0fHK+rJkybKtULBcjKZa+PKbd/L6SD9QbaQ7wvsOn94UgQIwygpf/vd3M36hGV+wzC/87stEOvOYtnLDbHxVOL2iYDYbZLrOkjedCTOTDWKtopB7NZ32ULqiMlWJU5qAe/m5s1or5YxYrv1+pMr3tmhpXMi1stOTxP0usDqvhOsOk7hJxONGxJvDNiVRsOZ+LVsKbyZ3cirZVYtLPxqe4Fh0HNcWNZReugn1BGo71j+tB+9Ga9919ZEqFArkcjna2to2u4ptge1CpC7Mz/K+L/1l7XZv2xyHd11FUQTFssYbF/tJ5la3PWwlJGy0CnFRlyosko1dlihnVEoLGlZRRrIEkgWyLQiGS7S052jtzOEPluuUmeo6lt62Gp6jSDZ6SSNX8JDNechkfaRyflJ1oQ754nJr1VLIkk04UCASzBMN5YkGK5fKciSUx+Myr7melaDbMkOZlloPq5FcU0MUs4Sg15+sEStVsvnO5ABnUh21x+9onuBD3efYGUiSMd2cqihPV8vRhvX0exY4HJjmkD+xao+gKgSCkmogJJBtCbelbgsyNTkS5ckvHWVyxEnYirbmeOwTJ9l7ZPq6HVQZ28XLpR5KQsUv6dzvGccnr+9zTRa8nJ7u5sxUF+cTHQ0NMlXZYl9bnEOdExzqnKTFn19jTasjm3Rx8UyMy0MxxhJNzJcDGAEVI6hgBBQIWsidRaSKOiJKMvaUF/Iqmmzis3X0eRXDLVNukhGqs8MCWomHd17i4Z2XCHtKWELirN7CsOmEywSkMvv1JN/6r/cxNxPC5y/xC7/2Il29qycDOhDIlShyrZao1zgAFQIssRhDvt4o8nxO49vfupPT53cB4FFK9FhXeeSfnKS5L8/YG1H+5n8+WiNNUFnsB/m4QLoTzNbGwVlMzrLfP8ce9zwtauG6vk8bI1ICl2TViJNP0ZelSBq2TMF2UbBc5C03Q7NtfPfkYc5MOI10t4JAAZiGzNf+412MnG7D7TP4ud9+leYduRti4xMC0iVvXehDVWkKr9pg1qUYyxSm9lCakKe0oc9LkZ2YtmupUnJloq1q63732fequM4wiZtIOlTJJqQaJHXXlsSbV7FtSFT1K7SegIu6eqhkycdLc7sZKzrnZZ9S5t6mEfYFZq7rXLVaEt+7lUBV8WNBpP7Nv/k3fPrTn2bXrl3XvZHbBduFSI2kkjz+hf9GwF1ib+8U7S1pZ/uyXiYnm5GEVFNk1Aoh0SQLRdhced5D5qqCIiwOvT9L++5ijZwsKjnLSUv1MVWqPEdxltcb5yoEzI4GuVRJAJwZadx/sb4Me47PsOfuBK07ckiS00spmatLuKu7TlUS70zr2jNZbs1wSFEo5xCjYKG2HA3mCQWKNy2WNm9qXEy31YjVVDG84vNkbI63jvGh7nOE3SVO52OczHUwUorWBm4Sgp2eJEf8cQ754wRXSv9ZAzY2JdVcsb/UzUY25eG5bx3k5Cs7AXC5De7/4AWOP3K51hB0K5CzNV4q9VAUGj5J537PBH55Oem0bYnRhWZOT3dxeqqb8VRTw+MRb4FDHQ5x2h+L41Y3RrSFgFTcx8S5Sgz5uSgLU/5lzwu1Fmm5LcPYnX6GAw651LDYYeTQ0jKzuSCzuSCWJGGrIKrWUgAbZANU03YGp+EMbc1plPYiluY8aZeapD1Z4vN//BCZlI9wJM8v/tPnaY2tNFhfXxS5JdSK2uTCtFVWq8sQNmTnXCQnHAvewoSH5ISXiblWZkMdCJcKQuCKZ3GPpbjvVy9zx6fHKKZVvvprx3C5BeHeIsphQb7fxWxTgKK8aA+SsdnhSrHXM88ezzxBZevaNVyLSKmS5Vj15DI+RV8WEGEJiYK1SJz0ygc3OtfcQKAkyeb4FhAocBIvv/V/HePSmx1obpNP/NbrxPak2IphVK7sYjodWVSZKuSpuErNiyJbxIKZBrLUHsoQ9eW3pO/btVQpR4Vyvru6pSyzGb6bcF1hEjeZcNyIeHNY7BUl2dx6ErUOFar23CWhEkLAaKGJl+b7SVfakrS70zzQMkzMndvw5qyUxPduJ1BV/FgQqSNHjnDmzBmOHz/OL/zCL/DJT36SlpaW697gW4ntQqQA/tfv/EM83UkWbC8gGNTm2KstrDpzUc5JfPWfdXD1dS+a1+YT/zXOrntuXXJiMu7l7KudXDjRwdRUFMulYHkULLeMFJQQPomyuHbhqYQg6C/SFMo5BClYJUwFIqE8TcEcHvfyCOXtgpTuqaUBnkvFyJpu7msd5eHOy8TNIKfy7QwVmxsGazvcSY4EHPIUvk4vtSlZ6Gqlv5Sl3vR6KdOQef2Z3fzwOwPoZWcQfPieUd770TMEIzemCXLBVnmp1ENeuPBIBvd7xgnKBkVd41yig1NT3Zyd7iJbXlQzJQQ7m+c41DHJ4c4JuiPJDX2nbEtiZjTAxLmoczkfJZ90L3tey44sPYNJugdStA+keEvu5Ltz+yjbjv3u3sgYP9V2nqCqY9kSJ+I9PFWtf6qgyZ3HZxokF/yUVa3i4RDs3BVn7/4JZEVQLqucPtlHZs4PORm5IBFUSrz3gbPsiM0RC2bxu0qosokm6xXiZCKtQJxqalOlzqn+51kIyCe1RbI07qnULTm1S2a5rjm0IlPaGcVoc9R0uWQQy03Q2ZZkx/F59n9kAkmC8ryPSTXK5XILV8pR9Lr2Dy7JpN+9wF7PPH3uhU3bN6+FpUSqGhBRjSVfGhBhCyjWFCdXpfXA4n66kQQKQNiCv/uj2znzcg+KZvHR//lNeg5cS3FcjpKhOmSpQpSm0xHimRDZsnfF58uSTWsgS0fYseW1BTN0hDI0rxGqslWo2kqXEt2qlc8WMrqtYN+kJqdbj8UwCcfGB+sOk7gFZMMrW7gr8ebxLYo3h21IotabK1UpN1gpVMISEu+ku3kz2YshFEAwGIxzd9Movmu4TWA5WZKkvz8EqoofCyIFcPbsWT7/+c/zpS99iYmJCR577DE+/elP85GPfASfb+WI0u2M7UKkTi2c4HPD/xFVtcGCPjPDYDixaqRyKSPzpV/pYPKkB5ff5lN/Mk3PHTdmkFqFZUmkcz4W6nsmZQIks76amqQb1y4ulWwbr6zTHMnR3pGiJZpzLHgV6104UEDdRJT0VkEIsCsZiraQnfOikByPupAqjy0uO49VXlN3X/V63vBxKt/O5WIzdt2PYrc7zRH/NIcDcaLq1n52ZcXEqjTe9Jga8k04zQoBl0938IOvHGZhxkkW7Ny5wBOfeofuvo0P8DaKoq3wcqmHrHAjWTB+rp1zY90N9X8eTedA+xSHOiY52DFJ0HNt0ioEFNIu5sf9zE/4mZ8IMDcWYPpyGL3YaGdSVJv2PWm6B5J0D6boHkjiCTjK1rlcK1+NHyRRSV3c6V3gZ9tPs8ObpmhovDTez9NX9jNXqX9SJIu7u0d5rO88PaFUbVsunYjx9FMDBD6QIdTvWA6zsz4uX+hmJh2m/ifVrersbZ1mMDbBQGyCPa1xtCU9ikxbxrBcCJw6J0uogEQxrTp1SlVladJLctxLcsqDXli97ktWbMIdZeQuF5NqN7rtQkJw7LZLvP9DJ3B7LASCguqQuNFCC9+eO9xwbATkMns88+z1zNPrSt2UfmEyFkGt5ATIKDoe2VwWEFGytRpxKtquFQeON5pASZV1fve/HeXEszuRFZsP//O36btthSz3OuimQiIbWkKawqSKy1XTKpr9OTpCKUdlCqfpCKWIBbO1pDzTlm+qdW65KiVqlkrDljGtG18TdmNwHWESt4hoBBQTeYvjzasQskOgblmvqI2oULChJrs508WrC7u4mHPCgFySyV3RqxwKT63YZH4tAvVu/KavhR8bIlWPl19+mS984Qt89atfpVQqkcmsHLO9nbFdiNRzw2f50sy/J5/zcPJEP3rZhaaY7GyaZ3frDHtaEvS1zOHVDApJmS98ppPEOTeesMXP/ek0nYecAaEtqA3yBVKNBDQM8lcY8AsBRV0jXfCRznvJ5r2kC16yRS/Zgods0UOh5F6UrqtpDyvc9rgNvJ4yXo+O16vj0gzMvExxXiOT8GDpknMykEHWbELtJSIdRYJtRWTVmdBZtn1LttVmOcERLH9Pdv1jy94/Dfuk+rwb+UPc6cpwJDDNYX+cZu3GqYdOvZSJkMRNqZeamw7y1FeOMHzW6aXhD5V45GOnOXz31S1sXLoyDEvm8myM01NdnJ+LsevgFKFwAV1XePO1/fhss1brtLtlZtVZc9uC9IzPIUs10uQQp3J+5QkCl8+geyBVIU5J2ndn0NyNkwBzuo+vJQ5wKuvUyAWVMh+JneN4eJyFop9nRvbxw7HdFE1HrQ1oJR7aeZmHd14i4ln+HZk0A5wot2OgYOsSM19uI/VimGhfkYzko3dfgkO3X2H/3nGa/LllVr1U0cf5RBfnE92cT3QzlmpGCBm3MPCWS2gpExIW0qyNljbQ0gaysWSfSYJwrOzEhncViXaXiHYVaeopogTge9+/g1OndgLQ2prmYx97lZ6eeWZNH5dLzbR4F+jxJlkwfHwxfhxTKLSoefa6Hcteh3bj+tZJCFySiVs2ccnOtbO8XOlyAiLc5CuWPXsNdeBGEyhnnQIZwVN/eYjXv9ePJAne/+vvsO94vPYc05aZqUSL1whTJsx8LrDquS3sLdBRDX4ILwZArGRvrX6fqv2Xbjbqw06qKpRhK1vSAPhWYNNhErdMqVmMNx8vekmZWxNvXlu7VLGs2dxaErWe/11v5dtgk93pUogX5/qZrUysRbUCDzQP0+tLAiuoTdKS238P8WNJpN555x3++q//mi996UvMz8//pCHvdWA0N8uv/vAPAUHBdNf6XCCJxQGFJFBkgTAF2M79ikeAXCVL784fkncbZJxiZlkSNV++XLmWqC4veva9ssGAb5bD/nitEeTNgF0Jn0AC1ZJx2Vsf+1sqqLz4d4O88exu7EpD2eOPXuaBD5zH7d1cmMd6kC56K7VOTlBE2VwkOh5XmXvuPYc7YKAIm/u84zQri4qfUZZZmGwkSvMTfpKTfixzlWNIEkRiRZq7czR152nuytOxJ0NLbxZ5lTI03VZ4cm43P5jfjSkUZGweahrhg60Xmc6EeerKAG9N99YUs3Z/msf7z3N31whudfmg3hASp/QYY6ZTgxeRS9wmppk9FcQwZHYOJOjqnl/2OsuSyWW8JCZCXLjQyYXRGHOFMCnbS8nrwQipWP61vxtuSyeiFGj1ZelsTtHTkaQj4kS41w+2z5zp4W//9k7yeS+SZHP/A+fZ+8AoV8wmLpeaSVleDvgnebT5PJaQeH5ugDa1xB7PHE1brMqCQJOsGlFyLgYuyfp/2Pvv8Diy884X/5xTVR0BNHIgCOYwwzwkJ2pyUJYsW5YsS7Z1ne3d39pr2Xvv2rr788+P96693rtee59dS45rey3nkTSSrDSjiZpMzgzjMJMgEpG7gc5Vdc7vj6puNIAGiNAIJPF9nkZ3V3dXnQ6oqu953/fzzmjSHC1JOQFSKkjaDcypFcOyGCi8fb/Sguf+6TZe+fJONHD3T56nameGayW1TAPj1TNSWKOBbDElr61omBJEAnNrPSD8fdximu4uVkJoTN/0Otq4gYESC4RJrGCqWwFvnlYGXZkIydmIpAvQipqo+UahytRDzVdKw7vjrbw2somM8gzppsgQ9zdcImZlbxkDVdAtY6QuX77M3/7t3/K3f/u3nD17loceeohPf/rT/PAP/zCxWPki+9Ws1WKkLicH+JHv/8GSbkOX9j7QeHutKfcLJ/+GUBhFyp4PqDAUpuFONg3C43XNbCj0JNNhlDwm0GQSAUZ7Ioz2RMiMBvxwlLcjrWnI0tQxTvPGcarrspPMSeH107YpmPkxPPMpS9dReI5/2yguY9pjBYN0I8kRirx/oht0KlcvpRQce3kTz351D+lxr+5o+75envjEcRpa5l9Ae93tabjqgyKO967n6mjDpMdrQmn2tvWwd10Pt7f0YZiKl1PrGRVhhKsJvyAYe9uLNCUGw5PIcKUyLJf69jQN65M0dHiGqaEjSV1belqkaSZpDW+Pt/Hl/t2M2F66887oID/ccpK+kVqevnQ7F0YnaKe3N/bx3i3vsqe5d8bf17Ab4miuFSE0rWaCHcEBmsxk2R5O/d0xrrzbQt+FGFffrKL3TO2s443W5anekMPaqBEtBnaNRToYJKGjDKaqJ9WVlVNtOE1DOEl6OEziWhTDUTRuibPp7h6umZHiCQJAg5nkU21vYAqFti2iFTk10JhCFY1SsCTaNNPn6WpBTpklFwtbGRiGmjP+vHOonn85tn9JDRR4UZeRdJSro/W8+upWzl5uw642cGvBnQEzHzLztMUKlLx40TTNJZX1emNZSRMFGkMqpMBr6+HemECJBcEkVhj9LdHELJsxx6S7gnjzgjQgfELfipmouW638HVVqMluzjV4I76RE4l1RVz6HbXdHKq7SkCqG/AXvjDdiEZq3lMJ99xzD2+++Sb79u3jJ3/yJ/nRH/1R2tvbFzXYNXlqCcU4aI/y2OZTJBwTIWTxBB6tGeoO8+0/Xs9YJIa7LoJuC5DRgYmZuIIRckHkwciBzAmkPZFnLKWm1keCTwc5eOS74AKR4AtWI+C1U2GkN8J5nwDYc7YWW4foJUQvTdSvS7H9ngG2393Puh2JJU8Xu1lkaolyJY6hyBlOReqlui408O2/P8C1q3UANLSM8d4fOca2PfPpT3R9ZW2T0/1tnOhdz8m+dsayk4vfN9UPsae1hy3hAYJxh5GeKP1vVnO6u43h7ijZnMm6zw0Q3Zsleb/g2htR0gOesQlV52lYP2GUGtanaFifoqYpM2OEaS7qzVbzT9f2cDbtgSLqrTQfaTxDYiTKf3/5UYbSXhqHIVzubr/Ce7e8S0csPsPaNAKXYR1AmBk+FDpG1RRKnVLQ293IhQvtXHmzjquvVJF06yHgR+hchQhnCFtJ6tdnqGvPeul46zPUtXv3r9drKZO36C/pizUwXuiVVUMqHySeiTBmB4m0ZqjaPUSoLos2NJep9WdrIZpzaWOMRzefxBQK4UrKowxml8HkCFMhNa9cbQF4BrxglPLKJKc94+To6SfgAo3B9c1yOQN115bLfGCRBsrrRxaiN1FLT6KWvrFaehMxehO1ZEvTpyba0GEZziRKXiHSVBteHAq+nLyUPrFiJkr65sPx0/jEMlFZK6sJmISrjLnDJFb4rRbw5sP5AN3ZCHaFAUYrZqJKDdRct1uoh3KuXw81VwUMl/sbLrGr+hrfH95KV6aOo/ENnBlv4T0Nl9hRNbhq4Vq3uuYdkfr85z/PZz7zGXbt2rVUY1p2rZaI1Hh6jH94/YepNTJcHmyka7CRayP1jI55IIdyTQ21ADcAKlC41kz9bwtIh/WxUbY39bN7XS9bGgdnBFisJiVHA1x40zNVnccaJqVcRetybL9rgO33DLBh7zCmdSMeUJdPGk3OcFBycfVSY6NhnnlyL6fe2ABAMGTz4EdOc+cjFzDMynwHA+PVHO9t52Tfes4NNk/63QekzYbgCM3pccK9OVJXg4z0RHHyMzufmnVpmn9hGLnNBaXZOpRgW/0I4ZrKUh/Trsm/DO7khZHNKCSmcLm/phM3EeTlzq2T6p8e2nSeR8vWP2mEdnBTGolDpDpHMDh5YsN1BN1narn8TiPnuzdxoX8zmXQAqzdONJugvj1DbXsGHQxy9VIrqTHPrjS2j/HoZ06zZf/i+peUqmcsxleP7Wc4GsRsyU2a3HCzBqmhCOnhCNmEV4j+oQNv8vie46RyAf7ff/kYpoDm6nGaq8YmXTdGk1jSnVbDFJQOpii/79Iactr0zFLJxZ7Ejp9d18OfV9JApXIBesdqi6apN+GZplS+fPRPojDGNIExl83tg9zznku01iRoiKam1cAthQrbWG64REGFuqi8Y5D3aZem6RP81I1whrlAmMQqOLQFhEvUcBnIB+mtIN68oFVhouaqeUAl5qJy1D0NXEk38NLQFsZ8XHpbKMGDjRdpXgAu/UbSjRiRWnSN1M2g1WKkTnW+jiN+eNKy8XSIgdFa+kfrGBiJMThQhTJNMAwiIXtSc9m66hSGobgy0sCFoWYuDDZzcahp8kwmXqPRjfXDbG8aYFtjP1sbB+ecH79SyqUNLr3VyPnXW7h4pJF8eqIeJhB22HJokB33DLDl0CDByNKgkW90LaZeyrElr353By9/6zbsvAlCc8d7LvPIx04RrVkkqt2VXBhq9s1TO/3jk9ODw/kc1deyGBcVoX6bcufR0lTUr/MiSvXrUzSuT1G/Pkl9e5pAyEVpeDO3jl632qPHBftYb1Ym9UppeC3ewVMDuxh3PfT5tuAwZsLgRO/6SfVPT2w5w73rLxGQLuODQUZ7gzhpTTCYp7YhRfPGcYKRycbJ0ZKBXDUXXmri7Nda6btYQ6TBYTTWxrhTgxCKhx8+xp0PXiJSO9kcuo7grWc28f0v7ySb9PPv9w7w2GdO07xh/mAgreGaU8W5TAMn4m2MW5P3Lc1mkh2hIXaEhmkyUiTzIT9yVY2t4fCOMwgBf/P9hzh6ZRvgNWvdWDvClrpBNtcOsbnOu7RUlf9+tAZbG1PS8kwfl764E+qZjNRiDJSHFvdM0oRhqiWRLU+4FULRXDU+qQ9T/qrJK3+yE5TgwHuv8PCPvbuss9MraaKE8NKwXSXIK2tSNMyQCkO68+uxtAISaIScJ0xilZyZFfDmvbkQ/RXEmxdUMFEsZ8Pd+dZCFV6zQKhEOU3dbIHGVypHCd72cemOj0vfXX2NexuuEJ4DLv1G1E1rpD73uc/x27/920SjUT73uc/N+tzf//3fn/9oV1irxUgNJM7y5Vf+P3Q0DVFXM070OrnsSguUNnC1gVL+tX/RfqqAUoLuRC0XBls4P9jMhaHmaelRAk17bJRtTQMeHbBpgNrw6oWGuLag80Q9519v5sLrzSRHJ2ZwpanYuG+YHXcPsO3uAarqKtes82aQKxQ5v14q4JiY15lR0xrOvL2OZ/5pP/FhD5HcsXWI933qHdo2xhc8jkQmxJHzGznW1cGlZBN2aZax0oQGbCI9OSK9eQLjE8Y4ELGLKXiNHUnq21M0dKSobckgjdl3ZUrDW/lWupwYoDkYuMZGa3GU0SuZWv6xby9Xsl6KY0xmCcQl3YMTvfU2BwfZY3cT60mR7LcIRXM0rhtn494RNuwZmVZ3lU2ZXEvFGIpWcc2JEe+J0HIxRXNThrr1GWQI/vZPH6S7sxEr4PAjP/l9tt9+jdmUSVq8+tR2jnxnM65jgNDsf+gqD37iDFV1s+9nXC24mo9xLtvA+Wwj42qiT5ZWYA5JDjV3cbipe8b+Zx5BMk9QKCIooigMrQlIh4iZn7GOaSBZzeV4I5dGG7nsX3rGaqkO5WiuHqO5aty7rh6npWqM2kh6UTWMU43UfAyU7UqujZWYJT/aNJyqmnF7DZEk62Jx2mJx2mNxOmpHaa4aQ0iBo70zt8vvNPG1PziIciV7Huri8Z86uaxpzdLPC1+JuqhCFMp2DfLuxHGtIIHyolKaVQqbWABMYpUYKJjAm3fnwgzlA1TarHomCljOXlELiUJVACpR0FwM1FQlnQAvD2/hXNKrqw1Ih7vrrrA31jdjSvONqpvWSD3yyCN85Stfoba2lkceeWTW5z733HPzH+0Ka7UYKYD/8LWf5sf2vUx/Pkj3OyGe/S91xJrzbL4nycFPjhIIuhjCRc6Q3lLQVJNVuO0qg4FkrGiqLgw2M5Cc/p4bo+M+ct0zVy3VY6syP1cr6D0f4/xrzZx/rYWR3pJ+KEKzbkecHfcMsP3uAerb0ys30FWkvHRwjOv3l+rvruG7/3iAK2e8nXd1bZrHPn6CPXd1zfm34NqC0WsRhrqinO9q4fxYCz2yjmQ0OOnoYWQU4V7POEWu5amp8eh4BdPkXZJE6/KL+h1qDe/kW7ji1AKwP9DPFis+7/VkXYN/7t/DK/GN3vi1gmGTdCIKCIRSxM4naTk9wo5119h8YIjNB4ZYf1t8WgpkJmkx3FtFOhliPBLiTEMzOWkh8Bpyby9pyJ2Ih/nfX3yYwWsxwpEcn/nZF+nYPJ3SN5NG+yO88A+38+5rXl2rFXS45yMXuOuDFwmEJgxrThlcytVxLtvIxVw9uZLmuNoWuJ0hVGeQ+zou8+j9JzEmmdjJpLyAdAhIm6BwZzQ5jhbFGqaMazKcqeJqop6eRN1ETVaymsFkNc4sBe6W4dAUTfrmaoyWEqMVC2Wu+9spGKnz/S18YwYD1VCVZCBZPSUlr5aBZPWMJ8k1oTTtsQTrYnHv4sMfwpY9icZna4nrGhRKy7verecr/+Uwrm2w855e3v+Lx5DLXJ60MnCJks/ENbHVzECJiajU6iqanTdMYlWdD3t4c1sLupcAb16UnyZ3ndOZymghUSi4bpPduWohBmqqejOTcen1VooHGi+yIRJf0JhWo25aI3WzazUZqc8/9bP8xP6XeOOlGH/3i+ux05KOwxl+5It9BKsmn6x4hsq7GMJFyoWZrGQ+xOXhZk5d8+pSuhN1004IqoNZtjZ60aptTf101I4ueQf7hWi4O8q517y6qr7ztZMea+hIsuPufrbfM0DrttVpDJdDpfVSQgtCzuR6qUzK4vmndnP0ha1oLTBMl3vfd473vP8MgWD5tMlc2mC4u4qR7gmk+EBvFX3UkmoLkV4XwI1MPgEOjtjUjyfZYAyzpXmIRh/6UN+eWtL0TK3hRL6Zi44XRdoTGGC7NTr5OQoyYyap0QDpUYvUqFW8PZiN8PrBDaTqvMiMipvY8RC4klo9zuHMRfbWdLF19yCt2xLTTnzzWZOcHUAEJC6W/78oOZVvKo6pWuQ4HOyj1piI8AwNVPPXX3iYxGiUmliaH/+F52luW1hErftcHd/7m930XqgHoKouw92fOo95R47z+QY6c7W4JbP/YWxEt8XwO424XUHaW0f5+Mdfob111KthEpPrmGaq2XG1mFbDlFOmv63r/0MqJRjJRCbBLgqpg4PJmZHfAEHTpqlqfCKKVTVOS/UYjdEkSgni6QijqShHLm/iWNcGb7ZcKLa39bO+cZRENkxvopZr4zVl61UBIoEc62Jx2mviE6YpFqcqWD4yXoi4OMrrg1Q6/r4LMZ78z3dhZ0223NHPh3/p7YrVIc5VUig0AsetLJ1t9m16BsQj8hmzfqfgfUemsZqiUhMwCS+ND2aFSayyw+hS482L8j+SZcGcLyQKBRWph6qEgSqV0nB6vJVXhzeTVV6Jw5boBC79RtctYaR+6qd+ij/8wz+kurp60vJUKsW/+Tf/hr/4i79Y2IhXUKvFSA0n03zoD/6QJjHKtTclImHT3JTk4c9eo6E2TSycpTqcmQMoYnEmy1Em8UyUnkQ95wdbOdHXQXe8nlR+IiUwaNpsaRgsRq02NwwVO92vFo0PBz0C4OvNXD1Rj3IndoRVDVl23O0RADv2jC77CcpKS6PJ+PVShpIEXRPlCt56aTPPP7WbTMozCbfd0c3jnzhOXWMarSE54sEdhruiDPdEGe7y+i8lR7z0SjsqSbcHSa8LkGkJgFESdVIu7TLOzvo+Dm65ysYNIxjLCAlRLqTjniFKjlp0Vdcw2uH9puWrmux3TdKjAc8wxa1iAbuyBLkGi3xDgPROi/z9AgKgHUFszOH26mvsjV1lX2MXTY3T62VcZeAoy7toyz8xnPhcEirIm9k2xrX3mW8xR9kdGMQsMSO9XXX87y8+RDoVoqFpjJ/4xeeprV9chFVrePPoRl4+v5nsJgGbJv//1hlpdoSGUVdCHPvuVlrrxtnYPsC9h8+xqX2QkGHPSsrLK5OsNkkhyGgDxw2AazEXw7QQuUowko7SP17DwHgN/b7BujYWYzQdnb22wz/JKrwdLTTS0DOexAdNm3VFs+RFmtpjcWrmEPWCiZ5QrhLY2sCZEnEZ7Kzmn/7T3eTSFh27h/jY545iBpYXEFSsi3JlxetiZpIhFVoL8q6BreYOCTGkiyHVikelhNRzh0mswkOORFNr2SQck65MhGyF8eYlGwKWwUQtNAoF3hgVftrh4k3UYg3UVGVdkzdGN3I8sQ6NwBCKg7VdHKrtwpLLu6+opG4JI2UYBn19fTQ3N09aPjQ0RGtrK46zzOjsCmi1GKnTvQP88P/80nWfVxXMEotkiIXT/nWGWCTtX0/cLh8xWrjJyjkmQ6kaOkca6UnU0zdWx7VxD9GbdQJsqBvxARbeJTrDLOxKKJs0uXS0iXOvNXPprUbs7MQsWzBqs+3OQbbfPcDmO4YIhFeXIVwqucLDoSNgrLuWp754HwM9tQDUN4+z/9AlTOUUI0wjPVFyKWvSOrSAbJNFel2A7IYAuarJj9eHkuxf382+9m62N/VXnBbp5EXRHKX9qFFq1CI1YpH2DVEhmpQZM6f1jqr/ZIrGH/cMyfA/h+n9l1pyDUFUiyS0waFqfZ6qhhy1oRT1NePU145Ra2WoNTPUG2nqw9ObKzulxklZ6Bn6/GgNF5w6TucbUUiCwuFg4Bqt5uR1XjrXzN/9+QPkcxbrOkb4sZ9/gWjVwgAfWkOPXc35bCPnsg2MuJOBB8FuRfu1NHvrejlwoAsnZ9EYG6c+Vr6JtNaQ98EPeR8x7oEfDDRUhBQ523tJ5QKMpqPEU140adSPKo369+PpCI7yxlKoc9Cl14XzoxmGZUqXtprEpOjSulic+khqQbVYAo2UGq29RrKOMrym6yUa6Y3yj//xbjLjQdbtGOGH/t0RrNDy7pOWGy4xAZSQ5F1z3lS4lY5KzQsmsQoNFJTizYN0Z8MVx5sXtdwmar7bqEA91FIaqKkazkV4cXgr3Rkvm6HKyPGehktsv0Fx6TeikZpzzHZsbAytNVprxsfHCYUmCvxd1+Wb3/zmNHO1pvlp8Ggn9d+8jNIuDQcU6x7SjOfDJDJhEmnv2lUGyVyIZC5Ez2jdrOurCmWpLZitgtEqmK5IhtpwmupwtsRwzW6ygqZDe2yE9tjItG0lc8Gisbo2VsuJ3r04rkl1KEdHXZxtjQPUR1euRilU5bDroT52PdSHk5d0Hq/n3GstXHijiXQiyKnn13Hq+XUYlsumA8PsuGeAbXcOEIndnGQcADdjMRYPU9MxTrhpHCW84m0jlWP8BLx8Ysu01wipqVqfxd1mMNYY5ppVQ15PmCcpFNsaB9i7roe967ppXUBtXT4ji6ao1AilRyaMUuHxXGo+aSeacCxH46Ykse15whvzhFsc6tIpmprHiPxUHvMnFGEjT3VgbkZFa3C1OcU4Xf8EJKNMjuZaGVReTV+rkeRg8BpBMfmE+fSx9fzzX9+L6xps3t7Pj/70SwRD85uscrTgSq6O89kGzucaSKkAJi5tgXFuCw+wKzLA5uAIDUaa8LaZ151XxuS0PB81PlO0wpaeiUJDYAEmKpO3PEOUnjBGpffj6Sh55/rfv0ATC2eoi6api6aoi/jX0RR10TRVwQx5ZTGYqmJwvBpXCVpqxlkXi9MYTVYshVmKQhPZ6Wl8BSUGwjz5u3eRGQ/SvCnBx3716IqZKFeLZTElpVhzW00HSsxFWguUEsWI1vKpFCYhZ4dJrFIDBRCULlHp0p8L0ZsN4y5VBFICLDHmfCF9oUpfuwgTtZwGqqCGYJqPtZ3gYqqBl4e3MuaE+M7A7ZwYW8eDjRdoCpafBFtT5TTniJSUEjHLr0IIwW/91m/x+c9/vmKDWy6tlojUhXO9/PQv/TUBmecDn3ybvXd1I0sO4lpDOh8omqox/1IwWvF0hEQmQiIdvm5eeUECTXUoWzRXU6NbtZE0NeEM1aEMAcNZUCQrmQtybbyWkVQ1jjYIGoq6SIa6SIaV7qqrXOg9W8u51z1YRfzaxAy9kJr220bZfs8AO+4eoLZ1fiRDgSrWjFjC9Qq2Ed61Frh4B15XS7+4vPJ7Xa0hnQh4EaXuKEPdVcW0vNF0DFVl8UOfe4HNe/sY6anmH375fpy0iRlwiyjx+vVJdLPgWjDGxVQzV0YaJ508VwWz7GntYe+6Hna19k5D6WsN+ZRRNESeEfKv4xapkcnmyM7OL53ECjk0bkzStDFFfXuK2tYMNU1ZqupyBGocrIhLIOgQDuQx55HyoLQg75qM2BF6czHidpgGK8P2yAgg/e9x/sjtHqeKt3Ot2BgYKPYGBthkJqYddI+8uoVv/ONhtJbcvq+Lj//4q1jW3MafUSYXs/VcyNUzrgK0WEnWBxLeJZig1RqfMaIylgpxpbuZq9ca6bpax/CFCJv2DHLg8atzTi8rjXaWo0PmHaOMSZocUcracytwrwplqYt4pqh4HZ24joUzXrRiDrpeH6mFqDSNz9HGjOCE5EiQf/iP9zA2GKG+fZxPfv51wtXLO5HjnfwtD1yiEJ1TWpBzTX97C//MlzsqNS+YxCo2UWHpEJCKviXCmxclALFMJgrmv41FQCVWwkCVk6Mkb8XXczTegaMNBJrdNX3cU3+FsHFjZIvdiBGpORupF154Aa01jz76KE8++ST19fXFxwKBABs3bmTdunWLH/kKaLUYqZOne/jcb/5lMX2qpS3O4x89xtad/bO8amJGTPpJ/kpDKhvyjFW6YLQixP3rUiM2Z8MlFDUhL6WwJuwZrILpqoskaaoeoy6aJBrIYkoXjRe3D5mznwhkbIt0PoQQgpDloPUExl0vkbmYSVrDUGeVZ6peb6b/4uR+Rk2bxtl+dz877hmgefN4yc5yMqUsKG1Cvnma6w5Va1D4B+QyJsv1zddkM1Zy2xUkBsKM9EQZ6iqFPlSRTU5EjDSggiZudRAM77uvrU3wmd/6LqEam8xwCDNjEapzODPYxsm+dk70tjOaiU4a7/rYCLc39LIlNECdnSQTnzBHk4ySb45ce34nZWbAoa49Q9NGj9hX25ahpilDdX2OSCxPOJonEHYwLWfeEYNkPkgiGyHtBHGUgcDrKu9YkkuqjrQKUC9yrBdj/En33XRlazGFy6fbjnFPbfe8tlUqW0uO55u56ni/q1qZ4XCwj2o53Xi+9MztfO9f9gNw6N6LfPgTRyZNqkyXJqNMRt0QjpZEjTztgQTrAuMEZPmIhqtFMbqUdU2OndrMl79xF8OjMSzL4c795+k/UkX/5VoAahrTPPwj77Lr3p5Z5z9sV5CzbKShGE3UcPLi1mnRpFSufNPZqQoHcuUNUsn9SqaLVtJIFYwCft+rcml8BaUTAf7pP93NSG8VseYUn/wPr1NVu7j+bAuRFAqtpV+ztZTbmQBK5F1jbo1pryvtE/yWulZqHjCJVWygwMObCzQ92TBDduXx5vhr1EttohZjoGDBUInVYqCmatwO8vLIZs77uPSgtLm7vpO9Nb2Lag+xHNpQO8jxqwf47ZvRSBXU2dlJR0cHcrkZrEuo1WKkAP79kz9P++gw3/jWAbIZb0Z2684+Hv/IcVrWJa7zau0TwrT/z6KLNSHlvmSlBMlccJLZSmTC0wzYWDY05wOdFIqacMFsZWiIjtFeN0pj1RiBQJ6AYRMO+DUn0dlDzgW6YLleWcthshIDoSKsoutUHVpJAiGb9ZvibD/Qz647++jYPEpNdXbGontHSbLKxNYGUmgMNFIoDKGR+NcV6ANh5yXpZIDUeJB0MuDd9q/TyYBnxgzJUKKOwaEY6XQAYWruft85tu27hpKarOEgBLxwfDffOHGn3wDQk6Fc6sbGqb6WIngxg9MnJsE75qJAxKGqIUdjR5qGjiS1bRlqm7NUN2SJxHKEq/MEww6m5WLIuZtQ8D7nRDbCaDbCaDZKPBtlNBslkQ2jkYRMh6iVpz6coa16jKZIquzn3u1UcyTXhsajw701sJ6okefnO95ka2R6SutcNeyGOJJrI60DgGanNcJt1tC0g5pS8N2nDvDqC7cB8MATp3jsgycmfRYGiqC0CUgHjXdSWmNmCcvyM44eKc+YqGHSnnlyfOjF8HAVX/nKPVy+3ALApk39/NAPvUZDQxKt4NQr63n+729nfCSMFtCwfYx9H+rCanSmRZHiqQgfve81Dmy5zGCihv/2lY+Rd6yy4wqaNrUzmiTvdsha3lnUShmpQhqfoyT5GdL4CsqmTP75d+5msLOG6oYMn/y/X6OmcfnpW4X/B9tdXGRodnnRuYUAJeYiIRSW4aKXKC1xzjCJVW6gQFNrOuS1oCsTITHD/+hiVfQ3cpWaqNJUvjk22a00hW8p1ZOJ8eLQVobyXi+7hkCKBxou0rFacekCNsYGOdl7iP/f+/9opUez9PjzdDrN1atXyecnAwX27du3kNXNqJ6eHv6v/+v/4lvf+hbpdJpt27bxv/7X/+Lw4cMAaK35zd/8Tf70T/+UeDzOe97zHr7whS+wffv2OW9jNRmp3/jqz/MTB17g0nANzz+zlze/vw3leg00D9x5mYfff4qa2rmkmHmmqhCl8haJBe3HlBKMZ0MltVoR4ukJ41UwXeOZ8JxPPoRQ1FYlaauN01A9Rm0kRUt1gpbqOG01cRqiydnHtOQmS2MKRUjaBKWD6bqYrqIqkis7G++6gmQ6iAoI8pRina+fpiYoNVXetZORZMdM7KSBm5VoVyC1xrIcIlGbaHWOSJVNJJq/biPa60kpL2XUxiAYyONoydn+NoZGq8kOGuT7BPleSTphkU5apMcsUuMB0uMWrhYEqhS1rRkaOlLUr0sTa85S3ZAhWpsnXJ0nFLExA745Qs/roGO7Bik7SDwbZSBVTX8qVjRJo9koo5ko8WyE8XyYxkiS9uq4d6lJ0F49SmvV+LzS+QBeGtvAgAwjBYxlg3yw6jxNwYU1qFYaztgNnLUbAEFE2BwK9tFoTF+f6wqe+ru7OHZkMwAf+eE3uP/BM5Ow4kHhzPh+HC0YtqOklUWh0iTnm/hy/w9KwWuv7eS73z2AbZtYAZuHHjvFph3XiGcm1ySNJKMMDNeQVoFZzxoObz/Ppx56EVcJvvS9R8nkQmWNUn00TTiwuJ5gS6HFGqmpaXyOmp14l88YfPn37qTvQh2RWI5Pfv416tqWv5Z0OeASBaCEoyT2AoASc5PGlMpLGVQVNGhzhUmsegNVgjd3Da5mI6SWCG8+YaJYmoa7hY9/IbVQhdfPox7qRjJQpVIaTo218drIpiIufVt0kPc0XKLGWv6o9zSJwufofQMdNQOc6b+T//uJ/7HCA1tCIzU4OMhP/uRP8q1vfavs465bucLY0dFR7rjjDh555BF+8Rd/kaamJs6fP8/WrVvZunUrAP/5P/9nfud3foe/+qu/YvPmzfyH//AfOHHiBKdPn54ExJhNq9FIXcuGcDEZGYry7Df3cvqdDQCYlsO9D5/lvkfOzrHo3DtxFaIypmo2uQXDlZ5IJRwrpBX6BiyRDpPMTs/DLlC1tAQkWJZNS41nqlqr47TVjNJSHWddbJT6SGUjWaW1TCE/NS8onRmjTLaSjI5G6DzXwInX1nH5dBN9V2O4rsQMuGw5OMT2uwfYeufgrDUOWsHYUIjh7qoiGW+4y6PjpRPBGV8XjNrUtqSpqs8SrsoRrcoSieQwpQsO4OIZM6mxqiXhRk20Kk80miUSyhKpzhGutqmK5Coy4++lJU6kl2u872DSffyCcLwdu0Li+OmJaTvESCbKQKqG7vE6OuONXIw3MZKpIu9OnymtDaUnDJNvmtqqEoTMxb0XreGbQzv4l8HbaAiluKO5GyGgSaa4J9QzCUc+FyWVxZFcG6PKQ6x3mAn2BwawptQUCjTCVRx/ZTMWLhvah9mxvZdoqDz1UmkYtKvoztfQl68hrwwi0qbFTM+YB19KuBtNRenur+eNY1uJp6MoE2TYxZVyTie3QmtkVmNkFWZO0d46wp79PbQ3D7Ohw6vrNB2DgF6+3kOV0kKNlACkVHNK4yvIyUu++v8epuvdBkJVeT7xG6/T2DH7BNJSqBQusVQpcaVAibyaf13hfCSFwjRctBIVqPcphUmImWESN4CBAjDQxCybhG3SlV06vPkkE6WpfMPdxabyFU4DXK5bD3WjGqipyromr41s5ORYAZfucrC2e1lx6Rr/P98/Jy33ya+vGeBs/518/mY2Up/5zGfo7OzkD/7gD3j44Yf5yle+Qn9/P//xP/5H/ut//a986EMfWvTgC/r3//7f8/LLL/PSSy+VfVxrzbp16/jVX/1Vfu3Xfg2ARCJBS0sLf/mXf8mnPvWpOW1nNRupgrqv1PP01/fTdbkJgGh1hoffd4o77r48j4hE4aDgc5GW0FTNJlcJ32CFiWcijPkRrfikCFeE8WyoaKwK1wABw6alOk5rTZy2at9oVY/SFhu9Trqg14DWQGAiMIXGEgpLqLI7Rq0paRpqkS0TZVKuoPt0Ledeb+H8a82MDU702hJS0bF7lB33DLBuZ5zEQLgIfRjurmKkJ4Kdm3k2MBC2CYZsDMMBV+NkNblxiZ25/sFPhQM4TTXogIkTFeTqwW7WpGIhgpZDbThFbThFa2SE2xv62NIwSFttgnAgjzQUBoU0RP8kUWi/Do9J14s9oCgNKTvIeD5I0g4xng8yng8xbgfJOhbST9UJB2yqAjlqQxmCplusDatUYXReSf6m9wBHxtYD8Fj9RR5ovMRrufW4SBpkmntDPdNMUDlpDZ1OjOP5ZlwkFi4Hgv2sN8cIFGvpPLMekA6BWWrpxpwgnblauvOx4mXUDrMhmGBHaJhNgVECUvmEu+gMlDvvtj2HmWeBpiacmQRrmKDcedc1oSzDvVU8+6VdXDrmpQNGqrN85v99hkh9dklQ58ulhRgpWRppUcaczKjrCL7+Bwe5fKyZQMjh47/+Bq1brpe6XXkJvP2UF2WpvIkqjdDllLXkAAtPGlO6SMmiolJzgkncIAYKlg9vPs1ELTRiNOvKF7HOOdZD3SwGaqqGclFeHNpKT7YWgCozy/0Nl9gWHVqS9zcX81SqW8JItbW18dRTT3HXXXdRU1PDkSNH2LFjB1/72tf4vd/7Pb7//e8vevAF7dq1i/e97310d3fzwgsv0N7ezr/6V/+Kn/3ZnwXg0qVLbN26lbfffpsDBw4UX/fQQw9x4MAB/vAP/7DsenO5HLncREhzbGyMjo6OVW2kwDtBO3Oine99Yx8jQ15D5MaWBI9/+Djbd/XN85/AS/2bSLWavZ5qJeS4krFMqBjJGhiv5spIA33jMUYzUTJlmnsGpE1LNMGG2CB7WnvZ2jDIupo49eE0YcOdsdDS1WBrQU4Z5JSBrQ3vwK/NOacLKgW9Z2Kce7WFi0eaGOmtmsO71N4LXf9aKT9kM/sJu2EponV5onU2kTqbaH2OunUZgjGXobF6MkGTSGuWqqY0sap00TjVhtNEAnPv76U1XjqLNryIkpYovNoApaV3kBQSAb7x0uQdg1Q+SMY2vR4+2msWGDE9rHh1IEuVlVt0BAn8j8qHbkwGdZSDc5QnJSbsIF/suovObB0SxY+2Hec9dVcBr7bp1ex6bAzqZIb7Qt0EZjFTOW3wdq6ZtLZoMlNstOJsC4wQ8WuaZvr9jSdDdA/WkYsJOnUtJzMtdOdjXiodUCVytKg01RkHlTSJl/RKGk3PnXBnaAU5gXSgLprijl2XWdcYLxql2kh6XvCOyyea+N7f7GbrfV3c/cPvkk+bDJ5qYdv+G7OHyXyM1HzT+ApSruCbf7Sf82+0YQZcfvD/fJP1O0cr9RbmJbmEhL5CFMp2faDEArDmC5X0CX7ebnS+P8Q5wCRWy0FyjgpKl4h0GcgHlxRvXsy2q3SvqMWm8RU0BxN1sxqoUmkNF1ONfH94C+OOl7nVHorzYONFGheJSy98fhPmScyr2OJGNFLzTo5NpVLFflF1dXUMDg6yY8cO9u7dy1tvvbXwEZfRpUuX+MIXvsDnPvc5fuM3foM333yTX/qlXyIQCPDZz36Wa9euAdDS0jLpdS0tLcXHyul3fud3+K3f+q2KjnU5JATcvq+HHbv6OPrqFl747m6G+mP8/Z8/wMatAzzx0WOs65jrAVkUz9WF/2MvpP55vmp5o1TlZBqK+qo09VXlawbyjsHl4QZ64zFs26Q6kGNT7TBb6wdYXzNa9qTVcSUDqSri2TBZ10AYLpFQmtpCjyuhwXAwcTCZMNuZnMXIaBXx4Qjx/jCJ3gijV8IMX44yNhAknzHJZwwmNXwVaTANME28I/MUo+Qqb4/mKxB2iDTanjmqtYnW56lqzFHXlibWlKG6IedBGaJezZFX0O5dBOWjajNJ+wZE+6ZD+YXTyr9vC8j5aOKga2GUOehkbIue8Rg947X+JUbvWC1j+XCZLYIhFK1VCdqrE7RXx+moGWFjzQiNkSSmnAzgMISaVjdmoDxgh1BIfwJACv+kCfDyNOb3GThaMmKG+Y0tz5JWFk1WiojhFM1XrZmi2RznRL6ZpApy0m5kf2AAE43231NQeGmh3oS15tORPgIzpEqoElLeyFiUr3zvEOeNOtIbQNQpKOFZ6JQkMxBhrK8aO2nx7nUORZFArizVLhbKcPFMG6+/tBPXNggGc3zwg29x6NDFRZ8gbN47yP/xu8+S81NEn/njQ5x/pYP1O4Z59MdO0b4tvrgNrEJNSuNTht8Tam4fpFbw9J/t4fwbbRim4iO//NYKmihvrtitYC2RJ89gKi2wlwAoMRcpLdAKhL/bnaumwySmnAKu9EFxAfLw5pqeJcabL6mJWmwUag5QiVvBQBUkBGyrGmJjZKSIS+/J1vL33QfZU9PH3fPEpZeap4nzyVtH8zZSO3fu5OzZs2zatIn9+/fzx3/8x2zatIkvfvGLtLW1VXRwSikOHz7Mf/pP/wmAO+64g5MnT/LFL36Rz372swte76//+q/zuc99rni/EJG6UWSYirseuMC+w518/3u38fqLO+i82Myf/bcn2Huwk0c+eILa+rkWLAsv6uDXuQgp/NQtL60BWHFTpTU4OYmdFZiOImQ4hM08TaE8t3X0EdhS/kg5ko5wcbSJCyPNXBxp4uJIE1fj9ci4wog7mCkXmVPogERWQ8O6JM0tYzQ3jtEa81IHW2OjNFQlCQdt2ltHaW8dhd2Tt5PKBhgYiTEwUMPgtWqGe6qI94UYuxZGj9tERJ5wyCbiR5CidXliLRlizVmqGrJU1eYIV9mYlls0RVIohFDzJvolMmFGM1GSuRCmhEgwT104gxBMMkpcd45II3BBev2Ahkaa6E7UTzJNI5nyETeBpik67tcwJfw6pjgt0fLgBwcTZ94p2hqJb6rKmCxDlJgwCmZMlbzG2+FbQtESTNEyyyxcK7A9Mjx9BHrmA63y00KT+RDDmSh947V0jtTTOdrAIBESgQA65mIcdMGPjWkFudEQmYEwmcEIbnZi9xw07VnT7Woj5Ql3/f0xnnzyHnp6GgHYsaOHj33sdWKxhcEzpn0GaGzLoz0K26C5Nc3lgEP3uQb++v/7ILff283Dn3qX2qbKbG+lVZrG5ygDZ+qJ9izSGp77612c/v56hFR88F+/zaZ9Q0s74BlUCpeopMkpYM0dJcm75pzba1ReXvTZRPlTHtePLhZgEq4ypsMkbkADBZpq/2S4K7N0eHOYaqIqROgrGKjFRqFKTVQZqERZA1W4cZPLkoq7669ye3U/Lw9v4UKqiRNj6zifbOLu+ivsqembMYui1DzJksjTrah5G6lf/uVfpq+vD4Df/M3f5P3vfz9f+tKXCAQC/OVf/mVFB9fW1sauXbsmLbv99tt58sknAWhtbQWgv79/konr7++flOo3VcFgkGBw5mL+G0WhsM3jHz7B4fsu8ty39nDi6CZOvLWR08fXc/cD57n/8XcJhefT0NGbxSvAAaT09mRenczcUv8KpiefMbAz0o/UFO4b5DMG+XThtr886y2beI4kGs3T1Jaidf046zaN0bFtjJaOcWSZ8iDHFvReqaHrfIzuCzGunq+l+0KMxEgIO2aRbQuSbQ2RbQvh1JgQA2ITqVDWWJ6q4TTOSUXmDRgUAYaqWzkWbccNmxAVRJtyVNdmqK3NUFuTpKEmSUssTkNVkmgoz+Z1g2xeNzhtbKlckP6xWsYyYWrCaWrDaWrC6Tk3CAUvNcZrvhwhno0wkq5iOF3NSKaKeCbKaDpKPBMhmQwRNh1qw2lChoOUBdCILqZwlt6W/m3822hNVptktEXatXAE/PT9z9JSk2DIsfiLd+6dlp4TlDbVZs6/ZKm2ctRYWUzpnVDJDAxkYwwOxvxtT9QeTLpfsrxQj4WY+O1NvGYiHbWwXJYsR0xMAkx7fuH9ojmWb+FYroUqM8+O4BCPVF+iyrSxDBdLupjS9W6Lwn2vP42UiqBf0+SZUxhxwgy6UQbdKD1DdZw8u5EzfW2MpqNoLRGGItSYIdycJtyWQVoaiZdeqRxBbjiEMSaoyTu0h5LU1Q5Q156aZJTClj2v2VHXFbz44m6ee24PrmsQCuX40IeOcscdlys2y6rR5A0XLbxAbgjJgz98ljse7eTFf7qN4y928O6r6zl3pI0733+Je3/gPKHIjdEUcqoKaXxe81gPJjGfmX2t4fv/sJNj39sIQvO+nzvBtsMDSzjimTUBl6gsoc+QCrQg55grEoWaKqWE99ucNSpVCpOQ5WESN6iJqjUd8krQlV06vDmUmCi/RKDiJmoxKknlK4VKlFvtrWSgpqrGyvGB1nfpzvTy4tA2hvNRXhjazsmxNh5qvEh7OAEsg3mqONpxebRg/HlB6XSaM2fOsGHDBhobGys1LgA+/elP09XVNQk28Su/8iu8/vrrvPLKK0XYxK/92q/xq7/6q4AXXWpubr7pYBNzUV93LU9/bT9XLnipjuFojgefOM3h+y5imNOPJFNNz2RDI8ln/eu0gZMtXTbxvAnDNHGfeRycraDL+i0J1m9L0LE9Qcf2OB3bEkRryhvAsZEgPVdquHa1moG+KIP9URLxEEZAEwgrAhGXQNjFCrsEQv512PWXKzKGRU++jqvpBi4nmugbq512QlQTSrO9aYBtjQNsaxpgfSxethlq1jYZzwTJ2d4MphQulmETDWapCXn1JrNpPBNiNB0lkYkST0+5ZCKMpquIZyKknCDaENODSAUakutdz/VT12iQoAzQUy5TV9JaPcqvPfJ1gqbDt04e4NvHDyJdEIXLEqGSl0xCw6YMNPq/r/4AXA0x108vFMlx+MF3qa1OI/KQkxJtSHJZi1NHNjN8rRYAGXQIN2WINKcJ1mcnIfNVWmJfDlEbd/jUY6/RUpusaApJX18tTz55L319XtP0227r5gd+4A1qaiobFXKES950QUPQNaelf/ZfqeHZL+3myikPkBOuzvHAx89y4NFODHN1HjCn1kiVpvE5en5pfKV6/atbeeXJHQA89pMn2fdoV4VHPjd5ExaVrYsqTGa4SpJX5jIBJeYmr0GvWxYUcV2YxOr8iV5XAk2daZN0Tbqy4SXFmxdUsYa7lUjjK6hMPdSagbq+lIaTPi49V8SlD3B/w2VqArkliTxpodECpBKsrxqkc+A+fvW9v1/hrcxfS95Hajn05ptvct999/Fbv/VbfPKTn+SNN97gZ3/2Z/mTP/kTPvOZzwAe/vx3f/d3J+HPjx8/ftPgzwsqa3qK0Z0Jg5NLG1wbqOdC30bS+QgAAZGjQfcTzKSxS4yPnTXQFc+Pn1Ag7GCFlW9sHBrXpenYmqBt0xit65M0t6WI1WUo19tZKUjnAmRsj5ZnCwPHMFCisrjWVD7ApaEmLgw1c36wmc6RBpwpSNiQlWdrwyDbmgbY3jTApvohrDlFlDRSuLgKbMfAcSWOMrFdE1uZaH9GWPlAB60Fjiu5MtrAhaFmLgw1k8hGJq0xKnLQLzBHwUxqttzez757OwlFHT9FU/jr8uoE0k6A4UyE4WyUkVyU0VyE0VwYW5U/uJrCJRbIEAtkiVlZagIZdrZ0s3frZbSG4+e3M5KIeZOFftPLwm1vNhfw34sqfU7Jeyx9beG94z9HUfL8kveiS5YrP51q1udPua0QuBJG2gR22DvYV/VDaFROjKf0taXjxB+nvzwQyrPvPReIVHs1dMmhCLmuCJFoDjemGA9aJOTkiHe9kSY24nDuG5twu4Ps3NPDJ37iVaxA5dpFOI7khRd28/zze1BKEg7n+PCHj7B//5WK5/orNFnTBgGWa2DNgFHWGi6+08yzf7ub4R4PkFPfNs6jnz7NtoP9q64GodRIFaK2rk/jm08aX6ne+vYmXvjS7QA89Ol3OfiBK5Ud9DwkhRdVq5TZKWLNXQN7mYESc5PGMlwQlBzrrgOTWLVnRNdXAW8ety26smFyS4g3L0jD4hvuVtJAQbF3VaEeqlz6XvF6le2DVlqFzyrrmrw+somTY16DelO4HK7r5nBd97x7M5bdhm+ehPaMrqEMpBa0VPfSO/Igv/T47y32rSxaFTVSpfVE19Pv/35lXeQ3vvENfv3Xf53z58+zefNmPve5zxWpfUCxIe+f/MmfEI/Huf/++/mjP/ojduzYMedtrBYj1dc5xL/9ud+kyUqQTFnkM+aCTY8G3Poo+ZYasLydqUzlsPoSGOnp1LZC5KYQyQlEXKywwgoVlnuGqPAcK+wS9KM/wYhLIOIQKD7foSqcJ2Tafm+m2fsyOVqSU6aPF7eKxfgrsYfLOwZXRnwjM9jMxaEmss5kIpopXTbWD/tRq362Ng4SCcwnhXKy4pkwJ3vbOd63njP9reRK0jBM6bKj+RotOknvCw2keqIArNs0wvs+9Q7rt3h0grRt0Tseo3usbhIAIpkvP5lgCJe26rEp/ZjiNIRTZXOic4aD68/MhxwLeYMdfXqy1Xyh625G7AhhafMz649we9X0VMy5KqsNTucbkRqG8xHOZxsYdSeb3nXWGDtCQ+wIDfPuixt5+msHALjjrkt85EfexFhkI+VS9fTU8eUv38u1a3UA7Np1lY9+9E2qq7MV20ZBGk3OcFBSzxl1rlzBO89u5KUnd5Ie80zmxl2DPPqZ07RuTlR8jAuVQBM0HFy/x5nt10IttED/xPPreebP9wJw78fPcc/HLlZyuPNSIaXPditRFzWR6ph3zYrXWlVSpVGpQvuPsjCJG9hAgVfvWW3aDOWD9Cwx3ryggonyDMsiVliJNL7CukrqoaZFIUuvV+fPdUU0ibQHSCGKk1yDuSjPD26lJxMDoNrM8mDjJbZVDc8PcFX466fFCy2KBqr0+NFc1XNzGqlHHnlkThsVQvDss8/OfZSrRKvFSHVd6OfnHv5/rvu8qabH8lPaypkeYcGV/nbOd3bgup6h2rK1l/sfPk1T27hnioJqUurR3KUxhSIk84TNgmGyZ+yLozXkdJm+TKu4cadSgu5ELRcGWzg/6EWJxrKTqXQCTXtslG1NA8WoVW145jQqpaFzpJETve0c722nK94w6fHacJo9bT3sXddNk07ywpN7uHjKqwcM12bZ/+FLRDZl6E364IexWkay0bLbEmiai+AHzyy1Vydojo5hzgNzrdFkTQct5n7yvFQqRKJcLXCQxZNeF1Fs8uuU3L+cqePZkS24WlJt5HhPfScRwy6+zkGU3PYx6cXbEsfHpk+9ndceJr8gA8Wm4CjbQ8NsD45QZeTRGp7++n5eftaLSLzn0Xd54iPHKhaJcRzJc8/t5cUXd6GUJBLJ8pGPHGHv3s4li/bkpYNjLMxU59Imr35tO298awuubYDQ7Lm/m4c++S41DZU3fXPR1Bo6S7hk3QA5ZS4oja+gM6+28a0v7ActOPTBSzzwqbMrFoErhUssti6qAJSwlY81XzGgxFzlRaWE8GASXhTq5jFQMIE3788F6c2FfXxN5TXdRAFqgaUtlY5CzWKiSse92qLgK6VJpD38eqcZPhut4VyykZeGtpB0vImwjnCch5ou0hicuYRBl9wq1CIKbSC1RJbry8ZNbKRudq0WI5VOZvmV3/4VHtl5mpQpMcNMMkaLMT3jiRDPf3sPb7+xGbRAGi53vuciDzxxmkj0+n2FBJqgtAlJh5Bhe6bJsDGvE2UqNU15Nfcml6tVWsNgsrpoqi4MNjOQnP6baYyOe6bKr7OKhTKc7m/jRO96TvatYzxX0rgXzab6Ifau88xTR+0o6ZTFt751gKOnNpGrMrBjYLS4JIU1Y/pMfSjlG6V4kZjXWpUgaC4+fUxpsDW4gTwIcO0AeSdcNC4F01J6v9TQTNz2zciMxkUUnzfVuJQ+tlp+R0HhsC04zPbQMFuCowTlxGftuoKv/8OdvP3GFgCe+Og73P/omYptu7u7niefvJeBgVoA9uzp5CMfeZOqqtzsL1yEXOFRHBEQcAzMBU6CJAbDvPCPt3PqZa8BshlwuOuDF7nnIxcIhiuX7jhVhVJzKSd+QYWUVO935Z2Uph1rUcS5i0eb+fp/vwOtJPse6+TRz55ecRM1UQe0UHlRKK2Fl8q3CoASc5WXgqgnwyRukjOfiOFgCU1vNshAfunx5lBiojTzb7hbaQNVMpZCOh9lpvnWDNT8zFM52UpyZLSDI6PrcbVEoNkf6+WehquEfELkpOiWXzsnEUhtIJSYtQky3GJG6sKFC1y8eJEHH3yQcDiM1hpxg/5SV4uRisdT/Nz/+Z+4fV03bkB7aXNhm1DYJuhfJm47BEJ22fqi2dTfG+OZb+zj4hmPchgM5XngiXe56/7zmJZ3sPGiTHbRMIWkQ0A6M0eZlEnWN0tZ1yKnLBwtfJS6f9q/SlDqS6FEJlQ0VecHm+lO1F13ljZk5dnV0sfetm7a6uIkcmF6xmvpHqvl4rVmRpwwmP4suSxcezPBUStHU9U4jdEk9ZE0deE0sbDXSLWccSkakBmMy0wmppxx2Roe4MNNxwH4+uA+LmWal/zzvZ6E/5s18BDnpt+PKukESbkBtIYaM0t7aByz+JyJ3lSmj0Y3KWDTp96eWK/hb6dwu9bIlk1ZtW3JP//VfZw5uR4hFD/wqTe54+7LFXm/ti159tl9vPTS7WgtiUYzfPSjb7Jnz9ICDLRfF6UFGEoSrEARe+/FWp790m66znhR2Wgsy4OfOMO+h6/Oe99WTqVUymIGkV/P5yLQymvMrPzaPunv+7Jq4Uaq80QDT/3+YVxHcvv93bzvZ08sMOK/eFUKLlEASjhKYrsm7qqPQs2im+YA5OHNNdCTDTO8DHjz4pYX2itqKU2U6w1smoEq/rn1NDVlbyHmqZwSdpCXBrdwIeUB5kLS5r7GK+ypuYYpC4VPgB95EkrOOYPlljBSw8PDfPKTn+S5555DCMH58+fZsmULP/VTP0VdXR3/9b/+10UPfrm1WozU5UsD/MxP/dm8XhMIlZiskFO8HSwxXOXM2LW+GG++tJ2AdNnYMcT2rX3s3dtJQ01yxpQvR0nPLCmraJhyc4oyaf+kSPv1N5q5oNRvRGm/ZubdkRYujzXQl61hzA0iLEXQsgkFbKShUEL4BexevLtgkkTx9kq/k5n1YO1Z7qjpIqcMvtp/BxkVKpoYQ+ii8Si9Pd24zGZiJprymlOMy/TbalpNV9Kx+NPuOzmfbkSg+XjLKR6pv7Rsn2k2Y/F3f/YAVy42Y5oun/jsK9y2t6ci6756tYEvf/leBge9fPX9+y/zoQ8dJRpduihUQYU6OeGn9FUqtVNrOHeklef+dhej/V5vsqaOMR799Cm27J9fHdsEKt8/jvtwEs8sCb/xtJgx9WmxRqr7bB1f+b07cfIG2+68xof+9TvICtbCzVeyAiaqCJRwDPLKgFUHlJijbqqDjabWcMjr5cObF7e8EBO1FAYKJqASfn+oCZzIrWugypknWdghVngbXelaXhjcwnDeKy1oCiZ5pPkiHeEkUksPQDLPDd8SRuonfuInGBgY4M/+7M+4/fbbOXbsGFu2bOE73/kOn/vc5zh16tSiB7/cWi1GanQ0xef+22+yp66L4fEwmWyAXMYquZhk/duuM5+UGk19fYqOjiE2bhyio2OYjRuHaGsrj/V2XcHwaBVDo9WMJqKMpcMksyGUpIwxcwiG7DnOuHrbktLr9bOaolRaU2wimfdz/23XJO8a3jLXW5ZzTZIqQEoHSGuTDBY5DPJS4kiJa1DxHALBFAMyxVCUMy6zmxivSa05o3GZzcQohJg/bGC5dC1XxReu3s2gHSUkbX6y/Sh7q5evX09yPMj//uLDXOupIxjK8+mfeYlN2xYOtSjItg2eeWYfL798G1pLqqoy/MAPvMGuXd0VGPX1dT3UeSXkOoK3nt7E97+8k2zKA7xs3jfAY585RVPH+LTnXy9NTxVJkmLO6U6LMVLXLtXw5O/cTT5rsmnfAB/9lbdWFPO+WLiE8D9br3eWtaqw5vPSSh9cKqxSvPnVbJj0EuHNvW1N1rwb7i6VgYKJ+ixX3vIGqvi+S64raZ5KvzoBSGRx3S5wLN7Kq0Mbirj026qGeLihixrz+mUjk7ajoaX6xjNS8/4P/O53v8t3vvMd1q9fP2n59u3b6ezsnP9I11RUXV2UtoPjfOjAsev2kXJsWTRVBZOVy1jYOYOIlacqnKWuKkV9bYqmhjEiMzTmHRsLcfVqI53djVzpbaKzu4mevnrcrETaas5FpLNFxkIR//ak5XlCEZtQxCESzhMM5z0zVmKqCubGVp6BsSeZGu9+zjWw1YTRmVhu+sXQk58/yRip0uV+3xihMQMOZtDBCrjTbwdcxHX+a7QGJ2/g5E2cvIGdM3FsAxTUBLLUh9I0hFPUB1KMXazi8ittOBnv8d37u3nPe89SXZPFnCHisvISBFyTrLBRUmNrl8AMOPXl1OlkE3/efZiMsmiwUvxixxusC00/AV8qjQ5H+esvPMzIUDXRqiw//gvP07Y+vuj1dnY28eUv38PQkLcjv+OOS3zwg0eJROZ3kFqoFF7jXQBLGUtiogAMU3PnBy6z54FuXvnqDo58ZzOXjzfz5yea2P9wJw9+4gzVdbliA+dCmp6rZNk0veXUUFcVX/kvd5LPmqy/fZiP/PLbq8JELZSmZ0iv8KWwz1x9WPPr6CYzTwUZQhEznWXFmxc074a7y2GilCxuxktbq/B2VrFKzVPhv3MpzFMhplQwT0XT6jevNLTkcKyf3ZFRvj/SwbGxZs4kG7mYquOeul7ujPXNCWyllC5uM2iuXgBZOc377CeVShGJRKYtHxkZIRgMlnnFmpZCpuVSG7AJ1RVqmRyCPmb8erVMOb+WKZkLkkwHyYUCBNptmkOj9AzX47oG2hS4lqClOU5zYxzlSHIZi2zGIps1yeQDZPMWjjbQBuSMAAkZRDugM6BzoMcF2ig0fvVua4m/TJQ0gvVvmxr8+8oA5aG0Kvq5Camwgp4hsgIOwWCGqH/bDDp+ndh1pEG6GtPVWFoR1C4hHMLYVEmbiLAJmQ6BoEvAcLAMl4iZp6VqnIDhojWceXsdz/zTfuLDXki8Y+sQ7/vUO7RtjFf0/S6VJF4kKmd6BDep3QWDByqh50c28c/X9qCQbA0P83Mdb1I9z9mwxai/N8b//uLDjI+Fqa1P8hO/+DwNTclFrTOfN3j66QO8+upOtBZUV6f52Mde57bbeis06utLo8n7cAmpBOYyRCXCVTaP/dgpDj1xief+fhdnXm/nnec2ceqV9dz7kfPc+aFLGAF13TS95dLotQhP/ue7yCYDtG6N8wO/chQzsLg+K4tRES6xIEJfKVDCvKGAEjereSrIw5s7DOUDy4Y3L2heDXeLsxwszXdSgFworxmY5tYyUAUVpkjEEpkno2DPJpkn0Hj7NqElUk2k70UNl/c1XWF/zQDfG9pET7aal0Y6OD7WxCMNV9keHZ3h3FSjlJepZEqJRGKsvtnjWTVvI/XAAw/w13/91/z2b/824H2JSil+7/d+b86Y9DXNT1OJeYXbMzVFyyvJuB0ikQ8zko0ylI0ynI2SdQJTojTG5PvCxD4sCO6KMzhcTTob5JrRCEYDRshFG6xc00WtES7Fi3RL7itdXGYGHIIRGytqY0UdzIiLiLiIsEKHNNq8/j+oJVxiRpaYkaXGyPm3c9QYWWqNHFGZX/COu7+7hu/+4wGunPEgDdW1aR77+An23NV1wx0MDC0xXYljKPKGi3TksveXcrXgn67t4cXRzQDcE7vKj7Ydx1pkw8D56OqlRr70pw+SzQRobovz47/wPDWxxaG8L19u5stfvoeREa+J7aFDF/jAB94iPENkeankSIWS3tlKYAlTOMul6dW3pvmhXz5K59nLPPs3u+m7WMeL/3w7b31vM/d94hy73tOzYhCHgsaGQjz5u3eRTgRp2jDGD/67NwksIXXweip8jkrLeaPbC1jzQorzYqiFy6ab3DwVVMCb92WD9C0T3rwgL8A7BxNVml+3VN+Lb9KE61+XbvcWUCltrxLve2o9lTEl6lR8nvBLMTRIZRR7QJVTazDNp9ed5t1kA88PbyDhhPhq/w42hhM81thJY8BrDaO1F4USAgxDEjZdomYKNYEou2E07xqpkydP8thjj3Hw4EGeffZZPvrRj3Lq1ClGRkZ4+eWX2bp161KNdcm0WmqkBpJJfu2pz3N3+wWqAxmawklao2M0h8f9VIvJcpXg6ng9F+KNnB9t5kK8mYvxJoayUZZj7yJQBAwv6hIwXCzpetf+/cJjheWTnzfxHKkVOIAjwBboPKicQOUlOmvgZL2GxLmMRUpZpA2LjGWQD0rssMCtAmoU1LqIwPVGDTotIG6gE9K7jhuT7lvaITy1FiwyMz1x2vIyNWOZlMXzT+3m6Atb0VpgmC73vu8c73n/GQLBlTvxWqxKm7MKLQg5y1cvlXYt/qz7MGdSTQg0P9D8Lk80XFhWQ3ruVBv/+JfvwbZNNmwe5NM/+yLhyMLNTi5n8p3vHOD113cCEIul+NjHXmfHjr5KDXnOqhTqvJwm9266Pk1Pazj3eivf/4edjA15GRHNGxM8+OkzdOwaqdi45lMjlYwH+af/eDfx/ih1bUk++fnXicSWLwpaTguFSxhSgRbkXIm9Qs3Q56xbxDwVNIE3D9GfD7JcZD4oYM719RvuLmUaX+k28CdPtVzVP9GKSVME5yyFeSoiOmZYdSF9byH0PfAm9V8fXccb8TZcPFz6wdg17o11E5QuhgFR0yFq5bGVSdoNkFA53MwT/Lsn/u3i3+witaT480Qiwf/4H/+DY8eOkUwmOXjwIP/6X/9r2traFjXoldJqMVKXBr9NJP9TZR+L58JciDdxMd7EhXgT50eb6BxrID+lNmXC3Ew2MfM1N5b0lwuX7osNHHlpG6nRMEJBS3Ocxz94nO07r1X0pNXVgnE3QEKFGHODJFzveswNMqa8azWHmYqwtom4DiHbIZDVWBmNkQQxJlFxiZO0immKhRqz7LwBHrNIaIJBZ5K5GrpWTSblpb7edkc3j3/iOHWNMzeyu5Gk0WRM28uXVpKAayy5mRrIRflC113056sJCofPtr/FgZprS7rNqTr25ia++nd3oZRkx64ePvF/vEIgsHBTfPFiC1/5yj2MjnrkujvvPM/73/8WoZBTqSHPWZVGnc9M05MozZzT9Jy85J2nN/L6U1vJZ7zC5i139PPAp85Svy61qDHC3I1UZtzin/6fuxnuqaamMc0n/8PrVNevTEPhgibgEnPfjxWw5q4S5NUqB0rcYgYKNNWmg9bQk40wbFssv4li9oa7y2GgCtsRgAtS3dwmSvjFT5UyT1OjTlNrnaY9XwDCa7gutFwwfa9Uo3aQ54Y2cCFdD0BY2ry3+RL3NfTgapO0EyCnLBK5Gi6lTTrMe/nND/7EgrdXKS2JkbJtm/e///188YtfZPv27RUZ6GrQajFS1+JXccfvZShdRX+6mlE7QjwfIZEPYSvDN0RuGUM0YYAMoZZkRt6xJW98fzsvPX07uawX9tl6Wx+Pf/g4LesSc1qHraVvkIKM+SYpobzbCTdIUl2/D4ZAU23kqC1Jt4v56Xc1fireTE2C5/IeJ5mr9GSjNXHbnGH57GasaV2C933qHTbftniK22rTUkYvpupsqoE/7bqTtApQZ6b5hQ1v0BEaW7LtlSoRD3PirY0cP7KR/t46APYdvsLHfvR1jAVirrNZk29/+yBvvuntU2trk/zgD77Otm3LawxLtRjU+dQ0vUK0SfvRpoXQ9KYqM27x2le2cex7G9BKIqRi36Nd3PODF4jULDwqNBcjlUub/PPv3sXA5RjRuiyf/L9fo7Y5s+BtVkKlcIm51kUVseausXIp29fTLWeeCtLUmjZZZdCdDTO2jHhzb+vM3nB3OdL4SuUbOrmajf4itNLmCeaXvjfv8WivFqorW8Wzw5sZ9HHprcEkD9RdIyoDDKUbSORidNkp3lO7i//nIx+vyLYXoyWLSDU1NfHKK6+sGaklUFffKD/2K3+CUzL7W1WVoSaWJlaTJhZLE6tNE6tJectiaaqrs2UR5kuldCrAS0/v4s2Xt6JcAyEUB+66wsPvP4lVbRdN0ZiaElFyg6T19fPuTFyqjZxvknLEpGeOavxlVTJX7EUlALHKUOozmTHDUmzbfW1Fe8ostWzpYhseIjvkmN7Ou8L6/uhG/r5vLwrJpvAIP9/xJjFzaXsoZdIWp493cOLoRq5caC6eqBqGy70Pn+WxDx1fcPPY8+db+cpX7iGR8A4sd999jve9722CweWPQhU0X9T5tDQ97f13un6EaSlpeiN9UV76+51ceqsFgEDY5q6PXuSO93YuCPhwPSNlZw2+/F8O03uunnB1nk98/jUa2hcfCVuMSuESc6uL8oASygdKLJTst2S6eXeRc5LwTVRqBfDmBc3aK2q5olAF3aQmainNUyme/HqrnZy+50WfKplRopQiIG2qAjZSCHLK4qXhDbw4tJ68P+HaKA06jAABIelXIze/kfqVX/kVgsEgv/u7v7voQa4WrRYjdaV7mH/1u39E0LUZiUdxnOvvQKVUVFdnPJMVS1MTS1MbmzBasViaSCS36CiV1pBWlm+Qglwbq+HMlTZG7TCixkXEXETw+j+lgHA8kyRzxQhSEeYgc0SkvYCxaoQs7EBWj6m61TS5XqqyTVuVhi/37+bZEa8G83BNNz+27h0CSwSVcBzJ+dNtHD+6iXOn1uGURBo3bhlg3+FOdu3vIhJdWPQjm7X45jcPcvToNgDq6sb5oR96nS1b+isy/oVK+Sl9CDBdWRZrP3uanmegWGaaXtfpel78u9sYuBIDoKYxzf2fPMeOe/rmtT+ZzUg5eclT/+0QV082EozY/PBvvE7zxuXD65eTZ171nOuiCkAJ2++Vp1cTUGJtZ13Em4/aFt1LiDeHBZio5TZQANI7nAt3Ff1OFyh//rdi5mkhUafia5cgfW/6RhRBmSNs2QhhkFcWSTvKYKae4Uwjg5kaLuYlg8rxxw/rDAtJkgfqbiwjNe+pDsdx+Iu/+AueeeYZDh06RDQanfT47//+789/tGsCYNP6BvY+fI0fP/gcPekIyXSEsfEwqUSY8fEwiUSEeDxCIhElkYgwPh5GKenfj864XtN0iiYrVohu1RZue6YrEHRIqkLaXdBPuwsVU/HG3SAOU3bqG8FgSjQgI6gWOVprxoiZfsqdzBUNU0guBVhBoL19AgqQ0tvjS+Gd9PkNMNaO00ssgYdEzwqvtiZvOBUhvWVck7/oOcSppBd1+HDTGT7QeK7iKaxKwdXLTRw/spHTxzrIpCfaOTS3xtl3uJO9BzuprV9cbdvZs+v46lfvZmzMgybce+8Z3vvedxZVX1UJTUWdW8qYJU1P4miBUhIFfiRk5aIaHbtG+PRvvcK7r6zj5X/0gBTf/KMDvPXtTTz4mXdp3xFf1PpdR/Av//MAV082YgUdfvDfHVlxEwXMy0QZUqG1IOesIqz52k65qALefNDHmzvLiDcv6Lomajm/r4KJukEjUUXj5N/xMmgqZ57kdUARZV9fmr7nVjZ9ryApXMJGloB00EiyOsxouo7+dDPxbC1juZpiGvEWE1qUyRU3T1Irul0bkwDd+ZWN8s9X8zZSJ0+e5ODBgwCcO3du0mPiRuM3r2IJAZFo3pvxbk1gSIUpXaTQKOXVFiglSCZDxOMRxhIREmOewRpLRIj718lkGMcxGR6tZsQJI/O1iKyDzLiIlIMcdxFjDqLKnQNKWFMl8xO1Sb5BqpFZhi7U8vo3b2P0Wg1ZQLck2P2R42y/fX4zwouXQCn/Go2Uohil8nZsa1GqpZTAa9br1dhoHK2wFjGrOpSP8IWuu+jL1WAJh8+2v83BmsoS7Ab6ajh2ZBMn3tpIYnRiQqI6lmbvwU72H+6kZV180b/jTCbAv/zLQd5+24uqNTSM8UM/9BqbNq2OmrlS1HlYS7+fkEYjcPz0vJVsens9CQm77u9l+53XeOtbm3nzG1u4dqmWf/zte9l25zUe+JGz1LbM3wQrBd/5k31ceqsFw3L5gc8dpW1bvPJvYJ6Sfm7Q9UzUBFDCw5q7Kx2FWtsBT1NIuoSlS182RF8utKx484K8n8UUzHmpgVpuEwXFXlE3goqfbal5EouLPM0VT37d9ZSm77lGxdP3ACxpEzaymMLFQZJwYgxmmhhINTOWi5F1QmVfF5UGu0SIYeVy1c1jAyP20qbrV1rzNlLPPffcUoxjTddRIf/dlApDusWZ4pqaDDU1GfJqlDEVmhxRckPexQmR1ibXOxPULuikgRo30eMGetxEjRvoMRM1bhLRNrI6jYylkTETGZMYMY0Zc9jZMcAd/7aLt17bwotP72KoP8bf/9kDbNrWzxMfPUbb+vgyfEpT5ZkqhbczE8JL/RNrqX9LKkNLLGVgGy62dJFaXLfOppwupOv5k647SbpBYmaGX+h4g43huYFNrqexeJgTb23g+JFNXPOhEQDBUJ5d+7vZd+gKm7YNVqz+8N1323nqqbsYH48ghOa++87w+OPHVjwKVUjTU0Jj+9HigGugtImzQml6i5UVVNz9sYvsebiLV57czqkXOrjwZiuX3mrmwBOd3P2xC4Sic6tB0xq+97/2cPbVdUhD8eFferuiuPWFqhQuMZuKQAnH6xm4YkCJtR3tjCrgzbuyYQaWGW9ekC7UHRdM1EoZKChO6N4IJqq8efLONSphnkrrneZvnpicvqeWIH0PTcjIEzGzgEtWBRjINNOfamU028h4vho1B/CUEIJGw6ROGlxwx9gVqa3gGJdeS1fFuKaKSWvIaaOIAE/qAEkdYMyZIOBl9HWoPsIDOdQUCXe5Yl1SWNmIpEE+ZTE+FiFREt1KxCOMjZm4tkkKk9R4mN7ehrKbKNZrrU8TStuMDFRx6Uorf/yHLWy/rZdH33+S1grM7M9fwqfG+KZKCgot39ZM1dLIVBIlFK700sXmWy/1aryDv+3dj4ukIxTnFzveoNZaHF46m7E4fWw9x49umgaN2H57H/sOX2HHrj6sCpqbdDrAN75xmGPHNgPQ2Jjg4x9/jQ0bhiq2jblqpjQ9pQUZP6VPuAa2E8BZjQS3eSpam+eJnz7FHe/t5KW/v40rx5t469ubOfVSO/d87CL7H+/EMGf+r9caXvjS7Zx8vgMhNB/4xWNsObDy0cO5EPqE/z0rLci5K4Q1X9uhXkeaGtNBaejMRBhZZrx5cRQCL92rnIlaTomJuV6hpHewXoWqtHmamkFpzAMUUXZ9y5C+J1BErBxRI4uLJp6LMJBp4lpqHcl8PVknvKD1GkJQK13Mle60Pk+tGalVpDE7xWhQ8OzYJrpz1STcEOPKI+DZc3D1QeEUTVKNnDBMBfMUFs7MJiYKtJR/SGsvLckzVlESvtkaS/imKxFhbCwyvV7LpPgLO3ulg7Nf7EAIRW1titraAhwjVYRiFC6h0MIbml5fhXqqidS/InVsrZ6qYiqk+BXqpXKGQ3AO9VJKw1MDt/P0sEcFvaO6l59of5vgAmvrHEdy4d02jh3ZyLlT7ZOgERu2DLLv0BV2H1g4NGI2nTrVwde+difJZBghFPff/y6PPXYCy1qeKNRMNL2paXqOkfNPngTYwYqnfKy0GjuS/OC/O0LniUZe/LudDHXV8MKXbufYMxu4/0fOsu1wf9n94qtPbuft72wC4ImfPcGOu1cOR1+Q9FnUhb5b5eQ1b9fYrg+UWG5TvLbznIM0daZNZoXw5hOjYMJElS5c7iiUmNi0VGJVmahJn1+FzdNio06T1ikKH9rSpe+ZwiVqZQibefJK0J2qpXu8heFsGxmnFr2EbU9Ws9aM1CrSQHaUzhqTzsSOso9HRJ5qI1+EN9TIHDEzS72VJmZksbx4S8XHJQREInkikTxtbfGyzynUayVKzZV/PTRYw/BwNa7yKFGjo9WMjlbPuL1g0CZWSh4sRb/HUtTUZCp0Mlqop5rIZV6rp6qcBIKgY5I1PZLf9eqlssrgL3sOcnzca+z9gcazfKjprI+7n7uUgq7LTRw/upFT70yGRjS1Jth3yING1DUsTUFrKhXk61+/kxMnNgLQ3Bznh37oNTo6hpdkewUV0vQKn1eBpudqo0jTm9q7SUsHfNS5yN98JqpUG/cO8ZndQ5x6cT2v/PN24v1RvvHfD9K+c4QHP32G1i0TaaNvfH0Lrz/lERUf/ewpdj/Qs1LDnqLZ4BLar2vzsObLCpRY21HOWdLHm4+7Jl0rhDcH3y9JvIhFccGSDWVGFScxhDeWSaZuhbTU5kkivVUs2jzBktP30AQNh2orjSltknaQs6OtXIq3k8g1oqjCuMX5CGtGahWpJVRPNK+4rfYapnaoMhxqZI5q3zjN1GhWCI2F8nuDMOeGjJWUlBP1WuVOGLWGMyfW8fQ3DjA6UoUWgnBVjraNo0hDM+ZHuTKZILmcxcBALQMDtTNuLxLJ+j21ymPfq6sz82iQWi71b62eqhKSSAKuQd6cvV5qxA7zxat30Z2LYQqXH1/3DnfG5nfyOnCthuNHNnHi6Ebi06ARV9l36Aqt7UuXWqo1nDy5ga997U7S6RBSKh544DSPPnoC06zsFOtMaXpaS/JzpOlpFNryi3pdC3ELzCZKCXsf7mbnPX0c+ZctHP3mZnrO1vN3v3kft93bywM/coaT76znpX+4HYD7f+QM+x+/usKj9iSF8vpzlTFRBay5oyT2cgEl1naI81Yp3rwrEy720VkKzclE4Z2HFxcup0pNhL8TEytooiptnioFiii77mnpe9IzoRWVJmJmqQmkAc1wtobLiU1cGW0l6dRhygCWIaeynG9JrRmpVaRqK8L2hMunt56kNxPBnePXo7XAdk2UVpiGQgiFqvisxOIkBNy+r5edu/t4+/XNPP/tPaQSIa4cb6Fj8yAf/cgbrN80Qj5v+BGt6LTIVmG5bZuk0yHS6RB9vfUzbE9RXZ0l5qcO1kxJH/T6a2XLNFJdQ6lXWoaWGErjSkXOcAhPqZe6nK7jj7vuZMwNUW3k+PmON9gSGZ3TusfiYU687UMjekqgEUGbXfu72He4k03bBpaoafXEoTKZDPG1r93JqVMbAGhpGeXjH3+N9vbKgAnKpekpvXCankajA35Kn5KIJUwtWo0KhFzu+/h59j7SxSv/tJ3TL7dz5tV1nD/Sgmt7pwZ3/8AF7vzw5RUeqacioa9MP51SoERemSzpfn9tx7dgFfHmuSA9udCS4c1hHibKZWW+07ImannhEtM+owqbp0ql7E1a/zKk70nhUhNIE7Ey5N0AV8ebuBhfx9VEEzkVIWSYhCyjolvVgOO6uK4GixsuwrVmpG4SebUPBgqBKdwVjU7NJmloDt13iT0Hr/LKczt59fmddF1u4i/+++PsOnCVxz50gqamcZqayvdoKdRrebh3D4ZRNF3+/fHxMK5rMDbm1W51dZUfi2G41BR6atWUmKzaFLEaz3yFQl6D4IKpWkv9m7+8eimDrNBooSfVS72ZaOd/9x7A0QbtwQS/0PEGDYHMrOvLZizePb6e40c3cvl8S/E3LqVi+65e9h3qZOfu3opCI6bKRBM2FErBW8c3889P3UU6E0RKxUMPneThh08tKgq1kDS9ecmwQfopITdhXdRcVV2f5X0/f4I73tfJi397G13veiCdg++/xL0fP7/Co/M0CS5R8j1NYM0FebXEQIm1Hd2itFx4c5j5pL0wx6IFfn8mVuR7LT1H1qIQFVseE1WSRehtbpHmqdKgiLLbmJq+pwrRp8r+hixpUxdKYgmHcTvCicGtXI6v41oyhotFwJBUBcyKmhxXaxxHobXGMATRUICsNKmJBq//4lWkNSN1k0kpiS0EGh+TLij2VVpNCoYcHvnAKQ7de4nnv72bd97czOl3NnDmRDt33n+BBx9/l3AZAEBpvVbrjPVakEqFJkWxpka2kknPbF2vXisQsEuiWCk/hTBNbV2KuliKWG3Kq9daM1WzaqJeykZJTV67fPfabr41tBOAfVV9/B/r35qxYbPjSC6caeX4kU2cPbUOx57YdS01NKJUEk1EKjTQORrlqafu5sKZ9QC0t43w6U+8TGtr3Euvm+P/nJcr750Uz5ymV7neTVq4aNMDuggnUHGi042o5k1jfPzX36DrZD35MZPt77m2cqjwEhVMVME4F1SIQi0pUGJth1YRRQ0HYwXx5rr0CQJkId1iJVP5Su4vtYkqZ54Ku9LFmKelijoVt7NM6XtRK0MskEJpwVCmlgvxdq6OtRHPRlAKTEMSNU1MQ1YmLRFwXIXrKoQQBEyDYMDAMg0MKRnJwZLl3y+R1ozUTSgv1a/Qd8qLTrmr0EwB1NRm+OinjnD3g+d55uv7uHi2jddf2MmxNzbzwBOnufP+C/Oe2ZcSqquzVFdnWb++fGqV40jGx8PTGhiXGq9MJkg+bzE4GGNwMDbj9iKRLLFYmtraqQRCP62wJj3neq1CrZYuRBy013h56rKpy73bpRemPM9bNv1505eXPn8h25y6XKmJ9TS0jrDjwGVcQ3E5VwPAlsQ46y8rnjl+YNo4xsdCjAxVEx+JTqQ1SQjWONTUpamJZTAtl9MXOjh1fsMMn93s7336e5Zlng/av6/8i+tItJZIqbjzodPc9+BpQqaDgyAsFVKArcQ0UzVjmp5e+qa3Gu3VRQnANWAJC91vNAkBm/YNEZI2WWWhV9hIFJKIlZaoYrRJ+9kGXjq3rSQV/Y2smacKagJvfjUTYcQOLNmWrheFKoAkhPbT01eBiQKWBHMuplxX2jxVChQx47aWIX1P4FIbTFIVyJG2g1yIr+dSvJ3u8WZsZeC4GkMKwpZBwDTnDXwqp6nRp0goQNAysMwK78NWQGtH0ZtWAleJEjPl/XOuxugUQMu6BJ/5+Ze4eLaFZ762n/6+Wp7+2gHe/P42Hv3gCXYf6KKSrQVMU1FXl6KubmZyWz5vTKQQzoB+z+etiXqtvpnrtcJhL1IyF4N0M0uFFY83Su5df5Ef3fAmX/i7DzF6Yh2vsm72Fwom7a2yboDsUICBodqlHO511dQ2wmMfe5OGljHyCEZci1FXE5KakHCpMhQRqTCEwsUzVW7BiFUqTW8e0mbem5LW4pZO6bsRJIRClxD6CkAJWxnYroGqVCRxzTwtgSbw5l2ZMOPu8uLNS+dgRKkLUMtsomZIc6s05rycedIl73u+5mkpQRFlt7dM6XsBmaM+lMSQikSuiiN9m7mcaGc4G0MDrjfrScg0CFjGovs5acB1FY4ffbJMScgysSwv+nSzaM1I3eTyolPeQdcyVnd0CmDrzn42/+rTHD+ykee+uYf4SBVf/pt7ee2FHTzx0WNs3Lp8jUwDAZfGpnEaZ6nXymatSamDxcjW2ITZcl2DdDpU0bEJ/6Rq4uKRE6+3fOL29HV4j1HmeWrW5ZO3O/V5E8vHQgZvr6vnqyP76KgbZn00zs996GmO199GPmcx2F/DQF+M5NhEMz/DcGlpS9DWMUJj8/iM76Xc9qaPY+axlfvsTKEJWy4KGHclKS1Rgon1GIpodXZSFoLAe9xG42jJuCMIYhAUmrDUWEBAaHJa4ioDZxn/Dz3UucOtgDq/0VWASzg+xcyQCq0FOadCWPM187RkKuDNx1yT7kyYtFpevHlpFEqUPnE58eai7M3igkpgzpfSPC1lyt6kbRbT98SSpu9VWylqgmkc1+Raqp4L8Q46E21kXe+8xFUKpTSGIQlZBpaxOJiE8qNPSnuRrUjI8qNPy9iSYRm1ZqRuCU1EpyzpeL1GwCf7rT5JqTlwl1fz8uoLO3jl2dvo7Wrgr/7no+zc08NjHz5OY3N5c7OcEgLCYZtwOE5ra7zMM7zPOZ0KkkkHyxqY2c1AueUUr28kvTXWxl/13IGtDdoCYzQIr3dRTX2S5nUDfPXPHypG40zpsv32PvYdusKOPb0ElhAaUU7Cr4MCGHMNRl0TQ0tqZnhuIVIwkaYnsZWBi5eSNY7woweakPQiVDWGQ9hwMQQ4SpDzU/uWSrci6vxGVSlcQggPe+4qSb4SWPM1A7WkMoQiZvh482yE/DKS+SYZqKkUhEJd1HLoOiZqsZjzqTVP08zTHD/ymUARy3FoXY70PUM41AaThM08KTvEmeFNXEq00zPeXKypVFp7tUpSELJMgotI4ytEn1xXgQDLNAhaJoGbLPpUTmtG6hZSAZPuaoVlKKRcfZj0UlkBlwefeJeD91zihe/s5q3XtnD2ZDvnTrdx6N5LPPTeU0Srcys9zFnk7Rqj0TzRaA5TTsw+3SrnM1rDt4e28/VBry/P7ZEBHkz28L0vHcIRio/9zIvsuOMq2/ddJTsWYe+hTnYfuEq0ammhETOMlpDQmFKTUgajjkG6pAZlgqQ3kYQ3yThp6aftTaarTUiQVQZZZTDimISEImz4pkoqqnCwdcFUVe7/clJd1C2IOr+RVAqXKNzOOwa2WgRQ4lbZ2aywAkJRtQJ481KYxLRWkxLPQC2HiZrNQBUWLgJzXrpHLBqoBZqn5Yw6Fbe9LOl7mrCZJRZIIQSMZqs5MbidS4l1JHI1k57nKI3WGss0CJkG5gLNjtLgOC5KKwwpCYcsApZBwDC44WZ8F6g1I3WLyWvoaKBZ3Zj0UlVV5/jQD7/FXQ+c53vf2Me5U+0ceXkbx49s5D2PneGeB88tKeq6MhI4ygNhSKERt4CZspXkb3oP8OaYR7XbNJQk+Z1WvpzaVHzO8Vd62XffBT72My8Qdi0qwwWavyyhCEtNRkmGbJOk6xkoU6oypkkWo00Kr8Zp/gdDQVYbZB2DUcckKDQR6VJtOIQNRRSF65sqe7EHW8MGYw11vtrlfSseSELgAUhyromrFhA9vNl3LqtMBbx5bzbEtWXEm88YhSosXy4631xMFAszUVP3fkUDJcWcztOXExRRdvvLkL5nCJcqK03UyuIok57xFi7E13N1vIW8OxklrrTCcTWmIQhaFoEFpPFNjT6ZpiRqhW6J6FM5rRmpW1RFTLpWGIZCCL1qQRQFNbWM86mffpkrF5p4+mv76euu57lv7uXoK1t55AMn2Heos6JAisrLI9hxC5iphBPkf168l263BpSm6uUAqXebAaiqybD3jk72He6kdf0IeSVQUpMTDiHHXNYTfQNNxFC4GoYdwbgycPGiARqB4xo4RdPELNGmxcgzTDlXMuqaBKaYqojwxpdXHg59Pv+ja6jzG0eimO4jsJWPNZ/v93Wz7lBWsaKGg8HS480pWfOsBoqSJy11XZSY9e6khfMxUVPrn2AihU/4JmomLTcoYsZxLEP6XtDIUmVlCBguyXyEd4e3cCHezmC6HndK+rbW2oM+FNP4jHn3hJqIPnm1T6Gg5aHLDQNxi0SfymnNSN3C0lpg+8jlAiZdKZaFHrYYbdo2yM/822c4+fYGnv3mXhKjUZ76u7t5/cUdPP6RY2zZMbDSQ5xFBTMlkELddGZqPBHixRPb+W54E3ZYILJQ80yIqmHFrjsvs+/wFTZvH0DKicNdwDXJChstNLZ0CSx5cbZGCkXUR9KPOZK4a5FRBk4xPc+7LH8vIY/sl3e9MVnCq6mqkg5R06VGKLSG3BxM1Rrq/MaRFApDamzXmD9Q4mbagdxQ8vDmrhZ0ZiOMLgPefNY0vunDW10mag7phWUNlP9nNgM1OWVPeHGnFTFPlEnfq+wxxBAuYTNH1MwgBAyla7k81k5nopVEvopy1XOO0mjlpfEFDQPLmPuYpkWfDEk0ELhlo0/ltHZkveU1HZMuWL2Y9IKEhL2HrnL7vm7eeGk7Lz1zO9d66vibLz7M1tv6eOIjx2huG1vpYc4ggVIapPQjUzf2uVA2a3Lm+HqOH93Eu9kGEo/aYIERF+y/GOeexy/NCo2QCIKuSc5wcAyF1C5mhWAI03o2oQkApoAxx2TYDpDwZ/7VKmjAOlW2liRcScI1sZwSU2W4xAyFKolUTZ0AWUOd3xgyhUJIRc6xyDnW3IASN/IO4yaQ8Ml8y4k3n1MUipInL9VvpMxuZCYTNVfMebkpoWkGSkx5rOS1KxV1Ko5nGdL3gkaekJkjJPPkVYCu8VYuxtfTl2oi4wTLvqaQxmcYgnDAImDOPY2vEH1ytcYUglDQJBgwb/noUzmtGak1ATceJr0g01Lc9+hZDtx1mZee3sWbL2/j4pk2Lp1t4cBdV3j4/SepjmVXephl5DeqlV56mRB6VdepTZXjSC6eaeX40Y2cOdmObRtk9jukHrRBQJud5Bf2vEbTfek5rc/QElNJHEORN1ykI7xC4HloqmkCr85Ea3C1gYEmKDQZZTDkBEg45pLWMlRapabK9E1VVLpUGS7VhkdBLESqlHQnUOdrJmqVygObCKHJ2AGyjsWs+9s187QqZKCJWXnGHYurmQiZhdSwzVG+b5q4P5ffwGowUYXHlJgVcz5TTL1QByVLDNRKgiJm0lKn7xlCETRyhK0cBppkLsKVZDuXE+0MZmtxZsje0Fp7PaGEIGQZBE1zTml8pdEnDViGJBIMeGmA84hi3WpaM1JrKlEpJt1FFpv4rv6TsEhVnvf94Dvcef8FvvfNvbx7rIO3X9/Cybc3cO/DZ7nvkbMEgs5KD3OatBK4AgxY9WZKa+i60sDxo5s49fYG0ilvFkxLjf2+FKmN3o72gbrLfLL1JMacjvoTspSBEtqrlzIdQo4140FpeqQJv6ExfqNb/CiTQGhNlaFwkPTbJiOOhX2D1wo5WjLmSsZcE8PWRAyXqPQMVVQ6jJse9VC4JmIJT/TWtDBJv/UBGtJ2gJxjMuMp4ZqBWjWyhEfZHMkH6Pbx5tPS0CqoQhRqTrvSpYRLzPDTnPFoVYiczXDucD0DVYhCrU7zxJKn7wVknqCZJyAdtJaMZGq5Gm+lO9XCaLZqlpRzjas0SmlMQxIyTUzj+ggnpcF1XVylkEISDJiEAiaWuRZ9movWjNSapqkQnZJa3BCCiryjAAEAAElEQVSY9FLVNyX5xGdfpevyOZ7++n66rzTy4nd389arW3j4/ac4cNdlpLG6zky0FrgaDOkZg9WGRx/sr+b40U2cOLqR0eGq4vKq6gzb7+zm3R1VDKkYAs0nWk/wUN2VBVFPhZ/i59VLQd5wCbiGd8gQlMGOC1wt/aiTZ5pUMf/FM1sR6dWexF2TYcda0tnjlZKLYNw1GXdNBm1FY2QMU3gnMTVaIgyHvBbk1FKAMtY0P2kM/3eslEflyzll6qFW0w5gTQAEhSJqOPTng/TmQmVTMMuag4VucK5pfCXPXS4TNetepGii5LTFM722kMbnOaYJp7QSlL2ZtNTpe4Xok2XYGGhsN0BvqoFL8XYGMnUk7cisry+m8UlB2DIJzKEnlOMqL3KlwTAkVeEgQctciz7NU2tGak1lVcCkKy2LTXxXOya9VB2bh/nJf/Ms7x5fz/e+sZfR4Wq+8U+Hef3F7Tz+kWNsu/3aqmpxoPHw6AUztdIQivFEiBNvb+DE0U30dtUXlweCNrfv62bfoU5CG1L8cc9dDNtRQtLmZ9YfYVfV4KK2K4Gga5A1XFyp/Bx7zyw5vlnSarppmiyv8W1QKlKuybBtMebenB3VpyocyGGaLkrDULqGOBDxU/+qDRcBRVN1I6U13gwSaH8/6iHzbSXJuwYUZpfXzNOqVVi6hKRLXy5EXy40rwmJ+Zqrop+Y6+9hqXpFzTcKVfJgKaHvegZKl9RBCbE6ok6lWur0vUL0yavSFaTyUa6lGrg63spgJkbenR1iotFFMxQyDQKWgTkLvlhrcEqjT5ZX+xRYiz4tWGtGak2zSmuBrUyUVpiGQogbJzolBOza383O3b0ceWUrL353F4P9Mf7uzx5k0/Z+nvjIMdrWx1d6mCUSuCvYayqXNXnXh0ZcOtdcRC9Lqdh2Wx/7Dneyc08PgYDLqfFm/ujq/WSVRaOV4hc3vE5bMDmv7Xm/oEKTW2+Z1oCWmAocwyUrFLaywO99dj1ZQhExFHkl6MsHiTsW7g3wW62ELOlQE/Rq0hLZKLYysYGkMhmyNWGpiEiHatMl6psqe81ULYuk38jZUR4V0kPrm2i1NvO72lVlOEgfbz5YIbz5JIDElIVCz2MLhXS+VWKiNBMmasb0vcK1b6CkFBhitZknljR9rxB9Mg0HtEApg9FcjJ5kE32pRkayNdPw5eXkKoVSGsOQhCwfQz7Tc12Fozzqq+lHnwKWl/q3psVpzUit6brSWuBoA4VXO2VKjXsDRacMU3H3g+fZf+cVXnrmdt54cTtXzrfwp7//XvYdvsIjHzhJrG5uUISl1/Li0V1XcPFMK8eObOLsyXZse2KXsH7jEPsOX2HPHV1Eq3KAd/B7dngLT/bvRiPYFhni59YfocqvyZn5XUHBNBUyN7T2InFKS2wt0AXkuBYoFyAHhotr5hH58KwHWYmmynBRwJBtMeJY5G/wOqj5SKCpC48jBGTsAGl7ShNGBCllkFIGQ07BVLnUGB4BUAqwlWeqbhXjuRyaiEJB3jVwtUQKhe0auGsmapVLE/Px5leXAG8+ab8u/QjUPHb2Gv81lTRRs/zrz7ZXKJwKSCURagYCX+kdAYYUSCFXV2bIEqfvBaRN0MyD1mgtydshRrIxepON9KfriefK4cunS2mNO6knVPk0vonok0YK4UWfLJOAJRGru+nmDaU1I7WmOUv5RDBTKgzpIsTqx6SXKhS2eeIjx7nzPRd49pt7OfnWRo4f2cSpdzq458FzvOexM4TC9koPE89MFfDolTdTWkP3lQaOHd3Eqbc7SKdCxccamsbYd7iTfYc6qW+cHGFyteAf+vby/fgmAO6t7eRH245jlslBKcAgpP/YBAxC4vhmydXCm40r8/sRAHYQLTIg/X5IZehzAs8UmEIz5hoMOwHSSnKj/CYrpVgohWUoXCWJZ6PM9v41grQySCuDYcciLBVh6VJjuIQNF2PNVFVEhSiUq7wGu1oLpFQ4roHrrp3ErGaV4s27lwBvXtoPCuEFP+Y5wHkbr7msc74PFWEYTJioSY9NebJXAiWQcrUZqKVL35MoQmYOU7o4ysBxTfJugMF0HT3JJoYytaSd0PVX5I3U6wmlvZ5QIdPALNPLyVVevZTWHnQiGrYIWoYffVpFH/xNojUjtaZ5yQNReDUr5g2ESS9VbX2aH/qx17nnoXM8/bX9dF5s5uVnb+ft1zfz4HtPc+i+ixgrDqSY0msKip3dF6qh/mqOH93I8aObpkEj9txxlX2Hr7CuY7TsAS7lWvxp12HOpZsQaH6w5TSP1V/0o0szE/Ty2piINOFdz/0TEJ6ZCmTBcEE5UDyh8VDmYalIKck1O8iYO7f0v5tNITNPNJBDaxjJVKHmEYkrNVUjjldbFpGKasMpmirHN1XOLfjZLkwTQAlbGTh+qpOUCteVOLdIvd6NKomm1soz5lh0LwHevNRELcgMTQVLlM0TnOf65vlwoY6rsKcpNNydOoRiep/2DJRYRQZqqdP3LGkTMvNeVEiZZG2LjBNmIF1LX6qJwUxsRnx5ORVgEqYhCFoWgSlpfKW1T0JIgpZB0DKxLIlciz4tqdaM1JoWoOlNfOHGik4BrOsY5Sf+1fOcO93G976+n6GBGr79lYO88f3tPP6h4+zc27PCO/3F95oaHwtx8q0NHD+6kd6uhuLyQGACGrF5R/+sxrE/F+WPuu5mMF9FUDr89Poj7K+5Ns00FbDjSkvfNHnvYTES2gAngLbyXoNZJbEQRKTCRtBrB26pOqipkkJRG/Iih8l8iPwiZs41gowyyCiDYcck5NebFUxVFHC0IKcFjr4x6iSXW4UolFKCvDKKEwdSaC+FdY61fmtaGZlCETNthn28eaXbJMy7J9RMKyn32lnz6WbQPE3UVAPlHQTEpPRCWfpKvxBKGqvJQE1J31Oy8tEnwyXvmGTsEGhJIhdlIFNHf6qBkWz1LPjyMuPVGmdSGp8xqSfU9OhTkIBlYK1Fn5ZNa0ZqTQvWjdrEt1RCwM7dfWy/7Rpvvb6FF769m5HBav7xL99Dx+ZBnvjoMdZvHFnRMc6311QuZ3Lm+HqOHdnIpXMtk6ARW2+7xv5DVzxoRNCddT0CzbupJv60604yyqLBSvOvNrzGuuA4jpoZO15xuSZI14tKBbIEnAAjToARxyJ3C9VBTZemLpzEkJq8azCWmx2POz8Jstog6xiMOCZBoX36n+M1Akbh+qbKXjNVgGegJOAozzAVqWVCowHHMYr/i2tafQoIb9KgPxeaEW++UE0yUItZUQEuMdfnzmUQZSJbpaZHlzxU+oloAUILhCsKkPLi5NqEgRKrphZHF4q3dOXT94rRJyBrB8jaYVxlMJaP0pdqYCBTx3g+wvy+fT+NT3lpfEGjYI68z9hxXVxXI4QgYBmE1qJPK6Y1I7WmRaq0ia+HSdfcGE18SyUNzeH7LrL3YCevPHcbrz6/g67LTfzFHz7OrgNXeexDJ6hrSK3Y+DzgB5gz9JoqQCOOH93EmRPloBGd7D5wlarqXNn1Cz+BvbRX0/PDm/j7vn0oJJvDI/xM+1Gipk3GtVjOE2cBRFyTjFQooRkVigHbgnnM6t2MqgpkCZk2SsNoppql+048w5RzJKOOSUBoItI3VYYigsIFckrekqZK4jXXVVqQV3IyRMKvH8krs6In5muqrAp48+5ciP554s2vp0IAadH/GQXM+UIHAeWjQqLkKf5Ap3quaS8THqZcKi8FeyI7wXullAJWAUhiWvqeW7n0PYEiZOaxDIe8azGeiwAS2w0Qz1XRm2xkKBMj6wavu66pKvaEMgThgOWhyQFXaxxHobX3WDQU8KJP5lr0aSW1ZqTWVBF50SkTV6sbrolvqYIhh0c+cJJD917k+W/v4Z03N3H6nQ2cOdHOnfdf4MHH3yUcnZ1Qt3Tyek0V8OgoQVdnA8ePbOTk2xumQyMOdbL3UCcNTckpawH8k7/iJKTf4NbREltLvty3hxd9qMShmh4+2XISS6p51ThVQgGhCBuKjJIkMxFC4RSW6VAdyPozfLempqLOnWVrNCzIa0HelcTdCVNVZbhEDJeIUCjtmar8TWyqCu9KFIESElvJydFi4aVeenCJm/NzuBm0FHhzmAAxoCsw5VMwUfNNByyJNl3vXYnCdqa8VpTcFwiQntuSLkh/Qk+hvffp8cxXgYFauvQ9SzoEjRwIj5CazEURQM4NMpytoS/VwHAmNid8+bRxa78nlBCELMOn8Qmvca6rvOiTafh9nySyDGhiTcuvNSO1poqp0MRXIzCFe8M18S1VTW2Gj37qTe564BzPfH0/l8618voLOzn2xmYeeOI0d95/AdOsdPOOuUgweK2Kk29v5MTRjYwMVRcfiVZl2XOwk/2HO1nXMVLSIL48dtz1qWxeg1vve0q7Fn/de4Cz6SYAPth4lsfqLy37gdHwceY2gmt5i7hj4SCJZKEunKI6mCHvWuQqTNO6EST8lD4PdW5NQ50v50gmTJXl9fCSiirpEDVdYjeZqZo8eg8oAWC7PlBiiqRYg0usbnl4c0cLOjMR4k5l8OZTUd+L/uYXaaKut+8uei0BE/EliseL4stFIbqmka5XF6XQE/2gDLniDV2XKn1vcvTJJJGtRmkDKSBth+hP19GfrieRq1pgNFPjKo1SXp1TyMeZe9EnhWFIIqEAwbXo06rUmpFaU8WllMQWAo3CkAoh9A0HoiiotT3Bj/3Ci1w408IzX9vPwLVanv7aAd78/jYe/dAJdh/oWhaTkRwPcurtDZw4umESNMIKOOza183eQ1fYsqPfb5pc0uCWydhx5V/KYccH8xH+vOcQA/kqAsLh023H2Vfdv/RvrkQCXWwWO+qYDDsW2ZKZvbQdImA4RAM56sLjDKRq50WpuxlUE0phGS6uEsSzc+s7shyytSThShKuieUowlIR9VMAY4bXCLJgqm4U4EL5TCjt14N6WPNyUVov1W8NLrFaVcCbp5VBdyZC0q3MqVBpFKoi3/piTNQcolClJqpQ6VRqniaVUvm7WVMZ/gsKPPOJ/a8uzQ8sWfdSainT90qjT1k7yGgmhsSrSxrPh/30vVpSTnjB2yim8UlB2DIxhMB1FUoID3EeCGCZBsZa9GnVas1IrWlJNAmTLv3olOKGPanYdls/W3Y8zbE3N/H8t3YTH6niy//7Xl57YQdPfPQYG7cMVXyb+ZzJmRPrOHF0I5fOt6D9WW8hFVt3XGPf4U527e0i7Pe+0oiiacqXNrjl+tjxC+l6/rLnDtIqQMzM8tPtR1kfGqv4e5pZHso8IDVJ12DItkiq8jP58WyUgOFgGS714XGG0jVln3czKmTmqQp4dW6j80SdL6dsLbFdyZhrMmhbhA1FlZ8CWC09yMmqNFV64nr6qHSxhtCeApQolQeEWYNLrFZJNDHLZtwxK4Y3n2SgKtU5YyEmag5RqKn1T1LIGc1T8TV+NEoqAS4gNLKQWlYCqdAASqMpTJ5O1E1V0lzpAjdeUPH0vYnok43tWsSzNeSdAKZUCC0ZyVXRm/Lqn2y1GEqqn8anIWBIDCGLHtSLPkkscy2afSNozUitaQk1HZMuuPEw6QVJqbnj7svsPnCV117YycvP7qT3agN/9T8eZeeebh7/8HEampPXX9Escl3BpbMtnHhrI2dPtmPnJ/5F2zcOsf9QJ3vu6KSqOl9Mx8s5JoV9sKuMeRP0Xouv55/7d6OQdITi/HT7W9SY5aEUS6FCHVRWSXryARKOWbZJ74QEI5lqmqIJgqZXKzSWiy7beFdKpajz8VyInFuZVKSlloNk3JWMuyaG7dH/PFiFZ6oEnqnKraCpEjPcnlg2AZSwXTkzOKIAl3DX4BKrUaZQ1Jg2IxXCm0/rCVUpLdREzRKFKmeg5pIkpvEJfa4X+BFSYhhy+gsL2za8dDppeC/WXloESutiL8Sp5mpW4ycACil7haVe3ycQFUvfK0af8OqdhtK1oCRB00Fj0Jeqoy/VyGiuetETWK5SuEojhcAUAktIrCJ5by36dKNpzUitNq10leYSaComXcobN9UPIBB0efC9pzl4zyVe+M5u3nptM2dPruf86XUcuvciD77vNNGquRsRraHnaj0njm7k1DsdpJMT0Ij6xnH2H77C3kOd1DelcH3seMaxitEmAKE0piwceee2E1YavjG4k+dHtwBwoLqXT7WeICCXp/bL8NP4XAQDtsWoY835xMZRBqOZKA2RJNXBLHnXIluhGofVqaVEnS+fXATjrsm4azJka8LSJWp4pqpKKgTaq7tS8jpmenGaz5qFH4lylMRRxsyNsUvhEjcYtfRWUEB4v7WBCuHNlyQKVVjnfEzULFGo8vQ9iZxa/zTLqpX0TJTEwDAkYj4BPDFRe1VsH+ubK621fymkBKqpAy2uRGjpGSY/Lb1S4AiBJmjmCUgbWxmM5apJ5iNINEHTJu0G6Iq3MJipY2ze+PLpUn5PKK01ppCETZNQ0PRqnwzjpjz/uxW0ZqRWmUaFSb5M4fKNr1JMuossNvG9cXccVTVZPvSJo9z1wHme+cY+zp9ex5svb+fYkU3c/9i73P3geazAzL2ahgejnHyrPDRi9x1X2XPwKq0dcbTwPre0PbNR0FrgKIkpFdLvNTXbcTjrmvxN335Op5oBeG/Ded7XcGFZ9uMCTUQqpICE69VBLSS9JusESeYcqoJZ6sJJBpILIyXdCIpOQp2vnrqoxchFkFQmSWUyaHupnVHD8UyVXyeX14JcBUzVwl7tASU0YCsDx5WzrswQCmcNLrGC8vp4SeF9bxIvzdJA+8ZB01sBvPmSGajSDczHRE2JQpUzT6Jkck2Kuf06NaCERiqBKYzJaXyLkSjUZAk/2qV9c+WPUYF28QyTomichACEqMgxqhB9EsI7jlzLxMjaQcKmTchwGMtHuJhYv2B8+TRpTd5VuEphSUk0FCAS9NDlN0b0SU/7TeoZ7s000aQnP22GJy3FP9TSa81IrSINZsf5vqzl9VMfY3NolO2REbZHhmkPjhXhATe6CtEpqcUNjUkvVVPrGD/6M9/n8vkmnvn6fvq663n2m/s48so2HvnACfYd6kRI70CeSgU5/VYHx45upOdqY3EdVsBh554edh3sYsP2QQr7VkeXr8Mop0JdmiE1Uijwa6amasQO82fdh7iWr8YULj/aeoI7avoq8Elcd4SEpCIoFUnXZNi2GF/kSWciFyFg2gQMl/rIOIOp2KLWtxplSofYJNT5zbfbVghSyiClDAZtz2iHpUON4UURpNDklfT6NM3h+13sL0AKQGhUOaDE9JIPD4GuJba7BpeonDwzZIiJZsfetWeMpJh+cudqgQK/Sbg3uZRWElsJ0spkxF54D7wlS+MrVSEaNdfBTAR5ptU4CUow5P7z52KiimWCwsOZW8KsGI1PC69+qjhOLZBaIrVf36T81r6GH7WSyqut1l5jWvTE62F+pkoITdDIETAcbNckkYkylvPqTKusLCGZYyhVQ2+qgeFMjb+f1XhFYfN8nyV/bFfhao0pJVHLJGJZmKYBSpPPOhPPL32xmPoF+2jEcjuf4mvmPcwZVlCyjeJ2JyTKbH7SY9MWTokflnlS6SIpbzys+813RL6B1Z0aJagVOUzOZZo4l2mCYQjLPNvCnqnaHhmhyUrd0BHgAiZdaVls4nujYtJLtXn7ID/zb5/m5Nsbefabe0mMRnnq7+7m9Rd3cPCuS5x7t42L51onQSM2bx/g9oNdbN/dRyA4/x32dHmRP6SXZiQEk04CL6dr+V+9B0m6QaqNLD/V/hYbw4kKbHd2WUIRMRQ5JenNB0k41pxOiK8vwUi6muaqBAHDJRZMk7ip6qU09asCdb580iWmatjxIlUR6VJjOIQNF0OArbxIVeE3tPhfkvbrRjRCaoRW2MqcDJSYep5RODn1m5A7juGf+q+pvDQGvhlaoDHK+f26bCVwELha4mpRvChdeI3AqSByf8mjUDD3hrsl57yl5kmDb3jERHZcyUd6PRM16W1Jr6muqY0Fp9Fp/8OaGK6Xmie0RJbcnklCgBCyOKlIIR3QB1lopcoGMKaO1jQcQmYeITRZO8i1TC0pO4wlFdFAhpwT5Gqymf5UPfESfLm3XTHNOUw3BdM/H6UVrqv//+z9WawsXXqeiT1rioic9njmf6r6a65iVXEQSZVMSTYtQa021EaLMNBsSLIF3UoXogQDupJ4xUtdUXcy1W1YptRGo2FYho0W23BbggiNFMlWk6q56h/OfPaYQ0SstXyxVkRG5s7cO/d4cp8Tb9X5996ZGRErIiMj1xPf970f1ntMotnOUjZ7CUkjfU9UO7lgVWIePpqvmn9i2fsqWPreieaJM3MNnXv9KdtaBk3NZxfNU5fNXa3zFNZyXIzZ3L5d3+HC+1saS7tCHRwcsLm5yf7+PhsbG691LP/H//av8otf/tf8/169y38c3uW7ox3Gc84wm3rEF2qwesHmDRoDXLWE8Cjh0Cokhd+e6FTsyxRTRkR8LEgwyRW//T9+kX/2T7/KZDz7/j187yVf/ekf8+VvfkxvcH3vnYppfhBg6l/vP+IfPfk61kveSQ/4K+/8G7bM+Nq2D9M6KAe8LEMdVH4NRfiZztntHgLwYthnXL4ZwLGZHdFPJlgn3kqr96YEnkwEqNpUllRZNFD4Wag6XdN4kYgOfPUsNG4jkSXHZRog6vRVhQknPphLvJEp2cslGql0q4CRJ1yHZiJGXjTAaBaKpv9CGqidA6Ob+JaYAajr3NAq5hINoJ+eaVV4bA6gmM2SOg2iTqQCqvBidU6Iqp30qnXF9+tEtOkqNX+8asB0pCrHyILSa47LHkd5n0mZ0DNjEplzXHZ5PLzL8/E2x+Xla06999jYONcBSgk2ex12N7tkSRuzmJcHitKR25LCObSUpEpzyD7/6fs/y3/+2Z953UNcmQ3ad3fNJIB3swP+5NYP+IWtj7Be8NF4g2+Pdvn2cJfvj7fZLzv868N3+NeH7wBwPzni850XfLH7gs91XtJR5evdiXPIe0HpFY5QO6Wlx65VdCr2ZBJhwjT/teOoar8kPv7tvcAJ+Jk/+T2+8kc+4l/81pd4/ONtPvjCU776Ux+xc/dyzn6ryjoJ0YDi//n8C/zTF58H4Ov9x/yXD3+XVF5FBGyxqjooJTwHVvGiTBhegc3wMo3LhMNJxiAds9055tmxprzG7d2EbovV+bWqBpzw37FXjJ3iZRnSRLvSMVAlHRkiVdYLJnGCXkGSbK4k/lpN5D0C52LbAET1CV7NiEC+WeYSS8Go+r2iicp5jVkwsjUUnQVGAgsnwOjs8d2cmml86wJRgupuvozwVKXIyXqo9csbBhSnHeXmJmWgXzwexelW4qdFmwQy/n4D79jcJpQsydQEKTwTm/JstMVx0cMDG2ZIJ83Zyzf4zvADXoy3LmVfXsk5T2ltuK8iBNpouplme9CllyW3OnvoqmW9Jy8teRmOl1GKXpqwkaZ0EkNmDN8/zOmZy78vN6kWpNZcSng+6OzzQWefP7XzPXIn+f5om2+PdvnOcJePJhs8yfs8yfv88/0PEHjeS/fraNVnsj3MDbmwXUYu9pTR0qGkDSlpN+bsF+5Mh76CVXLO9Pafj68oXZgYVP2aKmg6Td1ezv/6P/u9axz76RqVht988hP83tEDAP7Uznf4T+58+xpr7jypCJPcoZO8KFIObqhu5GDSJVElqS7Z6Rzy9BbXSzWtzo9ukdX5pTUDTqdJMHaKiZO8spJMOvrRpCJAlcd6wdiHiX240UENTMvyMM5TC6IiRBVrai5RuQ1OI0VLwAjqFLAajLzAchKMqqbeVwFGp4/99elG0vgqnQVRJwDKxQWmoDN/rFaBqBMAFV/sha9rlmZeuyja5BXKn52id92qnPeMzLFecVT0OcoHHBcZmS7YTI4ovObpeIcnwzu8mmziLpmCO40+eZQSpEbjBRit2OimDHoZ+k0pbL+EPFBYR16WlC7clE605m6/Ry9J6CYao28/htz+PXjLlEjHl3ov+FLvBQBDa/jOaIdvD3f49vAOz4oeP5ps8aPJFr/16nNoYaNxRQCrd9fYuGKmia8KTXztlcLU6el4VV+mwss4oRAQ8+5vYwH5XpHxG5/+FJ9MNlDC8V88+F1+dvOTM5vzXlRaOHrKkjvJp0XC3pXVQa2q0F/qXm8Poyxb2TF74/4Nbv+qNLU6L6xi/5Zana+sFe74izirFREC5iMjE68Y5obHHhLh6QhPX4dIVVd4LI6xlRRnFGU7BLk7q49ZAF3rQtPhm5r2nwZGiuoYxRevAEaFl3XK3DI4uol9W5cr640CFCyFKAGzNxRqkgq5pKfVqFQQtSyVbyafQopQiyPCzUInbIAoBF40b77ORZuuqG/TZaWkJVPjGH1KeDa8y3HRo3CavhlxN9tjWGb88PAdno53OCx6XPZsq6JPAFopOplCCIHznk6asNlLSRO9Bkfn9cl7mNiSSRGiTlpKOolhI8vomhB1Uus6Cb2gWpC65eqqgm/0n/CN/hMA9oq0TgP89nCXA5vx7dEdvj26E40rCj7fecHnoyPgvbUzrpht4qulCxf5cwHVFJjOk47nbykwLdKPxpv8g09+ikOb0lMT/g8Pf4fPdl8BYRJ4lWliMtZBeeB5kfDymuqgVpHzkpejAXe6B/SSCbnVDIvs7AXXSJXVuffw8g2xOp/RUnCqapYCHNSTyLhM9TkNNzpkbVDj6ghTeHEOHAHPioQ0wv1AlfRiI+DKtCBfFEHxUJxhoS+FxxNszi9jLnESjKa1RYvBKNzUaYJRbiWlD26GZQ1A0/qj5s+bAqOz9PpHcFI3VgtVqQFRM2DULCsTSwwklug0iJr5BhQiZF+IMAgvPK5K66Tq1bSaIcTrkJYlmRrjERwXPQ7zDY6LDlJ4NpIjtLAcFH1+ePSQF+NtxvZy138P2NJOo0+JIU0USgompUUpyXYvpZ+lazaXujmVzjEpLYUNt6BSrdjtdemlCV1jSM16Ru2vSi1IvWHaMhN+1nzCz258gvfwtOjx7eEu/3G4y3dHO4yc4feOH/B7xyHVa1OP+ULnxdoZV6zWxLeqXzotHU9gfUgt81VdhJ9fz5ul3zl8wD968hOUXvEgOeQvP/q37JhxHfEzyiGFw3s58wV7foU6KC09h1bxokg4djd3h36Zcms4nHTYyEZsZsfkVt8ay/A3zup8YapeiCzNRoapJ7KhfilGhU8BprMlmDjFxCleFgmJrKCqoK8sXTWFqsmKaWnVRKmwaq6Oaur6V1l2i3h9qnsazc3SvV8ERgEUizkwmo8WrRMYnab1Ht1riEJV23NhezPHZw6ignPb4vS9eZ0FUQHIohOdrB519ZPSK4zXSHd6bdTrlFEFmZpgveQg3+Ag32BYdshUzm62j/OCV5NNHo/u8nK8Sekvd+2sa598SNnrZDr0fVKScV5grWfQydjophi9XrB53QpRJ0teljgPWgoyY7jbC/2xOtqg1NtzTG75t3Sr0yQE3E+OuZ8c8wtbPwrGFZONOlr1g/EW+2U2Y1xxzxzVUPW5zku6r9W4QsTUPoWRJUbauYjRsnQ86kLyt0new3//8nP89y+DqcRXek/5Lx/8LtmMqUQAVCVDDy8RJ2XnVSocmXSMvOTJJGHf6rU63od5h0SXZLpgp3PIs+OttRrfYk2tzseF4fg2Wp372T/kPDA1UvIqYLJ+Ck5VVPhKbnbM2ZHlXpKXklelwTQiVX0VXAC9pwFVYeszaXQyNuh1glRahCxnhliNvwlGEyvqiJE9BYwqm+/1R4/TdVtG3zy9bgygqm36OYjys7ATms+uBlBN+GpCVLV/HocQEiGrpEDRSM0TeO8RQqCtQq6pdX+iJqQqp3Sal+MtDvMNxjahp8fcy16Su4RPju/xdLzL3mTjUtf5ZvRJKkFqDGmqSLQGAUVpmUxyMmPY6GV00rcnjc86H6NOYT5htGIz6zDIEjqJoWM0V3EF8NzkB/Jq1ILUWyQlPB9k+3yQBeOKwkm+P96OYLXDR5NNnhZ9nu5PjSveTfdjY+DnfPYajSuqu7UyFrVKfP1l4jwUTmOFRwgHXlB49cal411GhZP8oyc/wb8/egjAn9j6Pv+bO/9xaT1cZdUshUMKVoYpHdP4cgSPi4S9UlOu5Rew4NWoz73ePkY5tjpHvFrzNLnNdIhRFusEr8brPdZaPvynSsUT8uSnMaTSyplIUxWNubZ9nIOoeRVesldK9iJUdZWlL0s2tGVD2pr3XDOdDh96eZWKwqm3AoxO023dsxtP45tTE6J8BKEQzQQhTjrwLVNtmCKqBtLVae8JXW0kSqgAUl5GYJyuOTjvCbRbP4gK6WETjMwpbMKz0R2O8gGF0wzMkM3kiOOiw/cO3uPZeOfS9uXN6JPWkn5mYvQppPk67xlPSpQUbPe79Dspb3rAxTO1Jy+dR0lBqjU7vQ5dY+gkBqMu74zrvSf3BRM3wfoynrO36+rSgtRbLCMdX+wG23SAodV8d7RTpwI+K/r8eLLFjydb/A+vPkQLy2eyPb5YG1fsn9u4oioal1X9kpjepK4mVtZJcmSwJaaR3oNESUciC1RsgtlCFOyXKf/VJz/FjyebSBy/dO8/8HObH5+5XLBHnxasnwZTIgKUAF6WmpelYXxGLcnrVqiX6nOne0DX5OTlhOM1rZdKdU4/DT291tfqvAFMzNYwVZ9F61RtLT79/DZeeDPDnGqFzRZesl9K9jE8KRydeLOo6mEUMoo9hZOMiwS/lu/N9epNuMq+ljS+pqLpXvV9N5uOJ+vvwlVU2Y8L2aieitl6eIkSEilkmJAu2FePxwmP9mrGoe91S+DJ9BgtSyY25enwHodFH+8lA3NMIotQ/7T3kOfjHSb24lH7+ehTYkLtU2L0TK3TpChwDvqZYaPXIXmD0/jm7cmTOXvyjjFXAjmlL5m4nNzleO9JZEJf9dnUA3puwv30zuV35gbVglSrWl1V8vX+U77efwoE44rvjAJUVcYV3xnt8p3RLryATBZ8vtEYeGpc0UjnadQH+HhRd7GGKY93daf1DxLrgVPujlknGTuDUZZEWRD+rWuE2dRH4wH/4NOfZr/M6Mqcv/Twd/hcNJVYRdZJfOz3tBimPB3pSOo6KMORuz2Fo7k1HEy6bGbDul6qWLO6Iykc22tkdV59bqu+Qs10vDABjL3f6shS1Y+pevGJFd6czglR8yq95NDOXk+UDPWEk9K8NRB1Oz7dq+m1pfE11TCXqCBKEiNQKwGUh3jzMIY6EUikC4YQznnwAikFUkrEqXc4pxCl16TXnhSOTI9RwjEqM56P7nBU9BE4NpNjpHCh/9NxaKB7mfqnOvrkQvSp143mEXPRldJa8sKSGs3GIKObmjfOTMJzij15mtA1V2NP7rwjd1XUyaKFIpUpO8k9+rpHV3VJRIC04eQlStyu6+x6zSharZW2zIQ/Yj7hj8wZV3x7uMt3RjuMneH3j+/z+8f3gWBc8cXuc77Ye84XOy/YNBOclxRe4KrUHqaTr4t+XXskuQ2RqkSVKOnqu99vk37v6B7/18dfp/Cae+aIv/zo33InGZ17Pc6FBo9KuhmYSoSjoxxjJ/l4krC3ZnVQq+ooz0hUQccU7HQPeXq0yWXc1q5Wnu3sdVidx8hSwxSh8dRyh7yLmLVcEm7OvZ0r3IaMM+9xqcPn5A3U7ftEr6aZ0/Q1pfEBszbnflp7h5BLJubTIipfR88k2CrqJJBChs+sD5kcUgikPguggqzwaC/XAqIqC3OBZ1h22Z9sclz0MLJgO9nHI3gx3ubx6A4vJ5u4C2ZBeMBaiy09UkFiNGmiT0SfIKTxTfISKQVb/Q6DbvpG2XU7D3nDntwoRScxbGYZnSu0Jy9cwcTlFK4AIUiEYVNvsGkGdGSHruogbxkwLVMLUq3OlMAjpOdRdsg72QH/q93v473nR+NN/uD4Lt8e3uF7o232y4x/dfAu/+rgXQDumGM+zF7xYecVn8326FypcYWgjBGtRFlMNFSw7s254C2T9/A/vPos/68XXwTgi93n/IUH//5Sx9d5gXcSLR1GhPSmEsHTwvCqNBS3+k58qJcyah8tHdudI16OBqzDFLJnxmTmOq3Oo19ljBAvBiZJ7sJP5yqb7Wtyt5yPCFzV6q8BooQI1728UFj7+iedV6XXf9Zfn5qud68tha+pCFFVSh+EKNR08j6lK1+PWYCTIQgVU/Z89TJBSNkjtASRApSSwY1vhXCJFQ7lBeo1R+WVLOk0LMz3JxsMyy6ZmnAn2yN3msejuzwZ3bmUgcSq0adKk6LEOkc3TdjoZWTmzfjcz9iTC0jV1duTO++YuJyJm+C8QwtNpjLuJXfoqi5d1SGR5mp2aM3UglSrqGY6XqhfqgwgfKNwumik493RY/7Yxsf80cHH5E7zo8km3xtt873xNp9MBjwvejwvevzLw3cReB4mh3zYecXnOq94P90/w7hi0TfgyQ96SLkROBmASkmH9dW30punwkn+b0+/xr89fATA/2Lzh/y5u3+IuooZg4dMOIz0HJSSZ2XKaA3uWl6FPJKXwwF3e/t0TEHfjjnKO691TFqWbGaV1Xn3klbnvo6eyPgZrp+pnPAakdwqwuSvC5hW1VVEq64BosAjpaMsNXl5e78m38yr4EmtHUBBDVGyTsUDpAiGSTG4JFyMTzmQnvC9teDzGNz1AkTVtVVKhMjBivlmTjikF2hnXtt5sdjCPKOvR9zrvGRUZvzw8CFPx7uXaqBbVtEnCcZosrr2afH6rHNM8pLEKLb7PXpZcqvT+Jbbk6d0U3Ml9uTeewpfMnETSlcghCSRCbtmm4Ee0FUdOjK7dcYRF9Ht/YZodUFVF+TKHS/ceQXqWiWHoHQSW1uKB2A5LR3PSMvnOi/5XOclACOr+cF4i++Nt/nuaIfnRY9P8g0+yTf4Z/sfoIXlvfSADzuv+DB7xaP0cA4GTtbqLL+dLYKrn5MkugxNfOPd9tN1hR/w83xxn9jsagsflgn/1ac/yQ/H20gc/9u7f8Af2/rxOTa8TKEOKhWew1LzvDSMEUjhmuUxt16F0+yNe2x3jtlIh+RWk9vXdYds3up8VROMOcOHBcBkvcRWESYE3sUbIfUkbU11kWjVNUCUx6OVw5aSSXl76gFvxyivVmsJUBCoyAukhzp7ScTxNaNN9b3E5e+eixblglhbJUMt1CppfPU68AgvMO712HUnKidVkxkL89waBsmQ+52XHBVdvrP/AU9HO4zsxW5w+Rh9cg6UFvS6CYlRaL38ZqDHM85LBLDZyxj0MvQtTeNbZE++1enSTw2dJKFzBVEn621tEuG8IxGGrsrYSO7R0126soOWbx9WvH17fFsUTRvOrboHio+2qNW9aB+fmlqGn6hfqt3xGi5A5xtwrY60fKX7gq9ER8CDMuF74+06YnVgM74/3ub7421+C0hFyWdjGuCH2SvumuHcHaGzLwCO4KplVEkiLUq4aESxZhfGE8f17AL9TyY9fuOTn2av7NCRBX/h4e/wxe7LSw8lidbPYyf5aJLyqjQBQEWAYyUtHrnAhOJ2alikpKqgm+TsdA55erz1WhzyzrY6Xw5M1Wc0WIrLOdOHcEMELn4JWRudFa26DogSHi08LprarLO5xJvxibyYTtQ/rcN5Hnum+QhMIjbdxUdz8SXRpmUKn+X623hFI4lF6wlzAe0UN9lsV9CwMHeVhXkf6xUbyTEDc8xh0ecHh+/ybLRN7i5msmOtoywdUoI2iiwJBgnyjOOUl5aytHTShM1eSprcrp5QnmBPPrEl1nm0FCRXbE8+b00ukGQy5W6yy0D16aoOqUzfiqjTaWpBas2kqy/uFS+4lcWCiK5rzUWq5rSlV3UfF+9E3bj2Jo0DNnTOT/af8JP9J3gPL8oO3xtt893xDt8fbzF2hj8Y3eUPRncBGKhJqK+KcLWpJytvq7ChMDxRJUpFI4o1nhAtVGNi8B+O7/IPH3+didfcMcf85Yf/jnvJkMVRu9Wk8PRUifWSJ3nCyyIhbx4jD0WsC5maUNyyY7hQgr1xqJcyyrLdOeLF8GbrpVI1tTrfG/cAUMJOHfIg1i9VwDS1FJ8BpurFvtozXm9R/XVqUbTqindUCI+WDuckeaHxTlKd8uJ62uedPaYFj/nGzzfyvT5F9dfi64YnwcwAwmdP4KOphLASgYhNcM8vj8e7WBMlZfinzr8uj8cLj3I3Z3O+zMJcABsmOPC9mmzy6fAuL8ZbF3Lga9Y+KbVa9Gm6rGNclGil2N3s0s/SW5PGZ50nt7P25IM0YXCF9uSnWZN3VTCJUOLNSPm/KrUgdUskmIKSbCCQJxgFOD9NxwuTLRkbSa7f5FcIuGNG3DEjfm7jE5yHT/MB343Rqh9NNjm0Kf/++AH//vgBALt6WEerPpu9onuGsYL1knFpML6MNul2PaNTp8h7+B/3PuCfvPgiHsHnOi/5Sw9+Z7rvF4hsCRw9FSbt+6XheZEwdGrpxLRwCg9o6ZDCvREw5RG8HPW529sn0wWDdMThNbvl1a0ARIA3gGGeYK1G4PEIihhhso36pYVNXefA6a3UFUajhPBIGSaueaEpSoX3YQosXIwM3CBQrZqQ3Ex2vj1XtfNrLdL35IKNuhhhivb/VfGS9AJ5YYQKUQDnQwNUqdS56qDm1jS1Ob+Bnn9CODoNC/MX4zsc5n2MLNlODrFe8ny8xePhXV5NNs89N5mHp9D3Sa4Ufao0zgsABp2MjW6KWfOeUJ4l9uSDHr0kGEWYFeDxNM1akzu0kKQqYzfZDul6qksqX29LjnVXC1JrKi0dElv/XaXsOBcMH+qml41mtbdVUsA76SHvpIf8CX5E4SQ/nmzUqYAf5xu8KLu8OOzyrw7fmRpXxGjV++k+yQLjCo8gtwbrFKkugk26vx3RqdIL/tunX+FfHQYHxJ/f+DH/+d0/OL+phJ/+kklHJh1HVvG8SDgoo535iUKo2W2UVuERGGkDTC06127ZhL50mr1xn53OEYNkRF7qK+jfdJZDHmxmI5T05FbxbLiBc+G2yEJgaixbP3vLjvO16pL0EADKgReUpaIo1MkbBTHCd91AdZFdedOB6rUB1Fy0CZhCE8T0eVGfG97H1wuBdKAu+F3sCXU+AFoplDp/Gl9TN2VzroQl0/MW5h0yXbCb7pE7wyfH93gyusN+PjhXJsxJeNKkicJohZSrH+ci1g5lxrDRy+ik65vGV9mT54XFEezJu0nCRpZemT3522RNfhNqQWrN5CIkFU5SOI1D1gB10+l4r0tGOj7s7PFhZw+2vx+MKyZbdX3Vs6ZxxcEHKBzvZft8LltsXGG9ZFSYYJOuLBCd/db0WB5bw3/96Tf53ngHgefP3flDfmHzRxdOPzCxDip3ko8nKa8Kg2U2jW9WJzdkrcI7gdElCjfbBHn+5cvGuWYQMCpSjlVBL5mw3Tni6fGqfUqmDnnzwLTQIQ/wTtBPR2S6wHl4fLS1vDFwC05n61IfXY+SYRZclopilR5RVwRU8/csruIK9KYB1Y3XP81Hm7yYiTadHNT0fQxBqAhRXnBRZKmiUFIKVISoyyjYnEv0Ndqcz1uYH0QL854ZcTfbY1hmfP/wHZ6Ndjkqeyuv1zmPrUwjLgFPEIw6xnmJkoLtfpd+J+WSh/ZaNGNPDqRGsXOF9uRNa3LvPUqot8aa/CbUgtSayVlFYTWjIqGkPbEBOqrkK93nfKX7HAjGFd8fb9epgAc24wfjbX5winEFQjKxobmoibVT1knWzSb9Sd7j//TJT/Gy7JKKkr/w4Hf5cu/5hdYl8fRUyKV+nie8KAyTi6Z4eII5SaExlc28a9bzzb72hNYUtvbGvWBOoiw7nSOeDzeYnTD5hU1rm4YtpauAKdRILLrhYWTJbvcQgBfDwaxbYAtO59OFP7INgHKCIo8AdZ5rwDmBai4oea2gc9uB6gRAXcdGzhFtmqfemfeyuQoV3PnUOYwkpuvxMaIFSin0JaNQ0LQ5v57p3SIL83GZMkiG3M1ecVh2+Y/7n+HZeIexXc2NtAlPUglMBU9KIS9IPpOiwDnoZ4aNXodkjdL4TrcnT+hofSmYnrcmR0jSt9Sa/CbUglSrW6cNnfPN/hO+OWdc8b3oAjiaM67ozxlX7OgRRofoVFVPVus1TmT/4HiX/8uTbzB2hh095C8//Hc8SI8vsKYAUFp49kvN8yLh2F6NjbPzkokVpARHPxdrqFYY0ul/s2B4NwJbgpfDAff6+6S6ZCs75njSmTN9mI8wTS3FV4sQex7095ACjvOE/XE3bvmq9+Ut0IVOYR8i1DK48U1KjS1laHx6Uc0BVR3gdSeHeNNQc5uA6nrS9xp3JsTM6hdEm8Tyz2DzBkfzoeZBlSGgpdz5Mhw8AaAEIKRASYlSF62Fmuo6bc6bFuavxlsc5BuUTjFIhvT0mIO8z/eH7/FsvE3hzr4J7JzHOouzAZ600WQmRp4uARGlteSFJTWajUFGNzVrYSZROk9eWnJrEUAS7ckHWUJmzKXtyVtr8ten9qi2utVaZFzxOO/z3fEO3xtt88PJJkc25XePH/C7c8YVX+g+58u95/RNPjWiWDYLukZ5D/98/z3+78+/jEfw2ewVf+nh79BXxbnXlUpLRzqOreKTImG/qoO60gELJlZhCI5+3kmupGTkRmBrsa344bjDZmdIL5kwLhKOyyzUHtYptadt7HTtdg5JdYl1gmeHm5ebwL/NOvdhC++1lB7rJEVhKMvwOb+ydLEqctIAKh//rvS63u11BqqLAdRceGjRzjR31ov6ffB1it6SI9A8WHMPzWy9gqsYyJQe5DkgKqwjmlIICSLYml/cUKK57nAyXqXNuWDWwvz5KBhIgGDDHOOBV5MNHg/v8WKyhT0j4yHAk8NZH+BJK9KOxujLpzM675nkJVIKtvodBt300rVEl5EH8tKRL7InTwxdY9CXsCdfZk1+L7lDX/Vaa/IbVAtSrd4oSQGP0iMepUf88c0544rxNh9PThpXPEoP+GL3BZ/vvOQznb1Z44prBivrBf/dsy/z2wfvAfBHBh/zS/f+A/qcMz0tHD1pKbzkk9gPqrxOUw0vZu3RrwCmVrrc+5kfp8BWw/hBxLS8mEJTpd81bcWPiwQEbGZDtjpHHB6klBdNjWmMqasnbHeGADw93DxzotFqic41Fwjvt4xW5pNCUTgVGqGGp69eC4CK+Pfr1joB1en1TycjSUtXUkWUmjtVLXyRGxWrAlTkHdeAqFWhxUeAEhGgIFibqwvYmp9YN8HmXDt9JTbnAk+qx5g5C3MtLJvJMdYrno53ogPfBqeZXZ2AJyUjPEnUJfscVZoUJdY5umnCRi8jM6/nOrvcnjyjk+hL25O31uTrqRakWr3RmjGu4PuMneIH46lxxdOiz8eTTT6ebPL/efUhSjg+yPb4QgSr97KDWae8KwSrodX8nx9/k++MdhF4/tPdb/Mnt35wrhuTEk9XhVSBF0XCi9IwvmaXplpeBKtoBVo5ZIzeXETnXUqc+N0hZDge9fCIOGUVua9cLqcRptlInefZsE+qCzJd8KC/x8cHu6tH86qJVuN8kMJxb7APwP6oy7BYrV6g1ZzOcXII4YM7pxNMCh3t+2WoYbqJNMoGUEGoofKc35TiOvQ6gSoA1PQNEMCp5nYuvqqOLlU/wx0RH4lMLMoiWEVz9U/1mObUhKjK5+C8EOW9D+eAEMhg6Yn3oC7YG2rRKCubc3VJiKotzHGMbMrL8R0O8x6ZytlNDpjYhI+P70cHvkWNxINuAp4ArHNM8pLEKLb7PXpZcqNpfJ55e3JBqjV3B9mV2JO31uS3Qy1ItXqrlEnLl7sv+HL3BQCHZVJHq7432mbfZnxvtMP3Rjv8v4FUliENsPOCL3Rfcj85mr1QXxCsnuVdfuPTn+JZ0SMRJb98//f4if6zc+yJpysdRjoOSs2LIuHwiuqgzicxtUdXFunP17j3/ABV9WOaPdBV3VLhg6GIjX2YginE4vHMzqXCSB4fbPPe1jMyXXKne8Cz4WZjCT+3NPWs9OR+eO7199HSkZeKF8eDc+5pK2DlE6QCKO8EeakprAo2/VXU46Zq0ebGKxpA1fz7der6gGpJREksSN3zzJg8uMbi4fPUgJRIM9Oxiovf1a8+9Avqn+aHNx+FgpjOR+gVdRZE1XVQIqTxSSFwPtyaUUqu3PvoLF2FzfmshXmH/ckWwyKjaybcSfcYlh2+e/Auz8a7HJeLe+75CE/WeqQKFu7XBU9FaXEu9Nra7GUMehn6htL4KnvySRGiTkYpeknC4IrsyeetydOGNXlXdenIrLUmXzO1INXqrdZgzrjiVZnxg8km3xvv8J3hDkOX8D8f3+V/Pp4aV3yh+5LPR7DaNuPZFa4AVt8Z7vBfP/4mI2fY0iP+8sN/x6P0aOUxJ9HOfGgVj8cd9kt94UjQ1UhgbSga0LpEiTl79KVLnfbcYmDyBDgqnMI5GfqCIXCuijCd7zjMl0aUTvHkcItHm6/YzEaMipSjSSe+bjaCVT3kZUgXbD67kY3opRO8hyeHW1dfp/Y2aJVDJqITn4ciApR1Msx2q/fkvBC1NDSxgpa87s0AquWgtGi/qxsZzWjtbEru7NZOoIn3M+O6VK3HigBVD20uCgXTjEHhxKl1jp4QhRKE1L0qCuVcSDVW8vLOfJUua3O+yMJ8ZDMGZshudsBh0eUPjz7L8/EOY5ueWH4GnmSAp+41wFNpgzW49x4lJVli6KaGxIRtXefV1RMjX3P25LuVPXliSPXFb2K21uS3Xy1ItWoVJQTsmDE7ZszPbXyKlgWPiwF/eHSHb492+f5omyOb8u8OH/LvDh8CcMcc8/nOSz7fDf968wYRc9fWf7H3Lv/dsy/jkLyf7vG/f/g7bOh8pfFp4egpS+EFn+YJL4vkeuugziWBdQJf6NBrSp4OU6L+Ge3FBYi52ZjzgtIprJd1XZNz4kLA1NRpc2IBjIqMV8M+290j7vX3yUtDYecvldO75cJ7vPR4H0wMjCrZ7R0A8OJ4zuq81dlasVhOxf4/tpTkTuOswIsQMqhBZRUAWgnYVhnTCquZA6pFLn83rSlQ+ZpvTkbd/YnaIx/T75rgcbJeqfH6JdufmQbHOqJm9OnCqXsLxrUqQIkFx8AT3PnkaRDVMJKQMq7IB4iSQiDVJaJpcwoQdTGb80UW5rk1bCTHdPQB+/mA7ww/4MV464QD3zw8KaXoZJrEXB08eTxl6SitwwNaSfpZQmo0qdHo64YnP29PLsmM5l4/pZNczp58mTX5HbNDX/dba/JbqBakWrVaoNJJrDPc18e8e+eAX/TfJ7eSH463+fZoh+8Md/nxeIPnRY/nRY/fPniPYFxxGMHqBR929kikBYKpxP/j+Rf5Z3sfAPBTg0/53937nzAr3JoWePoqrOdVYXheJIxuqg7qnHJekpeaRLkZmAroc7KOCSpACul4dePpWM90FdPMs8BpkV4O+2Q6p5PkPBi84qO93VMKqkWwwZZhInp/EKzOhw2r81Yr6sy3e9oLylpBYTXWygDXkgC2Z9VDrcH8pP7YVzVUN5Z+6BdHlPABWprgEw0dAmA00+xmFly6mdM0E306kbp3wejTohDb6aOstSwKVckByosTvXvr5WP0TAqBkA1Y8kwb7V6BM189HuHrXlHnWeO8hflhvoH1wYGvoya8nGxGB77Z5uRNeBIx8tTJQjRIX6IGaGafnKewFuscAoHRko1eShob0l63A98ie/Ltbpd+msSUvYtHnU5Yk0tDV7bW5G+K2neuVasl8sQmvggSaUm15XPdl3yu+wp2v8vYKr432olgtcPjfMDHkw0+nmzw/937DArHB509Pt95yQ/HW/zh8A4A/8nut/nF7e8v/k71s390pCORjqNS8+y11UGdRzFK4ASJ9GhdhKanNOqYkDU4nVXHdLGtL9fqR07w5HCLd7efk+iSu/0Dnh5tnrKGAFM7vYPa6vzp4Wmvb3VCpx6qeStzTWmDlbmH01P51vktcCBi54WzwyWn/N18YuG6/IkHLwVKq4xxTtcCT9XCF4CnxjDCMks4Z2oucXLNUyOJaR1UE+hqiLqktffsmMOAV7U5F8xamL8Y7XKQ91ECBuaYwmmejO7weHSXvclGnYbsvcfa64Wnut7Jh4hdohUb3YzUKFKjr9U4wnvI7fXYkzetyUtXIkVrTf4mqwWpVq3OUGE1zkmMsmhlY28hSaYsX+0/46vRJOKgTPjuMIDVt4e77JWd2rgCwAjLf3H/9/nG4MnyjcXralUHNbaSjyYZe4V5zXVQ8woTNkmY3DbT8qpo0jBPkDKYABRWXUla3oJRLNVlt2J9rJfaeMkgGzEqEg4nyyNMHZPXVudPjjcpvVqrd2zttfDNDOlDQji8l4zzAFBN8PbSIxyzdSu36cA3olNLNb8/FTGeejNGTO3YEVXW3IkUvUvrDIBalrp3aXiqVnQBgKoWPS0KBVOImm+422yo26yDqp/34fmrsjef2a7wGKeRZ9x8WmRhflT0SGTJdnrMqEz50dFDnozucFj0whLeY62dg6fQJPeq4Km0lqJ0eBbUOyl5rfDUtCeHYBQxSFMGaUo3NWRaX/icXGpNng7oqQ6d1pr8jVULUq1arSDrJbaUGC9IlUVhsb66lRy0oXN+auMxP7XxGO/hRdHh26NdvjPc4bBM+c/u/gHvZoenbkfh6akS6wVP8oQXRULh5ezE4aYlfAAmESa01R1gD3gnKa2kjMYPzkucE9j4JS+BVBdobeNyl/uWvOmMrXGR8nI4YLd3yJ3+PpPSLKx5ksJxr78HBKvz0SSDRt3UjWudQaJ5PE4ZZ9PKPC91sNpvTh7jsqEh6unruhWaB6plJ05t1BBAqTqePqbmVT+vVrMA1Hho6cubtVdNva7oU2NoZ0ahYNbmvNpKWHZBHVRzufj8VTrzhW1Pbc5P6xVVW5gLx6gMFubHeYeOnrCTHnJcdPjO/vs8G+8wLDsLI09ZqkjM1cCT957COkprgWCF3u8kZElM2VPXV+/kWW5P3k9Cyt5F7cmDNXnOxOXRmlyRqrS1Jn8L1YJUq1bnUBWdSqKhQoiynPxSEwLuJCPuJB/xrc2PzlyvwNNTAT/2S83zImW4qA5q/hvnSidMIX0qpKm4enveg/eS0gus1VgfUvO8FyE9b8nXYDXnGZeGBEiUxQtXp/qdPZrTdVPz5r1Rj8zk9JIJ9zde8fHenTmLd8/d/h5aVVbnG8zWTd0gTN0GmDhjjEJ4pHTQBCgvZxat7y2sgfvdhTQT4FhClr5h5FDB07WB0ikS022fBlEzn+r6jfIN+BIXOj8XwdtFT/NVolCwuFfUtKHuXB1Uc7lrcOabjilA1DKb80UW5uMypW9GbKeHHBR9frj3Ls9G20ysifBUXgs8zdQ7CYFRks1ediP1TtaHbS+yJ+8aQ3oJe/LWmrzVIrUg1arVOWW9ZFwYjCpJlIUF0anV5cmkIxWOY6d4niccWL0UTk7oQmAVYQmPkME1r1rWeRkdi3TsxxQjTedstjv/yrw04CWJLpY6+q2vP4Dg6eEW7249J1GWu/19nhxu1aMapCP6tdX5duO9a8CUENfv0HYbIOoUBbt7B15QVr2gqvNkekinE+t1hqgTGazNaqCo2lkwvtg3nm9ETE6U5tw0lC8ou3LVXRJOz0hErlLFs0RNaPILn1pNc9H806JQEN6OJkTNN9RdCEhVPZQI6XxXDVFTm/OTkNO0MB8WPfYnG+QuYWCGpOkxe5MBnw7v8Xy0yaSUWOcRwl45PNloUe5cqAtLtGazm5Fcc72TB0rnolGEC1kQRrPb69JPUzqJvrA9edOa3HmHEZo0WpP3VJdOa03eijUHqb/zd/4Ov/qrvzrz2Je+9CX+4A/+AIDxeMzf+Bt/g9/8zd9kMpnwZ/7Mn+Hv/b2/x/3791/HcFu9RfIIcmuwXpGq4tTo1DIZ4ehKy8RLPs5T9ooEe9nZ8ILJm6wjTSfrmEorsU7hvIiRJkIj06vY/Jxyq3AeUlOipKV0y+Fz3ZjAecmTwy3e2XxBPx0zLobsj3sYVXKnH63Oh4uszgXCCRB+Yb+pK9G6Haxza2plXloVor5VxG/BqbgOPZiAs6NKvvGv2pFmausqNOCnh6AGqutM850DtmVXAtl87aJxXMFl7NTG55X8zI+ZiNP8a+D0KBSEt0dAbXHufBWhP1kH1Vx/ZZZwlfbmlZbZnDctzA+LDfYnG1gv2TBDUl/yYrzFp8M7PBsOKKxAiGAjnqWh5smYy8PT66h38oRap8JaCmtre/LOFdiTN63JC1cghSRprclbnaG1BimAr33ta/zTf/pP67+1ng75r//1v84/+Sf/hP/mv/lv2Nzc5K/+1b/Kn//zf55//s//+esYaqu3UNZJRs6QKItRFnDYM2y7JZ6+KnFe8KwIdVD5pftB+RhhAtkIfUzT8kItk3PTOiZ3woj8cjrtq6XaTuEUvhCkpkArVzuv3YavpUmZ8OJ4gzv9A3Z7B0xKw53+PlL4YHU+6i1f2AsEs/2mrkS34cAtkoe6mS5graRwOkZ2ObFfryUKdQKURONn/LWuUbogKK2q6waqJQDlOeMUW7HebdUhnHsVYnbTovnHOVVBlLBiaiQhYp3TKSB3HfbmlaY256YewkkL8wFCePp6TO40nxzf5eOjHV4O+xAdA3sdHeBJq0u9T957itJROouo651SskSTJhp9DSl73sc6J2spXbgAaCnQSrHTDU1xL2NP3lqTt7qs1v7s0Frz4MGDE4/v7+/z9//+3+cf/sN/yC/+4i8C8Bu/8Rt85Stf4bd/+7f5o3/0j970UFu9papt0r3EqGYz2tmLusDTlRYtPPtW8zxPOHbnvfhHYBIgha8L0itgco7QnNTL+O/8aXnn1ZKbtEtlnWQ8MWSmwChLufaW7lPtj7tkJqefjnm0+QIhgtX706MtztyHCFBXVjd1Gw7Zkom2kiGt1DpBbjX2jL5o1w5Ri+5jLAQlOfv8TeuqgeqMCNTSU6wiLAHNubO7wBjWoqKkShm14ZIqlhhJzMh73DU489Wrj0nC2ikkkKgJqZ6Q25QXo10O8z5GWTbMMcMy43v79/nkaIfDsoeWkm73auDJOUdh3Wy9U6dDZjTJFdc7LYo2CUKdUyfR9JKEjg4Rr1SrECU87za8J/fBJKJ0JUooUpm01uStLqy1B6lvf/vbPHr0iCzL+Na3vsWv/dqv8f777/Nv/s2/oSgK/tSf+lP1a7/85S/z/vvv8y/+xb84FaQmkwmTyaT+++Dg4Fr3odWbKj9zJ9R5QVkqEm3JVAlO4EWItkiCpfmxU3ySJ+yXZ9VB+XhHNKTkiapQwYfUO+9gYlUNS7aOMt3sxX+VOVxV4zA7Z5OMi4SUAi0dpauO0rpL8Oxok0QXsT4Onh5tnQkCzeWbJhTzx2XFVay35k+GOkwQrPKlcLEXlKFc5bhdB0BJmKlbqqAJweKeSmumywJV47XVomcu1ghPCbn4NKzm1GcB1bp90h0gLSgkYoX0vMreXEmJvCaI8gISJ+noSW1h/uT4PsdFl47O2UyOOcxT/qe9d3k62qHwXZJEs5WFmqfLcECz3klJganqnWK90VUxRtXLqTKm8IRok1GanW5KxxjSCE3mgj2dYLE1+UD12WityVtdgdYapH7+53+ef/AP/gFf+tKX+PTTT/nVX/1V/vgf/+P8/u//Po8fPyZJEra2tmaWuX//Po8fPz51vb/2a792ovZqbdTeBbkCTbsVBQhh4d+V6cLi14YZhvBx/iDCRV80ZxwiTBimtsPxn5NYwEgHOEovsQieFymvSkM55/gGjX5MC+qYrKvsxSXWidpmfB20tDxiBUDwXjAuDKkuMar6Il2P/TpNzkueHGzzYOMVR5OMYZ6dcw2XqJtax8vDfNRpZoxhPyUOKT3OCSbWUKwahbwqiJoHJ0fD5EGsNzSdpvMA1Vz0af7lC98NP/uCVYMPMh7i+TGs26e7umZLB0qo5XVQDV2Xvfl0TB6EZUOVJArGNuXl8A6jIqVrJgzMIXujLn94/AGv8h3QXdKOondJwCkjPHl/PfVOIdoUoluLok39JCHTAZySC0abKp1uTV5FnVpr8lZXo7UGqT/7Z/9s/fs3vvENfv7nf54PPviAf/yP/zGdTufC6/1bf+tv8Su/8iv13wcHB7z33nuXGutVSbyx1pkXB5qZ5+I3c2VwVYNOtZkIPFWLWN8EnPgq50WYR/kKSqrHBBZiH6Rg612BkvfgZtbZeC6uM/ycPqaEJzF5hIRg6CAJvXEW1jE5iXUS2+jH5PzV1jFdh0RjUnZuecGkMHjAKIv3bm0g8TTl1vCjV/cut5Lz1E2tE0AtnaCfHKQQLhixeMmkVJTncaS8KETVF5YF4FSdW+v+oTqvlgLVXJXTAoBatK7mi87DCs23LBhSiGm0a8YK/fXLE04J5QVayJVuYl6nvTkEC/NUj9AI8qLPi8kmkzKhq4Z05DEvjwc8Hn/AodtFqoxu/+Lw5LynLC2liymEStLPUrI0WJRftt7JeeoUvTKGKK8j2lRpkTX5tt5kYPqtNXmra9Vag9S8tra2+OIXv8h3vvMd/vSf/tPkec7e3t5MVOrJkycLa6qaStOUNE2vebS3QeHithLAnPJccz3VX4JYvLskelM7/zbgpAIV5ySOKdDM/i7mQGY51MzCj5iWPESQuu6v9NJDPsnIdElmCpRwEZCoC+tvqo7pqiTgWnoi5YXBe0GiS+Q5ek3deq1SN/W6T4tzgFP9jHAoGSbORakpnFodkKs7H6tqngrqD7q8HWl6V6kIVBUk1A/GO0+nvgONuqcVAjMzi1WHt+r2Nf+WhO+DKvL3+oGqhigEepWULt9w5pNLLNAvIS0smRrjhWNY9Dke71KWkq4eklLybLzNi/w+R24HbRKyi8JTXe8UrNqNUvQ7hjTRJFpzAaM7YHG0SQJahx5OvST0b0p1lRp4uePnvaf0NqbstdbkrV6vbhVIHR0d8d3vfpe/+Bf/Ij/zMz+DMYbf+q3f4pd+6ZcA+MM//EN+9KMf8a1vfes1j/TyksQ+PxdOTWMarmF5alodvZmJ3DQfq0BGRggJfZQcxNocUf++CGp8Hf1ZADX1MrO/v/6Z49XJIxiVhiLWglzWXvymVd3Uvol3pCg13gdHPyXtQsOON1OnNO99Hbt/AXCavtbVTnyFVaEX1HkijKtEoerVxel4DU7i7QOnBfLVfzxIROj5JOayG5svjofsrP5K84s1A1eSqfPmslWIuI1pQ+HXAFRxg8HdVKBXOTcbEKXUOQ7SCjKyoKNyrBe8KrocjAdoqxnoEblMeDZ5xMvyHiO/hVCSiziW1/VO3qOEwBjNZmIuVe+0ONokMUqFaFNiyCI06UtEm5x3NTCVvsR6W89jNAotTWtN3uq1a61B6m/+zb/Jn/tzf44PPviATz75hL/9t/82Sil++Zd/mc3NTf7KX/kr/Mqv/Ao7OztsbGzw1/7aX+Nb3/rWrXbsk1JSeEFPWyzUNxNruGEKIh6BdwK7JDXNzaWmVVB0WmrabERHTE2r3ooJ7fWpvCURlmZG1Ot4x0ur8AjSmca9b8O5N1s3dVPwClwOnBorUTKkq1onyUu9MkDVk+llEBUJQFT/bTrp3eb6pmuQYwpMIv4euZaFl6ALpu6tCk+LdONA1SA+IUVtc65XaaJeQdSV2pt7ElmQqZzCaV6MB7zMOxjh2VYlpch4nD9i391jaPth6OfcbFFaSjvt79RJDJ0L1jutEm3KYrQpuWC0ydawZCldifNh7FJItNBoodhQA7oqI5EJiUwwwpBI05pEtHrtWmuQ+uijj/jlX/5lXrx4wd27d/mFX/gFfvu3f5u7d+8C8Hf/7t9FSskv/dIvzTTkvc0a2g6P84THx11KTCOic/nUtHa+0aqpJjTVf6+BrJWMnQm9pqQ7tXHvG6dYNxWiyde0z0vB6cQfK61MSYcQUDpBUZoIv6sPZQai6nB6MycY8AJfm0Occ4hvuKobYBU0zafVVZLxGDc/Tqu8Uyfqnhak7l1E1wZUzVAZgIzAJwSVpbhaAaIqZ76rszf3ZConkTkTa3g83OKo6JDqkp00pyi3+TR/xKviDhN3PgObhfVOnYvVO1nvKayjnIs2JUoxmIk2afQ5cgG997PA5MvQ8BhqYDJSs2EGdFRGIgxGmghNuq1varW2WmuQ+s3f/M1Tn8+yjF//9V/n13/9129oRNcvj2DsJMdWY6/47Vl0KW3nJG+PXne06TxyXjIpDMlbClPA1cLU0nTBi67fI0VwmrROUJR6NSvzOdVbl40p9JtuDHFFqgBHNqJPyyXq1D2JCJAg/HQdS9Y9fe5q4GnxyK4AqJoLVOAU97mSiyeS9M1Y2pLVVfbmV+DMJ/BkaoKWBePS8Mlwl7HN6CclO52cvbLPj0bvczy5S+FXd5Jr9neSQlyo3qmKNuVliDZ5qGunemlCzyRkRp8r2lSl49kGMFXvj0KhpaYjUzpqi0xmEZYMRhiM0G1qXqtbp7UGqVbXr/lLVjtneXN0m8BpkZwPvaYyU6CVxVrJbbBHvxJVKWsVYJz3gzkPThdK11u84gqgnAuOi8W5ILeRs1hV/Ht4K40hLqAq+iQ4PfpUSYgKJmZfJRCIyjWyAVSVrhueFulcQHVK1Onkd5qvX668RJ6xR7Uz3yUhSghHR46RwjIqU56O7lL4jE0zoZNaXhYb/Phol0lxn8R3V1pnaUPKnosW5UYrNrOMRK9W7zQfbRIEB8JEK7Y6WQ1Nq0SbQnTJ1rVL1tm438HAQwsdGtzKDolKSGIqnpHJagYfrVrdErUg1WpGbdTqdmpd0/QuLS9C415fBBt57/C3wB79aiTAiemM+bQP4rWBU2O10UgiAJQOvaDOvHs8V+zlASumxhDtxWUlNSNHwp8efRJVJGZl54jg5uejy4kQRMh6PZoFKl8bIc3s0ing1NRFIEqKkM53UWc+iaWjxoBjaDscFJuAoZ9OsFieTe7y6XiXJ0WHLl16nJ7GN613Cvbhq9Y7eaB0jmJJtKmfJDU0pWZxXzfvPZZQt1RBk/cOj0AJGYBJGgaqT1dlGJGQNCJMbTpeq7dBLUi1OlNt1Gr9dNujTeeSh0lhcB4SbfFvkz06BJgSczB1JQYRq0mI0EwXB3kZnPi8l4s31bQc9HE8tpEq5mRtftDqdDWd8SoDiWVnvUAEM4UF0adFa25GtlTEiyqT1HmHi4wr/M1fX+pT3FdgJ6Zus6IBiqeuwzeOnYz3Ik5ZqOHMJ5U4d3qZ9x4lSjpqAsDQ9jgsN5BCsZlOGFvPR6MHPJ3cYa/sMsHSJaG7AKKc9xRlaFAuEKHeKdYmJafUOy2tbWpEm6raJjUXbQp24kUjwlQSDz9KhHS8TKZ01RapTGtQquqX2nS8Vm+zWpBqdW61UaubV3N++rZ+ZRWlAUKvqamj31siH+/OS4+obMeA6zwbhHDIeOKVEaCck7MRrxlwilEmVzmFhjFXs17huZYeZG+aZgDqrOjTktS9RWttwpNAIIl9pRqLVmAVuPlmgGoROAEoqepzTYhY1+UC6Hm/HKgqiArpj2dHoS7qzFfVUSWioGMmOBRDu8FROUBL2EgmHJeG7x6/x7PJNse2i8eTU5Kh6dGpRxbqnWzs7xTqnQaddGm9kwcK5yhnok0Co+Sp0abK7GFiQ4SpSsdDCAwKJUM6XkdmpCqdGj4Ig5btdLFVq0VqPxmtrkRt1Orq9FZFm86potQ4L8hM+Zb1mgKIFulVSOe6XP2iEx8EO/oAUCLkBcnGjNrH1ENfuYouSNWLr5VNOmi1UKum7wkxTWs7S02oWAZPC7fB9QJVE56qaJqU0QRCTiNsM2MSAiFBIBcC1XwUSlUR0TMGUkPUCu4MFTzhPaku6OgCh+bQ7jIsuxhp6ZuCg6LLD0ePeD7ZZuLSuKkAUSZClLOO3DqcByUFidZ0MrOw3mlRtMkohVGSrU5GJzGkSpFqjZQipuNZCj9hXFict3U6nhIKIzW9Cpjm7MTbdLxWrc6nFqRaXYvaqNXqasHpfLJWMfKCzLxtvaai6ropP02fuxJNAco6QeE01sU79FVuWRVxWgZOlRqw1abynS5HjJ7A0mN1nrqnWXiKqW3TFZ1LVwVUC9P1AFlHnc5O16sGJFgEVL6ul1opCsXq9ubV67wHKTxdU5DpktIb9ss7jMoOmSro6oK9vM93xvd4nm9R+tnpVU6Jt6BKRY5FS0k3NWRJrHfSss7eLZyjLE5Gm/ppQi9NSZUi0QqlPKV3IcrkcybOg43peEKRyYQsNqqdpuOFn7cxHa9wllFZMCpLRmWO82CkZJCk9E2Kli0Etrp5tSDV6sbURq2C2jS9y8s5yTh/S3tNwZwJxVJvs1VXhhIeIT3WSQqnKG04nt6JulaCVU0+aohaDgZvu6oAneQ0gJpalp/1/vq5q2ld93T2oivpIkAVAzeERM9G1ElU9VyXGFgEKmRYt3cxiuckUpyMZs3LxZN6mTPfLDyBktA1Oamy5D7hRb7DxBo6uiBTBS/yTR6P7/Ay38ShZrZjrSP3JQAbssdmtxPhKdQ7WecpnON4kjf6QCkSJdnqZqRaoVQYg5cO6wusLxgB2mq01PRUl47MyFQ6NXy45el4hbUMy4JRWTC2JQ6PkYqO0mynGV/cukMvSXg2PObx8JCPjw+wztHVhn6S0tO3ExZb3T7d3k9Zq1uv2wxWJy7PKwy+vaRfrYI9uiE1ZYSp6r7+WyIXJ4zCnxOmqvCnR8lgZ15aSVFoylLj6jS8ZjHUihJhHG0q30lVh6M6qsvS9y5a9ySvGJ4W6TSgqkfViDpJIRBCLk3Xu6gqcPQClBehnsqBkx7nQqR2GVDV9uZzznzTtD0i9Am09HTNBC0dY5vyZLKLdZpM5RjpeDy6w+PJHfaLQagLJGzfOhe3IxAKUq25m2ywlXSx3lPaAE6esB0jBd1EkaYaLUGpkG4ohEPg0UKjhaYjMzoqpONVtUtGGtQttxOf2LKONI1tgfchdbGjNTtZl/vdPptpxkaSMkhSOtpMF96BcVnwYjzixeiYj472eTkZ8XR0hBKCvkkZmJRE3e5j1Gp91YJUq2vVusylLgI+C5drtVbyFUzpMtijO8db02sK4m1/MS1CWlg3VYUNpie9JESgnJNMSkNRqmAOcdEzvlp/m8q3VJXzXAVRM8+tnLq3mmnEdUsQ7MSF91j81DodccIk4qrVTF1UXqLqQjxQCKTwOL8AqHzDmU+KAFHeT28cRHgKAOXo6DEqWpg/m2zgvaSrckZofjR8yNPJLodlFw9YFyJPHo8SAq0lqdYgQl1UT2RIpzicTJBKoJWnn0mMlmglSJXCSFPbiXcjMAVYSm51Ol5T3ntyZxkWIdI0sSVeQCIVXW241+1xr9NnIw3ws5FkZPrsaWqmDe/0De/0N/j6nQcc5BNejIc8GR7yyfEhT0ZHFNaSKs0gSeibNJwXrVpdgVqQalXrdc1/Vr6ctVGfVovkQ2NYDxhlY83EWwRTMFc35aez9qZiA1YpPN4L8okJRhInjtU5UwXbeqiVJOe63p7HsvyiphFXqsrjxFPXJMn4DyFwcg7yrniiOtsTKhyDRZbmQoqFQAXUEOUBZ0NkqoIqJQRaWjpqBAiOyw6HRR+JoKMKjsoO3zl6n6f5Nsc2w1kfb9yAEoLUqJAqKAQWT+FLcnIGOmEz1XSNxChJ16RkOiEVCV3VmXPHC81qbzswQThHJraM6XklE1ciPCRK0zGGh/0Bdzs9NpOMQYw0peryU1IhBJtpxmaa8eHmDoWzvBwPeTEe8fHRPs9HQ16MXyGArk7YSFKyZoSrVatzqgWpW6x1Bp/6Ne3EqtUNKS9MsCN+C3tNiWmy0zQ65KIhRHxeSRcAKkagTgLUdG2rbzhMm1tr8+WaryNaNXXvKk0jLqz4njo/je4IQXS4C6YPVRRNxfFa73H46Mh3NUA1H4VaxUxiBqhcGBNC1Ol0FTwJIdCioKPHWC85LAYclz20cKTSclj2+N7wPZ5ONhkVGutB4BDCo02sY5MeZIlXHoSkqzQF8CjZ4fODR2wlPZKZ/ku3Px2vKTcDTQW5tSAgU5qONrw32ORup1cD002m2hmpuN8dcL874Ks79zgqJrwcj3g2PObHMQ1wdHyIkZKN1rSi1QXUgtQa66rmJS34vD26rO3AbVdRGvCSxBRvtD26oEkusWeTrZ+pU5kAtHLgoSgVuTVXA5h1quAbVA8l5n76uZ/nkZ8CELCyZfl1m0acqbmoUwV9KppENMHppMI+ahHsJVyV9ncJoJqPQqmz6vYqk4jGvlQpe0oIhJI1PIEnkQWpnFB6zat8i3GZYaQllSUviwEfD+/yeNSncBIvHELmKA1SSbQM/Z4SldDRCR2V0jMdUplwUEzYTvp8bfM9evpk093bLOc94xhlGpYFhbcIIFOGrjZ8ZmObO1mXjTRjYFL6SYKR6wONfRNg6f3BFj959yF7+ZgXoyGfHh/yZHjIx0f7lN7R00lrWtFqJbUgtWYyenrBOe2j24JPq0VqL/eEdDUEqX5z7NGFaNBKZT3u4j4tuQYo5RAQjCRKfXXOhm9aKp8IEYZEhQm09MGQ3DeLmSow9dOFQhSw+hke857QMJkqdS+up84uC8/5+BofVxwm/qJC0+m7JFx0vpt933y9bPWAmI7hPPvegEUXmjKFqJMEJSRU0HGu0yYAlRIgLwFUzSiU9nI2ja8JTNV+NIYZjBoEMtadzW7Xk8oJicopnOFFvkNuExJVoGXJ48kGHw23eTbp4hBIaTFGkGhDplMGukvHZHR1QkcHW3HJNB3vZX7EltngKxvv3HqIct4zKos60lQ6hxCCTGu62vC5/g67Wbc2gbht0RwlJbtZl92syxe37zAuS16MhzOmFc9GR0gh6Ouwj61pRat5tSC1ZtJMJ0e3e+rXqtXrk7WSsTek+jbao/t4078CJxkm3n56bThNuuoFZSW5VWHfL2Mk0VQjWnPbIUpLS6ILEmnxLqQ87o36HBUZzk/7Ggnp8NEeHuGpjd4iGEh8cODzIGXsWyxdqOCJIKaEo0IfIXyMKFZRK1dP9BVEp7aG5BSPKvwC6nVXj9fPxXNHUIGZb0BXJI7Koa5aLgKTiCsSJ7Y4HdEUXk7CW22VP7OcxxGtwKsR+LA9P7c+CH21KkSVXsbaspia56e0JJgCk4hjPs0uXuBI1QQjCybO8GS8jUORyALrc753tMnHw132iz5GZfRNxlbaZaPTpaNTejol1WbhuisdFCOUkHxhcJ+BuV0QZZ1jZKseTQWld6E+TGt6JuG9wSY7FTSZlL5JULcImlZRpjXv9DdOmFY8HR3x8dFBw7RC1eDYmla0akGqVatWb6Sck0wKQ2IKtLKUVrGeMOVns6V87N3kxbkizlI6hABnJXmpsFaHoFVVpHPZflO33No8RJ1KUm2RwlE4ySRPeDHZZJinjMpkpomqn1m28YsIYBUAhzh5j+YHC10Tp6qiKNVyUgTTCNkA58AyFWhNoamJMs3XEH+v4Huaoehn41N1Y6TgaymkQKkQtRHThRrrnoJiOEd93E61jWBc0txWOBYewdRZI5hjgBIeRYAkF229g2GGiAYp4V8ArejABwg1PcZCNoBp9s1tgKFvmFeG34UPP8c25fl4B+cEWpQM84TvHj/gxeQ+qB12On0+t92j3wlNb6VYHRSG5YTClXxp4yE7aX/l5V6HSuei3Xj4V7kZdrShaxI+s7HFdtqta5r6JnnrgGGRacWr8Yjn4yGfHB3wbHQ8Y1pxwpa91VujFqRatWr1xsp5yaRIgABT1kpetz36fH3TFJy4EKBI4RASvBNMCk1ZqqnJhI9pZLL+g3PD1K1N5fNoYUlUSSItTkDuNC/HXY4mHcZ5yqRMFkdbogJIBIXAiEdYiSakrQktQIWeSl5WNuA+PBt/nYenYIAQ35+ZIGMz3jQ3mHMed++BymAhmkQQrb2lC78LL6A833rPOYo54IsHwnscDovDCTsdnwgRECMliVA14IkqCigqOHPxuLkp+EX6Eo3zvo4oenAOrA2Ne430TMo+n+bv4tR7DAbbvHe/Q6ovfqMldyXH5YQPB/d4kG1e+IhdhwpnZ3o0We9RCLom1AB9uLXDdtphI8kYJAk9nbQ1QQtkpOJet8+9bp+v7tzjuMh5MR7yfBRMK15NRnw6PEQLycAEAL1NaY6tLq4WpFq1avVGy3sRek15EXpN3bA9+gw4rVjftNJ6hUeJ0Acnz4OVuV8QERGAd4Swx3lh6pal8gnhSGRJqkoknsJLxi7h2XjAKE8Z5SllaWLC2ZJ1NP55goeH8B7pBQoV0/caYRxL9NPzOOHx0uOkx4rpRF9GpzmJ4FrmqB68i/bjlUkEoJVCRIe6m54cez91+2uCokCAlPE4egoshXAoNEYFmCmYwideBuira8UE+JiuGj9HPj7v402J0vm6wW5X52wmY/paMpHbjMVnkdk7vJsOuCg4NVU6y6v8mA96u7zf3XmtEFJYG+qZbMG4LHCAFpKuNmylGfc6d9jKsnqi322NFC6snknomSSaVjzi1WTEy/GQT46mphUWT0cZBq1pxRutFqRatWr15iv2mnI+2qPjTrH/vqRiCtTUQOBqwKlevQhRKA9MCh0B6vR9qWFKiDOa9zYXug2pfCHqlKoSIy2OUBf2YtLjuOwwtCZEJG31HsxGfRoZbTNTagc4PMILtAclFWomB+7EMKY/XXCXM1IhpI9z/ghYsZ5KxJq1C0+rKh72fmoSgUAqgawc9oS8kUzWACwVMLn6poGI55qQAtVMyROh/5PDYz10MGg0zgqKwmG9QKMQsQbL1y6TFYjJOro3fbzh7icFG6llO5vQMw4huozFB4x5iBAPSLm69CvnHS/yIx52NvlM7+65UgEvq9za2ghibEu89xil6GjNTtrl/nafzTREmQYmpWuSGxvb2yYpRG1a8YWtYFrxMkarKtOKp8MjpICByegnyZX0zGq1HmrfyVatWr01KspQLJ7oEnmJXlMzyWB1fUuVpifqO+SNV11aklAHBVBaTV6qc49f+JACOE31WzDTrtOw1jOV72TUSTEuDU/GG4zKhJFLsF7inUDMAVS1t4uOWjA5AAjRJy1UcJ5Tpxxj72fNEYREAVJEl7lAZHg8XjqcCNEqhwtAW0f6zu6MNJ+uJ6oeSEpeS9Spbq9bRyVddCCM4BTP+YodRPCuiwAX2wb7aPJiRSOzT5J7C0gyb+jKBB0Lzko8E1+SY0EIUiUxUtepkFWmlAOc89hY22OkIDOwneb0dI5QKRN/l0P7kJHbIfdXX7PkvedFfsRu2ufz/fvXZvHtvSd3U2jKbYkDEqnoaMPdbo/7nT4baTCBaBvMvn5lWvOov8GjJaYVT0fH5LYkU7o1rXgD1IJUq1at3ioVpcZ7QXqOXlOzzzZT9WSdUlQ9dfbyq6tKb1I1QKmGlfn5VKesecCBE6KOOp0I0awVRHlMrHUKUSdBbg0vxgOOy5RhaZg4gw/ZdRABSrgQ+ZiPNjVWGyAomicIL9BCIJEotXSpuJxvwFOIQAnk0smQQCCcCgBnY8Na6XHREdCJqTmDrKJVVX1VBS4x6qSUjFEnEOeswTgBRyf+jo/5CH+uAjioziCBQniJiLAoK2vy+PfM/0Rlpx4g0+EocAxUly3doRPTnaQMx7E6fhNXclBMOC5zvPcoKfHeU9qwB0oKUqPpGckgmdAzIySKid/glX3EKN9h7DdYjMxXo1fFMX2d8oXBfVJ1NeDivWfSiDRNXAkeUhWg6UF3wL1uL9YzBXDKdDuNW2edZVrxfHTMD8evwId0wda04vap/QS2atXqrVMZ64kCTC3uNXU6PDUMIq5RtZW5kxSFxrpw13vZ9NDP/Wxqfq4sPPiqbqqZJrUG9VAyRp2SKurkFCOb8GTUYWST6LAnp5E1IRAFCBfqaZaBa4UrHh+d9kASI0/ydHjyxNQ8YhqdkEhkdNw7DyrH5DQHygUfOydDqqaVjup/4BFCouI/KUUwiRDzZ+aKcFTvh6hfUhn5eSdwLkRURYysCiHCtqUKkCMlWsga5KQMxzn8nKbtSSFmUvgQ4L1j5EoMmns6Y8NkIVVyiVI0mxqkg8Mi56jMkVKwlXXoGk1f5/T0ECE8ue+xZ99j6O4wclv4G5jW7BdDtFR8YfCA/gV7RTnvmdiyds7LncUDmdJ0tOHd/gZ3Or2Ynhegqe1hdPt1mmnFR61pxa1UC1KtWrV6K2WdZJwbUhN6TZ2EqQZRuJuDJwgRKCFiL6hSY+1qEygx9/Os1woHToo6zUw0ePFm5TEyRp1EiDpNZqJOCRNr4isJ1uOSYNxWyghQi9fcTNkTseZLRVe4U2taGvAUNikwIppGiFOg65z77ZwLjhYuGAMgZfhm1uBVSAmMyYBTiPIzPyIYiWkfp6rvWOxB5quDUKU5RuMGKSRaxX9JgCQlFVoJVHT5o4KjCEXn270QYSm9o6cTtkxGtqA2xHkorKOwJaULO5Eqxf3eBh+mGotnUh6QuxcoCpTcYN++x7G7y8jtYLm5+p/jcoL1ji8PHrKd9FZaxnnPOELTsCgofHAr7GhDR2veH2xxt9Or7cYHSXptqYKt1kvLTCs+PT7k8fFJ04quNm0a4JqpBalWrVq9tQr26IbUlGjlKF1lKOADPLmbgycINVASsF5S5IrSXvMlOpZLYS8wSb6kplEni8RROM2oTHiSdxjZlFFhsPOxt1B+g7AgnQzjXqD5eiclCI57Mc1sqYJDSEzdC4lsulH3dJmD5OswoMd7V6frCQWo0NNJAEKKahjgJM6Jug4r2KQAPngASh9T64SM6ZhVLVg4b6t+S1UESUmB0RqtQvqilDI0Vb2G9956x9iWGCm5m/boq5TmoS+tZ1JaCmeBcKe+axL6aUon0XSMwYgSxT6SEZaMveIL/Oh4wA+OMnKXsZFmpPLmpjETWzC0Ez7fv8/9JTbnzvuZHk2FCzdFMmXoGsOHm9vsdnpsJKGeqW/aiEOroGWmFS/GQ358uM+rybA1rVhDte9Aq1at3l4JcEgmVuNFgZEOa2Vw9LvByIwUHik9zgkmpaYob6B5cFy9cCBcmHE76SsTtGtQiDqlqkQ3ok7Px32Oi5ShTZhYzcLEvEYzp2AgIefWHKIaAVSmvZok8ky3PV8nx0W3uUWmEUv3qArjVaOIa6oDVlMbbu983WhZColQKho0qABDRVVjVKUMylh/FUBJylAEZoWjFCW5LymFxcaaJiUESqiYCijQRqFk2H+pYireDdzJ9t4zcSUOz4ZO2Uw6JFJinWdUWorS4gjjTbRmp9ehm4TIjNEK4S2KAxTHeDQlO4zE1yi5i0g2eD+FQW/Mx4d7PBkdc+DHNwJUhbPsFUM+6N3h3e4OANY5Ro30vNKHXliZ1vRMwjv9TXY73doEom+SAK6tWq2gpmnFT+ze5yCf8HI85EnDtKKwllQp+jENsI1W3bxakGrVqtXbp6bzghM4KxmXKV5ZjC5rK4FrH4bwKBkm2JNcx9qtG5hoRWMG6cQ0JS7+XcNUfOxSmxGONDrsARROMSwSDopp1MkRUpgEJ7+QvArHRjrRsDAPqqI01TiFFxGg5IzBhKsKgRq74yMshohN0zAiAKWowSg47VU1R74yhWgelzqNLu6Fl1CGuiPvQuNbKSVG6RgNCj8rSJONeiIRbcKbsi6k/4WfIT0xFQmZSkGC1OCUoxSxwa0ALQNEadSN9q4pvWViS1Kl2dQdjFBM8pKhD22wjVZs97r0koSO0aRahUifdygOUf4Qj8CyyZAPKcU9SrZj2C5IADtph+00453JzQCV847n+SE7pk9fdvjx4V50DAzpeT2T8v5gi52sUxtB9E3STmpbXZmaphWfbZhWvIimFc9Gx/zocA/vPV2TsNGaVtyYWpBaN7XX3VatrkfVZ0sGeAozcdmYBMPEydBrypTBTe2C9uirDEVFg4Ei9oK6rm2d2LCA4L4tTtQVCQ/SCnzsf3SR6FRlEhGiTiHa93Q0YFhmDG1CHqNO9dtxYoxh28KH6JOysq7tcUzd7RQhXU81XN+Cqsa0lblEaFrc3P0ptMSaMA9Ih5cumiM04CjWGgkvEC4JTXW9iA12ZQ1S3nq89eCDJbnSirRjMEahtDo9pZBo5126Gpyq1EKpBFpK0kxjjIppeaGuqZmW57yj8JaJK5nYgokvGPkc8Cih0ELFhsBX/yVTmUl458mkIXMGW4abBL00YSNL6RhDZjSqqkvzHskQ5fcRWCwDRnyRUjygYBfE6ZNAgbg2oHLeMbEBCie25FV+zFbS5UG6xWaaca/bZzvt1GYAvRaaWt2wmqYVX4mmFS/HQ55F04q9yZhPjg8wUrWmFdesFqTWTLJ15WnV6mpVzZ6rCXM5C0/zqntNzTj6XZ0qK/MiWpnfCEDBiVS+ZdM+AcFCHI9bAaZmo06ewulp1KlMGZUJTVxaurcypMQJHwwkpAsmCRUMQYhqKAJAKAEyRirq9Dzv6qEKARoxNZYg2nA3NmnxeBGgGS+RZQqFRjoVIatypJuNcgFY63DW4VzoZSS1wmQGkyi0Vkv7TznncX4aYaqiZTKm4aWJJjFhHU1oOusmmxSSVEhSaUB3KJ2j8CUTVzByOYUrI4hKtJSYmDJ4GXnvGBYlI1uQCc1W2mXTpAw6KV1jyIw54TQn/DjWPeVYuuS8RyEeUXAHLzrnHsMioHp6DqCy3jGxJbm15K4MEVAhSZWiZwxGw4db7/G/fPAF3ult0Y2W7a1arZMq04r3omnF3iREqx4fH/Lp8IiPj/YpvaerDYMkoatb+L8qtSC1ZqrO6/b0btXqEpqHJydOhad5FaXGeUFq8iuDKdWwMs8Lc3MABdNUPh8icWddXyqYkn5x3dRM1MlLJs7wdLTJMIJT4c5R41UDlEAWMbpTA1TsnSSC6UPVa8gRanFKb2PkJv4TEiNEHXlRy0qjpK17N2lrkIVBWo2Yf08ay7sqxa4MJ5XSEpNoTGowRqLm+vl4PM56rHc463E+9quKwJRoRWI0Wku0VihZ9Yi6mqu/lhJNQkclbPouhQ+gMHEFY18wciXggnOfULEW6/Rte+8pncNaRxEjYIlUfGawzYPegF6Skhl1Ij1R+KI2jXCklOxSiPcouIsTV9MstwlUr5YAVekcuaugyeLxKCFJpKJvErbSDXompaODBfmr/BgjFX/i/he419m4knG2anXdkkKwk3XZmTOteDke8qPatOIYKahrq1rTiourPXJrJrXkLmarVq3O0Pwc0J4PnuZlrWLsU9Ik2KNfpAkuRCtzoHSS4hxW5leiM1L5zly8qk9SltQUJMIi6qhTykHRZVwaxmWKO+/tnwqgnECUoZ6oeq8UEi0CQFVRE4/D4kNtCtFRT6rYC+pktGleXjicDJVV0il0kQV4snrpyK11uNLhvA8GFEbQGSQYo1Fa1dBjnacoy0YdU3DfUzKM0aQKoxVaB4jSjWVvQkIIEqFJpKZPhvOO3AegGLkJubfkPtSxaaEitAbDFeschXM4H8BTCYlUgq7S7GSbvDvYZGDSkxv1FsUhkiNAYdlizJcoxD0sW8sNQC67r0uAas8NUVKRKMVGmrKZZHR1QlcbOiYcm6ZeTYY44I/c+UwLUa1utZqmFV9rmFY8jWmAlWlFokIaYGuKcj61ILVmknX+TePB19LXpVWrW6CqyGWmnuXi8DQv5ySTqteUcpR29S8XKR1ShF5QRXkDVubzuiBEVbYMRk0d9qwXjK3hqe0xKlLGRUp+nqhTU9KHkicnoBB15EtHtzkVPbunHngB0WQj2hQiU6scA4+TFi88wklUYZA2Rp+iVbj3oSbGx8Iq58A7ByJEiNKOQScBnIQQOB9gqcyLUFoVa7SUlKSZIjEKpRRKiQBO4uy0vJuWFJJMJGQSBj6jjGA1cQXDMuewnFA6i0CQyOCo101SlJRMfElPJ9zvhDqhmV5c3iE5QnMYe3BtMuIrlOIBJTszphHXrSZQ7U3GTGwZ+zYZkjN6NB0VEw7LMT935zN8pr97QyNu1er6NW9a8TPundpivTKt+PHRfmtacQ61ILVmmn4nNb55r8hBq1WrN0Lz8OTkjJvbVctVjXuTAFPWylM/ilI4pCRYmRc3ZGV+YhDULnynpfI190MJFxriqhJBcNg7LlKO826odbIGh8Sp4GQnz7lPTsWtWcBKlBW1VbeQ0S0vvlZUqXyEKNNZ0aYT+yUdVliEAwqFzDUUGqzAerCUVFsTIqxfiGDXZxKJVAlSy9jTKZhVuNKGOiYV6pjSJJhIaClROtQdrRswrSLvwVqPLUGi2KDLViowJph7WGFxeIblBOkkd7M+j7qb08mV90hGKPYRlFj6jPiQUjyk5A5e3Fyz3EUSCLbT1Wuvxrbg2eSQn9x5jy9t3r/GkbVq9fqlpZwxrRgWOS/GQ56Phvz4aO+EaUU/Sdpm0XNqQWrNZGJq33xhM0TLXjgJVCdeePXjatXqtaoJTxCtsG8u9cB7yXiSkCYFRlusE8HZrTlE4VEiTLonuaGwqvGhvSE1asNmrM2j/NxfddRJWpyT5M7wcrTJsMgYlym5m/2KkICwEpTDSZCOU+Vi+h4eRAnSKpQPaXuoaP1NiJCoyoL8jGiTd9GXz4eaHTy4aFXuVRiQKCWyMCinEU4HVz8tkWmoQZIyQFLVoFcIiRBQOktROJSapuAZE1LytFLhcSVXi4atqbyHwpbk1tVRp1RptroZ/SQNtuRG16mHh/mEZ+NDtpMeXWNQUnBQjhnZffpyTEeXCPrkPKIQ71Bw90KmEeug0lk+Ge7x5c0HfH37ndloW6tWb4G6JqEbTSu+efche5MRL8cjPj0+4NPhEZ8cHbSmFXNqQeoWqeaoeaDycy+4rnO6BbRWNykB1FYC1PDk/bWVV5w5oEme4F2BMWVsAisQIkShAPJoZX4jvaBODu9EKt/8R1ZJSyJLUmUBYq1Th+M8OOyNbYI7A/6EF6gywpTyIerV2JCjYZ3uQJUC5RSKkP5WQVMVbZIyWBNUgORdqIMiGtr5uQucrO8yCZAgjENJj0KjnMGQonyCSiVCBkA6y0TBec9oUqC1ZGerS5aaKzV+eN0qnKMoLbkt69qyrjFsZH0yE2qE5utznfO8nBwjheQnth/y/mAbIxzD4inHxUuOCnhebPGD8R2Gbgcpt+ibjJ5OzxU9XBc57/ho+IrP9Hf5mTsftHfdW731appWfH5rl4kteTke8WJ0zI+PDng5PubZ8BgpBD2TvLWmFW/fHr8BWhmorm3D17T+Vq3mI09OgA/wVAHU6775lZcGH+3RtQjT/NKGFL4bdeJrqjombholqmqdUhWsyYP7oCJ3hufDQXTYSync+b8GBAJtJdY7rIpRp+CsHZ73oEuF8SqYRkhVv7WyAUgOcLhoMU4NSELKujeUkPEf1L2YvAo9nwQC5TXGZyinkRfoHVSUJWXp6GYJm4OMJLn9X4vOOSbWkZehubSWilQpdroDuiYhS3SwJV/yWToqJhwVE+6kPT4z2GLb5Hj3YzySrt5lI/tplH5EyRZ7+ZiXk2M+Ge7xIj/m5fAYPPR0St+kZGr96yu893w83OdetsHP3vnMrRhzq1Y3rVRpHvYGPOwN+NrufQ6LnBej47qu6tnomPwtNK24/d8Yb5wEFkE/GRNaTgaFiYfAeYEjpBUFC2CJQ+AcuOouuJ9Z3XUM8eR2WrW6qBal7XlZn18+BqXWKThQlBrvQSl3s72gFinWQ1WRKCUtqSxJlI21TobjosdR3mFUJitFnU5T1bPJ4XE2vj/agZJoC4nVaKcaUScxBSQVm+dW6XSSOmIk4vOiWSzV2KrD4US0rPYK7bpol6C85iIXOuc847zAaMXOVo9uN12rc+w88h7y2AvJOodEkmjFbq9LLwnglGlz5k2I0lpeTEakSvLljQ73sxItn4PYRJtvotW7SHUfEZvlKuB+J+F+Z4OvbD3kqBjzMh/yfHzEx8NXvMyHTGyBEYqByejrdC0nVk/GB/R0ws/d/Qwbye1MS2zV6iYlhGAjSdlIUj67ucNPR9OKl+MRH0eo+vHRPg5PT4doVUfpN7IHWwtSa6bS93k83mRv2Al3ZXFI4dHCoqRD49DShYJ2QMoy1BkojyD8O8k3YgphPrS1DBAmAohVkHbeyUgLVK0uqgqeIADUHDxBI8C6ptfd0mpK+xoHECM4wkEmS1Jj655XuTU8Gw4YlVns67Tqpd5X/597yBF9K0K9kw+TaK0FWiiMUwglEUaQJRop5LTWqYoqLQSks0bjcaLEYZEotEswPkU5w/nsJ2Y1KUtc6eh3Uzb6GcbcsjQuH9L18rKkiHVORikGacogTcmMJov1TKuubz8fU9gD3u063ul06KcbaPUeSr+PUg8QK9Q99U1G32S839vhmzvvspcPeTkZ8ni0z9PRIR+PXuG8p6MSBiajo15/c9uXk2MAfu7uZ7ibDV7rWFq1uq1qmlZ8eeduNK0Y8TwC1f5kzOOyQEtJP6YBvinpsy1IrZmU0gzLlL2iB0zTC/zMb+GfxCOFD1AVC90lLj7uECLYL2sihAmHlhYlHKHW2yKkRYoAYIu9yELky/kqChZxzYvpYyJCWAtUrU5TVfMkWApP8RV4v14RqNelRoXYjLRyJLIglQ7pQtTpKO9yVHQYlwmjMsHP91BYCEizir4QU/txEXs9xchSisRoiUokiVJ0dEJXJCRoHHDgx4x8gUFdogDZ44TFYuvUvdT3Quqev9xXVhWFSrRia7tPr5OsLajPyzpHXlpya+t0vcxo7qQ9OrHOyejzT0xyO2I4eULfWB4N7nOv+3nS5EOkeoiUFwcLJSS7aZ/dtM8XNu4xtgUvJ8e8GB/z8WiPvcmQp+MDlJB1GuB8L6fr1mEx5ric8Efvfsh7vZ0b3XarVm+ypqYVm4tNK44Psc6Rac1Gkt5q04oWpNZMknjXl3l4aircig6A03zaz7zaNxebm0FJ6VEx2iWFr+FLCY+of3o0DiUdStgIYtUyFi1DrCuAWPiduU1WkTDfSEn0noB7fgppt9I3uNXZqg0j4h9uMTxVr6rqoN52iKoAquGpQKpKElUihY3NfVOeDYNJxLBIKJ2epkM2/jtzKOMfoooUNb64qpS9Ks1SAhpJIiWJ0WitQHuUUKQYMgwJqg4ZKmCTDI3kyOcoLzDn6BvksDOpe6nvxNQ9M78XF9IkL3He0++lbPQ7GL1+KWZNOe8pSsvEWpx3SCFJleJOr0cvNWTGkGp9QRAsUf6A4/wF1ivudd/ns9s/zUb6AULuXEuUKFOGR90tHnW3+An/iIMi1FY9HR/y6XCfp+NDCmdJpWFgUno6uVbXvFFZ8GJyxE/vvs8XNu5d23ZatXrbtapphRCCiX2daR4XUwtSayajNJbYmLeqfagQZWaSNKuTZVEeIaYwNVMS4QXOCRwX63siKgDDo6Sv0w+laMJZiIapRjRMCYuWIRqmRUhJlARgE/H+edMvI0S+mNaFNaDM+1BLRnys1RqpfjsiDjhB3Sh3idaxDup1SgBaOFJVkCqL9zBxmleTDkd5hzxPmRQG5j7DlRlDdWcv8tLMa+Zv1FTQJXxojGuQJEqTJhqjJE6BFQ6FpIMhJVkKSFJIBqQoITh0ORNfkjZga17XlbrXlHWeSV6QGs1gkNHLkrW8b+N9qFGaWDtthqs0W1lGLw225FnDlvz8cigOURwxKUue5AlJ8pN8YevrvDf4POoGo0FCCDaTDptJh88O7lA4y6vJMS/zYTCtmBzx4jik3PV0SAO8SgOIwlk+He/x1a2HfG3r0WtPL2zV6m3SaaYVHx8fBCOcW6QWpNZdovFDzDx0Ur5CqPC7Zzp/8d5NYat+jMVU1tzIAidAj4xNLaFY5ebBfDSsAq34u2qkJ85AmXChNixGwpR0Ed4CQiV1JO1kNAwIJhxtNOxmVB3C+Ua5Z0DuutdB3aSEdyQqGEVI5UNDX5vwcrLBcWkYuhSsQblg6a1nPBaWH0A3ZyA+E+3yoL3ACInRmtQotFYIKSmxFDgMki4ZGQa1SoRJCLqkKKk4dGPGWFKvGpPV2dQ96RUd30U5g/RX27x4nJfgPYNexkY/Q69ZFKqM6XqFtXjASEXHaAZpj05i6BiDVpcZs0dyjOIAgaNwPT4aPyDnAR9ufIWv7r5LV7/ehrkQ9vteZ4N7nQ2+vPmA42LCy/yYF+MjPhru8SofMrYFWkQ3MJ2iL1hf4bzjx8OXfLZ/l5/eef/C62nVqtXlNW9aYZ27dSl+LUi9SZqDrtlTUeJipbj3HiEkXgQfYr8kxDVfT3FiW2dB2PzfMboWTC8uNjkQOGQjCqbEbK3YFMrC7zpGwTQOKR1CeIwoEcKH5qIxGjY/VFdHw+TJFMUmmL3NELYInuzZ8ARvRx3UKuaZVdTJKAtekDvFQdnneFI57BmcCNbfyktUFaleoup2SROcZPNiEPszKS/QUpJoTWIUSiukDJ+EghAhMih6dMgwF0qxSoVGyQ6HfszIlxgvQDo8LtY9XW3qXlN1FCoxbPQzuplZi/slzjlyG+DJeYeSklRrtrudus4p1frSYxWM0ewjyPF0yXmP5/kOT8ZdHvUe8HO77/Cot3E1O3UN6pmUnkl5r7fDN3beZS8f8XJyzJPRAY9HB3w62sd6T6ZCGmBXJStFlbz3fDR8xaPOFj935wPS1ua8Vau10jq6ep6lFqTeIkkJuGAOEWAKEDJGAwJgNWd/899LM6VYp6QZnv7E5eSRWAeWi9xFbES/8EjpGhDWiIbF+jEtLUY4lJhGw6S0GAKAVbVhiygzRL7momFQ/8RXHovTSpbK4n6ttSzy5FYb95tSB3VaMBcC6yyqTVJAokoSVaCA0kvG1vB8uMGkTBm5FFtflj0ucpNyEnkCUEMfplloCsYQQojAs9Vn2oEi1CwliSLRGqllfefP4ZlQAJCg6ZCQohGXrFFRQtARCucLxr7EuISuH1xp6t68xnnYj81+xqCfnWg0e5OqbMkL6yitRQhBqjTb3YxektJJAjhdReNfQYHiAMUxjoySO+S8y7Hd4cdDF+y97z3gi1t3b1XTTCkkO2mPnbTH5zfuMbEFLydDXkyO+Hi4x14+4tn4ECEEfZ0x0CnJkv37dHTApunyc3c/Q99kN7wnrVq1ehN1e66mb4lENeOSPvgax0dXucu/kmQsvXLBKD0AVUj0EUKAaADVXFrfoiyik1O72SdORLVOi2RduwTWC2wVDXOnv3pWEZzEfDQs1oIJG2q+GtEwI6b1YVIEc3kpw9S3rl3Bx+lkANvwTjRtRprJWFPMquEr/lG5Jk7RrglsVa1c5bg4fZ2r1nMWxFW5YNV5cQ54qvflltZBLYKmClqaD4jpp3dGWlgSVWBkiBflVvNq0ueoCA1xR1YDsjGZ9qG0jHAZkC5ERS2zrQ2qaJOqti0qUI2fawtaCLRUJInGaInUambcFkcRU+xSDB0SEtSlAMrjsZSUogTA+IQHDBg7OLAB1/Q1pG5Y65gUJVli2BxkZOlriEL5qS156cL7nUhFNzFspH06iSHT+grhzqI4RHOIR1GyzZgvUXCP0m/wbDziuMj5cGOHb+w+4k7Wu6Ltvj6lyvCwu8nD7iZf23rEYexd9XR0yKejPZ5NDsmdJZWavknp6RQlJM/HR2gp+Nm7n2E37b/u3WjVqtUbohak1kyJMBw7AVaB0IAPs6lKYn5adzHIEhJErBMKIYK4rhqoQl3VIqA6db2n/S3q7L4ZLUwtXDtFUwt/8WhYZTMvRI009e8y9lSqEgmlmKYdVgmEQlTGHDGiE63uVTT2kLgY6amiZ1VSInF9Nu4J9XrC31OImz23fLSRjK+sflbgBo1IW72mGu6a0FYDXpXeWYPfFApveta7cmZqIzOugiUx8/rZRwQuRp1KJI7SKyZlyqtxh2GZMC4TCh/OIedBC5CNibWLCXrGiRNRKBU/n9UWnQipudY7cOHyoERI2zOpRimBlMGQogSwNn4OHSWhcWuGJhMGg0aK6v1z1NeCFWWxlKLA41Eoeq5PSobxCRJBX0JHpDy3xxz7gq4wS9Dz/BpPimBgMOgw6N9s01fnHBMb4Ml7j1aKVGt2s5SuMWRGk1zAlvyULSI5RnMAgGXAkK9RcJ+SHUAzLAs+He6xk3b4E48+5MPBLvoWpsycpVBf0WEj6fCZ/i6Fs7F31TGfjvZ5Nj7i1TD0rjJC8a17H/JOd+t1D7tVq1ZvkFqQWkd5ESatohk5acIUU6C6DGTF6ECITtGITsWnRXQE83Npf5eY+yxadGqIMX3sVrDVudRwF7zkzp0zDjQLb2LaLyzAWAPO8AgZ/3kfTicnED7CXoyUyLjOUKtW9SwLEToR0yebtWcyWupPcWMWCOtYmPDT4Fsg+brWr0oHrCNnDYCbRufmoK6OsjVfG6GuTk1tdE+bgYYwkGrqKWb+OnmMtQjgpGUJCHKr2Zv0OC4yRmXKxJqZiJ8gAJASAqmmCGtxSASJlxghUVIiI9BUASvrPCUeXIAn6SRGStJEkRoTUva0rNdZfXad9+S+pMAGBz4fok8KDd7j8NjqtbgIutV7EsORzcuNELHPlMWKsE7jUzquQ+pTlAi9pJyYonJPJBglI0zldIRBLT2uZ6u0lrywdFLDxqBDll7/V5rznsJa8tLGwmhJooMteTcN4JRpc8UGKh7JCMU+wQakz4TPkfOQkl08aT22T4f7WOf46tZ9vrH7kI3k7UlhM1JxNxtwNxvwpc0HDMs89K6aHJFKw+cGd1/3EFu1avWGqQWpW6PGt7JnCkjngqzma6eQFaJTVZRhAS3V/WZO1lFdZRChYep1pt480Fquyx3iaTofsPjASU9V8+TLCPFOXPggV9BSRdUqAKtQR1bw1KgzqyBvGi2rImlhbBXuyMZyU3MRTzTzr90foQmKrj6GVeCn2l74vdrVAE/N+NI8Ws0fz2r/Sq8YlwnPxxuMypRxmVD6xVEIj8dVxycaPFTsmKFIfbAdr8bl8VjvKBzgQgNegyRVmixNSBONNiH6tEjOe3JKvIOBTBjIDl0VmuhCdPWLpjNVum/l9Od9TBWM4Oe9x+LJfUFBjnOgSUhchnYJwqnojukpvK3X6eLy1c6m3jD2JS8ZYVAYIWO0TzQigFN4bD5XHZjJpEBKydagw6CfXUmd0ZI3jMJZJuXUltwoxSDLGKRJACdjUNewfcEExT6KMY4uBQ/JeZeSuzi6M689yMc8HR3xoDvgm7uPeL+/fevcr65aXZ3Q1Qnv9rZf91BatWr1hqoFqTdCVwBZcdJZl0c5X09mGgufWUd1VbsT59orp181ddsh60amPk14cmJa83TOg+eX/F7tRN3va6X1igW/LdjiCZBvRlGnE/GYQBhTIpspjG4aAaPqf1ZBF7Wd/gzgxeWq/mkiOkc6LzkuM8ZlciLqVI13nmG9By0lWorolBdek6Biz6UAP9YHMwmsQ3pIhSJVCVlmSBKNNupUeHDeM/GhCW0qNds6o6sS9FxqanD1E2eeeCUlE58jsHRESp9terJLh2zq6hchzMUImMfhXAWP1eMhdbF0jpflkKf2CO8gEyq0JHARvFyMjBFTF+OxK4pgF54mmk7X4A0cTCZMw5l+Cl4yQJis0iHr82Ma5QvngpiBDhttyXMbKtO0VGTRlrwb3fX0labrNVWgOURyjCehZIcR71FyF8uA+TeqcJZPjg8wUvIzd97lqzv318LSvFWrVq3eBrUg9cbrfJBVTRxdZXRxIpIVfq0mH68bqJYsdqrOWtfJqfD16sbuGctpSMB7AWUEqDrNbVYX2e9pktYqULRMp8HSdHJ8Wu5U2FPV/AOY+otUgY2pu97VvAsVNjU/DvEWRD0Wo2Ws4QnRnWD0oJAeCh8rpKxHe0kqBIlK6KQJJlFo0+zHtFjWeya+wAMdYejrjK5MLpRC53BMyCl8iRKKrugwkD26ZGixwDpaCGQjkgSK00oK79Ljftnn4/yAsSvYUemM1XqVmui9p7SOo9EEnaVsbnbZHHRq6PQR0rx3AUC9xzkX0iB9iOg5GwAugJ3D+bCFavnmKaeEINGKu50e3SS5Mlvy5bIojlAcApKSTcZ8npJ7lGyzzPP+5XjIq3zEe71NvrnmluatWrVq9SaqBam1VVWbcJ3bWAJZRNODePfY4anrlCUgXPxen73/7psueFdJHxcEqlNWt1RNJrzo8pfZ/lVohkHm4ckKvJMLDT7E3O8rjXOuZubcI50B8Eb0U1ZRg/mRnXsLEW5ChVP172rgyS+8hyAQwRSC6XGsPhpayzoKVeKjtbnAhaZlKC/pCEVqNGlmMDr0eFrl0JbeMXElQgi6IqGvMjrSIM8JUB5PQcHE5wCkImVbbtITHVKSUwH2ItrSHVKh+CjfZ68cs6Gy2hihumGT5yWTvGR3o8ed7T6dzsX6/zjnazCzPgBViHz5+Fz4PVEhAnVt6YJhNEiG0TTCYRkw4suUPKBgl9O+nie25OPjffom5Vv3Prh1luatWrVq9aaovfKumdIZ967pRLOeVtxY+ELE+awMGWDWx4L/6j4+dUpgFbUKN5JjS9BIPtNUwEZ610Vp6IqBaskmlmqV4V/123Oh/ZSx/ic2EKZO3QtPL4WkCx7U0wHqrOjS5WFpXq7aLiFtTdZQc7ltLIs2VdU9tTHF3GZc/JgoJRESCiyW4MqXWonxwSwiSw1JajBaI5VYiVe8Dw10c+9QQjDQKX2RkUoTUvbOoSp1z+IwQrMlNujL3mzq3jWpoxI+k+3wyWSf58WQDoZMaqx1HA0nJEbz6N4mWxvd2pzjIgpgFJYPX37XlZ63XIIRmn0kBZYeEz6g4BEFd6lMI5bJec/z8THHRc7nN+7w9d2Hb4SleatWrVrdVrUgtWbSUiJd6O6sfGWGHdNP4qR0OhW4AbCqagqCQRjOV2YBAppwBGCBavomqjEDMthy1/w10630ApB1A0C1ZLNLdVlGvOz2T8BTGSJP5+uVdYExLXojLpCKd1lN4UlMm9JyGXhaPdp02iZspCihBFaEqIf00HeSvkzIsgQT652WmUUsHJ2HnJLCObSUbKkOfZmSLkq3O0WzqXuSjsjYkH06ZJhzruuyMkLxXrpFIjWP8wOOxhOMlWwNutzZ7YW+ULdUgjw2yx3i6FByn5x3KbiLYzUQGpY5nw4Pa0vzzw12b9TmvVWrVq1anVQLUmumRJg6xc5Lh3ASFSehoZXrawIrKab+BLEGYbEjVFULMr1D72zlchZTzGScXFbRrCqyxSxkhf07BbJeE1At0nnT/a7kbZJTi3HvJf6G4KnSTCTqilLxzqOrg6eThhCLok2r7pqPY7PeIYRAC4Fy4bzvCMNWktJNk2AWcU64rBz4Su9JhGRX9+ipBHOOS/nC1D2xQVd2ya4hde88kkJyhw7D8YQ9Naazk/JgZ4BWNx85urzK2Cz3CIfGssOYr1JwF8smq35OrHc8Hh5ineNr2w/4+s6Dt8rSvFWrVq3WWS1IrZmMkGAFulA4JXHSY4VH+GZzzlmwqu2LrxusRJg8izhTDH2n4KyNyNiPygX/5Lqxq69W2li/FxeALEFtRvi6gWqRrnRaKqa23d7L2nHPVyfDNUsIMZMeddOq4KmCG1lj0zmiOQtS9GAKTatGm2bXSfw8hpPQO4/xgjTWOKEFPW3YSrroC6SmnXDgU4sd+E5TSN0LiYVV6l5PdunSufbUvVXkvefwaExZOr547x5bdzr8eLLP8/Exd7LeLYEp1zCN8Fi2GPJ1Cu7FZrnn24fK0vxhd8A3d9/h/f7WBWoRW7Vq1arVdakFqTWTVirO3SSiVEg8VjqccjjpEY7afaua+igEXog6FenawUoIpISai5ZGp2YlRSAkj8e7BbP+huHFRSFLECaxfm59t1qCCE8+wJO9RngSsxEdH6FFSMFla4wuKhdpucoOPR88zUabGrciLhRtml3zFJ6ED+mvygvwnkRrOp00XGGloK8SeirhvN4Fl3XgC6l7BaUvkDF1L7judW48de805UXJ/sGIfjfhcx/c4c52HyEEW7bLt/ef8/Fwn02T0THrM+apPJIhin0EDkefMV+g4AEld/Ccf8zzluZf23lAR6/jvrdq1arV260WpNZMqdYoJB2pwOvgJgXY0lFKSykthbAxdW7BHXRuCKzq6FSIMPkafc5eYTUxJzplraTTIEvG6XIDsqqoDXIaf6j2+VZAVgOeoAlP4krgaeldbcGcE5+88aaeVfoqTM0iVnXaWznadPHSqfB5jOeTctO6qaohq0kNnY6hcBYlJQOVkkl9rm3OOPDJhL5c3YEvpO6VTPwEgFQkbIsdurJDRvpaU/fm5b1n/3CMc45H9zd57+H2TC1UqjRf2b5HVxu+f/iS3Fk20/VIaxOM0ewjyPF0yXmPgncouIOnc+H1Vpbm7/e2+OadRzzstpbmrVq1arWuakFqDVXVeUgZJmhBEu811jlKYSmkxQoXrXyrZpjMsNHiiFUAsysDqwtGp6o9reyFnXcXBwQX1gWLISvYDYb9FnK6w0JWk+41gawIT2E8VwBPc9Gl5uMLNeeucJPpXhdz2lsWbZpN+zt3tKmZIuqrz0rYmo83EIwXaCHRWgUXOQHOepJEYVJF7iyZMmzoFL3i5+GyDnwlNrrulRhh1i51b16TvODgcMRGv8N7j7bZ3eotBHwlJB9u7NA1hm/vPefZ8Ig7nf5r4UFBEU0jjnGklOxGgLqLY3CpdVeW5gOT8sfuf8AXN++R3Ip0xlatWrV6e9WC1C2SEKCRaCSJ01jhaqAC6tojFyeYFqjJQFSpUQIFNViF1wZr8wuD1SWiU5WmdVSXAKpFqiDLh9F4O125r4BKVO6CrwGyZuBJBGiyErcqPJ0XlhZpbjvyhpzAzmsWcVqz29Psx5esbCEs1esVYnouKIGvPntSkgiFEtPPhvMhYpwmGplISufp65S+MivdVLiMA5/DkVOQ+6J23RvInbVL3WvKecfBwRiH592H27z7YJs0OeurSPCgs0FHJfzh/lOejA65k3ZvqG7KRtOIQzyKkm3GfCmaRmyxrFnuqnLe82x8xLAo+PzGHb6x+5Dd1tK8VatWrW6FWpC6pZIIpFdoK7HCU8qSUoWpqfHTL3bvPA5RR6IcxLlrNYGtZovh9dM0wAuAlRBIFTbizh2divsVgapqmnnVqu54e+/rCEzdVtg2aoOuGbKEPB88nZqKdxk10/huoA5qkVkELIKnK7AfXxGWhAChZLgZAIhGgNcRnk+FwoiTiXXWeZz1pKkOV1MBmzqjs0Iq30Ud+Bal7t2NqXudNUvdm9d4UnB4NGJj0OH9RzvsbnU5z0m8mWR8fech39l/zifDfTaTzjXVDjkkx7FZrseywZCvUXA/mkZczVdnZWm+m3b52Ufv8WFrad6qVatWt0otSN1yCQTaC5Q1GOEpRImNk3TpJUqK6BM1rZkKQR8/TfOjClyFBrrNSbu/CFhJgazd+ZqNfM+xX/U4zlFHdc71A8th7RogqzoEHvA2WJXPpO2JJcfpOubFzd0W4lrroFZx2rtos1tiSun09/PAUrRrb67U+1CX6EEKSJYAlPNgXdizNNM4BZlUDExKIk6PklzUga/EkvucMrrubYoN+mucuteUc469wxESwfuPdnnnwRaJuVg0qaMMX92+T0cZfnj4ksJaNi5dN1UiyRFMkIyQlFgGTPgcOQ8p2eWsZrnnUW1p7n1rad6qVatWt1gtSL0hEgiUF0hvcN5TCkspHaXwSDdbaE+cRDbhCj9NCWwCVjDGizAQuCYi2Blg1YxOMdfI95x7diV1VMvWfhZQLdIKkEWELCE8lVOCd/G1bi4KMz2A168ZgLq+OqjKaS+A0zw8Nc4fVog2NSJL3l0BLC3SPEDJkwDlPTgXm+pKgVESqSVeQk8bBioNKX9LdBEHvip1r2i47vVlj94ap+7NazTOOTqesLXR4YN3dtja6HDZE14Jyec3d0Pd1P5zno+O2M1WqZuyDWCaIChivF7hSHF0yLkf7crv4uheapyLdJCPeTY65kG331qat2rVqtUtVwtSb5gqoFJeop0PTn/C4qRDONGY0Favn05Yp1GJZvTKU9VSOQIoiGlWHNV0uK53mQerlRv5nq1rq6PigkC1SNWBEY00OdvcEDcHTU1dcx1UE4yaTntNTSNTi6NNzZV57+u+wvOwJJWEi8DSwoGfDlBNeBISlJSkqUZJSSkcINjQhq5Mlm7+vA5809S9HPCkIuGO2I6pe9lap+415Zxj72CEkpLPvLvLo3ubmAtGoRZL8Ki7STfWTT0dHnKn04upcQ5BjmSCZIygiMtIPCmOlJwdLFs4eji68V/GZWuelmlqaa746TvvtJbmrVq1avUGqAWpN1gKgXIag6J0jlKWWOFCc98zqmGm0asFcNVIoaqiWM5XyYKzkFWDVZW2do5Gvst0nXVUVTrheVZ7Y+l4F9U11UEtctqDOogUY1LUz88k9MUatSr6ea2wtEhnAFRV+4QApSRZotBKIpXC48ltiRaSgQ7W5gtWf9KBT3ZIhV7qwGej615I3VNsij592aNLhjwjXXDdNBpNOBrm7Gz1eP/RNpuDi9uBnybvHZsJ/MRWhx8cveLV6FMGSUKidA1MBfexbGNrWOrh6HBdwLRIL8ZD9vIR7/e3+ebuw9bSvFWrVq3eELUg9RZIIkhqYwpHIUvskgjVaZpJt6oiOI0aINeopbIRRhyVI+B0BdE/71LRKbjOOqoKBU5ub+FL11XXUAc1D0+N2OPMoZDRJVE0IQ7fgCWBUOJ6YWmR5gAqlQodAcp5KGyIdkolSBONNhIlVT0k6x2Fs6RLrM3nHfi2owNfsiQNbz51LxMpd2SfLhmJSK7vOFyTrHXsH4zQWvLh+3d4eG/jSpz1wg2THO9HeD/G+zHRCgQhUjo644tbX+O7yvMHByM6apON7E4Eptf3Nddamrdq1arVm60WpN4iVU5/ykqsm7VOl36VVp8ntUpqoBMBqGyMWTkBzgs8rm5serGtT0ch5RTOLp32J8L6KsQ8kUq4zvAEV14H5er/hh2vI0++ii5NzwNBBDYR/34dsLRIfgr3UgRjCCVkuAFgHdYR6p6MwugQfZoH58JbrHP0Flibn8eBz+MpY+qex5MIw67Yphcb5oo1N45YpqPhhNE4Z3e7z/sPt9noX8w8wft5YAq5sUKkCJEh1Q5S3kHKTYToI2UfIfoIYfhG19PJnvGvn/2YvSPLo56aBtVvUK2leatWrVq9HWpB6i1U0zq9FI4yApXj4kA1r2Zq4EnXwABTlgB0pXfYuiKmOSk/70imk/gKfqrUv4WphCJM6s+KyU1rszw0QW3dgOoK66BctIuAKSxJX/V7mkYDFQGWKuh4rbC0QD5GoHwjAiWR4DzWOaQUaCUxqUZpsRA6PTBxJVIINk2ob6p27YQDXzSQWOTAN03dKzFCMxA9+rJP7xam7jVVWsvewYjUaD7/wV0e3N1YycI7AFOEJT8GylheaEB0kHITKT+HVBGYRB8h+wix3D1PCsGXtu7RNyn/8umP+MHhS97rb2HkzR3f4yLn8fCA3azXWpq3atWq1RuuFqTeYgkEZq4XlRWOkqsDqtntzcKVQYCUOAeFc5TORUO7mH4V4apZZ7OYXqb1NjRfKwiNh6uCp0tGZwKkiWmEap2AqplCN2dhf/ai0/q2qrBJeFBIlAjRQqnC/gvE2sHSIjUBSgnQUiGdwFuPkyHtrjKNkGpZ1VIA8omzJFIxMAmp0Hjvyb2lcA7E6Q58DkcRG+YKBJnIgnGE6NzK1L0ZeR+iUJOCu9sD3n9nm373JOR4X0ZgGkVgKvD4CEwZUvSQ+n2k3EbIQYwy9RDi4nVV7/Q2+cV3Ps+/fPpjvnfwgke9Dbr6eo9309L8J3Ye8hOtpXmrVq1avfFqQWrNVE3o3LT66EakvEBajROeIrr8lVTpW8snmkGXG6eQkEiB9hJbOpwPwBLMLFxtxd6MWsFcTU4VXapMLapnBeCDwbF3PnqQL1jB0sGdfEjCNNp1QZhaeMROPLjCSs+VxhdTH6u/GqsXCDQCpSRKCFR9POV6gOKKmo9AGRQyuiZKJdCpwuhgGnHWblX1UB1lGOgUh+XY5eBBS8mG7tAVhmzOge9NTd1rqiwtrw5GdDLNFz97j3u7G0jhcO4Y6pS84DoICmSGEF2UfoSUuzGyVP3rXIv992bS4U88/JC+SfkPrx6zYTJ2squ3M4eGpXlvwE/uPuK93lZrad6qVatWb4FakFoz9VQSaph0gcWhl0ZhrkcCSBA4L7HSYaXDCYtw825vlzCJWPK4JLjKWetwzuE96PhiL+I/GsYVMyubp5BpQ9yqXgc5BapLB5PEdFkfbAvjTqy2RlEVFp3QIpOL6cP1vvvpy6vIUFidjY6DIj49uz4pqkqmAJwagZQqJKLNTPx8HOV5rOZP7tBVOQSepRmAApQTaGSoe0oUWkvUgrqnZcq9xTlH9v9n787Do6oO/oF/z11mTTLZNyCArEEJm8hSNxRZWgWL4sYr6ota+1Oo2iJaqyhVq6jFhSpaFbHFpSpYqm9RBNGoiAIGtWJYCrKFIGvW2e49vz9mMmRIQmYgZCaT7+d55oFM7tx77r0nyXznbJoOi1DgMX2B8KTaYBcWWBUd2lGtTwZMeKUHvuCse3Vd9xywQW3DXffCSImK6hr4jVrkZerokKPDaj0Aae6HCeVIYFKzoSjpUJTkeqHJ0eoh0qpqGJJdAJduxbr9u7Cr+jDyHCkttgB1/SnNT8/uiMLUHE5pTkTUjjBIxRmnYoelyoY0mYpqVcIvTOhSPUabUMsHmvoMBGb58yl+GEJCkQpUeeJTaIeyh2mGFlkFAm/uVSXwZtg0gzP7qUfeBAsRCEN1MwQa0oQ/+CYaUkLK+u14EuGRqd6ixAiscwN5ZAa3Y5U1khMypTwSqIRo9AKLBl/IJr7Z+NOhCebruuCJQFe7sNAoZGjbusY5EeyKpyoCqgh02RNHB6ew1q16fRcblOuoK9LstWvqCoqjvnf0183sPLhrE4GWS8UMLOirCQW6RQnOuKeE3jTLo8d9NXIMKYFaM7horqbBrmpwKDocwgqrojUY+2RCwgdvva57VmQkStc9mBDwQQgPFOGGYdSissYNp82CnMxMpKdmQNPSghM/pEAozmBgckLEUXBUhECf9Fy4rHasDo6bKkhKg3aC45bqT2nePyMfuY7kFioxERG1FQxScUYRgS52DmmDXao4LLyohR86lAafgLcGDSo0Q4dVSPgUPzyqD/7gWlSajKw80gxO/mAi1LVMqWtFUTRomoCiBVoPFEUJhQMA8HoNeH1+mIYMzKQWDEN1R9YFIEVwTJWJwBgvU4ZFqFA5gou8hr4TPIgIvlZChvZ/PDlRCRbMDIZDAKjfyxA4KiaENa0d+aZsdON6T4oj1wkSkEagta6u3HVtcYoIjBVTFQV6sHVGNZo/sUauXNPX4+gweKxtGzsp0fAkj3Q5lEf9i+D5ydAsfKY0oUjAIjToqgpdV6Fp4WPEQuGzifsgZWD2SCO4cK5V0ZCq25GkWGARGjShwIQPtdKHxuhCR7pIQ1Kb7bonQ4GpLjQdicAWmKYVBw47UOPJQV5WB3Qt6IyUpIxgaGo7f0I6OF04L797KEzlO11wHEfrkdvwo6y6Akm6BT/L6YIerixOaU5E1E61nb+C7ZAGBenSiiqhoFL4YMCAVdbNm9a6FClgNXRYDA0+1Q+P4odPMQKTEsjAeJNjBiYhoOqBgf2BwCQgFCU0cUFTLBYNmqbA4/XD5zOgiMA4nvoEAi0RqgLoUGAqgRhlmIEWNSMYrISom3WuroUi2JohJIQIrntlBkJZaGxYtJdaBBeTlQh1TzzS/Q7Nh6X6DVmKCM02KKUZbG1Sw4KmqBvBVq+cCgS0YMuTIgLXJrpTOHp70XSj0kkYxnes0pqQ8BsGDFNCEwJJmo4kixUWiwpVO3KmRxZqrlfA0LUP/MeQJrzSDxnolAYhBTroyehkTYVT1evFuCOxXNZ7JlBWBQ5YobaZQOGDIjwQwh0ITjBQ16HXNK0wzRT4zM4wZTJM6UBNrYY9+0ykuVw4tWcuOuWlB5caaJtSrXack3cKknUrvj9YjlSrHWnWyCa1qJvSvNbvQ3dXBooy8pFuPTljroiIqG1oK3/92y0BgWRpgUUqgdYp4YdVas1O/3Ayy6P5NCimAq/ww6v64FG9AABNKoEZ3nQVFlWBCAamQGg6/rFeiqLAbtOhaSo8Hh98PgOqpjQ5zqFudr9A3goGKylhSMAPE6Z55I2wKgQ0ISCCXcSkGljc1zBNmDLQhbCuQ2AwE0Z6oRoNVHXfOzoshYWXunFhEqGpNoRQoNZdT3Fk67pdBlqe6rrtNT89SFtjmCa8ZmD8l0VV4bJbkGS1QNe0Ru/JkSsU/k1DmoH1oCChQoFDWAGpQoeKjjYXcqxJJ7zuVnzwQ6kLS8IDRRiBrq/QYUorTDMJhtkJpkyBKR0wpR3SdEAiMOueaUr8dKAShmGiV9dM9O6WC2cjM/K1RTZNx5DsAqRYrPh63y7U+n3IcyQfc/xc/SnNz8grQNfkdE5pTkREDFJthRUaMqSCCnhRLfzQ5cnv6meaEjLYTc2UgTAgRGBmOKEADtWKZN0OQ5XwaX74FQNQgMAw/JafPF3XVGhKoHXK6zNgQkLTmj9OoMVGQBWApYlgZYZaGAR0TYEOFaZpwjQCoaouBzW23m8Tw6Hqih0KVEc/fzQzrBElcEQVCjQ1MNZHKAh1QQQC3UBDwSkBw1NdoPVJE4oQsGs6kq1WOKx6VG9iA+HJDz9MaFBgUbTAmCdoqDH8sKk6OlpTkKof/3TbsWOEuuMJ4YUQvmD90QKBSdpgGnkwTBekdARCk+kMBabGVNd6sW9/JbIyktGney465CbeDHSqouC09DykWGz4au8ObKs6iE7O1AbjpgxpoqymElJK9M3Iw2npeUjWEyNQEhHRiWOQakNUKEiVVuhQUCF88MOArQW6+klThlpN6v4VAISiQFEAzaJC0y1QFAWKKqCqKhQ1fMIJCcAHP2rhhRc++GBAgwK1kYVJT4RQBGy2YHc/jx8+nz9Qnii6G0USrEJhRQ2cM8zAtTFk3SwPdecd2M48Kig1aL06qnhHB7JAQK0/ZEiBHuwGGZhMQUKYdeFJhSbqWqYS6w2ulPVaBAWgKALJFhuSrRbYdT3iszWlCa80YMCEAgGLoiFVWGETOixCg1+aqPB7kKrb0dGaArsa7zOt1QUmb7BLnifYVVSFDAYmv5EN00yFKe0wpROmdEBKGyL9/WCYJvburwQk0KdnHnp1zYHD3tYnzDi2gqQ0JOlWrC7/EdsqD6Cj0wVbcNzUYa8bP9VWId+Zgn6c0pyIiBrBINXGCAgkSQt0qaJCeFErDFiPOavfETLYwhRYTsk8MmN3XWDSFKi6HgpKqqJCaJG1dARGWWjQocEPA7XwwgMf/PAFWlXQkmO7BDRNhaoo8Pr88HoDY2Z07fi6DzYWrMzgbH6BYAVIRUIoClQJSKNe2KybMi84CYIJBCfAk6EWrIalDwYnHOnWFxhjFmwVC3aFlCIQoBRFgQYVqoIGC74mAolAeDKD09JLBdCsKpI1HU6LBVZNi+iumsFue36YEBCwCg0uYYdNCSykW1c3ag0fPKYfOdYk5FtToMVVVz4z0LIET3AskwdCIDAbpbTClFYYZi4MMxWm6TwqMB3/eVTVeLD/YBWyM5Jxao985GWntJvQkG514Nz87lj7005sOFQOl8WOKp8HFlXF4OxO6JOaEwpXRERE9TFItVFWqEiXVlTChyrhgyYF9GDrj5Qy2MokwwOTUCBUQFUVaDYdqqZAqApURYUSYWBqjkBgEVQddvhhhRveYKjyQ0Fg9riWClRCEbBatbCxU0qwG9yJUBBo7cFRwcqomylOAEaw5STY1y64ILAI/EDVmzlPBgNWXUNW/cku6uaekGZgvxACqhrspld/pr0Ea3WqY5iBkAoAigIoeqC1065rcGg6LGrzAUpKE15pwg8jFJ6ShR02RYdVaBBh4UKiwu+FAqCTzYUsizOGYeHI1OKBliYPAqP0FEhpgSmt8JtZgcAkk2CajmDXPDvQgq28hmFi7/4KCEXBaT3z0euUHNis7S802DUdw3I6I8VixbcHytDB6UI/TmlORETNYJBqwxRTwGmogDRRofhQK/2wmoFJGIQqoKgKdJsenFo8sBZToPWpdd48alCQBBtssMADH9zwBANVXehriXIEwofdYYHPa8Dr9cPnNwNTYLdQAKkLVnWLA5tKIFSZUsJnGjCC46gQnJgiEKpCDVUIn10iQAKhadqFAFRVha4q0BJ0sog6gW57gfFfiiKg6wpMBdAUBVZNjShASSnhkwZ8wfBkESqShQO24HTljY3PM2HisM8Dh6qjoy0FKZrtpJ3jUaVtIjAFphaXphWmmQafmRaYKc90hCZ/ONm/niur3DhwuAZ52Sno0z0PuVkpJ/V48U5VFBRl5CPf6YLLYoOucEpzIiI6NgapNqCudckwTEgjMIYHEIFP8VUFyZoVSboNVboBj+KHXbPAqmhxM02xBgUarLBBhxe+ei1UAhrUFgk8AiIwVbqqwOP1wec3A605J2FmrfotVlZFhakFwoHPCIQ4Q5rBKc9FYNzTUWPJTBkYkyUgYFFVWDUtMCNfooYnKSGN4JpPigI9OA2+FIHZCO2qCoemHTNASSnhhwFfcIEuXShIFY5gy5N+zMlNvKYfVYYX6boDHW3JsConq8XFV687nhsiGPQkdJimLTi1eOqRmfKCoQlo3RYgv99A+f5K6JqKfoUd0KNLNqwW/imok2lzxroIRETURvCvZ5zyun2BbmMIrBmkKApUTYFut0C3aFA1BZqmBlqbggvVZkoTB/21OGx44IEBGyIbW9JaVCiwwwprqIXKCy/8EAA0tMyU7oqqwG63QA0u5OvzG4GFfE9iFy4FgWnJdcUCUwusc+Tzm/DLwBTq9ZqmAFNChYCmaLDq6jGCXsPBVaLR5+p/0cz3QzMTNvxmY/tu9tih18t629U9c2Tcky4A1SqgaRqEYsCEHwBgVVU4NBWaIiAQmEQhrLRSwqgLT0LCLlSkCT0YnhQImIFJF+BpUI66r92mD1KY6OKwI8tiQhUVDa7H0a+J5NxD2wmjkanFnTDMjk1OLR5LhytrcbiyFh1yXOjTPQ9ZGey6RkREdLwYpOKMHhzzozstsFrtUDUVmhpYm6kuMDVFFQoyNAesioYD/lpUm144FD3uWjoUCNhhgRUW+OBDLTzwBt9ca1BbYOp0EdFCvi1BwIQqTKiKCVUYUETd1waE6Q/M9GcaCETiQPchLTgb39GJRsi65V7DW7DqH+1ojb/FFw02kI3WgXrHOWpHzR+3kefqFjQODgizaCJwrqoKKIDf9EEIAbuiwqZq9bpOGaHjSEj4g2OepAQ0oSBJsQXCE+rqsmiwsPGR8gbusSmBSsMDVViQbwlMbS6kgCkbW19KaeQ50ch5NtxOSv2oqcXrAlN8/cz5/AbKf6qAzapjwKmd0K0gExadv/6JiIhOBP+SxhmbwwpHih1WLQWqEv3Uw0IIJKtWWISKA/4aVJle2IQOPa5mJgtQAFihwxLs8ueGDx74IGFAb4FAFe1CvkfKFQhCqgiEI1UxgwEp8Fzde2QBCVMqMKQCQ6owTAUGFNT6rfAYFrj9FvhMHR6fAo9PQAgVqqaEmnKOhICGwafB8wjM3NbIZjjypr/+xg2fazz8NH4t5NH7bOLYUgqYpgm/EWiFUhUFFosGix5oNTVMCY/phyIUOFQdSRYrbEd14TMl4IMBj/TBkIBFaEgSViQrDjgVK3xCQ2WDcz5y3keHFp9p4CdfDdJ1O3o7s2Ax7ajxNHhxu3GwogaVVW50yktDn+55yEhj1zUiIqKWwCCVoKyKhmw9GRZ/LQ4ZbvilAZsS+To8rUngSKDywQ93cAyVD77gWlQnMtNfYIFdi6rB7/PCNGqhCRMWXQaDkglFMQJBQQCoC0emCgMKDFOBx9DhNXW4DQu8hg6fqcNvavCZKvymBr9U4a/3/2OW1Wj6W22JaUj4DRPSlFA1HRZdhdWiQtM1KELAZxio8hpQhAKnZkeKxQJrMECZMjhhRF14ggxOGJGCFNUOh2KFRRz51XTsTofhagwfDvvd6Gh1oaczA464Xx/q5PH6/NjzUwWcDitO79sZp3TKgKZxAgUiIqKWwiCVwFQhkK7ZYVU07PfXxG1Xvzp1a1FZoMEHA2544YYPfvgbWYtKhlqI1OA4FVWY9f4Nf/ttSAWmVYHHB9R6FFTWCviFHV5pgdewwG+q8EntSCAy1WBA0mBIvvkEgtO0GyYMwwy0POkqrFYNuhbodgoAPsNAjWlAVQRSLDYk6xZY1SMTuPukH27phwETOlQkK3a4FAccijW41tPxO+irhU+a6OnIRFdHWpytD9V6pJQ4cLgGNTVedO6Qjj7d85DmcsS6WERERAmHQSrBCSGQpFpgURQc8NWi0vTAKnRY4vBNpkBgjJEiDNiEAZcwIIUfhnDDJ9wwhQEBNRCopAIT9VuOVLgNG7ymFV7DAp/U4ZdavRajQCDySw1en4oatx9utw8SgEU/0t2OwkkpA9O7G2ZgnSwtMJmHrqvQtCPB1mcY8AQDVGq9AAUAPhloefLDgAYNSYoVrmC3Pas48RYjU0r85K2GTdVRlJSNPEtSu1lM9mgerx/l+yqQ7LRhSP8uKOiQDu0kjA0kIiKiNhakHn74Ydx11134zW9+gyeeeAIA4Ha78dvf/havv/46PB4PRo8ejWeeeQY5OTmxLWycsQgN2XoSrIaKg/5AVz/7Se/qJ0PBSIEBRTFCrUeKMCGEGXZ8KQVMqcKQKkyo8Js6fEYyvIYVblNFlZSoNA3USMA0dQhpg2nqoYAUafc/oQJOZ2AsT02NBx6PH5oWHL9EgAws1OoPruSsqQJOhxW6rkLXwkNnXYDSjgpQfmmgynTDDxMaFDgUK1yKHU5hCyyU20JBx2sa2OetQZbFgV7OLKTqrbU+VHwxpcSBg9Vwe3zo2ikTp3bPRUqyPdbFIiIiSmhtJkh99dVXeO6551BUVBT2/G233Yb33nsPb775JlwuF2655RZMmDABn332WYxKGr8UIZCmOWAVGvb7a1FleuBQLFCjilMyGITCQ1Hd/4WQCMzZFhCYjEGDKRWYUoHXtMNrWOA1rfCZVpimBr/UYZgajGALkiE1GFKHKRuOjZIwAXhQHZzrT0DACvU4uisK6LqK5BQ7PLU+1Lq98HgNWPSTO1V63ArOuOc3TEgpoakKHDYNuq5B19XwayIlfKYZClBpVhuSNAtURcAjfag13dCgwqZYkKo44BRW2ITe4te1yu9FpeFBZ7sLPZyZsClt5tdZi6r1+LB3XyXSUuzo36cjOuWlnZQZKomIiChcm3jnUVVVhUmTJuGvf/0rHnjggdDzhw8fxosvvohXX30V5513HgBg/vz5KCwsxBdffIGhQ4fGqshxzaFaoCsqDvhqUWF6YBUCdgUNQlFdWIIIzOEmIQJTXEOFaaowoMKUKryGDT7DGgpHhtRCwcgwNfiDwcgwNcgTnIlPhYIk2OGAFbXwohK1cMMbHF+lByemiJwiBOyOQFe1mloPPF4DqhqYojxOh5K1KNOUMPwmTNOEqiqwWlVYdA26pkFRj7oAUsJrmvCaBnRFQZrVBqeqwVRM1MIDVQrYhAVZSgqSFCvswnJSQqmUEgf8tZAS6O3MQhd7KtQ47Kp6splSYt+BKvh8Bnp0zUJht1wkO9tnixwREVEstIkgdfPNN+MXv/gFRo4cGRak1q5dC5/Ph5EjR4ae6927NwoKCrBq1aomg5TH44HHc2Q+5IqKika3a7skBEwowg8RaikyQl3shAhMHZdqlag2PDjs98EnFViEFSYCrUI+wxEKR4a01GspqgtJer2JGFr/TawCBU7YYIcVbnhRhVrUwhMY8wQNGqKbIELTVSRrduhuH2rdPni8flh0FUJJvDQVGPdkwjAkFCGg6QqsFissenDNp4YvCAtQqRYLLJoCU5Hwwg+7sCBTSYZTscEuLM1OL38iDGniJ28NkjQLejkykWNNOmnHimc1bi9+2l+JjNQk9Ombi465aYG1yYiIiKjVxH2Qev3117Fu3Tp89dVXDb63Z88eWCwWpKamhj2fk5ODPXv2NLnPP/3pT7j//vtbuqgnmQyEIRiNBiQhglN4BzvWSSgwpQoptcC4I9MKj2mDP/gwpR54mBoqDBM7PW4c9pmwKw6osKCtNMcoEHDACjss8MCHymCg8sAHCzToUVRxIURoIoVatxdujx+qIqCpalu5HE0LThrhN00IBBbKtTsC3fY0vYnp5esFKE0RcFo06JqAriiwCT00YYRDWKC0QouQx/Rjv68WOZYk9HZmIlmznvRjxhvTlNi7vxKmaaJ3t1z07pYLpz369eaIiIjoxMV1kNqxYwd+85vfYNmyZbDZWq7Lyl133YXbb7899HVFRQU6derUYvtvCUnWvVCFCtQbcSSDXepMaJDBLnWGaYXftMGQNhimFgpIgXFJGkwz8LU8RguNBiBfNQCzAj/5amAT/ja3/o6AgA0WWKHDCz+q4Q49dGjQoUJEmIY0TUWy0waL7kdNjRcejx+6RW17n/hLwDADLU8SEpqiwGG3wKJr0LRjjAWTEh7ThNf0QyiA1SLg0HQkqVakKHYkKTY4hKVVu9NV+j2oNnzoak9DD0cGLEr7m5K+usaDfQerkJWejD498tAhx9U+x/MRERHFibgOUmvXrsXevXsxcODA0HOGYeCTTz7B3Llz8f7778Pr9eLQoUNhrVLl5eXIzc1tcr9WqxVWa3x+mi3hwN6qjgBcEMJeLxTpoWBU93VLdqmzKCoKLKlwKhbs9lbgkL8WKartpHbTOhkCk0/osEJHEuyogRtVqEUNPNCgwgItskAlBKxWHbqmoqY20DolAOh6/LdOhS+Wq8Bm1WCpt1huk6SE2zTgNr1QFMBu1ZGm2ZGuOpCk2uEU1lYfiySlxD5fDVQo6OPMQoE9tc3VyRNlGCb27q+EANCnRx56n5ILu61tfdBBRESUiOI6SJ1//vn49ttvw5677rrr0Lt3b8yYMQOdOnWCrutYvnw5LrnkEgBAaWkptm/fjmHDhsWiyC3AgR2HekIoqbCorXt7FCGQpTthV3Ts8lbgoFGLZMXaZj/9DyzumwRng0ClwAI9okClqAqSkqywWFTU1Pjg8fig641MxBBjRxbLlVAV0ehiuU2+VpqoMX2oNX3QFYE0qwO5ejLSdCccwgJNxOb++4PjoVyaFb2dmci0OGNSjliqrHbjwMEa5GQl49QeecjNSmErFBERUZyI6yCVnJyM0047Lew5p9OJjIyM0PNTpkzB7bffjvT0dKSkpGDq1KkYNmwYZ+w7AUmqBafY0lDmrcReXzV8UoVDafnpq1uLDhUuOOGEDbXwoDIYqFQosECD0mzLnoDFokNTtcDYKbcPfiP2C/k2uliuIxCe6i+W2+hrIeGTBmpNL7ymAYeio8CahjybC6mqHXqMwlOdWsOHgz438mzJ6O3MhFNtX+OA/IaJ8n0V0FQVfXvno1fXbFitbIUiIiKKJ3EdpCIxZ84cKIqCSy65JGxBXjoxulDRyeKCU7Fgl7cChww3XG2wq199GlQkwwEnbKiBB1WohRu+iKdOV1QBp9MS24V8G1ksN8lhhdbIYrkNXyphwIRX+uAxDUhTIEWxobs9BXnWFDjiJKwc9rnhNg10d6ajmz0dehttET1eFZW1OFhRi/zsFPTpkYeczJRYF4mIiIgaIaSUMtaFiLWKigq4XC4cPnwYKSmxfdNSuusnPLPicxSkt37XvqbUGF7s9FbgsOFGkmKBJUEWPjUh4Q62ULnhBRDoDqhGMHW6KWVoIV9D4uQu5CsBI9h1r26xXItFbXyx3AYvDYQnH/wwpQnDABRTRarqQL4tBVnWJOhKfKzBZAbHQ1mEip7OTORbk9t0cI+Wz29g775K6LqKXl1z0L1LFqyWxPhZIyIiaksizQb8K03NcqgWnGJLxx5vFcp9lfBIA0nKyVlstTUFpk6vvxaVGzXwQMLf7FpUrbGQb1SL5R7FDwN+GDBgQpECwlBgMS1I1RzIdSQjzWKDFicBCgB8poGffDXI0O3o5cxCum6PdZFa1aGKGhyucqNjTir69MhDVnr7XB+LiIioLWGQoohoQkEHSzIcqh6Y1c9wI0Vt/VncTgYBATussAXXoqpGLWrghRc+6MFA1dTEFC29kG9osVy/CUVRml8st566licDZmD8l9QAvwpVqkjRrMhyJCHVYo2rAAUANYYPh/0edLK60MOZ0eam3j8RPp+BPT9VwGG34PTTCnBKp8zAzJBEREQU9xikKGJCCKRrdtgVDbs9FTjgr4VDtcCWIF396taissGCZPhQFVyHqgYe6FChNzF1+gkv5Fu3WG7dpBGqArvTAt3S/KQRoW57MKEEJ8+wSwsMv4CUAsmaFZk2B1KtVmhxFnqllDjkd8MnTfR0ZKCrIy3uyniySClxsKIGVdUeFOSlo0+PXKSntr9ZCYmIiNqyxHgHTK3KrujoYkuD3auj3FcFrzSQnABd/eqzQEc6dCTDjmq4Q93+jrUWVVQL+QYXy/UbEqhbLNcRwWK5AEyY8AW77tWFJwes0KUGv1/CkBLJugWZ1kCAisdWQ0Oa2OetgV3VUZiUjTxLUkLVn2Pxev0o31+JJIcFZ/Trgi4d0qFpbIUiIiJqaxik4pQhJaSUcfvmUhUK8oMzve32VuCgvxYpmi3hWhR0aEhFUr3Ffd2ohScYYHQoRweqZhbyDS2WK02oqgp7hIvl1oUnAwYEBCzQkAIHbLBAlQpqfX54YCJZtyLTZofLYoMap3XHaxrY561BltWJ3o5MuHRbrIvUKqSUOHCoBjW1HnTpkIHCHrlITXHEulhERER0nBik4owqBGyqhgqvB4eFBxIy1PqhCgFVKFCFAk0IqIoCVQho4iTOGNeMVM0Gm6Jht7cC+/21sCsa7ErijXHRoCIFTjhhD61F5YYHAgJW6A3WompsIV9A1Fss19rsYrkmJPzwwwcDCgR0aEiGHTZYYIEOKSWqfYG2qWTdiiybHSlxHKAAoMrvRaXhRWe7Cz2cmQnTLbQ5Ho8P5fsqkZJsw5ABXdE5Px1qMwslExERUXxrH+9i2pA0ux2nJmXCleaAFIHZzHymCZ9hwG364Tb88BgG/KYJr+GDISUM00Sgg1hgNI0CEQhdigJNKEcCmCJOSjcvm6KhszUVDkXHHm8VDpuBiSjitTXtRKhQkAQ7HLCiFl5Uohae0NTpR69FdWQhX4/HByiARVeDb6AbvzYSMtRtL7BPDamwwx4MTwoEDGmiyueFEWyByrI5kGKxxnWAklLigL8WUgoUOjPR2Z4al10OW5opJfYfrIbX68cpBZno0yMPKUntowWOiIgo0TFIxSGbqsFlsQWm0m6ElIFxMKGQZZrwyyP/d/v98ARDl9c04DVN+KUPhmnCrLcfAYRauFQhoCn1QpcQUQUhVSjItSTDoVqwy1OBg0YtklUrdJGYYz8UKHDCFgpUVahFLTyQQIOp0xU1MFV6U44OTzpUpMABOyxhrV1+aaLS54WEiRTdigybAy6LNe7XWjKkiZ+8NUjSLOjtzES2pX1M7V3r9mLv/iqkuRwYeGpHdMpLb3y8HBEREbVJDFJtkBACWjD4NLfajiFN+IMBqy54+YP/95oGav1+eAw/PKYBnzThNk0YpglDmqhrNREIrJt0dLdCrZHAlaJaYbOlYbe3Evv8NbAqGhwJ2NWvjoCAA1bYg1OnV6EWNfDAAx8s0KA38SMmIYNrPfkhAWj1xjxZj2rZ8ksT1T4vJIAU3YJMuxMpuiXuAxQAuE0/DvhqkWNJQm9nJpI1a6yLdNKZpsRPB6rgNwz07JqNwm65SHIm/nkTERG1NwxSCU4VSmAx12YahkwpAwFLBkKWv17warJboSlhyEC3QiAQDlQEwpVL2AAF+Mlfg1rhg0uNrwVgW1rd1OlW6EiGH9XBqdOr4YYODXqwhapuoVwJCQ0qkkItT5ajugUCftNEtf9IgMqyO5GiW9EG8hMAoMLvQY3hQ1d7Gno4MmBRErN1sr6aWi9+2l+JzPQk9OmRhw45qWyFIiIiSlAMUgQg0OJkUVVYoAJougVJSgl/WCtXMHjJht0KNVWBLlSU+Sqx21MBu6KHZvULjOVSgi1dAkr9B6LrVhhP6iafsEKvN9NfoJVKQECFAkewS6AVelgXwDp+00SV3wtAItViQ4bN0aYClJQS+3w1UIWCPs4sFNhT20Tr2YkwTBM/7a+CKU0Uds9F7265cNib7s5JREREbR+DFEVFCAFdqNAVNeJuhVV+LzbV7MeO2gqoEHCoeqBVq278lmnCLyVMacA0JerauCSAwLQMItS1UIGAogTDV5wHLgs0WIJTp9dNmd5UeAICE4tU+30QAFKtNmRa7UhuQwEKCHRD/Mlbg1TNil7OLGRaEn9676oaD/YfrEJ2RjL69MhDfrYrruslERERtQwGqTijKAJ2mwVlew+HPa9pCnRVhaYp0DQVuhr4N56nUD7SrVBDmsWOjvZKbKrZD7fhQ47NGZq1TcojoctAoIuhKQPhyjBMeGVgPJffNGGYEl7TgGkG1laS9Y4nUK91CwpUAShKMHzF8I2tBhXJaDpQBAKUFwICacEAldTGAhQA1Bo+HPS5kWdLRm9nJpxqYrbImKaE32/Ab5g4XFkLIQRO65mPnl1zYLcl7nhAIiIiCscgFWdSU+w48/Ru8Hj98Hj98Pr8cHv8qK31oLrWh1qPF16vHzV+E37DgGEEo4QIdM87OmjpmgpVU2LetUoRAh1tKUhWLSit2Y9ybxXSNBvsqg4hAE0ozY6hkjIQngxTBkKWacIvzcAU8NKE1zDCx3hJCdNvhI3jAoItXGjYpVAVAqIVW7m8poEavxcKFKRZ7ci0OpCkW9pcgAKAQz43vNJAD2cGTrGnQW+D46EMwwwFJJ/fhGGY8PkNGEZgAhYBAQkJRSjQdAW6oiA91YlTe+QhNysl1sUnIiKiVsYgFWeEEEhzNd16YZoSXp8fXq8fHp8R/H/g31q3D9W1HlTXeOHzG6ip9QbfFBqQUgb3D6hqIGAd3crV1HTrLcml29A/ORdbag7gR/chuE0/UjVbROFFiMA6TqoKNNfWYcpA2DKDE2jUTaZhyCPjuo50Kwx8v363QiAwjktAgSLQot0KQwFKKEi32pFhcyBJa5sBypQS+7w1sCgq+iblIN+aHFfd2mSwVdNnmDD8gYlT6v9rShkor5RQVQWaGvjgQVMVOB0WOGwWOOwW2G06dF2FRddg0QM/PxaLBptFi+tWYSIiIjp5GKTaGEURsFl12KzH7kLk9xuBoBVs1fL6jEALl9ePqhovat1e1NR64fP7UeMOfBJvGGYgrUhAKCIwWYTWsDvhic5CZlFU9HZmwqVZsalmP8q91ci0OEITUbQERQhYhAAUBcda/rS5boUeaYRmLzTrdSs0wlbkaqxbYSB01e9W6DX8qDZ80ISCjGCAcrbRAAUEuiT+5KtBhm5Hb2cW0vTmRs21HFPKRoORzwi0JEFK1F1YVRXQVBW6FghKSclWOO067DYLrFYdlmBA0nUVVl2FHgxLDEhERER0LAxSCUrTVGiaCucxZg4zTQmf3wh1Iaxr2apr3aqp9aK61guP1w+324dKw4DfZ0JCApCAFIE3qU20bh2rZUIIgXxbCpI1KzZW78ceTyVcug0OtXXHmLRot8LgWlx108gbfgmzXrdCTSjIsjqQYXPAoeltNkABQI3hw2G/B52sLvR0ZsDeQvfNMM0jgchvwGeY8Ae7sZqGBIQMZiQRNk7QqmuwJ+uh1iOrRYeuqbBatGDrkQqLFghJnI6ciIiIWgKDVDumKAJWiwar5djVwG+YYS1bgf8b8Pj8qKnxoibYuuX1GXB7fcE3vuEtNk1NlpGsWVGUnINkzYqttQdRa/qQrtnjqnsYEF23wkC4OhK2zOD/rZoGp9a2JyOQUuKQ3w2fNNHTkYGujrSIWhL9jQSjunpimjLQEColVEWBWq+uOGyBliOn3QKbTYc12HJkqd/NLtjVLt7qDBERESU2BilqlqYq0OyWY66LI2WgdetIq5YR1WQZNgjkSgd2GIfxX7iRZXXCqqrQFAWKqrSp1hs1OHEFEmwBYiM4tblD1dEnKRs5uhOGIVFr+EKTNPj9RyZsODLcLDj+KNhSqWkKUmw22O06HDYLbFY9EIpCrUZHQpKmtb1JK4iIiKh9YJCiFiGECL751QBYm9zuWJNl1Li9+KmyCusP7MFuTyXsXg1WaIExLwAkZGAskiqgKEqgW6GiQlEFVFWByi5bLUJKhGaqM8zAWDG34cN+bw1ShQ1Zuh1+jx+7cDgUjOrGICU7raEJGqwWLWz8kSU4QYMe59P2ExEREUWCQYpaVSSTZYwwe+KbvWVYV74bPr+BDIsDMjiey+cz4PYEWro8Xn+gVcsXmGDANCUCc+0F/lGVwOxrqiqgqIFxUGoba91qSaYpQ8HINE0YRqDLoWEEZ6/DkQujqgo0RUBRBXyKAZ8mcXpmJwzIykOKzRbWamSp192O3euIiIiovWCQorijKyoG5XZEtjMZa/fuRHlNNTokp8CmhVdXKWVoevf6Xcp8/kALl8fjh9vrh99vwOc1UGv6YPjrxm4FQpeiBEKDUhe6FBH6ui1kAikRCEWmhGlIGKYRDEgy1JJXR1EQbMkLnKfVqoXGyFl0LdiypIRajFRVwU+eaqiKgoHZ+eiTng01wborEhERER0vBimKW52SXUi12rB27y5sPLgPqVYb0m1H1tgSQkAPLjp8LIYpAyGrXtDyB6fM9nj8ocWP/X4DXl+gZSu00HGQqorARAiqgKrWBQ1x0hY6lhIwj+peZ9QLTHXdHAFAUQOtb2owJNksaiggacGJGOqPUdI1JXAOx+gK6TdN7Kg8hDSbHWfkdkJBcupJOU8iIiKitopBiuJassWKM/O7IMvmwNf7yrC98hA6OFOiahlRFQG1mdkJJQJhxe8PBi3DhM935F+P1xfoUuj3B6aM9/jgN0wE1zmGhIQiRKglp67V5+jJMsLGHxnhIUmaR0qD4FgwVVGgKIEp5h265UhAqgtFemBCjsBMd4GwdKLd62p8XpTVVKJLShrOyOmENFvrrQ9FRERE1FYwSFHc0xQFp2bmIt3uxFflO7Gt8hDyncmwt+BU4gKBRVs1VT3m+K262Qn9wbWO/H4DPn9gMViPzw+3xweP1x9YzNdjoCY4FqluCjsh6o/XErDoKqxOK2wWHbpFPTJF/FGz3KmqEjaG6WTZ765BpdeDosxcDMjq0KA7JREREREF8F0StRl5zmSc36kbvt67GxsO7kWybkWm3dmqZTgyO+GxtzOMei1bfiM4XklAPyokxcvsdaaU2FVVAV1V8LP8zuiVlnXSui0SERERJQIGKWpTnLoFw/M7I8vhxNryXfgx2NVPi7NJENQ4CknN8RkGtlcdQrYjCWfkdEKHpJRYF4mIiIgo7jFIUZujCIFeaVlIs9qxpnwnfqw8iFxHMpx60wsGU+OqfB6U11ShmysDg3M6wmW1xbpIRERERG1C2/jInKgR2Y4knNepG4oyc7HPXYPymipIKZt/IQEAfqqtxgF3LQZmdcDZHboyRBERERFFgUGK2jSbpmNIbgHO6dAVqiLwY+VB+Ewj1sWKa6aU+LHyIADgrA5dcHpOB1jUY08hT0RERETh2LWP2jxFCHRPzUCaLdDVb2vFQeTYk5Bssca6aHHHY/ixs+ow8pwpGJLbETmO5FgXiYiIiKhNYpCihJFhc+CcDqcg3boH3x0oR5XPi1xH0gmvq5QoDnvc2O+pQa/ULJye2wFJOoMmERER0fFikKKEYtM0nJ7TAZl2B9bu3YWtlQfR0elq113XpJQor62CzzQxOKcjTsvIga603+tBRERE1BIYpCjhCCHQ1ZUe6uq35fABZNqc7XIyBb9pYmfVYSRbrPhZXmd0SUljCx0RERFRC2CQooSVarXj7A6nIMPuxDc/7UGVz4s8Z3K7WWi21u/D7uoKdEpy4YzcTq2+eDERERFRImOQooRmUVUMyMpHhs0RnIjiADomuWBVE7vqH3TX4qC3Fqem52Bgdj4cXGOLiIiIqEUl9rtJoqCC5FSkWu1YV74TGw/tR5rVjjSbPdbFanGmlCirroQQwLDcAvRJz4aqcJUDIiIiopbGd1jUbqRYrDizQ1cMyyuA2/BjZ9UhmAm0gK/PNLCt4iCSLDpGdDwFfTNzGaKIiIiIThK2SFG7oikK+mbmIt3mwNq9ga5+HZwpsGl6rIt2Qqp9XuyprkQXVxrOyOmUkK1tRERERPGEQYrapQ5JKXBZu2Hd3t344cBPcFltyLA5Yl2s47LfXYNKrwdFWbkYkNUBNo0/1kREREQnG/v9ULuVpAemBD+rQxcYpokfKw/Cb5qxLlbETCmxs+oQfKaBn+V3xpDcAoYoIiIiolbCd13UrqmKgsL0bKTb7FhTvgvbKg8i35Ec97PceQ0DO6oOIceRhDNyOiE/KSXWRSIiIiJqV9giRQQgx5GM8zp1Q1FmLn6qrcZPtdWxLlKTKr0e7Kg6hG6uDJzXqTtDFBEREVEMMEgRBdk1HUNzC3B2x64QALZVxF9Xv701VTjoqcXArA44u0NXpFissS4SERERUbvErn1E9ShCoEdqJlKtdqwt34UfKw4ix5mEJD22gcUwTeysPgyHZsHZHbqimysdQoiYlomIiIioPWOLFFEjsuxOnNvxFAzIzscBdy321FRCxmjNKY/hx7bKg8iyJ+H8Tt3QPTWDIYqIiIgoxtgiRdQEm6ZhcE5HZNgdWFe+G1srDqJTkgu6qrZaGQ573NjvrkGv1Cycntsh5i1jRERERBTAIEV0DEIIdHNlIN3qwJq9O/HfwweQZXcixWI7qceVUqK8pgo+aWJwbkeclpEDXWm9AEdEREREx8YgRRSBNJsd53Q4BRk2B77ZtwdVXi9ynclQTkIXO79pYkfVYbgsVvwspzO6pKSxKx8RERFRnGGQIoqQRVUxICsfGTYH1uzdha0VB9AxyQWr2nI/RrV+H3ZVV6AgyYUheQXIsDlabN9ERERE1HIYpIiiIIRA55S0wKx+e3dh8+H9SLfakWq1n/C+D7prcdBbi9PSczAopwPsmt4CJSYiIiKik4FBiug4uKw2nNWhCzJtDqzftweV3sPokJRyXF39TClRVl0JIYDhuQUoTM+GqnBCTSIiIqJ4xiBFdJx0RUVRVh7S7Q6sKd+JrRUH0cGZApsW+Y+VzzSwo+owMmwOnJHTEZ2SU09egYmIiIioxTBIEZ2gjkkuuCw2rN27CxsP7UOqxYb0CMY2Vfu82FNdiS6uNAzJ7dQi3QOJiIiIqHUwSBG1gGSLFWfld0GWzYGSfWXYXnkQHZyuJrvo7a+tQZXPg/7Z+eiXmRdVKxYRERERxR7fvRG1EFVRcGpmLjLsTqzZG+jql5+UAke9SSNMKbGr+jAsioqf5XdBz7TMkzKFOhERERGdXBzRTtTCcp3JOK9jN/TNzMXemir8VFsNAPAaBrZWHECa1Y4RHbuhd3oWQxQRERFRG8UWKaKTwKFbMCyvAJl2B9bt3Y2tFQdgSonuqRkYnNMJKRZrrItIRERERCeAQYroJFGEQK+0LKRZ7Vj30y5k2pwoysyDRVVjXTQiIiIiOkEMUkQnWbYjCaMKerIbHxEREVEC4RgpolbAEEVERESUWBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKUlwHqWeffRZFRUVISUlBSkoKhg0bhn//+9+h77vdbtx8883IyMhAUlISLrnkEpSXl8ewxERERERE1B7EdZDq2LEjHn74YaxduxZr1qzBeeedh/Hjx+M///kPAOC2227Dv/71L7z55pv4+OOPsXv3bkyYMCHGpSYiIiIiokQnpJQy1oWIRnp6Oh599FFceumlyMrKwquvvopLL70UAPDDDz+gsLAQq1atwtChQyPeZ0VFBVwuFw4fPoyUlJSTVXQiIiIiIopzkWaDuG6Rqs8wDLz++uuorq7GsGHDsHbtWvh8PowcOTK0Te/evVFQUIBVq1Ydc18ejwcVFRVhDyIiIiIiokhpsS5Ac7799lsMGzYMbrcbSUlJWLx4Mfr06YOSkhJYLBakpqaGbZ+Tk4M9e/Ycc59/+tOfcP/99zd4noGKiIiIiKh9q8sEzXXci/sg1atXL5SUlODw4cN46623cM011+Djjz8+oX3edddduP3220Nf79q1C3369EGnTp1OtLhERERERJQAKisr4XK5mvx+3Acpi8WC7t27AwAGDRqEr776Ck8++SQuv/xyeL1eHDp0KKxVqry8HLm5ucfcp9VqhdVqDX2dlJSEHTt2IDk5GUKIk3IekaqoqECnTp2wY8cOjtdKELyniYn3NfHwniYm3tfEw3uaeOLtnkopUVlZifz8/GNuF/dB6mimacLj8WDQoEHQdR3Lly/HJZdcAgAoLS3F9u3bMWzYsKj2qSgKOnbseDKKe9zqpnynxMF7mph4XxMP72li4n1NPLyniSee7umxWqLqxHWQuuuuuzB27FgUFBSgsrISr776KlauXIn3338fLpcLU6ZMwe2334709HSkpKRg6tSpGDZsWFQz9hEREREREUUrroPU3r17MXnyZJSVlcHlcqGoqAjvv/8+LrjgAgDAnDlzoCgKLrnkEng8HowePRrPPPNMjEtNRERERESJLq6D1IsvvnjM79tsNvzlL3/BX/7yl1Yq0clntVoxc+bMsDFc1LbxniYm3tfEw3uamHhfEw/vaeJpq/e0zS3IS0REREREFGttZkFeIiIiIiKieMEgRUREREREFCUGKSIiIiIioigxSLVB5557Lm699dZYF4NaEO9p4uE9TUzXXnstLr744lgXg1oQf1YTE39WE0883lMGqZPok08+wUUXXYT8/HwIIfDOO+802Oa+++5D79694XQ6kZaWhpEjR2L16tWtX1iKSCT3tL6bbroJQgg88cQTrVI+il4k9/Taa6+FECLsMWbMmNYvLEUs0p/VDRs2YNy4cXC5XHA6nRg8eDC2b9/euoWliERyT4/+Oa17PProo61fYIpIJPe1qqoKt9xyCzp27Ai73Y4+ffpg3rx5rV9Yikgk97S8vBzXXnst8vPz4XA4MGbMGGzatKn1C3uCGKROourqavTr1++Y07P37NkTc+fOxbfffotPP/0UXbp0wahRo/DTTz+1YkkpUpHc0zqLFy/GF198gfz8/FYoGR2vSO/pmDFjUFZWFnq89tprrVRCOh6R3NctW7bgzDPPRO/evbFy5Up88803uOeee2Cz2VqxpBSpSO5p/Z/RsrIyvPTSSxBC4JJLLmnFklI0Irmvt99+O5YuXYq///3v2LBhA2699VbccsstWLJkSSuWlCLV3D2VUuLiiy/Gf//7X/zzn//E119/jc6dO2PkyJGorq5u5dKeIEmtAoBcvHhxs9sdPnxYApAffvhhk9ucc845curUqXL69OkyLS1N5uTkyJkzZ7ZcYSkix7qnO3fulB06dJDfffed7Ny5s5wzZ84x98V7Gh+auqfXXHONHD9+fFT74j2NH03d18svv1z+z//8T1T7qqsLjz76qMzNzZXp6eny//2//ye9Xm8LlZYiEenf1PHjx8vzzjvvmNvwZzV+NHVfTz31VDlr1qyw5wYOHCjvvvvuJvfFn9X40Ng9LS0tlQDkd999F3rOMAyZlZUl//rXvza5r3i8p2yRiiNerxfPP/88XC4X+vXrd8xtFyxYAKfTidWrV2P27NmYNWsWli1b1kolpWMxTRNXX301pk+fjlNPPTXi1/GexreVK1ciOzsbvXr1wq9//Wvs37+/2dfwnsYv0zTx3nvvoWfPnhg9ejSys7MxZMiQZrvrAsBHH32ELVu24KOPPsKCBQvw8ssv4+WXXz7pZabolJeX47333sOUKVOa3ZY/q/Ft+PDhWLJkCXbt2gUpJT766CNs3LgRo0aNOubr+LManzweDwCEtf4rigKr1YpPP/30mK+Nt3vKIBUH3n33XSQlJcFms2HOnDlYtmwZMjMzj/maoqIizJw5Ez169MDkyZNx+umnY/ny5a1UYjqWRx55BJqmYdq0aVG9jvc0fo0ZMwavvPIKli9fjkceeQQff/wxxo4dC8Mwjvk63tP4tXfvXlRVVeHhhx/GmDFj8MEHH+CXv/wlJkyYgI8//viYr01LS8PcuXPRu3dvXHjhhfjFL37B+xqHFixYgOTkZEyYMKHZbfmzGt+efvpp9OnTBx07doTFYsGYMWPwl7/8BWefffYxX8ef1fjUu3dvFBQU4K677sLBgwfh9XrxyCOPYOfOnSgrKzvma+PtnmoxOzKFjBgxAiUlJdi3bx/++te/4rLLLsPq1auRnZ3d5GuKiorCvs7Ly8PevXtPdlGpGWvXrsWTTz6JdevWQQgR1Wt5T+PXFVdcEfp/3759UVRUhG7dumHlypU4//zzm3wd72n8Mk0TADB+/HjcdtttAID+/fvj888/x7x583DOOec0+dpTTz0VqqqGvs7Ly8O33357cgtMUXvppZcwadKkiMa88Wc1vj399NP44osvsGTJEnTu3BmffPIJbr75ZuTn52PkyJFNvo4/q/FJ13UsWrQIU6ZMQXp6OlRVxciRIzF27FhIKY/52ni7p2yRigNOpxPdu3fH0KFD8eKLL0LTNLz44ovHfI2u62FfCyFCbwwodoqLi7F3714UFBRA0zRomoYff/wRv/3tb9GlS5djvpb3tO045ZRTkJmZic2bNx9zO97T+JWZmQlN09CnT5+w5wsLC5udtY/3Nf4VFxejtLQU119/fUTb857Gr9raWvz+97/Hn//8Z1x00UUoKirCLbfcgssvvxyPPfbYMV/L+xq/Bg0ahJKSEhw6dAhlZWVYunQp9u/fj1NOOeWYr4u3e8oWqThkmmao/yi1LVdffXWDT8dGjx6Nq6++Gtddd12MSkUtbefOndi/fz/y8vJiXRQ6ThaLBYMHD0ZpaWnY8xs3bkTnzp1jVCpqKS+++CIGDRrU7Hhjin8+nw8+nw+KEv7Zv6qqDEUJwOVyAQA2bdqENWvW4I9//GOMSxQdBqmTqKqqKuwT661bt6KkpATp6ekoKChAdXU1HnzwQYwbNw55eXnYt28f/vKXv2DXrl2YOHFiDEtOTWnunmZkZCAjIyPsNbquIzc3F7169Wrt4lIEmrunVVVVuP/++3HJJZcgNzcXW7ZswR133IHu3btj9OjRMSw5HUtz9xUApk+fjssvvxxnn302RowYgaVLl+Jf//oXVq5cGaNS07FEck8BoKKiAm+++SYef/zxWBSTotTcfU1JScE555yD6dOnw263o3Pnzvj444/xyiuv4M9//nMMS05NieRn9c0330RWVhYKCgrw7bff4je/+Q0uvvjiZicQiTcMUifRmjVrMGLEiNDXt99+OwDgmmuuwcsvvwxVVfHDDz9gwYIF2LdvHzIyMjB48GAUFxdHNdsbtZ7m7im1PZH8nH7zzTdYsGABDh06hPz8fIwaNQp//OMfYbVaY1VsakYkP6u//OUvMW/ePPzpT3/CtGnT0KtXL7z99ts488wzY1Fkakakv39ff/11SClx5ZVXtnYR6ThEcl9ff/113HXXXZg0aRIOHDiAzp0748EHH8RNN90UiyJTMyK5p2VlZbj99ttRXl6OvLw8TJ48Gffcc08sintChGxuVBcRERERERGF4WQTREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREQUV0pLS5Gbm4vKyspjbtelSxc88cQTrVMoCvP999+jY8eOqK6ujnVRiIhihkGKiChBXXvttbj44osbPL9y5UoIIXDo0KFWL1Mk7rrrLkydOhXJyckAgJdffhmpqakNtvvqq69w4403tnLp4ldTwfK+++5D//79AQBCiGM+7rvvPgDA119/jYkTJyInJwc2mw09evTADTfcgI0bNwIA+vTpg6FDh+LPf/5zK50dEVH8YZAiIqKTwufzRf2a7du3491338W1117b7LZZWVlwOBzHUbL2q6ysLPR44oknkJKSEvbc7373O7z77rsYOnQoPB4PFi5ciA0bNuDvf/87XC4X7rnnntC+rrvuOjz77LPw+/0xPCMiothhkCIiIrz99ts49dRTYbVa0aVLFzz++ONh3xdC4J133gl7LjU1FS+//DIAYNu2bRBC4I033sA555wDm82GhQsX4scff8RFF12EtLQ0OJ1OnHrqqfi///u/Jsvxj3/8A/369UOHDh0ABFrPrrvuOhw+fLhBq8nRLTBCCDz33HO48MIL4XA4UFhYiFWrVmHz5s0499xz4XQ6MXz4cGzZsiXsmP/85z8xcOBA2Gw2nHLKKbj//vtD4eDll18+ZsuNaZqYNWsWOnbsCKvViv79+2Pp0qWhfdddl0WLFmHEiBFwOBzo168fVq1aFVaGTz/9FGeddRbsdjs6deqEadOmnZRuc7m5uaGHy+WCECLsOUVRcN111+HnP/85lixZgpEjR6Jr164YMmQIHnvsMTz33HOhfV1wwQU4cOAAPv744xYvJxFRW8AgRUTUzq1duxaXXXYZrrjiCnz77be47777cM8994RCUjTuvPNO/OY3v8GGDRswevRo3HzzzfB4PPjkk0/w7bff4pFHHkFSUlKTry8uLsbpp58e+nr48OENWk5+97vfNfn6P/7xj5g8eTJKSkrQu3dvXHXVVfjVr36Fu+66C2vWrIGUErfcckvY8SZPnozf/OY3+P777/Hcc8/h5ZdfxoMPPggAuPzyy8NabF577TVomoaf/exnAIAnn3wSjz/+OB577DF88803GD16NMaNG4dNmzaFlevuu+/G7373O5SUlKBnz5648sorQ2Fty5YtGDNmDC655BJ88803eOONN/Dpp5+GlfO+++5Dly5dIr8Rx+n999/Hvn37cMcddzT6/fpdLC0WC/r374/i4uKTXi4iorgkiYgoIV1zzTVSVVXpdDrDHjabTQKQBw8elFJKedVVV8kLLrgg7LXTp0+Xffr0CX0NQC5evDhsG5fLJefPny+llHLr1q0SgHziiSfCtunbt6+87777Ii5zv3795KxZs8Kemz9/vnS5XA227dy5s5wzZ05YGf/whz+Evl61apUEIF988cXQc6+99pq02Wyhr88//3z50EMPhe33b3/7m8zLy2twvM2bN8v09HQ5e/bs0HP5+fnywQcfDNtu8ODB8v/9v/8npTxyXV544YXQ9//zn/9IAHLDhg1SSimnTJkib7zxxrB9FBcXS0VRZG1trZRSyqefflqed955Dcp0rOtRZ+bMmbJfv34Nnm/suj7yyCMSgDxw4MAxj1Xnl7/8pbz22msj2paIKNGwRYqIKIGNGDECJSUlYY8XXnghbJsNGzaEWljq/OxnP8OmTZtgGEZUx6vfmgQA06ZNwwMPPICf/exnmDlzJr755ptjvr62thY2my2qY9ZXVFQU+n9OTg4AoG/fvmHPud1uVFRUAADWr1+PWbNmISkpKfS44YYbUFZWhpqamtDrDh8+jAsvvBC/+MUvMH36dABARUUFdu/e3ei127BhQ5PlysvLAwDs3bs3VIaXX345rAyjR4+GaZrYunUrAOCWW27B8uXLj/u6REpKGdX2drs97DoREbUnWqwLQEREJ4/T6UT37t3Dntu5c2fU+xFCNHiT3dhkEk6nM+zr66+/HqNHj8Z7772HDz74AH/605/w+OOPY+rUqY0eJzMzEwcPHoy6fHV0XQ8rc1PPmaYJAKiqqsL999+PCRMmNNhXXaAzDAOXX345UlJS8Pzzz7dYueqX4Ve/+hWmTZvW4HUFBQURHyMlJQWHDx9u8PyhQ4fgcrki2kfPnj0BAD/88AOGDRvW7PYHDhxAt27dIi4jEVEiYYsUEVE7V1hYiM8++yzsuc8++ww9e/aEqqoAAjPklZWVhb6/adOmiFsiOnXqhJtuugmLFi3Cb3/7W/z1r39tctsBAwbg+++/D3vOYrFE3TIWqYEDB6K0tBTdu3dv8FCUwJ/I2267Dd9++y3eeeedsNaylJQU5OfnN3rt+vTpE1UZvv/++0bLYLFYIt5Pr169sHbt2gbPr1u3LhSQmjNq1ChkZmZi9uzZjX7/6Cnzv/vuOwwYMCDiMhIRJRK2SBERtXO//e1vMXjwYPzxj3/E5ZdfjlWrVmHu3Ll45plnQtucd955mDt3LoYNGwbDMDBjxoywVpam3HrrrRg7dix69uyJgwcP4qOPPkJhYWGT248ePRrXX389DMMIhbguXbqgqqoKy5cvR79+/eBwOFps2vN7770XF154IQoKCnDppZdCURSsX78e3333HR544AHMnz8fzzzzDBYvXgwhBPbs2QMAoS5406dPx8yZM9GtWzf0798f8+fPR0lJCRYuXBhxGWbMmIGhQ4filltuwfXXXw+n04nvv/8ey5Ytw9y5cwEAc+fOxeLFi4/Zve+2227DWWedhQcffBATJkyAYRh47bXXsGrVqrB7eSxOpxMvvPACJk6ciHHjxmHatGno3r079u3bh3/84x/Yvn07Xn/9dQCBGQl37dqFkSNHRnyuRESJhC1SRETt3MCBA/GPf/wDr7/+Ok477TTce++9mDVrVthaTo8//jg6deqEs846C1dddRV+97vfRRRmDMPAzTffjMLCQowZMwY9e/Y85pv6sWPHQtM0fPjhh6Hnhg8fjptuugmXX345srKymmwtOR6jR4/Gu+++iw8++ACDBw/G0KFDMWfOHHTu3BkA8PHHH8MwDIwbNw55eXmhx2OPPQYgMAbs9ttvx29/+1v07dsXS5cuxZIlS9CjR4+Iy1BUVISPP/4YGzduxFlnnYUBAwbg3nvvRX5+fmibffv2NZi2/WjDhw/Hv//9b/z73//Gz372M5x77rn4/PPPsXz5cpx22mkRl2f8+PH4/PPPoes6rrrqKvTu3RtXXnklDh8+jAceeCC03WuvvYZRo0aFrhURUXsjZLQjS4mIiE6iv/zlL1iyZAnef//9WBeFmuD1etGjRw+8+uqrDSbbICJqL9i1j4iI4sqvfvUrHDp0CJWVlUhOTo51cagR27dvx+9//3uGKCJq19giRUREREREFCWOkSIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSFusCUPzx+/3wer2xLgYRERERtSKbzQZFYTtLpBikKERKie3bt2Pfvn2xLgoRERERtTJFUdCnTx9YrdZYF6VNEFJKGetCUHz48ccfsW/fPnTo0AFJSUn8RIKIiIionTBNE1u3boXFYkHPnj0hhIh1keIegxQBCHTnW79+PTp06IDc3NxYF4eIiIiIWtmBAwewdetW+P1+nHrqqUhKSop1keIamxwIAEJjovgDQ0RERNQ+1XXp+/LLL/Hvf/8bVVVVMS5RfGOQojDszkdERETUPtV158vOzsbGjRuxevXqGJcovvFdMxERERERhWiaBrvdjv3798e6KHGNQYoS2n333Yf+/fuHvr722mtx8cUXn/B+hRB45513Tng/1LpYH6g+1geqj/WBjtbe64SiKPD5fLEuRlxjkKJ25cknn8TLL78c62KESClx7733Ii8vD3a7HSNHjsSmTZvCtnnwwQcxfPhwOBwOpKamxqagCaqt1YeVK1dCCNHo46uvvophyRNDvNWHRYsWYdSoUcjIyIAQAiUlJQ22+dWvfoVu3brBbrcjKysL48ePxw8//ND6hU1AbbE+bNmyBb/85S+RlZWFlJQUXHbZZSgvL2/9wiaoeKoTPp8PM2bMQN++feF0OpGfn4/Jkydj9+7djW7v8XjQv3//JusOHR8GKWpXXC5XXISRusk9Zs+ejaeeegrz5s3D6tWr4XQ6MXr0aLjd7rBtJ06ciF//+texKm7Camv1Yfjw4SgrKwt7XH/99ejatStOP/30WJ5CQoi3+lBdXY0zzzwTjzzySJPbDho0CPPnz8eGDRvw/vvvQ0qJUaNGwTCM1ipuwmpr9aG6uhqjRo2CEAIrVqzAZ599Bq/Xi4suugimabZmkRNWPNWJmpoarFu3Dvfccw/WrVuHRYsWobS0FOPGjWv0NXfccQfy8/NbuaSJj0GK2rTnn38e+fn5Df5IjB8/Hv/7v//bYPujm+XPPfdcTJs2DXfccQfS09ORm5uL++67L+w1mzZtwtlnnw2bzYY+ffpg2bJlDfa7Y8cOXHbZZUhNTUV6ejrGjx+Pbdu2NTjugw8+iPz8fPTq1QtSSjzxxBP4wx/+gPHjx6OoqAivvPIKdu/eHdbkf//99+O2225D3759j+satSeJXh8sFgtyc3NDj4yMDPzzn//Eddddx/U+GtGW6wMAXH311bj33nsxcuTIJs/xxhtvxNlnn40uXbpg4MCBeOCBB7Bjx46w/VNAoteHzz77DNu2bcPLL7+Mvn37om/fvliwYAHWrFmDFStWRHiV2pe2XCdcLheWLVuGyy67DL169cLQoUMxd+5crF27Ftu3bw/b/7///W988MEHeOyxx6K/SHRMDFLUKCklaqvdMXlEs7TZxIkTsX//fnz00Ueh5w4cOIClS5di0qRJEe1jwYIFcDqdWL16NWbPno1Zs2aFftGZpokJEybAYrFg9erVmDdvHmbMmBH2ep/Ph9GjRyM5ORnFxcX47LPPkJSUhDFjxoQ+SQSA5cuXo7S0FMuWLcO7776LrVu3Ys+ePWF/FF0uF4YMGYJVq1ZFfA1ai5QStW5vqz9YH5quD0uWLMH+/ftx3XXXRXyNWoqUEjVeX0wekdaJtlwfjkd1dTXmz5+Prl27olOnTse1j+MlpUSt3xuTB+tDgMfjgRAiNH01ANhsNiiKgk8//TSifbQUKSV8Zm1MHu3lb0ZjDh8+DCFEWKtZeXk5brjhBvztb3+Dw+GI9NJQhLRYF4Dik7vGg3HJV8fk2Esq/wa70xbRtmlpaRg7dixeffVVnH/++QCAt956C5mZmRgxYgSKi4ub3UdRURFmzpwJAOjRowfmzp2L5cuX44ILLsCHH36IH374Ae+//36oSfyhhx7C2LFjQ69/4403YJomXnjhhVCrwPz585GamoqVK1di1KhRAACn04kXXngBFosFAPD5558DAHJycsLKk5OTgz179kR0/q3J7fFhzIQnWv24SxfdCrvNEtG27a0+vPjiixg9ejQ6duwY0fVpSbU+PwY8MrfVjwsAX8+4BQ6L3ux2bbk+ROOZZ57BHXfcgerqavTq1QvLli07rv2cCLfhwzkf3teqx6zz8cj7YNeaP99Erw9Dhw6F0+nEjBkz8NBDD0FKiTvvvBOGYaCsrCzi/bQEv3Tjb5svaNVj1rm6+zLowh7RtolUJ9xuN2bMmIErr7wSKSkpAAKB9tprr8VNN92E008/nS3VJwFbpKjNmzRpEt5++214PB4AwMKFC3HFFVdEvCZWUVFR2Nd5eXnYu3cvAGDDhg3o1KlTWL/iYcOGhW2/fv16bN68GcnJyUhKSkJSUhLS09PhdruxZcuW0HZ9+/Zt9Tc37VF7qQ87d+7E+++/jylTphz3PtqD9lAfJk2ahK+//hoff/wxevbsicsuuyxsnCUdkcj1ISsrC2+++Sb+9a9/ISkpCS6XC4cOHcLAgQO5RuQxJEKd8Pl8uOyyyyClxLPPPht6/umnn0ZlZSXuuuuuiM6FoscWKWqUzWHFksq/xezY0bjooosgpcR7772HwYMHo7i4GHPmzIn49boe/sm2ECKqgblVVVUYNGgQFi5c2OB7WVlZof87nc6w7+Xm5gIINLvn5eWFni8vLw+bbjVe2Kw6li66NSbHjUZ7qQ/z589HRkZGkwOLTza7ruHrGbfE7NiRaqv1IRoulwsulws9evTA0KFDkZaWhsWLF+PKK6887n1Gy6bq+Hjkfa12vKOPHalErw+jRo3Cli1bsG/fPmiahtTUVOTm5uKUU045rv0dL03YcHX3hmOBWuvY0WjrdaIuRP34449YsWJFqDUKAFasWIFVq1aFdfcEgNNPPx2TJk3CggULIi4nNY5BiholhIi4e12s2Ww2TJgwAQsXLsTmzZvRq1cvDBw4sEX2XVhYiB07dqCsrCz05vaLL74I22bgwIF44403kJ2dHfYLrDldu3ZFbm4uli9fHnqjXFFRgdWrV8flDH1CiIi72MVSe6gPUkrMnz8fkydPbvBHvLUIISLqXhdrbbU+HC8pJaSUoU/XW4sQIqLudbHWXupDZmYmgMAb6b1797b6By5CiIi718VaW64TdSFq06ZN+Oijj5CRkRH2/aeeegoPPPBA6Ovdu3dj9OjReOONNzBkyJDjPCuqj229lBAmTZqE9957Dy+99FLEA0QjMXLkSPTs2RPXXHMN1q9fj+LiYtx9990Njp2ZmYnx48ejuLgYW7duxcqVKzFt2jTs3LmzyX0LIXDrrbfigQcewJIlS/Dtt99i8uTJyM/PD5sVaPv27SgpKcH27dthGAZKSkpQUlKCqqqqFjvPRJPI9QEIvDnaunUrrr/++hY7t0TWFusDEBj0XlJSgu+//x4AUFpaipKSktCYuf/+97/405/+FJql6/PPP8fEiRNht9vx85//vMXOM9Ekan0AAi3VX3zxBbZs2YK///3vmDhxIm677bbQzH/UuLZYJ3w+Hy699FKsWbMGCxcuhGEY2LNnD/bs2ROapKKgoACnnXZa6NGzZ08AQLdu3WIytjYRMUhRQjjvvPOQnp6O0tJSXHXVVS22X0VRsHjxYtTW1uKMM87A9ddfjwcffDBsG4fDgU8++QQFBQWYMGECCgsLMWXKFLjd7mY/XbrjjjswdepU3HjjjRg8eDCqqqqwdOlS2GxHWgPvvfdeDBgwADNnzkRVVRUGDBiAAQMGYM2aNS12nokmkesDEJhkYvjw4ejdu3eLnVsia6v1YcmSJRgwYAB+8YtfAACuuOIKDBgwAPPmzQMQ+CS9uLgYP//5z9G9e3dcfvnlSE5Oxueff47s7OwWO89Ek6j1AQiEq4svvhiFhYWYNWsW7r77bk55HYG2WCd27dqFJUuWYOfOnejfvz/y8vJCj7rJi+jkEzKaeSIpYdXU1GDDhg0oLCzk9JhERERE7VDd+8Ft27Zhx44dyMrKatFWukTDFikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUhRQrvvvvvQv3//0NfXXnstLr744hPerxAC77zzzgnvh1oX6wPVx/pA9bE+0NFYJ6g5DFLUrjz55JN4+eWXY12MECkl7r33XuTl5cFut2PkyJHYtGlT6Pvbtm3DlClT0LVrV9jtdnTr1g0zZ86E1+uNYakTR1urDwCwceNGjB8/HpmZmUhJScGZZ56Jjz76KEYlTizxVh8WLVqEUaNGISMjA0IIlJSUNLmtlBJjx47lG7QWFE/1wefzYcaMGejbty+cTify8/MxefJk7N69O2y7AwcOYNKkSUhJSUFqaiqmTJmCqqqqGJU68bTFOtGlSxcIIcIeDz/8cIxKnXgYpKhdcblcSE1NjXUxQkFo9uzZeOqppzBv3jysXr0aTqcTo0ePhtvtBgD88MMPME0Tzz33HP7zn/9gzpw5mDdvHn7/+9/HsvgJo63VBwC48MIL4ff7sWLFCqxduxb9+vXDhRdeiD179sSq+Akj3upDdXU1zjzzTDzyyCPNvuaJJ56AEOJkF61diaf6UFNTg3Xr1uGee+7BunXrsGjRIpSWlmLcuHFh206aNAn/+c9/sGzZMrz77rv45JNPcOONN8ao5ImnLdYJAJg1axbKyspCj6lTp8ag1AlKEkkpq6ur5Zo1a2R1dXWsixKV5557Tubl5UnDMMKeHzdunLzuuuvkzJkzZb9+/ULPX3PNNXL8+PGhr8855xw5depUOX36dJmWliZzcnLkzJkzw/a1ceNGedZZZ0mr1SoLCwvlBx98IAHIxYsXh7bZvn27nDhxonS5XDItLU2OGzdObt26tcFxH3jgAZmXlye7dOkiTdOUubm58tFHHw1td+jQIWm1WuVrr73W5DnPnj1bdu3aNarr1F4ken346aefJAD5ySefhLapqKiQAOSyZcuO/8IlqLZcH+rbunWrBCC//vrrRs/z66+/lh06dJBlZWUNjk1HJEp9qPPll19KAPLHH3+UUkr5/fffSwDyq6++Cm3z73//Wwoh5K5du6K7WO1EotcJKaXs3LmznDNnTsTXpO794FtvvSXnzJkj//73v0f82vaILVLUKCkl3NWemDyklBGXc+LEidi/f39Y16YDBw5g6dKlmDRpUkT7WLBgAZxOJ1avXo3Zs2dj1qxZWLZsGQDANE1MmDABFosFq1evxrx58zBjxoyw1/t8PowePRrJyckoLi7GZ599hqSkJIwZMyasC97y5ctRWloa+qRw69at2LNnD0aOHBnaxuVyYciQIVi1alWT5T18+DDS09MjOreWJKVErdvX6g/WhyP1ISMjA7169cIrr7yC6upq+P1+PPfcc8jOzsagQYMivk4tQUqJGp8vJo9I60Rbrg+RqqmpwVVXXYW//OUvyM3Njfh1LU1KCbfhicmjvdaHw4cPQwgRaiFZtWoVUlNTcfrpp4e2GTlyJBRFwerVqyM6v5YipYTfrInJo738zWjM0XWizsMPP4yMjAwMGDAAjz76KPx+f0TnRs3TYl0Aik+eGi8uzv91TI79zu5nYXNaI9o2LS0NY8eOxauvvorzzz8fAPDWW28hMzMTI0aMQHFxcbP7KCoqwsyZMwEAPXr0wNy5c7F8+XJccMEF+PDDD/HDDz/g/fffR35+PgDgoYcewtixY0Ovf+ONN2CaJl544YVQ15r58+cjNTUVK1euxKhRowAATqcTL7zwAiwWCwDg888/BwDk5OSElScnJ6fJblqbN2/G008/jcceeyyi69OS3B4/Rl79VKsf98O/TYPdpke0baLXByEEPvzwQ1x88cVITk6GoijIzs7G0qVLkZaWFtE1aim1fj/6PvV0qx6zzrfTpsKhN18n2nJ9iNRtt92G4cOHY/z48VG9rqV5TC/Gfzqj+Q1Pgn+e+QhsavN/MxKpPrjdbsyYMQNXXnklUlJSAAB79uxBdnZ22HaapiE9Pb3Vu/4ashYf/HhGqx6zzqjOX0ITjoi2TfQ6AQDTpk3DwIEDkZ6ejs8//xx33XUXysrK8Oc//zmia0THxhYpavMmTZqEt99+Gx6PBwCwcOFCXHHFFVCUyKp3UVFR2Nd5eXnYu3cvAGDDhg3o1KlT6BcgAAwbNixs+/Xr12Pz5s1ITk5GUlISkpKSkJ6eDrfbjS1btoS269u3b9RvkurbtWsXxowZg4kTJ+KGG2447v0kukSuD1JK3HzzzcjOzkZxcTG+/PJLXHzxxbjoootQVlYW1b7ai0SuD0uWLMGKFSvwxBNPRPW69iwR6oPP58Nll10GKSWeffbZiMpNTUv0OnH77bfj3HPPRVFREW666SY8/vjjePrpp0PnSyeGLVLUKKvDgnd2x+YXtNUR3ZuJiy66CFJKvPfeexg8eDCKi4sxZ86ciF+vH/XJthACpmlG/PqqqioMGjQICxcubPC9rKys0P+dTmfY9+q64ZSXlyMvLy/0fHl5edh0qwCwe/dujBgxAsOHD8fzzz8fcdlaks2q4cO/TYvJcaORyPVhxYoVePfdd3Hw4MHQJ47PPPMMli1bhgULFuDOO++MuJwnyq5p+HZabAYs27XI60RbrQ+RWLFiBbZs2dKgG88ll1yCs846CytXrox6n8fLqljwzzObnxTjZB07Um29PtS9c8jrcgAAMBNJREFUYf7xxx+xYsWKsJaH3Nzc0Bv4On6/HwcOHGj1bp+qsGNU5y9b9Zj1jx2NRK4TjRkyZAj8fj+2bduGXr16RVxOahyDFDVKCBFx97pYs9lsmDBhAhYuXIjNmzejV69eGDhwYIvsu7CwEDt27EBZWVnoze0XX3wRts3AgQPxxhtvIDs7u9lfYPV17doVubm5WL58eeiNckVFBVavXo1f//pIt8pdu3ZhxIgRGDRoEObPnx/xp2QtTQgRcRe7WErk+lBTUwMADeqAoihR/eFuCUKIiLrXxVpbrQ+RuPPOO3H99deHPde3b1/MmTMHF110UYseqzlCiIi618VaW64PdW+YN23ahI8++ggZGRlh3x82bBgOHTqEtWvXhsZMrlixAqZpYsiQISdwZtETQkTcvS7WErlONKakpCTULZxOHLv2UUKYNGkS3nvvPbz00ksRDxCNxMiRI9GzZ09cc801WL9+PYqLi3H33Xc3OHZmZibGjx+P4uJibN26FStXrsS0adOwc+fOJvcthMCtt96KBx54AEuWLMG3336LyZMnIz8/P7Tg365du3DuueeioKAAjz32GH766Sfs2bOHU103I1Hrw7Bhw5CWlhY6/saNGzF9+nRs3boVv/jFL1rsPBNNW6wPQGDQe0lJCb7//nsAQGlpKUpKSkI//7m5uTjttNPCHgBQUFCArl27tth5Jpq2WB98Ph8uvfRSrFmzBgsXLoRhGKG/BXUTEhQWFmLMmDG44YYb8OWXX+Kzzz7DLbfcgiuuuCKsaxk1lKh1YtWqVXjiiSewfv16/Pe//8XChQtx22234X/+539afVxtomKQooRw3nnnIT09HaWlpbjqqqtabL+KomDx4sWora3FGWecgeuvvx4PPvhg2DYOhwOffPIJCgoKMGHCBBQWFmLKlClwu93Nfrp0xx13YOrUqbjxxhsxePBgVFVVYenSpbDZbACAZcuWYfPmzVi+fDk6duyIvLy80IOalqj1ITMzE0uXLkVVVRXOO+88nH766fj000/xz3/+E/369Wux80w0bbU+LFmyBAMGDAiF5CuuuAIDBgzAvHnzWuwc2qO2WB927dqFJUuWYOfOnejfv3/Y34K6iWqAwPie3r174/zzz8fPf/5znHnmmTHrDt6WJGqdsFqteP3113HOOefg1FNPxYMPPojbbruNdaIFCRnNPJGUsGpqarBhwwYUFhbC4WgbzfFERERE1HLq3g9u27YNO3bsQFZWVou20iUatkgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKEtp9992H/v37h76+9tprcfHFF5/wfoUQeOedd054P9S6WB+oPtYHqo/1gY7GOkHNYZCiduXJJ5/Eyy+/HOtihEgpce+99yIvLw92ux0jR47Epk2bwrYZN24cCgoKYLPZkJeXh6uvvhq7d++OUYkTS1usD+vWrcMFF1yA1NRUZGRk4MYbb0RVVVWMSpxY4q0+LFq0CKNGjUJGRgaEECgpKWmwzbnnngshRNjjpptuav3CJqB4qg8+nw8zZsxA37594XQ6kZ+fj8mTJzf4W/Dggw9i+PDhcDgcSE1NjU1hE1hbrBMA8N5772HIkCGw2+1IS0trkTBIAQxS1K64XK64+OPi9XoBALNnz8ZTTz2FefPmYfXq1XA6nRg9ejTcbndo2xEjRuAf//gHSktL8fbbb2PLli249NJLY1X0hNLW6sPu3bsxcuRIdO/eHatXr8bSpUvxn//8B9dee20MS5844q0+VFdX48wzz8QjjzxyzO1vuOEGlJWVhR6zZ89ujWImvHiqDzU1NVi3bh3uuecerFu3DosWLUJpaSnGjRvXYNuJEyfi17/+dYxKm9jaYp14++23cfXVV+O6667D+vXr8dlnn+Gqq66KUckTkCSSUlZXV8s1a9bI6urqWBclKs8995zMy8uThmGEPT9u3Dh53XXXyZkzZ8p+/fqFnr/mmmvk+PHjQ1+fc845curUqXL69OkyLS1N5uTkyJkzZ4bta+PGjfKss86SVqtVFhYWyg8++EACkIsXLw5ts337djlx4kTpcrlkWlqaHDdunNy6dWuD4z7wwAMyLy9PdunSRZqmKXNzc+Wjjz4a2u7QoUPSarXK1157rclz/uc//ymFENLr9UZ1rdqDRK8Pzz33nMzOzg47v2+++UYCkJs2bTr+C5eg2nJ9qG/r1q0SgPz6668bnOM555wjf/Ob30R5ZdqnRKkPdb788ksJQP74448Nvjd//nzpcrkivTTtVqLXCZ/PJzt06CBfeOGFiK9J3fvBt956S86ZM0f+/e9/j/i17RFbpKhRUkq4azwxeUgpIy7nxIkTsX//fnz00Ueh5w4cOIClS5di0qRJEe1jwYIFcDqdWL16NWbPno1Zs2Zh2bJlAADTNDFhwgRYLBasXr0a8+bNw4wZM8Je7/P5MHr0aCQnJ6O4uBifffYZkpKSMGbMmNAnywCwfPlylJaWYtmyZXj33XexdetW7NmzByNHjgxt43K5MGTIEKxatarRsh44cAALFy7E8OHDoet6xNepJUgpUevxtfqD9eFIffB4PLBYLFCUI7+67XY7AODTTz+N+Dq1BCklany+mDwirRNtuT5EY+HChcjMzMRpp52Gu+66CzU1NVG9viVIKeE2PDF5tNf6cPjwYQgh4qKF5GhSShhmTUwe7eVvRmOOrhPr1q3Drl27oCgKBgwYgLy8PIwdOxbfffddxNeIjk2LdQEoPnlqvfhlz+kxOfbijY/C5rBGtG1aWhrGjh2LV199Feeffz4A4K233kJmZiZGjBiB4uLiZvdRVFSEmTNnAgB69OiBuXPnYvny5bjgggvw4Ycf4ocffsD777+P/Px8AMBDDz2EsWPHhl7/xhtvwDRNvPDCCxBCAADmz5+P1NRUrFy5EqNGjQIAOJ1OvPDCC7BYLACAzz//HACQk5MTVp6cnBzs2bMn7LkZM2Zg7ty5qKmpwdChQ6N+o9US3F4/zrnx6VY/7sfPT4XdGlloTPT6cN555+H222/Ho48+it/85jeorq7GnXfeCQAoKyuL6Bq1lFq/H32ef6pVj1nn+xunwRHBBwltuT5E6qqrrkLnzp2Rn5+Pb775BjNmzEBpaSkWLVoU1X5OlMf04rqvprbqMevMH/w0bGrzfzMSqT643W7MmDEDV155JVJSUpotd2szZS2+29krJsc+rWMpVOGIaNtErxP//e9/AQQmzfjzn/+MLl264PHHH8e5556LjRs3Ij09PaLrRE1jixS1eZMmTcLbb78Nj8cDIPDp7BVXXBH2qf2xFBUVhX2dl5eHvXv3AgA2bNiATp06hX4BAsCwYcPCtl+/fj02b96M5ORkJCUlISkpCenp6XC73diyZUtou759+0b9JqnO9OnT8fXXX+ODDz6AqqqYPHlyVJ+6tSeJXB9OPfVULFiwAI8//jgcDgdyc3PRtWtX5OTkRHx+7U0i1wcAuPHGGzF69Gj07dsXkyZNwiuvvILFixeH7ZuOSIT64PP5cNlll0FKiWeffTaiclPTErlOmKYJALj77rtxySWXYNCgQZg/fz6EEHjzzTcjOj86NrZIUaOsdgsWb3w0ZseOxkUXXQQpJd577z0MHjwYxcXFmDNnTsSvP7qLnBAi9MsnElVVVRg0aBAWLlzY4HtZWVmh/zudzrDv5ebmAgDKy8uRl5cXer68vDxsulUAyMzMRGZmJnr27InCwkJ06tQJX3zxRYNfyCeTzaLh4+db/xNnmyW6X1OJXh+uuuoqXHXVVSgvL4fT6YQQAn/+859xyimnRFzGlmDXNHx/47RWPWb9Y0eqrdaH4zVkyBAAwObNm9GtW7cW2WckrIoF8we3fot13bEj1dbrQ90b5h9//BErVqyIy9YoAFCEHad1LI3ZsaORyHWi7m9Jnz59Qs9ZrVaccsop2L59e8RlpKYxSFGjhBARd6+LNZvNhgkTJmDhwoXYvHkzevXqhYEDB7bIvgsLC7Fjxw6UlZWFfiF98cUXYdsMHDgQb7zxBrKzs6P6o9a1a1fk5uZi+fLloTfKFRUVWL169TFnXKr7BV336VlrEUJE3MUultpLfajrAvjSSy/BZrPhggsuOM6zOj5CiIi618VaW60Px6tuivT6Ybw1CCEi6l4Xa225PtS9Yd60aRM++ugjZGRktEi5TwYhRMTd62ItkevEoEGDYLVaUVpaijPPPDP0mm3btqFz584ncGZUh31BKCFMmjQJ7733Hl566aWIB4hGYuTIkejZsyeuueYarF+/HsXFxbj77rsbHDszMxPjx49HcXExtm7dipUrV2LatGnYuXNnk/sWQuDWW2/FAw88gCVLluDbb7/F5MmTkZ+fH1rjYfXq1Zg7dy5KSkpCnzZdeeWV6NatW6u2RrU1iVofAGDu3LlYt24dNm7ciL/85S+45ZZb8Kc//SkuB5zHi7ZYH4DAoPeSkhJ8//33AIDS0lKUlJSExsxt2bIFf/zjH7F27Vps27YNS5YsweTJk3H22Wc36G5ER7TF+uDz+XDppZdizZo1WLhwIQzDwJ49e7Bnz56wCQm2b9+OkpISbN++HYZhoKSkBCUlJVxrrhmJWidSUlJw0003YebMmfjggw9QWloa+mBu4sSJLXae7RmDFCWE8847D+np6SgtLW3R9REURcHixYtRW1uLM844A9dffz0efPDBsG0cDgc++eQTFBQUYMKECSgsLMSUKVPgdrub/XTpjjvuwNSpU3HjjTdi8ODBqKqqwtKlS2Gz2UL7XrRoEc4//3z06tULU6ZMQVFRET7++GNYrfH/6W+sJGp9AIAvv/wSF1xwAfr27Yvnn38ezz33HKZNi00Xu7airdaHJUuWYMCAAfjFL34BALjiiiswYMAAzJs3DwBgsVjw4YcfYtSoUejduzd++9vf4pJLLsG//vWvFjvHRNQW68OuXbuwZMkS7Ny5E/3790deXl7oUTdRDQDce++9GDBgAGbOnImqqioMGDAAAwYMwJo1a1rsPBNRIteJRx99FFdccQWuvvpqDB48OPShbFpaWoudZ3smJEesE4Camhps2LABhYWFcDjaRnM8EREREbWcuveD27Ztw44dO5CVldWirXSJhi1SREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQooR23333oX///qGvr732Wlx88cUnvF8hBN55550T3g+1LtYHqo/1gepjfaCjsU5QcxikqF158skn8fLLL8e6GCFSStx7773Iy8uD3W7HyJEjsWnTpka39Xg86N+/P4QQKCkpad2CJqh4qw+LFi3CqFGjkJGR0eR9drvduPnmm5GRkYGkpCRccsklKC8vb/3CJqC2WB8AYNWqVTjvvPPgdDqRkpKCs88+G7W1ta1b2AQUT/XB5/NhxowZ6Nu3L5xOJ/Lz8zF58mTs3r07tM22bdswZcoUdO3aFXa7Hd26dcPMmTPh9XpjWPLE0tbqxMqVKyGEaPTx1VdfxbD0iYNBitoVl8uF1NTUWBcj9Idt9uzZeOqppzBv3jysXr0aTqcTo0ePhtvtbvCaO+64A/n5+a1d1IQWb/WhuroaZ555Jh555JEmt73tttvwr3/9C2+++SY+/vhj7N69GxMmTGitoia0tlgfVq1ahTFjxmDUqFH48ssv8dVXX+GWW26BovDP+4mKp/pQU1ODdevW4Z577sG6deuwaNEilJaWYty4caHtfvjhB5imieeeew7/+c9/MGfOHMybNw+///3vY1j6xNLW6sTw4cNRVlYW9rj++uvRtWtXnH766TE8gwQiiaSU1dXVcs2aNbK6ujrWRYnKc889J/Py8qRhGGHPjxs3Tl533XVy5syZsl+/fqHnr7nmGjl+/PjQ1+ecc46cOnWqnD59ukxLS5M5OTly5syZYfvauHGjPOuss6TVapWFhYXygw8+kADk4sWLQ9ts375dTpw4UbpcLpmWlibHjRsnt27d2uC4DzzwgMzLy5NdunSRpmnK3Nxc+eijj4a2O3TokLRarfK1114LK8P//d//yd69e8v//Oc/EoD8+uuvj/eSJbS2XB/q27p1a6P3+dChQ1LXdfnmm2+GntuwYYMEIFetWhXVtWoPEr0+SCnlkCFD5B/+8IdoL027lCj1oc6XX34pAcgff/yxyXOePXu27Nq1a7PXpr1qb3XC6/XKrKwsOWvWrCavSd37wbfeekvOmTNH/v3vf29yW5KSH1lRo6SUcNd4Y/KQUkZczokTJ2L//v346KOPQs8dOHAAS5cuxaRJkyLax4IFC+B0OrF69WrMnj0bs2bNwrJlywAApmliwoQJsFgsWL16NebNm4cZM2aEvd7n82H06NFITk5GcXExPvvsMyQlJWHMmDFhXSqWL1+O0tJSLFu2DO+++y62bt2KPXv2YOTIkaFtXC4XhgwZglWrVoWeKy8vxw033IC//e1vcDgcEV+blialRK3H1+qP9lIfIrF27Vr4fL6wOtO7d28UFBSE1ZnWIKVEjc8bk0ekdSLR68PevXuxevVqZGdnY/jw4cjJycE555yDTz/9NKLXtyQpJTyGOyaP9lofDh8+DCHEMVtIDh8+jPT09IjOrSVJKWGaNTF5tOe/Gc3ViSVLlmD//v247rrrIjo3ap4W6wJQfPLU+vDLQTNjcuzFa++HzWGJaNu0tDSMHTsWr776Ks4//3wAwFtvvYXMzEyMGDECxcXFze6jqKgIM2cGzrVHjx6YO3culi9fjgsuuAAffvghfvjhB7z//vuhbnUPPfQQxo4dG3r9G2+8AdM08cILL0AIAQCYP38+UlNTsXLlSowaNQoA4HQ68cILL8BiCZzb559/DgDIyckJK09OTg727NkDIPDH6Nprr8VNN92E008/Hdu2bYvoupwMbq8fP7t1bqsf97MnboHdqke0bVuuD5HYs2cPLBZLgz+S9etMa6n1+9Dn70+06jHrfP8/t8KhN3/dEr0+/Pe//wUQGBD/2GOPoX///njllVdw/vnn47vvvkOPHj0i3teJ8poe3PFNbN6czS6aD6tqa3a7RKoPbrcbM2bMwJVXXomUlJRGt9m8eTOefvppPPbYY82eV0uTshZ7y7q3+nEBIDtvM4SI7EPH9lYnXnzxRYwePRodO3aM6PpQ89giRW3epEmT8Pbbb8Pj8QAAFi5ciCuuuCLiMQJFRUVhX+fl5WHv3r0AgA0bNqBTp05hY5OGDRsWtv369euxefNmJCcnIykpCUlJSUhPT4fb7caWLVtC2/Xt2zeqN0kA8PTTT6OyshJ33XVXVK9rzxK5PlD0Erk+mKYJAPjVr36F6667DgMGDMCcOXPQq1cvvPTSS1Htq71IhPrg8/lw2WWXQUqJZ599ttFtdu3ahTFjxmDixIm44YYbIjq39qq91ImdO3fi/fffx5QpUyI6L4oMW6SoUVa7jsVr74/ZsaNx0UUXQUqJ9957D4MHD0ZxcTHmzJkT8et1Pfx4QojQG5RIVFVVYdCgQVi4cGGD72VlZYX+73Q6w76Xm5sLINB1Ly8vL/R8eXl5aLrVFStWYNWqVbBarWGvPf300zFp0iQsWLAg4nKeKJtFw2dP3NJqx6t/3Gi01foQidzcXHi9Xhw6dCisVaq8vDxUn1qLXdPx/f/c2qrHrH/sSCVyfaj7vdGnT5+w5wsLC7F9+/ao93ciLIoVs4vmt+ox6x87Um29PtS9Yf7xxx+xYsWKRlsedu/ejREjRmD48OF4/vnnIy5bSxLCjuy8zTE7djTaQ50AAq1cGRkZYZNR0IljkKJGCSEi7l4XazabDRMmTMDChQuxefNm9OrVCwMHDmyRfRcWFmLHjh0oKysLvWn54osvwrYZOHAg3njjDWRnZzf5C6wxXbt2RW5uLpYvXx4KThUVFVi9ejV+/etfAwCeeuopPPDAA6HX7N69G6NHj8Ybb7yBIUOGnODZRUcIEXEXu1hqq/UhEoMGDYKu61i+fDkuueQSAEBpaSm2b9/e4FPOk00IEVH3ulhL5PrQpUsX5Ofno7S0NOz5jRs3hnUdag1CiIi618VaW64PdW+YN23ahI8++ggZGRkNttm1axdGjBiBQYMGYf78+TGbvTEwxXbsxvRGI9HrBBAYJjB//nxMnjy5QfCjE8OufZQQJk2ahPfeew8vvfRSxANEIzFy5Ej07NkT11xzDdavX4/i4mLcfffdDY6dmZmJ8ePHo7i4GFu3bsXKlSsxbdo07Ny5s8l9CyFw66234oEHHsCSJUvw7bffYvLkycjPzw8t+FdQUIDTTjst9OjZsycAoFu3buzjfAxtsT4AgUHOJSUl+P777wEEQlJJSUlo/JPL5cKUKVNw++2346OPPsLatWtx3XXXYdiwYRg6dGiLnWeiSdT6IITA9OnT8dRTT+Gtt97C5s2bcc899+CHH35g951jaIv1wefz4dJLL8WaNWuwcOFCGIaBPXv2YM+ePaEJCXbt2oVzzz0XBQUFeOyxx/DTTz+FtqFjS9Q6UWfFihXYunUrrr/++hY7NwpgkKKEcN555yE9PR2lpaW46qqrWmy/iqJg8eLFqK2txRlnnIHrr78eDz74YNg2DocDn3zyCQoKCjBhwgQUFhZiypQpcLvdzX66dMcdd2Dq1Km48cYbMXjwYFRVVWHp0qWw2eL/k9141lbrw5IlSzBgwAD84he/AABcccUVGDBgAObNmxfaZs6cObjwwgtxySWX4Oyzz0Zubi4WLVrUYueYiBK5Ptx666246667cNttt6Ffv35Yvnw5li1bhm7durXYeSaatlgfdu3ahSVLlmDnzp3o378/8vLyQo+6iYuWLVuGzZs3Y/ny5ejYsWPYNnRsiVon6rz44osYPnw4evfu3WLnRgFCRjNPJCWsmpoabNiwAYWFhTGdYpuIiIiIYqPu/eC2bduwY8cOZGVltWgrXaJhixQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKQood13333o379/6Otrr70WF1988QnvVwiBd95554T3Q62L9YHqY32g+lgf6GisE9QcBilqV5588km8/PLLsS5GiJQS9957L/Ly8mC32zFy5Ehs2rQpbJsuXbpACBH2ePjhh2NU4sQSb/Vh0aJFGDVqFDIyMiCEQElJSYNtnn/+eZx77rlISUmBEAKHDh1q9XImqrZWH7Zt29bgd0Pd480334xNoRNIPNUHn8+HGTNmoG/fvnA6ncjPz8fkyZOxe/fusO3GjRuHgoIC2Gw25OXl4eqrr26wDR2/tlgnNm7ciPHjxyMzMxMpKSk488wz8dFHH8Wo1ImHQYraFZfLhdTU1FgXA16vFwAwe/ZsPPXUU5g3bx5Wr14Np9OJ0aNHw+12h20/a9YslJWVhR5Tp06NRbETTrzVh+rqapx55pl45JFHmty2pqYGY8aMwe9///vWKl670dbqQ6dOncJ+L5SVleH+++9HUlISxo4d25pFTkjxVB9qamqwbt063HPPPVi3bh0WLVqE0tJSjBs3LmzbESNG4B//+AdKS0vx9ttvY8uWLbj00ktjVPLE0xbrxIUXXgi/348VK1Zg7dq16NevHy688ELs2bMnRqVPLAxS1KY9//zzyM/Ph2maYc+PHz8e//u//9tg+6Ob5c8991xMmzYNd9xxB9LT05Gbm4v77rsv7DWbNm3C2WefDZvNhj59+mDZsmUN9rtjxw5cdtllSE1NRXp6OsaPH49t27Y1OO6DDz6I/Px89OrVC1JKPPHEE/jDH/6A8ePHo6ioCK+88gp2797doMk/OTkZubm5oYfT6Yz6WrUHbbk+AMDVV1+Ne++9FyNHjmzyHG+99VbceeedGDp0aARXpH1L9PqgqmrY74Xc3FwsXrwYl112GZKSkiK8Su1HW64PLpcLy5Ytw2WXXYZevXph6NChmDt3LtauXYvt27eHXnvbbbdh6NCh6Ny5M4YPH44777wTX3zxBXw+3/FdtASX6HVi37592LRpE+68804UFRWhR48eePjhh1FTU4Pvvvvu+C8chTBIUaOklHDXemPykFJGXM6JEydi//79Yc3UBw4cwNKlSzFp0qSI9rFgwQI4nU6sXr0as2fPxqxZs0K/6EzTxIQJE2CxWLB69WrMmzcPM2bMCHu9z+fD6NGjkZycjOLiYnz22WdISkrCmDFjQp8sA8Dy5ctRWlqKZcuW4d1338XWrVuxZ8+esDdJLpcLQ4YMwapVq8KO8fDDDyMjIwMDBgzAo48+Cr/fH/E1ailSStR4fK3+aC/1oa2RUqLG743JI9I60d7qw9q1a1FSUoIpU6Yc1+tPhJQSXtMdk0d7rQ+HDx+GEKLJFpIDBw5g4cKFGD58OHRdj+j8WoqUEtKsic2jHf/NOLpOZGRkoFevXnjllVdQXV0Nv9+P5557DtnZ2Rg0aFDE14mapsW6ABSfPG4fxp/1UEyO/c/i38Nmt0S0bVpaGsaOHYtXX30V559/PgDgrbfeQmZmJkaMGIHi4uJm91FUVISZM2cCAHr06IG5c+di+fLluOCCC/Dhhx/ihx9+wPvvv4/8/HwAwEMPPRTWbeaNN96AaZp44YUXIIQAAMyfPx+pqalYuXIlRo0aBQBwOp144YUXYLEEzu3zzz8HAOTk5ISVJycnJ6zJfdq0aRg4cCDS09Px+eef46677kJZWRn+/Oc/R3SNWkqt14+hd81t1WMCwBd/ugUOa2RvAtpyfWhrag0fTnvzsZgc+7uJv4NDa/66tbf68OKLL6KwsBDDhw8/7n0cL5/04NENselCNr3wLViErdntEqk+uN1uzJgxA1deeSVSUlLCvjdjxgzMnTsXNTU1GDp0aGw+qJG1kHv7t/5xAYjsEkA4Ito20euEEAIffvghLr74YiQnJ0NRFGRnZ2Pp0qVIS0uL6BrRsbFFitq8SZMm4e2334bH4wEALFy4EFdccQUUJbLqXVRUFPZ1Xl4e9u7dCwDYsGEDOnXqFPoFCADDhg0L2379+vXYvHkzkpOTkZSUhKSkJKSnp8PtdmPLli2h7fr27Xtcb5Juv/12nHvuuSgqKsJNN92Exx9/HE8//XTofClcotcHik57qQ+1tbV49dVXY9Ia1ZYkQn3w+Xy47LLLIKXEs88+2+D706dPx9dff40PPvgAqqpi8uTJUbXStDeJXCeklLj55puRnZ2N4uJifPnll7j44otx0UUXoaysLKLzo2NjixQ1ymrT8c/i2Axmt9qi64Jw0UUXQUqJ9957D4MHD0ZxcTHmzJkT8euP7vIghGjQX/pYqqqqMGjQICxcuLDB97KyskL/P3pcU25uLgCgvLwceXl5oefLy8vDpls92pAhQ+D3+7Ft27bQWIrWYLdo+OJPt7Ta8eofNxpttT60NXZVx3cTfxezY0eqvdSHt956CzU1NZg8efIJ7ed46cKK6YVvxezYkWrr9aHuDfOPP/6IFStWNGiNAoDMzExkZmaiZ8+eKCwsRKdOnfDFF180eAN/Ugl7oGUoFoQ9qs0TuU6sWLEC7777Lg4ePBh6/plnnsGyZcuwYMEC3HnnnRGXkxrHIEWNEkJE3L0u1mw2GyZMmICFCxdi8+bN6NWrFwYOHNgi+y4sLMSOHTtQVlYWCjtffPFF2DYDB/7/9u4+puq6/+P484vIvcqtAhZ5lwQWiorO5syQvMmMRkkkoRVmul2QtivbLk39lbSlWdZsY87bNppUSJF0UUqaJzWa2WE49QgKhTfHViwJEeXmXH84z+/ih9Y5xo8jh9dj+25wzuf7ufnuvZ3P+3w+3+8ZTX5+Pv3797/hh9rNDB48mPDwcEpLS+2JU319PWVlZSxatOim55nNZvvyfFcyDMPhLXau1F3jobsxDMOh7XWu1lPiYfPmzTz66KPtJl5dyTAMh7bXuVp3jofrE+bKykr27t1LSEjIX55zfULf1TsYDMNweHudq7lzTDQ2NgJ0WF3z8PBwKtmTm9PWPnEL6enpFBcXs2XLFodvEHVEUlISw4cPZ968eZSXl2MymVi2bFmHtkNDQ0lOTsZkMlFdXc2+ffvIzs7mzJkzN63bMAwWL17M6tWrKSoqoqKigrlz5xIZGWl/KtChQ4dYv3495eXlnD59mry8PJYsWcLTTz+t/c1/ojvGA1y7ydlsNnPs2DEALBYLZrO53T1zVqsVs9lMVVUVABUVFZjNZurq6jptnO7GneMBoKqqiv379zN//vxOG5s7647x0NzczBNPPMHhw4fJy8ujtbUVq9WK1Wq1P5CgrKyMDRs2YDab7asTTz31FEOHDu3a1ahuyF1jYsKECQQFBdnbP3nyJC+//DLV1dXMnDmz08bZkymREreQmJhIcHAwFouFOXPmdFq9Hh4eFBYWcvnyZcaNG8f8+fPJyclpV8bPz4/9+/cTFRVFSkoKMTExZGZm0tTU9JffLi1dupSsrCwWLFhAQkICDQ0NlJSU4ONz7Ztdb29vduzYwQMPPMCIESPIyclhyZIlbNy4sdPG6I66azwUFRURHx9v/4BLS0sjPj6e3Nxce5nc3Fzi4+N5/vnnAZg0aRLx8fEUFRV12jjdjTvHA8CWLVu444477Dely5/rjvFw9uxZioqKOHPmDKNGjSIiIsJ+XH9wkZ+fHzt37mTKlClER0eTmZlJXFwc33zzDd7ejm9/7IncNSZCQ0MpKSmhoaGBxMRExo4dy7fffstnn33GyJEjO22cPZlh0x2IwrXl3+PHjxMTE4OfX/dYjhcRERGRznN9PlhTU0NtbS1hYWGdukrnbrQiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVIiIiIiIiJOUiIlIiIiIiLiJCVSIiIiIiIiTlIiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVLi1latWsWoUaPs/z/zzDM89thjf7tewzD49NNP/3Y90rUUD/LfFA8iIvJ3KJGSHuXdd99l27Ztru6Gnc1mY8WKFURERODr60tSUhKVlZUdyhUXFzN+/Hh8fX0JCgrqlMme3H7xsHPnTqZOnUpISAiGYWA2m9u9X1dXR1ZWFtHR0fj6+hIVFUV2djYXL150TYfdTHeLBwCr1UpGRgbh4eH4+/szevRoCgoKur6zIiI9kBIp6VH69etHYGCgq7vB1atXAVizZg3vvfceubm5lJWV4e/vz7Rp02hqarKXLSgoICMjg2effZby8nIOHDjAnDlzXNV1t3K7xcOlS5eYOHEib7755g3LnTt3jnPnzvHWW29x9OhRtm3bRklJCZmZmV3ZXbfV3eIBYO7cuVgsFoqKiqioqCAlJYXU1FR+/PHHruquiEiPpURKurWNGzcSGRlJW1tbu9eTk5N57rnnOpT/v1t3Jk+eTHZ2NkuXLiU4OJjw8HBWrVrV7pzKykomTZqEj48PsbGx7N69u0O9tbW1pKamEhgYSHBwMMnJydTU1HRoNycnh8jISKKjo7HZbKxfv57ly5eTnJxMXFwcH3zwAefOnbNvC2ppaeHFF19k7dq1LFy4kOHDhxMbG0tqauotXzN31p3jASAjI4MVK1aQlJR0w/Hde++9FBQUMGvWLIYOHUpiYiI5OTl8/vnntLS0OHiVeg53jweAgwcPkpWVxbhx4xgyZAjLly8nMDCQH374wYErJCIif4cSKbkhm83G5ctXXXLYbDaH+zl79mx+++039u7da3+trq6OkpIS0tPTHapj+/bt+Pv7U1ZWxpo1a3jttdfsk6G2tjZSUlLw8vKirKyM3NxcXnnllXbnNzc3M23aNPr06YPJZOLAgQMEBAQwffp0+zfLAKWlpVgsFnbv3s2uXbuorq7GarW2myT169eP8ePHc+jQIQCOHDnC2bNn8fDwID4+noiICGbMmMHRo0cdvkadxWaz0Xi1ucuPnhIPt+rixYv07dsXT0/PW67jVthsNhpbrrrkcDQmekI83H///eTn51NXV0dbWxs7duygqamJyZMnO1yHiIjcmq795JVuo6mpmUdmvOWStnf9+5/4+no5VDYoKIgZM2bw4YcfMmXKFAA++eQTQkNDefDBBzGZTH9ZR1xcHCtXrgTg7rvvZsOGDZSWlvLQQw+xZ88eTpw4wZdffklkZCQAb7zxBjNmzLCfn5+fT1tbG5s2bcIwDAC2bt1KYGAg+/btY+rUqQD4+/uzadMmvLyuje3gwYMADBgwoF1/BgwYgNVqBeD06dPAtZvi3377bQYNGsS6deuYPHkyJ0+eJDg42KHr1BkuN7cw9n82dFl71x1e+Q/8vHo7VLY7x8Ot+PXXX3n99ddZsGDBLddxqy63NjN21xtd3i7A4Uf+hZ/nX1+3nhAPH330EU8++SQhISF4enri5+dHYWEhw4YNc6oeERFxnlakpNtLT0+noKCAK1euAJCXl0daWhoeHo6Fd1xcXLv/IyIi+OWXXwA4fvw4d955p32SBDBhwoR25cvLy6mqqqJPnz4EBAQQEBBAcHAwTU1NnDp1yl7uvvvuc3qSdH1L0rJly3j88ccZM2YMW7duxTAMPv74Y6fq6incOR7+W319PTNnziQ2NrbDdjP5X+4eD6+++iq///47e/bs4fDhw7z00kukpqZSUVHhdF0iIuIcrUjJDfn49GbXv//psradMWvWLGw2G8XFxSQkJGAymXjnnXccPr937/btGYbR4Z6KP9PQ0MCYMWPIy8vr8F5YWJj9b39//3bvhYeHA3DhwgUiIiLsr1+4cMH+SObrr8fGxtrf9/b2ZsiQIfz8888O97Ez+Pb25PDKf3Rpm9fbdUZ3jQdn/PHHH0yfPp0+ffpQWFjYoc9dwbdXbw4/8q8ub/d6245y53g4deoUGzZs4OjRo4wYMQKAkSNHYjKZeP/998nNzXW6ThERcZwSKbkhwzAc3l7naj4+PqSkpJCXl0dVVRXR0dGMHj26U+qOiYmhtraW8+fP25Oa7777rl2Z0aNHk5+fT//+/enbt6/DdQ8ePJjw8HBKS0vtiVN9fT1lZWUsWrQIgDFjxuDt7Y3FYmHixInAtXsuampquOuuuzphhI4zDMPhLXau1F3jwVH19fVMmzYNb29vioqK8PHx6fQ2HGEYhkPb61zNneOhsbERoMPqWq9evZxK9kRE5NZoa5+4hfT0dIqLi9myZYvDN5E7IikpieHDhzNv3jzKy8sxmUwsW7asQ9uhoaEkJydjMpmorq5m3759ZGdnc+bMmZvWbRgGixcvZvXq1fZHF8+dO5fIyEj7k8P69u3LwoULWblyJV999RUWi8WeZM2ePbvTxuluumM8wLUHIZjNZo4dOwaAxWLBbDbb75mrr69n6tSpXLp0ic2bN1NfX4/VasVqtdLa2tpp43Q37hoP99xzD8OGDeOFF17g+++/59SpU6xbt47du3frt+ZERLqAEilxC4mJiQQHB2OxWDr1N5Y8PDwoLCzk8uXLjBs3jvnz55OTk9OujJ+fH/v37ycqKoqUlBRiYmLIzMykqanpL7+BXrp0KVlZWSxYsICEhAQaGhooKSlpt8qwdu1a0tLSyMjIICEhgZ9++omvv/6aoKCgThunu+mu8VBUVER8fDwzZ84EIC0tjfj4ePsWrSNHjlBWVkZFRQXDhg0jIiLCftTW1nbaON2Nu8ZD7969+eKLLwgLC2PWrFn2n1DYvn07Dz/8cKeNU0REbsywOfNsYXFbjY2NHD9+nJiYGPz8/FzdHRERERHpYtfngzU1NdTW1hIWFtapK/nuRitSIiIiIiIiTlIiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVLSjn57RERERKRn0jPonKNESgDw8rr2w5oNDQ0u7omIiIiIuMKVK1cAaGlpcXFPugdPV3dAbg+enp6EhoZy9uxZAAICAvDwUJ4tIiIi0hO0tbVRW1tLY2Mjra2tWp1ygBIpsYuKisJms9mTKRERERHpOdra2rBarQC0trbi6+vr4h7d3pRIiZ1hGAwaNIjKykpOnDhBSEgI3t7eru6WiIiIiPw/s9lsNDc309bWRkNDAy0tLQwcONDV3bqtKZGSDiZNmsSVK1c4duwYra2tGIbh6i6JiIiISBew2Wx4eXkxfvx4xo4d6+ru3NYMmzZAyg1cvXqV8+fPc+nSJe2RFREREekhPDw88Pf3Z+DAgfTq1cvV3bmtKZESERERERFxkh7LJiIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVIiIiIiIiJOUiIlIiIiIiLipP8AQhptYOMJ7CYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dirunal_statistics = subset.get_diurnal_statistics(colorby='name',\n", + " obstype='humidity', \n", + " plot=True,\n", + " errorbands=True,\n", + " )\n", + "#Note that in this example statistics are computed for a short period and only for the non-windy autumn afternoons." + ] + }, + { + "cell_type": "markdown", + "id": "d3fdffeb-1ec7-4ffe-8085-c84dd5a3fdfa", + "metadata": {}, + "source": [ + "## Analysis exercise\n", + "\n", + "For a more detailed reference you can use this [Analysis exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Urban_analysis_excercise_04.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/examples/doc_example.ipynb b/docs/_build/.doctrees/nbsphinx/examples/doc_example.ipynb new file mode 100644 index 00000000..3ded40b8 --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/examples/doc_example.ipynb @@ -0,0 +1,824 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d87ff982-1540-4794-830f-146992df5aa4", + "metadata": { + "tags": [] + }, + "source": [ + "# Demo example: Using a Dataset\n", + " \n", + "This is an introduction to get started with the MetObs toolkit. These examples are making use of the demo data files that comes with the toolkit.\n", + "Once the MetObs toolkit package is installed, you can import its functionality by:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b54b0b5d-59f4-400c-a4a8-ff07fe809ff6", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit" + ] + }, + { + "cell_type": "markdown", + "id": "55faab4a-537b-4028-9adf-890746c4b8c0", + "metadata": {}, + "source": [ + "## The Dataset\n", + "\n", + "A dataset is a collection of all observational data. Most of the methods are\n", + "applied directly to a dataset. Start by creating an empty Dataset object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ffbfd64f-8724-48bb-b8c5-af1c45ad6a66", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "d088aba9-2a00-4030-8395-01792094c737", + "metadata": {}, + "source": [ + "The most relevant attributes of a Dataset are:\n", + " * .df --> a pandas DataFrame where all the observational data are stored\n", + " * .metadf --> a pandas DataFrame where all the metadata for each station are stored\n", + " * .settings --> a Settings object to store all specific settings.\n", + " * .missing_obs and .gaps --> here the missing records and gaps are stored if present.\n", + "\n", + "Note that each Dataset will be equipped with the default settings.\n", + "\n", + "\n", + "We created a dataset and stored in under the variable 'your_dataset'.\n", + "The show method prints out an overview of data in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4296efe0-7a6a-413c-a4c0-7d79b30d0ab2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show() # or .get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "34273a79-477d-4c04-ba59-65a677adfe25", + "metadata": {}, + "source": [ + "TIP: to get an extensive overview of an object, call the .show() method on it." + ] + }, + { + "cell_type": "markdown", + "id": "60edb538-7a11-4745-9514-94f9d577cd9c", + "metadata": {}, + "source": [ + "## Importing data\n", + "\n", + "\n", + "To import your data into a Dataset, the following files are required:\n", + "* data file: This is the CSV file containing the observations\n", + "* (optional) metadata file: The CSV file containing metadata for all stations.\n", + "* template file: This is a CSV file that is used to interpret your data, and metadata file (if present).\n", + "\n", + "In practice you need to start by creating a template file for your data. More information on the creation of the template can be found in the documentation (under [Mapping to the toolkit](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html)).\n", + "\n", + "TIP: *Use the template assistant of the toolkit for creating a template file by uncommenting and running the following cell.*\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a34d31e9-6d3f-46a9-973e-f5a41b38e2e4", + "metadata": {}, + "outputs": [], + "source": [ + "# metobs_toolkit.build_template_prompt()" + ] + }, + { + "cell_type": "markdown", + "id": "65c6e54f-3073-4d77-8f7d-eda0465748a5", + "metadata": {}, + "source": [ + "To import data, you must specify the paths to your data, metadata and template.\n", + "For this example, we use the demo data, metadata and template that come with the toolkit." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bbcbe25e-855e-46b5-ba80-e90a655ef719", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "dd390074-8b96-4ddb-b447-4c8e46b94c3f", + "metadata": {}, + "source": [ + "The settings of your Dataset are updated with the required paths. Now the data can be imported into your empty Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "21708ed0-7671-4e64-b3cc-dacb09baf4f9", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "304853e8-7ab9-4afc-a75f-db33785c57e2", + "metadata": {}, + "source": [ + "## Inspecting the Data\n", + "\n", + "To get an overview of the data stored in your Dataset you can use" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2bc74181-68df-4cdf-9320-9dc43d5af698", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *28 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *120957 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "A total of 256 found with these occurrences: \n", + "\n", + "{'invalid input': 256}\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "aa85e260-48f5-4e63-b3d4-b44ece98df0b", + "metadata": {}, + "source": [ + "If you want to inspect the data in your Dataset directly, you can take a look at the .df and .metadf attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "690a1e21-ee6b-4b4c-a8e4-b937946e14aa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:05:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:10:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:15:00+00:00 18.7 NaN 65 0.0 \n", + " 2022-09-01 00:20:00+00:00 18.7 NaN 65 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:05:00+00:00 0.0 5.5 12.9 \n", + " 2022-09-01 00:10:00+00:00 0.0 5.1 11.3 \n", + " 2022-09-01 00:15:00+00:00 0.0 6.0 12.9 \n", + " 2022-09-01 00:20:00+00:00 0.0 5.0 11.3 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65 101739 \n", + " 2022-09-01 00:05:00+00:00 75 101731 \n", + " 2022-09-01 00:10:00+00:00 75 101736 \n", + " 2022-09-01 00:15:00+00:00 85 101736 \n", + " 2022-09-01 00:20:00+00:00 65 101733 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:05:00+00:00 101997.0 \n", + " 2022-09-01 00:10:00+00:00 102002.0 \n", + " 2022-09-01 00:15:00+00:00 102002.0 \n", + " 2022-09-01 00:20:00+00:00 101999.0 \n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry lcz assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) NaN 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) NaN 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) NaN 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) NaN 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) NaN 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n" + ] + } + ], + "source": [ + "print(your_dataset.df.head())\n", + "# equivalent for the metadata\n", + "print(your_dataset.metadf.head())\n" + ] + }, + { + "cell_type": "markdown", + "id": "24021319-f5d4-430b-8b7f-807a36f91594", + "metadata": { + "tags": [] + }, + "source": [ + "### Inspecting a Station\n", + "\n", + "If you are interested in one station, you can extract all the info for that one station from the dataset by:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0c901b97-90c4-4fae-b181-57c6778a98bf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "favorite_station = your_dataset.get_station(stationname=\"vlinder02\")" + ] + }, + { + "cell_type": "markdown", + "id": "685625e9-462b-4ad1-847f-4d26a0cb5df5", + "metadata": {}, + "source": [ + "Favorite station now contains all the information of that one station. All methods that are applicable to a Dataset are also applicable to a Station. So to inspect your favorite station, you can:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9c777b55-56a3-4c00-aa0e-a93bb29c4f8a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *1 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *4317 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "A total of 256 found with these occurrences: \n", + "\n", + "{'invalid input': 256}\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder02 POINT (3.709695 51.022379) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder02 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n", + "None\n" + ] + } + ], + "source": [ + "print(favorite_station.show())" + ] + }, + { + "cell_type": "markdown", + "id": "82cb6811-3fbe-4f68-863f-c6c3f872293e", + "metadata": {}, + "source": [ + "## Making timeseries plots\n", + "\n", + "To make timeseries plots, use the following syntax to plot the *temperature* observations of the full Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "be68ff53-4470-4c1c-a5a6-501b68df33ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xcV334/7/ObdNnZ/tq1YslW3LDMm7ggsGmGNNxPiQkNi0GE/gSAr9PMISej0NCKAlgSADTQiAYO6HahhhsbNx7VW+r7WX6zK3n98estlgSLkg72tX7+XjInnvn3jvvMzvtvu/7nKO01hohhBBCCCGEEEIIIcQhYzQ7ACGEEEIIIYQQQgghFhpJugkhhBBCCCGEEEIIcYhJ0k0IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xCTpJoQQQgghhBBCCCHEISZJNyGEEEIIIYQQQgghDjFJugkhhBBCiClDQ0O84Q1voL29HaUUX/jCF5odEgArVqzgsssum1r+7W9/i1KK3/72t02L6Zn4+Mc/jlKq2WEIIYQQogkk6SaEEEKIQ0Yp9Yz+HemJksPpK1/5Ct/61reaHcZB/fVf/zU33ngjH/rQh/jud7/Ly172smaHdNh9//vf/6OSi9VqlY9//ONH9etaCCGEEPuzmh2AEEIIIRaO7373u7OWv/Od7/CrX/1qv/XHHXfcXIZ1RPnKV75CR0fHrKqtI8nNN9/Mq1/9aj7wgQ80O5Q58/3vf59HH32U973vfc9p/2q1yic+8QkAzjvvvFn3feQjH+Fv//Zv/8gIhRBCCDEfSdJNCCGEEIfMm9/85lnLd955J7/61a/2W79QaK2p1+skEolmh/KMVSoVUqnUQe8fHh4ml8sdsser1+s4joNhHJ0dLCzLwrLkJ7cQQghxNDo6f/0IIYQQommiKOILX/gCGzZsIB6P093dzeWXX87ExMSs7VasWMErX/lKfvvb33LqqaeSSCQ44YQTprrwXXfddZxwwgnE43E2btzIAw88MGv/yy67jHQ6zfbt23npS19KKpWit7eXT37yk2it/6iYbrzxxqmYvva1rwFwzTXXcP7559PV1UUsFmP9+vVcffXV++3/2GOPccstt0x1td1XGXWwsb++9a1voZRi586dU+uUUnz84x/fb9unjnu2b99bbrmFK664gq6uLpYsWbLffjO31Vrz5S9/eSq+fbZv384b3/hG2traSCaTnHHGGfz85z+fdYx946z94Ac/4CMf+QiLFy8mmUxSLBYP+JgAn/3sZznrrLNob28nkUiwceNGrr322oNu/2yVSiXe9773sWLFCmKxGF1dXVxwwQXcf//9QKMy7ec//zm7du2aavOKFSsA8DyPj370o2zcuJGWlhZSqRRnn302v/nNb6aOv3PnTjo7OwH4xCc+MXWMfX+fA/1dgyDgU5/6FKtXryYWi7FixQquvPJKXNedtd2+19ttt93GaaedRjweZ9WqVXznO9+ZtZ3v+3ziE5/gmGOOIR6P097ezgtf+EJ+9atfHbLnUQghhBDPnlx2E0IIIcScuvzyy/nWt77FW97yFt773veyY8cOvvSlL/HAAw9w++23Y9v21LZbt27lT//0T7n88st585vfzGc/+1kuvvhivvrVr3LllVdyxRVXAHDVVVdxySWXsGnTplkVVWEY8rKXvYwzzjiDf/zHf+SGG27gYx/7GEEQ8MlPfvI5xbRp0ybe9KY3cfnll/OOd7yDdevWAXD11VezYcMGXvWqV2FZFj/96U+54ooriKKId7/73QB84Qtf4D3veQ/pdJoPf/jDAHR3dx++J3vSFVdcQWdnJx/96EepVCoH3Oacc87hu9/9Ln/+53/OBRdcwF/8xV9M3Tc0NMRZZ51FtVrlve99L+3t7Xz729/mVa96Fddeey2vfe1rZx3rU5/6FI7j8IEPfADXdXEc56CxffGLX+RVr3oVf/Znf4bnefzgBz/gjW98Iz/72c+46KKL/ui2v/Od7+Taa6/lr/7qr1i/fj1jY2PcdtttPPHEE5xyyil8+MMfplAo0NfXx+c//3kA0uk0AMVika9//eu86U1v4h3veAelUolvfOMbvPSlL+Xuu+/m5JNPprOzk6uvvpp3vetdvPa1r+V1r3sdACeeeOJBY3r729/Ot7/9bd7whjfwN3/zN9x1111cddVVPPHEE1x//fWztt26dStveMMbeNvb3sall17KN7/5TS677DI2btzIhg0bgEZi76qrruLtb387p512GsVikXvvvZf777+fCy644I9+DoUQQgjxHGkhhBBCiMPk3e9+t575c+N3v/udBvR//Md/zNruhhtu2G/98uXLNaB///vfT6278cYbNaATiYTetWvX1Pqvfe1rGtC/+c1vptZdeumlGtDvec97ptZFUaQvuugi7TiOHhkZec4x3XDDDfu1tVqt7rfupS99qV61atWsdRs2bNDnnnvuftt+7GMf0wf6aXbNNddoQO/YsWNqHaA/9rGP7bft8uXL9aWXXrrfvi984Qt1EAT7bX8ggH73u989a9373vc+Dejf/e53U+tKpZJeuXKlXrFihQ7DUGut9W9+8xsN6FWrVh3w+TiQp27neZ4+/vjj9fnnn/8H27bvsWb+zQ+kpaVlv/Y81UUXXaSXL1++3/ogCLTrurPWTUxM6O7ubv3Wt751at3IyMhB/yZP/bs++OCDGtBvf/vbZ233gQ98QAP65ptvnlq37/V26623Tq0bHh7WsVhM/83f/M3UupNOOklfdNFFf7CNQgghhJh70r1UCCGEEHPmRz/6ES0tLVxwwQWMjo5O/du4cSPpdHpWtz2A9evXc+aZZ04tn3766QCcf/75LFu2bL/127dv3+8x/+qv/mrqtlKKv/qrv8LzPH79618/p5hWrlzJS1/60v0eZ+a4boVCgdHRUc4991y2b99OoVB4xs/R4fCOd7wD0zSf8/6/+MUvOO2003jhC184tS6dTvOXf/mX7Ny5k8cff3zW9pdeeukzHudu5nYTExMUCgXOPvvsqe6ff6xcLsddd91Ff3//s97XNM2pKr0oihgfHycIAk499dTnHN8vfvELAN7//vfPWv83f/M3APt12V2/fj1nn3321HJnZyfr1q2b9VrP5XI89thjbNmy5TnFJIQQQojDQ5JuQgghhJgzW7ZsoVAo0NXVRWdn56x/5XKZ4eHhWdvPTKwBtLS0ALB06dIDrn/qGGyGYbBq1apZ69auXQswNUbas41p5cqVB2zb7bffzkte8hJSqRS5XI7Ozk6uvPJKgKYn3Q4W8zO1a9euqW60M+2bhXbXrl3P+fF+9rOfccYZZxCPx2lra5vqrnmonrN//Md/5NFHH2Xp0qWcdtppfPzjHz9gcvZgvv3tb3PiiSdOjZXW2dnJz3/+8+cc365duzAMgzVr1sxa39PTQy6X2++5fOp7AKC1tXXWa/2Tn/wk+XyetWvXcsIJJ/DBD36Qhx9++DnFJ4QQQohDR8Z0E0IIIcSciaKIrq4u/uM//uOA9+8bkH6fg1VnHWy9fsoECYcjpgNVcG3bto0Xv/jFHHvssXzuc59j6dKlOI7DL37xCz7/+c8TRdHTxnGgSRSgMS7dM3Wwbed6dtVn+ni/+93veNWrXsU555zDV77yFRYtWoRt21xzzTV8//vfPySxXHLJJZx99tlcf/313HTTTfzTP/0Tn/nMZ7juuut4+ctf/gf3/d73vsdll13Ga17zGj74wQ/S1dWFaZpcddVVbNu27Y+K62B/76d6Jq/1c845h23btvE///M/3HTTTXz961/n85//PF/96ld5+9vf/kfFKYQQQojnTpJuQgghhJgzq1ev5te//jUveMEL5iQRFEUR27dvn6puA9i8eTPA1AyVhyKmn/70p7iuy09+8pNZlUlP7ZoKB0+2tLa2ApDP58nlclPrn1r5tG/bfD4/a53neQwMDDyH6J/e8uXL2bRp037rn3zyyan7n4sf//jHxONxbrzxRmKx2NT6a6655rkFehCLFi3iiiuu4IorrmB4eJhTTjmFv//7v59Kuh3sb3LttdeyatUqrrvuulnbfOxjH5u13TNNoEHjuYqiiC1btkxVCkJjsop8Pv+cn8u2tjbe8pa38Ja3vIVyucw555zDxz/+cUm6CSGEEE0k3UuFEEIIMWcuueQSwjDkU5/61H73BUGwXyLpUPjSl740dVtrzZe+9CVs2+bFL37xIYtpXzXSzOqjQqFwwORRKpU64DFXr14NwK233jq1rlKp8O1vf/uA287cDuDf/u3fnlVV3LPxile8grvvvps77rhjVmz/9m//xooVK1i/fv1zOq5pmiilZsW9c+dO/vu///uPDRloVP49tRtoV1cXvb29uK47tS6VSh2wu+iB/q533XXXrOcBIJlMAjyj18orXvEKoDGT7Uyf+9znAJ7TjK1jY2OzltPpNGvWrJnVxkKhwJNPPtn0rs5CCCHE0UQq3YQQQggxZ84991wuv/xyrrrqKh588EEuvPBCbNtmy5Yt/OhHP+KLX/wib3jDGw7Z48XjcW644QYuvfRSTj/9dH75y1/y85//nCuvvHKq2+ihiOnCCy/EcRwuvvhiLr/8csrlMv/+7/9OV1fXftVnGzdu5Oqrr+bTn/40a9asoauri/PPP58LL7yQZcuW8ba3vY0PfvCDmKbJN7/5TTo7O9m9e/esY7z97W/nne98J69//eu54IILeOihh7jxxhvp6Og4ZM/dTH/7t3/Lf/7nf/Lyl7+c9773vbS1tfHtb3+bHTt28OMf/xjDeG7XcS+66CI+97nP8bKXvYw//dM/ZXh4mC9/+cusWbPmkIxJViqVWLJkCW94wxs46aSTSKfT/PrXv+aee+7hn//5n6e227hxIz/84Q95//vfz/Of/3zS6TQXX3wxr3zlK7nuuut47Wtfy0UXXcSOHTv46le/yvr16ymXy1P7JxIJ1q9fzw9/+EPWrl1LW1sbxx9/PMcff/x+MZ100klceuml/Nu//Rv5fJ5zzz2Xu+++m29/+9u85jWv4UUvetGzbuf69es577zz2LhxI21tbdx7771ce+21syYRuf7663nLW97CNddcw2WXXfasH0MIIYQQz54k3YQQQggxp7761a+yceNGvva1r3HllVdiWRYrVqzgzW9+My94wQsO6WOZpskNN9zAu971Lj74wQ+SyWT42Mc+xkc/+tFDGtO6deu49tpr+chHPsIHPvABenp6eNe73kVnZydvfetbZ2370Y9+lF27dvGP//iPlEolzj33XM4//3xs2+b666/niiuu4O/+7u/o6enhfe97H62trbzlLW+ZdYx3vOMd7Nixg2984xvccMMNnH322fzqV7+aqt471Lq7u/n973/P//2//5d//dd/pV6vc+KJJ/LTn/70OVVm7XP++efzjW98g3/4h3/gfe97HytXruQzn/kMO3fuPCRJt2QyyRVXXMFNN93EddddRxRFrFmzhq985Su8613vmtruiiuu4MEHH+Saa67h85//PMuXL+fiiy/msssuY3BwkK997WvceOONrF+/nu9973v86Ec/4re//e2sx/r617/Oe97zHv76r/8az/P42Mc+dsCk275tV61axbe+9S2uv/56enp6+NCHPrRft9Vn6r3vfS8/+clPuOmmm3Bdl+XLl/PpT3+aD37wg8/peEIIIYQ4NJR+LiMOCyGEEEIc4S677DKuvfbaWRVJQgghhBBCzBUZ000IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQkzHdhBBCCCGEEEIIIYQ4xKTSTQghhBBCCCGEEEKIQ8xqdgBHuiiK6O/vJ5PJoJRqdjhCCCGEEEIIIYQQoom01pRKJXp7ezGMg9ezSdLtafT397N06dJmhyGEEEIIIYQQQgghjiB79uxhyZIlB71fkm5PI5PJAI0nMpvNNjkaIYQQQgghhBBCCNFMxWKRpUuXTuWMDkaSbk9jX5fSbDYrSTchhBBCCCGEEEIIAfC0w5DJRApCCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xCTpJoQQQgghhBBCCCHEISZJNyGEEEIIIYQQQgghDjFJugkhhBBCCCGEEEIIcYhJ0k0IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xKxmByCEEEI8E/WwRjksUfaLZOws7U5Xs0MSQgghhBBCiIOSpJsQQoh54f78HTxSug+A5YnVvKz7dU2OSAghhBBCCCEOTrqXCiGEmBcUaup2oIMmRiKEEEIIIYQQT0+SbkIIIeaFSOmp217kNjESIYQQQgghhHh6knQTQggxL4TRdHWbRv+BLYUQQgghhBCi+STpJoQQYl4IZ3QpjXTUxEiEEEIIIYQQ4ulJ0k0IIcS8MLNLaYQk3YQQQgghhBBHNkm6CSGEmBfqUX3qdqTDJkYihBBCCCGEEE9Pkm5CCCHmBXdG0i2UpJsQQgghhBDiCGc1OwAhhBDiYILBAso2wVDYykahAIgZsSZHJoQQQgghhBB/mCTdhBBCHHmiAB1GBA/sbiyiGTlucGrW0nF/lFCHmMpsZpRCCCGEEEIIcVDSvVQIIcSRZ+896N9+AWh0I61b7lTCbZ9aWJn7uIQQQgghhBDiGZJKNyGEEEcUN6xznXsv5tIULe4jnNt/MlWzSlchRs1y0ZaFk25lwh8nbWWbHa4QQgghhBBCHJBUugkhhDiiTNSLFK06E/EqOxIjAFRtn+EWl1IKSqbL7sJu/vXBf8ELvSZHK4QQQgghhBAHJkk3IYQQR5S9QwPoyZ6krtZorSlbVayw8ZWlLJN0MkElLLB5YnMTIxVCCCGEEEKIg5OkmxBCiCNGFEYMbetDNSYpRSmohnkK8QqBGYEbTm2bjMV5eOThJkUqhBBCCCGEEH+YJN2EEEIcMXS5Tlm5U8umqSmFg4zHiuTqabQLw6UxhktjxLTDD578QROjFUIIIYQQQoiDk6SbEEKII0Y0WKRsTSfdxvMOE8EITmhTC+qMRnnaU610ZdrJJbOszK7kJ1t/0sSIhRBCCCGEEOLAJOkmhBDiiOBGLgNuH25ugihqrOtqd3kgWaA/M4abDigH1anJEyJTc3PfzfxkuyTdhBBCCCGEEEceq9kBCCGEOLrpyVkThuv9/DL7m/2uBvnr7anbZbeKH/gk7DiO2fgKG6gMzFWoQgghhBBCCPGMSdJNCCFEU5WCAj/Y+3U0+oD3aw0KTcWrUS1VsRMhJCBmOOR8h/5yP27oEjNjcxy5EEIIIYQQQhycdC8VQgjRVNWwMp1wi8BzDerTw7qhFHi+jw5CrLqJP1ok+9gw9eExFrkpTuo8ib5SX3OCF0IIIYQQQoiDkKSbEEKIphr3Rolps7FggBOLKI471L2IaHJwN8dx2FMa5o7Cg8Rsm+KGLpK9XWzPVbhv6D76y/1NbIEQQgghhBBC7E+SbkIIIZpqV20rrgpnrfvlXW1c/au7KLmVqTHfNg1uA8CoeVPbOaaNjUXezc9ZvEIIIYQQQgjxTMiYbkIIIZqqEpYbN7Ru9CUFdPpubHsL1z84yNruZSigvzgEgFWe7nsaM2xKVNhT2jPXYQshhBBCCCHEHyRJNyGEEE1lYREve9TTztQ6XxcBKHslHtxcIHJGsZTDBitGvB6yL+1m2TbUZAZTIYQQQgghxJFHupcKIYRoGq01o97QrIRbbFeeY/u2kp3IksXCJ4LQIDBcHomKuHtL5O7fi7NzjFQsCcBoZaRZTRBCCCGEEEKIA5KkmxBCiKYJdEDI5HhuYYTyAsJcnL1tBYqtReqEmHYJQ7mYgcLxDOqRTWF9N0YQ0RUl6CqZeLVycxsihBBCCCGEEE8hSTchhBBNUw9rU7c77tjN2a/6Dqf9+Q8ppBvrctomXXgBkR0SWhrfjtAPjmNVPOprOjn2mOMZzoT0VWX2UiGEEEIIIcSRRZJuQgghmqYWVkArzJEqZl+JCKgbIUYIuaJm9RN1PvSTn6GixvZmqAgNi6jgA5Bw4igUBb/UvEYIIYQQQgghxAHIRApCCCGaphpVQGnCziRx38cAynFwYwo3BgaaxaOwYtDB9E0yNZuE6+M/MEK8EpHvhXOTa3mouocwCjENs9lNOmKVf38HA1d+CCOZInXmGfT83d81OyQhhBBCCCEWtHld6Xb11Vdz4oknks1myWaznHnmmfzyl7+cur9er/Pud7+b9vZ20uk0r3/96xkaGmpixEIIIQAe3D3BJ37yGD+6bzu18RT2jgKlgkHNtBnIJKe2S9cAZXHug4t44WNdvG7oRRzfcQGd5WOIuuIEvke9O8kEVcbr481r0Dzg9/cTDA7hbd9O5fd3NDscIYQQQgghFrx5nXRbsmQJ//AP/8B9993Hvffey/nnn8+rX/1qHnvsMQD++q//mp/+9Kf86Ec/4pZbbqG/v5/Xve51TY5aCCHEzZuGueb3O3lkeC+Jtgr+yhZ6B4e5acWp/Hjj61lcbqGn3k5a9VJwLKxQUzVbWNF6Bqs6Tuf53vMJOhKk29rIxlLEtc22/LZmN+uI5m6f8fw4zsE3FEIIIYQQQhwS87p76cUXXzxr+e///u+5+uqrufPOO1myZAnf+MY3+P73v8/5558PwDXXXMNxxx3HnXfeyRlnnHHAY7qui+u6U8vFYvHwNUAckbTWAIx/69tU7767ydFA8rTTaH/LZc0OQ4hDavdYFdCkU/7UulpRsbWrjb+JlrBsz1UAPBx7iAfW3ABAue0MOuwWAMzQIFmKU83B8vYl1NVt/GbPbzij98Cf7UczrTVKKcLh4al1QV9fEyMSQgghhBDi6DCvk24zhWHIj370IyqVCmeeeSb33Xcfvu/zkpe8ZGqbY489lmXLlnHHHXccNOl21VVX8YlPfGKuwhZHIH/PHna88RLMbBYsC6ujoylxaM/D27aN+pNPEtWqdF5xRVPiEOJwGCq6bDgmzwlrCxBGuL7Hla8ZxYv+lz/fejIBASYmx6sTCLIjbCneR9rM0KcD2pXCwsCqN4q1Y5aDQrG3tLfJrTryDP3TZxm/5hqIGjNRJF7wPszcClAGtSeGSBzX3dwAhRBCCCGEWMDmfdLtkUce4cwzz6Rer5NOp7n++utZv349Dz74II7jkMvlZm3f3d3N4ODgQY/3oQ99iPe///1Ty8VikaVLlx6u8MURqHLbbSROOgl361aMeBwznW5KHFGtRlQuE5XLeDt2NiUGIQ6XzqxFb2edKARDa2rVKjXTRxmK5SzBwiQiItA+hm4k17J2K0vU9NdWzHOAKgCrdSeDlYFmNOWI5u3eDVFEfONbUbEsZutqlBVr3Ld3VJJuQgghhBBCHEbzPum2bt06HnzwQQqFAtdeey2XXnopt9xyy3M+XiwWIxaLHcIIxXxTvuVWKrfeCsAxv7sVq7OzKXF4u3ez7cKXNhYmu7wKsVA8MjjI/zljAgBzT42fPvQzyMCrR8+jpupY2iRBHMeI0RLrhBKkMditA7IYGGh00ULlbYrGBCPJGhlXZi7dj25UuJVOXke9JaSWGWXVw70QQTCRb25sQgghhBBCLHDzPunmOA5r1qwBYOPGjdxzzz188Ytf5E/+5E/wPI98Pj+r2m1oaIienp4mRSvmA394BAAz14bZ3t68QJRq3mMLcRhprbFj5anl9HiJ0NS0+i28dfS12E/5anKMOBUzwRozyTJl4WmNowwyoc1ozidDmpSTYKQwOtdNOeIFIyOAwd2v3kLoRKBh0fZ2kqU44Wil2eEJIYQQQgixoM37pNtTRVGE67ps3LgR27b53//9X17/+tcDsGnTJnbv3s2ZZ57Z5CjFkUoHAT2X/i3KdhpJr0jP8zl+hTjylN2AE47N4/sQ311k9VfuoP5G2FBfvl/CDcAx4wzFujlG2eR1RCF0WW4liFemZ+Bst7MMMDw1aYCAsFik/tDDWEuOY2atbKWlTrIUJyrVmxabEEIIIYQQR4N5nXT70Ic+xMtf/nKWLVtGqVTi+9//Pr/97W+58cYbaWlp4W1vexvvf//7aWtrI5vN8p73vIczzzzzoJMoCLH9TX/G4rd+BAAdBkSFGmZ7c8Z0m0W6l4oFZM94lY6MT2r7OIlyDbsvT2BbZCsptjt7aAty7HEG6CZFtxFD+Q6us4YsCpSipDUPFR8mN7qYtt1ZqkmPRDKF0oqCWyAXzzW7iUeE2iOP4qxdi9GxjshqdDNFgR8LAYhqYROjE0IIIYQQYuGb1zU8w8PD/MVf/AXr1q3jxS9+Mffccw833ngjF1xwAQCf//zneeUrX8nrX/96zjnnHHp6erjuuuuaHLU4UmnfJ7lsA2Gtgg4DtA7RZbd5AUm1jlignhgewgnBIcRyA/pbFSsGHJbXe1nlLSUXZfhu18+JB3F0tYNWu5Mge8zU/oHWPDlxL7WiTTXj4lkBx+XWohVs235PE1t2ZAlGhrHaWnFNY1ZVYGCHRF4V7deaGJ0QQgghhBAL37yudPvGN77xB++Px+N8+ctf5stf/vIcRSTms7BYJH3KCzDiSZRSKGUR7holGi01JZ6oWqXr7X+Lu+NJtJKKFLFwjLrDmDGX8jEdtDzwCP/1vGPZuWgLqf7E1DZBUCE5OIpuy+Irg5NMqKFxgHR7AvaOUBjcQ+t4ioFV4zj1BN2JZTy8+y42rr+geY07QvjDw5RvvZ+h3CJ0zxICczrBNrqoQOeeFhLVVBMjFEIIIYQQYuGb10k3IQ6lIJ/HyrahlCKoFHA2rEIXami/SQmvQJPacAqpDafgDmxrTgzisNNhiDKPrlk3++v99HZrjIpP7vFBSt05ADLRdBIoO14lqoxidawjDryR7NR9ZsoGwAvyrH3oRIaW5YklItZ3nsfDA/fOZVOOWGPf/S/c7Hk8cNl9QHnWfQPrxnA8kw235JoSmxBCCCGEEEcLSboJMSkcHcO0JittTI0Rt4mqXtPi0Z50L12oqvfdx56/vBwdhjgrVrDqv69vdkhzShtVaoMBHZUSyd0FKsvbAHAim93OABWjRqpYRLvTVaY1IgI0FVOhu1NkWo/DrQ8z3B+RGkqRT3l0t0bctr05lalHEq01pV/fRu3CVRiBIrKmx4Q0fIURGhihAdjNC1IIIYQQQoijgCTdxFEr8jx2velPMTIZnCWLSZ7xQkxzceNOHWGt7ISVnU2Lz922G7250LTHF4dPMD5OVKkAjUq3o00iVSXRZlGJ2oiNlPFijfVLvG4W+R2UVYV1e3wiXaRf1YjrGGNoYkbAsjUxdictQh2n6m2jM6zTVzXRyqJuRkQ6DVEExrwesvSPEoyNEVu2hrHY4FTCzfAV2ZEU+d4ykR1STZbQrimzvQohhBBCCHEYHb1nJeKo5+3Zg7tlC9U776Twk5+CZxJUioSVIire/Hy0nAcvXFG1ioo1Mk3etm3oKGpyRHMrChzCQRe7v0x/vJ2kauGc4XNQWlMO8li1Iq9mA0auhV6doA2DbhS9ZkRrulF9ajo5apGixemgpxYj1uKC4RImutEDA01uYXMFAwO4W3cRpDOYtcbXfGRrQns6wRsmLIzUUka++msqDwzj7io2K1whhBBCCCEWLEm6iaOWv3s32mucwCutsc0WrFQWM5lBxWzYeStsvQm0fpojHX7Nj0AcSn5fH9qdnBk3ivCHhpob0BwKwohMroDZE8MOA5ZURnmJuYQPjf0feoJO0laOZDbN4pecT2n9+qn9shhk41XMsPGeNawM6AL1oExuKEOYDuhpj2ixlzKw7f5mNa/ptOfh7d6DsuJUcnXCxHRCN5GfHjswcEK0jvB2xZn44SbGf/BkM8IVQgghhBBiQWt+OY8QTRIWprtuLn7zW0gO3ocG6oUq5vLR6UzXktMgnpv7AKXUbcGa+doD8HfswFm0qEnRzK2RkotjTyaCvIit2UU8Na1smiFhGNKnfN5LmZdjs+6YNjZkA1Z5BUBjOmkA+qvbaBtdTrzsUIr5LGpNcVf/vbyWi+e2YUeIba+4CL+vD3v1S6inpsek3PjLY4j9/kbGP7WOAJ/A8kFrNJPdS4+uYkshhBBCCCHmhFS6iaNWNCPxYcTiAChAqRCrMwXKBNOBYl+TIpymkATcQjLrtZfL0ffX72fz2ecw/t3vNjGquTFSqU7lk+2aRyqu6AizhDOyPv/rxjBNk7FIcfziOCvPWYlxTBfbu1eQtxvdci2nFcNaQS2KCMcr1NMetq3JpCtsrhbgKBwrDyAsNrqJ+i0Jiu0V4kWH7ESS7r0h1kP30RPrJbc7IlGJowwTHQWgIsyc0+TIhRBCCCGEWHik0k0c1ezly/F37cI0Z6xrMTGjxiD3OK2w+3bov2/ugxsoAudNLkgH04Wi+ItfgGlhLlpEODKMdmvoWqOrqfHYo1S/+HmsJUtxXvf6BVntOJovQ6pxO9QOXWtXscvwKeORJMZeIjYTUggVuwMbN5kl1pZuVKFi82TbcmoqgeW0EEVlikGZleEKnMEYJW1Sq5qMaR/Gx6Czq6ltnWv1TZuwOjrwikWq7ZAYCykvUsS0TSI1TtkrUfDGKS0zsOuNzzhlmKANvN0ldKRRxsJ7zQkhhBBCCNEsknQTRy2/vx89Po6da8EwFfsSW8qekeDKLga3CIE79wG6eZic1fFIGFdOHBoj//KveDt3gm2DjtD1yYRbLEZm0SLMeAxGR8D3wVl41Uf5QnEq6RYvFvFjWV5cOB0Dg20EXEqFRSrg1Z5FITJosRU1LyBhm6AUo+l2LN9HpWys2LHsLd/G89tOw44pYq1VVvmK2zeHUCgeVUk37XmUf3sLwcgIANXlrYytDgBYsbMHu1NhLerGigxQEFohWmuIQjAN0KDrASppN7MZQgghhBBCLCiSdBNHrbBc5pi3vwWgcfI5xYLe04lWnoMefBgzbELCDUC6lC5I+8ZzM5JJDCskGK8AmuwxaxoJt0lRtYay7AVXeVSoVqdum/WQzsxrppZrACgGQps7yikedh1ekE6ScKxZiefAtrEWZ1GPLQJsqkGJeMWh0lrHsTXjeI3E5Zo1c9WspnO3bmXk85+fXm612XchIRnEiS1ehJVswwwBCyJL4/f9CjO7HrNlCQBRLcCQpJsQQgghhBCHjCTdxFFL1+rTC6pxeqqAPr/GJQ/8A/79n+JfXvQvvODkS5sT4Pg3oVn5vmdpyznnEpZKKMNg3X33NjucI0pYq7HlzLNAKayurqkxt5wlS7ATFYLutXRd+n7qN39v1n7+rY9jnngM1oqOZoR92HheHX88IlUsYVWnK/n6cfki/tTy58oZAuCV8ekkUGe+n3yqDSsKKCZslNmFMrsYre+GsSypRIJBKyCybKhU5rJZTef392OvWE5UKkM6Q9jWSnKiihEa2JWA7+S/T+1EjxUBU9/8odqC3lsFNPbS1YQlD6s90cxmCCGEEEIIsaBI0m2hGxqEu+5qZJNa2+CFZzc7oiNHrTZ1U2uNMTl+VlLbeJFHa7yVifpEs6KbV4KxMQhDNBBVqxjJZLNDOmJExSK63kjw+rt3Y/b04CxZQmzFCsza4zDRRlSroDXUR8ewUklC18NoHUdXvac5+vxT0XVSbQZeWwvWvWMMsYPhRMD9gcN4EGHrVuJo6hjkVITn1vHyPr0xiy6vQjXRQtwvUyCDYcZQRhKtNBEhlfYaGaAllgR/4T13f4g/NIS/cxcAre96L25rhWpr43V31Y7vsccYxFlW43JfQ2PeGJzTT0U9YWBklxIVPcKSf7DDCyGEEEIIIZ4Dmb10oRsZhYF+6O+HbVubHc0RQ2/ZTG79iVPLxowB65M4+JHPcHWYW+76CdFROgvisxI1Zp5U8Tj+6GiTgzmyhPnpmUrRmnBggNo996CUg7P0VNKnnI0yDeKtOeId7ViJyUqjWgl3207Kt9/enMAPEy+YTnbbdYtuVnJC7Ri8oJUh3Y6PIlIKA8XlLSVWdeVwcq3ULYc1o9toqU1Qs9OAxmxxMO3VjNT7yXrTid6KYYIfHFUzmE51W47FSHl5Qnu6THaTu5P+aISdyTJ7i3sxI5s2u4Mw6eAPbkf7BYxMSFSTpJsQQgghhBCHkiTdFrr69Akuvj+VHDla6SBCuwH85mZSzoEnJ0hiE48aRaDbtz1CYXhwLkOcd7TvT423pet1ovHxJkd0ZAmLhf1XGgbxFeuJr72I+Krj8MeGYMbYgbFcC6ZfRZVrDH3ms3MY7eGltSYwptvZF18ydbuoG1MIP8/xeHhlP5/y4PXtGmU23ou2jtCmQ1tlnGosjdOeINNpo8wehmo7SbnxqWOlEg7RyBBMduVd6LTWBINDACQWLSLjh9RjjUkUiKAQlqa2fYR+QsNn3B/FXH8M4fBelN1CVDIJxuoHOrwQQgghhBDiOZKk20I3c1yjMDyqKj8OJOwbx/3fxw86G6hHiEfIR4JzAHDtiNHdu+YyxHknmtFNF6YrbkRDdIDnI7ZsDfFFxwABUCUa2kFq6VKgkUCpj4yiQpe4N4yVbZ/bgA+nuk9q8RiRGzFesHmseMLUXUUUOSPkBYk6P9/wSqw3buT2Ey6Yut9G4fccSyrRScotgWGw5hhQZiuLezcwMVImkY+DhpZ4DDeow/hYM1o558av+Rb5//ovAMx0ikhDKVdDBdDZl0ahMCe/7uszZmLWq5ZgdWenlqPCPBlEUgghhBBCiHlCxnRbSLSG708Oxu44cMFLwX1K5UK9DvbROztd7YknsHX6gPOC7m73ueV4D0NDbLSTzvscHF9RnmjSibuaH7NWRrXZrzFJus0WzUh8K6uR+EiuWz+5xmLil9/D37mVtoteBkBldx/KUI3x3TocsmddONchHzZRzceMexgxg3gYkvAMnsCnbhYYVTVW2AmWLF1EaJgopUBrUoFPPHRZagQQWWSUIu7XMXyfSizN6twgZmoRQ4UygWeQHErRYUa4OiBxlEymoL3pZFn8uDP5wUYfve+Smlmn1+hkQpfoMdrxvemx7sK0jZWNEdX6UYaJ1gtr0g4hhBBCCCGaTZJuC0mlDMqA0mSXqttv27/Sw3Uhk5n72JpIa43/wG6UbUIphERAZDoYYePkMwhDNJqdiRrVeONMNWgxGWn1MAyLyoRMpvCH6HoNe+VKgqEhzFSKLakRqqM3UY9qnNF6Dlm7tdkhNpW7c7pSUgcRKKhtfZIWfxQjEcPt34IFVPb0YdgWxSc30XrSCSQ62tHaIyrkiep1jHj84A8yT+iaR1BKEA1X2Usra7E5DhvCDmrOZhJOK7FFS2clnCu2Q9WyOY0C5OLYlTqYMczAJwo1qS4bM3QoDoxjdTj4BiwzHeq1NogOXNG60ETlcuOGYWC29FDq6GfqyoLt0RcNA7At7OPY2nKK1QopO40XeVh+DWW1oew4Xl/pwA8ghBBCCCGEeE4k6baQFEvTCTeAvX2zu1GmUvtXvh0FtBcQjZQg0ljpNpRfnUq4AVhmYyyphBMDJgcSNxTdsRzxLocv5r/LF772H3Med+hVCPkWx7GMv05cRMucR/AH+D4MD0F/P9HWbfg7dgAQVKs83jNOrdwY1+3Y1PFHfdLN2/qUCUw0eEP95E2H8VqB7a0ex6kOUksb45uN3nMfQblM6OZQyQyp408iGJ/A6V3UhOgPrcD3SHUXARt7b0QSxTgRLSiGvRzL2zOQalwU0FqjAKU18SjEWtJOsHsCfFgSBTyUaSdRrxDryRIfN7g3uJmza6eiDY0VWrgj/dC6rKntnSvhZEWf09aGhzmdcNNg+5o4DnU82lQLVXyyyRSgKQdFMl1dRG4BCAG78bzPkypbIYQQQgghjnSSdFtIKuXZy08dt6xSaVS6HW1q/lTFi9IRRI3EWqQ0SoNCESpNKTk9yUQ9afLGM14FwK1P3kV+58ich503KxRTATsYZ329l0v5P3Mew0ENDcLPfwaAHhgksgyMoPH8BSoEGonMQphvUoBHgChAYxCM7D8RR1At8Y3ij/mh9yt4Ify/kSWsmbzvoe46Z5VKmLEYhB4q9IhG87AAkm5eUJv61vE8g+MxacNgOyF54rwgMWOY0boPCQcNZCq7UI/fSuz8D4Bj0vOzn7DDPJZiKoe7chXZ2DDm5pCwHCPqrkAspBpyVHzeac8jKjUq1BLdXVSYnsV15YDJSx5L8TEnwFCKcV3AqptT95eDAlZbG/Xto1jpbsIxH+2GqLj8NBBCCCGEEOJQkF/WC0m1ColE40TzYLOU1hf+SehTaT/ELOzBKuwGphORjyz1uHOd36gK0aA0jUTlZJVHFIYEOiKXyOKque92VdbTSdQjrpPcyAhYFoQhkdbc/y8XU1uSA60xZ7z0/Mg76CEWvN//M+72PmoPPrLfXY8thR/WbwJDceGxZ9P/wuV8nTKnb3IYv88jqFSnN66XCQvOHAZ++Lh+fepbRwchELGTgO2T97dZEK+V8U2bhF9h3dDNmPnbcbxxHl0EAxNrQBnoNX2o3SZLd2YY6V1Gobebrq5VlKtmI+VkQF0lj4qk294P/v8o3XgjALmTT2S7E+KUbRzXpK0aYmhFl04xplzqeEzUi/RNDJBNZBizRzFbc+j6dIV0WHAxJOkmhBBCCCHEISG/rBeQ0i9+SaYtN2td6PmobBajPjnD5FHYvRQ/RAUuCs2NJ9eoOprQhEVjxvT8vQridajZGtvT+AkDAxMHk5UdK/ny5d+c87A//JlX85P09qffsBk8D1pbYWQE7bqoELTTqKAJZm52tCbdtEZjMXz9w6iYiXYbswZbrUmCikchDa3liHwKsrEUmAYhsMmZYHO6wlljRVL9A1gt7QTBIDqXbm57DpHNw+OwvHE77oV0YNEBPK5deo2AVSmDeqLR1tUjd7Go8AQT0Ta2rexlqGsJ/tD9BIkWgngc3b6Lzr3HQKSJ+zV621ewdyRgrZ1CxwLK2TSkU81r7BwJ8nmMbGMGUqe1FTcWoe02LPck9sSh1DvEspEcq5xOdvl72a2H8KMQ1/MouAVUro2ovI1gdDOxlSsIKz5H71Q7QgghhBBCHFqSdFtA/IF+aoGHk8tNrRu67XZa3vo2UoWJRgVX/ehLuukgZDDn07eozmAuxLUBDWV7djWgZwGGwk9Mj2fkBi6mjrjm9n+Y26CB3BlreV3LMYxWxgm3N3+MpVF3iC3lJ5jwR2llnDV1l04sonic6uJYY6MQEoFFLdZIvfn6KE26hR5B/250pBuTJ0xqO3s1Y7/ZRl+Hy0TWaHRtZvr+DlIM23XsUo3UZHfS2vYnsZYsjLHJdo8Nk/TH2NXWS6Ka4xFVI6Mt9mifcSxMczrdY0UlzPKDDPUuYdOqN2PoGPHaVlzHQnkrscwse3u7CO04aa9CT9tS7q6NsjY3hlm2qFp1GB5uYmsPP+15KMDq6kTZCYYrvdRTIemJHmx6wIJqNskrBldztjqfn9tP8E/ef+KHPolUjFpQp7Ykh9maw+pYS1iCqOw3u1lCCCGEEEIsGJJ0W0AS3d0kOtoBePJfvowOQzAMYjt3kiJCKwW5Vsa+eQ3a8+h85+VNjnhu6LrPlvYRNi8KZq13E7O3Cy3QgUZZ0wmukfIEWT9OaM597YdlOfTmcvTmugl09el3OMy2VB7n4dK9AOzphoGY4jV3GXiVAtg9jY1MqJnTz7MXLvzufQfkV/FGK+zdU8PqyDD88saIbStPWUr2/DfhPfJNYCdJJ87iXM/UbqNGlfGMIijP6FpczkNgshAUCmOoU9rpxGX5VpvjdYJiOMGm4gO8vGsjxyVD+ia3jVf7wS8x3noZ2dJZAKTKGissoXleI2GZa2xbTmRJtC3hiQcrvCDtQ9JnjBh6W0Dz09WHT33LFtxNm4hcA/P8s4kmOqkd04eXUtiNuRVQhs1rovVExVGWdy4DD8YredZ2rQSg2pXEGNiNNTlkYFQLDvJoQgghhBBCiGdLkm4LwcMPocMQy2kkhoJabSrhRhSRv/6/af+LN0OljH/ffYx86zsAtF92KUY83szI54Su+5RiTzmRnDF22z4qBLwQrEafU8vX1L06OR3DDA3mWqjDOX/MP6QSzJ6oYySn+fcLq6RP7UTb+yeFFApPH6VJt6BGkK9z/fkvY81fZadW/zCIeNPWBJVYY5S+VGx60Hu05klngoGuGO/7Py4/rtWwHAc7kyEqlub9rJJaa6r1Evs6fKa8xtdPLSjjaE0yCmYlt+Nrz0D1fZOI6fdeYHdhRGlCQxNQxZo8mopCvGwXXrWftic6yB8zRqnHpbjbP7Jm/T3Eag89RJjPk3jZZzGtDKCop1yUnh4D0LViRFpjENDqNqoqK15t6v56R4J0Yvr9K0k3IYQQQgghDh1Jus1nYQjf+85Ul1ErkyHyfXS2h6Ufuxqvfxej1/07YaVCWC5hao0Rj03tHgwP4yxbGN3Wno5rPqXL1IGSF2GIOVojXDaZvLQVu8b2sjrbxVte8LdzEOVsH/3XS8gsaZ/zxz2YUE+fjFseBDagIMgkmTmSm+OCFwONxo2Ovu7MAPg1zJWX8ILxH5PfuxR3URYMRd00+M81m0gnV7F6R0BkglX2CNIOKMXxleO5ZMcrKJlVxlWSniXbMNNpqnu2kA4uRNnz9yM7qrgoY/p9OOJD1RzDrg9xSnkHFxz3PIpeRK6WJ1Im8Q0noO9eRBRrQROhMAisDFolCKwxIgLCoYh4ysEywa7maUvGGKiaJOsmiVBRJljQSTf3yU3Ejj2WSCmsyc80gwhqcUJcTGKgDELTxogCWlWaU6xjsT2bgcIwSimKySqpWpFgbCsqFodweZNbJYQQQhyBbvglDA+BbcPzToFjj2t2REKIeWL+nsEJ2LsXYnGo1xtdqJRC2TZaRVi5dpTjoD0PM5cjCkNMw8CMx+l60bkU9w4QjI8fFUm3YO8Q2fYY4zQSQEaoCAIfIzb75a8dk91jCbo6bHLB8RhRgj9LnI058G0e/vUH5zzuWTN/2nNT4XT9/X3cuWOc0ZLL31y4lvW9LXh9fUz8139RPCkPqzMABDMm04yHceo0quDMsJFw2+eoTLrtuQuGHmJQHYeT9XAXN9I+gedj2Rauclme6cRcZxFPxRsJt0lBPGDz2XvxnYDKWIzOMYXpOJRuvhnn56vIvebiZrXqj1fzKUUuSRovkKWezaKwnT3xQYxqD2ldZDSVIp/IgdbY2RRq4lE81YaarHaLIoXSDo6q4qkqdvsiNOADvh2jI1VEeyZhOqAGTFQiFjervXNA2RY63UYs1nhfRkSMdwVY2gJfT017vCOoka4oxqqK+9uepMtv5/ktzwNgW2kLK45dhUo2ukAHE7UDPpYQQghxVKvVpv/l882ORggxj8x9nzlx6PTtgUIegKoVYyDdRd7JULMnBysLQ6JSCX/PHvzxCTSglKL95JNQ5RLh2FjTQp9Luu6yt206+ROZmvyuMpHW6Ml/0Oj+FmTbsZM+yepxJOpriOIrOY5lODqa83/GjDybYc5N0u2rt2zjh/fs4X+fHOaJwSIA9Ucf4+47fkM+NvlxMXkiv+95yyfKJFwTNIQzepnaONg4HHXGt6In+thUqBC2xHFGKugowrQtUAptKmiJs6RnER3pHHZt+m9bStXYu36U4TV5tq8fp1wPCD0Xb+dmCtdd18RG/fFq+SppMyCa8PHrBpbXeLGUagXQAQSawGgkwk0doup5ALQy0TS6Wms7R2Rm0boTL1kmoo4OXNARMbdMwjYo+NPPZ7XuN7qSL1Cl//0N4d46oV8lIsKxXbyEiaFjGNom0hpKY3Ql2+nNWHj5URI6Rtyf7sa7vbCNHaOPTS2HBUm6CSGEELPU6+DP6DVTHofCboiOrKFghBBHJql0m88qlambmztWsaO7Uebc6nucUc4T+h5GWzvR+BiR684aUNyMxwkn8nMbb5NEtRr+U4YcW5e9Aj1ocNWjr+DtL3lTY6VWHNuziJouAdM7ZOpLiNXmfiKF1yXT3LtvYY7yBuGMCV33jjcSlfXBPvr/6Zyp9ZEGQzFrfLFabP8fHT4e4/7I4Qv2SBR61Aa3oHU3Y4GJvbodrzOFF3jo320hcc4GtMn05Q6l8BPTf9xoxoy6bsan0p6kJdWJMk2iYn5Om3KoFUouUTzCaLUxiLAnx3TzwjqQImZGBGZjnW0YUBvFM1O4zmrUjPcjSoE28OxRYuZKLBpj5rmxNKevH8KoT489WI8iiCIwF8ZEFE8V1UJSL3rn9AozQBHD9juByV70mXZ8s5H8dnQ/PZUV9Ns7pnYJ8HlE72DV5HJYlKSbEEIIMUu5DBPj08uDT8I9t8GZ74dUZ/PiEkLMC5J0m8/cOl6lQlipMjGk4cJG0q1smNyY6yTKdZL++4/ALd9lcXn27JdLLr4If/woSIjs2I5T3cy+jGO2bKL9M1FY+LrGYq+Htf/8CIU//UcAQtOlHt9JhIeBBdqgYHfQXfkDj3GYdJsGTFb4GHM0B6M7I+vmhRHX3L6Dr+zN8XYaPzS0hkLZIp0Msa1GssgPA+zJZIkRQTSjfjYkJNQhplqYSY+n0sV+Xn3XGWyuhvS4A7z1xe2ooSK4Nmf3XYD18wybT+5nbGlpcgdm1Rv76QA8UJaBGZhMpKC3Dk5HJ1G5fMDHnC+qbkAsMf36slyTiIiCX8ewunj4eS+gbk1O7KIUlIcodL8A0PhGAd+aYEXfvUAbioCNj3yFh9b/C4E1PVFF2o4RZGpTIwyGVgzt+6gFmHSLXBeYPRHOzmP60ew/Oc6YG+DUaiSskNzEUnS6yHBxlLZYhpSdZLAdauXdxMwU2mudoxYIIYQQ84Q7Y7gUY8YVar8CSNJNCPGHSdJtPisWcVIpQtMkpG1qdagU0WQV0libRf21Gxj46mPYgxmc9jYM00RrTVRf+DNLat8nsKYriWL1CL/QBilwjASvPuZjjJkjWEYj82FoC0M7jQHIARSU7CTtxty/VdTM6rY5qnTrTDvsGW8kaGt+yETVx06EVKqKVFKjVKPKbV/CTWvNWCVPT7YDmJ1w28ePPEwzMTcNaLJw9whJq/HeW39sEXaVMdI5Voy2kqt14VTi9LTWMSLId9UI7RB8iBwNCpRpTBVZhk7IvevKDGzNsfrEvyTadTc6ilDG/BwVoFrxcOLTL+S6a+LqImW/D2JLcZ3E1AQnaaWhNMSe1rNx/K24sRa85HZW+rdRqa9sbNPvYq2tEEy9NYdBWwTp6bEQg3SMYHQUe8mSuWrmnCnddBPOMRuo1SZQsSQpR1PvqeG4vfttm0olaQkS1PyI9olRPLK0OGmsWIw2O8ZQOkPMzWHEskQVmb1UCCGEmPLgA/DEE9PLkYHbV2X8lkdZtOheyK1oWmjNMPaDJwlGahBGtL3pWOzu1NPvJMRRTpJu85XW6GQSd/t2PNcn7F0OgQ+GiaEjosnyGR2lCLIxymtWMX7fdhaf2w00Cr+Ohj++rlTwDU1nwSBUoFxwUrmp+1uzK+HYnhl7GCRLJ0/vj2ZXFYL2NXMW89RjD2wC5vaL7PH+4tTt+3ZNkIh8WjIBqWQjWRKEUKsbtDTGbUcpNZVwAzDCRrJQwVQypLprACvWitGawkgu4DHe3BLRxAiPlRrPVToW4MQUYYfJmt8txYkaFUgrHlvEiscWcdfLH6HQWUehCPywMcHHZCWY4SoiR1PPhAyuqHBs6hjMpQHB4CB27/5Jlfmg5gZErsYYsUmbFu2ezdfVL2mJNIlYgmhfMlE3krtl38TNriEys5hhGi/Wh3HRZzkm3pga4Sf/egnZiV3UFzV2S9QT7PUC7C6DRMHC8BRGzcfbuWdBJt3crdtQdopEopXAMnjktALDnasxosx+2/6ummJwyKYlSpDJx7gj3MMJlVVYUYQTyzGWhXDIxQB0MDdVtUIIIcQRb/euxvjZxQLQuAauACKD4r07WTT4AKx/Haj5eUH0ufAGK4TD1anbknQT4ukdDXmXhaleRw0NEe/sZCxfx129HqzGuGOz6hS0RWhGBOecQq7reVAdmrpLBQt/8M+oUMCzYaSlkczIlZz9h/aPz6zCUiTclTOWFHa9zKLbf3jYY32qweNndPOag/NgNwipB9Ml8w/15dEaNh4fEEZgGvDIfxvUVqbp6Rw/4DGifb349PT/azsHSLoVrPWLMJZ3HHC/BWFiG0N5C0sF+FrTvSzAXdEChCQqT33VaU775fGoyT/sr/7iXrzk9Dt31SO97DhxgNCJiJTGtwOUH+L19c3fpJsX4KyIEXT4eFWN0gp7YhAdeQQ6iwFEQEd1gtMWtTA06DGaXEtgZqgl7gIFxowftX49wN83IYCOqMUztJoutSBDraXx4zjo7sHdMUTqhXPf3sPN276dYFhjdUM161Dp2kiqCiH7zxj8cz/L7dVFvDBe5eT83fhGQAWPjmQnIR59ySqGV4cEEEnSTQghhABg0ybYsX1qcd83pOHYWJkskRdh5HdD64qmhNcM4VB16nd+ODG715SONGhN6ba9RFWf3MtXHeAIQhx9JOk2X1WnBxmbSLURZlsbA4YbBmCgJz8Nrcmqh72pUTaY3UzYMZKjw8RaWjAcGx2GC3K8oynFEuGMi08GL591t9Z6ekIArVEHuFJVbunmia39hzPKA2rZMJ10C4vFP7DloVGo+bOWtW78J5fxMQ2o1Aw68yV++NBi3tQHG9uqXPfC/U/woTHchaEb1W6+MZlM8qMDbrtgBB7bqjFqkY8BWDO6Naup6iFNI7VkTCXchniUKJzdpS+fShCvdFMzhqnlXIaXT9BdyOE+8Tip006bk+YcapWqS9DaqPaLVRxGqBMrNrqCJrIOkWFiRAGxwEWZBlsSXQQqg6ZGYDeSaDPHBjQMA8plzKBCaKUwgzpJO44ftBE6je0jM8LvG53jls6N2kObSZz1YQCC+PRXuTHZNX7mZ1vMNAHN3fUEL7QCjqucQBhOX3RpX7oG/Wh96gg6iFDW0XPVXgghhNhPFDUq3ZSCZJJqEGIND+O0ZLHSaVb+yf8hLG7FePi7cO7fNTvaOaGDaNaQN97u0qz7CzfuoHzL3qnl7IuWYcQl3SCEvAvmq0oVz/UIxkZ58iWnohnEMFowI4gMCzBRGJhBC61j51HO3oHZuhQ7uZYg/zN0oYBhGKjBAezFC6/r1ZRyGT82Y3bIpyTVZs7AiTpwhYdOZ6jYcz8mWXbGl9pcDOm2c7RKd9qh6kdccNZWehe7GCaM5xtVWqlExAvuu5WX9t/AutddRGu8je4Jg1IsoppsHCM9GrAyH6OUhp09jZN6z2wk87S/sMeK0qHPr8Y8NmSg4EPCCQALFSosbaJpJB1DQgzU1OQYkeNS+sljWBs6MXuWEE/2Eravxw4CvPBunHrE8PI83ZuX4W2/vYkt/OPsLfWhCwEZt5WugRZMNT0WcTLTSBRFhkU95nNT4rfUnGWYPigSnPHTFSRqy1Cnl+DCLgAMQxEFEFqNbg2OV2BrrUqHsxI32Zid06dGUFp4X3NaayJ3+v1UtfzJyV+cqWSuUooojCh7weQAkQoPSGW6WDSWJR1OT66zuHctY9YwmbJF3EoR1gKszALuCi6EEEI8nccehUwGkknoXUzl93fiDA7itGRRSqEtB+WehedmcUIfTLvZER92kTu7l5Se/C0Slj0G//k+9MxeVJbC21MifoxM0CTEwjsbOQoMXfUPOL5La3cXdu8i/FQ3ca8xLpk2ZvdEVBiY/iLsymlsj8dYrTSGnSCeaiSf3P5+WMBJt8jz8bIJmOxyZaqn+ULU0dS4DBEBUaDQiRSD7/nUYY50f6Yao3U0S2gWqRn3HPbH2zZSZnlHint3TdDR7ZNJN74480XN7v4kS4IJ4sNFHN+j1mbSqQ3GMtGMgezBH57grD0reXyJP5V0cy0f4tZkFeYCVivxQMHg8fJkralTBnKYk6WWanKcxaJZoy1sAaCkPH4arcLZ0ULCWE3r3izpde0YSQtDKYpWGT9WZ2yxg2XE2JYfoudgj38E05EmFp/AG67jtWpGPMVeewjD6gUcTDs2tW1oeOwNBslyLGaUx647JAsaIzQItpUo3LiTlpeuQJkKb6xKdvhBlGlRT/VCCFpNV2xqKyQYLTShxYeX9jymZtwA6rkAY7Lj/L7kG2GAYVpkEw6dMZusCug16hQtm+MKq3jCv5uuyf27Eu3YSpFMN7rWB+NFrMwC7gouhBBCPJ1iEeJxqNdh2TKCn/2CdNeM70bDAsMm0h1QGoDcsubFOkf0U5Juft5l/L824Y9UIdLgT5cJmBmHsLawL7gL8UxJ0m2e0bUa+qGHMJf0EmTSeEkT27X2G/NLE4FurDSUTay+giGnyupqERVLENYKhL5POLowu17tU1Vl8rHGSbhV75iqNjqoGZVwBhYGEZZlkkjNfaVboBZhBzHsoA3LPvxdM8fLHkMll0iDMfk8aQ25ljKpuIXhWTjVGlEyRtnx8XRI3FN4/jK0USXmh+S9XYREOL4m5oHha0JCqAfoysKcLXfnaIWdYxV+f1fImBdxTDxilT9CbDKRpEJodClVRGhqRp0wzIKGrxNya93k3NgSVq/pJb600R289Ogom9N3saI9iUJj+BZulGd08PB3Mz4swogJXSTelkR3VDnunqVs1QWicJwlrUtpzQZot0JgWqA8YvVlGNoCMjhuBStQoBTe3jJaQ8YPMQzwB/LUzjoNQ0coQrpTbUTh9OtM2zF0vKV57T5MokoFZU0nKvWMrhtqXzLOnPH1bpkUtUmSGL9KnIBXT7Lc9ai6NUwNL2w5g7z+/dQc2MGeIVjI4y8KIYQQT6dYhEIBXA9a2wiHB9GLeqd6nxiRh6qOEtANtfGjIukW1XzM1tjUWG5R0aV6/3DjTmv2yWg44RIMVuDEzrkOU4gjjiTd5pnwscfoedE5APiGxo1HRHYSM2gk2vZV0ygM/PIo9mS1gkJRNWwITFQijaldzHgcf2ThJt10FHHbhjp7OxoJyGzxBVgq+Yz3P+63u+g7rp1SLn4Yozw4barpAVvNwx/DXTvH2TVWnXy8xjqlwJksDoyqdYgi9JolbNCNGpmYnyRROweFQhOws2Wc94Qj/J/AwHUS4Ciq1cmxooKFOabbzx7u57M3bZ5c0vxprsj/t8jlO06SGhorMAGDniWb+NTeEqnNv+EHi9/IuNPW6DdswS0Jj9OSjY9jHWmiWkBHdQmGHiE0x6m1uBjxNEUVO1gYR7YgJNbjYnQ12thaiGMaE5jK46XrVjHeFfBQrNFNNBH4pEunYWgb2y2S6/dAg5GyiMo+/u4S/kAFZSiqYRtLKjsYbzsVAENHGGH71MNGZoQK7dljNy4AEwMjYE6/FozYdFfQqaSb1lNd5hO2iW0aDIY2g7RBTNM+kiOxJo5SCnd8M15s+v1Z7RsgzYa5aYwQQghxpHFd6NvTGNdt8RLCep3yrbfS8sHP43Z04ww+iPLKoEMI0+jCHtSik5sd9WEXVYLZkydEMwbACfYfDOeplXFCHK0k6TafuC7mffc0BrhX8F8vrFFxItpH0gRGmbBewHG6UVhoNGGtit0onCFSdSJtMmjH6HHisG84n3LpYI82v91zN9x/H/7zG18AHUOXoPaft3R/WkOkSZQ8nFIFf8BEhdk5GVNtv1ByISTnblylcn26W541Y24NazIDF8VtMC3MFb0UqeNFAZ0T3YzFIxpd3UxWZV7MGqeN8q6v0pgKEVyj8eWsF+hsuVuHyzimgRc2khbG5KslMBv/N4JGIjzUAUsH7uSe1CoKVoZ23yVScQKlGbdAZR1qZZfCaJlfbO/juHSKuO+yL88WOCG+lcKvlbET6blv6B8h8kOM1GRSR0OiEmNZMs3ipRvIxk36rOmkcqQAHRGYRTpGSizZMYy1rIdqrkS0qYblxdjz67tQZg/FsBNVLbGvRGvbxDCr2jPTx7JDDCdFVChg5nJz1+DDbNvDm2mZUenm2yahqmDq1PRGYTT1Rj6xt5X1PTn+70/vQwMmmuGRNRRqfRiGwS9q/fQuSdI7MkLKs9m+6Um6eMkct0oIIYQ4QuQnwLYhFoP2NtzHH0eHEVau8YNDG40r0gogCsEtNy/WORROToAFYCQtIj+EcPZZkr06i7+t0TMjqi/M3/5CPFuSdJtPdmwnMkyUhsi0cGprsUtLABOtauh6DeU0/qSBN0rpkVsJVh+Ls2QZjtVFqGDXeD89ToLq2DiGbWMkn3nl17zieSgg4avGrKTYqJl9cGdUgeyjJiuxtGVQz8awa8M4T+xi4JGe/brvzgX/bOha3hh8dC6SfhU35I0v30U6GZBITH9Jaq3xfY81AybZd7wRP26xmVFW6BxWGJ+qrIlUHStKY5kJ6oNjQKPiaIKJxoHChVfpprVm587xqYQbQLfpUfZrtJUMAjdOPN94j5XcCqV6lWomQY87hO90k0Sx19J0peOMVKq0Kg+cMv0pH1sFrImcqb99YId0xlIMPHYny06dZwkRP0SriHDQZGm5BSMy0MonG0uwt2Shew3ay6OApp4BQ8cwwhiWP4KdKmK0rcCLj2KoEC9WQxfBSisiYqj8TrKJxzAtAzdIEhnTXcFDA1Sshc2b7+W40+bZc/aH3HwT3sqzqOkR0imTarIXU6fQRGg0ulZF1Uz8uIWdaJwYBGHIi9Mud1cs2sMa9VILuWTjR3HZKdPnTJA1OiEOqt6MywxCCCHEEaJSaVS7uS46nmDv/3cFZiaL27cduzOLYZhoM4lhWRAFaC9oxqnCnNNRhLMqi99XJqoeeLw2pys1lXTTniTdhABJus0vQ4OYUePDa2LRWgKSxKIsoDDDBLXCEJbVhTJMwnyF0sO/ofTwb8i+5+VkeRFahWxum2A03Mqrkwn8QpEgWKADXOrGSeNYOkJpe6rb7VQ3swN0NdOWgVX3MVyfeLlGzP0N5//lO1EDA3Ma+j5fLczt13fF81m9rIJSEEUaTWMGxECHmBictyWFGVdoBStopW74uEUDJotrtPJRUaP6JjkWkS5pCCOCwIWkjYovvFmd8hNV2ixFi6UoBJoX7b6X01IRTms3Q60VoEpH0Gj3/+68D41mONbJ3kRj8pLzUwn2VCq0Jx0qvqY1nSBRzDMW2IzhcjEp9l1TDOyQjlgLmzfdM++SbhWviFNW+Iug5Ab0EZCyNIta4nRnQnYlWhhLN7rCx9QQvjmGU7dJ1OoEXhuZNS34o1tJeUlQEToPdqrxzBS9brz2RldIb3A7ShuYfgbLC0lUTXR9gLGdJTitWa0/tHQY4g2PkO44Acu0mMh2E5oWoapjaAsDCxIZtFvHMBtz5CqlSDg2H15U4codFnu0A5XpSjnTMhm0pscLtEeOjiv2QgghxAGVy9DRCYFHsOdBguECRibHPff/isTq41iTduixVWMCp9Ig9MQaFW+G+fTHnsfCCRdv++zxhb2Yz9ZT+olVLVL5BCeedQru9jzKMlGxhf18CPFMSdJtntBaQ7ECNIquyo4i7i0HIMKlPHQno9d+p3G/2egGuPTFb8ZetIaR8C4cqx2tQ5IdeZ4M7+JVfiuJnm4CzzvYQ85r2m2MA+XZYARpNAEKC19XcVTqoPutvfFW1jgfgsilpBehjvl/cNLJcxf4DOq/bpjTxzNtjzAEywLDmE74OaaNrtaJ6caMmnqy9kpNlHls5zBLXtPYzoqyU/sseaxIX1IRmiZ2xYNxn2gBXu3a2pfn5tEaAA6at22/EeekF1PfN/GFNrDcFgITylYGrYv4RhKlNVopXnfxGm7+wUMszqVY09l4/lTUeO5NINw3PoYGN+aTyOTYvGvzU8M44hX9PMFxMRQhHbsTLMGiaAbETLsx2ZXpTFakamqWheXl0JaJXUgR1jyiHFS3jkFLnZaJbqIwIlVtJIYGC0tpA1ToUg88rChDZNZwUwGllgQqvojCwJamtv9QcnfsIDM6QcvKHlTUypZ1HaDimBoi/Kkr7W7RI56LN747JpVTbZyWKnJHIUEi1OgQlAlLo6U8ZD4OQERExMJLkAshhBDPWLUK42MQRVSeuAeAklvmsYk9hA/sxVh5DD0r1wJgJnLo/MPglWEBTt4004Eq14qtVXacOAAKnKrN8zIxgqHGb2NlHg31f0I8PePpN9mf7/vs2bOHTZs2MT4+fqhjEgegKy4MDQEQOWmK3vRVBh16hF5tajm58kRWvvtL2CecB51LSedOIjTKgMLxe/DMgCCaHH9qgV6RiQbGQGk8S9E+fnFjnDutsfTkGGl6/+5TKoxI6aUMuN+j3/8v8l0fgf94wxxHPsMc98b0ojrWAdLwWmu6Rqd72KrJWThVJsdErvvAx3J9nPpkd93JLs8E0awEwEJQKNanbl+UqvLCt/w5vbleXLvRTstrI0qdxwOvPIbsxe8HlWbCbkcDXTGbl25YxBfO8liTmv4Rc/NYyOTFUwbGLIgasxPXcorOVCtj2wfnuJV/vEKtMHU7PllhlTYDWhIxxn2bQqKRcHTtUQzvWECTHi2SHq9j99i4RhmvUqbUMkZo+igUbRON11dY8VFeHW3GsJSJb43Dvi7Pk+PqqcL0eIXzXf2hh0nZOVS8FVRAJZdCo/GNcUJr+nluLT7ALb/5LY8O5KfWTSRSnGBX6TYDaoaiVnTQEbhmxDF7z6ZolDEwqKfT1KrzdKZcIYQQ4o/h+/DQg41JFOIWtf4htne0cM/KRYRm49S57s/4XRH5aJ0At3Dg4y0g2t//5KTcXps6SYjMCMMxUXbjeYpkIgUhgGeRdCuVSlx99dWce+65ZLNZVqxYwXHHHUdnZyfLly/nHe94B/fcc8/hjPWoFg2OgdZEVpJQW5RK07OO1kafZOLaH3Hj8wf5wYv38PDzJhMbk10oba8bL/RQGBhRjIydYjzZ+BA0LLPxpbLQhAGeqWkvTQ/QrpTCMBoJINMNMfzpL4LcngJt23YTmD6h4ROZISEt3NO7eM5DnzYjQXWYLxSFkcYw9+9qPFwc46Ftj7By2EKhCNg3WYBiqDxOKZuZfZzQJ3TL7PnAZ0kXLyE7thLHjbhk+9vYdeVbGP7sPx/ehsyxiUqjUjSZ8Fn7pl1cc06NH56k2Tu2jMxonMxEDgIfFUYYToIV7/4n/vriM3nzqatIZxz6HriTReP9LOvqolKr01+ocEt/CV9rHDyWFB4Fo/F3GV1qYpsOvZlWAn9+JZFGRseJBgxiQwkS5Ubie/PgHm7y2vndxovQGqzII1J1fDOPpoJTrxA3+rDas/jVxswvoR1Qb60SZDzMEDotRVQL0U7jfZ6JxfHtsanHjcyISE8Qqz+n60tHpGB0hFL7ckyzxNiKxoQagVnAd8aoWY/Teft/sWjrdQyN38NPCgkGCpWpfb14ghZvgl7DZYXhEgDKAJUIaK0tJRs1jqcSrezd/EAzmieEEEI0V2V6iIWQkOsKsKW7lWrMxgwjEpZDKaywa3yEAAvGd4GVgfJQE4OeGweqdKtnpn+TxgIHFKh44+KnzF4qRMMz6l76uc99jr//+79n9erVXHzxxVx55ZX09vaSSCQYHx/n0Ucf5Xe/+x0XXnghp59+Ov/6r//KMcccc7hjP6rosXEiJ4l2a9T2bqOQdvHWnAIowsooxVYPpaAei9COzXBtGx3xFRjKxAqzTHi7ScTaUNrBq3p48cx0JZXvN2bnWSB0FKGikMCCfMqivTbjTqUw3YDWwQqhgnpLDBR07RohNPKgEpihjUZTay0ykTyRG+67sintcJadMWv5hqHrntF+tbCCrwNarBznd16EbTz9DKhuEOLY+ydfQz/kvl2PYISr2EmeNuJkaSQ4vDBgQiUp1FxaEo3Xj2naYNpEjaeV0MlSTRsstXKMmHtoqdf3e4z5bChf58SMg5VzMdB4iRDPqbDp+XspddRJVBzsko0GtOdjOjEyNpy4KIdV3MsT43G8lS8lrkKU4TBUdnGDCNA4BBT37iW1/iTsyCa0NOUopFOlqYwN09LTzITwszNey2OsiXCpMeRrysrloR1309pzMq1RhKEilK6TcMfQhsZxTZY86uL7y7AMRRgGZHt6icKQajGP5XUSWREZw2akFhCOVei0duIGCbSqgp6cMdYCQ7XiLKAhyv65/D+cfMwpdIcZSpkMqMYUMW5iB74zyPpHP0dbqcrPvUtx8CnVpt9znmHSa4f4VYOcGeHXJyudYxGLrU4ej+3Aikz8sIy980k4+dzmNFIIIYRolkIROrvAgInCTlKYjBkatMaIIh7rGOWXPX18Kr0EFRRYnF5M5Cegnm925Idd5E2fK9iL0/h7y+gownJNglhIJVXD1z5GzCIq+VLpJsSkZ5R0u+eee7j11lvZsGHDAe8/7bTTeOtb38pXv/pVrrnmGn73u99J0u0Q0/39mPVG2XJlyxb0C47H8Xsay/UQvwuCJCyLb2B1/Hl0JVbP2t8NSvixEsrQtOa62a3GWK5yBMUJ7HIZtYCSbvghRAGBAyqKEZhFCG1MHUcpRRizCByD7N17WTFZQlbqKuPUbczAQEchKINYHmK1Vgq5iaY0Q5nMKnbzIvcZ7VcI8rhRnQl/FC/ynlHSre5HxJz9k26dZFnlpsGCTpKkmD7WiK9ojRtTCTeAKIpQSjUmqwBM3yZRiehItLGrew+9dy+calitNVXXpxhGpJ0qWNPliPnuRnWREU0/X6YzXXVpmganLMrg5lZOrUsEPu+2XCqLU3xzb4UySR4pL+b5yQIhYEQxTCdFSzZJfvfmeZN001pTC6tTy112C0YmRWLF8VjZVqygTBBrIad/ykD8dKygDagTqzf2MZIW1YkxioP9ACTacjhDCUIjZImt2OFFGKkY4/ENrIxVCKw9GNoiBCKj8QYyWDifbze29XG8dz4UwItbaB1ihi2ERgnTtWnpbSTZbnTOpDWjWbp4F7AGADfTzW/PyHDixDj/eUcvyysWrQUNQciT0b2sDNazPGwjoJf/fOILnPaay5vYUiGEEGKOVYah7zGo5tEVlz3bd1ANApgcm8y3TPq6yuzs8flJuJm/9V8IlTzsykNvrpmRzwnlGJi5GGHFw9/buKJZ7KoSxKaTaxMP3o02FEaLg7LN6UnshDiKPaOk23/+538+o4PFYjHe+c53/lEBif3pSKMq0yetTreNt2J6Kr6wVmK01WMipbis610sTRy73zGquoJNBh1FZCsnUzZvIsTDyaQJ8hNY7e1z0pa5ELkBRhTimxojSmCFkwP8z/i8H6y71IjonnwL1FMepdYa6WLXVKfrRNBGdrxO7cDDlh12OmRGB3CFYzyzxIHBsx+nr+6HOPb+V6NG/udRVnXmOMns2e++u6J2Aic9a50yFGrGE60Nh1rKINbTytZFiuc/OvysYztS6arH7XsK7KwGnG+Upu+Y8fTvm831qQylGhOezGBPjnfXYQUYhESY7Kq08Xwax/biLjrdxUq7k+19m1h+2osObYMOFy/AY7rrwe6Tl2GFWTqrb4PIJIinSARVtD9IzGjM6hqr7mHfG1bbCq88XarWdfKxlPv2ki61krM0GSMiqgWYcYt0LEHeLIGe7NZgNhLJGXdhJN3CKMRXmtaw8b4rdyRRyiRUVSK7Qmy0iDIjatqha1nExS/eARr0kIfCAWJYibNZsfh/id8f4gcmRosCLG7sWMXJ41mWAxYWDzOEF3o45tMn7YUQQogF4eHvo7f5qFoaHWkeGBqhZjV+jL9g027sMODXZyVRSvETcxPP87q52DwOQ2uiXZswjg/AWLjzFIZ5lzA/uwiglpq9vPvv/i89x/wVKt74TRdVA8yUTNAkjm5/9KdCsVjk5ptvZt26dRx33HGHIibxFFGljvJraBRjVobb3/Bp9IwT9jHP4k6jnVd1vYUl8XVorXHDKnvrT7IssQHLiHFM6vmU3JtJJk4jUV9H6cQcN+qbeeV9CcKREazVa5rYwkNLV1yuO63AWCYiXkvOuEM3xrkLIwbGKrTNmKmgkq3jxfcf02y5fTLP2/gncxH2fr72g5/Biunll3W/7hntd9Pwf7Ojum+2xmc2cUHdD0kmA2p1RSI+vc+ivUs4e89uOGP/fcyV6zl7VddT1oZoDJRuJEyceopE2aZtxTJuWWrA4wvnipcu1BiaHNuiVxXgAMlOM4hjuh6RH6HT8Vn3BdnF069JrSlYNr9uaefNS/fw5J47uTdax+6om/R4nlomg1YuY6kEy800d+3aMRdNPCSikouvIuyShXYSKNckUhFmPA1KEa8N0aEsijNmzIzXq4CNlVPs3HoHtUxjUP9ES45MZzf5xbsJtnoYvs0pKYPHJuqkszZ5HaGNAGPyqy1SGi/mwvIlPJi/m5Nzpx0oxHljoj6BHUBM2yjLI9w3ULHZuChz9hM38cjxp7Ot+xjOykwmuBXAJtBr0crBDjrIjV/IMvsJvOr0a7Y1UWVHlGGJoWhVIdVcju357Rzbvv9FHCGEEGLBKeyB8hBRoZPILTFarTBRLU+NkZ3yAn6/Hs5b/xHWZE4n0iFPDF7LC4eqZH2TYGtErDwE2fnRE+G50MH0uVPuTeso3dlHNVPHrBtggIo0XnuasDyKNZl0CwuuJN3EUe9Zjy59ySWX8KUvfQmAWq3GqaeeyiWXXMKJJ57Ij3/840MeoAB/5x4wLaJYBjeeJDJjgIEmwjfz9K4/nXce/3esS56JH7n4kcuAt41Rfw+2OdmlMvKI16uE+ETKwwqyqHCyGmS4Od0nD5tKlaoTYfndJMvHE+ET4YNSZAcrtIxUqVTL3McAo+px3Ow2xhYXmVhUpNQeUklO4Do1gqxPWJ1fA9Y3PPuEVt2POHXD+KyEG8CjqaUsaltGaXyUgeFFDPStZnjvSnalltO+fNWsbSMdUVNjjcdXjX9GlCQ1nqB1PMspK8/HHx9DV6vMd7ruU9w2TMoyeH5rjHBFP4mSQs3ooZsaj2MFacKYg07HKVSf0j148jmaedtXBqnRH9LqWPTadRYZRUIjJLSrhFaZStxgbyWPXfbmrrF/JF33IR3iZwICp4RhJYh0RFgpEJWKpCo7yfl1fLMD3xrHdfpJjxdw1FawNEbGxnJimLEYybYOUh2dqG6LeqJOVUdYGDiRpmaaxCybex7sJtCTCXQjwnYdYlGGLZXHCfX+ifX5ZHzvdnwbWsIMQ4vbiZSLb44RGHmMwTo7l6xj28r17GpZjhuYjOVtKv0+y/fcT9v4QygdoAkxoiQ1J8UJXUux6u2oaidnrsgQErEEk5R2WFpr53uPf6/ZTRZCCPFc3X4b/OiHjX+D82/m8znnVyAwCT0Xv1yiXK9N/U5bUvNJ9rTQf1yaVloxlIFl2ExEHq1GEjMWQ4cOlPY2uRGHWTB5nmAZpE/qYujlCdIDAbG6TehEBHGNl4vh73kUI1nBXpTCH6n94WMKcRR41pVut956Kx/+8IcBuP7669Fak8/n+fa3v82nP/1pXv/61x/yII924eg4ZTQDbcspWzHs+iherA1UhBWmSbUkycwYa2vU3cM1e95Ph+plffoc0lYOy4zhdvXi6QGS/gq0CplIZIlsE8rzPwmyTzhaItgxQKrLomy1YeoUAJoQq1RjxYODxOohP7SKPIjiVdaXyR+7lNFl5wGwa6Mms2MPi3YeA4FGGarRvdeY+8ospZ9Zldof8kyPUA88MulG1ZbWUHcNXM/kd2YPuFvRgYHykgR+ghC4y4wTTyZmx4siqbufsi5JqbVOvGLTlVvE//sTg2+Ui8RTqT+6bc0UVT321EK6YyZlr87y3h5qMxOWGnq3LKXSZRDUquwKQzpbpivd9Iy/7cyqv7g7Qrm0l8Vmihvqa6iSZGQ8Tms8ixFaRI5BRXk41jyajTMIYfK5UaGNLvvouIkyLQw7Tj51EhvG96Bt0JMXBAzfQhtxgrKFsdbBcuMsOu4Eeo8/CYBYJk0+10dbMY3WmraSi+t5PFYtUJ9YjA7HplLPo901sD3G/RFCHe0blmVeGrr7dwCYsSz9a1owiGOEcQJ7gsyIRtVeRu+uOK1mwFhgsqOzSMzto7VcYLTtXNBlUCk0AWf1ZLDxCOKN2V67O7vZQsBWAupAKkhzx+Ad1IM6cSv+B6ISQghxRNrbBxOTF9aLBejZf6gQMUlr2Powbn8cXQ+w0xmKA42xtFWkOf09H6dkDbM8aMWItVJNPElk1GlZotg2NEpn2cBRGmrjTW7I4aWDCM/22XnSMNfd+9+4hVEWBz5+q49TMYmP+QQJG/wiUVVhdRqE+YU1iZoQz8WzPnMrFAq0tbUBcMMNN/D617+eZDLJRRddxJYtW55mb/FcRIPDDLQuZmvXMQy2LcOPd6CUQT22m2rqMdS+rlS6UWYzWN2ME1nUgzz/tP0Shr1daB2Rqq5i08O3YOokRuRghh3k7TKqVmlm8w6pcOcoqjDBaCbACJNoGpUtdWc3UdzBqTcSS3cFFnmSrDP6iMzpLlZKG4BBaPtYVYf6E+NETap2e645t+eSUyj701ehNu/M8I0fdnD1949BKYOoowcVW4kXJKhmHQLboJ/EAY4SoXnKZAzKxE15FDorpLNZaj09bB/e/BwiPLLoqse2gQK/H6+zvNSPac8umzcCRfvwclAZaEuyZbyEqaY/bvdNNqEmu5bu+2MHRowacU7x72GIdkok2O1n8eN53NQo9bTFulQ3HUEcwvlRhakrbuNCsaaRJErH0DrCTKRRto3luTgRBOZyHL8HM0pj13rxw1WElqY0Oki9WCDdOd2VOdHSihsvUiEiZhr09JUoOw69mTaWtaaYWVRoB1k6+3IYwWQQ89jI1kewAgiyObzMjK7zQchZt65j7f1LWbKtk2M2L+KM7V2svn8Fl8X/nNSy91NNrQCVxcDBjJJ0tHaQsNKYQUvjGKbGj+qsweJ4LHJ6EePVcTZPzP/3qxBCHJWi6MC3xWx+FcrD0N+H7WaJd3RQ2r2Hu7ZtQlk2Vms7Dyd62Zo4g9bMOrJOB+Xs3VQzD9PaBX55BclUJ1HkEA4ONLs1h5UOIiq5OltO3UOsYwuJJROU1iXw0xFeKqS4zKC2LEc4vhNI4vWVCaTSTYhnn3RbunQpd9xxB5VKhRtuuIELL7wQgImJCeJxuRp+OMQqo1Ts/ZMc2qwRqQCFQRj5GMog0hHnDZ/A/2z6F360+bOYkcGouxulNYGZY3Gil4I/iMLBqZ/IjSdVMYOF82GoQ42R34Y2wApaUVgERhFfe6y4f3AqIZXC5afOh7FVyBjLpvZX2gBlEFjTCY0g/8xmDT30DkWC4Jkdozpjdsm6F9GdGSOu4CKnlVr9XArjS6m0xHjs/BU88IrVLF66/8QbKhhlVspPa1AGPXvbAcXoiipXRG/m37cvgC5rfjA1ntvb6o8SPWU4NxVBuT1BELfwah7Vuk/MNg+cSVUK08vjuGMETgtbVr6V49QevrDoATLKo1Kf/pgutNu4hk3KihEV+w9nCw8Zv+IStfiNXseTs7nu7dvN8DVXYu9+nFaviuPuJTIyU/skxiN8q85g2zbsRJKeY48n3TGddLMmZ1veTRVfa5KhJl5yMQ2DtV1ZvBm9SGu5RkLUdq15nnKDke1PEFgQJWdXiqrARxldRERUUnWiyZae5ltUd9XIhAHn5m/DCh9GE6GwWN3RSgvLaB17GQDphKbNnB5qoNPtISDgoeGH5q6BQgghDp1wRqItmN/DKxxWD34HfefnoQyGaROGIU8kTGoxm9MXv471F3+ccLLiO9QBu92Hpn/uGhDRyYOxM3m8/RWM/rYN/IVb2RUF4ayf+sYB5m6rdibR9TyROwGhxt1emLsAhThCPeuk2/ve9z7+7M/+jCVLltDb28t5550HNLqdnnDCCYc6PgEU7TQDLb1Ty1qH+OYYlfRD1JKbACgFjZMlQxnEZhTA/Ofmz3DuxElTn4o9y15FxuoiMEqgNK6TYrRFQzB/xoj6g8II34hAgxVk8K0xQrtITCVITdTRaPJEOCpgrTE57kJsupe10gqUgRuv4qZqmC0OwVBzut+qP7D0bPZ8JmpencERh8FRg1rdZWUsy0ozoNWbbvvgmjZMN8AIogNeMY2X0iRHR3GtAYx6HRVqVBihiKPNRhIg5aR4rLSVL9z3hWcd45FE+yEFP+LYuIHToklUIhL56deRHquxJxXh5WsUyy5Lo8n3l1LY4YxZYieTcHbk0ZZ/iFh9mInc86g6q+hKZWmzArQ7/UPZCKo8HjfJJBJUR/rmpK1/rFLFnfqmUYHByHiFamGEnrbFHOsNsrY2jr3lSkKjHR3lyQzlce0CQXuA1RknlkoTz7ZgzKhItWKNH78lFTDka6qhxvQiDKXIxGzK5RiW14blt+JPFiHa7vyeTUxrTVlXyUYxZk6Kqwnp2jKEskYZ7y1R6qwy4bhU0IQWRLUIA8hgYYZ5NAEhLlEYAprIqKEiiyBy6erM8GRUZ7v2SXpZWmqd3Lv3vmY1WQghxB/DNMA0wbafe/eJo0HoMXz9Y9R2N2aLNwyDO3duBcA2bAg1Vs0nqJd4tPhbBtxHpi4iAjx+bjd7j22nf107JZKw69amNGMu9PeOcOfFj0+viKZfV3vHBihOTFBclmVkWXYq+RgW3VnDqghxNHrWSbcrrriCO+64g29+85vcdtttGEbjEKtWreLTn/70IQ9QQDHZghk1Eh1h5BEaFSKzjjYCtNZsrdxLxPSJeT2aTpRkdIpY2SdWbHzwKaVQGogUkZEnXm9jIuURbV0gJ1aOgZtMoaI4vp1HqxBNgF3TOG6IQpFA86fGTxj3exn2VzbGx5tkGCZGvA2dimMaNkaLQzDRnCtWs1Nnz+3L6pnuVSkX6On06OmIUNogteNBnggsBpzpCksjijCDkMg2sZz9ExhmBIu27qLQ/iuShWG0ZaBNgwF/BfG9KXKDabyUxq8HPD72+H77zysK9kQwPjZKsKybWsqglguwKgbxUZP6UJHdrsdgEFAzFCeum57Jyp9MHhk6mhqg1w4KJAkJkl1oZXL/aV+k2raGUzIuuhqQGm8hVunEqtepWQ75aoXK3l1NafqzlR8rTd1WRozOthS6VCTwPVqyy1HFhylmTkZRwwwiQivC1AZlxjAsk5Ne9QYWn3DyrGPG0imMWAeREeLhYpiQGKsyNDbC7okKCdsmcMYJ7AnqWY+xRQUs15jXJx26XqfsRJwYLCYwp7NukVGntVwHq4TtmTxx+i7+/fg++h2FnTKIIk0Q1PH8Cml1K4E9gTbrje8CDKwwB5UeQi9ieVcrq40Yq5TN0ihHLIqxZ2yBDwothBALkdZQLEIYgu9DbeH0ajnk4jl0oDEnq+g9v1G9UIkFFM0qtRaHIGHjZrdD6gGczgG0MV2soHGJbJPQMfESEbjFpjRjLlQTNfSMswvThvzAIIMTw6DBjQJ01aPU4hDVdxPV9+D0pqg/ubDHuhPi6TynS/+nnnoqp5566qx1F1100SEJ6Nm46qqruO6663jyySdJJBKcddZZfOYzn2HdunVT25x33nnccssts/a7/PLL+epXvzrX4T4nuu5TiqewIp/QivGI+i693Y3SDa3BiOKsSp7C3tqTtFrdEIVkgjjgERJhYmCGGjc72fU30ijDwCJDQIAZtFONjxJu24LR0wu55c1r7CGgJ0qEYRGjlCbuLgWgmtiMEcYxJr8jisBiY5gWY4jB4DjqmbXAnsadAUSRSZ1BzFIHQVSj9vAI/t7ynLdluW5jerS95zr6+zNLMlQq0+3z8Fn5xDbSayt02EkwEmhgYkkGbRwkT681thtiRIp4yaFtEMqdGtAo1Uatp4IqxHHjVZaMdOOY87sruq541Gs+G6IydadOquwQKJuVDy/C+X2Jn1Y28/y/XATAwEQFMzGZvNR6KtEWzRjjzYh8ltqK7RFgxqhmlhILQlbEhvh1mKXS1ph1rBquIF1czur2InvGj/wfMFEYkZ8xXqDlm5RdH79WIZ1qIWbGoL6TkVQX6CSR1UK8MkaslmSixyOd2b8bM0AsnSVyR0H1kPdtltmggoj2bCt7y3USug3YDYAROrQPtBCrOwc81nwRjI9TS6c5rtyOzkKkKmhlMNH2C1rGLKJoEclijNG4z4BrEUspgqKPigNuCjvdgbIzeLE+UuWTUTN/NMcrmKZDOtFOvw6Ja03BCCjaecJawOaJzaxtXdu8xgshhHh2qlVIp6E0eeFLupceXH4H5ccHyPbWAEXJtkAp3LYU3uIloDVWPSBKDNPT29X4SR7RGDYjjBPYAZaniVU8ArON6vhWkjoCNY8mvXoGHss/wPjyMnpm9kApcosaE3RsGdrJ4u5F0A719jjeo7eTOPM9hGUXr69M4rgD/6YT4mjwrJNub33rW//g/d/85jefczDP1i233MK73/1unv/85xMEAVdeeSUXXnghjz/+OKkZsyO+4x3v4JOf/OTUcjKZPNDhjki1wXF2tq8iMkyUm8fMFYAOAGLV1eRKL2CovpO7bvsAta01XrN5GanzGrPLmpOFjKY/ozvbVO4mwg7biEgzkH2M4x8vwRPXwenvPXAH/XlCeS6erTESNkwWqCVra8nkq0CjO96ja26nfe0KfsVyKlEHpezI9P668ZxFVsie1Y/+/9n773DLkru+F/5U1Yo775M758mjCcoSGglJYBDCYLAN5sqWgWssLB5egq/fF64RDhfbVw8YfIEHLjayDAjbJIEkQICCkYSkkWY0QZO6Z3qm88ln571iVb1/rNNnn57ung7T02Fmf56nnz577bVqraq91qqqb/0CB2beil3IMfHVH6yEnsflpLgQlyHQDaMhp58Kk+fcstSnf2eZeD0rbu6p8wtuQNBLOPDVBSwVGosVKmt5ca8JyURQZ0VCNBHTyhx2n5jiszd4nCgTZzzWS9nV72G3TDCo5EBGdbXEql6g+ppv2djXVyOh7XwIDNXA49tfO8Nnv75KP9aklTl2Bw+RpPWN/azIiNwi9lm2svqS1O1KIlLNcJOga5VP6Cjai6eo7JxFKJ92OMGj+/93EIqw1WP3Ix3wBbOvvo2dr3nDOct1/QDpVvGDjFbLooAdh9ss3dRkV7NCT28n4mEAtLNuTZg4Z6zO3mjotTU6bp83qW3EVQ9pQ6y1WJGjhrcjjcPyjjUefrLJg49PkM7ESO3DAExssBUXx/NJ3RXKSNiUkVloH+3kmMktRGKBXcJhSjeI3T6x6PPJZz/JTa8ei25jxowZc8MwHI4ENyis3ShCFYgLjEleUeQJJh2iuymldfEoaa+BtQS3vIrkrleBEFg0SWUJcbrvXP/POjHGTSETJBWftOxz4omnueneVShPX6NKXVmstQySjL9pfxq79dzjKG0M/XQ0azk5Y7mtXXhk6LWM9NjL1/pvzJiL4ZJFt1ardcbnLMt47LHHaLfbvP3tb7/ocp555hkOHz7MfffdRxiGl9UJfPKTnzzj84c//GFmZmZ48MEHue+++za2l0ol5i4yTXaSJCTJKHB+t3ttXxKD1T7KuEiTMygnzNQmsdaiM4Wfh7SSNmutJ7jpWMTrvl5hcXo7e9ePPWRzTgrNPekyUFjdiFRjfQdrBdrponSF1G0iTQqDE9BfgNq2817P9YzVBrKM2AW5KdaCSnKaJ7tocnr1mOQNDh0zRXnYoy9mcdMAJ/MpDRt4aYnTPamVFlyJDK5NLChrrkACh4vUGKI83RDdVJLRiAsX5XC9LXJfIbIEK1xQ4kwRyVrC3hqDxiJ+b4p7P30AK3LCVkw0ESKFpNx9NYP6g8TllH+YvIaPpfff0AO/5UFGK9N8s0xYmnBwE0HYCVmqNBi+5+9z86Z6TVTLxSpplDFxqk9nR5XEL6xVdy5+gX3P/iqONYj7PoCjBLN1jyzpkTgBzXKF+tpItBImpe0oUqshisHo61okt0lGz0TIVCAoIaKQU90hadSjlczw6doEtv5Dxf1ketSXUuIwIpwpofwXtob0Gjvg6BJ9Ayu5pWoN4VrEQtWlElSJLCBAr8cTvNFjuuWLiwxCaGYNOmFRFysSvGgLykh69YiVuR5xJKkDjhMBhatMEiUoDVI6aGeN3FnFzSZBCIxIkTYklyskTrCegVihhGBLbyerpWW+NP8lfpQfvWZ1HzNmzJgxl8jgecu265ZuX/v9jxD3uwgEN739m5nave8aXNx1RNIlb6WoYGSQ0U+KVfutpf0bYSm00wUtkEZi3DPjGhs5Gq+ngUvnSA26J142ottXnlvjh/775/ih77GEiSILNDxv6JnpjMXuCiv9Fs1Snc6BKZan1ih1T+LM7CBfffkmlxgz5mK45FnIRz/60bO2GWP44R/+Yfbtu/CLe3V1le/5nu/hM5/5DEIInn76afbu3csP/uAP0mw2+YVf+IVLvaQNOp0iO8rExMQZ2z/ykY/wO7/zO8zNzfHt3/7t/MzP/Mx5rd3+/b//9/zrf/2vL/sarjTxWoesWohgub8wEinykNZKSJ52efdfK5rNX4F3GhA9eizzBE0+LhL+F5qP9x9l9pltZL4icyrEFZfYVxgvwooEQwNjFiCYgJNfgdrfuYY1vnxsqhGBop9LhFWkziJKV8Ev4WRDhNMmagp0RWJaEps4yKCM0oVA56UlpFXYTYKJf2+d2tzW853yJWX44S9c3oGXoWNZNifSiKgGxYBCY3mUHOMorOufdZzINOV2xNTyIQYTa5zcm7LjyRn8yKO23CWqOhilCOI9kCeo/DDlvMqE9YjyiJJ741idnsZay2KUkliYTDscpky4GuJkDrE/gdhsEbjJnVQa2HJoic62EChEt1r7ERqdIp6inigsWMuhwpMWPWiRBQ2yfDSY025O6lZ40iwTZgqitet6UJd3IyInwXgWGCBdHykke29/HfaOWwpN2GpKgxPk7pBSe0hSFszs2kLzzr0vWLYT1KnVD9NvOeRikqGB1GoaYWEJKEyAVTFpWbM210UYbmhLt+Hh58jCKWYGN7OmUjLZQcsewVAxbKwBOQ8tehw82iAMwAlaDMrg2xC35aC2V5EWrMrIZRfP1rDCQ1qPMK6R2C42zwjcnNPZJ0pZSBI3SbtnJ04ZM2bMmDHXMXEMU1OwslJ8zgtLtyyJwFosFp0m8KefgH6/WMT7tndDrf4Chb7MWH4SDv0ZvYdPUL7jZpJuj1gqutqwdXYnOA1YH9Op/hpmuhAuRV4kXjNuMaZwkh5+J8LRkAUOx8IVXttfvFa1uuK0hinVco7jQOZoGqcqrHkZaaWN5/lIKcmznE63Sp5LVroDKlOzJO4hKIXYTKHb8Q292D5mzIvlijibSyn5iZ/4CX7xF3/xgvv++I//OI7jcOzYsTOEr+/5nu85y3LtUjDG8GM/9mO8+c1v5o477tjY/n3f9338zu/8Dp/97Gf5qZ/6KX77t3+b97znPect56d+6qfodDob/44fP37Z13QlyNKRGJLqBG0MWZ7htKeZtRPszwTNYBdCuQjlI2SJnIw9GCa3dXjXfSf4028MeXjHJzjW/BR7H36WXV8/gsotMqsijcDTVYzJwC1B0nuBq7nOSTLoDzglDVm/hpfPomwJb5ASDCxCxXztW54GoPwEzP65YO/8m9l95LXsPvJaplf2rusjow7hRs+2c7EiQ9+MUt7a2CJ6MQdUxE4kr8JhzzkEN4DpY21u+5tn2H78y5y85TGeft1JOjMDJIKdT3bY9tChojWtwrU76M5GRF7Ou/VraCftF1/Ba4BNNSczwx11n+2zFpM5WM+g9BxiqnrmzqcHF9biZBovjRAaVJriDQaopTlW039OK/shVj+VsPSfH0V8eZ4sFVjpEDX2cKBUxlkO8AdN3CE0kphXqTlqfgjx9Z2GXQ8z8iCmtBjgZBOovMowy/FLPoRVEAJlUmZXvkC9dZjJ+RoTi1VU7dz322YcvwghkKYexgomHMlMW7PYGrCaruJmpxdfFBMLNUq9GzuOYG9+kV3xHGnoIMwQiQ8K/GgnWgncqMlXj5TJrWBLWaBVD6UdMAI0WO1gdCGmZf4S1mRgcnK1SqYUUbiKzAdEpZGVsJvPsFY5xaHsCeJ8vEo9ZsyYMTcMve5IcKvXyYXgib/80zM8FXSSQrsF3U7hjnqNvXuuOr2TEK0wPLwKgwTd6+IGPsvtFZaSGGd6N4aMbvVL9JzHNw6zDoXglkNv1aGin8Kq0xZxknaQkucvn8QVC92YW7d5tBdK+Cslms/V2fasJAhCpJQkScKwL4nyReYadWYbVZIpn+3HI2xnPRSKAZvoFz7RmDEvY66Yv83hw4fJLyJI51/+5V/yF3/xF2zfvv2M7QcOHODo0cvPxvf+97+fxx57jC984UzroB/6oR/a+PvOO+9ky5YtvOMd7+Dw4cPntMzzfR/fv/CE72qRGxA6xyoH5acoKfnac8/wbeUfhApMrnURYrjpiBIVfBSSW7/lBNo1dPsup/oz7NgVc7i/xoEH9kCphEKD8TEqouukhJ0lKE8UE/ngxlvpslGKQLMoJJ7nbMR0S8se/tCST34ZKO67Yf11mDceOMsorNDYNotu19DC4zLPfakx3QZ5Dy1z8lzgOBaZpahSyIe2P8PCyXshLwYR5zy2Mc/W4HsAgRb/EIDWbI+5o4Xg4ScDLCkSH5FXcYcV+k6Zd+dz9IYtqFwbK8IXxTBleWXAyUFKWEvRFY2o5NR6N5FXz/HusBaVG27/6+NAyJ2fOi3kW+BOIgwgkR2DaXXxDnfYf9skj900CUazdWonemIRjCCWMSv5NJEQRJnGDtcQ13FcWtMZon1B2szQ7hoyrzBMcyZqDazykTbn2z79Wr687V/herNkbo6bOTgXIbr5lRphmOC6CQNtwQVvscPszZNAmWG6lTQ4hV7v5dxEcblZgK8Hhs8+S+nOWXBn0ME0ykDkPEO5u4va6iRGGB4SCQbLP9/Tw4l9ci8l6FbIspz+4QSvXviDxOVDvPmr/4mv3/LfUbqGNF0QMKxPUqkPMZ2cCKjE28FCYEqc7J9kX+MV7oY0ZsyYMTcKWQZKFdlLOx10ltFKn5cUrN8rvjem+Le2Btt3XJvrvRboYsHZRBnetgb+9DTKUSz1O5Tu+QZktUrqzROXnsbxJrHaQ6EwqhDUrIKwnrPS89kZxXSnmgS9lCl3isMnv8zNt96YnkPPpxtlxLZHY25IAtQf3sqsGzJP0Q6+7zNTUvTiHGMNxlhipxDYTDYoLNxCBx3l1yxkz5gx15pLvvN/4id+4ozP1lrm5+f50z/9U9773vde8PjBYHBO1861tbXLFrt+5Ed+hE984hN87nOfO0vMez6vf/3rgSKm3MW4w15rMuVglVO8xEShIt1yeB+8qvjejTOe70/oolh0MrRTiDb7v76FYazozx4lLqc4uaG6NKA1Z3BMFam3kVc90EHhrtY5cUOKbqafILKU9mTOtHA3tjvDDCeLiIPjnBbd/MDhYrIUWHPjTtIvlt8/9WH23V3cW8YCScauf/V+/PmUznpiicw5M4YbQoC1JO5BBIWbQmRrYMGLRm0fGIF2WjhmDkmAkA16tYxXxVM8fuwozNx+Nat6RbBJxte6Kaq7hr3To1bJETlgRq/TM0zohcAdZoBm9KyuBxzDAhLJKu7kfrRKyNcivKfWUPvqaOWwc8se5PJ+AHqVwhUVJ2C2VCdaPkppx+uuSr0vBxtlpLsGaE8jtIfUFVrDJV61+wBG+VR7B3ngzndwdEfKzV8DN3OISgnuXPmCZTueS5q6+N6Q1sCSGksjPp2zFKQu+pmR6HbjDvRsnpM+ej/33P6DaG9zIBVDZa14dmPXYBLYLTWeTkjThPbkAnKrQ+lQjWQ+pXb/LbDjIABHduyj0n+EXuVOgngHPSOwMkGUHQw5ZQQTUR3HeMRqyFOLh8ai25gxY8bcKPS6haC2jjyH54bs9yHaZJHV75+1z8sanWIyTXSkxda3HUB5HsM0pR2EhO+OWOF/gpEIHTCx+m0AWHK2PfIVZk7WeOydn2J+e520qXAPrwBN4prPLcFt3L/8Z9z8Mslg+tUjLdzJUaiTYODRRIyGsmnO1BOKSnILx9cW2DExx1x9hj96s+J7+8NiPBxrbJRD85pVY8yYa8olvwkeeuihM/49+uijAPzCL/wCv/RLv3TB49/ylrfwW7/1WxufhRAYY/jgBz/IN37jN17StVhr+ZEf+RE++tGP8pnPfIY9e/Zc8JiHH34YgC1btlzSua4FVhvS9Um6FBItUnoDSaLm8Hsx5bWIoNtjw6SLkTth7Bj2PrKFt//2Pdz56BZed3CW5nMN+o2I+ZkubruHXHcpFEiOejnp2jSEE4W59Q2I6UZYVcRYEEaRqSLph8oMlohBMGqn6W218xf0vCQB14orEfXgQu6l2moSM2oXKUAaDe0u1sIEAlsecOyumZGrrRCUVgf43S42eG7jWq2Q3Hz/DmaONTb2VZkC0caSk6se7rDO4syAj/dduuvP4o2GSTKWcsPfP/QZWlPFfWQdyKVbZJO0FqEtM0+tUJ/v0zjRYuvBNUBRU/8Fl8eBVRQngBae9yj1nV9j+gfuoPl3D+Btr+JP+FQGCSpqjTxUMRuGWqnjUVIea0eeuRZNcNGkucbU1t8z1kMJhaeL2G4A3WqJQwduI/Ms1VaJwWSCmVI4zQu7gipXorWkUlplzy4f4QmOJm2GqwPaaRexHuVXmITu5ADtmBvWzi1fXaXnGyYTHxNscs9IBKVO8TlxMyasZZeXkafF4Fg7OXbKRQQUrqhrNW450iVMco7s2gdum9xZxYocN91CLluYio+z/vaZzDzq8RTVeIIHjz50tas9ZsyYMWMulzQ746PYJMAF9QZhYwIVbwobEIbQbl+li7tO0BnZfM7+H/wBnHKxUGc8S/3Nm+ajwuBHs+tJhgAUnxt0mTT/jbmlZ5lemUcMUrJgbWP+kDkVHokG8HzLwhuUfpLjeQa15tNYLBHGGarT5zXPuLz+oEfzYJeVxWd5rZ6k281Z7nZIMkvrwASRGol1Nh27l4555XLJS/+f/exnX9QJP/jBD/KOd7yDBx54gDRN+Rf/4l/w+OOPs7a2xt/8zd9cUlnvf//7+d3f/V3+5E/+hGq1ysLCAgD1ep0wDDl8+DC/+7u/y7ve9S4mJyd59NFH+fEf/3Huu+8+XvWqV72oelwNbJIzCDZZNaiUqm+Y2fNqklJAAqhDERN4G0lkTrsWzmgJD21BaYmyMCRl5xd38PhEDxk5WDPEALm7CFi6rsfKsM/WoAHmwm7C1yNCCoROMI5FJXVcXSynuJlGInGdkRtuc6aMXQ7ot86OU+SFHun6rtc0ptsZ535pAo/28g51Z4JOvraxrbYW83hnHjNTYTaYY3n7XHEtxoAQeP2YnV8/icoSnvymUWdqlEMw8EhKGZW2i/QzqiRM9OfphbcitYu1E7jBPIdSQTO6QeNdRBnTjmSPiehUfZz5MnWzAz81RH6x7OdGGbsOPYZnW1gcQCBETNX5GOJ5q57V2zTsfAMA7lwZm2pk1Qcr0GFz45cXSJRxcdoLPGV7VLNFxBpnJGu43kgGCW67jq0qpA3pdCOe7sCb179PfcuwWqJx0sOExTPslD2EvHB9HEditML3Y24+UKb15S43UaFd8Sl5Djor2jkNXWqrZaSW11REfzGkR46ytGcHe0SNTChSdwEQWJWQu6usbslZtRnVrss/3adxXA+jFF5YZuKWnfBsh2w1A6GZi+qckDkSRT+IEDYjc1fx0lm00wdvkkfJyQBpQnKR4WqfI889XrjiKPdClztmzJgxY641WXrGR6n1xlAy7rQB0JUmzM0Vsd+CEDyPVxQmRfcEOooIfJ+eTfm8OElY30Wetoo4bVaDdNAiQlqXnAFPZV3emn8r+xe73DvVYpdqcXLnMRorM5SjaSqqis1tESfbf4FF/huEfpxzx/QCeiKgDfi9Bp/UH+edB/dSdUKmqHPouTX23jLDh4dL7JqdBizbv+UdzHuWxlJRjonHotuYVy5X3d/mjjvu4NChQ/zKr/wK1WqVfr/Pd33Xd/H+97//kq3Pfu3Xfg2At73tbWds/6//9b/yj//xP8bzPD71qU/xS7/0SwwGA3bs2MF3f/d38y//5b+8UtV5SRkOO3S9iFx1ENZFk2C0pBxOgbUIA0HsoDbZb9h126Ygc9Y/g2SJKtPU+n28QQvjN5k9NmDptgbeerBxz2uS5S1YeQ6y4Tmu5vrGGotZ6NKNDZ5rsKlGyz5Kl/GiDCWWycTIesb1XG5+yx6+8ucH0dmZsdPSaCQ6XtuYbi/9KVrpKsaYdQstgTECay0ym2R/bzed4RSd6hQgQEosmslTEdU2JIHE6+7k4dvfzMLsdpKSi9/3KHUDEAJrJUiJFw+woUXLHtrJyLycKRpsF+FLX8GXAJtrHljp8vZ+m9wRuOUMnc6RqPKG6fCeBxfBbCUXJbb4ZyZuqbifAJtjkQgvhDt+Fe4o4n5IT4GFvBUTzAR0giE47kjosCF5Y44d7Tm2xYbHOk9BHoN7/bWltZZhmpDOFIKuF2/nsw8eJfUlqnMM3WigVbEKvP+hOeqiiW0llPbNXVT5ypVoI3EBucn9WfRTeiLBL0VgwBRNipMqTJKAU7nSVX3JyZeXGChDXVeYrzp4WZHpNnGOMnu0hADaEz1CLIIO6bCwcAjrTSb3HmDZ+zImszhlS71bZqh6SKA1uUBj5e1AjBUGK2Kk73KLcnG0ZY2AVA2RuCzpLrpzEjWx+1o1w5gxY8aMuRiOHIHBkIXqDAaJdR3q0VqRcEyC8jxcP8BPU2ivJ2RqrRVJFcw7NjJ2vuwxGjN0UOvj4P8kjmHDrRyoBQgcjBqCFfjxLhxbhL3w8FgSu2gj+OrxKrnjMvFOgZMl9CZTdFRlIfXASKLhCmFt2zWu5OXzzFKPh461WRlEZGIZv7sbISSOsXy+8hj1oMS79AGsNuzrQ3XLG/lg8gnKwU1IIcALiaf7sC66jRMpjHklc1Gi27333sunP/1pms0m99xzzwum+/3a17523u+yLONbvuVb+PVf/3X+z//z/7z0q30eF7JC2rFjB3/913/9os9zrTi+8gS9sImXFfHVfu/PZvmR171tY6XqwBePsdzOgZE1nHheGH0BtCZ2Ul9rI6kxZV0eD3rMtacIhga9rkNlQZMtskY8jAj8GzB7UVoIZV8cGBzl4mZNBC4IEAZ8cYj7B/+A029+KWTh2qzPdQ9tSqRwTWO6XZ710qUkUmhlq/RMGyEEjz9do9X1mNEZE/a1dFsuSejQ3r6+SmctNn0KJ5sBwI9ddj10Jw98l0stLVNZFEXmSSMh6GLjGlnq4fQkoilwTA3DgNUdXXreJFXh0l1aoDZzcSLL9YLuxVRbi+y1q6ztluQ2xV0onfFzhXFxPyqWAei+5n/RPf7fqE4ExK2TZIMOxxp/izd+//sQUp1RfvXtO1j7yFPsvH+R5Xftxmy2LBJFuakqVqNXO1kRh9G9Dgd1uSGyI/cWYV0W45Rbdsyg63NgIQ4P4ySKaquGHhRBFqv3XVxdlCMxen1iINkIkedoQ9WrQF5efwcYrBQ4mUL3+1C+jjNPnIf464/hdk7haZ+kNOq2naSHoAFA3zHskgbluJisaHc3CJBSYXwNRpD3fCprIT/w7DEebDaQ6Son7DEE+5E6JPVOMqjUGdb71NZiUBUm2i4nZ9vEus+jBx/gnjfuvgYtMGbMmDFjLgpr4bOfhjTl/jvfiVkfY7zlmc/hiD454IVlonYLaeXZxw6HULnxFqcuGZ1CtIajKvgTkwgEe2/9J5S8Cbq1L6K9IcL4CCPxszPjhX/vXoePrh7hAbGLE506QvTJg4TMrkAEymsgXMGRtUPcOnfXNargi+e3v3SU//alowinzdb6LImrKbdcjDA8Ph2zUyzwd7mNUDroZh23M6BGmf/3C7/L//6m78VzHFoHPOzjFoFAx9mFTzpmzMuUixLdvuM7vmMjycF3fud3XvbJXNfdiAE35sL0u0sIWQgcxmp6vVFw8fLygKS9yioe+9dFtyM3LTDUcPLwBLdaySkp2H1znWB/k/CJx9GnmuRxk+l+m5MiI2xltHas4eQ1+m4ZAZzqCPZWh+sm0dVrUe3LwiY5KEEbjasbgEQT40WKrYdO0DUJWjoblkhy/S8hzjQoE1JgN2tW19LSbfOVvUTeg+1sFYmiPcjp9l2SVPG65Qpiqmif4abYWjZL8LtPMHVEkSuLNJJKJ2T/ye20Jns4XY9cGlJhCIMIR0E2KNN8bhsLO4sOV5hCQBoGOZOqxMKDD1D71ne/NJV7CbDW0l0ZsKc7zx//vSm2A0pXgGYRy81CZTXCzXI88QhN99fBnUA4LtqtkmiI4hzhVqnOzCGfJ7gBBPsaBLdNEh9pceAr8xydfIr41r8FgEBhMawoyzQpiScL0e06XEm1Wc7AjAZY/hAWk4zv2u6D7aOVIVddbn5wK+EgBFfg722gKhfn3uKXHBI9i9LzCCFwaoql7hAvNZy2VZV5FYvBqEJ0yzotmN31EtT2pSVbWiT2JU5WIg1H90xpuAwUmeZSZbiz2WHvG+8jqNXBWrxy0WfE7hCX4u9kbYoGB/FNCrLCZPsxFiZmULqKFYUL+bAZUFuLCZVHc7lJt2bpB12+cuTr3PPGv3vV6z9mzJgxYy6Sfh/SFC3khuAGxWKdD+RAdWYWL82o94ZYx0G4LkgFcQTRK0R0W3wM+gtI1eRD7xigFVg+Qbj4no3spI21d+DkExuHyHgR3AqlbffwffW9fE+5jhQCvbZGa+pPEbqHSjWDsMysqXCwdZBbr1X9rgDznSIEj3S7+G4xNnMTh57TI3YNT6crHDar7LQNKpMTtA4+zOsP7ONo3mFt0KIRTsOcT18uUEmb2P6NGb5ozJgrwUWJbj/7sz97zr8vh/e85z385m/+Jv/hP/yHF1XOK4Esi1HrVi7aGN73pjvIdI5NNDMLx0i0RtHlmHQozwqeffUpnlj1sYcbPCUMzs4yc02fqckSje/8Hlp/9DROt0+jr5nP+zAsI2yJ3OkitOKgWUEkAipbimQK/i3XuAUuHptp0JaeayjbEgKFQlFt9QgGLpG1uEHGacPm03G1pHyetZs9nYrn9MdrmEjhCpz6QokUIj3EoKmVBV9+eIr/nNbY0ZzbsJZb21pBZBorDKZ1kjD1cfQmocjCtucq7F2b5NQhhb/enx6Ra5QDRZhN4QwChNUgHKQJcONJKlXDE/1lth67wVwY0pxOprnD9JGvvxM7H1CJZhCl9aD9uSZIMxwnR+WryPoEOnw1Jk84KbdBpKG2Ba9cpl45d5wPWXJRFRenGRB22wSDjJZdQnkWi8ZrL1AVARU83LKP7Z5CzN55NVvh4tCWWIxcCaxRvOW+EzSCW4Ay0sYEfcPscw1y1+Iqibfj4oX+sOqxfBJ2TK8/rwYmrE831Zx2kBcCEJrVrTHBIEcvxEzddMVqeNUQQtKb2s+h102TByUMObm7Qn01Z222h3Y0J8KIu2YCGlu34zwvE7i7pYYzD6afoVMPawR3tjIyXeGxZBFhIzJ3WIQniFqsVQUDEhyTk2Tb8NMOgd3CwWzhGrXAmDFjxoy5KLpdmJwkilJKSY/h+gJ61/OpuhN4tSphY4LKYpfcV8g8wVqJHKwH/R8MYPoaXv/VYu0wNPZgTItcsREbd+A/SurOg5agFXZ95hCnKVt6R2hP3AuAqDRwRBGSJUtdGvOGqJYR9hK0G7NV1DnZW7pWtbsiLB5fBKBU6nF6buSklmPucRDwlL9GGhlaScowzzBRzK3JLHXT5OhCl2zSZ28k6e/0qR4JyNs3XviiMWOuFJcc0+2rX/0qxhhe//rXn7H9/vvvRynFa17zmhc8Ps9zPvShD/GpT32KV7/61ZTL5TO+/4//8T9e6iW9bOl6gyItogFjoep7OFJBycEXU8yhmEITGgXzkAUaT0s+ajNEoHh/PcQLHXRucKZCdD9DugrP8WmmIavtDGkCpPXR0kNaidY5OD4MlmHqxhHdyNYz+JUzSv0ZctlCGg+/l2JZYKhThBrd7vK0sLbJVdpxJdKRJMPrQ3S73DNfintpZkeBdqtinsCUcNUoPtigGWBdBSjcx7/OdDBLVE5wUoW7HjcwUjm5Feh8dNyTWZ9jtaf53rV3g5ehsgztOYAkC1aZ2r+VQ/hMPJ4UKe3V2RZf1yM20XRKPoOoy5SeQvmghcLpJ+QVH+sqaq0OwvRpur8K6QS2divDpFsE4wWwFp1m7H/r2897HllyyE8OcfHwAk0oZiADKzTxRJ1Tyx2MXsQCUXuZ0tWp/qWhDbEwOOkUYPGSgDtu7cBaF7IOFsuWpycxMi8E5rpH/Z0Xb4WmHMn0jgnkugjsVBWPD1eJh3XWhh0q9RhhXFQ6oLbSIBxktE8ceUmq+lITPfII9f1VkkoVK04HEZCIrMbEYjGhemZPxHfdceAswQ1AVD0gxSQSCMniKZxwiOsYgkEHZWZRBvBOol2LJxz24VMTiqPOa5DOk1SBVTOA9jFo7LyKtR8zZsyYMRdNpwOrqxi/uiG4eVmMbwxZe41YWLbceic6PoST9ADIG7PIWrmI5ba4ALv3XMsaXBXsyiHS7j56ZgEvCkh9QAii0nHAEka3FCFqbBHPWFhNLXqOlnk1iKIXzvIcI0ApBeKdhFFMZ0qi7DQlU2e+d+Ia1/LF4a4bIoSlHt5ahTCrUm1VmWeee6t/i51qD8PaPmYGbbb2VvjUk/fzzrf/H/z80mdY7fe4adsWsl5Op7zAdJxg4hvHg2rMmCvNJZuZvP/97+f48eNnbT958iTvf//7L3j8Y489xr333ku1WuXQoUM89NBDG/8efvjhS72clzVGWiwGS44UEiXkhgjkROuBstddSy2W3NNsiRX/6a7tPPjTb+fOsk8a5XRWBlhrKb9mlmwxQ6Q1JAmzLQcjEywai2GvatIUJfqrJwqXtRsIm+VYk9P2cxzHRdoSkjLBIEMwxxPR60jSkRglRdFuclOWxDvesodt+9eTBmwUfGNmO7xYMlOIbmkGU8lOtsrTE3ZL7ggy3yliuVnL3KKkuTRBMPBwMweLRUtNtNJiof00m3ORrjHkj2tfYM3tEiYVvMSsi04GtIssWZa3O8Qlg11evtrVvmxsltNeHVD3E8TOBmYqJswb5JWR0KG6kor9PSQJcscd2H/4SzzXew4QCLfCjntey9bbX3VO19KNMmpFeVrluKmzkdBDGh8jMnxVYY+aoOz5LD779DV2gz43VhtiNyX3Vsi9VYQFYQK8bAuwlerQY8dTE1TbVZxcYt506bH9skyTrCcgFo7gZt0gBCZKdbxsFmlCMt/FOII4SOk8ewJrrr+2eiGM1lhrcaduxq4njMjdVdqTn0SaEC0NFstsvIttd959zjKcRom1fBGLRbgJNtFIMUCKDn6WbNpT4LhTtLfXybGkQtATDfLBLlaCBU6wxHDhyZe+0mPGjBkz5vIY9MHzyOVooTl1A2I3xAFCt4ynfEpyNG6x5Sa23YblZVhcvPrXfLXRGZYqph3AjgnSkijCY0uL9VoIPKr91+KaJiv9jJ/840eofep9vPqJD9BYuL/IsC7AdR18x8GjhMs2nHwHhiFeEnOHv58nohu3LQdJTms9bm6tkpBOSDqzA4QVdIOUVzXeyb1zf5djW+/h0dpujseaPyrt4Z88dAK7eh8nOgOalRJmLiSd8HGCLWQnB9e4VmPGXDsu2dLtiSee4N577z1r+z333MMTTzxxweM/+9nPXuopX7G0w4SwW1gCugrIMvY+vExz/uyXlnYMCAhCF18rHM9hemed5WMdht2EYS/B21FFhA5EEJKg+ynYDIHCMTV6vmR7Uudrq6e4t/rMVa7tiyTJEdLBm03w9QzS+lgsQS9FscDA1HHc9ob1mFjXm1/9zQeKhArGIgQMe/EZ1m/XT/bSywvqdiFLvXRDdBPUnpeCo9cIsM567Ltul+3hLRgMrek+yzs73PLgDpRRKFu8RpSQQNFewhaC0p81v8D7Fv8eKhFQVShTAZmThsV5Q89j+MwhynM3SDKF3NDONHfExzjE7QBkYR3vdOgyY/GiLp54qvhcmeHog/eDLiRJVb8V5V44Zpm7tYwIHVQEYV7BkiIIkMbDiJSecghxeb2zg9977LPs+bYlqFxnbagNsRxZUqpcofQmm7zIUu1NYLEkgcG6l36PO54k6xcu+E5N0RcZzdSynosNaT0QRUy3cuwxNFMMO23KzYnzF3qdkR09Sn7qFNWb30Za8rAkDEpfB2BisYowgmOlAd981/ktE6b33kTpm5q0P/oMNvPJBmX85npWWW9TgOj1oNpWSXAV2zKBrwKS1TfjTj3MUjDP/Y9+gW+8+Zt5+NPHOXmwxbabm9z9zrHl25gxY8Zcc6yFtVVIU7LymSEstFQEJxeoyDnUI8vrY7b1w2ID27bDkedgfr4Q7sov47huaR+bCvTqEoNdZ4/zVT4aqwzWE7XNiTV6zhbCqEfH6CIGHrA2SEhkm7lwBomPkUNSPyD0mqz0bsDEdOscWR1wOCrmEFsaHU77HAcDj+3xFijfs7HvI6bC9y/tx6vvxOllDHv3wMod9N70MNWwzMr2NgBmMM5eOuaVyyVbuvm+z+I5VkHm5+dxnEvW8MacB2MMkTv6eeJMI4YRwUoXaSzyeVk1+43CT15JB6mKzJxBaTS5T+Mcb3uF+jfvgoaLkiUkFmFGQS2/ul3xnG2xGGlIujeUlZdNMrCGnc6bzwh66uYGKbo4JeeMvBByXVg7nYlXSoEQAtdz2CxwLR9rX43Lv7K8QHbh5+NJnzyDU0vuGaKbG/TobimBtchMU+olpGaBqBrTmesTNUb3jZIlgoltZwzgJmyNpi1zwl0souvlo0GNF02h3SJ2SCsd4j196Ma513LN6pGYw/e8d7TNbsouKgXl5BkccaT4fPf3kZ82xQKscNl2593ntUg6jTMV4s6WyIOMQFew9jFSdwlhXVScYzZZax2zGQyvQ8tUbUidUSKFHNDDBpkZUu0+TW0xI3VjcichLVnS+NID7L7puw6Q6XXRraxYkkNW000ZU42PFRor1+9Nu5OlIzfWIDg9dgyxcxd+ME0mW2i1HodxaYag7zEIE3pDza49jfOWIR0HpxEiahJZjkiHAdbCIPIZdnvAcYxYRViDlSuoOCYNi/58j+6R2gnqvRqVtMafH0n5z/+fv+RLHz3I8SdXefQzZ1u+jxkzZsyYa8BvfRiOHAEg9s4MNZAmGe6JU/jaARlhbY52ArRbxkoHSmVoNqE5Ab3+1b/2q0nSwZ5U/MG3dfiLuxMwFp3Z0+vG1Nr3ocUqqyee4KuPfIXbxbPUpCbydzKVR9zUPkIpjRBJyv0HT5Ck6abQLsX/fddn2lZA35gZOxfap/1XLG+4fU9hCKAhWDE41TppsorWGXmWE5ZKvDmI2K3b1LMOk94Q6a0QDdeTOZUz8s4xwGD1DTLeHzPmCnPJKtk3f/M381M/9VP8yZ/8CfV6HYB2u81P//RP803f9E0XPP4bv/EbN4SOc/GZz3zmUi/pZUlvcYHaYJQ5MnAVtlYlTE9bEwlAYGxOR0Fvsng5liseMira1w9dqhMhQkCe5EjfofLGrbQ/fwLjuNhUIzID65rB0tQ0tjHAPtuAcArS/g2TwdRKiT35ddT0bVidYRFIXGSqyewylu34oeG0/CHPoze7voNy5EbChSy9lpl2XtqOyVjDWraM40IlBA/BUybhtkpMudShO3kbQlusFAStPkoO6VZ9nnzzMeaOzG6UI61HWK9izniuXawQnAqW+VrpSRr5BFCsmgqqKK0waoGhyUhyjdvvQ/X6v9esNqSdAWIyYrio2EIF15Q2dNra0hJuNkD5KQjJwacWaS2sbBxvzMXFrjudwVOWXWyaE4oV+kDutJEyJDWKr+l5ysKl1PDJeou4M7dd6eq+KKyxCKnxB5MIKwgSCFWFbjpgQgi8KMM4ORhBfEeZsn/pcf227m9QmShW86Uv2aWrDBPDwU6bZCoBK7AypzsZkbkdxAnNoBVfoNTri+z4CfTxY+hmDdfUsBjcxDB5qknqa2QmeGqwzLbjq7glQWP63NYJ7kQALYMhJA8rCAHlMEHbClasWwebHsJU0QGkgUOpmzIj4DhrpNk0DSfllOmzNxdYKzAW+q3knOcbM2bMmDFXkTyHeL1/k5LEcc/4WpTKeNUaxmjI+ijTR+XF/rl0MCtfR62tj36HL3M3wOEqA2VJ1m0ThBFIK/CSHYSDA0gT4ug2AwK+2KkBNfpzf4dSbRcHbrodFudxhw7H0gp/eaxFu5ywZVohrMJJHUqdFY6rCMdxyaJV3OvNE+EiGEQJr6t7HIwjHKcYnyktqXUnOXVLlVALYino9SKGaUYSlPlHrQcZ9rr8fv2t9LTl4HM+eW+BW+0kz71NcuAhhemnqPrZsWfHjHm5c8mi28///M9z3333sWvXLu65pzAtffjhh5mdneW3f/u3L3j83XfffcbnLMt4+OGHeeyxx3jve9977oNegfSTFo4e/TxRllFOUsxwBRlMbEzye1ry+UYL9Y3PAkXAT6mKL11f0VsrxLja5ChhhdpZRT+2gofAjWISv4sVGilLnJgyTKw5GKGQw9UbRnQb9lo8N9MlMFNIPLQc4PUsSlu6s2Wyu57F2Z7hCQ9Hurjy3C5+nu+g85HYdS0TKVwuF2vnlprRZDlKFCUEAWCiKod2JaShi12/l8qLLVyapEEhQmpn1C5uMENp524GXzlET1sE4BnJgJiB6FHRIe5A4PVT0gC07GOJwTjUSgqiHFZXbwjRzWgNcUY+LSjNajp0mJo3CGNRmebmL7ZRshjEGgsrJzdlexQKvxJitEGqCxsZC0ciV6FEiJ8tkYhJtOoWWqzjcUBNcNx0SLXk+ENfYeeON+F4189AxiQ5eT0jKa8Wn53tKBMSUKVXmWR752mczCN3Mob9HK0uL6vV6UdUCMEp2SdLHWy9gZeBUUMyuUS5U6a5AKlMaS9FL1zgdUa+usL8bbcjbEauOiAMuBNMzDtMnyre6xU5oLc6pLsyPK/opmoeouIgVYawgjw3GGvpsAXsKoYQIwp3YDeGtGzpEjGUFUiHtEUV6x2i0+iisbzuxLfi5WWsBZ0ZlHvJhvNjxowZM+ZKEUUwNQ1JDDOzLGYOMulj/KJP0ELhNBpkgKXCUA84Peo6nJ1gn26gKPprkpf5YsryAt2Sxc0gc8AKi0oq+PlO/HwbAFY0aUVFsAqJ5c4f+P+Oxlhf+iI3Pf4wq6uTVERA2lnDTV+LVhHaMQwbTXaYndydzbLSOcqWG1B0O9Ua8pVOSqPR29g2c6xB1JgilynSrZLkhomJKhNApb3AztUBXx0cpea5pP0SX34i4g3fWydt5fQqbUzikvfGotuYVyaXLLpt27aNRx99lI985CM88sgjhGHI93//9/MP/sE/wHXdCx7/i7/4i+fc/q/+1b+i33+ZmzNfAq3+Eq2KpNkqPoeuSzDQOOHUmTs2Uvy/Nc9peyxhJWLdlcoLRr9HEo/Mm9WWMurhFSwQxKBNYSmS522wgsD1eHbpIPu3vQaau1+aCl5hVsUqX7kjZnq5ENOsSMmCEJUbFnZUEUGPQJXwvTJbg51M++fuAJUrz3TPvKYx3a6E4Hf+MmI9Eh+ixOFtOOyWDliIZvZhfGf9MixT/RIGSWvmOWA9huA6OircHV0L1XWRbto0+UT4f/Of//LH8aptVG5I1623lC2RBEtgXFzHoYyAlWXYvfsK1Pel5eT8AKFLRLPxxmBViDIIgVoXa5UoBq36zT8JxzYdLFySQUaeG7yLEN1UbSQMBzqii8DRTYxIsMojFCG3SZ/Ha4ssr5ygsTDPxM7dV6imLx6T5ZhgPaabBe1KwugmCMAfrFHugrAeg0obRJk8vbxYHze/fiusn0ZLy+7Inp42IPMQ62n0+n0ZIOgMbixXj/Yf/iF2+06y2iSOhsxdRuQh5XbRXqnS7C+t9wAvoLgLR6JCl3w5Z0CDpx9aBgnDhgQ0kiZSgyXDBC5xKWOGiBKWljfLrYdvIbvrKIvhKo+Fn+eOZD/e/N3FNcQ54UXEKhwzZsyYMS8RcVyMpQC7Ywd5xobgBkVMN1GpkW3ZgXZKrNiUPbKElYpfj/+En/ffC6d7z+jGWpy6VOyhE0S+IVOAAPPYMgfyv0NnbhQHb9eJ3+ODT8wATSrKnLGoaW6+E/HIo+zO4F/akKfsJNrp4+ZFnFqA2A0IlMty9zhbtr3+KtfwxdMbFgvIlUprY5ubOMzfPIms+ehM89TSGq/ZVcR6K4U+pfU2+jv1mAfbDfK8QWfwBO4MJBMDxOdvJ37yWfztd139Co0Zc425rKXpcrnMD/3QD/Grv/qr/PzP/zz/6B/9o4sS3F6I97znPXzoQx96UWW8nIiTHsJ4GDLsuqTmRWe7Og4bEY7jEPYbTC7tYWp5z0ZGTi9wCMouypGkm451t1dIS0VPE/Q2iXE2wMknqDohhxdDSDrPP911y5Jo4aQNBAJDitRlvDhnUI8YVFtUfEvolfGkj3ceKzc4HePt8pIWXGku/you7sihHiAQJElGq+0ztf46MMqwVpsqRD+jmf3qQaQZIMUp5vcXscO0suSuQDsCTBGPa7NzoBE+ubCUUhgkp3CjkaAeRHMIHYDMWLB9tDEwf+qya3s1efJoDykkTA4wGbjD5kZSDjfOUJxETdfhfX/DyuRbQWx+xRZ/X6y45O2qIesuFotMXIwsBsHCKoROyFRxHzedEr+mHuU37v/lK1fRK0BvJSpEN+3j5E1yfyTUOpkEC6kbkwRDQGKM5cTTK+cv8DxstrCKRI40Fq8fYUSMtCFgGTQT0iAjQJJEN04gX5tl6JVVGrvv3thmREKUJpQ7AZGfcUgss2VHMVG4kGWuu62CrLj4+LjuFGlm8Ko1pBj1D8PwawzDr9ObKgJJ36o0ns1Y9Ldj5SbrB280KUvjG6dNx4wZM+ZlSTYaz5988nHS/Mz+IEPwldvfyhdmdvC5+iRP3PI9/Okd387n974ZpMQIB6s8rHLOKOtlh9HYXp+lusEx0I8GPNA/RRp4hYuCtfjRSdzhEvO2TgnLW/bUzyii+4UlTh69HT2Y4Q04fFcWYNat9QUClabEymWOCqfaR69FLV80nV4huk03e2Ch3HUot2rENR8z6HPq6AqfPDjPYmeANZp9VY9qUIxFZo+fwPeXQMZ0+8VY1TiWzNes/vp4rj/mlclFWbp97GMfu+gC//bf/tuXdSFf+tKXCILgwju+QkjMEIGHXA+41ht02dItOsHMTck9y6AWs7y9g2s90OBmAcq4VJohAI6nSKIcayyDdswDf3EI6UhmdtWh4WGyiLATk4tFED5YhZNOoFWHTm4hap33+q4nrLWs2EkanXuwaKwWBANNqR1hVZ+tJ57Ay9/F7Xd9O/Iikn3M7t3G0pMnCiMxc2PFf3o+LzQF7x0/gfUsvu+S02VBDogTw5aKQgu1bvEnmTseI1UVIzRJpbgHrQNOVpTuSYmx9gwFPyckMQnfsbwfx5RI+5LaYp80dMlrNbykTOYLlsot1qIBM+1OIfJdQhKIa8FKKwYhkSWJalcR/sht28v6SKVRr3orzN1BduorG5aSXnWalCIOns4uTqBwmgGq7hHFHYgCUm8epas4eR2rAp5NEmCJBiGPeC0ORZ/nn5scR14fCW2ifoadyUDliNwjdySWFisLKa9bysgrBpPnpH68YZ178ukVtu2ffMG4n2chR3devC4eWamKzKXWYmWOFRIvLgRMYW8cgShvtXDuuBM9sQvyNmmYkLkruLGk3xyS+TnVpeOkaiuOKzcSxJwPGTqYfoZAML9SJQokt0wF9L2RN1EcrmCcDpXSNEYKpjBsJWJFOkwem2RpXyGgu+UOtWZGqTlJllzL2JdjxowZM4Z0lC1cCwvOyDKrNFgjMBl9rzQaZ1kD1jCU0M67iNBB6PUy4ht77PuCRC2wHoMgI3eg4pSZXakSb5EgBdpkTHS+zt88fYzb2UUqt/KPWx6Lv/IQWBCuxAwzVMNHdxIcKwhil+Gwi6tWsMIHr0pOwPa8xtfWboxF5efTHRQLa7ONBWbbO8lyxXCijLfcYZB0ebIV809eu5fJSoAAIq/EriBEyhlOLDxNeU9ISs6xeY+tbsak59NvRNTrk3T+/M+pf+u3XtsKjhlzlbmo2dl3fud3XlRhQgi0fuEJzXd913ed8dlay/z8PA888AA/8zM/c1HneSVgs4SwP4pxVS3XSIJTxGFK7miEgMfe8hxBtoXdR24rgv+vZ4hMo0IYEUJQnyqTZ5qol2xYI6TDnKTiEC4LSu0ERBmjBhibofs1TlUSknsq/EFwionlT3B3/Q1MeFNnX+T1grHkpoKkGGBIJchqLnRTMGWqg4hUyosS3AB2v2oXi4/8JQBp/xoKGJfpXXrmtPv8hWRZwmze5FB2il5nG/eaKrgwNNGGebzVOaleI1THEf6mLJzO6Cw6zotEHZvKzq3CmgS7NE8eP4EzexPJa2ewFiRNtAKhA3pljZCC3rBHtdWCiQmuZ9I4x+EE3SRjsgzIdYF7MMDruWR6J+72GQBMPhIipm+6i37fxxhLd3VIdaJ0ruLPwN1aRnczrLDI1ENYFy8bJbDwPZ84txgMLgptc/7ZX/0wP/naf87NEzdf2YpfBoNBgnHXRTARYKWHtTGVsIIb97BYHBGgmlWMHFlKD3sJ5drFL8CctuwFSETxDnQyTcZ69lI7JA4TWtM9siWXeOXFWWVfTXS7Tf74k7j3NcEp4tSlapVqRwM5pZ7PPvk3HJbvIc8M8fCFrRPc2TLujgpZHJM83uXE4Emmd+2htLVGlJ5CKw9lfDQaLdok9ZxSx5AJWbg4p9uAYtV+iKbbcum2uuTpNXTDHzNmzJgxkG0S3QBrcmzrJKK5jWF5AqFz3CSC+CS2OYvEgpCUspiqnGFghpyW6WySXCc+Hy8BcZs0AduPqbiCVuBx9773FYtySUouY3Qy5Cl9gG9nju2mwmxHk631wZOoZoD0HUycICsexwcJvYHBqxnkYGpj2B07LgMn45nV45x45EG23/Xqa1vvSyCfb1NK4NaJNW5tTLDYNEBCfWGSvBxCvcTdlRTXGS325VKwZiSYlEQrqq6knblk2RDjaURkaPvHqHs++dLSta3gmDHXgItyLzXGXNS/CwluALVajXq9vvFvYmKCt73tbfzZn/0ZP/uzP/uiK/RywFpLp5SSBV4Rv2n9De5FEEQe4cDHi1wGjRjHFGa7m73YHG/k6Cck9FsRxowmRdZY7ESAk1n8SBWB77NZPD1DOmjgZgoRKladjKcHT3Jk+PRVqfflYjNNJmKMKEw1RJyDsXixJgtyTjVeS1hrXHR5cpPlzOZ2u/o8TzC76BhvFzdU6uddFkst6vUQktE9k5VkkfrcWoTWIEoY9uOEI7fc2tRINBLGggW56fqyHHKbIVwPO1wjcLdSXxmSlgvxCAHa6dP1NdOlKlIbOHr9m+B31xLymUkmtgbE9R5OXsRLyctlEIXgoXbsAEDnIwGkMVunuzpk2IuJ+unZBZ8DVfEQCLw4REQhVkQUEluKSYbESG5jhh1ZjXf0tjMk49GVR3lg8YErXOvLo5dGqCwAq5DaI0j34WVbwEB1OcLtKzIxxJqInXfs3jju2JNLl5TARGx6+UUyIcJiU13EJhMxlgDrODSXq8yIAB3dOG4zptNB1rchvAaWoi8wXpubn2pSa5VZ2b5G2fk0RhZTJaNfuN1U3SM73oeBoew0AIj7PRxPIe1WpAmQugrSMmxmxEGTA57LSSrEMkCkFaQRVHHou6sb5ebZWHQbM2bMmGtKmqKVwmDJjCHzGojmto2vheuTBxVozuIOVjiw8HWsVAy9CllllmVRuEdaIbH9GBvfOH3lpaDbPdJAsLTdpT/h4PkObmMOPA/ruWR2yJue+P/RY5I7bINX4SLzYpxLYjC9lHw1wnRT/L11tmlBw/poc3qMloDWeHlOw1bIogFLTx+8oRKz5SfXODG0HDGHqLkClRbjrMyrkYUujuswXS9RL/nFnElKUrdEY8t2DG3ibMiczjDpNCcXtlFqStKGIZ+uoZf7RA9+7RrXcMyYq8+LMuOJ4/iSXUI//OEPv5hTvjLINJGboNIa0vobolswLF56ykj69R6Tpw4wvbq3OGbTu9xxRwJKbaJEa7F/Rj6AYS/BmQrIPYGXlTFqiDIVpPWYDOaIEo+ahDVOF319dxT9tIN1A2TqY61FBIU45A1T4nKGEIrq7CVkDtpkOWOvpeh2BU79Qr9cZkbij8xG90xaC7Cnhcc4oepOYGTGoQMjUV0ICa6EzCAMGGvYbD+Ua9Amx3U99MpJzHAVv9PYONbNJsm9VXQ1oE9CRfk88bVPctt6RuTrFTlIEDMjCzZBuPG3k0pkSSPDQpDcbOnmhR6OJ8lTw+qpLqWqz9b9kxc8n39Tg/wrMU5UQzsxAonAA99jVUXo1LLFrXFrZ4a/qh9nkA95YP4B/rdb/7crWOvLY5AkaLewjpR5CbEe9c8mOV6kAUHqJSjHYXZXk6iXsHy8Q2uhTxJlBKWLDMy/SSQfyowQQXmYE1NBWReJQ+6OngSRXt/vs83krRbutttIgjLitA2CUXinrZbDlH7jO4iC3cVX+oVfGu72KrLsYgYZs+Eunux8iajXZVe1xGIrQZkKXjJLXD6IlQlJ4FAJoJZqum6VpL+TRs9hrZ7x5eBJdmGQyMtOgjFmzJgxY64QUYTSGgustteItMWlWMgXQpAqjzQMwRp2xT1mBm0OGYP2KnzrzPuY7z7HTXIBYXJsq0V6Yg1//+yFznrDMTjR59G9KdGGWd/6/0KQt5f46ol/xn12mpyb2SUcNOBOBQS3TBA/vIzpr3sThQr/libxU2vMxfBo1sOKHGl9UJCokD1qC+SSqNMiiyO88MJeDtcD2XKXTm44UIqR9RqpZwi6NZJ6FVEsyxeI0ZgjdQO61WmkDNG6Q3jiGNT3s9Ly0NqSlnKWt3fY7QRkS09v3JdjxrxSuOREClpr/u2//bds27aNSqXCs88+C8DP/MzP8Ju/+ZsXPH7v3r2srq6etb3dbrN3795LvZyXJSbOENoiUoeYDrm2yFafXA429knLDnPbRkHcN08jK42RENqcq3Lg3m1M76zjhUVihSzJqc6UMU0PkfUQ6Qq5amHJcaTi4Oeb3HV4pMde76JbL+sgs6LOm69VZTlrc10qzUnKk9MXXZ54nqVYel3EKxJctr/pObBJTiY2JdFIR6JbvknscKVgWB4yaHToTUVMutPcXL6DN0y8DeEU954wFmvs5r4XKwWpTgvxzmr06tOEZrgRS0StW4g5jsszdo2jtMl1Qrd36YH0ryYyTnDE6P0lzehZczKNKo2eG70pELFyXJRTtLHODccPLV/U+bytFbJSijT6zCD2QEcNWBymLPcHvIN93EadOdvg8aVHL6tuV5p+Pgq070cVDCmpswKtUVIN7WRIx8X1FKWajxcU7ffQp57h/j99ikHnwhnUNlumJrJoc2eTu6MwHmbT8pLDxVkaXg/Ehw/zwKsnaU+N6iiswOoerekex+88hi01Nr7TFxDdnKqHt6uKMxsyWdpKc8t2OkuLPP1XnyKzS+SqjasLMdjaiO60wjFwp58SigFL/gzbFitMDRpY4ND0V4rzji3dxowZM+ba8Km/gg/9JjxYWLkLBHGWY7KUZOU4Ni/6vFw5+GlMY9iiHrWZiLvsaI1SrB/Ux7DrMWGFTqE1vPp1uQr8y6+0iVONF1lIJH7rLrDg9VN6/RPsb7f5f7K/x+vIWEUTT/o0372PiXfvo/Sq6Y2Zs9MMKN02hbu1wqKJ8PIBmbuElsONuUiqXFzhAJZ0MDj/RV1HWG3I8oSqifm/J+bIJFSWQ9SggeiNxqFr3T6D8qOk7hIWjdQZrVKTajiBECW2dJfxvJPktk+eF2P/zkyfz/xbj7/6v+5hMbkxY92NGXO5XLLo9nM/93N8+MMf5oMf/CCeN5qc33HHHfyX//JfLnj8kSNHzumGmiQJJ0+evNTLeXmS5KTmLjy7hYA6rpKYZoXSoLB6y5ycRmMnO+NbqTQCGjMVJuaqNKbLlGo+fnn0u5SqPtPb65SrAaWKTzzIiAcZylPowME6kHkJRuZkzgrt3oBhUGXBjCbG17PmZtOczjPHEKKos7U5/sqA0uoAkcdkfo7Ockr1xsUXumnlRSnBoH0jp04/949nooRsk5FqkzUOiSHHklV6lVH93SRGu+AmLtRiKk6NCW+KSW8asZ41UiFwfAftS1Zyw3JmSGKLNhmOX1iC6e4p/CyhstIn6Ca4SQ2VNbGZoidTSrjss02Gf/w/r+sAvtJ4ONUK7qkArz+BMMVSaWW1TZCdxN9dYuW5p3ng936bzqkTuEFIdXYO5flnuAfrzPDUV44z7CXnOxUA7ky5cB23I/fpjWvxPHzHYbpSZq5aJ+9U8OMatEL+y7//S9qL127AbI0lYnS9ghq52wKhsbHF2VklDvrkTopaj7UYVkZBn60txMksubAFldhkmRqpQnTzBymps0TqzSOsIPMMK1s7rNgIpctYcx2/1DZxeOEw27M5dDASxVXsIq0hC3KkKLG6/fs2vjP5hcUvWfWQJZdYRUxVtxOUK/QPz2NkjBURRkR4wyYqs3ixg9crMefDXJBQ1kP6g9diojINU+bBbX/Bx2/91bF76ZgxY8ZcK7pdyFIWa5rff+OQP3lNxOLNDv70DvypHYh1Ic1Ih3LaRwDd+DjKGvatPouM12il88RCYLwq2q9hvDJ28PIS3b58eJXX//r7aVX+kLyhSEMBviGIt4LRmLzP/vbjfH9/kYrdzh4EkYAqAm9bsVDs7avj7arh76vjbq0gPYVwJRkJNrZYoVGmtLF4/5ToMpeHpFMOaXSDzCUyja9CdnmaasljtuWQGxCyDNXRxKGWRAwrjyOMwqIxKgOZMV0HrENTp8hc4agBR06A33dBF5FYVD+hlV7fi+xjxlxpLtm99Ld+67f4jd/4Dd7xjnfwvve9b2P7XXfdxVNPPXXe4zZnQP2Lv/gL6vVR+mWtNZ/+9KfZvXv3pV7Oy5I8TXCy2Q13rNPIrLC4cnJFOBXSzfR6YPYBd71t7xmT1uezdf8kypEM+wmOp1BKYuseghLCtvDywhIsUTF+2ERtipN0PVu62WFCazBA1wdYkWOMIpkqOsfKg5JBPaZS2r6RHfFiKMydC8syYwzHD66w8NzVz+T6/FYvTLEvfNxFGWtHOU5kqVPmeNZmV38LqfXY4boseCHS5Bih8AeacjfAdb/GtyTTMDtKhOJMBPTTHOtA3E2o9nLKjiSzFh0ZMpNi1wWV/NgX8Ve+m/5ri98GWcHIGEeFzN9c4Q0HA1yrKA8h6bXwgy0X1UZXE51pvKxLqdyjszUGYio9BwT0JxvIJwLwS3QXFkl63Y3jpvffhON5+GWPJBpZTa7N95jeXqdUPf9z626r4Aw8nJKHkRG57CKsIh26KPqsDhtI00cbw3Re5dnwONV4kqd4mKOP30JjdudL2STnJc802je4cR0rNU4eoKWL0lXqvaPkSzEBFdrOAtItHJMrjZA03uS6K4tyLoRQo/dkJHNOoOkYjZcXLuWpu4hRMHWqDgJWlCZL9YZV3fXMs9Eit4b3kruQqzYgmTkxoDSY4em7TzLZAxOWCf1i0WFzPM/z4U6ERI+tIJXEaznIhgJj0Azw9FaMyAjjuxiWD9LeEjJ7bMh3hhmf6FSps4aMJ3nD13fwubc+Sj8c0gtaY/fSMWPGjLlWrA/61iqGtVqxACJtleB0d7ppYSp2A1LH575YcIoO/XSA9t6Cp6Ee7kWLY/hJMX7Ju/2XlQvgg8fW6LtfpS5mSDaFnHCdCghF3pjg1fd/nAezO7mJJrOETFiJN1dGVYs+tnT7FKXbz0wsJz3Fdtmg1V+jXRqi6aO0RylN2OHO8bAXcrxziFsHb7mq9b1cTJrxscUB027MU+Uhp2YkkDN9vEyax3hhIbw5c2185SHxkXiAx2JlB7fsbnL0VIq1bYwJyZI6Wmfk7hBhIS9B9YSm312B2jWt6pgxV5VLnnWcPHmS/fv3n7XdGEOWnT/o5ukMqEII3vve957xneu67N69m1/4hV+41Mt5WdKLe0hdPmu7kxdm4yd2rPG6d34DJ79whGE3QbkSv3ThjHyu75BG+fq/DDFTQuAg85G7VSX0SYI6bt4EClPo61p0G6S0sxgvKzJGakYrSV6cE5dTQtO45HKFEFhrcVxZTP7zqz+pvPxhzoWPtFlO1x/SCQbUApc35QG7cOgRE5UCzPrK6ORJDQZ0mMPr/smZZaQaLzZYAcbYIqECkNtRQPfV4SpVwCZd0HHhiioFKq8W7pLS0Nrlkz4ncNcNo44ef5Sbpq8/0S1tR2TeNHl5ZAUqpL+hjjpxiLOlQdJ5buP76uxWvFIhNN7x5t08+aVjtJY2uVdewDJJ+gpTNnhxHSvbOKYYoYQhTLizCPUEk+V9ZDrnDQf38pm5Jxh4XVwd8PRX3s5db782olsSZQwcjQ46RT1sGZlXMGSUuxmsLyjkTraRVdgLHIRkI/6kNZwhUp7GWou1hUFqFudnCOpaarajKGWCw+vbBAq9aYDtC+j2+0wFjSte7yuJNYaTiw9z986/j/E8HB2g5ZBSq3i+/cTwjocDTnzDJPnxHlmSk+fmgpOk8pu20v30UUpphVmxi6cO3Y9bCYl/6Vf5pu//xxyuvhmb1oj94+SOi9+u8LrSKfb5Dk/YWbpujV2DI+RZCP4QhKUftYBt5z3nmFcgWoO6sAg8ZsyYF0lajOE75dE4VZrRnGAjZIoQDP0KE/0VJJYtVEHDY2sPU556LdrWWAm7bBssFPvnKTbVCP/6X6C6GPL1celO1SQ+PSbQPkIU7ymV5ZTMo3xK/2v+IdsJEZhQ4e18YWVI1QpBThpJXhoS9CugYBh6pE7AhC3RktEN414atzr81okebw/a1HwfKOb22qvhuSNLN6EME+4UucqKdLnrOGENZVfIREbJ9EhlnY99dhs/SgXhCv7qBx6kt6PCqfj6T542ZsyV5JLdS2+77TY+//nPn7X9D/7gD7jnBYKgn85wunPnTpaWls7IepokCQcPHuTd7373pV7Oy5J2khQTRWK6LGxsV7khdzTRdI4FBp0Y5UqqE6Uz4hqdD+VsmpxmhvpNE+RlgcoStBxgRIq1mm0TVZ7KNu97/Vox2FTTzTcH+AeZasJWRHuqQxJmbLvj7ksveH1lUACOo67Jv3OYul16+5zvmEyTyULQ0Nqyy7isYjhlVojdUXIAd9hncU8LufPs2AvCLwYqwoJJDXJddNMWjAbHWnS5hPF9rJQMZIstB5eRmUbi4sXbOP0K+lhjgXl6GCyfe+Ljl1zPq0G8su5q4W2yxrIeWEtpLcIdZpx89mE6J08gXZfSxCSTu/aw7c67N/bfd89Wdt8xs/H5QqIbgLuvCiZDqzNdPXrOFDuzL9OJBiip2FVyuC3eQ6ADTtYPceroGs999dpkiOqvxajm+gcrQJYxxGTuMhNaggOZmyDKiomdezaOu/1Nu9h71yjpybksqNI458sff5IvfexJHvrM4TPefbko9lf55phuLtqBqJyQWU0gBfcfuz4yvL4QutWiVbY4qo4gwBCTqzX8SBGVUhw3JVMeYaO88W7P4pwvfexJvvixJ84QdzcjXUn1rTswJZgOt7O1tI+410UYSxgvge0DgiDei3FBexIrfH6g1meXiomlz/0Tr4NoJLJ1BwvnPNeYVxidDvzGr8P/+2vwu79zra9mzJiXP8ZArweuy7A8ErmF8DFZgh72zthd64R61AYgci2/8c0D1m46RS76CASPzuzBSheLQJgUfeLqe3m8VCz2EurW4a6b76FdLrKR+slWAGScsf3gEyR4aG7Gt9DDEOypU3vr9hcs15kMyWSKk6izxml9R7KFCpmKSIbn7pOvN1orbQ4NMrZ7Cf3AInPw+j6ICoa4cCUlQnkST/ooL8KSrxtoWJzSxMb0pZZ3QPWxVtCTMW7qoLJifjU0N0Z7jBlzpbjk5YsPfOADvPe97+XkyZMYY/ijP/ojDh48yG/91m/xiU984oLHP/fccxfc55VOO44QNFEEGBL6nQ6zmUBlGqUVzWA76Xoqb50ZHOfitFPlbhLSckNQ9uj4DuW1nHi2sKyzUjMVOhxM4LSNzBPPPsMbZ952Jat4xbCZJpWwsfYiJMZT2FiQlDNQl2cxJoTAUrhr3fqGa2MtdPxrz1zWcRfjCWCtJVmPf2UyeJQcASiVotddi0WuiSt9+o2I6rf9X2eVITetftpUI9Z7WasEYc0hzwUOIJPChC3O+lTbHVbjOokjCOLdpOFxALq3lFk6MaDlxMxEDgfXDnLzxM2XVf+Xiri7How4KOojjIPWFjeJCIddSrNDunKIzor9pvfddIbgBoU1V1AauZNejOjmTIfYpyMaSwrDCkZ5OLpG6lQJzUn6WY+1PGaqJNgha6QmZs2kDCaf45FPD2lum6Gx9YUHjVcSYyxf/9wx1P5CAJMmBCGQBFiRU0VADlIp8jRGuaMV+dpkGak2iWjnEPyz5yU22Zxg2KjigzqjXQVGQTjwQUBgIv7q6c/ybfe+8wrU9qXjDx777zx22yzd9czCkgCjYsr9gHDosaXjs+Y1qZTdMxZUALAvHN8tuKmJc3CR9sl59jfuZUXOo7MYf7iAtMfJ1HbcvIkRMVngYHLJW4OUTzg5y2nGmj/BXDZBvbsbgL7XfolaYcwNhZKjxaEX8HwYM2bMFWI4gOlpMBbpWLAJCJDKR7o+uGeGr1DKZylfZEH3CEplEKC9Dqm3QNwr4cgJ2n6FZtRC6BTTv0HikF0EnWHG7XaSLilsWLfVkKkmiHIq6XM8wq3ciuY5DALB3m/adcFyZcnBNR5+7GLkgNRdROV1lA1AhWzNK/yNHpIObwxLt04nKgzXrGYpyDCOJK0kqHmJrsc4JkAQslvt4s7Zb+D+/gKn+iNryuXpJrJcwR1O4WsPdOHtMZApU1ow93STQXiEfOsk2mqUGFtEj3llcMmi23d8x3fw8Y9/nH/zb/4N5XKZD3zgA9x77718/OMf55u+6ZsuqozBYMBf//Vfc+zYMdL0zExyP/qjP3qpl/Syo59lZO5ysWqgDZV6nSjTKG2J/YzZuf1FBtKJEtYYgop34UI509KtvdSnMlnCCEEWSiwGgcRqQ3cwZKhHE+FWev2udGXDFOmPVCYn1ZR6Q8JuipXF4P/52UgvinXlytprGSD8JXTrjXN0sC5oZJJXrb8KHnM3TZSExUscBo0Yxzs77thpSzcosqGuNzdpboj6Gq0Vyh8dl+ke1UWLvNWiUoNwAzCAKISTUlBmkA+oGZ9f+tov8YYtb+C9t7+X64X26hBvcJJMp3jtOlLUsdYgBKg8Q+eTZLbIbKpcl+2vuvec5ShXUmkGgABrsdZy+OF5hBRIKdhz59wZ+/tbanhZmdbckKnFCo4uJObIqYNZw3dc4txQ8iQ3leEZHVHuTPFs7Ql2d6aJ2mtXVXTL4pxhN0Ui8PtT+MltkA/I/YzUWWLgNSjVLElcDECVc6ZrvOspqhMh1tpzCkdZonE9hc4NbuCQZSmnpXWjiptQ5ZpMrGAdgxU5Ap/cyXByheMEpJHmxz77Y7xl21v47pu++6VtkMvk4MpTTIhJhiWXTLUBEDorghEDgWtRysMLnLNFN15Y0PV2VHGUh800SjoIIzDaELXbBHN9cimxMkNFLVqNAVtjxbQyzCqNNJKAmFZ/P3Fex5qQYf3lFXB7zOWyqa91Xh4uaWPGXNdEESwUlsYre6LRI9ixsO60oPIh2ikBEGdd9kURQSJo10fJjmKxiM9tJHmftl+hpnPAQnJ2iIcblXaUsksEDMPTK8QCJ29iHEFSktQHh/mK3koNnwzLjFR4M2eH+nk+suaRVzX5MKbUEnjMFtvTIYv0aKqEY8Mh2XBI+9RxGlt3vJTVfFHYXNPpFvfFbZ7guHHRiz5p4OPmoLW/cY/lg8KKcrZaY3l5mURIjIjol0qkuo8hoZKN7sPDzhoy60DcJ1cpwdCylq4w7c9ei6qOGXPVuaxR0Vve8hb+6q/+6rJO+NBDD/Gud72L4XDIYDBgYmKClZUVSqUSMzMzY9ENSKxF5mWULdHjMGQ5bqyxWGIN22+forc2oLdWTHSmttcvUGKBckYiSTzMGLaGaE/iZpCKBGElQkl2zEzyxHwFWAOgl3dZPdlncj17z/XEoB2TWEFJRmAdjOfRn3SYebZNZ7IQdC8nCOzGMZfh0nnFOOPcRYy5i6vJaK/zXb3VBtc4mNyQpYJVDA0E5WaJaN1dT2VQ7gScvGkFqc6OGSgChVWgpcDRlkwJhLZkp0Nl5IA/EoSzpIcILV6UE9V9lC0hdRXj9pAlxdDJuT2d5hm1xvzxL/PZPOJde97FdGn6omr9UnPiyBLD6jQT9RbDRgc/auI5PrkDXn8Abox0FMrzcfzzJ0dQjqTfKjK0ur6itzZk5UQHYyzKEey8ZRrljp7VcMcEXlZGGLAyAx1grWXNBIUxv+4zUd5ONx5wX6/Jh8qPk5UjZO5wii5x7+qa8CfDlCTKyBoDtKcpRw1QJaxYI+UZZgb3FuEiS8V9Kp83OfdCl347QkiBe45YMskwJVt3O437KVloOB0jTgtIsfRzjWunIAMjIxCa1M8xuUVbydHWERbUYXzlX7eiW54MuKW/A2+2jKsbAKTecyB9Mi9nIo9YdUKmfAfHVWfEwwMw+oUXDNzpEvUjU2Rhxq7wDpbjE/QGKWG2wNB/LRhIKj08MUWWtKAMN3sZ/9Odopp26MV7Id4PZKwNx+6lY55HFLERfHHMmKvAQnQSTwU4QlF16i+bBAAvSDwSzjI5GvGJiQqnQxyfFtystbhOiYnOcap+hbarUVqjpSVzOkx4RUyIYbCKah8H5aEHZxpG3KhEqSZKUu70tiCUQwyorIpj6iAEbgxh+yTz+iZusQ5TQmBmSwh14XvIqfk4PUWj2uTgzNPMLIElw3glSv4cZetCJhmsLbPw5OPXt+g2TNGRw1T1JJmTseo4pNUYNwnQtdLmnBz05o8DtxF6ioygWHi3YAjQyQLSeoR5G0hBJfgmYAc7yaN5Tt6dYKKctXR5LLqNecVw0THdWq0Wv/zLv0y32z3ru06nc97vns+P//iP8+3f/u20Wi3CMOTLX/4yR48e5dWvfjU///M/f2lX/zJlIAvBzWJoshNcB3+4Hn+rKQjKLkk0skjyggsnUSj2c7j7bXsR62/NaJiRlB1UrrAyQeJzevK6IKobx63JJb7wx4euUO2uHNYY+sd7SM9DmhBp3Q2rNjfOaU+fFhsuX3Q7b0y0q469ogKgyTP6XkTmaLzcYXL9VeA2R7+7k2iSclq4Kpxj8Cp9hdDgZBaGGldbHIqYbgAiiRDBKOjqoFVMzGvrsdEcXafSfe3G919J+oDlVqb5jvwmHlx8kL88+pdXrM4vlpX5DouVo0Ukfjgj2YkX56Q2YrC2gk4T9r/l7ectZ3OGydZCn8e+cBRzOh5ebomjM92yvFoJI3JkLrGieA8IIaiWanzvlllIDyOEYKJcI2kJfmXiNUgJRyee5BNb/ieLz61esTa4GFZOdemtpmgvwtVNHN0AIdBySNAbvau0U9RTPU90E0JQqgWY3NJa6GPX28baIptwEp/ZPpu1JSsNHoLmpsV5YYv4NEklxcOhrgRN0yA1KZ8/cXZ80uuFw8MTTNgmcXWTJW8CXuKQhBlDGZLv2IMQAjdweL5RrtYv/L7wdlVBCdzEpeHMEFZrtLoRE2lnYx8jI9LQIdPFPXt3kOCalJ5XZzR8cDkVX0uL4DHXDc/vo8YupmOuIp9Y/J/8/qkP8d9P/mdSk1z4gJcDSbzxZ+ZsEt1UeNauQgieXfxffPzhBxFCkPsCrQAhcPzRs3qq6fHIrgR0AunLw9LtsVMdvnZymblRMBqcfBJHnxbdMvr67/MPeAeegN8XGbPvufWiylb1YnE5GHggczJnFUEx1smUx01MoVxwpcHk1/c70SY57dyQzPxXZkshcVNjHIMQTaxy0GoUIzAf9jBa0yi7qPVMChKPWM3hBSHYnKlkEYkAXaWzvk99sYJKNMMyzMcnrkk9x4y5Fly06PYrv/IrfO5zn6NWOzuLS71e5/Of/zy//Mu/fMFyHn74YX7yJ38SKSVKKZIkYceOHXzwgx/kp3/6py/t6l+m2PVOwYocuf7idtctO1ZfU/xkw16KcoqspeFFupcChDUfP3RwPMWwG1PZVkGZHCvXrcKQrA0Tys6oTCXgC91PX0cCVIE+0WZoBI4YdaIys/i9FDduM2gUg5EX4156TS3dzkBcprfpuQ/SetTxu+sxoxQCUx893yqLWNzVWj/72a8KuUk8Utlo0m0cgRtI8kxgy2W6gcfAc8njVUAQdhK8YQ7GoEwJjIMTRayUapwcRKwkQ16ttzJXmuOxlccup9IvCckgQusF8qCoq5M2ybOcynKPisjI6qMVYb90fpcE133h+BXzz66dtU3XM5QWGDH63ULX4VnXozddojVoMUgiHF3mrvoe3ujtp5xXWSuf4v6H+1f12c0zQ5YYhHFwkubG9qR0mDd/8lZSV5DPaXqNQgyUztmLBv6mhYTHvniEL3+iSJzw1FeOM394DbnJnXKz2ORKhxhzxv0orYuwgjQo2k4Iwd6sSALQy3poc30mimlnfXalWxiURr+dlxTvpTTMSMImQb2wYHC9s++pC1q6ba3iba2gGj43H3gjN7/xGzDGMCuHGHkKLSKE9Th10wQPvPFVANzm52zVber5mQtsrXMkvBgzZiy6jblaZCZFiFG/kJj4BfZ+GZGmZJ7HQAryzaKbdYoQNdaSp6MxRYDDsD3k04ce46Hl4xvbtYrIZY9cdVipWu6/KaXnZy9plJOryXMrA7aWcnaZBvF6Oyk98t6ZPjFPTpkFco6h2bOtRnmydFFlC1chtwTofkRtuYQ1XbQsFv1TVXg9NFTAWj5E59e3iGlTzWLSY9JUObxpQVTqMpgUI1IMPby0iys0i4eexHcltUBjKcYcuQiZ3b4X3JCm0dT1Mkp16OlCCK6tlqgc6VNeTVhJx1byY145XLTo9od/+Ie8733vO+/3//Sf/lP+4A/+4ILluK67kW1uZmaGY8eOAYVwd/z48Rc69BWBMQZBRMwiHb3KcmtAZamP3+3TmxhS21Xioc88Q2tx5DJ2KaKbEIKw6hNWPIKyT+YrVFrCyJFgMFHy2emNJmy3MMOwscqzDy1fmUpeIewwYdBJsYEh8eZJnWWs66CFRZqc3kRhW385otv1YelmX+DT+bmY+upg9OhLDQ/LHl+qJHQntyN1jsg15U4X7RT3wbncNEQw6pC9Td9HqSGLDWnmIj2XWpxSTjNEMkDUYkqdpKiNlEWQfZmThyFq+zSZ0XTjDIVkay5pJ+2LrPVLT55YTDnAyTzcZBZpA0gzjG/xU4Mhx6/WCBtNvPL5RTfpSEr1c7ufnnY3XTx6ZhxFZT1UrsidFpmzVGyTgpnhG1gLM4SwDNI+JaVA1bmzUcM1HuWszrw3z/KRpSvXEBcgGWQ4IeR+F6MyMrWCyVe49a9nUFrg5LaIhTfhENTqeKWzB7almk9tMqQ6USId5ph1q61BO6ZUD5BS4HqKSjMkz0dPhm8DBhRu2NauWwVaBy0HdCYHLNNhJTNMpSNxuZeemd3teqGvMnKZEpcTMrlKKlcIWjkrWzusbu0SGQdv/Rn0Sy6l6qgfEAKWjrU5dnCJhz7zDF/+xJN85c8PsnJqJJa5M0W7q6aPiXK8IGRpZUDDybFCoZ1O8SaxFotgoVYlkAIv6eJlQyAHEYOzRmIFZ5najXkF8rxeKn15uKaNuf6JTUxuRyLvK0F0e+ozn2Th4Qd5tr6bB/e8mVr72/AGhaueMuViLCgEcTaydp/KG4Dg0VPHmY9HfZ/MfZSp4Og6SlcJUsFq2AdjLriAcyNwfG3IWjpgXvbwBjlhN0ANq8hMU1qL8PqGFhnCWj4mM+b+1p4LF7qZ2FDXEwxrCdpPUaYQ9NKsz+N6kX1xg2eyFvo6t3QjzVkzKbtdeLScINoTOMkMfrQLcPDyJpIqqVejWqtuWO4FvsSIGCNSwODKFKMH1PI1lFE4ss28hUPOSXqDITYTBH2NFIrMjPuJMa8MLlp0O3z4MAcOHDjv9wcOHODw4cMXLOeee+7hq1/9KgBvfetb+cAHPsBHPvIRfuzHfow77rjjYi/nZcswSxBmhoBZPOVQQRDVA/whYAVZmhP1UnSm0drQmDkz29/F4LiK3lpEZ3kAgcTJLTKN0HQxNmaxM6SnRqJB2TosZ0s8/KljV7i2Lw6bG3IHHFXGT7fg5dO4g5T6aoywCrseVP3yYroVbXotRTdx3g8vnqw/yqIkcpdJU8KvN8ikwgiJlYIdj8XElaIzlOeydNuUSMEMcvoCEleQKUFYVcRxAJtim4kkwWYSNzOY04EhrAJb/F3xI7I0oeF5WGspp5IsHfDEyhNXtvKXicgNtYqEXGFkDydv4JRDkqAMiynd3gJJr0up0TwrOcAZ5QiByQ3iHI9tlmjSKGPpePuMe0+ELjKXSBPg5jMAnGoPWFYlPja7hdBxkcLBEZaFJxfYHzRI3YgwrXGy/Byf/73DrB59lqWnn2Lx6SfpLS9e8faBwroq6qfImgJhcPMJXD2FdKZoLrlIIxHAMGmTDvoYrXGDs91gpBJ0VyN6a0McT22847JEY/JiEpBnGp1rTA6rrUVWWgsIo4lEYXVlbZdctTAiRpkyVsE0daZciYtmX30f+xr7WBpePUHyUphsK+7u3wG+g2sm8cwUtVNQaYdox5B5FfxSIbS5nsOwNxq4WgvJMKO92CfqpRhtyVNNe2m0WCOUwEqB6abYVBM4ZYZxjs0ESrtIXUYYj8zpIIzlWDDBWmwp2ZieWwMcsAHkE3QyC+nVjR045jrH8yB9hbj4jbnmJHqUZdOXAbF5+WTdPBdZFBF3Ouh+n+ON7axWZlBmEmWKECHCqA3Lo0r5ALlJWY6fxcuGiPXtItg0hlMpVqx7vFgflWiOlWPuHz6A7d34Aqa18Jqa5g12B71Jl6gWI90A4yrimkc46FLC56SFrwvDNxyYuqTy1XpfXF0LUXGKFgMslrQ8i1IST0iOpj1Mdp1bumU5CX3uMVsQW11sY43cX0KZGkiJwEMajUyH9E8eob9SGGOUAgdpPbASkNS37cUrTYLJ8fKczFZI0NyUb6MZVCl3JIOqROaGleT6HIONGXOluWi1RinFqVOnzvv9qVOnNizYXoh/9+/+HVu2bAHg537u52g2m/zwD/8wy8vL/MZv/MbFXs7LltW4u9FRGnLCRoj2HSprMUs7WkSbJlav+9ab2PuqLZd8Di/YHENJIKUkCzMUNaQImK2XmAxHotuE8DnuP8PRU6forFw/WersMKHTypBsCtZf9lC5ISkVotJluZbC9eFeap537su4Fns+91I7cger54odKNaqDrkbgJQ4UZGNNC6fPxnF5uylTmaoWPAzS24h6mlWe7Nkzkh0k2mCXbeg9KNi4KHwkKbY51g+5NGBZSIMuYlJannIV5cf5j899J+I82s76DO5JtcWv64ZTnfQ7rAYYFBkzAUwqvh/5sCF44Dc8479vPHbb+NN33EbclOg3kojQOeW3mq0Yd0FIEsuSksQo99ta6OMn+1nKW6RrXyIqUqT7Y2tVHsV7jMeW0oNlqpHOdR8iBNH23zufzzGU5/9LM987jMsPfP0FWmX55MMM5aP9tDrOXrE+m+LtQRDy8K2DkvfvZ321DwApUbznOVsjlM57MZnrLQPuwlGW/yyR9RLGfQSmvVppppz1Jwqg/W4IQKFo5u42QxsupcBFsN5DncOc7J3kiPdI1eyCa4IiU7oNH0yNEaOnrMtJ8oEQ4/WTJ+B9TesnL3w3DmRzPPiuj3/MfZ3VMlXY9L5AV4cEMcaz02o0sYxVbx8lmHlSaKqIi/XmAgE27NVYqfEZqum1Iqx6DbmTEO3NIXoxp+sj7kx2GzZlpiYYT54gb1vfLpL8wzWVnABu+nFLqmCBaXrCOQZi3fTwV7KW/Zxd7Pof2Vlk5W5TDCyEMml9unXFcO65Ku9LzPotK9GlV5SnlrokWdDhu76WMIInHwSACfWqLRGiMNHZMrui3Qr3YwsFX2w0oq42kfZwtLQOC43McNr3B086BxkOLi+Ld3SVNMxEe/kZrzS+jjMCtxkdB8ZqUBIBJZ8Pabg7jmPIhCNgxUVvOYW0uEqoNkWn8Lkk8xvioNcXqoRTwSs5Mt0s/bVq+CYMdeQixbd7rnnHv74j//4vN9/9KMf5Z577nnBMqy1zMzM8MY3vhEo3Es/+clP0u12efDBB7nrrrsu9nJetvSSGBBoIhxpELmlsjLEj3KSaopO1+NJuQrHdS7LiqvcCPHXX6bGWijlZ7iXAlTdkZBVEwENT/P45Bf5+mdPXn7lriDWWuzagIgMYc90r1VpTme2WDm5XNFt5F5645nVX0ydN7thqFzxDDnZdHljVh4MUpIwJS6liPNofSJ0kGUXK0FuiqGVOwLHE6S6xMnhLZvOk2FKhSDiRfmm7TXyXIAs8WtmLyvDIY5Q/LP81YTC4YunvsgHPvl/XFIbXHGSHIxgwl+PH2jhdNIRZ73u1oPmjt3Ut2y9YHGbn9ut+ybZdmCK29+8Cy8ciU15NhLYZNPHj9VZLnwBU5wYLlJTKzy9cIhMaxpBlacPbuWW5CZqosrQ77BaPsWp5yocPzIHQG/p/AsoL4Y0zkkTg6ytZ8DNq1hySu2Y1M/oV2NKvtiw3HT84JzleOHIdfL0nEFsSpsllaDSCFCuJEsNZl1ErsmQVRnTxyDWA2kLFCCJKglrbpeMnIYps6O6g9SkPLL8yEvQEi+O1vIpJvMGedlH4GPIyOmjtCUJUgaNiNLsxMZ73PMdlHN2d67z0f0ipCCNzlxl93bVUBM+ZAa36xA2ptBa0cxGbkfabdNtfJ5OULgt7SEizIdnCCwrsg/p9bMgM+Y6YfjyFj7GXD883510oK/PsAFXCp0WYzjHQropBrPMXIR1cfNJrMlYTY/z1eX/QT8pPFVifwq3Vix2+XtuBiMR2seLdpKrNQw5Eh838VmYtFRMzpfnv3z1K3iFaUcpc05O4hYdl6MbKBOCNjQWBmg0nyXjUTTbpqsXKO1snOmQjBR/4G7EyD5NplxmbZnl6hIPHNbXXXzszRzqW95897dw6PYfQLrri+NZFe07GwYhAHbdVcN5TtH77f9B+aM/jBCn1vcR5PVRhtbZdJXy/5+9/w6zLLvK+/HP3vvEm2/lruo0090z05NnpBmNIkhIBGGSEDZYIGEM2CQ9JvuHwfgrYwT2AxK2AAMSBhswJggZIyEkoTyaII0m9fTEno5VXfHme0/ce//+uNVV1ZM7VHfPTL39VD83nrP2vufs8K613qWbHENySETkaIS9AtkzYC3Lgy1pqS28PPCCSbcf//Ef5zd+4zf4wAc+gNbrm0GtNf/tv/033ve+9/FjP/Zjz3kMay179+7d0m57DnSjBIFAEaKMoNiOCbspaZDRrUdIJSnVQ6oTz64Z9XwICh5+6FKsBsS9BFy1FlYOEPd6KLNOyrRFzA+nr6E/tkxz/hJZRKc5WOiKHlYYUmeJzBmKxYosJyqesv9cSbeLNzk+7dTn0ZSc9Xu4o6GJXSd8rKXQTvEjbzU66Jn7UIUOpp8hDAht6UhYzgzNXk5YcQncAY14gsWROu3Aw0titBoSKaXlaLVJFqlLOI4lDHKOyyp3dlIacUI9L/JOey0VCty9cg+/9tn3nL8OOEPkvQSV9QmdIdEmdQFtM/xGh2qjQVKLKEyNUhobR7kvXGMRYOf+CXZdPUF1rHiaIH6+QZxehR5GCIw6nTRxRZmFpIFwfbJkgSSP6SUJCyeLZIenGDdTzDBBs/YkSuV0O0WQVfIkwZxnQd+l422OP7ZMHmuccg5WIG2AwCF3DL2RAQ/cfIJQJPjlCpWpacoTU894LC9wSePT7StVA6rjBWqTJS67bgrPd9CZQQiFMcPFYFEUkEhKSITukLqLw0piVpEUMkayCi4OU8koJbfEtaPX0s8ukTFtA+afeIzRvEq3rpHGR+IikTjWwY890kLG9N7xtXHKDZzTCLZCxadUC0BAsTaMNrTG0lzs0dyQYupMFJChi7ujjMKhu7JEp1+kkidUB0+gxQoqK5I7KzhpxJGR3YzmyyirTwubi7FgLm0P/hYuADZOWr4Pl7p+0RZeElj63f/OsV//j2vPi6pM+yUePaOz4ZrdB3K57qwT2sftjw8fSxepI4rpCkHzdsLuA/jZCsGON/JNMz+IFxZBGqxK2Hk4RUUGa/rkNCh2ShQ7hj1yiodbj1yMJp5XtAcZk85QkiaMyvi97Rjbxx+kBN0eDQvHjaaWC77jFdvP+PjCUbh4FJsBhdb61lolXR4zbbqk1M1qMYXs0tUws3mOzFNyk4PxcLvbqDe+CcyQTDPEVAuK8aUlth+7ktIxQedgHfnE53HTJxDkWHKsG1KZ2IsX1piKT7Knd5SGXGHZwmOqTWUApiTRCuJB+3nt2sIWXgp4waTbd37nd/JzP/dzvPvd72ZkZISbbrqJm266iZGREf7Nv/k3/NRP/RRvf/vbn/tkUrJv3z5WVlae83MvZ/R7EUYuE7GMNwDtSpxEI7WgX4lJBzm9ZoTOzr5aXKHir+khpYnGSkmuOqTuPFr0CUolJqvraV8aw5gNyVRCQy6xfOLiexBtkiNGiuhSFy8bw8vHUXmR0kqEF2V0RlZTzM4iEnD1i6snukQ8UlacV1u00Yw1Q+onS0wPfBQCeyqFTwiUp+mM90kL2bNGzskNKW1ObqkYGHMliQHfttHCRTmGqHAVWgoyIcgdDVbj91NErrEixcmHXsWCrxFOwoc7Hq4UZLnm+7gWYS0JOXcu3sV9i/edtz44E5g4I/fHifwErz+Cm8wgpB7KWkmBSCWDzgojO3ef03n8gku5HlKuh2TpOunk1AMUGitOJ6IKssC2bAqrPEy2gDaaRpRQdvrUe1P0dItaWCapLiGlxXEsUVrCL5boNZbPydanot+O6Cz30cbiVBVutAOtOoishd/pI4wgV9B49KvoJCHpdp+VoPR8hXLXpychBSPTZeoTZWpjRSZ31YeOg1pAZbSIWa1AWlUh0ep94qQSL5vAzUfBOsSFlCcKx3koOIRRhieaT/DA8gOXZKTb3LETTHe2sVxvIezqhmqV1MrcHCuhUl93vAghKI+EBEWXoOQx6CT0WjFZnNNvrepqrQYYxt11nS13JCCb7ZEd66JnB+y89gakSPFEk3ZhL8qO4qYlhPVZHhvQCmsUwglGRIqv1yNLcuPw7q/8Oh9+/MOb3jdbeJEgSfjCw3/PF2e/eLEt2cJLHOmTT5KodadDahLm4qMcHTy/zvSLFaeIm0gKzKoz09gUQYhrp8hVk16+yL3tj/Gl9t9wPJB03BqzzZzPeW/Er07Chmrot331Z6nGDkpWcRghLlVpj0iMByfaRy5GE88brLWUPcVlnuVhv0EUdjGuxgqNQCD6CW0MfyFTRl3Ba/aPn/E5nNGAuBAjZUZnpEXqLKFFjPbLKFVkyXS5rbuTpurQXWk+/wEvEgZGYBwP6ViM1wRXwGr0Gmiq+T/wpi+/g6nHHkGlCdYGYDOWol+mMDgGKAQOrWIN9d11nB/eR+179nKVOw8mpI0g00WOm/X79Vh8aWRQbWELm40zUuD/T//pP3HnnXfy/d///UxPT7Nt2zb+xb/4F9xxxx382q/92gs6xq/92q/xsz/7sxw4cOCsDH6pI0kzsAVCxsiLFaJqQNBLkUYQl1Ncz0Eq+RRdtjODlILLb9hG3B+WAxeOi1UxXjaFtArynEGuwQwvjzIBVSFwdJsHons4drDxPGfYfNhUYxt9ltMYI3KMSLAqpTca4mWC3uip1LIXb6SbsE+1/cxTXZ9N0y2TGcv1iOa2HqmwtAsCZ4O2mByAyiRWPnsfytABCaLo4jgK7Qgya8ETFLfVyFIXYyTdyuWMDBKqaZFOZEEoSq0E6yiE9VB5DaE1mZZoIzig68RpTNHxcBOXHxavoUfE8egkv33fb1+UyKSs3SOXHvVCmbTYQEiNsiFJpYLXkWhSEILS2MQ5nUdIQbcZ0W1GdJbW2+mNFJCxDxsiFPtJhhQOB/UKRioK5hCZEeysVbhu0vJwOs6ibHIkmSebgSxzUa5PezFm0Gpw/N6vYM35S5/W2uL6Du2FBARYlQIW61Qo9RRZMCQMo1aDPE1I+l1KY8+8uHU8h1e99Spe821D3btXf8t+ZvaOMb13lOm9Qx0W5Sr6rZheK1kn3WRIsqpLY8UAi0bLHlhJHmjqeYVdyTa2x5O8Nr6J6/VVbE8mz1sfnC/MLS9Q9nxMqYCRA4xIELkmcRPScLhReqpD4brXX8bNb97HTW/ag1QCx5PYVV1Ix1dgwfUd0mSduM2NgVBBqDCA0ZpBbAlMBFYjsw7W8dAyZlB4mEwpXNHn247/Bd+6/PG14xiruGP5Qb5w4gub3zlbuIRx+nzT7ixy98m7L5ItW3g5oJu3acke/R1l3MYAjCWzKT3dfUmTblkS4/kBRenj6qFovxAOShcJ4l04uk7DzHJk8R6m093MHT2M8mcIqmOE4+MMqj7GWV9PfOHEDzCxcjtYiyFG6qGu2TX+Nma7s5dswaEXgtlWhE4zShbqzrByuZdNoqgQl33KXcsxoGvhe2VwVs56WXAIBgFev4iV6TAQwA7lM0bCceqySN316YcnOfjpezh81+1YY4g6LQatBv3mCll08Yt/ZKtjuBERKh3FSyaRRoAUjDX/O6//xB+TzHXwBxZhFSCwlMkKN3DNjn/JKdkVEPjV7cjpAu71o0zX29zcOsj/RXMDPjNJDastgyRiNlm66LrNW9jChcCZlb0Ebr31Vn7rt36Lj370o3zsYx/j/e9/P7feeusL/v473/lO7r77bm644QbCMGRkZOS0v5c7oryMtAUMOcoMIxncOOfgbUdBQJ4MK/c53tmTbgClWsiOK8epjBUAl1x1ABAE4DiMFgpIG66+Btczxde6Y9xd/BT3fOrJi69JsFoByFYdHF1GWh8tVosnxC1YFWI/66KflwDp9myE2fPjuVttrSXbEDEVZg69ckixsC4eq1LDoDKcBOUGIffTzhI6OKMhtp9hoxyVWxq5JU8t0vPxAkOeuTRqVwNwbMc3cOjQMNXNTTUqHXoZ/XQGKx1GaxmVgsuSP86jK018xyGwAW90prnKzJCScefJOy9KtFvv+Dyxl8BqFwmzns4hc4N2MpwNlVrPFhuL0Zx4fGUtbTIYr6C0xG4opFD0XYpeEZtOkEvFZNBlkA5/M1cKHilYssHl9E2fezp3kRcHDLqGVnuCLIppnTjKkS/fcd6u8aibkEYZeWKQNYGbj+DoOgiJ30vJ/GFKeFirU53ewfS1Nz5rIYUXAmc1FVcIudZPoaOIV69tmacIFMqUUKuFHX5rz58iEVye7eDnn/x+fv2xd3Pl4WmySyw1cqHbYDSrEVcMyhSR1sdNLX7mk66Sl89Ghgsh8EOXPDVrwbGOKxFiqLnX2kDmthb7JBKINNnxLrd863fS6+dU7SIOOcatUGxPgMrIvWX6Xko5GN4EhWRDxLN1iU3KZ098lkRvVax82eIpQ0kVn9neVhTDFjYPH5n9U774I5ex9Ka9ZCMF2KD92c1fmmlrRmuSbgcRxyRuQKaGov1DGfvyWgXTvl7htw//O375yM/xHdU3sCjvoBR4TE1V6YyF6FXSzeaCZXkZI42vgBBIApysCkDsWlqyxWePffqitfdc8dBcB7fd4J+4ZTJvuHaTp0T9jcVJDF9F8+pI8srXn3mUG4CqrK5tE+dpmm6p8thJlaudcY6WHuX4IxFzB+4j6fd4+B8+yr1//b+578N/zsLjFzeNd7g3GD6O6RNGeyhG14Eckodhf5bl9JdY6v9nSHZiKRCIjw2drP0M/dWFDUfzCPqvXn+qJLt6h3mUYVThtFUEKwEFP6RSLnNw+eCFa+gWtnCR8IKYm2PHjrFz584XfNDZ2VlmZmae8b33v//9L/g4LzekJkWa4YbGkFLoOzipRiZ9evVVL8Dqotb1z410k1Kw46px1BOS7hEX5DAPX2y4JKQuYFSfQZbTEwm3mcv5kH+Av7z8fXztPVez75UXL0LEZhptLZft/xoy1UQ7LYSOKTRrOPESwnGA/Bwi3VbJj4tNLp6C4Ow03Z7pO8aSyXXSzU0V2YbISXeQ4Q1yuqPDhYMUz8zNCyHwd1fIWwlkhrTicWhuKKZeGDxOqVqnETvkbpXPvP43sdKlsqEQgBtlaE8Ndd3yCtau8PrJx/h8bwf/Lr+G/9WaZbwYMJkEfLf/Rn47/38knuWDD36Q18689iw64+wxP7uM4Ti9Wo7MiqhknSyyxGRuys6bX3XO5xmdqdBc7NJvJ+RJTtzPKJR9ZMVDkqNVj8xp4OQ1BJKC5yDaY0QGam7Oo905XLfAWCHkKjfnKyuvw1gISi3+4Ybf57sO/BxxLwVvJ4p55g7cD9Zy2W2vO2fb0zgjTTTKExBalF4ncYNBTreeowSM7t6D4w0XqOIFVLx+NqyRblJi8uHmIVSSeJWYdLKU9aXv8LMt2+awP8eV8W4Ukr6MGM/qdNMuI8Gl4/RpN05wVe1y0kBzit7142G7ksJqpNtzjG1u4BD1hq0Pyz7jO6qcPNQgS/LTiimkcY5xJaARFrZt38fsgSK+7TCi52jqErmqr2WXPHbZXdwwUmQkn6Gz3Ed6C1gkUmj2FKbpknOsc4x99X2b0S1buOSxPuH0SAmtQ24ufvTGFl6aMElC1lyBWjBcq606SyUSg2GgLz29zvOBRz71MQatJoWwQN9ZF/3XYrCqozqcVx9PP4nx3sU/fs9XyD2NkJb5J65gPBylM15AaIGjS6w0NR8oTjA7fz1XAIYMN50kHFjabs412QTH578KV333RWrxueEvv3KCV1UFczbhYXxkVkLlJchTCicjniCjZzSvDmDyhjPXcwNQFRcx5qKSjGJzWHRAINFak6+m/87kZRqlRTpHh7N6OuiTb9B3y+OLPFbmBqkNXt5hRbQY9053uE/e+90oTiJFB088giuPYrwWSe1tqMRBH+tyxcwcj/v7sUIhbW04JQjIXI8xvQQIHsn7TKmQWrvIo8VlpBQcaNzPzVM3X4xWb2ELFwwviLm55ZZb+PZv/3Z+8Ad/kFtuueUZP9Nut/mLv/gLfuu3fosf/uEf5t3vfvczfu5d73rX2Vv7Ekc36ZOrHkYmaJ3jFHeQFqEwUESVU9EDw0WF4z5z9NGZYnrvKMeP+4zM+UN9B+EgtKbZW0auCnCvGEkvCvELffan23hCNphdnGcfFzEty1j6hZBWfIKiE6CEh3YT4pKHp1twKjrrLDXd1iXdLmJ66VMYsxdqycYmP1O0nNWG2Fsnv1SmsKFDEsf4QUBWcPE9zXwlWrXj2ftQ1PyhVpSvENaylA/PV2vdQbf0RvJY0G8I0AKsIZeKxDj4UuLFOXEVJC5Kl6g2H6MQTnC5WGRWV1nJNCYasL1Y4tX9Mh9x63iVMbS1HFg+wLVj177AHjl3NBp9TNmj0HfJiz5SrGuR+ZEDnkN54tzvB893qI2X0JmF0KXfioakm6dQqYcVGjdfJ4cKrkMpniYSghowSGJMnrDUTbnFH+FAZx+2/ABO5jFaDfjq+D9yi/sWVKGGJ3pk0YD2/Cxxt0NQrpy13cZYpJL4gYcxYHUMVpC684Qdn06xyaCcYAzsvOmWcyLb1voqUNQmi/Q7EaaxHum2LGLuJaeTxjjuAgiLyIee2kIuSWSKs0rClUyBnekU7aTN4OffQ95oQJ4z/u6foPjqVz/ruTcT2fIyURCyK57hkPLXssqTbsTSyDLLM8MIs+dKgamMFkiijKSfEXUTvMChPlUi7qWrep4G5cghUVp0ENoipUBlitQpYYxPYHIc08JaHycZJQ9XsMJAwaVxcpYiEpMOr/lcpMxHTfo2Yr4/v0W6vUzx6Je+yJWrj0t47LI1UrOl4buFzUG+uIhxVsfBDePhTLCL3ObP6jB8scPxA/xSGbncYLE6hp8v0g1AWAepPUAOq0jmKa1ggSwcOlpMLoicBr1OETf00E4P46QUA8lMf4XPy1F2RH1CLyPzc2I/4ETYYZtT4vCLWNft8cUuN5iIaeGz7PtUyNFOGxUVSLKMwIKWhu2OQ3lb7azOoco+djnDGyvRG41QjVmUruBQpW97PJacxHcUk90Kj4zfz/XeTh76xN9hco10XaSUpNHFrQBukoyeH2KFxLUWgYsmwckFfq+DLxYQoo8nj1Fz/wSAhnclpmDxigEyt+xC84TJQVoEehi84QyQrkPXq3ONaBOZKhEp3RxqxSFpPDd/7GI2fQtbuCB4QTPSwYMHKRaLvOUtb2Fqaopv/uZv5od+6If4iZ/4Cb73e7+Xm2++mYmJCf7wD/+Q//yf//OzEm6ncOjQIX7xF3+R7/me72FxcagT8Pd///c89NBD596iFzFaUbomLC+MwmvH+O0YQ0RSHHpDlJIERQ/XPz+kG0AYlmhMJ6T+CtZ2sEpRq06idAmAWa0oK0PROlzuFFFK8dDSxQ0FtnHGoJ0wXtpLge0Yd4AbZ4TtGIeFNdLtbCPdOLVYMxcz0m1zzi2MRduE8pIgXPZoRApR9HAdB6zF66eolZzcXy1G8VwRNXV/2EcW2OAV8wfHuM75cy6/YpaR7H6E1VggtwJ/lXDx2gnWGgwp0nosb5tkZDyjact4JuePnphj1A1xjCQUkpvCq3mi/QSZyXh45eFN6ZtnQ9Qe4FZjGtvb5N4iaEWW5MPrLdVUd2/HL5bOy7kKJZ9BJ8Zae5r+lpMb/E6GoYc1Kb0oJTeGFRvypC1zWO2ml7UZKVWwymOEiDEj8Ja/ich5nMPpYR4q3UnmxDz5YMqTj20jjRL6K8vE3c452ZwMMlzfod9JCacLSG1ws0m8bAod1tl2IsTK4YRzPgg3AD/w6DYiTM5aRnWoJL5Q3ITDdD7UbfHSKZQdOhD6/etYTsaI0Wg0LdUh9lO67SXShZxswUXH0/Tvffy82Hg2iA8+zHKxy4K/TOZEZM4KuWox1fMYb4zRmhxWHxXPMX0rR6EzM9R2cxVBwUUwjEY0xvLol0+Qp8OoNysh6OZ47QzdSZGlEZRcomCXydUI/sAhjK9YP3ZhSDjLDRqTFsm+YIarR6+mlbQ2pV+2cOmjceLo2uMOCSdEhyTdinTbwjli7itw//+CB/6U4YA/RNpYwY03rJOMJZwfkNqEk8lxZuOjaHt+q3RfCmgcO0Jnfg4HQeyGpCpE6RJKl7CAETG5s8JOp0Cg1qPyTSqolgaEEuSGauj1SON5ijlbQAiJFQWshVprBNdK9qR1Bv0XZ9SgtZbJcsB4oPhkkiACcLI6VliE4zEyiKhYxVtSB69afP4DPguEI3GmCth82E/SFHH0qRTdCnVTJFMGX0pW/DnaDY1JUzAak2UYrdHpxZVmyFODXd37pCYlTxRCRAgL0w8/hrARmm0ouYQFtHCJnRH0lCad7aE7MYPHQtysj5UuRgZ4yTDrTYkMsgHXHv84xf5hrnIKTCbrkizLndZFaPEWtnBh8YJ2P6Ojo/zmb/4mJ0+e5AMf+AD79u1jeXmZxx8fbkze8Y53cM8993DHHXfw1re+9TmP9bnPfY7rrruOu+66iw9/+MP0esMNxP33388v//Ivn2NzXtzoDFK8bAplSgiZklYDHG0Bi1Gr4pa5Je6nuN75I91Gt40BDCv5iNVoF2uQeqjp1rAOBQe22zJ7bYWubHNw4SC9xkUUvkw1kV5fbFmRkQch0oInVxCruh7nXEhhk4ivF4SnatyfJwLQGkvfjemNWqKxlAlnhPGJCtJxQAhy38Eb5MTFZxZs34jCjZPM/MfXMvOe1xC/Zj2lXOMhVhtQ9Z7kDXf8AjtPfJqx3p1rn6mtxAghEbhr19oef55jTHHSn+LJwi5a8QCZO9SNZUevSCNr8dDyQzzcuMCkW6tLqSAQZtgXypZwPEVUDfCiHKcSnrdzhRUPnRt6rZjWUo+ot7oQk4L+aBtJCSE9SqHHVCXEZCVKecxl+ghlfRhXCraXS1zvJ7w+UizrImn7Rtp6hXZpkfnSYVoLA5ZOGPr9YQRYnpzbYi+NMtpLfQbNBEKPvKw5xYTJPEMaS+bnZ6+x+AwQcqhdpjNDng+v1ZLj0Ge4kVBaYMSp1I3heLmob+A/ap830+EJf46arrCvu5PeoSdxtr2V8Obvx7viW0mPXTwtoOzoUYQU3DC4AqF83HwUR9fwVn+ieNUB81xj2/SeEW79piuZ3jvK1OV1KqNFLr9hG7XxYbRbe6lHa6k/rDa7WiXWAvlKhFMdzgd1M0/mjdKvBXjpehSnCU+NrcBqX1sraaUDDq4c5ET3xHntjy28eNA8eXztcQWfm+w2nCQFe/4KtmzhZQaj4eBfw9JBWDwA2ZDE7eUdltpHSAsbxkEpyAsK5/iwMrdE0s1eWrpu1tq1yqW5DGkUR7CiTO60sCJH4qymmDrEbkjuruvAOqFhnsfpfOphxo42QAzvS5cKvyxXaKoKJzopQnq4ukbs17HlkCvkGE9GCyTpi494a0cZdx9pMG37LCZ1CmWJo0dws1GM6zLShCyDVuRy85ufWRbphUJIQZjUADByPWqtLwXjYYW9jDBRDJlzjtMdnJ5oZvKc7uICyeDiRbsl/cGapI5Rfcp2F9LWcJKUYq9AqvdjnDGKv/RBoncf4s7t/x+H699CKzvJ6DuvRq8kpId71JO1VCG8ZBoA6Qiqukc5a2PyeQCcZH0fe6KfbOl/buEljzMKOQjDkLe//e28//3v52/+5m/4+Mc/zp/8yZ/w0z/901x77QtL9fq3//bf8iu/8it88pOfxPPWU7Te9KY3ceeddz7HN1/6iDZEtQglkamm0ErIvfWJ7tRGywvdp33/bDE6MawGqJ0O1marg65dK+QQS59H+was4PV2N1YYDnuP8qk/vrDEx0bYXNM261oIVmQI6+BFOYG7zHrhz7Pb5te370Q6DkJKWnPHn/8Lm4GncmwvkHN7PqLR5DlzxWXQUJ8r05yZxPPUMJVWG4qNAcK1xJVTgu3PPkwIKdZIOWdD9GVug7WNllwt0ODkMW7WXiMyw24C6fAcXroNrECUfa4VTyIxHAt30U/WoyQukyPsNGNIKfnS3JdeWGecJ5hBwmghwAoL2ht6MI2lvNBDmBRVPfciCqfg+ev3dntxwL3/eIgsyXGkxMh4mDayioKrsPkIvVUtyOmwxZ1Hj9NLYm4sCd401uJrIoVt3IbJS2Qm476pT+P4EqNhaX547y8fPrfILq2HNqWJwZ8qYpVe9bpnOPGQLcr8HEedP2cBrGtbniqkoKTiFH2ocoFdrWQq7KlrWKxef4qGWt+MmEfnEE6w9jxfuHgOhei++5C+wkjBeiUwkIOUfjAgCZ+/6MPaPekoHEetvRaWfaQSWAvtpT5ZqkkLiiyQCCBZGFDdfhm5DhnN55kaHERgkbaMSodee11z8R1neBev6ucZqyiKIfG8MFh4qjlbeJkg7nWf9prXbkFv65rYwlniqUVu9HDd99GFv+ITOx7HFPy1dQSA6if4f/153MYAg6GVNy+ktZsOk6/3R7u2ndTxMWTkbgMj151nWg7wHJfcW5/npIHx8YS9kxrs+vrZyRRT/i3c2l/kE4+cIEoSQOJlU/R8wX7G8aXHEyfvuiBtPJ+Y7wzn8m1+k4d8BcUlvGQbIAjaMWFzkZXcMFrKGd0/fU7nUhUfJxvOt9rpYBj+Vk23Tpx2qRDwinwb85VjHK6na9q2AMrzyeKI/vLFqxKbtbvDNO08Q8gNZG2SEvQLQEJwRQnpOQS1OrWZHQgp6TeWcaeKyLILAgpLem3972VTVJpfy1U3fx9797+B5eIOOjon0RGVpQJ5Z7jeddw6v/CFX7gYzd7CFi4YLrjgwYMPPsh3fMd3PO31iYkJlpeXL7Q5lxQWWk0yp0HizWKEwXgKGWcMquuaKIWyT2WscM6FFDbC81eLN8gYIdzhoCvUWslwISz3thPm+wGuULwtv5V+ocnS8Q46u0gebCk4nPfWnhqZEbZyqgs9nNd+15oW27lULzV5jtUaay5OG0+PsjvbljydqetEXYpZSGXRwXQtrYKi1ekPN+pKonIgE2TF566S+FQ47vpwkluHUnqcUnqCwB8uenae+DTTjS+AGNrk9FNw1bDmlglAWKKgzE7RZIdZRkvJgz1NK+9jJNRx2eFMcpmaxlhDM74wi2lrLalVWN+AAGldjIixcYYXa5R28EfOT2opDInMy6+fIiy5KEfihQ5zh1ZQrgJhiYPDGIZkZMFzwPjEq+mT436fZqppJBlLScLlkwk31WMK6RQq2UFd7SEqtZncU2FsewFUjbBap7swz+G7bj9rm80q6WZyg6q4qGSAsO6qJohheaJDGmTPGTV5Nth2+Qjb942tEZFSSrJVokpqSeYukblLGJENbwUpOXUvHZURB8NDHPKPQ9ugBw1gSE7ZJL9oeo7ZwgJjpsaJ4nDcz5xlMrlCkGgUwxxdgXhBfTm9d5TpvaNrz/2Ci1mNEB50E8Kyh6x54EqyqouOMqrbdyIEuCJhjAXcNAILI41vZnTxbTRKiiQfRi2KVdLNWsUrSpdx1chVnOyfPP+dsoUXBaq16trjFQY8LJZwjIPeqmi7hbOFTp/xubLOMBtAm9OWOTLRlB9ZQmQGkWk+ufi3fGHlkxfO3k1Gng6JnNaOVzM3uhcY6uJaocmcFbTNMeTkTpNxFJmXU14OCds+KlMEXQ9dyiivLBB0PeonitTnyggVc5s0hEsH6EQJudNA5SUGDhy3bW6Lpzlw7HMXs+lnhccXeuwcKZDIjMUgwYnHkDpAyw7F3jI2X0a7mu3bJE54bs5Td7pI7nQZmS3jDQRytQxS7pcxeZPZZJnLxDDddzltMn3tDWy75gaqMzsp1EZwg5DHPvcp7vmLP+Grf/VnF3wNkg6Ga3XjagphSiYaaLFMeTkjCvu4YYvw+tXINamGayVjAMs9f/O/SMsJ3o4yfl8PJXqEQFgHP9nOwNnJ3tveyuj0djKvhK9CgtjDSQRzCwqVbufg8sP8wD/8wAVt8xa2cCFxwUm3Wq3GyZNPX5Tfe++9z1rx9OWCNI+xIkPpEmEno9iIKEQax1/f0FdGi4xMlpHy/G1epVRIY9eiQgCC6DinVjKBSXiwM2DgpPRtyi5K1NJxlkaOsDz7dM/2hYDtxrR0TNMcIXUXMHJAUikRthO82755zfaz3eRv/N7F2nyfj1/4mSzvJh0aYYf2TA66iEwNRjmYLCZsNPHiFdrjPaSrmPCm2FO88hmO8nS4vsPU5VWmdkikyPDMgJ63naS6g2bo0ygE5I4HcpV0E5JgoQVkax7a1PfYLY6jhKaU9XkgL2ONRDiGEBjx6mirmS5Oc3DlAukKZho/SRhxhvehNAHKFpBFH0FGFOmDxwABAABJREFUHPTxziPpBjB12QhjMzWkFEghaMx3cdVqJJZVCGNIk4xmP0aiie0wyqjkZpxsdCh7Hkio+S3qiYtjBW4ekmnLWDBGr7iMF7hUxsusLEiElHQW5jj4iY9y8BMf5f6//Svu/fCfc/ATf/eC7NX5kPSKY4MZ5FixTtb6mWBssULma9R5FrYemSqz8+qJ0+5RteqhdVKFysu42TjKhqsk4BDCXSQzGVdHe9iT7CCICzjl9RRKNTqBbl6cCInEOARCsVzp4eR13HwM14zS6syyPD606WzT5oOiR2W0MCy0MMhwXAetJGqgcdsZ+Ykenh/Q7blESZl6vABCDQk2HJQpsTIxSvjum/HfsZ/tk6dSYSTaQKACtNVoo5/LjC28RLE8N7/2eJQC++04r5A7WGxvpQ1t4SzxDKSbsYZGvghqGL21ISiHYK5DfUnj9tJhxoM1GPvSGY/idovK1DRpcWLViQQWTe40MU6Pdr5IKro00wV6GuJSRncsIqom5IEmLqfk9ZhuPabQ8cnFAGkVqpIwllu0VuRRB6Ellhylp5i3fSZtkaONQxe59WeO440BO6se11JjtCoQ+ORuAydzceMUA8TAjsvOXSJESIEf1+jVY/qVBplaIUpz+lmOUSE6t4xkIdPtOieDw8jiXi6/7XXsuflWppdW2D9IuSbKSHtd3DAkHVzYdN5TGsK56pJHI7h2BGXHkHa4J5JuQuGG9XVSdXo75ckpEIIsikjyAUYbCp4kyLpgLQKFQCJMRs9kfOMN1zIfjAMQRB6Mp0xPaiZGE4gn0EbTTS7OvnILW9hsXHDS7bu/+7v5+Z//eebn5xFCYIzh9ttv52d+5md45zvfeaHNuaTg2h142STCSpJSmf5IiMw0dmo9UmFspnpa5ML5grJgSLCkoA2xN46wHkL7GCk4kRr2BYYxXaVqNU+WH+R48VFWZi+OxoPNNANHUpe78bLJIbukJXGc4ZT9tSixsy+ksLEE6MUh3Z6h7ugL/OZztzlK+5TiACeV1PQk2leMFH2EUkQjdaae0MhcUJQldoSXc9vI176gsypHMP9km/njhoFZv0ZlsUg9ShgZxHixi3XXIweFsoCLl04h8hAnt1zhzvKk3EaiPE6kmroXInJLaA0TUYFD+QmW+ouc7F2YiBqbaaxVDNwYJ/GRel1s141BGYVbOH+abqew46pxRqYrxIOMPNUghl5Tq2KELOL5LnvGq4BisKEQtePNIKymLBSkhplyA2NgkIzStYdZaC8h9/eYe6JNZzmmsuNWJvZdhVQOOkvRWcqg1WDQXKF5/CjmBRAop6KnVMEl2FHBOOW19+QqIdeTBseevzTcjUiymEHUpTfokBhFG0PHWrSzITXfeJy6h2w2wUmjiElZcFYwkUX3l9Y+q1sd8sULn+aRdzqsDFKuGVzBWHH30BYRYUkZF6OcypI923GtUB5WG+42B+SpZtAdera1K9CuwKrhCbI8JvS7jHrzGHV6VHXqZaiZMu71E1y1Z9i/1ipGRYFHVh6mM2gy1587K/u28OLGRmeVxnCSLlGesNTeSi/dwllCPyW91GT08i4lp4KbWOpfPs7Uhx8AbbDW8viU5b5Sgyt+5v/i9XOMsByLDl8c2zcBvZVFovkF3CxCGI0wmnbt0yTmEB3nK/zXw99PZ/L/4Y3NUi4XyN2coOshckCD33PJw5x+LSIqp3RnLLXFInmzyi3hNprOLk60+yhbReCgXdhVvpqdzghf7Bylnby4NPIOL/fpN5Z5MO8jChDEu/HTHaCK1I87pDYFnbPrG24853Opqo9B4yYKK1NcPUroOVSrY/iiy5Rfoyp8ZKCZ18c5+vgSJAnBygr1LKdkDKG1lLWhMz9Hco4Frs4UeZISpgNy0aBS0GjZA6PxIo0/CBn96X922udnrruJ6//Jd1Ksj4K1xLTIZ/u4jZjYGa6T7eo/o3yWKzUW/Sn+xdftw+Yx6Qb9OseBLBpnpb/A3fN3X9B2b2ELFwoXnHT71V/9Va666ip27NhBr9fj6quv5g1veAOvec1r+MVf/MULbc4lg1xbBEONO636a9X2nFSTbVv/mc6aRHoeKGsxKh3aoCSoYCjgndfJpcuD/m5m+zEjUvE1ZhcYeNS9n5OHLtIEnGnwNyzw3Q5KKwarehfnSrqdFul2USuYbsB5MqOnu/SCmNwzCFFHVoJhJIt0EbnBHeSkYU7ol/Ck97zHO4XTNN1u/teIH/708PXAJ1uNzLT9PoJ1EsftDzf9AokQkAQue2vL+GS03RrHZZ0kz8AoKtowvkp4Hesf5/7l+8+1K14QbJpTckvIkiT3E8QGnS03MejQDItQbAJ2XT2BH7pkiSaOV/tQnJ6qVXBDjup1LRLfKXOi3SBwHEoEvG7/IfYWByTRTiyCE8kx/n7lI3ihQ2c55vjDDYRyUa63/ues68plL0DY95Sm2ylZysLg6rX3hJUYYfnSw1Wu9r79bLviOaGUQyEsUypUKFCjiqSuHcyGvpLGR264r5esIcBjMh8lMGVUcXzdZuWSL1x4oiA7dpxe4yQVG9DaXsbLJlE2xOk9iSMdoupqEYVzSNOtjBSwBoyx6MxQqgVoT6IyCysxNtMk2XDOEcBNR7+K0BuI8g3LBrEqxG2tYiJziU3Cw+3HONI+ctb2beHFi3KhsvbYAh9tT3O4cT3HO8fIzUuviuQWLgCeIdKtkzfp5m0yX1B6dIn8s/fxgS/+Cb/7hT/lr+fu4Ffe4fCPNym8hWHETKT7mJdIMQ+jNRPSIwsqWKmwUpG7LUTRJZYZxhrS1XVwwVEc379EXE5RicTJFUkpozc2YHl7m6iSoPqWytLQaVh2KrwVlwMNARYcXcPNRjk0PsUERQ6bFvfMvXi0t7U2fOrhBaSdJcnrFEY10q6vab04J7U59bKF4tlXLj0FZ1sRIQRe4mDl6ddtLNq4yuEKOcaVapSThaPcc+g+ODmH+Pzn1laVDoLJ1YJdyQWOdIstRF4B6yU4uoYyJRCSYiOlNxUjXMXcEyuceOx0KSgnGGZhJEEfFOjlmFsevI+bkn9AWItAkKoVEiekM7GbR0b2YaVL2a7LEbiOQz+e5Gh/lvfc8R7+6MAfkWzJEmzhJYYz2ilmWca/+lf/il/6pV/isssuO6sTep7HH/zBH/BLv/RLHDhwgF6vx0033cS+ffvO6ngXCp9c/FuKUeGcjzMd7OD66i1Pez3JNJoeRmm06qDS7cM30hRdWd9gbRbpVk0tvWiDcGbWJw404eAKHPEVml6dX18a8G5XsssNuMJO8XjpOMePLAD7N8WmZ4PJNbgKHedENHCVRMsYPxJoeaqa3imG6twj3S5WeunTI+xemB3P1+LErIvER05A3E/wQnd1sZDTG+kjS/CNk287I3M3VtTNUr3Wh1IpcqVwTY5KUoSzvvgNWxGJTomVwEnHyL15zNg4e+ZPMptP0HZr9JJ5fMdFWsGucJpVbVoWBxcmEknHGYWwzGJxuIAXxsViCbopTpLDuQ8LzwrHVYzOVGgudEkTn2IzQD1FY7DgKQ7n29aej09U6Y0ITnaalP0Qv1fjmqkedx3bQd65hmLhEA807uddr6my8mjC0tEuTzy4jTd+7zevHePIl7/EytHDmCwji2P8UpnnQmdlgHIVwlfoOEYEQ2LGEFN7/Bgn6jFJpqgXXziJeybYmM54eTmBeFi9VKsOFg1I6o23cv3EIY6dHDoKFjbcT67xT3NBibCEbl94h0K+uEC76FPTIa1qgrNqYn3eBzLS+rCd5zIPjM1UaS316TWHuoClkZAscKAzHDvNICfOHYytIkhQaZfRuWWWdw7TSqRZJ2TlGunmMCbWU6wv1L25hUsLUg7ngDsjnx9eHGVgJEpU+fCXP8Jv7/gsb9715ots4RZedLjvf60/dkLQOd28TUlVsI0mfmPA0ZpgNPHoiITUG45Jzu6dlOYjdLENE6PEekDBOb8yEBcDRq9Hva+9tupcilermiZ5iue4OJ4iV8Nx3U89Sgsh3ZGI7kQfJ1WEDYewaVDawWIRwLtEyHd3FA/mEdoHJ6vRDPq8ytTxjOTA3J286bJvuKBtPlscXhnQi3MuH8+59zUJE2M5YsVFiz6FtsKJn+B4OkZ9+/lZxDmjAbZoKDVDsg1LnTTXHKHA7ngJ5VW5LZvhTn+BT9qP8OP3KkSxSBrHGJ0DlooQ+OUyy08+wfjlF25vHK9Sf9YKgmgvhhi/bzCyS7+ecsffPYxguBOZ3ju6JnN02atex5N3fJ7e8hJpGBO6VVhIKe5ZQdocLVxcPYUhxdOSnhNw8ppRZh5uoVKJ9gy+l6LSCW5wd3A4W+C37v0tPnvis/zRN/7RBWv/Fraw2TijSDfXdfnrv/7r83LinTt38k3f9E1813d91yVPuAFkJiE9h79ID1hOF3iy/xhP9h992vFzY1GUcHUVhKC0bKie7BEmkG/Y724W6ZY4kkFtPaIld0IcXUHpCkrkFG3M3brOR1ou9+oBb9P7qdoROqPz3PPxI5ti07NB5AaSnKJfI2QER9dApBQbOQuc7k0/H5pu5y3E7JxsODvyzz6D7YldJ91ct0RQ9BFCoLqLhM1lMk8TjDw3yfJMcDaQbnlq1uwXQrBUK7NcDMgc5zSqXwmPRHkIhlWPjMowgSYVDi2nQNup8Gi7y2wyANdQzRQ3uVeyP9hDkl8YL1jWjcETJHmG36khklEEgqTsY/2U4r6pTT1/uR4SFD1kUKRfj4kLHaxpItKM5W5EyRMctePcbS/j8ewqptIvIptfAqPpRD3SfsI1xSY3VcuU0hkcW2RMTXJg5Ha27akyuqPE4tEOn/zDh9bOKYQkbrdIB33y5PkreaZRRmcpwq/7qCAgdzqk7jypP8/kkkPcKPDlB0apnseqyxuxUbNn1BuysjKXIE5piggsOTftMXzvtx1mcjSimTs8VjrEkcJx5FMjOnNLvtLYFFufC7rVYm5qgpl0Ais9ctkllx0684Ll9AjJyLmTboWKT22iRFjyCIoutbES+YbDmSjHKdeQoo0QMYgYb7AhfTndkDquImThEE4wyxglXqN3cJ2c4UT3xFnbt4UXL67b/zoATmpFxzjkSBIrKeWTHOscu8jWbeHFhiMPzWPy9Qrm5BHohF7epac79KsKrxHRKMGKn5J5gmrPMtECWQpAQDRTJXJzEvPSiJoxOkep9XnUS3tDYTsgyRJCbeidPEQ4f5RSOyNflfNQmUJECi9yqC4VSYs50UgODKUFhuvc4XpRRhk4BZQpIU2RQeCwbAfcmIwx2zl6gVt89jgw2+bamQpjTkbmG4QAZSooW8S4El8M6MsqM5efe5QbgApdZOJgpKVfHa6BDDmeo1BejkNCd9BjUpSpRSEEMXmcQ6WCrlSIS0W0H5Bai2l3SLoX1vHnZAlj3SXyFDJnBSNTvCSj3PbJPIPrKxBDZ/Disdba9wr1EZTn4YYhuZtBUSELPsXiNOXsJFL3EXaAkCsEWQc/j2lsL5NXIupHQ47PhnT7PjYepSyKKARF6XOie4J+dnEkjLawhc3AGaeXfvu3fzsf+chHzumkH/rQh7j22msJgoAgCLj22mv54Ac/eE7H3Gy40sc7hz8lFH3dYyGd43h05GnHz/U6OWK1wCiHqOrjZAbtr793vqv/nYKyAitTMtUibEY4yYBMrWBFxlRxQIJLw7p8Pq3QzYpMUSAYlDncO8yhry6xePTCaQ/YbHXjuYG8sSIH6eKthoace3rp+q1xqaSXPhOB9sx47jbnZFSbPqVFDxOnxHFGqjXWr1Bo9Sg3Qwo7z1w30PU3VC9N9GnXqiMgyHJSJSHfoOPQahAmEVrEyLyAzEo0K3u5msNMmS61rE07sxSsAGFxspxu2qabtHGVy0PLD7HZGCw3KIcVsumcpNLC2VDExO0YClP1TT3/6HRlWCUqXyWGRI6QdaznMlYOqYQ+CR43uisUZrbTu/Wb6F79dtrlcULXIUlz9hWKHB1keI2biVWXTGfc3v8Mr/qnu4l7GYNuShLlPHnfUNfM8YO182cvgHQz2pDFBuGA7rXw8jG8bAppfJ6UfY7LHlMlQzXYLNJtPfpv1Dc8ieZ4DkZGq1qVFpCU5Tg7Jw03XnuS2G/jZQHkCpuvk3a6t4yJ2+h2a1NsfS6kx47hpAlzxR6unsIxZbCCYjei6kyRjp8qEHNuyhA7rxrnpq/by81v3kdltIAaDcjLDnnFYfmxFcb2XIHWRdKshJAGleZgUlJnmcxtrfshrI8Z7CGPdlMk5EG5gLaaZnJxilBs4eKi4lUY9MqUunV+RICLYVTmZL19PH70IBz6FLRePJv2LVw4tPoZj8/1uedQi/sOtXl0ts/CQp/5xQH3PbTCfQdXePxwG3R6WrS+003oBetzcrskWKzBkVKMWlonLTZ+58UMqzWJXF/8xp5HHgUs9xq04x6RkjyhE6KpXSxvK67t8txUIRKX1rYezekexUZAcUlR6tdwMrsqGyAQwqKx2KhN5jSwIkfZAZEwbBNVep1lHv7U3/PwJ/+OLI6e2chLBEdW+phUE5mUtOsg+jUsKSLXFJp9MruNfg47bzx/jlMx5uKmEivT4RoIhzjLeUJsRzkFFA5VXCIVscuG9OIUBgPCsXFqe66g6PkI12WkVMYJNzGN4qmwllZQZbk8ju8UEGJYPKlycoVubUBcyHBdhTXDommDzjqJLYSgOjVDHsdYx6DbMaJQQo98Pa+5vIjAomUfaDAoPETiQuoqDl2zh6Qu2DETsWt6QO72OBjP8o2FXQirUdbyaOPpQSpb2MKLFWcsRLRv3z7e8573cPvtt/OKV7yC4lPy4N/97nc/5/f//b//9/zmb/4mP/ETP8GrX/1qAO644w5+8id/kmPHjvGe97znTE26IHjLxLdSqVSe/4PPgka6xF/O/dHqs6eTJ1G6nv8vlCapBhSXB4DGqg2k2yZFurkoEBplikR1F5lnuLqENn0qboXXde7is7XXcTAzHE/LfF1Yo1DoMNc9wtKxLnd85BBv/dfXDz0hmwyb5ljAU0MSwogUxFDUnitbfHzhw6SrXs3zUUjBXiwtkLNMa32+Fvfp0akmWAQFXSNYbavTT9n2hMVKSfEsiKSNmm5pnA9Lhp86Z7XM9GKTPO+fptHie2NEfoiyIPEwbo+jO27h8m84ztxcyoP3ljnQz/mmIMSkhrI0fL25kd8RH2dpscvnTnyOa8auOWNbzwTLR05gAosVq15gs05IebHAndr8lJWZfaPM3zFM2TMbtEKMtZQ9jyfsKIvF/Xz55t8ZvmENUeMfuKpYI9eaq5Mmu8oz3LtcptzZT7P+VeJOn/sX7+ef/rtb+NBPfYGj7RV6KzFTl1dx/PWCB3n8/JsVnVuiboaol1GlDeOkzdljSjxCysogIvQ2Z3zYSLpVXEkRwaR2OB4eJQmPUm6+jjC5HJFXUFmVa/Ys8YWvTNB2W9zQuwY2BLqp0hjYDNN7bFNsfc52dLqYUoWx8jY6aAQK7XTYkyj6pZiO6oIFbc+vPta2q8ZpHmxhJDQONxn7hp2opU+jFJQKoxALkB5ePkZk1jvrVHopgKN9QlwO2nlk41ESneCrzSmcsYVLE/HKCvHSLvYDkxh+lx4rRiKSEb58tI31P4VIe1DbdbFN3cIlhqOLEU8unE7i1KXi/sf7HDw4LMxSCB32vTkj0uvRL243IdowfgtrsULQFBFOb3WuNJZIX9oE0QuFyXMC6QzXh0JghcYJY8YYYanXAGvpp6uOTQOrpadRmaLYX+0oDf2R4bw+dWK4nhEVgV31nYdC4hsQ+Qha9Egdl/HCXirpY/zf+AHedvQRAjzaJ+cYu2zPhe2AM8DjCz0OLPZ4y3SKmnJRWiJtgHUUTi6xdKi4CjUx/vwHe4FwXA8v9gCNXZ3DA9fhM4W38rrB/2SsvAeVu9QKHqUsI0x6kEK69ypUtYy6/z5CwMlT2oMuRmuk2vx9Fd0uenXNLnUBJxtFIKkt5JS6BY55bQbd4f0UdROUc7rjb2r/tRy5+3YGskWxWyWNe2RzfUqv2knxkXvplq8EUwfxawgvwHArnXEHo0pAjywXhE6ZThRyQ7id/60fI41zHlx6gJsnb9789m9hCxcAZ+wu/9CHPkStVuOee+7h93//93nf+9639vf+97//eb//u7/7u/zBH/wB733ve/nWb/1WvvVbv5X3vve9/P7v/z6/8zu/czZteJFgA4nzDO+ubIgMEKubGj/OMSp5SoTT5pBuzuqlsC7SLjEiRdkiNbGNdOp+qnkXbeG3WlWmTJlfzd7EyYnHkUpw4uEms49doOiGNMdYi6uCVZtzsAo3NUSTfVKTMOFt46bKbbx9+vvP6hSnRRRepEC3p/3SZ2PHU4i73OQshYtgYPzYxBq5aI1hZDYiDTJm987hFc7cw6aUpDYZIqUg7uen9aEZqZMpiTIWMVgGeyrlYT3CSJrhBl0rQ3lyB2+6bYF//s+O82BeojnoI6xgFMvlahsTtkqmM748/+UztvNM0XjyOHJUoD0DxkXqEliLTDUqM3gjm0+6FSoB4Wr0mZUbigMIwWTJo0eRw+7GNH0BE9tpDnpIKdF9j6uLLTwh6DVfjZcViXTEr979qwQFlzd//368wGFlrs8nPngAr1Bci3bL4ucvpHAq0k0WTo9kE6vp3l0s1cDdtEjdjaRbQQmWsMP00lVop7W6AHaQ6Si+Z7lyd05h8MyLbaE8dOPCp5dGx0/g+BXaE3JIuIkImUXkUtMb7TPmTjDlzXBd+RXn9bxqPMR6EmlANhISd3LtPd/PkHaj40etDU5CrL8eacV36WsoW48DKwf41NFPnVcbt3Dp4//q29ce1xDslCkVqbE4HO1NsKBjiLeiILfwdOhnyCho+gHR1/zs2vM4zrFZQidvAVBaiPGX+rSLICxU8HlFeAWeVTzutnCXejjdBKQgNs8/j70okGZo5a6v3cS6AybNMxCC7kqH4P4eYpV0Ezn4fZdq18eNFRtqQRF2PawEdzpEqPVj+b0IQ4ayJbTjcXziKm6yQ+3YrhoSdrMP3rv57T0H3H5oGWFhzDNIZam23oiwHk6UM/1Ig4GW7NiuIAie/2AvEKoc4MYOKpeYDWu1auByIlkhyQbUnQKvSLaxX9YJBKRW8bmPL/DJj84TqQAJVFcn2fRCFVNoNslXNTndfAywpO4Chd7wvkzC4bUhJEgl6DUjjj2yrt2qHAc3CEmCAbmXQWYZ3LOADMtoZ2L4IeHipxKpH8TvzCEsWHcEjML3LOWwQJRPEy053OKNklnD7z3wexdPV3sLWzjPOONIt8OHz630dpZlvPKVr3za6694xSvI85dudaunqHM97f1W1CJzFFZoTJ5TXBkQdBJEUMDadQ+d3KRN65DAyjAyRRkwSiLtcAAWxmX/1GXER5qcSGJ0UOMzacqNQZkgkKiJjEJc5MHPnGD3dWObYt9G2DinkRn6SQPX0yipCXqjeP2MpJxRlkPyJlABjjzLqpKXRKTb8zx/NjzHNbKSLuKlLoWGRLRDMAmZp3CNxtCnX48IfBf/LCs5WTusithvJ6fZkYUB7moFRJ0myNVUVCddJ90CUyfJRgCLMkWkBE8aZp1trERzRHnOeKXItsIkVyY72VYyLAwWuG/xPm6cuPGs7H0hGLTbeKNjVBdKDCoOWitcITCeInfaKH9zUiY3QilJIRwuDLVIMKwgGaYAz5Q86rLNEecy1ug/IRDFGt2oQaYTqqUKU15Mai0kM4y0r4QdcywOFnmi+QQ7r9lJqX6MHpalY12EmlnTckv7z71Zsdaic0My0ISBxPbbiOJqVarVioUdLPXi5kU9bSTdHCE4rlKyTOB362hfouV61dm4X2Ap8ZkY0TT7JQ6NHGFXZxyRRsigilAuSBfduvCFFJJGE7lzjEY5I3OWsVi8CFyjEKHFX3U0BCo8r+d1RwJEOuxDz0Cva7HxCEUPhIqGEROrkNobjkXitL0bcQa7TZWuM/SGLw2WzquNW7j0Udj9zdx3/WUYJdl75yzfmff5VFxgkR6xGeG/tuf5VfcJuO+P4cZ3XWxzt3AJIX8mGQ8hwCvhOBKw1Ks+nW6TKIwY96ZQS48ic0M/lFgBHRK2TV9FfCIhz1NMvUReHs47A927sA3aJIg0obcxgnhwcv29RPM90W5Gx25jujXDiaRJ6uRYBxwjCSKPLBiuuVSqKPSrlBshwoBbKZLJLmiBFpo0ipEM1zauNvT9EjN5mUkvoFHocVmwl2zQv3CRWGeIONO0BkN917JnaVuBNCECidQ5onuIJi6j0+dHz+0UZOiguhLtGjJ3EROPY3SAwPDB5AZ+pTCgN0i43h2jThEEeEKz1JR0FjJe9coC1hUU8hS/6NNvrBCUzz7L6oUib3fJ5VDL2docQx+Z9BiUYwbVmKiQURLD9UdtssTKbIeFI02CgsfEzhowjHbrnJwj7cQ4XoDupaRzPSrlCm7jMWKnzDUPPEmWH8bVJR67+p8wKDggh9dkrbxMf2En9/UeZs/MKKkQLNqMo52j7K7u3vQ+2MIWNhvnJgxzFvi+7/s+fvd3f/dpr//+7/8+73jHOy60ORcQzx3p1ul0cfNRvGwCJYv0Rwvk2iDr3gWJdCvjMnIyQaZtwkaHoNMnp00u+tjsKq6++kcZFRFKCqaI+OKgymG6fJd3I636HKWRgDw3aL35BJW1lgVgsrSHkAmEcEkLfaQxFNIS3zj5Nr5x8m3PWCX2heL0SLeL5WU5W9bt2b8R6QGFKCR3BSU7AgUf13HA85EmwY1dbBmUe3ZVJid3V5jaU2V8R5ksWSfUxAYSTw+awJDIcVJNaWWFepZiRELmNsjcBm42/LySkMiAQ6kit3Ckr+lGmqudy+j12ky54/zjsX88K1tfKMxKn6ia0J7skYUtPLHaN9bi2XDToreeCj/wGWtJ6gveGuEm8pwkNyhp+Irdz+jKnThpm1IgCVVOpC1CwCDtc2NZsb/oMmMcgugyBu2MEW+ETxz9BGHZY9c1I/gFl0LF4/hjMbXtuwiqNTqLJ+ktP3s1yqiXIqXCKbvkjVm00OSygbHLuFHCw7qHchKu3V7btL6Js4jZk09ycvEoBV+ireC63CMpN8m9FYzTXfusK12SVFIILA2nS5gXMeSo4tiQcAOEci9O9dJWm9aowQlHcPMxvHwckUc8Yfpc4Y6dl7HtmSBLHnJbkbTmIjxJ3E8xNifJUtLcIjZGutkC2NU0FDW8x6/Z2+K+axbp7R/ldZWreOXYTegNxS228PKAW9pGFrpoT5EUPX64OuBw5rKQVomjbSzrdBjl3J272KZu4RKD+7TdiEHoBLHyJDKskOeWpZWYhskYcYfzn9MbRhKd0nTzpEfFr3AgPcYjZp52c4XSI4tUH1o8A03cSxuusThy3dGnnfV2xd1xri78Iv+08PWUmyOofJ0MW4kkvY6iNlfC7SuUFhhivCTEjAc442WCiS7eaB8BZL2U1F0cFgOwGhu1iaSkbgp0whgpFUG1zvKTT1zI5r9gLHRibt1V56rJE6RKEjdHyWQDLbr4nQgpPJr5GOM7zi+h5W4r4qxWmJcmxBVFfEexrVLks1YhvBJZllGTIZ6VPEyDuX5IL3VwXEU3khgUiZSMuwGtuePn1b5nw2CuQTDoYfsttNPFOpYs6JCGGX7kon1LrxUjlaQyVhzu93LD7BMrPPaVEww6CaWxCbTOYEIOK7EqQfOvH8eVktgdxx+cpB3uJli6jwfvu4vK/GGkDnGTEfqtGsofELmWqK642V6LEJLLnBKfePh/X5A+2MIWNhtnHAb0Az/wA8/5/h/+4R8+7zE+9KEP8YlPfILbbrsNgLvuuotjx47xzne+k5/6qZ9a+9xv/uZvnql5lyyej8RJ8nwtakBkIDNNKdY4BY+N1MlmabrlUtLY5lNpWSI5nIQchgSXQCCcnK+55VZ2yTE6/Yje3HFmWGKp12eu1Gb5UJf6VIHZR5vsvPrMRfjPCP2EpW4XOTkMdbciQxgHL8oJzlM0jZAbI90uhcXa2f7up9veyldo1oZkwvjRADKNdSTCWsrLAqUFk1dceU6Wzh8aHj/uZWuvqXKZXAq04+AmPVyG6aty0Kc3uhcAJ68jdIDSam1TrwXETsj9EXzdRJmVOOPuI0X2lPfwJ/VPsNxsIhw1vE43ifyy2qUVdje8MLxTVWYwInuWb51/FCsBbQxZrcv4fIbAxToOMyNlmnkZFdRYWe3LXmygcBmyl7B3bDudqMtlJ+6h3JxnTl3PtuVb6M38X9wEDrcP08/6XPOG7dz7yeP4BYdHvrTI69+2h0Nf/DSOH9A8cYzS2MQz2jXoxJx8ok2i29R33oDFIIwEAdqdZb8q8T/zAUGyeZHMThAws+1yAI40HiWSOd3cQ2iJVQYjYgwJRqQYYxmrx7QcxVF/ha/PrhoOuhuhPMRZpFifK2LPIw9yjAItB0jjU2pL9soiytm8a00oAb0Mr5uhB5rmQg8/zahUErK8iNhQ8ViaAqxquQXecHzZu7tLZ2wAeLiyxhcfv5Pp6o5Ns3cLlyiydb1J7UgaRc2NosNcAie7Mcu6y7E8Y2d581PyX2w4+sB9KNcj6rbY88pXIeWlFz20mWhHpztsPROTqgKM70UUatBtAdBIGhyPh9fZFc0U6fsUMs2ILONKjzF3hJIsUM8dYgX9q4bzViNahNoFbNAmoX9ylnzi+rXnIizTjwYIJRhkgn5uODyIqC2XiMrJMErZCvzYpRa5PFQboB2DkAKZ55SaLhAjQwccj7TpIQVMJoqT2bDvEk/THZmhslylF6WsOH06cyfxS2W6i/NM7Du3NeNmYKGTcPfRJv7kPYwUt7NSzvBWhpk4Xt7BlVOMFBrUrji/msDCVzjRcB+yUQokcB0GWZmcHpWwyqSB1NVMU0CWMrJMoITh/tky/2RmmV6ukLpNz3NYOXqY3tICOsuY2HcVpbHzp0F3CnEnor1zDAFI20HpEkY+zMjCFI2pDqf2IMqRlKsBWTxcz0XdhLifUN9WZnznbg7ffTtNd5bxYBeyK8nyiPLDDY5fPoK10zjFGjNhh4+reS5rZiAqZH6Dog/VYBzTGWeRz7PffD/Hk0+iRIdw6f7z3t4tbOFi4Iwj3ZrN5ml/i4uLfPrTn+bDH/4wrVbreb9/4MABbr75ZsbHxzl06BCHDh1ibGyMm2++mQMHDnDvvfdy7733ct99951Fc14ceCaPW27WCQPhBBhX4UY5zkhw2uc3i3Q75TnTaj2VzGR3MigcAI4zojWyUubqyRqv3jNNr76NEVPhhnSE7swcRluWjvZ45Evzm2LfRthMs5KuT2ZWZAir8PoxpcL5SmG7FEg3e1be2ee6RlKzvinCLYOrhmSVtpQblry8zLa9+8/GWACK1fX+7zbWfyNVKBB5Dn6akT95cP11J0RmQzJBGherYnKvj7SrpJy0LCuPj5qZ4UKw6HOVSTh2dCdXmGnats+XF7/CbG/2rG1+Pgjj4bnrnmWxOmyq3JwmwL/ZKI2EuKv7knXtRSj5LgZF7jx9I9ucmCHKMurFGiG7+KblT9JWcMyB/QuvZiVb4eNHPs5Dyw9RGQu46tVTJIOcxaNd8KZwwwJ5EnPyoQfIN2yoNyKNNUtHB2ixPLSNDTp9q0UzljHUws1Lw42TDcLa0qPpJBQRSD30K1mZIvFxbBkdVyiElm3jOeq1LTpugnROHzeEVCSPPb5p9j4TrLUER5+kpAtor4gyBSyaQmeV5C1t7sWmqsPjy9QwaEf0TB0hDJ7bRZr1pYLKy2uPT0nhjNXXr8f8VEpxcuEqWm/h0oDcEOmehYrP3jTg9W+d4599xxwzYyGPRG1+rXU/dE/Ck5sbofxiQZRHWGv5yH/5j/yf//Bz/O1v/CrtxYWLbdYFR5afTrop1p00qrIuW9K1G+ahg09ikoSj49AwXWyWUc59embAcdlhxV3/bJJdIG2sTYQ1Bsdaev66Q6htZimGBQpeyKB1Bc1M8ydHupRyl7f88SvZc88Md907SvfgKCXp8Mb/czOv+pNX840fvJXX/9U6eacqHt41V4JxwCiq/Y3RzcO5e6eznTGvxBeW78OEHkmvS3P2GDrPLxHn9DrmO0NHkZAJInSRdn2Od1YdgEGgYeT8Bgm4YyFONlx3bCx6FbqKPBvnQG4peD5XOuNcxxRVAo44Me1vuJdHrvwsC12PREvKrqacavoL8zzyqY9x4v57OHnwAZ744mfOq72n4HSHGrYWg6MrWDQqG87hcTFb21coR6JcRbBhPWIN9FvD/q5OTZMnMfP1x3H2FiHWBA81QAjSwhSLo68BYM8VV9OuLFNqrdtQDA1aV2gWMjqLDf5D9QdZNDGfbxyk23v5jYlbeOnhjCPd/uZv/uZprxlj+JEf+RH27Hn+Kjaf+czmDBiXOp6XLLMeOT2QOTJfHcyiDG+mfNpktlnRPI50wYCWHdwowgoXkRToj8REwQmabg/HraJtirQOb7i6yl+KPqPSoeoJgn9+hDzRHBVP8vGF81vieTrYcVo6lc00bZ1wKmHRiAw3lQgyCt752diLDZU3L1566VNwFmY89SvZBtItKVWGEWLWUFnq0S93SEZzlHP2fTixu8L4zhLN+QGdlfWNuOt5LBdDhIXSyhxC9rFm+As6SUrqumDWz2uFAxYKIqVMn6NyhEc7i+wIFRMlSTo/xUjjKmbG25ykyW/f99u89/XvPWu7nw3NhS5WhuSOxuv7aKcIViDTjMpiF3sBg6FKlQC1qABN5jQp9EOMK7FCcGtNU/A2FBPwJLmx7H7ztyDu/SitZpd6oYQQRbaXXOZ6Gdfn6xuZxWgRIQRX3DrJ7KNN4n7O/Z+a5dZv+jqWDj1Gd3GeL//Z/+C27/shhFy/N6yx/N1/exBsjCrFmDwFmaNVhpUJziDiCCVWsNQKm0e6aQXN1iKO4yKRWDfmZGyQuYP20tPEpnt9n8cPVLn5mjZTVwvuvuwhvv5/Pl1n1PQjrNaIC6RXY/oDpDFUdQnEcINgnAHewHKCAVP1M68ofCYI9tXRUY5uxDiRIVbr5JoS6+OGoytIHWKciLERgaM0I7X1993VFN12euHTc7dwcZEZseaHyB1JLtdnIN83+IMruCf7Cv9zcIx3Hv087HwtOOdPxPxFh7vvwrn3K2RY9r9+N7+98iXeMnsjnz0ikUcXKAWKr7th83VyLwWkTyHdWktNil6fvDSCV5+E0EFJQSRyQlnFyyX+wpBIS1anlj4pv3pwPUOm4WfM5AbrSOLsxa/pZrRGWVgoT4E1CJ3SkIc5NTPkWYlHki433Ps52PFteImDSBWJlQyyGDwPL3GoBwIjBW7iYAF3MsTbUUZ4Endijmw5xe+CFk0sHsIo/CwmdgL2LVd5uLzMr6u/5P8nvp2k2+HOP/49bvj2f0Zp9NK5VhfbMWOBA25GHjqIfF0HVaQZKzrl+ldXwDlL3edngTMS4iSKYjNAmD656SFFESkFtULGX3dcXlM4gnG3o5A8Kpb5K/sgH+k8ii3CNYU38FCjxq5yn1qQMqocvDynYgVdJVnodbjnL/+EV3zX955Xu9kwVueiB8QU2pJuNaJbG4BdJd3c4Xro8uunSKKMQ/cONQXbS8N7ceqqa8mThP7KErPNB9lWuRJ6GU6myV3FIJhBy4Bd2ye4f2yBcLB77byj1QyQdN0a7e4Kr/LexCv83TyQHOORe36XW77mP5zfNm9hCxcY50XTTUrJT/3UT/G+973vfBzuJY9nil5SooxDCWWqlJehtDygmBi8sdIFiXRTcrUyokrJwpA8cKh0DfX2PyC5i8Q/CKW7iO0sqe3hCkkm9mFcgSckppigyhZZMLS7PVKTnJe/lXSRQ/1H+WrrjvU+8Bx6WcRS/xCpO49WHVQuyfwccZ4m0EsivdSu/QdA0j33yJHUrBJhVqAyjck0WI2VMZiUy/aem1ZUoeohhGBid4UsXo94cn2fyHdJHIXePo216wRM9fgsdZvjYCnlO3DSEYyKENbHUZaS6lNUHf50UGC2NyA2KfsmG4x291CNtzEhanxl/issR8vnZPszIR2kODIgKWakxQRlSiAMTmZxY4tfLj//Qc4TpJJ4qwsfIRy0p7BCUOk2+Jp9Oyn568TSIDWkuaU8vZPiK95MP0+Yby9z445dfAefZrvrEpo9XN69nhvqN/HZY58FYOaKOuXRkLEdJaJuSn37TpTr4RWKhNU6/dbKaTY9etc8lTEfbyKjsP1K0m4DIQTKFnB0HTfP2Y1iz1TIrpHzK1i8EcJV1GsTlEt1XOVTDyJ2oKgtj+MkE1i5fi0a43B0tkyaC3QO7sA5bYy12SL58mPDYgqdCxetZdottPIZNeMY0SFTDXLZQ8sE60rU6Oam5AlfoYouZjyg7DqkRhFlFaK4jGCdQA+TDOxwnM1yePtUQmG+hEwlQSQZyXxeUdrPROGZ05G38NJFumGqNK4iWU0/zjNBIUjptPcyMCkn0w7oFLLoWY708sBKaw4XiYdilAJ9PwMvAATGQppfIg6/TYa1lkrooDYsb6fSLiUlqcVtCiPbGEQ53X5GzyZEpk9bdvFaEbkEvbqTMWgC4SOFpCQCvjydUL/7OJUHTuJHm683vNmwRiOEwkoFQiJtzkpvPfVukLh8cQXuqq2ne25/YIqD91bpdU6QLzxEZrpIJaHiYjxJMuZjpgrI0MGdLoF0cEo5Mo8QhDi2iLQFEjdgxcJORghSj75I6NQEThDiBiH9xqVVOOdkJ2Y5zklsREMmuNkEuWohshSn1cHxBWLs/EvhyJKLqzT9ekwWpDiyhBSCpW7MTNnj83EJZfpgDRmaARkH5RJCCEbdURZveICGqpEKh3YesDu1jFtJGcmkthSihLjTxpjzp5k6WGjSIkSmi2AFji1hlUAISbkd4qsik/FuSvWQkanhmrc2XmJsukp9soQfOuSZxhhLaWwcr1DEK5YIdtSgJlA1j7G5LqW4jav7zG77Dkpmjl61j9vPCXqTeIMRaqHAd+dImcEYjcHyS6V3c7U/wiOdw2uFubawhTXc+TvwgVvh998I9/zxxbbmeXHeCikcOnToBVUfjeOY//Jf/gtvfetbeeUrX8nNN9982t/LFjYmYQmt2gzGSsRlj1ym3K4/y1IyTyBDqk4dR5xfr8wpnKryqeUAlQwoNiLCrs+uE49S6yzhZQbHKNL0KzgixFqJyWsMspRa6oGrybsCkTqYgcCT/nn5G+g+i+lJHu0dWLPVtAcITzFe3IOXTaFMES8KsMIi1Pnqn4tfSOGp9OoX/vo4Rw+sPONnnx2n2+5Yj0LLp7hSI66WUJ4DyqPcVFS6o1SuuOycbK5NFFg82mXusRZLx9Y9y24QoGZmKOer9IZoYfMUk0XkShFrcHVOahKUVGjVQ+UlfJGSah8EfKJXol4sU/YN11W63JBNUolHaNs+/bTPe770Hr668NVzsv+pyAcZwqR0w6EXz83GECjSkkdleYBbvXChbkIIijqgvOijNlR9zaXDK0qWbuxyotWhMRjgu1ArOmTawL4rGCvVkcLFcSpM9x4h9CVZd4aWt0Q76tBO2+QmRyqJdAR5anA8xWN3zxNUKqTRAJPnHLnrS8Sd9Qimxsk+JrfYEKTjoAolRJ6QOcvkqo1KcxIsd8wP8J+ulH3++mZDBVlHOpTdDI1FOylG9dlYftOVkkcPVzi5EOK4gsFYjHbW3xfuBM7YFQRXX4tuNjfN5qcib7Y4PnkZ0UgJZeu4egSBobqiSJwewt28SEEApx6QHeuiFmO2T1aobJsgdDuEQRdHrv/miVdE2lUnjTFcsbtNOtPDeIY4NNiSzz29h3lw6cFNtXcLlx5SvT5rGfJT8pc4rmWkqnF0ib3uZesk98ucdIvS9ZTHwDq8I7iRa3ftO33N8fBBuPtueOgARM9dSfrFCm1guZuhLWA0IksY8xzisIyRDt7G6PskJ2hLvHaOlAWibSMATHiX8drRf86rR76Ly8ObyYSl50MyUaJz/TbmC/1LLgXyTGG0pl2Zwc1TpNFoPaDr5ix0l2k0oBVJvjZX3FTYtfadNpZYwM3H7kJWpkEopJK4jmIw6tG4usL8pMcTX51l9skGeUeTd3wcimRqhcxZQYse5f4KqeMzk5ZJVIojPQa7KgggqFTJokvrXlZScF09YEaXSEcLGDXAiAwrHbx0WHGdfVec9/MKKVDRMN5Xqz65Hc6dk5WQerFMKgdkXowUgiGtZHlSDtcZQgi+lH6GQbWOR45SAywWx2qE1SjHYTwoUBwdI+l2n9WGjVg42mT+SJP5ww1WTj6zE7HzyCwDr4TxJtayqaxMwKTE9YyxqQmuGruasekK9cl1559yJEIKkignGWSk8VAqprZ9B535OVonj5OXMkysKUQZWVDBy7vYsMhoegClDEGUkPp9rNB4+ISFnCyqcXjlEBJJQRRwrcOcjmDx4DPav4WXF/SRE+Sf+Cz6U59Dz/Zg+VGY+yo8+dmLbdrz4owZio2FDmDooTp58iQf/ehHede7nr8E/L/8l/+ST3ziE7z97W/n1ltvPad0yfe+9718+MMf5pFHHiEMQ17zmtfw67/+61x55bqXJ45jfvqnf5o///M/J0kSvuEbvoHf+Z3fYXJy8qzPezZ4rgg1bTSKKRwUOcNB0Y01aZDTL0WEFAhVgelgJ0VncyJrlDwl/Bmj/QJ9H/yozi0P3sXVD9+LvuK1pNUb+cf7Pkr2BoUjXbqNKb7+xCRaneTT1xiy/3M5uYSp68f4xn99/fOc8YXhj499gNg8ZTLPDdmG6yZ32nhWkwU54jylqpwe6XZxPKRPjYg8/njC8sqjjM4MI4bGtpeYuWKEpeMd8tRwyzcPCbPnutY6eZNBLcFJS5SWDFYNiRA3zrEYZPncNPHCkotUAqMtUT+nthrR73k+s90WVyYJHD0GN6QIx0MAYSeh6TiAgzAhiXcU14DSFayEt8h7+HP9JhKV8l/vv4NfedX1GBtzm1jm0ONv4c5bPg95wmdOfIbACbh58vyR962THWyxjisyEnKkWe8flRmccvgc3z7/yKWkO5FQbg8II8BaBqUamS2xmyZT1WERlCSDJMsZKWmYKmIch8lKFUcJ0v4cy/0l/LzOSH+KJ/x76bc6HG4fZl99H2/9kev44L/5AstAnhte8517mLoCnvjSnbjdNu35OYJKlV4zobEU0elkVK6dwhnfjpASkce4eYCWEU4u6FoLAiYrm5dG5gYBWZ7iOh4Cye4go4sl7JZoTA/THywagcJZvbejZD1tNPNznPz0NNLk8SfJl5bxL7980+zeiGxxgZFeTFi9gtapF62m3PZp1BbBP196lc8MVVlNDJSgexmUXXSqUFIjnrJXdZNJcm+JIJDkk/Fp7/mrjqEov7Q2YVvYfGizfqG0x3rIfCgRZS0ox5LE4zx49CbCnV8AJOTxsx/sZYBe1OaU79tH8b3yRo5u30dzdX2jjYUHH4BT5H+hCJedm2PsUkS+QQuw3J7lzce+ggUWKlN0iiPIy9crTA7qPnHVgFUER+ZolgAcri+/iTeMfQ8AT3Tv44+PHSRTA7L+ABhF5RDpPoVn0D691GG0IRlkWJOzML6PzBmO1U7jDkZ21ZgsD9M6o8ThJwlQG0IGjYBy2mfb7D2Im96Fg8B0hnIAMz92PQe+OkuepcTd4WvbfYlc5XaVEThmGA3WDQ2lNGIXZWI3ZyVucDQ7yVQcksURju/D9ZdO4MTBuQ5PLMfs3jtPKiGMt+Hl46CgMpB0nByKmxN972wgrhxRBcAYS+AU6A1miDof4MTCZ/nY3BUoKfjd172JP9+f88njn8HB5X9VfpOx1k28VlawWASKJTFgLJOUs4xjWcxjt9/Nvtd9LY4riXop1fGnO4CttZx8ssGgM4xUd31Frxkxs28Mx11f7/SPLaxm+WuGpfMkRqYUu2WCpsvYxFUEe59Z3sILhoS4VIK4nxIUhpkRQwha0Rwjgyn8lZgEQVK7kUrnIDuX/ghXvIF+eYVCfw+92v0UQpgY2caTK3UWnUcQQF1WaGjFQ9ECNB6HqfOzt9zCixf2wQM4c4cB0KoCzjjoFsjNdUyfD5wx6Xbvvfee9lxKyfj4OL/xG7/xvJVNAf7u7/6Oj33sY7z2ta8901M/DZ/73Of4sR/7MW655RbyPOcXfuEX+Pqv/3oOHjxIcXUw/cmf/Ek++tGP8pd/+ZdUq1V+/Md/nLe97W3cfvvt53z+s8VTyZRe1kes1S7ViNxQWurRC1M8ub7R8uTmCWk7alVDaIPwZ+6USEQF33Z4fHA7O6o38tp9b+CDB+9jx5XXc/lEjTsbE3x3knDfieO4+1/H7OMtjh1ooHODcs5HZMvq5LXaZ9ZayDU4G0gxmaBSQRKkuOcrvVRsJN0ukndUnP5kZBKcsk8a5TTm+hx5YIWvfOzo2idufPNOXP+59afy1ZB0ZYprhJtIc8JORHeiOaxieC4mS8HOa0Y5dnCFldke21YlPvxCgcQb6ocIwPRXkOXtALjJev86WYkkACNjgmgPceERblGP8Ff2teTS5/bSNZxorjBVG2WimLLdc3n7Y/+aj+37QwYi5Z6Fe/iJf/wJAF459Uredc3zOwKeCzZOEa4iLqVghyXgT0HqHKd+YStcKoaTipERwhjsqr5aJhyqq3qGcaYJVhdUUTrczCyPjTFy4gRjpSpZeS8/nf4ffs37IV7b2sNs7XGWoiV+74Hf47qx63jXNe/iLT94Nbf/1RPMPtLkL//TV4bnVnu47ubHmH/kACePFXngM8dhR4XJf3olNs9Il48z23+Sy3d/zaqNA2SiWBCGaugwVd080iioVGgtLjFanyLwCowGJQpFB2+wQexXGIRdJ93iDaRb6meE/acWU3DIL6Cgef/kMdJwnGh8/RpTmaFTHxB40eaTblUPWXAwgxzdjBFVSTcpUQ26KHE6gSZXlbu0BjFx+nu1ZHhNxvrlTai8HGE2OKsWd9x+KgsZIaBezgCHvH0rxzqPwqSBl/k1MiwiNLyvJynhCkXkrjsnslRDb4MW2UVyAG42cr2+BnDzYbSMADy9WrFZOQjHw+YpmRiO246xCGA1qIiJYBjdZa2lYK4gmv1uCrv+kGOiy3SSk/sO/azzoiTdWkt9HrnrOFYP0KPr5Ecnncd31+e4PJWopzhdu8byhhNfReiUfOFB3FXSwt1ZpjxTYVsrot+O6HcSdGboBZKqCzYTGLthbBewVJnktvIkI32PRiHlyyv3cJt4A9Ya0v6lVaiiFaVcm0lSLyUpaIr91bWasTiZobR98+ZTryZQmcRsKHglpWCsOLy3l3WNMX+JqpPQyQOaC0v85Fu+i70jV/GRh/6Wx/OHeU/pGKnQ/NP0GkZEyKNimZ9XX0cx1Yxry399+OP0v/wFbjj5Roo1j+//tdc9zY5kkA0JNzEk3LJEM/v4CsVqyNjMkMg2xiKWFkn37YTVq8eSY2wXv79aXOk5imCV6wHLs4o81cT9DMahUB/hln/+L3j4U39Pb2GJoBDi9tbXW1GwDWFzPJEwe9Uipc4kvdrwvWpJo4/tpWG/vPb5bWqM29P7WZ6/j7H9bxtOKFt42ULo9UwfpS2M/zT0b4f+4kW06oXhjBmKcy2EMDMzQ/k86SB9/OMfP+35H/3RHzExMcE999zDG97wBtrtNh/60If4sz/7M970pjcB8D/+x/9g//793Hnnndx2223nxY4XgtOij57C4fTS9YlNGEvQTXBTy/0i4gcnv+uC2OeqIuNRRtIJhm5pIcg9wUDeCPIxfH2cedHELSjcJ47T7u2h2RO4tWkemz/AWB8KV1UxxjJop9z/6ePc/PW7nve8z4enDa3GggVrU3p6Gd+3GJHgpIos0LgvofTSp14oo+OaaDWKpDQSsGN/gZOH2vSaw4m930qoTRaecoTTj6HtcLCSev1zbpoT+y1U9ZmrU54ppvdWyRJN1FlPhXH9gJmrr6OxMqAQJfgrs7jBFSAUQXPAaNwgcko40RSZP0+mesi8jBWSW8Wj7C88xOP9PcyG03yiMce3lOqE0qVaT9jevILd2S7qnsPOqWv54vKdtJM29yzew/fu/16UPDshfGstptfBOpLcH/absOvXl5OBd6FJNzFcBFmRrxFuYdTHFELs6mZtkMcs9HKunxldI4zN5ARzDz1I0fOp12/kW1bexxfNK9kVXMsT8VfIijGfPPJJvnDiC9w8cTNX7N/PdV8Ts3S8y+EHltGpQWtFnI5w8B8rFGon8CaLeFfU0b0YaweobEDH9hE6IwnaZP48jpHEQDvKmaxsXlSgH4RoHSGlwpeKfaPX0ZuLKPR8ZFbBuB1AAy6+BBkcoxNlLK2kbNc18tUiFHbVzwsgLr8M3btw4tuDTpPW+JXkgSV3Glg0btSjX44ZqY1sPulW9jGDoUSE7qRIKYlyl7IdQXmnO1BO3QdpbHAdB+sNN8BWglotPBHlEcYapNi8tOItXGI4bTN0+uxd9A1CJkBE3L4e6IJ5aZJILxQ9UgYICniUV8m3nlfCyVNyI7HdPiZNkaf6NUme42gvXuQbIiRDo+kmgyERl8SwypHJoIjupeRCIgBHW1rbR/iZ7x5mh4w4OzHGIqXAUxI33knaeA3NsS5T/nC86jdnGQ+nL3TzzhmD1UqcWEN6KpvDGhrN2wmcWwFIEsE2IZ+2v8jymH958GME111LcM0I4VV1nNER8BRCCi67boq5J1bIsybWB1nPSHoJnujh9CSmuIKVDtKUyZVLJh2uXp7k8VzTLDeZnTbsi8fJogHWmNMKLV1MtAYZZdmjqodZTVZoctmm1PZpJEuMTm3ftHO7dY+RuQpJcPp+pBY6OKrJ5/NrecdlHtWmxBcuK23NjjzjR2/8UZ48cpwDXYXCxREWlZdYETkLXswRVqg4PofMPJ+vfRFbN+xbfgW0Kvzeuz/LW37gGi6/cXztfA/fdYxSPcQLHLTW9JrDtNZeK2JspkJrsccT980xLVKWNpD9AgfjZnjxahRb+Oz7qqDoUSh5ZJmm34qAOlIqvLBAoVYn7fVIKjFht0t9ZUBW8xkEUwDcePAgjxw/weBNN+Gk41iRM1oUWF2iVc6R4yVWmgt8b+kbOdJ9kgfzHm/MIvAu7Lp7C5cWbGbWAjjWMHEdyHsukkUvHBd8dPyN3/gNfv7nf56jR48+/4fPEO32MHd+ZGSo8XDPPfeQZRlvfvOb1z5z1VVXsXPnTu64445nPEaSJHQ6ndP+zgtO49xOnxXbgwGZs0LqnSR3YqJ6iFERg+DC/TzS8VgKXTqTMU7coLQ8QGUpRlcw1jARzZM2v0BPRtR7s9RKBbaPVilXR+iSEeYBYnebLB6KaT5yxzzWnD+y6hR5YHONLgUUAkVJjeHm41ihcVNBEuSnVx09B1w6hRTWMXN5wjf/6A1884/ewD/7d7fy9T94LfXpAuVRn+l9Nfrt51+QG7vuIZBpjs1zrM1xjMGep+KIu64bI+5n+MX1ibp5sk97aYGk1yXJEpyxUYQbIhyPgi6RSResxpgq0ngoUyB3mkg9hVuqcb14HISgoAfczRjtLKNjFTdUWoyOwnfOfT8/VPg2CgPI9ZA4GA/HufPknWfdDpMbCnqA8tZJcSuGm8SgMUA7A9xNjN56JshTVS3l+m9tHReVpng65XhrgdlWi5FCQHuQ01olUYJtMxAEKM+hn3QQ/jX8sPP/KPY6hAONP3Cw2sJA898//Kfc98lj3PwNu5jcXaEyEjB5WYXxGcnskSpSQtxLh5FR2gyrlYp5GqVPMHa5QJgeQgiMyFC5xOYRr9s7RiXYHD1KgKBU5tjcYyTpcHOipEJWFIN+ukq4DRfdAMpRmHgn6Arjox7JxIB8rQjFhpvu+AKLf/BBHv2Zn+KBv/tr7v/bv9rUsSCdm6VcHcHaGDcfwcvH8SMFAkaaC+BvbpVH4UqCa0ZRowG6m8BAkGQCgUa5pxMowgx/yzy3w7FSDgm34XHWf+f4ZZ4++PLDqch0g3VWnTirt0w5MFgdYnWFRjRObIdFfF7OGPTK/MflSd4+N863nRjlU4MAIyUGC56DGK2iV6sB47rDyiUvQaS5YSQQjGZdymkfX3m0opgwiim1Vii2V1DFyxFqGrzhNeZYSzNtYIWl4ozTz2LMaiRgLfR4xyuvYLd/LY1ei/IDJxk5mdDtXfqREM+ENM5XM0cs9pRj2cJccphm1ObYAiwvOFQQrHA6kb292wCg9MY3su1n/zm1b7mO0mtmKL1yau0z03tHufGNewlKHu5kCWEVwk8wXoZkFGWqJIMu1dYJjkcxV/XLZCKmlNc5lpxESElhZJSk98J0xi4EdlQDtgUDRBiDcXDzURxTBSEY9cep7t28SqtOXRGVEzoTTVJnlizNiNPhvZs7HZ4UI7gnv4zKengiR0pBungIkg4/uufd/Jfdv80bRr+G6coYBzpF/i6f41iSQ6YRRrPH1JkQHn5a5G+v/gB/c837yLOMz//ZPXzuf/wNcbdDEmc4roNJu3SPfQUZPQa9R1CuZOFok/s/e4hDD5yku5QgpGSQReSmjRZtNMt43RSZxHi7K4jnIN0K1YA80ziuM4zM3YB9r3/T/5+9/w6T6zjPvOFf1YmduycPBhkgAJJgzkpUtETZlryyvV5bjnLYXUu2vLb3XevTt+uwTvt6V9yVLVlayTnJtoItK4tBEilSzAEkkePk1Ln7xKp6/+jBzIAZIDAgad7X1eSgu885dU7XqfPUXfdzP/Rt2kzXryLS3lxKdBKctENkFxitz+FP1BGpInXnUU6NneWQjHOMI3ERFcZ4wmWdGOESa5Sj7QmIXzx97BWcH8i4+1RBjhTAi38R77QZii1btrB169ZnfD0Xrr76asIwZOvWrRQKBfr6+k55nSm01vzSL/0Sr371q9m9ezcAMzMzuK5LuVw+5bvDw8PMzMw87X5+7/d+j1KptPzasGHDGbdpNZ7NZ6vdDQGBEw8ufy/XsNDPIuk927CtFRWKtj3aA1na/SWq7o346Tz55hyVmS+yvn6MobxHtRNS74aEqWI9eXwks8ceJ1f2aFdD4iBh6lD9BbfrKZ5/qSaY7yDtlcHdiBQ7ksSZ+OxVd30RpJeaVf8FUFH8lLZsumiA1mLE1MH6suLt2ZAspW7YSRnt2gjbxo0Upfk8Sd/Z8WCqDGdpLQQ05lcm3GEnId83gMpmKLe6RHsfXf5MBm0qnQW6to82LjIeWCq2oLHjQSpJlTfaXyfGIzU2ByOPvYsLDFkxJTvmcm+aoC3otAxvEVfyW6/5LZpxkyONI9wzc88Zn4dShuZcnU7RwWs4WLGPnZQBiAs+fsdD5s5dyvfTwV5a5dYiQsYxdjcmtB0iLBKvyIbyMJbIUg0CgrSLJkYpTb7Sxz37HmPQy5H1B7D86xgMJ5DVB3jDg5v4gdtHcbRAKMNEdz8PTTzCxIFFLn/zRn7kN67nB/7L1QxtLqC1xnYUw+sDtr9mHV7JQWaytDcfhJ0Vcv4wCB876Uc5NaIYZi2bbpy+IP/O54KXzTFTm8R1PIwxGGOQEkbahZ6pjREo2aWbdgmiHhkQxyuPv9hOMVphVpuXSRszNYX66i20ZmeIOq1zOqmIalWsoRFUdqVPWYmim40pWwbcc9/X3PUFVDXExBrZEHRTCylrSFrYYQLaINNkJd0/UWhbIxRgwG1JrFbEsCyxobCBbvLyNH5/BU+Pk3e4ESvkkLUUB+e8CKw22DWEDKkrCWexAt9LERNdwd2Bz/2Rz/4kw0NWH6nlgFyZ5AYnK5gmCawqYvNygdaGhUZMNTQsOgVsKXEsiyA1JFrQLvfTKfWTzWuMmoKTYXEM86NZtC3YlLmEsjOAJSVaG2xLsnvdEJtKW6knbVoXDxM7EIcvzQl7EqVopdGr4j9bp8wLj42VMTYOg5MRfJ/t0f/kaV13AVkqYZVKz3mcC6/byJbXb8Zup5jQx04iNBGp1cTN+jTK68HPsUOXqBaqzHXnacuQ9vws9YkThC8S0q0dpdx/tMYiTUb0EFL5pHYNLWKcbkyiU7K7N5+z47ujWZzIAqGwdBHLltiW6PXtZJCJuBfHFZ2I+aYhjiLmZxagOYnR0Kp2eaN+LX944Y/x3y4exY/KTHlz3Gmm6NcZ+snwX8M3I5E0/XnqmVm+uenTHNNTHNvnMHdsmup0izhM6NSqxM0ZqkcPoqMaQatL2p6hvTBDOH+Y1sQcUqXEhSFsWcIyJSwG6FY6FBsDJJNtpP/M2SKWJXukXTOkVesyfmCe6SOLxEFvruHl8pC3MDmD24zpZF1SWWK+/1VYIgbp0qmEoC1QLtm+hEhtoWatZ//8g2QSBweH9XI7J1AQVM/Z7/YKXvzQSYoR1pM1KZA4IM4sq2ktcdqk2y/90i/x/ve/f/n18z//89xwww00Gg1+7ud+7jm3/+Ef/mEmJyf53d/9Xf7wD/+Qm2+++ZTXmeK9730vjz32GJ/61KfOeB8AH/jAB2g0Gsuv8fHxF7S/FawicZ7UXWrtBCftQ2Avf2bHCr2GE3rLWqXY0T3yxliS2FrH8cJbMDpmtLmfwvGPM5YZpF2dp5z1KeVyTFrDXEo/ydHHuPzNG1DK0KnH3PXZQ2eBsFoO43v/U5pW50mebiLFDSHKJmdtYn/Kfl4kFa86iwsEjfop7+XKK79bp9773Z6NeEyWKgyvLgiQqyq01MQDZye9VEjB1W/fTLe5MvEyWpMrjdFZWokwyYr/h/TLZDr1HtEpXHLdy1F2A22F2OkwbrLIm8Iumf6v03YKHM5s5ovTXeY6HXzbsDHfwYptFqYsGlPjlMyK9HyqPXXG56GVplmfw8saolKCckOk6V03N0wxAsRzeOidbeTyvcDZyBjtuqRZF4RAraps2QgTpuoJGTtLGAmaQUq2WGKh2+XI4hxZx8PLjPEv09cTVI9h1CQCzVvuG6HrxRzpO8QXCn/B8SdmSFetXJaG+8mV80iZkEQtpueahFqiVRe1VN3ST4bRTg4wJPYiReXQEJKrN535gsrzgZ8vMHHiAP/3r3+dfUcfYKY9Ts3rkg1sBDaInhlx1s4yUOj1jyhZ+e2UqxGyV9VtGScVJmkKxpB0u0+5/84molodXRkAscpUvGoT+QnC92AN0nbcDXkwoNsJsgZLcTO2rUh9B6RA2w627nmmpm3NTZ+8lu0PjeF1HeKCJhkrsxjXGW+NE6hXiin8a4FZsqUAMGLlWSKXurOxwLEUpBVUsJmpsPCvXul2JMxyLHUAQYgkHtxINdePXqXYV9lVHmTPs2LhSwndKGX/1CoriqjDHYf3ccvBOoQrMURhaANIgVhKdVcR+HkLgeBdo/8PFb9MonrppcvbiA0smhgsSXvAY1K89JRuRhsWp1oYA1quxKLCaDq2hbX0XNCJzdvipyqS7MZxdKOB9TxtfaRnIQZ8SLLYqUbiYaviciiezVdY7/UjDNTkLA8F+5a3Dc9WZtALxGwzpF8JilYLK5MgTQY7rSCNi99JSUnPkuf008OuZHGiXvyg7DZSWtiWxbaBIv25Po6rXgroaKZJnML8YsjMVBXG7+oVODCaijmMP/5V+vxpfix+K9mkyMe9uzlOnSIe18khXrXwKkaaW4nsgL2jd/HNzf9Aq+Fx/JFJjj46Q9RNcK1g2QtSx11IW9B6HBoPQ/cwhXiWoWyIsp6UtWFinMjCKnnPOa8q9GVQqSYJFeN75zm6Z5baXM+aY+zSK8n19dOx6owcrGKkoFG+gPF170ToELvVJvI7+OE2sGIodBnrD6h5OX7/yEeJRcKg1ccbvNdwR+cEur12Pruv4EWIMEV2G0+d5Sr5kqhOfdr5Pu9///uf9v2PfOQj3H///c+5/V133cXdd9/NZZdddrqHfka8733v4wtf+ALf+ta3WL9+JU9/ZGSEOI6p1+unqN1mZ2cZGRl5mj2B53l458A759QOcmrHCFZNbK1E4Dcj7CjFL5/bdKLVsMVKVxBpFS8pkHgWWAVmy69nlElMMokbnaCcOYGp9jHXGKaSz3K/V2FjMMMOmWVydpad149w7NEF5o61aNciCn1nfh4rlNvSNUs1zXYKlZUJs1AubiBpVYKzpnRbnaZ6vm5k8aR+IoSkvTBHtrySB5qveFRGsoSd5GnTS5/c9EQ9lXQTusWxS2bwvLMXhAxuKp4S/EpLEHV2cO1/++8s/Pqv46dtMmkHYfcm7+XFFn0DNVpujsgyWCqHsprk4t0oIbGN5vrhOt/sHsHpDHFv+Spu2/9V3nLh5RS8HN93wSR/vXcL67dG1O98iKuGr+Jo4yjHm2eexq6UplOv4W5Yut5GAhqUwG9FCPdplJjnGK6dIddJ0OkqGfXJya4x+FEX2W0znqRMt1wGcj5HF+e5Mj/G9utuYKFaZTSKyLguY6USB+ZnMUC2MsJGy+KCuYDjfQ2Ou4dZUHMceKDARTdsBOCK79rMjqsLHLzjNo73XUucpITeFEHhICZISI6GiFIeIQLiTBNjRVipBKG5bMNzr7K/oOuSyWCMJlWaIOqQ1wkmp3FjRbH+OgQCoZcqvlkWUohTlG7HVYehb99M5ad+jehA7z5qFzz8RQvjuogoxvgeswf2Ulm/8ZycQ9INCbYOgwlQIgATka0LalsiyPafk2M+Gc5YHmd9AVULMYspUb8kVYMIcaps/+S19JWL1BI7trFiC3IJSMFQ6DCVT+kkLy5z7VdwDqE17L6NOdmrLHkSfizwU0PgQdZJacQAkodbg1z5Mi0M8HwR6VVxDIZCpUQziMmjEITYdo62tiiGPTN0q/HyU7qFyUqQMlqbIBzfy30njmC5F2O3Q8rdKk2/hHPpG9h43Vupqn+CSBNON+jb0E/WamMtxa+dKOKhPUe5eMcWsG0KnsNHZn+AO5II13HpyLjni3eO/THPJuJohXhUqxZeHBVSW5UNk40ly+ndxizHJmLyXgDkaVTqzF88QOuew7hRysrRe/trGcNQPk8msuhmFDNRjdzAIN3qIvOHDzCy66LTP8mzjJlGwKBlEdldMlYGma6cuxMrUuvckv0ynyPb9Mg0PDCnxuWljOBoa4Bvx29mi3c/Q36LRuwztX8fV5WPsWHi19ioE/Dy6Gt+CulnefPb+pl5/OcQVZ+v29+hJHNU8PlJeSEHFi/ho85fsODPspCf5N6NX+SW2jR5kUVI2CUGeT2r/LWbj8BSuQSlBDuzMU2tiOxTM6tyNYko2Djrn7vwSG7VXFUIsByLif0LDG+qIITAL5VpDk1huk2yrYjElbRKF0IakMnHaLtLtraB2J3AiIh3XrHIx785xBOjdW7xHubV0YVstzcSG5uJ+T1s3PL6M/9xXsFLG4laVshr6SKsLr0EFXGKQvzFirM2y77pppv4zGc+85zf27VrF0Fwdla/jTG8733v43Of+xy33XYbW55USv2qq67CcRxuvfXW5ff279/PiRMnuOGGG85KG54/VivdTkWctomdGWJ7HiNdwqJHu9RAraGKZjXpZixBlHfRjkXiOaQGmn03oYZ20irsoBzfg9uYJk4S5moN2l6ZYzSxjMXdj93DyJYift6hOODz+LcmX2DLTnrELLUtVXRjjbeqqqt2mlha0qmcRVXFKUq38zMxeHI/yZSKdGunSquzJZfaTJegldA5mV56Cg906l5OerppESMThYhSZNqmPthBiLM3YA1syLPhwhV1k5exyFXWc2RiFLtcJvLFMuFmki5WLaSoYhLpIo2Hk/SjZYCyunQueCfxusu5OBOR89uQmyVLzP2ij33VKoc7MJ86vHbLPBPHh/Edj5JTZEtxC8aYM/aV0qmmFneRlqE8XcBrDyNwwJLgCsS6tU0thZ5XWSfnEOVXyAwvSfDiEIQg9HMUhSZNGgRpSqhCjs8YvvFYFXa+gY7rsdBtMVFfZNfIGLbQVCp5BjeMsmHHxQyl/XjapZjmOBIeorl4anpgrq+fwd1XI1WMnXTRXkpSmsFIiMQQvlPB2Bns2KJvqoAVS7QjuXR9+ZxeFzezom584tB9zHUmiZwuvjNN34RPvppHmpWgcjg7SWjmGJ+LyU8uEsQRsRPhbevncHGSPZmDhLZGpArZDcgXimTKFTqL84w/dN/TNeEFw15sYPIuCAfLZLAok9odwly0Zl5OVsbBHszgjOZAgBvkCVML8aRg5qTiM6967299dJTywsrEZv1S1dhXSLd/PTBoyrU3U1n8Hsq1N2LH/eRafThK0MpAKgX9hZXx5JHmPCZ9eXqUPR+8+19+hAmzogg0CFphQq0b0lYakamgHJdqJEnDkLjd6VUcfxkVU9hzrMn9hxpINPmwyUBngXr/Ztb/1O8y8oPvRg/146UxfhKA66NVu6eGyfbUSo5tUbD6ON7Zz+HFRSam57Frc+SyPnnPYSTncCgSpAfm8efbtEWCmnt6a5kXK+Iw7ZnhZ2zMqury86FhduaXl//tJXJVtWCB0opacx6CRQBk7vlXbbUHM4iswGvFaDOFYhGVKpzWItLLUsrk2DyfZ7CxESfJoXMuXr5Ae3Ge+//+L3nwM3/L5GOPnJ0LcAaYbUb4oWHR7ZDzy6cU81FBi/DcrgEi8nmEgaAUkTor8edcs03edbD8GoecLWh7AxIY8HoFqJh6DKnj3oK7SknabRa6/Rypb+JnGn/ET0S/hZfcTkMJ5roZspamlA+5rnkNnvZwjMuh4QfoOm2q4TyT6gTfiu/lTvcACInleViOy8l5QdD1ce2UQ3aESJuYJCJ2ZoncaZQVQ0s9LxlDoZyhMpynb7SAn3fJFjwsRxItSeVt1yOIa6QyAlsQZ1y67jBEbQo7N2NkgGM2Y6kCTrdEv6/AOORDlwPhUQJPcUgd4+cK7+Tx5rGz/nu9gpcOTJwsK+Tv3nwtt279Lr6+7SY6FCAzdJ5b99w4a7PsT3/608/Lk+33f//3+ZVf+RV+53d+h0suuQTHOZVdLxaLz/uY733ve/nbv/1b/vmf/5lCobDs01YqlchkMpRKJX76p3+aX/7lX6avr49iscgv/MIvcMMNN5x+5dJ9++Daa09vm2fEk+gUVcQ1PeWd06xiEVGZ9chcu3arcdYqwkXTJdOIkGlC6glKKkM9u4HBZkpVNchZGYoze/Bz76TVDTFOhiIeNZ2Sk8fpW5cjCVKkbXF0zwKXv2Ujfu7M/OmeTFUabZhpaFqmwaDsomWIFilCCYz17KmVpwPH9ymPbSRqt6iNn6BTPQ8+Ak+SqSVhSG3iOOsvuwp7yd8pV/IoD/eqE1lOL7B4pmtgjMEs5frYqh/tWGAMlVnBgWs6jMqzlwLoZx2+532X8+0/vQuMIU0UJppF2TaxEVCfQ4ULSKeMoZen73ZPQK5XaUoYCxBoEVFvBZSmH2Z9+S24pcN0m69HuIaG08c3p47zvuFRhI7Ju4rp0KXdzJHxLSbiFpVMhW+Mf4O3bXnbaZ9DEIX4HZtaqUN9tIWVGljiEGSgEfHaly23Ze8+0iLCitp4HYnKCJRrYwuDE3bZJjr8y0LKTbuzCKMxxqbWTvCyRQ5OHOfi7RciTvqeCUmr2SKvUi587dv5xl9/FdWvyLUle078A33hBCa+nBve9W+W2yAroxS7bRq1OsbqEd3OfED1xEbG/KNkvH6iQpVWqYWlLEpFjw1957balOuvrLQaA7mBIayci0okynV6HhBCLQ+9odmM6NbZMHSMNv04R7rMZbax2c+yrTkGwEN9d3FSU5rLl5hrVbE9n7h7jnzKQg1hitCKVNaQWjB8vMjhy5M1VWZkdlRo3HocEUO5M0J3nY0rF5Y/t6KQON9Lc8uqleeG33YpzGVQjXGGg14/fYV0+1cEbXDSQQQSgyZ1F0ld6Ju3EFWBk4m5cnvEseosAsM0Fkkcs/ZLF+cf7bhNtT3PVr1CVI86hotGygAsNlq43SpuapC5HN290+Q2b8QIgTh2FHbuOk8tP7uYnW8TKAuQtP0i45lhWm4Ft9yLAxq1KgNJi3qmDIBwV8VEgaKjHAasYTbldkIO9ieSjZfsxqQp9SjBdyz02A2QrRHbFkHcptGZo2+18udFjjhIaNd6z1ntrCzEL0YK27aYnPWxpOLCro1c4rC1MSQG7FUepaejdHOGsxA4WLYhdQVCgxSGpNBPozVOMexQQDBhN8mG/YzLhJEoAmOWfU9n9z9O/6Yt+IXnP6c7W5hphGzyXY4Lg2eVQdsk9jxumMeJNF7h3D5PhZfFXbJmUFYDK6ihMhWGinn6shmEcflC35tIx9+JUb9FI/FwZcqehTqezDLZLXK8XSbZ9zjD60P6MvfhmEdxgPeoIkmxS8POkhqXdfk2Ww9ehR78KlJIOrJJUVWQRlKzF8kIj3v0fgYyfVwiNoHWCMtHhRGuM0NiChT9ARLZxpZF3GQYgyKNu1jDGaz+5646ny36XHh9LwPg+BOz1GbauBmb2eM1Nu4awl6KX5SVkqmHoBUWVbpb3oozMYOyuqRWHZlqtJUgUosrHMOh7g7urt3Lj/fdhDEwIvs5HB+GsAn+2verV3D+Edy/hzwwXlrHgldAOx5SazpegUynjlhlc/FixGmTbldcccUpKVXGGGZmZpifn+ejH/3oc27/trf1Jr9vetObTnn/pBxaqecv+/3jP/5jAF7/+tef8v6f/dmf8ZM/+ZMA3HzzzUgp+f7v/36iKOKtb33r82rnU7DvCbj66jP21XkW8RHCcsCAQREXK3idlMRLybjnQemme+4iQckDPMpzIXHTJrZaJP519M18FCMbXDO0iXvjhJG+Igsth9G5PjbIiEU9xe1ffoStV47y2DcmcTzJ1MH6KWWsTw9PunkSRRwrKtkNWDqLpbM9s9J0iXA6Szdbrm+Ai9/2vZx48F4a05Oo5Oz4nZ0WnnQqcTek3dS0F+Ypr+sRA5Ytibop9dmAbvPZ29iY6y5XlJVL6WFCQ6YjCYoRkrPf34QQGGMoDWbQ08fJWBHqVVdT/ouDCK0Qlo2wbNJOgU540nMkRQuNkgFCWzTzO0Dcytu7Ab8lJ0nSf8M4isDewIXt+/nb/Yd43+4dKJ2y02vyzccrvMq9gC/GtyDrkiAJuGbkGvozp5eiN9OdQaUWJddjERBmlcF9qvEG1/6h75z0GRMK5WTp9kn8KOmZbxsQtssPRYf5n+k6fuMrj3LT7hKv37oRV2YR+QqJ9FloNdg9uoF22GG42M94vcoFr3szlpPnu173X/la42fpeAmpiNl59/3Upw+y8eJLGNu5HYBGN6UZapRbIHGWVtETzaJw8XNbMIARE0vXSfIjb95+zq+LkBLHz5CEAWmS0FmYAwPSd8i0BbX1uWVDd6FTMo5FnKyM5VGxQKOygyhcIYmUtbIc7pjeam3cabN4/AjbXn3jWW2/1prEHyQaKSCNjzQOWjSRCNJcAt21I92yVwwRHqrTfWAWR2Ro1XyG+laIRuX5uMk6MAIfhxCDj0AYQWsogKEBBu9wcaVLO26vWbtfwfmF1k9ShGsbZMoF0zb3bk1Y9G02bFRw1yBKS/bGD3NidpLtO85Pe9caxhi0Ukw/8SiHW8cIogahFlgYFPCpLfN8x55Dao+2aBBnNxIDE/Mt3G/fzc6LdmEWF2Fi4mVDuukwAmdlQabeP4pRK+oa19H01RY53r8JjMFY6XK/UoFiwUnIuINEqcKzLXaO9JZJjDFUTi7o57ZhdYfRlRCPDAemnuB6rlnjMz1zpLFCWrJXSMFaidHaaUrG14wN95RU5dmV55kAvtbSXLLnU5ys0Snzz590c0fzEAlkkCXIHqLUeC3Q8+bFLeI5GXZUB7knd5C26vCPs1/mfdZr0FGyvI+w1aQ5M3VeSLfFTozsKoKRWZzspp6CKh3E2JBTLvnN53YREGnjhL05lTEJKtPrl6nWFH2XblThRJCgLYNnWZD0Fgu/NbuJUDtLyZ+9u6B5dBxXpIiBbVzXdwQ7aiLatzFQ/n4Sp0Xsz+OwmZ+473fZs+OrxJHiquNvJ5cLsTcf5X8UP07bBHyzNU19cpgjuQMseHO8p/N9XNrfZRSbezI5bGvD0kik0TLAj3Oo2QB5zenRBJsuGqY+16E+1yHqJvSvK2IvVV5PMhF2R9EZK+GGimYrJOu3QSikcRCUSbIHYSNcld3GQ/FWpqJ97EkP8Vr7MkQq+UZ3DlpTr5Bu/wphjCG4+y780SwPbbgKvTQf0pakmSkwqCuQhuA8N1F8vnDapNs73/nOU4gNKSWDg4O8/vWvZ9eu5w4Ebr/99tM95DPi+Xht+b7PRz7yET7ykY+8sGNVq1CrQf8ZeuuIZ04vRdg90k0opLFwwyXSzVm7/GRL2AjTs61Sdnc57zjybbI1l4aA6XCAdZteh3Xi2+xSX+IrMz9BKbeDoWKWL8k+fsDMcZ0c5L/UvsYvX/U+vJxN1El5+JYTbLls4AURYsu/dapotRW21SNoDCkIg1RL/hVnq3rpEizHXZJjrz0sVpNogiMHNlLrWmy7bpLyurHla5IrewSthG4jXibVngxjDLPHmtCvwIhemiQgU0WYTUDwlBSys4Kl3zyNuuRKBp1AWimTDvYT7v8imct/qtcvTIFuUEHqFC1tpMpgMh200+HQ9ncxuWEagP/Qdx3HL3wEnZQBgRVdjtQxf1fqUrYFggAvaTKbWPxs7vuZljU0ms9M/jUbC6dXiXheL8APFkm83vKx0CvXR6aKY/nj3Df7xFm5TM8XXbVECgkQOsFIj0QYbP9byEGbpJrwpStC/v3uY+xPLEasncQmwsEjjC3W//wPcSI3xYmFOaSSZK7eQblT47bCUTY6MyRbUn4k+F4adhuDIb7CJd+0+ecjf8qW0lUIIYgWLkarMlp0SOyeAsqXkoVVCxLKWiJpIpD5tSGM8pU+atOTpHHvvtFpghxs4YVN4OR4oUHa5B2L6WAVyewZ5r1NHHnoXkbp9RNJnkQKHG2QqcLJZIm7HZKgy8SjDzJ2yVMXoE6SzKc71plugBzYhsGspMGakMiPMa4Gb+38PQHcLUW6D89iKYtkOo95GqWiMC4ZZeMvjbn2qsIUG5susY5pJ6+Qbv9aYE6xYRAgU9AW2VCwbtbmwEaDXzQM9YfMzGeJCfnzY/fw26/90fPW5rWESmLu+atPArBfjJMRDvPKQiEY8bt85Y0LwFfAgD8gUHM/goVFN1OmZop0Jyfx140hjh9b8fF8iSMRT7OIveo5kghJpbuIFwdEbgYt416/MiASwWFCBp1teLZFK0ooeL2x88njb01vZ4THAPji7CLXncEYfb4QhQlaLRnh2yux6HTH4HsrIgU3WHlGRAasuENbLrDpJ38C3/NxNz1/dZ+wJfbWHHZioeXKGC6kpO3lKPoZrkxHeeBok32bFngkvo8vDPXxtu6WFR9mpZh6Yg9DF6w9QXz3oQXenkjucxvgeVh6ZRLuhCn59ec+Dc1NJUIJUrcJOgVpY0vJWKlXaGq2btF/wzD1b/wH/MBn3ea9xLW9rMs2CIKQxSBL2q7RCRUd5fKd+XVszs4xlg+x46OYtI5jl7Hbkku3n+D+vVvQLY93VLJcvm2ciWaOR/fuIHd5mY5bZ49zLw9t/fbyBNTKjjKqtxIZzcxS1ceTSwCRM02p1YvbrNLpz3+2X7mO/fdNELRjDj44ySWv2cH0448Qxi2yjTZ2WCT2Cyz2XcnmiU8AkDiLyFW/0wVZg5rcRTjyef7f+T/nusH/wQ5nM1NtCQe+AN152PTaF/YjvYKXFlINSYTtFJ9CpEwV1rG1nkMkwcuLdPuN3/iNF3TAG288uwqBtcI3t97IOxbmz5h0e6ZCColKVk3mDZlaF6/VoTHQpuCtHelmSwez1EhltSnPdog9iMse/mSeWNToOFns0Rto1Bbw4xqZhX1MlwbwfR9/cAt7Zw6yTmSpDT/EoQdmueptm5g53KRTj/jn//0w3/efrjjtdp0MjE5eMZ0o4shQkL0Awwi19P+l759l0m3skssZu+Tys7rP54sTD/wDq/uKbWkcV3Lw/jqbroT6XJd/+J370Npg2ZJCn/cUtdu+277MVM2jNDrGfHUrDBtkmiGVHWydw4QJs5t7qbPngnQb3LaD2vhxdJpg2Q6GPM26xisPY08exERNsDMIy2XboMX9S22wdG+Sb6wasJPIzSAwZCyHXDYkiWIsYxE4JTJpnabuIKw8njA4doLBwtZFsl6IEdBNO8T69LxwYh2QsV0wkGkWcZKL0Tol10ioTHWoX5qc9j5fKJRZZWtsEgwe2rIwVhWp86i8IlKSvG0Y9gKaeg+RmmO9uYycnUGaIqk3AxkHHQVgu+SlIY0nWLDHKLkWQ+4YpDNEaUiaN0idwyjF4vwUhf4BdOwT6zm06aDma7jNCHfR5127LseK2ig7IfZ6SjdXO0h/bcYxa0nZkC6pUlWaoAcKlGcfp72Qp1vMod1eW/ozNsebqyZ8ria1fRpzB5ZJN6Tg3p0buGGhi2/ZZCtlOtUFMIYTD95LcWiE4sg6oKcAuOdv/mSJdIPr3v0exGmoonWjTjq6HavbIclZKKuFHS1gJD2TWHttDWL9LSXkBVmSoy3cbpagM/CU70jt4q6yhbXjFdItuxRaNKKXn/H7K3gGPN0iqFRYaZFys46abKJLWXaMtpmrdzFJhdvSu86IpH4pQq/K4ri1aVH2Klx06Q7+3XCFVNYJOLbyZWFYLP4L22dfTy3rMPF7n2Te1RjH47vm78c/fgw2b3nKMV5q8NKY2PKenkDUith28ZVmy+IxatkyU/1L44kAoWya1SYXyW1MNVo4UpJF49oSAyhpL/crXxWZPOGQKxkW3Az/5e8f5P/9d1et3Ym+AKTxUsV3ozCrpmzVbkTGX7nn3O5StUxjqEchfriAMQF+fz+W7ZzW8wjAW1/EnYpRVpfYmcNKC1gmQ9vxqHUWuW5sM185cJjF8gW0CpPcNv8d8qMeP7r++1k8doS40yaoV0nCAMdf20lwsx4hsBBGYByJTPMkVpX8oktt8TCbN529Qn7PBM9IjGXQBMsG71GS4lgGKVNsp8NiTrLugi10mjHzk4LBjevJZAu89sot8Kr3cf9f3swD37gLOr304vbYG+GirRy57W42+HuxsrsQVpHNXhsxVuX7M5uwLYObjxjLhxyoFbl28iYKdoHFkRPssx4iNiHbdD9X6fUsEJMIST0s4qkOnnRI3DraaSIVeNtL2AOnrwrMFX1yRR/LksRhghCSkQsvYdE/jL2/jR9EqFTRzO/Ejzq85q/+ib1vuQZBP040DEmNTF9I9riFM38lrfLj/EH17/npvptYZ60niVs443fBxlfD0xH3r+BlCZOontgAULIXb6okIUNKI1uh2tnAwBl6eK8VTru3WpbF3NxTy24vLi5iWc8vPe2OO+7gR3/0R3nVq17F5GTPaP+v/uqvuPPOO0+3OWuGVCcsTtRfwB6eXulWjRaXDeyNUASVLHZq4yQ2GXftJloSyUn7B21FKFtixRpbAEpiWzaWnwFrG9qySK0cF1c/i2VJgiAgFg5dt8BBmnyP3sFU/XEuf9NGjDb4ORvXt9h719Rpt+vJVy1oxVSKk7icVM9oCgslhBJP2eKlDvtJFQNfMzKJa6cc2wtf/thDfONv9gM9nzuVaupzAZ1GdArxqI3BaI1WKUG7RxBJk8Ve8pKRaYpZKkMvxNlPLzVKkQRdVJJg2Taen7L+kp3oSoXEThCW1ctxNTHRt2+lGMdkojn8wCXbrGB3A4QKMfwUthljqD7F9u4MOlaYVBPHNk5qSLoJ9dBCJxI7kQxZCYXYRsUKRzjEaYIrvdN6JUmC2xTUB9qE+RBkikAQ52xwGuiiPO19vuCXWFV1Nm2QX+iSrYfIjsY1Dr6XxUkleWOxUQjiVNOImkjjolMbggHMwu7ed3FwEwWJpD9ZZKC1n9Liwww3x8kGDUwaoVNFrGKIJc3JOjOPLxBFixgVo5IOppnQH0FdbyMMJ8AYtEhRdrPXh1OJzK7NOObne0bRWmu0Uqg4JimPUQm/gRECNwgRSUwqp3nDVTUc5xgT01CfnUc1pkjio6hkhUQ1NvhBxFQaIZotMqUKTiYLQmDZDp3q4vJ3w3YLy3bQSiGkpFuvnVbb2zMzBMMV4pxEWW0s5eJ1LGI/7d3N7tqqbe3+DPY6D6USNCntY+uWP7PimMReQKocrHKDaK+qQtjod/FD/Qrp9q8I5knppV6nH69bZiFwMLMBWAZVD7GyBp0MQDxCK8rz8PSR89TitYVZRbq1wlmMm9Kfccg4Nr5/KmGptUALRRoF4FmIjEPq+kij6LRCaDbXuvlnHSpVtPwiCNEzkV9SSi4TsEYhVIzQKRfO7WWwPY9lVtL/XTLMlg1VFRPpEFsKkqCDshy05ZCmKUIlREGHcqwp5gJabRtjDHPzpzc+n0+kyVK/MQq9qsKkp6qUrAWaxyPUkQZ+2vvMEgJXWmSDefJj6xn8mZ+h/6d+8rSP6w4XsCNBaU7iJkNYJkOQpDhRHVB044DdaR/XHXstUlg4yiMsO6y/9ErK6zeAkHi5ArWJM68gfyZohQkbsy6LvmIhP47RWYSxQfTikZyVxy6de+W4by35UIuVmMJzbNaXCzjSwnO6jAdt/LyD61kMb7+Ry2/6ea5+3/+CV70PgKt//D9x0U0/x9YNA1RKWR6qjnL75HpauctZDFoYLAyQUw4lOyZUEkcohIROanPxSJsro9dx0663ccOrdnPJpgv599f/LD+z/R1ERZ+BfB8jG7dhulUMCUrE2ImL14pxAgvVSnAGzowwzeRd3KyNVpp7vrSfqQmPbr2G6jbQaByjScQgltKMHTpMamZRhGjRxQky1El4RwxBeAEYzb3RIzymj3C5u5nJqAphvacgfAX/epAq2pZFZLkUoybdWpW5RgdpDH4ScGzB4Zt//6nz3cpnxWnPhp4ppTOKItznMTH4zGc+w4/92I/x7ne/mwcffJBoqRJTo9Hgd3/3d/nSl750uk1aE3jSYnKqQSFIcTMvdBK5cg0XowW0tDHEGJPihC5ukBB5KQX/zIoPnAmEEFhIUjTK1khjaA0V6ADrjEvUsFHaIhJ5Dl/y61x+/we40X6QT800ecuuDdQbTcqlC/AXH6ZrCnzZ3k9tYp4bf2Qnf/5r38bPO7RrITuuGVk2/H+eLTvlX92OwkqOIKw3AKBlRGuggbFGl8/j5YInq/YytuKKUo3JTo7DD1fJFUEs5QQL2UszbS6GsKoyk1EanSa05ueJ6r0PrDSHEm0snaPc0nQLPWWQPAdKN7lKoRO22xQGh7j0u67mUPbdzO95mPITATLX8/uzZuZpui4wRGqDMV1k4mNkBTess3UqZOeBvwTgh5IPsMdsZkRFXDO3j21eg7/2xrh2tMgflBukChZCn7/N7qNbarGpspF3rPshdvU9/1SHP7j/Nxi9YxfB7iNYKo8fbQEJbpBQmPPYOnoN3vA5LoP1JCxEs3zx+F8j2hqEQ3tpFfL11dfgFUtkLtxA9ZbPUgyrBF6ZP5D/h2jm37HtCpdMzgMl8JIsNyZXkXnsIRIhuG2myg3Rp3GEwhIS20T8TTHHX1fKrFeSnUfKjB4pokWR3O7rMRfHuJUR2vd9h5FwE6+7qs1fygL9dgbtZJDpYTIND2VpVBwh1kjpVhwYojQ0QthuMnHkMOu2XQAZj+HO14H/TJjJgmNj61EyTpvvfr3N6HCEJQdJ+xJqQ/uZmB/k4u/09pe/aAPTN11DgqFbWcAbPU7a79OcriLshBPqTjIn9iCkRCtFa1uPhBOWxWzzy7jJM68QG2NITcKgN8LFhStYnDyG6hvETlMwvftBi0MEhbS3GOKs3bPgJLJXDdO4dxy7k8WsWjxUjgNGYqkCclUK/EDsMtN2kO0mWJLLoiFS80pQ/K8GT4oNo9wiQltkixexZaHOvaMhTlcxanfYMFzDL4dMRYa/vvfzXPF9/+k8NXrtoOOYfg05A7+R3cidje2I0d7CmCJEdn2EbdDCQakQS0naJQ+hXYQUIASJtGh7BfpfBhVM43pr+e9c3KG9VCxhGdJGY2hnSpTbC2xfOMzRkRxWWsCIBA/BgBnm0oHdACRxipPrjbluEjI5N8/mwX68TI5Re4ykYNjQH1LI29z9aJc7Ds7z2gvO1Gt4beFlHVSUYFbFaHNhwroNOYqbEsDDfmTlGRELi5GZ2+iu9884JnbXF5DtArV1J+if7YCRZJwM7dJmcpk+4laLTfk8h+qKVKfYwmZ8cYrZziyDW3cw8dD9ANQnxhnavnYpphPVgKKSeKpJpTuC9jQmTLHTEl4QYdBrMk+wUw+3Y2MlFqgulvCINFSDiHImx1w75Rv7Z/jht17N7R/fQybn8NBXj7PlklNV5f3rd+LlP8D4p36d9rEjJJHmsYXr2ZX3eUvmW1B4G0ZrRosdgqBn9mAZTbngcN2o5rp3XgeOw2u4gJ+4+CcgCKD5MKQHIWgzt2k9uR27sK0Vz796f5XtDw1gIoU4rfnaCjZeOMTMsSq16V56chQk+H6OdCTECaHT75CL8jQKO7FyM3jzVfTQDbQrd9MdhFySY/39w2Rag3QHywhZZ//0Ea4e2cHh5DE223lQCVj/Gkvx/CtFoqgLj4bdh9IGr5BDLp4gdC8AQNol9n7jy9z4s+e5nc+C5303ffjDH+bDH/4wQgg++clPLv/7wx/+MDfffDPvfe97n5en22//9m/zsY99jE984hOnVC599atfzYMPPnhmZ7EGqOcqTK7bxJf/5NEz2v6Z0h7nOnPYqoKlCiAsEt8m04xJvHTZn2KtYC+1UdkaJ1iZLJk0T7k2zODMZuYfLTJ4KIvpeyOO5dA++h1SA8MDfRwob2JMVLhaDjBe/jLRV/8HuZLLRa9eR9hOmD/R5u5/OkQcnv5EzCwRle1qQGR3sTipDjy5r3Pj6fZigpaKSwabvGnjNP3lJlK0sWSEMb1F4nY1orUYnLqRMBgDjQUoBD2loaWKWCYPQlCc7xDmehPnc5FeKletzGI0frFHUo1degXacVDtmeWPbaeC1eopY+wkR1CKaPTPIZOY2O/j6OYfJ84MIoBflp8j0B5HRYk7i5dTr3fYlM7yz/Ui00ri2jCcDbnhxFupJos8NPcQf3DfH5xW2xutKtp1SLwUqU71BAHWTMG1GrZ0CF1N0EfP32YJsZbUjx/DaE1S7scxKYWwzaXZC0hLX+R/3v44t+zv+eIFsaa+eScYg5O47M4P8qC5kA8lP8BHk5u4Q12IE28mEoJDjiE7fAJlNFo3Ke6+Dn9kC0II+idjhi68gqzVJOPmyWc3Y6RFmJklKEWknsIRPtYZVi4+Xdz03l/mpz/8CeIgYOroYZ74zrdJ4g7R5Z8mE2tYpRy24jKWpTF6adywJDoHcXZFrWNbFjrjEmcdojQg1hFKKrRrSEVCmHaoLU7RbC4QqRDlGJRjSGVKmHSJdfSMr0iHTEXjPNK8j28sfoX6+DFEqUTqrIxfuSYE+fi8KN0AvFye+eGjJE6InZ4aKjiqDycewDEr6lg7sYnyCcFIhqL0kZNzHGseW+NWv4LzhlWkm0D0vEONSzXfj4+NnmhhFR02bQj50X8zzZuvcpGZKb4++9WemvbljCjC1Gvs0IINRnKtN8h4eAEjfWWkEBg7RGdDlBvhqBKunyKyLVrFJ5CWPIUk6Do+vAxIt6SxotZ7CuEGICRJtp9ZP4dEIzDEToSyW2grxJEuWzIraYLOqvE9dnyG+wcw3d4xlJ0ljnvXLJdLebgp+OBn9/CxbxwiTJ5/8bbzgaAVEXUT0jjBrMpGGG96lAorhQv8zsozIkFQqU/h9z/VFuD5wur3sZfUh8ppYbESAyW2y3Cpwo7hzdTNNFdOvIW6vcC91bv59tS3cbMrBE7YWVtfz6OLHWbnOnS8JrXcDLYo4CZDSOPhtyKMr597J2cBOdshzqUE5ajnlS0tbNtiIJ9hOJ/BGJ8Ti4pxmbJue4VuM+HY4Tof/Oi9/OAffJNf+r07+MwfPcTskRZRJ6E4fAFJGDB3dC8qOUik89C5B4zGwsXRkpKXcP9MP3sWyr0xYnEBZmdXGhXHMD8Hjz4M3Q5kFN++92tY3qlqNiNjnMjGKr6wuGNoQ5mB9UsFDwwIb4i2rjJwrE7q2jQGNnF87AcwSQBzBxA4iKUibzqXcImVoSbXk7QuIfBC9nTH2W1fyIFuhNaCh79+nC9+9BHu/9LRF9TOV/DSgNEGJQz5QpZOroJlexyU31n+3MuViMPwKar7FxOeN+l28803c/PNN2OM4WMf+9jyv2+++WY+9rGP0e12+djHPvac+9m/fz+ve93rnvJ+qVSiXq+fVuPXEnYaEmYLzM6EhN3kuTd4EsQpiZIrwelCc5XM3RgytQCjGnQLEbk1TC8FsJce6NpKyc1W8eod0Iaw4GInKxPnbLWFGvsx4gv+O5c6x7jvwFGmm13ibJn9xRJZHDyvQm7yL2Hv57nkDeu54Ooh3IzFo7dN8JWP73nebXoyiVabbRB4EYoUJQLUksmrstXTfv/lhFvFIULPw0iLt22qsvOSBTZum+OqdbNcNljFsiUL4+1T1KiW4xLFBQ7t28TOoQYYQa59KZoQGSvCap0g1wtGzwXpZq1SuvmlMluue03v70KJ0thGjJrD6ARjDLK8heKBR3HqNaTJkm3mSX1FZWacbDsmFhkmNvwQAJfJI2wq30qfSJn2xzhW3MGVssalpRb/p1akrns2MT81kGHbwuX4JsN9M/fRSTpP286ng2qkGK9DammsuIAmhlTRN9VboZcvWPF6+rDFyn1oxIr8KE4hbXWoT41jjQ7TdfNoIXmHvIKLRwYx/hGm2w3mWgFSQi0WcMOrIW8z7BYoDPwon1DfTdtk+Ja+nA82f4XhpEheCe7PZPmuscO8Y9sJ3KFN6E4bOTnJZudBpOMzFUKxb5QoaZBt1EmdHnFqKUkqop5KY40ghMDxe6kjcRQipKaGx+bZ4wweHl/+nqMyWLEkXUpLl0ISxwmBWZnMOqnGiiNUoMioSdyDt+Mdvp2ybagMrMdKRO+VgpUKLGWtvJfwrGnCnlxdXMLQmF1AZ3wwojeuiQbEIfWhNkJI8NaueulJ2J4PjqQ+MIOyk2VSRaYKLQLcZGSZtARoJCt/q4xDPoT57vyat/sVnB/0CimsvtcFQnsETgZLSuIvH6X7v+/n0KECrY5NuWjIy/Vob4pfv/PXz1ez1waf/TSZr38dAbSIqNHliFmZ6Gq5Uh3YjdZz5ESROJFE2aMYk4I2yG6Ck4SEfh7Sl76CNO6EuEmI/STC1RgDauX8coufIc7nSHMjaGtlMuVYPiXz1MrY2bCFasdIy0LNncAPesSbVxO0O20cG7576x5a7S6//5X9/MKf3XeOzvDsIAp68w3bFT0fI6OJE0Wc1hksd9HtGOtohBeuig1UjGUSvKEzLxggpUSI3rWLnRkUK7HTpOjSibqMFsvsTA8xGl7KhtZOcqrExx/5OLbrkh8YwslmScPgmQ5xTtCOUnwtqLp1Bt2NyFVV5+1OCFvXpiiR6/rY0dKcSi5dA2PQWrNlwAM0tqX5428d4fp3bqWyu8yHSyH/eGyeBxfa/HO9yR8dn+Ev75vgt++f5Mi668lVxhDSRsdPkFgFIIHaXxGXD2GGLBqWYSpw2V8t0tEuWDY8vErMcve34ZavQy4HBR/cDo9NZXoxxipoGeNYLvbo8694+3SQlmTLJaOs296P7Vp0OwKkIbVWiMAjm3+cpDSC3a4Ru1O40SgyzRIUYvptzXelKfHim9CzN3I4ewxX2HQPX8fHP/dGvvPFSU48UeWezx8l7Jz+vPwVvMSQaqRjcbR/K5m4QzU4woHOA8sfa8fDsiVRt/ssOzm/eN6zxqNHe0zyG97wBj772c9SqVTO6IAjIyMcOnSIzZs3n/L+nXfeydatW89on2uCNMaJA0rrPO75/CFu/HcXnvGuVpMiTldyMoyQKsWNLMpVh6OuwjpN49MXCoslY0IbvMTGDmIcxyEY8ijPrlrxkB6T6Tj1/ACbvYB9i9MkQxVaSYeql+eY2ctrkzIHPLhs7igDF+W54V3bWZho0xUxi1MdlNJY1nOf30kS7SRRGQQGZac98sE4pEtVOLWtT/n+ywHuk6rXflQdZnvuci4fGUHXalymNWEmRFZaGCOohh7tiZDK+F5YWlxy8wVaXZ+cFxELsJIyqdVEILESyVhgsy/Xe1gJcfYVSavTS43Wy4SIEIJc/wBpewJXLlUcc8vYRYXT6WA8gSeK+IHEoUkaJGRHckxu/3FY+GfSoMnrxFFusW+kGIe0ChsoxPtwUSza8EBs87pcRMlV/ER8IR+KpiiXy/zDvn/gpy75qefVdrvtEBVDjGMQsYXEBRts2+BuyCHOA+nmnEK6dSksdEEa2nMt+vpcOtVFcuu2oPc5hFaRa6Isny1l6Msb6skcqdlE1pO0gxS2bYO99xF0NFuchH7b8OfquxmrZNhqCdpqI13VomNN0ypKosqFWFEHx3XYmHucXRe1uA/F7NwCTq6GiTRh4BE7SwR4CoGz9t5D26+5gen9TxB1uyRpRCmp4quE/rkJFraMYaTEwmXPbcNcfP0cY5UmWjR4/J4HWQgHgTcDkD88R/uOfQBcs/lBRjIdkA5c9x9g96/y0H2fQiUxtudTGBxmZl+vOl62b4Di0AjbLnrmokHKKD55/ENAL71MtxpYroc0EkkGg4s0Ca2+LlLp86J0E0IwuPUCwkYLXTUIYzBCIAykVgOBhzKrKvrGK881lXXYwRB1d23Tr1/B+YNJU3rWGb1nsNfpw40KWEsEihxvkyhFMu0R5jRBYDHs7qRZj7lj/G5+8bZf5MNv/PD5O4FzBa1BKYwQSAMFPP7OPErTuhyAIHOIyJ3BinJYscCerXCpbdH2ejFNYW4eofO0RgtoHELpQrj4LAd88WNxusnk0Srx8FIxCJX2CAKWLEKslXElsX1k/WuYgR9FrSLdhBYMmqcWNrOiBKvUq1YdtgNGZo9iJbN0hwxHcwGZZkpfJWVoKsHg88RMk//2j4/wWz+4opp7/NvHicMErQ0Xv3oTfrY3/h5+ZJrmQgdjDJsuHqZ/tHjWr81qGG3I5N2l8017pvFCYFkGY2XQSqBrXdwwj7WkRu4mEbR7pEZp8wubUzlLC/HK6qBFRBx5KBUz6QoGag3iNGRjJcti0GG9sxEntXGF4Zbjt9CXJCTdLiqO17RYSidKyRlB6M2zlQuxw35SWcdKFLmOhs1rVNQh4zMwUSLKJECNXNMiLORpd0L68gZkiOcqgrhM38YCB4cstsw41NKULgYHOC41XdfQNoagbvM6k6Ff5jA6oosgXvdqXCvFzQtw83i6iVvQ1MMiE60m2y8u9sbfxx6D3buh3e4VA+x0oBjAaB/mgXki6tjKBysAE9E35eEsSuSWFz4HdVyLXKlHhohcCTe3FT0Z4DW7pJ6FpUOi0jqsMCW1W2AETpLBCQTJQMD2yZhviC5h/dWM2k/w+TsXEVaJvmKbZieD9Cycks1j35zk6rdvfsHtfQUvXsx3EiZufBepV0DJiLT8CK8e2k5Tfp4tkzfgqIQ0UYT1+WWP5xcbTvuOuv3228+YcAP42Z/9Wd7//vdzzz33IIRgamqKv/mbv+FXf/VX+Y//8T+e8X7PNWwpyaddvILNsUcWWZg4Tcn0MzxwdGqInTkSewHQiFTR7OsQ5KI19yeryDwDQUphMUu2ERMXM5hEE2ccxElFg9BIYooijyscRstFDjUN5XyOxBhsp0wkNCO6wm3+CHN7ehPRQp/P8NYi0hKoVPG5//kgX/zoI8wceQ6j7eX6470JXRIb2qtSwIxIkakgcZfeexl5urm2hRErE9lCHPDJ+AQsLuLbNr6BglIUlkiO/kyIIEUkK31TSpd2Q7Ip36VjNJbOo60IqTzsxS5TbrwUFICwzj7p5mRWfK3kk0jkgc1b0bqOSWN0GmGMpjy2me7YetJMmW7ZpjrcJPZaSAFRmIJXYLSTsjNocKM5TIjBEprDsp9JnWXnkW8wrxw+neYRSuLbiuusfl7HCHFb8aXDX+FA7cBzN9xoMoFHxutQni1ix4Xlj6yGIpkPke7ZLzzxXLDlym+kLU17IEu7L0cibUwcs3jkENlKDpMqhFaUtUc36WC5LeZbKTnHot5NSJTBeB5kM2SNxjHw88UmpYzDv71mI5/6gc3cUM4w4rfIGZeq20TnR/G6x7DiOeTiQapzi2TiE0TuOpKkhifzqEAjliZGtrJxrbVZVV4N188QdjrYjsPxJx6jkB7BzkhEtA6z1AeFStiTZmhYFtaoxBmpUNXfz9HWd3PcOYYt9tPwOpzYNs93rpriv6wvsiAlOD4cug3+/sfZOv4J+sL9WI6D1orcQE9V0K0u9KqcPgtOLXai6SYxtuqZLif2AokzT76RodUX9L7rrf11hN7925ybxIolJ+u6CNOrXGpEhHbKy98dTVYmM+0+j6lglvtm7yNSL/1UuFfwPPAkpVucbRJnDQv5QQxgL1Ubq1Ud7ExMlEguUJeSN4q4q+h0Av5kz5+cn7afSxw+DMUixmgSrVigy5Eg5kJfM9ueouPvRVsNlBMixQb8TD8jC1kKc1lysy6DxyfYec80TjOi0qniphEkL+103G4jQq42QV8i2Z4uLSi1C4BBFcdI7ZX+5XgltO1gVTsI1dtOpooN84/jLRwnqc9ihke5cOYxBmp1crFhsG8Qa7RMf3/A/2/9FInSNKKUb+2b488/9TAH7p9g8tACQSci7MYkUcrs8RoHH5xg73dOUJtpEbRjwk7CxIGFlSIH5whpomhVA1rVgDBRSK2QKiWMIob6p0iaGpFzcJJVlaMdD2yP2LHxRkdf0PFjWhTnsmSaKY7pI+Pa5DNZFtwsGS9LM9IMZYa4hr/hosU8VWuWpKs5VD9EttJHrn+Q3MAQabx2/bUdpvgGUithfWEdWGCsBGQO0WqTX7c2Pn5W3iNxQ2rrWsQ5Q6dcRlk2eVvgySxSKuLEYiDv8sk7jtAwBl10iG3Bq0fL9Jd8fFvSEIYAaHdTxsUIgY5JcWi2j3D/Iye4+8EpHv/m1+DAH+Ev/h1D5Q4qStgXjKJm5qFW7aWTfuMb0Gr1PN1sBRvyPDZl4xV9ojRASheLClhFqqMtMqUcVt/ZiTuyRb9XVK9QBDuDsloMjDdQnkecKRH1jVEUOfxWHScpoWSE1A7T66sMei7auGgrYsIeZTLcjxeWCBLJZRfNIS1BtujSWFhbReUrWHvM7T1A6ueW5vkKvBaVXJHENswXSkTZMgBh/anFPl8sOCOpxsTEBJ///Oc5ceIE8ZMG0w996EPPuu2v/dqvobXmTW96E91ul9e97nV4nsev/uqv8gu/8Atn0pw1QWxnqGfyiEKLTmORww/OMrD++TOpp1JBK0SKxMNNepO11G6Qr8cUqzmiXPKUrc41uqQsZGzItHCCACMEnaILBjQGCQgjiZs2/amh4G2kvPmdVE/MEmtBpW+ATuhwGcM0rJRHMjFvnzvO2NL+L3/TRvbd1fPwmj3aU8CkseKdv3Tls7TqpNKtpxBstVJU/8r1MyJFKknip0vffvmQbojVPUBQz3eZq3+ZA2/5JDuaHZiaREmB1WqRsVP6/IhjtQx6VRxo0hztmmT9+kXyuRQ37seLe4FYf6NFSQiM1L2JtDz7aprVRNsp/m5AYWiEzOggSAspLUwMbrL0OyYpUuWwUkFgRZTrEdMDOTLCZrFyBe7MNNuSKXb0fZV7Zr8XITW3yi1crfdxpKrYlynzkT7J++MqI77mZ6Precz9Rw409vORhz7CB6//IEPZZ0m9iDtkgzKm36Y+vEC+oXsGvEisVGMV1z7dD8ASFsIIjDAoGbJUIIvUzlDIj3KsPkEaNIncHAPtaWLls7l/lL2Zz9Lp/iaTjYAL/RLtMKUTKvLFIhZVCpbmp0oN3vXum6iMVZh+Yg+jSYmviyolx6XaP8amTI6odAHa8tiw8DVywTHsiT+mufmH8YoXoSwfefQB1LW9CZCVSrRce7+ca7/vB3n4a18klJKF8XFEMUF663FXe0lagr6sS7fTewR2Q4nvjdJOs2yiQgpop01ry6Vc1hwiH3s8UNnDWxdvgfm9MP84RUC0p1l0t5IEXYJGfXn3adTzlWgvLuDl8iRhl1zfir/OKaSb0uggS3u0jGXASiF25tDSYCyDMOK8pJcC2EvH7Y0RS1WONdi6D20CtLOyaKLjpXs9BS82jNSg4leY68yxobhhzdv+CtYYqeKUdVwjkSqLrRISaWNbFiQQTbpUygm5XEJYd/nxb/03Prv7Zu6tfoeqXuCHd/0wWeeZi5C81GAeegBRq2GM4ZP+PqSVp1UdIRqqUBwIaHlLFiMGCu2rsFKNH7q0hro4HYsoG4MxKN+m5vYR2y4sjD/7QV/kMJhTFhRPQrc6yyq1kxAmwqreTrL113rbmF4fM06GPqtAu28pBc4Y7FSxc/bTzJV/iLB0A9LLMV4bZmfaYsGMMkubJElQdkoqYn55u89/PxASdmIemGuxI+PSWOiglMHoXjtnjtVQ8SqvT0eSJppuI+ToozNsvWwUyz43WSlpvPL8TCwLvUROBjollykxvLUF5Mjst3rB4tIllUmAk6T07b7kBR1fZgXdUoSxqvQvrSOlSvNtb553uH2MOQpbgAxq5Lvj/Im9QCOt8vVjmlflf4rOYs9eQEUhzho9w8JU4SHYV9rPzvw2nKQPS5WQOiSb2uTXrw3pZucy+I0smG6vOu9JZHP0acnGwgDHahH3HF5k30yrRwAHKd976Sh/+CO9OdHNXz/Avu9Mc+mk4oCj+HzpYi6sfweIqXWOcndzEyBY12lwgfc4tqUY2nQ3D3S+nyDQPJopcnVpFsIQDuyFogtjG8B+HObn+coTOygMD1O0e3MCg0bLAL/roOfis+bHmy14qFTTqgdkvTyRaZNJVu4p7XvIA4doDrQo166nk99Hs6+DTBOuPuyR1oqQJCQLr2Ehvpt8NIq/cZZrd5xg74nNzB1vYrSh04jIlc5PrPQKzg6M0pCoXnabMijHZvZYlaAZU19swkBvrJXGw+ie+Fc5DbTVJfFivDdu4JHgEfrjyxHGIC37lIyr843Tbsmtt97KO97xDrZu3cq+ffvYvXs3x44dwxjDlVc+G3nSgxCCD37wg/zn//yfOXToEO12m4suuoj8i1QKeBLl1gxRfgd6pALWDI/cOsE137PlKeqdZ8ZqT7cVKGGzHHto8Jb84sJcvOYEki1tTua6akdSmmlR3dxHp+IT5T2y7V7blLIRrUXwKgyKEhd7D7B/bjvXbRqima0Q+GVuCC3+s1fgoexBLoxjLNelMprjR37jOvbePc0Td04RdVIm9tW570tHuebtW562TauvWrvWZHpeodatrL6cJN1iL3nS918GMGJVsk7vj3a+xZ9+8rf4vXf/GsL1sEsWYTvCkzFbSh1uOzFCJ1h5UB55ok2/l+GCSosJyyD0iholvxjQ9RNGw5R1geKiLc99/54u+rdsoziyDjeXf9pVbHfLFqLxKtZSBVO31sX2CqS+jdetEOQMjYEOOx6oUdtUIsBi/xW/zfBXv8qWNOV6fQvDpTfxxUaW8dxmxnObe6rI1PDlaj/vW3cc2cyx2bP5X8H38v2Zv+G28dvY1beL/3j5syhr4xZWmEMuKSgtnUMgQfWKjFiDa5Si8DSwsElJUHYIS7FcLASqrZEKxh+6n/LgEGlnDjcNucys5w7fIcgd5MD8MNsGCohIUG3H5K98LfqJ40jTI9UzBx+DsdfSmp/l8ngDd1hDHBcLeJf8GQeFQ7Y7TmXhHhqM4spFis27qA/9EUK69LfnOREYtN0b0KxUgLv2d2Shf4Bi/wDNxQXmxo9hdo+An8MJ29hBQppxwM5yaUkwPpfhskiS9TX9lZC5EysTvqaT49+u+/8TXNQbb4J6HfPv/wJx5/+GB/8c2nMUk0ns2hGC7KmkUhKGtBcXePTz/wiAdBxu+PGfW/58tYpZaUW3f2x10WGM6NLo6ylWBQL886R0W1LYaalWlG7aoOkiTZZuYQzD1NJ8TyOUwNiGxu4RnNybuGEdfLv+dcpB+ay2a52/gUtL15zVfb6CFwhzKukmEEjtErkZQieDsxQrXeKHTExlGRvtYm1vEoqUXFSCAhyqH2KmM8PW8ovYauQ0YdptBLCgIzLDb6HUdz1DO3qfte0lvyUDucZ1S4s6Kfma31Pw5xT14Q5jhwaxE03sWqTSfskr3Yw2GB0+5X2rXYcnkW5K+qAjBBC4US/bIi3iOgWGrDzLun4hsKMUOnfjzW6H/huwMnkO7n4zB5UicZtY6gvgOEw7guPMc8VGn8KxhFaseLQR8MNAEqmTu8MYlgk3aQtyBR9pCaIgJezEzE80GFhfpDyUPyeZKauVdN1VPnfNIMH3Vj7LpJlTJhap6vCtnRv4yUrfCzq+yVtYqSS2QwwKgYVtSTx3gEerCZeWNGOVAerNnVxj/xNXTP8IDw/fyYH6AQ5npzi5rJlEEWv1BKt3E/JK0HUbDPubsFUFg8Jp10h0RHFgbUg3mc/gTfVi8dQNOVno29aKwXyG125bx7H7D5MYyUK796EEtg6tzIULvs0l14xw3dUu9rfGWdSGb6/7t3QzZS4OHmbH7B0kqWAqKHG43ceu4jxfOR7Tyt1KMN/gvv0bye0a5sLtNYgjiG2YX4RiDe0PcMd4g5s2X7Cq1YbYnSFb7/1aL7SQwkkIIagM51mcatIJPMobNtM9ulK9OLDXM7L/Fmr/dAvNt+zEjcaIMseoj3TQziZec9kh7nxkKyreyKx3K2OLXyZ3wIEb+rjqxhx3f63N3PEWB+6d4Yq3bDorbX4F5wdqvkX60InePzIODzY0I/YTHFdX0Np1xapvClZbEaayzZEtd+Bs3coxGtzxmf+L15XsevNN9G968cQTp70884EPfIBf/dVfZc+ePfi+z2c+8xnGx8e58cYb+cEf/MHn3P4973kPrVYL13W56KKLuPbaa8nn83Q6Hd7znvec0UmsBR5txnhBFT9oUNqYR9rw+Lemnvf2z6R0S1dVfxPCIklD5sfqaNusPekmVgZYbWuyLY1fb+JGKd1KbxBWMsXyNMayESZGFDy2D3h0qtNM1Vuk3RYznsWi6XJjPMxjXobpT/1PAKQUVEZyZAsuWy4dYGRrETdj8+CXjxMFz2QMvKJ0m9w7g+dC6q8iPESKVGKlAufLiHZbcfvrwY9cnFgyzwzTMoG33YT87u+lObiFmW6GWEkuHmgQJivhjRSKK4aOM9/usGgEXrgBJboY0yE2LU4MtHCVweXcpEpatoNfKCKlPKWowknYlQrp3D503AU07OnghimZeoDTkRSmIrqlCDtKybcjSlmbSORoZwepWRZXqi7vGDjAtUM5NoiQiu5gmxRXKKZaih8a3472Y7oKBkyJD8RvpN8e5B8O/AOpfhYz6qiJjEtEbi81brl6qRQ4sUL652/lpGIGKc2H2HFKbjHAb4ZoVxDXuhTy/dQnT2DaB4mkJJAuF0zV2VHZQaXUopUuMtsKsC2od1LI5mkMrFvet6gdAUAlMVk8LtGbGHDWUY/nmAqPUE9j5kNJ4lTouOto5C/CUopMdx6rO0u06okiYoXJPpVoXQvkikWyhQKO5xEbifQLCCyy9ZVUx4sGc9QaDnOLHq26xQWDiwhrpZruYFQgESkyTpGJQmbytPe3wC/Cru9BDO8m8fq5uPa3S35WIC2bXP8A0rJ44mtfQNg20urVhY6DU81d5dLjNwoiwsF+nE5MKlsk9gKpXWMezdhhzWsP5uE8rdQVhkbI9Q+ALcnWQ7L1EDfoMtidQdABK0OwFJjXi+GyDYFxJNJz8GyXQAXPWsn1dF/T4QR7mg/yrYWvnZdr8gqeHlo/SdVqJML0VAcLZiW99MrhOlMHyoyfyNOuu+gfPECDldhj6kR1zdp8zqEUyrZpY3hMJBQqpxLF2loaEwR4yTAAMtVk2t7y4kWQ66VNWWlvLE2kTZi8tE3DjTFI6SCVOqXqbWHiQXYc+ijbjv7p8nvK8hEmJdlQIrSXyAnjYFlZZu1Tny+WSokAPbmP6Mj96MYspCFJJyYTGNSSNFx6HnvtcazuNK/fNcTF64rUlSFUGgQ4nkWhP8vghhKZvEtlJE9lKE//uiIXv3oz269ch7R6Y92+e8Z59JvnpnpimmoyBY9c0UOvqly62I3I+Cv3mxedqu4xJqLju7iZF7Y4aMoZrNTCyFMzbyr2GJNezES9ymyzwfqhS5lniNd6CxRVhYzJcUStzI/S6KkE67lCz9MNpLZw8EisGqldx+tGBNEC0lobWxBZzOHGNghQVhunXScTdnGShEanwfqyi5QRl210Gcy7bB3I8gtvuoD/9OYdy/v4mddu5X1v28nVN21hx8X93JTJsbV/jL6+HLafJfLL4Hk4nsXRaIhHki2EB2YIpw/hxZM0Ovdwy965nlBhVMP6FhRrkB/l/z6xnV2NRwhyfaR0wKQkziLKbmIn4Izlkfmzl/1SHs5T6M+SKWQwVgXbCinM1/E6Ic385fRf4DB6LKQQTGEpFzsp4XXyJH7KZbsTyuUawmrRcCrYOmKqfYITH3+AEWcf/WM5ysNZ5k+sbaXcV3D2cOihKe790n6OPDCx8maScFXmM7TzHq3BHGiz6nkhl6kUKy2gZecUokUtPT/TF1ml79OO5Pfu3cvf/d3f9Ta2bYIgIJ/P81u/9Vu8853vfE5ftr/4i7/g93//9ykUTl3NCoKAv/zLv+RP//RPn2HL84tmrAizvfQgkeng5WwOPTzD9quHlo1Ony9OdpnFE8cQxiJ2ZwGDlRYpdgXJkmn2Wnu6WZa3rJyJmodw0zpm3S78MCXM9dpkaRsVgrAttPCgFbGtNMDtUy18aWi3mwSyyAlxgA1U+Lwv6R79O/7mN96A49q84/2Xc/mbNwLwwFeOodI5gnbClz76KFsvH+SyN52qGFl9BRqzTYoFm8jrrR4lVhUrhnwzv0wfr/U1O5cQT0q/kBQodQKqOcGXP/5hKmPbKA4OcfmVb0WMH6ed2PRnQ46ZHFAHQKkOlomI0pSF3AZSp4FUWYQ2hF2FWnR5WzgI7gurUnSmcNZvwPb3I6TAGI2tJHHGIfUsRNyHFSbkOz7B+ggnTNGWIJ91aQxcTTR3J4NG8M/5Y/x27ho+mjg8Mt9A2AUco4mET2TleDSj2BUrRGTxar2BB1pNqhvhK8e+wvds/Z6nbZeJOwhlU7Cy1EwHIxRKBJTmTS8VN3v+SLfI6tIc9HG6NRzRC6r9MCE9FlJcX6ZLl24wRdGUEUaxS43hM0cp12FicQ7X3kYjiOkGNge+eQtB1EYJQcaAVw+h0UAt2QbsNhs56rgM+r179juLD/HNQ2P89w2vYdDbjJMp4IU1tOVSikNCO6E8kcORkkIzg3We0iIzpTLTR3sE4nwKmXAO1z1GqW7RHO0VwVk/PMKP50qY7CKOCHEGNCLbR9QyeAhcJ09a6q06izjFbjZ5fO801/+H9/UO8rmfJ401KorI0sCUt6DTlM5iLw+nOLKOdnUBKSW5vkHmD+1n7JKVlbrlIjFGY1UKJDkXW7ugCzjBLMcF7KTIcG7jWl22p8AvFOksLuDZHlFOEuV9rNhhg2lT1xLSiMVRRdeuYSUuTmwRORpL+4hEk7EKaG1w5dnrB7GJiFXEfDzz3F9+BWuGJE6X+7QWMSDJNDV9wQJOpoi7RBxvdEJmJwa54KI6KtWk+TZ61frvwuxz+Ly+lBBFOEGAg0DmioSqg4WPLW2CRBGqCLtdxko1MrDwophcPaTTsZETBRLZoOu0WUg1ekn1pC0bK1g7EuNcYH7v3TjeEHoVAWK0ZlPtywx1DlMrXkxmaApPNbBUyLeveQuLpTuwIgtMAScaxkiXPtteVVMTrAg8XScMA6xDt2Py/wZf1cAZwG6lZBp5hKoybHJ8glvY35xFdL+fon8ZF40UuLcVctPmPrIFjwuuHHtqw5dQ7MuSK/kE7RitNWE75u5/2YuXdbjijdvOWhyqEkXQilBC0O1b8dLO64C8XKR1LCSjQzLRqW1NdQfbcV8wwWRVyljJPAgwIkYYn1RpZFTmcLbKZbpIpFNUnHI8HWVnN2I4v55Qdfhq/Q6+4Vn8t9J71nTi2+7GTLotGtl5HKeCk/SumxMtYq3h9EAWCniqR6obkZDkyyRATqWIuE2QCoaKdexggZ+8+lV4uTzz7t/z/ttnUFrx7l3v5oaxG5b3d+GrRxneVuCibowxsOu661Hxj/L1//uHqChg9nCTyYaPJ1PQIIwhkTZddYA/+att9A9fy7W7T7C+f5qvfu1xxhfbPFq+jF2ZIjY5lIiwY5dslFJcLJBMtpFnKb0UoG+kwNThKq5nY1lDmMwiievgBQ1S2Yet5sjc/ihXXvBG7njDZrqFGqkLtZE2gzg4ModRPoHVh5PWcJKY9vFFxgYEaaLJFh3iZxRvvIIXO4J2RJoo5goZqpYgiWdo1Oep3vYIuVdfhrV5xbfdWAKBQBgbI1KU3SK1Glip38sAAtRS133Jk265XG7Zx210dJTDhw9z8cUXA7Cw8Mzm0c1mE2PMki9XC39VuoxSii996UsMvYDy1ucatSDEirs4aUikYjqtFMsS1OdaZPJPraD0VDx1tK/VphHkcU+ucMYdQiKiYri0xVqnl66Qh3JwM8VujsP9FUwnwXkSyaCrTcin4Htc1FfiI0dSfqhSBspEDcGOxTJGbuEfeYAHMxHpseMkhfWceHyRymiO+lyX4kCG1797F//4+/cTtGOibsLO60fwTxnoV6qXLk52mFvUZKyeZN5RfbTzx9CE5JreKd9/eeDUcwm9OnOuh9IO9X0Nus09hJ0t+N9XxndC2sYmSCVkBlgm3YJ5pJCUMx5hpowwFtL42MEEY0mGQ1YV6kehdH4m9nalQveeL5J949XIQk9x5bUihLFIow6tdT6uiXnikmOMzfbRaBdxbcnkhp/hgomvM29JRHMfQ94s//bCi1n30CfYM3gtd2UvIQ4iYuXwRWuIyzcdx5sdwNU+N1l9fGbyMH88+ye8ffPbnzZFfHF2GqFdLAFeewChbaRxQEaIjMQqrH01yZNw7R45nvgB1lyKnSg0AqMdLKVJo5BWKslaDiOJQhqb/7Px/+H7Ou9n/sjV2NLGAI12SKbZpN2t0RbQZyQmMXDH7ai0N8ZvZJB3ZF/PfHQcT+aZj2cIdR/H4wzZ7CbaxYvAKRB6BR6dvI1BeQG19b1pkBvZyOzZL87xfJAv9+H6PrbrMj57nIvK16JMjuxCHqcbgx2AV2CzY5OkgyxWGpjI8MbLJnjYpEjfpThTwu7EGAnKd9CeTz2X5bP/8k3e9b03QmUT/t7P0zYFMuEUi40K5XXrMVqTxjFhswHGkIYR3cUF0ihgZNduLGfpmgjR88s04LoOVhAS5UOEcdFWhzu+afOLu1LYeP5SycTSvSG1hVS9v7UlyKc2Wnhk4gBkiYGq4h5Zw44tolyCtgwDH/oaH/oJix+76Mf46W3vOmtt+sSxD6FRyxWtX8GLA+kq9ZU0bm9BMZ+n6gww3JmlnPXoGBeJQgLtSDLQp0iiEO2uxIPd8OVjiJ22WstBdsMrk7V71S4NCjdfI/SrpDJGaxcZFohcUPWQP9EJ6/IRGTvBrjr0OVCLFHS7uCLpFYTRGta4wv3ZQBrHxO0qMrOisDZGo8OQjGzhqhal8ChBbh0B68h0DzIz1GVBTdET5DfxOsO4RlITKVYnQmUcnEjjdhUnwlGmmzaLizOse8tWrM4xRup3cbh6NWILJL5PrqOR0uK4mmFAfplHDq2jL+fSLmf5lddsxrGe+7pe8tqeJcrBB6eYH68DEHZiDtw/yY6rx84K8aZSjdEpqUzR9kqq6KE2eGMFCpsV4OM8YJMajb2UbyVJ8Z8kbDgT2KV+rO5hAFKriRW72JZkXWkjx6s5qmKEgayPNXuQsijQF03xG8cu4r9srjIX1SmYDPfM3ce6zTtfcFueL6JAsVF2GepuBgGpVUdqD7ebonXnObc/W7AKHnarH6/VwglTSCMcLVAmpZgtUm+GlP1RDjaP8btjHfJb+vlPtz/Evuo+hBDMtGfYdXQXv3jlLzKUHcIbLFApZ5kfb2DJnk8aeLzrA7/JHX/7F9y793GkMIAkb7rcsuWt7J5+mGOZDdRkmd3TR3k8LvLG9YMcnthHJx6nXbqMWCg0CRYeCI/q0AxDx3spuGczo8N2LIzSREmKl3Vx1vmQCMJsGRNYqGIRf9dmZK2Ok1aQqY+V2sReTLGWwXI6CLdB17dJrRDLlnSG8ojJh5FyO425gHyfT7cdkz2LCr1XsDbQWmOAwHboOA7G3UTQSKhbQ1gxVEJFnLExS2OzEh10VyKWsrG13cGYnoqaVoKSLkhJbeI4QxfsxPHPnyXQapz2E/v666/nzjvvBODtb387v/Irv8Lv/M7v8J73vIfrr7/+Gbcrl8v09fUhhGDHjh1UKpXl18DAAO95z3t473vfe+Znco6xr+2h3Cxhto9CX5OoG9KYC5k6/PxSIZ4uvXRm6hhGrCgAlONT7qwUBVhrWKtIN2Vp7ETjLi4SFTzqQ7lTkh11N0UkEUSK3XYfbTWP0r3zqgmHAelyJetInQJfL0Cfu49OI+Y7/3KEr//Z43ztE4/ztU8+zjf/bh9jO8qouEeqffszB09p0/J1M4bGXI+MTPIrJstGKCwll9MGXk7ppVq6rE5F3uoMIr0q9dI8Vd8mjiJmDh9k8fg+6rFD2U8Zywc0F1f6T8aaYX25RN7zif1+nHQAaRz8Rm8FrpRdCkK84lqe2jLs4aWKj9++efmX87sJie9hckNs/Ow4QTFibkOdODzGsC8JEs187kKc7AXsjgK+a3E/M9FxMlHMyI5XcdHcfWzongAk3Vjxj/MVZrTGlOv40vBGs4UfMzsZ5wiPHX76SqaTJ9ooU4ScwbgutqogsCnMBZhAI85jeumyakiCGyZEBY9OySfpSvKiDxMruqmP6jyCBFwM6UOP8KqxG3D6b+XIQpe869JJJLVGb4I7JSDA9AozTE4jg6WUJsel5K1n0NtE0elnXj9GXWuOxDk8leIV++hmyhgMDzUn0KtMFqxUYp2n4Gdoy3biMKTbbDLXsjhQ3Qf5fuxYkWRdErfnoJbaDiK+EqFzWFnJzotDupuLULie5gUXkmYdVMYFpUiLWfTIOv7lrt/l7/7Hf+Vzt0/yncky+XiK0XLC+suuorJhM3G3g04T4m6H0V27GbnwYpIooLO4QHN2qkfKReGyl6fWGq8wQJIV2KqMpbP4oaJK2jOA9c+fMbCQsreyKDVyqUKgsSR+10UYQzefo1PpBTN/WbiXKFkKiFzN568bBGOYaE484/7PqE3ipELwFdLtxYRUnZryKIyNMD2COXR8UiWoNWLSNOHKksds3SGT0xT7CmTyK4qc2an6Wjb7nKI7M7n894KzoiaP6VLv/wraDkAqpFqJadwwpYmh1bbJ5j1qG9WS3QhE2SytTIlUOvASSzE9eb8GjQakIfGqaunh+H4m//IfWKcfIKOqKLPyWTM/wkLfCBgoTztk2xfhhFcTZfLkfR+V80BKkoyNG6T8y4nLmFpU2CrCas/QKWyjPnANmQuHUAyReJq4z2eT3c+FchOz9mHs4kNUOymPTzV5bPL0lJbbLhthw65BHM8GA4tTTcLOykJJ2InRSjO+b57xffOntW+ValBt6B465f3ZVkBmladbLiwuE24AcdqhMvrMSr3ni0y+jJ2eTCMxWEskb9Z1uWjXezhx+Vs5sOEKhop9HNZXkhczXOJ8jje0J1Fo6qLDffJwbwFqjRAHKYHTpFtoIrWHrcpIk8ELFEKsnUJU2BI3hagQ0+lrgO2RuC6hlwXLZUO5wLrCMHG8nm9NHeG+qYfYO38MbQS5zjt4aM+1/MN36nz50C0EccrX9j7Cd/Y3ONyFYx1I0pUZmZUvMlJOOdK/k339F1LcMsqQbPLp0X/D/eWrOJxZz0J8BHX4s9xz2z/TadS4s3Idk9kNDGQGkfTut14hhRC/4yJ8C3GWpYFjOwaIuinNhS5O31YyzSZx1qNV7qMzdDVO+wnad97CQJRHWyGJ3ybKQWkujzQZTDxMW/cRC2i5LgvNhEf39CHRdBox8yda1KfXjlh9BWcPxkBqCbqOgxEChEVm/U7yO67G33YZUd7FWaVktEwOx1vxP1RWB+2ECCEQRRflGdCaxtQEtfHj5+OUnhanTbp96EMf4rrrrgPgN3/zN3nTm97E3//937N582b+5E+eudz77bffzq233ooxhk9/+tPcdttty68777yTEydO8MEPfvDMz+QcoxGsBDj5QgYpDmMM1Ka7JPHzqdC3qiTA0lyhFTQAD0VAatVxw17q2vnyJ7PFCpGglrwyvMkJ3ChFO5Ioa6FkipEa7eYRaRekxjMOA/2PsGdmmlaYEGYr6KW2XxjnuC/jk934eRzfojUfUpvqET5CwPzxNq/9txcwuLGAZQv23TVDvLrKoFhRulXnXbRUOM6K5bgRKTKV6KX2vpxItyfjHZEglw5gLMMtO7KUSx4Cw/TehwhlSiOy8W2DHa8EFt1VIky9KujPtkImZUIl34JMH5Q2r+GZrMDu78dZvx7LV6jJf0DYMflqgNeJQVq4ySi5ho2VSg5fMUH4zXEIEkyquePqv6AlLK6MI35T30qZDoXBzeTyea5pPMio6hHiDSX54IELqGVi8FIio7jKrMMG/u4fv/K07ZqaUASZKoGXYKVlDDEGhb9keHu2DGbPBM4qctxrNHC6CdqWRFmHcCIkmy8jUMy4wxyWmlRI8p1FfvHCn+eijREn2seYa3cxCNJsb/XcCDgue2dpMGxqdbB9n+K6DSjPJ9URc8ER5s13KGz+OHeqh7kch1quHyfuEjf3s1/a+NYqIiROsErnpwrhxsuvoG9sPZZtU6s2MCiUSE+tYHpSiSB8+hfexfYHr6Rx5HL8YCsGhVlaZnC6MZVqC6fbIzirO3PcFt3P8cPj3LWwmTuqO/Brj2O7HvnBIdzsyn3mFYoUhkeWV9me+OoXuOvP/phH/uUzPYkboJXCdnOnKLespqaolxQ/3vkponASUlpoqZY9pQBMIKi0D+JEEd2KjwEunQOnYeN1HKxUcsT5BQySvbW9z7r/yT0PM7nn4efdHrFK/fwKXjyI01PjICdycbsCN4lIpY27VHnRaM3lRQ8vXTWOeSvP7Vi9tIsErIYOQ9IkoWtA5DcRpYrFTsBibYWMk0mRLX9ziO337uGiWw9jjiywiEbplfC8rlsItXL/KWkRLMyt6bm8UOy7d5y7/vkJHv3GPiwDib3qGRo2eEf/R5d9bPWqWLSdv4rB+R9ncPZHGakv4qYCgUVq26hVVUOdIMZtB/hWb/x1XBenehQ/mCXMjOLOHsRa5X32QfUGfjj7JvpFHr/0IJbdxGD4wGf3nNZ5SUuyYecgYxf0Y7s98rhd643dWhsevOUQ3/nCPsb3zzO+f/7U+PY5oBINRqGtlWuVJgmL3Rh/laebH2ZIVheqsjXl4ZHTOo+ng58v4Hd6Y7phRYEqhCBRCaiUdqbIopa8bf0gh5MxIpPjVxvz7Ag3UBBZDohJapNnd+Hl2SBjQ2R3ydnl5Uq3AE4IdmZtnxl52TuekeEp3oVSK4zRfM9F6/nd776O/uKbCKvbudb6Hdr7fpvZ8WtQnR3EC2/jtz7b4nP3TOOk6zHGoI0iNvDZe6f5mb+4j0/ecYR/irfywcov8IX8G/lq/nV8Qr+Gb+vdZAjwTIQvYh7uu4KmXWDKHeJobhsL3iADnkYuz7FiEnuCTMvBSx2ckbNvOVMZypMr9+KZmWMhfhDhtyIQglr5GgYu6pDWFhkME/xwCKE8qmNN1h3sx1qKLSOVpSQcpDHU8z6P7Blm+mgH25VYjmRh4hVft5ciVKLBFmgMmbBFJu5gpzH9Wy9FLsXAljKnPAcznRUFrba6oFaeG055hSfQ6sWTdnxacg2lFBMTE1x66aVAL9X0Yx/72PPa9sYbbwTg6NGjbNy48SXnvWXUcabnN7M9KzB+jj5ZZVGD7djMHK2yYeezV8RZfb4nJwvKlkhySByUSckvdpnoa9Ho6zH1a00g5ewCwyGoWJC0x0kXHOzhMi2v103SjEum23vQq06Km8age3bgb960gSANqbaaGM/h8RhcK+W75S5a8QJfzKVc5sQkoYXoiSewXQsvYzOxr8ZFrxnl0dsn0Mpw61/s5aZ/f8nSNVi6ZgY8L2FOtuljFZO0pHRLnd5N9VLrV8+GJ5/KVQsHqawbwCTDOMUODVFgZCCkuvceNm2+nm7LJVI2mYFkKbkURFGyL1ygmt+JMIJUVjHEZFqaIe2QjmTAy0KmvMZn14MsFEhmZiBN0bP3Y134XWSjAoljgdHU3/yjlOe/STcbkvgpqr5I65BLdiSHa9U5su5drJv+HP3pPMfGx8kPbqV/w1bk1AQX1x5nrv+1KODORol721t4a65KIlMWw4Q3pFezf/A+vv3pg7z6By44pV31GgT+MbQ3iNQ+cqn2lidTnPU5rPL5Ux+VnQqtEyk6cpFCkCylcKY5jQphcHQLpenPUXW3smjlyAqHPjzEAwfZ3F9ivFGlk3TQLUVb9rGdI+CN0oirVIkZNJq8kVzdiZk9vgcu2IEVtkl1jUC1GHEV/6vo84STJxs0CFWbR5Pj5NJNFG2YXWqnjY9TPj9VqSsjYwxt2oJJUqKgS7teJXFG8DINKnMtgrJHaNtAz5hVGk1z5EK2YrA0GFJAYqUCYwsGFhYxiY1uxbxt5H18Ze63uX5gI2ltisOdQcLDMd/18xejjKA4up6gXkVaFsXhUaRtMbh9J93aIs3ZGYzWqDjqVfOVoIXCyeSJhSK2ZkEYukGLnZ0ZGLkUCudHhXoSwpJoqZFqZdKQHH4AcVGBpNi7D5Qj2TYnkFgEud4C1UC2Qy0eohk16SZdss6pBKzRmoc/9yniMOipWMY2kOt7bqsG+Qrp9qJEmp4a2CoXlJcjVh4dLZYnd1orduZdvpGuqJk8Vyz7yYbqxeXB8oIQxwT5Cg+vu+z/Y++9wyzLqvPu394nn5vrVq6u7q7OYXpyZBLDkAQiSSCQZEsoW5aRLBvpkyzLQjafkoNkbD0KllFAGRGEyKABhoHJOXWs7q6uHG6+9+S9vz9udVf3AJOnG/h4n6eemblzzzn7nLvP3mu9a613UcoNYhoGhpPQyt3H6aeVWzAY/Mpd2LdcR67jkANaQnPAvAV3xUCLlFg/TpJsOBuRTBHdb62MjiRav2MVY5o5Qg1SpZAmqMXDFB2FQqJND0YuOnOcRp3JxJmYWyV2NtHJQWadS7olno0baMZ9k9yAz+De1+OVxoniGlbawWaJWnMY26lgxh1CM+S6wON69zICO+SfW7P0wlEaPYd/uH+Wt16x6Tndn19w8As27XrAkQfmOfLAPIYlMW2JyhSn+4w8cvs0l7x8G5b9zO6XRuP5BkFgIOIQbbuYlkWQZAShQXiiQ15ZaDNExTa9JCXMYmTJ5trv+xfPafxfD26+gDYyolyCoWq4tRKxX8QyDCzDQkQBdthh3vTRzXmOe9cwlgHSYGvcwiyP0YyarKgGJ++7iy1XfuNqqBcLYTdmye5SNAcR6w3CNJq0l+LY5zc71IkcKgvrNlDvCKYxBQakloVkI/tTAyIrcuOW3dx2+HbectHFXDJewTENlL6MOM1oZ/1GQo4lsfDItGaxEfHfPnOIkaLDJrNFLTWJsWmLHFWamEIzImrkCJjXA3TzQxTDNl+tXk/Rkmzxe4TxCrZdBAIyMyIoxtgtE+29+E2wLMekOlYgiVJUppEoZBwhfJPDu9/BSnkbe+f/LUt/+vsUf/FWmjojMxKOXTXGjidOMectk8oYyzAotSMCyySn2oQWpOtdhruNb6P94/8HOPLAHN1mSBwmJL5JtbOKVBmZkLhCEvlFTrcgk0qhDYlGo2QHKxkhSRRuNkBmd0Bu2CCpaQM9tlf2UTiliFYOY126GVm4sEHs50S6GYbBq1/9ap588knK5fLzuuCWLRvtfA8cOMAnP/lJJicnn+aIbw7cGucRloUFmIbmqklJi2WWOlXC3nONzPYX2k63jVA1pOWgRExq+RR6DifXnZavYV1eYiidseQCrmbr0ChmbwCndQKv0cZIDRJbkhkpytOkVq6ffkwMpRKjWcQD9ZRtBYtWGKHHtqHmjpF3cyRaE5g2XuGzYL0ZlWmufdM27v3ECXIlm+ZywE3fv5sj9y6DBGkIHvzsDJe9ejNnNN20BkwCu0XO2hCU1SLDSCXCdxiwXDx5YTJrXgqIc5xKwZASOGoZrYboGoJOENOVAjfOcCshomeDgIoTsLB+lCstAlJUcZRUZGD06+YTM+WojLmhrCBsQX7sAtxhnyQ1SiWytTWSbkp1Yo10Lt8PUAqJNi0S43owl3DDOsZATDLXgakS2iizuPkH8Jc+xg+264TZR7nYH+TLjRZZkLFPSu5UEV3pkCh4z6NVbrhkhVxqE8oOE4nFtAr49MynmToyyPjO/rzSShEEEmVGGLGBFW+QHkZTkbTCC6rpluiE2pAJKDYdD/BrAYKMKO+jVzuUnRHCgs1iWkKrmEVhkpcm9twJnLKkru6laN9Alimy/DDL5ddi6xTiLkFS48a5g1j09caEUwZtYVlVjO4xJsjx1vQiXAySXJFYBSxZsNQ5hpPtpyE31kKZSezKhSHdADbtv5i5g09iOTbN1RWyqiZrFdCZwMo0ylDEwsBUIanhIpTCkAbQ7xytiWC9q6KpE7ShSCyNn0kGdt7CQ1csc/yBRTpeiiMEf/7BN6ILFUpOiZ+afCtVu3qGRJq65nrmHn2INI7p1lZJo5jT9fqZTLGijMyzMNUISkRkiYvpurC4CFu2XpDndxpSGmRGgt1tkKsJICNRimLrEIGxC5HaxI5B3s0Igo0ywaIJwfybye/8G/7qyb/iJy7+iXPOG7b7Oq9pGCGk4NhXvsiB7/6epw2cHL1/maykwYRuM+T2Ow7TWukh5LdPsOV8IU0UcS+lPOpzxWu3MjD2wjIbsuQp0WRtINT6Ounl2Dsyjtp2BbNTO9HFElfpl5EsLjIv7sUwN7J2gvRbu0nA2dBhRM/yWS2OnDG2M6NNelZXZ+kqtu4/zBJNQtdiNXLouU3ysgIZZKJHZm6Ud/cPykFnlSzJmDu2RtiJCdoRlmOy88pNWPa5AvpLJ+uE3QTQlAZzlIfP77rcqvVIogytYvJqmgm/yZ1eCSVNMCVe2qJoBWRWGcu1Gd5/FQO2SRJ2aKfrTpLqEnuDlLpHEVlGTxWolzb2YbcdELeO0U3KzDXmGbqsSmliG6fWlnCj1b6tYZqEfp3YhzAvUfM93m1dxmeMo3xl4E46M++gJ2P+9p4ZhgsON+16+mD62ciXPaIgPcdqyxKFNATV8RKr8y10pomDlDhMnxXpFgcp7SAhqEyhz9I9HBRrbBru4ubz6A6YkY9pAAb4ls1cFJGrDHzjEz9L2J6Hkazb4DJDFypYQJopoizBFQIrScAv0qudQnU8MOtIK8+IzvGkzvAzi2Pd44yeGjwvpJsVKWy3w2A6iCIgsSI0imJm459ne8SyHVqDPTJLkV++Dz/ZAYbsZxGoFGR/DkghsKSknWl+/OpL2J5zsS0DhERpTUiGYxisdhXtZsD2qkMYK7ZW8hxb7bDUirgoL/ke4yB/vHYR5rpx8aPlh9ifPs57Om8mb0YcrexESpMSMWTL7PMSXPv0HHfQcn79GZrI6ksjobJp1xDdVkR9qY2ULmas++WEWhLkN2HlMtwT04y2X05tKEYql9hp8NZgG3GQ8FUR0srfiRe4KJ2Qs5u0DDaaAPa+ebKavoNnRmO5SxKlWGmAzBVIDAtHZYiwS5QfQAmJ7LaxlI3VS6ECoDFUX7PSNmwyqwFKIFMTZfZ//9MdvgtOuR8870ToXgzfSqQbwEUXXcT09DRTU1Mv+OInTpwg+RbRpXiZGuKRbsTo+Ci5qE1xcgej9TUOn1yjucVHa/20zsJTs9ZUlhE7BgU5AhnE1jJWrCiFNp1K8HWPealxdoe51O4v2naYEJT7k7u82MXITERHESQWhXodPTIKvZjtzjjvO/U437VrO5BjqRXzMu8kdjLBcd9iVQXcsvsoP/z26wHQSnPHB4/Sa0ZIQ6K15i3//nL+5j/fzeLRJvOH66wttOldE9NPMtJEkWCtVOMi+5Yz49T0y0s9N8+AP86gM3K+HtdLjqc0L8VI20xGcCy3QhZpTpTG8Zeb4EyQXvW9pEt3Mmo0cIwNB2ZTVmKXGOAruSEM8sjEplm6nUK7gNYSszsPhgNehQsFo1gka7WQQpOfOEJnejNXfvwop/b4LO6ZBCwsVSSxajjbjvFj/+ZavvxEjdWWTertYpMsMhWv0OIuBhYD3lyC/730MoQKeXvzk7x/4C1oNCtK8JnFMm/zY3ZS5WYz4c+Nu1iy5mh9bpUf9d/KJRMHWHn0ICf1MjJnUxtr46QKJRKkts6U2F3QRgpnvaciC+kNeIg4ZnW4SGW+S3SyRWXmHxkphcwVb6YHqDTASxMmRJ5P2h/hfz5Q4gd3/xC7h/NorYkB3BJZlOch/xRX9cK+VL1dRBmCzDS5stPjXxVeT69ewUfwWdei5eUYMorksxrz0RCjfsBp1RojkzgDFy5L6+JbX8uX//rPSKOYoh2RxMvYjLDz/hlyUwVmt1VYthxapo/MUnJxh6OrPbwtNQwvI/AOM7j6NpTKODqxhX1fnefh126nyC5uCAqUZz7La0s38THjSb5qnGI+moVolryV58SW13DpzlvPGc/EgUuZOHAph7/0eVaOHkKcjnIbGVG+gpbrpUSyRyeSbCquGwcXqAPsafR13UCIHN2BPjHTLu2kNrKfrl8GIPEsSlZGHBigwIoMyrZPHHs0evB3B/+W11rXEK6toZKEwsgYQgiCZgPo7wdBs0FzfpbyxNcPwi0eb3LysVXSqxTChDhMefQLs1SHwDG/fYia84UgkNQbNssn2wyO+wyMvTCbLs3OzYwQysRIDLQJqTQpDk2QbL+RZF2HxQc0W1ClQ5SaeURdYiiTOPn2KC/VSqEbdRLzXDIzI0CmCcq0QGvGa7dRKLdphEVkmmMQjWFsNBUztM+d3Tu4Ot23cQ5pouqrLM3UWTpRJ4n6e75hJoTdGMveEI0OuzErp5q01tY7KWp9Xkm3bjNk+USdqJdA1mPYXaIiM5RcJx/Q3Nz6v5huwuJbvszYvn6GWfjgKr30LAdJOPTccbQQtItfWzoZFjxKYpKCdQIA06tSyZkc6Q6TWDlKSZN8qullFkZSZjrX5EpnkGLQ4mo1Ttm/Hab+nuWjP8Kjcw1uO7j8nEg30za44lU7mTm4TKvWo7XSf962a7Lz8gkcz2L28CpCChaOrbF5zzC29/SNhtI4I7E90tzGOLJMcSwo4jj9EmUjAC0V4qxyZGuo9DXnej4QQmCsu2hK9s58bkhBzujvS7HtEqseQ7XjbGrWWE0L7LUOc23g8oFomIL0mKfB+UhMzpSGRNMzAwZyW7CyQURmkBoNzFRiD57foLx0BVZkkFmKJCcQ9fX8bCHAsBBwpsEgQMk1KXsVDGlBGtHJWtTSZSr2KI45wNRAmU6UopRmIOfw1ssm2T7Wv6eff9Uu+Kvv4991//vGAP7tHDh5PvP71/If567hL7NXQ6YBwS3iAX6gWONxXo3AWRcW6fueVmIhvZdOt9jxLFSqiQs2Wx6Z45SepDGWR0iIxyYwj0xTXlKkm9qILCbyu2xzh/l52lyuU6Yq1zNoFzGUwnMbGBXF9Gx//jdXAqJegnOBmnh9B88Nel1mxRUhNaNCz8lRnXmI+doqzqXb1r+koR1TWOvRHvJJ7NMyBCFCeWjZBqlR65luOkwJs4DU1BhJD0wXoRX6qYHBC4DnrOn23ve+l3e/+918/OMfZ2FhgVardc7ftysqU1WeONKkk7bpukUemrgE34YtxhqH71yh03z2Hbc0mjQK0ZZ3zqdmokikIrX7BtT5Jt0scZZuxHq5phVsGMCJa5KJrJ8FErk051xII0gy9uotSP8Inz3U127oDEywUhhhu+lyWTrIimnw9+1D6Gz93qRg8/4BlNLMH2nQqfedptf/64vZemCQXivh0J1LdGv9VGEtIDM0R/wFbGPjuZ1upGBaFra8cETIS4Kv8/P/cLNNWUsMZ5WHpkJC6dBamOPDv/3rPLDwJIlSOGcJ6m6WJdreIF1/AKltMhGQWCuYiUHPSPrRtsLYec+qPBvWpk2QJCRrPXSS4Vb7BYpjxyKcuz+P6NTQaKxsgGaqUElGtWCtD9ni9pFrkcAAAUoLOnKSfZUeUmic1grjySLQl/d4z9IwD8cGAsEVepw3tG8gsDrclvswP3/bv0GlKXd97m4+vPtP8LMhYi/BTCtIbSGTDKuXIisOwnzOS+eL97zOek/NsMnE4ytow6A9nOPEniGCQy20BjdZAa0ATVtKTBTXhj45kScr38bxtTrdKOkHC4QANJlbYn7sSqZFX5WxaQ+TrTuHxZEDsDqAlwmWjZRWcQu+UaQVzTMaF7i7EWHLDcs66izj5C5c5qkQgmu/5x0IQ3Jqvs1qax7QkJoQL2KqBtXaNP5j96CkQdsrM2opwixDyRhlBhhBX28kKfvM7amy4555pIaB3CYGJ9/I6/QO/iD9bm44UmTPdA4zhU7S4U8f/9NvKPQ/dfX1TF5+NXI9yo2UYFlI7SAwUDKkHgjGT3NtF1jTTRgGSqbniNgeuWQLDX+j+2DsmbhWStTsG0OJl1HyMlA50mCSpWCZk0/8CZW1L2Gv3M//uet9/M39v8N4oQ1oDMsmjUIOf+nz5zgh0HdK0jjjQ79zPwfvXDwT3DLMjLFqjby1hm2l3/l7jn+WsRHwTFZnXvA8SdW5Bq0VWRhp/3dMDJN/3vNqIicPWYIbNvqBSgRmViFn+2ipSM2YmG8P0i3qdujNzhAb59oloW71CTfg1i/+Azfc/WmEBLmuRxMIhf+UTDXTVmTJRtlUgkGyssyJx5bPEG7QF94POus20/p7dOSBuTOEG0C7FmyUtT3lXXspcOSBOZZPrQvpqxQ0BKrSz3ITAuIermlw3H0z5c0bZKNnP2WPFSaLI7fiBN9AFFtrhNJ4ZoHiwAibL9pEvuTiRAGZ4VMbvBbt7mZo5fupNF6FOVbijk1XooDths17o1fTNY5gWRFRqvnCwaWvf51ngGkalKo5rnztLq57414uubnvOE7sHOTq79oFWrM80+TIg/PPeK40ydDqXI2qMMkwDYVl9X83O7IQSp7zOzrjz54sfCaIda3G1Kwj4/7cWmmHfHl6Q1Owabj4tsNUdZjFbj+7e18Uk4tztAl4UszQq6+hsmejf/380YlSylqyVDpM3h45U16qjB460Zjl8xsENEo2Vth/1xMnZfcdpzCfogEuhEDTT9ropt0+4QZg2OTtKptz+8mbA2f2vYJrrb8bmno3pdSqU3DW14vv/l14xa/BtlfAjb8A9jrh/4N/z+ZX/WteNtDmRn+Oa+zjXG4c4f5LvhdB39DQJMTOKqWlHEYsXtLO8xM7B7n8ldspD+cIKz6F1R4y0/TyWzh59U+x5ZVrDE5/CjMz0UZEr7DM8rDDCJK3U2Q3F5E38ozkd1C2rmHTWUvY7ME6M088uwaH38GFhVKKNOm/D9px6Dk5jCxBrMwQdhvnfNcOUhLXIrMNNAkgMLSPmZ7Fo6QupP1Gd72JDvdPzeMsPYI7dw/O/H0QXXjb4jlT2a973esAeOMb33iuTtl6plf2HBbVG2+8Ec/75mjj+kxYmirx5lyeg2tHuXhgEz2nQMfJU/AyuksJf//e+/jR/3rjN8x2eyqBlkQhw0mD0/F5mWZkvZC5wc4ZsuV80yCW3FhkT2e6Wb0Ef7mBcj1SSyKFJHFjzNgi7JQpxD3wHYazMpdtsVleOcVio0jZc1iw8+QywY3ZJIflAidMydzCvWza1E8xn7p4kKAV02lEPPDpGW7+gd0UBz12XzuK5RgsnWzSNfpFlkLAXE4RVmoESRPP8EjNLm7DIBeZXD/yXZilC5sR8mLDEf0o8GksTf4Iu1b/ml1xxEquyny5y8NDt7Kj/hisrXCkvkaxuhuDDcM1zjTzo7shi0mtEGWEKKPLTJJg5NcNcfuFt5Z/ITDOam0fBx52dZU08KFXpvrEGrXco/QuugYN9AYv5xMPrJJpGMibxJlmZcdPI0/9EwCRytFMBxjOOexIW8x2XfY3HqM7NEAXmxTJnzeK/JeRBp7IeHtllNujIlmaEcqE93zo+/hcaZl8b4BWOsZ4awiZ2WSiTr7pIAHjJYwAPhucTS4rK2VgqUt9UBFVB6lPFIieXKGTvR43exLWCdi26RKligOqyBY5ScNtcs/cp4k7L2Pnpgm25V0KRkhqe6jcEI/ufyOPCoOx9qn+hYRg4MSTUCgggIFt2+lFgig4RYkaB9TNjJgCzLMc7zTFMC/ssxrdvovhrdvoNuqsJSlbrPVVNasz1Vmmd6pD+NAJsp37yQyT0azFk+o4A7l+AGmm2UCHOcYKDmtbSkwcrFFot+jlczS9EsdzEwx1V3lP5dV87OGv4AtobytSj1vcNnMbt2659WvGZHkemy+7CuvU/cRZG1OVIEnBWhealwmN2GS8WoCJQSheYE03KcmMhPJih/aQR5i3iXIbc9CIU1LHoFrI80TQPRPKq/op5bRNu/ZyvNIT/MfeV/lebyt/Fx4nMlJUBj9dGiefkzSLF9FZW6a7tsKdf/qH5KqDXPKmtwHwd++9F8OSDE7mqQz7zEiDjBQhNdsmVrj0QLMfOPgOnhPmTqZ89FP97LY0fuHESxQpWDfnFCkjJ6oYNAgqPoHjnwns2CpltL3MCbfcP65bQOiNvTvRF94wfjGQxhG2hlqakfXqNLTL4doCWyqHMdelC/0oRGq9nvDVf3iRUNiGSayiM1nNSdGj017DrVfBlITKoCQTDEtiOyZewaa20Cdn9Lr2YtRLeORL00hTYrtGv7xTQ68Vcuc/PbkuJAVe3uGyV2x/SZ6B1hqVKUxbkGVguRpSTVNtaDeKJCARRQJjHG+923WiYmb1A9jGVoysbx+YYQ0vXkZ28niNDkHB75fqrUOmGd1kEVtr8jKH49jkii4DvsNykpAJiUwDlNnXqHSiTSSmTahaRKLEJWKIXDyKzh1lp3cdp2o9Gr2Ysv/cgrnjO87VpTSsPiFimBKtz2oYEjxzlY8QAqRERL1+eamQxGnC1vwq7abA77QorGx0KW2mChF38MdevIoPGSiKKz5KpphBG1Mryq5JlNR5dF6wp+zQsnPMNmqUPR8jt4euNUc+brA1HGBVFFk06ygUca+L+xJqlHbjhAHDoGs3KRtDKGJSq0liLJEpE6Nyfis6ZLFAeTmPAGInxe51KS23qI8VUYZEZimr0Sxd3aHqbqVoF1FZjERgpBHoFEelxMJAI8k8H7CwpMmTra+w07mIkZFxXtd5DNgOpQm46d/B6SYlp/3R8mZ+8hb4yVt28ydfnobuKsGp/4sdTvYJPw1axritEL/lIhAvaaabZRtYtsGOS8eZq8WII02KS206VYulgRsJdJVq+5Pkouto2y6Z2aA7YHEcxSwKyznFnkZGZlWIdICIE6CfvesVLFZOttl55bdP1dO3K6JegmH2ffxMCApBi1RlHJ1+Ajl8lqamEFTn27TWM1W1kSKy/tz2u5rYAQSY2qc43aS2u79vNqweMRnOaW3Hbo8Ljef8Vn3hC1940S7+yU9+8kU710uNTClkGNLoxfRKIZUMjmuLnBliWAK/aHPvJ45z9Xdve8ZzaTRZFGEiScUiWtooIfC1JEk2jIjz3RTAkR4jWQEVdCBdI13tYHXb9IbLAJiZIsnFaEuD0hhakUQmFhqrnGcsaXHvbAdLQicIqVt55hODCaOKoQWDCp584oNnSLetFw/y0OdP4Zdsgs6Gob3t0iG2XTrEQ5+f4bHSE3TpCwaf8lNKlom33r3UVDatakA24yOsC5d59FLh7KwhgGT0auyVv2Y00dTCFonZ4eBlf8NCx+VNd46AzjhOg216kNOeb11UyYQEaWEqG6UUAwsFdsY+J3IRVLZD8YW3ln8hsHfswLvySgSgRBVnsEVnRgKKcmEr8iN/yPRl+4AMKxkm1X1bQgO+Y6ANuHPbjzA48w9EbOK+3q9jFzzy/BkEM+xLTzCtryCTDj2teSjzWc46jFmCi+QYPxq8hQ85n8VSJl9oLzGaDnIqFYx5KakjSKhjpAXcOMHelMcav3A6ZQCe9Cn3yrAwS5as4C11KVo+9ct8wGZ1cwn38BsoxEcYip6g5WyjpW1WJFSlT1lLMiNP6M8yV6uz2gyZzhV52x6bxHJBKxQCU8e0vA0D2fQ96AawfQfRpVdReGiNAmUmkoC7umtsdQw0moG5AmhFa/6eC/aMTmN4ahuCvi7ZanMNBvufZ3GBtHmYtX+6A39kkmYU4OgEbI8BYxDVtUFoHmguUzGrDDoVPK2JciZbpo9zbO82QuFyaHQPnZnD7B7qMFYusj9M+Wo7oFSs8r4H38eVo1dScr5+qY9KNQiQKkeuFdFd11DRIsFeWWHi8irEfc3MCwkpJbGRQloHPYgZJsS2gTb6DmFmm0S+xYApMNuruAvDiFRQFym5JCWJIR+59JyYz4bzpFqRopkwfP6qc5zvlnmq23YQtGoIo28cpUnCx//3wywca6AVjG4vEQcpw1uLLPkWvSzCdTP27OtSC30WuhWENJ7hTr6DsxF362f+Pey9cPHpKMjOkG4Sk9Jamfp4jsg9zcQpUCnji0fYsfYoNcNgdThPzjSpnkWexN8upFsUQZrRMW0Mv0IVePjBWTb5K5isv9PL/Xtdi38WSFEC5u2YnO2eIdxS2WJmM+w90Sas9J9lvFrCSDOGNpVwfRvLMc+Qbmq9XKfTCPAKLnEQI00DyzYRpqTXCvv7pwYpBUL0M+SMFzl7O0syHvvqyXUtOSgP5yiXKpgzOQ7KPWe+p5sL3NH6EXI7X8f+9c9OBtMUHI+oC4oYmSpSd4CWO8CgWiP4Og16ZAZ5axRXlsmtHDlDfuWloi5MzKhLagggRkuJE08S1E6yYEnGk4BVARcxzP1mjGlk7B4t8OhskxufQ4npM0EIQWkoh0r1mU6nT4deOyIzLLSzkTHelU1ueGWbQklDqYBaUcQOyEBTMiWpttHlFy872nQcWkP9taK8EuGIAk6WcWR+hbG9eZqRTSnrEdhF4jDAtmyEIWnpMTYLg57yGbI9HjaXuKjZeElJtyBWxGnIQG+YEWuMzGwjlYXfMsmSAKN6foMz1mgVtdSlNdh39gM1TbFRIag6pJ6LZUmOnvhbBivXYro7yHSMpRKsJMTtLbEpW6MapUx3GrQGdhDrMQIdUJMZJiYr2SJGJvj18F7WPv1RsGwylbEWruFbPq988q/4wb0/eM6YfvzGbSx1c/zOV7+HsX6BKwCZ2aZdbVJa7c/3l5J0Ow3bs8hNleGBFRCS1O3P8547jtUJcMIGHWsYkXlEuRr/yjlGTMrm4oP8pwfnKe75eTzDRScthrfmaSwGCENw4rE1tl4yyPiO8kt+D9/B80evGeIXXeIgIRAO7XV/o+wECM/AikMyTMxYYXcTZCXDX23QKXZJ7RCtFUq4ZzKUrHiYfbM1HqmkSCyq4dgZwk1Ji+aRQ1T2bb6gyQDP+cqnu5C+EMzPz3PHHXewvLyMUufqgPzsz/7sCz7/SwFtmZjCIFYS2y5iRwGpX8HvncRKQoKWYG2uw9KJFiNbv3ZTOYdA05AmEbE7hKlH1zXdlojjlG7u7OjX+dZ0s1ky2pAHr5LHHJwCaeB0ItAg4wyRCWLdw4otpBWT1RPMShnWukwYQ9zlPYpl34yhFc1Us19ktPUobUOxOUk5sbDhiNuuSZpkfaNMQxKfKy576Ss3c2Rac7pH15JzlLJ5rjGhRYoVmQjz209I29BnvxuCR7zthBPfzy+e/ANunBxAoxASpjZdh/qBHwWzw+PH/zd7hQWsa7z4eVJhgAYlO8R2g06hy4oS+LkAWqdg7PILcn+nIT2P4L77AEhfdQVeIcKpdElnStjSpzzyemSaIXV+XQdLg8owanOsOBPk7Cnum3wzDxhLDNZKvM3vcfW7b+axv7ubEx87iW8EFMMVZtwySggWYoN7ujZvzHfpZCk/sG0bHz5lsmI0CETCrLVEsX0dhp1hpWM4cb+Mzm6sEs92LjjpZkiTht+A7XmG14oIbxOjK9Ms+j5elBLZJqkepBf+ABNrv8/K2M8BKTWlcLVmPDF5Qp1goNBkelmSzwSOlbHWDvCK9ro3ZoJKiA0bL2sT42ONjxKZEyxP7WPmRAuDFJnFyKzBWuIhUkjtDrWJNgDFC6xFBmC7HiPbd/HIP38aC4de1sbzcyR6BNuqkJ76C5w0oVfss3Fx2KZiL1LPrQKQBA4Nmce0LEQ7omuG2J+5DTNbJLn8tSgNslrEWbSo2CbleZeBquLR9hyWYfH2j7+dqlvll67+JQ4MHThnbFmiwQY3rtKtbug+yVRxxBhgLO2BMMG6sNokdq6AKiq8mTy77lrg4ddM9Vlv2XfSRarQlma0UMZZOElnXWMm3xU0rDK5MGC1ux/Huo+Tuk3JKBNkTU5mXf62tsLI3A7U8QUGJi4i7D1CEkYURJ6FYzXioO8QBK2Yt//HqwF4/FR/re+pjM+tLPOBWp1TfPkCPJlvbRhKU97dn1uf04o//L9/9YLO5yqbtwxszHFlCMzkbPF/icYkkRZuGNAtTiCyGGFEODaEy69A2k2Cl7jc8XwhaTYwpex3B19HIxqgpFuIGUXmWqx+wWP8Zgj1LYCF0JocGY65QciYqsho6SIa20unOU262iVNNNt2eeCWWZ3fkHY5bVOHnZgszUjijN1XjbEy26S+3F73sQXSAMOQGKYk7ETkys+u6mRltkFzpUtztUe/MUOe6niBysi5GfOtekCv1a/lEALcnE3UbiFSTZDzESoDrXGWHmFGX8Hl1Y3rzwczrOgFynoKkSo4qwrDSFLMXkTqWmfWIOCMRqYhbezIRscxwrbJuSaluRoZMUs1k3S7whLlvjRJ3qHb8shlKceyjItth7vECocWO+wYLnJ0pfOikm7Q16LstaJnbP6itSaJU7Rz7u+SmDUGK9HpL+F2TGSiz3QHzrIIN/fijVmd/Q7riI6QuGaM55boxjA42ieQB1YrZLWIlp3nxFKPLYUGb6prPrspYTgsc9JfpLOyTGXT5hdtbE9FEGd07RbzpeMoIbHSPvEa5B7FwMJ4ng0Any/MShH3SAm3nWCFkJR8RmbrbE7WmLtkJ7KS483BTrr+AHVhAQqpFOXjX6Q4Os7uN3wv+k//hGMovLXDKCEwqjsZ1gIHF88ZoJ2s4FhjdHqPg++TqpQna0/iGR4L3QUeWXmE377pt88Z16eOf4pJ6zIEEhCIpIey78BrWziRxKg4yPz5sTuG9gwS9Q7iNyK6ZQfRmiMsT1DuHMLrLJOVfYy0RJCf5eIdZRK6LC+VWQ6/RDVexpIOytAsTS8gZIE4ykjCjHs+Ns3r/vXF2O6Frbb4Dr4xgk5MliqiRNHzN/yFxaUao0OaeL15TGaDnUb0Rir0vHxf3zuZAAFZvATZLEgBWjBEmfZgAy01pYZJS0cUhYNUCTKKUNmFrcB5Xlf+8pe/zB/90R8xPT3NBz/4QSYmJvjABz7A1NQUN9xww9Me+2d/9mf81E/9FLZtU61WzyGjhBDftKQbjonh53CXKpjSput7iGGTA43jvGJvk88+AtMPJgSdhNf91MW4z7BgJWGIMDe+I7SkGKcs+xvlWedb082RG4RW6vU3demWkRkEJYfYtzB7NonTRWqDJPYx2l1Ovyrv2vPTHBG/zky9yeWToySpi1MociDQ2NrlkBOj0jo/koaY6+TZ6LYST35lgV4zYvlEm4ldG+nfYadD2G5yOii86D5GNXfuM9Eiw47MC6qx9VLBjs/NPshyeQ5u+1GGV77A3Sfu5+0TY/Tye3jT6M9jCAutB7hjQPOH6aNczT5QJqt5i3i9lkXqPJl5Ajs0GUUSFlYgiyE3/PUuf95gjZxVDrsWIicSytsfJVgaxApdjMH9ZCxjMnqGh9bCZC31KeUz6rHBhLub1vDbeKT3V9iNNtRq7H3t28jf/z/40KkDXLd4G4c2byUxbJSC31wrMmGk3OBHqPlTfHDnv+bhYBsfOPGHyCRhsfYy7M0SmW2QIc56l2KjeGG1A92z3tPE6a8XtvQxeh2CfIlsXLLlUZdIX0Ix8ZlofYm50i20Jcwa8GPRxXxIPkxDdtm56cM8cOIHWIh7tIKUfz0p0eslqanhk2oFQiKUwvNsFpXD/Udb67FRk8ww2Rc+yi/WLqMQCZS5YaAb8pvD2BnbsYsHPvmPpEQ40kNEkl4nQxYHMMsDpMtLGN0WWa5IaOdIzI016G0lyX8/2cW0TKIBk7U9kwzcV+X2Jz7O/r2vROZdTphb2L56lH1jPnfNdthzf47iVYN8eeQ4c5055jpz/PKXf5kPvO4DVNz+uaNeQhJkYIOZniu0ntoRTruN7AQw9cyZ0y81VBIThg00mxBI9t01S67qc+feQZRloE1Jt+DiOxabBzfzJP056doJlk5ZtjeTny2zZ+UkjYE2UlsEFZfICmjJDklqsnSsw+zhNpY7QBor9GGJYWZM7K6wed8gl7xivblCFp9xrjs64T/0Poe2Ldxk0zca/nfwDRCj8Y3+bxVrSPUL01sy5bl7sDIkxlP1i6RkLtZcnKZUghar5jBG5OJ7FsnaqwFNI3/fCxrHhUaUqL4O4eoqK9uupFPY2N96cYoSOeLN/XXAaEbrJYf9ZxfbPZ4oL+Fa55ZG7Rl87ZksXYDUdOmtGTD9MMV9NyPPInBUptFK02mG9Fp9GyJf8rBdi9XZDXLOyduEnZikFtDrxOTKHmmSIaRgcbpGGmeMbK1g2gZzR/p6XIZpMHt49ZyxLc806LVCitXcOdlyq6eanI4bHrh5G/mSy+EvPkbgbKPr9Ttryjig+OQ/ocUVVEbXS4e0ppO1SMy1/nMxjfWGC32IqELq2V+rQ7v+FSEkli4TPP44/mWX4bjrmlqGTd6GU6vHGBy/tt+duzDBknsKutNcYpYoqCn+PPcF6iuv5vH5NvvHX3ydarme1amVftoGbFmq0CpDPfX/263TSgQgBMWogqnEGdsoi1vk8i/evmEZHtDX5BO6Q2xZJNrkomGftd7G2ObMEhfn2lgC/uzx3VxdPclVQ4cx9RQLxhpWKFg6/AQTl1yOlC+Nvd6LM3zZxhAWOXvjvZNZhowihHd+NWaNko0T2ISFmLAAUdVFrVmoxMYIE4w4w3ZdkvpRnqj/AyUNl4vLALBcr08qD41x5cIplgWcWJsGldEdu5S8OYIGKs4mLAwG3W3UzQUWk0e4cTzPQ0sPMteZY6m7xM9c+jOM58dpxS16SY8/fvSP+amJP0LSfzeczhpLm/u65G7bI6tHL6mm29kQUmAUbKpzbeb3DYI/xZHZNzLpfJrNMw9xcnILmV0js2rccmP/mH+4Lcfd+0z2d9fIVw+QqAgr+gKJ+wr8vE3QSZg70mDpeIvJvS+8i+938NKgXQ/otSJiyziT5YbWBDEU7QJnr75mF2L7tP5g+8znM7Ux6icnuHpLFVC4xm04SYPQgczWFDhLjifrodIULmA+wHNe+T70oQ/xmte8Bs/zeOCBB4ii/qbebDb5jd/4jWc8/ld/9Vf5T//pP9FsNjlx4gTHjx8/8zc9Pf3c7+A8Qfb6Ke43lyrcuXgbYdah4xU5YeQZo8a/OHAC25MsHG3ysf/54NOeq99IISIzNzYAq6dxOjFdbyPT7YKSbn4IBAineKaZgjYkSc7A7ZioXg0VdQgX24ikBwKMQPH9e99Grf0ItXYPw5DcZo5SMuBXauMUM8VJCe/63L86c519148zOJlHK/jSXx86Zzzd1eVzOh4ZA3fiUwS18aHbkThdq89yf5vhqbZWECVow+Dxvf8Fwx7i1l7IO6v/EikMlFYoNDdW30m10De43HALkXk5mn5EOTGaJOYKRmiwTEa1uF5edAE7l0K/vNTZsxth2yTLDdreNSBsqgfuJ3OaaDRG1iWV5woKK69MPeoLyoJgb/5ljI5dx87hJXjwfozKON7rfxPfTLBExtsbH2UPC6Rk9ITF7zWLPBpZJBrs6WNsimbIGR6bsyHuxqdQtHHiMRQxii5WmCALNrJ4YTO4HLkR+Y70CjruoMUAVrsB9BueCFeAMKilv8aW+F6GzBUMy6aXJTSMPBfpTfjaYcY5yDs25SmYkiOhweGjs1RXVyg0FrHTbp9w0ymDySLy0kupDW5C0/eDRss2l0e34ek2S5FmCEFmbrybnn9htchOY/OBS3n7e36Lq9/8NhLR36/sTCAsg+LN34138VvYc+cqF3/yKKOH6wwdN/BbPiITeF7Gfx5/nFML88gko1f1SYbGSfVBZh77EvFaByVN7t5yLaXCfr5r5xAuGZP3hLx5yxvYWtyKZ3jMdmb5jbs39seDdy72y0sBM8tDmqFJyEQXrUJy2br2RP7CZlUCGJYNAmInJDMFRqyofM9OClojsv7aEpQ8AtPj+vxZhLQnubw5TSUJ6JgFjqrvZXy1yK33FRldlTixS2iESCtgeNLjiu/awiW3bqU8bDCyqUNloMHgqOby12zBOC0fMHsXIuo7gKczO4Sy8EQOT37n77n8GcJnQdgsCxtTWvjCf0F/jn5KFrohsHsRrGc0aa37jZSm9rEQuww1ZxC6g8TG14P4VoIjMm4wx8geeHob6psZD59o8akHVrnL3MOhsf103QJRmnJkpYETLmJ46/M2ThE9hcaH9RIYIQNypjgn0w1AnU2Ias3i5BB3XvlW/vGf7gc4h3TTSrMwXaOx3EGaguKgj+Wa+EWHvddtZmxbhaHNJca2bTijcdi3O+ePrnH3xw9y8oll5o6u8cDnj3LPJw8xd2SVhen6GcLN8gyKgx6WY2CYkk4jZPrhcxsDROGGLev6FlopVk9OE8uNNU2GHRrmNaChONjf11ppg1PBccwsA/uf8f/bj+Hf/dmzbr+Ku3IuGbb/89Ps/dJMvwOj1hjlKWZ/9udY+9M/wy85eAUbV8G2+SexexGN0u1ksofAprvpelT3LiLVYgsV3myMYFo1ChY8MNN45h/8OUIa5xKk3whpnIHOyEwHkYb9dyjq4Q0dI44hbGbs+9g41RN5ammf6I3SmKA3j5t/8XR6c+Wz2F7VwO+GSOCS4Qpz3VmW2gFKaU56VVYSqPg5yn6Ru9Y2o7TBjb0MLy4wI1ZZ6ywzc99dzD360Is2vrMRJBnK6lAVg2jOCgAmKSJqgH1+s8Zl3sbPNhIpeuYKOg2JltpMhR22zK9QnpzC0fAKfQmvVpcgtMIvlBi/6FIA4vJOkskbKG+6gR0D+7CCOiQhQkjkuo+Yt0cZ9Pezy34lb638LL8/fTE3RRPktEWqU17/kddz2Qcu440feSNv+6e3EaYhBWsIjUYR4dU3fG8r6jO65zO4XLh5E56/EaSNSiNEbYPtR5/ghtu/ghtszEGtYSRX4e59Jofdo4ThGqawqRgRptnCK9nkyg4CuP1vDn2dq30HLxbmj64xf3TteR2rlaa52sWwJN7ZWdZC4I5OUfY3snWNOCWzBKlh0Y3WMOImSvRQRJgYZFmKQCAw+EfjKEbUf/d7JjwpVnl0cCsHB7dxPJlGZelTh3Je8ZxTEd773vfyh3/4h/zQD/0Qf/u3f3vm8+uvv573vve9z3h8r9fjHe94x0sW6XipoFwLZRkYnkE63aVbqaPCgFODU0wtPYoE3rnrIJ+d3cxSw6JdCykMnGuECvpdagCiqIdUMalYQwuBnQhOBV105axU7vOs6WZLhzFrDNWawUxygIcwINeMUWYPbQsi3URmIYaVR1geqheAShE5G92LuXLblfy9fTv1zgG6YYA9sInF4BTXmbvpyOMoIVhubXRKG5kqUhryiHspYTfhvo98BkP3O8+kcYxxwIb1dhNmPMKEGj+HYAsKAU5qn3f9u/OH/nwRWrPS6FHK2zjlKXreNi498Ks4SYNTtNHaphUvM+FMsN+7mtnsGF53D5lsYygPGSdIEeE1YgqNPAUk+YIN/gBYF67DJIC9ZQvCsnAvugidpmT5zWTdxzAKEebgEp2TVXJLHcJRgRYJQhn9COA5WbL9CPkWZyeP5x7n6oUFaDYpXf1WJj/4JwRhlyDqEeoyqdjPjBrn0djhhxaHuckL+C+DdYbqh/j5N/40H/3Lz7PViBCbL0GRAQZaJFiRRrVjpHdhtaMcw2XUnKB39CA6y5G1F3HzeXK1EEMrzIER5KBAtgW02oTdvezU93O/uw1sG5lkTCUjpECPCFF4gsLqdnKG4jPHV3ht0UE3ZqkZF1Hw+sTssNn/ZyfIqORNpBBcOlXAXFthtWMxYAkOWBbZWZluwrywGYGn4RdL+MUSi8eO0HBqVBwL3yyiBgoYuy9C9gLcWg1p+1hS49YN3GGJE+bolkL23ncJ5pSgVkzRacbJzZvYdpfFl4f/mWp0FcV2m8Sx0Npn18RlPLJcoyscpu7Q/NL/82He/NE3k6qUxe56F12tOXzPIvJ1Eg1I5YFpIDAwtAWpZtJLYXTzBddzAzDWy1uFFhipRqsMs+piDHjoTt+xLnSXqLsOo40Oo7M+sQUyFbyybVP3LYQQxHIrSes1pOZBFKtEdl844Ipr7mXyupuhtJmHPj+DX/RxzB7jWxTFsbP0vRYehKUnEJV10mL99R8QA3z2wDPbHt/Bubjz1CrvvL9PonzP1pj/9GNveUHn+8LHPkbjrP9WUmBlXZB941mrDJ3GGN0eq6nFeOsexPgosRViZQM4fo9608HDhcOHoJCDnbte0JjON5JUEUYZUmyUeaIF7SiilTTZnNTISv110WrHCGmQpnlscRDIcNMTTOx6Azd7w6QqRcgUgUGchaQqJm9Xz0x8mSWYU5fRWTqJNDecUqU0UZicIXS8fD9IJISgMpwnaEU4QK7oUhjwaNcDZg+vMndkjcKAh+2a/bLG00u56P8ZhkBnIE1JZbDAjsvHadcDlk7WWD7ZZGW2xcrsE1RG8uy9djNSCgoVD2lKTMsgjSN0mtDqKqQTI9CI2hzK307Zz5Fbfy4r0SKljk+iUlS7zTbzGlYffQBGR5ClEbS1QLxaIC7lsB0TlMbvpBuDFSDzQ5Cm1P70T9n0vW9HGpJCxcNTTQodj0ajiRIxQlsIBPcVr+TKtM1BCXvUBBpBOwHVDF70OSLP0i9USmF8g9yHOExBp2irhF6vDNGuiTQUtgGiY5E7Bk1WUMYEA6aFY9o0JLgvYrAmVxygslDoBz/DFqYKyFsKHIPVcJkg6bHcShjwixxPPephk4s3bePeEw8yE0+xNY1ZMTsspSOclGuUDj6ONAzG91+MeJH9wF6QkJkBtl0hS1soLwI0didDqBCs82uTCClwlEf5VN/VzlQP3ZsFa4K01cSeGKM0uInu8jxOt0eHhIKXQ9k2XrGEevBj6LUMrAmEsPFNByfuYcQdMsMCJGdeVAF2GhOGITqf5xfjW6iKIkdZ4REWwHKwpEUn6vJTm38fnUVoSyOyHsrZIPXdXA53dwWjfP6Cy87mIvahOpXVHpEJqZejecrFr6Rsa3yFBy6+BWHm0VYHIaDsWpSWbL64ZZ7Niy3sNGbAnaBlPIZgnMqojzQEUZCyMtNmaPOFbRb37YZjDy/QbQZEvb79N7K18pw1QXvtEMezMG2DVWkgsgQtDAyVUB0exzkr40ZLSbdkYTbmqRtrDDshQnsIBJ4REnTXWGrmGSx4qM3fS1abRjUeRZY8jm1/A9qpoAVsqz+ISl/aDsrPhOdMuh06dIibbrrpaz4vlUo0Go1nPP7HfuzH+OAHP8gv/dIvPddLX1A4rTpmZKB0xtZmBZWGID1Wc0PctvMV+GnIZSfvYdh4iNmey/SDW7jk1nO1C06TbhpNq9skcUcwdbXPq1hNdimbo/aFKy8VQlDP6oSeRW4gwLBXiFcThK7SWe8aknoeJKtobITlIUwXpTQyTdFZRt7K08sfgUxhyL4Y/iMqz0VUuKQrCU1NzjU4cfyf2TrV7+xnm3XCTow0NKunOhTyfQffsPrR0TPj0y5b1dZzxlxccXHDF0809psKT/n5perXvksfHtr7/xCJHJFTYBBIPZ+c3oTOFFEk8bp7UEYPM6kgsgQn0MQ5m2Z1iaxX5KQVsZ0I7NHzTu4+FdJxSJdXSJeWiGcGKf7sLyCXAZ3DH1mjO1NFZD0yQyGIMPRZ5Xha0Te0BUIIfLPIsWyZq52tcOI4zsWXUN58CWtPPkymNRctPsjtY5fjS01HCxpacG/o8DNLVRSw+Ed301BFfK2QVg4QaBRKpJjrra2ld2E1tjzps5QuoLcW0FaGWd1BGkOm2nTH+90IRUWRrSoM2yZIL8UL70AWTIJGnVgIrtJT3C+nSYFHjU8z5v8rWpFBXmbcvZzxGm8Jp+lhrNuoW9RJWBhEiK2oMCMOUsJP1bBVmRNZh82ehdkGZWy8r+dEyL8JcOV3v4WGcZzoaB0QyIfrJHMFhCn7gqzBCpONLo/PThNfBmZi9sncVFBsZTQzjRtkeOUh/n74hzh5eICp/Sl57TCchrS9EuWwScW20L0V5MlVjvz2W5kaX6VRnsSzPO5fup+h1S04vsnpQLzMFDIOyNYF53NNA1soWFyAffsu3ANbh2H3J4Ey+vNfKNCJwjpLR9OM5um4c4TFQbqFJu1SipFIbmgc5mRxF4cdDVrw1fJeDnnDBI1rSXs9KuVPcXzcwz9+iCPHvsrqqZPMPfEwaRgw83ieK1/1WiYvvQJTBVA7CmkXcaaMrH/9suEjrO80UXiucM8ykr+8YvLjf37vCzqf30i45SylAmUIZO+s/Zs+8ZYEbU5c8QqOhS2cLIeRSpzOFnLuY9SbILAwmnVYXv6WI92CWLG2TgCZSV+wP0HjWQZRoinVW3hzLZylLlYzBKUImhXifL+xgK9P0CtswxOnf5u+ie6aFmHcOqfMUqYptlbMPPk4k5fccubzdr2HShSmLbEdi/Ht53bTPN1gIOzGtGt9Uilb1+1KwhQhIF/26LUjVKaxHIPxbdWvOR6gUPFIwiLLJ5tnPoujlPlja7TWeqhM4653Os6SBFMqOu4Qaj0g48qE+WQbvfku3noGeSOqYQaS1JRsfXQMRip0/GP0tl4KQNOvs+VIly+MNBnqWozECkhBGKAFGKBThbXzbaj247AwQ7eZgYZcHLGzmOerY22i9gm87l5QcHLgWvbN309BmlwsBxi067SNkM3WEHd95EMUcw5aKbZceR35wReml/bUUuBvhDTO8IsWMgmxkwaRXSaKG2f+v79sI4SkaFY4FGbkVEIxWEbb6YtKupVHRqmLfjmXGwxQbEiUtChqAyPV5GwHlSp6lse4ldBTJjnHpTQ4yELQZFvU5vO+TyGEJ/xT7E82YdgFVk9MM7Rtx4s2ToCgHVN3OpStYQwzj5mUAfCaj2J4XBB9VEt7NCbT9XEYaCx00iFuGJhDAcX8JCdNE2tklHhpnijoYqQxlueRLZ0E9+X9E2UxBgGlwgTtlTmCsRwIgV1fIRmZRKuMWFpgaG4fvRyZz/PzS5v5y9pnsITJ1sobWFQNRMGlaA4iNSgkVrhC7EZUVlw04KQOWSfBOE/lpQD2ZAGtNMIQaCkwkoy1dBdF9xEAJk49Tm3s3TSLdxCLDpsnA+6aqWDJ4zgih6ktxrytHFz5BH7pJG5+H7WFLrZncvyR1e+Qbs8T3WbI2kKLbiNAZRp73ffp1APCXoxW4PgW3WZIsfrckjd6rQjLMUmSDG2BliYIQSYdOsLi4SM27o4MA7CilI4vaXfa5AfKwEm0SBHawpQGORkzUuqveUVnmEAlJOOH+x2TwwGkdjHiDqGdp7f0BLmBG1/cB/Uc8JxJt9HRUY4ePcrWrVvP+fyOO+5g27Zn1hH4zd/8Tb77u7+bT3/60xw4cADrKYvg//gf/+O5Dum8YLNznLnBLVjdmKmRHTyUPMnFlZ19/QkgSl3qbokhdx4nOsaJR058Dem2Ac1qo40arp7hVez1aqIsn52Je10IKsSRHqEKiW1NFg9hFMHq9kAPYCYJcWEAabbQAnQaotOYtFHD8oogE3QnZLA8AseOM7rvetY6IZ9VA1xhuPxg4vPufJfxsMadh/6BrVtvIWq3EekScVQFMhZOOBhTNpaVgo7RasMxsIw6VVEFpdByXSw4H+HoCy/Yfj7wwbunyRUtfvv7r+ZUuotC+yGq9QfYnT3Gw3v/MzPGAFbawglaxM5ezLRMYtRQmQvFHJlsgoBS5IDQSBXD5HUX+rYAMEdGSBsNpOPgl3KAhRA13JzNY/UvMhi/jJnBj2CHJpXV70XbDqApzD9Ad2g3ysqvlz0WmTNt6PVgYQGxdx8DL/95jtX/hPqJB3Blwof0L3Nc/DDxgXfy4fYp/nE64nTridnMQqDxHButQxA2sb2AlQxjkfWj6P6F1SoTQuBLnyBsQZqiVYaQIWZ2Vpbs0CBiepWkOwEiJUmewHJcAvqZVpv1INeoXXzYuBsvi3hZdYaPHtmEIyCKVrhB/wWuKZi47g1nuugmBz/JvPdjABQaEd27Fuj5IyxWI75Sj7gc55xMN7d8rrP3zYDCDRN0vjTLWU27EFYOAXS/+HvQ3czL/+iP+fjB97NQqsNgF13R5BoRUdEliTNUL2amuJsg1Ew3mxyY3M5qz2DVH8Bsdbhy1ODPHs1h9DK6QZ1XZGv8Gj1ynRx/8PAf8P2dn2V1toNKNDJzEDjEnkIQI7RJohO2Tg4DTchd+PJSaZoIaZAZCiVAW4KoHmAmCqEztDBo5rdTTuZwfEU+knRSMGMDuXUbb/7Sf+BtE5P83ev/LZ9omjSyPD08SLp09RCfvO8RRDnHE48co1PbKFXoNBosHZ+ms7ZCWS1B4wQENZSsArofxFIGBdPDvmLrhXo837Lww43upcd7goHwhZVduGeVc50u7bJw+0SREAhp0LjnE+T3XIs9MIqIy0R6FZtNSBExWXGZXYKeOi3c+a3XUCFKFK4lieKMyfoJTg7vREqTHLDYlGyOF2hevB2A8oP9ckwjd5azYgSwTridrfeltUbJfp2EEAKRZKSOh9xyESePfonNl/VjZ8IQdOrBmeSXNI6wv0EXwq8nMN5phAxNlth5+bPvaD4wVuBlb9qH1pr7PnOYXitk6eTGXDh9nSyOMQyIjY37LWZ1jnYn8Is2UgpSlVDrLFGvdFGmZmC1gGV6jMRjdAAZpmT5CZZ3dRjMF/BNE93oASb5q0t07m5CBtLMIcauQOUGiA4dxnZ2k8QpkYKxoa3ASVLdwMBBmxoGNvOZL3+Qt+6/lEhn7BR57giHeDKEU4uLjNspQhrUZ0++YNLNODvT7ew9+ymIw4RGJ0GXfUJnFKEzjKJFFJqYVkYushmwR2mnHUzpU3ENcLfSWzmEYb54hEmhUuF0CmtqpXitHgvjJZw0olrOaIaKqYE8URKzhM0BP6WubYJGwHxumHf0HuX3q+PM+0toy6ERdRhMXXq1FXiRSbdaLcTUESXZL50U9LuBazPD9r+ODuB5gOVsyGwkZoRR3IKOWgizBGGG7kVc9pZ38Nin/rFffg9Yng+rR9GJBF0HswSGjbY9nNY8w//4RzgPP4Y9NklqOchrXs7jr/8XAESGS2S7WELw+Ogermkl7Dk2y8rEDWzLlc6tENEarzFPZyClPtSvKDI+m2BuPf+JDPlrRnEeWKG2u4pwtzL9k/8V9798P1OvWiGXLdDIcghMpBWQK8Kbr72Bjl5i8f4Ou09OEZsJA6/dQb3yJL3cKtmURazhidxBVubvP+e9+w6eHlmmQPeJsTTJ0N56xZUUfXJ0uJ/koDKFlIJTLRs3ffZZpEpper2IpJiisxxecgmoDWLUunyCSK3hmRItBJnSRGUbZ3wQT7rE4j60SEFbFHOSiV1Pea+tDdshkz1k5pLZeU7tGuRI8FUGllZe2AP6Oui2e8/qe8/Ze/yJn/gJfu7nfo73v//9CCGYn5/nzjvv5N3vfje/+qu/+ozH/+Zv/iaf+cxn2L17N3BuV89v5hLB+eghdHIjSc6G3WNcbPSNEiFEXzTXcljLVbmkOsTrbJu/eegrJOHLsM4xbNYNKKBR68GYx+nEkIlDLWbISPLZGY2/853pBhu6boml0UIjtMBva4xUkdo2QU4gvQoq7SFMF2G6pPMPYY1ugV5M1uzxy9f8Mv/3wd8mCK9gqODR3jyJOXOIW7JLmIq/xHEb3r9yH9/XXaKz2sEUKxRKFu1mkV7P5/Dj27j2zZMMjTQ4kj7A6fLSi4MpBspj1CQITJSIKdS8b8vOpfBU0lWggCdbMWuNHo5tkhoDWEkL88RnGbL3MLfpnSROhcS+Fis1yWSbmphm1L4GlCKx++VtZmSS+DX0df8e4X5z6G5ZExOEjzxCMjdH1qjT+OeTSJYZfOVOUm+ZcK3e15Xy07OUKAVm0kGmMcruvy1VexNLQ5eSnWxinDwB83OUqgWKI1OsnXyQUFksBEWE1eCxL80x/DKLSysRq12BkSkOWCFCCA4UbYT00ChSo0muM4II1696HlqpPxN8M0/X7tCetNFZjJA5vLM6H5+SCTs2+3QPdUnUFN2lrZh7NsjpQMDL9F4+px+mLXrcZX6AK8ffyQPzozwRl/kufhsS+MfOg1xS7JcBBtnGfVvrDrru+Vzc2wV0qCDOId1yI+Mv8VN47jAKNu7eAcIn+yXsuBLDgejgV1GNWbp3nCJdWMZPPKBPSvTyIfmmJFcL6A54BGMFbmku84V8nntOtrh2S8BIwecx5wArxRHKzUleWf9vfHHOYTEsMnAMfthf5i8Gety9cDenov/I5vzFXCmHMLMyyiqgRRtD2ShCkvmUi0UXXBcqF1ZvEfqablplZGaE1ECsCVYC7MdrMFkEA5RdZLl4GaL3JUYbBouDEOUSjr9xhEu6l+NNjDPQXWJIVmibZp9Q0Tk67et5zPlThr7Y72otTZPR7btYOTFNEoUcefgB9t/yasrJnRDUwHDprpMxQgiccCf/bdPP8eRdM09zB9/B10O9tvHvpgBatW/43WcD2zw7S1+SOCZ2KzrHyUs7dbrHHkR6OaziIJllQ6IxtMtEKQ/06OkNoulbbWePEkWYKBACL0sxkgjl9NfNVtThQLxCU/dJN5tLqL2mwLh6+LSkG5m94Sx0wmPkvW0IJEIIvrj6Aa6KLmdo8jr0WZmdp2YXUUnUf6XSc4lKaYhv6GxKQ3L5K3dw9MF5WmsbDoOXe34leEIIRrZWmD20StDeKAu3nP5YsyRG5MukuY01bZndaNVhfGcZgKVogeP6GEgoLeYwQomwPIrWLswwJXVNaptLoIvk1+eV080Qoo05sYPTgv+yKFAtkMUpan/zf3D+1XuIw5RuvsJELSAf+XRzy6ggROJi5UoseRVWO20G8wX2GzZ3rI9Rj+3AaE2TJTGnHrqPiQOXIY3nn1n7rDXdkowwXyRzi6AVWlpkIsBx++9ZJSgSq5A71+5he+UWTk+i3a+8+XmP7evB8f0N0s3OcLqA1kSmw45qnqV2lx2DRXzH5aN6jN16mpF8gVfsOsCHHrqbR8feyk82PsVvVisczWa4VxzlVVGe5uLCizpOgF4nJnCX2eJdut6ZE5SIMWID078w2dD5ylnaiU5GproYTpF4pYs/MUC23MbaPYZpb7x3uUoVvvTb6OYojN0EOgY/j+jFjObKeJUpuHkL5Vd9D0auT1bMBR0aXp7TNVWJgmOUYMcNsM5tup16vxqmVIUkJigcZ2o+T21iPQCjwQls7K3n3y9wdw8wec8i4Vyb+kSB2N7MoR/9PU56HcYadxFZd5KJl1Ef/DimGVGpuMRtm4XROrtmtuKkNgNhlYZ9gjhdwPTKqNQnTFLabYl/gRugfatAA2Ev7pe3w9cq/xtgWhKlQa0L8KgwRbjPfr+Oo5QgiUGCnUycQ7hB3+YsWiH6LM6kM1RCSoeIFpmZYqj1jHJhM2ntP/cezhqIlmk/owKQRh6tFVEavOil7YmKnvlLPA/S7Zd+6ZdQSnHrrbfS6/W46aabcByHd7/73bzrXe96xuP/+3//77z//e/nne9853O99AXFXHea8pFZKl4eXXRpGC0ST2EbJRzDJ+20mTWH2dx7mILr8/rdIauzHcZ2lM+c48w80JpeJ8Vf76qhSUlbMcdRWPaFJSHLVpW4vYBSQGUNvejhdAV2NyHLasQyImvNIQujZ45pPfIo/kVXoEsD6GbA4OQm9m3fzZGZR7EGdzFazPGLyU7+yFrmNd0ut6kyq77mk19+D5eO/QR+ucSm7YpW22NtPkQIePz2FW76/l1EjQdgPWFmb3c38VlJbVqk+ImHOXxhNcnOF3b4BmGiOPbgCf7lD1zJ2u1forB8J5E5xPDRv6Tq7WN5+OWAQWwuE+YOU27updXqMkRCz14mF3hELcGgfQqR++Yp/zPPIhem3/wmdJpAllG4YjvDIzbHFh8D0c8ctdoPMLm6AzHpk0hB2Fsj9fuTpJfVGXS28cnKZ3hDtgseehD/ulcztvMiOjN3oWqHua+2iWs393C0yQ3mCL/y/+zmv/7t7Xz6yRXeUWpzpJeye6BKJrpkRg9lRFjJhkN5PtPuvxHOND2RgjhbxjXzjLQEfPLPWbzm1SwUyzjVOYZzGh1GJOl2Nu3a3u9qt7ZCEvTI4/IT2ct4Mlfk7vgODrt/zy7rLRxMJjm9WjXHXgHR5yEN6DRGcXWIQOMbIHwTooBAw8WWyVhqIDLI1VxE0KUw+c0zv85G/uWbQArS1QBr1EWGEapWRe3aTbK0QPjQwwwNVGjaXRpmi9qWFSrhVvLNEC0FYc7ilTnJwKkvYr/jx8nZBnEWYwmDldwgNX+A3iv+CO/vfhmdtYlin4FTFS4VIxzzWqxaCyxtOcUB8204WZ+YlMoiFU2kCpDzKVNbClAuguc9/c2cB5zWdDtdXgoQ3bOIFWf4JYduyQUpCOxBRNJkU3wxq8dXOTXV5MS+Oqfecyk33g8/udzmJ+yA9yaf5QNzP0amBSQlGmMZOd/ErY5z1Rvfyv6bXsEdf/vnHLzjSwTtFtNf/QRbLragOAmVKWrJ3ZSsHAJBQY3SNVzSC6zT8a2IimnwW7sH6GUaxwi5eLj5zAc9Deq1gLMllVNb9gOHpzPWVMZNzq14iyEzlYBasZ8Rl1irGJnPaL4A9AjWs9tVqvhWKxqO4o3AB3GH5Cxdy0ZnBmNThN2sUOq9BoZg9U030rz9A5hhDVPMg7VGrnMcQ0UIsUgihzFV3wEeOd6loOfJFULCnEW2TuYlY3nu+ru/Ir/plnPGkq+4bNr99FlZbs5GGOfamdbXyYB7tnDPJuxE/7/H1stbmwvz4HasAxIAAQAASURBVG44VzIOaTzSprqpQHW8LxnxUPNuCoFHGivKK3lW0pMMJmUMXWF4usbCrira6Dt8p6s07TDDcDXGgIs1kUeFKTJvotprkEmy5QTz4a/AlitJS4O0HruP6iYfsyqInJO4vR39Ms1dl/DIY7dx6dRF7LACJt2M2cTm8Z5gz8AgKo0JWy2CRp1c9fnvbZZr4RcdVKbJ0m+c6ZbGGeo0ubee/ZjJDXI07USsRXMIN2MkmidNXbTMqOy98nmP7etB2iZGLMlsRWpmOO02iDEAdvhlHqotAP3/FoND3Dm/wBV2h03lAWLT58/nK7x7NOS6IOSYWeXzziO8Mr2ENApf1HECBJ2YwK4x5uzs+1VGi8xsYSYGhn9hSBe7lKcyXyBxU2QSECSzeHERIQZI6stYxig6VWy69EqqUztIwwBXxnD3J8h2/x5E8wjfR26bond8FVtlDLyxn9WW9tqoIMAwJHuV4snlebrbdpFmAtIYDOtM0ENEIWmnA4aBtXgKLTXZQAuna9ErRuRrLoWGhzNexB7PPc0dvTSQtkHlqjHGn1zDXGjTcyXRpq0E+QHq8uWgFW60jBlXiY0aWkR43TJLuVVqpTq5JEe1WeZ44qJUTBKtIY0epj1G1hXY51Gj7lsZcZiiegJTWKDBtI1+ttt6A0PTMiiWfdAQBjFRL0Glmt5qQmX42VVmJInGVH2tX0t87VyTysBIfdL1rUhJgTb6dmhKDyuSiPVqN4lEqR4IF7m+TtpZGZkU0SIhEqsYKoeQCSKzyCsTq9tClka+5rovBIl8djboc95dhRD8yq/8Cr/wC7/A0aNH6XQ67Nu3j/yz1BBwHIfrr7/+uV72giNbHsWxjiOyXaSugb+2xpHCJykMvZGquw3tWkTKoOWVsJMOFc9i6auPMLbjLP07IUCv91rMjaPpkRgZoBjuZjRHenSNjKJZIW8WzkRqzidSndBYX5uCuIBvO5iJJsrbKHMIYbZZ2dnj+NVPIJCMTg8wcTghXFrCcVzUGug45aqLXs7Rv/8LGs4IptBcunMz9yUprz3yKb6imxSyIW5rz7HfXyJsNXCMBq/84Ru585+WaddCVKo5dPci9iUGMSAzwe5gK6llcLouTGaK4qyHasbf8H6+pfEUztUkY0fO4I5GyA+vtvF2XEX2WJ6u9MknS1TaB+nmt9H1BlFGSGZ0iLIUI+6i7YTO4DIAEwwyNPjiCwS/ELj79uJfey3R0aPoNEXHCUbepXuyx1jVYuHIcczjm9FODiVrDDxRp7rVYd7Os5pt/P5R0kFqxe3ZCd6Quxy0Jh838YtVrNwAquthCoHlBOR9h4XpJg989iQ//co9vNpfYqmW42H9V1T4UTpZGYmHFUTkmuvGriEQ9oVPU3eMjfT/bHAIOj5WvYH1hU+hr34NZneNyPEQRgPhAWkVpx2jlcKwLKzlEl6nyKvi7VwhBYvjx3AKNSbG51mbrRIpA8sy+L0HNXeYm/kP2w4RpiXCQv+6TjqNP7BMd3aCPPDTkWAEmM0ldAdCwCBXKF+AJ/PMcLeUcP9lv0FBttYhPbiATnLEJ1zc/ftpffoz5H70e0ArrLpiLpth8WVtEmsHZroTI9WIN76Sy6NrCSwPhEAiidIIYdg4SUTVjJjb/lP4J97PICdorri8bNWmeZnPcjFBZoLHlp/k4so2qu02YTFGaEhFTLdu4O6zIffNEUw4XaoUWQFxBURmES92KI7kOSUFVpgACidbo73aYmjwEKSDfc06CUYKgQMqTemaKf/CuIL7nR6HdEBKjIrLPDDi8JN7Jtl/0ysA6La3EAUGiCEeubfGzMwbMA2FO+KR3to3tkwh+bSqwPTf0VPdC/R0vnVh43CRkUeQccot0rFemH7aU5tjZbZBRoQRRGhTopMUuxNhCJNKHdKFNo1CjSw/QpY1cAzIe6coyf67mUTptwzpNvfuXyBdWaHzstfAJf05vJQfJkrbOEY/06WQxBSKOdSKi/ZDhFlEmTYd/yZKYUSmK0grppvv63LmmydpZuYZO2BnO2Nn83EakzchrQLK1JhRA4oGX/3Cxxm8/262X/s2SiP9TDrLMRkYeWYtI9e3OE23SkPgF59/aVmu6DI0WaJTDwHNln0jFAd8HjnRZrFXIcptOFi5NGStB4VBg6Et/XFa0sIJTKxMMfFwjqR9hKZYo8BmqicNVjeXSC2DzBSczuxyskWcy3Zj5m2SuX6Hc6NUxKjYxNPHsLZcg2wsUbzcQ1S2kt32t/jdq+gWE9D1vjaQMnCmLmfpq39Dt7eJkiPI6wJVt8tjYcZPXXoRq9NH8AeqdNZWXhDphtb0Wv2siKcrL5VSYEqN0TpO4laRcZtErpDM5skDzhI04lWmqg6Fpkbm+06ks/3ZlwY/WwzM26RGhplaWO0ahXoHkZMElk2zt8j06gq+6ZIv5FjNTAIl0VmEVx4lTUPGsoypJCFTHicdm9+QH+LHwtdy+Ys8zl4zYLS8GRmtId1tyMxBGxFmYmDmLoz2s1WwCYkJihGW4xColJzogCwSLBiE9YD6ow+gOglG3kK1u3S7dbrHd1EckUALbcSs/cGPk7vq1ejRzVjVYdAa4bpEWYyTKXJBh53LJ3ikUEK7OXB9yDIkCjONUVGM1ayTFspgmoz85a8w/1u30CnvxO1ZmLHEkv3GJNb4hZG18C8epHz3PGWlma04zA2ZQAaqL1GQGVXssEpSmccC4geGCMWnafR2MehpvMBi6Mv7mD3xYZSKkKZHfuvlGM4QI1ePctmrv5Hk03dwGqcOLdNodomDhNJgjh0XT3D0wTmCTp9gG5wosXVkg7B6/Csn+hm7EkRTkCu5TB0Y/YbnV0pz+OQsvVaIUhq1ZYh2t0lHmKh1W7M4t8aEscTxkQApbYwgwVBdGt1FHvIfZ9/WFDdexYojrKiKfkozQEPlqK69CS0ieukqhtHfd+w1mz0zCWXZo/qTb3lRy81bXuuZv8TzIN1Ow7ZtCoUChULhWRNuAD/3cz/H//pf/4v3ve99z/fSFwRuY4htlx6ldN8Y3WN1IkJe43+UX0lmuGHb/0QYJsrPuG/zVbzp5O0AGLUTtGtXn+lielZTdyy/jNRVpHLIZIfQXSYqRtiGjW/YjDqbzrC25xO23IgGKb+LqqcILXDrXRLVQqM5dVFIbaLv5GidMcYYwckV4nAUITPkpiZDW7aSPPoAX1ws8843vw1TCmZ7E+y0X4UUn6KeNWmnPg+27mWqvJssjrB8n3zFZe5gHa9kU5vrEu/vR44HT5WQWmJGGeH6k8zMBDsy12tjvv3QD0BvlB8IYuZCl1Gdcv+dj3P1tlmy6sWEvTaym7B78TZ2z/4Tf3DJ67DGS/jtSxDCpFAuYNWPnjlPPtbUovb5v6GngTk8TO/RR5GGgYpCyFLMYo5spYYslZifh+JwiBdauF0HNDS+uoKnipSHTXqVLtqw8M0qvaxOYJa5fflhZr0W/sFjnOj6TORHWJ3W+EbAycU1VrNpbG+Mo/ctMblnL5e88W38xd99lHE3Rzy2GUOOgobAs9CGwBxyEY75TVEGn5N5cj0LllaJ9BK5rABCUqg6aMdBxDGp7WFXTbonBCaC5FQTw7aJg4BCXMINfMhsiqZgJChx3J+lMfEEn/2Rf0fFrXDgPZ/hxFqXwYLLXbUSlWwj68qxmpheC2ENoBKXizAI0aRnl5f6F77z5jNB5hx0K8Sf3Mfq/O+jsxTDz+Hdfzm1WzsolRGMJZheC8OoU2p5aJN+9o5VwqPPLXXjhDQDrVOE7ZFJyaVXD6JH3kL68P/gZM9H0+PaewvUh4b53BUPct/swwzG17PNsTF13+lURp1JEUAjhclvDgNRmn0zQVkp5jKkTobQoBa7hHsG0YYEpTADh3ljlAEzjzAKIBogIXbhyZJNo7yDa7JFRjOJiySO+lk4DQu+snWVgWaT1v/6RTbLbVydtNgyWWam3uDoWodG7TiLwwkLwUm26/X9VAhce4ww6RJHF77k+1sNwrSRTj/DWLZPsm944BmOeHo82Eo4rZSiSLGChKRcIvP7v9eWx+u42Gg05aUex68cR6oimSGQRgFfJcTxFqbp2xZJlPKt0CLp0MK93Lf0ZcIsYr/3hjOfN80cJjm01iy0OwwbGfUhD+nm0aZxZmtPnTKaDgqJsDaCYSY9lBUgUhulwHNi9ognOLqccXzMAUOS+EMMJVN8bP8Kr7nfolubpTSyHWkInGfZ8EcI2deDk4LRqQqFyvPPrs2VXHZePsHMwX6Ab2Csv67VOjFdPLBdUBkIidutkypBr5WweV+VTGcc7x2BASgtehTaFY4d/CC5dg/7wA+Rd4e56PPHObWnyvTWEp4GR2uMKA9CYJQcZNFGugZGziZdtcDIgZnBk/fQ3jyDrgwhO02qzgRH3UMUojYiMkBItJljzRnhiYVT3LCrys9GLgWVcmhlid+a+QrvWDuAZbssHXqCkV17n/czOrvL39NlugXdmMD00M5Uf7+xi2SVr2JZAapn0puNOdx9jJflL0UlPXTQ78Bt5F/8jJ6gqOkMJBhJhh0J2pW+z2fqYVrZ/UyUb6XVC8lJwZOxwat9CDo9duc9Zlf7pYs/X2/yuwWHO/MrmNLg79UdvDH9eaz1bNClw09imCZZmlKe2IyTe+7ZVkaQILZXGS5ddeYzmaaInsZ4nmXTLxQyb2GtQlCExBMI1QZrNzoOyXpVskYISZ+0SIMUEKjMgZEfRUUKa2iEeGWe6OBBouMn0Ai0Sin96LtIxkdZDmocGLqY1DIpDG9h6o9/nYO/8L4+oSAlQkqcvEf6yIMIlZGWB3AWT0ESkGu4dMs9UIJOKWL4aBWdKKRz4fZT6Zok8x02aQ0rj5KUEua3vApMCy0kTjRFL5ylHQactHyuD69HIGh0Ja6nuHr3SebnDpAFd6FVwOr0J/Grb+XIfYts2lthaPI7TRWeDlEvJUsVSZQxubffGWnHZd+YyN9//VYA7vnkQRD9svhD986y/dIxzK/T4CoJU2oL641Z8jar3bQfvD6NsAtJQGJ5YBgoy0DZBk6jTm5wjLT7EJmlMUIfUw2jLfA7s/T8URQghHGGbBHawWKATrdLmCaMGAZDwiMghVMnYfPWF+ORPSc85zcrTVN+/dd/nfe97310Ov2oUj6f513vehe/9mu/9jWNEZ6Ke+65h9tuu42Pf/zj7N+//2u+/+EPf/i5Dum8YGs8wS9038875LV8l7JJMFlKLuK/HPscv1j4P9w6/JP9jIDKEMu1Yca7q+RbdeaeWGbPDaedpw1nXeaLCL1+7zrFCy3qQuGbHrY0zyG/ziess66b2nq9gyMYGPRG+i/eyvCXz3ynV0gxt95AqgqkCymQYj25Rml7FWuswrUL97PaexNbB/IkskJW3sMfz32ea8fa3J20SVtf5ifCIYSU2J7P5a/ezIOfnaG7nr0Wph3yGkanB5iMhrm/7J/JANQyJV/3EMULn3n0UuCpev2vLtX43MIIp8KMX3gs4+0zAW/Z/oMMZ/+AiHLMedewPPhGDop7OKDaeOE2DFnAjiNI5886r2Ku9c2lb+BedBF0u5xtgkazTeyhBTbdOE7BtzBrXbqTLt1qDfWFDFpABjnLQNv9eepgYxseI/nreF/nAxyJTqLmNQYG/++23yV66HNEKke95pMbuJM4uJWVGcVXPnSE7/43l/D4kTu5cqiJ9volPUoGGMpDBop0JcSe+ubQwDOkSddPYKpE/JU2GFOkvRjDkNiLswQ7D7AI7C0lkHVImSReDCheNcraiWO4vSJm1jfOjRReHt/Ap7M7aNYb/O59v8u/uezf8L1XDPNnX5nns90CvdY2/v3QRvTKNrsUthynsOU4d3/+NUxg4MA5mm6O9S3gMjvmmaYKRq5APDONatRJ/+B9XH/Vb/Hl8v3onEEiQEZnpY+vE6/WwinW4pRmvsxktU9gaCAyTCInhx9KCpbN1lyNhbAIWZuhpTZXnZjgZG6RHZsuJigYZ3KaZRLj6y5EwEUHzueT+IYw1km32A6QAuxA9bO1Q4WtNJEBSEngVzm45YcBsJIe2x6/mOmLPwFaEI6OUXcu4+7VE9yw9BhDxkYw4b+mL6ds9Si4NvsZxkCjDZ/K2DZGS10OrdxBNf/P3LPL4GH5OFPyu4C+bofW8EeNMneHw08d9nfwDJBI3JbD1W7EtbqM8YW5F3Q+M1+BTafPbdIZNKksbGQgyrRfot+IV3Adn1wzoj5aJLEX8YPdFM2U8dIKQbefVRx0IvxUnUNSfDPiP3zhFzj8yi4vyya5ZGBjjVS5IQy773SMFwvkWw8Tv3wTrjeFEW8QCqltAoJR6wdYNF955nND9agPfgKAj31+jJtaKaa5SnW2zdJUmd5A31Ep2sNEFUHPjFmefoCx3Tdw9RsuOqdL5tNh6qIRpg6MvKjBJNM819lqdtIzlR5ICVqz/fCdPJZdwvCWPHGvy/Hph6DfMByv6yFaS5QbPW47INg7bHCpEBgIrERzx5ElKsdqvIv+M7Au85GeiQDS5QANFG7ZQvMfU7QaIpm5F/vg/UTXvRYMA/+RUyRbFDVjkeFOf0zSEkxs38Hj997BTTtSdtspD8clRNPki3N/jZdPeUPnAHHQo9dqYhgGzvNodHP2fE6Tb0y6JUlfxw0AIdBotNG3i2XXIk7XSJIGJbZgDoz2GyqZJ1+SoKAVr+vyWQqcEkackdkGjlFkzvswjvkjDBVzLDZ7/HU7x89VmmwqV3AMA09kqPK/RCazvHrZ4J9ykhVvjkNqhodm7uWqbdeTxjHTd96OWl8jdt78KoZ3PPfM206vS94+t6Q6cQIcbWPmLkyw1Mzb2PMuEIEUtLIHqfpXg5BkXegLqYE9kSdbmSFZTJC5EbBzJLGNW8gR3PtZvBtvpLfWIe2FpJtGCEaqoFLStM1ab5mh3BiqYGIMjlC+7R8Ip/aRDo2RloZohxnsuAikxKgtUzl+EP/KG8g3PJSEVrUHEoozPtamC9u8qfDySVZ+/yGyesTQwFZmnEfwFh8nmLwMAIMSBja5YoNlW/LFpa2Mu8tsb22FNsAJypV9rERPotI1EKfoNb5AEt3MV/7hCG/++Rc7v/LbB0opWrUeYSfGco1nHbgBmNg5SG2xQ7vWo9eKGN1apjS0MZeU0ggBvc6G9plhG0RPXQPdHEZplKXqTrA2/NROaQSEZHb1IHvNnf1GCuvo5TchVIKUG+MN7VO48SSGtAmlYrCUoxnE5IVLAU3v4EP43wqk27ve9S4+/OEP8zu/8ztcd12/8+Gdd97Je97zHtbW1viDP/iDpz2+XC7zPd/zPc9vtBcQk8kYUZqR5jTNtqKI4Gh2LY54mD2dr3DC28+WwnUYGNy97Xq2zzzExZzkrrufhBvOzVjIMo05mDtDHhlZf/I8eGqQ94zeQM65cJpRltiY5LK6BqfKIAysIAb6KZxS+WQ0EUBYilF5D9HpIteJj3S2iVaavZdfz/2f+wSPHz5C/sAeqr5LzR9gR/5mrut+hId9h4fTFVKRkPMH+sLYvsWlt27iwc+f6mcZOT1G61UmDw8TkaCsDYNFixSv4yAGvrmN8ucL+RTjaavT48pcj/u6PqeijP+2MsKfNxbZX3gFXXUL9y9GmCcX+N5bMtxwOzLzgZCR5S7zxRiZCOzAIJYzhHxzlK6dhjkwwOY/+1PaX/oSvQceJJ1fRLWbdA+uMWZKvuvlm/h8d0MvJ/Jj/NQHNPl6xL4nljh2YJgo1Qgh2V+8EUs6HJ77jzjaIBaKr5pf5gd2dKEzyx2rUwStGTR/i1v+SeYONfjo7z7IVnk7b1o5xScuyaEIiKxFRJbDiCWyZONsL1+wZ3Q2XLlBaIXpLDrejLDL5G96A1ZzldP5EmleYuQlWS8jmjeoTu2gMDJO4/fuW/+GQkvJru4kt+Zu4Yvd2/nIsY/wkWMf4bqxl/GDl72Tjz6yTK1XXC/p6cNinRR3R5hGUUBQRJJZ68SU0hjimz/7SAiBsX2Y7MQqg+/4GRqf/RDB4/eje23Sn/h3DP7MtazeOAVCEItTbJl5lCd31IidiMwM2PvYxZQf/SRfrGs+PLaLPVddwo7RQazT4uUDeXZs/T682hMU1u6mFjos6Qo7ph1yW2zKhSm07qJFDiU6WKsho24GW3fAMwSwzhfk6U54EjoH2ozdcD1z/3gEGSm2iBR9ssWRyfI6eanYU/syqVtiunoRRlpAZjnKzZtBaOrD2/nM2iMIEdD3sGGLGuMi+u/2Gj2irElVFbCloOT5XDU5xldOnKL0SAdxGYizOlrvPTEBWcJgXMfSL6z75v/fIEyDFafIFwOPqsyz8yy9qOeDCelw7VM+S+0N8kUmCq01ZXsIgcBvBXTKFt38Emk8hpEW2DqQZ6XTz4zRmaLXCikMfHPtVU/FSk+DBZeqUSLLR6gMM4hJch5GlJ7RXivbwyxXXbzOuo2lNSJT69p3IYaRkpgbZJyRBbCu+2vLjLvUft5tfgwzXWDkuMPx8iQIQeQU+Q31Sv6xeB/e2gLdxgJSPnvCXjxLcu65YHzHRufqJFUbwTTRZ8rLrUW6FMkNuFQnLO79mz+jXc3gUnBbNsVTBsHqY3zyCsHf32TwyvphLl3q+xsTxxo0aHGN7bC+DWFW+vuhNVlAH2+SLQeYQx4yD1lLYG+5AdE8SGE+wNn5duSJhEI7JfRTQv8uvO61aAyMS78P46FH+Mr0Ya6slFnKKixmOXQ4xifNr3K9uYNq6vPgB/8Sw7K55l/++HMmuYyzsj/U02hRxml/Xplxi9Tu6xNpFDIwaDUEa617AXCNQVTcRWcBpZdf/ZzG8mxhpxt7UcwqufokvaqLMjxyaDpxQN72sC2Dn5ka5c5VgyvdI4zkC9ycLwAKvP2Ugge59tiruG33X9A12/y/9/8WH932T3TXVvqE2/r86KwsPi/SLaHFoLMJpVKElCgRoUSAkRrICyTpZZRscnWX1kCX2Esphw1OLvwh48Z2nH23IB0Xuwz2zO/RaW1j4OVvpP14hyyAaCnBHIax33kvB9//MPahE3hBBzksGfqum5n/p9/HMjfRUYKKSjCEiXjlq7G7C1CbJXA9cDxE2kUur+EdfYLSVz/H7p/6Dxw/ukxpNcf/x95/x112neXd+Het3U8vT2/Ti6TRjHq3ZcnCuICNO2BsY5OXQAAnhMBL4P0RfhDyJjhACIHQYmMSZIPBgItcJLlJlqwuzYw0vT69nX7O7mu9f5xH84xsyfaozdhwzed8PnPKs89a6+y99r2udd3XXR9pIxOBHVoUVQln0/nNULBHs2SuGMLfvwI1xfjAbhbDwxiPrOJvu4o0X8COh0jtVTaPRXz2SIlfd9bVayVT8/037efu+17J4sKDqHQBFT6K8PYwe0gQBcmzVm7+Z0ASKYJOhGlL8uVzU5qObxvA9iz8dr/i6ezR2jNIt5lDy8wcXjnz3LAkA5Mlji9EGGlMaqzPMdrOEFt9gYNIVT+bQitEe4aF6DCIZ5JuAKXmU4wd/TM+MvQL7CiX0eOnMdMiRpqn1vMRQlDwhnjcidgRQufEkfOyCj7nM+/222/nYx/7GK973evOvLZ7924mJyf5kR/5kW9Lun34wx8+91ZeIKgmRcx8i8OdMraGjLqeN8Xb+JncCb5+6jcY3PYhLOniyiKnRy8iW5/HCRv0WhGZgn1G55b6JoZIz6QXyFjxOAmzaXpeCTeArJFnQBVRYYtEtHm6kdnlNn7nON0dGyjMZGiPdUjsfsDguy1yjQgsgVnKgzRIp1e5ZM8NPPrIl4iaJ+n2JlBJymNmmSE8flxdyR8Hj7JqF3iodIx3bFr3+dtwaZUkVghDcKeM2LB/iPpQG6smQAhis47WCrsbYEbGNxkBf89APPOJY6Rcke3SSQ1mIou8IRi0Fa1E0VWwIWsxYCU0pqtEbhlhGYCBNXeKcCREWZrASmguT2NnXph/z0uB7HXXERw4SPG1r8V/9AnCY8cQaYteLWVwIItY7VGeDlBOFT+TUMkZqMRC1CKsBR/nEkG4FgDHKmDS28lFYoI6HSpmgQU1y9SQQ95aZn9rBDO/AaUscgMzmO5ONiaf5SJ1muXMLghXSXIpyuhSajlk4wZmJYM18vIbzD4bHLkux06LAr1axyhpMCtkTjxJmi+ghqr4GYGX7SENG60V6nSInvURRghOE6nyBFYVM1b8JG9hqbrCofohDGFQD2u8c6PD4nSTTe0iTaGg1qOuFP/u+BRvLHa5cdzgLrvBRFKhoNaVbjJWF0Qa7ncCWc6imz0cbyt5/zZ0GhEvz0GrwZY/fZBwMEtYzWI3A7w/+1/I376WaK1S7OD0AmL/Sd46218A3T71QbqVPEXXQ0pB13QpegblS2zqh10cPc3jqxGLPY/R5gaEkCRGBDrCTAWljmZsNAel81+19GlkqwOMXrKb2qkTNON5JjxFKgWpZ2AYmqIhMeOIxLIAzcncLob0Mhoor/wAAkFKF0M7gEG8/Q3cNNVh6d4DLMeaA2HClNOjTUJDBNxpH2esZLKrNkqsG5Q3j1JjH76QFNo2g2r93A+FRBsuY1EbUz+3auSf8SxIFXgZtsoeeWlyJH5hRTsGnsWDNj6LdLPSPskdqR6W6WKFitT2SMwGSvYISBjJe5xeKz1mWgadxoVPuok4BAtyyqJhWthBi9AtQtq/TmTDJzC75KqTePMnMF23f28XAm0apJaBwOf+y/+I1dIVoBIqjb2Yep2QKRsdZvF4MN3IlC6SrSuMOCV1LBSScWcbKvMgVqdAa/4R4DXnbTy+ER0/IetIeq0OGCaGSvAaswRmCctOCOsHcYtlpq1TmIsCKwG3FtAUNb52sWSoBZPBIAuihqsL1El5p/C4wTIwRnIYJRdrZG1D2DVRveTM/81Bj7S5hCyMMqALpPUYzDykIUppYiNBZ6bJdK5EkCI8B2/nDmaPH2Sk2GJcOhSkQas7Sn6gw5fjJ3lr0k9dNGyb5WOHGdq645zGw81YlIazRL2EoBc/5+eiNR+rxC4g4w74bRjWKC8lUf2/c6SHkCbCNkmWTlJ87Zuez0/0bZEP80TzKVpAbLRRhiZZUzO+e8Pvsb+2lylnBznXYzqJ2V4aY7FxmihpU8laOAIsGpQL4wwtbWG4vYlW9RTLwQoz7RnEygpusUzc62K6Ln6z7zL42Cc+RhqFCMNgz5vejml/a+ZMmnPAFqJoGdcdxdAeWipkLBAD54dMko6J4RhEmf556QvNYnSKyXwFoQKsoiQ33qO+TyDNU5gZE28qQ7TUJelB71CL7q/fj5MxMArDyMwQhpSYPRsvY+P0YrTu0E0ySDQVb4il7ix2UWM390JrH73KFtI4xYh7ZMIucauG3LgZt2MTZmKUrQmNmKyTxx49vzGuMCXuzgpJMyRZ7OEsSipjk2hrjk6hBEC2exnZ7h5eUQ6JRw/xcEOzy54nEBb3rXR59RaLbTtLWPZOFuZC0lSRhl+gPPnj3PXhp3j9T+8+r328UBEF/XkliRTW8/Cuzlc88hWPbiuk2/D7FcifXpNF6/ezXMVDCoGVtYGI1LCwkpDE6KcQB4UtoGKEFqA0Mk2w4yYnl58k1+7P9VqcdbzGImOzn2LotMnbZpuY9Dj0qoSw4mPICNs0aHXaxIHEM0r86pxDPXHwf/3TfPJnb2HDwMt3zp8z6eY4Dhs3bvym1zdt2oRtX1gpay8mTpin2eFP8rnyh3jrwr/B1QaLKG7TBf7gwe24k2V2RfOUnAkQAqES2l6ZXKfJ43ee5oa3buVpFkWFLqK3RFToAQKv1+MyTO7feH5lvQBSSFZkEzyIcyGIiLSziliRJJeMkFoGOJeRbwTINcXBqSszbNzbIb/qkzRTpJuguhGTl+zGVgZefS+e833YhkGaGyCwB7gsVjTlXiLd457Og7yn+m/OtGF8e4Xx7RWUUuz7bAkrtLBCE8O0SAmwkrUFqQwQxGB8byrdvhGfF4+SFkP+S3YbW9uf5f+Id3F/tIVYxJhuFiEE12ys8L7SPv7W16RqmWKSwarVMQNJeS5DailmGxk2bvjWVc3OF6rv+3EA5o78GtHxIwDUPvEYeAburdupT7pAl8CcRfl53M0FosUAmbMo1wPkeI5emGJg0wt99hiX8WD6dYw0pRe2iFR/jrph4DRfYTeJBtK9TOaWKHUPYCeKxKuCU8WOITFr+PYIhppDtWOs8xyQPI2MkWFQDhMePEhUn0HrK1AkaO1CrUmcr+I2l4hyUxTzXbptC2kLug/MorohRhSioxxGaQURVUgcAyeE22/8Hd784L+iE3XIWTmuGm7z6ssO8PknLqXnmVDJUAZWD0j+amaQLYVFHo1c3g/EaLJNFzMy0M15OLe1yHmDMZDDGMiRnFgm511P4fW30fzyZ6h/7GMwM8Plv3AHM2+5pC91n9vH6NFbMKZCFAa9AUFp863osE26cpB33vGHPDH8b1Gju5AIhGHwVelxi5xgdWo7G0/+Z66s1BAVxXS1ykx9gWY5g6QAAkqLJ3HKEsql8z0sZ+Bkc5iOi1IKw7YJWjW4tErkx4huxJDSFBcCWoOSxAElDOKwS17P0/TG0EKB0Ig0QQNaGjhuDmmFXDeUoW1neGKwzGOZIh+a+UVePfh/ERhFrMwoxdkvUtSCd4xfz76gzgbdxkHy9FL1vT94jMgXXK1eWOXNf4pQYQO7NIYgoqYn2W28sGpehlgnEDQh2XpCbEuyNR+RKkQYkoqUNANxNsToRbiNAJkTyMTFMGK2TEQYw3N8zguIrRli9Xkyixd21blXXn4tkalwk+8jIgPaObOhKjRIW1IMXNh6Fd1NdcxaA8ePweiTAIlt4GcMFoauh7VKbrXKFSTWCVjzt9t6ScTWqQ4Pi9dSeGQZI+xhdSskdg4hNI/u2MDkpqswuwY1O+BTpz+K5VwY4xbXJ1CigLINhMiQYLMwmTBfXsUwVzhZ9PtVbIWLaQpCU1H1t/DQW2pcPfVqIjXAJY/vQGORa0nCXMRWFI1ciIxToijlIf8A+FAuuJTG++M/t/ce5LigOC8QaYoQLtIP6JVSMg2H3KqHSEW/KqcEgSAiwXn1AM0rN1P0fC7SqzhCgbGV1PUAyTERYKaAEXG0eQfmvi9i2DaZ73CjRKWKVtZHFgSmbXDoOc7vdiWL8CcwlEBZVRJvXdlhDcc4P3EVuW6GxsFljMSke3mOg8v/8MJ/sGdBkPWpj/TthPyBIexuC8oeGFD2BjA9H09pUuqMXXaSuhsz2zLIEiFESMaUWIZEY+BcepwbnItou8NIBJ+e/WsGjBzJlhCVJBhWgJBtTs//HY2Ni+i1lNOFpX84U0n7uTD2mpCN9tVI1teiWsREVpfPV+ZgceVb/PVLB6dpUFzMIhQceccuUg0PtQOMwoNYA2MIkZD88DbQApm/FzFmY5TzbP34AIYv+8RDW+BnU9zQJHQV+x66h+VdLkF7hZ7lkNGrZ3zhexMpWrc5U4SAfVjhKdoXKxYv282hrbOkRsrog/1zr7SYxUokup1gDZ//GDezexCj5FD7qwNopcktl1FWlsV2HZUt9L3qkJh4XHvpThaWRthW81GLs0R+mQfCJ3ntFh8zGWd1uYTpCqKgTWv+o2Tyb2J5uv3P3m7PgiROKQxkSBOFfQ6ppU/DzdjYronfCUmV4Kn7TrPx0mGyBReVKHJrfqGlgSymZWC6698Rm2fNg2s+jzpNkVpgximm6vLA/B20xmuUFnIYZ6lSOqVhSkeOIu0pCqmJg0WpHbNSdkiJMAyBxmE1SDhhXcax8BQSDTrmv9z1IH/0w8+s/P1S4pxJt5/92Z/lN3/zN/nwhz+Ms3ZTD8OQ3/qt3+Jnf/Znv+Xf3nHHHXziE5+gUqnwvve9j4suWjcjrdfrvPWtb+WLX/ziuTbpZUFR5cmkGVZFnb/LtflPrSoaGEBQTSX/6O9gJplhNH8lCANlJIhSlczKPEuHFgh7GxBPnyRpFm1b2HE/yJV6GoDQPf+1upyz0tbkaEBl099x6r/fRyZNUb9ze798vXr6ZFcIDIJ8yswOm533nkJYJjpK0d1+OfBrv+9NRH/51zw21+Q1O8aIU8Xhqeu49PjXeVWS50NOi1La5VjzIYbY8oy23H3qbibnBxmaLmFFJovFORKrhBGPAWCupYaL79FCCt9YvfSorDMnOlxp7cYZfxfvf/NP8X1fupuFaCMAm66dIl90eehJQaYnkFaJji1x4yIrG46ROClez2b5yEE27bn85e/POcCaHANpgND09vf96AoXD9NMFY7vEGU81HKAZSoMzyRpBMhWSKP09Plr4MgMuwffzvHZfTwipxnRKV0jR1FmGS0JLh2Z4q4v3IuUElk7zO7Bh8nQ42FzO1r7IBwSq4bX24ZsO6TdGLNyYfiUOYbHslqE7WWyx5aRnQz4Lmm3hzN/mmhsIxEbaagG42Ob6M62iZsGqd8CU6AYxRInMYoK51QKpCSdFObneOXEK/mLJ/+CSEXceezTvM0ucbVp8JRhnjFK78WaWuBw/2qG2Ax5b6r5B9lPVYi8BMe6MBZ85wJz0yBs6pPR1U0/foYABrgIWP6D/0HNO0peH+PQ8ACWb3D80kWumt+BY74T1Vsm8ee4Zr/Pk5UQ5fXPlYPDV7Fz5YuUqlnurn6U0dm/YDLzFNPWJmIzhzIUqAjQFJZcjGoKW7e9/APwLZCrDhL3utjZHH6jTqEyyeyRHkJC20/YfKiJtEKeuHmE2PZomEPEVhmBQTvzVbSY59pf2svRD/w7kmIVIWDn9sso2lAcKLEiBJOhzy8N/RlWcRxDWsQ64o96f8uHVy/GdQyKTpFXYPCYtlhUBq6/mY2ZDA5TcJ48UL+rkVMkwgUkOe2j5AurAKuE4uk8QoFDr+zgGiFhzkILgedrhBZ0J5pUjo4QDadExTyJ10UFIW5cRcsOWccgsjSRTIlVgHmBCxgt02FspYqZvQwsZ+2+rXG6Md2Z+7AnbiAsZJCRSaa5Byca6xfe1LqvVjMUiR3DmZ37PmOX2usdlxZ0HQ+JJDYM8q0KmUYXv1wANIph3EyBMO2CSpk7fYKBiQms85w5AZAGOXSYAwSaHgKX2Ogh3AQMRaCjNf9gi8RNyNU8vLbD6mCKtksUWhWKQY5qt69wGOi4JFaK6TsYiWTmFXUi1c8zXdkWM/6lPKmhINGceEONk6OnGb2/QKk1SHOiybErWmQOncJONtOp9OPUbM8HVUaQ4hjbCLwGRtJCeFliJFlp4ssMUkakBQfRDID+75UkXYQKMFTmG0O2Z4UWkMgIrSCOxXOe32lawtEDIEAToPV6lXYhFYkRI1NJqdm/Z7UGm0QqfPaDvUAY8frGduQlbHy8SZTN0Rko4FCmaRwiS590bHAcIx+hugltcqh4CZwsWdtGaYXjRhRUma7ZQACrwTIeGgkI2yBVEVKY9IImiYjBAhCEiY9pPPdkoJVC2JKYHjYSsba81SLGih0iU8FLND7fDp40aA7351dP50jCmBhFkvQQroHWAl0sonpdDM9EoIl1xP53zKOUZvTrBVSqOLVrhZv+ZhtmT+IsSsSGEqleIjViIlIsYaDXFLLaMFFxvDbXgPD64yEcB2WqtfVo32exNdCjOlPs+yJeIB6azlSB0X9/LQu/8zDJsk/WFlz0tWMsjthMX+PiRtsATTHjUtw4wlKmw2hiclFg8t/8O7gqU+KiDafZf/Q2mq0DJMFXSAKT03s/yidOfpWLX/XD7L5lA8XBC1tJ/Y1IohS/E2K5JmGvX2H0xUIcprRW+jYTQxPPTxm65bIxFk/WOfbEPJ1U0VjqkMk7REGM3w5BwKWv2IgQgtnVAFuFRMJCKoWSBmHaw1mzWbBWF7jsa4sgcow5b+dPiq9kIh2jMdIh2+qS7aYg+ryJFTUJ1OU4a4R72nIRZoAXDyDsNitd2FjNs9i2KGY9lrsRUikePlZnqRUw9AKqdp8Lzvnqeuyxx/j0pz/NxMQEt912G7fddhsTExN86lOf4oknnuAtb3nLmcfZuP3223njG9/IwsIC999/P1dccQV/9Vd/deb9KIr4yle+8sJ79BKhosrs7u5gVbf4qe0xI9d4/HfpsxWDH8bhpxffxEq4gFw7ARLbY6k4wnheUvUXWJ5unyFRjLiKctd/YCNOWUUxMXj+lW6Osd4uXwrMkgdpfxI32suIvn5j7Z+BJgVp0BnMkEQNSCFpp+iVLiqMueZVP4BZNWg8ehdzrR62abBcHsdxHC7qXY6loW4IfveR3yZJ1m+IOtX87eN/x+VHt2BFJoEbseQqlLH+GSvsD6j4XlW6mWsO72cgOCmX+T3xOT7qP8nvfe43+I+N2/m8/0lSlXB0JeTOJ1aphyVWkwXSYJrhYw2E0a84CCA6/V1DN3dh7/JUfvRHEF6mnwK1htJKFwxJmIvxqxAtR2BI8ttdhCmRZ5l2Z0wFlkdcHOfGgR9DIJlhgaVqFUMFmHGDi07/LpuyqyiVMrOS8uWZMZalpJXdgRAeIBCJ299R62qs4cwFkzKZNdbnirDskiw+CdoirhfJnDW3dFsdnEdeSzb/AGiNCjWqq5BGF1feh8iuE/2ip+DgAd5/yfu4eeJmakGNWusERB1UbJCebQCdJqzGNrefGqCT2BiAI/Qz0ku/1yBzOazNmxj62iG2HM8QuynLG5scvO40ojSGNXoZ7qbX4folKssRQgiEEEyMDPBx9yrcZahMFdl8sUWu7BDltxHksxhpDqltlF4hiQLk5OT57uo3ITswhOk4RN0OjblpxrYOUB7OoRXUVYpGoEKHK7/2ITL+LH5mksTIItLjBLk5wlyCvP6d5L7+5f4BpcGe8TKbhipIKSGOwM3gVTZhGjZCCCzp8PaxX+X/GPv5feMB7jCOsyS6tIixwgEK7esoBrtxKSAS+58f5/iQyqO/7yoROsTQ+Rf2UN9c/TTI27jNkOFjDYxUE5shtZ0zKFthhf17m1QOsb0ASDKihI4GsGPRV174EhMbWzoX7mO1xA985QakXtvD1pryTJvhR4+yb7SBceLLjD5xgiTjkvP3PGN8Utskzrgktg/6aa+3HkbyJUpz60SyrQ380GI5zDFjm0gk1QXFWmUCJIMMJrfQsANUEJM0m9RPzmKJ8zt2pspCUEVoC6E7CDKAQMdtdGBgxIqoF6AKksRNcds2I8cqPLHpADWzi98eYWy6ysRKHpkI7t+yRM9OcCILmQjaUyHJiDjzfUbW4vTrm0gtyC45bLi7guuW0CokJUAlPkZqEZcKpPosD0N1eI2CMHHSXeTMq1BBynjQJgwNlnyXoD1MNwmZ6yxQHpzASCVGLDBigQwVlja/ozFxpIOlbYzURMbP/jeWcNY8efsQuCjjLA+jSKGDBLO3Ho9oQ71kv+PT6xqAntdCaonXXr/Hh+l6XJ5EWbptTXWoiA5ddCjpNDuYMXipSVkmaN/EbRcJkpBW0qUX+xixwDEzmKlE+Alxo3NmfI0YDCW/9bmmLUhNHEpnCDfok25axtjaOn/XwVl+VTKVZDshMgoxWj5iaRVb2ThmDq8wjK0sUBZ+I8WvJYSNlBiFYUBJmJy4eR6hoXQ8w7ZPb2Bq9kqcIITUwUpNHO2QEQUK+QGqwxuoDE5SzgxidiPMboQdCcxEEvgdjlw9S2uwh9u2ufQrm8ndPPFNc/j5hrdnEGdHGXMwQyYs4BkjWH6b5aG/esbn/KEcx6+ZpL7zUn6qdTn3LcYYRswbX/EIQl6E4d6I5eVR8QKd1Ud45NO388Rdp85Tr54/Gssd9t1zkkfvPMqT950ijZ/bF/JccfaxpPn8RUAD4wUsxyRNFLNHVgm6Ic2VHmmiKA5kz6yjemFKJB1AoAwTDWcINwA3dDm+p82J3XuRwmcuO8+wWQL6hRQ5a16y4jZJOtB/D81I1yFaiys8u0x26WFMUibLWd69e4wr7ACBYKnt8Nipl08Be85Kt1KpxFvf+tZnvDb5HSwSPvjBD/K7v/u7fOADHwDgb/7mb3j/+99PEAT8xE/8xLk242XHiqyxNZzsxzjZGJFKquUuJ2o2Y1pyI3m6s9fAaP/zYdxE2llqccpEJeYrtx8ifY8GAyxVIVX1M8c24pQmmskLwLskbxQYMSdo+rPUTRthmf1qU0phH/gMy7u7mEmRqdwIteA0SXsIqSt9YiwDlgKdaLQQ6KaPM1SguHmKytEneerUjeS2TZK1LU5nh7mJy3lf/W4+XZCcMDTv/LvX8Xfv7Csdl/7ocX5x7u107YAkl9IY7rAviRkX67t9Z0i3C2Rn5kVH+ZkpoD8/9z6uHz7JFyun2TX6bxFANVnmD0/8C+TcEpeX/y1O3PcK3OQPYmZ62H5Mz/Vx2iZ2qPFP14ALn3QzikUGfuKnSVOH1l//PjqOydX9M+8H2RjMHL1Fn8xEjszGBD+CTDskNSVG0eiXNgRKAzfxi5Ur+POj7+XrnsvmgVspr9yJJUJu2hTgnwyp+Q4HO0P0zDp2rh94CASGyoIQ2EGCUbxw1FuuzDBkj9KdmyZ1TdL6SayNWxGiQHHXdXinDpPaLmHsIwY247BAYWQ/IVegFXjWCfKrH6NWupmgYGIGKTI2oNOh+PA+bp28lcO1w4yb/fNExdYzSLebJm2+ciplybcoWwkbvQxGGJwh3YwXLw64YFB9349Tevvb6H3uo2xa6BLGRZYmu8xsW6FV7XHtJy8ClaJJsML1eaoTRFQnJvicHuM1px7g5MC7yY37tJZb2GuJkonZxgjbyKgLgxce6eZkMuSHRwmaTdrLiywd3MvURTvptQNiPyXMGFh+jB+/jq3+IeTM37FQuYbVindGwRO4q2w5nuHwE/fS3nMjIFCqXwnV0AoZ+CjDhCRGSwNlWVjCobDjl/ij42/lPfEeQkJ4NEf+4lv7uXtaI5VCpt+DJ9xLDCUEyng6aHXQovbCDqgFsdEjMVvkam2Kna10PQM7SLH9GK01TmeBW/xl5rMmqerPz0LZJEaLxGjSbHo8dWySX1BLKMtn3+ir2TE6QWno/G9IPhe+8Mj/n+O7BvpFnlKFTDVuO+RQLeSBT1coen/E0NvfSy59ppJf6L7qqVNxOXzdq868bncjhk9cBOlJTu3op02PtLJ0Z2zuvaeFU8xymQGZRkCnHZLPP73JspmR9s1M/+PHKDZDAhI23WRx3Y+9j2y5yvnAfD3kQRoEKz0KbkiQAxBsfDyicXgH45NHOPU2r6/ESQWDp0tMPTrChyjxtyeKJFLwTjXCNClNAz43X2LFM3nHpSWM2CRfcrlobNMzvjPNRtSOHyY63aawaHDjoRtofv23SJaXyZQqFLb+v4Rzp+me+DRhaRPdYkhlLmaxehrPGkIJhxGxi0fu+ByV+CS14Zt4LM1TVyZ7Nv8987mQ2275Qa4u7GHp8AFai/MA7NnyKnLV78y24+Cpafx2iNaw5+JNGN+wwI3ChC8+OUNs9UCkJFYeJQLMjk0QSOL7TqG+dhCR07D2lRtWHK4bfmmK1D0y/UVmWADAOn4Mgjz5Vh6/5dLNGTRrdUxvGk9UmZ+t8uCc4pev3k5y/zL12TZR+6tMbb2YnUNVTNMlWflD7kkL/NqIRep2OSwr/Nbwz7Hjiu/n+H1foT5zmjjwQa+Py4arLmFi85XP2caFY9PcdexzbFqzK1b0UPjYTUX5dI0rO1fBRS9NoYlvh7nsfqaX5ontlPxcjYv/9F6mRww2nV7CmHwF5Tdeh1kog0qJpcmqkCxjoJRGJRpc2GIr9sxqRKppRA+TihJONMzoQ0OMPilobFE43lbGLdknkKdTSFbAqRCcPsn8H9yLPTSGe9m1JK8Yp718iPteNUR+1aO4lMVzMue9iMKzoXjbBgCad5+i24oYPl6jWawTqYDYOokRF9EUkIaBFIJO1WPz0h6uCBaYO9VlYmOXd7/+ET521430Wj0yRZdeq04a7uWxz55idXorkxdfylU/8Obz3NPvDO26j1zzMdcaDj08w8XXb3hRjp0m60S6aT3/dbVhGWy4eIjl6QZBL+bII3MICaZtkq+se8d2wwTPXyVwSug1laZYK8Cm0jozO/cTZU6BgPHZMl2rzS2961mmgZLrRL/d8RG+jRIVeqQkCFY7BqrbJRarmGmebQMuzvJdLBavZ2ygwmarjSkUS6nJv//EnSzI9f6+95L3Pu++fzucM+n2fAshHDlyhB/8wR888/wd73gHg4ODvPGNbySOY9785gv7hI+MhEVrldFokBWaKBt+ftcEn9rbJdMET2l2Nko81dyP5w0jkTi9VRbtPAOWxuhK0lghhIUWMSpJSawaMk0gCjltp2wtvzAj4xcDObOAFop8IlCGwirYCMdG+wGiN41z9B5UIc/Ulh8j7SlWOy2kHid1IPQ0hXYNozyAdmzShSbGUIHx8a0snjrOse4KTb+MH9j4uQqxDLhp9Xo+rR7GFbChPs6B3/gCRVmgm3ZpGz1yuMxtW+H45fO4R7eRiHU1k6PA3lRAFr43U4vsLUNPW7oAkO/luGpxJ0eGLWIVYkobR2Z4pb6VPekepO9jJgZWL6C4/ziDlonoFVgdVYT5hDAP9oLF5CWXki2Wzlu/vlOU3vBG/KNLtJQmbfrIg4uokw0KlBBJPyXSP9rCGvYwRxysowG9fJ8Ys6MUq7dK7BQRArrxEjudnZw0Q5xNVxJ1DyHjNrnhzVwysIXHnjjFKpovLk/wGqFQaoXUErjtiHKtTmZjAXvywln4GdKgk7bpDZjYsoRqP4EhU4xsBzO3lbg8RFIooVp10sefwrH3Y1kDpIXfBcfFcZdhFWTZQyhIHANbKXA9mJ/nxtwYH/eqDFtFTghNPmtjW4JCN8IeybJ90yT3z5/C8rs4UlI0JWaoz6h55fdoIUkjlyP/uh/C+fyfU9w7wZ3VEA1YgcGTN57gknsmif1Z7E6O3IrHvBeRCBetJJ04ZjmFofoyR0fH8LqLiF6bMK8wYgPdjjDUCgxemH6Lueog0jBBwMKhJxndtRsnYxN2Y5QByjQQZBD5V1PK3EDu0J8Q9VJcOYjrlOkVOlSsLFNf+isObd1NN9XEpkMKZG3JgE5Jjz8FQFgo0R0aByS2kWO7dzN/p+7jnvg0N8+8hs1TERT7qpnh04tsXn5uQ/J/xrOj0Vnl4A2TxA5oCYZ8YcSlBtAK2+8yfthH5EOyyz7DRzoIIdBA2jyOf7qO1F3M0KU438Y38ihTY6VlBnJQzTp0W5JKYnPx6iO0WwMXNOkmtaBli7VUUYnTiZg4XOdIYnF9u4EzWMQvd7Bas0jlYCX93XizGxFnLBACmSQ4YQOjvkrGNxg51GJx8/oioGApLpvq8lgc4Kf9lDE7UiTNHlpEiGx/fEasST538SyveGgMcFmemyH2fThPdVl6QYKqdzGkBg3VzjKGSolii0mjg1kEI+pnT9i+yY57p3gsbHCv6rDJgPfY45yWCksKAqtfpdSeLFLdPdK3A3gWGDmb8pu3sfQ/HkO4JlgOMpvFMiRJECHSFG/TBsKjGrQiX3MJ7S5Rt0muWEJjYqiA/M5rqR+4n0nhc1C7eEbI5toPMbDxKT574rP8+g2/jk5ThDRI45Cg2fiOSTeVKvxOf2Pm2eq/JFGCdCWJ0Y9niu06qWrSLkeYuX5N29zwJob0urpUOi+dPY0nPCqzefq+5rPoxMdK4zUNQg9HWoxm+5tFQ9kOh1KFUimjWwvAJnqnHiGIV4nSCqZoYVmDXJnMMMjlaBVjZRTZkWEM0yQ/PLpGZGq00miVYnoeWutv1URWFlrkrQmanaMUM5uQMoMkQ7PawpEZyJ6/OSQ/WKVZ6gfz9mgO0zVxTImVt1G9GeL5YwgmEeVRQsNgVRm4jolKFWGQYDsmWRXR+ORfES/OEi8eRg6/GmvqBhAGQnugmzRjnyHTxQKEDsAo0Pzc/6H95CGEaZI0V7EqFQx1nHq5QqnmIZQk07Gxyh5G9vynoz8Xiq/egDAkvccXKSxbHL3GBu5l52ce5PTEz+NmR5C5LNoQnBrbSXF6GhCcWJJUswZX7TzGU/Pfz47rCzzwiT8gTSJAsHj8BI2FebZdcz3FoZHz3MtvjzhI8PIOQTvCdGSfvFf6RalCfTbpZrxAMcvgZJGFU3UMQxL0ItxMf52eK51FuvUifK+/IWR15lghJCvGMLMO0iiD6PTVb+2IxyvjDHQK+EMJucUMbmSupZ5D7Dk0u/8SRIJtujhasKXncWzwOE5zAzqR9MxRnNospteioW1uqVh8fCVmSKTEGv7w/jvIF1aoelUKdoE3b3tpOKmXrW5uoVBgcXGRTZvWd6VuueUWPv3pT/MDP/ADzMzMvFxNeV4ox1kaqstl7c3saz7JD5VeQZQGvPHiHP/1/gbvxqHYSxnK7KSrmzhmDhU1SIplWF4gbnZBgxlXAI1hZTBVBQRY0TKLEVyXO/9KGiEEhjRpGIJsYlDvCKQFaSDoTRRp7e5L+VwjQ9bIM+eu4vZa2B1NnCmguw5JU5E2AoycheqGXLLjap78zGeoFZcZzl9FlKScTAe4uDfDQGGSP5v9Km/emGFTfTPZXt/40MHkkFunva1D6/L+zao6VECdVbHEappEJ+rYExe2auv5wt51MTxwYu2ZQCuTis7wBuP1LKYmGBaOcnln9v3o7godZRLkTXL1HoOqiFhL3+nlQnLTPqqUpXZ4htqT89z87n9x/jr2HUK4FlaUYI8NI2yBIcAYy9OxQTV6CGmhAs3K4jKD1SqZgsTqRighSKXGaZxGuiWS8gQKg/Hiq8hKjwfGr8cUbyFjCCzXZPvl4zw1+yukK6eoth3S0ihSFkFFGKKIMiXxQo/MVRfWDblsVZC1DmI1IHV90rgCUQ+ZGGQaKwSdJlIrut0KBXsFEdfxtmwAYaDDK6GzBeUVkQJEqpGeR9oNMNKEwROLNJIV7MIAdpoQLLq0d5oEWRujm/C2Kyf53TuPAJrVSLJrNCDy169NQ3wPl2R3i9iDEmO+ySv+9iK+9M4naVd6RI5DkrQxsHB6il7Ro4RLPQ1ItCRONX+lR3h/7zRTM4u0pq4jyNlYaR4EZOITfZ+V4RdmaP9SYeqKazj0pS8Q+T5CwJGvfhFhbUCakqhs457uoW1JNNPl1MYcj81UaaxMY1/mIBoJYcYhDULMOM/O/+dHeDC/ha++7efZOVpmebXGvekf82/+UREvzdLIC1Z++hfID16J0vDGoV/iS09OEz65l/yVe8C1+yq3VFG0DjL0gR8+38PzXYf27f/A/MY7AHA7CcXa6gs6nqEtpNpCdb7A8KlRkCugEzQGWilIQ1zvEczcJqxuStKV+AUHZWn83CpO3KLWMvBMg46SVA0Dz69Ta7SAgRehxy8NptIKYiBHYvfnvNJiP15pCs3FrSZxIukYPmZcQZOgiHD8BEMYJBq0IVC2jW8PQX4I69gcSsRItb7j1hQ+sRPx7usOcmiTy7HHJKqe5/BDp1msKN74yssROkWbWba5A8zma4x3hgmCkLmn9pIEPgObX36fyFMnWlDOYgCi1aVn2pgioRxvoUyTk4M2mZaiVwi55K6tpFqyaucpr06zw3QZdAVFJbEzJrvftZ13PgfR9o0wCjbKT6AdEx5tYBQK+KdPY42PE33xs8hbXk/5dT/FgfLfk+14hJmIfM0iKRpoYWAJRa26g2LrE0Sxz0r1DeR1ysPdUS5ZeoK9/l5+8cu/iAwTNq26XONdysy+x5k/8CR2JsPUldfiFZ5bNSTPskRJU4XJMwmzJFbEcQxrpFvPMAgd8JYztJ2YXJDQ6dbAnUSFK6AU5mDh3H+g7xCWbVOrtgGojGURqyluW9EtuICLCMu042W6gU0qDFKlOLDaZUclR2ulQi90Od4w2D3hkqLQ3nV0ml/EDQxmjEU2ZTZwotRhAzC0dQcnHrgXw7JIwn52QxrH+I36czcQmFtsspS12Wo6fT9g+m6HMg0xY+BFICWeL6yCR67mASlGO0DFKVFXMnHNNKvHQ/RD/wH3//dlZqcjZrsaaaRc+X3bzqThpasdoofvI62dwD/0JDqMYOXvkN4wsrwJYdhkD5eRxYTp9lG85hyuOYhwR4jaW4mnP9sfD9PEGwjIn/wwsxt+rK+0LftM7R+m+tYLv/JV4VWTpLUAb6aA27IwgpheZpJr/uBf8LE3/jG7r9oOWrPsFnhk6+sBTbF5FF9PMzawSr1zmul9G7n89b/E41/4JIm/l16zQRp73Plnf8jbfvU3z3cXvyWay11UukZG0yfJTMugsdShPPLC18FCCDIFB5XqZ8xRz/dYUoAfxGgNQS9mcLL4TA+6JMTpNQkzA8S5MagdRRYt0HG/UrLdAQPCos3h0jhGp8s4ZRZEjXalRrmeAAK7F5MkY0jXw9SAJWiaFlY7JZXz2HIPkSdplcs0B9uYqxnahTKv7S7y2/UKA7bCqu3itPU3dIMe//OhP+GemXv4zZt+k6z14hYWOedRXV1d5Wd+5me4+OKLGRgYoFKpPOPxXLjmmmv47Gc/+02v33zzzXzqU5/iv/23/3auTXlZ4ZFlS7SBa3tX8PXGo9Q2GCAlljQYnHT5HwRUlCDTjsnaVUzpEGQHiXNDlMyYy3bZ6DXSzdQVhFzfUch2FMdQjBQvDJP2IWeUnp1SdwXNQRPp9lP1orMulozMMuSMErh1JAWSbL5PMAKgSZsRerWDWmyxYc/lmOU8F5+4h/0LTfKeQ+TlaYQwMng54/h84ciN3NK5BomkJ3w+Wvkc/37jB3ls2/Ez36mVRMnOmedGspae8r2aXvoNUCf+nMxmk1bGAscGIVCmgw40llOmW82QujZDIwJvso00+zupvVJAd9Shl1foWt84OF85P+km54S1Sd/IV4gXWqh6F7vd71Pkhmj6O9XJPXdhCsgOWkgNacai59p0xq5AGxapdBhwN7Kj/BqmSjfT6Fj4Qzlqhkm7GVBbaPPDv/HbPH6Ly8nhLmLN11DJHok9wPCBJqobY49fWGoLS9p0itDeViH0lxB0SHtForqJY5hEYxsISwPU3UsAEKQQ9wNXrW1YPUYrKhJ4BmYvhXpIfMn1EEWwtMQns+/nUrvMSOqilCC1+4GsbQqqOYenfuO1XCUf4z2THj89NYk6Syljmt+b6lMADBsEFLceA0yKK3m65ZDWQAd/xEGaBYorimw9ILVMCk6GUsZmw0ABb3CY/7ZkMRVGaDfP2Z6NbifF8C4Mz8Dnwvabb2PDFdeQBAErxw4zMJhy3Q9cxMU/cTmGITEChbsa4i/32HLNWxkbuh7hmfijisZ4glHeiqzcjLY2cZk3xdiJDn9+3zE+c6DBgeA0y5dFpCsLZE/M4/3xr6B0iiEleccmlhaF1Tmq2zaAY/arhMuEieax8z0s35UQufX7+eBsyI1ffuAFPW740lNc/fkdbN7b35iTWQvWfM6ElMQzD6KSFLuaJbupCwmMHq6jzQLK6GKoDEO5LEN5l1bavw4MLRjYfx/qjjvgs3fAQw+8/AP1bSC06Fd1X4MT9GW+W2YeYtdTH8IwAQGJVcPUeSQ2sZehcrrN9q/PftPxnNRFGhZCrc8FR+Q04Yhm6ft3UN7WJd3cZhsGA9LksaBvAaINi9Qu8H357+OpbT06YoX2yhKLh55iZu9jhJ32OfUrTRKiXhetNSo5N+lymio69ZDls3xWw0wZ3ytS9hsM1myKzhDdkZj2oE8gFW9dTXmN6HD3wqP88gMfYaiwkR3KYALJjnde/JzKtmeDEAKj0Ces0k7E2G//F3SvR++++8jc/2n8VkBzMULXAtpVn9pIh/G6iTb6BR8Co8jWao5PDL6eQmuWq8NjLCmbmTjLpSs7OF0/zudOfY47Fu7i6wPz5DZOkkYhrYVZVo4foTE7/S3bZ5y1oFXJN0vdkihFnRXWxpkCQjTxB3uYhZjVU7MQGOSEg7CrSG8Ic/ilSw10zHXrm8iyEOFpjNb6OTFgDJCiGckXKeeyHOjA7ceWiYKQXNUBMcRMbYbFdhPTLGJZQ4w707xubpiGtcJjK49w9/TdAEjDIFuqEPd6z2hDEgbfso3H506xJbOHvLtuz+BnDmLGCilScM7f+soczCCVoFOJqO10CafrFHr9eKm6eYnqTVMYOzezlPZ/dNu1nuEfnM7UiQ7eQ+eRx/qEG0Cq8R/4I3pf/S+Ai+V7FBY0hUYB29iDZgIVmBiVi7Avfgt2UbPz5yfIzf1HaM2xVCnRGOoRuymZpo1xgRQJ+3Yo/dBWsjJPUIjpDkF34wRqTjK48kCfWJUCK+PRzVboZqvMjV3LauGVDAUOVw4uUZ9rcmrfEojLMbx3Y2cmCTptZg4+yerM6fPdvedEEqUsTTeoLbTptUK2XzVGGivCXszqQutF+Y4oiOm1QoJu9IKVbgAT2wdJY4VKFFpppi4aOvNenCiaAYSZgTNWQAu9hHsf/zLd7JP0sk8xemydSFzMlcH1WR1r0RzqEmYXufQLh7jy08fYdfdJhHPWpkOqKfoKS0k6xYMoIya1yzSGr6BdeAqnUKY1tI2Z2cexJRwOiyw2dnPNyd8hG27l5PwmPvOw4DMP3I1KX1x/6nMe1Xe/+93ceeedvPe97+W//tf/yu/93u894/Fc+Pmf/3lc99kv6le96lV86lOf4j3vec+5NudlQ9w8hUJxZfdilt0OP7X/F7lp+cd53erPsKOgOe4opknxGgFG2L8ZpTpmLj8AaHZmFjEtuVaxVCCURBOTih62rxiumOScC0MdMuKM4cUuiYAlz8QZ7ZOpvQ0lRJAgj9VQrZCyXcW2I1LZBRSdkQo6XbsRpwqkJDm2hBCS4UsuIm+scvTRr7HQ7qGB+zffQOuQYC78GD31oxTTPD6KL+X200ES1m5EB2epi2QKQqFJQIfIfxKk2/qiPGk36C3P4XsWIkowogSBpj2QISmeReKKBo41j6AvzV8dqaE1iNUIsRKRLVcveE83ALHmW+Bs3IVZyaKDlMF6iJ2aJC7EehUhDTh6jFbUQ0hJkWemmWk7S6l9AikEUsgzKQrd2KCby9Iu5Jg+uMTxQ/M8FezDswsI6aAISY02mQZkWj72VB5z4Pynf5+NzNnFFKpZ0t4xpBWiQoeq4WLVV9DZPPPhJWc+J7uHIe2CM4zGANMlzJskjoRYEycFGB2DUhsjPIRIQ1YCA6ENkjWPB3vtejOkANVhwHQxhCA2FSIFM5A4nH/V7kuK6g6E4zF41QMUH/gqbi0lcRWNwQbSLaFESGG5g4xTEJI0XiSIY7YNFviMn+fH5weJLQeBRJOQ0iFbD7A3j57vnn1LCCmxM+tkTdTrL6qlJSm/fTvmUAax4DN0uENxdomJeh695t1VH+gHhubANjI3/muKF72R/wuXX8HjpK+ZrH+AX506zQffLGlnYNfxiLGP/z9o1b+n/NDuSSrDQ0jb7AdpScpE/XGc69/2Mo/C9waUXL+3yESSmvkX9jCeuSlhDmYQtuwXFMka2JsKRM0ErTSGleBNOlRWupTmBVI5BM5plE7YXM3Tkv35QySLzGQzHPMFnD4Bjz4KwbdefL/cML0sypR95WWY4DUClNZsjH0EGttxINZomoizvAedIMHpRHjN8MyiwwkSsmvepYa9Hg8GZ/nXoKE22ifQiggafsTp1fZanqLAHrqJiXKBu65aJYpC2rV5/FaDx//hr581RW923+M89YXPMLvv8We8vnryKA999C+470N/xL7P/P05jcl9f3uUj/z7r4EdouIQ7XdQpo3T8zFOeqQ65quVR6iPdogCyZGTebSWjLcX2daY4Wtjl3KtligEjayB+zyyGdztZWTGRHcTVCchd8stGKUSzJxGrvb9yYz5FLtrEGUSjLiFGbcBjdApg8U8hcIQT+Z2UmydJEdEguD+xlZ+ofhuRrOjZK0sjyw9wv+cvx3LyyDN/m+2eOipb9k2aT5T6faNSKKUxHCQyTppqcVZhcb8hNeMv4/B3BUIIUhWDuFueekU0q67TrolOQvBPCYBhcUOMlEU3UlmOg/TTZoM511G8w5PtUKiYJbKhIuT24OQVU6urhAmcb/atD3JDlMx3N6IpWy+Pv/1M98xeskepGmxtFBhaaG//ojDb115dHb5NHmrT8xqrVEEaB2QabpIU4Nz/mISI2fh9PobkdqAuOjiKY3S9M3gB7dRX+wQRymGJRmYeKZqUS0voFvrm0vl2y6ndOt12KN5iFeJjn+JtFdD+Q1UcxrVOknamkH1aiDA2f5anKt+ltVjt7Ia/z+03J+id9ZGgZv3LpgiYd8OQgpG37TrzNIozrm4r/45tj/xCTbdcwirs+6nq7VGa0XbziACj2Js8/YrD1BfCMi4AZapUeJGcpVBdJryyd/5T+epV98ei6fqLE83kaagOJilNJgjV3KRhqC53Pv2B/gOoNRZMcGLoAzNVzJc+oqNjG4uMzhZxD6L42j2EkJtYSYBWmu6YUwr12TnG2ZIVUymaTB5YIikIdBKYZRsqnGJ2FnjGDSYkYFRkgjRn0+1XrO4USBcA7drg9B0s/tIZRszLZHvXIcdH2WwWOCprW/iN7In+bPBeRSCu3sxx479MNHyGwhXb+Xf332KH/nDe/gXH3mIP7/n+LP08NxxzizPPffcw7333suePXu+/YfPws0338zNN9/8nO/fcsst3HLLLefanJcNAoW1NlybWwOcEv102IbuMJ6JGc877A1TRsOYdO3EagXz2EaJvVaXS4ImNxZvZf+KTSyXMXARWEhtshL2EJnnVgm+3ChZVQztUg0CfOkhPYs4Z6MMgXe8Rq8TEzSaDFa30KNFRpsgTGInQRhrJoh+iKgMQZIS75vh0stfwbFDjyM6+3n4+Ha2j4ww7kie3L6TLY+fQKUmNsf5pJjkT4tfJ5EhTjhBXrpAPwjVpBjJWmUiYSL0PwXS7SyUykReg7IrCImJuiluT5M6FmGakvMbZMw2eQ7gTjYJ6w3ScByBSf5Ek7Zjk9S7mHkDabx0/h8vGtZ2g+2x7chyGStjQycgWqvi1Ssr5OnT6Pwg6eGHEVe+CnG2IbEQaOliN49QHdtGr92jrSWGXFNfoEk8B0ekPLDvLgYokl9L7ZM4aJGQ7UZk8gnmcOZF8Ux4MVE0ywzEJaKZafTmjaS9GrbbRtoJhY6NW29gLs1Ru+516AN/ghApoMFYI02sMtp0CQuKyItwBjN0966Su/IEwm3RL0VsopMSq+M57F6MkgGTG8bPtOGy4jGuH6nxRDSPZwq0AYmhMN0Li6B80ZEdQuSGUMuHGPFD5uZXcTtVlkaXmdhXRDoept8h08qhPIWR9Dgg53BEmUsGE8LAIPRDnIyBwEQIC6+Xw955Yfq5nQ23UKQ0Pknk9/CbjfXXd1aITrVotjoYjZBCU5IVVTbsC1jaVCOxFc3BHqWmDXEAOKRIrkKyVQoerrl8dsdPkw48Sv2rX6VjaUb2n2D5bTFKmkgBY7e+GpK0v5Do9ti5eDfGVa86X0PxXQ1lnaWk6LmM/ModL+h48XKPxd955Mxzs+oSL/f6JvlIzKEsnc/M4Z/ciDkWYuYM3GZCqR4xZwTE9iJWOIAfZVgd2UzceIq7L30PieyrGp2kx9TqIbjz8/CDb3pBbX0xMVgex/TjfgGfROF2E6QQ2E6eQ8MmwnPBEsROFzfq35/cZoDbCvveo0FM5BgoS2J1IjIZE3tTAXrryjTjLJNnd6lLkPXQaLZZBl4iOLTUZDhrkbEMmm6OH40v5he9uzk5DiNff5xtdz2Edlwez+S47M3vRAhBbfok048+RJokxIFPr7YCaMYvvZz9d/wD4qwYobO6zMmH7mfj1dc/6xhorfnLX70Pv9Vf8FZGY+LOXyIzv4a0HBCCfGcFAodM18eXAc1tTRaXi/iBzen5LG4ccMP8fm6Ze5xDV72TrClpVRymtpQxvHPfkDZHMpgLfbKot3cZe+sW7ONbiVdrFNszxFs3kVmtoFoRmY5HnOsx3I5pFusEIodSCVvdDHGuzHBjLxviBerOMHsji3+3aHLrFbeSt/LcdfoungqP89nJw7zRu4zuyhJhp0XYaeM8x+amYaxfeyr9ZiI0jBIwLBQWQsVY9Q69sXXSaTK7mYQIFfcwhETmFObYS2d/4TlZqicKJGaKNhRC10AEuEGCagUE2QQjDugkC8SR4qKBDIHv89nZOm+ZiKiNbCQJBplptphsNSl5Gpm5lY32fi7K7GI6zdJptrjj+B28fvPrefzLASvTW+k0UlAKwylQHH1u3840VXSdFbLaxgjqpG65X/HVitFpjCzl4TlEHy8HhBCMGGOoRYVv94hv3EP2yHH80ZvIWgnc8qska8q3NFZYa2vI5MQyyXQNM32KuGPiTFWQXhZr6+tI5mfwtoW4176ZtFXrp9RaDtKahGiBtH4Qa7gIURmdGhieQyo8Ej1J0LAR6jDFhSxmKsldO/Stmn/BwZ0ssvHoJuq1RWInQWa3s2E5xV7u0Fr1qdmSlTim5BkgDBLTYdaC8ViTD1x+6oqD3Dc7yCk/h+sUUekQhS0DdBs1gm4H9zz6/z0btNYsTTfIVzIkcbJGtkm8vIMQgihMiMPkzHnzfHH2XCSMF77eMUxJvpKhXfNxvmFJ4IcphWCOkByJ65J1JDqImJt3mcodhWaB5eUpmqGFUW9gCIvh3jCx279OrNDoe+ePuTT23oE5dDnSLYIGWXJQ3ZhKq4xaULRKC4RmBjudxIzLKOmQax7k6sGUueWEHbLLNiNgJklp6QKBjDHsDkJ4HGss4S/n+OLBJX7/7iO87coJ/sMPXvIsvf3OcM6/0M6dO/F9/9t/8HsMcVQn9OdZyCcMqArztAmJcITNjDzJuLeJptRMtUPEShuVVWTIkMZNIrfKqg4pHkoxDYNQK4R+WpkUs8HPce/AhUOC5K0iHatJxwYhEi4ZzhAs5chONwmqGazUo7G0wMjW7Uy4G+nJVYhNrI5NmkQYMoLYQvtRnwSJEnZf/So+9eHfZ1Qd4q6jJ7lywyRWmJKa0BguU1o9yJL4Q/5BvZ9g4Ucpuz6pkrjGWkU1LUiMJgbrV658eoIwLywy5KVCdtRm2cxSDzTg4Rh1pBXjyRbYYCMJRJYMpxACVGSQmCm18TZQRp3qB/Fu9sXNUX/J8DTpNjpF0oywC5LsSpdB34QoR+I5mIUhhBCkc5qaX8PZJHAmDULTQGqNEjaNzCTFxjzjA1X2LdXo6wMkGoVl23RTzUx8gqJy2TR0K4ms90vLqQQrDkGbF1Tl0qdhCpMVqwGb8vhJg2Reocauw7BT3GYbs+ySOg5m2KaVDlE05xG9YwizBLaLHrsBpE3qhmhDIMIOUkQk9TZWJiXpZujMTlJzNtEsCxKRkNgWpUx/7kpWGhQ7kp3WRgAOmkfOtM12vkvOseeLzABEHWJtUoogGswTDBmYQQAoICXTCFm0JW7kI40MWdMnMZYZHerRqlkk7S5WVqLoIQixV1dwNuw63z37tvAKRcJuB52mdFaWiHpd7EwWaRvEOzXiIdBCIbREyBSva6NlP0hqDPlkoxy5kRWSVYEIbdxU8ocqS0dpFr+2gcgeoDBVw11tIESPSucYq/mLkUIwNlg+My9MLs9hForMfPkLdOMXJ73inxJacl1hIzGZ/ul/9cIOKPOI/A+ceWoOZZDHmmAZoDT25gGsTZtZ/tQBht9zCVa+QS82qcxrCoseQa6LwMI2BPHgOPeUyyiVEFsuUiUcrW5loH2CTHsR4hisC8P0286XSLy1OVFojl52gK4dIckz/NjPcLq4v/+e0cSI+pV5Y9fE7cYIBXaQkloxkWsSZi28Zoj2TOxqltJyjrbuPiNSN1LIrsLJ6+YZOzRBWIenFltcv3kYjUYJA7dyLR9dKWFuEZjDknvu75BzXDbGKf/4O1/Fb/mEAViW2/cH0hnSxOTJR+cw7BXiwMW0YPM22VfQac3SsUPUTp/EKw/w1IMSy8vgdw2qozk69YDQT9CACh+lMZuQ23EF8eoc8co0ucoIMtWEnond6jEt5zlRjLETSTEXM33Y5jUzj/CWY/fw4Z/6IO+WBaYMC+UnuNueXxUId2uZ5j/01UFG0cGenCSt1bCHBgmbDQxTYkcOK6Mh4FNdCtjxyBLLt4ydKWBwcdnkrqUK1+gWXlxn1RkmR0QQlvjAkTHkD72Gvzn8NyituH/+67xu7CrUksKwHTqry89JulmOSa7s9mOXZ1G6dXsJXnsWbZpomSO1HZJYY89nWQl7lDqaplyhJC1I5iF4EsP7yec1Tt/RWGay1EfaKEOTCoGZVUTRKm5vA72CTSFSeN4ElnCxHMXVm0Y5udzg/pbDG3o1ssUqdXOExfY0htyIoUMKMiQTPMGW6B0cdJ7A0xk++7n76HWGiEOFmy9SX2pimorFGUFjWdLzv8zu11yBm3+mEqzXjAhzAXPJDDl755nXtYixEw8j6EIm843delnhGhlimeD6Hu1cltxMg97oa8gOlmBgG8mxvqdmUc5TrB2E2iqy00Oke4Ae8WqT8HQNqFF53xi5628krd9K+4lloIrGBVMgnZj8La8mf1M/c2z1w39BXMtjlK8gmmuiO/3N1/pwh8RJyXZdqmMbz8+gvABYBRfdUjg9k24lJHv9L6Hrp8ne66OyBf5flvjA627CslJCHfLljVcxrjzcNGG8Mc1l9glOPbkVKTV+28bUpygNjnL4/nvZfdtrX9a+HP76vRy49yt06jV6zQaFwSFe8y9/jvLIGAC1hTa2a6FSRa7kseHivjjAyVj47Qg3a7My22J08wsT7+hnKN1ePDHL2NZvtjNq+Sktd+wZr3mZLsOjAQkwvG8UXxtIV1MqFvHiLHN6ETswcXq5vooNcCZyhI9/DHFFFqrjmOObIFIYeZu8lWfZXESZAd3c4zi1LQitSAwXZbpsKJscHRxmQ7LMbxsn+JN6jvt9i2FTcyi3lyTYiJYhSbq2eRMmfH7/AseXO/zMLdu4ZtO5j/c5k25/9Ed/xC//8i/za7/2a+zatQvrGwKfQuGlM/M8nxCrM9jjN1Lu1RkOKzykD6MF+DrkL9qf5IPjv84vTy/xRl9zYCCPEfZwnSLtaJGqt4HC8lPUFmZgYA+2m0HLLooAJUOSSFIqXTj59FJIbOWA9pEKhG0TjBeoXdP3ShBfmqOZ9uX5Go0ywEyH6IyCcpcxIoO4k0AYoXsanXVRLR+j4DF8OmbSneYLj53ivbdcTDNMSGyTjepOes0ulyazHNXbWOjY3LilyuVbPI73DiOTIhgxMloPwORasPJPRelmjRTwDYWrIkLDJhMtU89vRasGSljEwqWaLiLoK8FUAh1nFa9lE1k96CncXB4vf+GVBX9WGH1/BmHZGLZNcHyG9OgKy7dtAa/BaKGCmo2Q3hDasFE9GDm8yrgT8kSxQq/gAJLIHqUWNKksH8GzdpyVsGsQRSGrVpOD6VEWRYNceWNfgZpmicwlNj5VIw4MCqMX1s4XgGOszxlJNY8+UkMFOVSoULHCtdvUp7birM6xal1CUc8jlI/O93dpdLuFXlP96UxKMqMRZsrC9GXkLzrCjLyEVn6KTtWju1bmu1V/HMMpAhXCg8foDpeYS5epyAKpsS7rd70Lb7xeVOSGoLdCoWLAsI290iXOWVhtRZpxMUJNrmOSmiYtp0g+blF2R+klLfZMKOr66xRzl6F0f5wiew5Xb8DedOHvOEvTpLphEzNPPAZScujLd1IYHqWzskzUaRPv8MnM9uOAZnURp1ckzMXYPQM/38PogB8OYRKhUwsLgYUgg0YoQRDkqE38KJ56lHZxALuxjC70q19Ko5/GhxCUa8skgyV68wZ2d5h/GlsvLx7MAR/oezwaVo600/nWf/BtD2hinsUxCCkY/aWrzzzvfPWrRIePEAGLH3+M4ffdipnr4jQytIZ9wIcumFoiXI9maqN1ihAmyjBpu4LHJl/NluV9WE8+jrvzcrLu+bfkkNLkTNJoEHJ01xzC8UBBoT4M2Tx2B5TZJbUt0BozBTPuxy+bHlsEYHZnf2GiVwPMSweQrTaNwf5vkm16xGGEowRB2SGsRKjlJuNqEFsKTjZ6PDazyiu2jPSNxEeuoVe5hHK3xsDSfgobE+abO6l/NaWVJpwp+4aNEKD1EmnSv4KEAGkMYJiKpZXdtBanSaII07bRJhwVX2cu22bBOYljZRg9vpmReJiRtIJnzdPt3EcQJFSueT+ZkQm0nUelMU3DwmsHmKnD7w59gSvzl1EtxASRwc999aNcuXSY1tRW/sebrqL5mRNEM22ka5K59PkV0TDWqtqLrAWpxtmyhej4caLjxykUS8ys9DCTIjpt4PQkkZkgQokXCSJDA4rxYgbPniDFwAvaLHgWm4yQQ6FkT2uV2u13cp39Sj7HJ4mSiD9d/jg/0tuNncvTq9epbnj2tmmgU++nST+bp1ucavz8xPoLqoelUnoDPuaKougOkDEL2FaJePFrbLr9T5/XGH2nMDI29mmL1EqRkSZebKNycwwf2kxjKEc9kycfD3Ks+xhXld+IldG42SKry6s83Ey5elQyvW8Qpbq0Ap+xwjBRLIidnbz/Tbv4X1+YxsGloztsPX0Ttu6bub/jV6/mK395H4vTLkmUcmr/IpuvXP4m0q214lPMOmzPXfuM10WSYgcmhhef1/RSgEF7mIcqD+O0TPJjRaRn03Q2MXjDuwBI45SC26GiFvHqTwIKgYnFAwjZhiTAKOVIWz2czVPo2S5xzUSFDlrkyU5M05ufRCuX4FCN/E39jITqu95OMjNHdHKW8Eh/rRRbMVbYF3pkEher8N23SVqyBzhSOUCmaVMf7JFbKaDSOkNeGSvtUDJL/P3e47zrmouJk4jYdGjYQwiVEhkWuaUGm8drPHZwDNu+jKXFx7AaHfxewMWvvBXTfvl8iU/ufZxjD3/9TPq/324xf+QQ5ZExtNY0l7t0Gj5prNi4a13ROrq5wsyhFYQUxGHC0FTpBXmxKXXWRtyLoHT7VogShRW1iK08vSjBMCS2sa5mHQkc/pqEbg88L8WPA6yiR2QmBMUIMzSRMiLxE8yREWSmhHAGIFKoTgxOyuThYRZfO0/d8MHQJE4dOxxBEdDLbsSI2mwvPMpY4BImBj9HGzW3l3H3bRzZ+WVcJAPGILsyw8zULqG2OsVcEzphwpcPLT0v0u2cf51SqUSr1eLWW29laGiIcrlMuVymVCpRLp+nuuQvA+L6MVAJBbvKe/ZO8dH/kvA//yDh5sdTDqcn0WaDnUMuquFjBgmpkwGdkreHebIyRg6bWDrg2QhhIHUBqV2UCFmNBbsmSue7i8+Aq3NEpmDJMzDKJnF+/Yblr7Q5ve8JAEbdSZSxnk8eehKkQdx1iA6dAgS0A9KZOqO3XgdCc83yE1zZipl8YgllG7SreRZG3spWXeMnM//ITZuL3LClyvVb1tlxOx4gNTt9BdIanla6fW+Tbuv9zW4borF1F4G0kVpxhbgPV3foGRUCmSfFxOwsEMVljp/KEjXzBIMmfiEidQzCI0sEnfa3rKp1IUGYfYUEscLIlgCwl9YXhp3BFClthNmXWKM1OgbXT9nZbHDFpw6TW/EBQeqVmZ2rnxnNRK0RRNJmSSU8ovfTESHZ7BCGyiEQVGZaqMAAW2BPXHgkkiPXSbfYEaSnT5GZPAbKIO3ZFFMXoRXh8BQntr+3/8Fohadvq0cn306jEzMoU7KTp/AG59Gxx3RxK1/KvIsjA3tY3Faht6byE6niWO8Q//mB/4zWmvDJA2TdImPGIK5wSJ31IMXNXPiegS8I9vr5YFazuPMN0oyJP2zTCw4izf6YFZZ7KNuima1SmbsXz8gx4mzjoq3vRnln7byrAFSCzH53FKAYv/QKypNToFJa87PMPP4wjZlT9Bo14sBHehaTV1/N2K7LKMsBrEASZVKWNtbQAmRoosIMRqZDbuMRhJ32K7cCDoIxI0d50ysZrlzM8GOHKCTxuueMEBh+jFioUHviarLLZYzURKp/fpzL4+zwz8TFyOVe2OMblCTfGLKbQ+uEctrsK9ilJ3ECG7E2KcXW8vrvLCXCtFFJBGmKMhyWimPcv/X7+WowxYOH68/qUfZyQxXXCQBj/iTC9fqdN2B6V5PupiJRDqzA54r7jvEDO4rs+uKp9QM4krHfupHi9aNkNhbIvWqS0pu2kh0vnfmIa7pYjo3yLIbuPEzqKFammuy7+gS3X16mYgo+f3AeP05ACGLLpZGtcmJoG8c33MBlOxz2jfx3Vut3InmA8c0+G3ZoSoOwJXcSM7yLuP2/idv/myT6JOWhhEer/8j/Mj7Ix8c+xt9v/AQfH/8Yt49+hH+86G94aOqzTBcPcHToEe7Z+nH+ftsf83D1i8S9BQI/JI4VmS2Xoe08ojmPNvokn+WnnLBnWLGuZnzQwnUUteOaq5cOIYBodJLWnacIjzXQcUr1vc8/jUfaxpqnW0w013nG+Rfs38fQVBE3rfTfz0NjoA0JZGfWPAOFgTVa4rqWx1crr+Ki1kFyaZcTqsCfNTJYQjGilnnX7FamchvopT2+snIfnzMfx+80WDpyEJWmqLN8/M6cJ8a39nTr9aJnPLfSDu2RDqmlMBo9SuYwOat/fhTf8tKrcoQlcXyL2EtpTSiSOEXXH8bICnJLPbSUVN1NtNMWCoVtGlw8lKOhTP58cYA0nGHzrjx2/u08fOoYSmlsZ5isuZnCoc/x45f8OCEBK7lZjr3ybq587QYuu22S6liWDZdvR0hQyqDdzBF1vtm/qjbXJs1/81yQ2CEjxyqYObfPJp9HVKqjCAVhIaGxs0i62qX35HphmOWZFgNqH6PWPtCKVJVRqgo4UJwgXAhIGx2Qgv0n9nLg5GMkrZS054IGu7SCU1pC+4rwSIP4vv+NfvQjtP76U9Q+vp/aFwzQ4E426Uws4xciEielFGQRL7BS5fnARfk9ZIwsvWLEid0LYHgY+VEQkopZ5saww9FaTBCnZMw8lrA52nkYJaCWG+ThsRvYVKghhCZKyxSKO4jDiKUTx1g8fvRl60eaxJx49EG01uTKVaRhEAc+s4eeIk1igm7Mwok6aaxwsxbZswouWrbJ6OYKWml6rZBO44VlIb7Ynm7P+T1a0+jGxHYBrRQZx8IxDVxzfd6zIoM20O25uLZBOZtjqDxErxqgpKI6n0cpm6QRkK60MCrbENLGHM6QuXwIQkU80+Gqo9dwTe4Gdu3VmPWHaRXvR9InmVM7DxPXMBsvYBsmo4Ui75ws8ajZ4u2P/wrvfeg/Mb64nengFDO9IzTVCTKWohUk/MlXjtHy42eM2XeCc94mfNe73oVlWdx+++0MDw9/15gvvlDs/YUdDH9pGQwLx6rQRlBVHu97zGZlOOTR/EF2DE5xaCWD3QiwsxaJlxJHAcIt8bCXYljfvKDSwsdXMeMvYbnv54OclaOlV0AIwkKOJL9uXpzVisUTx9BKMWAPccI5ThKtYEZ5emaHbGoiDJPOXIbqRaClhW76bNtxBScHvohsd7ku6eIsdjA7RQIHjozuprhwM9ta9/Cr+s+496L/wL94xWZac5rZz3yK3u4bkWPTiGR9wpFrJ7uwvvtuGOcMLfjs4Lv7yiStKaSLNL98Ndb1kqDaH4dC0MZdrrOcbmR+ep4N0qLtnMatKQwBfqM/oeW+W8jxswIBb9ulqG4bp+ZTbsUknoHKtMEYhrWKT8pfxSgNErcVpQHBXEkzcGoFZQ7i5yVxbhihFfmsxdH6AQQVKvYoA/Ykm91dbEhLz/j6bEsgXYG1oXRBppd6MsuAPUR3YZo4b4NStHsNLCdERRa5pknxyD7ak1toT11BesRGxnPcm8uSCpuk+GqUEGzNZiiGHZwxSa8XsriphBHFKEOAFmhDYkYxornKw+FnmD05z1Rhijc/OYt9dZ9c01qT2us3H9u98EjKFxXShPIW0u4KwgtwVtfnx67/CN5iiDmym0wtwM87hBkYVlnm4zq2VQGdIv2QJAsQY3d7xL0TCHHreevSucB0HDZecwOG4+I36qikv0NpWDZeqUx1aiPFjRvo7KujL1LkVgS9oiDyIhqbV8jODpLkIJc9RGHTElgu3VOTpJGgJTWoFEcJDCFY5BVMHn2Uf72Q4S2jVUamhnB7MVqt+YcaGkrfBdWYLzDozHr1QUO7eNf9zAs6ngoTouNnpfl+Q2xoTUxgbdlCfOIEcatG2GthuA5CC6ozRbrZDqlYxuyOEGcsBBoVR6RBF+n146Nsb4XY9EhMh2bPYLkVMXSe5+azY+D6xiV0AioCy5B0SwFgkKu5lBfyZHMuVsXDVvrMBpCRs5GGZOeOMu2lLmRMjKxFYff4mT23si4QPa1gPzrPjr+/hBOvNlncWGdl7D7+VeNafvt4k7957CR7RstcPuqhDRcQrOaG2FTcxGs2XcV/Gv8y//FEBnt+mf0nZ8iJAtYlO1m+YTv31faihWZu8BRu/H9TisokaT9ZXmiNRCFlhrHOBIHUBCLGi0yKiWA+v8D9G+4lEWUu6xYp7noFZtrDiOvES6eQuUGcdoJTW+FJZ4F3vNpguSZpr0jKdx5DSYP67mu47B0/S+frq+Aa2KNZrJEXlhIo8zaql5C2QoTjUPmJn6D5j/9IurhINVyiMjzB9NIj0O3QHdBE8TKV44KlDWUSW4LjMXFtlRNPbCSb+zobgtPM26PMWgVqwRIlZ4BdlR4fOP56/vfkQxzTB/lk9CDzRo33tW7l/o/8CV6hyBVve9cz2/VtPN2iOIE1xxk78sk01jcbzZ5Pxnz6vqvIXvPSWxIIIbBjG+gXdgg05CsRplcnH+fINgL8nGRKDrEUHadsDXPlVJUnjp3kpG/wB6cU/3Zsme2XWDz1sMNss0HJc3HNzXhf/k3e4OV4sJLnpONxT3gXP1b+l2Q9B2lIrn79JpKgw5EHp+m2bL7y8RV+5Bu6vHB0iXSgTCdaIi9LKEOQmj6p0cFcjjEuOv/xiDucxz5lEzoRYbl/79rg9lBpjDQsiDsMmcfQ2kFrgWIDopBBiCWEbRI3+zFGIARf+eu/ZKA0THFgGNvOYDgSMw+emkfFNkmQo/VYGX82359DdN9dXnoJVjFlNV/HCg2yvsdIbvy5G30BwzM8tud2Md05TrO4ysLmZUaPVtFJiA4jbgp8PmnGnFhtsSGnydowP/OHDIx+gIHsRUSmzRNb38iE0WD5kVV8/wpsZ4lURfzNb/waN//4B7niNZte8n781a/8W/xOm9LIKFf+wFt48st3snD0MHvv+hxPfeWLTOx+DaPbXwGA7VnfRIblSi62axKHCXNHVykOPH/V4jM83V5C0m2pEdHuxWS6yyyTIZvNodE4GR9nWVFuVpFK0kKTBOs0VabqosMeVmRSXF4jzuo+wiud+YxZdsleNYyKEsLjLZKvNdia24jROUnv9EG6VU1sLmPFZQQmvjvGk1tu48ThA+wRPXYMjfFbpRP8/vHdSKkwQg83lBQHHiOqfp1C8/W4nVtZ8CN+/X89yI/tHOKK27Z9x30/Z9Jt//79PPbYY+zYseNc//S7GmneQecKmDIPQpLkMpiTk1S9LG+odZjTy1xRGGTGcvtuUU8rw3pdAr/GtOsxZXpUuiv0VEq7KNCGQokmjxuS61/Cct/PBxVrgE5tBVd28AtlonKX/IElRJKi/BhvZIza3AyV4QG0fApUCuESHWOeQcYBjdISHYXIShatFLvc7Xw6KxkxRykSEfkhVsNnIavIuTFkr8CI9rNz8Q52GvPQu4qCqnDX7CW88hKBNkIw1ncF7aKFU7SRF0CKyUsPgRfUCdwSUijyrQAz16Ow3AUliDIW5ajOHsfkeH2JpZOnGXOK9IoBQaVPSpUzg2QuHWd483c+QZxPCCH6xFuqMAeHkdk8+XyBeqG/a57Ptc8Qbog6iBhpBaSJhbJM3KEsejlAS/BaIaFbIqM6OGaVSlkyv1JD6SEUCVflv49iECLT9IxEww5ipC0xSxce4QaQMTOsREtQcchuGsUe30i7tshQcQtRkkM0TNzKAH6SoutLnNz2k0yc/FsMlSCFQSQNHJXSkZIpNJnSSY5svph8OyI2QQlNtJaSkZgGbkaSUwXM5jIf2fsh7huIeYP97n5jFGihKc/nIezhXnX+g9yXHImPETVxKw7Vxzv4++vEhmJxJ+T/5MNw9U/iDmWRaQ6vEZAaJk77GLP2MQaTEQqpjc72UwWEcQLxInpovBzIlCrsuPm2M1UPxy+97Mz/qxu3nHkt9n2O7T9JPd+3JGBkiWZpilAH2EnAydkAEZzElqNIw6K0dk3HAnytcYTgzgMrWJ2YXDFL9vAcO2YXkI5EZIq0vC4Xf+DCLcJ0oSI48giwVmUxAhUk3/Lz3w46VYiMie6tHecbYnYjl0OgQSlUfRXTMVE5E7NkEBs9/GqKGS+QLuxEWBJpQJrGiLCHspy+X5QUWFGLrihipxEzK955J90SN4C1nfNosIVIBUZqYKYCFSusyMBqp7i1HvamEgD21iLhgX5qrzyrSED+FesphdmpCpwEBCTmulpqan+dUh1mXmWhIkhEwrU7m+ROCfbNNXhirs7GyzJUJzajpAVoDlc3cnN7jox5G5dMlnG0waHlaZrvfCuhU2VUal49to07Dv0m+a6JE5vEOsRINFZ/1d6Pe80IIzdMIdyKXLoRhxRt/iPjA7CQrHBsJGDXShGrOEDqVkiBqnOKpFMnVTY67LFkDJO0l1CxJNPq8YavfgV3bJQdN11JNBtj5BxUEGNPFV7wpr6ztYSRtfrEWzPCnpxAui5iZAQ5cxxn8HJky0SnIZlWTHOwS3Wps1YFr5/K7m4d4Kpej8b+LJPpIt00R0G1+UgNfm6oiWF43JJJECdO8fvbqxjC4Fi0SEdEFEQOO5tDJcmZyqbAM1LAni29NIwCXNUkNXNEsSaj169NMwVDaZq9k+SJsSdf+YLG6DuFnaxbCfX8iPJEBaVW8fwRMAT5XoSWIEnpqlUmsluYzJuEKmUlNvg/yxXeWepQHb2EpaiLFF1CA06GN3NR4ShXJ4KWmZI6BZw9XfYMbT3zfRffNMWxR2axHOi2FHGYYjnrPthR8xQDo4Pk7KH+2ar65KAyujjWJoz8M5WD5wOGazJaG6Kl68RWhLlljPZsj/T4PspbL8dNlghkBUeEYBY5Oe2ycmCOhx+/m8HhUbaliiCfoeNY6DRleXWOBXkaZ9cgx69YwMqaeMrnshkDMxcSd2ysUkjccEAqpGXgXTrF6dIJmrYkH3pgCaojLz2x9FJhxB7jtDwOpuTAddNM71jhmk9tI+3OUDEMpmpz9Fo1FkWBy8KTSGsPd89+hB/Z+Mt42kZLg2RDhfKJFplgkG5rK3G4RKJNHv7k/6G5+DZuefdFL0nb9979eeYOH8B0HDKFEkbcZrezj0WzRljOohHE2mH52MPYbo6RbVcxtuWbNxdzJQ8vZyOkoNcK0Vo/73nzaU83IcVLKqhaXmlgdxdxtUEQxrSCOrH0cVOJjBLCJKBWFNTaTZxkfcMhrUQYvkEiNNnFALusUXGMc8kVqGAec6CKNZTB2VhEeiYrf/kUCAgO1ii+/hbK/+sQjVoAxmmU6WJqF6kCtFvA3vM61KFPEgchvtKMeI9RDy7niuYNvMK5iC9NfJ4FGoT54yw1L2LMG2F5rXhFfbGD8R3WjjtntuKqq65ienr6nxzp5o8X6KYnybZLqDSitWEnhvDxH3mE8ePwl7ua/Ej1tZiVFq1WRMcLCGSC6WSxwh5hZRf1VKOkQewUsJQNClS6QiHxyXkXVlqRKS1auQ4tIMhKRKJQliTYXOXq+V2cWDzF0qkT7Bx/JU1jmrK+jDQT0d6wjbQWYyoJSpE2emB5CM8mGxgsjaVc+9QUMqfIaEEnjHCqOZI0plPdRbW5EdKHYPoBcIssrhq00lfQTWKyQRGZGpisYvds0iWfsBNTuO05jDO+pyDoZfvpEVPzRxl9skEaeowdajJmNBEC7GKK+sDbaX/0Qwx7Qxhaknou2dM1knIG6WuWT5/kitddOJXfvi0MASlk91zP6ic+jNEtklnp4eQcOJuk0GWEsUra7GLZGWhFFIZd1EqKX/QAD5HERCpEhylvv/w2jh5ZZF/fu5bduZuxk5N0xfqU6PiQBinGBUq6uTJD0Syjl+qoMADTorfQQA5GkBqAYGAhYWl7AacVUyu+ivzQNBJJYBho0Q/eAylZsDaT9Yp0nQy+NElNydihJWZ39g1bEYKNk8Nc+8Q4x/RRAp1wcFTzOjTHwpPkKRBmY+qj/WIdpvwnQITnRkAltBaXKD/4JPt/9PXYqz3Cqkd7W5Wl7ScwhibolKfwWoI4snnz6SfA9rn/E79J+EO/Tq9qg7DwWpDa37z4+m7A+KWXPev/n4bleXipg9OViBRWMz43zO/lqJ1jTk3w6JcexXE6fH/5ekyZ0pd4CEwgKwQJirYeZsn1iU92yeyosTTs0hytUa8uoCpwevETL1Nvv3fQs9pYvokZG3hti2T5m9O2zhlKgykx8hZG/ptjGqNURmQ8hGEiTBMja5C0UvIrNokVk8ge2k3B0CghsTsdlv7xv1N656+AaZPIDK8+8lnuvPgHkaT0mjW0fuHkzAtBYkfrgbSh+6KSRKI8hUYSmYrEU2x6ahS5ta/UTxrrJIBZeXY/XyEEVXuIYKFJ4MU8LXszt74KM7uFPV/2uP+NT5LohCOVGS4bHuGLswag+O+H9/OnbpOZ4WuRSpHYBVZzw1zTEcxObKNheYztvIUoUyGxs2iVMCLzXLzz9/jI0Q/iLbXZdHIIT/XtGQSaSDj0rBwdq4DNKsvySyAkobeDRNdIRpZQOuGLo0u8bbRCpu0jRYTpZAmkTeDlmKplaA/08JRBsRCx7cHjOMUCpR99F86WV9N9ZAnVjTDKLqXXvXAyQBiCpB4g8zbxQhdn+w5Ut4ssFGh99rO4V/pkJwo0hwP0fItWdpmqruKttumM9TMCtDTJbR4lrryPt+79IP8quRFHhfxt1+G98X4qcgyDlFd6VzO5XGXaWuZjheM8Ys5xc20jzbkZlo8dZnjHxWfaJb9NeqmWCi1tYrsINnSW1tORsz2LIO1RsEoI4b9s535W58iu1JGJRo3mMT2B3zyFyRZ6Vzto6TLiX8JKPMuAuQXL0vzuT76GG//zndjCZDFOaZCSLW3mK6niZ3MzNHsdhL2VueV9TAxpQjvLaORzdOkJ9gztOfPdxaEijhPTaRlYtuKpe2bYsxb3L0+3qaXHkGmBNGpi2EWkzJKqE2SaNmZjFVEYe65uvaxILfDtGLem6U1NYPs9otm9+N4EY94itg6RBEThbu65/x+o1/t+j60nn8TXGi+I6JoSw7LRWjOR3c6h4Wma5S7K1OTjLPe+cpbU0hixgQRSoci4eS4LLqewYxT1hb2obZBamsAKGShdGGPzfDDgjNCK6yQkJDkwEkltpENZT1HRip8NM/zx6RZvesUEq70hNjojfKl3L0dO/Q9eMfAe5ksbsFXM1qssOLXK0dpujh78GAoPrQQLR6e580OKPa+eZGjDd56NdnLvChpYPtVi+kANw5ZEQUqvth/HaxB0ahhmRG3mJGniUxjYiJQb+IcvbMZzJvjRNx6gmbp89K8fQUiL6b13EbSOcsVtv/JN3+Xl+4rQNFYYpiDoRni557dmsV0TrZ2XfE4J/JBAJwReBc/SVB2HBnWi2ECVLKrHy1SamgZZ3FaF5foyhl1nTAyRuCmZuosXV4jqAmEpktka7tAoqgNijYy3hrNYgxmSekDaimh9oUbhK48TvOHVGEkDJ7Xw/Dl8dwxNl16jyXF/im3yGAVD8bpKysFGiwN+HqeT56fM7+P/jv+cWKziRzZLVgtHlgiDiCOPzhClwbfpdR/nvDL6uZ/7Of71v/7X/OIv/iKXXnrpNxVS2L1797ke8rsDSUo3PEix+HYSFdFQmzDr+6gCw02DiW6F1XKTHYMVjnRS2kUXK06p9zpUiwMYYZaWKZCui9NtkpgmAokyfDq8sB3m/4+9946X5KrPvL+ncld17r45zr2TNUk5C0lIgAwmyVg4YQx4vbu21zbG/rzrtb1mHfC+Xq/x2i84LcHYYIxtghEII0BIAsWZkSbncHPoHCuf948ezYxMkkAjjQSPPvrM7e7qrlOnu6rOec7zPL8LAUdPggtISScdUblmnO5oBrUbsWHsSpbmF1g9fZJN178M29TwEqdIdNfj92t0rOOkOwogCJfrqJksYb1FZ8bl3RO/x/KpAwyoI7gy4HcOz/O7ay8lkAkWo4iJTb8E7r2w90Nw7F72R5dTtifo7xO0jDZ0DUIKhDZo4SoAiv0SnuCfVfuKswHiLKVA1pAJgTGgIyKBt+jj1TT8hRZVBdJkULITdHMHaA86KF5MZf8RpIwZnFr77fZ4cUFVgQghBFquD3/mGLQvp1q0CWRMK91BkQp200LlSWLtVoJqiNEMSdgqrX4dzQsJTQ2paASKTkp6tGeOkEoXodyzxUW6hW/3ESsKStwrEGJ0LaQP+tjFmU8mhEATGuU8mJ6Nu3ASI5NGT4e4y70bj9mOEEKh2zdItRJSkBZNTSNSdZJ+iZZRRI8V5sUoVWULWJBP6SSO1xg60mDoSANVDRiaPAqXX4H5yWVevcvl3y5T+ZtXCsbNMabNSSI35qA5c7Zt5+fNvWRhpKC9QjptIu66C3tmhsaWQYK0SfNXtnNsvA7iGH1Ll9LN2cy7Q+xYsiGwGPD7OTY8iiJ6QayGG8LU6HfY4YsXWydv4HD9o4SOZE4IVo+2afsdhAAnlaJWWuLT7l9y29a3MpDM4876T8VikUflJmmw2lnmqqEMT15SoTbYQgkFmdUkwlbxY++FPsQXHTTToGgOkl9IMxGOIPqeu4G2OZUlseUbA/AnPvK3ZxWdT63I1/d8DSvM0u5v43tdjvpfYHy4l00zVC0guwJvdRZ1zVbakULHKpDtNlnIjuK5HRrdkIz9wlUyFVI5q+rTvl5kW/52IhlRzNX58thXAFC6GoOnh9Bf27uXqIlzxRfkNyFdnoIXu7QLHiI6992kszejqCkyq5L1j49x6NoZylqDV1xlseveNLWmQbU7TL1ioPbHRKpB29J5bGAH7fQ+EoUtaIqBGnpk3QaF6ixW6LNndAdYeX514ueYX/kku1JJ9ma3IPJrON3xkdVThEJBINBkhKBnkRUS4qWbGZvZxvGr/pmFkYhaKkHaNokx8GQ/7VQGohglaBKmDAYHqigKFPavMvGxjxO3DCofPYT0Y7T+BAO/dNlz8t0Yoyla988TNXyChRapm7ez9msPcuTSywhOn0ZdXqHvzW+llm3QSho0T8+hmFeiqsY5e7QQaFmHvuwm1jX6uP3oY3xOu4FW7PCGuQ28QX+YH8lJxpxpNgiHtWECqhG/bX6VkljkTnktx79+/9NIt6dluoURvhuiqAJVU4jCCE+1CKxzk/xsFLJw5u+cPs5AsjeGG/xvO56Tfnom0AKFdrE3XupIBTNt0Nx5guTL7kB3Q3xbJ6XkeKh1D2uS19BoR9Q7Ee961WZ+518PUPct/oEsP2o3WZ7pYz4N67IFkpbNfQc3sfGaaVZr91GSHuLwJ3jjJT/1tMn/lusNvvaZELdtsusLx1mzI4dmWMwdqjLXOYGdehOqcc4x1MwfIFQ9NC/uqRYvAhSMIrPpObppaGYyFE7OYrZPEc4eIyOPIYRPJPPsPDBzlnADSHkBhWZPvdecnuYXP/gRgo7PzPseZm7DKpEek/YcJhr97B06eTauU/EFsSEpxw38U3VuO3oLQ4UR9mTm6egefXERVX3xzp8cLcnbJn6ZL6/ezbHOQToZj6XJFQqrPVHQOs3ixk6Iqeso2XFygYcx1+QDaz7OB8qP8D9Sf09g9XMKwc3JY2xYc5pdyTT3PbxILBqsnN5PZUUjXbS+KekmpaQ81+LozmXiMGbrzaNohsbBry9y4okz81NVEAVdZNzEb30B5HkFi5Q8irkFL7wOxQxYLBkIIgwtJGGHvPInf4mv/POH6DZWmT9YY/X0KQanv9GplMwlqC63iGNBs9L9rkm3TtPD6wRohvqdN/4uELg9Ymq1ESKdUZASRendCX3qMOjh6YLMcs8pU0Iy4Kv05WIgg2f5SFWS25eFoAlmARkIMFNIGSOE8rQooMJbNlP+yAHcgxXCahdzzUbSqxZL6xfQSk06ziTEEd3EEKreRdZH+PADu3jbNaNkkhEjyVW2dTvMezqnllx+0fwxPmT9MwvmaSqtzUTSY8WPyYaSbueZqWmf9dl21113AfC2t73t7HNCiLMDqOibhIa+JKCpuHqVUHZRhclAYpw95ce4aWQcsTDLJUc7PNK/l9ucq0mvSIy2j2/rlDzIdluoZ6r5RV4X1e+CkyLGBd8nrTS+w86ffxSMPgzXxjc7NByL6Ez8ut7tEYSOnebUmWIKo9YEp/VVYncSxbRoJtqk2xkQguayja/V8WbPecX79WE6UYuvl76MWVzLoeU1TBVSLKcHiPc+gpJYB2tvhxMPsDNag5lKERgrIELU6JyGUw16v7WXNOkm6Dk7UEAIzJZHotlGmgIVE81QEVqMvwoylLSPrrDz7k9z59gvEipeb3LaCYjnOyiqSnZwFCf3vZWVfj5hXjeNFBB3A7QPFfBnjrH+jx9k75/8MC1L8tUf20OymuDmf9lIdptB6fE2QrPwS22sAZP+vIYtoBnFSFVB7bTxFo7wxO7jqKbDuhvfyNHFDgiFyCn2pMaEhGodw9XAAHP84spbPB9Fc4CGX8UbSuOOZEisLGP26ViZx1h9/EoUILvYojZk086PUvKuIRI6hleiGMziazl8RaWq5DDjFmmljaqPYRkCo8/AGE7gdI8gQkl49AjericQjsONnT62f8Vh7et79sg4igjOy4j6viDdRq6E0iHorOJMehQOtOiOdAkKNotavbeNhFBro4cJfDNF3H4IIfKELR//PFt8oukjXoQVxJ4pTCdJ6rhCvT+im4o4mpSYnd6EanTdBmKh0lhdZrUyT9Jr4QyN4p5eRWoZhFAY1xL8SnY9u64/Qq2/dSYjy8HPxhhO9jktb//9BkMxURPPLWmlWN980H6+hfqpCbU1ZZGd10isMyDtMz7c7a0vAWEy5Ia+1/HgzAHs4hgylWV5civF0gIVp4Cr29RaIa3j+6kvzpMZGvmmassLBfnUQthTxxSDkdAAjcHMKGsODqO0BMOn8uhDSfSBXkaZVrDwT5y5Rnyb366pWrSiBlKRiBBMV0cIi8hvo+g2I0eLhP0Bx8YXafSv8I43lfnjD6xHygS/dUqwKVrk1ZeMoSgCkcyRdK6nG3VQogAFQVNRMLpVcqVTjKuS5eJG5vuuIL7jcv7us7tRZcx4q0Og6Kw6Y/hngsZScZsBrUU7MmlEGh3V5rSzhsSJAbYNDTCxfgdx2GKkVWMxO4rmehA8yQOvO8GGjA9uRHH3IqPDb2f1z8+FlitZE2tT4TnLEzLGU2jFBGG5S3vXMulbxxGAsXYt3v79RMeOMvAHv8npD72JIJegvt6GUzC+Z5X5lTkqa0fBPheV8C/KT/CEnGXcn2PGGGVGGeNP5Sj/VG/yNethmnEftqFwG9MshG3+SHuQhbjCZmWc685rl2qoaIZKFEREoeTw43M0yz2l6dB0nsBKQRwihYrnhXDewrwV9e6tkddESz1/C4KJ+Fy+nt+f6fHM7jzWdINMKUt5KElsJgm6y1T8BfLGMCeXO+wYzvN7r9vMez53kEfaSUIEPz61yIdreX5FKVOwEuyYvI5azeO1zRb3OA5Ptk6x2F5k5eGQ+SNVRtbn2HDl1dTrJ9j71VU6TZ2dn92Hleln1xdmaI/XyCvn8mWl6BIpHbRARYndF7xy6VNIJrNn/w5GBvB3Pcao6eF2ZhDCJ5YK7TYEgc/6625i/VXXsnr6JOKLX4KZld5nTK9F1XVON4/ylR/bhRooFJdSXNO+hCWnSrGWJnuyl+VWGq7TLriERkR93Ec96nOweJqO7qEHKlu1C58HeKEhhCCr50koNq7sUBlvEz3cQREmCIXXRxonDq9yak2OdP96tudXiOz/iGqWKDf2MqjdQNd0OFRYy7b5LlsGFY7011kuu0T+o+iJ7cwdqnH1a79x362qx8d//7Gzj/fev4CTMWisuiiaINNnk0hq+O19zO3/wlMtJje8lVa1jKJaJNMWSatGGAlcX0eicnhmCClVOBjid7KoaokoCFg6duSbkm59Yxkqi006TY/5oyX6x7PfVV8+ZS+9UEUUlg7tY2bnI4RrXwUaxGGIpet4QYhMrCAUid7WSJZ1wvJxNFuj2T6nmJeKROtoBDMx0p1DyfQjXQM1MwaAcFTU9LmxjFAEmTvWECx3iGoe2vBryB3bSXVEw7MWMBsWsZrG8Ku0jByddYMMr/857hGC4WMPs6ZxiPE0TCmwp27zjlKWqwp3cMpcouGOUe+mWASG0yZO3zMjKp81W3Hy5Mln+5aXDNykj+y2aWs+WbMAxT78oIM6tpY1iy2W1YBFUaZf5BFhiF4NyQQ+x8oh00UF1TCptSqooYdAQWAhvZDpRPuFPrRvQNYsYCgmCU8SqhAaZ4KyuwFup0ShmOdU7SRf/8TfY902jqU3kKKKVgnoFFPI1QiECrGGNxsjEgoEILImIq1SPTnPonaMtW2D1fISjqaSt1ROjGxi7eoxeNlv4C39Kp/p3MAGR+BRw+im0OIzlRTjGKNgoiZNxEs60+1s3DJEMSIMcYJlcpd5SDmKEIKwFaLnI6Rm0T6+SmFwFE2zaaV7aoHY1gnbHlEYoOovnCLgu4EwNASg6BqJyy8n9tpoKytMHUswN9ImFAqB4aJPLCM0UIwz2TrzM/hTBiKKEKaDTPUGzno3QOvUAEEUROjdKoqwehVohEBgIRAIoaB7Oui9KmgXKxKKTSB6A3IvZ2IfayL0NJolSE7N0D49Qm6xTqT4+MEqy+MvA0XDN4sM+Q8QhJtY0ARSgCnbrAubZKsVZDqGS9O9TL3OOLiC8t2fx9y0CTWXo7DxclJbb6QUVSnpTVJuiGopZJYdpN/GGL04BrkXFHYBMhNgOIh6mUKqQHmugV53kek0iSBBQEAsVzAbJlKzaGRSJGaOofaNIkVMRBkhY5yagTb90u0zw3ZYU7yE495xvK5LeTxk4rCFI1Sm1m6gVq+j6hbHOk+S3fZy8hkF93QNIc5YvM5UqYyVmMyqgxAx2x8fxbksT/a6K17IQ3vxYwC49IXbvTVhk3y8hlWVuIrA1SWGQS+LxXJx9BxXUGShE6JaLjPtDlsap0inB0ioOof2L1Jc3UvgezRXFulbux4j8b0F8D9TSBlzfnidRLLjtnEA/Lkmmz/a+1skdYwJB0Xr3UsSW4q9Kry2hrXxWy+CnV28ECA1kJpAM1tEbgVhTGN1DLYe2sKxwSX0SEUJDa65pMrug3nqocRttplfrdKfS4IQKIBEoRZ3UYWCUHVKDPBYt8VjRxb5KaPIop6HKOAXrhznX3cepahGJM02RTPBYtsnJmQwHZHQwGg2Ea6FFkVEQqXDCGl7iKVGm6Ls4sqAjn8ad3AXwo2IQqitKPTJDrloE5pqoOYTEPbOb2sq85zYSp+CmjFRixZhqUtUcll6704Gf/lyij/3H3CPHqPzyMO4swugqkhdxcsZ4M3gOKOkaz7dmWMEuSKNnIkZqcR6Hx3F507tbr7kRSxpfVixRzYq8dqlaT6R+RcWw58ik2jxmnAjrpB8QHmc/XKWz374cgbJ8S8/9jk0TSH0e4vGURAh43NqR88LQeggemMfy9IBn9SqTdx1EbWAUvcUA9nqc9ZPzwRJmSS3mCJWY+KhPO5iFW3cQS7vxkmN47Z9Al3ljuTbkGofUsZUWiG1dkhSsflvt2/n03tOsn8hxs01Oa2YPNZ1uFK2KCZTHD+2wq07ruVgbQ/dKOLtH/sPvGXhN+k0A1ZON7HTa5ncMcTxXYsYZsTxPRI7UyJdtDiQqLBZ6Y3xemS+hVRcNF9FUbtgXRyLgPlUP8VDGTzbpzOg4M3WOf6/vsr4O9PEwkFKky8/uczy0irbbruDDdfeyIZrb2Rx31G666qo/f1M3vXjAJT8ZZLVBJEWk5AOma5DuuMw2ewjqkrilkQek5zatkRr2KWr+XxmzYP4BJiuhqJqjI2/+Ek3gMtz11HyV+i0S7STdXxzCb0sUJIjyKiLXlaJixbLns9Nl16NEDFCiXlg6UPcUFIpZi9nMTOMGYVsXN3PdRumObC8yMxqim7z71k6+eP8zTvv54Y3rWPjtUMA1Fc7fPR3zlWf1QyFVN7CtFU0XSEMYtZd3s+Vr1nDPe+/n3Iqjd/1sVI58iNr0K0Rtq5JQWeVUC2zZrTEI4c3YWT7WZ33cJseUoJtXo4lKiwtV/jKh/6Sh/75Y/zc+z+Mop6bl1i2QXE0Q7vWJfBC9j5wkq03Pvvr6FPjrAtVRKG2OI+dL7Cq9Yg0LwxJ6DqmrqHoHaQqCJwIY26JuLXKjhiWV4vUyjrZbIgSCZyWSXa5i4wb6IMO3tEZ1OIEQijIdoSafvo4Wu+3SV49iHuyQdx06asPU1pcIky0CbUmqXaZUEkgZEwsFBQpkVHIcmGK4flDtH0fXbNY57hM1SUPlNbhZ+awjCax7jIvx3n7LZtoNJ6ZeOpZLw9PTEx82/9fqsieaNLYNkkUhQhVI5QhSbuPjpTEqsYUgxxtH0ZHI8g2iS2DIG8zkE/Trpdwg4DQ98haiaetjKZbKpeNXHyTrYRh0VXa1K0uS7YkPrMSrnZ8LLuIpSXxOi0OP/wgpjSoaKeJFR0Ze4Q6yKhn95Fn/hMaqCmN9LUDJDf1s+bGHeTUJFc1DnFopoShKVTdgBVhQ8KGusqftd6AHXTJJjXiQEMIFSk6FMJ5UuU20YpLuNS+qEmR7xUBJwnUGhCjRDFaEBPNPgpsRghBHMeoiQiJivRjwlWXrfZNuLWjNOLDpE/5pPYtkwwchtdvYmDNi8ha+u9gbJxERgFqrsgl97VJLpiIZkjSN1jdMovmnJtoSaVAa3cTb3EFNTxXRtstZJmMR9k+uJ4tfTHxwS+TMM5cBqUEIiJRQgRlDB30/oub0M3pBQbEAJmZDv7maZR8P3GcQeCSmlxG0SNyS26vkl3ChjAiW3uCQvVxBpIx+ThAlRJDRqjY5CIN6YXQdMEPwQvwKnVO/uXf0Nh/gLhRxz9+nOS1N0I2QVHNUQxSRJ5Hy6lQH2jTGANDubgyKi8YcpOI0EXGJoNmijBno7mSTk6ha/jEKmh+SKjHGC2PslsgXHmEqNEmtFKoFJCqjR10EMmX7nVMUVUuXfdy4oRA6oJ2XiVjqKSEwlDbQ9d1nEwSRTMoVxYJYxXFOS+ZNu4Ry+WRJvWBNr4VoZsCu//Fo9r9Ab45rM0FEn4OiURBIKRCHIFdMjBaPetmtq0iTAc/DGglhzDCqFe8CYEWNGh3PWQco5kJSsePPm9t71lDn066PQUlY6D2J3oZM5FEOS/jLrEhT/6N68i8ag3m5LcuolXQiwwaI4gz+zBVC/uyCdw995zdJqh0ebVxBzYWRWGyvi8mrUdoiqTeaaMslXh9p8bWoEvOKzNb7lKpKxgiRUK10YfHSWy/liF7hA/vLdENI6quT182xX++bQf/5do1/MwVG/g/Oyr8/dVf5tM3PMSrpj5B23k/b3xZnR2vfJSfveqfyNqSMS1kMmujCwXfTHPEdnFTC0ihEZkeRILBusa6uTVsWrwcvVBEL9gkrxkiec0QuTvXP4ffTo+AsaYyoAhQIO6ErLz/SZI3v5z+n//PTP7t35L/8R8jt5ols5Ik0XXwNB2hKTjtLnFhAN1rYRt9qIk8xYyDIyTrtRU+5/w2vzL/l4x4ixBERDH8bP0WPlgqIiKdRGTz6ngDkzKLAAJC2rjUVxeeZt9q17q0a+dVv24/PW5GSslcokuzr0N7PCar9FNMTFJ83fMb5WPbKapDTer9bdpZs5eVV0jS/uo/kB2xiBTRWwzXU2cUrWdsGvSGVpahsr4/R0qTPN5OEAMPRimkUJBItvWNUjjez0Sk0BfBQDjHUvipM6SkZPcXZ0hms5iWxHIUEnZEFMT4bkiot2m6C2ihh+8FBNoyCIkW6AjD6I19LgLkM/24mQDNlYQJQBXIIEZXGiiiTbOtc/zAIQLX5do733zujZqKkskQzM1iTk4Sy5hStNwjQNWYba1tBHGA67fpxE28TJPA7KJmFDa4o6hSxYx07MBCRUOxTXKpfqxnmv7+IkBSS6FaDkXXpHRTBMTIoIlQTfrrLv26RtrS0RSBJlQ0YXBd/0/QcApU1JhI0VhK9jOTGWMiMciVxY0M2CGKZhMFp/DdkL33zTF/pMqpvSX2fnW+pyBWIHTvwU7eT6fyOaykQbqYYOvLRlk9/QR/8yt/zLHHTxJ4gjiW2JmNvPI6nZ+6K8mO8T3smD7Gjg2zuOYYmQ1rsTIGN75lG+PTCl3PpOMNo+kJclf9ELmb7iJ53Zv48B/+v/zD39/Nv37uYe69fz+rJ44xsrZAfEYirukqSycrz7oP4wuodIujiMbCHO1KGS1qYbUW8T2PUrXBzGoV4UpShxukT2mo6Ei/TcuP2BUM4KMQB1ovL3XeIqrNI2WLuBsQ1ZaRfkTsLmJMplG+SdRE8voRoppL3I1JtQqAQixLCGkQIwj07Hl3brCJ8aKAB9fezGM1n24QEcTwnnyV2zUPQ/PxAwvLgBPl1WfVD9/VjPIjH/kIf/EXf8HJkyd56KGHmJiY4L3vfS9r1qzhda97EYW0Pws0BgzM1Q4tbY58dDlB3EFpSU5nLLbv2o2RyWIdMWlc1mSsbwrdDYmRRH7M546s8OATB7lrfZqMaKNNXkmodBBSJww91PTFWenPiCx8JFrUxWz6xIrAaEWg1bEMjfrKMlYyRVjuoOgKyJAoM0zQmqVy6P0Utv7q2cFi3JGghlijDtpEgRQwemQLhx9+kNTSPrLOtfhhxGKzQyMSJPbs4bGmyimlj+tzOkp6BQ/I1PsoaxoJq4uS0J7m334pwlW+htf3BGZDcvPf5IkbpxEsEMcRUkpqjVUyUYfs629i9a/2o6JQiAdQUuCNLhFoy3Q39eF+4jDhkRX6JiZf6EP6rpHYsgXv6GGEbSNDnxve/Ad8MnMPXV+yqkZsalZBxMi4p3iLOm0IdBKGhYhj5FNZQlWDWDUx82P0RbNEjUWOqxlixQABiszhmcvEXR1Nf+ECup8JklqaZblMwlbpqC3i00dplcqYQxGKqKNnmkR+DrPepL5uBEFEM7medOsYQreIdIubVpYxRQR4xMIB2csmiH0PoenEfkDkS8JqFapV8u94ByLQoHWGzNRVomaDOGEBvbwKTby4FJXfNdIj0FxA4NDXP0Qw1OiJNs6oD2NV4iZKqMpW/CigYr+MTOPjiIEpICLGJVbamM0sSuriWI2/UNAUjen8JTxRfwRT0bE2DTK+cx5Ul0s2beXuj38EO5NhfjZk+/A2tKSNt9QGzUKoOj4tzBAUqeCEMdntddBeukTl9wuEnUURHiMnBtg/Po8me5P0TtGnXZC0lRYpP0Oy2qU0kSGMuzxpG2TCkJOZPpxOQGJgCH/+FIHosLD/SdrVCutuvPAVbUPf5XzSTchziiU1aRDXPGQYQwzG0LO3j8dIlvx5oGcDTiYzpG+fZuWPO8g47C1EehHpappGXxtiGBs3WduIGRmqY4SSt3gvAwnTasyGDePkv/xpNhcNwk6KezNXoakS09CJi0Moss5XnzjFa3aMkEz0xlYriTFEFBI1t9JeWuaB6n1Yh+b5w5PjqJsDtk1ew8roOn51e8xgu0y538RXLXzRQGYPEhpdUCLG9w4wsWuarFCIuyGxGWDv6Cdz+4VdrE/dNEbqpjGq/3KU9mNLBHGMd6xGYnOvEmDf296Gdv/f0cgvkaolaBolzPoQidggSOfBspAyxouaTGUD3FihLg1sPeDmwZO05u+jbBT46MhdmNJn1RFsW8zz2rEVBqIE74veyE8YH2eBKraw+MLhz3GHfM3ZDDffC5Hnzfja3QBFCCJVJ4wlBDFZK8ZvGXiWD40AFFA333BB++3fIxEnIAKzq59R4kU4WZPlf+swlCnzRDQMYYQQBopQiGWIHawwMDLF6RUXgSCTMOnGOqejNGN6nY/WMgSx4A/7KmiRSlH0M7qygy+N7iIb+YSjD/MjfT/E/BcDpJTUd9/H1k0zdMurNCoZVpXrGdmS4P52TH9qKyFgaBDGBkZHx3A1lNiHi8ThYRoJpJQ0Cz7EGtLKE8yXiNwIxdRodsZIpDM4mezT3te890tEpRLawACKbTPfnaFNm27aw6knyGUHqI1X+Yff/jWEoiCE4MrX3sk117+GcN881y31FG1PFI8SGTCa2sAVuetfgB64cLgufyt/N/d+olxEHNboH61gNl+JjCNMXyFZdfHTOWIhCMIYQygktBSqPc2R5kNsyb6ceiLDqfwUlu9SDJe4cmCUbX0xzWCRvcsGS8cqfOEvdiM0m25DIhlheG2duX0nWTneRTN0vLIHisqBr6qsnJwjCqpAiGXl6B9Yw+UbwWofRrZBqCpSzdAKspz0LkMICDCY232Iup9DKC0SjsbaNds5denrQKjEUYifG8IoDBOoGmEccWr/boqTU6y7dIRH7j6EbqoIVTC45tktSp5fvfS5htdqYKbSBGFMYOQJDAhaLrGE4XxIVYtoTyTJlxzU3CTBzNcpGHmcwOXzn53mrh01JgK47LExvPJ9xIogXO6ipoeQQkXRdaQffdO2C00hsblA88uzCCtBspPj1JpFcqUWXXv8qa0AKIYuqSigXRhG+F1Wtt7Al5o1fsQ9TUJ1eQsxpWiQ+6Sk2UoyV2tSbT8VvPCd8axJt/e///389m//Nr/8y7/M7//+75/NcMtms7z3ve99Xkm3+++/nz/6oz9i586dLC4u8slPfpLXv/71Z19/61vfyoc//OGnveeVr3wl99xzD88WsWPSGMxwVG1wzQOCrNlHRi1yKDjCWLFIvlRi7ZOCD2/4DH+c/VWsKKJjWmDqjFpFnhQZqkEVPfCxnBxqbCMJCRot1MmLU32UNjMs06CuaXDGwpk4chR5iUMmbfcC2ht13FMlxHqBby2jR/14E+sJDYdA1jDO2IOIIDFlEZ8XNvjyd/xnBqbWkn7sMP/3awf52Rs2o/QN8XkjwbYjD/KIPomhKkwNCtoAUuGpn6zqSeJuiD52cRKWzz0kmDpxu4Z3aicyCFBNi1a7wanSLPqeEGfUwpoxMJXe6lUpc4ruaAa8kGi2V1UymfvGktMvFhiTE6Rf9zoan/40/uljmPsXSF2aoJnocloxCZQWIy+/h9OPbEa0xlANB0+x6Ap5lnADENWIxmKIns9gZNPUlx5Enb6JONnXy84DYtEGsojExU26FcwBDGHQLULt0mH4290YXkAsB9CUE5iZJdzlPMkmrAgFqepEQL7yKAytBV+yGJfZYH6JMN5KFK8BeueUN3sca81GzMExUlffBDP76C6voDkOeOetxgcRfr1KpPcmnEpwLq/pJY9EAcwMildHUxbJev2s2vWzL6uxQiezgr0a4icNVsfWU6xvwxvpA8VBATzlJAYBSuKlvYAAMGAOIxB4cZd9g21GNIHW7TIVhvzCO3+Dex95kIMP3sfHF/+U9X3b2WTcdPa9zXyDttMbb+QWh4jl9NOqAP4AL1KoBjI4yOjx2xk7Psz/DX26dxxj7UQbIQS1dJdUPUOq4rE6KdC1JPekWvz6ymFO59fQSo6jVapMbd1O6cQRvEadlWaTYqNORjFQLuC1SA1c6Ntw7onzyBMhBIO/fiWKoyP9+Hxu7hnDUc9ldvmxh6laKI6DUELEUxWiQ0l3d4Udd17NrtbDYLvcdKV71lDxnmOPsrRrHbGUiIdn2Z6eZjqX5mOzLQ5a8zT8mDs2DnPdmn7qfQ4PPv4k9YX9PBQe4A2+wqCc4PTwLVSyE1jOj/OufQn2jx+lM7WVxVvfeK7AE7BEbywbiyZBYgZNsRFeArMbYTcNVEAbsEFVEIr4ltl/FwLJG4Zp71xGtkJajyyeJd2C5TbJZR25BhrFLu0+m+KKROAwfe8ejt2+DSEULC3DvKzyyu2HuPlEj0idSlawEzFxt8pU6zgnnCkOtmL+MrLZ0TKYSPnkEbyZEf4Kl1Ms8+czH2L4VICd20QQfWPxnABBrFsgJbomcMtNGoMd3KSP6irkW3nUnHG2St/zBdNKoEiBlwxoTybhUUlqUz9LnoG67x5GB3+KOU0/ewooQqOrDxOFMbom8EPJdF8KNJVdjZixrEQBPtVx+NFOi8udgNF0jlvnhsgeEvyfjQpPamXi1u/wMn6doOWTfvBdjMg5AJoU+XLyUo4sPsbC0ODT2hrpbXw7QC3ZKBoXTaYbQFbPMW8tUB3zibZcjfbw3fjlFqK/j0//28fx3A5Tl115dnsZBETlMgDa4DBSSvadeISKU4EYirNplHU6g9Pr+PkP/AO7PvdpAK6988cgBnUoC6qAIMKcK2HgvSSdCEII7ui/k08tfZTZvojWazL0PfoYtbUpcktpJg4oJOpdDok2f77kcdl4kcuzPsWhSbZkX86u6j1cmbmNilPgoTXXs7H0JAPhIYZVAyEERWuOT+x+iGqrN84VikkiPcmp3aeIQw87ZbN5MsHS6kkCabBadlCFieYMc92aPLpw8e0668d6BLCUEK7O0rbXU9NHEUCnEeBkDCKZoza/iKKodJohR+rbMETvfFdUDWtg4sxnSFA1ap2QfZ//DPnxSZLZJK2aT3WxSRRGqM9iYfIs6XYB7pmdahWv2SA0zi0+5WwDRYGF7mn0yS4ShdxCb/4h3RrFJnT1BJ0uZNoKeVQkkqh6EtXOoSRjYtJnb63Gmm+tGjfGU72YBjcmu2jAVoHrNEm2e/0jIhepmKwYNmr1EBtqT3I0fxXq8BQAXzgScktzlm1Jn7+Ii7w1nuXhyg6OLcK9B5d45frsM+qHZ026/dmf/Rl//dd/zetf/3r+8A//8OzzV1xxBe9617ue7cd9T2i322zfvp23ve1tvPGNb/ym27zqVa/igx/84NnH5nd58VWi3o/Rc0J8W8FwPfqTkxysP8SqFmFrKhtnIna5MBMtYBnnyKC32yq/7y7x6fmQN819kfwNPwJArHZJLS+gXHXtd9WmCw1HT0Ivyg294aHVuhirLeL6CZRUP1uuvJGZU4fY80+fZuR3XkNTdIhEDaMa4q5ZT+DOoaZTKIGKSMaYmZj49Cpy4yBCCBLJFFe+9k6GN85y6C//jpMPnCCz41achMOjW19Bdn4nt60pIvUmxCqp9rkTSgt6F75/799+qULKAH18ldae/SgCSscP4mVT3P/IZ2g0K/BE70K5PXcLQ8Yo1uppqm+KMBcbaCttIt/AHusj0z/4Hfd1sUIoColt22jfdz9Ru4l/6jhDG4sookLT7HDPUB/LdoicXmL6kQbTOwsYKynSxyMqW88VQ7ALPloc461CUIUJZR3a/OMs33ozkdUjLIXsAFlU5+JW0piKyYg1wcryUdrTRWQuR9ioIkkTyzSq7YMQpMsdrFaImxI9u9aW22DtOuS+NgIfIUAQcKZqB/WvfpbGg1+kcOfb0fuHSV33SuINW3Biid4/gFREz7ITxQhHx2+3ibTerU+5+IoxXzgoKoxcBasHEK1F7Kj5tJftwCSqNejY+0hXtxCaKsvXvQkjUolEG6kEKJGLYko086U3EP73GDRHuLX4Gh6vPchKvMqnbrX4kScK6JUK7N6NXelZIlyvQ7NThrOX/IjWmhA1FDh+gj4jByRQR7Iv0JH8AM8pFB8t7F1r+1B5ZDXBVNbDs9qsOFXG6oM4NQ+1VidM2YxnbuD/Lf8xt7a2EloFWplNDN7/axTdXdjOTWBdAqePEcr22SJQFwISCf0bz5Jt8nzJEj21G/BdEyQFo4+slqcW9s4LW00ihEBNn2eXUwXBqQbJv+kyuq2PZqFNx+gS6BGBKRifarLrsRrL7QS1UHJf1eNPTzfIaoIhs8XWlE6t5pBP2eTtBHfeeCWL3gnWRAZ3s48fPvk+rMIgbXsNrm5y/6Wv7x2vlBA3CDVJrPhIEaIFKlLoBEYV35jDbCuY3YiBUw5TB0fRx1Iopoo5lSF14/NbrVnrszGns4SlLsFs82zxN3+uidM+Z7Pz+9JorRpRN0MqSJGYP0l3bBqp6Zhahnuij3D5ll/i7n3XsOTPMZdNsSPYxa21B8ioHU5ltnA0jPnZCtxjLiNUh7d0LyWIVL482OFY9zTvEZ/ktys6yalJ2o0QoUAql8CwdGY9kFFAiEKj65NfrlFf62LXTBJNk65bJT09/LwvbGkJA93T8LSAMKkTNCKiTkDhlevxdz9C/sffwVwt6hGwseyND4Bscz9aYRsnl3vK+Gsm8+yerfJ4N8sVTof9XYvfrOb5ECvkzIhtw+Pc+/UJCmOLtGyP/WKFP5v8NcyOSxiqNK0pEvEKdlznmuRf8dnoCDllG3HYRlESyCAkcHp5d7qnoerioiLdMtki836vFm289XqUvV9l9b5l1FeM4AceTi5H/+TU2e3DahW1rw/FttHX/CjH3nsfp157Cr2jYXV0Nj00iXqZgappqFrybJ6lUJSnB0gZGpdO3fJCxndecBSMfq7L38rO8v1U0y7Vl4cocY2ViRrDx3MMn4wZAjZIn/9w+DCHMgXemm5hmZKcPsDhpS9wY/5W6rrOoeJ2TmbWMrJ8hKmlo+SdJP/xhtuZr9VY7AQc9VLEwTy5wWlSNFgzksDp2qxLJCh1GhzRY7YVC0xlUyhC9ApOajFRJaKbcHjiiEKuuB5bSzLnbiLu1LHcMoE5jqqrjGwpcPzRMglHwW+7aF0fTQnRWhV8ERPrDlI1kJFPNb2G5mP/wHClhKInSPRfg9v2aTc80vlnZq2WUp5V3F4Ie+nckzsxnCRGbpjzja8uxzFHH0dvath1i6EjJsH8TqLyMS6deBNfJoUEtD0pPAReVEMrJIhdl9ZX/hpry50Iq4BQBcbotxbhGMNJ9NEUUd2jUMnTf2yFdnGGhl1m7bE2QoYEMqDVdwuL2XVs/8rP4m3735xwJ8BK0l17OXsfOka6tcxAdpSfUod5+Mxnf/CLB1kqPbO59XdVSOHSS7/xtDVNk3b7+S0IcMcdd3DHHXd8221M02Rw8HsnGkaOh0R2jcDWaeVr9NUcbApYqT7cWhvXNFB0Da3epV5wSapNUtWeBFtYDlvVUyyEKR4buZG1fpvQDCBukyiVUPv6vuf2XQgUzCJL1TyB3iFIQ5A2sUptosBE1bNkbJtkrkDgudihhU+IKrNEWYiSWdTyCjK1ibgVoMYqUvMQQUR0dB5t/bkB18j6MS63O3TLR2l416MoCvWux22bx7i8mEByENPLYAQayaiK7vskPNDHkuj9F0dWwwXDeWN4Z/1amsUiYTJDvVGhqpeR4syEQggQCkei3fjzX2XI0jEraxF+CM2AbqNOt1Enkb54K3E+E5jr1qL1DaLlBwjmZzAredKaQyK0WLXKCAkCiT61QvxEElWEJLoeWjSOJMaMQ1LFQ3QXUyCGEVovodrOTp0l3EK1AWETPach7IubdANI6RmanopYWKU5oFKsV5ByHYpoYKRctEwIDcgs1TFaGmpBJbv9MrB1kG1U0WPWNfUQ0sox/3/+HG95lrhSxZ8/hZQRyfU3oqoxMoqRaL1BdSzPeDlC/CgkOrOipgYvZG+8ACisg+Y8InRZ50fMzLaJiiaqVHCiBL7bII5KRGZvhTMs5okUA1U6EEGy6RFbXTT7pZOv8q1gqQnWJjeyq/4QprAQpkXgJNBdBxTBNVJSXl7CkzHlbomys0RBGwRUfEch56WJVciIbM8Knnrp99n3A8wrL8F99CSukmCtk+UkMUomJIGJeua6nGj52J6Cr0scPcMBW/Ayr4QiVFK+yuLIG5hY6UfGLkRVpJKBuHNB2x1LyfkSNgX5rTf+LpDWsnixhy4MdMVg2OpZYaztm5DReRsqglQnwbb7RjixbQkZWoQLuzh46zAt3eCSK2cpPzCBGRloiiBravhhRFpXmLA13qzOsldbSyxCOlFErBgMamvIZw2ak+Mo7kPE0kSRBSRpECpSlkAYBPoJPPsARncTSjyKpIzmtxmo3UT/qSWGD7ugm2hZk4H/8PzmkJ0PIQRaXwKkRIYxnSdXcXb0091XIpXKk19KEwtJqHSRqo4wMrC6il1yiOKjeMMTxIbGj/b/Gi1nmh1vWMu+xRr3P3qC6foJ1rDIeONe/tIeRxoZGr7NMbfKeqMOQuO29gi7nTb5oI4fujxuneL6Tg1IImOw0xZT24YoHaxQXq6hWw6FZAK128R3QnxCjJpAU3y04vM/7lVSOkZHxyMgsAVRO8Atu2j9Dt6TR8kXEuSX5pE1BRnF1BJdKokWxymxYVSjL20QRDGbhjLohsLqYoWFRoStxJSlwgNukluUFlHc5rapHeyfb7I85SMU+HTC4w1tk5qYRtGyDMuvEcsES9ESX9VDhpQ+FK2noBGmAaJ3cqi1FmohA9bFQ7qNZqapHJjHlz6L4wusH72E5kqdez/3BJm+AYSiMDh9LtswrteJVlaQmXFAMLt5lcJyGtf2cdoOiXV51Oy547viNW94AY7q4oAQgk3JbRxo7EYG4AcuRDG2azCzYZmNuyYRAkZI84+xw666y2Krjel1cTSTT518LwuVr/DqDX+AoUikprM0spZceYm4UUYYCv25LJNFjStVhaZr8E/7Zrhu4whDdgbNDCHUGczl2DieYufQpcxrGrFQuPb0AySCEBoOSmIbfl9MNWlRCxSQMbassW3sER6p9BHECUxbQ486JE6fIti0ASVhEGPQPFpja24Xp70JWnoOVUjiSFKLE3j79zK56RLilV2kx65idab2LEi38/rxOSTdjn/tq1RmThL6Pk6+wGG1Rr22TNLJE8UQJ+skyzZBwsepW6TcBAwNoKhbmBgZJYoEKhIPCBSw2wt0ZmcBsK8cRHolhKGj9g1gjH7ras5q2kRJaAhNkKiAWYvxzSYinmfN/L8wXD7JidG7OJy5lGRQY8/m3+Kq3f+J1Mid7B/7aXxX55DbJj55hFdvyzOgqGwz2uwPNI7WI1qPzj6j/njWpNuaNWt44oknvqFowj333MOmTZue7cddcNx333309/eTy+W49dZb+b3f+z0KhW9tsfM8D8/zzj5+qiJFLrSZyXUwVxqs9JfJrybRnQxX3/RLNI99juw/fgSAvtUu1ckmRaHTzPV+7CPpJgcXN+FaTUgWiBNZFMC1WuiVFdRs9oId//cCy7DoJHuctNXwER0PR9WRjYOInCBp6TRKqyRzebRZn0a2TEpW0JodwnSG+JHPow3fRqC4SMUHNY8Eorka6rqRp63UbbjuGr7+iY+Rvu+vcF73K2ixyuhAkiHZZUb3kCKkm7BQ/RwkwAgrBLN1xBUvXuXWs4IQWJs2IpbmcEZGSCRctv2X/4ermg3+8j/9NJpuoJkmV7zmDeifuRs3H6L4IX4+QeJImVSxD90wSRUvToL3mcLatAlv5iSKlSColRitVyn/P1fT1FsIoRKJCDWO8RHMW/cy3vkJNC8gVFVAxVPA6TtF94nj5K75FWp7A2JXwQpDNNfHT0iU2EKRXWIvRjUu7kIK0JuYHUsKjLJK48ZLCE9XkdjEMo3QFYo3rFDZM8L4wRoAev9h0jf3BnWSXoBSK8pj6xL38EmkFxBXqxBHVD/3MQb/y39DcSykpkIokaoGMgah9O7UfkgcRth1B6Oro7vet2ntSxCZMUgOQvUk0zLBV3MmMtGz2Rh1jWpOwWo0UcI2ZlslTo3g6w1iWUUqCsKX6AM6mv3SznQ7HwPGEIveHIZiMnP9GqadTfC1B7DqdeqdNgjwVQVbJPGli2klqPe3KTk9627aSyAsDWFe/OfnD/CdkfvRn2Dl2IM4uk615ZGsmVAxUHwV3TR61kgJ6YrPctYm6zv8rPcLfDD+EHflfpsgjjnSfwnF6kkcBIFQacXL4D54QdvtIoG3n3tCPLekW0bPEckQgcCPXcYTZxQwgUdUn0GYDopT6KmKgl4Bq6nd/cR+m3A2ycK1LZKupOC5dLZ8nTu1d+EoSe5eqFMYSvGL2/qZ3f0YR+slrFYZZfAKlqImQgpMw0AaTapGlci2Ka5+CeRdCNGTzwiRRwSPkXYPkF62GPNmOenk8dUMyBSjJ79M7miCQC9i5TMYwy98FIi9rY/S3+5HSkn0b6dxj1aJ2yGGJ6hc1RvrGzUTuU8SixGEIhl9/AgnNyXx1mxEIFmbuQlV0am1Qy4fz3Pt+hwf/VQN2T6GOrSOH7P6+Ov9VQIZ87u1Sf5gQDAk2gw58FvHBb/r6OxUa3xV7mVt9wpyei9vy3IMoigmCCKkqhHFMd0gZIPSoruUJNQjjJqCoeXQB14A0s02cE6Z4ElEt4Mf+mg6SEMjaPj06xWuXnyQ8oG1BA7svmEKJzKpSg0t7tLsRtimxi0bBnjg8yu0VIOUFbJc90mqkv/VSXJdqoMbqViaxg21DfyZspOhuMuXTYUxu8klbofHjP/OmNxF2435Ok3UuIWu9yIeQi2JiDzUjkvatUl5fahe6aIppAAwbk9yX+6zWFUdL28Rtn3k6ikuLWkcWB+TW7uO4fUbz24f1esgFLTRq1ic9nBx6SQ9/ETAjZ+aJjDaKM7FkVl3MUAIwY+MvJU99ceIZMSuha+g1ku0lBrSzyP0FCBwUJnCxA5MpGlTESF3bPtfhJ0KUXsemRzFVw3iOObAlmuQgUUy6JJaehLFrWPGEtW0+Mkr15GQPoonaCs5FjMjVJI5zNCjbjq4egJBzAMT1xMpJiBIyBg7bGIpAk1ICkZEIRWhksRORDi6gu9Lbtnksv/+Oo2Ug1/qIFQFf6WJPHmSa/tP4l57FbvjHbTqTazNN9LdeTf7H/4ahuUw0BKEXpMjX6+xeOQQdjrNLT/5NgbWf3Oe5ilrKXxz0q186gRus46MYgrT60ikvrWAo12tUJ05idduU1ucw+/0BFkHSgeobdrEAAMABKGPq9XxDQ8/EbLx8XEIDawtExTf8mNUPnGYxs4VNAQKkrouSCeOYKxbR1gpE9XrBIf+msHf/TsUx0bv+/bnuTAVokoXxdJIuFlWMqsYFZX5/Gby1WWKC5/g2MjrkVqKQM9RTa4nV9+JNv2zmJFLYtt1HN3zdXaePspl67ZyxDfP3HoVls8rhvPt8IxHrP/jf/wP3vWud/HOd76Tn//5n8d1XaSUPProo3zsYx/jPe95D3/zN3/zTD/uecGrXvUq3vjGN7JmzRqOHz/Ob/zGb3DHHXfw0EMPoarfXMHynve8h3e/+93f8PyUO8BJe47GlkHCUomNOycx3RCrESKGJ4GeKOm2fRoHLmuwLT6z8hBLAqHyq9m/47fUafqt14CMeoGISgelVkO5SMpZ/3s42hnWWIKbNiBtIA4uIjeXwMhStCs0Vpdp16pYuwoEr9ZQGxlkKkdQWCVaXkFNAosmoerTrLXJFvNE3YDu8ipGLo1m9o59++2v5Gv/8BFqC8dQ936F3JV3IOOYsmLjG1UivUOqcY5g086UW1fTL21Lljhv+cGYnkZ2u7j79iHOyOUTqTS/9JF/6UmXz9glTn3sn1kaCmhN54ktnfSJKs1SiKKqZPoGXqhDeU6gplIohkHc6NkH2jsfYHPpLu6d3Hl2m0hVWMonuH4sTXN/E7t9TlWpyJ73May0CEqrpDaOUd/VIlGB7V88xud/9nGQkF9MoToKin7xT+o3JbfzqPlVOutzxGGA9+QKYeRgao2eC8ibQR/djj+ziowCvBNLZ98rJRiKS1Lt5YO098zjHt8PUjL2vg+heTZSSpS8g7rxUuRDDxHM1YhTvbLpBBFKZ5Gw41EdbIIC6fLFrw58zjFxE5z8CoRdMjJF6czTycBmpqjiJRqYJZNuVkWJY3wzRogMilTIlUKWO6tsSDz7oPUXK3ZkrubQwl4aYQ1HTfZIt+tugOtu4HJFcu8X7wbgM63/jytfeydXr30ZsX0Q6OXkGa6CfvXYC3kIP8BzCFXXcDdlMZ9ocT06Tj3LUn4RGYJY8M/msu19dDfFjbcRmxqp7Civ2fkznBg4zFTyMlzd4utjl9JcuoevKyV+/81/heVcWCVko9uEPQtnHz/X+XFCCN46/otPu78D6AMDRB0LxS70Bp5n4k+Ckw+jj16B6vShbnoFU3seY//rVBQ3ZvjJJkH8MCi38eqhNBlTZ3FXBW1piHQVQBIfPkZsnORz2scZmBph+/YrQETonSIj+16B03DJlfaztEFBijm2zP4dyqW3caSp8uT4DyMVnbGV+9ix79d4PPdOEuYYpmcTdwKyb1r3nPbNdwNjPEXhLZspvX8PUSeiW3FBAe08C3Jkm/hLAmtKJQwHUdJ5Bv/pd2le+TJwUkipnP0uVqttXrFBpTC5ldzAjSAENnDbE+/jn5Wr+HqU5E8Wv8a7cjWGM5cyILP8d1fhjfYXOB7O88n2P/M6zSXvXIamKbiBpNKJMfTe+G650WWT5lMb7BUoGjw1gqZLzPW5573vemNtQbPYBQSeaWINp1EbXaouxEe+guqdJL3tMuq7WvTNtlmdyhPGNmL1MKa+gUoroOuHvOWqaZ6YqTFTbdOSVU43PFRi3rxc5P6xZWK7j5Sh88iePh6+9DPMayp/kEtzzdE3Ubc+xec37EBf/Dp7TElFNfkRvY9YT6EoCqg2XrKOb3fQPQ0t7YBy8WR/qkIjFaUp95UJzBC3kMGopijWV3FWy2x6+89RD6qcbB/FiztsqgZ4a9ZgTF/JkctmaOV7Nt2pXUOorkDJ6d8/GbrPAtsyvVy8Y+1DVOxVOtkue1e+wrbTrwMk5oYcRw+v8LLHV4iRHLyiSHd0LdKJaRKiKjpIiRJ7dLQs6CpdHB5NXkXKawAxOW+VqfJJlBBcO8Ni7ir2JbNnMy6NoM1QaSfLXoPO6C29hWrAk5Jo9WGm+0dJiwQSg24wjOsnUSrLZIZTOLag1a0y1nyIetBHNT+NUBTqXZVHZ7YwsvNh1p78BJfctsCu4p3omX6GvSrq3q9yYGmew/f/I1HoE0e9OU99ZYmDX/m3b0m6xd+BdDu96xG61Z4IR6gqI1t3fMu+L586zuyuR5/2XCKX57g1x8zSYV41eGPvcwwXz1ki1iJSqwnMbm8+HzV84ijGn22eJakUBNPXjdC538I/2qtQ7pUraMPDZF71zKpeGyMp3L1lMBVyosDh7DJuyuBoOAlfeSVy6xbucR/ixqFfoCsDFqf+E+uW7icVNCkn14DWx89ctsAHd8F1U5tIKbAa91p4e0dy5Bm04RnPKN/97nfzH//jf+Qd73gHiUSC3/zN36TT6fDjP/7jDA8P86d/+qe8+c1v/s4f9Dzi/PZs3bqVbdu2MT09zX333cfLX/7yb/qe//pf/yvvfOc7zz5uNBqMjY2h5/so7HyM0tUjdPoF7WyAUzOwGgHmWJqOZaK5HmJ5mQFlC3FURw9TBKpCZFsc0zYTKjUmHadHuOERKS1E98LaH74XOGoKQ5r4nFGuRDFGzYXuPIb2OZLmVrKDw9SXl1g9cIhw3RBe3wymP0p306VEioaaWCGwC2gdA2/BI8pHqIrG8S99hfQl04ztuAIATdO48nVv4vF//Sdqu++lvvd+hjddR25QoTTYQfcFWTfPU4lJmh8jEtr3TaYbgKLrJG+5hdZ999HduZOwWkXL5c7ecIUQhJUK3Z07qb3pDmJdxZqrMxxlKL7+FtZffQOa8eInKYd++X9Q/oe/xj3WI4fyZQVjTMc/z9fYVQWTE2m+cOCrbHWvZdsXIkxlkcJ1h4lDhdBV6B56gtQN/WQuS9I5vkine2aCJkAJYvSsjnKRVL36dlAUhc2JbeytPUJjywDzdx8jH6o0wxGS9iKKrGANxrSiNkJ18GcrxL6PYhggJSrn+s1fXsaY3khixyWYU1NEB5d6E74g7A0kLrmEuH66p3SLQ5ROGa0+R6SqZ/NDNPl9SLppJlzyJjj8GW4vt1k80Oa+B2tsf83LWRELlNNdPP0UCXeKdsEGaQIxgbpEf9xgqd16SZybzxRpPcuAOcyqt8xs9+TTCIXB8UmshI175t6YKhTRJgs0Wx2EhJTvoGQdROL7p79e6lAUQeRomAM6nWWf7ZUklY5GYIVUBs8VJgn1frS9h5Eb19EcTLE+l+ShQ/fjbEkxYE7T7tuBm7Bpdb7EH937Z/zIwIUdk7aCVs9i/9RxqM/95Pf8+/tT0EdG6R5pAv3nbSnRhrbTffjPGfqj36Px+Zh8dweJ+hG6aY+105fS9zGN8c0VZuw0mYcrPb7OEChaAiWMUH2dG9jK5fZ6vrxjN8gI1bcw/UEWLhk446Qd6bXBq3L5id9hfnYtR3f8KcQBdneRlL9IHIYkOoOYno1UJalbxnuEyAsMIQTmSArn6gGkECB7hRSM4RQ55QS1sEw756IWd6CnKsg4R9Q2cK54B84TX6d53SvOEqAAsdARX/kHNo/cRRzLs6TrQLvCDeqj7Exexr/EN7G/XuELiWOgF+lXR/mVxvX8fuoBHuEAs/4SH7n2ZgrDaWpu9LT22mEXL3HuOb0J1ojxgpAsiq2RiM6R2G1dEHUlejqB3l/Ae/zLGEEJJfcq7CkLp9KmMpYG3eLE6f1cdsuV3H+gQtfvWbIvGcyyZTDL0b40H3/kEJVQMBPq/JfFFO8pVhnJ5PhT2+F9nVfxEesLlKwun936ZyAF+XaBMTPHmqDOG5oe68a24j9FTEsP36ygdzWSVQtlw8UXqXKJtp3HWl+jm/ZYuet61j/wWlqffydTq3WiPp1/mD8nYJmojXDybZexcsVh9K7K1OIE9nQebSQkmRrFuez7xO3zXeLlfa/hscOf4XRyldlX9bPp/xxAtzbiHa5xjZ1gf9ejIyXpekTC6dLNWKiKQRSHKMR4eg4t8hgN9xILlZaSp6MmaBsZlu0xZu21JP0mbSNJy8xAFNJpHaN/8esE+S3siRfZb1a4yV2hEKlUnQJSKIxPX0Wi3cRYfBSQ7Bm/gvnhzTAM81HUc+e8/PXoV76MIJ3rXXq7LkPO3bjbbNa7efq0Cu7xT0HxTgDE4Hpu7CwzlCvw5ZkToA0QdCt47SZxFHFk1+Os2fkIE5df/Q39dL7S7d8vHsk4plurnX28eHDvtyXdlg8fAEA1TKxMFgHEhsI/Ln+O2+3fPLtdK/0YsYgwGxr9M+cWEqKGT7TaJVzpgiFIbOsjc/M4wlDwnsye21EiQfLml32HX8A52Jf1091bIlhsk1lxGD5aYHGqTHN9Dn3f5xELyxRuyXLceZg1ycs42n8d05UnmCrvoZEYIjAsdm18D2OHf5d/O7CT/71RsM5IcI9c4clu9jvuH54F6XZ+QOxP/MRP8BM/8RN0Oh1arRb9/f3f5p0XD6ampigWixw7duxbkm6maX7TYgtqJoPz0ArdvgTBSB/1QotkLY/uR2RNydyZuoem5+N0OtiJFMGZjKOOLZnwhrBG7+a1hV/kNKBgEqsemnPx3RCegqMl8UWPcFN8yO6aQ8SSsB0jYwtDWaAwOoaVTFKenYFjVXxrCdW00Ds6rUuvJj+7B63/h/BEE+EKOkETTdFxjBSlk8fOkm4A66++ivpqk+rhJ9C9NmnPo610Scy3SKWHSQQJCGvIrkBzQ2Q3RM28tCdehUfnaazN4Q1niGSEc801RLUaUbVC5QMfoP9Xf/Vp23f37kUdH8UbzpA8VsaodrEiAzWVYWDq4qyS+2xh334NrT0PIQOf2PdQqg02BmuRFY/VRI2SUSLUBR8Zz2D8iAafPETarRIak4iyhZJvI/QsQbWEN3cSa6SPKLIJtZDUqo0SgVPW0LMa6otA6QaQcfqIvF5b/b4U7soCai6JQwJkiKKVUZKCuFFGG95A5W8/QvEdbwcJKufZQTUbLZfFnJ5GMXuVTgEIen/FsQYJA+G2IfJRDAUxOU745PK5j3j2qQUvDRTWg5Ek0SwxYmnETRcj1kmFSbzTy2AsYVTTRMksvu0TaF1CvUkxWWFm9YVu/PMLIQR5ow8ktKImjaBGxugNuoq33s6W5QWWTx5H1XUmtl2KSCfwOgFSgKqpqKO5H6zuv8QgVRUjr1JfCdEjDSl6Bct955xtY30KlqpLJGtFNCuBm1G5cc8NTF06hSwkOLx6GmEWuN58E7vr99DwGtjqhVOQhlEInKlGR4winh9iSc3nCJYeQ0YxWnEaLB3Z9VASKRJXvQJr3Tje0RL5ME12eR4pJN2Uj50cIDgaMqDUCZJqTyGnKwgziew0KVGla3U5/uplEjWDWJU4jQLp7mbsVgvFFLRTOoo7S8ue4NOv3IcEku0TxGqGfpFhXc6ibP0syXoOX3fRUhbWuuzz0i/PBEJTyL2hp4xoPjBH3PDRciaqpiBjiWf7yKgJQkEv6ChmhPQMUg2XVreNTDgIIYjikG5U5Z7BH6HHRkq8xipxp8X4bT9G8p/ezWpmLStqhnJo8LelOd7Sr4MwuNaboF/OUs/M0hUef3DoD3nv1PtwSzW8rge6iucHeMtH6SR9kssWqlQQpRbm5udf5Qa9a3a2kqIwn6bruDT7LcKOhlevkZjO4h48ijm8ioyqxLkx7BkXs94l0lVOqIPc+JmfZPrGvwEJ5WZApRVQ7/r0OSbpRII7nAoy8shpEZ4aEEegKio/F49x3L2WB5XTOEJgiRhHSZBKZ6ABtt8hVrMgxJlvQYAaESTAblqo6YvPSTSYG8Oo6xgrGoEZgaoSTawj21jldHqVJGncuIsudL42uYDrO6QXdSJHITc8yBUDN8GL27TyvCFvFJkY3MHqibuJVMnOV9S54eFposggEcF9GxyUQ3VuObrCyKky81cN0bUFdTlHICBjjpASCcTCHtT8NIrloAGJSEEhQlEUOmaOKI5QuzUqosux8CD/W/wjVP8RDQ0NlcOVz/PX1q/yWLIX8RMAVvUosWaBjHE1Cz30CFSDUOlFtwgZEzgplMAjVCDvznNNbhADFZEMEOIatLjMaOkApdQIjUSaUAiKqQyaqoDskB0cptWo0K7V6TSbnN71CAPrN2H9O3uo1/HRTQ0rqZMqPF0h3q6UMWybOIoQQqBbFrWFWbLD3+g2kFISnFkwVVQVw0qQGRqhO5pk7N+uAH+SIIwQikesdEEFu2qy8bHxs58hdIXq3SfQihZK0sAYTaMVe21SM+cKKhpDQ5jrnpnKDUBLm9iX9ePPNunuWSBZNrH6NQLaNLaNUnzgOG+cX+Kx+An0y/rREimOTNxFv9sgHYTU3SbNzHrW9QUcXjlNn1xDXTG4RTE4tOH0M2vDM24t31hG1rZtbPvi8cp/J8zNzVEulxkaGnrW71XTKRKzdSJDw2gE1Ac8iisaKJKU7KAOD9KoVRGaRmN1HvJ58kGToKWelZQ60kT6AhGWiVSwS120jv9cH+ZzBktJMGCMsOzPExsQDORIbN+KDAVSOKDqJFJpOvU6mmGQaNrIRBdCFRk1e8Gz9TnMaQdNM3qBljLAjX0MxUDTdLxOG9PuDYoLI2NsufU1HFtdwIhc+j75dxz74UmMxAjdfIDSlTSTWTBhzKqjjyVR7ItfifS9IDZUkBJ7pUvVL5G5/TYqH/gAan8/sfeN2Vne8RP4mycwah5xGKM1PIYv2UbfSyhcVRvIoBXTeKd7EuOoVuVy/+XEpSp78ycoJ6ogY3xVkDd1Tm/tsvZQElXvUD2wCSPnIrOXAgbdlTSd5RikIEpGNPt6NwunZKGpKor24iCQMkaO/HxE1GkRjBapzR0jjCxStgSRQNMrKIl+olIZYTgE88eBM/ZSrw5nuGttYIL+d/422nieaLWJyCZAiHPx4H6E4phITUEZzqG1etYqJZsFerYHXfn+UZ8+DYYDdhG9U0J3dHQtZn75JEEqork2h+F6JEsNNNcmcJIYYRIjXEaLVlHSU9/5819iSCg2ESE5vUAzrJ8l3VRN42U/9XYe/+wnAcgPj+LHHvJMXpapJtDG8i9Yu3+AC4NYCKpyBU01qIUKmcUk1YSHH0RIJALBvc1lTnshP3SJQhZBYziJMzPPVz6+j/5UQGrzBPGEQyeqM524kofdJQQXjpyVSEYSawiVJrHaRdWeH5WvuWYNxnA/IjnSu4iHPXuklCGok5Q/No/sRuhjSbKNFNXBJnpXpTkQ4pxoYKcT+FECMRAjck3qVo7d7cf5Gju52bkczbPwkxHZ5RRXfmkco28RZ0OCU4ZN0utQskZRzpSNUGSAaw0zXvUZW16lVjPxWptRY4kidbThxHfM2nmhkLpx9GwV1cHyKEoL/HaXjlFCWzFIjAYEXg6hGOT9BAtKL/Q8lpJIegRBA2mkUGLQVJUVHEJVo+Cv4utZrpx/nPvW/hBeq80/B5fR33Z5ld0hYyb4yVM/w/s2/BEKOqVZl/95z59whfIqzHTv2mZqGmlCZApaAz3iea2YwJh+4UQOTjqDlziBVRfI/gGCdgsZBkSKQrhcRhRXek4eWyWZ0ohUCFVJWltPWya4ZDgBam9MtftEncdPukRxzLXjBcKuwWvVvQBU+5KIoyVG7DRIwX8Nd/A2dZByfIjx7gZe3/4h3vCuy0gkDY586D+zX+/lBUZhhBaXyC2kiKWHsnwakdz+gvXXt0ImV6RRayMViVRA0QNSo5dw4oYIpVylMNTHkjtPVi/QMGfRPQPVV0i7aS7beP0L3fwXHTb2Xcb+Jz9DLHpEVrN/ntTqKLGq8ssdg98wJL/kd/jfQZLs/bOkJxPMZY5wVN3DlcM/R1k20AZfS7u8jCqSKKqOCMCIBZGhEgO60FAij4fan+Lr1X8mJ1Js0dcxFyyxLCvEikpTC8+2KRKiFzWlaNQ1C0VKzNAjULQz9lSBFAqCGEFMsVVmx8wj6OiExOhCQ8YueiRRY4mQAUYY0VQ7pDSPu667nCC9QhirPPxYjZM10AydTqtFq1z6BtKt2/JIJA3iKP4Ge2mnWsZKpfFaTbxWk6DboVuvf1PSzWu3sPNFVFXFzheYvq6nRLt/7n6OzDrcttFC11TAxujaJCs+hSddusInoRoQg2KpxHUPJWUivRC9/xwJaExOoA0NEdXrxO021trpZ/VbSF0/QvmjB0EROBUdzVUwWpLuSLpnQ/dcdnzxEZbW3EJkhaxoNnEiRSpu0lYd4nqNyiU/g7H6t0i/i2sptEWALpa+8855lqTb+vXrv+PqcqVS+bavP5dotVocO3bs7OOTJ0/yxBNPkM/nyefzvPvd7+bOO+9kcHCQ48eP8+u//uusXbuWV77ylc96X2omQ3rRpb2+iNqNkFaF6V1FTFeHSg1TQqrSs0FUDz1OZ/1mImHScVTMluDq7qX8f0qepmEgtSQKUCu2MFLZ56g3nnsIIQikD1IgJJhzJbpP7sVITKJQJ8Yin8mz/6tHUDWd6PAc1mvXojf6ia0qoZ0hOPQYdlKhc6yF1mcTNhWsvE0MhJ02br16lnQDSGYsto6uJVFZYElXqV0+TmNTEeii6ecKYIiqJBbBc1pl5WKEvdBk8ZY12CWXir9KMb+FsFLBP32acGUZfuM3AAhin4X2KQ70z1F9RQ63YBBmMhT3lVH6X/gA4+ca6uAAwrJRnRRRuwFnbD1Z3yFQzlg/FIVKyqC5xadR6LLx4UF0P9GrXGr2ftMyoDdpERAa52wcSm2WbrJNUvvWRVcuJmS0LJURFWNZwenWcNwBygxj6AtATO30PtTMawhX+oi9JsGqjnd6CYlE6XQIYg+hCfT+UbTx3qBfaAqy1j2zg95NT7Y94lIvX0ZJGDDVG9AGf//Fs23RlRcHUXlBYKYJYoVOu8v1V+SZGFqmZBRYapdRqweI7M0EpkDKEKlEqGYTM6tRny2/0C1/3pHRc5TqKwCM21OMMvm018+vwtaNOqS1LEEcYCdeGKXHD3BhoRoqg/1jqO7X+PtTa8mqEdpQ7/rjWyGmqzNj9/Ow9Ok/usDLrt2C4oWkhwuYJz5D3bue5oNLKA8sk7y8j8SEjac9H+ODgFj1CIxlzG+RFfxcw1y3jri7jJpOIAERSmTrJOHqCfSJG4hWXRDgHaySXpvETQboHcGpdcdZ+uKn+NJrBs/mDtlWljiboC9n0z+XpTUW4+d88gspLrt3LZKYVqvN3PGjdK0GU/lLWG/lOWadGbdJSdiNGNhTptMKIZ4m1haJtJiWXWL01heHwl4VGiWjhNMw6eZMkksaen6Y0O0StbIYnQbQqxIvAF3YWEY/aBYxMFI9wER6iINOBq/moxYmyM4d4y5/N38cb6UlEvxJvcFHOxaDWsTVesSP7/4tPnzFb3NEHqJ5sk06fxM5O415ZrHvBsXnUfNc3pzaidDXvXB2wnQ3RSvvQx7USoHoeInMjgJh0eb0pyXFbUWC7imS1hjeiEmiXKE2NQaByh6u4drqaSj2JsmT/TanVlw6QchQMY0qU8waA+TcZVbcOSbX1jj4+BxbR8YYUGJ+pzuBJydYiQwSYZ25gxXWXTnI/cq15H0fYQoURcG1fOrFJlbLQE2OoqS/dUXDFwqKUEgaaUI/QIkg6HMI97ZY7U/QUctofsyNxdv50upnUcyYzmCIVEJe85mNKLd8H8Z3PAdYa67lkaF5tLrCHm8vV1RLqK0rif0Wf1Ao8GC1yXu9Ln+tOrizIa/Y6/DEmq8gR38eBYOGoqONrCWMfBTVIvDbtI7sQvZ1WAgXSbePUotK7FFOoXXHWR8YLNZfxxJt2kN/QUdfRTsvyiWKApQ4ZMlKM1NYw7KZRjEsMq0SHd0iMJO9xW6hkAi63HTyERAmBx2bXZxCM4bQWhaJ3C24dhHFNFGjDrvW3EGhVWJq9TBOw0YqEZaRxfcW0fQstXKDlSMHMSwL3Xbw2i1UTac2v4LbivHqZZJOmkMnHiXwPQY3XkJl9jTdWpXA7SIUFcO2cRu1b9rPnVoFGYW0qmVS/b1rlZSSh+f2cknqevzYII4lQoFOeoFOJsYWZarJAEckiRs+YaUnKIndiLjpY4ycO4e1YpFwcREUhbDTwdq8+Vn/FpwrBunuKZGp5GgOnMYybdw+C6IIDAN97iTj73knR//k47iGhS4stnRmWE0kCJIZusZWhgseT55c4a5Lr2VWNhgIn9m851nNjt797neTOU/a90Lj8ccf55Zbbjn7+Kkstp/+6Z/m/e9/P3v27OHDH/4wtVqN4eFhXvGKV/C7v/u739Q++p2gZrPoCxWm3/cQx//ztTQSTZamykwcGCSSJpbj8JQJIpg7xVK1Rt7xqFspOvkE7WyCIWuC0nkroWq3hdp3cVtzXzv4ZuYPVFnee5rM7/9fAIJ6iFB8FOEz0jyClJLQ98CHdKNNpLRQ9RztrVfR/fCfkH/7KkKohIttWuWY/DU5kkaGqBbQXl0hs1ruER+XbMFJKIj2Cs3jR/BKZbxc77syIp1InOs7LYhQixc2JPliQPpoGSGgM+yw7C2yPrUFrb8fv9kkWFomjmOkkKx4S9xT/jRssYAzcnopSe46hfKGV72gx3AhoI0NI90OodshLK8gzuTFDLf6eIv4SWpHPsEX13To6ipuLkMz10LKZbY9MAVIjD6dqBsRN04T1VZQimPI9DkLvR4IEuaLJ9je1pIYgYo/kKJ89RjhB1Zwrn0lsVxBVZbIGNAcNfFPWqiaBfRR+9xu2LoJQzbRM2fOs42XnPtQ9TyrVBQ//V84S3QCxJoCZ8yomvLSVp9+W4zfiDb/KJmUSSZlAidwQpvQ0QidDPmHjhOvuaGnvZEquWCZMFbRkhenEuRCwlbPLQa0w9a33bYbdWiENQDM71cl5UscTt6GRRddwM9mazwZxZw485rr+JiuzvpuibULu/laZzPXX7YRzdJpbhgj+Wib49YputYkestg0I8wXJ9Av/CVlGMRECs+seIjnscM0MSWESofeRcEXbLv+Dman/2/6BM3IOwQc00OIomMYZA063c2OHLlLPV1JsYrtmN6ixgbxkBRGJuYPJu3lhmH2FMpzNkUqhmaqTKpZgGjaZB1B5CXCNpeHaREy6Sgsg88H6+ynrARIYRHrC3jGlkQMUpCIz3w7J0lLwQyeo6YmGaxS3NEpa88SPO4T3I6hbfYQE3kyK50qI0nEHFMFHokjHOTwS+2H+au2kb0iWsxCgPMjV+GMXcA9+DXePNNG5mvVzjZNLjf7Y0r/BxsjrtcOX87D0x+kuP6QWqWyuB56vpm18M/zx1Z6c68oEUBHDPVK9whwE1p1B44TmZHAS1t4bc02qdrBIMzmDlIKDDhRNTjGGmalIq3IVeOIM6QbhlH4zVX9HH3zlXs3Ll7QSeZpesNE7ayzA0tUTuxl+m+fopOgvWKh+J4LJoeX/lXh+nL+ll1FQpnqpMKINR7VWh1T4OwCc7FeW/dnr6SByv30h2A5UyFzPUvo7bxOKgKI1GOicRafmboF7jvb99NdfM4uZUU9mTxhW72ixabrng92u7P8+DgSUoFm0f80+z45yXsNa8kXJJcjYqGSRlJEYU4M8HPzv53dn7pHewcWCU19h8YtTajCZNJZxuGmeTIYMRHS/+LWAEZq2giIr9yDbXqy7lXpuidLCba8g9hDf8zn88v8pQ2LA47hKHHI5NXg6I8FYlMPdWznz6VcxvHMbVwhf3RCjNiju6a38JRrbOv+/TilKWURJpDQ7Vp2HlMr8WmSoCMJaulSxDKMmFQYfFEl5GJEfxOm8LkNDM7H+7tWDVB2BBWWXzyXL81FufP/p0eHCEKfdqlVRYP7qNbr5MeGGJ4y3aUMwtOrZUVOmcKLiTPRI/NNmf52O7H+Y1tf9CzvQKePguiN5+oaD47Wg6x9FFSOnGzR07KLuhjKRTz3Nw/sW0b6x9/nMoHP0jsuijOs5+nmVMZkjcPI++bx66bdLIe1asmiMxH0Dy/5+7ptkkePUhtyxVUdI1DiTHycZtZJ0topzAG1kBpDj8KGdcyvCzY8Iz2/axItze/+c0XVX7bzTff/LSsuX+PL3zhC8/ZvoSqohUKJOYbZ5/z+ySKrRGOrMNat5Z4dhbZbJKWsFous2WwhNM16Oo67bzFoBcRKgqhaBFpLbR2F2N05Dlr44WAqVqYCR1pp4jG1mL4LaKuII4LCNFkINHGMlVcN0QzTEbTU6y0F5DKAOQHkFPrWPmfv4M6eCva4KUoMoVf7aBkdCzdofzIQwyjQRzD8hL65i2UnniS0tcfIsqm8PqS2B2dQbdAFHSxlBDZ1dDUCP0iKEF/oeGcqpM6UsIbybKk9y5+yZfdRCuO8WdmCBYWWM4H/NvKJzGaEVHgY1VdNFS0hRKpIyXU7MVDlD9XMAfPrfbGVohI9vyRKgqa0OmmNrFm9+ew+xIcGU7RVlVmN62w+aFxDCVEcxIQSqzptST68uhzf0035QBbAdDDM4SS+sINcJ8tHC2JTx2/YOPVTxE4NpV6jmzSRRFNjMxhnGunaD24CMKg+/gh5JaNiLAL9M4l+9bzrAvnHbt8yr50Hukmzns90sFs6aihckEzlC562Hm8Na8hOvU1rKiKIgQZeQjoSfmVbARS9vKqRIe+qEQYq2T6v//CkB0tRU4v4scu3aj9bbftROdIOUe9+JQLP8D3DsXUzqqv+nMlCr7H402fgmbiOh6ZssP2vMbL+0u0l9vse2gvV23ZQJi1KP7UrzG79zFSuz9HFMOpE/3kcq+kLzN8wdvdSe7Bs2cBSGvPn5Ut80OvortrJ8HcLLUP/hXCMtFyNYpv2YQ1PU3zgTmgZ6HsfMKldbTF6liD1dvXsU7d0MtzEwACpQu6r9M/kySgTSGw2d53I4vXHqJzpI21kkBvW/TPTLI4coTl6hxTGQvH7aex0yUll1FEiY6RwUtCp+8kRn6QZKH/7GTsYkdGy579OxiO4CBEtQhvuUVitEFr5z6Si9fjpW26KZPUah3zax/iX68V1EWb491HWVSO8NrORqpmhuKmKzn16GfJRF36H/w7zM2vJmCJtKYxH9t8tqbwpC55vbuWRvlq9psVciNZ/DDCOLM473dD2pkQs6VjlzQend7FN0+jfn5gFG0Kqxk6VpcwZdI9VaJysEpufQZrKEn5gId5WY1qDBkFhkybJyuzKE4/YSrJ0qE6Q2eEKYoQKJpgrGgyX+pS7/j4sSSdMFGNJKX8pVi5mAUzCYceZM0l4xxqQZYAxwy5a2gv3r+U2KYmOD+kJzJ65da0TozwypC8OO8Xo4lJRqxxqo1Vjl4xT6RFWGUf5/gKa/sn0SY1qv92EsPeju43MTsqxqaL81heDDASScbXX8fgniOUBgT1y4Y5MXeYdY98HXNgLWrfKJe6OkosiXvJgIw4w9id93D16QYNs8CceZLPdf4Xk1t73EIukWF9KClGgtNLb+agewlN4ZETZUZlhSppSmQI2xt59eHfZ12tjra1RWio+KrK57e8GjUOCNGIiAhlwH2lvyNvDLE1GuOB8GF+KPN2wuQGVoZG6Aw6dIMIPQ4xNRWiGM0NUL2YbkolUkERKsSS48UJRktH0VG5sr/C3dURolASRzWOH86iHjcZWKqQslTiKILIg6fynRWFVHEAv9vGzubRDINOrUpqYIDs0CiaaTK/ZzfVudNUZ09ROnmMvun1jGzdQXNlCUXT0AyLZKHHF31g3wcYCF4LQNv1cCyTWHXROwZ6M0INekSj2m9jTqQJyx38Ez2uxVzz9Pmr0HVUXUdJJlGS3x0HIDQF57IhWl8+wuYHJ1lYV6JWrPHo372Za3/qn1CkQHXSFP/2fyPfehftdbdT1hOYkUo6WqUpsjzW9yOkjb/m0OJxhrPDjCjPLDvyGZNuPwgtBvuaa8j4ZYqH68jJKTqiQ9wJiY0sWiaDYpqUQx/Vdem0WphRC00JcVoRftYkWmzjTRto0kT1QxLHqtjrb3ihD+s7IpW3yQ2mkN0WcWmJIJkEERNHJsIpMGk9iZ8wiccuZd3YDpb27yMMTERQpXr7G+n72PtRlSYy9EDXiLsJzLyBrZiUFWhLcAwDZmdx5+dpzc2h5bK0BmwyCxFqzkAJQjxNx9WSkAKlJREXoFLYxQbNj9ArHRTdQPQLgthHzefRikWUVBJ3337K12QpmgM0KicpnOqy/ZPzzL1pG52DB9G64dOCJ18q0IaGcG68kbjVIm43Eedn6cRgZIfwHrZYF3u00mlmbAURqrgDNeyuiT1ugW1AxwdGkH3b8aIjpA4so3gRdrOnphEvItJtLL0O8eR9+I6K50S02iG5eJAoXiDEQajLpF/xQ7QfXkaGHdRkGvEvH0Zc0es7GZ1RL5zB0449OrO48TSlW+91v9NBOAZesmcFE+6LY5J1QSAUrOnrIW4QzD5O7AuSgctoO8BXFWSihBYv4RoWkdoh1bY4OXMSfXzbC93y5x2OmqQalABoRY1vu20gA4bMUSSSpPaDicdLEarZG46eEdJgRAr5lIFE0olnCctlrh5u41y7nd9rbWH17n9h5+Q4moDIMViz6VIq3UX6kw6TqSJu2kYx9G+7MPtcQMTnXROfp0w3AGvzZswN60m9/OW0H3kEGQSY69ZiTfeURE9llQHkzSI79q3na5kn8eMWkQgJMhZSVRFS4NRUMismTkPnkuhaim+9qvcZjDKX2k1wbxWRUBCeQn5oimZtieXlGYqLI6gZFdlo00n5eMUH8awh9NQAxTXrvm2Fu4sNtppk0BwFJMZ0Du1xi7jpEpQDclemaO9qYK+UcPMZpEwRO2n8wiA/9Ocf5N13uagalEwDU0YooY9pGLQK6wlrsxRlwJXlU7w7+17qyTfzuuorEZpBS6hcd10RtTnMzv1XUbzURFUUwjBkoD2LJmPUUMHs6qheyOjlL2yel5LQCfyQbtpHODpxEOB3JM2FJsbaLN7uMnEIHQkp2Zs3Dmspan5MN6yxWM7x73WPl09nuXw6y4NHS/zh3Qd42dQACpLJQhItaGPmB1lJOpTcFvdmL+enKvshiBlGY7C8wub0APvcNl3VQHd91NgnX0mRqjoIU0Di4nTEZPQcprDwNJ8oFaH5Crmajr3QIXzfn3HyfR9H3/YWplp51uzOo2gtjNt/cO/7XpAqjnDrjb/Ap47+DdKL8IazhMc+RXxKJ/vD/w2ppfEVHdcNcRDEQEYoRDJD/+GAIc2ilt9IUP4KQsugqzr9ocK+pbejeEmSeDSlwUDkU4gb/DAPY8R3Ik2bNSgMV3McdxwQglYUkPaauJqBKyVz3WM0w2V2Ln2Ca/veyFF/hrAhEYkIIRTqAw6l1SZ5y0CoAtHyMQB7qULu6BzzV6yhaUnCTBI3bGCpGoesGNsroeUDbs59kkPNQZpxH+36EfTE9cwcihgZt0hnzi16KrqJYSfY+urXs7B/z9nnnULf067njwaH+CifQtEVNjfHefNBjygMkDLGsJMoqoKZTPHnu/+c1VaNiVSecqNJ2jLRmzVq6f0Etk9oSibdUZSRFKoqSGzK489qqLbey5we/+a/+cLPvPV7+i3o/TbaUMTAbJrycJ2EmUDrlli583IGPrOP2NBJqDpDx45waPwaLCHRZUxXS5EKVzmYWMdEwmOpuUJ/Msuq/8wcGN9V9dLvV8SdDuK+h6i/5UdJEhIlDfSxFNJyMEwTVlYpAOSyzMcuWXEM19iI6oeEukLHB7Pl0sx3CPUKhq2SWLfuhT6s74h03uZYy8eYWIvqOGiaQuR6qFoMQufV0wugJuCn3wKpacLU50k2tyOFT31yE3knhdpcRCvqgMSd76I4TRRVBwQtU8eJBUhJ69HHII6JPA9543XUxzSgzURnmPqZAFYlitAcFTX3fWAzEgK97tJda5AWOmV/BXtigsrp0xijowTlVSpBQNtv4DsaU589DnqSqSc6dA/GsGkTavGlJ0nXslm8mRniVgulXKb6yU+Q2n5zb8aGxHKS7HtsH9f9+GYcqdBJSCDEvGI3hXY/gbIGbaJAeHCx94G1edoZn+bmXkko7VQvn/HFpHRThYabNdArHTpjKeywzv/P3nuHWXZdddrv3iffnOpW7KrqnFvdysmSLUvONo7YpLGxgSHOwAwPDDAMzHzA5AjMAEOcMQYzJhjnhCVZsmIrd6tzqOrKdXM6eX9/3FJXy5btlu1Wp3qfp5++4dx99jl1ztl7rb3WbwmZwDRAKYnnttEsibQTxD2LWEaI/X+BvLkf3aeirykV/pLpperrvm/Xa0TnjCSWeWlOcl9RNr0Bbe4pvG5IyteomhpOpNAHuziFM3iNM0hVI9Ns05YK+xJdjb+QmNKkYJSQaJjfImW0HTaZ8/qRO/uyN78S3VvjFcZIGlTbtbNGueMq6CnyXQeyZfTiMHHjWdT618PTxyi/8fXceP/nOHjrm2nlbBJCI973Bk6cmWLjQJliKkM8dQDi6Jvu9zulV15tX3+Fx4vhX/u1/ouVlMNvZIjoRRv9iMMd993EkdxjLJfmMI62Wbwxj0AQJjR2ftJAmsuUfvfGF/127Np91OdP0nliAWnrlMIhFpuHSdcL+J6L6dkwmKM13iT0tpAqlth+z5sv5GFfEJJ6ivmVZ4ywBFpxDNX1+kWWOi6q+TTaM59m6Pj3cOCnfhwRRRjbb4Lpw+SaD9LKROhGTMc/g0ztIwOI4jBG9ShNJIeXDuE3d/D2ic/w6sSdfLKjk5SKvz4xQEq8npJsM9vsMJJJous67cQQCzmJ2dPoZTxSi6BbFzdVUsuapE+nUJUI2WjiZ210v4ci1ddOsyTBTI/qhGREi5FA0dRZkia6F9EyDboHlkns/Po56e2bS/zEazbzsUenGUiajBczxEYCP4bO8hKO77F5LMs/aYygOgG/O9hgHRE9M0FoJzEAISXdoUU60ifZtPuBnK9gyvfLxdIdIhmBgtCO6aVg+58+RhQERJUqcrgOoQa6hTE5hVG+NFNlLydSegYjkyWpp4k26jzzL19NaGlYvfvY8ckZspveQVScIHZj/K6HFUt0BAKBFRW5ffkD1KMhYqNB2WsS6f+EaGwHgTB5w2KH7QWb9MAGhJhh22PLVCJoKItBNCI/JFV3kYZPYGgYYYArBJ2wTlLPUmk+jxkpHqx/DCFgovJu9EQbNZojihWD2QSJusv6h2aobsoTANnjLXIqy7IHftqh67bJmGnisEkvkafot2iKiP+ww6JbaTPa8vGkz5C/jrHuJAcqEW7mIAtanSlZYSBV5ucmP4SQ8iUXTRa7i3zh9Bd4WDvCGdVfNK3EDWpum9efXGZ9UMTvdhjZeQ01r8aJxgn2n/K5J2OhEJimgfLaIC3Sy0m0To/19RFUtYUvBfb2As6OV0ZLe+BHXsfcv3+UoRN5ZrcsY3QGaacWGfR94u4CsZOAL3yFRv1ZnB/43/gqxhcmmpbHsnrkspLHjla5YdxGD9xvvUNehtMtPnc17ypFLw8gI4Wz1KNWbJBIWbQXq1iTGRIrzjMFxPUGvVYdPzZIKpdqLk3Y9mlpBoGtY4RFAnMevdnF2Xx5iMyWx7Msaw7a6eMEiSRnfv9h0jtt8ndshPwEVKdRy8egsIm0suklTpLo7sAvmPQSWcSRx0jc/I+ImxaRD5qeRQ96+AIWC3kG3/wOePwx2n/39/SmzyAdB+P970Y2vkJMTCK0qKw4BGSgiNoR2kpK4ZVO+liF+bdsJ/CXWPaX2LxpE9HiIr3FRXo7Rplz19NRbZzFDvKrz2J94AOECwt4R49CFGF8G9V6LwfMsTG6Dz5IXKmw/Ie/R+JfX4/UdZQfkRwtEkWKbi8mFXWAFDJWtHSJim0QCuGcc/1IE1c3EGGM0iW2u/JovIycbgPWIE8WTKQFNXuKDZ/5c7x7vhelsmhyCiO0oHkGLWsR97r9AimLcwi5CwDF10Rp6Oekl648/1W4amCKle8bi/NE9qqzzjTXJoYIgbj9F6n+zb0MGnOkg1kWEuD5IYnWMapGgFQaqTCm1fYoXIVON4CYmGqwTD2sntUoUUpRDZaZ7p0kVhGbkttxo9UJjXWeYfxrXF5YSRvOcdgnfAmOoOa4ZPL9v3/sCYJ5idx5LfHxJZI3ZNn6xBwn90JlIkfWMshv306n06H+6OfQHvgLuIDVSwFSY++hm+u/lvrFmZN8q1X/5K0juMcbuAcrbGpcw6aT21CxjnhOYoynsTZnyf7B5Df8ffaNk3jHagSzHbqPLrBp5Fa6S4tokYEi5kzyOeJqRHZ0HdvuftN39+BeIQxpYgoLX3l4kYs5ksI7XANdJ+ylKH/wn2MbX0Qpn9QDj/PInTfiDQ8Tv+EH+cftu/m38W/yVLTAaPcpbizsQ8QRrdFr+EK4jnec/HMIO8xEWWbaZ/j59VN81d3KkcCkPb2EFQjswRQ520ZbcaDaQYfF9THL4/3U+uHHFaM3XVx7QctYaG1Fa8KFoolfTiE9j9TIMLLepb6gIR4+THxzzDOBZLMek4tCgpQJto4XTrLw1TnWDSbRX0KTeddwlu4OhX42JVnDHtqAv/dNzH/xT8n3XDa3SzyT28uvnMnyrm6J1KtTZJTq6zAphZL9ZFPD0xHS/7p9XEq8qnAPKoo41H0OAJMkBH09K+HkEDKDzBUJ5p7CGBq8mF29YhBC8N7RDyGE4DHrAY4OJ2lFTQgiDjbb7Pyr/01sFulqBn5phM8V7mYMjdcKE0NplEnSaZgsl7fhuy76JsHrHauvoV1s0y0lqBsaxCWqxQTW8km+SJJpXH6NNNmFNjPbBgBFz0wSqZC0VkQTBtk//C06141y72jIgIzZ193AhpPz6McWee72DqHlMnQiSXsspDpyEi8RsLxJkFlIkOylaaYHSXgWyrCR0kLltjLWCliSISlGeHb4DMdHPVAtCt6H2bxwO57W5nn5KJ7sj7Gn2/N8pPN5fsm/jpT59embj84/yu8//fvUvBplp8xib5GO8HhEHWKhWeUD0V1MZieJtwxxrH6MB2cepFl5M/nREuVcv4ikl0sQaV1apQ6ldgIn7o+bwtJe0axKLW0iEwaZSorAjvCcEG1jEbyV+Wa7n4Fx45dbWNvu5Zmb3gBK0dMchrMaPyN/mX9u/RZ/8uiDaJyffuxVXGbu5WOOrUM4DoOffp7u5jvp5jymdyyS744hX38niYlx2lNTZHsejdnDNKJdZON56lESP2XSLCaITIMYn0BvIJs9hH15RIVYjkHvrnfRu+d7KX/1Y7j3fgH3WEzsRZTfcD3MPEU43SI6+RybsiM8k2qhiBCWg/aDHyR/7Emc6yZo3TcPEYQdRXal+lVzfpY4DInabXpHjoJlkXzNa5iPasTEJH2bTNsiSvVvRm1FX0rLXCVOt+cXsSs93CLMu2fYMbTt7HeVpEsnaqOFkDhVQS+VSFx3LXO/8i8hjrG2bkX7NvPeL3WGf+1fsfy/fo/mZz+L6nYJF2cxR8YhiLCTKdLFEvNLEeUypIKItqFxPJVky/JehK3BOZVvldBpp5MoXaI3ejhef3X0ckovHXUmGZOjzNpnmH73Tsbf+WEC3aH75rtIOhUM0YFDH8fa+Gb8xS7SziJT5bPOM6G9+H4SQoCpgR9BGKNiRbywkgboGGD3z1FtbobYXnXYGfaa0w36q+7SMlEY7KrmaRl12qZGmwAZw3jHRyiLhYrL0GUyDny3SWop6kGVUAX4sYel2bTDJh+b/dOz28y50zjn6ARa2prT7UrESZksBB1yK+8Tgc4LGjOBFQKgtDw0emczL6p/+bsEDcWw+gD14WvA1FFKcWCpw3JyO9Mjb7vg/f7QucHBxqU5pRZCkHvzejojSfzTTfwzc6AijIEyWtJAs41vauwIISi8bxta2qT1wAzeiToyZ+I6PYIBl2SyDCgy5eHLWopmzJnkdPcY1XAZMWEjExpxN6J3xscaKBNE1yCFR2HbMwyemKSdTdEZGEENjfELf7OPf7n9fk6I09wYhyip89Zd47x++yif+vB6xtffhKYiPvF0zHvGjvIbxRH+xXKGE6EOBtyZT5BeGVOJI+zOMSq51XF1unuIu5Lvu0hnpo+WMbE7q/MEr+AQdixAkNwxCLaBWmggF2eIh8ZpxVBWEbc0ltnvJOmUEjyTd0h89DCDP7X369qvd0J0TSMMQzRtxQDXDDI7byOXz3Lq7/4nN3hT5MM6nx98HRtGpqiY+85qQerhqpPN8HSEfmk73YQQXFe4nfVfGiA63EaJmOSP/zTSEHSfmUMmiqjQI+4sYG275WJ394rhhWeUJS2yRh6qLdpJwdJdm3g+lWTnf3wA2m0MtZ/b37qLQb/J826GLbkJNAQDJ+q0htKQsjCFAD8ETdIeSvWvRaVACuY3jbBl2WUbMZ8D5oTHwMkmI6ZGc4vJscoposw2BIKjSzX+5+4P8vkgzT8/1Y+sA3j69mOc2bp8Vndhad05B9ITCAMW19dILbcpzxdoF2yIQ5AG1ex6PpVdz3BjlvcfuZ+se5LTXpoo1pgaafHI+CfONpXx86TTKRb8Of7+xN/zqnWv4g2Tb+DPDvwZAO/f+X4A/vPj/5maV6NoF9mY3chIcoT68iyzqsppFvkd/dP8yeR/4se/9JPMd+Yp6BmEfw3ri2nCKEZqklhUiIwOMoB0rV+lVR9JMPCBXa/AX//FZO5aR+MzpyifzrE4Xqexp0SQsjDaHsbwONbEZrBMHFHFnf8sdvm1IAxs2+RHb9vJ04O/yKYH/htz3fOTlrg0ZwiXKFo+j+r1SE7VCbW+48dN+sTVEDIZzM2b6dWqaN0eZquJa40gVEj8QrWORH9AlZg4tS5hO7iolYheDuligvyODXjdgK4y0VX/+KOeBt0KTN4CXhs0yHtpbHsRsRI5E6ZzGGNjmJNFzBMdwvkmUSfGKmaRUxXiYgG/28EPI4zRUbTyAPaWzfixR75jo4SGttTBctpYXQ2rFWIUjKvD6SYEyekGicUeyeEJakEF6Tgkb7uNqF7HS+sUjTLB3DTjz7QxJycx168nbvadIzJ15Yram+PjmJs2Ym3ciAoCguoC5sg4Koj6g6oQLCwpNnqjlN1FFFC1NLycg5PPvMjphjTorjgnw7RN1PNQKfMV1ej5TjGlSSYxQHe5hl9bxts4hPPwl1jYeQ3liSEMcx4ndNEbDxIZG9DcmMTdv0btSIWB6x6Hb5a6EkbgrZY7F5o8O3HpNGoIqZNZTCAU2MUr08n77dBLxsyeSVIa3EDaf5xANVAaDHohIx1wPYNqrYd5ierOXGhG7AlCFdEKG9SCCkPaKM2gTl4v0gjraEKjEdYwpU3RKGNIE0usOd2uRIQQqKQGlf57K1h9PntandhvIOwSkdsCt83Mv/95MCyUUmgnH2bkiTRBMklDc7kj/AyPi+00d99wQfus4hghDpx9v2ng0h1v9aJD9u4JWl85c3ahxdqQfZH22zfjhdQ2aWtIWydhF5BOhyC3hI5Gdnj0stJweymG7THcuEcv6nDIOcLGyTzukQpRR+Et+1ilbcRKIZ0Bti4scmz2JP611xAZBuVWlm2nNcINTZAvmFYCU9N5+/t/kjjwkaFL/bm/Z642xY2vSvKOp2PKUZP/VU9QdM5Jg5QakR/jpnzSiw52Q2M+2aPkXFypEKFLcrkS+eU6ofIJsjZRJ6LaCNFDH218kGjJxb7/43S/92eYjzWShqTROoxt7yDsKkw0ZooO9udPkX3d5Iva7/l9u0LXdZZmTxAnyxRTDpoUqJGdDN3xLqa//P+Y7E2zQSzzZJRgNLk634gaMyQrJoYrsOYayNSlP66m9DRRsYRb1Ahm2oRqH9LRyX5Pgvb9NYRuYQyksFa0Gtf47rEnewN7sjdQK1T48vKnqbfmqewp420awj61TBhFDH/1D8i/77385eOnEF6eDWaaRFfhND08RwMhcJbb9AYzfYdbGJ3NkAkcDUGP7WS5DlgmRrdrjHVTzDRseqkNKNEGGVGceJ6fnqnTO2mhMFAI9GTI0mgDzZdEZv/eEB5oShL2dBYDSDkxCSOml26RfG6J1HKS5Yk0kaXQgg6GErRMh7vjAZ4XPYSfoBkYLHclu7J76dUdenGPycZOPvijb+FfPvpLuKHLbz78m/zpc3/KXGcOTWgcrx/nq7NfxdEcrhm4hlLwNv7hoSyaFJTTi4yOfgSCGEe3edehn2ZXcRd7y3s5fFBx86YRas022YQNjSU0vQaDEBtgdQ3itIE1lkHPvPKSUfbmPN7xOulKAi8R4OUi3LfegfXQSVQUY7zjhyh4s5jlw3Qf/ggqsx3LHkMISSFpYW7fh239OG/o3s+v/O0XvuX+1pxuLwN9aAh7715EzqZU0YhFiigvkb3+adTXrcPc/zhuNk3JyXL6TMDIqE9W1Il7JpElMboNOtkezVKTofDySdm1EyZSCnRTQ77pnXBv30Met5uQ2QJmGqF56PIxymGN2EwQ+7MIpaHt2EVxw21ELR8VxigU7nwHzWhReOhpvA9+H9XpU5gnTmCMjBD3upjrN7DoHqOddDFDHU3ptI0CGCC7HYJqBXkRbtCLgYgVWi9ECgMhoBd2CBcX8I4eo/GOISrBIgxbpEMb6KLCEHvXLoTjkNi792J3/4JiDA7hPtcPzQ+vq0HCJG50UVHMputvIlpqocVlksESyhag4MuZh/BrXcYfybK3fC0AKjOGCE6SeWYeveuTz+xEtP0XO+YuAyzNpmp3YThBMFHCqSm040eoFm6jnJ8DFDKr0MMQRN9xFkc6fkuijY1/XXtC11B+hApjYjdA5BOgQBZXjcvl06dIbByhWe4CoBtXx315PmgDGRrHZxiMx1HohHG/AEzd0NnQ7WAaOpW6h2FdnecsqaUARcEocap7jCF7lGZUpxZWzn6f0wtUgyXqQRWJhq1d+obUGt8eyaECTPVfG6Ei3XBoGC3aOYVneVg9n9aRBn6tirHv/XhuC7d5nPg6RflUFagyZsQ4u95HudLhlm7wTff3HaMUdVZ1LvOXgZGfftXYeTvaLsTvL2UmnI0833oGWzp0tQ7W5ATukSpoEHYCrKIOAmI1SGKDT+Leacy2R+hA/W0/wi/dt4+5KZfWugaGmUQKialLIiEJscCwkIkkC0sLcOSP+ZnkzXT1AU5HYDjgdGv0EnkA3CjA6pkgFCh4zDnGTxoXP4rcjCxqpX7Ka36sjP9UjeGCARhUSwmipkCfOoqoL+OMj9LVFElhkmweppPeRBhaLA4kGH52EXtbAWu8X9n7+HwXAaRpIXpVMk/9Cr/Gz/Bjd11H0jRQKqY4VGDBtmi5IdeduZcv9m7mR/YpXN/HRJKmzkKxH9226elJhN69SGfp5WEMJeke7OtjKTciVhD7NsZoinB5GXv3BHo+f5F7eeWSN4tsSe3kudgjCHsc+eW7eNUDAfU//WviMKT5hS/wax//OJU/+r/0DjsodMy2R8JSgMTyQ6zpGs3hFcdbHGK3XXTlE+Pg6x0233OChQQ0Q438p5J8ovAxdtv3kBVDxNLFtY8zVsoSnqigiSF8Aac3LSFrDrLQRfcleqAhY8GwMNn/xSwPu0mKm2rs2rVMSWlo4QxGsAEVg+hGVH0fITQmtB5dZ4wfbiS4d15xrJVg33SBDXf/AJ+39tNt+NwQ34k8lmNbYRtJI8nx+nEWOgvU3TpZK8sXTn+BvQN7Od2cYvrEbWyb3EkUT+MGEXVtiLHlX2Hv5Fd4Q1sj4Qdoc4J7M9BtjzAwlEDoGlIKlNvGHayQnbLRY0mqZWCmjIumV6gXHYzxDKmDDkvrGiRrNpWNJum/OEYkBDORhmPZmMPX88POR3jfqV/knVv+CEtz+hp1QnAqs4O/fuDk+e3vAh/PFYVRHsB96ikUUP/ZbWhhD9kG70w/qsjcsQPjT/4UA0jmsoRuHanlaVg5sMDquUSGhREkiLUOund5FafYuHeERz51CDM2SSVSSNsBqaO8NiJ0EWIBoUdohGhaHkGZiB49v58aoqVNjOEUwWwHoUtCV6JpFt7j+5lrt0g98ggcPUpcr2Pt3IHVO0EUmzihTXXpNGzqO0j0MEDaEmlePlFI3yl2xWXOWyRnFqiHNfSREcJGE5VOkHAlrgiIH9xP5qf/KeH8AiqO8J59ltRtF7fa1YVGGygh0mn0fI448KDng6mh2i53/fCPE83VCZ6aJuHrdI3nAVhI1MCE5pnDDCTXMdoZYLHXxpc6vYkM6WPLyER/9fRySi+FvpPCEjamMGnLHjmhEIuzDBVHCYJZYvcEmqEgWt//gRKAIA6z6CL8+gZfOP4gIppvoGork9iBVQ0y3bSIzVXnpCEuXeHiV5pEJsvU8gKM7cKMdJQtURLMMMKJAkKloxQY1tUZvbUltZMHK1/C1Kyz6RR+7JHRc7TDFq2wQStskNXzJLU0hvjmaXBrXN7Yg6uGpUQyGhapp9p4oU9rWMc6qeHNeqBK6Jkiegb80c1osUZQfw4wiJJ5luZPkEvkWDeQuaD9jSPFA2J1Hif1tSn15UxKz9CLOrhRr6/xti6DCiXCiIl7oBAIJCAh0thw5yTNwGMhlUH3I/TyBjYvVnnOTKGEQAlBGIbEcvW6CIs7mPdKzLgzjOp1TIr8WLbJowlBYDigFKZfxZMasR7TzvdaKxPxAACUXklEQVQYPe1gDV4a2rxJJ4vmS4yOICoXwa/hB9B1Q8TGEXj4AUQyjXHkabyBMp2szSYjjx6H1ERM1zGIQ8HR0QwbvjzFyPdtJ5SCStNnqekTqBRbZj/MTrkfz/gLPj01yWu3jADQTk1y064i9z8yTTqsc0PjKXTtbjTDQAC9qEmiYeE5AVbHQCYvj3E1sWeAziNzRPQrwCsvovf0EsKQpG7fQvaeey5yD698dmWuJYh9Hq1/hTClc2inztD6IeLnjhPMzjH78z/PyL/6VUSzSeNTR7Gn56g+M4/EJqGXOX5tktgsrLQW0i2kQcXAIq2xGuagh2/qKL/IkT0pduXfQkbPoasUleyX0Q1BsKlN+aH1xPRobgiojNfxyx0iI+b1f7qPU9fMopset7eSvOYX3sfPA//94x/HTC7gNXUWcx2GjrtEjone8VEqgZWxqbs6jdwOpPdeipW/5NmGQVoExLP38b4tb+Dvnwk4muhx3xePUt73Q/zAbev5wtz/5bH5xyglShxcPEHQXc998ymK3rvoBaN8ZP40JV0RCZhrufS6LnJ5G4fjkCE95KdydZy6RZDcSDqVIutYiDgiLqwjNg8SpCJEHDF0ZghZhvTtoxftb2+tSzPyqRLP3zaFi4cay+NtGkOvR2jLc/SKNtn0DuS2t/Kvj1T5y9O/zd4Nv0gYKzRNMlLKIt70ev7qj3/xW+5rbYbwMtAH+0KWAsid6rC8TeI5Ps1nmgwD+kB5deN6jVZlDt8twooD17MtEALfmO0LubsXtqrWdxtNl6TyNu1KjOp1iLptvBQIKwVW6kVCgkOuyxljGTMYYqEe4AcRpqFhTmToPr6ACiDyC9j5EVJffYyGlERffQihFNb27QR6REVrgAaZXoLm3NHVfnggM1eJYb9iYDrLPUIClv0Fav4yxS1baN93P411SQI7xjndRDa72Lt303noIbyDfQeTMfH10UtXEsbgIKrVImi1CCfO9HUPvAjV8VFpGxX0o0kTwTmTLwFCKKIb8twbPcXu5Q3U2lla63SQgsyBBbTBlZQF/fJyuhWMgb4QtHLR3rSbkc/8Nb1anajXJZJbWe7VKTtLDN/5BYJ2iuX9txA087Rnd5K742a+7mjPSa+NT1VWPz/H7zF//CjD21fTXvQ1p9tZ7FSaYEVn5o65a/jCF/+S2fVNNly/lzDewJl5A3gU/SqNdBNCMOyMMdU7QTdq0wlb1IIqzbD+ou2aYR2FYtK59Kt9r/HtkxwY6OvhCIFCcbB+HK1oQEbjS7s/yw9OTRIEw4CO6swgbIdyrkzYiGDoVmKvje63aNY6HAwXSNkXNtVdxAI41+m29uy7nBFCkDUKzHtnmOq1icuvQ1qC2JP0TsxR/eh/Yt1v/Hdk7CLjKUztKFr3FpBlQsegnQjIY3PtZ04SzD3N1KSgcc87X7SP4tt+DoBnKwcYffy9PDPwz6nH6+hkB0D2x1vfKhKZHo1yB4DkfAdt48ArezK+Afl0f6x38xHt0RT+zAKGvplcWsffkiV59yaqnz+M9fiXaF1zK80gxrMjciLLLZ2AP9b3sz5zM5V1GaIzTTKnG/QGksxU+/aDE9cxgzoAr/W/xMPeB1GqrxXYkykmrrmGW7OTPPyFB8hmbIzEygKgG6DyXbrZfjtWz0DkL58FmuI/2sHynx3AP9EP4lC9EGMog7SvnuCCi82O9D4erX8FX4QcHIfOP7mNDb/eIJqap/npz1CcnMA2DWSzSCgsAsNjdneD7vAcjYEILxUCilz1dZjBEAjJ1A6b2oatZLobkC0bIyrRGRcMACiIRA83bmICvVRMrJsoE55+zSH8RH8hPFm10D0LU2jo6QK87q1n++z4WcIYtLxHd6TF4BM+s1FMmLbItiHWNOJUlpnFAVK9nYwkfpRXDWaY7y1w+OAzvPq2x/gf4zdwX70NPvBol4Xna2zY4WM5aW4auRV39h08Me0AgpweslFrc1PKx0onebwl2GKEuGHECc9gIXKwdMHj85Jrt2/nng0D/YyaIEAZBpFRoZurgYThIwVUCObwxY3gNddlkCWbTftHeO7OU7gpE/G929j0X+/FX66ymN/K0OICvPqXME/8AsLrQNzA0HJAv2r5SO78pCUuL4vyIiNTKew9u9GHhkhN1ftzLQlfed2TABiTE2jbthIKQandxe82CEOLUjiNEa9UwwjbxGIJZyFEu7Q1Pl+SwYk8yXwCnP4FFnfDvjNfKZTqz5cBBr0ImCXU6oCi3u0/PJwtedKvGUWYgmA5QpRfDXPz2M8eBCmIU0nMiQmaT63qpBieAENiRl3Mjo/p9zCKl8cK1neLxHLv7OtO1MbZsQNu3E1k61hzTdIn6zjXX4+9fTvhwuLZbc2xdS/V3BWDMTR09nVUr559rdyAeKlNeGAGBQx287zp5M2sXygztlTAPOHD0RahjHiyfJRT13chiEg9t0Dp2SYytRIhcZlFuhWtMhuTW7GkTX1TFrlvF6iY5S//HZaZ5rmjXRbFTjrGAP7w5Mqyi8KdS9M71Pm69kTC6BdN0CVooj9iZGz0scLZbfxel+gcW9OQa4bnC9ipFK7bod6s4Le7GLqBeLjCrsqtRPEOPL+/8GLYV9fz7FwKRomMnkMg+PCZ3+Nw+9mz3+WMAqa0UShyeoEh++Kthq5x4dENg6dtk/3VNse0FJOzGYJuQBiGiFKJOj0UHtAjigIUCk/6iASAQphJZGqIQTXMeGeUbte7oP9c1+sHC6+grTndLnvS+mp0ZNfwsDbnEEaESBRAWXQefQhpm0jLROAx5kyT7LXR/YB2ycaf2Y/strGKO8gY5yx6qhiUIo5C4sDDTY2jVMARf4njg1v7ha+85tnNNXNVfqa9OE2hMPKKHP+3wi6myC2mcFom3WGToFqhuxSilGIgJyi/dTtyz070meMM/clvsNuI6DmCuH2MTlDhDUGGY0tfQQsiGsMp7p/t8dChOpqApCUZ6zzD5lN/AoAlQj4UfgQvCImVwjJ0PvRgmcL6W9l1x2sp7VjVbHQ6AZ69Gq1vegYyfelqLH4t0tIpvHsr+tCqAyJ50/AVm8p9KWJpFncUXse+zC3Y0mFqCB767bcw94FbkabJ9J/+H5RSnNg7zye+/whf/ccVTt3aoTHQwWlFJEIHGYOSqwEoC1tGiPQslj+GEa0sTqu+zFJMSCWcZ3AqS6JuoDRwky5fft8T+E4ICqyWzuDpPFba5cY73sGNd74LzFU98x97z6uZ6GWwl3s0ym3q+KQWOsiOD0mTZN1F90IaqRLz1TJLai95ZzN7CndAGPCRTx3lvnoLm76ajgkcanTJfeEarC+/nX/30RGeON6/JpOixYQWkBYBSRnwUxsN/mR8iv858Dw3J1zGdJ/rjCq/fs8ufuSuG9hRtFmoNujUa+hxQNDt0DOfQfMl2YUkY4dLyKTEGL6496nQBNZ4hvJUnhs/uY3sQoL6jet55C+/H33mMB0jRfDUM2AmsbbfzT3qGvTag3Q7PbwgpNHzWaw2v/WOWIt0e1kIIYibLcL5eTIPOiRftZVQhBiBzqPL93PD4KswymW6p09jRRF2vUagnH66ZeQSSh0lenhODb+gIy7DKmzZUpLFqToimUZ120Rd9+x3L2T9xMok10th6jV81SPUQ+rtNOWshZa1cLYX6Ty2gIpDUEmc666D555DbdiAEpC4ficL2hz5joYeSMylOaSTwNcSkARCHZm8fFawvhukZtqsT2zBjXrMuKfZveUm3JQkTph4CRPjQBV7x3akbaNUjHPttaBJ9MHyt278MkbaNsnbbyd2XaRlU/3Sx3APPYsKPBLXXk/he94PjQ5WbDLgmiwm8hBDdN9JaqMh2oRNT/OIRT+6wllskXz2JPo/ygH9h/HlhClNMnoOU1hoCFqbChTczXhLs9Ray8RRmkryDkaM58mWEvRKFmHVR/mK5n0zdB5fpPC+rZijK6vHsYLei3WR9PEiwuoPHUopQjckVKsOu7VIt1V002Jgw0ZymSIApmmTSGZYqs2hBHgyYN3O3ejGVVAU5huQ0FNnI9sE/QgnWzqUzWFm3NNERGhoOFqCvFG8uJ1d44KT2L6Dhw/+BdSn2XTjLRjCp+M1MaXBQx/UceJFEobFm3k3tYNVuu2QdMak9nQdGj2kZhP5XSI7Ihle2DmWRNKkcfa9uIrv4yuFEXucbtQmVjEzvdOMD5XgaB1in8Rt/4zOsSco/UgaUTWhPshAZ5bYNIilRnukzIHvfTV2ZCOVZOTJUzgHHgfdxNu0HSFVv/iGYaOwOGLuYkfnUT5l/ihmq8JAwiDbPIQXZOjaPtn5BIanEdZm2F26/WKfGgC0vIVWMeilm4BA7tlN80xIE49i3gFp44zn8M4UCCsLSLdL/X/8Js67fozi2AA5FXHvmV9ks/1hpJUi0CUa/TStcs5i1+wjMHErLB6C4kYmxDwHEwb1Xt+h9po923hCWSSuWY91jkKP3Qupmv1tZCDRIonMXD5ONwC9YONsLRCUHAgV5lj6W/9oje8q2zPX9O999xSesImMkMW7N9PbVGLo8Xn+duQ0KpPHbETEIkZEMVrDQ1Y9EiM7IQywwioiKqCUhZI+EkUsQWCgiECE+JFLgEBvNTCqAmGHCFfjwfccJDAiRASJns7k4RJbjwxjljT04ktHhGWsAs1ThzE8G5GeIdUr07Q1bD+GWGG1fAJD4qHwVoQ8GkQMOwUeqDrs2ODRJkHLlQwKjbYXsj+vOB0HpBR4RKSlxz7T5w9Lh0BFRPVHiR57jlhooDReM/Bevk/fj55M80V3F+1AIjUdM2gzvHSS5tAuwk5EXOyQXLaRKEr1HFITGAMXXwvV2V0iU+3hnGpxfM8cRi8m0fRZ2uiRFhI/N4Bx5DDW2E7SLTDbB+naPrPNEAV87P4nz2s/a063l4m1dSsi4TDs26x/4jY+u/detK6g3qsghCB96600HnyQQJM4Jw4SY2LHy1T1AUSsiLUMkV7rtxVeXlE0AFbCIPBC9NFJDMtBGII4Bk0qFALQEAjyQYyIl9HiNLHoUXe7QD/Vw1iXQUsKVCAhCondTF+ctl5HZDOIZBpfb2Mom4bVwQ4zYK5GehnSR0tfHRUSX3D52DWPMA5w4y5JLU04XqaTUKRP1FEqppAaYehHfhkA97nn+umlmoZevPKN1HBhAe/oUYRpohUHCeemAdDLQ6jai6O3dlb7WmbHOv9A48Epfmz9D3DfyFNMpRZQSmEeXiYqDeJbEjtho6Tk8nK7Qc4o9tNk7BLLQ5LSyQRiuUb7I79H9vrrMeYPUREatZpicGeK6v39tFHVDQn9CG+6fdbpJl6ieqswVj+LggAzElhRhuxiDyV89PG1YeUFhBD0Oq2z703DwjYdBvJ9fZ6ZM0dZOHH8qtYpy2h5slqOTtQhJEAiMaVFRMiANUTNrxATUw+qlMwrexFhDdhy061suenWs++3+kv8/exHcFttgoRGIASdKOL/qI+R2THC+vYeikeOUr5+I7XP/BWNL/w1xsa7KV3zRkr2hY30FsCcOnP2vSbXnn2XO4PWCPdVPgtAUk+zITuK8hRCM1AijUwM4rctrMk74aEnEEj0OKSnWaAgzJdoK0Gq2kELYrY+OE3n2F9x4jf/DE3XCZSHV5lFC9q4ZgnVXaScNMmk8ngqxrP6czaj+SyBFDSLXR6bXORd9qUxl9MyFulFB1c54Lk0ujNkGjfwZO8Ut1+jMByTwr4ClZM23oKk8tmPohpNvOkToBTH8z5bxToeqvw2tw3/C7QYUGB3PEb2z1FZ2kLSewxbq8KZfvZCdt0TuJm+pnPGsTAtCyVkP8p0JcUmbLoYkSQzr2MGfWebzF5+dkL2jesvdheueqSQvGPkB3mm8Rj761/FGSrhtXyOvmESN28S2JA81WTgvuOM/k0/K0uUh9B+eidfvjEgTrpkAwFxhBAWHefjpE6kaI63EJpCSIh6W+hGitvum6I36nB4lw5BQGCAkCBjwa0nTAbYAa8a/KYRj9nkICeHsliuoDUAGd9HT2bQ2hGhrRMoRdfzeDQTcKQZ8g5hUyckXbyDM505cLsIQ+Nte0a472SHdaMpTix2oAdhAG/UDvHvMw9hOxtAlCFaRAseJo4Fhq4glsw9vZ/D5T0Q5MjTwUoN47SnqT35GQ41PbJOGT03jABiK8bwTHR0Yl+hZS/+YlVie5HE9iKVjx5ix0MdHn3TIQzdwitKRvwGXd3ArNRo2xlai3NIkSMhFZau4YUhxez5OQ7XZggvE2GaZ/Wy0m9VWD2jr7sQLVP1lyn+0A8x/x//I4YfkqnVkNUl0qkqgen0qxAREskWRDGadXmtwkDfiNx64zpO/G4AZ04A4LZ/iGT0d4jiJBARx0k0WWcwdpkVJnqUoNb2X9RGYkuWxleWQegIawzaHbR2B3d0iCjOspj1WUz1B1yrDSRWz5XoSmTy6oumyRp5pt2T1IIK7ahJ8l/+HF7jUXzlMXzz289up/wApEQvlRDala8HoQ8O9p1uiQT4q2Hd/vRpvDMnscb6k5g4jpArmilRFKCkIFYxd87uZXF5hsa//WfosUKUBrEiDdVyEZeZphvA5tQOHqndx5w3Tekdt2Llofdvfgt0g+z4RsasvsOn02giMgp17iGGit6Ti6RvXhFtPvf4X5AvOsfp5ve6pM0MrUKX5kAXEYEm1oaVc0me4/i2nRSOncL3XUzTptNtYjoXf5XvYpIxMjSi+tn31+Vu5drcLQD83eyf46l+NLUpLRL65WdErfGdUTQH+OHJf8p9p7/EbOsQnt3GMyQRiko8Q9tpUr1hglsXDfRc/14Lph8gvWeM7DWv50KvmiivAmQBEPLKH2+vdJL6yoITAjdykZkVg3BFazD2JN3nDmCuexNCM9GjFre0HkGTuzlkOcwg8BMp2nmHmes2MnogSWv7zzL47FfYvi7HFxoB9qab+/s6pZOMZrFlP5VUqpBY9Pe3NLlMaEYklwSPFmr8WmnXK38yXgIhBI6epFk6g9GVdDeNE9UrHKvP4rt53vFajbiswV1jTP/uw3QfuRd8l96hp8nccjc7gFG28ZnOl3nvtgU2PlPEO1En9iL82Q6wlUi8C03UMeRpAHILD7KQuRaUopR2EEJQ63rkE9YLnWKg22XOjOjmQopnVs5n6uJXe13j8mVP9gb2ZPspzI8nH2TWnUKfmSG3f55NX14keeOrmXntVswv/Q1qeQnv4cfhxvW4iaMUjjxMFO+hs7FAN9vj2hObeGxzHTcdgAKVeZbTfzzCWxnEX87wdGYBYkD0p9nf+/huMu97/Xn1c7C0iV74CJ4b0awLxh9qITeXaRUt2l5IxjEwsXnbRINKpY47u5ltWEzrYyxlk0z7NpOyx6/nH+HG59bzcKWLoUv8KGZXTvKb7kdwrBtR1nqE0AjO/A6GBZ3IJHIVZ3o5DlYNhl73buzhDbSUIn7w74m7J5k/fgRrcg/JiZ145hyR1cHLepSezRF3Yoy8jpCXzqJzYvcA6acWCe2IRiJGtW060x2qaQOr2mZ2JbkvVoIhUSfMTmLGITtuKfDJ82j/8rMoLzLGuel6UYdrvryJZMOmQZ37lj8LUjL9qpvxDI1SvUHqf/4yhWMPc0/rj7jp/sdoJz8PGiSmG2i53EU7ju+ERNpCGxo8+z6sStTx+3G9t+IGbyOMN6KUybooJNCnAEW3Z9B1V/UW9OEE0pGgwBzdt9p4KkHSGaFjrDpPDF8izqnup4UxMnF1Od0UiuQ5Bmc7bDHjnsZXHkktTdnqa5upIMA/dqxfAWvD1bFiNvLv/i3mhg3E9Tphpa9nJwyTcH6G+d//Tepf/gRxHJ91uAEYySSh750Vubc0Az3u5yqIFb1ChLhsI5D2ZW/GkjbL/jyz1+URdqK/ZDW9WtZaSAlhjJF4sZMsanqoFXHGF1VvVayIPqxuH3guRiAIzb42mR5cvufsQpEdXq06l0xlyCRzmKZNEPi0OnVM5+o2DHJGkaRcfbYltNXXlrbqkMzqeda4esmk0yRSRaznO+xabFPuBST9GM9pcUJ/jkdHjvDIW0xmvu8GlO/iL8z0f6gu7L9zNd3kVbDIdaVjSpMhq68duezPY63PMvC+SaTtgorRCluo/t6f4e8/BaWtIHRsY54g8rCArO/Rev4hlK5RH8tw4PVbmL/9RmavfS33OhOo7mo68nG5lWFRI2WsjLMqXvkvOjumqq7L9uE9DCYHuVQYTI5idQ2CRExr7zjR4gwDpXVMnV6k0TMRAlJby+Re/zbMsUmY3AbD2bO/v1Pby4Jo8RsP/wbC0pC2jpYxMddnEMLFV3tZ8P8LzeDtKAXlpfsQcfCiOZkWegTBik0RxYigRjfnQgzJhoMKfWT66l7QWuO7hylNTGlhYmCgo6VSyFQKLV8gKo2AUkQPP3p2+3bs0tyaIZYB2eUltGoFPVgZHwTIBYd3BwmEKmI0PMon8n2PjICc55DaUHrpjrwERbNMqhYSm5LlsQoojex8G4Ei46zayl82JllfKuOaVSJgPSaKJA6Kn0p1Ecc0fic3T0GP8MMYAdzSepJ06S5I9O30arVLkNxAFAm+OLeRPz55E5+f30qMwEj37/HYd6lHLicOPEsUhkTZvh5lYCwS2h5GVyM/l0JLSZKbLq171NqYw5zMUj7d1xlubs2QOPA02kmD9pOKwsOHsB97EpRCdk5hxhG+1Amj85vHr4UkvEyMyUnsPXuIOx1it0OmkmD8QJn2deCZAZ+Y/0uYnOD04UOkeh7DfoBeXSK10aYdKnqpfiqXiBRm+dIoAf5yEUKgrZtEjm9CeD2CRgs1dCPI/gqh0ooomSbV7KDLJUItjSTFYjvBpN3fxtxQwhqvEC77BIstrGu+D+/5j2EPlggij7beIeslkc0eeQvcSJJoNRGBgebFaKmrxOl2jgOjYAwwbK9j0Z3jy8ufJiYmIVOUzPLZ1dlwebm/sVJoqasjKkQvlTBGRhC6jnfkCADCclBhQNxuUvv0X5C85mZkYbX6l5lMUp7cwPTiCfKpEs4LFUAAI5Prv7jM9NzOZcyZZLp3km7U4Yg2y03rNxPWK6jqapENTerEjoazNYXRhcgX/cIovZDGZ06Se9MGVPJrqmrGCmmv3nuB62Ki09X7um/6i+Xf1gDKW7fSeOI4lrQYW7/tbNEEwzDp9dqYmUtr0vFKI4TgmuwNhCrElDaj9qr4eF4vMMVxoJ/yscbVy77CjexM7OOpp8qMn/os1yZdHhxJcUpPEGkxJ8VJGFDwzm1Iw8J5cAopXoFqVS8ME1GMlGvX6JXAoDVKrGIiFXE6OMG6ZAYjlyRqLqKCkKjeI2o1YWQIlRomqC4RxW2GezCo6Tx75PH+wtXIMAN+liCXIdY1omQRbcMtxO06KvKo2FsJMEi4s2gdl1ZqE3ptDrsrWFqpm6Bcnx0Duy/uCfkaSukhUt0kZqdLdzJLsPg4E7ffTtNrMbUk2T6RQos97CEdbyqJVOCnMsjuE4RsZLM1yVBL5wynqb46ZPKOnWfbrvz6PxB7kpBhWuIDWOuHySx/EjOo4+tp1IoW9sRAluW2T+h2yfmC0FyZfMiVyqW6iZa7uhe01vjucTbqbRC4Hvhg//P2wQWqiSzi43+K9Npntw8KCaLu42AYJFsdLPEV1j10NzKjWJiskqo7DFKg0T1J2hxh8vEEyojplUJGy1uQ2647777pUiftmoh2k9iWKN3Dqfs4Ay49e3V++ZCn8wYdBlKLLFZ1HJK8hpDjZpdrZIPIEtxg+nzIb7A/NAgxeJMhiVSKyKviUmBGH0Vs/1FaD/4li10PkwAFpBwdTdPRFo/QPTON+uonSWSztIWOlh0lrrdxC4dJLqdINQ2SzQR6UkdPaC+ycy820tJI7CqRrNikqw6xVETlAtr8AiEmSQYwGxtoffKLyO+9lVR2H37sEBq582p/zen2MtHSGdxnngEgblWABBueHeHJvVPo0kAiMHeNUeneRuKp52F6ll49Rj/ZoRUlKcynUUEX+/kFSG68uAfzHWCXsnSnjgEQNCtERohIH0Q5BRRppFEhZ4Dtz9O2JhFWm+mKzWSp7xzScklS1w1S+/Q0Ko7RB3fin/gsjmbTEhWc0CREIc0EkVMgMky66X5VKduJEMmLnwP+SpM18mhIUlqaVtRAIPvC+efc7OHSEs4N10McY27afPE6+0oTR2cdbgBaJgOaRtxuIAwL/8xJjHOcbu16hcUzJwjGrsU3ejTnp2HLFpxMBiO/op1wGRtQWSOPIU202CWhp/CHMpieh4pjwlYDPZ1F1w1kL8K0wJ7Mom8ZZvnPDqIA72SD7rNLWKMOkW2AH4IAYZsvSjkNfA9bswlXFI31y1Cn8kKTHhnEmu72076FwMBgZu44mm6QGh4iUS5860aucHZnr3/Jz3Nmkayex5AWY87kK9upNS45TNvgxrffxRf/0+e4YTPsXurSNi3qepJQ81G6Qo8UC6+awB0aQPv4n1zwyFv1npXUUliL8r1CGLCGeLrZj1pphFXWWQVk2kFYJYQF9o3/mNZjD5C47o2gIrwoBuETyhA7lWRCajz/uT8ifusbceIR8uE23HSCyDFQKIRpg3Cwd7yaz278EmGyn6mg+020QCPUOuRmkxBFnGaGkdSlZSsk8hnkcYVuWiBCtHVjpGs1Etk8TTdGc7LE7ZDsvjapfTcTIDgq7oTqP4AR47lNNprjnPYX+MzJz/ATe3/ibNvF9B/QjTbRiH4Q4TjUW+8ln1pChl2QDmiKtKOjpGBUzBAEEYlGgTi/Wu3VcPumrZa4+uyENV5ZNF3iX3M7+r1/j2ysXoNR0iTdFbh5hw2HTjAgmxyZfjPbVZb1B4aIV0KlM8YgUWuOQs9mLH8DAz+67xvv7JsgTJPWcApQuI5HouehhHZWFSaKFTlb47fmdH42O8eGms68SjLqQxTOsBDM8eRyzLu3bucnCnX+YN7CGRvHzOxhv5WnaSYJYpvm6QZpGdO+4Z9RvDND6HWpPfxnxJkQvXuSlOlQ8D26iQwzSnEov4XrdYeIBnqQQg9cTE/vV3pNXJrjpbO9iP2VBM2BWQDckgYnapAehThCL2xGf/YfiOYXicZCdEJc1Ldotc+a0+1lYgwNInM5tGyWqF1FpjYgLY3x5hiPJfeTM4qEhZCZwweZccD/4C+Q3KCTbZ8gDOpUR/qi2sPPgpa5fCvTZDeP002k0JNpwq5LsO1NaLoDsgBCR2EQhhqFaIqe8xo036JJxFKjnzZq6JJUIYGekgTVJEQKmd1EMlNgKuOipKRltChWLULPI0qsphapaoyWsb5R165YskaeNw99L4/X+toC0K+0dX3+trPbBHPz9B57HIDUHXdelH5eDIzRMWQ+T9xqIZ0kzta9OJt2svDH/wklBLXPfBQMA3NgBGNkhEShSNpt0fM6bC9fh9vuMXfkCD3AuGslAvUyjnQDyOg5TneOkTML1PYNk3vocfTyCN2nvkrmVW/E87oknBcKJkhkwqDw3q3M/4fHAKh/9iTJfWXMdeV+Ra2jC/1tzzEsA9dDkxZOyyLWYmzv8j5nFwIhBPr2IYKvHgdDo5Atk1jR8/z7z/0Rm9K3fosWrl62pXezLX1pRXmscfEJnEFOTh9j9+YMb55t8UheQwm4puHwVxMRvTRILeSx0oXXzfUKDpoboofxJbViv8a3T1JLYQkbS9r0wi5Ck4goAlRf2s1I4c4Umf3DCraTwx5rEJmPYam3orohu7ffyum541SPPMiTy0/zI80PYAzsJG4vcGa9wdKr7gS9HzEeJlbTRmMFcb5AYrlCfaRfBOrk6Tqvym25GKfhG6JlLSzPojZYwVmOWWodJ7tQwJU15upJ4l4NISIEPjodpNJZOvksOziEHLkZY7bG+vRWjtemOTL3NOw9p/GwR0K7H5UYpdb6QWI/opl7K47bpJcYBwStXkTClHiyABZsenaBkxt9knWLUPMxGj1U0EKYa4uAa1xY7LRFFMa0furfYVgaae0+aDaJ0inCBHSTMUXXwPIO8qT2CUb4AWylsIRASonSHWSyhOosUfrQNd92P1JaBrNSw/AFni3IKg3P6judhRDommBdIcNnjwlqaY202sgAS7zVP8p9J+/lkZSJkpL/Wm3wszfcxI8WejwxkGUmOUDH6mdNxUGMttGip8XoJbs/3vkdave8iW5Yx0hmiY0xygf+lokTp5gb2smxTXu4JZUnzndRWki72GXkTAGjJdGHL005Br1gk58cxuyewvB0fNul9+B/wdrxTsz1rwYVYaTXE9cDHFGnouVAnN+xrD2RXibmxk3EnQ7B6dME08eI2wFhxWVkqkTayFIJFqmUO2D3/wBuexlfJXCXhuicoyllVroY2ew32s0ljzM2At024dIcLM5A9gaUvR7CDiBRKomhu0yKmFBvIpSD75k88HydB56v89SJBqqcxvrejZy4ZoH937PAgX9xI0f2FZgqVqg4TSKp2JXcx963vYfwnKITpogR1lXmLz7HiX5WW0BamPLFK3nB4sLZ1/rg1VPpz9q0kbhWgzAkbjXQnCTOlj1kX/0W6LYJ5qdZ/IN/S+O+T4EfkRsapLW8RL2+BEDcXQ0LlyuabuIyjnQD2J25jlgolvwF5l89jrZ+PeHUcSqf/AhRb9XhBsBKlVIts3o9xRWP1henqfzF8yilUJH6usISgedi2AadvEsv419SgqiXEuKFNN0gwjL6r+M4Igh9UoVLoyrdGmtcLtz4tndz/0MzfOWxeRYrLkYYkonbZOJprqt12VsNKc/1CJPmBf/nLHVJTdcpPHpmLdLtCiFvFAmUTzOqUw2WQJMkxm2SmxIIIRCagZZeR1z16c5M4s+NkzLbBOIMMoJCdpC0k6FQ1ZkZSuA9+WHwO+jFTVi5LSSef5Jg7mT/ejnnmomtDEpI7Hbl7GfNoMNEduJinIZviEwZFKpZQjuiNQadyRJJz0e2e5x++glOL6aQwkMIhRAgRchg+BWiZA+iDs66Dbzbeg2tlM4DC4+w+MgXVxsP+krlicwBUq8eAy/GXSiSmLdedK66fkxPZhhffo7YV/TSPp2ch5dWWKqAls2u3Y9rXHAKg2lufut2JnaWGd7Qf260koqeDY2kIqPncFNv5tjfD/EDxz6PHfVwhESomBekbKWZQsjGd2RzpAtD+EWHzrBNL+ki5rvc+MBxSsGqxIJj6jzaiPn1qY3o4jQxQ8TJa7i7fIDxRA0Rx1CbZ//MLG7rKyymS3TsNFq3RTpoEFa7yISFtBOAojX1PJqZZEfmdq7J3UPGWk8cNxntHqTZjfho+QY8LY05OoyfqhHYdSIjJjPTD7TR0i9o3F1692l+4yh+IqSTd3FzoG3diTtqgmYgnTzW4PUEM3W05gyB1Gjq5xdVe5V5Lr5ztFSS1O234x44QG//V0m97l39LxoRN+VezVPNh1lS86R/9iZ6/3U/Ua9KEG3HrQ3gbqii90CvNrHnmuiZy9fpppdXHTpBo4rULPAXkY39xGNvJg7yIH2KcQfOzEO5r9Oj8NGlSa0TcaLa5F73j9GviUDXiXVY1HoIBXZokuiZJIwUqtcjkhZGL0ALQ6yCcdZJcMXzEg+jcyvqfC3hwgIym0XL5zFGRi507y4ZrG3b0MtlwsW+ZpmWySN0HWPixWkZLzjXdt31Orbd8RoWnjpAq9sgbNfPbqO9UEjhMo90szWHW/Ov4VD7WapqmdM/sI/J/1YlrCzgz5zE2bSqo/JCwQShS/SSTbjsrjbkxsz8yoNYm3MM/PCLK6gFnotmrg42OlfJffkykbrWr/oaRMiVFTHX65EplRnccBWlga+xxneBwugYb/ynv8hDf/2XaKdqDLe7JBM6Z+KYkUpAZng9Bzel6egXXtPNdzuoKCZsht964zUuCyzNZsxZz7K/wJw3Q7ySBqVnNMAHXmxgeT2HWIEjp4n0SdzpHnem34dSMa/y2kjr13Gf/nP0ydsZ8LYwZKRZ/sqnmf2e19LNlBGWg6YU8cnjbKpmWFjfRQYQ132qrTqDiUuniAL0I2fWj2xnqjqHa3rMvvc6hj/457xqZB33bh1mbj5mLH8XUhxH0COKW2xdH6EbeeKpj+KK1zBU2sifJH6Ff9z8//iZg7/FR/UcXHsdWGlw8ohsmdzrJgln23jHKqQXTczJFn4ygVxJm0t5s6S6XRDgJVeLr9kdEy1nf8P+r7HGdwu5stA8uqlf+MA4Y+LGPRSKglFiW2oP675vK+6+6/E+/HNI/zjK2YMQGnGzX65UqRiZib6jfqRzI1DtS191mULLjhFVPcwwRBomMWAbOjcXLJ6sZ1jgWcrCIWKQzNggrw2P8/DSGMc7JR448ChT7/hJNCOF5dUZnn+Ebq+JYezFFWn8uQPUTx3ms50k733LetJJE10z6dRbLJ1o8Vz+JznwGp0ThsuvbiihQkUk59FcnVTDIlm3MEYcNPvSDWxI2Zmzr91kyMZf+GUWZ5aInm4RNyO04ibk9L241UUyuWW884xhW3O6fRuY4+uI2y2iZgt9SEfaCYSjM5HYwOHOsyS0FG0zoHTtVmgIdM1CM5oEuR6hA+Fohm4Apn35CmjLTIbU3XfjnThD7LlEKkZ6y4jeKWQiBC+JDLpYukA+f4iovBOBCdInRuCYFtV2j3KUoektEQodLZYYgNAVOadIuTDKaGEv/qlTeGaOwDTAV2iaQBiX7s16MQkXFokbDeJGA710/tVvLnesbdtQAkQigTBMjLF1ANgj63H23Yh3/AhCyLNOzNLkeoQQLB8+RlrL0kRgb9uFSJpo5QFELnFF6AauT2zhaOcgBa2EOyLQMnlkIoV35gTWhu3AisMtdU6Em3vO4O9oCE0gpCTuBCilXrR6HAYBRmp1cquLtSHlGyEHM8RtF+o9FipnqNQWCAOP3ODQxe7aGmtcVggp2XzjrRy490ssRAHPPXYKt9Vg384iuhGw6853ct3QK1Oo6sO/9HMsnDjaj1J41yuyyzVeATJ6liD28GOPmqiRAfSkBrqG8nyUiiBsYG/ZTFCvEUQaiha9ToV2zQM0YhVhSA21ax+uW0czmvitwxSsCYr56+kde5yqnUUfXI+vYnKdHsUlm7nNisy8yVLaZVtmC5q89BazcmODRF2FmwqQponSNFS9hlezaTV6xGoIIWp95Sp1lJ4bkjAyGNo8Ag/VbVKyC9zSHGQ5r/ijA3/Ch7Zshs5Ksaf8ZH8/37OJyp9USFXrWL0CQgsIHI1sykB6PonIwVUgfY38TBIlweyCc8vVk+mxxqWDKVbn0pa0GbbH0KwUyeuvw332g0T7Z4iXjyGzYyA18DsQLVP4kTd9R/vNmkVKp1x8PaJXSKAJAy1nUTxTZXZLP5Ag7jbYN15iujPDY0GCdXfsBiTI/8sNz/wor5GHqM5mMd72r1G6Dp0KnbDHb8wU2SIFndmnGFl8Ehm5KDS2F95G41gVe3MR3dYxTItwziURJXjTret4qyOxCwkQPoqYZNXGcQ3S6SR6yli1JS7B+AZHJhkIBojbIYZl0Z6SjNgdqmmddqNN5LoYoY0IfGI/IOG1zqvdNc/Ft4FWGiBYXETL5YjqPv6pJv6pJkIIRqx1RIQoN6Bi16hOHyEQBfx6kdCzyJ4RJE5WyS110a3LdyVGCEHcbKJ8D+EkCbo9SEwiHQluF9VziOIClaainLPQQw1kAEiUiAmUT7WlWDJc3KLFhv1Z9AB0XxLHIU1aZPW+jlvUaBCsVCzS/BgtrV99YePq/EQahWli79mDuXEjWvnqmXTo2SzSdpCOA1GIke0fu1EsM/rLvwlhQNSo4p0++qKy8zvveR2kLWKvjXvoOXr7n0D4oOpdcC//yAVHTxDGIcLQ0AYKzG+QCCmJahXa3TpRFBITI7TVSb0xmkKmDYSlMfCh3Vjrs2hpE+noeEfrL2q/16iDtlrNVD/PEOurESEFBCFCl6QTOQzDJI4iSuOXVurQGmtcLrz9F36Vd//Sv+GGt76DiT37OHwm4rnjHb70x7/H6WeeekX6oFRfPPuqm5Nc4WSNPF7sEaqIh9wHIGMhTA3NNECFCARC04maLZQA6Saw9Rp6bCKURCDRhIFtJRm943WkfuhDPHiXRscIiTWTWGpkF8cIDj5E+MDHaH7+D8k8fwY/bFMdaVBf5yMzJvO96sU+FS+JOZIiN58kV0uTWpYExTSYFkNYxGF/7hTF22l3x/GDEn4Q0/ISVDI3ERt1iAVWKHn7+A/iSsmnOUTv2f105k2WDyap7G+z/Hu/j563GXyPgwy7iChGBB5a4OLXF5FeA9UO0dIarVKb2miH+nAHI7Cw1mW++QGsscYFwDhH8qcVNsibq8EPxR/+ANk37kWm8hD2IOjiPfMR/MN/QWLPpu9ovzkjT3PARDXbBAvHCBY6qFhhtCISYYhQCqUUtxRcfmlHjqc33Y5rpuimM/hmkkZmG44Rcc+ugDiKEE6OKFacOHWCp6oxX6ilqHvLaLFEUx6aXmKjTCGPNtFtHSElum0wcsMYme0l9KSBXUwidI1YVJGhjrIjrMCAWCBTl/YCvS516maDSr5GLdsg8jRoNjBSEoSNilw0o4BmjxAKGydunF+7F7jfVyT2ls0Ep6cITk+RGf8+IEHc60eB7Mzs49H6VxBZC21zHvV4i17FpWD4NMtdGmMKKKAqbQzr8jZQjbExuo/2KzxVq8sUktM4c58iHnsbigSarJK0FObCk7SPnOQHfuu/8OEz/wtZ20Giux2ISNf2ERkRzoFPc9fBt3F43wmqIwuMp7ezI7MXgKDeQMgCSIXuKYziVVRE4WVO5Hv79+OfOoVMJtFTqQvUqUuTTZ/7LABxx8O/f7WSKYaGXhrAn+6hohB1zikVpg5eRNxorn5mrzjD9StjTeJ1g2/nI2d+H2lIGq+fRJ9+jNLsaf7qr/8zRiLBvje8hdvKqwKuX5tCym2jLP3eM6AJVBhjb1ktauK2WyuLBwEApnEV3ZsvE2PnKNGXDkIYk3BSbHv9Pez+8e+/2N1aY43Lnuvf8g6uf8s7WDhxjA//0s/SbT5Jc2mB3PCFl1hoLM6vjNNrTrcriV2Za5nunWKqd5yesHBvLJE8FZCXkt7zZ5j/nV9Hn7wVZ+8HUDJJb7FMZ1HhNj1kfWUhSoByIQyHGNFzPKkfp9J9gvcFP4Q+fivJyORNN3yA3Fie+z79OwxpwxhaklgDYuj6XcqJS3PxVNo6eqRTz7ewdZPOsI190qWATqitmpaOnQRuxQ+OkzeXcPUMp1smpee/QPqO97Er2sL7xNv4rcrv8rk/+k12HxjBr3vAMvKJPyMOAzI37aJs/QKVk/+PYzePAhBgs332f+AH90AvIjT7C9MyEAze6WGtv3zle9a4fDHE6iK0oyXRvkZgXy8W6Xz2h/tvhMAcH2fj5z7/He/X1hzQJa0dg/ilFHwqJphpoaUEPU1DCYFMZKl1QzYMWLx+XYJgJYI2jAyWrGuYVH9NN7uVVGmA0M6z/KX/Q/Pos8jyO6goDcNtQbQAmiQ1+jrsdSXskgAVoen9e94uGGjFLJaWJDw0Tfpjf0P6nkmO3NOllQ6YODBEWA0pvDFHPF1dOQ2X5thpSZsg8vE1H+9Mm0U1jIx8pDOA0BIYIku0VGFwUGdSPXFebV4ZVuUrjD64qq+ggm7/RQzKi5BCMu5sACnQN+bxVIeo1UAFJm6iry8i3YDIizHsyzfSDV4s1B82arTsTdCrIpqHiSmiVALbkkyMpWlXlxFCsM5ZT2AsoYgADSvYQrK7A3HkKL2v/Bt0X0cPCwRP1FAr0V3dZoPQ6DsoLa9zyXvILxZKKYIVTbNzr9GrDZEwse7egbZxALlxAH3zIM6114EURLVlqp/487PXlhACOZAi9lY1zPoioYB2ZTweU1qa7x35IBk9R3NXmaf+85voTB0il0zhddqcfubJfqGEbxBNaY6lcXaXIFb4J5uErVXtFLfdRljnRLqZa063b4Z580as1+3Ees029NH8t/7BGmuscd6Uxie54Xvezbqde0hkc/jd7gX/NzC+nrFtO7npHe+52Ie/xneZEXsdEg1feSy6c/1CQlJgjW8icc3NREvHiHt1RGzSOrmVzsmtRJVVA1IRI0LoLUqOtU7yTPd5FgoK7+DfEbUW0KRNeFLg+S6J5RjbHsBLBnTyLgrFbG2RPQN7LuIZ+OaU2gV0T8NN+7T2TRI365RPnHxJ9/PCUoRSgoTWpFgI6Cw9jzt9HF0a3GPfgmWlOXnX9Zx+z9swShly1w0gTZPK7/wuUz/3q4jhCcZr/xGzszr/MFozeJ0EKoTQ7Mti6B4YO7a/QmdgjTVezOsH38mPTfw8Hxz/p9w98Nav+14bWLWbZT7P5F999Lu27wR9ySovbyNSswhTg6bCCPr3hgDiZIljiXTf4RZGCD8CU2dm6LU8/TcjnOzeTmgXUd0a7twJCr0qrwuOc4N8ih3tw0CMHN3I4Nv3kb12DGtiDN0wkPVliGOkbmFpSUQQwnKNYnaI9gYHPxEgAkGyZmFtSHxdUbZLEXslwy5wImTWxG85uN0shC2EmcTIbkFfnsNt+7Tl+clZrHkvvg2MkRGSt91GMD9H1DyDvX2SuBcStXykrVM0y8z3TtKlR/qaDZj4gAMKktM+2sw8bcvAuIzTSwHMiQns3bvpLNRoN+q0omHWAaI3B5ZNrAr4ERTziihYwOt2KBplaqk2nnoOozOOCJMoIvy3/jDxf/8Fxr9YY31hPXqxSKX+PKUf2kGvE8IA/VUBXKR+eZ+3b4vzSC+NWi20YgFtYgL7Kp50CCHA0BBGX2xXaJLUHa9GVXt0nnuM1v2fwT/xI1gb+0UWRMYmjlYncnLlvhSXeSGFFxBCkDeLJLQUXqtGFPp4129k8+Aoj7s95o4d4bff/25e/xM/y9ZbXvX1v9clxnASf7pF3AsJzrTRt/eda4HvEWsGqUUNESqSo2ury98M+UIV0yvEobvGGpcSmq5zx/d/gMc/+bdMH3z2Fd236SRe0f2tceEpmgOUrSG6UYflYIEt63cSLTSRrkn6hjvRxksEiwcQ9i0rSQkKZAyxDk7cn4v4isgLOXnseay8Rs+ymEl3GJ1/lOSGW4lDg6U//xTr8jcQB13aqS5WVacqaqRlkhuHbrzYp+EbUnSGyLSn8V2f9pb+Qq/uuRgvsfg2vyxJFVMM5iKK1jzTk69D3P/X5F7zXigN8InC/0AKicgL4m3vIHz64/jWGYRpQhTRiu4gpX+MdUcO4pkDaIHCrBVxPQsMCI0Vp1sgkGs6qWtcJF6IbDOE+aJU0xcwx0YZ/LVfI241kY6Dlv3uzZnX6euIp5+iWzBodg5SWr8bd6ZGbrZFayxJT9NRqu98Eyom63t4gaJnJCBT4vR/+CtEt4u5fJwg6qKa0/Q0mx3VIzw4eZyuabPh7b+AbWewOh6hlGhBiFSKRAXCToPmcBYUZBc7DP/tb2Pe8EFOJqYBUIYiExsYI8kXd/wSNbWKRt9BGsYhqqwjKjoiDFAxhLXTiGQRrdXGTFvMq1vPq801p9u3gZbJoKIILV9ACEkw06+IGLcCGICcnkdqOuFMi0jrEDTbhLpJu9iDokm2ZqABhnV5R4VomQzus8+iAYmwRayHtDa8l0RUR+QTKDeN6jVo9xRbdm+iNjdLbqSI0p4nka/SiGOczlaUqkMckRy3CGf/CJH/FWRCR+iSxudP0W3aZOp1QJAMWqBdRREiLyPsNlpcJJw+Q0g/BfpqR18/cPZ16s5X0XvkKTgg0HJ53IPPn3W6yaSNdJJYW3YiNIm0rqxItxfYlNzGgdoy8VITd88EpZpNujRAp15FNy0qM2e+4W+N0RRa3kKYkuaXprA35xG6pD43S27ietrlfnquvMyfaWusscblzwvppmus8Z1QMgeJlUIgmOqe4Prc7ch8glgIkjfdSu7672f5Tz+Gf9qHKEDYABKEhooEekYn7MYIBJPVjSSLWWYKM4wsRQh3P/HY9QghMIZuJG6egZTCzfp4hZAkaSoLXXYP7L7Yp+EbkvZTxEGE6emobAZzwzYUim1jO79uWzO3kVhrglQEsY29LkXr/grOwjRyaQZ362ZyVp6ImK7qkdt6C9Z1guVPfIKo0WT5Ew9TC20m7vgkvd5NhGqIFj+IEAIlIpIVExEGOI0Q9l3e0j1rXLlIy6Lwfe+7IG07hTJiKiK9FNNMNSlbGsIU6IBUIQiJQgEaSoAhQuxmjJ+IUVKgxTEa0GkE+HaEq1tEUYx5zV5eo91AduM4jj1It3iUZed5rI6HFacYOTRK4ennmX/tbaSWOv0AmXqTuLyFyK0SGpBfSKHFAtPVMIr2eeuUX0wCFbDs97PHkm8Zw2ucIa61CXwDkSoSuxXMKEEY1JDG+S26XVlW5SuIzKTxT5xABS1EQqIPOkSdfvrogDVE2+qiZW2cdQOoOKQ54JOs2VhLHvZsE1+Tl32kmzE0hCwWkaPr8JcqxLGi7SURcRNV66I8G1vvogIXf+kUtflZBsxBlv15Kt4ibuoAQoHOCI3JHSil05t2aX/2V4nbPv6ZFv5sG1fL08zlaOay2E67X21xja/Dn5nB3LgRfXgYY3TsYnfnkkImLVJvuI2oVUcr5Og999zqd1kH/9QJvCMHcJ9/FlnMIRLmi9ImrwRK1iDVRA9PhrQSMVkl+b5/8x8IfR8rmaK5OP8Nf+tsLaBMCBd7BGfaLB85CYCQGpG9qllh2ukLfhxrrLHGGmuscaGxNYeiOUA7bBHEPhV/EWKFavbA0IjrXco/8f2M/bt7GPuPb8JO7kcFDkoJCCVaUqxEcShyWpnt7Ul8XafjSOK4Ab0mQk8gNAtjaB/SSNJLBpg1SdfrYchL20Yw8g5arNHJeYS2RatXIThxmDSrc4JOt0W1tkivWqPnR1jSx6bNoHOM5k/+B2bOTDF/8hkGJwb4qnySU+EZesrlmOxR6VRZ9zM/g3RdglOnCBoCldlEaWIRsBDoCCXwnID6aI/aREiYWrMP1rg6KVqDNEeTeDKirrt0n36YeLGH3fbo6CYKhUBjJdYNIQXrnl1iYK5NrCBM5fDyJYzBYURV8PjENaQ1SaG8g4Htr8bYuAdLmURalV56hvrwMn54hOTv/SRdO2Li8Dw7j86x/aszTJxsktn2emSqhClM3JSP64TQMDFGvtZOuDRD3axznr++9Bn4kd1EkQQMhJ4AYWKENt3qErWF9nm1ufZ0+jax1m8gqlbxjx9EdWPChR5RrZ+iltIzOMJBlGzCYR1dRvQSHbpZF2/AInGmSWQYSO3SKwP+cjDXr0c1m8Qz0+iLM3SMCeayb0Sc/BwAsSoiRcTgQILhAYd2tYKtOexI78XHI1Yxkd7X0gqcNJpYrdKUvEUSVV28QzV8fbUKkSPjKy4C6bw4j1UB/+RJ/BMnCOfmMDdueAU6dXmRuOEGnD178A4dov6xjxHW60C/mELc6z8whe0g/BjV9RHWlRUInDdK6EKnO5mnOuHQ+epXcTJZcoND1OdmOPXsU3RbzW/4+3p78ezrh//PX9Cp12hMzRKZ8dnPrfNc7VljjTXWWGONS51Ba5iIkG7cYcmbQ98yBIaGqnUJD869aFuldxi963OMvPpzMPznHGk+ijtSBfoV07d2xpkrRvzfuy3odHCf+zuEbiOt1TluJx/g52Mc02Zj+tLOWNAHExRmU3gJn8ZQTPv6flSev7xwdptkIk0hX2bTxC6eP9nqVzuXgmw5iSPbxE4WLzlK0JznjsJWPjX9qwxoBTbZm9DNcR568ku46f4CaNRqUfvEJ1ECovTT/NHA3+BN+PTSq5UDbffytqvWWOPbpWQNgi7pjmepj5h0v/oZhLRIn67Rc/6WbvIgXedZ2qknaCefJB230R2JtdwFXaIsG+UkiVNZnMo8uzLbcV+3F7lpOyqTIVXtoqIunVyl7z0SUF+v4+c0KBapt5ew0xZmyYDQQCmLKJegsq5JL9kPPEJG6INJONekvTR9bljaqtPNjfu+CqPkwIrjUk8NY7gW9r1/h+qtOd0uKMZovyqWcmtnP4safaebEIJdqWuJFjqIgsOJm5Z4/rbTaL5G+nCd9CNnMEoDL9nu5YR0HOw9e9BKJbSZEwD4xgAoH2F6KH2ASBXw/Jh1oxna1QoAO9P72J2+lnI3iTFzAL1ZAU2HDUOY6QA0jbh+huL7d5J61Si+E6AFAbbbxtYMhLyKLtuXkV7a2/8E2DbWli1YW7ddwE5dnghdJ3nzTRjr1qG6XdwDB85+94LTTXNWKr6aGiJ9aa8yv1x0qTOe2IjViWlvLdOtLxJMT/Oa9/8Yw5u34jYbfPRf/cI3/H3P7NDwl4lVTFJkmD9+FFslzgoYAy+pYbHGGmusscYalyPrEhtY56zHkQn2Nx4CKRDGimMnCF9UgCj3/p+h9mSXqN1jdGuWoQGDqeoROkGDMA7Y09tCLkwxlfcgYRPXp/DPPIxSK2OoilkcqeH6LkutKrvz17xEjy4drPE0m8t7yC9nMAKNqXdMgNSIqqtON9/vG6upVI7lmTnY/X0wsBNDeFyT+hzqtjvw7ngrxxY62MYpfrIyzd8u/w8edB/BEDp7Mrdiv/NHGf/V/0ruje/BnZ3lsU9/greM/QGfKN1LNBrRSdchhmTFoNC4suZta6xxviS0JKNyCDs2aewbJexMEczsZ2HDEq1MDzNSJHt1fOsEvdRBFpNNpCXJz3cYPrCEeKHAXK/Lxoc/wz/fuJ43x6syDcVql5EzJ1GEyI6P5gYIoVD3bGFy7/MczdTophoYI5Kw4OMZAUEpWO2fq5OZOIE0Lo8soqRMktTSmMLCi1aeY7ePohX7Mjoq8jHym3Huu5/M7/+r82rzKvJefHcxRkdxrr8ec2IQ6bQxxlJETf/s95OZzZi2g4gU9QkPzwrILiVJnW6Sm67hx8E3af3yQUhJtLyM6LbIyBrJeI7GuvdAGEAgUCrJUqWLEIpeve90y5tFbi2+luEFibk4hzE7Tap+is6Ou9BzKeydO/GOHcXZVkDLmIQJk8gwcO0UjtDhChG4/24TLi3hbNuGVihgrZ+82N25JDE3bsQYGsTeuZPWffdz9LV3c+z1b0CFIdbmHVibtoOhga4hUlfe5G3MnkRDR/oRj/z593Fg+gEm915HqlgiVSjidjssnT75kr8NUxGdsMGSO01ZjbF0+iTjIztRvQa5KY38yRBLrmm6rbHGGmuscWWQ0JKktSxZo0BSS9MIaghjJQpeAdFqpLc+MArDO0FoeHWXRP1xnjx4H8veLFVvDj2SlKMBMoMboetCHKDqR1GqR0xE1+4RhiHNVhPXD9ha3HpxDvo8kQmD4b2bSfdS5GophNDp3L0Pf76vD1trLLGwPM1ibZYgDjBth7bIQ3YdFLdAfpIdqfuxVAPPHMZ//KNkh/byQ9ECybRNW/WYjRaJREwjn8Z/zav57Z/bys+8tcJkYoycU6Qkc/i2ID+fwghNUqmrSPN5jTW+hlx6hLxTJtUR+HvXIVKCmY2LFOczWGqaiaWPo/s6lp+mbtbQ0jGJpGS41mUoinCWzmDVlrA7TSqf+xJewiDZ7JKpNknnOjA2hTIEcdIksg1iQyNeXyJTNLjzdSMs1xdZaE8Rl12sokY72yO3lKSwmCDTU9jFZRDyxdlbl6hJr0uTTtTCVx6eWol0G06hpS2IXVTooSIf0kVi+/zsxTWn27eJXizSe/xxek88SNxbuWLk6pVTMAcQXvxC6jRCCTo5l8L+fji6uEIqXZmbNmHt2om+6xraC11a+iRdZwOCOiLjgJEkmUoSYZIyX+xo3HzaYt3RCtHAMFrQJLAlfs0FKYiWlwFI3TaC2TlGtjNN2p3HCwJE4io07L9Femnv4EG0XA7l+wjbRlzmqcsXCmvrVoLZOTB0/KnThEtLBFNTxN0O3tGDxJ02xDEiaSLkJToSfAdsS+9GmRqxJoh1Qa23gBCCsa07CVwP3TRZPNV3uqk45t7/84fc+3//kEc//jGa/jJKxRjCQimF6kYk4ySdfER9PKK2Xsdcc7qtscYaa6xxBZHS03hxD0vafV23hInI2v2CYUH0om3zP/ghYjfAb/kYhmTYFnhRF0OzCWKfvWKQewplxGAK6RgEUw8RmzoSjfkNdSrePLphoAsDR3cu0hGfP3rGojSXo5fykb6iOZpERSEA+ewAum5Szo9QSA9QGBimPj8Hk3dCHCD9JtJKYsR1iH2OOu/idOL1nOI2ipnbGLn7dp6xp/CJsDHxRMiu3F40BZVehe3F7SSERaPQpTbSpj7YIZcsXNwTssYaF5G0nsWNeiQG11G5fT3H99RpDPSol9r4QcimM6cIDQ+BINJbeHKROBY4KYudsaI0d4zMg58jbtQIuwY9UxLqGp1MgkTs02ofInNgAWumgVWPGNCKsHsY4oicf5jywGkGikNIKbHHTNyBHvWBDtVyF93TMXPtl8jgujRtrXM13V6IdNOzFnE36NvYmo4Ku7BhL8I5P9tnzen2baIP9stji0QCFbkEZ9r0nllCnbPqte6pFN3/+SRIUJoi1mNKD/dL58pk8iXbvdyQCQfvuQOEzz2NbFQRkUs1HiPuVFDNHsrLkE8LEmaIHTWIVgZjAP/ESeQXP4VfHKRZ2MpC+Q78iQ24zx3AO34Cf26OcGmJxvAOGsl1RGaCpJ5B5q4Mh+V5cZ7Pos4DD9K+917cAwfIvf17LmyfLmOsyUmiZhP34PMEJ06C77/IoSltByKFuW/iIvbywvLOwntBk0gvoh21ABjcsIlus47f650tqNBrt9j/qb9j/yf/jq/+vz8nDHyaQZWCPUSSDOZzINuKKLkaKm7LS99IWGONNdZYY43zpWQNUgsqLHnzHGg9hVAK1XBRtS58jdNNSEloTpKZyJEbz3HHTUM0giXyZpkcGfYFo7w9mWPbr95N7s59+DfeBJpGRMT8aIVUqUQhk+end/yzi3S0L5+SV6Cd7tEaglY2pvvUw2e/63SbxCqm3WlSnzpDdaZvA5EagtYstuywMXWIQC/STOxiLvFaZgvvYGmuR7ft8ba73s/7Kr+AqzzKWpGb2MZ7DhV5h7+L377rt/vFnAwDze+bs+lE6WKcgjXWuCQYsIaohRVqfoXKriLH3pggdBSRGWN2DGiMIwhxzSZdw2U5N0PUCOjNtlk8WieKFaHt4DppOpPb6TgWnmPioKBbxU0YNHcO4o1m8XIa9biFu+5GyKxDc5cpZ1v4GYU9mMFNBbg5hQz792YyjPtRbvBiTbdLlBc03QxM/Ng7+7lMmoCJ1B0YmCC+4dXoP/HD59XmmtPt20TL5bB27EB1u0T1Ff0CBeE5KaapfJF4vs3OPyry+v99A7f9zS5U1I/2kqkrw+lmrDgfAUYHACFopq+nIkaBfjGFIJKkkyYZvUN3RbweIGo00Lpt1v/yP0KLfer5a5j54C8hbbsvdv/Xf4134gSh0TfkDeWiMMBci+L6WsKFVQ0NvTz4Tba8uhFSUvqJn0BIQTA1dfbz9JveRPEnfoqRP/hvmHdsuaIr5KaKw+ROtYkTBvOTBoHnUhhdh2aYuK0mZw71K7u+oMEIEIUhXrfD4cajTHcOY2BRVmMMpjYROCsLDUqtRbqtscYaa6xxRTFsjTHubCQiZM6bxtdXF4/PTS99AevO97Hw0BSaYzC2pURoLOFGXRJ6hpvd7ThCYzrogJUhMAx0zwAJtfVdTN2gWq8y4JRfwSP8zsiYedLLCSIrpnLzOKHbJfb6kSFb3vw6hBCkkhk2Te6mWelnsZAdB90Gr4GTMdHiLkpziMXqIl6v7WNoBh9/+8cp7tiCJiQ70zvYmdmDcWIGwhilFK2S33cqNAV2ei3SbY2rl5JZJqWl8VSPdm7VVh5/psyu+yepZz9Idq6MUBq+VWNx3EDbnaedsXhm5wCze19D9a0/ROWdP8ry7s24aQMRx+T9HkE4i6uvRoLogUagfM50T6EyIzwqJtgvhnl8+Ak+vvWrfHrbo5wqzRHLmMKZNINtQL6E/X5pBrrhyAQaGgE+nZUABQAtu6pdrUcG2eUBaqdPnVebV65leYERQmBOTGBt3UrcncYYSSATOuFi9+w25fUbGN2yk3QvhR5rJFo2XVujncuQHh2/iL3/7mFt2ULihhvQh4eRM6dwZAst7tGWOUiZ4AwQxDZLlR6Wpb3YkG/0Kw5Zs1MkujNY7gJeZgRjx07MyUm8Awfpzc6jRP8mNZULGKsitlcR6lssC0StFubGjdh7dqMPrTndvhn27l3Y27a/KNq09CMfovxPfxo9lUImr3zHUdFNkJluo/kxS6eexkmnz1ZTblX7VYTb1Sqm7aCbJlYiidtq4cVd5rsnUPQNDSl1ZChIzQtKS/0KbWusscYaa6xxpaBLg5JZJqml0YVBxVitlqnCr3e66aUh5jyJ23AJ3YAbgxlEQYeki9dOMxe5POlXce94F/9tbz+yvF3oga9oLC9jBZeH0PgLWBMZNs5NUJpKY3oaR3/tDUSt/jnSUg5ixapO54pUZ1YWOzNjUNgMZhrZW6Kc75GOz4BYnd/7vX6QwnhmHD2XxMxnCDsNbkrv4033dYg9nyiI8JL9YAfD72cfrbHG1YohTQatUYpGmVCPSSz0SJ9osekBk4S0kTWD9FKM1ctj+Gmmsz2CJ2do52z0jg9RhOy08TfsopvWITjB4tBHeXrd3/MPt7bxwojEmQapky0M0Y8Eawct/ih6iqcn2jy9yaMqIrRIImIgAqttkAggOTB/zv196Ye6JfUUEf1I5k60Wp3UmshgjqdBl8i8idIhZZ1fcUz9gvT0KkGaJt7hw+jjRZTvY4ykiNurkW7p4gBRz0czDQI9QGs1SLT7f7iGfmX4O42xMaJmE3N8HVIT5JmmEo8ghAVtHQWYuiJRdEinFSfmZxne3BeH1bIZEjdcD7rO4PK91LN7wExS23Mr5WNPghDUH36M3BtG0S1JJl7C1cew9KvH6SbOcwnAP3UK//hxAIz/v737DrPrKg/9/127njpnei8a9WZZttwkFxnHxpgS024wxZRLLiH4XnD4cUmcUGJyE2rA1AvJBRMImFAcQ4DQbByKq2xZsnq36sxoyul1771+fxxpRiNppLEZaSTN+3meeR7NLuusc/TOOWe/e613Ncrw+lMJLVpEUCmD62LYNuFlF2E2NEx3t86qBqOe3FASNPyX/imz/vPfWDmYZdcVF1Mplgh8n+zwIOViAQCvXMa0HZxwmIOFXcwpHybm1mL4mkxdFi8MOn9hvKcJIYQQx0pYdcSsOHESDAdJmjkyouokSTeAfVacjqE84ZhD84tmc/jxPTizZlEu+pRLYR7IDfJD65+YXeliT+gAAy1DWMNlugoWi+euPovP7A9nRGy6n2vjuUv3EOiAVFeU9P40DdEuVHgsgRiN1lAeLPL9v/8AWsOlc23mNAegNd3Br/HjUAlc1pdeju3YFPNj11NGTbhaN1uB09JF3R+/geT3vo8X1JHoj4EBoYEsqlm+h4iZLWrGyPkZDGWRbwmjKgGuF8PPBWAZRLMFoJVADaJVkYfesglt7aZl34vxtYs13Eelto1wMk2hdQjDVwQqwM0UyHTVUWiMYJQD2mjFNwvk02kqyqMYLoEPTtlC2z5lE4xAEViahRuacRY+B0ZNtZPH5tzO0Zv1tnLoCs2moo8rQ1TjoAEjYaN8jY5D3J3cYBdJuv0B7O4urO4urKYI3qCHN5jEbonAiur+urZ2CgdHqO1shDL4QTVjGgBu/YUxBNpub6e0axdUKvipNO2X3ciB1GIsP0cFjR11Cco1jKRSaMMkUzw0em7+iSfxk0ns9nZmHVjDr2a9DdfPUlm9GOs/7ydcKZDrmksyWq2vFS8mcQJ1QRa4/0Mp28aZNQsMA+U4pz1+JjNjMSiVwPcBTWHdeqymyd2luFAsqL+E4HP/yprPvhQrXWSQYbr7D5Pcu5dEZyepgT6yyWFC8RqK2Qw1jc0M7ttDuVBNwj1S+A9yB4dpSWbw3JcBCieYOclwIYQQM0ej28LA0CEsZZNUgxzubGLZyGwSew6jFeD5KNvEbEkAUDDr2Jnp4/KuMH6+jOnkqIworLBBJF/LZm8YSNHk1xHBJR6Jkw+GyHbFaIp3Tetzfb6sxjD+/jxNLQ1svziPnSpzqDlLc1styrEgZFFIpwmZYYqZDP27tgOQ8BqY09gJBJi6gKEBNHH6SBfbGDqQRl+qUUqhTANnxSz0UA4vMDCjtRS3bUdfsprhzurUr7akOmcv4IU4WxJOPZsy61AKnJyH059BF4YgGkfZJlbeIZxroxjeCSqgFAOCAoNtm3DzMVRtPYZpkWttpJA4gF/OoKMuRtEDPyB0oIIRbwezQp91EGrGHtssGRQiHhXLBxTa1NglRSxrVf801flznaCUohwUyfoZYlacgp8nbEaw26NU9mcwEi5+qozbEiMRn9yqyXJL4A/QdMcdmNEYpc3PjG7zRsaK7TmhMLHI2AgaXax+MFQsg1D8mCg9jynDwGqqjqyqDAzg1iaozTxN3qrD0gpyZQwrQV3CIR5W5PdvAcAvlfDTaQCs5iai+b0s3/S3FJ0Gkr7N8J/dRd9Vt1CIJEYfK0x+bKn2meYUI3Erg4OUtm6lvGcPVsv5UwdkOs36wQ9Y8PhjLHj8ceb99jcoY2a9FbqLFxPeO4JR8fHqIqSWtmL4ZdTAAAe2bKJv53bShwcoZtKgNenD/ZRyudHzcyPVKahWyBxdtdn1z68pMUIIIcRk1NkNdIRmUdFlihTZFdvHntBBSBbw1u7Fe/YAlU1jN5Ut2+aJdYdRtolTFyHclEJXbLx0HH0owatS87h98e38sX0jzcVGUi0Fcl1hAgWNifOr/IxZU73R27uuFUxFuSnGLnM3yjJQpoGRiBB2ItQnmsgfHisxs3HrMN51H4Qb/g7aLq0mCYwi7bED2BTQGnau6+PA9kEObB/k4O5hPFNhxeK4rb3ook8uPVbP2C4jN+XFjNfstOJRwdMe5aiF25emvPWXUDHROU1NMkIon6Bp4A2EMnOrNdVMj0J8M8nmJ2na+CRNz6WJpEpobwfEQiilyLXXkOuqpdiRwC5auNsqJzy27wZU3IDeAcXNv5rDwse6mfVsK1YiWT3AOMlCCufwn2xLqJ2cn+FwqY/BUvW9xky4KMsgGClVa/n35anszZympaqZdaV5BkRXrcRMuHiD28ECbzA/bn/33KVUghJ5L0Ol7xlKlkk+GiGSSEzQ4vkndt1qzKYmguFhfKcD1yoToMhp0JZBUGkgUwTTUKjsAQLfxx8YAMBsbMSd04sCWg8/jO1VL+yT3QsYevXb6H/7X6J0hWZvN93ebphBU0uBSd21Kz77LEE2i93RQeTKq85Cp85/xjGjAY0ZODLQjESouf56er67gfD+FLnZ9Qxe20uiUJ3O8fi/f5fNv30Yyxmrb1c5Uhj5WLGOFvAD7KEcNb6sXCqEEOLCo5TiqvrrWBxbjmuEMJXJs407CThmeukxiypce9ubec0HP0654RJ8QiQuqhBq7MewyxQGFmI8sY5IYDHbqM7kSDXlsJIF4rtGcKzQ2X56fxAjahO9ur1aT2pPPXaqzEhnCL+peiNOhcZuyMWiNdXvtUqhMXj8ge+z5qf/AeFGsKrfIer8zayI/jvtziYGnhvhuU0D1Z+NA+wrgh+UMEJhovOWkc+PjLYdwhq9CSjETFXvNFFj1QLVfFbbglWouR346QPowCc64OJmDuIUK5gkCOXm4KZbMSoWSkOhK4zpBZilMr5ZOuljRNI2tcNxYtnxNRRb9tVRMxDB3duGtauROevbmPtsK+Ha6o36oyPdTlen/FzR4naQsOoJCFifXgOAYRiYNWPXRsoxKO+bXNJthg4bmjp2ewdWcyMqpDEjHgQQFD2MUPWlda0ItuFiGy6FQgbX88lXKjjhC6fYp93agtPTQ1BfT/FggajuJ1HeijK7UZ6Dpp7AqWUol+aiRc38/Cv3sPqK1RAE+IODGI4NGkLlIeZkfsPIrD9mKFvBqwSAxsQjFiRRlTI0nF9fRs6G5Pd/QPiyFRhuiMiKS6e7O+I8Ebn6amof/h7DI0XMXJlcd4LWfotkfYxiLktNUzOlQo54YxOZocPYoRD1Hd0kD+6nmM0Sb2yifk4TB0yDSkMUMyUj3YQQQlyYGpxmrm28ifBIhL7cPkqZNFtr97EoWU2cHZt0a5o1u/qPERf6XIK9j2O6WZQJOqe4tW8R7aWLSJcC8uE0nuuDG8bInH9JI6UUVn0IHWiiyRAlt45yqo91n/xTuntW0Hj7n1FyNdm+fmpiDRzq2wOA1j7P/PzHhKJxLnv5P4NfgsNbUfl+wKfLeoaU10ouGCvHU7QtKlYYKzmI095DaX8fiYEoZsUg7itJuokZz1AGcyILKesigQ7orplDIfwMwdA+lOWgTJu63UV0rI9IqgNtdHC4/jcYAbjFKNlEgTmP9tNYGGT3/CLgYhQrOP1ZKvURYiMBkUyUWCiBrQeImNXxWzW6hjgGDXtcep/uAlWdYmpEiugajW5ciGpbcWKHz+Ep4c1uKwm7Dl97DJUHCHSAoQys1iheqgSVAO0F2K2Ty+nISLc/kN3eRnHdOryBA9W6DXUulcHC6H7XPuY/olIdKVIxTcLR+Nnu6hljz5qFPzKCEYtR2t+H449QMhKU/AIVx4JEK/H6FlRQxvMCdH6E0v79hJYtI3TxxTi9HdB5OXRexiK9iVWL6rmoJ45lGSgFoUqSi4obsIwGCE5etHam0pUKQS6HLlfws1mil18+3V0S54n6172ORH+ZUmMEL+Zw+EXz2PfKToLrmvBmhcglh1ly7Q2UVRn7T+ai7lhE+rUJjKUNOJEIxVwWL2ER3zxAfPMAtVw4o3eFEEKIk+mNzCet0xjKJBPKj02PCjRaHzeCo242NMzDcEKYsQrKCBMUsrjzVpF6cANWwsUzvdHD7fyJU7bOB3ZrFExFLBnCd3y05bDjlbPx8lkI2ViYBErT1NI57rxiNkuy/xCVcgnmvQQWvAyMIzfwNETU8LjjC+WAwAuwmlvANCiEyqSacwx3ZHAjkXP6Al6Is+WK+mu5puEmrmu8mY5EL/aLbkCrAygrhFY2Lc9p2jbvomYwR+1QP4s2bMbzvSPjzzSG4aA0xJ7LE908UL2hYBv4cZdUdxg3D872gJF4kryfJe9n6QsOsthaVJ1mrgKUoVGuh9WaJohFUHWzoWUpRx7ivBCzarCVTaB9HCNEppIEwIhax7zvQ+VQfsI2jiUj3f5AdsuRFSv8DHgRStuT+CsK0FlNqrlOdPTYivIJlKJsmYRiseno7hkRXnoR5Z07MWpqcGb10HiZSdFopajK1Jc9tKEgUk9jwiKZLmNXsmS2bsU7dAjv8GHsN/0xPPVktbGG+QDMao4wqznCM9/7MsvrngMDAr++WpR1Jjr+i9wR+bVr8Q4fprxnDzUveclZ7pQ43y24/0c4wxv4Rfo/oeJTXtmJAQSdIZqbOln6ulewNbUBFtShbBMNtL72Sppaq8lv33yOUrNBuSFCLH9h1KkUQgghJlLnNFAI8uQdH9NT4y8gfQ3WcYmf5iXQvAR3zR7S2/ZhREMEhSj+SIQgm0Q3ONipIl7YxlbnZ7mL0Jxa2v/6KvjwIwx2pTkwr4gVjdG/+0k6asKYpYB4uJawOXDS84vZDHa9Cw1zYcXbUU/+X3xsIkYK/PHHDgUGkXwFZTkU6m3sAlTCPjG3Rka6CXEcwzTpuuwKsvvTDP70J4SW3YYOfCBC264kTat+Rv9IQDmbotIDKXLoXwO1rSSX7gfAzJQptsaPXIsqQpUwTtlC6eqKwkeni9Ytbebwf4yANtG+IljVij9nGc0Lz9964zV2LTvzWyDIkfJSJJx66l81j7pXzOHAh35fXR1zkkPYZKTbH8ieNQuruZlgZKyAqpccmwMdiYxdiJqFDKbWEAmTaG49q/08k+yOdtyFCwnSaTIPPoTVuYyG5ENksfA1UKzg+w342qC2xmFBuyL50H/hHT6MUV9PaE7HMY2N1YUKAp/Uvm2jv2siGDMt6XaKu3ba9xn59n2Ud+4E26b+bW89e/0SF4zO2gWE+vNgj9VLtLoSpP4ozM/678d6+SzUMfsGS/0Mdxaxw2EON0K5IQIVn1rnwliRWQghhJiIoQw6Q7PwVcCh2BCFY+se+RPPxlBAqN1GWQ5mvAVlV2/OZxMFKolq6ZTawvlbQsVwTZQNdQfjqAC8RJiRNhsMUHURQm6Y2d2LMU6ygmExmx37JdaKdhPVRRUSh7l8cT8rLx4kmqjWURrywLp+AamYzb6LS1TCPo07LFpLDTNuUSwhJkO5Nk7nLILkZoqbHsAf3Ep5238SJL+KYSq6WsNE/bG7B/lwAX3M5bbtOdVFEJQilLdp2VaDChRxPz6acFMonGgrre+7io6/v4a2uy7F7E1gnawW+7EDSc7x0alRc2yQVN4fq92mLAO7+0iOZ5KT8GZYBmPqmZEI4UsvoXwgjT+8Had3CV7/2DBDNxJjiAF0uQCV6rTTcGsbduj8/WA9nlKK8CWXgILK3n14ofm4kY2MaMhriIYsVClBstxAVPfT0RpjMDWC0zWLUFszVuSYMHTGpuP+5l+/hvKKZPMRXDdKMYgQdiVkjxq57zvkn3oKs70du7WV0KJF090lcR6yDZvFv+insGcXGhj829eDoegIdaOUQV9xHwm7HkOZhIwwa9OPcaBtmIH2LCpf/TBVShGNNE7vExFCCCHOgia3lWwpSSZIM9RQoHOgmhDSfjDxYnyBJtQWonjgINqPgeGiHM1I0wDOUJ5Q2qe544qz9hzOhNrXzqX54YP0741TqPE48LpLqBw+jFEbIdnXj6NsGupbODx0cPScmsZm8skR6J5V3WA6qNpeyB5E5Qaw9z4IaLq63sQBM0wxV2bgYIZkMIxZhnDKJn6ohGoMndMrIQoxXVTIwmyqJ7biCjJPPwJ+mSAc5kAmiTXSTHO9w8Uxhx2FCoeVIttQwD48Vqc5kg+xojLEwbCFP9KCEVST244xtqDA7Mh8lGFg1VcHz5iJKB2JKOe7uFVDo9NCJSiT98dPI3V641T2Z6E8ubYkgzEFrOZmvMEkKhJHuT5Baaw+gyoERImDEyfrV++GWfUX3ogQu7OD0tatuAsXUDyQpsYcJF/egmF0UvFjGIGLbzdQyfdRKfqEk0l0MoluqofKMUFsj/2BZkdG6GmoIRbxgTRa2zN36PhJppeW9+7F6emhcvAg4aVLUOYMW9lVTJme+AIKXp4gk+HK7BWjCdz1qSdxzTD1TiPLEpezJfMsURWjoAtYysYL8iTW9WOPFLD/m9R0E0IIceGrteswLZs61cRgXZ4tsd3kVB4GH2d18y20hjpOOEcHGitqEmo2KRzUKGVABSoRiKYDfFPR3rP87D+ZKRS9uI3W5Cq2535BQAW7DHvCG5gduQRlGgwOHSIWrePw0MHqIk2Dh0kPDpAdGT6uoUYY2QWmA74Ppk1i8FcU9AIG7NkM7k8zpIeJj8RAaaLJHDTa1dE4QohxVMhBpwuEZi+h2H+AwsA6gqTHjsYIPTrA8wMino8KNNFcmYHoYcKDY0m3UCHCglyZeSmX5I7Z0Gijgdp0hFSNhUZTGc5Q3rdnUv3RxQpEHFTYHjeT5lwUNqMMlvsByHrpcfuc1ji54MCka9TJu9MUcLp7KO3chsLAT5UI8h7+kcRbUBorRpCxNHnXJnS0DtwFJDRvHsVt2wgKRcq7d1Nb45E2e6hohVEuUcmnsY06bAuyh7N4jQn8hhbs9hbY87uxho6MdBvpO0gpn0P5Y8P2NQ7qZMNUL2SnGHbr9ffhj4zgJ5M0v+99Z7FT4kJjRCMUt28D06S0axcA2UcfY9Zjw1zxqwIL09Xp8AvjF/Gmnj8nbEQwMNBoim1xtGuhIhfOisxCCCHERJqcVgbL/ZSDIv3GABmVIWlnyHhp9qZ24A1mKK/fR+npPQS5I99jjywEFpnXC2YIrTUBAcVQgVLEoBIyqGnqPMWjnh+il7fSvrOJZHsJrzbOgR1Pk33qUWJWlI6WXpoa2rEch2te/2YitbVE6+rZt/FZ+nftGGuk/TIoZ6s3nG0X/DJmcZBmcxtBboj+8gGyQYpCNE+qKUftUBkwZu6NeSFOxTIgZBNZcSW1/+M9VObPw1u0gKF4HNNUuI5Fk6cZDNu4jfX4kQBtj/0tWWhU4OHQh86aVAbLeINlTMPEVwGB0kT8ELriT+oH00C5FkZd9JxPukWMKBEjRp194mwepz1aTbgdX8dzAjLSbQqEl11EMDJC5dBmnNBqygcyVA7mMHsT6GOSbrFMCtB0rLxm+jp7hoSWLkVns5Q2bSLf3EzjOz5Py8bD7No9zBIV4Pqg/QSRkInGIz2YAlJACX7/1bGGzGoR2d1r17D32XUsvKYVODIVV7vVNw6Bl8mQf/wJ/GSS0LJlGM75WXxXnBvCy5YRDI9QHB5h5DvfIfGyl3HgzjsJUqnqAR/4APVveuPo8ZfWXsVvh38JEQsvarP080+hXi9fdoUQQlz4YlYNrhliuDKIgUHgBKDBN3x25Dcxd3uEiF/97urXRVE9DaMzFgzboPWvlrPjmqvJdtWQuv1l+NEIXUPhUz3kecOI2DTaEXxbk2mp4FfytP/9l+h59ycA6F10MeacRmoamsgnkwBs/K9fcfi5Xdz+8c9VG3Fr4IaPgGGC71HY9G2c/s2owgEidjM76wNGGqpTVLs2NJHo76ued47XhxJiOihVXfCAXImIE6Fr5bUk9+/FeW4z6zcPceM1ncS96tT4YaOEOzfNc0/+BodLqucXHQhKeKE42jvyN2YqriwvZ9XwCgACApT9/K7R1XlwTR+2ohSCHPkgi6nG99dsCKFCFiQnN9RNkm5TwJk7F6u9nSC7F11JoVSCyr4Mod7EMSPdfI6OPzTj8Wnr65li1dcTve5aCmufIf/YY+hA40YcQJEKFHXKxzFq2ZOZT2xw7+h5RnRs+Co3fAgueRMAB7ZsAjSJ2hiBNoEwGnfmjXQ76rjppaUNG/CTSayWFmJXr5qmTokLRfiii6h56UvJPPQQhSfX4A0PExwtbGwYDP7f/0vdG99Q/eAGZkXm0uA08+QX/xqvIUpj+MJZGEYIIYQ4FaUUNzXdSt7L8MvB/wAg7LmEPZdkKMsj7Ru4cd9lAPg7BvCfG4JC5cjJYNcl6P7a19jT4+MXf0c47dPZdvF0PZ0pV7Ogi96n97LvoiT5zhhbXt5O4uEHqL3hVYTtCI4ZIRQbfy3ke2OleVAKji64YFr8tt5md6wOANfbS9lU4EMo5xBNhzGO3neWkW5CnJSyTXShAhWf+re+heKGdXT8TLFjyzoO/2gnNVELq6MePwzEbbp7ajiSysb0DIrlOg7GriDqBaiwidUQJnzZnOl8SmeFoQwiZoycnyHnZcfvMwwa37KYiFWGe07fliTdpoAZiaDzefzMTuyeEUK9HeTXDpBb04c3UgTbAL9/7PhY7BStnb+c3tkEuTz+8DDFHTuoaZtFXbyEl8pSsuNUgoBY3RLSB+7Hao1jxFwOZftpW3h59QO2eRG41Q/h9OAALbPnEYvaGMpH6zxFM4JjnvtZ8Sk1wV274sZNuAsXYsZjOHPnnuVOiQuNEYngzJmNtX49QaFA7rHHCC1ZQmX/flCKoFhkx+rrAWj92w8Tv+EG3KyHO5TFHcpieFLPTQghxMzRGuogVRmhyWlBYdCdbuCgM0BD2aQ/lOTfZ/+GiulzZXY5PYcbxk488r0ueuUVJIcepHbAxPJtGutmTc8TOQNCizpo+W6Ewz1psg0+fbcs4Fd7U7y6XCRWU8uli5eQVyVuuPq1tDV3A7B/5LmTtvXboV9SVOBqhQZigSZfiRM57NF0sJE569sx3GrWTUnSTYiTUrZZHfqjAT+g46Ll7N6wjoM7ttE3lCPjN9DUX4vZNELOCIgtaSRy2CSsbSIVH7/sUDAaieQPVtuYZB2zC0Gr20HWT1dLAugA45gRb+6sBKV0+hRnj5Gk2xSJXHkl3sAARqgGjSbIVwhyZfAANOixBQKM6Pm/msfJOD3dFJ58Equtjeyvf03Tu95FRcUoe0O0h2oJimUGf/w9so/vwwk8dNGj/ZYYu3yXusEnqAvXArBv43rcSJTmaImiZ1DWzZjaJuQHYMoHamnnTorbtqFLJcqDg7JqqZgSTs8sVDiM29pKcctWiuvXA6BiMXQQ4B0+DFoz9LV7yT3+BHX/7bXM3x8lKBZwLp49zb0XQgghzq6EXcer298MQGn/boaMYcpmGc/2SFseKlAky0P0eHVjJx3zNbbg53GbWin4OZrcC6fes90cpcWbx6GUR7b+EGiNF7LYfN8/0pgJ0f7hfyA0u5HuzvlEw9Wb7cnMMFrr0RH1R+W8LIEKUFrRUvJQWhNRGSJ9NfQ+UiZgL1bTkVkzMr1UiJNStVFUAAQBwWAWszVBpLaeXHIEgGJ2hFC5g6SZwq74ZCM2+SafPD4t21vI7uyk7uDgaLLNiMycFFJZl+gvVaezl4MSIfOFlQKYYcOGzhzlOBSefRZdzuEdyBGkjibcjtAeZm0tynEu2KRb3Z/8CaXduyk8+yyFp54GwI2FydktBBqyOzZSeOp32IUSuuQT5Mu0zG9g9tw2zNlXQShBKZ9jz7PP0LdzO3E1QmPCxlF9eP4yANRMG+l21DHTS/Nr11J4+mnKu3fjLl6MO1sSHuIPF166hPL27eQ3biT105+ObtfZLJRKozFYWLOG1P33UznUR/6JJyiufxYlNQWFEELMYEbUYeFgF4Ph5GhiTStNyskdd2B1Z8WvkPKGGSr3YykL27hwPkeVoYgsb2Lpr3q49KG5YBl4EYsdNzaT2bgGfygNmRLRhobq6JEgwLYdfv7ZT5Pad5DU9ucY2LWTkl8k56cZLPdTi8stB1O85FCalx4cYu7T9RjRWRjRbsyoW31gGekmxEmZjTH0SA6dLeLtGUSXPeL1R0bgKgX4RMqtpEOaZMQgXRsaPdcumuiCjZEsY8RtlGNihGZO0s01xl6LUlB8we3M0AzG1AtfeglKKSr7nxmXILG7YnR89Bq8A9/DTybR5TJGTc30dfQMUpZFdOVKdCZD7ve/pzI4SO+yVhzHpAzkf/dzgnQSlKa0+qX0/Y+/oe9wAa01Nc0tBF6Z/Zs38sS/f5dSLsu8OY1YlPCCGJojtR9m2nLgJ/n+UFizpjrtz7ZxenvPfp/EBcnu6SHxmldDoYC/f//YDtMcXXXtqCCTobx799ghidqz1EshhBDi3GPNa6Fl5eW42ql+d9OAgr3xfnzGPkOP1iYe8QYZLA/gaY/2UPf0dPoMcrqq39ubn6tjzlPt+PEQycs72fk/Lqe8cx/eM3shX0YphWEYtDR0clnnlbgbhnB3pHnm3x8g7SUZLA/ga5+a2CxY9qaxBwiqF8JBKYOZaK9uk6SbECelasNYC1rB1+iRPMFgljmXXclf3PdD3vvtH/LmT3yRq2++mFmVefiGQf6YRRHskg0oCCDIVNBlHxWaOTXWQ8bYyLZiUHjB7cywDMaZ4/b2HkmA9INxJAvqGMRWdaCUIkhXh2+qcPiCXmkyfPEy3MWLMeJxShs34rgW3UvbMVWewq4tGLEaor0R8i95K3bnUgplk3IloOIFbPnNz3jwa18m0dJGc3cXlm3iuQ14uo7RUJXppeSffRa7p4fIJctp+f/eO93dERcIpRS1r341Vnv76LaaV72Sxve8m+hNN6IikXHHlw8eHP23mZCabkIIIWYu5Vi4bpiruJIb09fQWWolXo6glCLl5lDttViL27HmVaeRJivDxM0E9XYjCbvuNK2ff5yuONHr2rFsl7a9DdQMhzCLPv03z6eU6oOyP3psKagm31ynenGrtaa3cS7rHvvV6DE1bgPUz4EFtxI0Xo5WYfzcQYLUJoyaI0lLmV4qxEkpw4CIDY4JjklQqmCYJoZhogyD2pZmLNukTrURIgJaYwaalhGD+DF/q0fNpJFuCbuOBruJmBmn4OVfcDsz5xU7w+zOLkrbtgHgzn0J7qKlEGjsxuoHiJ9MARf+xakzqxcjFMKdP5/i9u3EVq8mnjnA4R98Hbu1DVC4C1toCLZQIcKOPpeaaJkg0KjiMImmZlKH+1l2zbWEzM1QGsLjmIUnZtpItyP0kUn0uUcewW5oAMvGbm6WaX1iSkVWrCB2zTWUn9uDEY5Qe+utRK+6iqF7v463/wBBsYg/PIzd3k6QyRC54nJ0EGA11E9314UQQohpt7D3KgDyfYod6c2Eyy7DtXnaL+4ad1zGS5HxU+BDzIqfrKnzmhGySPxRD4V1g9RX6mk/WM++5uoAhKd7D7DaWA6mgXItvEwJ09eYpoXv+/h+hZDpsqewFkZs4g1NtLqdYIWg6yoqlRRe5keoShk/nUQnGiDsnHR2iBCiynCdsWT30dWUjzOvey5DI/s5kNsFaCrhCvFAc3zazXBnzkg3U1kMVQ4DkA+ypzl6YpJ0myJ2cxNWeztGNIou/I6mt79+dJ/WGrujHSORwGpsnMZennmhJYspbt6MWVND+qf/ScNb3kJh/Xr84SG8/j7Cyy6l8a8+Q34gz9DOYfzaAjWxJ8nkfSy/SPpwjlA0xsVXXwk7RqiUymi/Zmyk/gwbOq6O+wZR2LiRIF+gsn879W964zT1SlzI2j5y9wnbGt72Vhre9lbSv/wlB/7XuymlUpg1cfJPPAmA+rN3nu1uCiGEEOesxtpO1pSeIB5EybonjhTxtU+D3UwpKBIxYydp4fxnuBZm2EYHmkX75/Nc8y4Mz6dgFjkUHqKt2IjOV1AJFzM5toiCaZokmlrwF1RrYJeLBQ7/dgMb9/yIfDpJi9dNs2Fix9vQ2R3YgYFCnbAIgxDiGM5YokxXxr8n6WIFfyRHtD9Li1PD/pBCoUFBvKGP5EDTuOOVO3NSSFEzRtxM4BgulaD8gtuZOa/YGaYcB2VblLdvRxcKBJUKhl1dTUcXixSeWQeAVX9hjwixOzqI/9ENpH/8E7yREUrbt5P8zr9R2roVTJOm2/4XOlPEtqt/+DUtC/HtHTQkUrgWFFPPMf+SpZA/DPlB7MCjHMzHZOYl3I7nJ5OUtmyhuGEDAKElS6a5R2KmsVvGVlfzhoZH/23ELszFYYQQQogXotFupqLLDKkSIffEpNpQ+TBDlQEAouaFN9LtqIa3L6Xv7x8H4PK9s/jNn/WRCzQ7RvbRdACstlasubXs/eHv6OmcP3pexspDoMFQlHcO8eDXfzm6L14XxklchlIGfrE6AkXF3LP7xIQ4zyj7mKRbcfxIt2Aoi7e+Ws95IS0sNl8Cvo8R2ozX2gSbx7dlzKCablErNjoqubHywleZPq/n6v3mN7/hFa94Be3t7SileOCBB8bt11rzoQ99iLa2NsLhMDfeeCPbt28/Y/2JXbcas76eyv79lHfuHN3up1Kj/77Qp5cqpYhcfkV1sYhymcKzG/D6+wGwauoxTBN/II11JNuuDINydDZaa2JRmzvevJirZw3D9v+EICBLOybt+BqIh07xyBc4DcPf+hbpn/4nKpEget114xIgQpwNdk8P7oIFKNvGTyZHt1+oKzILIYQQL4RtOvSE5+Aol4OlfVSC8Re5eb86TUmhCJuRkzVxQbDiDrGr21GOQUz3EDlYwCh5HCxtpf8bn8RZ3k2ssZHmP7qcZ5LPsmXfegAybh4MRTBSwNs5PK7NllAX+GWCYhLDPbJIxQy/MS/E6WjLQNVFwFDowvgRW8eOfDNQVC+8DQwzhNXoYDWPvUepiIXZFGamOHYkcs7LvOB2zuukWy6X4+KLL+aLX/ziSfd/4hOf4HOf+xxf/vKXefzxx4lGo9x8880Uiy98uddTcefOwZndiztvHoVnN4xuPzbpZiQuzJVLj+UumE9owQLcxYvIr1+HCoUIL19O5MpVELLQ2RLxujB1rXGitSFGvA4OFOoZKYXpL8TxahdBrA0aF5ALuoEQpgJlndfh+sIcM1S+tGMn7pLFmDU1uAsXTmOnxExlJRLYHR24S5YQ5MeKiZqSdBNCCCHGqXUaqHcaqbFqGSz3j27XWlP2SzQ7bcyJLsJQF/b3W3d+LUaNg7I8lB0hCNuUGyL4uSwq7mIYJnWzu7HiYUqNin+b+xC/b1uP6Rs0mU2snH0DAKZt0z5/IZFQHGWFwHJw2o4soiBJNyFOyTCMao1wraFQofzs/tF9x083BVCJMEHdZVhLVxFe0kBocT1mYxi7OYLddOHeKDheyAjT7nbT7LSd8F7968M/5aHDP5lUO+f19NJbbrmFW2655aT7tNbcc889fOADH+DWW28F4Bvf+AYtLS088MAD3HbbbVPeH2fOHPxkCrO2lsq+vaPb/XSG8GUrwPOx2zum/HHPNaEFC6gMDmLV1VF5bi9OVxdBoYByXUBVV3jKF/E9H9MyKIdmEe5eTF3PkdWbnvstjHh4sW7yIx3YuoypFNGWC3uU4KlorQmyWQzbgUiE5r+4c7q7JGYoIxJG91cwa2qwenvBslCSdBNCCCHGqbFq2Rfsxg98nhp5hAa3iVq7gTa3g6gVw9PejKj9H5pfj2E/B3Gbpj0hQtu3ku+I8/vP3sjGPV/HjsSYF1vMZS9/Fb/f9hM8DgFgBgb5cJmafJhZiy4mX8wy78qrcR+LoD2glEOFqqV8pJ6bEKdnhBwCXQBApwtjO7RG1UbQ+RJYJuTL6FQBFXEwXJPEzbPI/HY/aHBnJzCj9jQ9g7NPKUXGT5HxUrjG+Fl3ewu7GMmPTKqd8zrpdiq7d++mr6+PG2+8cXRbIpHgyiuv5NFHH50w6VYqlSiVSqO/p9PpST9mePFiyrt3YyQSmHW1o9v9kWEKa54CIHbDDc/zmZx/jHAYIxSq1nFzbKh4BLkcda97PRQraFPh7xliyao5PPmzbaQH82SG8rQcTbr1XAs915Luy+BlnyNiVVfuPHYu+kxh1tXh5/Moy8QfHqK0cxeRyy6TLxdi2tgdnaR/XL2r4/X1AWDGLswi0EIIIcQL1eS0jNZty5bSHCg9R8KqZyh8mKyXJutn6I3Mm+ZennlKKcwah8rhPMv7rmZjbJihrurF64AxBMVhUuURDhaeoxQpYBZNKspjUbILA4OOaCePDAzRsHgel770Vg49/mt0xUNXclgtR2ply0g3IU7LXtZFqS8FSqE9H+0HKNNAZ0vo5JEZLOWxUW/KHBvZFb+2k/i1nWe7y+eEqBmj5BdxlEMpKOEaLl7g4RohHGNy9SQv2PHMfUcuBluOq3vV0tIyuu9kPvrRj5JIJEZ/urq6Jjz2eEYkQmTFCoLhYbK/fhg/lwNmVk23o7r/+Z/o/vq9BCNJgmy1bkVoxXKMjlrwNTpVIMiWcELVvG+pUMH3g9Hzg0BTLlTGB6h5wYbrhOy2VoKREfz+AYobN6GLRZye7unulpjBrObjVzByUdYFe/9GCCGEeEHqnSYa7fHXISlvmI2Zp8n4aTSwKH7x9HTuLKt97TzMGpfKgSy9uy9n1tefpnbtAWp3ZQgZIbJBmm25TTzn7aZkVlg2OAc3cLCD6veLpQuvJFZXD6UAXXFQdgRdKWC391QfQJJuQpyWMhRmb1N1kZJ8heBIou34hRVGzcBr75Npcdsp6xIZP81IeRCo1uVMeSOUg9Jpzq6SV/I4d911F6lUavRn3759z+v88KWXjhYaL23ZAkAwA5NuVmMj7uzZxG65BWfhQqLXX4/b24vZmoCwDYbCW7+P1t46YnVhTNtgYG9y9PzB/Sn2bOrHPraOmznzPlDdhYuq9dscZ3Sb/TwSwUJMNXf+fMKXXDJab9CQUW5CCCHECQxlcFX99cyNLKQz1EOrM1ZiJmrWcFXdakLmzChIbsVd3Nk1WM0RbD/OktxsGjaPUP/gFtqtDhxVLUEDEFVRGpxmwmsLxNZXKBSyzJ61lJbeeQT5seSAEbFwmlqrv8gMECEmRcVCELJAgb97EK01OleCiFNdaOFYknQDoM5upNFpwTVCHC5XB2/ljiyGM1kX7PCE1tbqm3B/fz9tbW2j2/v7+1m+fPmE57mui+u+8GWnnZ5ujFiM0KJFFLdsIbJiBTrQhI9MCTTr615w2+cbIxql6zOfZujerwPV4eVGYwwVcdCALvvEIzYpAnpMH739EOVMDmdZF0OHMsTrIpiZHBwZAKdm4B++0zsLIxrFamhAA6HeXpw5c6a7W2IGc3t7q/UZlQKtMSIz44JBCCGEeL46wt10hKszFPbld/P74QdRGLSGOrg4cfk09+7scjprCLIeVr1L5eC19P7+i9XvEf/0JOqOlWQrabJeGtcM0b70Yn78Hz9hRddVhMPVm3v1rQ1UBscGMihLoawjtaVkpJsQk2IkwtX6bZkSQb5EZcshjLoo2vPhuFJOagYOeDmZJrcVN+viOi3sze9kafxSin6eVreDQrlw+ga4gEe69fb20trayoMPPji6LZ1O8/jjj7Ny5coz9rihRYsobd9O5dAhUg/8EK01lX37KKxZQ/7JJzHj8TP22Oeqhre9lYa3vRUAZRioRBgqPiiwU3lqSyWcIMD1A7yhHId2DQGaSsnDOvZDdAYm3UKLFlHYupUgnydIpcg/9RRO58ycTy/ODVZjI05XJ5gmKhLBnTd/urskhBBCnPO6Ir3c1vmnvK7zv7O68ebp7s5ZF7uqDT9XxhspYda3YzSvxKi/BHOggasOXEbrjjrihyPMVQuIWDEqhSLDqQGGkv2k8kkaGlrJPfYUujxIUBjACOnRtpUk3YSYFCPmYs1thnwJ/ACdLhIczqBH8hj1UXDMahLbNsGdOQsmnEq904ihTLJeGk97ZL0UGS9NX+kAfaWDk2rjvB7pls1m2bFjx+jvu3fv5plnnqG+vp7u7m7uvPNO/s//+T/MmzeP3t5ePvjBD9Le3s4rX/nKM9Ynd8ECwpdeSu7hh/GSSUrbts3Imm6nYtRGCHYNgh8QPDdIwhur5eYXK/Rv7ifvQU1DhLraCEHfkcUsZmDSze7pAfToFGV79mycWbOmtU9CtN59N21/93fT3Q0hhBBCnEfiq7sY/tfN1RvvLdcBEFTyJL+zg07idBIDq4/Sfz/A6z/8UUprtqDSBhiKIFOkuH4byrkMBYRXHDPzQ828awQhXigVcUEDRQ+tj9kedsYWUgh8zOaZN1hoIk1uK/uKu8l7OQbLA5SC4vM6/7xOuq1Zs4YXvehFo7+/973vBeAtb3kLX//613n/+99PLpfjHe94B8lkkmuuuYaf/exnhEKhiZr8gymlqL/9TRTXrcMfGWH4G9/AP2YFVEm6gZGIoKJudVniIwm3QFX/aQOd+Ix019Mxu57gkSNJ1bCNijgTN3qBMgyD8Lz5FNauBcDpaJeVS8W0U4Z8uRVCCCHE8+N0xbEaw3iDY1OyDHusjpT2PRRN7H/PJylv/zlGopZZn/4mQz/6PZXv/RRvcAB34WUA2I0JKGTBNiBknvBYQoiTM0wDXAtKXnX22REqfNzINue8ThVNqRa3g7iVIOOl6CsdpBQUUBhH6lGe3nn9Sl5//fXoY9Ozx1FK8ZGPfISPfOQjZ7FXEFmxAmfePHQ+T3nPHoxELaFly1Cug4pETt/ABc4I2aiogzYUZIqoRBgjFiI7kCVSqRBVEO0fRg0fU7fBMGZssqn2jW8gtGwZBD61r371dHdHCCGEEEKI581KuIQW1JHNlKAcgAYd+Git8QY2YSXa0crEqOvGbGjArG+h71trMOKzMBp6cerKaH8IsyaG6RhQACqBrKIuxPNkdtUTjOTQI/nq4JZYCBWyMec0ga/BVDP22vtkGpwmYmYc1wiRrAxhKRtNQFlPbvVSeYc6A4xQCMO28G0LDIPSpk14fX2YjY0SvEeosFNdo8gP0F6AFbFpe9F88g9uAl9X9wUaYi7KNjEaotPb4WlU+/KXw8tfPt3dEEIIIYQQ4g8SW9lOfu0A2gbtB+hSCgJNZc/PMZe+EWU5GPVzsfyXoiwXs6a66qsOAjBslGogyIERNlFGpHq94MolrRDPh5EI4/clq+WbAg0VD+VY2PNbp7tr56SoFUOhcI0wBiYpb+R5nS9zhM4Qu6OT4sZN+MkUfjIJyNTSY9mL23FXzMJor8VsS2DNbUGZBtEXL60m2DTVN4B8GT2SR8nwViGEEEIIIc5rVmOY9g+tJHZtJ/HruwkGv0/u53cR9G/HCJsY4XrMUC1O17WoWDdBfrA67dRQqGNqt6lKBT2SR6cKGCEp+C7E82E214Cnq9NLSx5Ga60MDjqN1Y0v4UBxDweLe0lXks/rXEm6nSHhS5aD71Pevh1drBbak6TbiZRloKzxYWjUR6EhVk26Hbl7ZXbUTVMPhRBCCCGEEFPJCJkYIROnp2dsY/ERQvN3o9zqlC0r3ooRaUSZJjCWEAivaIaKV/1FISPdhHgB3Kvn4r5kKe6Ll2B1ybX26cStBAtiF1HWJSq6/LzOlXeoMyS6ahWx666jsGUL/qFDOHPnEll51XR365xj9TadsM2e24KZL1PZ1ge5EkZdFGVJgVQhhBBCCCEuBPFrOwGw295K+NJLserrcXt7cXp6GPzWJsrPZQjSZTA8lOmhK9WF8JSlsOpCaF2u1qIK2TJCR4gXYHQmmSl/P5OhlGJx/GIOl/oYqQyi0Vhqcuk0SbqdIXZLC3Z3N+X9+wmiUQh8LBnpNmlGxMFd3j3d3RBCCCGEEEKcIaG5cwnNnTtuW/zqDpLp3dWkW2BhtiQwjABdqFT3X99J+cHN1RkxpkzcEkKcHc1uG+2hLjJeElDU2JMbISjvUmdQ4paX4PX3A1A5eAh3/vxp7pEQQgghhBBCnLvs9hiVvizYBipk4nbFqX1RK4mVDdRe3YjOlasJNwBbxpAIIc6e3uh8Aq1RKDz8SZ0j71JnUOjii5n/+GMMfuGLAESuvHKaeySEEEIIIYQQ5y7DMTFjLv5QEV0BI2KjXBuyJbRlECRz1VpuGpQjJWiEEGdPm9vJ23vuRClFKpUC3nnacyTpdgYdrS9gxGLjfhdCCCGEEEIIcXKNb16MitpQ8sEyUOUyfsiGYgV//whowFAQlpVLhRBnz7E5ncnmdyTpdhY0vO2t090FIYQQQgghhDgv2C3R6j+qYxfQZRMjESZAQ7a6uimBxpDF1oQQ5zip6SaEEEIIIYQQ4pylHAsVc6sLJyjAVKjaCMTc6e6aEEKckiTdhBBCCCGEEEKc0+z5rZj1MfA1+BqdzGOEnenulhBCnJJMLxVCCCGEEEIIcc6zFrRCxCYYzKISYVRNeLq7JIQQpyRJNyGEEEIIIYQQ5zxlm9izm/GOFDBXhixUJ4Q4t0nSTQghhBBCCCHEecPqbZruLgghxKRITTchhBBCCCGEEEIIIaaYJN2EEEIIIYQQQgghhJhiknQTQgghhBBCCCGEEGKKSdJNCCGEEEIIIYQQQogpJkk3IYQQQgghhBBCCCGmmCTdhBBCCCGEEEIIIYSYYpJ0E0IIIYQQQgghhBBiiknSTQghhBBCCCGEEEKIKSZJNyGEEEIIIYQQQgghppgk3YQQQgghhBBCCCGEmGKSdBNCCCGEEEIIIYQQYopZ092Bc53WGoB0Oj3NPRFCCCGEEEIIIYQQ0+1ojuhozmgiknQ7jaGhIQC6urqmuSdCCCGEEEIIIYQQ4lyRyWRIJBIT7pek22nU19cDsHfv3lO+kEL8odLpNF1dXezbt4+amprp7o64gEmsibNFYk2cLRJr4myRWBNni8SaOFsk1l4YrTWZTIb29vZTHidJt9MwjGrZu0QiIQEozoqamhqJNXFWSKyJs0ViTZwtEmvibJFYE2eLxJo4WyTWnr/JDMyShRSEEEIIIYQQQgghhJhiknQTQgghhBBCCCGEEGKKSdLtNFzX5cMf/jCu6053V8QFTmJNnC0Sa+JskVgTZ4vEmjhbJNbE2SKxJs4WibUzS+nTrW8qhBBCCCGEEEIIIYR4XmSkmxBCCCGEEEIIIYQQU0ySbkIIIYQQQgghhBBCTDFJugkhhBBCCCGEEEIIMcUk6SaEEEIIIYQQQgghxBSTpJsQQgghhBBCCCGEEFPsnEm6ffSjH+Xyyy8nHo/T3NzMK1/5SrZu3TrumGKxyB133EFDQwOxWIzXvOY19Pf3j+5ft24dr3/96+nq6iIcDrNo0SI++9nPjmvj/vvv56abbqKpqYmamhpWrlzJz3/+89P2T2vNhz70Idra2giHw9x4441s37593DFPP/00N910E7W1tTQ0NPCOd7yDbDZ72rbXr1/PtddeSygUoquri0984hPj9m/cuJHXvOY1zJo1C6UU99xzz2nbFBOTWJs41u6//34uu+wyamtriUajLF++nG9+85unbVecnMTaxLH29a9/HaXUuJ9QKHTadsXJSaxNHGvXX3/9CbGmlOJlL3vZadsWJ5JYmzjWKpUKH/nIR5gzZw6hUIiLL76Yn/3sZ6dtV5zcTI21YrHIW9/6Vi666CIsy+KVr3zlCcccOnSIN7zhDcyfPx/DMLjzzjtP218xMYm1iWPtd7/7HVdffTUNDQ2Ew2EWLlzIZz7zmdP2WZycxNrEsfbwww+f9PtaX1/faft9ztPniJtvvlnfe++9esOGDfqZZ57RL33pS3V3d7fOZrOjx7zzne/UXV1d+sEHH9Rr1qzRV111lV61atXo/q9+9av63e9+t3744Yf1zp079Te/+U0dDof15z//+dFj3vOe9+iPf/zj+oknntDbtm3Td911l7ZtWz/99NOn7N/HPvYxnUgk9AMPPKDXrVun//iP/1j39vbqQqGgtdb6wIEDuq6uTr/zne/UW7Zs0U888YRetWqVfs1rXnPKdlOplG5padFvfOMb9YYNG/R9992nw+Gw/spXvjJ6zBNPPKHf97736fvuu0+3trbqz3zmM8/npRXHkVibONZ+/etf6/vvv19v2rRJ79ixQ99zzz3aNE39s5/97Hm9xqJKYm3iWLv33nt1TU2NPnTo0OhPX1/f83p9xRiJtYljbWhoaFycbdiwQZumqe+9997n8xKLIyTWJo6197///bq9vV3/5Cc/0Tt37tRf+tKXdCgUOm2fxcnN1FjLZrP6ne98p/6nf/onffPNN+tbb731hGN2796t3/3ud+t/+Zd/0cuXL9fvec97JvGKiolIrE0ca08//bT+9re/rTds2KB3796tv/nNb+pIJDLuvU9MnsTaxLH261//WgN669at4763+b4/mZf2nHbOJN2ONzAwoAH9X//1X1prrZPJpLZtW3/ve98bPWbz5s0a0I8++uiE7bzrXe/SL3rRi075WIsXL9Z33333hPuDINCtra36k5/85Oi2ZDKpXdfV9913n9Za66985Su6ubl5XFCsX79eA3r79u0Ttv2lL31J19XV6VKpNLrtL//yL/WCBQtOenxPT48k3aaYxNrJY+2oSy65RH/gAx845TFiciTWxmLt3nvv1YlE4pTPQbxwEmsTv6995jOf0fF4fNwXXPHCSayNxVpbW5v+whe+MO68V7/61fqNb3zjKZ+XmJyZEmvHestb3nLSi9NjrV69WpJuU0xi7dRe9apX6Te96U2TOlacmsTamKNJt5GRkUm1cz45Z6aXHi+VSgFQX18PwFNPPUWlUuHGG28cPWbhwoV0d3fz6KOPnrKdo22cTBAEZDKZUx6ze/du+vr6xj12IpHgyiuvHH3sUqmE4zgYxthLGg6Hgeqw3Ik8+uijXHfddTiOM7rt5ptvZuvWrYyMjEx4npg6EmsnjzWtNQ8++CBbt27luuuum7BdMXkSa+NjLZvN0tPTQ1dXF7feeisbN26csE3x/EisTfwZ+tWvfpXbbruNaDQ6Ybti8iTWxmKtVCqdME0+HA6fsl0xeTMl1sT0k1ib2Nq1a3nkkUdYvXr1lLY7U0msnWj58uW0tbVx00038fvf/35K2pxu52TSLQgC7rzzTq6++mqWLl0KQF9fH47jUFtbO+7YlpaWCef5PvLII/zbv/0b73jHOyZ8rE996lNks1n+5E/+ZMJjjrbf0tIy4WPfcMMN9PX18clPfpJyuczIyAh/9Vd/BVTrLpyq7ZO1e+zjijNHYu3EWEulUsRiMRzH4WUvexmf//znuemmmyZsV0yOxNr4WFuwYAFf+9rX+OEPf8i//uu/EgQBq1atYv/+/RO2KyZHYm3iz9AnnniCDRs28Kd/+qcTtikmT2JtfKzdfPPNfPrTn2b79u0EQcAvf/lL7r///lO2KyZnJsWamF4SayfX2dmJ67pcdtll3HHHHfI5OgUk1sZra2vjy1/+Mj/4wQ/4wQ9+QFdXF9dffz1PP/30H9TuueCcTLrdcccdbNiwge985zsvuI0NGzZw66238uEPf5gXv/jFJz3m29/+NnfffTff/e53aW5uBuBb3/oWsVhs9Oe3v/3tpB5vyZIl/Mu//Av/+I//SCQSobW1ld7eXlpaWkYzwUuWLBlt95ZbbnnBz01MHYm1E8XjcZ555hmefPJJ/v7v/573vve9PPzww8+rDXEiibXxVq5cyZvf/GaWL1/O6tWruf/++2lqauIrX/nKpNsQJyexNrGvfvWrXHTRRVxxxRUv6HwxnsTaeJ/97GeZN28eCxcuxHEc/uf//J+87W1vGzciQLwwEmvibJFYO7nf/va3rFmzhi9/+cvcc8893Hfffc+7DTGexNp4CxYs4M/+7M9YsWIFq1at4mtf+xqrVq26MBbumO75rce74447dGdnp961a9e47Q8++OBJ5/h2d3frT3/60+O2bdy4UTc3N+u//uu/nvBxjhbA/fGPfzxuezqd1tu3bx/9yefzeufOnRrQa9euHXfsddddp9/97nef0HZfX5/OZDI6m81qwzD0d7/7Xa211nv27Bltd//+/VprrW+//fYT5jQ/9NBDGtDDw8MntC013aaOxNqpY+2ot7/97frFL37xhPvF6UmsTS7WXvva1+rbbrttwv3i9CTWJo61bDara2pq9D333DPh8xKTJ7E2cawVCgW9f/9+HQSBfv/7368XL1484fMTpzfTYu1YUtPt7JJYu3XCPh/r7/7u7/T8+fMndaw4OYm1Wyfs87He97736auuumpSx57LzpmkWxAE+o477tDt7e1627ZtJ+w/WlTw+9///ui2LVu2nFBUcMOGDbq5uVn/7//9vyd8rG9/+9s6FArpBx54YNJ9a21t1Z/61KdGt6VSqXFFBU/mq1/9qo5EIqcsBni0MG+5XB7ddtddd8lCCmeQxNrkYu2ot73tbXr16tWT6r8YT2Jt8rHmeZ5esGCB/ou/+ItJ9V+MJ7F2+li79957teu6enBwcFL9FicnsTb597VyuaznzJmj77rrrkn1X4w3U2PtWJJ0Ozsk1p5fIuTuu+/WPT09kzpWjCex9vxi7cYbb9SvetWrJnXsueycSbr9+Z//uU4kEvrhhx8et0RsPp8fPead73yn7u7u1g899JBes2aNXrlypV65cuXo/meffVY3NTXpN73pTePaGBgYGD3mW9/6lrYsS3/xi18cd0wymTxl/z72sY/p2tpa/cMf/lCvX79e33rrreOWz9Va689//vP6qaee0lu3btVf+MIXdDgc1p/97GdP2W4ymdQtLS369ttv1xs2bNDf+c53TliGuVQq6bVr1+q1a9fqtrY2/b73vU+vXbt20iuEiPEk1iaOtX/4h3/Qv/jFL/TOnTv1pk2b9Kc+9SltWZb+53/+50m/vmKMxNrEsXb33Xfrn//853rnzp36qaee0rfddpsOhUJ648aNk359xRiJtYlj7ahrrrlGv+51rzvtaylOTWJt4lh77LHH9A9+8AO9c+dO/Zvf/EbfcMMNure394Jcie1smKmxpnV1BMvatWv1K17xCn399dePXgcc6+i2FStW6De84Q167dq18hn6AkmsTRxrX/jCF/SPfvQjvW3bNr1t2zb9//7f/9PxeFz/zd/8zWReWnEcibWJY+0zn/mMfuCBB/T27dv1s88+q9/znvdowzD0r371q8m8tOe0cybpBpz059577x09plAo6He96126rq5ORyIR/apXvUofOnRodP+HP/zhk7ZxbCZ+9erVJz3mLW95yyn7FwSB/uAHP6hbWlq067r6j/7oj/TWrVvHHXP77bfr+vp67TiOXrZsmf7GN74xqee+bt06fc0112jXdXVHR4f+2Mc+Nm7/7t27T9pnGX30wkisTRxrf/M3f6Pnzp2rQ6GQrqur0ytXrtTf+c53JtW2OJHE2sSxduedd+ru7m7tOI5uaWnRL33pS/XTTz89qbbFiSTWJo41rcfuEv/iF7+YVJtiYhJrE8faww8/rBctWqRd19UNDQ369ttv1wcOHJhU2+JEMznWenp6Ttqn070+MvrohZFYmzjWPve5z+klS5boSCSia2pq9CWXXKK/9KUvad/3J9W+GE9ibeJY+/jHP67nzJmjQ6GQrq+v19dff71+6KGHJtX2uU5prTVCCCGEEEIIIYQQQogpI8spCSGEEEIIIYQQQggxxSTpJoQQQgghhBBCCCHEFJOkmxBCCCGEEEIIIYQQU0ySbkIIIYQQQgghhBBCTDFJugkhhBBCCCGEEEIIMcUk6SaEEEIIIYQQQgghxBSTpJsQQgghhBBCCCGEEFNMkm5CCCGEEEIIIYQQQkwxSboJIYQQQgghhBBCCDHFJOkmhBBCCCGEEEIIIcQUk6SbEEIIIYQQQgghhBBT7P8Haks2mkbRlZQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_plot(obstype='temp')" + ] + }, + { + "cell_type": "markdown", + "id": "c9f0ae66-9077-451d-b13e-20994d16f438", + "metadata": {}, + "source": [ + "See the documentation of the [make_plot](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_plot) method for more details. Here an example of common used arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f4351d2a-fab5-47a4-9756-6aa98ba18492", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQ4AAAHjCAYAAABisoJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb5fXA8e97JXnvOLZjZzk7IRsChECAlk0pqwVaKAFKgRZ+hDLaQgtllFI6WC27jFBSWiijlLZsaICEEEbCCgmEhMR2Ysfx3pLu+/tD1vWVLduyLWv5fPLkeWzp6uqVLN1x7nnPUVprjRBCCCGEEEIIIYQQQtgY0R6AEEIIIYQQQgghhBAi9kjgUAghhBBCCCGEEEII0YMEDoUQQgghhBBCCCGEED1I4FAIIYQQQgghhBBCCNGDBA6FEEIIIYQQQgghhBA9SOBQCCGEEEIIIYQQQgjRgwQOhRBCCCGEEEIIIYQQPUjgUAghhBBCCCGEEEII0YMEDoUQQgghhBBCCCGEED1I4FAIIYQQQox4hxxyCIccckhIy5511llMnDhxWMcjhBBCCBELJHAohBBCCCHCavXq1Vx77bXU1dVFeygBPv30U6699lq2bdvW77IVFRVce+21rF+/ftjHJYQQQggRqyRwKIQQQgghwmr16tVcd911MRk4vO6664IGDl988UVefPFF6/eKigquu+46CRwKIYQQYkSTwKEQQgghRJwzTZO2trZoDyOuJSUlkZSUFO1hCCGEEELEFAkcCiGEEEIM0GuvvYZSiqeffrrHfX/9619RSrFmzRrrtldffZWDDjqI9PR0cnJyOP7449m4cWPA43qrm3fttdeilAq4TSnFRRddxMqVK9lrr71ITk7m+eef73PM//3vfzn44IPJzMwkKyuLRYsW8de//tW6f+LEiZx11lk9Hhes9t8f//hH9tprL9LS0sjNzWWfffax1nXttddyxRVXAFBaWopSCqWUleXn8Xi44YYbmDx5MsnJyUycOJGrrrqK9vb2gOeYOHEi3/jGN3j99dfZZ599SE1NZc6cObz++usAPPXUU8yZM4eUlBT23ntvPvjggz5f/8MPP8y3v/1tAA499FBrXP712V/n66+/zqJFiwA4++yzrWUffvjhXtdvmia33XYbe+21FykpKRQWFnL++edTW1vb57iEEEIIIWKZBA6FEEIIIQbokEMOYdy4caxcubLHfStXrmTy5MksXrwYgJdffpkjjzySqqoqrr32Wi699FJWr17NkiVLQqq115tXX32VH//4x5x66qncfvvtfTbrePjhhzn22GOpqanhyiuv5De/+Q3z58/vN9gYzP3338/FF1/MrFmzuO2227juuuuYP38+a9euBeCkk07iO9/5DgC33norf/nLX/jLX/7C6NGjATj33HO55pprWLhwIbfeeisHH3wwN910E6eddlqP5/riiy/47ne/y3HHHcdNN91EbW0txx13HCtXruTHP/4xZ5xxBtdddx1btmzhlFNOwTTNXse9dOlSLr74YgCuuuoqa1wzZ87ssezMmTO5/vrrATjvvPOsZZcuXdrr+s8//3yuuOIKlixZwu23387ZZ5/NypUrOfLII3G73SG+u0IIIYQQscUZ7QEIIYQQQsQbpRRnnHEGt9xyC/X19WRnZwOwe/duXnzxRX7+859by15xxRXk5eWxZs0a8vLyADjhhBNYsGABv/zlL1mxYsWgxrBp0yY++ugjZs2a1edy9fX1XHzxxey77768/vrrpKSkWPdprQf8vP/+97/Za6+9eOKJJ4LeP3fuXBYuXMhjjz3GCSecEBDQ3LBhAytWrODcc8/l/vvvB+BHP/oRBQUF/P73v+e1117j0EMPDXiNq1evtoKws2bN4sgjj+QHP/gBn332GePHjwcgNzeX888/n1WrVvXaGXnSpEkcdNBB3HHHHRx++OF9dlAuLCzk6KOP5pprrmHx4sWcccYZfb4nb775Jn/+859ZuXIl3/3ud63bDz30UI466iieeOKJgNuFEEIIIeKFZBwKIYQQQgzCmWeeSXt7O//4xz+s2/7+97/j8XisQNPOnTtZv349Z511lhU0BF9w7fDDD+c///nPoJ//4IMP7jdoCPDSSy/R2NjIz372s4CgIdBjCnQocnJyKCsrY926dQN+rP/1XnrppQG3X3bZZYAvKGk3a9YsK2gIsN9++wHwta99zQoa2m//8ssvBzymcHjiiSfIzs7m8MMPp7q62vq/9957k5GRwWuvvRaVcQkhhBBCDJUEDoUQQgghBmHGjBksWrQoYLryypUr2X///ZkyZQoAX331FQDTp0/v8fiZM2dSXV1Nc3PzoJ6/tLQ0pOW2bNkCwOzZswf1PN399Kc/JSMjg3333ZepU6dy4YUX8tZbb4X02K+++grDMKz3x6+oqIicnBzr/fKzBwcBK7Nz3LhxQW+PVj3Bzz//nPr6egoKChg9enTA/6amJqqqqqIyLiGEEEKIoZKpykIIIYQQg3TmmWeyfPlyysrKaG9v5+233+ZPf/rToNbVW/af1+sNentqauqgnmcwz+9wOKzfZ86cyaZNm3juued4/vnnefLJJ7nrrru45ppruO6664b0XN3ZnzeU2wcz9TocTNOkoKAgaM1LwKrvKIQQQggRbyRwKIQQQggxSKeddhqXXnopjz32GK2trbhcLk499VTr/gkTJgC+Wn3dffbZZ+Tn55Oeng746vTV1dX1WK57Ft5ATZ48GYCPP/64R6afXV/PP2nSpIDb0tPTOfXUUzn11FPp6OjgpJNO4sYbb+TKK68kJSWl18DghAkTME2Tzz//PKApSWVlJXV1ddb7NVwGMjV7IMtOnjyZl19+mSVLloQ9oCuEEEIIEU0yVVkIIYQQYpDy8/M5+uijefTRR1m5ciVHHXUU+fn51v1jxoxh/vz5rFixIiAo9/HHH/Piiy9yzDHHWLdNnjyZ+vp6PvzwQ+u2nTt38vTTTw9pjEcccQSZmZncdNNNtLW1Bdxnz9CbPHkyb7/9Nh0dHdZtzz33HDt27Ah4zJ49ewJ+T0pKYtasWWitre7B/mBo90Ck//XedtttAbffcsstABx77LEDfHUD09u4hrrsKaecgtfr5YYbbuhxn8fjCWkdQgghhBCxSDIOhRBCCCGG4Mwzz+Rb3/oWQNDA0e9+9zuOPvpoFi9ezPe//31aW1v54x//SHZ2Ntdee6213GmnncZPf/pTTjzxRC6++GJaWlq4++67mTZtGu+///6gx5eVlcWtt97Kueeey6JFi/jud79Lbm4uGzZsoKWlxerqfO655/KPf/yDo446ilNOOYUtW7bw6KOPWhmLfkcccQRFRUUsWbKEwsJCNm7cyJ/+9CeOPfZYMjMzAdh7770B+PnPf85pp52Gy+XiuOOOY968eSxbtoz77ruPuro6Dj74YN555x1WrFjBCSecENBReTjMnz8fh8PBzTffTH19PcnJyXzta1+joKCgx7KTJ08mJyeHe+65h8zMTNLT09lvv/2C1pY8+OCDOf/887nppptYv349RxxxBC6Xi88//5wnnniC22+/3fqMCCGEEELEFS2EEEIIIQatvb1d5+bm6uzsbN3a2hp0mZdfflkvWbJEp6am6qysLH3cccfpTz/9tMdyL774op49e7ZOSkrS06dP148++qj+5S9/qbsfsgH6wgsvHNA4n332WX3AAQdYY9h33331Y489FrDMH/7wB11SUqKTk5P1kiVL9LvvvqsPPvhgffDBB1vL3HvvvXrp0qV61KhROjk5WU+ePFlfccUVur6+PmBdN9xwgy4pKdGGYWhAb926VWuttdvt1tddd50uLS3VLpdLjxs3Tl955ZW6ra0t4PETJkzQxx57bI/XEey1b926VQP6d7/7Xb/vw/33368nTZqkHQ6HBvRrr72mtdY9XqfWWv/zn//Us2bN0k6nUwP6oYce0lprvWzZMj1hwoQe677vvvv03nvvrVNTU3VmZqaeM2eO/slPfqIrKir6HZcQQgghRCxSWkepirQQQgghRALweDwUFxdz3HHH8cADD0R7OEIIIYQQQoSN1DgUQgghhBiCZ555ht27d3PmmWdGeyhCCCGEEEKElWQcCiGEEEIMwtq1a/nwww+54YYbyM/PH1IdQiGEEEIIIWKRZBwKIYQQQgzC3XffzQ9/+EMKCgp45JFHoj0cIYQQQgghwk4yDoUQQgghhBBCCCGEED1IxqEQQgghhBBCCCGEEKIHCRwKIYQQQgghhBBCCCF6cEZ7AInANE0qKirIzMxEKRXt4QghhBBCCCGEEEKIKNFa09jYSHFxMYYR3zl7EjgMg4qKCsaNGxftYQghhBBCCCGEEEKIGLFjxw7Gjh0b7WEMiQQOwyAzMxPwfSCysrKiPBohhBBCCCGEEEIIES0NDQ2MGzfOihfFMwkchoF/enJWVpYEDoUQQgghhBBCCCFEQpSzi++J1kIIIYQQQgghhBBCiGEhgUMhhBBCCCGEEEIIIUQPEjgUQgghhBBCCCGEEEL0ENeBw1WrVnHcccdRXFyMUopnnnkm4H6tNddccw1jxowhNTWVww47jM8//zxgmZqaGk4//XSysrLIycnh+9//Pk1NTRF8FUIIIYQQQgghhBBCxJ64Dhw2Nzczb9487rzzzqD3//a3v+WOO+7gnnvuYe3ataSnp3PkkUfS1tZmLXP66afzySef8NJLL/Hcc8+xatUqzjvvvEi9BCGEEEIIIYQQQgghYpLSWutoDyIclFI8/fTTnHDCCYAv27C4uJjLLruMyy+/HID6+noKCwt5+OGHOe2009i4cSOzZs1i3bp17LPPPgA8//zzHHPMMZSVlVFcXBzSczc0NJCdnU19fb10VRZCCCGEEEIIIYQYwRIpThTXGYd92bp1K7t27eKwww6zbsvOzma//fZjzZo1AKxZs4acnBwraAhw2GGHYRgGa9eu7XXd7e3tNDQ0BPwXQgghhBBCCCGEECKRJGzgcNeuXQAUFhYG3F5YWGjdt2vXLgoKCgLudzqd5OXlWcsEc9NNN5GdnW39HzduXJhHL4QQQgghhBBCCCFEdCVs4HA4XXnlldTX11v/d+zYEe0hCSGEEEIIIYQQQggRVgkbOCwqKgKgsrIy4PbKykrrvqKiIqqqqgLu93g81NTUWMsEk5ycTFZWVsB/IYQQQgghhBBCCCESScIGDktLSykqKuKVV16xbmtoaGDt2rUsXrwYgMWLF1NXV8d7771nLfPqq69imib77bdfxMcshBBCCCGEEEIIIUSscEZ7AEPR1NTEF198Yf2+detW1q9fT15eHuPHj+eSSy7hV7/6FVOnTqW0tJSrr76a4uJiq/PyzJkzOeqoo/jBD37APffcg9vt5qKLLuK0004LuaOyEEIIIaKjWtfyL+9rvGy+icLgXtf1pKu0aA9LCCGEEEKIhKG01jragxis119/nUMPPbTH7cuWLePhhx9Ga80vf/lL7rvvPurq6jjwwAO56667mDZtmrVsTU0NF110Ef/6178wDIOTTz6ZO+64g4yMjJDHkUhttoUQQoh48ZL3LY5zn2/9vi7pSeYY06M4IiGEEEIIIRIrThTXgcNYkUgfCCGEECJePOR5kh96fmn9/ozrLo5yLI3iiIQQQgghhEisOFHC1jgUQgghRGIrJ7ABWpmu7GVJIYQQQgghxGDEdY1DIYQQQsS22z0rAFjuXBb09/4eu8pc1+v9H5qbui3/MM20hLRuIYQQQgghRP8kcCiEEEKIAenQbvbpOBGFolgV8N+kB6z7tNbs03EStbqedjrIIJ00Uvi393UaaaZc7yKD9D6De8vdv6KdDraaZZiYvS43ihwcOABNLtmUsYsHPP/gZMeRjFVF4XzJQgghxKB9rf17fKl3UEM9pWospxrHcJXrh9EelhBChEQCh0IIIYQYkJ3sZrPeBsA2XR5wXwNNfKI/t37fQx0AG/UW67YqamjT7aSo5KDrf8r7IrupIYdMlhh79zqOLJVBCYUsNRbxL++r7NY17KaGbbpcAodCCCFigtaat/UG60LYJr2VN/X7UR6VEEKETgKHQgghhBiQcr3L+rmdDtp1B8kqqfO+0OoMlutKJqvxPW5v0+3spgaAGWoSTyb9KaT1aTRvet4b0BiEEEKI4VZHQ4/s+RbdGqXRCCHEwElzFCGEEEIMSPfAXIWu6vW+XtdB8OXs6yoZQNZgiSq0jWFXH0sKIYQQkRNsv1hPYxRGIoQQgyMZh0IIIcQI1qxbSCUFhaKFVtJVWtDlWnQrySRhYPCVWWHdrlCc676Kw9USLnaeyUrvswGPS8JFB+6A2xSKn7l/zxg1usfz1OoGFAqNDggG9se+7H89b7DcsQyHcoT8eCGEEInHv4/7o/cvaK05x3EyTuXkfu/jfTbf6s0BaiEXOc/AxMSFkzu9K1llruMgtQ+nOb7B37zP8YZ+11reoz0UMRoFaNt6duoqbnU/xAXO75CqUob+QoUQYhgprbXufzHRl4aGBrKzs6mvrycrKyvawxFCCCFCdnL7Rfxbvw7AwWoRLyQ/FHS5/+u4nvvNx1FANlnU00g+eUxnImv5EDduDAzSSWUcReyn5vMT57nUUE+RMZo/ex7nJe9qZqrJjDUKedN8r9cxaa3Z25jNpa6zKVT5Ib2OVt3GVe5beMh8kjbaeTfpKWYb0wb6dgghhEgg3+r4P14w38CDFwPFYrWAN/V7pJBMPrmUqrEhradK7+FLynDj5gHXr9mmy7nRczfppKLRtNGOBy8unGSQxmw1jU/1F1ad3xIKOUIdSLvuoJFmXmctTbRwqeNsbnRdOozvgBAiWhIpTiQZh0IIIcQIVqmrrZ+rOmsLBlOBbwqxBpppQaPZzR6WGAtwm76MQhOTRprJV3nMcEyi1DGOUsYBkKOyKDRGMduYCvgam/RKQbFREHLQECBVpZCtMmmjHfBNDZuNBA6FEGIkK9eVuPEA4EVT1lnKoo12knD1vS+yaaYVt3Zb6yzXldY+L4sMPHgBcOPBwEGWykBpFbCOGY5JAOzWNfzL+yoAZVKTVwgRByRwKIQQQoxg/oAgBNYX7M5eo8l/Egbwf47v8Yz5csCyf0+6jVyVHXDbcucylrOs63fbz+Fin64sJ2NCCCH8NW8dOPDipYo91n0XOc/gR87TQ1rPO+aHLO34buc6KwP2iQcb+/Iv81Xr96ONpfw56Ua+13EFT5j/BWCamshyp2+/16Rb+L33AWtdQggR66Q5ihBCCDFCebSHXXRlHNbTSJNuCbpsRZCTmwLymGgETvNKI5UcojMdY6wtcBhsvEIIIUaODu22MunT8NURbKHNun+wdXQrdJW1j0nCxaRu0539y6arVOu2NNvPGSrN2k9W9NIoTAghYolkHAohhBAJpEzv4lXv27xjbmCbLidZJfVYplW3UacbMNGUUsJuaskig0KVz3c6fkyScgUsr7UmubMelAMDLyZZZLDQmEUR+eyt9mKrLsOBg32NuSilejxnJExUY5nDNBpo5jVzLcv1spCnoQkhhIgvz3lfw4OHN8z32GaWQbddj1t7GEsRqSqZTNLJUVlsM8tppoVkkkKubwhY+7pW2vhcb6NDu5mhJjFBlTDbmM4870y2U04qqcwypgAwQ01iNHkAzFJTAtZ3iLEvrbTTqJs4ueOiob0RQnRTrWuZoSbxLcdRHO5YEu3hiAQgzVHCIJGKXgohhIhvz3hf4jT3jwGYQDHjVXGPZbbo7QFTlBepObyR/Bg3uO/ss8vkUmMRV7su5Ab3nQBc7brQui/YbdFwgfsaHvY+BSANUoQQIoHt234yH+pNGCgOUAtR3SOHnfz7LsDaz9lvGwj7frL7OgazH+xvvyvEYLyt1+PGwwRVwqbkF6I9nBErkeJEknEohBBCJBB7vaQclRU04y6LjIB6hqOVLyMiS2X0maHnvy/oOmMksy+LrnE00BTFkQghhBhO/v1dFplkq8xel7Pvn/z7ucHus+yP7b6OwaxzKGMRojeG9lWk82hPP0sKERrJOAyDRIokCyGEiG8/d9/CH7wPAvBf1wMc6tivxzJ/8/6bs9w/tX5f4fotpzqOidgYh9MN7ju50Xs3AM+67uEIx4FRHpEQQohwa9Pt5LTvDcBitYDXkv8S5REJETumtR3BdiooZBRfpfwv2sMZsRIpTiQZh0IIIUQcuN2zAsDqyui/rfsUpw/MT62fx/ZS+L17QfiBFIiPdfbMDck4FGLkCLY9XGossn62bzsHs76lxqIBr0OEn//v0qxbrdt629cJMVK5lBM0uJGMQ79g+4i+9LXNH4n7BwkcCiGEEDHsv97/8TPP76nSe0ghmYsdZ/K6+Q63eB+kSu9Bax0wRauI0WSRwThVxFhVFHSdM9QkfuY4j9fNd3DgYIaaFKmXM+wySbd+btASOBQi0T3rfYUHvP+gUleDhkyVTotu40t28KL5Ji6cZJLBhY7Tcar+T31+4v4t23UF5bqSJFyY2uQrKvjC/Io9uo7rXcsj8KpEdxe4r6FBN1l/F6/2MpupTFAlnOk4MdrDEyKmOHEA4MEb5ZFE35kdP8HEy069GwOj3+Ur9R7qaOBjczOnOY5lm1nG6e7LUBikkcIMYxLluhIXLup1A3uo41PzCw43lliNkRKRBA6FEEKIGPax/pxNeqv1ezW1fKa38JL5FgDz1Iwe9ZvAd/UzVaUEXedolce1routLMZ8lTtcw484+3vRSHMURyKEiIQP9SZeMN8AYB81myyVgUZTq+sBX8ZNC23sopqxBL+YYvequYaP9ec4MDhKLcWrvFZNWGliET0veN9gJ7vJJN2XSaogl2yWGouka6wQ3bg6wzwjPeNQa82/zddoppV8ctnPmNfvY77SFVSxB4Adeic79C7K8NVTTcLFJtN3TH60Opg9qpZK7Vv2S72DWUjgUAghhBBRYG9iAr5i8PYGKL92XsbXHYsHte5EnFYR0BxFMg6FSHj2beSfXL9kvjGTSl3NhPZDeizXWxZ2sPWNU8U8mfwnAMa2HUQ1tT22xyIy3NrNLqoBmK5KeTLpT1EekRCxzYULkMBhA0004ytrMNuYFtK24zeee7nW80fAtz+opd66z5/BWUAeTyffycOep7jAc03nspU9V5ZA+s/VFEIIIUTUlOtd3X4PDBxKbadAmaprqrJkHAqR+OzbQ3+91tHkoVC9LtebFt1KTedJYgld21b/eiuowtTmkMcsBmYX1Wh8/TwTqSavEMOla6qyh5HcCzdg/0Bo244S2wWmcl1JmW0dJmbAMvbtUVmCBw4l41AIIYSIIbt0NaPI5i7vX1llrmOd+aF1XxJObvDcSaWuRqHQaIrlJCqAv8ahgSEZh0IMg3bdQQNNpOkU2lQHo1ROxMfQoJtoMBsx0XxhbkMBBg7y8ZVdMJRBCsm00gb4tp2/8dzLo95/orVmgTGLXzh/RBvtNNPKo55/4sbNfsY88simhnqKVYH1fMWqgA36M3LIZIvezlQ1MeKveaSq1NVUmntIJYVW2mSfJ0QInLYwjxdvwO+JrlE348XLw56n+Kf5Mk6cePCEfNGhGN+234mDe71/o1139Fymc//gX6cDgye8/+UT/XnAcu6Ono+NVyPnEySEEELEgXntx9FAE8UUMEmNY7qaxGQ9nnlqJqOMHFaZ68hU6UzW49nbmB2QYScgn1zrxH83NdEejhAJ51nvq3zPczkAe6mpvJf8dMTHcIX7ZlaYvudVKGYwmSOMA1GqK8twU/ILOEyDPaqev3v/zSpzHe+YH7KbGv7j/R8/cp7OOvNDTnD/yHpMgXcUNdQzihx+67zCuv13zp+xtmMD1dRyhedmnkm6O3IvdoQ7rOMsPtfbyCGL/zPO4FLnOdEekhAxz99VGXzTlUdS4PCv3n+x3PMrXDiZzHgWq/nsr+ZzWYjbjiXGQiqS3+JOz6O+urYKCvQoFqm5ZBppmNrkYpev1M80NZEdyau4x/MYq8x1PS5Ye4IEHePVyPkECSGEEDGuSbdQTyPgK8BsNfpQUGqMBQi4rdgoCLaaEW20yqMe34FbKFMThRAD09JZLwp8U3ujoYkW62eNJkdl9tgeFqhR4IBR5JJlZpClMkjWSdb95XoX5d1qFjZ0bjtMTMbY1jdJjbVKH0idw8jRWlt1w1w4GWXkkqOyojwqIWKff6oyjLzOyv5jPzcespRv259v5JKtMkN6fIpKJoVk67EAKBhnFFk/+zPtncrJaPICl7VxKwkcCiGEECLM7IWV9zPm8XDSzT2WWU7iNTQJJ4dyMIbRlLFLAodCDAN7Jq89gBdJTTrweR9w3cQkY1yvyy93LmM5y7je/Sd+7b0H8NeLDawh20470LOOnqEMilUhX+ly2a5EUD2NVmODOca0hGzoJcRw8DdHgZHXIMW+jb7XdQMzjcmDWo9/vzGUZRuSGsjm/kE9f6yR5ihCCCFEjCgLUuRfDJy/YcxuamjT7VEejRCJxX5SVkt9VJqF1Oi6gN/t9Qj7Yi96X6YrKScwCOhvIRCsjp6/7tUe6mjVbaEPVgya/bNWHGJjAyGEL0PXz407iiOJPPt2PdR9g+ifZBwKIYQQMeB98xP+Z65lGqVoTOYZM6I9pLg1Q03Gi0kGaezWNYxTY6I9JCHixhZzOy+Yb/CB+SmbzK24lYdiVcBK1x94znyNDu0mhyw66GAsRXy341K+5zyBYx2HDOu47vQ8yjrzI3bonTSoJpJ1EgaK8aqYFJUc0jpmGJM4wjiQWl3Po95/0kobJRTSRDP7qfl8pDeTRxZLjIU9HnuwsS8FZh7v60/Yp/1EpqtJFJGPQ/mmBC53LmOKMSGsr3kk22R+ydPel5hOKSaafY050R7SkG3XO3nB+wZPeP9DEkn8zHU+Bxp7R3tYIgGN1KnK93v+TiGjmKomAIosek4fFoMjgUMhhBAiBjxvvsHNXt90hm8bR3OK45gojyh+OZSDdeZHgC8jahwSOBQiVGv1Bi713ARAOmk06xY+0J9Sriv5g+dBPtCfolBcbJzJ7eYKNutttHrbhzVw2K47uMzzG8DXOX2+msm3HEdxtevCAa1nibGQZ5Pu4Qb3nawy15GEi2yVyVJjEVe7LuQG950A/NR5Xo/HXuv6P1p1G7nt+wCwRe8gmSSr4+a+5lwJHIbRm+b7/Mp7FwBHq4M5z3lalEc0dO+ZH/N/nuut36d5J0rgUAyLgIxD7QHVx8IJQmvNTzy/o5U28snlfMdpAQ2zxNBI4FAIIYSIAfYpWWPU6CiOJP5l0dVpuqGzoYEQIjT2bVE6qTR31jEs07usmoCZpDNGjcaBAy/eHrUCw83ekCSdtF4L0Yeq++P9P/e3zlSVgkKhOyc12zN5WpDpy+Fk/0wVqfwojiR8tDUZ3kfqZYrhYu+i7BkhNQ5raaC1czucq7KHtI8QPUngUAghhIgB9pOky5znRHEk8S/TdrDYqJuiOBIh4o89mHGK42j+5H0UgG26nKrOxigz1WQucZ3FPebf2KbLhj0AYq9Z9W3HUfzO9dMhra+3QvahNN8wUHg7A0BeW+Bwp949pDGJQPa/+Q+d34niSMJHAociUpxq5AUO7cfRi4350kwpzCRwKIQQQsSADeZngG96yWjyojya+CYZh0IMnj2YMV1Nsn6+2XOf9bO/eVMJhWyjjFoaaNGtpKnUYR9TpBtH3e5ZwSpzHQBe7cVL8GYwj3r/yUd6k/X7UmORnLgOQeDfvKiPJeOH2e2zs0lv5eSOi6I0GpHIPjS7tkUXu28IuKCaqKr0HuvnNd4POFlH/7vl7uiI9hDCRgKHQgghRJR9rf1MnDiYyRSucH0fQxnRHlJcy7QVw26QjEMhQvaady07zArGUkSxKuAIYwkPuH7Nq9632WxuJZN0JhvjuaAzA2wfYzYdZgeNNFOuK5mqJoZtLKY2mdh+KC204sbDBEqYpMZylHFQ2J6jL5+Yn3OB+xprG1KgRqG1poBRtNBGEk5mMIlW1U4W6bToNhp0E1prPucrNppbeN/8lBVJN0dkvInkee8qdps1jKOIYlVIHtnRHlJY2DMOlxkn4sTJZr01iiMSicqeZdigm7vluiamTXorGaSRhIsM0mPi+M+jJXAohBBCiDBo1i2s1u8DUMpYvus4Lsojin/2ujaNRP/AUYh48YXexnp82c/7qXlMMEqYQAnVupY6Gny3G/NYaiwCwIHBOu1rRFSuq5jKxLCNpZpaqujKIPmKco41DmGGMTlsz9GXbbrcem3T1ETfdkVBjs60MlumGhOZZUwBsLISUVBr1lNJNR2mOyJjTTSb9TY2dH4Ol6i9E6bBgT14M9uYhonJLlOmuIvwS9ZJ1s/pKjXh6/1prWnoPN7LIZNioyDKI/JxKwkcCiGEECIM7EX/FxlzoziSxJFBmvVzg5apykKEqsw2PXSZ40Tr595qAharrpOzcsLbICVY/bcfO88K63P0/fxdr+fHjrM523kyAA97nuICzzUALDT24vzObr/292f/9m+zXm9kJ7vxai8O5YjYuBOB/W//fee3oziS8LJnHCp6/14JMVQ/c/+O27wrALjedQlLjIVRHtHw2q538p/2/wFwiLEff0u6LboD6tSQ1EA290d7GGEhc6GEEEKIKLKfqI+NcO2uRCUZh0IMzkBrCdprz4W70UP39RkYFBG57rqB2+au12l/X8p66SbtX8aLl0pb1qQIjT1oW0Li7BftgUNDTsPFMLJ3VXbrxG+OErDNkGPpYSEZh0IIIQatTbdTriv5s/tx2pWbMWo0b+v1QZfVWrOPMYfvOo5jolES2YHGiCq9BzceHvf8hzf1e9ZtKSTRjlsOdsIkiwwMDDJJxzMCDpiFCJd2OsghkzoaQwwc+pZJI4UXvW+x3LGMZJXUz6P6tsn8kn96X+EZ8yUcGFYzklyycSnXkNbt16ibqda1POV90SoV0XMcW0nCRUe3bbM/iJhHNk26JehjS1QhThwUMZqN5hcUO2Jj2ly8aKeDbDKppzEgqzXaNptbecb7Mmv1hkE93h5ofs77Gj9ynh6uoQkRwB44HAldlXfpaooYTRV7onos7dEetuoynvG+xNt6gzRHEUIIIQA+0Z+zpMM3TQsNCsW+ai5JBJ7caa1Zwwf8x/s//mW+yprkx6Mw2uj7k+dRfuu9H4ViNlPJUVmkkMwiNZcD1d6c6zgl2kNMCBmkYWJSTyNV1ER7OELEjQ/1Z9TRSD65ZJPZ7/IL1SwucHyHe7yP8aZ+l416C/PVzEE/f5NuYV7HNwHIIYv9mc8StZCfJ/0orCe/r5lvc4p7OeCrLTs2SNfeMWo0YxjNAWoB01WpdXsxBSThooZ6NrIl6Pp/47icx73/oYxd/NTzO951PB22sY8E683PqKeRsRSRopKjPRwAWnQrczt8NYhzyGSOmj7gdbTqNuvnV/Xbw9qJXIxsLjWyAofbdQW72I1CMZbodWHfrncyp+MbABQwisk6cRIlEj5HurGxkUsuuYQJEyaQmprKAQccwLp166z7tdZcc801jBkzhtTUVA477DA+//zzKI5YCCHiR7CpaaPIIUtlBPzPNjJxdQYTy3uZ2jUS+N8vjSZPZQe8RzlG1pAzdYRPtuoKeDTIVGUhQqK1tjKiclV2SA0pnMpJvsq1fh/qdOUK2+PTSCHHyGKUI5dklUS6SuvjkQNjH2f3/VX3/3lGTkCNwmwj07o41tvrTTNSyVHZfS4jgvNqLzvxNQwZpXKiOxgbez3iNFL7/dwE+5+qUnpdpxDh5LJPVR4BgUP78fWYKDZGKadre59OKpkJ1JQm4TMOzz33XD7++GP+8pe/UFxczKOPPsphhx3Gp59+SklJCb/97W+54447WLFiBaWlpVx99dUceeSRfPrpp6SkpPT/BEIIMYJ1PyHKIoOnku8MuuzB7aezVm+gihradceIDJLZDygeT7ojIMAlwsfeHKVRmqMIEZIGmmimFRhYjSh7DbqhXhiy1xX8juMb3Oi6dEjr64193/Vr52V83bF4QI8vUYVs0lsp15VorYMGWUsoZBtl1NIgmWUDUEWNlSEVS+U77J/NUx3HcJPr8gGv4xHPM5zn+UXAOqcwISzjE8LOSdfFDg/eKI4kMgLq80axLqp9HBc4v8PZSSdKc5R40NraypNPPslvf/tbli5dypQpU7j22muZMmUKd999N1prbrvtNn7xi19w/PHHM3fuXB555BEqKip45plnoj18IYSIed0Dh2n0fsHFfgKwU+8etjHFMn92QQZpZJE4VyFjjaF89Q1BMg6FCJU9+2kgJ15jAxqkDC2DqoKBNWcZrPIhNqXyj62FVupp7HMZkMyygagYYIOeSAnHZ9PeHKX7OoUIJ5etZJAbdxRHEhn2bXo066LG6vYrHBI649Dj8eD1entkDqampvLmm2+ydetWdu3axWGHHWbdl52dzX777ceaNWs47bTTgq63vb2d9vZ26/eGhobheQFCCBFmT3j/y3azgn+ar5CvcrnQccaAMy1Wep+lVtez3vyMjeYWiimgmlrGMYZFxpxeH3ewWkS1qsWFkyfNF7jMOGeoLyeuvOp9m0lqLMWqgGIKQpoGKAYviwwaaZaMQyFC9JL5JoepA2ihlQONvUN+3CQ1jq+p/dmuK3jRfJMf6e/iwsVd3pWs9W5gmy6n1BjLn1y/ZLwaE3QdXu3lV567WW1+QDEFjFZ5zDFCryF3q+ch0khlg/kZlVT3u3y5rmQCJWSo1IDO0KGao6bTqtpx4qBcV5KjsnosM0NNYrGajxMnFbpKMstCVKX3cJDaBzeeqLxn//X+j016Kx+an1Gt66xacXW6gUmMI1OlD6q+IYDZ2egHYCoTeMDzBE96XwjLuIWw22R+yQRKcGJwr+dv/N37n2gPCfBt68uoZIoaz5mOEzjGcciQ1/m2uZ58lcsUPZ4klRTWuqibza1c77mTNt1Ou+ogmwyqdA2ZKj3o8tW6llLGkqHSA2rjJoKEDhxmZmayePFibrjhBmbOnElhYSGPPfYYa9asYcqUKeza5ZtOUVgYGA0uLCy07gvmpptu4rrrrhvWsQshxHD4jec+PtGddVw1jFfFAw4c3u/5O293dhRcohYymfGcbZzM1a4L+3zc+a7v8Iu222ikma+8FVzmHFmBw3+br/G8+QYAryX9JcqjSXwZKg20ZBwKEaqHvE+xUW8hgzTOdp4c8uMmG+OZbUzjVe/boGGz3kYKyfzKc5e1zOfmNj42NzHeETxwWMkebvLeA/i6FX/DOJSDjH1Cen6tNdd5/kQb7eSTy0w1ud/HZJJOpkpnqbHIt60YoFRSWKM/AHxByL2Y2mOZbJXBGr0egB3sHPBzjFTbdDlv6HcBOEd9K+LP/4T3ef5q/guAvdmLNHxTzA0MSlQhS41FHOzYd1DrtmccTlUTaaSZBi37KBF+29lJB24ySaeYwpj5nLm1h4/ZzMd6M620hyVw+Iq5hufM1wD4tjp6yOuzW29u5B/m875fOr++YymilLFBl0/CxVhVxFJjEXOM6TSQOAlmCR04BPjLX/7COeecQ0lJCQ6Hg4ULF/Kd73yH9957b9DrvPLKK7n00q6aKw0NDYwbNy4cwxVCiGHVfZrMYIq2++v8pJNqZVlkhVj8t0QV8pn+ss+6UIkqoP7KIDJcxMD4p4I30oypTQyV0NVZhBgy/4nlYMoo2KdkletKUuhZw7av/Y39vkzSQ96nANRQTxu+mUC5nU2nQjWQZe3sr7esl7qO3d8TEZryKE/1s9cizle5OFXg6fJgPzNAwBFYqkpGMXKOgURkObWTDtx48Q7pMxtubjzWF8GegTsU9m3GGDU6LOv0CxZwzVaZ/b6nsfSeh0vCBw4nT57M//73P5qbm2loaGDMmDGceuqpTJo0iaIi34lbZWUlY8Z0XQGtrKxk/vz5va4zOTmZ5OTwpcAKIUSk9AwcDqyQvb3b4VQ1kSeT/jSgx/sDh620UUsDeWQP6PHxzH9go1CMIT/Ko0l8mSrdOjhtokVqSgrRj0Z80/p7m4LVl1ACh2V9Bg679kXnOL/FcueykJ/b/tgDjAXc67oh5McO1tgQgoIlAbUfJXAYKnsgdjD1J4fK/7fKJJ1/Jt8T1nXbj8EONw7kLOdJYV2/EH6L2k/iI70ZDQM+Vh9OjbqZ0e37AcMTOLzc+f2wrNPPf85j90vnRXzT8fWwPk88SPjAoV96ejrp6enU1tbywgsv8Nvf/pbS0lKKiop45ZVXrEBhQ0MDa9eu5Yc//GF0ByyEEMNIodBoPtdfcbtnBQCrzHU9lltqLGK5cxm3e1awylxHm27H29mdbTCZAIHF4ivJUyMvcFhEPi7l6mdpMVT2QGEDTRI4FKIPpjatwOFQMw7v9/wdI0j/xZXeZ8lT2UGDgn/1Phd0XX7+fVD3fRL4auJZj41QN037GF803+RqepbqkIzDwamgq5FM8TAHDu2fI/BNe9+qdwDDk+1oDxxKtqEYTqmdzQpbaYupGT6G7XNvdktmGCx/Q5IkXOSTG5Z1+r1ovtXjtkRrehKqhA8cvvDCC2itmT59Ol988QVXXHEFM2bM4Oyzz0YpxSWXXMKvfvUrpk6dSmlpKVdffTXFxcWccMIJ0R66EEKEnf+gNYUk7nBezc89t3KV5xayyKCY0eSpHMB3xb+Gel403+Jv3n/TqtvIV7mgfTV/phmlnO8M3kCqL+cbp/GluYN6mrjacxtPJ3XVwPJoD2PalwCQSzabU14c+guOER7twYmDOUxnhjEp2sMZEcarYuao6Xjw0KRbkHM0IXrXTKu1f8gYRMbhLDWFv7lu5QXvm2zUW0D7ApATVAnHOg7hTe+7/Eu/xu2eFawzP+TRpD8AvuyT/Tq+RYfuoIh8DjL24WCjq36cqU3mdxxPra6nhjr+bb7Ozzy/J4dMJlBCpkrHpZ0sZBZTjYmc4ghvfaveTFbjudBxBk95X+QLvZ13zY/Yp1tzsAKdx/5qPo000UxrRMYV757yvsguczfFFDBJjRtU9msornDfzGrzfRp1M7kqm6TODrRaaxYwi+nGJL7j+EbYn1fbMqwkcCiGU4pKtmZdtNFuBRKjzX5RKVwZhx7tZTbTGG+MCakszfS2I6mhDgcOdiT/L+jF/HfMDznP/QuadQsF5FHKWApUPi7lZFqCNT0JVcIHDuvr67nyyispKysjLy+Pk08+mRtvvBGXy/cB+clPfkJzczPnnXcedXV1HHjggTz//PM9OjELIUQiceFiH2MOVfgyNWqpZ7waY9Xk8Ggv9TQC8IH+lBSSmazGg4JsMplvzGR/Y/6An3dvx2y2uLezk91U65qA+3ZRbWW8NNMaU1dIh2onu9nOTmAnpZREezgjQittfKQ3WT8LIXpnbyKUxcCDNdkqkxMch/OVrqDK3GMF6g8wFnCm8wRqqeevnn9RSz0f6I3W48r1Lr70Z3hRyD7GHMbZOi9XU8tmvTXguTSaWhqYoSb59lmdz7XQ2IsZRv+NUcIhXaUxRo1mZ2d23Fe6gn0IDBw6DSc79E7KqWR3t/2dCG6L3s5mtgFwqNp/2J7nI72Z9/QnABzJgV11DDuPceYa0znMcUDYn9eeX5UoxzciNtkDha2xGjjUQw8ctuhWNrIFgCwdWrZ8BZW+WotAIy1ByyZ9pcv5TH8JwAw1iZMcR1r3DdcFjViX8IHDU045hVNOOaXX+5VSXH/99Vx//fURHJUQQkSHfZpM91T7m5yX8zWH70D9V567AjpiTlLjwlYjpUQVslPvZhfVuLXbutJnn8plYiZUDURpjBJ5/k6YIIFDIfrTpJutnzOHMK1/uXMZy+k5FXm5cxkPd3ZttjfHstc9/I7jGz2mMfc1xfcB101MMqLXnDCUqchjVRHlupIqamjXHSSrnrUfRRf7+3ie89Rhf54M0ngm6e6IBfECpyoLMXzSAgKHbRAjx9PhnqpcobtKG4QyhbhVt1lBQ/A1PwlWNsm+LbrSeQGnOo4Z4kjjn7QYFEKIEcS/i1YoslQGThzWffYi5N3rRIWznod/XRrNLqqt2+07f9/viVMTaqAHNmLoUuhqYtaq26M4EiFiXwNdgcOsYcqm8G/72minhnogcNs4NshFle77BbtiVRDmEQ5M95q9/S2zU/cssi8CVUSgo7LW2nqeElUY0cw/e+AwWB1QIcLFfgzUFkPHQOGeqmwP8IXSTKn7PqWRnl2Tuy8nx+0+CZ9xKMRI5NVe1pobcConVd5q8oxs0klnkjF89WJEfPHX1skkgwYaMdEBRcjHqiKSScKDFwdGWHeaxaqQPLJJIokz269gvjGLEx2H80/vy7hw4sZDIfl8ZG5mtjEtbM8baVpr1pjrcSoHG7wbKWUsleyJ+sluLKvWtZSZO3nc+1/a6eD3rp8N+qQuVdkCh5JxGJK13vUopXBqBwsds6M9HBFBLbqV8RTTTOuwNRIqpoBcshhFDi953mKd/pCXzdU4ceDBy8uet5iqJvKW+T7rzU9RSlGpq0knjQ468OCxwi4pJPtqeEVRCYUk4SKNVN7xfsRnji09pkqPYTTZZDCaPHbqKiaO0FIV73g3gAKHdrB3H9sWF06KKWAPdRSRH/L6G3UzX+odPOd9jXXeD5njmM5ZjpPw4sWBg5XuZylTu0gnla1mGQ4cZJAW8YCANEcRkZKqujIOW2Koxqo9cKjDEDjcoXeSTy6NNPfZTKla17JL7+bPniescw0IvGgGsNHcQjJJfGRuIpUUOnBTjBy3gwQOhUhIFbqKr7nPBHwbaNPr2zD/xnk5lzjPiuLIRLTpbtMCypPfwFAGpjYDCgp/3VhMXfJ71nTlnzvD12n+D86fcavrKm5w38mN3rtZY67nbvOvAMxhGtsop5JqrvT8nu84w1+cPFJqaeBr7u8BWCfGgByA9OE/3v9xnucX1u/XcBHZZA5qXak9pumIvnRoNwe7zwDAiZMmx/roDkhEVANNbKcCgDSV2s/SgzNOjaGWBmpp4CzvT3vc/xyv85z7daCzzhzTSSWFhWoWS41FXOk4P6TC95EySY2jKultcjr2ZjXvc4H7Gl5PXhmwzDg1hnqaqKeJHexkMQuiNNro8WgPS92nA+DAoNnxYa/Lvq8/pYIqRpHTVXcwBGvNDXzDfZ71+/PeN/hcb6OJFl42V/tu7Dz8KSKfeWoGS41FYT22CYUpzVFEhKTaZ10QOxmH9ovB4ZiqfLnnZuo6Sxtd6Di91+X+7X2d8z1XA74GjLWdWe+NOjDj8Fz3VbynP0GhWKIWslQtolSNHfI4E0Hs7H2FEGFTQVd6tf1qThJSW0f4+Hfb/pOw7idjhjJQyjedOUtlhPVkzb+uLJXRY6pOvsojhywAKtmDW7vD9ryRVq53WT/7g4ZAQOF/EaicwOl+fdU3609AfZ8YmqYTq+zTcjx4aNcdURyNiDR7cD1tmIro95UN0l0Gadb+x//faTgxlGH9jzalFClGMumkAQTUa/QrNrouFA1lexbPKjubsAF4MX1d7nvR2Flr09+oLVTB3ttyXRn0dvtnKtKfo4DmKBI4FMMo4OKpjq2Lp/5j/6FOVdZaW4290kjp8/tsP75Mt9XAbuyWcejfZmSSTrbKJNvIlEZGnSTjUIgEZD8BtB+kGHKQMuJ1zzjsT/dC9eG03LmMGz13B3Tz/GfS3ZzpvoId5k40mp1UM574DLT1VptLpir3rnudsHJdySymDGpdKbZpOm2Scdivim5B2wpdJVfZR5AW24llyjAFDnurP2XPyPY7w3E817kuHpZxhNtUNYH1eiO7qMarvThUV+1gezOsvuo1JrJg9YunqdKgy/qPBwY6Xd4eFMghizoaqNBVNOELUhoYVpDiMsf3WeY8cUDrD5fAGodyTC6GT2rAMVBsXTz1fx+HGjhsodVaxxRjYp/L2o8vv+c4npu89wLQYGsM5tZu60LHdFUatqaQiSL6l+uEEGFnz3Sy8x9AiZHLf9AaK1e6XbbrVwXkkaRcAYG13j7L8SBY9kke2QEHcyJQ9+yQoWTo2KfptEjgsF893ntGZnbUSGU/sUwdptqBvV00KQxSy64kji6w+F+XBw9V1ATeh2Qcdt+PB9s3ArTrDjrwzTLIYGD1uO3vbZHyfZ4qqKKeRgBctkZwuSprQOsOJ6lxKCIllo+B/EHzoU5VttcnzOxnmxHYRKUrIcHeHGUn1dZ3VC7y9yQZh0IkgDrdwK8997BFb6dG12FgUMAommnBRFtTkBp08M5RYuSJxAFrq27jTu9K3jLfo1LvYYwaHXB/ra6nzjqod7LImAvAUmMRm8xtoDRPeV9ksRGfNaEaaWI6k6inkSScjFEFLDEWRntYMWWtuYHnvK+xWW+jXjdSTyMlFNJGOwvULB71Psu/zFcDHrNH11FPI6PI4amkO3ud0hZY4zC2rrbHmhe8b/C69x0KGEUTLUxXpTSZzXJ5eQSxT1VOJYXHvM9RpnfxmvdtdurdjDeKudBxOkc4Dhz0c4xTYzjDOJ6PzM18zlZMNOMo4kTjCHawk83mNiqoZJwaw3xjVjheVtg85X2RL/RXvGN+SKvZxk61m/FqDN91HMfRxsFMVCVsMDdxVPv3KVKj+KPrGqYZpRSrAvZX83HhJGUElot5yfsWL3lXU0Q+jTRTyjiqdW3QZe2zDwbS2XuLuZ09upapTMCpnJxkHEEDTWw2t7JNl5Ov8tCYuPFgYjJZjR/y6xosqXEoIqWYAg5R+9JGB819lAeIhnBNVbbXJ+wtcLjO/Ih/el9mt65lPGPIV7lMYAwHqr1Rnf8ANplfco/nMWaqySTh4kjjoCGNLRFJ4FCIBPCVruAO7yMAFDKKaaqU6aqUtfpDOuiqU9XUrY6DGHkGOlV5KFpo4xeeWwHIJSugpgj4rv55O6enufFQo32Fik9wHM7Vntv53NzGWjbwO1fPIvrxYKPewia+BOBc49sUqnyudl0Y5VHFltXm+/zO+2cAplNKgRpFhkpjqbEIgFXmuh4XPL7UO6jqnEqyQ+9kLzU16Lpjub5PrHnRfJMHzCes3z/QnwbUJROJr6VbjcM7PSt5S79n3bbR3MJEVTKkwGGOyuLPSTeyvONXbDA3Ar7ay9cnLQfgBvedrDLXsdRYxL6dF5JixePe//CM+TIAC5jFp/oLPtVfAPBM0t0AHNN+Lpv4kk36Sz7Um5hGKckqiS/1dqqooURHtoNvLHjFXB2wbfmYzXzJ9qDLNmp79lDoU5U/0pusv80h7GvtZ29w30mL2cZSY1HM7Hsl41BESopK5nX9DgBHszTKowkUtsCh7by2t4vIb5vr+b33AQCmUcrRxsFkGOm86fHt3+brmQBs0J9xt/kYAF9XiznH+a0hjS0RybVkIRKAvW5DFplW0eeMboEaex0HMbJF4oDVfoDswtmj0H33KbvJqisbo6SzFlYTLXGbKWuv61SsCgdc7H0ksL9HeSqnx2ck6H/bVeW+aobZp1vGWn2fWBPsfZT3bGRp7VbjMNhFpnB1J7efLI5WudbP9u95rLFnLeeRHfT2AjXK+tn+nfLXOfTXQBxJyoNsW3rbbgcGAULPOLSvz/43iMXPkzRHEZESy/VVwzZVWfc/Vdl+jpynsjuPI7u2Cf5M5962I6KLZBwKkQDs9WIucZ7F9zuvkixqP9nK4oLAOg5iZIpkxqH9ufYx5vQoMnyXZyWXem6yfk+2TePqXhcqlg78Q+Wvp5JMElc6z5eubEHYa8486LqJUiOwGcdyejbnuc/zNy72/AqAsj5qYNozDltoHepQE1qw2mvyno0s3WscBg0chilzd1/HPO43Hwfgm46vW7cvdy4L+p2PBS266/vweNLtjOrYFwh8T85xfou/dfwbCPxOFasCPtCf4sVLJXsC9m+Jrrdux8EETFUeQMahfX1nOU62fo7Fz5M0RxGRElgvPLbqq4Yv49Be3iD4NsN+jvxn141MMSawXe/sWkdn8NH+Hn3f+e0hjStRSeBQiATwtPcl62d718JkXAHLNchU5RHPf8ga6YzDYM+X1K3ek/3zWmL7HJfpXcxk8jCMcHj5D0JKVOGIDxre7lnBKnNdj9vfMt+3fg61ELX9KvqT5guczclBl7MXBm/Vkj3Xm9s9K/hQfwZADplW3VGpCzmytATUOOwlcBimz8Q/vP+1fi7ppdNyrLEHVtNUKikk00Z7QBZmCV2vxd4QxP4ay3XliCq672+ylEsWDTTjxdtrECOgXtkALhaWBTQ9iO3Pk0xVFpFSRD4OHHjxsspcx8kdF0V7SBb/hck9um5I6wnlYkP3izi+ZbuyE/3rsC9n35aLLhI4FCJOfa39TN7W6zExGU0uc5nBHGOq1WAC4I/Oa/jc3MbPvbfiwMAh1QlEp0gfrgY7QLZPTYbAjMMpagKz1VRqdEPANIN4sKzjJ/zDfAEvXsZSxNWO2KitFC3T2o6gjTYMDKaqiQH3zWASHXQw3ZjU4/PQm/2N+ZxlnMS/zddZY35Aua4MGnxII5UZahJuPDiVI8iaRq7TOy7jX+ardOAmgzRyyOZY42CmG5P4iee3wMCyy27xPMh1Hl9G8YnG4TycdPOwjFsMH/vfO41UGIapyjv1bvZv982IKKaAQ439OSBOGkb5X3sqKSilSLUCh10BxWIKmK9mUq8bA2Z7TFel7KWmUKPrKTd3sciYE/HxR8P9nr/j1A72YgpnO7/FY97nqKeRdNKCLl+layhiNPnkMJ4xQZcJpkbXUspYslVmzGdzSnMUESkO5eBZ1z08432Jj/TmmCr74+38HtRQx0fmJuYY0we1nirTl8E9itxeL8g06CYmM55iNZo05SvhZZ/W3KSbObrjXMrNSsZSxIHG3jF/ASJaJHAoRJwq15XWAchualmoZjPXmEGe6qq9s8AxiwWOWfyf9wZfZ1c98jr6iUDRmqocTPeMWJft91Eqh4/15wCUE1u1WfqzU++2mr6UsSvmivxHUoNuYjsVAIwip+dUks7zpvnGzJDXOUrlkKKS2U0NQK+BwxSVzGfa15xmui4dxOgTV7mupAM34KsjmkE604xS9jPmWcsMpMbhLl1Ne2cjrlibEiVCY/97p6jkoFvvoWbulutdVtOdCRQz15jOaJU3pHVGij9A6M9kTiWFWhoCAq6pRgplehfV1OLVXQGibJXJJ52NVCribH82FGW6ki2djVBmqslU6mrK2EUzwTu87mK39T9zIF2V2cFWysjRWWQYoT8uGiTjUETS1x2L+VhvpsKMre2O0r5LU15MmnrZHoRiF9VUUEUFVeTazn/9TG2yma104CbNVr7GoRykk0ozrTTQzHZzJxVUkUk6C4xZuJSrx7qEBA6FiFv2A68Ukvhn8t29LptBGvU0BkwDESNbZKYq9/18yd2mKrtsu6RYrs3Sn+6vdSRNS+vO/rc70jiIB5Nu6mPp0IXy+QiscShdle2adWD9wm85jmS5cxkfmp9Ztw3kPWvWXfsjqY0YnwKnKgc2R3HixINnyBmH9u/q2c6TWe6MrfpzffEHCP3blVSVArpnFmaxKqBa11JBFaY2MZRBMYFTlUcKe/2xTJVOknKBxrpo0V3AVMEQM3601tbj4mFfK81RRKTFYq3P3LZ9rG3nUBqkBExDDpJtXE2ttb0p7rZNySKDZlqp143sZDcA09TEuNovRZrMWxQiDmmtqaVrGkxaL9M+/PxZPg3SHGXE0zpyGYd2wQ6PuwcOnXRNJw2sCdV7A4xYZJ+KlISrR/fokaSslzpfQxXK58Ne47AtTE0dEkUdDQG/+99Pe7B1IFOVq3Wt9XNtt3WL+NDaR41D/3cpnIFDe63SeOB/7SnKn3Hof08CszD93yUPHqo6s6LHBtTsHTmBQ3vH0yzSSeqcVeDGE3T5wXw+9lBnZTvHQ71MaY4iROBnfygNUuzHf8EuHPR1MSLTdm7s/17GwzYkmiTjUIg4scH8DBOT/3hf5x3vh6STRgNNGKh+28b7C8Y204pXe3FIva8Ry79zjHRzlGC6N0dxqq5d0mjyGEUO2WRaJxvxwqO91s+jyI3iSKJrq1nGF/oriimgmRbGq+KwrXssRRSQh4HBf7yrONTYn72MqQHLOJSDJFx04JZGHzafm9sopoAydqHRJOFinPLVE7MHuXubqvye9xMaaKSJFmaraZQaY3EpJy7txIOXIvIj8jpEeOWSxSQ1jnbdQYotcKhQpJFCI81D+h616w7KdCWF5NNMC2OJt8Ch77X7p7v5g+yttKG1thpglaqxjKcYL16udP+e37l+SokqJIsMCsjrUaIjkTXZGvJlqgxrVkFvGYcuXExS46jTjRQQ2hT2teYG5quZ1Og6Shk79EEPM5mqLETgZ99e1sFPa80L3jd5znwVjeZq10UUqcBji21mOZkqg8mMx9SmdVHH7gPzU+aq6ezRdUzodgxaSglePLTjpoRCmmllgioJ0ytMTBI4FCJO/MJzKy+ZbwGwv5rPPGaw1FjE1a7+Gy9kqnRrfkQjzeSQNZxDFXEgFroqd2+G4bBlHBrKIEOl86XeQb3ZOHyDHAatqg20b+r1l8mvRHs4UfOo95/c6PWVUDjVOIYfOE8J27oPduzLa+pR9uo4hl26mt947uUvSb/vsVwqKRI47OZO70rWsgGAs4yTKFGFfMtxFNAt47CX7LLj3OdR05nxfpXjAq4xLmKNud7KIlqtP8Ct3VIjKM5s0+V8qXeQhAtDGQGBw5TOablDydzdriu4xfsgAHsxlUMd+4Vl3JFgatMKpHefqgzQji/YCnCL6yqK1Giu8dzOY+ZzHG9+nRMch+PGwxdsJ0X3PLlNVN07nvaXcfiW+R7V1DKeYgwV2qS4Gz13sV5vxIGDW11XDX3Qw8zU0hxFCPrJOKylgRM8P7R+399cwPccxwcss9J81jovftL1p6DP8kvPHeymhnGM4afO8wLuu8Z1EUs6TrN+TyWF3zp/MvCXMoLIVGUh4oQ/3dqBw2oy0KPRQC/sLeobbFeAxcgTyeYodsFrHAYGFuyBQ+iqV7KHugFNm4w2/8lSFhlWFspIVE7XFJEiNTrs6y8JYfqffzphi5a6e372qTtjVEHAfsQ+vbu3Gof2IGw5lXi0x6oP5Nc4hGLnIjr8wRx/Vpg9cGh9j4YwVdn+Hc1XOYNeTzR0bxwDfddQDVaDNbOzpIx9+m6ia+x8rQpFOqnWZ8uLNyCABtCm26nGV/JgILUK/e9vEflxMZtGMg6F6H+qcvcSNMFK0gTUNwyyzWjT7VYTvZIg93cvh1CsCkb0MXsoJONQiDjh30BOUMU8mRz8ykpv7N3pGnVT8IJzYkSJhanKfdU4hM66UJ2rqNBVTFbjwzq+4eI/WcoMMbCfqOwHdVc4zw37+lNUMvnkUk1trw0HrEwpyTi0+A/ADQx+7rwgoERASkBdyJ7vmanNgEzEcl3JLqp7HPg36CbygnQ4FLHLP33UnxVm33p3Tcsd/PeonK4Tv286vj7o9USD/XVbGYe274rvO9H1eS+xTcO2AocqgypdE9AwJNH5L6Jlko6hDFy2i4VuPAHHAPZt+NgQ64x1aLfVpTteapNJcxQhAj/7wQOHlX3+3v22YN//Cl1lu79naYwC8nDgwIu313WIQBI4FCLG3e5ZwaveNdTjm65ZwsA3bIEZhyPnoFX0FMmMw36nKtN9qnJgErx9J367ZwV3JF0d5hEOj66Mw/R+lkxMt3tWsMpcxxrzA8D3dx5FzrA8V4kqpFrXUsYubnM/zCWuswLuT7PVIRM+/oPtMYwOCBqCr0RACsm00R70PWvqlklYriuDHtA3SWZ73Omecejnyzj0fY88eDip/cJBZWV8ob+yfl7p/Revmm8PYbSRZc94717jEDqD7La3xB74+pv33xSqfOs4rJGWgJqIicy6iNa5L3QppxU568AdGDjEHgQIrf5lYGAgPk76JeNQiP4Dh91nkQQ7zthgbgR8F7vyg9QTD9ym9Nw+GMqggDxrxsRgzq9HGgkcChGjvjR38Afvg3xubqNG1zGFCRSpfE51HDvgdY1jDAepfdBombIngMgfsAZ7vu7NUYxugcOvGYup1028ab7LGr2e173vcIhj32Ed51C1mK3MVdNJJYVpamK0hxNRz3pf4X/mO2w0t9BICyUUUaTy2c+YN2wnyWc6TqDcrOS/5iqeNF8k3ZMWUEvR3vl0pJys96VDu5msxjONUsb2cnJ+sLEvLbqVXNWzFq79wtMocihVY3nM8y++rhbzhf6Kr6josZyID27tyzh0WRmH/qnKvu/ZYRzAW973aKAJpQf+PWrRrVbwzKu9cfUZ8WgPpYxlnBrDSY4jAJiuSq3vSh2BdXhLVCE/dHyXjd4tbOJLnvG+TI2u860LD220BwQeE5HWmgmqhMlMYFznSbu90Zm9Qcoqcx2PeJ5mKhNIJ42vGfuH9BwPef/B19ViFIpvGIeG9wUMEwkcCtH/VOVGmljCQj5kExMoCWiW9G/v67xirmYUOUxQJSw1FgWtifo3z3N8XS3GiYOvG4uDjmOZ40Q26M/QWnOMcXAYXllik8ChEDFqs97KA94nAJjKBKYbpSw1FnGu89sDXpepTN7Q7wK+grNCREK/U5VV98Bh4EH0EY4DaaGVh8wnQcNavZ5DiO3A4U52s05/BEBhP93OE81r5lru9v4VgAPUAqYY41lqLGK5c9mwPeeFzjPYrWu4pf0h0JBrZvEDugKHKZ0n5yZmjwyXkWgnu1mtfZmgJ6jDgi6z0dzCdioo1D0/v422+mx7qON58w0ySaeeRnJtUzUbR1Adt0ThzzhMUt0Dh4qznCcBcDu+bOLB6NBuK1iYr3KDdsCMWQryyGGpsYhvO44GfO/X/8x3AKjS1QGLp6lUbnVdxe1qBas977NT7w4oA9BAU8IHDutoYE3ntuZryhcI7D5V2W+tuYFHzWcBON34Jkc6DgrpOZ4yX+JzvY0M0njOeV+4hj6s7EESCRyKkSqgq3KQwOFn+kve4n0APmYzHt21vVhlruOuzmPN84zTuMF1SY/Ha635q/kcrbQxU03udZtyreviobyMEUcCh0LEKHua9nLnWYMKGPpl2qcq6/i5yi/CL7JTlbuEMlW5e8YhBE5Z6q2OXSwpsxVwjpepU+FiL169Ium3jFNjIvK8+eSShIsO3D0+I6kq2fogttI24gOH5SF8PjNVOujgjbS6Z4mZmFYZjVyVRa2uD7qciH3+DLCeGYdd2+7lzmUsZ3AXAha3n0Kl3oMDB88m3RMXjSz6EkpzpuXOZTzmfY71eiPtdFi3N+pmClX+sI8xmgLrj/n2471lHNqXPc95akjr11pbj4unfa1kHAox8BqHAU3ZbMcxyx1nBl1/LQ1WuZV42j7EOumqLESMGkyh6N5k2ZqjdK9RJUamyE9V7impW1flYGOy7/DjIXA4mDpNicL/9zEwKCJyJ8VKKetz0v0zkmbL6hlKY4dE0V8xceiqR9ZKW8BVfuj7wpO9xtBI6hybKKyMwyBdlcPBf7IXL91v+zM2xIta/u+ZPWA0EgLrAduaztphTlu+in9qfI9lQzzeraOBFloH9JhY032WhRAjReBU5Z4JDf5tgn+pNlud2bIQthehXCQVAycZh0JEmb/ulr+hgN8G8zPr56Fu9Lo3R5FaXyNXtJqjBJPcLXD4jrmhx2ezkFFW17P15saY/uxqrSk3B34CFO+01tzhfYSP9eeALzDgUq5+HhVeJRSxlTLqaKDJbCbD8AW/UuyBQ902ojvK9/x8Bg9sZ6kMK0uzkeaAKch9BQ4LVb7tcYkfGEk0oWQcDla72cFuagF6ra0Zb+zb90e9/yRXZXGx48we+6dg+4GREFgPFgxMUvapyj0DhwO56BTKtiwWBWQcxuixjBDDTdly17pnHGqtrcZHTpy48dDceZHAfl8+vZe8KDNtgUNpehI2knEoRJS9bK5mdNt+/NZzP5vNrTToJhp0ExMpYV/mcpZxElOH2GQh05ZxeKPnbm73rhjiqEW8CncWSZ/PpfuekuPEyX9c93OCOox0Unlbb2DvjhMDlnEoBzc7r2AUOeyhjvu8fx/2cQ/WHur4lfcusslgNtM4xNgv2kMadm26ndz2fbjJcw+5ZPEj47v8I+mPER/HXGM6EyghjRSrQx5AgRrFOMZQwKgR3xiqgSZ+6b2DLDKYzdRei4Xbu4F3n658hedmiilkLF0n6qPJ40C1Nycah1PKWArJp3mEv9fxRmuNx8o49AcOfcKxr9jJbpJJYjzFzFXTh7y+WDBZjWdV0l/5kXE69TTyK89dHOP+QY/lLnGcxXtJT5NDJgqFEwetJPb3w63dXOb5DVmkM51Svun4GhA4y8Be47BK76GYApaohT06vfemXFeSSTqljGUaE8M6/uEkU5WFCMw49OINuO9Kz+9x4WQmkynpPNZoooX0trmktc+lij1Mp5QbnZf2uv4yXUk2mUxhPJPUuOF5ESOQZBwKEWXlupLGzpOzMWq0L9sDrMyYmcbkIRcRt2ccarTV3U+MXJE/YO35fEopvuZYzEd6My95VtNIM9t0eY+swumqlD3UAYE1BGNNua6knQ7a6WCaSiZPZff/oDhXritpo5022hlDChOMEhYae0V8HCkk8RXlgO+AcWrniaQHDzvYCUCbGtlTle2fzySVRL7KDbpcpuraXzTqJuur26bbqcB3pb+YAmuZ3dRQTAGlxli2Ugb4phGK+GEP4jh7TFUeunJ824ntVPRoihWvUlQy+6q5rDE+oNVsw4OX7bqix3KTDN9JawduNBoPXit7JlHtoppW2mgFximHVc/RZTvt9Ge4dmg35VSi0QPKDCrHd+zcSDM5KjOs4x9O0hxFiO41DgNnJ5XpXVRTSzW1LFCz2NZ5t7+JShvtbGIrc4xpva6/girqaaSexl6PdcTASeBQiCiz10S71nkx33AcGvbnsJ8IgtQ5HMliaaqy33LnMl4w3+BV821aaKWOhoDpkaHWkoo2e02VI4wDoziSyLFvv05xHDOsHZT7ElALk66/g9Q47GL/7hxuLOl1ue6lLfz804MA8lR2wO8lqjDgcY1BGquI2GVvVBGsq/JQJXK9qeXOZTzsfYqNegvlurLXchrFFPAF2wGo04kdWLdva5Ya+1o/B8s43Mlu67M2kM/GYOoixgL7UZHUOBQjldHHVGV7DcMcer8o0Nf33n4cGE/bh1gnU5WFiLLuJ1/DwT71DGC3rhmW5xHxIxK1dQYyJcdeo8j+nfDd1/W98Gc8xaLyCHyXY00ktl+hCPiM2MaUQle2dpse2YHDwI7fBb0uZy9t0WirxWb/7tkbofjWV9gtU1ECh/HEXm/ONQzNUWJlOzFc/K+pjXZqe8m2HWXLetmlqyMyrmjp7e8dLOOwYpABQPv2KG5rHErgUIxQgVOVAwOH9hqG6Sot6ONdOBlNXq/rD9wGxc/2IdZJxqEQ0aZhtppGnW4ImP4VTpmkk0k6jTTjxBHQ2U6MLJHMOLTr7wB5mprIXmoqbjz82P3rgOAFQDJJpJGCu1uX11jh1m626h2MpYgW2pigSiLyvLW6nk/1Fp70vsAm88shlzUIhdaaXVRTo+uooR4XLhTwd++/+Z/5zrA/fzD1upFUUjAxudXzEG9538OpnHyht1vLXOu5g3u8j0VlfLFgq95BFhm4cfOI9xleMN8Mutw2s5x0UjEwuN5zp1VXdKfeTRYZePCwRW8nnVRaacPA4C3zPb7q6Jqmucp8h5M7LorI6wpFnW5gnjGDZY6TmGfMiPZwYk5AxuEwNEdp0W3MUzOo0w0JWah+pppMldpDB26+13F5wHZYa009jVTZLtg+7v0v2/VOrnb9iHFqTDSGHHZaa/5pvsy/vf9jg7mRfHLRaErVWGsZly3jsKOzq3KdbmBvNZta6inu44JGd0orZqtp1Or6YTt2Hg4SOBSi21RlbQb8PEEVk0YKeeSQarv468KJF5N0UpmlpmCo3vPf0kllLzWFZlrJJWt4XsQIJNEDIaLsHb2Bj/Vm39UT1fvVk6FwKie7U9ZS0nYge6jjLfP9YXkeEfvCWfC+/+cKPUh5hfNcrnCeyw3uO1llruvRvdVfm221fj8mOyuX6ypu8T4EwAwm8XVH8MYT4bbO/Ihvui8AYDxjmMDwByw7tJv3+QQABw7SSSWHTNJI7bPr7nBSKLLJYBfVtNNBpd5DJum4dVdApEm3BEy9HWn26Hrr9Xu12et70U67VYOtQTda071rdJ31mPGkMVGN5Svtqys5ilxabHXb2uiI2mchmLf1et7yvs9r5lo+SP5ntIcTc+w1DoejOcrHejMb9GcAFCdgxuHvXD8FsPZfHbbtDsBbOvCYazNb2WxuZX/vPM5xfiti4xxOtTRwmvvHAbeNp5iTHUdav7tsjU/8zXjKdCXv6Y8B33YkVGv1Bj7Rn5OEK65qmEngUIjepyo308ob+l0ADjX2J0V1lZtx4+F7xvGMV8Vc7bqwz/W/Zq6lgSYmq/Exd74QzyRwKESU+eu0FKvCPq+ehEOJKmSPrqOCKkxtDvvzidgV/dYowWWpjK4GQTaGNjAx0egeNRBjgb3W3yiVE7HntZ/wp6iUoO9duNXRYEUVXDhJIZl0lRaR5+5LFhnWFECHcpClMgLGmqSSoj7GaLJf1c9XuVYtu+4aaAr+ntmuA+SpbLJUBun4phH5l3FoA2/n9zSW3mulfVug7rWUhI890NWzOUo4ahx2bR8HklUWb3rff6keDQAgtmv2DlR5kMZl3RuE2Wsc+rNcm2z1UAeyzfC/dyWqMK4CA9IcRYjAz77H1lXZXh85i/SAOtUAY1RBv9uJRt1sXeRMxNIY0SSBQyGiqEW3UkM9QESm75SoQj7Um/DgoYoaisgf9ucUsSVWpyr7LXcuYzk9G2yMbtvPOqCo0FXkxljHYnudpuFocNQbe22yZY4Tucx5zrA/57+8r/KW25dB81PneVzpPH/YnzMUKzxPc77nagDOdJzA+c7T+Kv3X5zjvhKAcxwn80Pnd6M5xKjap/1EdusaknDxbNI9vZ5sP+V9ke+6LwXgDMc3+bHzbAC+0/Fjtpm+DMOHkm5mgiru8djStkPZyW5yyOLJpD8N0ysZuKK2A6ijIUpbv9jnCZpxGMauyp3bxwLyEqarcjC97b/y2/YN2pQulmv2DlT32sQA+xnzAn631zj0X/RqsNVDzexWj7s3zbrF6txeQnzVL5PmKEIEZhx67YFD20yFTDICpioDXOW8oN+SPAF1UxOwNEY0SbqREFEU6YLhAZ1Hg1wdFiNHrE1V7o/9hCMWszQCM2oid6Biv1LrxDHsz3e7ZwXXev5o/R5LtaXsmUxPe18CArsqt9AW8THFEnt2e18ZOvYDdft7Zv+Mj2F00Mf6G6TEWldl/6uVjMPg7DUO/dNJw5Vx6NVedrIbSMxpyqGwZ9rZxeK+bLDKgryWlG4n/cEyDhttJRNCzTi0HzvHWwarTFUWIvCzb2+O0hCQgZxOiu0YLouMkOp4l8Vpx/V4IBmHQkTRTr2b/dR8knAy25g27M83k8kcpPbBjSfhu/qJ4CKZcRjOA+RUUoB6DIyAIvOxwsBgqVpEG+0UMCpiz2ufquwaxl36nz1PsE5/yBZzOw7tYCoTGaNGs8iYM2zPOVAzjcmcYhzNOvMjtusKduidnZ8bn9YRHDhsNluYqiaShItJalyfy9oP1Ft113uWpTJYwt5kqvRepzkfoBZQSB7NtOHWbly9LBdp/uyGaGVcx7rgNQ7DEzjco+s4QC3AxGSaUTqkdcWr7tvmFJLZR80mj5zoDCjM3NrNM96XmEgJ7bQxQ00lW2VwpHFgwHI5ZHGQ2seXYdT5VbTXWs0itMBhja7vXI/JVDUhbK8jEiRwKAS+UlmdXwV7xntDt4zDIxxLqNCVNNPCVBXa/mO3rmF/NR8XTqbE2fYh1iV84NDr9XLttdfy6KOPsmvXLoqLiznrrLP4xS9+YV1x11rzy1/+kvvvv5+6ujqWLFnC3XffzdSpU6M8epHotlPBWr0egOP5+rA/X6bKsIrObtcV/SwtElE461YNxFCfz38ya2KyVe8Ix5DCaqsuY5VeB0CGSovY89q7TA9n4PA1822eNF8A4FC1H2mqiKXGImYZU4btOQdqrCpijCpgK2WA729iz3hp0+3RGlrUVVDFO/pDoP+srzRbMfI2fO+ZR3t41XwbE5OFzOr1sTXU8YZ+D4BdVDOO2OgY6w8cSsZhcAEZh2GucdhAk3XcMV73nN4+Eri6ZRxqNG/q95jI2F4eEV92Us1L+i0A9lJT+W/yn4MuZyrT+iycyrGArx6ZX6YKbapyNbXWeg5XSwY97miQGodCBE7T92p7jcPADOQDjIUckLRwQOveShlvd55b/5/63tAGKgIkfODw5ptv5u6772bFihXstddevPvuu5x99tlkZ2dz8cUXA/Db3/6WO+64gxUrVlBaWsrVV1/NkUceyaeffkpKSko/zyDE4AVOVR7+Oi2BU5UTZ4qMGLh4m6qcqlKsq5P2RiSxop0O6+fkXqalDQf7lVrHME5Vtm8vnk66K6TpItFg38ZV6Comq/HW7yM547Dctq8Z20/g0D5VubUzcLiLauuEt699lf2+Cl3FOBUbgcOuqcqScRiMPXAY7q7KDYOYippoXMoZUNzO0RnIboyhzuNDYa8pdrCxqNflgmWADybjMPAxoQUbY4VkHArRLXBon6qsA5ujDEaFTFUeNgkfOFy9ejXHH388xx7ru7I1ceJEHnvsMd555x3Al21422238Ytf/ILjjz8egEceeYTCwkKeeeYZTjvttKiNXSS+SHcaLLE9hwQOR6Z4napsr1VXZsZefc52bQ8cRq74vz1wOJzTQv3bi3xyYzZoCIHb0XJdyWzVNXNgJNc4LKfrO9PfvsZ+ct+iW32PD/FAvPv7HyusqcpaAofB2DOXe3ZVHprBNL9INN1rHPo/jw00obWOq67AwYRa4zdY/VR7xmEGoWXrd2+gEE+kOYoQoGxtNgK7Ktu+24O80BStmuMjQcI3RznggAN45ZVX2Lx5MwAbNmzgzTff5OijjwZg69at7Nq1i8MOO8x6THZ2Nvvttx9r1qwJus729nYaGhoC/gsxUO26g2pbrbbINEfpygZZZ36EW7v7WFoksohPVR7iiZF9yulavYGTOy7i5I6L+IP7gaEOLSwCM3YiFzgc7hqHWmvazHZ24auJGutXb+3j+6/ndZJ01wl7kxlbDTsiaae52/q5v+x2e2DYP1W5wgwtcGi/b3cM1SKVqcp9s3dn99ev9AdZh7qvGEzzi0TTPXDo32678QRkq8er3SEey3avn9qh3Vb2YBIuX92zEHRvoBBPJONQiN67KtfqrpjKYC80VetawHcRrIC8QY5QBBPxwOGXX34Z0ef72c9+xmmnncaMGTNwuVwsWLCASy65hNNPPx2AXbt8V+ELCwN3dIWFhdZ93d10001kZ2db/8eN67vQuBDBHNxxOi+Yb5JPDucZp/bapTKcMlU6NzkuI5N0vmQHT5jPD/tzitgSyXybsHZVtmXTzWEab5vrecF8k196/xgTWUQd9qnKKpIZh8PbVbmCKnI69saJwQJm8lfXLWF/jnCar2byI8d3SSeNN3mfSl3NJDWOdFKpZeRe5NvBTpJJYhxjKKGfGoekWj/7pxOWUYkTB8UUMpGSXh87mjwKGUUm6THVgMt/gi7NUYLzai9ZZJJHNinat/0KZ41Dv1CnoiYa/0UdhSKd1IALTfb3J17t1LvJII1CRpFPbq/Lda+f+mfv43yhvyKDdI5QB/b6uO66N1CIJxI4FKL3qcrVuoZkkhjPGArJH9S6K/UecshkBqU41PCV8BmJIh44nDJlCoceeiiPPvoobW3DP23o8ccfZ+XKlfz1r3/l/fffZ8WKFfz+979nxYoVg17nlVdeSX19vfV/x47YK9QvYl+FrqSRZtx4mWyMj9jGbYJRQiPNmJgBNRbFyBDJ5ij2U/ShPps9my5DpaFQeDr/xUJAKLDGYeJkHPqnfLTSTopKZrIxvp9HRFeqSiGHLJppAaCJFsr0LpppZSe7+3l04qrQVbTTwQ52UmIMvMZhha7Eg5cKKilQvXcNz1aZVLKHRpppoDE8gw8DCRz2za08NNBIDfUoFdiBesgZh4NofpFo7J2qm2kN+Bza35941UATTbRQyR5yVVavy3WvcVihq/DgpYlmilToF88bAzIO4ytwKM1RhAjMODRtF8B3UU07HWxnJwVG78cafamlnjoa6VCe/hcWAxLxwOH777/P3LlzufTSSykqKuL888+36g0OhyuuuMLKOpwzZw7f+973+PGPf8xNN90EQFGRb8pOZWVgLZ7Kykrrvu6Sk5PJysoK+C/EQLTrDqrwTe2YoSax3LksYs8dqzWoRGRF4nA1nFfW7dl0DyTdxDGOg63fy3X0ax622zJIEjFwCHC07T2PZfaaNuVUWVPnRvL2zv8dMTAopO+DcXtZgFbdmXEYYo1DezFz+3TCaPNvf2SqcnDBMpfDFWSVjENw9tEwKxEyDu0ZgH39jQNqHOo2ymz77v9znjHI54uvYLT9e2UkfsUwIYIyeqlx6D9OUyjGDCLj0NSmdWEh3rYN8SDiW6z58+dz++23U1FRwYMPPsjOnTs58MADmT17Nrfccgu7d4c3I6ClpQXDCHyZDocD0/QdPJaWllJUVMQrr7xi3d/Q0MDatWtZvHhxWMcihF9gN+XI1gwL7Kwc/YCLiKx4zbixB8XceCih68JOLASEApujRLCrcpCmBuEUj93pxnbrHu//rNTRQLNuidawosr/HRnDaJyq78+JoQwr+O2fqhxqIy97MfNY6hhrdMuiE4H6Knkw5KnKts9Bxgg9kUvq4zvXEEPfk8EKtaFBSrepyoNtYhCOBgrREs6ZGELEq8Aah10X9PzbhEJGDarhnz2jO962DfEgal2VnU4nJ510Esceeyx33XUXV155JZdffjlXXXUVp5xyCjfffDNjxowZ8vMcd9xx3HjjjYwfP5699tqLDz74gFtuuYVzzjkH8BXsv+SSS/jVr37F1KlTKS0t5eqrr6a4uJgTTjhhyM8vhN1n5pc87X2R981P2UtNxYmDuWp6RMcwhtHMVlPpwMOH5iZ+2PFLjnAcSBvtvOJZzSf6c2YaU/ip8wdMNyZFdGxi+EV2qnL4Mg7tgUMPXiaoYmYxmQyVzh5dN6R1h4O/xqFCDUsArzf2jMNwPu9b5vvs0bW8Yq6hgFG4cDJJxUc93wmqhHnMoJ4mVpnrSCeV2UzzTaPVe5ikQuvcmSg6zA4mqfEUMbrfjsp++6g5NNPMqM56ZXkqmwXMwouXNJXa6+Ps2UaxlEllWBmHEjgMxhNkOxKufUUSLhaqWXTgGbEZIK4gF5PGUkQSLu70rqSGek50HB6FkYVHQLOSPv7Gad2mKueqLBYwCzfuAU1jTyOVBWomXkyydHpcReDsNZllqrIYqRxBahyu9W5gmprIGEYP+kJ1YIb7yNzfDKeoBQ7fffddHnzwQf72t7+Rnp7O5Zdfzve//33Kysq47rrrOP7448MyhfmPf/wjV199NT/60Y+oqqqiuLiY888/n2uuucZa5ic/+QnNzc2cd9551NXVceCBB/L888+TkpLSx5qFGLinzBe43nun9Xsm6fzMdX5Ex+BUTt5Nfpob3Hfye+8DPGQ+ybPmK+yhzlrmA3Mjs82pEjhMYPEWOHTYMw61myKVz6dsAQ2H6QOGtO5w8Nc4TCZpyB2kB8J+wu/qJ5NsIO7yrORJ8wUAFjGHIxwHsthYELb1D6eZxmReTH6IwvbFbNNllFBIOZWgoYY6JhEfAdBw2amqWaM/AAg5+LubGjbrraSTitf08qL5Jh24maOm9fm4dFJRKDQ6pmq3yVTlvnl0V8ahI8xTlbfpct7XnwLxV48uXLp3VQY42rGUx73/5VnzFVab78d14NCfXWxgBDRX6q77VOW1egNttDNLTRnQ863XG/lMf0kaqaTH2YUgaY4iRPeMQ99x7IPmP3hd+2I/97iuH9R6G+O4cVI8iHjg8JZbbuGhhx5i06ZNHHPMMTzyyCMcc8wx1nTi0tJSHn74YSZOnBiW58vMzOS2227jtttu63UZpRTXX389118/uA+pEKFq0+0Bv0dz6l+WyiCNFNrpCAga+sXC9E8RftGaqhfejENPYK1Oov9Z9dc4jGR9Qxi+rsr2Mgb5Ki/uTvizyCAJFx24rem2AA0xFMyKFPvfMtSMw2JVwGa9lWZa2UqZ1QW2v+mEhjLIJJ0GmmIs41CmKvelrxqHQ26Ogr05SnxtR8IlWP3ZBt1MDpnU00g1tbRpXwOqeNRg1RTL6PPCmb05SqNupq2z+VKo2yU///FpsSqI6IW6cJDmKEIEn6o82NIFdgHZzyO0Gddwinjg8O677+acc87hrLPO6nUqckFBAQ888ECERybE8KvTgV0moxk4XO5cxjrzQ/7RmVXUnQQOE1ukMw6HymnrOu7BS4mKsRqHVsZh5OobwvA1R/E3wxhNHk8n39nP0rFHKcVENZbNeitNdNU1bIyhYFaklA+iTmUJXcttMD8b0OP9gcNYyjj0n6TIVOXgvPapyiq8gUOZOhZ8qnIjTSwy5vCVWQH4vqeTVWx3re+NP8sng76z/wxlWBd07NvigRwLN+gmKxgdL3V37aQ5ihDgsHdV1oGBwxSSySN7UOttkIzDYRXxwOFLL73E+PHjezQs0VqzY8cOxo8fT1JSEsuWRa7LrBCRUkFVwO/RPuixB1/8FL7iza+bazm54yKWGosAWGWuY6mxKKIdoEX4RTLjZrhqHLrxkEc2KST3KLAeLR2dzVGSIpxx6LZ1cw52cjoYt7ofohxfllq0t1FDUaIK2ay3WtlyEFudfiMlMHDYc5sfjP3vvlFvCXp7bzJVOujo1ji83bOCVeY663d/1mUjzdzuWSH7sW4CMw4DTw2GnHHYeSLnwBGQcTaS9JZxONWYaP1eTiWTic/AYQ31QGhT0dNIpQM3zbRat9kvVPQnYHs2gMfFCrl0IQSoIF2V/d/tElU46EzipoCMQwkchlvEA4eTJ09m586dFBQEpqXX1NRQWlqK1+vt5ZFCxLc3zHep1fXkko0Dg28ZR3Kc8bWojumbjq9TqsbykvctPtfbmKhKmGlM4Uu9g3fNj3jTfI//me+QQxYttLLZ3ConXHHOf9Aa6SkyQ3227oFDpRTLHWeyzvyIdjr4u/c/nOo4ZojPMnhWxqGK36nKFbqKC9zXUGlWU0IRc9V0TnFG7z0dqr3VLNpVBxW6km2UA7HV6TcSGnQT//K+ygSKSVdp7KNmh/S4qWoiB6q9aaODHeZOFqk5JJMUUmDjAGMBeWYOjTTRrjsi+p243/N3XjXfpqwzUJjSWVPNn2noxcsDnieYrko5yrE0YuOKdX1OVR7iVNCuaazpcTetNFySbN1BF6sFmJikkcI3HV/nI3MzHjys9DzL0qRFURzlwN3r+Ruvm2sZxxgmqBLOdp7U72MOMw6gXO+iUu+xtitTBpBpWaPrOUAtwEQzVU0YyvCjQmocCtHVsAx80/fbzHbmqul48DJeDb45bpvuYD81DwcOChgVjqEKmwEFDk3T5H//+x9vvPEGX331FS0tLYwePZoFCxZw2GGHMW5c/0W37d2k7JqamqQZiUhoG80veEu/D8DJxpHclvSLKI8IlhgLWWIs9AU9TKyMwts9K3jDfJd6fFOr/VP9aqinUTcPqPudiE2ROFwN55V1Z7cahwBfdxzAzd77AdjHnBMbgcNIZxzq8E1V/kqX86L5JgATKeFgx76c5jh2SOuMJgMHqzu3uX6xVHcvEsr0Lmu/s5C9mGyEdoKeq7J4U78H+ILh6/RHAPxUndfvY2t1g/W+79S7mahKBjP0QVljrudp8yUADlb7ktHZOMGhu7IbNrOND/UmjkICh36BXZX9gUOfcGUcjuRpY/bmKF/pciqoIpcslhgL2ay3UsYuPtfbojfAQVptfmB93040DufbjqP7fcw2Xca7+mMAvtQ7ALhcfT/k59xDLas7mz0dqw4Z2IBjgAQOhehqwgW+Goctqs065hhKpuAealmrNwBwnjp1aIMUPYR0ltHa2sof/vAH7r77bmpqapg/fz7FxcWkpqbyxRdf8Mwzz/CDH/yAI444gmuuuYb999+/xzouvfRSwHfl8pprriEtrasOhtfrZe3atcyfPz88r0qIGFRmm15xlqP/q7KRtNy5jOUsC/h9rbmBp8wXeyxboSuZrqTbcrxKlKnKEDhNyd4AIhqi1RzFHXDCP7TAoX0K2A+cp8Z9dvHYINNqY6nuXiTY/6aHG0tCfpx9SnIl1UFvD+Wx5VQykcgFDu2Nkp5IusM6Admn/UQ+1p93LRcD5Q1iSbCpyl01DofGn3E4ki842vdf+SqXCl1FLQ006xbfZzTKU/sHy/49+pnz/JAeU6IKrcCh/bZQBdbMjL9gtJbmKEJ0a47iDWhiZ+++PlABzVFGaE3d4RTSWca0adNYvHgx999/P4cffjguV886Sl999RV//etfOe200/j5z3/OD37wg4D7P/jAd3VIa81HH31EUlLXyVVSUhLz5s3j8ssvH8prESKmDaZAfTT1NsYyXcl0JHAY7yI/VXlozxeQcah9J7n2z2hZFAMBpjatjJ1IN0fx2k/4VfgCh/GwjepPsHp+jSOsxmGZLaAeLJDaG/vfv0bXBb09lMdGOqDv/wxnkh6QtdC9CYEEDgMNV1dlj/ZYJ4SZI/gkzp5xOErlWumcFbrKOrltphWv9uJQQys5EUn+Wrg5ZFnZvf0Jtg0JtfYqBF78icdgtP3SraGkOYoYmQylrC+DiUmbbrfuG0otXHs5mkypcRh2IZ1lvPjii8ycObPPZSZMmMCVV17J5Zdfzvbt23vc/9prrwFw9tlnc/vtt5OVlTWI4Yq+1Oh6skjnTu9KPNrLuc5vk60yoz0sAbTqNhppshqPxMNJuX2MCoVGY2DwF88zfN2xOIojE0MRrYzDobLX7/MH6VJUMvnkUk0trbotaidd7Z2NUQCSIlzjMLA5ysADhx7toYkWHvY8xYPmP6zvejxso/rjfw0Gyqpx16zb+npIwqnSe3DhxI1nQH/TfHKt7qf+bNoM0kLK8PE/jxMHu8w9DLH0Jh7toZFmVnie5g39bp/L+gOl3V9r9+BXvW4Y2qASjMdW8sAxiMChW/uaXTzseSrgb+TWbmubMpIL1dsvfH1m+poNGSjO6biSbZRZ953YcSGubheAYrEpndaaPbqOPZ0XFQaybfEHCf2fi1RSyCX0c8L4zzi0z8QQYmTqMVXZ1iwpVQ0+cBjv24dYF9JZRn9BQzuXy8XkyZN7vf+hhx4KeV1iYI7vuMBK/9doPtVf8EDSr6M8KgHwT/MVnjVfJQkXB7FPXGzMznaczPccJ3CH+xHqdD3v8ynv6U94Ur/Aw9wc7eGJQQpHFslAnyscz2c/mbJPz73BeQmXen7Nh2zij96/cInzrCE9z2Bc7b0NhcKFk6sdF0b0ue3vxWACh5/qL9i341s4cVJEPktYyEJjLxapOeEcZlQUU0gBo9hNDQ4MNFDPyAoYbaMcNx7yyaF4AB1IDWUwV81gvf6UZlpw4mCOmh5Sc4sSihhFDnuoYwcVQxk+AFv0duZ1fBMnTgoZxSTVez3tRWoOi9UCLnB9J/D12DIOnTjZHIf15IZT31OV+/+br9efcVDHd3DhZAyjmWCra7kEXy3ly1yh17FLND93/pCrnBdws+c+XvW+TT2NtNLGR2wiw5aJWUsDKdp38Wmd9jX+esN8N+YCh1XsYULHIThwMIdp/DPpnpAf+33Ht/iP93+81VnPbI6aNqCmOQEZh3GYxSo1DoUINlXZnnE4hKnKcb59iHWDntfk8Xi49957ef311/F6vSxZsoQLL7wwaIOTk046iYcffpisrCxOOqnv2m5PPfXUYIc04pXryoAdkr3Wj4gu/7SoDtwUGvlx0VnQn62aZ2STRzYbvJ9hdv6Lt+k0oqe4nqpsC5YVqlHWAYf9wCOS3HjQaDpwk65SI/rcQ+2q7N82efCQSjLZRiYlRiEpavAHbrEiX+VQRwMajbdz32ivozMS+P++1dRRYgwsizQJl/X58uAN+TNRrArYQ13A8w9Fme0zmkJSv5lro4wcilVBwG32Do4ePFSyhw7tDuh2O5IFljwYeHMU/5R0Nx5SVUrg30hBnpEzojMO/Z+zbJXJKCMHh+lA4zsmtNfFTSXZmn6rtC/IFMlZAqHyf6+9eElVqT2+b33JUVkBn6iBXvCyZxTF51RlCRwK4bAFDk1MWrW9xuEQpirH+fYh1g06cHjxxRezefNmTjrpJNxuN4888gjvvvsujz32WI9ls7OzrUBJdnb24EcreuXRHnZ1FjA3MDAxpYZPDLHXefqB85QojmTg/Fe6XzZXW2cSjTSTM4CpJSJ2xOtU5WDNUQBS6QrUtUZpGqo9eDfUzsYDNdSMQ3ttyEucZ/N957fCMq5YYCiDYlXINt01FbBVRye4HC3+44AkXOSTO6DHlqjCgIJcJSFmLNqDCOE4DrGv4yLn9/ih87sDXkewE/QKXRXRjs+xbKg1Du1/oyuc53KG4/gwjzAx+BvRHd/xQ14w38BEc5RxEA+Y/wDgetdy9jfmAzCt7Qi2U0HaEE6ih4v9732U46ABP95+/JijBnYsac84jIfZO92ZtuYo3WuvCjFSOAIyDk3a7BmHQ5iq3KhbrJ/jcfsQ60I+y3j66ac58cQTrd9ffPFFNm3ahMPhO8A48sgjg3ZThsDpyTJVeXjsotraGaWRQhMtVOhKtNZxkd2W6Cp0lfXzQIpAxxL7BrhBAodxL+6mKvcWOLRlQUUrm8xeZ3ConY0Hyt8oBsA1iMYs9m3TQJpnxIsSCgNqiI20jMOKzhP8ElU44GOB7p+HUOuYJaskCsijipqwBA4rGHrTnmAn6BUR7vgcy+xZ3D1rHPYv4BiH+DzGiST759h+ec0eFDOUATqyF/tCFfj3Hvh3Mk2lWi98oNlF9gZX8ZhRZP9rSsahGKkM2wwZE5MWwptxmISL5AjXHB8JQj7DefDBB1mxYgV33XUXxcXFLFy4kAsuuICTTz4Zt9vN/fffz6JFi4ZzrKKbv3v/A8Aa8wM+925jPGNIU6lkk0mBGkW1ruWo9nNoUq2MVYXc5/qVNEsZJg95nqRcV/Ku/ogcsng4qasG4Ervs2SQxhQ1Ho/2Mob8KI508OwHaI26Sao6x6lonYQM9eMyWY3neOPrbNVl3OJ+kD96HmGiGstPnedZy0QtcKiHlvXXn0c8z5CqklljrucrXR5wX6XeTRGjGaWyQ56q/Jz3NRpo4m3vetaZH1FMASkkJ2T21X5qLu20877+1DcdZgQFDpvNFmapKXTgZpwaM+DHzzVmsK85ly/1dtJIY44xLeTH7qPmsJsaUknut7TFs95X2KJ38IL3DfboWmYbU9mlq33BBWCX3k0JhSSrpD7rG/bFPlV5X+aSqlJ43buWA4yFg1pfohlqxqEXk/3VfFpoHdC01ZFqMuNZoGaRSgopJDOVCdTTxJ2elaSTxgGOBdZn1ozBwGGTbmGxWkALrYwdxMXwOcY03jR9TXTmqNC3KwDppLJIzQU0mTo97o5FpTmKEDBDlVo/rzc/43Bjt/X7YGocbjA/42nvS+zQO8khk/lqVljGKQKFfIbzr3/9i7///e8ccsgh/N///R/33XcfN9xwAz//+c+tGofXXntt0McuWLAg5Cvd77//fqhDGvGu8/yRL/UOkkliXzWXCZSw1FjE1S5fcf4b3HfygPcJdulq3tMf81N9HgvVXlEedeLRWvNjz6+tNGsHjoDmIT9338IuqskgjeWOZbjitKaSvcisvcaMiC8DqVsVrucKhyMdB3Gk4yBucN/J7d4VNOkWPtAb+YX+kbVMtKah2k+6HUNtIRvEFZ6bqaeRHLJ6nGQVqdEU4eu8aajQpj3d5lnBm52dTw9QC5jMeJYai5huTAr30KPuMtf3uaW9a6ZDtOpgRkMFVbylfcdUpYMIuH3H8Q2+4/gGN7jvBOBbjqNCfqxSinXmRwBUsodieg8m3eJ5kLf1Buv3j8zNlFDIJHxjTiOVSWocS41FzB5A8LLbiKyf6lQD7+gPedf7EVc6L5BZGQw9cPiu+TFv6/XA4LNCR5I8lc0H+lMAJqtxfM5XADyvV1HsLeAAxwLrfbdPbY0Vn+jPWaM/ABhUoPgK57lc4Tx3UM/9rv6YLXo7WWSQZkS2pnA4SI1DIeAUxzFc5/0T4Mv+/1LvsO5LGUTg8D/m//iN917r98rO8m0ivAaUGnHqqady5JFH8pOf/IQjjzySe+65hz/84Q/9Pu6EE06wfm5ra+Ouu+5i1qxZLF68GIC3336bTz75hB/96Ee9rEF0p7W2pgDlkGkVnbYXn85SGWSpDHZp35enXFeyEAkchlsN9QG1Gbx4adcdJKsk3NpNJXsAyCUrrouD2wOHTbYaEiI+ReJwdTgOkLNUBumk0kQLGk2zarXua4tSUMg+zc/e/TkcmnQL9TQCfW9DBrJtKcdXczWFZHJV9oAfH0+6d9Vri1IdzGiw168cyjT0wXw27MGjcl3ZZ3ChLMh05uzO45ehjsPPPlW5mEI2s41mWq2A/Ehn34YNpquyf5uSQxYZKm0YRphY7Fl69tIbAO2d+zH/ZzYWpyqXh6F8wGDYz33iNUAtgUMhepYPadBdCSlpg2gyaO8lAJBP3uAGJvo04DOcnJwc7rvvPlatWsWZZ57JUUcdxQ033BC0m7LfL3/5S+vnc889l4svvpgbbrihxzI7duzo/lDRixrqaacD8E0nejLpTz2WWe5cRg5ZnO+5GgisSSLCp/vGCnw1WJJJYifV1kHC3sZsq9FIPLKftEnGYfyK3lTl8BwgL3cu40u9g3u9fwOgTjdY97XQ2tvDhtVQG5T0pcIWVNnPmBdQBmEwtNbWvmCyGh9035FIkpSLFJKtoHLLCJqqHI7agMCg9lv25/N9hucEXc6rvVZjN7tfOC/kJMcRA37e3ti3P8WqwEqHrtBVA27OkIjstVK7Mg59+tt227cp8RrMiTT7+9R9m9SI78JsLE9V9v+9M0mP6EWnWhqsbXm8ftakOYoQ9JghYz+vHMxU5e4xjkS9GB5tIW+xtm/fzimnnMKcOXM4/fTTmTp1Ku+99x5paWnMmzeP//73vyGt54knnuDMM8/scfsZZ5zBk08+GfrIR7DbPSs4reMS6/e+ruTb73va+9JwDmvEClb83X/lxB5UjPe6P5m25ihPeV+M4khEOES6OUo42b9LV3tus36O1jTUYNk64WLPxgrHidIe6qyLTvG+TQpVli3rcCRNVbbvm4ojfJJd3C3jMJjbPSs4vuOHAd+frseH97O503ZSMUaN7ndsI02wcguhNkcZiduUobJvy+0XvwCqOmcJxepUZXvWX6T/3olwTC3NUYQI7KoMgTPZBtIc5XbPCk7uuIg3zfcCbk9BGqMMh5DPcM4880yKior43e9+xwsvvMD555/Ps88+y3XXXcdpp53G+eefz0MPPcTjjz/e53pSU1N56623mDp1asDtb731Vp9ZiwLO6LiMVtrZrWtwagdzmMYkNY7vOU7o9TFzjemcaZzIa+bbfKa/ZJtZzkQj8QrgR1Ol3sM8NYOdejdVndOS/V3fdpm7maumk0Yq01V81w87xNiXbxtHs9p8n9Xm+9KxO05FMuNwuKbkHGMcTLGrkD96HuErXWHdHq1pqMOVcfiady23eh5iHGMoUYWc6Dh8SOu71P1rvjC/YioTmK4mcZ7j1DCNNLZlqHSqdA3gC/J6tAdnmKeUx6I63cACNYsUkgfVwGAoJlDMAWoBLbRRo+sD7nvP/JifuH/HTl1FBVUkk4QTBwYOWmnFgYMkHb5awN/suIDtdG0nJjGOxWo+LbSxS+/u45Ejh2mvcagGNlX5Rvdd7KvmkkoK5zpOGb5BJpAsMvia2p8GmnBg8BPHD3jC+x868FiB21idqny/53HmqxmYmJziOCaiz32z+372U/NIJ5XvGSdE9LnDRZqjCNEz23aD/ox5agbZZDJK5fb7+Ec8z/CY+RzVZi0uHExmPHuow4mD4x2HcZRx0HANfUQL+cj53XffZcOGDUyePJkjjzyS0tKubjgzZ85k1apV3Hffff2u55JLLuGHP/wh77//Pvvuuy8Aa9eu5cEHH+Tqq68exEsYOV4211BHA3lks9hYQC7ZHGAs5EBj714fU6jyyVVZ7GAnANupYCISOAynbbqcDfqzgNv8gcPt7ORDvQmAC9R3Ij62cJpsjKeWequ2TQ31jCInuoMSAzaQulXhFM7nm2NMZw7T+Y3nXmrpCkpEL+Ow66Q7nIHDr3Q5L+m3AF+X2n2M4NM9Q/Wm+R4f6k0YGHzf+DZHOA4MxzBjXhaBU1ZaaSdzGLpfx5rNepvVgCHS2TlFKp/Vnc0TpuvAi2Zb9Hbe0oHZAVnkkUk6X9KEBy91nXU9h6pdd/Ci+WbAbdkqkzWdjTy+sgUUR7KhNEd5W2/gA/0pDhz8x7h/+AaZQJRSlFPJJr2VNFL5j/PPvGi+yXq9kV26Gq/22jIOYytw+DGbre/2rcbPI/rcb+p32UU1xRRwkGOfiD53uEiNQyF6Bg7raKBK+5Jv8sju9/Ef6U28Zr4NwGK1gDyVTTEFLDUWxXVZsFgX8pHz3nvvzTXXXMOyZct4+eWXmTOn5wnMeeed1+96fvaznzFp0iRuv/12Hn30UcAXeHzooYc45RS5UtmbJt1CHb7pDLPU1AHVpQqsNSR1DsPNXkfKr7FzqrL9/Y7Xeix23etWjVI50RuMGJJ4nqrst5+axxa93fo9WvXr3No+VTl8XZU7Oqf/ARzjOHjI6/Nvj8ZSxCWus4a8vnjRvUFKC609bktE/vqYDhwUkR/R5+5rqnKw45CbXVdQpxu41HOTb5kg+9XBCFaPN8P2t5djIp++Aof98X/OisjHocLfVT5RlahCNumttHQ26SlRhazXG/HipYoaW43D2Jqq3GLL7B9MLbLBsjcbjOfjaQkcCtFzqrLXtg8K5UKnfd/9oOsmSo2x4Ruc6FXINQ4feeQR2tvb+fGPf0x5eTn33ntv/w/qxSmnnMJbb71FTU0NNTU1vPXWWxI07EfFEOpc2b+AUs8n/ILWOOzMOAyox0J81mOxK6b/ulUitiXCVGW/7gcXrVGaqjxcNQ7bcVs/JzO0qZttup1qaoH4rQ01WN2LZLfqkVHnsDyKAZ0MlWZ1K/Z33O0+LrtiCoflWMXeqdHPPi1X9mM+g+2q3JEgwZxo6H48Ffj53xWzU5XbbBfoUgZQi2yo7M0G43kfJs1RhOj52fd2fi9Gk0ey6r8+YSLUO41HIZ/hTJgwgX/84x/DORbRTb1upIU2/u75N/8yXyWZJDroYOwAD878B3PJJPGCdxX/5/geSSp89YNGug7tJoVkvHjx4CUJF7d4HuRx73943/wEBwZezIQ4qPa/hjRSeMjzJEc5lkZ5RGKwIj9VOfz8ddt8r0Wzh1pO7rgIAFObaDRLjIVc4frBMDx7F/9JtwNHWOt+ttsyDpOHUOi5XFfSpJvJJpMGmga8D4l39uzCNFJo0dHpvh1JHWYHzs5/0dr3lKhCmnQzaDBNkwpVhVM7WGOux0Bhoq3941hVSDqpAKSQzKOef9Kq27nSeX5IJxG98ZcNsWvWbSThwsRkq7mDr3QFE1TxoJ8jEQTPOPTpa1+xU1dRxGiq2JMQxziR5H+/8sjmQ+8mq/RLPrnsNKtjtjmKvSRIqhrejMMdeie5ZHOP5zE2mlsoYBS7qYnrz5o0RxECTO3tcZtCMYbRPW7/0tzBPzzP0646OMFxOC9432Cz3oYTB7lkD+kYQQxMSIHD5uZm0tNDn9bTffm8vDw2b95Mfn4+ubm5fZ5Y1dTUhPw8ie4J7/Nc5LkOhWIqE9lXzWWJWsgVznMHtJ591GzOd5zGvd6/sUq/y0a9hXlqxjCNeuRZrzfSRjtzmc7byU9wo+duVpnraNBNTFETmKzHs68xj5RhPsCKhNMdx/Gk93le02v5p34Ft3bjkiC06MVw50ksc5zIWY6TmN5+JJVU00aHlWH0gf6UJlp4wfvmsAcO/c1RwlnfEMIXOPxexxWs1u/jwsnlxvf5yTC/H7EmR2VZP7fQRotK/MBhBbuterST1LiojGGyGs8n+nO2UsYeVccpHRfzfmfNRfDVnpzLdPY35lOqxjIBk93Jazmu43ze1uv5jfdevuE4hH3U4Gt7Bgsc7qSK7cn/Y0H78WxmG4vaT6Iq5e1BP0ciGGyNwzIq2cVuFIqJyFSxgfAHq2uo52zvzzhCHYgTJ9XUsoMK21Tl2Mo4bLVlHKZ1BvuHy+EdZ7NNlwXcZmAwIY5rtUtzFCFgtDGK1uSPmNT+dXbim3as0WR2q0ndoluZ1XG09fuvvfeg0WSTyU+MH3Cx68yIjnukC+ksZ8qUKSxfvpxly5YxZsyYoMtorXn55Ze55ZZbWLp0KVdeeaV136233kpmZiYAt91229BHPUL4pydrNNkqgyyVQa6RTbpKG9B6XMpFPl0diip0JfOQwGE4NOgm68Qk18jGUAZZnX8ri4JCY1SURhheqSqFbJVpRYR2Us14gm8TROzROrK1dYZ7qnKq8k2T8tdZ8h10pKOUwqkHVqdrKIYtcKi7AodJQwgcVnQelDlxkm/kkqkSv76fXQaB+8wG3TOYlGjsNQLzQ+hQOBzsNXArdFWPeoJppJJtZDLayMOhHDhw4MJFtsqw9jFDrUHYGGSqcoWuIkdl+bYf2lcHsVE3j7jvhZ1H9zVVuXf249QCI2/YxpeIilRg3VEnDit7vUJXxexU5UjVONRaB5Rp8jMxKTQiW7M1nKTGoRA+SqkeZXhSjcBtSvdjAP/3J5Vkso3MgAvDYviFdJbz+uuvc9VVV3Httdcyb9489tlnH4qLi0lJSaG2tpZPP/2UNWvW4HQ6ufLKKzn//PMDHr9s2bKgP4u+ldsO/O9yXcscY/qg12VP6y+Tmj5hE1B7srNezXLnMpaTuJ/zkoCi97sYryRwGI8ifbg6nAfIM4xJbDPLAbg/6UZGqRwOaT+dt/UGwHcCEs4pxN35s3XC2RgFApujDHYqhqlNazs1RY0fkd3mugeEGoM0zEg05UOoixwu9ufdZpZZtfD87nZdy9FBmv58y3E0L3R2Qh5qDcKGXjIOwddc6Uu9A/Dty6erST2WHSkGm3EYC5+zeFXSWWrDz/4+l+ldMTtVua1zqrITJ041fN3pq6mlw1bn1y6eP2umlhqHQvh1n03T/UJvbzGLkx1Hjsjj2WgLaYs/ffp0nnzySbZv384TTzzBG2+8werVq2ltbSU/P58FCxZw//33c/TRR+NwhHbiVFVVRVVVFaYZuEOcO3fuwF9FgrIfkBUPcSdZ0keHQzF4ZQF/o5FRnLWvbpkitkU6cyFSz2evYdegmxilclC2A3Iv3rA2Lelu+KYqD705iv3ka6j7kXjVvYNysGBSognn8cNg2RuCfaa39Nge9DYu++OGuo8JlnG4szODofsF1emM3MChvaNl90y3UAOHI3X7Mljdjxmb6SqhUK4rA4JKw33xayD8U5WHu6NyX9/9eG42KDUOhejiUs6AL0VKt+1K9+ZqfrK/iY4BneWMHz+eyy67jMsuu2zQT/jee++xbNkyNm7cGDBtDnwpq15vz2KZI8mfPH8hjVQ+MD9ll97NOMaQodLII3tI652sxnOscQg7zJ383ftv1uuN3Oe6gQKVGFNoo+UVczVfU/vjxsPexuxoDyciJlDCIjWHZJKo0w3RHo4YtPifquyXaSsN0NQZFHLYsv+Gu0aUf5qfa4idj7sbao3Dr3QFKzxPM4NJoOAQY99wDi9uZHbrqtw0AqYqt+l2DlR700YHYynq/wHDYJYxhW8aX+MT8wse8P6DDNLw4iWFZApVPuN6yVafpMZxrHEIe3Qdr5trrYZHAE26hXoaGaNGc5vrF/02NTHRLFEL+UR/QR2+/VUBvuOevY3ZHGTugwsnr5ir+bpjcZheefyZpMZ1ZhqqHgGqvrbdKSRzoNqbJlqCFrUXvcsnl6lMYAeVaLxUU8P+zGM3NdRQH/Cua3TMBJn8XenThtBReZ35EWvMD9hgfkalrg6aUd+iWyllLApFlsqgSTfTSDM5KiuuL9TLVGUhuhykFvGZ3mqVaciwlWN71fs2G8yNTKeUMirJJ5cmmhmjRjNXDX4Wphi84UvB6MU555zDtGnTeOCBBygsLIyZK2ixQGvNLzy30UY7+eQyU00mV2Wz1Fg05PdpijGBJ5P+xNL27/Kh3sRWs4zNepsEDofAq7380fsoHjzMVzM50XF4tIcUEYXGKNZ5PgJgbz0ygqWJIpq1kobzADnLnnHYGTg0lLKuYvqyaYaviY+9q3I42WscDiZw+KH5Gb/23g3AwezLj51nh21s8SSrR8Zh4k9V/khv5k39HhC9bPj9jfk8nnQHxW1LOgMhinEUMUGVsNRYRN7/s3fe8W1V5x9+ztXw3o6d2Nl7kwTCCpuyyiyUWSAUSkvLKhToDwptgZbVltGyW8ooo5RSdqEtK0AgjJCEQMggO3Zsx3Yc2/GQdO/5/SHr+l5ZsiVbw5LPwycfNO44so7OPfc97/v9itALouO0kTzvvpebvfeZRmMBtshqNlPNcvk15xurGePoPXBYLetYLD+3vfZRl4TBdxxHcJvvIVbI1bynf8ZvnFegiaFZOvi1XM8KudocZyLVw10mV5n9LFlamqmKEIKVma/xd/01zvP+nC/lOs7RTmSJsQIkjKa7bxsYg6asNZBxmCn6Hzj8n7GYm3z3AjCdiaajdDAjxXAO0uZzg+ticzw4SJtv6hunIsocRaHo5i73dZxsHMkRnvMAv2lagBeM//Jn/R8AnK+dwghRZo4BRzgWJKO5Q56EBw43bNjA888/z8SJExN96kFPI7tM7ZBiUWAabOQHZUsMhGGi2LyZVmWmA6OORjNgkMp6K9ES0HIEv8ahInVI9Ep3cFZ5vLBmlAVKE+0Zh/HViDJLlWOs92TVOOyPOYp1jB/Ki0TBLn0tQyDj0Do2JzM7R0ppGoi5cJIjsnsaiIUh1HYF5EU1hwmlZ9lpcYWtFOWskKvx4aOORoaTuqYLAyFQqhzKkKO3a4X1txSsTaWIDOv80SpP4bU8HkwGKbEoVbb+dotFYa/jgfVeKNKxYzCjMg4VCjvWYKF1YTdYCiNP5KTFGJDKJDxwePjhh7NixQoVOAyBdaK/nzaXh1w3x/wcZziO5TXj3R7nU0TPYLkxSzTWz6qMdlKXxLgqJ4ZQkw7N8vn0OAcO42WO0jlAc5RtljFqoeM7MWlTKpIvhl7GYWBsHkZxv411YsFOms3A+oHaXrzm/nPE+4YyGntT/5DjvD8E7P07HKEctDssvyvr9axK1vRwuh0qBMZIR8jAYXgCv6UcsnCI2I5/QwXrYmwrbeZjaxAx3nIb0dDeleCQNYBSZev8+Wn3HyJa2EoX40GJMkdRKKzYdcq7r9mBwKETJ9c5L0ITWlqMAalMwgOHf/nLX1i4cCFffvklM2fOxOWyl4+dcMIJiW7SoOF+39PmY+tEoi/u8T3Oe8anPV4/SJvfw3HIurL5mv4uVzrP70dLFTB03QQzRQalFFHPTpW1mmIk0xwlrhqHISYd1oxDq/B/PEiMOUr0wZ+3jI/MxyOH0BgVTH5QxmFzCMOMdEKXOtvZAST32nSP73Fe1d8xn8eiLdZ+/JbxEb/hil63bw1hhBOo7PC3qVv/sUrWsidDU36jO3AYKvjXd8Zh8G9METnW4PVHxucIBBJpyzgfLM7KXuk1r6fRBg6t9yqLDb98gBsXpQytEndljqJQ2LFmEH4hV5uPv5GbARjBsCErIzLYSHjg8KOPPmLx4sW8/vrrPd4bquYof9Nf4kHf0+ySLUxiDHto0/iu4+g+93tbX8K1vt+zW7bjxkWJKAT8mj6NNPGJsYJTHcfYJiXTxUQudJzGv/VFrJYbWWV8w3RNZX/2h1qjgamMJ0/kMF6MTnZzouKPvif4ne8vSCQTxWjezXgqqv0P0fbhG7mZFnZjSEMN6ClIoies8TzfCFHGPmIPmmimkSbAnnEY72yN7sBhPM1RIj/2YuNzrvD+lmbZwhgqmCOmMUZUxrRtqUQRBewtZrNSrsGNO+YB3sFGrWxgDBUUiDzmi1kJP/9/9Q/4pe8edss2nDiZy3QmamO40HH6gI89RlTyiPMWbvbdR62s51zPNTzhviPs9qGyS33o+KQPp3AykVHMF7NoYTe1smHA7UtVjF4zDnsJHHYFZoMNiBSRkykyeNx1B//VP+B/xuKuEcphy2AfLKXK7bKDWUxBE4JxYmRE+0gp2cfzXZplKzo6Y8VIpjCOydo4jnUcMuTmj7bfltL5VygoJI9rHBfylP4yO2Qj//F9wM/1Oygkn4mM5peuS5PdREUXEc2ev/jii4gPOHv27F7fv/TSSzn77LO54YYbKC8fuhkQVtYYG1gqvwJgH7EH87VZEQXzNsitrOiKzM8Sk82I/RZZzc4u98BtssYWOCwU+QyjmCpqzW2nowKH/WEL1axmA0hSbsV0lfyGHTQCfpdKKWVUE5g22lkuvwYY0rpQqUaibz0SdbNTLAr4uMvwIJAFm6iMQymlqXUa81LlfpqjbJRb+UKuAWCGmMT+jnkpLSY/UEpEIcvkKrz4aKeTTbIq2U2KK9XUsoGtIGG+lvjA4Xq5xbw+7CGmUiHK2EubGZO2ZIlMvuc8gUt8N9JOJ5/Jlb1uH07Psp1O8nBSLIr4tOsYm9O8X/RGfzQOpZRmYDbYgEgRHac7vk2N3MGrxjt04qETexnrYClV9gqdlawBCSNEZC7aO2k2r0elFJkaZXtoUznFcVQ8mzsoGSxBYIVisOAUTkaJEWZsYpn8itVyA+A33TrWcUgSW6ewElHgcM6cOQghIgou9JUx2NDQwBVXXKGChhas5Z4PuW5iqjYh6v1udv6Uox0HAXCH78/80ndPj20CVFhKfZRGXf+x6itVppjGobVfdNBJE80UEdrhMhTWkrOhrAuVaiTcHCVB57PrlPn7dqJuuqxBSWeMM9kC4vgaGs4ojFesv+8bnD/hpCHi+B4OTWiMoIwtVAPdWVLpSrJlNKznv8X5Mw537Bfzc4wTo1glv6FK1vY6Nw0Etlw4zcxg8Bs85JFju3YPZekNXQZnHHYTbuzeTbs5xquMw4FzuXMhi42lvGy8DdjLkwdNqbLlN+SOMAveqmf4bcfBPOz6TczblUoEfjNK31Ch6MZ6LQ6UKAMcqu2TjOYowhDRqLVx40Y2bNjAxo0bef755xk3bhz3338/y5YtY9myZdx///1MmDCB559/vs9jnXzyybzzzjt9bjeUCETYwa630/d+1sBVecjHoQxQRtreH7oT5YES7PaUSgR/79H2g0rVh1KeRBfIxDNwOJxSM8OwO+Ow+/IWz4xDn+XYsXZVDpQqR6tvaA8cRX5NSWesY9Yu2ZLElsSfZAcOrYtq8dLWDHyuTjw0dMkThCKQcRgc1A8YPNg0Dhm617LAGBkYRyNZ9LGWgauMw9gQbrweLFlqHovubqTSHLbxCHU9CgSBlb6hQtGNdezbLKtDvq5IPhHd5YwZM8Z8fOqpp/LHP/6Rb3/72+Zrs2fPZtSoUdxwww2cdNJJvR5r8uTJXHvttXzwwQfMmjWrhznKZZddFkXzU5svjbW8qL/JGmMjblxoaOSJyCZfTbIZr/SSRw6t7Lb9sCoZjhMnOWTxF99zbJO13OS8HLfw/60rRTkaGmWUsNvi4KaInFpZjwsXwyjGiy/i7y3WbDKqEELwvO8NFsvPI96vRu7AhRMfOsUUcK/vSS53LmRahNmulWI4rq4+9rjvBU5wHN7fj6BIIMk0R4knDuFgBMNop4MM3GyXO4IyDuOXreGVXsopwYdOLtkxOeYO2UiTbKZVtuHGRWYUgcN1xiZ0DPLJpYXdQ8q4qTcq6C6r20V6Bw6baKGCcupoSOiNeqPcxQ7ZwHq5hQzcePDEbVGtUpSTSzbZZHK25yqyyWSONo0zHMcyWRtnbpcnciiWBRhI2ukwX2+X7SD87xeQhxsnTumgVtZTPgQz6ANjZOhS5dA0y1YqKKeNNgrIi3cThwSVotw0R7EyaDIOpTVwGNlC2Xq5hSLy1fWoi8A3qwKHCkU3gbGhkDxq5A7yyKGNdjVmDDKiTo9YuXIl48aN6/H6uHHjWLVqVZ/7/+UvfyE3N5dFixaxaNEi23tCiCETODSkwf6e0/HgJYcs9hF7sEDMi3j/N40PecZ4DYDD2Jci8s33DtT2pDnjc/bznMYKuZrV+gYWOr7DNOEPClVQjkRSww5WyW9i+8GGCI/rL/C29DuWPuO8K2nt+IXvTp43/gPAfGaRKTIi2m+GmMQCMY/rnBcxynMwjxn/4nXPIjZnLup7Z+BM7VieFC+xSH7Ca/Jd2mQ72SKr359DkXgSIcqdyNLoB1y/5njvRTTI5Tzge9qecSiNuKVY+oROLX5TBT1GN3fP6K9yjc9v+DCV8VHpQJ3tvYoVcjUOHPxcu5ARRKZDle6UiiLzjq01zRfM1hgbqe7KnqskcTIarxnvcqH3FwBMYDSnakfHbVHtT84beNB1Ezd772OR/glv8D7/1hfxkvEWSzNeAPwafGvlJiSSEgpt+7dbnJUfdN7Imb4reVsu4Qn9Ra52/iAubR7M9Bo4DHOtaGG32c9yRWwWTYY6lzvO5Xe+v/RY3Bg0GofWjEPRd8ahV3q5ync7EkkFZZzn+E48m5cSBH5bKmyoUHRTLAvIIoMmWmjqGv8mMJoTtMOS3DKFlagFFqZNm8att96Kx9Mt2u7xeLj11luZNm1an/tv3Lgx7L8NGzZE25w+GTt2LEKIHv8uvvhiADo6Orj44ospKSkhNzeXU045hdra+Jer1LPTTPnPJot8kUuRFrnGnDX1v0wrsU3sHMKBJjSKLZp11tKhYlFglr6pMtP+YSu90JK3GmItRS8VxabodCT/irQC3JqbfPzaRLU04LGsJveGUzgpEyXm82pZF9sPpogLySx3ivck2VZyKGsRCco49Nk0DmNjjmIdXwpFvml8Fc2+eWRTpBUo18YuCkT34poHb8RjXSqSrOuT9XpUKPKimtNESyBokS9yKdDyzKxc62f34DXHPEfQb9OafVihKemNwKKHQ0RujtIsu0uVc1WpckxwCVfIzPXBWKocicbhdurNtheJgqi0etOV7sChujYrFAE0TeuhtV+sxoxBR9TfxoMPPsjxxx/PyJEjTQflL774AiEEr7zySswbOFA+/fRTm2HLl19+yRFHHMGpp54KwBVXXMFrr73Gc889R0FBAZdccgknn3wyixcvjmu7rJPTExyHc5/rV/3e/wLnqSG3OclxBO/4Pu6xvRCCSlHOerllyE6SB0qyNaQCBMxtyijmhYz7+nWMvbSZbDW2A/4A4FhRGdF+I4NMdiYyppetFYOBRJujJBKb7ia1tky71AscdgdgHnHdwgRtdET7dchO6tkJwFQxgcudC2PSnnQgOPjawu4eWWjpQkD/uJB8chKYCWa9Lt7jup69EuDofLlzIZezkCM6z+N9+RlN+Ev8c0W2LTgYXFbZLrszDpVmb/80DlstJkPRLG4oeqdQ5Pfoh4OmVNlijhJJqbL1WnawNj8ubUo1lDmKQhGaAvKopjsR5VBt3yS2RhGKqAOHe++9Nxs2bOCpp55i9erVAJx++umcddZZ5OT0veJ4/vnn9/r+X//612ib1CvDhtnLtG677TYmTJjAwQcfzK5du3jkkUd4+umnOewwfyrso48+yrRp01iyZAn77hu/DjvQwFO1TWw49P7W41p/iIH31sstNNNKi9ydNI2+VKXaNGBwMJzk6CHpUmc7O4CBicfa+0ktY4kscBi8nyK1SCdXZYB8csklm1baqJZ1tv4Z38Bh941UrFyVqywZvNFcH6yZv/EypUhVgs0bmmUrJaIwOY2JI1JKsx8kelGr2tZvEytoXinKzVL0alnLZDGONkvgMDiobw0qDqcUDQ0Dwza3GkqYGYdRuCo3WwOHKuMwZpRS1OO1VM04TOaYMFhR5igKRWiyRKbt4pNFZPJbisTRr7ucnJwcfvjDH/brhDt37rQ993q9fPnllzQ1NZnBu3jh8Xh48sknufLKKxFCsHTpUrxeL9/61rfMbaZOncro0aP56KOPwgYOOzs76ezsXq1ubm6OuA3v6B/zofycJfpyxjKSUlHIfBHdqvyXxlp8UmciY3AIjQoRWsNoihjHmdpxrDE28LjvBd7TP+VJ9+8pFUUcKQ5AExpO4eAp/WUucp4ZVRuGOmWUcoDYkywycYjYZBlFylP6y1TJWlboqxnPKEpFIUc5Duz38RZoe9JKG+v0TXzPcyVedCaLsfzUeV6vpidztOl8S1vAZqOK+3xPcqZ2nCqLHOQktVQ5zn1DCMEh2j5sNLZRI3fwnvzEfC9W2oOh8MnujMPgcsj+8IDvaSpFOZPlWPJEbsS6pff6/kaDbGKWmEwWmRym7TfgtqQTeZaMqHJKucR7Iyc5juBC52lJbFXsaZItHKDtSYfsjDh7fKAsM1bxiv42dbKBkQynWBRSRnFCzh1gmpjAAjEPgUa1rGMy42iX3cFBh2W6O4vJ7JbdOpdO4eQwbV86ZGfMDI5SDcMMHIbKOAxNi6VUOU9lHMaM8YxiGatoo93MaB88GofRZRzulM0cKPZCR+cT/Qu+a1xKnWxgmEjs+DCY8KEzjpGMFiOS3RSFYlBxhLaAbfp2mtnNCIYxR5ue7CYpgogocPjyyy9zzDHH4HK5ePnll3vd9oQTTuj1/RdeeKHHa4Zh8OMf/5gJEyJzdO0vL774Ik1NTZx33nkA1NTU4Ha7KSwstG1XXl5OTU1NzwN0ceutt3LjjTf2qw3/Mz7gTv1RwD95PUo7kCMcC6I6xqfGSl6UbwJwNAeGvbGcpI3lUfdtLOg8g82yis2yivVyC6WiiEucZ3N9510goVW2qcBhFHiklzfkewDsLWYn/PxP6S/ztrEEgP3EHA7T9uP/nD/q9/G+4ziC7ziO4Cx5JYsNvzNzvdzJBH10r4HDA7Q90RCsYxNIv27nsATfLCr6T6IzDhPBbtr5inUAXXYlfuKZcajHuFT5t74HqGcnheRxqnZMxPvdqz/FJrmNTNz8zHEB5zu/O+C2pBMBLVeAOhp4S9ZTr+9Mv8Ahzbxl+I27wi0qxpqPjGXcoj8IwGTGcrx2aMIX1PJEDoul//q1tatUu8NigOISDjOTYSVre1Rh7JItfCpXIhB4pBd3BMYP6YRumqP4rwsRaRzSHTi0/r4UA2OYVkSz3mp7bbCUKntsrsp9/0bWyU28Lz/rfkFCHjmmzvpQZBjFIOAAba9kN0WhGFTc6LqMG11DwyQ3VYkocHjSSSdRU1NDWVkZJ510UtjthBA2PcFI0TSNK6+8kkMOOYRrrrkm6v0j5ZFHHuGYY46hoqJiQMe59tprufLKK83nzc3NjBo1KqJ9t1nKYEpEYb90YaosZaHlou8y2WGi2JwwB0qkM0UGpRRRz84hq+nTX6r7WUYYKwLflxsnxfSvD4ViuLCX9XfgCbNlN8HaUEN5FTkVSHTOQqI1FcPJNliDe7HGVqocg2BJoIQyg4yIf9v+8lT/uFBIdGYqQwWrHIcbF5140vLaZ9WdS1QWmPXvWCQKktL/7Ncif+CwrReNw+DvvlKU86lciUSynR2MYWDzxFSjN43DcLRIa19TpcqxYqromUQxWEqVrdc7VwSmBVaNwwB5ZKtrFEoXVKFQpB4RBQ4Nwwj5OJasX78en8/X94b9ZPPmzbz55pv861//Ml8bPnw4Ho+HpqYmW9ZhbW0tw4eH1+LIyMggI6N/dffWoNPz7nv7JVxuPcaPnWf1uf1pjmN4w3iva1+7tmK93Ml2dmBIA00ood5IsOr5JTpwKKU0HbLHiJE8n3FvzI59pfP73K8/ZT5vobWXrf3YdA5lLXPo21ldkTwiKT+LFwkJHIb5Pca1VJnYlSpLKc1gxygxPGJzk3p2mtpTe2jTlClKCKwZUQXkUUcD9eykQ3ZGXA6eCiRDd84ahPuz6zdM1sYl5LxW7Nci/xyp3aZxaJ/uWudRPfevZYwYaoHDYI1DlXGYLGZrU3q8NlhKlaPVONwWYnHmNMe3uc11dUzbpVAoFIr4MyAl946ODjIzM6Pax5qpB/4bpe3bt/Paa6+xcGH8bnYeffRRysrKOPbYY83X9txzT1wuF2+99RannHIKAGvWrGHLli3st1989KFWSX8ZXRaZnOu1Z1cepM2P6IZvsbHUfBxJ4MqahXO/72neMT7mIG0+laKcFXI1PnzU0Zg0k49UI1mOyvf4Huct/SN20x6Xcwd//x8ayzjFc0mv/dLat9IxeyedScdS5XCGIKniquzBa/7NMon82vo731/Mx8l0eR/M5FmCaNYyuWpZx3gRWcVAKpBo3bl7fI/zX+MD83lFkvqf1XjhfcNfGtlhcU4ODhyGyjgM995QwJpxeI/vcdos+pBhA4fWjENljhIzpjK+x2uGNBK/2hcCq8ZhX4HDe3yPs0J+DfjH3M6uKhZlkqJQKBSpSdSBQ13XueWWW3jwwQepra1l7dq1jB8/nhtuuIGxY8dywQUX9Lr/smXLbM81TWPYsGH84Q9/6NNxub8YhsGjjz7KwoULcTq7P3JBQQEXXHABV155JcXFxeTn53PppZey3377xdxR2ZAGUzuPxokDJw6yyGCZsYoJYjS7ZAubqeYjYxnZZHKh8/SQxzi8cyG7acOQkrlMY4I2JqT7WjB7aFN5yfUAr+rv8KbxIe8bn/GBsZTvakcxU0xmp9zFNqOG4Q4VOIyE7Ya/jKlQ5DNWjIz7+c7z/Jwv5VraZSfDKGY+s5imTeAC56kxPY9TOPmr81aWG1+zQq5mh2zkA2Npr/1yjKhgjpjGLtnCdrkjpu1RxJ5EB/ISXap8lOMgnuIPXOW7jXp2mjc58c04jJ2rsjVDKiuCLLjX9He52nc7XullIqPZV5vLTxx9Z6EPRYrIZ76YzU6aKKOUCspoooVrfHfwT/efkt28mJGoLLD9Ok9D4A+cT2IsnXiYpI0ltx9VFLGgjGKudvyAv+kvUi3rON/zf/zL+J/5vssS1B9NhbkAF2AsI9lDTKVJtvTIRkx3pOwep5fL1az0rbGNZeHGbg3BZMaSgXvImsrEA6fmZJ6YwTK5yryGzvOchIHB97QTuM/9q6S1zZpxGM4c5Q7fn3lKf5lO6WE8o9nINjJwkU8uR2gLOF6LrxGmQqFQKOJD1Hc5v/3tb3n88ce54447uPDCC83XZ86cyd13391n4PCdd96JvpUD5M0332TLli0hA5N33XUXmqZxyimn0NnZyVFHHcX9998f8zbU0cgWqs3njeyilCLyRS4evOySLQBskFvDHuMLuZoWdlNCEZO1sczXZkXkVFoo8jnKcSCr5QbeMT42byw66ORLuRYIlN/OHMAnHDpsZTubqWazrE6Ipt/Xcj1fynVoaEwR4xBCMEObxD7aHjE/11nO4zmL47nH9zj/0v/bZ78sF6Us71pR3iK3x7w9iviRiECe/XzxZ7QYwWjnCH6p34PXEshOlYxDqyZbdgQZh5vkNvO3uYeYyixtMjO1yQNqQ7pSJAr4Qq6mEw9u4WabrKGZVlvgNx1IRBaYT/r4Qq5BR6eScuZofomKvbTkzSEcwsFEMYYa6gFYKzfbzVEs2VFbqMYhHehSN01chmnFrPCtBjDlQIYKVg1YL96u0FC3xnG4a8U2WcNaNgFQIPLi18AhSAZu28JbW1egezNVyWoSAF5pdVUOnXH4jdzMGrkRgH3FHNpkO220M4xi9tCmMlZLjNu7QqFQKGJL1IHDJ554gocffpjDDz+ciy66yHx9jz32YPXq1TFtXKw48sgjbSuqVjIzM7nvvvu477774tqG6hClL8c6DuEh1818Y2xmpsdfQh1KDwSgWbbS0qVdNFObxPPu6LXtLncuJJssLvXdBIBGt6bhUFthHwg2c5QwZgzxOF8l5fwrI779NMDlzoUcqx1i9suqMP3DpgvF0CvvSjUSn3GYHKaLiayXW8znidI4HGjgsN1SHhhJqbJ1LLrNeTWHOvYZ0PnTGSEElaKcDXIr1bKOSlFOs2ylWtYhpYxoES4VsGrTxkt8v5YGM9g0V5s+aDI2rdejOtlgey84+KWjU0sDFfidp63X8lDztXSmr/Ex3C8jMCd14RzSLrnxYKQoD3kBbZZ9a0/Hk0gyDq2l/jc6L+Morz9p43jHYUp/V6FQKFKYqN0wqqqqmDhxYo/XDcPA6/WG2MNObW0t55xzDhUVFTidThwOh+1fuhJKMycwUa0QZb1uF/z6QIJVVg0w62RxqK2wDwSrS5z1u4sHHbKTHTQCidcui6RfFpBHDlm9bqMYPCS6dDjR5wsQnGkV14xDGTtzFGuGVCSlytaFpnD6jopuAtfOJpop79J0baeDnTQns1kxJREZh8nS+e0L629gJ7ts74VyVrd+Duv1LtwCbrrSl+t8X+Yo+eSmTeB9sBDud9WU5LHKazVHEaEzDgO/qywybc7bg2msUCgUCkX0RJ1xOH36dN5//33GjBlje/2f//wnc+fO7XP/8847jy1btnDDDTcwYsSIITHZ+MBYyjP6q+SRQyceiijAh8+cqGaLLCopJ1Nk0CJbObrzfKZpE7jL9QsAamU9y41VjGAYrbQxSowIe6522cEWWc2T+sssN762XdillNTLnbhwkUcWa4wNZJPFcErpsJSlKOx8YazmOf0N8++5WVZTQiHZZJEh4rfKvtJYwy7ZwkiG08JuRifY5dGLjzKK8eDjC7ma0R0HI5Ho6GSSyQmOw7jb9QvGUkkTreSTm1aZO+lO4kuVE3e+4Eyre7yPcYB7z7j0Td2WcTgwjUNrqXJWHxmHS40vceGklCKaaY37IkY6MIIyyighj2w2y21kkcEYKqiStRSLgmQ3LyZ48DCWSjropJD8mB13ibGcUop4Qf8f/zYWUUAuOgYjB5HRQYUoJ4csssmild04ceLDhxuX7bdZQC4lFLFI/wRd6oBkX8dcKinHiYNcstgitzO6l7lWOmF17M0kg046KafULPsON3YHgkKJMOEZaoygHAdaj2zQNtnBFd7fmvcHsaZNtrPMWMUr+jtIDM5xnsRkMY53jU/QEGwwumVrgjMONxhbaWE3PqlTQB4unPzGdz/5XWNFIip0FAqFQhE/or7L+eUvf8nChQupqqrCMAz+9a9/sWbNGp544gleffXVPvf/4IMPeP/995kzZ05/2pty7JZtfMvjT83PI4e9xWw+kH5X5ECJDMA3GW8ihGBsxyGslGtZpH/K753/h0M4eE1/l5/4fg3A0eJAfu28NOz5vpBrONjzPfP4ExhtvtcpPXzCFwA04qWRrwDYwFa+kIOzzDzZSCnZz3M6Ojo5ZDGPGUwUYzhIm8/1zp/E9dxXeG/lA+l3h7za8QNucl4e1/MF87z+H+q6sh2LKKCDTlpp68re2sWD+jPc7ryaYaKEr+Q3VHVphhWgtI4GK8k0R0kkwZlWr8p32UkzxcQ+OGQLHIoBlipHoXF4lvdnbJZVZOLmKu0CcpJkSpFKDNOKqdMbqKO7jHU1G6mSNcwiPbQhN8sqNnXpoMUqGCql5GjPBXTQSQmFTBcTmS2mcpA2n6scvetaJ5J8kUt9xif8xnc/7xmfcqDYixtcFyOE4HrvXbyrfwzALlrZRSvX63eB7teTa9KWcrfzF5zqu4zNspq/6S/yC+ePk/yJEoN1DOugEw1hBg0hkoxD5agcaypFWcgS8m3U8ID+DHc4r8EVJuNvIKyWGzjc211OvMz3NXc5ruME748A+4JWsKvyffqT3Kc/ZXutg07miukcpM1noeM7MW+vQqFQKBJH1KXKJ554Iq+88gpvvvkmOTk5/PKXv+Trr7/mlVde4Ygjjuhz/1GjRoXVG0xHrBpUeeTYStFGad2r2YFMmGJRCPhvuGu7bm6q6T7GcFHaa9aMVW8rkwzyRa75r1B0Zx8EJoJa1/9VmWlo2ukwJ9UZQX/PeGfWVeEvic4kg1JRlPBMPuuvNAM3mWT0WGEOaIUFUP0odUjnUuVQ2m7x0i2zuyoPsFRZdl8fMglfqmxIg+1d15ZCCijQVLA+EsK5DIfTcE1FrJ8lVqWBO2k25y7FojCh18FoEUKYbSvQ8iJqXycemmllpNadPTmUdJ+DA1TBphehxu5O6aGzq1IlL47u3UMVa18MhTWwG0uC+32VrDUXkMEeZA41HwzGhWvQjhUKhUKhiI5+1VUdeOCB/O9//+vXCe+++27+7//+j4ceeoixY8f26xiphFUr5wzHsXwh15gRmcoQJT4HanuxSv8G8F+wK0SZLRjzY+f3ej2fz+J4drLjSH7jusJ8rkudnE6/E28GblsQs0rWqjLTEDTTrc+yQJvHc+4/JuS8Ukrze58gRidFUNoa9Pm181LOc57MVd7buFd/0ny9itoegcPp9NRAVQwOkrlkk9DAYYgb2SpZy8w4ZJX5Ylqq3G4+zhLhMw7r2WmK1M/RpirB+QjJF6Ezo6rSSOM3cN0opYjMCHQyIztm999nf20uD7lujslx48XlzoVcjv03ofWxTl4lg69l6dMn+iJY49CNywwKQuixu8UyNwr3u1L0n76C/lWytlfZov4SvPhbJWttvwW7OYqrx7bg7y+B+eOe2ox+mTkqFAqFYvDR77scj8dDXV0dhmFfqRw9enSPbYuK7NlSu3fvZsKECWRnZ+Ny2S88jY2NwbunNIGsMfBPBF433gP82SRFIfSH7IYUNcxnVlgB71D0dhPrEA5yyaaVNnMSHdC26aCTRnZRQmGEn2xo0GJxsIuX0HworIGBZAlKh8oWC+5/VbLWJkivTHYGN/bvNLHnSyR5IW5k42V4EFNXZas5Si8Zh/ZrgtKNipRwmVFVaeIIb0jDrFCIpealrb+lqE5ZXwsXVbKWqWI8Lpx48Q2p7PngjMNMMmyBwVB/Oau7b64qVY45w7vMm8IRr/4ZPIfroJN1cnPIbYNLlQNtKqGQenYCfUtuKBQKhSJ1iDpwuG7dOs4//3w+/PBD2+uBbDVd7+nOdvfdd/e7ganKS/qbfGys4HPjKyYyhnJRwl7aLF7T36VUFFEo8kNm9+2nzeUSx9lskFt50PcMf9NfokHuZJIYSxH5lFLU63n70tvKJ5dW2vDhYyyVbKMGEGTg5rDOc5iojcGQBuvZymhGcKrjGBY6h64uSUDDB0KXP8aae3yP0yh38ZWxlulMZJgo5iTtW3E/byik5WZCE/5A8z7aHE7RjmSp8RVNtPBj7y9x4CCbLEDyO99fKBT5fMfRt2yBIrmkc6nyTDGJqWI8q+UGAOYxgwd8T3GP/jjF5POG+68xy8YaaKnyx8YK3tDfZ6n8kgZjJ5PFWCopZ09tZsjtPzVW8lffP5kuJpBFJkdoC/rd9qFGqMwoJw5e0d/mCsd5TNUmJKFVsaNONrKPmI2GxhQxvl/HeEN/j3eNj/lGbqFNdpAlMtgt25kmJlBCIQu0eTFudWKwZhweqx3CJmMbrbQhgInaWJ7X/8MRjgUcIvbxG8uIoVP+H+w6H2zMFGrs3il3sY/YgwzcTBOp/bsZjLiEi8mMZS2bbK/vJWaRSzbtsiP0jgNgu9zBWrmJSWIsLXI348UossnkY305IxlOM63kkM1wUUIeuWSLLHPfF/T/MU1MYBoTqBTlPG68AECmChwqFApF2hB14PC8887D6XTy6quvRuyKvHDh0Cuj+q+xmEf05wCYyzQO0fZhupjI23IJAAeJ+SH3O0ibz0HafG723sd78lOaZSvZXS6BB2nz+/x793UTmydyQPrLDQIC6oH9qqilTJZgSIO1bGQtG/EaPhYyhAOHsnvVPREZh3/TX+RLuQ4Njf3FXA7Q9uR853fjft5QWHPFAr1ugTaPBe553Oy9j7/o/6CJZts+G9jKf4z3VeBwkJKsDEBITIZjgNnaVL7nOIEbfHcDMF4bxbvGx9RLfxZEtaxjvBgVk3MNtFT5E+MLbtUfBGAq4ymnlP21eeyrzQm5/WfGSh41ngfgeO0w9VuLglAl7D50GtnFl3IdU0ntAEg1tSyWnwMwRRvXr2O8Y3zMPfrjAMxmiml2VUoRB2nz+ZZj/9g0NsFolhHoIseZLBHLAXjdWMSbxoc4cHCv/CV1NLBCrsYtY288MVgJLlXOEZm2CUCowGEN9XwsVwBwsNg7ru0bqkzQRrPW2GR77TO5EoCDif3f/Bu5mZeMNwHYm9kskcsxMCggj120AP7F9IC+rlXj8A3jPd6U/oSSZxx3moHDrBgt0CkUCoUi+UR9l7N8+XKWLl3K1KlT49GetMGqCVIqisgXuTZx/so+yn0CYsLBr/VFXzexwTdOVi0SLz7yRa7/edek0SO9wYcYUrQkOOMwIC5dQB4FIi8h5wxHb9li+SKXfHJNAx8rQ6nEK9VIdAZgMjUVrRlGmbjJI8csn6qilvHEKHAou8dcRz8yDq2aUTkiK+TYb8X6+yrvo5xNYScvwr9rqmL9DKE0lCM7RvfcpUQU2rKKknk9GijWRVcDw/wslWI4n8tV6OjU0mCWs3vw0ik9ZAh3UtqbSHRpzzgMLj0Oda2w9pO+5rOK/pFLdtj3rDI6scI6fpRpJYwwhlFFLbtpC7m9VU7DaoxiHSf81SgKhUKhSAeiDhxOnz6d+vr4uHmlE4ELsAsnL7kfRBMab+kfme/3pVsXStw7EvrS28rtyjgMMJZKNrIN8E+Un3HdhVu4yO6YjYGBl6EdOLSWKsc747BNttPILgCmi4lJF5TuLch0uXMhlzjOJr9zXo9shXS4AR8KpHOpMoDDEjg8xnEws7Qp/Nz3OyC2fXSgpcrWwOEvnD/m245Det3eqkF1qfPsqM83lMnr5UY8HcYtuxZh/zQOrVqgL7jvj1lJf7KxLiRIpGkotMG71Xy9Stb6y9m7hq1mWhlGcULbmQyCr+HBc51QY/c2W5BaBQ7jQW9zTuvcNFZYx48zHMdSK+upkrW2+wormRYDr8C+mWTYTFN60+pVKBQKRWrRu81cF83Nzea/22+/nWuuuYZ3332XhoYG23vNzc19HyzNucf3OKd4LjG1tXLJ4VTvZdzje9x2UR7Zz2yAvujrJjY/aCJinfBJJNvZAXSXIHgtxxuKtMruldZQhgux5FbfQ+bjwTARtwZ9QjlSOoTDFPC23lislRs5xXMJp3gu4R7f4/FvqCJikluqnNjAobXP6ui239Rtvodi1jfturLRlyp7ZXiXylAoY5T+E84cBfwluqmONajc32tIPFyZBwPWUmWrpp/dSbnW1kea45DVNRgJvi4UBOk7hs44VIHDeGMNzIH9e7DK6MSKqqDxo6/v1Wp8EugPlaLc5sidqQKHCoVCkTZEdJdTWFhoK/OQUnL44YfbtunNHGWoMK7jMDLdmWSRwTxm8Dlf0Ukn/zU+4F3jY44SB1JGMcUUMkZUxKUNfZUq3+L8GdfJi7hffxoDgx85zuBrYz0/0X+ND50FnaezLfN93LjoxGPLhhmK1Mh6yihhGEX9zuDoizf1D1novQYNjQmM4hBt30GRSWS9uQoX9HnGfRf55PAL7138Vy7GixcDyafGSlpp40Pjc3bTznXOixLVbEWEJDrjMNFYMw4NJIdp+/Cu+0ke8T3Hi8ab/MZ3P5tlFXe6rhvQeQbqqmwdY/sKHM7rPIl22cFYKjlA2zPuixnpRjEFVFBmOg9nk0kbfpOBb+Rm/qcv5ghH6prN1Mh6RjCMYgpsbveRcrvvYTx4mMEkLhkE16BYImyBw+5xaZwYxVQxngbZRJWssRnoWJ2F0xnr4kc+uYyhkrGMZFNXNUqoK0Wn9DCaCty4+jTtU/QPa7C7kDzOEidwv3wKsMvo9Id/64s4zXsZAsEcMY33M56hXXYyihFk4GYYJUwXk3iTD2mljXJKqcVebRYw0bnO+weyyWQ0I/i544e00W5uY5U6UCgUCkVqE1Hg8J133on5ib/55hvWr1/PQQcdRFZWlhl4TGVa2c1uOqiknGyRiVf6zIw9Lz62sp06GqmjkXIRH22qvvS2JmijAZguJwKwl2MW88QMLtSvB7rLH1TGoZ8adlBHA3U0UCIK43KOKllLA00AlIsSJmtjB4W7ZyhzlGD21mYDMF2byGv6u4A/4Ghg0EY7bbRTK5W0wWAh0YG8ZJYqB2cclooiSkUR/xOLzYDAFrl9wOcZaODQmiXu6iVjUUrJN3IzHrwMp5RZ2pSozzXUyRe57KDRfJ5Hrhk4bKcj5cuVt7Kd7exgOzv6pXG4RW6nlgZqaWCONi0OLUwewaXKAYZRbFaIVMs6mw50PMpBByO6ZZGwmVaKtXw2GdvM10JmHFLLFqoBKBT58W/kEMTaZ5tooUQrIHC5GWjG4S7ZYl676qR/TNxOHVvxXxOLRD65IovWLn3D4KAhdJchb5HV5rgzT5vBJ/KLHtsoFAqFIvWJKHB48MEHx+yEDQ0NnH766bz99tsIIVi3bh3jx4/nggsuoKioiD/84Q8xO1eyONtxIt9y7M87HnvpU53sNpKIV4lZpHpbAX0fAE3TcOHEiw8PXgzDwN2V+TLUzVESURZYRfc5fuW8lOMdh8XlPNESTdDnWueP+J3+F/P5SDHcdLBt77oxVyQfezB46GgcWjOMrnNexG36w+joMQkU2cfc6EuVrRmH7l4yDuvZaW47W5tqG8MVkSGEII9cGrsWasZQYbshto7FqUigP+eR069sVGupYoWIT4Z9stBs44G1VLn7c26TtUyzLNq1xKEcdDASrHE4RowM2qLn2B3IeMskA7cYOg7UiUQL+ru304kbFx68A844DBiFAab5iTUYmUeObc4buEewPncI/z3GNts8uYx2o3vOl4m93FqhUCgUqUtEGodWvvjii5D/Vq5cybp16+js7Ox1/yuuuAKn08mWLVvIzu4WKj/99NN54403ov8Eg5CRojzkDelO/BqQTpyUxUlwu796WzkW0fgqas0b4KFujhL4HjNwU0JhXM8Bg0srKJqgT7bIoojurANrkLxd9j4mKJJDaud3942wZhxaM7GFgxEMA+yBkv4y0IzD4JuxcAzWcSLVyLG4fGYF3dSmcsahlNKmM9YfrKZu6WYKYh3vrAsJ1gBplay16UAPnVJlu6vyBEbbnoe6/geCTMG62YrYEfx3b6bVzIhtHmDftF77dtGClLJHMNgqzxM8VlrdkoN1UTvonvNlCxU4VCgUinQh6vSIOXPm9FpS7HK5OP3003nooYfIzOx5wfjvf//Lf/7zH0aOtK9oTpo0ic2bN0fbnEGFCycCB0/oLyKRFFPQFXwR5JBJEy1UUEa5KEUTUcdsI8J6E+uIIi48glJ204YALvBca94AD+VS5TXGBspFKQYG2WTFtJS+Vtaz0ljLO8YS3tM/oZA8DOSgCgj0ZY4SzDQm8jlfAZBPnqkjpjIOBw/RlCrvkI0sN77mHeNjVuhf4xFeJoox3OW6LmLThMGTcRh0YyxG45QaIHja+zIztcnMdkzt13liqXHYW8bhZ8aX7ClmsJNmxotRUZ9H4WekGM4O2YgDjTKKGUMF26hhFCMgiZqcA6FNtvOW/hFllNBOB9NE9FIXb+jv4cHHcEoZIcriNkdJFmWihDliGjtkI3f7HuNJ/SXzvUwyEAi2ye0INKYynl208ozvFfYUM5ikjU1ewxOAdXzMJINJYozt/VBjdyDIlCfCGw4pBkbwvGuVvq5LwTSPYRSzztjU777pQyePHNpoZxJj2SEbzWBkIBhcRgkZuNHQqKCcYRSzkW0YGGR0XasMaTBCDCNTunEKJz/3/o639SUUkEcWGUr/UqFQKNKIqGeGL7zwApMmTeLhhx9m+fLlLF++nIcffpgpU6bw9NNP88gjj/D2229z/fXXh9x/9+7dtkzDAI2NjWRkpLYWRiYZjGAYmWSQRSYzxCR+4vge2zMXs9BxMnPFdL7vOIWPMv4Rtzb09yb244znu0qVfbzHZ+ZxhrI5yqP687xjLGG13MBtrqtieuz3jc84zvtD/qD/FS8+ZokpXOo4J27al/0hEnMUK3e4r6aDTjroZDXrzddV4HBw0td3usRYzvHeH3Gn/leWsJz35Wc8ajzPZlkV8Tki0cmMF1aN1+CMmhyRxSaq2UQV5+vXcZHvV/0+j08OrFTZa9m/t8Dhjb4/sVR+hVf6uNr5g6jPo/DzTsbfaMpcSkPmp0xzTmQz1egYbKKKT42VyW5ev1gnN3Oq7zI2U0WFKOMZ911R7b9btnGS9yeskRtw4YrrHCVZnO04kSUZz3Ge42TcuGiWreY/HZ12OthMNc208DvXz9lOHf+RH/Ck/nKymx53rOOjjk6+yLWNZcFjt5TSEmRSgcN4EXyN/oDP+Zr1rGcLS+RyntBf7PexPzdW0cJudAxW8Q3V1NEi7cHgqY7x7Mr8nJ2Zn7E88yXOch5vmRf621ZHI5/IL1jHZr6W67lHf5ytbGe2mMIFjlNT2mxKoVAoFHaivsv57W9/yz333MNRRx1lvjZr1ixGjhzJDTfcwCeffEJOTg4/+9nP+P3vf99j/wMPPJAnnniCm2++GfBrDhmGwR133MGhhx46gI+SfDLJIEdkk29ZgQ08zhe55r940l+9LbdwkUeOWZoTyBQayhmHttJAYpsJaD12ochPSN+IlmiDPuE0IFWp8uAhmoxDax/NIYvdXU6J22QtUxgf9bkTbo4irGYI9sBhXtDNbiQZteGwZ3n3p1S5e3Em3JjdITtNU4/KNNOeSybWUjxI3VJla9lhfzJ8qmWd+TheJmCDhVDXWpfs1m+rkrUcr3XrDKdqn4gGq8SNGzdCCHLIYhctQM+xu50Ocx/l7B4/+rpmDqRvBuu5bjNqzGBwXpjyc+t4GdBfDCX3kUv2oJzTKhQKhWJgRB04XLlyJWPGjOnx+pgxY1i50r9aP2fOHLZvD+1Weccdd3D44Yfz2Wef4fF4uOaaa/jqq69obGxk8eLF0TZnULEq83XyM0K7y13uXMjlxF/MfiBlc2WixBQD11XGYQ/B51hinfD9zvVzDtT2iunxY0G0ZabllCAQ5n4aGgYGHSrjcNAQzXe6zXJDcIp2NA8YTwPR3awk2sXZisPmqmwPHOb3uNntfzvturID0zgMZzJgDez0xy1XEZpgaYhGdtEuO8hKMV0u62/yZMeRUe9vvdYdru0XkzYNVkLNxfbu/C5fyNWAP4BS6ezuF6lumBMJ1vExUIKaS7YZOAzGqv2oMg7jR18LWv3tm4Y0qA66jm+WVWbiQbjAYagF9FDzgXMdJ/FL1yX9aptCoVAoBi9Rp1lMnTqV2267DY/HY77m9Xq57bbbmDrVrxFVVVVFeXno7KOZM2eydu1aDjjgAE488UR2797NySefzLJly5gwIXpdHoWdgQQOrZOCXV36NTo6hjTC7ZLWBDT6SiiM+Y3ku0a343assxljRbSBQ4dwUEhej/3bVOBwUBJNNsMUi47SP43eTazu8T3OKZ5LOMVzCXf7HjNf/6v+PKd4LuEe3+P9am+0aLbAod01NPhmNziwGA2ROtmHw7o4E84cJTAWgTJGiSUjQwRhrUHaVKHK0uZQn6nP/eleJBiK/ctq8FElaykgzzTRCQ6wpCNWuYQM3IBfziFA8LWiJch9VxEfwl2jA69/Zazr1/W0np09qok2WiRIwmUKlosS83HAYCjUeKkWtxQKhSI9iTrj8L777uOEE05g5MiRzJ49G/BnIeq6zquvvgrAhg0b+MlPfhL2GAUFBfziF7/oZ5MVvTEQva352izW6hupod6mS+fFZ04mhwrP6a8zQYxikhjDHmJazI77mbGSh/VnMaSkknJGieExz2aMFdGaowAsdHyHf+uL2Mg2c2LajipVHixEmgH4a++f6KCDSYyhWBRyoDafS7VzeMN4j63Gdh70PcNFzjNt+/zJ9ze+kZtZY2ykEw9OHLTL7nGkXbazUq7hbWMJv/Hdjwsnk8RY9tRmcqfr2ph+Tgg2R7F/7uDyuk489Jdcclgg5qGh4e7HONmXOcpPvb/FI73MYBLFooAjNKUZFStGiRH8VFvIU8Yr7KadEQzjz/qz3KZdneymRYUDjYPEXnjw9Usnt0k2m314jKiMQwsHN1ki00w6zicPIQRHaAfQIBsBgZQypuZog43dss18HBiDpjGBtWwCwDDsCyvNcrfZX8YJu9GhInZolsDhAjGXepoYzjC+lGvx4aOIfP6mv8hljnOj6p91RiOHiL1pki3soJFxYiRLjS85UOxFpsjgO9oRIfcbJSo4VOxDjshmppgE+J2ep4rxNMgmHDiopJz52syBfXCFQqFQDEqiDhzuv//+bNy4kaeeeoq1a9cCcOqpp3LWWWeRl+fPNjrnnHPC7j9x4kTOPvtsvve97zFp0qR+NlsRDmvmTLR6WwUijxrqe7zuwTvkAoeLjE9421gCwI3uy2J23BXGGlPQeqaYzHccR0bsUJtoojVHAbjNdTWrjfWslZvM1zqkyjgcjPT2nT5rvMZGuY1MMviB4zRmaJO42vUD/tT5NwBeN97jIuyBw1eMt3nP+BSAo8SBOIXD77zZdUOeJbJYLdfbxqiP5Qo261VxCRz2lnEYnCUT0G/sDzXsYLH8HOhfxqE18yM441BKyaP683TioZwSznWcpMTmY0iuyOZW11Xc0/kEEsl6tvCS8Ra3kVqBw9VyA+/JzwAoEgVR779WbjL78C3iZzFtWyqQRfc1+AM+o0N20kQz78ulgD84UmDJpk83rKXHGV1/iwaazNd0ERQ4pNXsL/uwR/wbOESx6vRe4/whRzkO5GjPBTTIJqCrMkj6v6totE13il28Kz8xnweybHfJFpDwD9c9Ifcr1gp4PeMR22tfG+tZLTeYz092HMlsbWrEbVEoFApF6hC9BSSQl5fHRRdd1K8TXnzxxTz99NPcdNNN7Lnnnpx99tmcfvrpDB+uUttjwUDK5sKVKA1FgxSbMUoMyy6sQtI3Oy/nGMfBMTt2rOmvI+54Mdq2s8o4HDxEknEopTTLjyaI0Vzu9OuBlVKEGxcevCEF0QO/mXxyeSnjAQCe0l/mAu91AFzoOI07fX9lC3b92x3sRJc6jn7oA/ZGbxmHudIeOGy1lN5FizVjsD8LLB4ZPuOwgSYzG3K2NtX8LhSxQwhBAXk00Qz4+3GqZZg1d0mLgL3sNlLs17uhV6qcRZbtebWss0mIVMlaCkT6Bg53051xmCkCpcrZ5nXcK+xzwBZrf1MGGHHDurgXuHaH0xksFZEHDgPuyYB5TQ8snkUrzROss3ih47SI91UoFApFahFR4PDll1/mmGOOweVy8fLLL/e67QknnNDr+1dccQVXXHEFa9eu5amnnuK+++7jqquu4tBDD+Xss8/m3HPPjbz1ih7YhfqjiwtXEjpANhQNUgKBEydOyiiO3XFTSKssWo3DAOO0UVgl45TG4eDBHgwO/Z1ag1XWPqoJjQpRzia5rYeukTXYGK5fCwS5IqeHD4mOTh2NjGBYlJ+md3rLOAw2MWmmtd/Bos5eAn+RYF3sCc4Srx7iAZ1EkUeOGTj04KWenQyL4bgfb6yBgP5ozgV+uw4clFPSx9bpR1ZQ1n81dbbfW5WsZToTE92shGEtVc7syjjMsQRTfUGLx/ZAtQocxgvNtvjln1SFug5Uy1r2IPIsv2ZLhmkh+dTRYH7H0V5ngucCymVboVAo0peIIksnnXQSNTU1lJWVcdJJJ4XdTgiBruth37cyefJkbrzxRm688UaWLFnCj3/8Y77//e+rwOEAGYg5ysgwE4ahGDjcLncAUEGZrVykv/ikD6dwssRYbr422AWk+xs4DJ54+vBxcufFYYMyB2nzVSZVEgj+NnSpo6Hxe99fzNeCv8tKytnENhrZxXc6f2L+NrzSa+qiWvcJznDMDJORt9XYzghHbAOH1iDck/rLfGysMJ9vkfasRy8+OmQnWSLTNIP6k+4vy+6rb3os+ogZov8ah25ctt+IT/qokd3SEYPVRCkdyBe5toD2732PcLsrdcqVA4GAHLKiztz1SZ95vRvBsJhn/qYCWdgzrLYZ223zocd8/0priYBWogsc2sxRVKAoblg1DgNZ86Hm6U/4XuQIbUHEyQLWhYYSUUidbDCfRxM49BpearrGjgAqkKxQKBTpS0RXGaswcrBI8kD45JNPePrpp3n22Wdpbm7m1FNPjdmxhyoDCRyOERUscT3H4d5zbZpfXumNrlY1xemQndSzk3JKmKfNiMkx53m+w065iwzc7MMezNAmUUz0WlSJpD/mKAAjGU4u2ebNSC45fg2loEyzb+RmGmjiHWMJpziO6pcbqCI6eitVftV4h3O915BFBhMZzZHaAVzuPM+2zYOuG3ELN4/6nmexsdT2nS5gHnO0afzYeZblfN0I4GnXXXxtrKdDdpIh3Fyn/4F6uZOf+H7FZ44XYvMhuzhM25f1GW/xR98TfGp8QbMtKyubeczgK9aZ2ZXFnr1YIPbkt64rOdRzNhJ/vz9OO5QJ2uiw57Eaq/SnVDkgBRGcrTiu8zA0BBMYxRHaAVzgVNfHeJFHtuVxDg/pz/Atbf+UCRYF+nZ/sg1v9N1LC62MZxQ3OmOn55tKWDUOM3BTTR3nOE7if8Zi3jY+5kX5P3PxLx1pNvz9RyAolPkAZFtclYPlaqwZh8pVOX6EKlX+juNIXtD/x8fyC7x4yCOX1+S73OS7j5tcl0d0XGvG4VhRyQ7ZaGZZTxMTIm7fNfrvEAgycJvXwVzLWKpQKBSK9CLqWdATTzzB6aefTkaGvbTD4/Hw97//vc+MwUCJ8jPPPMPGjRs57LDDuP322zn55JPJzVUrVQPFrnEY3dfrEi7mOKaR5c20Bw6HWMZhlazFwKCWBpxRBMzCIaVkm6yhjXaGUUypVsQUbdyg19AKZF5BdBmHI7RhtgwGHT2kDpKQAg9e/78hFpweDAR/p1Wylk48dOJhjKhkjFbJGFFh22aSNhaAIpHf8zsVMFqrYKI2Juz5xmqVjNW6XVt/pt9KPTvxycgy1aMhS2RSSSYVoiy0YYSA1cZ686nEn3nj//37b9J0dNtNcigGGjgMZBxajVE6ZCc7aAT8GUDjtJGD1n09HcizZBwGjCJ20ZLEFkVHoM15/dCbq5K17KadDWxlpjY51k1LCawZh514qJK1DBPFSLr1/2ppSNus3xatDXR/cMqp+Recs60Zh0Hjsy3jUGWYxY1QpcrDRDEefLR1zdEb2QXYdUr7wvr95ZNLPTsB2EGjX04kQqpkjc1YJ5fsmFToKBQKhWJwEnXg8Pvf/z5HH300ZWX2m5iWlpaISo2nTp3K/PnzufjiiznjjDMoL0/PiViyGEjGYYBxYhT1cqf5fKiZo1jFnmNRTryLFnOSN0ubzPPuewd8zETQt41GaIZTanvuQAv5mS/wXMdThl8zNbgUShEfpAz/rVq1im51XsVhjn3Dbnu5cyGX03d5eW/nA7+u6ka20UQzu2WbX5A/xvTW1vmdp7BSrrG9Vh10A2bNVAyFVeMwVhmH1u9ivjZLlfLHmVDldX1974MFKaUZ3O6PMUoq6e7Gi2AziFB6rVWyNm3/Pq22QKC/D+VYgqnBc0BrsChflSrHDRGiVBm6/uZBl1br77gvrOY2wZUe0QTHg4OVqkxZoVAo0puoA4fhBOS3bdtGQUHfpZdr1qxh0qRJ0Z5WESGxCByWikLbpGSoaRzG2mEyXg7N8aa/Gocu4SKTDDq63JStGVn27bqHn6EWnE4WskfxcDfbLE7J4fROY3k+6Pp9dW1SLeuYJMbG5LyREhxoMTB63AxZb5JDYdU47I85ircr8GjNEI/14oWid0LptPX1vQ8WdtNu/s76m3EI/oDRUHXItZYqQ/ffJDhwmK5YKwQCpabZlkWcHuYoUpmjJAItRKky2LM8s8mijfao+qe1VDm4qiCaOW/gnAKBRCq9S4VCoUhzIg4czp07FyEEQggOP/xwnM7uXXVdZ+PGjRx99NF9HkcFDeOLT/a/VDnAJMbyXxZjoCMQnOy5mJliCplBwv/tsoM2OpgpJnGD62LKRWmYI6YOUkq+NNYymgo66GSCCK9tFgmbjCreNT5mPKPoxMM0MT5GLY0//Q0cAoyjkq/ZAPgnvz/z3MrRjoNsmmHWwLaP2JeqKnon8J1ukdv53PiSTbKKYgpw4KAiDpk1ofrQDG0ic4xp7KKVX/ju4veu/2O0GBHzc4ejSBT0WCTxSYORDGcb/kDqm8aHvGV8xCp9HbXUk0UWxzsO43zHKQzXhpmB8WBzEyv/1t/lDeMD1hgbyA3KqpRIxotRzBHTzNc+1b9gXzGHFlqZLMbF+FMrgpnMWPZgGrvZzTdsAVIn47BFtrKnmEEnXkYT2W/HkAb/MF7nI2MZu2Ub4xjZq45nujNSDGdfMYdlchUONDbJbRzVeT475S6yycKJg+u9d/KW/iFXOL+fdn8rq6tyIPhTQqH52iZZhVd6WWR8ikSyRVZTQiFZZFIo8hPd3CFDqFJlsC90TGJMl9yHl7u8j/JT53m9yuDslLsQ0p9ZqGMwWYxnBGXsohknTmqNeh6Wf0cgmCBGc5hjvx7H+NRYSY2+AwcOcsmmEy8jKWeeiI0muEKhUCgGJxFHlgJuysuXL+eoo46y6RG63W7Gjh3LKaecEnLf4uJi1q5dS2lpKUVFRb1e1BobGyNtkiIE1gCMo58Zh4VaPrrhP45EUksDRbKGYRTbttsma9jINpbI5Rxm7MfJjiP73/BBQgNN/EH/KwDjGcWxjkMGdLw3jQ/5me82AI4RB3Ol8/yBNjFh9NccBWBZ5ssUduxJB5104uU+4ynel5/ZAocuS3bWUNPRTBahzFEWGZ9wofcXgL/Pn+k4rkdwK5bns3KN80LyyOEK3y1sNLZynH4o5zpPism5IyE4SNlOJ0vll2bQEOBB/RkAcsg29c6W6auYrI3luxxtCxyGolN6ONl7CeDPztmDqbb3J4oxHKTN5wbXxYB/8eIm/T466GSamMAFzu/G4JMqeuMK5/fNv3kAaxbWYKaZVpbKrwDYQ0ztY2s/9ezkPO/PASgin+87TjH731DkRMe3ONHxLRZ6ruFZ49+00UGG3Eo+OabMSDOtrDe2UmGUc512UZJbHFva6DAf54s8AGZrU8zX6mhgO/X8wncnK+RqBIIFYh4Ha3szTBT3OJ4iNthLlbsDh9ZMeU1oZubftfofONf5HVvQN5hVcj1PGC8CsI/Yg0Mce7PR8TY3e+8D4CnjZd6WSwDYV8wJGTh8wPc0TxuvmM+LyOcsx/FDegxRKBSKoUDEgcNf/epXAIwdO5bTTz+dzMzMPvbo5q677iIvL898PNhNIVIZ3VqqLPoXOAylcaIJ0aOMKYtMM1snXcqZrfpmJaIwpscbnmIZmdaJarQZh+APklhvxINLlq1mEKpUOfEEvtMqS4lySNOTARBJ1qq1NKqaxJYDBgf7WmQr1WGuTzlkmYFDgDbpv9kO9Otw+oZWc5VM3CH/vtbXdtJs/m7SVVNtsCGEoFKUs15uMV/ryxRnsNBs05uL7Ldr1dDMHcIlysEMF8Msz6T/7xK09tEpQ0tvpDJtFjO8gq4y2OBFn2pZa/abAnIpEHmq38QZe6lyN1ZJgnxp/w6qZW2vc9cWa5m59Thdj+toMF8LGHQFE6ynmEmG6gsKhUIxBIi6lnXhQr9Iu8fjoa6uDsMwbO+PHt2zhCOwD8B5550X7SkVUTAQV+UAoW5Wj9IO5FbXVbbXHvb9nct8vwHSJ/Bj1Yk5Ujtg4MezBEJ+4jxrwMdLFv0J9ReIPOpk9yTU6uQHqlQ5GYTKALT2+Xtc17OXNisu5w7Xh5KpI+YOCvbtopVWGTrT7DTHt7lX/5v5fHvXzZOnS6MwbODQcqN2qLYfj7tv77VN1kCuChwmjuDAYUuKlCpb+1dehOYo1t/Zec6TlflOF9c4L+Qe/XEApmoTuMV5JfM99koaTxjN3lSmXXYv8BXiLz0OvlZsNLaZgaSpYkLKmLylMuFKla0Zhy7hskUVq2Qts+jOFg3GuiBineMGxoDbfA/ZjhVK1z74On2M42A1higUCsUQIOrI0rp16zj//PP58MMPba8HLi663nsAwOFwsH379h6uzA0NDZSVlfW5/2DmbM9VuDzRu2rGkk+Nlebj/pqjhLpZfdtY0uM1a6mpR6ZHxuE2y4QoFjpvHxrLYnq8RGLLFutHlnCw8UQDTbZJqDWw7ZXpEXhOJQLf6AfGUvO1WBtx9FWqDPbfRaIDhxlBuq1613+heFv/yPb8df09fu78YXepsgg99ltNNvIiKAG/3/e0+bgiCodLxcAIzrRvThFzFKtDaqRZP9bgdAVlvWw5tCimgAzcdOKhStaSGyIQG87sK5WxVgYU4K8OCh67f+u733ysFjQSQ7hSZas5yia5zbbP4/qLHO04KOwxX9TfNB8HjHAC7JZt7KTZfN5BJ7f6HuI6V3dpvpSSTbLKtl+kCxYKhUKhSG2iDhyed955OJ1OXn31VUaMGBF1QEHK0DeSnZ2duN3JDboNlBbZilMm9zOUUUwBuUwQY3pMCiKlkjIOFHvhwUutrEciaZVtrDTWMMuie2N1xQ123UtVdskW9hF74MbVw20uGn7ovR6BIFfmMIkxjBD+byaVGIg5CsB8bTZ1egP17CSHbCaLsdzr+xuXus4F7KXK4YI1ivixQzZypucKkJKRDGe8GEUZsdWrsnsqh+5DZRRzsLY3Xuntd5Z0f7FmCU5lPE0048FLBx5cOJD4b56yyCATN8UUsIsWJPCN3MzvfY9YSpVDaxxaMzz6ciA9x3MVq4xvKKOEWWIyR1o0QRXx5VTtaLYY1aziGzLJJDNMBulgo9mSyR28WBOKTunhef0/jKGSbJHJvtqcOLYutRBCcKnjHD43VuHDx7vGxz226UwTWRYrmRZX6VzNP2+0jt3jGEkeOUxjAqPEcM5yHJ/gFg5NrBmH1vnYPtpsrnNcxMP6s2xgC25cZJJJO+28YrzF1I6jWJHxim1hbK2xkYu8v2K5/Np8zbrQ8GffP/jEWME4RpJNJrPFVJbJVTxv/IdOr4cbXZexU+7iAs91jGIEEoON+IOWyk1ZoVAohgZR36UtX76cpUuXMnVqZCLcAf74xz8C/onZX/7yF5u5iq7rvPfee1EfM1Kqqqr4+c9/zuuvv05bWxsTJ07k0UcfZa+99gL8wcxf/epX/PnPf6apqYkFCxbwwAMPRO0AnSdycYXJOkkUgYnAQdp8MkVGH1uHOYaWx3L5NS3spoRCGmgC/M561hIIqz5YumgcrmUjH8sVANwlruvXMaSU/FP/D220U0Yx87XZHKTNTzltz4GYo4C/hG5rl8lEO53Uy52UyiIuxR84dAqrxmF69J/BjvU7baKZtwx/Ft0eYirHOg7B0U9d1EgIFzh0CAcbjK1sZTvDZGKF9q2Bw9VdLuABxjOKDOGmQTZRIgoZIcookyW8Id8H/AYT/zU+6FPjsFVaMw7DBw47pYfnjDcAv9j8kY4D2E+b278PpoiabzsP4UzflV3fZzNLja+S3aSIaCWy/hWgWtaxSH4KwCymME2bELe2pSJHOQ7k9/ojAMw2epZ8pqPGoVXXLjCOWa8VI8QwvwM9/rnlQE3jFJFh1Tg0LEkXU7UJfJuDuUV/EPDPv4sooJkWADZRxXa5g7Gi0txns6zmQ/m57fjWhaxFxsf80/gPAP/n+BE3OH9CXudcDGngMpzcyGVsldv5t1wE+K+PoY6jUCgUivQl6sDh9OnTqa+vj/pEd911F+APqjz44IM4HN03qAFX5gcffDDq4/bFzp07WbBgAYceeiivv/46w4YNY926dRQVFZnb3HHHHfzxj3/k8ccfZ9y4cdxwww0cddRRrFq1KioTmCfdvyffnR/zz5AMKkU5q+UGW7ZMsFi8Ow1dca2lkv0tx2mi2RQbn6VNSVktIMOWcRg91r+fQCCRtr+vMkdJLgFzD4DbnFdzqGOfmJ8jklJl8PeVrXI7O2ikQ3b2e9EjWsJlCQJc5jiXi1xn2l6TUpLdOdv8XC2y1Vw0CW+OEllGmNWw4jBtP6UZlQTyyTV13Gqoxyd9tgWOwUg0Ga1g1909VIv9bz7VsZas17CDTDJ6NflKB6y6jaECh3O16fzBdW3C26UIXaoMPWVFsrDfq1RRy1i6A4ctIaQXrJmCVp3pHzpPxyEcVFLOVrab8zbr/G2qGM8GudV/HFWqrFAoFEOCiGbEzc3dmhe3334711xzDbfccguzZs3C5bLfeOXnhw6cbdy4EYBDDz2Uf/3rX7bAXTy5/fbbGTVqFI8++qj52rhx48zHUkruvvturr/+ek488UQAnnjiCcrLy3nxxRc544wzEtLOwUYgcGgN6ASbW7jSMOMwMDHKItMUCe/vMSD1dA2tDLRUeaRlYltALk202P42yhwl8Vi/0za6A4eVIj46Z5H2oUpRbtbGVcs6xotRYbeNJcHmKFbGWLI1AgghyCeXXV2ZHbssQZtwx2qxmVeED+xYAzoVcfo+FL2TK7LZIf2BQx2dWhp6aB8ONlpsGa1938Dbr0+qnwVj/Ztsk7Xkk2MLHKabOYqUEo9lnhcqcNif679i4IQrVQZ6yIpkCneQSUqN7f3mEGZP1oUG6xwsMDerFGW2BT2rBniGyDDPpxyVFQqFYmgQUeCwsLDQVmYppeTwww+3bROpOco777zTj2b2n5dffpmjjjqKU089lUWLFlFZWclPfvITLrzwQsAf0KypqeFb3/qWuU9BQQH77LMPH330UcjAYWdnJ52d3RNJa2A1XQhki2kIM/Os14zDNDG32NU1uaoU5f0qLe6QndTIejQ0DIxBf9PZGwO9cbBmHOaQRRMttLCbRr2JQi1fZRwmAet3upNd5uNEBLj7DBziv2GpkrW2Mqh4EmyOYmW0GBHy9TxyugOH0ho4dHKP73HeMz61bW916s0PE9hplx3UGQ3meKvMB5KD9UbahZNNRhWVjsH9XbTYNA57v4HfLdtokDvNDHDVz3qSKTIopYh6drJRbkUPyvRKt4zDNtluuy64Rc8sbBU4TA7Wv/p/9Q9Y6PgOmvAHEx3CgRuXuWjvkvbbuRqjnsDarEd6aZRNPY5vzzjsnoMFtIYrxXCQK3Di4GTPJVTRHYzMsMzfVKmyQqFQDA0iChzGOti3bds2Xn75ZbZs2YLHY5+E3XnnnTE914YNG3jggQe48sorue666/j000+57LLLcLvdLFy4kJoa/4WwvNw+gS4vLzffC+bWW2/lxhtvjGk7Bxs3OX/KFDGem3z3mhPl4IxDq5FBOmQcdkoP26kjhyzG0D9jlL/pL3Gp7yayyeRQsS+XOM+OcSsTx0A1DisZznCGsYNGckQ2QsJu2qnwHsAX7ldV4DDJ7Kad/ZnLHto0ciNw++0fkZUqjxMjTT3Vaur63iFGhCsvFggmaWNDvpcvcs2P1cQuNDTKKOYd+TGLfZ9TQB5TxXhz+2EUU0Ihe2uzOUo7MOQx79ef5nrfXWSRwZHiAM51fGdAn0vRP6wZoRoal/luZqnjhSS2qG+aZAtuXOSSHdIF2Mr1vrt5WH+WHLI4XhzG0Vp499WhzPvuZ1gnN3GW90paacOF07xGpZs5yizPcbbnKuNw8HC240RyyOZHvht4Sb7FA/rTXGyZU37iep453hMAWMla275b2W4+fkZ/lev07nurkzmCUVqFzVE9VMbh713/xx+5gft9T/Ge8SlllFBKEdPFRP5s/AMnDsYzmgO1vWL7wRUKhUIxKIkocHjwwQfH7IRvvfUWJ5xwAuPHj2f16tXMnDmTTZs2IaVk3rx5MTtPAMMw2GuvvbjlllsAmDt3Ll9++SUPPvggCxf2T0Pq2muv5corrzSfNzc3M2pUYjJkEsVwUUoR+bbV9WCNFOvKdDpoHAY+327abY7R0RAoA2ujg3JRSqlITEl+PLBq6vQr41Aro4YdgD8oaw0h1dGAwzL8+NIkY3WwY70ZlBgUaQWM1XqW5MbjfL1l8A4TxaYJU3CJVTwJFzh04AiZeQN2ncJANlINft1fD15cOHuWbgkYrg0jS4TWzK2SNUgkbXRQoZVRLFLLgT1dyBc5ZlC4E4+trHew0ip2+zOK2EVBHyWDVbIGHZ1W2hirjVRuqGEYp42k2WillTbAvrCVbuYo7RbJClCBw8GEW7jIE9lmqXxz0Bx8ijYOBw70EFIv1rGrJahMucxRSoUos5mhhQocjhDDAP9imXlNE1AiikD375Mh3AnTJFYoFApFcok6OvLoo4+Sm5vLqaeeanv9ueeeo62trc9g3LXXXstVV13FjTfeSF5eHs8//zxlZWV873vf4+ijj462OX0yYsQIpk+fbntt2rRpPP/88wAMH+7XYautrWXEiO7StNraWubMmRPymBkZGWRkpP+FMriMKVgjJd0yxpoj1CLrDatO2U+cZw24TcnEGujrz21DKUVmpkZweVeVrLX1H18a9J9Uw4EjocY9vfUh61iTyGCNO4w5SjbhTbHyLBmHAbLING/Aj3YcxP2uX0fVDutnvsL5/aj2VcSO4HG/iWZaZVscM3IHTrNV47CPjMNAP9PQ+IXzori2K9UJp/+YbhqH4QOHisFAriW4HxwAFEKQRzZNXdIZVqzXlJ3Y5ZTOd5zCbG2q7TWftAYO7beGlzsXcjnd93ZfGeu4TX8IgHma/f5KoVAoFOlL1PWHt956K6WlpT1eLysrM7P6euPrr7/m3HPPBcDpdNLe3k5ubi433XQTt99+e7TN6ZMFCxawZs0a22tr165lzJgxgN8oZfjw4bz11lvm+83NzXz88cfst99+MW9PKhEcOOyRcZhm5ijWz9dfsWdrtlSq60cNNONAE5qpnRe8Ul4la2xZncocJTFE6nIcu/NFhtUhMpGBw3Aah5mEXxgKpedUSpHl/eizuKwBneH0vL4qEkMoDcrqQZ512NKlPezCGTaDNkCgnw2ndNC7RSebUopCLiykk8ahLnU6gj5P4DPbr/+KZGG93gTrjANkkRVyv22WuWiw/EeohXG7xqGjx/tWonVyVygUCkV6EHXgcMuWLTZX4gBjxoxhy5YtIfawk5OTY+oajhgxgvXr15vv1dfXR9ucPrniiitYsmQJt9xyC9988w1PP/00Dz/8MBdffDHgX7H76U9/ym9+8xtefvllVq5cybnnnktFRQUnnXRSzNuTSlSKcmYzmUzcZOJmhfE1B3eexTmeq9lobEu7jENb4LAfN/9fG+vJJ5cxVDCS4f12ZR4sxKJUaX8xl73FbArJw4kTgSCLDF7W37atcKdD/0kF7Fmk8b8djLQPjaCUaUxgLzGTrF6y/WJNGcUcpR3IBEbbxrPMXgIws8VUyinBiQMHGuWUMkZ0a6LmRbnosNz4mnJRyr5iDgeKPXGFKZFWxJ+ZTGJPMdMcww8We/Oh8Xmym9UrgetWPrm9ygF4DA8TxRj2FDOYq7KE+kQIwT5iD8YxklyycXRNl9NJ4zBQig3+4GAR+ab5hipVHhxYs4ibg3TGAfbRZlNJOe6uK5LAH/zNxM23Ohayd8cpfG18gxMHWtf1KpeeGdTWcudAHwhHSxRZzgqFQqFIH6IOHJaVlfHFF1/0eH3FihWUlJT0uf++++7LBx98AMC3v/1tfvazn/Hb3/6W888/n3333Tfa5vTJ/PnzeeGFF3jmmWeYOXMmN998M3fffTff+973zG2uueYaLr30Un74wx8yf/58WltbeeONN8jMTNwN7GCkSBRwpvN4OvCY/z6WX/Cc8TqL5VJ7xqFM/cm0tQwk2pt/gP8Y7/Oi8SabqWYvbWa/XJkHEwM1RwG4znkRn8gvqKYOHz4kknY6WSKX21x9VeAw/ent5tMlXDTRzGfySxYZnySsTVO1CbzkfoAzHMfaAv3uXtyWr3CeRy0N+NDRMailHmtOTrQZGC/qb/Ka8S5L5HJ+5rwg6s+giB0/cp3JSrmGzVRTTS2L5Cf8SX8y2c3qlcBNfF/XrBrRwAdyKUvlV7YguSI8EtjINlppM/VM0ynj0Jo5JoHrnD+2PFeBw8GAtfqlJUTG4d/dd7M+8y2aM5dzlHYAEn8F0Hq28gFL+YI1LJErqKCMax0/YnPmuwzTinscJ1D1EVymHApbxmE/q3MUCoVCkXpEPXs888wzueyyy8jLy+Ogg/yOfIsWLeLyyy/njDPO6HP/O++8k9ZW/0XnxhtvpLW1lWeffZZJkybF3FE5wHHHHcdxxx0X9n0hBDfddBM33XRTXM6fylRYym2tNxtVstaWGZMOgZ/mAWYcWkssh3eJSqcyAzVHgfA6UQBNslt3R2kcJoZEl59FUxpdIcrYLnewnR14pTehmXf5IpcsS3myo5dAuVv4szmsJX45lnKxaDMwrLqovf1eFIkhjxwaaOoa82QPbd/BRuAmvq9rllVGQ/WzyKgU5T30FjxpZI7SEpTBZpVokFIFDgcDtlLlEBmHVnr7XeeI7F6DfIE5WF9lyv52DFwPXKFQKBSpR9SBw5tvvplNmzZx+OGH43T6dzcMg3PPPTcijcPx48ebj3NycnjwwQejbYIigVh1+vbX5vGc8ToQCBxaS5VTP+NwoJMha+Dwckf/HLsHEwM1RwH/ZLWAPHaFEO9ukt2vpUPgOfUYPKXK4B9rlsqvkEhqqGcUI3rdPpZc7lxIjbGDu4zHgN4DhwCZZNoChxnCZf5gos3ASCdd1HQgT+TSIJvMnhus7TuY6JQeMwOur2uW9fpk1RRVhGdkiN9jOug5BwjWzMu2uL4nWtZCEZoM4caNCw/ekBmHVnr7XV/qOIfznd8N+353xmHfgUO7HrgqVVYoFIqhQtSBQ7fbzbPPPsvNN9/MihUryMrKYtasWabZiCK9qKR74rxSdpvMvKS/SblFxD8dAj8tAyy/sIrop0NGR6xKlcooDhk4/MhYZj72ytTvP6lAosvPogscdt/0VMs6RonEBQ4BskR31mBfpfkZQaYJS4wV5uNoMw6rpV+4PpuslNdFTQcCmXuBvttMK1JK/qg/AfiDzIOFaG7gA/0MVIA6UkL9nVrYzT2+xwdVP+gP9/ge53n9P7bX7vM9yb/0/wJQL3cmo1mKEOSTSz072SprOMVzie29g7T5Zl+0ztd7HKOPOW1UpcpSmaMoFArFUKTfQjeTJ09m0qRJAH1quRUVFUWs99bY2NjfJiniQKUo50fa6bxhvE+zbOXHjrP4yljLV/IbHtdfMLdLh1X4VtnGXDGdPHIYRk8NmN74rudSssliGhMYLSrCurWmErEKMl3j/CGL9E95Xb5LE80IBG7cbGW7uY2uXJUTQqJdla301YdOdRzNBmMLrbRxt+8xnnHflaCW+cm2OSn33taTtCN4yPg7AFlkUkQ+JRQyQYxmpjY54nM+pb9MAXkcIvZhgTYv5XVR04FA5l7gt2JgMK/zJKqpw42LedoMDtT2SmYTTdpkO/uIPZBIxlIZdrtm2cpzvjcYzQjyyGVvMTuBrUxdDtX25WTtSN4w3qMTL+WUkIGbP/v+QSYZ/MjZtzzPYOOn3t9SLxtZL7fSITvNbDbwZ7CaWYgSpjKeqWI8pzmOSWKLFX9wXYsA3tDfZ6v0z5vaZAdV1LDa2EAeOZzv/C4LtHlMZhxr2djjGH0F+PoqVf6J51c8a/ybNjrQEJRQSCXlUV3vFAqFQpHa9Ctw+MQTT/C73/2OdevWAf4g4tVXX80555wTcvu777673w1UJBe3cDFTm8xDxrMAzBKTaRA7eU9+RgNN5nbpEDjcJKtYJlcBUCIKI97PJ33821iEgcFIyjnMEXuTn2QQC3MUgHOcJ3KEYwFPdr5ovuajnTbazefpkLGaagw2jcP9tXl8wxbWyy3ky8RnMWRa3Jz7+tsc5zjUDBy208FoUYFbuDhQ24sRUeibLje+5mPpz1a83vGTqNusiD35IqeHrt3XrDcfbzC2DprAoQev2X8mivBVH1Wylk/xm9rNFdMZr41KSPtSnWnaBNpop40OAKrpztr8TH7Jj5LVsAHwuvEem2UVuWQxToy2GdvlipzuzDQBpRSxnzaX2drUJLVWAXC649sAbJc72GX4qzcMDGpkPQCfy684n+8yQRsNQvYYvwDy+shI1qVf0zpc4PAz+SW7u+ZsOpIGmhgnRqrsZYVCoRhCRB04vPPOO7nhhhu45JJLWLBgAQAffPABF110EfX19VxxxRU99lm4MLVLOoY61olBlazlPMcp/KNL6zBAOpSaWk0KopkM1VBvGonM02akfAlTgFiYowQooxiBCBtIUuYoiUESC+XKaM4X3dkqRTnr5RaaaaVF7u7zZieWZFqyhPsKd1rLvjQ0XnY/2K9sQZvuXC9lZorE0ZdWYF86Y4nEumBn1RwOZptFR/Nb2v5xbVO6EU43zqpNmkro0p/dn08e5zhO5BrfHeZ7d7iuYR9tj2Q1TdEHlzsXcjn++WWNrGds5yGA/TqSG0Yqo6+Mw0DVhyOsxmHP69sR2gF9tFihUCgU6UTUgcM//elPPPDAA5x77rnmayeccAIzZszg17/+dcjAYTDr16/n0UcfZf369dxzzz2UlZXx+uuvM3r0aGbMmBFtkxRxxqY9Rl1IwfB0MEcJaEDlkROVxmG6is7HMsSkCY1cssMaDaiMw8ST6KLYSILP1uBZtaxlihjfy9axxY01cGj0sqX9JiybzH6XGKebLmo60JdWYAttCWpJ31jHTTfhXcit+oYj0+galQiCFxHduPHgsf1NU4lAgEhD62GOkmWTa1AMZsooxokTHz5bXwynsZvXp8ZhV6ly2AWInstpKttQoVAohhZRBw63b9/O/vv3XLHef//92b59e4g97CxatIhjjjmGBQsW8N577/Hb3/6WsrIyVqxYwSOPPMI///nPaJukiDOByYELJ81GKxVO/3MnDvSuG+x1chMnd17MAm0elzsX9jL5GJxIKfHiRUPrczK0S7YgkTzm+xfvy8/YIRvNCVw6TaSkjK2RRg5ZtsChhsBAIhD8R3+fU+QlYfeVUrJAm8cVzu+jif6XTQ91Ep9xGJ2mYuD3U0geVbKOKSQucJgpum+a+yrNtwZpssnqZcvwNMlmPPhw4KCEgrTQRU0HAkFhBw50dJw4EQhzcaxFDtKMw16mc/U0kk0WbbSn1TUqEVgXMxxoFJJHPTtpkE09jCoiYX8xj4ucZ5AjsmPZzD5plq14pc8MNjuFkxZpX8jLssg1KAY3mtCooIxt1FArG8y+uFpuCLn9g56n+ZX70rDXmb5clY0Q1/JQSQQKhUKhSF+ivgOfOHEi//jHP3q8/uyzz5pmKb3xf//3f/zmN7/hf//7H2539wXssMMOY8mSJdE2R5EAimUBIxiGFx+r2UCuyGacGIkPnbFUcp3jIkoo4t9yEb/Q7+I5441kNzlqmmhmk6xCIpnM2F63fUj/O8M79+d6/W42GVVk4GY/MYertR/wI0fqiaWHI9YOvEszXuRs7UQcXcNO4PgzmMhoUUGzbA35b5mxyuxbn8uvBtyOoUxiw4bR96ExopJMMmiixVZemQhO0Y5kV8bntGesZIn7uV63HSdGsjPjM5rdn7Ms46V+ne9e/Uk+l1+RgYt7nL/s1zEUsadSDCcDt5mZ5cNny6gPztJKJtbAYW8ZhxvkNtpoJ48cVRIfJd91HMU8pgOgY3CG9m2aMz7nh47Tw16zQv2rMxr4t7GIX+h3cpE38b/3X3j/QKXnAOrxuyU7QmQcWhdPFIOfDzOepTnjcy5wfNfsZxlhxoE75aNc6/t92GP1FTgMaCCC/1r+M+18DtH2GUDrFQqFQpFqRJ0WduONN3L66afz3nvvmRqHixcv5q233goZUAxm5cqVPP300z1eLysro76+PtrmKBKApmn+CaXsLssNrExXU0ceOWSJTDMq0Sk9yWpqvwl8LomkQMuPaFsfPgpFnlnWXKoVJVSTLd7EyhwlQIkoZJgoMrNUA0c3hNFraXiG7F5gUCXNsSMWweBYn69clNBBJ2DXHE0EDuEw9Z3C6zz50YTmHwMFlNC/TMHAONJGB+O08I64isRSJPLpJPw1rFmGlltIBlZtYVcvgcOAHl8Lu6nQVEl8NOSIbP/1qeuC1UQLTuEkX+RGJWmSSYaZxd8cRrIjnrQGldg7cfTInu1v9rQiOZSKIgBbX8wlO6xIb3vXtTUU3a7KoW8LDaxjjZMyrUQFmhUKhWKIEXHg8Msvv2TmzJmccsopfPzxx9x11128+OKLAEybNo1PPvmEuXPn9nmcwsJCtm/fzrhx42yvL1u2jMpKdfM0WKlkOBvZRhPN7JZtVIpyVslv6MTDOc6TKNYL+aHvegA8vdx0DVaiMSmw6sk84f5d2pZ+xdIcJUCov9UwUcLz7nvD7vML7538Qf8roAKHAyXa0uFEn8/aP6z6f+mIXRs1PceQVKSv8X8wmaN4IyxVDlyzXDgZRnHc25VuVIrhZjBmB42A3agiEjzSS36nf44cXCKcCFpku+25A0ePAKbSOExNrH3xMd+/uMgXOqO1TXaEPUZfGYcey9wrm6y0MQFUKBQKReREHDicPXs28+fP5wc/+AFnnHEGTz75ZL9OeMYZZ/Dzn/+c5557DiEEhmGwePFirrrqKpvhimJwUSnKzYlztawLclqusemmdKagUcq2KG7iA9kbDhwMpzSu7Uom8QgxWc1jAi7LfWmGWbO/fF2OkIqBk4iMw2hLla39o2qIBA7duCilKMmtUQToyzxkUGUcWkuVRW8Zh/6+ViHKlUZsPxgtRpiPG2RTv47hFi4yyaCDzqQEnxuD2u1Aozno2pupAocpT29ZsB30P3BonddrCbdWUygUCsVgIOIZ5KJFi5gxYwY/+9nPGDFiBOeddx7vv/9+1Ce85ZZbmDp1KqNGjaK1tZXp06dz0EEHsf/++3P99ddHfTxFYhgvRrGnmMEhYm/qaWK+mM3+Yi6Hin15XX/PpqvSW5nXYKVV7maBmMeeYobtJiGYP/n+hhcfk8RYTtAOwyF6L2lMZWKtcQgwUYxmfzGX8YwyJ5/r5BYu9t7Ig76eEgZgz6TxqYzDAZHojEMrkfShMoqZK6axn5gT1h0y1VlsfM7Dvr/jwsksMZkTtW/125VZEXsqRBmzmWq7puWRQzGF7CvmUCGGJbF1duzmKKEDh//1fcAcMY0DxJ4cJvZNVNPSivGMNh+vkt8wq+NYjuv8Ia/ob/e57599z3Kp52Z+4LmOnK5S4GSUKpdqReRbxlQnTkpFEYXkk0cOB4u9VVA5DRgrKjlKHEgZJWTgts2fPjNW8g/fv3vsI6U0NV3DlSp7u+b1DjTmi1lxaLlCoVAoBjsRZxweeOCBHHjggfzpT3/iH//4B4899hgHH3wwEydO5IILLmDhwoUMH977Sr2UkpqaGv74xz/yy1/+kpUrV9La2srcuXMjMlZRJI8skcHSLmOKH8t6LnB+l1t8D1BFLav0dTyo3WRu60nBjMNVfMNi+TkAI8LcGHbITq723Q74y9meybgrYe1LBvEIHM7SpjBFG8+H+jLztRZaeUR/jjFUcJHzrB77uCwO3apUeWDE4zuN9HyRoAmNetnEVrazTm6OU6uSy0v6m/xRfwKAc7QT+bP7t0lukcJKlshkC1W2DJsWdlNIHkvkcmoYmcTW2bGOh+HMUZ40XuYt+READ7huTEi70o1xWiVdcRVaaWMdm1knN2P4DI53HNbrvrf5Hjb1Wkfg15dMtDO3lJI3jPdsczOBYLGxlCaaAdgotyW0TYr4ME+bwUsZD3Cz9z4A1sgN/NP4DwBV1HG3/jinOb9t2ycQNITw+r6BUuUJYgwvZTwYj6YrFAqFYpAT9fJiTk4O3//+91m0aBFr167l1FNP5b777mP06NGccMIJve4rpWTixIls27aNUaNG8e1vf5vTTjtNBQ1TgHy6yx9aulbLAyW9tTTYzDNS0RzFqltYGaZUzbpNsSiMd5MGARZzlBhmIoQrBe8Ik6nqVBmHKUt/XJwD/aOenXTI8GLuqYpVu3GEUEYVg5GSEKXj+eQB/uz0wUIkrsrW61aF6m/9YnQY86JoKw4yuoyUmtltGqUkgnp29ljQ9eFjZ1fQEJTOaroRMEwZJSpsrztC3Pb5LIFDZ5g+3YZfI1PpYCoUCsXQZUDRgIkTJ3Lddddx/fXXk5eXx2uvvdb7yTSNSZMm0dDQMJDTKpKA1S04IOxtnWhaxb5T2RwlkwyKKQi9jcXl9VBtn4S0K5kYccpOC2c+0BxG98laaqMyDgdGojMOrUR6vpE2g5S6XrZMTax6qtc5L0piSxThyBc9y+QLhT9wGG6cSgZWV+VwJYZV+DV5i8gnR2QnpF3pxogBaBnrFpOxQNDGh890j08EofRig88/UgUO04rLnQu53Lmwx/caqgrAFjgMkXGoS92ce6nAoUKhUAxd+h04fO+99zjvvPMYPnw4V199NSeffDKLFy/uc7/bbruNq6++mi+//LK/p1YkAWvGYeDGyRo43EWL+TgVNQ67xePLwuqNDTUXVHuQKXaEMx9op6OHWDuowGEq0x9NxQrLb+se/fFYNmdQsFpuAKCUIjKFugkbjGSEuDkOLI558PIH71+5x5f8vtmXOYqU0maMougfLuEKmakVKPG8x/c4p3gusf0L9A9vGOmWRAagQwUO62Sj7bnqH+lJ8PdqDRJ2v9b7AkS7JcicKTJj2DqFQqFQpBIRaxwCVFdX89hjj/HYY4/xzTffsP/++/PHP/6R0047jZycyITszz33XNra2thjjz1wu91kZWXZ3m9sbAyzpyKZ5FlLlbtuoM50HMdauYmdchd/018y3081V+VOw8MYKnEKjQlidMhtpJTc5X2UCsrII5ejtQMT3MrEE6/stD20qdzt/AW3+x6mg0586GholIliqowa8h0TbdtbV8BDTXoVkZNMjcNIz3eG41jyyeV+/Sn+rP+Dv+uvMVWMZ1HGU/FqZkK4z/ckz+v/pZgC9hVzOMd5YrKbpAjDdc6L+Ni3ghflm+xkF43sopru7Nff6g9QQC7TxASOdByQtHZaF1JcIaZz9XInY6gkX+QwV0xPZNPSjgPEXmyU29hOnfl3f8f4mHEdh1Emis3F1U7pYSPbWGmsZadsNiU4MnAzWYxhJMNpopnbfQ9zp+u6hLS9VtYzA/919Su+AWAXzZRSTAcdVFI+JBZDhyJ7a7PJJ9cMVIeqCOor47BR7mICoykS+cwRU+PXWIVCoVAMaiIOHB5zzDG8+eablJaWcu6553L++eczZcqUqE949913R72PIvlYS7cCE5A9tZlsllWskRtt5QuppnHYInbzBatBQrkIXZK0k2ZWsBqASSKbKdr4RDYxKcQryFQmSvie4wR+6vObQhSSTxPN7JItVLODaQQHDi0ZhzK1gtKDjf5oDsaKSPvQPG0Gm2U1jfouwJ/NvFR+iSGNlHb9XCnX8mGXAdPx2mGc4jgqyS1ShONIxwEc6TiAG7iY8zw/5++GXYaljXbaaGezrEpSC/30pXFYTR3r2AQSZmvqhn8gFIhctshq22sSodBRQgAAaWNJREFUyXbq2C3bOFDbC/BXXOzoyuZbZnzFbtrM11tp5335GQBZRuIytzbLajNg2N12qMffzjVsNPUXFelFpSinTJSY1Rwtsq3HNn0FDmupZz1bQMKezIxfYxUKhUIxqIk4cOhyufjnP//Jcccdh8MRnSC0lYULF/Z7X0XysJUqW8pJK0U5a+RGWylDqpUqWz+PNbPSSpWsMR/vr82Ne5sGA9bAoTYwOdQe5IkccxXcmikTqqTKZSnBU+YosWTwuSoHCM5+8aGzg0bKB6A1lmysffsa54VJbIkiGi5wnsrfPaH1m5tJrlFKX4FD63VLZZQNDKtpmhuX7W8/RYzjefe9ABjSoLBzTzx42Wr5+wNsZwfDKGYHjSGvdfEiknNlKu26tMW6sN8SYszqq1RZjSMKhUKhgCgChy+//HI826EY5NjMUSwTj4oQRhepZo5i/TyhRPHBPvEO9ZnTkXiZowSoEGU0y1abPqbVgCaAKlWOHfHSrYzsfJGfMZT7a5WsDZsRnAoExpAM3GENmBSDjwrCOxGH0mRNJH2VKtuvW8pReSBYAyZa0FhmHa80oTFClLFZVlEddD2rkrVMFmPZIRvZzg50qUftzNwfQl1Xg8lSeqtpSxbd2a3NtCKltGl5+2T3vMoRIuPQNo4oZ3aFQqEYskSlcagYuuSTiwMHbpwsNb7kl957+JnzfCpFOU4clFJMDTuA7ozDermT3bTzvO8NFneV6FnxSR2Jwb7aHK5z/Tihn8eKVaQ8P0TGYZ1soErWUUAeLbQOmRXXeAeZKkU5m2QVheRTww4KyWOzXsUWx3ZGixHmdsocJT4MVldlgOFBmYWVlFMvd8a6SQmjRtbjxkU+uZSKorAGTIrBR2C8zySjhxNtjbGDdcYmJmljk9Ay8FikG1whMg530kwZJeygMawplSIyKihDICinlBbLnEEgehhQVFJOLfVk4CaXbHbTjkAwnFIKyCOLTLLJ4sTOH7O/Yy4XOk9nmCiOS7sD42YmGejoYa+h2WSFfF2R+uSJHBzSgY6OAwcndv4Yl+akTbajSY022nHiwImTHGHvB02ymVbZTh45tLKbStQ4olAoFEOV1BWMUiSUTDJozVjOQWJvaqjnDv3PvG68xygxAh+6GTSEbnOUx/R/MaXzSK7T72SjsY1m2Wr794H8jP/KxdyiP5SsjwVAi7VUWfQMHN7ve5qLfb9mFy2cJo7lXMdJCWxd8oi3kcYYKumgkxp2IBA00cJj8l8c2XmebTsVOIwd/S0dTvT5nMLJzozPuMvpNw+oopbtckcfew1e7vY9ynL5Na20cb/z18lujiIKMkUGlZT3CBoCPC5fYH/P6UlolR9riaFL9FwHXic3U0cDAsEIhiWyaWlHkShAIqlhB5c5zmVnxmfszPiMtowvuNX5M9u2Y4X/2lZLA620MY8ZaGhsZBt5ZNOY8SlnayfwJh9yk34fP/b+Km7t/pv+Iu8YS+igk8PY13x9mpjAfswxn6tS5fTlNfefOUM7FvC7fDeyi2bZymfyS97iIz5iOXnk8jPH+Tzousm27899v+NX+j20sJsLxKkcqO2ZjI+gUCgUikGAChwqIkIIgRCCUlFkvlYla6kQPW9GAuYo1vKGQpFPvsi1/QuUREiMOLe+d6w6Vfn0LFW2lvmM0Epxi56ZHelIPDUOwW5EYz1Xe9ANulVzR2kcDozEuyp3E+3ZskQmxaLQfG7N8kk1AmOhgcEoSzatIjWwXveCaWE3HbJnUDERRKpxaGAwSlP9biAUi255gRZ2kyUyyRKZCCHIDCrzLRcltucjxDCMrnlODfUIIRhm6VPNcRzbrPOwUq37nG5cOC3B5iyROLMWReKxjmFO4SBf5KJbpF8MDPJDLJy3W8a2Iq3A1mcUCoVCMbRQgUNFVPzAear5uErW9CjRgW6NQ6ug8uPu23nefa/t3xQxDrBr6SUDa8ZhbqjAoeVzDCVTA8MS0I2XxmEAqwZPa5B4ty3jUKrAYawYzKXKAayB/GQbUQyEbUojKqXp6ztLpNGFlUg1DrPJooC8hLUrHbEZxPUR6AueF53jPNGUXwh8Jz9zXmAuirXI+I1t1r55ruM75uPpYiLTtAnm8yyVcZjWWMewi5xn8k/Xn7Au52WTyeXOnuaVHXSYj3/sPCuubVQoFArF4EYFDhVRYXUWrJK1IQXDO7FnHGpoPTTLAEvGocSQycs6tGUchlhxtd58FZKfsHYlG3u2WOyDTCMtfcdhGYp200677J6sOlWpcsxIlVLlAFbpgJYkG1EMhMAYUkKhyuxJQfrStY3EfCIe9J1x6G9XpShXupoDxGYQ10egL7i/VIpy87VaGvBKL0IIc2EkURmHJRSajx04bNn92ahxKZ2x9skqWUsTzbTRbr5WQz1ei2ZqANVHFAqFQhFA5ZwromIEpZyoHc4q4xu2yO28pr/LvmIOThxslzsoE8U00swpnkvowMN+Yg7jxWhcIcp7HUFuue4kxbE1KThA7ImBQaElK0NKyU2++3DhZBoT2N8xb0jdfMXbHGWSGMvhYj82y2oaaKKAPDx4mMZEqmQdE8VowF9WE0BXrsoDIvGlygM7X6pnHOpS5ybffeSJbKYzkYO0+clukqIfjBUj2UfswUq5hlKK2UUzeeTSShvDKeUyz80MF8MoFgWc4TiOExyHxb1NjXIXu2Ub4xlFpnBTElRO/YLvv+yrzcEnfczWpsa9PelONBmHU8Q49hdz2SyrcONmtKhgrjYdl+HE0TVXGi0qyBO5NMpdcVsUud/3FB10MowiRooRaKJ7juUQGrtlm/k8UwWF0pqRDGcfsQeNsolF+ics179mImPYSTO5ZDFBjGa5/jV36o+iCYFDOskQLpYZq8xjZKk+olAoFEMaFThURIVLuHjWfQ+FHfPokB7+oP8VHz42ym0Ukc8Z2rG8Z3xKs2ylmAIO0uZzg+vikMdyCoeZ1ubDFzJjIhFso4YP5FIAckS2+XoTzdyqPwjAOEZynyt+AuaDkXgHmSZqY5iijeMt/SMATte+zbPGv/mcr6iSNUzEHzhU5ijxIdEh8P70oTzrzXoKZhzW0sDt+sMATGIsd7t+keQWKfpDDll8LFcA8CvXJXzPcQIAL+r/4wzvFQCslhtA+jP/EhE4rJI1PGv8G4A5TGNEkN7wc8YbvGl8CMCDjpvj3p50J5fuuUFfGYcztEm8nfE3bvbeB0CZKMGFkw/lMsCfoTqaCkvGYXwWRX7pu4dW2sgik29rB9s0gp04bdlkWUKVKqczFVq5OYatk5sRCBaIeeSQxQq5ms2ymu/Ko3lB/g8kZOA29crBf/1O1hxdoVAoFIMDVaqs6BeB1ekW2UoF/hKInTSTibuHCUo4nEEZh8kinDmKtcTHatIwVIi3OQrYS9+tk1Jr6Z8KHMYOe+FwYjMO+4OtPDAFzVFsZYJDcAxJF8KVqYbS+A3lvhwP+jT1UrqaMUUTmhk8jLS02DoHqggqFYVuTeUOOvGEKBMdCLrUacWfUZjRNS/TLbrFDjTaLfp1KpssvRlBqW3xLp9cCkQeeZaxYzs7zMd6kGlhFplDquJGoVAoFD1RGYeKflEpymmSzTSz26+d0hUfOMlxBFdrkRmI2N1ykxc4tJYJWTXVrDdeR2gLEtqmwUC8zVEgvHaY9W+vXJXjQyJuAaQcWNaq9aamOY4GAvHCaqx0jOOgJLZEMRDClamGGr/iqVdnxXrdOtixT4/3t3X1vTKKcYeQClFET35XeXqkZiZWs4lgjTno0lTuGiJb2G3TIBwogaAhwF7aTC53LuRTY6X5mhOHzTFXmaOkNy7hooxiamkAYJoYz/Pue7nJey8f6P6Km22W61XwXEsFlhUKhUKhAoeKfhG4oW+jnQq6S6T+6Psbf3LfENEx7BmHyQsIWW/0rDeI1uBVX+L46Ui8zVHA/nf9Qq4xH//F9xxuXFzuXKgyDmOI1YQoFVyVM4TbXzKFh41yaxxaFV+qZZ35eCiOIelCuJL54ZTiwGHTXl1lrOce3+MhHUpjSbjrFvizzWqoB+xZ3YqBkSdyQPqDfNFi/f2/qr/D5c6FtkzRsz1XkR3COOkgbX6/+lKo/mHtp35zFH/GoRNnSB1qRXoxzBI4HNGVhWytCrJmHAbjVreLCoVCMeRRpcqKfmGdbJzkOIJXXA8xlfG8ZrzLwZ3fi+gYg6VUOZA9IBDkkAXAH3x/5V7fk4xkOEeLAznScUDS2pcs4m2OAjBLTOaHjtMZwTA2ySrucl7HgWJPdrKL230Ps8JYbQ8cShU4HAgGiXUvj4WL842Oy6igjA48PKW/HINWJY522cF0JjBLTKE8hLO8IjXIt5XMdweNHMLB3113cbI4kv3EXPYXcwH4ve+RuLfJmoGbF1SqXCPrqWAYs5jMfDEr7m0ZKuwj9mCWmEwu2Tb9t0gIXOuKKeR9+RnFHfNZa2zkv+5HuUD7Lh48NMtW898aYyPvG59xt+9xm0FFpFizIgOl9tZ5lhMHZRQzg4nMEdOiPr4i9bjdeTV/dv6Wvzh/y08d5wH2RZGdxi6KKQi5yGedrysUCoViaKKWkBT9wnqjMkIrY19RQbO3lWrqqJMN6FLHIXqfaFhLUJPplhtYmc8l23QdXCM3sIpvAPiudhRjREXS2pcsEuHAWyjyKSDPXOmeKMaQKTLNrJ4tsprpYqK5fTIDzOlAIrJIw52vv0zRxlGt+zP31htbSKX7l2rqWMV6kFAg8vreQTEoye/FpOd4x2Fs6MqGfUV/h5qusaxVtpFrMduKNVbNT6sGI/j73VZq2EoN+4t5cWvDUKOVNlbKtYA/m3icGBnxvoFrXSNNgL9ao45GDtLms0xbRY1Rb9t+u6yjmVaaaaVR7oq6rdaMw8B8TZf2jMP1bGU9WyiWBVEfX5F6HO7cv8dreZYxajs7aCR0X4uXzrVCoVAoUgcVOFT0C7tYfCsImKNNo9qow4ePOhoZwbBejuCfuAbwST3xNq9dBFbmw5UpX+P8YcLbNBhIhDkKwEhLKV2VrOW72tH8z1hsPt9D686GUBqHA8OwBF5ToVQZgrTBLKY5qUBfBhaK1MCqfRuqTDVQSvq5scqMllfLWiaLcXFrkzXjMLhU2aqtqUrkY0fwWDSOyAOHYL/WAeymHfD3n8uxlyPf4nuQm3z3AuAhuuxGCMo4NEuVreYoDjODX7nlDl2sY8fOMEFDhUKhUChAlSor+ol1shG4kbJOqqtl3zf41tKHwZBxaA2GBrTJssikiPyktCvZGAM0togUW7+hroeIvF3jMLbOk0MNe8ZhIs438JxDq0abVTMwFQhnvKRILaxB39707Ubaxq749tVWepaidp97aOvzxoto5zi97Q/+vuQN46ZsDeZ19idwaF206Oofdo1DzbyeOlUOwZDFel2yGuoEY8SkfkChUCgUqYyaLSj6RQmFlFFMBhk0yWbAPykuJI8ySvjSWMee2sxej+EUyTdH0Q2dUlFErsxheFeG5GZZTQF5VFBGnshBiCSlQiaZRJQqg7/fZJJBGSXslm2M1MrJwE02mbxvfMaF8jQqKKONDpYZqzjFc0nYY+lSx4uPedoMrnFe2OOGeqhjNUdJROgwFn2omALyyCGPHDQ5uH+LutT50FjGNllDm+ywBXCCs8IUqUMWmZRQiBsXLhm+Vr5SlFNAHi6cPOB7mkNDuB3HCo/0Ukk57XRQgL0Mvlm2MpZK6migEmWOEiuGU0o2WQynNGJnZSuVohwnTnO+M45KPjdWsY9jjx7bZuA2H3eGWDDbLKtZp2/iOf11vPg4x3Eihzr3Nd9vlx2MpoI22s3+YQ0cOoUTT9dxlev20KWQPEooxIsPL16cOHssjjhw2HTNFQqFQjE0SfuMw1//+tcIIWz/pk6dar7f0dHBxRdfTElJCbm5uZxyyinU1qZWOVwyKBB51NHIVrazQ+4E4BrHhRSKAtayiWt9v+/zGNZV7mRp19WJRjbJKmrYQY7wG6Pc6/sbS+RyqqnjXuevktKuwUAizFGALuOLTrZQzVdyHVPEeH7sOIudNLNELmcTVWzIfJuLHd9jrBhpE5AP/rdabuAt+RG/0//Cm8aHcWx1apJ4jcOBBw6FEJSJEqqpY4lcEaumxYXtcgdHeM/j+77/42L913wqV5rvBYyXFKmHEAIXTrazg6/lhrDbXeQ4k7Giknp28qp8JyhQH1s2UUUVtTSyixJRaHvva7mBTVTRRgeVlMWtDUONYaKYNtrZwFY2yaqo958jptGSsYwrxPcB2MA2btLvDblthjXjMIQRy32+JznO90Mely/wtHyFU32X2d5vZBdbqKaenabWpq9HxqE/gOlSOQRDlhnaJJZlvEQzrbTTSQu7uZDTaM9YyW73Cv//M1ewNOOFZDdVoVAoFEkm7QOHADNmzGD79u3mvw8++MB874orruCVV17hueeeY9GiRVRXV3PyyScnsbWpQYXovhkJ6I5pQqOi6yalkV20y45ejzEYXJWtWlCBz2TNEgrWJBpKJCrjcJgoNm9cqmQtQoge5crgd/Lu618g+AvQTu/9byhidVVOdO7eQPpQYFzZRQutMnw5VbKpJnR5ah45pvGSIjUJXB+2swNfGHd3TWjmdgYGO2iMW3sC1y43LkopCnqv+xpWoanAYaywGhz1VrIejsDidblWYrvmhcJtyzjsGTgM3m837bZ+aTVHyTc1Dq2uypaMQ6VxOKQppQjNcn0e5RyBEAKH5hiyFTcKhUKh6MmQWGZ0Op0MH94zALRr1y4eeeQRnn76aQ477DAAHn30UaZNm8aSJUvYd999e+yj8BNO66dSlFvE4euYIEaHPYY9cJicUmWrZlrgM1k/jzVAOtRIlDmK/2a7nM2yyvw+QgUOQwnIB/Oo73l+7PNnibb1EbgeisgEqxzGQuMQgseV+JpODIRwumeqTDn1qRTD+VyuwsCglgYqCa0dGDx2lYvSuLQnMFZWiPIeQenqrsW8IvLJiaOz81CjN3ftaPip6zz+YjzHN3JzWN3WDNEdOAxljhIcOJRIW78Mpa+qMg4VodCERgH5pjmK0kVVKBQKRSiGRArEunXrqKioYPz48Xzve99jy5YtACxduhSv18u3vvUtc9upU6cyevRoPvroo2Q1NyWoDHLCDWAVh99myeYLxWAoVbaLyPs/07au18ootk3ehxqJyjgEzJudBppolx32jNYoROizRKb5uENlHPYgUeXnoc/X/zNaM3+39cOUIFGE66tKazP1CbWYEYqKCLcbCG2yncbATX5QAFNKaZ5XBQBiS1/u2tEQ+G6aaQ0ZhMyIMuMw+LVQju7WjENNauZzlXGoyCLDfDyM4iS2RKFQKBSDlbRfZtxnn3147LHHmDJlCtu3b+fGG2/kwAMP5Msvv6Smpga3201hYaFtn/Lycmpqwge9Ojs76ezsNJ83NzfHq/mDljKKOV4cxmq5nk1GFZ8ZK9lLm8UB2l5UyTpWyNXc6LuX34lrwpqkDIZS5d2ynQPFXhgYVMhhXOm9hXyRyyw5maMcByalTYMFW9AnzuUq87TpaIYG+G96x4mRHKsdwlpjI+/rn7LRsY1x2sg+j2Od/LbT2cuWQxMjgcHgYAZytgXaPFbI1RgY/MT7KybqY9hsVLGXNpOv5QbyyeW/GY9GdKyvjfU8ob/AKuMb1sutjBEVnOv8Dqc7vh1Vm57WX+F9fSmfyZXkkc3dzl/wkbGcMkpootksAxzFCPYRPc0PFKnFIdre7JItLJdfc7X3du5wXcM+Ws/vdTyjWCDmoaFxu/dhHtL/jgsnL7jvj1lb6mQDh4n96KSTGWKS7b0dspG9xWwEMFEbG7NzKuzu2tZS4P5wkvYtv5GcXMsxnReQITLIFplIQ6IJjSa655XB5ihSSkpEIS2ylVbaTT3EYzwXkEkGU8Q4Nslt5vbXeO8gW2TRLFuZwGhGiuHM0qYQmHa5VOBwyHOCdhify1VIJGNFZbKbo1AoFIpBSNoHDo855hjz8ezZs9lnn30YM2YM//jHP8jK6p9Y/a233sqNN94YqyamJJrQOMF5OK943wbgE+ML9tJmcazjEJpo5h/efwPwqbEybODQYQ0cyuQEDr+Ua3lffgaASzi53/c0AJMZy29cVySlTYOFWJWZRoITBx90fQ9VspaDtb2ZI6bxGu8C8LX8hnH0HTjMthhQ9KWxORQxbAH61NEuOsZxML/y/ZEv5BoANhl+Y4J1xmZzm3bZYcs4Dcdy+TV36Y+Zz7+Rm8nXc6MOHD6v/4fXjHfN5+/LpfzTeAOAcYxiI1sB2Mp2WxBAkZqc5DiCDjw8430VgCXG8pCBw1JRxGL5efcLXbKiLXJ3zDJPd9LM29JfFTFdm2h7r5o6PpBLAZjI2JicT+Enmyw0NAwMWylwf/ix8yy2e3fwnPG6/wXp/+fCiTdIQ9Mj7YHDDjpZLr82n5+rnchLxls00MRu2tkud9gWztrpNOdYFaKMA7Q92csyL3OJtL8VUPTB3e7rk90EhUKhUAxyhkSpspXCwkImT57MN998w/Dhw/F4PDQ1Ndm2qa2tDamJGODaa69l165d5r+tW7fGudWDE2uJlFWnx6YD1MuqvL1UOUkahxYzA2s2VokoCrX5kCIQOExEZpq19D3wndhLA0PrQAWTKawZhypwGExiFQ5jm7XaV9llOK2wSLaLdN/e9llnbDQfl1Boe0+VjKYHdm3f0H1mZJjvOpz+ZX+wlrYG62f20BxWxAwhhPn3bmHgJk2h+opOTyfuYI3D4HlVhSgnl/BalsUU9DAS81rmXKpUWaFQKBQKRV8MucBha2sr69evZ8SIEey55564XC7eeust8/01a9awZcsW9ttvv7DHyMjIID8/3/ZvKBJOzzAvQgFxp+jOONSTrHFYQB47LVlB33YcnJT2DCYCQZ94GqMECKUfNjKMjmZvqFLl3pE2V+VElyrHN3AYcHfvC6uTehEFQN96rH0dB2CTrDIfB48flUPYnT2dsC6WBX//5jZhvutYanNa9fWCsxhtur1hDFwU/Sevq1x5oBmHELqvGCECh8Eahy2y+/sXCK5zXsR/3N1SDXO16eZ4mUkG/8q4j+fd95r/LncuNKUUQJUqKxQKhUKh6Ju0DxxeddVVLFq0iE2bNvHhhx/yne98B4fDwZlnnklBQQEXXHABV155Je+88w5Lly7l+9//Pvvtt59yVI4Aqwj8x8YK83GexcWxNwHxZGscWkXkK0SZ7UZwKLspBzASmHEYygzF+tr/jMURHSeL7lJVlXHYk0RrHMay3L2ir8BhhIGZqhCu6dXUcZc3Mo1EgE7poY5G22vW0sFxQRpRajxJD6zf46fGypDb5IkcM7hkJZZGKdaMs+CMw20q4zCu5HcZpDQP0BwFIv9+ggOHD+l/Nx9nk4UmNFvf/Mz40uxv+SH6ImALHKqMQ4VCoVAoFH2R9oHDbdu2ceaZZzJlyhROO+00SkpKWLJkCcOGDQPgrrvu4rjjjuOUU07hoIMOYvjw4fzrX/9KcqtTg1yRzdWOH1BCIbto4XV9ERBUqtxbxmGSS5V/7v0dZRQzh+lc7/gJ2416KhnOTCYzmoqEt2ew0V2qHH8qKWcPMZUxVLBDNgAwQYzmcsdCnDhZKr8ks2MmuR178E/9jbDHsQUOpco4DMZIoG4lxNaZ+0ztOP7r+isniyM4gv05WRzJIcynGH/G9w+8v+Annl/32O8B39Pkd8wlp2MPsjpm8ZLxFllkMldM517HL3nJ9QCF5HOt/geyO2ZzROd5vbZjg7GViZ2HM4xi5jGdcYxEQ6OBJioo42ztRA7T9uM/rr9yhjiW72pHcZimFqLSgUyRwWuuPzOaEeymncM7F4bc7nn3vXzk+gdHcgCF5FNOCdv7UQ4fik/1L/ih9wbzudXpF6BO1jOK4cxisgocxoF5YjqTxFjcuGiT7QM61mQxln+7/sIPxKlMZRxHcgDnipN6SB0EAoe/9z3C7M7jeUp/2XzveO1QANzCxc2On5JLNlvZjoHBCeLwsKY8XotuojP95c4VCoVCoVAMkLSfLfz973/v9f3MzEzuu+8+7rvvvgS1KL0YKYbTQBMA9V3/t97ItPaiA5TsjMONbGML29nCdvZ1zOEl4y2qqKGKGkaIYQlvz2AjkRqHw0UpK+VaDAyGyWIAskQmw0WpLajsQ6dR7gp7HKs5hso4DEUyXZUHdr5x2kjGMZJllsy+zbKKd/VPAb/cgVWzNECdbLBl14C/b9TIHeznnMtOuYud+PuUgcH2EMewUkUtO9gJwFQxnnVyM0bXfy6czNImU66VUk6pmYVYLkr7/8EVg4rDHfvR6m2jkV0gN4Tc5iBtPgBTjHH8V/8AgG1EXw4fig48tjExOKNsM9VspYat1KjAYRzowMM6uQmA7XIHE8Tofh8rW2RxmGNfVso1bDd2mP1msf45DbLJ3K6zK8i3TdawVm60HWOaNsF8PEObSKvun3PtopWR2vCw5nRea8ahUBmHCoVCoVAoeiftA4eK+JJp0ZTr6HKxtd7I9G6OktzAYaA02YGD4ZSGLGEcyiQycOgSLoZTSjV1do2uEDe+TTK8Q61d41AFDoOJZQZgtOeLFZc7u7O8tsrt3K8/bT5vkz0XKnaHyQoK9K1C8nHiMMegcNsHsPbP4x2HsdlXZUoynO/4rq191seK9GGUGEGj3NXr9Q3gZ84L+JP+NyB2pcodQdqteUGlyoHz5JBFAXkxOaeim2Bt5wn0P3AY4HLnQi6ne6z4wFjKernFfB4wRwlVwWGt8AjWTLzS+f2w57Sao7jUrYBCoVAoFIo+SPtSZUV8yRI9zSiyyMTRFRTsTUA82aXKgRus4ZTiEA7TXKGIfLJFVsLbM9hIpDkKdAdra6g3y6hG0DOAGyqrLIAqVe4dw2aOEn/i7eI8HHsmn9XgKEAtDSH3DfQ3IQQ5FkfSnTQjZfiAZ/ACg3WsCDaqUKQnuV2LYx68dEpP2O3KKDavc7EKHAYHK3MsY56U0jT6qRDlA3YyV/TEqrUaqSFTtARrZAZKlUNpRlvHnOAFz+Dx0YrSOFQoFAqFQhENaplRMSCy6b5pftX3Nsv1VeSJHCYyikaaaZVtLNI/4WDH3j32dVgzDmViMw47jU7/Tb/MopJy/qcvRpOCYRQzQYxKaFsGK4k0RwEYxyh20EipKGKZ8TV7O2ZTRjEONPSugJeGxnLjaz41/r+9Ow+Psjr7OP47z0wmC1lIgCQkQGRRBHcBFRSwuODS1lbaarWordbWYt3qUtrXWpcqrRtUxVpKkVqUWqVqi622WrCICgKiiCKrLBLWLISEJDPPef8IGWYymSRkmyTz/VwX1zXLM2fOTG5mueec+/5II5zjIsbwKUGDTIH22f3aZLdqQtX1Ydf7rV8HVKXjncG61Xt13G0hDUvktXNSoS3iKMEkqLvSVHIwmeLIifibf+quD4shqWal9BGmT/B8rumpUrtPVlKB8lRsS5VpMiLu70P3U5XafeqtXipTufqYXOUpWxu1VVZWWaZ7qz9GdDzpplvwP1OpytRLWfUe5xhHg01/VdtqHbAHdH3V3Xrcd1eL7jt01VmCvEoI2Wa6wl2to80AFalUg1qwhRbR9TO91Vu9ZGU1x/+Kvu18udVfS3url3LVS7u1Vx559Ja7VF+p/IGW2Y+Dx6SrmxKUEBZ7PZWpJCXKyipZSfKa6B/xQ1cckjgEAACNIXGIFgndqvyW3q/5MmWlR7yTdb//d/pMm/T16kna4yyJ+HAdy63KhWZPsFba0WaAvlL9A0nSIBVoQeKcdp1LR9WezVEk6UHfHTqi8kx9br/Qg4E/6K+e32qwZ4D2ez6UJAVsQKmVJ+pd+4FuqL5X7yQ+HzGGMUarEufr3uon9Ja7NGJr1w67W59pkxYGluhIU6BrvZe2y2PrKEJXHLaHttiqXFdh0jvB07V/91B5Jkd5ygnWD5OkOxMmhR2zMvHvuqbq5/qz+7LWaKO2a5cyFZk4vNc/XX9335Qk3eC5Qqc5J+rVxD+05sNBJxC6PXif3a9epv7EoSQtS/ybxlVeocV2uda4m/SgvSOsFuvhCq0bPDPhfp3sHBM8/1BgZjC59GoCcdkWLvKcrZmBF/S6u0iFdrd2qyhq4ri5kp0kFbq7JNV8NqpUlbbawuCWZUk6wQzRGGeExntGBy8zxqg4aVmT7iN0xSFblQEAQGP4tIAWifYFaJvdoUyTrt22SOWqULFKI76Ie82hxGGgnbcq19Y3lKTUkNUjPVgxFNSeNQ6lxmtjeoxH6UpVifaF/f3qHcukKr1Ot1FJKldFyEqhyG1fXV14jcO234Le3jUVo/3da69rSGg9zW12h4ZqUMQxtXFnZNRbNFCKV+kh20Pr2z5aV77JCb7ufGF3tqihRuhrY3qU+oYSdXrbUt3XioYSx80aX5G1fR3jBEsoeOVp8LWuKaptaI1DVhwCAICGkThEi4Q2owi11e7Qac5JWhv4XFJtIrFO4jCsxmH7rjgM/YKVGPKh+TzPmHadR0fW3onDZCXJkSNXbtTamEebAXrPrtRO7VWlrVKi8dV7XN1i87XeCLyjC6u/L6n+QvNdXXvXOAzVHnEU7e/eFPkhiZatURLTta8becrWzQnRGw+gawtN2DXWIEWKjK2WNNQIfW1Mq5M4qo3bbGXRKbcN1U0cnqghrTp+nzpNTiTpPGe05gRe0X5VqLey9aLv8RbdR2hX5YQGtjQDAABINEdBC6Wo/hWH/3YXaZt7KDk33R+5/Td0q/IfAs9rmn92608wivBC9YcSGvX90h+v3HZujmKMCX4hj7YaMPQL2xd2p6b5Zx9W3ISu0GjKSqGupit0VW4roR1J62t6UGWrg41W6uv2jfgRmrBrqAFYrdDY+mPghRbdd+hrY+gqbb/1q1C7I+4PrS/0c8KfAy+3+vh59TQFe8N9R7u0V1Ljq6ebghqHAADgcPAzI1okqU7icKD6qYe6a6O2aovdrvPNaK2zW7TE/UivBxbpXM8ZwWOPNUfql94f66/+f2m33as5gVf0Y89EOaZtE1Wz/X/TB+4nOlIFSjdpylS6zjDDJEn9TF6b3ndn0t4rDqWabpLFKlWZrT+p9xVnnPa4xVquVTqx6ivyyKNc9dKZzqk6wTm60fHDtkPH4YrD8MRhe99fx+7wmq8cjTbDZWUjOuXusnt1X/V0DVKBEk2CvuP5aoxmiY6gpzI1ypysBHma1NjrVOcEfd/5lha4S/Sxu1bzAq/rYs+59R67MLBEk/0PKVE+neuM1uSEmvq7k6ru1uvu29qnMhUoT3kmW71DVjLO8D+vsWaEHONonHNa6zxQ1GuYc4y+6ozTG+47+qe7UKdXXqp/J8xSipPc+I2bIN/kaJw5TQEb0KfaIKlmNWkvZWmwGaCve85p8X1Uy6/TzcnyyKNeymzxeAAAoGtjxSFaJNmEb1VenviSjnYGaJf2aq02Kctkaq02aZU+02J3RdixRzsD9VPvDxQwAe3QHn1o12i3itp8zv9y39Jcd77W6nOd44zSbhVpkV2mRXaZesdZl92GtHdzFOnQSopoKw6/7f2y3tcq7VO5KlWtch3QBm3Rh3ZNk8YPWynUhC2GXU0sE3kdPnHo5Oh/9n0tsssi4qnQ7tJT7lyt0+fqppS4a6qDcFauFtvlWmiXqsQ0/jpyinO8rvR+/eB74VotcN+Leuxy+7GW29V6x36gfxxsxCNJf3ff1BZ9oWKV6nN9oa8449TTHEr4vGoX6k37rv7jLtaVnotb9gDRoOOdo5WgBO1XhQ6oSsvsKm3XrlYbv7uTrlcT/6DXkmapXAe0Q3u0W0Vy5OgCz1j90PvtFt9HsS3V23a53rJLg7sLAAAAoiFxiBZJDllx6Mgo0fj0g5Av1RU6EDxd3/Y/STrdGXboGFv/Ma0p9D5+5r0ubF55bEEMitWKQ6mmiYnf1t8wJ0vpEZc11iylVnhtsvjbqhwI+4LIVuVQPZUZ3LJXN55CY2Wkc1K7zgsdT2h93mpb3cCRh+TVqYsXTYndFzwd2sAo9L00Q2m6JeF7YberHTNRPmXV0xEcrStX4T8yRvt801Khf8tLPBfqRm/zarjWFVqqIy2k2Q8AAEB9SByiRUKbozgHaxaG1lcKLRwfLblTt9B4W6u9jxz1kM8kBM+nK5UP0CFsO9c4lJpWgzC1nr9RU+Omm5KDidCm1Cbretq7xuEhHXu9YU2NzdrXorrxFN6QgteIeBfaeCS0VlxDctRDnoPvkQ29Xu21JcHT9mAzo2pbHfZ6mKqUiNvVjplvcmRMR//f1vllmLSw82312SX0/a57PT+aNVdoqY663bkBAADqosYhWiQh5AuUczA1kK0seeWVX34tcT9Ugryqll8fuWs0tfpp3ZRwlay1wS83oYXGf+n/rWYFXoy4nzHOiBb90m5tTQojYAParp0192ty5LquvrCHzuMQNwYrDkNrEJbYsohO3FLNipq6/ue+HxZT0dQ2YCnRPn1qN2hC1fUtn3Qn8rm7LXh6k93a5o9/lbs2eLqjb1WWpHzlaqO2qkilKnP3K9XpJmttWNKGL9kIbSYR2p22IR7jUW/10lYV6gu7I/ieZIzR1OqnJdW8Ty12lwdv41dA1lptt7vDxqr7Gljm7leJalYq0uCrfdT9Gzwf+Ke+7flym95PUit2yi5TefA0P4YAAIDGkDhEi72VMEdVxi+frflQ6xhHC3zP6EH/H/Rv920ZGR1jjtTHdq1+GnhIdwam6hfe63Wb9xpJ0gWesVrivKC5gfla6n4U9kv4Wvu5ilSiN9139V3PhGZ3E/xe1c/0vJ2vgFw5MjpZx2hGwn36SWCKUpSkAuXpHs8NLX8yupBY1Dj8mfc6fVK9XjvtXt3s/5X+5pseccyfvQ9phbtau2yR/KZajwae1ja7QyOrvqV3E//a6H0s9P1ZM/x/1XK7Ku4apFSoMnjaldvmj7+3eilbWTrFOV7HmqPa9L5aw/HOYG0OfKGd2qPt2qUj1U0TqibpX/Z/wWPSxJfseJcQkjisamLiUJLu996iXwWe1E67V7/wT9Pr7iKts5u1/2ASx5Ej9+AqQ0mqVJUW2xX6StUP1F1p6qveutV7jU4wg8PG/UI7lSifstVDxznh16FtfN97iY43g/VIYJZW2NVa4L6nfXZ/qyfhnvE+qB3aLSuroc6gVhs3dDcIP4YAAIDGkDhEi53iOSHisuHOccpWD5UfrMsUWrepWv6wbT29TJZ6mSz9130vMjForSpV0+G0VGXN/oC73exUwNZ8IXNllWR8OsY5Utv8hdqjYu1RsU70DG3W2F1VcEVMO6YOjzYD9JndpGr5tTXK1vZBngIN8hQEzz8Q+L32ab822y+adh/OQPVzemuTu7VV5tyZFIVsg/TI0+xEfJMdDJ1+Tp4STeRK0Y4mST5tVk0cbbU7dKSOUKHdHdY8oM2fM3R44SsOm7ZVWZKOcwZrjX+jpJqtrZvtF8GkoaSwpKEk7bP7tc0WqlwVKpc0yjlZl3gviBh3q92hSlVpi7aHlQ9B28kyGTrfO1ZPu/NUZmv+hqUqa/UfFgZ6+mmg+rXqmFLd8gu8pgEAgIaROESbucF7hWZUPS8psklCffWAbvReqRsVvh35+9X/p2cCL0mq+RLV3BxW3fu7wDkz7HJHTkSx83gXi+YojnGUZ3L0ud3W5JpRQ8xALbbLtVclKrcVSjHJjd6mvliLB0/6n9XN/vslSQNNX73oezzGM+pYwuqtqiZx/cXB0ga1WJ2DhJCPTlVNbI4ihcfXZvuFilTa4PH7tD/sdfBSz4X1HhfamIOSG+0rLeT1YJ8tkzrJ818aVn6BVdQAAKBhNEdBm8kz2cHTdbdzNb0L7qEPtKFbaw6HtTYiCVVb2Lz28lz1DKvXiNg0R5EO1ejaqxJV2AONHB3+Rbm2XiXqZztVu5L2V7dRU7Wt1g7tCTumvhqbiC8JzVxxmG5SgyvSNtvtEdfX/ZFmn/aHrbwObTwWalvYMZ0jcdVVpIdsTd4Xsnq0owstU0H5BQAA0BhWHKLNdDMpGqqB2qUiletAsH5TrnrJYz06t/K7GmQKNMD0U7rpJiurH3gvDRsj9Nf8+uqxFdkSLXKX6S13qda4G5VgakLaWqtyVai/6aM+prcylKoqVcqVVYIS1EPd9XD1TBkZpSpFfvnjrlFGY6rlV6bS1d20XifHphhk+mmn3a0DqtJU/2yd7pysMZ4RUY8/2hmg4+1gVala11ffLSOjwc4AHakjlGA8spLOdE7VYKd/+z2IDsq2c1flzqafydMgFahSVXrN/z9V2WodoXxtVaGsrFKUrCS2gsa98K7KTV9xKEnHmCNVavepSn6dak7Q53ab9qhEiUoI/p+s0AEdZwarTPv1ZuBdZam7jKQ+9SQOy2y5dto96qNcVeiA+pm8Fj02HJ7QzyjP+f+h952P9D3nG0p0OvYPDNmmh47RkXLlymv4KgAAABrGpwW0qbsSfqxLqm8KnjcyWp/4H32/+v/0rPt3vWWXhhWE/7bny2E1xMJ/zT+0tabWSneNvlld09QkXzkaoL6SaronL9YKLbBLIm5zlDlCJzlDdVnVLYcuU/+4a5TRmKPMEZJqOlq3pyyToXXaLEm6O/CY+gRytc7zn6jH/9x7nX7uvU73Vj+ht9yletd+oP8G3lOifMH6mJOcy/Wwb3K7zL8jc0kcNuhk5xj9O/Fp9a/8krZouxYHVkiSRpjj9L/E52I8O3QUYVuVDzNxmGKS9K79QJK0zn6uTKVrX9KKeo+tfU3rqUyNcUaooJ6k4Gd2o6YHnpUknWSG6iSHWr3tKfTzynR3juRK431naEAb1CVsTR/ZNdpot6qnMmM9FQAA0AmQOESbqrttyspqh/aEbWMOLQi/ze4I+yDe2IrD2jpkktTdpB26rZG8rlf+eraR7bJ7w2pCSVJPkxlcrYhw7d0Mou52PK/xNOl26SZV6SZVKTZJJSoLJg0lhZ2OZzbk/xppw/plKyuiu20vkxXDGaGjaW5zFCny9a2hrcW1r2m1p+sTWoajpyEJ1N7qqw+4TTs7fOLwgK2UJCUrKcYzAQAAnQGZErSp+moybbM79FPvD/RQYGbEdVttoYZoYPB86Jel+lYchn5putM7SV/znBM8P6zy6/rYro24zQ7t0WZ3W/C8T1697HtSxpBK6QjqfpE2tml/l9qGJ9+sukF/d98Mu6659TG7mtCeraw4rJ/HeJSvHG3RoRp00ZpSID61ZMVhbQ3X4PkodQulpjVxCn0P/IZz3mHNBS1XX0fipjb2iqVy1dQPTjYkDgEAQONIHKJNZStypc7v/XM1w/crdVe6iut0laz7gTv01/wZgb9ogfte2PWr3M+Cp2u/gE3zz5YUfSWIldX9/t8Fz/dQJknDDqSlxf3ru/1O7ZV0KDZu9F4ZPP+Wu7RF99eZrHc3B0+TOIwu3+RoS0jzioaSO4g/YSsO7eGuOKybOGzZ613oeyaNUdpffSsOv+gEicOK2sQhNVsBAEATkDhEm/IYj65wvqbNdrvW2c/llUfv2ZWSpJ96r1WlrdKcwCvB7cvFNjyROMQM0v3eW/S/wPsqtLsjVo5lKkMJSlCu6Smv9eqSyhv1rv1AZSqXTz71UIYqDjZF6a8+GuIM1Dr7ubbYQiXIqxQl6xrPN9vt+UDjBpp+usb5pv7ovlizXfQw81tfdr6kPiZXfw+8oc/sJmUoTSV2ny6unKSV9hOlKFmltkwb7BZtsttUZauUYpLb5sF0ME7Ik0mSIbprvN/Uqe4JestdohQl60hTEOspoQMJ7ap8uCsOT3NO0G2ea/SfwGIlGZ8ucs5q9jy22kItdz9Wf/VRiknSEGdg4zdCqxpiBukXnkl6NvB3FWqP+phsldmO3V159IFvB+OWxCEAAGgKEodoc7/33SdJOqvySr1tl0lW2m/LdZP3KknSHhXrt4E/qcTu02faFHbbI5x83eJ8Tx556l0ZVruVeYwzQntVrJftG8Hr9qtCA9RH2aanJOkqz8W60XulhlV+XUUqkSQNM8fq5wk/au2HjBboaTL1uO8uPX/gnypVmars4X0xP9szSmdrlBLk1UP+mdqkbdpqd2iFVgePWegu1SL7viTpFHN8u9dxjBUrq9r+KNTti+47noskz6EVqtmmR4xnhI4ktB5ufXV0G3KcM1jHOYOD9QjHe0Y3ex4b7Ba9Yd+RJI3WcH4MiIH+Th/9zLlOVarWlMDv9andqNV2XaynFZW1Vkv1UfA8NQ4BAEBTkDhEu8k3OcGkxRd2p4482LX3Vu/V+m3gT5Ki1wZqSq2nP/lfirjsOu/l+rF3Ythltb+wGxm97Jt+GI8A7amnyVSpLdMBVTbr9jd6r9Rr7v/0pvtuxJf7HdoVPP1kwt06xjmyRXPtLJa7H2tU1SWSJEdOjGfT8dVuaQdC+Vqw4rBWa8RW6PvlVzzjWjwemu9n3uv068AMWdkOXeNwt4rCzieYhChHAgAAHMI3R7SbPiGrIbaGdoJUZvCLWEtqA9XtlCxJvdUr4rIv7E5JUq568qG5A6tdCVHRzMShFL023V5bEnJM/KzSccO6KlPjEGiO0OYoh9tVuTVR37Dj8JkE5ahmZXLtZ4yOqO7cvPLEaCYAAKAzYcUh2k3oF5tZ1S/qNHOCHOMo0fjU22Trc7tNm+w2fa3yOo00J+kW73f1kP+P8sqjBOOVMUY3eq+U3/plZTU98Gxw+/Ioc5IK6/mwXlu77oCtVKJ8mup/WoXaLUnKM9nt8KjRXLUrQ8tVIWttsxrY5Kn+v3HRwaY8KUpWhtKaP8lOxoacJm0INE9rrDhsTIU9oCQlqkrVSpBXjgn/nTdgA9pp9wTPkziMvTyTrUK7W3tUrGq3WglOx/phsspWq9DuCrvMw/oBAADQBCQO0W4u9XxZ2eqpq/2T9bxe1fNVr+pbzvn6k+9BvZowQxkmTV+uulb/sv/Tv+z/dFfVb4O3NTLyyNGVnq9rpfupzqu+WilKUoIStF/lmq8FGm2GK0mJylKGnvM+ou4mXf2cPEnSddV36W/uv5WkRJ2soTrDGaZrvZfG6qlAE4TWXqpUlZKaUcS9v+mjVKWoTOXqrjTd7v2+9thivRdYqVOcE3SV9+tx1VHbhqQOWXEINE9Luio31dDKC7RdNT+GrfLN16A6DXpW2bX6beBPSlGShupInWCObpN5oOmOM4P1uf1Ce1SsHWaP+qhjdWOfFXhRt/gfkFce+RWQJDmsOAQAAE3AT41oNz1Mdw1w+oSt0Cg62EV5oNNPPU1m1GSGlZVfAVWoUtu0Q1ZW+1Uhj5zgVrGttlAHVKmd2qsRnuM12DNAyaYm+bRNO3RAlSpWqXqYTPV2sjXA6dvGjxgtUfu3k6QKHWjWGNkmS2Wq6XBZrH060zlV2aaHMpw05Tg9dJTTv1Xm2lmEJg6pcQg0jyck2VLdRisOy7Q/eHqH9kRcv80WSpLKdUDdTVrY6yViI9kkaY+KJUWv1xxLW22hAgoEk4YSK88BAEDTsOIQ7apuzblyVYSdH22Ga4VdrWgq7IHwgvDOOD3tzpMk7dJeSTXbU+tu66qt65OuVL2c+GTzHwDaTXLICsNyHVCmMg57jLrxlm9ymtRop6uixiHQcsYY+ZSgKlW3yVZl17raH/LeWJskDLUtpDTHxZ5zW30OOHyh28U7YuKwI9deBAAAHRtLTtCuspUVdn6vSsLOdzMpDd7+gCrDPpAf6RzavlW7sqxu7UJrD3U5pK5h55EUslX5gG1eg5TQL3JGRr3qxF+8Yasy0DpqG6S0RXOUXdobluSvLwlFY5SOp6MnDutrIGfDKt8CAADUjxWHaFeOcdTf9NEWu11SZPOK/qaPstRdJSqVkVFArnxKUKWqJEn3+afrM3ejstVDXnl0ohmqYeYY7bfl2qG9yjIZGuEcFzbmG+47GmGO035VaIgZ2D4PFC12nHOUttrt2moLdUf1g3rCd5dyTM/DGqOHuitbWQrIKt10i1iJGm9ojgK0jhPNEJXrgHIP8zUpmvmBBZKkhe4SfRxYq57KVKnKlKJkzfH/XTvtHm20W+W1Xl3ivUBl2q/+qin9UWDyWmUOaJkBpq9O1lAVaZ/+EXhTJzk19ZRj6Y/+F1Rqy7TS/USJStAR6qMilcgjR44cHWXiq1wHAABoHmOt5efGFiotLVVGRoZKSkqUnp4e6+l0CuMqr9Biu1yStDdxabD7cX0mVz+kRwNPB8+fYYbJyGiMM0J3JkySJN1b/YTecpeGXVbrm1U36O/um5KkdYn/UR/TsQqWI7pfVj+mKYGnJEkvJzyp8Z7RMZ5R57bIXaazq2q2ad/i+a7uT/hJjGcEdE79D3xJ27VLfZSrdUn/afF4J1R+RWvsRnnl1UhzYs1l5mg97v454thh5hgtsx9Lkm71XK37Em5u8f2jdWxwt2ho1fmSpAnOeM3xPRyzubjWVWrliWGrV3sqUz/wXBrxOQkAALS+rpQniu/lN4iZ0C09jdXdCd2y6pFHGSZN6SZV6SY1eHnt+dDLDo1fsz3HkaNctc7qELSPjr71q7OhxiHQOpJMTQ3WA2peGYW6at8Hu+vQ+1ueya73f+l2u0tSTXfnnspslftH6wgthxLr96yddba8S1KWyaj3cxIAAEBD2KqMmOgTkhDaandokAqiHptsDjXJSFM3veh7POKYhhpe1H54z1VPeQ0h35nkd6AvYV1B6AJzEodA8yUf/EGruR3fQ5XaMu072EX5GOfIsPe4aYHZEV2Vd6tIknSE6aObEq5q8f2j9SSZRPVUpnarKObvWfU11RnpnKQbvfHZHAwAADQfWRTEROhKsjv8v9Fl9itRP8ymhKw4TJLvsO6nylYHv3RRQL7zCe2KXF9hdxwe6lIArSMlmDislLVWxjQ/ET/F/1TwdL7C36ey1SMicVjbyZn3tI4p3+Roty3SNu3QxZWTZExNaZW2TNhN88+WVPMj6jT/bL3lLlXhwZWpYXMTMQMAAA4fiUPExJnOqXrEO1l/CrykLbZQv/M/px97JtbbvCLRHlpxmHiYicMH/TM0ypykRPn0Dc/5LZ432leesnWGGaZq+eW3gVhPp9ML7aDpUKkCaLbaEhquXFWp+rDemy6rulkfup9pl/ZokCmQYz06RoPUz+TpMs9Xwo69wXuFPnA/VbnK5cqq2JZqtV2nI80RutLz9VZ9TGgdt3i/pwp7QAvdJdrgbtEWu13r3c0q1wFN9v6gVe/Lta7OqLpUG+1WJShBLwReU4U9oHJVqJeyNFQDVSW/TnaGKsf00vmesa16/wAAID7EVeJwypQpmjx5sm688UZNnTpVknTgwAH95Cc/0dy5c1VZWanx48dr+vTpysnhV9m2dKxzlI51jtLvA3/RHhVpj4q0S3uVU08NQk9IMtFnEg7rft62y/X2wSYsz3oeadmk0e56mkwttR+pUlUqU3msp9PpUeMQaB3JJjG4hLdCBw4rcfiG+65KtE+StMx+rHSlarQzXGOcETrbMyrs2Iner2liyPlp/tnyuwGNcUboIs/ZLX0YaAOXeC6QJJX492mPLdZ7dqW+0E695S7VZLVu4nC3irTcrg6e32lrVqf2UKaGOAPVU5ltvtoRAAB0fXGTOFy6dKmeeuopHX/88WGX33zzzZo/f77++te/KiMjQ9dff70uvvhivf322zGaaXw53RmmTwMbJNXUsMsxkYnD0O2VCYcZsrU1hlKUrAylNXueiA1jjPJMtjbarTGvF9UVhK44JHEINF+yDq2Er1ClujfxdhX2QDBpWGuw6V9v7d76NFTPFx3Ljd4rdYPnCvWsPEX7VdEm72HRxjzPGa2Zvvtb/f4AAEB8iou9amVlZbr88ss1Y8YMZWYe6kBYUlKimTNn6pFHHtG4ceM0bNgwzZo1S4sXL9a7774bwxnHj6Z1zT2U7PAcRuLQWqutB4uD55ucFtWgQuzkq6bOYbFKVWZZddgSJA6B1pGs5ODpCtv0Bim13ZNDUauw6zLGBGv1brOFYQ2qWkO0z03EFAAAaE1xkTicNGmSLrzwQp19dvi2nmXLlqm6ujrs8qOPPlr9+vXTO++8E3W8yspKlZaWhv1D89QW6k6Ur95C3lL4ikOvPE0eu9SWKUE1W5v5EN151f7tkpSob1RerynVT+mArYzxrDqn8BqHJA6B5ko2oSsOG04cltsK7bP7tcXdrk3uVvkUXnKD96eurfbv65VHU/y/14Sq6zWh6no9XP1H7bUlzR631JZps/tF2E6M2tf1PsQUAABoRV1+q/LcuXO1fPlyLV26NOK6wsJC+Xw+de/ePezynJwcFRYWRh3zgQce0N13393aU41L/UxvdVe6ilWqzXZ7vcdc5fm6vu1cKCMja5r+a/0X2qlilSpRPh2pgtaaMtrZwwk/1eP6hb5ddbPetO9qQWCJhjnH6hzP6bGeWqcTtuKQFbhAsyUfbI4iNZ44vN//Oz0UmCmpZqVvT2Vqghmv2xO+r1STIr9o/NSVHWWO0EK9pxKV6TeB3+tYHaUP9Inma4Heskv1su/JZo17VdUdetUuDLvMSvqmOV/frtNkBwAAoCW69IrDLVu26MYbb9ScOXOUlJTU+A2aaPLkySopKQn+27JlS6uNHW9yTS8Vq2bFZrQtN17jVTcnRSlOsrqZlCaPXbtNuVJV6m7SWz5ZxERPk6k0002pJiXY3KP2b4vDw1ZloHXUrXHYkH3aHzxtZeWRo/6ePspzspVuUpVlMtpsnoi97kqXe/C1t1LV6qUsBQ4mi7e14L2sVGURl1lZ5TnZSjPdmj0uAABAXV06cbhs2TLt3LlTJ598srxer7xerxYuXKjf/va38nq9ysnJUVVVlYqLi8Nut2PHDuXm5kYdNzExUenp6WH/0DxhNQ7VuoXDQxORfUz0vyc6h4merwVPt3asxIvwrcpd+uUfaFOhKw4bK51QtzbrCc4QutzGkdBtwz3UXfOSnlA/ky+podrOjduv+mv+3ua9ptljAgAA1KdLf3M866yz9NFHH+mDDz4I/hs+fLguv/zy4OmEhAS98cYbwdusWbNGmzdv1siRI2M48/iRblKVpppfxlu742BocokaUp1f0xrpoCFu2IpDAM2VbA4lDstV0eCxu+zesPO8H8WXrJCe27UJ59r6zkUqVbltOH6i2Wsj62sbGfVoco9vAACApunSNQ7T0tJ07LHHhl3WrVs39ejRI3j51VdfrVtuuUVZWVlKT0/Xj3/8Y40cOVKnnXZaLKYcl85zxmin3aNddq9GHbhE4zynyUo6zzNao53hzRqzyJZoq1uoAeorv/waYPq27qTR7vqYXI02w7XHFuu/gXd1qb1JU7y36QgnP9ZT6zTYqgy0jlz11GnmBPnlqryRrsoZJk0ZNlUVqlS+cnSyOaadZomOoK/JVZ6y5cjRcKfms+cZzjBl2nRtcws1rvIKFTh5mpZwp3JNzyaNudhdrsE6Qtu1U44cuXLVS1lKUzfq1wIAgFbXpROHTfHoo4/KcRxNmDBBlZWVGj9+vKZPnx7racWVZ3wP6qzKK7Va6yRJywMfS5KKVNLsxOE6u1mz3BclScPMMRrqDGqdySJmeppM/TvxaV1QeY3etO9qk7tN37Dn6QiROGwqEodA60g0Pr1rV0qStmtng8e+4S5WicpUYPL1SeK/2mN66EBO8ZygDZ43wy67O+EGSdK4yolabFfoA/cTXeN+S7mepiUOnw/8U6/rbUnSQt8cneqc0LqTBgAACBF3icMFCxaEnU9KStITTzyhJ554IjYTgiQp3XST6jRMbsl21NCC4z1NVrPHQceTbXoEY4Uty4eHGodA62hq6YRyW6G9Kqm5jdiijHDNfT8LPZat7wAAoK3xzREdQppSIy5rSbfB0A/V3/Kc3+xx0PFc7f1m8DSJw8NT25VaYsUh0BL5IQ23Gnod+sIeWo1Iggd1fcdzUfD04TT9qv185MhRrpq2ShEAAKC54m7FITqmdNMt4rL1doum+WcfdvfJaf7Zeso/N3g+X3RU7kpCV+18EfKFfZp/dthxdeNmmn+23nKXaowzIuy62svjwXa7K3iatCHQfL3VS0ZGVjYsOVhXaFKxD4lD1BGaTK4bR9Hes0KP7a1e8ho+ygMAgLbFpw10COkhKw77KFenmhO00n6i3/mfU0AB3eL9XqNj3F79G31i12un3aPuStexOlIFJl/HUN+wS8lTtk43J+uAKlWlak3zz9a/3P9ppfuJSlUmSUpVNw0xA3Wu5wxZazWu6grtsUUq1G595m7UXf5pcmXlkUfDzDFxs/rOaz0aqoEa6hyprzpnxXo6QKflMwk615yhPSqSp4HNGw/5Z+pUc4KylKFveM5rxxmiM8hTtkaZk3VAB4LdlXfbIl1cNUnFtlSF2q1P3Q360F2jmb77JUlP+P+sfJOro9RfX3a+FMvpAwCAOEHiEB1CasiKw60q1HWey/Si/zVJ0gp3dZPGeMddoaX2I0nSBWasjDEa44xQL2ocdilJTqLW2I3arSLttHuVrGT913037JhilWqN3ahzdYaKVap37ApJkkcerdXnIUdW63P7hY53BrfjI4ghI/VSlkY4x2mQUxDr2QCd2i7t0XK7Wo4c+a0/YuWXtVYL7RJVqVrHmCM17GBHXaBWL5OlpfZDVcuvavklSVttoZbYDyXVbEUuVZmq3OrgbVa4n2iZXSVJetTzs/afNAAAiDskDtEhpCt8q/JQHVoluLWJdexqt4TlqqfmJdLspivLNznabYu0Xbui1sKsvTx0q2CesrVF28OOG+oM0ou+x9tusgC6pHyTq+V2tVy5KtRu9alTFmO3ilSl6oPHsk0ZkRzjKM/k6HO7LfheFfqe1UtZ2qHd2q5dcq0rxzhhtRCJKwAA0B5ojoIOoW5zlIFOX/VQd0nSF4peP6qW3/pVqN2S+CAdD2r/xn75tcXWJALrbhfcdrAGVGjdqGzTI2Ksbkpuq2kC6MIaqk9X9zLelxBNbd3evSpRhT0Q9mNY9sEdE375tVN7JR2q7dtNycpQWjvPFgAAxCNWHKJDSDfhicM8k6M8k619dr/223LdVzVdF3rPVG/10ga7RQXKU6WpUrZ6aI8p0ezqeUpUgipVrTy+oHV5eSZbjhylKkW7VCSvPEpUovarXFLN9q633WWaUHW9Cu2uYGzkm2wts+Fj8cULQHPkmWxJUg9laHVgnd4OLNP8wEKdYI7WT33Xaq27STnqqZ3aozxlx3i26KjyTbY81qNuStLNlQ/I53iVoTSVaJ/yTa5W2bXKVU+tDqxVmdmvgA3IpwTlmRwZEx/1eQEAQGwZa61t/DA0pLS0VBkZGSopKVF6enqsp9MpudaVkdF9/umqtFW6z3ezSm2ZtrjbdUr1NxRQQInyqVJVYbeb6blfVwdqavz0Ua6ucL6mWxK+p1STEouHgXay35YrUT494H9Kb7lLNdoM1/e9l6iXydQeW6zp/jlafLCuYa1R5mTd5L1SqSZF91ZPl7Wubk24Rj6ToGSTFKNHAqCzes7/D13j/7kCCkRc55GjLHXXLu3VEA3U24lzlWJY3YxIZbZcjjXqVXWqAnKDl/uUoDc9s/XVwI+0V8UaogH6RBuC159nxuilxOmxmDIAAGiCrpQnYsUhOgTH1GwzTTepqm1wm25Sle30CH4p8x8sHB4qtNFFqklRhpNG0jAOdDv4N043qUo3qcpw0tTb6SVJyjE9leV0V7obvoo1y8lQppMhSerhdJckZTisNgTQPL1Ndr1JQ0kKyNWug1tLM0wqSUNElWpSJCN55VUg5MfRKlXrSG9/pbup2muLw2obSlIP072dZwoAAOIViUN0KDd6rww731OZ8ilBVaoO+yW+1nq7OXj6Z94f6lueC9p8jug4bvReqRt1ZZMvD70eAFqiTxPLYuSb3MYPQtzLVo+w5l2pSlG6UpWvHG3SVpVqf9jxPUkcAgCAdkJzFHRoxpgGaxbWNsaQ+HIGAGg/tTUOW+s4xLdkkxh2Ptv0OPgZqP74SRIlNgAAQPtgxSE6vK864/SF3am33KUqUamsappf9FB37bZFKlCeupkUHWHyYz1VAECcSDHJutg5V0vdj2Rk1EMZWqfN2ndwZdhp5gT55NMI57gYzxSdwRgzQntssfZpv/KUrXOc02sud4bLkaM17gat1+eqVLWy1UPHO4NjPGMAABAvaI7SCrpS0cuO7CdVD+gJd07w/FhzityD25fHOCN0Z8KkWE0NABCn7q1+QpJ0Z8Ik3Vx9v54MPBu87mgzQB8kvhKrqaELubf6Cb3lLuXzDgAAnURXyhOx4hCdRt0ty9mmh8pVIelgUxUAANpZ6PtPmrqFXZffxDqIQGNqm4HxeQcAALQ3EofoNH6S8D39KjBd5TogSbrS83Wd7RkV41kBAOJZaLOlukmdhmr0AoejsaZfAAAAbYXmKOhUEnWoeHiuesZwJgAAhEuvu+JQJA4BAADQubHiEJ3KVO/Ptd3ukpWr/qZPrKcDAEDQeM8Y/UVT9afAS/IYR9/ynB/rKQEAAAAtQuIQncol3gtiPQUAAOpVYPJU4M3TJm2TJA11BsV4RgAAAEDLkDgEAABoRaF1DwEAAIDOjBqHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACN5YT6ArsNZKkkpLS2M8EwAAAAAAAMRSbX6oNl/UmZE4bAV79uyRJPXt2zfGMwEAAAAAAEBHsGfPHmVkZMR6Gi1C4rAVZGVlSZI2b97c6QMCsVFaWqq+fftqy5YtSk9Pj/V00AkRQ2gNxBFaihhCSxFDaA3EEVqKGEJLlZSUqF+/fsF8UWdG4rAVOE5NqciMjAxeVNAi6enpxBBahBhCayCO0FLEEFqKGEJrII7QUsQQWqo2X9SZdf5HAAAAAAAAAKDVkTgEAAAAAAAAEIHEYStITEzUXXfdpcTExFhPBZ0UMYSWIobQGogjtBQxhJYihtAaiCO0FDGElupKMWRsV+gNDQAAAAAAAKBVseIQAAAAAAAAQAQShwAAAAAAAAAikDgEAAAAAAAAEIHEIQAAAAAAAIAInSpx+MADD2jEiBFKS0tTdna2vva1r2nNmjVhxxw4cECTJk1Sjx49lJqaqgkTJmjHjh3B61euXKlvf/vb6tu3r5KTkzVkyBBNmzYtbIx58+bpnHPOUa9evZSenq6RI0fqtddea3R+1lr94he/UO/evZWcnKyzzz5ba9euDTtm+fLlOuecc9S9e3f16NFD1157rcrKyhod+8MPP9To0aOVlJSkvn376je/+U3Y9R9//LEmTJigI444QsYYTZ06tdEx4xExFD2GZsyYodGjRyszM1OZmZk6++yztWTJkkbHjUfEUfQ4mjdvnoYPH67u3burW7duOvHEE/XMM880Om68IYaix1CouXPnyhijr33ta42OG2+Ioegx9PTTT8sYE/YvKSmp0XHjDTHU8OtQcXGxJk2apN69eysxMVFHHXWUXn311UbHjjfEUfQ4OvPMMyNei4wxuvDCCxsdO54QQw2/Fk2dOlWDBw9WcnKy+vbtq5tvvlkHDhxodOx4QgxFj6Hq6mrdc889GjhwoJKSknTCCSfoX//6V6Pj1vcgOo3x48fbWbNm2VWrVtkPPvjAXnDBBbZfv362rKwseMwPf/hD27dvX/vGG2/Y999/35522ml21KhRwetnzpxpb7jhBrtgwQK7fv16+8wzz9jk5GT72GOPBY+58cYb7a9//Wu7ZMkS+9lnn9nJkyfbhIQEu3z58gbnN2XKFJuRkWFfeuklu3LlSvvVr37V9u/f31ZUVFhrrd22bZvNzMy0P/zhD+2nn35qlyxZYkeNGmUnTJjQ4LglJSU2JyfHXn755XbVqlX2ueees8nJyfapp54KHrNkyRJ766232ueee87m5ubaRx999HCe2rhBDEWPocsuu8w+8cQTdsWKFfaTTz6xV111lc3IyLBbt249rOc4HhBH0ePov//9r503b55dvXq1XbdunZ06dar1eDz2X//612E9x10dMRQ9hmpt3LjR5ufn29GjR9uLLrqoKU9rXCGGosfQrFmzbHp6ut2+fXvwX2Fh4WE9v/GAGIoeQ5WVlXb48OH2ggsusIsWLbIbN260CxYssB988MFhPcfxgDiKHkd79uwJex1atWqV9Xg8dtasWYfzFHd5xFD0GJozZ45NTEy0c+bMsRs3brSvvfaa7d27t7355psP6znu6oih6DF0++2327y8PDt//ny7fv16O336dJuUlNTonOvqVInDunbu3Gkl2YULF1prrS0uLrYJCQn2r3/9a/CYTz75xEqy77zzTtRxfvSjH9kvfelLDd7X0KFD7d133x31etd1bW5urn3wwQeDlxUXF9vExET73HPPWWutfeqpp2x2drYNBALBYz788EMrya5duzbq2NOnT7eZmZm2srIyeNkdd9xhBw8eXO/xBQUFJA6biBiqP4astdbv99u0tDQ7e/bsBh8XiKOG4shaa0866ST7f//3fw0eE++IofAY8vv9dtSoUfYPf/iDvfLKK0kcNgExdCiGZs2aZTMyMhp8DIhEDB2KoSeffNIOGDDAVlVVNfg4EIk4iv6Z6NFHH7VpaWlhyQxEIoYOxdCkSZPsuHHjwm53yy232NNPP73BxxXviKFDMdS7d2/7+OOPh93u4osvtpdffnmDj6uuTrVVua6SkhJJUlZWliRp2bJlqq6u1tlnnx085uijj1a/fv30zjvvNDhO7Rj1cV1X+/bta/CYjRs3qrCwMOy+MzIydOqppwbvu7KyUj6fT45z6GlPTk6WJC1atCjq2O+8847GjBkjn88XvGz8+PFas2aNioqKot4OjSOGosdQeXm5qqurG5wzahBH9ceRtVZvvPGG1qxZozFjxkQdF8RQ3Ri65557lJ2drauvvjrqWAhHDIXHUFlZmQoKCtS3b19ddNFF+vjjj6OOiRrE0KEYeuWVVzRy5EhNmjRJOTk5OvbYY3X//fcrEAhEHRc1iKPon61nzpypSy+9VN26dYs6Loih0BgaNWqUli1bFiwftWHDBr366qu64IILoo4LYig0hiorKyPKtSQnJzc4bn06beLQdV3ddNNNOv3003XsscdKkgoLC+Xz+dS9e/ewY3NyclRYWFjvOIsXL9Zf/vIXXXvttVHv66GHHlJZWZm+9a1vRT2mdvycnJyo9z1u3DgVFhbqwQcfVFVVlYqKivTTn/5UkrR9+/YGx65v3ND7xeEjhhqOoTvuuEN5eXlhL3KIRBxFxlFJSYlSU1Pl8/l04YUX6rHHHtM555wTddx4RwyFx9CiRYs0c+ZMzZgxI+o4CEcMhcfQ4MGD9cc//lEvv/yy/vznP8t1XY0aNUpbt26NOm68I4bCY2jDhg164YUXFAgE9Oqrr+rOO+/Uww8/rPvuuy/quCCOGvpsvWTJEq1atUrXXHNN1DFBDNWNocsuu0z33HOPzjjjDCUkJGjgwIE688wz9bOf/SzquPGOGAqPofHjx+uRRx7R2rVr5bqu/v3vf2vevHkNjlufTps4nDRpklatWqW5c+c2e4xVq1bpoosu0l133aVzzz233mOeffZZ3X333Xr++eeVnZ0tSZozZ45SU1OD//73v/816f6OOeYYzZ49Ww8//LBSUlKUm5ur/v37KycnJ5hdPuaYY4Ljnn/++c1+bGgcMRTdlClTNHfuXP3tb3+joHwjiKNIaWlp+uCDD7R06VL96le/0i233KIFCxYc1hjxhBg6ZN++fZo4caJmzJihnj17Nuk2IIbqGjlypK644gqdeOKJGjt2rObNm6devXrpqaeeavIY8YYYCue6rrKzs/X73/9ew4YN0yWXXKKf//zn+t3vftfkMeIRcRTdzJkzddxxx+mUU05p1u3jBTEUbsGCBbr//vs1ffp0LV++XPPmzdP8+fN17733NnmMeEMMhZs2bZqOPPJIHX300fL5fLr++uv13e9+N2x1Y5Mc1sbmDmLSpEm2T58+dsOGDWGXv/HGG1aSLSoqCru8X79+9pFHHgm77OOPP7bZ2dn2Zz/7WdT7qS0u+Y9//CPs8tLSUrt27drgv/Lycrt+/Xorya5YsSLs2DFjxtgbbrghYuzCwkK7b98+W1ZWZh3Hsc8//7y11tpNmzYFx61tSjFx4sSI+k5vvvmmlWT37t0bMTY1DhtHDEWPoQcffNBmZGTYpUuXRn1cqEEcNfxaVOvqq6+25557btTr4xkxFB5DK1assJKsx+MJ/jPGWGOM9Xg8dt26dVEfY7wihpr2OvSNb3zDXnrppVGvj2fEUGQMjRkzxp511llhx7z66qtWUlgtKRxCHEV/LSorK7Pp6el26tSpUR8XiCFrI2PojDPOsLfeemvYMbVNO0Lr4aEGMRT9daiiosJu3brVuq5rb7/9djt06NCoj68+nSpx6LqunTRpks3Ly7OfffZZxPW1RS9feOGF4GWffvppRNHLVatW2ezsbHvbbbdFva9nn33WJiUl2ZdeeqnJc8vNzbUPPfRQ8LKSkpKwopf1mTlzpk1JSYkI4lC1RS9DCzRPnjyZ5ijNQAw1HEO//vWvbXp6eoNFYkEcNfW1qNZ3v/tdO3bs2CbNP14QQ/XHUEVFhf3oo4/C/l100UV23Lhx9qOPPuILewhiqOmvQ36/3w4ePJgulHUQQ9FjaPLkybagoCDsi/nUqVNt7969mzT/eEIcNf5aNGvWLJuYmGh3797dpHnHG2IoegydfPLJ9vbbb494DMnJydbv9zfpMcQDYqjpn4mqqqrswIED7eTJk5s0/1qdKnF43XXX2YyMDLtgwYKw1vbl5eXBY374wx/afv362TfffNO+//77duTIkXbkyJHB6z/66CPbq1cv+53vfCdsjJ07dwaPmTNnjvV6vfaJJ54IO6a4uLjB+U2ZMsV2797dvvzyy/bDDz+0F110UVibbWutfeyxx+yyZcvsmjVr7OOPP26Tk5PttGnTGhy3uLjY5uTk2IkTJ9pVq1bZuXPn2pSUlLA225WVlXbFihV2xYoVtnfv3vbWW2+1K1asaLALTzwihqLH0JQpU6zP57MvvPBC2Jz37dvX5Oc3XhBH0ePo/vvvt6+//rpdv369Xb16tX3ooYes1+u1M2bMaPLzGw+IoegxVBddletHDEWPobvvvtu+9tprdv369XbZsmX20ksvtUlJSfbjjz9u8vMbD4ih6DG0efNmm5aWZq+//nq7Zs0a+49//MNmZ2fb++67r8nPb7wgjhp/PzvjjDPsJZdc0uhzGa+IoegxdNddd9m0tDT73HPP2Q0bNtjXX3/dDhw40H7rW99q8vMbD4ih6DH07rvv2hdffNGuX7/evvXWW3bcuHG2f//+DSYk69OpEoeS6v03a9as4DEVFRX2Rz/6kc3MzLQpKSn261//ut2+fXvw+rvuuqveMQoKCoLHjB07tt5jrrzyygbn57quvfPOO21OTo5NTEy0Z511ll2zZk3YMRMnTrRZWVnW5/PZ448/3v7pT39q0mNfuXKlPeOMM2xiYqLNz8+3U6ZMCbt+48aN9c6ZVT7hiKHoMVRQUFDvnO+6664mjR9PiKPocfTzn//cDho0yCYlJdnMzEw7cuRIO3fu3CaNHU+IoegxVBeJw/oRQ9Fj6KabbrL9+vWzPp/P5uTk2AsuuMAuX768SWPHE2Ko4dehxYsX21NPPdUmJibaAQMG2F/96les8KkHcdRwHNWuanr99debNGY8Ioaix1B1dbX95S9/aQcOHGiTkpJs37597Y9+9KPDTvp0dcRQ9BhasGCBHTJkiE1MTLQ9evSwEydOtNu2bWvS2KGMtdYKAAAAAAAAAEJ02q7KAAAAAAAAANoOiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAQJ84880zddNNNcXffAAAAaB4ShwAAAIiwYMECGWNUXFzcKrebN2+e7r333tabIAAAANqcN9YTAAAAQNeXlZUV6ykAAADgMLHiEAAAoAvav3+/rrjiCqWmpqp37956+OGHw65/5plnNHz4cKWlpSk3N1eXXXaZdu7cKUnatGmTvvSlL0mSMjMzZYzRVVddJUlyXVcPPPCA+vfvr+TkZJ1wwgl64YUXGr1d3a3KRxxxhO67777gHAsKCvTKK69o165duuiii5Samqrjjz9e77//fti8Fy1apNGjRys5OVl9+/bVDTfcoP3797f20wcAAACROAQAAOiSbrvtNi1cuFAvv/yyXn/9dS1YsEDLly8PXl9dXa17771XK1eu1EsvvaRNmzYFk3x9+/bViy++KElas2aNtm/frmnTpkmSHnjgAf3pT3/S7373O3388ce6+eab9Z3vfEcLFy5s8Hb1efTRR3X66adrxYoVuvDCCzVx4kRdccUV+s53vqPly5dr4MCBuuKKK2StlSStX79e5513niZMmKAPP/xQf/nLX7Ro0SJdf/31bfEUAgAAxD1jaz+JAQAAoEsoKytTjx499Oc//1nf/OY3JUl79+5Vnz59dO2112rq1KkRt3n//fc1YsQI7du3T6mpqVqwYIG+9KUvqaioSN27d5ckVVZWKisrS//5z380cuTI4G2vueYalZeX69lnn633dlLNisMTTzwxeN9HHHGERo8erWeeeUaSVFhYqN69e+vOO+/UPffcI0l69913NXLkSG3fvl25ubm65ppr5PF49NRTTwXHXbRokcaOHav9+/crKSmpFZ9FAAAAUOMQAACgi1m/fr2qqqp06qmnBi/LysrS4MGDg+eXLVumX/7yl1q5cqWKiorkuq4kafPmzRo6dGi9465bt07l5eU655xzwi6vqqrSSSeddNjzPP7444Onc3JyJEnHHXdcxGU7d+5Ubm6uVq5cqQ8//FBz5swJHmOtleu62rhxo4YMGXLYcwAAAEB0JA4BAADizP79+zV+/HiNHz9ec+bMUa9evbR582aNHz9eVVVVUW9XVlYmSZo/f77y8/PDrktMTDzseSQkJARPG2OiXlab1CwrK9MPfvAD3XDDDRFj9evX77DvHwAAAA0jcQgAANDFDBw4UAkJCXrvvfeCCbWioiJ99tlnGjt2rD799FPt2bNHU6ZMUd++fSUpogmJz+eTJAUCgeBlQ4cOVWJiojZv3qyxY8fWe9/13a61nHzyyVq9erUGDRrU6mMDAAAgEs1RAAAAupjU1FRdffXVuu222/Tmm29q1apVuuqqq+Q4NR/9+vXrJ5/Pp8cee0wbNmzQK6+8onvvvTdsjIKCAhlj9I9//EO7du1SWVmZ0tLSdOutt+rmm2/W7NmztX79ei1fvlyPPfaYZs+eHfV2reWOO+7Q4sWLdf311+uDDz7Q2rVr9fLLL9McBQAAoI2QOAQAAOiCHnzwQY0ePVpf+cpXdPbZZ+uMM87QsGHDJEm9evXS008/rb/+9a8aOnSopkyZooceeijs9vn5+br77rv105/+VDk5OcHk3L333qs777xTDzzwgIYMGaLzzjtP8+fPV//+/Ru8XWs4/vjjtXDhQn322WcaPXq0TjrpJP3iF79QXl5eq90HAAAADqGrMgAAAAAAAIAIrDgEAAAAAAAAEIHEIQAAAAAAAIAIJA4BAAAAAAAARCBxCAAAAAAAACACiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAAAAAAEQgcQgAAAAAAAAgAolDAAAAAAAAABFIHAIAAAAAAACIQOIQAAAAAAAAQAQShwAAAAAAAAAikDgEAAAAAAAAEIHEIQAAAAAAAIAIJA4BAAAAAAAARCBxCAAAAAAAACACiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAAAAAAEQgcQgAAAAAAAAgAolDAAAAAAAAABFIHAIAAAAAAACI4I31BAAAANC6/H6/qqqqYj2NmEhKSpLj8Ns4AABAayBxCAAA0EVYa7V582bt3r071lOJGcdxNHToUCUmJsZ6KgAAAJ2esdbaWE8CAAAALff5559r9+7dys/PV2pqatytvHNdVxs3bpTP59NRRx0lY0yspwQAANCpkTgEAADoAvx+v1auXKn8/Hzl5ubGejoxs3fvXm3cuFGbNm3Saaedpvz8/FhPCQAAoNOKr5+hAQAAuqjamoapqakxnkls1W5R3r59u+bPn69t27bFeEYAAACdF4lDAACALiTetifXVbs9OTc3V7t27dKqVatiPCMAAIDOK74/WQIAAKBLMsYoOTlZe/fujfVUAAAAOi0ShwAAAOiwFixYIGOMiouLD/u2xhhRzhsAAKD5SBwCAAAAAAAAiEDiEAAAAAAAAEAEb6wnAAAAgNZ1XfVdWu2ui+kchjqD9GTC3U06trKyUrfddpvmzp2r0tJSDR8+XI8++qhGjBgRcWx5ebkmTJig0tJSzZ8/X927d2/lmQMAAKAWiUMAAIAuZrW7Tu/ZlbGdhNv0Q2+//Xa9+OKLmj17tgoKCvSb3/xG48eP17p14cnP4uJiXXjhhUpNTdW///1vpaSktPKkAQAAEIqtygAAAIiZ/fv368knn9SDDz6o888/X0OHDtWMGTOUnJysmTNnBo8rLCzU2LFj1bt3b/39738naQgAANAOSBwCAAAgZtavX6/q6mqdfvrpwcsSEhJ0yimn6JNPPgleds4552jQoEH6y1/+Ip/PF4upAgAAxB0ShwAAAOjwLrzwQr311ltavXp1rKcCAAAQN6hxCAAA0MUMdQYdVo3BNptDEwwcOFA+n09vv/22CgoKJEnV1dVaunSpbrrppuBxU6ZMUWpqqs466ywtWLBAQ4cObYtpAwAAIASJQwAAgC6mqd2MO4Ju3brpuuuu02233aasrCz169dPv/nNb1ReXq6rr75aK1ceavLy0EMPKRAIaNy4cVqwYIGOPvroGM4cAACg6yNxCAAAgJiaMmWKXNfVxIkTtW/fPg0fPlyvvfaaMjMzI4599NFHw5KHRx11VAxmDAAAEB+MtdbGehIAAABomfLycn3yyScaMmRIXHccrn0eNm3apM2bNysnJ0eXXXZZrKcFAADQKdEcBQAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAuhDXdWM9hZii7x8AAEDrIXEIAADQBfh8PklSWVlZjGcSW5WVlZIkv98f45kAAAB0ft5YTwAAAAAt5/V61bNnT23btk2SlJqaKseJr9+IXdfVli1bVF5erkAgEOvpAAAAdHokDgEAALqIfv36KRAIBJOH8ch1XRUWFkqqWXWYnJwc4xkBAAB0XiQOAQAAughjjAYMGKCXX35ZmzdvVq9evZSQkBDrabUba62qq6vluq7Kysrkuq7y8/NjPS0AAIBOy1gqSAMAAHQp5eXl+uc//6l169bFZbMQa618Pp+GDRum0aNHy+PxxHpKAAAAnRKJQwAAgC6ooqJChYWFqqioiLvkoeM46tatm/Lz80kaAgAAtACJQwAAAAAAAAAR4qvVHgAAAAAAAIAmIXEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAECE/wcjAFhSW5yYmgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Import the standard datetime library to make timestamps from datetime objects\n", + "from datetime import datetime\n", + "\n", + "your_dataset.make_plot(\n", + " # specify the names of the stations in a list, or use None to plot all of them.\n", + " stationnames=['vlinder01', 'vlinder03', 'vlinder05'],\n", + " # what obstype to plot (default is 'temp')\n", + " obstype=\"humidity\",\n", + " # choose how to color the timeseries:\n", + " #'name' : a specific color per station\n", + " #'label': a specific color per quality control label\n", + " colorby=\"label\",\n", + " # choose a start and endtime for the series (datetime).\n", + " # Default is None, which uses all available data\n", + " starttime=None,\n", + " endtime=datetime(2022, 9, 9),\n", + " # Specify a title if you do not want the default title\n", + " title='your custom title',\n", + " # Add legend to plot?, by default true\n", + " legend=True,\n", + " # Plot observations that are labeled as outliers.\n", + " show_outliers=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "7ec5ac1d-0753-4afa-b648-97c118533b86", + "metadata": {}, + "source": [ + "as mentioned above, one can apply the same methods to a Station object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "403d6e8e-ada3-4ab8-b943-947a71ba91a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dfn3Huz9yYkEMLeewkoLnC06rdaR2sFtU5cta2/aqu2atXaOvqt36pt3aNDK7a1ihtUZChTQAIJkEBC9t6593x+f4Rc7oVA1t28n3346L3nnnvOJyHJvfd93kNprTVCCCGEEEIIIYQQQgi/Mvy9ACGEEEIIIYQQQgghhATqhBBCCCGEEEIIIYQICBKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIACCBOiGEEEIIIYQQQgghAoAE6oQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIUTAa2xs5Ic//CEZGRkopbjtttsGfEylFL/85S+d91944QWUUuzbt2/Ax/bmMYUQQggRuiRQJ4QQQoigpZTq1X8rV67091L95o9//CMvvPCCv5cxYA8++CAvvPACN9xwAy+//DI/+MEP/L0kvysuLubiiy8mISGBuLg4zj//fPbs2eO2z/79+/nVr37FrFmzSExMJCUlhYULF/Lhhx/6adVCCCGEOB6rvxcghBBCCNFfL7/8stv9l156iQ8++OCo7WPHjvXlsgLKH//4R1JSUli6dKm/lzIgH3/8MXPmzOHee+/12jl+8IMfcOmllxIeHu61c3hKY2Mjp556KnV1ddx1113YbDYef/xxTjnlFDZv3kxycjIA//rXv/jNb37DBRdcwJIlS7Db7bz00kuceeaZPPfcc1x55ZV+/kqEEEII4UoCdUIIIYQIWpdffrnb/bVr1/LBBx8ctT1UaK1pbW0lMjLS30vptaamJqKjowd8nPLycsaNG+eBFR2bxWLBYrF49RwD1fX9/OMf/8ju3btZv349M2fOBODss89mwoQJPProozz44IMAnHrqqRQVFZGSkuI8xvXXX8+UKVO45557JFAnhBBCBBgpfRVCCCFESDNNkyeeeILx48cTERFBeno61113HTU1NW775eTk8K1vfYuVK1cyY8YMIiMjmThxorNs9s0332TixIlEREQwffp0Nm3a5Pb8pUuXEhMTw549e1i8eDHR0dFkZmZy3333obUe0Jree+8955qeeeYZAJ5//nlOO+000tLSCA8PZ9y4cTz11FNHPX/79u2sWrXKWQa8cOFCAH75y1+ilDrq+9VdT7Uje7m5Ht81U6/ruatWreLGG28kLS2NrKyso57nqry8nKuvvpr09HQiIiKYPHkyL774ovPxlStXopRi7969/Pe//3V+Hcfq+TZhwgROPfXUo7abpsngwYO56KKLjrmW7r72rn+Dzz//nFmzZhEREUFubi4vvfTSUc/fvn07p512GpGRkWRlZfHAAw9gmma353r33XdZsGAB0dHRxMbGcu6557J9+3a3fbp+pgoKCjjnnHOIjY3l+9//PgBvvPEGM2fOdAbpAMaMGcPpp5/OP/7xD+e28ePHuwXpAMLDwznnnHM4cOAADQ0Nx/x+CCGEEML3JKNOCCGEECHtuuuu44UXXuDKK6/klltuYe/evTz55JNs2rSJ1atXY7PZnPvm5+fzve99j+uuu47LL7+c3/3ud3z729/m6aef5q677uLGG28E4KGHHuLiiy8mLy8Pwzh83dPhcHDWWWcxZ84cHnnkEVasWMG9996L3W7nvvvu69ea8vLyuOyyy7juuuu45pprGD16NABPPfUU48eP57zzzsNqtfKf//yHG2+8EdM0WbZsGQBPPPEEN998MzExMfz85z8HID093Xvf7ENuvPFGUlNTueeee2hqajrmfi0tLSxcuJD8/Hxuuukmhg0bxuuvv87SpUupra3l1ltvZezYsbz88sv86Ec/Iisrix//+McApKamdnvMSy65hF/+8peUlpaSkZHh3P75559TUlLCpZde2uevJz8/n4suuoirr76aJUuW8Nxzz7F06VKmT5/O+PHjASgtLeXUU0/Fbrfzs5/9jOjoaP70pz91m/348ssvs2TJEhYvXsxvfvMbmpubeeqpp5g/fz6bNm0iJyfHua/dbmfx4sXMnz+f3/3ud0RFRWGaJlu3buWqq6466tizZs3i/fffp6GhgdjY2GN+TaWlpURFRREVFdXn74cQQgghvEgLIYQQQoSIZcuWade3N5999pkG9Kuvvuq234oVK47aPnToUA3oL774wrntvffe04COjIzUhYWFzu3PPPOMBvQnn3zi3LZkyRIN6Jtvvtm5zTRNfe655+qwsDBdUVHR7zWtWLHiqK+1ubn5qG2LFy/Wubm5btvGjx+vTznllKP2vffee3V3bwWff/55Dei9e/c6twH63nvvPWrfoUOH6iVLlhz13Pnz52u73X7U/kd64oknNKBfeeUV57b29nY9d+5cHRMTo+vr693Ode655/Z4zLy8PA3oP/zhD27bb7zxRh0TE+P2fTvy6+rua+/6N/j000+d28rLy3V4eLj+8Y9/7Nx22223aUCvW7fObb/4+Hi3YzY0NOiEhAR9zTXXuK2vtLRUx8fHu23v+pn62c9+5rZvRUWFBvR999131Nf/f//3fxrQO3fuPOb3aPfu3ToiIkL/4Ac/OOY+QgghhPAPKX0VQgghRMh6/fXXiY+P58wzz6SystL53/Tp04mJieGTTz5x23/cuHHMnTvXeX/27NkAnHbaaQwZMuSo7UdO2AS46aabnLeVUtx00020t7c7p2z2dU3Dhg1j8eLFR53HNVOrrq6OyspKTjnlFPbs2UNdXV2vv0fecM011/Sq19s777xDRkYGl112mXObzWbjlltuobGxkVWrVvX53KNGjWLKlCn8/e9/d25zOBy88cYbfPvb3+5Xf79x48axYMEC5/3U1FRGjx7t9u//zjvvMGfOHGbNmuW2X1epapcPPviA2tpaLrvsMrd/f4vFwuzZs4/69we44YYb3O63tLQAdDv0IiIiwm2fIzU3N/Pd736XyMhIHn744Z6+dCGEEEL4mJS+CiGEECJk7d69m7q6OtLS0rp9vLy83O2+azAOID4+HoDs7Oxutx/ZU84wDHJzc922jRo1CsDZ96yvaxo2bFi3+61evZp7772XNWvW0Nzc7PZYXV2dc43+cKw1H6mwsJCRI0e6lQ/D4Sm9hYWF/Tr/JZdcwl133UVxcTGDBw9m5cqVlJeXc8kll/TreEf+XAAkJia6/fsXFhY6A7iuukqVu+zevRvoDP52Jy4uzu2+1Wo9qs9fV7Cxra3tqOe3tra67ePK4XBw6aWXsmPHDt59910yMzO7XYMQQggh/EcCdUIIIYQIWaZpkpaWxquvvtrt40f2OTtWFtixtusjhkR4Y03dBVwKCgo4/fTTGTNmDI899hjZ2dmEhYXxzjvv8Pjjjx9zgIGr7gZJQGcwp7eOta+/p9Jecskl3Hnnnbz++uvcdttt/OMf/yA+Pp6zzjqrX8fz9L8/dPapc+2h18VqdX97Hh4eflQgMykpifDwcA4ePHjU87u2dReEu+aaa3j77bd59dVXjxkoFEIIIYR/SaBOCCGEECFr+PDhfPjhh8ybN88nwSPTNNmzZ48ziw5g165dAM4BAZ5Y03/+8x/a2tr497//7Zbt1V3Z5LECcomJiQDU1taSkJDg3N5dFltiYiK1tbVu29rb27sNFPXF0KFD2bp1K6ZpugWjdu7c6Xy8P4YNG8asWbP4+9//zk033cSbb77JBRdc0G2pqKcMHTrUmS3nKi8vz+3+8OHDAUhLS+OMM87o17kMw2DixIl89dVXRz22bt06cnNzjxok8dOf/pTnn3+eJ554wq3UWAghhBCBRXrUCSGEECJkXXzxxTgcDu6///6jHrPb7UcFnzzhySefdN7WWvPkk09is9k4/fTTPbamrgwv14yuuro6nn/++aP2jY6O7vaYXQGjTz/91LmtqamJF198sdt9XfcD+NOf/tSn7LvunHPOOZSWlrr1k7Pb7fzhD38gJiaGU045pd/HvuSSS1i7di3PPfcclZWV/S577a1zzjmHtWvXsn79eue2ioqKozInFy9eTFxcHA8++CAdHR1HHaeioqJX57vooov48ssv3YJ1eXl5fPzxx3z3u9912/e3v/0tv/vd77jrrru49dZb+/JlCSGEEMLHJKNOCCGEECHrlFNO4brrruOhhx5i8+bNLFq0CJvNxu7du3n99df5/e9/z0UXXeSx80VERLBixQqWLFnC7Nmzeffdd/nvf//LXXfd5Sxp9cSaFi1aRFhYGN/+9re57rrraGxs5M9//jNpaWlHZblNnz6dp556igceeIARI0aQlpbGaaedxqJFixgyZAhXX301P/3pT7FYLDz33HOkpqZSVFTkdowf/vCHXH/99Vx44YWceeaZbNmyhffee4+UlJQBfb+uvfZannnmGZYuXcqGDRvIycnhjTfeYPXq1TzxxBNHZYX1xcUXX8xPfvITfvKTn5CUlNTv7LXeuuOOO3j55Zc566yzuPXWW4mOjuZPf/qTM2uwS1xcHE899RQ/+MEPmDZtGpdeeqnze/7f//6XefPmuQV7j+XGG2/kz3/+M+eeey4/+clPsNlsPPbYY6Snp/PjH//Yud/y5cu54447GDlyJGPHjuWVV15xO86ZZ55Jenq6574RQgghhBgQCdQJIYQQIqQ9/fTTTJ8+nWeeeYa77roLq9VKTk4Ol19+OfPmzfPouSwWCytWrOCGG27gpz/9KbGxsdx7773cc889Hl3T6NGjeeONN/jFL37BT37yEzIyMrjhhhtITU3lqquuctv3nnvuobCwkEceeYSGhgZOOeUUTjvtNGw2G8uXL+fGG2/k7rvvJiMjg9tuu43ExESuvPJKt2Ncc8017N27l2effZYVK1awYMECPvjgA2eWYH9FRkaycuVKfvazn/Hiiy9SX1/P6NGjef7551m6dOmAjp2VlcVJJ53E6tWr+eEPf4jNZhvQ8XoyaNAgPvnkE26++WYefvhhkpOTuf7668nMzOTqq6922/d73/semZmZPPzww/z2t7+lra2NwYMHs2DBgqO+98cSGxvLypUr+dGPfsQDDzyAaZosXLiQxx9/3K3P4ZYtW4DOIRY/+MEPjjrOJ598IoE6IYQQIoAo3Z8uuEIIIYQQws3SpUt54403aGxs9PdShBBCCCFEkJIedUIIIYQQQgghhBBCBAAJ1AkhhBBCCCGEEEIIEQAkUCeEEEIIIYQQQgghRACQHnVCCCGEEEIIIYQQQgQAyagTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAYPX3AkKRaZqUlJQQGxuLUsrfyxFCCCGEEEIIIYQQfqS1pqGhgczMTAzj2HlzEqjzgpKSErKzs/29DCGEEEIIIYQQQggRQPbv309WVtYxH5dAnRfExsYCnd/8uLg4P69GCCGEEEIIIYQQQvhTfX092dnZzpjRsUigzgu6yl3j4uIkUCeEEEIIIYQQQgghAHpskSbDJIQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIYQQQgghhAgAEqgTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAIIE6IYQQQgghhBBCCCECgATqhBBCCCGEEEIIIYQIABKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIAGD19wKEEEIIT6rUNXziWMNb5sfYsHCv9WaGGVn+XpYQQgghhBBC9EgCdUIIIULKRnM7P7Df4bzfbG9hnjGdW61L/LgqIYQQgc6+4Q84Cj9C1xWi4oZgyTkD6/Sb/b0sIYQQJxgJ1AkhhAgpldS43V9prudrcxc3WL5HmLL5aVVCCCECnX3jk9BYAoCuzcdevVMCdUIIIXxOetQJIYQIKVW61u1+PY3s5QD5ZqF/FiSEEEIIIYQQvSQZdUIIIUJKvW4ki3RKqcKOHYBUkviT4+88Yfm5n1cnhBAiUIUv+Qrd1oDuaESFxaDCYv29JCGEECcgCdQJIYQIKQcp5wBlbts6sFNPg59WJIQQIhiosFgJzgkhhPA7KX0VQggRUlxLX3eHf0AOg6mlnk/Mdf5blBBCCCGEEEL0gmTUCSGECClJxHOSmkorbSTrBKYYY0nXyYQRRp3ZQLwh2RJCCCGEEEKIwCSBOiGEECFlg97OZv0NNqxEqgiSVAJvmR8CsIt9zGSin1cohBAiENk3/AFH4UfoukJU3BAsOWfI1FchhBA+J4E6IYQQIaWeRgBiiUYpxTQ1nl1qLw00k28WMtOQQJ0QQoij2Tc+CY0lAOjafOzVOyVQJ4QQwuckUCeEECLoObQDi7JQpxto0E0AxBANQJZK53O9AYB8Xei3NQohhBBCCCFETyRQJ4QQIuiNaTuLA5Si0UQQBkCs6gzUjVLDGKGGckCXsk3v8ucyhRBCCCGEEOK4JFAnhBAiqJWbVdRQh0YDMIg0IlQ4o9UwAIaqTGp0HTkMBpQfVyqEEEIIIYQQxyeBOiGEEEHtdfNdGml23t/LAdDwmu0xACzKwiCVyja9mwKziA7dgU3Z/LVcIYQQQgghhDgmCdQJIYQIWnVmA3+xv+68b8WCHQcAKSrRuf1s4xRSzWRA87ZjJf9jPdPXSxVCCCGEEEKIHkmgTgghRNAq11V8Q4HzfleQTqFIJM65fbFlAb91/AWAVke7BOqEEEIIIYQQAcnw9wKEEEKI/qpStc7bOQwmDBsWLMxX07Gqw9eiJqnRfMdYRDopbNV5tOsOP6xWCCGEEEIIIY5PAnVCCCGCVr1uJJUkLFjIJZt2OnDgoJo6t/3iVAwWLFRQhcbkjo7fUKVr/bNoIYQQQgghhDgGCdQJIYQIWlXUUkE1DhwsNGZTFb6exvDNvBf23FH7PmH7Oc9YH6CNdp42/8a/HB/6YcVCCCEClZE2GcITwLBCeELnfSGEEMLHpEedEEKIoNWsW523U40kolUUACkkHrVvskogU6WRQhKRhFOhq322TiGEEIEv7Px/+HsJQgghhATqhBBCBK8WWpy3o1Rkj/uPNoZRRiUAa/Vmby1LCCGEEEIIIfolqEtfH3roIWbOnElsbCxpaWlccMEF5OXlOR/ft28fSqlu/3v99dePedylS5cetf9ZZ53liy9JCCFEHzRzOKMump4DdYNJ5zQ1h5PUVFp1uzeXJoQQQgghhBB9FtSBulWrVrFs2TLWrl3LBx98QEdHB4sWLaKpqQmA7OxsDh486Pbfr371K2JiYjj77LOPe+yzzjrL7Xl//etfffElCSGE6APX0tdIInrcXylFLfV8oTfxhd5Ii9na43OEEEIIIYQQwleCuvR1xYoVbvdfeOEF0tLS2LBhAyeffDIWi4WMjAy3fZYvX87FF19MTEzMcY8dHh5+1HOFEEIElhaXjLoo1XOgDmCeMZ1KRy0HKKWAIiYwylvLE0IIEUTa/3UxZvEa6GgEWwzG4LnSt04IIYTPBXVG3ZHq6uoASEpK6vbxDRs2sHnzZq6++uoej7Vy5UrS0tIYPXo0N9xwA1VVVcfct62tjfr6erf/hBBCeJ8FCyPUELIZRKTuXaAujhiaaGYSoyjWZV5eoRBCiGBhlm+Btlow7dBW23lfCCGE8LGQCdSZpsltt93GvHnzmDBhQrf7PPvss4wdO5aTTjrpuMc666yzeOmll/joo4/4zW9+w6pVqzj77LNxOBzd7v/QQw8RHx/v/C87O3vAX48QQoielelK8nUR+zlIdC+GSQAMU1lUUctmdrJH7/fyCoUQQgghhBCi94K69NXVsmXL2LZtG59//nm3j7e0tPDaa69x991393isSy+91Hl74sSJTJo0ieHDh7Ny5UpOP/30o/a/8847uf3225336+vrJVh3gvmb/b+8ab5Pk27mOutlnGc5zd9LEuKE4Fr6GtnL0tdUdTjrulLXeHxNweZ9x2f8n+M1rFj4H2MRl1vP8/eShBBCCCGEOGGFRKDupptu4u233+bTTz8lKyur233eeOMNmpubueKKK/p8/NzcXFJSUsjPz+82UBceHk54eHifjytCxz8c7/COXgXAEDNTAnVC+EgzLc7bUb2Y+gqQrBKct6uo9fCKgs/7ji94z/wMAIc2JVAnhBBCCCGEHwV1oE5rzc0338zy5ctZuXIlw4YNO+a+zz77LOeddx6pqal9Ps+BAweoqqpi0KBBA1muCGIz2v6HYl1OOx0cCP/ULXNnftulbNbfOO/XaOlRKISvNLsOk+jF1FeAZBKZpSbRShvtdHhraUGjTbU5byvlx4UIIYQQQgghgrtH3bJly3jllVd47bXXiI2NpbS0lNLSUlpaWtz2y8/P59NPP+WHP/xht8cZM2YMy5cvB6CxsZGf/vSnrF27ln379vHRRx9x/vnnM2LECBYvXuz1r0kEpt26kBrqaKGFYtO9+fxOXYCdw/0L63WDr5cnxAmpUTfTpDv/3isU4YT16nkpKpH1eitbdR579QFvLjEomNo8fBvtx5UIIYQQQgghgjpQ99RTT1FXV8fChQsZNGiQ87+///3vbvs999xzZGVlsWjRom6Pk5eX55wYa7FY2Lp1K+eddx6jRo3i6quvZvr06Xz22WdS3nqCMrVJG+2dt9EcoMztsSaXjB6AL/XXaC0fdoXwttPar2CD3gaADSuql+lgMUQRhg2AKulRRy2Hs4A7tGQYCiGEEEII4U9BX/raGw8++CAPPvhgr44TGRnJe++9N+C1idBRrxvJJoP9lALwsmM5u/U+rrFeTL1uZCy5fEMBGlDADDWBcl1Fukrx67qFCHXtLkGlwaT3+nlKKeaoKTTSTCzR3lhaUGkzD38fE1WcH1cihBBCCCGECOqMOiF8oU41OoN0AK+a/+EO+28AaFBN7DgUpAPQwCd6HaVU+n6hQpxgOg5lugI00tSn57bTwUa9nVV6PQ26b88NNa0uPep26UI/rkQIIYQQQggR1Bl1QvhCg248alsLbcxqu5DhDHFuiyWahkPBgkoppxPC69oODYKwYeUKy//06bnzjenYTCuttLHL3Mt0ywRvLDEouAY5a2UYjhDiBGaddhOOwo/QdYWouCFYcs7w95KEEEKcgCRQJ0QPGo6RqbNV53GQcuf9cWoE6/QWAKqQQJ0Q3tZKZybYYJXBr2239+m5ySqBz/RXAOzSe5nOiRuoq3f5G1dJDXZtx6rk7YEQ4sRjnX4z1uk3+3sZQgghTnBS+ipEDxp1s9t9xeGG9S0cLhlLJI6RKod0UqjWdT5bnxAnqnDCGEImo8jp83PHqZFMUCNJJJ48vc/jawsWWmvKdCXxxBJLNAaK5eYH/l6WEEIIIYQQJywJ1AnRg2ZaSSXJeV/jMnyECOftWBXDbr2PMiqp0NU+XaM4sa1yrOe5jn/ycsdbrHNsYbW50d9L8rp23UExZRRRcsys1+MZoYbwjd6DAj4yvzhhJzUX6mJy1GBMTBppYhCpFOuynp8ohBBCCCGE8AqpbRGiBzW6jgq6D7y5bnedllhFrbeXJQQApjY5t+Ma7Dg6NzggmQSKIz7378K8zDU4F6di+vz8YSqLxcZ83jFXUa2/powqMjjxJjX/y/yIDXo70JktnE8RG8ztfl6VEEL4h25vQLc1oDsaUWExqLBYVFisv5clhBDiBCOBOiF6cLxsnSgiCcPKFDWWUQxjvpqBiYMObffhCsWJ6lPzS9Y7tjKYdEqpRAOxRDHTmMhGxzamhfCABNdJrbFE9fn5hjKYrMawjd1YMNhl7iXDcuIF6lwH3wxnCBkqBTgxswuFEKLtxRnQWHJ4Q0wmEdfk+W9BQgghTkgSqBOiB8cL1DXTQjOwUq/nevU91urN2LGzR++ntL3Cd4s8wsnGTG61LvHb+YVvvOtYxeOOFwD4gXE+Cy2zubrjLlaYn7HYWMC0EB6Q4DqpNEZF9+sYmSqNIjo/kO3UBZzMTI+sLZhUugy+6aCDz/UGInQ4pjYxlHTHEEIIIYQQwtckUCdEDxq1e6AuhkhGkkMee2mjA43JGIYz2zKZx7mTdJXCx461bNe7/bLWQg52ZgepVC6xnOPzNQjfqXQpsU5VyaSQePgxHdqTh2t1AxPUKKKJIJfsfh1jnBrBPDWNBprYp4s9vMLA97T9r/zV8TYWDFJJYraaTCpJOHBQrqvIUKn+XqIQQgghhBAnHAnUCdGDZt3qdt+ByaXWb/GK/V98zS4A4lUsg1Qq11gvAWCvPsB+86DP19pKG9W6lmpq2R3gkyybdQvNtPKq49+YWnObdQlKqZ6fKJyqXIJxt1mXUKQPl+uU6yp/LMlnqqhhm+78/TtXndqvY4wwhrJadw7eMB2a+623YVEWj60x0O0x99N6aHJ1BdVEqgi+MrcBnZl2GUigTgghhBBCCF+TQJ0QPainEYUinDDeszxHsiWBEcZQLrWci0ObOHAQqSLcnnOrdQm34vvS0/cdn3Nex/UAAT/F8iNzDd/tuMV5/zvWRQwl048rCj77dDEWLIwih2SdgIlmKIPZz0H24/tAsS9V6lrn7WSXTMK+SCOZpcZ3eM38D9vYxR69n5EqxzMLDAKtqs15+1XbY3xpbnXed/3+CiGEEEIIIXxHAnVC9KCNdjSaVtrItKaRrQYBkK5SIMASwFSgLeg46nUjqSQ5J+e26JaA+34GMru2k0wCY1UuMURjMSyk62RMTCaokcTR90mowaSNNqapcTTTSppK6tcxlFIMVunEEUMUEezRRYwkx7MLDVBF5kE2ukx3naBGUkYFY8iljgZedLxJua7iYuvZflylEEIIIYQQJx4J1AnRg67SMIAIwv24kr7RAT658Rtd4AzSATTTepy9xZEKdQmf6a8A+B/jTKAz8BSlItiq89ij9/tzeV5XqEvYqHcAkKji+32ckUYOlY7OEuJtOp/FnOyR9QW6N8x3+Upvc96PUdGkGEnsdOwB4K/m26wwP5VAnRBCCCGEED4mgTohehCsgbpA10iz230J1PVNiS5noZpNG+1MUKOc2zvLQPfSSDOtuo0IFZo/s67DMlJI6PdxxpLLfDUdCP2+fq5s2ua8nUUGCcQyimFkkUEplVgwyCCVjeZ2phnj/bhSIYQQQgghTiwSqBNufm9/Ea01t0pjf6dW3e68HU6YH1fSN4GdT9dZ+uqqRUugri/2c5CVeh0A31VnObenqATnP36lriFLZfhhdd5XxeFAXbLqX486gOHGUD7XGwDocHSArYcnhACtNXU0OO+fYZxEhApnpDGUA5QCYAe+oYAN5jYJ1AkhhBBCCOFDEqgTAOSZezit/QqqqAXgl44/8HbYn5hvTPfvwgJA26GMOoXCFuC/MsHUo66RJrf7zbT4aSXBqcp1mIJLoGq6msAetZ/9+iCFupgsQjNQV2yWkUMWQ9UgEnVcv/sbxqgozjIWkK8LKdQlaK1D/iLFrPYL2aZ3AzCW4dxkvRyACBXOq9ZH2WJ+w6vmfwjD5pa5KIQQQgghhPC+wI46CJ8pp9oZpIPOcs8aXee/BQWABrOJvfoAtdQDnWWvof4B3lfqdAMKgzCstGMnnWSaJaOuT0p0OZmkUUsDyS6ln1Eqkp16D0MZzE69l3mEVrC9Rbfylv1DtIIqXUMEYViNgb2UdWCnVFeSzSDKdTXpKtlDqw1MrbrN2cPyGwoYqgY7H7vQuphRZg6PtP8FgKIQnx4shBCuws77G2bFNnR9ESpuCEbqBH8vSQghxAlIAnUC6PzAe6QTvWfYK+a/+JH9Qef9iCAqe4XAHibxnvkZ/zI/dN4vo8oZEBU901rzguOf1FDPKDWM0425zseWGv/Dr/gDBRTxF8c/uNp6kR9X6nmbzG+40vEz5/3XbI8P+JgT1Wg+Yg3fUMAu9pJOaAfqXINv0UQSq6LdHnfN0OzutUEIIUKVkT4VI32qv5chhBDiBCeBOgFAk25hOhPZzHYcmAA06xO7FNGO3Xk7igjmGFP8t5heCpbSV9eyzS4v2N9kg7mNZ2z3Y1EW3y8qQP2f/RW2m/nUUMePjat42XyLDeYOwgkjl2xOMWa6ZXrGGjHMVJNooZUoIjC1iaEMP34FnlVMKdFE0oGDWKIYrXIGfMxRKodpahzRRFFklkDofLuO0q47aONw381ooo7aJ0nHM11NIAwb8cT6cnlCCCGEEEKc8CRQJwA4QCkb+NptW8sJnlHXpjuct5tppVCX+HE1fRfIGXXd9b3awk62mDu5U1/PcDXED6sKTA/Zn6Hy0OCE0QzjGfPvzsdSSeIPtnuOek6UiuATcy0AxZSRzSDfLNaLfm9/Eej82Wk61M/wWdsTHgnq5qohbNQ7AJiqx/F9zhvwMQOVa4sDAKOb4H6EEc4uvZcGmqg+Yn8hhBBCCCGEd0mgTvDrjqd4wvHCUdtP9NLXauqIJtIZFHDtAxaogiWjzsBgtppMm26nnkaKKEGhSCSe3Xofw5FAXZeuf1EDg0aa3R47smSxy2w1hRpVTwON7DL3kW0J3kDd8/Z/8rjjeSp1DTZsLDLmMUNNIJIIRnkgmw4gV2UxQ03AgoV2Onp+QhCrMmuYwChKqWCIyuSHlu92u1+ySqRBN3Wb/SqEEKHKseddzOI16No9qIRcjMFzseSe7e9lCSGEOMFIoO4E16xb+NrMo+GICZwANY46mizNRKujS6NCnUM7KNOVziAdQIpL36ZgEIgZdW26nXY6KNIlrNNbALBgOMutK6iiyDwIUvnq1H6oBNvEZKW53u2xqWpct89JU0l8oTdiYHSWcgbx9zNP72GX3geAFQtbdR5b9E7CCXMbgjAQ6SqFr/Q2AAwzhOtegUpq2cYuAJYY/8NVx+hhmEIC+zhADfXYTfuAB3YIIUQw6PjoNmg8XEHh2Pl3CdSJAWvSzRgYRKqIE2K6vBBi4EL7E4no0f/aX+Yt3dnU34qF77CY8ENDEx7Vz/Gg/Wl/Ls9v/mm+x9/Nd9zy0yYyym/r6a1Az6j7r2MlqW2zedFc7tz2D+v/8jfr4ySTQBhh7Gaf/xYYgFz7iXUFWLocq6R1iMoknWTCsJFPoVfX5207dAFWLBgo7DjYpncTRyynqjke62UYrsKIIwY4ujQ01FRxuOz8eBcfZhgTSSYBBw4OUOaLpQkhhBAh6Z6O35PYNoPI1on8sOMufy9HCBEE5BL5CahcV/G5YwONNLPesQWFQqMJJ4zhlmzaHIcDAy36xCx/rdK1zmESVqzYsBBnxPh5VX0TmBl1bVixYMfh3DbDMoF63egMkHTXv+5EZWqTDFLYR3G3jx/r3zhdJVNGFYCzv12wqtI1zp+XEQxF03klOkF5dsjBeEZSSx3xxHn0uIGkyqzlA8dqBpGGAgaTfsx9o3UUMUQzTGWxRxeRQ2f24r/sH9Km2oknjlgVxUnGNB+tXgghhAhO9TQCne/bXIfVCSHEsUig7gS01tzM9+y3A539rzQwiFT2RnxCja7jt46/OPf9q/k2j3HiXfmp0NXO2/+0/YHFlgV+XE3vBXpG3S4K3YJ0AFFEYlM25/1gDyx5Uh0NxwzSAWjVfaAu2SVTKtgDn5UuGW7O7EANT9vu8+h5wgwb35h7QHcG6pNVgkePHwjeNj/hBfNN5/00lXLMfUcbwyg0iynUxWzX+ZzGXLTWXG2/y9krcZwawcbwt7y9bCGEECKo5em9ztthhPtxJUKIYCGBuhNMk27mN/Y/uWzpDNV1fSiNJ5Yz1Ems01tooKmzP5G2Y1Un1o9KI82cpKYSQTiDVJq/l9MvgZhRV9VNEC6ScKKJ5ALjTL7WeeSbhSEbKOmra9t/cdQ2KxasWJitpnCyMbPb5yUTz+nqJFppwxLkHQ6Gk80gUsmnkCaaseNgCJmMVcM9ep45agqmMnFgstvcR7JlikePHwgiXT4cJJPAWCP3mPuOUbmcpKZiwaBcVwJQrMuYqEazUW+njXaqgjwILIQQQnjLE/YXeNf+KdvYTTSRzu2SUSeE6I0TK/oiqKaODXq7835XMKcrA8dQBm+H/4nvtC/jHXOV8zlpJPt+sX60ydzBF3oTAENU8EzMDOx8Oo6aIBmGzRkEzlApvGV+AMBOvYd56sQuqbNrO//VK533pzOeDWzHjoMIwnkv/LljPtemOnvTFepi4nRM0DYubtVtfKzXApBAHC20OR/zdCA3TSXxmf4K6Pz5m8MUjx4/ELhO8p6lJpF+nIy6kcZQ59/A7Y58UlQSE9Vo1hzaBp3ZjsH6syWEEEJ40xuOFXxF56Aq1wvVXVnpQghxPBKoO8E06sMvDlYsaDRppDBSDXXbb4zKZb86SKNupsKsJs1y4gTqXnX8mypdQwapDFfZJKjQ7VnlawpFEvHUUI8Fg/GMcD42RY0li3QaaSbP3MO8E7z3VZWuZQiZNNPCMLL4reX/sVHtwIqFROJ7fP6Z6iTWsYWDuoISXc5gdex+ZIHKdbDDBEYySKWxi71eCeIOJoOxajgKRbPLtOdQ0ugy3Tu+hx5/iSqe520P82/7R6zU63jE/mdOVjMZy3DKqCSCcFppC9qfLSGEEMJb7u34vVtixDiGU0gJ0UQFZMWLECLwSKDuBNPVzBRw9go7SDntdLjtp9F8rTsnTP6y4w9kdKRwie1c5lum+26xflKoS9hBAQBnqfl+Xk1oKdTFVFMHdP78uU6TzFaDOEAZaSRxUJf7a4kBw7U/3RnGPGbZJjOLyb1+fqSKYJu5m2wGsUcXHXdwQKCqMmtIJ4Ua6hhpyeEp26+8dq5EFcc3uvP3viREf/7adAeJxNNIExcZZ/W4/2WWb/GNmc9yxwdEEcFBKvjm0N9GgCFkBu3PlhBCCOEttbreLSB3heV/+JXjScqposAs4mszj7ftn9Cu7Nxh/SGRKsKPqxVCBKLgbl4k+qxBH86oSOVww/kYot32c21G/x8+5s/8g8UdV6J16F8Fcu27dKX1Ij+upO8CvQStwSWjByCcMOft0WoYMURRTrXbVcgTlev3Kk71feLweDUSKxaKKHEGoIJNJbWUUUk7HaToxJ6fMABR6nD/mFDNqKuhjhrq6MBONFG9es69lptJJ4VmWinQRc7tlkM/Wzv1Hm8tVwghhAhKrhf8rleXcZttKckkAFBOFTPbL+RX5pM85Hia1eZGP61SCBHIJKPuBFOj65iuxmPDSp1uoOJQzwRTu0/izCCFcQx3ZpYBpJBEta4L+Sb/jbqZoQzGxBG0gyQg8IZJ3N3xOPv1QbdtVizO24NVOjlkEa0isMmfJh62P+O8HdPLoIqrISqTXIaQqhJp0q09PyEAufZ0STYSvHquKA5fzXbt5RZKXAOQMUbvfqYshoXJagwNNFKiK5zbs8kgU6VR7jIhWwghgp2yRaMxABMwULbonp4ixFGqqXfezjIyAJhtTCZTp1Gl64gl2lk14drmQwghusin4RPMHvY7s5Wmqwl0xXKO/GAapSLdgnQAZVRSRqXzilAoMrXJy+a/MDEZRGpQDZKAzh5wgUhrzWOOF3DgHhB2YDpvK6UIU1bW6a0Y2qBVtxGhTswR9o26mf+Ynzjvx6q+f1AYqjLJYw95GgbrDE8uz2dch4+kKO9m1EW6BuqCNLDZE9e/866ByZ6cZzmdm+zuZcf7KGafLiZKRx7jWUIIEXzCl0p2kxi4rguNMUTxE9vVADhwsF5vPXpfmaAuhOhGUJe+PvTQQ8ycOZPY2FjS0tK44IILyMvLc9tn4cKFKKXc/rv++uuPe1ytNffccw+DBg0iMjKSM844g927d3vzS/GZjxxrWKBmcLZxMkuM/+Ei4yyuMS7me5Zvu+0X61IKG+dyuyLEsydqqMc8FDyK7Ue5YSAJpIy6Ot1AIoeHcgwilSstF3KH9Ydu+51izGaemsZENYp8s9DXywwY+eY+wrA572fT94Cxa+ZrJcH5e1umK5mmxnGamsMQMr16LtfS15ZQzahzCUBG9iFQN04NZ4GaQRrJZJLKAmYwnfGcpKYSjQTqhBBCCIA23c7o1sXs0fuJIYpzjVOdj81Sk0kgFoXCQBFDNJPVGFp023GOKIQ4UQV1Rt2qVatYtmwZM2fOxG63c9ddd7Fo0SJ27NhBdPTh4NI111zDfffd57wfFXX8kp9HHnmE//3f/+XFF19k2LBh3H333SxevJgdO3YQERG8zT4rzGrW6s2008F8ZnBt2CVcyyXd7uuawVPv0itrr3mAUyyzvL5Wf6k0Dwc0pqvxflxJ/wRiRp3WmloaqHQpY8xWmd0OBohXMazWnVezvzHzGWUMI0zZjtovlGitUUrxRMcLdGDnJsvl7NR73Ae89OOfNZ5YLFhw4KDCDM5A3T5dzEa9A4A/qHu8ei730tfQ7FHnGoB0DUz2ZKSRw2f6K+f9EirIVdns0ftJ0DIVWwghhAAo0iUUHippbafDLVsuw0ih1tEAdBY0NdLEFr2TOUzxw0qFEIEuqAN1K1ascLv/wgsvkJaWxoYNGzj55JOd26OiosjI6F3pl9aaJ554gl/84hecf/75ALz00kukp6fz1ltvcemll3ruC/Cxv5ivo1CMIoerLBced984DmeTRRBOK51Xe25w3Mvl1vOwqqD+0TmmSmqIIoIE4hiqvJvB422BklH3I/uDPOP4m9u2sGP86RmvRqJQaDQ/cNzBcuP/ONtyii+W6Tdvm5/w/Y4fOwNzdzuecD4WRyw/tlzJuWphn4+rlGKaGsc+XewWbA8mJbqcVBIJI4wh/cgq7ItIHU4WGbTRjhmiQ3NcA5B9KX1NIZGT1FTW663YcWDBQipJ7GE/tdTToTuwhXhAXQghhOjJAV2GFQv2Q61eRqqhzscWGfO5U13LQ/pPbs+R0lchRHeCuvT1SHV1dQAkJSW5bX/11VdJSUlhwoQJ3HnnnTQ3Nx/zGHv37qW0tJQzzjjDuS0+Pp7Zs2ezZs2abp/T1tZGfX2923+BqFbXk6uyKaGcycaY4+4br2KJJxYrFto4nJIdQTjrzaP7K4SKaupoppUSyoOyP1ogZtTVm01uQUMLFjJUarf7ZnE4oB6Oje1maJScH0+lrnHPnnPRQgvfsSwi3ojt17GbaKGCasqoHMgS/aaCaiqooZZ6bIZ3A0E2w0YZlVRQTQ11Xj2Xv8QQxQg1lKFqMJH0/u+bUgq0woKFcMLIYTA5DGYYWYwhl3Jd5cVVCyGE73R8+nPaXp5N61M5tL00m45Pf+7vJYkgUke9M0hnwSBeHc46T1GJzLJOwYqFMGxYsTCCoZgBcmFdCBFYQiZQZ5omt912G/PmzWPChAnO7d/73vd45ZVX+OSTT7jzzjt5+eWXufzyy495nNLSUgDS09PdtqenpzsfO9JDDz1EfHy887/s7GwPfEWe95n5Jd/oAppoYThDjrvvYJVOWcQa/p/lWn6mruN96/NAZ+nUG+aK4z43mFW6XNVKxrvN670tUDLqzCMGSPw/yzW8Eva7bvedYoylwbaJBOJoo4M/Of7hiyX61fGmfXVgJ4fB/T521+CXFlpp1sFXzlmvGwH3npneFHWo31qoTn3dpfeRrwup1NV9zoC7ynIhbbTTRjuttJFsJLCXA+xkD/so8dKKhRDCtxx5b6Ard0BrFbpqB468N/y9JBFE6vXhCobHrXdxj3WZ2+OLjfk0hG+mPmITccSQT2FIJ0AIIfovZOoXly1bxrZt2/j888/dtl977bXO2xMnTmTQoEGcfvrpFBQUMHz4cI+c+8477+T222933q+vrw/IYF0m6USpSGxYiTB6l00Rp2LAAqONYcxSkwgnLGQnIgJU61rmqClEqDCGBGHpa6Dl02mt3QYZxBJNrnHsILFSCqvFyhmOuZTqys4eHmYTMYZvAjX+UK8bGcFQ8jl6eMYCNWNAmWTj1Ag0GgsWqnVtn/qSBYJGOrOffTXYJYoI6mgIyqBmb3SV1/TnIsR4YyRTzLEYGMwwJjBK5TBLTSKGKMrNqhC67CeEEEL0XaVZzcP2Z5z3Y1UMhnJ/cXS9f7oxl4O64oR4ryuE6LuQCNTddNNNvP3223z66adkZWUdd9/Zs2cDkJ+f322grquXXVlZGYMGHe6JVFZWxpQpU7o9Znh4OOHhgV0m2abbeVt/AsBcNbXXz7vVugToDLjs1vuooZ69+oBX1hgIdugC1urNoOER6x3+Xk7QO0ApH+rDJeMNNBHL8Ye5AEQQwed6AwAF7Gcyxy/VDmZb9M5ug3QAy8P+OKBjt6hWPjc7v4/B1qdOa009XRl1Pf/MeEKkigAdmlNfTW1SdaikN8VlInBvTbWMY63ldef9Nx3vs153ZgGczkkeWaMQQggRrHbrQvaw33m/p2qASBXhfI+2m0KmMs6r6xNCBJegvgauteamm25i+fLlfPzxxwwbNqzH52zevBnALQjnatiwYWRkZPDRRx85t9XX17Nu3Trmzp3rkXX7g2t5XarqezaFUopzjYVMUWMxMWnUx+7zF8wUMFmNYaIaxdABlBwGgkAofC0xyxnPCBKJYwRD+aXlZmYbU3p83jhjOFPUWCaokZTqCu8v1I/KzSrGkHvUsIRhZPep4X93XN8kNgRZoK5JNzOcIUxRY5nUQ09NT+n6fodi6etBXUEqSUxT45mvZgz4eCkuryPSCFsIIcSJ7saOXzlvW7EyWKUfZ28Yq06c97pCiL4L6kDdsmXLeOWVV3jttdeIjY2ltLSU0tJSWlo6y5YKCgq4//772bBhA/v27ePf//43V1xxBSeffDKTJk1yHmfMmDEsX74c6AxI3XbbbTzwwAP8+9//5uuvv+aKK64gMzOTCy64wB9fpkdUmTUk0NmQPrkfgToAi7KwWX+DiWa3uc+DqwscO3Q+W/ROduiCzrLfIBNIwyTyzULydSHbyaeGeq6wXsDPbNeRoVJ6fG48cWzW37BN7+aALvPBav2jxWyhhjp2sc9t0jJAPQ1HlUz0VazLMRt08ATq2nUHG/R2drOPzfobn609ikgUCgsGDtPR8xOCyB5dhEazUW/3SI18yqHy2XDCqNahOXxDCCGE6I1Ks4bGQ1UAAHbsZKmM4zwDElze6xbrcm8vUQgRZIK69PWpp54CYOHChW7bn3/+eZYuXUpYWBgffvghTzzxBE1NTWRnZ3PhhRfyi1/8wm3/vLw858RYgDvuuIOmpiauvfZaamtrmT9/PitWrCAiYmDZLf5USS21NKBQpJPcr2NMVKOJJJxSKshjb0imaHeVB8YS3TnpMIj5c5iE1pqp7efTgd25rS99sVxL86oI3WydfIrYRzFWLMxVU/nc9jd+0fE4Vm3h5vArBnz8WBWcGXXb9W4Wd1zlvH9kENNboohEo2mkmXbVQSQWn5zXF77RBZRRSTSRjFMjBny8LNJJJ5kyqijQRR5YoRBCCBGcdrGX/ZRixcKN6vssC7vceUHrWNwy00P4va4Qon+COlCn9fEDEdnZ2axatarPx1FKcd9993HfffcNaH2Bol138H/2V4DO4E2Cy6jwvhithpFDFkkqgW3mLrCc68llBoRGfThQF4wCJaPuK/Nr0kmhkhocOMgkjWHq+P0jXQ0ilamMxVAWmkK0zBo6yxEXqBlUUEOmkUaEEU62pbMEtqeSid5IIYEpaiw2rLTTMeDj+UqpriCNZCqoJgwbI44zgMSTwpTNWTPeShuRAyw9DiRVupbZajI11JGrBj7sKM6IJZ0UBqsMopVveggKIYQQgajQLGGumkod9eRashjai4F0KSQygVFEqnAc2vTBKoUQwSSoA3Wid/boIucgCeh/6euZlnk0djTzjS5gu2M391tvC/qssyN1ZR25ZiIFK39m1L1jfsoBSgG42DibkSqH0yxzev38TCOdTXwDGtJ1/zJAg8EevZ/P9FcAZBmdAbquAS6eEKbC2Ky/AYKrj1i+LqKcKgCesd3PpT66KBBBmPN2K+0+OaevrNYbWae3ADDGyPXIMeNVbOfPr4YaXUeiivfIcYUQQohgslXvZI3eBMAIldOr5ySpeLaxCzSM1L17jhDixCGBuhPAle0/w4KBRjNFjWM64/t9rDONeezSe2mmlTJdSYZK9eBK/evbrdfhwEE0kYxWPQ8mCUSBklG3UxcwlMEoYLga2ud+f4NJ5zQ1hzbagyoTrK8qXUodUkjw+PFdM0PrXXqnBLoqXeu8neyF78uxhHN4enerbvNIL7dAYWoH89Q0IokglSSPHPMkYxqY0EIbu819zLJM9shxhRBCiGDw/9p/y4d6NQd1BRPUKCKJILeXFSTJbqWvtV5aoRAiWPUrUNfR0UFpaSnNzc2kpqaSlOSZN/3CO7aSh4POlOrvG+cxztL//kSRKtw5SryA/WQQGoE6h3bwMWtx0NlAvjgEBhj4K6PO1Cb/Mj/CxCSLDO613dTnYyilqKWejXoHVm2hyWwm2gi98roKs8p5u7+ZrsfjGqgLpknNFfrw9yXFC9+XY4lQhwN1bbT57Lze1mQ2s0p/hQMHc9Rkj2VCp6hEZ0boTr2XWUigTggR3CzDFuMo/ARaKiEyBcvQU/29JBHAPtFr2a7zAZyDlTJ72bokkTgUCo2mwqz22hqFEMGp14G6hoYGXnnlFf72t7+xfv162tvb0VqjlCIrK4tFixZx7bXXMnPmTG+uV/SRqU1nkG4EQ7nYevaAjjdCDWWYyqJRN7NfH/TEEgPCQSqIIRIbYUxiFL+z/czfS+qXQMioq6UB89DP3Dij/0Hhqy3fpc3xGvt1Cc+ab3CLMfDhCoGmSB8klUSy1CAGM/CedEdyLeEOpoy6Ql3i/L5keuH7ciyhWvq6i30YKHIYwknGdI8dd5wazng1gmJdRp7e47HjCiGEv9jO+F9s/l6ECBquQ9MAYohyu+h3PBZlYbExn6/NXc52MUII0cXozU6PPfYYOTk5PP/885xxxhm89dZbbN68mV27drFmzRruvfde7HY7ixYt4qyzzmL37t3eXrfohRpdxxsd75FNBqkkMdoYRqoaWPZjskpgrz5ABdWUu2S9BLsqXUsdjVRSzTBL9oACTIHCXxl1B3U5wxlCJmkDCj5NNEazW+8jnHD+7fiYGl3X85OCSLNuIUKFY8fBDp3PIC+UkcfoKFJJZCiDMXSv/twHhDgVQwQR7NH7SRvg36y+iHAtfQ2hjLqvzTxSSKSYUpJdJioP1HA1lDy9lyQSgioQLIQQQniCTVudF8kTiGWoGtyn5zfoJuw4yFaDqDfldVQIcVivMuq+/PJLPv30U8aP77632axZs7jqqqt4+umnef755/nss88YOXKkRxcq+u4Dx2quMO9w3o+jb33CupPsMmq8Moia0/fE9WvxZU8sTwuEjLoiXUIBRQBkqrR+H2e6Gs+PLVfxkOMZKnQ1a83NnG05xVPL9LvtOp/l5gcATGM8hvJ8IC3OiKWCGqCGYoKnnPsTcy011DOCoT4dWBPumlGnQyOjTmvNjfZfYcdOGsncYvmBx449hEFEEsEe9mMxLR47rhBCCBHotNbkU+S8MF5LA1PUuD4dY4jKZLXeSJmupIQyj3xWE0KEhl4F6v7617/26mDh4eFcf/31A1qQ8Jyt5k6iiaSJFsAzvZ4ySOFkNRM7DlpoHfDxAkULrSxUs2il3SuZTf7gr4y61eZGTlNzaKGNaar/g0ssysIYlcsQBmHByn4dWmUBrlNYkwzvTMuM5XBfv2DKeGo+9LclWkX69LypKomT1DQsGJiH+lUGuzoasB8qzYlXMdiU54q6DMNgjjGFRt1MnIrBoR1YlATshBBChL4aXc9UNY7VurN3dxrJzFNT+3SMNJXsvF0Z4gMlXre/yxvme8QQxRnGSVxm/Za/lyREQBvw1Nf6+no+/vhjRo8ezdixYz2xJuEhr+v3nEE6cG8s31/ZxiA+1V923jEHfLiAUalrWKnXA3A55/t5Nf3n/3w6+IfjXYooIZ5YzhlgBtxwYwhFdPZC3KR3eGJ5AcN14uu3DO80q44iEgMDE5NG3eSVc3iaQztoO9QfLpIIn567jXa+0BsBuIXQ6InoOkF36gAC58diYLBGbwLdmU0QzBnJQgjR9urJ6MptYNrBsKJSJhD+/U/9vSwRgKqpdQbpAMqp4juWxX06hms7iqoQqlTqznLzA/5lfghAKRVchgTqhDiePgfqLr74Yk4++WRuuukmWlpamDFjBvv27UNrzd/+9jcuvPBCb6xT9NEHjtVE6QhGkkMScZxnOYNFxrwBHzdOxXCusZBSXUE9DR5YaWBwzQ6MUr4NDoSSZt2CgWKGmsholTPgssVRDGO+mk4jzZTqSg+t0v/Oa7ueNXoTBgYjGOK1LE6lFLFEU0cDDQTH1NdmP/4uhrm0EG+nw6fn9pYqXcMERhGpwhmlcjx+fNfAXJWu8WgPPCGE8DXdXAbmob//ZkfnfSG60cDhC6CDSCVHZTFcDenTMbIZxCw1iTbaqdPBU/nQV426mU3mduf9dh0a77GE8KY+N0X69NNPWbBgAQDLly9Ha01tbS3/+7//ywMPPODxBYr+KdTFFFLMbvZxne0yfmy7iomW0R45dhMtbNDbKdNVVJqhcfXHLTjg4yweb/FH4etus5B6GvlKf43q+5+Xo8QZMezR+9msv6HYDJ3S1416Bw00YWKyi33EerEnScyh8tcWHRyl6s0uWcBR+Lb0NRQDdZXUsI1dfKm/9kq/v66WCjasVLpk7wkhhBChzDVQN0rlcIHljF5PfO0SpSJYr7eyRe+klApPLzFg7DYLqXFJ8AiWKg8h/KnPn6Tr6upISuqcwrdixQouvPBCoqKiOPfcc2XaawDJ03tpppU4Ysgiw6PHnq4mEEs0FVSzi70ePba/NGv/BQc8yd/DJPLYQzV1JBDLZMMzgeGxajhh2NhKHm0h0uC/xSUYBZDixSykQSoVK1ZqCI6puc3aNWju299Fm0ugrkPbfXpub3ENnqUw8D6lR8pQKUQTSQd2qgiNCzdCCCFETxpcgk0LLXO41bqkz8dIdukfXhXCF7t2UkAt9VixYMFgN4Vo7Z9e2kIEiz4H6rKzs1mzZg1NTU2sWLGCRYsWAVBTU0NERGhkIoWCrimm9TR6vKwuiwzSSWG2mkShWezRY/uLa+lrZIiUvvpjmMQ2czdz1BSSVWKf0/+PJVpFOrObqkKg0W6T2cxIlUM4YdiwkkwCSXhnmAR09hCzY6eRZkwd+I0lm2lhmhrPJDWGTB8PdrG5dIMIlYy6NtqYrsYzVg0nlSSPHz+OWGcv1FCaBC6EEEIcT4tuZaoaxwQ1qt+vryk6kdEMY6oahxEQnaa9Y4eZz1w1hXDCGEwGM42JbDN3+XtZQgS0Pveou+222/j+979PTEwMQ4cOZeHChUBnSezEiRM9vT7RT64BjWQPTHt1NdIYSr6jkHwNJ+lpXMa3PXp8fwiV0ld/ZtRprfmz4+/UUM9g0jnHstAjx3W/2lhDpkrzyHH9ZQ+dpbwAlxnf4vmwh716vhgV5ayDbqSZOC+W2XpCI81s1J19TBYw3afnDnOZiNoRIoG6Ql3ChkPfzyQvZG66ZoOGQiBdCCGE6I1yqpyDzvrbUzfFSCSPvaAhXSf3/IQgpLXmGcffqKeRFBIpooQis4T3jdVMxDPVN0KEoj4H6m688UZmzZrF/v37OfPMMzGMzqS83Nxc6VEXQBKIZYGagUKRQKxHjz1a5TJPTUcBtTo0BkrYtJV5aho2ZfPIdNxA4OuMugpd7cwUy/VQNh3ARDWKU405NOhGinVZ0L+oF5j7maOmYMPKdMPzUziP5BqYa6Ap4AN1rqUk3uzd1x3XHnUdhEjpq0s5qjdKrLMZxOlqLk20UKODo7xaCCGEGCjXLPL+tpZIJA6FQqNDtvT1EfufmWVMwoqFNJJ5yXwLCP0pt0IMVJ8DdQAzZsxgxowZbtvOPfdcjyxIeMZacwtFlJBKEoYaeFN/V1kqnc16B020UKLLMbXp8XP4Wj6FrNYbQUOCivP3cvrNnxl1uylkvd4KwERjlMeOG00Un5hrO89hFnKWxWOH9ovtejdr9WYAlqnve/18MS6B5wbdCCrd6+ccCNfmzLHKt0HzkBwm4fJG2NPZ1QCDjQw+0msAiDVD4yKHEEII0RP36qWEfh3DoiwkEU8VtW4X1kLJv82P2aC3oVB8Yfu7M1BXoav9uzAhAlyfA3VXXXXVcR9/7rnn+r0Y4TldTb37+8JxPEopbrb8gHfMVRTpg3xofsEiy3yPn8eXXK9iebNfmC/5OqPudfu75DKECML4lnGax4471hjOVDWOMl3Jbr3PY8f1lzxzL5mkk66SGa1yvX6+LJXOKJVDi26lQTd7/XwD5Z5RF+XTc4dij7oD5kGGkEm2yiBFJ+DpWH46yZyiZlKkD7KXA549uBBCCBGgmnQLOQwmmqgBfXaYZIyhSJe4vQcJFVpr9ukDDGcIo40cctRg5qgpFOsyivRBfy9PiIDW578INTXu0f6Ojg62bdtGbW0tp53W+w/n+fn5FBQUcPLJJxMZGYnWGqVCt4mmL7WarWSoVOp0g1eahwMMN4ayw5HPEDJD4g9tOGGk0dkbwqqC94XSnxl1+zjAHooAz2bUjVBD2aR3kEFq0PcNa9PtaKVp0I2U6nJyVbbXz2mi2XUowOmarRao2mgnk3SaaXbLBvQF16mv7Tq4f9YATG1iUzaadDNlVGEzbD0/qY+UUrTQRjW1ZOtMms0WoozgnZwthBBC9MYBStlH51C9VNX//nK1up4CXYQFS8h9Ht5m7maQSqVIlzCSoSQa8ezSe7FgCeHRGUJ4Rp8jEsuXLz9qm2ma3HDDDQwfPrzH51dVVXHJJZfw8ccfo5Ri9+7d5ObmcvXVV5OYmMijjz7a1yWJI9SpRgp0Z8DEW/3WRjMMTVdj/B1eOYcvbdV51NHAcDzXW83ffJ1R15WVqFAk4rny4SQVTzRRlFLBF3qTx47rD/m6kNfNdwGYwEjCVZjXz+laPtpAo9fPN1BV1FBCGQBxysc96lyGSdhDoEfdAcr4Un8NwMnM6GHv/huvRrJeb6WOXeRTyCTGeO1cQgjhTbYF9+PY/ym6dg9GQi5G9sn+XpIIUF091sIJI5r+X6CKOVQ94MBBK21EBvFQuyP93fwv2/RuAK43vgfAJDWGlXodK/V6GnSTz9ucCBEsPJI6ZBgGt99+OwsXLuSOO+447r4/+tGPsFqtFBUVMXbsWOf2Sy65hNtvv10CdR7Q6FLe5q0PuiPVUMYxnDgVE/SZJx26gzo6h2KkeqGHky/5M6MuXsUyl6lEq0iPZyWmqESadHPQN9r1RD+TvjpymESgc/375evBLuE6jLlqCgrD+cY5mJWYZZyu5lJLAyONHK+dJ1dlMU2NI4E4DpqVTArulqVCiBOYZczFWMZc7O9liAB2Z8ejrDY3UKVrOUOdRIZKGVAWXJyKoevaej2NIRWoa9ItzFfTqaeJMcYwACYZo2kxWwnDRr7ex1Tl/cFqQgQjj32aLigowG7vOQPh/fff57333iMrK8tt+8iRIyksLPTUck5o9S5ZM966SpFoxFNOFV/rXeTr4P53q+LwpEJvNFs/EbTqNj4y16DRzGCCx4+fQgKFFFNNHQ7twKKCc6KEa6BxkWWBT84Zow4HnFz7vwUqX/z9OhaLMlhzaNDHlBDICiukxDno4VLlvYFPGUYaGx2dmdXnc4bXziOEEEL4k9aaJx0vOyfD1+oGqsLWD+iYrm0+GnUz6SFUE/qxXkOe3ksE4QxRmQAMUqms01sA2Kn3MhUJ1AnRnT4H6m6//Xa3+1prDh48yH//+1+WLFnS4/ObmpqIijo6U6G6uprw8PC+Lkd0w21qohczUk42ZlKoSzDRNJnNRBvBmYFSZdYwVY0ljHDGqRH+Xo7H+LL09aCuYLaajAMHk5XnAxwLjJmEm+GUU8VBXUGWyvD4OXyhRbcwU01EocggxSfnTNIJzFFTsGPHoR0+OedAuA+T8G2gzurykmgn8L9XPalym/ia4LXzpHD42KE6tU4IIYQo1ZWkk4KJSbpK4fuW8wbcUy5XZTFHTaGDDreqgmD3mfkVYdrGAjWDSWo0hupMt5+gRjJfTaeRZvaaByA4r70L4XV9DtRt2uTeI8owDFJTU3n00Ud7nAgLsGDBAl566SXuv/9+oLMRtWmaPPLII5x66ql9XY7oRqPrB10v9nhyYLJebwWgStURHaSlYpXUsEl/A8B8pvl5NQPjr4twNdSx9lAm0jTD81fGTEy+0BsJJ4zdupAsgjNQV061s2fYrarnCxueEKHCnf82pzLHJ+ccCPeMOt/2qLO6vFsM9kCdQzvYqw9PYU3Be9nCrpnIpWaF184jhBDeZlbvQtfswWwsRsVkYiQOx0jy3IAsEdx2631UUkMrbXzHWMRN1ssHfMw22p3v0+pV4PcS7q09ZhHfsAe7tvM9y7ed23PVED7XGwAYp0MnQUIIT+tzoO6TTz4Z0AkfeeQRTj/9dL766iva29u544472L59O9XV1axevXpAxxadGmkmnDAiCSdWey8jxTVDo0rXMEQN8tq5vMkffcN8wZejJOq9nAU1UY0ik3RKKGOX3supzPb4OXyhXrsEoXyULRbrWvoaBD3qas0GIggnkTjidLRPo8/ugbrgHiax3cznD46XAbBgOEtOvCGbQYxQQynUxRQfGgQihBDBqP2f34bGksMbYjKJuCbPfwsSAWWnLqCVNjJJY5Ia7ZFjxrgO/dKhE6jbpfcBmlQSyXb5jDiUTMarkezRRWw+lCghhDiaZzu+98KECRPYtWsXTz75JLGxsTQ2NvKd73yHZcuWMWhQcAZ6Ak2zbqWNdtpoJ0J5r5x4KIMZzTDClI1SHbxZFE26mclqDE20kEb/x6sHAn8Nk2h0Lbf2Ql+xLDUIO3amqnE0ErxlAa5r91X/NbdhEkHQo65a1dKq26ijkSij/1PU+sOt9DUIyoSPZ78+iBUrDhwoFEO9GKhLV8k06EZGkTOgyXdCCCH8b7VjA7v0Pmp1PZdbzifVSPL3kgJGgd7PdDWBEl1OjpHV8xN6Ic7lwm1DEL/HPVIlNdhxUEENGepwuxerYcWmrQxhEINUKqY2nWWxQojDehWomzZtGh999BGJiYlMnTr1uLX4GzduPOZjHR0dnHXWWTz99NP8/Oc/7/tqRa+00Oq8HaW8NzkoScWTx17QsE8Xe+083naAMrbonQAkqng/r8ZzfNmjztt9EXPUYMqpolxXMcIc4vHj+4qv+ke6cr1S2xgEGXVdfdWSXfqe+YolhEpfvybPmRX4ou0RIr34WmAog3gVx3adz36z1GvnEUII4X1XddxFIZ3v63ONIZzP6X5eUWCwazt/dLxKB3YmqJGcbMz0yHFdh0kEwwXV3nIdoHbksL40I5n3zc/JM/dRSwNJhM7nLyE8pVeBuvPPP9856OGCCy7o98lsNhtbt27t9/NF7zS7Buq8OOJ7rBrOSWoaBooyXeW183ibrxqu+4K/MuqqdS2z1CRiiXZLb/eUFJcX+EqXUuVgE6HDma+mY8Fwy3TzphgdxTw1DQPDq33KPKFDd5CtMhnDcIYpz1yp7guryzRhR5AH6qp1HQvUdByYjFbDvH6+rsBqPY206w7ClM3r5xRCCOF5Jubh20GeXe5JJbqcBWoGrbR79HU1WSUwX01HoXx6kd3bDAzmqWlEqoijLr663q/SNSSFUKKEEJ7Sq0Ddvffe2+3t/rj88st59tlnefjhhwd0HHFszbrFeTvKi2VII40cvtCdGZRW7fMqao+pdAnUBXogoy98+WK/Wxc6B4vcpW7w+PFjiCIMG+10uAVWg803FDgb6PoqezNKRbD60O9pR4D3Xduj97NBbwM6yyl9zX3qa2B/r3qy2tzABr0dhWKEGur186WoRGdjzCpqGUSq188phBDC81ppc94+IH1Hncqo4mO9FoDJxhiPHTeCcOd7wwV6hseO609aa1aZ66mjgSE686iLd+4X4GsYSY6PVyhE4OtzdOXLL7/ENE1mz3Zv5r5u3TosFgszZhz/D4zdbue5557jww8/ZPr06URHu5d/PfbYY31dkjiCe+mr9wJ1KSqR2Woy9TRi18H7obZddzCaYUSpiKBPvfZbjzrdzBhysSoLwxjs8eMrpZivZnCQcgyCt49FV5AxDBsxPpqSbFVWZ5DT9W9DICoxyxnOECIIZ6zy/SSwUJr6atFWxjKcRBXv1V6lXUapHCaokTTqZirNKgZZJFAnhBDBKIzDQZVmWo6z54nFWxU4MUE29Ks3SqnEQDGekcw2Jh/1+FCVyUQ1miaa3UpkhRCH9TlQt2zZMu64446jAnXFxcX85je/Yd26dcd9/rZt25g2bRoAu3btcnvseL3vRO+100ECcbTS5tXSV+jMnMjXhSQQ59XzeNM+DpDHXizaQoIK3q/jSL7NqNvHTvaAhjQvZUJVUMU3uoBwwtBaB+nfC0UcMcQS7dP1RxFJOx1uZfGBqFRVUkARAFepC31+/lAK1H1NHi20Mg7fBDwVim16NwBV1PvknEIIITyrXXe4Te9u1oH9vsGXynUVaSRTS71HK3Bi3YZJhEagbre5j3hi2ckeTlWzj3o8nHC+1p3TlCuDuFJGCG/qc6Bux44dzkCbq6lTp7Jjx44en//JJ5/09ZSijyp0DbWHPijFE+vVc6WQQD6F1FJPh+7AFoR9iSoPXclJIj7opw75K6OugmoAEonDqrxTBp18qLSujXYaafbZMAZPadYtzjcls9UUn547ighqqXcriw9ElW5Xq31fhh4qpa92bXdmT8b56PfENbug8tDfAyGEEMGlEvegSaBn4vvSPl1MOVXYsDIcz7WUiFWHexY3hsgwiZ26gH0UY8HCuG4qJI4sfRVCHK3Pn6jDw8MpKysjNzfXbfvBgwexWoO3T1koqcJ3wxHGqOGYaKxYqdQ1DFJpXj2fpx3QpYxQQ8kkzW10uOibXLJJUYlezUgcrYbRpJoJw0alriFWBVeg7k3H+yw2FlCla5lojPTpuSNVBOjAf8PdgZ25airttJNGks/PHyoZda5X5GN89HsyiFRmqAnYsAV8QFgIIUT3qnUtkxnDFnYCUvrqqpFm5qqp1NHAUMNzg9NidRQz1AQsWEgI8hY8XSp1DSepadTTyMhu+uQOIpVZahIQOsFJITytz5G1RYsWceedd/Kvf/2L+PjOPya1tbXcddddnHnmmT0+/9RTTz1uydfHH3/c1yWJI3TV+luweD2jzlQm683OIQLV1DGI4ArUbTF38rFeA8A9lpv8vBrP8lXpa4fu4EP9BQBzOLoPhSd9qb8GOoPRw/D9VNCBeNLxCpv1N1iw8Jn1NZ+eu6sEPtBLX/foItboTYDvhm24cgvUBfGkuwaanbd9lXkap2L46tAgkDM4ySfnFEII4Tm/t79IvlnoDNKBlL66+sRcy9d6F1asHp1MH6uina+fwdyH2dUXepNz4OAo4+gJuYONdOcQuhQdOoP8hPCkPgfqfve733HyySczdOhQpk6dCsDmzZtJT0/n5Zdf7vH5U6ZMcbvf0dHB5s2b2bZtG0uWLOnTWh566CHefPNNdu7cSWRkJCeddBK/+c1vGD16NADV1dXce++9vP/++xQVFZGamsoFF1zA/fff7wwydmfp0qW8+OKLbtsWL17MihUr+rQ+f0kmgblqCvEqzut9sFx7NARjjwH3ia8J/luIh/ij9LWKOudtb5Yruo9yr/Xaebyl62cthQSf99ebosYSQzR27Ni13WvlyQPl+u/qj9JXi0ugzhHEpa91ZgPT1XgiCGeMyu35CR7g+u8VzJOZhRAntvDLVqGbDqKbK1GRKagYz2VOBap/OT7kPvv/cVBXYHN5HRxCJtHdDKW7pv3nfG5uwMTkKduvOM0y15fL9QuHdqC0wVw1lQyV4tFWPzZlI4JwWmmjMUR61LXpduaoKcQSRRpH967OIoO5qjOOEE6Yr5cnRFDo86e1wYMHs3XrVl599VW2bNlCZGQkV155JZdddhk2W89/tB5//PFut//yl7+ksbGxT2tZtWoVy5YtY+bMmdjtdu666y4WLVrEjh07iI6OpqSkhJKSEn73u98xbtw4CgsLuf766ykpKeGNN9447rHPOussnn/+eef98HDvT83zlC/0Jppp8UkTcdcPZ8EeqPNHYMCbfJVRV2pWOG97s9Q62PtZVFEL+Ofn7CAVzky1RpoDdviLvwPnhjIwMDAxg7r0tZpaNujtAMxhik/O6XrRptxRTYO1KejK04UQQsVkoGIy/L0Mn9ps7mT7oWFArooooUAXHbV9nbmFvRwAYK9ZjEtsL2QV6YPspIB23cF56jSPHz+WaFppoz7IA3XtuoMGs5ENehvNtDJbTe724rRSimJdRhElpGnftzoRIhj0K60iOjqaa6+91qMLufzyy5k1axa/+93vev2cIzPcXnjhBdLS0tiwYQMnn3wyEyZM4J///Kfz8eHDh/PrX/+ayy+/HLvdftyeeuHh4WRkBN8LdbNucfaTSPbBB91BpJJFBrXUOwMRweSfjhUkk0AS8Zyhgr9cyx+jJEp0GQpFFhlMUKO8dp4kEhhEGs200BBk/SyadQsddJBGEqPV0SUA3nbkRLFADdTV6DqSSSCVZKK6uYrvC1YstAd5oM71b7G3+5Q6z0MC2WSwn1LeYAUft62hJGK1T84thBCi/6qOuPhpw0rHoazyRt181P5lVGIc+t8r5r+4mot8sk5/2qX30oGdbDKYriZ6/PixKpoKXR30/drednzC9+y3A50/R3ONKcfcN0UlUKRLqKIOU5tBP9BPCE/rVaDu3//+d68PeN555/VrIWvWrCEiIqJfz+1SV9dZgpeUdOzIfF1dHXFxcT0Ovli5ciVpaWkkJiZy2mmn8cADD5CcfHTqLkBbWxttbW3O+/X19f1YvWeU6SrGqRG00U6uyvb6+eJUDAcoBQjKQF051VRRixUL8YZ3+/n5mm/y6aCYMiaqUZTocq8Gh2NUFAcpB3BONQ4WldRix0G5n6Zhug4UaNBN/ono9kLFod/HSAb2WjAQIxhCB3a/DLPwlEpdwxiVSwttPusbGq9iKT70+wmdpSz7zGJyjME+Ob8QQoj+aaeDOGJoopk4YkkingI6M+nqca92qjHrGKtGsF5vwY6dcqr8sWSfq9A1TFZj2K9LSVOef38whEwUihgV5fFj+1KNPtwOR6NJ5thVJLkMoY5G55C4NNX952whTlS9CtRdcMEFvTqYUgqH4/hZCN/5znfc7mutOXjwIF999RV33313r87THdM0ue2225g3bx4TJkzodp/Kykruv//+HrMBzzrrLL7zne8wbNgwCgoKuOuuuzj77LNZs2YNFsvR+d0PPfQQv/rVr/q9dk/ap4vZofMBONdY6PXzpQR5X6Ku4GKKF150/cEfPeo26O1s1XkAjFI5XjtPjEtWWHdXeAOZ6+9Gih9KX+OOyKgLRFprKg/9Pqb68fdxP6U00OTWry7Y5OtCduo9AKT7aJq1UgobVtpoBzrLrf9rfsIy43KfnF8IITzBvvU5zKJP0HX7UPE5GENOxTrpKn8vy6s2mtudAbka6qhx6T18ZAXDQSpYqzc77wdjz+D+2KkL2Ky/ASDHC8PMOrB3Bkd1Z3+3cBWcfdu2kue8bcfBCIYcc994I5YCR2dAeB/F3fayE+JE1qtAnWmaHjthXJz7gAPDMBg9ejT33XcfixYt6vdxly1bxrZt2/j888+7fby+vp5zzz2XcePG8ctf/vK4x7r00kudtydOnMikSZMYPnw4K1eu5PTTTz9q/zvvvJPbb7/d7VzZ2d7PZutOkS5mgZqBA4dXyxC7JJPIPDUNhYGtf5XUftNstjBLTcKBgyEq09/L8TitfZNTF6HDOVnNpIEmRnmxrDNOBX6w6VjqdAML1Aw02qOTwnorkzTmq+kYGLTqdp+fvzdqdQMnqamAZoQXA7496Zr8Gsylr020sEDNoJ0On5Zaf8s4lR1mPoUUM02Np0L7J4NUCCH6y77uN9BYAoAu34x5cH3IB+qyyKCOBgopcW6zYWWOmoL1iPf2rn/Xs8ggQ6XQbLYQZfinXYWvVLhURKQanr/gGqeinaUwDTQF5YCFlx3/okbXk0AsbbQzUuUw1nLsfumT1GhOUtMwUOzV+5nFJB+uVojAN6DISmtra5/LVV944YWBnLJbN910E2+//TaffvopWVlHfwhuaGjgrLPOIjY2luXLl/dq6IWr3NxcUlJSyM/P7zZQFx4eHjDDJrbonXymvwLgPuM2r58vRSWw+tD47UgdGN+D3qpXTazS6wE4V4VG2as/MupW6fV8owuIJtKr5cOufdbqdd8Gz/hbKZXO38sLOMPn53cok8/1BgBupsHn5++Namqd36NM5b/+oF2ZdI4gDtR9bK5hrz5ALNFkKt+UvgK8GvYoVbqWwW3z+VxvwKKDNytRCCFOBM26hXf0qqO2W7A4X5M7dIdzyqlrm5sDlHJAl1JAERMZ7ZP1+ou3p9LHHPEe1x/VFwP1puM93jU/BeBmyw/4re3/HXf/HDWYLw59hpxjTuESy7leX6MQwaTPXRsdDgf3338/gwcPJiYmhj17Ostr7r77bp599tken5+bm0tV1dH9DGpra8nNze3TWrTW3HTTTSxfvpyPP/6YYcOOzhyor69n0aJFhIWF8e9//7tfffAOHDhAVVUVgwYF/oj2/eZBxjGcuWoqo8jx+vniiXV+sA220lfXhq2uQaBQ4aupr13/7sfrQ+EJccQwS01ivBqJieeyfH2hys/ThaNcer410+rz8/eG6yTfFB8NQOiO5dDLokMH189YF1ObROgwJqnRnKJmdjttzZuSVQKL1HwmqtGU6xOjd5EQQgQr18DbHDWF89TpXGScxWQ1xmWfzlLYh+zPcE3HzzFQWDAYwRByGEyeudfXy/a5Kl3DOEZwmjGXZB3v8ePHqRjn7cYgqhp53f4uKa2zSGudw2pzAxMYxXCGMJj0Hp87WuUyV01hrBpOoS7pcX8hTjR9DtT9+te/5oUXXuCRRx4hLOxwWu6ECRP4y1/+0uPz9+3b120fu7a2NoqLi/u0lmXLlvHKK6/w2muvERsbS2lpKaWlpbS0dE497QrSNTU18eyzz1JfX+/cx3UNY8aMYfny5QA0Njby05/+lLVr17Jv3z4++ugjzj//fEaMGMHixYv7tD5/qKSGAvazUxf4pM+ToQySiceKBTPIPti6lk/GqtAI1Pk6o840TQwsWLB4PbiSpOJZr7eyXe9mn+7b3wp/a9QtzqulKV4OaHYnksMlKc26xefn741qXUsCnRmZ/ghmdukq8wnWjLpaGviGPWzVebSpDr+soYkWtuvdtOsOKs3guoAjhBAnkiqzlkTiUSgmGCOZZ5nGTGMiY4zO5IkEYik1OwcF7TcP0kwrJhoHJvkU0UAT+brIn1+C1+3XnV/3bvZRqIsJMzxflhpL1KH/j6Y+iCa/1ukGGmmmnkZaaecbCohXMdxmW9rjc7NVBpv0N+zR+6nTgVntIYQ/9bn09aWXXuJPf/oTp59+Otdff71z++TJk9m5c+cxn+c6Ofa9994jPv7w1QiHw8FHH31ETk5On9by1FNPAbBw4UK37c8//zxLly5l48aNrFu3DoARI9xr5Pfu3es8X15ennNirMViYevWrbz44ovU1taSmZnJokWLuP/++wOmvPVYGnUzaw41eD1VzfZZJkWmSqdcV5NPcL1Qu5ZPhmJGnS80qRZKqQAgAc9fYXRlUzYSiKOWerfsq2BQRoXzCmnXmzFfilKHM+paAjSjrkLXUEsDCkWq9l+gzujKqAvSQJ1b9qYXpzAfz6O2nzGn/bsUUMQt9vt5Lewxv6xDCCHE8VVS4xwekUYKt1qXAPB7+wuEE0YtDRygjCmMY53egkYziDQ+sD7H9x0/YYveyZOOl/mZ7fiD+oLZzzseZ4veSSJxPGd92CvniDt0obKBpqDKqHPta9hOBxYsTFPje/Vci7KQq7LZofPdBpQIITr1OVBXXFx8VNALOjNrOjqOffW+a3KsUoolS5a4PWaz2cjJyeHRRx/t01p6apa/cOHCXjXUd90nMjKS9957r0/rCBT7dQkLjdlU6RoyVc8px54SfSjw0EgzrbqNCBXYAc0uzbqVmWoiDkwG+bCPk6/4ovTVPSvR+wGoOWoyldQQRhhaa5+X9fVXA4en1CaoOJ+fPxhKX6sOBV81miQjwW/rsCgLaHAEWXl1lxrqmaOm0EY7OWqwX9bgOpynmcDM4BRCCOFe+pro8v5kCJmMZCgJKp6N5nbONk4mlSSmq/FEEckIaw4jHEOxKSuxRPOV42tmWCb64SvwvjiimaUmUaarmGqM9co5YlzeQwfTwLRGl/e30USSQQo5fRiaFn8oQFlPI+26gzDVtz7yQoSyPpe+jhs3js8+++yo7W+88QZTp0495vNM08Q0TYYMGUJ5ebnzvmmatLW1kZeXx7e+9a2+Lke4OKDLWGmu42u9izTluxHXriWPri/4ga6Car7UX7NRbyeM0Hhh8HXpa4NLVmKMD7ISO5Sdr/Q2vtAb3SZwBTq375MfyqyjgqD01a1Rsx/Kg7scnvpq99saBqJcV7FWb2aT3kG4ny6aBENgWAghxJE9dBOcty+wnEkJ5Xyuv+JFx3L26WJW6nVs0Nudgw4usZ7DV3obn+h1ziECoehDvYb1eitNNHstkBTjUm0RTKWvrtVJTbRQwH5yjexeP991aEYwfYYUwhf6nFF3zz33sGTJEoqLizFNkzfffJO8vDxeeukl3n777R6fv3dv6Dcc9RfXcsBUH/Z4GqtGUKVqsePonPjnw2y+gahya14ffNOVeuL7jDrvB6CmqLE0qxasWDlglpJm8V1AeiDcvk9+KLOOUdEsUDOw43D2YAtEJ6mph/od+u/30TlMIkgz6lwDnv7ohwgQThgKhUbToiVQJ4QQgcqBg5PUNBTurxlKKc42TqFQF9NEC1vNPGaoiUQSzkyjM3MuVw1hlppEGDba8U9PVF/oGj7nzQutru+hg6n01XWt4xhBOGG9Ln0FmKEmUK8aqaWeYrOUQZZUbyxTiKDU509s559/Pv/5z3+47777iI6O5p577mHatGn85z//4cwzz+zVMZqamli1ahVFRUW0t7e7PXbLLbf0dUniEH9NlnTg4HO9AYAKHTxZToGSweNJvs+oO5zy7osAVIyKdvZhPHioN14waHT5PsX4o0cdEXymvwJgPEe3LggEeXovX+hNgPtVfV/rmmIdtD3qAuAChFKKKCJookUy6oQQIoAd0GV8oTcC7uWXAFZl4XOz8/39F+ZGvtJfA3CluhCATJXGer0VgEgdQajqutga58X3uXEcnvoaTKWvrmu91HIu4SqMHKP3bTesysoqvR6AAl3EDEKzfFqI/uhXasWCBQv44IMP+nXCTZs2cc4559Dc3ExTUxNJSUlUVlYSFRVFWlqaBOoGoFrXkUoSccSQhvcnvnZxT1sOnib/NbqOdJKJJYZkLw9C8AdfZNRV61qSiCeeGJ9kUqa4NMev1MHzs9asW8kkjUEqtbMHmo8FQ0lFZQAMQQDX0tfgDNRVm3WkHXod8FdGHXSWWzfRQpP0qBNCBBEjcQRmay04WsESgZEYmBe3PKWeYw9Wm67Gs0ZtYr8+yGb9DQnEMph0xqjDE2ENDExMt2SBUNKuO2ijM6nEmy1e4ohhGFk00xpUmegObTKIVKKJ5MeWq7AYfXuP+x1jEf9U71Gsy/ij4zUusZ7rpZUKEXx6HairqanhlVdeYcmSJcTFuTdDr6ur46WXXur2sSP96Ec/4tvf/jZPP/008fHxrF27FpvNxuWXX86tt97av69CAJ0917r+S1S+Czwlk3go4BVNQ4AGAbpTTjVlVFFGFSmG7wKboaSaOud/EXi/H1a6SiGdZGKIojqIelmUUEYVtYQT5pfzx6nDV2oDtaQiDBtDGYzG9Gsz4cMZdcFZ+lqhqimn878kH74OHGkwaUQSQWqIZCsLIU4MYRf9199L8KlG7dqaI8btsSyVwQFdyhAyqdI1WLCwkz2MUsMAMJRBLtm00+GT94D+UK1rGUYWdhxkefGCdIyKYi8HgM6hUMGijEoOUkEs0X0O0gEMM7Ko0rXYsBKGLagGxQnhbb0eJvHkk0/y6aefdhuIi4+P57PPPuMPf/hDj8fZvHkzP/7xjzEMA4vFQltbG9nZ2TzyyCPcddddfVu9cONWyunDkqcUlUAZVeRTRIku99l5BypQMni8xfv5dL4vs8tSGZRRRQH7yddFXj+fJzi0g2rqAP/1DHO9Sh6IwXS7trNGb6KQYr9MxXVlDfbSVz+9DhypWbVRRAm79D6/rUEIIcTxHa/X8GJjARmkksdedlBAFbWMZ6RbiWyiiqOIEtbqLbRp93ZGoeAApezlAPs5SLyK9dp5YgL8fdqxdK11IO1vxhjDOEApn+mvKKfKU0sTIuj1OqPun//8J48++ugxH7/uuuv4yU9+ws9//vPjHsdms2EYnfHBtLQ0ioqKGDt2LPHx8ezfv7+3yxHdMDCYp6ZhxUKyjsdX7cqSg3RiT4ZKZT7TsWAJmXHgvu5R16ibmaumYsPKILzfAHa4GsJJairluoovHBtpsbYSqQK7L0qtbuBkNRM7dkaoHL+sIZww5qvpQGdPmUCzTxczW03Ggcl45d8yo65hEhqNqU0M1efh6H6VQiLz1XTa6SBRx/nsdeBI4YcmaXeVDAkhhAgMv+34M9/oPRw0K9jANpKIJ+1QZYwri7JwgeUMDugyNusdNOpmxhi5bvvMNCZhM60YGOTrQsarkb78Urxui7mTRcZ8anQd09UEr53HNUja4FKOHOi6Ar0DGbQxT82gWbViU1becaziSuuFnlqeEEGt14G6goICRo489h/fkSNHUlBQ0ONxpk6dypdffsnIkSM55ZRTuOeee6isrOTll19mwgTv/QE8EXxqrqecajJIIdrwXcN612y0YOpR8am5nipqGaay/L0Ur/BFj7oteidrDg0AyDIyvH6+eBVLjspyDh3I14VMVKO9ft6BqKfR2Sg3008TkZVS7ND5VFPHcIb4ZQ3Hs0vvdQ67WGDM8OtaDA6XbjhwYPQ+8TwgfKm/ZrveTRSRhBv+KbUGnGXeoTwJUAghgtFvHc+69aYDaKS524vWD9p+DMD9Hf8HwN22ZW6Pp6ok53uyx+0v8JewX3tjyX7zvvk575ufA/B3y++9dh73yofm4+wZOLTWHhm0caFlEfc4ngAN8cRyJRKoEwL6EKizWCyUlJQwZEj3H/JKSkqcmXLH8+CDD9LQ0ADAr3/9a6644gpuuOEGRo4cyXPPPdfb5YgjNOsWMkglS2WQq3z7QTyFROaoKbTSht/SN/ooEMoRvcHXGXWGNpimxhOOjTSSfXLO8y1nsNbcTAttvOh4i98Z/88n5+0v1yujR5aV+FIM0VRTR4MOvCu1+WYRYxlOgoplohrl17VYlcVZN+7AJNhybesP/fvG+mG6sCvboe+ciYld27Gqfs2uEkIIn2p/92rMolXQVgcR8RjZpxB29rP+XpZHFOmDzGr7jvN9SRg2HDgYRBqXWo7fxN+1162rbxkLqTcaecv8gPfNz/nAsZozLfM8vnZ/qXctDfbiMIlwFcYpahb1NBIV4JUiXZp0M+MZSbiyMW4A1RBDVSanqFnU0UC5ltJXIbr0+p3z1KlTeeutt5gzZ063jy9fvpypU6ce9xhaa9LS0pyZc2lpaaxYsaIPyxXHUkktW8kDDTk+zhCLVdFs1NtppwMzSBqwl+lKoomkkWaSVYK/lxO0vtRbqaaOXJXts+avpxqz2cN+DAz2mgd8cs6BaODwlVFvvsnrSayKBu2+nkBRSAl72E+bbud3xs/8uhaLS0ZdME5+bfRAGYonhKswZ8CzjXas/RsyL4QQPmUe+ByayzrvNLV23g8RRWYxDTQ76y26Mp4PUMqd1uuO+9xbrUu63T7RGM14y04eN5/HhpXdeh9nEjqBOtdhG9FEevVc+bqQYsrI1IHXoqQ7DaqZbewCPbCKEauyUkE1O3Q+ySRwYdtNzDQmcbX1IlKVDPsTJ65e1/TcdNNNPProozz55JM4HIc/vDgcDv7whz/w+OOPs2zZsuMcoTNQN2LECOlF5wWuJae+DjwppZxZaa6NzAPZW+aHNNJMFBF81zjb38vxCm+Xvtq13TmZypdZiXEqhplqIgYGaw+VWwQyt4lqfgyedAUJW2jFru1+W0d3NpjbaKOdwWQwkhy/rsXi8rIYbAMlOstQOgOxcXSf/eArrhOOpfxVCCH8L18X4cBBOGHcZiyhIOwjfmZcy/XGZUSr/mdhj2U46STTgZ2v9S4Prtj/uko7Y4n2es/ars9vldSgtS9Gwg2M+8Tggb2//aftSarC1/M/xpl8oFfzS8f/8rD9mYEuUYig1utL3BdeeCF33HEHt9xyCz//+c/Jze1sJrpnzx4aGxv56U9/ykUXXXTcYxiGwciRI6mqqjpuvzvRdw26idlqMo00k+GDpv5HmqLGkkoSYdiCogF718TXZlpD6mqNL0tfN5rbma4mYOLweZ+4dFIYQy5pRhLfmAWMNYb79Px90UIb09V42rH7dbpwrsqmmRbCCKNeN5IUQJmkqSqJSYzBjp04w78BJqtbj7rgyBDu0qpbmaRG48DBSDXUr2sxzMN/i95yfCjNoYUQws+6Br610c4sy2QGG+kkGvEkEj+g4440crBhI5sMNprbaNGBP+irtwaTToQKJ8YH7SRGqWGAIpJwGnTTMcuNA0W9B1u7DDM6q8HSScFAkUUGLbptQMcUItj1KZry61//mrVr17J06VIyMzMZNGgQV155JWvWrOHhhx/u1TEefvhhfvrTn7Jt27Z+LVh0r5Ia1uktbNe7iVThPj+/oQy26J18qb9mP6U+P39fuU6nDd3SV+9ejVthfsZX+ms26h2cZVng1XMd6ULrYraxi4/NtXxsrvHpufuqWteyQW/na51HGP5r7t9KG1t1Hl/pr2lULX5bx5Hs2s5/zI/Zqnf6tTS4i3vpa2BlHvakWtWzUW9ni97p92mr7S7nv8t+7InxQgghfMOt+ubQhcNbrUuOWdbaW3EqhoXGbPZTyhadxy69b0DHCyRf6E1s1t84K0i8SQFb9U7W6S1un1MClevQC0+9f/uF7UYiiOAApbxpvsfv7S965LhCBKM+N42ZNWsWs2bN6vcJr7jiCpqbm5k8eTJhYWFERrrX+1dXV/f72CeyBrf0Y99fgZllTKJON9BOB7vNvQy1ZPp8DX1hxcJ8NR2FIjmUhkn4qE8cdJYFnqxm0kqbzyfnupbaVgZ4uXWjS0+4OH+Wvrqcu1E3Bczcl66hLhAYQfMcNZj5ajoa3VkiHCDfp95wb4Hg379rroFCX0ygFkII0RPlfO+b4uFqktONuaw1N2Ni8h/Hx0w2xnj0+P7QrFtooRXwzfsT19ftKmoYhm/fW/dVI83MVVOxYWWI8sznPqUUt1ivAA3/Mj/kb47/0kxrjz0UhQhFvQrUFRUVHXPaa3eKi4sZPHhwt4898cQTvT6O6D1/T5ZMJ4XP9FcA5Om9nBHgjWS363w+1xsASPHzB1pv8faH4w16O5/qLwEYPIAmsv3h+oapUgd2cN+tNMCfwyRczu26Jn9z7Wvp7+ASQKmudP5tsKvgKn11DVr7s8wa6MzaPPQnqAUpXxFCCH/L03ucr2+eDjx923IaV9o7h0F9bK7lF9zo0eP7Q4XL+0tf9GJ2fd0Ohp7fFbqKNYd6RV/MOR477l3W62nXHTzQ9n+YaLRd8/8s1wR8WyUhPK1XgbqZM2dywQUX8MMf/pCZM2d2u09dXR3/+Mc/+P3vf8+1117LLbfc0u1+S5YMLL1adM91kmOcH4IBZ1rmMcUxlnoaecvxIcusl/t8DX3RlXkSTpjXpzj5ki971HW9ibBgIZ5Yn50XIJM0ZqlJFOsyiijx6bn7yn2YhP/6jbhm2rpm4Ppbpa4mnRTiiCGH7i/w+JLrdNIO3RFUGXXVuoZBpBJHDNlqkF/X8jfbEyzpuIM9uggbNhzagUVZen6iEEIIr3AvfR1YX7ojxago5qjJlOkq5wCGYPe8/Z+kkki2GsSllnO9fr4slcFolUuDbgr4ahFwbyOU4uHAb5iycbPlB3xofkGBLmKt3sxJappHzyFEoOtVoG7Hjh38+te/5swzzyQiIoLp06eTmZlJREQENTU17Nixg+3btzNt2jQeeeQRzjnn+FH1goICnn/+eQoKCvj9739PWloa7777LkOGDGH8+PEe+cJONI26iUzSaKWdOOXboAlApkqjQldTTJkzTTyQxRBNOilEEO7TclFf8mY+XZ1uIAwbg0jFgsXnV7nSVQrb9W5iiSbQB2NpOgOLzbQSq73fjPhYEokjhQQiiAioQF0VtZRRSRmVhCv/9fDrYnN5WQy2HnWV1HKQCg5SQZSfG3nnGIOJUpFUHPpg2EKbT5pxCyGE6F4UkWSQigMHNmXz+PEbaWYvB4jQ4Witg/79da1qIIIINuudjFG5Xj9ftIokT+8BOktfA51d28lmELXUk0Ccx48/VA0mXxcRTyxPdLzIqLBhIVsFJUR3evXpOjk5mccee4yDBw/y5JNPMnLkSCorK9m9ezcA3//+99mwYQNr1qzpMUi3atUqJk6cyLp163jzzTdpbOwswdqyZQv33nvvAL+cE9defYASyqmjgcH4tgyxS9cfz2AYK75F76SMSqJV6GTTge+Sf9aYm1int3CQCpZav+Ojsx6mlGKiGk0plXyov6A1gCdDlehySiinlnpi/NyjrpJaDlDq1hfO3wKpXBPAplwy6oIuUHf4jb0vynR6EsXhYGEzgTPARAghTkRf612UUkEk3rmQ09W+opW2kPib/7n5Ffs5SARhPukXl+zWfznwA3UHKGU/B2mgiSTl2QxNgKst3+XX1h9RThX/1h/xofmFx88hRCDr0zCJyMhILrroIi666KJ+n/BnP/sZDzzwALfffjuxsYczv0477TSefPLJfh/3RBdLNPPUNOpoJFtl+GUNM9Ukoomigw6qdI3HG9V6ikM7nG8g/FEm7Cve7FG3xtzMqWoOTbQwgVFeO8/xnKJmEYaNSBXB046/cpt1qV/W0ZNGlxKQOD+WvqYc0aQYoFW38X/2V3jHXIUDk1utS/gfy5k+XVc77cxX0+nATppK9um5u+OaURdsgbom3cJcNRUDRQap/l6Oe6BOtwZVGbEQIrDtcOTzqOM5inQJTbQwWg3j+5Zvc4ZlYD2SrROW4ij8AN1QgooZjCXnDA+t2P+6SlK9NdhqqhqLXdnpwE6JrmCkGuqV8/iC1pohajCxRBNGGDbD8xmIR0olidlqMlYsGL3LpfGrZn24girKC22EwlUY49UoRjCEehp52v5XRqghzDAmevxcQgSiPk99Haivv/6a11577ajtaWlpVFZW+no5IeN983MOUsFg0rEqn/+zdlKaL8yNAOzhACkEZqDOtXeGPzOcvMFXPer+br7DPn2AOGI433K6T855pF/abiatbQ4Nuok8vTdgA3X1bhOZ/ffz5to4ulp3ZtRVU8fPHY87t6c4En0eqNurDzibWycqz5dO9FUwB+o26R3Oxs7Zhn971AFEupTfBkNLBCFE8Fint/Kq+W/n/Y16O/m6kO06n1ut/e+HbZ17J9a5d3piiQHFru20HhrsE+Ol9yJWrKzWnZ8D9ur9jCR4A3WNNPOOuRKAhcZsn5wzyYhnnd4CQIr2f1Z8T1xf1yO91G7jVMtsfsktXN7xE8p1Nffb/8i/wp7yyrmECDQ+D9cnJCRw8ODBo7Zv2rTpmJNixfFprZ0lT/6s3R+jhjNTTWKmmkiZrvDbOnriGqiLw38ZTt7mrYy6Ft2KTVuYrSbxLWOh33qQKKW4ynIRJ6uZxBLFR441fllHT7oy6sKw+bUHWwqJzFVTmaEm4MDRuTaXIGIUEVjwfbN/1/KOQCjXDOZAXYQOY5aaxAI1w+MT/frD9Qp7k8vAIyGEGKjWI4L/is62Jr+3vxjw7Vf8ocEH2f1nGSdzqprDLDWJfzje8co5fMX9vUmCT87p2v4jGIZJNOOaUee9vrizjMmcomaRTALbzF08b/+n184lRCDxeaDu0ksv5f/9v/9HaWkpSilM02T16tX85Cc/4YorrvD1ckJCvW7EPBSUSfLjh7MkFc+Xeitf6q/Zr0v9to6e1JuNztsxSpqb91WhWcxBKlint6L8nJo/yRjNp/pLvtEF7DGL/LqWY2k8FKDwZzYddP5tWKM38ZXeRr4uBNzfuDfTynpzi8/X5dpXLTkAmgS7T30NrkDdar2R9Xor5VT5eymA+xv3Jh38/YqE9zi0A3uQ/b4J/zpysqgG2umghPKQmTrqSV2Z9OC99yPzjGl8qbeyXm9lh5nvlXP4SqmucFap+Oq9SaSKIPrQBa46Xe+Tcw5Es8vrujdKX7sMUYO4z3YrVdRSTBl/tb9NbRB8f4QYKJ9/yn7wwQcZM2YM2dnZNDY2Mm7cOE4++WROOukkfvGLX/h6OSGhilocOIgjhqH4r9wpJUiaoNapBgDiiWUQaX5ejWf5ovR1LwdopJkEYhmmvN9c93iyGXToCqRiF/v8upZjqdcNRBFBNv7pHdklkTjnz0fVoSu19UdMf/XHIJj9+iBh2JjEaBK07ydWH8nG4T40HXT4cSV906bbnR9OkwMgMxE6/8bGEYMNKy1aSl/F0b7TvoyI1glEt03mt/Zn/b0cEUSON708kN+D+kspne2FkklggvJOb2GlFAuN2cQQxSa+CehBXz05SAUaTTrJjFMjfHbeHJVFFBFUUuuzc/ZXV+mrgUEY3u3hN1mN4W/WJ0gglk/5kgftT3v1fEIEgj41M+vo6OC6667j7rvvZtiwYf06YVhYGH/+85+5++672bZtG42NjUydOpWRI0f263iiM1AHUE8jEV7qEdAbaSQxlEwcaN5yfMgecz8Phv2YTBVYwbCuIEUdDUSqcP8uxou8Vfra9fNWS4Pfx6RnqBTnegL1jXkDzbTShkOZfl2HRVmYyCgcmM6yyDbamaLGkq8LiSKSbJVBnW4gwUe94hza0TmlWnVmslkM35feHsl16qs9iEpfq3Ut09V4mmn1ewC9i01Zqaczg7lFBe8HNuE9Du1w3q4JoGnUIvBZsRCGjXaXCyoKxRTGUqVrySW7X8dt/fNoaCw5vCEmk4hr8ga6XL8rMouZriZQqatJUN67KBZDFOkkk6FSKdIljFL9+7zob7W6nhlqIgd1OUl4fqLpsZiYNNPqs57TA5GmkhnPSCwYXm+DE6HCmWVMogM7g0h1y+YTIlT1KVBns9n45z//yd133z3gEw8ZMoTs7M4XUX/1uAoVVS4BimQf9VHozmAjg0IOv7nZofPJa99LpkrjZGPmgJr7elKl2/crMDJPPMUXL+xVLn0z/N0HK9ltkmmt/xZyDB26w+vNm/uiVbWzS+9lv9nZJ7SOBjbrb4DOEt1yXUU1dSTgm0BdNXV8pDt7C55tnOyTc/YkWHvUVVLDBr0dgDnGFP8u5hDXUpiuSdtCuIpQEXRdUzpehpQQRyrSB92CdOGE0UY7m9jhnGwuDtuid7JBbwPwavAsWw3ib/yXAr2fA7qMUQRnoO5rvYuv9NcA5Bi+u/jVVZbcRAumNjFU4E5/3WrmcYBSMkjxyfkGqVQsWDhIBR/oL3xyTiH8qc+//RdccAFvvfXWgE767LPPMmHCBCIiIoiIiGDChAn85S9/GdAxT2QNNDFfzWCBmsEQlem3daSQyLeN08gkjXDCGEYWDu3gG7OAfzje4XXHu35bm6tKapijpnCamkOOCt0BJt7KqKvR9cxVUzhdzSXbj6XW0FnOeaaaxzw1DasfBiH0pMGlgX5sAEwY7grk19NIu+7o9oqkLwOeVQEYNHf9OQqqQJ1rAN2PF2xcRbr0qGuW0lfRjUh9OKtdLtmKvmg8og+d60WWSgnUuXFoB1+bu8lhMMPIYrzhvSqmFLcLqMH771DppyQI197ZjQE+hKlrfTE+en+rlOIsYwEL1AwGkSJZdSLk9SmjDmDkyJHcd999rF69munTpxMd7f7Lecsttxz3+ffccw+PPfYYN998M3PnzgVgzZo1/OhHP6KoqIj77ruvr0s64ZXocj7XXwFwrbrEb+tQSvF62P/ye/uLzm3/cXzMVp0HGlbYP+O7lrP9tr4uO8x81urNAPxG/dS/i/EwX2TUfa3zWHPo+/eU4d/fV0MZ7OUA+bqQSB0RcFcf3ScM+z9Ql6ISndkrFbra2V/EVaWu9tl6KlynqgXAlFII5oy6w/9u/i5J7xLl0oqhu581IWzK6vybVBYgQ1BEcDhyYIRrj6wKs5oAvHbnN0W6hI8OZSCNVyPIUN7LgHKttAjUliS94Rpk9OVrahyHJ/LW6QavTegdKK2183fQl+9vbdj47NBn3l3mPqZYxvrs3EL4Wp8Ddc8++ywJCQls2LCBDRs2uD2mlOoxUPfUU0/x5z//mcsuu8y57bzzzmPSpEncfPPNEqjrh0Ar5XQtcf2h8V3O6biGSmoopNiPqzpsj3mAEQwhRSUynCH+Xo7XeCujrtAsZiRDGaTSyCLdK+foi1lqIjasNOtWqqgllSR/L8mp0WxkGFlEEE62H7Ndu8xQEyhUxRzQZRTpEppdgidDyMSC4TYZztv26gOkkcxgle7TZs3HE0cs49QIOujA1P7tK9gXtWYDw8gimqiAGZIjpa+iJ2GEOW9L1mX/aK1JbpsJQCpJ5EW87+cV+caRpdIRhDFbTaZEl1Pk0oZFwDP2vzGUTNJVCrdZlnr1XOmkMEmNpolm6nSDV8/lTVZtZTTDiFDhXpuS251pajx71QH264MU6zK/V64cSwutOOjsMeqrjDqAGcYEtundlOoKdul9TEECdSJ09TlQt3fv3gGdsKOjgxkzZhy1ffr06djtwZO9EEhaaSeFRGqoD5islC7RRhQlupxa6slQqewx95Nr9K/BrydorVFKU6arcGiTKMN748T9wdsZdR1mBxZloeT/s3fecXKV1f9/P3dmtveeTbYlm03vIT2EoiIgIqKIUgXBryKCCCo/BZEiVlQQQUURUUQRFFFEEQKkh/SebO+9952Ze35/zO5kJtnN7uxOubOZN6+82J255czszL3Pc55zPh9pJIYoQ1SvaZg4KsWAI2mdqoyTqOtQ3ZRSBcAHWBPgaCBSRXBQTpBDJsekhG6XtoGhiU0j/qmo65N+KqWGAazslSNueoOB5ogUAQ6NmGChXjU5P2txBmizBgiXcKKJJIJw7EGU9AzhP8JchqGhqsvx0T5oWQRnV1ViGGFYsDjduWOJZYfsJ4VEusTYLYP+poV2euhjpxxgtWmJT8+VoOIcnTScdJoNRkqopIhyEiTOr1rqYcrCQTlBNlNoEON+nzukiwxS6KGPeHxnTnIqmSqN/XKUTNKpps5v5w0RIhD4fZZ93XXX8dRTT532+K9+9SuuueYaf4czKaiQappoxY6dRD86E42VFyw/ZgArW2R3wO20u+llu+ynk26mqoyAxuJrfFFP16Ba2C/H6KbHMFU7rslpo+nSuE4WjGAmcb32MeKIpoxqfm3/M73DJKL81apyWAp5yP4L2uhgOQv4gBb4RCZAhDpZ4dNP8DiVupu8GCPpGa1F0E0vzbQ53V9DhHDFHErUTRjX776vKumNSLlUO5N0ABkkM40MmmjlvcHWuBAO3pNdNNJCJmk+F/531XNrDuLW167Bik1/VtMBZJCKjk4Z1RRS7tdze0I7ndTRRAddfk3UzVJ5RBBODfXs0Y/47bwhQgQCjyvqbrrppjM+/9vf/nbUY/zmN7/hv//9L6tWrQJgx44dVFRUcP3113PXXXc5t3vsscc8De+sxFVE3EjVREPM1wqYzjTiVRw6ga2qcE1CZKjkAEbiG3y95uc66MrQUn18trGRr3JYpRahIzTozQFYfhgZ1+SEEaqcErQ45qp8dHTSVArhhLNKLaZLurFjJ0HFYfLTG1gm1axTyyiVKqZoKYS7JMgCSQQnxe37GAhgJGOnTK+mSVqYQTYKxRRljO+m+3sZPEnPEP7D9XrjL7fpyUYL7UQRQQ99AR9j+ZOhxK4ZMxkkM99UgFm3kEEKKSQxoA8Qpo18XynRK/mx/TeYMDFPzeTz5qv9Fbpf2WLfzQI1c1BmIs3n1WEpJLJSLUKh0Iw0IPOQjkH9NX8bgWVqJxfBjZzobHIxHkv2YzfXdJXNdLKIUzF+0eUOESKQeJyoa211v2hYrVYOHTpEW1sbF1xwwaj7Hzp0iKVLlwJQXOxoV0tJSSElJYVDhw45t/NnmXGwMyR4GkMUESp8lK39T6SKoJs+jkoJR6V4sP00MH9fV3FYo1Sd+ApfrKwb0VkyQcWxXfYDUGSw1UdXDR0jVNSBo1V4m+wDgUgt3GmsAoBAqvgn2f8b20tsFofO6ROm+/xyzrEQjMmlnbKfl/Q3ADhfrSJLGUPTxvW9DFVLhRgWl6HAMSkJXBxBTKM0O1tfrdgCOsbyJ0OvebbKY1f43wD4+MBt7NIdc4l21XVGzdod+n5+Y/8rANlMmbSJuj/o/+A1fSMA71te9vn54rQYiqScZtqolFqfn88X2MXu1FX1txFYiovWuNG6RFxxTSL6M1EXpixYlY3tso/9csxwJnIhQngTjxN1f/vb3057TNd1vvCFLzBjxoxR99+4caOnpxyRRx99lFdeeYVjx44RGRnJmjVr+P73v8+sWbOc2/T19fHVr36VF198kf7+fi666CJ+8YtfkJ4+sgi+iPDtb3+bX//617S1tbF27VqeeuopZs70nZ35eBERLFhYpRaTq6YGOpwR+YzpMrbr++iim7/b/8cV5g8GJI5O6Xau9GUbVKB1Ivh6dala6lioZpFEPLPVdJ+ea6zMVjNYr5bTRz+10hDocNywYWeFWogZk2H0I1NUgrMvutllRXQI12SsL3jXvpPv2X9Fo7SQQya5ahqLtbk+PacnhLuI2/dJcCTqyvVqlql5tEg7OQa6D7i/l8FRnRjCv7guJ7UTvMLzgeTUa3Y/A25J8smIiDiT/66mNa4LYh3SdcYukzppIpooNBRpk7DDYghXkxbX98qXnKetpFrqAeiXAcNUzI+VdulkiZpLJBEsUAV+PXcSCaxVS7FhxyzGtS7ulC7OUQsIw+J3Y7nVaomzWKBBmskwSBdBiBDexispaE3TuOuuu/jJT37ijcONmXfffZfbbruN7du38+abb2K1WvnQhz5Ed/fJKpavfOUrvPbaa7z00ku8++671NTU8PGPf/yMx/3BD37A448/ztNPP82OHTuIjo7moosuoq/PeBUBzbRRKGVsl33DTrqNwkptIe/IDnbJIY4HcNW8hXZ2yH62y76zYsXZ25RJNQfkOO/ITpKUMfQQZ6gsNstu3peDHNILAx2OGw00s1MOsFX2urkbBpIUl4lLq4vD69AEp0l8Zyahi84hOcE7+nYOcYIEFcclpg1kKmPoHQJuVcn9QdL6elxK2S2HKaWKu8w3BjocJ+7vZXAkPUP4F9fK7z766dZDJgCeUiuNbr/3nAXVq67VzpEqwvmza5tiF2f+LBVKGd300Ek3R13GpZYPP4Np3UNo82/CtO4hLB9+xouR+x9XLdoo5Z9EnRUr22Wf4ecmI9FKB3vlCFtlD21+XkBIVvFskT3skP1OYysjUkMj78tBtsgeolWUX8+tKeX8fBm56jBEiInicUXdSBQXF4/JtbWvr48nnniCjRs30tDQgK6762ns2bNnzOd844033H7/3e9+R1paGrt37+bcc8+lvb2d3/zmN7zwwgvOttxnn32WOXPmsH37dqdGnisiwk9/+lO+9a1vcfnllwPw+9//nvT0dP7+979z9dXGKo2vlFo0FCkkMp3AuamOxhptKcvUfMqkil/b/8I3LJ8PSByurYixxAQkBn/hi9bXQ3KCSCLIIoMClef144+HSBXBBdoq9uhH2C/HDNX20+X6eTOARh3APDWTLKZQRZ2zgkVDY4Eq4LiU+HRQWipVfNX2PWKIYia5vBb2S1IM1oIejK2v++UYsUSTw1TymBbocJwEo95fCP9y6n2qijpmYYxq7WChRurRUCgUZsx0SY9hFtJ8hWsyMoqTiTrXNsVOujkTB+QYGho6Oj30OscOpqz1mLLWez/oADHSe+VLXKVlmqXVUItxY8E1+ePvbgiLspBAHG10uOnAGQ331lf/juPc2oN93AUSIkQg8ThR52r2AI7EVm1tLf/617+44YYbRt3/5ptv5r///S+f+MQnWLFihVcn1O3tjuqQpCRHxcju3buxWq184AMfcG4ze/ZssrOz2bZt27CJutLSUurq6tz2iY+PZ+XKlWzbtm3YRF1/fz/9/ScndB0dHV57TaPRIV300EcPfcT4eUXDE+JVLHbsNNOGGXPAkimdLuL+RkmceBPfC6sqstUUGqXFUK3WkRJBInGkqST26kdYapoX6JAA94mCv53DRiKZePrpZ4GaRT8DFKhcTJiwYqWFdjQ07GLHpLzfclEkFSxVcymSChJVnOGSdADhEkY+OZjQCMMS6HBGRURIJYle5RCSt2jGiTnCtfU1SJKeIfyLa6JuDjOolvpQos5D+hkgjhja6MTOAF2jJKgmA13SzRw1Azt2tyRQConMIJswLG4Ls6ciIkQTRThh9NKHIPzB9irLtPnMNeX74yX4DffWV/8k6tJIJpdpxBJNmwRfS3u93sRcNYM+GSArADI5s5lBC63EGbigQMPEHDWDTukmUfxrBJROMrlMJYZo2vHfnDtECH/jcaJu7969br9rmkZqaio//vGPR3WEBfjnP//J66+/ztq1az099RnRdZ0777yTtWvXMn/+fADq6uoICwsjISHBbdv09HTq6uqGPc7Q46dq2J1pn0cffZTvfOc7E3wF48O1tD/G4Imn5EFtLBs2v9t5D9Hp8n75WyDW33i7os4qVl7X38GKjbnk+ySRM15uMV/F5dYvUCKVvKL/1ziJOpeJglEGXLPUdBpooUFaCCeMfgbIUVPJVpkgoKPTRqdPzEKOSCF75Ajg0K00ItFapNOUZK4Yf8LWTidvy3YALlCnLz4FEleNuv4g0fsL4V9cXUqPUkyxVHIBqwMYUfDxpr7FrRJ6tEqyyUAbnRwVhyHdOpY7H49UERRTAUDLGaqRamnkXdnp9tgt9m/xGbmM35oe9X7AAcTVHdei/LOQE6OiKKMKOPPfwaiUUsWRwc9Xiub/BcVILZwTehkINEmrIRc1C6XM+R1M1PxbwRuv4iijGnBoTYYIMVnxOFE3UTOIqVOnEhvr/QTNbbfdxqFDh9i8ebPXjz0a9957r1ulYUdHB1lZ/mlDda/YMW5FHcAyNQ+bstFDH9VST7zyf6JOCaxVyzChkcjkaw3xZUVdjTSwQa2gh14KNGO0vQ5RoPJYqRYRhoUOl6rJQBNDNOvUMjQ0w7i+zlQ5LFZziJVoNrMLgBQSWKrm0af66aWPKqnziYtXs7SyXi3Hio05BjEjORXXhGowTHibXdo+Us4gnB4ITMrE+WolNuykq5RAhxPCgJy6nNQc0hvyiK32PRSoXCxidk5cz1RJNln4qvVkMs11Ucm95bJtxP2fs73Ch7VzOaoX0UAzvYMVv730Ya/chF63G2krRSXkoWUsC+pW2GkqnWgiifbjHCHY7qOn0jQ4VrFhY3YAKnwXqVn0qj6iiaRKag2ZqHP9u/p7Idq1HTmkURdiMuM1jbqx8uMf/5ivf/3rPP300+Tk5HjlmF/60pf45z//yXvvvce0aSf1eTIyMhgYGKCtrc2tqq6+vp6MjIxhjzX0eH19PVOmTHHbZ/HixcPuEx4eTnh4YBy2OuVkUsIoiYCRMGHmXXkfgBKpZC7+r1YpoZItshsgIIlCf+Ltirp6mvmfbAVgMXO8euyJkqMy2S/H6KOfBr050OE4OSTH2S77AUhS/m0NGIloLYpSqXJzWExWiZiVyVlhUCqVLGK218+9Rd/LNnFUZRdoxkzUxbhMZoJhwhtILZ2xsE+O0kqHoTVUQwSOU+9TZ0quhDidLbKHjbLD7bFgTIx4glWsbB4cxwEkcPLe6pq0a5KRJ/C/1/9OqVQRSYQzSQeOLhXrG5+DrhrnY/aYTEy3HPdS9P5nm+4Q3M9V/tMvdZXiCYb76Kls1fc65woztVy/nz9OxbJd9gFwm1zDYub6PYbRGNJgViii/eQmPMSpGoghQkxWPE7U5eXlnVFbrKTkzI6ey5cvp6+vj+nTpxMVFYXF4l6G3dIydsdBEeH222/nb3/7G++88w55ee5VPsuWLcNisfDWW29x5ZVXAnD8+HEqKipYvXr41oq8vDwyMjJ46623nIm5jo4OduzYwRe+8IUxx+YvuqSXWeQRraJIM1g1xaksVAWsUAtpopUTeimYzvd7DK6TAF9UDAUaX1bUBVI4djQ0pfER7XxOSBmN0oxVrH5r8TgTQ0LACcQZIp4hklUC7dKJhmKBmsUcNYMFOL6fzbRSqJeDlzubrx64kx7pJY9pzFX5htWINCkT0UTSTW9QTHj/Y9/EXPKJUhF8UHlXUsIbxBJDKx1uxiohQgzhmqjLIytkOuIhJXolBeRiw064CkNHpyMINcE8oYWTbuULmcXHTCc1pbNUBuvVMupoZpN9Fyn2FSgU52sr+UvY487thsaCaSRzu3YtD+tPoaNjQvPb6/AHdrE7368UH8hZjESwV9QJwnwKSFCxAVnUT3FLOLf5/fxjoWPw7xpLtN81x1NIZJmaTy999GP167lDhPAnHifq7rzzTrffrVYre/fu5Y033uCee+4Zdf9Pf/rTVFdX893vfpf09PQJfblvu+02XnjhBV599VViY2OdGnLx8fFERkYSHx/PzTffzF133UVSUhJxcXHcfvvtrF692s1IYvbs2Tz66KNcccUVKKW48847efjhh5k5cyZ5eXncd999ZGZm8rGPfWzcsfqKBpo4TimI8TXqcrVp7LQdII5YagmMpoAVG1FE0EMfSZOw9dUVr1fUSTMJxNJGp5vjknEQDspxppFBsVQy2wCtldqgIYHRksIpJFJONXZ09ssxzuUc8ga/nzFEUyTldOrdVFPHbG2GV87ZIM0cpxSF4vOasdyzTyWWaKzYsIs90KGMSrFUcoQikMCs/I9GrIoGcdcHDRFiCNf7VCmVlEt1AKMJPrrooZp6uul19hE3TuJWsE7pptxeQzIJtNHBYm0OM7Rs5/NZagqbZQ8mNNrocOo410qjc5sBfYBIwumlj0yVxpfCruP+vsfpoZdjUur31+RLWqWdZBJopcOvC6xDHT7RRNItvX47r7fYK0fopS8gnT9wcjE8nljaDZp4F4RwwgJilJasEtgthwCYIql+P3+I4KRcarCIiW7pJUNLNWzBgCseJ+ruuOOOYR9/8skn2bVr16j7b926lW3btrFo0SJPT30aTz31FADnnXee2+PPPvssN954IwA/+clP0DSNK6+8kv7+fi666CJ+8YtfuG1//Phxp2MswNe+9jW6u7u59dZbaWtrY926dbzxxhtERPjHLckTXK27UzF2Rd1MckghkSZaeV/fH5AYSqSSHvpIJ9lQFU7ewpcVdRVSQxudRBHBdLJH38HPLNRm86r+FpXUckJKA6Ir4oqIUCTl6Oh+d8QajfmqgPfloPP3FJVIPtmkkkQjLTyn/43nBv5GFJE0h++c8Gppp3SzdbDl9cNqPXdabpzQ8XzNAjWLN2ULRVQwIFbCDHytaHZrfTVeAn1IO7WXPmxiw6z8rrgRwsCc3vo6eZNMvmCnHKCbXuKJoX1Qn3Uyv4e3WL/J3/X/OX8/VfIlSkXyRdNn+IX9BRo52aFTLBXOn5tVO/U4JDKm4NDOzFIZHJdSWgxavTReWmh3vg9pJPvtvMnEY8ZMN71BpzvZI71OA45A3VOTScCEiXY6qQ9QYcOZ6JN+iqQcQVigZvn9/PHEYsaMDVtILiHEmLly4DYOSSEAvzI/xPXmKwIc0eh4bcR88cUXc++99/Lss8+ecbvZs2fT2+ud1RWR0SuGIiIiePLJJ3nyySfHfBylFA8++CAPPvjghGP0NZESzgq1kD4GSMRYyYBTidGiyVPTyGUqsSoGEfF7ufTQANbo1YfewLv1dNBFN6vUYlpoJ1sNr/EYSKYzjQJyiVOxVEt9oMOhh16no2GMZqzPW66aSjop9NBLMgnMJIdILZL5WgGt0s5RKcaOnQWqgFppIFOlj37QM1Ckl7NOLaOLHvI0/+nkjJc0lcQiZpNMAlVSx3RlXH21ZBKc94BAOGmPxkyVixU7Fkx0SjeJanJXMofwDNdE3TzyySBUHeEJQy3lscSQo6YRSTjaJGvfdMV2SpWzqxbaENPJJp0UuuhBx44NOwvVbDr1LmK1GLdEZpzmuGbOVzPRReiim3apmDT9Fq4apol+1MlN1OKxYQOCT3eyWdpYrZYwwAAzyQ1IDCkqETuOz7oRzRIqpJbztVU0SyupAZBdUkqxTi2jm56AVPSFCD7+Zn+TVulAQ8Pif4uGceO1SP/617+SlDT6l/V73/seX/3qV3nkkUdYsGDBaRp1cXHGTjYZjf1yjJ1yADBmNcWpxKtY/qdvBYFGWvy6wmcVK610ABi0dXPi+DLtuVHfwUE5gQUz0zXjJS5mankcHmwBnKEHvuKvw82R2VgDiRvMV3C//WeAQz/mMtMFAPw77BkAzu3/DDvlADtkPyeknEwmlqg7RolT/PtT6pIJHcsfpKok9uvHAKihwdBGCFv1vVRSSzrJfl/4GAvd9DpbVDpVz6R02w4xflwXlA5TRLnUjLhtiNMZcjmPI4YD4rhmJUtCACPyLdZT9Kii1OmdLvlaNnX2RrfH3pEdNNBCLDE0uiTqhsaCA9gopAxwtBNPlqtUk5u2cILfzjtWUw8j0kSr0/RqqTYvIDG4tikb8f2rkQbe1rcB8EEtMNq4ffQ5O0O6pYfoYZL2IUIM8f+sP6YaRxFHPwMckzN7KhgFjxN1S5YscZsMiAh1dXU0Njae1lI6HB/+8IcBuPDCC90eH6qustuNrwlkJIZWWhKJC4qWotVqCf2qnx76OKGXkmbyX6KuRTpYqRZixsJ8babfzjtZSCGJNWop8SrGkG3D+WSzXi3Hht0Q4sWu4vlGS9SlkczV2qUIjoqEU/+euUyjkRZSVRKlUsl5rJjQ+Sr1GlaqhVgIY44KjOaLJwSTo1jzoPyB0QxehnDVAOmSbt+uJoQIOk5tfe2ihz7pJ0KFByii4KFfBrAOVi25JsCDrYLJE3rF3Wwkahi3yQKVx3q1nK2y11mVBI7x8gyyqZF6lqi5JBDr1LJ1TWJpk+gi1S9W1qql6Ajpg22+/iBKRXKBtpo+6Q+6Kmq35GaAFvWTJZ6LtPV0SCc2jDcvdm1nDpQG8zJtAUrXMGOiUuoMoUsdwriYT0l5GbFSdTg8zuxcfvnlbok6TdNITU3lvPPOY/bs2aPuv3HjRk9PGbT0i+/dy4YGZEadpJ1Kqkpk02BlzXG9jHWm5X47dzOt7BisPjRyhYy38KaZRK/0sVG2A7AO//3NPCFai6JcaqighhRJRNd1NC1wLUCtclL30miCpUopfhf2/RGfv8VyFX8ZeJ1SqWKlPnE90YNS6PzuPa2+M+Hj+RrXaoBavcnrDrjeokd66cEhJZHsR0c/T3BNUhshgR7CWAx3n2qQZrJVZgCiMT4DYsWMCU1pbt+nOC2aRD2OVjpoklb6ZYBwFYZVrGhomJRBL2Ie0qt63cowIzm9oi5bTWGnHHBL0sHJRZcSqWSvHAHgS+o6wL3LQve6cEjgaKKFLbIHgFvUVX49d6Fe5qj2Fv8tyHuDZhft75QAJaHCtDCOSyllUkWyJAREKuhM1MlJ3bxAJTMjCHNWPtZJU8B1qUMYm1PvBzvtB7CarYYsPHHF40TdAw88MKETbtiwYUL7BxOz+i+iSd5HU75JFljFig0bmaQzV3nHmdHXfES7gD+q1yiTan6h/5Gb+YTfzu2aPfenTb0/8ZWZhBEGLmPhAm0Vb+vbqaKOBtVChh9XkE+lRhoIw0I2mcwLgioyVwrIY4EqoEYaOCrFEz7eYb2QNJLIUlPIwfgT8Bkqm3lqJuVSTTV1gQ5nRJqklViiiSeWApUb6HCGxVXsvUO6AhhJCCPimqibRgb1NFEl9WQHwXUiEHzL9hOesD+PCY2PciExRJNALLlMI1KLYIe+nxrqWdF/JUU4zIzetPzOr4uivsQuOgrl/NwM1/pqUiZes/ySROL4h/4Wv7a/hKDTJQ4H2KNSTCJxZJJOgcoDHBX5k5GeQVMEgKhhkpq+JEUlUim1NNFmuETTmWjR20ginjhi/FqFeCpL1FxsYqWdLtrpJMFAOuTVeh3RRJFLJnkqMLrDrpV8wWZYEsL/DGmGh2EhmkiKKOdl/b9cbbo0wJGdGY8zSCaTiYaGhtMeb25uxmQa24rdpk2buPbaa1mzZg3V1dUAPP/882zevNnTcAzNdJVFlfhuktdCO130UEM99sEPoNHJ1NLokm7CsBBPDJV6rd/O3SGdzFJ5ZJJGqh+18QKFNyvq6qSJApVLFhlMM6CRxBAxKop++skig69bf0CJXhmwWFrpYKbKpY5GYggu7Yw0lUSNNKChcVRKuHXgW+gyvmuMXezEqmjCCaOXfiyasVevAKapDIqknEjC2ahvH5NxUSBooZ1OuqmizrCToHSSyWYK08mixaXKNEQIcL9PtdFJAblUENKpG4k26UAQbNhpUe10DX7/NaWwiQ0bdjJJo40O7OhoaJPqe1dPk/MzE04YCSM4qp9rOocFpllMVRnU0Ug9zU7d2EjCSSSOUirJU1MBR6umaXBKZMwr6fjokZPmfcO1CfuSKaQyjQxmM5126fTruSdCI6200E4Z1ST40YDjVCyYqaKeTrqN186uIFOlUUg50yZoNjZeMlQqGaSST47x3p8QhiNJxZPLVLLIoJtekkgIisVjjxN1I01Y+vv7CQsLG3X/l19+mYsuuojIyEj27NlDf38/AO3t7Xz3u9/1NBxDc1COc1xKfXZ81wtToDQCxsMXzJ+hklq2yl7+rb/rt/PWShPHpZQaGvzqfuVPfFVRVy7VnJAyKqkjTRk3yfl98z08brmPcmr4s/46f9ZfD1gsR6SIw1JIFz1kBVkbl1KKaWTQSAvV1PF7/e9UMT4n3TKpZofsp5I6ZpHn5Uh9w3SVxfnaKhppZZccopbG0XcKAEbQ0hmNFC2RCmopoZIqA1cnhggMrom6Lro5TBH79aMBjMjYuI4pBzgpr5KsEpmjzaCeJoqppJ5mAOzoFFPh9zh9xZB5xiyVR3vEHi41n3fG7V0r7noHq8ve0XdSQhUJLtrOV5ouoit8PwtUAXOvn0baF/IJv7ODiK90EnHLcd+8GD/Q61JRFzlM9aEviVIRVFHHYQppI3gSdUbQXwP37hXXrhYjsF3fT6GUMYB1wmZj42Uq6dTRSBHlFMvkucaF8D6d0s0eOUIZ1UQRxQBWGmjmkJwIdGijMubW18cffxxwTOCeeeYZYmJinM/Z7Xbee++9MWnUPfzwwzz99NNcf/31vPjii87H165dy8MPP+xJ7IbnXG0Fm/T3+aDJN444tdLASrWIcMKYS/C01i3R5rJWLSOcMHbrh/12XtebbzA45E4Ub1bU1Ug969VyBrAaWrDVpEzMVfnkMpVOevib/b/ca/58QGJxTaJkqMC1T4yXD5nW0WBvopk2YomhSC8j2zTF4+O8ob/HBdpqrGJlrWmZDyL1PkopFjOLTbzPAFYu7f8cz4X9gIXa6Pc4f9JJN+vUcgSdLOX538Yf5JPDOWoBEYTTElr1DnEKrnepWUwnXSX7bMFpMjBN0jlCNIIQJZGsV8vR0ckkjRSVyGoWc5Dj9NDvbPWZLNUmIkIXjvbVsRo0uVaRDel5DiWvotTJ54Y0/FJUEggMYKWLHsMZQXlKL/3On/3d+hrjaiQURPqkNrGxRi3Fgpk0kgIWR4HK41x1Dv0MUKs3jqO0xncM/T3DsBCujV6k4wtmqGyWqwVEEk73YFt7iBDDUaxXsE4tQ0dnpsrhoO5YfOkU41+Xxpyo+8lPfgI4bpRPP/20W5trWFgYubm5PP3006Me5/jx45x77rmnPR4fH09bW9tYwwkK3tN3UqM38iB3+uT4xVLBDtkPwCfVxT45hy9Yps2njQ4OSyEWMfNzud8vYo6u7R/BVIHoCb6a4OzSD7NJdgGQr3J8cg5vMVPLJUtNYZPsollaaZF2kgLgOua6AhosZi+uPGS5k+kqiy/Yvk0zbRyVYi5gtcfH+bf+Hm/r2wB43vQjb4fpM0zKQvfgxO4oJezQDxguUVcj9Wwe/F7erD4Z4GiGp0DL5X05CIBVtwY4mhBGw7VL4zglHJcSBkKfkxF5i21OE4lCyikXh3zMF9U1XKqdx/W2rzkTUkMEi7vdaHTT61yAjFUxo2ztwNVsokccCboh3bbhEleu+sVN0mo4IyhPcf0s+Lv1NY6Tf6NgMhLaJvs4KsWEYSFDpQYsjngVy3vyPgBFlAcsjuEY+nu6/o39zVSVznEpccp/hAgxEkcpZvOgkeUGbYXz8aGFHyMz5kRdaamj3P7888/nlVdeITFxfBPPjIwMioqKyM3NdXt88+bNTJ9u3Eqd8bBCLaSNbt6yb+NCk+cT3NEo0auYwwwSVBxzteCpqAO41vRR/mV/h2baeN7+KjeZ/WMqsUjNwYxGIsFlFz8evFVR1yO9HNeLmUIaMUQxQxlfdPlq06VU2erooY9nbX/lq5ab/R6DRcwsVnOIIJx4iQlK4Zu5Kp/VagntdFIqVeM6RrPexmI1mxSSSA8ibchPaBdRKKX8Rf83YEyx4iaXSpkUg7a+RqsoPqKdT7XU00pnUImKh/A9rvepGKLoosdwbV5GQUTodJlYuCZhkklEKcUy5rKTA9gGq+ySVMK49UWNRqd0s5BZmJWZ/DGOQ05tfdVFp2+wymy4RN0SbR4VUksdTZRLNXkERijfa4iwUM0ihihi/ayV66rNGwyVK+CopuuVPpaoucxQWc7W6EAwR81gjVpCO13OhLxRGPp7xgQwka2U4iPa+ZyQUhqkhT7pJ0KFByyeEMZls30Xy9V8dHQuVufyKL8ETkopGBmPC2k3btw47iQdwC233MIdd9zBjh07UEpRU1PDH//4R+6++26+8IUvjPu4RmSnHKBOGikS36yE1FBPEeVsk73MNHiV06mcoy1ks+ymVKrGnQDwlHKpZr8cZbccJm6Mq7HBhi8q6ppoYx/HqKWBCBVGuApMmbsnrNGWUkoVjbTwqv1/AYnhEIXsk6MUSTkmbWxGO0YjX8thm+zlhJRSLZ5r1HXpPTTQzD45RifdQZWgmWOawf+ZPw2AGRPtuvFu6M20Ysbx2TJylXAf/eyVI7RJBw3SHOhwQhgI10TdkKvhgAyMtPlZTR/92LE7f++nH/PgevuQnpVV2enHih07ldSyX45S6KMxqL/ppY8DHGePHKZjjIkf1yqyPhk4RbPt9AqzKCI4b+e7/PblvSz67afo/9OF2LY9OvHgA0Qp1RyQ42yVvST5+R4xNM42Y6IjSMwkqqWePgbYK0fQvSgfMx7yVQ5bZS/HpIQq3TgVYyKCFRsAcQFuDVcodsth+umnUJ8c17kQ3mevHGGXHGKfHGO5tgBtMP1l0+2j7Bl4xrVUUFVVxT/+8Q8qKioYGHAfUD322GNn3Pcb3/gGuq5z4YUX0tPTw7nnnkt4eDh33303t99++3jCMSwpJNJMBwfFN0K02/R92LAzj3xSA6ijMB4KyGUKqdTSyB7xj06da+l9IMu1/YW3KuqaXbTWVmmLvXJMXzNT5fBx7UO8qv+PnRykWdr8nsgYet+MnEAZjWSVwGI1hwNynO36Po/3L6KcauqJIJylap73A/QxKSQ6q3zqDGgoUS41TpfHLIypUQewVM1jK3upp4kTlJFO8Gk2hvANrvepTJVGjTRQQS02sQW0msWInNo+2McANmyEYSFmcML8p7CfECFh9Kp+FvVf5nCMnCQViq5JtqgxGiNESBgWzFix0U2Ps+0Vhq+o+5TpEsKP3Y/W1Q70Il3N2LqqMK++d8LxB4IhfcJIItw0+fxBColEEE4f/bQFQeUKOMyv6mjEjInsAJuAxagozlEL2SOH2SZ7DVON3jjoN2/BzCI1J6CxLNJm85r+Ng20cIJSFlAQ0HhCGJOhSvQ4YtA0jViiaaeTVmV8R3SPR0FvvfUWH/3oR5k+fTrHjh1j/vz5lJWVISIsXbp01P2VUnzzm9/knnvuoaioiK6uLubOnetmTjFZCCeMZWoeVrF5/dhdejc5KpNE4h3iywa4eHtCqkoijhgyVAoR+KdU2bX0PtrPWh3+whcVdfXSxFI1Dzt28lSW14/vC8zKzFTSBweKERRJuV8TZv16P/PUTProJ08Fd+tMBinYsROnYmjXO4nXYse8b7lUs0otppV2sg1qdnAmklWiU8PCiJPdBGJZoubSTiepyriLNdlMYRrpJKp4yvVq1mvLAx1SCIPgmqiLINxpgNBKR9AtQPqaTunmHLWAE1KKBTMD2BjAygBWp5baFJUKChKBBWoWPfQa2qndE0ZLsg1HhBbhrP7pp58e6WO5mo8NO9OGcatMVPH0GUm1f4JkqjTCsLhp9fmLOBXjbDM2onTEcAzd523YDXFPnUIqc8knTkXTIC2kG+C7XCG1nKvOoZGWgGs4ZpNJOinMVTOo0RsgOJtXQviYTnEsFMSc0v4/dG8wMh7fje69917uvvtuDh48SEREBC+//DKVlZVs2LCBT35ydDHrm266ic7OTsLCwpg7dy4rVqwgJiaG7u5ubrrppnG9CKNixcpuOcwb+nteP3YRFWyW3RyQY46BWZChlCJRxbNXjvIv/R26/ODYM7QaHUs0mpo8AzFfUyKV7JHD7JdjJA62JgUDedo06mmmnGqO6sV+PXezameH7Ge/HHNOPIOVTC2dg5xgi+zhBGUe7XtAP8522cdxKSVfC672fHAkwoZK5F0rS43CP/WN7JUjhBNm6MWafC2XE5SxQ/ZzwEcV5iGCE9e67wR18v5ixO9boOmkm/flIO100USbm77OcImrLrrZJ0d5V9/pzzB9Ro+c1OQba+IpgpNSHX0M0EvvYAvUUXpV/xn2DH5EhI36DvbKkdMMRvyBq4lWsDgPu153kl2MRQLFNC2dgxwfHH+VBjocACqllvfkfY5KMVPV6clufzJLy6OIcnbIAf6o/yOgsYQwLk7zk8F2fMtgnVowJOo8rqg7evQof/rTnxw7m8309vYSExPDgw8+yOWXXz6qztxzzz3H9773PWJj3asyent7+f3vf89vf/tbT0MyLBdqa6hSDfTRT4veRpKW4LVjN0kr56uV9NBHgcrz2nH9yVptGRbdTD8DnNBLWWrybWtcHtNIUYmTVp/uVLylrlErjaxRSzChMUcFj+HLGm0pH1CrsWLnbX0bN/Jxv53bbbAXhI6vrixRc1ivlmPFRolewTnagjHt9w3rD6mSOuYwg1gVzSItsC0S48GkTFyuXUijtIy5lfxJ2x/4i91hQJGvcvhN2Hd9Eluv9DldaZMNaiQxRIHKZZ1ahiC0ivFbDUL4D9fvVR7TWKeWoaO7ubSfzfzHtpmv2B6hmnrCXZJOmaTRSbdzAjJcZ8JQ8q6fAexix6SCu9zEvfV1bF0Rru9LH/2nVOUNfwwrNizjjNFIdNCFbXAimqT8b6CWQiLr1XIEQQsSN61GaWWFWkisiiZHTQ10OFygVnNMlWBXOv+ybzRENXqTgZKZM1Q2F2sbOKoX0SxtAZG5CWFseqWPPJVFEnHM0xyt0c5EnRjfYd7jRF10dLRTl27KlCkUFxczb54jwdLU1DTifh0dHYiIw7Wqs5OIiJOrYXa7nddff520tDRPwzE0YcrstAMuooIVXrygVUkdG2UHANdyudeO60+SVTybZBcAx6WUpfg2UbdF9tBBFwUEZ2JzLPhiKPS+fpCtsheAmVrwvHeLtTlUUMcJKSVSIrDrdr+ZOri6cQZ6IDNRstQU5/d0vb6cT41xv5fsb1BNPVFE8G3T7UHZ+gqORPV22Qcwptbf/+pb2CH7ATggx/iV/pBPPneurbgpBh+YTlGp7B80FKmW+kmRNAjhHVwTdSalsVl3jJkaaQlUSIZir36EEioBR8JtiBoanD9HETlsRW2kinSu2PXSf1rbT7AxrtZX10SdDIzpGFaxTopEnXtCxf+LOSkq0Tl2iJbg+OwdkxJ2ygEQeMwceF3CD5vW82nbV7CKzdE+bIAPpmsbc0qAF6LDVRhZKoN/8y4Ax/QS1ppGl+EKcfZwQi/jkJwAIEscupNDJky2yVhRt2rVKjZv3sycOXO45JJL+OpXv8rBgwd55ZVXWLVq1Yj7JSQkoJRCKUVBwelij0opvvOd73gajqGZoXLIVzl0Sy8143BMPBNdrsYIQVohNo+ZLFCzqJF6jkuJT88lIidLXwPsUuQvvGUmUShlZJPJdJUVdCtV52sr0XWdKqmjkjpy8c8KabO0kk4KccQwTWX45Zy+YpbKY7GaQ500jbn1wiY2rFjJYxpztXzuMN/g4yh9x42mj9Nr76NK6vil/iJf02454/bteicxRDGAFQGqVD05eF+UullvJQ2H1ucMle3143sTpRS3m67jVf0tKqSG/+ibuMR0XqDDCmEITt6nEjlZ9dMUJK1yvsQmNr6jPzHqdiMlnFwf76E36BN1fdLPNDIIJ4z4McpwhLlkNvrpp1dcXF9HeN8sk8TEpF06mUIaUUQEZKFsSDpCRw+aVvZe6SWHqZjRfHLf9hSzMnOxtoGD+nHKqDbEIleb3slUMoglihQDVPN/SruEXfohaqSBp+1/CiXqQrhxglLHXIx0lmqOgiCLMoNM0tbXxx57jK4uhy7Gd77zHbq6uvjzn//MzJkzz+j4unHjRkSECy64gJdffpmkpJMinWFhYeTk5JCZGfiLojdJVPEUicMuuk5GrjYcDx0uibrYIB18TVdZHJITZDPFKTjrK7rpdSauYgIsfupLvG0m0a53kqTiqZEGrBi/RPhUYommVhrIZSrFUu63RF0TrdTTRD1NRKvg/H4Oka0yOSYlJBI35ptaM2000AK0MIcZvg3QxyzV5nLIVkgicfzJ9hrd0sOHTeeyWlsy7PbFVDgNKOYyg732w+SYvX9vaxp8jxtowRQECsr5Wg6F9jKymUKl1AU6nBAGwXVBKYE4Eoglnji68b1urdGpkYZB0wjHvTeWaOzomDFhxYYNGxGEj6hT7Jaokz7flNz7kS66qcJx7TCPMVmhlHI6jzpaX09qtY3UPmv2fGpkSNrponaw8tIXRmOjYVImppCKjh4QM4vxUEY15VQTThgRmjFiNqHRQhs5ZFIm1QFfmKujkerB76ERFu9XaAs5IMdII9l5rQxx9nBQP45JTPzZ/i9aaOdxy31uFeY1egPpKoUiqWDaoKbipNWos9vtVFVVsXDhQsDRBvv000+Pad8NGzYAUFpaSnZ2tqGFr71FsuvqsJcdj7pcHExjg7SibprKQBDKqWGnftCn5+p0rUAMVdSNmROUcXCwZHiumjnh4/mb2Wo63fRyjBKOSDEXssYv53X9vqcEeeurSZmYp/LZLYdp0rc42oLUmfsvXIWjg12jb56aSWv4Lr5v+xWP2Z/l+/Zf87T9RerCt552H9NFd2tJPUIxz+l/42N80OtxubafGGGwPBqzyMOKjSIq2CtHAh1OCIPgepdK0hJos3fSRifVXu5CCEYqqXNOPBXKbRwzxJkmGpHqZKLBVd8tWBlP6yvgkqgbW+trIJJavsC18yZQ7pwxKorjUuoXwzhv0Dm4QBBroHnCHDWDv/Em7RRxQkqZQWATda5jHCOM7yzKwmw1g0Nygv/qm9FFDxkGnkV8w/Yj3tK3OX+/j9tI46Q78i/1FymRShKJ4xLNkYuatIk6k8nEhz70IY4ePUpCQsK4TpiTc9L5b8GCBbz++utkZWWN61hGJ4kEVqqFWLCAeEva34EFM2vVUgSI58yaSUYlUosglmg66fa5dXuHdLJGLUUB+SrXp+cKJN4eYJZJNevVcvroZ44WPEYSQyzQZrFOLaNBWnjB/hpXmi4iU/leC9MkJtar5fQzQFKQJ+oAlqi5WDBjwUKpVI1qYFMnjaxUizBjDioDkuEwKRMmTMSpGBKJI40kslUmddLIlFM+Sw3SzDI1D4tYKKSMApXruP77gAGxsl4tZwAraSrFJ+fwJgVaHgtUAbHEYBN7oMMJYRBcF5SSXNoZm4KkVc6XuLYLRhPprNQFyGUqZVQDI0+Wp5LO6kEjKF93LfiD8SbqVmmL6JRu4ohBRGetWoqOkDDG9tlO6QqSejB33BeoA7Og79DGK6WTbu6yfhdEkazi+abliwGJZzSGiiACldgcjjlqOsvVAiIJp8qDavTt9n382v4XTGjM0LL5uvlWr8STTAJr1VKs2EgwyPxzuZpHDFFYMFMptYYwAgnhHyIknGymUEcT2UzhDfsmrjd/zPn8UOFAikpyFhkMjcsnXaIOYP78+ZSUlJCXN3FR+bKyMqzWyVummqji2SEHAJgi3k0OFEo5W2QPAPHKGBfK8ZCsEumUbp9bt7fQztbB92sJc316LqPgjYq6A/oxpxjwN9WZHZ2NyCJtNqu1JfzQ/gwIPGR9kqfCfK+FWSTlzvctIYi/n0OkqWS26w6DhBNSNqohS7FUOA0VruYSn8fnD+4w30Cl1PJz+x8olxpOSBlTcL+ul1DJ++KoDk4hkS2yB000+qSfCHW6K+NEqKbe+Rm7m5u9emxfEKuiaZY2DnCcY1Ic6HBCGAS3RJ1LZaivF++CAddkZSzRbok6159HMizqpY9tg0ZQPZOhok5Otq1GjuDYOhyFUk6xVJBIHBey2jl2/oL69LDba9PWoVe8S39/I63h8F6mjSulJ+hkLDpdOm8CJfmSohKcZbO/sL8AgIbG3ebPEa7CRt4xQHTgkHYyUkVdnpbFLptjXJEvOaNsfZK39G38Uf8HAKl6ktcSdVv1vVRQQypJhqlcS1FJbNf/BjjGqDl+krkJEVi6pId/yTvO34uo4A39Pa7nY4DDGKidTsD9PjmkXWrHjogYusvT40Tdww8/zN13381DDz3EsmXLiI52v5jFxY1thepsINmHg87J0lr3AW01B/UTNNBMr/S5tWp4k8nUincmvF1RVysNLFFziCZq1Coqo3K56UL+q2+mXGr4p76RJ+Q+zD4Wi3ZvOQnO1nRXFmizWKsvpYNuiqVi1O3LpIZFajYxRDNbBbdGnSuL1GzWqCV00EWRlLOBFW7PF+kVzCWfBBVLNFF00k0r7RTqZSwwzfJqLK6TsNgAVUt4yjptOSVSgR07HXoXcVpwxB3Cd7hp1Eksy9UCFIy52mky04+V5Wo+GhrJJGAX+6D2J3xeuxqbshFDNCu0hcPuH+7meBr8FXWu7btRHowVh6rJOulxaPUNHWOEZF/Yxb8B4GHrT9is76aVDhbq5Sw2zRlP2AHDho1lah5mzG5SPP5kmZpPI63s5pDTzCRVJVGklzPPZCw5lV69jwJyiVKRzDXQuGUGOSxT89FQ2BhbNfonBm7nbX07CodpSrpK5mHbL/iWeeKVjEPzWSNJbixUs1ijltJJF0VSwQdZG+iQQviBE3ops8gjgVhqaCRNJbvN91ulg6VqHmZMzHeRb3LVIbViczMdMhoez1YvucRRHfHRj37ULQM5lJG028fe0rJ+/XoiI8e+KhZsxBGDBTNWbLTo7V499tAkLYLwEQcbwUCP9LFD9hNHDIV6OQu9PJkdolYanD8Hc2LTE2SC7dZ90k+pVLNXjhJOGDkqOM1elmsLmK6y2C/HiCCMY1LCfHW687Q3cTd7Mc7K7HjJVVMd1WFolOpVo25fKlUckOMIwkwt1/cB+olslclW2YsJE6VSfdrzpVLJCcqwiY1rtct5U9+CGRM/tv2W35m+79VYOt2SwcFR6aFjd1YcNtMWsHasEMbBNVFn0SwckhP00U8/AwGMKrCICDo6/7C/xS45BMDF2rk0SItzm+vMHyNXO3PViGsVb/8kaH111TmL9mDcO5QgsmFzVkzByK6vQySoOLbLPiIIp0jKWUxwJerqpZndchhwT9r6k3AVxjYcVZ0tOOZBvdJPkZQzD2Ml6lpUO4coBGFEg5ZAkKBiOSjHGcBKvz5Al/Rgx86ztpfppJtvmb9IGx30ywBRRNJIC0f0QqdxSg99HJJCNJvGHaYbJtTW26v3OXUzkw3g+DpEjjaVrbY9KBQ/tz1Pk7TwLfMXDV0pFWLiHJMSKqjlOKWkkcxuOUQmaVh1KxbNQifd7Bm8BuapkzJrQ66vAFashk7UeVyzunHjRue/t99+2/lv6HdPeP3115kyxf+W4f5CKcVabRkRhFNG9YQTJ640SDPhhJFLZlBfiBZrc0ghkQ66OE6Jz85TPZioyyQt4I5JvsSbFXVb9b1skd0kk8AdpusDbgk/ET5r+gRZZNCPlWftL/v8fK5mL55MKIzKTHLIYxoa2piMAHbpB7FgZhGzSXcRdQ12Zqk8Z0vFvmHeh/1yDB2dbDK5zXQNH9M+iELxovzLrW3LG7hX1AVHMti1mjnU2hgC3BN1CuXUHpsMrZrjpZ5movsXsVG2Ox+bq/Kd7s5pJI/puhrBydbCvkmQ+OyUbkyYSCXRoypi18TEUBsUjF6VN1flM4VU+ujniBR5HnCAMYKZxFyVTypJzt8jiaCXPo5gPPkDV01II3XeKKVIGUyKNUsbf7W/QXr/ar5h/xGP2J+iijp+aHuG3IHzSRtYxbyBSyihigjCmE4Wq1lCDFEc4Dh/tP9jQrE0qzas2IgmklwDLd4vUrPZF/YqS9U8yqjiEftT1NEU6LBC+Jin7X/CipV8sjlfW0kcMdTQQAW1AG4LM64L2pZTKuqMjMcVdUPurROhpqaGzZs309DQgK7rbs99+ctfnvDxjUSMRJHLVBJUHPXSTIaXRL876aafAfTgzdEBkKemEU0k09U0DutFfNJHuSA7dpaoudRIA5n43kxgMlAldSxXC2iSFnLVtECHMyEWabOwYSeTNLboe8fkXDoRUlQi8ynAhGYYDY+JEKNFE6diWCpz6Zd+Luy/nk9rl/G+HKCbXn5v+YHzdXbrPUxV6UQTSSJxQb2QcCrpKgUNxTxmEi5hNEgzacoxYd6vHyOScKaQSifdLNJmk2yPJ4l4ooniFft/udZ8uddiiVQRLFCzsGINmkRdJmnMZjpRKpJW6Qh0OCEMgOvypUINVjm10ytnb6LOdaFniBkqm2gi0dCIJpJIbfTWzwjX1tdJUFHXrNqwi51GWklWY2/lzGYK88jHoiy0i0uibpRFtJkqB1BMI53/6pu5T24LqvtZp4uOYVyA7hEzyMaKnQjCsWBGEJaquVjFePrkQ21yvfQZbp6wQM0iSeLpx0ql1JJAHG10kEYy9w38lDoa0dDQccypY4gijhjSVDKLtdkctRcxjQyKxiBdciaG2gq76SXCR1JF4yFChTNbzSBKIggnjGQSKdLLmWIyTmVkCO8iIsQSzaxBw7qpKp1kEpivCqiVBmaQPaKhTiapzKcApRzGbEY2+h6XUNOmTZv45S9/SUlJCS+99BJTp07l+eefJy8vj3Xr1p1x39/97nd8/vOfJywsjOTkZLebnlJq0iXqcrWp/NO+EQROUEoGE0/UiYjzwxeom6+3uMx0AXdaH2GnHKTYXskDltt9cp5t+j5nJVC2ZpxVIF8y0frNvXKEXYNtarOC0PHVlXSVwhptKS/r/6Fa6imTamb60P13t36IBlrIYvJUDO8I/yu/t/2dW23fAoEt9j3O5x6Wr5A76LJVRIVTwHy5aUFAYvUVSimuNn2ER+1Pc0COcZ/1p/wy7CEAXrC/xsv6fwG4RvsomtL4ueXbvNz/X+qp5EHbk15N1B3TSzgoxwFHi1YwEKuiOUYJCNSHVrtDcGpFHUSpSBCcbVtnI65VAEN8yLSOm8yf8Og44a4VdZNAo26o4slTyRelNA5TBOIYCwwxknPswF8vRa/dRZa9j70mxc40Mx+9PIPv2p4yrFvpcHTKyc9RoMwkcrWpdNGFDbszWbxHjpAogdHMOxP1NDnb5Izk+gqOVr1DUgjAI/anAEgingaaeVH+BTgqbW8xXQXAe/r7nKudw32W2wBHh8x+OcbT9j/xqPmucS9UuxrcjGRiE0iuMl/CJtsueqjlqBSxnuWBDimEj6inmbdkGwAf1NYyTWVQShWlUkU5NazDfdErxq2yuotDnAABq5pkFXUvv/wy1113Hddccw179uyhv99x4W1vb+e73/0ur7/++hn3v++++7j//vu599570bTgrzQZjQ3qHA6rIkB4w76Jc7VzJnzMbnqdg9tA3Xy9yRWmD3JEL8KGnbfsW7nQtMbr5xhqs4oi0jERmKR4q/XVKlaO6cXkMg0NxWwV3Ik6gGXaPPbohxGEIilnJrk+OY8uOs2DWiwpBmqf8AbLtfnMIIcyqpwixWkk86r+P+7QbgCgUVq4QK2mmx4KfJgMDRQbtBWUSiV79MPskP3s0g+yXFtAh3SxTi2nSmqdeo5KKW7QruCYlKArnV/aXuTz5qu9EsfQNS2aSJ+Z8HgbN4MlHzt9hwgOQq2vp9N5SkVdBikkSKzHq/6u14XJoPk3jQwSVTyxRHtU2eYmei+wVi3FgmVEWQq9tQhsjmq0CBvMbQ9jKun8R99MjbWRJy3fnsjL8BupJLFeLUcQYiQqIFUjJmXiWu2j1NGEXey8Lduxoxvy+u9uOpcQsDiG43LTB0iVJF6Uf6FQJBHPAq2AfHLZJDtplnZSVRJxg+ZlcSrG+TPAem05sXo0NuwUS8W4Tb5qpYEVaiHRRDHLgAZzc9QM1qplKKBOQouBk5kivYzVaglmTKxUC4lxKVwa0jPtoY81ailmTEx1qZINc1nE6peByVVR9/DDD/P0009z/fXX8+KLLzofX7t2LQ8//PCo+/f09HD11VefFUk6gEtM53GN7W4GsFKnN/GIfGXCpfOdk0yofoO2gp/b/wDAWvtS3yTqBleBjLgC5CtkAjV1xXoFG2UHAIvULMMNWsZDpkqnFIcRwiG9kItNE2/jH452OrEPOnNNhvfNlblaPgu0mRTr5YDjWtRJN8/Y/sKXTdejlKJa6nh7cJXrWrxXQWYUzjOtoEQqeFH/FwjssO9nubaAd/QdlFJFLNHcZ77Nuf1XLTeR3b8BxGGycavpU15pnxqaVBhJ0Hk0XGN1XZkPcfZyaqJuSOC/nwF+Yn0WheJOy40Bii4wdLm0LILDeCVG83ysN5laX0WEt2QbVmwsUrM92jfF5bpTShUnpBQYeyXy0ILbTjnA+/aD/Nj0DSK0wJgzeMJhKWKrOCrfowO4QP30YNU5QE7fBuppptHFGMUouN6TUgx2X73OdDkm0XjW5tBYTiOZv4X9AoCf2Z4D4A7zDc7t7+AGt/0TVBybZTcAP7L+hmfCvzuuOAqljJ1yAIDb1bXjOoYvmanlsGXwdYbrYaNsHSKYOSrFzu6dq9TFxLkULg3lSeqlyXkN/Ky60vm8q3mEFeO14bvicaLu+PHjnHvuuac9Hh8fT1tb26j733zzzbz00kt84xvf8PTUQYlJmfiS6Vre1rdTJXW8q7/PeaYVEzpmu95JLlOJIJwcdWbXr2BglspjuZpPo7RSQqXXjz/Ux55IPPlajtePbyS8tSjwS/uLZJNJhkrhHtPnvHTUwLJBW8GHtLWUSw3P6a9wD755Xa3SQS7TiMDC9EloXHKf6TYu0y5AEF6zv8022UcxFST0L0MQrtQucm5rtPYRbzFHm8EyNY8GaaaIcvqkn2bamM10Fmmz3RJxqSRxv+lLPGP/C/XSxC/tL/J/5k9P6Pw90ksf/cxmOitNiyb6cvxGqkpkoZpFNz10n5KMCHF2cmqiLl9lUyuNlFPN/fafAYrbzdcFtZmRp3RLL3lMYwArF2qrOV9bNa7jxBLNPDWTPvoZEGO394xGJ91O0W9PF8AyVArzVQHlUu1M0lkwe9Rd8UnTxbypb6Fa6imhkrnkexRDIOgdrEo1Y/apJq8nXKitYbccpl4afa4V7Cmd0k0e04ghys0Awyh8UFvLM+ZH0NCYpjKcj7sm6EbiKu1iCrVyNurb+Ku8wZPyAOHK80RWkV5ODlNJVYkUGLCiLo1kzlcrqaTOaSgQYnLSK33MJAeFRqZKc3O2HqpKb3KpknVNvrt+9o1ebe5xoi4jI4OioiJyc3PdHt+8eTPTp4/eHvfoo4/ykY98hDfeeIMFCxZgsbhfpB977DFPQzI8eSqLA/IcWUyhXKonfLxu1UMZjuNsYGJJPyOQp6axV46SSOxpK8neoJ8BigcTgKkyeRwoR2O8FXVWsdJMO620UyE1rDEt9XJkgWGKSqVDuqmSOvKYxkH7MRaYPFuZHwuddFM2WLm3dhLqY8wzzWQeMwE4LqX8w/4WGprzZlcvzc5tg11DcyRmqlx2y2HSSKZH7+NNfQuRRFBEBUuY67atUooNphU8aP85EYTxD/tbXGza4GyPHQ8VUkumSqdMqlgm8yf6cvxGkkrgwKCuXs2gE3eIs5tTE3Vd9FA+OL4ZchcslSry1eReZHOlnQ5n9fc6bTmfNn9kXMeJUOEcHtS1ahuUYwhWdukHySaTdjo9riKOI5ZDcsLtMU807gDiVSzHpIRsplAk5UGRqBvSeRxJiy8Q9Es/5VJNLlOpknryDGRUVkuD83uX6IFZib9I1ZK4Vhtfl0KBlocgNNNOEnHskcOsVks8OkaX9NCr+mmSFqqkzqlLbCSUUvTQR500ksUUuvUeorWo0XcMEXTU0EAhju6eRBWPJhqRRBBDlLOrqY9+0kmmhXa3BZ5wl4q6foNX1Hncf3rLLbdwxx13sGPHDpRS1NTU8Mc//pG7776bL3zhC6Pu/+ijj/Kf//yH+vp6Dh48yN69e53/9u3bN57XYHjmqOloaJRTzX45OuHjdcjkan21KAuL1GyaaOMtfRt2sXv1+G6twmpyX7C9oVFXJBX8RX+dTrpZyORoex3iecsP0REOUcg99h/65BxuduBM7s/bXJUPKOycdO8eMiCByaGhORwpKpFoomigmc2yi09av0w9TcxhOo9b7jtt+xVqAf+y/IoBbLwt23na9sKEzl8hNRyXEvoY8IpBkb9IcWt9bQtcICEMw6murzGnjGm66XVWQZ0tdLiNWcZ/DXUdH7oeMxj5hu1HVFADwG/Mj3i0b8owY5itlj97dIw5OAoRSqnisBR5tG+g6Bl0TjZSoi5Ty6CPfo5RQoXUBDocN5poc/482fSFAT5vuhoNRSOt/NH+D4/336Uf4nX9Xbrp5RwWYFbj8qP0OQu1WXTRw1GKnYmcEJMPVx3bKCKJUzH00kcjLTTiaK2vkBrqacaKjSQX6SvX1tcBgyfqPP6WfeMb30DXdS688EJ6eno499xzCQ8P5+677+b220d37Pzxj3/Mb3/7W2688cbxxBuUzFS5zCKPeBXjEC2cIF24uphMjkTAfDUTMybCCaNCashTWV47tqsw86mTgMmGQnEJG9jKHvbKYRb0XUqelsU/wp522+4+68/oohsdna+YPkuudnJlrEQqWK+WUSpVTNXS/f0SfEqWNoXlaj4mNBKIZaN9B+ebVnr1HCO5DE1G5mr55JBJK+100k08sUQRSYHKJZxwUmTyDXaHSCaBbnqop5kL1CoKpYIsNWXYibVFWZitzSCDFPoY4C37NnSzjqbGp9XaxEktnWD6jkaocM5VyxnANmnuXSEmxqmur6d+f+armVRJvZ+jCizuY5bxf09c9z3VoCKYqJBactVUookikgjCNM9a9lJJYpVaRLFUooAsNYVU5VlrY77KYS75xKloOqTTo30DxVDrq5HMhqa4uO42uyTGjEAKiaxSi7FjnxRFEKcyR02ngFziVSzWcbTCV0gN6wbnBtMMPO7IJ5elap6jGluvZLE2J9AhhfABQwsR4FiMsLgk34aecx0rp7ok308zkzAwHifqlFJ885vf5J577qGoqIiuri7mzp1LTEzM6DsD4eHhrF271uNAg5k0lUw19RyWQipk4j3zrhVicYztfTc6aSqZ3+t/B+CElJGHFxN1ru+Xmhzv10iYlIkIFU7b4ECykHIK9XKapc1ZGdcn/fzI/oxzgrROW0YuJxN1h6SQTYNirN8z3ePfF+AHHrLcyXkD14JArTRyvumPXj3+ZPx+jsQibTb9DNA+WEXYSgetdFA9OLHO0FIDGZ5PSVEJVEgNXfTwtmwHYHPYyJVyU1U6y7T5vKa/TQttzsnneHB3pwuuZGgL7RySQixiNpxGUQj/c2rr66kT5ENSyPP2v3Or+VP+Di1gdHlpzOK6b1cQV9Tt04/wD/1tAB403+Hx/mkqmX1yzGmo0S5dHlcqztRyOUwhuuj06sHhSDxUceJpm68vcW1bbjaYodBWfQ/V1JNJmlcMn4xGkpZAIy0cliKKpcLj/ffLUachxa1ecq/3BdO1aeyxHwYgzG7hCvOHAhxRCF/Q61JRF6ki3Krkhp4busZEEO52HXTVqBswuEbduK1Xw8LCiI2NZcqUKWNO0gHccccdPPHEE+M9rRvvvfcel112GZmZmSil+Pvf/+72vFJq2H8//OHILW8PPPDAadvPnj0xHSulFDeaPs55aiVpKpn/2bdO6Hj1ejML1SwuUKsMpe8wERZqs1inlrFEzaVEvGso0S09nKMWsEotJpspXj22EbnG9FHWqqUkEU8MUWQxhRdcytxfsP2TWeSRSBw5ZPIP+1vO547rJfzD9ja5TGOhmsU52sJAvASfMlflc5fpJmaSQ5008kPbM149/oBYWaEWslotMZxzmC+423wzt2hXcb5ayWq1hGgimUIaH9bWk2RAnRdvcY/5Fp6xPMJFaj0F5HGuOoc0zqyBeaPp48xRM5hOFl+3/WDc5+6VXs5RC1irlpI+yjmNxvnaKtaoJcxSeZRKVaDDCRFgTk3UTVGpZJBKFBHEEUM2U6iRhgmPm4KJDuliqZrHh9TaUa8pZyJOolmvzmGlWmSoZI2nuLpxjsfl2qRMXKZd4Ky4SCbB40RMuArjMu2CwYorHZHxaQD7C5vYmKlyWKUWs1zNC3Q4TvLUVM5Xq1is5lArTYEOx4mIOKtvJpPcy6l8xXQjH1LrmKGyecj6pEf7Nkkr56gFrFfLmYXxjCSGWKrN407TDeSTQ6GU84ztpUCHFMIHDGlwgmMxwvUeN/ScCRMr1WI+ql3gds0Pc9OoM3aizuOKOpvNxne+8x0ef/xxurocVRQxMTHcfvvtfPvb3z7NHOJUdu7cydtvv80///lP5s2bd9r2r7zyyphj6e7uZtGiRdx00018/OMfP+352lr36rV///vf3HzzzVx55ZWnbevKvHnz+N///uf83WyeeB/+Em0uP7X/DoBD+gk+YFoz7mM10OQU5H5AfXnCsRmBXDXNuVITaQvnC+bPeO3YHXTx/qBu1gfU+N/3YOFS83lcaj6PY3oxiwcup4seXrS9zu3m62mTDgop4xglgKMCCv3kxeuQXsheDqMjfEitm5DgvVGJUzF8yXwtj9l/C8Au+6FxXAlHpolWp339F5X3PsdG5TbztYCjtSq139FG3E0v+TL5HG9ducL0QcBR3fae/j7naueMOvm71HQe37Q9RgmVtOud2HQbZs3zD185tc5rWoKK8zz4ABJLNFtlLyZMFOrlFGjGHfCH8D2nJuoUijoanY8NaX4e1gsnNG4KJkqkkj1yGBMmMlXauI8TroWzVw7TRQ9tdHgxQv/S4mKEMZze3FjQxY51UItovFWKAwywXfYRQTilUmloV/cW2tkvxwBINNA9IlOls3GwAn2uGMeQo0t6nBP2YKtS94SbzJ/k3n6HaWOLvZ27zJ8leowyFAfkOEelmETiSFPGXSCcqtL5tOkyfmp/DoDD+olR9ggRjLhr1EVgcZnI9UgfjXoLhVJGD31En9L+H45rRd1JjTpddBSKx+2/p0/6udt8c8Ad5z2eIdx+++288sor/OAHP2D16tUAbNu2jQceeIDm5maeeuqpM+6fkJAwbFJtPFx88cVcfPHFIz6fkZHh9vurr77K+eefP6o7rdlsPm3fifJBbS1r1BIOSSFP2J/nTsuN4z7WUSkmlmhiiSZrklSILVAFXK5dyJv6Frayl17p85quxtnUiujKDJXNp7RLeE3fyG4O0SStfGjgs1RKLZmkEUkE7XRSTjVN0ko0kVxru5sIwshlGk9bHgz0S/AZU0hlmZrPCSllP8e8emxXLaCz6fMWq6LZFPYnXrH9Bxt2bjZ/ItAh+YU7zDdwBzeMeft1ahkt0k4DzVRQy/RxtPm7tgwF2+r/PG0mOfapVFHHMUq4lPMCHVKIAHJa6+spLYnTyXJIh1Do79ACgi46e+QICcSyTM13a9EZD8kqkS7pcWuXDzba9A5iiCKKSOKJHdcxvmO5gwfkDmJUJAPqzPpc5pVfR6/YiLSXoeJz0bLPB+Cz2pWckDIqpIbf2P/KI9pd44rFH7jJIxiosj+HTBaoWZRKJQfEu2OvidBMGxoaicSN654cLMSrWH5m/hYP2B7nOKX82v4X7jTfOOp+3dLDUSkmmQQ2aCsM3xqczRSmkk4n3Rzj7DIjOluw6jbiiSWScMIlDE3TCMPCAFZ66eMEjiRdBqmsUO7dYfHEkkoS3fS6zdne1rfzUev/IYP/fdR0IXPUDH+/NDc8TtS98MILvPjii24JsoULF5KVlcWnP/3pURN1zz77rOdReoH6+nr+9a9/8dxzz426bWFhIZmZmURERLB69WoeffRRsrNHXjnr7++nv7/f+XtHx+krl0kqHgsW0kkhVSVy3F7CLNOZE4Yj0SxtdNJNFz2keSiIa1QiVQSxRBNOOEkkUCTlLFCzvHLsDi8JMwcbFmUhRSUSSTgxRHHdwD20SycxRKGhkU4yA1hZruZTJOWU6zWsUUs4JiVEq8gJreQbHaUUFrGQTjIpJNKj9xKleac1qIse58+T3UziVM7RFrBV2wPAbC2wNzejkkg8YVhYquZRLOXjmhRoaMxRM+iRXpJdnKyCgTym0UU3c5hBi94W6HBCBJhTXV9P1ahroY1UknjX/j63yDf5vuVrk7qlvl6aWaRmUyeNhE0wSQcwmzzCCSNcWcZdwRtoOlQXXfTQRc+4q+HytZwxb2teeBMsvOm0xxeZ5tBsayWFRN7Rd6DL+A2BfE2dNDJPzaSfgXFrofoCi2bBJIoppBJPHHaxB7xiBaCZVnR0mmnDYlA3U2+xTJuHFRvxxPBf+2bmq4JRq5W36ntZqRbRQDMJ40yW+5MEFUcjLQxgNZwWYgjv0KE6aZdOrNjQNMd1eDbTGcBKKklU6NUsUXOplybSXUxsAMKUxekM69pC20wbOjrgSOZVSz1zCOxcxuM7THh4OLm5uac9npeXR1jYxAcVvuK5554jNjZ21Gq+lStX8rvf/Y433niDp556itLSUtavX09n58guT48++ijx8fHOf1lZw0+8bjZ9kkLK2Cp7+Ye8Pe7XMqSjkES8IW5w3mKmyqWVdqqo47h4bwXEW8LMwciPzN+gOmIzt5iuwoaN6SqLm0yfoDD8TT5h/jCV1LJLDnFUL+Y+20/ZInuwYec9y8ii+JOF6do0iqhgu+ynGM+FdUfCvYLz7ErUwWCFmXnsFWZnG7O0PKqoY48c5ogUj+sY2/S9HJViuuklSgWX9lSByqWZNg5xgi2Dcgchzl5Oc311qUK2YKY2fCtZKoNyqnlef5Xd+qEAROk/aqhnm+yllCqymHhnR5SK5ASlHJQTlFPjhQj9j1Gq1LOZwlptGbU0slsOU4Vx3YjLpJrDUkiRlBuq9RUgR5tGIeVskd2UizE+k+4ViAkBi8MfLFPzaQjf7jTC+qrt0VH3eUn/NztkP6VSxedMV/khyomhlHJqRAdzNXGIkTlplnOy+66ZNo5RwhEpYr8cY68coYYGZpLrtq/rfaTTpbjCNanbTue4TFe8jcfLBl/60pd46KGHePbZZwkPDwccFWWPPPIIX/rSl8647+uvv84rr7xCUlISn/3sZ5kz56RlcmtrK1deeSVvvz3+BNaZ+O1vf8s111xDRMSZ2ylPrRRcuXIlOTk5/OUvf+Hmm28edp97772Xu+46WQLf0dExbLJutspjtVqMCdO4LxyH9UKmkEaeypo0RhJDrNaWcK5+DmZMvGd/n0+YPuyV42qiWKeWoxASMdaAxdcMlafHqRhnkjJOxaCUYo6awRq1BBMa/7K/wxw1ndlMJ1/Lca5OTGbO01ZSI/VoaPxbf48FmncqOCMknHVqGSa0s6r1NcTYWKrNY4NagUlpvK8f9Hj/Hr2XeWom08kOyorqGC2aDWoFOjqJk7gyKsTYOLX1NZVEIginj37MmByGXmoGJVKJIDxse5I8Nc2jCqlgwnVsmOIFraylah6NylE5UCTlzMC4umoj4br4FcgqdaUUy9V8jlAEQKFeRrbJmPIzPfRyvlpJNz3kK2N9V+armTSoZqKIoEYaDNFqWiuNrFSLiCRi0l5bhlDKoQW6gNl00kWmSmePfpil2vCmI7+2/YUe6WOuyseExqwg0ZU9X1tFhdTQRz82sWGe5JWSZxu94kjURbok6mJVNIhD21ah2KBW0EU3BVqu276u3XWd4tDBbZdO3tS3MoVUagd1cptp8+2LGAMef2r37t3LW2+9xbRp01i0aBEA+/fvZ2BggAsvvNCtYs3VGOKFF17g+uuv58Mf/jDHjx/niSee4JlnnuGaa64BYGBggHfffXeir2dYNm3axPHjx/nzn//s8b4JCQkUFBRQVFQ04jbh4eHOpOWZyNdy2C77EYRyezXfs9ztcTy79ENsFUdr2Y9MX/d4fyNzrukciqzl1NDAfjnG49znleNWUc9m2QXAA17SvQs2htPRmqnlslX2Ao7KBSsO3ZZnzI/4Pb5A8DHTB7jV9i0A+uwDfM18i1eOe5RipzFKUpDph4XwPXO1fHro5X39IArFr+Qhj6riGlUr/xOHA+aV6iJfhelTuulhlxxCE80wrU8hAsNprq9aGn04pET0weeeCvsO37P9kgdsT9AgLRyTEvKZnJPpoY4J8E6ibqqWzma74350qZzHRayf8DH9jWuiLtYP8iXSVYd01yI9TajIFFTMFFSMo7pxikqjFIdb9VEp4kJW+zye8XBQTrBRdgAOcX0jkaTi2TY49ryWywMcjYNCKWOH7AfgK9wY2GD8xC3mT/JF2wMU6eV83/Yr/hz2s2G3+6v+Bu/qOwG4yzR284lA000PmwbnfuVSwwwDm7+E8BxnRZ3LvH5IOqOLHrbp+9gu+wCYolLd9nXVwh26vzxo+zn/1t3zUEZom/Y4UZeQkHCaa+pIrZ6u/PCHP+Sxxx7jy192uJT+5S9/4aabbqKvr2/ESjVv8Zvf/IZly5Y5E4ue0NXVRXFxMdddd92E44hSkXzedDWv2t+ijU526QdZri3w6BhFegXTySJFJTJXzZxwTEbjc6areEN/j3pp4iXbv/mkeWSzkLFytrcijsRU0rlWfZQ/yT+xYiOZBNaoJaQSfFU64yFOxXCxdi4VUuvmMjhRhi7sYVjOKk3EEGPnWtPlmOwmGmjmN7a/crtl7PeXYDaSGCJZJYKAjk4bnZO+1SjEyIi4J+qSVQL3m28jiQQ313FXQfwmAwyefcWfba8zmzzSVSof1NZN+Hiz1XRWqkU000axHvg2nvFgEo155BOnYojC963+/X/aAF0uLZkxmUTcchxwLLSsUAtpoc0QbVEj4dbKaTAXU9d4jDARBijVqyggl0QVT4EKjoqxiXKhaQ1P8yA/tP2abfo+brV+i19ZHnbb5pe2F6nS68giAzPm07S+jMwnTRdTL8000coz9r/wqOZ5cUwI4zKkLed6TxiqqAOcGnTxxGJRFrd9E4lnuZpPN71USi2z+i9CE8UMsrBgppl2UlQifYNO0IHE40TdeM0gCgsLueyyy5y/X3XVVaSmpvLRj34Uq9XKFVdc4fExu7q63CrdSktL2bdvH0lJSU7zh46ODl566SV+/OMfD3uMCy+8kCuuuMLZtnv33Xdz2WWXkZOTQ01NDd/+9rcxmUx8+tOf9ji+4chVU6mlgXDC+Ln1DzwUdidZamyl8y3SThMt1NBAiVQyQ5t8qwPztZk8aP85sUTzPduv2C2Hx1V56MpQWStATChR50QpRbyKxS4O4UwdnXWm5YZ3c/ImvfRzTErIZgpNegsp2sSTlBoaUUQQT9xZ9V6GGDvLtfncYXuYSML5m/4mtzP2RF2dNJFMwmCCy1gTsLGSTAImTCQRR63eQLIpIdAhhQgQp5pJAPw/8xdO226ouiyBOKrEuNpgE6FSaumhl3JqaZZ2ZnqhBW+mymWH7CcMCzvlAA3STJpK9kK0/uOElFFFHRmSEvB7ar7KYaccIAwLW+x7sJqtp00CjYAdO9FE0U2P4RZChuKJJ8YQ+mH9MkCP6qVK6qiQWrLHOCcLdnJUJp8xXcYXbd9GodhtP0SRqdyt9bdEKqilkR56+aLpM0GlP7xWW8Y18lXCCWOjfQc2c6j9dbIwoA8QQxR99Ltp1MUSPVgkEY1ddCIIH3ZBO0nFs0scerciQh/91NPEfFXAJ7SLeMD+BI3SwlQJfDWy34So4uLiqK93H1ydf/75/POf/+See+7hiSee8PiYu3btYsmSJSxZsgSAu+66iyVLlnD//fc7t3nxxRcRkRETbcXFxTQ1NTl/r6qq4tOf/jSzZs3iqquuIjk5me3bt5Oamjrs/p5yk+kTbLL8CUF4Uf7F92y/GvO+r9r/x7P6y/QzwIfUOq8IDRuND2prqQvfSipJHKaQn9mfY0CsEzqmW9vEWebCORr3WW6jJfx9OsL3cjD8X0F1E/YGS5RDJ7OUKk5Q5pVjForDEjwYnLFCBIaFahYXaevopZ+tsodu6Rl9p0EqpZZm2jChUWAw7aGxMlflo1A00koVdYEOJ0QAObX1dSQu084nX2XTRgd/0F/1R2h+5/u2X7FJdqGheN7yQ68cM1ZF84z5u+joHOA4z9uD770b0gkyQmVYkornJtMnsGLjAMcplPJAhzQsZVJNNz1EE0mYwRKJeWoaccTQThfFUhnocNgvx/i3/h499HGtdvlZJcUQpiwcDfsP4YRxmCJutv4/53N90s8T9j/QQy+5TOV75nsCGKnnpJPMtdrl9DPAPo5SJtWBDimEl+hWvbTSQS/9RLt0LqWSxABWWmijjCr66Gchs0/bP44YzIO1ak20Uk8TUUTwE/P/4+vmWzHhuAYYYSHB49Ryc3Mz999/Pxs3bqShoQFd192eb2lpGXa/FStW8O9//5tVq1a5Pb5hwwZee+01PvKRj3gaCuedd55b28Rw3Hrrrdx6660jPl9WVub2+4svvuhxHJ4Qp2Io0HJJJgErdg7rhTxt+xP/Zx69Yq9RWlitllAiFWSrKYa1hZ8IkSqCSCJIJpFmWkkigRKpYLYavz1yGsmcoxZixUqsRHOGucBZR4KLG1hKkFbnTIQ8sphLPnEqmgq9hjXa0gkdzy52ugfLsc82h+EQY8eiLEwni1SS6KOfL1kf5MPaej5lvnTUfZuljdVqCe10MC1IV/4zVRqzmU4//Txre5lDUki4WLjdcj2v2d+mUup4R9+OLsJ3LXdRECTi1SE851TX15EwKzMzyCFBxRFFJD16L1FacDkej4ZVbKxUi2ilnYXKO+ZGAIu0Wc4JzN/tb3K16VLD6ZaNxKu2/7FMOUTu56r8AEfjYAZZZJBCOOGU6JXM1YwRlytDTrmxBuwiyVaZpJDIHDWDaD+0Mo9Gi8tkPEMLntZOb5GjZTJFpRFBGDFEcl7/NUxRacwgmwu11RzXS5mmphgu4TsaQ6Z5U0knnDDe1XdOeqOQswVXp1bXApx4dbJAYj4FmJWJLO30oialFOvUMkqlEht2Zqk8OsVhOqGUYr1aTjc9hrh+epyou+666ygqKuLmm28mPT19zGXoX/nKV9i6deuwz5133nm89tpr/P73v/c0nKAkXsVSGrGRrL5z2S772Gk7QK/08RXLZ8+433bZ5xRg/bpl5OTjZOAi8zretx2gnS6OSymzGX+i7pCcYI8cwYyZcC3Mi1GGCHZmaNkctB8HAZPdxNVmzxcMXOlyuXnEBIngbojAMFXLoFF3LGz9Sf8nb+vbxpSo2yp7nPeBYHFfO5WZWi6HOAFAoZTzqu0tAN7Wt3OCMjftp4v0daFE3SRmrBV14NBk/I++CYBiKliA95JZRuAN/T3qaSadZJK0BK8dd4E2i5tMn+AR+1M0Sxu79UNMNQVHou6X+otOc6Y/hf0kwNE4yNOyqLU7dG0PcYKPcH6AIzqdoU6SQLrkjkSYstBDLztkP9UGaGN3M3A5CxesAQ6Hvw7AdQP38Ja+HQTMmLFhI5Zojof9J8ARjo/rzJfzTftjAPzU/jtuNn8ywBGF8AZuklYucy3XNtdDnACBa9RHhz1Gr/RSjkOLNEHiuM10jVODsY8+3peDAHRLT0ANVDxO1G3atInNmzd7bMywYcMGNmzYMOLz559/Puefb7ybnS9Zry2nRCrplG5+aX+RO803njHxGUkEa9VSdISpBMcga7zMVwWsV8vpZ2DC5cpOZxjOTsfXECOzQCvgC9pn+J++lSqp45e2F/m8+epxH8/duCRUURdiZC7QVnGndiN/0v9JO51YMHOf9ac8ZLnzjPtFEckatRQNLWiNX2apPNawlF0cxI7OOWoBeWoam/RdNNNKOGEIwjQy+I++mVv4VKBDDuEjPEnUzVP5rFKLMWGiThonVaKuVW8nXaWST45P3AnnawXk2adhw06pVHn9+L7CKjbWqCXEEGWYJMosNZ31ajkDWKnTm0bfwc+IiHMsYlQDtWSVSJ00OduaA0md3sRSNZd44shjWqDDCSgzVQ755BBOGDZs5KlpbDCtCLg25HhJJYlPahfzvn6AbumlWK+YlPruZxsjzbXyVQ4XqFUclSIshJGjMkesxL7Z/EkW6nNQQB1Nbl1Q67TlmHUz3fRyQi9jiWmuz17LaHicqJs9eza9vb2+iOWs44Wwx7hi4Ivsk6Mo4CHrk3zD8vkRy4vf09+nkRayyZyUba+uTFfTnLbas/XxV9MB9EgoURdieNJUMl80f4anBl4A4Le2v3Kr6VPjHpQMtZuAMVeyQxiHpdo8lobNI82axDftP6GKejbat9Nn7idChY+43zv6DjroYqbKDdrBc5yKwapsTv3Ri7VziVDh/EN/i176AYgmkhIqqdMbJ2WbY4ghxp6oS1DxbJd9AFTIZWfcNpiwi50jejEH5RgCzNEmNuYZjukqi1IcCbqXbf/hi6bPGNIEwZUe6WW77MOKjVVqsWGudzNUFltkDzq6uxuKQeilDzt2wLjjkGSVAOKItUvvJkYLXJzlVLNHjgDwvbPcGfR+y5e43/IlfmZ7jvf09zlXOyeotauVUsxUObzEvwE4oheFEnWTALe5lstiRKpK4m3Z7vy9Qmr4tXpk2GNcb76C6xneyDRBxTkruU9IGUsIXKLO42zPL37xC775zW/y7rvv0tzcTEdHh9u/EJ7xkPlOfmz+Bikk8X39V/xdf3PY7XTRnStPqQYQ1PU1+eSwUM0imQSOSNHoO5yB3sGKukgVStSFOJ08NY3PaB8hnhj2c4x6msd9rGZpI4ZoppFBNsGpHxbCv9xluYlfmB9gnprJUYrPaDBkFSsdOEr+jebk5ynPWB5mo+V5/mf5HZ81X8kd5ht4K+z37LC8xCbLC3zVdDOzVB46wvOT1DwgxPCuryPhOvZpdmlXC3YOSyEX2q53vhfzmOn1c8xW0/mW+Yskk8BuDvEv/R2vn8PbVEot4YQxlXTmGUSfDiBChfMBbQ0ZpHKEolG1sv1Nq3QQTSSZpJGPMZMS56gFjqIDNCqkNqCxlOnVpJJELtNC47ZB7jDfwMthPw/qJN0QV2mXsFDNIol4ntT/GOhwQniBVmknjhiymUKGOqkrWUAu8YNGfhbMfFz70LhcnOepfGapPKKI5JiUeC3u8eBxRV1CQgIdHR1ccMEFbo+LCEop7Ha714I7G5ivFVAsFXTQRQqJ1EjDsNs1SSsFKpc+6SdXTfVzlP4nSoukS3qIJYYYoqiVRqao8Tnv9gyK+0cZQLQ2hPEwKzMJxGFHZwppFOnlZJjGJyjcRgdddNNFN5aQDXyIMbJOW8ZdtkeJI5p39O3UyafdBh9D1Eszs1QefTIQ9PeBWdr00x5brM1x/tynBviJ/VmSSeBp2584oB/nfsttTg2REIFhi76HKCJ4076FHbJ/wserlFpiiCKKyFErphKJJ51k4onFLsE/1iyyl1NMBa/a3yKSCHrpQwGJWrzXzxWuwpitptNND6kkc1wvAYObWzbRRhc9dNFjuMowk2hoKPJVDlVSR5aBjH1aaKObXrrpRYxRhHgaZsx008NCCqihgbkELhFbTxONtNBOp5vBWojJwWzTdBqszaSQSLPeyucH7uMpy3cmfWfaZKaVDjroooMuotTJuX2ylogNO2FYsGFjuZo/rr/zDJVNhdQSSxT/07dwv9wWsIpuj2eS11xzDRaLhRdeeMEjM4kQIzOLPPoZoJ5mduuHht2mjGpnVvcDao0/wwsY/2f6NF+z/4AyqeItfSvXmi73+BgiEtKoCzEqc7QZdOmOCcFRKWYdy8Z1nEY56XqdbBA9nRDGJ1/l8IDpdr5u/yH10sxb+lauMZ0ugFtGNcelFICPqPP8G6SfWauW0hC+nUsHbuFt2c5RvZgN+jlcZbok0KGd1dxhfYhDUoiGxhq1ZNQquNEY0mM7Vztn1G0TVRz1NFNPs1MEOpi51fYttg4awwxRa9lKnOYbfdMrtA9yN9+jjkaesv+Jr1s+75PzeIsm1/upi0i4EZilTeff9veokQZOSBlZBqrEapST1aZGrbzOU9Nopo1m2iiRCiBw85qmwfcrhcTQnHaSUhz+FtdYv8rf9f9xUD/BvfJ/Qb/YeTbTyMl7Q8op17iG8G2YlAm72DGp8a1GzVS5rFPLeFO20CAtNNBMOoFZJPY4UXfo0CH27t3LrFmTR8Q30MzQsjlHLSCCcPQRBC/K9GrWq+XYsDNfFfg5wsCw3DSfD+hrqKSWx22/5yPa+R6vdvVIL6vUIsyYKVAh58AQw7NUm8cH1RoqpJZf2//M5aYLSVPJHh+nX6ysV8vR0YetiAoRYjiUUiw3LaDAnksrHTxue47LtAvcxG3BMXG9QFtFl3QzU+UGJlg/MbQKmq9y2CtHSVYJbNP3ORN1DdLM92y/ZLd+CBNmPmhay73mkRMPNrFxl+1RaqWBZmkjUXm/aulsQKGxVi1lACvxKtZrxz31sz4crlo0XS4aNcFKGCc14uaRz3xtFgkm31X0mJSJi7UNlEoVGoot9t2sNY1vUcofdEsv69RyBJ1MPxqohV35GtJagt5VjYrJREs8XTNwgSpglVqMGROVYqykcSddznFItsoMdDjDkqZOGiE1BdBQQkQoUHlMJ2tcY74QwYFJmbhQW8MJvYxmWrnOejd/C/sFKWeBlNRkRAmsV8uxo59mMjSUnBtvkg4cY/IN2jkU2yvQ0PiX/V1uMl85oZjHi8eJuuXLl1NZWRlK1HkRi7LQThfvy0EiJBxd9NNKNQ/IMae5wjfUrYEI0++s0ZaSq03lf/atAByXUlYqz9yGW1Q72wbFp0MX5BAjsUybzxwtnzftW0HgIesvyNeyPdbnqKDa+T39trrdF6GGmKSs1Zay3nQOv7G/RKO0cMXAF/mo6UK3z2CRVPC27hDK/Yq6KVCh+pXHw+7jX33vUCTlNNtbecx8L0opHrI+ya/1vzi322c7wi794Iji16VSxa/sfwYclRNz8L5g/9lAArGcq53DfZbb/H5u12ReJz1+P7/XUcop0nep6TweHMXx2Rt80LSWz1jvAmC9nMPacVaP+4Mq6tg8eD/9srreb+fVkgogqeCMncG52jS22/YBYLfr3BigSdxw1EqjcxxyozJOXK4ku+pNSuD0Jrvo4R3ZAcB5amXA4gjhe24xX8UxKeZJ+x+pl2Y+MXA7V5g+OCl0+M42jkmp8xqX5KNq6ytMH+Jb9p8C8Av7H4MnUXf77bdzxx13cM8997BgwQIsFnfXqIULF3otuLOJC7VVxOrRNEoLFVJDrnK3CK+QWuaRT7yKPasqw5aoeWSzhR56KdTLWKl5lqhrljbnz0ZrnQhhLBYyCwtm7Oj8UX+VMN3CLaar3PQPRqPJReD81FWeECFG4zrT5fRKH5v0XRyWQo7YirnNdA3mQb1D1wnN2XQ9+77lHv5mf5MqqWNB/0cIUxZsYmMG2QwwwCJtDnaxs13fx3Z9Hyu1RazSFrsd4/MD97NMzaObXhKIG1MFV4jhCdR7F0uU8+cO6QpIDN6kXe9ioZrFgFhJ8lOL4iptMZeoDdTRxMv2N85YhRpo3MdvxrqfzlczuUL7EDv0fRyRIgbESphBXHTdxyEJgQvkDCSTwAq1kD76GcAWsDiaxPjvVQjv8WnTR2iRdrbouzkmJTxq+yWfN11NhAoPdGghPMDVTMpXRTg5KpOrtUt5T99FpdRSJ00B6ZTyOFH3qU99CoCbbjq5mq+UCplJTJBootgth0ghkSKpIBf3RF29NHGcMsxiGpeDSbCSpTKooIYYoiiXao/3d7hwRtFFT0gzLMQZSdESsdodA8Ye+tDQKNLLWWiaPeZjtEsnZkzYsJ9ViZQQ3mGVtphVYYtZ3v9xKqWWWKIpk2ryVQ7g+FxaMGPFdlYlgj9h+jBP2v7ITjlAJBEMyAA27CxWc/i06VPcYb6BTw3cQbO0YcbEz61/YG5YvjOhNKAPUEcjZVLNfDWTd8L/EOBXFGI8WJSFCMLpo59e6Qt0OBPCpttoVx2UShWL1GzutNzol/NmqjS6VA979MNMI4MKvYZszZjtkS20u1zvEgIdjhvxKhYzJmpoIJZoiqWSOep0g5xA0CxthGFhAKvhEpxDpKhEdsoBANIkcC2nddJ4co5g0PcqhPdYri3g2bDvsbr/KiqklgjCecj6JDeZP8EMzZgOySFOZ0CsmDChUMThm4VDszKTqpKooZ4YojigHyPDtM4n5zoTHlthlJaWnvavpKTE+f8Q42OemkkcMTTRylEpdnvOKla2yh50dFarxRPquw42ClQuaSTTRQ/75JjH+zfRShc9mDGRRkh/IsTInKetpDj8LR423UkkEXTRw3FKPTpGkVRgw04eWaRIaNAXYnx8wvRhooigk25OyMnPYI00YMVGGBbifTQ4MSp/CPsRLeHv8xXTjaxiMXdoN/Bm2O+cbSu/tDzEY+Z70dD4q7zB6/q7zn1LqaKESkxoLFcLAvUSQniBZWoeGhplVCMyvKZvMFCnmiiRSgDyTlmY9TW3mj5FAnFUUcfz+qt+PbcnlOiVWLExhVSmkeG389qP/YWBN79E/0uXYH3zS9iP/WXY7RZps4kicvA6bZz5T7lUM4CVdFIMZXLhSjyxmAabi10rJ/1NNfV00UMUEczi7OlWOtv5e9gvaAzfQTrJPKY/y6qBTwb1/eRso1SqsGMnh0yfGsDcYLrCmYP4rf2vPjvPmfC4oi4nJ8cXcZz15KlppJDIbDX9tJtWqVRzjlpIJ11MU/4brBiBbJVJHDGEY6FEKmmSVo/KXIdaxWzYSdRCtushRiZChTOVdGaqXKaRThzRvGR9g1ds/0WA2y3XsVZbOuL+xXoFU0glQoURTRQm7exJqIfwLvlkk00mySqBvfoRLjGdB0AnDgF9h5D/2XU9m6ocYvJxKoZ4LZZMLY1YddJcIEHFMUNlk0g8Nuw8a/sr89VM5msFlEglq9US2ukg6yyqSJ+MTCGNhWoW8cTyvn6QFabglFsZGucJQpKW4NdzzyOfROKYqXIM3UIcQxRL1Fxs2InRokffwUtYN90HXQ6DCHvVJuxlb2KafdVp2+Uylamkk6TiqZZ6v8U3GvHEsFTNo40Ow5paKaVYrRbTQx8JeM+UxlPapYs1agn1NIfMJM4i0ge/F8kqAREhkgiuGvgyL4U/EeDIQoyGiNA8aEAT6eOW5TlqBtFEsnRwgTAQjOuszz//PGvXriUzM5Py8nIAfvrTn/Lqq8ZdmTM6s7Q8Sqhkpxxgs77b7bnjUsJW2cNBOXHWTTI0pXGZ6XwqqeOwFPJt68882t9dfyJU4RRidGZpeRRSzm6O8A/e4m/yJn+XN/m9/W9n3O8tfSv/k63slsN80nSxn6INMRm50nQRdTSxRfbwO5fP3ZDTpUIRzdi1EycTd5hv4OWwnw8rAH2RaT0/snydZlp5V97nX/o7AByUE2yTvRyRYmZoWX6OOIQ3ucZ8GfvkKO/KTr5t82w8YCRcxybJfm7rnK5lU0Et78tB3tV3+vXcY6VJWvmPbGKvHCHJoA7NBVouhZSxQ/azWz8c6HCcvK6/xx45jBmzT6tNJsoAVvbIYd6W7fRIb0BiOCQn2Cp7KZYKcrSpAYkhRODYGv4XcrVpHKeU12Qjj1p/GeiQQoxCD7300Q/4XrvUpExEq0j2yGFe09/GKlafnm84PK6oe+qpp7j//vu58847eeSRR5yadAkJCfz0pz/l8ssv93qQZwOJKp6L1Hq66eHU22q51LBKLcKChQXa2ee2+yFtPW/at1JDA2/r24d1xR0JHZ21aikaWsj1NcSYmK6y+ZR2KW/p22inHVDEE0u3nNllsEYaWa2WYMbEHBVylAwxfpRSXKKdS4XU0ksf3dJDtIqiY7CiLpZoQ0/AAslSNY9Z5GHDzlZ9DwBb7bs5T60kXFlYpuYHOMIQE2GhNpurtIvZrR+iVKo4qB8PynFRrTSwXM0nlmhm+dkgLFyFcak6jxbasGLzaEzlLwr1Ms5RC4ggnDVqSaDDGZaZKpd1ahmC0ENgEk2nMiBW2ukE/J8A9pR12nLCdAv9DFCol7PIAz1gb9EkLc6fjf5+hfAN12qX0yldVEodz9v/zh3m6z0ykQvhX1qknbVqKaD8Mtf6mPZB0iSFARngFfubfMp8ic/P6YrHd+YnnniCX//613zzm9/EZDrZ2rV8+XIOHjzo1eDONnpVH5tlN5tkF616u/Pxg/pxtst+NskupquzrxrgfNNK8rRptNBGKVWUS82Y9y2ScrbIHjbJLr+5qoUIbsKUhU+YLqKJFqzYsWKjiVbe1d/HJiO7k+2RQ2yTvWySXczUQhIBISaGWZnZLLvZLYc5oTt06joH29Ri8V8bWLAxQ8smVSVTTAX/0TdTYavmP7KFd2QHXdIbEowOcqaqdJZrCyimkjKq+ZHtN2e8LhuVYqlklxxio+wISMWYrnQ2y252yH4qpNbv5x+NE1LK+3KQTbKLVJUU6HCGJVJFUEU9W2QP7+g7sOr+r7Y4lUbXxJPBDa2SVDybZTfvy0GOB0jjr1F87x4Zwthcb/4Y81QBTbRSQiUP2n4elPeUs4UOutgie9giu+nF96ZS55lW8ra+zXG/1Pf5/HynMi4ziSVLTl/dCg8Pp7u72ytBna2sUUsoULlEEs4JypyPH9OLmUIqS9Rc8jk7Jxn/z/R/rFPLyWYKV1vvHPN+TYN97BC6CYcYO2u0pfzT/Cs+q13JWpayRM1FQ+MLtgdG3OeYXso0MlivloeMS0JMmKVqHnPUDGKI4gTlWMVKKx3kMpVztXMCHZ6hudF0BQvULBKJ44fyG8IJYyY5rNaMWZkTwjM+Zvog/wt7jlkqj//om1kw8JFAh+Qx9dLEVDKYSU5AJE2uNV3OIjWbFBL5pf1Pfj//aBzTS0gmgfkUMNfAFerPWB7hI9r5JBDHrIGLAh0OlYNOlgXksUzNC3Q4Z2QeM5mvZpJIPMfFM+Mub1EpdUwlgw1qRWgB7CzmK+Yb2RT2JxarOfze/nem9q9HFz3QYYUYhiGtZvDPonUBuSxWc8ggNSDXKY8TdXl5eezbt++0x9944w3mzJnjjZjOWlJUIlVSRzaZlEk14BBNNCtHh3KLtBGtRQUyxICxxDSXJlocosJEcUg/Mab9NBTTyCCFxLNW0ymE5ySrBD5gXsNsbTofNq3ngBxnACtH7IXs04+6bVusV/Cs9a9Eq0h66WMAa6gtMcSEmaYyKJYKMkilRuoplWryVQ4ddDFA4Cs3jMwSbS6HpRAbNv5i/zcRhFFDA6mhxZpJQbaawjptGd3SSz/9mMXM/f0/5WvWH3BcN4775pmooo5q6iiknCkqze/nX67N55AUoqOzRd9DrTT6PYYzYVU2YonmKMVMV8atUF+nLaNN76CLHlJUIi0u3TCBoFyqma6yqKKOaIw9X5ihZXFMStFQvKVvc6sG9AdW3UqKSsCKlVbaQ+O2s5h52kzO0RbQzwADWEkino8NfJGP9X+Re60/Zo+BNCjPdjrlZKIuxg+JulSVRKXUYsaEBbOzw8VfjDlR9+CDD9LT08Ndd93Fbbfdxp///GdEhJ07d/LII49w77338rWvfc2XsU56Zqnp9NDHcUo5qB8HoIFmtsgeamlktoFXFf3Bny0/o5ZGtsgevmt7etTtddHZru+nijpSVVLoJhzCY+4w38A9llsoCXubNjrYzWG+bvuh2za/sP2RL9gf4KgU00wbf7L8JEDRhphMzFJ5WLFRRDm79UMclxIOyQlaaD/r7wWjMUfNYCY5dNJDO5200Uk3vRTgXy2wEL7lQm01vfRTSBk/kGd43P57fmp/LtBhjYkhR3oNLSCul1NJ5yfm/0cL7eyUA7xuf9fvMZyJbfpeyqhGR2cq/k9kesI800waaeGAHKfQpRsmEPxO/xtHpIgeernG9NGAxjIa+SqHh0130kwb22Ufb+nb/Hr+RtXKDtlPA81kcXYZ9YUYnu1hL9EUsZPPmC6jS7p5Q97jJ/Znucv6aKBDCzGIa0VdnPJ9ok4pxUuWx6mijjdkE0/a/+jzc7oyZjOJ73znO/zf//0fn/vc54iMjORb3/oWPT09fOYznyEzM5Of/exnXH311b6MddJToHJZouYSTSRdg8L1lXotF2qr6ZAu5mpn9+RshspirVpCvTRTKGVs1nezTls24vZVUscyNQ8bdmYaeEU2hPFJ15LJIROASHG3A7ejE00kNuzkMpUpKjUQIYaYZOSqqc7r3T79GH0ywFzysWHjHC1kiHAmNKWxwbSCans9PfQRSQTpJDPXlB/o0EJ4kXPUAt5kC9300EkP8cSw236I3aZDLDPwd+SQfoIslUmLtBOlIjEp0+g7eRmlFAu1WWSTiR07v7K9yIv2f2LGzOfNn+Jjpg/6PSZXhmRLUkjEpPn//fGEuSqfFWoh4YRRqlexUlsUsFiGEsBhWAzrljuEpjRmqjymkYEFM7XS4NfzN7vo06VpIbmSEA6jHYA4FUOiFk+6nkw8cUxV6Txhe57bzdcFOMIQfdLPGrUUBaSrFL+cs0DlaB9D+wAAWRRJREFUsVjNIYYoBvzs/DrmRJ2IOH++5ppruOaaa+jp6aGrq4u0NGOvdgULWWoKx6SEXvqopxlwtEcMrTJdrj4QyPACjlmZ+ar5Zq6w3gYCj1h/wb/DfzPi9sellE2yC4BVARw4hZgcTFUZbJHdlEk137f+iq9bbgXgf7KVbnqJIpK94a+GKjdDeAWLsvAV801caf0S4DDGAbhUnceHTecGMLLg4HHLfTxuuQ+Ah6xPApCjMgMZUggv8ynzpXzJ/qDz91Y6aKWDm63/jxkqm3O1c7jDfEMAIxyeTfou/q6/CcBH1YUBi2OVtpgoFcExKaGaehgc5jfaWgKeqBtKohjdEAEgT01jpxwAQLNrXG2+NGCxNEsb4EhwBsNYpEDLoYo6AN7X/WtI2DT4XkHI8TWEO3eYb+AOHPeOqX3reFn/D9v1faFEnQGoo5GtsgeA27jWL+dM0RzSZE20UiKVfjnnEGNO1AGnXfSjoqKIijK2BkIwoSmNW7Sr2COHaaGdd+w7QzeSU1iqzWOuyqda6jkshYjIiIORIr2ceeQTr2JZpPxv+x5icnGn+QZm2LN4V3+fJ+zPc4f5BjQ0EEdlx3SVhaY8lv0MEWJElmnzySeHYiocq4ekMFcLVYV5SpyKCXQIIXxArIrmG6ZbsaPTK31UUkulXkufDPC+HGSPfoQ5agYfMq0LdKhu2LE7fw60du7/M/8fHdLFa7aNbGcf4HAOfcX+Xz5u+lBAYmqXTpJJZK7KZ2kADBFUVDrS0wi6DTQzKir9jNsv1ubwOe2TvKlv4agUsVM/wAptoZ+iPYlVrIRh4Ry1gLkqOO4TeWoaG9QKuuim2cX8zR+0STuL1BwiCCNHTfXruUMED981f5U39PdolBYuHvgc/w57JtAhndU0Bygv8g3T53lD3qNNOrjf+jMetNzhl/N6lKgrKCgYdYWmpcW/YqCTjblaPo/bfk84YZyQEhqlFYVCkJBrKY4y1yw1hSNSRBQR1EgDU9Xwg6hyqjlOGTax8bD2FT9HGmKycZnpAl6x/5dyqokgnBK9Ek0pmmihSMrJU1mBDjHEJCNDpZCo4hARBJiusnjIcmegwwo6jFhVFcI7PGD5stvvP7M9x5/s/6RBmjGhcUg/YbhEnc7JDpVLTecFLhDgKtMlAHTTyxQ9ld/pr9BJN0f0ooAl6gr1Mlppp1yqma8V+P384de859H2aSqZOdoMntFfwoyZo3pRQBJ1lVJLKx2USlXQVA+blZl6mjgmJUyVDGy6DbPm0dR03NTTzH5xmIN9Tl3ll3OGCD5uMF/BU/0vsE+OEivRPDTwJF+z3OJskw3hX9qk0/mzP/Mi15gv4+7+76FQ9Nn7+ar5JuKV7/VlPboafuc73yE+3tiaB8HObDWdTNKpoZ5DUogVG4IwlXRyCa34ACxT89nBftro4ISUMZXhE3V75Sg6OtlkMiskIh7CC3zS9GHe0DfRRgfP6X9jtbaYNjpJIp7FKuR6HcL7PG/5kUMXQ1kdFZwhQoQYkTvMN3Cj6eNcOnArB+QYT9r/yF2WmwIdlhuuFXVG+U7fYb6BLumhdKCS7bKfn9mf45vmLwSkffIYJXTQRQoJQdMNcZV2Cb9Sf6ZYKvmF/QVuMH/c7zGUSQ1tdBBNVFAtHK5WS6gShwtyOTXMINsv523ipEZdSqhjKcQZ+KPlx7xk/zffs/+KR/Sn2CArOFedE+iwzkrqaUJDI4k4kvz4vU1U8Txhvp97bT/iEIU8Z/8bXzZf7/PzepSou/rqq0N6dD6mQMtD0JlKOjv0A8xT+SxWc6iVRnK0UKIOIIdMkohntvr/7d13fFRV3sfxz7mTThoJIQmQhNCL9CYdFAR0rbh2imUtK4L6WNbdtaCuYgXXsvrs2te6i+1Rd20Iiii9Iy2U0CIEEkISSJl7nj+QkUgCAZLMJPm+feX1mpl77zm/GX5OZn45pQWL7UqG0qfc8+KIoaNpTSH7iXc0GlFOXkuTSg57Aci2OWy3O+lpOpFt95BqtGuYVL3met8XOS4xJopYomhFGjEmijx3H9FOze+sWpHDR9R5AqRQBxBpIkggnrakE2di+cj7FecG1fzayD/Z3fQ0p7DL7qk1I8MSnDgibQPakk4s0bjWrfGlMHb/XHgqoLBWzcBJNgkkkUC8iSHDZtZYoc6xhm6mA/kUEocGoUjFWjqpNHbjiSSCCMJ4uOQFBob0rBXrQNY12TYHF5dscmlUw2uYdnXaE4SHWKJ43/tFjRTqKv1bRMlYM+JMDIOc3mzjJ5baH/nUncUS+yMeHK2z87MxQeeynZ38YJfwqvf9cs+x1vKRO4Pldg1RVP/2zVI/xB/24XeBXc4CdwUL7HI2sY22jkZtiogEgmZOEqtYz/d2MevY7O9wygjEEXWH/CPkL6xgHTPtXB7x/q9fYpjnLmWBXcFmttPG1J7fq02cxqxkHbPsPLb8vEFCTSqzdlMt2ITjkJZOKuvZzFy7jFV2fY31m2G3sNiuYp3dRKyJrrF+pXa6KuhCujsd2cNevrY/+DZ9lJp1aC3LGKIINsE12ncvpxOtTBq57ON7u5j99kC193lCu75K9Trd6ctCdwUllODFpZNpQ3PTzN9hBQzHOJzpDGaX3UMxJZTYkiP+Z93LPt+H4dr0gUUCW0OiudVzJZ95v6XUeplvlzPQ9KSQ/TX2V2ARETm6bqY9GaYnpXjZYLfQg1P8HZKPi+u7HUgj6gDCTChXOaPZShYuLv/0fsgVnnNrrP8sm02uzSOdZnhw/DKiruTLiXg3fw37syG8EZ60oQQP++sxr+vpnEKuzaMUL+vdTaR5ajZ2F5eBpicuLgk2rkb7PhntacEA0wOAnbbm1jnPp8B3O0oDIaQSepvOrGMTLi7r3E0keRr5O6R6J40mP6/f7J9RsGc5Q8j17sPF5X3vF1wWdHa19lfpQp3rusc+SarE2Z6hXFv6Z9/9rTZLO/39ioPhW7sAgAw3k3aelmWOZ9tf1p6Ip/ZMAZDA5jEeHgr+H/7t/S+Z7AA4+NdYoolw/Lt7n4iIHJRikn2fEQZ4e/Bbzyg/R/QL72GFukAbUQdwY9AVdCs+WJxb4a7jfe8XvmODnF5M9Iyttlk2q9x1zLLzARhoeuIxnmrp52i8Gz+D/O0H75Tk4934GZUZt5FMY1/OrXTXc7qnX/UFWY5Mu93XfwMnokb7PhmtnObMtgsB8HpdKvViV4G8wwt1mnkjlZBoGrGRrQA86/0nA5wemnFYg0ptKV/Z77FYelPzG/YADPf0Z7L3GQD+5n2TSz2/qdYcCLxPCEJDE8PvPBcRycEv/m1oroXqf+USz1n0Mp1oRhLPe98+4vhGdyuxRHEKbejm6LWTqvW34Mn0N919X7I0alNEJHC0NS3oYU4hlSZkkOnvcMpw7eEj6mq+EHUsLU0qbwVP5VrnYtJNM/JsPtluDt+7i5lS+gJXlvyh2vpe424kkXi6mHaM99T8hgwno73Tgu6mI81IYr2t+enW+yj03a5NhadoE8kIZwCtTBqZbK+xfvPtL4W6BugPrXJsIz0DeTXoEdJowix3HleX/NHfIdUrOeRhf17j1V/fuzqYVtzmuZokElhp1/GpO6ta+1OhLkA1NYkUcACDYS2bSNFC9WWc6nRjvl1OKaXkse+I49vZSUNiWM0GImvRBxapHU5z+rLKrscAIQSTQO2ZZiIiUtelmSYst2vYTQ4/uuvJt4XHvqiGHD6izhB4ozFCTDDne4bT0kkl1kQTbSJpaGLIYS/5FLLIXcnbpR+Ta/OqvO9MdlBECcvs6lq3gVork8Yiu5ISSsgjv8b732dr7wixIkrIsruIogHZbs6xL6gCoYTQiIYkEFfjG39I7ZRikjnXM4xMdlDAfla661jprvN3WPVGls0mhSRiiKKR8c/3rggTTkenNT+xi1BCWWs3VGt/emcKUBM9Y9kXupg/eq7nTud3DHK0DfThGpmGpNKELLKZ6c474vhS+yMb2YqLSzvTwg8RSl1mjGFN6OcUhC0jL2wxX4e87u+QRETkZ0EmiAmeMRSwnx/ZwAJ3hb9D8im7Rl3gjag7ZFLQOKaHPMP0kGf4IPQ5NoXMpIRS1rKJ8aV/4APvl1XaX7Et4a/e18gljyYk0sf4Z2rTiWpoYkg3zfiJ3Xzt/lDj/e87rDgYZWpXoa6TaUs+haxmA2vZWCN9rrUbySaHMEJrpD+pG8JMKBtDvsbFspTV3FTygL9Dqje22O1sIYu97KM1aX6L43xnOM1IIoe9PFv6ZrX2Vek16qRmRZiDw7CjTSSYg3/hlLIGOT3JtDuIMGG8W/opFwWd6TtWZIvpZ7qzj3zamOb+C1LqrMN3YdYaFSIigaWNaU5TEgkmmC225qbUHYtbZo262vO7I9FpRCzRFPw8xfJf3v+QSx43B42vkvb/Ufouw0w/1tqNpJjkGt/RryoMND1JIZlwwnir9GMuDfpNjfUdRih9TBeCCSbKNqAWpRbppildTTtiiWGnu7vah5G41mU3e4GDf/gXOR5JTiNamVSMNRygiDOLfseHIc/Vyves2mSuu5Shpg/5FNLetDz2BdUkzITSx3QlhZ2EmVAWeVfS3dOxWvpSoS7ATQoa5+8QAtajwXfSpKg/WJjnLmcHu3yv1+fud2xhBw2JprGJ93OkIiIiUpNaOqls4ycAltgfGcN5/g3oZ2VG1Plhs4STkRU2B4CmBwbwlf2e70oXMdEztkqmDj7kfZ5scmhAOCtDPj3p9vzhseA7SSzqC0C+t7BGC3Wz3YXsYg/JJBDm1K5RYsmmMUvsagCG07/a+9vLPrx4Aa0xLCdmSehHXFH8P/zb/QyAyaXP8GDwLX6Oqm570/ux77v9bzxD/RrL2UGnMa7kDrDwAMG873muWvqp1VNfv/nmG84++2yaNGmCMYYPPvigzPHx48djjCnzM3LkyGO2++yzz9K8eXPCwsLo06cP8+YdObVS/C/OxPBA0M10Ne2xWJ4qfRWv9fKldw5xxDLI9Ga85wKNdhIREaln2pDOANODnqYTO+0ef4fj462lI+oON8j0oi3pdDcduaP00ZNq6yPvV5xRfCWNiGWQ6cWDQbfU2jXDYkwUZzqD6WO6cICiGut3lncerU0a/Uz3gNrhuLIOL5btttW/Rl22zaW76cippiunmNbV3p/UTWM85/EbM5TGxPO+9wvuLHnM3yHVWYH23b6P6cJY5zya05TF7o+sczdVSz+18zfhzwoKCujSpQvPPvtsheeMHDmSHTt2+H7eeuuto7b5zjvvcOutt3LvvfeyaNEiunTpwogRI9i5c2dVhy9V4PagayihlBz2spM9rLYbWGHXspw1fGPn0dXp4O8QRUREpIY1NnGstOtYYJfzo7ueA7bmCidHU1vWqDua10IeZQNbmGMX8Yl3JqOLJzC6eAJPlLx4XBt35Ni9rHc38607n9VsJN0044agy6ox8upXwH7m2qUst6t5oPjZGsm79TaTOXYxc+wi2tbCdZkb8cv00x12V7X3t4dcFtmV/GCXUEJptfcnddMIz0DeCnmSbHLIIJPXvR/yWMnfT/j/+Vybh9d6ybeFFNniKo62djv8u30Xp72/w6G505RUpwmb2EYWu3ik5H+rpZ9aXagbNWoUDz74IOeff36F54SGhpKUlOT7adjw6GsRPPnkk/zud7/jyiuvpEOHDjz//PNERETw0ksvVXX4UkXeCZpGd9OBUIIZU3I7T5e+TgRhnGq6coZT/UPoRUREJLAYY7jJM5amJLKCdXzpzvF3SAC+KXcATi39GB5sgvkm5E22hc7mMs/ZbHF3MMP9nj97p/Gc941Kt3NJyS084H2ORsRxlTOax4LvrMaoa8Zfg/7Mo0F3EEYYf3H/xlfu99Xe525+GYXWqBZO5WxKIu1MC8IJZbut/oERh4/ai9cadXISgk0w34W8zUgzkAIKudv7FJ+7s0+orZHFV9GgqAuNinrzf+6MKo60div73X6Av8MB4ErPaM53hhNGKG/Y/6uW4mrt/IRwHGbOnEnjxo1p27YtN9xwA7t3767w3OLiYhYuXMiwYcN8jzmOw7Bhw/j++4p/0RYVFZGXl1fmR2pOK08aWEMzkvBYD01NIs1MEmGE0tDE+Ds8ERER8YOWTioulh6mI8vdtf4OBwAX67vtqcUfw7s5HYg3sUSbSGJMFC4uMUQxw/sDn3m/Peq1m+12/s87g322gDhi8OLS1mlRZpMmf/G0vRDTqAOExWPiO+Bpe+FxXd/WaUFjE4/BEEsUz5T+kxJbUk3RQqHdz26bQxMaE08sSSah2vqqLjFOFAdsEek0I8KE8ZPNrtb+sm0OHU1rWpk0mpJYrX1J3dfN6UCcicVgaERDJpc8TccDoxh04DIWeivecTzfFvJa6fuMKLqSUQeuJt/ux/z830Mlz9P9wHmMOnA1Dxe/UCMF7EC1z82nmUkiySQQQjBxAfLdvqlJJMKG04BwUklmjruoyvuovZ8QKmHkyJG89tprfPXVVzzyyCPMmjWLUaNG4fV6yz0/Ozsbr9dLYmLZN+3ExESysrIq7Ofhhx8mJibG95OSklKlz0OO7cqgC1jDRpazhnl2GavtBl4P1loBIiIi9dVFziiKKGKhXck/vO/6OxygboyoO9ykoHF8HvIyuaGLKGQ/M+1cJpX+5ajXfO79lt+WTGSRXUkn04Ztod8GzOZpwYP+QuiYuYTdsInQsXMJHnT051Kei50zGe70I5d9fG1/YIPdUg2RHrTZbucp72tsZydNTSJ9nC7V1ld1Gus5j1Vk8B/3G76rhi+8h1tnN7PSrmO93UxjE1etfUn98GLwQ+SGLeQ6zyWsZRMZbGEey7iztOLvoivsWq4tvZtZdj5fM5fNbGOA6UF/urOaDFaxnq+Zy2T3ab5x59fgswksa9nEXLuU9XYzaaaJv8Mp43dBF7GbXDaznek/byxSler0rq+XXHKJ73anTp3o3LkzLVu2ZObMmZx++ulV1s9dd93Frbfe6rufl5enYl0N6+V0ZrznApa7a9hlc2hs4khw9MtXRESkvjLGcL5zBhvtFlzjMtu7kAGeHn6Nqa6MqDvcoYW9TzVd8eBQQimdi35Dvi2kj9MFL16SacxTIX9mp93NZ+53tDXp5Ng82jjpfl8YvKoZY+junMJCdyVwcA25tlTP2nHZh017jSW6WvqoCR1Na/qb7hgMW90sqnP5xiCCGGL6sJd9tDSp1deR1BuH3sOiTSRNSGQHO3FwyLX7OLvoOrLYRQxRXBk0mss957De3cyzpW+QTAK7yaURDUk3zQ6OKjaQ5DbmJ3ZhgXhiOWAP+PcJ+tFn3m8ZavrgYhnqnOrvcMpo57TgNHMqmexgljufA7aIMFN1u27X6ULdr7Vo0YJGjRqxfv36cgt1jRo1wuPx8NNPP5V5/KeffiIpKanCdkNDQwkNrV1bodc1XZ32PO/czwMlz/KNO59BTi9/hyQiIiJ+NsTTmxdL/gUWTnP6MgD/Furq2oi6w30e+jIAbQ6cQSbbAXjf/QIAg2GKvY1VbgYf/7z+Um/TmUeD7/BPsNWsmUlkI1sBWGXXcxZDqqWfw9dbO8MTGGs3nYhWThrflR4cSdfMVvydqyossMuZaecCkKARdVKFJgWN840OPvSdNMfuZTkHl15YX5LJe97P2W53stiuAmCo6cN/Ql88oq1v3PmcUXwlu9jDeptZc08iwPzH/Yb5djkGw/ueijcQ9YdYE02iacQM9wcA1tvNnGLaVFn79apQt3XrVnbv3k1ycnK5x0NCQujRowdfffUV5513HgCu6/LVV18xYcKEGoxUTlS0ifT9iIiISP3WzrSkt+nMbnLJcP3/Zafsrq91q1B3yEhnIEvtj1gLEYSxy+Swxm4grqgXFksqSYQTTl+nm79DrTZtTYsaybv99gDtaIEHDwnU3o0RWpJKP9ON3eSSaXdUa1/7bIHvdhQNqrUvqb8OfR+NJIIutCOEYIIIIs/mE2HD6MEplJgSejinlHt9BGG+24Xsr6mwA461Lh1pRbxpSIQJ93c4R7jQM5I57mIKKOTvpe/wVMjdVdZ2rS7U5efns379et/9jRs3smTJEuLi4oiLi2Py5MmMHj2apKQkMjIyuOOOO2jVqhUjRozwXXP66adz/vnn+wpxt956K+PGjaNnz5707t2badOmUVBQwJVXXlnjz0+O36SgcUwiMNY5EREREf9qaVKYb5cTTBCL7EqybDZJppHf4vHaXwp1dW1E3SF//fmLylOlr2Kt5SHv85QeNpIwkyxu9VzJQ8H/468QK1T0SndsTgbgAg6mYUtCxx//mmmtTRrz7DKiaMAes7fK4zwkhzxWswGAEBNSbf1UtzAnlCyy2W53EkE4e+zeals0fh8HC3XhhBFkavVXYQlgv/5O+lTpq7+sNffzbP9BTq8K1+eM4JeiVCEVT31d4a6lKYnkmQI8ODQz1TsitSZZa1nMarx46UYHf4dTrgFODzazjTBCWeCuZLm7hk5O2yppu1a/Oy1YsIChQ4f67h9aJ27cuHH87W9/Y9myZbz66qvk5ubSpEkTzjjjDB544IEy01QzMjLIzv5ld6GLL76YXbt2cc8995CVlUXXrl3573//e8QGEyIiIiIS2CJMOK8ET+Gqkj+ynLW86n2PO4Ou9Vs8ZUfUVeNCXAHg0BfQy4LOJsh6CCOUB7zPgoX7gyb5Obry2ZIC8P0buT/fP34RJpwuph1L7WpmufOw1lbLWnyHf4E/fARObTTBcwV3lj7GYlbxf94ZjAs6v1r6OTSiLlqj6aQGHe9gkvDDR9RVsEada136FV9MMQd3lp7oGVunlhPYyz7fchHxJta/wVQgxkSRGTqLQUWXsZAV9Cu+mJzQBVXyR4BaXagbMmQI1toKj3/22bF339i0adMRj02YMEFTXUVERETqgM6mHQnEUUwxH3ln+LVQ5z2sUGeoW5soVKSxifeNIElyE8BQL0YytTHNCcJDBOFk2WySTUKV91Fof5kSd/gInNqoo2lNO1oSa6JYYddWWz8tTQpJNCLe1N6pwlL3RZhfCnX7fy7Iv1D6Nu95PyPDbiGPfCIIowmNySKbIDzMdOfhtV485uAfgV4pnc4Kdz157KMBEcxwvyeIIPo53ci029lLPskmgRuCLgvI9d2zbS79TDeKKaW1SfN3OBVqbOJJpBFeXFqZNL525zLc0/+k2637vyVFREREpN5q77SklUljtl3AHruXXJtHrPHPDpn28BF1pm6PqCtPRdO86qJE04h/uf8FYK3dSDJVX6jbf9iIunBTu0fUDfb0Zn/pAZbbNSz0ruSRoNtxTNVOD/daLzPtPCyWXnSq0rZFqlLZqa8HC/IPlD5bZqfnPPLLXLPMrua+0qd5IPhmAO4qfYIc8o5oO9PdTgtSWMpqsBDnjQ3IQt1ucphjFwPQh85+juboHgy5heHF49lid1BUWqRCnYiIiIjIsVzlGU22dzcl1sudJY/xQsgDfonj8BF1Tj0ZUVdfdTHtGWh6sp8DbLBbGEzvKu+jLk19BTjd9CWRRuRTwFabRappUqXt55CH5eBsrECdSicCEG5DGWpO5QBFxBDF2OI7aE0a4YSSRwFFFBFLNIk0opgSYogig0ymez+jh+nIc+6bNCCCAvbj4tKAcCyWZiST7jSj2C0hjhiiaECuPbKYFwgO39U60EfAdjSt+YPnOj5yvyLb5nBl8R94OWTKSbWpQp2IiIiI1GmXBZ3NH0ufIItsdrs5tC1pwe+DLsNiCSGYZ7z//GWh72q00F3hu13X16ir71JNMt/aBQBEeiO4yDOKBiaiSvuoa4W6Biac79yFAKy1m0ilagt1Zb741+JdcqXuC3KCWGxXkUseLWwK2eSQRz7tTAvWhX7pO++p0lcBaGvSOa/k9+xiD9NKX2EBKymlFAeDi2Uv+TQmjkVhH/iuTTswmM1sx3UtxbaEEBNc00/zqHbYXb7bjYj1XyCVEGdiuC/4Jv5x4F2yyWG3m0u+W0Ckc+JrYapQJyIiIiJ13r9Cnma93cztJY9wt3cqDUw4e9jLI6X/SzQNSKYx0SayWmNoTjNSaUIfpwuJxFdrX+JfPZxTmBH8GmNK7mCuXcbw4vHMCX23SvvIc/cRTywxRBFF9eZuTehs2tHSpLLF7mCN3cAw+lVp+zvtHhoQTgzRpFXxaD2RqhZvYsm1eb4iXRMSj5iiemg5gb12H7d4ruRl73R+YCnRRNLetGSCcwU9PZ1wMOxkT5lrbwwawyve6WTaHfyfO4PRnhE19twqY7vdSSghNKcpLU2qv8OplI9CnufB0udY6K6kTfEZbAudfcIbCalQJyIiIiJ1Xi+nE0Vu8c+LcIfzj9J3GeL0IY4YfiKbdqYlUaaad4L8+fN6MyepXq5RV59Emgj6ebpTXFJMA8JJII4vvXMY5qm64lM2uez++SfOxFRZu/7S3GnKztLdtCSVXYeNfivPPlvAbHcB33kXsdBdQQsnlbuCr6OZSarwmj3kUsB+CthPmAmt6vBFqlQrDhaniigm1SSTbXOIpfz1VWNMFE1NY0opJYRgDIYDFPHb4FG+c9JoWuaaNiaN3TaHtjRnm/2p+p7ICcojn3TTjC0266j/XweS7k5HSigljBDSTTNmunMZ6jn1hNpSoU5ERERE6oV+phu/91zONO8rLGcty921hBLCnc613B184wn/5VukIptDZ9K6aDif2dksLFnJVs+3Vdb27p8Xlm9AeK3fTAKgNc3ZRwE/kkFje/QRp0vsj5xfcqPv/tfuXLp7O3J10IUVXpNtc323NfVVAt15nuHcUHovAFttFgDXey6t8Pzfey5nQtAYHih5FoA/Bd1w1PbbkM5e8tnLeha6K6so6qrzjTuf1XYDHjyk08zf4VTaW0FPklB8Kpvtdu4rffqEC3VVu5WOiIiIiEiAcozDAKcHKSQTTBCRRNDRtCbGiVKRTqqFYxwu9pzJRc6ZNDGNOa1oDJl2R5W03dKkMsD0YIDTo0ra87d4J5bfOqP4rTOSPJvP4KLL8Vpvuedm2z0MdU6lEQ3x4BBBOM96/8nzpW9V2H6RLWag6Ul/050k06i6noZIlejmdOC3zig6mTY0JZFOpi3JpuLdow/tkhxtIok2kcfcNbmVk8ZA05N4YvnE/ZrfFt/EEyUvVelzOFGudYklmgGmB8Od/oQ4If4OqdIinQZcan7Dmc4QmphEHi39+wm1o0KdiIiIiNQbv/EMpYEJp4RS8inkUs9vfOv8SP0WfPo0PD1vwWl1Lp6etxB8+rQqafeh4P+hpUllmV3DHLuYZe7qKmn3S3cOs+3CgJy2dqJeD3mMYkpYbFcx1y5ls91e7nnrbSZfuz+QTQ5eXArZzyq7nvtK/+pbYP/XNrONb+0CvrOLiDFR1fk0RE5aV6c9r4c8xjnO6bQwKZzjnFapPyhNChpXqd9pISaY9k5LdpNLPoX8n/s1r7jvVUXoJ20LWcyy85htFxJUCzdeein0Yea7y3jf/ZzHS1+s8D3paDT1VURERETqlb94buUf3nexWH7jDPF3OBIgPC1G4Wkx6tgnnoDOpg2pNKGQ/axzN3Gy3z1LbAlFFAMQSTWvrVjDLnRGssxdQyH7ecn7bx50bjninMN3cL3KuZBcm8c6u5nt/MTU0lfYY/cyOXhimWuyD7sm0HeRFDnk0Ai56tjsaIznPHa5e5hvl2Fw2G8PUGJLCPbzDrC/K/4z3ehAghPHBM8Yv8Zyop4MvosF7nI+8H7Jw6UvcLZzGi2clEpfrxF1IiIiIlKvnBU0hPdDn+OD0L+RfhwfnEVOVHOnGZlsZy/7+Nj7NftswUm1t49C3+3q3q24pg3w9GQjW8kmly+93x0x/TXLZrOPQt9Im4lBY3gz9EnO8ZzGbnLJZg8/2ewj2s0jnxAOFiAambjqfyIiVWBS0DimhzxTLSO/ezmdeCt0Kn2dbmxhB168rLeZVd7P8Sh1S8liJ8tYw2a7jSGe3n6N50T91jOKYILZzHZKKWWFXXtc16tQJyIiIiIiUo1OMa25P2gSFviORcxwvz+p9vJsvu92VB0bUZdEI8Y452GxLGE1m+y2MscfK/07L3r/hQcPY815tDbNAfhz0O9pSAyleFloVxzR7lq7kWJKaEEKcbb275IrUlW6OO0JJ5Qd7GKd3eTXWDLZwdqfY+hlOvs1lpM13jOaxsSTTyH/8P7ruK7V1FcREREREan33J8W4+5agc3LxESn4iScgpPYrUraDjbBtCCFhkQTQRjb7c6Tam8fBfQ0nXDxkmqaVEmMgcIYQzunBU3dxhygmNtKHuHPwTfQwzmFUlvKLptDGk3JZg+pThM8xuO7LoIwctjL7sN2eAXwWi/NTVMiCCecMBxH41VEDmlOU1JpQkMT4/c1LzfYLfQz3cgjn7Ra/t7W0qQQRwwpJolQjm9DDBXqRERERESk3iv+6BLIP2zzgsgmhP1uTZW138Zpzi72ALDAPXLE1/HYY3NZYJcDMIQ+Jx1boPmfoKvoZNpwTsn1/MfOYn/Jfv4b+hIb7VbedT8FoD0t+XPw78tcF29i2WZ/Yje5WGt9i+/nkMdn7mwARjgDa/bJiAS4Nk5z1rARLLRy0/way0q7jjl2MQA3O+P9GsvJMsYQZRow3y5nkV1Fod1f6WtVqBMREREREalmrUhjoOmJ+/MupSdjN7m+2/Gm4UlGFpg6OW0ZSE/WsJEsm83viv/EDruLVqSRTyHdnY5HXDPI9CKWaHLIY4/dS7yJBcpuPhGvjSREyjj8vangsPUv/SHLZtPXdCMID+1o4ddYqsIY5zzibUNKbAn3lP6Ve7ihUtepUCciIiIiIlLNIpxwNtvtZLKdWBtFkbeI5+3beK2XW4OvOq626kPhKdkk8EXYKzQ+cCqr2UCWu4tc9gEHC3Ivhjx0xDXFpoRv3PkAbGCL77X5ye72ndOojhY2RU5UhBNOJjvYbLfR0Ebjuq7fpocvdFfw/c8j6lo7zf0SQ1X6XdBF3FP0FLnkkeHNrHShTpPzRUREREREakBz0xSAXPbRsKQnfyqdyp+9U9lr9x1XOwW2kCQSSKcZcaZub4zwXsizjDAD2Es+HhzOdU7nueD7yj23FWm0MCk0Jp4tdofv8S12BxGE054WdDCtaihykdrjNOdU0mlGPoXsNHv8Fscau4FmJHGa6UuMifJbHFXFGMMZTn/SaMo2fqr09FcV6kRERERERGpAJBG+2y6WUkppTDzr3M3H1c5u9pLFLjaylcg6tuvrrw1werDb5hJMEB48lFBKK6f8dbQaOjFssFvYyW52HjaKLo98UkwSG9lGHHW7sClyIsJsCHvIpR0t2OJuP/YF1WCvu49mJpliSiihxC8xVIcQQsingLa0IMNuqdQ1KtSJiIiIiIjUgLdDprE3ZBF/8txAOs0AyCKbH8k4rnbyD1tHKtrU7UIdwIzQ18kLW0xe2GLeDp5W4XkJ/DKtNZtfpgcvt2tZYzdygCKamaTqDFWkVkoxTdhLPstZy0a2+iWG7exkoV3BTnaTUst3fD1cB9OK3eSygrWstZsqdY3WqBMREREREakBISYYDES7kSSZRjjWwYOHp0te43vvIlba9Tg4XBt0MZd6flNhO3k233c7qo6PqIOfX7dybv9aEgkMND0pxUvBYVPMsu0vU/kSnUbVE6RILZboxIP34O3sw9bArEmHF9cTTZxfYqgO7Uw6vUwnwgjlJ7urUteoUCciIiIiIlKDJgWNY1LQOG4quZ+/e98FYJm7xnc8uzTnqIW6fAp8tyPrwYi6ykpxkvnWLgAg1Ib4Hs+2ub7bdXXzDZGT0ejw0ah+KtSV2SSnDm360tppzvzS5QDEuZGVukaFOhERERERET+41PMb9tp9ZLiZFFNCJjvIp5D1djPNDwyhl9OZf4X89Yjr8m0hXU07GhNPnI0B44fgA1C8iWWEM4Bsm1Nmg44DFNHNdKApSYSZUD9GKBKYmplkhjh9yLY5ZJHtlxi2uDtoRwsSTBytTfnrUNZGzU1TBpve7COfbHIrdY0KdSIiIiIiIn7Qz+lOv5DuPFX6Kt+482ls4/nKfg8cXLtuobuCc4uux2tdOjvtuDX4ShqZhmxnJz/aDJqSSLgT5udnEVj22UIW2pUkEMdedx/7KOAnm802fsJjtES7SHlSTTIz3bkYDK3cFL/EsJ1dbGALq+0G7jeT/BJDdQg2wWSxizV2I03dhEpdo0KdiIiIiIjUe6HjFmCL9mFL8jEhkZiQqBrre1LQOCYxjp12N15cHir+G15ckp0EpnpfoZD9fOnOYWnxKl4NeYwfbQbhhNHP6VZjMdYWvZxOLPeuYRd7WMcm7i99lu3sJI0mPBt8n7/DEwlIUaYBLU0qm+12FrPaLzEstqsooZQUkmhDc7/EUF36mm5ssVlsJatS56tQJyIiIiIi9Z4JiarR4lx5Gpt4AFp5fpn2FU4YhRzcGGGFXcclRTfTzXSgSDuYlqspiSTSiA6mJUu9qwmxwXQ17dlHPp1NW3+HJxKwggmilNIya8XVpHAbSifTliKKiHfqzhp1AEmmEc1IJMqkM6cShVAV6kRERERERALIpKBxR9y+ovg2/u3+l5/YDfbgsXc8T/kjvIDW2kljvXcz6y00sYl8bL8G4E7PtRijxfxEKhL/84YS+RRywBbV6HqOe+0+/mO/AaC/6VFj/daUlk4aa72bsNZbqfNVqBMREREREQlwrUwqaTTF/fm/BBNHc9PU32EFnDYmnQE/f9HPcrPpZ7rhweEUp42fIxMJbKc6XQlyPeSRzzb7Ey1Nao31Pd37GYNML4LwcLqnX431W1PacfB9qcQU8Y1G1ImIiIiIiBxb6cKn8W7+Crt3MyY6FU/zYQT1uMnfYfncFzyR+4In+jaeGOT0ItgE+zusgNPcNGW+XU4RxUQTSZ7NB2CKud3PkYkEOsssOw+A9e5mWjrVX6iz1mKM4e/ed1lsVwHwiFP3/l9t46Qz2y7UiDoREREREZHKKl30DORvB8Dmrqd0z+qAKtQdcmjjCSmfx3g40xnMCruODLuZVJrQ2MTRmrRjXyxSj13ojOBbdyE/2V38r/sOIxhY7X1eXvI/zHB/IJc8AHqYjrSqg/+vxpgohjv9WWc2sEYj6kRERERERKQ+cXDYZrMII5S97MNrvUQ7/t0oRCTQdXU6sNKuJYJwimxxlbZtreU7u4hZ3nnM9S6hmZPMpZ7fsMluJY+Do14dDDvtHsKdsCrtO1AUU8Jum1upc1WoExERERERkTrjOs8lvO9+gYsLHOA6zyX+Dkkk4Blj6GLaM8cuYob9oUo3lNjBLoYVHzYS2IWX3H8D0JymXGhG8mDoLeTbwirpLxBND34Gb2gJscQe81wV6kRERERERKTOaO+0JIVkNrMNgEQT7+eIRGqHzqYte+0+drGbMSW3c5YzhPFBF5xQW9Za7ih5jHnuUjLZTnOakk0OJZTSgHDiaUgh+2lkGpLgiQMg0kRU5dMJKJEmgjyTV6lzVagTERERERGROiPBxBFjIsEevO+1rn8DEqklkpxGrHTXAfB/7gwy7fYTLtRtZydPu6+Veaw1aaxjM0UUs4e9AHwc/L+0d1qeXOB1jOPvAE7GN998w9lnn02TJk0wxvDBBx/4jpWUlHDnnXfSqVMnGjRoQJMmTRg7dizbt28/apv33XcfxpgyP+3atavmZyIiIiIiIiJVZaJnLKeargw2vTjD09/f4YjUCiOdQdzrTCCWaKJoQCghJ9TO3SXTuL74HlqTRjyxJNKIlqTS1+nOOc7phBJCEB4GmZ60MClV/Cxqv1o9oq6goIAuXbpw1VVXccEFZau8hYWFLFq0iLvvvpsuXbqQk5PDpEmTOOecc1iwYMFR2+3YsSNffvml735QUK1+mUREREREROqVK4LO5Yqgc/0dhkit0tVpT9eQ9rxw4G2yyGaj3UKJW0KwE3zMa3NtHg0I5znvm7zmfZ+f2A3A/Z5JhJqDBb9JQeO4uGgSRRzcrCKTHb5j8otaXYEaNWoUo0aNKvdYTEwMX3zxRZnHnnnmGXr37k1mZiapqakVthsUFERSUlKVxioiIiIiIiIiEujOcU7j3+5n7CKHTWyjNc2Pec0dpY/ypvdjoomkBSm0IJUOTkvuCP5dmfMeDr6NJ80fCbHBZJNTTc+gdqvVhbrjtXfvXowxxMbGHvW8devW0aRJE8LCwujbty8PP/zwUQt7RUVFFBUV+e7n5VVugUARERERERERkUDSyMQRRSQtTAoZdssxC3VFthgsJNCQXeQQb2IJMh7aOOlHnNvC+Xmqq4EE4qoh+tqv3hTqDhw4wJ133smll15KdHR0hef16dOHV155hbZt27Jjxw4mT57MwIEDWbFiBVFRUeVe8/DDDzN58uTqCl1ERERERKqZ07gLbkkhlORDcCRO4y7+DklExC/aOOls9m5js93GSruOkQw86vnb7U5ecz8AoAMt+TD0bzUQZd1VLwp1JSUlXHTRRVhr+dvfjp4wh0+l7dy5M3369CEtLY13332Xq6++utxr7rrrLm699Vbf/by8PFJStCCiiIiIiEhtEXLuu/4OQUQkILQlnX6mGx4cdttjT0/dfdgU1hhT8cAoqZw6X6g7VKTbvHkzM2bMOOpouvLExsbSpk0b1q9fX+E5oaGhhIaGnmyoIiIiIiIiIiJ+1dppzhy7GIAS13vM83fbXN/t05xTqyusesPxdwDV6VCRbt26dXz55ZfEx8cfdxv5+flkZGSQnJxcDRGKiIiIiIiIiASOSBPBmc5g2puWbLM/Ya096vkb3a0k05ie5hTaOi1qKMq6q1YX6vLz81myZAlLliwBYOPGjSxZsoTMzExKSkq48MILWbBgAW+88QZer5esrCyysrIoLi72tXH66afzzDPP+O7fdtttzJo1i02bNjFnzhzOP/98PB4Pl156aU0/PRERERERERGRGldEMRk2k1BC2HWM6a/b2QlYFtgV2iCiCtTqqa8LFixg6NChvvuH1okbN24c9913Hx999BEAXbt2LXPd119/zZAhQwDIyMggOzvbd2zr1q1ceuml7N69m4SEBAYMGMAPP/xAQkJC9T4ZERERERHxm+IPL8Ld9v0vm0k07at160Sk3upi2jGDH1jPZtawgcYVFOC81ss07ysUU0IfutLP6VbDkdY9tbpQN2TIkKMOwTzW8EyATZs2lbn/9ttvn2xYIiIiIiJSy7g7l0JR7sE7RbkH74uI1FMtTSqdTVsiaUCmux2cg0W5h0tfYK67FAeH8UEXEEUk/U0PCijkFNOKUBPi79BrvVpdqBMRERERERERkarV0qSx1K4GoIftyOWcwya7jQe9z/nO2e89QGfTlq/tDwA8EHSzP0Ktc1SoExERERERERERnxamGb1MJ4IJwsvBnV/XuZvpZtqz2m4klBBKbCnZ5NLHdCGEYNqY5v4Nuo5QoU5ERERERERERHySTALz7XIArAuudVnHRhbbHwHYzwEW2OXstjmsZRMxRJFktLZ/VVChTkREREREREREfEJMMNFEkkc+u8llg93C7aWPEkUDIgjHg8N2drKJbXSgJXcFXY8xxt9h1wmOvwMQEREREREREZHA0pZ0WpFKDJF84X5Hb9MZgyGaBgDEEUswwawnk8Ge3n6Otu7QiDoRERERERERESkjwglnvrscLCwuXUUpXjqZNswN/jeO4/BAybN8485noOlJAnH+DrfOUKFORERERERERETK6G06U2pK2WKzSDYJRJkG9DVdcZyDkzOjTSTRJpIYJ0rTXquQCnUiIiIiIiIiIlJGoonnO7sIgEy7nQgbzkehz/uOTwoaxyTG+Su8OkuFOhERERERqfeCuk/Au/kr7N7NmOhUPM2H+TskERG/GukMIiE4nv+UzsI1ljM9g3GMtjqobirUiYiIiIhIvRfU4yaCetzk7zBERAJGKyeNVqSRZXcBcInnLD9HVD+oUCciIiIiIiIiIuWaFKTprTVJYxZFREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAEOTvAOoiay0AeXl5fo5ERERERERERET87VCN6FDNqCIq1FWD3bt3A5CSkuLnSEREREREREREJFDs27ePmJiYCo+rUFcN4uLiAMjMzDzqiy9ysvLy8khJSWHLli1ER0f7Oxypw5RrUlOUa1JTlGtSU5RrUlOUa1JTlGsnxlrLvn37aNKkyVHPU6GuGjjOwaX/YmJilLRSI6Kjo5VrUiOUa1JTlGtSU5RrUlOUa1JTlGtSU5Rrx68yg7m0mYSIiIiIiIiIiEgAUKFOREREREREREQkAKhQVw1CQ0O59957CQ0N9XcoUscp16SmKNekpijXpKYo16SmKNekpijXpKYo16qXscfaF1ZERERERERERESqnUbUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAFCrC3UPP/wwvXr1IioqisaNG3PeeeexZs2aMuccOHCAG2+8kfj4eCIjIxk9ejQ//fST7/jSpUu59NJLSUlJITw8nPbt2/PUU0+VaeO9995j+PDhJCQkEB0dTd++ffnss8+OGZ+1lnvuuYfk5GTCw8MZNmwY69atK3POokWLGD58OLGxscTHx3PttdeSn59/zLaXLVvGwIEDCQsLIyUlhUcffbTM8ZUrVzJ69GiaN2+OMYZp06Yds02pmHKt4lx777336NmzJ7GxsTRo0ICuXbvy+uuvH7NdKZ9yreJce+WVVzDGlPkJCws7ZrtSPuVaxbk2ZMiQI3LNGMNZZ511zLblSMq1inOtpKSE+++/n5YtWxIWFkaXLl3473//e8x2pXz1NdcOHDjA+PHj6dSpE0FBQZx33nlHnLNjxw4uu+wy2rRpg+M43HzzzceMVyqmXKs412bPnk3//v2Jj48nPDycdu3aMXXq1GPGLOVTrlWcazNnziz381pWVtYx4w54thYbMWKEffnll+2KFSvskiVL7JlnnmlTU1Ntfn6+75zrr7/epqSk2K+++souWLDAnnrqqbZfv36+4y+++KKdOHGinTlzps3IyLCvv/66DQ8Pt08//bTvnEmTJtlHHnnEzps3z65du9beddddNjg42C5atOio8U2ZMsXGxMTYDz74wC5dutSec845Nj093e7fv99aa+22bdtsw4YN7fXXX29Xr15t582bZ/v162dHjx591Hb37t1rExMT7eWXX25XrFhh33rrLRseHm5feOEF3znz5s2zt912m33rrbdsUlKSnTp16vG8tPIryrWKc+3rr7+27733nl21apVdv369nTZtmvV4PPa///3vcb3GcpByreJce/nll210dLTdsWOH7ycrK+u4Xl/5hXKt4lzbvXt3mTxbsWKF9Xg89uWXXz6el1h+plyrONfuuOMO26RJE/vJJ5/YjIwM+9xzz9mwsLBjxizlq6+5lp+fb6+//nr7v//7v3bEiBH23HPPPeKcjRs32okTJ9pXX33Vdu3a1U6aNKkSr6hURLlWca4tWrTIvvnmm3bFihV248aN9vXXX7cRERFl3vuk8pRrFefa119/bQG7Zs2aMp/bvF5vZV7agFarC3W/tnPnTgvYWbNmWWutzc3NtcHBwfZf//qX75wff/zRAvb777+vsJ3f//73dujQoUftq0OHDnby5MkVHndd1yYlJdnHHnvM91hubq4NDQ21b731lrXW2hdeeME2bty4TCItW7bMAnbdunUVtv3cc8/Zhg0b2qKiIt9jd955p23btm2556elpalQV8WUa+Xn2iHdunWzf/7zn496jlSOcu2XXHv55ZdtTEzMUZ+DnDjlWsXva1OnTrVRUVFlPhTLiVOu/ZJrycnJ9plnnilz3QUXXGAvv/zyoz4vqZz6kmuHGzduXLlfaA83ePBgFeqqmHLt6M4//3x7xRVXVOpcOTrl2i8OFepycnIq1U5tUqunvv7a3r17AYiLiwNg4cKFlJSUMGzYMN857dq1IzU1le+///6o7Rxqozyu67Jv376jnrNx40aysrLK9B0TE0OfPn18fRcVFRESEoLj/PLPEB4eDhwcMlyR77//nkGDBhESEuJ7bMSIEaxZs4acnJwKr5Oqo1wrP9estXz11VesWbOGQYMGVdiuVJ5yrWyu5efnk5aWRkpKCueeey4rV66ssE05Psq1in+Hvvjii1xyySU0aNCgwnal8pRrv+RaUVHREVP4w8PDj9quVF59yTXxP+VaxRYvXsycOXMYPHhwlbZbXynXjtS1a1eSk5MZPnw43333XZW06W91plDnui4333wz/fv355RTTgEgKyuLkJAQYmNjy5ybmJhY4bzlOXPm8M4773DttddW2Nfjjz9Ofn4+F110UYXnHGo/MTGxwr5PO+00srKyeOyxxyguLiYnJ4c//OEPwMF1JI7WdnntHt6vVB/l2pG5tnfvXiIjIwkJCeGss87i6aefZvjw4RW2K5WjXCuba23btuWll17iww8/5J///Ceu69KvXz+2bt1aYbtSOcq1in+Hzps3jxUrVnDNNddU2KZUnnKtbK6NGDGCJ598knXr1uG6Ll988QXvvffeUduVyqlPuSb+pVwrX7NmzQgNDaVnz57ceOON+j1aBZRrZSUnJ/P8888zffp0pk+fTkpKCkOGDGHRokUn1W4gqDOFuhtvvJEVK1bw9ttvn3AbK1as4Nxzz+Xee+/ljDPOKPecN998k8mTJ/Puu+/SuHFjAN544w0iIyN9P99++22l+uvYsSOvvvoqTzzxBBERESQlJZGenk5iYqKv4tyxY0dfu6NGjTrh5yZVR7l2pKioKJYsWcL8+fP5y1/+wq233srMmTOPqw05knKtrL59+zJ27Fi6du3K4MGDee+990hISOCFF16odBtSPuVaxV588UU6depE7969T+h6KUu5VtZTTz1F69atadeuHSEhIUyYMIErr7yyzMgDOTHKNakpyrXyffvttyxYsIDnn3+eadOm8dZbbx13G1KWcq2stm3bct1119GjRw/69evHSy+9RL9+/erG5iX+nntbFW688UbbrFkzu2HDhjKPf/XVV+XOWU5NTbVPPvlkmcdWrlxpGzdubP/4xz9W2M+hRYA//vjjMo/n5eXZdevW+X4KCwttRkaGBezixYvLnDto0CA7ceLEI9rOysqy+/bts/n5+dZxHPvuu+9aa63dtGmTr92tW7daa60dM2bMEXO0Z8yYYQG7Z8+eI9rWGnVVR7l29Fw75Oqrr7ZnnHFGhcfl2JRrlcu1Cy+80F5yySUVHpdjU65VnGv5+fk2OjraTps2rcLnJZWnXKs41/bv32+3bt1qXde1d9xxh+3QoUOFz0+Orb7l2uG0Rl3NUq6dW2HMh3vggQdsmzZtKnWulE+5dm6FMR/utttus6eeemqlzg1ktbpQ57quvfHGG22TJk3s2rVrjzh+aGHFf//7377HVq9efcTCiitWrLCNGze2t99+e4V9vfnmmzYsLMx+8MEHlY4tKSnJPv74477H9u7dW2ZhxfK8+OKLNiIi4qgLIh5anLi4uNj32F133aXNJKqRcq1yuXbIlVdeaQcPHlyp+KUs5Vrlc620tNS2bdvW3nLLLZWKX8pSrh07115++WUbGhpqs7OzKxW3lE+5Vvn3teLiYtuyZUt71113VSp+Kau+5trhVKirGcq14yueTJ482aalpVXqXClLuXZ8uTZs2DB7/vnnV+rcQFarC3U33HCDjYmJsTNnziyzHW9hYaHvnOuvv96mpqbaGTNm2AULFti+ffvavn37+o4vX77cJiQk2CuuuKJMGzt37vSd88Ybb9igoCD77LPPljknNzf3qPFNmTLFxsbG2g8//NAuW7bMnnvuuWW2KrbW2qefftouXLjQrlmzxj7zzDM2PDzcPvXUU0dtNzc31yYmJtoxY8bYFStW2LfffvuILa+Liors4sWL7eLFi21ycrK97bbb7OLFiyu9s4qUpVyrONceeugh+/nnn9uMjAy7atUq+/jjj9ugoCD797//vdKvr/xCuVZxrk2ePNl+9tlnNiMjwy5cuNBecsklNiwszK5cubLSr6/8QrlWca4dMmDAAHvxxRcf87WUo1OuVZxrP/zwg50+fbrNyMiw33zzjT3ttNNsenp6ndzBribU11yz9uBImcWLF9uzzz7bDhkyxPc94HCHHuvRo4e97LLL7OLFi/U79AQp1yrOtWeeecZ+9NFHdu3atXbt2rX2H//4h42KirJ/+tOfKvPSyq8o1yrOtalTp9oPPvjArlu3zi5fvtxOmjTJOo5jv/zyy8q8tAGtVhfqgHJ/Xn75Zd85+/fvt7///e9tw4YNbUREhD3//PPtjh07fMfvvffects4vOI/ePDgcs8ZN27cUeNzXdfefffdNjEx0YaGhtrTTz/drlmzpsw5Y8aMsXFxcTYkJMR27tzZvvbaa5V67kuXLrUDBgywoaGhtmnTpnbKlClljm/cuLHcmDXK6cQo1yrOtT/96U+2VatWNiwszDZs2ND27dvXvv3225VqW46kXKs4126++WabmppqQ0JCbGJioj3zzDPtokWLKtW2HEm5VnGuWfvLX6M///zzSrUpFVOuVZxrM2fOtO3bt7ehoaE2Pj7ejhkzxm7btq1SbcuR6nOupaWllRvTsV4fjXI6Mcq1inPtr3/9q+3YsaONiIiw0dHRtlu3bva5556zXq+3Uu1LWcq1inPtkUcesS1btrRhYWE2Li7ODhkyxM6YMaNSbQc6Y621iIiIiIiIiIiIiF9pSykREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERkXpsyJAh3HzzzfWubxEREZFApEKdiIiIiFTKzJkzMcaQm5tbJde99957PPDAA1UXoIiIiEgtF+TvAERERESkfoqLi/N3CCIiIiIBRSPqREREROqJgoICxo4dS2RkJMnJyTzxxBNljr/++uv07NmTqKgokpKSuOyyy9i5cycAmzZtYujQoQA0bNgQYwzjx48HwHVdHn74YdLT0wkPD6dLly78+9//PuZ1v5762rx5cx588EFfjGlpaXz00Ufs2rWLc889l8jISDp37syCBQvKxD179mwGDhxIeHg4KSkpTJw4kYKCgqp++URERESqnQp1IiIiIvXE7bffzqxZs/jwww/5/PPPmTlzJosWLfIdLykp4YEHHmDp0qV88MEHbNq0yVdUS0lJYfr06QCsWbOGHTt28NRTTwHw8MMP89prr/H888+zcuVKbrnlFq644gpmzZp11OvKM3XqVPr378/ixYs566yzGDNmDGPHjuWKK65g0aJFtGzZkrFjx2KtBSAjI4ORI0cyevRoli1bxjvvvMPs2bOZMGFCdbyEIiIiItXK2EOfckRERESkzsrPzyc+Pp5//vOf/Pa3vwVgz549NGvWjGuvvZZp06Ydcc2CBQvo1asX+/btIzIykpkzZzJ06FBycnKIjY0FoKioiLi4OL788kv69u3ru/aaa66hsLCQN998s9zr4OCIuq5du/r6bt68OQMHDuT1118HICsri+TkZO6++27uv/9+AH744Qf69u3Ljh07SEpK4pprrsHj8fDCCy/42p09ezaDBw+moKCAsLCwKnwVRURERKqX1qgTERERqQcyMjIoLi6mT58+vsfi4uJo27at7/7ChQu57777WLp0KTk5ObiuC0BmZiYdOnQot93169dTWFjI8OHDyzxeXFxMt27djjvOzp07+24nJiYC0KlTpyMe27lzJ0lJSSxdupRly5bxxhtv+M6x1uK6Lhs3bqR9+/bHHYOIiIiIv6hQJyIiIiIUFBQwYsQIRowYwRtvvEFCQgKZmZmMGDGC4uLiCq/Lz88H4JNPPqFp06ZljoWGhh53HMHBwb7bxpgKHztURMzPz+e6665j4sSJR7SVmpp63P2LiIiI+JMKdSIiIiL1QMuWLQkODmbu3Lm+AlZOTg5r165l8ODBrF69mt27dzNlyhRSUlIAjti0ISQkBACv1+t7rEOHDoSGhpKZmcngwYPL7bu866pK9+7dWbVqFa1atarytkVERERqmjaTEBEREakHIiMjufrqq7n99tuZMWMGK1asYPz48TjOwY+DqamphISE8PTTT7NhwwY++ugjHnjggTJtpKWlYYzh448/ZteuXeTn5xMVFcVtt93GLbfcwquvvkpGRgaLFi3i6aef5tVXX63wuqpy5513MmfOHCZMmMCSJUtYt24dH374oTaTEBERkVpJhToRERGReuKxxx5j4MCBnH322QwbNowBAwbQo0cPABISEnjllVf417/+RYcOHZgyZQqPP/54meubNm3K5MmT+cMf/kBiYqKvGPbAAw9w99138/DDD9O+fXtGjhzJJ598Qnp6+lGvqwqdO3dm1qxZrF27loEDB9KtWzfuuecemjRpUmV9iIiIiNQU7foqIiIiIiIiIiISADSiTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgEgyN8BiIiISN3jui4HDhzwdxgiEmDCwsJwHI0VEBERqYgKdSIiIlKlioqKWLVqFa7r+jsUEQkwjuPQoUMHQkND/R2KiIhIQDLWWuvvIERERKRusNaydu1aiouLSU9P18gZEfFxXZeNGzcSEhJCmzZtMMb4OyQREZGAo0KdiIiIVJni4mKWL19Oeno6cXFx/g5HRALMnj172LhxI5s3b6Zv374kJyf7OyQREZGAoj9zi4iISJUpLS0F0LQ2ESnXofeG7du388knn5CVleXniERERAKLCnUiIiJS5TSlTUTKc+i9ISkpiaysLFauXOnniERERAKLCnUiIiIiIlKjjDGEh4eTm5vr71BEREQCigp1IiIiIscwc+ZMjDEqKlSTqnp9N23ahDGGJUuWVElcx2vIkCHcfPPNfum7ttJy2SIiImUF+TsAEREREanf+vXrx44dO4iJiTmpdlJSUtixYweNGjWqosjKN3PmTIYOHUpOTg6xsbG+x9977z2Cg4Orte9jGTJkCF27dmXatGl+jUNEREROjAp1IiIiIuJXISEhJCUlnXQ7Ho+nSto5UdrpWERERE6Wpr6KiIhItbih5F4GF13u158bSu6tdLxFRUVMnDiRxo0bExYWxoABA5g/f3655xYWFjJq1Cj69++v6bC/MmTIEG666SZuvvlmGjZsSGJiIn//+98pKCjgyiuvJCoqilatWvGf//zHd82vp75u3ryZs88+m4YNG9KgQQM6duzIp59+CkBOTg6XX345CQkJhIeH07p1a15++WXgyKmvh9r96quv6NmzJxEREfTr1481a9aUifnBBx+kcePGREVFcc011/CHP/yBrl27lvv8Nm3axNChQwFo2LAhxhjGjx/ve+6HT31t3rw5Dz74IGPHjiUyMpK0tDQ++ugjdu3axbnnnktkZCSdO3dmwYIFZfqYPXs2AwcOJDw8nJSUFCZOnEhBQYHv+HPPPUfr1q0JCwsjMTGRCy+8EIDx48cza9YsnnrqKYwxGGPYtGkTXq+Xq6++mvT0dMLDw2nbti1PPfVUmT7Hjx/Peeedx0MPPURiYiKxsbHcf//9lJaWcvvttxMXF0ezZs18r/Xhr/fbb79Nv379CAsL45RTTmHWrFkVpYeIiIgcg0bUiYiISLVY5a5nrl3q3yDcyp96xx13MH36dF599VXS0tJ49NFHGTFiBOvXry9zXm5uLmeddRaRkZF88cUXREREVHHQtd+rr77KHXfcwbx583jnnXe44YYbeP/99zn//PP54x//yNSpUxkzZgyZmZnlvn433ngjxcXFfPPNNzRo0IBVq1YRGRkJwN13382qVav4z3/+Q6NGjVi/fj379+8/ajx/+tOfeOKJJ0hISOD666/nqquu4rvvvgPgjTfe4C9/+QvPPfcc/fv35+233+aJJ54gPT293LZSUlKYPn06o0ePZs2aNURHRxMeHl5h31OnTuWhhx7i7rvv9j3vfv36cdVVV/HYY49x5513MnbsWFauXIkxhoyMDEaOHMmDDz7ISy+9xK5du5gwYQITJkzg5ZdfZsGCBUycOJHXX3+dfv36sWfPHr799lsAnnrqKdauXcspp5zC/fffD0BCQgKu69KsWTP+9a9/ER8fz5w5c7j22mtJTk7moosu8sU6Y8YMmjVrxjfffMN3333H1VdfzZw5cxg0aBBz587lnXfe4brrrmP48OE0a9bMd93tt9/OtGnT6NChA08++SRnn302GzduJD4+/qj/LiIiInIkY7WCq4iIiFSRwsJCfvzxR9q3b88oz+/8XqjrY7owK/SNY55XUFBAw4YNeeWVV7jssssAKCkpoXnz5tx888306tWLoUOH8uOPP3LxxRfTunVr3nzzTUJCQqr7KRzB5mdhC7LKPhgWixPTHFt6ALt79RHXOIldAXD3rIWSwjLHTEwqJiwOW7gLu29b2QtDInEatjqu+IYMGYLX6/UVj7xeLzExMVxwwQW89tprAGRlZZGcnMz333/PqaeeesSab507d2b06NHce++RIyLPOeccGjVqxEsvvXTEsU2bNpGens7ixYvp2rWrr90vv/yS008/HYBPP/2Us846i/379xMWFsapp55Kz549eeaZZ3ztDBgwgPz8/Ao3pahojbpfrw/XvHlzBg4cyOuvv17med99992+QtoPP/xA37592bFjB0lJSVxzzTV4PB5eeOEFX7uzZ89m8ODBFBQU8Omnn3LllVeydetWoqKiyn39K7NG3YQJE8jKyuLf//43cHBE3cyZM9mwYQOOc3DSTbt27WjcuDHffPMN8Mu/5T/+8Q8uueQS3+s9ZcoU7rzzTgBKS0tJT0/npptu4o477jii30PvEZs2bWLTpk2kpaX5RgSKiIiIRtSJiIiIkJGRQUlJCf379/c9FhwcTO/evfnxxx/p1asXAMOHD6d379688847eDwev8RauvwlvD88XOYxp93FhIz6BzZ/G8VvDjzimrBb9gFQ8vn12B1lp/MGj/w7nvaX4F37PqVf/0/ZdtNOJ+SCD447xs6dO/tuezwe4uPj6dSpk++xxMREAHbu3Fnu9RMnTuSGG27g888/Z9iwYYwePdrX5g033MDo0aNZtGgRZ5xxBueddx79+vWrdDzJycm+vlNTU1mzZg2///3vy5zfu3dvZsyYcRzPuHJ9H3reFb0WSUlJLF26lGXLlvHGG78UmK21uK7Lxo0bGT58OGlpabRo0YKRI0cycuRIzj///GOO7Hz22Wd56aWXyMzMZP/+/RQXFx8xvbdjx46+It2h2E455RTf/UP/lr/+d+vbt6/vdlBQED179uTHH3881ksjIiIi5VChTkRERKSSzjrrLKZPn86qVavKFFtqUlCnq/C0OLPsg2GxAJjIpoRc9m2F1waf8Xy5I+oAPG3Ox0nuXfaCkMgTivHXO58aY8o8ZowBwHXLn5t8zTXXMGLECD755BM+//xzHn74YZ544gluuukmRo0axebNm/n000/54osvOP3007nxxht5/PHHKxXPsfquauX1fbR48vPzue6665g4ceIRbaWmphISEsKiRYuYOXMmn3/+Offccw/33Xcf8+fPLzO673Bvv/02t912G0888QR9+/YlKiqKxx57jLlz51YY66HYynuspl47ERGR+kiFOhEREakWHZxWx7VGXLXFUAktW7YkJCSE7777jrS0NODg1Nf58+eX2RxgypQpREZGcvrppzNz5kw6dOhQHWEflYlMwkSWv7OpCQrD/DzNtTxOXJuK241IwEQknGx4VSYlJYXrr7+e66+/nrvuuou///3v3HTTTcDBddfGjRvHuHHjGDhwILfffvtRC3VH07ZtW+bPn8/YsWN9j1W0icghh6Y8e73eE+rzaLp3786qVato1ari3A0KCmLYsGEMGzaMe++9l9jYWGbMmMEFF1xASEjIEXF999139OvXr8zIwYyMjCqL+YcffmDQoEHAwamvCxcuZMKECVXWvoiISH2iQp2IiIhUi78FT/Z3CJXWoEEDbrjhBt/ulqmpqTz66KMUFhZy9dVXs3TpL2vtPf7443i9Xk477TRmzpxJu3bt/Bh53XTzzTczatQo2rRpQ05ODl9//TXt27cH4J577qFHjx507NiRoqIiPv74Y9+xE3HTTTfxu9/9jp49e9KvXz/eeecdli1bRosWLSq8Ji0tDWMMH3/8MWeeeSbh4eG+zS5O1p133smpp57KhAkTuOaaa3ybaXzxxRc888wzfPzxx2zYsIFBgwbRsGFDPv30U1zXpW3btsDBdfHmzp3Lpk2biIyMJC4ujtatW/Paa6/x2WefkZ6ezuuvv878+fMr3DDjeD377LO0bt2a9u3bM3XqVHJycrjqqquqpG0REZH6xjn2KSIiIiJ135QpUxg9ejRjxoyhe/furF+/ns8++4yGDRsece7UqVO56KKLOO2001i7dq0foq3bvF4vN954I+3bt2fkyJG0adOG5557Djg4mu2uu+6ic+fODBo0CI/Hw9tvv33CfV1++eXcdddd3HbbbXTv3p2NGzcyfvx4wsLCKrymadOmTJ48mT/84Q8kJiZW6eixzp07M2vWLNauXcvAgQPp1q0b99xzD02aNAEgNjaW9957j9NOO4327dvz/PPP89Zbb9GxY0cAbrvtNjweDx06dCAhIYHMzEyuu+46LrjgAi6++GL69OnD7t27j1iX72RMmTKFKVOm0KVLF2bPns1HH31Eo0aNqqx9ERGR+kS7voqIiEiVOXzX12Mtbi8SqIYPH05SUpJvt1Yp36932a0M7foqIiJydJr6KiIiIiL1VmFhIc8//zwjRozA4/Hw1ltv8eWXX/LFF1/4OzQRERGph1SoExEREZF6yxjDp59+yl/+8hcOHDhA27ZtmT59OsOGDfN3aCIiIlIPqVAnIiIiIvVWeHg4X375pb/DqJWaN2+OVtERERGpWtpMQkREREREREREJACoUCciIiJVTqNsRKQ8em8QERE5OhXqREREpMoEBR1cVaOoqMjPkYhIIDr03lBaWurnSERERAKT1qgTERGRKhMcHExkZCTbtm0jJCQEx9HfBEXkINd12bJlC4WFhXi9Xn+HIyIiEpBUqBMREZEqY4yhefPmrFy5kjVr1vg7HBEJMK7rkpWVBYDX6yU8PNzPEYmIiAQWFepERESkSoWGhtKmTRs+/vhjsrOzSUxM1Mg6EcFaS0lJCa7rkpeXh7WW5ORkf4clIiISUIzViq4iIiJSDXbt2sUnn3ziGz0jIgIHC3ahoaH06tWL/v37q5AvIiJyGBXqREREpNrk5eWxa9cuDhw44O9QRCRAOI5DZGQkTZs2VZFORETkV1SoExERERERERERCQD6E5aIiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEgP8HUVKE05Gal5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "favorite_station.make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "d15ba9cb-5914-4d06-9fd9-4ad7c547b0ec", + "metadata": {}, + "source": [ + "## Resampling the time resolution\n", + "\n", + "Coarsening the time resolution (i.g. frequency) of your data can be done by using the [coarsen_time_resolution()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.coarsen_time_resolution)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "02f28392-3c7b-4dbd-b535-85c42ba874f5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tempradiation_temphumidityprecipprecip_sumwind_speedwind_gustwind_directionpressurepressure_at_sea_level
namedatetime
vlinder012022-09-01 00:00:00+00:0018.8NaN650.00.05.611.365101739102005.0
2022-09-01 00:30:00+00:0018.7NaN650.00.05.49.785101732101999.0
2022-09-01 01:00:00+00:0018.4NaN650.00.05.18.155101736102003.0
2022-09-01 01:30:00+00:0018.0NaN650.00.07.112.955101736102003.0
2022-09-01 02:00:00+00:0017.1NaN680.00.05.79.745101723101990.0
\n", + "
" + ], + "text/plain": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:30:00+00:00 18.7 NaN 65 0.0 \n", + " 2022-09-01 01:00:00+00:00 18.4 NaN 65 0.0 \n", + " 2022-09-01 01:30:00+00:00 18.0 NaN 65 0.0 \n", + " 2022-09-01 02:00:00+00:00 17.1 NaN 68 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:30:00+00:00 0.0 5.4 9.7 \n", + " 2022-09-01 01:00:00+00:00 0.0 5.1 8.1 \n", + " 2022-09-01 01:30:00+00:00 0.0 7.1 12.9 \n", + " 2022-09-01 02:00:00+00:00 0.0 5.7 9.7 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65 101739 \n", + " 2022-09-01 00:30:00+00:00 85 101732 \n", + " 2022-09-01 01:00:00+00:00 55 101736 \n", + " 2022-09-01 01:30:00+00:00 55 101736 \n", + " 2022-09-01 02:00:00+00:00 45 101723 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:30:00+00:00 101999.0 \n", + " 2022-09-01 01:00:00+00:00 102003.0 \n", + " 2022-09-01 01:30:00+00:00 102003.0 \n", + " 2022-09-01 02:00:00+00:00 101990.0 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.coarsen_time_resolution(freq='30T') #'30T' means 30 minutes\n", + "\n", + "your_dataset.df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "2c4cbdce-829d-4202-81e0-6ca74dde05b4", + "metadata": {}, + "source": [ + "## Introduction exercise\n", + "\n", + "For a more detailed reference, you can use this [introduction exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Introduction_01.ipynb), that was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summerschool 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/examples/filling_example.ipynb b/docs/_build/.doctrees/nbsphinx/examples/filling_example.ipynb new file mode 100644 index 00000000..185a1b70 --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/examples/filling_example.ipynb @@ -0,0 +1,592 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "22d1edf5-474a-4d54-a156-8db22360fc6e", + "metadata": {}, + "source": [ + "# Demo example: filling gaps and missing observations\n", + "\n", + "This example is the continuation of the previous example: [Apply quality control](https://vergauwenthomas.github.io/MetObs_toolkit/examples/qc_example.html). This example serves as a demonstration of how to fill missing observations and gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1353eb89-00b1-4595-b3ff-6cbe91ee2316", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "70c58a51-8c28-4045-a078-8e7ad4ea4284", + "metadata": {}, + "source": [ + "## Missing observations and Gaps\n", + "\n", + "When there is no (specific) observation value for a timestamp we have a *missing observation*. If there are multiple consecutive timestamps without an observation value and the number of consecutive missing timestamps >= the *gapsize* threshold, we label the period as a gap. \n", + "\n", + "The default gapsize is set to 40. As mentioned before, the gaps and missing observations are localized when importing the data from file. To change the default gapsize use:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4c071bd3-3094-4efe-b7a6-6184c5fc133b", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_qc_settings(gapsize_in_records = 20) \n", + "\n", + "#Update the gapsize BEFORE importing the data\n", + "your_dataset.import_data_from_file()\n", + "\n", + "your_dataset.coarsen_time_resolution(freq='15T')" + ] + }, + { + "cell_type": "markdown", + "id": "19735eeb-84b7-4109-a26a-4dbde3c38f09", + "metadata": {}, + "source": [ + "## Inspect missing observations\n", + "\n", + "To get an overview of the missing observation use the .get_info() method on the missing observations." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "08520854-25db-4742-8006-3f21b066c5cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n" + ] + } + ], + "source": [ + "your_dataset.missing_obs.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "04cecab3-7117-477f-bade-36d007ca2ade", + "metadata": {}, + "source": [ + "These missing observations are indicated in time series plots as vertical lines:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "eb684e4f-ffc0-4766-a442-5b58ac873e50", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU9fnA8c93NvedEJJwBAhXuBFBUPDAC1DbSq31aFVQ64m2aKutttVWrVe9Wm1ttd5Hf60H1hMvFEUBBTkEJNw3Cbnvc+f7+yPsZpYEcu3uzG6e9+vly83u7Mw3S5KdfeY5lNZaI4QQQgghhBBCCCGEsJVh9wKEEEIIIYQQQgghhBASqBNCCCGEEEIIIYQQwhEkUCeEEEIIIYQQQgghhANIoE4IIYQQQgghhBBCCAeQQJ0QQgghhBBCCCGEEA4ggTohhBBCCCGEEEIIIRxAAnVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHAACdQJIYQQQgghhBBCCOEAEqgTQgghhBCOV1VVxc9+9jOysrJQSjF//vxu71MpxR/+8Afv188++yxKKXbs2NHtfQdyn0IIIYQIXxKoE0IIIUTIUkp16L9PP/3U7qXa5u9//zvPPvus3cvotrvvvptnn32Wa665hhdeeIGLL77Y7iXZbu/evZx33nmkpKSQlJTE2WefzbZt23y22b17N3/84x+ZPHkyqamppKenM336dD766CObVi2EEEKII4mwewFCCCGEEF31wgsv+Hz9/PPP8+GHH7a6f+TIkcFclqP8/e9/Jz09nblz59q9lG5ZtGgRxx57LLfffnvAjnHxxRdzwQUXEB0dHbBj+EtVVRUnn3wy5eXl3HrrrURGRvLwww9z0kknsXr1anr16gXA//73P+677z5mz57NnDlzaGpq4vnnn+f000/n6aef5tJLL7X5OxFCCCGElQTqhBBCCBGyLrroIp+vly1bxocfftjq/nChtaauro7Y2Fi7l9Jh1dXVxMfHd3s/Bw4cYNSoUX5Y0eG5XC5cLldAj9Fdntfz73//O5s3b+arr77imGOOAeCMM85gzJgxPPjgg9x9990AnHzyyezatYv09HTvPq6++mqOOuoobrvtNgnUCSGEEA4jpa9CCCGECGumafLII48wevRoYmJiyMzM5KqrrqK0tNRnu0GDBvG9732PTz/9lEmTJhEbG8vYsWO9ZbOvv/46Y8eOJSYmhokTJ7Jq1Sqf58+dO5eEhAS2bdvGzJkziY+Pp2/fvtxxxx1orbu1pvfff9+7pn/+858APPPMM5xyyilkZGQQHR3NqFGjePzxx1s9f/369SxevNhbBjx9+nQA/vCHP6CUavV6tdVT7dBebtb9WzP1PM9dvHgx1157LRkZGfTv37/V86wOHDjA5ZdfTmZmJjExMYwfP57nnnvO+/inn36KUort27fzzjvveL+Pw/V8GzNmDCeffHKr+03TpF+/fpx77rmHXUtb37vn32DJkiVMnjyZmJgYBg8ezPPPP9/q+evXr+eUU04hNjaW/v37c9ddd2GaZpvHeu+99zjhhBOIj48nMTGRs846i/Xr1/ts4/mZ2rp1K2eeeSaJiYn89Kc/BeDVV1/lmGOO8QbpAEaMGMGpp57Kf//7X+99o0eP9gnSAURHR3PmmWeyZ88eKisrD/t6CCGEECL4JKNOCCGEEGHtqquu4tlnn+XSSy/l5z//Odu3b+exxx5j1apVfPHFF0RGRnq33bJlCz/5yU+46qqruOiii3jggQf4/ve/zz/+8Q9uvfVWrr32WgDuuecezjvvPPLy8jCMluuebrebWbNmceyxx3L//fezcOFCbr/9dpqamrjjjju6tKa8vDwuvPBCrrrqKq644gpyc3MBePzxxxk9ejQ/+MEPiIiI4K233uLaa6/FNE3mzZsHwCOPPML1119PQkICv/3tbwHIzMwM3It90LXXXkvv3r257bbbqK6uPux2tbW1TJ8+nS1btnDdddeRk5PDK6+8wty5cykrK+MXv/gFI0eO5IUXXuCGG26gf//+/PKXvwSgd+/ebe7z/PPP5w9/+AP5+flkZWV571+yZAn79u3jggsu6PT3s2XLFs4991wuv/xy5syZw9NPP83cuXOZOHEio0ePBiA/P5+TTz6ZpqYmfvOb3xAfH88TTzzRZvbjCy+8wJw5c5g5cyb33XcfNTU1PP744xx//PGsWrWKQYMGebdtampi5syZHH/88TzwwAPExcVhmiZr167lsssua7XvyZMn88EHH1BZWUliYuJhv6f8/Hzi4uKIi4vr9OshhBBCiADSQgghhBBhYt68edp6evP5559rQL/00ks+2y1cuLDV/QMHDtSA/vLLL733vf/++xrQsbGxeufOnd77//nPf2pAf/LJJ9775syZowF9/fXXe+8zTVOfddZZOioqShcWFnZ5TQsXLmz1vdbU1LS6b+bMmXrw4ME+940ePVqfdNJJrba9/fbbdVungs8884wG9Pbt2733Afr2229vte3AgQP1nDlzWj33+OOP101NTa22P9QjjzyiAf3iiy9672toaNDHHXecTkhI0BUVFT7HOuuss9rdZ15engb0o48+6nP/tddeqxMSEnxet0O/r7a+d8+/wWeffea978CBAzo6Olr/8pe/9N43f/58Dejly5f7bJecnOyzz8rKSp2SkqKvuOIKn/Xl5+fr5ORkn/s9P1O/+c1vfLYtLCzUgL7jjjtaff9/+9vfNKA3btx42Ndo8+bNOiYmRl988cWH3UYIIYQQ9pDSVyGEEEKErVdeeYXk5GROP/10ioqKvP9NnDiRhIQEPvnkE5/tR40axXHHHef9esqUKQCccsopDBgwoNX9h07YBLjuuuu8t5VSXHfddTQ0NHinbHZ2TTk5OcycObPVcayZWuXl5RQVFXHSSSexbds2ysvLO/waBcIVV1zRoV5v7777LllZWVx44YXe+yIjI/n5z39OVVUVixcv7vSxhw8fzlFHHcV//vMf731ut5tXX32V73//+13q7zdq1ChOOOEE79e9e/cmNzfX59//3Xff5dhjj2Xy5Mk+23lKVT0+/PBDysrKuPDCC33+/V0uF1OmTGn17w9wzTXX+HxdW1sL0ObQi5iYGJ9tDlVTU8OPf/xjYmNjuffee9v71oUQQggRZFL6KoQQQoiwtXnzZsrLy8nIyGjz8QMHDvh8bQ3GASQnJwOQnZ3d5v2H9pQzDIPBgwf73Dd8+HAAb9+zzq4pJyenze2++OILbr/9dpYuXUpNTY3PY+Xl5d412uFwaz7Uzp07GTZsmE/5MLRM6d25c2eXjn/++edz6623snfvXvr168enn37KgQMHOP/887u0v0N/LgBSU1N9/v137tzpDeBaeUqVPTZv3gw0B3/bkpSU5PN1REREqz5/nmBjfX19q+fX1dX5bGPldru54IIL2LBhA++99x59+/Ztcw1CCCGEsI8E6oQQQggRtkzTJCMjg5deeqnNxw/tc3a4LLDD3a8PGRIRiDW1FXDZunUrp556KiNGjOChhx4iOzubqKgo3n33XR5++OHDDjCwamuQBDQHczrqcNvaPZX2/PPP55ZbbuGVV15h/vz5/Pe//yU5OZlZs2Z1aX/+/veH5j511h56HhERvqfn0dHRrQKZaWlpREdHs3///lbP99zXVhDuiiuu4O233+all146bKBQCCGEEPaSQJ0QQgghwtaQIUP46KOPmDZtWlCCR6Zpsm3bNm8WHcCmTZsAvAMC/LGmt956i/r6et58802fbK+2yiYPF5BLTU0FoKysjJSUFO/9bWWxpaamUlZW5nNfQ0NDm4Gizhg4cCBr167FNE2fYNTGjRu9j3dFTk4OkydP5j//+Q/XXXcdr7/+OrNnz26zVNRfBg4c6M2Ws8rLy/P5esiQIQBkZGRw2mmndelYhmEwduxYVqxY0eqx5cuXM3jw4FaDJG666SaeeeYZHnnkEZ9SYyGEEEI4i/SoE0IIIUTYOu+883C73dx5552tHmtqamoVfPKHxx57zHtba81jjz1GZGQkp556qt/W5MnwsmZ0lZeX88wzz7TaNj4+vs19egJGn332mfe+6upqnnvuuTa3tW4H8MQTT3Qq+64tZ555Jvn5+T795Jqamnj00UdJSEjgpJNO6vK+zz//fJYtW8bTTz9NUVFRl8teO+rMM89k2bJlfPXVV977CgsLW2VOzpw5k6SkJO6++24aGxtb7aewsLBDxzv33HP5+uuvfYJ1eXl5LFq0iB//+Mc+2/75z3/mgQce4NZbb+UXv/hFZ74tIYQQQgSZZNQJIYQQImyddNJJXHXVVdxzzz2sXr2aGTNmEBkZyebNm3nllVf4y1/+wrnnnuu348XExLBw4ULmzJnDlClTeO+993jnnXe49dZbvSWt/ljTjBkziIqK4vvf/z5XXXUVVVVVPPnkk2RkZLTKcps4cSKPP/44d911F0OHDiUjI4NTTjmFGTNmMGDAAC6//HJuuukmXC4XTz/9NL1792bXrl0++/jZz37G1VdfzY9+9CNOP/101qxZw/vvv096enq3Xq8rr7ySf/7zn8ydO5eVK1cyaNAgXn31Vb744gseeeSRVllhnXHeeefxq1/9il/96lekpaV1OXuto26++WZeeOEFZs2axS9+8Qvi4+N54oknvFmDHklJSTz++ONcfPHFHH300VxwwQXe1/ydd95h2rRpPsHew7n22mt58sknOeuss/jVr35FZGQkDz30EJmZmfzyl7/0brdgwQJuvvlmhg0bxsiRI3nxxRd99nP66aeTmZnpvxdCCCGEEN0igTohhBBChLV//OMfTJw4kX/+85/ceuutREREMGjQIC666CKmTZvm12O5XC4WLlzINddcw0033URiYiK33347t912m1/XlJuby6uvvsrvfvc7fvWrX5GVlcU111xD7969ueyyy3y2ve2229i5cyf3338/lZWVnHTSSZxyyilERkayYMECrr32Wn7/+9+TlZXF/PnzSU1N5dJLL/XZxxVXXMH27dt56qmnWLhwISeccAIffvihN0uwq2JjY/n000/5zW9+w3PPPUdFRQW5ubk888wzzJ07t1v77t+/P1OnTuWLL77gZz/7GZGRkd3aX3v69OnDJ598wvXXX8+9995Lr169uPrqq+nbty+XX365z7Y/+clP6Nu3L/feey9//vOfqa+vp1+/fpxwwgmtXvvDSUxM5NNPP+WGG27grrvuwjRNpk+fzsMPP+zT53DNmjVA8xCLiy++uNV+PvnkEwnUCSGEEA6idFe64AohhBBCCB9z587l1Vdfpaqqyu6lCCGEEEKIECU96oQQQgghhBBCCCGEcAAJ1AkhhBBCCCGEEEII4QASqBNCCCGEEEIIIYQQwgGkR50QQgghhBBCCCGEEA4gGXVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHCACLsXEI5M02Tfvn0kJiailLJ7OUIIIYQQQgghhBDCRlprKisr6du3L4Zx+Lw5CdQFwL59+8jOzrZ7GUIIIYQQQgghhBDCQXbv3k3//v0P+7gE6gIgMTERaH7xk5KSbF6NEEIIIYQQQgghhLBTRUUF2dnZ3pjR4UigLgA85a5JSUkSqBNCCCGEEEIIIYQQAO22SJNhEkIIIYQQQgghhBBCOIAE6oQQQgghhBBCCCGEcAAJ1AkhhBBCCCGEEEII4QASqBNCCCGEEEIIIYQQwgEkUCeEEEIIIYQQQgghhANIoE4IIYQQQgghhBBCCAeQQJ0QQgghhBBCCCGEEA4ggTohhBBCCCGEEEIIIRxAAnVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHAACdQJIYQQQgghhBBCCOEAEXYvQAghhPC3t5oWsYntJBDPTOMEBhn97F6SEEIIIYQQQrRLAnVCCCHCzu/cD5OntwNwZ8QNzFeXEKkibV6VEEIIp2ta+Si6oRJ9YA0qYzwqKpGIidfbvSwhhBA9iNJaa7sXEW4qKipITk6mvLycpKQku5cjhBA9SpNuIr1+CnXUA5BFOg00sjb6bdJVqs2rE0II4WR1T+ZC1T5QBmgTEvoSc0We3csSQggRBjoaK5IedUIIIcJKnt7uDdIB5FNEKRV85v7axlUJIYQQQgghRPuk9FUIIURY+U5vZQB92M1+PCnjaSTzL/O/nMMMW9cmhBDC2aLnrACt0Y3VqMh4UMruJQkhhOhhJFAnhBAirOzW+9nFfgAUCo2mmDLWmZtsXpkQQginU1GJzf+PlvY1Qggh7CGlr0IIIcJKgS7y3n4/8mkmq3EAHKCEEl1u17KEEEIIIYQQol0SqBNCCBFW8i2Buj6qN+OMXO/Xmw5OghVCCCGEEEIIJ5LSVyGEEGGlgGLv7UyVzgg12Pt1nrmdY42jbFiVEEKIUNC08lF0QyX6wBpUxnhUVCIRE6+3e1lCCCF6EAnUCSGECCue0tdYYkgknlFqKMeridRSxy69z+bVCSGEcLKmbx6Dqn2gDNj2LiT0lUCdEEKIoJJAnRBCiJBXritJII5iysjXhUBzNp1SiiHGQJbolQD00Rl2LlMIIYQQQgghjkgCdUIIIULeuQ3Xs0SvQFvuy6IXANlkEUsMtdSRJz3qhBBCCCGEEA4mwySEEEKEvHxd6A3SpZLMMDWIoWoQAIYyGH7w9ja9mwbdaMsahRBCCCGEEKI9EqgTQggR0rTW7OOA9+tSytmsd5Cqkrz3DVc5ALhxs9mUrDohhBBCCCGEM0mgTgghREjbSwHV1AIQR4z3/lzLtNeZxvGcYZxIDv35n/lx0NcohBBCCCGEEB0hgTohhBAh7Utzlfd2DXXe27lGjvf2ZGMc75mfsZ09vOteLOWvQgghhBBCCEeSQJ0QQoiQ9m7Tp8QRwyQ1xuf+EZaMuuFGDnONc5isxrGS9bzsfivYyxRCCCGEEEKIdkmgTgghRMhqMBswlEEjTWzRO733xxBNOqk+214a8SO+0mtJJoH3zc9xa3ewlyuEEEIIIYQQRySBOiGEECHrWzbxsvkWjTQxzZjImqg3qYpaTV70+yilfLadYoxnjvFD6mlggfkhb5mLbFq1EEIIpzIyxqP6HAOx6ag+x2BkjLd7SUIIIXqYCLsXIIQQQnRVpa7x3h6phpBrNJe7ZpLe5vbnGDN4yXyLk9Rktpm7wRWUZQohhAgRUWf/1+4lCCGE6OEko04IIUTIqqTKeztRxbe7/enGNGKJZrH+in+a/wnk0oQQQgghhBCi00I6UHfPPfdwzDHHkJiYSEZGBrNnzyYvL8/7+I4dO1BKtfnfK6+8ctj9zp07t9X2s2bNCsa3JIQQohMqqfbeTqT9QJ1hGN4hE7v0Pmp0bcDWJoQQQgghhBCdFdKBusWLFzNv3jyWLVvGhx9+SGNjIzNmzKC6uvmDW3Z2Nvv37/f5749//CMJCQmcccYZR9z3rFmzfJ7373//OxjfkhBCiE6o1JZAnUro0HOGqxwANJrNlgEUQgghhBBCCGG3kO5Rt3DhQp+vn332WTIyMli5ciUnnngiLpeLrKwsn20WLFjAeeedR0LCkT/QRUdHt3quEEIIZ/HNqIvr0HNyjRwwm2/n6W2MZ0QgliaEECIENfzvPHRtEbp8Jyp5ICo2XfrWCSGECKqQDtQdqry8HIC0tLQ2H1+5ciWrV6/mb3/7W7v7+vTTT8nIyCA1NZVTTjmFu+66i169erW5bX19PfX19d6vKyoqurB6IYQQnWXNqEvoQOkrwDAGkkQCA+hDiS4P1NKEEEKEIPPAGqjaB8pA1xxAJ/S1e0lCCCF6mJAufbUyTZP58+czbdo0xowZ0+Y2Tz31FCNHjmTq1KlH3NesWbN4/vnn+fjjj7nvvvtYvHgxZ5xxBm63u83t77nnHpKTk73/ZWdnd/v7EUII0T7rMImkDpa+DlT9qKCKdWxmrc5r/wlCCCGEEEIIESRhk1E3b9481q1bx5IlS9p8vLa2lpdffpnf//737e7rggsu8N4eO3Ys48aNY8iQIXz66aeceuqprba/5ZZbuPHGG71fV1RUSLBOCCGCoJIa7+2ODJMA6Gtkem8X6CK/r0kIIYQQQgghuiosMuquu+463n77bT755BP69+/f5javvvoqNTU1XHLJJZ3e/+DBg0lPT2fLli1tPh4dHU1SUpLPf0IIIQKvylr6qjrWo643qRgH3/4kUCeEEEIIIYRwkpAO1Gmtue6661iwYAGLFi0iJyfnsNs+9dRT/OAHP6B3796dPs6ePXsoLi6mT58+3VmuCFMn1v+U3nVTiKkbQ1bdVM5quMLuJQnRY1RYS1/pWOmrS7noTSoA+RKoE0IIIYQQQjhISAfq5s2bx4svvsjLL79MYmIi+fn55OfnU1tb67Pdli1b+Oyzz/jZz37W5n5GjBjBggULAKiqquKmm25i2bJl7Nixg48//pizzz6boUOHMnPmzIB/TyL05Olt3smTZVSw0dxm84qE6DmqdEvpa0IHp74CZKp0AAooQmvt93WFknJdSbFZRoFZRJEutXs5QgghhBBC9GghHah7/PHHKS8vZ/r06fTp08f733/+8x+f7Z5++mn69+/PjBkz2txPXl6ed2Ksy+Vi7dq1/OAHP2D48OFcfvnlTJw4kc8//5zo6OiAf08i9LjxHTJSZemZJYQILE9GXRyxuJSrw8/zBOoaaaKUnj2p+9bGB+nXcDwDG6bzq8Z77V6OEEIIIYQQPVpID5PoaBbE3Xffzd13392h/cTGxvL+++93e20ifDSZTfzVfJ4qXUOSSmB+xFzvY1praqnz2b6cSmp1HbEqJsgrFaLnqTzYoy6xE9l0AJmke28X6CLSVLJf1xVKrBcXCimxcSVCCCGEEEKIkA7UCREM1aqWW5seAiCWGJ9AXQ21uDFbPWePzmeYGhSkFQrRc3nKzhNVx/rTeWSplkBdvi5iJEP8uq5QUmEZyCE9+4QQQgghhLCXBOqEaEc1LT0P62mgwWxgauP5KBQptEz4jSfWu+0uvZ9hDAr2UoXoUb4zt9JAIyerKcxwndCp5x5ljOR0PY18XcRGvZWTmRKgVTrfPgq8t7fr3ZjaxFAh3RlDCCG6LOLo69ANlegDa1AZ41FRiXYvSQghRA8jgToh2lGjWwJ1Jia3Nj3MOr0ZgAhaemKNUcNZrtcAsN3cDa7jgrtQIXqYL81VNNDIJ3o5szixU8/tr7L40PwCgBXmukAsL2Ts1vu9t2uoY4fey2CVbeOKhBDCPhETr7d7CUIIIXo4uWQuRDusGXUAj5sve283WQZJ9COTsWo4qSSxk31BW58QPdX/ud+mLxn0IYPLXT/u1HMnqFHE0Dwg6Ev9TSCWFxKqdA0lNA9TiiOWSCJYqzfavCohhBBCCCF6LgnUCdGO6kOmuB465dUj28jiW72JUirYrHcEYWVCtHjf/TlPN77Gc00LeNv9id3LCYrteg+72Y/GJEF1bphEtIpiImNIIZFM0jlgFgdolc62Re9kmBpIMonUUEsjTXxprrJ7WUIIIYQQQvRYUvoqRDuqdW37GwE59CeKSBpoZKPeFuBVCdFCa81vGh/gO7YCMEQN4EzjpLDvM1ZGBQApKqmdLds2wTWKL9wrWaZXs05v5hR6+XN5IWGNuZHNeqfPfV+aPTfDUAghdEMlaI1urEZFxoNS0qdOCCFEUEmgToh21FhKX1NJpvRgmdih0owUhpmDWK83s1XvolE3Eqkig7VM0UP9uvHP9CeTEcZgtpq7MVBMVKPZbO4g1zXY7uUFTKNupOpgtqt1qEtnjFItk17z9DZO4Vi/rC2UWMt+RzOURJVAL5Uif7+EED1W/XOToGofKAO0CQl9ibkiz+5lCSGE6EEkUCdEO6w96n7vupab3ff79KbzSCWZXJXDer2ZRpr4fsNVxHeyHM9fTjSO4RcRc2w5tgieMl3BX93Po9Fkks5UNYFP9XL+a77H6a7jySV8A3VlVHpvp3Yxoy7XaHl98vT2bq8pFHnKXKOIZIgxkDfNj0HDXn2AQaqfzasTQgghhBCi55FAnRDtsJa+xqs4fu+aR75ZyBK9ko1sw8RkjnEOo9UwLnf9mLNc01niXskmvZ0KXRXUtdbqOraxh03mduKI5YqI84J6fBFcy801aDQAQ1Q2Oao/n+rlAOSZ27AMJQ47ZbrCe7urGXW5Ksd7uycG6ip0FVprjlFjGaD60E9leR/bzX4GIYE6IYQQQgghgk0CdUK0w1r6Gqdi+HXElQCcUPcTGmkC4Cu9hj6qN32NDACKdKktzelNTEp0GSWUsUFvCfrxO+sD9xKGqoFkqywMDFwqjCNLAbBV7yaBOKqo4dqInzJRjeGZhtcA2BTmgacSSwl6VzPq0lUqvUihmDIKe+AwiU16O1vYCRrGGMPJVn28j+3W+21cmRBCCCGEED2XBOqEaIe19DWeWO/t+6NuotKsJkpFYigDpZT3sV9EzOEXBL/09BtzPVMbzgeag3ZOVqNruaBxPjXUAfBx5HNMc020eVWh5XPza6qppTdpjFW5DFB9iCGaOurDPkPMHxl1AD8wTuUVcyHr2MwenU9/S1ZZuLP+jOSqHLKtGXUSqBNCCCGEEMIWEqgToh01ltLXOFp6zh1nTACHDdVUtAQLPSWRTrXG3MgA1Y+NunlSabml55jomN16PxpNEaUMVv1xKRdHMZJKqkgjhQazgSgjyu5lBkQpLYG6VJXc5f1kqnSqqAZgqbmKH7vO6PbaQkWe6Ruoy1AtU28lUCeEEEIIIYQ9HBZmEMJ5fDLqVOwRtrSfYfmVdnpG3Tvmp94gHfgGXkTHeIIpfcnwTujsb2Syni18rlewg712Li+gfDLqulj6CjDVmOC9/YX5zRG2DD+b9Q7v7eEqx6f09X/uj/lL03M2rEoIIYQQQoieTTLqhGhHNTXe29bSVydSltvOzqdr3UPNGngR7avT9RTQ3FfNWrI4/JABCcPJafXccGAN7KbR9Yy6KcZ4JqhRJBIf9OEvdivUJRyvJhJDNINUPwwM5rl+ykr3eraxm1fc7zFcDeIM10l2L1UIIYQQQogeQzLqhI9v3Xl84V5p9zIcpVbXeW/HOTxQZ82oc3rp66E91CSjrnP26gLvbWsmVK4x2Ht7o94W1DUF02Zzh/d2dzLqklUiJZTzmf6at8xFaO3s3xt/yddFLNErWaJXUk0tLuVCKcWDkbcw1hjOAYpZodf1uCxDIYQQQggh7CaBOgHARnMrveqO4ZjGH3Fq4xwy6o7lf00f2b0sRwil0ldrjzonl7426ka26t0+95Xq8sNsLdqyy9JDzCdQZ82oM8NzoESjbmSx+TUpJHGp60eMYVi39ud5zSqpZj+F/liio93f+CQj6md6v55mHO3z+LURP/Xe3q/D//UQQgghhBDCSaT0VQDNH/qtAakKqrxldT3d4aa+OlGoDJPYqwvIVTls1buoox6AUil97ZRl5iqy6E0p5T6BumFqIACZ9PL52Q0nb7g/op/K4Gv9LXt1AclGYrf2l6ty+IAlQHNws68rwx/LdKz9utD7ewcwVfkG6jJVuvd2AUVBW5cQQjhB1A/+D9wNmOXbMZJzwBWeQ5mEEEI4lwTqBOCbneNRoOUDGrRMfVUoYomxeTVHZoRKoI4DrNebfe4rk9LXDjO1yX/Md8mnkGEM4ofGDO9j8SqOEWowG/U2FplL0VqjlDrC3kKLqU3ucf+TDXoLA+nLza4rur3PXNVSLrxJb+dkpnR7n05WTJn39ueR/2aM4ZuRmEoSkUTQSJO8Dwghehwjs3nIkNE3vN8LhBBCOJcE6gTQMj3SSjIpmqWoJI7lKBJVvOMDHj6lrw7utVWlq1vdJxl1HbfW3EiuysGNmzSSyTLSfR7PVn3YqLdRTiUFFJNF+mH2FHq2mbsZq3JpoIFEElqVbXbFcDWIcSqXZBIpp9IPq3Q269/2kcYQYpXvBQilFJmks4d8CdQJIYQQQggRZNKjTgCHCdTpnl36WqLLqTfrWWx+xTK9mn36gN1LaleolL5W0hKoiyISaM6oK9Kldi0ppHykl/I/82M2652cZ5zR6nHfPnXhMVBCa02xLmM5a/iP+Q5b9C5+YJzil+B5jtGftTqPz/UKVpjf+mG1zuYJvsUTS4KKa3ObPqo3AIWU0qSbgrY2IYQQQgghejrJqBMA7CHfe1uh0Gjye3gT8bkNv+ZLvYoGGgHf4IdThcrU1wpd5b0dTRQNNJKntzO8fgaboz+kl0qxb3EOd3L9RazS33m/Pt01rdU21p/VTXo7JzE5KGsLhC/dq/h50x3s0QVkqyzOME7yPnaUMdIvx+hDb1y4cONmt85v/wkhzhOos/aiO1SmSgfd/HekkFL60DtYyxNCCFu5t70HTXWYResx0kdDRAyuwa0vigkhhBCBIoE6wbvuTzlwMHsulSQiiKCQEvJ7cMlThVnFPl1AlSXza3gIBOpCZeprFTXe25EHM+pMTBSKr81vmeU6wa6lOVq1rmGpXu39OpF4hqlBrbaz/qzuMltny4aSrXon6w72M4zR0Xxjrvc+5q/fyQgVQV8y2M3+NrOLw0m9bqD0YD/IzCOURFuDeHvM/fRxSaBOCNEzNH48H6r2gTJwaxMS+kqgTgghRFBJ6WsPt0fnc37jfPbofG5y/YzFUS+RqXoBzX2MtIP7nAXSQv0Z6/AddpBrOD9QZ+Xkf7kKWjLq/hxxM69HPEYi8TTRxD/d/7ZxZc62Se/w3v6BOpX/RT3eZunnEJXNAPoQQzQb2BLEFfrfAUq8t/MpZM3BbMIoIhmk+vntOJ7JuUWUegfIhCPrNO+sI2TUjVXD6UsmAHsoCPi6hBBCCCGEEM0ko64HqtI1zGv8A6cZU9mp93KyOpZFeikazXAjh9FqOKbWVFHNvMY/8PeoP9q95KDLM7d7b0cRiQuDwWTbuKKOCYXS1780PsdSc5X364FGP6apozGbTOppIE9vP8Kze5Ym3cT1TXcyWY3jBfcb9CHD+9hk1zimHmaQQl+VyX4KaaQp5DPEDh1mUE0tI9RgkkjApVx+O0626uONbu/R+SGRQdtZTbqJz90ryKYPddQzVA087La9VRr7Dgbo8nRLn8Nd5j7+0PQoM4zj6aVS2iy9FkIIIUSLb9zrecL9H05zTWWA6stkY5zdSxJCOJwE6nqgZ92v8R/zXf5jvouB4S2RnGWcCMBzUfcxvv777NL7edF8k7/T8wJ1myzBoq+iXmWEMcTG1XSc7zAJ55W+Vusafu3+s899STRP081VOXyjN7BD76VO1xOjom1apXO8Zn7AM+7XeIbXWj12pJ6JhjLop7LYofeEfKDu0BL8GurYqLfxt4g/+PU42SrLe3uX3s9wwi9QV0YllzfdAsBQBnBn5PzDbus7kKTl7+FjTS/wsvkWL5tv0Y9Mtro+Dth6hRBCiHBwd9M/eFt/wrPm60xR41kc/ZLdSxJCOJyUvvZAB3QJaaQAvn3MrKWdqSQB0EBjj5z458nqiiCCIWqAzavpOGsZpBMz6r5qY6JmAvFAS78xE5OteldQ1+VU+WYhkxmHgWIMw4gmihQS+YFxCmNV7hGfm01z4KmUCip19RG3dbICWgJ1lxizGa9GkEQ8p7mm+vU4g1R/jlVHcbKaEtKv15FYh7jEH2baq8dQNdCboWu9cKFRxBELwAGKe+T7gxBCCNFRW8ydfK3Xei+mVxO+7TWEEP4jgboe6EX3/yihzOc+Fy56HQzeAaSoJO/tMiqDtDJncJtuby+wwSqbSBVp74I6wfDJqHOer/XaVvclqQQAco3B3vuk/LXZq+ZCvmItJprvGSdzo3Epe6I/579Rf2WQceT+bJ6ea9BcyhmqPKWvccTyz8g7+Z5xMvOMixio+vr1OIkqnmV6NZ/o5ewldF+vI7EOx5lkjD3itjEq2tsD8Fu9iUcan6XebOAJ8/+oOfgho5Emdui9gVuwEEIIEcI2mdt511xMAcXeC+h7Q/icTAgRPBKo62EadCP7KWx1fya9MFTLj0MKlkCdrgjK2pwiT29HoRivRvJ942S7l9MpTp/6utXcRTqpPvclHsyoG8swJqkxDKQfm0wJ1EFL2Wdv0kg1kkkxkohQHetYYA3UhXL5qydQl6XSUUqRpBJIMZLaeVbnJdKSYVZpmUocTqzfl/X7PZyHIm7h3YgnGa5yeMD9FDMaLqWeBp9tJKguhBBCtNakmzi78Rr+0vQcUxhP/MFs9FCvdBBCBIf0qOth9uj8NksiMw+Z/pemkr23V5rrWGvmkW304Zh2sjDCwZd6FbXUsUZ/xwXqTLuX0ym+Peqcl1O3QW+hiFLv1y4MolUUADlGNiua1gGw0dK8vqfSWnvLPjNVL34RMadTz/cE6rJI54AubmdrZ6o364knjjrqyaT5b1RnX4eOSlDx3tuVlhLRcGL9vqzf7+HMcjX3Lc1vKqSIUsoPya7uQ2/JDBBCCCEOUaVr2GBuIUK72M4e4lQMuTT3Ygb4xlzPd+ZWznJNx6Vc9FUZ7exRCNHTSEZdD2PNrPFc2YHmQICVNaNuTtOv+UnTjdzceF/gF+gAX5grvbcPN1XTqZw+9fXQzK4oory3h6gBbfbE6qnKqKCBRqB1IL0j+qkMFIp8itiu9/h7eUFRpMrYQz611JNBWkCPlUSC93Yl4Xml2/p9Wb/f9pzpOgloLnX1MFDsp5B1erP/FiiEEEKEgSXmCk5s/Amb2ckkxvBS5IOcbhzvffyRpmeZ7/4TwxpO58KGG2xcqRDCqSRQ18PspiVQEkPLVE1rfzqAVEtGnUcmvUO611VHxRLDFDWefmQyQY2yezmd4lv66qxAXb1uIB/fCZ4uy58ga0+sPL0dUzuvdDeYCizTTrPo3ennZ6ne3mBtwSGve6go1i3Zl2lGSkCP5SnBBqgI05IU6/eV0IHSV4/JajxDGchYhnvv8/x9CeWyaiGEaIuKjIeoRFAuiEps/lqITrC+Nw40+jLOGMFo1dziZSJjKNMtGeq11NmxRCGEw0npaw+z2dzpvT1A9aVYlwHQhNtnO+swCY839If8wDyFn7i+H9A12klrzf+Z71BDLSPUYKJCaJAEHDpMwlmBur26oNV91sAiQK7KYZveTTW1bNO7GaoGBmt5jpNvKVfN6kJGnTULryBES1+LDv59Alr1NvS3BMsU1Kowzaizfl+JHSh99ZhojGYLO33uc+HCjVsCdUKIsBM99xu7lyBC3C7Le+OlrnMBGGz097Z4sSq2nOsIIYRHSGfU3XPPPRxzzDEkJiaSkZHB7NmzycvL89lm+vTpKKV8/rv66quPuF+tNbfddht9+vQhNjaW0047jc2bQ7+8R2vNe+7FDGMgFxtnc4kxm9nGaVxpnM9c1zk+26ZaSl8zaCmL/dIM75OXKmq8Ew2zVOezmOzm5GES1g/0wxnEJa7Z3OC61GebHxtncJYxnTSSedP9cbCX6CjWLLiulL72JtX782DNzgslxZZ+hukqsIE6KX09vOFqUKv7PFnYu3tAlrUQQgjRGdZz3gEHewaPVyOIs7Qd8jhAcY+vIhFCtBbSgbrFixczb948li1bxocffkhjYyMzZsygutr3Q9YVV1zB/v37vf/df//9R9zv/fffz1//+lf+8Y9/sHz5cuLj45k5cyZ1daGdmrxfF1KtatnMTlbpDVwdcSH/F/UIf436PSe7jvXZ1lr6eoBib++w78ytQV1zsFkDGp7m9aHEycMkNukd3ttXRVzAE5F3cWukb9B8vDGCd8xPKaGcT/VXNOjGIK8y+ExtYmqTj9xf8ob7I0xtssXcyWrzO+82XQnURapIbxZafqgG6ixXmXuplIAeK4ZoXLgAwnYam/X76sgwCY94FUc2fXzu82R5llNJua5s62lCCCFEj7NXF7BT7/N+3V9lAc3nZZONca22b6SJUiqCtj4hRGgI6dLXhQsX+nz97LPPkpGRwcqVKznxxBO998fFxZGVldWhfWqteeSRR/jd737H2WefDcDzzz9PZmYmb7zxBhdccIH/voEge9VcyD59gD705jzjLJRSh93WmlEHcLY6laV6NV/obyjWZQH/0GwXaw+1rpQb2s3JwyTy9DYicDGKoUxQI9vcZrQxjCuM81ikl/GBuYT/mO9ysevsIK80uL4x13NC44Xefy0Dg2nqaD7XKxhEf6YZRzPDmNalfWeqXhTqEgooQmt9xN95J7JOCA506atSiiTiKaWih2TUda7nUq6Rw26zJUOgv8pirW7OYN+j80lWif5ZpBBCCBGimnQTo+vPoI4GoDl7PU61ZNFd4TqPDeZmDlDi87wCXRS2n62EEF0T0hl1hyovLwcgLc13OuBLL71Eeno6Y8aM4ZZbbqGmpuaw+9i+fTv5+fmcdtpp3vuSk5OZMmUKS5cubfM59fX1VFRU+PznRLv1fmqpYz+FTHVNOOK2qSQTTyxRRNKbNLKNPuRTCMAyc3UQVmsPn4y6QybhhgJrGMYpwyQKdQk3NtzN2+5PaMLNt2xipDH0sNv/JOL7bNW7yCWHA2Zo9lbrjD3k+/xLmZg00Eg6qRRQRK7KaXO4S0d4MvHqaaCc0Mt68s2oC2ygDiDhYPCqqidk1HUyUDdCDSaJBKKJJJF4BjOAvmQyllz26QP+XqoQQtim8bPf0vjhPOpfPonGD+fR+Nlv7V6SCBFrdZ43SOfC8A5J8zjBmEQJ5UQS6XNxPVQrH4QQgRM2gTrTNJk/fz7Tpk1jzJgx3vt/8pOf8OKLL/LJJ59wyy238MILL3DRRRcddj/5+c39djIzM33uz8zM9D52qHvuuYfk5GTvf9nZ2X74jvxvlyUNO1v1OcKW0MfoTXHM11TErOK76IVMNVoCe+Hcp843UBd6GXVOLH39W9NL/N18mR3sBWCwyj5i4Ok4YwJ9ySCP7dzvfjJYy7TNrjaa8S/XayiilDONk7g58oou79tavp2vC7u8H7sUWaa+HjqZOhA8AxYqwjajrsp7uzPDJADuj7iZAzHL+JXrZ/zcdQmjjCHso4BvyWOH3uPvpQohhG3cea/iXvc8+sBq3Ouex533qt1LEiHiC3fLZ6QHIn7DV9Gv+TyeoXrxadSLlER/xX2uX3nv9yRDCCGER0iXvlrNmzePdevWsWTJEp/7r7zySu/tsWPH0qdPH0499VS2bt3KkCFD/HLsW265hRtvvNH7dUVFhSODdZ7GpgYGfen4oIQEFcex6ihGqaGkk0pZCGbmdFR+iPeoc2Lpa7EuZTDZbGc3R6vRzDJObPc5w4xB7DMPePtfhXNZ3ZGmZh5vTOzWvoeobKaqo4lSkZSG4O9tMIdJQEs5aA21uLUbl3IF/JjBVKlbsskTO5lRZ6jmvy1JqnkIhfViT1vBZiGEEKKnedV8j2PUWGKI5gRjUpvbTDLGApBt9GWaeTQGBlX68NVeQoieKSwCdddddx1vv/02n332Gf379z/itlOmTAFgy5YtbQbqPL3sCgoK6NOn5YNIQUEBRx11VJv7jI6OJjo6uourDx7PdL4+9CZSRXbquVlGb4p1KRvYwkb3Vv4WeXsglmi7ghDvUee0qa+1uo5/ma+g0UxgJF9E/6dDz7M2rg/3/ldHCtQNVznd2rdLufhSfwMartOHzyR2Kk9JZSQRnQ4sdUWCiscT366kmpRDenWGOk9GXRSRRKuoLu3jFxFzAMgzt3nvO9LPsBBCCNETbDf3sEbnUUc941Quo9WwI26fppL5Qjdn4E3Uo4OxRCFECAnp0letNddddx0LFixg0aJF5OS0/6F29erVAD5BOKucnByysrL4+OOPvfdVVFSwfPlyjjvuOL+s2w61uo7Cg41L2yt7PRxP0OAAJZTocr+tzUnyzSJGMYQT1TH0JbP9JziMb+mr/bbond7MviP1pTuU9Wc03IMA1kzX3vj218w1uheoswa3Qm1AwlZzF3l6O2MYzm9cVwVlEEYov14dUafrGaty+Z5xcrf35ZliBy0XgYQQQoie6lVzIYPJZgRDuNg4u93zliyf9iTSo04I4SukA3Xz5s3jxRdf5OWXXyYxMZH8/Hzy8/Opra0FYOvWrdx5552sXLmSHTt28Oabb3LJJZdw4oknMm5cy3jsESNGsGDBAqB58t/8+fO56667ePPNN/n222+55JJL6Nu3L7Nnz7bj2/SLVeZ3pNCcldTVQJ01aLBJb/fLupxmnd7EBrayXm8mzehaA387GQ7rUZdn+TnpTNAp2ycIEN6BugaaiCCCPvRmgOV3M55Y+nUzWJxIgvd2qA1IWGmuJ5s+rGMTEUEqQU0gzvv/ajO8ylDKdAWb2MG3Oo8DuqT9J7QjXsV5+waG+++oEEII0Z415nfNlUdsZYbr+Ha3z1ItbYgKCP/haUKIzgnp0tfHH38cgOnTp/vc/8wzzzB37lyioqL46KOPeOSRR6iuriY7O5sf/ehH/O53v/PZPi8vzzsxFuDmm2+murqaK6+8krKyMo4//ngWLlxITExMwL+nQPmP+Q5lVDKIflzuOrdL+xihBntv55nbOdY4yk+rc4ZKXc1eCoDulxzaxWmlrz6Buk68pj2l/1WtruNbnQfAKDWUZ6PuI/lgcG0/hd3OIrMODAi1AQl/d7/ELvaRQhJzjHOCcsxYmv/GV1FDjaoLyjGDZZPe4b09opuZmh7Zqg/Fuoy9FIRlTz8hhBCiozzvsxFEMFi136s8kXhiiaGWOp9hdkIIASEeqNP6yBlD2dnZLF68uNP7UUpxxx13cMcdd3RrfU5RoItYZW5grMplu97NeGNEl/YzimGMZAgJKo7tYTjlb1MXs7+cxKf0tZ3fj0DabO7gM3MFy8zVZJKOwjfQ257BKpuxDCdaRXlLtsPRXl3gvZ2ikuilUrxfW/v0dZUnQwyaA9GhQmtNnm7ugZZAHFlGcPpFWvu2NdIUlGMGi2/QvOO/i0cyXo1EoYgikj26gIGqr1/2K4QQQoQSU5veQN0Qld2hXuBKKTJVOjv0HgnUCSFaCelAneiYp92v8ZVeC8BvXdeQqrpW0jnWNZzvmraCBpdpANf7cZX262r2l5P4Tn21z8fmUuY3/QmAoQzkfNeZjDA6PmV5oOrLNnZTrWvJdxdB52afhAxrtuCALpakH4lnQidAVQhl1BVRSikVQHCD5lGWH7QGGoN23GCwDn/w19+3NJXEKnMD0NyPciASqBNCCNHz7NL7qaMe6Nx7bBa92MEeiimjQTcS1clhf0KI8BXSPepEx+w293GCmkQW6VwW0bWyV4DeKs1bErpSr6dWh1dp2B5zP1PUUZygJjGqnUlNTmUtlLSz9NUa9Oyt0nwCRh0RoSKYbIwHYA/5YVv+au3t1dXekUdiHY5QcXDiZyiwK2geYbl21ajDK6Nuq97FZDWOU9VxjFIdD5ofibVFQLj2LRVCCCHas1nv4Bg1lhPUJI5R49p/wkGZqqVi4ID0qRNCWHQpUNfY2Mju3bvJy8ujpCR8y9LCgdaa/5rv8bleQTxx9FPda04/1ZjQvF9gg7nFDyt0jlX6O5br1XyuVzBUDbB7OV2iHDJMwlO2CPBK1F/5RcScTu9jqmr+WVMo3nF/4re1OcluAhyos/Soq9KhMxxhq7nLe9tfZZodYb2S3RhGGXVu7eZjcylf6bWs05voZxnW0h3WbMc8CdQJIcKEK2cmxrDZqNShGMNm48qZafeShMNt1Nv4Wn/L53oFWUbv9p9wkDVQJ+WvQgirDpe+VlZW8uKLL/J///d/fPXVVzQ0NKC1RilF//79mTFjBldeeSXHHHNMINcrOqmcSqpo/oA+wOh+WdJENZolrKCEcr7R65nImG7v0yk2HgwuRREZsr2WfEtfbQzUmc0f2nuRQrpK7dI+zjZO4xu9nkXmMv7tfpurXRd2e7iC0/hm1PkneGIVqhl1BRSRRW9iiOr2xYXOiLRm1IVRj7r1erP333+qcbTffo+sQdSNluC8EEKEssjT/mr3EkSIsb4HdqYSYDDZDFHZlOgK8s0iqXUTQnh16M/BQw89xKBBg3jmmWc47bTTeOONN1i9ejWbNm1i6dKl3H777TQ1NTFjxgxmzZrF5s2bA71u0UH+DgQMUv3Zwi5KKA+rcsQm3cQWvROAoWogESo02zc6IaOuzKwgVSXRh97dyoYaawxnl7kPhaKvymCX3ufHVTqDW7sZRD9iiQ5IRp11mERVCA2TKNBF5FPIDvZ2OdDbFeHao26ruYvxagRRRDJVHe23/fZSKWSQRn+yiNFR7T9BCCGECCOmNvld48MsM1d77xuuBnX4+Qkqnq16N6WUU4Bk1AkhWnQoGvH111/z2WefMXr06DYfnzx5Mpdddhn/+Mc/eOaZZ/j8888ZNiw0e3yFE621b6DOD1MkrZlmu8MoULdD7/Vm0ITqIAnAJ1PGrkDd1/pb1unmYP1F6uwu70cpxfdcJ3Of+0neMD9ihnk8lxld77HoRMv0Gnawl3hiSdaJvk0G/SBCRRBHLDXUUknolL6W65bsv2QSg3bccM2oW6bXsEZvBGC4Mciv+85WfVip17NPH8Ct3biUy6/7F0IIIZzqLXMRD7if8n6dTCIpKqnDz8+ylr72gB51nmo8IUT7OhSo+/e//92hnUVHR3P11Vd3a0HCf25v+itvuj/2fu2PjJ3+lqy83Tq/2/tzinxdyGnGVMp0JSP91GjdLgqFRts2TOJLc5X39ljX8G7t60RjMve5nwTCr1m91po9B3+HBqi+GEZg6h0SiaOGWip06JS+VlDpvd3ZQSTdYQ3UhVNGnfWiynA/X4jIUr1BNw+vKaSULNLbf5IQQggRBkp1OZMYwwrWkUN/TnEd26nn96QedaY2Oa7+PPobWfRTmdwd8UsSVFz7TxSih+p2fV9FRQWLFi0iNzeXkSNH+mNNwg+adBMvuP/Hfg547xvgh0BdnIolnVSKKA2rUsQ9FPCR+SUAF6qzbF5N93gCdXZl1H1pfuO9PdXoXpldODerL6KUOuqBwAyS8EhQ8RToYqoIndLXcuzKqLMMk9DhF6hTKL/3/Dv0Q4Y1O0AIIUJR/UsnomsKoK4UYlJRcZlE//Qzu5clHOjf5jusYB0AX0e9RoIR384zfPWkQN1X5lrWsJE1ZnOG/1zXORyt2q7WE0J0oWXleeedx2OPPQZAbW0tkyZN4rzzzmPcuHG89tprfl+g6JqVej3Z9CGFJAaTzV8jfsdYI9cv+/YEFfZxgCYdHuVhFdqawRO8wEAgeAZK2BGoa9CN5OntTFSj+Z5xsk8GZlf0I5N4YoHwCtT9ufFfjKv/vvfrQAbqkmjOSKukBq3tGzDSGZ7sPxcu779/MERaelM2hVHpqydQ14fePpNt/SGTnvMhQwjRM+iaAqjaB+56qNrX/LUQbSjV5UBzj9v4LmSHZdLLezs/zN9DnzVf98m6D6fzeiECodOBus8++4wTTjgBgAULFqC1pqysjL/+9a/cddddfl+g6Jrteg9fsYYyKrgm4idcGXEBvVWaX/btGUoRTyx7dHicvPhm8ASv1C4QPJ0fTBsCdav1d+RTyEq93mfiaFcppbw9A+t0A/Vmfbf36QQb9BZKKfd+HYiJrx6egRIaTa2uC9hx/Kn8YOlrEvFB7WUSjsMk6nUD+QcbVAciIGzNoAv3DxlCCCGEVamuACCVpC6dr0SrKFJp7mkX7sMkPjW/8p6PAOSZEqgT4kg6HagrLy8nLa054LNw4UJ+9KMfERcXx1lnnSXTXh3EmtmQqXodYcvOG6dGkkQCFVSxQ+/1677tUm7NqAtiqV0geCa/2pFR58+yV4+xKpc4YthHAbsIjwEm+/QBn6/74d9yRKsM1YsoInHjpkqFxkAJT0ZdcicaMvuDT+lrmGTU7bH0Eu1uhmtbrO8v4f4hQwghhLAqozlQ15kBEofylL+Gc1b6Xl3ADr3H575w6z0thL91OlCXnZ3N0qVLqa6uZuHChcyYMQOA0tJSYmJi/L5A0TU+gTo/N/fOUulUHMxAy9Pb/Lpvu1RYMuqSVPczwexkZ+nrTnMfk9QYUkhkmp8CdekqlRqaM8F2hcmkYevJSRrJ9FEZATtWBBHe7LBK7fw+dVprb0ZdsLNbwzGjbh8HmKzGMUoNYYga4Pf9Z/pk1BX6ff9CCCGEEzXpJioP9v/1ZMV1xXByGMNwxqlcqkznn6d1xevuDxircsmhPwnEc5Qa6XPOJYRordPDJObPn89Pf/pTEhISGDhwINOnTweaS2LHjh3r7/WJLrKWIPm7ubdvg//wCNSVa3ua1weCJ6Mu2FNftda8Yr5HEaWkksQIBvtlv9Zyvd1hEKgr15XspzmgMU1N5OPo5wJ6vERLz5TKEBgoUUe9N5stKciBOuvU13DJqNuh9/KVXgvA5erHft+/9KgTQgjRE5VZJtR3J6POpQzW6U2goVRVkOCH1jFOorXmKfcrbNTbiCWGDNJYrb9ji96J1jqoLU6ECCWdDtRde+21TJ48md27d3P66adjGM3ZO4MHD5YedQ5iLUHK9HegToXfJM4KrMMkQr1Hnaf0Nbg26e0UUQrAccYE79+G7gq3QN0acyPjVC5pJHOCMSngx7P2CgyFQJ1Pv8ggD3axlr42hMnUV+vvzADV1+/7zyKdU9Vx1NGAO8gXB4QQQgi7lB3sTweQ0o2MOuvnjgpd1dJsOkys1t+RThqTVDzRRBGlItlp7qOKGsqp7NZrJ0Q463SgDmDSpElMmuT7AfOss87yy4KEf3gyG6KJ8nuGWG/SSCOZEsr5ztzq133bJZwy6gybetSt1hu9t/3Vnw58By3sIf8IW4aG5XoNa3UeABeo7wX8eImWE8BKy8+5U/lMYA52Rl0YTn21BuoCMUwizohlo97GXgropVP8vn8hhBDCiUosQ8HSVHKX92P93FFuSRwIF5+ZX7NErwDgr67fsYJ13sd26/3dykYUIpx1OlB32WWXHfHxp59+usuLEf5ToIuB5rIkf6cUK6X4kTGLxfortuidFOgiv2ftBZsnoy6GaKJUaPdMsKv0dbPewSD6E4WLMWqY3/Ybbhl11oEb/urjdyS+GXXOHyZhb0Zdy1tiuPSoC3SgDmC4kcNes4BiyijSpaSr1IAcRwghhHCKgGXUhRmf817XRArcxd6vd+v9jCXXjmUJ4XidDtSVlpb6fN3Y2Mi6desoKyvjlFNO6fB+tmzZwtatWznxxBOJjY2VGnU/ajQb6aVSMLX2+8RXj2SVwKaDY7WXmquY7To9IMcJFk9GXbCb1weCXVNfd+l97KB5opM/S+xSSCKReGKJRunQ/huhtSaCCFJJIoIIhqqBAT9mApYedSEwTKJCV9KfLKqp7VZz5q6ICsOpr55AXRyxpNH1K/5Hkqty+IRlQHM7BAnUCSGECHeltATqUv2WURdegTqtNZW6hl6k4MZkpBpyyAX40K+UESJQOh2oW7BgQav7TNPkmmuuYciQIe0+v7i4mPPPP59FixahlGLz5s0MHjyYyy+/nNTUVB588MHOLkkcolxVsfHgkIeJjA7IMaYaE8DdfPvLMAjUeaa+JgU5gycQWqa+BlexLvPe7qVS/LZfpRSDVD++1Zv4Qn8T0kH9Wup4y1wEwBQ1Pijfh/VKbWUInACWUO4tcQ52v8hwy6jTWntPgrNVVsB+3nz6lprbgpIpKoQQgRJ5wp3oxhp04VpU73GoyLj2nyR6HJ+Mum6Ub1rbfFjbf4SDzXoHi/RSAM43zsRQRthVyggRKF3qUXcowzC48cYbmT59OjfffPMRt73hhhuIiIhg165djBw50nv/+eefz4033iiBOj+wZs0kB+iD7rHGBAbQlwGqD006tDNPTG16A3XhkVHXLNilr8W6JdvW35k7fVUm3+pN1FFPISVkEJhM0UCzXn319zTmw/EpfQ2BjDrfgG9wM7N8MupC/O8awD59gFyVQyzRjDSGBuw4Q9QAxqkRpJIYEgNLhBDiSFwjzrN7CcLhnm96g9fc7zNGDcfAYFg3KiSsn9XCLaPuC0vZ6xhjOAAD6MskNYYoIqmh1q6lCeF4fgnUAWzdupWmpvY/2HzwwQe8//779O/f3+f+YcOGsXPnTn8tp0ersnxQSlCBGfGdppJpoIEleiXb9G4e4taAHCcYKqn2lomG+sRXsK/0tYgyoLlUNdLPff6sAyV26/1kBKikO9D8dfW1MxKUpfQ1BIIonsnBAOmkBPXYEWGWUfeVXssqvQGAqQQuy22Q6sfag8Nk+pgZATuOEEIIYTe3dvNP9/+xUjcPRbjKuIBjjaO6vL8ka+lrmGXUfalXeW97Bs0NNPqySn+HGzfVpgTqhDicTgfqbrzxRp+vtdbs37+fd955hzlz5rT7/OrqauLiWqeQl5SUEB0d3dnliDZUWD6MW7Np/C1b9SFfF7GfQhp0Y8gOYSjR5YxXI4ghmjEMt3s53dZS+hrcQJ0no86fZa8eh6bJT2SM348RDD79TILUf81aUhEKgTprRl26Sgvqsa1/w8Jh6qu1gfNUY0LAjmMdJlRA8RG2FEIIIULbm+Yi1uvNHK8mUkoFg43sbu3PmlFXEWYZdZVmFVPUOJowmaia2zFFqUgGq2w26x1s0jswtYmhDJtXKoTzdDpQt2rVKp+vDcOgd+/ePPjgg+1OhAU44YQTeP7557nzzjuB5v5Tpmly//33c/LJJ3d2OaINVTp4gbqv9bdoNHt1ATmqf/tPcqBSyllzMBtkvDHC5tV0X8vU1+AF6hp1ozcIlY7/yxXDpfFsqS733u5O4+HOSLD8DagKgdLXIksJda8gZ9SFW4+6XXo/CoVGc1wAA3VJJBBDNHXUU6CLAnYcIYQIBrNkE5hudOVuVGI2GC6MtNC/kCv842tzLSYmS/RK3or8J6e7pnVrf8lhnFH3mf6aEsoZqPoRo1oScnJVDpv1DmqpYzf5DMR/Q+iECBedDtR98skn3Trg/fffz6mnnsqKFStoaGjg5ptvZv369ZSUlPDFF190a9+imTVrJjFApa9wSPCE/eQQmoE6n55YAQgyBZthQ+lrCS0BqGBk1IWqUh38jDrr34CKUMios5a+2tmjLsQz6tzazfvm58QTy0Q1OqCBYaUUmSqdnXqvBOqEECGv4bXvQ9U+UAZoExL6EnNFnt3LEg5Qpit42P0sicRzjBrHacbUbu8zKUwz6qp0jffzQTZ9fB4boQbzNs0xhU3mdga6JFAnxKGCnmc6ZswYNm3axPHHH8/ZZ59NdXU155xzDqtWrerQ1FjRvgrd8kc+IaAZdb59w0KVT0+sAASZgs2bUaeDN0wi0AMA+pFJXzIZR67f9x1MZQS/R12oDpOIJCKgGcFtibQE6kI9o26X3k8d9VRRE5SftSyay1+LKaNBh/ZrJ4QQQrRlmbkajaaCKo4yRvhlmrpvRl34BOr2WD4bWj8zAgxW2fQlk0lqjLTMEOIwOpRRd/TRR/Pxxx+TmprKhAkTjvhH6ZtvvjnsY42NjcyaNYt//OMf/Pa3v+38akWHVFHjvZ0UrIy6EA7UWaeVBnvKZCDYMUwi0AMA+qoM9lHAPgpINEN34IdvRl1wSl+jVCTRRFFPg8+gGafylL6mk+qXE+DOsJa+hvrU1016u/f2cJUT8ONlql54/uQcoJj+ZB35CUIIIUSI+cKn96t/hjRFqyjveVoF4VP6am1VY/3MCDBYDWg+r9cFfGduAVewVyeE83UoUHf22Wd7Bz3Mnj27yweLjIxk7dq1XX6+6JjKIA2T6E8Wx6kJROCiPoQzKIp8Sl9TbFuHv9gxTKJcVzJNTcSFwaAA9CqMUdEkEEcVNT6lkaHGjow6gBPVZGqpIy2Ix+wKrTXFB6cHB6KEuj3WQF1TiGfU5VkCdblGMAJ1loESuoj+SgJ1QggRiup0PSc1/JQkEhihBvNo1G12L8kxaqnjJDWZEsqYosb5bb/T1RSqqSXV4edpnbHLJ6PON1CXpXp5b+dLywwh2tShQN3tt9/e5u2uuOiii3jqqae49957u7UfcXiVlrTpRBW47KM+RgZLD47dTtGh+8ZiZ0+sQApmoG6vLuALvRKAi9XsgByjl0qlStf4lNmGmhLLMIm0IGXUAeTpbexiH711cKeodlYNtdRRD9iT3WooAxcu3LhDvvTVJ1CnBgf8eNZA3QEtZSxCCBGqtupd3iFra/RGHkUCdR7vm0vYrHcQTyz9/HhBags72ap3kaaDd24YaNZqqwGHBOp8p8VLoE6ItnR6mMTXX3+NaZpMmTLF5/7ly5fjcrmYNGnSEZ/f1NTE008/zUcffcTEiROJj/fN+HrooYc6uyRxiEpL6WsgM+p6k+qdKBjKDcQD3V8t2OwofbVeDfP0qvK3dFLYyV6KKQvZUe52ZdTFq1jQzYEwJyvUJQykHwnEMkoNtWUNUURSizvkh0lUmdXkMphIFcEg+gX8eNn0YazKpYZanyxlIYQQoWWj3mb3EhxJa+0NPmWrPn5tz+H5vFZBNVrroLf+CITt5m4G0Y9MlU7OIdU2KSQRRSQNNIb0Z0ghAqnTn3TnzZvH7t27W92/d+9e5s2b1+7z161bx9FHH01iYiKbNm1i1apV3v9Wr17d2eWINlgbxicQF7DjRKpI0g9OSQ3ltOVA91cLNjtKX61XwzIt6ez+5AmimpiUhWgPj326gGQScOEixdI8ONDiiQWghjq0Dt7PRWeVUM5O9rKeLbhx27IGT/lrqGfUbWYHeWzjO701KGXESSqBb3UeW/UuDkhjaCGECFnWjOymEL9o5U9FlHqz/g8t5ewuz/C/Jpqop8Gv+7ZLHtvZwV5W6HUMVL4XDJVSZB68sC+BOiHa1umMug0bNnD00a2bZ06YMIENGza0+/xPPvmks4cUnVRpGe2dFMDSV2gOyhTqEgooCtkrQJ7m9bHEEKdibV5N9ymlQDcHtILF+iZrTWf3J2v/wGJdSpoKrfKAr8y1fKs34cLFL43LcKngdc6NO5hRp9HUUkcczvw5L7IOdsGe7Naog5NfQz2jrvDga9mL5KBkn1qDgUW6JODHE0IIERh5Zkugro6GkD2/97fdR+i51l1JKt47kKmSamKI9uv+g83UJpv0DgByVH+iVVSrbbJUOrv1fgoppUk3EaE6HZYQIqx1+uw9OjqagoKCVvfv37+fiAj5BXOCSh2c0ldoCcrU00B5CGY5aa1JII4pajynGMfavRy/aCl9DR5PoM7A8GZZ+pu1f2BRCA6U2GXu40zjJKKJpJ+RGdRjx1sCc9UOLn/1yW61YZgEWDLqQnhADmAZyhGcgKf1977o4LGFEEKEnlgVTRLNF/pNTMe3zQiWQAbqEiyf1yosvcZD1R4KvD83Iw7TJ9fzGVKjKQzB83ohAq3TkbUZM2Zwyy238L///Y/k5OaMlrKyMm699VZOP/30dp9/8sknH/GqzKJFizq7JHGIqoNTXyOIIJrWVzD8KRPfSX/B7LvlD1v1Lr7SzZOIZ6kTbF6Nfxg29qjLIC1gmWLWjJ1QHCjxX/Nd3jUXAzDDOD6ox/YJ1Olaejv0wrgT+kVGHsyoC+Vynxpd6z1BDlZmou/vp5xwCyFEqPrAvYQKS3VOJTXEB7CVTqjwDdT5d7J5omoJ1FVZeo2Hqjyzpc9hrmp78ry1AidfF9JH9Q74uoQIJZ0O1D3wwAOceOKJDBw4kAkTJgCwevVqMjMzeeGFF9p9/lFHHeXzdWNjI6tXr2bdunXMmTOnU2u55557eP3119m4cSOxsbFMnTqV++67j9zcXABKSkq4/fbb+eCDD9i1axe9e/dm9uzZ3Hnnnd4gY1vmzp3Lc88953PfzJkzWbhwYafWZ5dE4jlWHUWG6hXwVPUsnz+yReQS+OmC/rTEXOm9PdVoXdIdijwZdcEqfTW16e1JFaiyV/AtfS0KwUCAtcF+sE9GrCXdTr4y7lv6mmLLGiJVBOjQ7lFXbMloC1ZmonWKcSgG0oUQwiP6wsWg3ejaYlRsLwhiqwo7VOgqTmr4KbXUEa9jKTikz2iVroYAnt+FilJdzmQ1jmii/D6kKcmSUVdJ9RG2DA3b9G4mqtHEEcM4ldvmNiMZwvFqIjXUka8Lg7xCIZyv04G6fv36sXbtWl566SXWrFlDbGwsl156KRdeeCGRkZHtPv/hhx9u8/4//OEPVFV1LtV38eLFzJs3j2OOOYampiZuvfVWZsyYwYYNG4iPj2ffvn3s27ePBx54gFGjRrFz506uvvpq9u3bx6uvvnrEfc+aNYtnnnnG+3V0dGj0CnBrN0v1appoYjwjAn48n/HaIdgMdLve451cG26BumBl1JXocm8/r4AG6qylryEYqCs+mNafQBwxKrh/T6xXwp1c+lrsU/pqV0Zd89tiKPeosyMzMVJFkkISZVRwQBezW+/3e2mQEEIEg0pozpZSiYGfmO0E+bqQ7/TWwz5uza6D5rYx75ifMtM4njoafLLBwtl3epu3Cqev8m8LkwTLa1gZBqWv6/VmVur1ANxp3NDmNvEqliW6OWHCmq0ohGjWpaZy8fHxXHnllX5dyEUXXcTkyZN54IEHOvycQzPcnn32WTIyMli5ciUnnngiY8aM4bXXXvM+PmTIEP70pz9x0UUX0dTUdMSeetHR0WRl+TetORjyKfKWbAXjQ1IfetOfLMqoDMlJf1/rtaSSRDTRjGW43cvxi5apr8GxjwIMDDJJZ7QaGrDjZJBGNn0op5KSEOyB5Qme2FHSeWjpq1M5ofTVM0wilDPq7MpMTCOZMirYzh6G1Z/OluiP6O/n8iAhhBD+lc+RL7RXat8Mr0/M5ZzbeD0GBjFEUxz9VY8YNuEJJimU39/bPD0BITwy6qyTg4cfpvTV+jl1lwTqhGilQ4G6N998s8M7/MEPftClhSxdupSYmJguPdejvLwcgLS0tCNuk5SU1O7gi08//ZSMjAxSU1M55ZRTuOuuu+jVq1eb29bX11NfX+/9uqKiogur9w/rFYkBQQjUpapk9pAP+Jb2hYoDupgSyokmKuATcoPFc6oUrNLX3TofE5P9HCBeBa6HSapKZjfNP9+hNkzCrd2U0Pz3Kd2Gkk7f0lfn9j6xBpjseJ0A+pJBDbXegF0o8i19DV7AM/6QacJLzVX82HVG0I4vhBCi86wVMWkke89XPA4NHH1jrieReCqppoZaCigmi/AvjfV8xupDb6KUf88REiyVDxU6dAN1ZbqC2xr/wmrzO6D5Inuaarvd1EDV13t7t84PyvqECCUdCtTNnj27QztTSuF2u4+4zTnnnOPztdaa/fv3s2LFCn7/+9936DhtMU2T+fPnM23aNMaMGdPmNkVFRdx5553tZgPOmjWLc845h5ycHLZu3cqtt97KGWecwdKlS3G5WvepuOeee/jjH//Y5bX7UyAnErXF+iGwOMSCJwClujmomkpS2FwNDHbpq8/PHIH7mfP5WQuxoHAZld7Aabo6/IWEQLEGUGqoC/rxO8oTYIoj1ie4GExlVLCFXUBz/0VDdXo4uu2swxyCGajTSvuk8n4pgTohRAhqWvs0NFZjHliDkTEeIuOJGHeZ3csKGGug7tAgHfgG6kxt8pD7aZ/78sxtZLnCO1BXrxu8mYeB+HzlO0widAN1T7j/wxPmf7xfZx2hJ7M1K1FKX4VorUOBOtP0X2ZOUpJvQMQwDHJzc7njjjuYMWNGl/c7b9481q1bx5IlS9p8vKKigrPOOotRo0bxhz/84Yj7uuCCC7y3x44dy7hx4xgyZAiffvopp556aqvtb7nlFm688UafY2VnZ3ftG+mmXUEO1PUK4eAJNH8oB0JuWu2RtJS+2hCoC+DPnG+z+tAKChfbPCQhLkRKXwfQh14qxdZ+NxGWTLpGmgI+OTsQ6nQDx6uJgO9k7kD7oTGDOHcsq/mOXDWYPXKFXAgRgpqW3wdV+0AZmBv/Awl9wzpQl99Oj+kqS4ZXnt7eKpi3SW/nJCYHZG1OYX0/8/fEVzik9DWEM+rWm5sZxiC2sINj1DhmG6cddttYFUNv0iikhF16XxBXKURo6FKPOo+6urpOl6s+++yz3Tlkm6677jrefvttPvvsM/r379/q8crKSmbNmkViYiILFizo0NALq8GDB5Oens6WLVvaDNRFR0c7ZthE0DPqrJM4QyyjrlE3ehvrpxA+gbqWqa/BCdTtClK5tbVZfVGI9agrsnlIQnwITH3VWvOh/hI3biYwyrZ1eKa+QugG6raw09ugOZg/b7+NvIbfRl7DlPpzWaM3sk5volxXkqwSg7YGIYQQnXPolNdDVVgyvN52f9Lq8e/Mww+iCBff6jzv7UB8vkqwtI4J1R51B3Qx/zHfBeAYxvBZ9MvtPidbZVGoS9jHAZp0ExGqW6EJIcJKp2t63G43d955J/369SMhIYFt27YB8Pvf/56nnnqq3ecPHjyY4uLWbwhlZWUMHjy4U2vRWnPdddexYMECFi1aRE5O62aVFRUVzJgxg6ioKN58880u9cHbs2cPxcXF9Onj/Al2Jbqc0Qxlihof0DJEjzgVSyzNr2moZdSV0tJLMDWsMursK33t5+cpWIfqpVKAUMyoK/Pe9nwPweQzTMKhgbpyKnHT3DrBjtfII9Jy/aoxRAdKWMuYAjmJ+XCmHZygrdEsN9cE/fhCCCE6zvqecZfrBs5RM7xZ2dCS4aW15nX3+2TQizM4kSlqPMPVIFbrjUFfc7AtdH9GHDGcbZzKmcZ0v+8/EcvU1xAN1C01V3lvn+jqWIblFHUUE9QoBtKXffpAoJYmREjqdKDuT3/6E88++yz3338/UVEtmQZjxozhX//6V7vP37FjR5t97Orr69m7d2+n1jJv3jxefPFFXn75ZRITE8nPzyc/P5/a2uYPop4gXXV1NU899RQVFRXebaxrGDFiBAsWLACgqqqKm266iWXLlrFjxw4+/vhjzj77bIYOHcrMmTM7tT47bNRbWc8WvtHryQrSBzRPKV+oBU/KtCVQR9uNTkNRS0ZdcIZJuHETRSQZpBGrujcQpj3pNGcHlVJBk24K6LH8qVxXessaehH8jLpQKH31CWba8Bp5+AbqQudnzMrzocvAoLcNr+XUg4G6DNLkxFsIIRyugUaiiSKSCG6MuJQprvGMM0YAEEMMB3RzgsV2vYdElcABislXRRTqEjbpHazU66jXDXZ+CwFVbzbQiJsGmlhkLmOsMdzvx0g8eI4YTVRIvZamNinWZWwxd/JS05ve83TPeUB7XMpgld7AdvawG2mXIYRVp/NLn3/+eZ544glOPfVUrr76au/948ePZ+PGw19RsU6Off/990lObgmMuN1uPv74YwYNGtSptTz++OMATJ8+3ef+Z555hrlz5/LNN9+wfPlyAIYOHeqzzfbt273Hy8vL806MdblcrF27lueee46ysjL69u3LjBkzuPPOOx1T3noknuymfioraE3Q01Uqe3Q+RZShtQ6ZoQzhmlEXzGESWmtW6+9opIls+rb/hG7qpVK8ZYkllJNB25OYnaaQEiqoAiCF4JcBhkLpq295cIpt64igZWBQE0cejuRUnn5DvUnFpVoPQAq0gfRDoThACV/qb5jLOe0/SQghhC02mzuop4FB9MdQBr+ImEOZWcF77sVsZw9b2AnAW+YiPtNfE0M05xqz+E5vZZu5m3oaWKnXMVV1LDgTajawhZfM5s+x040TA9LXOpF4XLiopyGkWgkVU0Z2/Yk+9w2gL8eqozr0fGsZsQyUEMJXpwN1e/fubRX0guaBE42Nhy8T8kyOVUoxZ84cn8ciIyMZNGgQDz74YKfWovWRAxHTp09vd5tD9xMbG8v777/fqXU4RaWu9gafsvF/o9PD8QRPmmiigiqSbQhEdIU1oy6cetQFc5hEJdXerKNkI6Gdrbvv0OElGSo0AnXlusp7245+XT4ZddQE/fgd4TNww4Y+fh6hnlGntabg4GQ6O8peATKMXt6/P07N4BRCCNH8nuEJDCVa+qSlGEmYByd5f2WupUE3kqe3A1BHPSe6jiHRHc8SVjJA9WGLubPDWVShxloaPE7lBuQYySrB2/6jQlcG5BiB0Nbgi3gVSy8jpUPPl0CdEIfX6UDdqFGj+Pzzzxk4cKDP/a+++ioTJkw47PM8k2NzcnL4+uuvSU8P7zHedvCdSBS8fnrWMrUiXRoyjcPDN6OuWTCGSRT5TDMNfHAlVIeXVNBy0mXH70d8CJS+FllKX9NtmIzrEWF5W2zSTS2/UCGilApvgNGuQF0CLR/2qhwaGBZCCNHct7ae5lLLQy+STVUT2Kn3Ukc9q/QG8szt3seGq0EYhmKHew879B4G6X5cwg+DuvZgsU7FDVRboQgVQTyxVFNLOVXtP8Eh2uqnN0mN6fDzJVAnxOF1OlB32223MWfOHPbu3Ytpmrz++uvk5eXx/PPP8/bbb7f7/O3bt7e7jeiaYE989RihcjheTaSJJop1GUMYELRjd0epbhkvH4g0drsEs/S12DJ9NRjTJUeqIZysjqWMCvaYBV3osmkPn4w6Ap95eKh44jhBTcKNm0QV/ON3RDEOyahTLVPBQ3GYhM8gCRwQqNMSqBNCCKeyXnA99CLZycax7NH51FDLcnMNmw5m1PWhN8kqkVyjZQjgJjN8P9/lU+i9HcgLYMkkUk0tFTo0A3X9yeJU4zjOdc3q8PMlUCfE4XU6UHf22Wfz1ltvcccddxAfH89tt93G0UcfzVtvvcXpp5/eoX1UV1ezePFidu3aRUODb8PMn//8551dkjhotyWjboAKfL8wD61giV4J+H7YdroSS6AuLYyGSQSz9NW3XDEl4MdLVol8opcBsEXvCPjx/KXCcnU0yYaMukQVz+d6BQAx2pm9NoOdnXk4oV76Gowr/+1pbkkeQRNNji21FkIIceSLZJOMMVzZ9DsA0ppSvBdnhxs5ACSoOPqRyV4KyNPbQ6pPdWcUHBymAYEN1CWpBPbpA5QTOqWvVZbS17kR5/C7iGs79fwM0ogikgYa2W7u8ffyhAhpnQ7UAZxwwgl8+OGHXTrgqlWrOPPMM6mpqaG6upq0tDSKioqIi4sjIyNDAnXdsE8XkE4KKSSRrTKDdtx0a+mrJcPK6fbrQtJIIZM0suht93L8JpgZdYXWAQBBCK6MUJartzp0rt5aT7rsyahrKX1tq5+IE8gwCf8o0WWkk0I88fRVGbasQSlFAnGUUSGlr0KIkGOkDkVHJaGr96Pi+6Di7flbGgy+F8lSfB4boQaTShKlVLCM1Wg0w8lhhjGtZRtjMHvNAkqpoJCSkBny1RnBylT39Piuoga3dtsyDKqzfC5Ed+H81lAGPzbO4FNzOVvZRa2uI1bF+HOJQoSsDheOlZaW8uijj1JRUdHqsfLy8sM+dqgbbriB73//+5SWlhIbG8uyZcvYuXMnEydO5IEHHujc6oWP/RRSRBlb2EVGEDMprJlU1gwrp9tHASWU8R3b6GOEz0mYsjTV6sgwle4IdkbdYJXt7SGWF0KBOk8ZQwQRxBL8ExBDGSQSD7TdT8QJGnQjOfQnnVQZJtENJZRRRBk72Uu8pQQ12DzB4WopfRVChJioc98hes7XxFy7h+g5XxN17jt2LylgfC+S+b73GsrgOGMCqSQRRSQazSa2+1Tt5Koc0klhFENZb24O2rqDyZqpnhnAIWZJltYkFSHSp67S8h6f0MVzjkgVwV4KaKSJFXqdv5YmRMjrcKDuscce47PPPiMpqXUvr+TkZD7//HMeffTRdvezevVqfvnLX2IYBi6Xi/r6erKzs7n//vu59dZbO7d64cPnik8wA3WHDJMIFZ5eCJFEkBlGVwB9AnUBzqoLdrlipIpksMoGYJPeganNgB/THzwZdckk2FYW4g3UOTSjbrX+ju3soZpaMkizbR2hHqhzypCchIPTAyWjTgghnMdzIbfYMsiprYtk17p+QhNun57ExxktwwOPUxMooowNbAnbIItnknoyiQHN9rJWXJSHSJ+6KsvF30QV36V9TFUt04K/NL/p9pqECBcdLn197bXXePDBBw/7+FVXXcWvfvUrfvvb3x5xP5GRkRhGc3wwIyODXbt2MXLkSJKTk9m9e3dHlyPa4AnUKRS9g9jjyVqmVhxCpa+enn79VRaGCpGpBB1gDdSZmN6edYHgO0wiJWDHsTpFHUsGadTRwCa9w6cc1qnKdXOgLsnGQQ4JKh60MzPqmnQTW/ROoDlr0s5yD+vU10YdeoG6Mt0SqLNzSI7nynoVNWHbt0gIIULRN+71XNx4E0cbo9ljaeB/aOkrwFTjaBKJ5yg1kizVm3Iq6a+yvI8fZYz03g7XIMsg+pGl0klVge1nbe1hHCp96qyDL7pS+gpwnDqK0QwjTSVLnzohLDocqNu6dSvDhg077OPDhg1j69at7e5nwoQJfP311wwbNoyTTjqJ2267jaKiIl544QXGjOn4OGfRmic1O4M0IlSX2g92ifUKXKiUvlboKsoOZp70J6udrUNLMDPqfEtfgxMczjLS+UfTvwH4ylzLCMPZgTqtNeUHSxg8/UfskGQpfXVa4GSH3uvNXstVObauJZLQnvpagjOG5MSrONDNf4NqqSPO0idRCCGEff7jfoet7GKrucvnYu6hpa8AcSqW9dHvHjaTbKgaSG/SKKSEL8xvaDQbiTQi29w2FFXpGj7WSwE4UR0T0GP5ZNSFSKDOmjWf0MWMuqHGQIooYb3ezBq9kb/p20OiP58QgdbhVBuXy8W+ffsO+/i+ffu8mXJHcvfdd9OnT/Mo5j/96U+kpqZyzTXXUFhYyBNPPNHR5YhDaK29qdnBLHsF3ytwRZYUeifbY5mQax0NHg6sJ12BHidRrisZp0ZwmppKbx2cQN1Uw5Iir51/9baGWtwHhxLYnlFHc+Ckmlrb1tEWa7/B4TYH6iKUdZiEZNR1lbVXjZS/CiFCScN7l9Pw+mzqnhpNw+uzaXjvcruX5DfXNf6RtTqPuIP9ck1M+tCbq10XeluLHOpI5Z5KKa5zXcSJ6hhqqeNNvSgg67ZLsAZJgG9GXUWIlL5ae+kldrFHnVLKe25fQRXrdXj2OhSiszqcdjVhwgTeeOMNjj322DYfX7BgARMmTGjzMQ+tNRkZGd7MuYyMDBYuXNiJ5YrDKaXCm5ES7EBdtIoikXgqqfYZ8+5k+brQu+ZwC9RZ86RMAtfDTWvNSr2eKmoYpPoTZUQF7FhWx6ixRBKBieaAWdT+E2xWbjmJsTOjztOjDpqz6rra9DcQ9ukDxBNLNbXkGnZn1LW8LYbi1FefHnXYF6izDrKo0jVkBLABtxBC+JO5ZwlU7QNlYFbsgoS+7T8pRCw31/Ct3uStvlAo9lPILr2vyxcTJxpjuN39V+KJZZW5gR+5ZvpzybbyJEEAZAX481VIZtRZ+h4ndrH0FWCacTQLzA+JJ5Z5jX8knVSGGYO4P/JmfyxTiJDU4Yy66667jgcffJDHHnsMt7vlw4vb7ebRRx/l4YcfZt68eUfch9aaoUOHSi+6AAjmFZ+2eMoei0Mko24vB6ikmhiiyaK33cvxK2tJYyBLX/dxwJspE8xyxVgVw0nGZFwYvKc/p1bXBe3YXVGhW062utq/wx+sgboqhw2U+E5voZpakkhgAPZ+IAr1YRKejLpIImwtN/UMkwColow6IYRwBM/nhSzSWRP1JrcYV3GBcRa3R1zf5X2eahzHVHU0btw86H7a25c3HBToYu/tQCdC+Ex9DZGMuko/DJMAOM91Jmuj3mK+ay57dAHv6yX81f08hbrEH8sUIiR1OFD3ox/9iJtvvpmf//znpKWlMWHCBCZMmEBaWhrz58/nxhtv5Nxzzz3ywQyDYcOGUVxcfMTtROcV61Imq3GMVsMYYEOG2ETGeBvN1prODpxAy4fZOupJM+zr4xQIvqWvgQvU5Zkt5YrBHuiQQS8aaESjvUMInKqKWiapsYxVufRTmbatw3oCZS1VcALPiXAFVba+RhD6gbrSg3/bUkmytQ+hT2BYAnVCCGG7Jt1E4cHKl/4qi1xjMMlGIhOMUYw3RnR5v0opjjJGUEcDGs1yc42/lmw7n0SIAAfqeukUxjCco9WokDn/qPDJqOt6oC5D9WK4kUOSSiCWaG9F0FJzVbfXKESo6tQ4yD/96U8sW7aMuXPn0rdvX/r06cOll17K0qVLuffeezu0j3vvvZebbrqJdevCc4S3XfIp4iu9lvV6sy19sOKNGFbr71inN7GKDUE/fmeV6paG63aWhwWC79TXwAXqNtnYV8xaHrlJ7wjqsTurTFewQn/LtzrP598m2HxKX7WzAif7daH3dqbNJZKhPkyi9OAwiUBPp2vPoaWvQggh7FVIqfcCrifo9IuIOfwiYk63923tH7zEXNnt/TlFviVQlxXoHnVGIuvYxDd6A3t1QUCP5S9VBzPqoogkWnW/Bc4vIuZwX+RN3q8fbXqBet3Q7f0KEYo6PRp08uTJTJ48ucsHvOSSS6ipqWH8+PFERUURG+tbmlNSIimuXWEtOQ3W9E2r49QEnucNAL40V/m8YTtRGc5ouB4IRpCmvu7XB5iqjsZABT2jzlpqax1E4ERVlrIAO4dJWDPqrGtyAk8PmGQSj9i0OhgirBl1OjSuaHs06SZvGYrdFyCk9FUIIZwlkNlhx6qjOFqNIp44inRo9KvuCGuPukBfSEz3Gc4XGq/hAPqSpBKIV/5rtXGcMYEfqzPYqfewQ+/l/MZf8EbU437bvxChokOBul27djFgwIAO73Tv3r3069evzcceeeSRDu9HdFyRZYiD9Q99sEyzBObWmBuDfvzOKrFk1KURXqWvvhl1gRsm8bX+1jt1dbgxKGDHaUuuJTC43r25C5ccgse3LMC+AQ7WjDrnlb7aM7G6LRFYp76G1jCJMkvzabsvQFiHlbzu/oDZrtNtXI0QQgjfftb+DTr1U5ns0HspoZzteo9f922nPTrfezvgpa+WRItQGc63TK+miFIG0vbn/q5IV6k8E3UP2fUnNg9LNBtZa+Yxzsj12zGECAUd+nh7zDHHMHv2bH72s59xzDHHtLlNeXk5//3vf/nLX/7ClVdeyc9//vM2t5szp/vp1aK1YsuVFzsy6oapQYxXI6nQlWxxeCkihHdGnQpSRp2nR10ayaQT3J+5wWRzqjqOPL2NNXwX1GN3VpVPo107M+paju2kYRJVusbbw8zfHxy6IlJZp76GVkZdoVlMOimkkhz0LNdDzXadxla9ixfd/+MD8wtWmRuYYIyydU1CCNGT+ZRx+jnopJRiuMphmV7NHvKp0jU+mdWh6jtzK/3IZLwxIuDnuqkkoVBodMgM5/Nk8Sd1oz9dWyJUBHdGzOcl91us0N/yQNNTPB91v1+PIYTTdShQt2HDBv70pz9x+umnExMTw8SJE+nbty8xMTGUlpayYcMG1q9fz9FHH83999/PmWeeecT9bd26lWeeeYatW7fyl7/8hYyMDN577z0GDBjA6NGj/fKN9TRF1tJXGzLqlFLUUcd29hCv7Zs02FGeYRIAKSTauBL/C8YwiUpdzV6a+2cMVzlBb1ofbURRTS17KADdfJXYCdlYbbFmr3Wn0W53pehE0kgmlhhqHDQpt8Dng4P9E5hDeZjEAUoooowiymzthwjNmQdRRFJysGdeWRhNARRCiFBUQSUD6UsxZWQEoN9arpHDMvdqoLmP8dEqtD/T7db72UNzRt1gnY1Ludp5Rve4lIs0kimmzKdSyqkadCP1NPePSwjA+e1PXN/nj02PEUUk+bqQbeYuBhsdr/ATItR1aJhEr169eOihh9i/fz+PPfYYw4YNo6ioiM2bNwPw05/+lJUrV7J06dJ2g3SLFy9m7NixLF++nNdff52qquYPsWvWrOH222/v5rfTc1lTpNNtyKiDlpTwamod3zy89GBGXSLxRCgH1012gfXjeaCGSVgHSVgHOwTT8cZE720nT4Wy/i4E4kSmoxJVAiWUs5cCCnFOL1Br/xd/X+HvilAO1Pn20rH/tbT2G6zDOcFhIYToiXbovexkH1XUBKTfWij1D+4I67nlNMs5ZyB5qqJCIaOu0qdixP/nt3Eqlt9EXEUEEXymv+YR93N+P4YQTtapCEVsbCznnnsu5557bpcP+Jvf/Ia77rqLG2+8kcTElkymU045hccee6zL++3pPE1HI4ggCXvK6zItV+cKdBEJyrlXPTwZdSlhNvEVglP6usHcwrHqKAAmqbEBOUZ7TjSO4RP3clCaV9zvObYHVqXPMAn7AnXpKsV723ql9q2mRSwyl/KpXs6DEbdwiuu4oK6rVFdwvJpIE24G0T+ox25LKE99LdDF3ttOCNTF0RKoq6XexpUIIUTHRYyZi24oRx9Yi8oYh4oKj17Ggc5gH8sIJqtxROBii7kTApuAFnAluoxT1HHsYT8TjeBkB3qqoiqool43+GWSaqBUWtqo+Lv01eMnru9xZ9PfOEfNJJYYTq+fy8KopwKe3SiEEwQ9lejbb7/l5ZdfbnV/RkYGRUVFbTxDdIQnUJdOStDLED36WN708yliCM4M1GmtveVYaSo8Tr6sglH6ulSvZpleDcAfVdv9KAPtFONYruL37NeFfKe3UarLSXXgv2eFdkbpq0+TYsuV2rvdj7NKN/f5e879RtADdbv1fpbolQBcbvw4qMdui3WYRKhNffX5EIb9ZcSxPoE6yagTQoSGiONusXsJAZHvczHH/xl1Y1zD+KppLQDKNPg98/x+jGD6wlzFIr0UgFFqaFCOma5S8Zy6F1NGXzKCctyusPZgTgjQhehUlcym6A/4WeOt/OVgRt1b7kXMjnDmxXkh/KlDpa/+lJKSwv79+1vdv2rVqsNOihVHprWmmDLAnkESHtYMDusHRqepodZb0hZugyQgOFNfvzCbAysRRHCMYU9GXYSK4BzXDEaroRylRrLY/MqWdbTHMygBAnci0xHW3pVFluEzkbolg6zQchIfLD7NrQPQM6ezIrAOkwitqa+BbBTeFTFEe2/XasmoE0IExsUNv2Ji/Q8ZWTeL6fU/tXs5juVpj5BEAnHK//2k+6jeDFbZAKzQ31KvG/x+jGCyo51EL0v1g3VQoBMFqwdzkkrgSuMCpqjxDFUDudf9BFoHblieEE4R9EDdBRdcwK9//Wvy8/NRSmGaJl988QW/+tWvuOSSS4K9nLBQrWu8gSfrH/hgs16dc3KgrkS3NFpPDfvSV/8rNyu8wwiOVqMCcrLXUacax7Feb+FL/Q3fmptsW8eR+JS+2phRF6UivWXxnsA+QLlqafK/SC+jRtcGdV2+J8Iy9bU7nNyjTjLqxJForWkKsQxW4Rzvm0tYrzeznT0s02so1M7pw+oknnPzQL4/TFVHA82Bm81maPep87xeCcQFbYKtdbJskcMDddYezIGuGDnVdRyNNLJF76Ra17DIXBbQ4wnhBEEP1N19992MGDGC7OxsqqqqGDVqFCeeeCJTp07ld7/7XbCXExaKVTlu3CSRwCDsy0q09qjLd3Cg7gAlaDSpJDFMDbJ7OX5nBLhH3Qa2spv9pJDEJJuy6TyyVR/v7d20ztR1gsqDpa8GBnHYOxHZE8i3XqW1TkAGKLIE8YLBGtR3QnAppIdJHHwtI4lwxEWIOCl9Fe14rmkBMXVjiK0fy0kNF9m9HBGCanStT2YPwDJztT2LcTDr65QZwOz10Wqod3LpajYG7DjB4On7Gsxzkz6qN6kko1A+F1WdKNDDJKyUUvwm4iomqFFsZif3uZ8I6PGEcIJOBeoaGxu57LLL2L6961dIoqKiePLJJ9m6dStvv/02L774Ihs3buSFF17A5ZLGkF3h+dBdQZWtTUf7qyxGqMEMVtm84f6ImfWXsdjtvHLE3bo5oFNKRdCukAVToEtfPa9fGRVkqyy/778zfAJ1Ot/GlRxe5cHS10Tibesf6eG5UltKBU26yadfo0ewSy08wSUDw+dKsl1COVDXi1RGq2GMUyNs/1kDKX0V7bP2VK0huNm8IrQV6VLebVrMzY33e++LJIIpajz7zIJu7bvuyVzqHk6k7pHk5v8/mdvd5drOOmwoK4DZ6wONfpRQjkb7HDPU1Ol6ymi+kBnIwOahEkmg9ODr5/TJr749mAM/yPAsYzoVuooM0uhPFvvMAwE/phB26lSgLjIyktdee80vBx4wYABnnHEGP/7xjxk2bJhf9tlTWf+Q97Lxg+5IYwiro9/kJDWZTWxnsf6K65ru4EcN1/GXJueM1LYGdKyBnnAR6KmvTnr9kkkkgeZgqyeA6DSejDrPOu3kyajTaEqp8OnX6BHsUgtP9m0GaY6Y4hWqU1/rdQOf6GWs15uJdMioPWvpa51k1Ik2WLMuQ72flQiupe5VnNM0j3+Zr3jva6SJ5XoNn+kVNq7MmfbpluBlIDPEQqVfdXsKsAY2gxeoS7e0MCrC4aWvlh7Mgc6oA3ApF2e4TuQAJbxsvuUdaidEuOp06evs2bN54403unXQp556ijFjxhATE0NMTAxjxozhX//6V7f22ZNZ/5D3tnGYhMdwNYhE4pimJjJdTWGzuYOX3W/x96aX7F4a4BvQsTvQFAiBnvrqpNdPKeVdw26935HNZT2lAcE4iWmPNZBfrEsppaLVNsEstTC16T0ZdkLZK/hOfQ2lYRJ7HBRA94i1ZNTVSKBOtMEnUIcE6kTH1arWf1M8lymdeuHOTu+bS8imD2cbp3KKCtx096wQaYPTnnxd6L0dzPOTdJXmve30YRI+pa9Buhg91TjaeztPh3YPRCHaE9H+Jr6GDRvGHXfcwRdffMHEiROJj/f98Pnzn//8iM+/7bbbeOihh7j++us57rjmN4qlS5dyww03sGvXLu64447OLqnHs/4ht3Pqq8cNkZfy84hLcCkXf2x8jE3sAA0L3B9ybYT907isJ3ADVF8bVxIY1oI3M8CBOie8ftmqD9/prdTTQCElZGD/QAIPU5veK45JQSgLaE+65e/Dfl1E7zYCUcE8MdynD3gHNjglUOdT+hpCze13OSiA7mHtySg96kSbLG9YdUh5tOi4Sksje48kEimnUgJ1h3BrN8vM1exmP3vMfO6O+GXAjuWTUUfoBup8++cG77yyFyne20UOL32t0tYedcE5x81VOd7beea2oBxTCLt0OlD31FNPkZKSwsqVK1m5cqXPY0qpdgN1jz/+OE8++SQXXnih974f/OAHjBs3juuvv14CdV1Q5FP6mmLbOqw8JWy3R17Hy+Zb7NR7+Vp/S4NuJEpFtvPswPKcwBkY9KW3rWsJBJ/SV619I3d+4Hn9Iokg0wFBsaPUSPapA5ToMnaZ+8hw2b8mjwpdxQD6EkcMwy0nF3aZrMZxrDqKDXoLm/Q2IlTrtgOFQQzUven+GIAT1ETmGj8M2nGPJCJEe9Q5KdPVQ3rUifa4LX1UJVDXddPqz2eD3oqB4qOoZ5lgjLZ7SQFXZcnm8chUvSjXleynkHrdYGvfZif5Wn/L1/pbRqthjFA5DDEGBOxYCSqOeGKppjakS1+LdRk59CeeOPoTvPdU6wXVYoeXvlqHuAR66qvHEDUAAwMTk02SUSfCXKcDdd0ZJAHNAykmTZrU6v6JEyfS1BQ6H4qcxPqHPN0BGXWHmqaOZo/OJ4f+rNbfMVmNs3U9EUR4e5tF2hw0DAQV4NJXFy6SSKAXKRgq6IOjW4lTMazTmwDYQz6TsHcSrVWFqmYX+wAYyRCbVwP9jEyWNa0GYLm5lj4qo9U2wTwx3KJ3kUYKn+uVPGjcErTjHkmkanlbbAqlQB3OC9T59qiTIIxozW3J6q2jHq21IwahhJo9Ot+btVqvQ6e3ZndYG9l79COzuYoD2KsLGKyyg7wqZ/rC/IZa6livN3OtK/CVLZkqnW16d0gH6gooYjt7AEgOUrYYNFdfRBBBE02OHyZhoulFClXUBC1QF6OiGaT6UahLMHDJe4YIa0H/lH3xxRfz+OOPt7r/iSee4Kc/tb8sMhT5DJNwYKBuujGFKCL4jq18Ya5s/wkBZGqTr/Rayqkkg7T2nxCCAjn1tUJXsUpvoIIqx5wAW8tvnTb5tUJXem8nBfFE73AmqFHeLKcv9SpKdRs96oJ0YrhL7+fv5kuUUMbJxhTGGSOCctz2+A6TCKFAnQMz6qw96qT0VbTFmlHnxqRaJr92SZ2lv19dD+n1Z21k/17kU1RHr2Gc0TKdVcpfW3xpfuO9Pc2YEPDjeaakllIRskNifD9bpQTtuEop0g9WRwV7uFdn7dMFFFNGPQ0kq8SgHXeEGkwl1azQ3zp+4IYQ3dHpjLrLLrvsiI8//fTT7e7jqaee4oMPPuDYY48FYPny5ezatYtLLrmEG2+80bvdQw891Nnl9UjWP1LpDil9tTrGGEvtwWyKL81V3MCltq2lgipv8CrNSLFtHYEUyOtK1ob1WcoZZcPWoITTTszLLWUByQTvJOZwolUUx6mjKKeSTJVOma7gODWBOl3fHLxWvYI2ndb6weE4FfgPDh3lO0widAJ1FbqKKWo8JibZZNm9HMB3UECNlkCdaM19SJ/MUsodMSE7lGitfQKclbTONAtH1kb2vVQyLuUiR2UzQY0igThKdbmNq3OWVJKZosZTSAm5anDAjzdSDcGNm2iiOKCLHXPxqDOsQbJ0gpsE0Uulkq+LgjrcqyusF3tTgniOa60G2a3301uFZ+KFEJ0O1JWW+kauGxsbWbduHWVlZZxyyintPn/dunUcfXTzxJatW7cCkJ6eTnp6OuvWrfNuJ2msHee56hNLDHEq9sgb2yBX5ZBGMiWUs8Rcgdt04zJc7T8xAKxvKqkk2bKGQLNOffV3Rp0Ts3aycW6gzmkZdQBDjYE86f4vaMgwerFUrwKa+4lt07spa2MSrL+V6nK+dLcE6qxTvOwWGYI96hp1IwvNz6mhlmz6OOYiRKSKxIULN27qJKNOtMF9yHtUma5wzHtLqKik2ueiQmUbvdvCUaW29sdqfn/tpVJYpTcAcBbT7ViW47i1m5fNtzAxmaTGBOXzlUsZfGWuBaCQEp/ztFBhDZIFu1qpl0oB3ZyJXqNrHfnZDpozJqG5P12E6nRIocuyVcvFyN16P0cT/j05Rc/U6d+qBQsWtLrPNE2uueYahgxpvwfTJ5980tlDHtY999zD66+/zsaNG4mNjWXq1Kncd9995Oa2pL7X1dXxy1/+kv/7v/+jvr6emTNn8ve//53MzMzD7ldrze23386TTz5JWVkZ06ZN4/HHH2fYsNaN150gnVSOVUc5suwVwFAGV7kuYLm5luV6Ne+Zn/E942Rb1mINQqSo8AzU+QyT8HOPOidOluynMlAoNNpxgTqnZdSB77/bfgq9t3uRwl4KAt5TRmvNDxvmUaNrmaLG48bNFGN8QI/ZGaEYqFujN1JzMKPGSUFPaC5/raLGm1UthFXrjLrAXygIN4f+za7UPSRQh3XiZHN/rF6WzKf2yga3mLuY1XAZEbgYZgzirah/BmahNiuj0nvRNlifE6z/Dk7vs3Y4xQd/fgyMoF/Yn6BG0aSaL3AV6GJyVP+gHr+jyg5mraaSHNTjOrmSRgh/8kuPOsMwuPHGG3n44Yf9sbsOW7x4MfPmzWPZsmV8+OGHNDY2MmPGDKqrW968b7jhBt566y1eeeUVFi9ezL59+zjnnHOOuN/777+fv/71r/zjH/9g+fLlxMfHM3PmTOrqnJcRoLXmC/0Ny/Rq9jqsP5fVJGMsi/RS6mn0Nv63g2+adngG6qwDHvwdqLO+IQ5wSKAuUkXSl+Y0eEf3qMMZGXXWE5wDuth7O0M1T8sNdE+ZpeYqCnQRa8ljh97DucYs74csJ/AJ1OnQCNStMzd71x2M/kOdEXuw/FUCdaItbu2bUVdiltmzkBCWzyGBuh6TUdfSo87TyL63z8TMsiM+f4u5gz3ks4O9LDNX+zwWOetfRP5wAa4T7ibyhwuInPUvv6072IotActeQWqPY/13CNUeYkUHf37sGJzWSCNf6m/4Rm/gAMXtP8EGWmvvhZXUICc++AbqnHXeL4Q/+S1PdevWrR2a2lpXV8ejjz7KJ598woEDBzBN35O0b7755jDPbG3hwoU+Xz/77LNkZGSwcuVKTjzxRMrLy3nqqad4+eWXvWW5zzzzDCNHjmTZsmXeHnlWWmseeeQRfve733H22WcD8Pzzz5OZmckbb7zBBRdc0OH1BUM5ld6Sh2A2O+2sM4wTGa2Gsl8X8Wf3v/h1xJW2lDdbM+pSVXCvAAWL9VU1Axios6ae2+17rpNZ4P6QAorYpw/Qt41ppnawZtSlBLHR7pFYT3BKLD18+qgMb8lQAcUMCFCpyn3uJ9nOHiapMfw84hLOc50ZkON0VQShN/V1ibkSA4MhZDPBcFYJiCdQVyc96kQbrBl1EUQ4vieTE/XcjLrm99coIolWUYBvxlhxOxl1numwzfuqpkrXkKCa+yO6sk9o/v+g0/y5ZFv49LEOVkZdJ/4dnMqzbjs+W3kunELr32+nqKHWW3UQ7Aql/viWvgoRrjodqLMOe4DmwNb+/ft55513mDNnTrvPv/zyy/nggw8499xzmTx5sl+DNeXlzR8609Kam0quXLmSxsZGTjut5Y12xIgRDBgwgKVLl7YZqNu+fTv5+fk+z0lOTmbKlCksXbq0zUBdfX099fUt2QIVFcEr3fCZShTkZqedYSiDPiqD9XoLACWUB+3KnpU1MBGuPeoCWfqqUIxQgynUJfR3SEYdNJeVeq46fml+w7muWTavqFm5T0ad8wJ11qbj2bS0AyjQRQHJmNxrFpBAHL1I4YAu4YfG6X4/RncppRhJcyPsUMm63aS3U08DW9nNaDXU7uX4iFXRoKFGetSJNlh71DXRRIFDs0ecbLfez0D6spN9QM8bJuHJpgPfjLGidkou8/R2n6836x1MUKP8tj6nsGN6aWf+HZyoTtd7pwrb8dnKMzUXnBuoK8G+z1P9VRa9SCGdVKKIDOqxhQimTgfqVq1a5fO1YRj07t2bBx98sN2JsABvv/027777LtOmTevsoY/INE3mz5/PtGnTGDNmDAD5+flERUWRkpLis21mZib5+W2nynruP7SH3ZGec8899/DHP/6xm99B1/heKUuxZQ0ddWhPATuuUvWEjDrrMAl/B+q+0N+wU+8ljWTvlWcnON6YyP3uJwFnBeoqrD3qHDJMoi+9MTAwMb3BkyQSyDIy8HxmzteFR9hD131sLuU1830ALnbNJlI58wSrgCJKKA+JHnVaa+8HzgH0dVzT6ZbSVwnUidbMQ3rUOfVDqZN9Y27wBukAKqk5wtbho+pg6Wui5b01WkWRSDyVVFPcTsllnukbqPvO3MoEI/wCdUU+pa/BCTql+5Qgh15GnTWz147PVlmqJVCX79C/iWXavp7fUSoSFwZ5bKfGlHMLEb46Hajr7jCIfv36kZjo/8ySefPmsW7dOpYsWeL3fbfnlltu8ck0rKioIDs7OyjH9uk94dBhEh6HBuqOYmTQ11DWA3rUWTPq/Dn11a3d7NUFgHMGSXhMMcYzRg0jTaX49K2xW7l23jCJSBXJGcaJVOgqlunVQPPvQiYtpRaBOjH8Qq/03j7LNT0gx/CHXiqVEl0eEk2wCyimnObMzVwjx+bVtDZejSSReJpw02A2EGVE2b0k4SCHTn2VQF3naK350vRtGVPVQ0pfPRfCEvG9aNhLpVKpq4/499vUJo00MJbh5FNEpurF/8yP+AnfB8C9+3Nw12MW52H0ygVXtLccNtTYEXTyLX0tO/yGDlWkS5mmjsbAYIRqf1Civ2VaAnUFOPNvonXwjx0VSpkqnQO6hAKK0Frb0k5JiEALbndM4MEHH+TXv/41O3fu9Ns+r7vuOt5++20++eQT+vdvmYyTlZVFQ0MDZWVlPtsXFBSQldV2fy3P/QUFBR1+TnR0NElJST7/BYs1pTzdwaWv4IwpPT5vLDL1tVPyKfL27HJaoC5ZJVJFLZ+ZX/M/8yO09m8mYVdVYCl9dUhGHUA1tXyuV3gzxtJUss8V3P36gN+PqbXmc/cKoHlgwyQ1xu/H8BdP2U4FVTToRnsX0448c5v3dq5yXqCugEI+1ytYqldRrnpGSZ7ouEOnvjo1e8Sp9pDPXnzPVyt6QOlrnVlHPc1DjxLwHUaUfvDvdwnluLX70KcCzWWvy/VavmUTZVSwTm/mY3Mpf25sHhrRuPBnNC74Ie7Pb6VxwQ9pXPizwH0zAWbHBf10a+lrCGbUHdDFfKG/4XO9wuecOlh8AnXame0A7Myog5bXqIFGmRYuwlanA3U5OTkMHjz4sP+1Z9KkSdTV1TF48GASExNJS0vz+a8ztNZcd911LFiwgEWLFpGT4/shZeLEiURGRvLxxx9778vLy2PXrl0cd9xxh/3+srKyfJ5TUVHB8uXLD/scO1lTyp08TAIgG/sDdT0ho87wCdT5zy7dUlrjtEAdtAQpKqhqNQXPLk7MqIPWAZ0UlcQwNYjTjKkMUv1Ypzf7/Zif6xVsYzeT1Bjmu+YSq2L8fgx/Se/E5EC7HdAljGQI49UIhqlBdi+nFevfWevfXyGgjYw6h/ztDhXbzN2MZiijGea9r8pBWeWB8q65GICpagJXus7zecwTjDIxKbNcLLP6wpKFOMs4gdnG6aSRwl/dz7Hd3BOgVdujyJpRF6QL+nEq1tv2IBQz6qznkNaLmMGSQcvnYadmGZdqmzPqQqCPnxDd1enS1/nz5/t83djYyKpVq1i4cCE33XRTu8+/8MIL2bt3L3fffTeZmZndSlWdN28eL7/8Mv/73/9ITEz09pBLTk4mNjaW5ORkLr/8cm688UbS0tJISkri+uuv57jjjvMZJDFixAjuuecefvjDH6KUYv78+dx1110MGzaMnJwcfv/739O3b19mz57d5bUGSqgMk4CWKaHxxNr2xt1II3HEUENdj8io82fpq1Mnvnrkqhze53MANprb6OPqbfOKmjMaY4lG09xTwykODdSlkkSO6s8yczVV1FCqK9js3kG9amC0GuaXkoJ15iaySGeFXsd1xsXd3l8gWS96FOtS+ij7f5YOZw/7+Y6toJ15sSbN0gvU2nxaCGidUVegi6WMqRP2kM96mod0RRFJA409IqNurd5EL1L4Uq/iFnW1z2O9SMHAIJkEvnCvZIDqw2Z28mPXGd5t9ukDpJFMCeX8KuJnvOZ+nzf4sPkxDgRo5rk9GnUj8cRRTU1Q3yN6kdI85MsZBQ6dYg38ZNoQqItUkaSTSgVVuLX/zuP9qYwKkkiggipbMuoO7eM3kuCXKAsRaJ0O1P3iF79o8/6//e1vrFixot3nf/nllyxdupTx48d39tCtPP744wBMnz7d5/5nnnmGuXPnAvDwww9jGAY/+tGPqK+vZ+bMmfz973/32T4vL887MRbg5ptvprq6miuvvJKysjKOP/54Fi5cSEyM8zJArCnlvZ3eo44sskgnnyLW6I22rGG3zqeGOuKJJVHHY0NGe8AFqvR1t24ZpuLEjLrhluDTJr2dk5li42qa7dL7qKWegfSzeyk+hreRURehIphijOdjcynlVDK28XsA7IpeTIalf11XPdj0NPkU0Y9MzjVmdnt/gdTbcjXb6RPrnH6xRjLqxJEcmlFXQy1V1PhM8hSHZ/39jyWGBhqpDPMedVW6hj+7/4WJyTFqLKcZU30en2oczf/MjyilgvOamj+zRBPF6cY0b0DhY/NLSignkXjGMowlqqV/arhl5+zQe6mmBgODVJ0UtPPeDJXGHp3PJraHXPDdN1DX/fOfrhik+rFCr2Mdmxz5+uXrQiqoIpoo+hH8i/eh0MdPiO7qdKDucM444wxuueUWnnnmmSNuN2LECGpra/1yzI70oYqJieFvf/sbf/vb3zq8H6UUd9xxB3fccUe31xho0TqSyWoc9TSQZukJ4URRRhQJKh50EZv0DkxtYqjgtkks1CUAJBKPYQS9RWNQBGrqa42u5Vh1FFVU+5QxO0WuymEEg0lRSRQd/He2k9baG0hPdNCEXIARxmByyaGAImKJYbwaAcAJxiQOmMVsYzfVNP+dztPbyejmiWqlrvb2URqg+hKh/PbWExA+GXUO76/j9Is11una0kdGHMqaUTeYbDJUL/brQhKVBOo6wjrRcwSDMZVJFM7J3g6Er8y13p+bo4yRrQIYg1Q/7/uXxziVyzZzN0e7RgMtrTwSiCPOiCNTt7zH/avpFabrWpz1rt11ngzLGKKJNIL3s9F8vg+NNFFDLfEh9Ipae2VaSyyDKUklgIZ6Giin0nHtenYdrLKpp8GWqgPfPn4SqBMd86fGv1NDHTXUcm/ETUQrZw8481uk4tVXX+1Qj7l7772XX/7yl3z66acUFxdTUVHh85/onNV6I1/ptazRGx35Ie1QI1RzH8Na6thNfjtb+5+n35TTJ+R2h/WU1fRjoG61/o5lejXr9GayDQcG6owcNrKNZXo1X+pVdi+Hamq9za6d9vPWX2WxJuYt5rku4jLXuVwdcSEAv3Zdydcxr3O8muTdNs/c3u3jbdIt+xhhtN/L1G7WzDRrI24n8smoc9jPGfg2mZaMOnEoa0bdNnazTK9mjw7+uUGosvbQbFSNfK2/5Qv9TVhn1X1qLvfenmoc3erxKcZ4nwuWAF/rb1msvwKgXjewn0KgpTrAGoxZpJdSHkblw+W6uU9fMsEdaGXtWxZqF2nydaH3th2lr+D8HmyedjgKRT+VGfTjZzn89RHOU6Nrucv9OA+6n+Zx979ZpTfYvaR2dTqtYcKECT5Xr7TW5OfnU1hY2KqktC2zZs0C4NRTT/W535PW63a3PaFJtM3T8DSdVCId1APrcHJVDm/zCQCbzO0MdPUN2rFrdC211AHO7OXkL4ErfW1+U44gwucN0il6k0YqSZRS4ZfgUndZMx2cOpH50Em0nr/tA1Qfb18Za5Ctq/Is+3DiZNJDpVv+PhQ5fJiE9eeslwOzqkP5w5oIvLamcto1bCoUWS8kDFB9+ebgB489Op+RKvx6Nrm1m/+632W8GsFA1ZfjjYmttklU8VxunMsr5ns+wyQ8WXZ7dcuUXE+grvXAgBBsrHYYnoy6YE+eP/QiTX8H9jY+nAKaJ60mEEeCTRURh/Zg+3/2zjs8jurqw++d2V3J6rZkW5YlW3KRe+8d021675gOCRAHAiQEQiBA+EiBEEIgIRAgdDChg0MxuHe5d1uyJMtVvdiSduZ+f0i7mrXVVtoq3/d59LDenbn3rFjt3Dn3d35nAKG1yen6nk4mKSiqpGTRlRliPNXUuO/tFIrmWGVu9LgvXmquZaI2MngBtQKvE3UXXHCBR6JO0zS6du3KKaecwsCBA1s8f8GCBd5OGbYckUXE+VGqLKV07yIEa8fHW6zeWAvNlZyhTwnY3MHofBUM/FX66roo9xTd0YXus3F9hRCCASKD5XI9+RygQlYFbYEF4dGRea5tTqPPP2i/g5er3wfqGnO0l81mQxfZcEjUWZVp+WZoJw1cipo4YkKqYYkLj9JXqZpJKDw53qMOII/Q/psLJawemn1FL/fjPLm/Q5qr75F5HOUYOXIfnUV8k365Q7T+vGy+7/FclaxL1DXWGOv4NbQv107BxJAG5dSpKwPdeT6cN2lC4d4q2VJOGmoebI2pUgNNqujuVsnazNC2U1GEBl+bizz+vUPmBCcQL/D6k/3oo4+2a8IZM2a06/xw4rba3/At//Hb+KWUc4xqIHhmp95yqjaRC7XT+dpcyOfmDzwm5wbMp8668xyqiRNf4I+ur+Wy0r3QCkV/OheZWgbLjfUA7JQ5jBKDgxZLqJv8N0cPunKWmMZauZm1cnO7jYzXy23EEs0g0ZfhouUNnWDTl15MFqPZKLezS+YGO5xmcX2vhep3WjjfrCn8z/FdX0Ep6rzBtSEUTScyRJr7+dwO+jv81PweDY0kOnORdnqTx83RLyLP3E9frRc/dT4KNCjqrIlgV5IhkQQEwp2g6xhpOtxJOgi8oi5cN2kqZBWVVNGTZMaJYUGLw9ODrTBocTRGY6rUQBMtokgkgUJK1OaOokWqZQ3vGV8QRV1j0Dhi2G2G9voe2uBRp+s6hw4dOuH5wsJCdL11KptFixZx7bXXMnnyZPbt2wfAf/7zHxYvXuxtOCHNGnMztbLWb+MfDAGzU29J03pwSBYhgQyRygZze8Dm9iwRC6/EiTf4o/Q136Pja+iWLwwQfUgkgVR6MLf2CTYG8PN1PFaT/6QQTaI0hRACTQgOU8QRitnZjl0np3Sy3FxHOZXkywOkiG6+C9RPJGmdyZUFlFPJarnJr9/j7cGQBkXU3QCFqkpYedQpmqOxzSSVqGuaw2YR3xpL+MT5LRuN7Q2JejrXWRbUs8zM4tc1f+KWml93KP+mI7KI/RzmCMUM1vo3eVwnEcmTjnuZrI1yP1dZr6g7KqsZJPrShXj32lkXOgnEogWqJWqAKJENpb9BVdSF0Xd/vtyPE4N9HPBYTweaUPaoOyiPMFT0J5mkoPjTuXAlCffJg43aKCgULlaa6xki+lOLEycGBzhCASfms0INrxN1TXVara6uxuFouUZ93rx5nHXWWXTq1Im1a9dSXV2nCCstLeX3v/+9t+GENFUcJcvc6rfxrV2JTvTXCF2u1M+hmhq+NH/kY/PbgM1rNV0Ot8SJN2geijrfJOqsN069ROB8Bb3l5/ocPnQ8zyGOsFJu4A/OfwUtllA3+W8Jq0n3EnNtm8fZKHdQQVX9mKPapcwLJK73X8VR1sttQY6mcYopcyfjw0JRF0Y3a4rAYC197VS/052nmkk0yYvG25xbeztXOH/Oz2ufpNCVqBcJHsqWt8xPecZ8jTfNT/nWXBqscH2OtZtrNJ1aPD7KYn9RVX/uHpnLVrmbIko9VEv7I5fygH4bAEOuT2XRz74m8uelRN5TTuStwdv0aw9lFo++oHrUhZGaOs9jYzp4FSTHe9SFEvs4yCa5kwMcCapntev/jxOnuxRXoWiM98wv+UYuwYlBLHVd5Y/K0Pc2bHXp61//+legTmnxr3/9i5iYhi98wzBYuHBhqzzqnnjiCV566SWuv/563n33XffzU6ZM4YknnvAm9pBnqOjP2+ZnjNeH+2V8q2dBuHjUAczWZ/Az5+MALJVtTwB4i2fpa/glTlqLfxR1B5ksRiMQDBDpPhnTH+hCZySDsGMnmSQqqKRcVhIrogMeSzg0k2iOGdp4pooxFFPGa8Y8UkVymzwlt5vZzBQTKaGMSRZ1Q6hzpj6FQ7KQIxTxQO0f+Yf9d/TX0oMdlgdHZDFTxBgEMEj0C3Y4jdJJRHKGNoUqeYyYVtxYK04urKWvI8VANDSi1OekSeyWZXsplUzVxuCUTvqJ3qSJHswQ49kot7uVtgBLzSyu0c8PRrg+x6WKg9Yl6qzHuJJ8VRbj+WjhOYZHciTEfMHagrV7beC7vlpLX8MnUZcrTyyNDgbJJDFNjMXEbNQiIJhYN6K7asGzXrJW+OTJ/WHVsEQRWJaaWUCdj3tnEU+hLPG4FoQqrU7UPfvss0Cdou6ll17yKHN1OBykp6fz0ksvtTjO9u3bmT59+gnPx8fHU1JS0tpwwoJNciflxjH+ZPslNuF7o0urZ0E4JepSRTK9RU/2yn2sNDdQY9bg0PzfMchquhyOiZPW4o9mElvkTndS9TfiTp+M6S86iUiu0GbxqjmPXHM/K80NnKZPCngchR6lr+H3eRuvDee39rs5o+YGAL4yf2xTom6lXM8CuRyAP2gP+DJEv3KtfgFHZDG/cv4JgLVyC/1JD25Qx3FQHmGJXAPAePyzIeQL9smDbJG7cGDHKZ1+uR4qwhOrou4YNWTVdy2tlFVEB7EZUKhiVcmXUsamenuHFNGNGBFFAYc8knRQ19muo2Dt7hglvEzUyRMTdS6/IheevmDhn6grkw2JujgR2NLX8FXUWStIgpeoSxBxbJI7KKaMvbIgaHE0hoe1SxC7zVsTqXlyP5MIn81gReAolqVskbuAug1B17qjyqLQDlVavVrOzs4GYObMmXz00Ud07ty2G8/k5GR27dpFenq6x/OLFy+mT5/Qaj3dXoaIfkih8aO5yi+JgjxzPwPpQ5Lo4mEiHA5crJ3JEnMNOXIfWWxlAiP8PqeBwQgxEDs2ugTxwhJIzCZK1b3F2hlnoBb6f6fT9HG8as4D6m5SgpGoM2Td5y0SB4lh+nkbKBr+X2+X2W0aw3peOHR8tXL8IjDUCBdV9QCRwRa5ixpq2SsLPLpTKk5urEqRBEuZ9BFKiEYl6o6nzKKQKrYk5FxJmAlihNtTNJIIBoo+RBLR7oZAoYJn6WvLn48IHGhomJhU1VswHLWo8jodl+wbrw3nDfsf6E4SA8JgrdMSpVg96gKrqOtiUdQVhVEzibwQUdQJIRgg+rBcriOfA1TIKmJCZPMiVCqUBoo+TBajKaSYbDMfWmeVrzjJ2G3mMpwB6EJnijaGVeZGAGqoDfnNY68jW7BgQbsmvPXWW5k7dy6vvvoqQggKCgpYtmwZ9913H7/5zW/aNXaosVnuQkidLXIXp+H7RMF2stnGHpB76B3CvmGN0Uek8az8N1CXSJmg+T9RlysL3F5T8QH26ggk/ih9dSVb4omlO6HfYdjlLxaBg2yZF5QYdslc9+ctVP3DWiKJznQhniJK2W62MVFXf15n4uhKF1+G53dCPlEXJqrqTEuCdrvcQ19Uok5Rh1VR11nEudttFsrisFvXBAJrcs7l/QkNSZghlhJ4BzbWyTqf5GNUuz0AwxlvS1+FEETTiXIq3Uq65hR1PUV3Ltdn41z2FLLmI2oObUB0G45wxGOb9KCP3kXgCAVFnUB4JEdDnQoqsWHDiTOoiTqAAVoGy411AOyUOYwSg4MajwtrhVIwN6LTRA93tU9bN5MVHZ9c9rOB7SDhUnE2USLSvdY4SjWx3qfDAkabIsvPz+fTTz8lNzeXmpoaj9eeeeaZZs/91a9+hWmanHbaaVRVVTF9+nQiIiK47777uPvuu9sSTsizXe7x07h1X0qxRAfVzLMtTNXGuB8vNbO4hxv9PmdpEE11A4mvS1+r5FFy62X3A0RGWOzK96IH08U4lsosPjG/o1bWYhf2gMbgal4SRadWleiEIkIIMkVGm3d0K2QV+dQZM4fLZ8dK6CfqwqPz9wAtA5dwarvMZjanBDUeRehgVdRZPa2sHkiKBprqnOxa08yxXcxsfQbdSeJK5z38YK4A6pRoHSFR51LF6eg4aN013ZWoa03pqwvnptegogCEBvmLICYlLBN1wVTUJchYOhNHMWVh5fe3Te7BiZMedA2Kv7GVAR6bXNmMIjQSdaFi7dJP9EYgkEh2qESdogk81soi0cMHt4qj7uYSoYjXibrvvvuO888/nz59+rBt2zaGDh1KTk4OUkpGjx7d4vlCCB566CHuv/9+du3aRUVFBYMHD/ZoTtHRaKsSpTmOymPslfuA8LwBHiAy6EE3uoku6N43H24TpdJqqhvYncVAIjy6vprNHNk6dslcJomRlFLBcG1Au8cLBEIIuosknNKJEycb5HbGiKEBjcFVGhCuZa8uhosBlMsK4kSM1zu635vLyBTpRNGJsdowP0bpH7qTiB0btThDMlG3XzZ0OQvlzt+DRF/60ovOIo598mCww1GEEFZFXRfRkKizeiApGrCa8meQSjb5QMOapouId/8erdeeSo52CG9eV+lrNJ1ave6NEp1ANvgRWTv9dYTkZXNoUmOMGEI1tSRYEuGBQNd093o0nP6eXZsEDuF/7+yWGEJ/MkknTsSy28wNmdJO1+/Iho24ACeArUSKCNJFT7JlPttldocp8Vf4lgPHbWpbv/er5DEI4Y+M1xmSBx98kPvuu4+NGzcSGRnJvHnzyMvLY8aMGVx22WUtnn/TTTdRXl6Ow+Fg8ODBjB8/npiYGCorK7npppva9CZClW71ZV7+yPLvknvdaqnMMPN9AtCExkCRwXq5jY/Nbz06ZPoLV5v6CBxEhMAF2F/4uvR1u9zDUpnFZrmT3qJnu8cLFMerNgOJlJIj9Yq6cGwkYSVd68lmdrFMrvO6tOBVYx47ZA4b5HYu0s/0U4T+QxOau4tYnjzQ6vOOyWp/heRBuHjUDRb9yGM/q+Um5puLgx2OIoQwZIOirouHoi58buwDibX01ZWkg8arBKxK7qowKj1sDpcqrjVlry5cxzZ0fa37byQRaCIwG8XBYi/7WCM3s0nuIDYI/mYu/7JwUcga0nA3YwlmkwQXw/QB7CCH1XIjP8qVwQ7HjeueLYmEoCfGXKrDcio9OvYqFC6sa+VkkVRX+lrP0RDv/Or1FWrr1q1cf/31ANhsNo4ePUpMTAy/+93vePrpp1s8//XXX+fo0RMXDEePHuWNN97wNpyQZqo2liliDJkig3Kz0qdjH5JFnCImMFGMZFCYGt5ajXoDIVl2KeoCLf8PNJqPtwbCtRnAZDGKSfU/m+SOgM5dSrm7pCtc/elcDLA2lPBCHbzW3MwKcx3TxFiGiwFMEKHblbQ5ztFmMF2Mo5tI5IB5uMXjy2QFGdUzGVd9MZOqL/frDbJLzm/HRmeLEX+oESEcjBZDgDqfnY7QTVHhGzwVdQnux0fC5MY+0BQ3UfraWJWAtayz0uJnF864kmydROuVcK5E3TGqMaThLn1tquy1IxHsShKXqrOMCmpkbcDn95YSyt2VKMFskuAiRXRzb5CvNDeEzO/QZe0SCr+ji7QzmK3NoBuJfGJ+G+xwFCGIZ+lrksd3f6h3fvU6URcdHe32pevRowe7d+92v3bkSNOL77KyMkpLS5FSUl5eTllZmfunuLiYL7/8km7durXhLYQygiVyDYvkao9sri/Ilwf4Qa5guVzn0SktnLAmfbaZ/vHxs+LqlhZoQ91AY93d8kXp63bL/5twStQN1vqxRe5imczia2Mh0kcdcFtDoYfRbvAXMu1hwHGNAFrLEnMtJZSzSK7mJu2SkO6q1ByRRLJQrmKHzGa5XNfi8avNTZRRyUa5gyy5hdVyk99icy0+upMU9F3tlphS3+BFIMgytgY5GkWoYFo86qylmYVhVCrnbzaa2ymRZewwsz0UdVYaU9RZVWeVHUVRh/eKOg9lIcfcpa8dvewVPLsExwdh7dtVNDSQciV3QhmrkjdUSsUni1EAVFPDZjOwm86NUSWPulVIobARPUIbxJfmjxyikFXGpoCu9RXhgWutrKOTSMJxHnUdTFE3ceJEFi+uK12ZPXs2v/jFL3jyySe56aabmDhxYpPnJSQk0KVLlzpz8sxMOnfu7P5JSkripptu4s4772z7OwlBuouG7pi+NlK1XnzDNfFkLdn1t6LOlKb7d9bRFXW+L32t+39jw0Yfkdbu8QKFLnQmaiMBOEghu2VuwOY+4mG0mxCwef1BuuiJvd7O1JvS15eN9+lFCv3oxfW2i/wVnt+ZrI1yP15irm3x+H8b8zw8W1pzTlswpYmGTgapYeEdOU4MZ7DoRxfiWSHXBzscRYhgVdQlaZZEnVLUAXV/51fU/JzU6mkMrzmvyZuKRhV1wtMwO9wxpEE1dUIBrxJ11oQlRxsUdWHa5MkbSqWliVoQDNOtiZxwKGc/EiJNEqxM1kYxUPQlnli/bvy1lsOyiK50oS+9GEDwN+9HaoOYKSbQR6TxmfzO3cBMoXBxUBYCdZZkutCJFBHu16yepaGI1xKHZ555hoqKuoTHY489RkVFBe+99x79+/dvtuPrggULkFJy6qmnMm/ePLp0adhlcTgc9O7dm5SUlDa8hdClm2UnydelPsHs5OQrBmgZCASpJLt3Sf1FBVXupFW4JjZbiy+7vprSJAIH3UgkQcQGvHNqe5msjeI7cykZpPKZ+T33aP7vLgx4eC6GQmlAe7AJG33pRSElROLAaTqxac1fOpzSyW6Zi4HBKDHY46IYbkysT9R1Jp6vjIUUy1Jm66dwcROee3tkrlv10osefrs5KaeSA9SV4vYh9BPoQ7R+bHHuAgJjdaAID6xdXxNlAtF0Ip44bKHimh5kNprbSSOZPeQhgFii6UQkhZTixOk+rjFD9+jjElThjvU9eJNk80jUySp30vJkKH11bVBH0Sko6zerKi0cytk9qiFCZJM1U2SwTdZVr3nrE+wPCinhMEUcpohTRdMCnUAyUhvEAqOuw/V2M5s0vUeQI1IEiqPyGKvlJhY4l1FCBdfazme0NsT9umEaJIg4nNIgRXQHOK70tQMl6gzDID8/n+HD67yGoqOjeemll1p17owZMwDIzs6mV69eIV+m4wu6WhR1vk7UlUmroi48E3UpshuROMhjv99UJy46QmKztVj/ssx2Jupy5X5WyY0ATKXlrs6hxlXaubwu/stOuZd/GR/wM/16dOH/G8AjHuUTCX6fz98M0zL5wPyaw7KIvRTQl17NHr+fw+4b8LT6ZgzhShcRz96IH/hb7Zv8zXyTN81P+dFcxXnazEZvfFzdYTU0ctnPx8a3/Mn+K5/HVSQbSuBC2Z/OhUuZWYvTqxJqRcfGqqiLEVHUUEsBB9khc4IXVAjxoTmfH1kFgATKqKSMSjoTRzENfnWNlTVaE3VVIa4aaA3WRF00rW+MEG1J6pXJCmqo8/k6GUpfXYq6YK17PRR1YVDO7rHJGiKlr1Y/75BI1IWgtcvxFVqnMzmI0SgCySa5kzNqbnD/u8B5kHcdf3H/u0iUslnuBGAEAwGOK30N7U0sr0pfdV3nzDPPpLi47V+2vXv3difphg0bRl5eXpvHCnW6YSl99auiLjwVYpqm0bP+Jj5XFvjVV8Ca2AyGT0cg8WXpq1X50kdrPjkTivTSUugtejKE/iQQy3+NbwIyrxMn08RYJogRdLMk7MOVDEvJc2vUUHmWzltpIvx3NruLJJK0znQikkQSmKSNZIu5+4TjjspjHKIIaNixy+cAFdL3Ru4llpv0BBH6iTq7sNNX1H2H7JR7Pbp9Kk5erIo6m7ARW1+eV45vG3CFK011LB9MPw8VXWNljR2t9NXamCfKi9LXXiKFyWIUk8Uoj+RmlBcNKcKVBm/mICXqLImcX9b+ketq7ueWmoeoljVBiaclrD56oWJb0p1E932eNw29pJTcUfMIc2p+yZjqCymXvvlODUVrlwGa1Us5+MlMReA4fuN3qbnWI59gFUola0mA5yZNqG9iee1RN3ToUPbs8c1ueE5ODrW1odHBxh94etS13C3QGzqCog4abuIrqPJIPvqajpDYbC2+LH316Pgapt2Ff6nfymZ2skZu5g3z44DMmSv3s0iuZoVc79XOf6ji7SIoTzZ4hHSERB3AXNscfmO7k0JKeN/8iqXyRBXwPnnQ/dha8rPTD+oga/fHcGko5GpMUk0Ne2VBkKNRhAJWRZ2ORowrUWdZ45ysVMsaVtcr2hOPU2YP1Pu6kzA2bI0267FeezpG6WvDhke0F6WvTulkqcxiqczikOWmrblkn5Y6Fa33aRCbitb7NLTUqW0LOogY0nAnvIO17rUmcvI5wAfmV7xpfkKW3BKUeFqiMARtS4QQ7mtnLgWt7iS/U+bwmvkR75lfsFnu4i3jU5/EE4q/owGi4f5kg7k9iJEoAs3xyetDFHl4kluFUt2pS9RZN2mOdqTSV4AnnniC++67j8cff5wxY8YQHe25ixcXFx43DIHA06Ou0Kdjd5TEk7UsLk/u95sypKMkNluDVVHX3q6v1p2KcOr4amWGNp4pYjTV1LLV3EW2mU+GlurXOYPdac3XeHZ+PfkUdS5GWJo2NPZ7yD3ufefIfe5jRzHYp7FYFXWdRbxPx/YXw8QACsQhTEz2y0Nh4a2n8C9WRZ2OTpyIBgnl+F6FGm6sMTfRjURSRTJdRWc+Nb93v3aBOJ2NYjtTtDGMEI03k4k+zpst3PEsfW19oq6zZV3pUjxD86WvjlmveBld6GFVpQZr3ZsqejBTm8AGczs11Lj/rpeaa93NvkIJJwZjxBAcOE5IjgeT6do4NFOjmDJ2mDmM1Ae1eI7VUqgbifzB+TI36pcQIRztisXqNRgqnXETRQI/1a9hubmO1XIj++RBetb7kSk6NtYqn6GiP5FEki3z6UdvAA5amnkmi/pEXRiVvnqdqJs9ezYA559/vofPnJQSIQSG0fpylmnTptGpU8ftutSFBHR0DAwOmP7xqBMIYsJYsZNGw018ntzPMPzTvbBEdozEZmvwZelrrtyPQCCRZIr0dkYWHIQQzNQn8oTz7wAsk1lk4N9EXansWJ6IVv+PTeaOFo8/Iovcn5uOlKiz7to2lqhbYa5zf+cPEBkskquxobPEWMOV+jk+jSUcFXWxItrteVnAoSBHowgFmlLUHeUYTulsVCl2MlAja1loriaP/eTJ/Tyo3c6nNCTq+mppLLS93ewYHa301Xpd9ab01boBbPUga23pa7WsYa/cR6YWXpuVpdYNwyCte9NEMgvMFR7P6ejkmfubOCO47Ja5rJGbgdDp+gp1G77L5ToAdpDNYaOI/iKdrXIXI7RBpIhu/Nf4hunaOOzYeMb5byqpcq9HDlFIb1L4yPgfV9nObVcsVq/BUGm4ARBDFGvlZmKJ5omav/Ok4166hMkmpqLt7Jd1FYs2dDbVe9HtkQ22ah6lr6IrEF6lr16vgBYsWOCzyb/88kufjRWKaELjAu005puL2MZuqmVNu3cyXJTUK+riiEETXlcwhwzWm3irGsXXuBSInYmja4jsAPkLzSNR13ac0skScw0ROJghxoeFD1ZTTBFj3I+Xmmu5Wj/Pr/NZFXUdoctwnIjhPv1m/mm8xyq5kSxzC6O0phViu2UeGhpJdKYHXQMYqX9JFAkk0ZkjFLPd9LSAkFLymfk9BganiPHcrl3JIYr4wvyBT83v+IN8gE4+9ERydZYFwmYx6mEsHgYdABX+x+pVqKMTW6+ogzpFUGfC47Pta0ZVn89uGm42ztam8ZTxD/e/U1vRpKejdX11rXsT6UxvkdLq87pYPkPWJENrkn2X1tzNt+ZS4ohmb8SPYdUIr8yS2AyWoq6ziKcbXdxKRjs2NDS+k8uDEk9LWK9LXULou8da1bDB2M7L5nvuROzP9Ru4Xb+Sa2vvQ0NDQ1BNDQJBf3rThzSOiGLWyM383niJy/VZ7Wqq5tkZN3Tup+6yXYtA8JLxDv+W84h1RvMH+wPBDkvhR0plOavkRmKIYrQYwkJZ13jJWu5qrWjsLk6C0ldX99b2UFBQwOLFizl06BCm6Vma97Of/azd44cSnYh0L5DWys1MEqN8Mq7rAhwX5mqdPloamaSjC51l5jru4Cq/zOMyPy2mrEOUIjaHr0pf18tt7s9uuJcLj9eGEUMUGaRSYlEi+YuOpqgD6CV6UMlRhpHJpTV3c5aYxqW2s3jT+JR/2H/n0QH1oDzi3sV1Sc07CmO1oeSZ+zlKNdlmHhlaXflmttxHpsggV+6niFKG6pnYTRvRdCJTZPCO8Tk32S71WRwlYaios5bJHAmDDoAK/3O8os66pimn6qRN1FXW3zwI6hJT48RwOhOHgUknIlq16etZ+hr+iTqXpUIhxV6t46ybjFYlclQrur46cXKMao5RzS65l/5hVFngqagL3jqkNz3diToHdio5Sp7c767ECiVc16XOxIWUmteaqJtnzqcvvVnLZmKI5ivjR47JY4wQA8mSW5BIkkmilHKkgJn6RD43FpBALINEX7LMrYzVh7Y5Fuu1O5SED91EIrfbruRp45+AaipxMrDcXIdEUkFV3b1G/SaftdzVmrRLrveoi5adGERfbMJGBL4RUPmLNn0LLVq0iH/84x/s2bOHDz74gJ49e/Kf//yHjIwMpk5t3nD1tdde4/bbb8fhcJCYmOjxJS2E6HCJusnaaN4y6ww8l5pZTNJ8k6hzXYDjwzyBMkWMxhSSHXI32TKfIlnqF3VIKJqf+gtfNZNYbKx2P56ijW5XTMEmWkQxWPRjpdzARnMHf5WP+FWF5FLU2bE164MTTlynX8gkMYqptVdRTQ2vyg95tfZDAM4yp3GFPtt9rOvCmERnjwReR+BK/VxuMH8JwAvOt/iT41cALDZX8675BQA3a5chhOAB2y3Mr1nEIrmafOcBrtMuwK755vdR7OFRFx6JOut3r7UETXHyYh7nURcjGqw8ymUFhNZ9fMA4RjUAfUVv1jk+QRMa+yOXejVGRyt9tXqf9vJCUWdN9haZJe7HzSmcaz48B1l5iNcq95Id5eRwJ41rLvwF1+jnM9c2x7vAg4Snoi54G9RdtHhc+fg4YqjkKEc5RiElIeNx5sJ1XQq1+4Q+Ig0bNpw4ySafHPYxiL5sZTfbyWa7mY0dG9eJC7nTfjWfGt9TI2u5xX45vUUKEUSwyLmaT83vGCz6tStR51LUdSLS4zsmFOhBV+KIoYwKlag7CbD6ME7XxvG++RXgWe5qTdq5FHWdRCRb2Q0SBst+AYq2bXhdMzlv3jzOOussOnXqxNq1a6murltMlJaW8vvf/77F83/zm9/wyCOPUFpaSk5ODtnZ2e4fX3WTDSWmiNFMECOYKsawzfTN+6uWNVRT19o8Lsz91nShM1WMYaDow6naRFaa6/0yj9X8NJQMYv2BLxR1UkreNb5ktBjCWdpUpmvjfBVe0LAaFy83s/w6lzuRTmzI7Ri3lU4ikmH6AAbShwxS6U1P4onhFDGBJcYa93FSSveF0dr5uqNwujaZVJKZJsbygfkVh2WdUsBqaOtKbI/QBjFFjGaSGIVE8pH8xmdxhKOizvrdW6gSdQo8FXWaOF5RV9nYKR0eU5oedh1tVfZ0tNLXXEunaG+8T62Kur0UkEoyl2pnM02MbfIcs3gXsmgbETXVDCquZXCpoFCW8qbxCVvMXW17AwHmKNVMEWOYJsaSEkQLigu1M5gpJjJTTGCg1uDzmhtinb9rZa377y4pxO4T7MLOnfo13KPfwPnaqXQjkXO0GfQWPZnMKIaJTDJEKkP0fozQBhEnYkjSGkrEz9VPcY/VWMf61mJKE4FgqhjDxdqZ7X1bPsfaIXev3MfREPcfU7QPDY2ZYgKDRF9mioluoYo1UZdALNPEWGaKCW5P/3DaxPI6UffEE0/w0ksv8fLLL2O3NygDpkyZwtq1Lf/xV1VVceWVV6Jp4eur5g0DtAx2yb0slmv4wlyAKdvXhROO6/ga5oo6gIv1M9km9/Cl+SMLzVV+mcPqSxJKBrH+wJoWaquebqfcyx7yWCs3s18eZpDo64vQgspki5r1S+NHv87lLk3vAH+fx7Ms4n22Rn7NVsdXdKITP8gVvGN+7vaaKqXcvZHQvYOVvULd98eF+ukskqs5QgkLjbrvLOvurbX5xj22G1kms8hhH+8ZXyJl+xq8uLB61IWLos763XuEkuAFoggZXF1fdeo8k1zNJADKZV2izld/M+FCKeVuNXx7vGGjLY3GOkbp6wGgrnyyG11afV5ny0ZGISXkc4CPzP+1SpXnWk9paOzjABvlDrLkFq/iDhaHZCFL5BoWydVBVbbfaLuEryL+xVcRrzBDG+9+Ps+PvtRtodByTQ01RR3A0/b7ecp+H+87/kp2xPc84biXrY6vuMB2OtfqF7DO8alb7TnXNsdD+ZkqkuktegJ13aQrzLZtgmyRu9gkd7BYrqEiRDdSXOsviWSHqVR1HZkfzZUskCvYKnfTW0txl2Jby10XmqtYJFeTwz63cMJzEyu0O6J7nS3bvn0706dPP+H5+Ph4SkpKWjz/5ptv5oMPPvB22rBFCMHkenVFEaU+keIWm2X0pDuD6Bu2nTitDNQakkD+kiq7pNo2bGHv69cSvih9fdX4ADs2hoj+3KZf2SFUYdO0cVyhzaY7iXxifkeVn25cpJQeirqOhqt5jaZpbuVYOZXubkvWnazudLxEHcBP9WvIII0M0ZNXzLrrmeu7K5IIelnUHjO08VyqncVwMYAvzR/4n7nYJzFUyxr605vxYjixluRGKBNLNPZ6xw2lqFNAg6JOr79uxVpKXy+uvYu4Y6P4xPw2KLEFC191dHYIOxPECPqL3r4IK+i4EjupItmrJmqRIsJtQVFJFf1J5yxtKhla67u/W2/stofJzb+HPUKIqK6tSsiQS9R5WOQkBC+QVuBehwnNnZRr6W/ibv1aJogRVHKU9+pLBL1lqaXUcHKIWuKM0YYwQgykG4nskDnBDkfhR8rr77UiicAmbG5xwEGOIKWkWtZQVJ+At96PWL/P/XUv6Cu81tMnJyeza9cu0tPTPZ5fvHgxffr0afwkC0899RTnnnsuX3/9NcOGDfNQ5QE888wz3oYU8kzWRvGZ+T396M1aczODtPapk4pECfs4yD4OchqTfBRl8EilO1F0ooqjfkvUuXwnkkjoEEmn5vBF6esycx1HKOaILOYC/TRfhRZUEkUCJpKDFDJKDOY940tutF3i83mqOOpWiXRERZ2Vydoo5pnz6Ul35huL+cz5PWvkJvfrHa2RhIs+WhpHOcoBeYQyWcE3ziXEEU0cMaSLnh4LZiEEl+uzubx2LgnE8ZrzI7qIBMZpw9oVw26ZywGO0FN2D5vO30IIkujMfg6rrq8K4ERFXaxlI62WWgDy5cHABxZEfKmWzZP7KeBQ2Je+5pr76UQEJqZXZa8uOhPHUY5hYLKTHC4TZ3t1vrX8eEeYeF952COEiOo6TfRAIOhOEsWytOUTAojVNzXUvPN8wURtJPc5n6YbXdpsxVQgD9GT7uzjYMgm6nqK7qyX2wDYQU5wg1H4lfJ6NVxc/WZ1V7oQSwxJJFAkS6kSDdc96/2ITdhwYKeG2pC/Nnq9ur/11luZO3cuK1asQAhBQUEBb731Fvfddx8/+clPWjz/qaeeYv78+Rw8eJCNGzeSlZXl/lm3bl1b3kPIM0WMIY4YdrGXb03vzIAbI1RbY7cVTWhuZWC2zKda1vh8jsL6MquO8PtqCWuiri2Kuip5lLVyM1DXaaqraH2JSahzv34LmSKdLLmFp5z/oFbW+nyOUOm0FgimaKOJI4Z9HOQR4y88Yf6dr+RC9+sdsfTVRaZWV15xiCIudP6U1XITk8UovnG8dsKx52ozecP2B2qp5b/yG+6pfbJdcxvScHfRC7dkqEupcITik66kUXEiJyrqTlSH7pG5AY0p2PhKUQcd5+/tFeMDDlKIjs6d2jVen398osrbZJ+O7u4OuE2Gh592kSUR1iVEuienkYxAcIDDbA2x32OhxY6hI94rjNWGMVWM4RBFPG++4VEe2Fq+NH9kHweJI4bhZPohyvZj7ZAbLupXRdsol3X3WzH164ZEkUA5FWSTTwllnhU+x62VXaq6KkLbx9BrRd2vfvUrTNPktNNOo6qqiunTpxMREcF9993H3Xff3eL5f/7zn3n11Ve54YYb2hJvWDJSG0QtTgCWyvab2HfEXZ8pYjQROJBItpq7GKkP9tnYVbKuwxSEvpzdF2iWRN2Lzrd5xfkhXzpeJlJEuJ//Rc1T7OcQKSKZK/XZjLWoez4xvqW/SCeWaMZrwwMau78Zrg8gw0jDkCZJojMfGvO5ynauT+fw6LTWAUtfrQwVmTgtXRtd9KMX3UQi/TtAaX5TDBAZLKTOn86lCkrTehDfSHc9TWhcbpvNfc6nqeQoWXIrlbKKaEuZnzccoditlg23ZOg4MYwYonFiUCLL6OzH7suK0KchUedS1J2YqAuXxIivKPFhR+ck0QUk1FBLBVVhUyZ/PDZ0JogRrJNbGa0P8fr8qWIMJbKcAurUmW1R5Z0mJlNECRLJMVntsaYKRayfo4QQ+Z7tKZLdG8ihVvpaISuZLEbhxCCFbsEOxy9M1EayuL751zIzi4v0M1p9rilNdylpsuhKhBaan/8+ohc6OgYG20+ya8fJhqvhlOu6Zq1iKqfSIxl9/Fo5ik4UUxbypa9eK+qEEDz00EMUFRWxadMmli9fzuHDh3n88cdbdX5ERARTpkzxOtBwxiHs7jKnvXIf+fWGuG3FuuvTURoj9NJSWCHXs1JuYKXc4NOxrablHSWx2RwuA26A1XITS+Va1tQr5AD2m4f5l/kBH5nf8DfjP3xmLHC/JqXkNeO/bJG7WCHXc5k+K6CxB4IH9FvYTS4r5HpedL7jkwYvVjwUdR289NUmbPQTvU54fhe5LJVZpNebF3dErLu2LqZoY5o953z9VKAusfe9saLNcze3SxjqSAHL5TpWy43sIS/Y4SiCTEPpa9OKui3m7oDGFGx8qaizdq88Esa+kH82XmWFXE86qaSKZK/PF0K4k3SAh49oa0nSElgu17FCrme1xeIhVLF+jkLFo84h7PSo70Abaom6XPazVGaxUm4goZENt47AFEu56nfGMq/OzZX7OUY10Pj6J1RwCDt9RBoAm+Uu/lL7WnADUviFalnjFkG5LDOO7xp/oBnPbNdGeYcrfXXhcDiIjY2lR48exMS0/mZ07ty5PP/8822d1oOFCxdy3nnnkZKSghCCjz/+2ON1IUSjP3/84x+bHPPRRx894fiBAwe2O9aztGlMFWMYJPqyzGifqi6cDE9bi9XrYInZftWhlVKznAliBBPECPo0klToaJyvn8ZTtl94dJ60GsD+zfiPx676Crne/fh7czkr5HqmiNGcqk1knGifj1YoMlkbzdmi7u9xEzv42lzY8kleUCmrGCeGMUmMIg3vbwbCjbn6HG7WLuVq7TymMdatjEkgjoGiZd/ScGWmNpGnbL/gAnEamaQzUYxkmja22XPOF6dznjaTFLrxgfllm+c+KAvdj8OtYYf1M+EvT1JF+HC8om6AyOCP+i+ZLEaRSndGiIEUUcIKc31zw3QofKmos5bwFRKeibqj8pg7QdBWK47j/bTakuybLBrGsK6pQhXX56gTkUQIR5CjacClZjzAEb9Y3bSVA/Kw+3G4bYC1lonaSC7WzmS4GMAn5rccla0v+7N6M4Zyog7gF/pNXKSdQRrJvGy8H+xwFH6gzCKKcDWhihHWrvEVHKQhUXe8TYyr9LWSoyFtC+F1os7pdPKb3/yG+Ph40tPTSU9PJz4+nocffpja2pb9nlauXMnrr79Onz59OO+887j44os9fryhsrKSESNG8MILLzT6+v79+z1+Xn31VYQQXHJJ8wbyQ4YM8Thv8eL2d+kbLgawWK5hq9zd7vLXI3S80teRYiBR9X80u03f+tGUinJWyPWskOtx4ntPslCjv5bOPbYbmWdvSIgvNlcDdebCy+sbRbjIMw/gNOt2JT40vsbEZIlcy036pR2y8YYQgltsl7NYrqGGGpaZ63w6fhGlrJIbWSazoOP9+k7gGtv5vOB4lFcdTxEtOrkVMsNEZtg0OWgLQ7T+3GO7kcn6aPpr6Vykn0FP0b3Zc6boo1hirqWAQ+w1Cyg222amfaCZxUeoo/xjFFYM6amo6y6SuNt+HRfopzNBG8l6uQ0NjXecnwczzIBiVcx2bqe3WKJFUReuDVyKfZC4tCqJInAQJTo1c3TjTLUopreYu9oURyBxNZMIFTWdizRLkrS9FUa+xGMDLMyuq62ls4hHINggt6OhMc+Y3+pzt8hdaPXf0wO00N6EvcF2MQfkEbLJZze5IV/eqPAea/WYS1FnFaGUU8UB05p8T/Q435VzMDCoseQGcuV+aswaPjcWeJXI9hdee9TdfffdfPTRR/zhD39g0qS6jqPLli3j0UcfpbCwkBdffLHZ8xMSErxOyDXFrFmzmDWr6dK85GTPHbNPPvmEmTNnttid1maznXBue5mgjUBDq0uCmGvaNZZnM4mE9gUWItiFnUu0s/jaXMhqNpIr97epNKExKmWV+3E0bfOECkf6id7cql3Oh+bX/M9cwnZzDx+b37JErqU/vYkUkRyUR9jNXnaTS7lZyb/NeSTRmSnaaC7SWu9dEW7M1mYwSYxkm9zDM8a/+aXtNmLa6Bd2PKWyYZcnroM3kzie39nncqFxBmO0IUgRujtUvmSubQ5zmdOqY6NFFHP0i/jQmM8K1vOF/IFrucDrOcO59NWq9A2X7okK/2Eep6hzMdc2h2pZw9HaYywz1/GS+Q63m1cySOsbjDADygHzCBE4SKdnm7zUrFjtUY6EqaLOF91LU0Uyn9hepI+W5t5Mag7bhF9CbSXmofVo3UaAPZq+ohczxQTWyM18ZS7ElGZIb0YV1XcPDjUfUOtnOk8eoC+hUeliva52o+M0UTue+/SbKJCHWCU38oTxIlfq53h0NW6KteYWNARDyGSUGBSASNtHmuhRt2FOXUI4M8RVgArvqMCSqKtX0nkk6mQlBfIQnYgkmSR6HOc7GS064eq3WMlRd7OgU6uvYx8HkUietf2an9iu9vM7aR6vE3Vvv/027777rkeCbPjw4aSlpXHVVVe1mKj797//7X2UPuDgwYN88cUXvP766y0eu3PnTlJSUoiMjGTSpEk89dRT9OrV9IWkurqa6upq97/LyspOOCZOxDCMTEopJ5YYSswyErS2LTispa+h0snJF6SJZA7XdzJcZmbRS/dNoq6ChkRdY/43HRUhBBlaKiVmOUNFJnNrn6ScSnrQld3kcYe4kr/Lt4G6ErT/GUsYK4ayWm7iDG0qutBbmCF80YTGUC2TZcY6AFaaGzhVn+iTsctoaCbRWGOBjsxwbSDDtfZbBXRkztam86zxGgBLzSyu1b1P1FXJowwR/SmXlSSHWelruuhJF+LpTiI2Ou53jKJ1uJImWiMFHhHCwXRtHF+ZCxlCP35R+39cYzuPa/TzAx1mQNlJDtXUsJs8D/VRW7Bu5nYIRV071GFn2aa1+ljb8JsafT5exFJWvxm3Re5iqAjNzpfVssbdRK29Poe+phc9SaMHXUQ8hyhs+YQA4fKzSqIzdmEPcjT+Y5Q+hCgjkghpp6vszLU19/Gc4+EWN/2WmmtxYrCHvLCwNbGKPXLlfjJRibqORJk1UVcvwrHe45dTQT4HOMox8jjQZOkrQCVVdCGew7KIfOpUvpFEeAh9goXXW0ERERGkp6ef8HxGRgYOR+h4IBzP66+/TmxsbItqvgkTJvDaa6/x9ddf8+KLL5Kdnc20adMoLy9v8pynnnqK+Ph4909aWlqjx03Xx5HDPpbINe1qmOBqjpBAXIe6mHj61LVPdWil4iRV1AHcql/BBsdnnK+dioFBFJHcqF3CEse7TNRHuo9bbKzhFfMDVstNjBfDubaD3wiB/z5vJR5dX08uRZ2iZcZpw7DV75G19XO3Re5is9xJLgWkaM2X24YautBJEp3Zyh6+NH8MaW8Qhf9xe9Q1sTF0i345i+zvkMM+vpfLeKT2OZzSGcgQA4q1s2IfkdbuNV6ixR4lXJtJ+EJR5ysmaaPcj5eEsE+dL8qF/UWq1p089rNebmNn/Wc92Egp3X5W4aZSbwvP2x7hZ/r1rGIjH8tvWWA23dxKSkmOme9OYIzXRrRKgRdsPJWbodW4RNF+Kqylr6KRZhKy0v3/vafofsIaI8qSqHOVRrs6IgMco5qnjH/4PnAv8TpRd9ddd/H44497KMiqq6t58sknueuuu5o998svv+SWW27hgQceYOvWrR6vFRcXc+qpp3obTqt59dVXueaaa4iMjGz2uFmzZnHZZZcxfPhwzjrrLL788ktKSkp4//2mzSgffPBBSktL3T95eY13shuvDXc/busF3imdRBHJNDGW8zT//b6CwQRtBKPEYKaJseyTB1s+oZVUWhR1vipvDBdiRTT9tXTiRIz7J16LZZQ2mAGWHbEvzB8YK4YyUPThQv10IkVotl33JRPFSIaLAUwX4yiydAZuL2UeXV9PLkWdomWiRCfO0WYwTYwljhgOmd4rClyLDw2NlPoOeuGEawFdyVGPG0rFycfxXV+PJ0ZEMVYfSg+60YNuDNH6+7wzfCiRV68AAN8YtqfRg7O0aUwQIzzM8sOJYhq8PIPttzZZjGKsGMZUMYatIdyNuESWMVWMYaoYE3LG/6GYQCmlnGrqGluEm+9rW+ijpXl0qW+uOcr35nLOq7mdsWIoY8QQLtROD0SI7caqRg6Vz5nCd3g0k6gvebXe4xfKEnf5f2ON/aKFVVFXl6h72/iMEWKgW4VcyVEPsU8w8DolnpWVxXfffUdqaiojRowAYP369dTU1HDaaad5KNY++ugj9+O3336b66+/nrPPPpvt27fz/PPP869//YtrrrkGgJqaGn788cf2vp9GWbRoEdu3b+e9997z+tyEhAQyMzPZtatp49iIiAgiIlpObFh34r43l/EYP/M6no1yBxvkduBEY8RwxyVZXSRXI6SgWJb6xFvDWvoac5Ip6lw05qPVX/R2P97LPnbLXOKI4RbtskCHFxTSRU9y5D7K2M5es4Bnecgn45ZaFHXxSlGnaIQMkcon5ndAXdfl8/Bu08W16OxB17BUVR9/o9YlxDyUFIHj+K6vTfFr2+3c5Pw1+81DjDWGntDFs6NgVdn6IsHSW0vhh9oVVFMTUmWG3lAsreqwwHxXyIoDIA3k0UJEp0QQOiImmZHaILbIXVRxlBy5j7/4aN3ga4opZbGs+yyNYnCQo/EkFBN1Hr6vYWYn0Vas3unLjXVs1Xc36gH6mfk9O9kLEi7RzuJ225VBiNZ7rJ+zTXJnECNR+INyeeK9vdWjztrxtTELCWvpa7EsZYOxnQVyORVUuf3qoO67IUYEz0fTa0VdQkICl1xyCeeeey5paWmkpaVx7rnncvHFF3uUf8bHe15M//jHP/LMM8/w+eefs2jRIl5//XVuv/12XnnlFZ+9maZ45ZVXGDNmjDux6A0VFRXs3r2bHj3a75eWKpK5Q7uKIaI/q+RGtrVhN86662HdDekoTK5PZkokK8z1PhnzZC59bY4o0Yn79JtJJAEnBqPEYO7RbyBOOzlUYEII941QrizwWVco6y5PnFLUKRqhtTvZjXFUHuNQvZdne43mg0Uo3qgpgkNLijoXU/Vx7sdL6w3COyJfOn8kik6cr53GbO2Udo8XIRyME3XVHNkynwJ5qN1jBppiGXhFXfU7M6j+10Bq3p5G9b8GUv3ODKCu8ZmrOiafA+SG6PeX9XcW7HLh4+lCvLvsLC9Eur7uMfPoQTfGiqGM0kIrsekvYkU0z9ke5iH9J9QKJ1NqrjyhPL5MVvCG8V+GkkkaPRgrhgYpWu/pK3pxh34VafRgobkqJPzGFL7D2kwirr701VUCC3BEFrkfN7ZWtpa+fmH+wMTay0glmcliFJNEg7DqgCXhFwy8VtS1tRnEzp07Oe+889z/vvzyy+natSvnn38+tbW1XHTRRV6PWVFR4aF0y87OZt26dXTp0sXd/KGsrIwPPviAP//5z42Ocdppp3HRRRe5y3bvu+8+zjvvPHr37k1BQQG//e1v0XWdq666yuv4GiNDS+Ul5zskksAjtX/lBttFzNZPafX5i8w1dCaOYso65I7yZG00LxhvEUs0f3G+TicimaGPb9eYJ3Ppa0skigQKKUEg2Cx38omt+WYwHY0Bog+r5EYkkl1yL8NF+xshKEWdoiUmaiOBut0/b29UrLYAYZuoQyXqFHU0KOqaT9T1Ej1IJZlDFFIrnThNJzYt9H2SvKHcrMQpnNTIWpaZWbxm/z+fjDtZG8ViYzU96c4XxgJutV3hk3EDRQmh41EHdeWvP7CCdFLZZG73WeMzX2K1FAi1pnNCCNJEMttlNnlyP1JKhBBBjWk3ueznEPvlIW4lvP4+2sOttsu5t/b3bJW7ySSdN41P+LntBvfrK8z1VHGMTezgNv0K7rHfGLxgvSRKdKJMVpDHfkYwkCXmWs7UpwY7LIWPqJLHiCeWcirdSjqroq5IltGVLhymqNG1srX0daW5kVii2cYe7tauI1l05QdnnW+jVW0bDALWVzwuLo6DBz19x2bOnMnnn3/O/fffz/PPP+/1mKtXr2bUqFGMGlWX+bz33nsZNWoUjzzyiPuYd999Fyllk4m23bt3c+RIw/+E/Px8rrrqKgYMGMDll19OYmIiy5cvp2tX3/gA3axfxr9t/0cUnfhUfsfPap+gRta26tydZg6fmN9SQjnXaOcxVPT3SUyhxJnaVJY5PiCKTvwgV/Ar55/abTauSl+b5hb9ct62P8Nux3e8bX+Gbh2snLolBmgNpUXbZbZPxnQp6mzY6ETznpiKk5OuogszxQQqqOIT81uv1JxWBUevcE3UKUWdop4GRV3LHYBHa0OooZYlcg0FIjz91ppjiVzDx+a3SCTnajOJstxItIer9HMYKvqzj4O8YnwYdg1cPEpfQ6CD6ShtMJ2IJId8lpnrgh1Oo4RSA47GcF0DjnKMQh96BLcV6/pvoBb6HU19yVx9DmPFUHaQw9POf3pUIS01G9TL4VjFdaN+MV2IZz3beM34qOUTFGFDESWUUo6J6W4iEWu5xy+mjMMUEUUkmSL9hPOtFXar5UZqqeUm7VL+aP+lh7VYsBN1Xm9HFhYW8sgjj7BgwQIOHTqEaZoerxcVFTV63vjx4/nqq6+YOHGix/MzZszgs88+49xzz/U2FE455ZQWFxy33XYbt912W5Ov5+TkePz73Xff9ToOb4gRUVxlO5c/GC8TL2PoLVJ4z/iS62wXtHjuFnM352gz+MFcST/Ru8kuaeFMrIhmJAMRCDoTx0DRhxyZT4ZovJNua7DKnaOVos6DWBHNxfqZAKTQLcjRBJ4RYiBjGIpTOJlvLOIyfVa7xyytT9TFExP0XWJF6JKupSKNFdTiZJW5sdXK4cOyiMliFJUca9f3YjBJpycjGEQFlSw213Bdzf1sNLfzjuNZ+opeXFZzN4O0fmw0t/OW488heaOp8A2tVdTBiebg4ZqobgpXssDAYIruu4qJgaIvNqmTTk8yRCpbzd0M1vv5bHx/IqVkm9zDSDGIBGJJFJ1bPsnPDBH93Q0/dvhog8/XeHR9DYHk5vEMIINCUUI0nSiQh0gK8v9Xa6KusZv6jkxvrScDRB/2y8OM0gZzTfW9xGuxVMgqiihlnBjGQXnEw2c9XJisjcZZvxm0xFwTEupNhW/w9C6t+46zCzuRRHCMandpbBXH6KOduFbuI9KYyQRWsJ5YYiiihEv1swFPn8oD4Zaou+6669i1axc333wz3bt3b/UH/p577mHp0qWNvnbKKafw2Wef8cYbb3gbTtjyku13zKy9jiVyLTnOfeyXh3jAfmuz58wz5/O5+QOAT7xLQhUhBDfql/CU8RLvmJ9zlpxGBm2/IVWKOkVTzNDGk0sBh2URu+Refm/eRzetS7vGLKsvfY0TquxV0TSTtdH825gHwN3Ox7nBvIif2K6mk2hehbmTHLdHVw8Rfh1fAXppPdhDLuVUslvmurt4/rT2UdJIZr5czHxjMQCvOj/kXvtNwQxX4Ue8UdR1dCWmNVlg7creXoQQXGqbxcPOZ8kx9zFJG8VgwiNRt05uJUtuAWCmNpFEkRDcgIDeIoUIHFRT4zMlvq8JdUVdvIgly6z7/7pfHmI4A4Iazw6z7v9jdxID1rAklPiD/QFiieZp5z/5J+9x2PQU3czSpoflxogudCZqI/mfuZiDFLLZ3MlQPTPYYSl8gKclQsPfbCzRHKPavZkSTSd60v2E88doQ1lCFjXUUMUxThUTmalNADw7Px8MN4+6RYsWsXjxYq8bM8yYMYMZM2Y0+frMmTOZOXOmt+GELRP0EZxrnEIqySyWa3jceIFL9bMbzfq6sC5MM7X0AEQZPMZqQ6lfv7PdzKYVa/gmqbCUlalEncJKhHBwjXYeq+RGcmUBfzfe4lHt7jaPJ6V0K+oSQnAXWxE6TNfG8RP9avLNA2yQ2/g/45+YQnKf7eZmz7NeBxrrZBUO6EJnvBjBd7Ju805D43xOBQTz5HxiiKIWJ31EKs8Zb7QqgakIP0zZUJHROkVdB0/Umf5T9ZytTeNhngXqlCU/43qfju8vsswtnC4ms0fmca4WGvcIutDpL3qzSe5kt8zFKZ3YRGj5JRYFoQGHN1hvhPfL4JaxV5iVZIhU+pBGmkgJaizBwpUAjxMx9BFpxBPLeDGcTeYOqjjGHN17H/lQ4XJtFjoaWeYW3jO/VIm6DkJTlgh36tcw31jMMuo2tDNFBpo4cX3RRcRzrX4+ZbKCQoq5Tb/CLT5LJZlztFM4JAvJD3LDG6896gYOHMjRo77pjniy877jr3TTEtkgtyOR/Mf4uNnjXQvTbnTp8Dctrm6c0P7SAlczCRs2HNjbNZai43Gn/VpWyg3kcYAsc0urPSMbo1JWuRUiSlGnaI7eIoVn7b9mgJbBXgooo4JvjKUclceaPc8zURd+O9wuBll8gCaJkfwn4o98L5dhYFJBFdFEsVXuoZZaPjS+DmKkCn/h+q4E0LxU1AV78exrDsgj7JX7AOhBV+J93DF8sOhHPHVjZplbcUqnT8f3F0vMtXwrl7KHPE7TJrZ8QoBwKR6dGOwx84MczYmEWgOO4+keQoqVgxSyTK5jqczCxGz5hA7MXNscfox4i00RXzBCG0ia1oNbbZdzoX5GsENrM9P18XxjLuUAR1hsrqFcVrZ8kiLkKaZuMyKKTkQIh/t5Q5juJB3UJeqa4u/2R3nT8Se+crzi8RnvrMWzWe5ildzIYnNNu+4L24vXW0B///vf+dWvfsUjjzzC0KFDsds9Ex9xcaF3QQhl7tCvYpGxmrVyC88Y/+Z221UeO00unNJJAYeA8L45ay3poid2bNTiZJvc066xXKWvMUQpbwLFCaSJHlyuzWaxXMN8uYilZhantLHTcCGlROAgic4MoOmLg0Lh4gn7PVRxlO/MZfwoV/Cm8UmzXRldXWJjiApr1ead+rXMEtNxCAexIhq7sPNP++M4pZMKjmJKk7fNz1gjN/Gk8RJX6eeGnGpF0T4MlKIO6pSFo6svwIbOpdrZ3G27zudzaELjfv0WXjc/Yqfcy0fm/7hcn+3zeXyNNYnTvZG1cbAYI4aSJbaQJ/ezg2wySQ92SB54qk1Cr5TTI1EXZA8o62essfuvk5W5tjnMZU6ww2g3vUQP7tavZb65mGUyi1eND5lrC//3dbLjKu8/XjH8E/1qTGlSJis4RjV32q5p0/iTxEhyZD7HqCZLbmGC8K6S1Fd4vepNSEigrKyMU0891eN5l0GjYRhNnKlojAQRx3BtAN8Zy5ghxrHG2MQ5tlNOOG4fh9w7PSdDos4mbAwQGZTJSo7JakpkWZt3BV3NJKLxTQc1Rcdjpj6Bt2o/BWCpXMsptC1Rd4hCqqlhHwcblVorFI1xrX4BfzfeJoNUvjYXcaO8pNGklJTSnaBIEz3CeuMhQ0slQ0v1eO74Xfv/1nyDKSWJMoFzam7jL/aHGKT1DWSYiuP4wPiKKnmMQlnMErm2XWMZ0iCGKKLoRG/Rs8Xju5NIFxJIIBab98vXkKNIlrLZ3Mm35hKK6tUB1dQwQfPPDcFYbRgPG8+SSTofG99ymTYr5L9DXEkcB/aQ2phI0bqxx8gD6rwFzyU0ynJduBR1UXTCIUKvkiSZBn/Vg7IwiJF4zh9KyWCF75ijX8Szxmv0JoUF5nLukFd5qLAU4YerYc7xuYEuIp7f2O/kOefrAAxs45pxsjaaj81vyRTprDe3+e263BJer3SuueYa7HY7b7/9tlfNJBRNc6F2Bs8ar/GjXEWS2YVzOOWEYzpKuZM33Klfy13O32Fg8A/jXX5pa7p7b3O4FXWq46uiCSaLhg57yyzt6L3FujOsFnyK1jJaG8Ic/SJeN/5LtpnPPGM+V9jOOeG4wxRxjGrg5LgOPGv7NRvkDq6vvR+ndPLH2n/xasRT7tetHdxa081NdXxrH07p5KHaZ8mlgFiiGSr6tzthNkoMZro2jt/Y72zxWE1oJIhY9sg8iszSFo8PdZYYa7jM+TOP5yb7sbPiDG0cl2pn86H5NTvMHP5nLuYsfZrf5vMFrmtqd5JC6m/Xas+yvZ1VH/6gKbVJqNBdJLofB7urolq3dXwGan25Tb+Cl4332WsW8LbxGTfoF4fUd4qi9VTLGneziKY2cNqrmpyijaaGWtbLbfzPXMxtNF3p4k+8XmFt2rSJrKwsBgwIboeejsRobbC7zLOpC/4+eYDJYjQagkHi5FAUTNfGEU0kI8VgD5NlbzClyVCRiYag90lqEqtomQyRykQxEhs6R+UxDGmgC+87mFgXnN1JbOZIhcKTq7Tz+NL4gYGiLy8a73C5PvuEReR+eZhTxHhqqGWICI+uje2hn9abZNmVSBwk0Z1lMou9ssD9Xf6s8W8+NxZgF3ZGiUH8n/3+Zsf70PyaF53vkCnSOSyLQK3RvUJKSYqo+/8hEHTxUQdOb/w800QP9sg8SiijTFaEtRfoYRo6K6aSTCcima6N89t8Qggu0c5kgbmcUWIwy811IZ2oc0onhykGAl+S6LjkMzANZHkeIjYNNM/1gLXZx442rk/9hZSSfqI3felFcoh2Bu8kIoknllLKg+5RZ21mkYxK1HVUrtUv4L/GN2SKdP5pvMeP5kpeczwd7LAUbaDY4sHZ2U8enANFH+KIppgylplZmNIMSqWU14m6sWPHkpeXpxJ1PsQu7PQVvdgm97BT7m00SbDF3M3S+jKTX4ibghFmwOmr9WKQ6MdCuQokPCV/4fVuVwnl7t9bR2/AoWg7Qgh6iu7MM+cDdWbb3bREr9vRK68TRVuZoY2jv0hnkVyNhsZZNTcxW5vBXNscd8LukCzkB7kSgOltLM8ON2JEFPfoN/K48QIArzo/ZI5+Een05Hnnf9jPYZCwls10I5EL9TMa7Z4upeR1539ZKteyVK5lOAPc5vqK1mPHzmXaLB6w3RqU0qE0PH3qhoj+AY/BVxykoeRukjaSTJHBGG2oX+c8RzuFW3mYb+VSthi7eMR2V8iqSg5RhEQCgVc6aV3qO0MmDWr09WgRRRo9yGM/2+QeTNNE00LD7qKMChbJ1QCcKkKnAcfxdBdJlMrykPKosyr9FB2L8dpwtjm+pnfNTCqoZIvcRUpNN35jv1PdH4YZxdau1sI/Hpya0JisjeYL8wcKKWGluZ6Juv8U703hdaLu7rvvZu7cudx///0MGzbshGYSw4cP91lwJxMDRAbb5B6qqSFX7idDeHr3WDufNtfBpKMxVRvDCmM9UFeS6G3noUJZ7H6cSIIvQ1N0MCZro9yJutNqr6e/6M0qx0de3cSoEgpFWxFCcL/tFr4zl5ErC1hiZrHG2MRUfQxjxTAAjtDwfZbkIzVTOHC77Uq+M5dSQjnPGa/zN+M/DBJ9mSRGsUnuoLtIoqfozj+N93jY+AubHF+ckKz7xlzCt3IpE8QIyqmsS/iEZn4i5IkTMUHz9zm+ocQQwjhRZ7ledBNJAVEHOjQHE7QRfGcuo4BD5Mh9J6w3Q4VQv55epJ/BMjOLnXIvuRSQTmj8Hj1+byGsEJsqxhBLFMWUUWZWEKcFRx0b6p8zhe+I1qI4XZvEEVlMKeU8Z75OutGT22xXBjs0hRe4Or6Cf8v7r9bOw4nBYnM188z/hUei7oor6mp0b7qpQdUlhFDNJNqJK/mWRGd2yb1kHHfB316fqHNgJ70VpssdhcnaaP5svEo8MWwyd3qfqKPE/ThJdPZxdIqOxBRtjPtxNTXoUmer3M1gL0oM1YJP0R5m6TOYpc/gypqfU1iflFtirmWsVpeo89h4OIm+z5JEZ0ZrQ/ib8SYJxFJNLavlJmzCxs22y5hrm8P5NXeQwz4SiOOh2me4xXY5p+mT3GOsMjfSmThWyPW8a3/W62uJIjRIE8nux+He+dV6vZhrm+O1grutTNHG8J25jO4ksVpuPGG9GSoUyIPEEk05lSFpJREvYlklNwKwRK4NmUSdRylnCK9DjlHNGrkZgH0cJI7gJOoq5VF0dCSSJE6e6+rJyruOv7DO3MrEmsuwY2efPMQbzo+53nZhsENTtJJSWU4UkVRxrM2NJlvDNH0sNzt/TS1OCuQhquRRokRgG1N6rdPOzs4+4WfPnj3u/yraxlDRnzhiOEIxW+Quj9ec0skuuReAfqJ3m7yzwpWJYiR9RS9KqeBrc6HX5xfKEvfjk+nGVuE9w0Qmyxzv85j+M2KIYj3beN/4yqsxPBQSIXhjoQgPHrb91P14qdnQWfOI5fvsZLuhmGubwzv2Z/mpfg1jGMKl2tm8Zn/abRj8uv1p/m57lARi+a/8hrnOJzBk3cZhtazhD8bLlFHJaDGY87RTm5tKEcJYFXW5YZ6oC5an6TQxlhS6cZAj/GCuDNi83rJXFlBOJbFEezRvCATGtvdxbnyN2u/vxbnxNYxt759wjLUJ1dJ2NKHyNZ6lnKGbqOtl8Y0OZtJ9u9yDgcEQ+p1U91cnMyO1Qbxsf5K79Gv5i/EatzkfZou5q+UTFSFBEaVUcQwdnS7SP6WvAN1EIldos4kkgnnmfJaZ6/w2V1N4rajr3bu3P+I46emj9aKMCqBBPeciR+5jnBhGGZUMF5nBCC9oJGoJOKgrr86SW6mUVUR70b31iEWBcrLd2Cq8Qxc6o8Rguoou/Nb4KwBvG5+SbebhxOAC22lcrs9udgwbNkaLwUQQgUPYmz1WoWiKwaIfPehGskjCRsONQ6FH6evJ9X2WJnqQpvcgVxYQr8UyThtGutagLu8s4rnJdil/Nl4lVkbTnUQ+Mb7jYtuZrJWbqaYGgMGiv7oZC2MyRCojGIgUktX1aqZwxZVQ6UxcQEuJR2uDOVTfyMK6ERBquNbC5VSSqgW2y3Xtot9ARQEIDaQJMSnoAy/3OGa8NowkEugtelIsy5oYKfAclA3eh6GcqAuFpPsxWe32iowOsFJGEVyu0y/gr/INNDTGMYy7ah/jGv0CbrZdGuzQFC3g6mptYBCv+ddreKY+kdfN/wJ110trpUYgaJPz6X/+8x+mTJlCSkoKe/fWKb3+8pe/8Mknn/g0uJMJawep4zucbpfZLJFr2Si3kxqg0ohQYrJWt2tpYLDIWOPVuSfzja2ibaSKZHrXl5fnsp/35JfMk/P5s/PVZs/LlwdYLNewVm7BLrzeA1Eo3GhCo7/oTZbcwjzzfxTVG+cqhXCdsm6e429uJd3xvGD7LVUcY4lcy1+N1wFPtctkLfAeIwrf0U/rTYRwsEFuZ4G5go3G9mCH1GZcCuxAJ1OiRRSjRF2ThK1yt8f3Sihh3bQOtKKuNUSLKNJFGmvkZj4y54fM7zFcPOp6eSTqCoISwz550P047SS8vzrZuVm/lKWO98hiK0tlFk87/0mNWRPssBQtUGRpJtEF/ynqoCEHAbBUBl457XWi7sUXX+Tee+9l9uzZlJSUuD3pEhIS+Mtf/uLr+E4a4kUsKXQDPBtHQJ0s28UALfQWK/7mXHEKs7UZ9BO9eNf83KtzPW9sE3wal6LjMke7iP7CUz28Ue6gVJY3ec4ySzJgklDJAEX7sH7Xu64JHs0kVHOcRpmhjWeEGMgEMQIT2GXupcA8xFRR15RjgjYi2CEq2snl2mzGiCEMFf35k9H8BkqoUmSW0E/0ZroYywwR+A7OZ2vTmCbGMkoMZnkIlW1a2VG/aZ1E55DdaJ1iuYlbHoSyqMawllT3EF2DGEnzhILfpFXJpxJ1Jx/RIopBWl8G0od0UnHi5B3zi2CHpWiBEhoUzP70qIO6DYUztClMFWMolMXUylq/znc8Xifqnn/+eV5++WUeeughdL2hfGTs2LFs3BjeZQjBJrP+xuwwRRSaDTdk1l3FgaJPwOMKNlP1sSw1s9glc1ltbiLfbP0F3fPGNjQXeorQY5I2ip31vpAuJJKvmvFJ/J+x2P3YunhXKNqCVUHiUlm7Nh46ERlwQ9twQQjBhdrprJDrWSnXs9hcwwK5nMVyDRvktpBU5ii840b9YvbKAjbJnXxvLuPJmhfdfoThwk72sl5uY6FcjSECH/swbQCL5Gqy5BaWhGD5a7lZyX7qmiJkhvDfrFWh2xYfZX9wwNJMIpRLX60VQhvNHUGJIU8l6hTA8/bfkEM+BRximZkVkt+JigasVgP+7PrqogsJ9WvI7ayX2/w+n5U2NZMYNepEtUhERASVlZU+CepkZZIYSaZIpxMR7CDH/by1FDaUFyz+IlZE8wv9RsaJYewml+eMN1p9rlLUKdrCKdp47tNu5kP78zyo384ZYgo2dN4zGt9pK5XlfGJ+RyIJXK2dy0RtZGADVnQ4Blg2ZVyKOlfX10SlpmuWKXpDB+fF5mqPZkw2VZYe9kRrUfze9gtu169EQ+MJ8++sk1uDHZZXWNd1A4KwATvJkmAKRZ+6PeQRSzR96cVYbUiww2mS6do4Ltdm05k4PjL+R6WsCnZI5MoCepLMNDE2IDexbSVGRHG/fiupdGcLu9hl7m35JB+Th0rUKWCSPooH9Tt4SP8pC+QKzqi5gd1mbrDDUjRBIBV1AFM8rpeBVaB7najLyMhg3bp1Jzz/9ddfM2jQIF/EdNLSVXRhh8zhKNUei7hI4aAHXUklmRgvGil0JObYLmaj3EEX4tls7my1F4iJSSrJxBHj9zp2RcdBCMETjns4V5/Jr213sE3uwY6NCll1gidSgTzED+YKetCVQkqIFJHEiZggRa7oKGRqGejo9CKF9XIb5bISgSCFbqRaSoYUJzJGDMGBnV6kUCrLqaGuVEGp6ToO19suZKDow0GOIJE8WvM8t9U8zNvGZ8EOrVXsCLL/WlfRhUyRQSIJlMoKDptFAY+hOfLkfsqoYDe5xAn/moW3h84iHg1BMWUMEf2DrsSplbXsIZ99HKCMCoQQQY2nJWJFFPkcZCSDyDI3B3z+GllDOqlEEuG2H1KcnPzWfhcOYWOv3Ee66MlPah/hkpq7eKj2GX5b+1eklMEOUVFPoBV1Lp+6PqSRY+b7fT4rrU7U/e53v6Oqqop7772XO++8k/feew8pJStXruTJJ5/kwQcf5IEHHvBnrB0eq1rOtYgrkxX8YK5kP4dJFz2bOrXD000kcp/tZio5yvdyOX93vtWq81abG8nnAPHEYlddOBVtwC7sPGT7CXbsLJKrT/BE+tT4jitqf852sjlFTOBXttuDFKmiI9GLHlypnUMuBXxrLuVJ59/Zz2GOUMyN+iXBDi+kiRQR7Ir4lsnaKD6TC9zPn4yK9I6M1WLgG5bwhvkxv6z9I1XyaBCjah1WS5NgfS7v1W+kkqNsZTcvGe8EJYam8ChJJLSVTtfo5+PAzkK5ireCnCjeI/Nw4gTC4/vuKu1cNARr2cy/zA8DPv8WuZsc8jlGNckh7OenCAy361fyo+MtrtLORQIbze382XiVp41/8pX5Y7DDU9RTTF0ziRiiAnJvP4i+9KYne8jjQ/PrgCZtW52oe+yxx6ioqOCWW27h6aef5uGHH6aqqoqrr76aF198keeee44rr7zSn7F2eKzm4a5FXL484H6u90mcqAO4VrsAGzpTxRj+a37TYolBkSzlEHW7xH20tECEqOigXK7PIgI7E8QI1skt7DHz3K9tszR7Gaj18ehkplC0FSEEI8RAutKFM8QU3je+YqoYgx0747XhwQ4v5OkmEhmpDSKZrvQnncH0ZYL6vXUohoj+jGAgg0RfBIJEEkgXPXnD+DjYobVIN5HIFDGGIaJ/0K4ZM/WJ7jXVi8bbXFj9U2ZV38KrzsAnTI4nnLzDTtHGo1Pn2R3sMmKPTrlh0HwuTevh9o/ebu5p4WjfY1XmdBGq6uZkJ0HEMUEbQZyIIU7E0E0kEkUk08RYXgyxzYyTmZL6v9uEAJX265rOIK3OouIQRW47lUDQ6kSdNXt4zTXXsHPnTioqKjhw4AD5+fncfPPNfgnwZKIn3YmiziB8q7kbCK/Fir9J13pyqXY2i+UatshdfGk0v7vh0S03DHYWFaFLlOjEXfp1rJDr2S6z+Zfxvvs168L4YdtPgxGeooNymT6LwxTxjVxCAYdYLNdwlpjGIK1vsEMLC36iX83OiP9xuT6Li/Qzma2fEuyQFD5EFzorIj8kK+ITFtjfpJASVsmN/Nn5CpfU3MVzztdDtlzpW3MpS+QaDstCNOG1C41P6C1SuEybxWK5hiJK+VouZIFczsvO94PenMO69g31zS+7aNg8yWM/W8xdQYvFunGYKdKDFoc3ZNZ7NB7giPsGPFC4lDmdiCRSRAR0bkXoMtc2h3mOv7HQ8TYDRAaL5Gq+NZfyQM3TlMmKYId30lNc71HXOQD+dC4mWxT8Xxg/BGxer1YHx3sdREVF0a2bqun3FZrQuEKbzXgxnHIqKZXlqnX4cfxUv5pM0hktBvOm+Wmzx3qaNatEnaJ93GK7nHFiOKPEYP5uvM1BeQSAHfWfs0QSSBKqs7DCd/TQujKIhqTcODGMubbrgxhReBEhHNiF3b07rui4TNRHcJN+KX+xPcRF2pmsN7fxvPM/3OX8XbBDa5QaWQOAA0dQ47jbdh3na6dypTiHJBLoRQpb2MXH5rdBjSvPUk0SDE9OEdUdYlJAj4CYlLp/N8N12vmcLaYRSzQfGl8HKMoTqZRVjBFDGSOGkiHCo5LEqvzbIXMCOrcrMRjKTTcUwUMTGvfYbuQG7WLGMIR/mu/zjPPfwQ7rpOaoPEY1ddfPQCnqAM4W07hIO4M0kgN6ffSq/VlmZmaLxqRFRaFlSBtudBIRrDQ3ALDCXB9Wu4qBYLg+kBqnk7VyC5EygmpZQ4RofKFbIA9ix0YtzqB0VVN0LLqIeCZro3jOeJ0edGWhuYpZYrrFqF59xhS+Z6Q20K2wNpFM0EcEOaLwY65tTrBDUASAv9sfBeDPta9QwEFMJAvM5cENqgmOUQ0QdBXPYK0f7zv+ynPO14k2o3jF/IBIIvjU+J6LtTOD1ozgCHUdrruTGJTfUcQ1C706fpo+njucj2JgkCv345TOoHSY3ib3sEZuAqBHmHiuuTbSOxHJLnNvQK0dXMqcQHSOVIQnl+uzmaSNYmD1WRiYrDTXUy4riRXRwQ7tpKRIlmBDx4kRUEXdUC2T7c5s8jhArIxhqbGWyfrolk9sJ15dRR577DHi41UNvz+ZpI3i78bbACwx1x5X+qo6/QFMFqPIkXXmr1lyCxPFyEaP2yR34sQgmSQyRGpgg1R0SG7Xr+Rj4xvyOcgLzjcZZO/LYYqIJZphIjPY4Sk6IL+x3cVD8qfsknvpoiUEOxyFIuT5hf1mvjQXskSuYY/MY788HHJJi+r6DZ6IICvqXMy1zUFKSVXtUb42F/Ge+QXXmRdwuj454LEckEfYJfcSQxSztVMCPn9b6C1SOEubyo/mSt40P+EX8iYGicBbFByRJe7HiSQEfP62MEj0JZmuHOAwW2TgyoZrZC1V1DWeCaQyRxF+pIke3KPfyLvGF3wvl/OK8QE/t90Q7LBOSgopwYlBNJ3oRUrA5tWExoP6HfzB+Ccb5Q7+YLzMx/qLfp/Xq0TdlVdeqUpd/cwkbRTRdKKv6M1Scy09RXeGi4GUyDJSlaIOqKsT/85cRrroyXpzGxO1kY0elysLkEgOUqjUiAqf0EdLI0JEYEiDNXIzO806Q9FyKlXZq8IvuBrh9KN3kCNRKMKH8WIYOTKfPiKNTeYOeuihlahzK+pCJFEHdfY25+mn8o75OePFcN4wPg5Kom6ZmQVABVUkioSAz99WxmhD+cL8AajzSLbaFgSKwnolYjSd6CQiAz5/W+gnenOAwwDssHj++huXPx0E1utKEZ5cp1/An4xXGEYm843F/ES/usmKLoX/OCgLAajkKDEBVjVeqJ/GQ85nSCWZclnJemMbI/SBfp2z1R51wZK/n2ykimRma6ewQW5jkVzN1+YiNsht1FBDjIgKdnghwRQxmoMcYYVczzfmkiaPc6kRU+gWkPbNipODydooAGpxsthc7X5eeUgqFApFaDBWG8Y+DrJIrmZ1fSlgqOCUTkxMIPgedcdzgXYa08RYVsoNvG9+ySpjQ8BjsHZOnaL5v7TIV1i9kLcHMOFkpbBeUZdI+Gwc9hI9iKSuvDmQv7diaUnUoarFFM0zQOvDzdqlbGQHC+Ry3nJ+FuyQTkoOcMT9OFkkBXRuu7Dza9vtFHCIJXItzwbAr7BNXV8V/uUcbQa9SWEqYymp90/IDIM264FigJZBl/qL6jIzC1OaJxxzTFZzkLqsuyoZVviSc8QpnKVNY4DI4Adzhft5lahTKBSK0MDaGXm7uaeZIwPPsXojbAi+R93x6ELnKv1cBtOPMWIIfzJeCXgM2WY+U8UYxovhTVZM+Jvab39GzefXUf36GGo+v47ab3/W4jkeiToz8Ik6U5oUUgJAUhgpEXWh01/UKcZ3yzxqZW1A5nX504FS1Claxw22S0inJ5PEKJ433wh6d+yTEVcjP4DuAU7UQZ1nYQapTBVj+FYuZY+Z59f5Wp2oM01Tlb0GiAu1MzjAERbToNZRXUsb0ITmbpNcSEmjC6J98qD7sUqgKHzJdH0cS821bJfZ5LDP/bwqr1YoFIrQoK/ohVa/xA1kOV1rcJW9AkQQemr/q7XzKKaUNXIzC8wVXFB9B5fU3MUlNXfxRO3f2SsL/DZ3haziK7mQxXINlRylswiO0snIno+582Nk8S7MnR9jZM9v8Zx+ojeCuuqjrWbgvNZclFDuVmomhpkVh+sex4mTPdK/N74uXB1fQTWTULSOcdowMkQqy2QWubKAr8wfgx3SSYdnoi4x4PNHiU5cq5/PYrmGQkqYbyzy63ytTtQpAkekFsEYMdTjOZWo8+RMbSqjxGBiiGKpzDrh9VyPJhwqgaLwHfEilnv0G5goRlJZb0QMdWXrCoVCoQg+EcLhbiK1XWY3qrwPFtVWRR2hpaiDujXo7+w/5wXbo/xEv5oqjlFolrDW3MxTxj94qPbPfpt7hbkegzqVistmIlyIFBFcoc2mn+jNdrKpljUtn+RDCmWx+3G4NJJwMUIbxGDRjx50JdvMD8icHoo61UxC0Urus93CNDEWHZ0nnS+pisMAc8CaqCPwijqAO2xXMVT0J52ePGu85te5VKIuRJmijUYg0NERCAaIPsEOKaQYrg0gS26hgiqWmGtOeD1b5pJGMhE4VKJO4XNutF3KWrkZGzai6URXuoSNcbNCoVCcDAwQGUTTiRS6kSP3tXxCgDgmGxR1oeZR5+I6/QJutl1KFxFPnIghQcRSSAkCwV6zgPOqb+eoPObzeeebi+gt6jr5TdHG+Hx8f2PDxi65lyqOsSbA3ohHaEjUdRVdAjp3e0kkgS1yF/s5TC7+U2xaKZdV9KAbMUQFTbmpCD9O1SZSQRWVHMUpnVxY81OPKi6FfzlIcEtfATqLeBJFZ7LJJ5cCtye+P1CJuhDl57YbOByxgl/pt/GAdgsztPHBDimkGCUGu3eiG1PUZcmt5HEAHY0xYkigw1N0cHqIrsyz/42CiMUURq5id8R3wQ5JoVAoFBama+M4Rg072ctauTnY4bipocGDKzLEuwbOtc1hnuNvfBzxIl84XuZp231ksYVv5BLeND7x6VxlsoI3jI/ZKwuYwEhmiek+HT8QWFWAS80T16b+xNVIAgirbrngWfmS68ebXiv75SH2c6iuu7BMCMicivBHCMEL9t/yT9vj7CSH+XIRf3W+EeywThpcpa8xRAW1yeZk0dDoyJ/f9Ta/jaxoF66LbJyIAQEO1bXUgwjh4GwxjYMc4SCFrDO2MlIf5H7d9UdTTS2Dtf7BClPRgTlDn+J+rP4+FQqFIrQYLPq5yyiXmmu5VD87yBHVYfWoC8XS16aYpo0lhihAkEp33jE+Z5XcyD/tT/hk/FedHzJI9KVAHmKAnk68FuuTcQPJFDGavvQiWXQNuIrzsCxighiBhkY6qQGdu71YPX7z5IGAzGlV5iRrwVHmKMKT0doQeoruGE6T3qTwvbmMIllKF6XM9CuFsoRKeZTJYjQZomdQY5mmjeULYwAO4eC/xv+4Qp/tl3mUoi7EmWubw1zbnGCHEZKcbzuNZXIde2Qer5kfcaTen6NIlrJZ7gRgpBgY1Iy7QqFQKBSKwDNBG+E2919irg1yNA1YPeoiQrT0tSlGaYPJc/xIFcdYKrN4y/iMrebudo972Cziz8arLJNZ5LGfe/WbfBBt4MnUMiilnCVyDfOMrwPqjbhDZrNCrmeZzCIpzJpJWD1+8wOVqAty90hFeNNdJPFT/Wr2UsBGuYOf1DzioWpV+J73jS/J5wBL5VpSg2xrdYo2nlJRwWq5kS/MH9hl7vXLPGGdqFu4cCHnnXceKSkpCCH4+OOPPV6/4YYbEEJ4/Jx9dss7qi+88ALp6elERkYyYcIEVq5c6ad3oGgPF2qnM0Mbz/36LWw1dzOu+mKOyWqWG+voTzpTxRhmaTOCHaZCoVAoFIoAEy9iuVg7k0liJEWylDJZEeyQADgmwzdRB9BZi2eyGE06PelBV/7sfLVd460xN9G35jS6kch4MZwb9IsZqIWnL7MQgkn15a/FlLFN7gnY3Nst3Y0HaOHVgC5aRLkbYPjT78mKK1GnoZFEeCU2FaHBHfrVTBfjmCRGsUyu49Kau4MdUofmv8Y3TBAj6Ct6caN+SVBj0YTGbdoVTBGj6UoXvzWVCOtEXWVlJSNGjOCFF15o8pizzz6b/fv3u3/eeeedZsd87733uPfee/ntb3/L2rVrGTFiBGeddRaHDh3ydfiKdhIlOjHf8Sq75F5+lHXJ1I+M/7FUrmUnOSyWaxis9QtylAqFQqFQKIJBkujMMrmOPPazwlwf7HAAqAljRZ2Lfzv+j1LKyecAy+Q6Lq6+k0tq7uLh2mdZbW70aqx3jM+xYWMzO+kpuvN3+6P+CTpAuHzq7Nh4uPZZdpo5AZnXlaiLphM96R6QOX2Jy6fuCEXUmrUtHN1+XN0ju9EFXeh+n0/R8cjQUvna8Qq7ZS6HKGSPzOWWmoc4LIuCHVqHo1iWslCuYoVcTzwxpGvBLX0FuMV2GRvlDgo4xHpzKwWm73NFYZ2omzVrFk888QQXXXRRk8dERESQnJzs/uncufldk2eeeYZbb72VG2+8kcGDB/PSSy8RFRXFq6+2b8dQ4T/u029iohjJIYp40niRpZYSl8na6GbOVCgUCoVC0VGZogXG8NkbPDzqRPh41FmJFdE8Z3+YBY7/cKU2m2JZxnJzPX8yXuFntY8jpWzVODvMbF4w3sKOzixtOv+2/5+fI/c/l+uz+dD+PD3pzpfyR37n/Jvf56yWNWTLfAAyRQaaCL/bu7O0aXQniSqOsZldfp3LlCaHKARU2auifWhC4xX773nG9iACwZvmJ/zN+Waww+pwLDfXuR+HSkfweBHLfbabGSj6sFpu4m/Gf3w+R4dvJvHDDz/QrVs3OnfuzKmnnsoTTzxBYmJio8fW1NSwZs0aHnzwQfdzmqZx+umns2zZsibnqK6uprq6YeFVVlbmuzegaJEx+jA6GZFEyUiSZGdy2U9/0RsQJKsLsEKhUCgUJyWTtdE4sNOP3iwzs5BSIoQIakzh7FFn5fJ68+yV5gY6izhqZS1RdCKSSGbUXMM7jmfpKZpWdr1jfM42czdDRX82yZ1M0caETOJSH3ApVJdgHt6E1nUoRCS0+tyeojtdtHgOUUQs0WhoFMoSv3Zi3Sp3M0IMpFSWM0SEZyVJN9HF3eBhqbmWkdqgFs5oO8WUUYsTUIk6Rfs5Q5/CQNmH+51Pk0wS+fIAF1TfgU3YuFyf3WKjgR+MlfxorsSG7tGhvFY60YXG9fpFXKSf4e+3EdJsMXczWgxhl9wbUiKc6/QLecL5dzJI5Ygsximd2ITv0msdOlF39tlnc/HFF5ORkcHu3bv59a9/zaxZs1i2bBm6fqLM+ciRIxiGQffunguL7t27s23btibneeqpp3jsscd8Hr+i9fxSv5VLzbtZQV1pi5CC5/SHgxyVQqFQKBSKYJEqkrlUO5u3zc/YInex0FzFDH18UGM6ZknURYZxos6Fq+nZTjOHJeZa7nA+AsALzjd53PZzAHShY0jDXWJYa9byWO3z5LCPSCK4QbuY2/QrgvUWTsA+/cl2nd9JRHK1di7/Mj/gPfNLLjbP5AL9dB9FdyKrzU1kyS0A/FRc7bd5/IlVJbPUXMtPucZvc6lGEgpfkyZ6sMzxPkNFJr+ufYb35Bc4pcEWuYvLtLPdKlfr96Dr8dPGP1lgLseGzjAGECOiqJY1rGEzhjTIkfu4UDs96JtMweQL8wd3EnOiGBncYCz0EF05Q5vCF+YPZJv53CGvYrQY4rPxO3Si7sorr3Q/HjZsGMOHD6dv37788MMPnHbaaT6b58EHH+Tee+91/7usrIy0tDSfja9omRnaeIaK/vQSPdknD7BR7uBs2/Rgh6VQKBQKhSKInKZNYqG5igFaBovN1UFP1FVbmkk4OkCizkV/LZ1YEUOcM4bOxPOjuZKp1VdxmCL6iDR2yb0si3if7iKJD+V87NgYL4ZTSjkDtT7EiZhgvwWfMkufwb/MD4C6rsP+TNQtMde4H4/Th/ttHn8yTGQyQQzHgYPDFPtV/VokS5ghxmFg0o9efplDcfIxXBsIQA+tK53NeFJEN2Zo47m05m6KKaWYMmZqE3nW/mtMaTK95mpGa0PoSxpV4ih7ZQE9RNe6z72AeDOWOGJIII7Ta27gW8drJ2Wy7pisZrWs8z7tK3rRQ+sa5Ig8cSXqoO67frSmEnVtok+fPiQlJbFr165GE3VJSUnous7Bgwc9nj948CDJycknHO8iIiKCiIjQkOufrAgh+NbxOjZh4/HaF5gux9EryK2bFQqFQqFQBJeLtDP4Cb8l3zzAXlHAQ/w0qPFUdwCPuqZIFkkURCxmYPXZrJGb0dAwMcmXBwB42fk+p2gTmGfMZyd7QcL/7P9muj4uyJH7nonaSPfjlX5uZLJSbgCgE5GMEoP9Ope/0IVOrIjhW3MpSMiR+8gQqX6Z6yCF/ChXATBbzPDLHIqTl7m2OdypX+O+Jy2WpaxgAyYmh4xC9pr7qKCKLLmVNcZmUklmjn4RD9pu9yibdEon59fewffmcgDKqCCe2GC9raCxQW6nhroGM6FU9urC1UAI4BtjMXfbrvPZ2OHnNtoO8vPzKSwspEePxhM4DoeDMWPG8N1337mfM02T7777jkmTJgUqTEUbcX25xYkYErS4IEejUCgUCoUi2ERpnRgjhgKwS+51d3sMFh3Fo64pbMLGGdoUThOTmKtfz3AGEE0UDuw8Yfyd02vnsMRcw6/1n3CHfhXTtLHBDtkvJIoEZonpDBH9yZH7MKThl3lqZC0R0s4g+jJVjMEh7H6ZJxBYb8KXyDXNHNk+imWDl3gC6n5B4Xus96RdtAQyRToXa2dym34F5VQikYxjGFPEGM7SphInYk7wNrMJG4k0NME8IosD+h5ChV1yL5mkM0T0YxShtxExRPTnBu0i+oneLJAr3BtTviCsFXUVFRXs2tXQGSg7O5t169bRpUsXunTpwmOPPcYll1xCcnIyu3fv5oEHHqBfv36cddZZ7nNOO+00LrroIu666y4A7r33XubMmcPYsWMZP348f/nLX6isrOTGG28M+PtTtI25tjnBDkGhUCgUCkWIMEUbzTIjizR68IWxgJttlwUtlo7mUdcYLzrqfJufc75OmtYDu2lnDZvcrxdThgD+Yn8oSBE2T/Vro5GVB8B5DGyRiOhkIm5Y6/U4kSKCzeZOoE4h1lf4vsyynEq2sBuAXiLF5+MHksmiLlHXjS5sN7PhRDtxn1BCQ6Kus4j3zyQKBfUenjTclz7nfL2hzF/AdG1cs/etSaIhUVdICX0bKdU+LIv40Pia8WI4m+RO5tgu8t0bCAGyZT47yAEJ6VrofcfpQqerSGSXuZfuJPHb2ud40HYH/bTe7R47rBN1q1evZubMme5/u3zi5syZw4svvsiGDRt4/fXXKSkpISUlhTPPPJPHH3/co0x19+7dHDnSsLt6xRVXcPjwYR555BEOHDjAyJEj+frrr09oMKFQKBQKriNd0wAAPoVJREFUhUKhCH2u1s/jS/NHtshdvGJ8wE36pUHz+umoHnWN4bpJzTbzyWM/2WYeMUTTSUQwwVIaGmrI2kqoKQehQU050tG2crNMkeF+vENmN3qT3V7KZaX7cRzRPh8/kIwXw+hNT/ayj8/M73mcn/tlnhKlqFMEieMTdy1h7RZd2ISi7gXnW/yf8Q8AbOicrk9utuN2uBEOzV/utl1HD9GVh5zP8Jb5GVFGJ57XHmn3uGGdqDvllFOQUjb5+vz581scIycn54Tn7rrrLrfCTqFQKBQKhUIRvgwSfXFgpz+9sWPnO3MZp+uTgxJLR/aoa4oMLZUMUpmudTwvuuYYoGVAfcXrdpnNLHzvh1ZOhftxjAjvRF2U1onuIpG9ch/b5B6OyGIPRZGvKPZQ1KlEnSJ0SbKWvlJCoSzh2tr76EUPjshiimUp69hKZ+IpppTRYggvOd/hcfvPTxjrr8432GBs53u5jJnaBIaI/nxrLqWaWi7UT/ept5ovCYdEXTeRyHX6hdzn/D8AlppZPhk3rBN1CoVCoVAoFApFcwgheNB2O1fU/hzkXl5wvhnERF2t+3EE4esnpmiZTJHufrzB3O6XOcppUNTFhrmiDuqM2Vcadc0xlpvrOFef2cIZ3lMsS92PVemrIpTxKH2Vxbzq/JAF9c0lupPEQeqSWFUcw4GdlXID241sfq7fgF3YiCWavxpv8L1zOYtZTSVHAXjL/IxMMthJDhLJXuc+fqpfjS78VG/eDqyJum4kBjGS5okV0YwUg1grt7BZ7uTRmud51HF3u8ZUiTqFQqFQKBQKRYfmXG0mE8QI7Nj4Ua5ktbmRsdqwgMdxzKqo4+RQ1J2sDBB9uFa7gM1yJ9+Yizkmq32uoqyQVe7HHSFRN0EbyQRzHQLYKXP8MoeHok6VvipCGGsziQLzEG+bnzFODCNXFjCIPhg46SVS0NDoTzp57GePzOOf5ntsMXexTe6mO0msYD2VHKUzccQTRy/Rg0yRTqlZjh0b3UQiP5qrOFWfGMR32zgHKAQgkYSQb5Zzi345OXIfnxsLeMZ8lTPMKUxpR6dalahTKBQKhUKhUHRodKFzvX4RdzofRUfjqdp/co/9BkaIgaw2N7He3Moiudrvcawzt7ofd8Sur4oGYkU0lVSRJbeQSALzjPlcYzvfp3OUWUpfY8O89BVgqOjPCrkegBTTPz5bLo86Hb1DJDcVHZcki0fdVrkbCaySG7lSO4fXHE97HLvHzGNozTmYmHzhXECZqGCHzGEbe6jFCdQlqec7XmW4NhCA6cY4rq99gHx5gIUhmKiTUroVdaFa9mrlJtulvGl8whZjFxqCd52fM8WhEnUKhUKhUCgUCkWTXKufT765n/lyMf+Ti1hRs46f6dfziPEcPehKd5L8nuzoRQqpdGesNox00dOvcymCz336LRyShayWm3jSeJEr9XN8Wl5mbSYR0wGSThkiFTs2anGyXWb7ZQ6Xoi6B2KA1lVEoWkOipfR1g9zGUY7SX6Rzh37lCcf20dK4S7+W+eYiVstNIGGUGMTF4iyqtRqmi3GskZvcSTqAyRa111LpfWdrf1NOJUc5BoRHog7gCm02H4tvWCU38rL5PreZVzBMG9CmsVSiTqFQKBQKhULR4YkQDn7ruJuvqhdiYNCPXrxrfE4GqWSTT6bIIEZE+TeI+rxALy0Fe4iX8Sjazxh9CBGGA01qdJHxnF1zM3+zP8IArY9Pxq+gofQ1rgMo6mzCRj/Rm61yNztlDoY0mk1sbjS385HxDU7p5AjF3Ga7glHa4GbncCnqElQjCUWIk0gCKXQjAge5FGBgUixLm+yafZ1+AX813iCZrtRQwy6Zy62Oy92f9el4NvRJFcn0IgWJREiokbUhVV6aI/cxQGRQTQ0ZIjXY4bQKu7Bzqj6Jz50/MEoM5t/GPJ7Rft2msVSiTqFQKBQKhUJx0vCy/UnOrbmN5ax3P3ebfgV/tf8miFEpOirP2R5mo9zB9bX345QGf3K+wsuOJ30ytkfpawdQ1AEMEBlslbupoZZsM59+eu8mj/2T81XeM79w/1szNP4mHmlSKWdIg5J6RZ3yp1OEOhHCwSx9Bq8YH7ifm6yNavLzPUwbwA+ONxkvhuPEYIPc1mJC+lRtIq+ZH5En97NObmUcw0JGabpBbnMrawcK32xuBIIb9It5x/icVXIj641t3K1fT7ro6fXvVfNTfAqFQqFQKBQKRcgxTMtklDaI08QkxovhxBDFtfoFwQ5L0UHpr6VzujaZSCJIJ5WF5mry5H6fjF1hKX2NFTE+GTPYnKlNZY52ESPEQGbWXscKc32jx1XKKkpkKeNoaArzrvE5Q2vOYYfZeNlssSxjshjNNDGWkaJ55Z1CEQpM08bSix4MFwMYKvozS5vR7PETtZFoQsMh7K1qmDRGG+p+fEvNrzmv5vZ2x+wrlppZ7scjxMBmjgwtokQnZuunMIxMpouxnFNzK/825nk9jlLUKRQKhUKhUChOKt6zP0eEcPB47QvMlBMZrw0PdkiKEMF+2l/AeQzzyGa0pCFgi2z3mHEihp/p1/N74yUAXnN+xG/sd7Z73DIsiboOoqi7yXYpkUYEr9f+F4B5zvlMcIw44bhV5ibmy8UAxBNLab2j1W6Zy/3Op/nE8dIJ5xymyO3F1Uuk+PFdKBS+4TLtbC6NOIunnP8A4EbbJT4d39qVdAc5ZMt8ss18MrTgl5ouq0/U2bAxLghd2tvDL/SbmC1mMKH2UgDeND5hjn6RVx6lSlGnUCgUCoVCoTipiBB1HVfjRAxdtPggR6MIJfQ+s9AzL8I++WH0zIvQ+8zyybh32K5ishjFQNGHvxivUShL2j2mZzMJP/srBpBLtbNJoTspdOMt81OqZc0Jx1jN76/Vz+dJ/R5SSSaF7mwyd3JzzYm+UAfqO0gCJIeJOb3i5EYXOjZhI07EEOcH1exA0Yff6XM5m2nEEk2mSGeeOd/n83jLYVnEPnmQUWIwl2uziBKdgh2SVziEnRH6QEYwkF6ksFyu52PzW6/GUIk6hUKhUCgUCsVJyVzbHOba5gQ7DMVJQDeRyAhtENvkHnrSnTXmpnaPWWFR1PnjJj5YOISdU7WJFHCIQkpYKzefcMwKYx1R1Kkd79Kv4xf2m9kR8T8OUcg+DrJKbjzhnIM0JOrCpYukQgH+u1ZpQuMB+638n+M+yqlks9zFenObz+fxluXmOsqoIEtuobtIDHY4beZJ+73kUkAs0awzt3p1rkrUKRQKhUKhUCgUCoWfuVo/j3hi2UEOrxoftnu8MtnxSl9dTNZGuR9bvaoA1plbmS8X48TgVv1y0kVPoC7pMFj0BWCPzKNW1nqcd1Ap6hSKRukjeqFTV5a5Qzbu8RhIlpoNitnJlvLccOM0bRITxUgqqeLPxquUyYqWT6pHJeoUCoVCoVAoFAqFAjAPZmEWrMC59V3MghWYB7NaPqmVjBaDOcoxAHc3w/bQVXRhjBjKKDGYCBztHi+UmKKNpgddGUI/5hlf86TzRfdr/3S+x1QxBh2NYSLTo5viAJEBgBMne2Sex5jWRF13VKJOoXDhEHb6il4A7JA5mNIMajyVHGWcGE4X4pmojQxqLO1BCMFIbRBODEzMJpvjNIZqJqFQKBQKhUKhUCgUQM2nV0JFAQgNpAkxKUTeut0nY+tCp79IZ7PcyS65F6d0YhNtvx1bbW4kj/10o4tHsqojkCky2OaYT0rNVCplFZucO8CEy/VZvGZ+hIlJJulcq11wwnkutstsBtDH/W/lUadQNM0AkcEOmc1RjpHHAXoTnIYrUko+ML6imDJSSaar6BKUOHzFFG00LxnvAPCDsZIJtK4xhkrUKRQKhUKhUCgUCkUAGCAy2Cx3UouTHLmPfqJ3m8cqpASARNHZR9GFDkIIIoSD0WIwZbKCSBHBM+arLCOL/vQmXsRyrjaTKM3TZH6Q1pfJZl2p3H552OM15VGnUDTNKDGIIlGCiSTHzKe3HpxE3WGKKKYMgIFanxaODn2maGM4RzuF/fIw8+TX/EK2zmtQlb4qFAqFQqFQKBQKRQCwKr5edr5PjVnDInO11+NUyaNUcRSARDpeos7F/xz/5jH7z1gh11PJUVaaG9hONlvlbm7VLz/h+DTRg6VyLUvlWrbK3R6vuUpfI3AQT2xA4lcowoUk0Zklci3LZNYJZeOBxGoLMMDyfRmupIhuHKOatXIz5bKSreaeVp2nEnUKhUKhUCgUCoVCEQDO007lbG0aGhrPma+TWDOes2puZLeZ69U4LjUdQJJI8G2QIYQQgrO0aVyknUE8sZRRQX/SuVe/ic5a/AnHp4ke7sd5cr/Ha4dlEWkkM02M63ClwgpFe2nubyeQbDc7VqIOYI5+ERmkAvC2+WmrzlGJOoVCoVAoFAqFQqEIAMO0TDaZO4nAgQM7tTjpRQqvG//1apxCWeJ+3BFLX60IIbhAP51SyrFhI4d8brBd3OixySRhr3d3siYbKmQVBykkjwMcozogcSsU4YRHoo4DQYujSJbQX6QTgYNMEf6lrwCnaBPIJp9CStgp97bqHJWoUygUCoVCoVAoFIoA4BB23nU8S3bE99zJNXQhnhz28ZzxOvvNw0gpAdz/bYojstj9OKkDl766uFQ7i6/tr3LYsZyvHK/QQ3Rt9DhNaPQUyYBnoi7f8jit/nWFQtFAqCjqVsuN7JQ5VFNDugiOT56v6UoXOhMHwE4zp1XnqGYSCoVCoVAoFAqFQhEgxmp1Xf+SbV0ZZmSSK/fTXSTxkPPPbDF3k6715Bg1fOz4e5NjeJa+dvxEnU3YOEUfD8BUxjR7bBrJ5JBPMWWUy0piRTR5skEhZE1IKBSKOuJFLHHEUEZFUBN1rr9VHZ3UDpJUF0IwQGSwXK6ngEOtOkcl6hQKhUKhUCgUCoUiwMy1zeFybRYDa84mW+azVm6mhlrWmVsBWOZcS289lWSS0IRnIVShRVGX2IE96tpCmugB9YLEfHmAQaIve2WB5+sKheIE0kQPNsud5MsDmNI84XsnELiShCl0wyY6TrpqgNaH5cb6Vh/fcd65QqFQKBQKhUKhUIQRPbRuzNXnECdiKDJLWGiuYje5lFDGmc6bMZ0mb9v/zAX66R7nnWylr94wWhtCjsznCCXslrkMoq+HQqiXStQpFI0yRRtNlBlJGZUckoUkN1Fi7i+q5FGOUPfd1lHUdC5GiyHsENkUiiI2sq3F41WiTqFQKBQKhUKhUCiCxO/scwF4zvk6F4sz+avxHyRQSy0Cwe+cL/C687+kimRut13JEK0/BfIQAoFEKkXdcXQR8SyVWQDslDkAbJDb0NEwMJWiTqFohlVyIwD5HCCZwCbq8jtwiXqqSGaZXIeURquOV4k6hUKhUCgUCoVCoQAi5qwGKZG1lQh7NAgRsLnn2uYAMETrT4KM5XXzY5w42WruZhGrKZeVHHQe4T3Hc2yTe+qOpR/96B2wGMOBASLD/Xi7zOagPMICcwUaGtdpF9JfqN+XQtEY1uRYrtzPWIYFdP7cDqx8tX4vtQaVqFMoFAqFQqFQKBQKQDhi6/4bERe0GM7SpwEwgZE853ydQ7KIGllLV7pgl3bmVP+SlXI9EkmNcBKvxQYt1lAk05qoM7NZZKxhhjaeReYqEkQsdmEPYnQKRegS7M6ve2QeI8UgaqglU6QHfH5/ki56YsdGDUpRp1AoFAqFQqFQKBRhy1zbHOba5rDbzCVDpDKi+nx2kuN+fbI2KnjBhSixIpqedGcfB9ku9/Cm+THzzUUAXKqdHeToFIrQJdiJulVyI+tkXTOdflrHUr7ahI1+ojdb2NG64/0cj0KhUCgUCoVCoVAo2kFfrRcAo7XBHDWP0VN0pxYn52ozgxxZaHKuPpNt5h4OyyKWmGsB6EoXxmhDgxyZQhG6BDtRt8RcA4ADO6PFkIDP729u1C/hkO0wT3Jfi8eqRJ1CoVAoFAqFQqFQAM41zyNrypGH1iO6jUA4YrGNuTvYYbl5zf40Qgiec74OwHn6qUGOKDRJII4f5UoABHU+g5O1UYgAeg4qFOFGCl3R0DAxyTH3BWzeleYG4s0Y9sq6OceIoUSKiIDNHyh+ZrueMluZStQpFAqFQqFQKBQKRWtxrv0bVBSA0GDPlxCTElKJOleiydV4QtE4U7TRuKygInDQl15MEWOCG5RCEeLYhI0rtNmslBvYKfdSI2tx+NnTcbeZy4yaa9AQGJgMI5Nb9Mv8Omc4oBJ1CoVCoVAoFAqFQqHoMEzQRiAQRBFJJUfZzE4ytfRgh6VQhDwSyW6ZC8A6uZXxYrjPxv7I+B9RRLLO2Mpy1vNz/Qb2yQN0Jo4iShEItrCb6fo4n80ZrqhEnUKhUCgUCoVCoVAoOgzxIpYZ2jh+MFe6n7N2g1UoFI0zRRvNu+YXACw11zJe802irkbWcn/t0+zjIAKBRJIn97NZ7kRHYxzDeMf+DFvZ4+GVd7KiBTsAhUKhUCgUCoVCoVAofMlA0df92I6N3iIliNEoFOHBFG0MQ8lkvBjO58aCdo9XKsuZduwqzq6+iRLKSCcFiaQ3KW5POhBcqJ9Bqt6DM/Qp7Z6zI6ASdQqFQqFQKBQKhUKh6FBMFCPcjxOIQxd6EKNRKMKDwVo/okUnVsoNLJZreKj2mTaPdUQWM8+Yzyo2spQsKjlKDgWMF8PZSwEVVAEwQYzgF/abfPUWOgRhnahbuHAh5513HikpKQgh+Pjjj92v1dbW8stf/pJhw4YRHR1NSkoK119/PQUFBc2O+eijjyKE8PgZOHCgn9+JQqFQKBQKhUKhUCh8xVRtLNdo5/Mz/XoetYVOQxCFItT5qe0aZmnTGURfPjC+4kvjhzaNc03tL3je+R9GMIBIIrhaO5crtXM4Xz/NfcwQ0Y9r9fN9FHnHIaw96iorKxkxYgQ33XQTF198scdrVVVVrF27lt/85jeMGDGC4uJi5s6dy/nnn8/q1aubHXfIkCF8++237n/bbGH9a1IoFAqFQqFQKBSKk4pULZlXHL8PdhgKRdhxhT4bB3auMu8BYJ3cxmxOadW5nxnfM00byz+d77HO3EIpFSTRmd/qd3GP/UYAlplZ7uO3yN3M0Mb7/D2EO2GdgZo1axazZs1q9LX4+Hi++eYbj+f+9re/MX78eHJzc+nVq1eT49psNpKTk30aq0KhUCgUCoVCoVAoFApFqDPA0nxlu5ndqnNyzH1cWXsPUUQyRgxlGAPopaVwhT6bs/Rp7uNGiyF8bX+VzsSyUm6kr9Z0buZkJawTdd5SWlqKEIKEhIRmj9u5cycpKSlERkYyadIknnrqqWYTe9XV1VRXV7v/XVZW5quQFQqFQqFQKBQKhUKhUCgCRl/RCx0dA4MdsnWJuiy5mRliPAvlSmzoRGudGKEN9EjSAUQIB6fodSq6EQzyeewdgZMmUXfs2DF++ctfctVVVxEXF9fkcRMmTOC1115jwIAB7N+/n8cee4xp06axadMmYmNjGz3nqaee4rHHHvNX6AqFQqFQKBQKhSIAaN1GIGN7Ikv3IuJ7IzolBTskhUKhCDgRwkGGSGWX3Mt2mY0pTTTRfIuDt4zP+F4uA+D/7PczVOsfiFA7JEJKKYMdhC8QQvDf//6XCy+88ITXamtrueSSS8jPz+eHH35oNlF3PCUlJfTu3ZtnnnmGm2++udFjGlPUpaWlUVpa6tVcCoVCoVAoFAqFQqFQKBTB5s7ax9hhZuPE4A3706RpKc0eP6z6XHbKHKLoxJGIFS0m9k5GysrKiI+PbzFX1OEVdbW1tVx++eXs3buX77//3uvEWUJCApmZmezatavJYyIiIoiIiGhvqAqFQqFQKBQKhUKhUCgUQSeeGBbJukac22UOaTSdqKuRteyReQBkinSVpGsnHfq350rS7dy5k2+//ZbExESvx6ioqGD37t306NHDDxEqFAqFQqFQKBQKheL/27v3qKrq/P/jrwPKRUEuhoAKSKZ4SULTEhTFC2H5a8xsunspndRUsvl6yemrZlYyqamj+dVvk2aOtymdcqkzqRmWmnnBS6iBImQ2MprhBVFQzuf3h19PnuAgGnKO8nysxVqwz2d/9vts3gvw5d77A8C1NL5qQYlrPafusDmiYhVLkhpZGtzMsqqEWzqoy8/P1+7du7V7925JUnZ2tnbv3q0jR47o4sWLeuyxx7Rjxw4tWrRIxcXFys3NVW5uroqKimxzdOnSRbNmzbJ9PWLECG3cuFE5OTnasmWLevbsKXd3dz311FOV/fYAAAAAAAAqXZTbL0Hdd+ZwmWP3WQ8pTCFyk5vdfrgxt/Strzt27FCnTp1sX//xj3+UJPXt21evvfaaVq5cKUmKiYmx2++LL75QQkKCJCkrK0s//fST7bWjR4/qqaee0smTJxUUFKT27dtr69atCgoKurlvBgAAAIBTFX36uMz5n+wWk/Do8XdnlwUAle7qK+oyrnFF3U6Trh+UK1/VVFvLPTe7tNveLR3UJSQkqKy1MMqzTkZOTo7d10uXLv2tZQEAAAC4BVmP75Hy/y1Z3GQKjsv4lP3wdAC4XdW2+CtGTeVpqS5/+dq277ce0oeXPtFxnZSPpYb+Un2sNlvTJElndU7Rbk2cVfJt45YO6gAAAAAAAFDxPCzV9Y3ZKxmp0BTJ0+KhfxZv1HTrB5KkanLXy27PKc3sk3T5+XR1LNe/NgDs3dLPqAMAAAAAAEDFC7P8sqjmj+Y/kqStZo9tWxPLnXr90ruqIW8lurXTc+69Kr3G2xFBHQAAAAAAAOyEWUJsn/9gjumiuahvrRm2benmoFLNVp1RvtZZN6udWytnlHnb4dZXAAAAAAAA2Ln6irofdEwfWf+jHP2oSNXXv3VchSrSMZ1QuOoqwe0+3e/GQhIVgaAOAAAAAAAAdq4O6o5Yj2m3OaAmljv1nTmsNpYWyjZHVaALOqJ/6zH3bk6s9PZCUAcAAAAAAAA7Vwd1m4t36nN9LUn6vVs3/U+1CfJxq6nXi2bp3zquRLd2zirztkNQBwAAAAAAADsNLPX0iKWrjpr/aLPSFGdppRxzVE+6/z/5uNWUJPm5+cpPvrJYLE6u9vZBUAcAAAAAAAA7ARY/nbKc1Q7zrSRpi0lTCzVWN0u8bcxL1fo6q7zbFkEdAAAAAEiq1mqoTNFZmeN7ZKlzjywevs4uCQCc6r/cn1e0JUrnTIEOmMMaUu0Zubu5O7us25rFGGOcXcTt5syZM/Lz89Pp06dVq1YtZ5cDAAAAAABww2ZcWiCJK+h+i/JmRVxRBwAAAAAAAIcI6CqPm7MLAAAAAAAAAEBQBwAAAAAAALgEgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFVHN2AbcjY4wk6cyZM06uBAAAAAAAAM52JSO6khk5QlB3E5w8eVKSFBYW5uRKAAAAAAAA4CrOnj0rPz8/h68T1N0EgYGBkqQjR46UefKB3+rMmTMKCwvTDz/8oFq1ajm7HNzG6DVUJvoNlYVeQ2Wh11BZ6DVUFnrt+hljdPbsWdWtW7fMcQR1N4Gb2+VH//n5+dGwqBS1atWi11Ap6DVUJvoNlYVeQ2Wh11BZ6DVUFnrt+pTnYi4WkwAAAAAAAABcAEEdAAAAAAAA4AII6m4CT09PjR8/Xp6ens4uBbc5eg2VhV5DZaLfUFnoNVQWeg2VhV5DZaHXbh6Luda6sAAAAAAAAABuOq6oAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4gFs6qJs0aZLatGkjX19f1alTR4888ogyMjLsxly4cEFDhgxR7dq15ePjo169euk///mP7fU9e/boqaeeUlhYmLy9vdW0aVPNmDHDbo4VK1YoMTFRQUFBqlWrlmJjY/XZZ59dsz5jjMaNG6fQ0FB5e3ura9euOnjwoN2YtLQ0JSYmyt/fX7Vr19YLL7yg/Pz8a869d+9excfHy8vLS2FhYXr77bftXt+3b5969eqlBg0ayGKxaPr06decE47Ra457bcWKFWrdurX8/f1Vs2ZNxcTEaOHChdecF47Rb4777YMPPpDFYrH78PLyuua8KB295rjXEhISSvSaxWJR9+7drzk3SqLXHPfaxYsX9frrr6thw4by8vLSPffco3/961/XnBelq6q9duHCBfXr108tWrRQtWrV9Mgjj5QYc+zYMT399NNq3Lix3NzcNHz48GvWC8foNce9tmnTJrVr1061a9eWt7e3mjRpomnTpl2zZpSOXnPca6mpqaX+vZabm3vNul2auYUlJSWZ+fPnm/T0dLN7927z0EMPmfDwcJOfn28bM2jQIBMWFmY+//xzs2PHDtO2bVsTFxdne/399983ycnJJjU11WRlZZmFCxcab29vM3PmTNuYl156yfz5z38227ZtM5mZmWbMmDGmevXqJi0trcz6UlJSjJ+fn/nkk0/Mnj17zO9+9zsTGRlpzp8/b4wx5scffzQBAQFm0KBB5rvvvjPbtm0zcXFxplevXmXOe/r0aRMcHGyeeeYZk56ebpYsWWK8vb3N3LlzbWO2bdtmRowYYZYsWWJCQkLMtGnTrufU4lfoNce99sUXX5gVK1aY/fv3m0OHDpnp06cbd3d3869//eu6zjF+Qb857rf58+ebWrVqmWPHjtk+cnNzr+v84hf0muNeO3nypF2fpaenG3d3dzN//vzrOcX4P/Sa414bNWqUqVu3rlm9erXJysoys2fPNl5eXtesGaWrqr2Wn59vBg0aZP73f//XJCUlmR49epQYk52dbZKTk82CBQtMTEyMeemll8pxRuEIvea419LS0szixYtNenq6yc7ONgsXLjQ1atSw+9mH8qPXHPfaF198YSSZjIwMu7/biouLy3NqXdYtHdT92vHjx40ks3HjRmOMMadOnTLVq1c3H330kW3MgQMHjCTz9ddfO5znxRdfNJ06dSrzWM2aNTMTJkxw+LrVajUhISFm8uTJtm2nTp0ynp6eZsmSJcYYY+bOnWvq1Klj10R79+41kszBgwcdzj179mwTEBBgCgsLbdtGjx5toqKiSh0fERFBUFfB6LXSe+2Kli1bmv/+7/8ucwzKj377pd/mz59v/Pz8ynwPuHH0muOfbdOmTTO+vr52fxTjxtFrv/RaaGiomTVrlt1+jz76qHnmmWfKfF8on6rSa1fr27dvqf+gvVrHjh0J6ioYvVa2nj17mmeffbZcY1E2eu0XV4K6vLy8cs1zq7ilb339tdOnT0uSAgMDJUk7d+7UxYsX1bVrV9uYJk2aKDw8XF9//XWZ81yZozRWq1Vnz54tc0x2drZyc3Ptju3n56f777/fduzCwkJ5eHjIze2Xb4O3t7eky5cLO/L111+rQ4cO8vDwsG1LSkpSRkaG8vLyHO6HikOvld5rxhh9/vnnysjIUIcOHRzOi+tDv9n3W35+viIiIhQWFqYePXpo3759DufE9aHXHP8eff/99/Xkk0+qZs2aDudF+dFrv/RaYWFhiVv4vb29y5wX5VdVeg3OR685tmvXLm3ZskUdO3as0HmrKnqtpJiYGIWGhioxMVGbN2+ukDmd6bYJ6qxWq4YPH6527drp7rvvliTl5ubKw8ND/v7+dmODg4Md3rO8ZcsWLVu2TC+88ILDY02ZMkX5+fl6/PHHHY65Mn9wcLDDY3fu3Fm5ubmaPHmyioqKlJeXp1deeUXS5WdIlDV3afNefVzcPPRayV47ffq0fHx85OHhoe7du2vmzJlKTEx0OC/Kj36z77eoqCjNmzdPn376qf72t7/JarUqLi5OR48edTgvyodec/x7dNu2bUpPT9eAAQMczonyo9fsey0pKUnvvPOODh48KKvVqnXr1mnFihVlzovyqUq9Buei10pXv359eXp6qnXr1hoyZAi/RysAvWYvNDRUc+bM0fLly7V8+XKFhYUpISFBaWlpv2leZ7ttgrohQ4YoPT1dS5cuveE50tPT1aNHD40fP14PPPBAqWMWL16sCRMm6O9//7vq1KkjSVq0aJF8fHxsH1999VW5jte8eXMtWLBAU6dOVY0aNRQSEqLIyEgFBwfb0ubmzZvb5n3wwQdv+L2h4tBrJfn6+mr37t3avn273nzzTf3xj39Uamrqdc2B0tFv9mJjY9WnTx/FxMSoY8eOWrFihYKCgjR37txyz4HS0WuOvf/++2rRooXuu+++G9of9ug1ezNmzFCjRo3UpEkTeXh4aOjQoXruuefsrjzAjaHXUFnotdJ99dVX2rFjh+bMmaPp06dryZIl1z0H7NFr9qKiojRw4EDde++9iouL07x58xQXF3frL17i7HtvK8KQIUNM/fr1zeHDh+22f/7556XerxweHm7eeecdu2379u0zderUMX/6058cHufKA4BXrVplt/3MmTPm4MGDto+CggKTlZVlJJldu3bZje3QoYNJTk4uMXdubq45e/asyc/PN25ububvf/+7McaYnJwc27xHjx41xhjTu3fvEvdnb9iwwUgyP//8c4m5eUZdxaHXyu61K/r3728eeOABh6+jfOi38vXbY489Zp588kmHr+Pa6DXHvZafn29q1aplpk+f7vB9ofzoNce9dv78eXP06FFjtVrNqFGjTLNmzRy+P1xbVeu1q/GMuspFr/VwWPPVJk6caBo3blyusSgdvdbDYc1XGzFihGnbtm25xrqqWzqos1qtZsiQIaZu3bomMzOzxOtXHqr48ccf27Z99913JR6qmJ6eburUqWNGjhzp8FiLFy82Xl5e5pNPPil3bSEhIWbKlCm2badPn7Z7qGJp3n//fVOjRo0yH4Z45cHERUVFtm1jxoxhMYmbiF4rX69d8dxzz5mOHTuWq36URL+Vv98uXbpkoqKizMsvv1yu+mGPXrt2r82fP994enqan376qVx1o3T0Wvl/rhUVFZmGDRuaMWPGlKt+2KuqvXY1grrKQa9dX3gyYcIEExERUa6xsEevXV+vde3a1fTs2bNcY13VLR3UDR482Pj5+ZnU1FS7pXgLCgpsYwYNGmTCw8PNhg0bzI4dO0xsbKyJjY21vf7tt9+aoKAg8+yzz9rNcfz4cduYRYsWmWrVqpl3333XbsypU6fKrC8lJcX4+/ubTz/91Ozdu9f06NHDbpliY4yZOXOm2blzp8nIyDCzZs0y3t7eZsaMGWXOe+rUKRMcHGx69+5t0tPTzdKlS0ssd11YWGh27dpldu3aZUJDQ82IESPMrl27yr2qCuzRa4577a233jJr1641WVlZZv/+/WbKlCmmWrVq5r333iv3+YU9+s1xv02YMMF89tlnJisry+zcudM8+eSTxsvLy+zbt6/c5xe/oNcc99oV7du3N0888cQ1zyXKRq857rWtW7ea5cuXm6ysLPPll1+azp07m8jIyNtuBbvKUlV7zZjLV8rs2rXLPPzwwyYhIcH2b4GrXdl27733mqefftrs2rWL36E3iF5z3GuzZs0yK1euNJmZmSYzM9P89a9/Nb6+vubVV18tz6nFr9Brjntt2rRp5pNPPjEHDx403377rXnppZeMm5ubWb9+fXlOrcu6pYM6SaV+zJ8/3zbm/Pnz5sUXXzQBAQGmRo0apmfPnubYsWO218ePH1/qHFen/R07dix1TN++fcusz2q1mrFjx5rg4GDj6elpunTpYjIyMuzG9O7d2wQGBhoPDw8THR1tPvzww3K99z179pj27dsbT09PU69ePZOSkmL3enZ2dqk1c5XTjaHXHPfaq6++au666y7j5eVlAgICTGxsrFm6dGm55kbp6DfH/TZ8+HATHh5uPDw8THBwsHnooYdMWlpaueZGSfSa414z5pf/jV67dm255oRj9JrjXktNTTVNmzY1np6epnbt2qZ3797mxx9/LNfcKKkq91pERESpNV3r/HCV042h1xz32l/+8hfTvHlzU6NGDVOrVi3TsmVLM3v2bFNcXFyu+WGPXnPca3/+859Nw4YNjZeXlwkMDDQJCQlmw4YN5ZrblVmMMUYAAAAAAAAAnIrlpAAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFENQBAAAAAAAALoCgDgAAAAAAAHABBHUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAqrCEhAQNHz68yh0bAADAFRHUAQAAoFxSU1NlsVh06tSpCtlvxYoVmjhxYsUVCAAAcIur5uwCAAAAUDUFBgY6uwQAAACXwhV1AAAAVcS5c+fUp08f+fj4KDQ0VFOnTrV7feHChWrdurV8fX0VEhKip59+WsePH5ck5eTkqFOnTpKkgIAAWSwW9evXT5JktVo1adIkRUZGytvbW/fcc48+/vjja+7361tfGzRooDfeeMNWY0REhFauXKkTJ06oR48e8vHxUXR0tHbs2GFX96ZNmxQfHy9vb2+FhYUpOTlZ586dq+jTBwAAcNMR1AEAAFQRI0eO1MaNG/Xpp59q7dq1Sk1NVVpamu31ixcvauLEidqzZ48++eQT5eTk2EK1sLAwLV++XJKUkZGhY8eOacaMGZKkSZMm6cMPP9ScOXO0b98+vfzyy3r22We1cePGMvcrzbRp09SuXTvt2rVL3bt3V+/evdWnTx89++yzSktLU8OGDdWnTx8ZYyRJWVlZ6tatm3r16qW9e/dq2bJl2rRpk4YOHXozTiEAAMBNZTFX/soBAADAbSs/P1+1a9fW3/72N/3+97+XJP3888+qX7++XnjhBU2fPr3EPjt27FCbNm109uxZ+fj4KDU1VZ06dVJeXp78/f0lSYWFhQoMDNT69esVGxtr23fAgAEqKCjQ4sWLS91PunxFXUxMjO3YDRo0UHx8vBYuXChJys3NVWhoqMaOHavXX39dkrR161bFxsbq2LFjCgkJ0YABA+Tu7q65c+fa5t20aZM6duyoc+fOycvLqwLPIgAAwM3FM+oAAACqgKysLBUVFen++++3bQsMDFRUVJTt6507d+q1117Tnj17lJeXJ6vVKkk6cuSImjVrVuq8hw4dUkFBgRITE+22FxUVqWXLltddZ3R0tO3z4OBgSVKLFi1KbDt+/LhCQkK0Z88e7d27V4sWLbKNMcbIarUqOztbTZs2ve4aAAAAnIWgDgAAADp37pySkpKUlJSkRYsWKSgoSEeOHFFSUpKKiooc7pefny9JWr16terVq2f3mqen53XXUb16ddvnFovF4bYrIWJ+fr4GDhyo5OTkEnOFh4df9/EBAACciaAOAACgCmjYsKGqV6+ub775xhZg5eXlKTMzUx07dtR3332nkydPKiUlRWFhYZJUYtEGDw8PSVJxcbFtW7NmzeTp6akjR46oY8eOpR67tP0qSqtWrbR//37dddddFT43AABAZWMxCQAAgCrAx8dH/fv318iRI7Vhwwalp6erX79+cnO7/OdgeHi4PDw8NHPmTB0+fFgrV67UxIkT7eaIiIiQxWLRqlWrdOLECeXn58vX11cjRozQyy+/rAULFigrK0tpaWmaOXOmFixY4HC/ijJ69Ght2bJFQ4cO1e7du3Xw4EF9+umnLCYBAABuSQR1AAAAVcTkyZMVHx+vhx9+WF27dlX79u117733SpKCgoL0wQcf6KOPPlKzZs2UkpKiKVOm2O1fr149TZgwQa+88oqCg4NtYdjEiRM1duxYTZo0SU2bNlW3bt20evVqRUZGlrlfRYiOjtbGjRuVmZmp+Ph4tWzZUuPGjVPdunUr7BgAAACVhVVfAQAAAAAAABfAFXUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4AII6AAAAAAAAwAUQ1AEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOACCOoAAAAAAAAAF0BQBwAAAAAAALgAgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFENQBAAAAAAAALoCgDgAAAAAAAHABBHUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4AII6AAAAAAAAwAUQ1AEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOACCOoAAAAAAAAAF0BQBwAAAAAAALgAgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFVHN2AQAA4PZjtVp14cIFZ5cBwMV4eXnJzY1rBQAAcISgDgAAVKjCwkLt379fVqvV2aUAcDFubm5q1qyZPD09nV0KAAAuyWKMMc4uAgAA3B6MMcrMzFRRUZEiIyO5cgaAjdVqVXZ2tjw8PNS4cWNZLBZnlwQAgMshqAMAABWmqKhI3377rSIjIxUYGOjscgC4mJ9//lnZ2dn6/vvvFRsbq9DQUGeXBACAS+G/uQEAQIW5dOmSJHFbG4BSXfnZ8O9//1urV69Wbm6ukysCAMC1ENQBAIAKxy1tAEpz5WdDSEiIcnNztW/fPidXBACAayGoAwAAAFCpLBaLvL29derUKWeXAgCASyGoAwAAuIbU1FRZLBZChZukos5vTk6OLBaLdu/eXSF1Xa+EhAQNHz7cKce+VfG4bAAA7FVzdgEAAACo2uLi4nTs2DH5+fn9pnnCwsJ07Ngx3XHHHRVUWelSU1PVqVMn5eXlyd/f37Z9xYoVql69+k099rUkJCQoJiZG06dPd2odAADgxhDUAQAAwKk8PDwUEhLym+dxd3evkHluFCsdAwCA34pbXwEAwE0x+OJ4dSx8xqkfgy+OL3e9hYWFSk5OVp06deTl5aX27dtr+/btpY4tKCjQgw8+qHbt2nE77K8kJCRo2LBhGj58uAICAhQcHKz33ntP586d03PPPSdfX1/ddddd+uc//2nb59e3vn7//fd6+OGHFRAQoJo1a6p58+Zas2aNJCkvL0/PPPOMgoKC5O3trUaNGmn+/PmSSt76emXezz//XK1bt1aNGjUUFxenjIwMu5rfeOMN1alTR76+vhowYIBeeeUVxcTElPr+cnJy1KlTJ0lSQECALBaL+vXrZ3vvV9/62qBBA73xxhvq06ePfHx8FBERoZUrV+rEiRPq0aOHfHx8FB0drR07dtgdY9OmTYqPj5e3t7fCwsKUnJysc+fO2V6fPXu2GjVqJC8vLwUHB+uxxx6TJPXr108bN27UjBkzZLFYZLFYlJOTo+LiYvXv31+RkZHy9vZWVFSUZsyYYXfMfv366ZFHHtFbb72l4OBg+fv76/XXX9elS5c0cuRIBQYGqn79+rZzffX5Xrp0qeLi4uTl5aW7775bGzdudNQeAADgGriiDgAA3BT7rYf0jdnj3CKs5R86atQoLV++XAsWLFBERITefvttJSUl6dChQ3bjTp06pe7du8vHx0fr1q1TjRo1KrjoW9+CBQs0atQobdu2TcuWLdPgwYP1j3/8Qz179tSf/vQnTZs2Tb1799aRI0dKPX9DhgxRUVGRvvzyS9WsWVP79++Xj4+PJGns2LHav3+//vnPf+qOO+7QoUOHdP78+TLrefXVVzV16lQFBQVp0KBBev7557V582ZJ0qJFi/Tmm29q9uzZateunZYuXaqpU6cqMjKy1LnCwsK0fPly9erVSxkZGapVq5a8vb0dHnvatGl66623NHbsWNv7jouL0/PPP6/Jkydr9OjR6tOnj/bt2yeLxaKsrCx169ZNb7zxhubNm6cTJ05o6NChGjp0qObPn68dO3YoOTlZCxcuVFxcnH7++Wd99dVXkqQZM2YoMzNTd999t15//XVJUlBQkKxWq+rXr6+PPvpItWvX1pYtW/TCCy8oNDRUjz/+uK3WDRs2qH79+vryyy+1efNm9e/fX1u2bFGHDh30zTffaNmyZRo4cKASExNVv359234jR47U9OnT1axZM73zzjt6+OGHlZ2drdq1a5f5fQEAACVZDE9wBQAAFaSgoEAHDhxQ06ZN9aD7H5we1N1vuUcbPRddc9y5c+cUEBCgDz74QE8//bQk6eLFi2rQoIGGDx+uNm3aqFOnTjpw4ICeeOIJNWrUSIsXL5aHh8fNfgslmPxcmXO59hu9/OXm10Dm0gWZk9+V2MctOEaSZP05U7pYYPeaxS9cFq9AmYITMmd/tN/Rw0duAXddV30JCQkqLi62hUfFxcXy8/PTo48+qg8//FCSlJubq9DQUH399ddq27ZtiWe+RUdHq1evXho/vuQVkb/73e90xx13aN68eSVey8nJUWRkpHbt2qWYmBjbvOvXr1eXLl0kSWvWrFH37t11/vx5eXl5qW3btmrdurVmzZplm6d9+/bKz893uCiFo2fU/fr5cA0aNFB8fLwWLlxo977Hjh1rC9K2bt2q2NhYHTt2TCEhIRowYIDc3d01d+5c27ybNm1Sx44dde7cOa1Zs0bPPfecjh49Kl9f31LPf3meUTd06FDl5ubq448/lnT5irrU1FQdPnxYbm6Xb7pp0qSJ6tSpoy+//FLSL9/Lv/71r3ryySdt5zslJUWjR4+WJF26dEmRkZEaNmyYRo0aVeK4V35G5OTkKCcnRxEREbYrAgEAAFfUAQAAKCsrSxcvXlS7du1s26pXr6777rtPBw4cUJs2bSRJiYmJuu+++7Rs2TK5u7s7pdZL385T8dZJdtvcmjwhjwf/KpP/o4oWx5fYx+vls5Kki2sHyRyzv523erf35N70SRVn/kOXvvgv+3kjusjj0U+uu8bo6Gjb5+7u7qpdu7ZatGhh2xYcHCxJOn78eKn7Jycna/DgwVq7dq26du2qXr162eYcPHiwevXqpbS0ND3wwAN65JFHFBcXV+56QkNDbccODw9XRkaGXnzxRbvx9913nzZs2HAd77h8x77yvh2di5CQEO3Zs0d79+7VokW/BMzGGFmtVmVnZysxMVERERG688471a1bN3Xr1k09e/a85pWd7777rubNm6cjR47o/PnzKioqKnF7b/PmzW0h3ZXa7r77btvXV76Xv/6+xcbG2j6vVq2aWrdurQMHDlzr1AAAgFIQ1AEAAJRT9+7dtXz5cu3fv98ubKlM1Vo8L/c7H7Lf6OUvSbL41JPH01853Lf6A3NKvaJOktwb95Rb6H32O3j43FCNv1751GKx2G2zWCySJKu19HuTBwwYoKSkJK1evVpr167VpEmTNHXqVA0bNkwPPvigvv/+e61Zs0br1q1Tly5dNGTIEE2ZMqVc9Vzr2BWttGOXVU9+fr4GDhyo5OTkEnOFh4fLw8NDaWlpSk1N1dq1azVu3Di99tpr2r59u93VfVdbunSpRowYoalTpyo2Nla+vr6aPHmyvvnmG4e1XqmttG2Vde4AAKiKCOoAAMBN0cztrut6RtxNq6EcGjZsKA8PD23evFkRERGSLt/6un37drvFAVJSUuTj46MuXbooNTVVzZo1uxlll8niEyKLT+krm1qqecnyf7e5lsYtsLHjeWsEyVIj6LeWV2HCwsI0aNAgDRo0SGPGjNF7772nYcOGSbr83LW+ffuqb9++io+P18iRI8sM6soSFRWl7du3q0+fPrZtjhYRueLKLc/FxcU3dMyytGrVSvv379dddznu3WrVqqlr167q2rWrxo8fL39/f23YsEGPPvqoPDw8StS1efNmxcXF2V05mJWVVWE1b926VR06dJB0+dbXnTt3aujQoRU2PwAAVQlBHQAAuCn+p/oEZ5dQbjVr1tTgwYNtq1uGh4fr7bffVkFBgfr37689e3551t6UKVNUXFyszp07KzU1VU2aNHFi5ben4cOH68EHH1Tjxo2Vl5enL774Qk2bNpUkjRs3Tvfee6+aN2+uwsJCrVq1yvbajRg2bJj+8Ic/qHXr1oqLi9OyZcu0d+9e3XnnnQ73iYiIkMVi0apVq/TQQw/J29vbttjFbzV69Gi1bdtWQ4cO1YABA2yLaaxbt06zZs3SqlWrdPjwYXXo0EEBAQFas2aNrFaroqKiJF1+Lt4333yjnJwc+fj4KDAwUI0aNdKHH36ozz77TJGRkVq4cKG2b9/ucMGM6/Xuu++qUaNGatq0qaZNm6a8vDw9//zzFTI3AABVjdu1hwAAANz+UlJS1KtXL/Xu3VutWrXSoUOH9NlnnykgIKDE2GnTpunxxx9X586dlZmZ6YRqb2/FxcUaMmSImjZtqm7duqlx48aaPXu2pMtXs40ZM0bR0dHq0KGD3N3dtXTp0hs+1jPPPKMxY8ZoxIgRatWqlbKzs9WvXz95eXk53KdevXqaMGGCXnnlFQUHB1fo1WPR0dHauHGjMjMzFR8fr5YtW2rcuHGqW7euJMnf318rVqxQ586d1bRpU82ZM0dLlixR8+bNJUkjRoyQu7u7mjVrpqCgIB05ckQDBw7Uo48+qieeeEL333+/Tp48WeK5fL9FSkqKUlJSdM8992jTpk1auXKl7rjjjgqbHwCAqoRVXwEAQIW5etXXaz3cHnBViYmJCgkJsa3WitL9epXd8mDVVwAAysatrwAAAKiyCgoKNGfOHCUlJcnd3V1LlizR+vXrtW7dOmeXBgAAqiCCOgAAAFRZFotFa9as0ZtvvqkLFy4oKipKy5cvV9euXZ1dGgAAqIII6gAAAFBleXt7a/369c4u45bUoEED8RQdAAAqFotJAAAAAAAAAC6AoA4AAFQ4rrIBUBp+NgAAUDaCOgAAUGGqVbv8VI3CwkInVwLAFV352XDp0iUnVwIAgGviGXUAAKDCVK9eXT4+Pvrxxx/l4eEhNzf+TxDAZVarVT/88IMKCgpUXFzs7HIAAHBJBHUAAKDCWCwWNWjQQPv27VNGRoazywHgYqxWq3JzcyVJxcXF8vb2dnJFAAC4FoI6AABQoTw9PdW4cWOtWrVKP/30k4KDg7myDoCMMbp48aKsVqvOnDkjY4xCQ0OdXRYAAC7FYniiKwAAuAlOnDih1atX266eAQDpcmDn6empNm3aqF27dgT5AABchaAOAADcNGfOnNGJEyd04cIFZ5cCwEW4ubnJx8dH9erVI6QDAOBXCOoAAAAAAAAAF8B/YQEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOAC/j9Uvk9SMCsE5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder02').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "87c51e9f-7a5e-4254-a9bb-cf46a9f3891c", + "metadata": {}, + "source": [ + "## Inspect gaps\n", + "\n", + "To get an overview of the gaps use the .get_gap_info() method on the missing Dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5b948da5-2ec3-412d-af69-632ed6abfbb1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are no gaps.\n" + ] + } + ], + "source": [ + "your_dataset.get_gaps_info()" + ] + }, + { + "cell_type": "markdown", + "id": "c24c3802-459c-4260-aa75-582b9582338f", + "metadata": {}, + "source": [ + "## Outliers to gaps and missing observations\n", + "\n", + "In practice the observations that are labeled as outliers are interpreted as missing observations (because we assume that the observation value is erroneous). In the toolkit it is possible to convert the outliers to missing observations and gaps by using the [update_gaps_and_missing_from_outliers()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.update_gaps_and_missing_from_outliers)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4e023c8a-9898-4bc0-9bcc-cf5953212c04", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwdVd348c+ZuVtyb/alaZruhZZS1iJQZN8RBZTFR1ERFZFC/eH2qOgjrg/q46PysLogoIIgFVBk38q+Q9lbui9Jmj25Nze5y8yc3x9z1yxN0qRJ2n7fr1chs505c+acM2fOnZmjtNYaIYQQQgghhBBCCCHEmDEmOgJCCCGEEEIIIYQQQuxupNNNCCGEEEIIIYQQQogxJp1uQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0w63YQQQgghhBBCCCGEGGPS6SaEEEIIIYQQQgghxBiTTjchhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEJkNDU1cc4551BRUYFSit/+9rcTHSUAZs2axec///nM9IoVK1BKsWLFigmL03D88Ic/RCk10dEQQgghxASQTjchhBBCjBml1LD+TfaOkp3p+uuv55ZbbpnoaAzqa1/7Gg8//DDf/e53+ctf/sKpp5460VHa6W6//fZRdS729PTwwx/+cI/O10IIIYTozzPRERBCCCHE7uMvf/lL3vSf//xnHn300X7z99lnn/GM1qRy/fXXU1lZmffU1mTyxBNPcOaZZ/LNb35zoqMybm6//XbeeecdLr/88h3avqenhx/96EcAHHvssXnLvv/97/Od73xnlDEUQgghxK5IOt2EEEIIMWY+85nP5E2/+OKLPProo/3m7y601sRiMQoKCiY6KsMWjUYJBoODLm9ubqa0tHTM9heLxfD5fBjGnvmChcfjweORJrcQQgixJ9ozWz9CCCGEmDCO4/Db3/6Wfffdl0AgwJQpU7j44ovp6OjIW2/WrFl89KMfZcWKFRxyyCEUFBSw3377ZV7hu/vuu9lvv/0IBAIsXryYN954I2/7z3/+84RCIdavX88pp5xCMBiktraWH//4x2itRxWnhx9+OBOn3/3udwDcfPPNHH/88VRXV+P3+1m4cCE33HBDv+3fffddnnrqqcyrtuknowb79tctt9yCUoqNGzdm5iml+OEPf9hv3b7fPUtv+9RTT7F06VKqq6upq6vrt13uulprrrvuukz80tavX8+5555LeXk5hYWFHH744dx///15YaS/s3bHHXfw/e9/n2nTplFYWEg4HB5wnwC/+tWvOOKII6ioqKCgoIDFixezfPnyQdcfqUgkwuWXX86sWbPw+/1UV1dz0kkn8frrrwPuk2n3338/mzZtyhzzrFmzAEgkEvzgBz9g8eLFlJSUEAwGOeqoo3jyyScz4W/cuJGqqioAfvSjH2XCSJ+fgc6rZVn85Cc/Ye7cufj9fmbNmsUVV1xBPB7PWy+d35599lkOPfRQAoEAc+bM4c9//nPeeslkkh/96EfstddeBAIBKioqOPLII3n00UfHLB2FEEIIMXLys5sQQgghxtXFF1/MLbfcwoUXXshXv/pVNmzYwLXXXssbb7zBc889h9frzay7du1aPv3pT3PxxRfzmc98hl/96ld87GMf48Ybb+SKK65g6dKlAFx11VWcd955rF69Ou+JKtu2OfXUUzn88MP55S9/yUMPPcSVV16JZVn8+Mc/3qE4rV69mk996lNcfPHFXHTRRcyfPx+AG264gX333ZczzjgDj8fDfffdx9KlS3Ech0svvRSA3/72tyxbtoxQKMT3vvc9AKZMmbLzEjtl6dKlVFVV8YMf/IBoNDrgOkcffTR/+ctf+OxnP8tJJ53E5z73ucyypqYmjjjiCHp6evjqV79KRUUFt956K2eccQbLly/n4x//eF5YP/nJT/D5fHzzm98kHo/j8/kGjdvVV1/NGWecwfnnn08ikeCOO+7g3HPP5d///jenn376qI/9K1/5CsuXL+eyyy5j4cKFtLW18eyzz/L+++9z8MEH873vfY+uri62bt3Kb37zGwBCoRAA4XCYP/7xj3zqU5/ioosuIhKJcNNNN3HKKafw8ssvc+CBB1JVVcUNN9zAJZdcwsc//nE+8YlPALD//vsPGqcvfelL3HrrrZxzzjl84xvf4KWXXuKqq67i/fff55577slbd+3atZxzzjl88Ytf5IILLuBPf/oTn//851m8eDH77rsv4HbsXXXVVXzpS1/i0EMPJRwO8+qrr/L6669z0kknjToNhRBCCLGDtBBCCCHETnLppZfq3ObGM888owF922235a330EMP9Zs/c+ZMDejnn38+M+/hhx/WgC4oKNCbNm3KzP/d736nAf3kk09m5l1wwQUa0MuWLcvMcxxHn3766drn8+mWlpYdjtNDDz3U71h7enr6zTvllFP0nDlz8ubtu++++phjjum37pVXXqkHaprdfPPNGtAbNmzIzAP0lVde2W/dmTNn6gsuuKDftkceeaS2LKvf+gMB9KWXXpo37/LLL9eAfuaZZzLzIpGInj17tp41a5a2bVtrrfWTTz6pAT1nzpwB02MgfddLJBJ60aJF+vjjj9/usaX3lXvOB1JSUtLvePo6/fTT9cyZM/vNtyxLx+PxvHkdHR16ypQp+gtf+EJmXktLy6DnpO95XblypQb0l770pbz1vvnNb2pAP/HEE5l56fz29NNPZ+Y1Nzdrv9+vv/GNb2TmHXDAAfr000/f7jEKIYQQYvzJ66VCCCGEGDd33XUXJSUlnHTSSbS2tmb+LV68mFAolPfaHsDChQtZsmRJZvqwww4D4Pjjj2fGjBn95q9fv77fPi+77LLM30opLrvsMhKJBI899tgOxWn27Nmccsop/faT+123rq4uWltbOeaYY1i/fj1dXV3DTqOd4aKLLsI0zR3e/oEHHuDQQw/lyCOPzMwLhUJ8+ctfZuPGjbz33nt5619wwQXD/s5d7nodHR10dXVx1FFHZV7/HK3S0lJeeuklGhoaRrytaZqZp/Qcx6G9vR3LsjjkkEN2OH4PPPAAAF//+tfz5n/jG98A6PfK7sKFCznqqKMy01VVVcyfPz8vr5eWlvLuu++yZs2aHYqTEEIIIXYO6XQTQgghxLhZs2YNXV1dVFdXU1VVlfevu7ub5ubmvPVzO9YASkpKAJg+ffqA8/t+g80wDObMmZM3b++99wbIfCNtpHGaPXv2gMf23HPPceKJJxIMBiktLaWqqoorrrgCYMI73QaL83Bt2rQp8xptrvQotJs2bdrh/f373//m8MMPJxAIUF5ennldc6zS7Je//CXvvPMO06dP59BDD+WHP/zhgJ2zg7n11lvZf//9M99Kq6qq4v7779/h+G3atAnDMJg3b17e/JqaGkpLS/ulZd8yAFBWVpaX13/84x/T2dnJ3nvvzX777ce3vvUt3nrrrR2KnxBCCCHGjnzTTQghhBDjxnEcqqurue222wZcnv4gfdpgT2cNNl/3GSBhZ8RpoCe41q1bxwknnMCCBQv49a9/zfTp0/H5fDzwwAP85je/wXGcIeMx0CAK4H6XbrgGW3e8R1cd7v6eeeYZzjjjDI4++miuv/56pk6ditfr5eabb+b2228fk7icd955HHXUUdxzzz088sgj/M///A+/+MUvuPvuuznttNO2u+1f//pXPv/5z3PWWWfxrW99i+rqakzT5KqrrmLdunWjitdg57uv4eT1o48+mnXr1vHPf/6TRx55hD/+8Y/85je/4cYbb+RLX/rSqOIphBBCiB0nnW5CCCGEGDdz587lscce48Mf/vC4dAQ5jsP69eszT7cBfPDBBwCZESrHIk733Xcf8Xicf/3rX3lPJvV9NRUG72wpKysDoLOzk9LS0sz8vk8+pdft7OzMm5dIJGhsbNyB2A9t5syZrF69ut/8VatWZZbviH/84x8EAgEefvhh/H5/Zv7NN9+8YxEdxNSpU1m6dClLly6lubmZgw8+mJ/97GeZTrfBzsny5cuZM2cOd999d946V155Zd56w+1AAzetHMdhzZo1mScFwR2sorOzc4fTsry8nAsvvJALL7yQ7u5ujj76aH74wx9Kp5sQQggxgeT1UiGEEEKMm/POOw/btvnJT37Sb5llWf06ksbCtddem/lba821116L1+vlhBNOGLM4pZ9Gyn36qKura8DOo2AwOGCYc+fOBeDpp5/OzItGo9x6660Drpu7HsDvf//7ET0VNxIf+chHePnll3nhhRfy4vb73/+eWbNmsXDhwh0K1zRNlFJ58d64cSP33nvvaKMMuE/+9X0NtLq6mtraWuLxeGZeMBgc8HXRgc7rSy+9lJcOAIWFhQDDyisf+chHAHck21y//vWvAXZoxNa2tra86VAoxLx58/KOsauri1WrVk34q85CCCHEnkSedBNCCCHEuDnmmGO4+OKLueqqq1i5ciUnn3wyXq+XNWvWcNddd3H11VdzzjnnjNn+AoEADz30EBdccAGHHXYYDz74IPfffz9XXHFF5rXRsYjTySefjM/n42Mf+xgXX3wx3d3d/OEPf6C6urrf02eLFy/mhhtu4Kc//Snz5s2jurqa448/npNPPpkZM2bwxS9+kW9961uYpsmf/vQnqqqq2Lx5c14YX/rSl/jKV77C2WefzUknncSbb77Jww8/TGVl5ZilXa7vfOc7/O1vf+O0007jq1/9KuXl5dx6661s2LCBf/zjHxjGjv2Oe/rpp/PrX/+aU089lU9/+tM0Nzdz3XXXMW/evDH5JlkkEqGuro5zzjmHAw44gFAoxGOPPcYrr7zC//7v/2bWW7x4MXfeeSdf//rX+dCHPkQoFOJjH/sYH/3oR7n77rv5+Mc/zumnn86GDRu48cYbWbhwId3d3ZntCwoKWLhwIXfeeSd777035eXlLFq0iEWLFvWL0wEHHMAFF1zA73//ezo7OznmmGN4+eWXufXWWznrrLM47rjjRnycCxcu5Nhjj2Xx4sWUl5fz6quvsnz58rxBRO655x4uvPBCbr75Zj7/+c+PeB9CCCGEGDnpdBNCCCHEuLrxxhtZvHgxv/vd77jiiivweDzMmjWLz3zmM3z4wx8e032ZpslDDz3EJZdcwre+9S2Kioq48sor+cEPfjCmcZo/fz7Lly/n+9//Pt/85jepqanhkksuoaqqii984Qt56/7gBz9g06ZN/PKXvyQSiXDMMcdw/PHH4/V6ueeee1i6dCn/9V//RU1NDZdffjllZWVceOGFeWFcdNFFbNiwgZtuuomHHnqIo446ikcffTTz9N5YmzJlCs8//zzf/va3ueaaa4jFYuy///7cd999O/RkVtrxxx/PTTfdxM9//nMuv/xyZs+ezS9+8Qs2btw4Jp1uhYWFLF26lEceeYS7774bx3GYN28e119/PZdccklmvaVLl7Jy5UpuvvlmfvOb3zBz5kw+9rGP8fnPf55t27bxu9/9jocffpiFCxfy17/+lbvuuosVK1bk7euPf/wjy5Yt42tf+xqJRIIrr7xywE639Lpz5szhlltu4Z577qGmpobvfve7/V5bHa6vfvWr/Otf/+KRRx4hHo8zc+ZMfvrTn/Ktb31rh8ITQgghxNhQeke+OCyEEEIIMcl9/vOfZ/ny5XlPJAkhhBBCCDFe5JtuQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0y+6SaEEEIIIYQQQgghxBiTJ92EEEIIIYQQQgghhBhj0ukmhBBCCCGEEEIIIcQY80x0BCY7x3FoaGigqKgIpdRER0cIIYQQQgghhBBCTCCtNZFIhNraWgxj8OfZpNNtCA0NDUyfPn2ioyGEEEIIIYQQQgghJpEtW7ZQV1c36HLpdBtCUVER4CZkcXHxBMdGCCGEEEIIIYQQQkykcDjM9OnTM31Gg5FOtyGkXyktLi6WTjchhBBCCCGEEEIIATDkZ8hkIAUhhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEIIIYQQQogxJp1uQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0w63YQQQgghhBBCCCGEGGPS6SaEEEIIIYQQQgghxBiTTjchhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEIIIYQQQogx5pnoCAghhBDDscXZxr3OIygU+6h5nGAumegoCSGEEEIIIcSgpNNtmLrP/jf63Sg4GgyFKgugO2IjmgYwZhbhPXkm/ssPAsB67RrsTY+juza5O4p1gHZAGRAoy04XVODZ/wt4Fi8b1+OO//YNko9swl7ZMupjH8425uIVqNIm8CZxVs+GpAmGF8+R+1Lwq+0fu/XaNehEBOUrwrN4GdZr19D7jSR6kxcdD4w8nu3xnZ28w6Zmr8fYdx0qGMFpmooq60QFOgEFWqFqWtHhAoj7cbZMR1VEMQ58DSNggccDoVo3L/mKUJ4AWtvQucEN3PRBqBZVPANz1ol5eWzA/OkrwqhciO/MO0n885M4re9DIuzmV0AVz0B5AqjqA1C+IoC885LLeu0arLdvhp7WTJ5Px8N+5sgB8x4MnJfUlA8wZq9GFXWje02UP46zZj46sje6o3RM8ufODmOiwlR190F3IVgGakYzur4S3ViL7i3BPOZ90I3olnLoLQDDi7N+NlhB8AUwD6zKq9PSBssbffPYSDzsPMO3rF8CsJ+azzPXPw9WFNB91lRQUIUx9RCc+hfB6oWiaRjle2M9eQj2qwF0RynGosdBN6L8vaA0eAyc9/ZCN01Fx8tQZVX90spYsBzdHkJVtKJ7QhhTtkFxB866ORiVbThrFuCsWwCUDXlOVEUB/osW9Uu73PKRKX87cC0YqvyOVOKfn0THwyh/MXrDd0g+sgk8d6Ebq8FIgBfUjPfQzdWo0k50ZxW6vRjdXg2JYlRZFarqCYyZa1BVzVAcQTdX4WytxSjrctM0XIruLEFvmIvTPA0Vmt0//Rq6IWqNOP5ifJhHPYu9ej7mQe+hm6ajo7XojlLMxSvQTdXoaC2qrAOsFrSjMerqUUVxKG3GWTcLVdiLjpSAZWDUNuDUT0OVh1HlLW7dEylC1bWi20LojTPRCS90lkHS178qGGdqr9JJc21QdfdhTN2KmtqAjhShSrogEEM3TUFNaYJYAfa7+2Ae9gp4LLcO7ChDd5aAVu7xzF2P3jALVbcVPDb2s0dgHvEidBVDeYe7rDgMKpUA/pgbDoAnCd1F6J4gzqq90evngDUH3RsY3/ZkQcStO5MenNUL0OGF/doEIzlHqnYtqjCKql4PhT0ow8HZuAhn7V7ghCb8vE9EmOMVL2PBclRhF05DDaoyjN5SDZYJKHRXHSRA9xaB40NVTZ6yONJpY9HjqLK3wQFQqJIu7JX7Y9Q2oqpasNfshVFX7+bprdMwqluhIIqa0oxuqYKkF1XWCcEoKAfntYPRtgfz8JfQjVMh4YWkD2frTJS3HHPhPhT8atmYtxlyZcJuWpl3nzucdmHvN6/BenMtqnQdqrAHdBKUxvlgPjq8YLttfGPOBqALVb0eVdYOpg2As2EWqqQLvWk2xqK1OFvLM/WeMa0eZ9UC936rvBvzgLfAG0GVt0OwG+e1gzGOeAFMx42gY4BtYL94GNgezCUvutOvLsaYtQln3RyIByBchNYGtNSAUQOB/nk0XXdpK46x9ypURQvO6we751MrKOlEBeLY7+2Dufh1KIq4+eDFwzAOfsPdj6PQnaUQC4DXQdVtdttloW4o7MF+ZTG0l6Mba0HVYez7IqqkCYwETmMdqqrBvU6UdqKCSZwN89FtfjCSbvoseg9jznp0w1Sc1Xu71w+tMJe8BIaD/dpBqOIIKAcKYujVe+O8vwASftAGeFT25HoNCHonTVk05j6EjpioihZUMA6mPeR9QXetOawyIJ1uw2Sv2AqqIDOtW2N5y4c7ba/pxHm/Pdvp9vq10N0w8E5jbdm/4x1Yr187/p1uV7+Bro/mzdvRYx/OOubiFW4hBax/nuwujBSTWN9Nwa+2H9dMWoZq3U6316/FeWFpqhEe26F4Tha6tRJz/7+DcrAePAHfZTekGrapxm0oigoGAbDu+yi+y25ABXrcZVYCOte6f8fa+t+TWBZ0rkV3rsVqX5Xf6TZQ/oy14UQ2A+BseMi9eKbmA+jOtWhlwPoH3M4+yDsvebvuG36sLROPxNXBIfNe7jwdL8U88zU3/2gjlVYnQzgAxAYNYyT5czzDGM8wddP+mcaG77SHSTyxFCLFAJj7PApA4tpLMusQCaa2jmE/tiWvTksbLG/0zWMjYePk/G2D1T3Imhp6m/Pj0LkWp2s9yb/ul8oTnZjnuseWrnMgVe+kjl23duaH2hrDPPdVEtdegu+yG0hcewmeZddDqBvrtk/jWXY91r9Ph3AhEM9s0zeMzN/tceJXvzF4p9tA5W8E14Khyu9IpdNTK4PE1aeg66P4rliRlzd8J91D4pETMumDVnnpqZvm4jnuYQh1g9IoDdYd52XSURV1Q20DiSeOhXAJms68OEzmelq4zKOedTtnFr9A4toDM3WwuTiVV8IBdFEQcOsR8yMPumUwFMW67T+yeQfwHPk81v0fSV3zHKzlnwCt8J3yqLtOxP1hBz05vpai13TmT0/gtUE37Y9n2bNuuQrEIRR1y1xVKwR7oTCG8+yReI5+LrtheQfKl8hOK9z1fW4nd2b98s7sslDOdVr1aWH4OlHlnVh/OR/CJamZw78ej1V7Ms2tn7ffJhhqvzpZgqYE34n3ZturD5wCYS+D1fs7cmy7ajtjZ8bLPPfVVNvuRLeeeGxpdoVIcbb9B+jOzgmL52inzXMfzc+7oSjOGwfhOfIFCHXj3HIBnmXXAWDd/XH3+omGom6Uym6TLo/2s0cC4DnuKVRVSyZY677TIVyC/ap7jzXWbYZcg4U9nHZh4s/dYFfjW7Y8lS4K0Fj3nzpkeXbi7rUmt7wCWHef5eahFcfg+ei/se7L5iXPUc+5dUWkGB0JY5y5GtCZNLWfPRIzt940HTAdnJx0BnCe+zCeo5/Duu3Tqcil29DFqQ078+KaW3clrr0Ez4mPpPb3YXzpc5yqb52bLszsB5+VjVOwF8Ct89NCUZRuycTfeWFJXtvM/OyKbF12/8n4lq0g8fCJ2evu/cdn4w6Y59wDRRGUL4n1r4+5+UwrPGfd58btjYPcbQGUJvHAaW5nYPrXGSvnOmHZ0GtPmrJonrsi1cZ/PL8/Yjv3BfYHvf32PZDJ0UoRQgghhpDQ2ZvBBMkJjIkQQgghhBBCDE1prSf4YfzJLRwOU1JSQsf79YR6PKC1++te0IeOJkc0DaBCXlSxD1XkTutEBB2PoJPuExs6mf7FUKG8hZlp5Q1hhGoyr+uNFx1JoMMJnKaeUR/7cLbRyQjajoIvgROOgKMxSkrwzJmNUVG+/bgmIqnwFMpXhE5EcBqi6EgSkr4RxzPxYgPJX78GW4bXg73TlCj4yFQKLt4LbfWgCj2gwelsBtsB00AVhXBaNwEajBBm1Qy0pwtVaKAKfRjBKnQyivIGcV9J1djhTaA1yhvECFahfCGUrygvjw2UP5U3iPIVYYSm4nQ3ouNhtNWL8hYCoHwh3PwbJPOTW855yaUTEZxII9qKks7z6XgQ9w+Y92DgvJTNO0mccNg9Nk8Qs6I29Ujz6PPnzg5josK0mtagE91oJ4FZVoUTiaBUAOULYZSWYLfVoxM9oAyMYvfcKG8Q5S3EmBLMq9PSBssbffPYSPzMuoGfWO6vu3XU8H7rj3GiTehoE5gBsHrAjqNKZmGWzsYITnHjkezFCFa7eTPmQ3cn3fxldbvHluwBpTCKi9BRG2UWuuWitKxfWtltW9HJKNqKoYIedDKK096Achy0AWbVfJQuwwhUDnlOVMiLURvql3YDlb8duRYMVX5HyuluJP1aiNIV6HACu74ZHI22e1FBE7utCfedGIVRUozutlCebHrabfU4vS2QaAN/Eh3rRLdsAOVBe0swpx8IPTbKV47yhjArp/VLP6e5B2tVO4mfvzTx9bPob6EX/38twZhquGUp6IOEH52MANl6yG5ryJa9kiKcjm3uNCYqFEJ3tqDtGMpTgFE5A6crdc1TBmbVTJxIBN2dRMccDF85JAPE790Mj6yHrnE+ZgNYUELozo9NmmuD1bQG3duM7tkEug1n05OoZBTt2KiiqehYL5heMP2o4ikoQ6O7I2i84AmiSuvQXe+j4t3uK/rBYnRXvbsPDaq0Ch3uBMMPniJU1Xx0uBkME4WNKq0FDTqaQHsrUaHp+OYeBQnfuLYntdGJ094M2kAVlOOpntuvTTCSc6TtbvAlsnWdUpjlNe510ROc8PM+EWGOV7zstq1oqxttxTCKinAi3eCk6oTyGnSPjfIEAAOjtHSXSb9+01Y3VsNb6Fg7OAlUaSU67D4dDgYEDGjb6D7Ib/oxqmej2xvRTi/KTkDpFIj2uOtbEfAqtGWjw42A170e1x2CClRiVkzBqKjAqCgf8zZDrnTYTk9Tak5+m397bRqnrd3919UFipw2fiFmxbTttvHxJVJtvSawutFOHFXgQUeiYAZQ/gqMkhB26yZ0bwdgunknEcDwl7vtV38Me9tqSHZCrBWMHnRPI7rzfSAJ+FEls9G9SVABMEyM6rno7h7wlrj1adUsiNpgFmIEyjEra1He4KB1lxNrQRud6Ob3wOpFaxNjygJ0tAe0DXYCVWjgbHkMYp3uE2Ml08AoRDs+lL8KCqswKqajWz+A3la0lUSVVKHjgFmECk7DO20RuifhtjNt9x7T6YoAmnQ7TnkKsTd3u+v1dKOKNHbzB5CMg/JgVNbgNL0LiW4cEpjl03A6omAUgunHnDYPp8uLYZahvAWY1WWZc6sKvW7fyCQpi05XR+p+qAdV6AX0kPcFEd1L2T7T6Orqori4mMFIp9sQ0p1uQyWkEEKInesbyau4zr4NgDKKaQw8P8ExEkIIIYQQQuyJhttXJK+XCiGE2CW06+zjKxGiyG9GQgghhBBCiMlMOt2EEELsEtpz3hmzsIkQ3c7aQgghhBBCCDGxZPTSYeo++9/od6OjHsrWmFmE9+SZ2dFLBxqeOWco5cx0QQWe/b8w/qOX/vYNko9swl7ZMr5DvHuTOKtnQ9IEw4vnyH0p+NX2j9167Rp0IoLyFbmjl752Db3fSKI3edHxwMjj2R7f7v7Gk5q9HmPfdahgxB3CuqwTFegEFGiFqmlFhwsg7sfZMh1VEcU48DWMgAUejzuKaGrob+UJoLUNnRvcwE0fhGoHHLZ7qOHDE//8JE7r+5AIu/kVUMUzUJ4AqvqAzDcacs9LLuu1a7Devhl6Wuk7fLj9zJED5j0YOC+pKR9gzF6NKupG95oofxxnzXx0ZO/tDic+VsNMj0UYExWmqrsPugvBMlAzmtH1lejGWnRvCeYx74NuRLeUQ28BGF6c9bPBCoIvgHlgVV6dljZY3hhqaPjt6ch50g3Ac+1cYlYv9BuTV0FBFcbUQ3DqX3S/R1Q0DaN8b6wnD8F+NYDuKMVY9DjoRpS/1/32iccYcmhwY8FydHsIVdGK7glhTNkGxR046+ZgVLbhrFmAs24BUDbkOVEVBfgvWjT46KW55W8HrgVDld+RSvzzk+h4GOUvRm/4DslHNoHnLnRjNRgJ8IKa8Z47NH1pJ7qzCt1ejG6vhkQxqqwKVfUExsw1qKpmKI6gm6twttZilHW5aRouRXeWoDfMxWmehgrN7p9+Dd0QtUYcfzE+zKOexV49H/Og99BN09HRWnRHKebiFeimanS0FlXWAVYL2tEYdfWoojiUNuOsm4Uq7EVHSsAyMGobcOqnocrDqPIWt+6JFKHqWtFtIfTGmeiEFzrLIOnrXxWMM7VX6aS5Nqi6+zCmbkVNbUBHilAlXRCIoZumoKY0QawA+919MA97BTyWWwd2lKE7S0iPVKfmrkdvmIWq2woe2x2V9ogXoasYyjvcZcVh0oPS4Y+RGcHUk4TuInRPEGfV3uj1c8Cag+4NjG97siDi1p1JD87qBejwwn5tgpGcI1W7FlUYRVWvh8IelOHgbFyEs3YvcEITft4nIszxipexYDmqsAunoQZVGUZvqQbLBBS6qw4SoHuLwPGhqiZPWRzptLHocVTZ2+7nUVGoki7slftj1Daiqlqw1+yFUVfv5umt0zCqW6EgiprSjG6pgqQXVdYJwSgoB+e1g9G2B/Pwl9CNUyHhhaQPZ+tMlLccc+E+FPxq2Zi3GXJlwm5amXefO5x2Ye83r8F6cy2qdB2qsAd0EpTG+WA+Orxgu218Y84GoAtVvR5V1g6mDYCzYRaqpAu9aTbGorU4W8sz9Z4xrR5n1QL3fqu8G/OAt8AbQZW3Q7Ab57WDMY54wR21FMAxwDawXzwMbA/mkhfd6VcXY8zahLNujjt6Z7gIrQ1oqQGjBgL982i67tJWHGPvVaiKFpzXD3bPp1ZQ0okKxLHf2wdz8etQFHHzwYuHYRz8hrsfR6E7SyEWAK+DqtvststC3VDYg/3KYmgvRzfWgqrD2PdFVEkTGAmcxjpUVYN7nSjtRAWTOBvmo9v8YLgDmBmL3sOYsx7dMBVn9d7u9UMrzCUvgeFgv3YQqjgCyoGCGHr13jjvL0h9e88Aj8qeXK8BQe+kKYvG3IfQERNV0YIKxsG0h7wv6K41h1UGpNNtmOwVW0EVZKZ3dChbe00nzvvt2U63gYZQTou1Zf+Od2C9fu34d7pd/Qa6Pv9pkvEa4t3658nuwkgxifXucNbbk0nLUK3b6fb6tTgvLE01wmM7FM/JQrdWYu7/d9yh0k9IDeOsydxhhKKoYBAA676P4rvsBlSgx11mJaBzrft3rK3/PYllQefaAYftHmr4cGfDQ+7FMzUfQHeuRSsD1j/gdvZB3nnJ23Xf8HOGD09cHRwy7+XO0/FSzDNfIzNkvHKwHjx5yOHEd8aQ72MRxniGqZv2zzQ2fKc9TOKJpdmhxPd5FIDEtZeQHe48mNo6hv3Ylrw6LW2wvDHU0PB9XZm8mn/aj1Og/DTolrxlyuoZZCsNvc35cehci9O1nuRf90vliU7Mcx9NBZQzjPwQQ4Ob576aGk78BndI92XXQ6gb67ZP41l2vTvMfLgQiGe26RtG5u/2OPGr3xi8022g8jeCa8FQ5Xek0umplUHi6lPQ9VF8V6zIyxu+k+4h8cgJmfTJHZZet3aim+biOe5hCLkfhVYarDvOy6SjKuqG2gYSTxwL4RI0nXlxmMz1tHCZRz3rds4sfoHEtQdm6mBzcSqvhAPooiDg1iPmRx50y2AoinXbf2TzDuA58nms+z+SuuY5WMs/AVrhO+VRd51I6uPbenK8uKHXdOZPT+C1QTftj2fZs265CsQhFHXLXFUrBHuhMIbz7JF4jn4uu2F5B8qXHSUahbu+z+3kzqxf3pldFsq5Tqs+LQxfJ6q8E+sv50O4JDVz+NfjsWpPprn18/bbBEPtVydL0JTgO/HebHv1gVMg7GWwen9Hjm1XbWfszHiZ576aatud6NYTjy3NrhApzrb/AN3ZOWHxHO20ee6j+Xk3FMV54yA8R74AoW6cWy7As8wdVMq6++Pu9RMNRd2Z8cvS5R3AfvZIADzHPYWqyrajrPtOh3AJ9qvuPdZYtxlyDRb2cNqFiT93g12Nb9nyVLooQGPdf+qQ5dmJu9ea3PIKYN19lpuHVhyD56P/xrovm5c8Rz3n1hWRYnQkjHHmakBn0tR+9kjM3HrTdMB0cHLSGcB57sN4jn4O67ZPpyKXbkOnv/vVmRfX3Lorce0leE58JLW/D+NLn+NUfevcdGFmP/isbJyC7uBSKpDz4EgoitItmfg7LyzJa5uZn12RrcvuPxnfshUkHj4xe929//hs3AHznHugKILyJbH+9TE3n2mF56z73Li9cZC7LYDSJB44ze0MTP86Y+VcJywbeu1JUxbNc1ek2viP5/dHbOe+wP5geAN6SaebEEKISafN6eCb1i94zHmeFtpBg4EaekMhhBBCCCGEmCSk000IIcSkc5t1H39z/p03z8l5TnMq1cCmcY6VEEIIIYQQQgzf5HgeXwghhMjxn84vt7u8keZxiokQQgghhBBC7BjpdBNCCDGpxJzJM4iJEEIIIYQQQuwo6XQTQggxqZyYuGCioyCEEEIIIYQQoyadbkIIISaNTbqBV3lnoqMhhBBCCCGEEKMmnW5CCCEmjZX2e0yhcqKjIYQQQgghhBCjJp1uQgghJo2/Ow/SROtER0MIIYQQQgghRs0z0RHYZZT4IQJoQAGmAbYzsmmAkBfzwOpMsEb1ATjJHkh2uzMcO7sTw8xOGx6M6gPG6WCzzAOrsaIN0BUf/bEPYxunvhZV2AOAqmgDx4BQFFXrGzKuRvUB6KJpqILKzDRFCej2gTZGHs9JRJV04TTWoAIx1NRtOI1TUIHsx+aVx0Z3loJjZJYbxWF3mQIMj5uXlOHmK+2AY2V3YHjAG+qXxwbMn8qAggp3uqASetvc8AzTnecNgelDlczMnIvc89Iv/J7mVFxSeT4Vj0HzHgx4HlVpNo103I/yx1EVbeh4ASR8Y5I/d3oYExSmqm2E3gBo5aZhRRs64YOkF6dhGhgWqmYbxAOgQUeDbtlUCkr8eXVaxiB5Y6h67BHn2e0u7ytdVFW/JcqNQ09qlFPDA4FyjLk9OB8UQtyfPTZ/Tlkqb08du8/dpk9aOdumoGpSZbC2Ad1WhjJs1LTU35Vt6O4QOObQ58RjDJx2KXnlbweuBUOW35EqqIRkFLzBTPl06mtR5R3gKFCg28qzdVTNNugtyEtPNaXJTSePBb44urM0m3YeC91Ziu4tcM9DLABOQf/0s5wdi78YF059LQRimbyRroNzp1VZGJSVrXMCMZShUdMa3DJW2wCO4eaLdH4q7EVN3QYxv7tNTRM66XXzRqwgtff+NcG48kyea4OqbUyVq6RbzjwW+BLu34U9kPChpjVktwGI+d22RIoq6nbXD3WDwl0/tR4FsWy4ab5E9m/DcddzDLeuTHghGXCvHePZnjQc0Aq0GrxNMIJzpEq7wHDcfJq6drj1flHqujix531CwhyneKXTPFMnpO8TwL3OKA1xv3u+Peauk359j7NhGioYIU15bFTNtsx1Uk1ryJTTdDsE00EV9mTnp8o75JRbTbZ8p+4XKImgqt36c8zbDDkyYce7yLvPHUa70JgbR7d1Z64V6c2H08Z3rzW2m3cCvZm6LtOOK2932y0120gv1G1lmbagKu1Et5WDYWfSNJOeuXR+OuMY7nRPoft/24S4D7Ry86rlA9W/jZmpu2obIFoIBb2ZNhIKlOGA4aTCNMB0svu2DTctIHNPiJHNF3nx7ynIxCPv3nvqtvx2XCCOqmyDhNctX6TaeYU96PYytwx6k5D0uvV9Om23TXH/9sXdtIyEchKrz3V6EpVFp742mzdS99lD3RdQ6Ie27WZhNxyt9STrXphcwuEwJSUldHV1UVxcPNHREUKI3Y7Wmr3iJ6HR1NO0Q2G87fs3exmzxjZiQgghhBBCCDGA4fYVyeulQgghJtQWtrGVbTvc4QawUdePYYyEEEIIIYQQYvSk000IIcSEWuWsG3UYG/XWMYiJEEIIIYQQQowd6XQTQggxoVbp9aMOo0E3j0FMhBBCCCGEEGLsyEAKw9Q152Z0ZAw+/hry4vlwLcF7PgpA4p/n4dS/MLyBFGadhO/Mv4/nYRP9+L+xnhu/gRQ8n/tz5mOO1oOnuB+BTPpQtT6KXvjhduOa+Od56N5WVEElvjP/TuKf59H7xQ/tHgMp1G3BPOlxVCCG9cRxmEc8nz+QQnULurUCHCOz3Ji/xl02koEUpi3Jy2MD5s/UR1UDF68j9ru5wxtIIee85Er88zycjY/2H0hh2hKSt3xu4LwHAw+kULcF88TH8wZSsB46Gd1QJwMpDDWQwrz3MgMpmCc8if3kMejGqZD04vnc7WBY2M8ekR1IYWtd3kAKuXVa2mB5o28eA3hf79iTbh03bMqZuoIYV+RMKyis6jeQQvJPn8T5oBLifjyfubXfQArWA6eit9UM+sFUz+duwn72CMwPP4/9wuF4jn0KVdVKcvnZeI55CuuRk9EbZw57IAXPKTP7pV1aXvnbgWvBUOV3pGK/m5sZSMF+6Gqs5xrwnPkH7KeOzgyk4DntIawnj8U84nns545wB1Jors4OpDB7FZ4TnkBNaXEHUmioxXriODzHPIWa4tZjurcA+4lj0Q21MpDCLshzwZ+x/n4OnvOWYz91NLqxFhI+PJ/7c2ZaTWkmPZCCecKT7kAKlW0kl38Cc8mL2M8fDo6B5/gnsZ5MXfMKe7EeOwFifszjV2A/dwR6Sx0ykMLA66h57+E5dgVqSjO6tRJV2eoOpNCQ+kh3wkfy7+fi/dxfssnWG0C3Zgc9UtO3orfUoeq2goLkrZ/Fe8Ff3OtFQcxdVpkz2nS/gRTcgROSd53t1ovjOJBCpj2ZM5DCoG2CEZwjNX0LGA7mCU9krh3WwyejN86SgRR2crw8n7vJbdul2rn2k8dmB1JomsLuMpCC5zO35g+kUNlG8m/n4Tn+SdSUFpJ/PwfP8U+6ee/x4/Ac+5Q7kEJtg3vdhEx5B0j+9XwAvJ/7i9t+g8z9Aj1BVHUBRS/8cMzbDLkyYQ80kMIA7cJckSU/RLd1Yx73ZN5ACsNp46vpW0HZbnnNGUjBevQEtx335LF4Tn0E64ljSS/0HP8E1oNuW1BVN+M5/UF3IIUqN02Tfz3frQdzaUj++bOZdMYx3PXOuZvk8k/kD6TQNGW7Ayl4Pvdn7Jc+hPecu6Ggl+Rfz8dzzFPu8VS2guG4dfdnbssMpJD882fd6fRACq2V2YEUUvkinSeSfz3fHUhhWw1YPjyf+Wv23vuJ4/ActyLTjlOBONbDJ+cNpOA5/UH32rB1mnuvnhpIIZ0myb99EvPI5wFQvriblptmZNK333V6EpVFz/m3YL9wGOaHs/fZQ90XhAtz7qe3QzrdhqsrDirVqNPkN/pHMt0Zx16ZfSLDaX4T4p0D7FDnd4o4lrvuOLNXNkNn9oZ0VMc+jHWMaQ2g3L91W2q0nEgxurd7yLg6zW9CdwM6VJudjnzY7XBjB+I5ieiuEoyp20A56MYajKlNqcov1TsYiKFKO911U8tVbp2WzkvaBtvuvwPHgnhnvzw2YP7UNvSmGtm9rW6nSu4+4p2gDHRPc+Zc5J6XfuFn8rnOi8eQea/PPN2ZTSOlDTet2irci9xgYYwwf45bGOMcpm6Y6jZSAWPqNqy2CreDDTBq3W+lWdtqMuvgmNnt+9RpGYPkjYHqsZiOE6KQbnr6hzOEwW+xdTafpuPQ24qzrhCiXsDJHFu6zgHQ7eWZY8fpn35GTRPWNreMWQ21qIoOKOxF17t/u53fZt42fcPIsJyB0y4d5YHK3wiuBUOW35FKn1OrN1M+jWkNWO1lmbyhKtozdVAmz+Skp26a4qZZIAZKuyODpdIuXY+pkjBWezkk/MCuU08LlzGtAWKBbN5I1cG507qjOLt+qt6msAddX+uWsfSNY0VHzjXPvf6hlVtPbZviduq4a473YQ5sEl0bdMPUVLmKu+2DQDxT5jAdCMTR9bX5SZdeN4cq7cyso+trM+tlluX8AJi+KcsND3A7AmKFw4r3WBw75LcnM4uHahMMY7+6s8QNv6Yp215N/ei5o2FOtjbBZI1XOs0z15j0fQK41xnlDK/Nv5PjOdppo7Y+P+8GYm4HUOo6qetrs23+dDsE7Xa8pctvqrxDTrlV5JVv3VgD4RJ0xL3HGvM2Q47+YetB7z36bbvOD7Y3e61AAXpYbfz0tSa3vALodDuuvdxtt2yrySxTFR2ZtqDuLEVVtLuBpdI0k565VH46YzrudOq65u40VZGm20SDtG+MaQ3uNTDYk9lf5hwX9rqr19e69XjuvlP1OuSf50y+yI1/Ttss7967sSavHYdy3PpNZy8UqqIdTNsdjbytws1nWmXr+201bnqDu7/28lSiDHKdnkRl0ZjWkGnjZ9JkiPsCunKugdshr5cKIYSYUG/o93aow00IIYQQQgghJjPpdBNCCDGhmvTof0UVQgghhBBCiMlGOt2EEEJMmLhO0EF4oqMhhBBCCCGEEGNOOt2EEEJMmCbaJjoKQgghhBBCCLFT7NKdbjfccAP7778/xcXFFBcXs2TJEh588MHM8lgsxqWXXkpFRQWhUIizzz6bpqamCYyxEEKIXPJqqRBCCCGEEGJ3tUt3utXV1fHzn/+c1157jVdffZXjjz+eM888k3fffReAr33ta9x3333cddddPPXUUzQ0NPCJT3xigmMthBBinbOZU+Nf5OLEf010VPY4Ng7fTf5qoqMhhBBCCCHEbs8z0REYjY997GN50z/72c+44YYbePHFF6mrq+Omm27i9ttv5/jjjwfg5ptvZp999uHFF1/k8MMPn4goCyGEANY7W1ihX5roaOyx/mE/wlXeb050NIQQQgghhNit7dJPuuWybZs77riDaDTKkiVLeO2110gmk5x44omZdRYsWMCMGTN44YUXBg0nHo8TDofz/gkhhBhbTUpeK51IW2mk3emc6GgIIYQQQgixW9uln3QDePvtt1myZAmxWIxQKMQ999zDwoULWblyJT6fj9LS0rz1p0yZwrZt2wYN76qrruJHP/pRv/nmsXXwbhQcDYZClQXQHbERTQMYM4vwnjwzE67n4MuwNz2O7trkzoh1gHZAGRAoy04XVODZ/wujT7AR8v+/g0g+sgl7Zcuoj30429ivHYsqbQJvEmPBGkiaYHjxHLnvkHH1HHwZOhFB+Yoy08klSfQmAx0PjDye7fGdl7AjpCpbsd9ajApGMA5+D/v9A1CBTkCBVqiaVnS4AOJ+jAPfxH7/AIwDX8MIWODxQKjWzUu+IpQngNY2dG5wAzd9EKpFFc/AnHVi3n4HzJ++IozKhQAYs0/FaX0fEmE3vwKqeAbKE0BVH5A5F7nnpW/41ts3Q09rJs+n46EGyXswcF5SUza7aVTUje41Uf44xrxN6Mje6I7SMcmfOzuMiQpT1T0D3YVgGdjvHoQxfw26sRbdW4L9/kmgGzH2exd6C8Dw4qyfDVYQfAHMA6vy6rS0wfJGOo/V69F/X7Pboyi0NCp3v+6eoKAKY+ohOPUvgtULRdMwyvfG+xk/9qugO0ozx6b8vaA0eAyMvTagm6ai42Wosqp+aWW/fQjGfu9jv7MI49A3cDbOhuIOjMNfxNkwE2P+Opx1C4CyIc+JqijAf9GiQY8vr/ztwLUgvX20axUBAoRjW2j32qyq8OGgWWb9hNt8/zvs9DZmn4qOh1H+4uy14fVjMWa3gZEAL9ir52Mc+LabPgeuQrcXo9uTkChGlVWhql7HWT8HVdUMxRF0SxXGkc/ibJyJqmhFh0vRnSUYs7fgNDuo0Oz+6dfQDVFr2PEW48t+5kioasN+bQnGnDZ01O+Wt9eOzUyrsihYLWhHY7+1P6ooDqXNGIe/iP3eAowPvQ6WgbN+lntNe28RqrwF4+A3IFLk1lP7v4PeOBOd8EJnGSR9oCf22NVepZPm2qDqnsHZMAs1tQEdKUIlvBCIoVsqUYYNsQKMI59Fx33gsdw6sKMM3VkC2q1VVajbXd8fA4/trm+Z0FUM5R3usriPTCXsj7nhAHiS0F2E7glifOgV9Po5YM1B9wbGtz1ZEHHrzqQHY6916PDCfm2CkZwjVduFKoxiv7U/FPagDAdjYT3O2kJwQhN+3icizPGKl/32IajCLowD3nHbufPXgGUCCt1VBwnQvUXg+FBVk6csjnTafv8kVNnb4AAoVEkXxkFv4Kyfhapqwfjw8zjN1W6ePvRlnA2zoCCK0qBbqiDpRZV1QjAKysE88lm07UH3BtzlCS8kfRgHvYPylmMu3MctskO0+UcjE3bTyrz73IHuPfryfS6E9eZa7HcPQhX2gE6C0m57Lbxgu218Y04j0OVeZ8rawbQBMA5aif3OQozZm3E2LsA4aGWm3nPWz8KYtw6naSqqvBtn43zwRlDl7RDsdtPTMsB03Ag6BtgGxpHPgu1Bx/zu9Iefw9lch3H4ixAPQLgIrQ1oqQGjBgL982i67jI+tBJn8wxURQvmkc/hbJzpxq+kExWIYyx5ER0ugqIIJD1unLoL3f04Ct1ZCrEAeB1U3WZ0SxWqtwAKezCWvADt5ejGWlB12K8fiyppAiPh3mN+sHemHaeCSYyF9eg2PxhJAOxV8zHmrEc3TMWYv9q9fmiFbqoGw8E46A3st/cF5UBBDGPuOpz3F0DCD9oAT06r3WtA0DtpyqL9+rEY+32A/c7+qGAcTHvI+wKztgIeG7oMKK31BDdRRieRSLB582a6urpYvnw5f/zjH3nqqadYuXIlF154IfF4fsfJoYceynHHHccvfvGLAcOLx+N524TDYaZPn05XVxfFxcU79VjE5PA3+9/8Z/KXHGrsz9c9X+DDxsETHSUhdjtfTf6E39t3jmmYQQppC7w8pmHu6jp0F3PjJ6BQROnNW3acOpwH/X+coJgJIYQQQgix6wqHw5SUlAzZV7TLv17q8/mYN28eixcv5qqrruKAAw7g6quvpqamhkQiQWdnZ976TU1N1NTUDBqe3+/PjIaa/if2LC87b9FCO/c7K+jVsYmOjhC7pbF40q2v3j6dSgLutB9gMYuI0ouR90wgdBGZoFgJIYQQQgixZ9jlO936chyHeDzO4sWL8Xq9PP7445llq1evZvPmzSxZsmQCYygmu5edNwFQKD5k7DfBsRFi97TO2TzmYTpounXPmIe7K/uX8zjP8Crgpo/K6Xjr1tGJipYQQgghhBB7hF36m27f/e53Oe2005gxYwaRSITbb7+dFStW8PDDD1NSUsIXv/hFvv71r1NeXk5xcTHLli1jyZIlOzRyqdPQjbU2BlqDAhX0oaPJEU0DqJAXVexDFbnTOhFBxyPoZLc7nUzfBCmUtzAzrbwhjFDNgN/F2pl0JIEOJ3CaekZ97MPZRicjaDsKvgROOAKOxigpwTNnNkZF+fbjmoikwlMoXxE6EcFpiKIjSUj6hhXPzU4DC7pK0bqG416ZA1ffSdeWCX56pkTBR6ZScPFeaKsHVegBDU5nM9gOmAaqKITTugnQYIQwq2agPV2oQgNV6MMIVqGTUZQ3iPsdOI0d3gRao7xBjGAVyhdC+Yry8thA+VN5gyhfEUZoKk53IzoeRlu9KG8hAMoXws2/QVCpG/yc85JLJyI4kUa0FSWd59PxIO4fMO/BwHkpm3eSOOGwe2yeIGZFbeo7AqPPnzs7jIkK02pag050o50EZlkVTiSCUgGUL4RRWoLdVo9O9IAyMIrdc6O8QZS3EGNKMK9OSxssb6Tz2Fg8ZfWh+h6qem2qIhZxr0FB0qFB/ZCZZUswS2djBKe48Uj2YgSr3bwZ86G7k27+srrdY0v2gFIYxUXoqI0yC91yUVrWL63stq3oZBRtxVBBDzoZxWlvQDkO2gCzaj5Kl2EEKoc8JyrkxagN9Uu73PKRLn87ci2w411sjrzO3GQCgMKkQ4/HoNtn0BTy9HvddChOd2PmWyxKV6DDCez6ZnA02u5FBU3stibcD9EojJJidLeF8mTT026rx+ltgUQb+JPoWCe6ZQMoD9pbgjn9QOixUb5ylDeEWTmtX/o5zT1Yq9pJ/PwlmOj6WfS30Iv/v5ZgTDXcshT0QcKPTrplPl0P2W0N2bJXUoTTsc2dxkSFQujOFrQdQ3kKMCpn4HSlrnnKwKyaiROJoLuT6JiD4SuHZID4vZvhkfXQNc7HbAALSgjd+bFJc22wmtage5vRPZtAt+FsehKVjKIdG1U0FR3rBdMLph9VPAVlaHR3BI0XPEFUaR26631UvNv9LmawGN1V7+5DgyqtQoc7wfCDpwhVNR8dbgbDRGGjSmtBg44m0N5KVGg6vrlHQcI3ru1JbXTitDeDNlAF5Xiq5/ZrE4zkHGm7G3yJbF2nFGZ5jXtd9AQn/LxPRJjjFS+7bSva6kZbMYyiIpxINzipOqG8Bt1jozwBwMAoLd1l0q/ftNWN1fAWOtYOTgJVWokOd+N+L9GAgAFtG9EOYPoxqmej2xvRTi/KTkDpFIj2uOtbEfAqtGWjw42A170e1x2CClRiVkzBqKjAqCgfss0/GumwnZ70Ww75bf7ttWmctnb3X1cXKHLa+IWYFdO228bHl0i19ZrA6kY7cVSBBx2JghlA+SswSkLYrZvQvR2A6eadRADDX+62X/0x7G2rIdkJsVYwetA9jejO94Ek4EeVzEb3JkEFwDAxqueiu3vAW+LWp1WzIGqDWYgRKMesrEV5g4PWXU6sBW10opvfA6sXrU2MKQvQ0R7QNtgJVKGBs+UxiHWCZUPJNDAK0Y4P5a+CwiqMiuno1g+gtxVtJVElVeg4YBahgtPwTluE7km47Uzbvcd0uiKAJt2OU55C7M3d7no93agijd38ASTjoDwYlTU4Te9CohuHBGb5NJyOKBiFYPoxp83D6fJimGUobwFmdVnm3KpCr9s3MknKotPVkbof6kEVegE95H2Bo4fXDt2lv+n2xS9+kccff5zGxkZKSkrYf//9+fa3v81JJ50EQCwW4xvf+AZ/+9vfiMfjnHLKKVx//fXbfb20r/R7ups9v6BYFYxJvNW0IMUb3A9hx/4wH7obhrdhqJbARavHJA7DFZ79J3T9+D0N4bvi56DcD1Mm/u8yd2akGEq7KWn+7na3zaRlKp1if5hP/LKloHeDBzqLwviWXQ/KIXHNpfguuyF18U0V31AUuoMAmeWqZAdG3u2TxwbNn8ogcHkXsd+WuDfhAyxHO+4ADpB3XnINGn6olsR/f3tkeS8njdBGJq0Ilww/jD1VcRfpD8j6ll1P4pqlbrkjVSaBxLWXZNZJL0vLrdPSBs0boVqcL62kPP6hUUe744ZNfV6Y7COdD3Om4z/9ViZPpI8tXedAqt6JDP5ZAd8VPydx7SX4LrvB/f+y6yHUTeKq/8ym3Qjy3EBpl7a98jGca0HX72fjj/YfJdZWUPGVmZRSzLbA88OOa+acKoPE1b9B10cz6ZHJP1+9jsQ1SzPpg1b56VnclUkzlIZIyK2z0vO6g6ANd1spu7sk3xU/d8vDd3+Zdx4zeSVcAkXZ61Om3g5F3e3SeYdsfeRe81J1ulbu/GsvgUjqRm13uM6Ptdyy1h102wmpMkdRN2jlpvcVOd841irTlgDc9dLrA4n//ra7vlbZsEI512nV55YiVS8krvrPcS/Pue3JtDFpE6TybibfjlW4Ykjpc5pu5yauWZpdGCnOtv92cf3ybrpuzGtvXAeQvX6is+U1tU26PCb++9upcH+RXU5Ovk3dYw3V5h+N7d7vDtGm6aq+Cmwnp8wpQA+v3A1QXiF7r5Rux+XmJd+y60n836VunioK4/vqdYDOpGmmHuwjL51T077v/tKt/2DQNnRfmXbmd3+Z3V/6HKfq2751d17dDAPX4znxz22b5d17p/LTQNfdTPy+ep07gEOkyE0npd3rcvq4U9dxwN3f/12aulZvt8U+KeS28fP6I7ZzzsK6lxnWt4f8ptsu/aTbTTfdtN3lgUCA6667juuuu26cYiSEEGIoq5z1Ex2F3Z7Wmh568W9nnV7km5VCCCGEEELsTLv+zwFCCCF2KS/oNyY6Cru9t/VqEiS3u06CJLvww+5CCCGEEEJMetLpJoQQYly97rw30VHY7d1tP4qFvd11NHrE33UTQgghhBBCDJ90ugkhhBhXH+gNEx2F3V6XjuSNVDqYRt0yDrERQgghhBBizySdbkIIIcZVvW6e6Cjs1rTW3OQsRzP0q6NvOavGIUZCCCGEEELsmaTTTQghxLiKMn4jIu+J2ukiQWJY655vfYNW3bGTYySEEEIIIcSeSTrdhBBCjCv5jtjOc0niB3wo/okRbXNY/By+lvjvnRQjIYQQQggh9lzS6SaEEGJcDfWB/7Gwp47J+ZTzCg2M7PXdepp4Qr+wk2IkhBBCCCHEnks63YQQQoyb4XxnTOyYmI6zmYYd2rZRt6C1nBshhBBCCCHGktLSyt6ucDhMSUkJzTe8RPDNCNrWYCrMqUGcxuiIpgGMmcWY+1ViHlwNgNP0Bk7LO+jwZgB0dBs4FhgeVLAmM62K6jDnfgRjykHjevz2681Yb7div9g46mMf1jbetWDWo4I96IYYWAaqvBzv6SfgPemo7cbVaXoD7ASYPowpB+E0vUFyeQP2ugS6t7jfPt+u3sIrDS9i2AaO6dBU0wPAlG2FGLbBcY/VUb2tCO9OT+VhqG7Gc4YXzA5UQQCURkc2g+2AMlFTPOjOeoh7IVGKqpqJUbMKymxUeQijchE6ug1VUAmeADgW9panQWtUYQVG5SJU8QyMqkV5eWyg/KkKKlEV8/Hs8x9Y79+BbluN7m1FBWsAUMUzwPRilMwG0+cGlHNecjlNb2CvewAd2ZrJ8+l46PppA+Y9GCQv6U3g3Yoq6ka3d4G2ITkFo+YgdEfZ2OTPMQjj7eRqXlZv0VTTw7RtRTi2zuS/Q5rmUufUUGmUUVM3Y0ziNax4ttyFjkbBcmBKFbRFoLcMVA3mwiB24xvQGwfHAyXl6JZqlFEBRZV4D5+aV6elDZY3NlSUsF/ZFWNSLG5+qJm5nUkqYjYJUxGwNKajaQx5cKYewoemfxFn81Po3naM6v1RZXPRm6txVsfRnWVgfOAemxUBU6HKS9DbfJCoBM9UzFmz+6WV3fo4xDqAKKpIoelE9zahEybKAOVZhO7cCxXaa8hzYtSF8H10Tr+0yy0f6fI3nGvBXdaDfMH6LkksAA5oibNva5Lp3UkAaqI2RkEVz5ZFuGvvEFWU00J7Zvt1/seZpqYMmt7W+3dAshe8Baje493y+cYz6JgBdKCKPThdH6AswKNRRZXoVgOSleCvdtOz+Qk0a8C7DYq6UYk4TthCW17wghGcDZ1eiE0HajHnHdL/HLzdivV6C2zp3tGsI3YiNa0eZkzB3CcGRiVGaZlbB3vXgmVglJaBJ4mz9W10MoryW6jqIDq6AeJJsL1QGEJHOtGqF5IhjMoasDdB1AuJEEyZDl0d6G0BnIgPkrUQDaLf65nQx1z93//QTrm+7FCYLXeh7c1QuAlUL9rbiVYOxP0ofxKd8EBvARRHwG9jmBY6HEQnAuCYGKYXXb4VHQ6hAnG0L4lqLUeXhCHpwQj24nQVg1agwFBetIqjDUBpDI+CpNcNM1IG0RmYc8+CSNH4ticL6tFdzWjLg0pMx5h6dL82wYjOkWcLKtSB074OjATKA6p4H3TzVPBUTfx5n4AwxyteduvjYDWBZaHKitEtPWAByoTSvaHDAkoBP+a8GbtM+vUL0/gAu/1eSITB0VAcQDd7wZOAQBJleNFOM1gmOh7EKCpFO03gi4KlUKoUbccg0IvyxCEagqSJDrahE35IFGD4ZoKqxZy+N+b+B+A96agh2/yjkQ7baXw57z53oHuPvpKPPoP9xjvYLVtR3iQ63A6ODYmpGNUHb7eNb1Q1o2ONbnn1taKMHgiY6HYDtBesaRgzPejmDTixGCiFUeJDt1WAXYcqKkRVNeJ0vgO+DijsQEUDUNaC44uB0mB5MWwPurXcTd+yDrf+7CgGZaATQYxANbqtAE0AQ01D1e2HEaoZvO7Sq6CwHq3eR3UHIOkDfy3aCYMnDjEfqiKMLlyLtjzQVooRjOPYHlTSi06EMKwSKKkC9T464bYLVYGJbi+GaCnEZ2HMOh4STWhdD3Si/EF0pA0ShtuOqygBpwb7rTg63gNWD6qmHYJrIeZDh4vBWwDeZlRxF3iS6EgF9PjANlGmg7Zr0RtrIVYGZghjalnm3KpSP2pK4eQpi+1vohPNblqUmmA4Q94XdFcbVF1yGF1dXRQXFw+aj6XTbQjpTrehElLsev7X+hPfs3494LJLjc9wlLmYs8yTxjlWYnf39eR/c719OwAzmMpmGgdcr97/LBWqdBxjNj7+mPw7l9k/HpOw9mY2H7BhwGUnGkfwb9/vx2Q/u4rPJr7JXc5DmJjYg7zCe5BayBv6PQAOVvvyun43s+x+7x84wVwyLnEVQgghhBBiVzbcviJ5vVTssRr1wN89KqSA/+e9QDrcxE5Rr5syf59oHjHoegfGz+AnyevGI0rj6gW9ckzC8eLhIuPcQZevctaPyX52FW86q3jHWcOBah9KKRp0PQOV+Xu6qsn8vUDNoSEnbwohhBBCCCFGTzrddnNxJ8HH40v5dOLrfC/5m4mOzqRSP8gNZoIEn058nTPiF/OE/eI4x0rs7tL5zsCg3CkZdL0W2nnc2f0+bt8wSGf3SCWxOMSz/6DLt7KNsN5zXj98yVnJ+6xjpX6fpcanBl0vqrMjx06hKvP3Kr2eNXrTTo2jEEIIIYQQexrPREdgVxH70YuoV7rcd+sNhZF6D3gk0wDG3BI8H67Fe/psAOz1D+LUv4DudJ/KcL/bY4Nh5nzTzUYVTcPc93zMOaeNKN5baORB/TRoCFHIz7xfG9H2yfs3YD/XQPLZhlEf+3C2UdUrIbgVVdCLs7UAkgYUhvB99Bj8Xzxnu3G11z8IVgw8Acw5p2Gvf5D4b5pw1jroaFG/fV44pYILG8/AtBW2qfO+6WbaikVvVuC1XqSLV0aUZjuDqtuCcUgn+DtRThF4k2jd5B4LJqq6Fx3tgd4AOlyOUVKM2utNjGILigIYFfv0+6ab0/gy4ICvBKNiH1TpHIxpS/Ly2ED5UxVUoqoW4T3i+ySf/ym69R26e7bQWVgIOJSVHkjIU4ZRua+7L8g7L7ns9Q9iv3sbOlKfyfPpeDjvLxgw78EgealwLapkI6o4go7EwbTQ7dMwAvvjtFWMSf4cizB+llxA3JxDV43NnG0Wx9lnZvJfOu+lp01Mws1/RznscLyGFU9uhyjut0CqPeg2DR1V6GQV5sFxdPg9dFSB5Qd/CL21DqXLoLAMz5G1eXVaWjpv6J6cb7qVzmFa1Zswa/Rlwo+XeX/+NBuiWylIahwFhnb/RXyKVeVeOmZcgX/z2+hYJ0blvqiKBTjvzMF+00a3VkDpa+jwe2D0gKFRwQDO5nII14CeglE3s19aaXUfOhZD+brBb4C/A8wOdLgI5UuiO/dGN8xH+WcNeU6MaSF8n9unX9rllo90+RvqWvCS81bm7znGTHDglI09HLYtzpxO95tuU3psogVdrK0Iccuhe1GhSghSSBS37hvsh4i05PM/hWQUvEHoOB/7uQastQ+gI34wIhghE22sRve634zCqEC3+qG7CowqNz0TD6GK16KKWqCkC7oDOOEClDbcb3naFdARQrdPh55ajLqD+qWf/V4bemMY4s4ocpDYWYwFq3ASUzD3aUEnqjF8VThtFajqlejeAIavCgp7cTo+ACsBRVGMcgPMrTjhAMox0EYAYhYqGEFHSlBFASjYim4rh54QqqoAHYmjt1ZAjx8dqYbeQuia2C+meD4+d6dcX3YoTG5HBbahKurRtkIVRt22Q7gYVRyBuB+ntQKjbgv4LDBt6ChD9xSAYwAKNWMTunEqqqwD/AmctXMxZm2EaBBKO91l3qRb8ToG+ONuQhiOG15vITpchG6qRjdNxyg9Eh0uGt/2ZLAZHY9C0oNumYkROKxfm2BE56h4HUZRF461EeWLgcdBJRfgbJ4FRuXEn/cJCHO84qXVfeBpRUe9GCUenBYDLAUYYM6BsAarFLQPY1bdLpN+/cIsfQ2tHgEr9R2ukIWzpQpV2IMqjuBEi1DBDkh43fIcVODvQBWH0dECSBaiAlEo7AEzidNQC0kvxoxN7je4YgVgl6B7pmBWzsI86GD8XzxnyDb/aKTDduqfz7vPHejeo6/4TcuxXn4b3bsZ5Y+j42FAo1unY/gP3H4bf/pWsJrc8lrU6n4PzVTo5mIwNXROw5gbwWmLkP4qhyqNoeunoSNTUSUKY+YGtL0ZFeqCUBhnWw3G7A3gS7gbJD1ge3A2zHLTefZGcAycLXWoghg6XAJ2EbQXg/age6ZilO+NCtYMWndpzwaMyq1QvBmncSpKAzoEBV0ofxyntQxjRgOUNUHch7NpJkZNEyS9bl3XE4TeEBT4UGUb0N0FKK8FgSTO5jroLEO3TcOoOAQK14F/KxjdKKsUTRs6GkD5k6hiP0TqsNcqIAY6iZrRgFG7Ht1Zgm6qBsMAXy/GjM3gtdzwHRMcBf4ktNbgfDAPeovc7+iVBDPnVoW8qIrApCmLWj+HTnag/J2oIsC0hrwv6K0bXneadLoNU/z/VuJXBZnpvk39kUwn/7Y6c5OVfPxy6B54tLncpqNuehVn2ysj7nTboLdm/rZSH9ceid7LnkTXR/PmjebYh1rHd8UtuD0MYN11mTszUkzsuTX4v7j9uGbSMlSLOec0ko9fTvL3S3G/6hvtt8/DKAEGf9JoMtFdJZgLbwPlkLjmUnyX3UCqBnZXCEWh261wEtdciueyG1CFYfcDsx24NzcM8n3paFNmub3qzrw8NlD+1AAbHsR7xPexX/4f0A6FQGFmjZexlYGtHQjVurNyzkuuvuGn42evupPEf397yLyXN6/Iwbfs327+0UYmrZxwEtg2aBgjyZ9jEcaBVPRZUsD2aJoy6TLaeA0az+IF7sewAd+y60ncvxQi7ncJjNOvhqmQuPaSzDpECtHEgW0kXtyWV6elpfOGewxZ3wt6+OusaQMd6ojESRLq2JJ9WTJnJxUJzRHbEtB0S2ZETqdzLay7j/hPvwXhEqAT3xU3wlQydQ6k6p1IMWDhvLIub58O4LviXySuvQTfZTe4/192PYS6SVz1n27aXXMKhAvQNGW26RtG9u8m7Je3DdrpNmD5G+RakH6C0IeXzU49AL9+up1p0b7fdktw3KZOvnOoianNTIcbQD3b73TLnFNlkLi6Fl0fxXfFLam8Ueqmz1dfInHN0kz6oFV+ehZX41u2HELdbh3mC2HddmkmHeluhhqDxLWHQrh4wHMgJjfPJ+4lcdV/Yv7H70hce0mmDk7nFSechKIeoA5w6xyUA6Eo1lX/mc07qWXp/IRySNz9EdDKnX/tJRBJvUqtDSZ0BIUU656h8+tOq8f7ThcvwLfsiVS5CrrtBKXdG82ibtAK66Yv4LniF9kNq1szbQkAvA6UdaXOF1j3nuWuX5BwwyrrcsNNU33OQagHqlpJ/P1cCJdgE8X9hWcnHzv57cm0xAPHD9kmGHK/RQ4ORfiWPZMJP3HNoRC2YZB6f8gwd2B6soa5M+Plu+Jfmbad57IbsO5bml0hUpxq/2kgjvPGJCqLI5z2XXFjft4NRbH+embmOmld9Z/4lrmfH0lcc5Y7n1S5joQy26TLo3XjxQBu2fWl7wXrSVxzHE64hGSpe481VJt/NAYNm/73Hn3FvrsGbB++ZY+k0kUBmsQDS4Zu47/bA33KK0DiH5emrjVL8Bx1PdY/snnJt+x6Ev86DiLF6KIwniVPu7FNpal148X59aaZBJJY/zoDILPMuvFifN/9JYmr/jN1wOk2dHGqLhw4j6avlZ7v/tvd3++/lD3HqfrWuu3cbBw8sWzdnN5Hbj1e1A2BUDb+v/9Cpm1mE82rKxPXXIpv2YP5191rLk2F694XeM+4F4oiECki8dCpbj7TCs9xT6fi9ml3WwClSfzfsalrdSpuPdlrgAb0mslTFtNp77vsn/n9Edu5L0jkvEGyPfJ66W5uo67P/B0jQVInJzA2Qog9nR7FjfGh6gCMEVy2Jv4WfHwkdZKn9MsUEeJItZifOtcPa7soPYRyusuHetJNCCGEEEIIMTLS6babWRQ7nemxo6mKHUZcJ9iY86QbQBtdExQzIYTY8Y6wIoIElA9HnnXqZ7NuxMEhQjdxnSQ5yMilfTXQwkI1Lzutm5ABzYUQQgghhBg70um2G+nVMdayiRbaiRDlTb0q70k3gFbdPkGxE0KIHTdT1XKo2n+iozEp5dbzHXQOe7t63cQCY05mOkovXUTGMmpCCCGEEELs0aTTbTeyWee/K3+t9RcUiiJCmXktumO8oyV2U79J3oIzyHNL6fmWHvl3BIUYyEFqXw419qeQwERHZdLJ7XRbw/BHIK1nG3sziyAF+PExlxk06padEUUhhBBCCCH2SNLpthvJHTRBAXc7j7DceYg4scz8VuRJNzF6GrjC/t9Bv8+Vnt9F9zjGSuzO4iQ43TiWNv8rHMKiiY7OpJL7GQF7mK+Wgvuk2xw1gyi9xEmwjs1s0607I4pCCCGEEELskaTTbTeS+7RDDVVYqZuvqpzRElvlSTcxJvSwPoivsmNLCjEqDzlPcaX1f5yTXMY8Y+awthnNoA27Cq11XqfbYE+fDiRBkpAqzJsnP8wIIYQQQggxdjwTHQExdq62bs38beLhEBbxCfNkkthcaV8NQIt8002MAQ3szWwYwatsQoxGmChX27fgxUcRwaE32ENclPw+bzmrmcdMmmklTHTojVLKKO43soX8MCOEEEIIIcTYkU633UgzbZm/kyRoo5NHnGdZYhzEMepQbGySyDe2xOhpNB+wYRjryUiTYngKCNCb8yp8GcV0EM5bJ4lNkl566B3v6E1aL+qVrGUTJiYjHRu2gzBxEhgYmVFh5YcZIYQQQgghxo50ug2XwUjvZwYNRwW9mUnlDaIxYBidE8o7+NMdWmuiOTeiIYKsYzMb9FZ6nTgv6TcBaLe7KCaET/lYZn4GQ23/DWMV9KKHF70xoeM+MFPfJPImAQX+OMo/dGeh8gbRvqJMOilvEAyNtkd74ibBS5IeK5s2/kR+OgFKK3Qyla/Sy1OHrYYdeaNfHuubP9Mpaavs/40+yeuk5kc9ih6vSaXKPy/9wx84HiPOe7lp5Jhg2OBLpgIY3zfpdc5/x8pOzYX+BNgmkCqD3iQoB7Ryp1X+OtljU/3qtGyETdD5J88Bot6Bj8ODmTdtDfFtsnQo20tlWylMnbOGMlEBCx3R+cdm5Owr59gZIM113JctY/4EOulFOUbmbzfP6QG3HfA4Bkq79LJBrg/pstSmO1mr3adNp1PDRvJHq456FTb9c7+dE7X39BoqKKUl9VppK9t50i19TpWZKZ867nOP2XH3opPevPTBMvPT05dKM61A6ez6qXk66XXL7wSVXTF6Ou4Dw8nmjdR5zJv2WKDccpKutzPlKJ13dJ/8lLr+YZupsBKpMACdUycJV59ylVvmFLhl0p/I3ya3LYGbmpn1U2Gm18uEpXPSXPWpkbXK7mc79erO0LedBIxNveKxQPUJf4T1vtgx/drB6fsEcPOX0rtFXTBQGz/v2plub0DO3zpTXjPbpMtjTjnPLd/4E+CPZe6xBr0nVfntsx0x+P1u/3uPftv6LXTS6V+mh1OeByqv4KZn6prktt36pFG6LeixsumbTtO+9WZa3/n+hNs2Sl3P3HaSGrIuzFwDHSOb39NxcIyB45BbN8PA9Xhu/O1s2ywvbdL7yr3u+pJgZ9M4fU3QSY+bTobjxjV9LUinbbp97U2mt8yJ0eSU18bP7Y/Y3jkb5uVEaa3H9s5wNxMOhykpKaGrq4vi4uKJjk4/rzpv86T9Io/az/M0rwy4zofYj1d5p9/3jTb5VzBFVY5HNCfUjxLXcJXzux3e/g+en/JZz1ljF6Fd1EanngWJU0a0zQI1h5X+f+2kGE1erzhvc1TiU2Ma5mb/U1SriqFXnKQc7RCKH5h5oqqvckpopyszfRJH8SjPjGqfHjx0B1aOKozJ7Cn7ZS5Kfp/NNFBBKW10jjiMjxrHscVp5E1WAXCWcSJ3+H47thEVQgghdgP/tp/kMHUAWulduk0mhBgbw+0rkifddmFh3c1RiU+j0f2eEknz4eUV3h7whqxeN+0RnW6baBjV9tXIRbVVd/C+s3bE24X1njd6qaUt6vW2AZd58ZIkOeCyoTTp1l26gbeN1kE73IC8DjeAS41P0eV08jJvD7qNgdruwAEWFkmdxKsGf5psV/aqfofNqfptRzrcANbojeytZvOmdjvd6nXzWEVPCCGE2G2sctZxTnIZAEEKaAsM/LCDEEL0Je9t7MJedbJPr3kZ+KYykbrB9+Prt6xeN+28yE0i6/TmUW1vDtKhuSc5OX4h51hfHfF2XUR2Qmwmt4uTP+CzyW8NuGxHO9wALkp8f4e3nQyanFa8I/id52jzEJrV9j/qP5yROiP0DHufu5r3nXWjDmOjridGPPP6cotuG2ILIYQQYs9zj/NY5u8YceRlMSHEcEmn2y7sFf1W5u/PmGdsd93EADf7e0qnW5NuHdX2tap6jGIy+T1gr+CQ2Mf5cPw/+EXy9wBs0628x1rsIb6xNZAovST1jnc07YreddbslAFL1jG6zuOJ1kL7iNKlwCigeQw6gHbnpy1X6/WjDsPA4C29KvMDTt8nDoUQQgjhPulWQhEANg77xz/KRYnvTXCshBC7Anm9dJgiR/0dvTHhfq9RASEvRJMjmwaMmiCek2dQ8PMjAUg+/T2cTY+hu1MdYMkomY+xeoPZaW8Ic9/z8R79s0ycenWMJeogNuqttNrt1FDJNvI7mPZTe+PHxzt6Tb9jGk6nW+93nsV6ZDPOus5RH/twtjFPvB9V2g6Gjf36ge5HuLUHc79pBG/7znbjmnz6exDvBH8p3qN/RvLp79FzSRFPNZ6AY3noCVoURj0YWuEoPeA0kJnnj6efcHtwwm9D1ez1GAe9hQp243ywADVjM6qgO/V1TIWa0oTuKIWkF+f9fVAzt2IesBI8NsowwF/q5iVPAEwfaBt62wHtfiDVX4oKTqFwRjnvHL4FNPgdH1986h26Nt7Nup5uNJrCpEPco1hf7OWEc6by+PJG5nQl8duaHq/bh99UaBIzFe9W+Oj0G/R6vgvx3sx5yZV8+nvY790GiW7SeV4Fp2DMOhHrgdMGznswYN5Rdesw9luJCkXRvX5UIIb9xkHo5tkQKRqT/DmcMP7pHIGjlgwrv40kPzpK0xX6w5jFM3eesdcKdCQEjoGxz2qc1fPQDdOgJ4h5+lNghNEbZqF7CwADvX42WH4wPRjzSvPqtLT47cegO9eDFQNvkMNI8FxhjMenF/CDI8ry1jUxsHNePVVAREdZpPbi5ZwfF/pqvnET3kF+aO7xwKoyH9Xt+xFzHDePl8zE+tdx2G8UoyNFmMf8C4wwKhBzPy6rwH71YHRDLcRDUFjUL63MY+5Ab6pDzdyEbqzFmLcWVdGK/cqHMOasd/Pc2r3BKRz6nIS8+C7Yp1/apeVdH/pcCzxH/ZT39fafdPvx8x2csKWXKT1uh3nf8uvDR5w4TTmjxlZQiqOdAQfZid9+DCTC4CvGeetnWI9sRs25DWfNXMABA8wDX8NZMw81Ywt600x0VzG6uRoSQSgswpj5Isa+b6OmNKGCUZyGqTirFmDM2oia0oxuL0eHi3DeWeTmQW91//TrjIMlTxhMVuZHHsR+4TDMo17AWbM3um0aRIowT7wfZ+1cdNs0VGUr0A0ajH1WoUK9qIoW7FcOQU3dht5aC7YHY8FqnFXzUTO2oEo7cN7eD90dxFiwBr25Dmf9bPeD0OEidwCOif5Ac2Vg51xfdiBMY68VGHutQdU2oNvLUBXtqEAMp74WY1oDOhbAfu4IPCc/6n4wWuGW17byzAexjbkbcNbPwpi5GUwH64FT8Zz6MDpShCoJ46yfhSrvSH3AXqEKckaW9ljo7hDE/dgvHoazdi7EKyHhG9/2pC/uflzfNrFfOxjdPLd/m2AE50jNWAe+OMaCd1GFPaA0zsrFOGv3Ajsw4ed9QsIcp3iZx9yBKux264RZW3De3ys7CFRLrbtuT9CtC4oLxzyeVwYr+Xn03Lx2moGiq+f6MT1285h/oco2444mBqq8HfupozAWfICa0oT94qEY+6wG28R5fz7GvPXgj2HUNuA0TgXbg6psRRX0gALr8ePBMfCc8gjOljqwPWB5cN7fB+wijDnTCd72nYHvST0BVOkc/J9+itHIhN2xntz73HSbv+/9Qa7o+T/HWdOAmvsOKthDejAG+/WD0M1zttvGV3M2gOp1y2tJV2ZwCeftRagZW3De3QfzQ2/grJqXrff2We3WFQ21qKo2zMNfAm/cTdPCHqzHj8dz2kPZy01qkATr4ZPddD71YbBNrMeOxzzkdexXDoGED90ddAcuaKoBu8S9zx+k7tKtJZiHv4wq7cB6/HiMWRvd4ylvA18S+7kleE54EgpiYLv79pzwBDoWcPfRVgEJL3hsjOlbcBqmoso63fg/egK6s9Rt69qlmMc8iippB2XjrN4HY95qnDV7udfdwhjOyoPQ3X53wATAPPQVjLnrcTbPwH79IJQ3gbY87nErsJ88BjV9KxgaFeh103L13m6+A/JG+DMUeI1JU5eZR9yLbqhCzdqIKoyBcoa8L+iuGl67Qzrdhsl5rx1UQXZGrM9TP8OcdlpjJDtimZsse/Vy6B7km2N2LOfvOPbq5XmV0iPOs7yu3wPgIZ6hl3i/ID6qjuMq53cDvl66Wm8YeL85knd+gK6PDngsOzy9nXXM/Va6I4QA1t1nussixVjbhn5aJZOWoVq8R//MnV67lEDqolUYy38Fd6jpyUS3VmIuWAXKwfrnx/Cd8FjqwpG68QxFUamRd6x7zsJ34hMob+qpIm1DLPXEUG6eygTuLtexNhbEQnC4+90wBRir72VmNL/LsdDWHNjq7uvA1gSmTs93z1tlzMFWsLglQX3QxFT3Ync3Zc5LLnv1cujNeZrJjqFjbdjxTpJ3zh067+XM09vKMc9dlRphxsikFeFCyH1KbxT5czjTgVS1OtL8Nqz8GOtz/saoLDqJfTKNDfOsf2E/cgJE3I+BmvNfByDx8EnZkYl6A+7/kzbOO215dVqabl6ZHb3UjuEH9o1Badzp1+mW2+EG7ivdzbQN2OHmxUMSCwMDrx78FrvQcvNnZnTdWBs63oH12EkQ9gKxzLGl6xxI1TupY6enf3qb81eRePQ4fCc/RuLRE/EctwJC3Thv7YfnmGew7j0Tev1k8tz2zkHcJnnnB4N2ug14fUhdC1qP/H/Uqil8sJ16/Oy1UaZF8/efW34T9B+BawNbiRDN/JqfK3NOlZG5NvjOWIm9Ykm2sXrWJqz7Tsd34hMkHjnRnZ+Tnk5iNp5TH4RQNyiNUdWKdccBeI56DkLdbj02pRn74ZMhXAwMkefFpGMe+Cb2g6dgLnobe8WRmTrY3G8l9lNLIFyI7i0FSt31P/4vtwyGojhv7Yfv6Gfd+gbwnPQ41r1n4DvxCbdO//sC0ArzzH+TePR492YLMjenE651GPl1tPX2MMN0EvvgOf5Jt1yZNoSimTKHP4HyJXFWHgAfeSizmSqOoIz8+tioagXTnZdeXxVHsstCOdfpPqOXuutFcN7ZF8IlqbkjuB6PUXsyzbrnrKHbBEPsV28rd8M/855se/XeM6DHy6D1/nCOZQyPfULD3InxMufntINPehz7oROzyyPF2fYf7JSyWBEryJvOttPGME/HbLdtkpt3Q1GcVQvwnPSE29548wA8Rz8LgHXX2XiOexrQUBB3y2Rqm0wH08oD3HkffSC7HLDuORPCJTjr3HusgdscMffaP0qDhp1q82+v0816VIM9Bd9H/pFKFwVot9wNUZ71llKgNK+8gptuvhOfwH7kRIxP/BPr3o9mlnlOftxNm0gx2jIxpm8GdCZN+9abKMB08tIZj+2ep488jPPWfqnIpFqs6TbRIO0bc7+VJK69BM8Z/87sz3PUc9k4AM5b+8NHH3S3S+/7Iw+hfO7bRSp3pNZAPFtXK+1um9M2MxetzKvLPCc+inXfR7PX3Xs/mo07YMzeBMEejLp6rLvPQqd/dClz7xedVQvwnfhkKm202y62PWRa7LmXCVuDbU+ausxctJLEikvwnfxofn/Edu4LnJZehkM63XZhW3M+1j5QhxuQGbWznBIaaclb9pDz9M6LnNgl5X7o3tJ2v86QHQtTy1fxxIj48NE4wAf9l5mfpZgQzbqN+cYc4JLxj9wksZ6t2+1wGwk/PuI5HXCdRAbsdBNCCCGEAHjRWUkZxan2mBBieybJT4NipBI6STPtI9rmWHUY3zC+kPmYeRJLPgIq8uR2sr3CW4QZ/fewtB59x53Ys0ynJvMUb64qVU6xCjHPmMllns9MQMwmj8FGyN0R8T5PvHXq8JiFLYQQQojdxy+Sv2dKbAnHJj7D162rJjo6QuwSpNNtF9UwwFMg29NKBxWqlB95v5oZ6VSjd+uPjIuRs3Ie0R7OyJDDkf4wux6j8MTux9fnoesKVcrrzrv91ismxP/zXMD/81wwXlGbtMZyIJwqKvKmO6TTTQghhBADaNTNdOG+Yq617jfo1f9Yf2T/2EdZHD+LP1nLJyKKQkw60um2i6pnZDdcSSzudh7hjORXKCKYmb9GbxzjmIldmRfPgN//G43003MxPfAr0EIk+oxqGlJBnnPeyEz78FJAgFecwQdV2NOMZafbPKYTyCn3rXpkT1ELIYQQYs8QVdnvWj2hX+zX6fa08yofsJF39Vpect4c7+gJMSlJp9suqmEHbrg0mgpdQnFOp9t7eu1YRkvs4uIk+r1qNlacMfg+nNgzvO68y1YaM9MJkvQSo0E385XEDyYwZpPHWHa6eZSXWE65X6s3jVnYQgghhNh9dPV5Gr4r9Smatc4mXnBW8nJOR1uC5LjGTYjJSgZS2MW06U4ecZ7lLuvBHdr+Lv0ws5mWmV4jN1dinPQQ6/MSmxAD66H/SEABfDypXwIN39dLqVM1ExCzyWMsO93COpI3LdcFIYQQQgykq8/3ntNtiOMTn6OZ/KfeWukYt3gJMZnJk267mJvsu7gw+R3e0WsyAyKMVAfZG6yNun6soibEdsk33cRw9fQZRn0Re3GkOiQz/XLqNVPFnmvrGA6ksJF65pMdfUyegBZCCCHEQPp+DzzdCRej/2dkxvIHQiF2ZdLptkvR3GrdA8BmGkj2+Q7ScOU+6rs7V4Y7mj5i55DXS8WOeoc1HGEclJn+RvLnExibiWdj9/s1eTS6iLCa9ZnpjXrrmIUthBBCiN1HF/lPx38r+QvmxU4knOp88+OllCJg977PFGIkduhRqWQyybZt2+jp6aGqqory8vKxjteko2YUwzYbtAalIGBCbITTgKoswHvC9Ey45uxTsDc9Cb2t7gw7Bhr3EQ4zkJ32BGibdSjrWDnqY+mll0ICePAM+aSI97RZJB/bgq7vHvWxD2cbZ/UCKO4CpVHT6sExoboVc++hX0w0Z5+CjnWgAmUAvDqjhr1q2wi0lqBtk3jAxh8zUbhJOtA0kJnnsQxATYqnaVRFG866OVDYgzF3Pc762VDYk10+pRndVgaWB2OOu9zY/20wHJRS4A26ecnwgekFx4Zk+pcqd3lbgckjdXbefh+ZWcCxW2JUxNz5AVuTNGBryK061pZ4qOu28TqamOmmVFvAIGEq3i/30RFw+/XLYg7hgJcv9zkuc/Yp2KvuAiuWzfMFlZgzjxs878GAeUdVtWfSiJgfAnGM2kYcwwfR4Jjkz4GmLRx6A25H9lD5a6TTA4VZGPNiYoxpWTT2WovuDoJWOOvnoKbVo+uBWAHOun3A6MWYswHdWwBaoeMBsLxgmqi6UF6dlsmTZfPQ4a3gJHBMP9300BYwWDG9YBg5PquIIHPU9LzBFhppplv34MFAD9KZmzBgY7GHOV0WHg3KG0IV1WIeFsd5O4GOBjPHRiAGyq14VW0jugGIF4K/oF9aOevnYMzZgLN+Fsbea3AaalBVrRjzV+M01GBMa8DpLQTtG/qcFHjwnjZr0GPPuz7kXAvemzkbK+ebd4MZqvwOJncU41yqbB460Y3yhTLl0/lgAWpKC6DBAKe+NlUHzXLzTKQIrRUkCsBfgDFrM07DVFTNNlRBL05rJcaC1TiNNagpTei2CoiEUDVNaMcEVdY//aJJpA9/8nJWzYeiCM4He6NqWtCpOthZvSAzrao7gBigMvW2qmzFmP9BpmxhmW6ZmuvmJ4rDGHPXoXsKs+VwwyxwFHSHQLvX7AlV5B3T68torlnGXmvd+mlqI7qtEgWoQMwtc4EYOhbAWLAaHAOUAwp0dxDdWpk5HKOo210/GAVDu+trdz2VWpab4sofy54C00ZHg5D0Yuz9Ac66uRArca8d49me9KR+aLYNjNqGgdsEIzhHqqodvEm3HVbQC0pjTNuGEwuC453w8z4hYY5TvJz1c6CgJ9POzdwnANpQ7rq9hW6eLvSPLp5AJBDHHzMxUBgY9AYsvDE1aDvNxMQoGKAOGOG0s24fKGkCrQCFclrdY26oQdU0udfM1kpwlFu2GmrAl8TwxzPzlVaoVNvGLbcKbCOzHNvEmLsenQhhzqh2i+xA96SGD1Vcl1fN9X3SrYX8wZc+rA4hSZJn9Kt0EaFb9+BPh929Nf8+N9Xm3x7PEht7Y0vm/LuVjR68POekp5raASrhlteibGdhup2iarbhNLjtljSnoSbTFlTVrTgNU8FjoXQLqqA3Uw9m6joNaJVNZ8dw65sFq9HtZRjzV0PSi+4pBJR7WpNB8AQGrbuMvdei28tQReFMGwlAVbaBJ+mGmfCCL+nmgwWrIeFx2+catx63PGA6mXyRzhPG/NXocDG6UUMyhPPBAgh1geG419ucdhwFMYxp29C9PjDchpeztRZj9ka33TatHuVLoJM+dCSUl7YoDYG4m5Zrgm66uEeRPbkK8BiTpi5zPljgHlumfmfI+wJV5oV1283CqSyr9bDe+YpEIvz1r3/ljjvu4OWXXyaRSKC1RilFXV0dJ598Ml/+8pf50Ic+NJzgdhnhcJiSkhK6urooLi6e0LhcZ/2Vb1hj+4RHNRVsDjw1pmFOBgmdZEH8FBpoHlU4v/V8j694PjVGsZrcPpG4lAecnZsXOv2vEVD+nbqP8XZE/Dxe1+/t0LYLmM0qNoxom0XsxauBe3ZofxPlOfs1TkhesMPbLzM+i0/5+I19c+aJyb94/4dzzdP4k7WcpdYPt7v9mcYJ3Om7eof3P9lclPgef3H+uVP30eN7C8OQh+GFEELseZ60X+K05BcB+LL5SV633+VV3tnuNrd4f8F/mKePR/QmjNaaovhBWNt5m+jjxkkEtJ8V+iXKKeVvvt+wtzFr/CIpxDgabl/RsFrUv/71r5k1axY333wzJ554Ivfeey8rV67kgw8+4IUXXuDKK6/EsixOPvlkTj31VNasWTNmByKydsawywN9sHx3sNpZT2efx593RJma2I7W8bRNt+70fYzFOZlsPtAbR7S+kfMLzzXmDzhfnTGi7Tew6736t05vHtX2h5kH8Cf7rrxXlP9o3eUuMw4YcvvVzsg6Nie7fzmP7/R9bEC+9ymEEGLP9J5eg4n79Myhxv68Tv6Pq8YAt9Ab9oBPM/QS226HG7jfdptqVNFIC++yhkY9ugcghNgdDOv10ldeeYWnn36afffdd8Dlhx56KF/4whe48cYbufnmm3nmmWfYa6+9xjSie7qkTnKX89CYhxsjMeZhTgYnJS8ckw7Fg9XAeX531NlnCPCds48ualTl0CvuIjqcLrrpGXrFHE5qQAk/XpaYB7FRb+V2/a/MMBM+PHmvUvYVpZekTuJV3h2N9rgb7WiYC9QcOnDzp4mJjc1L+k2iTg/T1JQht2+kZVT7n0zadGe/kcN2hpeclcw1+r82LIQQQuzuXnRW4sPLNKaxwJnT77vEDk6mPZK2J3wPdTjtD7/2McXItvWb2Pk/6gsx2Q3rSbe//e1vg3a45fL7/XzlK1/hC1/4wqgjJvI9Zr+wU0Z/HOrXil3VWD3BV8qe86Rb2zgM6/0Da/d5xQ/gd84dO7ztIjWfu+1HWer8KK9kb6/DLW2tM7pOrPG23tkyrPX6fo0pSCGHcyBJnU2TdMM3SZLf2LdQQhGe1K/Rg9mdBlVZpdcPvdIYWOm8Py77EUIIISab9/U6eomxnq0cb39uwHVyO9y8eNjg7P6dbmE99BsrWsGUnB/Ym/TYDfwkxK5qhwZSyBUOh3niiSeYP38+++yzz1jEaVLqqvk92sr5FlX6K5ojmQbwGJj7VRJ68ZMAxG87Gt36Djjpm8KBAzkWeLLKx3HnTB3tofTT7fQQMgoHXnb4ndhvt0Iy5xeeHT32YWzjXXYdeN2P3lq3fcr9GGRvAarCoviDK7d7HPHbjkb3NKEKp5A8O8mTyxtZcPEVqKT7RJBWqW+lp6MzwDTkz4Pb6NruXseHqm7G88m/g9fCuvNcPJ+4BzxWJm1VeTu6vQxQmeVqWoO7TEF+gg98QtYYmncr8vPYk8sb2bctgcfJ37LXo6i9aAYNf9hMgaXzQrMMsAxFh9+gudDtDKnusWkuNPnyuflfmozfdjS6eWV+3AwPqnIRyWsuHTjv9Y866Pw0wjLBY2Pd/kl0c3XmQ7u56w8nzKGmv4LmK3x5wLwznPym9Bq28IVBlw8e5oNuvhyjsqhq6yHpXg48n7wL6+/nolsqwTHwLrselIO1/BPuR1nBTdP0xt78Oi0tdk01WG7n9x9S/yyDfnksV9+fFaKppwg35rzqWMcUtrANG4dvXPtt4nx70OfYej0qkz9jFIGngMTVF6PrK8Ax8V52nfsBcU+24Wzd9qnMsaNUv7TyLrsWa/nH8Zx9D9bdZ+E5bzmqvIPkjRfhOW851t8+id5Wk03s7Z0TBeZB1f3SLi3/+uBudDDDvxYMVX635zWn/7drYtdUgx0H04912zXYb7fi/co1WHd9IvOBXM/5f8P6u1sHWf/4OFhedGtFJj3V1Ho8n7wLVdEOpoVuqXLrrPOWoypS9Zjlwfr7OW4+0+b287SYdLzLriN5w0V4L/k91l1nZ+pg77LrsO76BLq52v0YdOpEej55F3gtVFmqHH3iXqy7zwKtMvWR5xP3gDeJded5kPS48//x8WxdZKWbs3277sfZGF5fRhumqq3Hc95dmXKlyjsyZU5VtYDtIXnDl906Ps3ypNoSqWCqW9DNVahqt5ZNXrPUXd/ygMdyl5Xn/GBn5vzAodzw0IrkjRehG2tS1+I+H9He6e3JbIU7aJtgmGG6adIMaDz/cZfbDgM33L71/gjCHPb0ZA1znOLlXXYteLLtYOvv52bW0a2V7ofe03XBANfvkcTzMY5Dq+NGfN/Qpa4Z9bF7L7sOvNk3kVR5B8nrL85cO5M3fNmtNyFz/URpVFULuqUqs026PCavXQqAd9n16OaqzI6sO89FR0KocpviD64c/J7UU0BgmfuK6HCedLOwqCY7AF6Tbs0JO5l/sKk2v//8pwcNL7z3j6AnmblWpAcxGE4bP7+8Zvdt3XGe246762w8n7oT685zM8s8n7wL63a3Lagq2/Ccf7ubvqk0TV67NL/eTElek01ntJvu3q/8geSNF7mZJd2Gbh28jZmuu6y7z8T7lT+AJ0ny2qWpcwyqrAOUduvuy67P5OvkNUvdaTu1j9Q9IWTzRW78SXoz8fAuuz57733nuXjOy73uWli3fzIvjT3n3565Nli3f8rNZ7bHrXPBzavn3OMejGm7adlUnT3Oga7Tk6Qu8152HdY/zsJztnvsMPR9QdiM9z+eAYy40+28887j6KOP5rLLLqO3t5dDDjmEjRs3orXmjjvu4Oyzzx5pkLuGpJOfR/o2+oc7nXRwmqLZ2T1NfSqggQNRuB0XO8MaNnIQCwdc5jRF8zs98qO1Y9PbWUcVRdybYED3pEY5jBSjzaEred3TBN0N2Dho/FT32BiWh/SJU332OdT0ZKJ7A6iiblCOe4Es6k5FOBVp00YVuB0c6eUqr07Tg/ydnedz+uex6h4b3wCjBPptnfl/ejfp//scMLVmWjQbVvrvuM7P67qnqX/cnCS6p2l4eS9nXm4aod3R2HRPYf7FeKAwRpA/+06rQfLWQPNGOz3gvDEqizoSyrQeVVG3W/ZS6aZSoz3p7uw6eZVhnzotw85ehNKPVA+Ux4Yy26jLe2XjIGNfGp2WAa+1fQ4rL3+m46Q7/WDnH1u6zgHyjn2g9FOhbnS3W8Z0pAhV2OvefKb+To9OlReRvhHL+XvAtMvEpf/1YSTXgqHK7/ZsYICnE+04aAfseKZ8qqKIe8zp/FPYm6mDMnkmJz11d8hNM9N2G5AFvdl0TNdj2hi47KbCEJObKoqA7UnVJYV5dUl6WvcGctZP1dvpcpQqW5Cfn9LXP7TK5i87nUcmuLMtbQyvL6MNU0dC+eUqp8yhcEcXTaVzRk5bIi13OrO+aWeXmTn1Ud/TkFqmI0XgDHDLMU7tycyi4bQJhthvOu+qUHdOe3WIen+IMHdoerKGuRPjlU7zzDUmfZ8A7nlNjfY5FvFUqB27bxiDY++Xd00779qpI0U5bf7U9ROdLd+pbTJJkVPO88tzCMIlaMO9xxr0njSnPRfVPeyr5tFLnI26PvWarYGd8/rtRmcrK1X2afltunWQsLNt/u3Rnb7MNcVNF7e3ZDjleaDyCmTbcT2F7nWmO5RZ5rblCjLXqkz6ptK0X72ZDjN3fnq91HXNXSF1QrbTxoTUtTK1bTqcTBxSHf06UpRf5aSnc+vmnLjkXgN0pCivbZZ37526buRdd3PaeOn0QelsOintLk/X990hN70BlM4pp9u5Tk+SukwVRTJ5I68/YnvnrO+96iBGPDTZ008/zVFHHQXAPffcg9aazs5O/u///o+f/vSnIw1OTALrnNF95HyysfXO6ZwUo7e7Dtwhdp4SitikGzKX6tOMo3Fw8l7rEGOvkRapS4UQQgiR0UGYd/Va1ust+HHfJLL7fO/uXdbyA/u3melm5PVSIUbc6dbV1UV5eTkADz30EGeffTaFhYWcfvrpMmrpLmqj3r1GqYvvpoND7A5GOuiAEK/ot7jR/htTqeZzxlmca5xKCQP/yijGjgZuT/57oqMhhBBCiEkirLNvHv2XeRlv++4f8PvXFjae1At1TVoGUhBixJ1u06dP54UXXiAajfLQQw9x8sknA9DR0UEgEBhiazEZ3W8/OdFRGFM9xCY6CmIQMeLEtXSKinx+vIMOhvCOdn/M6SLCPmouISPIWcaJVFE+nlHcI/3Q+T+0lvc5hRBCCAERsp/EqDOmsJcxk8QgDzsU4X4vXDrdhNiBTrfLL7+c888/n7q6Omprazn22GMB97XT/fbbb6zjJ8bB2oG+3bMLM4cYyVBMrG16sM/eiz1VnCRWn9dFQxQynRqKCHG8cThfMs/ja94LAdjLmEUL7RMR1T1KgiSv6LcnOhpCCCGEmATCOQMpXJb8MdNjRw34sEMV5VRSxjHqQ1SrCrR8kFXs4Ubc6bZ06VJeeOEF/vSnP/Hss89iGG4Qc+bMkW+67aLa6ZzoKIypGMMbRURMjOusv050FMQuoJseKlU5paqIZ53XuNzz+cyy2Wr6xEVsD9JCO4/bL0x0NIQQQggxCURyXi8N000LHQOu10I7G2ngKf0Kb+nVJLEGXE+IPcWIRy8FOOSQQzjkkEPy5p1++uljEiEx/mxsHO1gqBH3wf5/9s47Po7ibPzfmb2qO+nUq5tcwDamGGNC7xAgoQRIgECAkEYPkDcQSAJJ3oSWRughgST8UngJNbTQe7exjbtxt9X76SRd253fH3t30lm6JsmyZe+Xj/Dt7szs7OyUZ56deR4Li5xZrtbRqfwUisE2ICx2P9w46UuhKF+kVvBb7UfsKadSJcoS56eImrHK3m7Py/q73GD/3o7OhoWFhYWFhcUOxk9qj+vb4sJJBNNjaViFcWyvTFlYjANyVrpdfPHFaa8//PDDw86MxY7jrcgnHO34wo7OhsVOgkBst6Xgr6n3eVp/lYtsZ2yX9C3GDxoypcINYDqTOFU7lomyKum8pXTLjEjnmj0HFrEcwzASq9otLCwsLCwsdk8GrnTLGHbAVtSwtdLNYjcnZym6o6Mj6a+5uZnXX3+dJ598ks7OzqzTWbt2LS+99BJ9fX0AwzLWfOuttzJ//nzy8/MpLy/n9NNPZ/Xq1UlhjjrqKIQQSX+XXHJJzvfa1fm5cfeOzoLFTsT2tr3wtPHKdk3fYnywrZv5bZklpw9SuAEUCZ/lwTQDo6V0CxJmCatGJS0LCwsLCwuL8Uu76so6bAUl2LAxmRqMbez2Wljsbgg1Cq7JDMPg0ksvZdq0aVx33XVpw7a1tXH22Wfz+uuvI4Tg888/Z+rUqVx88cUUFRXx29/+Nuv7nnjiiZxzzjnMnz+faDTKjTfeyLJly1ixYgUejwcwlW577LEHv/jFLxLx8vLyKCjIbmub3+/H5/PR8M1nyFvgB0OBFMjyPIzm3pyOAeQ0H7ajJuA4d08A9FWPoW95G9W5HgDV2wyGDlJD5JUT7NnKJmMLDR6N/zcrn8f38GRdPrmgIfm77Td8xXZC0vnwv1YTfWsr0fcbRvzs2cSRUz6G/HqEK4SxqRCiNoTDhe2LB+H6wYVpn0Ff9Rh39N3Fcq2Ox/fwcNaaHr5+61GUryvH6MujpayPsmY30hAYmkocV6gSXJqLBaVrARJhatf5sKmdY3WHmLwRuXcTuLugrxBcQdBaAQGGQFZ0o3p1VJ8bWsvAZ0Pu9SnSE4U8J6JoOqq3GeEqBpsLjCiqeYmZuN3DFl8erxc08U6NK6mOnbWmh8Pq+pjaZX6hKuvT6XBpLCuxc90RJdzxdht7tYUpDhq0uE0HFht8dkIaLC110Gczy88dNeizyUTaJ4rDedp5P/qqx4gu/Ssq0JCo87JwKnLiEeiL9h2y7sHQdUn41iDK1yMKulE9BmhhVMNkEHuh2kpGpX7GjzeVd9DX2J5Ul4Ah61e2x+1lYWqaCwgbYXTNyJim1DT2qJg1Km2R/MdQAQ0iGqIyjGpxoNoqoK8E7QttqOBalN8JYSfC7sbYNBn0AnD7sB1cldSnxYm8fi1GyzJW9S6gyS0TdWNgHbOhDXKgEGcee3GN/ZucpZ045PXvhH/CT//6IAV9QWyGwsD8iiSAkAbrC2y8X+3iyK195IcV64ucHFl2PvqCWeifgmotQVR/gAquBa0XpEK4nBgbKlHtlRAtRVZOHFxWvqdQvQqR123WWW87uLtQLaWQ14dqmI7aPBNsNRnfiazy4Lh4r0FlF2fg+KB6m1mjr8t6LKimnEPWbEjbfrPlOu07/ML+fSKvX4sKBxAOL6rpe0Tf2orR+AyqwwuyB5EnIX81dHvB3QeRYow2D/jLwChGVk4E+0tQug5R1ILwdaE681EdhaBFEb5uCBaiOvIxGidDVzWyfM6g8tM/74TmHiwZfudE7rcYo7UGbfZWVKAKRDmqrQQ55WOUPx9EOcIbQAU2gq4jijsQRQa4G1AthWYj1t0QUlDYgeooQeQrREEDqrECFfAiyhV0K4xNVaigE7pKIehiR5t01Y6oGfH4MloyFfmPQUEDsrweFXQgvD3gDKHaixHF7RB0YWytQe6xBuxR0HRoL0YFPGBIEAIxZQNqy0REeTM4whhL90bOWgHdBVDcbl5z94FQoAQ4Q+ZvocCmQ8CDCnhRWydgbJmIcO2P6vaOrTzpbYVICBW1o7bWgtp/kEyQyzsSJWsRXj84NoIzaJZb12yMjbVA8Q5/78myShuhRnPuYmiKWRVzUM19o14/x+pZ8T0Fznbo8oLPQDW5QdfMuhedjOpREPKB4UROrMw6n816K+2yK2e5LZ2cVqFKKNIKh/XsovoDcL8DuvlhUuQHMdZNAp8fUdiJaitFFLZBxG625/wguLsRRe0ovw/CTvB0Izw9oBkY62oh4kDOXIVqK4aQExXxQEcVwleDtu++uH5w4ZBzUuEqRpbNwX7M7wCoDR5NA5kdonlxE6AvcXzOmiB/bPoiqv6jpHluXObXZn4tZVrB3/6N6CcrgE0Idx8q2gsoVF0tqDnpZfzJm8BoNdtrYRtCi4AA1VAGzghG8wS0Gc2oNgOisY+VpV0YGyfHyieKnLEGRDOisBO8AYz1tcjZK8Bubp0lagNdw1g5EyJ25OyVYGgYa6YjijpN+TDsxejMB6VBVyXCW4twl6fuu7RGRM1GRHE9xrqpYIuAciK8XWY/XleFnLEeCtsg7MBYNRNZuwHCDtA1VHc+qs+NcEhExWZUZwHCGQJ3EOPzGaj2YlRLNcIzG1G2Ajx1IPugpwScreDPB3cfIl+iWmoxNmughQADOXUDYtIGVGspxpYahFRgjyD3XA2ajlo7HaRhjuXOEEbdBNSqPaDPA8oGngEbjd02RKFzh/SPQ6bhfRNCveBpR+TrII2M84LARBtVfz2Nrq6utPqlUVG6AaxevZqjjjqKhoaGtOEuuOACmpub+fOf/8ysWbNYsmQJU6dO5aWXXuLaa69l+fLlw85DS0sL5eXlvPXWWxxxxBGAqXTbb7/9uPPOO4eVZlzplqkgtxcPhR/jcuMXmQOOEDdOpopJvOL4K8XCt93vt72YGjyGeppzivN97UKOkPM5M3JF0nmJpNf12Whmb6flqvAvedB4dEzv2eFcgFu4xvSeo8WlkZv5i/7EqKY5T8zhPeejnB/+AY8bL2UML5H0OJcgxOisaNoetKlOakKHDXlNQMr1lBJJi/NDPCIvZdqXRG7ir/qTAOTjSXJjPxR2bHS7FmeR650TvwpQHjoo6/AHin34WI28/xIIzuNU/uz61YjTsrCwsLAYO/YPnc4KtTZx3Oz8kG7Vw03RO9lHzmSOmMGx2iE7MIc7B+eGr+GpUd6B8VV5Ev/P8etRTXNH8qr+PmuNzfxI//WwHdatc75GjagY5ZxZWOxYstUVjdoynnXr1hGNZt6v/fLLL3P77bczYcKEpPMzZsxg06ZNI8pDV5e55LW4uDjp/D/+8Q9KS0uZM2cON9xwA729vSnTCIVC+P3+pL8dyWvGh2Nynz5CCCX4SF88JvfbHkSNKMYwtkVuVFtpU52DzhsY6Gr3WErRpFrH/J7tZL9EfWej08i+X8hWJXan/ccAHCj3BUBDSxvewKCF9qzzsSPYqLamvKaASkqHvDaLqWkVbmAqleJ4cGfMy3j3nLVZNaDlMGRXqbLMgbJAofgnzxJRkVFJz8LCwsJibGhVyTJCF908rb/CP4xnuT76ay6J3LyDcrZzYCiDDcZWNqSRVYZLmzG0V8/xys+id3G1/sucFG4aMsnUxUZVtz2yZmExLsjZkcK1116bdKyUoqGhgeeff54LL0y//Q+gp6eHvLzBk6n29nacTmeu2UlgGAZXX301hx56KHPmzEmc//rXv87kyZOprq7ms88+4/rrr2f16tU8+eSTQ6Zz66238vOf/3zY+RhtVrN+zO61jDX8XL+Hk2xHjtk9R5NN1NOYxZLnbdmgtrJIDb3CMkSYvCwm9OOdJnaA0k11jtsvXkvV6syBYmyrBk61pfLmyB9wCxf7i704QRzGy+rdjGmvNNZRrmW/TXCsySRgNQ6odw7shGNerg4SczOm/YWYcnLbdHZVNqgtGW3gDWQ01z8aGKxXW9hTTB3FVC0sLCwstheGMmjb5uNmp+FPWklvYBBSYV4y3uEUecxOvXJ+e9BIK7PCQ5uwGCmv8yFBFcIlhj+33ZloHMbH+W1llg1qC4ey/2hlycJiXJGz0m3RokVJx1JKysrK+O1vf5vRsynA4YcfziOPPML//u//AiCEwDAM7rjjDo4++uhcs5Pg8ssvZ9myZbz7bvJE9bvf/W7i9957701VVRXHHnss69atY9q0aYPSueGGG5IUi36/n4kTJxJ5aSO9q/pAVwhNICryMJp6czoGkDVetOmFaHsWAWC0r0F1rMcImJNT1dMEykAICZ4KzuxaypdVkCaPjXdrXKwtsg+7jLJhqVpDr+ojT5iKJn11B8baTiKfNo/42bOKozaDaETk9WI0dkMURGkZjuOPwHZg+on4pva3mBkOExWCtUV2pndEOOSNiZRv8WH05tFS0UdZkxvN0CiWPtZWtOJrkrgMJ0Ju4sKKvSijCKOpB2kITnx2MqEVf2anWN9R2Yn9omJQHZDvRqAw2jeArkBoyAo3Rss6iEgwipBVeyAK10IRyGIPonQ2qqcJ4S5FaHZQBtGt7yKUQrhLOMK3nAJvL+t9dtYW2fHiJkiYKR1BpnZFqAqYq4TKe3Xa3BqbCuy8NtnNsZv6mOwPU9qnaMozV+E0eG3oQlCXrxGNCXA2pRLvJU6b0YnRuQZjyzsYgYZEnRfeamTRNFRL2ZB1D1LUpWidWXc8PRht7Qh0MMqQNfti+H2jUz91cw//EaX5nNo017ThIRUtFTG7Hk3upHPbHpc35SEMhrxur3CS3wQRYwl7yz5qK/all1DaNIOVn9HbqkbeFrc+i+rtgkgUWV2N0dIB0SKErRw5vQi97jNEXzcKG6KoFDqKQCtGeMvQ9i9P6tPi6BtepqT9Ka7r6UyqG/E6ti0+vLRgfhneQ07J2CRmiqn8+R1BYUcjZT0RwprApSscumKDz84nlS4Wlzs5oLGPkqDBihInesnLqKZi9I1B0+6Jscl8tkinab+otBjVIsAoBXs5cvLkwWXV8C4EO1BGAFEgwehEdW5FRQVCCkTBvtAzFbwzMr4TrdqD7cgJg8ouzsDxwRt4geujHVmPBetFHdPbI2nbby4sN9YyfdNalB5GaA4Izzfb56KFEFFgdCJ8dlTraoiCsgmErwTaAVUEzlh51r2HiqyNtdVuCAcwOrtAd4LdjizeC9WlIVQNyErk9P0HlZ++vI3oR03waW6mBCzGBlHagjhkEtosA2zFyMICsw9Wm0EJZGEByqajNi9FhbrBrpDlPozOdYhQL0rZEPk+VEcLyggCHmT5ZOjdgArZQHciq2eg2tox2iTKr4Gqhl4vxjsdEMpeOT3aOO85akTjy6jKVFufRYU3gliPsHViGI2AAVEHwqZjRGyIsAPcQXAKhKajehwQcYBhRzg9qLzN0Gs3bb7ZdfC7wBUCQ0O4wxg9boQuQEiEzRN7X4DUEQ4XGDZUlwOCxWBMwTb7qxiB/DGVJ3HWo9rrISJATESbePggmSCXd4SoR3j8GE1rETJq2gMtnYVqLwV76Y5/77HjPhnk66UzkmSG+sp3OLgRjjDmE5FRuip03hZ/58PGN1hs/IsyWcI3a87frvkaUZoN70KkBcJBRGkxRnOnadtTaMjyPVDtUdAKQdiQUyZlTDNQ3sG19XPTym2ZjiG17Ndqf4PSyprcn93YhFH/DCrYAXoEUViIaouCMMARRTg1jN6tiKiGMvKQhTWovq1g60bpIJylEAyCIwhaABF1o8ICJdtBt4Geh8zfCxzVaJNnos2che3AuUPOSYW7FOGbQlP1yD5uTu+IIAKvEG5ZnjTPjcv8sniPlHGjHy8iumINqmkrSAPV2WLa1FJlyKr90sr4FLdDX5PZXrV2FAGEWzPrinKBnICc6MFoWIHqC4CQyKJ8VJcPxASEJx9R3IrRtBBkO9jaQCmwd2DYuxEo0O0I5UR1eiHqAE8vwpmP8tsAFxh5SN8kVJsDhAscE9Em7QWeitR9V3QVOBtQvUtMW6VROyJ/BirsBxGCiEAUBlEsRulAwINwCJRhg4gTVAFClCKKqlHBZRDuMfPtdpv9eKQIxVRs04/D6OkEvR6MTvB4oL01IcfJkiKQZehLAqieXlQ4gCzvxlCrzD61Lw/hLsYwNiBcAbBHEOEiVMBmloUUCNckjK2lEC1DaF60yf07MUShE1GWN+b9Y8rj5tUQbgbViSiwm/Utw7wgXJTdLrtRs+mWLcuWLePYY49l//335/XXX+fUU09l+fLltLe389577w2pCMvEFVdcwTPPPMPbb79NbW1t2rA9PT14vV7++9//8sUvfjFj2vF9upttt1MgRmfFk6jxULDBVFAG/7QnBOqzilfn0djrggmZA46QVx1/4zA5DwB/7cOouvS2kkYTx423mYMKEL4rZmOtuwAKA/iab0gbt/XBCXh7uhLltPyRrZRe+XPYSZwhjIh8P44r7wNhEL77chxX3G8aKo6vo/L2QMA0rB6/Lny5b42Ol90kqthMA8sf2UpNz+BVWbqAkksm0/bAJrQhehBdgKbM9ABqevRB9fcWeS2X/e32oeu/t5rwLdfnVvcGlBFKJsoK//i1UThmFHSZhogBx5X3Eb77MrPdEWuTQPieSxNh4tfiDOzT4gTv9IEaPPmN1wMHNiJEUYAbF04cdGLW2f/YH+AEbWhbcAPp+31+yhVdCjBi9bA/o5LQL3+YqBPxZ4v3ORDrd7pT22Rw3Hgb4XsuxXHF/ea/V94H3gDhW6/rL7sc6txQZRcn1fiQzVhQRjHvPbKC8p7BW0Hi7TcXLtfO41f33ma+UyEJ/+H3qLqeRHkk6s9V9xK++7JE+aBEcnkWdCXKDKGg22v2WfFzAQ8oaca12u64xHHjbWZ7uOGOpPeYqCt+H+T3j0+JftvbY8aL1x36+yNzzIv16UqY5++5FLpjXox3hXF+tBnY1gIeU06ItTnyA6CEWd433t4fR4mELAGY4eLhgfAt15vhlehPyztgnBbbCASxfiF863Vj3p4HypNxRkUmiNXdRL0drXQtMhJ/p3E5N3z3Zf0Xuwv65b9xzqC6G+8bk+SNewH6x09Uf3uNxYm3x/At18fSvb3/OgPqbWyOlUrmUEJSdMnEnJ+jktLEToRVj9RT2ZNiGYO3Gtd3Uu8g6Sq/FXRjQJszrQJn1e6GaK/QP1eKy3ED65LjyvsI33W5Wafy/TiuuhdQiTJN9IPbkFTOsWPHDXeY/R+klKG3JSFn3nBH//3i7zjW327bdyf1zTB0Pz4g/wNls6S5d6w+DTXuJvJ31b2Q3w3d+WY5xRzpJJ47No4D5v3uujw2Vu/8K2kHyvhJ+og078yv+pgUvX7sbLply5w5c1izZg2HHXYYp512Gj09PZxxxhksWrQoZ4WbUoorrriCp556itdffz2jwg1g8eLFAFRVVQ0n+7s0RRRwuDiAtcbIbOvtKMa7zaadiWrKt/s9HjNe2O73sNh5CccUbmBuQQgNsBMyU+b+8cUimRbaR7VPXGGszRzIwsLCwsLCYrdHkGz6IxfzGBYWuyJZbS/df//9ee211ygqKmLu3Llp9/x/+umnKa9FIhFOPPFEHnjgAX784x/nntttuPzyy/nnP//JM888Q35+Po2NjQD4fD7cbjfr1q3jn//8JyeffDIlJSV89tlnXHPNNRxxxBHss88+GVLf/ejAzztqAVPVRC7ijB2dHYsdyGdkb7NsuKxn9A3XWoxPokRx4saJwobGRCq3y33GdFn3DkIgcOHAzuiaInhXLRzV9CwsLCwsLCx2TXYHecvCIheyUrqddtppCScHp59++rBvZrfb+eyzz4Ydf1vuv99cunjUUUclnf/LX/7CRRddhMPh4NVXX+XOO++kp6eHiRMncuaZZ/KTn/xk1PKwK7LKGDvnDaNJiPCOzsIuQy/B7X4PP4Htfg+L8YGBQTfmkvkL5dm7nTHn0cSLm2566SOEAxsM4bRjOMS3AltvxsLCwsLCYnciswqtmnLqseysWlikIiul28033zzk7+Fw/vnn89BDD3HbbbeNKB0wt5emY+LEibz11lsjvs94p5hC2unMOvxKtQ6l1Lia+OpKx7CWLo87QirMruHXyWK0mCm3n4dMtRt8e9XQBvy2AYNtug0XA2NA6hYWFhYWFha7OtlITtYczMIiPTl7L/3kk08wDIMvfOELSec/+ugjNE3jgAMOSBs/Go3y8MMP8+qrrzJv3jw8Hk/S9d/97ne5ZskiBVWUUSXKqBUTWaXW06v6aKGdAL1p4/kJ0EDLmNj1Gi1a6dgNptO7Hr30WUq33RSBSFKCTaSa2XIap2nH7cBcjX++Kc9gC02ECOPhWWDsHOFYWFhYWFhY7FooFBoyrV22Jkbm3dTCYlcnZ6Xb5ZdfznXXXTdI6VZXV8ftt9/ORx99lDb+smXL2H///QFYs2ZN0rXxtLJqZ+cMjudJXqFBtTBH7sHT9vuYETo+Yzw7dg4S+7LG2Ei1Nn6Ubk2qFU/mYBY7GWFSeDKy2OXZdtVZI82cKA6jRlRknYY1YiRTSAE/sl2CT5oeHYPipR2cIwsLCwsLC4vxTiZHCAoyKuYsLHZncla6rVixIqE0G8jcuXNZsWJFxvhvvPFGrre0GAa32n/Is5E3iBDlY+MzJooq5ou9+UytIpRG0REhwjtqAcvVGo7iwDHM8choUm1sv01pFtsLfZTsTVmMfzzk8XPtqu16j119e+lHjn8nFG4WFhYWFhYWFmOFpXCzsEiNzDWC0+mkqalp0PmGhgZstpx1eBbbiQmygn3EngBsVY30GL18XTsFI8tJ50q1bntmb9RptJY1j0t2bRWIRTrENuvUqimnWBbumMzsAjiwM1nW7OhsWFhYWFhYWFhYWFgMIGct2QknnMANN9zAM888g8/nA6Czs5Mbb7yR44/PvH3x6KOPTruN9PXXX881Sxbb4CUPTWgcKPelRW+nhQ5WsZ4vysO5hluySmOVsWE753J0aVKW0s3CYmcik6fLbVed5eHarvnZ1dmbPcfsXopdf9WghYWFhYWFhYWFxWggVCYXoNtQV1fHEUccQVtbG3PnzgVg8eLFVFRU8MorrzBx4sS08a+55pqk40gkwuLFi1m2bBkXXnghf/jDH3J8hO2L3+/H5/PR9tZaPPVRMBQIgShxodqDOR0DyFI3ssqDrDItkKlAI6qnAdVrKo1UsB2UYo3YxA/kHykK6ggF7W6NFaUOmjyZ9aQ1VLDO9Rq3Rv/Iz6N3A/CY/Q+cqh3L9yO/5En9ZVpoT5tGKUVsdb2D0dCD0dCDvqZjxM+eTRwVaQG9DdxBVGsnREGUFmP/wgFo02tT5ve6yB38n/9hNAW6gCaPjYqeKLOWllDcnEc0mEdXcYinu3+LVFrKPDSrVn7Q9AukEhz74gS+9ORE8sjLWObbnT0NnNfUovQuRL7pekC1bALdAGlDlHpRTWtQUYHQChDVM8G1FVEokb48ZGEtKtiOcBaCZgelozcu4oHIP1jpbGejz06bW6PJoyXVsYqeKBU9OiV95jbQoqCO5ixipaeHZWVO5rSEOLVvDtFgO584twDQ5tYwhFln9ZjWZeB7GUhFT5R5rYJH9ZuQUkM4ixDuUoS3CtWdP2Tdg6Hrkgq3xupOH6qj3byuFaLVzET1eEalfjZFW/kf4w66ikMUtjuRSqALRVex6SFy23Pf6vgyzaqDt1mQiPOw9kts0pGx3VycfzOtdA5Kc6jjCzmdY+2HDLst6pvfhb4O0MOIigmotg6gAGEvRkwoQdWvRAW7QdgQRcUQ8IC9COEuQtuzKKlPi7O+6UWu7LgcX0inw6Ul6sa2dSxOrZjASud/c2oWwcV/ZFHbc3ze/SEhTeCOKjxRyaoiyZJyB2uLHOzZFqYwZLC+0E5LnsZFPRfwvdYzUb0eVKTFfLZwN0iBKC5GdeoICsFVjKyqGlRWRv1SVKgD9B7w2sDoQjVvQhimGkpU7IeITEB4J2fsH0WJG9s+pYPKLo4KNLKxewGX+a/KOBbco93Et+1fGxQ/Pr746eU33b9mncPPWk8fy8pyd2EypyWE3QBdajTrBdQ2lHD46mIuF+dToCtkgQ2jeR3oCmwSUViM6tIRwpcoT71+GfRtgEgTuPsg1IHRtgWhO1AOL7JmPsoPwl6JsJcgJ88a/A7WdxH9uBH976tzfgaLMaDIj/1b+yCnCbD7kEUeVI/Z3lAKWeQBodDrVkOwGzSFKC1CtW+EcAClbAifD9XWCJEe0PKRldNRnRtRUQU4kdV7oNrbUR0GqgeEVokK5hF9sg62pncWtd1wgPvJU4c9voy2TKVvfhd6N0F4LYgWjM6lCHSULhEOByoMGHawK4TbCw4d/DpKt4NwIfLLUNG1CD0C0Sg4bajuENh1UALhtqF6dPPBpR3hqUb1dZlfWzQD4S1GGAKjW4BRgnBPx7bX6ai+vLGVJ+1NqJY6lKEQzglokw4YJBPk8o5UtB2RF8Bo3ADooAlk2TToLQBb4Q5/779ruo8lxuqUMkNRuxMxhOxyLAfyKh/TVRzi252ncKo8dtTfyUif1Rx/2yDahygpRrV2gA4IgayciuqMgj0fhA1ZXZk2ze9Hf8mG4tasZKz4caA4TFG7C4eygxDUF3clyi9VnAOK5/L9wLm5lUWkBWPLq6ieZjDCiKJSVHsfCIWwKXBJVMcGiCqQHkSZ2T9iBEBFEfnVqN4+0MKg/AhNQ4UUKtgCyoaQXkTVgeCuQpswHW3SJLTptYPmpFf7r2O9s4smjzYsmWEg8fnEzd0n80VxMEiZJPMLb2XKuPraDegbN2O0NIFQqM64jO9Dq56VXsbPD6CCbWZ71TtA9UKeDdXRC9KNcNYgKgsw6ldAb3tCzlW9eQh7NeT5EF4/Rv0CCLWCakGIIEpvQelNgAG6DeEoQgUkKBc4FLKwCtUdAVmAkh5k6TRUpwDNjXBXo03YE9zFKfsuFdyAsDdjtC6AcBgMG6J0b1RfN4IwKhxFFChU+2ugh1BBOyKvAIQTFXYibCXgrECU16I6PoPeVjAMREExqgegGJzTsU0/HCPQC5EWVNSP8LpQHW1m3bJJRFERwlaEsbIbw9+H6vUjSoMYXSshEkboDkRhFYZ/OdCN0iJIZyVGVwShu1E2O1rJDIxmL0KVIpz5yIn9NuOFz4kodo1Z/5jp2GjZigq1IqIBKLCBIOO8IOCKUnLkdLq6uigoKEhZj3NWugH09PTwj3/8gyVLluB2u9lnn30499xzsdvtuSaV4Gc/+xmBQIDf/OY3w05jexBXumUqyNHmvsg/uFa/dVhxZ4vpfOp8mkeiT/Pd6E8A+L3tRi61fR2A6cFj2crgLcIDOVwcwD/sv6VclgwrD2PNDZHf8LD+OF0EUoYpoZA617tp0/GrAIeHzmU15kq/eWIv3nP+36jmdWdiavAY6mnOKc45nMwWmniPhQD8j/Yt9hUz+Ub0h8PKQwmF/Nf+EHtrY7dSZ7i8Z3zKseELsgrrwM7f7b/h7uj/4x21IHF+s/MtykXmdnVR+HoWGEtZy+aMYc/jFB5yDa+/2F4sMJZxWPicrMPn46HFld4Rz7YopZgSOjrhNSsbI75ny5P5m+OOnO6zI/m7/gzfjvw4Y7iVjv9SKyekDTMxeMSgDy4unAQJjSiPixzPMEtOG1EaFhYWFhYjY5GxgpPD32a2mMEWVc9mGrKOO4UaNlIHwKXa1/m9/cbtlc0dTpfqpiJ0cE5xiijgh9q3MZTBCrWWF9XbOHFkNG9zLIfwvOvBkWR3h7FX8CTWsWVU07xInsEDjl+MapoWFjuSbHVFOdt0A/B4PHz3u9/l3nvv5Te/+Q0XXHDBiBRuAOeffz4PP/zwiNLYldiish8ot6UAL0CSF8A61a9kmy6mZEzjHbUgoXgaDyxRq9Iq3DQ0jpJfSHk9ToHwcpntvMRx3wgnozszSila6cg53gHaPqwZUDde0N+iQHiHnY82OnlfLRp2/LGkQ3WhZdlt7idmcap2LBuVKcQKBNOYRKvKrsxLRVFWCjeAx3mJxp1si3Wz0ZZT+G56CKlwTnGEEBw9oF1nY8Q32/LfWWhVHUymOm0YG1pGhRuYqwm3ZaQKN4A+giNOw8LCwsJiZGxRjUwS1bynFnKcOCRlOPsQ1oXiCjfY9U22rFLrc45zpvwi19ov5n8c3+Z6+/fopDsre9IbspTjdjZCKjzqCjeABWrZqKdpYTEeyMqm23/+85+sEzz11FOHlZEPPvgAl8uy6RPnE2PpsOP6hOm9rkb0L98cqHTbV+7Jm3rmFSWrjHUcLg8Ydj7GkkwTfB2dA8U+WaVVSlHid7e5BneXpFv1EE7jyTYVlbKUn4uruCz6MwBWsBZjhB6LPjKW8D2yXxW1o6hXTVl7Z/KSR6fhpy62qlShWMdmtqgGZjM9Y/w9Rfb+eEOEWWKsolI7LOs425vNqj7nOK10UENF5oAD+I39R0yPTuaX+n1ZhW9XnTnna0fypvERm0hflgcxF13pKBQ2kXpYnyxq+Fh9lnRuX2byGatHZKNtV/44YWFhYTFe+Gn096xWG3BgT3zwG4oI0bTp7Gwf8Uab9UbuyqRD5bzE7z1lLTOZykoyO51rHsbH7Z2B4XyUz4ZO5adNdVIiCrdL+hYWOytZbS+VMruVHUIIdF1PG+aMM85IOlZK0dDQwIIFC/jpT3/KzTffnNW9xor4ksH6Mx7Hs9hv7uGVAlHqRrX25XQMIKcWYD92Eo5vzwEg+tnDGJvfQHVtBED1tYIyqKeVJpeiJGggDUVLnsZf98rnb7PzM+b5q/Ik/p/j13SrHspC5iqQI+R8Xnb8BYDnoq9zVvSqjOlcpn2d2/52KpFXt6B/0jjiZ88mjpz1HvgaEI4wxvoqVERD2J3Yjp6L+2ffS5nX6uChnLJiK96IImAX/G12Pheu6Ob8m06idH0ZetBFcWkl3jaZMZ+9LZ20Ge1U1nsQgBzegtBRRUzZgNxrC+R1QVcZeAPg6Ii5/xTI8g5UwIYKuaChCoqiyL0/ReZFwGlH+Kag+lpNm242FxhR9LaVBAkRtAk25dvYWGDjzYnupDp24Ypujt4SZLLfVM6VBA2KnBNxlO1LxdGLeeDVFvZqjzAt5GO1y7RtsbHARkgTLC1zErCbRt0GvpeBXLiim4uWB6jqVVRqFaZtB98U5KSjMT4+cMi6BynqUska5IS1kO+HXgn2MGrzVAjNRLUXj0r97NL9dMkA7aVBiltdSENgSEV7qbnSp7jVhWZolMsSIqU2Wlvrk8IUt7ooMgrI17wZ201PicHnbBx0n1THQkomlE0ZVlsUZU9idDtBl8gqP6qpANVcieorQjt0M0Q2ozq9qKALIZ0YGyeDno9wetEOrEjq0+J8/PyhiLaV+EIGbS6ZqBvb1rGBXCG/wa/t16V1tjOQ4P2TIeTHUFEM+pduRwXUezU+rHRyWH0IT8RgY4GN1UV2fB8cwfGfHo1qL0ZMexsim8HeZ9ogstkwPp+Maq2CcDGirGpwWdU8Ad0OyO8A3QVFLQhvJ6quBvL9qM17YGyYiZDlGftHUZ6H8ztzBpVdnOhnD/PKhl9R6O/IOBYI4FH7HzhNOzYp/sDxpaN3A1scPSwvcXDJcWUAfFEexmajnpVk/vL/wKstFEQUfrvgvS1HcPgbNRzVV0d+6wQ0LYx0SihbBR1FkB+AnhKM9nzoKINoIaKsCgpeQVStRRS3IHx+VFsxqqkMPL2Iwg7oLUR1FGBsqYX2akTRnoPKz9joh86Q5f54J0Ue+DHGllq0OetQHdUQqUS1FyNnvYdqL4JIpfnug3Uow0BWtEBBGJHfjKqrBFsEQh4ISyhrgeZy8IUQRU2oLRMwur3Iyh5Ulx1j00QIOqCrGMIuMugStv+zzy0b9vgy2jKVKHsSihuQlfWmfaICPziDqNYyRGkrBF0Y66ci9/kMbDpIHdqLUd0FYJh9sJi6AbVpEqKqEexhjAUHIOcuAn8BFHeY1zw9IBQoAa5gzIOOAnsUur2ogAe1oRZj02QQsyBuf2ms5ElPJ0qPQsSG2jADgnsPkglyekcVa5GebijYCO5e0AxomI2xfjoo3w5970tLNuFrtWclM2wruww8V97qpVqVjfo7GemziponwNUJbUVQFELVF6KiEhDQOxH6gKAPpezIqtRtMZ0sl+q4UpbTURrC2WqQb+TRIFtpLg0MWX7bHu/XNjWnZxfT3kbkfwKG2ZQoCKBW7gGlbYiSNtTWiYjyJojaUY3lUORH5AUQpa1m3Y44oMBvtk1pYCyfBVEbcr8lqOZyCDtQYTc0V4O7HG3vvXH/7HtJMkOvCtLS9zldDpEkMwyX+Hxi/+YQxSofr/Qmyfy2fS5OGbfvZ39E/3Q1ODdAXi8YYUChNk6D4Oy0Mr6s3Qiq3WyvhW0ILQpSoLZUQ14vRt0ktFmbUU1uVLzfK2/FWDcVWqqhqA9t9grQOhBFneANYKyYZfaD9tiAo2ugaxiL9jXLef/F5vHSvRCVTai6agjlYXQWgJLQUQmOGoS7NHXfRSeidh2iuAljxSzw9IGhIQq6wBVEra9F7rUCfJ0QcWAs3hc5ayWETFle+X2ooBthNxDVW1BtxYi8XnD3YSydg9FeDI3V4JiKnLIY8utBhsy8FTRBW7Epx3l0qJuO0egwbQSikHusQdRuQDVWoDbUgqaDNJD7fYbQdIxls/vHAlcQY8MU1MqZEHKBsoFT63+5Tg2R7xizcTFj26t4Ffqi4GsDTxghjYzzgsBEG9VPfHX72HQbCRdddFHShEpKSVlZGccccwwnnHDCWGYlK+JKt8222ykQ7lFJU9R4KNhgdi7BP+0JgexWhNR5NPa6YOgtRDY0opgKz29rX+Ueu6m8LA8ehJ8AhRQklpOfKU7kUfUsnXSnvd/R8iD+b89DUHVjt9rLceNtIMyVROG7rjBPdhdAYQBf8w1DxlFKkRfah2WPbKGmR0+U0/JHtlJ65c/NDm68k+/HceV9IAzCd1+O44r7TSE3Puv09pjG7SFxXfj8Od9m2zq2/JGt1PQMVqQrISm6ZCJtD2xCG6IH0YXpPKHOY3asA9/LQFKlj7ea8C3X51b3BpQRSibKCr8v+zR2Vwq6zAkT4LjyPsJ3X2a2O2JtEgjfc2kiTPxanIF9WpzeOwuQQwwvQ9WD78mzecl4jwaaecvxD/aTs7LKdvD3qT9CKMx548D6qQuI/vL6RJ2IP1u8z4FYv9OdetB03Hgb4XsuxXHF/ea/V94H3gDhW6/rL7sc6txQZZd4vhTjQ6qx4D7bz7jYdlbG+LqAkksmA/Bd7WxsSuM+458Z8xpv77qAzXfeSHW9N1Eeifpz1b2E774sUT4okVyeBV2JMkMo6PaafVb8XMADSppxrbY7LnHceJvZHm64I+k9JuqK32d+HImHj/fb3h4zXrzu0N8fmWNerE9Xwjx/z6XQHesDdoVxfrQZ2NYCHlNOiLU58gOghFneN97eH0eJhCwBmOHi4YHwLdeb4ZXoT8s7YJwW2/T5sX4hfOt1Y96eB8qTcUZFJojV3US9Ha10LTISf6dxOTd892X9F7sL+uW/cc6guhvvG5PkjXsB+sdPVH97jcWJt8fwLdfH0r29/zoD6m1sjpWNzDBcUsr7AN5qXN9J7Ripq/xW0I0BbU4AKrt2N0R7hf65UlyOG1iXHFfeR/iuy806le/HcdW9gEqUaaIf3Iakco4dO264w+z/IKUMvS0JOfOGO/rvF3/Hsf522747qW+GofvxAfkfKJslzb1j9WmocTeRv6vuhfxu6M43yyn20SXx3LFxHDDvd9flsbE6uw/qO5KBMn6SPiLNO/OrPiZFr8+odMtqe2kqgsFgzltC//rXv47klhYpKKOYBlqAfptuAGfI41mntrBALaMTs+NZo9YTJLPtpEXGcgJqP4b2q7fz4Ccwoq1RFrmz83ebFjuaTG3SgT2xvblKVrDR2ArAU/orWSvddnUUKqe2NtCMQC5xzpVfykrpZmFhYWFhYWFhYWGRGzl/DtB1nf/93/+lpqYGr9fL+vXmlpSf/vSnPPTQQxnjT506lba2wfa3Ojs7mTo1extGFqZzgDh59Cs/bQN0qU7h5B21IMnQ9UrWs6+YmTH9TroxxoEya7wZRt9VcDEy9+EWuzcD7QmeJo9FIJjJVNaoDYzxAuydllxtJdZl8Eo9ZBzVxCFiXuaAFhYWFhYWFhYWFhY5k7PS7Ve/+hV//etfueOOO3A4HInzc+bM4c9//nPG+Bs3bhzS7lsoFKKuLrXRT4vB7Mueid8u0a90kwPWRpwujx8ybrZOBcbDCrLtZezTIj1e8nZ0Fix2EaaKiZwsj2QV63nKeIV/6s/Sp4IE1e5toF9X6W2kbstwVrp1qC4qZWnO8SwsLCwsLCwsLCwsMpPz9tJHHnmEBx98kGOPPZZLLrkkcX7fffdl1apVKeMN9ID60ksv4fP178HWdZ3XXnuNKVOm5Jqd3ZYiCrAJe8Kk18BVRwMVZYfLeTxq/z2fGst5RX+fz9lIA81UijKcOAhl2GaqIdnZrVVvMRp3dBZ2SwqEN3MgC4sM2LDhwM4x8iCeN94E4FvRG/lW9Eb+YruVc22n7NgM7kCy9ZQb78tzVbo5cbCJerrpQSLGxcpmCwsLCwsLix2PQDCFGjawdUdnxcJipydnpVtdXR3Tp08fdN4wDCKRyBAxTE4//XTA9HB64YUXJl2z2+1MmTKF3/72t7lmZ7fl+/JCVrCOj9USAC6T57GJOmxC4xR5TCKcTdg4XTueTaqeCbKSRcYKAPJFXkaFG0CIMB7s2+chRonlRmrjmxbbj4G2Ay0shouXPIQQnKYdR4Nq4SN9Ce+wACBhp3J3RSfzSjc7NmqoYD1bqFfNWaftwkkQcyXhKrWevZjBUtYMO68WFhYWFhYWuw8VlFoKNwuLLMlZ6TZ79mzeeecdJk9O9mLy+OOPM3fu3JTxDMP8Yl9bW8snn3xCaam1nWW4SCTn2L7ML6L3cKjYHydOTtIOp1gWpozzfduFTNKredZ4HYAuAlRRlnFSGyEKO7HSbZGxgmeM13Z0NnZL9hMzgf/u6GxYjHM8mF6hJ4hKfmm/hmv4Fe/optJtONsldyXM/jc9+zGb6XISNaoCiaTH6MUjM2/9jivcAH4WuTvJxp6FhYWFhYWFRTpqKCdK1DLzY2GRBTkr3W666SYuvPBC6urqMAyDJ598ktWrV/PII4/w3HPPZYy/YcOGYWXUoh8bGlNkDZ+opXyuNpKHmyKR2VV5jahI/K5TTXxB7MvT6tW0cbJZabEj+cT4jBWs29HZ2C1ppTNjGInM2Ri8xfhnpb6WSWmu7yFq2aS2Uk05e8hkBzpX277J/fq/AEvplo3SzSvdhAjzjjIVlb/RH6LYKOQAMYfUn8GgklIaaQXgXbUg473iylELCwsLCwsLC4ewU6FKLaWbhUUW5Kx0O+2003j22Wf5xS9+gcfj4aabbmL//ffn2Wef5fjjhzbavy09PT289dZbbN68mXA4eYvjVVddlWuWdjsqKMVQBpuU6XhisqhGCJEhFlSL8sTvetXEIXJ/ntbTK912djYqy/nGjiKb7aV5OAnQl3PaEWWtuhnPLDXWpFW6rVHmx5cN1DGJmqRrVZQhEChUyu2Sa41NFFKAB8jc841PQiqc1UePuWI2AXoTx7fqfwTgOHEIj6eII5H4CeSUn55htGMLCwsLCwuLXZNiCnEKx85u+tvCYqcgZ6UbwOGHH84rr7wyrBsuWrSIk08+md7eXnp6eiguLqa1tZW8vDzKy8t3XqVbno2kOYcUYKjcjgFcGnJGUf/poukYwU7Qg+YJ1W/K2hAgVf/vdT7zdR0i5tJAS2I7UK2YkNUjVFKaWHlUp5qYrU0n05xu/fQuijpduHsHVJXhPnsWcVRLKbjMshC+LlAS5QgjK4aeWg9Uuq3z2fA7JC1umTgudoeRfU5QIqd8DnRGIXaCab3wBlCtJeAMIUraUG3FYA8nNA7CEUZ154MS/dcL/OY1AQgJygCE+RuFUv0r0AwBQU0k6licdT4bhSEDtx7zihtPw5GPT+TTbRcUhBUilgaY6UQktHvcyLwyNqt6/A5Jq1sb9FzrfDYqe/Wkeh7UBC2FXipn5CM6QtA7YAVOmrok8vvLiLADHGGErwvVmwdR+6Dw2aQ58FgZirhkYUiFNPrrhRF7gIHnkAIxcJHfgDQVKpFGon6lyFem+2ZznHSPIZ5VlLZByAEIVFuxWW59LtBtqNZSEAaipM0sVwQq4DXbFALybEl9GsD39V9xRIq6sW0dmyKSlW4OYaecYppoS7nS7ZTI99igttIRKxnBYJlPAd12gS8cKzthHlPVhiPoRkTtiWfD0f/xR/j8iWdHaIPrQVtxoo2J0lZUVwHCHun/XdgVa4uyv8xT1S0pBpVdnFf0d3H4NApCOi5dDTkWgKl0W6kGr/YNER5yfAGBcOQzS0xnsVqJjk6EKNWUU096m3DddoE7quizCdZP78LX6cTWUorw+cEwn1d1FfSXT0kbhJyoPjfoGggNUdxuhnGEwBFBdef3l50jZJZdyNnfdg1H+rZpsdOhWkrBEUbF6ka8Dx54LPIDZttDoFqLwRlG2KNmXYi1LZRMqk/x8Y+wI1a/2lFBJyBifRPscDX8COSfnI6zSFOUtpnl5zTblXCGwR5rc94eiNjNch5IxG62wRgiP2CGzzeV9InwEbv5juPpxrEP+GAmlBnOkOZ77XND1NbfN27HZ0+SJ0XsmhJm/zyUTJBlmvEyQSizTsbGjiH7/RzSHMmzK2OALDcMGQFIG0ZIOWrvZMTPGivzxBgTmycAqKDLfNdhOyBgm3wbEhRGTuWjpECmkOMG5jOXd5BNearWUnD1TzqFI2z2d7FxUpS2JtppfPxEGghPT//5WHuPh0k8U7x9x+YLuEKIUlM+l0XTiQTbQDfNT0jVL0sNxRPOe4iqKPmh/TLq3eLzibxof0glBFJzI4sG24ofiKwOobqC/W1OCRAqdXseUJ5J7dXZb1ZDlLT3y7tdBYiS9v58dRUkZEGRH+gv31iZDuo342kOPK+EeRxyJsazeN1MJ2PG+654XJyh/ncsFMIeNfNS2pqkKDDvIcw+FxJzQoRCeHuSxoB42gk5f+Dcu6Qtedx1hBGFXRCxJYZX1VVg1rWufLMN2qJm3x67d7xsAfN+Pn+s3sWfdYj6NEbjYsa211Ka9OyQeV6A0wb+wY+0LUIplZX02tHRwd///ncuvPBCCgoKkq51dXXxyCOPDHltW4466ij22GMPHnjgAXw+H0uWLMFut3P++efz/e9/nzPOOCOb7IwZfr8fn89HV1dXxmcbLWYEj2MLQ3vkLMLHv21/QEjJseELALhM+zq/s9+YVdrTgsdSRxNlFPOe8//YI5Td6sQtzrcpE8XZPcAYclDwqyxmZcrrL9r/zNHaQTmnWxk8hE78zBBTWOrMvG16PBKvC9nw/2y/5qu2k5LO3Ry5i9v1B1PGmS2m8w3tdG6I/gaAfDx005PV/fZlJp+ziS3Ot/CIzPapxoJrgrdwP/9MG6acYpppx0c+Dc73kEIOCqOUojA0jxBh5ogZLHA+lTbNLaqBGVm20zjxlWIAJ8ojeNpxX07xR0JA9VIaOjDr8D+zXcmPbN9LOndI6Gt8qlaYK7Kcn2IT/UomXekUhQ5IfHS43/Zzvmk7k5mhE9motg6pgNuWPFx4yONs7WR+Y/9R1nkdS34XeZgb9d9lDLfA8STvGAu4JnpL0vn9xCw+dP47ZbyfRu7k1/qfAThLfpG1ajOLVeq+NB15uGh3LRhWXItdi3/o/+ER/Wk6VBf32G/mQLnPjs6ShcUuzYGhM/lMbT+HYh3OBbiFa7ulP1ZcE7mF+/X0Mty2LHQ8xV5yRsZwB4S+wjL1edowk6lmppzKM44HcsrDWPNg5P+4Sv/frMI2Oz+kQHiZFDySZtpyuo9AcKQ4kP86HxpONi0sdhqy1RUNnhGm4J577uHtt98eMjGfz8c777zD3XffnTGdxYsX84Mf/AApJZqmEQqFmDhxInfccQc33pid4mhXpyONulRDcpjtADYa/d5iasXErNP+jnY2x8tD6aKb5foaHFk4SRAInoy+nPU9xpINbEl7fZZM//UkFS7Mr+ZBFcoQcvySixJ1gqwcdM4n+reXThtiM+FEqihW/bYG42WaDUtYRS99vGy8l3Wc7c1K1qe9XkkpBXg5UhzI1+RJQyrcwPTgXIq5uqlVmXYwfh65m6NC57Nv6BQei744KN10+AZs8y2igApKzFWJMZaOsXffjSo3T1ZThlipe6DYl8PFARwk9qVRDfhCqxQrjLVJRv/jq13zMZWz2XxF6iVIC+0sMVbllNexZEOGcnThZLaYzgwxhVIxeLVcvG6lYqAyZJKo5jLtvOFlFAhZThgsYtSrZt4yPuYztZqGHLzpWliMlL9En+DI0HkcHjqX/xd9ekdnZ8xoUkOvuhktdhXbqjoGeTnYJp1MNbNFdnOICpHZOeAm6llkrMj6/juKTPOqgSw0lgMwg8kZQg5GoViglqKrndt2uIXFaJG10u2JJ57gkksuSXn9e9/7Ho8/nsqCTD92ux0pzduWl5ezefNmwFTcbdmSfUPfleklmPLar+Q1APxTf5Y9RC1zxWxmiqkpw2/LTFnLK8Z7HCDmsI7NzGBKxjgKxf/Tn8n6HmNFi9FOFeVpw5QzvNV5rthXvYEe/nY1lqk1WYetEYOVbgX0b0FZx+ZB1/tEkBJRmDjOdWI+X8zhXWNhTnG2JxszCCJ5ws1aNvOW+pg9ZG3asHGFZwsd/CB8Gw/oj/KhWsxqtYGnjeSt+3Zhx5lGOd41wDZXB36aaEMO6NrraKJPpe5TRptMyiINSTH9ytght8cLeEct4H21iNeMD/hT9DG+FP4Ot0X/yL36P5gywA5cXOk2XUxmrpiFC2fGPMbLZ7VKr0jdkWwy0turDBIiTASncFA6RD/XSCuGSu3EZL7ch1KKOEDMoVV1UjaE4i5bdvwGfIudhaIBbbtNde64jFjsdrxqvM9HagmfqKW8aXy8o7MzJkSNKBNEZdLHt9FmUUyxMt75yFhMbw62SV9y/CUre9lg2trOhhY6iKrMDpJ2JJlkuDiVlLJembL/ETL73Q0DCdDLqp1YDrOwGE2yVrqtW7eOGTNSL7GdMWMG69Zl9iI5d+5cPvnkEwCOPPJIbrrpJv7xj39w9dVXM2fOnGyzs0uTztvjmfYT+UBfTIBe1qgN2LFxnDwk67RPk8dRTTnvq0XcHL0ryblCOtaxibXGpqzvMxYsUitYlWb1kQd3ytVGmUisdNtFlW5BFSKag2faqiEEioEr3YbCh9c0sBojTDhNaCgcoMQD+EQt42/6kzvNasN2utJel0riiz3DadpxacOWUAiY3oHvNf5Ox4C0Vxhrk1Z3AfhIvVx5IskKURcOqun3VGxD45Ex/OqfybmJjkE7XQlvmNvadINkT8uP6S9yZfQXvGZ8wAJjGQYGm2kYcD9TQAzQyyK1Mqs2a4sNfc20Z1wRtqMY+IypmC2mAVA6QLkdJ0qUdWoLW1QD/4m+xoPRR5OuV4pSPOSxQC3jceO/aetYJqLoZGmpwmIXZ+CHlnSr9i0sRpuBK6B3F8cvbaKThWp50se30Wax2nlXhOfC1hxW7E2iiilysGySigpRklU4haJlJ/f0uVYN/og+FI20Jj6Mn6AdOqx7lVPMamPjsOJaWIw3snakoGka9fX1TJo0tE+6+vr6xAq2dNxyyy10d3cD8Ktf/YoLLriASy+9lBkzZvDwww9nm50xxz/7Ecx5cMxst0NC2MjtGBCFTmxHTSDvkS8CEH7xWxib34JQbNJthGlThmkLUYLdiNkF1eDZqXl8cNIiTol8D4lkf/biB7aLs/4SA+bWtrlyNvVGMz30USnK0u7Huu9bx3Do29WUtriR/IeuETx7NnFsZz8KHtPopf7GkabhyYgdOcWL99Wbk/L2sfos6fjBV1soCRq0uSTfPa6Mh15tx//dO1CdTjC0nPL5OscljKd2kXnb9PZGTN6Edti7kNeH8cFByP2WgHuAkdWKZmgtRukaxgcHI/dbgtxrhWlAUwCaC4wwSBsIG0rpdMQMpSogpEGXU/J2jYvvHleWSPfBV1s4ui6KHqo2VXTxNDyV+C76I0v+vpXKHh1NmfUVzHRCmqCz8CXy3Mt4UCW/l4E8+GoLp6zvxaFj2sKW/fmI/utsDnu7mr6WB2NqlPR1SUzcmCgjgqbxUf2tI1H1E6HPPSh8rvVzZfjchL2wiMPAHpZJxwD2sEQikDxBV5r69v/Ym7Bj9qA04seCf9Hl0BL5WsyZKNSQ93WEZeI9DnXdPG6mk7vBIU2nCtvkS+6xCNWTBwi0gz9E//BAVH01hJzYznkSZAjj07mmoWIEauNks00JiSh3J/VpywxzBWWquvF2jYtLj6s0+x9KKVPFg5ZKDfwY0DjAuP/z6k1Q4MSBRFJ3/2oEmwiSz2PJSaALqPNqTOjWEbE63pynIf/+NQpWTkH1uck783E0+UV6nKFEHvTXj0I1VEHIBXbHoLKynfUIxqJ9kXMXY3y2N/LATxBlregvnIicvwD9rSNQ66eCsqWub/Fjh4b99GmJshtIKx08+GoLR9QF8YWMQWPBd48rY8/YKufSFFvFAy98A3vdEg4PGQgEQeN7ifbr+tZyDpR7s8moo5c+OlR6pXL8nXojioBd8N4bF3Do29XUHPMsxscH0K2uBaHQjnoT46MvIPdbjLFoP1SPB9VUAWEn2B2IqUvRDnkfUdmMcPWh6mrQPzgIecACRGUztJagevLQ3z8YVV8Dyju4/ILWdpSdlaOBtnMKiT53MrZTHsL/8Weoxhroc2M7+1H0jw9ANdaYY5YwDWJrB38IeX2I0lg72mcZxpK9UbqGdvCHGB9+AbnfEoQ3gP7eoaheN9rBH6Ev2he1abJpLDrWf+3wdZcubdjyz2jLVHKPRcgDP0ZWNaJaY4a5nSFUXQ2ipg5CTqLPfhnb2f/udzbQk2cacY8hJm9GbZqEmLQFhCL66NewnfOYWd6eXvPaQOPhAwyVoxnQ60ZFbegvnISxrhbCXohq2+XZH2Q6BtNi46JGz9mHgSeAsEVRCjA09DePQNVPGiwT5PCOxKRNoEXRDv4g5qgB9DePjPX72pi+d4dDUBf+TlrZJNMxkDaM4YCu8D0jro+j8Z5tZz0Crj6MD005WP/wwH5HCo2VZtig2/Sa4LQlxV/oOCPjs8aPJYIu7sk6n9eFnfyQ72RV5tLxGF1hlTZN25n/QuS3k+jPStvQnz4VedCHiMpm9OdONvtNJczxc/4npiOamjpUXY3ZJ5a2IFxme4w+fiYosJ39b9SWiaBEbL5wECroQVb78L56M+EXv8UTm1+nIGSOsXbDlKUaPRr7nj94V0J8t8B8ufega9sSl2dK+wyEitn8l5uIOi8gPOlkHCeltu0WOO7nGPWdaAd9YM59YkWVsj0PKE8xZROICNrBHyA8Pf2y3ruHIvdbjP7hQWhHvYXx4ReIfzvUDv4Q/Q1TFhTlLWjHvYawRRFlLeAMEX38TLMfHIgSRP/vq2Y5n/Nv0CXRx89EO+m/6C+ciIraIOgyy76xEqJukPaUc2Fj+Uy0L72I8PQQffxM5AELQJgOE4QtSvQ/X8b21SdNJwaxe9vOesJ0vgCo1lJUVENoBmLCVrPfj40B0X+fiQp4TVk36sZ25r8Tc2/jg4OQX/goIcfhDqK/eaTpBCI2TmjHvo6cshlj80Rzru4IQ8SB7ezHEEIRfep0M65Q5lzsjaNi/WN8fN5mnJZjNy5mOrZ95Z8Yn81Bzl0EbnOXUKZ5QXdB6sVSA8la6TZ37lyefvppDjpoaKP0Tz31FHPnzk2bhlKK8vLyxIq28vJy/vvf/2abhR2KauoFEbcFoLYR+rM/Vo29RN/pXwlibH0XepO/vmixKLYBSbh1OKw+xD/VEjMeBnvK2owraoZippjK87wJgD1DFTj4vSoqmzxDPsvwjtOHkbUbiLt8jDbFVrt0F6D7B3/F+8RYmnR8aH2Imh6dOo+prJhfH0C1OWMDcm751Ha04L4Nqr0IOXkLCIPo5onYTn0u1vnFRghPDyizG4tfF3F3h9DvvVAPA+GkpxOY9cvda3BoffIqoUPrQ5T1bvP+9DB0b8Un8pkQMJUq0F9f3b0GuoDJ3Q20e7o4lOT3sm367njyKjkf4feqqEhb95LPDSwjlDTLqqkcelz95TSC+mkbsDDYFkz+wLDtcTb1yx1MbnuD0hhUH0XG+2bMV3DbgcHMl7FxcmIwlJO2EH3mFOg1y15ONoWq6DOn9g+YeizvSg3q0z4wFgGkrBtH1euJ+lcsCof8WFMzYPXetqv+wPTMeaQ4EMFqUgzhaCqWh9ixWzePo8smgd9ckWifvDEWub9cos3liWdHH/wO5aQtprBz2nNE/3MKtlNeAG8AY0Mtti+/aPZb8fLJVN+CelLZDaSbHg6tD1HZm/zO3DqJdjpLxla6xVZOgqmQrKGCLrqprF9DUSJ+rL+ItV+AA+W+/Nswx+D1Wdhxib/TwlD/2KDVbkR//qT++lPZnOiDov85xTzfl5coT7W1BlnRYvZZQiGK2zHW12L70ov9/VhxB9GWspggnam9WuxMCEBO3QA9HmTtRqLPn5Tog2XtBqLPnwg9LlRLYSJOot/29pjt6Ev/NfsgQJ7+LNHNk7Cd+jwIA2PTJFAi0Q7piY8Rw1vVPuqMQP4Z3nHqMMbGydhOed5UaBa3mx+kYm0Omw5aH8b62n6FG/SHHYAobk+EMdbXJsIlruUNWFU2MK14eoCxYQoE4qtpsx2Pc3t284NX/zg5UJ6Mjw/RpooMMkHm+6q2IjP9SVsHyKvlpofmYaY53GeXQZVkTmLEMsJQ54Kx++eQr+1Vx+WkZDk43k8AZl8Ql/9gUJrbylxDPWvycfb5lAP+n5scNnSacvL6JLkETw/G5onYTnvW/L2+FtuXXgDMtmX78gvEJ46J9uvpG9xupUpcj88X8PvQW805lr71bSq2kfltMVlqKFapDRjKwCZseMkjQO+Q4YDB8kx8ntsbMOfCadA/c4Bemnj/xFSYmduzSow1A9srYJbnqc8R/U8ZssKUW+LI059NyIKqTUdWNJtpx/rQRHkOZOB5YT6csb4WW0E3xobY+bgMHZcxU8g38bHSVtCdSNf2pRfNMF7TIZ2xodZUuA28d6xfB7NvTsjF8XoRz/+GWjMvcTl/4Nw7Vs/655qxuZTql7JlZTPYI8jyFvMdxLSowtObVLbxvEWb4/FTzK2NsRsXMx0nyv60Z/vLJMO8QPVlt7I6aynliiuu4Le//S333HMP+oAb6rrO3Xffze9//3suv/zytGkopZg+fbplu23YCD42+ld33WS7YlipzIxN1IAxtfU02nhw4SW1Z0tnDob7LXInGxsiYcvA+m7FWmMTa9iYNowdW2Jr81BbSwEmDNhe2kn3oOsCQaEY/nbI8UAow3bso8QXmC/Mr8t2Yeen2uV8SR6FRLKeLbTRmXEL+f5iNgeIvTlMzKNDdXG6yP0jjoWFhYWFhcX4R09j3iiOCyeTqAaglz7W6psAsrIRbmGxO5P1SrczzzyT6667jquuuoof//jHTJ1qbmtZv349gUCAH/7wh5x11llp05BSMmPGDNra2tLah7NIhaKQAg4Qc+jEn3LCmom9xR7MZRYRdD6KrZwbbyileNZ4gwipDZJqO8uX712UApGfMUw2A7jFrsE6YzNP6C9RRRkNtKQMN/CrfKo+bOD2Uj2mOMrHwwRRgUBSKoqYLKpHKec7H9nYMQwSZIackjj+sf1SABbpKzg48jWgv+xSMVNOY4EyVww7lWO3sYNkYWFhYWFhkUxERTMqBg5hLvO1vfmL/iQA86Jf4ZjowSwje+dsFha7IzlpJX71q1/x4YcfctFFF1FdXU1VVRXf/OY3+eCDD7jtttuySuO2227jhz/8IcuWLRtWhndnFPCY8QIL1DJKKcrJlttA9pOzmCCrWMYaCkdgPHtH0k1PWoUbgEOk9vhoMXKyWekmdrJtuhbbj3eNhdys35VW4QbJqx+nDOW5FNMTbAmFFOHDgR07Ns7RvsQi53/41Pk0Lzv+kuRsYVdjaTi98Koh+Zvj10NemyNnJMwGGIktF0NTjI98zCXzG9RWDpT7DCO3FhYWFhYWFuOdbHanGEKhKRvNtNFMGxGivMQ7Gedk6VDWB3qL3YCsV7rFOfDAAznwwOG5Bga44IIL6O3tZd9998XhcOB2u5Out7e3p4hpMZAKkZ176lRcqZ3PFtXAp2p8ugJvUenriQM72oiGAItM5OFOY73BRGWY9FvsOmTrZj5Z6ZZ6te5G5xvYhZ3/jdyLUorrbN9Jur4rK92ela+RbpGaDRsTUqz0sws7M8QUVqi1GdufEIJaMYHP1Go2qwYOEJYHcQsLCwsLi92RTKvjAd5UH9GoBn9cPZ5DeJ0Ph7XDJayiuDMHs7AY12SldNu8eXNKr6VDUVdXR03N0JOpO++8M+t0LFIzUqXbEdqBHGccwlc5iZ/pd4079VRrBpfbs5kOfJY2jEVm8smDIWxqgTlhFwl/TBa7OxuzVLoJ4EscxdX2i5gtp6cMZ4+tVC0QXhDgEs6k67uy0u09/dO01/Nwpb1+sjySsB4Bhn4nA1vsFFHDZ2o1UaJMFROppYYNDO3cwcLCwsLCwmLXJFuF2SrWJ35rSNy4WMoaDhfzeVN9lPN9e+jFl3MsC4vxRVZKt/nz53P66afz7W9/m/nz5w8Zpquri8cee4w//OEPfPe73+Wqq64aMtyFF144/NxaJBip0g3gl/ZrWGWs48f670YhR2NLq0qvdJskqrGUbiNnpCvVBMJa7babkK3SLQ83T7juyTrd79uGHjNqROWQ53cFPmdT2ut2kX7oLhclrM2QBsCL+lu8bvQLyD30Jdncs7CwsLCwsNg9MIaxSq2QAtroJEAvPxNXDUvpFrKcrlnsBmSldFuxYgW/+tWvOP7443G5XMybN4/q6mpcLhcdHR2sWLGC5cuXs//++3PHHXdw8sknp01v3bp1/OUvf2HdunX84Q9/oLy8nBdffJFJkyax1157jcqD7eqUUzIq6cyU06iinAaaRyW9sSLT9tJZAzy0WgwfD3lAIOd48RVwlsJt92Gjym51lD13qwZDUkXpOFufmz2ZHBrYSW+vcr7cO+31eLv8xFhKANP9vBMHDaqF48VhrFP/yiG3FhYWFhYWFuOddEo3Jw4kgj5CFOOjna7E+elMIk/k8S+eG9bHdoVii9HARFk1ovxbWOzMZPVJu6SkhN/97nc0NDRwzz33MGPGDFpbW/n8888BOO+881i4cCEffPBBRoXbW2+9xd57781HH33Ek08+SSBgTuiXLFnCzTffPMLH2bUZaJS+chRWusWZy+xRS2usyLS9dF+x5xjlZNfFjRNbhhU1mRwlSATScqawy6OASlFGCYUZw9pGSelm30UdpfSpID0ZrSWmZz8xC5mm5SkUhjL4TK1OnAsRZpVax5e1o0Z0bwsLCwsLC4vxRzplWYgwfYSoopxLtHMpijni66aHQlHAcvU5ujLYkynDuu+zxuvDzbaFxbggp9mP2+3mrLPO4qyzzhr2DX/0ox/xy1/+kmuvvZb8/PzE+WOOOYZ77sl+y9FYox1QAWv6zNmlAFHgQPnDOR0DyAlebCdMTqRrm3MR+qZXUN31+FUAFfYjAQPodkjywwYSEA4ff5vV3xmOxvbSOF/kUF7gzSGv/f3CVRz96gT2XFWEMARKKrrzw+R3O/CqPKSQWT97NuWlL/4CorAVNB05bT3oGkrZsM2fmpSv1iFWuj0yy0tB2MDvkFwk98I25yIi+4Qxtjgg4swpn2Ejgq3HiCmVdrwPTlHWir58b4QngNx7Ffqq2Yi8mK01BaKiFdXlhbADuddy9FWzkfstQjqiYNPAXQZhP9jyEDYndXo95b1RUBCV0OrWqPdqvDax35TpHtRimzMvUT+BRBqyeA8zXzUHY7R/joz20euw0666qPdqlNmq6Cybwlu2VfQRTLyXbXlklpdvrAzgCxuJOh/PRzRF3QMo7HbjUe6k9yhq2s0y8gZQfQ6EM4ScshnVPg3V5RtR/azP78TbbRvUBuLHeoFGMb6c+4RUx92iB39+CImkvNuHpgR+ERh031yPA/kRPCIP4Y8gDYERCzNh2lJEtxd0ib5yDnLaelR9Nao3H33lISDakbNWQZ8bhIaxvhaiLrA50WYX03NCCYvVyqR3+36Vk+mdEfIiiu7Yu6/3asypPW80mgQAEU3Dpg9t+NfvECwtdbBfSxiHrmhxa2zw2dBO/YyqhVNRXQUUrtwHrwginSGQCl0qqN2I0ViFDPoQ+UWD3pG+fG/krNXoK2Yi9/sMY9MkKGpHzvsUY9NE5NSNGGv3AAoyvmfhc+C4OHl19+dqY+L3I7O8HLulj+qAnhgL+hwOqudclLZc3MLFVuc75O99Lz0bn8cVaAMUwVAbnfYIWwrzKTLWsmbAvQBWqvV803YWqZYQvl/lJD9s0O2QvBlrn3MXz4WJ9UhhoNsMtHVTkXutQF85E7nXalRnAao1CiEvIr8IUfMpxsbJiIom8AZQzWXI+Z9gbJqIKG9BdRShugqQE+swmhTCWTO4/Fr6IGx5O9vZULH/Rz8+AIrbCS3ej+jEerQuDdlVhL74C8hJLahOO6KkC1QXylDoy2cjvH1Q3IKc9yn6qj2Q+y2BqA1j4yTknOXoq2YiitqRey+DgNfsp2avRG2YgoraoMsHug3Ujh2tRY1n2PJPrvJkpjBi6nsYmyYhqupRnYWIiA3cQVRzGcIWhT4Xcv4nqIgNpAFCQacP1VGUKEfhDaBayhCuoCmXzf8EpUvoKoCiTjOtiJ3EjV19JAQmWxS6vaigC7nfYtS6aRCuQgVdo/bsQ42LosCJ8ofIW7Q/jqIOpDMISkHUhqzdiGqbMUgmyOUdiZp2hCuIvnw25PUipIGcXoex1g2GZ7u/9x6/H93QhyUDDHUMZBXHbthwS9eIZPyR1nF9+d6IvG5zjFk1u3+eANBWA1FQvV4wbIiifJQ/TJ8RJCKjGZ9VSEF+QeGw8xkxovTJYFZlXtDtRDMkUaknXXdIB64CD/rKQxDFa8GItcOiTuScZRgbJyEqmpEHLMBoLoeohpy7yJRDXH0IaaCayyBqQ5S0Q14vCIU2/xOUIVEhR+I6UTtyzgqE8CH3MHcHPTIrn2O29FIdMOWq/LBBn13weWH/R87ztFPwiXwKKaADP930cIX8Br807uVdtYCvciKr2DCob4zLM3u2R5LmuXGZf0N0MZfZhpYP7V+xoy/fjL5yDiKvh7inKVm7CdU2Pa2ML6d2gegxx5nCDpDmSCXnLEdfuSdi0haMTVORc5Yl+j1j4yRk7UaMhipEaSfGpqlg70OUtIKn1yxPXZr9JoAhwZDI+Z+AIVFhO+ia+Z7qK5HzPoWQ0+wPlUA1VyJUMTgKUs6F5X5LMeqrEEXtaDEZCQQUtSOcYeS8haiePPMdR21mnnpdEHSBEqiOYgg5wKYjJm4x++qQA/L6kPMWQkcRqqEKjDJz7u1rBRk155gD5DiRF0JOr0N1OUEzhUN97VTk1A2oLROQ09aBPWK2w9YSEAZy72XoK2aaY4q7DzllI8aqPSFij72UAfNBTYBLG7NxMdOxvvgLyFmfo6+chcgLglRmPWusRgXzh5wXaJX58OGQVTcJoZQa0/1fXq+XpUuXUltbS35+PkuWLGHq1Kls3LiRmTNnEgwGxzI7GfH7/fh8Prq6uigoKNiu9zo7dDXPqFeHvPaJ40nmh89IHK92vszkFN7rcqVV72BC5PCc492oXcJN9itGJQ+58q3wjfzD+E/K6z3OJWhCG3b67aoLvwrgFk6K8OHYxVbVFATnZnQN/i3tq9xrz3716UJjGYeGzwHgEu1cbrX9gLPD32eRWkFLbGXiaNl485JHk/ODEb3jXCgI7kc4zWbGW7UfcI39m6N2vy+GLuYt9XHi+Bn7/XwrcmPGFZ6ZsKFxtDiIRWoFAXqJEEHHwI2LZucHw149ttRYzfzwmRnDlVHMZudbCDE6E+M/Rh7l+/ovAXOLQ4jwsNI5RR7Ni8bbRGOCnIak1fkxbpHeYcH24P/0F7gwcl3K6z+S3+VnjqFtpmbiiehLXB/9Ne10cpQ4kBfU23hwJ7azzhTTWOh4Ek9o35zT1pDoGFRRxgbXG8PKn8X4xq8ClIcOGnT+P/YHOEE7bAfkyGJX5ZHoU3w3+tMhrw2UM2aJaSxyPjOWWdvuHBo6m4Vq+Zjft4Qi6lzvjPl9R8qc0JdYqzLbOP2O/Bp3O24a9n3e1D/mxMjFWYc/U5zAE+rlpHOHiXk847gfj8gbdj5GgiuY3oP5RCp53v4n9tBq+WP0X9wT/Tufs4nHbH/gTv2vbFENbKExZfxKymiiNeU84H37/7G/ZpmZshhfZKsrGnOLyYWFhTQ0NAw6v2jRopQeT3cXPt9m1UEcD272EtM5V36Zi+VZ/Ey7kkpGb6VbqVaUcxyJ5N/6iwTUyLZBDRcNiRPHkNemUDNiZUyx8DFF1lAhSnc5hZtSKqPCDWCmmJoxzEDcAzwq9tKHW7i4zv7dJMPsI1G4eXBTRAFlFFMrJrDWyCxEjRaRDG7U95UzR/V+l9jO5Qx5QuL43/qL+Mhe6a8hsWNLWqEpkUTReVctZJ6YQ5AQOgbXaBfxluPvaAy/zXSm8HC7LQ7so6ZwAzhOO4TL5Ne5WJ7Jd7SvDTudRtWWULiB6cGrSbWNRhZzZpWxPu31Y7TBSo1sOU07lna66CXIx2opkOw8oV41DbvvjNefBlroUzvXxzOLsaFAeHHjHHS+hfQ2WC0scmWjkdqGaFzOkAg6lZ/LIj8bo1yNDdnaTx1t/PjpVj075N7DRVc6m7Isr69rp4zoXlNEbnPYaUziO9rX+I74GnOYwYHswydqKVNCR7NP6BQe1/87ovyMNiUUMpVJ7KHVAqbDurjTp4ui17NALUso3Bwp7M6ac7fBY0Sc4yIXZbTZbWExXhlzpds555zD9ddfT2NjI0IIDMPgvffe43/+53+44IILxjo7OxW9KYxnT2MyUkj+4riN+xw/40f27+EUQyucxgIPbgwMPmcTn+6Ar20AK9TalKtaviZOGuPcjC86lT+rcE/qL3Fm+Ar+EP1bVuFdAwbSPhUC4DA5j+PFoYnzI1Hs9BKkAz8ttLNUrWEl64adVi4oldkhxDyR/utgrnxFO56H7LdQywQOEfvznPEmBWT/5VPHIEI0SeFpYGDHxlwxi6liAjOp5TAxDycO9pEzkWL4w0G2dWqSGF0judPkJH7nuJH7HD/nx7ZLh53OUEJeE60jydqw6cnwIeMLIvdVaHFswsb+wvyKPHDVZNx4sp8AvapvWM4uJJKDxVwOEfuzXm0Zdh4txi89qpfgEONyJm/jFha5snqI7WvbYqBooIWX9XfHIEdjQ6/Rxzw5J+VH5+1JBJ1PjM/G/L4jYaOqY18xkzzSr1ovwsc8OTI5boKoQMthWv2hWszd9pu423kTJbKIj/mMEGG66WGN2sB7xqcjyk+u6Cr9x+V2unjQ/r+J42PkwUxlIkUU0EuQfej/+OxKoVhroJmfaJekvMcUavhHNPUuJguL8cyYK91uueUWZs6cycSJEwkEAsyePZsjjjiCQw45hJ/85CdjnZ2dik0M/TXmAu20Mc5JegZ61vt4Bw3ALWm22Q1369XuwiqVnbLKQOFXAfwqO++leaLfHlyQUOL3bfYfDkjTGLZ9PIVKEjRXqfQrgkYLfwbvrTY0fDI/bZjh4BYuLtfO5331KXuKKcNaJahv44kqQpT31SIaaGEtW3hXLeQf+rOM1MpAR5ZKtxmidkT3SYcnB6XktnTEvHANpEntGKXbq8b7Ka8JwClTfyXOhi/IffDhxY6NYnxJilkfXraoRvLob8vZttcoUT5Qi3hffTrIVpzF7kEn3UOuwl9qrB4itIXF8Mlm/I+vutxKI/WqeXtnaUzwix5eNt4dtimFkfJvY+dafZWJhWoZC9Qyekm/+nqKqBnxrhabsFFDRdbhN9NAREX4a/RJChksQ461grOe9G3kXPFlJmv9q/mcwsFy5wu85/g/ABawFA3JZGpwpVAKGyi2Gk0plZMrWMsf9UdHLJNaWOyM5GTTLRKJ8L3vfY+f/vSn1NaObPK0efNmli1bRiAQYO7cucyYMWNE6W0v4vt0N9tup2CAUmEkiBoPBRvMff/BP+0JgfrsInqrcX1n+wivecG9MYaY1C+aeR7V9d7tcs+hcNx4GwhTURC+K2YvrrsACgP4mm9IhCsJzk9S/gEsf2QrNT16opyCf9qT0BWXgRpz3fLok+/HceV9IAzCd1+O44r7TQOV8Xfm7YGAByBxXfiGVoTEbD8OSZ1HY68LJgDwJXEUd//t3xT3DLHyRkhcV3cRvNMHarBBc12ApgBvzO5goD6RthM7odj21sQ7GyIf4Vuuz63uDSgjlEyUFX5f9mnsrhR0JQzIOq68j/Ddl5ntjlibBML3XNpvpLw7eatrT7Vg6qoHks61PbDJrAPbMor9WPD3qZWdCtMG8cA86AKiv7w+USfizxbvcyDW73Sn3srruPE2wvdciuOK+81/r7wPvAHCt17XX3Y51LmB4wFAcfCAxAQhVfvItgxTjS+6gJJLTIc+v5TX8BPj94lrz9r/yE8jd7KYlYPixd+pLmDznTdSXe9NlEei/lx1L+G7L0uUD0okl2dBV6LMEAq6vWafFT8X8ICSZlyr7Y5LHDfeZraHG+5Ieo+JuuL3QX7/+JTot709Zrx43aG/PzLHvFifroR5/p5LoTvWB+wK4/xoM7CtBTymnBBrc+QHQAmzvG+8vT+OEglZAjDDxcMD4VuuN8Mr0Z+Wd8CWQ7FNpx/rF8K3Xjfm7XmgPBlnVGSCWN1N1NvRStciI/F3Gpdzw3df1n+xu6Bf/hvnDKq78b4xSd64F6B//ET1t9dYnHh7DN9yfSzd2/uvM6DeFgb4uOEIpj70pSFlDl3Ao1f8hW/IU3nAeJRvaKdRJPrr+8zQiWxUW5HIxMr5SVSxmX5zUinlGZLnHm5cHMJcZmnT+I39RwB0ld8KujGgzQlAZdfuhmiviXIbIMcNrEuOK+8jfNflZp3K9+O46l6zfGNlmugHtyGpnGPHjhvuMPs/SClDb0tCzrzhjv77xd9xrL/dtu9O6pth6H58QP4HymZJc+9YfRpq3E3k76p7Ib8buvPNchLKHJfjzx0bxwHzfnddHhurd7RbwswMlPGT9BFp3plf9TEpev3o2nSz2+088cQTuURJyaRJkzjppJP46le/utMq3HYn5Ngvehw2fSo4SOFmMbrk4+EJ5z0Ui8JRT9vD6CivLXYehlLYW+ROl+rO+EV+NBAInrHdzzXaRZxkO4ISChPX6lQTx4jh242zsLCwsLCwGF8s09ekvf6b6J/xhedxXfQOntBfSrp2oNgH6DdVATBPzqGa8mHl5S0+4R7976w3LFMVFrsOOWtaTj/9dJ5++ukR3fShhx5izpw5uFwuXC4Xc+bM4c9//vOI0rQYGbZh2PDZUaTbWmoxOuzF9lOEj2QboMXOiWLwakeL3BkrA9kSwRdth3Or/X/YS86gWvRviVmrNnG29qUxyYeFhYWFhYXFjmeFsTbt9XqaE2Zefq//FWPALpfz5amcLU9OMgFTLcpZ53wt53wECRElCsDTxis5x7ew2FnJWdMyY8YMfvGLX/Dee+8xb948PB5P0vWrrkpvT+umm27id7/7HVdeeSUHH3wwAB988AHXXHMNmzdv5he/+EWuWbIYBRzYk+xw7cy0Wp5ttjt7yCnbLe08a6XbLoe10m102LCDHBAcJw9mqW5uV31If5xrHd9Muq6hoWfw4GthYWFhYWExPlmTwTlJ3I5giDDr1GZWqw3MEtMAOETbn+9Gf8IUamimjVoxkaVqDUIIXDiGdLCTCh/5hAihgHf0BVxruzhjHAuL8UDOSreHHnqIwsJCFi5cyMKFC5OuCSEyKt3uv/9+/vSnP3Huuecmzp166qnss88+XHnllZbSbQfhwpnRYPzOQpvqTHs9oHo5L3wFf1S9KZxWW2TiVHnsdkt7JB5MLXZODGul26jQpbqRiDFXYl5j+ya/1/8KmE4llpP8xVtDWko3CwsLCwuLXZS+HE1bfGQsYZY0lW5ekccF2le4Q/8TAB1qOShYa2xippjGYjXYRmwquuhOOA57Ub3NFtVAegtoFhbjg5yVbhs2ZHbTnY5IJMIBBxww6Py8efOIRqMjStti+LgzuNPemWgh/Uo3hYFfBawtbyPgUG3/7Za2GAeGNC1yw1rpNjqsVht2SFmWUoQNjWhMsbat17RIzPGJhYWFhYWFxa7HGjamve7EkVjtZkPjUf15DpT7MFtOB+B47dCE0g2gkAIe0P/FieKInJRuposEEwd2XtHf48xcHsTCYidlzK3nf+Mb3+D+++8fdP7BBx/kvPPOG+vsWMQYT8btW1V6m24CSYHwIsaRc4idiQlUJHklGm3GyzZmi+yxFNyjw46yVymFpILSxPH7+qdJtlkslaqFhYWFhcWuS6YtoCHCVFHGH7SfUE4Jb6qP+FH0N4nr+4vZiZ0sBeTjJ8Az+mvMZiq2HHa4GCgqKUUgCBPhHv3vw3sgC4udjJxXul18cfq91Q8//HDGNB566CFefvllDjrI9JD20UcfsXnzZi644AKuvfbaRLjf/e53uWbPYpi4hWvczKyCKkQh+XTSPeR1r8jjCcc9BMUrlnpnGOzLrO2afgdd2zV9i7FnnHQdOz2NRssOu/ex8mD+Y7xGD328oxbiIS/xVdvCwsLCwsJiVyU7Ka6BFs7TTuFm/S4AXjc+pEN1USR8eEQe35Rn8KlawSK1gnliDivUWv5s/Bs9xw+znXTjxEGQECvUWuDAXB/IwmKnI2elW0dH8pf4SCTCsmXL6Ozs5JhjjskYf9myZey/v7l1bd26dQCUlpZSWlrKsmXLEuGEsLagjSXjaaVbPc0pFW4WI+dS27mZAw0DGdtW2oE/Y1gB2MeRR93dnbinKYuR0ah2nNJNx0j0q110U0NFhhgWFhYWFhYW451sP5xOohqv9HCZ9nXWqy00qzYOD30dn8jnXce/qJRlfBpdDsBmVccsMZXVagPOHC1sR4jgowADgzzcKJRlmMZi3JPzrPapp54adM4wDC699FKmTZuWMf4bb7yR6y0txoDx5FGyS1kKt+3Jsdoh2yXduK2qGirYSmPasBoaIUuRY7Gb0UTbDrv3FFGT+O3BTesO2upqYWFhYWFhMZZkp3abLicDcJP9CgBmB09iPVtAmfLLV+Tx3M6DzBbT8asAC9Vy9mAK4RztwgoETmy0EyFMJKZ0s9RuFuMboZQalZ1Bq1ev5qijjqKhoWE0kttp8Pv9+Hw+mv73TfIW+EE3wCaRVR6M+p6cjgHkVB+2+RXYjpwAgL7lHYzGhfyp7XZAUdmjoynQBTR6NE7v25sSChDeCWgzz0KbePh2ec5vhP+Hfxv/HXT+kHeq2G9hGV94vxJNF+iaorGql8qGvKTj2Q1VdOl+dE1xZM1ReBvEoGfPprxE/jJw14G7D6MBCGuIggLspxyD86snA3Bm+AqeN94clNfD6oLcyDc50nEE2sTD0be8Q+iheozPI9Dry/odxc/p79ZBz4712Bf3GCirGpFHhJD2ToTdA1JHheowV2wLRIWBCrRBnxPVW4gsqkRMWYos0KHQjSzdGxVoYLm7k3flUjRDcUh9EKmgwy1ZUexgo8/OuvISnpi2uP/+sfqpOk0HKirQgPCUIUpmY593OZGF96LaVqB6WhDeKjro4rfe11DSTk3JYVzp/A4ASyJLuE7dybs1psMOgUChOKwuyFc+DzAhoCfq/EafnU/LnZSsn0fNQm1Q3QNi9U9D13Qaq3qZ3ziN2Q6JPa8OCgKorgAIHRWoQhbORbUVZ/3eB4bp0rt4V3w6ZJ2vbMjDo7s5ynFQTnU81z5j4LmHy1+gosE9KB82XSMaK4uB+ZxcPQN7Q4gN0S1DlF9/GicHG6jqLURFYE15M4VtLlSglGJ9Bhv3rsPVvgZ3n518vQiXtxRVVw2iBMNTyC8PepKF8xp4//Dkvv/SJX5mtocp69Vp9GjsIWo5svhsZOW8UevHgo8eD12bINSFLiW9RgCpoN0lWVzu4P1qN0du6aM4qLOs1MnnRXbk57VMWVGB0VZMVV4Tc9qDuImipKIjP4K7roy+Xh/tuJky5VCqGrxJ70T1vIARCiBsPZAHQusC1YrR60LYdAjOQjXviXBPzfie5aR8HF/bIzEeFAT3IzxA2XxYXZC5zSFquyLs01vIfLFXTmNBpvY7kL/rz/DtyI/TpnfpEj/uqEGfTbLEvyf7LSzj5BUGtl4XeTJEID/M5HA3MmxH2XXK3XugWuwQLAWtHG1yLYb/ZYRzDeS1QIEf+sDotiF0G8IVAa0K1eFGdU+EcBVa7QGDyk9f2oqxsh38loOHnQ0dHTl1Ay0uG12zNuHXPbTmCVR7MeUFDaiwg9Y8Aa4QR7Xk446CyAshSp2gb8TokQjdDg43qrcX4exF9eUjfYUo22ZUlxf6PMjyEgx/D6reBwEHqrcC+vKgfseO2fZv75X1+IJu0K5183zFRxQ32BN9clNVX6KfP9Z+KM7qwpzSTBz3/guh1UHBFkAHdwA0HdWTh/D0QsiB4fchy1rAEQZNhy4fqs8NSgISUbMV1VKCyO8GRxhj6wRkRROEnFDgR7WUIaQBQgESbLEt6dIAm4KgC/xejPYSVNtEZPUJ0FUwKN9L9VVsFg0px9pMMkA8jKFBQ1UPlQ15lBc0kO/qwuPpoKgX8qJehL8WWXjoIJkgq/KMH3s2IvI7UYH1YAuBXSG02Rj1ExCydHhpZnn8pv4x3Q3Nacsnl+OOqgjlopQTGvcH3eA9sZhVVQ0Z09izoZKA3p04niEmc0TjnO0q/8THXyVbUEGQhXkYLRGIxupq3jRUpwKjEEPZ+OuUj9PUHQGa5MQJX4T6vlHN538rFqDXd6csv54qgadBpZTjmqp6qcxr4uBwHe6o2ZR6vWGcjcUIRxi8vTj1QoStHcI2VK8X6XGhbK2IvG5UyInQvaD1gbsXbGFUWwlE7IiyBlSvB0IuhCpHRSuRVTO4f84yfvyVz5JkDoDKHp3WPBsri+3cv28BX5en8LDj1kR/d1zoQt5VCwF40f4QR8kDuSH6G+7U/8Z+zMIpnHykFgP98szB9UFcyk5QRJJk/vj8IE41ZdRjrv6/7Klyblh8BHmdLeCIoHo6AQPlr0H69s8g49ejIo1me81rBVsfwiYx2twIIVGBGuTUKEZrI0SigED6FEZTBfRVQ4EDOWEzqm8twt0Jni5URyGiuh4cMSNGUQ2idoz6Kgg7kFWNICRGYznSrmP0ehGiCNXuBewQrkZUzkZ6qlLOhZVtLcJXB661GG1FCN0Gshhh6zL74m4PsqIVCrdA2IHRWIks7ISoHSI2VNADoXyExwt561BBzeyrnQZGUxn4i8A/AVF9GIKtYN8Cwg+yABVsQ4VsCLtCFOZBsAZ9RRT0XjDCiAnNiNJ10O1BdRSDdICzwxxL7BGMlkoI2cDQwB6F7kqMtVOgzwfChSjt90crChyIcvd26zNyPVY9n6CirQhbBxRIkDpGnRd6y0FUmnLsNnEC1RoVPz2Krq4uCgpS+9odNaXbCy+8wIUXXkhLS/rtMcFgkLvvvps33niD5uZmDCN5n/enn346GtkZNeJKt0wFOVJcwTlDnm91foxX5G23+8a5NPwz/mI8njHcQO81A7lInMFf1ZMA/Fq7jivtF4x6HuMcF7qId9WCIa89a/sjx9sO3W73Hmu+Fb6RR43n0DE4T57KQ45bRpTe7dEHuTl6V8rr14vv8nPnVcNOP2SEODByFqvVBmaJaSxyPgPASmMdc8OnJcIN9JSYitPFcTyn3sgYLs69tp/xLdtZw877UDytv8I5kWtSXt9PzOJD579H9Z7pKA0eSIDeQefzyaN7iPNXat/gJu0KpoSPooe+lOnasdHoeB+PzOO+6D+4PfonWungBu27HCLncXLk2wCcIA/lP44/JuLdH/0n10Szq5P/o32LX9pTl+VICakwvtDoet39m/0OztZOHtU0U5Ep/9+T5/AHx0+22/3fNRZyXPhCAE6Qh9GoWvhMrR5Rmj3OJWgiewPKFuObJ6Mv8/XotZkDxviL/TbO1b68HXO083NK+Hu8YryX8vpyxwtMk5PGMEc7hq+Fr+I/xuujklYq+eJJ+z2crB01KvfYUXw59F1eVe+PaprllPBz21V803YmP4jcyv36vzCysMF1iTyXB4x/AXCQ2I83nTuPwfsNxlZmhU9MG+ZUcTSPOe8e9XtfHv4ZD6WZT02iis0kf6R04kQnmrW8e5N2BTfaL8kYLqB6sWOjjU7qVBPz5d5DhisMzkvp5KyGCp51/JFqyomIKGWiOHHtoejjXB79GQB32n7MJbZzWagv45zI1WyhkVomsIGtALhwEiSElzx66MOGRiTNjhY7NnSMRF38ubyK6x3fzfjMFhZjTba6opzdO1577bVJf9dccw3nnHMOZ599NmeffXbG+N/61re44447mDx5Ml/+8pc57bTTkv5y4dZbb2X+/Pnk5+dTXl7O6aefzurVyZOEYDDI5ZdfTklJCV6vlzPPPJOmpqac7rMjGQuFG0CB8GQVzsvQ+XELF4eJeUykcsgVc6OJP409t2K5/bxu7ghO1A5PGCBtUM1J13pVX85bbftUetcSX7Edn1sGt8EpnQn7gKvUevwqAECFKE0K58jCvoMUMiGAaCm6qoF2357SX6ZhlG1itanOtNerRfmo3i8TLpyDzkkEkW0EtRIKmSGm0KRayZceaqgcFK8AL4XkU0oRAsE7MUX2SfJIKimjVtTwS/1+uo0AF8uz2ENM4WXjPZYaZh/bZXRzn/5PHFlaKSgVRbk+bk44hYOvctKoptmq2kc1vXS0kP5exaJwu95/4PZSGxrna7mNx0MxlILYYtdltdqQU/hghvFod2C58Xna6+27ieOhNjV6z1lC4ZDnV+VYP3dGRkvGmcYkZjGNw8Q8Wung0ujN+IL783f9mawUbgAfqSVMiMkWq9R6RmkNx6jQRGvGMEfI7WOcfw+mpL0+lF3jGUxKyLs2bEPKvO6YbJ2Phz/rjxFWmVd6Pxh9lIrQwewZOoHTwpfyv+F7B72nTXp9SoUbwARRyWw5nUJZkKRwA5glpyZ+r1SmnfZ52pyEzL+BrUykimlMTNwjRJhZYlpGu82FFODBjUQgkfzO+At9KpjxmS12DxpUC5/pqygMzqM0eCCHhbaPPfLRJGebbosWLUo6llJSVlbGb3/724yeTQGee+45XnjhBQ49dOSrkd566y0uv/xy5s+fTzQa5cYbb+SEE05gxYoVeDymEumaa67h+eef59///jc+n48rrriCM844g/feS/1lcazxG4Ehz4/l7vUikWY5ZOw/N07a6BwyzPvqUwwMttDIFtXIZtXAJFG1XfLaxdDlBVC6zYAw3pkiJiR+b7tS6ebIXfzdeIbZYjr7y734tf36jOn1ZJgET5UTh5fRAcyX+/CpvgKFYoGxjGO0gyiiIOnrsx07kH7w7BwgmKTyfBT/SubEQb1qYp/Ql/nU+TQTR6nubVbpt8tPpibt9dGmkIJBtrYMFEFCOHAQjq1CbaOTNtWZUIB+UR7GBmNL0ldF/zbt6EnjZb4oD6dWTuAbtlP5XfQvzGY65+hXU0UZjbRxiJjLb6IP8TfHHfxE/z1+1Z20HTIVB4u5TBUjr1uZ8Ekv8aoiGLlX1RY1dnbNWjPcq0Rs3w8K1ZTzRXkYAdVHQPXiHkLBmyt+AvjIH4XcWYwHGozcPmju7t5xG4xm6mlOG+YP0b+yQdVhYPAr2zUcox08RrkbW+JezTW0hFmN4bLt2BbnE+OzEaW7M9A2DFubEplQpMXHxXVs5krtfJ4z3uQ8eSrPG2/QTldObbJb9TBF1LBVNdKJn0ZaqaIs5/xtD5pUZqXbYdoB2+Xes7TppNNbDvUxao7YgypRTpPRymcMvcI8RJBifPTQx95iT6aHjmOiqMLA4H3H/wGDnRA+pb+SUHbNEJP4jfEQNXoFF8d2hSiluDjyo7TPUyFKUl6byVSOFAcSRU9SCF+gnc6e+lTWsYlP1NIkGT6KHvNImp52OgfEU3TRzedqI/uImRnjWuzaNKs25oVOp4TCRP3eqLbu4FxlZtS2l2bL7NmzefTRR9lnn31GPe2WlhbKy8t56623OOKII+jq6qKsrIx//vOfnHWW2cGsWrWKWbNm8cEHH3DQQQdlTHMsbLptavgP/23/fwBJNt2aPHYu7jsM0Le7Tbc/Rx7jCv0Xg87Hbbod/H41QlfomqK5qo/ybexKVTV42ENNYZOoJ1RtY05DDZOMqu1i060yePCQ3ksPqwvyH/kHnLaCXcimm/l/WdVIwxGbmWh3Jmy6RUObCegBDCR9Fd1U9zgy2nR7z72ZZXJTSptut9b8A23SEf33z9GmG8ASXx8vqQ9pKy5jP9tczredBnqI8/QbeLrGXFI+kSo2sDWlTbfF5S4c62exx0JvGptu/fZbJjQUUGRvocLTh8zvwes3kBIKAtORhZnsPaSun0ujq9gsU9uZ2UtNZ4pt4pjZdHu+/GNo6MnCXotp66a9KsI3mk6gQ+/kfbEopU23LwebyOvVUBHILy+HthAtAY023Un93k3MaO/G3WfHiGp0eKCsYW8COFmR18kHh9SxeF5LRptup2rHUVF4wHaz6Ya0ETVChFSIdpfks3In71a7crTpFsVdV0pfr48efAQmlw2yU7O9bLq9qX/EiZFvJT1f3AbKnC4bR/RNoprS7WbTDeDI0Hl8pJYA5laRq6O/Srqei003w65T5JqCvdVj2XTbTUjYIM3SptthLXnkR7Xd1qZbg97Ip2JlWrtbQtPYWuWnsiGPmWoq02yTd0mbbq9H3qdPC9FSFaSswZWlTbf04+C2Nt20iANX957j2qbb3/QnKW5wDMuGm6bZ2FLlZ0JDAeiKA+37kl9dih07C+s+piXajktz8XlVc9ZpFmqFNFQFcAgHBzfOoFj37RQ23ZpVN89N+TxN3ZF80X44WnX+qOezrwJer38jbflNbSjB0HWCWpjGql5qG4o5Rn2BxXI1CyvXU5XXxCHhOlxRhTQEQW8Ye2MJwhFCeXvRo3by7L0QtmP0eujLU3jsvWh5PQmbbkrrw3B3I7QIRnsJhG3YyptRvXkQciNUOT1RHx9X9PDKPn7++JW2IW26lXimc0jZ+UPKDAAzQyeyUW3FhZMW54fYhbmT5XNjI3uHv4yPfHrp47g6xaxmPwfXBzFUdJAd521tupVSlPjI/L2nSjhyoZeD/aUUOJ2WTbfd3KbbZtnAmqoWQvUdiXbVUtXHxdpXdw+bbtny4osvctddd/HAAw8wefLkUU177dq1zJgxg6VLlzJnzhxef/11jj32WDo6OigsLEyEmzx5MldffTXXXDPYvlAoFCIU6l9m6/f7mThxIpttt1MgRsfDp6jxULDBXBUY/NOeEKjPLqK3Gtd3RmZjJxWPRV/gguh1g84vmnke1fXe7XLPoXDceBsI88tG+C7TOw7dBVAYwNd8A0op8kL7oIZYw7L8ka3U9OiJcgr+aU9CV1wWEx7HOfl+HFfeB8IgfPflOK64PybkxsrB2wMBc/CPXxe+wUvYicVIuYpymzqWsn4KievqLoJ3+kAN/qSnC9CUqTguEUXYAs20eJzMuCB5m2PinW1DnUcjfMv1udW9AWWEkomywr9rbTneLhR0gTJrhePK+wjffZnZ7oi1SSB8z6WJMPFrceqrA8xd9Y+kc20PbEIbanQZxX4s+PvUq6gUYMTqYRxdQPSX1yfqRPzZ4n0OxPqd7tSDpuPG2wjfcymOK+43/73yPvAGCN96XX/Z5VDn4uPBY/oLXBBJ7oNTtY9syzBT+92W/4ncxj26aZfneu073K7/Kel6/J3qAjbfeSPV9d5EeSTqz1X3Er77skT5oERyeRZ0JcoMoaDba/ZZ8XMBDyhpxrXa7rjEceNtZnu44Y6k95ioK34f5PePT4l+29tjxovXHfr7I3PMi/XpSpjn77kUumN9wK4wzo82A9tawGPKCbE2R34AlDDL+8bb++MokZAlADNcPDwQvuV6M7wS/Wl5e/rDi206/Vi/EL71ujFvzwPlyTijIhPE6m6i3o5WuhYZib/TuJwbvvuy/ovdBf3y3zhnUN2N941J8sa9AP3jJ6q/vcbixNtj+JbrY+ne3n+d/nqrF3ZRvfnR1DJHCpkB4ILwdTxmvADAB47HmCtnJ659PXwtTxovA2nkGUyZf68LJiSdK6aQ9tjuqvpJ56DpYkCbM9dsZtXuhmiv8WcfKMcNrEuOK+8jfNflZp3K9+O46l5AJco00Q9uQ1I5x44dN9xh9n+QUobeloScecMd/feLv+NYf7tt353UN8PQ/fiA/A+UzZLm3rH6NNS4m8jfVfdCfjd055vlJJQ5LsefOzaOA+b97ro8Nlbv/B5oB8r4SfqINO/Mr/qYFL0+o9It5+2ltbW1g5avDmT9+vVp4x9wwAEEg0GmTp1KXl4ednuybaf29uHZ0DEMg6uvvppDDz2UOXNMpwSNjY04HI4khRtARUUFjY2NQ6Zz66238vOf/3xYeRjPFKWwgbGzEaB3SIWbxc5JFIMm1UYNIHI3IWlhsduQaXvpWHCg3Ce+vJbPjU07NjMWFhYWFhYWOzVfkPsklG7/F32BuY5+pds3tTMTSrdc1S099HKQ2I8PY95PLSzGOzkr3a6++uqk40gkwqJFi/jvf//LD3/4w4zxzz33XOrq6rjllluoqKhIq8DLhcsvv5xly5bx7rvvjiidG264gWuv7fe+FV/ptqvjk2O3mm0kdKVxoiDGgQZ9d0Ei2daohUQwmWo2kd3KTut9WuxO1Kkd7+DnMDGPY+XBfGasZqlas6OzY2FhYWFhYbETc7I4ihVyHY8az/M340nWhDZwhJzP1faLOEoeyLe1r/Gy/i6K3GxuhQjjUs6UjlEsLMYbOSvdvv/97w95/t5772XBggUZ47///vt88MEH7LvvvrneOiVXXHEFzz33HG+//TYTJvQvT62srCQcDtPZ2Zm02q2pqYnKysHe/ACcTidO58gNSI83RsNo9lgQ94Y5FNJS0ux0OLHHPGvqhAjjJ4AdW1o34XGsFY0WuxNbjKFXX48l1bKCNtVJC+0ZvalaWFhYWFhY7N7UahPo1P0cKvfHRwHvGQt4X1/EN2ynUyIKmc00nuTlmEfW3Gxufs6GlA78LCzGG6O23+ukk07iiSeeyBhu5syZ9PX1ZQyXDUoprrjiCp566ilef/11amtrk67PmzcPu93Oa6+9lji3evVqNm/ezMEH75oeoIaLG1fmQDsB6Va6SWv74k5DXP1ZKooTCl07Ng4S+1FBacb4lgLVYndjs8rStud25iva8UxjEtOYtKOzYmFhYWFhYbGT8yf7L3nGfj+NyvTI3Imf5/Q3AHOLaSf+JA+m2VJHM0Wkt39mYTFeGDUtxeOPP05xcXHGcLfddhs/+MEPePPNN2lra8Pv9yf95cLll1/O3//+d/75z3+Sn59PY2MjjY2NCaWez+fjW9/6Ftdeey1vvPEGCxcu5Jvf/CYHH3xwVp5LdydcYnysdOtRfThSLNC05b5w0+L/s3fe8XEUZ+P/zu5ek0469eZug22MwZjewfSeACHJGwIklCSE9oYkJIQ0AoEX8gsECCWBhBZSIHQwvfdm3MAF96re7qRruzO/P/budCfdSTpZtmSz389H9s3u7Oyzs8/MPPPslG1AsbCnLkeJ00gLblwDXAHSGeXm8CVjIyM/0g3gUu0sLCFZy8aRFsXBwcHBwcFhlFMgfAghuMb1vwCMoZqH5FNIJfFpXiaLoS3TpKMxltphlNTBYeTI20sxe/bsjHXYlFLU19fT1NTEHXfcMeD1xx13HABHHnlkxnGlFEIIr9BssgABAABJREFULGvwQ0/vvNPeGePwww/POH7vvffyne98B4Cbb74ZTdM4/fTTiUajHHvssYOS88tGAcOzM+vWpo0OYjmmJrrQt7E0DoMhOQJRIPhEfTbC0jg4jE5GyxQKn+bjG9oJ3GLdj5nnVBAHBwcHBweHLyf7it35kf4dbrUexJKS+63H+a5xOtPFZOCdvNOzkNTTNPyCOjiMAHk73b7yla9kON00TaOyspLDDz+c6dOnD3j9a6+9lu8tc6LUwKNhvF4vt99+O7fffvuw3XdHZHtZ0y2ounKe0x2n26jGWaPNwSE3YaIjLUKK7xnf4AbrryMthoODg4ODg8N2giY0jtMO5UO5kPlqKb8z/8wR2v4Jp9vQcNaXddhRyNvp9tvf/naLbnjYYYdt0fUOWwdvDqfbaNtBMkR3znPOmm7bBxrCmT7q4NCL0eSUHiOqOVd8jb+r/460KA4ODg4ODg7bCYfp+zJdTiEio2xQ9Vwav4YrjAsoxAfk3gzPwWFHJ28vha7rNDY29jne0tKCrg9upNFbb73Ft7/9bQ488EA2brTXjXnwwQd5++238xVnB2B0dLSEEImdZTIZTR1BgFbVkfOcJhyn22jGQOcAMZs57DfSojh8SRhtHw1yIVX+Cwxvbc4wjh9pERwcHBwcHBy2M67TL6deNVNCMStZx0q1flDrOTs47MgINZg5mmlomkZ9fT1VVVUZxzdt2sSUKVMG3Jn00Ucf5ayzzuLMM8/kwQcf5PPPP2fy5Mn8+c9/Zu7cucydOzf/p9iKdHZ2EggEcDdMx1vs4z33w8zQdhq29BdZy9knflrWc194XmKc2HYLSJZE9iRCrM9xLx4iaVOfZjODT/m837RcGPxTv4larYqj4+dQgI/pYjJ3uq5mqjap32v748LYr7lXPpb13GfuuUzRdqwd9/aOnMZilmc9N5YaNtOElbbu0h+Nn3OR8W3qVTPHRc/lC9ZgIfHhYRemMK+f9/a463aO14d/JGq9bOJ66y/cbz1OjajkA9cjXGZey2PyRWLEB51OIT7GUM1y1uR1fwODWir5P9dPOF0/dtDXnRL9AS+q3B8C/u66nm/pJ+cly5bSIYPUxQ7KugvU74zLuMK4gAmRw2igBYBi/MSIp8pvFWUcrO3F3mJ3fm39aVBrdmloyCHsOpVkoetppupDL/ODpU11UBc9mAK8RIhRQwVztP34h3xqi9MeSw0rvC+zSTUyOXoE5ZQgENxjXEuVVsGe2q5Mixyb2nzg5/r3+a3rkkGnv9bcxDTzmJznv6mdyH3uG7b4OfKlOnIAHQSHPDq1hgrWeF8ffsEcRiXvmJ9wpHlOXtcU4KXF81HGsiU7KrtFTuKLPNuvbOwtZvK2599bLtAIMyZy8IitZfk7/VKucH1vRO6dD/+wnuT8+FWAvfZyN/33sXqz1P0CE7UxQ7p3SWSvDNt/MPzB+BmXGGexb/R0FqplAAQ9n+IS287hcmbsxzwqX8h5/hHjFk42jsx5fjh4IP4E37N+OWC8u4zf8VvzVkwsSkWAJ1x3ZPRj3pXzOCJ2dipcRTlRonQMMGLMi5tx1PEb42K+ZhyXce6q+E08I19jhVrHTmI8y9WanAMs/uW6mVP1owd8jmy8ZL3DV+M/pI4q/lf/Ds+o13hNvt8nnoFOOSUpu3WwfEU7kv+4bxmSbA7bJzfF7+UX1h/7jXO5/l2uc/14G0lkk/QVdXR0UFyce7fdQQ8NuvXWW7n11lsRQnDPPfekwrfeeis333wzF1100aDWdLv22mu56667uPvuu3G5eirhgw46iHnz5g1WnBEhSoyLYlcPa5rvyk9ynivZxtsku3FnPd670V3JugHTimNymXUNe2ozuEL/HhaSj9Vi/mDes0WjOjbIvqMsk1SI0iGnOxpZpzazmvU5z2+gPsPhBrBG2Z3+56w32ExPXoWJ9utwAygWRVsgbW5eUu/yF+vfRIhylDiAgFbEd/XTceX51auLMG3k3uHYk0N/JZINbOYDOR9LDX5h+IYBFm+tZODdmoebQuHLue36w+ZzAMzSeurhsdRklN9GWnlMvkScOEdpB+a8TzH+1O/+HG6D2TG4TCsZMM5wUCoCrHG/RpQYFhYbaRi2kbqbaWST1Ug5JfxS/yGttNNMG181L+I68y5aZBtdaVPfw0TySv99Nb/f86UiMBSxt5jSRBs01OngjbTmVeYctm9CeToEALqJ8KL15ZjlMFw7FA/U4d5eyNeBNJzcYf2Lb0b/l041uvOyWbWlfsfz+EiZpE5UDRwpB0OxcR61XkAqyUTR4+hr3MZrctWr5n7PH6TttdVlGKyj8105jz8aV2Jislqt52uxizk59n0Ojv4PR0e/wyvmeyl7TEejkZYBy7+GhoHBF6zhX/KZlI6bymSxtZyX5DssU6sZSzXr1eZ+7aQt0Z+j9YO4y/U7LjS+xU+tG/hCrskaT6LydrgBvC8XcHrsYq6L38V6tXnIcjpsP8wbxGZ8o7l9HLTT7eabb+bmm29GKcVdd92VCt98883cdddddHd3c9dddw2YzrJlyzj00EP7HA8EArS3t+cl/EjwHp/yrvx02NJ7X87PelxDw0/BsN1nMAx26O9gO5SbaGKpXMVlxtnsI3ajijIelE/ygPXEkGX8gtU5z6U7CnYExlFDOZmOxAK8CAQeXBTjp6LX+VVyPV2qm8vN6wFBCYPvrAe2Uv4tk6tSv0/WjwDgIG1PvDmcZEMlSoxqKvocl0gMDG61HuRdNfiy29LPVGYYGSevIXI7uRaznKXWKo4Rh6SOtdCWNe4CtZTDxL6MoTrr+SBdWaeb96ZgEBuwlG7DjwfVWkXGx4qwivKq+wEOYs8hpaclpqdaSCbHj6Akuhefys85Rzstpb8L5FLeUfNoo0dfNqr8OtfPqTdznqujirE53tPWZrI2bouul8hRsyurw9YnvQzkwwXmVRntxI6GqUwWWkvpztMZn4sOlfvj0/ZEdAhOpOGigWaeUC8zJ/pt/ms+P6hrulWYZXIVMRXnM/nFVpbQJtPpZuZ1bSE+3FswwmwCdYOO66cQgA/UAt6SH1MtemyxhgGcYMPNQLtdbosPgTuLCYOK92/5LAdoszlOHEqAIpawipfkO3ysFvGJWswf5D2E6MKDu88H1/SPnmUEUpvJuTGIEWcqk3hWvs7/M/8GwBvyI/aOn8Z6tZnZzGAD9egDLMExRmyZ7XGW/hX2E7OopZI2OlL9zPSlP4Y6k6KBZl6XH3KNdTu/M53NEr8MfK5WDBinSeXvwN1WDNrptnr1alavXs1hhx3GggULUuHVq1ezbNkyXnjhBfbbb+C1mmpqalixom+mvf3220yePPTdTbYlN8aHb1e3JSq7oemnYJtPt/DhzXqsqJfzTyJzjirqzQPycQqEj58Y52FgMEPsxOXmdayVGwmryKB2oE0nl1GvIXa46SlCiD55X4CPA8RsFHaD29zLqfK+ms/O0aMJE6GDIHuJGcwWMwZ1v6010m2JWpn6PV2bAtjOox/p382qc7mYwU6U0L+MSSeTgZ5ymECPsfrfxGiwwdDez6g6gPIRGlmZy1npxc2V1v/jGP3glGHTRCv7i1l9nJEfyAVcYpyFK8tItTKK2VXsNKhRbAPtuCkAXWzbXYWP13qmSK9kHQdqezJZDM151HuEl0KxTm3iLvfv2FebBcB6NjNfLs0wiDeohrzu857MPcp7E434xODLyXAyUYzd4jS2dYfLYeRoVe1Duq6RVk6OfR9T5edU2F64x3qEfeNfG7b0RvOX/MFyQ+yvW7RswZaSHN2zhJV82/wJy2XPB92wiqT+T9qoYRXhRvMe9oqdyk7Rozgudh4tMvtHreFkS3Zu3E/M2qJ77yamDjpuiC4Ayinh5+b/G1GnW3/3y2bzbA3Sn78/YsR5Sb7DbtpUWmjHk7Dd3LjoJkKMOBoa0V5L/7gwmEbPsh2zmJ6a+eLFw3jq2EQj+4jduNG6mw/lQp6QLwHQRmfKiRfsZ7SphkZNlg/Z+XKgNhuJpIswGhpHiP2HbRZCmDAKxTPWq8TVyDnxHbYNgxnRuEZu3AaSDI2813TbUq6//nr+8Y9/8Pe//52jjz6auXPnsnbtWn70ox/xq1/9iksuGfw6ONuC5DzdJ/b9MXuuqEFIgdIUxcWl0Bm390EQIIrdqM5Yv2EAbawf45gJeH9lOyhvfGsq+69voS5kV5ZFMZnwhAqKPLUQ6wQlwVOCMfMcjAOu3GrPunvkZJb3Gkn24+v3Ys7LY5m2tDT17MGiOEVBN0KSCMcSYdEnjIadV0B3ZxBLWkhN0lVk4g+68CoPLmGk8ks/5EVESTPoFnLRdLB0lDIw9plMwV9+gj8yK+s6VF48NH/6NVSsA+EOYBxwJeZ71xO+1ECud0PcM+h3lDoWGvkKPNkwaZNXoWZ+juYPYa2dgFbdiFbQlYwE1Y2IjmKIuZErpiBrGzD2mA9ui7guafbpFMUkYZcgqgt0CTXdFigwNWj26dQV7YF74rEZOma+dz3W2pdQwU32gVgnGAVoZVNxnzGX2CMnINuWQ7wb3PYII+EfgzA8iKrdEe4Af7b+gRVtI+z28IuDV6Y2vFgl13P/Owdw1pIQgZhtfgfdGpv8Oq+M82G+fGQW3bMNj3R9CxXF8Qdd+OrW4Zq+FOEPoYU94IlifbYrwdYaVEcgER8KiwPonWbu95441tHZmlWnk+ExwbIB09jScLY0OzvbIGfZi1MXLCUku1LnS4I+pJQoTdFVZCIQFAXd+JQHSygaizoYM2UBIugHS4Od1iBWj0duqsXsLiR69Jv4RQQ21kHYhyUEctUkLNNN1IBl09t47agN/PHKzKnyTz9Zz07tcWrNwgzd0CceNWz1WOTWCrAyHX8q8dfpFiypKOCAJpBWlE0+xeqAgf7CEdR+MhnVUUzJfm/hFxE0TxQ0haUpWLAbVn0NZqSQZr/s897r9nkNrb4aUbsZ1VqGNn49orQVuXgm2piNWItnEl+xEwalA75nEXDjPndXJvz0f+kg2Of5fvZRO0euDzOzy09BLJ53WzBQ+R2IP5j38CvzT6nw00/WUxSTBN0ar39+InNeHsvsygWwdjyakFiGxDv9c9Ta8VBTj1Vfi9ZegmqugqgfUVSKGPMW2s5LEdUN4A+hNtcgV01Cq61HVDWh2kpRHcWoZdORDXUIz5i++dcUhtjo23ziy45K/Ksf9Qry0z1Q+32MuXYCkY5yVEeAgoPfQK0bR6SjHMpbKVIxhBSIKatQ/m70shbk4l0RpW2o5gowDbRJq5GrJyFqGu1ytnQahPyIyetRmytQqyeiTAM6AmAZoEb245sYU9hHX5tpw91JP/V2/uExogYGaD/E5BfRJqxB1G5CtZcgStvAF0FtqkXUbYawF+uTPdEPfxM0CUJBewDVVprKRzFlFWr1JMS49aBbWK/MQT/idegohtJ21KpJiNJ2Ujf2hkl97zJMCPpRES9y/izUyikQq0VFvHTLMKZmDenZgUFdU3DwGxglrWjeCJoCTANr0Uw6W+rSbAJFd5GFQFAYNBJ2LUSLwd2p8CoPutBpLOqkJOjFkhaucWvQvBE8E1ZBQRihSeSSPZArdgJZOKw2QVdnJ5a08n52IQW6plNYXDwkO0N1xojLOGEtOsh3IjL6BaLYg+qMIqTAo3nwFBcMi/2j7f0woiCIXDMBUduEWjXe7icAtIxBmRDr9iClTktJvI+cGhq1wZKtbqepzhjBNDssdx9J0FUUpzBooEsNU7MwigtQ+z5DoGwzyERhKm1Hvr8vYtIaRHUjcv7uaFNWg6kjV01CjNuA8EYQtfWo+mowDUR5KxR0g1DItw9ESQ398DdRG8aAaaBMF3LlZLqEm/k7RTj1ts9SNkddyEJHozbuzctmyMU3Ypcx/YNHOXJ9mGmtcXQEFoqgW2Oz3+DlcV5u2Kck5/WPX7Irs5b4KRyzFgq60ROWnlw8k1DLWOgI4FFuDKH3eUfa5FUguhATliNK2rArA5DLpiKqG5Bf7Iy+x2fIVWNT9Z42eTVy0W7IzbWIinb0veaBK4wob4bCbuTbB6Id8bpdbwJIDaSG9fqhIDX0OW+ApWO9dRDarp8jF8+EqMeuD5VANdYgVBm4s5dP/ZAXUSEX2qz5drv3zoGI2no7UmkrwhPD+mQ2+sHv2u/YNJCvH4p20LsQ8YISqLYyiLrBsBDj1qM21yACHVAQxnrrIGgrRW2uBVmJts+biEAzaCZyzWTEuDWoteMRNQ2IgihyyW6oDg/o9ocxbfZ8tMmrUevHIhfvCq44WLr93EJivXcAorLJblN8YdSimXbbHXclXkramC9dgLfve+sdjhdrhDs7B9U2FCv/kMuzNusZVEsRom4joiACmkIu2BVVX4eKFCGKSvtcE6rRGPP+dwdc021ILv8NGzbw1FNPsW7dOmKxTO/7TTfd1O+1P//5z5FScuSRR9Ld3c2hhx6Kx+PhJz/5yahzuKWz57wqikXaVKpgd8Z5FYwPKmxt7EJuCKWcbl9b0kRdV7avuwriad7aeBfm4vu2qtOtQHj7bKb67funU7cpc9phcdCTV1gFbeeQD43k4MqeOAqIp/JH3+MDEHYlZj5xgh0lWEx8Qwj+Qs6F38soxlx8H4Q2gb/Odrotvg+58Ie2BZV2jx65+g+PBpJDsFVTJe6Zn4GQyGdOwHXYm3Zllnxh/i7w2V+szCdPwT3nTYQnkacSxnbZ+RaIq2Q9kcJInu/6BDO0OdPplszTdGJBZNgevi83vmM7AhLHAVRoI0posOEt8NfxddVOWVc3TYVxtEN6KtrJ2jh+uMQi0NXzTgNxi7FdFmNCFrFB6F7GsU3VuE9/lJTVLCTWsydQ1Nlrim0w88tetveugnGK06ZOZtfxeEb8bGkMZzh5rChtpFsuuZJx+i+bFhowJlgEod1QCWPDffJcYi8fDsFiDKBgl4UAxF4+EpSwS3GwCAPwAPt8VMOYjf4+TrcDN0fRFUAwQzfM0Ibhq8esviPtROIvEFPsu7kLlF3rjO2C2m4L86ndIaET7sSzJescHYg9cTJ6sBgdGNNrsGNx0IN718+JvXYYriNfI/bnC9EPeQf8Icz7z8Y48H3Mp07GCPlJ6kd/71WF4nT/fSEdP+3rcAM4e0mIMV0WpI92yKMtGKj8DkT6ujzQ804tAWMT5dP9i/uIvb1/Sjf0E58hNvc43HPeQL5yhK1XQdsIUZ1dqOAUjKNfAH8IhEJUNWH+5+sYl9wB/hDCF4baelvfOgOoxAiKJKOxnnawSbhpMPb9mNgrR+DZYz7i7QNwJcvb7HnE3tnPDnfYozcV4DrlWbsM+rsw7z8L98V3EvuzvdC5MecNzKdPwn34myAk5iOngxK4T3yO2CsXQjAx+lmNjt3L1ca++lrea3RyvjZU9nD/5UIF46jgTIxD37TLlTtu2wmJMocvAt4o8qN9MI5+tefC0g6EK80mFdidp8SxVPzSDvtcVZOdbip+LyOytANBB+Z9e6TqXYhTgAEYW5wX/cVxz56XqtuTmE+d3McmKM5S/fpTxxRgUhNMzjrQYKM95U4/4dkee/XpE6HTTa56P9uxwYQL0CExbTCfZ+9JY2A9ySWnC3DhGdI7sb8h9dj5+cqRSy79nEV2PfDs8bjn3EnspcPT7lkMQuJO1AVjujNHiPfImdt2Gy47DRikHQZFwfQpwAYELdy7LMjUXX8X5uKZuOfY5dn8eG+MAz4AwHz0NNwHvwcoKOy2y2TimmR5tD7ax0792Jd7zgPWkydT0Blgv8864LbP0mwOAAuI52Uz5GIfbXdOX/IAtan+ri1X0uavC5n9Ot32e3I3dEvgPur5RL4IQGE9fRKFqfIsAdnnnchVASCA+4QnMvLUfPRU3Ie/ifXKEWhfeRrzqZ4NJ4wj3sB86mQIFqMiHrTTVtkyJ/LU+mgf9PR6U5egS2RaPkMc+fHeGEe/inl/YjOM5EehYHEiB7KXC32PD4j9+UKM459L3c99yR09MgDyk70S9wFcZo9MPtsuFu60fCgI99TVQiE/2cuWJWGbZfS9nz4B9+Gvpuw4hMR8+riMD1r6GY9BURChrcd88hRbz5TAOMPe6FAumon74jvtyEIRe/okiLtJ9T5lWjshFcT7vrfeYVfQro+S9F+uBra/c4X1c+y8dx/5cqY/Is2O7X2NtWFw65Pm7XR75ZVXOOWUU5g8eTJLly5l5syZrFmzBqUUe+458Lo5QgiuuuoqfvrTn7JixQpCoRAzZszA79+x1uMaPNt0oGG/JNdkGK2sMzflPFe0g63ntiNRJkqAbipF30V5891MwcFhRyM2iqdETBqG6aUODg4ODg4OX15OEIcNqrdroOccXOHgsL2T96fBK6+8kp/85CcsWrQIr9fLo48+yvr16znssMM444wzBrz+3HPPJRgM4na7mTFjBvvuuy9+v5+uri7OPffcIT3E9szocblB8Sh3uj3NaznPBQZY68thdDKYxfodHHZkRnIHv4GopoJySjLWR3RwcHBwcHBwGCy7aFMGtCNcGE5fzmGHJu8e75IlSzj7bHuYpGEYhMNh/H4/v/vd77jhhhsGvP7+++8nHO7byQiHwzzwwAP5irNds1quH2kRMiga5U63F+XbOc+VaNtuh0SH4SO5vpuDw5eV3gskjyZKRDEttPfZUMLBwcHBwcHBYTAIISjE12+cOCaxEdzR2MFha5N3j7ewsDC1jlttbS0rV/bsTNjcnHvHmM7OTjo6OlBKEQwG6ezsTP21tbUxd+5cqqqqhvAI2y9vWB+OtAgZFGoFA0caQRbKpTnPleI43bZHklucOzh8WRGjeBRZbiN59Mrs4ODg4ODgMLrwiCxr//Ui2GuNMweHHYm813Tbf//9efvtt9lll1044YQT+PGPf8yiRYt47LHH2H///XNeV1JSghACIQRTp/bdhloIwdVXX52vONs1r6kPOGSkhUijAO/AkUaQSD8jQkqE43TbHnGmrTl82VGjeBSZJjQK8dHVZwrs6JXZwcHBwcHBYXThHuQaziUU007nwBEdHLYz8na63XTTTYRCIQCuvvpqQqEQ//nPf9h555373bn0tddeQynFEUccwaOPPkpZWc+i6m63mwkTJlBXVzeER9h+2aAaRlqEDLwM/BVi5FC00ZHzbDkl204Uh2HEcbo5OIxmiijM4nQb3SP0HBwcHBwcHLYvdLRBO+ccHLY38nK6WZbFhg0b2H333QF7quldd901qGsPO+wwAFavXs348eMRwjHYF6glIy1CBuWUJDZhHn0MtKbQk/IVfqi6nT1MHRwcdhhGg2PLLwpB9V06YjSP0HNwcHBwcHDYvpBIGmkZaTEcHLYKea3ppus6xxxzDG1tbUO+4YQJE1IOt912243160fXZgLbCqXUqNu1zie8o7YbNVAHz1IWCrmNpHFwcHDY+owGx1auDXZGg0PQwcHBwcHBYccgafH4RvXMKweHoZH39NKZM2eyatUqJk2atMU3X7NmDfH49rFTSWNVNwUtntRIsLhb4oppqbDm1tFiJEIC3BrEZGYYECUejEPG0EUYieKdOg+HbowQiNoOI5cETSV2ddTcIBPrmGlutLEHb9VnzLYu2nsHbeagN+uoaPKlntV0S4y0Z4+7Je6Y/XzZ8ibutp/NHdPQ0UjmhxUzSXYrNbeBFlNYqychCkMgFKK6AZQGpe00Tgj1K3upKKZ+zFQC0QD4ygHQxh6MKI+i2j0g9ezvJMs7Sh0bJT48BWhlbci146AgjBi/HrluLPgiqThCNEJLGcrS0RLntV2XgFAoAVHd1i1LgKkJNKXwWmnp617wBvromDb2YOS6NyCamNorY6AZUFhjh4vGQqgelGnrK4A3ALoHrXTn1Lsg3NLzu1f6kS8eRbcslIC4JujwCN6p82Bm0b24W+LDk6E7SX0zylpTeUTEA54ooroB03Khwt6cZbdHP3V0BBaSWJY46WHdbSBiipy6k0u/8g1nSVPGbAdzrmexwwKFyvmsvY8VTFwLXQWAQK4dh6huQFk6KuohvnYiuhZHjFsPEa8dp7sAJTWkgJbKMO8dtLnPu93g1xnXJdCUzNCN4a3Hco/NFUKnw19IINiJAKK6oLFAQ5u5juIlE1FhHyLxbHiiqZnOoqoRZenIqIeoq29eGevGIcYlytjENciGSoQUaJNW27+rG1BdhaAM+nvPEoXpllnzLsk7dR5O2mhQEI0NqS0YsPwOAj89G+xs8Ov444qQS/DhQQ3s92Y1Y1ZPRFQ2gRIoAbK+KlUHiXHroasQZRrImJu4S+Adu9HOJ6EQ3jCqtQxt8urUMVrKUV0FiMomVNwNyp/IL4lCId0CPWI7/Ry33+hCJf6VqyZBYRdy9USobMJK1MF6WlhUtqALC5Toadtks12O1ttlS1k6sqESbfw6W5/8IbQJ61DdPmSiHKq1E0CJVP014ksWePVUeZcoom67oe2vPRlKGMAT01G92kEdu/7HraFNXGvnn2ahWssQmgRP1P7tC0PUgzZ5tZ1/IlGPdvtQrT3Lv4iikB3f3wVC2fET8Sjs7kk3iSfa81uXdnqmgTZpDXLlJMyoDyw967MJBJrbSNWPEjnoNqx32B3TkKsnQWEQDMs+IfWcNkG2NH0xF9naZ1HeBrpp22HeCAgQ1Y2oLj8oHRBE3HEEAiMm0BLjG6JuE1dMT2ioQHPr/doApltBTOb97L31YCh2RjJsoYi5rUHpY39xLLfCFdMTObEF9s+6ceANJ9qYcT39BEBJHVCoiBclNaKevnL68GwTO42Y3V5ZOXR4oLBYOxGjqJ0ewwT7mRPtpDZ5tV1OlbDLVkMlwmUifOHUcYREeO3yaJdzQIrUeWXpdn8i0symWnsQSHqf1IsHIeN52wy5SNkj4Sa7iyUUUU3R4dF4py7TydZ7V/dNu61n7GZvj42fyOre5RnActv2fDKSqGwHEbfbkMKuVJam7JSqJmSDbbeoRDUoGypTtqAob0U2VCEMM1WHpurBdJToyWclwNLs99RZhDZpNco0bBs6kfeYPtBc2e3D1ZPsNrCzCFHYlbKRECBkM8Iw0SatBtMAw+y5t6lD1M5L1VqGMnWELlN6kZJ/0mpUyJ+Sw64r7b63Nn59hh2HL4KoboSYK9VOyPoqNG8E2WjbvLhjEHfbtlsyjXVj7fieqJ2XIX+auW6/hGT7JbXs/ZWhtIv9xTHc2fM7o45ZPQlt3IaMfnZSF4h6weXuc40oLoCNA5UAEEopNXC0Hp5//nmuvPJKrrnmGvbaay8KCzO/ghcXD35B+6KiIhYsWMDkyZPzEWGb0tnZSSAQwN0wHVGcfafFAEVMEmN5z/3woKfNrlObmRo9Ouu5n+nf42rXpUOWeai8YL3FV+IXDiquF3fGxgYlFGEhE87E7N4qPwV8YPyXKcZ4AO6NP8oV1h+YJaZzun4MFxrfokm2snfsNASCCBHaCVJFOS20YfXjBXvH/W/20mbm8bTbD82qjUnROVhYiIRTKEkhPiLE+Ko4irfURzTSmnf6B4u9edlz3zBKnB9Xxv8fN1uDv//3xTfZRCNvqg+ZwBg+44uMPNmPWXzAAsDWU0VPA95Xb3sWbNXQKMFP6wALuLow6PDMsx3jI8DT1qucEe+/fgjgp4P+HdVJiijgdv1qzrGu6HdklQAOEnvziVrEFMazlFWYWP2m/Zn7WaZoEwYlx9bgDetDvhr/IbuJqXSoIMvIYihtIRWUEiaSWvfscu27fMxifqZ/jyP1A/q99ujod3hLfdxvnCddd3KsPnJb7pwWu4i58o2MY0mnbj70d00NFTTTxv5iNjuJ8dzl/l3q3HK5mnPjV1IrKnlTfoyFySFiHw7X9+My45z8H8hhqxFUXVRG99vidD51P8ku2pRhkGhkOSNyCU/z2la9hwA8eIhgd64fdt3CKfqRADxjvcad5j8x0HlJvZuyzZ407uI68y4O1fdmvKjlTP0UCkSunYq3jCesl/hm/EeAvZB6jNwf2p9y3cUxuv1B4QexX/Ff+QIhuod030u0s/iD+2ccFTmHt/kkr2srKGWWmM6PjXM5YoA6PBctqp1yUdLn2Izo8XQQZGcxkUWeZ/pN42bzXq40/zik+3d7Fg6LjXJr7EGukDcM6VoXBnHMVPhc/Wvc4frtFsvUH4dE/4eP1KKs5/wU0Oz9cKvePx2pJAXR3XOe9+DOcC7l2676KSBGjF2YwqueB/HhpYMgD1hPAGRtH5N6eWv8Aa6wbsyZtoZGyDN/q9q5Sil2iR7HmizeCjcGsTTdyQcDg3WeNygTgS0V0WErc2LsAl6R722z+4U88zFE3uPNBiTpK+ro6OjXD5Z3aTrhhBNYsGABp5xyCmPHjqW0tJTS0lJKSkooLS3NK61DDjkEn2/rNPTbkg6CrFBrecx6cdDXtKr2nOcmijHDIFX+BETRoOMmHRcGtiOynBI0RE6HG0CIbh5ST6XCc/T9CBLibfUxj8uXAKjUynjEfSsLPU9zvvZ1jhYHcb5+BpMY1688vlG+8+qWUCFKuVq/FJn4apYkuavgNCayVK0cksMNRk7fklSLitTv3Zk+YPy/qH/ztHqVcaKWhSyjuNdKfh+wgFoqMdD77HgbIYYrbYCvBxfJb68SOaDDTUOjTlSPmMMNwJ9jul86nXlsux6km/+oZ6mm70jEdBTwnprHaeIY7nffSAED191lvTod25qDxJ5UUMqHaiFfsHar3KOZNnamZ+T3TfJe5svPud36ByHVf4fxU/X5gOmPdPksTBvplmQo014VKufYtEPFPswQO/G2+pjF8guOj57H7eY/eNR6gTvNf/GZ+oKn5WscIfbjWfc9PO65w3G4jUKGawf0pANpe2ceA5fvLeFw9uNd18P80fh56liTagPsJTfekh/zoVrIq+p99mdWKs4jci6fsZw/WPdwiXkNy9Twf4wAWCyX84rV06H6iXZev/H31HYFIKS66SYyZIcbwHXG5QAcpR+U97XNtPGKem+LOoO9HW7JY8njzWpge61dBYd070IKhs1G2V2bOuRr472cJh/KBVsqzoB0qNwfG3vbilsbTWj9jsfuPZqrd7u6NzPR0q4fQ1XG+RDdxDCpp4WX5DtoQqNUBLjMOCdn+5jUv0/V5ynbNxulFG91O1cIwa2uX2U9F8NM9S8HS3JEaTXl3GX+a4vlc9j6rFYbgG23keMaNYjhaFuRvEvUa6+9lvp79dVXU3/JcD7MnTuX2trafEUYlYTo5g7rIZoTBs9AtKqOnOcmirHDJVZelDL4UYpJTCw0BCtZz0wxcOP8uPVS6vdEbSxjsYcsfyIXYyl71My+2u4UCz+VWhm7a9MIE6WF/vN1dO+8umW8YL3FJDGOQ8TeGce7CDOJcXzOStayCVeeDVSSidrocbpNzWNUVLeKsIfYhbZejrIAfo7XDmVcQrd6GzbphmAjrVRRnmqsB0IiGc/I1lnlBDIMMaBPOJtTpDDhJMtmyLwo32EX+h9ZcgCzmaPtzyRtHFMYT3AQI+lKhlCnDCeGZqRGTvT3QWBLmc/nffL1BfkWl8au4U35UdZr3rI+GlSncsIIO92KxMBO3sGiUH10FWCqPomfGd/jbuP3rGI9r6kPuN78C2fGf8yr8j1msQuTGMue2kz202ZlSdlhNKALPeOjxlAJExk40ihHKcVGtu4O9V/VjmK2PoNK0TMdtDnx8e09NZ9brPuJYzFJjOUAbXYqzj/kU8TTRpwtUSvzuu9n8guWy9XcYt7P6bGLuS5+J9kmzXw9dhl3y4dT4ULR14GfpIhCKoT94f5t+TEPy+fykqk3C9RSAGZp04acxody4RbJkI1K7HfVRidx1f/yOu0DfATMxVBs+VyM1+qGLa3P1Uo65dAciYOlvza1gvwGhgwHHtw5zx2pHZDz46ULFz8yvsuBYq/UsaYc/aAGmrkq/qc+ZfAW835+EPs1EZX5EeNN60Nelx/2O3uodBuNEpuj7cfOTMx6bqCZFOkkbU0NwUYaeFq+who5sg4Wh/4xpcl6ZS+vMpx1Vn/82rxlm9wnF3lbR8ldSLeETZs28fbbb9PY2IiUmYX+0ku3/bTK4eIdNY+r47dxm/vXA8ZtpT3r8SIKGSdGplOfbU233vQeLg49O4tOE5Mpxs9z6s2c169gXUZ4P20WG2Q9XYR5X87nIL2ngbnMOGdQ06/A3gRiR2SVXM+p8YuQyFTjXYCPKFEkinqagOyGho6ONYhGa9IIOXmTVNPjdMs2qiYXq1jP3mom+4lZfKAWoKEhkXQQ4rv66dzq+hVF0dkpB5SB3qcRVygaaWEGU+gSYdpUB2GifRx16eQzInRrUKaV9NnNd6BxR+WU0E4nGgI3rj75ECfOa3yQGK3aN7Vi/FxjXMaB+p7sHD2a/1hz2Z3prGMjbeQ2okfDLtXf0U4lpLp4VL6Q8dxDmSLZH+kp6egcxr48oV7i6dirXKydxS9c38clXKk4t1sP9ZveZMaykzYRrxjZDwrZNlLYnWksYWWftmComMrkdONYbozfTUdCn5ppY192RwhBuSjhVO3o1Nf7TaqRRyy7U+6MeBtd+PBssV50DHGEz2hhk2rkj/F7tvp95snPAFLOKiD14ffxxMyLCBGuNH7AN7UTEXG4Wd5nrzOVVhculatAtx2Fm2miTlSxSTUCUCfs0TWfys/ZQ+zCrdYD/MG8h3Y62YUprGMTc3mDk/Uj2E30OLg6VJBV2BuljaOWK43vs0rl3jgtfUTvB1vo7BLA4/Il9tZ3Y5oY3PI12aa+fqI+w1TmsE5HqhClqcaihQ5q0uyf3gx1pFstlUO6LhvJ9z8Q2foGkNnOFuBlnlrC4ew7bPL1JtzPBnX95fXWohh/zpG7QdXFGeI4nlSvpOyzpP2lIThZPwI3LnRT8AYf9Ts1eyVrOSJ6Fl81juYb+olYyuIe82G+YC2TzLH8zPU9wC7jPzP/H205+qAAu7ITB2h7Dv2h88AlXHzHOI2rzJv6nsuhU9nooDNlg81iOgvUMq417+Ae9++HUVqH4WS5WoOBwQyx01Ybbd2bBtm8Te6Ti7zXdAN46623+Mtf/sKqVat45JFHGDNmDA8++CCTJk3i4IP7X+D5vvvu4/vf/z5ut5vy8vKMTpkQglWrVuX/FFuR5DzdpcW/pzrcMzRZagpNihxhgdAEyLSs1RLnvDr6vjX8a26MS8xreOrJevZqjOG1EhWtSqYACA1UwikpNLSxB+P+2rNb50GBqIoRiGZWtI+edBKzP66ioLvH6Oj/2bOHgYxjQtNAJptilbrGfcHf7IVpAfPxr4DSUBEPHVVBpn6Qe/puveddCh79H1RXI6KwCvfXniX23xMJnz8Hwm57Ucts7yTbO5LD1xHfUpL5o9Vuxjj5WfBEMZ85AeOYl8EV61ljtaIZ1VIOSqTOi0lrEidBClu3FPZmCho9ugYghAa6F6127wwdi/33ROTmj8FKjDxQ0k7QU4z3hxuI3DEWop22pMmh6LoXdBeisBZRaBts6e8lndh/T8Ta8HZKz5UQRHTBx1Uu4nefn1X3gKz6ptVtxjjJziNibnDHMJ84Bbm51l5stFf8zDQFuuwxDgfS6aT+psimO4PRt3z1MRFnsHL2DQP0jWNMXANRNyAwTnoW89njUfXVYBkYF/wNIRTmi0fZ+YpAbapFKTuN7gKTT/du5PRnMtenWfO39ZQkN5tI043eOrYlRG4ewAHqCUC0I7l+MCGXjrrru7hXjwXTwHO+/Wy4e5ys5uNfRdVXoSzDLje98sp7wT2YLx6FcczLmC8diXHC84iKFuIPnIlxwvOYT52MWj82lT9SA3ud8cREE02gpJ0vUlO8d/DmPnmX5PWnutijodsuf0NoCwYqv4Phmvjt/N66E4A1f1uHz1S4XEW8/th32OPjCgJn3o/1/LFJ5cI49QnMZ4+38+fFoyDqQTVW2YviCzDGr8U4aa69+YI7jtpcY9dZJzxvb57QUg5RD+bc41Cba0G6M8qA0kgLO5spjDYUCtcFf8N84NsYZz+I9fxxyM01YBq4Lvgb1vPHIjfXIKqaEMLWR+PEZ8ETQ5S32uXo6FcwXzoSlIZx4tyUPuGJYj59IsTcGCfNxXzxaNTGWkAk6iYY6Y0UMvWz/zZrS8LJNG2nBkhNpuIIBFJT6BNXY5zwHKKqCdVcjqhoAZdd5kRtPcRdxO87C9f3/tbzADE3qrlnqQFRtxm1qRZRZ49IiP/1PDt+oo1Vm2rtdJO40hwDQtnxpEb8gTNR68fZi4mr7M8mEIn6UWY9n29+puzJ5CYRSmA+eQpyU1+bIHeaPfV28r2Kuk0glG1vJNoO88lTUOvHphb1z9V+pz8bmkCkjzvoZQNITWWcz+fZUzXjFtgZSaw03cp1z8HKlS0/85HLdcFfbNsuYeeazx7fs5FCY6W9eVjMBYkykC6D0hJTELeRnQZ2fThQf1FmyV/P+X9HeHsciKK8hfh952CcaLed8fvPwjhpLkCq/USTiJp6VL09yyNZ3gHid58LgOt7f0NtSgzsSPQXVJefjvIupn7wYqpP6rMSMyiGYDPkImWPmGmDBISG1D0sri7i8FMKsn70BVi+3zEEOl24Tpprl7nE5i+5ynN6/mrp5TVtoxfz6ZMwjnkJc+5xGF95GvPZE1LnjBPnYj7xFVR9FaKqGeO0x+38TeRp/O5zM+vNBPG/2lPoXd/7Gyhhxzv7IeIPnGkrYEI3VUMlWAYIPavuuC64B/OVObjOfgg8UeJ3n2u/Y6EQ5a2gSbvuPv/vqc5c/K/n4brg7xC3P+6q5vJUPonaerveT5OfqAfVUAWWYaeT7Hs/cwLGic/1tLvuGOaTp0DcSDWvxmmPJ9qGGswnvmJv5mAaqTyJ33sOxjGJmW2uuJ2XG9JnbYhU/zb7exseX0O2OLpMm9mUpTy7zrsb8+UjUs8OPf2CXO+s0xNjfOePB1zTLe/PN48++ihnnXUWZ555JvPmzSMatRW4o6OD6667jrlz5/Z7/a9+9St+/etfc+WVV6JpI7cuUr4UdBsZDkI97SVmC/dx3CTD3SbyizaaEsN9p3SYFJo5nDxKZvyWbSuGJPtg8Qg3HjxE077KTF4RoLDblRFvoGcfMG+gx3hJ/JuMIyqbSVoZqiMxvDlYjN9y9U0jDS8eO39Cm1Axe0i+bFsB4WN6DLxc7yRXeBSQzB8V8tuVpZColnK70hUJhwaAO44osr+KJs+nDzLS05y5QmXpligJZncfHZNtKzIbSDsyxBJfYGPBHhmS+mp2g6Whoh2pd5H+XnqnL9L0XChFgamY0mESG4TupR9TwZ48Qml2XnUEEObg9TdpqA65fOcTZyj6mCo3g5Ozb9i+unecVOMMiPJWu+yZdidWS3Sokk5dO9AzSbCw28XkFX2nIhTFM+svIKuObVUSeiqwy0BRXBLfXJ7qoCefLb1nozqKwXSnrklHl8LOn0QZU80ViECnvSNg4rdqD2Tkj957BodUGfVetrxLMqE93Lf85dEWDFh+B0H69NKiuEJXoGJd7LaimsJuDa2yGbOjuEd/Ap09+ZPUGdOVyk/VWmbnmTtuG4NFwZ58TNZj/q6EDiZ3D+xBZNFhh9GDQKBVNkPMjVbZgtlRnKqDk7oiTBcE/ak3Kypa7RebLEeJsgWZ+pRs/1DJclgG8dHhbEvSWz/7a7OGKywgsyOB3fFQzeV2uXIlypWrp8whlO2Aa+41+sfVY0uk0k8Lp+InOvOpdFORe1WaiXOquQLi7j5vKVvbKvrJv3zyM92eTMnfPrBNkEuuVBpB+wN8UieT6aYcbr3ipx/L+EyQpW1IR9uCZ88pxxBsl966tSXvZEvlSq8HUrZKkrjb3rEzsVxIn3Iioc+8gK1op4FdHw5cnvvmr1bRS3fdcVRLT9upmit6bP5k+4kCTfWU10R5T8ZJyZRenlvKoTOAP9YB9O6Tpv2fh82Qi6z2iJJoZpiadonMMtXWh4cwUfyby8ASaWVOAGpQ5TlbeQXs/EzokN3OpO3aHOhM2YIq6O/J30Se9qk3k2mmH0/GS7RrdoSEbAn7mt7jnpI2fmVz6tpkOikZEo5D1VyRMXpCNVek6nXIfM+pej9dfiVScmT0vVvK+7a77YGMjyUi0Gk7IQNBuwwKZZ9P1veJvE3lQ0fSEZXe38oMD3e7OKg4WcqzqGzOeHbo6RfYgSzvrHtwIzLz9npde+213HXXXdx99924XD2KftBBBzFv3rwBr+/u7uab3/zmduVw2xpsVFt3rY+hUjbCazANlf7WTXBwcHCA7W9cVL4LCW8Nsm3coVAYw7B2l4ODg4ODg8OXG1+OdbnDO8imOg4OMASn27Jlyzj00EP7HA8EArS3tw94/XnnnccjjzyS7213OJarNSMtQla21eKZw4kH96hYO8rBwWF0s73VEvoocLrl2khhNDgEHRwcHBwcHLZvCkUBx2j9L0/l4LC9k/en6pqaGlasWMHEiRMzjr/99ttMnjzwgqXXX389J510Es8//zy77bZbxmg5gJtu6ruY4o5IvWoaaRGyEmBkF4kfCoU5dv9xcHBw2J4xxMg7tsZQzSwxPeND0XBuQOHg4ODg4OAw8mTbXXzb3FdjD6azgrWpDVgcHHY08na6XXDBBVx22WX8/e9/RwjBpk2beO+99/jJT37Cr371qwGvv/7663nhhReYNs3e5aj3RgpfFhpoGTjSCDBb24VPrMX97pIzmvDgZn9tj5EWw8HBoRciseaGQ/7MYCd21iZg0P8aqduCKlHGArW0z/FWOqjJY7dhBwcHBwcHh9FLro0MtgVXun7AP6PPYKAjEInd5p1PfA47Dnk73X7+858jpeTII4+ku7ubQw89FI/Hw09+8hMuueSSAa//4x//yN///ne+853vDEXeHYbufra1HklCdG83DjeAKLFtttWwg4ODw7bgc1bYayLnvwLEsDNe1GU97qb/zW0cHBwcHBwcHAaDT3i5wjifS81rAXvUXe+9RhwctmfytuiFEFx11VW0trayePFi3n//fZqamrjmmmsGdb3H4+Gggw7KW9AdDduDP/qopGzgSKOMXAtwOjg4OGyPCARf1Y4aaTEA8AoPdVT1OR5xFjh2cHBwcHBwGCZO049FR6eKMmqpQiC22w3+HBx6M+TP6G63m6KiImpra/H7/YO+7rLLLuO2224b6m0dtjIVonSkRcgbH96RFsHBwaEX29tOoaMJNy6O0g4YaTFSTBRjR1oEBwcHBwcHh63ISK3plqRClHKGdhyNtLKRBqYwnlY6R1QmB4fhIu/ppaZpcvXVV3PrrbcSCoUA8Pv9XHLJJfzmN7/pszFCbz788ENeffVVnnnmGXbdddc+8R977LF8RdrukGr0zlCvENvfSDevM9Jth2OkG34Hh5Fmb233UTO1YqIYw7tq3kiL4eDg4ODg4LCVGA1LWhyozebf8lkAwkT4uf59BB0jLJWDw5aTt9Ptkksu4bHHHuPGG2/kgAPsL/Hvvfcev/3tb2lpaeHOO+/s9/qSkhJOO+20oUk7gsw9aTUHLRiLJgVSU7RWRChr9qJJgaEZ1FcEU+He50u1EvyVtjNLm1zM64dvSKV7494B5qyPMKEzjo7G7tFKUBKEhvBVoMLNoCSioAp9t+9u9eesJHOk200/m8chr41hz48rsz5b3zAEK0zGNZfhkQaNWistFfb6dbmuQRN4KwJUtPiwPj4eApsR7hjMXIKK60QNwbOH5954okDYu5ca+/0M4l3gKkyFzWO6kKsERAoRFT5UcxikAk1kDQOpY2pj19bI4ryQiX+18mZCC2ajF3QR338e0SW74vV0IxQoBLKqGSPkhagPsdc8gkt2xb37AmRBlLBHsq7IoDwi6XALIoZGmfIzpS0MSoHhRQQmIgIT0cbPybi/sd/PkOteQ3WsAUCFmxGeEkTFrgBo085ANX+GirYjfBUAiMBE0D1oVbNS7yL9vfRO31p0L6q7MaXzIjCRf9atYE2a7ulSQ2qKlooIoChr9mJIHUuTdFTECTS7KKmox7VwNqIoiKvbjXDFMad/QX2kEtVamoivaKnoztBFs8KFCwOtOYaSsl8dL5HFFOv+AXUnl37lG86VZsyKU6819ZEzmRfJcGeFRXGzngoXVpQhkYSb29OeLcquVQsxgoVg6nR9Ngtj1yVYjdVo4XLWLNuHarMbbfYCVMRLTBPINROJmR6CHvh07ybenLOxz7uNTjsZX/PKPrrRW8e2CG8ZRDtBmZC+cYMwoGgMWt3+yA1vQbwLEZiEKJuG+8IA1sc6qrUMa/lXUPE14AqjdEnMUIhdlmM1V9MdLWBjJZQ0u9GkSOnaTgtn45q9kOjCmVgHfgCrJ6L7g+iHvIW1ciLmzCVEV+1Eu+YZsL5sqgrzj+/23aRgtpiBW7gw08rfUNqCgcrvYDlQm80m1ciLO0XYwxzLPGMdzyfK59GfHIa58wYMLYbpsShaMh32/JTo4plE91mA3hLAaisnbPpYV2kxrXglrJiCXt4MgU5oKUOf8xrW6gmIkjbM7iJEWwBzp1XEWir5otTdJ//GrSmiuMODlnjdo6Gj4GAjgfjLczBrGoh+tB+RqesJxtpRraUEPj4QlQgT6KAmGkOTEJ0/i3igC29RG+KQtzE/m4468AO0mI61YjL6XvOwPt8DUdqAvu/HyKAf67N90fZciFw7DiJu6CiDmBfMkXjmHvf4oj2a++gr5LZ/hhrOlaYhdar1SoyKQkTlW1grp6DVbEJ1FyCibvBEUM3lCBREvOhHvooKe8CwQLOgtQwVLAZpf/gShV12fFccXDE7fsyAzmIoa7PPhb3YxogAb8SuilHgMiHoR4UK0fd/H2vtBDZQguoqQJMCl+aisaKL2uZiTBknppl5PbsuNTyaB3dFMcUtOnErzuZEuzimuYTSj4/CCmxALwziskDEXchdlrEpXI1qLc2ZpqXJrPctb/YhJBRUb8QoDFO0YA90XwR0ib7HZuSqQlCBAdvvJquFsBaltSLCrJZJCEkfG6BTdLOqoiEvXSrQCimvrB42OyMZri8PEWvuHLQ+ejQvbRURvM2q3/wsa/YSkH48mpelFRsyzldVjMEnvH3kshYeCN529L0WYi3dG23X5ShTAwSh7jJEWCMeKUBKg3W10Yw0x1ROwMDYZnZaMryxvB2rubvPs9t5o2iriFLW7EFIUucrl+3D2OL1CClAgSoOIfb5CGvFJChvRTv8DWRDFZgu9APfJb5qIlpBF5pp2zYq7kYUdyAKu0BT6Ee8CqaBChWgmiog5kbGPJj7zqPZq/POTPsdvrjPAZyzsXSLbYZsJO0RWf9xRj+3t114in4U78hPaVTNLFDLeMh6isk/KGTfeYWUfbY7oqAbt1SAwtxlOfXhqj7lubzZl7LbxKQ1FKsYRQtmoZe0InSJ0AT6Pp9gLZqJ2Gktcs1u6Pt+jErUe9bKKYjpy6GpDkrDyDUzQW9DlLaDP9RTD7oSDY6lg6X35HO3zw4f/jpy9QT0Q96CaAGyvRiUBm014B5j9/Oz6I718fHo+89HrpmCKGtI2EgTQeqI4g7wRtAPfQvVVgKBdoi7bZk6/RD1gKWhOgOoiA/hkoi69aiWMkRXAfjC6Ie+iWwtg/o6cE/Gmnc8FG3C0rqJ7D8PtXQa2l4LsBbPgkLLrt/q3aDHAIW1eAZi0mpUfTXajM9Bt0CTyI11CN1C3+cjrAUz7bbAG0FMXY5aMh0Z9aCURtwDBjoWFt3uOKGi2FZtF3OFOyrizGwZn1EHW/OOR5+9AmvxnlAYQ2gSbZfVqOZaiJUhKmv7vDNjnAGPDlwGhFL5DbsKBAL8+9//5vjjj884PnfuXP7nf/6Hjo4dyxvd2dlJIBDA3TAdUaznfb0PLydoh/EP1/9L7c56bORc3uDDPnH3ELvwvueRLZZ5S/hYLuLg2P/0OW6g57UO3XHaITzmup266MF0EsowSrPxuOt2jtcPyzimlKIgutuAO9d8VTuKf7v/NGjZtifmyc84MPYNwJ5yltzkoohCXNjOohBdVFLGWfpXucI4n2et1/mm+aOcac5mBofoe3Oj64pt8gxD4cLYr7lX9j/qVSBS+xrtI3ZjiVpJLZXEMVlDjxPIjQs3LkysjHWo6qhiArW0iSDdKkI9TTk3EXHjYicxgT8aP2eOvv8wPOGWUa+amRg9vM9xDS2jrM1kZxbzBWDnlwcXCntNSQuLIgoJ0uNcvkP/LRuo5zrrLgCu0f+XX1l/GpqMnncpEdvPWhy3mPfzpvyI/ZmFS7iQSC4xzuKM2KW8rN7jGO0gVskNLGXlkNKvpoIGmgeMN4E6ztK/yi9dPxzSfbYGz1lvcGr8IgAu08+hUpTxovUWa9RGxoga3lOfjphsF4gzuM3zmxG7v0Mmm1UTk6LD41gvI8BGz9ujfmf7U6M/5Dn15kiLkeKvxrWcbXx1pMUAYJ3cxGnxi1im1hDvZ5OuAEV0EMwr7dliBivUWhZ5nqVGVKCUYkz0YFrpoIJSVrpfYVzsEOKYCATdRNDQMND73TDMi6fPmpVe3OjouDBoT8g5RYxnsfvZvPXznNjP+E9iJM9i97PspE3oE+em+L380ropr90k/2H8P75mHJeXLIPhTvOf/Mi8btDxD2I27zKfasqpp7mPXeLDQ5goPrzMZCr7a7P4VC1hqVpBM+0A3Gb8mguMr+cl58zIiaxgbc7zrZ6PUh/ptyV3mA9xuXn9gPE8uIkSA2B3pnGAPpuHrbnUUMmShN2R/LTow8t69xvsFjuJzTQNi5yz2IXvG9/gXONrw5LelqCUYpfocXQS4iCxFy+rd4kRxRpkefDiJpLISw0NNwYRYuzCFKIixgfu/1Ik+g4E+LJzVuwnPCKfB2CJ+3kmafktLRJVMWbFTsGtDKRQXKafzQXGN3jCeolvxu1+6VHagRytHcRlxjkcGP0689Tnw/4cg6WSMn5vXL7F7WXSV9TR0UFxce5+T96fhz0eDxMnTuxzfNKkSbjd7nyT2+EJE+FR+QLz1GepY4tZnjXurmKnbSVWTipybKSQ78YPH8lFCARX6RcO6HADuDv+cJ9jb1kfD6p63ZGnl66U61K/k0ZiIT4K8HKb8Su+rZ9CF2HWsJGJjOHfci5/MP/Wb5qf8jnxkRgOkAd7absNGMeFgQc3lZTykVpEGQG+YG2Gww3sfAvRTYQoAtDR0NFw42I+y1iqVrGR+n71KEacz9UKdtemb+mjDQuVlGZdM613WUvvWCgUEWIIBBYWfgoZR23qfDklzGcJp+pHAzCZcfzLeqZfOYx+BksXsu2N2y3hMuMcHnX/mZ+6L+B/Xd/hcte5uISLR9y3ssD9FLPFDIKEhpz+YBxuAGvZxH7arCHfZ2uwd1p5/FAu5Hz9DD5VSwjRTatqx4unzyjpLcFAx8vg7IlX1QfDdl+HLaeGClz5T6LoQwlFTBbjWKHWDRx5hPme+MZIi5DBVeZNnBv7+UiLAcDT8lUWqy/6dbgBdObpcDMw+FR9zh+NK6kRiZHUQrCPtjsVlODFw5vqI36tX0yYKN1EmEAdEtmvww1gTNaNY2LEMTlDnMDBYi+KKKRIFfLT+I3cbf4nL9mrRXnqd32OduELtSYvhxvANG1SXvEHSw0VecV/l/n8WD+Peprx4eljl4QTDs0wET5iIQ/IJ3hbfUw7QQx0JjOOh625tFrt3BT/O29YH7JYZu83pdNEa7/nR2r953Gits8xHXsQR/pGcFFilFCMFzedhNhX7E6lKMeFiyJsB9FuTENHZ7yo5S75b76mH4dIswbduNDR2FlMBPJbW3cBSzhY22toDznMCCF42XM/T7ju4Gn1Kh7clOVhYyQdbgLbLo4Qw4uHJaykVXWwV/SrPGA+sXWE345J/wg/FKekR7j5i/E7VrGBkOrmX9azrFebWaJWpeJ8Vz+dy4xzANikGrdc6C2giVbusfr6H7YWeTvdLr74Yq655hqi0Z6vQNFolN///vdcfPHF/V47d+5czj//fK644gqWLFmSca6trY0jjjgiX3G2CwwM7rHsEWxKKVoSX3J6M01M3oZSZadymDZSCBPhc7WC7xnfGJQB/gJvc1f8n6lwTMW52PztoO7lEzvmRgqmMvm1eUvGMR2NLsI00MIt5v28JN9JnbvD+icXxK/iExYPmPZo3zDjLO0USgfYsShGnEpKaaKNKspYx+bUuRKKsl7zQ+1MDAwsJGvYSBh7OLKFpHMAh0o15ZSLkvweZCuhC3t3p2zUUJn63UALBpkjdJNf8EN0MUZUp4630M691qOMo5af6uezmg00kntaN0BpjnwGcIn+1/fcXnAJF1O08RQLP1PE+C1Oz4e3X+O/GD+Haftu8X2Gk0pRxmQxDoAlaiWWklxlXIgCVrIOhaKJtmG7nz0qNTaouOmOY4eRRwiR8+NdPrQT5GO1mI/UwmGQautygfzlSIuQQROtzJVvsFb2nfa/rVmu1vR73k8BQJ7uJTiYPTlRHM639VMyjl+tX4qBQT3NrJbr+ap+NJ6EA38wH4ABNtCQ9XiMOHer/3Cu/jU2et4mQpQ/ywe5xLyGNXnkdbXocWI1qeyOoo05ZOiPrbXhTY2oHDhSBgq3MpgixqccbOn0dgQlO/pHi4M4X/86q1hPuwpyu/UQv7Bu4tj4uXwtdsmAd+2iO+e5QnwjNmI23c5KYiUGMvTOn3Y6mcok6mnmPPMXrFBrWcjS1KyOhSzDwmKZWs2z1uv4lJdqylPlJ0YcC4muNO4yfsdzxj3cqF/BeOoGlHOG2ImpW8lxOxTGihr21Wfxde14fqyfm3I85oOClLbtyQxqqKSdTtaxmf+azxFSuXVmNKKU4lP5OX+K38dv4rfwkPXUsKYfTMuPoeQ3wGH6vlyuf5cgXSxSy3jWep1XrHdT56cnfB1RGR3QUb4tmKc+5x3zk21yr7w/R3766ae88sorjB07llmz7K/xCxYsIBaLceSRR2as15a+KcI///lPzj77bI477jiWLVvGbbfdxj333MOZZ54JQCwW44033tjS59lq7LqwnJ03laMpgV8UsK6slZJWD5oSWELRURbNGRYCGssWskR/E3eln6qKAhprbMWu7jKp7rIoD1vs62rBjP7HXmdL0xCeUlSkFZRCFFSgVcxE+Gu26nMW4MONm1iiw1NVX0D15gImfxHIeLZdW8fRoYIERTjns6/kdXZyHcqVxSfzhvqoT5yq1gJMJVPh91qf4HRVziL5DovdCzm7OYguK9hcbvL63hEWTo7kkNnuwKpQPSgLhI7w16BC9ZgLm1H1MVS0EFHuRbVG7HnYQmQNA6ljsWdWI/+7Yqvm90C8xolAmPqdm3nu0i+YogJ8WrgcC8HE5tV40IhSTHN5jGnNy9BjXkK6i89rNIp8rXQHorQH4qwJuCiNWHR4dEwNdtc3EGu6EZAITxlaySR7bQV/bYaOqVA9qmszqtv+Gqsirfb6Dv5atKrdkY0LUV319rpdHtuRJ3wVoOkIXzmIhMMn7b2ko0L1yOZFqO6WlM4LXwVufy2Ht+zGmk0rGP+FP0NvgJQuVYhS4mWTaGttoi5egSE7EL4wE1oLiEmDoMvFZzUCuuw03GIjp5fNpKu1A00JJohaPi/bgBsDvVX2W54PaNuFqL50ULqTK06+4f7S/Lo1nYWla3PUO4FUeM/W2axXm4kJ2Sf/DtHHYpWMY7+NYUrDEpepeLL6Er7ZOo5qtTPrPBHW1bqYUS8piigsAY2lFvuHDuFDfS2rfF2snqrTUNOdqtOS5NKN3jq2JcTn34NsX4kKbgKXB2LdYMYQZTuh1+yJVjYV2bIEFWlDK90JUVCF6ihANsRQ3YWoeBNq0xJULGivzVBWhmq3EJSAtwyttjaV3z8Q+3Nh2WG8suEe5offxS3jdBVF8cclk1okhrKXk1pc6aU9HmBToSenLo1rLaNLddNSHmHpzNaMvDtPnIE74bBML39DaQsGKr/58DvjMh7bfBOrrdX8w3UtP+Aq5q17m/KlzUStKD7LpCsQY58GP12yi7hm0lAi8Xf46NJctHk11lZLdttsMjYSodSMgC9MadRiXLuCuIsOt2BenRtv0Eur5qXd42LRWPrk34RVRcyaV8Fp/5yIQNCBsyP6aOL90iN54JzFNE5uotPtoj0Qgy4/pVYMpaA9EENoMGOzoigqkZqkodxkUouFP66QaDQXSca0wXTrr3Qb76HV7IRqX4MyFeBBq5uKam1FtUlUFwi9BhUpwHxsI2zYth2pjzkZgJgLLvjPq330FfrqcO/w2NYSulUk5/nyVi8+5SEoIoNO87mNl/KtyGxc8VUgmpDtixBYKEtDuN2oGCBd4FIInx/cFnRaKMsFwosoqkSZKxBWHEwTPAYqGAWXBUogfAaqywLcoLkQhXWocIfdy9Ulwl/GmeYqvhM06JIFrPcU8MQML3QXoilBkShkbVkLJa21g7KlpVB4yvx8Rzud+paNFCoPcdcXGe3idKG4tPhI2ltaWGb9mybrnzzk2o1w6yoiZoigawxvjDMxuoqQirzeUTLczmuoQg9XbSxggypFGoqPK2+lNnoqGCUDtt+zYi7OZhaNZV0UtG8mqvW1K6ZZEC0dO2hdCig/bvcGYsNsZyAE40slX2mc0m/e9JZrVdkHXNi2H+9Id9ZrOsuiBFo9GEojLiR7ls/ilI5D2Gw2osS+fFG6mSW8yVda7fsGhJ9YzVrkpkWoaAuYYUR5Gaq5DSxACL5dUUphp5duTccSsLbWSt2zSBQSq1k74LMOt52GEIwpk3ylof/8y8ybLr5vTmfq+rXMDAeQKsraQAzaQVcKaUj8BUVUtC9Gmgs5VAhWVLqY0C7xqRhCQYN/NYGua0CHPejiLzoYcZ3ysIkmDSKamw9qNBq8XpbWKdaN1/jxtIuG1WboTTJt2bo8o587kF34gPsPWCtW41rxPuEmQZtop7pdoEkI6m4+q9FSNn62/NSKQpTHLCbXr6VGulH4CfmilLR/ymucSql3BuNqplJZ3wDdrSAMRGmZvQ6mqw4KAgh/J3LTxxBtBtWEEBGU1YSyGgAJloFwl6JCGigvuBVaSS0qGAetGKUVolVMQbUL0H0IXx362GngK8uqOyrehIqsRrgakc0fQywG0qC9YgJLg68xHsVES6KKJW1tP8NjRVERF6KgGIQHFfMgjHLwVCOqJqHaFkJ3M0iJKC5DdQGUgWcnjJ0OQYa6Id7E16Od7FVQTG2bjhT3EDY0RGkpwihFLgkiO8Oo7k5ERQTZsQTiMYTlRpTUIjs/A4IoPc7lnnLObvMTsTTixt+oqHBxacMsasUujPUsJTyujWba+IG5G8HiOO1l0QHLRX9hJRRtedbj6eF/q1t5W69hTOkEDm8dS3lcIcwQFBsgyNkvSL4z0zu42WN5r+n23e8OfjH/e++9N/V79uzZfPe73+XSSy8F4OGHH+bcc8/llltu4bzzzqOhoYG6ujosK79pjFub5DzddcYNFA/TWgCb6kLMXvoQAJ89sIExXYN8Zn8d3guWDYsM/XFO9Kc8pl4ijsmn08+kbpN/q98zifsX/4e9oiHEbk2MnAwWY5V0ULfu31mv+Yl+Hte6fkTk7mkQ2pTKp8jd04he/EN70crtnaJO3JfcAUISu+0i3BffaS9cnPy+5e+CkP1VInleBLJvs53+5acPvXQslae9ERre/+0g8qeAvSBqlvMoCf7E17W095JOzvT9dbT9/hIKNuVRPaXlEUpL5RWdgcGn8WWluMNeBBtwX3IHsdt+CEF7pKH7F/8HQOzPF6biJM8lSa/TwNavtrvWZ9eNYazHIjfnHmlnC6JlyiA0otf+NKUTyWdL1jmQqHeCuUdZun/xf8T+fCHui++0/7/kDvCHiF1/RU/e5aFzvfPuUdefOVE/3H6+fsrHYPJwoPKbDxtUPaW37IyuwBIQvuX/4doYS+VHSn8uvZ3YbT9M5Q9KZOZncUcqzxAKgn67zkoeCxWC0uxrnbK7XeL+xf/Z5eHKGzPeY0pXOgNQ1NM+peptf5d9XVJ36KmP7DYvUacrYR//84UQTNQBO0I7P9ykl7VQoW0nJMocRSFQws7vX9zQc40SKVsCsOMl4wOx635mx1eiJy1/2qZTolebnagXYtdfsc3Lc7o9mWRYbIKE7qb0drjSdRiQ5DtN2rmx29LWPg0W99h/2zl9dDdZN2bYG7cD9LSfqJ7ymrgmWR5j1/0ske4NPefp0VtZ0oGr4XKMe2YPm83Qm5z2CAxo03RUXQ+WTCtz9up2gyp3Wcor9PSVknZcui65L7mD2K0X2TpV1In70tsBlcrTVD3Yi4x8ToTdV95o13+Q04buTcrOvPLGnvsl33Givu1dd2fUzZC9Hk+TP902y+h7J/QpW7ubku/S26EoCMEiO58SG+mknjvRjgP2/W69KNFWj+71WSHTxs/wR/TzzjpVmPHmzwZc0y3vkW7pjrR8+OKLLzj55JNT4a9//etUVlZyyimnEI/HOfXUU4eUrsPwEyU+6tb86q+YesWOu6bblxmBBnmuJegwOjDYMaaWjgRHageMtAhZGStq6E7bIbZThSgf5LprDg4ODg4ODqMTgT2LK/t8IgcHh+Fgy1e7HSTFxcU0NDQwaVLPfPE5c+bwzDPPcNJJJ7Fhw4ZtJYrDAOynz+IJ8+WRFiOD/sY7jdTiqA5bF81xum23uMh/p2eHxAYCo/gjgpbmdLN3WXOcbg4ODg4ODtsz+Wy44ODgMDTyHoPb0tLCRRddxIwZM6ioqKCsrCzjLxf77rsvzz33XJ/jhx12GE8//TR/+tOf8hXFYSuxj7Zl8/a3Nb4dePfSLzPaCC1667DleBxnzJAoxZme5ODg4ODg4LAtcextB4etTd4j3c466yxWrFjBeeedR3V19aB3g/nRj37Eu+++m/Xc4YcfztNPP80DDzyQrzgOW4HdmIoHd2Ikw+jHGem2Y6Ll/03AYZTglMmhMZlxIy3CoHC+ijs4ODg4ODg4ODgMjrydbm+99RZvv/12aufSwXLYYYdx2GGH5Tw/Z84c5syZk684DluBgDbA4uSjDJ9wOvg7Ik7HfvvFP8Stxr/sTGfySIswKATCcaw6ODg4ODg4ODg4DIK8h5JMnz6dcDi8NWRxGEWU0v/OKqMJZ3rpjokz0m37pVg4TrehsLe220iLMGhixEdaBAcHBwcHBwcHB4dRT9692jvuuIOrrrqKN954g5aWFjo7OzP+HHYMqigfaREGjTPiYsfEGee2/VLC9jVadrQwS58+0iIMCsH29WHGwcHBwcHBwcHBYaTIe3ppSUkJnZ2dHHHEERnHlVIIIbAsZ7fBHYHxWh0L5bKRFmNQONNLHRxGF6XC2RBgKOwpZoy0CIPGI9woZ7Sbg4ODg4ODg4ODQ7/k7XQ788wzcblc/POf/8xrIwWH7YvtZUFvcKaXOjiMNmpV1UiLsF1iaHk3yQ4ODg4ODg4ODg4OoxihlFL5XFBQUMCnn37KtGnTtpZMo4rOzk4CgQDHPHQUey2rQZMCqSmaqsNMb6ijTbYjNUVbdYzSBnfG+coGX0YYYHNdF6undLJy5w4AdmqLs3OH5OHozwFQXQ2gJEJoUFidCmv+GrRxh6KVTd0mz31P/GEutn7HlC8CTFoZYPdPy/s82yHsw2H6fvy04lYCDVrqfHN1hIoGL5oUoAkaqrsAOKJhD6pkGa9o72XNn8oGH5NQlBIhWthOSaOGEdfYWG7x3yM6eXXvrqyyfuJ+nF21nZGty0FaoOloZVORrcsxX27AWheFcBGiugDZ0A2WQugiaxhIHYs/tRIWt26T/O6POHFiNc28cPZ8CokRKjQRwMQ2C90SSCForgqzc6vFmPhYQpaL16qbKSqtp7usi5aSOEvL3FR1W7T4dC53f5+J1GBueBuhFMJXjqiYgfDXoZVOydAx2boc1bYKGdoI2PopfBVoJRPRJx2DtfpFZMca6G6GwmoAhL8OoemIonGg6YmEet5LOrJ1OXL9W8jQ5pTOJ+VQTZVcvOTHlH4a71OOsulOhRWmRHQjCrupazNASoKqkPl1OrKjKE0/o/ym+TxKrSKu5c5+09Sk4GjjYParPSAv3ckVJ9/wQGn+p/wV1jWsJiajOeudZFhpgsZEWaxs8KFLHUuzaKoOc9ymEP6whTsO62pgbLOHDtOgVfewZkonszdZ7BmbRJPqYHlJJ7HWYtp1neZCjYWzm2mcYrJw582p93qNdhmXb5yQVTd669iWEHv1p8j25RCsB8MD8QjIKASmoNfti1azJ9bmD6G7Ga1yJqJ4PKqhDGtNBNUZALkWa+NCRLwdhEBUlKGaBMgKcFWhTZjQN/83vw2RNpqs9aws2oApmxnbGUeZBkoolhb5aQ+Vs8bvzflOqhp8CCloqOnm3UM3s3LnDgSCsHdRn/KRLH9DaQsGKr/5Yq1+EWXFELobYvsgV7QT//QTiCuQ7YiAC9W8DExQhkAEyqEVGqTF0+7FLBrXzf6bw4yNBwkQQfiDlMQFgQ6BsgxiOiwp8+DpKKBN+mnVfHwwRfXJv2mflzL7o0p2/7QcgRtX3k/isDURFU2IA8ej7yLBKEMrKUZ2BmiVC1gjN0OpnwqtmK4NHxOOttBhdNBYGWNiZ4zCmEBKnVa/orYDPNIiKt2srFKMCUfxRLxELY2ltVDTajC1dRpVwQpQddDtR77VBlG5zZ85nhj1+Zs/fURdQzE1spxNWjMbqzuwsKhs8LE3u3K8MYfPKzfw6OYnEjaSxi/H/DhrPf+u+TGv8n6vehwaq7uB3G1WMnz0pg5q4mGqRQdeV4RSmbChTBcYFsQNVMyF8EWIeSzQTfRQAZguLKnT5REUF7Sid3vAZSJdJqKzEOGNgDTAF4EuH1g6COgyNDxSAgo0RditUKaBESwkGimkxQrw6LQCVMifapPc1UWMayihTbbToXVRUF3KHo2TOJR9tritDcvlPCkfosjXzrRWH1OsCTRSwOdjq/msvYlO2clYrY5PqlcMKj+T4VLRjeYPMrVBYgiFZVgsK3Mh28ppM1y4NTcbqjtRSCobfExR4/iW6ysZct6l/sWS6o3UNRTzM/G9DLnvij1Es9aWsx+RPBbQirlkzPe3up0hqgt4c9ObvGl90Ccv0DQaqkNZ8+/Qht0oU8WsFOtYVL2+3/ztqDYpa/CgpERoGj+puwSPcKfkWKmt5daKR9h/czelZpx9zKlUVE4i3NjER/FFmCiWV2kUtRYQ0l2YCJZNjFLZ4KNUFvN91//grgkMWneGO/9kQzerzDX8k2f6PPvlNT/kpvo7EmVCoVcXsYcsYFbDSmqiOlhxPi9uoqDVDUIS8Hgp85TR0bWMuKUwLYN1JTq14RhuI4JmabR5DHxRgeaK4tZjKMtLIFqEpTejTBdxy8WK4kKqXDOZNHEO+vRdMPadPew2QzrJtK2GeRn93MHYheaHn2J+vhzVsAE0iWpvAqnYYFmsra3gjfblCEnKpk3PX1HaSkXMZGqDpEiL4BYmEW+c4jYfcXRatAI2jw0xu16nIGxiomgtt3C1lRMS5Wzwhzi9fC/0hvmgtYLRAkqBqw3pCqJQaJYLqdxo7UVYphtZGKTLI/B0+AkLQdwyWF9k4G0vIiJ0Gg0vC8YKGgt1qhv8IGVmf4YQ480Qfl8bU8MhjIhBoVmCr3gXVKwTRBTiAlESweRTsECFCrHcFm7pg7gHVDFCVCBK61CRxRDrsuX2+aDTC/FSFJMxdjoK2dXOuvgnrJafESkQ7N5RSa1ZiTIEWnkpaJVYC0Korm5ULIRWFUSqpRAXEC5A+MqQcjXCGwJXHBErRYUMMN2gCYR3PHJDBcTLiWoenho7P/VuO0pitFSF+7y3SLWOt8EaVJ2cDJdRym9azrf78FqcWyoeoaTBoFE2c6i+H49UvdZPHwlC1YrxTUHKYjEKZZyuQAw0SV1TLUJWssjdyrJxZsrHUa6VEaqWvF2yhBfPfJmOjg6Ki3MvvZK30+3QQw/l17/+NUcddVQ+l223JJ1u7obpiGI941wRhcSIEyW2Rffw4qbdO2+L0hhuXrM+4KvxC/t9tjliP57z/I2zYj/lafkKkRxxDXRMLIopxMCglQ4E0FvxPLgAwd+067hE/o4x1LCY5QPK+pl7LlO08YN/uO2IVtXBztGj6GJwm5fcYPyUd6x5PK/ezFjoXEfnILEnYSLMdd1DkbZ9LHT/1/h/eFm+w0vqXSxMYphZ4wkEqo9G2RjoaGip/DAwOFjsxTP6XzjeOp+FahkdBHPKsNL9MmO0mi1/mK3ABfFf8qD1xJCuLSdACx19js9hXzzCw4dqIbuInXhHfQLAcRzCa3xAlBhuXP0upP9n/Tec7zpjSHJtL6yQa5kZOxGw15UMExn0tdn01YOLDu+nwyrjaCGouqiOHoCkrzPETyFlFNNBkG4ixHOU8VwsM15ggjFmuER12MY8ZD7N+eYvctbfvRlPLRuoRybiH8hsXvU+uDVFHDTJZVYAVlnrmBE/IeP8X4xrOMc4lYVyKfvGvgbYdmST94Os6d1mPshPzRsyjunoWPQs49Jf2zcceHH3se2KKKSbMAV4CdKdkMO26dy4sLCwspT13vgp4DP3XB6ST/FH8+9MFuMI0c17rofxasMzg2FG9HhWqfV48dDgfg+P5uZ+83G+b/4qI56GlrV+yjdOkv3Zg49YRBVljBdjeMV1X8ZI5kOj3+JDtRCALvcCdK2nf1EdOaBfmyTJ/2gnca/7/wYlz5bykPkU55m/6HO8lgoaacvQySRjqGax+1n2iZ1GAy2E6MZAJ46Z6hckmc5klrIqFX5Q/wNnuI5PhU1psl/sayxlFRWU4cbgdtdv+Xr8MsZTy3LW5JR9tLStERmhJLZ3n+PHiIN5Ub2dCtdRySnakZSLUn7luoiYihOI7olCsZfYlXc8/wEydWgw6GgZ5dJAp9HzPgXCtwVPNTo4PXYxz8rX+xzP1tcEcGFktTWSM6csJDoaYaIAPGT8kdONY/vE/238Vu61HqVSlGOg87b7X5wdv4IFcimG0AmpbtroRKFSNqKfQkziRBK2tC2hSNnUWqJO7y33HkznPc8j9nP1mmWYrguL3M+wk5iQ90zEu8x/8b/m7wH4m+s6ztRPyev6wfCj+HX8y3qGdvrfA6AAL0UU0kDLgGkGKErVlweJvXjFc3/q3PPmm5xl/pTdxFQ+U19QQSkrWZ8zLQ2Rsi16U0UZMUw6CWGg48JgXzGL99V89ghO5fWqfw3odMt7I4VLLrmEyy67jPvuu49PPvmEhQsXZvx9WdAQlFKMmSi0YguWfa+hcrjEGjbqRGW/DrdCfCxVq1gl1+PGldPhBqQa1k66aKMDD64+Ki2AKHGmMYk/qr9znfHjAR1u46hhttiFQrb/BiMXfgooo2TQ8d+Tn/KCeiurQ+RN9REr1brtxuEG8D3XN3jYcyurPK8wmfE5S1nv5ql3eUzPDxOTt9THFJmzmS127de41RDUieohy7+12UVMHjCOK8c4oD2Y0SeffHgJim6+pZ/MBeLr1FJJMX52ZWeWsJIJjGEctewm+h9lVbwd6dhQ2UmbwEx2ZhqTKMY/qGvKCTCZcVk7yQU7cD1WJArZW2TfmbWOKooopINQ3g43gM2iaUvFcxhBdtem5uU0Sne4AXzCZ1wau4bjoufy1dgPeUt+vDXEHBTpnZyJ2tjUJk8e3FRRzr7a7gDUUU2AIsoIsLOYmDM9b5alM/ReZns5JezKTkOTdwC7VSCwkBRTSIAiDHRu1K9gmfECR7A/QboR2O1G8o3EiQ/aMbWvmMV91mM8b71FAT4+Uou427h22BxuAAeKPdlTzGBnJrJL7Dg+k19wkj4HD25caSvsDEbmXHEEAoMep5mfAt5nPgrFZpr4QM1ncuwIbojfzSdyMQCFoiAV/xrzDs6IXcqd5j95w/qQIKFBPdslxlmDijcc1Irs/RQTmVOLPLg4K/ZTvHgI0oWOlqrjeztll7IKFwZaYuzyhdZv+Kv5b26K3cu3YpdzfPx83vc8goFBA82sp54fx29gdzGtX4cbQDml+T7uVsGrebOOy35b9dRZfgroJspj8kWKsO2o9Wpzqo6cKMYCEFYRNqqGvO6fnuc6OidpR+wQDjeAfXLs/J6rZclla1hYhIkSI46OjkAwjUn8yboPS2U6lhfIpTxhvUwHQRar5YwR1Xwj9r9sUPW00E676uQd179Z5XmFY8RB7M8eGOiUUswkMY4L+RbF+KmjOm1QgI7M0SLOZylfi13C1eaf+5w7VT+aasqZzQxOj13MPdYjOfMqF+l9ocBW2AytWbWhlKRzEB8UuokQSnzQyUWyzk2Xu05kLm1znHEoX9dP4AO1kN3F9AEtDYnK2S52EKSdTiSSGHG6CPOm+pDP3HN50nPXgM8EQ3C6feMb32DJkiWce+657LPPPuyxxx7Mnj079f+XBYliHZtTldiW7OQ2Y4gG09Zkguh/5EAXYdy4eU6+wS7alEGne4H2DVZ7XucYDgZINUDJgrCQZQhlOzR3Y+d+01pPPfPVUspEyaDvv73RSYiyQeiWGxce3HwgF2R1Qia/Qo4ZxQ6k/igVAf7kuiqjwuyvUUhvsswsX2AtLBSK++SjBPpxmCj6flEaTewiBi578Rwj0vbX92Bqrw6fFw/dRDjbvIIb1N38Vz1PjBif8QVr2cQq1hEn3qejWNBrB+Gksbij83X9BJaxmgaaBxW/hQ5W5fjKVjRIx932ypOuO7KW2eliEodr+wO2kzuf0iYQKUeGw/bJTDE1w/kxEL2/QkeJ8Vf5H15XH/K8fJP7zMeGW8QhoQmNnZkA2DL68DCNSQBUaKU0eN9jk/cd3k2MWsmGT3jQ0DIcbXPYPyNOM238j37yoGQq7lUvK1S/u78rFHFMOumigyACwRXWjRxufZtW0clMduYS7WzCRNASJVeRu6ObRCCooJTX1fv8ybofC8m3tVN40X0ve+vZO89D5W7XtVxtXMZiltNJiOvMuwjgZ5PnbT53P8df9Gu2uL1SqJSdUUJxqrNYkfbBtJFWfmPdwm/jtwFQRI/TbZFaxtPyVX5kXsft8YcQg+ya7S623TI/uTZHaqWd/9N/kvXcKjbwDK8RFlEmMSbDFsvmVvDhRaKIESdMhEvNa7lJ/p3H5IuYWLwhP2KG6OkvbWATH6qFlNL/xk3VlA/mEbcJlVkcgN1po+RDdNNOJz/Qv8X/ur4DwGq1IXV+UsLp9pJ8h43YTjeBSJW/wVKAl98bP8pX/FHLvmIWYDsTt4T02TQhunFhsIzVBFUXp8UuTn3U+b15Jx/JhWymiQgxThVHM4vpdBLCg5vztTN4wHUjf5D3cGb0x7yg3uZ95lOAjz8bv+ZTz5NsFk0008YaNqbuqaNzMnM4Iq2eT3+zz6rX+a/1PAdFvslXIhfy1egPuSH+V36g/w8fuP/LUlaykvWsURuIqGhez96hepxXxWL47dH35KfcJf+dcyRZbwaa4VVFeYbeCwRjs/Rxf2dcxt5iJm+pjwdVF+T6CJhtMIuFZA0bssTOTt7TS9euXdvv+QkTJuST3KgnOb30D2efx6GfjLPnAeuKpsowlY2+jHB1YyFIlfM8wJrJnbxz6CYe+7q9hsTXlnfxg83j2KfTVnDV3Zha/0oUVKXCwl+Lsdt30Kd/fZs9e3lkH459eAwHvVXHPu9V53h2qKiupbl+U795A1DZ6KNCllBhlCOr3GxsWEvYCmdcUzppCb7iVnRPDPe6aogbdLvh0aNb+fmlfTurNVSwxvs6ANbSh1HxboSrAH3617GWPkzkmlbkCoUKF6FVFSAbu0Eq0ETWMJA6pr5oH9h63FZMWENo5gpcvi5ikULwRvDr3aCE/Vfdid4tIOxFNlcSDETw7roYszBMl89iZcBFZdgCbykz3DNBmqjGBXbarkJE6U5oJZPRxh2aoWPW0oex1r+JareH/avuRoS3DK1yJq4jbiL+6uXIpsWoSCuiwP7CoJVMBt2NqNwd4bLzNP29pGMtfRhz0X2o0OaUziflsD6dhfnGBsx3N9vvQ4P3Kpba6+M0+nBJnbhupXSnpLSegspNEOjE1+VC6CbxzWNYSyk0l+fUz+5Ku3LvrbPJ8FRjct66kytOvuGB0oxW6ayuX95v2ctVFsepWjy6mxWVjUwoehsj5EUzDbqq2/E1F2M2VxGOFNK87zLGRbsxOgsh5kEaHuJrxxCUBh1ewUf7NTDv0FYe+vri1Ht90X0vB7z+r6y60VvHtoTI3dMh3AxWDPsbUmI9Id0DJVPQxx6EtfY1iAcRpVPRyqdjfbwL1jxQzeWIuvdQkRWgd4OmEF4PcnUNqrUGzAq0mnF930ngcVS3QhQEkZqG6W/E7QuhmirAF6a7fjzhtZNo1n0DvpOG2m4eOmcpj319BXsyg3e9D/cpH8nyN5S2YKDymy/xVy9HxUIItx/V8H3MNzYg659EtflB60IUaFC0DIJ+8IUhXoZsKYTOSpBlrK5RlLnep7BiE67SVgh0INoD0FYKuokIdBKL+KGtmFj9GCId5SyucPXJv8krAlQ2+dAtgZb/t0OHrYy2x3xk8xj0GRtQoVoQVaiWcrSJH6I6i0BUIfwhVGgNWBbxska6S7vw+9oRTRUgFKblwojqaCXtyLZyIv4wvkALqr4GFfITqgziC3kQa8cgIj7iHSWoiBd31HbgjZRe6IeOSdUZ68Rm1lba68JObq5kjKzKqy0IW2HWa/U0VHalykCpEWB5RQMSmTpWYgRYVrG5TznZu/hzPMWtuKrrIeJB+LvAE0W1liHKWiHiRW4YgzZ1ObhM0C1oLUOFCkFq9jqXE1ej1o9DVDWCO4ZctBvaLp9DsBjKWu1zvjAIZdsinqj9Wyh73bhQISrkR24Yi1w/lmXuEgjaa7oV6D5C1Qp/o6DQ8lGqlwxrW6tN/BCKNiH8zVjxCMQN4hvHY8rd8bWOTcVfWdnIJtU4YNtZ2ejDkBqFFRsR/iBl7nY0bxR0k+b2Oqw1kwgrH2bCLgGy9hNqVDkhLczKyqY+52sb/UgpB2y/S1Ux1XrlNrEztKoCoo0drDbXZ5WrqnosS+UqyhrdffLLJz0IXWNtZeug8tclDeK6mXrWiY1lRGUMU7eIVupMLZ2P5m5H6ywiGojgbShFmQKFoDVWgqfbRTRagKUMVo2JUtnoo0gVMEavHTE7LT28WWtiRcXAurbf2C58vo/Asl0UVlEXrJyIHuhElHRgtZShl7Sh4i5UaymiKAq+DrTSdlRnMTLmQSsMIQq7QJfIlZMg7kabvhTVUgZRDypeCG21iMAY9Fmz8P74nGG3GdJJpi03vZ/Rzx2MXRj54/2YH30OrEX4wiizG1CojZNAzUS2lNFktdCqddBcGaGi0ZvKTzFhHQEZoczdjlHShmaYSKEQm6sR7jixphrCO6+luKUQYdrthqxoQ62ZQLStgligG33nLygW3WiBdkRRF3LVJLQZn4Mr4YgxDbB05JLpEHehzVgCUkcu3wlR2o5sqsCKeaE9gFI6sr2KVYU6jT6tz7uvaiygZNLnFBtduMesx1PWhFw5GQwTUxno/k6EJ4rcWIe280q0kjaIuZFLp6NNWg0xN1g6KliECvsQbg1RvQ7VXozwRMEXQX6xM6q1DNVUhyicgaj8nHDBSpTeRawrQMATQXQGwBdGFGmopknIdTroUUCiTV6NGL8a1VyBXD8GoSlwxdGmLQPdQq3YCTRpeww9UeTGsailU7HCPiyl0V3Q49yM+Ew6SmL92sq6brCpsjPjvFnlxmiIo0mQuqKlMso0bTIVjd4+Za/d6qBJa6O+MjSgr2Zn/xoK4gpXYSfxoggIC2P1OOJtlYTihayqtjKu8VeXUzZuPLX3fWX413QbTbz55pv84Q9/4JNPPmHz5s08/vjjfPWrX02d/853vsP999+fcc2xxx7L888/P+h7JJ1u64wbKB6mYbib6kLMXvoQAJ89sIExXX1H4mTFX4f3gmXDIsNgmBk5iUemH0Tdpm03AsP9i/8DYY8ejN16sX0wWIxV0kHdun/3ib+nmMG7HrujGrl7GoQ2pfIpcvc0ohf/ENQO0Ckr6sR9yR0gJLHbLsJ98Z22UZv0Cvq7IGR/rU2eF4H+58xnpZeOpfK0N0LD+78dRP4UAJVlyoXQ7OP+Ojuc9l7SyZm+v47YdT9Dbcy+eUZW0vIIpaXyis7+v4I6AMUddocJcF9yB7Hbfmh3qkiUSSD25wtTcZLnktTXdTNrac+6Su+5H2aXWw/IrhvDWI9Fbh5gCHxSD9PC0Wt/mtKJ5LMl6xxI1DvB3I2m+xf/R+zPF+K++E77/0vuAH+I2PVX9ORdHjqXbA9OFIfzqCdz2kB/5WMweThQ+c2XVHkXGrFbbkZt7ErlR0p/Lr2d2G0/TOUPSmTmZ3FHKs8QCoJ+u85KHgsVgtLsa52yu13i/sX/2eXhyhsz3mNKVzoDUNTTPqXqbX+XfV1Sd+ipj+w2L1GnK2Ef//OFEEzUATtCOz/cpJe1UKFtJyTKHEUhUMLO71+krRunRMqWAOx4yfhA7Lqf2fGV6EnLn9ZOi15dikS9ELv+im1entPtySTDYhMkdDelt8OVrsOAJN9p0s6N3fbDnpPB4h77bzunj+4m68YMe+N2gJ72E9VTXhPXJMtj7LqfJdK9oec8aXpbEiLQeOWw2wzp5EwbBrRpOqquB0umlTl7tbZBlbss5RV6+kpJOy5dl9yX3EHs1otsnSrqxH3p7YBK5WmqHuxFRj4nwu4rb7TrP8hpQ/cmZWdeeWPP/ZLvOFHf9q67M+pmyF6Pp8mfbptl9L0T+pSt3U3Jd+ntUBSEYJGdT4mPLqnnTrTjgH2/Wy9KtNWjd+ZQknQbP8Mf0c8761Rhxps/G/413QAefPBBDjroIOrq6lIj3/70pz/x5JNPDiW5IdPV1cWsWbO4/fbbc8Y57rjj2Lx5c+rvX//61zaUcPtmcmIY82hmjBidC9w7OHyZ6D0c+8syvXQ4qRCjY90ZBwcHBwcHBwcHB4fhI2+n25133snll1/OCSecQHt7O5aVWMegpIQ//elPwy1fvxx//PFce+21nHrqqTnjeDweampqUn+lpU7HZrDsJ0b/Wjnb6xplDg47Er2dbn7hON3ypbbXArAODg4ODg4ODg4ODts/eTvdbrvtNu6++26uuuoqdL1nwcK9996bRYsWDatww8Hrr79OVVUV06ZN48ILL6Slpf/tZ6PRKJ2dnRl/X1bGaXUjLcKAOE43B4eRp/fy9+mLRDsMjmwLwDo4ODg4ODg4ODg4bN/k7XRbvXp11l1KPR4PXV15rL+0DTjuuON44IEHeOWVV7jhhht44403OP7441Oj87Jx/fXXEwgEUn/jxo3bhhKPLiZp28P0Uqej6uAw0vQe6VaQZQddh/6ZzuB3gXZwcHBwcHBwcHBw2D4Y/D7tCSZNmsT8+fP77FL6/PPPs8suuwybYMPBN7/5zdTv3Xbbjd13350pU6bw+uuvc+SRR2a95sorr+Tyyy9PhTs7O7+0jreJYgyhkRaiH3ZmAuOoHWkxHBy+9KTvFKghEGL0L5Y62qjVKkdaBAcHBwcHBwcHBweHYWbQI91+97vf0d3dzeWXX85FF13Ef/7zH5RSfPjhh/z+97/nyiuv5Iorrtiasm4xkydPpqKighUrVuSM4/F4KC4uzvjbmozmrmkdo3uNoS9YS61wOqoODqMJHX3gSA59cDZScHBwcHBwcHBwcNjxGPRIt6uvvpof/OAHnH/++fh8Pn75y1/S3d3Nt771Lerq6rjlllsyRpaNRjZs2EBLSwu1taNndFTvtZBGE7rQ0Ye2we02o85ZfNzBYcRJH+lm5D+A+kuPQFCMf6TFcHBwcHBwcHBwcHAYZgbdO1KqZ82eM888kzPPPJPu7m5CoRBVVSPj+AiFQhmj1lavXs38+fMpKyujrKyMq6++mtNPP52amhpWrlzJFVdcwU477cSxxx47IvJmYzQ73QC0UTxqpZRiCoSzdpSDw0iTvqabB9cISrJ9UkmpMyXXwcHBwcHBwcHBYQckryEJvTsFBQUFFBSM3C51H3/8MXPmzEmFk2uxnXPOOdx5550sXLiQ+++/n/b2durq6jjmmGO45ppr8Hg8+d/MpaHMno6lEiDS1g4fTBjANCSN1eHU8fYCHzVhQJrJmGk3FRlhUbDtNw2orhlLrKkRPd5zLN9nR9hPkTtOIqAEKlgELvtmoiAMyr42Fui7ScdYUZMRFgXV9n0S+SQKqsFlQUwk7kF/2dsz1zdzTfgRRSX+1XwRVNAPLhNRFLJ/G2ZKZuGLoMI+QPScL07svCuSzt3kg2V7UAGa0UfHREE1qrupr37qnp7/zXBPGgCaYf95S1Pppb+XPumHNmfKlpBDqy7EagxDXGaICWB/A0jkTkJ90vMIUwfDQhR0I0N+kD0jsXKVzVz6KYaqO4O5ZhjTVKgByqJAJQLpzyaFQi8KQdxuDlTQjygIo7oKQWp2ngqF8IfATMYpst8pAlwaTWl1mhev/SOHbmzTeixDBjssSqKoLgukbtc3QoLRs7lO+rMjRJ/8ViE/wm+XMVEURHX7EN5Iz++CblRnceqy/t6JAhqrw1SLiqziZ5a//NuCActvvugesKKge1LlUwWLEAXdqTKmun2pOsjWGVdGfgp/yI7jC4NuosK+nrzzhe16zDTsfAz5QemJdiCltIhkoXUYlahgkf1ug/6e95gob8mw8EVI1eHJts0btXUhUbZQIkOfcMURiboqqV+qO2GDmqJXUR0hHdlGbYPdBOa2SRGgFYUyypXwRXrKnD8Elm7nczqWnrAlEskUhRJlNJQIB1PxMMyedJPoZs9vkYinhP1eQ4Ug9bRMGWJeMLhreuzJHvsiXR97p6n6yc/0sJbQXRVK2GFg2xqdxRnxoW/72/sdkeMeucIafdukbWVnJO3RfG2o9HCqXIrsdtxAaSbzPNXGJPoJgN3OaDJVF2S752CfNa/wENNU/Ty7rbuxnkt8kYy2UxQFU+U02X4m7bTU8UR5T8ZJpZ8q34n+AiBKbBto2G2G9MdOpR1PPzoou1CUxKA73mPj2wZo7vKclp8io7z23DtlxxV02/nq71nF3LblbFtQ+CI9+ZvI0z71ZjLN9OMqETaNVHuWsqG7ClFSy1lOUm2gaYART3vHILxRW5aiYCofUvdW2HUupPqE0KMXGfLHXT1yJPOVRJ2f0e6aCRuvJ4+T+ZXMJ3QTLCN1b+EP2fmNAt2y8zJYRJol14fc9V+iBG+juixlW6TnSUIXcr2zuCEhrenLhVDprUw/aJpGIBAY8Gt8a2vrYJLbbujs7CQQCNDR0cFs96lspKFPnCPEASxUS2mmLe/0j+cQHvfeORyibjXuMR/hYvPqVFhHxyKtk0qPTn9XO51/yWeIEAWgAC8BitlMY87rC/HRRZiD2ZPzjDP4rnllIp6GRZrDpRfHaYfwhHt0592WIpWkLnow7XRSTTlrPK/zI/M6nrPeYAMNvO9+mPGijnHRQ/HgJkgXLgwCFKX08RX3Axyk7TnCTzK8xFWcQHQvJJIpjOdnxvf4nvlLAH5vXM44ajnb/Gleae7GNBaxLOPYT/TzuNb1o2GTe2tyavSHPKfeBMBPAbVU8QVrUufnsB8VopTn1JuE6AbgL8Y1/NK8mSbsevtM7RT+5r4OgKiKEYjaenOQ2ItXPPfznvyUObGzALhY/zb/z/VzAMoie9ON3fGawU7M8z6x1Z93tPK89SYvme/wN/XfVD2YZBJjCeBnPkszjs/R9uc59z3bUswRRypJSXQvYsTZVezMJ57Hc8ZdpzYzNXo0AKdqR/Mv983bSkyHbcR8uYT9Y2f0G0cg2J1pLOhVfpLY60kqpopJfOp5citIOXroVCF+Ef8jj8oX6SCITNhKvzUu4efG9zPi/jX+b66ybiZI34+X2SihmP3ELOLEWaCWYqDTTBvF+GnD/pi3P7M4STuSX8qb8OFBRydENxoaB4jZTBB1FIlC/mRctd2M4t0lehyr1Qa8ePHjy9umL8CLRBIh1udcFeU00pJxrIhCjuFg3uAj2unATLOLsyEQhL2L8pJpOAmqLiqj+w35eh2NFs9HeEWPA+df1jOstjbyV/kvGmjJ2SWvpCxlpyQpoZhCfFn7ZUmOEgfyjOevQ5Z5a/K12CU8I1/LOKajUUIxGzxvIYTgnOgV/EfNBeBAMZtXPQ+OhKg7DN+IXsZ8tZS1bKSMEkJ0ESOOQKCjYw7Gc5IHApGh0+OpYx2bMuK4MIgP830Hw0HsyccsIkq8zzkfHmaLGejoSCVBwI+M73KSPocfx6/nWO0QHrCe4Dn5BhGi/FQ/n18ZFzFXvsEZ8UsBOEv/Kne7ruVdax7Hx88nmqVeTGKgU4iPncUkThNH49ZcbJSNbKaR/+f6+VZZ8/jC6G+4Vz2acay3jy7pnxgI1WkRq15KR0dHv3sB5DXS7eqrryYQCORzyQ7FGFHNRtW3cp+j78er5nv9XptrENXeYvfhEW4rcrI2h3vEw6xU6wjSleEwc+PCQlJDBbtr0/iOfhr3yh4l7iZCNxECFNGB/QXA6mVYdBFmDNW8x3zeNefjwoWOhoGOQOQ0FMf0Gum2I6IJjdO0Y1iqVtJIC2vVRupEFWsTlfYStZLF6gtixIklKs44Jvtps3hWvg5AOTtemXUJF1PFRJaqVWygntq0kUKdKsSe+q4czJ68zbycacxiekbnrZG+Hwx8wju8gm9FTtAP5zPzCzbThIXMcHQDfMJnvOv6D8/H3sKNCwOdH5m/T3XWAHYXU1O/PcKNBzdRYgQT+xg3qObU+Vyjs4xRPCV9W3CcfijH6YfyavR9lqiVqeM6GuvYxC36L7nY+l3GNRUMv0Ex2tGExnhRxwq1ljVqA0qpnJ3zetnIbDEDH152S9NRhx2HwRjVCsUxHMRilmf9ICeR7MvuHC6G7hjYXigWfnbWJrKLmsJMduId9SmG0Dld67t8yt76bgQt245KjnrP5trQ0CinhJ8Y53GZcU7q+A9jv2WxWs4KtZZaKpnOZBaxnN/IW9ibmSxkKTH+P3v3HWdHVT/+/3XO3La99/SQBiEkFCG0BARCURFBRZFiV0TA/rF/LD9BRQHB9vUjVRAVEFSUTpDeUiBAet9kd5Ptd3dvmZnz+2Punb13S3YTNrsbeD99RHbKPffMmfc5c+bcKTY5hCmkgDJVzGF6dlYaB4KpagKbzHZixAig/ePfcNk4fj8sSIAAFj2pH176DrhpNF10s5sW1gYeotQ+asj0cxnb/kiByiNCuN+PSXsSIuiXiYPLT+0/8P3gZf7yj1jvAQs+7J7B6YlP0sCurAEIjWIStTTRzHvUSbxh1rORbQC00UFbahB4MLPU1L3ZxFF1ifUBwibEPeYhwNtWB5dm2lhh3qTFbedh87S//oXW+8cop28fd4R+wcnxi5ikanjOLAe8umow2NgovLs1eogNmsZQF4RotN+vzmxpFdDArqx1iykcMob3lxd4td8gY4AAn9TncYSeSyvt/Nd9CRScqI/iPdZJAPwi6F0Yc7NzD0UUMEdN5ybnHsKEeMp9mRIKOV2fyIf0GXS7PXzW/i65RPbYlhoM7UTZTStfDn0CgOvtW6mmfL+9ZOxnoa9zZ/yfWfnqe1wczoDb3tirQbfzzz9/zJ7fNh7Uqar+ewTvqpJpTPQPBEXk0040a53BLic80jp0hHM58qp0eerEu//gV4IkBeTxHuskrrQuYYqqo4pyGvFOztMH3HY6USj/oJKplgqaaOZMtZgt1POqWUOQHKYxkVf7XHmUFiQwrg+mI6lalXOTezcAL5nXmK2m+ctWuxvZaXZxrFrAMvMGU6hDK53V0Jeot9+gG8AcNZ3VZiNxEiSMzSJ1FHGS9BBjsqrheV4d8HP55DJXzeDj1nl81v6uP7+T/peL5/DWL6kfLVNUHVvZCXgDr/OZw0a20ZFqizqIssZsYqGez8PuMyRIciyH82zGwORkXZeVZiH57KKFjlTdbzS9Jw6VlAHQZbr9q9wA8lXe/tnAA8wH9Glc69xMD3EMxm/3/ub+p9+6Fe/QN5cuUkdRSRkJEuwwjYP+kFJPE8vNGwCcoU4czSyKUVJBKTVUsLPPSUlfOSpCvsklRoJiCmiiufdWbgwvsJJl7ut81H0Ps/S0PaZ1oLvM+hhftC7kBud26t0mTtRHMUNP6bfeAnUw89QsCsjjebMCgwLcrH6phUUVZbwZ/A/hPreS/STwZY5InEM1FfQQYzUb6aYHB4eXWcUkaihM/bA6gWr+HPgllj7wfnyZoib4f79Pn8yd7r/8aZX6/8FvjvL6w+mBuiQ2SeysE/BM6XlPs4yZ9qnDyt9cxv4Hh3JK2E7DgMu8n/J01pV+fa/g+X/OXZxtvZv5ek7W/Ol6Em+E/01d/Pisz7gYdtDE4eoQNpvtbGEHk1ODcD3DGPybrGr3ZvNG1XuskyhVRdyT8AbdXAxlFHOUnsd3EtfyOuv8K0stNBdb54xldt8WAirAr4PfZ2Hyw3xAn8bL7iq20+DHnIE9DrgBexxwAwas7+m0EySJECZOAoPZ6wG3EAEM/evV3lIobGxy+gwwllLEC2Yl11jfIKiCXEH/H06+lfwFhSqfqUxgF808bbxziD86dxMkQLWq4Gn3FX4T/F9+aN9I2ISHHLxKl+lRqndMZH//aFOg8viy/gRXub/Lmh9AYw+xj/fVsF9NeaBcHr4/1anee84L6D2x3GVa+I51qT/dTnTYzxOZrQ+MgaN36d4r8krovXQyfUvj7527eMJ5nkfcZ6ihwl+eIIlOlUYxhf0aq9lM4z363SwP3c/fwr+iiAIAuunhaH3YoPlJYlP6Nh1M6iuzHF50X2WOmu5Pr3LX8mf3XzxrlhMjzmo2slDNJ4DFNDWRSkopfRte6QYwW02nnBImUM3Nzt08aV7iebPCG7RVQQ5Sk/p9JpC6BeZ5s5KpGR1sYMBfYSIH0KDbYv0uv13KI5c2OvwBN4AcIvzWvpPZ9MbPs32uBJzWp8wKUgNoncZLp8W0M0NNpopy/83BW0z2pfLF8hZOAL4TuJQrrUuyTtICWLxoXiNCyJ8XIkgFpWORxTFXoop41izjZbOKV8zr/vyHnae5NPF97nce41/OE9Sb3pM8eWP121NYhfYwnNHrFnMvl1oXECdBI80Dvuwpic3L7qqRz+Q4YykLrTRXBC7mntCNg56kKKX4jnUpz5hlVFHOkRxKHd4A94X6bH5pfZPm8Is8Gb6j34AbQLEu5HfBH/ImG1BKcZI+Juukz2D8H3h+H/rhATngBt4PV2lz1EFZywx7ehpRr8xyyScXF7ff+UC6nwvg4rCbtmHlbyZjf76wp/Y3iZ014JZHbr8yayfKNxI/I2n639LWSgdnsKjf/ARJlpnXKaeUABZb2EEP8WGdZ03T/fuB48kxan7Wy6e+HPgER6hD2Ew9DfTeWXAQk9Fq2KfsYg8OtWaxInQ/t4V+zhl6UdYgWTB1LVKI4H55LmiQIKUUYTDksfcvAkxgD3kb+nAYjHe7ep8BxiaaKSCPa+1bBvxcp+ni184d/K99A7937/IvjLHQ1NPIVnaw2mzk6sBXuTD5Nda6m1nLJv9q18FUUUaIIEfr0b3778LA2VnTeUT2acBND3M4ba+e6dbQ0PCOu9It/Uy3bdN+S+7OJC4OBohHHMIxCwUoNIFIiEQs5t8PnLk8PQ3QXB7jvydt52vXPwVA21OLYeuT0JNqXJ1Y74MRrUjvdCCCNfuDBE/51ahuf8+lj5N8dBv29o4Btz1zWqNwMf2Wq4h3mb0bS+Kmfl3tu04oEsbEHKyz70EXdoAyOM8e4z3I3Qmw7qAOjv/bi1l56/ussuSjl2NirahICcFTfkXy0cvp+fQEzO4QuEGIWBBzvKe3KjXwNPTOs4dVNfY7A+gpm9BHv+Q9rHfFYahZa7yHV6aoqkZMcynYAdxlC1Cz12DNWwXa9QbMg3leLOkQWEFwHUimB2RSy3PKsSaflBVjyUcvx9nyRHZ86hCqcALhi18hfusRmI7t4Ca8eAXIKUcFQqiyg1ER7wqezP2SKfno5Tir/wZ2rDfmU/mw730/yUe3Yeqjg+4jB5fuSJJwzCI0aQvWUS97D/yMhSESx3nuaBI767yHoZIdr+nnKKTr5kAxHcA7qdnr2Blsnb2d3ss0e8JJrFjv7eyxPvUsGXGxsNAxk7WtRbNe8x5ybRTW4StxVhyKqa/DxCKYc/5JyErgvjkH05ODMWA2TwE7iLIC9NRZ/O2klX6b9hF9FjeHfjpobPSNsbcidm0RDHaA1CFU8RRM60YwDgTzUAW1JP96Ju5rxZiuPAJn3g26ByKx1JNRFc4zCzE7aiCeC+GcfuUdOOsO3NUz0bNX464/CH3oa6iK3ThPLELPfR33+WNw1x8EJoSDoTuSGDC2VGr//P2D6wn++kQ+F/hIv03Iqn/7cCwYqv7urfitR2ASUVQoH/eFn5N8dBvWkbfhrJzrbZ0Ga+GzuCvmoWevwV0923vpRmMlJHIgnIOeugx9xCuo6gZUTg9ufR3u8vnoua+n2rEy6MzHeeVw3B21dBMhEgv4xw4rEsTqdgfd7WLsBT7wd+xHTyZw2mM4r87DNNVBVx6B992L89pcTFMdqrIJiAEKa8EKyO1Gle/GWXoievpGrw7ZFnrBCtwV89Gz1kBhB+5LR2K6c9ELVmJWz8LdNNnrJ0TzwfR2fMfsRQoFwXFzbNAzn0fPexVVsxPTXI4q342KxHC3T0BP2I6JRXAeOYXA+/8Byntuj+nMx+zufXSAnroZd9MU9OQtoA32ve8ncM593sswCqK4m6agynsHB1Q44wBkOd7D7ZNBnMcX426YDrEisIOjclwMvO9eKGzvfXi6o3GfXYjbMAW68vql6fT09vFNRGPFwAzQZw1M2oIKJgksWAE5PaAM9nPH4GyYjutaWX3+wdp+6H98HqxvnZ42EYuwGiC+RrGfYePSk+pz9T2/Ge62kNqWUFxnfUdm+fdNM11exWf9HZXbg7v8MNTsNbgrDvNf4uM0VnsPoe/Jxbia7hyH/Fg49RD28dNP6zudCLsQc1CAxsKJQOjMewkU7/ae0o7y2sb/LEEvWIGqbsR57GT0ghXgKu/4eegqCCXRdfW49XXgKlSFV99RBvuf7wGjCLz/ftytk8BV4Fi4yxdgEvlYkyrJu/87I95nyOSnHd2efZ47jH5h19k/xtm8C+uwZZDjPZMYZXCfPWbg+pxRvmrqJlAJrAXLIONFB+5LR6Bnr8FZtgB93HOY5b0XOOgFK3CePdbrC1buInDiU94LPCp2oXJ6sP/5HgLn3Jf97CijsO872yvnc+4HR2P/8z1Yi/6Ls/RE78UF3bmAwjRUkUzmELMGrjeRs++HLZOwTlqKKujA/td70HO9HyZVeTMEkjiPvJvAex+AUBJc77sD7/kXJh7xXhawu9x7EYPloiduw62vQ5U1oyIx7H+e5b3wa2cNiWSE8JkPYBV0gDY4y+djHfaq348jJ4bz/DHQE/ZeVAJYJzztHRu2TsJ59hhUKIFJhrwyAZx/n+59VhnvXOzZhZh1B3nHarLv/jMKHMvFiUBOLOgtHcW66PQkssYmCpf8C9ZPw5qzGnK8+uM848WCE4/QHeq/z3aVxDl847dH7plurvvO7uGarR1YKif1oF4IRfv8khdNEsr4xbXv8vR0QTRE6KGMX142PwLR7CtFvC8E3IxbVJNRnE0PZfweMjqS/9mMqe/CgkG3fahpogawsVIPqhx4He9e+sCstV7nD7DrU786dhYyrbkdyB50y/xVEsDZ9JBXlvm1BFPTZselqY64m/0WTMwQ0+OHAkxzGdb0jaBc7HvOIXTGQ6lBglTTld+FSjWG9sZphM58CGWlt8f0DrC59gBvWEktHyDG/DLN5NqY1vXeJ1vXg0l9Tzpek1GM0piWtZCfurQ/Y79kcjY91Ju3dMyn8pH8z3xMfeYtzf33kYWiIJq6amhXuV9GGO2V1Y5agh3ZDWBv7BlCWP1jkb7xuS+xM9Q6ezs9vM/kJLO3JThU3UzNc9cdRPp1YXra37EfOB06C1FA+KB1ANgPnOmvoxKpqyFcl5zNLqdktGmlqeeTDRYbI9uO7aHOuonsPCSjmNb1OC+EoSMEJNHT3/SWqd507B010JmKmUTmr3NeeetpG7H/vYTAmQ9i//sMAksegfwo7ppZBE57DLu+FpJex8GC3vhMydwHwajFKQ9NYrka+OrAAevfXpThUPV3b6XL0yjtHxv0R1djP3xSb/zU7fBOzM98CPvfZ3jzo6krOxJJ3M2TCLz3X5AfBWXQ5buxV88icOpjkB/12rHyZuwHzkRFe68pTx87iI7Pdlr00rPXwN/PRs9ci/3wu6EjB3DRs1ZjP3ISdORgnN5bqvV5qXY7v8urR6c+7sUOEDjrQex7phE44yGvTd8w3ftx4Nz7SPz7dOj0YkuZcXIVSGf/NiPb6B0b3HUHETj9Ya9/oID8Lr/OEbRRgS7c1bP8EykAld/Vb7hSl+8G7fU13NWzQHnr+cvyM47TWa/n7F3PXTsTOopSczP7JvvvuKhnrc5q2wHsHbV+PPZdP7Of23uR+AB91l3eoKQ+9++96dfXYiV6zwKG7lcMfXzu308G2FN87f9+RiCzzzVYPoe9Ldn7YE/nGeCVlzV9U28/+MyHcB4401+uOwtBuX5bUBD1Xqyyr9u6v/ppfadDSSDj/NGKQuigtdmxm9+Fu3EagbMe9Pobq2cROPVRAOy1MwksedRLO5T06mTqM+n66K6elUrc7V0O2HdPg44i7Hov4Ee6z5CpX9p9+vx76tPYz1ngVKLPSR0rUkMee6rP6Wmz0zvW6HM3Zff1Nk7z+ylW7U4S9/Tevhs468GsvqCu3emlnSrTdDvoU/TOB69N1a63n865H3dNan76tbydhQSh3zan4z4way2JR95N4Ny/++kGTn2sNw/gpXnufanvS333B+5DBVPP78zMXzou0vlfM8vLS2chISCYee599wfQZz7o9+NQLnZ9TW/eAT1hB0Ti6JoG7Po6jDJ4b6n24shNla2XEeOVpatJ/xyWdYwxYNnWgG1C1kr7qS72HZsIpspen/Vgb5mkYsECCvrcFBWKWpjO4V19OE56KULsHYXKuo1VCDE+vFNvlXwrMm83EkIIIYQQQrx9yKDbGBruPcCivxwi8nwDIcahynfoSwHeisJBrnQTQgghhBBCHNhk1GIMBQZ4ALAYnrK36csBhDjQVaiysc7CAadIXj4hhBBCCCHE25IMuo2h0Kg/oe3tI6wOnLdKCvFOUqwHf4ioGFih3F4qhBBCCCHE25IMuo2hfHLHOgsHrGLkxF6I8aj30fdiuIrk9lIhhBBCCCHelmTQbQwVyi1F+6xcnhslxLgkPybsPTkWCCGEEEII8fYkg25jSAaO9l0V8twoIcajfCVXuu0NjcJS8nxPIYQQQggh3o5k0G0MTVQ1Y52FA1aNqhzrLAghBlAgV7rtFSWHYSGEEEIIId62AmOdgQOFPrgUNidwXIe4StKdZ1PYFcY1Lq4y9OTZ5HYFsYwGBR15cXK7AmijcJWhO88GoKmqmydO2Q5AqSrGmnUe7pZHMdFG74uSXYABFATzeqeD+Vizzhv17Q5+eCb2w1txN7SB62WL/CCJaLe/7d15dr9tHWjbC7vChEzQTyMe7cb0SYPXDkUXt4J2UVO2gG1hjMWqQ9qy8jVRVffLqzXrPIi3QbjYn1YHxTE7w2AHIT8IXcms7eg3Db3z4s7IF+g+UuW7cVbPhrwozFmDvW4GOqfLy7cBVdWEaS2GZBA921seOGwlBByU1l6ZJLsgEAErBMaBnpbUhy0IF6PyqtBTTsn63gHjMxBBFU/z8lU5H9O2EeyYF6+AyquCQARdMdffF5n7pW/6zht3QCJKOubT+Rgs9oB++y0e7SZY1YS9ehbkR1E9EVQkhpq0je5GB9NZkBWP+V0hMCYrPvO6AiijMAq68pLkdQXIMZHBY2VPsTPcz+zHNOMqQWdeYsBt7Vs/K2a+AZ0F4GrsNTNRk7dgdtRBdx7JNfPROoqeuQ7TkwNozMYQ2GGMFeDNaU1+mwaQS84eY6NvjL0lKgDGHnhZIBdVNhuz+3VwbS/GiyYTOMXGWZ7EdBbgrDkcdAcqEgNlQIGatA2zoxbi+ZBb0K98nTWz0TPX4ayZgZ77Bu62Caiy3eh5r+Fuq0NN3opZPxPcXP8zyWgMx9igFLE8h1CXQhtFND/JE+c1MXOQzcuqf/twLBiq/u4tVTkfEh0QKvTrp7NqPqquCXBBg7t5Mnr2Gpy1M9Cz1mHaCzGWC4k8yC1AT17hlVlVIyqvC3dXOXr+Sq/sqpowLaWYjgJU3Q6MUhCs7B/jbXGwzT5tg9j/nBWHQXEbzqpDUXVNmEgQOgtwXpvvT6vyNiAKBpzVM1H5PaiyXeh5r+GsOwh9yOvgBHC3TfDjSRW3ouesxkTzvHZq1lrMxingBDAdBeCmrxhVqLHa+PLIuDk26BnPe3WtdgempQTlalQk5tW5UAITi6DnrwTbAssBBaajANNcCsYrQV0Q9dbP7QbL9dZ3FaazAFXUgburHOVYXvtpFCqnp7csAjYmmg/xMHru67jrp0O8HBKhUTkuOq/NRxW3QCgOxoBjoSZtxTRNTx3vBk7TVS4ted3kdgUImgCWsmjJ6/KPm8HqJnQoibNmJiq3G5TBnbIVZ91BOG5wj8fafZ2OqPC46mf0RKMow4Dbmu5DZW5LLM8hpyuQ9Zl0+QZVwP+OpGuTVLafZkFXiICx/POuijUz0bnd6FleP1dN3gKOV+/tXVUoV2G6c3FdjVMQJtKtx0Vd3NtpZ83hqJKtYLwf5VRpC3r2av/YqQ9biburAhwLPXcV7rYJEI6hA0ncXeXgBFDlu1E53aBI1VsNyYC/HDuAnr0WnAL0tInAyPcZMvlpt24k8zx3OP3CwKkKd10jzppZqLxuvMJK9deagv3rc0Z5qoltoHq8+lrU7rVV0HtcqavH3TYJPXu13+652yb4fUFV0Yy7bRIE416Z5nZ75ZnaBEhtjqt7y9m2vH1z2EpMUwV63muQCGGieWAUprGaHjtMV1Bn1BuDk2cR7tJYr81HH/IGpqnSO+6l+kgoUKXNEEqi570KPRHIiYGT+u54CBOLeN/RXAaJIAQcdHCb11bbAS//817FtBVjdtTQY+dgVs0lUNgO2oU5a3A2T/LLx+R2407Zio7morRX7u6myejpG3G316GmbEEFExg7gGkt8uJt9mqcNTNAG1SkBzVxG2bNTIzjDTulihmFQmkFQT1u6qKzaj5q5np/21EGJm3D7KjBjuXQntu/Xd9U3gqrhq4DyhgjPdc96OjooKioiPb2dgoLC1nlruXIxAcAWKTexZPmRQAOZSa7aKWJZk5UR/KCWUkPcT8dhcKQXdTftj7Pd4NfGL2NGUH32A9xgf2VfvMtNE6qMeyriHweDNxErVXJVrOTl9xX+bJ91T59/wPBP/Bua+E+ffZAdqfzT6qp4Bn3Ff7rvsQxaj4XBN7LbD0dgFfcVRyXOB+AT1kf5Mbg98cyu6Pmm8lruNa5JWteDRXsZNeA639af5A/uH8bcFkeOXTRQwmF7Iw8O9JZHTV/tP/Gj+zf0MAuKihlFy2DrvtefTJ/C/2Kzye+x33uo7TSwbX6m0y3JnO8PoKf2L/jCutiksqmNuMq061mJzPjp/rTCkVP5LX9ul0Hoped1zgz+Wk6iFJGMc20+cuOUfNZGv7T2GVOiAPMrfbf+ZL9E7rxBng0ChdDAIvP6vP5ReibY5xDcSDrNj1UxI/BweEQDuK+8G+ZkXGcAwgS4BvWp3nAfZLl5g0AAlhYWMRJjGh+DlOzeSF894im+Va9L/E5HnafHnDZYnU0S80L/eYfwgxeZ12/+Q8Fb2KR9S4Avpq8mhsd73hYQB6ddPFd/QV+5P466zNBvBPsJMlB85iZrhD7y73Ow4RNkCZa+K59HbtpzVo+V81gs9lBlK49pnOkmsvT4bv2KQ8NZjdT4ov9aQsLh72/cCRMkArK2E7DPuVjbxRRwM7wM2g1/u72eMp5mSXJT+AOMp7Rl+lwSFSt9seKBjP+tnScm6GmoFPF1mB2caSayyw1lcP0HCopZbqaxFLzYtaAG9BvwA2gXJWOSp73h0P0DIop9H9PDuD90uTg+le6WH3Cq50oC+0PMSu+hEuS3+A0fTwXc86gv0lXUcYSjud71mX9ltWoipHcnAPGR633crJ1DIUqn0KVT7ku8QfcAOpNo/933QBXA75dzVL9f4VrpxOgX4wCLNSHD5pWetC44AB/uP0p1nE0pAYdE0OcBKSfL/nZwEdopQOAr7o/5X3Jz7HCeZOvBD5BkSrIGnAD6DTRrOm8VN0X2Y7Qc/2/u4llLStSBaOdHSEOaKdax/kDbkUZ7bSNwxPm+bHKlnibyFU5nKdP51A1ky3sJGD63xSUxOYXzs1sMfX+PAd3xAfcAOao6UOvNMqWqBP6zSumkDlqOu2mY8DPdNE94PzvJa/3/45mrDNdTeKawP9wh/nHAJ8ylDL4yS3AFD1hj8uFGAkfsE7jrMBJfDxwLp+2Ptxv+UXWORyjDus3fwp1hAn50wN9driqKMs6504PuO3tFd9xkmynod/5u4U1rOvHA1hUUDKs7z1KHzouB9wATrCOpCSjfSmmgOAAN4fu7TX143Nrx7GwCjFNeZfhbmEHL5tVrDGbaKODi6z302LaOFwd7K+fS4TQIHfxVnDgvkhhgqqmjQ5/MNHOGFFPv+QgPXiRQ8RfZmGRIEEFpTzjLGMz9QMOSAK00sFi62i+ELig37JiteeD7dvdFYGLuSd0I1cELs6a32LaOU4dzgnqSKbxzulwvEvPY5E6yp+eQDVJvNsTFN5gUDpGNZoT9VF8SJ/JERzSLy079bnCA/yFAJNVLeeq0zhZLczqyKZlDkKWUQx4v6ifpo5nFlNxcAkR5HT7kxwafw8/c/7QL40OsgfdBrvK9Z1OKeWfOPVkDLpVUsqH9RljlS0hDki1qpIP67O4XF/EdDUZF4NGU0oRp3LcWGdPvA0UqXxeM2uJ0sWb7oask+O0HmK00O5PGwyTqRvxt1HP1m/91r6R9m59TL+T0B5ivGk2sIntA36mnkYmUO3/MA/eVaovsJLH7OcwxtBlevsqfwldT4PZhW2crJPbHCIksWmkedD8KRQTqNrXzRNin5RknJtOYxKL1dEcpw7nM4EP80V9YdZLAFtox0ITJkiEMOfrs/b5e5VSfj8+cxhoIvv27PjM8wOAEziCwBBDRgqFg0sPiUHO6nsdyVxO1/0H7seTo9Q8/+8JqnrA85vBxi8GI4Nu++AIdQiHMosFHOwfCBrNbj5rnY+FxbLUpeYAMeIkGPiZQwfyFQ75KpfyQQYNJ6u6rGWZJ5kODi6G580K/uTeT5Ua/C2kC/UCvhT8OK0D/GpWMsQvXO9U680WnjHLeMq8fEBfSbm3DtYH0U6UAAEKyWc7Df6g2wSq6aL3OTN55DBBV3Nb6GecY53WL6304NyBfqUbwMcD5/G4eY4pTED3+UUmc6C8IhUrSin+Ef4dy8L3cSwLAEWCJF10s97dQqfJvjy+7/RAJybCM0tP9f/2bkPSNNHCHH3QGOZKiAPTraGfMlHXsMy8zkI1n8W8i2IKudX8nSedF8c6e+IAd5TuPeF6iVcppP+PcKHULY6Z6mno92PUYIZzvMwhwqHMGlZ6o2mGntLvJDR9lV9b6i6DvpLY7KLFv0oVwMVQQB4fsb/E15M/y/qBMJ9cvm19niKVnzXo1kOMQ9QMCgbYJ2lz1HR5K7gYdcUZ56Yb2cprZg2H6dm8z3o3Pw99g4v1Of7yDqJ0EyNOkoPVQYT1W+s/1yhvkNngXfBzpJpLYB8f3R/vc9v2U7yMHiItk/rf5daFQ6b/Mquy2tjx6DA9mxBBcgijjeZgBr/i2GJ4bY08020I6We6bQ39lELj/Toz2MjmQM9t68vVsHF6G8e/8lceD93GEbd9CtO6AYZxhYgqmUH4kmV7vQ1vRefc23HXtw2Yvb0d4R2O0Feu9R7oCyT/7xOAgq48ksUdTFh3L+BdqdQVXolS2YMI8VsOx3Q1oPKqCV+yjPgthxP7/EXgaPb+IttxpqSF4CduAcshefMlBC+63S8nAFXcjmkrAvCXq4rd3rJhb7pGlUzPirH4LYcPHJ86SOSKFmLXl4Lb95kaGrTlPXw1z7vFNXO/ZPLS7/uMDy8fiWu+NGjsDSijjHAt0A7Jmz4Ou0sxffZ/ZgduT3E8ho/jHjHDqaeqYrf/MOLgx28hefPF0FoCRhH8yrWgIHnrhf46tJSk0la42vhtWg0VbIo8ATBobPSNsbcidu0QP1zoYHYedJDEzy/H7CpNbdsvvaZB99al5P99wt/2gdqN4Fd+SfK2CwledLv334/fiipqJ3Hd5QQ/fivJmy6B3WX9Pmsy/r+XwppZTMGqgTspg9W/4R4Lhqq/e8vfpzpI8g/X465vI/ilX5K89SLv4AYEP3UTyZsv9ssH24K24t7yLN9F8BO3oorbQLuYlhKvzfq4N8+0FYFrkbzlIthdivw2eOAJfuWXJK+7nOCVv/JiI7Ufg1/5Ze90SVvqgdaK4MdvActBFXV49SgdOwaCn7jVj6f08Q/H8tqpWy+EltSPS67OqF1vh5Z7BFTsyqpXqrjdr3OqtBVcTeLaK7x+V5qr/b4EgCpt7V0fSPziS976ru5Nq7j3ai90n7bG1WAUiesu99rFQdrV/SH4lV9m9ZMAv08wVLsycHvtUSWt3jPgU3Hbm27ZfugVw3iN5/1xDpAtc6u970qfI6T7ucmbL+5dr7XYa1NcPcDnDyx9Y1cVt5P45RX+sTNx7RVe/IF//ATj19f0Z9L1MfGLLwFe+aWXpz9LRwGqOEbhtu+OeJ8h06BpD6Nf2DHxR5ikm1XnYJj1uaSlX331PnsJwYtvJ3nrRQQ/cQvJm3rvHAp+4laS//dxry9Y3Ebw0zcBxi9Tvx3sI7Oc09OhK3/ltX+ply2AgtZijMmMz+w6nu5nhq78FVgOiV98qXcfF3WAMv3a7qy2GQZuxzPyj2P5+cg6907FU9Zx96aPp86lU/n79E2o0hav//Z/n/DizNWEvpra7l9eQfDi2/3+dfL/PuEfq9Otxvhs1bL7+FnjEanzgoFavQ4VY3LiG0M+003eXjpc6TdbsOdAGSqILBfyurxfx/LJxSS7GO6ogrfu6DLpt3oMYH9UGBVOgEp9YTL1K2I8jI73/gKQT26/ATdIlU+iExMq6J12R6+Dt1/Zgd6yiYdSfxv85ksZVDA1uJBaPvzBtjS3X4wNGp/Gyf5vn3QwZO2LrL/7pT9wPvYUewPKLCPjeP9NBKHfNV7ZxmvDP1KGtX3xkP86IRVOeHUv/dascKLfOuk6pQDLVVltmm+Q2BjVdqxvHoyDiQWytxV62xzI2vaBqHCitw7GQ169027v34kgA7U5KuP/s7LUNfiDoAerf8MtwyHr797KqPfp+qnCCW+b02UaTGaVD0Zll2ciVU6pN4j566fmqWDS+55U3RUHHhVOgKt7Y4OMtiQ9bQey11dubz1Kxw594il1/MOoVFrZbdLbuyXfB33rVWadA2863ufqisy+RHpW5nR6/cy01B4GX5Tp/Z49tKv7Q1Z/Mm2Y7cpg7TXgx25W+ql2/50Ug6O7tRnH7Mx+cDLjakOjyTpZO4D1i11lso+d6boNGX8PUL/TMup5v/ocj2Di3p0hI95nyExi0PPdofuFJh4Ax80oFwWY4dXngeoreOWZOiZ5fbc+ZZTuC9qB3vJNl2nfdjOt7/x4yD+ueRuSik0zxHlJ+hiY/hEjcx9nzBvwu/u285nblJn/VN9M0ads0t+VedzN6ONlpq2CtldOqbdX++mnyzadH7+ejv82MquPnzkekT4nGugzwzxXlR7tGMrLPEEVw3YYs8c6C0KIAYz0s2yEEEIIIYQQ4kAmg25jKF/JoNu+6Pv2PyHE+FBK0dArCSGEEEIIIcQ7hAy6jaF8udJtn6Tf0CKEGF8q9vBiFCGEEEIIIYR4p5FBtzGUQ2Sss3BAqtRyYi/EeFSq5Uo3IYQQQgghhEiTQbcxEiKIVlL8+6JMFY91FoQQAyijZOiVhBBCCCGEEOIdQkZ9xkiYQd58IoZUquRqGiHGowoZdBNCCCGEEEIInwy6jRG5tXTfycPahRifqlT5WGdBCCGEEEIIIcYNGXQbI3nkjHUWDlilcnupEONSiTzTTQghhBBCCCF8yhhjxjoT41lHRwdFRUU0fvkhcl5qB9eAViRrgrxS/xIRJ0TCstlR3Ul1Qx7HMA+0RtfksW7nmzQnW3AsQ2N1NxrFxmntvLiwgR1nhHkl8necjf/BrX8O07YRANPVAK4D2kLlVfvTqqAO65ALsKadMarbn3xgE84zO0g+vcPfdl2Th7uzC1xDvW7kpcoNVDXkYjnK39bahgJwXH8aYEJDIYczB60D6Jo8Nu1cS2Nyl79OVUMuFZVbyM1vIZyTpKi+Ep0M0ZDTzZ1nNPPTixsB+E/wj5xkHd0vr87G/4Adg0AEa9oZOBv/Q/zaRtz1LqarICvffbcjPQ3489zlTZAcH9VDTdiGPrINwm0otwCCSYxp9PKOhVvZhdsVhZ4IpqOMUFEJasZKdKENBRF02RxMVwMqpxwCEXBt3J0vAi6EitBlc1DF09B1C7NibKD4VDnlqIq5BI/9Dslnf4zZvQrTvRuVV+3ltXgaWCF0+SHed0HWfsnkbPwPzut3YDrr/ZhP58N9c/aAsQcMvB9z16OKNqMKOzGdcbBsTEsdOjIPt7nMX/+Jqlcp2AnasYhbCT8+ZzVWU+DmgQWTaqYPGSt7ip3hfmYs0nSNy3M7nvXr63F1x+PwJ7q7YijbIlaRpLSlGForMMkKrMPjmI43iHXZJJLQGQF320RsU8DOnCQvHNvAiwsbeOSMrbwYupt5ejbAoLHRN8beititR0F0J9hdgAXGAeNCqBBVfjB64gm4Wx7DxNrQ5YegymbjrpqGs9LB7C6D4lcwHW+A7gZtUHkR3K2l0FENpgo9YXK/8jPqn5hYDBWKQlhDuBWsVkxHASqUxLTNxOyYhQpPGXKf6Lp8QhfNIXjW1AG3L7P+7cuxYKj6u7eSz/4Ykl0QzIPWC3Ce2YG9/t+YzjDoTnS+hdFrMD1hVDgJugyzOwzRCtAVXnkmHkQVrkcV7IKidohGcDtyUEaj8roxThm05mNaJkJ3LXrCgn7l57zRjNncAXF3r7dB7H969mrcRBXWnF2YRCU6VIHbXIaqXIHpiaBDFZDbg9u6FuwEFHShSzVY23E7IihXY3QEYjYqrxPTWYQqiEDOdkxzKXTnoypyMJ1xzPYy6A5jOiuhJxfax/aYHTin/7EDxujYwJ2oSAOqrB7jKFRul9d36ChEFXZCPIy7uww9YRuEbLAcaC3BdOeAqwGFmrQFs7MGVdIK4QTu+unoKZuhKw+K27xlwSRo430mHPcKQrteej25mI4CTGMlpnEiuvh4TEfBqBwXVeUKyNuOymvCxLsgGcDsmoyOHJ3VJxg6TXiw8mXKGyLkuGFmFDtszn+dWqeLYMghEgiikrNxt04BXU67jvJE5asA/frGw53ODeQyr7Z/2zdmsbSH6e3V7bzsrhrWtpWYQmZb04nWGF6rX0GuE0ZbFhuqd/dbv1gVclzjwaxOriVqxWis7uYoazN5gW6s7gi5RfnEmhyMrTDATp1PbmeEKns6QfLQUyYcEOU3YJrFr2DUw2DbAKh8G3dbBSq3G1XYidtVgMprhUTQq895CsKtqMIOTFcOJHNRkS7I7QYribujFpJB9KQtmI5CiOWAU4TprsIqn4K14HDCnzxvxPsMmdJpu/XPZp3nDqdfGP/j3dgvvobp2YoKxzHxDsBgdk9Eh+f3q89Z5TlxO9iNuPZmVMFuCMTBUpimQrAMtNWhp3fiNneC432fKo5h6uswnTWoIoWevAnjbEXlt0N+B25DNXrqJgglvA8kA+AEcDdN8cp56mZwNe62CaicGKajCJwCaCkEE8B016BLZ6Lyqgdtu0xgE7p8OxRuxd1ZgzKAyYecdlQ4jru7BD1pB5Q0QjyEu2UyuroRkkFIWpjuPOyeXHpyXPJLGlHRHFTQxo0kYOsEnLYS4s0VvFFSREFuA0U5beRr6LAtCk0cunMglKCjMEm0s4yq9RUElUPQuJhJ2wnXbse0FWEaK1FaQ6gHPWkrBG3crRPAtcBVEE6Q3F2JWXMQxAoImAgU5fn7VuUHUWWRcVMXjXkGk2xFhdtoyW8jacUIbaumsGM62tTSWJfLxh1rstqqLXWdfPdXN9He3k5hYeGgcSyDbkNID7r1LUhjDPMS72Gd2UKQAEm8hvHN0INM1RMAuM6+hf+xr/E/EyFMDK9DslAt4Inw7aO4JfvHXc4DXJL8BgBf1h/nl+7NACgUhv6h9UzoLo7QcwG4JPEN7nIfyFpeRAEuLp10cY4+lQus93Fe8otZ67wQupvDUif2wvMX599cnPw6AD8KXMnXAp8a4xyNX9fY/8f37F/h0nvCfl3g2xyrF/CE+wIAVwQuHqvsjYpJsRNpogWAB4L/j5P1QqriC+kgyiRqWRt5GIAN7lZqVAVhQnwi8U3+Yv69x3Qz2z8hhBDi7eB/kj/nOudWAO4O3MB5ttcvPVEfxcOhm/utf1Ds3WyncY9pTmMiG9k24LI7AtdwbuD0t5jr0fGS+xonJD4y4LKlwT+xOPkxf3oqE3kz8h8Azox/isfN8ygU05jIBrZmfbaUYurDT/GE+wJJY3O2/bns7w3dwzmJL7Cdhqz5W8JL5VEX4h3rf5M3cLXz+2Gvr9FZ50P74hP6PApNHn8wf6WLnkHX+0Pw/+NC6+y39F2j6SvJq/i1cwcAS0N/4hg9nw3uVg5JnJm13ie7zuU35T8cctBNbi/dR0opZqgpACSxqaMKC4uNpvcAOkdNz/pMDmH/7xlMHpV87m9TVJ3/dyddBLAABhxwA3jTbPD/bqS53/J2OrFSafzH/S/PO8v7rSMvUujvTbe3XPvGnch2tJ7f7wDzUeu9zNOzuSJw8dt+wA1grp7p//0D+9e4uH7cbGUHUeNd/ffexGcpi7+L/Ph83mTDgGmlRQhTRvF+y7MQQggxFo7S8/y/H3T/6z8iptHsHnD9T1kfypqexywqKc2adwgHDfjZECHO1IvfQm5H12w1bdBlOYSpogzwTu43sY0m4/X9j9bzAe98IUiw32dbaGOju42TrWNYEjieb1ufz+pjPO+spJW2Ab5Tnpkt3rmOzmirhmNfB9yCBPy/b3Hv4f/M34iT2ONniinYp+8aK9PURP/v9Hn2FFXHkWouJRnPl3/NXTOs9GTQ7S14V0Zg19OIg8PqjEGlmWoKCzjYn84ciMpVb4+DwlTVe1XLFnZwCsdSQiEK5c+PZAw2vulkDLqlOiuZywHmM5sz9SIA/ur+J2tZHVWUmMFHkd+p1piN/t8y6LZnx6oFnMsSf3C3glIKVf4Y52p0fUAtYQJVRAjzkllJXfx4Vpm1/vK1ZhMb3W1sZBsm9b9dpjUrjcwDLkCSJAUqDyGEEOLt5HR9AsepwzmCQ3jIfZoqvCupGgYZdEv3YdNWsda/ujztnzzBdCbSVxH55OgD5xyhQOXxAX0adVT584IEudK6hAmqxj9PSJ/cX5L4BjNjp3KT8zfO1Is4hvmsZkPWeUOYEBOo5lHzrD/vVOs4XFyKyCdEkEfMM8QGOMnP6XNOIcQ7yZHqUE5QRzKdSfv1e1xcjuNwCsgjRIguerDT9+dmUCgCWBzMQUxRB9adMLMzzqdXp86zLWWRIEkr7f6yV83wBt3k9tIhpG8vbfrtC+St7MQ4BiyFVZPH9vrNvJJ8laTlsLp6J1UNucwx01gYPAKrJg97R5TbE3/Hthwaq7sJEWLDpBbenNvCeUddwNcDn8ZtXI67axWmw7us2ntujw06kPFMNxtVMAFr+pnoqgWjuv3Osibs13bjPL8za9vdnV3etIafV9xJWUOIEqeQGYGp/LPqOaoacgk7IQqtAuqrO2mljaqGXOqcSpaEF2HV5HHbtjtJOjYRK8Km1PMc6oKdFAY7MHlRahtKSCRtGksc/nR6K3ef3IGFJhpeiVKqX17dxuXgJLzniVUtwG1cTvLuHTgbEpiewux8992O1DTgz7Mf2gw7B79MdlRVNhF4XxCsVlROBJTBdG4Fx8Uoi3WV26hsj6NiIQqSE7AqJqOrV0OJgyrNR5fP7fdMN2fbf8EYVG4ZunwuqnASumJuVowNFJ8qpxxVNovAnPOx37wL07wG05Px3K7CSWAF0UVTwQp5CWXsl0xu43KcDf/GdG73Yz6dD1NfN2DsAQPvR7MFgttRBVFMS7v3fK9kFbp6Aaa1JGv9Vdtf4yV7BcWBQnJqSjjdOnHI2Nib2NnXNEYrzfiONu5I/APHcmms7ua05kYKeyxy7RDNlZrJLcW09wTZrmDNrB0c1pSkoEdjuxbNRWA1VbNbK3blaV5+VxNvzm1h44Iedkde8PftYLHRN8beivg/P4ZpXQfdzWAFvThzk1BQh645Gl13DO7WJzE9LejKeaiS6Zitlbhr4pi2EtBrcXYuB7sTLIUqLcI0hCBRDoEarClT+5Wfs/sxiLUCXagChaEN09OISVgoDSowF9M2A5U/Y8h9oifkE3rPNKzDKwfcvsz6ty/HgqHq796y37wLkj0QzEH1nOzVz+VPYWIaaEUVBnDb16JsIGBQBeWY3RqS5RCu9Mqz6XEM6yDYAAVRVCKO22Fj7CAEQedNhbYgxCYCtVgHHdl/H7y2G3vZLtgW3ettEPufqquHSVVYc2Kgy9HFJV4bHFwPtkYXl0Agibv9NUyyCxW2UZV5mK5NEE+CE4TcfExnG0b1QDIfXV4NzhboCkIiH6omQnsrpiGC2xmCZC105WHe6GaQC+1HRfg7R42fY8Ouv2GcrZC7BVQPJtiGUS7EvWcumkQAenKgsBPCDtqyMR15mEQEXAttBTGl2zEd+ahIHBNKonaXYoo6IBlA5/XgtheCUaBAqyBGxTEaUAYdUJAMeml2lkDXJKzp74fOgtE5LgbXg1WPyqnHtDdh7AAqMRFdc2K/PsFw0nx4+yNss3dSEmwjpyDGtNYkWAlqA5XkFS7ANNVAoAIshV0d4uf2H6hqyEU7GmNBQ3U0azpUU0hiZwfKATd1LK5qyKXaKefM8EkHVD/jbvshWnfuRDva35Yrm84nx4R4iddYUbUZqyGOdjRBK8DWau+c4HhzBC+rVeysjlLSEEQ7GsvSbK/uAGBB41RO5wT/e15puBFtdhFKKJpLHUp3hbAcC0fB+qIQha25LNKnAmGsgyYdMOXXL029FqflPkh0eM+bKoxgmoIQSEAkidJBjNsEtoWJ56ELijFuI4S6wFYoVYxxYhDpQQXi0JXvPecrrxmTCEMiBx2aDKoWa+JMrHmHETz1hBHvM2RKp+3ufDHrPHc4/cLkI0/hLF+Fs2s7KpjEdLR4z4VL1KArD+9XnzPLU1c0YWI7cVs2QGg3SndDxMK0aDBBsOvQkwOYpk24sRgohS4KYZrLwJmAKshFVezEbVsFoVbIbUV1RaBkF24oBsqAHUQ7AczuUq98S1q99rO1EJTGJPLQkUpMcw6GCFrVoSYcis6vHrztMqshtx6j3kRFI5AMQbgW43Z4z6WLhVBlHZjc9Rg7AM3F6Lw4rhPATQaw4yF6nByaCqFWtRBKWiggHrHRLcUkuwtojRezdEKEsmSSMrrIVUmiIUN5p8JKWrgBl10lSdrdPKauqiIvrsi1XezqXZTm70LHwrgdBXQHNAWhKLqwHRWwSXYUYfVEME4AYzm02/moLZMojk0CKx9dU+LvW1UcRlXljp+62LISk2gC2kgUubyglpHXUEw4MYFDQsdjTZnKY9sfZ7O9HddycatzaK10+MHlN8gz3d6q9KDb1sBPKVQj88bRHbVRXlw/m4sD5xD7wyyI7hjeB/NriXx6eKOpI6Vj6k2Y+q5R+77Qt64G5f0alvjVZd7MzkKc4nZqt95FEfk0Rp4f8LN+WabKKfaHWcQvuxSvB3iAK+gg9MXfgHJJ3PAFQpf9ltRTNb3l+V0Q9Rqc9HJV1LH339MnxgaNT6WJXNlO7Loi78H1AyzHuJBf601n7JdMg6afX0viJ9/Yu9jLKCOM9suKDrkdeUiF7d6JExD64m9I3HApdHoHjtC3rgYgcePn/XXSy9J21EY5c/UjbIo87s8bNDZGsB2LXTvEperpOMyYjv/4a35MpLct3eZAqt3pHPygGfrW1SRu/Dyhy37r/feLv4H8KImrvt5bdnsRc6ouj8JNnxhw2Z7qx3DKcKj6u7f8fao0ieuvxdR3+eXhx8/lvyZxw6V++WBUdnkWtvtlhjLQme+1Wel50Tww2vus1N0DUuhbV3v14Zs/y9qPfqx0FEFB7/HJb7fzu7zPpWOH3vbIO+al2nSjvPk3fh46U23A2+E4P9Iy61o0z+snpOocBVEwyivvb/209zNG+X0JwFsvvT6Q+Mk3vPWN6k0rP+M4rfqcUqTahcRVXx/1+pzZn0wbkT5BKnb9uB2pdMWQ0vs03c9N3HBp78LOwt7+3wGuX+ym28as/savAXqPn5je+pr6TLo+Jn7yjVS6P+1dTkbcFkcpavrmiPcZMu3xfHeIPk175VXguBl1TgFmePVugPoKvedK6X5cZiyFvvgbEr/6ghdTBR2ELv81YPwy9dvBPrLKOTUd+ubPvPYPBu1D9+X3M7/5s97vS+/jVHvbt+3Oapth4HY8I/+ZfbOsc+9UPA103PXzd/mvoaATOgu8clLGOy6ntzt1HAe87/vVF1LH6v4XzIw3mX38rPGIPeyzDtPDJPsb8ky38apaHvK5TwoPsPvBhXinKEZu+xZCCCGEEEKITDLoNkbkzTr75kB7CKMQ7xRl8oITIYQQQgghhMgig25jRAbd9k2JnNgLMS5JmyaEEEIIIYQQ2WTQbYxUUDL0SqKfUmTQTYjxaOoB9lYiIYQQQgghhNjfZNBtDGg0ARUY62wckMqVDFYKMR7NVFPHOgtCCCGEEEIIMa7IoNsYsKTY91mpKh7rLAghBjBdTRrrLAghhBBCCCHEuCKjP2MggFzltq+KlbxIQYjxqEKuQhVCCCGEEEKILDLoNgZCBMc6CwesYgrHOgtCiAGUq9KxzoIQQgghhBBCjCsy6DYGLKyxzsIBS95eKsR4pChGrkIVQgghhBBCiEzKGGPGOhPjWUdHB0VFRbS+WU9+dwCMAQUqL4TpSoIxdBHjmOBHyO0KYGExS09hdt5s3uxcwzo2YyubUG4ubXTQnW9ze+n1nFi8EACT6MTEOzHJqDed7Ep9s0IFc/1pFcxH51ejQqN7Yms6E5iOBG5j94Dbnjn95eRPeMYsozvX5t/J3/Cys4rfuHfSkNsGQG5XgBzC9Kg43bk2uV0BDucQinQ+j+a8xIk9h/ELLsc4XVyrfk9r+w42mXraClxWT03SURbk/uBvOdE6auC8JjpTeVKoUAEm0Ym7owvTmYRkaNB8Z04D/rzE8ztI/vIV2NYzWsU9sCIFZ9aQ89kZGLsblRvgXudhHtx1DwbDOdbpnFFyOu7uLYABnY9VMQkTaEflalRuCJ1XgUl2oYJ5gAJjcDq2gDGoYB46rwIVykeFCrJibKD4VME8VKgAnV+DG92JiXdg7B5UMBcAFcrHi988UCqVUO9+yWQSnbidOzF2F+mYT+eDeHjA2AMG3I8m2YlxuiCUxO3o8LYtkIdVVguJ8LD3+55ifH+nMVZp2o3ruCP2J5YnXyVUUsXZ3cfyNKt4Ur/B7mKbU1un8VnzfmpUFbrQ2zcqmMf7zJd5o7Ke3IIC3qx4LGvfDhYbfWPsrUhufxa3qxHT1QhWBOxucOKooilYxVPReVVePpI96LxKLzZjIUw06cWXHcVprscku0EpdGEBpstBWblevSgu6VdWTvN2TLILY8dQeQFMsgu3ZQfKdTEarIpZKFOCjpQPuU9UfhBdm48qCA24fZn1b1+OBUPV373lRneCcUFplCnDdCRw6pvANRinB5Vn4TQ3Ai6g0EWFmKiNCvSWp9Ncj9uzCxLNEE5iYm2YXZtABTDBIqyJ86HbQYVKUcF8rPK6fuXnNnVjr24hcfULY98+i/4ODhL+7kJ0jfbqUl4IEmFMshPobYec5h29da+oALe1wZvGQuXnY9p2YZwYKpCDLp+E294Ejhd/VsVk3M5OTDSJibnoUCkkI8Tv2woPb4T2Ud5mDcwuIv8v7x03xwa7cR2mpwnTvQVMM+6WJ1DJLozroApqMLEesIJghVGFVShtMNFODEEI5KGKJ2Da30TFo2D3QF4hpr3e+w4DqrgC09EGOgyBAlTFLExHE2gLhYMqrgUDpiuBCZaj8icSmn4CJEKjclxM9wmMbsNtaQKjUTmlBCqn9+sT7M0+Mk4UQgm/rbvPfZSni7bSEO9kc6ANowzduTbg9XsVisdCt/CzyK082PE4CsUdoWs4KP8gXu1cxXeS19Kt4hycP5PrE98cF32CkUjjotYvscZswihDLNehsqsIMNTpaubmH8xX4xfzw+SNPGCW0p1rc3zXfK4IXsRsPTUrTdc4fMn+Cc/lrKK8pYfcpCHPgaZCm7J2CwMooL4UzoudwqWRTwIaXVx8wJRfv2k7ir3jVUysBdwEqrgc0xEFZbzGJqKheTPGBawwunIqpmUnxu1BOQkoroKubm99uxOCCmM7mI6dQNA7Hk84EhUpxyqrQpeVoctKR7zPkCmdttvdmJqT3effU5/GbW7x/rW3gyKjj5+LVVa3xz4+oUSqr9cIdhTjxlE5AUxnF1gRVLgMXZSPs3sLpqcVsLzYSUTQ4VKv/xqO4TSsgWQbxHaD7sZ078S0vQkkgTCqaCqmJwkqAtpCV07HRLshWOS1pxVToMsBKxcdKcUqr0UF8wZtu9zYLoxuwzS9AXYPxljoqtmYrm4wDjgJVK7G3fYoxNrAdqCoDnQuxg2hwhWQW4Eum4jZvZaunh3ckbiHpiKYHpvE+aHzieWVclr5T8npsci1XQodTXskTlEUAo7CtqAj36E7YFGzPZ9IV4CzYkfySOHTzGiwOcUsYJaegS6vxm18HRJRXBJYpXW4rV2gc8EKY9UdhNseRFslqGAOVmXv42hUbhCVHxw3ddFtb8Ukohi3G5UbBAyvdL7K780/CIQKObZ0MRfF3pP1mU7TQ8mcOtrb2yksHPyOPHm42DDp2nwCgxRkEZCM5fIGjRgMr7KLydTTSDMx4gCU4dJMh7d+KCPYRvAEdH9QBSFUQQhdlz/kutX2bF63H6WSMp4KbOZkfQoXJ36Gi+uvU0QBXXRj4wCwhmf9v38R/DBBazo7zS7+N/5fDAYLCye1HByK9vBMt77lqEIFWFP2vWwDR1TBFxbs8+f3pwcTf+OfrkUX3Xwv9DnCeu8fYm+VzRxynaHiU+fXwFs4EKtQAVbZIOmHGHbseSr3OR/vdNasdzHTsbg0eTGwm+26mk2mhVeNd+b6Oq+xUVUyX8/hA9apzNbTAXg+to0eYhysavul+VZjYziCE44dcp1+HcV8oDw9UUKAiXv1nRaj9+y6t3p8GOnjS9+yHKh+BpmzxzRGovysWSUET6gj59OHvuW0xGjKbqP3tu4NR+SDEhNp1qx39ZnzvTHJx9jZX32CKqC3rWu0t7HT7SBmclhlNgz4ic+q63nDrGctLQDkhCdgqRJed1p4LLkWgNOs9xEIvn36MQvsE7jHfhkLjYPLBtpTf2/jGTbz9fBXeDa+lddTZbKJ/1JkTeKa4DFZ6axy1rLB6eINd5c/r5ZK70IGurPWPc4qIRicvv83br8rIXDIyLePQ9mf56TptHVB//7iUHRZKbrsrT3CZKi+CRwxxPIj39L3751KIB3Hpw+x7seHkd5p5ADXxJ5mFy1Uk+QTkU+SYwxr4z8kQXLoJA7rQaGYalXzJ6cVgEODH+IIa/Ewvv/AMVAfNdfN567ELwEIWlP5RJ92WncM7w5Gub10hCzUC7JuG93CDn/ADSCJ7f9drN6ezyU7TR/HdDWJJpp50P0vE3Q1c9WMrHWidPmDbID/dxlFnKy9q//+YP8Fg3cBppOxLkC5PKydrWYnd7kPkCDBOfpUpu/DgJsQfS3U86nE69Q87D7NRrMta/k/zGP80LmRzyS+C0CX6aaHGCD1UgghxDvTFYGLuSd0I5cHLhp0nfvMo6xlsz9dSB4AL7mv+fOO1ofttzyOhXP0qcxSU3EyfnhP/93Abv7pPE65Ks76zEPO0xhj2OLWs9R5AYAb3T+x1H2RAnL99XbQRE/GOVZahMh+2BIh3h5mq2mAV/82udtQSpFLjr98hpq8x89PZQKtqQuIAKpU+R7WfvvI3M4m07zP6cig2wipVuXYGQNraROo4ubA1RzOIcxmKgvUwRSb8Xtl21sxX82h3Xi3jzzoPkW36eEr1if9E3kg6+CbqYMubGziJsENzu3kEqGGin7rlY/iVSbj1f3Oo4A3kDtPzx7j3Ii3C0tZfMv6PHPVDHqIE+3zC3Lai7xKZewY7rD/6c+rQF6iIIQQ4p3raH0Yvw58P+skdjAFqUG3F91XAVAojtRz92v+Rtt0PYkwvY9OyCHs/x3A4jrnVtazxZ+nUaxjMznxQ5mVWML7k5dijPEHJruIcU3gG5ysFjKZOmYxtd935qhwv3lCCM8V1sWcrk8A4GbnXgDuCPyC3wV+yOf1RzlOHcEFvHfQz+9kF/9wHmcGkzlaHUbtO+QOowpK0Kkhs0aze5/TkWe6DSH9TLf6U+4g7/UucA1ohSqJYFpj/nRHSZJESyfKVSitaSnpprg1TJ7JIUfnsK24hThxtk/qYsmSDxP50uEA2K/cgLPlMUx76sATa/WfmUOkpHc6p4zAvE8QOOKLo7r98euWk3x4C86KXYNue+Z0VPXQVhInr9Ui30QI6iCbinfh4FDcGka5CqMNbSXxftM1bUWEDn+KQEkzBBOoNdNRyQBJrXh8YSufvGoTHZHlg+bVfuUGTKITFSogcMQXsV+5gZ6vJDFbgph4ZI/5Tk8DvfNa+v+KNlbU1I3oQzag8jpJNFaiSloJRKIoFBiFqt6N6ciBeBh320RUWRd6/ivoiA2BAOTXerEUKkAFIhjjQNsmL3ErBPm1qMJJWFNOyYqxAeMzVIAuP5jQ2X8hcf+HcXe/CYkOL14BVTgJFYigKg/zL1PP3C+Z7FduwH7tZuje7cd8Oh/OU8cPGHvAgPtRVa1FT12DKohieixUOI67bhamcyamtXj4+32IGN+faYxVmmrCPyGai7E1zqR6dH017s4a3O4Ceha/QqHphF1lmJ4cbK0wG6eCnUd7MMlrhzUTP7WcD3/l61n7drDY6Btjb0Xshhqwu4C+hzEFORXomiNx65/3nkdUUIcunYn9xJE4L0cwrcXouY+B2YkK93jPPglo3DdmYBprMPESVElFv7LSs+/GtOSjynZjuvPRVQ1Q2Iq7YRq6vBl33WzcDbOBkiH3iSrLIfzpuYSvHPg29qz6tw/HgqHq795K3P9hTLwDFS7EbPofkg9vgcDfMDsrQScgCGrSG5imSlRxG6atAtNSiGmphEQhqqQCVfE4evI6VEUTFHZimipwt9eiS9q9Mu0oxrQVYTZNx22qQ+VP7V9+O6LQ1f9HLjE+WCc8jbNmFtaCNzCNEzFdtZjWYqwjlmIaKzFdtaiSVrB3YVyDnlCPKohDcRPuhimo3B5MZxHYGl27A7e+DlXagSrdhbtxKnQWoCbsxjTnYzZPxiSC0FYCyVD/pmCUqRnF4+bYoCb8E12zHVWzA9NZgCpqh0gM01iFqmqEWA7O63Owjn4JArbXBraWYNqKwHjPY1XTN2I2TUFN2A4BB+fpY7GOfR7aC6G01VtW2OE9OwkgHEs9dwoIJCFagOnOw109E7NxGtjTMD2RUTkuWkcsRRU3Qk6n13YmA7hrZmM6Du7XJ9ibfaRq16Nyu1CVGyG3G6Vd3M1zcdfPADefDtVFc0kPLi5FrUG/n9tdAkVtQYKuRa7ORZWEaWvZjXLBaEVxafm46ROMVBoxN0ZC2ewu6aawNYB2Na526SyxKWwNoVxwtTvgOQEoJreV0eFEMdrQUwJT5jyLym3H3VGNXd6C3lYNtvekpJ72CsKJELqnGNwQqmL81MW9ndZzH0OVvOY9HhWFKmrHWTEPXbsTVbELZ90M9IR6L6a316Erd0NOF6qqCbOrApJBVEkb5HWBcnFfORzjBLCOeQGzswYSQUiGcLdPRgVLsQ6eQ841XxzxPkMmP+3GFVnnucPpF/Z89QbsletRxRtQud1gkqAM7tpZmI7Ze+zj62mbgHZU5UZUSQtY3h1U7qYpqKJ2zJap6LnrcbeX+u2erqvHXT0bt7EGVRrFOuxVCHaiSlsgL4r7yuHoY58DK3UhiavB0TjPHw1OAGvh8970y0egp2zB3TAN4hHoKMAYDbuqQVdDpH+MptsuY8fRM1ejynbhLjvc259GQVEbKhLHeWMO1hHLoKDTi4Pnj0Yfvtz7Hldh2oohFoGgi5qw1euX5UchtxvnpSOgpRSzsxbUBPQhz6OKGkEncHdOgIp67zhR3IqdFyOxaTrh5iK09vpdeu7r6GmbMDtqcNfM9I4fRmEtfAG0i/PKAlRhJygXcmKYNTNx35ydevaehoDq3blBDXnBcVMX9fQHMZ0WqmwXKi8OloP7xgwSjZXEYrnsLtFMaavI+ky01qLu0QvkmW4jxVm6HVTvr1dmdyxreeFuIOPS59LmzF9bYkzcnQvkctD6EhJrVvQOui27EaI7Bv7SWMYljPFW7GU3jv6g2/XLMfVdWfP6bnvmdD6a/OZ0OblAnKm7+wdgeXPugNOhI5/zKimQuP9MDBDoLOTdG9vJvaphj3n1yzK/1ht0W3Yj7nOXpjrhsT3me6Dp8cTsLsea91dQLvo/7yZ02W9THdtU5za/C5Xn/XJq//M9hC77LSqSulLJTkDbeu/vWHP/cxLbhrb1mLb12C2rswfdBorPWDNu51YA3E0PegfP1HwA07YeozRs/Lc32AdZ+yXrq/umH2v285G4Pm/I2MucZ+LFWGe/QqoHC8rF/s9p0BEBYoOmsac093V6JNIYzTRN4zy/sxE54yESj5+I7ixEA2VzvFs8Ejd+HozyDhqdXp0uJ8hJj+cSXa3gK9npDhYbfWPsLbGjgyww0NOUnYe29bjtG0n+6dBUTLRhffARb5nqvQLXvv80f/vM7rbsVHfHsD74MokbP0/ost+SuPHzBL74G8iPYt/xUQJf/A32v86CjlxI3fqyp31gWuLEr18++KDbQPVvL44FQ9XfvZUuT6M0ieuXYOq7CH1rqR8bAKFT/07i4Xf75YNRWeVpGqcTOOkhyPceCq0M2Hd9yC9HVRCF2h0kHl8MHUUY2rLyMJ7baeGxTnjaG5w54jkSN87322DriFSsdEQwBXmQutrHOvM/Xh3M78K+4/ze2AECxz+L/cCZqWOei333B8AoQkse8dbpTN05YMbHjRtmXVv29BgeG0zjPAJffNqrV5E45Hd5da5iN+T1QG4M9+njCZz4TO8HS1tRoUTvtMJbP+SdbPnrl7b1LsvPOE6rPj2MUBuqtA379gugoyg1c/jH47dyXLSOWJrVtgOp9nnPfYKhvtckizAUETrlPj99+99LoCMIxCkkQGHzAHe0ZN2V5PVJiwj2ptvcNuw8DHedsehnZM6LABECFDZnnweU97lDa7BzAnAoS1852AzWh15O9e1OIXLZb0k8usj/TE5nYW//DzBtbcPO50hNj1Sa1gcfyY7d/C7c5QsIHP8c5Edxb7mYwBd/DYB97zne8RMDBVH//WXp+g7gPH08AIGTnkRV9D4bz/7nWdBRhPNylJxrRr7PkGmwtIfTL0zcFgWnktAX706ViwIM9gOnD1mf3bh3rMmsrwD2ve/3jjVLFxF4z7+w/3mpvyxwwjNeW9FZiOnsQJ+9BjB+mTpPH4+V2W5aLlgubkY5A7jPHEfgxGew7/hoKnOpndOZrg9tWXnNbLsSN36ewCkPp77vOELpfZxqb90/ftz/HkJ2b57yvJdLqUjGhSP5XSizy8+/+9zCrL6ZdeHS3rbsgdMIfXEpiYdOJXjZbwkoF/3AEjDKP3+0zvs7FHSiQknsf7zXizOjCLzfuwPGXb7AO2YDKEPi32d4g4HpX2fsjOOE7UCPM27qovXBpak+/mO9ZXL/aQQ6C8kH8puhb7w5a4f3Qq/x0UsRYhjSl+MLIcYXjRp6JSGEEEIIIYR4h5FBN3HAGOgZb0KIsSeDbkIIIYQQQgjR3wE96Pbf//6X9773vdTW1qKU4r777stabozhe9/7HjU1NeTk5HDKKaewbt26scmseMsm6uqxzoIQYgD6wD6UCCGEEEIIIcR+cUCfKXV1dXHYYYfx61//esDlP/vZz/jVr37F7373O1544QXy8vJYsmQJsZg8E+ZANJm6sc6CEGIAWh3QhxIhhBBCCCGE2C8O6BcpnHHGGZxxxhkDLjPGcN111/Gd73yHs88+G4DbbruNqqoq7rvvPs4///zRzKp4ixQwSdeOdTaEEAOwDuzfb4QQQgghhBBiv3jbnilt2rSJhoYGTjnlFH9eUVERRx99NM8999ygn4vH43R0dGT9E2PPAAVKXqQgxHgkt5cKIYQQQgghRH9v2zOlhoYGAKqqqrLmV1VV+csGctVVV1FUVOT/mzhx4n7Npxi+KsrHOgtCCCGEEEIIIYQQw/K2HXTbV9/85jdpb2/3/23btm2ssyRSqpUMugkhhBBCCCGEEOLAcEA/021Pqqu9N102NjZSU1Pjz29sbGT+/PmDfi4cDhMOh/svKApDJ959jgqwNDhuv2ljwCiDYxkCjkIZhVHgWK6XTn6QyPxKP1ldeRhushuSUW+G6/R+ibZ6p3UAXXnYPpfHvrLmV2J37YD2+JDbvsdp8Oe5yuBaBu2Xj8GxXCxH49bXonK7AVBlzeBqyO+ipbaTqiEG3XTlYZiCOlROuT9NQQKiITB6r/M5HpjU/+uidtyd1ahIDFXTgLuzChWJ++upgINpKwZX+8t1oXdrtFKADnixpLQXV8YF1+79Ih2AYH6/GBswPpWGnDJvOqccepq99LTlzQvmgxVCFU3290XmfumXfndTKi+pmE/lY9DYgwH3oyruLSMTD6PCcVRZMyaeA4nQ8Pf7CMT4PqcxRmmq2p3QEwGjvDIsa8YkQpAM4u6oA22jqhsgHgEDpisP42qMgq4im5KMNs03SGyMXjumvDx0N3mTOgCRUvT0bty1uRAP925bOKMulbaktj3kfaZPWbkNVajqVB2s3YFpLkFpB1WX+ru8GRPNB9caep8ENNZAZZeSVf/24VgwZP3dWznlkOyCYJ5fP936WlRpK7gKFJjm0t42qroBenKyylNVNXrlFLAhFMe0FfeWXcDGtBVjenK8/RCLgJvTv/xsd9/yL0aFW18LkZgfG+k2OHNalXSAsnvbnEgMpQ2qbodXx2p3gKu9uEjHU24PqqYBYmHvM9WNmGTQi41YTurb1VhuOgTGz7FB1e5M1aukV88CNoQS3t+53ZAIoep29H4GIBb2+hIpqiDqrZ8fBYW3fmo9cmK96aaFEr1/a9dbz9VeW5kIQjLi9etG4bjo9ye1C0aBUYP3CfZiH6nidtCuF6epY4fX7hd42zZEmunzBNcCy1Gocdgn2J9pZJ8DkDpHMgQcjTEGFN5yNMrBn+dYLoFUmfttQvo8AbzjjDIQD3uJBqwDp/z69jN21KHyOv2qpAIOqrrBP06quh1+PU33Q7BcVG537/xUfYeMemvord+p8wWKOlGVXvs54n2GDH7a8XayznOH0S/U0+OY5qh/rEh/fDh9fO9Y43j1NdLjt3V+P660xeu3VDeQXmiaS/y+oCpuwzSXgnb8MvXLM5PJLmdc7U1353r/dSyIh8AoL1btEKj+fUy/7ardAV25kNPj95FQoLQL2k2lqcFye7/b0V5ZgH9OiO6Ni6z8d3t9M9cOZp971zRk9+MicVR5MySCXv0i1c/L7ca0lHh1MJiEZNBr79Nl2+DdaahCca8sO/MzCqvPcXoc1UW3vrY3NlLn2elYMMkgjlb++IVKtV09uQaa9xjCXjrGmHEyvPDWKKX4+9//zvvf/37Aa6Rra2v56le/yle+8hUAOjo6qKys5JZbbhn2ixQ6OjooKiqivb2dwsLCIddvMs1MiZ+Ei8t0NYlVoQf4dPI7/Mm9H4DlofuZo6fv20a+TfwyeRPfcn4JwGf1R3jcPEeb6aCVDqooYyLVWCrACvMmuUTYRQsWFp3h5e+4tyS2m06q4gsByCOHg9UM/hu6A6XG+MRCvKP9IvlHvutcz1w1g/fok/he8LKxzpIQQgghxrl/2o/zQftyACZQTYw41VSwka2crk5kpXmTbmKsDj/EcvMG3078kmdYBsA0JvJU+M/UxY8HIEgAjSZOgkPVTF4K3ztm2yXEgSRuEhwcP4MgAU7QR7HabOAl8xoAjwRv5ZLk18lREd6l5nFT6Koxzu348Ffn31yU/DoAn7XO5/rgd5geezfbO3aQqFo95FjRAX2lWzQaZf369f70pk2bWLFiBaWlpUyaNIkrr7ySH//4x8yYMYOpU6fy3e9+l9raWn9gbn+oVGUcr49gmfs65ZSwyqylkd3+8qGu1nonWGgtAMf7+yHzFJvNdn9ZPY3kEGGD2cq71Dy2GO9XgyrK3nEDbgBFqoCDmMxWdtBFDx+z3icDbmLMXRG4mLOtUzhITx7rrAghhBDiAHGadTyFdj4RwsRJ0E2MVawlSIB7zcMATKCKj8a/zKcDH6JSl3GUOZT1Zgulqogfxm/w06qkjHoaASikYEy2R4gDUViF+Lh1Lj92fsNmt54CvJcVVlLKCdYRbLAeG+Mcjj9n6EWECVFKEVvNThzXoZm2YX/+gB7FePnll1mwYAELFiwA4Mtf/jILFizge9/7HgBf//rX+eIXv8hnPvMZjjrqKKLRKA8++CCRSGS/5usj+j3ESfCCWcnfnUdoNN6gW5AAJQx9tdzb3Xw1h2BqvHe72dlv+Qa28i4O5erAV9lFC+ANZr5TPRO+i9bQy/y/wI+5wHrfWGdHCAIqIANuQgghhNgrYRXi2sC36KaHZlrppgeAJL23KW+nkQdYyvvtS/m3+yTdJkYrHbxsVnEnD/jrHaJm+H8Xqczb14QQQznTWuT/3YV3e+nsd/jdeHtSoPI4X5/FTnbxH/dJlpoXiBEf+oMpB/SVbosXL2ZPd8cqpfjhD3/ID3/4w1HMFSyxTiBpeweP+51H2U0r4L19U65SghwV4afW17neuYUteFeyHc5cQipAl+niNdaxgtX8KXk/TuqSuHfyFYJFqgAUXKTfP9ZZEUIIIYQQYp+dYS3icfd5SlURS90X2GZ20k2MBMl+6xoMr7POn7bpfW5gtSr3n8FciAy6CbE3DlUziRAmRhwXw0ymcK5eMtbZGtdOsI7kVvfvAPzevmuvPvu2eabb/pJ+ptvWsuso7Bz+w19ty6Az3ongWC4KRSA/h8BxteT9/T0AJO7/EG79c8N7kcKUUwmd/ddR3f6uc/6F/czIvkgBBcYC4xj/IapYCu1A4KLb/Ic52v9Z4j0EMhkiUQvlz/1kj3lN3P8hTM9uVE45obP/SuL+D9HzyaMO6BcppKkJ27BOfQwViWE/fhLWsc9mv0ihchdmdxm42l+uZ3mdlL16kULdwqwYGzA+Uw9VjXx2A7HfTx/eixQy9kumxP0fwt38SP8XKdQtJHnLRQPHHgz8IoUJ27BOeSzrRQr2g6dhdkyQFykM9SKFg97wX6RgvfsJnCcWYXbWQDJI4KI7Qds4Tx/b+yKF7RNSD4xWUBTOatPSBouNvjH2VsSu3dPtJApyK/q9SCF504dx15ZDPEzgY7f2e5GC/e/TMQ3Vg75IIXDRH3GePhbruGdxnjuGwOInURW7Sd59LoFFT2I/fBpm8+Rhv0ghsGRyv7JLy6p/+3AsGKr+7q3Y76f7L1JwHrwe+5kdBM7+A86TJ/ovUgic8SD2E4uxjn0W55ljvRcpNFX2vkhh6moC734cVbXLe5HCjlrsx08isOhJVJXXjpmeHJzHF2N21MqLFA5AgYtvw/7reQQ+dDfOkydidtZCIkTgotv8aVXVRPpFCta7n/BepFDeTPLuD2AtfB7n2WPA1QROfgL7idQxL7cH+9F3QyyMdfJSnGeOxWybgLxIYeB11EFvEFi8FFXVhNldjirf7b1IYUfqId2JEMm/fpDgRbf3FltPBLO790dONXE7ZtsE1ITtoCB564UEL77dO17kxLxl5b2PUOn/IgXvxQnJv53rtYuj+CIFvz+Z8SKFQfsEe7GP1MRtoF2sdz/uHzvsh07DbJ4yrBcpHAh9gtFKw6SmXQuUYzLOmQxgsBydMc8l56LbvL5dqp/rPLG490UKjVW8XV6kEPjYrdkvUihvJvnnDxE4+QlU1S6Sfz2PwMlPeLH32EkEFj/pvUihdod33AS/vgMk/3QBAMGLbvf6b+CfL9Cdh6rMoeC5/x3xPkMmP+2BXqQwRL+wc+H/YpqjWCc9kfUiheH08dXE7aAcr75mvEjBfuTdXj/uicUETn8Y+/HFpBcGTn4c+z9eX1BVNhE46z/eixQqvDJN/ukCrx3MZCB524V+OeNqb73z7iV59weyX6TQWLXHFykELroN54WjCJ53L+T0kPzTBQQWPeltT/lu0K7Xdn/sDv9FCsnbLvSm0y9S2F3e+yKFVFykYyL5pwu8Fyk0VGPsIMGP3dF77v34SQROWur341Qkjv3QaVkvUgic9R/v2LC9zjtXT71IIV0myT9/GOv4ZwFQobhXllsm+eXb7zg9jupi4IJbcJ47Guu43vPszPMCoy2M42a8BMalIbeTQ5u/9/Z+ptuoao+DSnXqDNmd/gGmA7bKmtZ26qSzLY6zoslf5DathHjbAF9osgdFXNtbd5Q5K5qgLePSyWFs+x6nU/OUDSpV6ZSB9FXlum4HKG9905y6pbSzkGBPJ0Nxm1ZCdAcmv7Z3uvM4b8CNfcjnOGLai9A1DaBczM5qdE1jquBSo4ORGKq4zVs3tTzrosp0LBkHHKf/F7g2xNv6xdiA8Wkc6El1snt2e4Mqmd8RbwOlMd1N/r7I3C/90vfj3GTlY8jY6zPPtPWWkTLaK6vmMu8gN1gaQ6S5T9MjkcYop2l21HhHD0DXNGA3l3kDbICurQfAbqj218G1ej/fp03zDRIbo9eOmd44TeehZzfuhlzoCgKuv23pNgfAtJT6247bv/x0dSN2g1fH7B21qLJWyO3B1Ht/e4PfVtZn+qbhs92Byy6d5YHq314cC4asv3srvU/tHr9+6rod2C0lfmyosha/DfJjJqM8TWOVV2aRGCjjvRksVXbpdkwVdWC3lEIiDBw47bTw6LodEIv0xkaqDc6cNq29HdN0u01uN6a+1qtj6RPHstaMY553/MMor51qqPIGdbw1R3szBzaOjg1mR02qXsW9/kEk7tc5LBcicUx9bXbRpdfNoIrb/HVMfa2/nr8s4wfA9ElZZnqANxAQyx1Wvkdi2yG7P+kvHqpPMIzvNW1FXvrVjb391dSPnvua5njrE4xWGio1bdn+VOqcqU99Tp1HpcvcP8akzxPAO84od3h9/pHY1v2Ypq6tz47dSMwbAEodJ019bW+fP90PwXgDb+n6m6rvkFFvFVn12+ysho4iTKc3yDbifYYM/dM2g5579PvshjA4wd5jBQoww+rjp481mfUVwKT7cS2lXr+lodpfpspa/b6gaStGlbV4iaXK1C/PTCq7nLFcbzp1XPO+NBXX6T7RIP0bXbfDOwbmdfvf5+/jXO92bFNf67Xjmd+datchez/7cZGZ/1TfTNHn3HtndVY/DuV67ZvprZOqrAUsx3sbeXMZ/ghUur1vqPbKG7zvaylNFcogx+lxVBd13Q6/j++XScZ5gXJN1viFti2K2sMDb1cfB/Qz3cQ7yTjpUAshhBBCCCGEEEIMgwy6CSGEEEIIIYQQQggxwmTQTQghhBBCCCGEEEKIESaDbkIIIYQQQgghhBBCjDAZdBNCCCGEEEIIIYQQYoTJoJsQQgghhBBCCCGEECNMBt2EEEIIIYQQQgghhBhhMugmhBBCCCGEEEIIIcQIC4x1Bg4U1uIJ8HoXuAa0QpVEMK2xvZoG0JMLCJ422U83cPhlOFsew7Rv8WbEWsG4oDRESnqnc8oIzPvEqG93+IoFJB/egrNi11ve9uF8xnllMaq4EYJJ9Ox1kLRABwkcf8iQeQ0cfhkm0YkKFfjTyYVJzBaNiUf2Pp8t8f1XsHtJle/GefUIVF4n+vA3cN48DBVpAxQYharejenIgXgYPX8lzpuHoee/go7YEAhAfq0XS6ECVCCCMQ60bfISt0KQX4sqnIQ15ZSs7x0wPkMF6PKDAdBTT8fd/SYkOrx4BVThJFQggqo8zN8Xmfulb/r2azdD924/5tP5UIPEHgwcS6pqq1dGBVFMj4UKx9EHbcF0zsS0Fo9IfO7vNMYqTTXhKYjmgq1xXl+AnrUOs7MW01OE8+apYHaiD30denJAB3E3TgU7D0IRrPkVWW1a2mCx0TfG3pJAPthdgOmzQEFOBbrmSNz658HugYI6dOlMgh8L47wMprXY3zYV7gFlIKDRMzZhGmsw8RJUSUW/snJeOxJ96Js4q+ai37Ucd/NUKGxFH/M87qbJ6FkbcDfMBkqG3CeqLIfwp+cOvnmZ9W8fjgVD1d+9paeejol3oMKFvceGZYvRU5tBJyAIzppZ6PmveeUzfzWmpRDTkoREIaqkAlWxDHfjNFRFExR2YnZVoI9/GnfzZFTZbkxHMaatCD11G26Ti8qf2r/8dkShy96nbRD7n/PU8VDRjPPKQvS0ZkxX2Ktvryz2p1VJF9i7MK7BeXUeqiAOxU3oY57HeWM2+qhlYGvcjVO8Y9obc1Glu9CHL4fOAq+dmrcKs3kyJhGEthJIhvo3BaNMzSgeN8cGNeEp3E1TUDU7MJ0FqEQQIjHMrnKUdiCWgz7+aUw8BAHbawNbSzBtRWCUtz35UW/9cAwCjre+bUF7IZS2esviIVCpAgjHvHQAAkmIFmC689BHvYTZOA3saZieyOj2J3M6vbYzGUDP2IDpOLhfn2Bv9pGqbUflduG8Og9yu1HaRR9cj7s+F9z8Md/vY5HmaOXLee1IVG47+rBVxN88BD1rHdga0NA+ARJgegrADaEqxk9d3Ntp581TUSWvgQugUEXt6AXLcTdOQVXsQh/3LG5TpRfT73oRd9MUyOlCGTC7KiAZRJW0QV4XKBfr+KcxTgDTE/GWJ4KQDKEXrEIFS7EOnuNV2RHuM2Ty025ckXWeO5x+YeiifOyV63FeX4DK7QaTBGW8/lrH7D328fW0nUC7d5wpaQHLAUAvWIGz6mD01K24m2ejF6zw2z134xT0QRtwG2tQpVHczbMg2IkqbYG8qFeetgbL9TLoanA0+vinwQlgYmFv+rhncLdOQB/zPMQj0FGAMRp2VYOuhkj/GE23XfqoFbhbJ6HKdmEd/wzu5sle/oraUJE4euHzmI4CKOiEZMDLUzTX+x5XYdqKIRaBoIuasBWzqwLVkwO53eiFz0FLKWZnLagJOMsWo4oaQSe8c8y1M/1+nMpLog+uxzSHQScBcFbPQk/biNlRg561xjt+GIVprATtohcsx3ntEFAu5MTQ0zfgvjkbEmEwGgKqd+cGNeQFx01ddJYtRh+6FmfVPFReHCxnyPMCq7YMHh26DihjzBh3Uca3jo4OioqKaG9vp7CwcKyzI4QQQgghhBDvWMYYlFL+f4UQYiwMd6xIbi8VQgghhBBCCHFASA+0yYCbEOJAIINuQgghhBBCCCGEEEKMMBl0E0IIIYQQQgghhBBihMmgmxBCCCGEEEIIIYQQI0wG3YQQQgghhBBCCCGEGGEy6CaEEEIIIYQQQgghxAiTQTchhBBCCCGEEEIIIUaYDLoJIYQQQgghhBBCCDHCZNBNCCGEEEIIIYQQQogRJoNuQgghhBBCCCGEEEKMMBl0E0IIIYQQQgghhBBihMmgmxBCCCGEEEIIIYQQIyww1hkY74wxAHR0dIxxToQQQgghhBBCCCHEWEuPEaXHjAYjg25DaG5uBmDixIljnBMhhBBCCCGEEEIIMV50dnZSVFQ06HIZdBtCaWkpAFu3bt1jQQrxVnV0dDBx4kS2bdtGYWHhWGdHvI1JrInRIrEmRpPEmxgtEmtitEisidEisbb3jDF0dnZSW1u7x/Vk0G0IWnuPvSsqKpLgE6OisLBQYk2MCok1MVok1sRokngTo0ViTYwWiTUxWiTW9s5wLsySFykIIYQQQgghhBBCCDHCZNBNCCGEEEIIIYQQQogRJoNuQwiHw3z/+98nHA6PdVbE25zEmhgtEmtitEisidEk8SZGi8SaGC0Sa2K0SKztP8oM9X5TIYQQQgghhBBCCCHEXpEr3YQQQgghhBBCCCGEGGEy6CaEEEIIIYQQQgghxAiTQTchhBBCCCGEEEIIIUaYDLoJIYQQQgghhBBCCDHCxs2g21VXXcVRRx1FQUEBlZWVvP/972fNmjVZ68RiMb7whS9QVlZGfn4+5557Lo2Njf7ylStX8pGPfISJEyeSk5PDnDlzuP7667PSuPfeezn11FOpqKigsLCQhQsX8tBDDw2ZP2MM3/ve96ipqSEnJ4dTTjmFdevWZa2zbNkyTj31VIqLiykrK+Mzn/kM0Wh0yLRfffVVTjjhBCKRCBMnTuRnP/tZ1vLXX3+dc889lylTpqCU4rrrrhsyTTE4ibXBY+3ee+/lyCOPpLi4mLy8PObPn8/tt98+ZLpiYBJrg8faLbfcglIq618kEhkyXTEwibXBY23x4sX9Yk0pxVlnnTVk2mJgEm+Dx1symeSHP/wh06dPJxKJcNhhh/Hggw8Oma4Y2Ds11mKxGJdccgmHHnoogUCA97///f3W2blzJx/96EeZOXMmWmuuvPLKIfMrBiexNnisPf300xx33HGUlZWRk5PD7Nmzufbaa4fMsxiYxNrgsbZ06dIB+2wNDQ1D5ntcM+PEkiVLzM0332xWrVplVqxYYc4880wzadIkE41G/XU+97nPmYkTJ5rHHnvMvPzyy+aYY44xxx57rL/8j3/8o7n88svN0qVLzYYNG8ztt99ucnJyzA033OCvc8UVV5if/vSn5sUXXzRr16413/zmN00wGDTLli3bY/6uvvpqU1RUZO677z6zcuVK8773vc9MnTrV9PT0GGOMqa+vNyUlJeZzn/ucWb16tXnxxRfNsccea84999w9ptve3m6qqqrMBRdcYFatWmX+/Oc/m5ycHPP73//eX+fFF180X/3qV82f//xnU11dba699tq9KVrRh8Ta4LH2xBNPmHvvvde88cYbZv369ea6664zlmWZBx98cK/KWHgk1gaPtZtvvtkUFhaanTt3+v8aGhr2qnxFL4m1wWOtubk5K85WrVplLMsyN998894Uscgg8TZ4vH396183tbW15oEHHjAbNmwwv/nNb0wkEhkyz2Jg79RYi0aj5nOf+5z5f//v/5klS5aYs88+u986mzZtMpdffrm59dZbzfz5880VV1wxjBIVg5FYGzzWli1bZu68806zatUqs2nTJnP77beb3NzcrLZPDJ/E2uCx9sQTTxjArFmzJqvv5jjOcIp23Bo3g259NTU1GcA8+eSTxhhj2traTDAYNH/729/8dd58800DmOeee27QdC699FJz0kkn7fG7Dj74YPODH/xg0OWu65rq6mrz85//3J/X1tZmwuGw+fOf/2yMMeb3v/+9qayszAqIV1991QBm3bp1g6b9m9/8xpSUlJh4PO7P+8Y3vmFmzZo14PqTJ0+WQbcRJrE2cKylLViwwHznO9/Z4zpieCTWemPt5ptvNkVFRXvcBrHvJNYGb9euvfZaU1BQkNW5FW+NxFtvvNXU1Jgbb7wx63Mf+MAHzAUXXLDH7RLD806JtUwXX3zxgCenmRYtWiSDbiNMYm3PzjnnHPOxj31sWOuKPZNY65UedGttbR1WOgeKcXN7aV/t7e0AlJaWAvDKK6+QTCY55ZRT/HVmz57NpEmTeO655/aYTjqNgbiuS2dn5x7X2bRpEw0NDVnfXVRUxNFHH+1/dzweJxQKoXVvkebk5ADeJbmDee655zjxxBMJhUL+vCVLlrBmzRpaW1sH/ZwYORJrA8eaMYbHHnuMNWvWcOKJJw6arhg+ibXsWItGo0yePJmJEydy9tln8/rrrw+aptg7EmuDH0P/+Mc/cv7555OXlzdoumLvSLz1xls8Hu93q3xOTs4e0xXD906JNTH2JNYGt3z5cp599lkWLVo0oum+U0ms9Td//nxqamo49dRTeeaZZ0YkzbE0LgfdXNflyiuv5LjjjmPu3LkANDQ0EAqFKC4uzlq3qqpq0Ht8n332Wf7yl7/wmc98ZtDvuuaaa4hGo3zoQx8adJ10+lVVVYN+98knn0xDQwM///nPSSQStLa28j//8z+A98yFPaU9ULqZ3yv2H4m1/rHW3t5Ofn4+oVCIs846ixtuuIFTTz110HTF8EisZcfarFmzuOmmm7j//vv505/+hOu6HHvssWzfvn3QdMXwSKwNfgx98cUXWbVqFZ/61KcGTVPsHYm37HhbsmQJv/zlL1m3bh2u6/LII49w77337jFdMTzvpFgTY0tibWATJkwgHA5z5JFH8oUvfEGOpSNAYi1bTU0Nv/vd77jnnnu45557mDhxIosXL2bZsmVvKd2xNi4H3b7whS+watUq7rrrrn1OY9WqVZx99tl8//vf57TTThtwnTvvvJMf/OAH/PWvf6WyshKAO+64g/z8fP/fU089NazvO+SQQ7j11lv5xS9+QW5uLtXV1UydOpWqqip/FPiQQw7x0z3jjDP2edvEyJFY66+goIAVK1bw0ksv8f/9f/8fX/7yl1m6dOlepSH6k1jLtnDhQi666CLmz5/PokWLuPfee6moqOD3v//9sNMQA5NYG9wf//hHDj30UN71rnft0+dFfxJv2a6//npmzJjB7NmzCYVCXHbZZXz84x/PuiJA7BuJNTFaJNYG9tRTT/Hyyy/zu9/9juuuu44///nPe52GyCaxlm3WrFl89rOf5YgjjuDYY4/lpptu4thjjz3wX9wx1ve39vWFL3zBTJgwwWzcuDFr/mOPPTbg/b2TJk0yv/zlL7Pmvf7666aystJ861vfGvR70g+//de//pU1v6Ojw6xbt87/193dbTZs2GAAs3z58qx1TzzxRHP55Zf3S7uhocF0dnaaaDRqtNbmr3/9qzHGmM2bN/vpbt++3RhjzIUXXtjvfubHH3/cAKalpaVf2vJMt5EjsbbnWEv75Cc/aU477bRBl4uhSawNL9bOO+88c/755w+6XAxNYm3wWItGo6awsNBcd911g26X2DsSb4PHW09Pj9m+fbtxXdd8/etfNwcffPCg2yeG9k6LtUzyTLfRJbF29qB5zvSjH/3IzJw5c1jrioFJrJ09aJ4zffWrXzXHHHPMsNYdr8bNoJvruuYLX/iCqa2tNWvXru23PP1Awbvvvtuft3r16n4PFFy1apWprKw0X/va1wb9rjvvvNNEIhFz3333DTtv1dXV5pprrvHntbe3Zz1QcCB//OMfTW5u7h4fBJh+KG8ikfDnffOb35QXKexHEmvDi7W0j3/842bRokXDyr/IJrE2/FizbdvMmjXLfOlLXxpW/kU2ibWhY+3mm2824XDY7N69e1j5FoOTeBt+25ZIJMz06dPNN7/5zWHlX2R7p8ZaJhl0Gx0Sa3s3EPKDH/zATJ48eVjrimwSa3sXa6eccoo555xzhrXueDVuBt0+//nPm6KiIrN06dKs18N2d3f763zuc58zkyZNMo8//rh5+eWXzcKFC83ChQv95a+99pqpqKgwH/vYx7LSaGpq8te54447TCAQML/+9a+z1mlra9tj/q6++mpTXFxs7r//fvPqq6+as88+O+vVucYYc8MNN5hXXnnFrFmzxtx4440mJyfHXH/99XtMt62tzVRVVZkLL7zQrFq1ytx11139XsEcj8fN8uXLzfLly01NTY356le/apYvXz7st4OIbBJrg8faT37yE/Pwww+bDRs2mDfeeMNcc801JhAImD/84Q/DLl/RS2Jt8Fj7wQ9+YB566CGzYcMG88orr5jzzz/fRCIR8/rrrw+7fEUvibXBYy3t+OOPNx/+8IeHLEsxNIm3wePt+eefN/fcc4/ZsGGD+e9//2tOPvlkM3Xq1Lfdm9hGyzs11ozxrmBZvny5ee9732sWL17snwtkSs874ogjzEc/+lGzfPlyOY7uI4m1wWPtxhtvNP/4xz/M2rVrzdq1a83//d//mYKCAvPtb397OEUr+pBYGzzWrr32WnPfffeZdevWmddee81cccUVRmttHn300eEU7bg1bgbdgAH/3Xzzzf46PT095tJLLzUlJSUmNzfXnHPOOWbnzp3+8u9///sDppE5Cr9o0aIB17n44ov3mD/Xdc13v/tdU1VVZcLhsHn3u99t1qxZk7XOhRdeaEpLS00oFDLz5s0zt91227C2feXKleb444834XDY1NXVmauvvjpr+aZNmwbMs1x9tG8k1gaPtW9/+9vmoIMOMpFIxJSUlJiFCxeau+66a1hpi/4k1gaPtSuvvNJMmjTJhEIhU1VVZc4880yzbNmyYaUt+pNYGzzWjOn9hfjhhx8eVppizyTeBo+3pUuXmjlz5phwOGzKysrMhRdeaOrr64eVtujvnRxrkydPHjBPQ5WPXH20byTWBo+1X/3qV+aQQw4xubm5prCw0CxYsMD85je/MY7jDCt9kU1ibfBY++lPf2qmT59uIpGIKS0tNYsXLzaPP/74sNIez5QxxiCEEEIIIYQQQgghhBgx8iolIYQQQgghhBBCCCFGmAy6CSGEEEIIIYQQQggxwmTQTQghhBBCCCGEEEKIESaDbkIIIYQQQgghhBBCjDAZdBNCCCGEEEIIIYQQYoTJoJsQQgghhBBCCCGEECNMBt2EEEIIIYQQQgghhBhhMugmhBBCCCGEEEIIIcQIk0E3IYQQQoi3icWLF3PllVe+475bCCGEEGI8kkE3IYQQQoh3oKVLl6KUoq2tbUQ+d++99/KjH/1o5DIohBBCCHGAC4x1BoQQQgghxIGvtLR0rLMghBBCCDGuyJVuQgghhBAHoK6uLi666CLy8/OpqanhF7/4Rdby22+/nSOPPJKCggKqq6v56Ec/SlNTEwCbN2/mpJNOAqCkpASlFJdccgkAruty1VVXMXXqVHJycjjssMO4++67h/xc39tLp0yZwo9//GM/j5MnT+Yf//gHu3bt4uyzzyY/P5958+bx8ssvZ+X76aef5oQTTiAnJ4eJEydy+eWX09XVNdLFJ4QQQgix38mgmxBCCCHEAehrX/saTz75JPfffz8PP/wwS5cuZdmyZf7yZDLJj370I1auXMl9993H5s2b/QGyiRMncs899wCwZs0adu7cyfXXXw/AVVddxW233cbvfvc7Xn/9db70pS/xsY99jCeffHKPnxvItddey3HHHcfy5cs566yzuPDCC7nooov42Mc+xrJly5g+fToXXXQRxhgANmzYwOmnn865557Lq6++yl/+8heefvppLrvssv1RhEIIIYQQ+5Uy6V6OEEIIIYQ4IESjUcrKyvjTn/7EBz/4QQBaWlqYMGECn/nMZ7juuuv6febll1/mqKOOorOzk/z8fJYuXcpJJ51Ea2srxcXFAMTjcUpLS3n00UdZuHCh/9lPfepTdHd3c+eddw74OfCudJs/f77/3VOmTOGEE07g9ttvB6ChoYGamhq++93v8sMf/hCA559/noULF7Jz506qq6v51Kc+hWVZ/P73v/fTffrpp1m0aBFdXV1EIpERLEUhhBBCiP1LnukmhBBCCHGA2bBhA4lEgqOPPtqfV1payqxZs/zpV155hf/93/9l5cqVtLa24rouAFu3buXggw8eMN3169fT3d3NqaeemjU/kUiwYMGCvc7nvHnz/L+rqqoAOPTQQ/vNa2pqorq6mpUrV/Lqq69yxx13+OsYY3Bdl02bNjFnzpy9zoMQQgghxFiRQTchhBBCiLeZrq4ulixZwpIlS7jjjjuoqKhg69atLFmyhEQiMejnotEoAA888AB1dXVZy8Lh8F7nIxgM+n8rpQadlx4QjEajfPazn+Xyyy/vl9akSZP2+vuFEEIIIcaSDLoJIYQQQhxgpk+fTjAY5IUXXvAHo1pbW1m7di2LFi1i9erVNDc3c/XVVzNx4kSAfi8sCIVCADiO4887+OCDCYfDbN26lUWLFg343QN9bqQcfvjhvPHGGxx00EEjnrYQQgghxGiTFykIIYQQQhxg8vPz+eQnP8nXvvY1Hn/8cVatWsUll1yC1l7XbtKkSYRCIW644QY2btzIP/7xD370ox9lpTF58mSUUvzrX/9i165dRKNRCgoK+OpXv8qXvvQlbr31VjZs2MCyZcu44YYbuPXWWwf93Ej5xje+wbPPPstll13GihUrWLduHffff7+8SEEIIYQQByQZdBNCCCGEOAD9/Oc/54QTTuC9730vp5xyCscffzxHHHEEABUVFdxyyy387W9/4+CDD+bqq6/mmmuuyfp8XV0dP/jBD/if//kfqqqq/IGtH/3oR3z3u9/lqquuYs6cOZx++uk88MADTJ06dY+fGwnz5s3jySefZO3atZxwwgksWLCA733ve9TW1o7YdwghhBBCjBZ5e6kQQgghhBBCCCGEECNMrnQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEOL/b+/eo6Ku8z+OP4eB2RkZkvslubohokamSApJqBCa66bSyX65KXlZdQXy189L1lHLrDglkWfLX3vsmObR8JT1O67SSV1Dk1ZCbS3XC3khTixubqJHQOUy8/vDZWoCSm1gWn09zvEc+M738/m8v99hxjPv+bw/HxERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXExJNxERERERERERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXExJNxERERERERERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXMzT3QGIiIjcLJqbm2lsbHR3GCIiNzWTyYSnpz4GiYhI59P/NiIiIp3MbrdTVVXFv/71L3eHIiIiQGBgIJGRkRgMBneHIiIiNzAl3URERDpZa8KtR48eWK1WPDy0uoOIiDvYbDbq6uqorq7GbrcTHR3t7pBEROQGpqSbiIhIJ2pubnYk3EJDQ90djojITc9qtQJQXV3NmTNnSExM1Iw3ERHpFPqqXUREpBO1ruHW+iFPRETcr/U9uby8nLKyMux2u5sjEhGRG5GSbiIiIl1AJaUiIr8cre/JZrOZ/fv309DQ4OaIRETkRqRPACIiIiIiclOyWCxcvnxZSTcREekUSrqJiIjINSspKcFgMHDu3Dl3hyLiMq76u66srMRgMPC3v/3NJXFdq7S0NObMmeOWsf/TtK7lpvJSERHpDNpIQUREREQESE5Opqamhu7du/+sfiIiIqipqSEwMNBFkbWvpKSEYcOGUVtbi6+vr+P4e++9h5eXV6eO/VPS0tLo378/r7zyilvjEBERcScl3UREREREAJPJ5JJdho1Go1t3K/b393fb2CIiIvIdlZeKiIh0kVlNS7jn8kS3/pvVtOSq4718+TJ5eXkEBwdjNpu5++67KS8vb/fchoYGRo0aRUpKikpO23HhwgUmTpyIt7c3YWFhFBYWOpUArlu3jsTERHx8fAgNDeXhhx/mm2++cbRvLXvcunUrCQkJmM1mBg8ezKFDh9x0Rb98aWlp5ObmMmfOHPz8/AgJCWHVqlXU19fz6KOP4uPjw2233cYHH3zgaPPD8tKvvvqKMWPG4Ofnh7e3N3379qW4uBiA2tpaJk6cSFBQEBaLhdjYWN58802gbXlpa79/+ctfSExMpFu3biQnJ3Ps2DGnmJctW0ZwcDA+Pj5MmzaNJ554gv79+7d7fZWVlQwbNgwAPz8/DAYD2dnZjmv/fnlpdHQ0y5YtY9KkSVitVqKioti8eTNnzpzh/vvvx2q1kpCQwL59+5zG2LNnD0OHDsVisRAREUFeXh719fWOx1euXElsbCxms5mQkBAeeOABALKzs9m1axcrVqzAYDBgMBiorKykpaWFqVOnEhMTg8ViIS4ujhUrVjiNmZ2dzdixY3n++ecJCQnB19eXpUuX0tzczLx58/D39yc8PNxxr79/v4uKikhOTsZsNtOvXz927drV0Z+HiIhIl9BMNxERkS5y2HacMvtB9wZhu/pT58+fz6ZNm1i7di1RUVG8+OKLZGZmcvz4cafzzp07x+jRo7FarWzfvp1u3bq5OOj/fI8//jilpaVs3ryZkJAQFi9ezIEDBxwJlaamJp599lni4uL45ptvePzxx8nOznYkeFrNmzePFStWEBoaypNPPsmYMWOoqKhweynhL9XatWuZP38+n376KRs3bmTWrFm8//77jBs3jieffJLCwkIeeeQRqqqq2v27nT17No2NjezevRtvb28OHz6M1WoFYNGiRRw+fJgPPviAwMBAjh8/zsWLF380nqeeeoqCggKCgoKYOXMmU6ZMobS0FID169fz3HPPsa+ojfYAAAyfSURBVHLlSlJSUigqKqKgoICYmJh2+4qIiGDTpk1kZWVx7NgxbrnlFiwWS4djFxYW8vzzz7No0SLHdScnJzNlyhReeuklFixYwKRJk/j73/+OwWDgxIkTjBw5kmXLlrF69WrOnDlDTk4OOTk5vPnmm+zbt4+8vDzWrVtHcnIyZ8+e5eOPPwZgxYoVVFRU0K9fP5YuXQpAUFAQNpuN8PBw3nnnHQICAvjkk0/4/e9/T1hYGA8++KAj1p07dxIeHs7u3bspLS1l6tSpfPLJJ6SmplJWVsbGjRuZMWMGGRkZhIeHO9rNmzePV155hT59+vDyyy8zZswYTp06RUBAwI8+LyIiIp3FYNeqoSIiIp2moaGBI0eOEB8fzyjjdLcn3e4y3MGuX63/yfPq6+vx8/NjzZo1PPzww8CVxFB0dDRz5sxh0KBBDBs2jCNHjjBhwgRiY2PZsGEDJpOpsy+hXbaaeuyn652OGXx/hUdMd+yXmrEdOdumjfHOYABajtVCQ5Nz26hb8PA3YztzEfvXF5wbWk0YY32vOrYLFy4QEBDAhg0bHDOBzp8/z6233sr06dPbXfNq3759DBo0iAsXLmC1Wh1rdxUVFTFhwgQAzp49S3h4OGvWrHFKWHQVe91p7PWnnQ+affHoHo29+RL2b4+2aeMR0h8A29kKaHLeLdLQPRKD2R97wxnsF6qdG5qsePjddk3xpaWl0dLS4kgEtbS00L17d8aPH89bb70FwOnTpwkLC+Ovf/0rgwcPbrNGWkJCAllZWSxZ0naG6G9/+1sCAwNZvXp1m8cqKyuJiYnhs88+o3///o5+d+zYwYgRIwAoLi5m9OjRXLx40TFzMTExkVdffdXRz913301dXV2HGzJ0tKbbD9dTi46OZujQoaxbt87puhctWuRIiu3du5chQ4ZQU1NDaGgo06ZNw2g08qc//cnR7549e7jnnnuor6+nuLiYRx99lK+//hofH5927//VrOmWk5PD6dOneffdd4ErM91KSko4efIkHh5XinJ69+5NcHAwu3fvBr57Lt944w0eeughx/3Oz89nwYIFADQ3NxMTE0Nubi7z589vM27re/OXX37JP/7xD373u98RHBz8o7GKiIhcK810ExERkTZOnDhBU1MTKSkpjmNeXl4kJSVx5MgRBg0aBEBGRgZJSUls3LgRo9HornBpXHWIy8s+dTrm9V9xdFt7L7av66i7a2ObNt0bcwG4OG0HLWXOySPLmxmYJvam6d0vufSYc4maZ0Yk3lvvv+rYTp48SVNTE0lJSd+N3b07cXFxjt/379/P008/zcGDB6mtrcVmuzIlsaqqij59+jjOGzJkiONnf39/4uLiOHLkyFXH4krNX6ymZe8LTsc8ek/ANOoN7HXVNG4Y2qaN+b+vJDCbts3EXuNcquw1chXG+IdoqXif5o/+x7nfqBGYxv/fNceYkJDg+NloNBIQEMDtt9/uOBYSEgLgVMr7fXl5ecyaNYtt27aRnp5OVlaWo89Zs2aRlZXFgQMHuPfeexk7dizJyclXHU9YWJhj7MjISI4dO8Yf/vAHp/OTkpLYuXPnNVzx1Y3det0d3YvQ0FAOHjzI559/zvr13yXp7XY7NpuNU6dOkZGRQVRUFD179mTkyJGMHDmScePG/eRM19dee43Vq1dTVVXFxYsXaWxsbFNC27dvX0fCrTW2fv36OX5vfS5/+Lx9//Xh6elJYmKi214fIiIioKSbiIiI/AyjR49m06ZNHD582OkDfFczTe+H1xjnMjyD768A8Ai3Yi2b0GFbyxvp7c50A/B6IBbPwT9YEN/q2tl89fX1ZGZmkpmZyfr16wkKCqKqqorMzEwaGxtdOpYred4+BWPP+5wPmn0BMFh7YHr44w7bet37ersz3QCMvcbhEZbk3MBkva4Yf1h2azAYnI4ZDAYAR5Lzh6ZNm0ZmZiZbt25l27ZtvPDCCxQUFJCbm8uoUaP46quvKC4uZvv27YwYMYLZs2ezfPnyq4rnp8Z2tfbG/rF46urqmDFjBnl5eW36ioyMxGQyceDAAUpKSti2bRuLFy/m6aefpry83GnW3fcVFRUxd+5cCgoKGDJkCD4+Prz00kuUlZV1GGtrbO0d66p7JyIicr2UdBMREekifTxuu6Y11Tothqvw61//GpPJRGlpKVFRUcCV8tLy8nKnBdrz8/OxWq2MGDGCkpISp1lZXckjzBvCvNt9zGD2dJSStscY59dxv0EWCOp4nayr0bNnT7y8vCgvLycy8kpi6fz581RUVJCamsrRo0f59ttvyc/PJyIiAqDNgvat9u7d6+ijtraWiooK4uPjf1Z818tgDcVgbX+HToOnGcO/S0nb4+Hfq+N+uwVh6Bb0c8NzmYiICGbOnMnMmTNZuHAhq1atIjf3yizJoKAgJk+ezOTJkxk6dCjz5s370aTbj4mLi6O8vJxJkyY5jnW0cUmr1nLulpaW6xrzxwwYMIDDhw9z220dv2d4enqSnp5Oeno6S5YswdfXl507dzJ+/HhMJlObuEpLS0lOTnaa0XfixAmXxbx3715SU1OBK+Wl+/fvJycnx2X9i4iIXCsl3URERLrI/3o94+4Qrpq3tzezZs1y7BYYGRnJiy++SENDA1OnTuXgwe/Wplu+fDktLS0MHz6ckpISevfu7cbIf3l8fHyYPHmy414GBwezZMkSPDw8MBgMjllDf/zjH5k5cyaHDh3i2WefbbevpUuXEhAQQEhICE899RSBgYGMHTu2ay/oJjJnzhxGjRpFr169qK2t5aOPPnIkORcvXszAgQPp27cvly9fZsuWLT8rAZqbm8v06dNJTEwkOTmZjRs38vnnn9OzZ88O20RFRWEwGNiyZQv33XcfFovFsdHDz7VgwQIGDx5MTk4O06ZNc2wksX37dl599VW2bNnCyZMnSU1Nxc/Pj+LiYmw2m6NsOjo6mrKyMiorK7Farfj7+xMbG8tbb73Fhx9+SExMDOvWraO8vLzDzSKu1WuvvUZsbCzx8fEUFhZSW1vLlClTXNK3iIjI9fD46VNERETkZpSfn09WVhaPPPIIAwYM4Pjx43z44Yf4+bWdGVZYWMiDDz7I8OHDqaiocEO0v2wvv/wyQ4YM4Te/+Q3p6emkpKQQHx+P2WwmKCiINWvW8M4779CnTx/y8/M7nC2Vn5/PY489xsCBAzl9+jR//vOf3bZ5xc2gpaWF2bNnEx8fz8iRI+nVqxcrV64ErswyW7hwIQkJCaSmpmI0GikqKrrusSZOnMjChQuZO3cuAwYM4NSpU2RnZ2M2mzts06NHD5555hmeeOIJQkJCXDqrKyEhgV27dlFRUcHQoUO58847Wbx4MbfeeisAvr6+vPfeewwfPpz4+Hhef/113n77bfr27QvA3LlzMRqN9OnTx1EyPWPGDMaPH8+ECRO46667+Pbbb9usY/dz5Ofnk5+fzx133MGePXvYvHkzgYGBLutfRETkWmn3UhERkU70/d1Lf2qBcbl51NfX06NHDwoKCpg6depPnt/RLpVyY8vIyCA0NNSx66i074e7xV4N7V4qIiJdQeWlIiIiIp3ss88+4+jRoyQlJXH+/HmWLl0KwP33X/0uqHJja2ho4PXXXyczMxOj0cjbb7/Njh072L59u7tDExERkeukpJuIiIhIF1i+fDnHjh3DZDIxcOBAPv74Y5W+iYPBYKC4uJjnnnuOS5cuERcXx6ZNm0hPT3d3aCIiInKdlHQTERER6WR33nkn+/fvv+72aWlpaEWQG5vFYmHHjh3uDuM/UnR0tF4fIiLyi6SNFERERERERERERFxMSTcREZEuYLPZ3B2CiIj8W+t7smbIiYhIZ1LSTUREpBOZTCYA6urq3ByJiIi0an1PbmxsdHMkIiJyI9OabiIiIp3I09OTwMBAqqurAbBarXh46DsvERF3sNls1NXVUV1dzblz5zQLWUREOpWSbiIiIp0sMjISwJF4ExER9zp37hz//Oc/aW5uxmg04uXl5e6QRETkBqSkm4iISCczGAxERUVx6tQpvvjiC/z8/LBYLO4OS0TkptTU1ITNZqO5uZkzZ84QHR2Nj4+Pu8MSEZEbkJJuIiIiXSQlJYVLly7xxRdf0NzcjMFgcHdIIiI3Jbvd7vhCZPTo0Xh66mORiIi4nsGuLXtERES6TFNTEzU1NdTV1WnXPBERN7JYLAQHB2O1Wt0dioiI3KCUdBMREREREREREXExbZ8mIiIiIiIiIiLiYkq6iYiIiIiIiIiIuJiSbiIiIiIiIiIiIi6mpJuIiIiIiIiIiIiLKekmIiIiIiIiIiLiYv8PZoO055aketYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#first apply (default) quality control\n", + "your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example\n", + "\n", + "#Interpret the outliers as missing observations and gaps.\n", + "your_dataset.update_gaps_and_missing_from_outliers(obstype='temp', \n", + " n_gapsize=None) #It is possible to change the definition of gapsize.\n", + "#Inspect your gaps using a printout or by plotting\n", + "#your_dataset.get_gaps_info()\n", + "your_dataset.make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "dc9f60c4-f471-4ad2-9710-6100ba6168c7", + "metadata": {}, + "source": [ + "When plotting a single station, the figure becomes more clear" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a5bb6973-1f80-4d90-ad4c-e888289688b5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAADM5klEQVR4nOzdeZwT9f3H8ddMstn7AJYFlvsSRDwQpSoKeOFVj59aj3qAqPUABK3Wq94Wqq1XtWqr4kG11rMeVaxWRbF4n2hBBeS+FtjN3rtJvr8/lmSTTXaT7GY32eX9fDz2QWYy85nPTL4zmXz5zvdrGWMMIiIiIiIiIiIikjB2shMQERERERERERHpalTpJiIiIiIiIiIikmCqdBMREREREREREUkwVbqJiIiIiIiIiIgkmCrdREREREREREREEkyVbiIiIiIiIiIiIgmmSjcREREREREREZEEU6WbiIiIiIiIiIhIgqnSTUREREREREREJMFU6SYiIiIiHaqiooLzzjuP3r17Y1kWs2fPbnNMy7K48cYbA9OPPfYYlmXx008/tTl2e8YUERGRrkuVbiIiIpISLMuK6e/dd99NdqpJc//99/PYY48lO402mzNnDo899hgXXXQR8+fP56yzzkp2Skm3bt06TjnlFAoKCsjLy+P4449nxYoVYcs1d178/ve/T0LWIiIi0hJnshMQERERAZg/f37I9BNPPMGbb74ZNn/XXXftyLRSyv33309hYSFTp05Ndipt8vbbb7Pffvtxww03tNs2zjrrLE477TTS09PbbRuJUlFRwcEHH0xZWRnXXHMNaWlp3HXXXUycOJEvv/ySHj16hCx/+OGHc/bZZ4fMGzNmTEemLCIiIjFQpZuIiIikhDPPPDNk+sMPP+TNN98Mm99VGGOoqakhMzMz2anErLKykuzs7DbH2bx5M6NGjUpARs1zOBw4HI523UZb+Y/n/fffzw8//MDHH3/MvvvuC8BRRx3F6NGjueOOO5gzZ07IervsskuXPS9ERES6Ej1eKiIiIp2Gz+fj7rvvZrfddiMjI4NevXpxwQUXsH379pDlBg0axM9//nPeffdd9tlnHzIzM9l9990Dj6a+8MIL7L777mRkZDB27Fi++OKLkPWnTp1KTk4OK1as4IgjjiA7O5vi4mJuvvlmjDFtyumNN94I5PSXv/wFgEcffZRDDjmEoqIi0tPTGTVqFA888EDY+t9++y0LFy4MPFI4adIkAG688UYsywo7XpH6IGva91lw/OAWdP51Fy5cyMUXX0xRURH9+vULWy/Y5s2bOffcc+nVqxcZGRnsueeePP7444H33333XSzLYuXKlfzrX/8K7EdzfaSNHj2agw8+OGy+z+ejb9++nHzyyc3mEmnf/Z/BokWLGDduHBkZGQwZMoQnnngibP1vv/2WQw45hMzMTPr168ett96Kz+eLuK3XX3+dgw46iOzsbHJzcznmmGP49ttvQ5bxl6nly5dz9NFHk5ubyxlnnAHAc889x7777huocAMYOXIkhx56KM8880zEbVZXV1NTU9Ps/ouIiEjyqdJNREREOo0LLriAK664gvHjx3PPPfdwzjnn8OSTT3LEEUdQX18fsuyPP/7IL3/5S4499ljmzp3L9u3bOfbYY3nyySe59NJLOfPMM7nppptYvnw5p5xySliFitfr5cgjj6RXr17cfvvtjB07lhtuuCHskch4clq2bBmnn346hx9+OPfccw977bUXAA888AADBw7kmmuu4Y477qB///5cfPHF/PnPfw6se/fdd9OvXz9GjhzJ/PnzmT9/Ptdee20Cj25kF198Md999x3XX389V111VbPLVVdXM2nSJObPn88ZZ5zBH/7wB/Lz85k6dSr33HMP0PBo8Pz58yksLGSvvfYK7EfPnj0jxjz11FN577332LhxY8j8RYsWsX79ek477bS49+fHH3/k5JNP5vDDD+eOO+6gW7duTJ06NaSSbOPGjRx88MF8+eWXXHXVVcyePZsnnngisB/B5s+fzzHHHENOTg633XYb1113Hd999x0HHnhgWGWix+PhiCOOoKioiD/+8Y+cdNJJ+Hw+vv76a/bZZ5+w2OPGjWP58uWUl5eHzH/sscfIzs4mMzOTUaNG8dRTT8V9HERERKQDGBEREZEUNH36dBN8q/L+++8bwDz55JMhyy1YsCBs/sCBAw1g/vvf/wbmvfHGGwYwmZmZZtWqVYH5f/nLXwxg3nnnncC8KVOmGMDMnDkzMM/n85ljjjnGuFwus2XLllbntGDBgrB9raqqCpt3xBFHmCFDhoTM22233czEiRPDlr3hhhtMpNu6Rx991ABm5cqVgXmAueGGG8KWHThwoJkyZUrYugceeKDxeDxhyzd19913G8D87W9/C8yrq6sz+++/v8nJyTFutztkW8ccc0zUmMuWLTOAuffee0PmX3zxxSYnJyfkuDXdr0j77v8M3nvvvcC8zZs3m/T0dPPrX/86MG/27NkGMB999FHIcvn5+SExy8vLTUFBgTn//PND8tu4caPJz88Pme8vU1dddVXIslu2bDGAufnmm8P2/89//rMBzNKlSwPzDjjgAHP33Xebl156yTzwwANm9OjRBjD3339/pEMoIiIiSaSWbiIiItIpPPvss+Tn53P44YdTUlIS+Bs7diw5OTm88847IcuPGjWK/fffPzD9s5/9DIBDDjmEAQMGhM2PNFLkjBkzAq8ty2LGjBnU1dXx1ltvtSqnwYMHc8QRR4RtJ7hft7KyMkpKSpg4cSIrVqygrKws5mPUHs4///yY+kZ77bXX6N27N6effnpgXlpaGpdccgkVFRUsXLgw7m3vsssu7LXXXvzjH/8IzPN6vTz33HMce+yxreoPb9SoURx00EGB6Z49ezJixIiQz/+1115jv/32Y9y4cSHL+R8H9XvzzTcpLS3l9NNPD/n8HQ4HP/vZz8I+f4CLLrooZLq6uhog4oAPGRkZIcsAfPDBB8yaNYvjjjuOCy+8kM8++4zRo0dzzTXXhCwnIiIiyaeBFERERKRT+OGHHygrK6OoqCji+5s3bw6ZDq5YA8jPzwegf//+Eec37YPNtm2GDBkSMm+XXXYBCDw2GG9OgwcPjrjcBx98wA033MDixYupqqoKea+srCyQYzI0l3NTq1atYvjw4dh26P/p+kebXbVqVau2f+qpp3LNNdewbt06+vbty7vvvsvmzZs59dRTWxWvabkA6NatW8jnv2rVqkBlbLARI0aETP/www9AQ0VuJHl5eSHTTqczrF88f8VhbW1t2Pr+Pttaqlx0uVzMmDEjUAF34IEHNrusiIiIdCxVuomIiEin4PP5KCoq4sknn4z4ftN+wZprndXcfNNkgIT2yClS5cny5cs59NBDGTlyJHfeeSf9+/fH5XLx2muvcddddzXbeX+wSIMoQEOrsFg1t2yyR1c99dRTufrqq3n22WeZPXs2zzzzDPn5+Rx55JGtipfozx8a+nXr3bt32PtOZ+itdnp6elilZPfu3UlPT2fDhg1h6/vnFRcXt5iHvyJ527ZtsScvIiIi7U6VbiIiItIpDB06lLfeeovx48d3SEWQz+djxYoVgdZtAN9//z3QMApmonJ65ZVXqK2t5eWXXw5phRXp0cTmKte6desGQGlpKQUFBYH5kVqXdevWjdLS0pB5dXV1ESt94jFw4EC+/vprfD5fSMXS0qVLA++3xuDBgxk3bhz/+Mc/mDFjBi+88AInnHBCxMcxE2XgwIGBVmzBli1bFjI9dOhQAIqKijjssMNatS3bttl999359NNPw9776KOPGDJkCLm5uS3G8D8a29yAFCIiIpIc6tNNREREOoVTTjkFr9fLLbfcEvaex+MJq0hKhPvuuy/w2hjDfffdR1paGoceemjCcvK3vApuaVVWVsajjz4atmx2dnbEmP7Kn/feey8wr7KykscffzzissHLAfz1r3+Nq1VcJEcffTQbN24M6X/N4/Fw7733kpOTw8SJE1sd+9RTT+XDDz9k3rx5lJSUtPrR0lgdffTRfPjhh3z88ceBeVu2bAlr0XjEEUeQl5fHnDlzwkaq9a8Ti5NPPplPPvkkpOJt2bJlvP322/ziF79oMV55eTl33303hYWFjB07NqbtiYiISMdQSzcRERHpFCZOnMgFF1zA3Llz+fLLL5k8eTJpaWn88MMPPPvss9xzzz2cfPLJCdteRkYGCxYsYMqUKfzsZz/j9ddf51//+hfXXHNNoEVRInKaPHkyLpeLY489lgsuuICKigoeeughioqKwlqfjR07lgceeIBbb72VYcOGUVRUxCGHHMLkyZMZMGAA5557LldccQUOh4N58+bRs2dPVq9eHRLjvPPO48ILL+Skk07i8MMP56uvvuKNN96gsLCwTcfrV7/6FX/5y1+YOnUqn332GYMGDeK5557jgw8+4O67747aWqslp5xyCpdffjmXX3453bt3b3Wrslj95je/Yf78+Rx55JHMmjWL7Oxs/vrXvwZa8/nl5eXxwAMPcNZZZ7H33ntz2mmnBY75v/71L8aPHx9Scduciy++mIceeohjjjmGyy+/nLS0NO6880569erFr3/968Byf/7zn/nnP//Jsccey4ABA9iwYQPz5s1j9erVzJ8/H5fL1S7HQ0RERFpHlW4iIiLSaTz44IOMHTuWv/zlL1xzzTU4nU4GDRrEmWeeyfjx4xO6LYfDwYIFC7jooou44ooryM3N5YYbbuD6669PaE4jRozgueee47e//S2XX345vXv35qKLLqJnz55MmzYtZNnrr7+eVatWcfvtt1NeXs7EiRM55JBDSEtL48UXX+Tiiy/muuuuo3fv3syePZtu3bpxzjnnhMQ4//zzWblyJY888ggLFizgoIMO4s033wy03mutzMxM3n33Xa666ioef/xx3G43I0aM4NFHH2Xq1Kltit2vXz8OOOAAPvjgA8477zzS0tLaFC+aPn368M477zBz5kx+//vf06NHDy688EKKi4s599xzQ5b95S9/SXFxMb///e/5wx/+QG1tLX379uWggw4KO/bNyc3N5d133+XSSy/l1ltvxefzMWnSJO66666QR0bHjx/Pf//7Xx5++GG2bt1KdnY248aNY968ec0O5iAiIiLJY5nW9BorIiIi0oVNnTqV5557joqKimSnIiIiIiKdlPp0ExERERERERERSTBVuomIiIiIiIiIiCSYKt1EREREREREREQSTH26iYiIiIiIiIiIJJhauomIiIiIiIiIiCSYKt1EREREREREREQSzJnsBFKdz+dj/fr15ObmYllWstMREREREREREZEkMsZQXl5OcXExtt18ezZVukWxfv16+vfvn+w0REREREREREQkhaxZs4Z+/fo1+74q3aLIzc0FGg5kXl5ekrMREREREREREZFkcrvd9O/fP1Bn1BxVukXhf6Q0Ly9PlW4iIiIiIiIiIgIQtRsyDaQgIiIiIiIiIiKSYKp0ExERERERERERSTBVuomIiIiIiIiIiCRYp650mzt3Lvvuuy+5ubkUFRVxwgknsGzZspBlNm7cyFlnnUXv3r3Jzs5m77335vnnn09SxiIiIiIiIiIisjPo1JVuCxcuZPr06Xz44Ye8+eab1NfXM3nyZCorKwPLnH322SxbtoyXX36Zb775hhNPPJFTTjmFL774IomZi4iIiIiIiIhIV2YZY0yyk0iULVu2UFRUxMKFC5kwYQIAOTk5PPDAA5x11lmB5Xr06MFtt93GeeedFzWm2+0mPz+fsrIyjV4qIiIiIiIiIrKTi7WuqFO3dGuqrKwMgO7duwfmHXDAAfzjH/9g27Zt+Hw+nn76aWpqapg0aVLEGLW1tbjd7pA/ERERERERERGReHSZSjefz8fs2bMZP348o0ePDsx/5plnqK+vp0ePHqSnp3PBBRfw4osvMmzYsIhx5s6dS35+fuCvf//+HbULIiIiIiIiIiLSRXSZSrfp06ezZMkSnn766ZD51113HaWlpbz11lt8+umnXHbZZZxyyil88803EeNcffXVlJWVBf7WrFnTEemLiIiIiIiIiEgX0iX6dJsxYwYvvfQS7733HoMHDw7MX758OcOGDWPJkiXstttugfmHHXYYw4YN48EHH4waW326iYiIiIiIiIiIX6x1Rc4OzCnhjDHMnDmTF198kXfffTekwg2gqqoKANsObdDncDjw+XwdlqeIiIiIiIiIiOxcOnWl2/Tp03nqqad46aWXyM3NZePGjQDk5+eTmZnJyJEjGTZsGBdccAF//OMf6dGjB//85z958803efXVV5OcvYiIxOIH30+sNZv4p/dNvvYtZbS9C6c7f84B9t7JTk1ERERERKRZnfrxUsuyIs5/9NFHmTp1KgA//PADV111FYsWLaKiooJhw4Zx+eWXc9ZZZ8W0DX+TwXWHPUn2t5XgM2BbWN0yMNtrQqaBsHlNp+2BuaRNHkj67DEAeD67F++q/2DKVjVutGY7GB9YNmR0a5h25WIXjsJ1/D9af8BaofbuL6j/9yq8X26Je1/jnW4uppXrwrFbD7Jf+HmLuXo+uxdTV47lysU5diaez+6lbn4NnlcyMJXp7Z5nqsW0B+biPPxByFsPde6GstSUv6xl9sC5xzScY2eGHdOw8glYeQNwDDqsYZlvHoWqkkB59b/XNFa8/GXPt6q8y3wmXTGm1SOT9PNHB65pfnUvnYqv5H8hZa+1ZeOa+ju40/toyLwDrX1YsGRsWPmLdL0MvjZ43z8wUK4i7WdHHs9o17aw8y/O74K2rt+SZH83NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2uzSR927BQu5Hgn7nWkV7xhS78sRX8X67FVNelzLHTzEV0+qWQUWxg75vnRH18dJOXenWEfyVbqudt5FnZSYkptU3m7yV0wCoeWgEVKyPcUWbjNllCckhVu7B8zDrKjt0mxHZFvk1M1pcJHAsc4rJOH8ZNQ+NoPbqs8Cd30FJph7X3Gux7BhP8R3HLViL5TOnuOHfSO9HiBWvlCl7ElXwNc2v5u78hpuqplpRNi6rn8P93qcAsLHx4WNXayiLn1jafPkMul4GXxvq5lyZWuWqhWtbs+dfjN8FbV2/JTo/RUREOr+Q36UJvHcLFu33RLTYZRn3NVR0iKQYt6lmgOfKqJVuXWb0UhER6ZqqqQ287kUPAErM9mSlIyIiIiIiEhO1dIvC39Jt+//WkVPlBGPAAivbhamsD5kGwuY1nbZy0rDyXFi5O5avK8fUlmPqKwLbNPX+1gMWVloWpr4SKy0by5WLndOnQ/fflNdh3HX4NlXFva/xTjcX08pyYuW5sItzWs61rnzHuhaWK7fh2Lrr8G2sglpXu+eZajGtnDSMYyuk1WA81VhpWeHHbEdZs9JysHN6Y7lyw45p0/IJYLlyAsv6yjdgPJX4y6v/vaax4uUve6aivst8Jl0xppWThl2cE7im+fkqNmBq3SFlr7Vl45y6q/i7r6Efzt2sYXxrfsTGptx6Hyo2hZS/SNfL4GsDtemBchVpPzvyeEa7tjU9/+L9Lmjr+i3GTvJ3Q1g+ney8UczOk5diKmYqx0zVvBQz9WMCYb9LE3nvFiz4fiT4d66dXRRTbN/6Ckx5PaayLmWOn2IqppXtotxU023Xvl179NKOZBfn4GzhQLZWIion2pOV23Ahtvu2XOGVCpoeR8uVi1UIdmGPJGWUCtr2ucVSPh092qf8+suedE52Th9I0H8S1FIXeN2DbgD48FHqMvTosUvU9UPKsItOU67a+v3Qnt8vnem7QURERKJL5L1bsLbej0RreCGSLLbbEdty7ZyHiIhIm1RTE3jd0+oeeF1itiUjHRERERERkZio0k1ERFJaTVBLt6KgSrctbE9GOiIiIiIiIjHR46UxqjjpVcy3lW0ehrbp0MwhQyj7BQ2lTEa3hmlXLnbhKFzH/6ND97v27i+o//cqvF9uSdowvlauC8duPch+4ect5ur57F5MXTmWKxfn2Jl4PruXuvk1eF7JwFSmp/Rww+0R0x6Yi/PwByFvfcjQ3yH8ZS2zB849poUN2R2xfEJg+HAAzzePQlVJoLwmYmhxaCx7vlXlXeYz6YoxrR6ZpJ8/OnBN80vksPM1JngghcLA65zPHqPm2/NDyl+k62XwtcH7/oGBchVpPzvyeEa7toWdf3F+F7R1/ZYk+7uhqc523ihm58lLMRUzlWOmal6KmfoxgbDfpYm8dwsWcj8S9DvXKtozptiVJ76K99utmPK6lDl+iqmYVrcMKopje7xUAylE4R9IYbXzNvKszITEDBmauaUhlMNWtMmYXZaQHGLlHjwPs64y+oLtzbbIr5nR4iKBY7lj6Omah0ZQe/VZ4M7voCRTj2vutVh2jKd4hCG7ow3xDUR+v41Di0MKlT2JKvia5pfIYecPqD2Fz813OHHyJ+dvudhzIwDrnnCTXbm9maQar5fB14a6OVemVrlq4drW7PkX43dBW9dvic5PERGRzi/kd2kC792CRfs9ES12WcZ9DRUdIinGbaoZ4LlSAymIiEjnVk1DS7cMXAywitnL2pVKqqnnsyRnJiIiIiIi0jz16SYiIimtZkelWyYZHOY4gA/Tn+UU+ygc+goTEREREZEUpl8sIiKS0mpNw0AK6bgC8/KsHCx9hYmIiIiISArTLxYREUlp1dQAkGGlB+bNck4hx8pKVkoiIiIiIiJRqdJNRERSWg0NLd0yglq6iYiIiIiIpDpVuomISMoyxoT06SYiIiIiItJZqNJNRERSVj0eDA3DxKeTHmVpERERERGR1KFKNxERSVn+/twAMiw9XioiIiIiIp2HKt1ilZ8O1o7XFuC0w6cjzWs6XZCOY6+iQFi7aE9ILwDb2fgXvJJ/2nJAZmE77mBkjr2KoCDCvseyr/FON7eMw8IqzIyaq120J1affRuO6Y5pe2gVOHwdk2eqxSxIB09eQ9nxl6Wmf/6VbGfguDU9pmHl03ZCekHD8S3ac0ccGrex4722CpS9rvSZdMWYTjvkmhaQWRhe9lpRNvyPlgJkNGnpFrH8RbheBl8bQspVso9nlGtb2PkX53dBW9dvSdK/G5r+dbbzRjE7T16KqZipHDNV81LM1I/ptMN+lybq3q2pkPuR4ERijG0VZoLDSq3jp5iK6bQb6ohiYBljTExL7qTcbjf5+fmUlZWRl5eX7HRERHYqq8x6RtROBuBk+wj+5rojyRmJiIiIiMjOLta6IrsDcxIREYlLrQlu6aaBFEREREREpPNQpZuIiKSs6uDHS9Wnm4iIiIiIdCKqdBMRkZTVUp9uIiIiIiIiqcwZfREBKBvyKKbcBkNDx3kOG7y+0GkIn9d0OicN5/hisl/8OQB1L52Cb91iqK9o3JjPS2Al29EwbdmQ2YOMC5Z32D4DVP7fq3g+WA9ltfHva7zTzcW0LawemeStPbfFXOteOgVTXYKVWYjr+Geoe+kUaucMw/d1L/Da7Z9nqsXMScP165ux0ivA+BrKUlP+smY7sQcdjuv4Z8KOaVj5BEjLwe67f0OIn94En4dAed3xXtNY8QqUvYr6rvOZdMWYThvnEQMD1zS/mr8MheqtoWWvFWWjxjRf6Vb30inh5S/C9TL42lD/2NmN5SrSfnbk8YxybQs7/+L8Lmjr+i1J+ndDU53tvFHMzpOXYipmKsdM1bwUM/VjQtjv0kTduzUVcj8S/Ds3PT+m2O5+j2C2VoPPpM7xU0zFdNi4szzNFdsQqnSLVVktWDtGmTOAx9f4XtPplpYprcX75ebAbN/mr6C2tJmNmh0/JgHjheqSNu1Ca3i/3AyljT9649rX1k43nec1mJLqqLn6Nn8FFesxOcWBad/yPcBrd0yeqRaztBacbvCPleJr4aLg8zQcv6azmyuftaWNywfi7iivwe+1QVjZ27GJTv2ZdMWYHl/INS2guqThpg0ay0grykZISzcrtNLNt/mr8PIHYdfL4GtDxHIVab8izevga1vE8y+O74K2rt+SlPhuiKSznDeK2fnyUkzFTOWYqZqXYqZ2zCa/SxN179ZU5N8TJubYpmRHhRuk1vFTTMUsi/CbIgJVuomISEr51vcDm8xW/uV7l0+9S+hBATlkMYDiZKcmIiIiIiISM1W6iYhISrnf+xSPeJ8FYAyjGGUNY4K9L2c7T0huYiIiIiIiInFQpZuIiKQUt2nsQ7DAyiXLyiTPykliRiIiIiIiIvFTpZuIiKSUCioDr+e7/kih1S2J2YiIiIiIiLSOnewEREREgrlNY6VbLtlJzERERERERKT1VOkmIiIppZyGx0vTcZFuuZKcjYiIiIiISOuo0k1ERFKKe8fjpXmoHzcREREREem8VOkmIiIppXzHQAo5VlaSMxEREREREWk9DaQQI8ekfvBtJfgM2BZWtwzM9pqQaSBsXtNpe2AuaZMHBuI6956Bd9V/MGWrGjdWsx2MDywbMro1TLtysQtHdfRukz5rDPX/XoX3yy1x72u8083FtHJdOHbrETVX594zMHXlWK7cwLTvzBo8r4CpTG/3PFMtpj0wF8s+APLWQ527oSw15S9rmT1w7jEt4jENK5+AlTcAx6DDAPB88yhUlQTKa/B7beEve75V5V3mM+mKMa0emaSfPzrs87MHH4mv5H8hZS/WslEeY0s3594zwspfpOtl8LXBCipXkfazI49ntGtb2PkX53dBW9dvSbK/G5rqbOeNYnaevBRTMVM5ZqrmpZipHxMI+13alnu3loTcjwT9zrWK9owptvPoQXi/3Yopr0uZ46eYiml1y8BR3APein4OWMYYE99ps3Nxu93k5+dTVlZGXl5estMREenSak0d+bV7A3CgtQ9vpT+W3IRERERERESaiLWuSI+XiohIynDvGEQBIM/SyKUiIiIiItJ5qdJNRERShts0VrrlaiAFERERERHpxNSnW4x86yvw/FgDxoAFVrYLU1kfMg2EzWs6beWkYeW5sHJ3LF9Xjqktx9Q3/tA09ZU7XllYaVmY+kqstGwsVy52Tp8O3W9TXodx1+HbVBX3vsY73VxMK8uJlefCLm75B7ipK9+xroXlym04tu46fBuroNbV7nmmWkwrJw3j2AppNRhPNVZaeKf0/rJmpeVg5/QO9IcXfEyblk8Ay5UTWNZXvgHjqcRfXv3vNY0VL3/ZMxX1XeYz6YoxrZw07OKcwDXNz1exAVPrDil7sZQNf39uALlRBlIwdeVh5S/S9TL42kBteqBcRdrPjjye0a5tTc+/eL8L2rp+i7GT/N0Qlk8nO28Us/PkpZiKmcoxUzUvxUz9mEDY79LW3rtFE3w/Evw7184uiim2b30FprweU1mXMsdPMRXTynbhM9UxnQOqdItR+e5/w7IyExLL6ptN3sqGTutrH98HKtbHuKJNxuyyhOQQq/I9/oZZVxl9wfZmW+TXzGhxkcCxzCkm4/xl1D6+D7VXnwXu/A5KMvW45l6LZZvYFt5x3IK1WD5zihv+jfR+hFjxSpmyJ1EFX9P86h4eCcYXvnCUshFc6RZtIIUWy2fQ9TL42lA358rUKlctXNua3b8Yvwvaun5LdH6KiIh0fsH3cK29d4sm2u+JaLHLhzzW0Hm9SIopj7HSTY+XiohIyigPfrzU0uOlIiIiIiLSeamlm4iIpIRNpoSPfF/Rnz4YDAOt4mSnJCIiIiIi0mqqdBMRkZTwke8rbvM+BMCB1lh+6Tg2yRmJiIiIiIi0Xqd+vHTu3Lnsu+++5ObmUlRUxAknnMCyZeHPhC9evJhDDjmE7Oxs8vLymDBhAtXVsT1/KyIiHWOpWRF43d/q2EFjREREREREEq1TV7otXLiQ6dOn8+GHH/Lmm29SX1/P5MmTqaxs7Nx58eLFHHnkkUyePJmPP/6YTz75hBkzZmDbnXrXRUS6nKW+xkq3S51Tk5eIiIiIiIhIAnTqx0sXLFgQMv3YY49RVFTEZ599xoQJEwC49NJLueSSS7jqqqsCy40YMaJD8xQRkeiW7WjpZmEx3BqU3GRERERERETaqEs19yorKwOge/fuAGzevJmPPvqIoqIiDjjgAHr16sXEiRNZtGhRszFqa2txu90hfyIi0v76WX0YZQ1jV2sImVZGstMRERERERFpky5T6ebz+Zg9ezbjx49n9OjRAKxY0dBq4sYbb+T8889nwYIF7L333hx66KH88MMPEePMnTuX/Pz8wF///v07bB9ERHZWxhhe8r3Fd+ZHcshOdjoiIiIiIiJt1mUq3aZPn86SJUt4+umnA/N8Ph8AF1xwAeeccw5jxozhrrvuYsSIEcybNy9inKuvvpqysrLA35o1azokfxGRnVk9nsDrNNKSmImIiIiIiEhidOo+3fxmzJjBq6++ynvvvUe/fv0C8/v0aRj9btSoUSHL77rrrqxevTpirPT0dNLT08PmZ9w7ibSvyjFeAw4LR59sfBsqQ6aBsHlNp+2BeTh2LwzEdR33NL4tSzDuxnxM5UbwecB2YmX3xlRuxMosxOrR8X3RZT//czzflOD9cEPc+xrvdHMxrZ5ZOEZ2i5qr67inwVsHDldg2jFgO57/lOErzW33PFMtpj0wD6vIBbkbMdUlWNm9w46Zv6xZuf1wDD064jFtWj4BrLwB2D0bWpR6l7+GKV8bKK/B77WFv+yZVe4u85l0xZh2vxxcPx8S9vk5j/gLZuuykLLXUtmooz7wOt2KrdLNddzTYeUv0vUy+NqQNrZvoFxF2s+OPJ7Rrm1Nz794vwvaun5Lkv3d0FRnO28Us/PkpZiKmcoxUzUvxUz9mEDY79J4791iFXw/Evw71+4zLqbYmfMOw7t0O74tVSlz/BRTMR19sskssuGi6OeAZYwx8Z02qcMYw8yZM3nxxRd59913GT58eNj7/fr1Y9q0adxyyy2B+WPGjOGoo45izpw5UbfhdrvJz8+nrKyMvLy8hO+DiIjAVlNK39oDATjSPoh/uh5IckYiIiIiIiKRxVpX1Klbuk2fPp2nnnqKl156idzcXDZu3AhAfn4+mZmZWJbFFVdcwQ033MCee+7JXnvtxeOPP87SpUt57rnnkpy9iIj4Bbd0c+nxUhERERER6QI6daXbAw80tISYNGlSyPxHH32UqVOnAjB79mxqamq49NJL2bZtG3vuuSdvvvkmQ4cO7eBsRUSkOSGPl+JKYiYiIiIiIiKJ0akr3WJ9Mvaqq67iqquuatO2am76EOuTMvAZsC3sHc/0Bk8DYfOaTttD83GOLybtmMEAeFe8jm/dYkzpisb9qtwIPi/YjtA+inqOJu2A37ZpP+JV/6+VeD9YT/2i9XHva7zTzcW0e2bi2L2QjBv3azFX74rXwVMDzgwcQ47Cu+J1PG9tp/7lGkxpTrvnmWox7aH52CNexOq2FlPVUp9uXqzcvjh2OwPHkKPCjmnT8glgFQzB7rt/wzLfPokpXxcor1bBEF7tXcXqwbszyzmlFaWugb/seZeXdZnPpCvGtPvm4Dp718A1LfD5/fdWTMmSkLLnLzdNyxlAnakLvI51IAXvitfDyp//evlxDy93jesFwJmrMjjOjAdnBr7/jQyUq0j72ZHHM9q1ren5F+t3wT2ex3nP9wljflrDoRtsxrqz41o/Fsn+bmiqs503itl58lJMxUzlmKmal2Kmfkwg7HdpvPdusQq+nwn+nWv3PSCm2DU3foj3mxJ8W6pT5vgppmLafbKp7hdbdVqn7tOtI/if013tvI08KzMhMa2+2eStnAZAzUMjoGJ9jCvaZMwuS0gOsXIPnodZV9mh24zItsivmdHiIoFjmVNMxvnLqHloBLVXnwXu/A5KMvW45l6LZcd4iu84bsFaLJ85xQ3/Rnh/U7aLw8/em7Od/8dvnRfHk3JAypQ9iSr4muZXc3c+GF/4whHKGcC3vh8YW/d/AEx1nMiDaTdH3W5L5dNnWRx/0YkAPPX4m+RWuiGnmLo5V6ZWuWrh2tbs/jXzXfCNbxkX1d/AVlOKEyevP/ExhZXVMa8fD52fIiIinV/I79I4791iFe33RLTYZRn3NVR0iKQYt6lmgOfKrt2nm4ikJg9eVrOB//mWJzsV6SRqaWzplqjHS/OsHAAs7ITES3UbTQmfmiUADGcgNlaSMxIRERER2bmp0k1E2k01NclOQTqJRA+kYGPxvOs+AGqsN4HSNsdMdaW4A6/Pd55Kd+tHoCp5CYmIiIiI7OR2jv/+F5GkqKY22SlIJ6GBFNqu1DRWuuWTm8RMREREREQEVOkmIu2o2qilm8SmthUDKUio7UEt3bpZzfcrISIiIiIiHUOVbiKScP6epPR4qcSqPvjxUkuVbq1RZsoDr9XSTUREREQk+VTpJiIJZ+2odtPjpRKr0MdLVenWGmrpJiIiIiKSWlTpJiIJF6h00+OlEqPaBA+ksDMKaemmSjcRERERkaRTpZuIJJy/0q1GLd0kRokevXRntJ2ywOtuqNJNRERERCTZVOkWq0QdKRus7MYflFZaduzBLUeCkoidlZ2WGqXEYUVdxErLBlfujmPaMG1leADTzsmlKBswsX94/uMWPi9SDLvh+EZYB2xq0pxA2/p0S5myJ1EFX9MaZ0a6XtnNlJnQgRRcMY5e2lysptsPvjakXLlq4drW7PnXzHeBv6WbjU0OWXGvH4+UO44iIiISnya/S+O9d4tVtN8TUcXwO1AkKWKtxjHG7KQ1ErFxu93k5+dTVlZGXp5aDojE4oDaU/jcfIeNTWX6V1iWviylZQ94nuJSzxwA5qXN5ZeOY5OcUeczqvYoVpg1dCef9RkfJDsdEREREZEuK9a6Iv0/tYgkXCaZAPjwUY8nydlIZ6DHS9vO39It39LIpSIiIiIiqcCZ7AREpOvJtNIDT/VWU6NKFImqlsbHS9NjfLxUGj3nXcAu1mDqqWeg1TfZ6YiIiIiICKp0E5F2kElG4HU1teSjljfSMrV0az1jDBfV30A5lQyy+rHI9XSyUxIREREREVTpFrPyg57B/FQHPsACctKgsj50GsLnNZm2e2fjnDyAzN8fCED9e9fiW/UWpmJT48bqK2loJmRBWnbDtDMDq2AI6b9c2GH7DFB91SI8/16Nb3lp3Psa93RzMTOc2EPyyV18aou51r93LdSWQnoBaRN+R/1711J3fxqe/xRAjav980yxmHbvbJyn/hErdwt4ahrKUthB21HW0nJw7HYGaRN+F3ZMw8onYGX3wh50GADe756Eugr85dXK7sWZ/dN4Zf+GZatNDbSiS7dA2dtY2WU+ky4ZMycN15RdA9c0v9qnJmJKV4SUPX+5aVrOAOpMcKVbbC3d6t+7Nqz8RbpeBl8bPK8d1ViuIu1nRx7PKNe2sPOvme+CdWyinIb9GWkNjnv91kj6d0NTne28UczOk5diKmYqx0zVvBQz9WNC2O/SeO/dYhVyPxL0O9cqGBJT7PL9/4FveRnUeFLn+CmmYuakUdHTaq7YhtBAClH4O8db7byNPCszITGtvtnkrZwGQM1DI6BifYwr2mTMLktIDrFyD56HWVfZoduMyLbIr5nR4iKBY5lTTMb5y6h5aAS1V58F7vwOSjL1uOZei2XHeIrvOG7BWiyfOcUN/0Z4vzQ7h0Fn9wDgc9c/GWUPizlnv5QpexJV8DXNr+bufDC+8IUjlDOAq+r/wN3exwH4j+sJxtt7R91ui+Uz6HoZfG2om3NlapWrFq5tze5fk++CN70fcGz9BQBc6pjK3LTL41q/NXR+ioiIdH4hv0vjvHeLVbTfE9Fil2XcBz5VWUjqcZtqBniu1EAKItLxguv8q6lJWh7Seejx0tZbZlYEXo+whiQxExERERERCabHS0Uk4aygardqapOYiXQWwZVu6ap0i9lK31q2mjIG0Ac3lexqD012SiIiIiIisoMq3UQk4UIq3Yxaukl0tWrp1iov+v7NXO+DAJxoT+Zn9p5JzkhERERERPxU6bYTuMfzOO/5PgFggr0vs5xTkpyRdHXBlW41aukmMQgeSCFNlW4xqwp6fLtAowSLiIiIiKQUVbp1YX/wPMxL3rcoN5Wk4WQDW/jC9x3V1HCV84JkpyddWmOlW5X6dJMY1FEXeJ1uxTZ6qUCVqQ68Ps3587jXf8rzCpd55uDFx6H2/jztujuB2YmIiIiI7NxU6daFfev7gU/NEgD2ZQ+2Urpj/o9JzEp2Bnq8VOKlgRRaJ7hSO4uMuNffYDZTSjkAS4MGZBARERERkbbT6KVd2DqzKfD6Ode9EeeLtAcHNj+z9mSoNYB7PU8wq/5W3vV+nOy0JIWFDqSglm6xqqKxpVs2WXGvX2rKA6+3mG0JyUlERERERBqo0q0LW89mAPLJpZfdg+7kh8wXaS8ZVjoL05/kNPsYfmAVf/E+zbn1Vyc7LUlhtUGPl6qlW+yCHy/NbE1LN7YEXm+llLKgSjgREREREWmbVj1eWl9fz8aNG6mqqqJnz55079490XmlHGtAHmz0gjFgWZDhgJom0xA+r8m0VZhJ2qH9A3Edg4/Au+odqC5p3Ji3BgwN3WI5MhqmbRdWXr+Y8zXGBFq0FVtFgX+3mTLWm00YY7Asq6UQAKQdNYj6t9Zg1lXEva9xTzcXM83GHhC9g3DH4CMwNduxMroFph0/q8W7yAv1zvbPM8ViWoWZUN8XsreBr66hLDXlL2vODByDj4h4TMPKJ+DOTGdt/8Hsbu+Cd+mz4KlpLK+ZhTgGHgxAnpVDGmnUUY+biqifYbBA2dta3WU+ky4ZM9NJ2lGDwj4/q9swjHttaNkLKht+/oFevvEtC8yLtdLNMfiI8PIX4XoZfG0IKVeR9rMjj2eUa1vY+Rdh34IfL822MmNaf3tuLs94HmeWcwrrCG35vMysZJy1R9Rjn/TvhqY623mjmJ0nL8VUzFSOmap5KWbqx4Sw36Wx3rvFK+R+JPh3bk6/mGLbuxTgW10O9b7UOX6KqZgZDqxuabA8+jlgGWNMLCdLeXk5f/vb33j66af5+OOPqaurw19x069fPyZPnsyvfvUr9t1331jCdRput5v8/HzKysrIy8tLdjox22bKKK4dD8Bh9gG86vorx9ddxBu+9wFYk/4ePa2uX1kqifeTbx3H111IOZVMdZzI9WkzWlz+oNrT+cR8g4VFZfpX2JYa2ApUmiom1Z2J21RiMPSgAA8edrOH85jrtmSn12kcWXcu7/o+AmBr+sdkWy0/Yrrct5pf1F9CidnOr5yn8qz3dZaZlVhY7GYN5ybHTI5xtu3mWkRERESkq4u1riimX7933nkngwYN4tFHH+Wwww7jn//8J19++SXff/89ixcv5oYbbsDj8TB58mSOPPJIfvjhh4TtiLTOOrMx8Dq4pVvj++rXTVrHtmyWsZL1bOZbE/1cz7WyATAYKoP6n5Kd2xaznW/M96xiHXXUU2wXMcAuZow9KtmpdSrxPl7qwMF35kc2s5Uvvf9j7Y7vCoNhifme9UGPm4qIiIiISNvE9HjpJ598wnvvvcduu+0W8f1x48Yxbdo0HnzwQR599FHef/99hg8fntBEJbq/e1/FYFjtW8/bvg8pogdpOBlpDQFgpDWEvaxdqTG1zKq7ldH2Lkx2jOd4x2FJzlw6kz4UYmFhMDFV3uaRE3jtpoJcstszPekkSmjstP84xyH8Ke26JGbTefkHUsgkI6ZWpAOsPmSRSRXVLDKfsbe1GxvMFn5kFQBlO0YyFRERERGRtoup0u3vf/97TMHS09O58MIL25SQtI4xht95HuBHswoHDn5m7cEIazAT7H25zDkNgFnOKcxyTuHmuvu43fcQH/m+4g3f+6p0k7ikWWn0ppANbGG9iT4oR67VWOlWbirA6tWe6UknsdWUBl4X0i15iXRy/j7dsmIcRMG2bHaxBvGl+R+luHnffMpB1j78aBoq3UqNu91yFRERERHZ2bRqIIVgbrebt99+mxEjRrDrrrsmIqeUVNb7rxhPeuMMi4ZOIIOniTCv6bTTxrF7ITkfngpA7ZMTMCVLwOcJWrCZIM5MMmZGruRYaday3KwGYKBVTDcrH2joyL6pfDuXHF82pbhZy0YqTBU5zfQDVLHfP/B+U9LQcWW8+xrvdEsxs5zkl14UMUe/2icnYKo2YWX1Iv2M96h9cgK1N0zErO7ZuIH2zjOVYjptXDdej+WsC5rZVONKVtEY0s94L+TdyOUTvrZhSY80YAM1W/KC4lhgO7EKRwdi5dJYttxURsghskDZ8/i6zmfSFWNa4BhTFLim+dXcWwSe6qAVCCkbW4JaurW2f8naJydgNn8ZmkyE62XwtaH+3umN5SrSfkaal6RrW/j5F75v/sdLIz1a2tz6bzid9Dq/b2C5A+y9ed/7KQDbia3SLenfDU11tvNGMTtPXoqpmKkcM1XzUszUjwlhv0uj3bu1Vuj9SFAidlpMscsKHoAqT/P70lU+E8XsdDHdjlpiEXel2ymnnMKECROYMWMG1dXV7LPPPvz0008YY3j66ac56aST4g3ZOdT7Gj8sCD3gkaabW6beh29TY8WDqdoEvvoWNhwUxNv8h/q9WckYRlFpVXOifTg3pM1sdtlZzil8Z37kce+LACwzKxhrjY64rG9TZeiPqiYpNTuvrdNN59V4I+YXsnjVJqhYH1jNVG3ClKYT8sG1d56pFLPeB3Z9Cws1WaUq/FHR5spnmg+KqvyfSXBcA776kFi5BLd0i73SLWLZa7q5SNOxLNOVPudkxzSEXNMCQq5XO1YIKhslZnvg3R5WQYSNRtcQq0kyEbYffG1otlw1Wb3ZeR14bWv2+yFo3/wt3ZqOXNrS+i6vj6edd/GcdwHr2cyxjoO5zftXAMpibOmWMt8NkXSG80YxO2deiqmYqRwzVfNSzNSN2eR3abR7t9Zq9n4m1tjB90qpdPwUUzGb+03RRNzDCL733nscdNBBALz44osYYygtLeVPf/oTt956a7zhJEHWmk18zrcsMysYaPWNury/nzeApWZFe6YmO7ng1pblVCQxE0klwZVuhWgk5dYwpnFwkizCK92aYwEnOA9nX8ceHO84jOHWoMB7sbZ0ExERERGR6OJu6VZWVkb37g0/kBYsWMBJJ51EVlYWxxxzDFdccUXCE5TYVO9o7QCQZUXv22ckQ+lHb3pZPdjo2wKO9sxOuiIXTmwcQFWLy+UFDZzgjqOlm3RtJTRWuvW0uiUxk86rHg9eGv73N5aRS5ua5ZwCgM/48A+OUmY0kIKIiIiISKLEXenWv39/Fi9eTPfu3VmwYAFPP/00ANu3bycjI/6bfkmMyqCKj1haPIy0h7CWjaw1Gyk26the4tfT6rHjVcuVbrlq6SYRhD5eqkq31vCPXAqRHy+NlW3ZFJDLdtxq6SYiIiIikkBxP146e/ZszjjjDPr160dxcTGTJk0CGh473X333ROdn8SoygS1dIuh0m2gVRxoGaHHS6U95Qa3dItjIAXpmipMFSfVzWCR77PAPI1e2jqVQZVusY5e2px8Kw9ALd1ERERERBIo7pZuF198MePGjWPNmjUcfvjh2HZDvd2QIUPUp1sSBbd4iOXxUtuyGWEN5kvzP5ab1dSaOtItV3umKDupXKux0q1Cj5fu9Cqp4n++5QxjALXUsYs9GJeVluy0OqXqoP9sac3jpcG6kcdPNPTpZozBsqxoq4iIiIiISBRxV7oB7LPPPuyzzz4h84455piEJCStUxXcp1uMP75GWEP40vwPHz5+NKvYzRreXunJTiwvaPRStx4v3el58FKPl152IQDj7D2SnFHnFfp4aVabYuVbuWDAi5dKqsmhbfFERERERKQVlW7Tpk1r8f158+a1OhlpvSoT9OMrxh9Lo6xhDKYfPa3urPCtYTdblW6SeN2tAva2RlFKOYt8n3FY7RQ8eNnTHsk9ab9NdnqSBOc4T+Qa54XJTqNT8xgPi31f0o/eGAzDrAFtircLgyhhG5ZlsclsJaeNlXgiIiIiItKKPt22b98e8rd582befvttXnjhBUpLS2OO8+OPP/LGG29QXd1QWWSMiTcVCRLc4iEzhsdLAUbYg1jJWj42X/MVS9srNdnJDbD68N/0Zzjd/jmFdONT8w0fmi+Z7/1nslOTJOmLBm9pqxJKmeW5lbVsJIsMLnWe06Z4mVYGS/iBb8z3/GTWJihLEREREZGdW9wt3V588cWweT6fj4suuoihQ4dGXX/r1q2ceuqpvP3221iWxQ8//MCQIUM499xz6datG3fccUfMucydO5cXXniBpUuXkpmZyQEHHMBtt93GiBEjwpY1xnD00UezYMECXnzxRU444YSYtwOQdtZIrE/d4DNgW9hFWfg2V4VMA2Hzmk7bQ/NxTurXGPegW/CueQ9T2jiYganaDD4v2A6srCJM1WasjO7YPUc3m19rHi8daQ0JvF7mizyYQsac8XgWrsXz3w1x72u8083FtHtkYO9eGHV/0g66BVNfhZWWFZjmN2XUv+TFlGW3e56pFtMemo+VfTJWt7WYmm1YWUVhx8xf1qycPjh3nxrxmDYtnwB2wRDs/hMA8HzzGKZiQ6C8Br8XLM/KIc/KwWGcQB1efC1+nv6y5/uxrMt8Jl0xpt0nG9e03cI+P8ce5+LbsiRQ9lb61rIwbwvv981gihVeFlsj7aBbwspfpOtl8LXBnrNnoFxF2s+OPJ7Rrm1Nz7/gfSszjaOMBo8QHOv6TY2wBgdeLzMrOJT9Wzz2yf5uaKqznTeK2XnyUkzFTOWYqZqXYqZ+TCDsd2nTezeg2fv6eATfjwT/znUU7xdT7LRfjcb3TQm+rTUpc/wUUzHtoizS+jvhsejngGUS1MRs2bJlTJo0iQ0bNrS43Nlnn83mzZt5+OGH2XXXXfnqq68YMmQIb7zxBpdddhnffvttzNs88sgjOe2009h3333xeDxcc801LFmyhO+++47s7OyQZe+66y7efPNNXn/99bgq3dxuN/n5+ZSVlZGXlxdzbh3tkNqz+a/5HIDy9C9Ii6Fj8npTT7faffHgYbQ1nE/TX2zvNEX4We3JfGWW4iINd8YXyU5HOsi5ddfwpO9lAL5wvcSudvT/pJHmfej7kkl1ZwIw3XEGd6Rd3aZ4i31fcHDdWQCc7ziFe9Oub3OOIiIiIiJdVax1Ra0aSCGS5cuX4/F4oi7373//mzfeeIN+/fqFzB8+fDirVq2Ka5sLFiwImX7ssccoKiris88+Y8KExlrzL7/8kjvuuINPP/2UPn36xLWNzsL/eKkTZ0wVbgBpVhrDrAEsNSv4wazCa7w4LEd7pilCOi4A6qjXKIk7kXVsCrwuTlBLt51ZmSkPvC6g7f8hFNzyeWkzLZ9FRERERCQ+cVe6XXbZZSHTxhg2bNjAv/71L6ZMmRJ1/crKSrKywh8N2bZtG+np6fGmE6KsrOFxoe7duwfmVVVV8ctf/pI///nP9O7dO2qM2tpaamtrA9Nut7uFpVOH//HSWB8t9dvb2g3LWDgtB0vM9+xp7doe6YkE+CvdAGqpI4O2nffSOYyxdsVjedlOWciIttI622n8biqw2l7p1s3KZxgDSCc9IfFERERERKQVlW5ffBH6OJht2/Ts2ZM77rgj6simAAcddBBPPPEEt9xyCwCWZeHz+bj99ts5+OCD400nwOfzMXv2bMaPH8/o0Y391Vx66aUccMABHH/88THFmTt3LjfddFPY/Po3fqJqaTV4DZbDwuqVhW9TVcg0EDav6bTdNwfHsAIcI7o1LL/te8z2Ffgq1gW2ZSo3gfFhWTZk98JUbsLKLMQuGIRj8OSIeftHL80mM7YDtsNB9j485XsFDCzwvc+edmilm3fZdnw/llL/+ea49zXe6eZi2oWZOAbnkXbkoBb3xbft+0AfAXb3XfBt+x7f927qF5diynLaPc9Ui2n3zcHK+wJyS6CqBLLDO6/3lzU7pzd2/wnY3XcJO6ZNyyeAlVOM3a3h8UDfmvfxVWwIlFf/e01j+aVbLtjxUHtLlW7+suddV9FlPpOuGNNRnI1zYr/ANS3w+a38N76ynwJl72a6YeWcit1tKFZ6Ylo3+rZ9H1b+Il0vg68NZkvPQLmKtJ8deTyjXduann/B+1bWP6ilWzOVZC2tH+m7pNDqxofmK771/UCtqWs4V5uR7O+GsH3tZOeNYnaevBRTMVM5ZqrmpZipHxMI+13a9N4NiHpfH4vg+5Hg37lWrzExxa5f8BPelWWYkpqUOX6KqZhWryzqusXWU1vclW7vvPNOvKuEuP322zn00EP59NNPqaur4ze/+Q3ffvst27Zt44MPPmh13OnTp7NkyRIWLVoUmPfyyy/z9ttvh1UUtuTqq68Oac3ndrvp378/Vb9cgNOKr0KrOVbfbPJWNlRQ1j1/LFSsj2k9r2XjmF0W8T3/46Wxjlzqd7C9X+D1Y54XyCCdWc7GFouVR76IWVcZV8x2YVvk18xocZHAscwpJuP8ZdQ9fyy1V58F7vwOSjL1uOZei2VHvxj4IHDcgrVYPnOKG/6N9H6EWH7BlWw11JJPbsTlUqbsSYvqCb2mBea/9AswEQbLaKFsxKul8hl8vQy+NtTNuTK1ylUL17bm9s9r2WyfcXtguqCZc6il9SN9lxRbvQIV4uvNZgZb/cKW8dP5KSIi0vkF38O1171btN8T0WJXnfBqQ+f1IimmekfDp2jsds4jzOjRo/n+++858MADOf7446msrOTEE0/kiy++iGn000hmzJjBq6++yjvvvBPSV9zbb7/N8uXLKSgowOl04nQ21DGedNJJTJo0KWKs9PR08vLyQv46A//jpfG2dBtk9+U653TmOefiwMG9nvlcX39Pe6QoAjR9vLQ+iZmIdF4hfbol6HHQvlZja9j1bE5ITBERERGRnVlMLd323ntv/vOf/9CtWzfGjBnTYsfnn3/+ebPv1dfXc+SRR/Lggw9y7bXXxp9tE8YYZs6cyYsvvsi7777L4MGDQ96/6qqrOO+880Lm7b777tx1110ce+yxbd5+qvAZHzU09EOXFWelG8C1zovYaEqY5mkY/e5b80NC8xMJFlLpZmpB4yiIxC24T7duCRhIAUIHuFhnNiYkpoiIiIjIziymSrfjjz8+MMjBCSec0OqNpaWl8fXXX7d6/aamT5/OU089xUsvvURubi4bNzb8SMjPzyczM5PevXtHHDxhwIABYRV0nZm/lRvE/3ipXw8aH8EsMdvbnJNIc4L7iaqlLomZiHRepaax0i3fivx4abyCW7qtM5taWFJERERERGIRU6XbDTfcEPF1a5x55pk88sgj/P73v29THIAHHngAIOxR0UcffZSpU6e2OX5n4e/PDeJ/vNQvzUqjgDxKcVOCKt2k/TTt001E4ldK4+Ol3UhMv5V9rcb/pFpv9HipiIiIiEhbxT2QwieffILP5+NnP/tZyPyPPvoIh8PBPvvs0+L6Ho+HefPm8dZbbzF27Fiys7ND3r/zzjtjzsWY+DtUbM06qewez+Ms8L4XmM6idS3doGHkulLjVks3aVfppAVeq083kdbxt3Rz4Gj1f7Y0VUzw46Vq6SYiIiIi0lZxV7pNnz6d3/zmN2GVbuvWreO2227jo48+anH9JUuWsPfeewPw/fffh7zXUl9xEmq+9yXu9zxJhakiAxd7MpLd7OFc4jy71TELKeBHVlFGOXWmHpeVFn0lkTilB7d0M2rpJtIa+eSyhzWCAvIS9t1ZTBH7WXtRQVVItwUiIiIiItI6cVe6fffdd4FKs2Bjxozhu+++i7r+O++8E+8mJYJlvhV8YRqO9zhrT3pa3djTHsle9q6tjllodYcdDQG3UkofeiYiVZEQwX261alPN5FW+db8QAnbGWz1i75wjNJtF8vNarawLaTPOBERERERaZ24K93S09PZtGkTQ4YMCZm/YcMGnM64w0kcDPCX+n+wma38YH4KzP9r2s2MtIe2OX6h1S3wusRso4+lSjdJvIyg0UtrVOkm0ipuKgDIJTvKkvHpa/Vii9nGBrbgNV4cliOh8UVEREREdiZx15JNnjyZq6++mpdeeon8/IbOm0tLS7nmmms4/PDDo65/8MEHt/gozNtvvx1vSjsNHz5meW8BYBdrUGB+cOfXbVFIY6XbFvXrJu0kHY1eKtJWdTv6Q8wlJ6Fx+1q9+NL8Dy9eNrNNLZ5FRERERNog7kq3P/7xj0yYMIGBAwcyZswYAL788kt69erF/Pnzo66/1157hUzX19fz5ZdfsmTJEqZMmRJvOh0m+z8nkbHeAz4DloXVIwOzrSZkGgib13TaLszE7tPYMiH99IWYyg2YqpLAPFOzDYwB28ZK74ap2YaVXsA01x3AeoDAYAe5ZJNrJaalQ3BLt2s9d1LsLeKI98YybcupeL/fHve+xjvdXEyrIB27d/R9TD99IRgv7GiZkX76QtImVeD9rhxTmdnueaZaTLswEzLGYWWWYWpLsdK7hR0zf1mzsgqxC0dHPKZNyyeAlVmIldMHAF/JN5iqrYHyGvxexM8pqE+3WtN8pVvOf0/Ft6ESX0l1l/lMumJMq0cmzj0Kwz4/1y/fx1RuDCl70cpGvNJPXxhW/vzXy+DtBF8bXD/PDZSrSPvZkccz2rWt6fnn37eynGzgQgDyWrj+N7d+S59BsRU8mMLGZls8+8/PZH03NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2u7S97t2C70eCf+faBcNjip39YcM9hymtTZnjp5iKafXIwJvhgYlXRi3DcVe69e3bl6+//ponn3ySr776iszMTM455xxOP/100tKid7x/1113RZx/4403UlFREW86Hca5V0/SJ+QlPK6V0xsrp3dMy/5U+wiYhkq3sh2PFvW1eiUsl2PtQ9glbRAve99mmVmB21SwqXcVzv5FOPcuih4gyZoeRyunN47h4BiepIRSQts+t1jKpyPG8uuXYQW3dGt+IAW7T3bIjYB0LnbRHsAe7boNK6d3TOUvuAxbOXSactXc+VfqW4O/kWhLLd3i+X7xC/5OWW82N7uc//zsDN8NIiIiEl173bu15n4kmHOvnrCXWt5L6nG6Y+sDuVWdsGVnZ/OrX/2qNas268wzz2TcuHH88Y9/TGjcrsQYE3jtxQuEtkpoq6H2AIYygB/MKrb4tgGQZyX20SWR0MdL65OYiUjnVE5l4HVLLd1ao5jGSrd1ZlNCY4uIiIiI7GxiqnR7+eWXYw543HHHtSqRxYsXk5GR0ap1dxbVVi0YsLEoII8sMtndGpHw7cxyTmEWUxIeVwQgI+jx0poWWrqJSGT+QRQg8QMpDLb7sQuDqKaGV7zvcJzj0IS2qBYRERER2ZnEVOl2wgknxBTMsiy8Xm+Ly5x44okh08YYNmzYwKeffsp1110X03aSofKcN+FLd8MzvLaFVZiJKakOmQbC5jWdtofkkXboAFznNfSf5fl6Hr7V72DKfgpsy1SXgPGBZWNlFmKqS7DSC7i22wbOOiyH3vTkHMdJAFyXNr1d97vu4SXUv7UG7ycb497XeKebi2kVpOPYvZCsxya3mKvn63lQXwlp2Tj3mIbn63nUP1tJ/UsWlGe1e56pFtMekofjgHlYBesa+mbIDO93y1/WrKwiHLufg3OPaWHHtGn5BLDyB2EPOBgA7zePYqo2B8qr/72msfxiHUjBX/Z8K8u6zGfSFWNaRVmknz86cE0LfH6vn4cp+Tak7EUrG/HyfD0vrPz5r5dW4W64jno4sJz/2uD7eFygXEXaz448ntGubU3PP/++9etRCIc0LJPbQmvk5tYPPjZNHWTvwyXOKczw3MQas5F/exdxjvOksOWS/d3QVGc7bxSz8+SlmIqZyjFTNS/FTP2YQNjv0va6dwu+Hwn+nWv33iem2FVT/433m5KGPt1S5PgppmJahZlU9o/twVHLBD+z2AGmTp1K8Oiltm3Ts2dPDjnkECZPbrlSJRncbjf5+fmsdt5GnhV+o98aVt9s8lY2XFxqHhoBFetjWs9rQY8LBzLMGsj5jlOAhlZp7ck9eB5mXWX0BdubbZFfM6PFRQLHMqeYjPOXUfPQCGqvPgvc+R2UZOpxzb0Wy47xFN9x3IK1WD5zihv+jfR+hFh+C70fc0R9Q/m/3HEut6ZdGnG5lCl7ElXwNc2v5u78hpuqplooG/FqsXxaNhmzy0KXyymmbs6VqVWuWri2Nbd/xrLoduEAAP7ovJIZzrPiWj/42ETylPcVptVfDcBdzmu4yPnLsGV0foqIiHR+Ib9L2+neLdrviWixyzLua6joEEkxblPNAM+VlJWVkZfXfP//rerTza+mpibuR0Ife+yxtmxSgByy2r2yTaS9pAcNpFCnPt1E4hZ829nSQAqtlUnj93oVNQmPLyIiIiKys7DjXcHr9XLLLbfQt29fcnJyWLFiBQDXXXcdjzzySNT1hwwZwtatW8Pml5aWMmTIkHjT2Sllk5XsFERaTX26iSROewx2kxl0jlar0k1EREREpNXirnT73e9+x2OPPcbtt9+Oy9XYYmX06NE8/HDkPmKC/fTTTxH7fautrWXdunXxprNTyrFU6SadV6x9uolIdDnt8J8wGUEt3WqMKsZFREQklNd4uabuDs6u+w3T627kfd+nyU5JJGXF/XjpE088wV//+lcOPfRQLrzwwsD8Pffck6VLlza7XvAIqG+88Qb5+Y39bHm9Xv7zn/8waNCgeNPZKbXHjyyRjhJc6VZjVOkm0hbt0tLNUks3ERERad4H5nPu9D0amP7Rs5o3XPOSmJFI6oq70m3dunUMGzYsbL7P56O+vvn+mfwjoFqWxZQpof2RpaWlMWjQIO64445409kpZSdoQAeRZAju022h72Pu8TyuPgpF4mCCenXLa4c+3bKCWrpV6xFwERER2eEez+O85/uEpb4VIfPXmU1Jykgk9cVd6TZq1Cjef/99Bg4cGDL/ueeeY8yYMc2u5/M1jIQyePBgPvnkEwoLC+PdtOygPt2kMyukG6+k/YU/eB7iC/M/7vXMZ09rVyY5xiU7NZFOwcJiD0Yw0h7CAKtPwuOHDKRgqhMeX0RERDqXelPPvnUnUW1qMRgG0IdcslnGSqqpYb3ZjDEGy7KSnapIyom70u36669nypQprFu3Dp/PxwsvvMCyZct44oknePXVV6Ouv3LlylYlKo2yUUs36bzSLReHO8bzV+8/KDeVlFPJJkqSnZZIp9Lf7sNYezTZ7dDHZ4alwU5ERESk0UZKWGoaWrf1ogf5di755FJhqvjRrKKKakpx0438KJFEdj5xV7odf/zxvPLKK9x8881kZ2dz/fXXs/fee/PKK69w+OGHxxSjsrKShQsXsnr1aurqQvt0uuSSS+JNaaejgRSkK5hsH8grvrcBddYuEg8bi+dd97Vb/Ew9XioiIiJBgh8fPdFxBHelXQPA+fW/5UfvqsAy3SxVuok0FXelG8BBBx3Em2++2aoNfvHFFxx99NFUVVVRWVlJ9+7dKSkpISsri6KiotStdMtyQvBTNrYFPhM6DeHzmk5nOLCHd2uc1W0YvppS8AZ1Vm18ja8tG4wPg0V5WsOsjhxIwR7eDe/2WqjyBM2McV/jnW4upgXkNfYD1myu3YZhXHlY2UWBabtPFb7yXDB2++eZajEzHODNBLsaMA1lqSl/WbNs7G7hfTVGLJ8AjozA8r7KjSFxgt9rSfCACnURRjENlL0ab9f5TLpiTNsKuaYFuHKh1k1I2YuxbMTK7jYsvPwZH2A1bD9oOf+1IaRcRdrPSPOSdG0LO/8i7FtLWrt+JtEHUkj6d0NTne28UczOk5diKmYqx0zVvBQz9WNC2O/Slu7d1pvNgcX6Wr0aX9P4er3ZzGh2oamQ+5Hg37nOrNjuC/NcUFYLppX72lk+E8XsfDHTneAmqpgr3bZv387f/vY3pkyZQl5eXsh7ZWVlPPHEExHfa+rSSy/l2GOP5cEHHyQ/P58PP/yQtLQ0zjzzTGbNmhVrOh0uf815UfetNVwn/yum5eZ5nuNiz41Ax/bplvPv/+uwbbVV02PpOvlfuE5OUjIp46I2rR1r+WyNjKABFWoiVLp1prIn4TIuXtvu24i1fAYv15muCW09/1q7fkZQpVtzrVB1foqIiHQtLd27rfPMD7wutooCr/sGvV5rNkZct633M/mbf9Wm9UXai+V2Q/6voy4XoelLZPfddx/vvfdexIqn/Px83n//fe69996ocb788kt+/etfY9s2DoeD2tpa+vfvz+23384111wTazo7nZ87DuZs+wROs4/hMMcByU5HpM2CW7qp3yiR1GFbdqDirQoNpCAiIrKzWx/0eGlw67be9GRPayS7WyOabR0vsrOLudLt+eef58ILL2z2/QsuuIDnnnsuapy0tDRsu2GzRUVFrF69GmiouFuzZk2s6ex0iqwe7GYPZ4w9iv7tMFqdSEcLbk1TG6Glm4gkj/8RU/XpJiIiImuDK92CHi/Ns3L4yizlG7OMDWZLMlITSXkxP166fPlyhg8f3uz7w4cPZ/ny5VHjjBkzhk8++YThw4czceJErr/+ekpKSpg/fz6jR4+ONZ2d0iznlGSnIJIwruCWbhpIQSSlZJLBdtw6N0VERAQXaexhjaDUuEMeL821sgOv3VQkIzWRlBdzpZvD4WD9+vUMGDAg4vvr168PtGBryZw5cygvLwfgd7/7HWeffTYXXXQRw4cPZ968ebGm0+Hco57AlEBDD44WuGyo84VOQ/i8JtNWQTrOSf3IeuKIhsVfPxff6oVQW9a4MV9Qqx/b1TBtOyG7Nxnnftv+Oxuk6uw38Ly7FrO5mnj3Ne7p5mI6Law+2eT9MLXFXOtePxeqt0JmD1xHPULd6+dSd3tvvJ8Ugcdu/zxTLKZVkE7axb/DyiwD42koS035y5rtwh5+HK6jHgk7pmHlEyAjH7v/xIYQP7wcEsf/XtNYTQX36VZHfdj7gbJXWttlPpMuGdPlIO2EoYFrml/NI7tBxcbQshdj2YhV3evnhpe/CNfL4GuD5++nNJarSPvZkcczyrUt7PyL87ugLetnWOlgmh9IIenfDWE728nOG8XsPHkppmKmcsxUzUsxUz8mhP0ubene7YND1vGTWUt38smyMvHLIyfwutxUEknI/Ujw79ysnjHdF7qHP4bZUAkekzrHTzEV02VTnudrrtiGiLnSbcyYMfzzn/9kv/32i/j+iy++yJgxY1qMYYyhqKgo0KKtqKiIBQsWxJpCUplNVRC4wJjGke8iTje/jNlYhef9dYG5vrWLoGoTzfKPOuetg/L275i8Kc/76zAbq4LmxL6vrZ9uMq/OYNZE/58T39pFULEecooD095vzoI6u2PyTLGYZmMVpJU0jrLSdATSYN6ahuPXRLPlszJo+eC43prQ91oQ0ll7hEfYwssedPbPpEvGrPGGXNMCytcSGKHKX0ZiLBux8q1dFF7+IOx6GXxt8Lw/PkK5glS8tkU8/+L4LmjL+llkAM0/XpoS3w0RdZLzRjE7YV6KqZipHDNV81LMVI7Z9HdpS/du603DQH7BrdwgtKVbOZEr3Zr/PbEppvtCs6ai8fdMCh0/xVRMUx1b38d29EUazJgxgzvuuIP77rsPr7dxg16vl3vvvZe77rqL6dOntxjDGMOwYcPUd5uIhAykoD7dRFJLZqDSrQZjTJKzERERkWTx4Qs8ldLX6h3yXnBLNz1eKhJZzJVuJ510Er/5zW+45JJL6N69O2PGjGHMmDF0796d2bNnc9lll3HyySe3vDHbZvjw4WzdurXNiYtI5xYyeqlRpZtIKonWElVERER2Dl4aH6Fr2tItg3ScOx6ea+7xUpGdXcyVbtDQB9uHH37I1KlTKS4upk+fPpxzzjksXryY3//+9zHF+P3vf88VV1zBkiVLWpWwiHQN6SF9uqnSTSSVZFoZgdcawVRERGTn5TWNT7kFj1wKYFkWuTQ8eqqWbiKRxdynm9+4ceMYN25cqzd49tlnU1VVxZ577onL5SIzMzPk/W3btrU6toh0HmpJI5K6MoPOz4bBFPKTl4yIiIgkTXBLt770Cns/lxy246ZCLd1EIoqp0m316tXNjloaybp16+jbt2/E9+6+++6Y44hI16U+3URSl79PN4AHPX/nlrTZyUtGREREksZL8y3dAPKsbDDgbmYgBZGdXUyVbvvuuy8nnHAC5513Hvvuu2/EZcrKynjmmWe45557+NWvfsUll1wScbkpU6a0PlsR6TIy1KebSMq6zHkO1Z5aPvJ9yZPel7nZOQvLspKdloiIiHQwg2E3hpFupdPb6hn2fu6OwRSqqaHe1JNmpXV0iiIpLaZKt++++47f/e53HH744WRkZDB27FiKi4vJyMhg+/btfPfdd3z77bfsvffe3H777Rx99NEtxlu+fDmPPvooy5cv55577qGoqIjXX3+dAQMGsNtuuyVkx0QktTlxYmFhMOrTTSTF7GGPZKspZSMlANTjwYVuokVERHY2Xrx8y49goMjqEfZ+npUDOwY6L6eK7uqSQiRETAMp9OjRgzvvvJMNGzZw3333MXz4cEpKSvjhhx8AOOOMM/jss89YvHhx1Aq3hQsXsvvuu/PRRx/xwgsvUFHR0OHiV199xQ033NDG3RGRzsKyrEC/burTTST1ZAUNplBFdRIzERERkWQJ7tOtR4QKNf9ACgBuo8EURJqKayCFzMxMTj75ZE4++eRWb/Cqq67i1ltv5bLLLiM3Nzcw/5BDDuG+++5rddz25tinF3xf3VCLb4GV58K460KmgbB5Taftfjk4Jw8MxHWOnop31ZuY8vWNG6tzg/GBZYMrr2HamYXdfZeO3GUAXNN2w/Pv1Xi/2xr3vsY73VxMKzsNe5duUXN1jp6KqSvDcuUHpn0n+PC87sVUZ7R7nqkW0+6Xg+XbA3I3Qn1VQ1lqyl/W0gtwjg5/9Dti+QSsnL44Bh0GgGfJY1BbFiivwe9Fk46LamqopT7sPX/Z860t7zKfSVeMaeW7cE0Lb6Fs9x2Pb/v3IWUvnrIRC+foqWHlL9L1MuTaEFSuIu1nRx7PaNe2sPMvzu+Ctq6fFdSvWyXVFNB4DUn2d0NTne28UczOk5diKmYqx0zVvBQz9WMCYb9Lm7t3e77/RgAKyIv46GiulRN4XRGhX7eQ+5Gg37lW911jui90HFiM7/vtmMr6lDl+iqmYVp4LR+9c+DBqEcYyxpjoiyVOTk4O33zzDYMHDyY3N5evvvqKIUOG8NNPPzFy5Ehqamo6Mp2o3G43+fn5lJWVkZcXodJCRFptUM0kNlJCf/rwQ8abyU5HRIJMq7uap3yvALDE9S+G2QOjrCEiIiJdTa+a/SmjnGHWQJak/yvs/Svr/8A93scBeNv1BAfYe3d0iiJJEWtdUUyPlyZSQUEBGzZsCJv/xRdfNDviqYh0Ta4dgymoTzeR1BP8eGmlHi8VERHZ6dSbespoeDqgkIKIy4yyhvEza0/605vVvvDf+SI7uw6vdDvttNO48sor2bhxI5Zl4fP5+OCDD7j88ss5++yzOzodEUmiDMvfp5sq3URSTRaZgdfq001ERGTnU0Jp4HWh1T3iMnlWDh+Zr1jDRlawpoMyE+k8OrzSbc6cOYwcOZL+/ftTUVHBqFGjmDBhAgcccAC//e1vOzodEUmi9B2jIdaq0k0k5YRUupnU6vpBRERE2t9Wsz3wutDqFnGZkdaQwOv/+Za3e04inU1cAynU19dzwQUXcN111zF48OBWbdDlcvHQQw9x3XXXsWTJEioqKhgzZgzDhw9vVbyOUtbjQYyVGX3BGFh9s8lbOQ2AmodGQMX6KGv4V7TJmF2WkBxi5R48D7MuvEPMDmdb5NfMaHGRwLHMKSbj/GXUPDSC2qvPAnd+ByWZelxzr8WyY+y2ccdxC9Zi+cwpbvg30vsRYkUSPHqpMQbLsgLvpUzZk6iCr2l+NXfnN3SU21SMZSMWLZbPoOtl8LWhbs6VqVWuWri2Nbt/MX4XtHX9lkYv1fkpIiLS+YX8Lo1w7zYM+DbbwW5n96OQyJVuQ60BOHDgxcsysyLs/Wi/J6LdF5Zl3Ae+Du2GXiQmbhPbkyBxtXRLS0vj+eefb1VCTQ0YMICjjjqKX/ziF62ucJs7dy777rsvubm5FBUVccIJJ7BsWeNJu23bNmbOnMmIESPIzMxkwIABXHLJJZSVdWzFlYhE5u/TDaAuwgimIpI8waOXVqGWbiIiIjuz5lq6uaw0hlkDAPjW/MiJtdM5qW4G93ge78j0RFJW3I+XnnDCCfzzn/9s00YfeeQRRo8eTUZGBhkZGYwePZqHH3447jgLFy5k+vTpfPjhh7z55pvU19czefJkKisb/vd9/fr1rF+/nj/+8Y8sWbKExx57jAULFnDuuee2KX8RSYwMq7HSTY+YiqSW0MdL1aebiIjIzigNJ6fYR3GsfUizy/zOeRkvpT3AhfbprDRr+cD3Gfd65vO298MOzFQkNcX1eCnA8OHDufnmm/nggw8YO3Ys2dnZIe9fcsklLa5//fXXc+eddzJz5kz2339/ABYvXsyll17K6tWrufnmm2POZcGCBSHTjz32GEVFRXz22WdMmDCB0aNHh7TMGzp0KL/73e8488wz8Xg8OJ1x776IJJD/8VJoeMQ0j5wkZiMiwbIsDaQgIiKys3PiYKw9mqH2gGaX+bnjYACWmhXYxqbUlFNKORvZ0lFpiqSsuGudHnnkEQoKCvjss8/47LPPQt6zLCtqpdsDDzzAQw89xOmnnx6Yd9xxx7HHHnswc+bMuCrdmvI/Ntq9e+SRVfzL5OXlNVvhVltbS21tbWDa7Xa3Oh8RaVk/ejOaXbCsHS1prOjriEjH0OOlIiIi0t0qYJZzSkzLznJOoYA8LvBcB2ggJhFoRaXbypUr27TB+vp69tlnn7D5Y8eOxePxtDquz+dj9uzZjB8/ntGjR0dcpqSkhFtuuYVf/epXzcaZO3cuN910U6vzEJHY1Vn1LOF7MFBGRbLTEZEgGr1URERE4tXSQEwiO6O4+3Rrq7POOosHHnggbP5f//pXzjjjjFbHnT59OkuWLOHpp5+O+L7b7eaYY45h1KhR3Hjjjc3GufrqqykrKwv8rVmzptU5iUjLgkdBKgkaklxEkk83zSIiIhKvkP+00/2DSPwt3aZNm9bi+/PmzYsa45FHHuHf//43++23HwAfffQRq1ev5uyzz+ayyy4LLHfnnXfGlNOMGTN49dVXee+99+jXr1/Y++Xl5Rx55JHk5uby4osvkpaW1mys9PR00tPTm31fRBKnp9X4KHgJqnQTSSXZZAVe66ZZREREYhFc6VapgZhE4q9027499IdxfX09S5YsobS0lEMOaX5EE78lS5aw9957A7B8+XIACgsLKSwsZMmSJYHlLCt6507GGGbOnMmLL77Iu+++y+DBg8OWcbvdHHHEEaSnp/Pyyy+TkZERIZKIJEMPqyDwusRsS14iIhImpE83PV4qIiIiMQhuKV+tPmFF4q90e/HFF8Pm+Xw+LrroIoYOHRp1/XfeeSfeTTZr+vTpPPXUU7z00kvk5uayceNGAPLz88nMzMTtdjN58mSqqqr429/+htvtDgyM0LNnTxwOR8JyEZH49SSopZspTV4iIhImU4+XioiISJw0EJNIqLgr3SKxbZvLLruMSZMm8Zvf/CYRIWPi7xtu0qRJIfMfffRRpk6dyueff85HH30EwLBhw0KWWblyJYMGDYp5W+k3/AzHp27w+sBpY/fJxre+MmQaCJvXdNoeko9z316BuGlHPoxv42eY0sYBKkzFBsALOLBy+mAqNmBl98TqMSr2g5MgWY9NxvPJJjyL1se9r/FONxfTLsrEMbpH1FzTjnwYvLXgSA9MW3nbqH+tArbltHueqRbTHpKP1f9KrIL1mMotWDl9wo6Zv6xZOf1wjDw54jFtWj4BrILB2L3HAuBd+hymYi3+8hr8XjSFVlCfboS2dPOXPd+Ksi7zmXTFmPaAXFyn7BL22ToOmoPZ+l1I2YunbMQi7ciHw8pfpOtl8LXBucvgQLmKtJ8deTyjXduann/xfhe0df3skD5ZQm+ak/3d0FRnO28Us/PkpZiKmcoxUzUvxUz9mEDY79JE3bs1fbw0+H4k+Heu3e+AmGJn3D4e75Kt+LZUp8zxU0zFtPtkk17sgOuinxOWMcbEdPZE8dprrzFlyhS2bNnS4nI1NTXce++9vPPOO2zevBmfzxfy/ueff56IdBLG7XaTn59PWVkZeXl5yU5HpEtZZdYzonYyAP9nH87fXXclOSMR8as1deTXNnQHMZh+/C9jQZIzEhERkVS3wWxhcO3BABxnH8Izrj8lOSOR9hFrXVHcLd2CBzqAhn7VNmzYwL/+9S+mTJkSdf1zzz2Xf//735x88smMGzcupr7bRKRr6qnRS0VSlos05jnncKPnXiqp5ur6PzI37fJkpyUiIiIpTI+XioSKu9Ltiy++CJm2bZuePXtyxx13RB3ZFODVV1/ltddeY/z48fFuWkS6mCwrkywyqaJao5eKpBjLsjjKMZFpnmsA+MosTXJGIiIikuqCK900eqlIKyrd2joQQt++fcnNzW1TjGSo+dMX2Ans0805sR8A3jXvx9WnW9rY6R26356Fa1OmT7f0S8a0mKt3zfv4+21y9D8I75r38fx3J+/TbcCCuPp0c/Q/KOyYtrZPt6axmrO7tQuVppqeQf27BZc99emW2jH9fbr5r2l+9Z/9udl+QWItG9F417zfYp9u/utl8LXBrEi9Pt2au7Y1Pf/i/S5o6/oABeQFKsbXmU2B+cn+bmiqs503itl58lJMxUzlmKmal2Kmfkwg7Hdpou7d0qw00nBSj4dqakLuRyL16RYtdu2fvlCfboqZkjFrimMbmDNhfbrF6vXXX+dPf/oTDz74IAMHDuzITbeK/znd1c7byLMyo68QA6tvNnkrG1oF1jw0AirWx7iiTcbssoTkECv34HmYdZUdus2IbIv8mhktLhI4ljnFZJy/jJqHRlB79Vngzu+gJFOPa+61WHaMp/iO4xasxfKZU9zwb6T3I8RqzgG1p/C5+Q4bm4r0L7EtG0ihsidRBV/T/GruzgfjC184jrIRTYvlM+h6GXxtqJtzZWqVqxaubc3uX4zfBW1d32/32p/zg/mJXLLZktEwOJHOTxERkc4v5HdpAu/detXsTxnl7GIN5uMnvm/x90S02GUZ94GvQ6ssRGLiNtUM8FyZ+D7dBg8e3GI/bCtWrGhx/X322YeamhqGDBlCVlYWaWlpIe9v27Yt3pREpBMrtLqDAR8+tuOmBwXJTklEghRbRfxgfqKcStymgjwrJ9kpiYiISArLIoMyyqk0VclORSTp4q50mz17dsh0fX09X3zxBQsWLOCKK66Iuv7pp5/OunXrmDNnDr169dJACiI7ucKQwRS20cMqSF4yIhKmL70Cr9ebTap0ExERkRZlWZlgoFoDKYjEX+k2a9asiPP//Oc/8+mnn0Zd/7///S+LFy9mzz33jHfTItIFFQb15VZCKSOSmIuIhCu2igKv15pNjGRoErMRERGRVOcfTEGjl4qAnahARx11FM8//3zU5UaOHEl1tUYxEUlF//K+y6z6Wzmy9lxOqpvBNlPa7tsMqXQzerxcJNXsYg1mD2sEI60hzPE8wEl1M6jQ4yIiIiLSjCwa+kKvoTbJmYgkX8Iq3Z577jm6d+8edbnf//73/PrXv+bdd99l69atuN3ukD8RSZ6T62fyF+/TfGq+wW0q8NH+nZaGPl5a2u7bE5H4nO08gY/Tn+ck+wgcOHCbCkwHXBtERESkc8oKGoBQ9wyys4v78dIxY8aE9MNmjGHjxo1s2bKF+++/P+r6Rx55JACHHnpoyHxjDJZl4fV6401JRBLAhy/wpZhJBnlWDjbt3+di6OOlaukmkqryrJxAf24WFugmWkRERCLwP14KUGEqyU1iLiLJFnel2/HHHx9S6WbbNj179mTSpEmMHDky6vrvvPNOvJsUkQ7go3GI8Mn2gTzimkON9SbQvo+RhT5eur1dtyUirTfLOYVZTAHAbc3DUJnkjERERCQVXeO8kEJPN97wvU8F61TpJju1uCvdbrzxxjZtcOLEiW1aX0TaR3ClW3BFWHvrSeNj6ap0ExERERHp3Mbao3HzCBsp6ZDuakRSWdx9ujkcDjZv3hw2f+vWrTgcjphivP/++5x55pkccMABrFu3DoD58+ezaNGieNMRkQTxmeRUuhXSjWEMZA9rBGnx/z+AiIiIiIikmBHWkGSnIJISLGNMXFXPtm2zceNGioqKQuavX7+eoUOHRh2Z9Pnnn+ess87ijDPOYP78+Xz33XcMGTKE++67j9dee43XXnst/r1oR263m/z8fMrKysjLy0t2OiLt5iHPM8z03AzAA86bOMd5Uods1xhDQe1YaqljN2s4n6W/2CHbFRERERGR9vEP72tMqf8NALc4Z3OF87wkZySSWLHWFcXcrORPf/oTAJZl8fDDD5OTkxN4z+v18t5778XUp9utt97Kgw8+yNlnn83TTz8dmD9+/HhuvfXWWNMRkQQrofHRzo5s6WZZFsVWESvNWtaZTR22XRERERERaR8jg1q6LfWtSGImIskVc6XbXXfdBTS0SnnwwQdDHiV1uVwMGjSIBx98MGqcZcuWMWHChLD5+fn5lJaWxpqOiCTYVpOcSjeAYnqxkrWU4qbSVJFtZXXo9kVEREREJHF2sQZxv/NGRtpD2NUamux0RJIm5kq3lStXAnDwwQfzwgsv0K1b636U9+7dmx9//JFBgwaFzF+0aBFDhui5b5Fk2RJU6RY8uEFH6Gv1wt/H6nqzmeHWoA7dvoiIiIiIJE6mlcE058nJTkMk6eLutfydd95p0wbPP/98Zs2axbx587Asi/Xr17N48WIuv/xyrrvuujbFbk8VR7yI+b66oWLAAivPhXHXhUwDYfOaTtv9cnBOHkjGdT8DwLN4Lt5Vb2LK1zdurM4NxgeWDa68hmlnFnb3XXD9omP7vKu55SM8/16N97utce9rvNPNxbSy07B36UbOWye2mKtn8VxMXRmWKx/n/lfjWTyXukd8eF7PxlRntHueqRbT7peD87g/Qf5GqK9qKEtN+ctaegEnjOrP0n1GUkEV3ckPHNOw8glYOX1xDDqsYZklj0FtWaC8+t9z7n91LEUMgL5WYx+R68xmhjMoUPZ8a8u7zGfSFWNa+S5c03YLXNMCRevZo/Ft/z6k7LWmbLTEs3huWPmLdL0MvjZ43jokUK4i7WdHHs9o17aw8y/O74K2rt+SZH83NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2u7S97t1C7keCfuda3XeNKXbFYS/g+347prI+ZY6fYiqmleeionds45LGPZACwNq1a3n55ZdZvXo1dXV1Ie/deeedLa5rjGHOnDnMnTuXqqoqANLT07n88su55ZZb4k2l3fk7x1vtvI08KzMhMa2+2eStnAZAzUMjoGJ9lDX8K9pkzC5LSA6xcg+eh1lX2aHbjMi2yK+Z0eIigWOZU0zG+cuoeWgEtVefBe78Dkoy9bjmXotlx3aKb85OZ5eze+PESXn6F1iW1XL5zClu+DfS+zs+g1jd55nP5Z7bAHgkbQ5nOI5LnbInUQVf0/xq7s5vuKlqKs6y0ZIWy2fQ9TL42lA358rUKlctXNua3b8Yvwvaun5LdH6KiIh0fiG/S9vp3i3a74loscsy7gNf3FUWIu3ObaoZ4LkycQMp+P3nP//huOOOY8iQISxdupTRo0fz008/YYxh7733jrq+ZVlce+21XHHFFfz4449UVFQwatSokIEZRNqiwlRxRt0M/mKqSEt2Mp2Ij4Yv2UIKsCyrQ7ddbPUKvL7d8zAveP/NvWYk2R2ahYiIiIiIiEjixNYeLsjVV1/N5ZdfzjfffENGRgbPP/88a9asYeLEifziF7+Iuv60adMoLy/H5XIxatQoxo0bR05ODpWVlUybNi3q+iLRGHy4TQWGCP9TI83y0fA/SB09iALAfvZePJV2J1PtE+lG3o7PT/+jJSIiIiIiIp1X3JVu//vf/zj77LMBcDqdVFdXk5OTw80338xtt90Wdf3HH3+c6urqsPnV1dU88cQT8aYjEsbCJs/KwYq/eO/U/JVcPZJQ6VZsFXGiYzK72kPpYRXs+Pw6trWdiIiIiIiISCLF/XhpdnZ2oB+3Pn36sHz5cnbbbTcASkpKml3P7XZjjMEYQ3l5ORkZGYH3vF4vr732GkVFRc2uLxKrHCuL5133UWO9SW2yk+mEetLxlW5+s5xTmMUUANzWPAzqM0pEREREREQ6p7gr3fbbbz8WLVrErrvuytFHH82vf/1rvvnmG1544QX222+/ZtcrKGjoJ8qyLHbZZZew9y3L4qabboo3HRFJsEKre7JTEBEREREREen04q50u/POO6moqADgpptuoqKign/84x8MHz68xZFL33nnHYwxHHLIITz//PN07974w97lcjFw4ECKi4tbsQsikkg9KEh2CiIiIiIiIiKdXlyVbl6vl7Vr17LHHnsADY+aPvjggzGtO3HiRABWrlzJgAEDOnx0RBGJTU+1dBMRERERERFps7h6mnc4HEyePJnt27e3eoMDBw4MVLjtvvvurFmzptWxRCTxkjF6qYiIiIiIiEhXE/fjpaNHj2bFihUMHjy4zRv/6aefqK+vb3OcjmD1yoISAANY4LKhzhc6DeHzmkxbBek4D+obiGv3OxDf6oVQW9a4MV9d42vb1TBtOyG7d/vuZATOg/rieXctZnM18e5r3NPNxXRaWH2yo+Zq9zsQqrdCZo/AtGP3aryf5ILHbv88UyymVZAO9YWQWQbG01CWmtpR1jy2g2+KCyimiL5Wr5BjGlY+ATLyG4434Pvh5cYya7tC3muLQNkrre0yn0mXjOlyhFzTAnL7QcXG0LKXoLLhZ/c7MLz8RbheBl8bQspVpP2MZ9/b+doWdv7F+V3Q1vVbkvTvhqY623mjmJ0nL8VUzFSOmap5KWbqx4Sw36Xtde8Wcj8S/Ds3q2dMsa3+OZgNleAxqXP8FFMxXTZWXhasa67kNrKMMSb6Yo0WLFjA1VdfzS233MLYsWPJzg79wZCXlxdzrNzcXL766iuGDBkSTwodyu12k5+fT1lZWVz7JtLZ3FL/ZwCuS5ue5ExEREREREREUlesdUVxt3Q7+uijATjuuONC+mUzxmBZFl6vN+ZYBx10EJmZmfGmICLtIM/KSXYKIiIiIiIiIl1G3JVu77zzTsI2/tprryUsloi0zSznlGSnICIiIiIiItJlxF3p5h+FtC3Wr1/PokWL2Lx5Mz6fL+S9Sy65pM3xRUREREREREREkinuSjeA999/n7/85S+sWLGCZ599lr59+zJ//nwGDx7MgQe23BniY489xgUXXIDL5aJHjx4hj6halpWylW5l/R/GVKc1zrAt8JnQaQif13Q6w4FjXG9y/v1/ANQ9dwy+DZ+Ct6ZxORNUEWnZO6YtSM8j4+K1idupGFRMfhHvxxuhytM4M9Z9jXe6uZgWkJ9O/uZftZhr3XPHYCo3Y2UX4Tr5X9Q9dwy1N+2J7/teYOz2zzPVYmY4cF1zI1bajo7OLZsw/rJm2dj9DsR18r9C3o5YPgEcGdh99mlIe+2ikDj+95rGileg7NV4u85n0hVj2haOCX0D1zS/mvv7Qa2bkLKXoLLhV/fcMeHlL8L1MvjaUPfX8xrLVaT9jGffY51uLmaUa1vY+Rfnd0Fb129J0r8bmups541idp68FFMxUzlmqualmKkfE8J+l7bXvVvI/Ujw71xnVkyxy4r+CmW1Df3Xp8rxU0zFtC3c6UEDg7Qgwq/wlj3//PMcccQRZGZm8vnnn1Nb2zACXFlZGXPmzIm6/nXXXcf1119PWVkZP/30EytXrgz8rVixIt50Ok7wDwsIPeD+6Ujzmk5XefD9sL1x1vYfwVPVcAHy/wULTBuoK299/q3k+2F75H2PZV/jnW5uGQO4oxdo3/YfMduWNhzTHdO+DVmNFW7tnWeqxazygMM/siChZaxpWTO+wHELCROpfBofeKoaju/2H8Pi+N9rq0DZ60qfSVeM6TMh17SAunLCyl6CykZg05HKX8OLkOtl8LUhpFwl+3hGubaFnX8R9q0lbV2/xdjJ/m5o+peImO2Rp2J2/rwUUzFTOWaq5qWYqR/TZ8J+l7bXvVvI/UiwWGO76wJppczxU0zF3HEOxSLuSrdbb72VBx98kIceeoi0tMaWX+PHj+fzzz+Pun5VVRWnnXYath33pkVERERERERERDqFuGu+li1bxoQJE8Lm5+fnU1paGnX9c889l2effTbezYqIiIiIiIiIiHQacffp1rt3b3788UcGDRoUMn/RokUMGTIk6vpz587l5z//OQsWLGD33XcPaS0HcOedd8abkoiIiIiIiIiISEqJu9Lt/PPPZ9asWcybNw/Lsli/fj2LFy/m8ssv57rrrou6/ty5c3njjTcYMWIEQNhACiIiIiIiIiIiIp1d3JVuV111FT6fj0MPPZSqqiomTJhAeno6l19+OTNnzoy6/h133MG8efOYOnVqa/IVERERERERERFJeXH36WZZFtdeey3btm1jyZIlfPjhh2zZsoVbbrklpvXT09MZP3583IlGMnfuXPbdd19yc3MpKirihBNOYNmyZSHL1NTUMH36dHr06EFOTg4nnXQSmzZtSsj2RURERERERCR+FaaKezyPJzsNkXbV6iFEXS4Xubm59OnTh5ycnJjXmzVrFvfee29rNxti4cKFTJ8+nQ8//JA333yT+vp6Jk+eTGVlZWCZSy+9lFdeeYVnn32WhQsXsn79ek488cSEbF9ERERERERE4ldJFXd7Hqfe1Cc7FZF2E/fjpR6Ph5tuuok//elPVFRUAJCTk8PMmTO54YYbwgZGaOrjjz/m7bff5tVXX2W33XYLW/6FF16IOZcFCxaETD/22GMUFRXx2WefMWHCBMrKynjkkUd46qmnOOSQQwB49NFH2XXXXfnwww/Zb7/9Yt6WiIiIiIiIiCSGBy8b2Ewl1RTQcj2CSGcVd6XbzJkzeeGFF7j99tvZf//9AVi8eDE33ngjW7du5YEHHmhx/YKCgnZraVZWVgZA9+7dAfjss8+or6/nsMMOCywzcuRIBgwYwOLFiyNWutXW1lJbWxuYdrvdADiPG4r1pRt8BmwLqzATU1IdMg2EzWs6bQ/JI+3QAYH4zp9diW/1O5iynwLzTHUJGB9YNlZmIaa6BCu9AKtwt8QdrBhlXDuO+rfW4P1kY9z7Gu90czGtgnQcuxdGzdX5syuhvhLSsgPT5qJK6l+yoDyr3fNMtZj2kDws12SsgnWY2lKszPBj6C9rVlYRjt3PiXhMm5ZPACt/EPaAgwHwfvMopmpzoLwGv9cW/rLnW1nWZT6TrhjTKsrif+c6cHv/ywe+z/natxQsuGGXvRmxtSak7CWqbPg5f3ZlWPmLdL0MvjbYQeUq0n525PGMdm1rev7F+13Q1vVbkuzvhqY623mjmJ0nL8VUzFSOmap5KWbqxwTCfpfaI36BKfk24fduwfcjwb9zPy5y8mS/ht/aFVRRQF7E9dNO2wXvNyWY0tqUOX6KqZhWYSbO/k54Pvo5YBljTDwnTX5+Pk8//TRHHXVUyPzXXnuN008/PVDx1dF8Ph/HHXccpaWlLFq0CICnnnqKc845J6QSDWDcuHEcfPDB3HbbbWFxbrzxRm666aaw+WVlZeTlRb4QiIjszIbWHMo6NpFBOvtauwMwwd6X69KmJzkzEREREUlF59Zdw5O+lwH4yvUyI+whSc5IJD5ut5v8/PyodUVx9+mWnp7OoEGDwuYPHjwYl8sVb7iEmT59OkuWLOHpp59uU5yrr76asrKywN+aNWsSlKGISNfjNhWso2Fwml4UkmflBP5ERERERCLJsbICryuoSmImIu0r7kq3GTNmcMstt4S0HqutreV3v/sdM2bMaHHd1157jfPOO4/f/OY3/O9//wt5b/v27YF+11qT06uvvso777xDv379AvN79+5NXV0dpaWlIctv2rSJ3r17R4yVnp5OXl5eyJ+IiES21KwIvD7UsT/Pu+7jedd9zHJOSWJWIiIiIpLKcmisdKukOomZiLSvuPt0++KLL/jPf/5Dv3792HPPPQH46quvqKur49BDDw3pry14UISnnnqKs88+myOPPJJly5Zx77338vDDD3PGGWcAUFdXx8KFC+PKxRjDzJkzefHFF3n33XcZPHhwyPtjx44lLS2N//znP5x00kkALFu2jNWrVwf6o4uV58st1K7f0PAMr2Vh9cjAbKsJmQbC5jWdtgszsftkY/dp6HfMVGzEVG7AVJU07lfNNjAGbBsrvRumZltDPzw5fbCL9ogr77bybajEt6ES7/fb497XeKebi2kVpGP3zsa5V88WczUVG8F4wXJg5fTGVGzEt6EC73flmMrMds8z1WLahZmQsRIrs6yhb4b0buHHbEdZs7IKsQtHY+X0DjumTcsn0NB3W06fhjJS8g2mamugvPrfaxorXv6y5yup7jKfSVeMubXbtxTtmsXm3lWMtBofC/Bt/hpTuTGk7CWqbPiZio1h5S/S9TL42mDKcwPlKtJ+duTxjHZta3r+xftd0Nb1W5Ls74awfe1k541idp68FFMxUzlmqualmKkfEwj7Xdpe927B9yPBv3MH522jV7qHTdlOKk3zLd08X27Bt6GyoU+3FDl+iqmYVo8MPBmemM6BuCvdCgoKAhVYfv3794+63h/+8AfuvPNOLrnkEgCeeeYZpk2bRk1NDeeee268aQANj5Q+9dRTvPTSS+Tm5rJx40agod+5zMxM8vPzOffcc7nsssvo3r07eXl5zJw5k/333z/ukUsrD30ehxXeeXNrWH2zyVs5DYDav0+EivUxrmiTMbtj+8yrOOAfmHWVHbrNiGyL/JqWW1IGjmVOMRnnL6P27xOpvfoscOd3UJKpxzX3WizbxLbwjuMWrMXymVPc8G+k9yPEilfKlD1p0QHAf4p/wcSl/2RXa2hgft1TBzV0lNtUAsqGX4vlM+h6GXxtqJtzZWqVqxaubc3uX4zfBW1dvyU6P0VERDq/4N+l7XXv1tz9yJnAwdkOdju7X4uPl1bu94+Gig6RFFNpYmuhGXel26OPPhp3MgA//PADxx57bGD6lFNOoWfPnhx33HHU19fzf//3f3HH9I+UOmnSpLAcp06dCsBdd92FbducdNJJ1NbWcsQRR3D//fe3ah9ERCRcFhlc5PglhzvGJzsVEREREelkKlpo6SbS2cVd6dZaeXl5bNq0KeQR0IMPPphXX32Vn//856xduzbumLEMvJqRkcGf//xn/vznP8cdX0REorOwNHCCiIiIiLRKpQZSkC4s7oEUtm7dyvTp0xk1ahSFhYV079495K8548aN4/XXXw+bP3HiRF555RXuvvvueFMREZEUkGNlaeAEERERkU7o8vrfc0jt2fhI3iOcGr1UurK4W7qdddZZ/Pjjj5x77rn06tULy7JiWu/SSy/lv//9b8T3Jk2axCuvvMITTzwRbzoiIiIiIiIi0gpf+ZbyX/M5JomVbrH2jSXSGcVd6fb++++zaNGiwMilsZo4cSITJ05s9v2DDz6Ygw8+ON50RERERERERKQVyihPdgp6vFS6tLgfLx05ciTV1aqJFhEREREREenMtht3slPQ46XSpcVd6Xb//fdz7bXXsnDhQrZu3Yrb7Q75ExEREREREZHUV0ryf8Pr8VLpyuJ+vLSgoAC3280hhxwSMt8Yg2VZeL3ehCUnIiLSVh48OIHNZitOU0V2shMSERERSRHlVCY7BbV0ky4t7kq3M844g7S0NJ566qm4BlIQERFJpno8GDyAI9mpiIiIiCRdMkcsDaaWbtKVWcaYuM60rKwsvvjiC0aMGNFeOaUUt9tNfn4+Jc98RebSavAaLIeF1SsL36aqkGkgbF7TabtvDo5hBThGdGtYftv3mO0r8FWsC2zTVG4C48OybMjuhanchJVZiF0wCMfgyR26/95l2/H9WEr955vj3td4p5uLaRdm4hicR9qRg1rM1bfte/B5wXZgd98F37bv8X3vpn5xKaYsp93zTLWYdt8crLwvILcEqkogu1fYMfOXNTunN3b/Cdjddwk7pk3LJ4CVU4zdbWjDMmvex1exIVBe/e81jRUvf9nzrqvoMp9JV4zpKM7GObFf4JoW+PxW/htf2U8hZS9RZcPPt+37sPIX6XpZs/VbDqg9iTrLsGvJfjy1+ka86yoi7mdHHs9o17am51+83wVtXb8lyf5uCNvXTnbeKGbnyUsxFTOVY6ZqXoqZ+jEB7L45rB9axchBpwJw05rduKzy0ITfuwXfjwT/zrV6jeGMrPv4pFs13cjnEdcc9rJ3DVu/fsFPeFeWYUpqUub4KaZiWr2yqOhm6HnKnpSVlZGXl9fsORB3pduECRO4/vrrOeyww+JZrdPyV7pFO5AiIpK6dqs9muVmNVlkUpL+EbYVd5emIiIiIl3KZ74ljK87DYBfOU7lT2nXdej2V5n1jKidDMDJ9hH8zXVHh25fpC1irSuK+/HSmTNnMmvWLK644gp233130tLSQt7fY4894s9WRESkHe1qDWW5WU0V1dzkuY+b0i5JdkoiIiIiSVVqygOvC+j4Bia5QT3tulOgbzmR9hB3pduppzY0P502bVpgnmVZGkhBRERS1kzHWUxx/B9vexfjiH/gbhEREZEuJ3jk0gIrt8O3n0tjlxHlRpVu0jXFXem2cuXK9sgj5VXNfhc+dYPPgG1hF2Xh21wVMg2EzWs6bQ/NxzmpH67TG/rE8y59Bu+a9zClKwLbMlWbA32TWVlFmKrNWBndsXuOJu2QOzt0v+v+vgzPwrV4/rsh7n2Nd7q5mHaPDOzdC8n606QWc/UufQZTX4WVloVj5Cl4lz5D/ctl1L/kxZRlt3ueqRbTHpqPPeZJrG5rMTXbsLKKwo6Zv6xZOX1w7j4Vx8hTwo5p0/IJYBcMwe4/AQDPN49hKjYEyqv/vaax4uUve74fy7rMZ9IVY9p9snFN2y1wTfOrf/syfFuWhJS9RJUNP+/SZ8LKX6TrpXfpM4zfcW0wn/Wi90IPFSteiLifHXk8o13bmp5/8X4XtHX9liT7u6GpznbeKGbnyUsxFTOVY6ZqXoqZ+jEB7KH55E7YDCc1fJce+u5L1G59OuH3bsH3I8G/cx3F+2H3n0DmoAyqqaGciojrV13yLr5vSvBtrUmZ46eYimkXZVHVP7bqtLj7dNvZ+J/TXe28jTwrMyExrb7Z5K1saClY89AIqFgf44o2GbPLEpJDrNyD52HWpcD/OtgW+TUzWlwkcCxzisk4fxk1D42g9uqzwJ3fQUmmHtfca7HsGE/xHcctWIvlM6e44d9I70eIFa+UKXsSVfA1za/m7nwwvvCFE1A2AttoqXwGXS+Drw11c65MrXLVwrWt2f2L8bugreu3ROeniIhI51dZbHH8srfx4WPRA+9gtcO9W7TfEyPO6s0mtjKAYr7P+HfYImUZ9zVUdIikGLepZoDnyqh9urXqGZv58+czfvx4iouLWbVqFQB33303L730UuuyFREREREREZEOU4+Hb8z3fGt+TFoOuVYOQLMt3UQ6u7gr3R544AEuu+wyjj76aEpLSwN9uBUUFHD33XcnOj8RERERERERSTAPnmSnEBhMwU0leghPuqK4K93uvfdeHnroIa699locDkdg/j777MM333yT0OREREREREREJPE8NDSg6U8frCTlkGs1VLp58VJDbZKyEGk/cVe6rVy5kjFjxoTNT09Pp7JS/buIiIiIiIiIpDofDX24jbSHJC2HPHICr916xFS6oLgr3QYPHsyXX34ZNn/BggXsuuuuichJRERERERERNpROi6GWP0Zag1IWg7+x0sByo0a8UjXE9sYp8DNN9/M5ZdfzmWXXcb06dOpqanBGMPHH3/M3//+d+bOncvDDz/cnrmKiIiIiIiISALUUscKs4ZiqyhpOeRZaukmXVvMlW433XQTF154Ieeddx6ZmZn89re/paqqil/+8pcUFxdzzz33cNppp7VnriIiIiIiIiKSQFlkJG3bwS3d3GrpJl1QzJVuwSOJnHHGGZxxxhlUVVVRUVFBUVHyasZFREREREREpHUyklnpZjVWulWgSjfpeuLq082yQsc0ycrK2nkq3NKaHKqmw7tYzcxrOp1mY/dqvLBYWb3ATgsK0EIQR3p8OSeA3Ss78r7Hsq/xTre0TIaDaKysXpBT3PDvjmmroBYIGnq6vfNMpZhpNvjSImwoclnzH7eweWHl0wI7reH4ZvVqEqfxvbYKlL2u9Jl0xZgWIde0gJDrVWi5SZSI5S/C9oOvDSHlKhWOZwvXtvDzb4cYvwvaun5Lkv7d0PylrHOcN4rZefJSTMVM5Zipmpdipn5MC7xpsLlXNQCZVnq73buF3o8E2RE76kAKwfdKqXL8FFMxLcLvhZthmeAmbC2wbZv8/Pywiremtm3bFtOGOwu3201+fj5lZWXk5eUlOx0RERERERGRNrnL8yhXe+4A4Km0OznRMTkpebzifZvf1T9AtVXDL+yj+G3axUnJQyResdYVxfx4KTT065afn9/m5EREREREREQkOaqpDbzOpOOfqPIbZQ3ja5bhMz4Wmc+SlodIe4mr0u20007beR4nFRER6WD3eB7nPd8nAEyw92WWc0qSMxIREZGuqNrUBF4ns0+3IVZ/Bll9WWHWsMj3KcfXXoTTcug+SLqMmCvdoj1WKiIiIq2z1LecqfVXUWbKceCgj9UTt4nQr4mIiIhIAlTTWOmWaSWvpZtlWVzrvAiD4X++5fzH+19+Muv52reUAvKY4vy/pOUmkgitGr10Z+Qe8xRmoxeMActq6NCxpsk0hM9rMm0VZpJ2aH8y7z8EgPq3LsG76h2oLmncmLemoe9/C3BkNEzbLqy8fqRP6dgmt9UXv039W2sw6yri3te4p5uLmWZjD8gl9+szW8y1/q1LMDXbsTK6kXbYn6h/6xJq78rHu6gH1DvbP88Ui2kVZpJ2zu+xsreBr66hLDXlL2vODBwjf0HaYX8KO6Zh5RMgsxDHwIMbQix9Fjw1jeV1x3tNY8UrUPa2VneZz6RLxsx04jp1l8A1za/28bEY99rQspegsuFX/9Yl4eUvwvUy+NrgeeGExnIVaT878ngGXdvWmc18af4HwFAGkGflcMw7r1Cz5sHG8y/O74Kw8zeB3yVJ/25oqrOdN4rZefJSTMVM5Zipmpdipn5MYHqPDAYefBBX3PM+WWS0271byP1I8O/cnH6B2Gc4jgPgHvM4LstFqXFTipufzDrK9/gbvtXlUO9LneOnmIqZ4aC8W2znQMyVbj6fL9ZFuySz2g1Wpn+q4aRvfLfJdPPLmPJ66l//CX8k78o3oGJ9MxsFfDtaOvg8mO0/tnU34lb/+k+YdcFDN8e+r62fbjKv3ofv+9KouQaOZU4xaTumvR+dBdWOhnjtnWeKxTTl9ZC2DjymYbavhVYz9RV4V75BWpPZzZbPHcv7X/s3i6+i2VjxCi97OzbSiT+TLhmzyTUtsNT2H8HsWM5f9hJUNvy8K98IL38Qdr0MvjbUv75XhHK1I0ASr20lbA8s8SvnqcxyTqFm1Yjw8y+O74KI52+CvktS4rshok5y3ihmJ8xLMRUzlWOmal6Kmcoxu5c7OOyNAQBkktFu924R70cM4P4pLPYs5xTG2qM5rG4KALXUNtwr+cyOfFLn+CmmYhp3NbGIbYxTERERaTdbzfbA60Irxv82ExEREUmAjCQ+XtpUBq7A6+DBHkQ6K1W6iYiIJNmWoEq3nnRPYiYiIiKys8lM4kAKTWUEjaRao0o36QJU6SYiIpJkJWwLvO5hFSQvEREREdnpZJJKLd2CKt2MKt2k81Olm4iISJJtNaWB14WWWrqJiIhIx0mplm5Bj7rWUpfETEQSQ5VuIiIiSbbFNLZ064n6dBMREZGOkY4L20qdaoHglm7V1CQxE5HESJ2zS0REZCflH700kwyyrKZjwYqIiIi0j1Rq5QZN+3RTSzfp/FTpJiIikmQlOwZSKFQrNxEREelAqdSfG4SOXqo+3aQrcCY7ARERkZ3ZeXXX8v/t3Xl8U3W+//H3Sdu0pWlLW2jL0hZEZFMExQWQTUHADZG54qgso46iIKI/UdGrjiuMgsBFvXgdBWVAHAdURp0RFYuCK/uwCFJBRgQRLN33fH9/lIamTdoU0iYtr+fj0ceDs33O55x8cpJ8OEuKktXeaqv/Dr0j0OkAAIBTSOV7qAWDUCtUoQpVqUpVxNNL0QTQdPORrWu8tLdYckqyJDnCpLwS92Gp+rgqw7bkKIVemuqKG9Lpd3L++LFM7i/HV1aSJ8mULxQWVT4cGiGr+WkNsq2VhY0+Q6Ur98mZcbTO21rnYW8xI0JlOy221lxDOv1OKjoqhTd3DYcOLlXpJ2VSob3+8wyymLbkKKn0dCn6V6m0sLyWqqqotTBH+f7zsE+r1ackKypJtnaDJUll2xdLxbmqqNfK006Gq/YO5jWZ16RJxnSEKWz0GdVePyuxh8zRH9xqz1+1USGk0++q1Z+n42XlY4NbXXnazobcn8eObevNR9qhDDlMM10acpFb3m7vvzp+Fpzs8jUJ+GdDVY3tfUPMxpMXMYkZzDGDNS9iBn9MSd8lHtAng/e5Li+tr+9ubt9HKv3OtZqf5jV2hOzKVakKVCRbz5ZyZmRJhaXBs/+ISUxHmGwtI6UtHkvYjWWMMbXPdurKzs5WbGyssrKyFBMTE+h0cMx2524dNIf1nvNT/eDcpxArRP1t5+mu0HGBTg0A6qRj4RD9RweUrBbaG5Ee6HQAAEATZ4xRs6LuMjI61+qmteFvBjolN20L++mwMtXeaqsd4f8KdDqAR772ijjTDY3SC2WL9UrZW5Kknuoqh5op2+QGOCsAqLs85UuSoqxmAc4EAACcCopVIqPyc28iFXwPcKp4mEKR4UEKaPwa9YMUPvvsM1155ZVq3bq1LMvSO++84zY9NzdXkyZNUtu2bRUZGamuXbtq/vz5gUkWfpVvClz/jrWiFWM5FGM5ApgRAJyY3GNNN4dougEAgPpXoELXvyOD7J5u0vH7zBVyTzc0AY36TLe8vDydffbZuummm3TNNddUm37PPfdo1apV+utf/6p27dpp5cqVuuOOO9S6dWtdddVVAcgY/pKv4023V+3T1dpKDGA2AHBiSkyJilUiSYqi6QYAABpAlCI1zjZSJSrVHaHXBzqdaiqeYFpA0w1NQKNuug0fPlzDhw/3Ov2LL77QuHHjNHDgQEnSrbfeqpdeeknffPNNnZtuWS3nyxg/nHprk2ynN1f01jGSpKKF58hkZqj8jny1LRumiLt+O/kc6iDnzEVy7j7qU3r1Ksym2LyJrsH8Sv870+zYzT+LFp4jk3dQVlSywsdvUNHCc1T031fJHIpX+d0OTzE2yf7kw7JCynya3YrrqPDxG9zGea9Pm6y4DpIkk/m9x2lVY9VV0NQeamU74/gxrULh3HjJWVJ1Tr/URoXy+qxafxWrOn68rHxsKJ55d1DVlQmzSUfK/+2ocnmp1/efj58FJ7t8TXh/AgDQuP3Zlqjs021K3XqWpPr77lbb7wlPsSsuLy1UkbKiXpBK+MKB4JNtFdQ+kxr55aW16dOnj1asWKH9+/fLGKNPP/1Uu3bt0qWXXup1maKiImVnZ7v9SfLfDwunZPKOH8xMSZ7vwY1vzRN/MhVP6Ai0MvfnfeSb4023qGP3ITAleVJxzrF9Wj5sCkN1SjbcpGNPVvH9xavYb9XHeYrhLN+/HpapmHaygqb2UKvKx7TjIz0dr/xTG65V1BSr0vorHxuCrq7KjicTVeWeKl7ffz5+Fpzs8jXGDrb9CAAA6sRySs3zKn33qKfvbrX9nvAk4thJFUam2u9AIGj4+F24STfd5s2bp65du6pt27ay2+0aNmyYXnjhBfXv39/rMtOnT1dsbKzrLyUlpQEzhq8qLi8NVajCrLAAZwMAJ4/LSwEAAKQIyx7oFAC/afJNt6+++korVqzQ+vXrNWvWLE2cOFEff/yx12WmTZumrKws199//vOfBswYvqpoulVcWgoAjV3Vy0sBAABORRWXl0pyPWUVaKwa9T3dalJQUKAHH3xQb7/9ti6//HJJUvfu3bVp0ybNnDlTgwcP9rhceHi4wsOD7wkucFdxeWnVy7EAoLHi6aUAAABSpPg9jqajyZ7pVlJSopKSEtls7psYEhIip5Mb0TR2FWe6RVqc6QagaYjiTDcAAACF03RDE9Koz3TLzc3V7t27XcN79uzRpk2bFB8fr9TUVA0YMEBTp05VZGSk0tLStHr1ar3++ut67rnnApg1/KHi6aVcXgqgqeDMXQAAAO7phqalUTfd1q1bp0GDBrmG77nnHknSuHHjtHDhQi1dulTTpk3TDTfcoN9++01paWl66qmnNGHChEClDD9wGqcKXE03fqQCaBp4kAIAAID7Pd2Axq5RN90GDhwoY7zfWDE5OVkLFixowIzQECoabpLUzKLpBqDxqvwJxoMUAAAAqj9IwZIVwGyAk9Oom244NeVXbrpxeSmAJoIHKQAAAEjjQkZqkO1CvVn2fqBTAU4aTTcfhU/uIdu3WZLTSDZLtlZRch7IcxuWVG1c1WFbh1iF9m3tiht2yRw5938pc/QH1ziTd1Bylkm2EFlRyTJ5B2VFtpDV8swG3+7I5wepbO3PKlnzc523ta7D3mLaWkYq5KwWrpzyTIHr35WbbmGXzJFKC6XQCNew9XSmSlYUyhx11HuewRbT1iFWtha3yor7SSb/sKyo5Gqvb0WtWdFtFNLthmrTPdWnJFnNT5OtTW9JUtm2xTI5+131WnnayaiovbKMrCbzmjTFmLY2DtnHdqn2+oWcP1Xm8Fa32vNXbVQIu2ROtfrzdLysfGwIad3ZVVeetrMh96etZaQ+63b8vqRVLy+t+v6r62fByS5fk0B/NlTV2N43xGw8eRGTmMEcM1jzImbwx5RU7XdpfX13q/x9pPLvXFubPl5jd7S1U0e101azS1vuK1SvbW3k/LUgaPYfMYlpaxUle9tQyYfHBVimpuszoezsbMXGxiorK0sxMTGBTgeSdjgz1LN4hCRpbMjV+r+wJwOcEQDUXYZzn54v+6v+UbZKRkbv2v9XZ9rOCHRaAAAAAGrha6+IM93Q6OSr8plu3NMNQOP0rvNj/W/ZEknSSNsQGm4AAABAE2MLdAJAXeXJ8+WlANCYHDFHXf9uofjAJQIAAACgXnCmm4+Klnyn/M05MmVGCrEUcuya3srDkqqNqzpsS4tRyFktFHJOYvn8v2yU89etMtn7XOsqv9a9VLKFut+jKKGTQrtc16DbXbbhkEr/fVhlXx2o87bWddhbTKtlM4V0jpP9+s6SpALj+emlzl82SmXFUohdtqSecv6yUWWbMlX6SZacR6PrPc9gi2lLi5GV+LkUfVCmoKZ7upXKim6rkA6XyZbU0226p/qUJCsmVbZj94Uqy/hAJucnV71WTKsa60Rrz/yY3WRek6YY09bWIfsVp7mOaRVKdyyVObLTrfb8VRsVnL9srFZ/no6XlY8NZn8bV1152s6G3J/nJBRp1Omna9l1uzUhtPqxver7r66fBSe7fE0C/dlQbVsb2fuGmI0nL2ISM5hjBmtexAz+mJKq/S6tr+9ulb+PVP6da2t1vk+xi5d8p7LvMuX8NT9o9h8xiRnSKkrFib6dw8Y93WpRcZ3uvtA/K8byz6WMVpsoxey5SZJU+HInKfdnHxe0KWJKll9y8FV2+1dl9uc16Do9slmKLZwkSXq77CP9vuRuSdLToffontAq+9LRWhF/3KnClzupaNoYKTs2YGkHmn36Q7JsPr7Fj+23ymqsT8exG696mu4hVl0FTe2hVpWPaRUK58RKxll9Zj/UhmsdNdVnpeNl5WND8dP3B1Vdldmcan30Ze0NT1ey1cJtmtft8/Gz4GSXrwnvTwAAGj+336X19N2ttt8TtcXOini+/Ob1QJDJNgVKLb2fe7qhack2udrj/I/aKEmSlGK1CnBGAHDyEnTq/ucAAAAA0FRxTzc0KjvNHj1Y9pz26xe1slrqv0KGBzolADgpcYpRmBUW6DQAAAAA+BlNNzQqBTp+P7coNQtgJgDgHwlWXKBTAAAAAFAPaLqhUan8EIWLbOcGMBMA8I8WoukGAAAANEU03dCoVD7TLdKKCGAmAOAfLa34QKcAAAAAoB7QdEOjUqAi178jFR7ATADAHyx1sToEOgkAAAAA9YCnl6JRqXx5aYQ40w1A4xYimx4PmxToNAAAAADUA850Q6NSWOlMt2ZcXgoAAAAAAIIUTbcAurPkcR02mYFOo1HJr3xPNy4vBQAAAAAAQcoyxphAJxHMsrOzFRsbq8wd++XID5WMkSzJirLL5JW4DUuqNq7qsOUIkxVjlxVtV7+i32tH0WY5ip3abb0ry7LKY5TkHVu7JSusmUxJnqywKFn2aNkcrRp0+01OsUx2sZy/5Nd5W+s67C2m1SxUVoxdttYOPVHygp4q+19J0rth/6uhIf2O51qcc2xZS5Y9WqY4pzz3g/lSkb3e8wy2mJYjTCbkiBRWKFNaICusWfXX91itWWEO2RzJsuzR7tOLc2SKcmRKct3GW3aHa15nzgGZ0jxV1GvFtKqxTrT2TG5Jk3lNmmJMyxEmW2uHrGi72+vnzD0gU5TtVnv+qg1XjRTnVKs/T8fLyscGFYW76srTdjbk/qx8bPO2fZXff3X9LDjZ5WuMHeDPhmr5NLL3DTEbT17EJGYwxwzWvIgZ/DEluf0ulervu1vl7yOVf+faohJ9iu38OVcmp0Qmrzho9h8xiWlF2ZVjChTXpY2ysrIUExPjtYa5p5uPbK0dCq1hR56IAhUq125TqT1SoRGd/BrbX6zo8gOxrY3nH4UNrfLlpRFVznSresC27NGyWki2FgkNkltwOrnXzZcPwpAE/zRQqq072l6tkYPGw+ZoJdXzfxJY9mif6s+thu1qNHV1sl9y/dngrBY7yD4bAADAyamv724n+33E239OAoFmyw7xbb56zgM1qHgSJ5dJ+q6g8uWl3NMNAAAAAAAEKZpuAVRoyptuzRQZ4Ewaj4LKD1Lg6aUAAAAAACBIcXmpj3JHvSezLU9yGslmyYqLkMksdBuWVG1c1WFbWrTCLk1T+JSeKlChJm7O1uX7slSY2/P4ygozJeOULJsUEVc+bI+WrUVX2Ue82aDbXTRno0pW/qiyTb/WeVvrOuwtphVtV0i3BEUtv0L5pvKDFNybbqXr58kU58iyRyv03DtVun6eihcVqvQfETJ54fWeZ7DFtKVFK3TIfCnmZ6k4u7yWqqqotcgEhXa/SaHn3lltn5b9+IlM1o9u462YVIW0G1w+z78XSPmHXfVaMa1qrLqqqD3njzlN5jVpijGthEiF//FMhU/p6fb6Fb87Ws7DO9xqz1+1UaF0/bxq9efpeFn52FD2+UWuuvK0nQ25Pysf27xtn9v7r46fBSe7fE0C/dlQVWN73xCz8eRFTGIGc8xgzYuYwR9TktvvUqn+vru5fR+p9DvXSjzbp9h517ynsm1HZHKKg2b/EZOYVlyEclv7dnkpD1KoRcWDFPaF/lkxln/OSLPaRClmz01qXniu1r+eoTZ5ZT4uaFPElCy/5OCr7PavyuzPq33G+mazFFs4SaOL79K7zk8kSRnhn6iNleSapfDlTlLuz5KjtSL+uFOFL3dS0bQxUnZsoLIOOPv0h2TZfHyLH9tvlbn2qZf5JXme7iFWXQVN7aFWFce0ygrnxJZ/qarKD7XhWkdN9VnpeFn52FD89P3BVVfHjm2eeN0+Hz8LTnb5mvD+BACg8av8Ha6+vrvV9nuitthZEc+XNzqAIJNtCpRaen+tD1Lg8tIAMca4PRQAvql8eWnVM90AAAAAAACCBU23AKHhdmIKTKHr3zyAAgAAAAAABCuabgFSQNPthFRuVkbQdAMAAAAAAEGKpluAFKiw9plQTf6x/RapCFmWFeBsAAAAAAAAPKPpFiCFhjPdTkSBq+nGWW4AAAAAACB40XQLEM50OzEVzUoeogAAAAAAAIIZTbcAyafpdkIqmpURFme6AQAAAACA4EXTLUAqP4UTvqt4AEUzznQDAAAAAABBjKabr2LDpYr79luSQm3Vhz2NqzrcPFwhPRJdT+Hc0sKuwvBIyRZ6/K/yQhXDVogU2aK+t7KakB6JUnMP2+7LttZ12Ns8IZasFpG6tniyzlB7DbQu0Jyw/66Wqy3xbFmtzpMt8WzXsK1DvhTibJg8gy1m83CpNKa8dipqqepfxUK2UNd+q7pPFd68+nLhzcv3b+LZx+Lo+DqOTTtZrtprSq9JU4wZait/raqKbFG99vxUGxU81p+H42XlY4NbXQV6fx47ttW4fZXff3X8LDjZ5WsS8M+Gqn+N7X1DzMaTFzGJGcwxgzUvYgZ/zFCb63epSz19d3P7PlI5ER9jWy0ipRAruPYfMYkZaivvEfnAMsYYn+Y8RWVnZys2NlZZWVmKiYnxW9x3yj7SdSV3S5KeCr1H/y/0Jr/FbqraFQ7UQR1WWyVrd8THgU4HAAAAAACcgnztFdkaMCdUUnGZpMSTOH1hjNFhHZUktbDiApsMAAAAAABALWi6BUjle7pF0HSrVZZyVKpSSTTdAAAAAABA8KPpFiAFlZ5e2szyfk8flDtsMl3/ThBNNwAAAAAAENxCa58FkpR12gKZHJtkVH7jvBCbVOZ0H5aqj6s67AhTaN/WKnir/PLSNz44pMEHb1ZhyfHLTeUsk2shW0j5sGWTIhMUcVtGg22zJOWNfE+la3+Wsorqvq11HfYW02YpLiFU2l0+S0svZ7oVv3utTMFhWZEtZB/xNxW/e62Knj5dzi1JUpmt/vMMtpiOMNn/3+OywnMl4yyvpaoqas0WKlu7IbKP+Fu1ferc/6VUkuu+XJhDtja9y0Ps/UhylspVr8emVY1VV67ayy1pOq9JU4wZalPo0DRFvX2F2+tX+FIHqeCIe+35qTYqFL97bfX683C8rHxsKFk49nhdedrOhtyfNktWQqRifrrZ+/ZVfv/V8bPgZJevScA/G6pqbO8bYjaevIhJzGCOGax5ETP4Y0qu36UV3+Hq67ub2/eRyr9zw2N9ip3d9hWZIwWS0wTP/iMmMUNsym5W6q1s3dB081VWkVRxRpqRVOo8Pq3qcE3zHC1S2aZDrstLux8uVlhRmZeVmmM/JiWZMqng8MlvRx2VbTokHa3UEKzLtp7ocNVxZUYhh0tck7xdXuo8tFnK/VnG0do17MzoLpXZGibPYIt5tEgKzZYqnpXirOGg4Cwt339VRx/aLBUdrT5/0dHj87viHqvXytNOQrXaO7aKRv2aNMWYpc7y16qqgsPlX9qk4zXip9qo4Dy0uXr9SdWOl5WPDR7r6tjigTi2mcMFNW9f1fdfHT4LTnb5mgTFZ4MnjeV9Q8zGlxcxiRnMMYM1L2IGd8xjv0td6um7m+ffE8bn2ObwsYabFFz7j5jEzPLwm8IDm09zwa9yTb7+4VyleDVXqDycfYQacXkpAAAAAAAIdpzpFgBGRrGKVqwVrWbaI6k40CkFPVPp394uLwUAAAAAAAgWjfpMt88++0xXXnmlWrduLcuy9M4771SbZ8eOHbrqqqsUGxurqKgonXfeedq3b1/DJ1uJJUsxlkMxlkNW434JGtDxtlsCTTcAAAAAABDkGnXHJy8vT2effbZeeOEFj9MzMjJ00UUXqXPnzkpPT9eWLVv08MMPKyIiooEzdeewmmmZ/Xktsz8vh9UsoLk0FkZSmlrrUquvulkdA50OAAAAAABAjRr15aXDhw/X8OHDvU5/6KGHdNlll+mZZ55xjevQoUNDpAa/M/pRP+tq2xDFW7GBTgYAAAAAAKBGjfpMt5o4nU69//77OuOMMzR06FAlJibqggsu8HgJamVFRUXKzs52+0NwsGTpT6F3BjoNAAAAAACAWjXZptuhQ4eUm5urGTNmaNiwYVq5cqVGjhypa665RqtXr/a63PTp0xUbG+v6S0lJacCsUZP2VltFWoG9NBgAAAAAAMAXTbbp5nQ6JUkjRozQ3XffrR49euiBBx7QFVdcofnz53tdbtq0acrKynL9/ec//2molFGLztZpgU4BAAAAAADAJ436nm41adGihUJDQ9W1a1e38V26dNGaNWu8LhceHq7w8PBq40MGtpW25UlOI9ksWXERMpmFbsOSqo2rOmxLi1bYpWmuuKHnTFLZj5/IZP14fGWFmZJxSpZNiogrH7ZHy9aia9W06l34XT1VsvJHlW36tc7bWtdhbzFLoy0d7RqiySHjasw19JxJMsU5suzRrmHnjYUq/Ydk8sLrPc9gi2lLi5Zl6yPF/CwVZ5fXUlUVtRaZoNDuN3ncp9XqU5IVk6qQdoMlSaX/XiDlH3bVa+VpJ6Oi9pw/5jSZ16QpxrQSIhX+xzOrvX629sPkPLzDrfb8VRsVQs+ZVK3+PB0vKx8brEp15Wk7G3J/WtF2hXRLqHH73N5/dfwsONnlaxLoz4aqGtv7hpiNJy9iEjOYYwZrXsQM/piSqv0ura/vbm7fRyr9zrUSz/Ypduhl7VS27YhMTnHQ7D9iEtOKi1BI6wTp49rfA5YxxtTtbROcLMvS22+/rauvvto1rk+fPurQoYMWLVrkGjdy5EhFRkZqyZIlPsXNzs5WbGyssrKyFBMT4++0AQAAAAAA0Ij42itq1Ge65ebmavfu3a7hPXv2aNOmTYqPj1dqaqqmTp2q0aNHq3///ho0aJD+9a9/6R//+IfS09MDlzQAAAAAAACavEZ9plt6eroGDRpUbfy4ceO0cOFCSdKrr76q6dOn66efflKnTp302GOPacSIET6vgzPdAAAAAAAAUMHXXlGjbro1BJpuAAAAAAAAqOBrr6jJPr0UAAAAAAAACBSabgAAAAAAAICf0XQDAAAAAAAA/IymGwAAAAAAAOBnNN0AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADws9BAJxDsjDGSpOzs7ABnAgAAAAAAgECr6BFV9Iy8oelWiyNHjkiSUlJSApwJAAAAAAAAgkVOTo5iY2O9TqfpVov4+HhJ0r59+2rckcDJys7OVkpKiv7zn/8oJiYm0OmgCaPW0JCoNzQUag0NhVpDQ6HW0FCotbozxignJ0etW7eucT6abrWw2cpvexcbG0vxoUHExMRQa2gQ1BoaEvWGhkKtoaFQa2go1BoaCrVWN76cmMWDFAAAAAAAAAA/o+kGAAAAAAAA+BlNt1qEh4fr0UcfVXh4eKBTQRNHraGhUGtoSNQbGgq1hoZCraGhUGtoKNRa/bFMbc83BQAAAAAAAFAnnOkGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPCzoGm6TZ8+Xeedd56io6OVmJioq6++Wjt37nSbp7CwUBMnTlRCQoIcDodGjRqlX375xTV98+bN+v3vf6+UlBRFRkaqS5cumjt3rluM5cuXa8iQIWrZsqViYmLUu3dvffjhh7XmZ4zRI488olatWikyMlKDBw/W999/7zbPhg0bNGTIEDVv3lwJCQm69dZblZubW2vsLVu2qF+/foqIiFBKSoqeeeYZt+nbtm3TqFGj1K5dO1mWpTlz5tQaE95Ra95rbfny5erVq5eaN2+uqKgo9ejRQ4sWLao1Lryj3rzX28KFC2VZlttfRERErXHhGbXmvdYGDhxYrdYsy9Lll19ea2xUR615r7WSkhI9/vjj6tChgyIiInT22WfrX//6V61x4dmpWmuFhYUaP368zjrrLIWGhurqq6+uNs+BAwd0/fXX64wzzpDNZtOUKVNqzRfeUWvea23NmjXq27evEhISFBkZqc6dO2v27Nm15gzPqDXvtZaenu7x+9rBgwdrzTuomSAxdOhQs2DBArN161azadMmc9lll5nU1FSTm5vrmmfChAkmJSXFfPLJJ2bdunXmwgsvNH369HFNf+WVV8zkyZNNenq6ycjIMIsWLTKRkZFm3rx5rnnuuusu8+c//9l88803ZteuXWbatGkmLCzMbNiwocb8ZsyYYWJjY80777xjNm/ebK666irTvn17U1BQYIwxZv/+/SYuLs5MmDDBfPfdd+abb74xffr0MaNGjaoxblZWlklKSjI33HCD2bp1q3njjTdMZGSkeemll1zzfPPNN+bee+81b7zxhklOTjazZ8+uy65FFdSa91r79NNPzfLly8327dvN7t27zZw5c0xISIj517/+Vad9jOOoN+/1tmDBAhMTE2MOHDjg+jt48GCd9i+Oo9a819qRI0fc6mzr1q0mJCTELFiwoC67GMdQa95r7b777jOtW7c277//vsnIyDAvvviiiYiIqDVneHaq1lpubq6ZMGGC+b//+z8zdOhQM2LEiGrz7Nmzx0yePNm89tprpkePHuauu+7yYY/CG2rNe61t2LDBLFmyxGzdutXs2bPHLFq0yDRr1szt2AffUWvea+3TTz81kszOnTvdvreVlZX5smuDVtA03ao6dOiQkWRWr15tjDHm6NGjJiwszLz11luueXbs2GEkmS+//NJrnDvuuMMMGjSoxnV17drVPPbYY16nO51Ok5ycbJ599lnXuKNHj5rw8HDzxhtvGGOMeemll0xiYqJbQWzZssVIMt9//73X2C+++KKJi4szRUVFrnH333+/6dSpk8f509LSaLr5GbXmudYq9OzZ0/z3f/93jfPAd9Tb8XpbsGCBiY2NrXEbcOKoNe/HttmzZ5vo6Gi3L7g4cdTa8Vpr1aqVef75592Wu+aaa8wNN9xQ43bBN6dKrVU2btw4jz9OKxswYABNNz+j1mo2cuRIc+ONN/o0L2pGrR1X0XTLzMz0KU5jETSXl1aVlZUlSYqPj5ckrV+/XiUlJRo8eLBrns6dOys1NVVffvlljXEqYnjidDqVk5NT4zx79uzRwYMH3dYdGxurCy64wLXuoqIi2e122WzHd2lkZKSk8lNyvfnyyy/Vv39/2e1217ihQ4dq586dyszM9Loc/Ida81xrxhh98skn2rlzp/r37+81LuqGenOvt9zcXKWlpSklJUUjRozQtm3bvMZE3VBr3j9HX3nlFV133XWKioryGhe+o9aO11pRUVG1y+QjIyNrjAvfnSq1hsCj1rzbuHGjvvjiCw0YMMCvcU9V1Fp1PXr0UKtWrTRkyBCtXbvWLzEDKSibbk6nU1OmTFHfvn115plnSpIOHjwou92u5s2bu82blJTk9RrfL774Qm+++aZuvfVWr+uaOXOmcnNzde2113qdpyJ+UlKS13VffPHFOnjwoJ599lkVFxcrMzNTDzzwgKTyey7UFNtT3MrrRf2h1qrXWlZWlhwOh+x2uy6//HLNmzdPQ4YM8RoXvqPe3OutU6dOevXVV/Xuu+/qr3/9q5xOp/r06aOffvrJa1z4hlrz/jn6zTffaOvWrbrlllu8xoTvqDX3Whs6dKiee+45ff/993I6nfroo4+0fPnyGuPCN6dSrSGwqDXP2rZtq/DwcPXq1UsTJ07kc9QPqDV3rVq10vz587Vs2TItW7ZMKSkpGjhwoDZs2HBScQMtKJtuEydO1NatW7V06dITjrF161aNGDFCjz76qC699FKP8yxZskSPPfaY/va3vykxMVGStHjxYjkcDtff559/7tP6unXrptdee02zZs1Ss2bNlJycrPbt2yspKcnVBe7WrZsr7vDhw0942+A/1Fp10dHR2rRpk7799ls99dRTuueee5Senl6nGPCMenPXu3dvjR07Vj169NCAAQO0fPlytWzZUi+99JLPMeAZtebdK6+8orPOOkvnn3/+CS0Pd9Sau7lz56pjx47q3Lmz7Ha7Jk2apD/84Q9uZwTgxFBraCjUmmeff/651q1bp/nz52vOnDl644036hwD7qg1d506ddJtt92mc889V3369NGrr76qPn36NP4HdwT6+taqJk6caNq2bWt++OEHt/GffPKJx+t7U1NTzXPPPec2btu2bSYxMdE8+OCDXtdTcfPb9957z218dna2+f77711/+fn5JiMjw0gyGzdudJu3f//+ZvLkydViHzx40OTk5Jjc3Fxjs9nM3/72N2OMMXv37nXF/emnn4wxxowZM6ba9cyrVq0yksxvv/1WLTb3dPMfaq3mWqtw8803m0svvdTrdPiGevOt3n73u9+Z6667zut01I5a815rubm5JiYmxsyZM8frdsF31Jr3WisoKDA//fSTcTqd5r777jNdu3b1un2o3alWa5VxT7eGRa2N8JpzZU888YQ544wzfJoXnlFrI7zmXNm9995rLrzwQp/mDVZB03RzOp1m4sSJpnXr1mbXrl3VplfcUPDvf/+7a9x3331X7YaCW7duNYmJiWbq1Kle17VkyRITERFh3nnnHZ9zS05ONjNnznSNy8rKcruhoCevvPKKadasWY03Aqy4KW9xcbFr3LRp03iQQj2i1nyrtQp/+MMfzIABA3zKH9VRb77XW2lpqenUqZO5++67fcof7qi12mttwYIFJjw83Bw+fNinvOEZteb7ca24uNh06NDBTJs2zaf84e5UrbXKaLo1DGqtbo2Qxx57zKSlpfk0L9xRa3WrtcGDB5uRI0f6NG+wCpqm2+23325iY2NNenq62+Nh8/PzXfNMmDDBpKammlWrVpl169aZ3r17m969e7um//vf/zYtW7Y0N954o1uMQ4cOueZZvHixCQ0NNS+88ILbPEePHq0xvxkzZpjmzZubd99912zZssWMGDHC7dG5xhgzb948s379erNz507z/PPPm8jISDN37twa4x49etQkJSWZMWPGmK1bt5qlS5dWewRzUVGR2bhxo9m4caNp1aqVuffee83GjRt9fjoI3FFr3mvt6aefNitXrjQZGRlm+/btZubMmSY0NNS8/PLLPu9fuKPevNfbY489Zj788EOTkZFh1q9fb6677joTERFhtm3b5vP+xXHUmvdaq3DRRReZ0aNH17ovUTNqzXutffXVV2bZsmUmIyPDfPbZZ+biiy827du3b3JPYmsop2qtGVN+BsvGjRvNlVdeaQYOHOj6LVBZxbhzzz3XXH/99Wbjxo18hp4gas17rT3//PNmxYoVZteuXWbXrl3mL3/5i4mOjjYPPfSQL7sWVVBr3mtt9uzZ5p133jHff/+9+fe//23uuusuY7PZzMcff+zLrg1aQdN0k+Txb8GCBa55CgoKzB133GHi4uJMs2bNzMiRI82BAwdc0x999FGPMSp34QcMGOBxnnHjxtWYn9PpNA8//LBJSkoy4eHh5pJLLjE7d+50m2fMmDEmPj7e2O120717d/P666/7tO2bN282F110kQkPDzdt2rQxM2bMcJu+Z88ejzlz9tGJoda819pDDz1kTj/9dBMREWHi4uJM7969zdKlS32KDc+oN+/1NmXKFJOammrsdrtJSkoyl112mdmwYYNPsVEdtea91ow5/r/EK1eu9CkmvKPWvNdaenq66dKliwkPDzcJCQlmzJgxZv/+/T7FRnWncq2lpaV5zKm2/cPZRyeGWvNea//zP/9junXrZpo1a2ZiYmJMz549zYsvvmjKysp8ig931Jr3Wvvzn/9sOnToYCIiIkx8fLwZOHCgWbVqlU+xg5lljDECAAAAAAAA4Dc8SgkAAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAoIkYOHCgpkyZcsqtGwAAIBjRdAMAADgFpaeny7IsHT161C/LLV++XE888YT/EgQAAGjkQgOdAAAAABq/+Pj4QKcAAAAQVDjTDQAAoBHKy8vT2LFj5XA41KpVK82aNctt+qJFi9SrVy9FR0crOTlZ119/vQ4dOiRJ2rt3rwYNGiRJiouLk2VZGj9+vCTJ6XRq+vTpat++vSIjI3X22Wfr73//e63LVb28tF27dnryySddOaalpWnFihX69ddfNWLECDkcDnXv3l3r1q1zy3vNmjXq16+fIiMjlZKSosmTJysvL8/fuw8AAKDe0XQDAABohKZOnarVq1fr3Xff1cqVK5Wenq4NGza4ppeUlOiJJ57Q5s2b9c4772jv3r2uBllKSoqWLVsmSdq5c6cOHDiguXPnSpKmT5+u119/XfPnz9e2bdt0991368Ybb9Tq1atrXM6T2bNnq2/fvtq4caMuv/xyjRkzRmPHjtWNN96oDRs2qEOHDho7dqyMMZKkjIwMDRs2TKNGjdKWLVv05ptvas2aNZo0aVJ97EIAAIB6ZZmKbzkAAABoFHJzc5WQkKC//vWv+q//+i9J0m+//aa2bdvq1ltv1Zw5c6ots27dOp133nnKycmRw+FQenq6Bg0apMzMTDVv3lySVFRUpPj4eH388cfq3bu3a9lbbrlF+fn5WrJkicflpPIz3Xr06OFad7t27dSvXz8tWrRIknTw4EG1atVKDz/8sB5//HFJ0ldffaXevXvrwIEDSk5O1i233KKQkBC99NJLrrhr1qzRgAEDlJeXp4iICD/uRQAAgPrFPd0AAAAamYyMDBUXF+uCCy5wjYuPj1enTp1cw+vXr9ef/vQnbd68WZmZmXI6nZKkffv2qWvXrh7j7t69W/n5+RoyZIjb+OLiYvXs2bPOeXbv3t3176SkJEnSWWedVW3coUOHlJycrM2bN2vLli1avHixax5jjJxOp/bs2aMuXbrUOQcAAIBAoekGAADQxOTl5Wno0KEaOnSoFi9erJYtW2rfvn0aOnSoiouLvS6Xm5srSXr//ffVpk0bt2nh4eF1ziMsLMz1b8uyvI6raAjm5ubqtttu0+TJk6vFSk1NrfP6AQAAAommGwAAQCPToUMHhYWF6euvv3Y1ozIzM7Vr1y4NGDBA3333nY4cOaIZM2YoJSVFkqo9sMBut0uSysrKXOO6du2q8PBw7du3TwMGDPC4bk/L+cs555yj7du36/TTT/d7bAAAgIbGgxQAAAAaGYfDoZtvvllTp07VqlWrtHXrVo0fP142W/lXu9TUVNntds2bN08//PCDVqxYoSeeeMItRlpamizL0nvvvadff/1Vubm5io6O1r333qu7775br732mjIyMrRhwwbNmzdPr732mtfl/OX+++/XF198oUmTJmnTpk36/vvv9e677/IgBQAA0CjRdAMAAGiEnn32WfXr109XXnmlBg8erIsuukjnnnuuJKlly5ZauHCh3nrrLXXt2lUzZszQzJkz3ZZv06aNHnvsMT3wwANKSkpyNbaeeOIJPfzww5o+fbq6dOmiYcOG6f3331f79u1rXM4funfvrtWrV2vXrl3q16+fevbsqUceeUStW7f22zoAAAAaCk8vBQAAAAAAAPyMM90AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn9F0AwAAAAAAAPyMphsAAAAAAADgZzTdAAAAAAAAAD+j6QYAAAAAAAD4GU03AAAAAAAAwM9ougEAAAAAAAB+RtMNAAAAAAAA8DOabgAAAAAAAICf0XQDAAAAAAAA/IymGwAAAAAAAOBnNN0AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn9F0AwAAAAAAAPyMphsAAAAAAADgZzTdAAAAAAAAAD+j6QYAAAAAAAD4GU03AAAAAAAAwM9ougEAAAAAAAB+RtMNAAAAAAAA8DOabgAAAAAAAICfhQY6AQAAThWlpaUqLi4OdBoAcEqz2+0KDeVnEACg/vFpAwBAPTPGaN++fTp8+HCgUwEASGrRooVSU1NlWVagUwEANGE03QAAqGcVDbc2bdrI4XDIZuPuDgAQCE6nU7m5udq/f7+MMWrXrl2gUwIANGE03QAAqEelpaWuhltycnKg0wGAU57D4ZAk7d+/X/v27VPfvn0VEhIS4KwAAE0R/9UOAEA9qriHW8WPPABA4FUck7ds2aL09HSVlZUFOCMAQFNE0w0AgAbAJaUAEDwqjskxMTHasmWLjhw5EuCMAABNEb8AAAAAAJySIiMjVVxcrLy8vECnAgBogmi6AQCAOktPT5dlWTp69GigUwH8xl91vXfvXlmWpU2bNvklr7oaOHCgpkyZEpB1NzaWZckYE+g0AABNFA9SAAAAACT16dNHBw4cUGxs7EnFSUlJ0YEDB9SiRQs/ZeZZenq6Bg0apMzMTDVv3tw1fvny5QoLC6vXdddm4MCB6tGjh+bMmRPQPAAACCSabgAAAIAku93ul6cMh4SEBPRpxfHx8QFbNwAAOI7LSwEAaEC3lzyqAUU3BOzv9pJHfc61qKhIkydPVmJioiIiInTRRRfp22+/9Thvfn6+hg8frr59+3LJqRc5OTm64YYbFBUVpVatWmn27NlulwEuWrRIvXr1UnR0tJKTk3X99dfr0KFDruUrLn18//331b17d0VEROjCCy/U1q1bA7RFwW3gwIG68847NWXKFMXFxSkpKUkvv/yy8vLy9Ic//EHR0dE6/fTT9c9//tO1TNXLS3/88UddeeWViouLU1RUlLp166YPPvhAkpSZmakbbrhBLVu2VGRkpDp27KgFCxZIqn55aUXcTz75RL169VKzZs3Up08f7dy50y3nJ598UomJiYqOjtYtt9yiBx54QD169PC4fXv37tWgQYMkSXFxcbIsS+PHj3dte+XLS9u1a6cnn3xSY8eOlcPhUFpamlasWKFff/1VI0aMkMPhUPfu3bVu3Tq3daxZs0b9+vVTZGSkUlJSNHnyZLd7n7344ovq2LGjIiIilJSUpN/97neSpPHjx2v16tWaO3euLMuSZVnau3evysrKdPPNN6t9+/aKjIxUp06dNHfuXLd1jh8/XldffbWefvppJSUlqXnz5nr88cdVWlqqqVOnKj4+Xm3btnXt68r7e+nSperTp48iIiJ05plnavXq1d7KAwCABsGZbgAANKDtzt362mwOXAJO32e97777tGzZMr322mtKS0vTM888o6FDh2r37t1u8x09elSXX365HA6HPvroIzVr1szPSTcN99xzj9auXasVK1YoKSlJjzzyiDZs2OBqqpSUlOiJJ55Qp06ddOjQId1zzz0aP368q8lTYerUqZo7d66Sk5P14IMP6sorr9SuXbsCfjlhMHrttdd033336ZtvvtGbb76p22+/XW+//bZGjhypBx98ULNnz9aYMWO0b98+j3U7ceJEFRcX67PPPlNUVJS2b98uh8MhSXr44Ye1fft2/fOf/1SLFi20e/duFRQU1JjPQw89pFmzZqlly5aaMGGCbrrpJq1du1aStHjxYj311FN68cUX1bdvXy1dulSzZs1S+/btPcZKSUnRsmXLNGrUKO3cuVMxMTGKjIz0uu7Zs2fr6aef1sMPP+za7j59+uimm27Ss88+q/vvv19jx47Vtm3bZFmWMjIyNGzYMD355JN69dVX9euvv2rSpEmaNGmSFixYoHXr1mny5MlatGiR+vTpo99++02ff/65JGnu3LnatWuXzjzzTD3++OOSpJYtW8rpdKpt27Z66623lJCQoC+++EK33nqrWrVqpWuvvdaV66pVq9S2bVt99tlnWrt2rW6++WZ98cUX6t+/v77++mu9+eabuu222zRkyBC1bdvWtdzUqVM1Z84cde3aVc8995yuvPJK7dmzRwkJCTW+LgAA1BfLcOdQAADqTX5+vnbs2KEuXbqoWbNmGlB0Q0CbbhdYZ2t1+OJa58vLy1NcXJwWLlyo66+/XlJ5U6hdu3aaMmWKzjvvPA0aNEg7duzQ6NGj1bFjRy1ZskR2u72+N8Ej54E8mYPuTx+0mofL1j5WprBUzh2/VVsmpGeiJKlsZ6aUX+K+bFqMbPERcv5aIPNTjvuCDrtCOjavU345OTlKSEjQkiVLXGcDZWVlqXXr1vrjH//o8b5X69at03nnnaecnBw5HA7X/buWLl2q0aNHS5J+++03tW3bVgsXLnRrWjQEk3tQJu+g+8iI5rLFtpMpLZQ58l21ZWxJPSRJzt92SSX5btOs2FRZEfEy+b/K5Ox3X9DukC3u9DrlN3DgQJWVlbkaQWVlZYqNjdU111yj119/XZJ08OBBtWrVSl9++aUuvPDCavdI6969u0aNGqVHH61+huhVV12lFi1a6NVXX602be/evWrfvr02btyoHj16uOJ+/PHHuuSSSyRJH3zwgS6//HIVFBS4zlrs1auXnn/+eVeciy66SLm5uV4fyODtnm5V76fWrl079evXT4sWLXLb7ocfftjVFPvqq6/Uu3dvHThwQMnJybrlllsUEhKil156yRV3zZo1GjBggPLy8vTBBx/oD3/4g3766SdFR0d73P++3NNt0qRJOnjwoP7+979LKj/TLT09XT/88INstvKLcjp37qzExER99tlnko6/ln/5y1903XXXufb3jBkzdP/990uSSktL1b59e91555267777qq234ti8Z88e7d69W6NHj/ba4AQA4ERxphsAAKgmIyNDJSUl6tu3r2tcWFiYzj//fO3YsUPnnXeeJGnIkCE6//zz9eabbyokJCRQ6ar45a0qevIbt3Fhv++kZq9dKudPucq94M1qy8QW3ylJKrjlY5V97d48ilwwRPYbOqvk79+r8C73S9RCh6Qq6v0Rdcrvhx9+UElJic4///zj64+NVadOnVzD69ev15/+9Cdt3rxZmZmZcjrLT0vct2+funbt6pqvd+/ern/Hx8erU6dO2rFjR53y8YfSf7+qsq+mu42zdR4t+/C/yOTuV/GSftWWibi7vIFZsnKCzAH3S5XDhr2skC7XqWzX2yr99P+5x027RPZr3qlzjt27d3f9OyQkRAkJCTrrrLNc45KSkiTJ7TLeyiZPnqzbb79dK1eu1ODBgzVq1ChXzNtvv12jRo3Shg0bdOmll+rqq69Wnz59fM6nVatWrnWnpqZq586duuOOO9zmP//887Vq1ao6bLFv667Ybm/7Ijk5WZs3b9aWLVu0ePHxJr0xRk6nU3v27NGQIUOUlpam0047TcOGDdOwYcM0cuTIWs90feGFF/Tqq69q3759KigoUHFxcbVLaLt16+ZquFXkduaZZ7qGK17Lqq9b5fdGaGioevXqFZD3BgAAFWi6AQCAE3b55Zdr2bJl2r59u9sP+IZm/+OZCrvS/SwVq3m4JMnW1iHH16O9Lhv5l8Eez3STpLDfdVTohVVuiO/w/9l8eXl5Gjp0qIYOHarFixerZcuW2rdvn4YOHari4mK/r88fQs+6SSGnXeY+MqK5JMlytJH9+s+9Lht26XyPZ7pJUsgZI2Vrdb77AnbHCeVY9ZJby7LcxlmWJUmuBmdVt9xyi4YOHar3339fK1eu1PTp0zVr1izdeeedGj58uH788Ud98MEH+uijj3TJJZdo4sSJmjlzpk/51LZuf/O07pryyc3N1W233abJkydXi5Wamiq73a4NGzYoPT1dK1eu1COPPKI//elP+vbbb93Ouqts6dKluvfeezVr1iz17t1b0dHRevbZZ/X11197zbUiN0/jGmrfAQBwomi6AQDQgLraTq/TfdXqZf0+6NChg+x2u9auXau0tDRJ5ZeXfvvtt243aJ8xY4YcDocuueQSpaenu52R1ZBsraKkVlEep1kRoa5LST0J6RTnPW7LSKml9/tk+eq0005TWFiYvv32W6WmljeXsrKytGvXLvXv31/fffedjhw5ohkzZiglJUWSqt3UvsJXX33lipGZmaldu3apS5cuJ51jXVmOZFkOz0/otEIjZB27lNQTW/wZ3uM2aymrWcuTTc9vUlJSNGHCBE2YMEHTpk3Tyy+/rDvvLD9LsmXLlho3bpzGjRunfv36aerUqTU23WrSqVMnffvttxo7dqxrnLcHl1SouJy7rKzshNZZk3POOUfbt2/X6ad7P2aEhoZq8ODBGjx4sB599FE1b95cq1at0jXXXCO73V4tr7Vr16pPnz5uZ/RlZGT4LeevvvpK/fv3l1R+een69es1adIkv8UHAKCuaLoBANCA/jfssUCn4JOoqCjdfvvtrqcFpqam6plnnlF+fr5uvvlmbd58/L50M2fOVFlZmS6++GKlp6erc+fOAcw8OEVHR2vcuHGu/ZmYmKhHH31UNptNlmW5zhyaN2+eJkyYoK1bt+qJJ57wGOvxxx9XQkKCkpKS9NBDD6lFixa6+uqrG3aDThFTpkzR8OHDdcYZZygzM1Offvqpq8H5yCOP6Nxzz1W3bt1UVFSk995776San3feeaf++Mc/qlevXurTp4/efPNNbdmyRaeddprXZdLS0mRZlt577z1ddtllioyMdD3o4WTdf//9uvDCCzVp0iTdcsstrgdJfPTRR3r++ef13nvv6YcfflD//v0VFxenDz74QE6n03XJdLt27fT1119r7969cjgcio+PV8eOHfX666/rww8/VPv27bVo0SJ9++23fruX2gsvvKCOHTuqS5cumj17tjIzM3XTTTf5JTYAACfCVvssAADgVDRjxgyNGjVKY8aM0TnnnKPdu3frww8/VFxc9TPDZs+erWuvvVYXX3yxdu3aFYBsg99zzz2n3r1764orrtDgwYPVt29fdenSRREREWrZsqUWLlyot956S127dtWMGTO8njE1Y8YM3XXXXTr33HN18OBB/eMf/wjYAyyaurKyMk2cOFFdunTRsGHDdMYZZ+jFF1+UVH6W2bRp09S9e3f1799fISEhWrp06Qmv64YbbtC0adN077336pxzztGePXs0fvx4RUREeF2mTZs2euyxx/TAAw8oKSnJr2d1de/eXatXr9auXbvUr18/9ezZU4888ohat24tSWrevLmWL1+uiy++WF26dNH8+fP1xhtvqFu3bpKke++9VyEhIeratavrcunbbrtN11xzjUaPHq0LLrhAR44cqXYfu5MxY8YMzZgxQ2effbbWrFmjFStWqEWLFn6LDwBAXfH0UgAA6lHVp5cCFfLy8tSmTRvNmjVLN998c63ze3tSJZquIUOGKDk52fXUUXhW9WmxvuDppQCAhsDlpQAAAA1g48aN+u6773T++ecrKytLjz/+uCRpxIi6PQkVTVN+fr7mz5+voUOHKiQkRG+88YY+/vhjffTRR4FODQAAnCCabgAAAA1k5syZ2rlzp+x2u84991x9/vnnXP4GSeVP4/zggw/01FNPqbCwUJ06ddKyZcs0ePDgQKcGAABOEE03AACABtCzZ0+tX7/+hJcfOHCguCtI0xUZGamPP/440Gk0Su3ateO9AQAISjxIAQAAAAAAAPAzmm4AADQAp9MZ6BQAAMdUHJM5Qw4AUJ9ougEAUI/sdrskKTc3N8CZAAAqVByTS0pKApwJAKAp455uAADUo9DQULVo0UL79++XJDkcDtls/J8XAASC0+lUbm6u9u/fr6NHj3IWMgCgXtF0AwCgnqWmpkqSq/EGAAiso0eP6pdfflFZWZlCQkIUFhYW6JQAAE0QTTcAAOqZZVlKS0vT4cOH9dVXX8nhcCgqKkqWZQU6NQA45ZSUlMjpdKqsrEwHDhxQUlKS4uLiAp0WAKAJsgx3DwUAoEGUlZVp7dq1WrdunYqKimi6AUCAJSYm6oorrlBiYmKgUwEANEE03QAAaEBlZWX6+eeflZuby72EACCAIiIi1KJFC8XGxgY6FQBAE0XTDQAAAAAAAPAzHp8GAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn/1/AyxGFG2zl6QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder05').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "2704ba92-ca78-478e-8c7c-0b2858339d5e", + "metadata": {}, + "source": [ + "## Fill missing observations\n", + "\n", + "Missing observations typically span short periods, so interpolation is the most suitable method for filling the observations. To interpolate values over the missing timestamps use the [fill_missing_obs_linear()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_missing_obs_linear) method. The specific settings that are used for the interpolation can be changed with the [update_gap_and_missing_fill_settings()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_gap_and_missing_fill_settings) method. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3081b116-3eeb-40ae-84d1-d7a36d4b4fb4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 892 missing observations\n", + " * For 28 stations\n", + " * Missing observations are filled with interpolate for: \n", + " temp: \n", + " temp\n", + "name datetime \n", + "vlinder01 2022-09-14 17:45:00+00:00 14.657143\n", + " 2022-09-14 18:45:00+00:00 14.485714\n", + " 2022-09-14 18:30:00+00:00 14.528571\n", + " 2022-09-14 18:15:00+00:00 14.571429\n", + " 2022-09-14 18:00:00+00:00 14.614286\n", + "... ...\n", + "vlinder28 2022-09-12 07:15:00+00:00 13.600000\n", + " 2022-09-05 18:15:00+00:00 21.300000\n", + " 2022-09-14 18:00:00+00:00 14.800000\n", + " 2022-09-14 08:45:00+00:00 15.025000\n", + " 2022-09-14 18:15:00+00:00 14.800000\n", + "\n", + "[891 rows x 1 columns]\n", + " * Missing observations that could NOT be filled for: \n", + " temp: \n", + " MultiIndex([('vlinder02', '2022-09-10 17:10:00+00:00')],\n", + " names=['name', 'datetime'])\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYuElEQVR4nOzdd3wb9f3H8ddJsrxlZzl7J2QQRgIJIyUJUAJlFFooe5UNSdi0jLIpFFpWmS0lYRR+0DLLaBiFhL0JEEbIgoRsx0OesqS73x+KZclTsiXrJL+fj0ce0Z1On/vqdJJ8H32+369hWZaFiIiIiIiIiIiIJIwj1Q0QERERERERERHJNEq6iYiIiIiIiIiIJJiSbiIiIiIiIiIiIgmmpJuIiIiIiIiIiEiCKekmIiIiIiIiIiKSYEq6iYiIiIiIiIiIJJiSbiIiIiIiIiIiIgmmpJuIiIiIiIiIiEiCKekmIiIiIiIiIiKSYEq6iYiIiEi3qq6u5rTTTmPAgAEYhsH555/f5ZiGYXDNNdeElx966CEMw+CHH37ocuxkxhQREZHMpaSbiIiI2IJhGDH9W7RoUaqbmjL33nsvDz30UKqb0WU33ngjDz30EGeffTaPPvooJ5xwQqqblHLr1q3jyCOPpLi4GI/Hw6GHHsqqVatabNfW++JPf/pTClotIiIi7XGlugEiIiIiAI8++mjU8iOPPMJrr73WYv2ECRO6s1m2cu+999K3b19OPvnkVDelS9544w123313rr766qTt44QTTuDoo48mOzs7aftIlOrqavbee28qKyu5/PLLycrK4vbbb2fmzJksWbKEPn36RG2/3377ceKJJ0atmzx5cnc2WURERGKgpJuIiIjYwvHHHx+1/MEHH/Daa6+1WJ8pLMuivr6e3NzcVDclZjU1NeTn53c5zubNm5k4cWICWtQ2p9OJ0+lM6j66qvF43nvvvSxfvpyPPvqIqVOnAvCLX/yCSZMmceutt3LjjTdGPW677bbL2PeFiIhIJlH3UhEREUkbpmlyxx13sP3225OTk0P//v0588wzKS8vj9puxIgRHHzwwSxatIhdd92V3Nxcdthhh3DX1GeeeYYddtiBnJwcdtllFz7//POox5988skUFBSwatUq9t9/f/Lz8xk0aBDXXXcdlmV1qU2vvPJKuE1/+9vfAFiwYAH77LMPJSUlZGdnM3HiRO67774Wj//6669ZvHhxuEvhrFmzALjmmmswDKPF8WptDLLmY59Fxo+soGt87OLFiznnnHMoKSlhyJAhLR4XafPmzZx66qn079+fnJwcdtppJx5++OHw/YsWLcIwDFavXs1LL70Ufh5tjZE2adIk9t577xbrTdNk8ODBHHHEEW22pbXn3vgavPPOO0ybNo2cnBxGjRrFI4880uLxX3/9Nfvssw+5ubkMGTKEG264AdM0W93Xf//7X/baay/y8/MpLCzkoIMO4uuvv47apvGcWrlyJQceeCCFhYUcd9xxADz11FNMnTo1nHADGD9+PPvuuy//+te/Wt1nXV0d9fX1bT5/ERERST0l3URERCRtnHnmmVxyySVMnz6dO++8k9/+9rc89thj7L///vj9/qhtV6xYwbHHHsshhxzCTTfdRHl5OYcccgiPPfYYF1xwAccffzzXXnstK1eu5Mgjj2yRUAkGgxxwwAH079+fW265hV122YWrr766RZfIeNq0bNkyjjnmGPbbbz/uvPNOdt55ZwDuu+8+hg8fzuWXX86tt97K0KFDOeecc7jnnnvCj73jjjsYMmQI48eP59FHH+XRRx/liiuuSODRbd0555zDN998w1VXXcWll17a5nZ1dXXMmjWLRx99lOOOO44///nPFBUVcfLJJ3PnnXcCoa7Bjz76KH379mXnnXcOP49+/fq1GvOoo47irbfeYuPGjVHr33nnHdavX8/RRx8d9/NZsWIFRxxxBPvttx+33norvXr14uSTT45Kkm3cuJG9996bJUuWcOmll3L++efzyCOPhJ9HpEcffZSDDjqIgoICbr75Zq688kq++eYbfvazn7VIJgYCAfbff39KSkr4y1/+wuGHH45pmnz55ZfsuuuuLWJPmzaNlStXUlVVFbX+oYceIj8/n9zcXCZOnMjjjz8e93EQERGRbmCJiIiI2NCcOXOsyD9V3n77bQuwHnvssajtFi5c2GL98OHDLcB67733wuteeeUVC7Byc3OtH3/8Mbz+b3/7mwVYb775ZnjdSSedZAHWvHnzwutM07QOOuggy+12W1u2bOl0mxYuXNjiudbW1rZYt//++1ujRo2KWrf99ttbM2fObLHt1VdfbbX2Z92CBQsswFq9enV4HWBdffXVLbYdPny4ddJJJ7V47M9+9jMrEAi02L65O+64wwKsf/7zn+F1DQ0N1h577GEVFBRYXq83al8HHXRQhzGXLVtmAdZdd90Vtf6cc86xCgoKoo5b8+fV2nNvfA3eeuut8LrNmzdb2dnZ1kUXXRRed/7551uA9eGHH0ZtV1RUFBWzqqrKKi4utk4//fSo9m3cuNEqKiqKWt94Tl166aVR227ZssUCrOuuu67F87/nnnsswPruu+/C6/bcc0/rjjvusJ5//nnrvvvusyZNmmQB1r333tvaIRQREZEUUqWbiIiIpIV///vfFBUVsd9++1FaWhr+t8suu1BQUMCbb74Ztf3EiRPZY489wsu77bYbAPvssw/Dhg1rsb61mSLnzp0bvm0YBnPnzqWhoYHXX3+9U20aOXIk+++/f4v9RI7rVllZSWlpKTNnzmTVqlVUVlbGfIyS4fTTT49pbLSXX36ZAQMGcMwxx4TXZWVlce6551JdXc3ixYvj3vd2223HzjvvzJNPPhleFwwGeeqppzjkkEM6NR7exIkT2WuvvcLL/fr1Y9y4cVGv/8svv8zuu+/OtGnTorZr7A7a6LXXXqOiooJjjjkm6vV3Op3stttuLV5/gLPPPjtqua6uDqDVCR9ycnKitgF49913Oe+88/jlL3/JWWedxaeffsqkSZO4/PLLo7YTERGR1NNECiIiIpIWli9fTmVlJSUlJa3ev3nz5qjlyMQaQFFREQBDhw5tdX3zMdgcDgejRo2KWrfddtsBhLsNxtumkSNHtrrdu+++y9VXX837779PbW1t1H2VlZXhNqZCW21u7scff2Ts2LE4HNG/6TbONvvjjz92av9HHXUUl19+OevWrWPw4MEsWrSIzZs3c9RRR3UqXvPzAqBXr15Rr/+PP/4YTsZGGjduXNTy8uXLgVAitzUejydq2eVytRgXrzFx6PP5Wjy+ccy29pKLbrebuXPnhhNwP/vZz9rcVkRERLqXkm4iIiKSFkzTpKSkhMcee6zV+5uPC9ZWdVZb661mEyQko02tJU9WrlzJvvvuy/jx47ntttsYOnQobrebl19+mdtvv73NwfsjtTaJAoSqwmLV1rapnl31qKOO4rLLLuPf//43559/Pv/6178oKirigAMO6FS8RL/+EBrXbcCAAS3ud7mi/9TOzs5ukZTs3bs32dnZbNiwocXjG9cNGjSo3XY0JpLLyspib7yIiIgknZJuIiIikhZGjx7N66+/zvTp07slEWSaJqtWrQpXtwF8//33QGgWzES16YUXXsDn8/Gf//wnqgqrta6JbSXXevXqBUBFRQXFxcXh9a1Vl/Xq1YuKioqodQ0NDa0mfeIxfPhwvvzyS0zTjEosfffdd+H7O2PkyJFMmzaNJ598krlz5/LMM89w2GGHtdodM1GGDx8ermKLtGzZsqjl0aNHA1BSUsLPf/7zTu3L4XCwww478Mknn7S478MPP2TUqFEUFha2G6Oxa2xbE1KIiIhIamhMNxEREUkLRx55JMFgkOuvv77FfYFAoEUiKRHuvvvu8G3Lsrj77rvJyspi3333TVibGiuvIiutKisrWbBgQYtt8/PzW43ZmPx56623wutqamp4+OGHW902cjuAv//973FVxbXmwAMPZOPGjVHjrwUCAe666y4KCgqYOXNmp2MfddRRfPDBB8yfP5/S0tJOdy2N1YEHHsgHH3zARx99FF63ZcuWFhWN+++/Px6PhxtvvLHFTLWNj4nFEUccwccffxyVeFu2bBlvvPEGv/nNb9qNV1VVxR133EHfvn3ZZZddYtqfiIiIdA9VuomIiEhamDlzJmeeeSY33XQTS5YsYfbs2WRlZbF8+XL+/e9/c+edd3LEEUckbH85OTksXLiQk046id12243//ve/vPTSS1x++eXhiqJEtGn27Nm43W4OOeQQzjzzTKqrq3nggQcoKSlpUX22yy67cN9993HDDTcwZswYSkpK2GeffZg9ezbDhg3j1FNP5ZJLLsHpdDJ//nz69evHmjVromKcdtppnHXWWRx++OHst99+fPHFF7zyyiv07du3S8frjDPO4G9/+xsnn3wyn376KSNGjOCpp57i3Xff5Y477uiwWqs9Rx55JBdffDEXX3wxvXv37nRVWax+97vf8eijj3LAAQdw3nnnkZ+fz9///vdwNV8jj8fDfffdxwknnMCUKVM4+uijw8f8pZdeYvr06VGJ27acc845PPDAAxx00EFcfPHFZGVlcdttt9G/f38uuuii8Hb33HMPzz33HIcccgjDhg1jw4YNzJ8/nzVr1vDoo4/idruTcjxERESkc5R0ExERkbRx//33s8suu/C3v/2Nyy+/HJfLxYgRIzj++OOZPn16QvfldDpZuHAhZ599NpdccgmFhYVcffXVXHXVVQlt07hx43jqqaf4wx/+wMUXX8yAAQM4++yz6devH6ecckrUtldddRU//vgjt9xyC1VVVcycOZN99tmHrKwsnn32Wc455xyuvPJKBgwYwPnnn0+vXr347W9/GxXj9NNPZ/Xq1Tz44IMsXLiQvfbai9deey1cvddZubm5LFq0iEsvvZSHH34Yr9fLuHHjWLBgASeffHKXYg8ZMoQ999yTd999l9NOO42srKwuxevIwIEDefPNN5k3bx5/+tOf6NOnD2eddRaDBg3i1FNPjdr22GOPZdCgQfzpT3/iz3/+Mz6fj8GDB7PXXnu1OPZtKSwsZNGiRVxwwQXccMMNmKbJrFmzuP3226O6jE6fPp333nuPf/zjH2zdupX8/HymTZvG/Pnz25zMQURERFLHsDozaqyIiIhIBjv55JN56qmnqK6uTnVTRERERCRNaUw3ERERERERERGRBFPSTUREREREREREJMGUdBMREREREREREUkwjekmIiIiIiIiIiKSYKp0ExERERERERERSTAl3URERERERERERBLMleoG2J1pmqxfv57CwkIMw0h1c0REREREREREJIUsy6KqqopBgwbhcLRdz6akWwfWr1/P0KFDU90MERERERERERGxkbVr1zJkyJA271fSrQOFhYVA6EB6PJ4Ut0ZERERERERERFLJ6/UydOjQcM6oLUq6daCxS6nH41HSTUREREREREREADochkwTKYiIiIiIiIiIiCSYkm4iIiIiIiIiIiIJpqSbiIiIiIiIiIhIgqV10u2mm25i6tSpFBYWUlJSwmGHHcayZcuittm4cSMnnHACAwYMID8/nylTpvD000+nqMUiIiIiIiIiItITpHXSbfHixcyZM4cPPviA1157Db/fz+zZs6mpqQlvc+KJJ7Js2TL+85//8NVXX/HrX/+aI488ks8//zyFLRcRERERERERkUxmWJZlpboRibJlyxZKSkpYvHgxM2bMAKCgoID77ruPE044Ibxdnz59uPnmmznttNM6jOn1eikqKqKyslKzl4qIiIiIiIiI9HCx5orSutKtucrKSgB69+4dXrfnnnvy5JNPUlZWhmmaPPHEE9TX1zNr1qxWY/h8Prxeb9Q/ERERERERERGReGRM0s00Tc4//3ymT5/OpEmTwuv/9a9/4ff76dOnD9nZ2Zx55pk8++yzjBkzptU4N910E0VFReF/Q4cO7a6nICIiIiIiIiIiGSJjkm5z5sxh6dKlPPHEE1Hrr7zySioqKnj99df55JNPuPDCCznyyCP56quvWo1z2WWXUVlZGf63du3a7mi+iIiIiIiIiIhkkIwY023u3Lk8//zzvPXWW4wcOTK8fuXKlYwZM4alS5ey/fbbh9f//Oc/Z8yYMdx///0dxtaYbiIiIiIiIiIi0ijWXJGrG9uUcJZlMW/ePJ599lkWLVoUlXADqK2tBcDhiC7oczqdmKbZbe0UEREREREREZGeJa2TbnPmzOHxxx/n+eefp7CwkI0bNwJQVFREbm4u48ePZ8yYMZx55pn85S9/oU+fPjz33HO89tprvPjiiyluvYiIxOIDcwlLzeW8GfyA760fGOMYxhHOAzjcuX+qmyYiIiIiItKmtO5eahhGq+sXLFjAySefDMDy5cu59NJLeeedd6iurmbMmDFcfPHFnHDCCTHto7FkcN3PHyP/6xowLXAYGL1ysMrro5aBFuuaLzuGF5I1ezjZ509OyDFINt8dn+N/9UeCS7bE/VzjXW4rplHoxrl9H/KfObhT7fc9sBRra13S22m3mOl2rjXXeO6ZP1ZlzGuSiTGNPrlknz4pqefZZf6/cHvwoah1expTeCP7kbhjRZ5X0PJ5trbOjp9tqZbq74bm0u19o5jp0y7FVEw7x7RruxTT/jGBtLlWqPn1iwS/3opV1WCb46eYimn0yqF6kJPBrx/XYffStE66dYfGpNsa1814jNyExDQG5+NZfUpCYiWbd+R8rHU1qW4GOAyK6ufG/TDbtD9F0ulca66nv3bpJNnn2fn+P3J/8P8AcOIgiMl2xki+zH4h7li2O686+dmWarY7jiIiIhK3dLhWqMy5O5ToELEZr1XHsMDvO0y6ZczspSIikpnq8YVvD6QfAKVWWaqaIyIiIiIiEhNVunWgsdKt/Nt1FNS6wLLAACPfjVXjj1oGWqxrvmwUZGF43BiF7hQ/s9hYVQ1Y3gbMTbVxP9d4l9uKaeS5MDxuHIMKOtV+c30NVnVD0ttpt5jpdq4113juWdX+jHlNMjGmUZCFY1BBUs+zkxt+zxPmSwDsYGzHV9b3AFRnL8FlxDc0aeR5BS2fZ2vr7PjZlmqp/m5o0Z40e98oZvq0SzEV084x7douxbR/TCBtrhXM9dVYVX6smgbbHD/FVEwj302VVUevCYMze/bS7uQYVICrnQOZqYzC0AexY3D6XRRCqP3Ocfb+IpHWNZ57Ij4awrf7Gr3ACt0uo5IS+sQVS+dVYqT7d4OIiIikh3T8cVJ6BofXGdt2SW6HiIhIl9RRH77dLyLJVmqVp6I5IiIiIiIiMVHSTUREbK0+otKtxOgdvr1F47qJiIiIiIiNqXtpjKoPfxHr65ouT0ObLlMzN/Ld8Tn+V38kuGRLyqbxNQrdOLfvQ/4zB3eq/b4HlmJtrbP1dMPJiJlu51pzjeee+WNVxrwmmRjT6JNL9umTknqe1VtNEyn0p2/49lYq4o4VeV5By+fZ2jo7fralWqq/G5pLt/eNYqZPuxRTMe0c067tUkz7xwTS5lqh5tcvEvx6K1ZVg22On2IqptErh+pBsXUv1UQKHWicSGGN62Y8Rm5CYqbD1MyNvCPnY62rSXUzwGFQVD837ofZpv0pkk7nWnM9/bVLJ8k+z3b3/YYl1rdk4eJu19WcGbgSgL+6/sAZrqPjimW786qTn22pZrvjKCIiInFLh2uFypy7Q4kOEZvxWnUMC/y+w4kU1L1URERsrZ5QpVsO2YxzjOQgYxbjGMEjwef41Fya2saJiIiIiIi0QUk3ERGxtcYx3XLJZnfHzhzlOpBl/MAn1lL+Z76f4taJiIiIiIi0Tkk3ERGxNd+2Md2yyQZgojEmfN/X5oqUtElERERERKQjSrqJiIit1TV2LzVCSbftjJG4ts0D9I21PGXtEhERERERaY+SbiIiYmtNY7q5AXAbWYwxhgGwzFpNwAqkrG0iIiIiIiJtcaW6ASIiIm2xLCucdMslJ7z+ulfOpui5bHp/m4//4Xpc2xWkqokiIiIiIiKtUqWbiIjYlm/bJAoA2dsq3QB2/2oSfR/LxfGZScNSXyqaJiIiIiIi0i4l3URExLYaq9ygaUw3gJzt88K3fV/XdmubREREREREYqGkW6yKssHYdtsAXI6Wy62ta75cnI1z55Lua3cXOXcugeJWnnsszzXe5ba2cRoYfXM7336Xo3vaabeYaXauNRc+9zLpNcnEmC5HUs+z+ohKtxyakm7ZEyOSbt/EnnSLOq9SfTy78NmWain/bmj+L93eN4qZPu1STMW0c0y7tksx7R/T5UibawWjby44DXsdP8VUTJcjlCOKgWFZlhXTlj2U1+ulqKiIyspKPB5PqpsjItKj/GCuY3zD/gD8xvELHnX/GQAraPFtrw+xfBa5u+Uz6q0dU9lMERERERHpQWLNFTm6sU0iIiJxqac+fDuye6nhNCjYrxhHkZO6T2ow681UNE9ERERERKRNSrqJiIhtRXcvdUfd5/A4MSuDEISG7+u6u2kiIiIiIiLtUtJNRERsK2oiBaLHTciOmEyhXpMpiIiIiIiIzbhS3YB0UTlqAVaVAyxCA+c5HRA0o5eh5brmywVZuKYPIv/Zg1PzROJU86sXCby7Hip98T/XeJfbiukwMPrk4vnp1M61/5UfIWAmv512i5lm51pz4XOv2p85r0kmxnQ5cO0/PGnnWb3V+kQKADkT45/BNOq8gtQezy58tqVayr8bmku3941ipk+7FFMx7RzTru1STPvHhLS5VvAOeRBrax2Yln2On2IqptOBNy/Q1mkbRUm3WFX6wNg2y5xFKInTqPlye9tU+Agu2ZzctiZQcMlmqGiqNInruXZ2ufm6oIVV2rmuY8Elm5viJLuddouZZudacy3OPUj/1yQTYwbMpJ5nbY3pBqFKN0exk6xh2QS9wZjitXpeQdp9tqWaLb4bWpMu7xvFTL92KaZi2jmmXdulmPaOmSbXClbptoQb2Ov4KaZiVrZyTdEKJd1ERMRWFgU/Yrn1A++an/KjuZ5hDKSv0ZudjPFR27mGZkEQfF/WYsaYdBMREREREekuSrqJiIitPGm+xILg0wBMYSLDjcHMcEzlYOfeUds5HA6yJ+RS91E1/h98BKuDOAucqWiyiIiIiIhIC45UN0BERCRSlVUdvl1kePAYBXiMgla3jZxMwfetJlMQERERERH7UKWbiIjYShVNybPH3LfS2yhqc9voyRTqyJtamNS2iYiIiIiIxEpJNxERsRVvRKVbIXntbAnZO+SSu2cBhsPAvza2wUxFRERERES6g5JuIiJiK1WEkm655JBlZLW7bfaEPOreC21vZGvEBBERERERsQ9doYiIiK14rRoAPOR3uK2rfxbOPqHfjzSmm4iIiIiI2ImSbiIiYiuNlW4FRsdJN8MwyJ6YC0BgvZ9AmT+pbRMREREREYmVupfGyDlrCHxdA6YFDgOjVw5WeX3UMtBiXfNlx/BCsmYPT/GziV32eZPxv/ojwSVb4n6u8S63FdModOPcvk+n2+97YCnW1rqkt9NuMdPtXGuu8dwzf6zKmNckE2MafXLJPn1Swl53y7LCEyl4aH3G0hbnysQ8at+uAqB+aS0FM9qeeCHyvIKWz7O1dXb8bEu1VH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCaTNtYLrwBEEv96KVdVgm+OnmIpp9MrBOagPvN7xOWxYlmUl9F2RYbxeL0VFRVRWVuLxeFLdHBGRjFZn1dPLtysAMxxTedW9oMPHlD+6mbL7NhLY5Kff7wfT+4wByW6miIiIiIj0YLHmilTpJiIituGlaebSWCvd3CNzqP80NA6c72uN6yYiIiIiIvagMd1ERMQ2qrZNogBQGMNECkB4TDeA+m/qEt4mERERERGRzlClW4zM9dUEVtSDZYEBRr4bq8YftQy0WNd82SjIwvC4MQrdKX5GsbGqGrC8DZibauN+rvEutxXTyHNheNw4BsVW9dK8/eb6GqzqhqS3024x0+1ca67x3LOq/RnzmmRiTKMgC8eggoSdZ5GVboUxTKQA4OqdhWtgFoENfnxf12JZFoZhtLpt5HkFLZ9na+vs+NmWaqn+bmjRnjR73yhm+rRLMRXTzjHt2i7FtH9MIG2uFcz11VhVfqyaBtscP8VUTCPfjWnF9mO/km4xqtrhnxhGbscbxsAYnI9n9SkJiZVsVTv+E2tdTccbJpvDoKh+btwPs037UySdzrXmevprl04SeZ5FVrrF2r0UIHtCHoEtlTh6uQhs8pM1oPU/IG13XnXysy3VbHccRUREJG7pcK1QNeqh0OD1IjZTFWPSTd1LRUTENqqI6F4aY6UbQO6uBWCBf0U9PnUxFRERERERG1DSTUREbOFHaz0vBxczhuFMNMawg7FdzI91j8qGYOi2JlMQERERERE7UNJNRERs4RPzK+abT7GCH+lHbw50zor5sdnb54Vv13+jpJuIiIiIiKReWifdbrrpJqZOnUphYSElJSUcdthhLFu2rMV277//Pvvssw/5+fl4PB5mzJhBXZ26H4mI2Mm31srw7WHGwLgemz2hKenmU9JNRERERERsIK2TbosXL2bOnDl88MEHvPbaa/j9fmbPnk1NTdOYQO+//z4HHHAAs2fP5qOPPuLjjz9m7ty5OBxp/dRFRDLOMnNV+PZFrvgG9XUWOsndrYCcXfNxFDixLA24KyIiIiIiqZXWs5cuXLgwavmhhx6ipKSETz/9lBkzZgBwwQUXcO6553LppZeGtxs3bly3tlNERDr2nRVKurlwMdoYFvfjnb1dVP+3AgD/2gbcw7IT2TwREREREZG4ZFS5V2VlJQC9e/cGYPPmzXz44YeUlJSw55570r9/f2bOnMk777zTZgyfz4fX6436JyIiyTfGGMHuxs5MM3Yky8iK+/E5EeO6aTIFERERERFJtYxJupmmyfnnn8/06dOZNGkSAKtWhaomrrnmGk4//XQWLlzIlClT2HfffVm+fHmrcW666SaKiorC/4YOHdptz0FEpKcyLZNnzVf5wFpCsHEa0jhlK+kmIiIiIiI2kjFJtzlz5rB06VKeeOKJ8DrTNAE488wz+e1vf8vkyZO5/fbbGTduHPPnz281zmWXXUZlZWX439q1a7ul/SIiPZmfQPh2FvFXuYFmMBUREREREXtJ6zHdGs2dO5cXX3yRt956iyFDhoTXDxwYmv1u4sSJUdtPmDCBNWvWtBorOzub7OyW4wDl3DWLrC+qsIIWOA2cA/MxN9RELQMt1jVfdgz34Nyhb6KeetLlP30wga9KCX6wIe7nGu9yWzGNfnk4x/fqdPsbXlyF+VN10ttpt5jpdq4113juWT96M+Y1ycSYjiEFuA8e1eXXuwF/+Lbb6NxXU/a4XPJmFGL5LYLlgVa3iTyvoOXzbG2dHT/bUi3V3w3Npdv7RjHTp12KqZh2jmnXdimm/WMCaXOtkDv/5wS/K8fcUmub46eYiukcmE9uiQPO7vgcTuukm2VZzJs3j2effZZFixYxcuTIqPtHjBjBoEGDWLZsWdT677//nl/84hdx7Sv72PHkneXpcpvTjXNKCc4pJXDSxI43tiHnlBJyp5SkuhnSCeFzT3oEHw3h29m4OxXDkeMgsNFPw/f1GDkGVtDCcBpR2+i8Sox0/24QERGR9OA+dnyqmyDSqgavN/OTbnPmzOHxxx/n+eefp7CwkI0bNwJQVFREbm4uhmFwySWXcPXVV7PTTjux88478/DDD/Pdd9/x1FNPpbj1IiLSKKrSrZPdSwGyJ+bR8H09Vr1Fw6p6ssfmJqJ5IiIiIiIicUvrpNt9990HwKxZs6LWL1iwgJNPPhmA888/n/r6ei644ALKysrYaaedeO211xg9enQ3t1ZERNrSYEUm3TpX6QahGUyrnisDwPdNrZJuIiIiIiKSMmmddLMsK6btLr30Ui699NIu7av+2g8wPq4E0wKHgWNbn97IZaDFuubLjtFFuKYPIuugkR3s0R78L60m+O56/O+sj/u5xrvcVkxHv1ycO/Ql55rdO9X+hke+xVxXnfR22i1mKs61YHUQZ4GTOwMPA3Ce66ROx2o894IrKzPmNcnEmI7BBbhPnNDl86whontplyrdtk2m8M85r7J0uwdxN+QwwzE1fC5GnlfQ8nm2ts6On23tuTPwMG+ZHwMwxZjI5a6zMQyjg0fFJ9XfDc2l2/tGMdOnXYqpmHaOadd2Kab9YwJpc11af80HBL8qxdxSZ5vjp5iK6RiYT92Q2NJphhVr5qqH8nq9FBUVscZ1Mx4jMRUTxuB8PKtPSUisZPOOnI+1ribVzQCHQVH93LgfZpv2p0h3n2vfj/uMdb02c/SLVxMsgGOdB/PXrCs7Faunv3bpJBHn2VLze3Zt+DUAv3Uezn1Z13YqTmCrH993ddy648O87f6UT6yvcOFimmNHXnI/YL/zqpOfba35yPySQxvOwsTCiYNa6qnHxzfu/zLKMTQh+2hku+MoIiIicUuH69LKnLtDiQ4Rm/FadQwL/J7Kyko8nrbH/3d0Y5tEJIMFq4P4f/Bhbg5SWVBDNTWUWuWpbpakicgx3To7kQKAq08W+dM9FOV68BgF+PBTRQ2brNJENNPWyq1KyvFSSRVgUI8PgA+sJSltl4iIiIhIT6Wkm4gkhO+bWgCy67LC6+qoT1VzJM34EtS9tNF5rpN42n03uWQDYJL5v5CW4w3fPsKxf/j2h+YXqWiOiIiIiEiPl9ZjuomIffi+DiXdcuqaqpTqtlXaiHQkeiKFrifdGjlxAhAkmLCYdlVpVYVv7+DYjh3WjeHgj/di+o87wSUpbJiIiIiISA+lpJuIJIR/QwM5u+Tj2OgMr6uzVOkmsYnsXprYpFuooDuImbCYdlVOZfj2QKOEJ468lvova8EBwbOCOAud7TxaREREREQSTd1LRSQhat+qov7TGsx1QbKtULWbupdKrKKSbkbiK93MHpB0i6x0KzIKyd29MLRgQt3H1SlqlYiIiIhIz6Wkm4gkRP227qXOfi5yjRxA3UsldomaSKE5BwbQUyrdmsZ064WHvD0Kw8u173tbe4iIiIiIiCSRupeKSJcFNvsJbg4lTXK2zyOXbCpQ91KJXaInUmgUHtPNyvwx3SqspsRakVFI7h6F5P2skMAWP3WfqNJNRERERKS7KekmIl3WWOUGkL19HjlGNlhQr0o3iVGyJlJwbCvotnrA7KUVNHUv7UUR7hHZNCyvJ7DJT2CTH8u0MBxGClsoIiIiItKzqHtprBJ1pBxg5CfugjLZjPwse5wlzs5dKKbTsU64bjzXGr6vI2fXfPL2KiR3lwLyyAWgtgtjutnm3JMOJeI8i55IIZHdSxsnUghVutnuvOrkZ1trGivdnDjJJxfDMMLjupkVQXzL6hK2L9sdRxEREYlPulyXJvBvJZGEivFvYVW6xahoy1l4PJ5UN6PbFS49IdVN6JJ0b3+6qFtSQ/0nNQD0v3E4uWSH1lOPZVkYRvxflnrtepaGyO6liZxIwXCC1TSmWyafV42Vbr3whN9zebsXUv2/CtxjcqhfUkPOhLyE7CuTj6OIiIjYR1HNnFQ3QaRVhtcLRb/vcDv9Ti0iXeaL7F46IY8cQhMpWFhRFUwibYmudEvkmG6hr7meMHtpY6VbkdE0gULuHgVYNSa+JbXUvFmZqqaJiIiIiPRIqnQTkS6xTCucdMsakY2z0EluQ2hMNwhVuyVyNkrJTJETKSR29tLG7qWZnXS7NTCfycZE3IaLCcbo8PrcyQUYLgPLb1H7flU7EUREREREJNGUdBORLvGv9YEr1JUtZ/tQ17XG7qUAdfgoTkXDJK0kayIFZ7Mx3TJR0ApyfeAe6vGxHSN53n1/+D5HjoOcKfnUfVhNw/f1BEr9uPqmwfgtIiIiIiIZQEm3GFXt9S+sHxrABAygIAtq/NHL0HJds2XHgHxcs4eR+6efpeaJxKnu0ncIvLoGc2VF3M817uW2Yua4cIwqovD9ozrV/oZHvoUqf/LbabOY3XWu+b6qxawI4uznInePULe2xu6lALVWXahNcQqfextrMuY1yciYBVm4T5rQ5fMssntpVkKTbk6gqXtp1HkFqT2eXfhsi/SjtT48U/B4Y2SL+wtmF2O4DYKVQWo/qsJzYO8u7Q9s8N3QXLq9bxQzfdqlmIpp55h2bZdi2j8mpM11adUeT2KurIT6gH2On2IqZkEW1f2Mtk7bKEq6xcj8pgyM3KYV9c2qJpovt7GNWVqPv7ze9h9ujfxPfo+1riZ6ZYzPtUvLkevqgpifb+m4sa3wP/k9lEbMoJnMdtosZneda/XfhGZEDG4J4B4eqnDLNZoq3RqTAfFq9dyDtH5NMjKmL4j/ye8TmnTLTuBECg5CX4aN3UvbPK8grT7bIi2zVoVvjzNGtbg/e2IeW67/KbTL96sTknSzxXdDW9LhfaOY6dkuxVRMO8e0a7sU07Yx0+W61Px8C5jbxq2x0fFTTMU0t9S1jNsKTaQgIl3iW9p04Z29rXtpHk0J6jrqWzxGpLnkTaQQqnTL5O6l31orw7cnOEa3uD9v98Lw7doPNK6biIiIiEh3UaWbiHRJ/dehDL+RZeAeG+pW2nxMN5GORFW6JXAihabZS62ExbSTL8zv2GBuYQzDCRBgR2Nci22yBrnJGp6Nf50PsyqA2RDE4XamoLUiIiIiIj2LKt1EpNMsv4mzr4ucKfnk7lGIwx36SMmJSLrVW0q6Scd8VtPspYmsdHNk+EQKr5vvcZf5KCv4kV0ck5jk2K7V7Qp+UYzhNKj/vBbfV7GVwouIiIiISNeo0i2DmZaJw3BwZ+Bh3jI/BmCGYyrznCfgMJRvla7zfV9P7SIvAEVH9QmvzzUiJlJAF/jSseRNpND0WWdaZsLi2kWNVRu+XURhm9tlj8vF8oWq/WrfryJ3lwIgdEyMbePe1eOLeu+KiIiIiEjXKPOSwS4P3MrA+j35S+BBVplreNP8kGsCf+X3gT+nummSIXxfN13wN47nBupeKvFroKnSLdtIXPdSB03dKBtnMM0kkWMmHus6pM3t8vZofVy3B4L/It+3I/m+HfmVf05yGikiIiIi0kOp0i2DrbM2UU6oCmkUQ6llVXi9SCLUL41Iuk1sSrrl0FQtU2dpIgXpWLImUnBE/LYUzMCkW21E0i2PtqvUcnbIJ2dKPo58B8GKQHh9tVUTHu9uvb4bREREREQSSpVuGeyniAuo5933hW8r6SaJElnpljOpKek2zjGSYxwHM83YiTsCD3Fcw0U8EnguBS2UdJG02UuNyKRb5o3rVmM1dd9uL+lmuAycHie1b1dR81ol/p9CFahlVIa32WRtTV5DRURERER6ICXdMth6NgPQh2KKHR5K6A0o6SaJE9jiJ2dqPvn7FpE1vKlL6V6OXVng/hP7OfbkB9bxtPkKVwfuTGFLxe4iJ1JIxuylkJkzmEZ2L80z8trZEnJ3j+hi+mE1EP19UEkVpVZ5glsoIiIiItJzdap7qd/vZ+PGjdTW1tKvXz969+6d6HbZjjHMAxuDYFlgGJDjhPpmy9ByXbNlo28uWfsOTXp7TcsMdxUaZJRs+78/m60yNrCFoBXEaTjbCwFA1i9G4H99Lda66rifa9zLbcXMcuAY1vYA4R21v+GJ76E+kPx22ixmMs+1OwMP46wy2PvDsQDkTivAcBgttvMYBWThwkcDXqrj2kf43NtalzGvSUbGzHWR9YsR8Z5CYY0TvXxlfR9el7zupUHckecVpPZ4duGzrVENTdWm7VW6AeRtS7r9c86r5Bd8yEXWWVFJNwODVdZa+hq9Otxvyr8bmku3941ipk+7FFMx7RzTru1STPvHhG67Lu0qx3bFmGuqwG/a5/gppmLmODF6ZcHKjs/hmJNuVVVV/POf/+SJJ57go48+oqGhAcuyMAyDIUOGMHv2bM444wymTp0aa8i04vn8WDweT6qbEbNSyvETGrdnsNE//P8S61uCBNlMGQPp12Gc3Hv3ITepLU2u3Hv3IffefVLdjIyywvyRWwPzGfp1X/bmYiB6EoVI57lO4pngq3xofUENdTEneyH9zz1pn9eqZoRvb1w4ySOX8YzCxGQXx6SEzq7sjJhIIYiZcedVrGO6AeRNL6Tu1Wz+b+oitjrKqQr4wxXRBga98LDGWs80duxwv5l2HEVERMSeCr88PtVNEGmV4fVC0dkdbhfTlc1tt93GiBEjWLBgAT//+c957rnnWLJkCd9//z3vv/8+V199NYFAgNmzZ3PAAQewfPnyLj8B6ZrI6oVB25JujRVvofs3dnubJP0FtvppeKyKzWxl6NdNSducNpJuAIVGfvh2dURVjvRsW6wyaqnDSzUODPo4iunn6M0Ix+CE7ie6e2nmTaQQOVFJbgdJN6fHxcAZg9no2IKfAN+aK8PfFRYWZVRSZlUks7kiIiIiIj1KTJVuH3/8MW+99Rbbb799q/dPmzaNU045hfvvv58FCxbw9ttvM3bs2IQ2VDp2W2A+1VYttdTxRfA7RjKEQiOf3YydANjNsRNlViUbzVLmNFzHSMdg9nLsyhyXfj2Q2DSsrCdwRiXOXznIqXNT3auOgvLcNivdADwUhG97qaaIwu5oqthcKeXh24c6f87tWZcnZT/Nu5dmmhpC3WTzyMUwjA63H0QJHgrwUs3b1sfMMKbipZoPrCUA4RmvRURERESk62JKuv3f//1fTMGys7M566yzutQg6RzTMrk78E/WsxkHDnY3dmIIA5jhmMpJrl8BcLzzUI53Hsr1/nu4JfgAX5jf8oG5REk3iVmwLIDTdNB3QzFPnPUGT5z5BhM2jWRR/8fafExkpVuVVQMd5wWkB9gaMWB/LGOIdZYzKumWeZVujd1LO+pa2sgwDMYbo/jI+pI6fLxqvcPPjF3C91daVUlpp4iIiIhIT9SpiRQieb1e3njjDcaNG8eECRMS0SZbqhzwd6xA0+yMGBA1EV5jIqH5uubLLgfOHfpS8MFRCW3fj9Z66vEBsJ0xgl5GERAayL45j1FAIfmUUclGSim3KsPbN1e9+5MEvyoNDVwZ+Tyg4+ca73J7MfNcFFV03F+6uerdnyT4+eamOMlup51iJuFcC1aExgks2VDMpqFlYEDpgEqKctoe77CQpqRbPJMphM+9gJk5r0kmxjTAObkk7vNsS0TSrR/JTLo1jelmYkafV5D649nJz7ZGdVZTpVusxjtG8VHwy/DybOfPeCfwKRB7pVvKvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8eEpF2XJlpl8X1QG7oGsc3xU0zFNMDr9BGLuEerPvLII7n77rsBqKurY9ddd+XII49kxx135Omnn443XPrwN6uQsGi53Nq65st+E3NTTUKbBvCx9SVOHPSnL4c79udp99087b6b81wntdj2PNdJHO7cP7z8nbWqzbjmpprWn3sszzXe5fa2qe9ctzBzU010nGS3004xk3CuBctCX3jFpU3J3NHGsHYfUxjRvbTKir094XMvk16TTIxp0anzLLJ7aZ8kVro5wt+yoUq3qPPKDsezk59tjcLdS43YKt0ALnaeyifuZzjXcSIHG3tzkGNW+L5YK91S/t3Q/F8iYiajnYqZ/u1STMW0c0y7tksx7R/TImnXpQkX+beSXY6fYirmtvdQLOJOur311lvstddeADz77LNYlkVFRQV//etfueGGG+INJwlSaVWxhXI2UcowY1CH2483RoVvf2e2nXQTiRQsDyXdXP6m6qHICTpa44nsXkoafLFLt4jqXprESjdH5OylVmaN6WZZVtzdSwG2c4xkkmM7Bjv6s5dz16jvDI3pJiIiIiKSOHF3L62srKR3794ALFy4kMMPP5y8vDwOOuggLrnkkoQ3UGLTeOEFsVU8TDBGs7MxgQLy2MTWZDZNMkiwPJS02PGjUazdfyv+nAC7Gzu3+5jISjevFXv3UslsWyIq3foZvZO2n8gx3awWP1Gltwb84RlZ82h7MpO2NFZCW5aFEydBglRYSrqJiIiIiCRK3Em3oUOH8v7779O7d28WLlzIE088AUB5eTk5ObH/0i6JFZl0y49hbJ9xjlEssb4NbW/Gf7EmPVNjpduJdx/Adaf9nuwJHZ87qnST1pRaZeHbfYzipO0nk2cvbexaCvF1L23OMAyKKWQrFVSo0k1EREREJGHiTrqdf/75HHfccRQUFDB8+HBmzZoFhLqd7rDDDolun8SoxqoN386NIek2iBIKyaeKmnbHdBOJZG5LugE4esX28dHZiRQks1hWqMrsr8FHeMv8mPfNz8P39aE4aft1Gpk7e2ltZNItju6lrSkyCtlqVajSTUREREQkgeJOup1zzjlMmzaNtWvXst9+++FwhC5oRo0apTHdUqguzu6lhmEw3hjFx9ZXrLHWU2PVkm+o4k3aF4xIujljTbpFzKBbHcdECpJZ1rOZCb4DyCWHQvLZnrH4CbCjYxwuo8sTabep+eylmaTOivjcj2P20tb0IjQDcSXVmJaJw4h7yFcREREREWmmU1c6u+66K7vuumvUuoMOOighDZLOibd7KcB4x2g+Dn6FhcX31g9MNiYmq3mSIZy9XbgGZmH5LBzZsV2Ue6Iq3ZR066nWWZtowE8DfooppNgRSvKMdYxI6n7VvTQ2RUYhWKHEZBU1FFHY1eaJiIiIiPR4cSfdTjnllHbvnz9/fqcbI51XYzVdfOXG2M1oJ8bxrTGJXHJYZa5lskNJN2nfsKfHx/2YfkYffuM4gB+t9XxqfsV031E0EGC8MYpH3X9OQivFjtZZm8K3T3X9ht+5Tu+W/TrJzO6lPquB54KvM5phOA0Huzl27lK8nYwJ1Bs+GvCzySoNJeFERERERKRL4k66lZeXRy37/X6WLl1KRUUF++yzT8xxVqxYwcqVK5kxYwa5ublYloVhGPE2R7aJ7F4aazfRUY6hfBJcCsAe1mQOZ/+ktE0yx7ozVuAocJI9IY/ep/eP6TEDjX486v4L1/vv4S3zYz62vqIeHyutH5PcWrGT9RFJt8FGbOdOImRq99KtVPCn4N8A2M4awQnOQ7sUz4mD96zQOHurrLVsx8gut1FEREREpKeLO+n27LPPtlhnmiZnn302o0eP7vDxW7du5aijjuKNN97AMAyWL1/OqFGjOPXUU+nVqxe33nprzG256aabeOaZZ/juu+/Izc1lzz335Oabb2bcuHEttrUsiwMPPJCFCxfy7LPPcthhh8W8H4CsE8ZjfOIF0wKHgaMkD3NzbdQy0GJd82XH6CJcs4bEte9YdGZA7XHGqPDtZW1MppBz43QCi38i8N6GuJ9rvMttxXT0ycGxQ99OHZecG6fTMP9rzA01SW+n3WIm+lwz64JUPLwFgLwZnpiTbo08RgEeowCXFUqCdFR11HjumSsqM+Y1ycSYjoH5uE/ZvsPXP7LSbRDdl3Rz0PRjThAz6ryCls+ztXV2/GyrtKrCtyPHTeys8Y5RNPa+/c5axQHMaHf7VH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCSTtujTRss6YhPlVKebWetscP8VUTEdJHllDXfBQx+dwQkavdjgcXHjhhcyaNYvf/e537W57wQUX4HK5WLNmDRMmTAivP+qoo7jwwgvjSrotXryYOXPmMHXqVAKBAJdffjmzZ8/mm2++IT8/P2rbO+64o0uVdHl3zMLj8XT68ckW2b001qTbCGMw2bjx0dDmDKbuY8bhPqZlEjNdpHv77SRYFv8kCpHOc53EeZzE7r7fsMT6tsOqI712mWWdtTl8e0iKKt2CBDPmvCqnMnx7T8fkLscbH/EjTCwzWmfKcRQRERF7y/vrrFQ3QaRVptfbfUk3gJUrVxIIBDrc7tVXX+WVV15hyJDorPrYsWP58cf4upstXLgwavmhhx6ipKSETz/9lBkzmn6lX7JkCbfeeiuffPIJAwcOjGsf6aKxe6mbrJhnAnQaTsYZI/nSWsYKaw0Nlh+3kZXMZkoaC1Y0DULv7OVsZ8v2ZeMGwE8AzZLYc0RVuhkl3bbfyDHdTKxu22+yVVje8O1io+s/CEVWPn9nruxyPBERERER6UTS7cILL4xatiyLDRs28NJLL3HSSSd1+Piamhry8lp2DSkrKyM7Ozve5kSprAz98t+7d+/wutraWo499ljuueceBgwY0GEMn8+Hz+cLL3u93na2to/G2UvzYpy5tNE+xu4UkEc1tXxiLmVPZ9crJiQzdbXSrVG24aYx9+GjIeaJPyS9/cr5c0ZbQym3KmMedzIRMnX20gqaupf2outJt0Ijnz2NyVhAH6O4y/FERERERKQTSbfPP/88atnhcNCvXz9uvfXWDmc2Bdhrr7145JFHuP766wEwDAPTNLnlllvYe++9421OmGmanH/++UyfPp1JkyaF119wwQXsueeeHHrooTHFuemmm7j22mtbrPe/8gO139VB0MJwGhj98zA31UYtAy3WNV92DC7AOaYY57henX6urand1r001q6ljcY6RnJH4GEA/msubpF0Cy4rx1xRgf+zzXE/13iX24rp6JuLc6SHrANGxH1cgsvKCSz+ieD6mqS3024xE32uBcsjkm69O18R2VjpBu0n3RrPveC66ox5TTIxpnNQPq6ZQzo8z+a4ju/0OdMVUUk3y4w6r6Dl82xtnR0/2yIr3RI106iBg/esT8EKfafkGW3/iJPq74bm0u19o5jp0y7FVEw7x7RruxTT/jGBpF2XJpp/4Q8EV1dildbb5vgppmIa/fNo6BVbL5q4k25vvvlmvA+Jcsstt7DvvvvyySef0NDQwO9+9zu+/vprysrKePfddzsdd86cOSxdupR33nknvO4///kPb7zxRotEYXsuu+yyqGo+r9fL0KFDqT12Ia52LkDiYQzOx7O64wRlPBonUmjvIqk1hzj3Zl7gOkxMXjYX0zfQi/NcTRWLNQc8i7WuJqFt7RSHQVH93LgfZpv2p0giz7WopFtx57uX5tBU0VpPQ5vb9fTXLl34Sc5nWqI0n73UdudVJz/bEl3pBtu6/W7722G9tZkxxvA2t7XdcRQREZG42flvuEa1h70YGrxexGbqIsbVb0+3D6Y0adIkvv/+e372s59x6KGHUlNTw69//Ws+//zzmGY/bc3cuXN58cUXefPNN6PGinvjjTdYuXIlxcXFuFwuXK5QjvHwww9n1qxZrcbKzs7G4/FE/UsHTd1L46t0KzH68I+sP/Jq1gI2WaVcF7ibs/xXJaOJkuaiK9260L2Upio5XztJN5FEiJy9tKPJO9JJdKVbYr6nIie4iByDT0REREREOiemK+cpU6bwv//9j169ejF58uR2ZwH97LPP2rzP7/dzwAEHcP/993PFFVfE39pmLMti3rx5PPvssyxatIiRI0dG3X/ppZdy2mmnRa3bYYcduP322znkkEO6vH+7CFrBcPIi3qQbwLHOQ9hilVFKOQAbrS0JbZ9khuhKt64k3Zoq3XyWDzo/qbCkiWB1kMrHt+DwOMkem0vuLgXdtm+nET17aaaooCnplrhKt4ikG0q6iYiIiIh0VUxXzoceemh4koPDDjus0zvLysriyy+/7PTjm5szZw6PP/44zz//PIWFhWzcuBGAoqIicnNzGTBgQKuTJwwbNqxFgi6dNVa5QfzdSxv1pggDAwuLUqs8UU2TDBI1kUJXKt0Md/i2Kt16hsCGBjbMWw1A0bF9GbJgbLftO3r20kytdEvMmG6DVekmIiIiIpJQMV05X3311a3e7ozjjz+eBx98kD/96U9digNw3333AbToKrpgwQJOPvnkLsdPFzU09SWOd/bSRk7DSW+K2EoFpVQkqGWSSXJ2zsfzq94EywO4Sjo/kUJOxEQK7Y3pJpnD9DZVmDkKOz8eYGdEz16aQUm3JIzpFpl0W29tTkhMEREREZGeLO5ylY8//hjTNNltt92i1n/44Yc4nU523XXXdh8fCASYP38+r7/+Orvssgv5+flR9992220xt8Wy4h9QsTOPsSPTMnEYDu4MPMzC4Fvh9W3NBBmLvkYvtloVlFpliWiiZJjep/an96n9O96wA81nL5XMF4xIujk93Zt0i5xIIaO6l26rdHOT1aXP/UiDjJLw7XXmxoTEFBERERHpyeJOus2ZM4ff/e53LZJu69at4+abb+bDDz9s9/FLly5lypQpAHz//fdR97U3VpxEuzf4GNcF7sFNFv3py27sxK6OSVyUdWqnY/ahF7Caamqpt3zkGNkdPkZ6jjVHLSPwkw9nnyyGPT++0+/XyDHd6i1foponNhZV6VbU+a7JnRHdvTQzfnQBCFhB+tOXQZQk7LtzoNWPicYYtlhlbEBje4qIiIiIdFXcVz/ffPNNOGkWafLkyXzzzTcdPv7NN9+Md5fSinXWJrxUAzDaGE5fo5hhjkFRlQrx6mf0ovGatJRyhtByPDzpuXxf1tCwyoezt6tLF/mRY7o1qNKtRzC9EeMBprR7aeZUum1kC2VUkt/JcTxb43K4KLcq2UIZLqt7XycRERERkUwUd9ItOzubTZs2MWrUqKj1GzZswOXq3gqGnubRwPO8a35GORVRY2E9mPVHxjiGdzl+X6N3+HapVc4QQ0k3aRKsCCUsnL269j7XmG49TzCq0q27u5dm3phulmXhpQYAD4mdCXaw0Z8N1hY2Uorf8pNldH78RhERERGRni7uq+fZs2dz2WWX8fzzz1NUVARARUUFl19+Ofvtt1+Hj997773brZJ544034m1Sj3F7cD7fWCsBGM2w8PquVLdF6kNx+PYWjesmESzTIlgeqlZy9upa0iQnonupxnTrGSK7l3Z3pVvkmG6ZMnupjwYChN6PheR3sHV8Bhv9+cRaioXFRkoZysCExhcRERER6UniTrr95S9/YcaMGQwfPpzJkycDsGTJEvr378+jjz7a4eN33nnnqGW/38+SJUtYunQpJ510UrzN6Tb5/zucnPUBMC0wDIw+OVhl9VHLQIt1zZcdfXNxDOzcRZKbpoqDUsqB0Kx1eQnqXtQvotLtysAd3B/8P/Z/axdO2XIUwe/L436u8S63FdMozsYxoHPHrOC9owh8VYpVWpf0dtotZlfOtebMymC463FXK93ckZVu7YzpVvDeUZgbajBL6zLmNcnEmEafXFw79m33NQ+mcEw3B00/8gQxo84raPk8W1tnt8+2xqEFADxGYivdBkXMYLrO2sRQo/WkW+NxTNV3Q3Pp9r5RzPRpl2Iqpp1j2rVdimn/mEBCrxWSKf+D0N8cVoXPNsdPMRXT6JNDMCcAM3/f4Tkc99XP4MGD+fLLL3nsscf44osvyM3N5be//S3HHHMMWVkdd0O5/fbbW11/zTXXUF1d3ep9duDauR/ZMzwpbYMjYoydqm0XXYONrs8m2eho50HMdkzn4eCzfGR+ideqZtOAWlxDS3BNSUw1XXdzDMzHnQZfJnbXWOUG4Ohq99KoMd38bW7nGJifFn8ISMfMyojzp5tnL3VEzl5qBTPivKqyasK3k1Hp1mi9tbnN7RqPY7p+N4iIiEh6cO3cD3bul+pmiLTg8npj264zwfPz8znjjDM689A2HX/88UybNo2//OUvCY2bScyIQcAbZ+EblMCkWz+jN/2M3vQ3+1JkFAKJr6KQ9BSZdOtqpVt21Jhumr20J3AUOnENdmN6gynoXho5e2lmdC+NrHQrNBKbdIscrmCdtSmhsUVEREREepqYrp7/85//xBzwl7/8Zaca8v7775OTk9Opx/YUtYYPLHDhZBiD8BgFzHJMS/h+znOdxHmclPC4kr4SmXTTmG49z4CbRzDg5hEp2bcjAydS8FoR3UsTPJHCeGMU+xi7s8Zaz3PB19jPsSfjHaMTug8RERERkZ4ipqvnww47LKZghmEQDAbb3ebXv/511LJlWWzYsIFPPvmEK6+8Mqb9pELNb1+DJd5QH16HgdE3NzROWMQy0GJd82XHKA9Z+w7Dfdqk+Ntg1QLQn74c4zwYgAtdpyTuSbai4R9L8b++luDHG+N+rvEutxXTKM7GuUNf8h6a3an2+x5YirW5NunttFvMrpxrzSWt0q2dMd0azz1zdWXGvCaZGNMoySP79EkJOc+SwWlEV7pFnlfQ8nm2ts5un23V1IZvJ7rSbYpje45wHsA5gWtYYa3hPfPzVpNuqf5uaC7d3jeKmT7tUkzFtHNMu7ZLMe0fE0jotUIy1Z78KsGvSkNjutnk+CmmYhp9c6kZGtt1sWFZlpW4t0THTj75ZCJnL3U4HPTr14999tmH2bPjT6okm9frpaioiDWum/EkaMICY3A+ntXxJ8v61+9BJVVsZ4zkVOcRQKgqLZm8I+djravpeMNkcxgU1c+N+2G2aX+KdPZca67s7xvZMG81AIP+PppeJ3V+HKe3zI+Z3fBbAC52nsoNWRe0ul1Pf+3SSaLOs2T4v+CL/NZ/KQC3uy7nuLH19jqvOvHZFvmcbnNdxjmu4xLapMj4t7ouZY7r+Bbb6P0pIiKS/uz8N1yjypy7Q4kOEZvxWnUMC/yeyspKPJ62x//vUslKfX193F1CH3rooa7ssseyLCtc3VBAbtKTbSKR8vYopP/NwwlWBMid3LXKmshKN3Uv7Rka1vhw5DlwFjkxshwdPyCBoruXtl+JnS6qrMgx3RI/7mZuRBfwOo27KCIiIiLSaXFf/QSDQa6//noGDx5MQUEBq1atAuDKK6/kwQcf7PDxo0aNYuvWrS3WV1RUMGrUqHib02M04A9fMOaTl+LWSE/jHpVDnzkD6H/NMHJ27FrSLXJMN02k0DOsnPoFywZ/woqdv+j2fTszcUw3ImcvTfz3QS5NP6bVWfUJjy8iIiIi0lPEnXT74x//yEMPPcQtt9yC291UsTJp0iT+8Y9/dPj4H374odVx33w+H+vWrYu3OT1G5Bg+BYaSbtK9Nly4mm8KPuTbPh/i+66uS7GyyQrfVqVb5rMsC9Mb+sx3FHXvzKUATpr2mTGzl0ZWuiV4IgWAXKMp6abEuIiIiDTnsxo4ync++/pO5Ne+ufw7+N9UN0nEtuLuXvrII4/w97//nX333ZezzjorvH6nnXbiu+++a/NxkTOgvvLKKxQVFYWXg8Eg//vf/xgxYkS8zekxIpNu+SRmbDmRWAXLQhMpmNUmDk/XEifZkZVulpJumc6sMWnMdTkLuz/p5qBpDNFQpZvR9sZpojqi0s2TlO6lEZVuqNJNREREor1hvs/z1uvh5cpAFb9x/iKFLRKxr7iTbuvWrWPMmDEt1pumid/vb/NxjTOgGobBSSdFj0eWlZXFiBEjuPXWW+NtTo/ROHMpQL4q3aSbBSuaqlOdvbqYdDOaKmTfMj/izsDDGqMwg5mVTTPfOoq6NvNtZ0RWuoW66Hd/GxLtQ7Opm66HxM5eCtFjutUq6SYiIiKAaZncFXyUt8yPWWmtibpvHZtS1CoR+4v76mPixIm8/fbbDB8+PGr9U089xeTJk9t8nGmGSh1GjhzJxx9/TN++fePddY8W1b1UY7pJN2usdDNyDBy5XUu6ldCbr90vM89/He9an3Fd4G7GGMM5yDkrAS0Vu2nsWgrgTEn30swZ063qlXLWnbKCnS8diXWoydQBOzHCGJLw/USP6abupSIiIj2dz2qgn283csgmjxzGGiMoopBvWEEVNay3NmFZFoaR/j0KRBIt7qTbVVddxUknncS6deswTZNnnnmGZcuW8cgjj/Diiy92+PjVq1d3qqE9XXVkpZuSbtLNghWhpJuzV9erhFyGi9HGMAqMPHxWAz6gKqK7nGSWYETSzZGS7qVNSbd0H9Mtf+8iRn+yE6P4gg0FVYxyDI2qHE2UHCNyshNVuomIiPR0663NNOCnAT955IaGtzBgoFVClbWaBvyUUk4/eqe6qSK2E/cV9KGHHsoLL7zAddddR35+PldddRVTpkzhhRdeYL/99ospRk1NDYsXL2bNmjU0NESP6XTuuefG26QeoZamwes1kYJ0t8ZKN2dx4rrmzXbsxX/MNwCoVzVNxkp1pVtk0i1opXfSzeF24Bjo5iJO46Ik7icvakw3vTdFRER6usjuo79xHsCfs34PwNn+q/k+GCqqWWdtop+hpJtIc526gt5rr7147bXXOrXDzz//nAMPPJDa2lpqamro3bs3paWl5OXlUVJSYt+kW54LIidtdBhgWtHL0HJd8+UcJ46xveLefaq6lzrG9iJY7oPaQMTKGJ9rvMttxTQAT+eqORxjexHcUNsUN5nttFvMTp5rzZk+E6s2lKxw9k5c0i2yQqe1WUzD5159MHNek0yM6TDaPc+iK91SP6Zb1HkFqT2eXfhsS6bo7qWtV7ql/LuhuXR73yhm+rRLMRXTzjHt2i7FtH9MiOtaYb3VlHQbbPRv9fZ6axM7MyGmeHHxuKHSBxb2OX6KqZgOA7Jd4KVDMV8BlZeX889//pOTTjoJj8cTdV9lZSWPPPJIq/c1d8EFF3DIIYdw//33U1RUxAcffEBWVhbHH3885513XqzN6XZFa0/r8LklU2T30rxunL204NVfddu+kiHd228HwfKmi+pEVrrl0H7STa9dZjC9kRMppL57qc6rjmXjxsDAwmpz9lIdRxERkZ5jXUTSbZBR0nSbkohtNidl30Wbz0hKXJGuMrxeKOq4/4mjwy22ufvuu3nrrbdaTTwVFRXx9ttvc9ddd3UYZ8mSJVx00UU4HA6cTic+n4+hQ4dyyy23cPnll8fanB7FbDA5LnAI5zlO4hzHsRzm/HmqmyQ9SFTSLZGVbhFJt3p1YctYwcqI7qWeFEykYGTOmG7Vr1ZQett6yh7YRGBL27OFd5VhGORsm8FU3UtFRERkfURCbbAxIHy7n9GboQygH72ptKpS0TQR24s56fb0009z1llntXn/mWeeyVNPPdVhnKysLByO0G5LSkpYsyY03XBRURFr166NtTk9StXzZawq+hznVXX0+9hDsZG6ijvpecyIpJsjoZVuTYO1+6yWlW6SGXr9toTRS3Zi5FuTyN+7qNv3n0mzl3qf3cqmy35kw9xVBDYk9z2TG066aSIFERGRni6q0i2iuq3IKGQtG9lCGWVUpKBlIvYX8xX0ypUrGTt2bJv3jx07lpUrV3YYZ/LkyXz88ceMHTuWmTNnctVVV1FaWsqjjz7KpEmTYm1Oj9I4iP1xt+/HoImjYXqKGyQ9SvaO+Yx8exLBsgBZQxI3/lR2B91LJTM4i1w4i7p/LLdGmTR7abC6+2aCDY3rVqlJTkRERIRcctjTmEw9vqjupR4Kwre9VKeiaSK2F/OVkNPpZP369QwbNqzV+9evXx+uYGvPjTfeSFVVqPT0j3/8IyeeeCJnn302Y8eOZf78+bE2p9t5Jz6CVQqhERwNcDugwYxehpbrmi0bxdm4Zg0h75H9Y953Y9INwNmrey9ea098hcCin7A21xHvc417ua2YLgNjYD6e5Sd3qv3+51ZCQzD57bRZzM6ca60JlgWw6k2yhrjJGp7T8QNi1NFECuFzr8KXMa9JRsZ0O8k6bHSXz7NkaT6RQtR5Bak9nnF+tplV3Zh0M3LAarvSLeXfDc2l2/tGMdOnXYqpmHaOadd2Kab9Y0Jc1wqLzY/4iY2U0Dvqb/hC8sO3qyLGIE8k79iHsDbUQMCyz/FTTMV0O6jymG2dtlFizuBMnjyZ5557jt13373V+5999lkmT57cbgzLsigpKQlXtJWUlLBw4cJYm5BS1qZaMBonMLCaZr5rdbntbayNtQTeXhfXviOTbq4+3Zt0C7y9Dmtj5Ado7M+188vN1jVYWGs798tJ4O11EbGT3E6bxezMudaaqufK2HjJDwAMfngMxUf363JMiO5e2tqYbi3PPUj31yQjY9YHE3KeJUvz7qWtn1eQDp9t3Zp02/b+rG0j6WaL74ZWpcn7RjHTsF2KqZh2jmnXdimmnWPGeq0QtIJsYAsAgyJmKwXwGE2VblVJqnSz1lY3zRppo+OnmIpp1dURC0fHm4TMnTuXW2+9lbvvvptgsGmHwWCQu+66i9tvv505c+a0G8OyLMaMGaOx2+IUSGGlm0iwIjnnn7qX9gzrTl/Byt2/ZPXsrzHrmn/hJV8mdS9tTLoZWQaO7Ji/vjsl1L009N40rfQ+biIiItJ5mykjSOhvkMHNk26R3Uutmm5tl0i6iPkK+vDDD+d3v/sd5557LldccQWjRo0CYNWqVVRXV3PJJZdwxBFHtBvD4XAwduxYtm7d2u74cBItqntpn6wUtkR6omR1b46avVQTKWQs37d11H8e+iPMSHKiqDWZNJFCY9It2VVuADlGNjT+qIyPPHLbf4CIiIhkpHXWxvDtyPHcIDRcTBYu/ASSVukmku7iuoL+4x//yKGHHspjjz3GihUrsCyLmTNncuyxxzJt2rSYYvzpT3/ikksu4b777tPECTEKlvnDt529kn+xJRIpWJ6kpFvEeBANqnTLWEFvU6LIcBjdvv/iykJuenYuzqDB0LFDgY0dPsaugtWhpGF3JN3yaBq/sU5JNxERkR4rcubS5pVuEKp220qFJlIQaUPcV9DTpk2LOcHWmhNPPJHa2lp22mkn3G43ubnRf8iXlZV1Onamaqw0cnicGFndXykiPVuykm4djekmmcH0bvv8KkrNDwYlG4uZffZOABSf2I90TrqFK90Kkv89kBuVdGt9XDcRERHJfOutzeHbg40BLe4vNArYalVQnaSJFETSXUxX0GvWrGlz1tLWrFu3jsGDB7d63x133BFzHAlpTLo5e2s8N+l+UUm34mSN6eZvZ0tJZ+a2SjdnN1RntcrZVF1nBa3UtCEBrICFVbet0s2T/O+CyKT4/YH/44asC5K+TxEREbGfyEq3QZS0uN+zbQZTVbqJtC6mv9ynTp3KYYcdxmmnncbUqVNb3aayspJ//etf3HnnnZxxxhmce+65rW530kkndb61PZBlWkq6SUo1Jt0cHieGK3HdA3OixnRTpVsmsgIWZs22RFGKKt2MiKRbOg/pFqwKkD0hF7PeJGtg8sf2vDHrIsoaKnnP+ox7g49xvet8DKP7uweLiIhIam2xyuhDMR4KGGD0a3F/4bbJFHw04LMaooaQEZEYk27ffPMNf/zjH9lvv/3Iyclhl112YdCgQeTk5FBeXs4333zD119/zZQpU7jllls48MAD2423cuVKFixYwMqVK7nzzjspKSnhv//9L8OGDWP77bdPyBPLJKPe3oHAVj+GW11Lpfs1Jt0SPXOuy3DhwIGJqTHdMlRjd0hIYaVbxMdmOle64Qcjx4HRYCW04rQtA41+1FJHFaFJMHw0RFW/iYiISM+wiVK2UsFWKigxere4v9DIC0++VEVNVG8WEYm6HGlbnz59uO2229iwYQN33303Y8eOpbS0lOXLlwNw3HHH8emnn/L+++93mHBbvHgxO+ywAx9++CHPPPMM1dWhMtQvvviCq6++uotPJ/P4f/Sx5qhlbP7DGuo+qEp1c6SHsSwraUk3aOrCVq+kW0YKVjZ1TXYUpahSN7LSLdj2ZnbnKsli9Ac7MvabyQy6b3S37DPPaBpztVbjuomIiPRIW60KAAwMelPU4v7GSjcAr6UupiLNxXUVlJubyxFHHMERRxzR6R1eeuml3HDDDVx44YUUFhaG1++zzz7cfffdnY6bbM5d+8P3daEsvgGGx43lbYhaBlqsa77sGFKAa/bwmPcb3Bog8FMDgZ8ayNuzsOMHJJj7lO0JvLqG4Ddb436u8S63FdPIz8KxXa9Ot79h/jdYlb6kt9NuMeM911pjVpvhX66SkXTLJota6vC1knRrPPfMn6oy5jXJxJhGkRv3Ka1XKEdWujk8qepeGrFgWlHnFbR8nq2ts+NnW3fIJzLpVhf1h3aqvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8cEYr5W2EI5AL0pwmm0/HvOYzQl3aq3VcgnkvNngzC/L8eq8dvm+CmmYhoeN84BhfBBx+dwt5cefPXVVzz++OMt1peUlFBaWtrdzYlZwSu/wuPxdPt+A1ubBph39kn+OD7N5Vy5G1y5W7fvN1Fyrtwt9BykU5yFTibW7I5ZFcRqsBIeP1zp1sqYbul+7gkEKyO6l6Yo6YbDCN+0gpbOqzhEzmBaa9VB06HUcRQREekhtlqhpFtfo1er9zdOpBDatjLh+y94/dcJjymSEF4vFP22w826PelWXFzMhg0bGDlyZNT6zz//vM0ZT3uyqJkjk1BpJNIe/08+Kh7bgrOXi9xdCnD1S2zi1224wUJjumUo9/BsBvx5BMGqAHm7dX+lLhA9kUIady9NhTwjIumm7qUiIiI9js9qCI/v2ofWk27jjdGMMYazxlrPhoiZTkUkpNuzOEcffTS///3v+fe//41hGJimybvvvsvFF1/MiSee2N3Nsb3g1oikWx8l3aR7+b6vZ/NVawHoe8kgcncp6OAR8WmcwVRjumWmrKHZ9Dl3YGobETmRgpn4as3uUvVSOaV3rMdR4KTP3AEU7Fuc9H02714qIiIiPcsWysK3+7VR6dbHKGaF9SMA32/7X0SadPt0mDfeeCPjx49n6NChVFdXM3HiRGbMmMGee+7JH/7wh+5uju2p0k1SKVgRcf4lYcbE7HDSrWX3UpFEMLIMXAOzcA12p6SLfqI0/FBP7Vteql8uJ7DJ3/EDEiA3IulWYynpJiIi0tM0TqIA0LeVmUsBJhhNEzx9Z61MdpNE0k5cV9F+v58zzzyTK6+8skX30Fi53W4eeOABrrzySpYuXUp1dTWTJ09m7NixnYrXXSr73I8VMZNbVxiD8/GsPiWmbVNd6eYdOR9rXeIHxIybw6Cofm7cD7NN+1MknnOtNcGyiPOvd/JmL23Aj2VZGEZTV8Ce/tqlk66eZ8nkLHIx7oddw8u2O69i/GwzqyMmpSjonvHx8iO+8+qadS+13XEUERGRuHX0N9wWq6nSrQ/FrW4zwhhMNm58NPCdtSrRTaQy525I494Kkrm8Mf4oHVelW1ZWFk8//XSnGtTcsGHD+MUvfsFvfvObTifcbrrpJqZOnUphYSElJSUcdthhLFu2LHx/WVkZ8+bNY9y4ceTm5jJs2DDOPfdcKisTP8BjsqjSTVIpqtItKbOXNs1C2NoMppLevC+UsekPP7Llz+vw/6Rqxq6Imgm2sHuSbnloTDcREZGeyLIsLMviseB/wuv6tVHp5jScbGeMAGCVtZZf++ZweMNc7gw83B1NFbG9uLuXHnbYYTz33HNd2umDDz7IpEmTyMnJIScnh0mTJvGPf/wj7jiLFy9mzpw5fPDBB7z22mv4/X5mz55NTU3o1/f169ezfv16/vKXv7B06VIeeughFi5cyKmnntql9nenVFe6Sc8WVemWjKSboaRbJqv5XyWlf17P5j+sIbCxe7pEZqrIpFt3zQQbOXupupeKiIj0HGZVkG+LPsRzj5Mpq8dxpuNojnYe1Ob2f8u6nqXul7jIeQrLrR953XyP6wJ380LwjW5stYg9xX0VPXbsWK677jreffdddtllF/Lz86PuP/fcc9t9/FVXXcVtt93GvHnz2GOPPQB4//33ueCCC1izZg3XXXddzG1ZuHBh1PJDDz1ESUkJn376KTNmzGDSpElRlXmjR4/mj3/8I8cffzyBQACXy/5JrHClmxHqJiXSnczy7uleCqFx3YpIzQyXkhxBb9P5013VWZkqWJXq7qVKuomIiPQUgY1+LJ9F3lo3vSo9jHIMbbPSDWCKY3sAik0PbiMLn9WAD6ikqptaLGJfcV9FP/jggxQXF/Ppp5/y6aefRt1nGEaHSbf77ruPBx54gGOOOSa87pe//CU77rgj8+bNiyvp1lxjt9Hevdv+QKisrMTj8bSZcPP5fPh8Td2gvF5vp9uTCP0uG0LDGh9mTRDDaXT8AJEEiuze7EjCRApjjGHsaUwhSDBUSaNTPKOYlRGJoqLUJN0s0+KnE5dD0MI9NnJqgPSSmu6lkbOXqnupiIhIT9E4adPx98ymT9ZABuw+IqbHnec6iV4UcUYgNEFinaW/H0TivopevXp1l3bo9/vZddddW6zfZZddCAQCrTwiNqZpcv755zN9+nQmTZrU6jalpaVcf/31nHHGGW3Guemmm7j22ms73Y5EK/vHJgy3QfaEdL1UlHQWTHKlWzW1vGd9BuiXsEwUTEGXyBYM8P57KwC5uxWkcdLNDN/urqSbupeKiIj0TIFNTcO+uPq729mypchKef1oJ9KJMd266oQTTuC+++5rsf7vf/87xx13XKfjzpkzh6VLl/LEE0+0er/X6+Wggw5i4sSJXHPNNW3Gueyyy6isrAz/W7t2bafb1FVW0KL65XKqniuj5vX0mfxBMkc46eYycOQn/uOiL01VqaVWecLjS2qFK91cBkZut3/dAKEK7HAFZTB9Z76Kmr00Ce/F1rQ3e6mIiIhkrsixeF0DsuJ6bORETDUankIk/kq3U05pe0phgPnz53cY48EHH+TVV19l9913B+DDDz9kzZo1nHjiiVx44YXh7W677baY2jR37lxefPFF3nrrLYYMGdLi/qqqKg444AAKCwt59tlnycpq+4MjOzub7OzsNu/vTsmuMhLpSPVoHy6/E6fDGUpeJFg/o1f49hbK2tlS0pG5bUw3pyc550/MnAYELKxgx5vaVWP3UkeBA8PRPccyevZS/dEsIiLSUzR2LwVw9Y8v6RY5mEetKuVF4k+6lZdHV6P4/X6WLl1KRUUF++yzT4ePX7p0KVOmTAFg5cqVAPTt25e+ffuydOnS8HaxXKBZlsW8efN49tlnWbRoESNHjmyxjdfrZf/99yc7O5v//Oc/5OTktBLJnqJmjlTSTVLg5wvmUUUN2xkj+ZIXEh6/T0TSTZVumSfo3ZYoSlXX0m0MB1gAZvpWurlHZ+Ps5+q2SRQgekw3dS8VERHpOaK6lw7ofPdSVcqLdCLp9uyzz7ZYZ5omZ599NqNHj+7w8W+++Wa8u2zTnDlzePzxx3n++ecpLCxk48aNABQVFZGbm4vX62X27NnU1tbyz3/+E6/XG54YoV+/fjid9p5NT0k3SSW/5aeKGgB640nKPvqipFsmM7cl3VI2nlsjpwGkd6Vb7u4eApv9OPK6r5tunv5oFhER6ZGiupfGWemm7qUi0RKSyXE4HFx44YXMmjWL3/3ud4kIGZPGseFmzZoVtX7BggWcfPLJfPbZZ3z44YcAjBkzJmqb1atXM2LEiJj3lX31bjg/8ULQBJcDx8B8zPU1UctAi3XNlx2jinBN7R/TPoNbU590y3toNoGPNxF4Z33czzXe5bZiOkpycU7q0+n2Nzz5PebaqqS3024x4znXWlMRMbFBsZGcpFvk1OOlRCfdGs89c1VlxrwmmRjTMawQ95HbtXhtzXoTqyFUWZaqmUsbGc5tlW5BK+q8gpbPs7V1dvhs6/e7wck4NO1q74/mVH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCbR7reAocpI7tQCz3oz7OjRyIqbaBMxemnPLdIJLt2JuqbPN8VNMxXQMzCd7kBOu7PgcTlgmZ+XKlTHNPlpfX89dd93Fm2++yebNmzFNM+r+zz77LOZ9Wlb7XYVmzZrV4Taxyjl3MgUeT0JixcoOY7q5Zg7BNXMIXLxLSvbfVeH2S9zKrabJO3pRlJR99DGKw7dLrbKo+/TapTerwaRg/2KC3iA52+eltjHO0HAFlqnzKh6R3UuXmz9iWiYOI1Rpl+7fDSIiItK22re9BDb4cQ12xz2WbKIr5bPPndzlGCLJEPB6k5N0i5zoAEKJrw0bNvDSSy9x0kkndfj4U089lVdffZUjjjiCadOmpXZwbZsLbG0q61X3Uulu5XjDt3sbyUm69YuavbQiKfuQ1HB6XAz/z4RUNwMIjekGkM6zl6aC28jitayHOMZ/AZso5TT/Fcx335TqZomIiEgSWUGLwObQdWi8XUsB8iPHhKU2Ye0SSVdxZ3I+//zzqGWHw0G/fv249dZbO5zZFODFF1/k5ZdfZvr06fHuuseJrHRz9Y7/A0+kKyIr3YqTNKZbtuGmkHyqqGnRvVQkYRor3dI06WYFLMx6E0e+o9t/qNrZMSH83vyJjd26bxEREel+wVI/bBsHtzNJt1yyw7cT0b1UJN3FnXTr6kQIgwcPprCwsEsxUqH+r5/jSOCYbrF0b7LDmG6BxT/ZZky3zpQWBxb/1OPHdOtsV7ruqHQD2NMxGa9VQ6ERPU5T47mnMd3sHbNxTDc7d9ksOqovZk0QV9+sqPMK7DGmW0efbfVf1rBqj6/AgN5zBzLwLyOSerwiFRr5eCjASzXrrE3h9an+bmgu3d43ipk+7VJMxbRzTLu2SzHtHxNo81ohsCliEoU4Zy4FcBku3GTRgD8h3Ut9f/1cY7oppi1j1g+Kbdzqbs/k3Hrrrfz+97/n/vvvZ/jw4d29+07zXfsh2RH905tPgtfapHhtbdMwOB/P6o6rAgv2LcLIdhAsC/WnT4Xak1/FWlcTtS6e59rZ5ch1QcDvMDqVdGve/mS2044xYz3XWhNV6ZakiRQAyqxKPra+wrAMAlYAlxH6WGrt3IP0f00yLWYQCLz8Q4vzzL+hgYbv63AUucga5k5pte7A20aGb3tHzm/1vAL7fraZVdseYYHh7v4hGQYb/fFa1ay3NmNZFoZh2OK7oS3p8L5RzPRsl2Iqpp1j2rVdimnvmK1dK0TNXDqgc3+/5ZNLA/6EzF5a/7t3wQz1VrDb8VPMnh3TZ8V2fseddBs5cmS73VtWrVrV7uN33XVX6uvrGTVqFHl5eWRlRb+Ry8rK4m1Sxmr40YfhNsiZmIerr8Z0k+4VVemWpIkUAPoavcACC4syKimhczPVir3U/K+SdaeuAGDAHSPpc/aAFLcofYWTboCzsPtngh1klPCttZI66inHm9TPAxEREUmtwKaG8G1X/84VfuSRSzle6tS9VCT+pNv5558ftez3+/n8889ZuHAhl1xySYePP+aYY1i3bh033ngj/fv310QK7aj8v1LqP68BJ/S5aFCqmyM9TIXVlHRLZqVbXyNyMoVySgwl3TJBsDKie3xR9yeKMkmwuinp5ijo/mM52Ogfvr3e2pTU7uYiIiKSWv6I7qVZnax0yzVywILaBFS6iaS7uJNu5513Xqvr77nnHj755JMOH//ee+/x/vvvs9NOO8W76x4nWBa6aHX2dik5Kd2uLKJ7aVIr3SgO39ZkCpkjsjrLkYLqrExiVpnh26k4loNoSrqtszYxie26vQ0iIiLSPaK6l3ZiIgVomsE0Ed1LRdJdwvos/uIXv+Cyyy5jwYIF7W43fvx46ur05otFOOnWS11LpXvcFXiUD80lrLU2Uo+PoQyk2CikXxKrz5pXuklmCHojukSmuNJt5e5f0rCiHmexk3Ts5BqVwPR0/7Gc4pjIr6z92Gxt5dbAg/w9+CR3WeNpOZ2BiIiIpDuzJoh7+1yc+U6cnUy65ZIDQAP+qDGbRXoiR6ICPfXUU/Tu3bvD7f70pz9x0UUXsWjRIrZu3YrX6436JyFmgxm+0HL2Sd0A5NJzBKwAlwRu5inzFb62luOhgBHGYH7p2Dep3cn60it8e6uSbhnDrIxMFKX2Dy2zOohZFYxKBKYTM6J7qTMF3Ut/6dyX/3PfzizHbliA16rGwur2doiIiEjyNayop+HrOuo+qu78mG5GTvh2bQJmMBVJZ3FfCU2ePDmqq6NlWWzcuJEtW7Zw7733dvj4Aw44AIB99903an3jjGjBYHpeFCWaWR4xHpIq3aQbbKUifDuPHDxGAUD4/2TpazQl3baoe2nGMKsiPsNSUJ0VyXBu+84y29/OriKThansqusxCsKfBwYGKPEmIiKScQIbQxMpOAocnf6xL29b91KAW/0Pcq279SGqRHqCuLM5hx56aFTSzeFw0K9fP2bNmsX48eM7fPybb74Z7y57pEBZ0wWrq4+SbpJ8kV07D3DO4O9ZN3TLfiOTbqWWZi/OFMHK1HaJjLKtptsKpmeSKLLSzVGYsAL1uJ3nOonzOAkArzEfi5qUtUVERESSI7BtIgXXgM5VuQHcmfUHPP4CXjDf4M/mg1xhnYPbUO8t6ZnizuZcc801XdrhzJkzu/T4niJYpko36V5bIpJukV0+ky1yX6VWRbftV5Ir1eOQRWmsdEvXpFtVamcvFRERkZ7BrAuGhwhxdXLmUgjNfB4gSNW2H+hWWD8y0RiTkDaKpJu4fzJ3Op1s3ry5xfqtW7fidMZ2MfD2229z/PHHs+eee7Ju3ToAHn30Ud555514m5Oxglsjkm6qdJNusDWia2dk9Vmy9aUXuxk7sqcxhVyyu22/klyNlW5GjoHDnbrqLEj/7qWG2yB7h1xypuRjKOkmIiIiSdJY5QZ0ejy3RuMdo8K3v7NWdSmWSDqLO5tjWa1XCvh8Ptzujt+YTz/9NCeccALHHXccn332GT6fD4DKykpuvPFGXn755Xib1C2Ktp6Fx+Pptv1FVbr1Tl3SzbP6lJTtOxHSvf3dqTSq0q3jSVESxWMU8JW1nFrqohJ/eu3SW2OXyFRPogDAtjyVFbTS8rzq97vB+Df4MasCuIptcDzR+1NERCQTRSfdutYddLyRmKRbUf3cLrVDJFkMrxeKft/hdjH/9f7Xv/41FNgw+Mc//kFBQdPg6sFgkLfeeiumMd1uuOEG7r//fk488USeeOKJ8Prp06dzww3dM4ZUOnD1z6LgwF4Ey/xkDVf1jyTfFprGU+trFHfbfg3DYLDRn+XWD6yzNnXbfiW5xn43GbPGxKpJ/eQ4hiO9K92yJ+SRPSHVrRAREZFM1ziJAnSteynABGN0+PY35vIuxRJJZzEn3W6//XYgVOl2//33R3UldbvdjBgxgvvvv7/DOMuWLWPGjBkt1hcVFVFRURFrczKeI99B4cG9cPVxkTetMNXNkR5ga8R4an2N7qt0AxhklLDc+oFqavFa1UmfMVWSzzCM0IxXdugOGdEEy7SaknAiIiIiEhasCJA9IZdgZbDLSbcxxjD2NfbgM+trPjS/xLKsqAkZRXqKmJNuq1evBmDvvffmmWeeoVevzo35NGDAAFasWMGIESOi1r/zzjuMGjWq9Qf1QJVPlFL+YGjsvFEf7kiuJlOQJIucObQ7J1IAGEz/8O311iYl3SShwmO6QWgyBSXdRERERFrw/9iA79s6AFwlXRvTLcvIwjQsyi0v5XhZZa1ltDEsEc0USStxZ3LefPPNLu3w9NNP57zzzmP+/PkYhsH69et5//33ufjii7nyyiu7FDuZqvd/Fuv7OrAAAwyPG8vbELUMtFjXfNkxpADX7OHkXLlbu/sLlttjTLf66z8k8Ooagt9sjfu5xrvcVkwjPwvHdr0oeP3XnWp/w/xvsCp9SW+n3WLGeq41KjDy2dOYgh9/tyfdBhkl4ds/WZsYz+jwuWf+VJUxr0kmxjSK3LhP2T7qPGsc+9Muv2b2+8NQgmV+DKeB76aPCbwWOq+g5fNsbV2qP9sqnyrFke/ENdBN7s75STpK8Un1d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5hAq9cKUd1LB3Yt6QYwyzGNN80PAHiv/jNG58WfdKv++TOY35dj1fhtc/wUUzENj5vqAbFNFmdYbc2M0I6ffvqJ//znP6xZs4aGhoao+2677bZ2H2tZFjfeeCM33XQTtbW1AGRnZ3PxxRdz/fXXx9uUpPN6vRQVFbHGdTMeIzchMY3B+R0OQv3D/l9Ts8gLwPit00LdtFLAO3I+1rqalOw7isPo1CCatml/isRyrjWa6vs1X1nf4yaLyuzPujVhcn/g/zg/8EcA/u66gRNdh/X41y6dND/PfN/WsnLqlziKnBSf0I8BfxqRusY1Y7vzqoPPNstv8k3BhwDkTS9k5BuTuqtl7bLdcRQREZG4Nf8bbs3h31H1YjkA2/2wC1ldTLx9V7aCn65cxcBFxXgmFzP0n9vFHaMy524w405ZiCSd16pjWOD3VFZWtjvpZtwlVP/73//45S9/yahRo/juu++YNGkSP/zwA5ZlMWXKlA4fbxgGV1xxBZdccgkrVqygurqaiRMnRk3MIE2zlxpuA0d+bBlUCbkz8DBvmR8z0hjCJVYROaluUJponL20H727vUIpstLtL8EHed58nbus8dijpkfiFawKYvktgqUBrAb9kdQVwaqmiSgcdhgfT0RERDJWePZSA1z9ujamG8A4z2isJ8swq4LUeL0a1016pLizOZdddhkXX3wxX331FTk5OTz99NOsXbuWmTNn8pvf/KbDx59yyilUVVXhdruZOHEi06ZNo6CggJqaGk45JbaKnJ4gsC3p5uzj0gdTjNYe+z3LRn3Kqru+55vgCu4NPk4tdaluVlqwLItSQkm3vkavbt//DMdUPnQ/xQXO39KfPnitaiyUrElXZmVEosijRFFXmN6IY1moYykiIiLJE9gU6sXm7JeF4er6NajhMsjbK1QBFNzsD48XJ9KTxJ10+/bbbznxxBMBcLlc1NXVUVBQwHXXXcfNN9/c4eMffvhh6upavtnq6up45JFH4m1OxmqsdHNqAoWYBbb4CaxrIG+tm4ARZG9jN/oYxaluVlqopAo/oXMuFces2PCwk2M8A4y+eIwCPEYBBko2p6vI6iynJ/WfYb7v66j9sIra97ykWy7XrFbSTURERJLPsiwCG0OVbq7+Xa9ya1T4i2Ly9vKQvX0uNYsqExZXJF3EnXTLz88Pj+M2cOBAVq5cGb6vtLS0zcd5vV4qKyuxLIuqqiq8Xm/4X3l5OS+//DIlJSVtPr4nMetNrFoTCFW6SWwsX+iYHX/PbJZlvcJL2Q+kuEXpY6tVEb7dl94pa8d5rpN42n03T7vvpsDIS1k7pGvMyqaJYOxQ6bbx9z+yesZSVu/9NZipbk18zKqmBqt7qYiIiCRLsLxpWJBEJt3ydi+k9m0vvq/rqHlDSTfpeeLO6Oy+++688847TJgwgQMPPJCLLrqIr776imeeeYbdd9+9zccVFxdjGAaGYbDddi0HUDQMg2uvvTbe5mSkxio3UKVbPMJjR7kMHE6NgxePLZSFb/dLQfdSySxBb2SlW+oTRUbqm9BpZmTVYKE+10RERCQ5wuO5QZcnUIiUPSkPZ18XwdIANW95sYIWhlM9WqTniDujc9ttt1FdXQ3AtddeS3V1NU8++SRjx45td+bSN998E8uy2GeffXj66afp3bupmsbtdjN8+HAGDRrUiaeQeYJlTR94zj6J+5Uh0/W9eFCoJDrNKlnsoHESBYA+SrpJF0WNQ2aDpBuO9P3DLlitiRREREQk+QKb/eTuVoCRZeAel5uwuIbDwHNYb3zf1WHWmdR9XkPerppEUXqOuJJuwWCQn376iR133BEIdTW9//77Y3rszJkzAVi9ejXDhg3T5ADtsALgHpdLsDyQkFljeoqiI/qmuglpKzLp1g8l3aRrTFW6JUxkpZvDBuPjiYiISGYKbGig7sNQcY3n0D4JjZ2zUz7l/9gMQO2iSiXdpEeJq6+K0+lk9uzZlJeXd7xxG4YPHx5OuO2www6sXbu207Eylaufi0F/HcmIlyfQ92JV/0nyNc5cCtDXSN2YbpIZIidScBTZIFEU0YXBSreJFCKPpbqXioiISJI0TqIA4BqQ2MKP/FlF4dvVb2pcN+lZ4r4amjRpEqtWrWLkyJFd3vkPP/yA3+/veEMbMPrnQSmEpr4zwO2ABjN6GVqua7ZsFGfj2mtwu/uqWljBhnNWATDovlH0OqV/kp5Vx1x7DSaw6CeszXXE+1zjXm4rpsvAGJjf6fb7n1sJDcHkt9NmMWM51wDqvqhh5Mp+TN1te+qKGhjlHtqpY51o4XOvwpcxr0lGxnQ7W5xnURMp2GDGTSMiV+WcOgDzkw2h8wpSezxj+Gwz60yMfAdWjYnTRt1LU/7d0Fy6vW8UM33apZiKaeeYdm2XYto/JrS4VghsbAjfTuRECgDusTnk7JiLkefEarAwfSaO7Fa+z1thDC3A2lADAcs+x08xFdPtwPDkwbq2ztwmcSfdbrjhBi6++GKuv/56dtllF/Lzoy8YPB5PvCHTguebE7vtuQXLIyZS6J3aKpG8R/ZP6f7j4VtRh+E0cOQ5cPUPDf6ZTu1PlZo3Kxn/+35MvnQUnl/3Zqedxqe6SYBeu3T2rwsX4f21lyJvASP77UzihuLtpIhKt6yb9yZ7bOLGKUk2q8EM/ZEJGDZKuun9KSIiklkiJ1JovJZKFMMwyN4hn8rHSgGo+7ia/J/Fdm3tWX5yQtsikiiG1wtF8zrcLu6MzoEHHgjAL3/5y6hx2SzLwjAMgsFgWw9tYa+99iI3N30ufrpLcKt9km7pZNXuX2FWBcken8uYL3ZOdXPSRuMXbH5VDkU5mZk0l+71/I6L+WiHLwE4L/uMFLeG6IkUzNQ1ozNKrhhKyRVDsfxmWk8IISIiIvaWzO6lEOpi2ph0q1lUGXPSTSTdxZ3RefPNNxO285dffjlhsTKJnSrd0onVELqaNty6MI1HYFOolPz4e2Yz5oydU9sYyQheQoPwFpKP0wazGEQ2wTKt1DWkC4ys2LpgiIiIiHRG4zWBkWPgKEr832/5s4ow8gyyx+fhX+NLeHwRu4o7o9M4C2lXrF+/nnfeeYfNmzdjmtFlB+eee26X46e74NamXxmcvTV7aSwsy8Jq2NYFS0m3uAQ2JPdXLel5vNa2ma+wycxUzvStdBMRERHpDo29X1z93VE92hLFPSybrCHZ1H9Wg++rWgbeMRJHXup/nBVJtk6VUb399tv87W9/Y9WqVfz73/9m8ODBPProo4wcOZKf/exn7T72oYce4swzz8TtdtOnT5+oN7RhGLZNulUO/QdWXURCwmFAZMVEY7ef5uuaL+c4cU4bQMGrv2pzX8Ey+1S6Vc9+luBHG6G2qU0xP9d4l9uKaQBF2RRtbqebWpDQmIaA4W6qCKme/SzBt9Y1xU1mO+0WM4ZzDSJ+1cpOzq9anRU+9+qDmfOaZGJMh4FzxuCo86yx0s1j2CPpNvAvIxhw03BwGtT9+nkqP94UOq8gtcczls82m0r5d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5gQda1gNpgYLgOcyf0RPn8vDw3f12P5LWrfq6Lg58UdPqay5O9Q6Qtd69nl+CmmYjoMvNlNk4+0J+7+Kk8//TT7778/ubm5fPbZZ/h8odLQyspKbrzxxg4ff+WVV3LVVVdRWVnJDz/8wOrVq8P/Vq1aFW9zuk/khQVEH/DG5dbWNV+uDWAuL293V41JNyPPgSMntV2KzOXlrT/3WJ5rvMttbWMB3vZP6MaupRBd6WYuL4+Om8x22i1mDOcaRPyqNSA5v2p1Vvjcy6TXJBNjmlbUeRa0glRTC9in0s2R78RZ7MJZ6MRcUdF0XqX6eMbw2bb5urWsn7eKTVeuaXe77pby74bm/xIRMxntVMz0b5diKqadY9q1XYpp/5imFXWtENziD43pFoSsYcmbAit/7yIwIHtCLnVLqmN7kLchXFxhm+OnmIq57T0Ui7gzOjfccAP3338/DzzwAFlZTVnw6dOn89lnn3X4+NraWo4++mgcDo1P05bGpFuqq9zSSWPXUoiudJP2WX6TYGnofFPXUkmEKmrCtwuN/Ha2lFhU/ruU8r9vouy+jaluioiIiGSoyJlLncXJuybIm+HBUejE920dVc+WJW0/InYSd3Zi2bJlzJgxo8X6oqIiKioqOnz8qaeeyr///e94d9tjWJYVTrq5lHSLWXTSzT7VWnYX2Bw5NbiSbtJ1lTT9allEYQpbkhnM6lA3WEehfkwQERGR5Ej2zKWNsvq7yRqWDUDdZzUEK2KrFBJJZ3FndQYMGMCKFSsYMWJE1Pp33nmHUaNGdfj4m266iYMPPpiFCxeyww47RFXLAdx2223xNimjWHUm1raekqp0i53la717qbTPv9GPa2AWziIn2ePzUt0cyQBVVlPSzS6VbtWvV1D7QRUELbLT7G87syr02eYo1PeBiIiIJEfjGM8QmkghmfJnefAtrSVrsJvaD6ooPKBXUvcnkmpx/xV/+umnc9555zF//nwMw2D9+vW8//77XHzxxVx55ZUdPv6mm27ilVdeYdy4cQAtJlLo8VwGY7/dGSPbERpkW2Ki7qWdE9zkJ7Ah9M/zG51w0nV2rHSrfr2CrbdvAGBIH6uDre3DMq1wpZtTlW4iIiKSJJHdS5M95EzBfsV4nynDv7aB6tcqlHSTjBd30u3SSy/FNE323XdfamtrmTFjBtnZ2Vx88cXMmzevw8ffeuutzJ8/n5NPPrkz7c14vm/qWLXblwD0OqM/g+7quHpQ2p5IQdoX2Nh9v2pJz2DHSrfwjEVpxqwxwwMHOwrsM7OwiIiIZJbu6l4KkLd7YfgapObNyqTuS8QO4v7p3DAMrrjiCsrKyli6dCkffPABW7Zs4frrr4/p8dnZ2UyfPj3uhrbmpptuYurUqRQWFlJSUsJhhx3GsmXLorapr69nzpw59OnTh4KCAg4//HA2bdqUkP0nQ+N4bgDOYnUnilXW6BzGfjeZMV/uTMk1Q1PdnLQR9auWxnSTBLBjpZvhTNOkW1UwfNtRqKSbiIiIJEd3/hDvLHaROyX0w+yCA1/k9poFSd2fSKp1ur+K2+2msLCQgQMHUlBQEPPjzjvvPO66667O7jbK4sWLmTNnDh988AGvvfYafr+f2bNnU1PTNHveBRdcwAsvvMC///1vFi9ezPr16/n1r3+dkP0nQ7AsYuYYjekWM4fbgXtkDtnjcskanJ3q5qSNqC9YzV4qCeCNrHTDJpVukfmq9OldqqSbiIiIdIvu/iG+/59GcPOap3ngDy9yrfNufFZDxw8SSVNxZ3UCgQDXXnstf/3rX6muDl1cFRQUMG/ePK6++uoWEyM099FHH/HGG2/w4osvsv3227fY/plnnom5LQsXLoxafuihhygpKeHTTz9lxowZVFZW8uCDD/L444+zzz77ALBgwQImTJjABx98wO677x7zvrpLcGtEpZuSbpJk0eM3qHupdJ03stLNsEmlW7p2L62OSLqpe6mIiIgkybsnfEPRtDx6VRbiyE7+OLL5e3moaKjGa4b+bqyhjmx0LSKZKe6szrx583jmmWe45ZZb2GOPPQB4//33ueaaa9i6dSv33Xdfu48vLi5OWqVZZWWoT3jv3r0B+PTTT/H7/fz85z8PbzN+/HiGDRvG+++/32rSzefz4fP5wsterxcA1y9HYyzxgmmBw8Dom4tVWhe1DLRY13zZMcpD1r7D2nwOwXJ7Jd1yrpiG//W1BD/eGPdzjXe5rZhGcTbOHfp2uv2+B5Ziba5NejvtFrOjcw3s3b208dwzV1dmzGuSiTGNkjzeO6WaHwNPsNRczufmNwxjIL2MIkYaQ1Jw5rQiIl9lHLUDzo1bMVeHvi9SeTw7+myLrHRzeuyVdEv1d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5hA1LXCecf+mRrqGG+MYgkzY/pboKsKyAvfrqaW3hS1ul3W0dsR/KoUq8Jnm+OnmIpp9M3FNdQFT3d8rsed1Xn88cd54okn+MUvfhFet+OOOzJ06FCOOeaYDpNuCxYsiHeXMTFNk/PPP5/p06czadIkADZu3Ijb7aa4uDhq2/79+7Nx48ZW49x0001ce+21LdbnL9gPj8eT8HY3Z7dKN/dpk3CfNinVzehQww/1VL1UjuF2kDu1gNydQ93a0qX9qdLYvdTZy9ktv2rFQ69d+jitfgZbAmXkk8sUY3uGM5gZjqns7JiQ6qYB0WO6GT8fQ/7B01LYmtiZ9Sa5uxVg+S2cJfZKiuv9KSIikhmqrVpqqAOgv9G5QofOyDeakm61Vi200TEh76HZ3dQikfhYXm9MSbe4r7Kzs7MZMWJEi/UjR47E7U5dSeicOXNYunQpTzzxRJfiXHbZZVRWVob/rV27NkEtjE1kpZvLBkm3dOFbWsvGC39gw9xVVL9SnurmpA3XYDfZk/LInmSTsbck7Wy1KthCGRD6Q81jFIT/2Yaj6a84K9jOdjbjLHaRNciNs7eLrCHZqW6OiIiIZKBNVmn4dn+6L+nWvNJNJFPFndWZO3cu119/PQsWLCA7O3QR4PP5+OMf/8jcuXPbfezLL7/MM888Q+/evfntb3/LhAlNVRDl5eUcfvjhvPHGG/E2iblz5/Liiy/y1ltvMWRIU3emAQMG0NDQQEVFRVS126ZNmxgwYECrsbKzs8PPKxUCNqt0SxeW3wrfNrLsVbFlV8GqILVvVwGQPyv5VZySmb6zVoVv7+eYzp1Zf0hha1pnRH4kWFab29lN3u6F5D0xLtXNEBERkQy2kaak24DurHSjabiIaquu2/Yr0t3izup8/vnn/O9//2PIkCHstNNOAHzxxRc0NDSw7777Ro3XFjkpwuOPP86JJ57IAQccwLJly7jrrrv4xz/+wXHHHQdAQ0MDixcvjqstlmUxb948nn32WRYtWsTIkSOj7t9ll13Iysrif//7H4cffjgAy5YtY82aNeHx6GIVWLIF3/oNoT68hoHRJwerrD5qGWixrvmyo28ujoH5OAa2XllktzHdzA01mBtqCH5fHvdzjXe5rZhGcTaOAfm4du7Xdjt9Zvi24W6qajE31BD4qjTU/zrJ7bRbzI7Oteipwe3VdQ2azj2ztC5jXpNMjLm119eUTMhj84BaJhijU3CmdMw1yE3utAJwgCPYQOCzzZiloT/uUnk8Y/lss6tUfzc0l27vG8VMn3YppmLaOaZd26WY9o8JhK8VNpVEVLqlqHtpTTuVboElWzA31ITGdLPJ8VNMxTT65BDICRCLuLM6xcXF4QRWo6FDh3b4uD//+c/cdtttnHvuuQD861//4pRTTqG+vp5TTz013mYAoS6ljz/+OM8//zyFhYXhcdqKiorIzc2lqKiIU089lQsvvJDevXvj8XiYN28ee+yxR9wzl9bs+zROo+XgzZ1hDM7Hs/qUVu8Lbg0NbO/wOG1RsVW955NY62pS3QxwGBTVt11JaTVY4duRSTfbtD9F2jvXoidRsN9sQT39tUsXM4FFg47i0GVv2mYMt+aKj+1H8bGhxJZ35Hxq7HRedfDZZld6f4qIiKQ/Y3A+G5c39fLqb/Tptn3H2r20ZvcnQ4kOEZupibFCM+6kW2cnQli+fDmHHHJIePnII4+kX79+/PKXv8Tv9/OrX/0q7piNkzbMmjWrRRtPPvlkAG6//XYcDgeHH344Pp+P/fffn3vvvbdTz6E7DH9pAsGyIGZNGg08ZAPRSbfUJyvTQVTSbYD9Kt0kfWTj5kjHL9jdsXOqmyIiIiIicdgYMabbALqv+j66e6nGdJPM1W39Fz0eD5s2bYrqArr33nvz4osvcvDBB/PTTz/FHdOKYWyenJwc7rnnHu65556443c3y7RYsdMXOD1O8vYsJH+6xtmKldXQevdSaVtU99IB9qt0k/RhYNhr4oQMseHC1VS9UIajwMmwp8fjHpWT6iaJiIhIhtmUojHdCiJnL0VjuknmijvptnXrVq666irefPNNNm/ejGmaUfeXlZW1+rhp06bx3//+t0W3zpkzZ/LCCy9w8MEHx9uUjGN6g1i1JoFak2CFKt3iEVXplq1Kt1hEdy9VpZt0XoGRx3muk1LdjIwT2OjHv2ZbctypHxNEREQk8arMGvrRm3xy6U1xt+03X7OXSg8Rd9LthBNOYMWKFZx66qn0798fw4jtQuCCCy7gvffea/W+WbNm8cILL/DII4/E25yMEiyLmEShT+onUUgn0bOX6uI0FtGVbkq6SebyvlBG6Z/XgQl96syOH2ATZlXTjy+OQv2YICIiIom3ia1soYwtQG+jqNv2G5l0q1H3UslgcWd23n77bd55553wzKWxmjlzJjNnzmzz/r333pu999473uZklKikmw1mLk0n6l4av8BGe0+kIJIowVI/dR9WA2AVQbp8QpjVTUk3Z6EzhS0RERGRTFWBF4AcsskxsjvYOnEKIiYpVKWbZLK4Mzvjx4+nrk59rpNBSbfOq/X4MEY7oQGC+elTyZJKhssgZ2o+jlynKislsznSJc0WLbit0s3IMWwxm7WIiIhkngorlHTrRfeOJx41e6kq3SSDxf1X/L333ssVV1zB4sWL2bp1K16vN+qfdF6gLKLyqLe6+8Xjb2c9x5TPTmHK0lNYOv2HVDcnLdR9Vk39xzU0rKzHSNOkhEgsjG3joZmGiUX6TDnf2L3UoSo3ERERSZLGSrcio7Bb95uviRSkh4i7vKW4uBiv18s+++wTtd6yLAzDIBjUBACdpTHdOq+BpoSlGyUsO2IFLQKbQ8dMkyhIplt+2AbmHvoXlrt+5MsJJ1FYkeoWxSacdCtQ0k1ERESSo2Zbwqs4lZVu6l4qGSzuzM5xxx1HVlYWjz/+eFwTKUjHopJuvZR0i4eSbvEJbg3Atvy4km6S6Tx5BXzRsAyAAAE68dWXEo1JN43nJiIiIslg0jQsT3F3V7qpe6n0EHFfeSxdupTPP/+ccePGJaM9tpX3+AFkfVcHQQvDaWD0z8PcVBu1DLRY13zZMbgA55jiVvdhx0q3/IW/wlxRgf+zzXE/13iX24rp6JuLc2T7v7xEJt2yaZoUIH/hrwgs/ong+pqkt9NuMds71wKbImcuteckCo3nXnBddca8JpkY0zkoH9fMISk4Q2I3yhhKFi78BDj/hU/495obCK4LTayQyuPZ3meb2WBiNYS6wtqxe2mqvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8cEcAwu4KfRNeHv0u6udHMbWfzKmM0X1rd4qeLV4DvMdv6sxXZ5zx1McHUlVmm9bY6fYiqm0T+P3F4WHPn7Ds/1uDM7u+66K2vXru1xSbes/UeQ95vkfhDZcSIF57heOMf1IuugkaluSrsarNYr3RrbL9ECGyJnLrVnpVv43Et1QyTtZRlZjDGG8621kjfGfoMxaSg5hj0+Y9vSWOUG9uxemi7fDSIiItK2reZXsO23+F5GUbfv/xb3JYz17QcWPBR8ptWkW9YBI3Q9ILbUEOOcBnFfdcybN4/zzjuPSy65hB122IGsrOi3wI477hhvSNmmzwWDKDykN8GtfrIGuVPdnLTij6h0yzL0sdyRqEo3mybdRBJpgjGab62V+AlwfeAers06L9VNaldpTjkv/f1TPNV5DB08mOFMSHWTREREJMM0zlwKUET3di8FKCQ/fNtLdbfvX6Q7xJ10O+qoowA45ZRTwusMw9BECglQ+pd1BNY14Ozjotfp/VPdnLSiMd3i498UUelm0+6lIon0B9c5/IFz+FfwZZzYr3KsudLcCq466n4Afus8nIPYP8UtEhERkUzTOHMpQC+je7uXQnTSrdqqaWdLkfQVd9Jt9erVyWiH7dWevwg+8YJpgcPAUZKHubk2ahlosa75smN0Ea5ZQ3Af07J7bv0n1TSs8uHs5bTNBBUN/7eMwOKfCLy3Ie7nGu9yWzEdfXJw7NCXvL/OarOdvjaSbg3/t4yG+V9jbqhJejvtFrO9c82sDuIa7CZY6idrgD2TlI3nnrmiMmNek0yM6RiYj/uU7Vs9z+xkomMMAFP+L48BiwNUr3oGaPk8W1uXis+2Kpr+8Iz8g9QuUv3d0Fy6vW8UM33apZiKaeeYdm2XYto/JoBjdBGeGZvh8NB3aSoq3ZyGk3xyqaEOL60n3WrPXYT5VSnm1nrbHD/FVExHSR61Q2NLpxmWZVmdfI/0CF6vl6KiIta4bsZj5CYkpjE4H8/qU1qs/27ARwTLg7hHZTP22ykJ2VdXeUfOx1png18dHAZF9XPbvPsXDafxpvkBAKXZH1FghN5Ytml/irR1rq094Xu8/9oKwJilO5M9NjHndiL19NcunbR1ntmR7c6rNj7bXg2+wy/9ZwFwufMsrspq+/MvFWx3HEVERCRu1YPgmGXv4yaL37vOYD/n9G5vw8j6vdnAFoYwgBU5r7e4vzLn7lCiQ8RmvFYdwwK/p7KyEo+n7UpRR2eCP/roo0yfPp1Bgwbx448/AnDHHXfw/PPPd661ghW0CFaEuuY6+9iz8sjO2ppIQVoXiOxeOtCdwpaISGuiKt0M+1W6iYiISPoLEOQj60vesT5lgNE3JW0oNAqA6L99RDJJ3Em3++67jwsvvJADDzyQioqK8BhuxcXF3HHHHYluX48RrAjAtgS+s5e9Z9Wzo6iJFOLvNd3jBDaGjpejwIHThjMjivR0VRHjmhTYsHupiIiIpL8AAQAcOBhrjEhJGwoJ9VCqogZ1wpNMFHfS7a677uKBBx7giiuuwOlsuljfdddd+eqrrxLauJ4kuDUQvu3so6RRvBonUnCTZZvx8OyscfZSV39VuYnYUbUq3URERCTJ/NuSbiOMweQY2SlpQ2Olm4lJLXUpaYNIMsWddFu9ejWTJ09usT47O5uaGpWEdlawPCLppkq3uEUm3aR9Zr2Jua0rs8umkyiI9HRV1IZve1TpJiIiIklgbetqNcEYnbI2RP6d09ZkCiLpLO6k28iRI1myZEmL9QsXLmTChAmJaFOPpEq3rlHSLXZR47n11/ESsaMqqzp8u0CVbiIiIpIEOWQzxdieccaolLWhkILw7ci/f0QyRcxJt+uuu47a2louvPBC5syZw5NPPollWXz00Uf88Y9/5LLLLuN3v/tdMtua0YJlqnTrCp8V6i6ppFvHGruWgrqXithV1EQKqnQTERGRJKjHx2fW1/Q2ilLWBo/RlHTzoqSbZJ6YszvXXnstZ511Fqeddhq5ubn84Q9/oLa2lmOPPZZBgwZx5513cvTRRyezrRktKummSre4NU6kkKWkW4caJ1EAdS8VsavIiRSUdBMREZFkyiU147kBFGybSAHAa6l7qWSemLM7kTOJHHfccRx33HHU1tZSXV1NSUlJUhrXk+TtWUjJ9cMIlvnJmZTX8QMkSrh7qaEkUkeClQHyflYIBmQNTd0XrIi0rTpiTDd1LxUREZFkyiEnZfuOrHSr1phukoHiGtOt+ayQeXl5PSfhltXsUDWfINNoY13z5SwHjv4tL6DqltTQsLwOTHD2sU/iyNE/v/XnHstzjXe5vW1ynLSnrTHdHP3zo+Mku512itnGueb/wUftO1XUvl1l667M4XMvk16TTIxp0Op5ZldR55Udjmcbn22R3UvtOJFCyr8bmv9LRMxktFMx079diqmYdo5p13Yppv1jGhDMgs39Q7OF5qZo5lIADx10L438W8kux08xFdOg5d/CbYjrinu77bZrkXhrrqysLJ6QaaNo4xl4PJ6kxa9ZXIn3X1sB6H3WgKTtJ14FHxyV6ibEpDHplk30GGXp0v7ulC7dS/XaSTKky3lVva17hQMHuSn89bkt6XIcRUREpHW3BeZzeeBvACn9W2M7RvJzY082s5Vl5mpo9ntkUcXZqWmYSAcMrxeKLulwu7iSbtdeey1FRakbZDGTRY3p1tu+1Ud2ZFmWZi+NQ/RECjpeInbk3VbpVkh+hz92iYiIiMSrDl/4dirHdBvuGMTrgfcAyDY1yZtknriyO0cffXTP6U7azcJJNyc4itrvSinRAjQlLDWRQscCm7ZVuhngKtHxErGTOwMP85b5MWus9UD04MIiIiIiiVJn1Ydvp7LSbZRjKDsa4/jSWsYyazWH+s7GZTiZ4ZjKea6TUtYukUSJOemmX9qTK7g1lDhy9nLpWMepscoNNJFCLBqTbs6+LowY+6GLSHJ9bn7D7Ibf4sBBLzxMZiK7OiZxtuvYVDdNREREMlAdEUk3I7VDWdzouoh8I5fXgu/yQvANlls/sMj8CAuL810np7Rt/9/efYdHVab/H/+cSe8h1ABJQJqgUhQLRYqCASyguKCiwsquusCCBewFRL+ggoCoKz9XARHEAiIrKzYMC9joSIcIIgiCkEJ6yDy/PzBDhmSSCU6YmfB+XVeua06Ze+5zck+GuXmec4A/64zuXnouymw3T+ZQkWSMZFknL+iYd9qyVHrdactWrTAFXZ2gsNeucopflPZH083HppbmDlumwi9/kTmQVeljrfSyq5hBNtkSoxS16fYyc8wv2XQ7baRb7rBlKpi/U8o7UfV5+ljMsmrNGKMTh05OLw2s69vDtx21dzS32vxOqmXMsEAFD2xe6m+ar3KqK8m757PE37bfTZrj5gm1Faeatlgl2OLVxJbohbNUMa9/NpzO3943xPSfvIhJTF+O6at5EdP3Y0oaXjNMjbpfqTHTVnh1eqkk9QjoKEn6wb5JYVao8kyBpAKlm+M63vod2fcdlwrtvnP+iEnM0AAdr+Fefbvd4bHb7e7uWi2ZfZmSFVa8dPJNf2rracuu9zHHC1X46V6FldxSaJc9s0iS7zXdCj/dK3Og5K2b3T/WM18+bV2hXfad6S5zLCin6Vb46V4pq3h7FefpYzHLqjV7RpFMvpHk+9dzK117kr//TqplzDLqzJeVXVeSt/+2HdGpmxDdG3iLRgTe4c7heI1PfDaUyU/eN8T0w7yISUxfjumreRHTl2PWPB6gHp8lSvLu9NKSRgUOVnvbRbq64E5JUp7yTv5byW5O7uBD54+YxDSZuXIHc8t8QFFakeNxQJxvN0J8UXlNNzjLO5IrBVmSfPvOpcC55qhJdzyuZcV5LxEAAHDOCbW8O9KtpFCdmo2Tp4Jy9gT8g28NqzpHFR091TTytZFu/qDQnDp/QZR0uVaft029jvxNSWn19E9zh0aombdTAiDpiDnmeFxLbo5VBwAA8ABfGekmSaElprrmlbjDKuCv6FD4gOLruUlSIE23Sis50i3E8u3rlHnbb/pdsqSf4w6piFIDfMbvSnM8rmXRdAMAAGdPuK823QxNN/g/vnb7AFuNQMUOqa2iYycU2jbC2+n4HaaXuu8387vjcT2rthczAVDSUUPTDQAAeEeol2+kUFLJqa6MdEN1QNPNB9izihTcKFQBFwcq7PJIb6fjd2i6ua9k062uankxEwAlHSnZdGN6KQAAOEtCFSLLsrydhgPTS1Hd0HTzATkrj+vw2F8kSQ3nNlNIU3+5D6BvyC9xgU2abuU75DTSraYXMwFQUvH00kiF+9TFjAEAQPUW5kOj3CRupIDqh7uX+oCiY6eu6RZQgz5oZRU43UiBplt5flOJkW4WI90AX1E8vZQ7lwIAgLPJl26iIHFNN1Q/NN18gFPTrSZNo8oqLDm91OL8leeQOSLp5IjAWEV7ORsAkpRccJeCFawmStBHga96Ox0AAHAO8bUR9gFWgIL+mJDH9FJUBwyrcpOtVZy0t0CyS7IkRQZJ2YXOy1Lpdact2+pFKPCaRKfYRcdONY18baRb0MDmOvH5PtlT0yt9rJVedhUzNFC282Jc5ljeNd2CBjZXwdvbpOOFVZ+nj8Usq9Z+M0clnbyemy9du6Esjto7lF1tfifVMmZkkIIGNv9Tv+uzyamuJO+ezz/+th0yR3RQhxWtSLUMaHK2TsWf4vXPhtP52/uGmP6TFzGJ6csxfTUvYvp+TEnb6vyqZT1+8bmRbtLJ0W6FOqE85cvWrrbsqRlS3gnfOX/EJGZkkGy1w6RNrqr4FMsYYyre7dyVmZmpmJgYZWRkKDo6ukpeY2/yFmWnZEqSzj96mQIiA6rkdaqT5UU/aKfZq5X2NfrZ/qsO6DfVseL0ROAw9Q7o6u30fNKJzEKNXvasjrXKUs16cZoS/bi3UwIgqUne1Tqg31RfdfRT6DJvpwMAAKo5Y4zC8i+SJF1qXaQVIe96OSNniXlddFjH1MhqqO0hS72dDlAmd3tFvjWs6hxVPL3UCrZki2DGrzves/9XbxV9KEm6WK3UyGqgLrZLabiVI+frTP19YC9JUtywetIULycEQJKUo1xJUoQV7uVMAADAuaDkjehCfexGCpIU8kdO+VzTDdWAX3d4/ve//+n6669X/fr1ZVmWFi1a5LQ9KytLI0aMUMOGDRUWFqZWrVrp9ddf906y5ShKO9l0C4gL9Pkpf74i2+Q6HkdbUYq2IhVtRXoxI9+XtTTd8Tjymliv5QHAWZZyJEmRoukGAACqXo7yHI/DLB+cXvrHdeZyuaYbqgG/HumWnZ2tNm3a6K677tJNN91UavsDDzygZcuW6Z133lGjRo30+eefa9iwYapfv75uuOEGL2RcthNHTzXd4J5cnWq6zQyeqHirthez8X3GGOVtyVF45yjZc+2K6Fo1U6UBVE6BKVShTn4GhCvMy9kAAIBzQayidJ9tsAp1QvcH/dXb6ZQSqmBJ3EgB1YNfd3l69+6t3r17u9z+zTffaPDgwerWrZsk6e6779aMGTP0ww8/VLrpllH7dRnjgS9ENsnWNFZRm++QJNnz7DI5dkm+2XQ7fuEc2Xenn7xgoDcF2RSTPdyxWPJ/ZyLK+aJ6/MI5su9Mr8rMfFeJWsvfnqvc77MkSRE9YmQL9/3rBvpM7aFCtuan/qb5Ol+rKxNkk07e30SRfjS91NfOIwAAqJxHbKHKbGpTw831vJ1KKcU3d8hTvjIiXpUK+QcHfE+mlVvxTvLz6aUV6dixoxYvXqwDBw7IGKOvv/5aO3fu1DXXXOPyOfn5+crMzHT6keS5LxZ2yWQXOhZNrl3hXaIVckGYgpv53igHU3yHDm8rcr7fR8nppWHlXIeg5Lk+55SoNX+cWuoztYcK+dP7zOfqquhUMv40vdTnziMAAKgUyy7FZvve909JCvljpJukUt8DAZ/h5r+FfW9olQdNnz5dd999txo2bKjAwEDZbDa98cYb6tKli8vnTJgwQePGjTtrOZoio7i/11VAXKCCm/refHpflfvHSLcgBSrICvJyNr4v66t0hbQOV0BMgN803YBzTYTlm//wBQAAOJtCrRCJXhuqiWo90m369On67rvvtHjxYq1du1aTJ0/W8OHD9eWXX7p8zqOPPqqMjAzHzy+//FKlOeZvzdH+O3bp52u36diM36r0taqT7OK7/fnRyBBvKcoqUs7yTOVvylHhvgKFnM8Xe8AX+dNINwAAgKpS8o6qhu4b/Fy1HemWm5urxx57TB999JGuvfZaSVLr1q21YcMGTZo0ST169CjzeSEhIQoJOXu3TS46dsLxOKBmtf11eFzOH9NLw8XowIrkrMqUOXHywyqyZyx3yAV8FDdSAAAAcG66Af6u2nZ5CgsLVVhYKJvNeTBfQECA7HbfuRCNU9OtRrX9dXhc8fRSX7zFta/J+m+abFE2hZwfrqjrang7HQAu+NONFAAAAKpKqEXTDdWHX3d5srKytHv3bsfynj17tGHDBsXFxSkxMVFdu3bVmDFjFBYWpqSkJC1fvlxvv/22XnrpJS9m7exEiaZbICPd3HZqeikjQyqS9Xm67Bl25a7NVnjnaG+nA8AFppcCAABIoSVvpAD4Ob/u8qxZs0bdu3d3LD/wwAOSpMGDB2vWrFmaP3++Hn30UQ0aNEjHjh1TUlKSnnvuOd17773eSrkURrpVXpEpUr4KJDG9tCLmhJG98OTU0vBOUQqICvByRgBKKnmVEq5RCQAAIIXxHQ/ViF93ebp16yZjXF9YsV69epo5c+ZZzKjyuKZb5eUq3/E4jLv9lcvkGZ04XKCghCBF3xjn7XQAlIPppQAAAFJIiZFuRkaWuCY1/Fe1vnupP2CkW+VlK8fxmJFu5TN5J69fWPhLoSKYWgr4NKaXAgAASKMCB2t78GcaFTBYouEGP0eXx00hI9vKtjpDshvJZskWHyH7wWynZUml1p2+bGsSo8BO9R1xi44VOh4HxPneryPsle4qWvWrClf+Wuljreyyq5i22mEKuKiWI6cck+d4XNHd/sJe6a6Ct7fJfiCryvP0tZi2pBgd/aJQtgMBskXYFHKhf32hL669otSMavM7qY4xbQ0iFXxnSy9UyJkpWVdS6eMsa11V/m1bfsGp65L6091Lvf3ZcDp/e98Q03/yIiYxfTmmr+ZFTN+PKanU91JfUsuqoVpWDdW319Gmh/LUfksD2Y/k+sz5IyYxbfERCm4YKLlxuwDLlDc/E8rMzFRMTIwyMjIUHe35kUK7221Q/tZcWWE2tUq/3OPxq6Ot9t26uKCfJGlwwI2aETTeuwn5qKwv0vXzddskS4obGa/4Fxp5OyUAJayzb9GME/O10r5WIVaw3g+apqa2JG+nBQAAAKAC7vaKmF7qZSdCimSFWlzPrRKK71wq+dfIkLPt+GfpJx8YKfyKKK/mAqC0ZfbvNNv+kVK1Ty2tJjTcAAAAgGqGTo8XGWN0WcrfVKBCXVHQRima6+2U/EKOOdV0i6Dp5tLylmt1/pX1FbzaUuRVMd5OB8BpfjfHHI9rWTW8mAkAAACAqkDTzU3587YrZ+NxmSIjBVgK+GNOb8llSaXWnb5sS4pWwEW1FHBxHeUoVwU6eU23kNAQbx6eS0XrDuvEj7+r6LuDlT7Wyi67imnVDlfA+TUUfNv5kqRcnbqmW5hV/o0UitYdVsEnP8m+P6vK8/SlmMfr2vVpg7l6afwxxbdsoY9jr/B4bVS14tozP2dWi99JdY1paxip4OvOU8DFdbxQJZVXsq6k0sdZ1rqqOp+XxBWof7OmWnDLbv0j4FavnZMz4e3PhtP52/uGmP6TFzGJ6csxfTUvYvp+TElO30t9WcG87Sranib7kRyfOX/EJGZAfIQK6rg3cZSmm5vy/pmiYOvUqKoTp20/fbm8fawGEYrec5eOKsOxLU4xnkjT47L7fyJzINtpXWWO9UyXS62zWY6mm/P00vKbbqfnX+V5+kjMMEkvq7t+rZ+lj3fHlfEKvq+s2pP893dSnWMWztyq6D13lfFM3+OqrqSzfz6vUbSutnXXglt2q6afjXTzmc8GD7ymJ/Iipu/FICYxz7WYvpoXMX07ZvH3Ul+We9eXJy9eL987f8Q8t2PmlpiBVx6abl6UZko03axY7yXiR46YY1pn36LzlKAgK0gXWs29nZJPC1SgrrF19nYaAMphyfLZ/3gBAAAAcOZounnRUZPueMwXLvfsMfs1uegtSdKlukg9Azp5OSPfVteqqWa2C7ydBoBy1FSsAqwAb6cBAAAAwMO4e6kXpZWcXmrRdHNHjjl1PTduogCgOqjJSGcAAACgWqLp5kXHnEa6xXotD3+SV+ImCp0D2nsxEwDwjFryz+suAgAAACgfTTcvOqp0x2NGurknV/mOx2EV3EQBAPxBbT+7iQIAAAAA99B086I0k+l4zI0U3JNbYqRbRXcuBQBfZ8nSlTZG7QIAAADVEU03L+JGCpWXa06NdAtViBczAYA/zyabhgfe7u00AAAAAFQBmm5exI0UKi9XuY7HYRYj3QAAAAAAgG8K9HYC57IiU6R6qqVABSraREqWtzPyfc7XdGOkGwAAAAAA8E003dwU9ePtisgJlIyRLMmKCJbJLnRallRq3enLVmSQrOiT+/6uNB3S77JkKdTyzQZS1KbbZTILZP8tp9LHWtllVzGt8EDHOcs1p67p5s6NFKI23S77r9kyWQVVnqevxSxZa/6ouPZMVmG1+Z1Ux5hWZJBs9SO9UCFnpmRdSaWPs6x1Z+Nvm7/x9mfD6fztfUNM/8mLmMT05Zi+mhcxfT+mJL/5rhD10xCZ44Uy2QU+c/6ISUwrIljG5EotH66whmm6uclWP1KB0dEejVk8aitMobIsy6OxPcWKCpYVFSxbA9/4Up1XcqSbG9NLrahgBbTw/Q8TlFZce4AnUVee4WufDQAAoHryp//cxbnFlhng3n5VnAfKUXwnTqZJuo/ppQAAAAAAwB/QdPOi4qmS3IXTfTklb6TgxvRSAAAAAAAAb2B6qZuy+n8isyVbshvJZsmqESqTlue0LKnUutOXbUlRCromSSH3tTs1vdSH78KZP3W9Cj//WUUbjlT6WCu77CqmFRWsgAtqKmLhdco1p0a6udOszJ+6XvlvbJY5mlvlefpazJK15o+Ka8/+8/Fq8zupjjGtmmEK+fuFflNnJetKKn2cZa07G3/b/I23PxtO52/vG2L6T17EJKYvx/TVvIjp+zEl+c13heybPlHRlqMyxwt85vwRk5hWjVBl1XdveqlljDGee0tUP5mZmYqJidG+wOcVbYV5JKbVIELRe+5STN7FyleBLrKaa3XIQo/E9rTMxm/JHMj2dhqSzVJM3ggNKBipxfZlkqSfQpapvlWn3Kf5TP5eUlxr/uhc/935E3+qM5+rqz/+tvkbnzuPAACg0vzh33AZoa+cbHQAPibT5CrxxMPKyMhQdDnX/2d6qZfYjV35KpAkhcszzbxzQclruoUzvRQAAAAAAPgomm5eUvIunKEW13RzV8nppVzTDQAAAAAA+Cqabl7CXTjPTO4fN1KwZClYQV7OBgAAAAAAoGw03bwkV3mOx4zYcp/j5hMKlWVZXs4GAAAAAACgbDTdvCTXnGq6uXMXTpxU3KxkdCAAAAAAAPBlNN28pORIt3AP3RX1XJBnTo10AwAAAAAA8FU03byEa7qdGcf0UoumGwAAAAAA8F003byk5F04mV7qvpw/bqRAoxIAAAAAAPgymm7uigmRiq/bb0kKtJVeLmvd6cuxIQpoW0d5JW+k4MOjtgLa1pFiyzh2d461ssuu9gmwZNUK0xX5f1ENxaidWuqD4Onu5x9oOzt5+lrMP2rNXzlqrzr9TqpjzECbX9WZU115+3z+8bfNH3n9s+H0H3973xDTf/IiJjF9Oaav5kVM348ZaPOb7wpWrTApwPKt80dMYgbaTvaI3GAZY4xbe56jMjMzFRMTo4yMDEVHR3ss7kdFX+jWwvslSf8X+IAeCLzLY7Grq4S8LjqiY0pUfe0M/dzb6QAAAAAAgHOQu70i21nMCSUUT5OUpHD550iHs8lu7DqqdElSbauGd5MBAAAAAACoAE03L+GabpWTpkzZZZck1bLivJwNAAAAAABA+Wi6eYm/XNPNV/xujjke11Ss9xIBAAAAAABwQ6C3E/AXGefNlDluk4xOXjgvwCYV2Z2XpdLrTl+ODFJgp/rK/eDUSDdfvhNn9o2f6MSqX6WM/Mofa2WXXcW0WapZM1DafXKX2pUY6ZZ94yc68dnP0gl71efpazH/qLWIj65z+3z5EkftZRVWn99JdYwZaFNgcpLf1JlTXUnePZ82S1bNMEXvH3q2Dt9jvP7ZcDp/e98Q03/yIiYxfTmmr+ZFTN+PKfnNd4XMhm/KHM2V7MZ3zh8xiRlgU2b4CVdl64Smm7sy8iXrj2uvGZ1s4hQ7fbm8fdLzVbThsHJNiZFu8t2RbkUbDkvppxqElTrWM10+fV2RUeDvhY5NNa3YyuVfHKeq8/S1mH/Umr8qVXuS//9OqmPME3a/qrMy60ry2t8283uu/JFPfDaUxV/eN8T0v7yISUxfjumreRHTt2P6yXcF8/sfDTfJt84fMYmZUcZ3ijLQdPOCLJOjz+wrlaB41bJi1dCq5+2UfJ4p8biWangtDwAAAAAAAHfQdPMCI6NwhaqR1UBdbJeqpa2Jt1PyK5WZXgoAAAAAAOANNm8n8Gf873//0/XXX6/69evLsiwtWrSo1D7btm3TDTfcoJiYGEVEROjSSy/Vvn37zn6yJViyFG1FOn7gjlNj3SozvRQAAAAAAMAb/HqkW3Z2ttq0aaO77rpLN910U6ntqamp6ty5s4YOHapx48YpOjpaW7ZsUWiod6+hFmmFa0HwK17Nwd8YGdVSnDpbF6uNdb630wEAAAAAACiXXzfdevfurd69e7vc/vjjj6tPnz564YUXHOuaNGEqp7/6XcfUxJaoCCvc26kAAAAAAACUy6+nl5bHbrdryZIlat68uZKTk1WnTh1dfvnlZU5BLSk/P1+ZmZlOP/ANgQrU2MB/ejsNAAAAAACAClXbptvhw4eVlZWliRMnqlevXvr8889144036qabbtLy5ctdPm/ChAmKiYlx/CQkJJzFrFGeJlaCgqwgb6cBAAAAAABQoWrbdLPb7ZKkvn376v7771fbtm31yCOP6LrrrtPrr7/u8nmPPvqoMjIyHD+//PLL2UoZFWhpMTUYAAAAAAD4B7++plt5atWqpcDAQLVq1cppfcuWLbVy5UqXzwsJCVFISEip9QHdGkpbsiW7kWyWrBqhMml5TsuSSq07fdmWFKWga5I8e7BVKGRUOxV+/rOKNhyp9LFWdtllzKggFbQK01OB155R/vlvbJY5mlv1efpYTH+rtdMV15795+PV5ndSHWNaNcMU8vcLvVAhZ6ZkXUmlj7OsdVV1Pq2oYAVcUNNr5+LP8PZnw+n87X1DTP/Ji5jE9OWYvpoXMX0/piS/+a4Q2KeRirYclTle4DPnj5jEtGqEKqB+TenLimvYMsYYj74rvMSyLH300Ufq16+fY13Hjh3VpEkTzZkzx7HuxhtvVFhYmObNm+dW3MzMTMXExCgjI0PR0dGeThsAAAAAAAB+xN1ekV+PdMvKytLu3bsdy3v27NGGDRsUFxenxMREjRkzRgMHDlSXLl3UvXt3LV26VP/5z3+UkpLivaQBAAAAAABQ7fn1SLeUlBR179691PrBgwdr1qxZkqS33npLEyZM0P79+9WiRQuNGzdOffv2dfs1GOkGAAAAAACAYu72ivy66XY20HQDAAAAAABAMXd7RdX27qUAAAAAAACAt9B0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICHBXo7AV9njJEkZWZmejkTAAAAAAAAeFtxj6i4Z+QKTbcKHD16VJKUkJDg5UwAAAAAAADgK44fP66YmBiX22m6VSAuLk6StG/fvnJPJPBnZWZmKiEhQb/88ouio6O9nQ6qMWoNZxP1hrOFWsPZQq3hbKHWcLZQa5VnjNHx48dVv379cvej6VYBm+3kZe9iYmIoPpwV0dHR1BrOCmoNZxP1hrOFWsPZQq3hbKHWcLZQa5XjzsAsbqQAAAAAAAAAeBhNNwAAAAAAAMDDaLpVICQkRE8//bRCQkK8nQqqOWoNZwu1hrOJesPZQq3hbKHWcLZQazhbqLWqY5mK7m8KAAAAAAAAoFIY6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCfabpNmDBBl156qaKiolSnTh3169dPO3bscNonLy9Pw4cPV82aNRUZGan+/fvrt99+c2zfuHGjbr31ViUkJCgsLEwtW7bUtGnTnGIsXLhQPXv2VO3atRUdHa0OHTros88+qzA/Y4yeeuopxcfHKywsTD169NCuXbuc9lm3bp169uyp2NhY1axZU3fffbeysrIqjL1p0yZdeeWVCg0NVUJCgl544QWn7Vu2bFH//v3VqFEjWZalqVOnVhgTrlFrrmtt4cKFat++vWJjYxUREaG2bdtqzpw5FcaFa9Sb63qbNWuWLMty+gkNDa0wLspGrbmutW7dupWqNcuydO2111YYG6VRa65rrbCwUM8884yaNGmi0NBQtWnTRkuXLq0wLsp2rtZaXl6ehgwZoosuukiBgYHq169fqX0OHjyo2267Tc2bN5fNZtN9991XYb5wjVpzXWsrV65Up06dVLNmTYWFhen888/XlClTKswZZaPWXNdaSkpKmf9eO3ToUIV5+zTjI5KTk83MmTPN5s2bzYYNG0yfPn1MYmKiycrKcuxz7733moSEBPPVV1+ZNWvWmCuuuMJ07NjRsf3NN980I0eONCkpKSY1NdXMmTPHhIWFmenTpzv2GTVqlHn++efNDz/8YHbu3GkeffRRExQUZNatW1dufhMnTjQxMTFm0aJFZuPGjeaGG24wjRs3Nrm5ucYYYw4cOGBq1Khh7r33XrN9+3bzww8/mI4dO5r+/fuXGzcjI8PUrVvXDBo0yGzevNm8++67JiwszMyYMcOxzw8//GBGjx5t3n33XVOvXj0zZcqUypxanIZac11rX3/9tVm4cKHZunWr2b17t5k6daoJCAgwS5curdQ5xinUm+t6mzlzpomOjjYHDx50/Bw6dKhS5xenUGuua+3o0aNOdbZ582YTEBBgZs6cWZlTjD9Qa65r7aGHHjL169c3S5YsMampqea1114zoaGhFeaMsp2rtZaVlWXuvfde8//+3/8zycnJpm/fvqX22bNnjxk5cqSZPXu2adu2rRk1apQbZxSuUGuua23dunVm3rx5ZvPmzWbPnj1mzpw5Jjw83OlvH9xHrbmuta+//tpIMjt27HD6d1tRUZE7p9Zn+UzT7XSHDx82kszy5cuNMcakp6eboKAg88EHHzj22bZtm5Fkvv32W5dxhg0bZrp3717ua7Vq1cqMGzfO5Xa73W7q1atnXnzxRce69PR0ExISYt59911jjDEzZswwderUcSqITZs2GUlm165dLmO/9tprpkaNGiY/P9+x7uGHHzYtWrQoc/+kpCSabh5GrZVda8XatWtnnnjiiXL3gfuot1P1NnPmTBMTE1PuMeDMUWuu/7ZNmTLFREVFOf0DF2eOWjtVa/Hx8eaVV15xet5NN91kBg0aVO5xwT3nSq2VNHjw4DK/nJbUtWtXmm4eRq2V78YbbzS33367W/uifNTaKcVNt7S0NLfi+AufmV56uoyMDElSXFycJGnt2rUqLCxUjx49HPucf/75SkxM1LfffltunOIYZbHb7Tp+/Hi5++zZs0eHDh1yeu2YmBhdfvnljtfOz89XcHCwbLZTpzQsLEzSySG5rnz77bfq0qWLgoODHeuSk5O1Y8cOpaWluXwePIdaK7vWjDH66quvtGPHDnXp0sVlXFQO9eZcb1lZWUpKSlJCQoL69u2rLVu2uIyJyqHWXH+Ovvnmm7rlllsUERHhMi7cR62dqrX8/PxS0+TDwsLKjQv3nSu1Bu+j1lxbv369vvnmG3Xt2tWjcc9V1Fppbdu2VXx8vHr27KlVq1Z5JKY3+WTTzW6367777lOnTp104YUXSpIOHTqk4OBgxcbGOu1bt25dl3N8v/nmG7333nu6++67Xb7WpEmTlJWVpQEDBrjcpzh+3bp1Xb72VVddpUOHDunFF19UQUGB0tLS9Mgjj0g6ec2F8mKXFbfk66LqUGulay0jI0ORkZEKDg7Wtddeq+nTp6tnz54u48J91JtzvbVo0UJvvfWWPv74Y73zzjuy2+3q2LGj9u/f7zIu3EOtuf4c/eGHH7R582b97W9/cxkT7qPWnGstOTlZL730knbt2iW73a4vvvhCCxcuLDcu3HMu1Rq8i1orW8OGDRUSEqL27dtr+PDhfI56ALXmLD4+Xq+//roWLFigBQsWKCEhQd26ddO6dev+VFxv88mm2/Dhw7V582bNnz//jGNs3rxZffv21dNPP61rrrmmzH3mzZuncePG6f3331edOnUkSXPnzlVkZKTjZ8WKFW693gUXXKDZs2dr8uTJCg8PV7169dS4cWPVrVvX0QW+4IILHHF79+59xscGz6HWSouKitKGDRu0evVqPffcc3rggQeUkpJSqRgoG/XmrEOHDrrzzjvVtm1bde3aVQsXLlTt2rU1Y8YMt2OgbNSaa2+++aYuuugiXXbZZWf0fDij1pxNmzZNzZo10/nnn6/g4GCNGDFCf/3rX51GBODMUGs4W6i1sq1YsUJr1qzR66+/rqlTp+rdd9+tdAw4o9actWjRQvfcc48uueQSdezYUW+99ZY6duzo/zfu8Pb81tMNHz7cNGzY0Pz0009O67/66qsy5/cmJiaal156yWndli1bTJ06dcxjjz3m8nWKL377ySefOK3PzMw0u3btcvzk5OSY1NRUI8msX7/ead8uXbqYkSNHlop96NAhc/z4cZOVlWVsNpt5//33jTHG7N271xF3//79xhhj7rjjjlLzmZctW2YkmWPHjpWKzTXdPIdaK7/Wig0dOtRcc801LrfDPdSbe/V28803m1tuucXldlSMWnNda1lZWSY6OtpMnTrV5XHBfdSa61rLzc01+/fvN3a73Tz00EOmVatWLo8PFTvXaq0krul2dlFrfV3mXNL48eNN8+bN3doXZaPW+rrMuaTRo0ebK664wq19fZXPNN3sdrsZPny4qV+/vtm5c2ep7cUXFPzwww8d67Zv317qgoKbN282derUMWPGjHH5WvPmzTOhoaFm0aJFbudWr149M2nSJMe6jIwMpwsKluXNN9804eHh5V4IsPiivAUFBY51jz76KDdSqELUmnu1Vuyvf/2r6dq1q1v5ozTqzf16O3HihGnRooW5//773cofzqi1imtt5syZJiQkxPz+++9u5Y2yUWvu/10rKCgwTZo0MY8++qhb+cPZuVprJdF0Ozuotco1QsaNG2eSkpLc2hfOqLXK1VqPHj3MjTfe6Na+vspnmm7/+Mc/TExMjElJSXG6PWxOTo5jn3vvvdckJiaaZcuWmTVr1pgOHTqYDh06OLb/+OOPpnbt2ub22293inH48GHHPnPnzjWBgYHm1VdfddonPT293PwmTpxoYmNjzccff2w2bdpk+vbt63TrXGOMmT59ulm7dq3ZsWOHeeWVV0xYWJiZNm1auXHT09NN3bp1zR133GE2b95s5s+fX+oWzPn5+Wb9+vVm/fr1Jj4+3owePdqsX7/e7buDwBm15rrW/u///s98/vnnJjU11WzdutVMmjTJBAYGmjfeeMPt8wtn1Jvrehs3bpz57LPPTGpqqlm7dq255ZZbTGhoqNmyZYvb5xenUGuua61Y586dzcCBAys8lygftea61r777juzYMECk5qaav73v/+Zq666yjRu3Lja3YntbDlXa82YkyNY1q9fb66//nrTrVs3x3eBkorXXXLJJea2224z69ev5zP0DFFrrmvtlVdeMYsXLzY7d+40O3fuNP/+979NVFSUefzxx905tTgNtea61qZMmWIWLVpkdu3aZX788UczatQoY7PZzJdffunOqfVZPtN0k1Tmz8yZMx375ObmmmHDhpkaNWqY8PBwc+ONN5qDBw86tj/99NNlxijZhe/atWuZ+wwePLjc/Ox2u3nyySdN3bp1TUhIiLn66qvNjh07nPa54447TFxcnAkODjatW7c2b7/9tlvHvnHjRtO5c2cTEhJiGjRoYCZOnOi0fc+ePWXmzOijM0Otua61xx9/3DRt2tSEhoaaGjVqmA4dOpj58+e7FRtlo95c19t9991nEhMTTXBwsKlbt67p06ePWbdunVuxURq15rrWjDn1v8Sff/65WzHhGrXmutZSUlJMy5YtTUhIiKlZs6a54447zIEDB9yKjdLO5VpLSkoqM6eKzg+jj84Mtea61l5++WVzwQUXmPDwcBMdHW3atWtnXnvtNVNUVORWfDij1lzX2vPPP2+aNGliQkNDTVxcnOnWrZtZtmyZW7F9mWWMMQIAAAAAAADgMdxKCQAAAAAAAPAwmm4AAAAAAACAh9F0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAACgmujWrZvuu+++c+61AQAAfBFNNwAAgHNQSkqKLMtSenq6R563cOFCjR8/3nMJAgAA+LlAbycAAAAA/xcXF+ftFAAAAHwKI90AAAD8UHZ2tu68805FRkYqPj5ekydPdto+Z84ctW/fXlFRUapXr55uu+02HT58WJK0d+9ede/eXZJUo0YNWZalIUOGSJLsdrsmTJigxo0bKywsTG3atNGHH35Y4fNOn17aqFEjPfvss44ck5KStHjxYh05ckR9+/ZVZGSkWrdurTVr1jjlvXLlSl155ZUKCwtTQkKCRo4cqezsbE+fPgAAgCpH0w0AAMAPjRkzRsuXL9fHH3+szz//XCkpKVq3bp1je2FhocaPH6+NGzdq0aJF2rt3r6NBlpCQoAULFkiSduzYoYMHD2ratGmSpAkTJujtt9/W66+/ri1btuj+++/X7bffruXLl5f7vLJMmTJFnTp10vr163Xttdfqjjvu0J133qnbb79d69atU5MmTXTnnXfKGCNJSk1NVa9evdS/f39t2rRJ7733nlauXKkRI0ZUxSkEAACoUpYp/lcOAAAA/EJWVpZq1qypd955R3/5y18kSceOHVPDhg119913a+rUqaWes2bNGl166aU6fvy4IiMjlZKSou7duystLU2xsbGSpPz8fMXFxenLL79Uhw4dHM/929/+ppycHM2bN6/M50knR7q1bdvW8dqNGjXSlVdeqTlz5kiSDh06pPj4eD355JN65plnJEnfffedOnTooIMHD6pevXr629/+poCAAM2YMcMRd+XKleratauys7MVGhrqwbMIAABQtbimGwAAgJ9JTU1VQUGBLr/8cse6uLg4tWjRwrG8du1ajR07Vhs3blRaWprsdrskad++fWrVqlWZcXfv3q2cnBz17NnTaX1BQYHatWtX6Txbt27teFy3bl1J0kUXXVRq3eHDh1WvXj1t3LhRmzZt0ty5cx37GGNkt9u1Z88etWzZstI5AAAAeAtNNwAAgGomOztbycnJSk5O1ty5c1W7dm3t27dPycnJKigocPm8rKwsSdKSJUvUoEEDp20hISGVziMoKMjx2LIsl+uKG4JZWVm65557NHLkyFKxEhMTK/36AAAA3kTTDQAAwM80adJEQUFB+v777x3NqLS0NO3cuVNdu3bV9u3bdfToUU2cOFEJCQmSVOqGBcHBwZKkoqIix7pWrVopJCRE+/btU9euXct87bKe5ykXX3yxtm7dqqZNm3o8NgAAwNnGjRQAAAD8TGRkpIYOHaoxY8Zo2bJl2rx5s4YMGSKb7eQ/7RITExUcHKzp06frp59+0uLFizV+/HinGElJSbIsS5988omOHDmirKwsRUVFafTo0br//vs1e/Zspaamat26dZo+fbpmz57t8nme8vDDD+ubb77RiBEjtGHDBu3atUsff/wxN1IAAAB+iaYbAACAH3rxxRd15ZVX6vrrr1ePHj3UuXNnXXLJJZKk2rVra9asWfrggw/UqlUrTZw4UZMmTXJ6foMGDTRu3Dg98sgjqlu3rqOxNX78eD355JOaMGGCWrZsqV69emnJkiVq3Lhxuc/zhNatW2v58uXauXOnrrzySrVr105PPfWU6tev77HXAAAAOFu4eykAAAAAAADgYYx0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICH0XQDAAAAAAAAPIymGwAAAAAAAOBhNN0AAAAAAAAAD6PpBgAAAAAAAHgYTTcAAAAAAADAw2i6AQAAAAAAAB5G0w0AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAPo+kGAAAAAAAAeBhNNwAAAAAAAMDDaLoBAAAAAAAAHkbTDQAAAAAAAPAwmm4AAAAAAACAh9F0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICH0XQDAAAAAAAAPIymGwAAAAAAAOBhNN0AAAAAAAAAD6PpBgAAAAAAAHgYTTcAAAAAAADAw2i6AQAAAAAAAB5G0w0AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAPo+kGAAAAAAAAeBhNNwAAAAAAAMDDaLoBAAAAAAAAHhbo7QQAANXPiRMnVFBQ4O00AACAm4KDgxUYyNdDAPAk/qoCADzGGKN9+/bp999/93YqAACgkmrVqqXExERZluXtVACgWqDpBgDwmOKGW4MGDRQZGSmbjasYAADg6+x2u7KysnTgwAEVFRXpvPPO83ZKAFAtWMYY4+0kAAD+78SJE9q4caMaNGigevXqeTsdAABQSYcOHdKBAweUlZWlzp07KyAgwNspAYBfYwgCAMAjiq/hFhkZ6eVMAADAmSj+DP/xxx+1cuVKL2cDAP6PphsAwKOYUgoAgH8q/gyPiIjQli1blJ+f7+WMAMC/8c0IAAAAAOAQFBSkwsJC5eTkeDsVAPBrNN0AAChHSkqKLMtSenq6t1PxC8YY3X333YqLi5NlWdqwYYO6deum++67z7FPo0aNNHXqVMeyZVlatGjRn3rdIUOGqF+/fn8qRkXGjh2rtm3bVulrFPvqq6/UsmVLFRUV/ak4nji3UunfmS+oypx88Xgra+/evY73oC/EKamgoECNGjXSmjVrPBYTnmVZlrj0NwD8edy9FAAAeMzSpUs1a9YspaSk6LzzzlOtWrW0cOFCBQUFeTs1v/LQQw/piSee+NMXMT948KBq1Kjxp/NZvXq1IiIi/nQcf1HZ401JSVH37t2Vlpam2NjYqkusig0ZMkTp6elOjdqEhAQdPHhQtWrV8tjrBAcHa/To0Xr44Yf11VdfeSwuAAC+hqYbAKBK/KPwaW217/ZqDq1sTfWvoHFezeFck5qaqvj4eHXs2NGxLi4uzosZ+Z+VK1cqNTVV/fv3/9OxPHUn4dq1a3skjr/w1vEaY1RUVKTAQN/5J3pAQECV3JF60KBBevDBB7VlyxZdcMEFHo8PAIAvYHopAKBKbLXv1vdmo1d/3G365efna+TIkapTp45CQ0PVuXNnrV69usx9c3Jy1Lt3b3Xq1Ikpp6cZMmSI/vnPf2rfvn2yLEuNGjWSpFLTSyvyyy+/aMCAAYqNjVVcXJz69u2rvXv3OrYXFRXpgQceUGxsrGrWrKmHHnqo3GlQmZmZCgsL06effuq0/qOPPlJUVJTjmkUPP/ywmjdvrvDwcJ133nl68sknVVhY6DJuWcfVr18/DRkyxLGcn5+v0aNHq0GDBoqIiNDll1+ulJSUco9//vz56tmzp0JDQx3riqe2vvXWW0pMTFRkZKSGDRumoqIivfDCC6pXr57q1Kmj5557zilWyemlBQUFGjFihOLj4xUaGqqkpCRNmDBB0slmz9ixY5WYmKiQkBDVr19fI0eOdMQpa0rwv//9b914440KDw9Xs2bNtHjxYqfXXrx4sZo1a6bQ0FB1795ds2fPrtRU7QULFuiCCy5QSEiIGjVqpMmTJ5fa5/jx47r11lsVERGhBg0a6NVXX3Vsq+iYylOZ4927d6+6d+8uSapRo4Ysy3LUgN1u14QJE9S4cWOFhYWpTZs2+vDDDx1xi6evf/rpp7rkkksUEhKilStXOn7fM2bMUEJCgsLDwzVgwABlZGQ4nmu32/XMM8+oYcOGCgkJUdu2bbV06VKXx1RUVKShQ4c6cmnRooWmTZvm2D527FjNnj1bH3/8sSzLkmVZSklJKXN66fLly3XZZZcpJCRE8fHxeuSRR3TixAnH9m7dumnkyJF66KGHFBcXp3r16mns2LFO+dSoUUOdOnXS/Pnz3fqdnIuOHz+uQYMGKSIiQvHx8ZoyZYrT3505c+aoffv2ioqKUr169XTbbbfp8OHDjucX19eSJUvUunVrhYaG6oorrtDmzZu9dEQAcO6h6QYAOOc99NBDWrBggWbPnq1169apadOmSk5O1rFjx5z2S09PV8+ePWW32/XFF194ZRpZ4cEC5a7Pcvop2JMnSbLn2Utty12f5Xhu/o7cUttOHDvZVDpxpLDUtvxduZXKbdq0aY4mwMGDB102Lss9vsJCJScnKyoqSitWrNCqVasUGRmpXr16qaCgQJI0efJkzZo1S2+99ZZWrlypY8eO6aOPPnIZMzo6Wtddd53mzZvntH7u3Lnq16+fwsPDJUlRUVGaNWuWtm7dqmnTpumNN97QlClTKn0MJY0YMULffvut5s+fr02bNukvf/mLevXqpV27drl8zooVK9S+fftS61NTU/Xpp59q6dKlevfdd/Xmm2/q2muv1f79+7V8+XI9//zzeuKJJ/T999+XGffll1/W4sWL9f7772vHjh2aO3euozG6YMECTZkyRTNmzNCuXbu0aNEiXXTRReUe27hx4zRgwABt2rRJffr00aBBgxzvmT179ujmm29Wv379tHHjRt1zzz16/PHH3Txr0tq1azVgwADdcsst+vHHHzV27Fg9+eSTmjVrltN+L774otq0aaP169frkUce0ahRo/TFF1+c8TGdyfEmJCRowYIFkqQdO3bo4MGDjmbWhAkT9Pbbb+v111/Xli1bdP/99+v222/X8uXLnWI/8sgjmjhxorZt26bWrVtLknbv3q33339f//nPf7R06VKtX79ew4YNczxn2rRpmjx5siZNmqRNmzYpOTlZN9xwg8vastvtatiwoT744ANt3bpVTz31lB577DG9//77kqTRo0drwIAB6tWrlw4ePKiDBw86jVgtduDAAfXp00eXXnqpNm7cqH/9619688039eyzzzrtN3v2bEVEROj777/XCy+8oGeeecbxuyl22WWXacWKFZX5NXiM/WC2itYfdvqx7znZ1DR5J0ptK1p/qplVtCOt9HOP/fF3+Ehu6efuSj+jHB944AGtWrVKixcv1hdffKEVK1Zo3bp1ju2FhYUaP368Nm7cqEWLFmnv3r1OTf9iY8aM0eTJk7V69WrVrl1b119/fbn/oQAA8CADAIAHZGdnmzVr1pjs7GxjjDFd8m4zIbkXePWnS95tFeadlZVlgoKCzNy5cx3rCgoKTP369c0LL7xgvv76ayPJbNu2zbRu3dr079/f5OfnV9l5rMhvz+wzm4O/cfr5ZfBOY4wxebtySm3bHPyN47mpV24qtS1t7mFjjDG/v3aw1LY9fbZUOr8pU6aYpKQkp3Vdu3Y1o0aNciwnJSWZKVOmOJYlmY8++sgYY8ycOXNMixYtjN1ud2zPz883YWFh5rPPPjPGGBMfH29eeOEFx/bCwkLTsGFD07dvX5d5ffTRRyYyMtJRnxkZGSY0NNR8+umnLp/z4osvmksuucSx/PTTT5s2bdq4PC5jjOnbt68ZPHiwMcaYn3/+2QQEBJgDBw447XP11VebRx991OXrxsTEmLfffttp3dNPP23Cw8NNZmamY11ycrJp1KiRKSoqcqxr0aKFmTBhgmO55Ln95z//aa666iqnc1ts8uTJpnnz5qagoKDMnMr6nT3xxBOO5aysLCPJcT4ffvhhc+GFFzrFePzxx40kk5aW5vLYi912222mZ8+eTuvGjBljWrVq5ZRTr169nPYZOHCg6d27t1vHVJ7KHm/x34mSx5aXl2fCw8PNN9+ceg8aY8zQoUPNrbfe6vS8RYsWOe3z9NNPm4CAALN//37Huk8//dTYbDZz8OBBY4wx9evXN88995zT8y699FIzbNgwY4wxe/bsMZLM+vXrXR7n8OHDTf/+/R3LgwcPLvU+Oj3OY489Vuo9+uqrr5rIyEhHLXbt2tV07ty5VG4PP/yw07pp06aZRo0aucyvKuWO+86kB73s9JN958m/MSd2pZXalh70suO5xzu/X2pb/jvbjDHG5L22sdS2rD6LysyhPJmZmSYoKMh88MEHjnXp6ekmPDy81N+dYqtXrzaSzPHjx40xp+pr/vz5jn2OHj1qwsLCzHvvvVdmjOLP8nfeecdMmTLFHDt2rNK5AwBO8Z0LRgAA4AWpqakqLCxUp06dHOuCgoJ02WWXadu2bbr00kslST179tRll12m9957709f3P7PqPG3uoq6zvnC+AGxJz/OgxqG6LzvXI/kafBGU9lznO+GGZQUIkmKubmmwq+IdNpmizz7x7lx40bt3r1bUVFRTuvz8vKUmpqqjIwMHTx4UJdffrljW2BgoNq3b1/uFNM+ffooKChIixcv1i233KIFCxYoOjpaPXr0cOzz3nvv6eWXX1ZqaqqysrJ04sQJRUdHn/Gx/PjjjyoqKlLz5s2d1ufn56tmzZoun5ebm+s0tbRYo0aNnM5L3bp1FRAQIJvN5rSu5PSykoYMGaKePXuqRYsW6tWrl6677jpdc801kqS//OUvmjp1qs477zz16tVLffr00fXXX1/utcWKR2RJUkREhKKjox2vvWPHDsd7p9hll13mMtbptm3bpr59+zqt69Spk6ZOnaqioiLHe7BDhw5O+3To0MExLfRMjqk85R1vWXbv3q2cnBz17NnTaX1BQYHatWvntK6skY2JiYlq0KCBY7lDhw6y2+3asWOHwsPD9euvvzr93ZJOnqONGze6zOnVV1/VW2+9pX379ik3N1cFBQWVviPvtm3b1KFDB1mW5fS6WVlZ2r9/vxITEyU5ny9Jio+PL3W+wsLCHNO7z7bgv1+ooOsbO62zYk/+PbQ1jFTk9wNdPjfs3z2kHOeRYlbSyb8VQTc3U+AVp10DLzK40vn99NNPKiwsdHrfxMTEqEWLFo7ltWvXauzYsdq4caPS0tJkt9slSfv27VOrVq0c+5V8n8TFxalFixbatm1bpXMCAFQeTTcAQJVoZWsq2X0gBw+59tprtWDBAm3duvVPTVH7s4LigxUUX/YXOFuoTWHtIsvcJkkhLcJcbgusHaTA2t6/w2hWVpYuueQSzZ07t9S2P3Nx++DgYN18882aN2+ebrnlFs2bN08DBw50NGC+/fZbDRo0SOPGjVNycrJiYmI0f/78Mq8jVsxms5Vq9JWcspWVlaWAgACtXbu2VKM2MtL176lWrVpKS0srtf70O8BallXmuuIv3qe7+OKLtWfPHn366af68ssvNWDAAPXo0UMffvihEhIStGPHDn355Zf64osvNGzYML344otavny5yzvPVua1veFMjqk8lT3erKyTU7uXLFni1DyTpJCQEKfls3Fn2Pnz52v06NGaPHmyOnTooKioKL344osupyP/We6cr2PHjnntphW2+AgpvuzzboUGKqBdHZfPDWjh+o7AttphUm3Xf2s9JTs7W8nJyUpOTtbcuXNVu3Zt7du3T8nJyY6p+AAA76PpBgCoEv5y19AmTZooODhYq1atUlJSkqSTjZPVq1c7XSR/4sSJioyM1NVXX62UlBSnUQTwnIsvvljvvfee6tSp43KUWXx8vL7//nt16dJFknTixAmtXbtWF198cbmxBw0apJ49e2rLli1atmyZ0zWovvnmGyUlJTldd+znn38uN17t2rV18OBBx3JRUZE2b97suKh+u3btVFRUpMOHD+vKK68s/8BLaNeunbZu3er2/pURHR2tgQMHauDAgbr55pvVq1cvHTt2THFxcQoLC9P111+v66+/XsOHD9f555+vH3/8scLzWpYWLVrov//9r9O6ylzjr2XLllq1apXTulWrVql58+ZODczvvvvOaZ/vvvtOLVu2dCx78pjKExx8shFeVHRqJGmrVq0UEhKiffv2qWvXrpWOuW/fPv3666+qX7++pJPHZrPZ1KJFC0VHR6t+/fpatWqVU+xVq1a5HFG4atUqdezY0em6cKmpqaWOo+QxlKVly5ZasGCBjDGO0W6rVq1SVFSUGjZsWKlj3Lx5c6lRfzjpvPPOU1BQkFavXu0YPZiRkaGdO3eqS5cu2r59u44ePaqJEycqISFBkrRmzZoyY3333XeOGGlpadq5c6fT+wQAUHW4kQIA4JwWERGhf/zjHxozZoyWLl2qrVu36u9//7tycnI0dOhQp30nTZqkQYMG6aqrrtL27du9lHH1NmjQINWqVUt9+/bVihUrtGfPHqWkpGjkyJHav3+/JGnUqFGaOHGiFi1apO3bt2vYsGFu3RGzS5cuqlevngYNGqTGjRs7TVFt1qyZ9u3bp/nz5ys1NVUvv/xyuTdnkKSrrrpKS5Ys0ZIlS7R9+3b94x//cMqjefPmGjRokO68804tXLhQe/bs0Q8//KAJEyZoyZIlLuMmJydr5cqVFR5PZb300kt69913tX37du3cuVMffPCB6tWrp9jYWM2aNUtvvvmmNm/erJ9++knvvPOOwsLCHI3oyrrnnnu0fft2Pfzww9q5c6fef/99x00QSk5LdOXBBx/UV199pfHjx2vnzp2aPXu2XnnlFY0ePdppv1WrVumFF17Qzp079eqrr+qDDz7QqFGjJMnjx1SepKQkWZalTz75REeOHFFWVpaioqI0evRo3X///Zo9e7ZSU1O1bt06TZ8+XbNnz64wZmhoqAYPHqyNGzdqxYoVGjlypAYMGKB69U5OXRwzZoyef/55vffee9qxY4ceeeQRbdiwwXH8p2vWrJnWrFmjzz77TDt37tSTTz5ZqhHaqFEjbdq0STt27NDvv/9e5sX2hw0bpl9++UX//Oc/tX37dn388cd6+umn9cADDzhNdXbHihUrHFOc4SwqKkqDBw/WmDFj9PXXX2vLli0aOnSobDabLMtSYmKigoODNX36dP30009avHixxo8fX2asZ555Rl999ZU2b96sIUOGqFatWurXr9/ZPSAAOEfRdAMAnPMmTpyo/v3764477tDFF1+s3bt367PPPlONGqWnEE2ZMkUDBgzQVVddpZ07d3oh2+otPDxc//vf/5SYmKibbrpJLVu21NChQ5WXl+cY+fbggw/qjjvu0ODBgx3T5G688cYKY1uWpVtvvVUbN27UoEGDnLbdcMMNuv/++zVixAi1bdtW33zzjZ588sly4911110aPHiw7rzzTnXt2lXnnXeeY5RbsZkzZ+rOO+/Ugw8+qBYtWqhfv35OI1fKMmjQIG3ZskU7duyo8JgqIyoqSi+88ILat2+vSy+9VHv37tV///tf2Ww2xcbG6o033lCnTp3UunVrffnll/rPf/5T7rXnytO4cWN9+OGHWrhwoVq3bq1//etfjlGEp0+tLMvFF1+s999/X/Pnz9eFF16op556Ss8880ypOzM++OCDWrNmjdq1a6dnn31WL730kpKTkyXJ48dUngYNGmjcuHF65JFHVLduXY0YMUKSNH78eD355JOaMGGCWrZsqV69emnJkiVq3LhxBRGlpk2b6qabblKfPn10zTXXqHXr1nrttdcc20eOHKkHHnhADz74oC666CItXbpUixcvVrNmzcqMd8899+imm27SwIEDdfnll+vo0aNOo94k6e9//7tatGih9u3bq3bt2qVGGxYf63//+1/98MMPatOmje69914NHTpUTzzxRGVOmb799ltlZGTo5ptvrtTzziUvvfSSOnTooOuuu049evRQp06d1LJlS4WGhqp27dqaNWuWPvjgA7Vq1UoTJ07UpEmTyowzceJEjRo1SpdccokOHTqk//znP47RmQCAqmWZ8q46DACAm3JycrRt2za1bNlS4eHh3k4H8GtjxoxRZmamZsyY4e1UPOa5557T66+/rl9++cXbqfi8sWPHatGiRdqwYYO3U6kyAwcOVJs2bfTYY495OxW/kZ2drQYNGmjy5MmlRmKXJSUlRd27d1daWppiY2Pdeo3iz/Lt27fryJEjGjx4cJn/AQUAcA8j3QAAAHzM448/rqSkJJ+6MUFlvfbaa1q9erV++uknzZkzRy+++KIGDx7s7bTgAwoKCnTRRRfp/vvv93YqPm39+vV69913HVOTi0fonn5nXwCA7+JGCgAAAD4mNjbW70cA7dq1S88++6yOHTumxMREPfjgg3r00UclSb1799aKFSvKfN5jjz1Wpce+YsUK9e7d2+X24ruOouoEBwdXejrquWrSpEnasWOHgoODdckll2jFihWqVauWt9MCALiJ6aUAAI9geikAdx04cEC5ubllbouLi1NcXFyVvXZubq4OHDjgcnvTpk2r7LUBX8f0UgDwLEa6AQAA4Kxq0KCB1147LCyMxhoAADgruKYbAMCj/PkaVAAAnMv4DAcAz6LpBgDwiODgYElcDwkAAH9V/BleUFDg5UwAoHpgeikAwCMCAwNVq1Ytx7WSIiMjZbPxfzsAAPg6u92urKwsHThwQOnp6SoqKvJ2SgBQLdB0AwB4TGJioiSVe5FyAADgm9LT0/Xbb7/pxIkTCgwMdIxiBwCcGZpuAACPsSxLSUlJKiws1Ndffy1JqlGjhizL8nJmAACgPIWFhbLb7SooKNDRo0fVvHlz7kYOAH8STTcAgMc1bdpUubm5+vrrr3X06FFvpwMAANxgjJFlWWrWrJl69+7Nf5oBwJ9kGWOMt5MAAFRPhw4d4towAAD4CcuyFBYWprp16zLKDQA8gKYbAAAAAAAA4GHcVg4AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAP+//IU26osJkF5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Update the specific settings\n", + "your_dataset.update_gap_and_missing_fill_settings(missing_obs_interpolation_method = 'time')\n", + "\n", + "#Interpolate the missing timestamps\n", + "your_dataset.fill_missing_obs_linear(obstype='temp')\n", + "\n", + "#Inspect the filled values by plotting or printing out the info.\n", + "your_dataset.get_station('vlinder05').make_plot(colorby='label')\n", + "your_dataset.missing_obs.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "7838e138-3eb7-4da8-8e7b-b435e88918ed", + "metadata": {}, + "source": [ + "## Fill gaps\n", + "\n", + "Because gaps can span longer periods, interpolation is not (always) the most suitable method to fill the gaps. The following method can be used to fill the gaps:\n", + " * interpolation: linear interpolation of the gaps. Use the [fill_gaps_linear()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_linear) method for this.\n", + " * Debias ERA5 gapfill: Use ERA5 and a debiasing algorithm to fill the gaps by calling the [fill_gaps_era5()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_era5) method.\n", + " * Automatic gapfill: A combination of the interpolation and ERA5-debias. For the shortest gaps interpolation is used and debias-ERA5 for the longer gaps. Use the [fill_gaps_automatic()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_automatic) method for this.\n", + "\n", + "Here is an example of using debias ERA5 gapfilling of temperature observations." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3f66d0f6-2912-40e3-aa50-0cb27821b495", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

To authorize access needed by Earth Engine, open the following\n", + " URL in a web browser and follow the instructions:

\n", + "

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=gOIKcfY39t-LaSM_esufmUl1XAlzLqE3KVIYY7vUJ04&tc=5laNPc-Y_M4z8qVxTUtp71dwfdgRuNHjkYgSdWvirrQ&cc=3Auxy8YEGzBho3lWk01G2QP8A9QF5VEoEoHxuxl65-0

\n", + "

The authorization workflow will generate a code, which you should paste in the box below.

\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter verification code: 4/1AfJohXnKdN9MAKx-q9l7U6FHNF4FR7u6VH8zU5WXCgT1sZMJKO7TfV3G3ig\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Successfully saved authorization token.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n" + ] + } + ], + "source": [ + "#Update the settings (definition of the period to calculate biases for)\n", + "your_dataset.update_gap_and_missing_fill_settings(\n", + " gap_debias_prefered_leading_period_hours=24,\n", + " gap_debias_prefered_trailing_period_hours=24,\n", + " gap_debias_minimum_leading_period_hours=6,\n", + " gap_debias_minimum_trailing_period_hours=6,\n", + " )\n", + "#(As a demonstration, we will fill the gaps of a single station. The following functions can also be\n", + "# directly applied to the dataset.)\n", + "your_station = your_dataset.get_station('vlinder05')\n", + "\n", + "\n", + "#Get ERA5 modeldata at the location of your stations and period.\n", + "ERA5_modeldata = your_station.get_modeldata(modelname='ERA5_hourly',\n", + " obstype='temp')\n", + "\n", + "#Use the debias method to fill the gaps\n", + "gapfill_df = your_station.fill_gaps_era5(modeldata=ERA5_modeldata,\n", + " method='debias',\n", + " obstype='temp')\n" + ] + }, + { + "cell_type": "markdown", + "id": "6cb0626d-a45c-4bd1-ad93-32c933f9d10c", + "metadata": {}, + "source": [ + "The gaps in the station are now filled. To inspect these filled values, you can plot them" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "524065e9-13cd-4359-8ca7-d9cdc931ace9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb5dXA8d/VsuQh7xEnjrN3yE6AkEGAsAqk7E3KKCOMQEsLtEBfKKOUWWhpocwABQoEKCPsBAjZJGSR5ezEe8lD1rzvH7I1Yide2j7ffvhU9+rquY8VWdY9Os85iqqqKkIIIYQQQgghhBBCiKDRRHoCQgghhBBCCCGEEELEGwm6CSGEEEIIIYQQQggRZBJ0E0IIIYQQQgghhBAiyCToJoQQQgghhBBCCCFEkEnQTQghhBBCCCGEEEKIIJOgmxBCCCGEEEIIIYQQQSZBNyGEEEIIIYQQQgghgkyCbkIIIYQQQgghhBBCBJkE3YQQQgghhBBCCCGECDIJugkhhBBCiLCqr6/n6quvJi8vD0VRmD9/frfHVBSFP/3pT97tl19+GUVR2L17d7fHDuWYQgghhIhfEnQTQgghRFRQFKVD/y1evDjSU42Yf/zjH7z88suRnka3Pfjgg7z88stcf/31LFiwgMsuuyzSU4q4AwcOcP7555OWlobZbOass85i586drY473O/Fww8/HIFZCyGEEOJIdJGegBBCCCEEwIIFCwK2X331Vb744otW+4cPHx7OaUWVf/zjH2RlZTF37txIT6Vbvv76a44++mjuvffekJ3jsssu48ILLyQhISFk5wiW+vp6jj/+eGpra7nrrrvQ6/U88cQTzJgxg3Xr1pGZmRlw/EknncTll18esG/cuHHhnLIQQgghOkCCbkIIIYSICpdeemnA9vLly/niiy9a7Y8XqqrS1NSEyWSK9FQ6rKGhgaSkpG6PU1ZWxogRI4Iwo8PTarVotdqQnqO7Wp7Pf/zjH2zfvp2VK1cyadIkAE499VRGjRrFY489xoMPPhjwuCFDhsTt74UQQggRT2R5qRBCCCFihtvt5sknn2TkyJEYjUZyc3O59tprqa6uDjiuX79+/OIXv2Dx4sVMnDgRk8nE6NGjvUtT33vvPUaPHo3RaGTChAmsXbs24PFz584lOTmZnTt3cvLJJ5OUlER+fj733Xcfqqp2a06fffaZd07/+te/AHjppZeYNWsWOTk5JCQkMGLECJ599tlWj9+0aRNLlizxLimcOXMmAH/6059QFKXV89VWDbJDa5/5j++fQdfy2CVLlnDDDTeQk5NDnz59Wj3OX1lZGVdddRW5ubkYjUbGjBnDK6+84r1/8eLFKIrCrl27+Pjjj70/x+FqpI0aNYrjjz++1X63203v3r0599xzDzuXtn72ln+D77//nsmTJ2M0GhkwYACvvvpqq8dv2rSJWbNmYTKZ6NOnD3/+859xu91tnuvTTz9l2rRpJCUlkZKSwumnn86mTZsCjml5TRUVFXHaaaeRkpLCJZdcAsA777zDpEmTvAE3gGHDhnHCCSfw9ttvt3lOq9VKU1PTYX9+IYQQQkSeBN2EEEIIETOuvfZabr/9dqZOncpTTz3Fr371K15//XVOPvlkHA5HwLE7duzg4osv5owzzuChhx6iurqaM844g9dff51bb72VSy+9lP/7v/+jqKiI888/v1VAxeVyccopp5Cbm8sjjzzChAkTuPfee1stiezMnLZu3cpFF13ESSedxFNPPcXYsWMBePbZZyksLOSuu+7iscceo6CggBtuuIG///3v3sc++eST9OnTh2HDhrFgwQIWLFjAH/7whyA+u2274YYb2Lx5M/fccw933HHHYY+zWq3MnDmTBQsWcMkll/DXv/6V1NRU5s6dy1NPPQV4lgYvWLCArKwsxo4d6/05srOz2xzzggsu4Ntvv6WkpCRg//fff8/Bgwe58MILO/3z7Nixg3PPPZeTTjqJxx57jPT0dObOnRsQJCspKeH4449n3bp13HHHHcyfP59XX33V+3P4W7BgAaeffjrJycn85S9/4e6772bz5s0cd9xxrYKJTqeTk08+mZycHB599FHOOecc3G4369evZ+LEia3Gnjx5MkVFRdTV1QXsf/nll0lKSsJkMjFixAjeeOONTj8PQgghhAgDVQghhBAiCs2bN0/1/6jy3XffqYD6+uuvBxy3aNGiVvsLCwtVQP3hhx+8+z777DMVUE0mk7pnzx7v/n/9618qoH7zzTfefVdccYUKqDfddJN3n9vtVk8//XTVYDCo5eXlXZ7TokWLWv2sjY2NrfadfPLJ6oABAwL2jRw5Up0xY0arY++99161rY91L730kgqou3bt8u4D1HvvvbfVsYWFheoVV1zR6rHHHXec6nQ6Wx1/qCeffFIF1Ndee827z263q8ccc4yanJysWiyWgHOdfvrp7Y65detWFVCffvrpgP033HCDmpycHPC8HfpztfWzt/wbfPvtt959ZWVlakJCgvqb3/zGu2/+/PkqoK5YsSLguNTU1IAx6+rq1LS0NPWaa64JmF9JSYmampoasL/lNXXHHXcEHFteXq4C6n333dfq5//73/+uAuqWLVu8+4499lj1ySefVD/44AP12WefVUeNGqUC6j/+8Y+2nkIhhBBCRJBkugkhhBAiJvz3v/8lNTWVk046iYqKCu9/EyZMIDk5mW+++Sbg+BEjRnDMMcd4t6dMmQLArFmz6Nu3b6v9bXWKvPHGG723FUXhxhtvxG638+WXX3ZpTv379+fkk09udR7/um61tbVUVFQwY8YMdu7cSW1tbYefo1C45pprOlQb7ZNPPiEvL4+LLrrIu0+v13PzzTdTX1/PkiVLOn3uIUOGMHbsWN566y3vPpfLxTvvvMMZZ5zRpXp4I0aMYNq0ad7t7Oxshg4dGvDv/8knn3D00UczefLkgONaloO2+OKLL6ipqeGiiy4K+PfXarVMmTKl1b8/wPXXXx+wbbVaAdps+GA0GgOOAVi6dCm33HILZ555Jtdddx1r1qxh1KhR3HXXXQHHCSGEECLypJGCEEIIIWLC9u3bqa2tJScnp837y8rKArb9A2sAqampABQUFLS5/9AabBqNhgEDBgTsGzJkCIB32WBn59S/f/82j1u6dCn33nsvy5Yto7GxMeC+2tpa7xwj4XBzPtSePXsYPHgwGk3gd7ot3Wb37NnTpfNfcMEF3HXXXRw4cIDevXuzePFiysrKuOCCC7o03qGvC4D09PSAf/89e/Z4g7H+hg4dGrC9fft2wBPIbYvZbA7Y1ul0reritQQObTZbq8e31Gw7UnDRYDBw4403egNwxx133GGPFUIIIUR4SdBNCCGEEDHB7XaTk5PD66+/3ub9h9YFO1x21uH2q4c0SAjFnNoKnhQVFXHCCScwbNgwHn/8cQoKCjAYDHzyySc88cQThy3e76+tJgrgyQrrqMMdG+nuqhdccAF33nkn//3vf5k/fz5vv/02qampnHLKKV0aL9j//uCp65aXl9fqfp0u8KN2QkJCq6BkRkYGCQkJFBcXt3p8y778/PwjzqMlkFxVVdXxyQshhBAi5CToJoQQQoiYMHDgQL788kumTp0alkCQ2+1m586d3uw2gG3btgGeLpjBmtP//vc/bDYbH374YUAWVltLEw8XXEtPTwegpqaGtLQ07/62ssvS09OpqakJ2Ge329sM+nRGYWEh69evx+12BwSWtmzZ4r2/K/r378/kyZN56623uPHGG3nvvfeYM2dOm8sxg6WwsNCbxeZv69atAdsDBw4EICcnhxNPPLFL59JoNIwePZrVq1e3um/FihUMGDCAlJSUI47RsjT2cA0phBBCCBEZUtNNCCGEEDHh/PPPx+Vycf/997e6z+l0tgokBcMzzzzjva2qKs888wx6vZ4TTjghaHNqybzyz7Sqra3lpZdeanVsUlJSm2O2BH++/fZb776GhgZeeeWVNo/1Pw7gueee61RWXFtOO+00SkpKAuqvOZ1Onn76aZKTk5kxY0aXx77gggtYvnw5L774IhUVFV1eWtpRp512GsuXL2flypXefeXl5a0yGk8++WTMZjMPPvhgq061LY/piHPPPZdVq1YFBN62bt3K119/zXnnnXfE8erq6njyySfJyspiwoQJHTqfEEIIIcJDMt2EEEIIERNmzJjBtddey0MPPcS6deuYPXs2er2e7du389///pennnqKc889N2jnMxqNLFq0iCuuuIIpU6bw6aef8vHHH3PXXXd5M4qCMafZs2djMBg444wzuPbaa6mvr+f5558nJyenVfbZhAkTePbZZ/nzn//MoEGDyMnJYdasWcyePZu+ffty1VVXcfvtt6PVannxxRfJzs5m7969AWNcffXVXHfddZxzzjmcdNJJ/PTTT3z22WdkZWV16/n69a9/zb/+9S/mzp3LmjVr6NevH++88w5Lly7lySefbDdb60jOP/98fvvb3/Lb3/6WjIyMLmeVddTvfvc7FixYwCmnnMItt9xCUlISzz33nDebr4XZbObZZ5/lsssuY/z48Vx44YXe5/zjjz9m6tSpAYHbw7nhhht4/vnnOf300/ntb3+LXq/n8ccfJzc3l9/85jfe4/7+97/z/vvvc8YZZ9C3b1+Ki4t58cUX2bt3LwsWLMBgMITk+RBCCCFE10jQTQghhBAx45///CcTJkzgX//6F3fddRc6nY5+/fpx6aWXMnXq1KCeS6vVsmjRIq6//npuv/12UlJSuPfee7nnnnuCOqehQ4fyzjvv8Mc//pHf/va35OXlcf3115Odnc2VV14ZcOw999zDnj17eOSRR6irq2PGjBnMmjULvV7PwoULueGGG7j77rvJy8tj/vz5pKen86tf/SpgjGuuuYZdu3bxwgsvsGjRIqZNm8YXX3zhzd7rKpPJxOLFi7njjjt45ZVXsFgsDB06lJdeeom5c+d2a+w+ffpw7LHHsnTpUq6++mr0en23xmtPr169+Oabb7jpppt4+OGHyczM5LrrriM/P5+rrroq4NiLL76Y/Px8Hn74Yf76179is9no3bs306ZNa/XcH05KSgqLFy/m1ltv5c9//jNut5uZM2fyxBNPBCwZnTp1Kj/88AP//ve/qaysJCkpicmTJ/Piiy8etpmDEEIIISJHUbtSNVYIIYQQIo7NnTuXd955h/r6+khPRQghhBBCxCip6SaEEEIIIYQQQgghRJBJ0E0IIYQQQgghhBBCiCCToJsQQgghhBBCCCGEEEEmNd2EEEIIIYQQQgghhAgyyXQTQgghhBBCCCGEECLIJOgmhBBCCCGEEEIIIUSQ6SI9gWjndrs5ePAgKSkpKIoS6ekIIYQQQgghhBBCiAhSVZW6ujry8/PRaA6fzyZBt3YcPHiQgoKCSE9DCCGEEEIIIYQQQkSRffv20adPn8PeL0G3dqSkpACeJ9JsNkd4NkIIIYQQQgghhBAikiwWCwUFBd6Y0eFI0K0dLUtKzWazBN2EEEIIIYQQQgghBEC7ZcikkYIQQgghhBBCCCGEEEEmQTchhBBCCCGEEEIIIYJMgm5CCCGEEEIIIYQQQgSZBN2EEEIIIYQQQgghhAiymA66PfTQQ0yaNImUlBRycnKYM2cOW7duDTimpKSEyy67jLy8PJKSkhg/fjzvvvtuhGYshBBCCCGEEEIIIXqCmA66LVmyhHnz5rF8+XK++OILHA4Hs2fPpqGhwXvM5ZdfztatW/nwww/ZsGEDZ599Nueffz5r166N4MyFEEIIIYQQQgghRDxTVFVVIz2JYCkvLycnJ4clS5Ywffp0AJKTk3n22We57LLLvMdlZmbyl7/8hauvvrrdMS0WC6mpqdTW1mI2m0M2dyGEEEIIIYQQQggR/ToaK4rpTLdD1dbWApCRkeHdd+yxx/LWW29RVVWF2+3mzTffpKmpiZkzZ7Y5hs1mw2KxBPwnhBBCCCGEEEIIIURnxE3Qze12M3/+fKZOncqoUaO8+99++20cDgeZmZkkJCRw7bXXsnDhQgYNGtTmOA899BCpqane/woKCsL1IwghhBBCCCGEEEKIOBE3Qbd58+axceNG3nzzzYD9d999NzU1NXz55ZesXr2a2267jfPPP58NGza0Oc6dd95JbW2t9799+/aFY/pCCCGEEEIIIYQQIo7ERU23G2+8kQ8++IBvv/2W/v37e/cXFRUxaNAgNm7cyMiRI737TzzxRAYNGsQ///nPdseWmm5CCCGEEEIIIYQQokVHY0W6MM4p6FRV5aabbmLhwoUsXrw4IOAG0NjYCIBGE5jQp9VqcbvdYZunEEKIrlvmXstG93aWuFayXd1Nf00f5mhP4kLt6ZGemhBCCCGEEEIcVkwH3ebNm8cbb7zBBx98QEpKCiUlJQCkpqZiMpkYNmwYgwYN4tprr+XRRx8lMzOT999/ny+++IKPPvoowrMXQgjREQtdX/A316ve7Z/cWziglkrQTQghhBBCCBHVYrqm27PPPkttbS0zZ86kV69e3v/eeustAPR6PZ988gnZ2dmcccYZHHXUUbz66qu88sornHbaaRGevRBCiI5oxOq9rW/+ruigWhap6QghhBBCCCFEh8R0pltHytENHjyYd999NwyzEUIIEQoNqi/oNkgp5Ge1iBIqcKtuNEpMf3ckhBBCCCGEiGMxHXQLp7ppb6PutoMbUIBkPTQ4Areh9b5DtjV5Sehm98X08HGR+UGEECLGWGny3u6lZPOzWoQLF2VUkUdWBGcmhBBCCCFCqe6Yt3AX1UKTs+1r8M5uQ/fHkDFlzGQ99dnK4V62ASTo1kHuzVWgmHw7mlyBBxy6fZhj3BVNOKqbJOgmhBAd1OC3vLQ3ud7bxWoZeYoE3YQQQggh4pV7bTm4m1e4tXcN3tltGVPG7Ma2u9xKR8i6HCGEEFGtUfVluhUovby3i6WumxBCCCGEECKKSdBNCCFEVGtppKBDRx8lz7t/gevDSE1JCCGEEEIIIdolQTchhBBRrSXoloSJCZpRXK05jyH0Z717C4tc30Z4dkIIIYQQQgjRNgm6CSGEiGot3UsTMTJGM4xfaI9nG7soYi9fuZdFeHZCCCGEEEII0TYJugkhhIhqLd1LE5ub2UzSHOW9b5V7fUTmJIQQQgghhBDtkaCbEEKIqNbSvTQRIwCZShoDlb4AbHbswOFyRGxuQgghhBBCCHE4ukhPQAghhDgct+qmCRvgqenW4pn37yD9OT2GHzU4v7Chn6iP1BSFEEIIIYQQok2S6SaEECJqNTYvLQUwKb6g21GVg9F/D2qjm8aVdZGYmhBCCCGEEEIckWS6dZDS1wwlLlBVUBQwaqHpkG1ove+QbSXLhP6Egsj+MEIIESNaOpdCYKZb4pQU723rynq4IazTEkIIIYQQYaAZkoZ7bx043G1fg3d2G7o/howpYxq1KOl6KGr/NSxBtw4yr70Ys9kc6WkIIUSP0tK5FMDUXNMNIGF0IopRQTFpcFU7IzE1IYQQQggRYinrL430FIRok2KxQOr17R4ny0uFEEJErYBMN7/lpRqDhqRZqbirXdQvqsFZLs0UhBBCCCGEENFFgm5CCCGiln9Nt0S/TDeAhMG+IJx1VX3Y5iSEEEIIIYQQHSFBNyGEEFHLf3lpol9NNwCTX103aaYghBBCCCGEiDZS062DavOeQ3Um+HYogErgNm3sO3Rbp0E7Oovk5ReEaKZCCBEfnnK+wn9di7zbicohQbdJSRgGG9Hl6HEWy/JSIYQQQoh4U5v2LDQ21+9t6/q6s9sEYQwZU8ZUwKK10RESdOsoh9v3jwWBT3hb24c7xuHGXdoQ1KkJIUQ8ecz5Il+4l1LiLsdIAqMYwnDNAM7RzA44Tl+QgLveReP2Jpo2NJL/7AAUjXKYUYUQQgghRMxpcvlut3cN3tltGVPG7M62w93GwK3J8lIhhBBRZb17K4vdK9jCTtIUM4WafCZqRjNUMyDgOEVRME32LDF1W1zYtlrbGk4IIYQQQgghIkIy3YQQQkSVGize268ZHiVLST/ssYmTk6n7oAoA64p6jMMTQz4/IYQQQgghhOgIyXQTQogIaaiq59NHP8LWYOPnrzdFejpRo1qt9d5OI+UIR4LpmGQSp5kxjknEuk46mAohhBBCCCGih2S6CSFEBNRXWHjp2hco3VbM4ue+oqm+id8uuoOCowojPbWIq27OdDOTjE458p8p09hkGn+wgAvUjpVVEEIIIYQQQoiwkEw3IYQIs7pyC/+6/B+4XW5sVjv2Jjt5Q/L5z22v4bQ7Iz29iGvJdEtXUts9VpOkxTjKs6TUtqkRV52rnUcIIYQQQgghRHhI0E0IIcLsk0f+h8PqYN/6PQw6ejB5g3tRtb+ShGQj3zz3VaSnF1Gqqnoz3TJoP+gGeJspKMkarGtliakQQgghhBAiOkjQTQghwmjNwlXs37Qfe6ONgtF9Ofv+87joscswJRvZuXIHW5f8TNnOslaPc7t7xtrJOhpw4clWS1PMHXpM4rQU9P0SUC1urCsk6CaEEEIIIYSIDhJ0E0KIMPrp47XsXbubyr2VTPvVDLL759B3bCFTLp5KzsBctn+/lZVvL/Me77Q7+eLpRbx248uoqhr3wbdqv86lHc50G5OMY7cNAOuKupDMSwghhBBCCCE6SxopdJD+smEoqy3gVkGjoMlJxF3WGLANtNp36LZmYCq6mX0i/NMIISLB5XThtDnQGnSYUoyMPWOC974Tb5zNuv+toc/oAhb/6yuOvXQa5uwU/nX539m7dg/2RjvrPvqRU35zOrNvOTWCP0VoBXQu7WCmm2GIEU2aFneNC+uqelRVRVGUUE1RCCGEEEKEif7Xo3BvqMBd2dTm9XVnt6H9a3YZU8bsyLa+QAcvt/8alqBbByU+OROzuWMXgEII0Zaa4ho2fbkRgL5j+6HR+pKNExITmHj2ZD555H8AbPpiPXlDemEyJ5GclULFrnJwQUN1Q0TmHi5VfkG3dDr2nqtoFEyTk7Fvb0LXS49jrw1DoTFUUxRCCCGEEGGS+LeZkZ6CEG1yWywdCrrJ8lIhhAiTunLf0snMwqxW9486+SgAUvNSObDpAO/c9RY/ffSjJ+DWrLGmMfQTjZAm1cYBtcS73ZHupS0SJ6fg2GXD+kM91lVS100IIYQQQggReTEddHvooYeYNGkSKSkp5OTkMGfOHLZu3drquGXLljFr1iySkpIwm81Mnz4dq9UagRkLIXqyujJf0C0lK6XV/fnDezPw6EHUltSy8u1lWJqPT8tP9x7TWBO/mW5L3Cu5xvlH0kjhROUY5mrP7vBjTROTvbelmYIQQgghhBAiGsT08tIlS5Ywb948Jk2ahNPp5K677mL27Nls3ryZpKQkwBNwO+WUU7jzzjt5+umn0el0/PTTT2g0nYs3Oj7bTeMWK7hUFK2CkpuIu7QxYBtote/QbU3vZLSD0tAOTW/njEKIeOOf6ZaS3XrppKIo9B7Zh6LlO3A5XN4AmznHTM3BagAaquI36LZa9Sy9raGObCWTTCWtw481TfYF3RpXSjMFIYQQQoh44Fi0G9euWtSKpjavrzu7De1fs8uYMmZHtu3paodewzEddFu0aFHA9ssvv0xOTg5r1qxh+vTpANx6663cfPPN3HHHHd7jhg4d2ulzNV68CJ1i6t6Emym9kzDvujIoYwkhYkdduS8YlJLdOtMNYNTso9jxw3b0JgN7ftwFgDk3lYSkBGwNtrjOdPvRvcl7+w+66zv1WF2mnuST03A3ulGb3LjtbjSGmE7mFkIIIYTo8RrnfOQpXi9ElLGqHVs9GVdXJLW1ngLcGRkZAJSVlbFixQpycnI49thjyc3NZcaMGXz//feHHcNms2GxWAL+E0KIYKirOHKmG8CgY4ZQfaDKG3ADSMkyk5jmyd6N55pudWoDCgppmBmo9O3047WZOhq/s2BdVY9tffw+T0IIIYQQQojYEDdBN7fbzfz585k6dSqjRo0CYOfOnQD86U9/4pprrmHRokWMHz+eE044ge3bt7c5zkMPPURqaqr3v4KCgrD9DEKI+GYpaz/optVrGX7CyIB9KVnJJKZ70qIbqutR1fj7tk9VVb5VV6FFwwClAEVROj2GabIve7BxhSwxFUIIIYQQQkRW3ATd5s2bx8aNG3nzzTe9+9xuNwDXXnstv/rVrxg3bhxPPPEEQ4cO5cUXX2xznDvvvJPa2lrvf/v27QvL/IUQ8a9yb4X3dluNFFqM/cX4gO6mKdlmktI9mW5upxtbgy10k4wQOw4AnLhIpGtL+RP967qtlmYKQgghhBBCiMiK6ZpuLW688UY++ugjvv32W/r06ePd36tXLwBGjBgRcPzw4cPZu3dvm2MlJCSQkJAQuskKIXqkTV9tRFXBZDahS9BjMBkOe+yQ44ZRta/Su52cleJdXgrQWN2AMdkY0vmGWxO+QKJROfxzcyTGoxJJnGnGud9O0yoJugkhhBBCCCEiK6aDbqqqctNNN7Fw4UIWL15M//79A+7v168f+fn5bN26NWD/tm3bOPXUU8M5VREjVFVFVdVOd7cV4kjcbjdvzH+V+oo6EtOTuP+nh494vMlsIndQHmU7y9An6EhMT2La3BmMOW0sienJJGcePksuVgUE3ejaFx+KXgN2FfuOJgCc5Q502fqgzE8IIYQQQgghOiumg27z5s3jjTfe4IMPPiAlJYWSkhIAUlNTMZlMKIrC7bffzr333suYMWMYO3Ysr7zyClu2bOGdd96J8OxFNFn59nKqD1ZRc6AavcnAL//v3C7VlBLiUFaLlf0b91Ff4akx1ntknw69tm5691YSM5K8AeDV765k7YercTndJGcm02dUfNWbbMLuvW2ka5luAKbJyTT+4HmurSvrSTk9vdtzE0IIIYQQQoiuiOmg27PPPgvAzJkzA/a/9NJLzJ07F4D58+fT1NTErbfeSlVVFWPGjOGLL75g4MCBYZ6tiGY/frCan7/eBApk988hoyCTmdfMivS0Yk7D9xb0/Q08mbMAO3au1V1EtpIR6WlF1Iq3lrHwnv+CAqYUE2N/Ma5Dj0s+pOZbWVEpGz/fABCXr02b6st0S+hiphu0NFMo5j/3fMOGkS+h2hSmaMZyne4iMpW07k80ijWqVorVct5xLWKlez0OHGQrmfxLfx86Jab/3AshhBBCCBGTYvpTeEc7+N1xxx3ccccdIZ6NiFXFWw9SfbCapIxkmuqt6Aw6Fj32MWn56Yw9vWMBEgGqW2Xv2VvYk1HMPeueAmC7updXDH+J8Mwia9eqIs8NFeb9dz69huV3aRyNzrfk2eVyB2NqUcV/ealJ6XrQLeWUNIYemEhC6o80uu18r67hc9dSPnB/ycqEd4Mx1ai1yr2Bkx1XApBCEnU0gApXqedyrDI+wrMTQgghhBCi55HCVaLHa6xppGTLQRqq6uk3YQClRSXkD8/n9ZtfxlJuifT0YoZ9qxV3rYvEel+B/wYaIzijyFNV1Rt0S0hKIH9Eb3SGrn3XodVpvbfdDldQ5hdNApeXdj3opknSosvSY1aSMSvJaPAs5XURf4HKQ1VQ7b2dRKL39iLXd5GYjhBCCCGEED1eTGe6hVPSV+dgPOgEtwqKgpJpRK1qCtgGWu07dFuTZULTK6mds4lwsjf6LvYHThlE4bh+LHnua0adchTr/vcj06+cGbnJxZDGFZ5ukYkNvoBJfQ8PulXtqySzbxbpfTJJy0sLCJx1llbve6zLGX9BN6va5L3dnaBbi1t0V3ALV5DTdDQW6nHi7PaY0a5C9QXdbtP+igfrnuWypadz/Maj4M4ITkwIIYQQoouSll+Au7gBtcbW5vV1Z7eh/Wt2GVPG7Mi2y+iEGb9v9zUsQbcO0o3NJmG6OdLTECFgb/SrJZWUwAk3zObrf3zBTx+tpba4RoJuHWTbbiVxWgqGBpN3X6NqjeCMIm/Xqp3sXOnJdDvlN6d3ayyNX8DOFYeZbja/TLeEbjRSOJS2OaG7J2S6lVPlvT1I05elv/wXTcsbAHBcYUefH7znVQghhBAiHHRjs2FsdqSnIUQrOkvHVsXJ8lLR4xnNJgZMHkifUQWk5qVhTDFizk0FoHxnWVxmFYVC/afVNH5Xh/0nK0mqJ/DW0zPddrbUcwP6T+pe85aATLc4DLr513QzdqOm26F0zd8tuYi/5+xQ/pluWUoGycenebfrP68J/4SEEEIIIYTo4STTTfRIqqqiKJ5aT0OnDWPotGEB92f2zcRSWktDdQO3978FbYKOP3x7L2n56ZGYbtRzWZzYNnuy2oyjk0hWEmnASr3as4NuZTtKAVA0Cv0m9O/WWFqt7zsSd5w3UgjG8tIWLZluTrUnBN18mW5ZpJN8cip1H1WhTdNhXVlH+tycCM5OCCGEEEKInkeCbh3U8KsvYJ3Fs4ZXo6BkmVArrAHbQKt9h25rBpjRn9AXw9WjIvwT9Wxv/f4Ntn+/lbwhvTjhhpMYMHlQwP0ZfTLZtWon4Kmf5XK6qCmpkaDbYVjX1ENzM2HTlGSSlERQK2mk5y4vtVqs7PhhG8mZyQw6dgjGZGP7DzoCTbxnuqn+jRSCubzU87y5e8TyUl+mW7aSQeLkRJwHHNg2WGla30ivp/qj6CXBXQghhBCxo3Hu57g2VHhqurVxfd3ZbWj/ml3GlDE7st1Q0LFwmgTdOsj5YRGq4qtVpe6rD7j/0O3DHeNeW45reYkE3SLI7XKz7n8/Yq1ppGJXOQMmDWwddCvIaPW4moPVML572UrxqnFZHbpeevR9E0iabiYJWV66e80uVFWlvrKelOzu14P0b8IQj0uebX6ZbglBzXTzPG89qZFCAgaSSUTRKiSflErtW5W4a100LKsjeXpqhGcphBBCCNFxjje3eQIdtH8N3tltGVPG7M6288eOJZhI0E30ONuWbiU5IxlrjScgpEto/WuQkm1Go9UELOOrKa4J1xRjjnVFPc5iB85iB8axSSSRCHiWDLpUF1ql6107Y9XOlTu8twdMGtDt8XIG5TL18mlo9Vryh+V3e7xo0+TXSMGoBDHTTdGA2jMaKbQsL80i3bt8PvkX6TgO2nFVOqn/rEaCbkIIIYQQQoSRBN1Ej7PyzWWU7yzzbv/8zSZWvbOShEQD5z9yMbmD8jhu7gymX3U86z76kZd//W8AaourDzdkj6aqKtaVnsi/NkuHYaCRZEeid7lpA1bMJEdwhpFhtVgZeMxg6sosFE7oftCtcGw/Csf26/7EolSoarr1lEYKrzrfZ7DSj0J600vxdfhKPj6NA5fv8Pw+ahR4oDBykxRCCCGEEKKHkaCb6FGsFiuWMgvm3FQspbUA1JXXs3/DXsC3bK9lKV/vkQXexx7cepDdP+6inywxDWDf0YS+MAHVoZI4JQVFUbzLS8GzxLQnBt3Wf7qO2uIaEtOTyOjTermyCNSkhriRQhwH3eyqgxud/4cdB0OU/nxreMN7ny5bj2liMtZV9dh3WXHst6HvE7znVwghhBBCCHF4UlFZ9ChrP1jN9qVbvQE3AKfN4b2dkBh4MZqWl+a9ve3brbwx/1XWffQjlXsrQj7XWGFdXkfT2gbcdS4Sj0sB8C4vBWjogR1Mm+qs1DYvR84dlOdd6icOzxawvDT4Nd3ieXnpJnU7djzvY+OVEa3uTz0/E+OYRFQ71H1WE+bZCSGEEEII0XNJ0E30KDuWbye1V1rAPv+gmyExsJaUIdHAUaeNJW9oL4zJCZRuL+Gla57n5282h2O6MaFxua+opGm8J6MtWfELuvXADqYl20u8t/OG9Ar6+KqqBn3MSLPS5L0d3OWl8d9IYbV7o/f2RE3rJj2mY1Jo+qkRHCr1EnQTQgghhBAibCToJnqM/Rv3sea9VdQW1zB46hDvfqfDdzFuMLUu4H7VC9dy9n3nUei3rLRqX2VoJxtDrCvrPDc0YJzoCbodury0pynZVuy9nTckLyhjFi3fzm/63cT83jfwvwffD8qY0SSgkQJBbKTQ/GcuXjPdtriLOKCWMpC+ZJLGhLaCbhOS0WbpQA/OMgdue3w+F0IIIYQQQkQbCbqJHuOnT9aSO9gTAOk3wRdAc9p9tZ70bQTdAIZOH865D1zg3a7cI8tLAVz1LpREDYnHpZB8chraZE9WUZLSs5eXWkprGXj0IArH9ydvaHAy3RSNBqfNiepWcTnirz5ZqGq6+TdSiMcMwf+5v+Fh178oYi/Ha47mGM24VscoGoXUi7NQ9Bqsy+poXFoXgZkKIYQQQgjR80gjhTj2tWs5O9V9rHP/zC73fuqVBnoruVypPZcTtcdGenph1VTfxJLnvsbWYKP3qAKOOnUsX/ztMwBvAENv1KPRHD4Ond47A0WjoLpVqenWzLqqHmvz8tL0a3K9+5P9arr1xEy3Xat3UrR8B+Cp6RYMWr3We9vtjL+gm82ve2lCEGu6afy+W3Lj9tZ4ixcW1be8Ow3zYY9LnJhC1d88y57rP6sm+fhUADa5tvGKeyFWtYkJmqOYq/tlaCcshBBCCCFEDyJBt45K1BFQmkqjgFsN3IbW+w7dNmrRDE4P6VRbvO76kNfdHwIwnAH8rO4EFQzoe1zQraG6gQFTBrHlm830HVNIal4a/Sb0R2fQcfDng0DbS0v9afVa0vPTqdpfJUG3Zt6lpUDiFF+HUv/lpQ1qz6vpVtpc0y0hKYG0/OD8vrd01AXiM9MtZMtL/Z63OAy6+Qe1rzhCwCzpxFTQgWGoCcdeX4DzI/cS/uZaAMD36o8SdBNCCCFEdDEboNYGKm1fX3d2G7o/howpY2oUSNCBhXZJ0K2DUvddjdl8+CyCaLRT3ee93Yc8fmYnALvU/ZGaUsRkFmRy3es3Urm3AkVRSM1L49aPfgfA3WN+D4Ahsf3smszCLCzlFnQJempKagK6m/ZE1jUN3tumKSne20OU/pyvOY3d6n4ed77I5+7vOVFzLHN1Z0dimmFlb7RTtddT8y93cPA6l2p0fhlbzvirydVEiJaXKlrPhzQ8zRQM6IM2djSoU32/gyl+GaaH0mXqSTrOTMNiC/ZNVux7bBgKE6hVfZ8UDqilqKoq3XaFEEIIETVSy34d6SkI0SbFYoHU37R7nNR0i2O7moNueWTxP+Nz5JMDBAbjeprMvllkFGQG7LM1eC72D+1c2pYJZ09Gq9NiKa1l8xcbQjLHWKGqKg0/WND3TyDppFQMg43e+2ZoJ/Oq4RFO0kxlF/t5x72Iu51PRm6yYVRWVOqtHRbMzqUBmW5xuLy0SfXPdAte0E3r92cuHpsp1OMLuiUrSUc8Nmlmqu9xn1UDsAvflzAW6tmjHgzyDIUQQgghhOi5JNMtTjWojZTgWQLZXynw/v9BtYxyqqhTG0hp5wKtJ9j2/RacNidDZwxn+PEj2j2+z6gCb5Buy5KfOfayaaGeYlRxW13s+XsR9576T7R1Cr8tPxd3uZOEoaY2s2PMSjIJGLBhpxpLj8iiSclO4ax7z6F0ezGDjx0atHH9a7rFw/JSu+rgL87n2KwWUaqWU4OFvuSTrWQENRtN5/dnzkXsP2+HqsM/0+3I7+nJp6RR8skBHn3kLcqH1HKl67yAL2FOVI5lr3qAfvQO2XyFEEIIIYToSSTTLU75LyEd0Bx0G6Ap8O7radlulfsqqdhdTn1lPW63L9slZ2AeI04YxdYlP5Oam3qEETz6jC5g3FkTyCjI5KeP11K2syyU0446zmIH25/bwtsDP6d2S613f+LRKW0ef4vuCsZrRnoei7NHNFVIzUtj1nUnctFjlzHxnMlBG1cTZ5luJVTwgOtZFro/Z6u6i0zSKVTyOUUzLaiBWf9MN2ccBt3q/boDJx9heSmAaVwyCUtyeGvc53ydtII3nR8H/C34Uv2BbeqekM1VCCGEEEKInkYy3TrIMuJV1ArwFAdSwKABuztwG1rvO2RbSUtAN7MPia+eHPQ5znc8gAsXSZjY4N7GEKU/ZpI5XjsFgOM1U1CAYnc519nvJleTxRhlOP+nvznoc4k2/73jP/z89SYAHtz8KEnpSTx11qPYGm1kFWZz/Zs3M2Ra+1lJiqLQd0whaz9YA8A7d73JDW/G//PXwlnuIHd/BhqXgs1oZ9vE/Qz5qQDT5OTDPiYDXzCzGku72Tiibdo4q+l2UC313k4hCbPieQ21/H+wBDZSiL+gmwVP99JETGiV9ptEDFIKvdmni9Rvma05DqvaxDfqCgAqqArpfIUQQgghOsMy+GXU4gZwqm1fg3d2G7o/howpYxo01Jk7dk0mQbcOUksbQWnpyKhCk//F26Hbhz9GLWnE+d2BoM+vUq3hJde72LBjxMAEZRS5ZDJdM4lLtWcBcLH2DC7WnsH9jr/zqOsF1rp/5jtWc49uXocu1mJZU12T97YxxVN7bP+GfditdlwOF8NmDO/wWBPPmcy+DXvZuaqIouXb2blyB1n9czBnx1ajja5wljnQubT03p3NV3N+5Ks5P2JuSmJX4jeHfUya4nteqtVa+irBq3PWk8RbTbditdx7+yrdedyuuzok59H5Bd3iMdOtpZHCkZoo+NMoGo7RjGOxewVOXHziXsKpmuneZhPlqgTdhBBCCBE91H31vq6RR7wG7+x2MMaQMXvymKrVSkfI8tI4sdO9jzM0sxii9GOEMpg0xYxZSW4za8SsJJPenH3UgJUt6s5wTzdsVFWlsaaBugpPhz6DyeANXugSPDFnp93ZqTHNOakMPnYoBqMBp83JU2c9xsbP1gd34lHKWeYAoNceXzOKXqYckgyHv+APyHTz65QYr+or6zn48wFKt5fQVN/U/gM6yGg2cdWL13LNqzdw6m9OD9q4kVKs+pZm91KyQ3aewEy32M8QPFTLku2UTmQInqmZxcWaMxilDCGDNC7TzvHeV65WB3uKQgghhBBC9FiS6RYn1qk/8457EQD/0P6JK/XnHvbYW3RX4MDJH51PALDGvYmRmsFhmWe4uV1u7hp5O2rztyMtWW4AWoPn5W+1WCnZVtypTpPHXnociWmJvHTN8wDUV9QFcdbRy1XuCbolNvi6Sw5SCo/4mIBMN2qPcGR8WP3eShbe818ALv/HlUz45aSgjKsz6Djq1LFBGSsaHPQLuuWTG7LzBATdVBfEUR8PVVW9jRQ6s2z7Bt0lANzv+DuqqnK8MsV7nywvFUIIIYQQIngk0y1O1Pt1sEvVtF3U3t9EZTTHKGOZqoxnu7o7hDOLLK1Oi9mvQYIxxeS7r7kbZENlPQvvfafTY/s3Xqiv7BlBt5ZMtxkfj2VG3USmKGM4QzPriI9J98t0q1LjP+jm9lv66d9xVAQKCLqFNNPN92cu3mq6NWHz/kztNVFoi1lJJlWTQppiRt/8HVyFZLoJIYQQh6WqaqSnIISIMZLpFida6vpAxzIexmqGsUxdB4Dd7QjVtCKufFcZbpdvSVlCsi9DS6v1BURMZhOdlZTpC27W9bCg25n/mcpv7rkRQ7axnUdAul+mWw3xv7zU5dfkQKOV7zUO9ZTzFb51r2K5e513Xy8lJ2Tni+dGCnV+X7akKJ1vUHKL7grv7SzSKaZcgm5CCCFEG3Ys207u4Fyev+JZRp40mqmXTyc5I7jNn4QQ8UmCbnGipa4PQLLSfsZDmmJmsNKP7epuflK3YFcdGBR9KKcYEaU7Sqkr8wV6dAm+n1Hj1w3SmNx+8OhQKVm+oFtPW14KoM3p2OslPaCmWw/IdHOELtOtaPl2nA4XBpOB/hMHBHXsUKtSa7nFcT8H1DIsah15ZGEmmVwlEzOh+9CqU+K3ppv/ly3J3ewKnKWkU6yWU04VqqqiKHG0DlcIIYRox4bPfiJnYC671+xi1OyjSEr3/V21lFt44cp/4nK6SclOYfNXG9n23RamXj6d8WdNjOCshRCxQIJucSIg46GDF18TlJFsV3djx8FGdRvjlZGhml7EWGsbA7Y1Gt+FpOJ327/WW0cZU4xoDTpcdif1lfVdn2QMUYwa9AUG3E1utMkdCyj5Z7q95fqUn9UiAKZrJgVk2sQL/86i/h1Hg+EfF/4Np81J75F9+N2Xfwjq2KG2Q93Df5vrTvYln9GaIYDndRDKAI82oHtp55qmRLvuZrr5y1IyQAUHTizUk0r7ZQqEEEKIeGBraOLla/+N0+b5nHDmH3/JCfNme+//8L73SM1Lo6a4mrpyC6pbRXW5qSmpYfePu+g3vn+kpi6EiAExvfbpoYceYtKkSaSkpJCTk8OcOXPYunVrm8eqqsqpp56Koii8//774Z1oGNR3IeNhqmY8xykTmKSM5if3llBNLaKslkPb+Pou7jUa38vfkJRAZymKQnKmJ0Onp2S6WdfU49hnR5PY8WBSgdKLP+lu4hRlGumksMm9nR/dm3nP9XkIZxo5/kE3/2zKYNA0L4n2P0es2Knu896+Tnch7xqe4V3DMyEPvOritHtpvdrIQ45/0Y/ejFQGM0dzYrfGm6ZMZKYyhRHKIHa59wdplkIIIUT027NuD0lpnuunhKQE7I02733blm6lal8lVfsq0Wg1zHv7VgZOGUjV/io++NO7LHv9+0hNWwgRI2I66LZkyRLmzZvH8uXL+eKLL3A4HMyePZuGhoZWxz755JNxvVzG0oWMh5GawXyvrmGVuoGV6vpQTS2iDs10U91+F91+r36DydCl8VOa67rVV9XjdsfPBX1bVKeKq8LzDaCug0tLATKVNO7QXcvx2qMp0PSinCqKKWO92naAPNa5Q5jpptVrWp0jVvgH3QYoBWE7r38jBWcc1XQrVSv4QP2S3RxAh4aTtFO7NV6CYmCxuoLN6o64/d0UQggh2vLjwtXUltai0WqwNdj44unPUFUVp93J9y8toWjFDnQJes669xwKxxVy3kMXe79Y3bVqZ4RnL4SIdjG9vHTRokUB2y+//DI5OTmsWbOG6dOne/evW7eOxx57jNWrV9OrV68unUs7MRe2WUEFFFDMBlSLPWAbaLXv0G1Nn2R0swu79gMfQWcbKQCMVYajQYMbN2vcG4M+p2jgn+l2zv3nMerkMd7tvmMKKdlSDIAptfOd/wBvppvb6cZaaw2o/xBvXJUOz2sZ0GZ3vv7fLboruIUrmGw7h/XqVtxxlHXkzxXCmm4tQTz/c8SKne5IBd3is5FCBb6GB8dqJnR7vAnKKO/tNepGLmdOt8cUQgghYsGBTZ7PKC3N11wOFw1VDaz7+Ed++ngtvYblk9Uvm0nnTgHAkGigYHRf9qzdTen2EhqqG+L6GiDStMfl495WjdrgaPP6urPb0P41u4wpY3ZkW5uXAsvbfw3HdNDtULW1niLtGRkZ3n2NjY1cfPHF/P3vfycvL6/dMWw2GzabL6XYYvEU4U/+7JeYzebDPSzi6psz3QzoSVA6lrWVqJgYoQxko7qdjep26tz1pGjiqwtPk1/QbdDUoWQUZHq3cwf5Xg9d7T7Ud2w/nA4X9kYbtaU1cf0H1+nXREGX0/W3DhOe+nk27LhVNxolphNuW/Hvlhv8TLeW5aWxF7D0z3TrH8agW7wuL/XvMpqlpHd7vHGa4d7bP7o3dXs8IYQQIha4nC6KtxwEICHZiK2+CYCS7cV88bdF9BldQPmuci59em5AaZqRs0ej1WupLa1l1+oiRp10VETm3xMkf3l2pKcgRNssFkj9VbuHxc3VrtvtZv78+UydOpVRo3zf2N96660ce+yxnHXWWR0a56GHHiI1NdX7X0FB+C4Ou6OloHZHs9xaXKI5kxOUYzGTzCfuJaGYWkT5Z7qZzKaA+5rqmry3u9JIAUDRKuz4YRt71+2ham9l1yYZI5yl/kG3ri3HBTApvufaStMRjoxN/llomiAH3VpqusXi8tLH9Hfwkv5h/qy7tdtF/zsjoJGCGj+NFMrVKu/tbLofdEtVUjhVM52jlbG4UXGr8ROgFEIIIQ6nrKgUR5PnM25arzTv/qd/+Tg1B6rZv2Efw2YOp8+owGvC3EF57FxZROWeChb+6V2evfhp3v79f8I5dSFEjIibTLd58+axceNGvv/eV8zyww8/5Ouvv2bt2rUdHufOO+/ktttu825bLJaYCLzVq57aZcmdvJgdoxnOna7HAPiL6zlKqIirjpKNFl9Nt0OXkLpdbrR6LS6HC+MhAbmOyirM9t6u2F3etUnGiIBMty4sL21hwte0opEmkuja0t5odebdZ3PyrafhcrpIzU0N6tjeTLcYXF6aeb6GaYlDSBgxFu4I33m18Zrphn+mW8YRjuyc5eo6AIoppze5QRtXCCGEiEYHfz5A7qA8EtOTMOeYKd1eEnB/Wq80pl42rdXj+k8c4L1dsbOMip1lJCQlcN7DF8Z1HXEhROd1KejmcDgoKSmhsbGR7OzsgOWckXDjjTfy0Ucf8e2339KnTx/v/q+//pqioiLS0tICjj/nnHOYNm0aixcvbjVWQkICCQmd72QZab5Mt84FMI7XTOF8zWkcoxnLy673eN75NvU08gfd9aGYZthZazxBN0WjkHBIh9Iz//hLzvjDHBxNji7X3sru33OCbq4yX5aQthvLSxPxBTit2I5wZGwymU2tsiqDxVvTLcYy3dx2N3X/8wSJEqfayb6jTzuPCB7/RgpxVdPNL9MtGMtLIbDW3k51H70VCboJIYSIbwc3H6B0hyfQdsKNJwfcl9orjT+tebDNx6XmpZFRkEljdQNNzUtSbQ02qvZXkelXzkYIITp85VxXV8drr73Gm2++ycqVK7Hb7aiqiqIo9OnTh9mzZ/PrX/+aSZMmhXK+AVRV5aabbmLhwoUsXryY/v37B9x/xx13cPXVVwfsGz16NE888QRnnHFGp85Vm/lPVCU4F9JK7yTMu64MylgADtVBU3PwIrmTy0sVReFVwyNUqNXc6vT8UVnh/iloc4skd4MLRVUwmU1kD8hp81snRVG63LkUILNfzwm6Ocvs3tvdyXQz+mW6WVUryJeBHaaJ0Uw3V5VfwDY9vAnWWiU+GymU+9V0yyY4X3wNVPp6b+9072OaZmJQxhVCCCGiVUs9N4C+Y/oG3Nd7ZJ8jZq0NmTaM5W8s9W5r9VrKdpRK0C3Iao3PgFuN9DSEaMWiWts/iA4G3R5//HEeeOABBg4cyBlnnMFdd91Ffn4+JpOJqqoqNm7cyHfffcfs2bOZMmUKTz/9NIMHD+7WD9AR8+bN44033uCDDz4gJSWFkhLPtxSpqamYTCby8vLabJ7Qt2/fVgG6WFaHbwllV2slZZKGAT12HBxUS4M1tYhSEjWk983gqpevJS0/OJkgh0rJSsGQmIC90cbBLQe9geh4FLC8NLfrQbfEgJpu8ZfpFkra5vb0sZbpFhB0ywxv0C1eGylU+i0vzQ7S8tJDM92EEEKIeFf88wHAU9+5t1/dtsy+mUy9fPoRH1twVAHL3/Bt600GDm7ez/DjR4RkrkKI2NShq59Vq1bx7bffMnLkyDbvnzx5MldeeSX//Oc/eemll/juu+/CEnR79tlnAZg5c2bA/pdeeom5c+eG/PzR4CnnKyxyfefd7mwjhRaKotBLyWGPeoBiNT4ythRF4cp//zrk5zjzD3NY8/4qdq3ayaYvNzLqpNEhPWekuKqd6Hrp0Zi1aLO6EXTzW17aSMe+HYgl6z76kar9VWi0Go695DgMiV3PpDzU/A9vR6PVoNHFVg+ciGa6+TdSIH4aKbR0L9WgIYPg1A6UoJsQQoiepKmuCVNqIgnVDfQamk9G7wxu++T37N+wlx9e+77d4Fn/iQMDx7NYaaxpPMzRQoieqkNXP//5T8c6sSQkJHDdddd1a0KdoaqdTzPtymOi0QvOd/iX6z/YVDsJGBjDMEZoBnGT7rIuj9mLbPZwgEpqPOMqwQsWxLO03unsXbeH4bNGUlZUCnEadHMesOMsdkCJA103gm6By0vjL9NtxZvL2PzVRgAmnTM5qEE3vbHrz3skuSr9gm4Z4Q66+dd0i59MNyMJjFaGkqmkolGCE4QtpDdTlfHUUk8VNUEZUwghhIhWFXvKObBpPwDZA3PR6rUUjutH4bh+HH3xVG8t3cPpNSyf0aeOwe10s+mLDQDYGppCPm8hRGzp9tWPxWLh66+/ZujQoQwfPjwYcxLtUFWVjeo21qtbAThGGUeGkspYzXDGa9rORuyI3kouNMcki9Vy+im9gzHdiLGua8BtcYJWIfHoFBRtaJZ9jj55DFqdlp+/3kTVvkpmXXdiSM4Tac5yT+BEm6lD0XX9uQxcXhp/H0z86611tUFHvHFV+wfdwhs41Pn9mYunTLcN6jZqqWMQhUEbM0FjYK9azD6KOagGt/OuEEIIEW2q9/uaEmUUBJZqaC/gBqDRarj6xeso3VHiDbq1NFUQQogWnQ66nX/++UyfPp0bb7wRq9XKxIkT2b17N6qq8uabb3LOOeeEYp4CuNA+n6/dy7HSxEjFt3z3DcPj9FKyj/DIjvEf4yCl9CO2g24lt++m8VsLAMMtU0IWdANIykjGfqCKhuqGkJ0jklRVxVnmqemmy+le0MREnAfd/OqtaTrwga0zqvZV0ljbiNvppveoPh36QBgNApaXSqZbt7lUF7XUAQRtaWmLAZoC9rmLqaKWGtVCmmIO6vhCCCFEtKjaX+m9ndGn680PjMm+z7ZNdfH32VYI0T2dXpPy7bffMm3aNAAWLlyIqqrU1NTwt7/9jT//+c9Bn6DwKVL3YaEeB072qcWAJ4CRR1ZQxu+l5Hhv/9bxF86x38hTzleCMnZEOH1LiUMZcANISvfU0musaYibJcz+3PVuVKsnYBHMoFujGn8fTNx+QbdgB8XevuM//PWkB3ns1Idj6kOdq8rXhCPcQbfARgqx1YDicGqaA25A0INiUtdNCCFET1Hln+nWp+tNiRL8gm6yvFQIcahOB91qa2vJyPC8KS1atIhzzjmHxMRETj/9dLZv3x70CQofneq7eKymFoD+ypFbWXfGOZqT+Uz/ItdrLkajKixxr+Qx54vc43gqKOOHm+ryC36FOCEoMcMTdHM73TEVDOkoV5lf0CS7m0E3xVfTrSkOu5cGZroFt+GB/3LVWOpgGslMN41/IwU1dp6zI6lWa72304Oc6dZf6eO9LUE3IYQQ8cx/eWl6N4JuhkSD93rMVh9/n22FEN3T6SvCgoICli1bRkNDA4sWLWL27NkAVFdXYzQa23m06A7/ekTu5uJr/lkJ3dVP05sZ2sn00/QmRUminkbKqGSPejBo5wgntSXTTUPQApOHk5yR7L3dUF0f0nNFgrPcF3TrbqZbvHcvbanpptFpgv6602h9b9luZ+wslUyamUr6tbmYz8tEnxfemm7xuLy0Gov3dnoIM90WuD4I6thCCCFENGnJdFMUhbRe6V0eR6PRYEjyfKkcj1++CyG6p9MpB/Pnz+eSSy4hOTmZwsJCZs6cCXiWnY4eHZ9dG6OFRWkAFdIxc4Xml9RSz3W6i4J+nlt0VzBHexJDbZ6AqitWi483J7V0p+h/R7UsLwVoqG4gq7D7NfaiibM0mEE3/5pu8fdtoNvlCeyEot5arGa6qXaVhGEmtBm6bmdKdpZO8f2Zi9n3skOEMtNthmYyd2vn8Q/XG6xw/8R/XZ9ynvbUoJ5DCCGEiDRVVTEmJzBgyiASEhPQGbqXiW9MTsBW30STLC8VQhyi0+8uN9xwA5MnT2bfvn2cdNJJaDSeLIIBAwbEdU23hHunoF1tAZcbdBo0vZJwH2wI2AZa7Tt0WzMgFd2k3C7NwaI2F85W0uilyaEXOYzRDAvaz+gvsA5SbGaHeDPdQlzPDSDRP+hWGd+Zbt0NmhgDarrFc6ZbCIJufmO6YyjoVvnUQZrWN6IYFFIvCE4Nyo6K90y3DCW4QbdsJYN+mt5UuqoBqFCrgzq+EEIIEQ3qyi1sX7oNgCHTu389ZUw2UUstNuleGnTGR6bi2liJu9za5vV1Z7eh/Wt2GVPG7Mh2Qr4W7m7/NdylkP7EiROZOHFiwL7TTz+9K0PFDOPN40g2R66Lm6qq1OIJ5qSSzC26K0J6Pq1/HaRYLT7eXNMtEplu8Ua1ujAdk4KiBV1+NzPdFL8OT3GY6daSgeaflRYs/oG8luBeLHA213TTZupCvtT7UPHYSME/0y0U3UWTSfTerqcx6OMLIYQQkXbwZ1/5nPxhvbs93mm/PwOH1YHRLOWWgi3h5nGRnoIQbXJaLKEJul155ZVHvP/FF1/s7JCiA+ppxN2cpWFWUkJ+vni4UPVluoX+XEnp/jXd4i/oZi+yYV3mybTMfbC73Ut9jRQaib9vA7P756DT6zCaTe0f3EkBmW6u2MnaammkoE0PbxMFiJMvEA4RkOkW5OWlAEl+QbeGOMxGFUIIIYp/PuC93Wt4frfHG/uL8d0eI5aoqspi90rWuTejoHCd7iKMfs3ShBA+nb4Cqq4OXGricDjYuHEjNTU1zJo1q8Pj7Nixg6KiIqZPn47JZEJV1bBnQMSSWuq8t1NJPsKRweG/JCtmL1TDmOmWlp9On1EFOJ0u9m/ah73RjiHREPLzhktAI4VuLi/1b6RgVeMv6Hbd6zeGbGz/bqixkunmbnKjNjbXuQtz51KI0+WlIc50S1J8v6MNkukmhBAiDpVsK/beDkamW0+zWt3IqY6r0DT/7wt1KR8bno/0tISISp2+Alq4cGGrfW63m+uvv56BAwe2+/jKykouuOACvv76axRFYfv27QwYMICrrrqK9PR0Hnvssc5OKSya/rYWTRBruulm9OnU+S2qr05YeDLd/IuPx8bF/aHUlkYKYajpNuiYwcz/3+08NPM+9qzexY5l2xhxwqiQnzdcAoJuud2s6eb3Ldg37uU85Xwl5Mul44V/plusNFJoyXKDyATd/N/LnHHSSOEH94/e26HIdJPlpUIIIeJdWVEp6X0ySExLJGdQ1+pt9zS1ah0vu97jW/cq9qslaNDgbv7fLnV/yM5r+9taqekmY0blmE35HVtSF5QrII1Gw2233cbMmTP53e9+d8Rjb731VnQ6HXv37mX48OHe/RdccAG33XZb1AbdbP+3ggS/b/8Pvdxt6/L3cMfYeydh3nXkZbqHkky3zhu8aaxniWmYklt2/7gLVJWm+iaW/PsbsgfkkN0/JzwnDzFXmSfopiRq0CR1b71uHlnsTljMNfY/8I26nD84n6BA6cXZ2tnBmGpc8890cztjI2vLVR3ZoFs8ZrrNVo7DoOoZrxnJIKVv0MfvqctLV7z1A/s37Ofs+88DkOx7IYSIY2VFpdRX1uN2ujAmd78OW12FhdriWprqm8gf0ZvE1MT2HxRD6tQGcm3HYMRAKmaGKP2Ywhg2so06GtirFuNUnQFd44Ol6XdLwe1ZwdTeNXhnt2VMGbM727YOfk4O2m9FUVERTmf7WQSff/45n332GX36BGZ6DR48mD179gRrOnEnINMtLEE3v4waNTYvVBW9BqV7SVmdMvjYIfSfNJDV767EUlpLY038ZIi0ZLp1d2kpgFbRkkcWSYoJZ3M6YiM958K+O06+9TRmXX8SWp0WUwhqxoWCq9Kv820EaroFZO2qbf3JjT2pmhTSSaVA0wt9CN7ketryUrfbTe3BGt64bQFarZYVby1jwpyJXPDXSyI9NSGEECHQVN9EfaXn2iqrMDsoY276YgNr3l9NQ2U9J958CuPPnBCUcaPFLnUfAE3YyUSLWUkGBQrV3mxUt+HEyV61mAFKQYRnKkT06fQV0G233RawraoqxcXFfPzxx1xxRftLxBoaGkhMbB35r6qqIiFBii8eTkCmW5gbKcTLkqxwMOf46is5bY4jHBk7VKeKq9LzGuju0lJ/p2pm8L77SyC+ars9e9HTqG6VnIE5nPvghUEdOzE1kRCsJgypgEy3zDBGwZtp4iBrt0XVv0upePQAv0gfx1UPziH5+NC8GPyXlzb0gID4S1c/z8+LN6FP0OOwOnA5XFTtr4z0tIQQQoRIxe5y7+3MfsEJuiUkG9n27RYA9v20J+6Cbjubg24AV+nO4y7ddQD8wfE4G13bvMcMQIJuQhyq00G3tWvXBmxrNBqys7N57LHH2u1sCjBt2jReffVV7r//fsCzfMPtdvPII49w/PHHd3Y6PYK7yY3V3oTWoMWFKyyZbv4Xqu44WZIVDlq9X/2oGCl03x5nhQOaG8EGI9OtRaLiS+W3YgvauJG27bstuF1uGmvir4ttV7QEbCHy3UtjtT5lC2exHccuG45dNlRb6N6XTRhRUFBRaVDjP9OtrqIOh9XzJYlWr8XlcFFTXBPZSQkhhAgZ/6BbVmFWUMYcfMwQ7+3tS7cFZcxo4h90889m699820wyZap8YSVEWzp9BfTNN99064SPPPIIJ5xwAqtXr8Zut/O73/2OTZs2UVVVxdKlS7s1drxq+KaWiXN6cdUfTiNhVjIXTz0j5OdUFAUtniBfrGa6lf3fXlQn6PL0ZM7rFZZz6hL8lrLZY/N5O5TLr4mCNid4QTcTvqBbvCwvVVUVt8sTDPGvv9aTaZK1GI9KxFXtRBfE109H6ZT4CboFZA2GMICpUTQkYqQBa49opFBf6ckkN5lNJGUmU7GrnFoJugkhRNyylPq6gGcFKdMtOSuF3MF5gEpmQQaOJjt6oyEoY0eDwwXd8pQsEjBgoZ4idW8kpiZE1At72sGoUaPYtm0bzzzzDCkpKdTX13P22Wczb948evUKT2Ak1jibi9gn1Rgxq6kkKOF5A9eiwYUrZouPVzxZjNroJmFUYtiCbgGZbnESdHNWOjAdk4xqUzEUBm8JuH/QzarGR6abf3MD/06jwbJ33R62L92Ky+HiqFPHkjc0+t8zjeOTyH9uINp0Hfre4f/wGU+NFFw1fkG31ND++U4mkQasPaKRQn2FJ+iWnJVCal4aFbvKsVqsvHv327jsThprrcz951URnqUQQohgqdhdjjHFiDHFRHrv9KCNmzs4j/WfrKN0eylz/nQu6b0zgjZ2pFnUepJIpIHGgKBbtpKBDTsA1dQe7uFC9Ggd+tQ+fvx4vvrqK9LT0xk3btwRO3r9+OOPh73P4XBwyimn8M9//pM//OEPnZ9tD+Us9QTdLv37bAqmD2nn6ODRocOOI3brIDk9ayKV4Mc+Dkun98uqiZflpcUOrMs8xWbTLg7Ot4EAJsUXwLMSHzXd/P/Ntfrgv/B2rtzBh39eCEBW/+yYCLpVPHaQmhfLABi4+iiMo5PCev6ARgqx+l7WzFXt9/pKD+0bW5KSCGpl3DdScNocWC2ewGJyZjJpvdK89+1aUYTepKe2tJY3bltAdv8cTrrp5AjNVAghRLDUVzXQVNdEU10TyVnm9h/QQSa/jqVN9fHx2bbFSnUDDTRSSD6ZpHn3p+N7/qpVSwRmJkT061DQ7ayzzvI2OZgzZ06XT6bX61m/fn2XH99TOUvt3tvhXJ7VkiESqxeqqqulENnhg8TB5r+8NG4y3cp8y0uD+fpLxNchMV6Cbm6X73dFow1+UESji72grqsq0jXd4qeRgrvW91xqQvxctjRTiPflpS3d6wCSM1MwmX0XTMVbD9JnVAGVeyuo3FNBaq80pl85k4QkafokhBCxrKHK770/I3hfBppSfJ9tmyzxkynuUB3sU4sBSFdSAxJw0hVfUyfJdBOibR361H7vvfe2ebsrLr30Ul544QUefvjhbo3Tk7RkugHocsO3PKulg2ksLslSVZWW62tFG76gWzwuLw1dTTffhWtjnHQvDXWmm/+S1ZbacdEuoA5ZhjRS6I6W51JJ1KAxhLZmYEtQ3IYdp+pEp4T/3y4c6ip8ncFTslIYceIoakpqOLBpH/0m9OeX/3ce//vzQir3VlCytZiVby9j2q9mRmy+Qgghuq+llqdGq8FoNrVzdMcZzX6lU+Io6LZXLfZ+hvJfWgqBmW41kukmRJs6/Sl61apVuN1upkyZErB/xYoVaLVaJk6ceMTHO51OXnzxRb788ksmTJhAUlLgtwuPP/54Z6cU9/wzjbS54cx081ysxmQjBb94hBLOTDeDfyZSDD5vbQhVpptJ8fs2ME66l7qcfkG3ENR082/OEDOZbs3dSxWjgiYxjGu9mxmcOoaVFqJ36slKSoO8sE8haFpqumnTQv88JiuJ3q7FDVhJJSXk54yEer+gW3JWCiNmjWTErJGA5/dZq9My89cn8MiJDwCw6cuNHHvZtJD8fgshhAiPhipPh/nE9CQ0muB9iWVM9vtsWxc/QbfDNVEA0Ck6UkiijgaqkKCbEG3pdNBt3rx5/O53v2sVdDtw4AB/+ctfWLFixREfv3HjRsaPHw/Atm2B7ZSPVCsu0lIrr8NsDt6a/85wlniCHpokDdrk8H3Q92a6qbGRUeNPba7nBkAYr41yB/di6hXT0em19BrWO3wnDqGAoFt2MJeXxl/30rpy3wV8KLqX+l/o+wf4ollLdlYkstwABhTl8/rYPwKQdnk2PB+RaQSFq8bzb65NC/1z2bK8FDxLTOM16Fayvdh7OyUr8Gds+X3rPbIPx1xyHDt+2MbPX2/ip49+ZPycSWGdpxBCiOBpWV6anJEc1HFNfllzVkt8rOKAIwfdANJJpY4GatTQLC9NbboxJOMK0V2KxQKpv2/3uE5/ct+8ebM3aOZv3LhxbN68ud3Hf/PNN509ZY/XUtMtmEv7OkLrXV4aGxf3AVy+oFs4l5cWjutH4bh+YTtfOHiXl2pAmxm8i/2A5aUxXtPtk7/+j7pyCz99ss67LxTLS/0Dee5YCbo113SLRD03IKCmo+r3vhBr3HY3aqPnC5BwPJd5Sjb55GLDxgOOZ/mH4U8hP2e4Ve6twNHkwGg2MX7ORPqM7nvYY8fPmcCy178ns28m6xf9xLizJkb1F4VCCCHaZm+0Y7d6rq2SM4MbdDOm+L5QjqdMt1q1jkFKX/arpW0H3RQze9WDVGFBVVX5+yjEITqdipGQkEBpaWmr/cXFxeh08VnzJZLcNheGQUYMw00kDA1ezYGOiOWgW2Cmm7zxd0dLpps2Sx/UAKbJL9OtSY3d5aWOJgeLn/uKHxZ8T0NzUfYBUwYx/PiRQT+XfyDP5Yz+DFS31YVqbQ4UZYb3S4MWAa9ZZ+wG3QDynx9I7iOFpF+TG/JzPan/AwVKHpXU8KL7HVxq7P0daM+mLzfy8cMf0mSxYkw2MmDywMMeO3jqUMadOYHKvZWs/WAN277bEsaZCiFExx3ccoCF977Dvp/2sOyNpZGeTtRpqPY1UUgKaaZb/ATd1qtb2KHupQkbvWn9GaSlmYITJw1xsnpFiGDqdJRs9uzZ3HnnnXzwwQekpnp+wWpqarjrrrs46aST2n388ccff8To99dff93ZKcU1Z6mTptWeugMJQ8IcdFM0oMZoxz+/KYezplu8UVXVG3TTZQc3qK5RNCRgwIY9ppeX7vlxF72G5rP7x12gQsGYQvau283cf14V9HMFNFKIgUy3SHcu9ZzYP9MtMlMIBo1BQ/rlOWE9Z4qS5K3rFo9LTPdv2Ou9Peb0cUc8VlEUxvxiHD8v3kzfo/qyYdFPDJ0+PNRTFEKITrFb7Wz7bivrPlrDsjeWctItp2BrtJGQKF2XW/h3rQ520M2/KUM8ZbodVMu9t/toWhfH9W+mUEVtQIkKIUQXgm6PPvoo06dPp7CwkHHjPB9S161bR25uLgsWLGj38WPHjg3YdjgcrFu3jo0bN3LFFVd0djphU3/yQtRtVs8FiAKK2YBqsQdsA632Hbqt6ZOMbnYhxrunHOFsPi7/elphbKIAoGt+ecRiphsaSJxhBpdKwojwBivBE6xSVTWoxVkjwV3nQpumw1XlDGo9txaJGLFhxxrDjRQ2frGB3Wt2odFpOP13Z3LiTSdzYPN+UvPSgn4ujX9NtxhopBAQdAvi0uTO8G+6qcZwppt9VxPVr5ShTdOReEwKiVNCHwBLwdfoyEJ93AXd9q7bA3i61+UPb78G5+hTxvDuH95m2/db2bmqCFNqInqjHlNqItPmzgj1dIUQol27VhWx8J7/erc/euB9jMlGeY/y01LPDSA5I+kIR3aeKcVzzaHRamJiRUJHHaQMgAxSMSnGVve3ZLoBVKu19FV6BfX89Se+h3tbNWqDo83r685uQ/vX7DKmjNmR7fq8jl3rd/oqqHfv3qxfv57XX3+dn376CZPJxK9+9Ssuuugi9Pr2L8qfeOKJNvf/6U9/or6+vs37ooFrdSn4dVtU6xwB9x+6fbhjXAcacO+v73DQzVli997W5YW7ppvnRRSLmW7aVB39Pw/+8r727Fm7m7/98jFcdhfTrz6es+87L+xzCCZXudPbyEOXbwj6+CaMVGPBqsZuTbc9P+4CwO10M+WiYwDoPaJPSM5lMpvoNbw3Wq2mVdH3aNTSRAGiI9ONGK7pZttqpeKhAwBk/7FPWIJuyYrvYqRebYQ4Shp2u93UV9ah1WvJGZSLwdT++5tOr2PcmeP59oXFpPVK5/MnPwVA0Sgcd8V0qWEjhIi4bd9tbbXPUlIT/olEscbaRvqMLsBgMpDRNyuoY2f1y+aRoicxmAxx8zdBVVWKVU/QrZfSdsZ9IfkMph8aNBSrZYxhWFDn4Pr+ILg9n+Hauwbv7LaMKWN2Z9u1v2MZrV26CkpKSuLXv/51Vx56WJdeeimTJ0/m0UcfDeq4sS6gc2RO8IMeR+LtXkr8fFMTahqtBqfNE2hwOZztHB39/F9/oeg+aVKMoII1RhspuBwu9q33LFHLKMgkJSu0HY4HThnEHV//MaTnCKbE48wMq56Mu8qJkhCZrE8loJFCRKYQFO5a3+S1qeEJYKb4LQ+poyEs5wyXmgPV9B5ZwJX//jVOe8ffq8fPmcSmLzZSsdu31EZ1q9jqmzCmhD+rWggh/JVsKyY5K4X6Cl839drS0HSUjFU1xTXs3+DpxjntV8HNANRoNXG3lLcaCzY8SSC9lOw2j8lTstnObgC2qbs5henhmp4QMaFDn9w//PDDDg945plndmkiy5Ytw2hsna7a0zlLI7e8tKWRgpPYDx6Fi9bgW/7XmQu5aBUY9A3N8lKI3e6l5bvLGHj0YOor68gbEtxU+nhQ/VIZJfN3oc3Qkfd4f1LPyQz7HOKlkUJg1mDwO+O2JdlveWmdGl9Bt4yCTK7/z00AJCR1/AKpcHw/XG3UU6wtrZWgmxAiokq2FbPx8/UAHHX6ONZ/vBaA2uKaCM4q+tSV+YKQKTmpRzhSABxUfQ0UD5fpNlbjq3G62r0x5HMSItZ0KOg2Z86cDg2mKAou15FTCc4+++yAbVVVKS4uZvXq1dx9990dOk+Lhx56iPfee48tW7ZgMpk49thj+ctf/sLQoUMBqKqq4t577+Xzzz9n7969ZGdnM2fOHO6//35vE4hoF8mgm2S6dZ5O7/uVctljOK2mmbM8tEG3lg6mTdhwq240SmzVwCvbUcqWxZsBT70nEchV5US1qzhLHCjhiRO15ndeNYaXl7pqfEE3TVqYMt38l5fGWaZbV2k0Go69dCor3lpO5Z4K735LaS25g1oXlxZCiHDZt34vugQdTpuTAZMGsPnLDThtTsl0O4SlzOK9bc4O/gqF/Rv3UbK1GEu5hVnXnRj08cOt2K+JQi/aznQboQzESAJN2FijStBNiEN16JO72x28oIvZbA5Y467RaBg6dCj33Xcfs2fP7tRYS5YsYd68eUyaNAmn08ldd93F7Nmz2bx5M0lJSRw8eJCDBw/y6KOPMmLECPbs2cN1113HwYMHeeedd4L2M4WSs9SvpluEMt1cuFBVNaZqE9j32Nh37hbQKqScnk7O3QVhOa/W4PuVcsbZ8tJQNFJoWV4KnsBbIrGVKVK5t9J7O7MguHVB4kE0dC8N6F4cy0E3/0y3MAXdzPi6usXT8tLGmgaWvPANxmQT+SN6M3Ra52rPjDhhNJ888lHAPrmoFUJE2pqFq0hITCAly8yo2Ufx3UtLqNxTQa3UdAtgKfcF3VJygh90e/O3r7Pvpz0oisK0uTPQG8N7/RYsqlOl9j/lfHjcF+TmZGLQGhiq6d/msXpFz9GasTSpNrRoOL3pGhqURoYpA7lbP4/eSm6YZy9EdOnWJ/empqZOLwl9+eWXu3PKAIsWLWo1dk5ODmvWrGH69OmMGjWKd99913v/wIEDeeCBB7j00ktxOp3odBEq7N0Jzgh2L9Xgyzpy4/YG4WKB2uiiaX0jAMajwte2WucfdLPFftDNv3uuNiSZbr5lXY00xWDQzZfpktE39EsnK3aX8+btr+N2uhk1ezSzrj8p5OfsjoBAUaS6lxo1DFh5FIpOQZMcO+9hh3L513QL1/JSxffeWa82huWc4WAptbDo0Y8BmHLhMZ0OuvUZXYA5NxV7o52mOk8BXf/MCSGEiITqA1U0VDdga7SR1S+b1NxUKvdU0FjTiN1q71DDmJ6grvn9Wpegw2QO/ufOnIG57PtpD6qqUrGnnF5D84N+jnBwFts5cHURyh02+s7JZfaoGVyiPXwZqU/1/0ZRFO53/J3/uD5ip7qP5epPzHRP4ULt6WGcuRDRp9NruVwuF/fffz+9e/cmOTmZnTt3AnD33XfzwgsvtPv4AQMGUFlZ2Wp/TU0NAwYM6Ox0AtTWer5pzsjIOOIxZrP5sAE3m82GxWIJ+C+StNl6EqelkDjTjMYU3gtGnV9MNtY6mPovIwuo6RRiOr3v38jliK3nrC2hXl46kL5MUEYxThkRUzWjVr2zgrd+9wbr/vejd19WYegz3exNdrZ/v5Wi5dsp3VES8vN1l6vSL2gbqUw3jYJpTBLGkYkYCmO3uHEkMt1S/Gq6WYje7uKd1VTv6zRlTO58LVlFUbh3xf1c8/J13n0WyXQTQkSQqqpU768CIL13BoqikFmYRVp+GqbURPas24Wqxm62dzC1fElizjaHZBVPzkBf3bOyHaVHODK62ffaAEiqM5KqJmNWko94fMtzaVaSA760i6XP90KESqeDbg888AAvv/wyjzzyCAaD7xuTUaNG8e9//7vdx+/evbvNum82m40DBw50djpebreb+fPnM3XqVEaNGtXmMRUVFdx///1H7Lz60EMPkZqa6v2voCA8yxIPp+GrWhq/q8N5wN7+wUGm9auv5Yq1oJt/klkYg26yvLST4ysu1qgbWatuppLqoI8fKp8/9Sk/LPiOunLft6WhWKJwKK3WF9R1O6O/1mJAoCgE3W97EncEarrFayMFq8XXuKWrzQ90CXrMuZ7asInpSdRXxk9QUggRe6wWK7YGT5AkLT8dgGMvnUZ9ZQPW2kb+cf7feGj6fZGcYlRwOVw0VHner1vew4MtZ6BvKWVZUewG3Rz7PK+nS/8+m5e//TO36K7o0ONu0V3BHbprvdtSE1aILiwvffXVV3nuuec44YQTuO4637e8Y8aMYcuWLYd9nH8H1M8++yygkYHL5eKrr76iX79+nZ2O17x589i4cSPff/99m/dbLBZOP/10RowYwZ/+9KfDjnPnnXdy2223BTwuUoE3t9WF2+IJdoV7aSn4GilA7GW6+dduCqjpFGL+y0tdcbS8VJOkQZMU/ExL/9bjB9WyoI8fKqrb9/oyJBrIKMhEowl9EwhtjGVSttR0U0yasGfqxhtvAFOnoEkKT8ORwEYK8bO8NCDTrRtLizL6ZpLeO53qA9XsXbc7CDMTQoiuqT5Q5b2d3tuz4qfPqAIyCzOxlNRitVgp21mK0+4M+Kza09RVWEjtlUZ9ZT0pIWiiAL6gmy5BF9P19Bx7fQkf+r6dWymQEqdf2gnRVZ1+1z1w4ACDBg1qtd/tduNwONp4hEdLB1RFUbjiisBIuV6vp1+/fjz22GOdnQ4AN954Ix999BHffvstffr0aXV/XV0dp5xyCikpKSxcuBC9/vABrISEBBISWr+xKLmJUAGequ8KGDRgdwduQ+t9h2wraQnopvXu0M8V2Lk0/HUY/Gu4xV6mm18KfRiv9f2DIvGQ6fabt/5OZqmZ4Q0DGc6UoI/fC18Kvn93pGhnq/dlytitdmbffEpYzqvR+b2+7E4ObNpP2c5SCo7qS1Zh2x2lIqkl6BbpLLeaN8pRbW606TrMc0Jfey8UEkYlgk5B0Shha2qTQnwuD2mq88t068Ly0hY6vY7kLDPVB6op21GK1WINSX0gIYRoT/UB32qB9N6eTDdDooE7F9/Dq/Ne5MeFq1HdKuW7ymK2xlgw1FfUU1tcA0BqbmiCbtn9c0jLT6fmYDX71u8NyTnCwdG8vBTA0MmgW8Dy0iBkuikFyajFDeBU274G7+w2dH8MGVPGNGhQzInQgcWanb4SGjFiBN999x2FhYUB+9955x3GjRt32Me1dEDt378/q1atIiur+/WPVFXlpptuYuHChSxevJj+/Vt3VLFYLJx88skkJCTw4YcfdrrxQwvz5ssxm0O/fMxfQNAtBPW02iOZbp2nKApXv3QdGr2WpPSk9h8QxRyqg8/6LYN+MEUZw+3cEPRz5Cu+oFusZLq5XW7vUrKk9CQS05PoP2lgWM6t1fkynCr2VPDIiQ8AcO5DFzJt7oywzKGjVFWNmqDbwRt2olrdJIxKjNmgW58XB4f9nCl+9VviaXlIQNAtpetBN4B+4/t5C2bvXbebodOHd3d6QgjRaQc37Uer1+JyuLyZbuD5XJo3qJd3u2RbMSmZKVTsraBgdF80Ok3YvsiJBvVVvlIAptTQfE5PSErwPqel20tQVTUmn2P/oJu+oHPJHwGZbkH4/GDePrfbYwgRCorFAqk3tXtcp6+E7rnnHq644goOHDiA2+3mvffeY+vWrbz66qt89NFH7T5+165dnT3lYc2bN4833niDDz74gJSUFEpKPIXFU1NTMZlMWCwWZs+eTWNjI6+99lpAY4Ts7OyA+kjRKCDolhf+oFtgplv014/y55/pFs6gG8DoU8aE9XyhUkGN93a2cvjmJN0REHQjNoJuDdX1uF2e34fC8f359YIbwvZhSuuX6eZ/ypKtxWE5f2eoVjeqzfN7GOmgm6JTUCEgGB9LVLeKfasVTboObboOTUKYlpcG+UNztGjpOArdy3QDKBxXyJYlOZhzzJTvLJOgmxAiIrYv24bL4aJgbCGDjx0ScF/ukDzv7f/e+SZ5Q3rhtDkZe8Z4Dmzcy5w/nUtKVngTCyKlwS/olpRx5MYA3ZE7OI/qA1VYLVYsZRZSQ1Q/LpQUo0LicSmgUdB2MvnDvyZsfRxlygvRVZ2+EjrrrLP43//+x3333UdSUhL33HMP48eP53//+x8nnXRSh8ZoaGhgyZIl7N27F7s9sEHAzTff3OG5PPvsswDMnDkzYP9LL73E3Llz+fHHH1mxYgVAqyWxu3bt6lYNuXAIXF4a2Uy32Fte6rcRxkYK8aRc9XUZDlXQrZfiv7w0NoJullJfR2Nzbmg6Xx2Oxi/Tra68znt7/8Z9YZtDRyl6hcJPhuOqdqI1R7h+TPNbWcCy8xjirnWxY+xPACTPTqPwf+EJ7CSTyNnKyWxQt1KiVvBf16ecpz01LOcOpcBMt+4tBy04qh/lO8so31mGOTeV46Is4zRUakpq+M+tC9Al6Mjun82ce8+N9JSE6LGa6qzsXbsbgMbqBjIP6aY+YMogrvjnVbz/f++iT9DjcjhR3W4WPfYRqblpvDH/VY6/9kSGTBvGN899RfHPB7DWNnLOAxeS1ist/D9QCPkH3ZJDHHTbsngzAKXbi2Mu6KaqKg1f1eKud2MYZOz0Z13/mrB1cVQTVoiu6tKV0LRp0/jiiy+6dMK1a9dy2mmn0djYSENDAxkZGVRUVJCYmEhOTk6ngm7ttb6eOXNmTLfHdpb6ApK6nEjUdPNd4Mvy0p6n1C/olkNoluSlYyYBAzbsMVPTzVJa671tDlER3sPxrxmoqr7s05qD0df51b7TRvlfDqDL0JFyRmiCth2ltATeYzTTzb8LrCYtfBnaGkXDU4Y/UGCbDiq87HovPoJuAY0Uupfplj0gB61Bh8vu5ODmrndgjyWqqnJg4z7vBaUxxShBNyEiaMuSnzEmm0jvncGIE0a1CpCYs80UjuvHMRdPZfeaXSSlJ6I16NAadLgdLoq3FPPK9S/wm8/v5KunP6OuwvOl3uQLj427oFt9QKZb6MrA5A32ZBcqGoWSrcUMOW5YyM4VCq5qJ+56z+fMzjZRAGmkIMShOhx0q66u5rXXXuOKK65oVdustraWV199tc37DnXrrbdyxhln8M9//pPU1FSWL1+OXq/n0ksv5ZZbbunaTxEGtQX/RrX6ZZtpFPDrYIim+Q/cofsO3TZq0U7OI/nzX7Z7zsgvL/XrxKm6IIZiV4aBRnL+3BdcKonHpoT13HvW7sZqsaIoxPRSo3J8nbByQpTppigKszRHU6c2kEj3Ln7Dpa6yDp1Bh9PuDFm7+cPR+C2JV/0CSLUlNThsDvQJ4X+fOBxnsZ3GJZ6sQMPAyP7btgTe1Rj77qCFq8YXdNOmhTdrMIt0b2B8pxp9GZWd9emjH7H6vVWgQGpeGonmxPYfdARavZa8wXkc2LSf8p1lOJoc6I3R83sYbI21DTxz7pMB7zVNdU001Vm7nTUohOia0m0l1BRXU1NczSm/Ob3NYzL7ZnHqb38RsM9SbuGdu96kvqqenEF5PH7KX7DbfNceBzfuZ/Tso0I693ALyHTLDN31QcFRfckb0ouyolL2bYi9v50BnUsLOx90Myh672eHYNSErc15Dmptnvr1bV1fd3Ybuj+GjCljahQsCYGrNg+nw4VhnnnmGb799ts2g2qpqal89913PP300+2Os27dOn7zm9+g0WjQarXYbDYKCgp45JFHuOuuuzo6nfBrPKQTpf8T3rLd1r5DtxuduLd3MCvFqWKckIRpagranPAvz/LPdIu15aWGAUayb+9N9h19SJoe3sDIghtf4tkL/8bL1/47rOcNtnLVF3QL1fJSgFq1nu/VNXyuLsWqNrX/gAirLanFaXeSkJyAOSe8ry2tQcus60/kxBtPJq25Oxl4Mk0q91SEdS7tcVb5BYoiXNPNu7w0DjLdtOnhfS4VRWGYMgCAvWoxDvXwXcpjQfWBKpxNDlDhutdvJC0/vf0HtaPXME8nQLfLTen2km6PF81qimso2VbC7jWB9Xlf+vXzLH7uKxqqJaNBiHAr3eF738kdnHeEIwOZs83M/dfVZPfPYeeKHdSVW7D5Lb+P5c6bh9NQ5XuPSsoM3fLSvKH5lO8ux+1ys3t1UcjOEyoBTRS6kOkGvmy3oNSEtdg9ATfo2PV2e9vBGEPGlDGbYzsd0eGg27vvvst111132PuvvfZa3nnnnXbH0ev1aDSe0+bk5LB3r+cNPTU1lX37Yu+bgFBq+tlK05oGrEvrIrK8VKfEbk23SGpZAui0x/ZzVuZf0y1Ey0sB8pVs7+1YWGJaV+7J3rLV20gJ8/JSjUbDWfecwxl/mENqXpp3v7XWSvmu6KqJ54qioJt3iXmsBt1qfO8l2tTwNwAaoBR45oGLvWr0Ne3oDP9aiCnZwclyKBzfnz6jC0jLTw+4+I1H+cN6k5af1mr/lsU/s/Ded+I+6ChENGp531E0Ctn9sts5OpBGo+GcP59P/8kDA7qemlJNmNLiL3u1PqCmW+iWl+qNegqO6gtAWVGZt+t9rPAPuhk62bm0RXJzXTdZXipEJ5aXFhUVMXjw4MPeP3jwYIqK2o/kjxs3jlWrVjF48GBmzJjBPffcQ0VFBQsWLGDUqFEdnU6P4CzxpCtqM8LXrc6ff/fSmKvpFkE6gw6NXouiIWbbhAOUhWF5KRzSTIFyBlAQsnMFQ0vQDYJ30d4VzqbAjKPyndEcdIvwcrvmlPJYbaQQsLw0zJlu4Au6AexU9zGQvmGfQ7C0/P4qGoWk9OBkOaTnp7O/eflQWVFpUMaMZmf+4ZeYzCbSeqWz9buf+fypRdSVeZ7Xqn2VDJg8MMIzFKLncLvdlO3wvO9kFmah60KZiZyBuZjMJnat9F3HWWut/PTRWi558oqgzTUatCwv1SXoMCR2LYOrowZMHojD5iApNZEDm/czdFrs1HULTqabp3xDPHU/F6KrOvzpXavVcvDgQfr2bfvD9sGDB70ZbEfy4IMPUlfn+ab5gQce4PLLL+f6669n8ODBvPjiix2dTo/QUtNN18k2zcES2L3UfYQjo4/b6sJtcYFOQZOsDWvQcuDRgynechBbvY3KPRVkdfJbx0i61fEg29XdVKm1aNEwROlHFun0VnJDds58v6DbQTX6L1gDg27hzXTz57QHpjOXFUVb0M0XFIx4ppu3kQJc/ufrMKxRMdXqefrrZyI6r45yR3B5KcAMzWQaaWKfWsxfHM/zG+dDFNCLq3TncbZ2dtjn0x2W5t/flKwUNNrg/F3IHuB7DyvbGf3vYV21f8M+SneUYDKb6DOqgKSMZHIH5+GwOvjwzwsBKC0qYceybez9aS8DJg+k3/j+EZ61EPGtvryO/JG9URSFnIEdX1p6qOOvO5GyojIq/LLmbQ02XE4XWl34M6xDpSXolpSRHPIvxXuP6MPX//A0Hhw2c0RMBd2cFQ4Mg41oUrXouprp1ry81IYdh+pAr8RvvVMh2tPhT+/jxo3j/fff5+ijj27z/oULFzJu3LgjjqGqKjk5Od6MtpycHBYtWtSJ6fYcrnoXaqMn0BWJJgpwaKZbx9YrRwvL+1UcmLsDgLzH+5E5r1fYzp2UnoTL4ckM3LV6Z8wE3erVRp51vQGAmWTGKMMwksB0zSTSlNAFlwIy3WJieannSwO9UU9CUmi/JW2L2+XG5XBhtwYW7iyPsov9gEy3zMgG3XS5etyNLrRpOmyr6khfaQZcNNY2kpjavUL64eCf6aZJDf9zOVt7HLO1x3G/4+98xvdsU3ezjd1kuTJiKuimqir1zV35ghkwzyrMQtEoqG6V8igLfgfT2g/X8OUznwFw4zvzGTx1KABDZwyH5qDbdy8uZt2Ha9CbEihavp3MvlmcdffZAZ2XhRDBYym3sHu1p8Zi3pD8Lo8z+NghOGyta3Y2WawkZYSu9lm43fz+b6ivrMdpC/11Td5Q37VH8daDIT9fMNm3WrFvbwIF9H26mOmmJHnrsD3qfJE79dcGcYZCxJYOf81744038thjj/HMM8/gcvmWGrpcLp5++mmeeOIJ5s2bd8QxVFVl0KBBUrutA1qWlgJoJdOt8/xWw3rrOYVJvwm+b/b3/LjrCEdGl2LVd7GYTCJmJdn7Xyj1wr+mW/RfsLZkuplzzBFZOvzH0b/jt/1v5sDm/d59/ScOoKm+yRvsjQYBQbcIZGf56//NKIbunsigdWOpHtTo3R8r9adc1X413dIjF7zwvB/4auC4YuzLmMaaRu/vSEpW8JaG6xL03lpIxduKqa+sa+cRsamx1ve7Y/Lr+ppR4Kv56XK6QVEo31nKxs/Ws+T5r9m/UT7zCREqLUu7wfO5pKsUReHK56/hnpV/Zvycid79Vou1W/OLNlmF2fQb359Bxxy+ZFKw5AzMRWkub1GyNbbqodqbu5fq8g1oDF3LCr9I+wsu1ZxFf/qwwPU+rlhtIS9EEHT4t+icc87hd7/7HTfffDMZGRmMGzeOcePGkZGRwfz587nttts499xzj3wyjYbBgwdTWVl5xOMEuMp83zbpcsPfRAFiO9MtoHaTNryBkcJx/cjun0P/iQMojaH6Pgf9Al7na0/lXcMzvGt4hlt0oa3n4b+89ECUB91cDpe3O1+klpa2fOPc0olTq9Oya/VO9m/Yx7bvt0ZkTm2JpkYKLVRVpWqQr7ZIzATdav2ey7TIPZe36K7g34YHvduxVuszYGl4Ny5O2zJ02jB0Bh3OJgf3Tbk7qGNHC6vFL+iW5gu6JaYmojd6vhy0N9jI6pcdcNG+Y9m28E1SiB7GEsQ6s/3G9yezIJNEv9/vxprGIzxCHInBZCCzMAuAkm3FAUkr0cxtdXmvQ7tazw08QbcGGtnFfnayj61q7CQiCBFsnQpdP/DAAyxfvpy5c+eSn59Pr169+NWvfsWyZct4+OGHOzTGww8/zO23387GjRu7NOGeoqWeG0RueWksZ7qpfl0Kw53pZkwxYc4xs2v1TrZ9uyVmUsqL8S3tzA9hDbdD5ZPDTGUKU5XxuKP8dVZX4df5MCsyQbeWOlRag44HNjzCuQ9dCIAxxcj2pdEXdNMkaSLSCKYtTpzUDPTPdIuNb57znxnAoI1jGbB0NLrekfkSpoX/3wVHjH0ZU1duQWvwzD/YQfMLH7uU/BG9AbA32lHV2GzacSTWWl/Gi8kc2NXwt5/dyV3f3cspv/0FV790Hcf/+kTvceW7or9sgBCxKhR1Zv0zWf2D7aLzJp4zmaEzhmE0m9i1ov2Gg9HAsc+32krfxXpuLcZrRnpvr1E3dWssIWJZp78ynzx5MpMnT+7yCS+//HIaGxsZM2YMBoMBkynwg1tVVdVhHtmzOPyWl0aqkYLGLybrjLWUYL9MNyUCq7HG/GIcRSt2kJieyM/fbKbX0K7X2QgX/6WdvZTw1aFL0iSyWd1OGVXkqzntPyCC6iospOWn01DdELHOpcbmi12H1Y4pLZGJ50xm9bsr2LV6Jz8s+I7Tbv9Fl7qXBVv6lbnY99ogioIPDpxUDWqkeGIt6ZYUKvfFRta1Nk0X0Qw3fzq/jw2xmOnmsrswphhJz08P+vgJyUbAk1Fpb7SRkGQM+jkiydq8vFRRFIwpgT9b3hBP7aJTf3M6ALlD8igc3489P+5m3YdrOP/hi4LWuEII4WMJWF6aGpQx/TPd4ml5qaWslp8+Xosx2USv4fn0GVXQ/oO6KatvNose/RiA5f/5gUHHDgn5ObvLv3OpoRuZbgATlFHe26tdG7hMe1a3xhMiVnXoU/zevXsP27W0LQcOHKB3795t3vfkk092eJxoojtzIMo6C7hV0CgoWSbUCmvANtBq36HbmgFm9Ce0/1w6S+0oKRp06Tp0+ZFvpOCKsYsr/0w3wpzpBjD29PGs/O9yDmzcz7LXvuP4a0+ISP2vzvBvYuDf3CAcBigFlKlVHKQMq9qESYnOi9W6Mgs1B6sBSMmNTKabMdn33DTVNZGUnkR67wyKlu/AarHy85LNjJ49JiJza6GqKs5KB/reBhIGR/7fsuz+fdi2WKkz1NP4DzuZW5Iw1GvY37Q30lPrkL3nbsFd50LXJ4E+LwyK6Fz0AUG32Mp0qy31XJw21TWRmJ7UztGdF/C7WR+HQbfmjBdjirHdbvWKopCal9b8OCvFWw7Se2SfUE9RiB7HP9OtOzXd/Plnslpr4yfTrayojHfueguAWTecFJag25hfjOOjhz8goyCThOTwN9/qCkeJHW2WDleFs1vLSwHGa0ZwsmYaVWotP6g/dnkc/YVDcG2oQK2xtXl93dltaP+aXcaUMTuyrSvQwbvtv4Y7FHSbNGkSc+bM4eqrr2bSpEltHlNbW8vbb7/NU089xa9//WtuvvnmNo+74orQ1ocKlaSXTsJsDt9FtqvUiVrnxlFnR5cVmeVEOiV2g27+14JKmGu6AaT2SsOYZER1q5QVlXFg4376jA79H/fu8M90yye8Qbf+SgHL1Z8A2KXuZ4QS2cDC4UTD8lL/D8NN9Z6g2/hfTqJqfyVNdU2s/WBNxINu7gY3FQ8fACBpppmUX2REdD4N39TSuLSO6ow6UKBmgJWc9SlU7avCbrVjMEV2yWZ7GpfVeT78Fkb+A7suoNZnbPxd+OG179i5soht323x7gvWxam/wIC4ldTc4GSdRIvG5uWlhy4tPZxBxwxm/SfrANjxwzYJugkRAv6ZbsHKwDelxmemW1N9k/e2//t1KBlMBowpRnau2MH+9Xs576GLwnLe7nAUNeGqcIKBbn/uSFPM1KuNrFLXA/Czu4jhmoGdHifx5djplC56FtViCV7QbfPmzTzwwAOcdNJJGI1GJkyYQH5+PkajkerqajZv3symTZsYP348jzzyCKeddtoRxysqKuKll16iqKiIp556ipycHD799FP69u3LyJEjj/jYnsIZ0EhBMt06K9KZbgATzpmM261irW1k7f/WRH3QDWCKMhYDOvLICut5Byi+52anuo8RRGfQLeDDbRC7H3aGMcV3wbv4X1/Rb0J/xpw+jtdufInGmkYq91REPJDkqoyyJgrNgXen3vM+Vj24kZz1KaiqSllRaVi+7e4qVVVxVXuez0h3gYVDarqpsZHptujxT6gtrgnYF6xlWP78l1za6m1HODL2qKrqvfj2b6JwJIOPHcLAKYOor6xj58oiZlwzK5RTFKJHspTVAmBITAhadm1LYN1kNsVVfcqmOl8A8dAl8qHU8nnMbvXU+4z2lS8tnUuxg76g+1/2na09iZVNP3HZ8tNotFvgyGECIeJShwpsZGZm8vjjj1NcXMwzzzzD4MGDqaioYPv27QBccsklrFmzhmXLlrUbcFuyZAmjR49mxYoVvPfee9TX1wPw008/ce+993bzx4kf3kYKCuiyI99IIVYyGgCecr7CAtv73u1I1HQDGH3yUexaVUTxloOs/WB11H9wWa1uZIW6jo3qNhI1HctkCJYBGl/Q4x7nk5xjv5GnnK+EdQ4dEYqCxZ1lMvs+KH77wjd8//ISdAYdo08dizknld6jC9iyeHNE5taiJUgEoM2IfH055dCg2yDfcpmSbdHdTMFd76bl7VebFqE3Mz/+Nd1i5cuYUbOParUvFJlu/he8TfXxkx0C4LA6cNk9v9f+RdaPJG9oPge3HKB0Ryk7lm2L+r+BQsQat9tN1b5KkrNSGDJtWNDGHTx1KE/s/zsPb32cE26Inwyjpjq/TLeU8H3O9f8S1NHkOMKR0cG/plt3l5cCXNR4OiuGP8e8088g9Y/RHXAUIlQ69bW5yWTi3HPP5dxzz+3yCe+44w7+/Oc/c9ttt5GS4ssUmTVrFs8880yXxw0157pybAeLPWt4FQUl04ha1RSwDbTad+i2JsuEplcSml5HrifTkummzdKFvftmC61fTDaWupda1HoUp++iOhLLS8Gz/HDwcUMp2XKQtPx09q7bQ+G4fhGZS3tUVfXWdAtn59IWxyjjeEx3Byvd69mtHmCVez1F7r2UqOU8pP9t2OdzOHUVkQ+6GZMDPyjqjJ6g1oRfTmTFf37AUlaLOdvMUaeOjcDsPFo6l0K0ZLp5/q8l6FY1uAHnWA19rLlUH4ju5j3uGr/nMgoy3RRFQYsWF66Yqel29n3nUbR8O1X7KrE32tEl6AKWTwWLf72eeMt0a2qwom9+r+no8lKNVsOAyYPY9MUG6ivrKd1e4m24IITovuoD1ThtTuptdQTzk268Nj0JyHQL0/JS8GQhtnDEQEmLlqCbNl2LNqX7X/ZlmNOpGWDCWlaPbZMV25ZGEoZ17m+wc1057uIGT023Nq6vO7sN7V+zy5gyZke2ncaOfRYO+yf4DRs28MYbb7Tan5OTQ0VFRbin02ENJ7yLVgnOtyJK7yTMu6487P2qquJs7l6qy43cG7MuxgpmOw7aQVVJTjbx2uWfsW32QZ5V/g/joOBfXHXUxLMn88b8V7GUWVj74ZqoDbpVY6EJzx/ZcHYubTFAU8A8zaU4na9Q7/bUfiijigR3dH0wqSv31XQLRaZMRxj9Mt0A9M2dSgcdM4SkjGQaqurZv2EfDTUNJKUFv1h8R7iqfN/kRkPQreWLC6fOE3Sr72NDt85NCcWUbiuJ5NTa5fILummipoNpS9AtNjLddAYdGX0yKdnqyWpMTEsKyfIe/8wJ/9pBsU5VVe6fcg9avZbcwb248oVfd/ixg6cOwVJmwWDSs3vNLgm6CRFEpX6Z2rmD84I2rqqqrP1wDdu+3UJTQxNz/3l10MaOpMBMt/AvLwXPEtPIfDLrGNWl4tjvuQYNxtLSFmkXZ6PoNTh2N2F5v4rsOzp3bdZw9FueQIcQUaZB7djKhrB/lZGWlkZxcevlPGvXrj1sx9Oexl3rQrV53lh0OZFbmhVrmW77ztvCtgE/Mjt3OD/0eYdXJj1O0iRzRLNDRs0+Co3O8zzuXLEDtzs6n0f/Jgrh7lzq7xbdFbxreIZEPBevdqIrDb+uuaab3qgnISkyRe0PzTJpCbppdVpOmDebXsPyqdhdzvLXl0ZiekD0Zbodury0rsD3wbtyb/R+2QOHLNWNguWl4Cs94IiBL2NaDD5uqPe2Vhea59Hol+kWT0G3hqoG7FY7TXVNaLRKu51L/Q2YPIh9P+2haPkOtn73cwhnKUTPU7qj1Hs7d3DwVikoisKnf/2IZW8s5aeP18bN+1lAI4UOZuwGg97ku5azW+1hO29XOIvt4PRcgwZjaWmL5FPSafzOgmOfHct7lUEbV4hYEfag24UXXsjvf/97SkpKUBQFt9vN0qVL+e1vf8vll18e7ulEJW89N0CXF7mgW6zV7nE3ByqVBIUEjSEqCpUmpSdx7GXTyBmYy561u9m5oijSU2rTwQh2Lm1LAp5vBW1E14eTlppuKdnmiL2+Bk8dygWPXuLd1hp8v6ejTz6Kkq3FpOWns+OHbThtkQlaRlvQraWZSkvQzZnoRs3y/PmL/qCb7703GpaXgu9vQyxkuqmqiqqqDDluKJl9M+k/aQDjzpoQknMNnT6cG966mds++T3jzgjNOSKhtrTGeztnUOeyafqMKvAurSpatl3qugkRRKXbfZnauYODm0U6dLqnRpzb6aZo+fagjh0pEVte6l/TzRpdXyYfyn7AjumYZBKOSsQwNHiBSUNhAqaJSeh6G9CYtdh2xFfdUyHaE/ag24MPPsiwYcMoKCigvr6eESNGMH36dI499lj++Mc/hns6UclZ4cAwyIg2SxfRoJvG7+XhVGPg4qrJk0WmGKOrFkX/iQMoK/J8G7n6nRURnk3bAoJuEcx0a2HA87q3q9Hz4cRhd5CWn05GQSaZfTMjNo/03hn0nzjAu603+gIxOQNzOe5XM6gtqWHz15tYFaHXW7QF3VqaqbQsLwVQ+nrmVVtSG9WFjf2Xl2qjZHmp3ht0i/5MN1t9E7f2nsff5jxG37H9mP/h7Zx199khOVdqXhpDpw+ncFw/kjOTQ3KOSLCU+mpZpuZ2ruurVq+l/8T+6I160vtkUtfcaVEI0X21pTVk9c+h4KgCsvoHtzRI4fj+5A/vzbCZI6irqGv/ATEgUo0U9IcsL41mzt02rMvqsa1vRJcV3GvQ1IuycR6w0/hdHZb3o7uerhDB1qnohMPh4Morr2TXrl1dPqHBYOD555+nqKiIjz76iNdee40tW7awYMECtNroWDoTac5iO/YdTbgqnGgzI3eR5d+9NBYy3VSbJ+imibKg2+hTxlA4vj/9Jw1k8zebovICvxj/5aXhr+l2KIPS3F49ijLdGqsaOLBpP1X7Kls1Mwg3p99rqGV5aYtJ504hISmBgUcPZtkbS3G7wr+kOdqCbhyyvBRAW+B73qr2Re9SB1eUNVIA39+GWPgyxtZgQ1VVbA02nPboDxJGI/9Mt9S8zgXdALL65+BocrB79U7Kisraf4AQokNKtxVTsauMij0VQa/hmjsoj4M/H2DL4s3s+2lPUMeOFEWjkNorDVNqYkA5gFA7tKZbNLP7dy4tDO5zlHJauvd2/aKaoI4tRLTr1Cd4vV7Pu+++y913393tE/ft25eCggKAqFgGGE2cJX4X1L0iUzcKQBtjQTd3U8vy0ugKuiUkJpAzIMebdbT5q42MOX1chGflU/NaOSc9P5JNt5+Ac5zClPwxkZ6Sd3mpPYoyafybKKRkpxzhyNBz2PwCMYbAt/HCcf3oN2EAWxZvBmDTlxsYfXJ4/00rCi0oEzXoqhU0GZH/MiVpuhmNSYNxmG8pjnakiX5l+bidLqoOVAW1CHUwJR6dQvY9fXBVu0gYHtlgb4uWvw2xkOkWUMMnDMuJbI02aotryBkY/i7QoWIp8WWnmXM6H3TL6JPhvd1Q3RCUOYme5efFmxk2Y7hcL/hxOV1UH6wGILMgK+jjJ6b5Ct031jYGffxIKNtRSm1xDXqjPqCjaKhl989h8HFDMZgMmFKj4+/44Tj2+AXd+ga3mZlhgBHz+ZnYt1pp/MGCfXcThn7hW+YrRCR1+mvzOXPm8P7773Prrbd2+aQvvPACTzzxBNu3e2oEDB48mPnz53P11fHRHae7Amq65UawppviH3SLzgYA/qJ1eSnAxHMm8/M3m8gdnMfPX2+KqqCbbZsV43Itfb7OIL1/Drm9g//hrbMMzW9N0VTTzeK3LColOzKdS1ssXfDtEe+fec0smuqbqK+s44unFjFq9lFhvViZ/7snWHb7WgAsCWvDdt7Dyfh1HvwaUl2ltPTm0KcZKFrm+RtUsasMZo6I4AwPL3FKColTIhvkPZRO0YEaG0E3e4PvAsIQ4uYnTruTt3//H9Z+uJrBxw7luLnTwx7wDgX/977UvLROPz4pw7fUtqGqPhhTEj3E2g/XUF9Vzzt3vsmo2Ucx8OhBzLr+pEhPKyrUFtfgdno+92YUBL/kRUDQrTo+gm61JTUApPZKC+tnosnnH83k848O2/m6w7HPL+gWxO6lLYyjk7C87VldYFlYRdat+UE/hxDRqNNBt8GDB3PfffexdOlSJkyYQFJSYDrzzTfffMTH33PPPTz++OPcdNNNHHPMMQAsW7aMW2+9lb1793Lfffd1dkpxx1nmCzREMuiW6U5jyv5RJO3UY8rXwqiITaVDvMtLE6Lvm9BBxw1Bq9dRtHwHu3/czRl//CVJ6dHRNLzlD+ylf5/NoGui4wIxGhsp+Nc0iXSmm73RDgokpia2WTtq2PEj+PCBhVTsKseR52DlW8uYcuGxYZtfFTUApJCEQYnce9ih/INEhkITLTk3lXujd3lp3SfVOIrtaNN1pJyShiYx8pmD+hhqpNDkF3QLdaab6lZJyTHjsrvYsngz6b3T4yLoVuuX6dbZmm5AwN+6egm6iQ5yu9y8+8e3PQ2MFNj4+XqKVuyQoFsz/7IIoQi6Gc0mFEVBVVUaa2I/Q7WpvgmrxVO8P61XejtH91yO5uWlSoKCLif4n9/MczIof2gfxtFJWNfK3wPRc3Q66PbCCy+QlpbGmjVrWLNmTcB9iqK0G3R79tlnef7557nooou8+84880yOOuoobrrpJgm6Ebi8VJcb3NTezhiwMoex53r+MKVcTVQH3VRVRW3pXhqFmW46nY5xZ05g8XNfkTe0F5u+3MDk86LjWy+Hf/2GILYH7w59cyMFN25cqgutEvlAQ0vnUoh8ptu5D17IOfefT1p+2x8cFUXhzD+ezfL/LOWnj9ey6t2V9BrWm75jC8Myv2rVc5GeTucv0EPJ4Rd0SyjwLfGo3BO9HUyrniuh/tMaAIbumxgVQTdvTbcYCLrZ/IJuCSFeTqQ36jnusml8848vPOdutLXziNiQnJnM0BnD0Rl0JHfhC4eATDdZXio6YO+6Pbx5+2vev7um1ESsNY1YaxuxN9oxJEbus3G0qNrvH3TLOMKRXaPRaDClmmisaYyL5aW1xTXe213J2O0JVFX1XhPoCxJQNMFPYkgYYiJheCLWFfVYV9TjeMAWkow6IaJNp6MTu3btOux/O3fubPfxDoeDiRMntto/YcIEnM7oX6oSDs6y5qCbhog2UvCvSdPSfTNatQTcIDqDbgCTzptCSlYKBzbsY/nrSyM9Ha+WP7DaTB2apMhf0AMkKL4P1NGS7RZQ0y0rspluqbmphw24tRg2czgms4neI/uwf8M+Prj/PaoPhL5blKqqVOG5UMpQojfoZuyViEbrea+o3Be9QTdXjV/zh/To+P1sCbo5YmJ5qa+mW6iXlwKYzL5grrXWGvLzhcOOZdvYuuRnipZvR6fv/GeSZFleKjqpdHsJBzbuB2D8nIn0GVXgva/6oHQ9BMjql8PUK6YzfNZI8of3Dsk5TKmeJaaNNbEfdKtpXloKkJafFrF5RDNXjZOEUYkkTkshcVroPuem/KI5SKwBy6LqkJ1HiGgS9ojOZZddxrPPPsvjjz8esP+5557jkksuCfd0OizxjVPQb7GCS0XRKii5ibhLGwO2gVb7Dt3W9E5GOyjtiOdqqemmy9GjaCO3VNKcm0pCUgK2Blv0B92afDXnonF5KUDvkX1IykimrqKO8t1lWMotmCOcMaU6VRwHPEGtaMlyA9/yUgA7DhKJfOFZS3n01HTrCEVROPeBC3h13ovUV9ZTW1rDaze9zOX/uDKk3/LW0eBdxhktQbfSP+yh6vlS9pyxBf7u2WfQ6Unvk0Hlngoq91SgqmpUFul2N3cv1SRpUPTR8YWCzru8NPqDbk31/stLQ/8eZ0zxvVc11cVH0K2+ypOd5p+x1hn+y0sbqiTTTbTPP4tr3JkT2P3jLrZ/vxWAmoPV5A6KzsY34TRg8kAGTB4Y0nMkpiVRuacCa20jbrcbjSY6/gZ1RW2xL7gT7uWlu3/cxdu/ewNbo43jLp/O8dedGNbzd5Rjrx3rcs8XI4aBoSvHYP5lBvWf12D7uRHLGxVkXtP+73Pi+7/AtasWtaKpzevrzm5D+9fsMqaM2ZFtU7oK5/++3ddwp4NuV1555RHvf/HFF9sd44UXXuDzzz/n6KM9y+tWrFjB3r17ufzyy7ntttu8xx0amIsk/cn9SDwv9BfaqlsNCLpFkqIo5AzMZd/6vVTtq8LR5EBvjJ76TP40KVoGbRiLanNHXffSFoqiMP6Xk1jz7goq9lSw+auNHB3GOlttcRTb0WbpcZU50BdEz3INA77XWVRmusVA0A1Al6Dn/L9cwuvzX2H70m1oFA3/+c1rTL/qeEbMGhmSc1aqNd7bGVGyvNTd5MZd68Lu8gWJ9OjoN2EAKdlmtDoNjTUNJKV3LagQSq6WoFt65LKeDxVLNd0ClpeGIdNNq9diMBmwW+3e+kGxzOV0YW3OcknuYtDNlJborQ3VUzPd3G43K99azoRfToraz1HRJHDpZCa1pb4vvXat3klW/xyS0pPC0pG4J0tsznRT3SpNdU3e7VhUc7DGezvcy0tddicHNnkyNy1+pUqiTWDn0tD9vTQOT8Rd48Rd46LxhzocB2zoex/5fPpT+iHvnCIa2S0d+53u9Kf46urANFCHw8HGjRupqalh1qxZ7T5+48aNjB8/HoCioiIAsrKyyMrKYuPGjd7jojHjIByc1U4Sj05GtasYBkf+w0RL0A0FSrcX02d030hPqU2KViFhSOSzodozcMogPvnLhwDsXrUz8kG3PTZcpQ7QgiGKnr9DM92iQWJqIr1H9sFpc2JMifzvZkclZyYz555z+PbFxaz/dB371u/hrdtfZ/TJR3HKb37RZiOG7qjGd3GUHiWZbi0Zw069L0ikQ4fBZGD3ak9ZhKq9ldEZdKv2BN20qdGxtBRA27y8VEXFrbrRKNH5RQcELosyJIXn99aUasJutdNU19T+wVHOWtOIqnrKN3Q1002r02JKS6SxuqFH1nR77JSHObjlAE6bE61By6RzpkR6SlEvoElAnwxqDvquPT7960d8+tePuOLZqxg/p3W5GhE8iem+IJu1tjGmg262hv9n77zD2yrPPnwfSZbkvfeecYaz9yYhCYGw96ZQ6AAKZbSMlkJLS0vLaJn9oGWvQtgjzCRkb2fHe++9LWuc7w9FspQ4sWVrHNnnvi5f6EjnvO+DI0vn/b2/53l6SZ6egkqtIjTevU43tW//Pa2+RxobyQPh6s6ltgReFIb4cTOqUBXtX7QQfovsXpUZ3Tgsun300UcnPWcymfjFL35BevrgNuf169c7OuUpeeyxx/jwww85duwYvr6+zJ8/n7/97W+MGzfOek5vby9333037777LjqdjlWrVvH8888THR19mpE9h7FOT/dms6NGCiJIxvxMyveX0VjSQPXRasmKbt5C0pRkFCoFJoOJkt2D10B0NdYmCkbPOytt8bH5aOoT9SABDb5wWwFdzZ2EJYR53aZAdGYMy365AoNOT0NpPaJRpGR3Mc9e+hSr717DlHOmOW2uZrFfdAsjxGnjjgjVyaKbj+BDeFK/iNBY3kjiFPc0mhgqpl4TYq9Z8FBKyOmmsvn71GOwE8mlRtm+EkITwkiblU50pntu6rWBvrTVttHV2sXdKb9C468mNjue29f+2i3zOxNbkcw/bPgdt/1D/c2i2xh0ujVXNpkFNx8le9bulEW3Qag+WkVDSQNgdqf6BvsRkxXLrEvmsu/T3Rj6zBsRdUW1ngzT43zwwLvUFtTiG+jLdc/f6BIHZXRmDCkzUvELGf7fvlSoza+hbG8p4H6nm4+N6NYnZdHNprGa2sUlZ4IuCqfxz1XmXBYBWXSTGfU45S5eoVBw1113sXTpUn7zm984Y8ghsXHjRm699VZmzZqFwWDggQceYOXKlRw5cgR/f/MXxK9//Wu++OIL3n//fYKDg7ntttu46KKL2LLFsUL23XdugN3tYBJBIaCI8sNU3213DJz03InHivRgVEsTUF85bsB5LKmlAKpoz4sgkalRNBTXA2ZL/+zLpNFx01tR+6lJnZWGrkOHJlBLV0uXXb0bd2O7q+XqL1hHkFojBaPeaF0sektq6YmEJ4ZzxRPXsOuDHXzz9Ff0desIiAhk48s/ULqnhBV3nOWUXexmWq2PpVLTzep0U9mIbqgIT46wHjeXN510naexpJYCKEMkJLoJSjjeu8YgYdGtu7WLwm0FGPsMFPQZuCbxBrfMa2mmoO82f3YZdHpq82vcMrez6bQRyYbrdAOYumYadYV19HX3YegzoFJL5/3sSkwmk7Xzo1Fv5Oj6I/R29sppkafAaDDyxFl/xdBnQFAIRKZGIQgCESmRnP3bc6nJq6LyYAUAdfljW3Qr21dKeW4ZgiCgVLvGCb367jWsvnsNgNXx6q1Y0ksVSoXbm2GpvVB0c7XTTTvRD3WWlr78Xv575qeE9e7iTs0Np9zU7v7VBkwHGzE19Q64vnb0GAZfs8tjymMO5bg7cWj3M0676ykqKhpS99He3l6eeeYZ1q9fT319PSaTye71vXv3DnnOdevW2R2/+uqrREVFsWfPHhYvXkxbWxv/+c9/ePvtt62pr6+88grjx49n+/bt1ppyQ0H/xjFEod95Zjxmn2Z74vGpzjH+WIXhm7LTiG79H8ZScB4lTU1GoVRgMkrDmXUq9LV9dHzWgqAR0E7yw3e69NLELCRMTGTjy2bHZ+neEiYun+SxWNxVv8FRpJZe2tlkW8/Ns51LR4IgCMy+dC7ZS8bzzT/XUbStgIaSBuoKaonJjmXGBbNGvBhuEftrG4RKpKabcPx/yc7phorwpH7RrbFMeh1MTS02opuEnG62TlQp13Xb/0UuSVOS0PfqyZifZe1W62psmylYULppbmdj60wbbk03gJpj1Rz65iBgFkODoqTx2eBqulu6MRns73Nr86pJmZHmoYikTW1ejdXJlrN6Cje+dIv1tbCEMH710d3cl32XOVtgTzEvXf881z77kwH/5kY7lkYt2kCtyxoc1BfXs/nVjRRsyWPh9UtYcN0il8zjDlqPN1IIig5223eBBVvRzR1d5IeLVXQTQJXg2s00QRCI/WcaP895hC8Cf0RHHz/nSnwZeENC/3+HzEIHg6/BHT2Wx5THHMmxXhxa/V6H7+JtGx2AeeejpqaGL774guuvv37Q62+66Sa++eYbLrnkEmbPnu3UNK22NnNaU1iYuRXxnj170Ov1nHlmf5eY7OxskpKS2LZt24Cim06nQ6frFyLah1gcz1nYOd1iPC+6afy1pMxKQ9+tQ+PvS7dEazr0FfRSc5tZFAy/K07SolvqrPR+0W1XkWdFt3Jpim5Sa6Rg10QhwjudbrYERQVz8aOXsXvtTta/+B26bh1v3/E6+p4+Fl6/xOHxSkyVxAvRvGB8m1eMa63PhwshTox6BAxQ0+1E0a25XHqim7GtP16FhGq6qeiPRcqi264PdlCyy/y9cPnjV7lt3pisWPI3H7MXW7wsJd1Cl5OcbrbXdjZ3jhnRzbbrtYXqo7LodirK9pZYH6fOTD9pjaDx1xCZFk1jcT2tVS34aHz44MH3uPqf13td2YeR0tNurhnpSsGxp72bjS/9AED+5mNeK7oZdHo6m8yfZSFx7q3nBuAX5s+8qxew+8NdVB+pkqzb9doPHiWuIoLp9eOZqJnn8vkClgXT09dHj8n8Xm6j85Sim4yMt+Ow6LZv3z67Y4VCQWRkJE888cSgnU0BPv/8c7788ksWLFjg6NSnxWQyceedd7JgwQImTTKLGLW1tajVakJCQuzOjY6OprZ2YFv6Y489xiOPPOLU2BzBPr1UGik78ePj2fTKRgDK95WSvXSChyM6GbG3f3Gj0Er7xit1Zv/Ndskez7oH9RVmQUvwVaCMkI6TRmpOtw6bblOBUd4vuoF5l3HWJXPwC/Hj/659nsTJiexeu4vZl85D7efYZ8+qvhupo5EYIkkSYgknhFmKHJYppJGOfqr0Uv8wf0JiQ1D7a1BppPP+tyKCOkuLsdUoCeezBZWd021wh7snaKowi6gBEYH4h/i7tV7fOfedx4aXvrd7zltTs2wdoM4S3bqbx04zBdsNGzCXmGivP1mIkzHT2dxB0rQUGkvqSZo6cA3h3373II1lDfzftc/RWNqAf1gA61/8jmW/WOHmaD2LrdPNVSRMSsQ3yJee9h4Kt+ZjMplc5qpzJbbdb0PcXM8NzGtlQRDQ9/ThG+xLzdEqUmcNXgfdnfSKOvaEHmFPKNQLbdzP7W6ZN4j+74YOsZMYIeI0Z8vIeC8OrzJG2gghPj6ewEDnp2fdeuutHDp0iM2bN49onPvvv9/Ozdfe3k5iYuJIwxsyxnpp1XQDSJmZZhXdSnYXS1N00/WLboJW2jcEIXGhTFo1mebyJqoOV2E0GFGq3O9iEUURZYwPWq2AIkApqV1iH1unmygBp1ujjejmpTXdTsXEM3OYd80Ctr1prnO543/bWHTD0N1uDWIz5VQDICAQJASAALGKKHwFiexYDtBIQYUKQRDwC/Wn+kgVTWWNmIwmt6ednA6/eYFkHnRekwtnYet000tUdNv70W6KtheAAGfeutKtn291BbXWmneaAC26zl5rypw30dvRw+FvDhCWGE7KjFQiUyOHPVbACU63sUJHff93h0qjoq+7z9wRXmZA8jYeo3xfKQCx2fEDnqP0URKdEcOFf7yUH57/lqLthajUShJyEslamO3GaD2Hoc+Avte8XnCl002pUpJ9xkRaq5tR+6ppqWohPDHcZfO5Ctvut8GxIR6JIWtJNge+ykUURQ59c1Byolul2G9GSRJi3TZvsNCvCbTRcZozZWS8G7evLp544gl++9vfUlZW5rQxb7vtNj7//HPWr19PQkKC9fmYmBj6+vpobW21O7+uro6YmIG7pGg0GoKCgux+3Imh1qamm0REN9svhpJdRR6M5NSYdP0uAkEtnUXzqVD7qqk+WkV3SxfVhys9EoOxyUD3hnZ6c7slJ1TaNlLQS8Dp1l5vK7p5b023U7H4pjNInp5CeHIEXz3+mXUHfSjsNR22Pj5fuZy16mdZq36WO1SDlxtwF8Lxt7d9eqn58zU80byratQbaa1pdXdop8XUbcTUbZScS8rO6SZKL71UFEVK95SYhTbRXBvKnbTVtlo7CWqOu0YNvZ7/HHOUDx54D73OLBaq1Crixg8sggwFP5uGQV1jxOlWsruYXWt3WI+Nfea/lbZa2el2KhpKzV1LA8ID8B+kY+akFZPJWpRN4pRkincVU3mwEqNeep9HrqC3o9f62NK4xVWEJYZRsquYvB+P0VBU59K5XEVnUyfRWbEERgR6JL0UICo1ms6mTrqau+y6QkuFMrHa+jjRjaKbrdOtTRw7GzIyYw+HV9qpqamkpaWd8mcwZs6cSW9vL2lpaQQGBhIWFmb34wiiKHLbbbfx0Ucf8cMPP5Cammr3+owZM/Dx8eH77/vTPPLy8igvL2fePNfnqg8Hg8XpphIkUzg7LCGMiWdOIm5CPNVHqzEZTYNf5GZs00ulJiANhF2KqYcaVEi1cymARq7p5lbisuOJTI2iuaKJ6MwYNr3645CuM+j0NOqaCcBc53GGYqIrwxw2gWeHkvBGJr4X9P/b+RzvrmDfwVRadd0an67haOhOjgbtoPObVk+HY8XW6WaUYE23qsOVHPrmAAERAcy+bC4RycN3aA2HSSsn83jh0zy45RFrOrq+Vy858fR09LT3EJEWSV+3ju7WLlbccdaIxrN1unW1jI2F1f4v9nFs/RHA7M7yCzV/TrbVtnowKunS191H2/GNj4jUqCFds/KO1QiAj8aHT/64luqjVa4LUELYboxpg1zrKI+wqX3aJMEu30OhqbyRuvwaOho7CInxTD1JTUD/fbauq/c0Z3qGCrG/w3aSEOe2eW2dbu2Mje8GmbGJw6rOnXfeaXes1+vZt28f69at49577x30+iuvvJKqqir+8pe/EB0dPaKUj1tvvZW3336bTz75hMDAQGudtuDgYHx9fQkODuamm27irrvuIiwsjKCgIG6//XbmzZvnUOdSd6KM9MFvYSCKYCWCQhrpfoIgoNL4UH3EfDNTm18zoh1vV2DyoppuYBbdVBoVUenR1tpD7kaqTRTgxEYKnneIKJQCqTPT0Ov0o9LpBnDWPedQuqeY4p1F1OTXMOWcaUSlnX7hs2vtTnbevY6sO8JJO3suZ+UsdlO0jqEZ74dmvB8KvQqLRmQRjsKT+lNlGssbyZif5YkQB8TUanYZiX0igr90NhNUgrRruuV+Zu6C3tHQQfL01EHOdg0KpYKotCi0/uYFsSiKGPXGEXcHdheNJfV89fjnAEw+eypRadEjGs+2pttYcbo1FPe7gn635RH+e/P/0dXcRUdDu8fKSkiZxvIG6+PIlKEJ5QqlgukXzOTjR8wNfCoOlJM4eeBacKOJnvZ+0c3XxZ1bw+xEN2ltTA0V+/RSzzjdLN8FAL2d0hPdym2cbu5ML7V3usnppTKjF4fv/u64444Bn3/uuefYvXv3oNdv3bqVbdu2MWXKyNM9XnjhBQCWLl1q9/wrr7zCDTfcAMBTTz2FQqHg4osvRqfTsWrVKp5//vkRz+0KRKNI1/o2MIJ2+ult9e4mdWYa+78wN9Eo2VUsOdHN25xusRPirUJmT1sPFz58qdtj0Jf1O8ikJrpJrZFC5eFKqyNxtNV0sxCZEsWE5Tk0VTSSt/Eon/35Iy7965UEneb/16Az/9toOlVE6yPM9dwkjG39MR8GcrpJaxff2Nofr1SczyD9mm5NZQ0kz0ilt72HqWs8WxNPpenfQDDo9F4juum6+jdlIofoOjod/nbppWPDzVBbYN4IVvuqCYkPJTgmhIr95YgmkY6GDkI8VFtKiphMJqpsSm1EOFA/0LZJylipl2fvdHOt6BZh8x3ZVOadopttSren0ks1Nt1KdZ2605zpGTrpJpwQmmh1s9Ot/75RdrrJjGacpk6sXr2atWvXDnpednY2PT1Drxd0OkRRHPDHIrgBaLVannvuOZqbm+nq6uLDDz88ZT03T2NsMvS7MCTUqQ7MzRQUKgUx42IkudMl2tZ000hfdFP5qEjMMTfoaKlqttuFcxe26aVSE90k10jheHqpUq1yef0UT3LBwxfTXNFE0tQUCrbk885db5y26LmlkPPk/yRwbc0ad4U5bAYU3Y7v4mv8NZKr6WZssRHdgqXjirEV3QwSTC899uMxyvaU0NfdR0C4Z52pk8+eytJblnPm7asQJNSkY1AEgfCkcALCA/AN9hvxcP5jrJGCvldvFSiiM2NQKBQER/entbXVtXooMmmy4d/f88Pz3+If5s/CnywhfW7mkK9NyEm0Zs1IbePEVXQ0dpI8PYXMheOcIoqfjtD4MGvmjRTv/4dCa42N0y3aM+mlKo0Khcr8HaCToNPtqFhEE60ICETjvg6iwdg0UpCdbjKjGKfdAX7wwQdDqsn217/+lbvvvpsNGzbQ1NREe3u73Y9k8TnhV3ViBqNwiudOPPZRoIge2MVmqLdpohAjLdEtflICal8NtXm1HPgq19PhnIRt91KFF4hucEJdtz3ur+vWZ5temqg+zZnuR2qNFDobzTcCgRGBkury6myUKiW3vH4ruq5e/EL8aKtp5b8//b9Tdl7U2xSHt3X0SA1Do57unR301vdv+FhFt5QIItOi0HXpKPXA3+HpMLb2C1pScrr5IN300u62brqPF6m2dTF6ioXXL+bCRy7h3AcuQOMnrc2N05ExL5OHdjzKnw/9nRW3rxrxeH4hfmSfMYHJ50wjboK0nPKuoLmqmayF40iYlEj8RHODr+CYEOvrbRIT+D1N6sw0dJ299LT1MO+qBWQ6kOavDdAyfvlEfIN8KdiW75Wdgh2lsaSesr2lFGzOQxvg2ppuSh8lE8/MIXVWGl3NnZJsAjAYlg21gIhAj7mNBUGw/lv1SrCmW6NoFiYVKAgXQtw275BrumltNh6Hst4e7NgZY8hjymMe13aGgsOfPNOmTbNbdIqiSG1tLQ0NDUNK2zzrLHMx3uXLl9s9L4oigiBgNEpv1xwguPYWl3cyNdTaLGCjpCWCqLVqYrNjKdlVTENxPZ2NHQRESKe2VbefDiFRCTow+Uuv0cNApM3NJH1HEb2dPZTnljHt3BlunV/wEfBbGAgC+MRL6/1mm17q6UYKJpOJzqZ+0W20E5YQxg0v/pT3H3iXom0FTL9gJoe/PciUc05O07OklwLWbo1SpOPLFqpvLqLlpUa4zPycxU3po/axuhfrCmrpbuvGzwnOHmdgqekmqAUEX+lsJth1L5WY083W6SIF0U3GjEKpoCK3jK6WLsKTIzjvwQs9HZJLaa1qJu/HYwBknzEBMDuGgmND0AZoPeJulzKps9L5zfe/48gPh0iYlOjw9b6BvtY6Z7V5NSTkOD6GN1Fv00U0KmNk9RaHQvzEBL5+6kvAXDNzwXWLXD6nszAZTbTXmdNLPZ3SrfHX0t3aLcn00gaxGYBwglEI7rvfsHO6cWqnW3DrL9wRjoyMwwjt7RA8eF8Dh0W3888/3050UygUREZGsnTpUrKzswe9fv369Y5OOWawdi4FVNHSW8CmzkyjZJfZCVKyp5icVSOvy+csXvjlhzz9s9cA+F79OgsIH+QKz5M0JZmi7QWAOd3U3XStb8PYaMAnUY0wRJXeXdg2UvB0Tbfu5i5Ekzl9WUpCsyuJSo9m9d3n8OwlT7Pr/R1UH6kaUHTrs3G6+UjY6aYMVGLMgObk/hs622YAydNTKc8tA6A8t4zsJePdHuNAWGq6KUNVknJYSrmmW2NZfzF22657Mp7HPyyArpauMVHTraPRtuO1+XsjOiuGtppW2oCqI5WnuHLsUZtfwys3v4RfiB/Tzp85rDESpySz56NdAJTvLxv1oltdobleoCAILk8vBZh9xTx2vr+d4OhgCrbme5Xo1tHQjslo3oz3uOh2vIOp1NJLRVGkEfNGQKTg3vWTbS3gdnH0fzfIjF0cXuk//PDDI5pwyZIlI7p+NGPndJNYeimYnVnluWX09egpzy2TlOhm2+FSi7RcW6fCP9SfqPRo6ovqqDxUgb5X7za3kKnbiLHRvFj2SZReypOd083DNd06mmwWT6O0icJApM3OIH5iAuW5ZVQdrqSxrIGIZPvi1t7idDt6fiXLVv8co40ryzZFMnlqCocTwwmOCaYuv0Y6oluLOV6FhOq5AShta7qJ0nK62dYckorTTRRFDDoDSh8lCm+q6+Zk/MP8oQh6O3ox9Bm8pqnEcLDUAYX+743YrDgUSgUmo8kq8suYyzfU5tcA5vrBw8G2Y2lNXvVpzvR+RFGkrtDsdAtLDEPt6/p73oikCESTSOmeEjuXnTfQWttK3IR41H5q4id6Voy1pJf29fRJqoNxFz30YnbfRQjubTRh73STRTeZ0YvDd39KpZL6+vqTnm9qakKpHNqHx6ZNm7jmmmuYP38+VVVVALzxxhts3rzZ0XBGFXY13STWSAEgeVoKhdsKKM8tpWBLnqfDscPyZQH2go3UsdxghsSFUnmowm3z6sul27kU7BspeNrp1tHQX2tyLKSX2jLt/Jmkz80kJiuWQ98cOOl1vZc43cYJqXaCG5wgus1IobmiiZJdxRz78ai7wxsQ0SBi6jDHLKV6biDtmm5dLV2kzEwjfW4mESlD74DoKj5/7BPujPsl96T+iuIdhZ4OZ8jseG8bL//kRV6/9RXqjnfhHCm2zRS8sS6UI3TaON0sDmm1n5rYbHNXwJpj1ei6pZdi5gm6Wrutj/1CBq55PBgJkxJJyElEG+RrzcgYrbTVthE3IZ7Y8XHE5yQNfoGTiEwzO+q6W7u9yq3aWt1K9ZEqSneXoNJ49rt0+a0rufKpa/nJSzd7NI4TsaSWAkTiXtHNH1/iiSacEOpMjRSYSt06v4yMu3D400cUxQGf1+l0qNWDix1r167l2muv5eqrr2bv3r3odOabjra2Nv7yl7/w5ZdfOhqSW2if9jZirRFEEQTBXNCx94RjOPm5E46FCF98lifi+/yyk+Yw1Nmml0pPOAqKDCIyLYqG4vrjjrc+t+ywDYVesf/mVYv0RKRTkTk/i/1f7KOprJGSXUV2zRVcib5cup1LATSCdES3zgHShMYK48+YwCePmLtSH1x3gKU329fi1Ns43VRaaQlDtoQIQWQKKRSIpdbnbIWjyNQo/EP96WrpomxvqbXGqCcxttl0Lg2R1u/WNjX3RDHT01QdrKB0t3nRHZ7o+TIDSh+bVFydtATK01F1qIKD6/YDsPhG52Qo2ItunR7rIugO7BzSNt8b8RMT0PfqCUsMp6mskbjxo7+pxGB0t/YLsP4hw6unqQ3Uou/R09veQ/XRKgx9BkxGE33dfRj69Og6dURnxjgrZI9SX1RLyc4iALIWDl7Wx1lEpkZRsNm84d5QUm/39yxl2mw6l3o6vXTy6qkenf9UWFJLASKEwZsiOhNBEFiveZMs3QqaaOUPhn/xtvrJk87rmPwmpvIO0JsGXoM7egwjH0MeUx5Tq6RjiDr1kO/k//Wvf1n/OF5++WUCAvo/bI1GIz/++OOQaro9+uijvPjii1x33XW8++671ucXLFjAo48+OtRw3I5Y3g6Cr+XI/Eff/+oJx6c+R+zQo/+qFF9OxthlxCdDiyJQgTJKWossC2lzMuhs6iQyNZKKA+Wkz8nwdEiAfbF9286XUidhcqK1tkPJbvftzvZVSLdzKUCYGMyq8rkE7PMh2tcfzvNcLD0dvUSkRtLT1jNmarpZiMmKJSIlksayBnrazbvbtjfaUWnRpM5KR9/bh8ZfeuKtLdOFidSI9RgwEoi/Xd1AQRBImpbC0R8O09XcSVN540mptO6mMrCeh398g+i2MGYFTuZ6pJHyChKv6XY8vVQToMU/3POLQtu0a32vZ1PlHcHWhaV20t92gK3o1jy6nW62Dmnb742IlEh2/m879UV1LLxhsSy6AT1t/U4332GKbgAJk5OoK6zF2Geg5lg1NXnVvPUrc63f6MwYHvjxDyOOVQrYpndGZ7hPSLQ43QAaihtImeGeTeKR0lrban0cHOteF5e30GjjdHN3eilAGP0bMC20D3iOKb8VjtdXPv0a3NFjZ4whjzmWxxSPN/EZjCErO0899ZR5eFHkxRdftEslVavVpKSk8OKLLw46Tl5eHosXLz7p+eDgYFpbW4cazqhEX6RDX9iLoBEk52ywkDEvkx3vbKU8t4yi7QWSEd1s00u9yekWkxWLNlBLb0cvpbuL3eawkbrTLbEjmpQlxxer0zo8Krq1VDbTWGIuzj6WarqBWYyafflcNvz7e6oOVXLk+8PMunSO9fXV96xh9T1rPBjh0HnJ51HUgg9/0j8HgJ9gv/WRtXAcfd06DH0GynPLPC66Nala+GzKjwAolVqu92g09tiKblLqXmoymmiuMHcvjUiO8LhbEUBlk3ZtWwNR6vR122xk+TnnO8I/tD910JvS04aDxSEtCILd/7efjajU0za0G/XRjm2q8XDTS8Fc123PhzsBqDxUgcnQ/9nUXNGEyWgaFTUV6wpsRTfXdy61EJlq/k4UBIEj6w+TMDmR2HFxbpt/uLRWt1ofh8SEeCwOKdMg9jvdInGv0w3MKaYqVBgw0CK2uX1+GRl3MORvn5KSEkpKSliyZAn79++3HpeUlJCXl8fXX3/NnDlzBh0nJiaGwsKT65ps3ryZtDTv2DVxFYY6802uKtpHEouFgbDd2So+bm+XArZON28S3RQKBeOXTSJ1djrhKZF2RcBdiaG2D590DdoZ/vgkS+/35RfiT1S6eVe18nClRxerYzm9FCBjXhbdx2vuHFiX69lgRoD6eMpykBBg1y3LQmx2PEXbCynbWyqJmkAtYv9ubwjSEnttay5KqaZba3ULJoN5FzJcIp1LbWsdelN6qa7Lpk6qs0S3MeR0s3xv+If52xVL9w3uF926bRxeY5lum5pu/iMQ3ZKnpRA/MQFtoJby3DLabdyG+l491UerRhSnVLB1ukW5MWV2/NIJXPb4VYiiyN6PdlG03TtqVLbZOd1CPBYHmAXm6qNVlOwqktTGQz1NTBQyyRJSSMD9adiCIBB6/D6nWRbdZEYpDm/5rF+/ntDQ4VtPb775Zu644w527NiBIAhUV1fz1ltvcc899/CLX/xi2ON6O6JBtHaTlGI9NwuRqZFWt0/JriKMRmm4HHptOlx6UyMFMO9UluwsomRnEaV7StwyZ19RL/oiHb17uiTZvRQgeVoqAMY+A1VHPHez3NFo00ghcuyJbqkz04jKiCZtdjod9e309XhPitxA3KG6njtUJ/vGkqclWx+X7XPP3+HpaLVJsQgVpCW6SdXp1ljWYH0slc6lPja1Dr0pvbTPNr3UaaLb2HC66Xv16HUGNP6ak0oS2IpuPbLoBtjXdBtJemn8xHiqj1TR29FLxf4y2uv6P0OjMqLdtqnpaox6A9pALb7Bvm7dCFRpfOxcm7quXrfNPRJaj9d00wZqrd1DPcXWNzfzt2WP8swlT5G36ZhHY7Flv+kYh8UC8sVSkhSxHokhVDCnmLaeIr1URsbbGVYOY2VlJZ9++inl5eX09dnfRD755MnFD2257777MJlMLF++nO7ubhYvXoxGo+Gee+7h9ttvH044owJDgx6Op6qroqXbBVAQBKZfMIOSXcU0ljZQe6yG+IkJng4L3fH0UgHBrkC6N2DbPKF0TwkzL5rt8jkt3UuVYSqUAdJoWX4iaXMzaKpoxGQUqTxYQfK0FI/E0WGbJuQlhYOdiUKpIHVWOjve2QpA/uY8Jq3I8XBUzsfirqwvqqfqcCX6Xr1dPS53Y+t0C0ZaYq9dTTdROu6ttpo20uZkICgEYrKkUTTdNr1U3yud39VgWJxugiDg4+ucvwP/0P7Pz1ab4uajjR3vbaOjoR2Nv4Zlv1hh95qfrdOtVRbdwN7xN9xGCgAafy1R6dHUFdZSfayaIJtGHfWFddYyEd5MX3cfBVvyAXNJBHdnxdi6XnWd0u++K4oiQZHBCIJgJ3h7ioikcDQBWnSdvXQ2SWfjYa94GDBnCmULnsk6szjd2unEIBrsGjbJyIwGHHa6ff/994wbN44XXniBJ554gvXr1/PKK6/w3//+l9zc3EGvFwSBBx98kObmZg4dOsT27dtpaGjgT3/603DiHzXYdS6Nkq7oBhCWGEF5bhndrd0U7ZCGvdxS002LRrKpuacieXqqNeaK/WUun080iugrzb8vKdZzs5AwMZHiHUWU7i726Puso8EsuvmF2qcJjSUmnzXF+vjYhiPWxy9d/zxPrP4r/772OU+E5XRyzppC3IR4BEGg6kilR2Npoz+tWWpON6Wd0006QlJtQQ3FOwop2lZAcHSIp8MB7NNLvbGmm9rfed+pcRPiWXP/+SROTqJsn7lL8GikYEs+aXMyMPQZTmqU4Cc73U6i+3hNN4VSgWaETqSEyUmAxSFv/xlum27qrdQX96eWhsS5v+C97b9Pb6f0nW69Hb0U7yykobgebYDn73cDI4OszdMaS6UhAreIbRSJ5QBMFbLxETyzBrW9z2m1uf+RkRktOCy63X///dxzzz0cPHgQrVbL2rVrqaioYMmSJVx66aWDXn/jjTfS0dGBWq1mwoQJzJ49m4CAALq6urjxxhuH9T8xGrDUcwNQxUhbdEufnW59XLxTKqKb+fen9bLUUgDfIF+mrJlGZGoUFQcr7LrGuQJDdR+WjDApdi61EDchHpXGvNPlyXQ/S22esVjPzULWomyyFmcTmhDGvk92YzKa62ZVHa6iPLeMyoMVHo7QOYTGh1F9pAp9r56yvZ5NMW21q+kWfJoz3Y/tTblRQumltulj0kkvta3p5j2im8XppvFz3neENkDL/i/2UXGgnKpDlXa1qUYL1ceqyP1sD8U7CkmakkzicRHIgm36ZE+7LLoBKFVK0udmMvXc6SMWeJfevIzlt63EL8yftppWu9c66keB6GZbz82NnUstaGyEK29IL7XtIhwY4fnNq4jU/g6wUhHdysRqVioWkCmkMFGR5bE4bGvXys0UZEYjDotuR48e5brrrgNApVLR09NDQEAAf/zjH/nb3/426PWvvfYaPT0nd2zq6enh9ddfdzScUYOt000ZJV0hBCBuYgIhsSEkTUumr6tPErvVOtEiunl+J2s4+Ab50VBSj7HPQEWua91u+gppdy61oFKrSMgxL1gaSxroaHL/zpeuq9daw2ws1nOzoPZVo/XX0lLZTGdTJyW7zY0GLCKCj2Z0pAFY6ggClO0t9VwgQItNXZMQQVrvPanWdGsqM4tugiAQluD+DmwDYZ9e6kWi2/HNH7W/c78jpp03g5isWJKmpVg/R0YTDcX11rpX0y+YedLrcnqpPW21rZTtK6VoewGdTviOT5qaTHdLF4HhgSfdm44Gp1tdYa31cVS6+zqXWrCtiWbbbEWq2IluUZ4X3YKig6wbMVJJdy4VK/nGtIUCsZQ0IdFjcYQJ/ZuLLXJdN5lRiMOim7+/v7WOW2xsLEVF/R0sGxtPXaS0vb2dtrY2RFGko6OD9vZ2609LSwtffvklUVFRp7x+tGNsMaAINC9kfCTudFOqlERnxlC+r4zD3x2kuaLJ0yFZa7qpBWkLlqciZWb/Yr/Exc0U9DV9KI+nMEu1iYKFCcsnkTglGf9Qf5eLkQPRYdO59MSC2GONyaunovZTkzIjlcJt5poyFhHBVljwZuImxOOj9UHjr6GhpN7q6PMErRLuXjq+KJmHf3sNv738QmJf83ydHAsW0S04NkQy78mwxHAWXLeIrEXZ6L2kCYnJZCIyJZK0ORmkzUof/AIHSJmRSm1+DWV7S6g5Wu3UsaXAgS9z6W7rRu2nJnl6ykmvq9Qq1L7m+xS5eylUHCi3Pk6cnHyaM4fO5X+/mjlXzEPjr+XyJ662OuZHg9OtsbhfqInOcL/opvG3Ed28oKab7T1cUKTnv0cVCoXVhd1Y3ujRewwLXfQbYQLw3Pe57HSTGe04bE+YO3cumzdvZvz48Zx99tncfffdHDx4kA8//JC5c+ee8rqQkBAEQUAQBLKyTravCoLAI4884mg4bkMxIQxK+8AECECAD3Tp7Y/h5OdOOFbE+KNamXTS+PqKPkwdRlBLu5GChbQ5GeT9aO68U7yjiPAkz6byeHN6KUDqjDR8tD5EpkXR7OIOW31FOoz1elCBT4q0RbfIlAhrnbuyfaVMWD7JrfNb6rmBNFITPMmEMychiuZmH51Nnay8Y7W1RpUnGw44E5VaxZm3r+K7Z76mPLeMA1/lMnXNdI/EIuXupRG6EGr+Z/677E6TxkK2p72HruO1oSIkkloKEBAewLa3t2AymGiv946FRGtVC2X7SgHwG0Fh+4EIjgmxPm6ra3Xq2FJgxa/OYubFc9B19RIzLm7Ac3xD/BBFEZXP6HAIjwR70e3ke+PhIAgCy3+5klmXziUoMojv/vU1TWWNo8LpVp1XRUBEICGxIUSkRLp9ftu6aDovqOnWXi+97vNx2XGIRhO+wX60VjcTlujZ76susV/89xN8PRbHYE43xbRITEVt0GsYeA3u6DGMfAx5THnMAB8Ukb5w4KS37Ek4/I3/5JNP0tlp7rjyyCOP0NnZyXvvvUdmZuZpO5euX78eURRZtmwZa9euJSysP/VDrVaTnJxMXNzANyhSIHDTZQQFuW7hY63p1ofVhSRl0udkWB+X7i1m1qVzPBiNfSMFbyQyPYqA8ACqj1TRXNHEJY9d4bKi/fry47uTBvBJkLZImTzdNt3P/TW2Ohs7EJQC/qEBhMa7v2ixlPAP9SdlRioFm/NoLG2g6lAlRr05tXC0iG5gTjE1Gk2kzU5n5/+2M+WcaR5pzmJxugkIBOLv9vlPR0RK/yJBKiky7Q3tZC+dgK6zl9hs6dxLqH3VxI2Pp/JgBXX5tfR29KAN9NzCZig0lNRbH0elOTcDISiqf2HVXusdIqQjxGTFEpMVe9pzHtr+J1RqWXADcxfb9LkZGPVGEnKcm9pmcTYFRgbRVNZId0sXBp1eMi5YRzGZTDQU1aPv1eMX7OuR95BK44PSR4lRb6RXruk2LIJjQ9n7yR4AGkobPS66ddIvunnS6TZOSGO5MI8aGthtOsgVynPsXg/cdrmHIpOROT1CezsE3zzoeQ59YhuNRiorK5k8eTJgTjV98cUXh3TtkiVLACgpKSEpKcnrOky6GmO9TffSGGkLIQBJU1PIWpRNxYFyDn1zkEv+coXH/k1Nook+zL8/bxXdFAoFKTPTaKnaQ29HLxX7y0iZ4Zq23VbRDVBLuKYbmFOzAsID6GzupKu5E1EU3fo+62hoRzSKdDZ24Bsk7YWyO5h+wUxEo4nWmlZyv9hrfX40iW7ZS8eTNiudwq3mFNqibflkzB/n9jgsO70hBKIQHK4E4VK0gb4ERATS2dhBg0SKQXe3dFk76yZNS/FsMCeQMiOVyoMViKJIWW4Z4xZlezqk02IrukWmOld0U/up8Q32paeth7a60Se6DQWVWoXJZKK7pRu/UD8UCmn9fbuTI98dor2+Hd9gX5c5t4IigxCUAhp/LTX5NSTmOMdR525aq1qsJR08Uc/NQkhcKEa9URLpmoNhl60gkXht3+eNJQ0e/z7oEqWRXjpZMY4N4k6MGGk3dvI31b0oBdeYD2RkPIFD3/RKpZKVK1fS0tIy7AmTk5Oti+acnBwqKkZH17uRYqg1f5EKfgqUAdL/kNH4a1AoFfS0ddNa3UL1kSqPxWIR3AA0XlrTDSBrYTYIEJMVQ5kL65dZRDdBI0jeVSkIApNWTsZH40P5/nIa3OyqkWu62TN+6QQKtxXQWNrAoa/7vdTe6hwYCEEQmHf1AhImJRI/KYFvn/3GLfPWio383fAy1/X9hlW6n6AUFcwUcrhEeZZb5neUyFTzwqG9rs3lHZeHgm1Rb42Ti/+PlIx5WSTkJKIN8vV4V9yh0GBTNyrSyU436E8xbattlUQjJnfz1h2vcXfS7Tw46V7a67w/5XG4tNW2WtP/Eie7bjN+yU/PIDg6hN72Hra/vcUlc7gDT3cutfDQ9j/xyJ6/8PO3b/dYDEOlo1F66aWW706AxtL605zpHrqQRnpptBDBKsVCFgozWayYybm6nzFHdwlX9N3JbtNBj8UlI+MsHN5emzRpEsXFzuk4VVpail7vPd28XInhuNPNG+q5WZi0MgcfrQ9JU1Mo2JLvsTgsqaUAGi+t6QYwbvE4NH4aavNrOfhVrkvmEEXR2r3UJ1HjFY7TsMRw6+6uuxestqKbVHZJPUlofBiJU5JRaVQIyv6vD59RJLoBTD13Ot1t3VQdqqTqUAVVRypdPudRUxG/NzzN/0xfUiSWEyNEskqxkGd8HnL53MPBsluvUCmoza/xcDRg6DNYC6ar/aQlusVNMKeX9rb3WGulSZnGUlvRzfmOmuDoEMDciKWn/eRu9t7M4e8OcnT9EWst0oFQqVXWAuqdje7vyi0VXNFEYSBixsXR09ZNyow0FEqF1wq9tp1Loz0ounkTGn8NCZMSiUyLIiBcGqJbhI172N0byQMhlfRSgLd9nuQ7zaukConU08R+8Rgfm77jS+NGj8YlI+MMHC4I8Oijj3LPPffwpz/9iRkzZuDvb19rxpV1zzxJW+SLiKITdgAUoMgIIfDQtdanTDoTxmYD4B2ppRYmrsjh44fXUp5bCogsvWWZR+KwNFEA700vBQhPisQ/LABdl46S3cX09fRZu5w5C2OLAVOn+WbfR+KppRbs6rrtK2XWJe6rH2i7IAqUnW4AzLxoFp8/Vk314X4hajSllwKofFSsuH0lO9/fSXluKd8/9y3XPfcTl85ZQ/+Od5AQYP2RKpkLx1G8s4imskaqD1eSPDXFo/FMWpHDE6XPYDQYEU3SWlRHpkVZUyrL9pa6PU3eUeqL6giKDiYsIYzgmODBL3AQ2zHba9vwC5ZOB9yR8vov/0tvRy9R6dE8uPnhAc+xdU13jGHRra6wzlrPLWmq60S3gPAAEiYnUbStgNI9xZzz2/MkX1dxILpbu0mcmoxSqSAi1TWpuKONkl3FNFc04R8WgNJHGllEoXGh1rp4jWWubZw2FKSSXgqgFczrkiAhgEDBH45/lffQS5v/c6D3fLdXGZkTaReGtnnosNPt7LPPZv/+/Zx33nkkJCQQGhpKaGgoISEhhIY6Vmh80aJF+Pp6yRefs/7OTSB22bv77Oq5STzdz5awhHCijrcsL88t81h9ll6x3+nmrd1LLVhqO4TGh1K2z/murtq+Bhqu7Ua3FIyzvKOOTNLUZNT+GmLHx1OeW4rJ5L4vXdsivHJ6qZnsJROszkOFUsGcK+eTc9YUD0flfGZcPIf6wloEhUDFgTKKdxa6dL4asX/H+3eqW1mrfpY7VNe7dM6REJUaRdPxBUPhtgIPR9OPUqWUXJF6hUJB8rRUVBoVAeEBNFc0eTqkU2I0GGksa6C9rg19r94l4mBMdhzxExMIiQuluUq6vwtHEUXRmuasCdCe8jxb13THKOioOVyKthdQtL2Q0j0lJExybhOFEwmx6Zpr29HSm6jNq6Eit4zSPSWExocNfsEYRxRF69+XVFJLwXzfNP6MCaTPy8Q/1N/jzkuppJfacofqep70ecB63EUPGKW1mSYjY2WIy1KH70zXr1/v6CWn5Msvv3TaWN6MwVZ086L0UoCpa6ajCdBi7DNw9IfDzL1yvttj0Nmll3qHe+tUZC+byP6vcmkobuDY+qNkOrmA+77IY1z67B0APKS6jQeQdkFvAL9gP2ZeNIutb2wG4ODXB5iyeqpb5ra4ENR+GjQSS1nzFNFZMUxamYPJJNJY2kBbTStT10z3dFhOR+On4dLHr+KLxz6hs7mTLx//jOteuMllxaOrxf56PbGC9F0MiVOS8dH6oO/VU7itQPLuLU+TMT+T/E3HqDlWTdm+UsKTPNux7lQ0VzRhMpjvIJ3dRMGC1l9L1XGnbGvV8GsES42+nj6ry1IbcOrvC1vXdGfT2HW6WdJLfYN9CU927d9DULSNu7KuzaONCIaL7cZ2cJTnsoo2vbKBrW9uRhAEfv7O7ZJtqKDr7LVuEEqtPIjJKFJ0fLOqva7NWufSnXQ2duDjq6bV1A7Hl56edrrZ4k+/ANgtSr9TrozMYDgsulm6kI6E6upqNm/eTH19/UmulV/96lcjHt/bMDTp0c7wR+wy4ZPoXU6t7KUT+PLxzwAIit7vIdHNJr3UixspAKTNTqe7pQuA/M3HnD5+uVhtfZwoxDp9fFcx+aypFG4vROuv5Zunv2LyWVPcssC3iG5S2iX1NIIgcPNrv8RkMrHxpfXMvXKep0NyGZPPmsKBL3Mp2HSMpvIm1j74Htc9fyNKlfPTVGydbrG4RuxwJiq1iunnz6ShtJ622jaaKpqIkKiQJAXiJiRY63iV7S1l+vkzPRzRwDQU96c5uyqFLSyh36XTXNnskjk8ga6zf2F4OqebnF56vInCcRHJlU0ULATZiFTt9d7ZNbe9rhUA/1B/jzYvEk0ifd06Oho7effuN7j5tV9KcsOl3a5zqbTu4Ww7mDaUNHhEdPvrskfpaGjn2No8OL5v6sepP7fcja/QH0s3o6v2p8zYZFg5GJs2beLf//43xcXFvP/++8THx/PGG2+QmprKwoULT3vtq6++ys9+9jPUajXh4eF2H9SCIIxN0a2qj949ZqFFGepdTrfEKUkERQXRXt9OeW4Zfd06txextq3p5s2NFMDc2j42O46aY9V0NXfR1dqFf4j/4BcOkXKxv+B5Et4juo1bOh6Nn5ry3FKCooPJ+/Eo2UsmuHROo95oFUDlem4no1AoOONnyz0dhktRqpRc+MglvPWr1yjeVURdQS1fPv4Z5z5wgdPnqhb7xQ5vcLoBhCWFs+O9bQAUby/0qOi279M9FGzNR+OvYdENSwhLDPdYLANhW/OuVMIdTBtK+t+HrnIDhY5S0a2307aD7mnSS20Kuo/V9NKqwxWkzc3AZDCSNjvD5fMFRdk43bwwvVQURavTLcgDAo0ti286g32f7aWxtJHD3x7CoDNIsq6r7d9WYIS0nG72HUwbyJiX6fYY9L3mtZPBzwiAL1qUgjTq3gH427juZNFNZjTgcFGntWvXsmrVKnx9fdm7dy86nfkmo62tjb/85S+DXv/73/+ehx56iLa2NkpLSykpKbH+OKsrqrdhqPPOmm5gXnjPuXI+sePj6Khvp2Cr+7uY2nYv9eZGChamnjuDwKggmsobrfZzZ2HrdEsS4pw6titRKBSs+vXZpM5Ko7Oxg3VPfOHyOhgdTR1EZ0STMDmJhBzX1puRkS5BkUGcddfZJE1Jpq6gll0f7ODDh96npdq5aXEW0S2CUDRe4thNn9u/UCjc7tm6boXb8tny2o/88Py3dDV3ejSWgQgIDyBxarK5RqXWB0OfwdMhDUh3Wzeps9KIzY4jMs01jktb0a2lcvTUdLN1up02vdTGdTNWu5eW7SujeHshpbtLiBnn+g3AoGhbp5v3iW7drd0YdObPjOBo5zc3cRRtYL+obKljKDXsRDeJpZfaOt1su0W7C1EU6es2i256P7MDW0qppWDvurNt9iAj4604LLo9+uijvPjii7z00kv4+PQLRAsWLGDv3r2DXt/d3c0VV1yBQuEdRdzdgZ3oFuNdohuYd/BrjlYjiiKHvjno9vl14uhxugEkTEqg4/hNYf7mPKeOXXHc6SYgEC94V02TiSty6GnvQRugRaFUUuhigbezsYO6wjoqD5RjlDsmjWlSZ6Uz9dzpzL1yPmpfNbmf7+VfFz7Bxpd/cMr4Txj+y0Qhg+WKefxSeZVTxnQHydNSCIoOJmlaCj2t3YNf4EIsCwjA7W7roRKVFk15bhn5m/OoPlLl6XAGpHRXMSW7iqk5Vm3nxnAmGj8N/qFmB3fLKKrpNtT0Ut8QPxRK8z1wR8PYFN3K95dZHydOTnL5fEGR/UJVa433vefajqeWAi7pKOwoGv/+z1hdt0RFt0YJp5fa1Mv0hOjW3dJlLXegP+508xekJbppUKM4LlP0INd0k/F+HFa+8vLyWLx48UnPBwcH09raOuj1N910E++//76j045q7EQ3L2ukAJC1OBuVRkVofBhN5Y3WD3J38E/DazxseMZ6bGk37c1kzMu03pCX5ZY6dWyL0y2OKNSCd73XFAoFq+9Zg16np2h7Ad89941L57N1IARGBLh0Lhnps+iGJWQvnUBgRCAhsSGExoVSfayaPR/tGvHYrxs/4ivxR3aY9vOAzy+cEK17UPuqiUiJpHxfKQe+yqWtttVjsdiLbtLcfEmZnmJ97Iru1M6g/nhNN98gXwLCXbdQDU0IQ6lWIigF9H36wS/wAnptHD/a06SXKhQKspeOJ25CPEivFJZbqDzeRMEvxM8tTUUsTjeFUkGBkzcz3UF7bX8dOttUWU9h+/62FZulREe9dJ1uYQlhZMzLJCEnie42929Y2TblsKSXBiCNzqUWBEGwut265PRSmVGAw6JbTEwMhYWFJz2/efNm0tLSBr3+scceY+PGjSxdupTbb7+du+66y+7HEX788UfOPfdc4uLiEASBjz/+2O71zs5ObrvtNhISEvD19WXChAm8+OKLDs3hDgx1/YsFbxTdNH4a5l4xn5aqZvI2HnW6O2sg3jF+zq/1f+ET43cYRANpJLJMmMsSxWyXz+1qtIG+zLtmIWGJ4ZTvLaU2v2bwi4ZAX2kv9/7mSu5f/xN+3nq5U8Z0NzlnTSE8KYK0ORnUF9ZRk1c9+EXDpMOuCK+0bthkPMOUc6bx01d/QdrsDCoPVbLjna28c9cbdi6E4dAumtMhg5HWbvxQyJjbX4+pyIMpprouG5eRvzQ3X5Knp1ofl+6Rnuhm0OlpqTLXWItIjXJpcfTEyUmY9Caay5toqRgddd3snW6nfw92NHZSfaSKqsOVGA1GV4cmKdrr2ojOjCVlRhqZC8e5pQi/b7Af935zP5oALePPmMjO/213+ZzOpKOxg/icRFJnpbmswYkjqG2dbhJNLxVFkZSZaSRMSpRch1WVWkVLdQuVB8sp21syrHIpDaX1fPDgexRuL+Cdu9+gsWzojrm2mlYATAoRw/H0Un+JpZdCfwfTbtnpJjMKcFh0u/nmm7njjjvYsWMHgiBQXV3NW2+9xT333MMvfjH4Dv1jjz3G119/TV1dHQcPHmTfvn3Wn9zcXIdi6erqYsqUKTz33HMDvn7XXXexbt063nzzTY4ePcqdd97JbbfdxqeffurQPK7G4nRTBClR+EqniKUjZC4cB4CP1odjG464fL7vjdt4wfg2W8V9hAhBjFeks0q5iDmKKS6f2x1EpkbRXGGudbPv0z1OGbPtvUaW/Xsql1wwnxteO9spY7obpUrJvGsWULyjkOaKJra8vsllc3U09YtuAXIjBZnj+If6c8EfLmbWpXMIT44kNjuOb55eN6Ix2zCLbkGC9zkqLXXdfIP9qD7quZRJb0gvjZ+YQPaS8aTOSqfqcKXL61I6SmNZI6LJHFNkmmsX9sExIdb/f2dtLHma7rZuVGpzf7LTpZdCf4qgaBLHXIppTV41BVvyKN1TTGh82OAXOAFBEBBF6GnrZsd728j9fPByOFKipaqZqoMVlOwqxjfI8+KIxgtEt5qj1ZTuLqbyUIUkm2FFHq/r1tvRS1dzl0PXHv7+EM9f/i8KtuTxys0vUXmggrd//QY/vPDtkP49LE43g2+/4O8vSMvpBuB7PKZuuaabzCjA4e6l9913HyaTieXLl9Pd3c3ixYvRaDTcc8893H777YNe/8QTT/Df//6XG264YTjx2rF69WpWr159yte3bt3K9ddfz9KlSwG45ZZb+Pe//83OnTs577zzHJpL86upKHa1gUkEhYAi1h9TTZfdMXDScyceK9KDUS2wL2BvEd28rYmCLZNW5DBu8XiKdxWx5bUfWX3POaft3jVSOun/gvqP+i8kCDEum8sTTDt3Olvf2ERgZBAFW/M5SxRHtBssiiLdOzvxnR1A74Eugi/3XJfBkTLrkrls+s8GguNCObbhCH09fah9nZ9OZt/5Sno3bDKe5axfn8Ou93fQWFKPaBJpLG8gIslxoUIv6q2duYLxPtEtZWYaURnR1BfWceCr/ay5/wKPxGFZaCh9lFbhQ2qo1CoEhUDJriIAqg5XkjBJOk1aGor7O5dGprqmiYKFmKz+4vm1+TVMXj3VpfO5g86mDgx9BjQBGkLiQk57brBNB8q2ulZCYk9//miiJq9fZLV9H7ia+EkJKH2UGPVGq6PTW7Bt/iCFmm7aAC9IL23s/51JceM0PCUSNh4FoLG0noDwoX3/b35tI3s+3EVAWAANpQ2IJhG9Tk9PRw8bXvqBPR/u4sxfrWLqmumnXDf0dvQQnRlDQ0MD045m4hcTwM1R0suA6Xe69aC5bybGg42YGnoGXF87egyDr9nlMeUxh3KsTlDBk4O/nx2+MxUEgQcffJB7772XwsJCOjs7mTBhAgEBQ/uw0Gg0LFiwwNFph8X8+fP59NNPufHGG4mLi2PDhg3k5+fz1FNPnfIanU5n7cgK0N5u/tDW/mEugUHOtyebeoyY2s07Dd7YRMGCSuNDeHIEeT+av0AOfn2QmRfNctl8HTaiWyD+LpvHU4TEhRIQHmBN16o5Vk3c+Phhj9eb20Xn5+biwf7LglGnuE4QdTX+of6kzEpj9wc7Adj/xT5mXTLH6fPY13STVmqCjOcJjAxkxR1nkfvpHioOlLPuH19wzb9ucHicdpvPsiBBeguDwdAGaPENNN8Y1xXU0tHY7pG/l74e8/e2VOu5WZi4Ioej64+g8FFSsDlPWqJbSb31uyc2e/jfN0MhOqt/o6w2v9alc7mLprJGAHSdOoKjQ057boit6FbTClNdFpbkqLUR3WLd0LnUgkKhICQulKayRq8T3WzrZUqhe6k3pJdaNk79Qv0luRETadPBtKGkgZQZg5doKtpRSENpI9VHqwiOCWHWxbNZfutKtr+zlcPfHkShVKD0UbLplY0cW3+EM29fNeAGSn1RHXUF5s/dVWGLCY0M40LlCuf9zzkJS023bnrR/GGOW1LRZWQcxdjePiTRbdgtRNVqNYGBgcTGxg5ZcAO44447eOaZZwY/0Qk888wzTJgwgYSEBNRqNWeddRbPPffcgI0gLDz22GMEBwdbfxITXXtDbKjX47coEL+FgWineLd4NPvSOaTPzSAkLpQd72116VydYn/hUam1uXYW086fCUBMVgxH148sZbfj61Z8ks03SUGXhI84Nk8z/5pFhCeba7vt+XDkhewHwtbpJsVdUhnPs+DaRTSVN5I4OZHy3LJhpcm1if3irjc63QDS52VaHxdtP7nmqzuwOEGkmlpqYeKKHJKmpaBUKdn7yW5Ph2NHQ3E9rdUtVB6sICzBtWl/UalRKFRmEUQ0jY7u0M3lTdbH4Umn/54NsnErebIBiSeoze+vxepOpxtgTWftaeuht8N7Utba66TVSEHj5wXdS4+nbUs1U8G2Nl/VkcohXbP+he/Y8OJ39PX0MW7xeC7602WExIZy1l3ncM0zNxCRHEFjaQN1BbUc+eEQh745OKDAbNtI4U71T7hDdf3I/4dcgN/x9FIRUe5gKuP1OCy6GQwGfv/73xMcHExKSgopKSkEBwfzu9/9Dr1+8A5UO3fu5LXXXiMtLY1zzz2Xiy66yO7HmTzzzDNs376dTz/9lD179vDEE09w66238t13353ymvvvv5+2tjbrT0VFhVNjOhFDrZ7uTR10b+4AL7/vTJmZRlttG63VLRRsynPpTqLF6eaPL0rBO+vgDcaUNdMIiQulNr+WrW9uGnb9H9Eg0vJCLfoyHZocP4Iuck8NFVeSOisNH40PxTsKObr+sEtqAlnazSuUCvxCR6ewKzMy/IL9OOvuNVQcqKCuoJZ9nzleJ6j9eD038E6nG0DmgnGkzU4nKj2akt3Fbp37/fvf4fdT7qO3w3xD7qORtmM8LCEcg06PvqeP8twyu8WPp6m3Sy91bU03lcaHkNhQWqtbyDueYuXtNJabnW4B4QGDltewc7rVSuc94GpEUUQUIW1OBhPPzEEb6N46UqHxodbHzV7kdrO8RwIiAlH6eP6eNzI1kqnnTmfOlfOJSo/2dDgnoevqpa/HXOdTqo2wUqankDY7HYVKQfGOwTerWqqa6WnvJiwpnMCIQC54+GI751d0RgzXPPsTLvv71cSOj0MQFHz88Ad8+ffPTxrL0khBUAgERkr3vsPidAO5mYKM9+Ow3/b222/nww8/5PHHH2fevHkAbNu2jYcffpimpiZeeOGF014fEhLidHFtIHp6enjggQf46KOPOOeccwCYPHkyubm5/OMf/+DMM88c8DqNRoNGc/JOue7tY3Tv70A0iqAUUB7P6bU9Bk567sRjRXIQypwIlNPNdl9LPTfwzs6ltgiCwOzL53Lk+8MYdHr2fryb5beudMlclm5/ozG11EJwVDCRqZG0VrfQWNJA5cEKEicnOTxO149tGFsMAKjTtahCvft9BuY0kblXL2D725vxDfJnx7vbOP8h536uBEYEkj43A02AFoVi2KZgmVHO/KsXsvfj3XQ2dfDtP79iyU1L8QsZ+ufSaHC6JU9LoXinuU6ZNtC9qetVhytprzcvSEPiQ8lckOXW+YfDpBU5tFQ2E50VS/7mY8y62Pnp8cOhocQsuvmHBTj0Hh4uwTEhNFc00dXShb5Xj4/We7+b9L1660I2PHnwmqlWp5uAVzmuRkpbbRulx4X58WdMcPv8YQn9DsTt727lzF+ulIRz7HSYTCbrZ5wUUksBUmelkzor3dNhnBL77vPSFJUCI4Pp7ezFZDBRtreUlqrm0zYW2frmZgq3mUvOnPfQRShVJ4uvgiAw6cwcEiYl8vcVfyF9biYH1+VStm8xydNSrOdZNnsCI4MGHEcqWGq6AfS9fYyePDA1dA+4vnb0GAZfs8tjymMO5bgvamhrRIdFt7fffpt3333XroHB5MmTSUxM5MorrxxUdHvllVccnXJY6PV69Hr9SYtlpVKJaRipDL23b0Bt09nFcMLrJx6f7hwh3p+gkhvNz9WPHtENYMaFs/jyb58BYNAZWPbLFS7Jwe/EnF4aIIxe0Q1g1qVzMBlN1BfWse/TPcMS3VrfbAAfAd8Z/oRc6/lW885i9qVz+PwvH2PQ1VJzrIplvzjTaTuaJpOJvB+PYTKaJFVzSUZ6qP3UpM5MY8P/fQ+YawzOu3rhkK+3d7p5p+jmH+pPTFYstfk1VB6qoK+7z2211SxCh4/Whz/seBSFUvoC+cRVk/n2ma8p3V1MQHiAJEQ3XbfO+ruMTHNtEwULtgXh2+vbCE/y3gY/zZU2qaVDEN38QwPQBGjo6+rzuvpiI6E2zya1dFzcac50DZNWTqZsXynHNhxh479/IHNeFjmrpN31vru5C6PeXPs5SCKim9Sxb4QlTacbwNRzp6P0UaHSqDj4zQEW/2TpgOcZ+gyU7i4mcXIS1UermHnh6Wtmh8SEsPruc3j//ncJTQhl48s/cO2zP0EQBIwGo/X3Y9vQRYr42qy7/W7aTd/x5ftga3BHj+Ux5TFHctwzxO66Dt+dajQaUlJSTno+NTUVtdq9BYw7OzvJzc0lNzcXgJKSEnJzcykvLycoKIglS5Zw7733smHDBkpKSnj11Vd5/fXXufDCC90a5+kw1PVZH3tz91ILEcmRpM5KIyY7Dr9QPyoPljt9DlEUremlo9npBjDxzMmU7Cqmo7GDfZ/ucTjF1NhpoOPjZsROE7ojPQSsCHFNoB7APzSAqWumkzIrDVEU+d9979Bc0TT4hUOgq7kTk9H87S7f5MoMxvQLZhI7Po60ORkc/vagQ9e2Yet0k+aO/FBInZmGX6gfCTlJVLjgc38gTEYTrcfrYUWlR3uF4AaQNCWZgHDzv3XexqPWNChP0ljaQMqMVKIzY4jNdo8YYrvgK9ia79W1zZrKGvHxVROREkn8hIRBz/cL9kPXqUMURWtq9FjArnOpG5soWEiamszMi2ZbjxtLG90eg6O01bURNzGBlBmpxE8c/L0lA+1e4HQDmLJ6GhX7yyjZWUTuJ3tOed7BdfvJ35xHxYFypl84a0hi2byrFzJlzXTaatvY8+EuDq7LBcwuQNFkXktIoRPu6bB1usnIeDsO36Hedttt/OlPf7Lr8KnT6fjzn//Mbbfddtprv/zyS37605/ym9/8hqNH7Wt4tLS0sGzZModi2b17N9OmTWPatGkA3HXXXUybNo2HHnoIgHfffZdZs2Zx9dVXM2HCBP7617/y5z//mZ///OcOzeNK7NJLY6TddW2ozLliPrXHqineUcSu93c4ffxedBgx7/qN1iYKFgLCA8hanE38pERzN9Pj1vKh0v5pM6oENX4LAwm5JhKFxjsWpUPlyqeuRUAgISeJqsOVPH/FvyjbVzLicdvr+ndJg6Klu0sqIw2Spiaj79VTvKOQQ98cdKhOlyVVHiDYS2u6AaTPzaS7pZvyfaVDqk/jDDoa2jEZzOJ4SFzoIGdLB4VCwfQLZpI+J4OojBjyN+d5OiTqC+so3VNCXUEtYadJcXImtgu+d379Bmsf/J9b5nUFTeWN6Hv6aCxtwD9scMeqSqOy1uYaS6KbJ5soWIhI6XcifvG3T/jn+f/wSBxDpb2ujerDlZTuKZF0KqCUMPYZyFyQRdK0FElvnMaMiyU6w9zJubOl05pGfCK5X+wjbXYGPr5q5lw2d0hjK32UzLl8LtEZMURnxvDRH9aa0+DrWq3nSCVd+VTY1nQTGV5daxkZqeDwCnzfvn18/vnnJCQkcOaZZ3LmmWeSkJDAZ599xv79+0/ZFOHtt9/mvPPOo7a2lm3btjF9+nTeeust6+t9fX1s3LjRoViWLl16vCir/c+rr74KQExMDK+88gpVVVX09PRw7Ngx7rrrLkm1HLYV3ZSjwOkGMOXsqag0KgIjA2koabDa4p2FxeUGEDjK00sB5l21gKpDFZTnlrHlzU0OXdv+ThN9eb10b+4g6ELv71p6IiofFVc9fR363j4MfQYCI4P4+OG1NJQ2jGhcqXUKk5E2giAw44JZqDQqkqYlc+ibA0O+ts0mvdSbnW7J01Osj4t3FbllzpbqFutjbxLdADLnZ1G0o5CqQxUOuyNdQX1hnfVxVIZ7CqOf7Nbw3kVVk03n0oghpJcKgoA2wLyg7O0cO6JbU1kjMVkxpM5OJzorxiMxhKf0l9nQ9+ipPOTahmkjxXYTRyoCUndrFw9Nv5/7xt3FSzecvqyQJ2irbaVgSz7l+0pR+0rb0DDnqvkEx4ZQl1/Lga9yT3q9+lgVuZ/uoXhnITGZMWTMH3rd0gnLJxEUFURjWQNR6dHkfr6XzsYOUmenk5CTaPe3IEWuUZ7Phz7PcrXiPE+HIiMzYhwW3UJCQrj44otZs2YNiYmJJCYmsmbNGi666CKCg4Ptfmz5+9//zpNPPsnnn3/Opk2beO211/jZz37Gf/7zH6f9z3gjxlFW0w3AL8SfuVcuoLOxkyPfH+Lo+sNOHb9DtBHdvLTwuCNMPDOHwKggUmak0lBUT0dj++AXYU5dNnUZ0UzxwydZg998713Qn46otCh+9uZtjFucTV1BLS1VLfznxn9j0A+UvT802uqld5MrI21mXDgThVJB2d5SdryzdcjXtds0UvDWmm5grgNmcfiU7i4eVu1UR2iqaOLbZ9ZZj0O9THTLWpyNSmMuq1u2t2TY3amdRX2xjejmpm6EJ3626nXD/8z2NE1l/WmKQ61NZ2k6MlYaKYiiSMWBcmrza2mtasE3wDOpY4ERgShsHGOGPoPH//5Oh23atVScST5aNW01rfS099DZ2Dn4BW5Gr+tfW0m9Qcu4hdnWepr7v9h30uvrX/iOlJmpBMcEM+vSOQ4ZRwRBYPVvzkXpo+LYhiN898zXNFc0UbKziMqDFfi7oWHOSJigyOBs5VImK8YB0jHMyMgMB4cbKQy3EUJBQQHnnnuu9fiyyy4jMjKS8847D71eL6k6a+7EUGuu5aIIUY6q1L8Jyyey+dWNKHyUHNt4lEkrJzttbEsTBYBAYXSnl4L5hmHO5fP47pmvAdj+zjZW3L5q0Ova3m+ie4t5QR/xQDyCYvR+YQWEBXDpX6+k8sDjdDS2o/ELZvOrP7L0ZsdS1i3ITjcZR4nOjCUyNYqqw5U0lTfSUFpPZMrpC9K/bviYr42biSeabCGNSUKmm6J1PoIgMPXc6dQcq6a9vo26wlpis1xXG6yxpJ5D68yOwnFLshm/bKLL5nIFGj8Ncy6fT8GWPKoOV1J1qJKEHM81bakvMotugiAQ4Sb3Q0hsCCHxobRWmR2LHY0dg1whXZrKzaKbQqUYsutSG2gWncaK062tptWaSuuJem4WBEEgZUYK5bllGHQGTAYTui6d1XkoNeycbhKpwaXSqJhyzjSKdxbRVNaAKIqSyiLS99qIbhppi27xkxJImZmKUqWko6GDzqZOAsLNG1h1hXXkb86jtbqF4NgQ5l453+HxU2ekkTAxgZaqZvxD/Snd01+CReqNFCzcobqeNp7Fm93QMjJuU3mCgoKoq6uze+6MM87g888/59577+WZZ55xVyiS4rH/vs3b72xk+1PuqYHjLrKXTGD88omotT5se2sz3a1dg180RGy7/Y32RgoW5l21AL9gP9LnZnL42wNDcpHsEQ8hRJl3c4Mv896ucENFrVVzxZPX0NfdR+meEo58f4j2hqG5Ak/EtvNVsFzTTWaIzLt6IfETE+hq7mLvR7sHPb9ALOUIhVRRR6qQQKggjQXVcAlPDKd4RyGNJQ2U7ip26Vy6rv66slkLs72yy3Ds+Dir2HX4O8+lmIqiSHu9+TMvNCHMbelYUWnRPLL7LwREmF3Y9UW1rHvyC3o7vcv5JYoijcedbmEJ4UNu6GEReQw6AwYbZ85oxbaJQqwHRTeAOz6+x65raVeL8+5RnU17bb/oFhwd4rlAbBAEAV2Xjo6GdjoaO6yis1QweJHTTRAE0mZnULS9kJpj1Rw43vAAYN0Tn9Pe0E7anAyW3rwMjf/whOElNy+jpaqFoh2FFO/sL/8g9UYKMjKjCYdFt6amJm699VYmTJhAREQEYWFhdj+nYvbs2Xz11VcnPb9kyRI+++wznn76aUdD8Xq6xG7enraOJ85+k7cv/sbT4TgVpY+SqLRoejt6MegMHPhqv9PG7rRJLw0YAzXdACJSIkmZmUbR9gJKdhVzbP2R056fbyrhvJt/zZyjt/DFun1ox49+RyBA8tQUFly3iKj0aPI2HuXbp0/+zBkqsdlxhMaHERgli24yQ2PiihyqDlciiiJ7Pto1qDheLdZbH9+qusbV4bmclJlp1sclu10ruk1aNZm/FTzFH3P/yoLrFrt0LlcxcfkkAAKjgmgoqR/kbNfR0dBOa3ULfqHmjR13Exhp/ozVder46u+fWwUsb6GruZOAsAASpySTuWDo9ZY0gf0L6N5O3WnOHB201bZaBcmYce7pkHs6/EL77x+7mqSXImnBUvheEARJdeJMm5VufVy8wz11PIeKbaq6SuKiG8CUc8wNAdV+ar55+itaqpqpPlpFS3ULgRGB1BfWsuC6RcMef9LKyQRGBZE4OdHOBCGVdGUZmbGAw+ml1157LYWFhdx0001ER0cP2U7861//mq1bB65zs3TpUj777DNef/11R8PxaurE/sK7McLocyLNunQOlYcqaK1uYfs7W4dlix4Iu0YKY8TpBjD/moXU5FURlhDBrve3M+H4gm0gtpj2IiCgVxnQLBo7vyOA5b9cyd5P95A+N4PNr//I9AtnkWojBgyFigMV1Bwzd1kLltNLZYZIWEIYU8+dTldzJzXHOzhnzDu1iFFDv9ASK0i7oPFQSJychNJHiW+wH10t3YNfMAIUCgXaAK1kU8KGQlhiONlLxnNs41F2f7CTCx662Or6cieWJgrdLd34Brn/9+kXYr8p1FHXDl6ULdxU0URTeSNN5Y0kTk4a8nVaO9Gtx5pSNlqpL65DqVah1fpIIq3N31Z0k7DTzZJeGhARKKnupamz04nJisE/LJC6glpPh2OHvrfP+ljqTjeA5GkpXPnUdXz66IeExofy+q2v4B/qT8nOIgSlwKWPXTlslxuASq1i4fWL+ervn/c/p1HZCc8yMjKuxWHRbdOmTWzevJkpU6YMfrINS5YsYcmSJad8/YwzzuCMM85wNByvpo7+3dzoUSi6JUxKpLuli6ayRprKGqkvriMqbWQFmg+a8nhY/wzhhJBGIpcoz3JStNJn/JkT4XdQtL0AQSFw7u+aCUsY2F3q/6COOwvP4cjKKs65dAmc2oQ66giICOTMW1fywQPvkTozjdzP9josulnatvuF+KGSeD0QGWkxaeVk3rz9VQB2/m/76UU30dxl1xetV3cutaD2VZO1cBxH1x/h0Nf77WrTyAxMfE4ixzYeRRRFjq4/wqxL57g9hvrifvHXXU0UbFEo7YWE4l2FBEYFeU3KsH0ThaF3CdfaNBKw1DoDyN98DIVSSXhKBCExIZKqlTUSdJ296Hv60Pf04R/iefe9pfELwI73thISG0JstucdeCcSnhRBSGwIQZHS2gBMnp5CfVE9pvxaupo7OffBCzwdkhV9b7/TTeo13cDsYsyYm0H67AxK95ag7+2jp62H2PFxqNQ+zLpk5N8Lc6+Yz4b/+wFdVy8mg4mgqOBR89kiI+MNOCy6ZWdn09PjXfU2nEHgwWvw71aBKIIAgr8asUtvdwyc9NyJx0KAD0KQ+dw6sf9GLUoY+o2atyAIArMvn8v+L3Ix9hnYvXYXZ9+7ZkRjttBOMeb27pOETOKE0xcqH02oVCrmXrWA/V/sQ+2rZvvbmzn7NwO30W4qa6R7axspWwOIu2Ls/I4szL92EVte30TJ7mJK95Sw5OZlpxQoT0QURWsjBbmJgoyjTD9/JrvX7qS1poUd725l+S9XEJ0Zc9J5+l491cedbnFC1Ki5+Y3OiuXo8fT30j3FTm2iMxqZuHwSu97fQURKJGW5pZ4R3Yrc37nUFrWffQ25b55ex4Z//8Clf72CrMXZhMRIuzNtU3l/1kJ48tA3UBdcu4iJK3LQ+muISImkrbaV1tpWPv7jh/R19uIXFsDE5ZNY9euzXRG22+nr7ncfqf00HozEjK3Tbd8ne9D6a7niCWml+ZuMJop3mGs+pzi4eehqNH4aEnISKc8toza/hq6WLrvfqSexc7p5gegG5jIyl/7tSt759Ru01rSg66qh5mg1lzx2hVPqbIbEhZK5MIsDX+QCZvebNxFYfANihx6xq2/A9bWjxzD4ml0eUx5zSMdiD4z/7aDvYYf/4p5//nnuu+8+HnroISZNmoSPj/2HWVDQ6Kx/pIgLQOXk/7d6m/TSaEaf0w1gxgWz+PRPHyGaRDqbOjnr7rNRKIbfv6Nb7Bd8FytnOyNEr2LuVfP5+qkvMRlMNJU3seKO1QPeUPT19N9waCRwc+tulCol086dQc2xaiLSIjn09X4W33R6J21LVTNv3PYKBp3B2vkqSG6iIOMgSh8l45aM55NH1hIYFcSutTtZc5+9OF55qIInr/k7bdvN3RpjTKPn8z91Zhob/v09AMU7i1wmuh365gAVB8rR+GuYefFsrxXIU2amYdDpKd5RSM3RKi58+BKUPu5NIfO06PaTf/+Umvxqnlj1V+tzfT19vHXH66y5/3xW/ErajnZbp1tE0tD/lhNyEu061m55/Uc+/dNHIJjFu87GDvK35NFS1cIV/7jaqTF7AnvRzT3NOk5HQJi9C9cvTBqCkS16iTcESJ2VTnluGSqNirK9Jacte+JODDY13aT4ezsVQZFBXPfCjbx795tc/c/raSiuJ2eV875D5145n+LthcRmxzFuyQSnjesOFHGya15Gmijah3bP5rDoFhISQnt7O8uWLbN73tIu2mg0OjrkmKVWtE0vHX1ONzC3o84+YwLtdW34aNUUbMlj3KLxwx6vk/46Qf74nubM0UlITChT10ynpbKZno4eDq7bz/TzZ550nkV0U6gUbl/ASYWZl81h94c7qC+qZ9MrG1h049LTuok6Gjso2m7fRdhbF/IynmX+1Qs4+sNhCrfls/7Fb1l801KCIvsF3J3/20aztr9Dbkh7AKPl4yxtTgZZi7Lp69ZRtL3AZfMc/u4QW9/YBEDWomyv/VtVqpRkL53A3o9309PeQ8muIjLmD70YvzMw6g2kzk7HR+NDcGyIW+cG86I4LO4UpRLCpL/QaipvsD4Oc0B0O5G8jcfMD0SYuGwSO/63jaayRir2l3P536/yejfsijvOYuYls+nr7pPEv2tQbAjaQK01tddWqJEK+h5pi26ZC7I4tvEIDcX1FG0vlIzotuqus5l75Xz0Oj3aQO/6cvUN9OUn/3czgNNT7Ccsm8SjBx/3+s8SGRlvxGHR7eqrr8bHx4e3337boUYKMidTj43TbRTWdLMw94r5vHLzSwDseHf7yEQ30VZ083xNEE8w7+oFPHfpPwHY/NqPA4tux3eUnWFJ91bCE8IJig6hvqierpZuyveVkjw99ZTnC5z8WRYkd3aSGQbaQF8SchIp3F5A0pRkdryzhRW/Wg1AXWEtP768gbjQCH577gVc+O5VBEZ6fgHqLIIig+hp76FifxkADSX1RKY6P8Vd19Xf7VHj791u3pxVk2mtbaWvS8fR9UfcKroZ+gzkb8rDZDQRPylhRE70keAfHgACINo/bzRIfyNXoVSQNicdH636pKYQQ6Wvp4/ejh6UPkoCI4O46NHLaCxr5Mj3h9B19tJW00pInLTTbAcjYVKipOr0xY+P51cf383jy/8MQF+X9DrI2qZJqrXSu59LnpZCXb65iULxzsJBznYfKae51xvLyGt2GRnP4bDodujQIfbt28e4ceNcEY9k6bz4c8TDXWASQSEghGoRW3rtjoGTnjvxWJEciM/KZDR3TqNRbLGOP5pFt0krcvAN9iUoMoj2ujZ62nvwDRrezlM3/emlAcLYFN0yF4wjeXoqKrWSxtIGavNqiBkXa3fOlHOm0VrTMmZdbhbmX7MQXWcvlYcq2PHettOKboY+/UnP2bqTZGQcYfFNZ7D7gx0U7yyi+mgVMy6aTVhCOFvf3EzilGTKc0s59xcrmBruXSkeQ2HaudOpOFBG/MQEjq0/4hLRrW8UiW5Zi8bz+i9fQRRFDDqDWwuSN5U1YjKaAM+klloQBIGfvHQLez/ayf7jNYcAa6q/VDEajFbRMmFSokOL2u7WLmryauhp7aK1rp2yfaWoNCqmnTcDQRCIGRfLke8PAVCTV+P1opsUse1+rOuWnuhmWypEik63oKhgIlIiaSxtoHx/GQadXm4+JeMSui76HOPhJsSOvgHX144ew+BrdnlMecyhHHfGuSi9dObMmVRUVIw50c24oRKEfqFIbOy1e/3E41OdYyxoxXS0Gc2d02gTOwgmEC0awsQgBjDajApUGh/mXbOQH577lrrCOvZ9uof51ywc1lhjPb0UzIuT6RfM5KOH3gdgy+sbufjPV9ids+b+8z0RmuSYuCKHd+9+E9EkcmDdfi54+JJTuv9sb24tyE43meESGhfKuMXjqS+up66ghvfve5fFNy3lx/+sx2QwkZCTyILrFnk6TJcwZc10vnvuG6oOVbL9na0sunGp0+fQdfd/v3q76BYQHkDyjFRKdxfTWN5I1aEK4t3kCKovtqnnNsLu4iNl6jnTGLcom0krJvPWna8DoB/gc1lKtFa3WEXLMAc6lwLUHKvmmYueQhRFkqYmA+YUx8TJSQDEZPVvptXm1zD+jNEn0Hsa25q3Okk63aSdXgowbul4Ag4FoFAqqDhYTurMdE+HJDMKMXxZahY6GHwN7uixPKY85kiOjflDazDqcB7B7bffzh133MGrr77Knj17OHDggN2PzNBppYM2OmiiFa1CO/gFXsz0c2cAEBofSsnOomGPI6eXmpl92Vxis+NIm5NB7he56LpO/iCRMe9iz7tmAamz0+nr0nH424OnPPdE0S00IZTgmBAXRygzmrniiWvwC/EjfmIijaUNvHzjvwmNDyM2O46JZ+bgGzQ6P8MikiMIP17bqvJQBQ0l9U6fw3aB7DMK0uiX3LSUzAXjMOoMbPzPerfN6+kmCifiG+RLSHy/o0vqTrdG2yYKDnQuBQiICEQUzYvI9oYOq3ictci8qR0zLpa0OenETUywqxvnreRvPkbB1nyqDld6OhQran9ZdBspCRMSKN1dQvGOIopHcH/vTIp2FFK0o1BS7zUZGZmxjcNOt8svvxyAG2+80fqcIAhyI4VhYHFtBYwB8ShhchKTVk3m0NcH2Pn+ds68fRXRmTEOjyOnl5rxC/YjaVoKO97ZCkDu53uZc/l8D0clTSaumMzGl8yL2B3vbWPaeTMGPO/ExV1LZQuBkYEuj09m9KJSq7j8H1fx9h1v0N3WjYA5nc/HV82im5Z6OjyXMvuyOfhofWgorif3832suH2VU8e3LJDVfhqP1SFzJtlLJ/C/+94hMiOa6iNV1ObX2DmdXIXJJJI8I5X2ujaHnVquwsemdtVADmQp0VzeL7qFOyi62W7qtFY1IygEJq2aTGCEuaxBdEYMxTvMIsZoqM/6yi0v093SRURKJL/f9kdPhwOYhSxBISCaREmKbmGJ4Vzyl8vR9+rtOt1KibTZGdbHxTuLWP5LDwZznFdufomOhnbCEsL4w64/ezocGRkZGcedbiUlJSf9FBcXW/8rM3S6RbOANBbSJAVBIGOeuTi0b7Af6576Yljj2KaXjgWx8nQsuGYhcePjSZmRSu5n+zwdjmTJXJBFysxUMuZlUnGgnCabRZItE5ZNJGtxtt1zwXJ6qcwICY0N4+bXfsHsS+cQEhfK5Y9fxZr7zycwfHQLuhPPzKF4RyEdDe3kfrbH6eNbarp5e2qpBb8Qf1bfey71BbVUHChn0ysb3TJv5YFyyvaU0FLZTIhEnL22jh5vcrqFJzomumkDtHbvX9Ek2rkNtQFaQuPNXV3r8musrjhvpe94zTQpOVMFQbDWddN1Si9jIDg6mEU/WcqyX6wga2H2oOd7gqjMaGsDkcbSBkwmk4cj6m9A4SPB5hMyMjJjE4edbsnJya6IY0xiEZD8x4hja9bFs2kqa2TrW5upL6xj1/vbmXXpXIfG6BL7nW5+Y0CsPB1J01Lo6+2j+mgVCqWCrpYu/EP96Wzs4OFZD6L2VTNx5WSufvo6T4fqURQKBROX5/DF3z4FYNtbWwaseacN9LUucMC88NMEjO60bxn3oPZVc97vL+LM21bhHzZ6OpWejvCkCBJyEunr7kPjr6WhtJ7IFOc1VNCNMtENYO6V89n/+V66W7vZ/OpG5lw+z1rry1VYOl2DdH6Xtq4u2+6NUqSzsYPU2ekoFAIRqZEOXx8UHUxDcX/69bjF9t3dY7JiaKlqpqe9h7baNkJiQ04a48DX+6k8WI5CUDD9gpmSSBM+EZPRhEFnAEDjJy0hRO2vwag3SjZ9U+ooFArmXb2Qnf/bRm1eDaW7S0ib7dm6bvrj7zWV1uFlroyMjIxLGFZOxhtvvMGCBQuIi4ujrKwMgKeffppPPvnEqcGNZkRRtEkvHRviUUBEIAmTE0mZkWousP3eNqqOOFZvocvW6TZGxMpTIQgCOaumAObfbf7mY4A5HUffq6erpUvyRajdxfxrF5EyM424CfFsemUDvR0DF7207arrF+Ivt1eXcRqCIIwZwc3CjItmU19UR9H2AvZ/7lw3rqXToFSEImeg8dMw9dwZ1ByrJnl6Khv+73uXz2mbUqf2k8bv0lb8sAg1UuXohiOU7Cyi8lCltY6hIwRF9XfIjs6MIXVWmt3r0TYpxjV51QOOse7vn/P1E1/y1T8+58OH3mfPx7scjsPV2KYJqyUmuj28+8/8vfif/Oa7Bz0ditcSkxVLR0MHAPu/8Gzmhclkwthn/tzwkTupysjISASHRbcXXniBu+66i7PPPpvW1lZrDbeQkBCefvppZ8c3aulDjxHz724sNQSYe8V8YrPMN5aFW/JZ98QX9LQPresHyOmlJzLl7KlEpkXRXtfGvk/MKVxSvrn1FAHhAcSOi6P6SBUmk8jeT3YPeF5YYn9No4CIsSWQyMg4m8mrp1gfH1y332lpR13Gbnym+xExJZroLMdrg0qZ+dcsJHNBFmV7S9j32R4qDpS7dL5bXv8Fj+x9jAc2/QGVRhqukODYEP6W/yRPlj/LDf/+qafDOSUtVc201bQCkDwtGYXS8X1sWze1X7CfXTdNgMTJScRPSiQgPIC6ghq6mjtPGsP2HuroD4d561evORyHq7GkloJ0xF0LUq4J2dXSRUNJPa01rZJOtZ60MoeItCjS52VSvr/Uo6nQht5+oV52L8rIyEgFh79pnnnmGV566SUefPBBlEql9fmZM2dy8OCpOwPK2GMrHvkLY8PpZuGChy9FoVSSODmJQ98c4JunvxzyF7SlDp6AgBZp3bh5guTpqXS3mt9LR9cfQd+rt0sXGg3Fl53F0puXkT43EwH47pmvMRntBYCSXUV2v7vIVOelwsnIjEUikiNZfusKotKjKd1Twu61O50y7k4O8vTbX/Dnjz9g3z9rnTKmVFCpVcy8eDaJU5IIiQ3l6ye/dOl82kBfQmJDiM6IkYyzV6FQoA30RemjHPxkD1K6t9T6OGVG2qlPPA22AlTC5KSTXo9IjqDqUAWdTZ188sePeGDSvXYdZ00mE+31bXbXSLH2m919ibwZOGR2fbCDR+f/gT9Mv5/9X0q3dq9fiD+RyREUbSugeEcR5fvLPBaLXtcvTqpkp5uMjIxEGFYjhWnTpp30vEajoauryylBjQXGsmPLR+vDlU9fi65bR2RKFD+8+J3VpTUYth1fpbJA8CQKpYKclZOJmxBPQk4iBVvz7JxuUipY7GlixsXio/VB16VDE6DlyPeH7F7f+8luPv/Lx9bjoCi5iYKMzEjJWjSe9vo20udm8NmfP3bI2XwqNph2WB/PVUwd8XhSY9alc2mva6O5oomCrXk0VzZ5OiSZASjZVURQVBApM1JJm5Mx+AUDcNVT1/Jk+bP8fvsfWfXr1Se9btvB1mQwgoj1fqn6WBW/m/zbk1JwTQaT5IQ3nY3TTeMrb5gOFVt3m9SbAkw5x7w29AvxI3/TMY/FYdDZ/s5k0U1GRkYaOCy6paamkpube9Lz69atY/z48SdfMFoI1oBF4xEAleLk44GeO/E4RINyahRdoq3TbWyJbgARSRGcc9956Lp1xGbF8d5v3jplV0lbOsV+0U3GzMSVOVQfqaJ4RyEHv9pvV8dNdrrZc8YvziQyLYrqI1V8/9w3dq/pe/pv1JbftpLJZ091c3QyMqOP7CXjmbRyMkXbCwmNCz3p7244qExKYjDXz1qimD3i8aSGUqVkyU+XkTYnA5NJZMvrmzwdkswAlO0rpb2+ndI9JSQN4FIbCho/DUofJRHJkQRGBJ30ujbQF/8wf+txSFwIHY3m2lktVS10NZ2cbgrS6/oqZafb7rU7ee83b/P6ra+c5Br0NLaNRKR+Pzdp1RQSchLpae9h+9tbPSb82gmVstNt1CBE+IJSOPX62tFjZ4whjymPqVKYNaIhMOQCHn/84x+55557uOuuu7j11lvp7e1FFEV27tzJO++8w2OPPcbLL7881OG8juDinxAUdPIN0XDpMvWn4vqPkUYKJzL1nOkc++EIh78/RFhiOG/d8Rq3fnCnXdryiXRjdkn4jbGU3NMxbsl4fLQ+6Hv1HNt4lMxF46yvSe3m1tOMW5SNQqnAL8wfhUpJxYEyEiebuwPaOgTnXbVATi+VkXESZ//mXBpLGyjdU0JrbSvTL5xFXHbcsMczzK/ikpbJqJYEEPuK4x0jvYGZl8zh879+gslg4uj6I5x119kucbp88/RX+Gh9CEsMtzpVpMD3z31DV0sXGj8Nq+4629PhnIRBp7fW24tMi3JpkxT/sAC6ms2ZJK3VrWx/ZwsX/elS2qpbrOf4+PrYbRz1dekkJdJIuaZb4dZ8tr29BYAzb1spKZe7vdNN2gJSYEQgvsF+iCaRxtIGqg5XkjAp0e1x2KaX+vhK+3cmM3SCKm/ydAgyMgMitLdD8J2Dnjdkp9sjjzxCZ2cnP/3pT/nb3/7G7373O7q7u7nqqqt44YUX+Oc//8kVV1wxkpjHFJ22Trcx7No6/w8X4RfiR3t9O7ouHRv+fepubQdNeUQKYcQTTQyjc6E1HDR+GmZfPo+kqcl0NLRTm99f40hKN91SQBAElv9yBbqOXgq35rPplY3W12xvbuXfm4yMnVDJmAAAZFhJREFU8whPimDCmZNIn5dJd0sXH/3h/RGN19Xcib5HT0jp6N18CY4OZuH1i0nISaTqUAX7v8x1+hyGPgNf/O1TPn5krVs6pTrChpd+4PvnvmHrW5s9HcqAVB2pJDYrFrW/hpQZqS6d66f//TkP/PgHMuZlAubvqsbSBlpsRLeL/3QZE8/MsR7rJNS5vDa/hkPf9m80S20zMGl6ClmLxhGTFWtXL08K2IluXiAgTTtvBknTUkiZmcqhr/d7JAZdZ7/AKzvdZGRkpMKQRTdbm/DVV19NQUEBnZ2d1NbWUllZyU03yQq0I3TZ1nQbg+mlFnyD/Ljs8aswGYw0VzVz5PtD1ObXWF+3TUm4RP8r8sQSeujle430unN5ksScRMpzy9D36u1udOSabicz9dzpqDQqYrJiaCxtpKvF7CCQa+HJyLiOM352Ji2VTYQnhaPr1JH349FhjdPX3WddiLrSXSQFppwzncqDFQAc/tb5japs3Ucaf2m5jyyuHr2ExCNbSnYVU3mogr4uHenDrOc2VKIzY4jOjCFzYb+Lfe3v3mP7O1utx8nTUwmIDLQe67p6XRrTUDEZTTy25I/8+PJ6AGLHxzHr4jkejsoe30Bf8jflUZtfQ+G2Ak+HY4dteqnUnW4AOasmU5FbRunuEvYOsVazs7G897VBWoJiQjwSg4yMjMyJOFTT7cTC9X5+fkRFySlYw6GL/mLSY70+WfrsDBb/dBmiwUTxrmK+f/5bTCYTRTsKeTDnXp6/4l9888w6asR6AGIF+T13IhNXTkYQBPyC/WiubLY+Lzu2Tkbjr2XRjWdQm19L0fYCdry3DbBf3Km94OZWRsabUPuqWX3PudTm11K2t8TOZeoInc39NawCRrnolj43g2nnzSA0IYy9H++m8lCFU8YVRRFRFE+osyUt0c3y3SW12mQWSveUWB8nTkl2y5xx4+Otjwu25NNe119/LCQ2BI3Nv6Htv60nsf179Qv1Q6FQEBwb4rmABmD8GRNQqs3Vdgq35UuqCYVtyrBa4o0UwNyAKnWWuZOvoBCoPlrl9hgsNQ9723vlezkZGRnJMOSabgBZWVmDdoxsbm4+7eveSlvaK4gdChAxF85TKsBosj+Gk5878TjAB9WCODrf79+F9BujNd1sWf7LFZTuLqK+qJ6d720jfV4GBZvy6OvuI2/jUUpqSum72XzzESvIqaUnEhQZxAOb/sA3//yK4p1F+Gh8OO/BC0me7tq0F29l9qVzWP/ityRNSeboD4dZessy+o4v7gSFYL0Bl5GRcR4zL57N9ne2YjKaOPL9ISoOlJPoYAH6LptFvG2B+dGIIAhkzM9k36d7UPuq2fjSD1z9z+tHNGZbbSuHvjvI+795B0HVfz8ntZQ/i6unr6cPURQl163cIrqp/TTEjqA+oSNkzMvkiieu4YMH3rXrWKpQKfAN9rP7N7R1MXqSzuMCCEDOqilc9tcrUSgd2u93OdpAX+ZeMZ/iXYXUHquh8mCFw59LrsKbarpZmHf1QhrLGqnNq2HPh7uIezB+8IuciO17LjDSebW4ZTxLe8J/EJt6wCQOvL529BhGPoY8pjymUkG7n30H8VPh0MrykUceIThYOgVG3UqbDizF+0XAYOp/7cTj053TqsOYW0+Xza9+LKeXWlD7qll+60reuuM1EiYl8sF979rdbLSFdlkfx8lOtwGJSo9m3lULiMuOw2gUmXWptFI4pER0Rgzjz5jIoa8PAHBs/RGr003tq5bcAk9GZjSgUCqYfsFM3r/vHVQaFbvX7hih6Da6nW4Asy6ZQ+meEg58tZ99n+5h1iVzyFqUPezx3r7zdY5tNKf2ivp+R4/00kv7BSSDziApwaG3s4eEyYmExIXgG+SLUnXq5k/OxC/En5QZqXaCmzbIl8x5mQiCYP03VCgV6HVDWwS4mg5bASQiCJVEa2wlTEpgy+s/AnBw3X4JiW7elV4KMH7ZBN65+w0A8jcfw2Q0uVVo7Wjof88FRASe5kwZb0JsPC64wenX4I4eO2MMecyxPWbb0Da5HBLdrrjiCjmd1EnI6aUnk7Uwm+ylE9nz8S5EUUQb7Iu+pw9jn5FG3/40iljk9+CpSJ+bSfrcTE+H4RXMuXweZftKiUqLZts7W6y13bzlxlZGxhuZfdlcDn97gJLdJWx8eT2LfrKUiJShu5c7x5jopvHXkjYrneqjVXQ1dfLOPW9y3w+/Q+OvHdZ4dYUDF4qXWnqp7eewvrdPUp/L3S3dHPzKXDt12nkz3Dp3ZGoUgkJAPL74XHDtIs773YUALPv5mSz7+Zko1SrJbBzZuo6kLIBMXDkZ4b53iBkXS11h7eAXuAlvbPAUGBHEvGsWUry9kPLcMgq25DFu8Xi3zd/RZCv0Svc9JyMjM7YY8taDVL7ARwOdYjcfGr8hlCBiiSRcCPV0SJLhvN9dQFh8GAadgd62HmuNkq7IfhVZdrrJOIOJK3Lw0fpQtL2AA1/kouvqxTfIV05HkJFxIWpfNakz0+lp6yZxSjLb3t7i0PVdY6imm4W5Vy/AL9gPpY8Sta+aLx//fNhjGfQDO6Ck53TrF9lshVYpYNAbCYoKQuOvQRswPPFzuKjUKgLC+4WEkLj++0eVxgeVxkcy9+tf/uMzvn/+G+uxlAWQ4OhgMhdkUXO0mtzP9tJQUu/pkACz6BYaH0pCTpJXlb3IWjCOmmPVAOz6YIdb5/YWoVdGRmZsMazupVLhxx9/5NxzzyUuLg5BEPj4449POufo0aOcd955BAcH4+/vz6xZsygvL3d/sDaIiIQQyCQhixuVlzBbMdmj8UgJ/9AALnzkUu768rfc+ek9pMw0F2Ttju632Muim4wzUKqUzLtqAWmz0gmICCQ8KZycs6Zw3/rfezo0GZlRzfzrFxGbHUf5vlI2vvQDHY3tQ762q7m/1MBYcLoBKBQKLv/HNXS1dNNe10bZ3hJK95YMfuEA6DoH7mopNafbjItmWx2QxTuLPByNPVFpUfxp/994vPBprnjiGrfPbyte+QZJsyawKIr8+NJ6qg5VWp8LjJS2AGLrxjq4bv9pznQfrbWttFS10NHQJhkxdShMPDOH1FnppMxM48j3h93aTdciugmCMGY2ZmRkZKTPkEU3k8kkudTSrq4upkyZwnPPPTfg60VFRSxcuJDs7Gw2bNjAgQMH+P3vf49W696dyRMREAgSAqw/MvaMP2MCydNSSJ2VTmRqFHVT2+mK0hGviyKaCBKFWE+HKDNKOPP2Vdzx6T1MXTON8WdMYtr57k0VkpEZiwSEBpC1OJuI1EiSpqWwe+3OIV9rl14aOrobKdgSmRLJmvvPQxSh/EAZHzzwHs1VjjWuMvQZrF0tI1IiUdu42xRKaS3oQ+NDaSxtALDW3pQxc8sbv+TRQ4/zx9y/MuXsaZ4OZ0Dq8mvpae+xe07qrqOcs6aQNjudxMlJHP7ukKfDQRRFq4Bk6270Bny0PsRmx1G6u5iu5k72f7HPbXN3NJg3cfzD/CXXtENGRmbs4j1e5QFYvXo1q1evPuXrDz74IGeffTaPP/649bn09HR3hHZaAgQ/1qqf9XQYXkFAWAB5l9Zx9CpzjY1rFeczVeG+2hAyoxuFwnxDduljV3o4EhmZscXC6xaz8f9+oLGkgfa6NpbesnxITg5dl464iQn4BmoJjBpbqeDzr11E+f5yKg6UIYoiL171DD9/8zbCEsOHdH13a79LMGZcLBEpkeT9eBS1n9qucYEUSJ6WwpRzplJfVM/BdftpLG1wqPbfaCY0PmzA55srmtjy+ib6enSkz81k6prpbo6sn6IdhUSkRtJY0mB9TsrppWBusNTV0kVdQS2CINDR2E5ghOc+Y3raezDqjYD3iW5g7hJ/bMNhQhPCOfj1AWZfNs/lc4qiaG3eIXWRV0ZGZmwxarcATCYTX3zxBVlZWaxatYqoqCjmzJkzYAqqLTqdjvb2drsfGc8REB5AQ85xZ4MImUKKR+ORkZGRkRk5UenRZC7IIiIlkqDIIEp2Fw/putq8aqoPV1K8s4igMSa6KVVKzvnteYTFh1GbV41voC9v3PYKjWUNg18M1mYxYO6Eef0LN/JE2TM8XvA0C65d5Kqwh4UgCCRPS7XWhdr5/nYPRyR9Oho7+O7Zr/nxPxso3Fbg0ViqjlRaBbez7jmHX7xzu1cIRzlnTQEgPCWCg+s867DsbLKpXxnufVkxyTNSUaiUFG0r4OBX+2lx0Jk7HDoa2/EPCyBlZirZS+UNehkZGekwakW3+vp6Ojs7+etf/8pZZ53FN998w4UXXshFF13Exo0bT3ndY489RnBwsPUnMTHRjVHLnIgqQk1ztnmhkNgazW98bvZwRDIyMjIyzmDe1QtpLG2gaEchO97dOqRrWqpaAAiOCUGpUroyPEkSEhvC5X+/mgnLJtFe30ZdYR1fP/XlkOridduIbv6h/viF+Ev6dzjz4tkkT08haWoyu9fuxGQyeTokAI58f4jXfvEf3r3nLcr2lXo6HCsam7p8fd2605zpeuoK+juALv7JUrKXTvCKVL+ZF88mKj2axpIGtr6xyaOxeHtDAIVCwexL5qIJ0JAyM429n+5x+ZzVR6pprW6hdHcJiNJKmZeRkRnbSP8bcJhYbs7OP/98fv3rXzN16lTuu+8+1qxZw4svvnjK6+6//37a2tqsPxUVFe4KWWYA/BL8WfTtJDIL45nTmePpcGRkZGRknETOqiloArQERQfTUtWCbhChQNets3YvDUsYOMVuLBAcE8Klf72CkNhQwpPC2fnedj5/7BNMxtOLUvZONz9XhzligmNC8Avxpzy3jKayRgq35nskjp72Hg5+vZ/utm7aalupza9h78e72fbWZpormzwS00Bog3yJSo8mIiWShpKhuR9dhUV0CwgP8KqGJ7Hj4tD4axAUAgqlgrLcUo/F0tlkI7p5odMNYPblc0GEkl1FbP7vBpcL51WH+tds8RMTXDqXjIyMjCN4dU230xEREYFKpWLChAl2z48fP57Nmzef8jqNRoNGc3IXL+XSBDjcBSYRFAJCqBaxpdfuGDjpuROPFcmB+KxMdu7/7ChmUs4kvs55x9NhyMjIyMg4GbWfmgXXLuKHF76lva6NA1/kMuvSOac8v6WyPz3pVHWtxgpBUcFc/a/ree7Sf5I6K43tb28lOjOWZT8/85TXdLd2Wx/7h3rHIn72ZXNpq2lFE6Blz4e7yFqY7fYYtr65iU//9BFgroVnSUEEe3eZpwmJDSE8OYKjPxymsbSB6qNVxI2Pd3sc3a1d1mL20Zne1/hqyS3L+PjhtZTtK2XrG5tInprikThsnW5Sr4d3KkLjw0ibnU7ZvlJCE8PJ33SM7CUTBr9wmFQethHdJsmi22hCdXYKxsNNiB19A66vHT2Gwdfs8pjymEM5VsaFw3dDeA879S9CQqjVambNmkVeXp7d8/n5+SQnOy56BaxdQ1DQ2KofIyMjIyMj40pyzprCDy98i2+QL4Xb8k8vuh1PLQUIHcNONwsRyZFc/c/r+e9N/yZxShKf/eVj4ifEM27xwLWMulu7iM6Mwag3EhwT7OZoh0fOqim8f987dLd2U3mwnAsevhjfINe79ERRpK6wjh//s56D6/Zbn6/Nq6E2r8Z6rPGXjugGkL1kPK3VLSh9lHz7r3Vc/8JNbo+hrrCOyPQo/EP9SZ+X4fb5R8rk1VP54P53UftraK5oorutG79g9ztDO2zTS72gHt6pWHjDEvI351G0rYAtIf4uFd38gvxIm5NOe3070RkxLptHxv34f7jG0yHIyAxMezsM4ZbKq9NLOzs7yc3NJTc3F4CSkhJyc3MpLy8H4N577+W9997jpZdeorCwkGeffZbPPvuMX/7ylx6MWkZGRkZGRgYgdVYak1ZNpq+nj+3vbKWp4tTpevu/3IugMNfpGetONwsZ8zI581dn0VrTSnRaNO/c9SaGPsOA59YX1lFXUEtjaQOBkd6xieij9WH6BTOJSIkkMjWK9S8OYTvZCXz7r3V8/eTnFGzJO57mOrDoovHXuiWeoTLvmoV0NLRTebCC8n2l1BXWuT2GuoJaGorqKd1d4jWOSls0fhqW3rIc0SSSvymP3R/s8Egcfb19JE5OIjY7jqBo7xDJB2L8GRPxD/UnKDqYnrZu2uraXDbX4e8OUbyjiL4uHSr1qPWVyMjIeCFeLbrt3r2badOmMW3aNADuuusupk2bxkMPPQTAhRdeyIsvvsjjjz9OTk4OL7/8MmvXrmXhwoWeDFtGRkZGRkYGS5fKFIx6Iyq1iu+eWTfgeSW7i2kobkA0iSy+6QymnTfDzZFKl6W3LCNtdjrd7d2EJYbz9VNfDnhebUG/Qys603tcICvuWE1HYwfVR6so3lXs8i6I297ewva3t1K4tZCOxg4USoGgqIFFD02AtJxuGj8NK351FsnTU2kqb+L75752ewx1Nu+zGC96n9kyZc009D19BEUFUbSjEFEU3R5D1aFKKg6UU3OsmpDYELfP7yyUPkoW/3QZHfXtFGzNZ+d721w2l1Fv3nBQS8yBKiMjI+PVotvSpUsRRfGkn1dffdV6zo033khBQQE9PT3k5uZy/vnney5gGRkZGRkZGTtmXzaP+dcuQqlWkb85j2Mbj9q93lbXxjf//IrinYWkzEhF6aPEP9TfQ9FKD4VCwTn3nU9HfTtF2wvY8e5WjAaj3TmiKFKbbxZDQuJC0QZIy6F1OkJiQlhy8zKiMqIp2JzHuicHFhWdQe4Xe/nggXetxf+X/2IFv/78N2QtGbiWnNTSSwHmXjmf+qJaAiODaCprPK171BXU2nQu9SZx15a47HhmXjybjsYOcj/bS/GOQrfH0FBSD4DaT+PVTjeA6eebN0nCk8Ip21vqsoYKf9r/N54oe4Z7v77fJePLyMjIDBevFt1kZGRkZGRkvBtzAfhw4ibE01rdytdPfmFNQdJ16/joD+9TtL2Q6IwYAiICOfeBCzwbsASJTo9m4oocEnISCY0P49iGI3avt9e309PWA0BMlvcVtz/jlmUY+gykz81k5/+2UeCCTqYH1+3n/d++Q9KUZCoPlbP45jNY8auzEAQBjVY94DVSFN20gb6suvNsOps7KNxWwKs/e4mu1q7BL3QSls6lGn8NIXGhbpvX2YxfNhHRJBKVEU3xriK3zm3UG2kuN4ulkamRCILg1vmdTXhSBDMvmUNTeRMHv95P/qa8wS8aJiq1Cm2gr8vGl5GRkRkOsugmIyMjIyMj41GW/WIF2kAtydNSKN1bwgcPvsuGl37g5Rte5NiGo/gF+6IN8uWKf1yN0kfp6XAlyZwr5lF5sILSPSXseNc+hau+qI6UmWlEpUcTmx3noQiHj1+IPyvvWE3R9gLiJiTw9VNfYtAPXLtuOOz/ch8/vPgtGj8NDaUNLPvlSs68daX19cU/PYPb1v6aOVfOs7vOx3dgMc7TzL58HiGxoWQuyEJQKHj1lpfZ/t42TEbXOIws9PX04aPxOV6rcYpXi0VTzp5KSHwo9YV1bHxpvVtTTJsqmqz/VpFpUW6b15XkrJoMmN2P+7/Y5+FoZGRkZNyLLLrJyMjIyMjIeBSFQsHVT19PU3kjKTPSOPBFLl8/8QX1RXX4hfoROz6eix65lMAI72gA4AkmLJtEYGQgsePj6GzqpLOp0/pazbFqSncXU19UR3RGtAejHD5zrpjHtPNnUHmgnNI9xfznxn+z5+Pd6Hv1Ixp3/5f7+P65byjPLSMgMoipa6Zzzm/OtROMgqKCyZyfxbRzZ1qfU6gUKBTSvI32D/Xntz/8jubKZpormqgrrOXbf37F/+57h4biepfN21BcT21+DSW7ilEovFdwA/DRqomfkABAR0M71Uer3DZ3Y0n/v1Fk6ugQ3SatnEzmwnHUFdSy7c3NNJY1eDokGRkZGbchzbsFGRkZGRkZmTFFYEQg171wIxX7y8heOoHY8XGEJYaTvWg81/zzepKmJns6REmj9FEy7+qF1Bytpmh7Abs/3Gl9zVLPDSA60/vSS8EszC69eRkLf7IE/5AAqg5X8umf1vLcZf8cdkfEbW9t5t2736KnrYe48fFEZ8Vw0R8vRaEc+PY4Y14m2gAtYYlhpM/OGMn/jsvRBmi5/YM7mXHhLMKTIvAL9iP/x2M8d9k/2eWijpx1Xtqs41SMW5yNoBSIGx9Pya5it83b095D0tQUEicnEZYY7rZ5XYnSR8m4Rdn4BvuRNieDbW9ucer4rTWtvH//O3z654849M0Bp44tIyMjM1LkfsoyMjIyMjIykiB9dgZ/2PUoxj4j29/dyqyLZxOeHOnpsLyGGRfM4punvyIqPZrS3cWIPz0DQRCoyx8dYkjKjDT8wwLoaeumtboVERGVSsmj8x7izs/uJX5iwpDGMRqMfPm3zzj83UFix8VSfbSK8csmcsEfLj6l4Abgo/Xhr/lPek3aZGhCOBc+fAkFW/P55JG1KJQKgqKD2fLGJmryqll99xp8tD5Om280NFGwJXvJeHw0PlQfreLgV7ksvH6xW+Ztq2ujPLcUAN+g0VOfbP41C/nhxe8o2l5A5cFylt+2Er9gP6eM3VbbyuZXfwSg78alTFo52SnjysjIyDgD2ekmIyMjIyMjIxkCI4IIiQvlrLvOkQU3B4kZF0vOWVOoL6pj36d7qDxYAfQ73YKigry+82tkahTXPvsTzn3wAkSDiaKdhcTnJPKfn/6b7rbuQa/vbOrgf795m/wteXQ0tFNfXM/KX6/mgodPL7hZ8BbBzZbM+VncuvZOJq+eSmtNC3X5NeRtOMr797+DQdefnmvoG1mdvILN/QXyR4PoFpURg1+I+e+laEfhiFOZh4poNKFUm30Ragk26xgu/mEBTD13OolTkohIjWT7O1udNrauq9f6WOM3en5nMjIyowNZdJORkZGRkZGRGSVMWD4JgJC4UL579hs6GjuIzowhISeJ5OmpHo7OOQiCQOrMNG59/07GnzGRmqNV+AX78c7db5yy4L0oiuz9ZDfPXPQUuZ/vpaetm9jsOM6571zO+NmZkq3P5ix8A3w57/cXct7vLyQoKhijwcjeT/fw8SMf0tfTx5bXN/H3FX/h2MYjPHvZ07TWtjo0/pY3fqShpJ6EnEQW33QGEaNAMBcEgXGLs1H7a4jNjqNkj3tSTJffupIny57hyfJnyV4y3i1zuoslPz2Div3lVB2qZPvbW5zWEEXXpbM+lmJXYRkZmbGNnF4qIyMjIyMjIzNKmH7+DMr3lbL9na1UH61ky+s/UrS9EIDUWWkejs65+Gh9uOiPl/LSdS/QVtNGT1sPL179LJNXT8UvyBffED8EhUBzRTMFm4/RVNGMf1gAwbEhdDa0c9Y9a8iYm+np/w23Mv28mQRHBfOfm/5NYk4Su9Zu5+j6QwTHhODjp+blG14kaWoK//3p/3H109cRnXGyY00URerya/EN8SU4OoRt72xh1wc7EUXobu0mdVbaqOkyPP6Miex6fwfluWUcW3+ErAXj3Db3aPkd2hKTGcuMC2fRWtNC5cEKDq7bz7RzZ4x4XFvRbTS5A2VkZEYHsugmIyMjIyMjIzNK0Ab6krkgi/qSekp2FrHt7f6C5TFZ3p/ydyLhSRGc/4eLeP3WV1D0Kehu6WL7O1vpau7EL8Qfta8PHY0d9PX0YTKYMBlMZJ8xgetfuBH/0ABPh+8R0udm8pOXbuGtX72KNsCXluoWert0KBQKAqOCqMmrQuOn5aOH3mfpz860c1ttf3crR384TEdjBy1Vzaj9NOi6emmvbSN5egqZC8Yx/fyZp5ndu8icn4XJaAIgb+NR+N2FHo7I+5lzxTyev/xfABz4MtcpolufjeimDdCOeDwZGRkZZyKLbjIyMjIyMjIyo4jpF87iwNf7SZ2VRvHOIuvzMV7auXQwxp8xkcsfv4qm8kYOfn2ArpYuVFaXkIA2wJeo9GgUCoF51y5iwhkTPRqvFMicn8UVT1zLzve2EZkWRW1eNUt+uozwlEjeu/ctulu7KdlbQuVtrzDtvBks/9Uqtr+1lR9e/JagyCA6GtqJSI5E4aOkq7mT2HFxJE1NYfU9azz9v+ZUAiICSZiUSFt9Gz5+ajoa2wmMCPJ0WF5N1qJsJp89ldq8GvZ+vJtlv1hB4uSkEY0pp5fKyMhIGVl0k5GRkZGRkZEZRQiCwCV/uYK/LXsUbYCWnvYeAGKyRqfoBjB1zXQ6mzpJnZlGc3UL+u4+ulu7USgFRBEmnzWFoOhg1L5qT4cqGbKXjCd7yXgMfQYEQbCmM1777A28eftrpExNQd+rp+poFf9Y+RgqHyXx4+OpL6ojISeRsMRwGksauPaZG6g4UM7yW1d6ZaOJwZi0Mod1T35JR307BZvzmH7BLJfO98ML39Jc0YTaX8PZ96xBpXFeh1kpIAgC2UsmcODLXJRqJbmf7R226NbZ1En10UrKjnd7BTm9VEZGRnrIopuMjIyMjIyMzCgjMDyQq5++jhevepbw5AhCYkMJiAj0dFguJSA8gIDwDEZX5TrXo1LbLwd8g/z46as/Z8NLP7D1jc30tHWh1xkw6Ay01rRy3kMXMeeyeQDoe/UofZSMWzy6Cv7bkmZT9+/YxqMuF90OfJVLyS5z04ZzfnueS+fyFDMvnsWBr/ZRtq+MjS//wLJfrhhWZ+W9H+9i7e/+Z/ec3L1URkZGasiim4yMjIyMjIzMKGT8GRO595sHSMhJ9HQoMl6GIAiccctyZlw4ix//uwGlUoGP1of4ifGMP2OS9Twf7ehyYQ1E2qx0VBoVIbGhdDZ1IoqiSx19llRJH60PStXoa6YAoPHXEp0Rw7ENRwmKDmbfZ3tYeN1ih8fR6/QDjC2LbjIyMtJCFt1kZGRkZGRkZEYpsuAmMxKCIoNY89vzXC40SRkfrQ8Tlk3iwFe5NJY2UFdQ69JUbYvoph7ljq2FP1lCye4SKvaX8cPz3zL/moUoFAqHxmitbrU7TpqWgt8wHHMyMjIyrsSxTzYZGRkZGRkZGRkZmTHFWBXcLKTNTrc+PrbxqEvnsohuo92xFZUWjW+QL6Ioog3Ukvej47/X1uoW62NBIZAwKZHwxHBnhikjIyMzYmSnm4yMjIyMjIyMjIyMzCkYt2Q8Ch8lseNiqS+qc+lcfWNEdANYcssyGksbqDpUyY8vb2D8Usc6C7ccF90EhcAdn9yDX4ifK8KUkZGRGRGy001GRkZGRkZGRkZGRuYUxGbHERobStWhSnb9bzuGAWqJOQOTyURfTx8wNkS38UsnYDKa8PFV093aRW1+jUPXW5xuQdHBpM5MIzojxhVhysjIyIwIWXSTkZGRkZGRkZGRkZE5BYIgkDbHnGLa19NHyZ4Sl8yjPy64AajHgOimUCo46+6z8dGoKN1TwnfPfj3ka22bKITGhboiPBkZGRmnIItuMjIyMjIyMjIyMjIypyF7yQT8gv1ImZlK2V7XiG6Wem4AmlHeSMHC1HNnoFSrSJuTQcGWfBrLGoZ0XVttKx0N7QhKgaiMaBdHKSMjIzN8ZNFNRkZGRkZGRkZGRkbmNGQtzqanvYfS3SXkfr7PJXPYim6jvXupBW2AlsU/WUrxjkJaq1vY9ubmIV3XWmVOLRWNIn4hcsdSGRkZ6SKLbjIyMjIyMjIyMjIyMqchKDKIuAnxAFQeKKerudPpc7RUNROTFfv/7d17fM/1///x+3vsaLOZwzZsc14mZ9HIMQwlfPShkkMfHURRDqESUh/kXJ8OfiUkUSIppXKYUM5McxhmGiJhxja22Z6/P3z3ztv23iFvm3G7Xi7vy2Xv1+v5er4fr9f78X5t78eez9dLlRpWVoX/e607wX1PtFT1ZiHyDSytdbPX6Nzxc7luE3/NnUuZXgrgVkbRDQAAAAByUaN5iEoHlVGVJlV1+NdDDu//6I5YnTp4Ukd3xMrV083h/d+qPLw9VPmeKjp37KzKh1bQLws25LrN+WuKbj4U3QDcwii6AQAAAEAu7moVqrNxZxSz+bD2rY1yeP8HIvb//Votazq8/1tZy6faqOLdgToWGac17/+k07Gnc2wfT9ENQBFB0Q0AAAAAclGlcTU5uzlLulogM8Y4rO/zJ6/eGKBK46qq1LCyylQq67C+iwJPX0+FtKypirUDVbpiaX03aUWO7c8zvRRAEUHRDQAAAABy4eLuourNQlQhtIJ8K/rqVPRJh/X9y4INOh3zp45sjVGttrUd1m9R0v6Fjko4laCk84mKPxGvfWvsjyaM/78bKTgVd5JX2ZIFFSIA5BtFNwAAAADIg5CWd+nEvhM6sjUmx6JQfqVeSlH1ZiHyLOOlJo+EOazfosTN003dXv+3TLrR77tjtWnBRqUkp2TbNvHcRZWqUErVmlaXUzG+0gK4dXGGAgAAAIA8CL3/71Fov/0Q6bB+ty3ZokObouXsWlze/j4O67eoadCloWq1ry3fiqUV9UOkIv7fmixtUpNTdeFUguJPxOvK5SuFECUA5B1FNwAAAADIg3JVyim0bS1VaVJN8SfilRSfdMN9pqelK+nc1X5K+nnfcH9FmcViUfiLDygjI0NB9YK1aupK/b77qE2b+D/OWX/2qcD13ADc2op00e3nn39W586dVb58eVksFi1fvtxu2wEDBshisWjmzJkFFh8AAACA24tftQAd2XJY5/+I1/61e2+4v4tnLlpvylCy7J1ddJOuFjab9rpPf+w/oUoNK2vR0E+VeinVut72Jgq+hREiAORZkS66JSUlqW7dunr33XdzbPfVV19p8+bNKl++fAFFBgAAAOB2VKvd31NMY7fH3HB/F08nWH/2KsdNASSpzbPtFNKipmJ3HJGHj4e+n/KtdV38NUU3H+5cCuAWV6SLbh07dtQbb7yhbt262W1z4sQJPf/881q4cKGcnZ0LMDoAAAAAt5sq91RVSIu75OHjoR1fbVN6WvoN9XfhrwvWn0tSdJMkFXcprgdGPST/GldHFcZFHtWhXw5KkhL+OG9tV4qiG4BbXJEuuuUmIyNDvXv31ogRI1SrVq08bZOSkqILFy7YPAAAAABAkoo5F1MJX08ln0/WpYRLit12Y6PdLpy+tujG9NJMFUIrKqzXfSpXzU+Hfz2k79/6VqtmfKetSzZb2/gE+BRegACQB7d10W3y5MkqXry4Bg8enOdtJk6cKG9vb+sjMDDwJkYIAAAAoKip1ba2nJyLqWLtIB25waLbxdOMdLOn+RMt5V+jvAJCyitmyyFtmLNOqSmp8qsRoEemPa6yVcoVdogAkKPbtui2Y8cOzZo1S/PmzZPFYsnzdqNHj1ZCQoL1cezYsZsYJQAAAICi5q7WoXJ2ddbx3+K0/cutupx0WacOnfpHU00TzyZaf+aabracnJzUbVx3WZwsatqnucpV85ePXymVCS6jex5uIjcv98IOEQByVLywA7hZNmzYoNOnTysoKMi6LD09XcOGDdPMmTN19OjRbLdzdXWVq6trAUUJAAAAoKjx9PVUxVoVFbPlsP48fErvPjxTFicnPTr9cbmX9MjXtMeEU+dVzKWYPH095VXW6+YFXUSVquCrl1a/onPHz+nwpmhVb3GXfLlrKYAi4rYtuvXu3Vtt27a1WRYeHq7evXvriSeeKKSoAAAAANwO6j3UUB6lSujojlgZSfHHzmhm5ykqW8VPw1eNynM/CX8mKD01XQmnElSyLNd0y47FYlHpwNIq/UjTwg4FAPKlSBfdEhMTdfjwYevz2NhY7d69W76+vgoKClLp0qVt2js7O8vf318hISEFHSoAAACA20iL/7RSi/+00ns9Z6mEr6fij53V5YuXdSzyd8WfOKdSFfI2Guvi/9291N3bXc5uzjczZABAASvS13Tbvn276tevr/r160uShg4dqvr16+u1114r5MgAAAAA3AkGfj5Efd/vr/ueaCnPMl6q0qSaDqzfn+ftM+9eyig3ALj9FOmRbq1atZIxJs/t7V3HDQAAAABuRJ0O9bRq6kolnrmo4i7FFPZYs1y3SUm6rNTkFElSST9uogAAt5siPdINAAAAAG4F5UMrqHTQ1cvbHP71kJLOJeayxd+j3CTuXAoAtyOKbgAAAABwgywWixr3CFOVJtVUwqeE9q3dm+s21xbdmF4KALcfim4AAAAA4ADVm9XQkS2HdfHMRf22KjLX9pk3UZCkkox0A4DbTpG+phsAAAAA3Coq31NVnqU9lZGeoeSEZKVeSpWLu4vd9pcvXFKVJtWUnnpFPuV9Ci5QAECBYKQbAAAAADiAUzEn3fPve3Up4ZIObYzWwQ0Hcmx/5vczOrLlsH7fdVQlSnkWUJQAgIJC0Q0AAAAAHKRa0xoyxkiSIr/fnWPbC39xIwUAuJ0xvRQAAAAAHCSk+V0Krl9JxVyK68jmw7qSekXFXbL/2nXxNNd0A4DbGSPdAAAAAMBBnN2cVaZSWR3Zclhnjv6lfWui7La9cDpB0tVpqUwvBYDbD0U3AAAAAHCgex5uIldPV1VuXFUH1u+z2y7z7qWeZbzkVIyvZgBwu+HMDgAAAAAOVKPFXfLwLqHYrTHavOhXJZ9PytImIyNDF/+6KEkqWZappQBwO6LoBgAAAAAOVKx4MdXpVE+SVLZyGe1dnXWKafK5JGWkZ0jiJgoAcLui6AYAAAAADnbPw01UqoKvTkWf0q8LN2VZ/+fhU9afuYkCANyeKLoBAAAAgINVrB0oF3cXSdLJ/Sd09thZm/X71kTJ4mTRXS1rqn6XRoURIgDgJqPoBgAAAAAOZrFY1KxvCwXVC1ZKcop2LNtqXXf54iUdjzouF3cXHfrloAJqBBRipACAm4WiGwAAAADcBHeH11Hc7t+VnpauXz7dqPS0dEnSL59u1IGIfZJFav3M/fIpX6qQIwUA3AwU3QAAAADgJigdWFqNe4YptO3div8jXt9P/UZpl1MVuXKXKjWqoispV9S4R1hhhwkAuEmKF3YAAAAAAHC76jC0kybf/4Yq1a+kDXPX68zvZ3R0R6wkqVH3JvKr7l/IEQIAbhZGugEAAADATVI6qIwem9FH8X/Ey8OnhCJX7lKpQF+VD62g5v9pWdjhAQBuIopuAAAAAHAT1XuwgVo91UYuHs7KSM9Q/LFzKlGqhCo1qFzYoQEAbiKmlwIAAADATdZ6QFudjTurug80UKnypVSuGtNKAeB2R9ENAAAAAG4yi8Wih//bUxaLpbBDAQAUEKaXAgAAAEABoOAGAHcWim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAej6AYAAAAAAAA4GEU3AAAAAAAAwMGKdNHt559/VufOnVW+fHlZLBYtX77cui4tLU0jR45U7dq1VaJECZUvX159+vTRH3/8UXgBAwAAAAAA4I5QpItuSUlJqlu3rt59990s65KTk7Vz506NGTNGO3fu1LJlyxQdHa2HHnqoECIFAAAAAADAncRijDGFHYQjWCwWffXVV+ratavdNtu2bVPjxo31+++/KygoKE/9XrhwQd7e3kpISFDJkiUdFC0AAAAAAACKorzWiooXYEyFLiEhQRaLRT4+PnbbpKSkKCUlxfr8woULBRAZAAAAAAAAbidFenppfly+fFkjR47Uo48+mmMVcuLEifL29rY+AgMDCzBKAAAAAAAA3A7uiJFuaWlp6tGjh4wxev/993NsO3r0aA0dOtT6PCEhQUFBQYx4AwAAAAAAgLVGlNsV2277oltmwe3333/X2rVrc70um6urq1xdXa3Pz5w5I0mMeAMAAAAAAIDVxYsX5e3tbXf9bV10yyy4HTp0SOvWrVPp0qXz3Yevr68kKS4uLscDCdyoCxcuKDAwUMeOHeOmHbipyDUUJPINBYVcQ0Eh11BQyDUUFHIt/4wxunjxosqXL59juyJddEtMTNThw4etz2NjY7V79275+voqICBADz/8sHbu3Klvv/1W6enpOnXqlKSrhTQXF5c8vYaT09XL3nl7e5N8KBAlS5Yk11AgyDUUJPINBYVcQ0Eh11BQyDUUFHItf/IyMKtIF922b9+u1q1bW59nXoutb9++GjdunFasWCFJqlevns1269atU6tWrQoqTAAAAAAAANxhinTRrVWrVjletC63C9oBAAAAAAAAN4NTYQdwq3N1ddXYsWNtbq4A3AzkGgoKuYaCRL6hoJBrKCjkGgoKuYaCQq7dPBbDcDAAAAAAAADAoRjpBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwsFum6DZx4kTdc8898vLyUrly5dS1a1dFR0fbtLl8+bIGDRqk0qVLy9PTU927d9eff/5pXR8ZGalHH31UgYGBcnd3V82aNTVr1iybPpYtW6Z27dqpbNmyKlmypMLCwvTDDz/kGp8xRq+99poCAgLk7u6utm3b6tChQzZtdu7cqXbt2snHx0elS5fW008/rcTExFz73rNnj5o3by43NzcFBgbqrbfeslm/d+9ede/eXZUqVZLFYtHMmTNz7RP2kWv2c23ZsmVq1KiRfHx8VKJECdWrV08LFizItV/YR77Zz7d58+bJYrHYPNzc3HLtF9kj1+znWqtWrbLkmsVi0QMPPJBr38iKXLOfa2lpaXr99ddVtWpVubm5qW7dulq1alWu/SJ7d2quXb58Wf369VPt2rVVvHhxde3aNUubkydP6rHHHlONGjXk5OSkF154Idd4YR+5Zj/XNm7cqGbNmql06dJyd3fXXXfdpRkzZuQaM7JHrtnPtYiIiGz/Xjt16lSucd/SzC0iPDzczJ0710RFRZndu3ebTp06maCgIJOYmGhtM2DAABMYGGjWrFljtm/fbu69917TtGlT6/o5c+aYwYMHm4iICBMTE2MWLFhg3N3dzTvvvGNtM2TIEDN58mSzdetWc/DgQTN69Gjj7Oxsdu7cmWN8kyZNMt7e3mb58uUmMjLSPPTQQ6Zy5crm0qVLxhhjTpw4YUqVKmUGDBhgDhw4YLZu3WqaNm1qunfvnmO/CQkJxs/Pz/Tq1ctERUWZRYsWGXd3dzN79mxrm61bt5rhw4ebRYsWGX9/fzNjxoz8HFpch1yzn2vr1q0zy5YtM/v27TOHDx82M2fONMWKFTOrVq3K1zHG38g3+/k2d+5cU7JkSXPy5Enr49SpU/k6vvgbuWY/186ePWuTZ1FRUaZYsWJm7ty5+TnE+D/kmv1ce+mll0z58uXNypUrTUxMjHnvvfeMm5tbrjEje3dqriUmJpoBAwaY//f//p8JDw83Xbp0ydImNjbWDB482MyfP9/Uq1fPDBkyJA9HFPaQa/ZzbefOneazzz4zUVFRJjY21ixYsMB4eHjYnPuQd+Sa/Vxbt26dkWSio6Nt/m5LT0/Py6G9Zd0yRbfrnT592kgy69evN8YYc/78eePs7GyWLFlibbN//34jyfz66692+xk4cKBp3bp1jq8VGhpqxo8fb3d9RkaG8ff3N1OmTLEuO3/+vHF1dTWLFi0yxhgze/ZsU65cOZuE2LNnj5FkDh06ZLfv9957z5QqVcqkpKRYl40cOdKEhIRk2z44OJiim4ORa9nnWqb69eubV199Ncc2yDvy7e98mzt3rvH29s5xH/DPkWv2z20zZswwXl5eNn/g4p8j1/7OtYCAAPO///3PZrt//etfplevXjnuF/LmTsm1a/Xt2zfbL6fXatmyJUU3ByPXctatWzfz+OOP56ktckau/S2z6BYfH5+nfoqKW2Z66fUSEhIkSb6+vpKkHTt2KC0tTW3btrW2ueuuuxQUFKRff/01x34y+8hORkaGLl68mGOb2NhYnTp1yua1vb291aRJE+trp6SkyMXFRU5Ofx9Sd3d3SVeH5Nrz66+/qkWLFnJxcbEuCw8PV3R0tOLj4+1uB8ch17LPNWOM1qxZo+joaLVo0cJuv8gf8s023xITExUcHKzAwEB16dJFe/futdsn8odcs/97dM6cOXrkkUdUokQJu/0i78i1v3MtJSUlyzR5d3f3HPtF3t0puYbCR67Zt2vXLv3yyy9q2bKlQ/u9U5FrWdWrV08BAQFq166dNm3a5JA+C9MtWXTLyMjQCy+8oGbNmunuu++WJJ06dUouLi7y8fGxaevn52d3ju8vv/yizz//XE8//bTd15o6daoSExPVo0cPu20y+/fz87P72m3atNGpU6c0ZcoUpaamKj4+XqNGjZJ09ZoLOfWdXb/Xvi5uHnIta64lJCTI09NTLi4ueuCBB/TOO++oXbt2dvtF3pFvtvkWEhKijz/+WF9//bU+/fRTZWRkqGnTpjp+/LjdfpE35Jr936Nbt25VVFSUnnzySbt9Iu/INdtcCw8P1/Tp03Xo0CFlZGTop59+0rJly3LsF3lzJ+UaChe5lr2KFSvK1dVVjRo10qBBg/g96gDkmq2AgAB98MEHWrp0qZYuXarAwEC1atVKO3fuvKF+C9stWXQbNGiQoqKitHjx4n/cR1RUlLp06aKxY8eqffv22bb57LPPNH78eH3xxRcqV66cJGnhwoXy9PS0PjZs2JCn16tVq5bmz5+vadOmycPDQ/7+/qpcubL8/PysVeBatWpZ++3YseM/3jc4DrmWlZeXl3bv3q1t27bpzTff1NChQxUREZGvPpA98s1WWFiY+vTpo3r16qlly5ZatmyZypYtq9mzZ+e5D2SPXLNvzpw5ql27tho3bvyPtoctcs3WrFmzVL16dd11111ycXHRc889pyeeeMJmRAD+GXINBYVcy96GDRu0fft2ffDBB5o5c6YWLVqU7z5gi1yzFRISomeeeUYNGzZU06ZN9fHHH6tp06ZF/8YdhT2/9XqDBg0yFStWNEeOHLFZvmbNmmzn9wYFBZnp06fbLNu7d68pV66cefnll+2+TubFb7/99lub5RcuXDCHDh2yPpKTk01MTIyRZHbt2mXTtkWLFmbw4MFZ+j516pS5ePGiSUxMNE5OTuaLL74wxhhz9OhRa7/Hjx83xhjTu3fvLPOZ165daySZc+fOZemba7o5DrmWc65l6t+/v2nfvr3d9cgb8i1v+fbwww+bRx55xO565I5cs59riYmJpmTJkmbmzJl29wt5R67Zz7VLly6Z48ePm4yMDPPSSy+Z0NBQu/uH3N1puXYtrulWsMi1LnZjvtaECRNMjRo18tQW2SPXutiN+VrDhw839957b57a3qpumaJbRkaGGTRokClfvrw5ePBglvWZFxT88ssvrcsOHDiQ5YKCUVFRply5cmbEiBF2X+uzzz4zbm5uZvny5XmOzd/f30ydOtW6LCEhweaCgtmZM2eO8fDwyPFCgJkX5U1NTbUuGz16NDdSuInItbzlWqYnnnjCtGzZMk/xIyvyLe/5duXKFRMSEmJefPHFPMUPW+Ra7rk2d+5c4+rqas6cOZOnuJE9ci3v57XU1FRTtWpVM3r06DzFD1t3aq5di6JbwSDX8lcIGT9+vAkODs5TW9gi1/KXa23btjXdunXLU9tb1S1TdHv22WeNt7e3iYiIsLk9bHJysrXNgAEDTFBQkFm7dq3Zvn27CQsLM2FhYdb1v/32mylbtqx5/PHHbfo4ffq0tc3ChQtN8eLFzbvvvmvT5vz58znGN2nSJOPj42O+/vprs2fPHtOlSxebW+caY8w777xjduzYYaKjo83//vc/4+7ubmbNmpVjv+fPnzd+fn6md+/eJioqyixevDjLLZhTUlLMrl27zK5du0xAQIAZPny42bVrV57vDgJb5Jr9XPvvf/9rfvzxRxMTE2P27dtnpk6daooXL24+/PDDPB9f2CLf7Ofb+PHjzQ8//GBiYmLMjh07zCOPPGLc3NzM3r1783x88TdyzX6uZbrvvvtMz549cz2WyBm5Zj/XNm/ebJYuXWpiYmLMzz//bNq0aWMqV658292JraDcqblmzNURLLt27TKdO3c2rVq1sn4XuFbmsoYNG5rHHnvM7Nq1i9+h/xC5Zj/X/ve//5kVK1aYgwcPmoMHD5qPPvrIeHl5mVdeeSUvhxbXIdfs59qMGTPM8uXLzaFDh8xvv/1mhgwZYpycnMzq1avzcmhvWbdM0U1Sto+5c+da21y6dMkMHDjQlCpVynh4eJhu3bqZkydPWtePHTs22z6urcK3bNky2zZ9+/bNMb6MjAwzZswY4+fnZ1xdXc39999voqOjbdr07t3b+Pr6GhcXF1OnTh3zySef5GnfIyMjzX333WdcXV1NhQoVzKRJk2zWx8bGZhszo4/+GXLNfq698sorplq1asbNzc2UKlXKhIWFmcWLF+epb2SPfLOfby+88IIJCgoyLi4uxs/Pz3Tq1Mns3LkzT30jK3LNfq4Z8/d/iX/88cc89Qn7yDX7uRYREWFq1qxpXF1dTenSpU3v3r3NiRMn8tQ3srqTcy04ODjbmHI7Pow++mfINfu59vbbb5tatWoZDw8PU7JkSVO/fn3z3nvvmfT09Dz1D1vkmv1cmzx5sqlatapxc3Mzvr6+plWrVmbt2rV56vtWZjHGGAEAAAAAAABwGG6lBAAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAABwm2jVqpVeeOGFO+61AQAAbkUU3QAAAO5AERERslgsOn/+vEO2W7ZsmSZMmOC4AAEAAIq44oUdAAAAAIo+X1/fwg4BAADglsJINwAAgCIoKSlJffr0kaenpwICAjRt2jSb9QsWLFCjRo3k5eUlf39/PfbYYzp9+rQk6ejRo2rdurUkqVSpUrJYLOrXr58kKSMjQxMnTlTlypXl7u6uunXr6ssvv8x1u+unl1aqVElvvPGGNcbg4GCtWLFCf/31l7p06SJPT0/VqVNH27dvt4l748aNat68udzd3RUYGKjBgwcrKSnJ0YcPAADgpqPoBgAAUASNGDFC69ev19dff60ff/xRERER2rlzp3V9WlqaJkyYoMjISC1fvlxHjx61FsgCAwO1dOlSSVJ0dLROnjypWbNmSZImTpyoTz75RB988IH27t2rF198UY8//rjWr1+f43bZmTFjhpo1a6Zdu3bpgQceUO/evdWnTx89/vjj2rlzp6pWrao+ffrIGCNJiomJUYcOHdS9e3ft2bNHn3/+uTZu3KjnnnvuZhxCAACAm8piMv/KAQAAQJGQmJio0qVL69NPP9W///1vSdK5c+dUsWJFPf3005o5c2aWbbZv36577rlHFy9elKenpyIiItS6dWvFx8fLx8dHkpSSkiJfX1+tXr1aYWFh1m2ffPJJJScn67PPPst2O+nqSLd69epZX7tSpUpq3ry5FixYIEk6deqUAgICNGbMGL3++uuSpM2bNyssLEwnT56Uv7+/nnzySRUrVkyzZ8+29rtx40a1bNlSSUlJcnNzc+BRBAAAuLm4phsAAEARExMTo9TUVDVp0sS6zNfXVyEhIdbnO3bs0Lhx4xQZGan4+HhlZGRIkuLi4hQaGpptv4cPH1ZycrLatWtnszw1NVX169fPd5x16tSx/uzn5ydJql27dpZlp0+flr+/vyIjI7Vnzx4tXLjQ2sYYo4yMDMXGxqpmzZr5jgEAAKCwUHQDAAC4zSQlJSk8PFzh4eFauHChypYtq7i4OIWHhys1NdXudomJiZKklStXqkKFCjbrXF1d8x2Hs7Oz9WeLxWJ3WWZBMDExUc8884wGDx6cpa+goKB8vz4AAEBhougGAABQxFStWlXOzs7asmWLtRgVHx+vgwcPqmXLljpw4IDOnj2rSZMmKTAwUJKy3LDAxcVFkpSenm5dFhoaKldXV8XFxally5bZvnZ22zlKgwYNtG/fPlWrVs3hfQMAABQ0bqQAAABQxHh6eqp///4aMWKE1q5dq6ioKPXr109OTlf/tAsKCpKLi4veeecdHTlyRCtWrNCECRNs+ggODpbFYtG3336rv/76S4mJifLy8tLw4cP14osvav78+YqJidHOnTv1zjvvaP78+Xa3c5SRI0fql19+0XPPPafdu3fr0KFD+vrrr7mRAgAAKJIougEAABRBU6ZMUfPmzdW5c2e1bdtW9913nxo2bChJKlu2rObNm6clS5YoNDRUkyZN0tSpU222r1ChgsaPH69Ro0bJz8/PWtiaMGGCxowZo4kTJ6pmzZrq0KGDVq5cqcqVK+e4nSPUqVNH69ev18GDB9W8eXPVr19fr732msqXL++w1wAAACgo3L0UAAAAAAAAcDBGugEAAAAAAAAORtENAAAAAAAAcDCKbgAAAAAAAICDUXQDAAAAAAAAHIyiGwAAAAAAAOBgFN0AAAAAAAAAB6PoBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAAAAAAAAOBhFNwAAAAAAAMDBKLoBAAAAAAAADkbRDQAAAAAAAHAwim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAej6AYAAAAAAAA4GEU3AAAAAAAAwMEougEAAAAAAAAORtENAAAAAAAAcDCKbgAAAAAAAICDUXQDAAAAAAAAHIyiGwAAAAAAAOBgFN0AAAAAAAAAB6PoBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAAAAAAAAOBhFNwAAAAAAAMDBKLoBAAAAAAAADkbRDQAAAAAAAHAwim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAcrXtgBALh1XLlyRampqYUdBgAAAIAiys3NTU5OjO8BJIpuACQZYxQXF6czZ84UdigAAAAAijAnJyeFhobK1dW1sEMBCp3FGGMKOwgAhev333/XmTNnVKFCBXl6evKfKQAAAAD5lpGRoSNHjqh48eKqXr26nJ2dCzskoFBRdAPucFeuXFFkZKQqVKggf3//wg4HAAAAQBF27tw5xcbGKjIyUk2aNFGtWrUKOySg0DCcBbjDZV7DzdPTs5AjAQAAAFDUZU4rTUtL008//aT9+/cXckRA4aHoBkCSmFIKAAAA4IZZLBZJUpkyZZSSkqJ9+/YVckRA4eFbNgAAAAAAcDh3d3dduHChsMMACg1FNwC3rYiICFksFp0/f76wQ7nlGWP09NNPy9fXVxaLRbt371arVq30wgsvWNtUqlRJM2fOtD63WCxavnz5Db1uv3791LVr1xvqIzfjxo1TvXr1buprZFqzZo1q1qyp9PT0G+rHEcdWyvqe3QpuZky34v7m19GjR62fwVuhn2ulpqaqUqVK2r59u8P6vN1wLnUMR51Lb7Z/8jm7Ph+ycyucy/IS561g3759qlixopKSkgo7FOSAy8jjTla8sAMAABS+VatWad68eYqIiFCVKlVUpkwZLVu2jDtO5dNLL72kV199VcWKFbuhfk6ePKlSpUrdcDzbtm1TiRIlbrifoiK/+xsREaHWrVsrPj5ePj4+Ny+wm6xfv346f/68TeEmMDBQJ0+eVJkyZRz2Oi4uLho+fLhGjhypNWvWOKzf2wnnUsdw1Lm0qLrTzt05adWqldavX2+z7JlnntEHH3wgSQoNDdW9996r6dOna8yYMYURIgDkiKIbABvPpo3VvozDhRpDqFM1ve88vlBjuNPExMQoICBATZs2tS7z9fUtxIiKno0bNyomJkbdu3e/4b4cdSfhsmXLOqSfoqKw9tcYo/T0dBUvfuv8WVWsWLGbckfqXr16adiwYdq7dy93o8sG59Ib58hzaVF1u5+709PTZbFY8nw94aeeekqvv/669bmHh4fN+ieeeEJPPfWURo8efUudhwFAYnopgOvsyzisLSayUB/5KfqlpKRo8ODBKleunNzc3HTfffdp27Zt2bZNTk5Wx44d1axZM6acXqNfv356/vnnFRcXJ4vFokqVKknK/9SSY8eOqUePHvLx8ZGvr6+6dOmio0ePWtenp6dr6NCh8vHxUenSpfXSSy/lON3gwoULcnd31/fff2+z/KuvvpKXl5eSk5MlSSNHjlSNGjXk4eGhKlWqaMyYMUpLS7Pbb3b71bVrV/Xr18/6PCUlRcOHD1eFChVUokQJNWnSRBERETnu/+LFi9WuXTu5ublZl2VOx/r4448VFBQkT09PDRw4UOnp6Xrrrbfk7++vcuXK6c0337Tp69rpZqmpqXruuecUEBAgNzc3BQcHa+LEiZKuFnvGjRunoKAgubq6qnz58ho8eLC1n+ymsX300Ufq1q2bPDw8VL16da1YscLmtVesWKHq1avLzc1NrVu31vz58/M1TXvp0qWqVauWXF1dValSJU2bNi1Lm4sXL+rRRx9ViRIlVKFCBb377rvWdbntU07ys79Hjx5V69atJUmlSpWSxWKx5kBGRoYmTpyoypUry93dXXXr1tWXX35p7Tdz6vr333+vhg0bytXVVRs3brS+37Nnz1ZgYKA8PDzUo0cPJSQkWLfNyMjQ66+/rooVK8rV1VX16tXTqlWr7O5Tenq6+vfvb40lJCREs2bNsq4fN26c5s+fr6+//loWi0UWi0URERHZTntbv369GjduLFdXVwUEBGjUqFG6cuWKdX2rVq00ePBgvfTSS/L19ZW/v7/GjRtnE0+pUqXUrFkzLV68OE/vyZ2Ec+nNO5dK0htvvKFy5crJy8tLTz75pEaNGmUz3XXbtm1q166dypQpI29vb7Vs2VI7d+606cNisej9999Xx44d5e7uripVqth8tnOzdetW1a9fX25ubmrUqJF27dqVpU1UVJQ6duwoT09P+fn5qXfv3jpz5oxNmytXrui5556Tt7e3ypQpozFjxti8h9efy6ZPn67atWurRIkSCgwM1MCBA5WYmGhd//vvv6tz584qVaqUSpQooVq1aum7777Lc0xJSUnq06ePPD09FRAQkO15Oye5vc/z5s2Tj4+PVqxYodDQULm6uiouLi5P75l0tcjm7+9vfZQsWdJmfbt27XTu3LksI+Jw1cWLF9WrVy+VKFFCAQEBmjFjhs3nd8GCBWrUqJG8vLzk7++vxx57TKdPn7Zun/k7b+XKlapTp47c3Nx07733KioqqpD2CChaKLoBKNJeeuklLV26VPPnz9fOnTtVrVo1hYeH69y5czbtzp8/r3bt2ikjI0M//fRTgU8lSzuZqku7Em0eqbGXJUkZlzOyrLu06+8/plOiL2VZd+Xc1S9CV/5Ky7Iu5dClfMU2a9YsaxHg5MmTdouWOe5fWprCw8Pl5eWlDRs2aNOmTfL09FSHDh2UmpoqSZo2bZrmzZunjz/+WBs3btS5c+f01Vdf2e2zZMmSevDBB/XZZ5/ZLF+4cKG6du1q/U+3l5eX5s2bp3379mnWrFn68MMPNWPGjHzvw7Wee+45/frrr1q8eLH27Nmjf//73+rQoYMOHTpkd5sNGzaoUaNGWZbHxMTo+++/16pVq7Ro0SLNmTNHDzzwgI4fP67169dr8uTJevXVV7Vly5Zs+3377be1YsUKffHFF4qOjtbChQutX+aXLl2qGTNmaPbs2Tp06JCWL1+u2rVr57hv48ePV48ePbRnzx516tRJvXr1sn5eYmNj9fDDD6tr166KjIzUM888o1deeSWPR03asWOHevTooUceeUS//fabxo0bpzFjxmjevHk27aZMmaK6detq165dGjVqlIYMGaKffvrpH+/TP9nfwMBALV26VJIUHR2tkydPWotZEydO1CeffKIPPvhAe/fu1YsvvqjHH388yxe6UaNGadKkSdq/f7/q1KkjSTp8+LC++OILffPNN1q1apV27dqlgQMHWreZNWuWpk2bpqlTp2rPnj0KDw/XQw89ZDe3MjIyVLFiRS1ZskT79u3Ta6+9ppdffllffPGFJGn48OHq0aOHOnTooJMnT+rkyZM2o6wynThxQp06ddI999yjyMhIvf/++5ozZ47eeOMNm3bz589XiRIltGXLFr311lt6/fXXre9NpsaNG2vDhg35eRscJuHPBB3bE2fzOBt3tXiQdjkty7pje+Ks2/55+FSWdUnxV68DlXjmYpZ1p4+czjYGeziXZuWoc+nChQv15ptvavLkydqxY4eCgoL0/vvv27S5ePGi+vbtq40bN2rz5s2qXr26OnXqpIsXL9q0GzNmjLp3767IyEj16tVLjzzyiPbv35/rviQmJurBBx9UaGioduzYoXHjxmn48OE2bc6fP682bdqofv362r59u1atWqU///xTPXr0sGk3f/58FS9eXFu3btWsWbM0ffp0ffTRR3Zf28nJSW+//bb27t2r+fPna+3atXrppZes6wcNGqSUlBT9/PPP+u233zR58mR5enrmOaYRI0Zo/fr1+vrrr/Xjjz8qIiIi2+KXPXl5n5OTkzV58mR99NFH2rt3r8qVK5fn92zhwoUqU6aM7r77bo0ePdpaKM7k4uKievXqFdp5KeNkktJ3nbZ5ZMRe/WeLuXwly7r0XX+fW9Kj47Nue+7//j7861LWdSfzf+26oUOHatOmTVqxYoV++uknbdiwweb9TUtL04QJExQZGanly5fr6NGjNsXzTCNGjNC0adO0bds2lS1bVp07d86xMA/g/xgAd7SkpCSzfft2k5SUZIwxpsXlx4zrpVqF+mhx+bE8xZ6YmGicnZ3NwoULrctSU1NN+fLlzVtvvWXWrVtnJJn9+/ebOnXqmO7du5uUlJSbchxz8+frcSbK5Rebx7G+B40xxlw+lJxlXZTLL9ZtY5rvybIufuFpY4wxZ947mWVdbKe9+Y5vxowZJjg42GZZy5YtzZAhQ6zPg4ODzYwZM6zPJZmvvvrKGGPMggULTEhIiMnIyLCuT0lJMe7u7uaHH34wxhgTEBBg3nrrLev6tLQ0U7FiRdOlSxe7cX311VfG09PTmp8JCQnGzc3NfP/993a3mTJlimnYsKH1+dixY03dunXt7pcxxnTp0sX07dvXGGPM77//booVK2ZOnDhh0+b+++83o0ePtvu63t7e5pNPPrFZNnbsWOPh4WEuXLhgXRYeHm4qVapk0tPTrctCQkLMxIkTrc+vPbbPP/+8adOmjc2xzTRt2jRTo0YNk5qamm1M2b1nr776qvV5YmKikWQ9niNHjjR33323TR+vvPKKkWTi4+Pt7numxx57zLRr185m2YgRI0xoaKhNTB06dLBp07NnT9OxY8c87VNO8ru/meeIa/ft8uXLxsPDw/zyy9+fQWOM6d+/v3n00Udttlu+fLlNm7Fjx5pixYqZ48ePW5d9//33xsnJyZw8edIYY0z58uXNm2++abPdPffcYwYOHGiMMSY2NtZIMrt27bK7n4MGDTLdu3e3Pu/bt2+Wz9H1/bz88stZPqPvvvuu8fT0tOZiy5YtzX333ZcltpEjR9osmzVrlqlUqZLd+G6m76Z8Ywb7D7B5zB/4sTHGmNNH/syybrD/AOu20x+YnGXd1iWbjTHG/Pzxuizr3us5K9/xcS69OefSJk2amEGDBtksa9asmU0810tPTzdeXl7mm2++sS6TZAYMGGDTrkmTJubZZ5+120+m2bNnm9KlS5tLly5Zl73//vs2n7MJEyaY9u3b22x37NgxI8lER0cbY64et5o1a9q8xyNHjjQ1a9a0Pr8+R663ZMkSU7p0aevz2rVrm3HjxmXbNreYLl68aFxcXMwXX3xhXX/27Fnj7u6e5f3NTl7e57lz5xpJZvfu3Tn2ld17Nnv2bLNq1SqzZ88e8+mnn5oKFSqYbt26Zdm2W7dupl+/frnGezNcGr/ZnHd+2+aR1Ofq5/XKofgs6847v23d9uJ9X2RZl/LpfmOMMZffi8yy7tL4zfmK7cKFC8bZ2dksWbLEuuz8+fPGw8PD7vu7bds2I8lcvHjRGPP377zFixdb22TmyOeff55tH5nfL7788ksza9YsM2fOnHzFDdxOmPQOoMiKiYlRWlqamjVrZl3m7Oysxo0ba//+/brnnnskXZ120LhxY33++eeFdlHmUk/6yetB2wvjF/O5egp2ruiqKpvtj+Sp8GE1ZSTb3sHNOdhVkuT9cGl53Otps87Js+D3MTIyUocPH5aXl5fN8suXLysmJkYJCQk6efKkmjRpYl1XvHhxNWrUKMdpUZ06dZKzs7NWrFihRx55REuXLlXJkiXVtm1ba5vPP/9cb7/9tmJiYpSYmKgrV65kmXqSH7/99pvS09NVo0YNm+UpKSkqXbq03e0uXbqUZTqUdHWa0LXHxc/PT8WKFbO5lo2fn5/NVI5r9evXT+3atVNISIg6dOigBx98UO3bt5ck/fvf/9bMmTNVpUoVdejQQZ06dVLnzp1zvKZN5ogsSSpRooRKlixpfe3o6Gjr5yZT48aN7fZ1vf3796tLly42y5o1a6aZM2cqPT3d+vkLCwuzaRMWFmadSvVP9iknOe1vdg4fPqzk5GS1a9fOZnlqaqrq169vsyy7kY1BQUGqUKGC9XlYWJgyMjIUHR0tDw8P/fHHHzbnLOnqMYqMjLQb07vvvquPP/5YcXFxunTpklJTU/N9F8n9+/crLCxMFovF5nUTExN1/PhxBQUFSbI9XpIUEBCQ5Xi5u7tnGWlSUJr2bq6729vG6OFzdaSWT0ApDf9htN1tH5vZR6nJqTbLfAOvfqbrd26oSg2r2Kxz9cz6eb7ZOJdmfy6Njo62GTEqXT03rV271vr8zz//1KuvvqqIiAidPn1a6enpSk5OVlxcnM122Z1/8nL30cwRrdfGdn1fkZGRWrdunXWU2bViYmKsx+Lee++1+SyGhYVp2rRpNufJa61evVoTJ07UgQMHdOHCBV25ckWXL19WcnKyPDw8NHjwYD377LP68ccf1bZtW3Xv3t36Wc4tpsxzyrU55evrq5CQkFyPiZT399nFxSXL+SUv79nTTz9t/bl27doKCAjQ/fffr5iYGFWtWtW6rjDPSy5P3S3nzpVtlll8rv6d5lTRU55betrd1v2jtlKy7WgxS/DVz53zw9VV/F7ba3Na/PN3g40jR44oLS3N5ne5t7e3zfubOXIzMjJS8fHxysjIkCTFxcUpNDTU2u7afM/MkbyMEgXudBTdANgIdaomZdwCMTjQAw88oKVLl2rfvn03NE3tRjgHuMg5wCXbdU5uTnKvn/WP4UyuIe521xUv66ziZQv/rniJiYlq2LChFi5cmGXdjVwQ2sXFRQ8//LA+++wzPfLII/rss8/Us2dPawHm119/Va9evTR+/HiFh4fL29tbixcvzvF6NE5OTlm+nF47PSIxMVHFihXTjh07snz5ye5LS6YyZcooPj4+y/Lr71posViyXZb5R+71GjRooNjYWH3//fdavXq1evToobZt2+rLL79UYGCgoqOjtXr1av30008aOHCgpkyZovXr19u9W2J+Xrsw/JN9ykl+9zfzOkkrV660KZ5Jkqurq83zgri74OLFizV8+HBNmzZNYWFh8vLy0pQpU+xOR75ReTle586dK7QLvXv7ecvbzzvbdc5uzgqsE2R3W79q9m8s4VnGS55lvOyuLyicS+2fS3PTt29fnT17VrNmzVJwcLBcXV0VFhZmnZZbEBITE9W5c2dNnjw5y7qAgIB/1OfRo0f14IMP6tlnn9Wbb74pX19fbdy4Uf3791dqaqo8PDz05JNPKjw8XCtXrtSPP/6oiRMnatq0aXr++edzjenw4Ru7eVZe32d3d3ebQqP0z96zzOLg4cOHbYpu586ds3lekJwCSkgB2f8+sLgVV7H65exuWyzE/p3Kncq6S2Xt/w3oCElJSQoPD1d4eLgWLlyosmXLKi4uTuHh4QX62QFuZxTdANgoSncNrVq1qlxcXLRp0yYFBwdLuvoH/7Zt22wu7jxp0iR5enrq/vvvV0REhM1/7eAYDRo00Oeff65y5crZHRkREBCgLVu2qEWLFpKuXkh6x44datCgQY599+rVS+3atdPevXu1du1am2tQ/fLLLwoODra57tjvv/+eY39ly5bVyZMnrc/T09MVFRVlvah+/fr1lZ6ertOnT6t58+Y57/g16tevr3379uW5fX6ULFlSPXv2VM+ePfXwww+rQ4cOOnfunHx9feXu7q7OnTurc+fOGjRokO666y799ttvuR7X7ISEhNhcfFtSvq5LVbNmTW3atMlm2aZNm1SjRg2bL2ObN2+2abN582bVrFnT+tyR+5QTF5erhfD09L9Hkl57ke+WLVvmu8+4uDj98ccfKl++vKSr++bk5KSQkBCVLFlS5cuX16ZNm2z63rRpk90RhZs2bVLTpk1tRvnExMRk2Y9r9yE7NWvW1NKlS2WMsX7x3bRpk7y8vFSxYsV87WNUVFSWUX9wDM6l2Z9LQ0JCtG3bNvXp08e67Ppz06ZNm/Tee++pU6dOkq7ekOL6GxhIVz+T1/azefPmPOVzzZo1tWDBAl2+fNk62u36c1mDBg20dOlSVapUKcfRudcXzTOvZ5bdKLcdO3YoIyND06ZNs46Qzrym47UCAwM1YMAADRgwQKNHj9aHH36o559/PteYqlatKmdnZ23ZssU64jU+Pl4HDx7M0znwn77PUt7fs2tljkq8vogZFRWlhx9+OF+vfyeoUqWKnJ2dtW3bNuv7m5CQoIMHD6pFixY6cOCAzp49q0mTJikwMFCStH379mz72rx5c5YcufZ3N4DscSMFAEVWiRIl9Oyzz2rEiBFatWqV9u3bp6eeekrJycnq37+/TdupU6eqV69eatOmjQ4cOFBIEd++evXqpTJlyqhLly7asGGDYmNjFRERocGDB+v48eOSpCFDhmjSpElavny5Dhw4oIEDB+bpjpgtWrSQv7+/evXqpcqVK9tMgalevbri4uK0ePFixcTE6O23387xguKS1KZNG61cuVIrV67UgQMH9Oyzz9rEUaNGDfXq1Ut9+vTRsmXLFBsbq61bt2rixIlauXKl3X7Dw8O1cePGXPcnv6ZPn65FixbpwIEDOnjwoJYsWSJ/f3/5+Pho3rx5mjNnjqKionTkyBF9+umncnd3txah8+uZZ57RgQMHNHLkSB08eFBffPGF9SYI149QyM6wYcO0Zs0aTZgwQQcPHtT8+fP1v//9L8vFxjdt2qS33npLBw8e1LvvvqslS5ZoyJAhkuTwfcpJcHCwLBaLvv32W/31119KTEyUl5eXhg8frhdffFHz589XTEyMdu7cqXfeeUfz58/PtU83Nzf17dtXkZGR2rBhgwYPHqwePXrI3//qKKsRI0Zo8uTJ+vzzzxUdHa1Ro0Zp9+7d1v2/XvXq1bV9+3b98MMPOnjwoMaMGZOl2FCpUiXt2bNH0dHROnPmTLYXth44cKCOHTum559/XgcOHNDXX3+tsWPHaujQoTZTnfNiw4YN1inOcCzOpdmfS59//nnNmTNH8+fP16FDh/TGG29oz549Nuel6tWra8GCBdq/f7+2bNmiXr16yd096yihJUuW6OOPP9bBgwc1duxYbd26Vc8991xuh0+PPfaYLBaLnnrqKe3bt0/fffedpk6datNm0KBBOnfunB599FFt27ZNMTEx+uGHH/TEE0/YFMbj4uI0dOhQRUdHa9GiRXrnnXfsngOqVaumtLQ0vfPOOzpy5IgWLFigDz74wKbNCy+8oB9++EGxsbHauXOn1q1bZy2G5BaTp6en+vfvrxEjRmjt2rWKiopSv3798nxe+Kfvs5T7exYTE6MJEyZox44dOnr0qFasWKE+ffqoRYsWNlNVjx49qhMnTthMl8ZVXl5e6tu3r0aMGKF169Zp79696t+/v5ycnGSxWBQUFCQXFxdrfq1YsUITJkzItq/XX39da9asseZImTJl1LVr14LdIaAIougGoEibNGmSunfvrt69e6tBgwY6fPiwfvjhB5UqlXW4/owZM9SjRw+1adNGBw8eLIRob18eHh76+eefFRQUpH/961+qWbOm+vfvr8uXL1tHawwbNky9e/dW3759rdPkunXrlmvfFotFjz76qPVOc9d66KGH9OKLL+q5555TvXr19Msvv2jMmDE59vef//xHffv2VZ8+fdSyZUtVqVLFOjIj09y5c9WnTx8NGzZMISEh6tq1q81/ibPTq1cv7d27V9HR0bnuU354eXnprbfeUqNGjXTPPffo6NGj+u677+Tk5CQfHx99+OGHatasmerUqaPVq1frm2++yfF6STmpXLmyvvzySy1btkx16tTR+++/bx35cv3Uyuw0aNBAX3zxhRYvXqy7775br732ml5//fUsd0EbNmyYtm/frvr16+uNN97Q9OnTFR4eLkkO36ecVKhQQePHj9eoUaPk5+dn/eI9YcIEjRkzRhMnTlTNmjXVoUMHrVy5UpUrV86lx6tfkP/1r3+pU6dOat++verUqaP33nvPun7w4MEaOnSohg0bptq1a2vVqlVasWKFqlevnm1/zzzzjP71r3+pZ8+eatKkic6ePZvl2lZPPfWUQkJC1KhRI5UtWzbLaMPMff3uu++0detW1a1bVwMGDFD//v316quv5ueQ6ddff1VCQgIjSm4SzqXZn0t79eql0aNHa/jw4dYp9/369bO5vtqcOXMUHx+vBg0aqHfv3ho8eLDKlcs6rW/8+PFavHix6tSpo08++USLFi3K0wh4T09PffPNN/rtt99Uv359vfLKK1mmbGaOZE1PT1f79u1Vu3ZtvfDCC/Lx8bEpYvXp00eXLl1S48aNNWjQIA0ZMsTm2mXXqlu3rqZPn67Jkyfr7rvv1sKFCzVx4kSbNunp6Ro0aJD1fFWjRg3reScvMU2ZMkXNmzdX586d1bZtW913331q2LBhrsck0z95n6Xc3zMXFxetXr1a7du311133aVhw4ape/fu+uabb2z6WbRokdq3b39T/jlzO5g+fbrCwsL04IMPqm3btmrWrJlq1qwpNzc3lS1bVvPmzdOSJUsUGhqqSZMmZSkmZ5o0aZKGDBmihg0b6tSpU/rmm2+sI8YB2GcxOV11FcBtLzk5Wfv371fNmjXl4eFR2OEARdqIESN04cIFzZ49u7BDcZg333xTH3zwgY4dO1bYodzyxo0bp+XLl+fpouxFVc+ePVW3bl29/PLLhR0KbmN5OZe2a9dO/v7+WrBgQZ77tVgs+uqrrxidcxtJTU1V9erV9dlnn2W5SQ2yl5SUpAoVKmjatGlZZoZkJyIiQq1bt1Z8fLx8fHzy9BqZ3y8yRyF6enrqP//5zw1GDhRNjHQDAMBBXnnlFQUHB99SNybIr/fee0/btm2zTmOaMmWK+vbtW9hh4RaQmpqq2rVr68UXXyzsUHCbu/5cmpycrOnTp2vv3r06cOCAxo4dq9WrV3NuguLi4vTyyy9TcMvBrl27tGjRIuvlEjJHul5/t3EANwdFNwAAHMTHx0cvv/xyvq+RdSs5dOiQunTpotDQUE2YMEHDhg3TuHHjJEkdO3aUp6dnto///ve/NzWuDRs22H3tnO6ECMdxcXHRq6++mu11sgBHuv5carFY9N1336lFixZq2LChvvnmGy1dutSh1/D673//a/f80rFjR4e9TlFzq597q1Wrpmeeeaaww7jlTZ06VXXr1lXbtm2VlJSkDRs2qEyZMoUdFnBHYHopcIdjeimAvDpx4oQuXbqU7TpfX1/5+vretNe+dOmSTpw4YXd9tWrVbtprA7j9nTt3TufOnct2nbu7uypUqFDAEd0aOPfin2B6KfA3+/eyBgAAuEZhful0d3fnyx2Am+Zm/+OgqOLcCwA3pujOfwHgUEX5GlQAAAAAbg1MpgP+RtENuMNl3uo7MTGxkCMBAAAAUNSlpKRIkq5cuVLIkQCFj+mlwB2uePHiKlOmjPV6HZ6enkX6IvAAAAAACkdGRoaOHTum5ORkpaenF3Y4QKGj6AZAQUFBkpTjhXIBAAAAIDcZGRk6deqUpKuj3bjrNe5kFN0AyGKxKDg4WJ6envr+++914cIFlStXThaLpbBDAwAAAFBEGGOUlpYmY4wSExOVkpKiihUrFnZYQKGxGK5yCOAaJ06c0HfffaezZ88WdigAAAAAiiBjjJydnVWnTh21adNGxYsz3gd3JopuALKIj4/XmTNnlJqaWtihAAAAAChiLBaLPD09Vb58eQpuuKNRdAMAAAAAAAAcjFsUAgAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GD/H/IE86oTTGSqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_station.make_plot(colorby='label')\n" + ] + }, + { + "cell_type": "markdown", + "id": "37e4da59-953b-4fed-ab7a-a33325f31e66", + "metadata": {}, + "source": [ + "If you want more details you can inspect the DataFrame with the gapfill values, or print out the information." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1fd0c99f-4d86-4dbb-936c-226d949f1d30", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
temp_final_labeltemp
namedatetime
vlinder052022-09-01 19:45:00+00:00gap_debiased_era520.470136
2022-09-01 20:00:00+00:00gap_debiased_era520.200433
2022-09-01 20:15:00+00:00gap_debiased_era520.018491
2022-09-01 20:30:00+00:00gap_debiased_era519.836549
2022-09-01 20:45:00+00:00gap_debiased_era519.654607
\n", + "
" + ], + "text/plain": [ + " temp_final_label temp\n", + "name datetime \n", + "vlinder05 2022-09-01 19:45:00+00:00 gap_debiased_era5 20.470136\n", + " 2022-09-01 20:00:00+00:00 gap_debiased_era5 20.200433\n", + " 2022-09-01 20:15:00+00:00 gap_debiased_era5 20.018491\n", + " 2022-09-01 20:30:00+00:00 gap_debiased_era5 19.836549\n", + " 2022-09-01 20:45:00+00:00 gap_debiased_era5 19.654607" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#inspect the gapfilldf attribute direct\n", + "your_station.gapfilldf.head()\n", + "\n", + "#or print out info\n", + "#your_station.get_gaps_info()" + ] + }, + { + "cell_type": "markdown", + "id": "5f753cb4-eb5b-4479-a949-a58c3a18928a", + "metadata": {}, + "source": [ + "## Filling gaps exercise\n", + "\n", + "For a more detailed reference you can use this [Filling gaps exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Gap_filling_excercise_03.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/examples/gee_example.ipynb b/docs/_build/.doctrees/nbsphinx/examples/gee_example.ipynb new file mode 100644 index 00000000..873b202c --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/examples/gee_example.ipynb @@ -0,0 +1,1594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b1600459-c400-47fa-a3a2-b3114f4a5a34", + "metadata": {}, + "source": [ + "# Demo example: Using a Google Earth engine\n", + "\n", + "This example is the continuation of the previous example: [Using a Dataset](https://vergauwenthomas.github.io/MetObs_toolkit/examples/doc_example.html). This example serves as a demonstration on how to get meta-data from the Google Earth Engine (GEE). \n", + "\n", + "Before proceeding, make sure you have **set up a Google developers account and a GEE project**. See [Using Google Earth Engine](https://vergauwenthomas.github.io/MetObs_toolkit/gee_authentication.html) for a detailed description of this." + ] + }, + { + "cell_type": "markdown", + "id": "b8ed4367-693b-4692-bba4-aee9ceb8c311", + "metadata": {}, + "source": [ + "## Create your Dataset\n", + "\n", + "Create a dataset with the demo data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8ec045a4-be37-4c1b-bed4-df4dbf27dc51", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "\n", + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "87479c13-6a41-4c53-ae7f-4c4eaaceef08", + "metadata": {}, + "source": [ + "## Extracting LCZ from GEE\n", + "\n", + "Here is an example of how to extract the Local Climate Zone (LCZ) information of your stations. First, we take a look at what is present in the metadata of the dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "0f94ec85-b403-41f2-bc4b-e256c93d9516", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networklatloncall_namelocationgeometrylczassumed_import_frequencydataset_resolution
name
vlinder01Vlinder50.9804383.815763ProefhoeveMellePOINT (3.81576 50.98044)NaN0 days 00:05:000 days 00:05:00
vlinder02Vlinder51.0223793.709695SterreGentPOINT (3.70969 51.02238)NaN0 days 00:05:000 days 00:05:00
vlinder03Vlinder51.3245834.952109CentrumTurnhoutPOINT (4.95211 51.32458)NaN0 days 00:05:000 days 00:05:00
vlinder04Vlinder51.3355224.934732StadsboerderijTurnhoutPOINT (4.93473 51.33552)NaN0 days 00:05:000 days 00:05:00
vlinder05Vlinder51.0526553.675183WatersportbaanGentPOINT (3.67518 51.05266)NaN0 days 00:05:000 days 00:05:00
\n", + "
" + ], + "text/plain": [ + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry lcz assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) NaN 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) NaN 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) NaN 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) NaN 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) NaN 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.metadf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "86003003-5fd8-4b6e-a613-073efc27cf4c", + "metadata": {}, + "source": [ + "To extract geospatial information for your stations, the **lat** and **lon** (latitude and longitude)\n", + "of your stations must be present in the metadf. If so, than geospatial\n", + "information will be extracted from GEE at these locations.\n", + "\n", + "To extract the Local Climate Zones (LCZs) of your stations:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "48431035-f130-44dc-9f35-5bfdd84fcff3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

To authorize access needed by Earth Engine, open the following\n", + " URL in a web browser and follow the instructions:

\n", + "

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=EilDDu9N_IN7ZxxlE8vHRyOhvajPnAULh-m6NKErDfA&tc=6gnXS_wEbNaFrF2IbPoa4ClUF8zPJXCu5eV4Z-p7mIE&cc=g2TqjaVuDM_wFOuJbQqeoAvDR8bLFGxRCM7W-4wlKJo

\n", + "

The authorization workflow will generate a code, which you should paste in the box below.

\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter verification code: 4/1AfJohXk4_ehQtiIn6aGEgF_Pv9ImRjoTVbH17orBc6cNf-eI4_kuuJ_0kLY\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Successfully saved authorization token.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 Low plants (LCZ D)\n", + "vlinder02 Open midrise\n", + "vlinder03 Open midrise\n", + "vlinder04 Sparsely built\n", + "vlinder05 Water (LCZ G)\n", + "vlinder06 Scattered Trees (LCZ B)\n", + "vlinder07 Compact midrise\n", + "vlinder08 Compact midrise\n", + "vlinder09 Scattered Trees (LCZ B)\n", + "vlinder10 Compact midrise\n", + "vlinder11 Open lowrise\n", + "vlinder12 Open highrise\n", + "vlinder13 Compact midrise\n", + "vlinder14 Low plants (LCZ D)\n", + "vlinder15 Sparsely built\n", + "vlinder16 Water (LCZ G)\n", + "vlinder17 Scattered Trees (LCZ B)\n", + "vlinder18 Low plants (LCZ D)\n", + "vlinder19 Compact midrise\n", + "vlinder20 Compact midrise\n", + "vlinder21 Sparsely built\n", + "vlinder22 Low plants (LCZ D)\n", + "vlinder23 Low plants (LCZ D)\n", + "vlinder24 Dense Trees (LCZ A)\n", + "vlinder25 Water (LCZ G)\n", + "vlinder26 Open midrise\n", + "vlinder27 Compact midrise\n", + "vlinder28 Open lowrise\n", + "Name: lcz, dtype: object\n" + ] + } + ], + "source": [ + "lcz_values = your_dataset.get_lcz()\n", + "# The LCZs for all your stations are extracted\n", + "print(lcz_values)" + ] + }, + { + "cell_type": "markdown", + "id": "35933b04-cd3f-4f5e-a557-596701a4125e", + "metadata": { + "tags": [] + }, + "source": [ + "The first time, in each session, you are asked to authenticated by Google.\n", + "Select your Google account and billing project that you have set up and accept the terms of the condition.\n", + "\n", + "*NOTE: For small data-requests the read-only scopes are sufficient, for large data-requests this is insufficient because the data will be written directly to your Google Drive.*" + ] + }, + { + "cell_type": "markdown", + "id": "9d055961-92bb-4f5e-b9e6-3ac26f2271ac", + "metadata": {}, + "source": [ + "The metadata of your dataset is also updated" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c90d4a3f-11f9-44e2-9e53-cc145569e984", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 Low plants (LCZ D)\n", + "vlinder02 Open midrise\n", + "vlinder03 Open midrise\n", + "vlinder04 Sparsely built\n", + "vlinder05 Water (LCZ G)\n", + "Name: lcz, dtype: object\n" + ] + } + ], + "source": [ + "print(your_dataset.metadf['lcz'].head())" + ] + }, + { + "cell_type": "markdown", + "id": "1c35c91a-2bc8-485c-92df-47ed68927667", + "metadata": {}, + "source": [ + "To make a geospatial plot you can use the following method:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d5afd195-1aae-4254-a742-e917fb429d6a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:48: ShapelyDeprecationWarning: The 'type' attribute is deprecated, and will be removed in the future. You can use the 'geom_type' attribute instead.\n", + " if geom is not None and geom.type.startswith(prefix) and not geom.is_empty:\n", + "/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:715: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead\n", + " if pd.api.types.is_categorical_dtype(values.dtype):\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAQhCAYAAADvW1QwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zM9x/A8dddLnsJGUQSJLFJ7L1H7Vl7VUu1ZqnS+hWlFNUatWtXbUpprdp7xt4zZBAikT3v7vdH2tOryHJxSbyfj0ce3Pf7Ge/vGbl3Pkuh1Wq1CCGEEEIIIcQ7RmnsAIQQQgghhBDCGCQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIkSOtXLkShULBuXPn0iwXGRnJxIkT8fX1xcbGBktLS8qVK8eXX35JcHAwAIcOHUKhUKT7dejQobfwZEIIIXIKlbEDEEIIIbLq/v37NGnShEePHtG5c2cGDBiAmZkZly9fZtmyZWzdupXbt29TunRpfv3111TbiI6OZvjw4VhaWlKiRIm3/ARCCCGMSZIhIYQQuVJycjIdO3YkJCSEQ4cOUadOHb373333Hd9//z0ALi4u9OrVK9V2evXqRUJCAmvXrsXV1TXb4xZCCJFzyDQ5IYQQudJvv/3GpUuX+Prrr19JhADs7Oz47rvv0mxj+fLlrFmzhoEDB9KxY8fsClUIIUQOJcmQEEKIXGn79u0A9O7dO0v1b9y4wdChQ/Hx8WHmzJmGDE0IIUQuIcmQEEKIXOnGjRvY29vj7u6e6bpxcXF06dIFgA0bNmBhYWHo8IQQQuQCsmZICCFErhQZGYmtrW2W6n722WdcvXqVZcuWUapUKQNHJoQQIreQkSEhhBC5kp2dHVFRUZmut2HDBpYsWUL37t356KOPsiEyIYQQuYUkQ0IIIXKlUqVKERERQUBAQIbr3Lt3jwEDBuDl5cXPP/+cjdEJIYTIDSQZEkIIkSu1adMGgNWrV2eofGJiIl27diU+Pp7169dneYqdEEKIvEOSISGEELlSp06dKF++PN999x0nT5585X5UVBRff/217vXo0aPx8/Nj6tSpVKlS5W2GKoQQIodSaLVarbGDEEIIIf5r5cqVfPjhhwwcODDVw1A/++wzQkJCaNKkCUFBQXTp0oXatWtjamrKtWvXWLt2LQ4ODty6dYtdu3bRsmVLXF1dmTZtGgqFItU+a9WqhaenZ3Y/mhBCiBxCdpMTQgiRoy1cuDDV63379sXb25uLFy8ya9Ystm7dyu+//45Go8Hb25v+/fszbNgwAE6fPg1AcHAwffr0eW1fK1askGRICCHeITIyJIQQQgghhHgnyZohIYQQQgghxDtJkiEhhBBCCCHEO0mSISGEEEIIIcQ7SZIhIYQQQgghxDtJkiEhhBBCCCHEOylPbK2t0WgIDg7G1tb2tWdHCCGEEEIIIfI+rVZLVFQUrq6uKJVpj/3kiWQoODgYd3d3Y4chhBBCCCGEyCECAgJwc3NLs0yeSIZsbW2BlAe2s7MzcjRCCCGEcXVZdJLrjyONHYYQQhiFJiGWoIV9dTlCWvJEMvTP1Dg7OztJhoQQQrzT7j+L5mZYMkpzK2OHIoQQRpWR5TOygYIQQgiRh2y/FGzsEIQQIteQZEgIIYTII7RarSRDQgiRCZIMCSGEEHnE/htPuf8sxthhCCFErpEn1gwJIYQQ77oktYYpO28YOwyRDguVAgcLJUo5CUSILNNoITxeQ3yy9o3bkmRICCGEyANWn3rI/VAZFcqpFEDH0tY09rTB1ETx9xUhRNZoSVJr2X8/mi03YniTlEiSISGEECKXexGbyOx9d4wdhkhDx9LWtC5lj0N+RxQqM5BD4oXIOq0WbXIirc1MAPjtRtZ/ECTJkBBCCJHLzT1wl4i4JGOHIV7DUqWgsacNDvkdUVqmf+6JECJ9ClNzHPJDY081O+7EZnnKnGygIIQQQuRiD0JjWHXS39hhiDTks1BiaqJIGRESQhiMQmWGqUnKOryskmRICCGEyMWm7bpBkvrNFxGL7JOyWYJCpsYJYWiKlPV3b7IhiSRDQgghRC516v5z9lwLMXYYQgiRa0kyJIQQQuRCGo2WyTuuGzsMIYTI1SQZEkIIIXKhrReCuBoUaewwhBAiV5Pd5IQQQohcJjYxmel7bho7DCFyhXEjBhEVGcHsZWtSvX/j6mWWzZuJ3+kTREdFUrBQYarUrMMHnw6lqKc3/Tq35typ469tf9nGP6lSs3Z2hS+ymSRDQgghRC6z+Mh9QiITjB2GELne4X27GfnJB9Sq14ipcxbjVqQYYc+fsffPbcz/YQo/LFzOzMW/kpSUqFcvKSmRIR90xdzcgvIVKxspemEIkgwJIYQQuciTiHh+Pnzf2GEIkevFxcXyzcgh1GnYlNlLV+uuu3kUwadiFSIjIgCwd3B4pe7E0Z/xIjyMtX/ux9zC4q3FLAxPkiEhhBAiF/nxr1vEJamNHYYQud6JQwcID3vOhwOHpXrfzt4+1esbflnKH7+tZ+mG7bgUKpydIYq3QJIhIYQQIpe4GhTBb+cDjR2GEHnCI/97ABTzKpHhOn6njjN94v/4+rsfqVClenaFJt4i2U1OCCGEyAW02pSttLVyvqoQBqHN5D+mx0EBjPy0L+/3+ICO3ftkU1TibZNkSAghhMgF9l4P4dT9MGOHIUSeUaSYNwAP7t1Ot2x8XBwjPu6NV4lSjJ4wNbtDE2+RJENCCCFEDpeYrGHqLtlKWwhDqlm/IQ75C7Bi4ZxU7/+zgQLAxNHDiHgRzo+LVqJSySqTvET+NIUQQogc7tdTD3kQGmPsMITItaKiIrl57YretXwODnwzfQ5fDOzLsA+70+OjT3Av6smLsOf89edWHgcFMn3BclYumsNfO7YxZ/k61MnJhD4N0WvHxtYOC0vLt/k4woAkGRJCCCFysBexiczZf8fYYQiRq507eYyuzevpXevQrTcTfpjDqq17WDZ/Fl8N/ZiY6CgKFipM1dp1GTJqLAAbVi0jOSmJQb07pdr2tzPm065Lj2x/BpE9JBkSQgghcrCf9t8hIi7J2GEIkWtNmrWASbMWvPZ+Wd+KzFy86rX3d524lB1hiRxC1gwJIYQQOdT9Z9H8evKhscMQQog8S5IhIYQQIoeauusmyRrZS1sIIbKLJENCCCFEDnTiXih7r4ekX1AIIUSWSTIkhBBC5DBqjZbJf94wdhhCCJHnSTIkhBBC5DBbzgdy/XGkscMQQog8T5IhIYQQIgeJSUjmhz23jB2GEEK8EyQZEkIIIXKQn4/c52lUgrHDEEKId4KcMySEEELkEI8j4lh85J6xwxA5mEoZj43FM5TKZDQaFdHxTiRrLIwdlhC5liRDQgghRA7xw55bxCdpjB2GyIEsTF/gZHcXW4unKBQvt1vXahVExTvzLNKb+KR8xgtQiFxKpskJIYQQOcDlwBdsOR9k7DBEDmRr8YRiziexswzRS4QAFAotdpYhFHM+ia3FEyNFKF5n4cxpdGlWN80y40YMYni/num25evuwIHdOwwVmvibJENCCCGEkWm1WibvkK20xassTF/gVuACSkXaI4ZKhQa3AhewMH1h8BhCn4YwddxoWtauQBUvF96rVpahH3bj9LHDBu/LGFrU9GH10oXZ0vYHnwxh8fptBmlrv99N6jRsYpC2xEsyTU4IIYQwsj3XQjjzIMzYYYgcyMnubrqJ0D+UCg1OtvcICKtssP6DAh7xQYfm2Nrb8/nX3+JdqgzJSUmcOHyAKWNHse3QGYP1lRdZWdtgZf1mbSQlJmJqZoajs4thghJ6ZGRICCGEMKLEZA1Td8mokHiVShmPrcXTTNWxtQxBpYw3WAxTvh6JQqFgzR/7aNKyLUU9vfEuWZo+Awbz67a9unKPgwL47KMe1CjpRq3SHowa+CHPn72M/Z/pYlvXr6ZZ9XLUKOnGd/8biVqtZsXCn2hUqSQNKhRnyZwf9fr3dXdg46plDOrdiWrehWhZuwJ7d+iPtMya8g1t6lWhenFXWtauwLwfviMpKUmvzKG9u+jRqhFVvQtS38eL4f17AdCvc2uCAwP4YeL/8HV3wNfd4bXvha+7A5tWr2BI365UL+5K+4bVueR3hkcP7tOvc2uqlyhMn/bvEeD/4JXn/odareaHiV9Tp2wR6pX3ZNZ349GiP/WxX+fWTBk7iukTxlDfx4tPe72v6/+faXJJiYlMGTuKxpVLUdW7IM1rlGfZvJm6NiIjIpgwahgNfL2pVdqD/l3bcuv6ldc+27tMkiEhhBDCiFad9Ofh81hjhyFyIBuLZ6+sEUqPQqHF2iLUIP1HhIdz/NB+un3QD6tUhjfs7O0B0Gg0fNavJxEvwlm+6U8Wrd1C4EN/Rg/6SK98wEN/jh/ax4JfNzNt3hK2bljNkA+6EvI4mOWb/mT4mAnM++E7Ll84p1dv/o9TaNKyLRv/OkrL9p35cnA/7t95eRaXtbUtk2bOZ8uBU4yeMJUt61axeukC3f0j+/fw+ce9qdOoKRt2HWbx+t8pX6ESADMX/4pLIVcGjfwf+/1ust/vZprvyeKffqTN+93YsOcIRb2K89XQj5k0ZgQfDR7Buh0H0Gph6rhRr62/avE8tm9ay4Qf57Fyyy4iXrxIdR3QH5vXY2pqyi9bdzNu6sxX7q9d/jOH9+7ihwXL2XboDFPmLMbVzUN3f9TAvoSFPmP+qk2s23mQ0uV8GdCtPRHh4Wk+37tIpskJIYQQRhIWk8hP++8YOwyRQymVyVmqZ6JISr9QBjzyv49Wq6WoV4k0y50+dpi7N6+z88RFCrq6ATB59kI6Nq7J1YvnKfd34qHRaJj441ysbWzxKlGKqjXr4n//DvNXbUSpVFLUqzgrFv7E2RNH8alYRdd+01bt6Ni9DwBDRn3NqaOHWLdiMV9PmQHAgM++0JUt7O7Bw3t32b19Cx8O/AyApXNn0KxtRwaNHKMrV7JMeQDsHRwwMTHB2sYmQ9PQ2nXpQbM2HQD4aNBn9G73HgOGjaJ2g8YA9PjoE74ZOeS19dcsXUS/ISNo0qINAGOnzuTE4f2vlPMo5smIr799bTuPgwPxKOZFxWo1USgUeonQ+TMnuXrRj4MX7mBmbg7AyHGTOLhnB3t3bqNTz77pPue7RJIhIYQQwkim7LxBVHzWPvCKvE+jydrHNLXW1CD9/3f61uvcv3sbF9fCukQIwKtEKWzt7Xlw97YuGXJ198DaxlZXpoCTEyYmSpTKlxOVCjg6ERaqP7LlW7ma/utKVbn5rylfu7dvYd2Knwl46E9sTAxqdbJeP7euXaVj9w8y9CzpKVG6rO73+R2dASheqsy/nsmZhIR4oqMisbG106sbFRnBs6dPKF/h5ZoulUpFGZ+KoNV/r8uUr5BmHO069+CTHh1oW78qtRs0pl7jZtSq3wiA29evEhsTQz0fL706CfFxBDx8kFpz7zRJhoQQQggj2H31MZv9Ao0dhsjBouOd0GoVmZoqp9UqiIl3NEj/RYp6oVAo8L932yDtmar0P3YqUKBS6SduCoUCrTbjZ21d8jvD/4YNYODnX1GrfmNs7OzYvW0Lvy6ZpytjbmG4Q2n/Ha9CoUi5ZvrqNY0mc9Mb/8vSyirN+6XL+7LzxEWOHdzH6WOHGT3oQ6rXacCMn38hNjYGR+eCLNv4xyv1bP+e2ihekjVDQgghxFv2NCqeMVtkMbNIW7LGgqh450zViYpzIVljmA//9g4O1KrfiPW/LCM2NuaV+5EREQB4epcgJDiIJ8Evk/t7t28SFRGBZ/GSbxzH5fNn9V9fOIend8rUvYvnzlCosDsfD/uCsr4VKVLMi8dBAXrli5cuy+njr98GXGVqhlqtfuM402NrZ4+Tc0GuXPTTXUtOTubGlYtZas/G1o7mbTvyzfSf+H7+cvbt3E5EeDily/ny/FkIJioVHsU89b4c8hcw0NPkHZIMCSGEEG+RVqvlq9+uEB5rmHUdIm97FumNRpuxj2sarZJnUV7pF8yE/03+EY1GTc82Tdi3czsPH9zj/p1brFn+M33avwdAjboN8C5VhjFDB3DjyiWuXPBj7PCBVKlRm7K+Fd84hr07trF1/Wr8799lwYypXL3oR7e+HwNQpJgnT4ID2bXtNwL8H7Bm+c8c2P2nXv1PR3zJ7m2/sWDGVO7fucWdG9dYvmC27r6rmwfnT58g5HEw4WHP3zjetPTo9wnL58/mwO4dPLh7mylff0FUZGSm21m1eD67ft/Mg7u38b9/l707tuHo7IKtvT016jbAp1JVRvTvyYnDBwgKeMTFc6eZ+/0krl26kA1PlbvJNDkhhBDiLVp3JoADNzO3XbJ4d8Un5SPwecV0D17VaJUEPq9IfFI+g/bvVqQo63ceYsncGcyYNJZnT0NwyO9ImfK+ug0MFAoFPy1bw7RxX/Jhp1YolUpqN2jMV99+b5AYBn7+Fbu3b2HK2C9wdHZh2ryleJUoBUCD91rSq/9Apo0bTWJiInUbNWXAZ6NYNGuarn7VmnX4YdFKFv/0A8sXzMbGxpZK1Wvp7g/+YgyTvhpB67qVSExI4FJA9u241mfAEEKfhjDu84EolErad+lFo+atiM5kQmRtY8OKRXN49OA+JiZKyvpWYt4vG3Xrr+av2sjc6ZMZP3II4WGhODo5U6l6LQo4OWXHY+VqCq1W+2aTGnOAyMhI7O3tiYiIwM7OLv0KQgghhBH4h8bQ4qejxCVl/5QckXMUtjVhQkNnnF3dUKjMstSGhekLnGzvYWsZoreGSKtVEBXnwrMoL4MnQjmBr7sDs5asplHzVsYOReRA2uREngYHMuHgU4KiXv6/qkmIJWB2lwzlBjIyJIQQQrwFyWoNIzZelERIZEl8Uj4CwiqjUsZjbRGKiSIJtdaUmHhHg60REuJdJMmQEEII8RYsPHSPC49eGDsMkcslayyIiHVLv6AQIkMkGRJCCCGy2ZXACDlcVYgsyM71O0KA7CYnhBBCZKv4JDXDN1wg+Q3PHRFCCGF4kgwJIYQQ2Wjarpvce/bqGS1CCCGMT5IhIYQQIpscvfOMlSf8jR2GEEKI15BkSAghhMgGL2IT+WLTJWOHIYQQIg2ygYIQQgiRDcZtu0ZIZIKxwxB5jEr9DOsEP5SaWDRKK2LMK5NsIgdpCpFVkgwJIYQQBrbtYhB/XAo2dhgiD7FIvEWB6LXYxJ9EwcuzqrSYEG1Rk+c2PYg3K2nECIXInWSanBBCCGFAjyPiGPf7VWOHIfIQm7hjeIR+hm38Mb1ECECBGtv4lPs2cceMFKF4U/N++I5vvxxu7DAypVfbpuzbud3YYbwxGRkSQgghDESj0fLFpktExicbOxSRR1gk3sI1fDJKktIspyQJ1/DJPDL5yaAjRONGDGL75nUAqFQq7PI5UKJ0WZq3fZ92XXqgVObcn6v7ujukef/TEV8y8POv3lI0rxf6NIS1y39m896Xyey4EYOIioxg9rI1r6134+plls2bid/pE0RHRVKwUGGq1KzDB58OpainN/06t+bcqeOvrb9s459UqVk7zdjaNahGUMBDdp+8jKOzi969j4eN5MeJX9Ooeesc/fcgPbk3ciGEECKH+eWkP8fvPjd2GCIPKRC9Nt1E6B9KkigQvc7gMdRu0Jj9fjfZeeISC1ZtomrNOkyfMIahfbuSnJxzE//9fjd1X6MnTMXG1lbv2gefDNGV1Wq1RnuWLet+xbdyNVzdPDJc5/C+3fRu15TEhASmzlnM1gOn+W7Oz9jY2jH/hykAzFz8q97z7ve7ye5Tl/EuWZqyPhUpX7Fymn2cP3OShPg4mrZsq0uI/61Ow6bExERz7ODezD1wDiPJkBBCCGEAd0KimLbrprHDEHmISv0Mm/gTmapjE38ClfqZQeMwMzPH0dkFl0KulC7vS/+hI5m9bA3HDu5j+6a1unKRERFMGDWMBr7e1CrtQf+ubbl1/Yru/sKZ0+jSrC5//LaeFjV9qF3Gg9GDPiImOkpXZu+ObbzfpBbVvAtRr7wnA7q3Jzb25TldW9aton3D6lT1Lki7BtXY8MvS18bt6Oyi+7KxtUOhUOheP7h3h5ql3Dl2cC/dWjagipcLF86eQqPRsGzeTFrU8qWadyE6v1eHvTu26bV75+Z1BvXuRI2SbjSsWIL/ffYJ4WEvfwiS3jP81+7tv1G/SbOM/WEAcXGxfDNyCHUaNmXOinXUqNsAN48i+FSswshxkxg3bRYA9g4Oeu+Bo7MLi3/6kRfhYcxa+ivmFhZp9rN1/WpatO9E645d+X3DqyNUJiYm1GnYlN3bt2Q49pxIkiEhhBDiDSUmaxix8SIJyRpjhyLyEOsEPxRk7u+UAjVWCeezKaKXqteuR8ky5di/6w/dtVED+xIW+oz5qzaxbudBSpfzZUC39kSEh+vKBDz05+CencxZsZ65K9bjd/oEy+fPBuBZyBO+GtKf9l17sfXgaZZt/IPGzVuDVgvAjq0bWfDjVIaMHsvWA6cZ+uU45v84he2bsj4a9tPUiXz21Tf8fuA0JUqVZdm8mfzx2wbGTpnJlv0n6dV/EP/77BPOnUyZbhYZEcHH3dpRqqwP63YcYMGvm3n+7BmjBn6YoWf4r4jwcO7fuUUZ34oZjvnEoQOEhz3nw4HDUr1vZ2+f6vUNvyzlj9/WM+PnX3ApVDjNPmKio9i7YxutOnShRr2GREdFcv70q4l5uQqVuHDmZIZjz4lkzZAQQgjxhuYeuMPVoEhjhyHyGKUmNkv1TLJYL7OKehXnzs3rQMqUqqsX/Th44Q5m5uYAjBw3iYN7drB35zY69ewLgEajYdLM+Vjb2ALQumMXTh8/wlBS1s4kJyfTuEVr3ZSx4qXL6vpbOGMaI8dNokmLNgC4eRTh/u1bbF6zgradu2fpGQaN/B816zUEIDEhgaXzZrF43VZ8K1dL6aNIUS6cPcXmNSuoUrM261cuoVRZH4Z9NV7Xxrcz5vJetXL4379LXExMms/wX4+DA9FqtTi7FMxwzI/87wFQzKtEhuv4nTrO9In/4+vvfqRClerplt+9fQsexTzxLlkagOZtO7J1/WoqVa+lV87ZpSBPgoPQaDS5dt2QJENCCCHEG/B7GM78g3eNHYbIgzRKqyzVU2exXmZptYBCAcDt61eJjYmhno+XXpmE+DgCHj7QvXZ199AlQgCOzgUJe54yra9EmXJUr1OfTk3rUKt+I2rWa0jTlu2wy5eP2NgYAh4+YMKoYUz8165ranUyNrZ2WX6GMj4VdL9/5H+f+LhYPunRUa9MUlIipcr6pDznjaucPXmUGiXdXmkr8OEDatZr9NpnSE1CfBwAZuZpT1n7N+1rRple53FQACM/7cv7PT6gY/c+Garz+4Y1tOrQRfe6VYcufNS5NV9N+l7vz8/cwhKNRkNiQgIWlpaZiiunkGRICCGEyKKYhGQ+33gRTeY+mwiRITHmldFi8sp22mnRYkKseaVsjOqlB3dvUdg9ZfQjNjYGR+eCLNv4xyvlbP81bctUpf/RU6FQoNWkTAU0MTHh57VbuXjuNCePHGTdisXMnT6Z1dv3Yfn3B+3x02dTvkIVvTaUJiZZfgZLK2vd7/9Z1zNv5QacCxbSK2dmbpZSJiaa+k2aM3zMhFfacnRxSfMZ3DyKvFInX/4CAERGvCB/AccMxVykmDcAD+7d1o1gvU58XBwjPu6NV4lSjJ4wNUPt37t9k8vnz3L1oh8/TZ2gu65Wq9m9fQvv9/hAdy3iRTiWVta5NhECSYaEEEKILJu84wYPn7+dKUni3ZNs4kS0RU1s4zN+flC0RS2STZyyMaoUp48f4c7N6/TqPwiA0uV8ef4sBBOVSpcgZYVCoaBi1RpUrFqDT4aPpnkNHw7s/pM+Awbj5FKIwIcP9UYsDMmreEnMzM15HBzw2i2nS5fzZd+uP3B190ClSv1jdFrP8F/uRYphY2vL/du3KOrpnaE4a9ZviEP+AqxYOIfZS1e/cj8yIkK3bmji6GFEvAhn4erfXhvvf21dv5rK1WsxZvIPete3bVzL1vWr9ZKhu7duUKps+Qy1m1NJMiSEEEJkwf4bIaw788jYYYg87rlND6zjT2doe20NZjy3ydrambQkJiYQ+jQEtVpNWOgzjh/ax7L5s6nXpBltOnUDoEbdBvhUqsqI/j0Z/r+JFPH05lnIY47u/4tGzVtTNgMbBFy+cI4zxw5Ts14j8js6cuWCH+FhoXgWT1kbM2jkV3w//its7Oyo3aAxSQkJXLt8kciIF6kmGpllbWPLBwOG8OPEr9FqtFSsWoPoqEgunDuNjY0tbTt3p+sH/flt3Sq+GtKfvp8Owz6fA4/877N7+xYm/DCHa5cvpPkM/6VUKqlepwEXzp6iUfNWeveioiK5ee2K3rV8Dg4UdHXjm+lz+GJgX4Z92J0eH32Ce1FPXoQ9568/t/I4KJDpC5azctEc/tqxjTnL16FOTib0aYheWza2dq+M6CQlJfHnlg0MGjmG4qXK6N3r2L03vy6Zz91bN3RriS6cOUnNeo2y9H7nFJIMCSGEEJn0PDqBL3+7kn5BId5QvFlJgh3GpnvwqgZTgh2+NuiBq/84fmg/jSuXQqVSYWufj5JlyvHlxGm07dxdt2heoVAwf9VG5k6fzPiRQwgPC8XRyZlK1WtRwCljI1U2Nrb4nT7J6mWLiImOolBhd0aOm0Sdhk0B6Ni9DxYWlqz8eS6zvhuPpaUVxUuVoWe/gQZ71sGjvsahgCPL5s8i8JE/tnb2lC7nS/8hIwBwLliIX7buZvaUCXzaqyNJCYkUcnOndv3GKJXKdJ8hNR2792bi6OGM+Hqi3iYE504eo2vzenplO3TrzYQf5tCwWUtWbd3Dsvmz+Grox8RER1GwUGGq1q7LkFFjAdiwahnJSUkM6t0p1X6/nTGfdl166F07vHcXEeFhKTvg/Ydn8ZJ4Fi/J1vWrGfXNd4Q8Duai3xmmzPk5Y29uDqXQZnYVVg4UGRmJvb09ERER2NllfRGdEEIIkR6tVssnv/rx1/WQ9AsLARS2NWFCQ2ecXd1QqMyy1IZF4i0KRK/DJv6E3hoiLSZEW9TiuU33bEmERPbTarX0bNOE3v0H0qJ96olLTjRryjdERUQw/vvZRotBm5zI0+BAJhx8SlDUy38XmoRYAmZ3yVBuICNDQgghRCZs9guUREi8dfFmJQnKPwGV+hlWCecx0cSiVloRa17prawREtlHoVAw/vvZ3Ll5zdihZEr+Ak70+fjNpycamyRDQgghRAYFhMUy8Y/rxg5DvMOSTZyItGpm7DCEgZUqWz7XbUTwwSdDjB2CQeTO05GEEEKIt0yt0TJy4yWiE5KNHYoQQggDkWRICCGEyIClR+9zxj/M2GEIIYQwIEmGhBBCiHRcD47kx79uGTsMIYQQBibJkBBCCJGG+CQ1n2+8SJI612++KoQQ4j8kGRJCCCHSMHPvbW4+iTJ2GEIIIbKB7CYnhBBCvMbJe89ZcvS+scMQQkcV+xjrkCMok6LRmNoQ41KPZKtCxg5LiFxLkiEhhBAiFWExiXyx6RK5/2hykRdYhF2iwPW52ATvRaF9uaOhVqEi2rUpz8sMJT6/rxEjFCJ3kmlyQgghxH8kJmv4dLUfQS/ijB2KENgE7sJjfwdsg3bpJUIACm0ytkEp920CdxspQuMJCniEr7sDN69dMXYoqfK/d4dGlUoSE527ptreu32TplXLEhsbY+xQsp0kQ0IIIcS/aLVaxv5+hTMPZBttYXwWYZdwPTkYpSYhzXJKTQKuJwdhEXbJoP2PGzGI4f16GrTN3KBFTR9WL134xu38NO1buvf9GGsbWwDOnjyGr7sDkRERr60THRXJ3O8n0a5BNap6F6RRpZIM6N6efbv+QKvVsm3jWnzdHV77Ne7zwWk+1z/lqnkXokVNH0YN/JDTx4/olfMqUQqfSlX4dfGCN34PcjpJhoQQQoh/WXbsARvPBRo7DCEAKHB9brqJ0D+UmgQK3JiXzRGJjHocFMCR/Xto27lHhutERkTQp30z/vhtPf0Gj2D9zkMs37yDZm06MPu7b4iKjKRZmw7s97v5yteAz0ZhambG+z36pNnHoJH/Y7/fTbYdPsPkWQuxtbPnk+7tWTLnR71y7br0YNOvy0lOztsHTUsyJIQQQvxt/40Qvtt5w9hhCAGkbJZgE/xXpurYBP2FKvZxNkX0qnMnj9OjdWOqeLnQuHIpZk+doPvwfHjfbuqULYJarQbg5rUr+Lo7MHvqBF39CaOGMWbYgNe27+vuwMZVyxjUuxPVvAvRsnYF9u7Y9tryarWab74YSotavlTzLkTb+lVZs2yRXpl/Rrt+WTSXxpVLUa+8J1O+/oKkpCQA+nVuTXBgAD9M/J9uFAUgOPARQz/sRp1yRaleojAdGtfk6IHX//n89cfvlCxdDpdCrmm/if8y9/tvCQ4MYPX2fbTt3B2vEqUo6unN+z0+YOOeI1hZW2NhaYmjs4vel/+9uyyfP4v/Tf6BClWqp9mHtY0Njs4uFCrsTuUatRn//WwGfDaKBTOm4n/vjq5czboNiYgIx+/U8QzHnxtJMiSEEEIAt55EMWzdBdkwQeQY1iFHUGjVmaqj0CZjFXI0myLSF/I4mMEfdKGcb0U27TnK19/N4Pf1q3UjDJWq1SQmOpqbVy8D4HfqOA75C3Du5MsP136njlO1Zp00+5n/4xSatGzLxr+O0rJ9Z74c3I/7d1I/BFmj0eBSyJUfF65ky4FTfDJ8FHO+n8SeP7bqlTt78igBDx+wdMN2Js1awLZN69i+aS0AMxf/ikshV90Iyn6/mwBMGTuKxIREVmzawW97jzN8zDdYWVm/Nu7zZ05SxqdC2m/if2LfvX0LLTt0wrngqzsEWlnboFK9uvdZcOAjvhjYl/d79qVj97RHhV6n50efotVqOfjXTt01UzMzSpYpz/kzJ7PUZm4hyZAQQoh33vPoBPr9cpaYxMx98BQiOymTorNUzySL9TJr46plFHQtzJjJP1DMuwSNmrdi4OdfsWrxfDQaDbZ29pQsW55zJ48BKetlevUfyM1rl4mNiSbkcTCP/O9TuUbtNPtp2qodHbv3oainN0NGfU0Zn4qsW7E41bKmpqYMGjmGsr4VcfMoQqsOXWjXpQd//fm7Xjk7+3y6uOs3aU69xu9x+thhAOwdHDAxMdGNoDg6uwDwJCiQilWrU7x0WdyKFKV+k+Zpxv44KAAnl4xvex4e9pzIiBcU8yqR4TpxcbEM798LrxKlGD1haobr/Ze9gwP5HZ0IDnikd93JpSDBgQFZbjc3kGRICCHEOy0hWc2nq/0IDJed40TOojG1yVI9dRbrZdb9u7fxqVQVhUKhu1ahavW/E50gACpXr83ZU8fQarVcOHOSxi3a4OldggtnTuF36jhOLoUoUswrzX58K1fTf12pKvfv3n5t+fUrl9CtZQMa+HpTo6Qbv639hcdB+usAvUqUwsTERPfa0dmFsOehacbR46NPWDLnRz7o0IwFM6Zy+8bVNMvHx8djbmGeZhk9WRiWnvDFUKIiI/hx0cpUR40yQ6vV6v1ZAlhYWBAfl7f/b5RkSAghxDtLq9Xy9darnPUPN3YoQrwixqUeWkXmPuBqFSpiXepmU0SZV7VmbS6ePcWt61dRmZpSzLsEVWrW4eypY5w7fZwqNWoZtL9d235j5uTxdOjai4VrtrBx9xHadelBclKiXjmVylTvtUKhQKvRpNl2x+592HH8Aq06duXOzet0b9WIta8ZoQJwyJ+fyBcvMhy7QwFHbO3teXDv9Ynevy1fMJvD+/Ywe+lqHPIXyHA/qXkRHkb481AKuxfRux7xIhyHAm/Wdk4nyZAQQoh31uIj99nsJzvHiZwp2aoQ0a5NM1UnuvB7JFtlfGrWm/D0LsHl82fR/mtE4+LZ01jb2OJSqDAAlarVIiY6mtVLF1C5ekriU6VGHc6dPM65k8epks56IYDL58/qv75wDk/v1KeSXTx3Gt8q1ej6QX9Kl/PBo5gngQ/9M/1sKlMz3cYP/1bQ1Y0uvT9i1pJf6TNgMFvW/vLaNkqW9Xnt2qbUKJVKmrfpyM6tm3n65NVNMGJjonWbUxw7uJd50yfz7Yx5lCxTPsN9vM6aZYtQKpU0bNZK7/rdWzcoVc7njdvPySQZEkII8U7aez2EabtvGjsMIdL0vMxQNMqMTbXSmFjwvPQQg8cQFRXJzWtX9L6eBAfSpU8/ngQHMXXcaB7cvc3BPTtZOHMavT8ehFKZ8hHTLl8+ipcuy86tm3SJT+Xqtbhx9RIP79+lSjrrhQD27tjG1vWr8b9/lwUzpnL1oh/d+n6calmPYl5cv3yB44f243//LvN++I5rl85n+pld3Tw4f/oEIY+DCQ97DsD0CWM4fmg/gY8ecuPKJc6eOEYx75KvbaNW/UZcOn821aTq7s1reu/nresph8YOHT2Ogq6F6dW2CX9sXs+92zd5+OAeW9evpmvz+sTGxPDwwT2+GvoxHbr3plK1moQ+DdH7ighPe6Q7Jjqa0KchPAkOxO/Ucb79cjhL5vzIkNFj8SjmqSsXFPCIp08eU6NO/Uy/f7nJm00uFEIIIXKhG48j+Wy97Bwncr74/L4E11yA68lBaZ43pFGaE1xjPvH5fQ0ew7mTx+javJ7etQ7dejPhhznM/2UjM78bT+dmdbHP50D7br34eNgXemWr1KjNrWtXdLvG2Ts44FW8JM9Dn1HUq3i6/Q/8/Ct2b9/ClLFf4OjswrR5S/EqUSrVsp179uXm1ct8OfgjUCho0fZ9uvTpx/GD+zL1zIO/GMOkr0bQum4lEhMSuBQQjlqtZurYUYQ8CcbaxpbaDRoz6pspr22jTsOmmJioOHX0ELUbNNa792En/REYExMTzvuHYu/gwK/b/mL5gtksnvMjj4MCsLPPR/FSZRjx9bfY2tmxdvkioiIi2Lx6JZtXr3yl3yo1arNs05+vjWvBjCksmDEFUzMzHJ2cKV+xKovXb6NaLf3plbu3baZmvUa4unmk/4blYgqtNvd/K4iMjMTe3p6IiAjs7OyMHY4QQogc7FlUAu3nHyfoRd5eFCxyjsK2Jkxo6IyzqxsKlVmW2rAIu0SBG/OwCfoLhfblIZhahYrowu/xvPSQbEmEjM3X3YFZS1bTqHmr9AvnQOtXLuHQ3t0sWvObsUPJlKTERNrUq8zUuUuoWLWGscN5LW1yIk+DA5lw8ClBUS9H4DQJsQTM7pKh3EBGhoQQQrwz4pPUfPLrOUmERK4Tn9+XoNpLUMU+xirkKCZJ0ahNbYh1qfvW1giJzOvU60OiIiOIiY7C2sbW2OFk2OOgQPoN+TxHJ0KGIsmQEEKId4JWq2XMliucf/TC2KEIkWXJVoWILNbF2GGIDFKpVK9MG8wNPIp56q0fysskGRJCCPFOWHDoHlsvBBk7DCFEJlwKkG3vRfaS3eSEEELkebuvPuaHPRnf4lYIIcS7QZIhIYQQedrVoAhGbLhk7DCEEELkQJIMCSGEyLOeRsbz8apzxCW9es6HEEIIIcmQEEKIPCk+Sc3Hv/rxOCLe2KEIIYTIoWQDBSGEEHmOVqtl1ObLXAp4YexQhDAoRUQopnf8UMTHorWwIql4ZbT2jsYOS4hcS5IhIYQQec7cA3f541KwscMQwmBMAm5heXAdptdPotC8nPapVZqQVKYmcQ27o3YvacQIhcidZJqcEEKIPGXH5cfM3Hvb2GEIYTCmV49ht3A4ZleP6SVCAAqNGrO/75tePW6kCI1r28a11ClbJM0y40YMYni/nplqt0VNH1YvXZgt8YicQ0aGhBBC5BmXA18wctNFY4chhMGYBNzCZu13KJKT0iynSE7CZu1kIgfONvgI0ZPgQBbMmMaJQ/sJD3+Ok7MLDZu14pPho8nnkN+gfWWX0ROnotW+nb6atelAnUZN305n4o3JyJAQQog84UlEys5x8UkaY4cihMFYHlyXbiL0D0VyEpYH1xm0/8CH/nRv1YhHD+4xbd5S/jzqx9ipMzl97DC9271HRHjuOBTV1s4eO3v7bO8nKSkJC0tLCjg6ZXtfwjAkGRJCCJHrxSWq+XjVOUIiE4wdihAGo4gIxfT6iUzVMb1+EkVEqMFimDL2C0xNTVm0ZgtVatamUGF36jRsyuJ1v/P0yWPmTp+kK9uipg8/z/6BLwf3o3qJwjSpUob1K5fotRcZEcGEUcNo4OtNrdIe9O/allvXr+juL5w5jS7N6vLHb+tpUdOH2mU8GD3oI2Kio9KN9fih/bRvWJ0aJd0Y2KsTz0Ke6O79d5pcTHQUY4Z+TPUShWlcuRS/LllAv86tmT5hjF6b8XGxjB85hJql3GlWvRyb16zU3QsKeISvuwO7t2/ho06tqOpdkJ1bN70yTe7W9Sv069KGmqXcqVXag24tG3Dt0gXd/fNnTtK3YwuqeRfivWplmTb+S2JjY9J9XmEYkgwJIYTI1TQaLV9susSVoAhjhyKEQZne8UOhydxIp0KjxvTOeYP0HxEezonDB+japx8WlpZ69xydXWjVoTN7/tiK9l/zz375eS4lypRjw+7DfDR4ONMnjOHkkYO6+6MG9iUs9BnzV21i3c6DlC7ny4Bu7fVGmAIe+nNwz07mrFjP3BXr8Tt9guXzZ6cZa1xcHKsWz+O72YtYsXkHT4IDmTl53GvL//jtWC6eO82c5WtZtGYL58+c5MbVy6+UW7V4PmV9KrBh12G69OnHd/8bif+9O3plfpo2kR79PmXrgdPUqt/olTbGDB2ASyFX1v65n3U7D/LRoOGoTFNWqgT4P2BQ7840admWTXuPMX3Bci6cPcXUsaPTfF5hOLJmSAghRK720/477Ljy2NhhCGFwivjYrNVLMMyowkP/e2i1Wop5p74GqZh3CSIjXhD2PFQ3LaxClWr0GzwCgKKe3lw8e4rVSxdQs15Dzp85ydWLfhy8cAczc3MARo6bxME9O9i7cxudevYFQKPRMGnmfKxtbAFo3bELp48fYWgasSYnJTF2ykzcixYDoNsH/fn5px9SLRsTHcX2zeuYNncJ1evUB+DbGfNoUqXMK2XrNGpK1w/6A/DRoOGsXrqQMyeOUtSruK5Mr34DadKizWtjexIcRN9Ph1HMuwQARYp56e4tmz+Llh060av/QN29LydOo1/n1oydMgNzC4s0nloYgiRDQgghcq3tl4L5af+d9AsKkQtpLayyVs/c2rBxZGLnAZ/K1fRe+1auxuplKTuy3b5+ldiYGOr5eOmVSYiPI+DhA91rV3cPXSIE4OhckLDnz9Ls18LSSpcI6eqEpl4n8JE/yUlJlKtQSXfN1s6eol7er5QtUbqs7vcKhQJHJ2fCnutPQyzjUyHN2Hp/PIiJo4fx55YNVK9Tn/datdfFevv6VW7fvMbOrZt15bVaLRqNhqCAh3gWl+3Ss5skQ0IIIXKliwEvGLXpkrHDECLbJBWvjFZp8sp22mnRKk1IKl4p/YIZ4FHUE4VCwYO7t4DWr9x/cPc2dvb5yF8gY4e+xsbG4OhckGUb/3jlnu2/NjcwVel/PFUoFGjTmS5oappKHQNsH6dSmaYbi6VV2snnwM+/okX7Thzd/xfHDu5j4cxpfD9vGY1btCY2NoZOPfvS48NPXqlXqLDbG8cv0idrhoQQQuQ6jyPi+HjVORKSZec4kXdp7R1JKlMzU3WSytREa5+x5CQ9+RzyU6NuQzasWk58XJzevdCnIezYuolmbTqgUCh016+cP6tX7vL5s3j+PT2sdDlfnj8LwUSlwqOYp96XQ/4CBok5I9w8iqIyNdXbxCAqMoKH9+9lW59FPb3p/fEgfl67hcbNW7Nt4xoASpfz4f6dW6+8Hx7FPDE1M8u2eMRLkgwJIYTIVWITk+n/yzmeRcnOcSLvi2vYHe1/RideR6syI65hd4P2P2bydJISExjY6338Th3nSXAgxw/u45MeHXAuWIiho/U3Kbh47jQrFv6E//27rF+5hL07ttHjo08BqFG3AT6VqjKif09OHD5AUMAjLp47zdzvJ+klJtnN2saWtp26M/O78Zw5cZS7t24wYdQwlEolChTpN5AJ8XFxTBk7irMnjxEc+IgLZ09x7dIFihVPSRA/HPQZl86dYcrYUdy8doWHD+5xcM9OpowdZdA4xOvJNDkhhBC5hkaj5fMNl7gWHGnsUIR4K9TuJYnuMRabtZPTPG9IqzIlusfXBj9wtUgxL9buOMDCGdMYNegjIl6E4+jkTMNmrfh0xJfYOzjole89YAjXL19k0azp2NjaMnL8d9Ru0BhImWI2f9VG5k6fzPiRQwgPC8XRyZlK1WtRwOntnsvzxfjJTB7zOUP7dsPG1pa+nw7jSXAQZhbmBu3HxMSEiPAwxg7/lOehz8jnUIDGLVoz6POULbxLlC7Hsk1/Mnf6ZD58vyVarRb3IkVp1qaDQeMQr6fQZmJC5YQJE5g4caLetZIlS3Lz5k3CwsL45ptv+Ouvv3j06BFOTk60b9+eSZMmYZ/GIVdarZZvvvmGJUuW8OLFC2rXrs3ChQspXrz4a+v8V2RkJPb29kRERGBnZ5fhekIIIXKXH/fcYt7Bu8YOQ4hMKWxrwoSGzji7uqFQZW3qk0nALSwPrks5R+hfa4i0ShOSytQkrmF3gydCmdWipg89+w3U7YyWm8TGxvBe1TJ8Pm4yHbv1NnY4IoO0yYk8DQ5kwsGnBEW9/HehSYglYHaXDOUGmR4ZKlu2LPv27XvZwN+L3IKDgwkODubHH3+kTJkyPHz4kE8//ZTg4GA2b978uuaYPn06c+bM4ZdffqFYsWKMGzeOZs2acf36dSxkO0EhhBB/2+wXKImQeGep3UsS3WdCykGsd86jSIhBa25NUvFKBlsj9C65cfUy/ndvU65CZaKjIvl59nQAGr7X0siRibct08mQSqWiYMGCr1wvV64cv/32m+61l5cX3333Hb169SI5OVmXNP2bVqtl9uzZjB07lnbt2gGwatUqXFxc+P333+nWrVtmwxNCCJHHhMckMmnHdbacDzJ2KEIYndbekcQq7xk7jDzhl8Xz8L93F1NTU8r4VGDF5p1vdSMHkTNkOhm6c+cOrq6uWFhYULNmTaZOnYqHh0eqZf8ZmkotEQJ48OABT548oUmTJrpr9vb2VK9enZMnT742GUpISCAh4eXC2chImTsuhBB5jVarZfulYCb+cZ2wmERjhyOESMeuk5eNHUKGlS7nw/qdh4wdhsgBMrWbXPXq1Vm5ciW7d+9m4cKFPHjwgLp16xIVFfVK2dDQUCZNmsSAAQNe296TJ08AcHFx0bvu4uKiu5eaqVOnYm9vr/tyd3fPzGMIIYTI4QLDY/lw5Vk+W39REiEhhBDZJlMjQy1atND93sfHh+rVq1OkSBE2btxIv379dPciIyNp1aoVZcqUYcKECQYL9h9jxozh888/1+tPEiIhhDCuZcceYGehoqKHA56O1iiVmd+iVq3R8ssJf3786xaxiRk/aFIIIYTIijfaWjtfvnyUKFGCu3dfLmiNioqiefPm2NrasnXrVkxNX783/j9rj0JCQihUqJDuekhICBUqVHhtPXNzc8zNDbv1oRBCiKzbfyOESX9e1722tzSlgns+Knrko6KHAxXc82Fvqf/9IDFZw8PnMdx9Gs2dv7+uBL7A/3ns2w5fCCHEO+qNkqHo6Gju3btH794pWxBGRkbSrFkzzM3N2b59e7q7wRUrVoyCBQuyf/9+XfITGRnJ6dOnGTgw923LKIQQ76L4JDVjf7+qdy0iLonDt59x+PYz3TVvZxt83OyJTVBz52kUD5/HkqzJ8OkOQgghhMFlKhn64osvaNOmDUWKFCE4OJhvvvkGExMTunfvTmRkJO+99x6xsbGsXr2ayMhI3cYGTk5OmJiYAFCqVCmmTp1Khw4dUCgUDB8+nMmTJ1O8eHHd1tqurq60b9/e4A8rhBDC8Db5BfI4Ij7dcnefRnP3afRbiEiIvEv9PJzESzfQxsWhsLTEzLc0JgUc0q8ohEhVppKhwMBAunfvzvPnz3FycqJOnTqcOnUKJycnDh06xOnTpwHw9vbWq/fgwQOKFi0KwK1bt4iIiNDdGz16NDExMQwYMIAXL15Qp04ddu/eLWcMCSFELqDWaFl85J6xwxAiz0u660/Mll0knLsEas3LGyZKzKv4Yt2xBabeRY0WnxC5VaaSofXr17/2XoMGDdBq05/u8N8yCoWCb7/9lm+//TYzoQghhMgBFIBKmamNSYUQmRR/+gIRs5ZAUvKrN9UaEk5fIOH8FexHfIxF9YpvP0Aj27ZxLT9MHMOxaw/far8tavrQs99AevWXpR25mXwHE0IIkWVKpYJeNYoYOwwh8qyku/6vT4T0CiYTMWsJSXf9DR7Dk+BAxo8cQpPKpans6UzzGuX5/puveBEeZvC+cpM1fx7g/Z4fGDsM8YYkGRJCCPFGOlV2w9LUxNhhCJEnxWzZlX4i9I+k5JTyBhT40J/urRrx6ME9ps1byp9H/Rg7dSanjx2md7v3iAgPN2h/uUFSYsrZZ/kLOGJpaWXkaMSbkmRICCHEG7G3NKV9RVdjhyFEnqN+Hk7C2UuZqpNw7hLq54ZLUKaM/QJTU1MWrdlClZq1KVTYnToNm7J43e88ffKYudMn6cq2qOnDz7N/4MvB/aheojBNqpRh/coleu1FRkQwYdQwGvh6U6u0B/27tuXW9Su6+wtnTqNLs7r88dt6WtT0oXYZD0YP+oiY6KhMxb1x1TJa1a5IZU9n2tavyh+/vVzqMWPSOIb07ap7vXrpQnzdHTh+cJ/uWus6ldiybhUA40YMYni/niyZ8yNNKpembYOquuddvXQhkLIMZOHMaTSrXo4qXi40qVyaaeO/1LWXmJDAjEnjaFKlDNVLFKZnmyacPXksU88ksockQ0IIId6YTJUTwvASL90AjSb9gv+m1pB4+YZB+o8ID+fE4QN07dMPC0tLvXuOzi606tCZPX9s1VsP/svPcylRphwbdh/mo8HDmT5hDCePHNTdHzWwL2Ghz5i/ahPrdh6kdDlfBnRrrzfCFPDQn4N7djJnxXrmrliP3+kTLJ8/O8Nx79/1J99PGEOfAYP5bd8JOvXsyzcjh3DmxFEAKteoxcWzp1CrUw52PnfqOA75C3D2VEpyEvI4mICHD6hSo46uzdPHj+B//y6L1m5h7opX19Dv27md1UsXMG7aLP44co5ZS1dTvFQZ3f2p40Zz+fwZps9fyua/jvFeq3YM6t2Jhw9kAxpje6NzhoQQQgiAsq72+LjZczkwIv3CQogM0cbFZbFe+lvdZ8RD/3totVqKeZdM9X4x7xJERrwg7HkoBRydAKhQpRr9Bo8AoKinNxfPnmL10gXUrNeQ82dOcvWiHwcv3MHM3ByAkeMmcXDPDvbu3Eannn0B0Gg0TJo5H2sbWwBad+zC6eNHGJrBuFctnku7zj3o+kH/lDgGeHPlwjlW/TyXarXqUqlaLWKio7l59TJlfCpw/vQJPvh0KAf37ATg3KljOBd0xaOYp65NSysrJkyfg6mZWap9Pg4KpICTC9XrNMDU1JRChd0pX7Hy3/cC2LZxDbtPXcG5YCEAPvh0KMcP72fbhjUM+2p8Bp9MZAdJhoQQQhhE09IukgwJYUCK/4zGZLyeYY8nychuwf/wqVxN77Vv5WqsXpYylez29avExsRQz8dLr0xCfBwBDx/oXru6e+gSIQBH54KEPX9GRt2/c5v3e/TVu1ahSnXWLF8EgJ29PSXKlOPcyWOYmpliamZGpx59WThzGrEx0fidOkGVGrX06hcvVea1iRDAe63bsWbZQlrVrkDtBk2o07Ap9Zs2R6VScefmddRqNW3rV9Wrk5SYgH2+/Bl+LpE9JBkSQghhEE3KuDBj721jhyFEnmHmWxpMlPrnCqXHRImZT2mD9O9R1BOFQsGDu7eA1q/cf3D3Nnb2+chfwDFD7cXGxuDoXJBlG/945Z6tvb3u96Yq/Y+nCoUCbWanC6ajSo06nD11DFNzcypXr4W9gwOe3iW4cOYU504dp8+AwXrl09sooaCrG9sOneXUsUOcOnqIKWO/4Jef57Bs0w5iY2IwMTFh/c6DKJX6m81YWVsb9LlE5kkyJIQQwiBKFbSlcD5Lgl5kbWqPEEKfSQEHzKv4knD6QobrmFfxxaSAg0H6z+eQnxp1G7Jh1XJ69R+kt24o9GkIO7Zuos37XVEoFLrrV86f1Wvj8vmzeHqXAKB0OV+ePwvBRKWisLuHQWJMjWfxElw8d5q2nbvrrl08dxrP4i+n+1WpUZttG1ejMlFRq0HjlGs167Br+288vH+XKjXrvNJueiwsLWnQtAUNmrag2wf9adegGndvXqdUOR/UajVhoc+oVL1W+g2Jt0o2UBBCCGEQCoWCpmVcjB2GEHmKdccWYJrBn12bmaaUN6Axk6eTlJjAwF7v43fqOE+CAzl+cB+f9OiAc8FCDB09Tq/8xXOnWbHwJ/zv32X9yiXs3bGNHh99CkCNug3wqVSVEf17cuLwAYICHnHx3Gnmfj+Ja5cynvCl54NPhrFt01o2rlrGwwf3WLV4Pvt3/cEHn7xcdVS5esq6oSP791D178SnSo067Ny6CSfnghT19M5Un9s2rmXL+l+5c/M6gQ/9+XPLRiwsLCnk5k5RT29adujM1yMGsm/XHwQ+esiVC34smzeTI/v3GOy5RdbIyJAQQgiDaVLahZUn/I0dhhB5hql3UexHfJz+waumKuyH98fUu6hB+y9SzIu1Ow6wcMY0Rg36iIgX4Tg6OdOwWSs+HfEl9g76o1C9Bwzh+uWLLJo1HRtbW0aO/47af4+8KBQK5q/ayNzpkxk/cgjhYaE4OjlTqXotCjg5GSzmRs1b8eWEqfzy8zy+nzCGwu5FmDhjni7pAbDLl4/ipcrwPPQZxf4euapcvRYajYbKNTI/emNrZ8/yBbOZ8e3XqNUaipcqw5wV68jnkLIm6NsZ81ky50dmTBrL0yePcXAoQPlKVajXuJlhHlpkmUKbmVVxOVRkZCT29vZERERgZ2dn7HCEEOKdlZisofKkvUQlZPCQSCHeAYVtTZjQ0BlnVzcUqtcvwk9L0l1/YrbsIuHcJf01RCZKzKv4Yt2xhcETocxqUdOHnv0G0qv/QKPGId4d2uREngYHMuHgU4Ki1LrrmoRYAmZ3yVBuICNDQgghDMZMpaR+SSf+vPzY2KEIkaeYehcl3+iBqJ+Hk3j5Btq4eBSWFpj5lDbYGiEh3kWSDAkhhDCopmVcJBkSIpuYFHDAsqEswhfCUCQZEkIIYVANSjhjolSg1uT6WdhCiEzYdfKysUMQItNkNzkhhBAGZW9lSrWicpCgEEKInE+SISGEEAbXRLbYFkIIkQtIMiSEEMLgmpR2NnYIQgghRLokGRJCCGFwHvmtsLWQZalCCCFyNvlOJYQQwuAUCgUe+a24Fhxp7FCEyFPin0UQeu4eyTHxqKwtcKzihYWTvbHDEiLXkmRICCFEtpBkSAjDibgZyL3Vh3l64ibafx26qjBR4lyrFF696mNfys2IEQqRO8k0OSGEENnCI7+VsUMQIk94cuQap4YuIeTodb1ECECr1hBy9Lruvsi4FjV9WL10YZplfN0dOLB7R5pltm1cS52yRQwZmniLJBkSQgiRLQo7WBo7BCFyvYibgVyatBFNYnKa5TSJyVz8dgMRNwMNHsOT4EDGjxxCk8qlqezpTPMa5fn+m694ER5m8L7epjV/HuD9nh+8cTvN2nRg2+FzBohIGIMkQ0IIIbLFibvPjR2CELnevdWH002E/qFJTObemiMG7T/woT/dWzXi0YN7TJu3lD+P+jF26kxOHztM73bvEREebtD+3qb8BRyxtHyzEeykpCQsLC0p4OhkoKjE2ybJkBBCCIPbffUJu689MXYYQuRq8c8ieHriZqbqPD1+g/hnEQaLYcrYLzA1NWXRmi1UqVmbQoXdqdOwKYvX/c7TJ4+ZO32SrmyLmj78PPsHvhzcj+olCtOkShnWr1yi115kRAQTRg2jga83tUp70L9rW25dv6K7v3DmNLo0q8sfv62nRU0fapfxYPSgj4iJjnptjP9MUzu8bzdt61elenFXRn7yAXFxsWzftI4WNX2oU64o08Z/iVqt1ov339PkHj64x4fvt6Sqd0E6NKrBySMH9foJCniEr7sDu7dv4aNOrajqXZCdWze9Mk3u1vUr9OvShpql3KlV2oNuLRtw7dIF3f3zZ07St2MLqnkX4r1qZZk2/ktiY2My8aciDEmSISGEEAYVnZDM11uvpF9QCJGm0HP3XlkjlB6tWkOo3z2D9B8RHs6Jwwfo2qcfFpb6014dnV1o1aEze/7Yilar1V3/5ee5lChTjg27D/PR4OFMnzBGL6kYNbAvYaHPmL9qE+t2HqR0OV8GdGuvN8IU8NCfg3t2MmfFeuauWI/f6RMsnz87zVjj4uJYu3wx389fxoJfN3Hu5DFG9O/N0QN7mffLRr6bvYjNa1ayd8e2VOtrNBo+/7g3pmZmrN6+l7FTZjB76oRUy/40bSI9+n3K1gOnqVW/0Sv3xwwdgEshV9b+uZ91Ow/y0aDhqExT9iwL8H/AoN6dadKyLZv2HmP6guVcOHuKqWNHp/l8IvvIbnJCCCEMavmxBzyPSTR2GELkeskx8Vmsl2CQ/h/630Or1VLMu2Sq94t5lyAy4gVhz0N108QqVKlGv8EjACjq6c3Fs6dYvXQBNes15PyZk1y96MfBC3cwMzcHYOS4SRzcs4O9O7fRqWdfICUxmTRzPtY2tgC07tiF08ePMDStZ05KYuyUGbgXLQZAk1Zt+fO3jRy8cAsraxu8SpSias26nD15lOZtO75S/9TRQ/jfu8PC1b/hXLAQAMNGj2NQn86vlO3VbyBNWrR5bSxPgoPo++kwinmXAKBIMS/dvWXzZ9GyQyd69R+ou/flxGn069yasVNmYG5hkcZTiuwgyZAQQgiD2n8jxNghCJEnqKyz9sFYZW1u0Dj+PfKTHp/K1fRe+1auxuplKVPRbl+/SmxMDPV8vPTKJMTHEfDwge61q7uHLhECcHQuSNjzZ2n2a2FppUuEAAo4OuPq7oGVtc3La05OhIWGplr/wd3buLgW1iVCKc9SNdWyZXwqpBlL748HMXH0MP7csoHqderzXqv2uthuX7/K7ZvX2Ll1s668VqtFo9EQFPAQz+KpJ54ic8xUGZ/8JsmQEEIIg9FotNwOiTZ2GELkCY5VvFCYKDM1VU5hosSxslf6BTPAo6gnCoWCB3dvAa1fuf/g7m3s7PORv4BjhtqLjY3B0bkgyzb+8co9W/uXB8eaqvQ/nioUCrSatN8DU9NX67zSDum3kxGWVtZp3h/4+Ve0aN+Jo/v/4tjBfSycOY3v5y2jcYvWxMbG0KlnX3p8+Mkr9QoVlnOi3pRSAZU8HLgX9DTDdSQZEkIIYTAxicnEJanTLyiESJeFkz3OtUpl6vwg59qlsXCyT79gBuRzyE+Nug3ZsGo5vfoP0ls3FPo0hB1bN9Hm/a4oFArd9Svnz+q1cfn8WTz/ni5Wupwvz5+FYKJSUdjdwyAxGkox7xKEBAfxLOQJTi4FAbh8PuvbZRf19Kaopze9Px7El4P7sW3jGhq3aE3pcj7cv3MLj2Kehgpd/K2Cez5CoxI49zAcTUJShuvJBgpCCCEMxtbCFE+ntH9qKoTIOK9e9VGaZexn10ozFV496xm0/zGTp5OUmMDAXu/jd+o4T4IDOX5wH5/06IBzwUIMHT1Or/zFc6dZsfAn/O/fZf3KJezdsY0eH30KQI26DfCpVJUR/Xty4vABggIecfHcaeZ+P0lvtzVjqFG3AR6e3owdMYhb169w/vQJ5k2fnOl24uPimDJ2FGdPHiM48BEXzp7i2qULFCuekhB+OOgzLp07w5Sxo7h57QoPH9zj4J6dTBk7ytCP9E4p5mjNjccRBL6Iy3RdSYaEEEIYVKfKMtVDCEOxL+VGhfFd002IlGYqKozvin0pw/77K1LMi7U7DuDmUZRRgz6iVZ1KfPvVcKrWqsuv2/7C3sFBr3zvAUO4fvkiXZvXZ8ncGYwc/x21GzQGUqauzV+1kUrVazF+5BDa1q/Cl4P7ERwUQAEn457To1QqmbXkVxLi4+jZpgkTRn/GkNFjM92OiYkJEeFhjB3+KW3rV2XUwI+o3bAJgz4fA0CJ0uVYtulPHt5P2ca7a/P6LJgxBee/R6NE1jwIjcHFzhKP/Jk/7FuhzcyquBwqMjISe3t7IiIisLOzM3Y4QgjxTtNqtYz9/SprTj8ydihC5AiFbU2Y0NAZZ1c3FCqzLLURcTOQe2uO8PT4Db01RAoTJc61S+PVs57BE6HMalHTh579Bup2ShMiu2mTE3kaHMiEg08JilJjYaqkaAFrrj8MIWB2lwzlBrJmSAghhEEpFAomty9HMUdrJu+4YexwhMgT7Eu5UWlSD+KfRRDqd4/kmARU1uY4VvYy2BohIXK7+CQND8Ni8XK2JiCDdSQZEkIIYXAKhYL+dT0JCIvll5MPjR2OEHmGhZM9bs0rGTsMIXKsuEQ1TxIzftaWJENCCCGyzZiWpTnrH871x5HGDkUIkc12nbxs7BCEACAmIeO7msoGCkIIIbKNhakJc3tUxMrMxNihCCGEEK+QZEgIIUS28nKyYVK7csYOQwghhHiFJENCCCGy3fuV3ehYsbCxwxBCCCH0SDIkhBDirfj27x3mhBBCiJxCkiEhhBBvhY25irndK2KiVBg7FCFyrciQSC79foEzq09x6fcLRIbI5iTi3WOiUGBlpsLSzARzlRJ7y6zvCSe7yQkhhHhryhW2p3NlN9afzegJEEIIgOCrQRxfcoQ7h2+hSX556KpSpaR4/ZLU/rgeruVkKqrImxQKBRYqJUqlgmS1loRkNbGJyWiT1SQka4iIS6ZIfktc7C2IT9RwKzA+w21LMiSEEOIVWq2WuQfucvNJJGExibyITUKt0eLrno9KHg5ULuJAcWcblFkY5RnauDhbzgeRqNakX1gIwc1919k6ejPqxORX7mmSNdzaf4O7R+/Q8YfOlGxc2ggR5k1nTx6jf5c2HL3qj5197j7Y9sP3W9K514e07NDZ2KFkSFJiIm3rV2H+stWU9a1IQrKGuKS0t8t+GBbHw7C4vxvI+PcXSYaEEEK8Ys3pR8zce/uV63eeRrPZLxAAWwsVFdzzUbmIA219XfF0sslQ24XzWdKgpBN/XQ8xaMxC5EXBV4Nemwj9mzoxmS2jNvHBqn4GHSEKex7Kgh+ncPTAXzwPfYadfT5KlC7HJ8NHUbFqDYP00a9za0qWLc/oCVN113J6IvJPfGlZuvEPqtas85Yier1Df+3keegzmrd7X3etRU0fevYbSK/+A19bb9/O7axbsZib1y6jVmtw8yhCk1bt6P7Bx9g7OODr7pBmv5cCwlO9vnDmNBbN+l732sbWluKlyjJk1Fiq1KyNQqEgn40VfT8dytRvx7Fk/bZMPjFotBkvK8mQEEIIHbVGy7G7oXz75/V0y0bFJ3P0TihH74Qy98BdulRxZ3iT4rjYWby2jkaj5Ye/bkkiJEQGHV9yJN1E6B/qxGROLD1Kp9ndDNb/yAF9SEpKYtKshbh5FOH5s2ecOX6YiPAwg/WRnbRaLWq1GpXKsB95K1Suxn6/m7rX338zhpjoSL6dMV93zT7fy2QhKTERUzMzg8aQUWtXLKZdlx4olRnfKmDu95NYsfAnevUfyNAvx+HkUohHD+6xafUK/tyygZ79PtV7/n8EBz7ikx4dadMp7b+DXiVKsXjd7wBEvAjnl5/nMfTDbhw+fwMbWztiEpNp0a4zP3w7lru3buBdMvtGPGUDBSGEeMfFJCSz++pjvth0iWrf7eOD5WdITM7cFDa1Rsu6M4+o/8NBpu++SURc0itlnkUlMGjNeRYeumeo0IXI0yJDIrl96Fam6tw+dNNgmypERkRw/sxJho+ZQLVadXF186B8xcr0G/I5Dd5rqVfu26+G07BiCap6F6Rj45oc3rcbgBfhYXw5uB9NqpShenFX3m9Si12/b9bVHTdiEOdOHWfNskX4uqeMNgQFPNKNutQtVxRfdwfGjRgEgEajYdm8mbSo5Us170J0fq8Oe3e8HDk4e/IYvu4OHDu4l24tG1DFy4ULZ0+lWw/g6IG/aFOvCtW8C9GvSxuCAx699r0xNTPD0dlF92VhYYGZmbnu9abVK+jZpjFb1q2iRS1fqnoX1L1XE0YNo4GvN7VKe9C/a1tuXb+i1/bBPTvp2qI+Vb0L0rJ2BRbN+p7k5JSEWKvVsnDmNJpVL0cVLxeaVC7NtPFfvjbOsOehnDl+hPpNmr/+D/o/rlzwY+m8mYwcN5nPx06iQpXqFHb3oGa9hsxcvIo2nboD6D2/o7ML1ra2TB7zOWV8KuiN8qVGpVLp6nmVKMXgL8YQGxPNndu3dVOo7fLlo0KV6uzeviXDsWeFjAwJIcQ7KOhFHAduhLD3xlNO3XtusPU78UkaFhy6x5rTjxhQz5OKHvkIj0ni4K2nbL8YLOuEhMiEByfvoc3kvxlNsoYHp+7h267iG/dvZW2NlbUNB/fswKdSFczMzV/tT6NhcJ/OxERHMeWnn3EvUox7d25iYmICQEJ8PGXKV+DDQcOxsbHlyIG/+Hr4p7gVKUb5ipUZPXEqDx/cxbtkGQaNHAOAQwFHZixexcgBfdh2+Cw2NraYW6SMOC+bN5MdWzcxdspMihTzwu/0Cf732Sc45HekSs3aurh+mjqRz8dOws2jKHb2+dKt9yQ4kM8H9KFrn/506vkB1y5fYMakcW/0/j3yf8C+nduZufhXTExSxh9GDeyLubkF81dtwsbOjs2rVzKgW3u2Hz6HvYMD50+fYOyIT/ly4vdUqlaTgIcP+Par4QB8OuJL9u3czuqlC/h+/jK8SpQi9OlTbt+4+toYLpw5hYWlFZ7FS2Y47p2/b8LK2oYuffqlev910xbHfz6EqKhIfl73e6ZG4tRJiez4bR229vYU8fLWu1euQiUunDmZ4bayQpIhIYR4B2g0Wi4HRbD/Rgj7bjzlxuPs3Y43Ii6JH/Zk7ifaQgh9CdEJWaqXmMV6/6VSqZg0cz4TR3/GptUrKF3eh8rVa9O8XUdKlC4HwKmjh7h60Y+tB09T1DPlg6xbkaK6NlwKufLBp0N1r3t8OIATh/fz15+/U75iZWzt7DE1NcPC0hJHZxdduX+mmOUv4KT78J2YkMDSebNYvG4rvpWr6fq6cPYUm9es0EuGBo38HzXrNcxwvY2rluNWpBhfjJ8MQFGv4ty5eZ0VC37K8vuXlJTI5NmLyF/AEYDzZ05y9aIfBy/c0SWWI8dN4uCeHezduY1OPfuyaPZ0Pho0nLadu+viHPzF/5j93QQ+HfElj4MCKeDkQvU6DTA1NaVQYXfKV6z82hgeBwVQwNEpU1PkHj24h5tHEUxNTTNcZ9m8mRw98Be/bN2FQ/4C6Za/c/M6NUq6oQDi4mKxtrFh+vzl2Nja6ZVzcilEcFD27j4qyZAQQuRhD5/HsPDQPfbffMqzKMN8QBJCvB3mNq+OxGSEWRbrpaZJy7bUbfQe58+c5PL5cxw/tJeVi+bwzfQ5tOvSg1vXr+BSyFWXCP2XWq1m6dyZ/PXnVp4+eUxSUhJJiQlYWlplOpZH/veJj4vlkx4d9a4nJSVSqqyP3rUyPhUyVe/+3duUr6CfVPhWqpbpGP/NtbC7LhECuH39KrExMdTz8dIrlxAfR8DDB7oyF8+eZsncmbr7GrWahIR44uJiea91O9YsW0ir2hWo3aAJdRo2pX7T5q8diUmIj8PM4vXrOFOj1WZi9wFSphfO/3EK0+YtpWSZ8mmWVSoUqJQKinkX56ela9ECMTHR7PljC18M/JClG7ZT1vflqKaFhQXxcXGZiiezJBkSQog8SKPRsuqkP9/vvpXudqRCiJypWE0vlCql3rlC6VGqlBSr4ZV+wUwwt7CgZr2G1KzXkE+Gj2LCqGEsnDmVdl16YG5hmWbdlYvmsHb5IkZNmELxUmWwtLRm+sQxJCUmZjqO2NgYAOat3IBzwUJ698zM9TcnsLSyzlI9Q7K00k/4YmNjcHQuyLKNf7xS1vbv0a/YmBgGjvyKxs1f3anO3NyCgq5ubDt0llPHDnHq6CGmjP2CX36ew7JNO1IdycmXvwBRL15kKu4int5cOHuapKSkdEeH/O/fZczQj/lo0HDea91ed12BAlOVApVSiUKR8j0pWaMlSa0hWaNFpTLFvZinrnzpcj4c3LOT1csWMnXOYt31iBfhGRppehOSDAkhRB7z6HksozZf4vSD3LHbkxAidXYudhSvX5Jb+29kuE6JBqWwc7FLv+Ab8CxekoN7dqT0V6osIY+D8b9/N9XRoYvnTtPgvZa07tgVSFlj9PD+Pbz+tYZFZWqGWq3/Q5t/PoRrNC+vexUviZm5OY+DA/SmxKUnI/U8vUtwaO8uvWuXL5zNcB8ZUbqcL8+fhWCiUlHY3SP1MuV98L93F49/JQr/ZWFpSYOmLWjQtAXdPuhPuwbVuHvzOqXL+75StlRZH0KfhRD54gV2+fJlKM4W7TuxdvnPbFy1jJ79Pn3lfmREBHb29kRHRTK8X08qVavF4FFfp8RmaoJWC4nJahKTtSSSiUTexISEeP3DUu/eukGpcj6vqWEYkgwJIUQeodFoWX36IdN23SQ2UUaDhMgLan9cj7tH72Roe22VuYpa/esarO8X4WF88Wlf2nftSYnSZbGytuX65QusXDRHt5tclZq1qVS9FiMH9OGL8d/hXtQT/3u3UaCgdsMmeBT1Yt/ObVw8dxo7+3z8umQBYaFP9ZKhwu4eXLngR1DAI6ysrbHP50Chwu4oFAqO7NtDnUZNsbCwwNrGlg8GDOHHiV+j1WipWLUG0VGRXDh3GhsbW906m//KSL3OvT9k1ZL5zJw8jo7d+3D98kW2b1pnsPcSoEbdBvhUqsqI/j0Z/r+JFPH05lnIY47u/4tGzVtT1rciAz4bzbAPu1GosBtNWrZFqVRy6/pV7t26wZDRY9m2cS1qjZryFSpjaWnFn1s2YmFhSSE391T7LFXOh3z5C3Dh3KlXdpR7+iSYm9f0d7JzLeyOT8Uq9B04jBmTxvL0STCNmrfGyaUgAf4P2LR6BRWr1qDHR58wZtgA4uNiGTl+MmGhz7A0NSH0X39PHQo46jbS+K/k5GRCn6YcsRATE82e7Vu5f/smHw38TK/chTMnGfTF/zL9XmeGJENCCJFHjN9+ldWnXr8VrBAi93EtV5iOP3Rmy6hNaSZEJmYqOkzvbNADV62srClfsTKrly4k8OEDkpKSKehamI7d+9B/yOe6cjN/XsWMyeP4akh/4mJjcS9ajM/GfAPAgGFfEPTIn4G9OmFhacn7PT6gYbNWREe+3MSlzydDGDdiEB0b1SA+Po6dJy5R2N2DgZ+P4adpExk/cjBt3u/GpFkLGDzqaxwKOLJs/iwCH/lja2dP6XK+9B8yIs1nSa9eocLuzPj5F36c+DXrVi6hnG8lho4exzdfDDHY+6lQKJi/aiNzp09m/MghhIeF4ujkTKXqtSjg5ARA7QaNmbNiPYt/ms6KBT+hMlVR1KsEHbv3BsDWzp7lC2Yz49uvUas1FC9Vhjkr1pHPIX+qfZqYmNCuSw92bt30SjL0y8/z+OXneXrXvvtpEa07dmXE/yZSpnwFNvyylE2rV6LRaHAvUpQmLdvRplN3HgcFcGTfHgDa1quSat///Dmm5t7tmzSuXAoAC0sr3IsU5espM/TOJ7rkd4aoqEiatmyX3lv7RhTazK6SyoEiIyOxt7cnIiICO7vsHRoWQoicatqumyw6LGf4CJHTFLY1YUJDZ5xd3VCosrZGJfhqECeWHuX2oZt6a4iUKiUlGpSiVv+6Bk2ERN4R+jSEjo1rsn7XIVzdUk9O3oSlmQlx2TAbYdTAjyhZpiz9h458bRltciJPgwOZcPApQVEvY9AkxBIwu0uGcgMZGRJCiDyignvqZz8YQnFnGyp5OLDhXPZucSqESJ1rucJ0mt2NyJBIHpy6R2J0AmY25hSr4ZXta4RE7ubo7MKEH+byJCgwW5IhpUJh8DaTEhMpXqoMvfoPMnjb/yXJkBBC5BE+bvmypd2uVdyZ0LYslmYmtPYtxOjNl3kcEZ9+RSGEwdm52BnkQFXxbmnUvJWxQ8gUUzMzBnz2xVvpK+MnMAkhhMjRCtlb4GRruPNFrM1MmN21At938sHSLGURbN3iTuweXo9Old0M1o8QQojcKyYhGSszVbaMEL0NMjIkhBB5hEKhwNctH/tuhGS5DaUCqhTNT9PSLrT0KUThfK+eIWJvacqPnX1pVrYgY7ZcIdRAp90LIYTInWITkzFTKUGrIFGd8e20cwJJhoQQIg/xdbNPMxlysTOnuLOt7rWWlD108lmZ0aikM41KOeNgnbEF3k3LuFC5iAMDVp3j3MPwNwtcCCFErpaYrEGpUGBlpiI2A1vB5xSSDAkhRB7i657vlWvVi+WncWln6pdwpoSLDQoDTmXIb23G6v7VGbL2whuNSAkhhMj9NFotcUlqVEolyZrcMUIkyZAQQuQhPm72r7xe93ENlMrsm8ttYWrCol6VGLftKuvOyG5zQgjxLtNqtZibmZCcIMmQEEKItyyflRlL+lQhKj4Je0tTKno4ZGsi9A+ViZIpHcrjZGvBnP13sr0/Id5Vz0PCuHjiCrHRcVjZWFKhVnkKuKR+4KYQxpKQpEaBQjcVOyeTZEgIIfKYpmVcjNKvQqHg86YlsLNQMXnHDaPEIERedefqPTb9vI2zh86jTn55uKSJyoSqDSrR+ZN2FC/nZcQIc56ggEe0rOXLht1HKFW2fJbaGDdiEFGREcxetuaNYvF1d2DWktU0at7KIHHldMkaba5ZOyRbawshhDCoj2oXo1RB2/QLCiEy5OTes3zVcyKn9p3VS4QA1MlqTu17ed/Qwp6HMnnM5zSrXo4qXi40qlSST3u+z4WzpwzeV1623+8mdRo2SfXe2ZPH8HV3IDIi4i1Hlb3Umpw/KgSSDAkhhDAwpVLBiKYljB2GEHnCnav3+PGLuSQlJqVZLikxiR9GzuXO1XsG7X/kgD7cvHaFSbMWsv3wWX5atpaqNWsTER5m0H7+KykxMVvbf9scnV0wMzfcOXC5QUKyGgtTE2OHkS5JhoQQQhjce2VcKFfYzthhCJHrbfp5W7qJ0D+SEpPYvHi7wfqOjIjg/JmTDB8zgWq16uLq5kH5ipXpN+RzGrzXUlfO192BjauWMah3J6p5F6Jl7Qrs3bFNr61ZU76hTb0qVC/uSsvaFZj3w3ckJb18roUzp9GlWV22rFtFi1q+VPUuCMDeHdt4v0ktqnkXol55TwZ0b09sbIyu3pZ1q2jfsDpVvQvSrkE1NvyyNNVn0Wq1tK5TiV8WzdW7fvPaFXzdHXj04H6a78WiWd/TwNebWqU9mDRmhF6y1qKmD6uXLtQr36VZXRbOnKb3Hh3YveOVdoMCHtG/SxsA6pYriq+7A+NGDEozltzE5C2sWX1TkgwJIYQwuH/WDwkhsu55SBhnDvplqs6Zg348DzHMqI2VtTVW1jYc3LODxIS0D1ee/+MUmrRsy8a/jtKyfWe+HNyP+3du6e5bW9syaeZ8thw4xegJU9mybhWrly7Qa+OR/wP27dzOzMW/snHPEZ6FPOGrIf1p37UXWw+eZtnGP2jcvDVoU6Zf7di6kQU/TmXI6LFsPXCaoV+OY/6PU9i+ad0r8SkUCtp37cnvm9bqXd+2cQ2Vq9fCo5jna5/t9PEj3L9zi6Ub/2DavCXs3/Uni2Z9n+77lxEFXQszY/GqlFgOn2W/301GT5xqkLZzhFwwU06SISGEENmiYUlnKqRy7pEQImMunriCRp257YnVyWounrxikP5VKhWTZs5n++Z11ClblA86NGPOtG+5fePqK2WbtmpHx+59KOrpzZBRX1PGpyLrVizW3R/w2RdUqFKdwu4eNGjagg8GDOGvP37XayMpKZHJsxdRupwPJUqXI/RpCMnJyTRu0ZrC7h4UL12Wrh/0x8raBoCFM6YxctwkmrRog5tHEZq0aEOv/oPYvGZFqs/TtnMPHt67w5ULfn/3l8Su3zfTvmuvNN8HU1NTJs6Yh3fJ0tRr3IxBI8ewdsViNAY4R8fExAT7fA4A5C/ghKOzC7Z29unUyj1yQS4ku8kJIYTIHv+MDvVZfsbYoQiRK8VGx2WpXlwW66WmScu21G30HufPnOTy+XMcP7SXlYvm8M30ObTr0kNXzrdyNb16vpWqcvP6y6Rs9/YtrFvxMwEP/YmNiUGtTsbaRn+jFdfC7uQv4Kh7XaJMOarXqU+npnWoVb8RNes1pGnLdtjly0dsbAwBDx8wYdQwJn45XFdHrU7Gxjb1KbrOBQtRt9F7/L5xNeUrVubwvt0kJibStHW7NN+DEmXKYWlp9a9nrUpsTDRPggNxdfNIs+67LjdsrS0jQ0IIIbJN3eKOFM5naewwhMiVrGyy9m/HMov1XsfcwoKa9RryyfBRrPr9L9p27sHCmRmfynXJ7wz/GzaAOg2bMnfFejbsPkz/ISNJTtLfJMHSykrvtYmJCT+v3cr8VRvxLF6SdSsW07ZBVQIfPSQuJmXd0Pjps9m4+4ju67e9J/h1297XxtKhe2/2bN9CfFwc2zauoVmbDnqJTlYolEq0Wv0P/UnJOX9L6bdBm/NzIUmGhBBCZB+FQoFH/jf7oCHEu6pCrfKYqDK3G5eJyoQKNbP37BrP4iWJi43Vu3b5vP623pcvnMPTO2Xd4MVzZyhU2J2Ph31BWd+KFCnmxeOggAz1pVAoqFi1BoNGjmHD7iOYmppxYPefFHByxsmlEIEPH+JRzFPvy82jyGvbq9voPSwsrdn463JOHNpP+649043h9vWrxMe9HG27fP4cVtY2FHR1A8AhvyOhT5/o7kdHRRL86GGGng9SpuEBaDTqdErmPrkhGZJpckIIIbJVYQcZGRIiKwq45Kdqg0qZOj+oWsPKFHDJb5D+X4SH8cWnfWnftSclSpfFytqW65cvsHLRHL3d5CBl17cyPhWpWK0GO7du4upFPyb8MAeAIsU8eRIcyK5tv1HOtxJHDvzFgd1/ptv/5QvnOHPsMDXrNSK/oyNXLvgRHhaKZ/GUJGvQyK/4fvxX2NjZUbtBY5ISErh2+SKRES/oM2Bwqm2amJjQrnN35nz/LR7FvF6Z3peapKQkJowaysfDviA48BELZ06jW9/+KJUpYwrVatdl+6Z11G/SHFs7e+bPmIrSJONJbKHC7igUCo7s20OdRk2xsLDQrYvKzUwUCpINsK4qu0kyJIQQIlu5yjQ5IbKs8yft8DtyMUPba5uZm9JpQFuD9W1lZU35ipVZvXQhgQ8fkJSUTEHXwnTs3of+Qz7XKzvw86/YvX0LU8Z+gaOzC9PmLcWrRCkAGrzXkl79BzJt3GgSExOp26gpAz4bxaJZ01LrVsfGxha/0ydZvWwRMdFRFCrszshxk6jTsCkAHbv3wcLCkpU/z2XWd+OxtLSieKky9Ow3MM12O3TrzdJ5M/XWPKWleu16eBTz4qNOrUhMTKRFu/cZOOIr3f1+g0cQ9OghQz/sho2tHYO/+JrggIyPDLkUcmXg52P4adpExo8cTJv3uzFp1oL0K+ZgJgoFKhMlCck5f7RLof3vJMdcKDIyEnt7eyIiIrCzk3MthBAiJ9l4NoDRv102dhhCGE1hWxMmNHTG2dUNhcos0/VP7TvLDyPTPnjV1MyUUTOGUqNJ1TcJNUt83R2YtWQ1jZq3eut9Z8X50yf4uHt7/jp9lQJOzsYOJ88xUSpQKd9OIqRNTuRpcCATDj4lKOplf5qEWAJmd8lQbiAjQ0IIkYNoNFqeRMbj/zwG/9BYHoRGc/zuc1QmChxtzHGyMef9ym5UK2aYaTBvg0yTE+LN1GhSlWlrvmHz4u2cOeiH+l8fMk1UJlRrWJlOA9pSvJyXEaPM+RITEggPC2XhrO95r1U7SYSywdtMhAxFkiEhhHjL/pvwpPwag//zGB4+jyUhOe051hvOBdCktDODG3rjZGuOmUqJuYkJZiolZipljjvxW3aTE+LNFS/nxZg5I3geEsbFk1eIi47D0saSCjXLG2yNUF63a9tvTBg1lJJlyzN51kJjh5PnmCgVmCgVuSoRAkmGhBAi20QnJHM58EWWEp707LvxlH03nqZ6T6VU6BIjMxOl3u/NVUrMVSav3LcwVeLtbENFDwfKF7bHwjRzO1ilpVA+C4O1JcS7roBLfhq3r2/sMPRcCgg3dggZ0q5LjwyvExKZZ64yITYx920pLsmQEEJkg7+uPWHctquERCa89b6TNVqSE9XEJmbtp3MqpYIyrnZ0ruJOr+oeKBRvNtJkrjLBydacZ1Fv/70QQgjxduSsOQkZJ8mQEEIY0LOoBCZsv8aOK4+NHUqWJWu0XA6M4HJgBKfuP+f7932wMX+zbxeF81lKMiSEEHlZLs2G5NBVIYQwAK1Wy8ZzATSZeThXJ0L/tePyY9rOPcatJ1Fv1I6bbKIghBB5mlqjNegU67dFkiEhhHhDj57H0nvZGUZvvkxEXPpngeQ290Nj6Ln0NI8j4tIv/Bqf1PNClcM2dhBCCGE48Ulq4pPUqJRKTE2UqEyUqP7eVEGpUGBqosTaTPXGU68NTZIhIYR4A3uvh/De7MMcuxtq7FCyVWh0Ah+vOkdcFtchlXezZ1jj4gaOSgghRE6TrNGQpNaQrNaQrNGi1mjRaLUkqTXEJCZjolDkqBEkSYaEEOINnHsYRnzSm+0Ml1tcDYpk1OZLZPWs7kENvPB1z2fYoIR4x4Q8fsy2jetYs3wx2zauI+Rx3pmWK94NyRoNCUlqrN9wLaqh5IwohBAil4pJyH3biL6JPy8/pnQhOwY39M50XZWJklldfGk55+g7k0AKYSjXLl1k6bzZHNm3h+Tkl//vqFQq6jVpRv8hwynrW8F4AQqRCVpSvn9ampqQqNag1mTth2yGICNDQgjxBqLj361kCOCHPbf469qTLNX1dLJh3+f1mdCmDHW8HWUdkRAZsH/XDvq+35oDu3foJUIAycnJHNj9z/2dRoowZ9qy/lc+6dHR2GFk2sZflzP0w27GDuOtiEtSo0CBucp40+YkGRJCiDcQ/Y6NDP1jxIaLWd5hzs3Bir61i7G6f3XOj2/KvB4VaV/BFXtLUwNHKUTud+3SRb4a+gmJCWlvTZ+YkMCXQwZw7dJFg/W98dfl1CzlrpeAxcZEU7mYE/06t9Yre/bkMXzdHQjwf5Buu/+UjYyIMFis/5UQH8+CH6bw6YjRumsLZ06jS7O6adZ79OA+4z4fTNOqZani5UKLWr58Obgf1y5dAGDciEH4uju89mv7pnVptr9v53b6d21LnXJFqeZdiLb1qzJ+5BBuXL2sK9Ohay9uXLnM+dMn3uAdyD2SNRqSNRqjJUSSDAkhxBuIegdHhgBiEtX0X3WW8JjEN2rHzsKU1j6uzO5WEb+xTVg/oAb96xSjSAErA0UqRO62dN7sdBOhfyQmJLBs/myD9V2tVl1iY6K5fvmC7tr5Mycp4OTMlQt+JMTH666fPXGUQoXdcC9azGD9p0er1b4yUvaPvTu3YW1rS8WqNTLc3rVLF+jeqgGPHtxl3LSZbN1/illLVlPMuwQzJo0FYPTEqez3u/nKV426DXB196Bu4/de2/6sKd8wetBHlCxTnjnL1rLt8BmmzV2Cm0dR5kz7VlfO1MyMlu3fZ+2KxRmOPbdTa7QkazQojHBYkSRDQgjxBmIS381kCCAgLI6Ba/xIUhtm/Y/KREkNzwKMbV2GQ180YN/n9fiqRSmqFHEgh+3EKsRbEfL4MYf37s5UncN79xhsU4WiXsVxci7I2ZPHdNfOnjxGg/daUtijCJcvnNNdP3fyGFVrpoy6/PHberq3bEjNUu40qlSSr4b053noMwCCAh7Rv0sbAOqWK4qvuwPjRgwCQKPRsGzeTFrU8qWadyE6v1eHvTu26fXt6+7AsYN76dayAVW8XLhw9lSqse/evoX6TZpl+Fm1Wi3jPh+ER1EvVvy2i3qNm+FetBilypbn0xFfMnvZWgBs7exxdHbR+9q6/lcu+Z1l9tLVOOQvkGr7l8+fZeXCOYwc/x2jvvmOStVrUaiwO2V8KjDgsy9Y8OsmvfL1mzTn0N5dxMdl/UiD3EalVKDl7a8dkmRICCHewLu4ZujfTt0P49s/rhu8XYVCgbezLZ/W92LzwFqc+7oJnzctIWuMxDvl1NFDqNWZ284+OTmZ08cOGyyGqrXqcPbEv5KhE8eoWrMOlavX4uyJowDEx8Vx5aIfVWulJEPJSckMHvU/Nu05yuylqwkOfMT4z1MSnoKuhZmxeBUA2w6fZb/fTUZPnArAsnkz+eO3DYydMpMt+0/Sq/8g/vfZJ5w7eVwvpp+mTuSzr77h9wOnKVGqbKpxXzx7ijI+FTP8nDevXeHe7Zv0GTAYpfLVj8d29vap1ju8bzcLZkzl2xnzKFmm/Gvb37XtN6ysbejap1+q9/979k4Z34qok5O5ctEvw8+Q26lMjJOWyG5yQgjxBrJjzVDRAlY0Lu1CeGwij57Hcu5huMH7MKRfTz2kUSlnGpZyzrY+CtiYM6xxcRqUdOKz9Rd5EBqTbX0JkVNER2dtXV5W66Wmaq26TJ/wP5KTk0mIj+PWtctUrlGb5KQkNq1eAcCl82dJTEigaq06AHTo1ktX361IUb6c+D09WjciNiYaK2sb7PM5AJC/gJMuyUhMSGDpvFksXrcV38rVdHUvnD3F5jUrqFKztq7NQSP/R816DV8bc2REBFGRkTi7FMzwcz56cA+Aot4lMlznwd3b/G/YAPoNHsF7rdunWfbh/bu4eRRBpXr50XvV4vksmDFV93rv2WvY2qW8H5aWVtjY2vE4MCDD8eR2xtpRTpIhIYR4A4ZeM5TPypQVH1ajmKM1kDJ1Y+nRB0zddQMj7jyarm//vE5NrwLZfpCej1s+dgyrw6Q/b7DuzKNs7UsIY7OxsX2r9VJTpUYd4mJjuHbpPJERL/Dw9CZ/AUcq16jN+C+GkBAfz7mTx3DzKEqhwu4AXL98kYWzpnH7+lUiIyLQaFKm0j4OCsSrRKlU+3nkf5/4uNhXdn9LSkqkVFkfvWtlfCqkGXNCfMrUMjNziww/Z2bPT4uKjGB4/15Url6bwaO+zlTdf7Tv2osGTVtw5eI5/jfsE/4bgrmFJfFxsVlqO7cxUSqIT8raod5vSpIhIYTIomS1hoRkw52XY2qiYFGvyrpECFKmTnxczxNzUyXjt10zWF+G9iA0hsk7rjO5/euniRiKlZmKqR3L07CkE1/+dpnw2KRs71MIY6hRtwEqleq1mwSkRqVSUb1OfYPF4FHME5dCrpw9cZTIiBdUqV4LAOeChShYqDAX/c5w9sRRqtWuB0BsbAwDe71PrfqNmDpnMQ4FHHkcFMjAXu+TlPT6f6uxsSmjvfNWbsC5YCG9e2bmZnqvLa2sSUs+h/woFAoiI15k+DmLeKacneZ/9zaly/mkWVaj0TBm6McolUqmzl38yhS31HgU8+LC2dMkJSVhapqyc6advT129vaEPAlOtU7ki3AcCjhm+BlyM3OVCbFGWoMra4aEECKLVCZKOld2M1h733UoTw3P1Bff9q5RhOZlMz7lwxhWn3rEryf931p/75UtyIZPapLf2iz9wkLkQi6FClEvE5sAANRv2gyXQoXSL5gJVWvV5ezJ45w7eZwqNevorleqXovjB/dy9dJ5qv593f/uHV6Eh/HZmG+oVL0WxbxLEPb8mV57/yQDGs3LkQCv4iUxMzfncXAAHsU89b4Kumbu/1lTMzM8i5fk/p1bGa5Tqmx5PEuUYtXi+bqRrH/79zbg86ZP5qLfGWYvW4N1BkfhWrR7n9iYaDauWpah8gH+D0hIiH9lVEwYniRDQgjxBsa3KYObg+Ubt/NpfS+6VHF/7X2FQsHsbhVolI3rcgxh3LZrTPzjGskG2mEuPSVcbPm1XzU5o0jkWf2HDMfM3DxDZc3NLeg3eLjBY6hasy4Xz57i1vUrVKnxcu1OlRq12bzmF5ISE3WbJxQs7IapmRnrViwm8KE/h/7ayeKfftRrr1BhdxQKBUf27SHseSixMdFY29jywYAh/Djxa7ZvWkeA/wNuXLnE2hWL0z27JzW16jdOdae5+Ph4bl67ovcV4P8AhULBtz/O4+GDe3z4fguOHviLwIf+3L5xlSVzfmR4vx4A7PljK8sXzGb0N1OxtrYh9GmI3ldsTHSq8fhWrkafAUOYMWksP0z8mvNnThIc+IjL58+ydf2vKBQKlP/aIOb8mZO4eRR9q1uVG4sC402RA5kmJ4QQb8TWwpSZXSrQdfHJV+Z7Z1Szsi6MblYy3XIWpib83Lsye6+HsO7MI47eCc1ah9lsxXF/9t0IoX4JJ+oVd6KWtyM25m/27SZJreHQrWf4h8YQFptIWHRiyq8xiYTHJJKQbLxvpEJkp7K+Ffh+3mK+HDIgzfOGzMzNmTbvZ8r6VjB4DFVr1SU+Po5i3iUo4PTyBzKVa9QiJjoqZQvuvzcryF/AkUkz5jNn+iTWrlhM6XI+fD72Wz77qIeunkshVwZ+Poafpk1k/MjBtHm/G5NmLWDwqK9xKODIsvmzCHzkj62dPaXL+dJ/yIhMx9yhWy96tGpEVGSEblMCSNnIoGvzenplq9epz+J1v1O+YmXW7jjA0rkzmDh6OC/Cn+Pk7IJv5WqMmpCy0cHGX5frtuFOzacjvmTg51+lem/kuEmUq1CJjb8uZ9vG1cTFxVHA0YnK1Wuxattf2Nja6cru2vYbHXv0yfRz50YWpkrijJgMKbSZXTGWA0VGRmJvb09ERAR2dnbpVxBCCAObs/8O8w7eJTGTa4iqFcvPyg+rYmWW+WQhICyWDWcD2HgugKdRGTuU0RhUSgWVijhQr7gj9Uo4Uc7VXu8noGl5GhnP2jOPWHfmESGROfcZhUhLYVsTJjR0xtnVDYUqa9M6r126yLL5szm8d4/eGiKVSkX9ps3oN3h4tiRCudkXn/aldDkf+g353NihZMrdWzf4uFs7th8+q5fI5VXW5ipisrgzqzY5kafBgUw4+JSgqJcJlSYhloDZXTKUG0gyJIQQBhKbmMyJu8/Zf/Mph289JTZJjY25ClsLU2zNVdhaqLCxUOmuOViZ8kGtom+8A1uyWsOBm09Zd+YRh24/y/II1dviYGVKo1IufNmiJM62r9/t6cjtZ/T/5RyJb2nKnRDZxRDJ0D9CHj/m9LHDREdHYWNjS/U69Q2+RiivCAp4xOF9u+nx4QBjh5Ip/5wvVbtBY2OH8lYoFQpMTRRZ2pBIkqG/STIkhBApAsJiGb7hIn45/GwigPzWZkzrWJ73UtkYwu9hOL2Wnjbq1AkhDMWQyZAQeZGpiRKNVpvps4YMkQzJBgpCCJGHuOe3Yt3HNehbq6ixQ0lXWEwiA371Y8yWy3pbqt4OieKjlWclERJCiHdEklqDmYlx0hJJhoQQIo8xUymZ0LYss7r6GjuUDFl3JoAlRx7oXq84/oCIODk7SOQdKT/s1pLj57AKYURxSWqsM7vZjlYLaN/oUHJJhoQQIo/qUNGNEi42xg4jQ8JiXm6OcP7hC+MFIkQ2eBGvIUmtRZucaOxQhMjRYhKSsTLL+DpabXIiSWot4fFZX1sqW2sLIUQe9l6ZgtwOuWvsMNIVFpsyEhSXqOb20ygjRyOEYcUla9l/P5rWZiY45Cdl3ZAiYzsqCvGuiVUrsFApiU/W8NqtDbQpP1wIDwtl//1o4pOzPjQkyZAQQuRhTcu4MO9gzk+GwmNSfmKeqNbITCKRJ225EQNAY081piYKQJIhIdKiVKRsrJCsSW1jBS1J6pQfMvzzbyurJBkSQog8rHxhewraWfAkMt7YoaTp+d/JkCqD5w8Jkdtogd9uxLDjTiwOFkrkr7oQGaNUKijpYktcYjL+z2OBlHV44fGaNxoR+ockQ0IIkYcplQp6VPdg5t7bxg4lTR75LQEwkU+IIo+LT9byOFp2ShQiMwIiUo6L8Ha2wc5CxaWAF6gNNItANlAQQog8rmd1D8xVOfe/extzFRPalgXAzERptO1VhRBC5Gx3n0Zz/tELHKzNqF4sP/aWbz6uI99xhBAijytgY07HSm7GDuO1vmxRikL2KSNDSqUCTydrI0ckhBAiJwuNTuT0gzDikjRUKeJAkb9nF2SFJENCCPEO6FenmLFDSFW7Cq70rOahd61kQVsjRSOEECI3SUzWcO5hOA/D4qhWNH+W2pBkSAgh3gHezjbM6OyLdSbOb8hOdhYqfupWgdldK6D8zzqhEi6SDAkhhMicrB7WLcmQEEK8I96v7Mauz+pRuYiDUeNoUtqZPSPq0a5CYRSpnLVSr7iTEaISQgiRWznamHErJGtn1MluckII8Q7xKGDFhgE1WHT4HrP33SH5lbMbskfhfJZ0quxGp8puuOe3SrNsucJ2eDvbcPdp9FuJTQghRO7m6WhDaHRYlupKMiSEEO8YlYmSIY2K07xcQTadC2TrhSCeRiUYrH0rMxNKF7KjnKsdZQvbU9bVjtIF7V6ZDvc6CoWCzpXdmLrrpsFiEkIIkXdFxWdtihyAQqvN/Wd9R0ZGYm9vT0REBHZ2dsYORwghcpVktYbj957zm18ge649ISFZk+G69pamlHW1o9zfSU9ZV3uKOVq/8XlBSWoNH644y7G7oW/UjhBCiLzNwcqU8Fj9ZEiTEEvA7C4Zyg1kZEgIId5xKhMl9Us4Ub+EE5HxSey68pjf/IK48TiS6MRk/vmRmZOtOeX+k/i4OVimuu7nTZmaKJnfsxI9l57ialCkwdsXQgiRN3g723DWPzzL9SUZEkIIoWNnYUrXqh50rZqy3bVGoyUuSU2yWou9lelbjcXe0pQtA2sz98AdFhy6h/otrW8SQgiRe8Qmqt+oviRDQgghXkupVGBtbrxvFWYqJSPfK0nXqu785hfE7mtPiIxLIi5JTWxiMvFJGZ/SJ4QQIm9RKuD+szfbbEeSISGEEDmem4MVnzUpzmdNiutd/2fkKjZRTVyimpjEZJYde8Bmv0AjRSqEEOJt8XS05u6zmDdqQ5IhIYTIodQaLaHRCTyOiOdJRDxPIuIIi02ioJ0FRQtYUcTRmkJ2FhnepS0v+mfk6t+jV9Pf98HGXMXKE/7GC0wIIUS2y29tBpIMCSFE7hOfpCYk8u8k5+9fH0fEExL58tenUQnprpMxUylp5+vKqGYlcbazeEvRZ05UfBIn7j3nyO1nnPUPQ6lQYGVmgrW5ChtzFVZmKmzMTbD6+7W12b9+//frlF9VWJun/N5cpXztxg1KpYJv2pRBrdHy66mHb/lphRBCvC0J6jefKi3JkBBCGJBWqyUyPvllUvN3kpOS8MTxJDKBJxFxr2wDmlWJyRo2+QWy88pjBjX0ZkA9T0xNlAZp+008jYxnk18gh28/4/zDcIMf7mptZkKd4o40Ke1Co1LOFLAx17uvUChoWb6QJENCCJGHaQzwvUWSISGEyCCNRktoTMLfU9Zejujo/T4y/o13tsmKmEQ1P+y5xTn/MBb0rIylmclbjwHg4fMYfj5yn81+gSRm4ryizIpJVLPnWgh7roWgUEBF93w0L1eQD2sX0yWDXk7W2da/EEII47Mye/NURpIhIYQAEpLVPI1M4Ml/RnRSRnjiCIlMICQy3uAjHIZ28NYzei87zbIPqr7VrbBvPI5k4aF7/Hk5mLf9Fmm1cP7RC84/esHBm89Y2KsS+azMcLI1x9ZcRVRC8tsNSAghxFsRFf/m/79LMiSEyPOi4pN009ZSG8l5EhHP85hEY4dpMOcehtN18Ul+7VcdJ1vz9Cu8gbP+YSw8dI8DN59maz8ZdfL+czosOMGyD6rg6WSDp5M1lwIjjB2WEEKIbOD/PAYF8CY/g5NkSAiR5wS9iGP67ptcDYogJDKB6HdwZODmkyiGrbvA6v7VMTHwbnNarZZDt56x4NDdNzr1O7s8CI2h/fzjLOxVGS8nG0mGhBAij4pNVFOtaH7O+IdluQ1JhoQQeUaSWsOyYw/4ad8d4pLe/rqdnObk/ecsOHiXoY2Lp184g+4+jWLouovceBxpsDazQ2R8Mh8sP0MJF1tjhyKEECIbnX8UjpeTNfeyuMW28bccEkIIAzh9/zktfzrKtF03JRH6l9n773D2DX5i9l+ejjZUL5bfYO1lp2SNlus5PGkTQgjxZpI1WuIS1ViZZi2tkWRICJGrPY9OYOTGS3RdfIo7T6ONHU6Oo9Zo+WzdBSLjDbOV9z9n+AxvYrjRJiGEEOJNBEfEU6qQXZbqSjIkhMiVNBota04/pNGMw/x2PtDY4eRowRHxbD0fZLD2FAoFw5uUYHzrMgZrUwghhHgT5x+9oHIRh0zXk2RICJHrXA2KoMPCE3y99SoRcYYZ8cjr1p5+hFZr2D2vP6pTjBmdfQ2+QYMQQgiRFdeDI3FzsMxUHdlAQQiRa0TFJzHjr9usOun/1s+yye1uhURl+admaXm/shu2FiqGrLuQrYesCiGEEOmJS1JjaqLANBM/pJORISFEjqfVavnjUjCNZxxm5QlJhLJq3ZlH2dLue2ULsvLDqlibmWRL+0IIIURGPQiNxcctX4bLSzIkhMjRHoTG0Gf5GYauu8DTqARjh5Nr2VqoKGBjlm3t1/JyZO3HNXCwMs22PoQQQoiM8HuU8TPwZJqcECJHik9Ss+DQPRYdukeiWqZfZZWpiYLPGhenXx1PLLN55MbXPR8bP6lJr2WnCYmUxFUIIUTOJ8mQECLHOXz7GeO3XeXh81hjh5KrlXW1Y0YXX0oVzNp2o1lR3MWWzZ/Wotey0/LnJ4QQIseTZEgIkWM8iYjn2z+vsfPKE2OHkusNauDFiKYlMDV5+7Oh3fNbsenTmvRZdoabT6Leev9CCCFERsmaISGE0ak12v+zd9/xkZX1/sA/Z870PpPek+29F0B6R4oCiiKKIuLVq9frtdefetGLXaxYUEEFFBEUKUtf6u5mW7ZlW7LpyaRN7+38/shu2GWTzSSZmTPl834ZWTIz53zDJpPzOc/zfB/c++oxXPKjzQxCafDNa5fgC1cukiUInVBu0uJvHz077d3riIiI0olhiIhk97MXjuLbTx5EIJqQu5SCcMWySrlLAABY9Cr8+fYNOH9BmdylEBERTYhhiIhk1dzhxM9fPCp3GQVlX68HPc5gTuz7o1crce+t63D18iq5SyEiIjoN1wwRkWx84Rg+/dfd3DcozT76553jfy4xqFFu1qLSrEGlRYtykxaVFi0qzVqUmzWoNGthN6ghCKlvUDddaqUCP7t5Ncw6JR5q7snYeYiIiKaLYYiIZBONJ9HvCctdRkEbDUQxGoji4MDkz1GLCpSbNagwj4WkCrMWFcfD04IKExZXzb4bnagQ8H/XL0etTY+fvnA0J0atiIiIGIaISDZ2gxoWnQqeUEzuUopaNJFEryuEXldowseX11hwy8Z6XLuyGgbNzH9tCIKAT1w0D9euqMadT7biudbBGR+LiIgoHbhmiIhkIwgC5pYZ5C6DprCvz4MvPboPG//vBXztn/vQ2u+d1fHqS/T43a3rcN9t69FUyr9/IiKSD0eGiEhWc8qM2NXtlrsMSoE/EsdftnbjL1u7sarOivdtrMe1K6qhU4szOt6FC8tx9twSPHNgEIcdXhwZ9GPEH0G1RYdqqxY1Vh2qj39UmLUIRRMYDUQw5Ivg8ZZ+PL1/gOvNiIhoVhiGiEhWc8uMcpdAM9DS40ZLjxt3PtGKG1bX4BMXzUO5WTvt42iUIq5bWQ2srE7p+fUlegDAFUsr0eMM4v43OvG37T3wReLTPjcRERGnyRGRrK5ZUQWdamYjCyQ/XziO+7d04Z2/fB2HHLObPjdddXY9vnbNErzx5Yvx/65Zgjq7LqvnJyKi/McwRESyqrPr8dnLF8hdBs1SvyeMd9+zBa8dHcn6uU1aFT58bhM2f+4i/Pr9a7C+0Zb1GoiIKD8JkiTl/Yxrr9cLi8UCj8cDs3n2LWCJKLviiSRuuOcN7O31yF0KzZLyeAvtm9bXyVqHMxDFIYcXhwZ8OOTw4rDDh8ODPoRjbOlNRFTokpEgeu6+KaVswDBERDnhsMOH9/52C1xBttkuBJ+8aB4+e/mCjG7mOl2JpISu0QAODvhw2OHFE3sHcGwkIHdZRESUZgxDRJSXOkYC+NAfm9E1GpS7FEqDd6yqxvfftQIaZW6uCYvGk/jTlk789PmjbMBARFRAphOGuGaIiHJGU6kBj378HKyqs8pdCqXBv1r68YHfN8MdjMpdyoTUSgU+ct4cvPi5C/He9XXIoUEsIiLKkmmFoW9+85sQBOGUj0WLFo0//tvf/hYXXnghzGYzBEGA2+2e9TGJqLiUGDV46I6zcMXSCrlLoTRo7nDihnveQI8zd0f7ykwafPfGFXj8E+diTb1V7nKIiCiLpj0ytHTpUgwMDIx/vPbaa+OPBYNBXHnllfjKV76StmMSUfHRqUX86pa1+NA5jXKXQmlwbDiArzy2T+4yprS81oKHPnoWRyaJiIrItDddVSqVqKysnPCxT3/60wCAzZs3p+2YRFScRIWAb163FHV2Pb79ZCvyf3VjcXv16AjeaBvBOfNK5S7ljDRKEb/5wFpc+/PXMOSLyF0OERFl2LRHho4ePYrq6mrMmTMHt9xyC7q7u2ddxHSPGYlE4PV6T/kgosJ0+7lN+H/XLJG7DEqD7z1zGPnQs6fCrMVvPrAWapHLaomICt203uk3btyI++67D5s2bcI999yDjo4OnHfeefD5fDMuYCbHvOuuu2CxWMY/6urk3c+CiDLrg2c3YkOjXe4yaJb29LjxzIFBuctIyep6G759/TK5yyh6c8sMqLPrYNJOeyILEVFKZtVa2+12o6GhAT/+8Y9x++23j39+8+bNuOiii+ByuWC1WtNyzJNFIhFEIm9OX/B6vairq2NrbaICdmzYj6t++ioicW6amc/mlRvxzKfPh6jIj9Zt33z8AO57o1PuMorOsmozwvEE2obe3AfKrldjXoURA54QepwhGasjolyXtdbaVqsVCxYsQFtb22wOM+1jajQamM3mUz6IqLDNKTPiM5ctkLsMmqW2IT+2tI/KXUbKvnjlIqjE/AhuhWBxlQkLK0zY3+89JQgBgDMYRXOHEz3OEOaXG7Gkir/7iWj2ZhWG/H4/2tvbUVVVla56MnJMIioMHz63CQ0lernLoFn6Z0uf3CWkTKcWsazGIncZBW9BxVi4OTjgw+HBqafeHx3yo3XAi/WNNhjUubmpLxHlh2mFoc997nN4+eWX0dnZiTfeeAPXX389RFHEzTffDABwOBxoaWkZH9XZt28fWlpa4HQ6x49xySWX4Be/+EXKxyQiOkElKjg6VAA27XcgFE3IXUbK1nO9WkZtbLLjyOBYuJmu7Z0u6NVKLKwwZaAyIioG0wpDvb29uPnmm7Fw4ULcdNNNKCkpwdatW1FWVgYA+PWvf43Vq1fjjjvuAACcf/75WL16NR5//PHxY7S3t2NkZCTlYxIRnezaFdVYVMkLn3zmj8Tx/MH8aKQAMAxl0qo6C7Z1OKd+4hkM+yNweEMoM2nSVBURFZNZNVDIFV6vFxaLhQ0UiIrE862D+MifdshdBs3CJYvK8fsPrZe7jJS4AlGsvvM5uctIiVIhoNqqQziWyPl9khpL9HB4wginqSnKggojjg0HEE/m/WUNEc1S1hooEBHJ4ZLF5VhTb5W7DJqFl48MwxmIyl1GSmwGNeaXG+Uu4zQlBjXW1FuxscmOVXVW1Nl0SEoSup1BDPkiMGlEbGzKzVEti06FUDSRtiAEAEcG/ViVo+8Ly2ss2NBoQ71dj6XVZmiUvPwiyhX8aSSivCMIAr513bK8ac9Mp4snJTy5t1/uMlK2LkemymlVCqxtsGJZtRmjgSh2dbuxrcOJlh43elwhnDwo4osk0NzhRFOpQb6CJyAqBFRZtBjMwMiVQsi994RFlSbs6/OgudOFbmcQB/q9KDVquM6JKEcwDBFRXlpea8EnLpwrdxk0C4/tzp+uciN++aacCQKwpMqMtQ02CAB2drmxvz+1ZgMSkHOtwdfUW3HIMfPN2s8kmYNT5AKR+Gmf63OHcHjQhw1NNmhVvBQjkhN/Aokob33y4vncaySP7ep2o3s0KHcZUxr1R/DSoaGsn7fOpsPGJjvKjBq0Dnixs8uFUGz608qODvozUN3MrGu0YXunK2PHD8dyq0thnV2HHtfkG8Q2d7hg06vZFIZIRgxDRJS31EoFfnTTypy7802py4c9h/7V0p+1RfkapQLrG22YV25AjyuEbR3OWTdCMGhyYx+eRZUm7O7KXBACgGCOtWyvMGmnfM6AJ4xDDh/WN9qyUBERvRXDEBHltcVVZvy/a5dCzQXJeemfu/uQ601N/7GrNyvnWV1nhVWnwvZOF9qGAmk7rl6tTNuxZqrcpIHDG0Yiw3/VuXZjRELqX/D2ThdW52gDCKJCxqsHIsp7HzirAZs/dyHevbYW2Vg/3Viih02vyvyJZKJUCDhvfimW11hQbtIgk30qjo0E8IfXOzN3glk65PDiQIrrc2aqsUQ/NmrS485IUwG5O5dpVQro1SLcwVjGz2XVqzN+jlSpRAFHprk2atgbyejPGxGdTv7bRUREaVBt1eEH716Jj5w3B/e90YmdXU4cSeNaiWqLFjesqcUNa2owp2yszXI4lsCBfi8+9pedGM7xPV1Sta7Bhm9fvwyLKt9cixVPJDEaiMLhCWPQG8agL4I+VwhP7utHj3Py9RCp+u7TB7GuwYaVddZZHyvd/rEzc6NCFp0KCyqM2NHpmsb4wfTJHYYWV5qwu8eTlXO5grnTrn1JlRl7eqf3dfe6Q1jXaMOODK6rIqJTcdNVIipYnmAMu3tc2NXlws5uF1q63QhMY02BTiXiqmWVuHFtLc6eUwLFJLdsO0YCuOV3W9HvCaerdFn818Xz8D+XLpj063yrZFLCq20j+MvWLjzXOjirc9fZdXjyU+fBrM2dEbd4Iomz7nox7Z3kRIUw1lFtwAtfJPNrXNbWW7Gz253x80xkY5Md2zqcWTmXUSMiGE0gVxrKra6zYnePe9qvKzdp4ApGEcv0nEKiAjadTVcZhoioaMQTSRwe9I2Fo+MB6eSRDbWogE4tYlGlCTeurcXbl1fBqEltAL3XFcQt925DVx50R5tIrU2HFz57ATTKmS22/+fuPnzhkb2IJma+iebbl1fiZ+9dDaU4/ZEMX3hsCpYpDWGq1xXEa0dH8PzBQTx/ML1d5JZUmeGPxNCdhhG1VM0rN6JtKPsd5VbWWqY9MpJP5zsTs1aJcCyB6AwDzYZGG5o5OkQ0YwxDREQpcgejECBApxZn3YRh0BvGLfduk+XCc7Z+fNNK3LCmdlbH2HpsFP/x553whGa+NsSsVeL8BWW4aGE5LlhYhlKjBgAgSRJGA1F0jQbQNRo8/hFAl3Psz85AFEaNEref24Tbz2s6ZYRJkiTs6/Ogtd8LnVqEUaOEQaOEQa2EQSNCqxKxv8+D19pG8NrRERwbSV/zghMsOhUaS/RZv1ifV2ZA23D6v56pNJToMeQNz6gV+ExlcxRqKutn2ULcqlchEk8ilGPd8YjyBcMQEZFMRv0RfOD3zWgdyOyi+3RaWGHCU/99HsQ0rNxuH/bjtj9uR7dz9iNkggAsrTYjkQS6RwMpT3G06FT46PlzsK7BhmdbB7FpvwN97uyNxExEIQDLa7I/crG2wYqdXe6sntOiU0GvVmDAk911dMtrzNjXJ//P3fxyI46m4YZILoU7onzDMEREJCNPMIYP/rEZLTNYLyCHe29dh0uXVKTteKP+CD7ypx3YLdM6lVylEgXMLTPi0DQ7jM2GWqlANJ690RlRIWBhhUmWmwGlRjVG/PI2UBAEoKnEkJbRxTml6TkOUTGaThhia20iojSz6FX4y0c2YkOTXe5SprS2wYZLFpen9ZglRg0euuMsXLWsMq3HzXexhIQeZxCqLPVOLjWqsxqEgLFmDXIEIbNOKXsQAsa6MaYrwJh1bPhLlA0MQ0REGWDUKHH/bRtw9fIquUs5oy9euQhCBjZn0qpE/PJ9a/DR8+ek/dj5TKMSEctSuzObIbt77qxrkG/Rf4VJK8t5T2Y3qHAwjUFQLc6smQkRTQ/DEBFRhujUIn55yxr8+5Pn4rI0TkNLl4sWlmV09EqhEPCVty/Gne9cxo0kj6ux6rJ2rmAkjnKTJivnWlhhQkuPfN3P+lzBtKx5m40qiw7+tLZKz/tVDER5gWGIiCjDltda8Ltb1+HJT52bU1PHPn/Foqyc5wNnNeD3H1wPvZp3urN5edvnDiMYjWN1hjezXVFjQb8nhEzNyFvXYMPcMgPq7DpsaLRBozw99ARjScwtM2SmgBRsbLLjQH96pwdmsxMfUTHjhFQioixZWm3BPe9fi8MOH37+4lE8uW8AcrWweceqaiypzl7DmYsWlePh/zgbH75vO4Z82e0ylisWVZqwvy+73eT8kQR297ixtsGG1gHvaa2aLToVaqw6GLVKJJISRAGIJiR0jASmbJFu06swv9yY0alxjXY9dnS9efweZwgWnQor60w45PDCG4qfVE92pwWesLDChO2d6e/6NuTL702cifIFu8kREcmkbciHX7zYhsf39CNLy0gAAEqFgBc+ewEaSrJ/J73fHcJnH96DLcdGs37uE0qNaswtM2a9bfHaBht2dsk3lcykEVFq0sKgEQEJcHjDZ2w60FiiR7lZi2g8AYc3Ao1SAZ1KhE4tIpmUsL/PgxnuKZqyM7WX1qlELK+xoHM0gCFfBIsqTVnt1AeM7YulVYlpD/jLaixZD85EhWQ63eQ4MkREeWvTfge2tI+g3xPGkC+CD53TgHeuqslIQ4BMmFduwt3vXY1PXTIfv3ypHf9s6UMiC6nolo31sgQhAKi26vDgHRvxr5Z+fPvJgxjxZ3eUSCEAP795DTY22fG7V4/h+88czsp/cwCIJ+Sd9uSLJOCLpN7prHM0iM7R2e8XNRvu4OSjU6FYAs2dTogKAWvqrfCEYtAoFYhksYNeY4kBezMSWvL+PjVR3uDIEBHlnURSwvc2HcJvXzl22mMXLizDt9+5DLU2vQyVzU7XaADf23QIT+1zZOwctTYdNn36fBg18t8L84Ri+PGzh/GXbd1ZCyRfumoRPnbB3PF/v/pnr6Z9rcdkllabs3auQrGh0YZuZwgOb2pTxhQCsjbKuqHJjuYMjC7W2XToccm7STBRvuOmq0RUsLzhGD710G5sPjw86XP0ahFfvHIRPnBWAxR51sYsmZTwub/vwaO7+9J+bEEA/nrHWdg4p2RGr79nczue3j8AvVqEUaOEXq3E8hoLrl9Tg1LjzLuWOQNRPHvAgSf3DeCN9tGMBKM5pQZcs7Ia/3Pp/FNGDj/10G48vqc/7eebyIpaC/b2curTTKystSCWSKJ1ILvT4Cazus6KPb3ujASvdY027JCpRTlRoWAYIqKCEojE8fKRYTy934GXDg3BH4lP/SKMrdH43o3LMa/clOEK0yueSOKTD+7GpgPpHSH66Plz8JW3L57Ra/f3efCOX74+YVBRKgRcvKgcN62rw4ULy6AUZ96o1BWIYnePC+FYEpF4AtF4EtF4EpHjH9GT/hlNJBCJJRFNJMf/Ofb42OsMGiUuWliOSxaXY06ZccLzfW/TIdyzuX3G9U7H/HIjjg75s3KuQmXSKqFTiVCLCihFAarj/1QqBCgUAkRBgEIQxlq5CwIEjE04SyYl9LpSH2E6k7X1NuzqdmVkIptOpUBSQlan+hEVIoYhIsp7nlAMLxwcxKb9Drx8ZHjGFwdqUYH/unge/uOCuVAr82c3gUg8gY/+aSdePjL5CFiqmkoN+NzlC3HVssoZjZRF4glc9/PXcXhw6rvyFWYNvvL2xbhuZXVerN36v6cOTjjdMlNW1VnR0uPO2vnoVNVWLWqsOnhCMRwZnH4wXddgO6W7Xbo1luhlX6dFVAjYQIGI8tKoP4JnW8cC0BvtI4iloVVVNJHEj547gif3DeB7N67AygzvuZIuGqWIX79/LT74x+ZprUtQiwpUWDSoMutQYdHinLkleNfaWqhmMVqz9ZgzpSAEAIPeCP77ry34x64+fOedy1Bnz+21W5FYOjfJnNqgNwyjRkzz5pyUqn53GP3usdGhBRVG6FQi9qQ4dXF9ow3bMzx9zahVZfT4RHQ6hiEiktWAJ4Rn9jvw9H4Htnc6M7b4+ZDDh+t/9TpuP7cJn7lsIXR5sAGoTi3i9x9ch/ffu23SC7brV9fg6uVVqLRoUWXRwm5Qp31E5miKQehkrxwZxg33vIHn/ud8WGXa/yUVsWz2NAcw4AljabUZBwe8WW2nTqc7MTJUa9Wh0qLFnl73pDdgNjTa0ZyBvYTeSptHo9dEhYJhiIiyrms0gE3HA1A2pwwlJeB3r3bgmQOD+O4Ny3HOvNKsnXumTFoV7v/wBtz5xEE8vqdv/GKt3q7Hd65fhvPml2W8hsMz3Ltl2BfB/z7Rih/ftCq9BaVRhUmb9XMe6PdmZZSBUtPrDqHXHYJdr8L8ChNaB7xQiQKaSsfWmXUMB7IShABAzLOGL0SFgGGIiDJOkiQcHfLj6X0ObDrgwMEBedsLdzuDeN+923DNiipctawK584vhUWXu9NTrHo1fnTTSnzhyoXY3e3G/AojGksMWbtwOjKLRf+P7urD7ec2YWm1JY0VpU9DiTzT+LZ3urI22kCpcQZj2NbhhEohwJeU4AxkP6xytJAo+xiGiCgjJEnC/j4vnt4/gE0HHDg2nPpmj9nyxN4BPLF3YHzTxgsXluOCBWVYWm3OycX/FWYtrlxWmdVzJpPSjKbJnezeVzvwk/esSk9BaVYvUxgCgB1dTiyrNmM/9x7KKdmeOnmyaJxryYiyjWGIiNImmZSws9uFTfsd2LTfgT53fmwcmEhK2N7pwvZOF37wzGGUmTS4YEEZLlxYhvPmlcGiz91Ro0zrc4cQjM7uAu3fe/rx+SsWotqqS1NV6TO31AhRIWRt09eTJSWgYySAWqsOvXnys0KZlY6mMUQ0PQxDRDQrsUQS24458fT+ATzbOohhX0TukmZt2BfBIzt78cjOXogKAavrrLhwYRkuXFiOJVXmvNvIdTZePDQ062PEkxLue6NzxnscZZJFr8IVSyvw1L707umUqkA0gcXVWoYhAgAYNLnf2IWo0HCfISKatnAsgdfbRvD0fgeePzgIdzAmd0lZU2o8adRofmlOd0qbrS3to7j1D9vScrfaqFHijS9fDHOGWgdH40m0DnhRZdGizKiZVmDd3unEu3+9JSN1pUKvFpFMSghzo82ip1MpIAjCrEdjiYod9xkiorQLROLYfHgYW9pH8M+WfvgjcblLksWIP4J/7OrFP3b1QiEAq+ttuHBBGS5YWIZl1ZaCGTU6NuzHx/6yM23TdvyROL7w97345S1r0t74IRRN4OMP7MTmw2Mb1CoVAirMWrxjVTU+cdE8GDRn/lW3rsGGZTVm7O+TZ+1OMJrA2gYrdna5ZTk/5Y5QLMnGGkRZxpEhIpqUJxTDCwfHNkF9+cgwIvEk1tbbsLObLYEncu3Kavzw3SugUebvVBdJkrCr243PPtyCztFg2o9/84Z6fOedy9IaGr/62D48sK17wscqzBp8+arFeMeq6jM2xXjp0BBuu2972mqaLrbaphOUCmBhpRkH2FiDaMamMzLEMEREpxj1R/Bc6yCe3u/AG+0jp40MbGyyY1sH71pO5qw5dvzmA+tyulX3RCLxBJ7YM4D7t3Ri7yQbvKZLtUWLq1dU4YIF5Wgo0aPaqpvxaNHrbSO45d5tUz5vbYMNd75jKZacocX3va8ew1P7BqAQBAgCxj4gIBRLZPy/ybxyI9pm0cKcCotepUCVVYf2HOzCSZQPGIaIaFocnjCeOeDA0/sH0NzhPONeF2sbbNjZxTvYZ7KwwoQ/3rY+J7unvdWgN4wHtnbhweZujPijstSgVAiotelQZ9fjlo0NKbcP90fiuOInr6TctXBjkx0fv3AuLlxYPuHjyaSEj/1lJ55tHTztsYUVJkiQsH/vXgTbtkGKR6EunwP9grMgiLMLvoIAaEQF1wzRKWx6FXRqEf3usNylEOUdhiEimlL3aBCbDgzg6f0O7O52p/y6BRVGHBnkHeypVJq1uO/D67GoMvfekyRJwu4eN+57vRNP7RtAPMd2evz0pfPxqYvnTzmV7iuP7cODk0yPm8i8MgO6nEHc/Z7VuHpF1YTP8UfiuOFXr5/2PZ4I++F6/LsIdLTArBNh1Ajod8ehNphhvfaL0DWsTLmOt6qx6vKmDT1lV5VFg0g8CWegeJrUEKUDwxARTahtyIen9znw9H4HWgdmNh/dqlcVVfe42TBplPjNrWtxztxSuUsBMDYV7ql9A7jv9U7syfC0r9maW2bANSuqUWnRosSgRolRDbtBA7tBDbNWidfbRvH+3089Pe4EUSFAIYzt46IQgO/esAI3ra+b8LldowFc94vX4QmNfZ9LkoSRh74A1cgR/PpdIq5bJkIpCjjoSOLT/4rj1Q4B5R/4MdTlTTP6WlfXWbG7xz2j11Lhayo1YMgbRoAd5ohSxjBERADGLuIO9Huxaf/YFLh0zT83apRF201uulSigG9dtwzvXlcLlaiQpYYhbxh/2daNB7d1yTYVLp1UogABAqKJ1KeVNZUa0DFy6vf/z29ejWtXVk/4/L9t78YX/7EPABDqbMHQ376GJ+7Q4LKFpzbHCMUkrPhBDKOVb0PptZ+f5lcyNoJYYlThQL9v2q+l4rG4yoS2IT83ZSVKEVtrExWxZHJsCtSm/QPYdMCBHmf6p99UmDXwDzMMpSKWkPCVx/bh7ueP4JaNDXjfxnqUmTRZOffubhfue6MTT+7NvalwszF2QTi9r6fEoD4tDH3/mUO4clnlhCH1XWvr8OetXdjf50Xw0GtoKlXi0gWnP0+nEnDHRgHfePY1bPjkd+AOxxGIJOCPxOGPxJGY5L+7Ta/C/HIjdnW74PByTQid2cEBH1bXWdDS60H+38Imyi0MQ0QFIJ5IornTiWf2O/DMgcGMX1yZ86xTWi4Y8kXwk+eP4BcvHcVVy6rQUKI/4/PnV5hw/gw2dY3Gk3hq3wD++EYn9nDq1biJumr3OEN4dFcv3rO+/rTHRIWAz1+xCB/8QzOSkQBqLZi0NXetVUAykcDWtkEoVKcGXZ1KAZNWBZ1KhE4tQq1UQBQEHHJ40cxW2jkvNtoD355nEHf2QaExQL/oXOjmroegyH77/N09HmxosqG5g983ROnEMESUp6LxJN5oH8Gm/Q482zoIZyB705/UMk33KgSxhITH9/Sn9FyFAKyqs+LCheW4cIpNXYd8YTy4rRsPbOvGsC+SzpILgis48c/HL15qw03r6iYMOmsbbAAAlb0Gu3YmEYhIMGhOf96rxxJQm6wQlKcH11AsiVCMfx/5RpIkeF57EJ43HoJCoYFGMCOGKIZbN0NdPgfl77kTon7yNu2Z0utiow2idGMYIsoj4VgCLx8Zxqb9Djx/cBC+sDxT1QppylUuS0rArm43dnW78ePnjqDUqMb5C8qwsckOZyCGzpEAOkYD6BwJYIgBaFJKhYCukYk3kO1xhtA+HMC8cuNpjxk1SjSU6BFfcRn6t/wN33sxhv+96tTAs7c/iQd2SdBtvPqMm7pSfgnsfwGeNx6CRT0fFlUTBGHsBlA44cLwyB4MP/Z/qHjfd7P+d97vDmNRpQmHHFxjRpQuDENEOc4fiePFQ0PYtH8ALx0aRigmf0chv0whrNiN+KN4dFcfHt3VJ3cpeaWx1HDGDU23dYxOGIYAYHGlGV2jFbCc/0F874X7sHdAwoc3iLDrBTxzKIFfvp6EoqQB5nXvyFT5lGWSJMG75e/QKStgVc895TGtaEOJegmGe3ch3L0PuoYVWa/PpOWlG1E68SeKKAe5g1E81zqITfsdeLVtBNEc24xx2M9RCMofJQY12s7weHOHE7dsbJjwMYNm7Nek5ax3QWkuxUtb/4an7+sBACg1WuiWXQ77ee+HQnPmNWCUP+KeQcRcfbBq10z4uE4sgwAlhv72NRhXXg7rBR+CqJ04TGdC9+jEo5xENDMMQ0Q5YsgXxrMHBvHMAQe2tI/m9FQ0jZLTgSh/vLWL3FttO+aEJEkTTnmKndS+27DkQugXX4CEdwhSPArRXH5awwQqAImxkW8FJm6SIAgClIIKNRorBvZtxnDvQZS//wdZC8SDvgga7Hp0ORmKiNKBYYhIRn3uEJ7Z78Cm/Q5s73LmTctUi06FAQ9Hhyj3LakyoXXgzOsrHN4wup1BNJQYTnssnjx1VFYQBCgtFWmtkXKL0lIBhcaAUGIYWmXJaY9HEz7EpBDeZj4f5Wobft7/D3i3/xPWc9+XtRorLFqGIaI0YUsoIhn4I3F89bF9eNt3X8T/PtGK5s78CUIAoFPzPgrlPp1KhDeU2vq2f0/S4S8az6MfTEoLQamCcdWV8MV7EUm4T3ksKcXhirbCKOqxxNCICrUdawzzEWzZlNUafaFYVs9HVMh4RUOUZS8fGcZXHt2HPnf+tkhVKXgfhXLfkmozdnaltifLj587gpV1Vpw3v+yUz791ZIiKg+WcmxHpOQDHQDP0YgW0og2JZATBeB+AOD5UdS1EYWwaXYO2Es3DrZASMQhidvZgOzzog1GjhD/CZjZEs8UrGqIs8YRi+MIje/DBPzTndRAiygdr6q0pByFgrI35Jx7Yddr6opPXDFHxUKi1KH/vd2C78DaEFV44I60IxXuw2jgHn6p5Nxq1VePPdcV9UCjVgCJ795eTEjB/kg6IRDQ9DENEWfDCwUFc/pOX8fCOXrlLSYsY75ZTDqu2anFowDvt13nDcXzk/u3wht+cgpTI4UYmlFkKlQbmDdej9PovAwBuqbgMN5RdiDK1bfw5kWQMzf5D0C2+IOt7DiXyaW41UQ5jGCLKIFcgik//dTduv38HBr2F03AgGJV/ryOiiahEATqViGBsZoG9fTiATzywC8Ho2PSjpdWWdJZHeUjbsBLauuV4YPh57PIdRlwae//rjQzh94NPwo8YLBtvyHpde3s9qLPrsn5eokIjSFL+31rwer2wWCzweDwwm81yl0MEAHh63wC+/q/9GPFH5S4l7aosWgx4wnKXQXSaDY12NHc6Z32cFbUW3PvBdTg44MMH/9CchsoonyUjQYw+8SME27ZBpVBBpVAhGA9CZSpDyTu+AE3NYlnqmlNqgKgQcPQMmwoTFaNkJIieu29KKRuwgQJRmg37IvjG4/vx1D6H3KVkTCTHNoElAoDlNZa0BCFg7K779b98A7/5wFpUW7ToZ/gvagqNHmU3fh2xkR4E27dDSkRRVj4HujlrISgm3o8oG44dX+O2ut6KAU8YjuPfpxadChadCgaNCK1ShEoUxqfxxRMSQrE4HN4wnAF2pSPiyBBRmkiShMf39OObjx+AK1jYv2AsOhU8bO1KOaTUqEYskYQnxVbaqTJrlfjhu1fi9691YFtHeoIWUSYoFYBZp4Y7GEUqS93KTRpE4km+l1NB4sgQUZYNesP46mP78PzBIblLyYo4O2xRDhEEoNSowSHHmTdXnQlvOI6vPLYfT37qXHSMBHDf6514ttWR0sUmUTbFk4AzkPq07CFfBEuqTPCFY/x+pqLGMEQ0C5Ik4e87e3HnE63whYtnv4c4f3NSDtnQaM/oqM2IP4L/fGAXHrrjLJw1pwS9riD+srUbf93eDXeBjwJTYWsd8GFjU2Z/fohyHbvJEc1QnzuED/5xO77wyN6iCkIAwxDljhW1FjRn4UJuZ5cL3336EACg1qbHl65ahC1fugTfvWE5yk2ajJ+fKFO2dTixqs4qdxlEsmEYIpqmZFLCA9u6cMVPXsErR4blLkcW3HuFcsHGJjv29nqQre/GP2/thDv45jQknVrE1SuqEI6x1Tzlt/ah9E8xJcoXnCZHNA3do0F88R97seXYqNylyEYUgESeZqEKswZGjRIapQiVUoBSoYAgAMFIAkO+cEG2QS9EJo0STaWGrE/tiSUkPLlvALdsbBj/3EPN3fAW2cgwFR7uHUfFjGGIKAXJpIT7t3Ti+5sOI1Tkd4ETElBiUGN0Ggt15aBVKdBUaoBJq0IklkCXM4hBbwSDmHzzW6NGRLVVB4tOhUg8iYMDXsTyNfkVqMYSPaKJJPb2eWQ5f0u3ezwMReIJ3Ptqhyx1EKVTIb3NNZboUWrSjE19EgTEE0n4I3EcHfIj//snUyYwDBFN4diwH194ZC92dLnkLiVnzC03YjQHFtwqBKDGpoNepYRaKUCtFCEKwGggio6RAA4OTG/qhz+SwJHBNzcvNKpFrKgxIZaQcNDBYCS3NfVWHOj3IBKX7++hazQ4/udHd/VhyDd5uCai7JlXboRBLWJPrwedJ/2cjj9eZkA8KU34GBU3hiGiSSSSEu599Rh+/NwRbjL6FqN+eS8A1zfaEIomcGzYjx5nKGPn8UcT2NntBnAiGJkRS3LEKNtEhYC19ba0baiaqrhnEL6WpxEdOAqIKujnrkfF4vcDGHt/+M3L7VmthyiTBAF5OXJiN6hQa9Njb++ZR4vbhgNQCMCGJjv29Lj5e73AmbWpRxxuuko0gSODPnz+kb3Y0+OWu5ScVWPToc+VuSAymQ2NNjR3yjtKZ1CLWFhpQjwpMRhlmN2gRrlJjUMO/9RPTiPfnmfhfObnAE5cIQoAkjDbSvDq5hfRjVJ88sHdWa2JKJOUCiHvOoWuqLWg2xmcdov7KosGNr0ardOcPUD5Y1WFGv/6zOXcdJUoVZIk4ZVXXsFfHngAOw73oDNigH75pVCV1MldWs6qtWY/DE13PwxJkhDpa4V/7/NI+oYg6K0wLrkI2jlrIAgzb6YZiCaw6/iIkUEtYnmNCYmkhFYGo7RaUGHEiD+a9SAU7tkP56afYazhqoA3G68KCHg9uPjSS1H7H/cCELNaF1EmCYLcFaROq1JgeY0F22d4Y2zAE8GoP4rGEj2nzRWgSosWe3tTv1ZgGKKi5/f7ceMNN+LZ556FSmmECC2iSR/c2/4B84YbYL3wNgj59FsiS3pc2f8F0tqf+qJ5KZnA6JM/RqD1ZTSUKLG2RsLBIQEHH3kZ+oYVKLnh61CodbOu6eRgpD/+CzqRlHDQ4UOU0zBmxKRRYkm1GTs6nbIs7PY2PwYIIsZ6dp/8sy8gkZAwOjwMacfzMK28IvvFEWWIQhCArDWqn7l55UaEookZB6ETogkJsYQEvVpkN70CU23Ron8o9eczDFHRu+22D+P5F15CmXYNdGIZBEGAJCXhjXXB3fwoRHMZzGuvlbvMnNPvDmNeuRFtQ9m5a69WKuCLpP4Ly/3aAwgfegV/uFmNm1eLUCgESJKE546IuOn+/XA9+wuUXPP5tNYYjCVPCUZL661ISsDBAS+DUQqMx0NQa58n622zTxbq2Hl8atxEo4djI0XhYzsZhqigKBS5fdNPIQDrG+3Y3ulEumbz9blDWF1nwe4eebpTUvrNKTOM/x5OFTddpaL25GsteOSRR2BVLYBeWT4+AiQICljUTTAoa+Dd+gikJO8aTcSuV2ftXCWG1M+VjIYR3PU4/vt8EbesVY7/khcEAZcvFHHX1SICra8g7h3JVLkIxpLY3e3Gnh43lAKwut6KlXUWqJV8230ro0aJDU12ABKaO5zwy3iXVpIkIDlVcJX4nkAFJ5ffmSotWswvN2FbR/qC0Am7ezzY0GhP70FJNjrV9L+Tc/l7nyhjwrEEvvv0Idz6rV8DggCDsnrC5xlVNUj4RxEd4l4iE2nt96Ders/KuQya1AeyIwOHEY+E8YF1E7/m/WuVkCQJ4c7sLIB/Mxh5IArA6jor5pcbs3LuXGZQi9jYZIdwIgRNY+QvUwRBgLpy7qmz404hAQKgrpqfzbKIMk6R4nTwMpMGS6rMWFBhRFOpHtVWLUqNahg1SohpHl2aX27E+kYbvMEoDg9mrtnBzi4nmkoNGTs+ZcfSajMO9E//+4TT5Kjo7Oxy4vOP7MWx4QCS8RgEQYQwyX0BBVQAACk+vU41xcIfTUAXTaDcpMn4fiue0DT+DhJxAMBkA1c61fE2ssl4GiqbnlAsid3HuxQWa4tXvVrE8hoLWvvlnQ43GdPa6zD6xI+O/9vJ7w3S2IcgwrSCU+SosFRbdRMGjjKTBvV2HQQI6PeE0O8OY/gM7/dKBaBTidCoRGiUItRKBdSiAipRgKgY+1AoBCgEASdWKUmSBAljLesTSQk6lYheVwhHszQNOyEB5SYNOkYCWTkfpZ+oEGa89othiIpGKJrAD545jD++0TG+l4K6Yg6kZAyRpBta0Xb6axLDgEIJVUltlqvNH8P+CGptOlh0qukFlmka8UegVACp5AZ1+RwICgWeOJDAJ887Peg+eTABSQI0VQsyUGnqmjucqLZqYdaqcMhR+C1edWoRK2osaB3w5mQIOsGw5EKEu/chsPdZjF+tQQKOdyAsveazEI2nv18Q5bPDgz5YdEo0lRqhViqQTEophZ+3iicBXyQxrTWeucAXzv7NMUqfNfXWGTfVYBiiorClfRRfenTvKbvHA4C2YQWU1iq4fIdRoV0HhfDmj0QsGYA33gXD4vMh6kzZLjmv9LpCmFdmQDSeRCiWmV+AkgSUW7Tod4enfK5otEG/8G349vNv4NKFSSwqfzMQ9XuS+OITSehrFkBdMTcjtU5HvzuMfoRh0ioL9pex7vhI0CFHboegEwRBQMmV/wVd42r4dj6O6GA7oBChm7cR5vXvhKZyntwlEmWEJxRHS5Hur3ds2A9RISCRZ3st0dhG7LPpLshNV6mg+SNxfO/pQ/jz1q5JnxMZOIrBh74CRRIwKqqhVOgRSXoQiA9AaS1Hxfu/D1FvyWLV+WtZtRmHHL6Mbdy3qNKU8ghKIujByENfRNLdj5tWKrC6VsDRYQl/3plETG1G6c0/gMpWlZE6Z2JlrQV7pthBPd/oVCKW11pw2OGFJ1SYQY+ICsfcMgPahzlVLp8sqjTh6KDvtG0YkpEgeu6+KaVswDBEBWvz4SF89bH96HNPvTFozNkH77ZHEWjdDCkegai3wrjyCpg2XA9Ry4Xu07Gy1oJ+z/SmVaSq1KjGiD+a8vOTkQB8u59CeO/TiHqdUBlM0Cy9DOa110I05NY0pw2NdjR35v6oSSq0KgVW1FpxZNA37Z3hiYjkUkjvw8Wg0qxFKBaf8GYbwxAVte7RIP73iVY8f3Bw2q+VJAlIxCEoVRmorHiIArCqzophfxTdzvRszmrVqwr6wnpOqQHH8nzx7okQdHTQB1cB/10RUWHinkP5Q6cSUWHWoHN04muM6YQhrhmighGKJvCrzW34zSvHZrzBpSAIAIPQrCUkYOfxTc+W15gRS0gzbhCgU4nHW7dq8mK9yUz1udMTGuWgUSqwstaKtiEfmgv474iICpub03nzxvJaS9p+3zAMUd6TJAlP7XPgO0+2ot8z9eJ6yq59fV4AwLwyA+xGDQQA0XgS/kgczkAUo4GxaW9lRg3KzRoY1CIAIBBNYNgXwZAvgvbhQMHP47bq1BjMcHvydFMrFVhVa0HbUIBTS84gGQkgcPBVxD2DEHVm6BefB6WpVO6yiOgtfGGOaOeDaqsWu7rS9zuHYYjy2pFBH775+AG80T4qdyk0hbbhADBBoFEqAJWowLA/gmF/foWBdDLrVHkThlSigNV1NrQN+9E8iw4+xcC360m4X/o9kIjDrjHAEw3BvfmPMK65BraLb4egEOUukYiOcwVSX5NK8ik1aFLqLJsqhiHKS55QDHc/fwR/2tLFNph5Lp4E4sni2nR0Ijp1flwUl5s0MOuUHAlKQaB1M5zP3YNryufilurFKFHrEEjE8MRgO/6w898QRBVsF90GKR5F4NCriPQcAAQB2voV0C88B4LIKbtE2ZSQALNWCW+BbnNQCOaXG7G3L73ruhiGKK8kkxIe2dmL7206ND69iqgQ5EOoX1JlRr8nhLahwp6ymA6SlITvlb/gHFsN/qth9dh6RAAGUYWryprQE/biuR3/hLpuKTybfopYwINFNiMSkoSje56BerMdJe/6FtTlTTJ/JUTFxapXMQzlMLtBnfZjMgxR3mjpceMb/9pfcHuxEAGAP8fnqm9ssqO5w4ncj2y5ITp4DBGPA+9cdMF4EPLFo/hN9x5sdvUgmhjbnNj9r2+jTK3EQ1cvwVyzDgBwxBPCJ7d0oe1vX0XFR34NUccuqUTZolfz0jiXZeJGuGLqpxDJa9gXwef/vgfv/OXrDEJUsFyh3AxDerWIlXUWbGMQmhYpMtYdsEytBwAEEzF84egr2B4bwv/e9W7sP/h9bNtxJz728UsxGI7h14cGcWKniwUWHf5ywVwg4od/77OyfQ1ExUinyo8py8XIpFWibcif9uMy/lLOiiWS+NOWLtz93BH4IhyypsLmDcWxotaCvTkU+OtsOkgA9nDfjWlT2ioBAPt9w6jRGvHvwXb0RnzYtvNOLFtWN/68tWubsHxFHf7jjt/jfXPKsLrUAAAo16lwebUFLx55A9j4Llm+BqJiFIwmuG4oR80tM6Klx53243JkiHLSG20juPpnr+LOJ1oZhKhoHB30obFEL3cZAMY2zR31R9DrCsldSl5Smsuha1yDBx1H4I1H8YyrE+9+z1mnBKETPnTbBWioK8Hfjo2c8vkSrRJCjNsFEGXT4UEfTFolaqw6uUuht1CKQkaOyzBEOaXPHcJ/PrAT77t3G44Mpn8olCiXhWJJBKMJ2A3ydRFTCMCGJjtaetwIxtjlbzZsl34Uw1IS/9n6AgZCAazfMGfC54miAmvWz0Fv8M258ElJwmaHH0IZGygQZVufOwxfJIZFlSa5S6GT9GXo5hzDEOWEcCyBn71wFJf8aDOe2ueQuxwi2Qz5IrAbNCjJQMecM1lYYcKGRjvKTZq07epd7FQltSj/wI8QaFgJQSGgvW1wwudJkoS2IwOwnbRw+w+Hh9DtC8G4+u3ZKpeITuINxdE25MPaepvcpRAAQQAGPJkZKRekEys285jX64XFYoHH44HZzK47+USSJDzXOog7n2xFj5PTcYhOUCqAlbU2hGJxxBISFIIAQRgbuRGO/1nA8X8KgAICjv9v7PHjxzneyAzjnzn1H0hIEo4NB+Bkq/qMGn3u11C0v4RDR76P8nLLKY89//x+XHnZd/Efiyqw2KrDP7vd2NzvhnnDDbBd9GGZKiaiE+aWGVBq1GDYF8GxEW4tIAerTgX3NBoNJSNB9Nx9U0rZgGGIZNM+7Me3/t2KV44My10KEVFGxX0jGP7zp9FUa8SPf/I+XHbZMoTDMfz1oS34zP88gHBUQjwydtdTV9EE/fobYFhy4XhbbiLKDeUmDRpK9AjFEjjs8CGWyPvL6LxQZ9OhZxrT5KYThthNjrLOF47h5y+24Q+vdSCeBxtNEhHNltJUitKb7kL3Uz/A1Vd+Hyq1ColEAsmkBOPCc1B5xaeOj+IJUGhyo4kGEZ1uyBfBkC8CANCpFFhabYaoUKB92A93MDe3SCgEBk3mIgvDEGWNJEl4bHcf7nr6EIaPv5EQERULVWkdyj7wU0T6DiHqOAJBVEHbtAYqa6XcpRHRDIRiSbSctPXAggojzFoVdnS5ZKyqMGlVmWtzwDBEWbG/z4NvPH4AO/kGQURFTBAEaGsXQ1u7WO5SiCjNTnTBXV5jRq8rBBdHitJGKTIMUZ5yBqL44bOH8VBzN/J/dRoRERHRme3r88KmV2FumQHtw2y4kA5iBtdPMgxRRsQTSTzY3I0fPXsEnml0/yAiIiLKd65gDAIEVJg1GPRyacBsZXKNOcMQpV1zhxPfePwADg545S6FiIiISBbOYBR1dh1KDGqMprh9gUEtoqFED6N2bPNtSZIQiiWwv6+4r6n63ZnbfoVhiNLG4Qnj/546iMf39MtdChFio73w7X4KiYFWQKGAqn4NjCuvhNJcKndpRERUJHqcIVh0SqyotWBvr+eUxzRKBRpK9LDq1IgnkxjyRtDrDqF1wHfacRZUGBFLSOgo0n2OBjxhlJs045380olhiGYtEk/g96914BcvtiEYTchdDhH8+56Hc9PPYDEp8c5zjYjGJDz+6iNwbH8UJe/8KnRz1spdIhEVsGTYj2Q0CFFvhaBUy10OycwTimNvrwcNdh0AARIkJJISBjzh8aYLUzky6IcAYH2jDTu7XCjGnUlqbTqGIco9Lx0awv8+0Vq0dyoo90QcbXA+/VPcdl0J7v5cLTTqsQ40Xn8Ct3ytEy/88zuovON3UJpKZK6UiApNuLcV3tcfQqhzNwBAodLCsPxSWN52M0S9RebqSG5dztlN9ZIAbO90YWOTHds6nOkpKo8oFKk1UdCrFJhfbkVPqsedeUlUzDpHArj9vu247b7tDEKUU3w7/4XaSg1+8cW68SAEAGajiL98uxFqMQH/nk0yVkhEhSh4dBuGHvwyLAO9uKH0QtxWeQ0uMCxFbM/zGPrz55AIuOUukQpEc4cTiypNcpeRdQPuMMQp8tCiSiPMejV297hTPi5HhmhaJEnC7149hh8+cwTRRFLucohOE+9uwXvfaYE4wTumxSji6nNNePLwbgC3pO2cybAf/r3Pwr//JSTDPiht1TCtuhL6hW+DoBDTdh4iyk1SPArnUz/BIl093l9xOURh7Od+ob4e60yL8IuBx+B++X6UvP2/Za6UCoGEsa1LTFolfOG43OVkTZ87hBqbDqUGNfa8Zf2VSiFgTYMNzZ3OaW/lwjBEKfMEY/js3/fg+YODcpdCNDkpCeUZbh2plAKENG56FXM7MPjgl5DwjQIQAEhI+J2IdO+Fds5alF//NQhKVdrOR0S5J3D4dSTCflxdd914EDqhRGXBuaZleKH1ZdguuQMKjV6mKqmQDPkiWFVrRUuvW+5SsqrPFUKfK4RFlSbEEkm0DwfQVGpAUpJmPHWQ0+QoJXt73bj6568yCFHOU1YvxSMveSFNEHiC4SSefM0PZfXStJxLkiQM//P/kPC7MPZ2qgAgAtLYn8Mdu+B+/cG0nIuIcldstBcmlQmlKuuEj8/T1SKZiCLuHcpuYVTQWnrdWNdgk7sMWRxy+NA+HMDSajN6XUF0jQZnfCyGITojSZLwpy2deNc9W9DrylyPd6J0Ma69Dkc7g/jWbwZOCUSxuIRPfq8bvmACxtVvT8u5ov2HEBs8hrEx+beORikACfDtehLJGDfcIypkCrUW4UQEseTEU5Z8icDx5+myWRYVgX19biyoMMpdhmwO9HsRS8xutgenydGk/JE4vvSPvXhi74DcpRClTFu3DNYLPoS7/ngfHn7egxsvNiMak/DX5zwYHI2h5OrPQGWtTMu5wj0HAEEBSJNNy1NAigYRG+2BpnJeWs5JRLlHP/9suF++Hy3+I1hvXnLKY5IkYYu3FZryuRDN5TJVSIUqEpfQMRzAmnordnW7xz+vVAiYU2aATa+GLxxDOJaEXi1CrVQglpCwr88z+UGLDMMQTejggBefeGAXjrFTHOUhy1nvgqZ2MRw7H8dP/9kKQVBAWX8+Kq+5DurypvSdKLUun0RU4FQltTAsOg//OvI6REHESuM8iIIIfyKIZ53NaA/1oOzKr0IQ+KZB6RdLStjV7cbGJjskAMFoHO1D/kn3MKqzc4TyZAxDdJqHt/fg6//aj0ic3eIof2lrl0Jbm561QZOeo245ICUxNuN4ooucJBQaA9SlDRmtg4jkZ3/7f2M0mcDDR17Av11bYBT1GI26AIUC9is+Cf2Cs+UukbJMSiYQ2P8Cgi1PIjbaA4VKA/WC82Be9w6o7DVpP1+qDQR6nCEsqzZjf7837TXkI4YhGheKJvD1f+3HIzt75S6FKC+oqxZAXbUAUUf7BOuGxm4mmNZex25yREVAodKi7PqvIDrUgcCh1xCOBGCxVcGw9CKIOrPc5VGWSYk4Rv75HYTat+PyRUpcvE7AkC+E+3c+g6EDz6Pkxm9BW79ctvo4SPkmQZqo5VKe8Xq9sFgs8Hg8MJv5hjMTbUN+fOKBXTg86JO7FKK8EvcOY/ChLyPudmBshEg6vo4oAd38s1D2ji9BEHnfiYiomHi2PgLfq/fj0dvUuHLxm+3WAxEJ7/xjDFv6taj82P1QqDSy1Vht1aLfHZbt/JmUjATRc/dNKWUD/oYm/KulD19+dB+C0YTcpRDlHaW5DFW3/RyB/S/Cf+AlJEPe45uuXgXdvPUQBDbtJCIqJpKURGj347hlrXhKEAIAg0bAr25UYtn3/Agefg3GZZfIVCVQZ9MXbBiaDoahIhaOJfDtJ1vxl63dcpdClNcUah1Ma66Gac3VcpdCREQySwY8iHiduHapesLH55cpML9CBcfAEUCmMKRXKeAOxmQ5d65hGCpS3aNB/OeDO7G/j4vniIiIiNJGMTYjIDRJ1pAkCaGYBCjkuQzXqxSotesLemlEY6kePSk+l/M3itCm/Q5c/fNXGYSIiIiI0kyhM0NX0Yg/7Zi4K++WziR6nXHomtZkuTJAqxwLQpO13c53lRYtVtdb0TkSTPk1DENFJJZI4ttPtOJjf9kJX3jiXbKJiIiIaOYEQYBhw7vx/OE4vvNsDNH4m73KDjqSuPWhOLRlddA2rc56bfMrjAUZhCw6FTY02TDiC2P3SZvPpoLT5IpEvzuETz6465TdiYmIiIgo/QxLLkDM2Yf/ffZB/GpLEhfOAQZ8wOvHEtDYKlB64zdlabCjUxfWpb9GqcCqOisO9HnQ3OGa0TEK678ITeilw0P4zN9a4OJCOSIiIqKssJ77PugXngN/yyY8OdoFQaVDydvfBsPi8yAoJ26ukGnxxMRT9/KNIABr623oHA2kvNnsZBiGClg8kcTdzx/FL15qk7sUIiIioqKjLmuE/bKPyV3GuGTe7y4KWPUqVFt02NE1s5Ggt2IYKlBD3jA+9dfd2HpsdmmZiIiIiApD25APTaV6dEyjwUAumVduhDcUQ+tA+pqAMQwVoDfaR/Cph1ow4o/IXQoRERER5Qh/JAG1GEO1VZt3G66ub7ShpduNWJqHtxiGCkgyKeFXm9vw4+eOFMQwKBERERGllzMYQ4WoQKlRjRF/VO5ypqQSBaystWJ7Z3qmxb0Vw1CBcAai+J+/teDlI8Nyl0JEREREOWzQF0GdXQeLTgXPZLvD5oBykwYmrTJt64MmwjCUx/yROF44OIin9g1g8+FhROKF0SGEiIiIiDKrxxnC+kZbxkZcZmtJlRl97iCGhjO77INhKM8wABERERHRbDSVGqBVKXI2CG1osmN7hxPZWPXBMJQnDg54cffzRxiAiIiIiCgljSV6WPVqBKNx6FQiNCoRrmAURwf9cpc2Ib1axPwKI5pnuXfQdDAM5ThJkvCXbd2484lWRBmCiIiIiChFJq0SLT1uuctISZ1NBwnAnh5PVs/LMJTDPMEYvvToXjy93yF3KURERESUZ7qc+bGf0Ko6C444fAjGsn/jn2EoR+3ocuLzf9+LjpGA3KUQERERUR7yhuKYW2ZA+3BuXk8qBGB9ox3bsjgt7rQaZDszTSieSOLu54/gPb/ZCrtBLXc5RERERJTHcvV60qJTYVGlSdYgBHBkKKcccnjx1cf2Y+fxXureUO5vhEVERERUrJKxMKKDHQCSUJc1QaHRy13SaXzhuNwlnGZumQG+cBytAz65S2EYygU7Op24Z3M7Xjg0dMrnjw4Fcnpok4iIiKgYSYkY3K89AP+up5CMjq3LUSg1MKy4DNYLPwSFSitzhW8yaXPrcn9dgw17etyIJbPROHtqufVfp4hIkoSXDg/hns3tZ+zxbtWrATAMEREREeUCSUpi5J/fQ6h9OxaoVqLeuAACBPTG2nB49zOIDXWi/L13QhBVcpcKAUDbUO600c7FTV4ZhrIsnkjiib0D+PXL7TjkmHpocG+vG2atEt4cHOIkoonFnH3w7ngc0bbXkYyGoSqphW75lTAuvxSCyLddIqJ8FmrfgWDbVpyjvxo1qjnjn7eIpahQ1uOl3n8gcGAzjCsuk7HKMYurTDkxFQ0ANjbJ2yhhMvytnAWJpIT9fR681jaCh5q70esKpfzaWELC6npzVjefIqLJJQIuxD1DUGgMUNprIAjCKY+Hew9g9JFvwGLW4D8+di4qKy146cWDePqpXyLSthUl1381J+4WEhHRzAT2PAursuKUIHRCqbIaFaoGePY8mxNhSK/OjUv9dQ22nAxCAMNQRkiShPbhAN5oH8HrbSPY0j46q5GdHienyRHJLeYagOvFexFqawYwNs9ZVdoA6wW3Qj9vIwBAisfgevy7OGtDI5546nMwGsfmjP/PZ96O557bh2uv/hG82x6F5Zz3yPVlEBHRLMXdDlQpyid93K4ox6inPYsVTazUqMaeXrfcZWBJlRm7unNratzJGIbSxOEJ4/W2EbzePoI32kbh8IbTduwBTwQlBjVGA+wuRySHmGsAjj/9D5KREMZmYCsASIiN9GD4H3ei5JrPwrj0IgSPvI6oz4Xf/O7L40HohMsuW44PfvA8/PnvT8F81rsgKEQ5vhQiIpolhd4Cn3vyi3t/0gOFzpLFisYoFUD8pD1Lm0oNObE+JxRLIEd6JUyo6MJQMinh2dZB7Oh0YtgfQaVZixqbDjVW3fg/Tdqpp7B4gjFsOTaKN9pH8FrbCI5luONbmUnDMEQkE9fmP4wFIQl4c3s2AWOfUMD57K+gX3A2IgNHMWdeFRYurJ7wONe9cw1+f+9LSPidUJrLslM8ERGllWHZRRjq/inciWFYxVPfywNJL3rj7bAs+2DW6tEoBaystaFt2IcyowaHB/1YWGEc36pFTstrLNjX55G7jDMqmjCUSEp49egwfvTskSn/UsxaJWpsetRYdag9KSjpVCKaO514o20E+/o8WU25xhxri0hULBJBD0JHtwLSiRGhk42tF5KiIQQPvw5BISIUikGSpNPWEgFAKDh2Q0NQ8OeZiChfGRafD1/zY3jF+W+s0pyLWtVcAAIG4p1oibwGpakUppWXZ62elbVWNHeOrcfxheNY32hD12gwJ0ZjovGE3CVMqaB/I8cTSWw95sRT+wfw7AEHRvypjax4w3F4B7w4OODNcIWpU0xwYUVEmRf3DgPS2AjQxARAISLudkDbtAYDzY/ilVcO4YILFp/2zPvvfw26yiYoDNZMlkxERBkkKNUof+93MPrvH2Fb1zNoDosQACSlBDTVi1B+3Reg0BqzVo8v8ua69FhCStvUOINaRCA68zCzsNKEwyl0TpZbwYWhWCKJN9pH8dTeATzb6oArGJO7pLSInjwJlIiy5s1faBJOjASdSgKkJBRaE7QNK6GrmoNbP/AbPPHkZ7F8eR0AIBaL4wfffxJPP7kbJdd8FoIgIOYagH/vs4i7HVBoDTAsOh+a+uUTjigREVFuEQ1WlL/3TkSHuxDu3gtIEjS1S6CpnJfVOmx6VUpbtUyHRafCwgoTdve4sKzGAm8ohm5ncNrHUYv58fusoMLQVx/bh1c6A/CECiMAncwd5HohIjmorJVQV85DdPDY8RGit765j31Ov/BtEAQB9nd+HaOPfB2rV3wZ55y7EDXVVry0+TBGhtywnPNeGJZcCPdrD8Dz+kMwKDWYr7diMBaCo2UTdPUrUHrD16DQ6GX4SilfJKNhRIfaAUmCunwOv1+IZKQua4C6rEG289fadGm78a9Ti1hRY8H+Ps/4tLv9fR4ImP4eQU2lBuzry50ZVmdSUGHoXy39BftLweFJX3c6Ipoe6/m3Yujhb5z0mRPNE8Y+TGuuhdJUAgBQmstQfuvPEDj8OloOv4aW3jDE2nNRdc2VUJc1wrfnGXhefwi31izFu6sWQqMQIUkStnsc+M6xZjif+BFKb/y6DF8l5TopHoP71T8j0PIUEtGx3wmiWgP98sthveBDUKg0Y8+TJEjxCASlGoIw2fROIioEWlV6OpOub7Shbcg/YeCRAGzrcGJlnQV7elJrhmDV589+egUVhgpZOJ5ke20imeia1qD0HV+Ec9MvkIz4AYUIJJOAIMC05lrYLr79lOcLSjWMSy+CcelFp3xekpIIbPk7zrfX4f01S958viBgg7UK/1W/Ct9v2wbLSA9UpXVZ+dooP0jJBIb//nXE+g8icdKCZIUUR7DlKcRHOmG/9ovw7XwcgZZnkAh5IIgq6BefB8vGd/P7iahApWtNucMbnnKEqX3Qj2qLFv1T3KCvserQ0u1OS13ZwDCUR9hem0g+hkXnQj9vA4JHt46t89EYoF9wDkSjDQCQCPsRPPgK4p4hKHRmGBafd1r77PhoHyIeB65ceN6E5zjfXou7u3Yj2N4MCy9e6ST+vc8h2teKufMq8J3/uwlXXrUSLlcAf/j9Znznzn8i3L0Pjj/8FxAOoEm5CHZdJYJJL9oP7oDj8Bsof8+3oalZJPeXQURpFk9Tyzi7Xo0eZ+iMz/FHEyg1aWDSKuELxyd8jkmjhFIhIAca2aWMYSiPGDX86yKSk6BUw7D4/NM+7935b3he+iOkZBwWlRn+eACel++Dcc01sF18+/gGq1Ji7GaGSVRPeHy1QoRGoYQU500POpV3699gseiw+ZWvobx8bDNHnU6Nr339etTXl+DDH/otEPbiMv3NMIm28dfNl1bileC/Mfr4D1D1H7/lZr9EBUapSM/IkCbF6Xado0E02HXQKBWndWlWKxWosWlxyOFPS03ZwsnEeUSRpm94Ikof//4X4Xr+N9hoWICv1N2KL9W+D1+v/yCutG2Ef+e/4X7lz+PPVVqrICrV2O5xTHisI34nfLEQ1OVzslU+5QFJkiAFnLjjPy4eD0Ine98tb0NVlRUCcEoQAgCloMZKzdsQ8w4i3LE7SxUTUbY0dzixsNI06+MkpjHC1OUMQRQE1Nv1qLJosajShNX1ViwoN+ZdEAIYhvIK22sT5RZJSsL76gNYZpiL60rOg0k51sBFo1DjAutqXGxdC/+OfyERGuuoo9DooVt6MR4ZbENn8NRFqKFEHL/q2Qu1qRS6ueuy/rVQ7pLiUSTiCSxZUjPh40qliAULqyBg4ju7drECKoUW0eGOTJZJRDKQALgCUZi0s5s95AtPryPdoC+CbmcQA54wDjl82N3txv7+/Oge91YMQ3mE7bWJckvU0Y6YdxDnmJdNuD/Q2ZblSCZiCLU1j3/OeuGHkLBW4pMHX8TPOnfi+ZEuPNDXig/vfxaHw17YrvsCpzLRKQSlGkqNFnv39kz4eCwWx4H9vdBj4rvDSSSQkOIQJpmeSUT5bcgXwZxSw6yOUcxdixmG8kgxf6MS5aJkJAAAsCgn3mncKOogCkokI29uVidqjSh//w+gO+vdeCbgwvePNePPjiMIz9+IilvvhrZ2yYTHouIlCAK0Sy/B7377Evr6Tm97+8c/vIyRER80wsRbS3THDiMpxaGbtyHTpRKRTEKxxNRPOgNvOA6LrjjXphfnV52nwvEk5pUZ0DYckLsUIgKgslUDADrCAyhRnb6Woyc8iIQUH3/eCQqNHtZzb4Hlbe8DEjFAVHI/GDojy9nvwXDbFpx7zrfwrf+9EVe9fRVcrgB+f+9m/PhHT0FdOQ9DjjYcDG/HAs1qiIISkiShP96B3ZHXoF94LlS2Krm/DCLKEJN29vv61Nr08ITyc6rbbDAM5Rm7UQMwDBHlBKWlHLrG1XixfxcW6xthELXjj8WlBDa5mqEylUHbtHrC1wuCACg5dYmmpjTaUfa+H2D02V+OdY478XmNFuaNN8H8tpvhff0h7N/yNxyO7YFVUYKA5EMw4YGucQ1K3v7fMlZPRJlk0ojY15faZqhnokvTBq75RpAkKZ9agU/I6/XCYrGg7tMPQ6GZeJpAoaix6tDnPnMfeCLKnthoL4b+8nkYEgLOMy9HraYcIzEPXvfugyPmQtm7vgHdJGGIaCZirn7EhjshiGpo6pZBodae8ph/73Nje2HpTDAsuQCamiUTrmkjosKwodGO5s7Tp9BOl1mrhD8SR5q2LpJVMhJEz903wePxwGw2n/G505qX8c1vfhOCIJzysWjRm5u4/fa3v8WFF14Is9kMQRDgdrtTOu4vf/lLNDY2QqvVYuPGjWhubp76RUWqzx1CQ0lhBz6ifKIqqUX5rT9CbO5KPOncil/3P4ZHhl+Eu7IGFe+7i0GI0k5lq4Z+wTnQzV13ShA68Zjtgg+i7B1fRMnl/wlt7VIGIaIC1+9Jz01ybziOJdWnT/kudNOeJrd06VI8//zzbx5A+eYhgsEgrrzySlx55ZX48pe/nNLx/va3v+Ezn/kMfv3rX2Pjxo24++67ccUVV+Dw4cMoLy+fbnlFodKsRddocOonFghJkgApyQ5blLNUtmqUveOLSIT9SPidEHUmiAbb1C8kIiKahSVVZrQOpG+dj1ZZfOtXpx2GlEolKisrJ3zs05/+NABg8+bNKR/vxz/+Me644w7cdtttAIBf//rXePLJJ/GHP/wBX/rSlyZ8TSQSQSQSGf93r7e4FnsNeoujq1y4ey98zY8i1LELUjIJXWUT9Kuvg2H5JVxsTjlJ1BohaifuLEdERJRuGlV6r4cOD/ogCkCiAKbKpWra/wWPHj2K6upqzJkzB7fccgu6u7tnfPJoNIqdO3fi0ksvfbMghQKXXnoptmzZMunr7rrrLlgslvGPurq6GdeQjzpHg1jbUNh3nX0tmzD40FcwJ9SC710j4pfvUuMCWw+cm34K55M/hiRxA1oiIiIqXnaDGvt6Z9844WS+cBxLqs+8xqbQTCsMbdy4Effddx82bdqEe+65Bx0dHTjvvPPg8/lmdPKRkREkEglUVFSc8vmKigo4HI5JX/flL38ZHo9n/KOnZ+KN6ArZ7m4XltUU5jdr3DMI17O/xEfPVmL7p1X47/NV+MhZSvzrdjX+9D41/Ac2I9D6stxlEmWFlEwg7htFIuBGAfS7ISKiNGks0SOegW4HamVxLUuY1jS5q666avzPK1aswMaNG9HQ0ICHH34Yt99+e9qLm4xGo4FGo8na+XJRUgLaBv2YV25E25Bf7nLSyrfnGRg0Ar57jQoKxakLf29arcQfmpPYuvvfMC69SKYKiTJPSsThbX4Uod3/RsTnAgDoyhtg2PhuGJZcKG9xREQkq6XVJuzqdmfk2EccPigVQLxIJuHMaqKh1WrFggUL0NbWNqPXl5aWQhRFDA4OnvL5wcHBSdcl0ZvC8SRG/BFUW7VTPzmPxBxtuGiuAINm4g5IVy8REHEcy3JVRNkjJRMYfezb8L/+Z9y82Id/3KbGX96vxnn2Poz8+4dwv/qA3CUSEZFMVAoB7mA8Y8f3ReJYUFGYs48mMqsw5Pf70d7ejqqqme1qrVarsXbtWrzwwgvjn0smk3jhhRdw9tlnz6a0ouEOxiBJEuyG2e88nDOUarjP0CPCGwIUSu4XTIXLv+8FBI/twKO3qfGbm9S4ZqkS716lxL8/osY3r1TB88ZDiA53yl0mERHJYE2DLeN7TqqVxdOSf1ph6HOf+xxefvlldHZ24o033sD1118PURRx8803AwAcDgdaWlrGR4r27duHlpYWOJ1vbgR1ySWX4Be/+MX4v3/mM5/B7373O9x///04ePAgPv7xjyMQCIx3l6OpDXgisOnV0KkLY46nbu56vHYsgfaR08dnYwkJ9+2UoJm7UYbKiLIjtOdJXL5IiSsWnf4z/bmLlCg1ifC3PC1DZUREJKdamw67ul0ZP48AhqEJ9fb24uabb8bChQtx0003oaSkBFu3bkVZWRmAsbbYq1evxh133AEAOP/887F69Wo8/vjj48dob2/HyMjI+L+/5z3vwQ9/+EP8v//3/7Bq1Sq0tLRg06ZNpzVVoDNrHw5gbqkBSkX+f/MaFl8AtcmOG+6L4/DQm4FoNCDhQw/F0ONKwrT+ehkrJMqs2GgPLp438c+yShRw4RwgPjrzTp5ERJSfTFolYlnoe60ooh1MBKkA2hN5vd6xFtuffhgKjV7ucmS1pt6asQV12RQd6Ybz719DxOvEunolTBoJr3dIiEMB+9Wfg2HRuXKXSJQxjl+8D59YH8Rd16gnfPyiX0XQoliLshv/X5YrIyIiuaxtsGJnlzsr51rfaMP2zqlHoJpKDbDoVPCFYxj0huGPJLJQ3dSSkSB67r4JHo8HZvOZ1z9x4UWB2dXtxoYmO5o7nFM/OYepS+tRcce9CBx6Da3HdgCJOPRvWwDjissg6i1yl0eUUaoF5+H+HZvw1cskGN/SSKTVkcQbxxIoufptMlVHRETZZtYp0TYUkLsMAEC1VYsaqw4dIwF0jJxaU2OJHhVmLfpcIfROsa5JFACVqEBY5rZ1DEMFqKXbhWqrFv1n6kKQBwSlGsZlF8O47GK5SyHKKvO66zB04Hm84w8x3PMuJRaUKSBJEl7vSOJDf01Aa6+EYdF5cpdJRERZsqDchB1dmV8rdMJEa4ZqrFpUWnTY3e2a9BqzczSIztEggDeDUTAah1YlQiEIiCWSCEQScAajGPFHsLzWiu2d8t7AZxgqQNGEBLNWhX7kdxgiKlYqew1K3vUtbPvnd7D8ez7MLVchHJPQ54pDV16Pkhu+CUE58RQ6IiIqLIsqsxuEAODkLFRj1aHSrMXuHhf6pnGj/eRgNBlvKDbTCtOGYahAHXL4Up7vSUS5R1u3DFUfvx+Bw69jaOAIIChQPmcttI2rIAhFtLKViKiIKRVAIJq5PYUm4wvHsKbeCoc3jD53KGOtvC06+beGYRgqYPv7PKg0a+HwcoSIKB8JSjWMSy8Cll4kdylERCSDtQ127OxyYVGl6XijgrFgZNCIODrkhzuYmZGVgwO+jBz3ZBadCnt65b9pzzBUwEKxJJbV6BmGiIiIiPKQLxyDShRwyHF6ODFpRNgNajgDURkqm72FlaacaPjFuRYFrgC2HSIiIiIqSq0DPoRiE3dbm1tuytsgBAD+cPan/02EYajAJZJ5v40UEREREZ1EoxTQn6F1PNmgU4s4MuiVuwwAnCZX8MLx3Nj8ioiKQzIaQqB1M8JHtwDxCMTSRhhXXQV1WWPGzx0d7oJ/33NIeIag0JlgWHIhNHXLIAgcIieiwrKqzoZtOTDFbKaMaiWGo7lxjcowVOByZQiSiApfbLQXo498HTHvCC66ZBnKyyx47vnXMbDrSVjPvxWWs2/KyHklSYLrxXvh2/EvKBRaqAUjogjDv+cZaBvXoOz6r0Ch1mbk3ERE2VZqVGN3j1vuMmbFH8md61OGoQLnyYH+7URU+KREHKOPfhP1FSo8ufNHmDOnHAAQi8Xx7Tv/ie/c+SeoSmqhX3AOktEQpGQCCo0hLaM2vu3/hG/Hv2BTL4JJVQ9BGNukNpQYwkjXXjg3/Ryl131+1uchIsoFc8uMeT0qBAChWAKiACRyYDUHw1CBM2mVcGWo7SIR0QnBtm2IOB3464vfGQ9CAKBSKfHNb92IV145gubX/gzvtscQ6T849pilEsa118K09hoICnFG55UScXi3/QNGZS3M6sbxzwuCAL2yAjYpAufBV2C94FYoLRWz+hqJiORm0ojY2+eRu4y0MOlUGWsNPh1soFDg9GrmXSLKvHDHLixaUoeVKxtOe0wQBNx669sQGe6BcdCNdbpLcJbuClQGLXC9+HuM/PO7kJIzmzseHWxHIuiGUVU74eMGZTUAAaFjO2d0fCKiXLKk2oJQjqy1mS2TJjeuURmGCtiGJvuEfemJiNJNSiagPcNO4rrjj52rvwZN6iWoUy/AWfrL8Tb9VQge3YrA/hdndt7E2F1FhTDxL1UBIgRBgBSX/+4jEdFsqEUBRwYL57quzKSRuwQADEMFa2OTPSc2siKi4qCpXoS9uzvQ3T0y4eOP/mM7LGobVMKpv/yqVXNQoaqHf9dTMzqvqqQOUIgIxYcnfDyScEKSElBXzJnR8YmIcsXKOmtBLX1QibkRQ3KjCkqrjU32vF9YR0T5xbDkAohaA+74yO8RDEZOeewfjzTjsUd3YI5ixYQNEyrFekRHumZ0XlFvgWHRefDEOxFLBk55LCHF4IodgcpeC03dshkdn4goFwgAelz5u6/QRA45fKixyt/pMzcm61HabGAQIiIZKNQ62K79EjY/dieaGj+DW299G8rKTHj66X149eVWaBV6zFVPHEgiUggK5cynS9guuQPRgaMYcG+BQayCRrQglgwikOiHpBRRcd0XuNcQEeW1VfVW7O52y11GWnlCMehUIspNGgz5IlO/IEMYhgoIR4SISE66xlWo+ODP4N3xOH517xYkY1GoShtgXHUl/C2b4Eu6YRbtp7wmIcXRGT8M3dKzZ3xeUW9Bxa0/gq/5Mfj3PAt/sAeCSgfDyoth3nADVNbK2X5pRESyMapF9DiDcpeREQ5vGAa1iA2NNjR3umSpQZAkKQc6fM+O1+uFxWJB3acfhkKjl7scWdj1anjCMSSSef/XSUQFJhmLwHHvf0IdiOAs7eWwK8daXAeTPuwIv4ShZD8qP3g31GWnd6KbCSkRBxQiR4OIqCCsa7BhR5c8QSGb5pcbEY0n0OWc/XTAZCSInrtvgsfjgdlsPuNzOTJUIOZVGNkwgYhykkKlQdnN38Hww9/AC66HYVSWQAkl3PEhKNQ6lN3wtbQFIQAQRP5qI6LCsLTaXBRBCACODvmhVAjY2GRH64AXvnA8K+flb4wC0Vdgi+qIqLCorJWo+sivEGrfjtCxnYgnE7BXzYdh8QVFO6JPRHQmJq0SI3751tLIIZ6UsK3DCaVCwIoaC5SigNZ+L8LxZMbOyTBUIPTqme3eTkSULYJChH7+WdDPP0vuUoiIcpZKIWBptQVDvjD6PWG5y5FFPClhb58HAKBTiVhTb0U8IeFAvweJNK8IYRgqEHaDWu4SiIiIiGiGmkoNKDWqcWjAh5Zet9zl5IxQLIFdxzvpram3jv85XRiGCsRoICp3CUREREQ0TQa1iPoSPQ4O+NAxEpj6BUXKrFXiyKAv7cflpqsFom3ID4tOJXcZRERERJQipQJoKDHg4ED6L/ILzcJKE/yRRNqPyzBUQOaWGeQugYiIiIhStKLWitYBr9xl5DyNUoHtGdqHiGGogAjgnhpERERE+WBDkz3t618KVZ09c11HGYYKyLERv9wlEBEREdEUNjTauD/kNCgVmbvhzzBUQFzBGKfKEREREeWwlXUWbC+SjVTTpX3YD7WYmUDEMFRgSo0auUsgIiIiogksrDDi4IAPUpr3yil0sYSE+RXGjBybYajAuINssU1ERESUa+psOvR7wojGk3KXkpeMmsx0TWYYKjBHBv0wabh9FBEREVGusBvUiCaS8IXjcpeSt5wZ2lOTYajASADmlWdmGJGIiIiIpsegFmHRKTHojchdSl5rH/bDoBbTflyGoQIkZrDjBhERERGlRhSAxlIDOkaCcpeS95ISMCcDjcIYhgpQ1yh/4IiIiIjktrLOigP93FQ1XVRi+qMLw1ABSiTZooSIiIhIThu5qWraZeIKlyvtC5DNoIKTXeWIiLJOkiREeg8gOngMglIF3Zy1UJrL5S6LiLJsfaMN27ipatoFIulvQMEwVIBKjRq0DwfkLoOIqKhEB4/B9dQPER7qhlqtQjyRgCsJGJZeCNvl/wmFSit3iUSUBStrLdjBTVXTrtKixZFBf9qPy2lyBUalEHB40Cd3GURERSXmdmDk4a9gQbUCz734FQTCf8Co6zf46c8/gHjbaxj9112QuMsiUcFbWGHCQQc3Vc2EBrs+I8dlGCowK+uscAdjcpdBRFRUvFsfgdWkxIsvfRkXXbQEgiDAZNLhPz9xGf70l48h2L4T/r3PyV0mEWWQVa/CgCfETVUzQK1UoHMkM7OeGIYKjCfEIERElE2SJCF8aDM++tELYbWe3vb1ndevQ319CdzP34NE0CNDhUSUDRpRAS83Vc2IZdVmDPoys08Tw1CB6XOH5C6BiKi4JOKIR8KYN69iwocVCgXmL6iElIjDv/fZLBdHRNkSjDIIzZZGeXo0yXRXPoahArOwwiR3CURExUVUQm2yYsf2YxM+HInEsG9vD+bNq0C0fVuWiyOibPFFEnKXkLfsBhXWNdgQiSehVABlRg3mlhmwtNqc8a58DEMF5kC/Bxua7LDoVHKXQkRUFARBgHbZ5fjjH15GW5vjtMd/9cvnMDTkxarVDUCC2x4QFTKDWpS7hLyzut6KSCw53oEvngSG/RG0DweysmEtw1CBiSYkNHc4EYsnsKzaLHc5RERFwbz+esQkJc49+1v46d2bcOTIALZta8PHPvp7fP6zD+JT/30Ftmw9BkVpk9ylElEGGbXctWY6TBol2ob8CETlG1VjGCpQwVgSx4b9sOo5QkRElGmizgTLpZ/AyIgPX/jcg1iy8PN421nfxBP/3oXv//B9KC0zobd7GMZVb5e7VCLKIJ2KI0PTsbjaDJ/MTScYXwtYMJbE8lord0AmIsoC/eLzYeo/CN/OJ7B2/Rxcduky1NbZ8de/bsNrrxyE5W03Q1O9UO4yiSiD9GpeWqfKblBjdw5sTsu/sQJ3bDgAUSEgkeTuX0REmSQIAmyX/AfUVQvRuutx7LzrcQCAvm4Jyt75FegXniNzhUSUaRJ4vZUqg1qEMyD/OkqGoQI37I9gVZ0VLT1uuUshIip4giDAuPQiGJdeBCkeAwRAEDldmahYHBzwYX2jDds75R/xyHX+SG60IueaoSLgD3MjViKibBOUKgYhoiK0r9eDSotW7jJyXq5sUMswVATahgNY22CTuwwiIiKigheOJ2HlFidTSiQlVJo1cpfBMFQsDju82NhkR5lJ/m86IiIiokJ2yOHDhia73GXkvFKT/CNoXDNUJPyRxHhXuVKjGrU2HdRKEQLGFvuFY0k4A1EM+8Iwa9WosGgQi0s4POiTt3AiIiKiPNTc4cTqOgvahgOyt4/OVWpRkLsEhqFiNOKPYsQ/efeOYX8Ew/4IAGBFjQVdziA8Ia47IiIiIpqO3T0elBrVqKsyo3XAK3c5OafXFZK7BE6TozPb2+fBggqj3GUQERER5aURfxStA15saLRDo+Sl9wn1dj2GfBG5y2AYoqnt7HKhnGuNiIiIiGasudMJvVrExiY7dGpR7nJkV5UjHfcYhmhKSQloKNHLXQYRERFRXnMFY9jW4YRSIWBjkx0mbXGuWCk1qtHrCspdBgCuGaIUBaMJuUsgIiIiKgi+cBzbOpwQBWBptQkGtQrHRvxnXNNdKCotWgiQ0OcOy10KAIYhStGBfi8WVBhxZNAvdylEREREBSEhAQf6xzr3bmyyY8TvlLmi9FvbYIOoEBCOJhCMJeAKRDEayJ3QxzBEKZPkLoCIiIioQMWThXmlFUsksbPLI3cZk+KaIUrZ0UE/NjRyAzEiIiKidAvHCnNJQl8OtM8+E4YhmpbmTifWN9rkLiPvWHQqrKm3YmGFCYL8+4sRERFRjinUjVlHA1GUGtVylzEpTpOjadve6cK6Bht2drsgFeaIblqUmTRoLNEjEEngkMOLXd1uAIBNr8LcMiOiiSQOO3yIxJPyFkpERESysulV6HbmRne1TGgqNeRscwiODNGM7OhyYXWdFQqOcpyizqbDxiY75pUbMOyLYHunC60DXpw8DdgVjGFHlwt7ez0AJKypt8pVLhEREeWAOWWFvcF925AfxhzdW4lhiGZsV7cbK2qtUBZ5IppbZsCGJjvqbDr0uELY1uFE21AgpddG4hJ2dbuxroFTD4mIiIpWgc+0cQVjWFJtkbuMCTEM0ay09LixpMoMlVg8gUghAEuqTNjQaEO5SYP24QCaO5zomcUCwR1dLmzgWiwiIqKi1Dac2tYlRo0SK2otqLXpsKHJnlfXX82dTmxozL2aGYZo1vb2ebCgwgSNsnC/ndRKBVbUWrC2wQaTVonWAR+aO10Y8kXSdo7m42uxiIiIqHjMLzfAE4pN+Ty9WoRVr8LeXg96XSE0dzixLEdHWybT3OlErU0PjTJ3AlHhXr1SVh3o92JJtVnuMtLKqFFiTb0Vq+qsEAVgb68HO7tc8IQy1+3lyJAPRg37mhARERULu0GT0vOWVpvR+5ZZKLt73Hm37UnHSAAra3Pn5i/DEKXN7m435pfn9wJAu0GFdY02LKsxIxyLY1e3Gy09boRi2en45g3FCy5UEhER0eRcwam7rC2pMmF7p2vCx5o7ndjYlF+BqLnTmTMNFRiGKK3UOTTsmapKixYbmmxYWGGCMxDDjk4X9vd5IVfH693dLpSbUrtLRERERPlvbplh0sd0KhHOwJkD07YOJ9bW585oy1RUogB/NDc2mWUYorQ60O9DnV0ndxkp0atFbGi0weEJo7nDhcODPrlLAgDEEhLqbHq5yyAiIqIsODLoR/twAOsabLAbTt+cdHmNGQ7v1GuUW3pcWJcnzZgm+jrlwsUJlHaVZi16nDPvrJYNK2st6HeH0TzJkLPcdna70FRqQMdIai26iYiIKL/t6HJBoxSwqNIEs04FSBLcoVjK1yoJCdjR6cKKWgviiSQEQYCoEKAQBCgEQCEIwIl/Ajgxl0c6/n8SJEjS2L8nj2+QKIoCjg76U2rwMB0WnQqDKQS8bGAYorRr7fdCpxYRypHhz5PZDWrU23Vo6fHIXcqU9GoO3BIRERWTSFzCIcfsZqqMbeqePgKAxVUmmDQqeEIxxJNJxBMSookkYokkovEkIsc/plJh1qDSrIVNr8aRwdTaiWcawxClXSCawPpGO7Z3OuUu5RQ2vQo6lSIvghAwNuVwWY0Z+/u8cpdCRERERUoCcHAgtYCmUgjQKBVQK0WoRAFqpQJKUQFRAQx6whj0RjDojWBJlSmzRU8DwxBlxJA3t6bJGdQibHo1juXZtDNfKAaFACQLfGdqIiIiyn+xpIRYNAFMMTtIn0PbiHAeDmVElzOERZW5kfpVooA6uz7vghAw9t9xTR51hyEiIiKayo5OF1bXWVFrlb/pFsMQZYyQA122BQFYUmWe9fxbOXWMBKBV8UeViIiICsfuHjf6PSHZN43lFRZlzMEBH5bXWGStYW29DXvSvJAw20YDUaystcpdBhEREVFaJSXg2Ii8jRQYhiijjg76sKJWnkCkU4s4Npx/U+Mm0jESgCIHRtqIiIiI0imVLnSZxDBEGRWOJ7G31yPLEOiKGgucwTPv2JwvhnwR2UfZiIiIiNItLnOXKIYhyormTifWN9ogZml4o9Ksxa7u3NxQdaaSElvKERERUWGRu4kCwxBlzfZOF8pNaqxvtEGjzOy3XpVFi1iisMLDvj4vKs1aucsgIiIiShubXi3r+RmGKKsGPBFs73RBpxaxsckOszb9feYXVpqwu8ed9uPmgoYSvdwlEBEREaVNLMk1Q1SE3MEYtnU4EY0nsaHRhnKTJm3Hjifk/aHKpKODPhjUotxlEBEREaXFdBZQVJg0KDNqIKZx1QXDEMkqHE+iudOFEX8Ea+ttsx75WNtgQ3uBdJCbiDMYQ1OZgZ3liIiIqOAZ1CJW1lqwvtGGCrMGg74Ihv0RJCTAolNhdb111udI/xwlohlISsDO4w0PlteYEU9KODgwvY1SdSoRHSOFG4RO2N/nxao6K0SFAH8kjgF3CN5wXO6yiIiIiKbt6KAfCytMcAWjGPVH0FhqQKlRA3cohrYh/6T7RXpCMezpcWN1vRW7u90zPj/DEOWcfX1eAMC8ciMMGhF7ez1IpZHailoLtnU4M1xdbmg5aU2UAGBJlRlGjYiWXg+iMvfrJyIiIkqVLxLH4cE3b4C3DwdSnuWTlIC9vR6sqrOecm00HZwmRzmrbciPPT0e1Fh0WNdgg+oME0QXVBgLrpV2qiQArQNeNHe6sLrOKnc5RERERFmTSErY1+fByrqZ7cfIMEQ5r9cdwo4uF0xaFTY02WE3qE55fEOjHe1D/oJrpT0T+/s8sOhUUz+RiIiIqEAkkhJa+72os01/zyJOk6O84QxE0Xx8GlyFSYNqmw6JpITmzuKYGpeKQDSBDY0W/jchIiKiohJLSNDNoOMuwxDlpUFfBIO+iNxl5KQjQz4IAlJaZ0VERERUKI4M+rGh0Yath4Mpv4bT5IgKjDsYw/xyo9xlEBEREWXdvn4vyo3qlJ/PMERUgKz61N8EiIiIiApFKJpAiUmT8vMZhogK0JA3LHcJRERERLKYzl6VDENEBahzNIjyadwVISIiIipGDENEBaqhRC93CUREREQ5jWGIqECFYkm5SyAiIiLKaQxDRAXKFWDrcSIiIqIzYRgiKlBVlunvwkxERERUTBiGiApQrVWHXd0uucsgIiIiymkMQ0QFqMysQVKSuwoiIiKi3MYwRFRgmkoN2N3tlrsMIiIiopzHMERUYMw6pdwlEBEREeUFhiGigiPIXQARERFRXmAYIiowWiV/rImIiIhSwasmogITjSfkLoGIiIgoLzAMERWYYX9U7hKIiIiI8gLDEFGB6XOFoBK5boiIiIhoKgxDRAVGAlBr08tdBhEREVHOYxgiKkB2vVruEoiIiIhyHsMQUQESOU2OiIiIaEoMQ0QFKBiNy10CERERUc5jGCIqQJ0jAYgKjg4RERERnQnDEFEB8kcSWFBhlLsMIiIiopzGMERUoExapdwlEBEREeU0hiGiAjXgDstdAhEREVFOYxgiKlA9rhCqLFq5yyAiIiLKWQxDRAWszs7NV4mIiIgmwzBEVMCCEbbYJiIiIpoMwxBRATvk8EKnFuUug4iIiCgnMQwRFbB4ElhQYZK7DCIiIqKcxDBEVOBU3HyViIiIaEIMQ0QF7thIQO4SiIiIiHISwxBRgXMGophXZpC7DCIiIqKcwzBEVATsRo3cJRARERHlHIYhoiLgDETkLoGIiIgo5zAMERWBtqEA7Aa13GUQERER5RSGIaIiMaeU64aIiIiITsYwRFQk4smk3CUQERER5RSGIaIicdjhg0rknkNEREREJzAMERWJUCyJUnaVIyIiIhrHMERURJQKjgwRERERncAwRFRElCJ/5ImIiIhO4JURURFRcs0QERER0TiGIaIiwmlyRERERG9iGCIqIiLDEBEREdE4hiGiIiIKDENEREREJzAMERURjgwRERERvYlhiKiICBwZIiIiIhrHMERURDgwRERERPQmhiGiIsKRISIiIqI3MQwRFZFhX0TuEoiIiIhyBsMQURHpGAnAblDLXQYRERFRTmAYIioyc0oNcpdARERElBMYhoiKzLFhjg4RERERAQxDREXHGYyi3KRhZzkiIiIqekq5CyCi7Dvk8GFjkx3bOpxylzJubYMNwWgcwUgcvkgClWYtjBolOkcDGGLjByIiIsoAhiGiIrWtw4kVtRbs7fXIWodZq0RjiQE7u1ynfN4ZiAIAVAoBc8sMaB8OyFEeERERFTBOkyMqYgcHvFjbYJPt/CatEiVGDfb2TR7IYkkJvnCc0/qIiIgo7aYVhr75zW9CEIRTPhYtWjT+eDgcxic+8QmUlJTAaDTixhtvxODg4BmP+aEPfei0Y1555ZUz+2qIaFpiCQk7u1xY32iDmOW0YdYqUW7SoGNk6hEfXziGpJSFooiIiKioTHtkaOnSpRgYGBj/eO2118Yf+5//+R/8+9//xt///ne8/PLL6O/vxw033DDlMa+88spTjvnQQw9NtywimoXtnS7UWLVYWWvJyvnmlBmgU4kpT30rM2kyXBEREREVo2mvGVIqlaisrDzt8x6PB7///e/x4IMP4uKLLwYA/PGPf8TixYuxdetWnHXWWZMeU6PRTHjMyUQiEUQiby6o9nq90/gKiGgi3c4Qup0hzC83QikKODjgS/s5BAFYW2/Dnl43YonUh3oqzFp0O0Npr4eIiIiK27RHho4ePYrq6mrMmTMHt9xyC7q7uwEAO3fuRCwWw6WXXjr+3EWLFqG+vh5btmw54zE3b96M8vJyLFy4EB//+McxOjp6xuffddddsFgs4x91dXXT/TKIaBJHh/w4OODDsmoz5pSlZ4PWOpsOG5vsKDNqsKPLNa0gpFcp0DbkT0sdRERERCebVhjauHEj7rvvPmzatAn33HMPOjo6cN5558Hn88HhcECtVsNqtZ7ymoqKCjgcjkmPeeWVV+JPf/oTXnjhBXzve9/Dyy+/jKuuugqJRGLS13z5y1+Gx+MZ/+jp6ZnOl0FEKdjf78Wx4QBW11lQY9NN+/VmrRLrG22YX25AjyuEbR3OGbXIXl5rhSsYm/briIiIiKYyrWlyV1111fifV6xYgY0bN6KhoQEPP/wwdLrpXywBwHvf+97xPy9fvhwrVqzA3LlzsXnzZlxyySUTvkaj0UCj4RoComzY3eOBQgDWNdgwGoieseGBUiFgabUZggDs7/Nge6dr0uemQq9SyN76m4iIiArXrPYZslqtWLBgAdra2nDZZZchGo3C7XafMjo0ODg4rfVAc+bMQWlpKdra2iYNQ0SUXUkJ2HF8H6ASgxpNpQZIAERhrANdNJGELxzDoCeMPWkML8FYEitqLOgcDcAbjqftuERERETALMOQ3+9He3s7PvCBD2Dt2rVQqVR44YUXcOONNwIADh8+jO7ubpx99tkpH7O3txejo6OoqqqaTWlElCGjgShGj2+Img17+zyoMGmwoMKEpDS21kgCcPyPkCCNfeLE54Sxf0qQEIkl0eUMIhpPZq1eIiIiyh/TCkOf+9zncO2116KhoQH9/f34xje+AVEUcfPNN8NiseD222/HZz7zGdjtdpjNZvzXf/0Xzj777FM6yS1atAh33XUXrr/+evj9fnzrW9/CjTfeiMrKSrS3t+MLX/gC5s2bhyuuuCLtXywR5adBXwSDM1hvBACiAMwtM8BuUCORlNA64EU4xnBERERE0wxDvb29uPnmmzE6OoqysjKce+652Lp1K8rKygAAP/nJT6BQKHDjjTciEongiiuuwK9+9atTjnH48GF4PGPTaERRxN69e3H//ffD7Xajuroal19+Oe68806uCSKitEhIQPtwYHxPI7tehRW1VrT0uDliREREVOQESZLyfl93r9c71mL70w9DodHLXQ4R5QG7QY25ZQa09ExvzyMiIiLKbclIED133wSPxwOz2XzG5057nyEiokLgDESxvdOFeeVG6FSi3OUQERGRDBiGiKioHRzwod6ug17NQERERFRsGIaIqOgdHvSjxqqDUTOrBptERESUZxiGiIgAHB3yo8KsgYmBiIiIqGgwDBERHdc+HMCiKpPcZRAREVGWMAwREZ1kd7cLlRat3GUQERFRFjAMERGdJJ4EqhmGiIiIigLDEBHRW+zqdmNOqUHuMoiIiCjDGIaIiCagY6ttIiKigscwREQ0gQP9XiytPvOu1URERJTfGIaIiCZhULPNNhERUSFjGCIimkQknpC7BCIiIsoghiEiokm4gzG5SyAiIqIMYhgiIprEoDcsdwlERESUQQxDRESTCMeTKDGo5S6DiIiIMoRhiIjoDEpNGrlLICIiogxhGCIiOgOjhh3liIiIChXDEBHRGSgVgtwlEBERUYYwDBERnUEskZS7BCIiIsoQhiEiojPwhuNyl0BEREQZwjBERHQGwz621yYiIipUDENERGfgCcXZRIGIiKhAMQwREU3BplfJXQIRERFlAMMQEdEUBDaUIyIiKkgMQ0REU5DkLoCIiIgygmGIiGgKAjg0REREVIgYhoiIiIiIqCgxDBERERERUVFiGCIimgInyRERERUmhiEioimwgQIREVFhYhgiIpoCW2sTEREVJoYhIiIiIiIqSgxDRERERERUlBiGiIimwFlyREREhYlhiIiIiIiIihLDEBERERERFSWGISIiIiIiKkoMQ0REU9AoRblLICIiogxgGCIimoJRo5S7BCIiIsoAhiEioikoRfaTIyIiKkQMQ0REU4gnpKyeTyUKsOhUWT0nERFRMeLcDyKiKfgj8bQdS6NUYEmVGWqlApIExJNJRONJhGIJ+MNxeMMxhGJJeEIxqEQBFSYtrHoVdGoRCkFALJFEIBLHsD8KZyCatrqIiIiKEcMQEdEUhn2RWR/DolNhQYURB/u92N3jTuk1sYSEXncIve7QhI+vqLXAF46jYyQw6/qmohCABRUmGDRKKBUCkpKERFJCMJrAIYcv4+cnIiLKBIYhIqIpOINR6FQiQrHEjF6vEgVUmrXY3ulKa117ez0AgNX1Voz4I+hxThyaZsOkVWJJlRmdI4FJQ8+iSiNEhQIH+r1pPz8REVEmcc0QEVEKKsyaGb92Ra0VhwczN3qyu9uNHmcIG5vsUCrS0+yh3q7H+kYbovEEtnU4MXiG0bFDDj8O9HuxotYCMU3nJyIiygaGISKiFMy0ocHCShN2dqV3RGgy2zqcaCzVo9qqndHrBQFYWWvBkiozup1BbO90IRJPvXnE3l4PVtdZZ3RuIiIiOTAMERGlQKua/sarggDE4skMVDO5tqEAXIEo1jfaoEqxJbhJo8TGJjsqTBrs6fWgdWDm0912dLmwsck+49cTERFlE8MQEVEKktL022uvbbDhWBaaG7xVKJbE9k4XrDo11jfaoFZO/FZfZ9dhfaMNsUQS2zqccHhn3ygCGBuhWtdgS8uxiIiIMokNFIiIUjDd5gkGtYhjQ/4MVZOaYX8Ew/4I7Ho1ait1SCbHAl1SkhBNJNE2FMhI0wUA2NXtwvIaC/b1eTJyfCIionRgGCIiSoErEJvW85fVWLCtw5mhaqbHGYzCGczunkRJCTg66MPcMgPah7M/OkZERJQKTpMjIkrBgCeEZdXmlJ5bZdFiZ1duBCE5heNJuAJRVFpm1tCBiIgo0xiGiIhSkJSAQw4vVtZapnxuvV2PLPdNyFnOYAyiIKDUqJa7FCIiotMwDBERpSieBPb1ebCm3nrG5w14MrMOJ1/1uUMIRuLY0GRL2z5IRERE6cAwREQ0DUkJ2NXtnrRb2twyA7oz1JQgnwVjSTR3uFBp0WJpitMNiYiIMo1hiIhoBnZ0ubCh8c39dDRKBRpL9DJWlB96XSEc6PdibYOVo0RERCQ7hiEiohlq7nSObzC6staKztEgO6elaGeXGwsrTdDNYDNbIiKidGEYIiKahW0dTmxosmPIF5a7lLxzoN+LGpsOFp1K7lKIiKhIcZ8hIqJZas6R/YTyUduQH7U2HTRKBYZ8EbnLISKiIsORISIiklWvKwSbnq23iYgo+xiGiIhIdocHfVhQYZS7DCIiKjIMQ0RElBPYTIGIiLKNYYiIiHLCnl4Paqw6ucsgIqIiwjBEREQ5o8qqlbsEIiIqIgxDRESUM/b0uGHTs9U2ERFlB8MQERHljFhCwoIKk9xlEBFRkeA+Q0RElFMOOrzQqhQIx5ITPm7RqbCo0oQ+VwgVFi28oRiODvmzXCURERUCjgwREVFO8YbiWF5jmfRxURCwrcOJXncIO7tcODrkx/pGGwxqdqMjIqLpYRgiIqKc0+sKQiFM/JgnFD3tc9s7XdCpRSys5BQ7IiJKHcMQERHlnAFPBCtrrRM+phAmTkkj/iiODfuxqm7yUSUiIqKTcL6Y3AAAN65JREFUMQwREVFO8kViE36+1KSe9DWxhISWHg/WNdgyVRYRERUQhiEiIspJbUMBrKi1YF65cfxzJq0S8cTUr93b60aFWZPB6oiIqBCwmxwREeWsvb0eAMDSahMUggLBaBztw4EpXxdNSKi26DDojWS6RCIiymMMQ0RElPMO9Pum/ZpoYuLW3ERERCdwmhwRERUkttomIqKpMAwREVGBmqQ3NxER0XEMQ0REVHBKDGocG/HLXQYREeU4hiEiIiooWqUCFr0KI/7TN2clIiI6GcMQEREVDJ1KgfkVJhxLoeMcERERu8kREVFBqLFqISoU2NfnkbsUIiLKExwZIiKivLe8xgxPKI5uZ1DuUoiIKI9wZIiIiPLaxiY7tnU45S6DiIjyEEeGiIgob21oZBAiIqKZYxgiIqK8tLjKhOZOBiEiIpo5hiEiIso7BrUIZ4Cts4mIaHYYhoiIKO8srbFg0BuRuwwiIspzDENERJR3jg375S6BiIgKAMMQERHllcVVJoz4OUWOiIhmj2GIiIjyilmrkrsEIiIqEAxDRESUV0KxhNwlEBFRgWAYIiKivOLwhOUugYiICgTDEBER5Q2TVokhH7vIERFRejAMERFR3qiz6eUugYiICgjDEBER5Q2jRil3CUREVEAYhoiIKG+weQIREaUTwxAREeUFrVKBQw6v3GUQEVEBYRgiIqK8sLDShFhCkrsMIiIqIAxDRESUF1Qif2URERUCk0aJVXVWucsAwDBERER5on3YL3cJREQ0S7U2Hcw6FVp63Fhdb5W7HIYhIiLKffPLjXAFY3KXQUREM6QQgBW1FrgDUfS5QwAAf1j+93X2KCUiopxnN6jlLoGIiKah3KRBtVUHfyQOdzCKUX8Ue3s9pzynYyQAlSjIuh6UI0NERJTzBr1huUugHGbW8t4uUa6psenQ0uNG25AfI/4oJoo78STQVGrIem0n47sHERHltAqTBp2jQbnLoBw0p9QAi06FfncI3nBc7nKI6LiFlSbs7nan9FzTDG5m6NQilldbAAHY3e2a1cgSwxAREeW0+hI9Bn0RucugHLKkygSFIGB//5v7Tll0KnhC8q8/ICJApRBSfu6uLjfq7Dr0OEMpPV+pEDCn1IDmTicAYEWNBQcd3hkHIk6TIyKinBaMJuQugXKESaPEokoTWgd8pwQhYKxDFRHlhs7RQMrPlQAoIGB5jWXK5zaW6NFYoseBk37+9/Z5sKjSBJWYegA7GUeGiIgoZ+lVChwZ9MldBuUAnVpEpUWLQ46Jvx8MGl7SEOWCSrMWjmmu8+xyjk2FnldmgNWgRiAShy8ch02vhk4lIilJ8IZjaB/yY6IBoH19XqxtsGFnl2va9fKdg4iIcta8CtNp3Yeo+GhVCjTY9ZMGIQBwBaOotGjh8Lx5EWbSKFFfoodRo0QomoBWLaK5w5mNkomKVoVl+mHohLbhADD85qhSryu1qXMAkJRmNk2OYYiIiHKWVsnZ3MVOJQqYW2Y8ZVrMRI4Ojm3Ku6LWApVCgUFvGL3u0CmvUwjAggojjgxyA1+iTJHrffuowwdRISCRnF4oYhgiIqKcJQgzmwNOhUGpELC40oy9famPDp5pJDEpAe5gDEqFgPg0L5iIKDVybYXgjyagViqmHYZ4y42IiHLWTKc9UP5TCMCyasu0glAqhtiZkChj6u162bZC0CoViMaT034dwxAREeUsOXclJ/kIArCqzoqWXnfaj63iqBBRxlRZtLKd26xTzeh1DENERJSzwrHJ22qXGtVYWm3G3DJ5dy+n9Ftbb8OuFDdsnC6dRszIcYkI6HbKt0G2PzyzfcYYhoiIKGeZdSpoVW/+qhobMbBgXpkBI/4oDvR70T4cwIpaCywzvCtIuWV9ow07ZtAeN1U6JcMQUSasrrdiwCPPeiEACMaSMxqZYgMFIiLKWc0dTtj1aqyoNSKZlODwhNHSc/oakr29HqxryOxFNGXehkb7+K7ymaJV8z4wUbotqzFjXwamtU5XnU0PbyiG6SwNZBgiIqKc5gxGU9obhqtA8tvGJju2ZWEPIJ2Klz5E6bSw0oSjgz7MoHdB2jV3OmFUi1jXYENPiq/h7REiIioIfS755qrT7GQrCAGAScswRJQuK+ss6HMGEYnnzu0ofzQxrVkCDENERFQQHN4Iyk0aucugadqQxSAEAAK4dxXRbK2staCp1IA9PR74o5M3upFLU6k+5efy9ggRERWMWpuO+8jkkfWN/7+9ew+Oq7zPOP7sfVfai1ZXS5YsycFgMLZj4wsEmLaBwmQYGmimaTyUTjv0EgZSoKUBWlpoJ62ZTjtNmKY0k7SQTsow4Q/SSxooEwodCBffsI0BY4ys+8WWdle7q9Xuavf0D2MT44u0knbP7jnfz4xmYH3O7k86eu199n3P740uaAnkckpl5yr6eoCVbOyMKDk7p/0X2Ny4GjTVL/yDMcIQAMAyXE4+9a8VW7qj2nWs8g0vxqbN63YF1KoNKyNK56o/BJ1yPLXwD8UIQwAAyxiJ80a3Fmxa1WBK57+Qz6WpdK7irwvUqkjAo/aITweGayMESVJTvVf9k/EFH889QwAAyxiOZ9RY7zW7DFzAxq6I9g/GTXnt9oaAKa8L1KLmoFfhgFvvj6XMLqUkXY0Lv19IIgwBACymu6m0fwhROetXRnRoOKGiSY2n6n0siAEWoiPil9vp0OBUxuxSSuZ1lRZv+FsBAGApbu4bqkqXtYf1/ti0qXuR8LsBzM/ndio7V9RkjS4pjWdKq5uZIQCApYxzg3zVuWRFSEePJ5UvmLsXidNBGALmc1lHuGaDkNvpUN/xdEnnEIYAAJYyMJVRJOAxuwx87KLWoAYn06ZsytjdWKfPtNRre2+jJKloVM/GkEC1quWPDDoaAsqXuA6XMAQAsJxSNtxD+fQ212s8kdFM3py1cc0hr44eT+vNvilt6Y6aPjMF1IJMvvo2UV2oaF3pH4RxzxAAwHI8Jd5Ai+XXEvJpKp1VMmvOG6vmoFf7Bz9pB7x3IKaGRbxRAuxmxqQxuxz8HlfJ5/CvBQDAct4bnZbPzT9xZuptqlciM2fa669uCWru55bLFA1pKp03rR6gVqSy5o3bpVrMUlj+pQAAWE4qW9DlKyNml2FbIb9bB4fjpr2+3+3Ue6PTpr0+UMumM7X7oUEmV/qsFmEIAGBJiRLbq2L5XNQaVMak+4QkaUNng5KztfvpNmCWoM9dcgOCajKZzpZ8DmEIAGBJH06k9dkuZofMUOqmh8ttOF57G0UC1aCWN612Ox0aSxCGAAA47XgyJxcbbVacmd2oNnZGCEPAItX7are32oqIX4uZ0yIMAQAsazieUVvYZ3YZtlMwcZlNvmDe8jygljUHvXp3JDH/gVVqsfvLEYYAAJbG3jKVFzTx0+WPTpS2+zwAyeNyqC3sV6qG22ofGjnZRXRTicujCUMAAEtqrPdqa09Uk6nS15BjaYZMWqbmczs0a2LjBqAW1XtdWtMa0qGR2u/AuKYtqH2Dpc1uEYYAAJbSUOfRtp5GpbNz2nUsphpujFSzhmMZbeisfPOKsN9b8dcEallTvVctIZ/etUgr+sV8GEIYAgBYgsfp0PbeRmXzRb11bErZOWYIzBRYxE7wS5XO1u7+KECleVwOBTwuHZucMbuUZbF+ZUQfTqRKPo8wBACoeZ3RgDobA3qzb8rUTmb4xGJ2gl+qmXxRIX/tdsMCKmnzqqhpS1rLYa64uA/ACEMAgJq2pTuqyVROfSes8emmVTgc5rQ0X2xHKcBu+izWbOREKqdNqxpKPo8wBACoSfVelzavatDu/hizQVWoaNLNWjmWRwIL4vdYKwYcT2a1byCurT3Rks5jLhkAUHOidR5FAh7tHYibXQrOIzlrzv07MzmCMbAQAY81Y8BHx9PyuBY+M22tSAgAsLzmoFf1Prdlbvq1qomkOS3N07k5U14XqDVetzlLWcttMp3T+pUL72ZJGAIA1Iy2kE8el1NDMevc9GtFIZ9bsZnKzwxd3hGWCX0bgJrkclozDEkqqZsoYQgAUBNaQz4VJY0mZs0uBfNoi/hNeV2Pm7c1AKTjyYX/O8HfGgCAqudxORTyu3XcpKVXKI0ZHd0iAbfeGS5t53nAzqw8izqRzC34WMIQAKDqbVoV1dHj1moDa2VuE5bfXLIirHzBwu/ugGWWynJ/nUQYAgBUuYDHqUN84l9TzGhvPcbySWDBPC6H+if5gEkiDAEAqtzlKyNK0y65psRmFr5EZTlc3BbUwBTdBYGFuqw9LLbkOokwBACoamyiWVv8HqeGK9ztL+yv/D1KQK26qDWoD8aTZpdRNQhDAICqNkgb7ZqypjWofLFy9+7UeZw6NDJdsdcDatXKhoC29kQ1MJlWJs+HTKeUFIYeffRRORyOM77Wrl17+s9nZ2d11113qampScFgUF/60pc0Pj5+wec0DEN//ud/rvb2dgUCAV1//fU6cuTI4r4bAICltIV8mkpXdskVlibgreyu9utWRpTJs4wSOJ+LWoPa2BnRcDyjXcdiytFo5AwlzwytW7dOo6Ojp79effXV039233336T//8z/17LPP6pVXXtHIyIh+9Vd/9YLP9zd/8zd6/PHH9U//9E968803VV9frxtvvFGzs9wICQB25/c4tSJszp41WJxKL5GLm7C5K1ArVjfX69iJlPYP0YTmfEr++MbtdmvFihVnPZ5IJPTP//zPevrpp/X5z39ekvTkk0/q0ksv1RtvvKErr7zyrHMMw9A3v/lNPfzww/riF78oSfrXf/1XtbW16Uc/+pG+8pWvnLOGbDarbPaTvSamp5keBwAr6p/KaF1HSGPTfEBWC1aE/RqOVy4M9TTV6chEqmKvB9SafLFIo4R5lDwzdOTIEXV0dGj16tW67bbbNDAwIEnas2eP8vm8rr/++tPHrl27VqtWrdLrr79+zufq6+vT2NjYGedEIhFt3779vOdI0s6dOxWJRE5/dXV1lfptAABqRN/xtByV37YGi9DdVFfR12sJ+Sr6ekCtGZzinsv5lBSGtm/frqeeekrPP/+8nnjiCfX19enaa69VMpnU2NiYvF6vGhoazjinra1NY2Nj53y+U4+3tbUt+BxJeuihh5RIJE5/DQ4OlvJtAABqyEy+qJ6merPLwDzqvC69O1q5lRoel0Pvj9ERCzifgNdldgk1oaRlcl/4whdO//eGDRu0fft2dXd364c//KECgcCyF3c+Pp9PPh+fBgGAXTQHveo7wQaB1Wz9yoje7Juq6OvtHYhX7PWAWlPncSnDHm3zWlJr7YaGBl188cX68MMPtWLFCuVyOcXj8TOOGR8fP+c9RpJOP/7pjnMXOgcAYD/FCrZqRulCfrfeHansDdqzdJADLsjPzNCCLCkMpVIpHT16VO3t7briiivk8Xj005/+9PSfHz58WAMDA7rqqqvOeX5vb69WrFhxxjnT09N68803z3sOAMB+2BOjel3WHlKdx6VktnLhpKPBr3dHWSIHXMhYYlZrV4TMLqPqlbRM7v7779fNN9+s7u5ujYyM6JFHHpHL5dKOHTsUiUR0xx136A//8A/V2NiocDisr33ta7rqqqvO6CS3du1a7dy5U7feeqscDofuvfdefeMb39CaNWvU29urP/uzP1NHR4duueWW5f5eAQA1KjvHLEA1cDkdWtngV2O9Tz63U7P5gikte7uidRqJ02EQuJBC0dD49Kya6r2aZL+28yopDA0NDWnHjh2anJxUS0uLrrnmGr3xxhtqaWmRJP393/+9nE6nvvSlLymbzerGG2/UP/7jP57xHIcPH1Yi8clfnF//+teVTqf1e7/3e4rH47rmmmv0/PPPy+9nXwkAwElZZoYqzuNyaF1HRD63U7lCUZOprIZjGQ1Mnfwyi9MhfUg7bWBBYjN5betp1GS6cvfz1RqHYRg1vxB7enr6ZIvte38op6+ybT0BAOXXWO/VFJ9sVoTb6dCmVQ3qn5zRRDI7/wkVtqEzogNsIAksWCTgUSJjr82Ji9kZDX7zy0okEgqHwxc8dkn3DAEAUG6NdV6taQ2aXYblOR3Slu6omoNe7ToWq8ogJIk9p4ASXcJ9QxdEGAIAVLWpmZzeHUloe2+jPC7eCS83h0PavKpB7RG/dvfHNDZdnSHoFO4VAhbO53ayrHQehCEAQNVLZgt6s29KTfVebVrVYHY5lrFpVYM6GwLaOxDXcA2EjKDPpeNVOmMFVKONnRGWGM+jpAYKAACYaWw6q7HprC5qDcrldOjwGO2VF+OzXQ2KpbPaV2Oblq5sqNPhca45sBAnZ4XYrHo+hCEAQM05tezjs10RHU/mNBw3r7tZLdnYGdH07JzeHoybXcqihAO8bQEWwut2ak1rUO+MTJtdStXjbxUAQM16ezAhl0Pa1tuow2PJkjsmORxSW8iv5qBXdV635JBmcgXFZ3JqCfnkcjjUdyJd83t0rF8ZUSY/Z8qeQMvJQfcE4IJCfrd6m+qVKxQJQgtEGAIA1LSCIb3VN6Wg16XtvY0ajM2cdZN9tM6j1rBfIZ9bLqdD2bmCYjM5jcRnNTZ98uvThmKfzDb1NterNeTT9GxeR8ZTmivWxq4U6zrCyhWKOjhc2yHolJF4Rm6no2Z+/kClXNYeViZfUN+JtA5YZLxXCmEIAGAJqdzJJguStLIhoNaQT6lsXqOJWcVm8orNLH6fjb4TafWdOLn2vt7r0rrWoLxuZ9XuxbP241a6hyz2yfBQLKNtvY16q48NJIFTtnRHtbs/ZnYZNYswBACwnOF4pmz3EaVzhTOWm3VFA2qPBDSTm9Ph8aTyBfNmLS5uC8rtdOrdUWuFoJ93cCiu5qBXJ1K1vXQRWA6rGut0YChudhk1jTAEAMASDMYyGvx4SZ3P7dD6lWEFvG4Nx8oXyD7totagfG6n5WaCziWTL2ptex1hCJDkcjqUM/EDGCsgDAEAsEyyc4YODn8SSNojfnVF6zQ7V9CR8ZQy+cKyvt7qlnoFfW4dqPHGCKXaNxDX5lUNmp6dY0NJ2NblK8N6Z9j6H4CUG2EIAIAyGU3MajRxsjmDx+nQuo6Qgj6PxqZn1T85s+jn7WmqUyTgqfnucEux9+M9kta01isc8OrAUNzUJYpApXlcTrNLsATCEAAAFZAvGjo08smGoS1Bn7qb6jRXNPThREqp7Ny8z7GqsU5N9R7tG7RvCPq0IxNpSWk11Hl0SVtIfSfSVdnUAlhObqdDR9iAeFkQhgAAMMHxVFbHUyfftDsd0toVQUUCXh1PZTU4NaOVDQE1Bb1yOZ2ayc5pJDGrgakZDdBI7ZziM3m92Tclh05uxpubMyzdSAL2tr4zon0fz45iaQhDAACYrGhI74+dee/LsckZHVvCUjq7MnRyM15J2rAywp4rsKRsvmh2CZbBYkMAAGBJB4YTWtcRNrsMYFld1h5m1nMZEYYAAIBlzS5zBz/ATA6HNJOb//5CLBxhCAAAWNbR42ltWtVgdhnAsrhiVZTls8uMMAQAACxtYjorl9NhdhnAkgQ8Ln10Im12GZZDGAIAAJY2HM8wO4Sat6Ezoql0zuwyLIcwBAAALC81y30WqF3NQa/eHoyZXYYlEYYAAIDlcdM5all3U72yc4bZZVgSYQgAAFjeNDNDqFGrm+u1p59ZoXIhDAEAAMuLz+TloIcCapDPw9v1cuKnCwAALM8hyU1HOdSYjZ0RvTeaNLsMSyMMAQAAy+tqDChf4J4L1A6X06HJFN3jyo0wBAAALK856DO7BKAkV6xq0FA8Y3YZlkcYAgAAlucQS+RQWwamZswuwRYIQwAAwNLqvS69M5IwuwxgwToifo1NZ80uwxYIQwAAwNIubQ8rO1c0uwxgwVZGA2aXYBuEIQAAYGn5AkEItWV8OquNnRGzy7AFt9kFAAAAlIvLIR2ZSJldBlCSgakZDUxJvc31KhSLGpiikUK5MDMEAAAsa01bSDO5gtllAIvSdyKt48mcNnU1mF2KZRGGAACAZYUDHrNLAJYkky9o32Bc23oaxb7By48wBAAALMkh6aPjLJGDNbx1bEqXrAgpHOAul+VEGAIAAJa0pSeqE6mc2WUAy+a90aRWNwfNLsNSCEMAAMBy1q4Iad9A3OwygGX39mCcTnPLiHk2AABgKR6XQ6OJWc0VDbNLAZasPeJXyO9Wvdctj8spOQydXASK5UAYAgAAlrKqsU5Hj6fNLgNYFm6nQx+Mc+9bubBMDgAAWEq9j896YR3ROq/ZJVgaYQgAAFjKwNSM2SUAqBGEIQAAYCnxmbw2rWowuwxgyYI+tw4OJ8wuw9IIQwAAwHKGpjIKeFxmlwEsSSo7p229jWaXYWmEIQAAYDnHU1mtp/0wLODNvilt7YmaXYZlEYYAAIAl7euPKeSnmQJq29aeqA4OsVSuXAhDAADAkvJFQ6tb6s0uA1i0rT1R7ToW0+xc0exSLIswBAAALMvv5r4h1CaX06H3RqbNLsPyCEMAAABAlbm4LahUrmB2GZZHGAIAAACqTNjvMbsEWyAMAQAAyzLMLgBYJH53K4MwBAAAAFSZuQJNEyqBMAQAACzLYXYBwCLlC8wNVQJhCAAAAKgyk+ms2SXYAmEIAAAAqDIj8Vl1NgTMLsPyCEMAAABAFVoZJQyVG2EIAAAAqEKJTN7sEiyPMAQAAABUocPjSZbKlZnb7AIAAABqQSTg0Zq2oJxyyJChuaKhQsGQz+PUnv6YijT/wjIzDCla79VQPGN2KZZFGAIAAJY1k5tb0vkel0PrOsIyDOmd4YR2H4ud87hVjQGF/B4dGple0usBn3ZwOKH1K8M6OMzvVjmwTA4AAFjWweFpbetpLPm8S9pC2tITld/t1NuDCe0fSuhC274MTGV0aGRam7oa5HGxuxGW11Q6z+9VmTAzBAAALG3vwJS2dEc1mc5pNJHRbL541jGRgEcdDX6F/B4NTs3o8HhyUa+1bzCuDSsjend0WnOsm8MyGY5n1Bb2qStap/2DceX53Vo2hCEAAGBpc0Vpd/8ny9tagj41h7yq87g0kytodHpW8Zn8snXuOjCc0MbOiN4ZmVaBN61YJuPTWY1PZ+VyOtTdWKe2iE8HhxLKnCPcY+EIQwAAwFaOp7I6nsqW9TX2DyW0qSui/UMJGitgWRWKhvqnZtQ/NaPWkE9rWv06MJwwu6yaxT1DAAAAZbBvMKGNXQ1ycqsHymQimdWB4YTWrgiZXUrNIgwBAACUyb6BuD7b1SAHgQhllJydk5cGC4tCGAIAACijvQNxbV4VNbsMWNhwPKPPrmowu4yaRBgCAAAosz39MW3pJhChfD6cSDE7tAiEIQAAgArY3R/TxW1BrW6pN7sUWNBUOq+NXQ1ml1FzCEMAAAAV8sF4Sh8dT2trT1QNdR6zy4HF9J1Iy0PHjpIQhgAAACps17GY5gpFbetp1GXtIbl4A4tlcCKV496hErHPEAAAgAlS2YLeOjYlSQr6XFrTFpLTIR0ZT2l6ds7k6lCr+idn5Hae3GwY8yMMAQAAmCyVLWjfQFyS5JB0SVtIXrdDB4enTa0LtWcimdXWnqh2HYuZXUpNYJkcAABAFTEkHR5P6t2RaX22K2J2OahBg7EMm/0uEGEIAACgChUM6cBQQp+lQxhKNJaYZW+rBSIMAQAAVKmiIb0/Oq32iN/sUlBjRqdnzS6hJhCGAAAAqtjsXFGRAG24UZrhWEbNQa/ZZVQ9whAAAECVe38sqa09LHtCadrCzCjOhzAEAABQAw4MxdXBcjmUwO/hrf58+AkBAADUgOycoTDL5VACl5O3+vPhJwQAAFAj3h9LaltPo9lloFYYZhdQ/QhDAAAANWT/UEwdDSyXw/zmikWzS6h6hCEAAIAakp0zFPK55WBTTcwjnskr6HOZXUZVIwwBAADUmMPjKW3tprscLuyj42lF6rza2hNVYx1tts/FbXYBAAAAKN3bg3GtbAhoOJ4xuxRUseFYRsOxk78jl6wIyaGT9555XA71NNUrkclrIpk1t0gTEYYAAABqUK5gKPjxcjmDG+WxAIfHkpKkxnqPZvNFHZlIKex3KxJwK5GZM7k6c7BMDgAAoEYdHk9qK93lUKKpdF4zuYIkaXp2TmvaQiZXZB7CEAAAQA17eyCm7qY6s8tADRtNzJpdgmkIQwAAADUsVzCUzOTV1RgwuxTUqKlUzuwSTEMYAgAAqHFTM3mlZ+cIRFiU5qB9O80RhgAAACzgVCDqbWbJHBbO4ZDCAY/ZZZiGMAQAAGARUzN5DccyuoI9iLBA23oadWhk2uwyTENrbQAAAAvJFQzt6Y9pS3dUB4YTys0VF3zuZ1rq1Rz0KZHJKztX1FyhqLliUYWi1Bb26+BwooyVwwwjNt+nijAEAABgQbv7Y+ptrldTvVcfHk8pPpM/65iQz62L2oJyOhzqO57W0Y+/ziWWzmldR9jWswhW43DI9pv2EoYAAAAsqu9EWn0nToabi9uCitZ5lcjkFQ54NJ3J64PxpPYNxBf0XPmioSPjSV3WHta7owQiK6jzuJT+eL8huyIMAQAA2MAH46klP0euYOij4ymtXRHS+2PJZagKZmoK+pSemjG7DFPRQAEAAAALNjtXVP9kWr3N9WaXgiVqsnFL7VMIQwAAAChJJl9UJjensJ9FRrXs6PGlzxbWOsIQAAAASjY2nVVXY50cDrMrwWJ1RNiklzAEAACARTk0Mq1tPY1ml4FFCvvtu9nqKYQhAAAALNqbfVPa2Bkxuwwswv6huDavajC7DFOx0BMAAABLcnQiJb/Hqdn8wjd4hfmyc0XtHYiro8GvaJ1XAY9LLqdDQ7GMbfYfIgwBAABgSVK5gjZ0RnRgKGF2KViEkfisRuKzp/8/7Hfr4rbgsrRjr3YskwMAAMCS+dy8rbSK6dk5eV32uJ72+C4BAABQVgOT9t6802qOnkjLaYNOgYQhAAAALNl4Mqvuxjqzy8AyyeQKWt0SNLuMsiMMAQAAYMkiAbcy+YLZZWAZNdV7zS6h7AhDAAAAWJKOBr9aQn5NJLNml4JlVDQMs0soO7rJAQAAYNE6owEdT2Y1Mjc7/8GoKdOZObNLKDtmhgAAALBoLSGfsnPsL2Q1qxrrdHg8aXYZZUcYAgAAwKLZpQWznQQ8LtV5XWaXUREskwMAAMCiFYrWv6/ETuq9LnVG6/T+mPVnhSRmhgAAALAEqaz17yuxC7fToS6bLI87hTAEAACARfO4Lrwz58bOiNojfm3tiSrsZ1FSNdu0qsE2M0KnEIYAAACwaHXe8wccv8epgakZjSZmtetYTE6nQ1u6o/K6eQtabXqb67XrWMzsMiqO30QAAAAs2lzx/J3kNqxsUGwmf/r/4zN57e6PyedyaGtPVJ9pqa9EiViAlpDP7BJMQRgCAADAou0fjGtNa/Csx1tDPr0zHD/nOclsQbuOxXT0eFrdjQFt62lUtM5T5kpxIcdOpM0uwRQs3AQAAMCizRWlgam0Ll0RUjjgUa5QlNvp0PFkVhPJ7Lzn909l1D+Vkdspbepq0L7BePmLxhnWrgjZ7l6hUwhDAAAAWJLsnKH3lvhmeq4o7RuMa0t3VLv77XfviplCNm5swTI5AAAAVI3d/TFt6200uwzbcDkd+sBGrbQ/jTAEAACAqvJW35S2E4gq4rL2sBIZ++4VRRgCAABA1dnbH1OrTTucVZLdu5zb/NsHAABANcoXDa1qrDO7DEvragxo32DC7DJMRRgCAABAVdrTHyMQlVFLkJk3whAAAACqkiGx/1CZrG6p196BuNllmI4wBAAAgKq1fyihi9vO3tQVi9fbXKfJ1Px7QNmBfZuKAwAAoCY4HQ6zS7CMrmhAJ1I5JWft20Hu5zEzBAAAgKr2/lhS61dGzC7DEobiGV3SFlJjvdfsUqoCYQgAAABVLzmbN7sESzCMkxvbZvIFNrcVYQgAAAA14NjkjK5YFTW7DMvI5AqaKxTNLsN0hCEAAADUhJHEjNxO7h9aLrk5whBhCAAAADVhNJHVplUNZpdhCa0hn94ZmTa7DNMRhgAAAFAzPpxIKeB1mV1Gzettrje7hKpAGAIAAEDNiM3ktYHOckvidjrUP5k2u4yqQBgCAABATXlnOKFIwGN2GTVrQ2dEY9NsuioRhgAAAFBj0rmCLmkLmV1GTdrWG9XegbjZZVQNwhAAAABqzr6BmFpDPrPLqCnbehr1Vl/M7DKqitvsAgAAAIBS5YuGuhrrNJG0x3Ivh0Pa1NUgp8OhZHZOH4wnZRgLP3/zqga9dWyqfAXWKMIQAAAAatKe/pi6ogENxjJml1JWa1qDyheKZyxvW9MaVK5QVP/kzLznX74yrP2D8XmPsyPCEAAAAGpWR0N1hqHLO8LyeVxyOqQTqZyOTaZLmsk5pTno1URyVonM3BmPH5lIyeWQtvc2au9ATPnC2U/e21yvsN+t/UOJxX4blkcYAgAAQM2Kz+TNLuEMF7cF5XQ4ztrQNOhzfby3j0MHhxcWThwOqSXk03ujyXP+ecGQ3uybUmdDQC0hn44eT2l6dk6rW+oV9Ll1gBA0L8IQAAAAatYH40kFPC5l8gVT6+huqlMk4DlvAEllCzo4fDIgrWkLyuN06t3R6XMee8q2nka92Tf/fT5D8YyG4idnxy5rD+mD8aTmiiV+AzZFGAIAAEDNMiS5XQ7JxAmijga/xhOzC7p/R5KOjKckSWtXhFTndWkqndNQLKO54smlbi0hn3qb67RrEQ0P3h1NaltvlK5xC0QYAgAAQE0rFhdxM84ycTkdqvO6NTI3W/K57499svzN7ZR6muoU9Lv17si0ji+hS95bfTGtXxk+PROF8yMMAQAAoKaZmIW0pTu6oKVs85krSscWOLO0EIOxjBrrvZpK55btOa2ITVcBAABQsxrqPMt2v1DI75bDsfDjm4NevbUMQagc4jN5tUf8ZpdR9QhDAAAAqFmronVLfo72iF9be6LK5gtaGQnoiu6oXM75U1FnNCATJ6XmdWhkWtt7G80uo6oRhgAAAFCzAl7Xos9tDnq1aVWDxhKz2nUsplzB0FA8oz39MTXXe7W1JyqP6/yhyOte/GtXyu5jU7qoNWh2GVWLMAQAAICalS8srof0mtagioa0byB+ztmd8WRWu47FFPZ7tK23UfWfCl0NdR69N1L9+/gUDGkmN6e6JYRGK6OBAgAAAGpWbhEb6lzRHdWBwbjyC+i8MJnOabJvSk6HdElbSJJ0PJnV1EztNCYYic9q86oG7R2Im11K1VnSzNBjjz0mh8Ohe++99/RjR48e1a233qqWlhaFw2F9+ctf1vj4+AWf59FHH5XD4Tjja+3atUspDQAAADaQLSEMOR3Stt6o9vTHFhSEfl7RkA6PJ3V4PFlTQeiUvQNxbeP+obMsOgzt2rVL3/nOd7Rhw4bTj6XTad1www1yOBx66aWX9NprrymXy+nmm29WsXjhX9R169ZpdHT09Nerr7662NIAAABgE4313gUe59Gl7SFbb0b6Vt+UtvVEzS6jqixqmVwqldJtt92m7373u/rGN75x+vHXXntNx44d0759+xQOhyVJ3//+9xWNRvXSSy/p+uuvP38hbrdWrFixoNfPZrPKZj/ZiGp6mg2lAAAA7OjIeEoel0P5wrlnepyOk3sBvTsyrUMjyXMeYydvHYtpa09Uu47ZNxT+vEXNDN1111266aabzgo32WxWDodDPp/v9GN+v19Op3PemZ4jR46oo6NDq1ev1m233aaBgYHzHrtz505FIpHTX11dXYv5NgAAAFDjpmZy2rQqqrD/7M/417QG1d1Ur7eOxZTKLc9eRFaw61hMGzsj6ooGzC7FdCWHoWeeeUZ79+7Vzp07z/qzK6+8UvX19XrggQc0MzOjdDqt+++/X4VCQaOjo+d9zu3bt+upp57S888/ryeeeEJ9fX269tprlUyeO70/9NBDSiQSp78GBwdL/TYAAABgEW/1TWl6dk5rWuu1vbdRl7WHtaU7qiMTKfWdSJtdXlXaP5TQYCyjTV0N6mla+l5NtaqkZXKDg4O655579OKLL8rvP3tH25aWFj377LO688479fjjj8vpdGrHjh3avHmznM7z564vfOELp/97w4YN2r59u7q7u/XDH/5Qd9xxx1nH+3y+M2afAAAAgCMTaUmEn1LsG4xLkjZ2RpTJF3RkIiWjmneSXWYlhaE9e/ZoYmJCmzdvPv1YoVDQ//3f/+kf/uEflM1mdcMNN+jo0aM6ceKE3G63GhoatGLFCq1evXrBr9PQ0KCLL75YH374YSnlAQAAAFiE/UMn90wK+lxa3RyU3+vUZCqnvhNpldh4r6aUFIauu+46HTx48IzHfvu3f1tr167VAw88IJfrk82cmpubJUkvvfSSJiYm9Cu/8isLfp1UKqWjR4/q9ttvL6U8AAAAAEuQyhZ0YPiTzWTrvS6tbqlXndetyXROHx1PWSoclRSGQqGQLr/88jMeq6+vV1NT0+nHn3zySV166aVqaWnR66+/rnvuuUf33XefLrnkktPnXHfddbr11lt19913S5Luv/9+3Xzzzeru7tbIyIgeeeQRuVwu7dixY6nfHwAAAIBFSucKOjj8SefmOo9Tq1uDqve6NZXO6aMTaRWqKB2tbqlXyOHVQjsKLKq19oUcPnxYDz30kKamptTT06M//dM/1X333XfGMaeW0Z0yNDSkHTt2aHJyUi0tLbrmmmv0xhtvqKWlZbnLAwAAALBIM/mi3vm5cLSuI6QPxlPnbW1eSa0hnwanZpSdWfh9Yw7DqP1bpKanp0+22L73h3L67NsNAwAAAKi0DSsjend0WnMmzxBd0R3Vnv6YitkZDX7zy0okEqf3Pj2fRe0zBAAAAACSdGA4ofUrw3I6zK1jKp0r+RzCEAAAAIAl2TeY0KauBlNrWEwWIwwBAAAAWLI9A3Fd1Bo05bWdDml8erb088pQCwAAAAAbaqr3Vvw1HQ5p06qo0rlCyecShgAAAAAsi8XMzizFtp6oWoI+7emPLep8whAAAACAZXFsckatIV9FXmtdR1hvHYtpIpld9HMQhgAAAAAsm+6m8m914/c4NZVefAg6hTAEAAAAYNnMLOLenVLUe11avzKi0cTSw5B7GeoBAAAAAEnSB2NJBbwuZZYhFHlcDoX8HtV5XYoEPPJ7nHpnOKFdxxZ3j9CnEYYAAAAALJt80dC6tpDeHoyffqw94lfQ55bP7ZTH7ZTb6ZDTcXJnoKJhqFA0lC8UNTtX1GyuoHSuoNRsXrmCoal0TlNpaSiWWfZaCUMAAAAAlpXLKa1qrFN7xK+BqRmNJirbZW6hCEMAAAAAltWe/rgkaWBqxtxC5kEDBQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC25Da7gOVgGIYkqZidMbkSAAAAAGY6lQlOZYQLcRgLOarKDQ0Nqaury+wyAAAAAFSJwcFBdXZ2XvAYS4ShYrGokZERhUIhORwOs8tZlOnpaXV1dWlwcFDhcNjscmyP61FduB7Vh2tSXbge1YdrUl24HtWnnNfEMAwlk0l1dHTI6bzwXUGWWCbndDrnTX21IhwOM0irCNejunA9qg/XpLpwPaoP16S6cD2qT7muSSQSWdBxNFAAAAAAYEuEIQAAAAC2RBiqEj6fT4888oh8Pp/ZpUBcj2rD9ag+XJPqwvWoPlyT6sL1qD7Vck0s0UABAAAAAErFzBAAAAAAWyIMAQAAALAlwhAAAAAAWyIMAQAAALAlwhAAAAAAWyIMVcDOnTu1detWhUIhtba26pZbbtHhw4cveM5TTz0lh8Nxxpff769Qxdb2xBNPaMOGDad3PL7qqqv0k5/85ILnPPvss1q7dq38fr/Wr1+v//7v/65QtfZQ6jVhfFTWY489JofDoXvvvfeCxzFOKmMh14MxUl6PPvroWT/ftWvXXvAcxkf5lHo9GB+VMTw8rN/4jd9QU1OTAoGA1q9fr927d1/wnJdfflmbN2+Wz+fTRRddpKeeeqrsdRKGKuCVV17RXXfdpTfeeEMvvvii8vm8brjhBqXT6QueFw6HNTo6evqrv7+/QhVbW2dnpx577DHt2bNHu3fv1uc//3l98Ytf1KFDh855/M9+9jPt2LFDd9xxh/bt26dbbrlFt9xyi955550KV25dpV4TifFRKbt27dJ3vvMdbdiw4YLHMU4qY6HXQ2KMlNu6devO+Pm++uqr5z2W8VF+pVwPifFRbrFYTFdffbU8Ho9+8pOf6N1339Xf/d3fKRqNnvecvr4+3XTTTfqlX/olvf3227r33nv1O7/zO3rhhRfKW6yBipuYmDAkGa+88sp5j3nyySeNSCRSuaJsLhqNGt/73vfO+Wdf/vKXjZtuuumMx7Zv3278/u//fiVKs60LXRPGR2Ukk0ljzZo1xosvvmj8wi/8gnHPPfec91jGSfmVcj0YI+X1yCOPGBs3blzw8YyP8ir1ejA+yu+BBx4wrrnmmpLO+frXv26sW7fujMd+/dd/3bjxxhuXs7SzMDNkgkQiIUlqbGy84HGpVErd3d3q6uqa91NyLE6hUNAzzzyjdDqtq6666pzHvP7667r++uvPeOzGG2/U66+/XokSbWch10RifFTCXXfdpZtuuums3/9zYZyUXynXQ2KMlNuRI0fU0dGh1atX67bbbtPAwMB5j2V8lF8p10NifJTbf/zHf2jLli36tV/7NbW2tmrTpk367ne/e8FzzBonhKEKKxaLuvfee3X11Vfr8ssvP+9xl1xyif7lX/5F//7v/64f/OAHKhaL+tznPqehoaEKVmtdBw8eVDAYlM/n01e/+lU999xzuuyyy8557NjYmNra2s54rK2tTWNjY5Uo1TZKuSaMj/J75plntHfvXu3cuXNBxzNOyqvU68EYKa/t27frqaee0vPPP68nnnhCfX19uvbaa5VMJs95POOjvEq9HoyP8vvoo4/0xBNPaM2aNXrhhRd055136g/+4A/0/e9//7znnG+cTE9PK5PJlK/Yss474Sxf/epXje7ubmNwcLCk83K5nPGZz3zGePjhh8tUmb1ks1njyJEjxu7du40HH3zQaG5uNg4dOnTOYz0ej/H000+f8di3v/1to7W1tRKl2kYp1+TTGB/La2BgwGhtbTX2799/+rH5lmUxTspnMdfj0xgj5RWLxYxwOHzepb2Mj8qa73p8GuNj+Xk8HuOqq64647Gvfe1rxpVXXnnec9asWWP89V//9RmP/fjHPzYkGTMzM2Wp0zBYJldRd999t/7rv/5L//u//6vOzs6SzvV4PNq0aZM+/PDDMlVnL16vVxdddJGuuOIK7dy5Uxs3btS3vvWtcx67YsUKjY+Pn/HY+Pi4VqxYUYlSbaOUa/JpjI/ltWfPHk1MTGjz5s1yu91yu9165ZVX9Pjjj8vtdqtQKJx1DuOkfBZzPT6NMVJeDQ0Nuvjii8/782V8VNZ81+PTGB/Lr729/azVHZdeeukFly+eb5yEw2EFAoGy1CmxTK4iDMPQ3Xffreeee04vvfSSent7S36OQqGggwcPqr29vQwVolgsKpvNnvPPrrrqKv30pz8947EXX3zxgvezYOkudE0+jfGxvK677jodPHhQb7/99umvLVu26LbbbtPbb78tl8t11jmMk/JZzPX4NMZIeaVSKR09evS8P1/GR2XNdz0+jfGx/K6++uqztpH54IMP1N3dfd5zTBsnZZtzwml33nmnEYlEjJdfftkYHR09/fXzU36333678eCDD57+/7/4i78wXnjhBePo0aPGnj17jK985SuG3+9f8LIhnN+DDz5ovPLKK0ZfX59x4MAB48EHHzQcDofxP//zP4ZhnH0tXnvtNcPtdht/+7d/a7z33nvGI488Yng8HuPgwYNmfQuWU+o1YXxU3qeXZTFOzDXf9WCMlNcf/dEfGS+//LLR19dnvPbaa8b1119vNDc3GxMTE4ZhMD4qrdTrwfgov7feestwu93GX/3VXxlHjhwx/u3f/s2oq6szfvCDH5w+5sEHHzRuv/320///0UcfGXV1dcYf//EfG++9957x7W9/23C5XMbzzz9f1lrd5Y1akE5uKClJv/iLv3jG408++aR+67d+S5I0MDAgp/OTibpYLKbf/d3f1djYmKLRqK644gr97Gc/O+8N5Vi4iYkJ/eZv/qZGR0cViUS0YcMGvfDCC/rlX/5lSWdfi8997nN6+umn9fDDD+tP/uRPtGbNGv3oRz+6YAMMlKbUa8L4MB/jpLowRipraGhIO3bs0OTkpFpaWnTNNdfojTfeUEtLiyTGR6WVej0YH+W3detWPffcc3rooYf0l3/5l+rt7dU3v/lN3XbbbaePGR0dPWPZXG9vr3784x/rvvvu07e+9S11dnbqe9/7nm688cay1uowDMMo6ysAAAAAQBXiniEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtvT/nSyDIACkbKwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_geo_plot(variable=\"lcz\")" + ] + }, + { + "cell_type": "markdown", + "id": "276baaf0-f20a-49ee-b2ac-ca9d2e6daf5e", + "metadata": {}, + "source": [ + "## Extracting other Geospatial information\n", + "\n", + "Similar as LCZ extraction you can extract the altitude of the stations (from a digital elevation model):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bd5fb85d-dd74-4af4-98cd-67c9ac721a70", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 12\n", + "vlinder02 7\n", + "vlinder03 30\n", + "vlinder04 25\n", + "vlinder05 0\n", + "vlinder06 0\n", + "vlinder07 7\n", + "vlinder08 7\n", + "vlinder09 19\n", + "vlinder10 14\n", + "vlinder11 6\n", + "vlinder12 9\n", + "vlinder13 10\n", + "vlinder14 4\n", + "vlinder15 41\n", + "vlinder16 4\n", + "vlinder17 83\n", + "vlinder18 35\n", + "vlinder19 75\n", + "vlinder20 44\n", + "vlinder21 19\n", + "vlinder22 3\n", + "vlinder23 1\n", + "vlinder24 12\n", + "vlinder25 12\n", + "vlinder26 24\n", + "vlinder27 12\n", + "vlinder28 7\n", + "Name: altitude, dtype: int64\n" + ] + } + ], + "source": [ + "altitudes = your_dataset.get_altitude() #The altitudes are in meters above sea level.\n", + "print(altitudes)" + ] + }, + { + "cell_type": "markdown", + "id": "9b6f3e83-1dff-4a0a-991a-aa258a484d8e", + "metadata": {}, + "source": [ + "A more detailed description of the landcover/land use in the microenvironment can be extracted in the form of landcover fractions in a circular buffer for each station.\n", + "\n", + "You can select to aggregate the landcover classes to water - pervious and impervious, or set aggregation to false to extract the landcover classes as present in the worldcover_10m dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "66ddba0d-52c7-40f3-9c9c-4d6aa88c932b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " water pervious impervious\n", + "name buffer_radius \n", + "vlinder01 100 0.000000 0.981781 0.018219\n", + " 250 0.000000 0.963635 0.036365\n", + "vlinder02 100 0.000000 0.428769 0.571231\n", + " 250 0.000000 0.535944 0.464056\n", + "vlinder03 100 0.000000 0.245454 0.754546\n", + " 250 0.000000 0.160831 0.839169\n", + "vlinder04 100 0.000000 0.979569 0.020431\n", + " 250 0.000000 0.881948 0.118052\n", + "vlinder05 100 0.446604 0.224871 0.328525\n", + " 250 0.242406 0.526977 0.230617\n", + "vlinder06 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 0.995819 0.004181\n", + "vlinder07 100 0.000000 0.433034 0.566966\n", + " 250 0.002911 0.149681 0.847407\n", + "vlinder08 100 0.000000 0.029552 0.970448\n", + " 250 0.002911 0.030423 0.966666\n", + "vlinder09 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 0.974895 0.025105\n", + "vlinder10 100 0.000000 0.129686 0.870314\n", + " 250 0.000000 0.125173 0.874827\n", + "vlinder11 100 0.000000 0.273457 0.726543\n", + " 250 0.000000 0.204337 0.795663\n", + "vlinder12 100 0.000000 0.803321 0.196679\n", + " 250 0.004188 0.313829 0.681983\n", + "vlinder13 100 0.000000 0.006042 0.993958\n", + " 250 0.000000 0.044648 0.955352\n", + "vlinder14 100 0.000000 0.803469 0.196531\n", + " 250 0.000000 0.835386 0.164614\n", + "vlinder15 100 0.000000 0.798196 0.201804\n", + " 250 0.000000 0.918644 0.081356\n", + "vlinder16 100 0.367579 0.232926 0.399495\n", + " 250 0.448841 0.217178 0.333981\n", + "vlinder17 100 0.000000 0.989899 0.010101\n", + " 250 0.000000 0.980923 0.019077\n", + "vlinder18 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 1.000000 0.000000\n", + "vlinder19 100 0.000000 0.447270 0.552730\n", + " 250 0.000000 0.343485 0.656515\n", + "vlinder20 100 0.000000 0.129964 0.870036\n", + " 250 0.000000 0.039639 0.960361\n", + "vlinder21 100 0.000000 1.000000 0.000000\n", + " 250 0.000487 0.962068 0.037445\n", + "vlinder22 100 0.973231 0.026769 0.000000\n", + " 250 0.884010 0.115990 0.000000\n", + "vlinder23 100 0.399503 0.600497 0.000000\n", + " 250 0.272793 0.712724 0.014483\n", + "vlinder24 100 0.000000 0.960773 0.039227\n", + " 250 0.000000 0.946138 0.053862\n", + "vlinder25 100 0.790001 0.152027 0.057972\n", + " 250 0.899936 0.063972 0.036092\n", + "vlinder26 100 0.000000 0.148975 0.851025\n", + " 250 0.000000 0.174383 0.825617\n", + "vlinder27 100 0.000000 0.011601 0.988399\n", + " 250 0.018481 0.084840 0.896679\n", + "vlinder28 100 0.000000 0.489951 0.510049\n", + " 250 0.000000 0.721950 0.278050\n" + ] + } + ], + "source": [ + "aggregated_landcover = your_dataset.get_landcover(\n", + " buffers=[100, 250], # a list of buffer radii in meters\n", + " aggregate=True #if True, aggregate landcover classes to the water, pervious and impervious.\n", + " )\n", + "\n", + "print(aggregated_landcover)" + ] + }, + { + "cell_type": "markdown", + "id": "10e19c71-322c-4508-879c-8d70ca7b873f", + "metadata": {}, + "source": [ + "## Extracting ERA5 timeseries\n", + "\n", + "The toolkit has built-in functionality to extract ERA5 time series at the station locations. The ERA5 data will be stored in a [Modeldata](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#modeldata) instance. Here an example on how to get the ERA5 time series by using the [get_modeldata()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.get_modeldata) method.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "21f6430d-8d3b-49cf-8d63-8f909b72085d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n", + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['temp'] \n", + " * Data has these units: {'temp': 'Celsius'} \n", + " * From 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAGUCAYAAACLEs3JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8E/2bpruvVltQZClbBAZogiKingVFBUVVO5VUbwOUK9c53Ur3p+CA1wg6kUFFQFFBFkyZBa690rS7HV+f6Q9PWna0pGkSXnerxcvmpOTk2/2Oc95vs/DYxiGASGEEEIIIYQQQgghpEfxe3oAhBBCCCGEEEIIIYQQCtQRQgghhBBCCCGEEBIUKFBHCCGEEEIIIYQQQkgQoEAdIYQQQgghhBBCCCFBgAJ1hBBCCCGEEEIIIYQEAQrUEUIIIYQQQgghhBASBChQRwghhBBCCCGEEEJIEKBAHSGEEEIIIYQQQgghQYACdYQQQgghhBBCCCGEBAEK1BFCCCHtSEtLw5VXXtnTw/AyYcIETJgwoaeHQUhQW7FiBXg8Xk8PgwSBtWvXgsfjYf/+/T09lIBreuwFBQU9PRRCCCEdQIE6QgghPtV0QNDWvz179rDrtrwuLCwM48ePx7ffftvm9rVaLaRSKXg8Hk6cONHqOk0H5y3/SaVSnz/eC43JZMKKFSuwY8eOnh5K0Dl+/DhWrFgR9AfDxcXFWLlyJUaMGAGNRoOoqChMmDABP/30U08PLeB27NjR7vcV99+Fij7zoePZZ5/FV1991dPDIIQQ0k3Cnh4AIYSQ3umpp55Cenq61/KsrCyPy5dffjluueUWMAyDwsJCvP3227jqqqvw/fffY+rUqV63/+KLL8Dj8RAXF4d169bhmWeeaXMMb7/9NpRKJXtZIBB04xERwH3QvnLlSgCgjL4Wjh8/jpUrV2LChAlIS0vr6eG06euvv8Zzzz2HWbNmYf78+XA4HPjwww9x+eWX4/3338ett97a00MMmAEDBuCjjz7yWLZ8+XIolUr885//7KFRBRf6zIeOZ599FnPmzMGsWbM8lt98882YO3cuJBJJzwyMEEJIp1CgjhBCiF9Mnz4dw4YNO+96ffv2xd/+9jf28rXXXovs7Gy8+uqrrQbqPv74Y1xxxRVITU3F+vXr2w3UzZkzB1FRUV17AEHKZDJBLpf39DAuCEajEQqFoqeH4fNxTJw4EUVFRR6fjbvuuguDBw/GE088cUEF6mJjYz2+fwDg3//+N6KioryW9xYOhwMulwtisbinh9JhwfJZ9AWGYWCxWCCTyQJ2nwKBgE5UEUJICKGpr4QQQoLKgAEDEBUVhbNnz3pdV1RUhF9//RVz587F3LlzkZ+fj927d7e5LYZhoNfrwTBMt8e1a9cujBgxAlKpFBkZGfjwww+91jl37hyuu+46REREQC6X45JLLvGaxttWraCmKXjc6WUTJkxAbm4uDhw4gHHjxkEul+PRRx/1ul+DwQCFQoH777/f67qSkhIIBAKsWrWq3cdXXl6OkydPwm63t7lOQUEBoqOjAQArV65kpwSuWLGCXefkyZOYM2cOIiIiIJVKMWzYMHzzzTetPge7du3Cfffdh+joaISHh2PRokWw2WzQarW45ZZboNFooNFosGzZMo/XsKCgADweDy+++CL+85//IDU1FTKZDOPHj8exY8e8xt2ZMe3cuRP33HMPYmJikJSUBAAoLCzEPffcg379+kEmkyEyMhLXXXedx2u4du1aXHfddQDcgbCm56bp9Wz5PDVJS0vDggULOjQOAPj+++8xduxYKBQKqFQqzJgxA3/99Vebr1lrcnJyvALYEokEV1xxBUpKStDQ0MAuX7BgAZRKJYqKinDllVdCqVQiMTERb775JgDg6NGjmDRpEhQKBRs874gXX3wRo0aNQmRkJGQyGYYOHYoNGzZ4rcfj8bBkyRJ89dVXyM3NhUQiQU5ODrZs2eK17q5duzB8+HBIpVJkZmZi9erVnXla2qXVarF06VIkJydDIpEgKysLzz33HFwuF7sO93355ptvIiMjA3K5HFOmTEFxcTEYhsHTTz+NpKQkyGQyXH311airq/O4n6aamD/88AMGDx4MqVSK7OxsfPnll90e0yuvvILMzExIJBIcP34cNpsNTzzxBIYOHQq1Wg2FQoGxY8di+/btHrdv7zPfVq3MBQsWeGSVtvb9xh3f2rVrPW6rVCpx9uxZXHHFFVCpVLjpppvafX0OHTqE6dOnIywsDEqlEpdddplHmQUuk8mERYsWITIyEmFhYbjllltQX1/vsc7+/fsxdepUREVFQSaTIT09HbfddpvHOi6XC6+88gpycnIglUoRGxuLRYsWeW2r6TXdunUrhg0bBplMhtWrVyM3NxcTJ070Gp/L5UJiYiLmzJnDLuvI54XH48FoNOKDDz5gX6em75a2fnfeeust5OTkQCKRICEhAYsXL4ZWq/VYp+l36Pjx45g4cSLkcjkSExPx/PPPe4399ddfR05ODuRyOTQaDYYNG9bh7wRCCCHNKKOOEEKIX+h0OtTU1Hgs4/F4iIyMPO/t6uvrkZmZ6XXdJ598AoVCgSuvvBIymQyZmZlYt24dRo0a1eq2MjIy2CDWrFmz8NJLLyE2NrbTjyUvLw9z5szBwoULMX/+fLz//vtYsGABhg4dipycHABAZWUlRo0aBZPJhPvuuw+RkZH44IMPMHPmTGzYsAGzZ8/u9P0CQG1tLaZPn465c+fib3/7W6vjVyqVmD17Nj777DO8/PLLHpkTn3zyCRiGOe+B7vLly/HBBx8gPz+/zWmb0dHRePvtt3H33Xdj9uzZuOaaawAAgwYNAgD89ddfGD16NBITE/HII49AoVDg888/x6xZs7Bx40av5+Dee+9FXFwcVq5ciT179uDdd99FeHg4du/ejZSUFDz77LP47rvv8MILLyA3Nxe33HKLx+0//PBDNDQ0YPHixbBYLHj11VcxadIkHD16lH2eOjume+65B9HR0XjiiSdgNBoBAPv27cPu3bsxd+5cJCUloaCgAG+//TYmTJiA48ePQy6XY9y4cbjvvvvw2muv4dFHH8WAAQMAgP2/s1obx0cffYT58+dj6tSpeO6552AymfD2229jzJgxOHToULen21ZUVEAul3tlbDqdTkyfPh3jxo3D888/j3Xr1mHJkiVQKBT45z//iZtuugnXXHMN3nnnHdxyyy249NJLW532zvXqq69i5syZuOmmm2Cz2fDpp5/iuuuuw+bNmzFjxgyPdXft2oUvv/wS99xzD1QqFV577TVce+21KCoqYr9Pjh49iilTpiA6OhorVqyAw+HAk08+2aXPe0smkwnjx49HaWkpFi1ahJSUFOzevRvLly9HeXk5XnnlFY/1161bB5vNhnvvvRd1dXV4/vnncf3112PSpEnYsWMHHn74YeTl5eH111/Hgw8+iPfff9/j9mfOnMENN9yAu+66C/Pnz8eaNWtw3XXXYcuWLbj88su7NKY1a9bAYrHgzjvvhEQiQUREBPR6Pf7v//4PN954I+644w40NDTgvffew9SpU/HHH39g8ODB5/3M+4vD4cDUqVMxZswYvPjii+1mEf/1118YO3YswsLCsGzZMohEIqxevRoTJkzAzp07MXLkSI/1lyxZgvDwcKxYsQKnTp3C22+/jcLCQjaYWFVVxb6XHnnkEYSHh6OgoMArWLpo0SKsXbsWt956K+677z7k5+fjjTfewKFDh/Dbb79BJBKx6546dQo33ngjFi1ahDvuuAP9+vXDDTfcgBUrVqCiogJxcXHsurt27UJZWRnmzp3LLuvI5+Wjjz7C7bffjhEjRuDOO+8EgFZ/R5usWLECK1euxOTJk3H33Xezz8W+ffu8xl9fX49p06bhmmuuwfXXX48NGzbg4YcfxsCBAzF9+nQAwH//+1/cd999mDNnDu6//35YLBYcOXIEe/fuxbx589ocByGEkFYwhBBCiA+tWbOGAdDqP4lE4rEuAGbhwoVMdXU1U1VVxezfv5+ZNm0aA4B54YUXvLY9cOBA5qabbmIvP/roo0xUVBRjt9s91nvllVeYJUuWMOvWrWM2bNjA3H///YxQKGT69OnD6HS6Tj2e1NRUBgDzyy+/sMuqqqoYiUTCPPDAA+yypUuXMgCYX3/9lV3W0NDApKenM2lpaYzT6fR4fvLz8z3uZ/v27QwAZvv27eyy8ePHMwCYd955x2tc48ePZ8aPH89e3rp1KwOA+f777z3WGzRokMd6bZk/f36r42qpurqaAcA8+eSTXtdddtllzMCBAxmLxcIuc7lczKhRo5g+ffqwy5qeg6lTpzIul4tdfumllzI8Ho+566672GUOh4NJSkryeAz5+fkMAEYmkzElJSXs8r179zIAmL///e9dHtOYMWMYh8Ph8bhMJpPXY/39998ZAMyHH37ILvviiy+8XsMmbT1nqampzPz58887joaGBiY8PJy54447PG5fUVHBqNVqr+WddebMGUYqlTI333yzx/Km98Wzzz7LLquvr2dkMhnD4/GYTz/9lF1+8uTJNh9nSy2fU5vNxuTm5jKTJk3yWA6AEYvFTF5eHrvs8OHDDADm9ddfZ5fNmjWLkUqlTGFhIbvs+PHjjEAgYDq7u5uTk+Pxfnv66acZhULBnD592mO9Rx55hBEIBExRURHDMM3vy+joaEar1bLrLV++nAHAXHTRRR7fVTfeeCMjFos93ptN3zcbN25kl+l0OiY+Pp4ZMmRIl8cUFhbGVFVVeazrcDgYq9Xqsay+vp6JjY1lbrvtNnZZe5/5lt9DTebPn8+kpqayl1v7fuOOb82aNR63BcA88sgjXtttzaxZsxixWMycPXuWXVZWVsaoVCpm3Lhx7LKmz9bQoUMZm83GLn/++ecZAMzXX3/NMAzDbNq0iQHA7Nu3r837/PXXXxkAzLp16zyWb9myxWt502u6ZcsWj3VPnTrl9T5mGIa55557GKVS6fEZ6ejnRaFQeHyftHzsTd/vVVVVjFgsZqZMmcL+NjEMw7zxxhsMAOb9999nlzX9DnG/66xWKxMXF8dce+217LKrr76aycnJ8bpvQgghnUdTXwkhhPjFm2++iR9//NHj3/fff++13nvvvYfo6GjExMRg2LBh2LZtG5YtW4Z//OMfHusdOXIER48exY033sguu/HGG1FTU4OtW7d6rHv//ffj9ddfx7x583DttdfilVdewQcffIAzZ87grbfe6vRjyc7OxtixY9nL0dHR6NevH86dO8cu++677zBixAiMGTOGXaZUKnHnnXeioKAAx48f7/T9Au4piR2pGTZ58mQkJCRg3bp17LJjx47hyJEjHaq1tXbtWjAM0+WsrLq6Ovz888+4/vrr0dDQgJqaGtTU1KC2thZTp07FmTNnUFpa6nGbhQsXenTTHDlyJBiGwcKFC9llAoEAw4YN83ium8yaNQuJiYns5REjRmDkyJH47rvvujymO+64w6uWE7eWlN1uR21tLbKyshAeHo6DBw924dk6v5bj+PHHH6HVatn3fNM/gUCAkSNHekxX7CyTyYTrrrsOMpkM//73v1td5/bbb2f/Dg8PR79+/aBQKHD99dezy/v164fw8PBWX6uWuM9pfX09dDodxo4d2+rzOXnyZI/MoEGDBiEsLIy9H6fTia1bt2LWrFlISUlh1xswYECrdS4764svvsDYsWOh0Wg8nvvJkyfD6XTil19+8Vj/uuuug1qtZi83ZXT97W9/g1Ao9Fhus9m83oMJCQkemZ5N0zMPHTqEioqKLo3p2muvZaewNhEIBGydOpfLhbq6OjgcDgwbNsxv7+vOuPvuu8+7jtPpxA8//IBZs2YhIyODXR4fH4958+Zh165d0Ov1Hre58847PbLF7r77bgiFQvZ7Izw8HACwefPmNksBfPHFF1Cr1bj88ss9nv+hQ4dCqVR6fR7T09O93ot9+/bF4MGD8dlnn3k8ng0bNuCqq67y+Ix05vPSET/99BNsNhuWLl0KPr/5cPCOO+5AWFiYV8kGpVLp8TsiFosxYsQIj896eHg4SkpKsG/fvi6NiRBCSDOa+koIIcQvRowY0aFmEldffTWWLFkCm82Gffv24dlnn4XJZPI4eADcTSQUCgUyMjKQl5cHAJBKpUhLS8O6deu8psu1NG/ePDzwwAP46aef8Mgjj3TqsXAP/ptoNBqPWkSFhYVeU6yA5qmPhYWFyM3N7dT9AkBiYmKHir7z+XzcdNNNePvtt9mGE+vWrYNUKmVrp/lTXl4eGIbB448/jscff7zVdaqqqjwCay2f16bgRnJystfylnWfAKBPnz5ey/r27YvPP/+8y2Nqbcqm2WzGqlWrsGbNGpSWlnrUy9PpdK1ut7tajuPMmTMAgEmTJrW6flhYWJfux+l0Yu7cuTh+/Di+//57JCQkeK0jlUq9gjxqtRpJSUkegdam5a29Vi1t3rwZzzzzDP78809YrVZ2ecvtAef//FVXV8NsNrf6fujXrx8bgOmqM2fO4MiRI17PQZOqqqp2x9ve+xqA1/OVlZXl9Tz07dsXgLumW1xcXKfH1NZU5A8++AAvvfSSV33K801d9jehUOhRm7Et1dXVMJlM6Nevn9d1AwYMgMvlQnFxMVuiAPD+3lAqlYiPj2frt40fPx7XXnstVq5cif/85z+YMGECZs2ahXnz5rFdU8+cOQOdToeYmJhWx9XR5/+GG27Ao48+itLSUiQmJmLHjh2oqqrCDTfc4LFeZz4vHVFYWAgAXs+bWCxGRkYGe32T1j7rGo0GR44cYS8//PDD+OmnnzBixAhkZWVhypQpmDdvHkaPHt2lMRJCyIWMAnWEEEJ6VFJSEiZPngwAuOKKKxAVFYUlS5Zg4sSJbD0khmHwySefwGg0Ijs722sbVVVVMBgMUCqV7d5XcnKyV/H2jmirWx43YNNRbR1YOZ3OVpd3pjPgLbfcghdeeAFfffUVbrzxRqxfvx5XXnmlR3aPvzQVsH/wwQfbzGLKysryuNzW89ra8q48110ZU2vP97333os1a9Zg6dKluPTSS6FWq8Hj8TB37lyPwv1d0dHXvel+PvroI496Vk24mVqdcccdd2Dz5s1Yt25dm0HAzrxOwPlfq19//RUzZ87EuHHj8NZbbyE+Ph4ikQhr1qxptfC8Lz9/XeFyuXD55Zdj2bJlrV7fFERr4uvnyxdjau19/fHHH2PBggWYNWsWHnroIcTExLCNZ1pr5tMaHo/X6vhbvq87+70nkUi8TtYECo/Hw4YNG7Bnzx7873//w9atW3HbbbfhpZdewp49e6BUKuFyuRATE+ORwczVMoDa1vf4DTfcgOXLl+OLL77A0qVL8fnnn0OtVmPatGnsOp39vPhDR967AwYMwKlTp7B582Zs2bIFGzduxFtvvYUnnngCK1euDMg4CSGkt6BAHSGEkKCyaNEi/Oc//8Fjjz2G2bNnsx0wS0pK8NRTT3kV56+vr8edd96Jr776qt0pngzDoKCgAEOGDPHLuFNTU3Hq1Cmv5SdPnmSvB9xZCAC8Ouu1zGDoitzcXAwZMgTr1q1DUlISioqK8Prrr3d7u1xtHXA3TTsTiURs4NXfmrLMuE6fPs1O3/XVmDZs2ID58+fjpZdeYpdZLBav17C97BaNRuO1vs1mQ3l5eYfG0DT1MyYmxmfP70MPPYQ1a9bglVde8ZhS7m8bN26EVCrF1q1b2QwlwN3woCuio6Mhk8lafT+09pnsrMzMTBgMhoC9r5syQbnvp9OnTwMA+972xZg2bNiAjIwMfPnllx739eSTT3qsd773dWtTnVt+n/nrey86OhpyubzN714+n++VyXjmzBmPbqsGgwHl5eW44oorPNa75JJLcMkll+Bf//oX1q9fj5tuugmffvopbr/9dmRmZuKnn37C6NGjO3UypaX09HSMGDECn332GZYsWYIvv/wSs2bN8vhcdObz0tEMu6bfo1OnTnlMGbbZbMjPz+/y+0qhUOCGG27ADTfcAJvNhmuuuQb/+te/sHz5ckil0i5tkxBCLkRUo44QQkhQEQqFeOCBB3DixAl8/fXXAJqnvT700EOYM2eOx7877rgDffr08chsqK6u9tru22+/jerqao9MBV+64oor8Mcff+D3339nlxmNRrz77rtIS0tjMwGbAi7cGlJOpxPvvvuuT8Zx880344cffsArr7yCyMhItiPf+ZSXl3tNf2tNU/fFlgfcMTExmDBhAlavXt1q8Km116S7vvrqK4/6Xn/88Qf27t3LPmZfjUkgEHhlDb3++ute2UAKhQKA93MDuF/3lnXD3n333TYzilqaOnUqwsLC8Oyzz7b6GnX2+X3hhRfw4osv4tFHH8X999/fqdt2l0AgAI/H83jsBQUF+Oqrr7q8valTp+Krr75CUVERu/zEiRNe9Su74vrrr8fvv//e6ra0Wi0cDke374OrrKwMmzZtYi/r9Xp8+OGHGDx4MJtN6YsxNWVJcd/be/fu9fgOA9r+zAPu9/XJkyc93n+HDx/Gb7/95rFeamoqBAKB12egKzVDWz6GKVOm4Ouvv2anrgLuLtzr16/HmDFjvKaFv/vuux6fobfffhsOh4P93qivr/f6vA8ePBgA2Gmn119/PZxOJ55++mmvMTkcjlafq7bccMMN2LNnD95//33U1NR4TXvtzOdFoVB06L4nT54MsViM1157zeOxvvfee9DpdOctJdGa2tpaj8tisRjZ2dlgGIZ9vk0mE06ePOnVEZ4QQognyqgjhBDiF99//z2bTcY1atQojzP4rVmwYAGeeOIJPPfcc5g+fTo2btyIyy+/vM0z8jNnzsSrr76KqqoqxMTEIDU1FTfccAMGDhwIqVSKXbt24dNPP8XgwYOxaNEinzy+lh555BF88sknmD59Ou677z5ERETggw8+QH5+PjZu3MhO48rJycEll1yC5cuXo66uDhEREfj00099drA/b948LFu2DJs2bcLdd9/tUTS9PcuXL2fH215DCZlMhuzsbHz22Wfo27cvIiIikJubi9zcXLz55psYM2YMBg4ciDvuuAMZGRmorKzE77//jpKSEhw+fNgnj7FJVlYWxowZg7vvvhtWq5UNTnKnA/piTFdeeSU++ugjqNVqZGdn4/fff8dPP/2EyMhIj/UGDx4MgUCA5557DjqdDhKJBJMmTUJMTAxuv/123HXXXbj22mtx+eWX4/Dhw9i6dSuioqI69FjDwsLw9ttv4+abb8bFF1+MuXPnIjo6GkVFRfj2228xevRovPHGGx3a1qZNm7Bs2TL06dMHAwYMwMcff+xx/eWXX47Y2NgObasrZsyYgZdffhnTpk3DvHnzUFVVhTfffBNZWVkeNa86Y+XKldiyZQvGjh2Le+65Bw6HA6+//jpycnK6vM0mDz30EL755htceeWVWLBgAYYOHQqj0YijR49iw4YNKCgo6PDr2BF9+/bFwoULsW/fPsTGxuL9999HZWWlRwaVL8Z05ZVX4ssvv8Ts2bMxY8YM5Ofn45133kF2djYMBgO7Xnuf+dtuuw0vv/wypk6dioULF6KqqgrvvPMOcnJyPJo4qNVqXHfddXj99dfB4/GQmZmJzZs3e9Vy64pnnnkGP/74I8aMGYN77rkHQqEQq1evhtVqxfPPP++1vs1mw2WXXYbrr78ep06dwltvvYUxY8Zg5syZANx1+9566y3Mnj0bmZmZaGhowH//+1+EhYWxWXfjx4/HokWLsGrVKvz555+YMmUKRCIRzpw5gy+++AKvvvoq5syZ06HxX3/99XjwwQfx4IMPIiIiwiubrTOfl6FDh+Knn37Cyy+/jISEBKSnp7daOzU6OhrLly/HypUrMW3aNMycOZN9LoYPH96hBkQtTZkyBXFxcRg9ejRiY2Nx4sQJvPHGG5gxYwZUKhUA98mUiRMn4sknn8SKFSs6fR+EEHLBCGyTWUIIIb3dmjVrGABt/luzZg27LgBm8eLFrW5nxYoVDABm48aNDADmvffea/M+d+zYwQBgXn31VYZhGOb2229nsrOzGZVKxYhEIiYrK4t5+OGHGb1e3+nHk5qaysyYMcNr+fjx45nx48d7LDt79iwzZ84cJjw8nJFKpcyIESOYzZs3e9327NmzzOTJkxmJRMLExsYyjz76KPPjjz8yAJjt27d73EdOTk6r42rt/ptcccUVDABm9+7dHX6c8+fPZwAw+fn551139+7dzNChQxmxWMwAYJ588kmPx3bLLbcwcXFxjEgkYhITE5krr7yS2bBhA7tO03tk3759Htt98sknGQBMdXW119gUCgV7OT8/nwHAvPDCC8xLL73EJCcnMxKJhBk7dixz+PBhr/F2Z0wMwzD19fXMrbfeykRFRTFKpZKZOnUqc/LkSSY1NZWZP3++x7r//e9/mYyMDEYgEHi8nk6nk3n44YeZqKgoRi6XM1OnTmXy8vK8ttHeOBiGYbZv385MnTqVUavVjFQqZTIzM5kFCxYw+/fvb3X91jQ9z239474HWz73Tdp6b7b1eWnpvffeY/r06cNIJBKmf//+zJo1a9hxcbX1HdHac79z5072fZmRkcG88847rW7zfHJycrw+Ww0NDczy5cuZrKwsRiwWM1FRUcyoUaOYF198kbHZbAzDeL4vubZv384AYL744guP5a291k3P39atW5lBgwaxz0/L23Z3TAzDMC6Xi3n22WeZ1NRURiKRMEOGDGE2b97MzJ8/n0lNTfVYt73P/Mcff8xkZGQwYrGYGTx4MLN169ZWt1FdXc1ce+21jFwuZzQaDbNo0SLm2LFjXr8Lbb3n2nPw4EFm6tSpjFKpZORyOTNx4kSv77+m53vnzp3MnXfeyWg0GkapVDI33XQTU1tb67GtG2+8kUlJSWEkEgkTExPDXHnlla1+xt59911m6NChjEwmY1QqFTNw4EBm2bJlTFlZGbtORz4To0ePZgAwt99+e6vXd/TzcvLkSWbcuHGMTCZjALCfkabH3vL7/Y033mD69+/PiEQiJjY2lrn77ruZ+vp6j3Xa+qy3fI1Xr17NjBs3jomMjGQkEgmTmZnJPPTQQ4xOp2PXafoscN8/hBBCvPEYJkCVeAkhhBASELNnz8bRo0fZ7ri9TUFBAdLT0/HCCy/gwQcf7OnhEOIzaWlpyM3NxebNm3t6KIQQQgjpIVSjjhBCCOlFysvL8e233+Lmm2/u6aEQQgghhBBCOolq1BFCCLkgVVdXt1vIXywWIyIiIoAj6p78/Hz89ttv+L//+z+IRCK/1eIjwctms6Gurq7dddRqdbe6VBJCCCGEEP+iQB0hhJAL0vDhw1FYWNjm9ePHj8eOHTsCN6Bu2rlzJ2699VakpKTggw8+YLtDkgvH7t27MXHixHbXWbNmDRYsWBCYARFCCCGEkE6jGnWEEEIuSL/99hvMZnOb12s0GgwdOjSAIyKke+rr63HgwIF218nJyUF8fHyARkQIIYQQQjqLAnWEEEIIIYQQQgghhAQBmvrqBy6XC2VlZVCpVODxeD09HEIIIYQQQgghhBDSgxiGQUNDAxISEsDnt93blQJ1flBWVobk5OSeHgYhhBBCCCGEEEIICSLFxcVISkpq83oK1PmBSqUC4H7yw8LCeng0hBBCCCGEEEIIIaQn6fV6JCcnszGjtlCgzg+apruGhYVRoI4QQgghhBBCCCGEAMB5S6S1PSmWEEIIIYQQQgghhBASMBSoI4QQQgghhBBCCCEkCFCgjhBCCCGEEEIIIYSQIEA16gghhBBCCCGEEELOw2azwWw29/QwSJCSyWQQi8Xd3g4F6gghhBBCCCGEEELa4HK5kJeXB7PZfN5GAOTCxTAMZDIZsrKywOd3fQIrBeoIIYQQQgghhBBC2pCXlwer1Yr4+HgoFAoK1hEvDMPAaDSisrISeXl56Nu3b5e3RYE6QgghhBBCCCGEkFY0TXeNj49HTExMTw+HBDGFQgEAKC8vh81m6/I0WGomQQghhBBCCCGEENKKpumuTUEYQtrTlHHZnVqGFKgjhBBCCCGEEEIIaQdNdyUd4Yv3CQXqCCGEEEIIIYQQQggJAhSoI4QQQgghhBBCCCEkCFCgjhBCCCGEEEIIIYR0yYgRI7Bw4cIOr//6669DpVL5cUShjbq+EkIIIedRpjWj3mjDpkOlYMDg8StzenpIhBBCCCGEkF6IAnWEEELIebz+8xl88kcxe/nRK7Ih4FNBYUIIIYQQQohv0dRXQggh5Dy0JrvH5ce+Oor9BXU9NBpCCCGEEBIM9Hp9m/9MJlOH1zUajR1at7NGjBiBBQsWYOHChQgLC0NkZCRefvll6PV6zJkzBwqFAikpKdiwYQN7m++//x6DBg2CWCxGdHQ0Fi9eDLu9eV9Yr9fjmmuugVwuR3R0NFasWOF1v2azGYsWLUJMTAxkMhkGDRqE7777rtPjv1BRoI4QQgg5D53ZM1D3yR/FeH7rqR4aDSGEEEIICQZqtbrNf1dccYXHurGxsW2uO3HiRI91U1NTW12vKzZs2IDIyEjs3r0bCxcuxLJly3DVVVdh1KhR2Lt3L8aPH4877rgDDQ0NyM/PxzXXXIPBgwfjjz/+wH/+8x+sX78ejzzyCLu9xYsXY8+ePfj000/x7bff4pdffsHx48c97vPWW2/Fvn378NFHH+HAgQOYPXs2Zs+ejWPHjnXpMVxoaOorIYQQch4RcjESw6Uo1VoAAAI+UK4zg2EY8Hg0BZYQQgghhASn/v374/nnnwcAPPvss3jjjTcQGRmJf/zjH+yyjz/+GPv27cNXX32FuLg4rF27Fnw+H4MHD0ZpaSmeeuopPP/88zAYDPjss8+wevVqzJw5EwDw6aefIiUlhb2/M2fOYMOGDcjLy0NaWhoAYOXKlfjxxx/xzjvv4I033gjsExCCKFBHCCGEnMehYi0bpAMApwsorjNDa7JDoxD34MgIIYQQQkhP0el0bV4nFHqGWyorK9tcVyAQeFwuLCzs3sA4srOzPcYUHh6O3NxcdlliYiIAoKKiAidPnsTQoUPB5zdPvhw/fjxMJhPOnTuH2tpa2O12jBkzhr0+JiYG6enp7OWDBw/C6XR63C8A2Gw2aDQanz2u3owCdYQQQsh5NE19jVKIcHGqBqcrDTDZnCioNVKgjhBCCCHkAhUWFtbj656PSCTyuMzj8TyWNQXlXC6XT+7PYDBAIBBgz549XgFIXz6u3oxq1BFCCCHtsDucaJrdmhKpwNDUCBTUmmC2O1GiNffs4AghhBBCCPGR/v3748CBAx5Bu507d0KhUCAjIwMDBgyAUCjErl272Ourq6tRUFDAXh4xYgScTifKy8uRk5Pj8S85OTmQDydkUaCOEEIIaYfJ5kKDxQEA0MhFSI9WQCUVosHiQH618Ty3JoQQQgghJDT8/e9/R0VFBW699Vb8+eefWL9+Pf79739j0aJFEAgEUKvVuOGGG/DYY4/hf//7H/bv348bb7zRY6rswIEDcfXVV+O2227Dhx9+iJMnT2Lnzp149NFH8dlnn/XgowsdNPWVEEIIaYfR5mD/logESNLIIGv8n3sdIYQQQgghoSw9PR1ffvklHn74YYwYMQJqtRrz5s3Dv//9b3adN998EwsWLMD1118PhUKBe+65B3q93mM7n332GR555BEsX74cVVVV0Gg0GDx4MGbNmhXgRxSaeAzDMD09iN5Gr9dDrVZDp9PRHGxCCAlxeVUNmPzyLwCAOUOTsHJmDnKe3AoAGJ6mwRd3jerJ4RFCCCGEED/S6XQoLCxEVlYW5HJ5Tw+HBDmTyYS8vDykpqZCrVZ7XNfRWBFl1BFCCCGteGHrSZypNKBS39ztVSEWQCERYlRmJBxOFxQS+hklhBBCCCGE+A4dYRBCCCGtWLenCNrGbq9N5I2BOavDhQOF9QAAk80BuZh+TgkhhBBCCCHdR0cWhBBCSAu78qqh4wTp0qPkiFfLMGNgPABgeKoGAGCwOlBYa8KAeCpzQAghhBBCCOk+CtQRQgghLVTqrOAWcM2vMaHeZEduorvOhEwsZDPqiuqMFKgjhBBCCCGE+AT//KsQQgghFw6GYfDgF4e9lofLROzfU3Nj0S9WhXC5CF/sLwnk8AghhBBCCCG9GAXqCCGEEI4Gq8Mjm44HQMDnIVIhZpf1jVGhoNYIu8OJ/BojzDZnwMdJCCGEEEII6X0oUEcIIYRw6EzNtemiVRIwAJwuBmp5c6COz+fhhuHJMNpcOFttxMkKfQ+MlBBCCCGEENLbUKCOEEII4TBYHRiepsHARDXi1VLEhkkQGyZB31ilx3oD4sOQFC5DpEKEl388jRPlFKwjhBBCCCGEdA81kyCEEEI4DFYH9hW4G0XcMTYd/5yR3ep6N45IgVIixL2fHMKvZ2qw41Q1NZUghBBCCCGEdAtl1BFCCCEcVruL/VsqErS7blqUAskRMiRrZNCZbf4eGiGEEEIIIT7z3XffgcfjoaampqeH4jNz5szB5Zdf3tPD6BbKqCOEEEI4LPbmxhASYfvns1Ii5CiuMwMADhfr/DouQgghhBBCiNupU6fQv39/7N69G5deeim7fPXq1WAYpp1bBr+QzqhbtWoVhg8fDpVKhZiYGMyaNQunTp1iry8oKACPx2v13xdffNHmdhcsWOC1/rRp0wLxkAghhPQwi6M5UHe+jDq1TISxWVHoF6uC1mxvd11CCCGEEEIudBaLxa/bj4yMRFRUlF/vw99COlC3c+dOLF68GHv27MGPP/4Iu92OKVOmwGg0AgCSk5NRXl7u8W/lypVQKpWYPn16u9ueNm2ax+0++eSTQDwkQgghPczCmfoqOU+gDgD0FjtOVTagSm+Bxebw59AIIYQQQkgQcLlc0Ov1PfLP5XKdf4AcZrMZt956KyIiIiCRSDB06FD88ssvHuts27YNffv2hUQiwUUXXYT9+/ez150+fRqTJk1CWFgYZDIZsrKyPBKf9u/fj3HjxkEulyMyMhKzZ89GeXk5e/2IESMwf/58LFy4EBqNBuPHj8fMmTMxY8YMjzFYrVZoNBq8+eabAICNGzdi6NChUKlUCA8Px8SJE3H8+HF2/f79+wMARo0aBR6PhxEjRgDwnvp6vsffNP33m2++QW5uLqRSKYYMGYIjR46w6+zZswcjR46EQqGAUqlETk4Ofv311069Dp0R0lNft2zZ4nF57dq1iImJwYEDBzBu3DgIBALExcV5rLNp0yZcf/31UCo9u/e1JJFIvG5LCCGk9+vM1FcAyE1U43SVAbVGG0p1FmRGt//7QgghhBBCQpvBYIBare6R+9bpdAgL63gDs8WLF+Pbb7/Fu+++i4yMDDz77LO46qqrcObMGXadRx99FC+99BISEhLwyCOP4Oqrr8a5c+cgkUiwaNEi2O12/PTTT1CpVDh8+DBUKhUAoKamBlOmTMG8efPw2muvwWQyYdmyZZg9ezb27NnDbn/Dhg245ZZbsHPnTgDAiRMnMH/+fOh0OvZ53LRpE8xmM2666SYA7uf4/vvvx9ChQ6HX6/HYY49h1qxZOHHiBAQCAXbu3Inx48fj66+/xpAhQyCRSDr9+GNiYtj1Hn/8cbzwwguIjY3FnXfeiQULFuDgwYMAgJtvvhm5ublYvXo1hEIh9u3bB5FI1OHXoLNCOlDXkk7nrg8UERHR6vUHDhzAn3/+yUZo27Njxw7ExMRAo9Fg0qRJeOaZZxAZGdnqularFVarlb2s1+u7MHpCCCHBIitGCYfTBYXk/D+TYTIh1FIR+sQoUaW3UqCOEEIIIYQEBb1ej48++ghvvPEG5syZAwBYt24dkpOT8cYbb+CSSy4B4A7UzZo1CwDw6aefIiUlBevWrcNtt92G0tJSzJw5k81YGzBgALv9559/Hjk5OXjjjTfYZR9++CEyMzNx9OhRDBw4EACQmpqKt99+m11nwIABuOuuu7B+/XrcfffdAID169dj8uTJCA8PBwDMnz/f47F8/PHHSEhIwKFDhzBs2DDExsYCAKKjo5GcnNylx//UU0+x6z799NPszMuHH34Y119/PUwmE+RyOcrLy3H//fdj8ODBAIDc3NyOPP1d1msCdS6XC0uXLsXo0aPbfNLee+89DBgwAKNGjWp3W9OmTcM111yD9PR0nD17Fo8++iimT5+O33//HQKB9zSoVatWYeXKlT55HIQQQnqWzmxHXpUBACDi8867foJahgq9BRV6C0q1Zn8PjxBCCCGE9DClUskmCvXEfXfUiRMn4HA4MHHiRHaZRCLB4MGDcfLkSTZQN27cOPb6mJgYpKens9NM7777bjz00EP4+eefMX78eMydOxcjR44EABw9ehR79uyBXC73uu9Tp06xgbpBgwZ5XCcSiXDVVVexgTq9Xo8ff/wR77//PrvOsWPHsHz5chw6dAharZad8pufn49hw4b55PFzcbeZmJgIACgtLUWfPn2waNEiLF26FOvXr8eECRPwt7/9DdnZ2R0aQ1f0mkDd4sWLcezYMezatavV681mM9avX4/HH3/8vNuaO3cu+/fAgQMxaNAgZGZmYseOHbjsssu81l++fDn+8Y9/sJf1en2bEV1CeorJ6sA/vzoGi92JGJUUK6/O6ekhERKUrPaON5MAALVczP6tu4AaSqz9LR978+sg4POweEIWBiR0fAoGIYQQQkgo4/P5nZp+Gsr+/ve/Y+bMmfjyyy/x448/YsyYMVixYgX++c9/wmg0YtKkSXj55Ze9bseNiSgUCq/rb7nlFkybNg2lpaX43//+B6lUimuuuYa9/qqrrkJSUhLeeustJCcnw+VyYdiwYR6zGX1JLG7ep+fx3Cfrm4KDL730EhYsWIBNmzbhhx9+wIsvvoj33nsPN998s1/GEtLNJJosWbIEmzdvxvbt25GUlNTqOhs2bIDJZMItt9zS6e1nZGQgKioKeXl5rV4vkUgQFhbm8Y+QYFNrtGLToVJ8f6wCn+8v7unhEBK0LI7mAr0dCtTJmutT6Ew2v4wpGH22rxjfH6vA5iPl+LNE29PDIYQQQgghLQwYMAAikQjbt29nl1mtVhw+fNhjCiu3MUJ1dTUKCgo8MsYyMzPx0EMP4YcffsCiRYvwwQcfAAAGDx6M06dPo2/fvsjJyfH4d764yOTJkxEXF4e1a9fik08+wYwZM9g6c5WVlSgoKMBjjz2GmTNnYsiQIaitrfW4fdO6TqfTa9udffwdMXDgQDzxxBPYtWsXpk6dirVr13bq9p0R0hl1DMPg3nvvxaZNm7Bjxw6kp6e3ue57772HmTNnIjo6utP3U1JSgtraWsTHx3dnuIT43QOf/4k/Cupgc7iw+m9DMThFAwA4UFiHez4+yK4nEfJhd7ogEvSKWD0hPtXZZhIRChGGp2ngcDFwMYw/hxZU7K7mx9qBGcKEEEIIISTAwsLCcPPNN+Pxxx9HVFQU0tPT8eyzz8JisWDJkiXYt28fAHc5r6ioKLaZhEajwbx58wAACxcuxIwZM5CdnY3a2lr8+uuv6NOnDwDgH//4Bz7++GPMnDkTy5cvR1RUFE6ePIn169fj008/hVDYfsjp2muvxZo1a1BQUIDvvvuOXR4VFYXw8HC88847SEpKwrlz5/DPf/7T47aJiYmQSCTYvHkz0tLSIJPJvPoKnO/xd4TRaMQ999yDG264AVlZWSgsLMThw4dx5ZVXduj2XRHSR+mLFy/Gxx9/jPXr10OlUqGiogIVFRUwmz1rBOXl5eGXX37B7bff3up2+vfvj02bNgFwdxZ56KGHsGfPHhQUFGDbtm24+uqrkZWVhalTp/r9MRHSHfsL61FcZ0al3orCWhO7vLjOjMqG5hRhrdmOknpTa5sg5ILHDdRVNVix/VQVdGY7zlQ2tLq+SiLCvoJ6HCrSorj+wqlRZ3e6zr8SIYQQQgjpUa+//jpmzJiB22+/HZdeeiny8/Pxv//9zyOJ6emnn8YDDzyAUaNGoaqqCps2bYJUKgXgzlhbunQpLrroIlx11VXIzMxka8mlpaXhl19+gdPpxJVXXomLL74YDz74IMLDw8Hnnz/ctGDBApw9exaxsbGYPHkyu1wgEGDt2rU4cuQIu83nnnvO47YikQirVq3CBx98gNTUVLYRRFcef3sEAgHq6uqwcOFC5Obm4qabbsKkSZPw4osvduj2XcFjmNA9/d80b7ilNWvWYMGCBezlRx99FB9//DEKCgpafbPweDz2NmazGbNmzWILFiYkJGDKlCl4+umn2a4i56PX66FWqzvdNpmQ7hr9720o1VoAAC9fNwjXDHXXBVj7Wz5W/O84u55IwMP/zR+O8X07n2FKSG/2xs9n8NIPp9H0w5gZrcDZaiOEfB76xqnw7b1jvH57tCYbBj/1IwBgfN9ofHDbiACPumdMenE7ztW4A/5Pz8rFzZek9vCICCGEEEJ8T6fTobCwEFlZWa02TSCEy2QyIS8vD6mpqVCr1R7XdTRWFPJTXzvi2WefxbPPPtuh7chkMmzdurXbYyOkJ4g50/QKao0orjMiOUIBm9MFHg9oeqsrxELUGvxThJOQUNZgcYD7y3K22ggAcLgYHC/T4/eztRiVFeVxG5VUBCEfUEpFcDIXTpYZt3EGtwEHIYQQQgghpOtCeuorIcRTjaG5kP1rP5/FlP+4i4LWGmzgxrW1ZjsKamnqKyEtOVs5ASTgJNCt/uWc9/V8HpI0cmhNdpyqMPhzeEGFG5vTmi6cbreEEEIIIYT4EwXqCOlFrHbPbB6L3YlXfjyNc9XewQO9mQ6sCWmp5WcIAJZN7Y8kjQwAsPN0NU5VeNeqy4xWIjchDGmRchgtDr+PMxhYHc2ROh19nxBCCCGEEOITFKgjpJdwuhjYWhR3ZwC8su0MjpTqvNbXmmxeywi50BltzUG2frFKXJIegTvGZWDhmOau4u+2klWnlotwrEyPfQX1KLoAGrW4XAysjubvmwNF9T04GkIIIYQQQnqPkK5RRwhpZm5RI4oHsLW2HM7m6XwXJakhEQmgkNDHn5CWlGIBRAIe7E4GpyoN2Lp0LPh8Hq4floxXfjoDndmOLw+VoFJvQUyYBM/MyoVcLER2fBhK081wMQxK680YEN+7GwnpzDYMiFehQmeB3emC3myHy8WAz2+9yRMhhBBCSKhzOqkmLzk/X7xP6EidkF7CZPOcbsettGXnZNodLtF5LSOkLYeLtbgoORynKhrQL04FAPi/X89hz7laXJIRidvHZvTwCH1rT3497I2B7Qn9otEvzh1wU0iE+NslKfj2SDkq9BbsyqsBAIxMj0BKhAJRSgn25tcBAC7PNgDoWJfwUFWqteBEefMUYIPVjAq9BQnhsh4cFSGEEEKI7ykUCjAMg7KyMkRHR0MikYDHo5OTxBPDMLBaraiqqgLDMFAoFF3eFgXqCOkljFYnUiJkKKozeywXC3keBfKVEiEMVgd0VPydnMdn+4rw8MajGJaqwf7CerwwZxBWfXcCdY3vnd1na1FjsOGR6f17eKS+4XIxKKozspfvHp/pcf2SiX2w9LK+6Pv49+yyhzcexZTsWKyYmYMxWVGoM9nw04kq3DnO87a9zS+nq5Adr0KtwQaJSAAe3J2mKVBHCCGEkN5GKBQiKysLBQUFKC4upiAdaRPDMOz7RSjseriNAnWE9BImm8MrSAcANgcDp6s5/VYtE7kDdVT8nbRjy7EKLP/yKABgf6G7/tijm46y2WYAYLI5sfN0FR6e1q9X7LBsO1kFS2MzCR6AkRmRHtfLxAIAwMmnp6HeaMf0V39BvcmOnaeroZaJUKG3IK/KgBilBE6nCwJB7y0Dm19jwnFORp2QD5TUe3//EEIIIYT0BgqFAgMGDIDVaoXNRrW+SevEYjEkEgn4/O4dB1CgjpBewmxrey580yzX/nFKpEcpUW+yodZog8XuhFQkCNAISag4Ua7HfZ8cgqsxJtcvToVTFQ1skG54ihrg83GoSIsT5Q3QWxxQy0Q9OGLfWL3zLPu3XNL250IiFCBOLcAVA+Oxbm8RrA4XdpyqxuDkcFTqLKgyWFFlsCJe3Xuzy7ScQH+UUoxaow35NcZ2bkEIIYQQEtr4fD5kMhlkst67j0eCAwXqCOkljO0E6gBAJOBByOdDJhYgUilGLI+POz7cD4kwMFk/BosDg5LUuHFkKtKjuj5fn/jfp/uKMCxNg91na3HNkESsumYgLnt5J5sx5WB4SFLL4HC5M+10JnvIB+oq9WakRipwrEwHh5NBRgfeo9Nz3YE6APj+WDliwySQiwVIjpCjuM7UawN1JfUm1JtsiFaKYXW4YLY7kRGlgJPqXhJCCCGEENJtFKgjpJcwWR1ey46tmIKhz/wEq8MFu5PBv2bnYlBSOHg8Hv7z42nsOVcLmyMwB9d/5NdhT34dfjtbi2/vGxuQ+ySdV1BjxAe7CwEA6ZFyPDdnEEQCPi7NiMQXB0oAAIeKtUiOaA5Cac02pEDeI+P1lVMVBmw8WMJe5k7xbcvIjAiEy0XQmuzYfrIKSyf3QWWDFZUNVhTUmDAiPfK82whF//nxNPYXuIO0fAAuAGerjYhR6Xt0XIQQQgghhPQGFKgjpJdwMQxGpGnwV5keMrEAEQoxlFIRRqRFoERrhothkBapYGuJqaRCqKQB/ArgwbMVbRB5YetJlGktCJeLcO3FSchNVPf0kHrM1r8q2L/njkiBqLHOmljIR1K4DCVad1ZdvcmO4WkaOF0M6gyhX6ejqM7kcbkjGYIiAR+XD4jFFwdKYLQ5YXcxGJKshlQkxKnKhvPePlRxS+/lJIbhVIUBNqfLYzosIYQQQgghpGsoUEdIL6EzO/BHY5bLk1fl4PrhyQCAj24f2er6t4/NwO1jMwI2vr7//B42pwtMkAXrGIbBu7+cYzOoopSSCzpQt4UTqJuaE8f+fbhEywbpAOCvMj3qjO4AXbE29JsIFHchUAcA0wfGsZmGeVUGlGgtqG6wIq/agMevzPb5OIOBgzPL/tW5Q3DDu3tQ3WCFzhT6AVtCCCGEEEJ6Wu9tSUfIBcbGOXoWB6juXKcEaVNQrdmOjGgle9lqb7/WX29WobPgUJEWANA/ToW0xjptDMNAxOdjWKoGEQoxAKDOaEOfWCWGp2lgtnlPuw41hbXNgbqBiWHIilG2s3az0VlRUEnc57x+Ol6JsVlRGJamQYxKAmMr09FD3a68ao+sS4VEiHF9ohAhF6HaYMW453/Gn0X1PThCQgghhBBCQlsQHs0TQrrCxinkHpSBukZBllAHo9WBUxXN0xQtAarZF4x+ON4cgJmW25xNpzPbcahYi/2F9YhqDNQBwJlKA/YV1PeKbp/cqa9HS/Wwd7AxgkQowKQBMZAIeegXp0KdyYr9BfX4q0yPwtrQf15aKq41eTSukYsFqDfaUGeyw+5kUFRn7hXvB0IIIYQQQnpK8B7NE0I6hdsUQiwIvo92kCbUwdSiW67lAs6o23Ks9UBdpd6K2DAJUiPlGJ6ugUwk8LidLsRrkzEM4zX1NVwubmNtb5dmRMLqYLCvoB488NAnRgm1TORV96434IYvh6aGQyEWIknT3FhEwOfhf0fKAz8wQgghhBBCeongO5onpIt0JjuK64w4XFSPfQV10F5g9ZI8AnVBnFEXbFpOT7xQA3V1Rhv25tcBANIi5egXq/K4rlJvRWGtCUqJyCOIJxXyYbWHdhaixe5CZowSCokAQj4PQj6vwzXqAGBYmob9u9Zow5kqA0QCHir1Fn8Mt8dU6i0orDEhTCoED0BapAJ8Pg9CzokBl4vpcDYiIYQQQgghxBsdzZNeY/UvZzH2+R24+q3duO6d3zH91V97ekgBZQ2Vqa9B1k2iZUad9QKd+vrTiUo4Xe7XZmpuHNsdGPDMmFPLRZg9JJG9bHG4cLbaELiB+oFMLMBXi0fjjrEZcLgY8AAkc7LEzic9Sgm52J1lWK6zQCLko8Zgw+nK0H5eWrr/0z/x7q/noLc4wOMBt1yaBgB4cGo/nHx6GtKjFGAA/Fms7clhEkIIIYQQEtKC92iekE5qOf2uKehwIfjw9wLsz28u4B6MgTpekM59PVPVgOx4JSRCPhLCpVCIL8xm2GFSEYakhAMApnG6vQJAYa0RFyWpkZMQhmSNHKOzopAWKQcPgEjAQ0K4zGvqaKj5bF8Rtp2oRJhUCKVUiITwjgfqBHwesuPDAADVDVZEyMUYmBjW676DpJzvFYVEiLgwKQBALhZCKhIgXO7OQmywOHrdYyeEEEIIISRQLswjUtIraVsE6i6k6VdP/e84HJwD42CsURes3t9VwNYSK9NaLthC+NNy4zAtNw7lOjNiVVKP6346UYnDJToAwKT+MRDweVDLxWBqTbA7Gew+W4s952qRHCHviaH7xHNbTqLO6P4OyYhSoA9n6m9H5Caqsb/QHSzXmm0o11u8vpNCXUm9mf27weJAtEricT13urDebIdG0fE6f4QQQgghhBA3CtSRXiNMKkRiuBRlWgsYwGPqXm/n5EwnHZGmYafhBRNekLaTaJmJub+gDtev/h3PzMpB39iwHhpVz7DanVj+5VGYbU5EKMSQCPk4WqpDrdGG9Eg5wmQiKCTun43MKAUON05xHJgYhjpjaNeEjFFKYHO4YHcybHZcZwxMVLN/p0QooJaLwDDuem2iXhI459ZvlAj54PM9P9N9YpQw25xgAGhNNgrUEUIIIYQQ0gUUqCO9xrFSPUq1zcXbXUFWC81fLHYnuA/1j4J6KCX00e4Il4vxCtTZXQz+yK/DmUrjBROoq9Rb2CzMHaeqAbintDIAHE73m0trsuP2sensbTJjlOzfR0v1SI9qvhxqFq87iJON9eQuSlLjjZsu7vQ2BiY1B+p0ZjtOVTYAAErrzUiLUvhmoD2MW8+R30rc3eZwsQ1Jels2ISGEEEIIIYFCR/OkV/jb/+3BX2XuqXk8HsAwCPlOlB1VoTdDJRXCaHWgafZrWCc6VgZaMMVPjVYHopRi1Bi8s8FOluswY1B8D4wq8F7bdgbr9hYhOaK5LptMxEeDxbPRRpSyOUMqgxN8ilZJvAKewe6FLSfx2f5i8Hg86Bo7RAv4PIxIj+jS9jKjlZCJBDDbnTDZHBiYqIbTxaDaYOkVgTqGYRATJgafB0QoxLhjXIbXOmp58/sj1N4PhBBCCCGEBIveMR+HXNBMNgfyqgxskKop0cNsd0JnsvbYuAKlSm+FwdIcpBML+ZCKgnDqa5DNfDVaHfizWNtqkA4APtlXDNcFUhD/UJEWgDv7q4ne4p7C2EQi5OOu8Vns5Yzo5gy66gYr8qoa/D1MnzpXY0SNwYbqBitsjVmDThcDWRc/OwI+D9kJ7gxMvcWBo6U6HC/Xo6YhtKcENzHbnThZYUCN0YZIpQTXDUv2Wiecc4KguqH3f/cSQggJPQ0W+wWzf0cICV0UqCMh74HPD6NC7z4oTFCLMTi5eQrahBd39tSwAuaRjUchEjRHwdIjPbN3DFYHAGDbicqgaLDBIDh2jhZ+sA83v/8HezktUo4PbhvKfilKRQL8UVDXM4MLIKPVgZMVegBASjvNIGJaNA5IjZSz0x8FPB7KdRbYHD3//uqo/BojBC2Cx1IhH1kxXZ/COzBRDT7P87nqLZll3MfR1N21peQIORLCpRDweagN8ZqFhBBCeqepr/yCjEe/Q/oj3+JYqa6nh0MIIa2iqa8kJFnsThwr1eGjPQXYfrKKXV5ncqDe1JzZI+TzoLfYESYN3qmg3VVvsrEZQUI+DwJO8SityYbL//MLsuPDsPN0NS7NiMSbN10MiZCPr/4sxZUDE6Bu46Db14IsoQ4Gi2cAZUiKBiPSotEUaiqpN2Pn6WpckhEZ+MEF0OESLZuNmRmtRKXeAnMr08ZtLYK8UpEASRo5iupMbDMTndnu1Qk0WGlNdjhbxIwdLgbx4bLWb9AB913WB8um9cOvp6vx+Fd/QSYWQG/pHYG63WdqEBvmbrgRGyZtdZ1olQT1RhtSIuTQNwb2XC4GO05XYcfJaogEPNw6Jh1JmtDtDkwIISTEMdz/guPkMSGEtESBOhKS8muMmPPO717LLS0CDNUGGw4U1mNiv5hADS2guM0QBiaq8b97x3ik8z/73QlUN1ixs8HdIOD3c7UY/8J2uBgGRqsTh4rqIeDx8a/ZuRD2ks6UHVVQa/K4rJAIIBXxIRLwYG+M4ORXG3tiaAHVNO0VABI1slaDdIA7a66ljGgFiuqan8eQCtSZvTO+wuUiDE3RdHmbEY1dTqPDpKgyuLN8uc9PKHtgwxH27/A2amCmRshhtruQX2PE4RItAKBCb8Fta/c3r8Tj4fErs/05VEIIIaRVdqcL5brmxnMmW+jMBCCEXFgoUEdC0sd7Cr2WqaRCmG1OOFrUndD3kqlnrdGZ7RiUFA4Bn4d+se4pe/zGjLrdZ2vw+f4SAIBcJIBULECd0QaGAYxWd5OADQdKAQBXXZSAMX2iAjLmYGgm4XIxHh0sAUAqFIDH42F832hsO1EFBkBetaFnBhhABwvr2b8PF2u9rucB0CjEGN5Kk4XMaCXbJTYrWoEag7VbU0cDxWJzYlBiOGqNVhTWmdjOtgMT1eznpztSIuTIjg+DXCxAbyiD4+BkU0qEfPSPV7W6nkYhxuDkcAj4gKKx83RJvQkDE9U42ji9qLdMBSaEEBI6Nh4swW9nanCsVIcwmYj9LTLaHD08MkIIad2FlUJDeo0vGgNQXGOyorB4YpbXcq2p9x4YlmrN+LNYiwOF9eDOTLTYnfjnpmPs5UdnDMC3943BqMxIvHz9RZAI+bg0oznw8u3RMr+PlRdE3SSOluq8AihNDTgyo5XsRIiiWlOvLjjMMAwONQbnwqRCHC5prtUSoXBnTTEAHpjSF6/OHeJ1+7nDk3HTyBQAQF610aMZRTDTW+z4o6AOZ6uNbJAOAC7rH+uT7UcqxCisNWJ/YT1+y6vxyTZ7ksneHNQekR6Babme3ZCdLgbv7cqH1eGEweLAgUItfvyrEu/sPIv8GiMbpAN69/cxIYSQ4PTuL+fw5aFSnK4yeJwwMlmd7dyKEEJ6DmXUkZDE49SUEPCAJI0MaZFyLJ6Yha1/VeBkRQOUEgGilBKv2lq9yef7izE6KxIuFzBtYBy7fMuxCtQ0Tr0blqrBvBEp4PN5WH/HJQCA/Y9NhoDPw9Cnf4LZ7sT3xyrw1NW5EF0g019/+KuC/ZvHAyLkYkSp3NMW+8apEC4TQWu2w+Z0obLBgnh11+uWBbPCWhPqGov+Z8UoUWe0oUJngUomxNUXJaKqwQonw2BoauvTQfvEqjB5QCzyqgywO12oNoRGp0/uTrpYyIPNwYDPA0ZndT+rdOepKvxyphpKiRApETLEhIX+e8fMyT5ViD13G6wOJ+7/5E9s+asC//3lHCr0Flx7cSKOluiw6WApkiNkGJYajlMVBsSESYKu+zMhhJDebcOBYhRwSpmEy4QQCwVI0shgc1CgjhASnChQR0KOy8XAysmCcTJAYZ0ZVgcDsZCPVdcMxJL1h1CqNcNgNaG4tnfUiGrNthNVKNWaEaUUs3X4LHYnntp8HCI+H/3jVFh1zUCv6XyqxuYalw2IweYj5dCa7PgtrwYTAlDLLxjy0348Ucn+zTBArdEGV2M8N1YlhZYTyMmvNvbaQN3BouZpr8kRchxsrFe35NI0LJnUp0PbSNLIsDff3R23va6xwYT7+ja97mmRCqRHK9q4Rcfl1xjx3q4CAEBlgxUnKgxwuhiPJi+hxmhtnhoklwjYvw1WBxZ9tB+/5dUCcNejA4A95+pQqnVnV+rMdnZ5Q7WDMuoIIYQE1OFiLayck/YT+sfgq0NlqGqwYnqLDHFCCAkWF0b6DOlVLG2c/VI0HkAOSdEgk3PA/eGeQqQ98i0yH/0Ozl42jbEpM0jNKe7+v8NlqDPaUGeyoU+sCn1iW68nBQBXDmreQfn2SLn/Borg6fpaXGfC6Urv2nNysfv9kxopR4K6uatlfm3vbShRUGNkA0iJnG6nMnHHz+EkaWS4KEmNlAg5yjgFmoOZ1mRHYrgUmdEKXDEwDvdd1gc3DE/2ybaTWwlWWkP8jL3Z7kSyRoaMKAViOM1CbA4XKhpfc6nQfWIAcE/JTwx3ZzkbOEG+JI0MNqfLYxkhhBDiT0I+Hxq5CAqxAOP7RmHOxc2/9//36zn0f+x75DyxBc9tOdmDoySEEE8UqCMhR292QCTwDvtwl9w5PsPresbFoKohNAIJHWG0OiAR8iHk89hAHcMw+OD3AnadBaPS2t3GhH4xUDQGqLb+VQGbw//ThJke7iaxjZNNx9UUqItXS1HJeZ8U1PTeQN2ec3UQ8oGUCBkYNL/2Te+JjsirMiK/xoiSOhPMIVKUWWe2o1RrwdlqI4anReAfl/fFovGZPtl2a4G6lt2oQ43F7kRxvRnnaoxsR2TA3eX2o4UjkR0fhnV3XII3b7oY4sbp86VaMwprTXBxPu8l9WbIxQIU9eLgNyGEkOBSZbCi3mSH0eZEbqKa3WeWi/iwOFywOFww2pwhU2eXEHJhoEAdCTk1BqvHwWITCyfINCzFu6aWC0ClPjRqaHXEztPVqDXa4HAxmJrjrk93sKgex0r1ANwdLC9OCW93G1KRAJdnuwvo6y0O/Hqm2n8DDpKUuu+PVbS63NkYUBAK+OgXG8Yuz+/FgbpzNQZYHe4OuG/vyGeXyyUdz6h7/7d86C0OuAAcLdWHRNaq1mRj/1bLxT7ddpLGe5q0xR7aGXXcQKNU5N5tOFRUj6te34UPfi/Ac3MGYmiqBpnRStwz0R3wlIn44PHg0V1ZyOehUm9FYS8uR0AIISS46DglF+4an4nYMAnCpEKY7C6PmrXUlZwQEkwoUEdCzpESLVuQXCzgQS4WIFwm8piSJRG1nhHUm36EuY+l6ezgmt8K2GXzR6V1qNPqjEEJ7N9tBbF6C5PVgUONddiaiAQ8hMtFCJM2Tx9O1sgg5POglAiQFtn9umXBSGeyo8bgDljFhUnRVEKNByBCLmr7hi1kRHk+P/oQ+IyZbE5kx4ehb6wSUUrfBurkYqHXNq0ByFT1J26gUSp0f7f+lleDo6U6rN55Dn81nhwAgLsnZOLSzEi4GMDFAEqJANEqCWJUEsSGSTAkWQ29JfjfI4QQQkLfF/uLUaW3IEYlQZ8YJZQSIaKUEijEAmjkQkiEPAh4QLhMhDAplW4nhASPkA7UrVq1CsOHD4dKpUJMTAxmzZqFU6dOeawzYcIE8Hg8j3933XVXu9tlGAZPPPEE4uPjIZPJMHnyZJw5c8afD4V0wuf7S9A0m2pydiyOPzUNfz45BbePbZ7uyuPxIG8lWMfNpAl13KLsapkIlXoLtjQG2iIVYo/6c+0Z1zcKA+JUuDglHLVG/2cc9mS+lcXhwryRKR7L7r+sD/58YgouGxDLLotVS+FwMTBYnZiWG9dyM73C2ZrmOn1hMhGaEuEYeNY8PJ/MGKXHZW0IBOrOVRtwvFyP05UGPLP5BO5ZdwCnKxt8tv0kjef011DPqOMGGiWNGXVNDSQAz265EqEAVw1KYG9jsDpR3WBFjcGKUq0Fh4p1OFfde7NUCSGEBI9HNx3D6SoDqhqsaLA4wOPxwOfz4AJQb3LA6mDgZNz7LsfK9OfdHiGEBEpIB+p27tyJxYsXY8+ePfjxxx9ht9sxZcoUGI2eBwF33HEHysvL2X/PP/98u9t9/vnn8dprr+Gdd97B3r17oVAoMHXqVFgsvae+WaiqM9o8gm1j+0S3uW7LOnYCPg9vbs/z29gCjmEwMj0Cw9M00CjE+Oj3AqgazwbeOCIF0jayCluSCAUQCvg4WKTFzlPVfqtTFwwzX3eeqsK+gjqPZRKh9/PUJ0YBjVwEqZCPxesPotbQe6ZMA8C/vz+BhzcegVjIg1jAw9ESLUR8HiRCPpLCZa3WWWtLBqdxS5RSHBJZqyqZCJdkREAjF+F4uR7fHfVtfUbu8zcoUR2Q2o/+5JFRJxLAYnfiQGPH4CSN9/tl9pBEhLcI9io5mQqh8B4hhBAS2ix2B2KVIvB5gIAP9ItrPrF4RW4cxAIe+Lzm/dPedDKfEBL6QjrHd8uWLR6X165di5iYGBw4cADjxo1jl8vlcsTFdSwrhmEYvPLKK3jsscdw9dVXAwA+/PBDxMbG4quvvsLcuXO9bmO1WmG1Nh/I6/V0RsZfzlYbUMCpbzQyPaLNdZu6WTZxuhicrjTAYHVA2YkaXMGqqN6EvfnuoJPJ6sS7v+bD5XLh8uxY/O2S1E5tKyVCjqOlOrgYoExrRlqUH6d79mBK3ffHKvBXizOmDpd3EEUpEaG+MWPRorfibLURkUqJ13qhau3uAo+6YzZnYyDGxWD1LUMR3om6bYnhMoTLRNCa3VNpQ2FHd19+HU5WNIA7MzwmzHevbzKnTt2RUp1HnbZQ5FGjTijAgcJ6Nvg4OjPKa32ZWIB5I1Pw1o6z7LIwiRB6s7vZCDcbmBBCCPEHo9WJEl3j8RkDmDm/ZU/OzMWmQ2UeswB0ZjtcLgZ8fjCcWiaEXOhCOqOuJZ1OBwCIiPAM3qxbtw5RUVHIzc3F8uXLYTK1Xcg6Pz8fFRUVmDx5MrtMrVZj5MiR+P3331u9zapVq6BWq9l/ycnJra5Huq+w1sjW0hIL+UhvJ6D0+FXZWDq5D3ITVOwylVSIb/4s9fcwA4J7sPvhngLYHC44XO4Mpzi1tFPbSolszogpqvNPofeO1MsLtMkDYjAl2zuIPyI9AtMHxiJMKoRaJsKWY+U9MDr/sDtdbXYh1chFSOlENh0AKCVCNFibu72GQraUuTFDrOkHUMDnIVLhw0Bdi+fQ4gjtQJ3N4UROQhguTglHuEKE3/Jq2OtGZUW2epubL00F91gnMVyG0VmRyE0MC/nngxBCSPDjniTLjFbg7vEZHtc/OLUf7pmQidzEMAxKVCM5Qt7rZlAQQkJX6KcVNXK5XFi6dClGjx6N3Nxcdvm8efOQmpqKhIQEHDlyBA8//DBOnTqFL7/8stXtVFS4a3zFxsZ6LI+NjWWva2n58uX4xz/+wV7W6/UUrPOT42V6tpbWJekR7QZ/Zg9JAgBcPTgRE1/cAQBosDhwtsrQ5m1CSb2xOXNpxyl3t9YopQRLJmZ1elvc4Iy/AnU9zWRzoKZFDb7ZQ5K8aqwBQKJGjiUT++D7o5UA3Jl4T1yVE5Bx+ludse2MtwaLAyppx+vTAe4ArEwkgMEaOtlSRqt7570puTNaKfHKwO2OZI0cMpGADQhaQ7xGXZ3RxmaiSoQC7D7bXJ/u0ozWA3XxahmyE8LYLtTF9WbYXQyqG6xIDO/ciQRCCCGks7j7O0NTNZjY3/PYrmn2id5ix8d7isADUKI1IzqMfqMIIT2v1wTqFi9ejGPHjmHXrl0ey++8807274EDByI+Ph6XXXYZzp49i8zMTJ/ct0QigUTSe6bFBbMzVc0F3xPDZe2s2Sw9SoGchDD2QPNIqc4vYwu0Sr0FKqkAdifDZkgtm9qv04EWILCBup6a+br7bA0OFmrZy1IRH3Ht7IxFc6a61rYT3Ao1Vfq2a22+OW9Il7apkDQH6oyc7LpgZbK5x9gU9I/tZAbq+YzOisSyaf2w8n/HAYR+11fu1CARn4cjJVoAQJ8YJWLa+Qw9Mm0Abn5vL/rFKtEvPgz1JhucLgY1Bvf/vgyOEkIIIVw3vruH/VsibHsSWb9YFRLDZajUW1BYa8KQFE0ghkcIIe3qFVNflyxZgs2bN2P79u1ISkpqd92RI0cCAPLyWm8q0FTLrrKy0mN5ZWVlh+vcEf+p0DVnRGUnhHX4dnOGNr8vKtsJVIQKp9MFjUIMIY8Pu9MdbchNDPN4nJ3hEair9dfUV79stsP2nvNsImG1u9qtSxatkjRP3WMAsy34A1AdUa6zICXCO8gtEfK7vHPKrfnYYAnujDqXy4VolcQjEBur8u2JFh6P59HMJdS7vtocLiSGS6GWiVBQa2QDnKMyW8+mazKmTxT6xqpwstKAbw6XweFkUGe0wepwBf37hBBCSOg6V23w6GLWXoO1KKUENQYLkjXykCjfQQi5MIR0oI5hGCxZsgSbNm3Czz//jPT09PPe5s8//wQAxMfHt3p9eno64uLisG3bNnaZXq/H3r17cemll/pk3KTrXExzPtagpPAO3+6qixLYv4vqzLCHeIaL2eHCwSIt6s128MAgNkyCuydkdrkAbrxayma3+D2jjumZnDpuJmX/OCWWTMpCkqbtrEwejwdFYwDK5nShuqF31C05W21EUZ3Za7nN4Q7+dgU3UKczB3dA02BzorDWhGpOHZpYP0xz4Z69b6smYKg4U2VAqdaCBosdJyuas5pHZXk3kmhpQn93Z26G8QxYhsIUaUIIIaHp3V/OedSoEwvaPuSNU0thdTDIrzXibHXvKI9DCAl9IR2oW7x4MT7++GOsX78eKpUKFRUVqKiogNnsPgg9e/Ysnn76aRw4cAAFBQX45ptvcMstt2DcuHEYNGgQu53+/ftj06ZNANwH50uXLsUzzzyDb775BkePHsUtt9yChIQEzJo1qyceJuEYEO8uaH5RshqDktQdvl2UUsJOcxTygX0Ftee5RXAzcaYXOlxApd6KMVnRXd6eUMBnpxIX15n8EkzryYS6tbvzcbhIy16OUbmzg87X4EIjb55GfKqyd+y8Ga0OrwAlnwdkRCkgamdHtj1qWfPzpDMH7zRhp4vBM5v/8loe68OOr02UEiEGJ6sxNFUT8h3k1FIRhqSEY0iKBrUGK4Y0fv+213W7yYS+MezfJpsTFyeHY0hyOGqoYDchhBA/YQDEqCQQ8nmIVorRJ9a7HnETDafTPZ1EIoQEi5CuUff2228DACZMmOCxfM2aNViwYAHEYjF++uknvPLKKzAajUhOTsa1116Lxx57zGP9U6dOsR1jAWDZsmUwGo248847odVqMWbMGGzZsgVSKRUX7WkHC+tRprMgWiXpdBfR9Cg5KvQWOFzA98cqMaobga2exj1LCLi72XKDJV2RGilHUZ0JDVYHtCZ7l7OrgtHr2/Jg4WRRXp4di5svTTvv7aKVUjb77ExVAy7Pjj3PLYLfwaJ6lNQ3Z9TdMCwZcWop/n553y5vU80JaOotwZtRV64z4/P93l2f26uz1lV782vxZ7H7dyUnvuPT9ION0erAz6eqAADDUsOxK68WOrMdCWopwuXn/44YlqaBUiKEwepAYa2JbbBRqjVjmF9HTggh5EK160wNqhqsCJeLsO+xy9tdN1zOPdlIgTpCSHAI6UDd+bJ+kpOTsXPnzk5vh8fj4amnnsJTTz3VrfER33p6818ob6wvJxJ0PkNlbJ9o/N5Yp6ypGHqoMraol5askbexZsdd1j8GaZEKpETI/ZoBFOiJr4W1RkhFzZliMSoJLk7tWC22rFglDhTVAwBOV/SOjDq1TASVVIiGxoBacoSs3dotHcE9G91eweaeVt1gRUaUHGVaC6QiPib2i0G4QoycTtS77CjuWfmW3YZDSVGtEYOTwyEW8tE/VoX9jQ1ZWuuW3BqRgI/RWZHY+lclzHYncuLDIBULUNVLppITQggJLlaHE1FKCRLDZUjoQJdxlVSEkekRYBh0+6Q3IYT4SkgH6siFZfuJKjTFVAVd6EwwNTcOz289BQAo8FPDhEBpmVGX3EpzgM5aMPr8NR67o7MZkL5yutJdX6vJJRkRyEno2LRpbgD0XE3vCNT9llfDBumilGIsmdSn29uM4GRf+qsZiS9UNVhxrsY9vnsv64PFE7P8dl/xnE6y9SHcNbiwzoQ/i7UAgLTI5s9DZnTHAnUAMKFfDLb+5W7Q9Fe5u/t2epTCd4MkhBBCGpXUm3G48YQ8t0Z1E4ZhPPZJBXweTpTrobc46LeJEBI0Ah6oy8/Px6+//orCwkKYTCZER0djyJAhuPTSS2lqKWnTZ/uKcK4xAMDnAYvGZXR6G6mczqah3MGzwWLHPE7LeQBI8kFGXaAEupfEr6eroRALYGwMbnYmMDU8vTnzrkLXC7oFuxiPqakZUR0PtrRnfN9ovLrtDBim5wKyHaHjZLlxp7r4Q0J4c/C8PoRr3hTVmZEQLkWEQoLcBDUSJstwttqI4Wnnr0/XZEK/5jIDcrEAsWGSXtF9mxBCSPBgGAa5K7bCZneBzwOyopXIaAy8mWwO7D1XB6eLwUd7CrFyZg7SOEG5cLkYeosDWlPonlgjhPQuAQvUrVu3Dq+++ir279+P2NhYJCQkQCaToa6uDmfPnoVUKsVNN92Ehx9+GKmpqYEaFgkRdYbmH04XAwxKDu/0NoQCPsRCPmwOF+wuBkarg+3qGUrKtBav6aPJ7XQvDRY9Fb7JrzWyQTqpkM/utHXEAE5tsVqjDU4Xw3bHDUU6sw0ykYCtE5YR7Zszx0NS3HXIGiwO2F3B2+G0zmSDWMCHzeny+/QWbsMOvSV0A3XVDRbUGW0o01rw9NU5GJLSsWnjXPFqGfrFqnCqsgEmmxMFNaaQ/O4lhBASvMx2J4zW5hknp6sMuFbsLu3x+s95eHvHWchEfJjtLkx55Rfcz8msb9oncLoYuFwu8PnBW8aDEHJhCMi30JAhQ/Daa69hwYIFKCwsRHl5OQ4cOIBdu3bh+PHj0Ov1+Prrr+FyuTBs2DB88cUXgRgWCSEta6Z1ZtoVV5jUfXDIMEB+jbHb4+oJ5TozHC7PUJ0vM+p0JjvO9aL29LWcWljZCWEQdqKzaZhUhCile1qn08XgVEWDz8cXSBU6KxukA7r+OWqNQuz+bJlbTMsOJpV6C2xOF8KkQjhdDOqNNr90OAaAWE6DCkMQN9g4nxPlDbDYXYiQiz2ykjuLm1UHHnCsVB/U7xVCCCGhpbVGEOFyEc5UNuC/v5wDAJjt7pOJNocLtQYbTjSWY+gXp4KQz4Pe4kC1gbLqCCE9LyCntP/9739j6tSpbV4vkUgwYcIETJgwAf/6179QUFAQiGGRELEvvxb782vBg7sRQaRS3OVsDLVMhJrGH+C8qgbkJnasVlkw4e6IjMmKQuR52s53xvgXtqOw1oTEcBl+e2SST7bZEhPgdhKCxsYjfB5wcReygWLDpOx75n+HS5Hth8YDgVJQY2ycdugOXvoqow5wd1UOkwkRJg3eQswiAR/Z8WGo1Jtx/6d/AnDXLPz0zkt9fl/cBh1Gm9OrJk4oKKk3IUwqRP84Fcw2Z7c6QU/sH4PfztbA7nRBa7QjLlyK4noT+saqfDhiQgghF6pagw0qibvUCY/HQ0qEHFFKMR7/+hh7gvuucRmwuVz4YHch3v8tH38W1+PLe0ZDKREiMVyGSKUYlTqLx8k2QgjpCQEJ1LUXpGspMjISkZGRfhwNCTXPfHuSLQoLAKkRXQ8uRColOFvtzqTLD+Ki9+3hdpOcPSQR1w5N8tm2m1L/y3Vm2BwuiH3YwbMnYhQOpwt/lbnPlroYIE7d+R2v2UMS2W2s21uEh6cP8OkYA+mH4xVskG5QohpZHezceT5OF4M6kw2nKw0Q8LwLNQeLP4u1ON549rxJpFLil/vifnacLgY1BhuiVf65L3/54a9KfHesAgDw0nWDkFdlQGqkokvfCyPSImCwONhGPpUNVhTUGClQRwghxCfKtGY0NE19ZRjk1xhxrKwBe87VAXA3Xlt6eV9IRQJsO1GFwloTjpXpYXU4ERsmRWGdCYV1JpTpLBiU3IMPhBBCEKCpr1wHDx7E0aNH2ctff/01Zs2ahUcffRQ2G6UaE082hwuAy6O+WVZM1wN13K6FxSEaqOPzgEszIjE0VYNwhW+zl5Ibp7a5GPcOjz8EspnEb3m1HkX9UyM7/97hZp0pJUKYrKE7jVHLycbsF6fy6GrbHdUNVpyqcE+XdjKAzRmcdeqsdu+plrEq/5w1Fwv4iAuTQCkRIEYlQXVD6DVP4L5fTDYnLv/PLxjwxBb869vjnd4Wn89jg7fu77AIGKyhW7uPEEJIcDHbHYhVNWd+x6rEyK82sCeXVs7MYbPdm2ZY2BwuHC/Te9St1Zl7z/HoC1tOYuHafbhn3UH8WVzf08MhhHRCwAN1ixYtwunTpwEA586dw9y5cyGXy/HFF19g2bJlgR4OCXKlWjMOl+g9JktyC/x3ViInaFNQG6o16iz4/VwtDhTWQyYUnP8GnZDCqUFVVOfrQGbgM6z2F9ahpL454MgN1HYUtzNqmc6C4nr/BDAD4Uxlc429f187yKv2Y1eFyTyTs03W4Kw9ZnW4A4giQfPjjg3zT5abSMhHhd4Kg9WJqgZrSNa80XG63+nM7gC108UgXN61KbBNnz8XA/x+rg4FNaF5soQQQkjwKao1o7Kh+XfL6nDhqz/LoBALcOWgeEzqH8ted3FKOPv3wSKtRyd4bQh3am9p48FSbDtZhe+OluNIsa6nh0MI6YSAB+pOnz6NwYMHAwC++OILjBs3DuvXr8fatWuxcePGQA+HBLktx8qRkxAGISegkJvQ9bpyl2ZGIS1SjrRIOdI70f0zmFjszdlKvu5A6t9AXeDVGdxdTgF3mDC5C8XwkzQy8HmAkM9DmFSI4rrQC/DqzHZc9tIOVOgs4POA0ZmRPn3vyEQCjzCsqZXMtWBgaRwX97F3ZTp0R4hadIzTmkIvUMcDcFGSGsNSNagxNDdlyexibcP0KM+p1tpWCn8TQgghXWHkNCjqF6eCuPFkdr3JjrnDUzzW5XYwP1RUjwiFGENTNbgoSQ2HM7C1lP3leJke3PP5odyBnpALUcADdQzjbnsNAD/99BOuuOIKAEBycjJqamoCPRwS5E6UN+CvMr1Hl9Pu1DTKTQxDQa0JBbWmkA1EWR3NOyI3/ncP3tye57NtByJQF8iprycq9GyX0zi11KPAf0cJBXw8MysXDhcDvcXhkaEXKuqNNpytNsLJuLOZzvm44zGPx4OIU7csWKcHNwW5+Zz6eTF+mvoqFHgGQkPxDH1BnQmHS3TYX1iPCl3z1N2u1jZMj/IMlLfWoY8QQgjpCpOted/joSn9UN14gilJI8OoTM/65/3jVJCL3fuEh4q0UEqEOFBYj8MlOpTqQm8/rzVnqw0oqW/+7a4zht4JQ0IuZAEP1A0bNgzPPPMMPvroI+zcuRMzZswAAOTn5yM2NvY8tyYXmhqDBZEKMZoSYKJVEqjlXa/LJhcLcUlGBKKUYraoeajhZtS5GHjU1eguj0Cdj5+fnugtcK7aAJVEgOQIGW6+NLXL20mPUiIxXAaNXIQKvfX8NwgyLTOXbA7fZ7xxMxcNwRqoa+Vx+2vqq5Af+oE67piL693fBwI+DyldbOiTxslilor4MFiC831CCCEk9Jg4GXW/nKlmTwxfPyzZq9SHUMDHoCT3DJ1SrRl2R/O+tS4Ef69bU1hrhETgLvchEwnYZmKEkNAQ8EDdK6+8goMHD2LJkiX45z//iaysLADAhg0bMGrUqEAPhwS5qgYbao02MIy7S+XYPlHd3qbD6YLd6UK4TARDCKaBtww2JGlkbazZefFqKYamaDA0VQORMPi6dnZGcZ0RMWFS8Pl8JIbLcM+ErC5vK0IhRqnWjHqTHbWG0NvRqTfaEM1pPFJrtLPTQH2lqVgzA8AYpIG6cJkIUcrmwD8AxIb5J6OOx+OBm1RXH4JTX6UiPqKUYkQqxDjX2C07NULe5W7QaZxmLha7CzV0dp8QQoiP8ADEqCRQSQXY+pe7YzmfB8wZmtTq+tzpr+dqDJCJ+IhRSeDjqjI9psZghVgkhN3JAGBwrsYAe5A2+yKEeBOefxXfGjRokEfX1yYvvPACBALfFsYnoa8po4MBcKRUh75xXZ/22iRRI8f+Qi10ZgMOl+gwOqv7wb9Aatm5sit119oiFPBRUGtErdGGCp3vAoBA4FtJbP2rEqcr3Z1Irx+W3K1teRQZDsHpemU6M6qNzePuE6Ps0jTg9sg526s3Bt9z5HIxKKwzgWEASWOgSSURQiHx38+gQMCD0+E+pR+KNepOVxpQZ7QhTi2B2ej+3smI7tq0VwBICJdBLOCzXYH1IfhZIoQQEpzKdRZUNbhPpjZY3L9Z4/pGIyG89f3ZizmBupMVDbA5GVQ1WJEfos3muOxOFz7aUwSni4FEyIPZ7sKJ8gZU6i1I0vjuuIEQ4j8Bz6hri1QqhUjkuyl8JPQxDIOsaIVHXaO2fmw7o7qhuV7DH/m13d5eoKllIrauBuDZydYXIhTujo6hXsvCYLVjaIoG/WJVSOlCt1cuu9OFCIUYSokA+TUGH40wcHQmOwbENwe5sxO63jm5LXJJ83uyxhh8WYcWh5OdBtN0RjnGT9Nem3AbSoRagJdhGLaGnIRTjTozputNeAR8HvtZ5AGIVnateywhhBDSUtNvFvfE8NzhbZ+oHdLY+VUi5MPqcLGlZHpD/dTvjpbj0owIJIZLESbtnR1tCentAp5Rx+fzwWunWJXTGZzdAkngme1O7Mmv81iW5IOgVHKEAjjr3u7J8oZuby/QzlQZ2DocMSqJzzOjNI2BOrPdCbPNCZnYt9tnAtRN4mCRDgeK6gEAcd2c3qiUCNnAZVFt6BUZPlKiwwnOez073veBOiUnMy0Ys8eM1ubflnF9ovHYldk+n/7bkogz97U+xHaODVYHnI1NfASc3+zMbmTUAUB6lAJ5VQYwAP4oqIfeYvc4iCCEEEK6Qmt273uopELMHJyA3Xm1mNS/7frnUUoJvrtvLPrEKiES8LHrTA3qjLZeEcz66PdC7C907wPfPjYd//drPgDKZCcklAQ8ULdp0yaPy3a7HYcOHcIHH3yAlStXBno4JIi1dkbLFxl1Q1PC8dm+YgBAXnXoZUdxM918Oe21SaSiOculzmRDotg3GXuBbCahM9sh4AFiIQ82B4Oxz2/HsRVTuzzNMVwuhljIh83hggsMLHanzwOk/hYbJmELCfsjoy6c09TEZAu+GijcbnBquajLnUs7QyQUAHDfry4Ig5ftqW6wYmCiGkqJEAZr83dxdwN1903qA6VEgMJaE8AARbVG5CaGd3O0hBBCLnSpEXIkqGXQKMR4ZtZAuFyMVxOJlrj7QwOT1IhSScAH4HQxEIRwsTqJSIARaRGQSwToG6vEqMxImG1O1IRgnWVCLlQBD9RdffXVXsvmzJmDnJwcfPbZZ1i4cGGgh0SCVGtntBJ90DhheHpzi/b8GmPI/Rhzn5dkHzaSaKLhBOrqjTafT60NRD5ddYMV209Vs5cjFZJu1yJTSoSoc9jgcDI4Wa7HYE5tk2DGMAx+PVMNI6cb2gA/ZNRNHxiPH09UAQCUkuALYnIz6uTiwPz0iRq/VyRCPqbkxAXkPn2lpN6Mo6U6AEBiuBQRcjE0ChFSI7v3fTAwSY2sGBU2HSoDABTWmilQRwghpFucLga78tzlbLJilF06oVpjsOKPxpk8ZrvTY6ZAKDHZHPgtrwYAMCxVA6VEhN1n3c/N5PrQmxVCyIUqaGrUXXLJJdi2bVtPD4MEEYPVjqxoJWSi5rdpvLr7HRq52xDweSjXhc6PltPFeNSn80dBWG5GXa0P69TxAthOQmf2HHdaN2vUAUBC4/tGyOfhrzJdt7cXKL/l1SBeLWW7mMWGSRCl9H1ttnh1cwDH4gjOjLrMaAUGxKkQ5+fadE2EAvd3l0IixKNXDAjIffpKcZ0RyRoZBiWqYXcyqDPZUKa1IFLR/ecuK0aJQUlqpETIUVxv8sFoCSGEXMi4UzrzqgwYtOKHDu3fl2rNuPm9vZj00g4U1TX/HnGz8EPNlwdLkRIhw+DkcFx1UQLSIuUYnByO9CgFyrShc8xDyIUuKE4VmM1mvPbaa0hMTOzpoZAgYrA6PaamRinFPpluKBUJIBcLYLI54XAyKK4zhUwHpAaLne1oBQDJEb7PqItokVEXimoMNgh4gLMxfS81susF8JvEh8twrEwPh4vBqcrQmTJdobcir7q5g5k/6tMBgIKTRWeyBt8OrsnmxNnG50FntuN0lQH3TMhEToLab/cpbKxRZ3OEXu3VWqMdlXoriuvNEDcGHBM1snZrzHZUvFqKIyU6CPlALU3DIYQQ0g2VegsKaozg84DG0qoIk4k6VJ9YJhLg1zPu7LMYVfOJKJPVCajaulVwK9OaUa6zoKjOjEem90dyhBx/FmvBA5AR3f39YUJIYAQ8UKfRaDx29BmGQUNDA+RyOT7++ONAD4cEMZPV8+DWl1Mwo5QSFNWZwMB95u3SzCifbdufuHX7lGIBEsN9H2CM8FNGXZNA9JKobrCyQTrANxl13EYmhbWhkwXUsrGDP+rTAfDI9OROsw0W3LPjZToLyo6U49ZRaX69T6lIAAGfxx44hJKz1QbYnC7IxXy25qAvaoQCQH6tke2yd44TRCaEEEI6w+VicMmz27zKqoxI13ToxJJGLoJMJHA3UOM0mDIF4X5MR52qaIDdySBGJUFKhBwqqQjZ8WE4XdmAv0r1PT08QkgHBTxQ95///Mfji5PP5yM6OhojR46ERhMaNZ9IYLRMO/fVQSLg7gLalOIeSlNfdWY7MqMV0Jvt6BOjQt843xfE91dGXSCbSdgcTsSoJGz2YWpU988g9o9rPrVaoQ+d9wzDuHfW6ow2OBkG2fH+ySCzOJzQyEXg8XioMVj8ch/dYbR673THdrMb8PkwjHu6uqMxUscwjE8y0gKh6aQAtzGIr06WvL39LKyN06PrQ6zJBiGEkOBR2WCBSipEg8XhEawbnhbRodvzeDwkaWQ4U2WAyeZEWqQcEqEAZnvwzQzoCKPVAT6fhyilGEabg80qVMtESNLIEC4Xw2xzQBagWr2EkK4L+Kd0wYIFgb5LEqK4Z7OuG5aEK3LjfbbtlEgZ/ihw/32ivMFn2/W3epOdnb43d4QGMSrfBxoSw2WYmhOLCIUEA5N8H9RhAtBO4nSlwWOKcKoPuuP25QbqdKEzXa9MZ/F4LpL80IAEAKw2BvWNjU5Olgff1ODW6s1Eq/xbq07Ib5r66sKAx7fgrZsuxsT+MX69T19ptZlPuG++b9KjFDhZ4f7erTVQoI4QQkjXFNWaoLe4f99TI+QobDwJ39FAHeAu63CmygCni0FB44wJQysn90LBqcoG/Hi8EgAwMDGM7XobGybB7+dqgVoTSurN6BMbovN6CbmABCRQd+TIEeTm5oLP5+PIkSPtrjto0KBADImEAD6Ph5HpEXC6GEzNifPpAW4ypyZdKB0ocqe+qmUiv9xHRrQSq28e5vPtBjKPqOWUhTQf1KhLj1Kw0/UaLPaQ6RZsbvFc+DIzlSua06DBGoQ12VwMg+FpGhwp0cHqcCFcLvJJzcv2cN8fZrszZLLHtp+qQkm9CRq5CCIBnw30+qLrNgCkcTJcZeLg6xBMCCEkNFToLBiRHgGH08nWD1ZJhJ3qbt/aCUxziDaTqDfaMDozEvm1Ro9ZAwPiwlCcYoJQwEdJvYkCdYSEgC4F6vbt24ft27ejqqoKLpdnd7+XX37Za/3BgwejoqICMTExGDx4MHg8HphWClXxeDw4ncF3gEd6RrXBir2NbdJFAt82KOb+KHODX8FOxznQ91egrjfgZk+pZSKo5d1/rsLlYrgav7dcDFBSb/JJkwp/49aL+9fsXI+pzb4UpWzeri0Iu75W6K3YV1DPXo71QzZqSy0Dua1lqQWjLcfKUdN4AkPIeQwJat8E6tI5gbqTFQ0wWB1QSmgaDiGEkM45U2XAH43HCk2Gpmk6dSK1tXrPrZXLCAUl9Wb8drYWAPDA5f3Y5VEqCQ4UaQEAl2fHYmL/nhgdIaQzOr1n/Oyzz+Kxxx5Dv379EBsb61Fvp63aO/n5+YiOjmb/JqQjrJyirlKhbwN18ZwDTrsz+IIKbbE01s+QiQUeB9ChJBDNJPSc4Ksvpr02SYmQs1OPz1QaQiJQxz0rPDUnzm9ZgDJOdprdGXzdE1oG5GPC/DvtFWgtUBcaGXU8HhAhF0PI50EmEbDNU3yVUccN1EUrxajQWZAV4/t6m4QQ0pv9frYGD288CrvThRFpEXj1xiE9PaSA21dYh2GpGhisdpyscGfUdWbaK9B6Rl1r5TJCAXdfJ5xzkjoxXIbByeHg84Jz1gMhxFunA3Wvvvoq3n///U7VmktNTW31b0LaY+EE6nRmu08LsUcqmw/SK/UWuFwu8Pm+DQb6w7kaI1s/Y/0fRZh9cZJf78/mcEHsoyBpIIvo13Myl4am+q5JjZCT2Xm8XI/J2bE+27a/cM8KK/xYPJjH44HPc2cbOlzBF/zWtmiM4u9GEgAgaPGe14ZI9m5BjRl1jUHFnDD39CE+z3fPWbJGhkiFGLVGG6oNtpCZEkwIIcGkUmdlG6P9WaLt2cH0AIvdiT/y68AwQCRntsCI9M4F6lo7CRWM3es7QtvGzJsolRh/FmsBAOlRdGKMkFDQ6aM2Pp+P0aNHd/kOV61ahdjYWNx2220ey99//31UV1fj4Ycf7vK2Se9i5Uyfu/eTQzj59DSfbTuSM03PxQBVDTbEqf1/4N5d3KYA/gw0LPpoP37Lq4XJ5sCZf13h0yysQORaVRuan6coHzYMiFVJcKqxCP6pytBoQmJ3OhEXJkGYVASJ0L/BUrGAD0sQTnsFgAq9BWFSIVt0OjYAGXVCgefzXR8iU1+Lao2IVUmQFqXAO38bilKtGdUNVp+VIIhWSVHHCZyGypRgQggJJnbOSbEQnWTRLVV6K8JlIijEQvB4gEwsQ1WDFYM62QiNm1EnFfGhlok8ZvWEknKdBRq5GHFqiUfDObWs+bhHZ6aTY4SEgk7vdf/973/Hm2++2eU7XL16Nfr3954Yn5OTg3feeafL2yW9D3fKXlyY1KcZWRp58w+WSMhHuc7ss237E7ddfLwfA4s2hwsGqwMuJrRq+AGNWYCcgEJfHxbMTeB0vazSW3y2XX8q01lQobeiTGdBYZ2f3+eNH1EXA7hcwTX9VSzge0zJDURGHb9lRl0IZI5Z7U4opUIYbU5YHU5oFGLkJqp92sxHwOdB0ViTjs8DDJbQ+o7piqMlOo/gJCGEdJfZ7mQbdRksoRlY6o56kw31JjtKtGYU15tRUm9GTrwKEmHnmhRFKyW4b1IW7hqfAYvdhUq9FQ2W0Jz66nQx4PEYnK40eCQgqGUiCPlAhFyEAE5wIYR0Q6cz6h588EHMmDEDmZmZyM7OhkjkWaT9yy+/bPf2FRUViI+P91oeHR2N8vLyzg6H9GINnJ0OXwelBHweZCIBzHYnbA4XyrQWDEnx6V34RZm2OTjUWk0NX9FwphDUGW1+a0DgD3VGG5t5ODorEqMyI3227Shl8/vw3kl9fLZdf6pvDA4YrA58uq8Iy6cP8Nt9iQR8WOzuM/x6ix3h8uB437hcDP4oqIOLcWdFTh8Yj4GJnTvj3hUt60iGQuaY1mzH6cbOedwSAb4WLhexJwNqOBmwvc22E5Wo0Fvw7i/nUKGz4NqhSbh7fCaSfVg7kxByYappsLKzFJxBWHLC31orJ9GVbqY8Hg//mNIPx8v0eGfnOQChO/V1z7la6C0OZEYrPErXiIV8iIUC1JnsKKgx9eAICSEd1elA3X333Yft27dj4sSJiIyM7HSWU3JyMn777Tekp6d7LP/tt9+QkJDQ2eGQXox7jOurIuZcKqkQ5sbU9lDJGuOe4WutS5WvRLYI1PmSv5tJcF/LxHAZm7njC9zCvKHwnrE5nIhWSVDUmEkX7cfAC+DZnbnGYA2aQJ3B5g4IAUDfOBVWzMwJyP3yWwbqQmC6idHa/B0TJvVfZ+kIhRgl9e73ZaW+dwbqGIbBf346jWOlenbZ+r1FGJMVBQAUrCOEdAt3P8QeZFnsgaA12TAoSQ1j40kfrcnWrVkUCklzJl4oNpOoM1rRL04Fs92JlFZ+X8JlIphszpDYfyWEdCFQ98EHH2Djxo2YMWNGl+7wjjvuwNKlS2G32zFp0iQAwLZt27Bs2TI88MADXdom6Z3O1hjYv33ZubOJWiZiM6+qDaExjZG74+DPrpWeGXW+OYgOVKo9d3qhrwNF3MK8odAYoExrYYN0ABDtw3p9rVFKBKhzN8WF1R48Z/d1nEw27mvob14Zdcbgf8+YOFkERqsD//3lHBI1MgxL03jUu+muGJVnQ5/e6GCRlg3SRSrEMNkckAgFWLz+IGYPScTL1w/u2QESQkIadz/EHqT1Yf2puM6EIyU6AMBbN12M6blxcHYjYCkTNwfquI24QkVRnRn7CuoBAAMTw72uD5OJUKazQOvjBn2EEP/odKAuIiICmZmZXb7Dhx56CLW1tbjnnntgs7kPqKVSKR5++GEsX768y9slvY/e3ByUSvJDoI47nTMUfpCLak2QiQUwNwZAfHnQ3JJnRl3wBxe4DFYHhqdpwOfxkBju2+coWiXByMZuYg5n8O8Uf/1nKZI0MjZzyd+BupwENRsYjFAGRzYdAOjNdrYLXEaUImD3y82oe/KqbGREB3+nNW6grsZgxb++OwEAeH/BMEzq77vPE7d2jr2XTtn68PcC9u9HpvfH2L5RuPzlX8AwwDd/lmHZ1P4h0cSIEBKcFGIhFGJBY01R1wUXfGmwuPf3eADSIuXg8XheTZw6yuZwoabBiv5xKkiFfI+mc6GiTGtyPx88HgbEe2cWjkiPQLjcnVXXYHEgLIAnLgkhndfpQN2KFSvw5JNPYs2aNZDLOx884fF4eO655/D444/jxIkTkMlk6NOnDyQS/3fgI6HFaONO8/T91Ne7xmdib34dAEAXAkXeC2qNHkEzf+5EcJtt+Cqjrpl/p2f8cqaaPaM4PC3Cp9uWi4XN7xmzHSIBH3+7JNWn9+FL3x+rYIN0gP+nvkpFzWejLUGUUVdvsuOPxtdtYGJYwA5muBl1k/rHIDUycEHCruJ+75o5Xe98PdU+ifOdnl/d++rlVDVY8N1Rd91djVyEqy5KgFQkwPxL0/DG9jw4XAzW7i7AI9O9m2sRQkhHHC/Xs7XUGAA2p6vTjRRC2aFiLbu/191SAt8eLcPfPzvcvCAEA55nq4zs83Hb6DSv6802J/acc+8LFdebkCPzf61eQkjXdbrr62uvvYbvv/8esbGxGDhwIC6++GKPfx2lVCoxfPhw5ObmdjlIt2rVKgwfPhwqlQoxMTGYNWsWTp06xV5fV1eHe++9F/369YNMJkNKSgruu+8+6HS6dre7YMEC8Hg8j3/Tpk3r0hhJ1zAMAwHnIDfBD4G6fnHNZ5t05uCvRcGd4iAXCzzqgfkaNwjoq4y6QO3znKlsnjJt93HWG7dG3cmKBmw/WeXT7ftay+YF/s6oS1BLkZMQhj6xSo+uzT2NWxvuvV0FmPXmbwG5XwHnTd+d6TiBZLI6kBWjxMBEtcf05QQfZ6dyD6p0vbDr6yd7i9kuw3NHpLBB7FtGpbJdqdftLYTBGjyfE0JI8Hts01EMXvkDBq/8Aeeq3fs7fB7QJ0YJc4sGCMOe+RGDVmzFkKd+AOPvAsE9wGBxoF+sEuP7RkHVzZqqLU9GhWKNugq9BVnRClycEo7UCO8TgxnRCuQkhKFfrAq1huBPUCDkQtfpjLpZs2Z1+k6uueaaDq97vq6xXDt37sTixYsxfPhwOBwOPProo5gyZQqOHz8OhUKBsrIylJWV4cUXX0R2djYKCwtx1113oaysDBs2bGh329OmTcOaNWvYy5TxF1gmm9NjOqo/pgdxgy4N1uA/UNRymjr4O13dnxl1/t5XLNM2Z5D1jet6UeHWtKxvdrba0MaawYGbHSUS8Pxen83icOGvMndNLm42Vk/Tt6gnGKgmF9yTDaESqKs32ZFX5X5fN5UHCJMKu30Q1FJsWPN3uslqR63B6tcus4Fkc7iwbm8hAPcBNDfrNkYlxawhCfh8fwkaLA58vq8Yt41Jb2tThBDi4XRVA3viVtQ4zdPFAGeqDDDbnQhvXE9rsqHeZIfTxYDPA2oNNkT5+WRdIJmsDpRpzdCa7ThbbcTcd3/HjSNScPXgxC5tr2XTulAoicNVZ7ShtN6MvGp3oeDkSO8MQ4VEyO6jVTf0ziZOhPQmnQ7UPfnkk52+E7XaP6m1W7Zs8bi8du1axMTE4MCBAxg3bhxyc3OxceNG9vrMzEz861//wt/+9jc4HA4IhW0/fIlEgri4OL+Mm5wfN3tMKuL7JXtMJhIgXi1FrdEWEnXYfjxRCSEfUElF+PC24X69r0hF885crY+6vvIQmJS6aoO18f6A3IQwn25bKREiTCZk6ycW1ZlgdTiDcqqJxe706BIcrZT4fbqnkRPw/vpQGYam+nbqcVfVt8gsjPVjIxYubq2ck5UNqNBb0CdGFdR1ybjd4Jr+9kdGc2qkAtFKMaoNNugtTox8dhvO/Gt6r6ivZHe6cMPwZHzyRxGGpmq8SjfcPjYDn+8vAQC8tysft1yaCqEfM6QJIb0HtzO33clAwAMak3c9aowW15nZE0QuBvj2aDnmj0oL5FD9qrQxSCcV8mBxMNhzrg6TB8R2eXuxKgmEfB4cjc9ZMJ1s7Igxz/3Mvv45CWFQSryPcbkna6nzKyHBr9OBuq7gZqb5U9OU1oiItg8OdTodwsLC2g3SAcCOHTsQExMDjUaDSZMm4ZlnnkFkZGSr61qtVlitzWcm9Hp9F0ZPuOoMNsSFSWGxOzAg3j+B3nqTHXqLAzaHCxU68/lv0MN0ZjscLvf/WdG+zRRrSSUV4sXrLkKkQux1ljGYmTmZmDwekKTxbV0tuVjABr8kQj4uTglHudaMtKjgaxLQMossEGfSBfzmYEOpNng+Uy13SLnZXP6klIiQGiGHwerAvesPAQBemDMI1w1LDsj9d4XJ5kBmtAJGqxMVjd1Yk/zwHRCtkiBMJkJ14/QbhViIs9UGZMX497stEBQSIR6Y0g9LJmW1ejDUN1aF8X2jUFRnQpJGjt/P1mJs3+geGCkhJNQoJSII+e7gm1wshIth2ACNyerZDCglQsY2eGpZCiPUVTVYkZsQhrPVRgDux903tuu/H0IBH3FqKUrqzeDzgLgA7Sf4gtXuhJgPmOA+Sd3W6a4ohRiJ4TJIhHwqu0BICOjUKdy33noLkydPxvXXX49t27Z5XFdTU4OMjIwObcfhcOCnn37C6tWr0dDQAAAoKyuDwdD1aWQulwtLly7F6NGjkZub2+o6NTU1ePrpp3HnnXe2u61p06bhww8/xLZt2/Dcc89h586dmD59OpzO1s+urFq1Cmq1mv2XnBy8B2GhokxnRoXeAq3ZgZEZ/snKqTFY2TOT3MyjYNW0k6WWiTy6SfoDn8/DnKFJmNg/pls7Pq3x5wRA7lRUkYAPRStnFLuDx+NB3lhryupw4fdzdajUB+f0AW5WqkTI92uX4CYaznRyvTl46p/oWhygxARoB9zqcKKwzuSRlRrsB0vnqo04W21kg3SAfzLqAHfh8yY6ix0/Hg/umo+dJREK2vzcXTc0Gfk1Jvx6pgZf/VkW4JERQkKRw+nCgcJ6OFzuQJ3B6vDIouOWuyiuN7FBOsCzVmtvUFpvxrEyvUfmW3f3V5tOSrkYd6OOUClZUaI1Q2tpbirCbezFFamSoFRrxrkaIwpqjAEcISGkKzocqHvttdfw0EMPoX///pBIJLjiiiuwatUq9nqn04nCwsLzbqewsBADBw7E1VdfjcWLF6O6uhoA8Nxzz+HBBx/swkNwW7x4MY4dO4ZPP/201ev1ej1mzJiB7OxsrFixot1tzZ07FzNnzsTAgQMxa9YsbN68Gfv27cOOHTtaXX/58uXQ6XTsv+Li4i4/DuJWY7BiRHoEBieHIzPaP9lKkYrmOlVKiRA2R3CnuWdGKzAsTYPByeE9PZQuCcSMtr/KmhvFpHazA1hb5C2Cf9ognT6gN9sxIi0Cw1I1WDwxC/+9Zajf7zNBLYNSIoREyIc2iBq0yMUCJHKaIcQGqE4Pv5U3fbAfLIkEPIxI0yCZk0Xnj67bADA6MwpJGilEAh5yEsJgCIFaob4yOTuWnZr0w/EK2BzB0yWZEBKcqhqsuCQjErIWgZikcCmGp2lg4QStuCeFsqIVcIVI0KmjWv6WqqTCbpe1CMWGEha7Ex/8VoCYxqm7UUoxLs1sfQZYXpWBbTbhdNFvDiHBrsPpJqtXr8Z///tfzJs3DwBw9913Y9asWTCbzXjqqac6fIf3338/hg0bhsOHD3tMJZ09ezbuuOOOTgy92ZIlS7B582b88ssvSEpK8rq+oaEB06ZNg0qlwqZNmyASda4odkZGBqKiopCXl4fLLrvM63qJRELNJnzsRLkef+S7W4j7a+olt6C81uyeBhulDL5aY012nq6GiwGilGLk1xiRHuXd0SkU+LPz2LHS5mnnSql/ZvbLxZ7vkZbZWsGi3mTHHwXuz9CEftEBqf2lkgnZ6RTlOst51g6cExV6lGqbxxOoqa+CVjJfW9bLCyYMw+Dnk9UwWB0I59Sy8VdG3dOzcnGu2oCpr/yKv8r0fm92EghFtSa89vMZXJQcjtGZkcho40STVCTA5AEx+OrPMjRYHNiVV41J/bteX4kQ0vvVGmzYlVfjtbxEa0GJ1oJ6U3PwijvtPq/a6PcmZIHWMju9b6yq2/s5Lcs8mGxOnzdS8rWSehM+3ONOlOkbq8QPfx/f6nrnqg144PPDsDaeFDpV0RCwMRJCuqbDR7L5+fkYNWoUe3nUqFH4+eefMXnyZNjtdixdurRD2/n111+xe/duiMWeXffS0tJQWlra0eEAcB9U3Hvvvdi0aRN27NiB9HTvzml6vR5Tp06FRCLBN998A6m08wdoJSUlqK2tRXx8fKdvS7qmUmdBv1gl5GIhEsL9c1At4PMgEfLZHy2tyY6oIO06aHO40HQytMZgQ5Xe4vdAXUm9CUV1JtQZbRjXNxph3dxZCUSJ+NOVzTse8X4q2D8kJRwCHg/nGqcNBGuGlJazwx6oAIhU1PyTYrA6oDXZAtZhtT0td+h7MlAXrIFdwJ2F2T9OCQY8GKx2RIdJUGew+S2j7oHPD+Obw+5pnzkJYX6dFh8o+wvrsOFACTYcKMFDU/th8cSsNte9YmA8O+312yMVFKgjhLSLu78xMj0CVocTZpsTpyrdZT+afute/vEUPt9fDImQDwYM+saoWv09CmVGqwNZ0Qq2y2nf2O7PvvHu/Bq8GXXPbzmJzUfKYbI5kBQuA48HJLeoy3ykRIt4tQxhMiHu/eQQe7wDuEvcGK0On5eIIYT4Toc/nVFRUSguLkZaWhq7LDc3Fz///DMmTZqEsrKO1VhxuVyt1norKSmBStW52gKLFy/G+vXr8fXXX0OlUqGiogKAu8usTCaDXq/HlClTYDKZ8PHHH0Ov17ONHqKjoyEQuDNj+vfvj1WrVmH27NkwGAxYuXIlrr32WsTFxeHs2bNYtmwZsrKyMHXq1E6Nj3TdH/l10DXWjTtZ1oC4MP8cKMpEAvaHSxekARfAO/0+EDW23tl5Fh/vKQIAfLNkNAYlhfv9Prsrn1Nzw19ZQJU6KxukA4K35hj3bLo6QMEyqcizmsLpSgNGpPd851fuc8HjubNSA6G1qa/cjIdgozM7sL9QCwCIUUlQ1eCuv+iPZhKAu6FEk7/K9ODz3CclxMLQ7YD6Z7GW/fui83xnjusbDaXEnYX64/EK2BwDQ/qxE0L8i/tbNnlALHg893TG5kCd+/fl97O1HrWXj5W5j30MFjuUQZ4h1hEMw+B0pYEN0gFAHx80IkoIl0IlEaKhMUDHrf8XbPYX1KOozuSx7P7JfQEAe8/VoqDWiLd3nEWZzn1iv2UGXYPFgcJaI7IT/NOwjxDSfR3eIxwzZgy+/PJLr+XZ2dnYtm0bvv/++w5tZ8qUKXjllVfYyzweDwaDAU8++SSuuOKKjg4HAPD2229Dp9NhwoQJiI+PZ/999tlnAICDBw9i7969OHr0KLKysjzW4daRO3XqFNsxViAQ4MiRI5g5cyb69u2LhQsXYujQofj1119pemuA2J0uGDk/jv4MSnEzjar0wTNVryVji52FmADU2IrgBHe4xfC7y19ZMxa7Exq5CCIBDzKRwG/ZkS2z04K1Rp3N4UKYVAipiI/P9xWhpN50/ht1U8sCxtwMx57E5/HYbIIopQRCQWCCIdwEhqb7D9bALuCZrdF0AkMs5Pvts8T9HotWipGskePVbaf9cl+BcpgTqBuY1P4BUNP0VwDQWxz4rZUpbYQQ0kRvtiNWJUF6lAKRKjFuH5uBW0alITchDNFKMVtyokxrRqRchP5xStx8SSr6x6mgkYuw4UBJDz8C39h4sBQnynWQck5s+KLxWZRSwgbpZCJBUNeoE4t4EDbuV0iEPPSPUyE9yp1R98HvBXh441EU1Jpgc7jYIJ1YyPeo18s9sUQICT4dzqh75JFHcODAgVavy8nJwc8//4yNGzeedzsvvfQSpk6diuzsbFgsFsybNw9nzpxBVFQUPvnkk46PHOevdTVhwoQO1cPiriOTybB169ZOjYP4VqXeAqGAB0fjXM/uFodtDzflm1vDKtgYrXbwee5OVEI+LyCp6hGcZhv1PgjU+btGWkm9iT2rbHc6/RaMCZeLIBYATbHTYJ3KWG+yQd94Rn1XXi0cTv9PLJQKgy9QZ3U4Uap1d77LTQjDU7Na7wruD9ypRkqJEDqz3WNKcrDRm+2IVIiht9jZA5SkcJnfukxzM+qqDTYANlTogrOLckdYHU4cL3dnrmRGKzo05Zw7/XXzkXJM7B/j1zESQkJXvcmOygYr0GCFQuzeD0xQS3GsTA+JkIcjpTo0mO0QCvgw2GxIFQtx1UUJ+GhPISI5gbxQ12CxQyQUeDSt8sXU10hF82+S2e70OkkeTPRmB3ucZHcyOFnRgGSNHBa7E9tPuhs1SoV8CPg8ZEQrMDIjEikRcvx6poY93jlQWI95I1N77DEQQtrX4aP9QYMGYdCgQW1en5ubi9zc5gOge+65B0899RSioqI81ktKSsLhw4fx2Wef4fDhwzAYDFi4cCFuuukmyGT+mV5DQkul3gqL3Z3N8f/snXeYG+W59u9R7217717b695NLwZDDh0SE0IIHAgphJxAOCmkQRICpCcfCSehpEASSCBAaKYYTHHvfdfe3pt6LzPz/THS6NV27Uqjka3fde3lXa9GMyuNZt73fu/nfigKMKexbI8UowZF7KhzB2g+o25sM4N0YSFcNLZUOurSpBeNLQHQpul1qsrTghy7iTWjbuwAs0AAF+b40tfMC3VkqVCxUYUVlWbB9k2WvmqVUk6oE6kDE+AmgWPds+lq5gMAhfrxbumAyLtvT8XxfhfCUUF86Qy7c+fKX3PkyDFTyPtZrOGPSaPAlUtL8OqhATQPuHGw14EuKzceaijUY3mlCU2lBhzrd+HZnV341uXzBWkulU7aRjwYiUYzzCvSIV+rTMkYx6xJXFzxBcV7PwqG43lzDMsde75OgS3NI/BHu/9evawM9//XAoy4A6iPlgY7fCG8c3wIAHfPypEjh3hJmy3n2WefxX333TdOqAMAmUyGz3zmM/jMZz6Trt3nyGLIrDitQpY2NweAhJIut4gn0CPuuIiYrm6mYyFLX1Mh1KV7WNhj8yf8rEmT6zBPJ0dNngYd0YGwWEsZ/YRQp5JLBHFhquRSLCzR4+SQBxGGy5DJNC5/GMsrTAjRDMrHBC2nm7GOOgCgGVa0OWwTiYjpfM0KJ3BLB8PinRhNB1n2umyGQp1KLsUlCwvROeqDSi5By6ALi7MgDzRHjhzCI5dKsLTcCH+Y5ru4Hul1okivQoFOAYVcgmN9TqysMsHlj6DCooZcKkGZSQ2aYWHWyGH3hWDRZneUDymgnRzyQF4qSYn4KJNKoFVI+YVOr4hLX33h+LFplVLMK9JDIpFg89FB/v83LiqCUS1PcHcvLTfxFTodVi8Yhk3rPCtHjhyzJ20zt7Elp/v27cN9992HV155BQaDIeF3TqcT11xzDX79619j6dKl6TqkHFmC1SNct8oKS9wtImanC5kvZlILE4RPug1T6ahLF0I56ooMal6kk1ATNwwQA2S3MqG6GasVUhwfiLvobN4QRj3BjHZTdvjCOBAVUNbW5Am6b1Ko+/IF9diwoBAjnhCYdNlK54hrQqEunY668edFgHAJZBuHep389zMV6rjHmvHSAa789UhfTqjLkSPHxHRavfx1pn3UA6s7iK+/cAh2bxghmrt2vnZkAEf7OKdUzBGtU8nQHM0ps3lPA6FuTMVAKjuT61VyXqjzibjra0ysrLCo8dE3LgLAZXy/e4Jzy+mUMpxVN94sU6BX8RU6gTCD5kE3FpYaxj0uR44cmUewJf1f/OIXuOiii8aJdADXpfWSSy7Bz372M6EOJ4eIIfPQ8tLcnfHa5WX89xqFeFuUk+KlEI0kgLhQp5FLYPWmLjdqJrmRs4EU6pZXGmFIU2czEyEef2ZtJV69+5y07Geu6AkHnVBCmXaCz9DJwcyWv5KlQq8f6ccHJ0cE2zcp4r5zfAjLf/QOLvz5Vhzrd06xVQZhWaytsSQsYKRTqDOq5VCMyZIMnAaOOoVUgvnFM5/4kCHoYigXz5EjhzghhaO/bu/CzU/vxpAryIt0AHC0z8W56BVS7Gq3gWbYhAVep4gXpWfKWKdbKp3fJqL8NSxAtu9smV+ix9oaS0J38d0dNv79vaCxYFyDLwCoytOgJl/L//xxq3Bjohw5ciSHYELdrl27cPXVV0/6+yuvvBLbt28X6nByiJj20Xi79TxteoU6E1HeKeaQ9x57vKwz3eJljAKdAksrjPCFGRzqcc5dYEuz8ayHEOoOdDuhUabHUUcO4px+8a62HiHEoOI0NmQhUckliGlTpSY1/nbH2mk7X6YbsjR5yBUEzQjn2CI1KLVCyg/620a8k2yRWbpsPuzqsCWUkadTqKMoalyuUKzbbLbh9IX5e9fCUkNSpc1kCHpLhoXtHDlyiBcye3ZPpw0A55waW0EQCDPwhmg8t6cHtzy9C3JpfAAm1riOZPCPddSl8D5FVvKMrdQQCzTDYlurFbs6bHyzLAAJZa+XLSqecFutUoZywoGYy6nLkUO8CCbU9fX1Qa+fvHW2TqfDwMCAUIeTQ8TEAmIBoMgwPmw8lRhUMqyoNGFRkhMroXEQLsN0hruTSKUSfhV22B1MmbiQjvVJlmUThDogUYRNJRatAuvr8rCgRA+PiMsiyMF4wQSh/emAoihooiu4WoUUZ9fnQ58mZ+NMGXEHoCdyHSdqYJAuSEddPiGwt4tUqCPPmRWVJpSb1WnP9SOFuqYSvWCO4VRzYtCJs2rzsLTChDXVlqS2zdMpeddrzlGXI0eOyYgJVFQ0YwwAPndWFXZ8+2JcMK8AuugCpZIYz25rtcIfjmBFhQm1BVpRN06bKRGGRQFxT01l6Su5GG7zibMLuZ9wnscqGSIRBm8c4ebRCpkEFzRO3kH8rPo8mDVymDVyXLu8PL0HmyNHjlkjWK1fQUEBWlpaUFNTM+Hvm5ubJ2w8kePMY9QTvzGWpvDmOxEyqQSnhjxwByPwibjkykq4/YrTLF6SnFWXx5cK7mgbRX2hbpotJiedhjqKorDz/otx0xM7cSSazWJKU76hXiXHiQEXHL6wqBsDkCKiEB1fY2iUMnhD9LgMmUwx6ArAHYi/FukW/0nIjDryPWgfyXyTjYkgX6e/f37dhGUzqeYXn1oKhVSC//rtRzg24IYvSzPqjva5sL3dCoAriU+WxmIdRluDsIog1zFHjhziwROMQC2XIhim+S7zEgCxO+yVS0thUMtRoFfCE80tC0YYzC/WYcgVhE4pwzM7uxErihh0+sfvJItgWRZdVi/sxMJSKp3f5L3a5RPnYixZAi2TUPjVOyfx/J4evuz13Pp8voHVRFi0Cv71e3F/D2rytajME7bZVo4cOaYnbbPLm2++OSGPbsOGDXjooYcmfCzLsnjooYewYcOGdB1OjixCJZdALgFKTSpct6Js+g3mAMuyfLbHWEeWmCBD3kuNwjjqACQE0e6ITkLFil4lhycQgVouQVOpAZo0NZMAgJvXVsGokuHkkAe3/Wk3TonMBcOybEL3TCEn/aVGFXRKGYIRcQh1p4Y9vEgspai0l9OTkEKdUSXnBV2yvF9MeIJhaBVSFBmUgoh0AFBXoEOFRQOFjNtfKEtLX0c9Ib7su7Fo8uqBycjl1OXIkWMivvfSEdTd/wYW/uAtPpYgFp02r0jH52F+7ZJ52P6ti/CVC+tw29nV+PNta/HzTy5Fj90PluVcdnIpJdrohZnyzvEheIIRyIj7ayqFunPrC/jvVWkcR84FciFUKZPgt++dwqArgAjD4uc3LMH/XtY45faXLCziXf7/OTSArSeH03q8OXLkmB2zEuo++ugj3HzzzVi/fj36+voAAM888ww+/vhj/jGPP/54gkPuu9/9Lo4cOYK1a9fin//8Jw4dOoRDhw7h+eefx9q1a3H06FF85zvfmeOfk+N0QKeUo9ioRijCpL3siqIo0NH6AZZNX6ODuULelMmg93SzsNQAQ7RscEebFQyTgtcnTS8xTTPI0ylh1ipAMyyoNHZjLTaqEIwKvNvarKLLMQmEGX4gr1fKBMuoA4AQzcITjMDpD2Nvpw1/39Wd0CBGaGSSeG5eoUEJiUS4Lr1k6SsLoDq6Yt1l9fLXHTHhCdLwhuiM5MQpohlKYTo7hbpvXT4fxx+8DK9+5Rw0Ficv1JHiXqYbsOTIkUMcfHxqBP1TOOCuXFLKf19mUqPUpIZJo0CZSY1iowoXzS9EVfS+E4wwUCuk6Bz1ZXUumS9EI0yziETvoVqFNCFXbq4sqzSh2KBChUWd0JRLTPhCEdTka2HRKPBu8zDUcikoCriwsQC1hbppmxlZtEooiLHQvi57ug85R44csyBpoe7FF1/Exo0boVarceDAAQSDXJmi0+nET37yk0m3q6urw7vvvguv14sbb7wRK1aswIoVK/DpT38aPp8P77zzDurr62f/l+Q4bfi4dRQ9dr9gzhd5NPE9wrCizRwjOyEWCFy6t7Y2DwBg94XRMgenRzqFM4ATGfZ22dHvCKS91POGFWUIECV6YgtnJjuiuYMRmAR0kcVCrcM0ixv+bwfuf+kIjvRlpstpKMLgw5MjfJZPoYCfHWCMUMcCtflc6XiYZtFrF5e4CwDe6PVPI5CbjkQedRtmq1AHcA1DFpcbZ+VGnEeIey1D4iyNTiddVm9Wv/c5cqSDLzyzD7s6JhdRrlxaOu7/7ji3FnecWwuAG3fdsCKeQebyR3B8wIXfbjmV+oMVCHJ8U1egxapqS0rHl3qVDIOuAHpsfvSI8D4NcE1FOka9sPlCoBkWvhCNB65ciD/dtgYrKs0zeo6qgnjn15xQlyOHOElaqPvxj3+M//u//8MTTzwBuTy+gnH22Wdj//79U267atUqHD16FPv378dzzz2Hf/zjH9i/fz+OHj2K1atXJ3/0OU47AuG4myNdzQDGoias7WIM2bV6gnwJHQUIvsK3PirUAcD2trmXv6bDR/Tivl78bmt84Jnuc0elkKGOGOQ4/OIS6nzBxLLTfK1wjjr1BKUimSrl67X7sLTCxP9cJHCjArLrK82yqCXOGTE2lIg5d4fcQVz3+20JHeTSxbA7gGd2dvHl/bHOuGcaDUT+55lU+vrrd0/iwp9vxfk/24pd7YkdDHPkOJMJRWiUmzVQSClIKG4RzKKNz7uWlBtRna+d4hk4rltZzrvKpRRQZlIldIHNNsjxzb2XNOIv/70mpc+vlEmhji62OEU2tovhncBUsLRiZgJdjHPqC2DWcOdTr92PW57ahV0ij7jJkeNMI+kZf0tLC84777xx/280GuFwOGb0HMuWLcOyZcuS3XWOMwDypugLCeNu0yllsEVL87qtPjQUJl+2lE46rT4+IFgll6bdmTaWs+rjQt2ONituP2fihjDTkc6jfmFfb0KGXroaSZCQ+SjDIhN4vWM+O/l6IR118dvKuloL/CEauzps/Aq/kHTZfDjY4+B/FrKRBJDoqKMZFrUFcTGmbcSDC+dP3pVNaFiW5c8bmmGxv9uR4ORNF4POAP6+q4vf15nqqtKr5Lh8UTEsWgWWlpsyfThpJ0Iz+O2WUzgx6EZHNLPx1j/thkkjx57vbBD8Ppcjh9hw+ONVDBsWFOLJz63GL99uQb8zAI1CioUlU5c3xigzqXF2XT4+bh0FzQJ9jgDsvmGwbHojQtIFOb7RKFPv/mZZFjqVFP4wjRG3OLu+TtSsq8qSXFTQXRfWw+UP4w8ftgMAPjw1inlFer6KJkeOHJknaUddcXExWltbx/3/xx9/jNraiSdijzzyCPz+ma2S7tq1C6+//nqyh5XjNMFBdDcdcAojfsRcNlJKnN0YHUR7eG0aBiXTMa9QD0u0dHJXuxUREU6kYxlxUgmFcxvysa7WkvZ9rqmJ76NZZJlS/jCN2nwNykxqrKg0QaMQzoVZna/BmmozVlSacHLIg0O9TnzQMgJnBsqDnf4wGggXW5GAWX1AYjMJZoyjTmy5hr4gjaXlRhQSrsNUBnRPRoFeiRMDbvijpeTBCINH3jyR9v2mkn/u7cE9zx/E41vbMDQH0f7xm1fioWsX41OrK1J4dOLk9SMD+O17rdhyYggUBRhUMkQYFqOeEIZFOjnOkUNIyCZiRjU3BjOo5ZhfrMcPr16EG9fMvLv0DSvj5a8FeiXmF+vx4cmR1B2swKysMmNtjQUGVXoWZa0ebi4ixGLVbBgr1BlUMpg0yb8Wy4kyWZ1SJtr4nxw5zlSSFuo+//nP43/+53+wa9cuUBSF/v5+/O1vf8N9992HL33pSxNuc/z4cVRWVuLLX/4y3nzzTYyMxG8OkUgEhw8fxu9//3ucddZZ2LRpE/R6cTmacghHvyM+yRGq62CxkXPZ0Kw4S47IFvTTBcSmA4mEwvraPMgkFOaX6Hn34WxJdcOOUITBQDRsmWZYfHRqFIvKjCndx0SQq9mDAonKM8UbjKB91Ic+hx9n1+dPv0FK901jd6cd+7sdOCe67xDNYPOxAUGPAwD67H6cipaYfmpVOc5tKJhmi9RCCnU0w2JBsQF///xa7Lr/Yjx4VZOgxzIdzkAYB3ucCSJJupv5AEDeBGXZ21uzq/zm41OjeOlAHx7d3CzaUikxwbIsHt/aBgBgWOCJz67Cp9fGRYdj/ZnJtMyRQ0yQ2bcxEYbMn0uGjU3F0ClloACMuIPY3+3IWHbsXOmz+7Gvy45dHTbo0hAFQ1EUZBJueuwPM6IU68ZWHFXna2fljlxRZeK/9wQj2HJiCE9+1C7axno5cpxpJH2F+9a3vgWGYXDxxRfD5/PhvPPOg1KpxH333Ye77757wm3++te/4tChQ3jsscdw0003weVyQSqVQqlUwufjXAXLly/HHXfcgVtvvRUqlbDlSTnEwwCRT6NXCeMCqieygdpHRZgbFaRRZlJDo5Di02sy47T43hUL8bNPLoFGIZv1DTxdFRb9Dj/fLECjkHKdz4zpv4aUEm4jsa1CeokMl4ky49KJhtjf2hoL/nOoHwDwysF+bFo9cwdAKiBFk+tXlCfk1QmBQipBbb4WNMtCQlFQK6Q4q05Y4XSmjBWY5FIqwV2XLhQyCUwaeWJDliyrxoot8MilFKrzps+MOtPZ2jLCu5CXVZhw8YJC+IjJ8LE+Fy6aX5Spw8uRQxQ4/WGUmlTQKqQoMarAMCwoanaNudQKKc6pz8eW5iGEaRalRhVeOzyAr1zUkIYjTy/kverefx7E725aMaOsvmRQKSQI+TmXt80bQqkp/e7yZPAGIygzqhBmWCyrMGFVdXL5dDEK9Vx32x6bH3IpBZmEwq/fPQWZhMKtZ88u5iZHjhypIyklhKZpbNu2DXfddRf+93//F62trfB4PFi4cCF0Ot2U2y5duhRPPPEE/vCHP+Dw4cPo6uqC3+9Hfn4+li1bhvx8cU5ecggL2cxBqGYS5ORdjAHvVm+ID9gWsoSRpFCvxNvHB/Ha4QF4ghH8+bbZh/emep2OLCH0hWgMOgOQy9IvTpUQYqBfoDzFmeIPx49HK/A5Q56jJUYVavK16Bj1Yke7FYPOAO9gFYJAmIZGIYUvRMM4i7KQuUJRcfHfL8JVeRKXPwyjSgZngDt3ykxqSCTCKGYFOmWCUJdNQedhmkFbNDKhNl8HhSzpQoVx2L0h2Hwh1BVMPa7KVn6/NR6f8uUL6kBRFJpK4w7lozlHXY4ccPjCfJWJXCrBR62juOf5g1habsTnzqrGBY3JZZw2FOmw+RjXIGjQxeXc0TQDqXTu1yyhYBgWgTANCtxY8li/Ky05dVqFDC4/dy/stnpFJ9TZfWH0RSs5/vucGqybQ67cikozemx+hGkWA64gVDKJYNFDOXLkmJqkrs5SqRSXXnop7HY7FAoFFi5ciDVr1kwr0iXsUCLBsmXLcPXVV+PGG2/Ehg0bciJdDh6y7Moi0MR6VVV8JcruC4suzJxcPcyE2ABwgsPP3mrBa4cH8MHJkVmVelJpssn02BOzvoR6jUoMav4vmijYN5OQ5clqubCDcDJH0RemcdXSUgAAywKvHe4X9FgGnQH4QjQkFGAUoMHIWKSS+GtPM+IuJbH7wrxIBwhT9hojX5fo3PMExfV5moqOUS/fqXZe8dxiOyI0g/UPb8HyH72Dr/7jQCoOT3Ts6bRhT6cdAOdm37CAc87V5Gl5N+6xflfGji9HDrFAjv1MGjkO9Thg84bwfsvIrErsK4hrOsMCrSNe0XWsn45BVwAfnhrlF3yVMgkKdKl3fhuI8UKvXXydqJ0TlEXPlhWVZli0Clw0vxANhVoEIgye2dmVK3/NkUMEJD2DW7RoEdrb29NxLDlyJHRYKhNoBUunkkNJuCDEljEkk1BoKtGjrkALg0DlwGOhKAr/tSQuuLx5VPi8sckgHXVVeZoEZ0Y60avl0Cpl0KtkKBS4ScF0dFnjr8nWk6OC7tsUDbtuKjUgGGZw1bJS/nevHBRWqIt9lhk2M91EZYQzLBIVc/ocfjy7sws/fPU4trcJ+95MhWvMdU+IRhIxCsaU2AZF7j4kaSEaycyfo1Ank0r4UvVTwx7Ri7vJMuIO4rsvHUXMqPnF8+t416ZEQmFBNPez1+7PSPOZHDnEBMuyWFxmRH2hDgaVDIeIDuaz6QxdMUFXULGNd6ej1+7D8op4BnGZSZ2WzrXkwl6/Q3xCnUYhxaJSA2oLtNDPMafvprWV2PfdDXj61tVYWGpEU6kByytMeOlAX4qONkeOHLMlaaHuxz/+Me677z689tprGBgYgMvlSvjKkWMukKWvQpbIkXl4vTZx3ZQ/OjWCYwNutI14cagncyVBVywp4b9/7fDshbpUL9L1EEJdl9WHVVXp7/gao65AC3cggh67H8GIeMQF0vFoFtiFqVJI0TzoxrF+F2xernxvcbS5x5E+J18mKATkJOSmJ3YJtt8YMqJ0NMJwQuGJfhe++/JRPL2tAzvaxNM0weFPbBKTSaEuEBaXq3kqSKFuXtHcG2GtrDRjZZUZa6otopwgzpaWQTeu+d02tAy5UVegw+3nVONqQsQHkLDIcmwgV/6a48xmwBnAkT4nWoc90KtkONTrAMCJSFV5yTueKyfYJtscdR2jXhwgxsFlabpP5Wnj0TuDIuxC3TbqxdF+F9pHvNDOUaiTSyW82PmbG5fDH6Kxrc2K77x0NOeqy5EjwyQt1H3iE5/AoUOHcNVVV6G8vBxmsxlmsxkmkwlm8+zCLHPkiEGWEC4oEa7DKeneO9rvEGy/M8FLvCaGDJTvxZhXpMe8Iq7MfV+XPelJZLqaSZCOutXVZiytSH/H1xiXNhXh3Pp8nNuQj2d2dAm23+kgBaqxIki6IVeiY8exuNwICoBSSuHGP+4QrIsa2VSkyCB8kyIZUfoaibqjagvioddiysT0hegEcS6Tpa8BEYne09FCdApvTIFQZ1DLsa/Ljo9bR0+bnKBhdwA3PL6dz1p1ByL4zNoqyMdkYy0qjV+7j+fKX88YaIbFnc/sxZqH3sXC72/GTU/sxJ+2dWT6sDIOOfZzB2iMerjFlKUVplm5yIoNKj7/U6OQYkWlKSEmIxvwh2gsLo9fJ9K1oERmEIvR3UuOoS7+xQcpEdQ8wQj+tbcHGxYU4eL5hVhfZ8Gjm5vn/Lw5cuSYPUnL8O+//346jiNHDgDAqCe+ctWQgknPTCEniicG3FM8UnjIEPriDIgNJFcsKcUv3zkJAHjjyADuOLc26edgU9xOIl+rhExCIcKwODnkwZqa2YfqJsvt59Ti52+fBMsCrcOeWb0e6cAViA8shRaoSKEu5tKSUlzwc5BmMeIOoW3Eg6bS9Auq2wjHWlEGypMTS185l1iFRcOfr0K6C6fj5JCbz+L54nm1WCZgh9zxpa/Z46iLdXzVKKQpmTSS5+mQ6/QQ6l7c14fV1Wa81zKCxWVGPPm5VRNelxYSjro2EYnYOdKLLxTB28eG+J+3t1nRbfOBZljR3FMzgY9oUtVli38elpXP7t4plVAoM6nRafXBF6Kxv9uRUJGQDbSOeHCkl3DUpSkiJ18v7utwgDg3Cg3KOZf/bj46gHuePwR/mMY3L5uPzmYv2ka82NZqxTc2zhessVSOHDkSSVqoO//882e9s3A4DLVajYMHD2LRokWzfp4cpy/krcAiUNdXAJhXpMOW5mEA4Ff9xQI5ac3XC/eaTMQnFpfwQt1rh2cn1KWSUITB1pMjALiJ8oWNBYLuXyWXYtOqCnxwcgSBMNf9UQydGj1EU4ASAUvIAU6oW1lpRojIhBsrzb55ZCDtQl0wQiMYiR9DoT4Tjjqy9JV7FeRSCSotGrSPetFp9YJhWFEMgqUSCkuizsd7L50HhQCdk2MU6JVQSCVgwSJMswhEaLAsm5bsoVTiC0V4R29DkT4l7yMpYIlxgjgb9nfbcbDHgTytAs9/Yd2k3cvnFenxxC2rsKjMkPFFqRzCMVEzpgGHH3/8sD3jY4xM4iWa6rQOE0JdpWnWz1lh0aAzmmHbVKLHBy0juO3smlk/n9A4/ZGEn9Pl/C4nBEB3UHyOOncgfm5U52mneOTMWFhi5E0BL+7vxT0b5uGVg/2w+0L477/swZ9vWzPnfeTIkSN5khbqPvzwwyl/f9555036O7lcjsrKStB09pS15BAOlmXhjgoMEgqCTl5J916fyDo8kSH4ZgHFy4moL9RhfrEezYNuHOzhVmMnCigWCrsvXrbhC9GgBY7TeGZHJ14/MsCft702nyiEOh/hwhSqKUsMk0aBfd326Pecu27sROyNI4O4b+P8tB6H3Zs4uM546Stxcq6rzYNGKYXTF8aQK4ASgd+jiTjW50L7qBcGlUxQkQ4Azq3PR8uPL8OmP+7E7g4bWBYI0QyUAh9HstAMi+98YgGaB92onkVm1ESQgvKwCLORZsMTt6wCy7LwBCOTinQsy0Ihk+CShUUCH12OTDORUEez3PkfCNNQycV9HUgXnmBclGoeiJeCL5lFI4kY5Hjt2IAbFmcADMNAIhG2O/xssXkSr4npyqgjFxLnFQkXwzNTSLflRNmDyVKZp8Gaagt2d9rQOuxBhUWDLpsXJ4e4fERfMALNHLPwcuTIkTxJf+ouuOCCcf9HrnpPJ8J95zvfwf33349nnnkGFotwoe85xI83RPPOm7mGoyYLmS0UC74XC7EJvoSCKAasVy4tRfNgC+QSCjvaR1FhqUxq+1Rm05L5KkqZBBUCBuADQIiOi8sKKYU+hzgcMKQLs1DgjDq9UgaK4t7nWEadL5h4X2gf9eLEgCutOZQjY0SOTJS+Sidw1AGAQibB0T5u4tXr8ItCqIuFihsFbj4CxBdl8nUKWLQKBMM0AiFa9EKdXiVPueOHPE+HTxNHHcCNE/WqxHPrg5Zh3PbnPWBZoKFIh7fvmX3FRo7sxRuMTPo7hy+MYqO4rwPpYsQdgE4pRXWeBseimY3lZvW4TM9kqCSEOr1SCpsvDKs3LHiW7WwZdgcglQCx9et0LUSatXIU6ZUIRBj4JxCSMw0ZiZMKRx0AXL+yDLs7bQA4V91jN63AN188jLZhD674fx/jvfsuSMl+cuTIMXOSXkKx2+0JX8PDw9i8eTNWr16Nt99+e9rtH3vsMXz44YcoLS1FY2MjVqxYkfCV48xlhJiUSAUueSowKGFQSZGvVeBwrwPff/mIKNrWMwwLOqpsSUVQHgcAlywsxMISA5RyKV49NPPur+koYyOFumCEGTcRTDcmIo8tRLPjOmdmCrIDrU7g10QioVBmVKPEqIJWwU2wVHIJLGMEoGd2prf5xognkNDxNhOldHIio45m4uIpmWXWa898RhDDMLBo5KDAdQz+n+cOZOQ4wjQLmzcEbyixbFmsfOelI7j/pSP4z6F+0ExqViAKE0pfTw9H3WRIJBQYliuN9wbFNxnOIQyBMA3dBIuzVRYNHD5x3FOFhmFY6FVyaJUyuAIRXphZOsfs0E8sKsHf7liLq5eWgqIozC/WY9ApriqSyWBZFka1Aia1HMUGJb59+fy0OeV1SjmG3EE4/WG4RDAXGIuMaMQzmw7AE3H54hIoZdzz/udQP6rztAiEOEerVinlc3Zz5MghHEnblozG8W6jSy65BAqFAvfeey/27ds35fbXXHNNsrvMcYbQS5ScapTCrqDmaZXwBhm4WBqj3hBaR7y4cEERLmwsFPQ4xuIkmgKIxV3SUKiH3ReCJxjB3k47QhEGCtnMNf9UVqdax3QsMwrcFdc0RnwSi7gbjrowKWRG4JVJKfRa/XxJU5/DD9uYzmkvH+jDty6fD0OahMQemx92Yp+FGRDqEhx1ROkrWX7UY8v8JMkTotEaDe8P02zC6yYkpGM4IPKGEmGawcsH+uAN0Xjn+BCuXFKSkufVKWXQKWXwBCMYcp8+jrqJIMWZWKalLxTB5qODONbvQolRdUZnlJ0puIORhDLPGF02H+/0PdMYcgdwsMcBAFhYokdtvhYGtRyrqsxzet7KPA0q8zTY323HK4f64Rp0o98ZwOLyFBx0mvEEI9jbxcVqnFVnwRfOr0vbvhQyCeRSCmGahTc0ueMzU5CxL6ly1BlUcmxsKsZ/DvXD4QvjveZhVOVpcWLQjWF3EAPOQEajbnLkOBNJWX1hUVERWlpapn3cD37wg1TtMsdpht0XglImQZhmUCRw8LtUQmF5pRGdVh8cvjAsWgV+/c5J/PLtFhTolfj5J5fBohU+H66T6HxnEliEmgyKorC+Ng//PtAHf5jG4V4HVlVPX8aeDrnITgh1VXkaFAtc3kgKdYV6ZYIYkylIsZDsOiokMcHUFQiDYdgJRZdSkxo/3dyMH1+zOC3HMFY0zUTpq5xY9SZLX8XmqHOOEeaE/hwBwP990IYD0WxDAAhExO2wOtrnhDcqRK+rzUupY7jQoIRnJILhLHfUsSyLi37xAQp0SqyrteDeSxsTfk9mOGqi7tsIzeLpbR1QSCVwF2Y+7zNH+hkbjUAihsWvTLC304b1dXkIhGjIpBSOD3DXxv/Z0JCS5yfzjrPlNSaP06xJ/z1KJuGEui6rT1RZiRGa4SNkKKS2WuD6leX4z6F+AFz564JiPfodRqjkEvQ6MptJnSPHmUjSQt3hw4cTfmZZFgMDA3jkkUewbNmyVB1XjjOQ6nwtX+7UVCp8eOuvNi3H1pMj6Bz1wuELYVvrKAajE6WWQTfW1+UJfkynRtz89yqFOAYJADcx/feBPgDAjjbrjIS6dFBqUqPcrEav3Y8uqw+WOWS3zAajOj7YHXYHcazfKej+J8KolsOikcMWFZwzgSEq1LEs4A5EEAgnTsTydQq0DnvQOuzBOfX5uGxRatxIJA5CfFLJJBOWVqWbxIw6svRVXI668aKm8O7Dba2jCa7qoMgddbs6bPz3a2tSe/0r0qvQPuKFJ+o0ysS5mwpG3EF0jHrRMeqFUj7edc0S/urRaKakQS1H67AHgTAzocsqx+mHbwrHUraISKnm/ZYR7GizAgDW1cavL/UpalZFVh+IsbRzIshzoXXEgy0nhnDxgvQ1n4ldnTzBCEY9wbR1mE0W8rqoUkhT2njvnPp8btGZYcGyLPQqGQ73cePajhEf1ucMzjlyCErSo79ly5aBoiiwYxLh161bh6effnra7SUSyZQrz7mOsGcu5MTalIHups2Dbnzv5aMAgHMb8mHWKhAIM9AqZeh3ZGYyHYqwmFeoAwvgskXi6YZHipY72q24++IkVnlTaDq7ZGER3jwygBKjDxRFoVLgZhKko86klme8Ky/A5T7NKzaAYVkUCCxcxlhaYUSYZuAJRDDiDvACvExCYXmlCcEwg1EP54b8338dRmOxATX5qSnfiBGM0JBKKNAMi8o8TVoyEqdDJqGwtsYChmWRp42/F0a1HAYVlz3U68i8o87tD6M6T4NOK3csmSgTHhuQLnZH3a52K//9utrULuLMK9LBHQyjSK+aNL8rGzhGdKpcOEHjGHIYSTpOLRoF+p0B2LzZISCkG6c/hBse3wGphEJ9oQ6P3XR65TlP1PV1Xa0FgTBzRmbUhSIMemw+lJtVkEslKDOpUWpUweEPp6R5wuFeBw73OlBqVKHEpEpZvma68QYjWFCsx4lBN1oG3fjo1Ghahboykxpt0aqWEbd4hLoeW3zMkOp7g1RCYWNTMZ7Z2YV3TwxjWYUJa2ssiDAsrJ7sdnjnyJGNJP0J7+joSPhZIpGgoKAAKtXMBvYvvfRSws/hcBgHDhzAX/7yFzz44IPJHk6O0whytWxs9pcQ1OTHb8JmjQK3n1ODW/+0Bw5/GC/u78X1K4UP8ei2+XBy2AMAeKC2SfD9T0aFRYMykxp9Dj/2ddkRjEzfoTFdOsnuTht67X4YVDKYBXaQkavSDn8Y21pHBd3/RNAMi51REWHZHIOnZw1LYWc75zjqcfh5Rx3NsNjTaUd9gRZXLCnBa4cH4A5G8N9/2o1/3LkOxcbUCa1H+5z8BESdoZIVhUzCO680isTbbblZg+MDLgw4AojQTEI4tNDYfGFepAOAogx0ABzbdXCsC1NMRGgGezu5UrR8nRJ1BakVmR+8elFKny9THO+PC3UTdXgm5YEwEVRu1nJCnd0XAsuyGRHZxYTTH8ap6Dhg8DTqBBxjogyw2P1jQYle6MPJOH0OP/ZEry8LSvT4xaeWAQD8ITol7qn/+6ANbxwZBAD0OwNYWDI+e1yMuPwRnBiMV5mk2/lNCpjtI14sr5xbPmCq6LDGI3HM6tQv4pxVl8c3++qz+/kxTGGWdAbOkeN0IulP+AcffIBNmzZBqUz8wIZCITz33HO45ZZbptz+6quvHvd/N9xwA5qamvD888/j9ttvT/aQcpwmeIJhVFrU0CikGWkVX27WgKK4Vf5OqxdLy024aU0l3jk+iAM9DrSNeFCXorKDmeILRlCTr4VcSmWka+VUrK/Lwwv7ehGMMDjY7cDaFLtKZgLLspBJKNQXaFFhEd41JZdK+OB3AHAFIqAZNqMdev2EwKEVuClLjIvmF+Lj1lE4fCG8fKCPF10kUYebMxDBo9cvQfOgG4MOP/xhBpf95iP84MqFuGZZ2Zzfx3/s7sagMz6hHevWEgqyyUpoTBfTcrMaxwdciDAsBl2BjK7Wj+1WXGwU/lpDuj8L9MoE4UZsHB9wwR39zK+tsZzxQtJkHCcdddPEWTAsJ9bJpRK+ZJ9mWLgCEcGbBIkNl//0LgFmGRaFeiWGo+XPVRY1TBoFnP4wBpynnzA5HZ1WLwr1Sli0Cly9tJT/f3WK4k8qxtxrsqVhx1hBt9iY3vt6mVnNL2B1jnqnebRw9Nvin4m8NIxt1hBRDscGXFhZaYLNF8bQabhIkCOH2El6Cf+2226D0zk+h8ntduO2226b9YGsW7cOW7ZsmfX2ObKfF/b1odvmR/OgB/IMCB0quRSlUUdPx6gXJo0cZq0cI54QwLIJdnOh6Lb70THqxckhT8bEhskgy712EGVg08GmsPbVF6LRafWhdcTLl1cKDTmJ1CtlCQ0uMsGWE0P892RYu5AsLjfiSJ8TfXY/XP4wKIoCRXGloBQAsCy0Shn+8NmVuGFVBQZdATh8Ydzz/CH87K0WuAJzmzgMOgMJuTtCOy1jKAiXXGiM8ESGMpPZbELDsiyGXYGEZi+ZyKjL18ffoxF3UNRdX3e1x/PpyPyoHImciDrqFDIJaicobScjVKRUPHuJjBA4E0sfx5KQIZYdVYpJ4fCHeZEOALzR+3qPzTdtTqHTH8aQyw+rJ3jalObZPEG4AmE0D7rTcu8i7z0SiispzQb8Y0qk032fIuMqejMUfzMRVUT1T20azAN5OiXmFXHPe6zfhWFPEF1WL5z+yLjYqxw5cqSXpGdxk5Uh9Pb2wmicnX3a7/fjt7/9LcrKyma1fY7Tgw5ixSpTIfixnCx3IAK7L4y6Ah3UCin8YSYjK2oDRH5VBivjJiQhp65teqEuHaaTy379If99plwX37x8Pi6YVwCpBHAHIxhyZ3bV8Z3jcaEuUz4fuVSCcpMaYYbF0T4nnP4wWBZQyiRgAYx4QgiEadQV6PCVi+pxxRKumYRBJcN/DvXjs0/uGteJNBlODLjgJ4TbvAxdT2RSCe+uHOuoO29eAb5yYT0evX5xyvP5ksHhC+M3W1r5+b+EyszrVaBLnHSNfb3ExK6O+PUuE07ibMAXivAlWvOL9ROWdpNTPpqNCwbk/d+W4YUPMUDGgqRyoUsskItsL35pPd746rkoNqpAs4nl0xPxu/dOYe1P3sPKH7+Lb714JN2HKgjfePEIAmEGBXoF/mtJ6fQbJEklIdQxLBexkg14BRbqyO7nfRlcTBtLmCjJTdfYYW0Nd1+jGRbFBhUoikLbiAfW3PU4Rw5BmXHp6/Lly6OuCAoXX3wxZLL4pjRNo6OjA5dddtm0z2M2mxOEPpZl4Xa7odFo8OyzzyZ5+DlOJ2KrZVIJlbCSJSRn1+chGKHR7wjgeL8TlRYNzBo5Ggp16HMIL8B4gvGBSb8zgHkq8ZQAlZnUqLRo0G3zYcAZmHHJZ6oW5BiGRV90lVMpk2SsbfxVS0vRa/OifdQDk0aBfocfTaWZy3wZJVwFZebMlUvHynTIsho5MVl3+MIoNkqRr1PisZtW4MolA/jpWy1oG/Gi1+7Hp5/YiWduX5NUaUe31YfjAy6MeoLQKCTwhbgJYKYcdQDnqvMz9Djh6fx5BTh/XkGGjipOj82HZRUmHOp1gGW5stNM5OWNjTsQq1AXoRnsjmb2WLQKNBSm3tFg9QTxP88dxKArgJWVZjx6w5KU7yPdNA+6+Wv9RI0kgPH3AocvjHJzoqPOnnPUJVxDRVwRPmvIPEq9So5Cg4rPFfWFaDAMO2k2W4RhIZMAoCioFSJbzZwFYZrhs9GUMil+/NpxNA+60VCow3evWJiSBUlyrKRTylBsUGZFFiTDMtAopHzzkXTHwZAi2IiI3JrBMI2mUgP8YTptpoa1tRY+p84folFuUiNfr8CgKyC66p4cOU5nZizUXXPNNQCAgwcPYuPGjdDp4oNThUKB6upqXH/99dM+z69+9auEm0GsGcXatWthNicX1Pnwww/j3//+N5qbm6FWq3HWWWfh0UcfRWNjI/+YQCCAr3/963juuecQDAaxceNG/P73v0dR0eSdgliWxQ9+8AM88cQTcDgcOPvss/H444+joSGJzpY5koJhWD5bi2ZYFGYgIwngsqxiIb5H+lz40gV1kEkkONzrRPuIF/d/Yr6gg5lYZ0wAougoOpaf3rAEhXolavK1074uVIr9Xa5AGLGFxWCEgVaRmc6IfQ4/htxBdNv86Lb50TbixSUZORIO0oGilGYmow6IOxzDdHw2rpITQp0/lJCFtnFRCarzdfjMkzsx6gnh+IALP93cjB9dszgh620q3msewgOvHgcA5GnlvFCXKYcuwJX9+cP0uNJXsdBh9eJgjwMAcPWyUlzYWJiR48jXJb5HQZG+Xnu77DCq5WgqM2JBsT4t9wONQoaPo41pLCK87s8E0gk1eT5dolIXc45ZtHExItf5lRMwY0RE+rmYC2SZuyralIrMV/WHaWij3S1jglLs345RLzhNn0V/BhZTUw0pWlbnaXGg24GWITeO9Tvx8HWLU7KPMpOaz2P2BCP4uNUKb0j83aWHXUFepFMrpPw5kS7y9fHxyYhbPELdkCuAY9Hrqz5Ni/dkTp3VG8KAM4Aumw+DjgAWZXAhOkeOM40ZX+V+8IMfAACqq6uxadOmGXd5Hcutt946q+0m4oMPPsBdd92F1atXIxKJ4P7778ell16K48ePQ6vlVkLuuecevP766/jXv/4Fo9GIr3zlK7juuuuwbdu2SZ/3pz/9KX7729/iL3/5C2pqavC9730PGzduxPHjx2f9d+eYGrK0w6CSZayMcXmlif/+UHTyenZ9HoqHlVArZDja58TictOE26YDmokPYDPRCXc61tZY0GPz4/UjA9Cr5II6hEgLvkWrSHnnxZnyj13d+Mt2buWxoVAH9xzz1eaKnZjY6jIYwr64jBvMufxhvlObQSVHWQ23mu+eICC9sViP5+5cj5ue2AGlXIrdnXb8dUcn7ji3dtr9eYIR7O20ozZfC4c/jOp8LT65yoyL5hehOi9zjRpiIqNYHWJWTwhrayyIMCyuWFKCSxYWZ+Q4zBoFJBR48V2sr9cbRwbQY/ejx+7Hp1alpxO4WiGFQSWDK5D5UvrZQjaSmKjjK5DoqCvUK/lFBtIBm+nMTzHgD9OwaOQIMywqzZqscD8lQzASF6eU0cUctTw+PfGGItAqZWgf8eALz+zFhfOLsL1tFM/fuT5h8Yfs0pmtkGXAChmF9lGu229NvjZlTmeFTIJSo5qvSAC4LEixC3XktaBAAFcXOQ/xBCMIhGmoMtRBniQ2NwHSF/lSqFehrkCLthFvQhOJbGk8kiPH6ULSV+XPfe5zc9rhhx9+OOXvzzvvvBk/1+bNmxN+/vOf/4zCwkLs27cP5513HpxOJ5566in8/e9/x0UXXQQA+NOf/oQFCxZg586dWLdu3bjnZFkWv/71r/Hd736X71D717/+FUVFRXj55Zdx4403jtsmGAwiGIyvtrhcU2dq5BgPKbpkcrBVm6/ju3ge6nUAABaXmfCP3T0AgMsXFQsm1DEMy09apRIqoWxQLPTa/TjvZ+8DAC5onFkpX6reXXLQZvOGUGpWp+iZk4OchJ4a9iBMM/jfjfMzciwAEhoxaFPUJW42MCywq8OW8H8KmYQvG7RNUtJWX6jDLz61DJ99ajcA4OmPO/C5s6qnPf87R7147cgAAGBhiR4vfumsuf4JKSHWUGIiR12YZjDgCGDIHcDq6sw0JTg+4OLfpzJT5gRNiYTCWXX5vJNMjEJdhGbwRvQcU8gk2LBgcmf+XCkyqOAKeDDkCmSlMDPqDmBZhQlyKYXGoonLg8l7wbA7yGdl1eRrcd3yMpi1CjSVTd0t9kzg5KAbtqir7tiACyGagVKWecEgVUznqPMFabA6Ft956ShODXtxargdAPCrd0/i/ZaR+OPGZJhlI6SjjmbjjvT6FJfYr6kx48OTND/2dvq5snMxQ84T0l32CoxfHO9z+FGXhuYNybKNyIRO5wL+2to8tI14QU7JnDmhLkcOQUlaqKNpGr/61a/wz3/+E93d3QiFEidbNpttki05LrjggnH/Rw5AaXr2N9pYN1qLhZvw7Nu3D+FwGBs2bOAfM3/+fFRWVmLHjh0TCnUdHR0YHBxM2MZoNGLt2rXYsWPHhELdww8/jAcffHDWx50DCd26lDMsc0sHEgmFJeVGbG+zYsAZwJArkHAjFPImFSBWmeVScU7Sys1qmDVy2H1hHOl1TjmhTPU8kxy0lZtVqMpQRt2CEj3/vUomgTsQwYDTjxKj8MKhLxRJWJHXZHCFfEGJHquqzBhxBxBmWJQY1MjTKQBw1+mpmkWc21CAi+cXYkvzMPqdAbx2uB/XLp/avdRr92F+sR6eYATl5swJTmNZUm5EoV45YX7jDY9vx6FeJyQU0Pyjy2dc4ptKKApYVmEEy2Y20xAAbj+nRtRC3a4OGx9HcFFjYdrKjgBOqDs17EEgzMAViGTMZT4bWJbFjnYb3IEISo0qGNTTl+8W6JX8e95UasQvNy1L81FmD75wBHqVDO4A50L2h+jTSqjTKqVYWm6ESi7lHXLVeVqsqDQhGGHgCUbw4v6+cd3l//RxJ0pNKgw4A4gwLFqH3Tj7kffw7B1rM9qgZy6QomWQEO3qC/UTPXzWhGmWH0PF7ptiJxRhkKdVgIUw3bbztAqUm9R8x9dumy/jQh3LsryYq5JLoFelb4y3tsaCf+/vRV2BDmGagUouRTiS/WJ4jhzZRNKzggcffBC//OUvsWnTJjidTtx777247rrrIJFI8MADD0y7vd1uT/gaHh7G5s2bsXr1arz99tuz+RsAAAzD4Gtf+xrOPvtsLFq0CAAwODgIhUIBk8mU8NiioiIMDg5O+Dyx/x+bYTfVNt/+9rfhdDr5r56enln/HWcqw0R5jzpDWWMxllaY+O8P9jhgIiZIQnY8IoUMsQ7KKYriHYZWbwj9zunLtFLV3p3MYhtxhzKWQ1aVp+WDrwMRBlZvKKGDsZCMuhPPT00GyzQK9Ers7bKjy+ZHvyOAfd12vqwJAEY9U58rd54XL3f944cd0543XVYfmgfd6LX7ccXS1HfKmy09dh8O9DhwsMcx7m8oi7pAGRYYnMFnJx0c63PhYI8TR/qc6Lb64AtlbsJGCpWhOSzapYvXDvfz31+xtCSt+yokOg4Ou7Kr/HXYHeRFpfqiyQUG8uMw4g6ibcST7kPLOkIRGod7nPzrCYzvfpnttA57cKjXiUO9Diij96wQzWB/twPH+l3otfvw0OvH+cdfu7wMAECzLHrsfkSilh+ajWbGZtnnhYR01PlDpFCXWoGIbN7TPOiGJyB+oa412nVULqVw76WN028wRyxaRUL0QK8IuuO6AhHe4RYIM2ktV75sUTEO/2AjHrp2MU4OeXC414mBDI1TcuQ4U0laqPvb3/6GJ554Al//+tchk8nw6U9/Gk8++SS+//3vY+fOndNubzQaE77y8/NxySWX4NFHH8U3vvGNWf0RAHDXXXfh6NGjeO6552b9HLNFqVTCYDAkfOVIDvLir8lguR4ALCVKWw/1OFBkVKK+UAetUirohKmXyA9J56rZXFlSFg+WPRItF56IVHsCSaGuOm/6ZhbpQiqh0Fgcn4zKpRS6rZkZ0I16485UrUKa0VzDYoMKZSZVwue51KhGXYEWGoUUI56pRe81NRZeND8x4OKdVpPRafVCq5CiJl+L6jwN/rmnB8/v6cb7zcNz/lvmgia68BBh2HHlr6Tzr8eemXMm5hJmWODKx7bxpcmZQKOQotSkgkUjT3CGioEwzeDNo9xinUYhxUXz09t0o4go7RpyiSfIfCZQAL5wfi0uml84pfNlrHCdK6sazzvHh+ENRhKuo74scD/NlLv/vh8nhziBlnQdkw7S/xzqhz26cHnFkhI8cv1i1BKZtKoxTmTHFG5tseMJRqBVSFFsUCZcA1PdXXpsl22xi7+eYARDriAK9cqERgfphKIo1OXHX/duEQh1Y5taaNJobFDKpKAZFp3EwnMuoy5HDmFJWqgbHBzE4sVc5yGdTseXm15xxRV4/fXXZ30gRUVFaGlpmdW2X/nKV/Daa6/h/fffR3l5vDyquLgYoVAIDocj4fFDQ0MoLp44MDv2/0NDQzPeJsfcId0kZm1mS3wSGkr0OlBiVKNt2AOdQsav3ApBHzFxF0OA7WQsLo8LdYd7nYLtl3RhSjIc30eWv5o0cox6MjOxHiUGcd4QnfauaFNh0SnQ5wjAF6KhkklgVMtRZlKjfcQLo1qW4BaYCIqi8AXCVfeHD9omfWznqBcRmoVMKkHnqBdVFi1++c5JfPPFI/jWvw+n7G+aDVpFYtYSSTmRq9ibAaHOG4zAoJYlTHSLM9RxG+Cuc/2OAGy+MJyTZBhmio9bR3kBYMOCorROkACgiJhID2dZQ4lCgwrfvnwBnr51Nb58Qf2kjyPvphqFZFwOJcOwGW/Ok2lG3AGUmNTwh2jolFKUGlXwBsUtqiQDWXJJuoMsGgWMahkK9QpsPjqIxiI98rQKfPOy+VDKpPjRVU384h9ZJq+USTLqCp4rLn8Y3hCNQVcQ9ug1UEIh5aW8Y5sx+EX+mg04/JhXpIMvRPO5r0IgJYbeXSIT6qQUJozUSCUP/OcYvvb8QQCAWS1HmneXI0eOMSR9tSsvL8fAABemXFdXx5er7tmzB0rl9F14Dh8+nPB16NAhbN68GV/84hexbNmypI6FZVl85StfwUsvvYT33nsPNTU1Cb9fuXIl5HI5tmzZwv9fS0sLuru7sX79+gmfs6amBsXFxQnbuFwu7Nq1a9JtcsydBiJs2qTJTAljjCKDig+qPdzjhEomRalJjSF3EDvbhXObkC5DMecTLSGEuiN90wt1qZI6SZeJJcPnDNlQYsQdSuh4KCTuQBgGwn2ZSUcdec4GIgyc/jCq8tTQKKQYcAaxr8s+7XNsbCpGpUUDtVyCHrsfrxOlhySPb23Dv/b1wukPY9PqChjUMt5xadGmvzvcVJA5gd4xk6EK0lFn80NoDvU4cGLAjQAx0S3SZ06o20oEw7eOZKZ8fDJePUSUvS5Jb9krkN2OuplCGup8IQatw/HS16se+xgN330TF/xsq/AHJiJODLjRbfOBBeAJ0uh3BuAOnj7ipY64Xz1/Z3yMXWJSwemPYNgdAsMCLUNuWL0hflH37IaC+FiCAh779HIAXNfUTC2UpQLSsRS7h1VaNClfrC0c04xB7OLvgDOAk0MeeIIRFAp4jyog9vXNjekvt52OEeLcVgiwgL+yKt5hxO4Po2M082JljhxnEkkvCV977bXYsmUL1q5di7vvvhs333wznnrqKXR3d+Oee+6Zdvtly5aBoqhxJQ/r1q3D008/ndSx3HXXXfj73/+OV155BXq9ns+QMxqNUKvVMBqNuP3223HvvffCYrHAYDDg7rvvxvr16xMaScyfPx8PP/wwrr32WlAUha997Wv48Y9/jIaGBtTU1OB73/seSktLcc011yR1fDlmDhmUWymCIPilFUYMHgvAHYygfdSLpjID8nQKqGRSeAJh6NIYIh7D5g1BKqFAMywKdJkVoqai2KBCvk6JUU8Qh6dqKJHi0tRLFxbheL8TEZrFwpLMlpuTQl2eTgFZhpYd+x0BuKJZMxVmNQwCnKeToZRJsarKhM5RH0Z50UyFpRUmjLqD8IVpfOaJnZBJJfjLf6+Z8DmkEgqPXrcE3//PUZwa9uC+fx1GTb4OC0sT328WLFZUmtBl86HMrIY3RPNlppYMO3Tr8rlQ9DDNwulL7KyXaUfd2DIWhUySUXHXoI4PScSUmUQzLGzeECiKc/2c3zh9d+u5Upgg1GWXo26msGOWbRxjXJQ0w8LuC4FhWEjOUCuHRinFikoTOq1e2Lzc5zWbSztJfv9+K3a326BTSlFu1iQsMlWYNWgo1KF12MOfJRq5hI938IdoGFQyPrNLQowvsvn1idAMVlaZ4Q1G0DzoBpD6fDog0VHHNWgQrlpkNpD3quf39uAL59cKsqhfk6+F3RuCXCoRRedtsmqiVoCGKauqE1sB5+IJzkz2dtrwerTj/bn1+bgojR3vcySStFD3yCOP8N9v2rQJVVVV2L59OxoaGnDllVdOu31HR0fCzxKJBAUFBVCpkl8hefzxxwGM7yT7pz/9CbfeeisA4Fe/+hUkEgmuv/56BINBbNy4Eb///e8THt/S0sKX8ALAN77xDXi9Xtx5551wOBw455xzsHnz5lkdY46ZQQ6sxOAeu35FOVZWmbGswoxysxp6pRxv93Ll0N02PxaWpv8YB5wB0NFSW2OGHWNTQVFcp9z3mofh9IfRY/OjMm9ysTVFvSSgV8nRHXUhZbK7KcB1TYth9YTwfvPIlB1w0wXZ7KTH7k9wK2QCuy/Mi3QA99lWyaU4GXXO9Nq598/pD0/6uV9XZ8GiMiNODXvgD9P4/F/34j9fORt5xETjo1OjGHAGYNbIcfdFDQkZgZl21AHA/m4HAO4z3URkOpIZdbHXQkjGDrqLDMqMTkaqic7N/rB4hLpumw9bW0aglktwdl2eIM19qvM0+J+LG1BsVGFRqXH6DUQCy7Loc/hRalRPL66NuRe4gxFelDNH73kMC7gC4Yw77dPBTO4RezvtONLnTMh4PR1yoliWxc/eauFPgeZBd8J9vDpfC3+YTjhFfGEGrUMeYBF3TrgIMd/hDxHfZ+/r0+8I8G7zugIt8rSKhNzkVEFm1JFORbFC3qscvlBaO26TsCxwKBrpIobzqp/Iro7Q6c9xrcnnzsHY2NLuzV63ao7Z89KBPvxtVzcAoG3EmxPqBCSpWVw4HMYXvvAFfO973+PLTNetW5fgTpuODz74AJs2bRpXJhsKhfDcc8/hlltumfFzzaR7pEqlwu9+9zv87ne/m/HzUBSFH/7wh/jhD38442PJMTf8oQhWV5shoaiMZiTFuLQpMY+wqdSAXrsFEYZFn8M3ztGTDmxE2H6hPvNiw1QsLuOEOgA43OeYUKhL9fR/yBXAqiozpBIqLSvOyaBXybGk3IhBZwAyCYUigwo2byhBTBKCsV2JM9n1FeCyvIbd3QiGaeTrlMjTKXDV0lKUmVR488ggXIEwzFoFum1eLC4zTfgcFEXh4esWo32E6wzY5/Djl++cxEPXclmpgTCNIoMKlRYNf+2wesmy6MwK/1V5WqysNEEhk8A1Jm9LrZAiX6fAqCeUkWYS4QiDVZVm7O3mJoaZLHsFgCrCIRARUSVWTzSbyB9mUJ0vzLUmT6fEPZfME2RfqWTUE8I5j74PjUKKG1aW44dXL5r0seTIq9SoQqlJDYc/BItWmdDF2+YNnZZC3e/eb8UzO7tgVMtx7fIyfGmCPL9YubxSJsHSChMYlkVEZI1WZkMwwiS8/xS4vzFGhGYSFnCVMk68jUTH62NdcyPuINbUWHC8z4m3jg7i1JAb//riWen8E9ICKUi1jXjRNuLFtSvKp9hidli0Ckgo8B1Exe5CjEQYyCQUIgwLo1qe9my2GOQColMErxE5TpgvwDyEoiisrDLj7eOcUaFAr0KYZsblieY4fXm/eRhvHx0ARQEyCZXgfM6RfpL6pMnlcrz44otz2uFtt92W4F6L4Xa7cdttt83puXNkL102H/Z02rGrwwaFTHw3gDydArs6bNjXZUe7QNlJ5OpdiQjEy6lYUm6EXinD+to8wbr2tgy6sbeLO2dKTZl/ff7zlXNwaVMR+p0BHOhxZCR42EYIVAopBVmGB1OVFjXcgQhCNItghIFWKcM1y8vwo2sWY3G5ESGaxZAriM5pck9Ucin+8NlVyNMq0Fikx7F+F+866LX7cLDHgV1Et1I7UUKXaUedWSvHvm4HdrTbJsyhu3RhMdbVWGBQyccJeemm3xngRTogMRctE5Qa46XANq94mkmQk6MKi3qKR+Y4NcyV6/lCdFKT6X5nAHu77HBHXVJmQpizi6yxSKrY2jKCIVcQJ4c8k+bfxpruqBVS7OqwYU+nHf1O4d23qcY3ppnQ2NLCt44NJTSaCEZYDLqCaBngzq+xbuABZwC7O2zwhGhYvSHs6bRP27BIjEzk2qqaokJhtkglVIIYLvaSxl67j2/mJuQCKBkF8crBPhydQQ5zOgnTcXlbn+aGRjHI8tdTwx70ZcD9nyNzHO13YsQbBsty51+XNZdTKCRJz+KuueYavPzyy7Pe4WRW/97eXhiN2VPekSN1RGgGv3j7JP+z2FbOgxEalRYNllYYUZ2nSbCepxOy9KvMJO7J4fnzCnDoB5fiH3euw0Xz02+JDkUY9Ni8qLSo0VCkQ4lRHK/PgmIDFpcZUWZWJ5RfCoWVcGFmsuNrjIsXFOOHVzXhR1c34Tc3Lkv43U1rKrGk3IhKi2ZGbrJiowpfPL8OLUNuHOxx4J3oCm+X1YdSkwqLSg1oiq4wk6+DJcP5juSKPFmeFUMmpbCzw4ZTwx4c7hF2EuAcczyFhsyKmhIJBWl0fBCiGTACdtmeClJgrRBBhqqYOTUUbwjRQGTPTsRERRExZw+ZLRnLZjud8AYjONTj4H+2TtIAwRsVq7TEpFzsospM8AYTS9tl0vi8gGVZvHa4P6ELbIzYNXTA6UvojNxl9fGufQqASS3PymxHpZTCvCIddMr4gmdVXnqyyK5eVoo8rQL5OkXqSx5SzCDxXhYJeJ+qsGh4ofTlg/346NSoYPueiE+vqeS/F+p1WFVt4b/XKaUYybIu5DnmhnqM+WJsU7Qc6SXpmVxDQwN++MMfYtu2bVi5ciW02sQbyFe/+tUJt1u+fDkoigJFUbj44oshk8V3TdM0Ojo6cNlllyV7ODkEJBih4fSHU95xyTZmtdwkgow6gFs9+9O2Thzvd+GPt6zEoR4uJ2Znu1WQcGunnxDqRD45nIlzK5XRV8PuALaejA+YyJXhTJKvV+JInxNKGYXBDLgefnbDUtz81E44/RFRCHXFRhVuOat6wt+VmNQ43OuEXEJheIb5ONetKMPDb54AwwLvHB/Ety6fjwFHAHZfGP2OAG49m4tkSHDUZVj4N6q5/VOYuHRmRaUZf93RBQDY323HOQ35gh3bWFdLcYYddQDX0MIf5o5r0BVAqQgWKRIddcJdiztGvfjw5Ah2dVjxgyubMu54nAkxRx2Q2M19IsYG2MulFN+xk1yws4vIXZkqPjo1gjAhRLePevmF7H6HHwU6JQIRms+p1arikyWHN4RhVwB6lQyeIJ2QN5Yt+EJ0Qukl6b585/gQ3jw6iImKK0LRst9hdygho+7UsAcapRTeIJdr5/CHYfeFUI30B+6nkl6HHycJsVshlaTtuvy9K5rw7M5uBCMMukTezZMszS0VcGE2T6tIcBBlIqKCxOoJ8iXAJoGqBRaVGvl9eoI0rKfhwkmOyRm7YBqJMHD6wjBmOFbmTCHpmdxTTz0Fk8mEffv2Yd++fQm/oyhqUqEu1jH14MGD2LhxI3S6+ABOoVCguroa119/fbKHk0MAIjSD83+2Ff1OP5aWm/DyXWen9PnJEicx1b97ghEcjK54tw57cM2yMrx6uB8tQx4MuAJpd7kFwvFJdLkIJqupZK6NFshzRiqhoMpwFluM6jwNLBo5bL5wwmBbKBqL9XAHIpBJgPlFU7tZMk2lRYNCvRIjniBODLqn3wBcycvKKjP2dNrRNuJF+4gHp4bd8IdoWDRyvhkBmdWXaRG3yKBEkUGJYXcQAxMIkssrTfz3B4gyVCEYcSe6eMQgBKkVUl6o67R6RSHU9UbL2CkKgpbZv7ivF4+93woA2NhUjKuXlQm279mS6KibRqgjxv8KqQQhmuHPyYSMutOw9PXdE8MJP/tCNAZdAVi0Cpz1yHsAuFy2YISFhAKK9Sp4AjT6nX6cGvZgzU+2AOC6e3/0zYsEP/654gtFQM7/Yk5ahmHxy3e4CosIA/z0+iXosXnx9PZO+EI0RqNu6VNDbvjDNC8gjHqCqDCp4Q3GF8iy0XkYHJM/WG5RpzWPzaSRY8gVFP1rNUTcqyrMwt0TCg1KaBQS+ELc+9KTgUgTkmF3kBPp1DJUCHRvVMgkKDer0RkVLDP9GuQQFm8wPhfVKqXotvvx1LYO3JuFGbrZSNKKyNiurTPlBz/4AQCguroamzZtynVQzSJkUgnUcilq87VpcemQZWoRhoVZJO6oZRUm/vuDPQ6UmdXQK2XQKKQ42utMu1DHRGcxEgpQCZT7lgoYhkEgzIzrxJrKoSYpxORnuLSR5GdvtcDuC0NCcQ6JD06O4Px5BYLtf8jlx7IKE0Y9IdGfMwa1HAqpBAU6BTpGvbjn+QP41abl0253ycIi7OnkBK0tJ4YRplk0Fukx4gny+WEGlRy1BdpoQ4/Mnh96lRwKmQT1hTqo5JJxK5GVFg3fVe1Aj0PQbsExl4JMQuHwDy5Nu0t4JhRHG7EAQNuwB2fVCecwnIyeaCZPsUElSMfXGGtrLXjsfe773R22rBDqWqMdnQv0ymljLMh1epmUQl2hHo6oKGc+jR11NMPi/WjzpZjQBABtw174TDSUMgmCEQaRaB4Vw3JjAK1ShmqLJqFsVKhM2FRDunllEooX5F87MoDm6MLN0goTPrmqHE993AEpRYFl4wuYKrkUjUV6dIx6ETuTlAopZBJO4Ku0qMeV12YDgXCiUFeVZgdvlUULnVLGO7/FiosQEssFdDXnaZW8SAdwHcAzCcuyWFBiwLArgDy9cO/ZwhID+hx+qBXScZEZOU5vQjSDhkId/KEIXIEIFhTrx3Vsz5E+Zp00HgqF0NLSgkgkuRvh5z73uZxIl4Xk6RRoG/FiW+toygPPR8dkswjVdn06Gov0UEedWge6HbhueTkc/jD6nQG8dWww7fsPRgdsEoEm7XOl2+rFbX/ajZU/fhc/faslrfsaJvJKZBLxNB+RSSVYUWkCy3Li7rdePCzo/ofdQezvdqDb5kt5iXo6UMmlGHaHMOwO4qUD/QjT03cz3EC0hX/n+BB2tlvRMsS56gqjjrC7LqzHe1+/AAe/fynmicBZePmiEpwa8uD9lhEc7U/MoaMoinfVOXzh6MRTGGIuCpNGDo1SJgpnqpbIZjo+4MrgkXB4gxFeOBQ6n25FpZl305DNUsSK1RPkF1Gmc9MB3KQzhi9E48SAG0f6uPd8bNfX04mDPQ7+dZpHlAe3j3rQZfXyrioiNx4mtQIFegU6rD4ME4ubnVka7E0KdfdcMg9v/M+5iNAMfv1OPK/4fy9tBEVRuOPcWr6BQOy12d9tR8uQGxGGwcamInzlwno8ecsqPHr9UgBAt80/rgt6NhCMCpEahRRPfW4V7jyvLq37C9M02ka82N9t58usxQgpugoZ0aCSS6GSx8eYfXZ/xl6njlEvnt3ZhRMDLli9IUG7tN92Tg3CNAuXP5IQy5Pj9Kdz1ItTwx70OgJwBSI4MegeN47NkT6SnuH6fD7cfvvt0Gg0aGpqQnd3NwDg7rvvxiOPPDLt9jRN4+c//znWrFmD4uJiWCyWhK8c4mRtjQVrayw4uy4PH6c4TJV01C0o1gvWdn06ZFIJFpdzDU76HH6o5VKsrjajKk+DI31OBCPp6yjGMAwv0AnZ4WouGNUKvN8yArsvjANESPZETBQingykmFFXKJ4MmmKDCvu6HWABFOoVqC3Q4sSAMDe0IVcAW4hyKlMW5EdcML8AZrUccimFPK0C/TPoJlZboENtAfee7+2yoUCvxLpaCy5eUCiYEy1Z6gt1yNcpoJZL8e1/H8aR3sRzYnllvKva/m6HYMdVW6BFY5EOVXlatI8IX6o9EUvLTfz3MXdWJtEopNh1/8V44Yvr8c3LGwXdt1Ypw+Iy7h7UOuwZt6glNk4Nz7zsFUhclC/QKbG2xgJ9NPqiwqLG/928As/fuQ7/s6Eh1YeaUd49McR/fx7huG4b9sAbpKPldlKUmFRYXmnC6mozKiwarKm2oC5fCznReCEYYWa0wCE2fKHxrsDn9/SgPXpvX1tjwdn1efxjlNHAupijLraQqVHI8IfPrsJ9GxtRna9NbN4zQSao2In9fVqlDBcvKML6urxptpg9W04M4SBxL/KJNCSeZdkEJ3ORUdhFyHMb8mGOjqciDIuBDHVd7rH5MELMl8ZWraSTmnwtlpYbsbbGggiTfdebHLNHJqWwpsaCJWUG/v/Eeq04HUlaqPv2t7+NQ4cOYevWrQnOuA0bNuD555+fdvsHH3wQv/zlL7Fp0yY4nU7ce++9uO666yCRSPDAAw8kezg5BOK8eQXY1WHDtjYrnv54duXPk0FOPjyh9Ilfs2E5Uf7aPOhCsVGNLquPW11IY4vyYIQFHVWzavPFI0RNhVEjR11UQDne70zI2AOQUhGF7Kia6WYBJLGuowAXdr2t1SqY8LKvy47fb23jf84Goe67/7UQN66tRJhmYfWG0DnDspJLFnKuOoblnEY7220Jpepiw6yRY9QTgj9Mo9vmx64Oa8LvM5FTF6YZfHRqFC1DHuzrsuPq320TZL/TUU1c77ptmZkQkVAUhSKDCquqLVhZJfxi4tqa+D73iNxVRwp19TNxshJKnTsYxq4OG7a3cZ8NjUKGyxaVYG1tHspF3kwpWbZEhTqKAq5bUc7/f/uoFz12H4ZdQfhCNAYcARzodmBPpx0UBZw7rwBto16E6cSVLrHni01EQu6RQoZBZwC/fOckVlaZoZBKcN/GxoQxQ8ztG4wwYFkWgehCqXJMxwnyvpeNr0sg6hgkXVzpQq+SJyyajm0uJBaG3UE+p9KgkqFA4MVrqycEOyH69mTovjQ2U1YtoAM+T6vAiQEXdnXY8O/9fYhk4eJAjuRhWRbvN49gd4eNj/UBxHutOB1J+k7w8ssv47HHHsM555yTcBNtampCW1vbFFty/O1vf8MTTzyBr3/965DJZPj0pz+NJ598Et///vexc+fOZA8nh0A0FOqxYUEhSo0q9Nh8CSUrc4XMfFghssk2OYE+2OPAhY0FqLJoUGpS4e00lr+6AmEsqzBhRaUJ9TNwJoiFmDMoTLM41j952dpczx7SUbe6WjxO3JgDE+DKxVdWmrGtNbUO1Mkgy3yq8zSCD2Zny7wiHVZXm7Go1IC+GXZUu4QofzWoZFhTbRb156Sp1IgLG+NZa64xE8il5SZ+ACSUsDv2GMTQ8RXg3IdGtRx6pQzlZnEcUyZZWxu/vom9/LWNEOrmJfl5jAkx2SiuJMOwK4BhFzfhXlZhQkOhjm+g1T7ihS848QTIpJGjKo9rwKOWS6CSSbCwxIAlZcbsfM1YFssrTVhZaYJOJcW9/zwIqzeEfV123H5O9bj7OilcBSMMn+U2tlw/X6fE2XV5WFxmhCcLM+oqLRqsqDQlLBKni7HdgsU6+e6yenlB1huiedetUKyptqDaooFaLsXCEn3GHHUjhKlBLqUErT6iKCqh/DzTWX05hGF/tx0LS/RYWWnCpU3F0Ci4z55YrxWnI0lf7UZGRlBYWDju/71e74wcM4ODg1i8eDEAQKfTwenkbNdXXHEFvve97yV7ODkEwqiRI8Kw6I92LRxyBVGcIvt5vyN+09OrxdHxNcayinhJ2oFuB25cXYmu6A3qcF/6Shq9RMfZ6rzscNQBnLD5wr5eAJwzaGVV/PVL5ZCC7ABGTmQzTX2Bjg8Cd/jC2OexI08rB82waR9UWYlBXKfVB3WWhIwXGVR8c4j2GeazLa808w0YXIEIdnfa8VA0jDwUYXDjH3fAolVgRZUZX76gPm3HPlNKTWp8bUMj3m/hRFvHmIm1VilDY7EBJwZcaBl0wRuMpKVxD4l9TCfNVF3P50q5Wc0LD3na7BCb08nKKgsoiosLELtQ12PzotSogkEt58vTp4IllmxUMimAMFyBsCDXy0yxs8MGbyiC6jwNLmzkyvWvW1EOlmVRV6ibtATdqJbDolHA6gny2XWxDMdsLPG0+8M4EF2UqDoxzDspiw2qCXPZyNLHQJjmHfvKqIBHMyy6bT7kaRXY3m4Fy3LdKrOJYITmx312XwgHuu0JsQipZqxQJ9bmG712P59NqFPKBI+4UCmkvNv/+IAbbRmKiSAddUK66WKoiM/g/m47agvEuziaIzX02v3YHR2f/9eSUmgUUniCEfhEeq04HUn6LrZq1Sq8/vrr/M+xC+aTTz6J9evXT7t9eXk5BgYGAAB1dXV4++23AQB79uyBUpkblIuZJeVGVFk0UMok6Jmh82UmkKtES8qMUzxSeIqNKpREJ7CHex0o1CuwqNSAAr0yofwy1Qw6480S1IrsGWwuJ4XNaXLq5gJZVltuFqZF/UyQSSVYUMKVv9IMiyqLBr4Qg/eah6fZcu6MDVwns3rETHWeFo1Feli0cnTOUKiTSihcs7yUn8xXWtR8eZzdF8L+bgfePTHMTwTFgFEt55yOeuWETo/rlpfhjnNq8NhNKwQRKQadAZDzWLE46ooNKiwpM6JAr+QXRTLJP/f24K87OvFe81BGyn2MajkWRq8pzYMuOEUsynRYfeh3BtBl9SF/Bo5e0phv1spRalJBr5TBFe0q2DzowrvHh/CvvT2iDrpPhpZBF8I0i06rj39fH7iqCQ9evQi3rK+GP5R4jpnVcpSZ1NCrOIHiH3euw3N3rsX1K+IdgMe6Y7OBIHEPf+VAPwCuFPhXm5bBrB0fZ1GgV6LUqEKBTolgmOEz6pQyKX71zkks+P5mXPjzregY9eK5z6/DR9+4EP/8wvRzEjFBOiM7Rn348t/2p3V/WoUUsui9RkKJ1806SDQPM2VgXFNfqEsYZ3ZlqIHLiDv+OiwtF36uROZBT1Uxk+P0gXTOaZVSlJvVKDaq0r6QnCNO0q/0T37yE1x++eU4fvw4IpEIfvOb3+D48ePYvn07Pvjgg2m3v/baa7FlyxasXbsWd999N26++WY89dRT6O7uxj333DOrPyKHMBjVCvQ5fCg2qDHgCEy/wQzZsKAIrxzsh90bQpkIs2iWVZgw4ByEN0Sj1+GHKxBGMEJDQnH1++lY3XuXaArQZ0/da51u5hXpoFFI4QvRODiFSMKVTs/+dYtN2igAKrm4bhiLygz8qniPzYcSkwpDrvSXSpBNWRRSKmuEumKDCu2jHuiVsqQm4wtLjPzjrZ4Q7yAkBUsx5ReaNHK+QyP5XsX4/Hm1gh6P3ReGSaPAaPRYxOKok0klcAe5a6yMotJ2jZ0pT3/cgeZBNxRSCZp/dFlGjmFNjQXH+l1gWWBPpw0bFhZNv5HAsCyLvmhua7lZPaP3jBTqWBboj44rnP4IzFolHn2zGe+3jAAALppfmDWNlabing3zcO3yMjQPurGiarxbiqLA30NVMgns/jDs/jDvZllTwzUXON7vxuajg9Cr5KJ1Qk1FLIsN4O6Zh3qd+NL5dZM2TwiEab6iIxCOwKyVIxhhYFDJoFfJEIo+36lhD25YWT7hc4gdlz+MYoMSg9HS6EpLesfDFEVBp5TB4Q+DYQF3QJxCHdlkyqIT/p5eYlQnZFL3ZGgBqZ+Yd2UiIa6COB/F0nwqR3ohhTq1grtWDDoD8Apcfn4mk/Qrfc455+DgwYN45JFHsHjxYrz99ttYsWIFduzYwZe0TgXZGXbTpk2oqqrC9u3b0dDQgCuvvDLZw8khIFV5GtAs0Ovwo3XYnbLn7bP7YfOGIKU4Z4zYuO3sGly/ohzLKk3I1ynRUKTHlhPDONLHtUifiXMgWWy+uMvQmAVNAWLIpBIsKTdiZ7sNfQ4/hlwBFEWdOqmaa9MMy5dBaERY3rmYcIWyAPocAZwcSv+ghmzKEqLZrBHqJBIKDYV6HB9wYUe7FQzDQjIDR9kSYkWZdKAlCHUZGNRPhl4l50sYx5a+ZoIuq5cX6QDwn1MxMK9Ij7eODeGY34Uemw+VGSr/Z1mWn5SVmdUzOi/TwQWNhRhyBbCm2oKFRMMaMTHiDvLX5YoZCgykLE+WcsWcPaSzyu4LnRZCnUwqQX2hHvWFEzfbGHEH+ckRKWaNzWLTq2Twhmh4Q7QorifJQrriD/U6oZFL8LUpuvuSpa+uII2hqJgloaiEfNKfv9WM7W2juPWsaiwhOkhnA3ZfmBfpAG7MnW6Majl//lhF2lU6SHwOHriqSfD9V1nUkEspvolLppzeQ4SzsMQg/LWQrHgSg9s9R/ohS1y1CinkknjUQA5hmJUkWldXhyeeeCLp7cLhML7whS/ge9/7HmpqagAA69atw7p162ZzGDkEpsqiQW2+Fga1HL5w6oIkzRo5llWYYPeFUGoSn6NuTU1iBlpNvhYLSwzQKqXotc2sxCdZXER5U6E+uyYnyyvN2NnOZSkd6HbgskXF4x4zl0v8gNOP1dVm+EI0GovEl5HRVBofzGiVMpjUcuzrtKfdGZStpa8A0FCkg4QC1AophlwBlJimFuyHXAG81zzMD549wQh8oQg0CllCUw0xOeqkEgqrqswIRpgpy3f2dtrwzM4uXNBYwK/iLyjWY8PC8Z+juTC2zEkspa8Ad81TySQI0Qy+9e8j+PvnMzNGsPvC8EZFk0yW2J8/rwDnzyvI2P5nQg/hOJnpa0U2pdKrZFhUZoRcSvHOHvLza/Nmnxg1Uz5oGcFfd3RgwBnAABF7EcvhBOJZbDFI4W5sh/VsgDzm28+pgVEth0I2+cIbmTfnDcQnjyo511Tj02sqsbvDirYRL/69vw95WjneOT6ElVVmXNA4PldbjIwta68SYIEiT6fgRZexYwixIKEoLC03gmGBkgzcp/J0SjQU6tE67EGI5vKHnf6w4GMssvNsnl7412FFddwBTMbz5Dh9CdEMlpQbQVEUTBo5vygeyQl1gjEroY6mabz00ks4ceIEAGDhwoW4+uqrIZNN/XRyuRwvvvhirmlEllJh0aB91AuWBVL1GXX6w3ivZRgj7hDytPKsCJAuNqj4EOcOqxfL0hD2ayNuyEJ3uJorZLeyI31xoY5KUTuJLquPbz5w1iRlMplkXpEeCiknMjAsi16HH70OP4bdwbS6lkiBSq+UQSbNnmxDs0aBo9HMk26bb1qh7lCPAw+/2cz/zLDA3k47zptXADsp1E2QdZRJ3IEImgfdkEupCQPzf/PuKfzq3ZMAuMYBscHw+tq8lAt1YwPoxVL6CgCVFi3vJspUHhCQWOJUnuFYhtZhN3Z12HCox4EHr1okumYxvURubcUMXytyGCGVUjgabdAUu5aRjjqxigip4LH3T2JPp2Pc/5PXdNUYEYsU6kjHUbYQ69oKALesr5pWlFISQp0nRAp1UhQaVHj4usW47vfb+P9/4qNOAJzInS1C3VhnpBCOOtKl2pHBa+1UHOp18PfNTLhqKYrCmhoLP+4HuHuDUcBM7WCETsi2NamFH9tUWbR8s7RAmIHDF4JJRIuhOVJP+4gXh3u5+7JFq4RMGhXqMpDXe6aStAJw7NgxXHXVVRgcHERjYyMA4NFHH0VBQQFeffVVLFq0aMrtr7nmGrz88su5PLosRCWX4uy6PIRTWFZ3sMeBETc3GI3ZysVImGZwoNuBj06NYF6RDmuqLWDB8seeashw6HQ49tLJ6moLfnr9EqyoMqE2P/WOt0FnAKurzaAoCo1FE5cPZRKFTIJ1dXlgWa5Ed8DhAwsK3TZf2oQ6mmH5Lp5ahXTSnB+xMr9Yj7U1FtAsm+AomQx3IIL1tXloGXTxovb2NivOm1eQ6KgTUekrwOVsWbQKMAyLD1qGcdGCxKyxS5uKeKHO4QtBr5SCoiio5KkXXdVyKYxqOe+sE5NQt7razE8IhlyBjOXUkU2TKjIcy/DkRx14bk8PAOBTqyqwqlo83a4BJGQ4zdxRF/9eTWSNxu5/ljGlr9nOhydHsLfLjvnFeqyvzYNZq0Cf3TejYPaxpa+kcJWNjjqLRo61NRawSPxbJiPBUUcIFuS2//7y2fAGI/jEbz8iBH7xjivHQjMMCnRKvsFalSX9jroiooRy1C3O0tcKiwYGtRwqmSRji/nzi/UwqmVw+rlzr8vqwyIBhTqaYXHR/AIc7nVCJZMmvG9CUmJU8Vm7/znUh1vW12TkOHIIBctVlbFAmUnNN59hWMw4pibH3EhaqLvjjjvQ1NSEvXv3wmzmnER2ux233nor7rzzTmzfvn3K7RsaGvDDH/4Q27Ztw8qVK6HVJt6IvvrVryZ7SDkExOYN4/iAC3JpakK+ycwFsTkESH66uRlPfNQBAPjeFQuxu5Mr7UyXy4JcMRabK2g6zFoFPrW6YsrHsHMYO58cdvOOursvqp/9E6WRv/73GgBcEP0PXzsOAOgc9WJ1mibX7kAYFq0CVk8I3hCNPkf6m1ekkiKDCrs6uM/UuprpRcZumw872q0J/7ejbRQAEh11IlvtXVFpxu+3tgHgrn3to17ccW68icSCEgPOn1eAD06OIBBmELs6fnByBKEIkzBZnSvNQ25epJNLKVG9VssqzWCiF4kIw6YtC3Q6emzxz9FMXWLpYmmFiRfqDvY4RCjUkaJm8q+VmhCj+Yw6zenlqHvn+BCe2dkFAPjnF9ZjTY0FHVYvfKHp3Qljxfpsd9R1WH38NV89g4ZQCikp1MWFybECplYpw7kN+eiydgMAPm4dndC9LEZG3EFepAOASgEcdVcsLsWzO7nXSiPCTo4sy+Ld40NgAeTrFOix+WZ1fZkrRQYVL9IBQJdtZh3qU4VGIcPamjy818w11xl73gtFY7GeF+q2t9pyQt1pwpMftQNAwniUZVl8eGoU7kAEFRY1FDIJZJL4dZhmWUhSVCmVY3KSviofPHgwQaQDALPZjIceegirV6+edvunnnoKJpMJ+/btw759+xJ+R1FUTqgTOaZoY4MwzcIXoufcopnsHqtViG+QEOOs+nxeqDsx4EJTqQE0w4JJU52+jxiI6pTZkzU2JSm6nu/vtEMjl0KtkCIYEbeToK5Ai2UVJrj84bSKZyaNAh/874VY9IO3oj9n1zlTlafBikoT3IHIjBx1ZL5ahUWNHpsfR/qccAXCic0kRCZyL60w4Tc3LsOWE8P46NQI/vhhOwadAXz3ioX8Y75wfi0+ODnC/6xVSFGgV+LVQ/24PoXdDGN5SEoZhZ3f3iC6ldEKMxe1AAAnB93Ir8+AUDdH8SmVLCWC8WNdpcVEY5Ee588rQI/dl0SeX/z+qVZIsbjMiGCE5oWnBEfdaSDUNQ/GnXMxN7jLH0G+TgFXIIxQhHs9zBo5JBSFQJhGmGaxsNQAlWysUJfdjjrymNkZuN4SHHWh+PV/IsFidbWFF59uWlOVNVNJb4gc98kEyUBrKjNgSbkRoQgDucjuAQAnQsfOjlFPCK4MdaatytOgsUiHlmhjMKE7v4YiTIKreKqc23RyYWMB9nXZARbwhbKv23SORJ7f041fv3MKDn8YUgmF9XV5fM72znYrSk1qyCUUzm3IB5DYuC1Cs8iQXnxGkbQyMm/ePAwNDaGpKbHzzvDwMOrrp3e3dHR0JLvLHCIiNnCQUlzG0VyFuj5H/GYn5iy2dTV5UMgkCEUY7GizYtgVQJhJXzkWOYgVs9NwMgJhGrs6bPjw5AiWlBtx9bKyhN/PZGA+GX0OP3xhGr4wnbC6I0bKzBoc7HGAArC1eRhfPL8ubSuhDm8IMgmFCJM9HV9jlJnVONDjAMvOrHkKOWBdVWVBj60PDAvsbLPiBDEZFptQV6BX4uplZei2+fCfQ/0AgM4xK/Pra/Mwv1iP5kGus7Y3RCNg86E7xRMDf/QaY9IoErLAxAJ5bznQbcdZ9fmCHwM5GavIYDMJAJhXpINKLkEgzOBQryOjxzIRt55dg1vPTs5dkVD6KpPiSDSjbmk5J9ZbtPHr2IhIO1LOFJZl+c90iVHFd3MfcgUSui8DXGi8SibhcxqbB11QjVnITGgmEco+oc5PjHGuf3w7tnz9gikfP1kzibFNNoDEBmAnh9yw+UIwaxSid9W5iQWoEoGiCHRKGY71u0AzLCgAT3zYhjDN4rPrq6BXZX4cQZY5A5mLgikzq3mRrkivxPq66e9HgTCNYJiBXiWDzTc3V/gzO7vwxw/b+Z8NGRrjbVpdiR+9dgLeEH1axBGc6XRZfRhyB8CwgIQCOka8vFA36AqgJXrPuiG6SBzLqAOACMMAyL75abaR9Cz34Ycfxle/+lW88MIL6O3tRW9vL1544QV87Wtfw6OPPgqXy8V/TUUoFEJLSwsikZwinw3QDIt9XXZIJRTUCilodnzXwNnQTzjqyqYJkM8kaoUUa6KlRn0OP3RqbtDsTMONyh+i+Y46UglgELGAORkdo1587undeOrjDrx8oA9Aagx1LMtimMhRKTGK95wBgEqzGresq4RCJsHBXidf6pMOPKEIIgwLlUwiqjLGmaCUSbGiwgSFTMI3lZiKQWcAEoq7ZlwQ7YapU8rw8JvNaB/xYmm5EZ9eUwGNSEXuuy9qwIISPeRSCif63Qm/oygKn1gcbxwhpbg8kNZhT0qPweoJQi6lRNtVenGpEbG5+b5uR0aOIZa7plFIMy76yqQSLI5mIvXY/LBmuXAFJKaHkQtSsVD9Qr0K84p00KtkGHZl99874AzAHRWY5hfHs1XHNnWJoVfJ+HumboIFUYVUAo1CCrmUQjALg73dhDOqsXj6rFmdUgaNQgqKAnxRYVIlk0xYiVFiVPOuzl0dNqz68bsJpdliZZT4TJeahBHqKIriF/ZODLrx0BvN+OlbLfjL9k5B9j8dvjEidKauw0qZFCsruTFKIMLgqqWl026zs92KpT98G7X3v4ELf7Z1TvsfcgX4Jn5apTRjjjqKorCq2gKVXIITA+5cU4Es5+SQhxfpKAAv7O/lf0fem2JNQ2RjHHU50k/SQt0VV1yB48eP41Of+hSqqqpQVVWFT33qUzh69CiuvPJKmM1mmEymhNJYEp/Ph9tvvx0ajQZNTU3o7ubs6XfffTceeeSRuf01OdJCt9WHFT96B9c/vh3H+l3wR2+cqRDqyIw6ncgFqfPmxVfQDEo5qvM0sGgVYOcSuDYB5CoVzSDr3FEANxGJCQA7220pK1G1ekIJToICkYoMAPDszk588dl9eGF/H6QU14n16Y/bp99wlsRyewIRBgqZOAWqqdAoZCjUK1GVp4HdN/WkXCWXoipPCxYsNiwswit3nQW9SoaOaKnk0X4XvnxBfUYaEMwUrVyGYqMK+XoFgmNK16rytDCoZJBQAM1y2TyphGVZ+KJldRKRvkYNxVrEordODrmnfnCaWFhqwPxiPRaUGERxLpHlr7FObNlMYjMJKQr1StTma3nxxaCWY9gdhDsQSbmjVGgSyl6LDfz3FID6Qh1MqsRrtlohg0LGiXETlV0rZBL4QtxnOJSFGXUewhU3n3g9JiP297Is4AnF73XySbqbryEyHGvyNQnVG2KFnPiWCtjcJ0+rgF4lQ8wso1FIE96fTOINRviSXKVMMun7LQTK2DWqQAuXf+pF+lNDbmw5MQS5lAIFzh18aA6RBWQkiDdIw5TBhSOtUoY8rRLzi/Xoz7I85ByJyCRATZ4GDMtlYiYIcQyLhkIdykwqGKLmFClRxRRJU/RTjkSSVkbef//9Oe3w29/+Ng4dOoStW7fisssu4/9/w4YNeOCBB/Ctb31rTs+fI/WUm9V8yUAf0dnNOc2NaiaQK4hmkbuAzm0oANAMAHAFwrBHVxvsvnBKV/mKDSosrzDhQPSmnimL+1ygKArnNhTgxf298Idp7I02f4gxW22zy+bjW9RLKC7LR6yEIizea+GyxiwaOWy+MD44OQpfKAJNivMYXzrQixf39fE/a5XZJ9SVmtX4qHUUvXY/emx+mDUTi7CBMM1nuC0pN0KrlGFphRnfuKwR9zx/CBUWNR69bknGM8Wmo9ikwt5uO3psfvQ6/KgriHdIbhvxwkVMlEY8IWxtGU5Z99NAmOE/g8OuIA73OrCEEIHEQENh3GXT5/DDG4zMOWohGWzeEMwaOa5cWooVlRMvPArNskoT//3BHgcunF+YuYMhmO15SUYgyGUS2LwhDLuD0BDXryqLBg6fE/1OP4IRGsosXIQAwJe9AsCCksRzeyK3bFOpHh9+48JJn48sBc1GoY50Ss2fgaOOdM75Jun6SrK6xoJ/R938HaM+tI34cFbdbI9WGPqd8fF1qUm4+1fHqDdh0u0L0dgvkhxMdzCCcPTYMtVAIUaBXontbVb02v2wesMwqCcf9/9lRyefkwgAXTY//vhRO35304pZ7XuIEOokFJddmykqzGq8cWQAfQ4/umw+VOalvztxjtTDsiy2RhuXyaUUOkZ96LX7+eY7w64ATkXvTYZotl8S+wAAtZpJREFUGbycKH2lc0KdICQ96j3//PPntMOXX34Zzz//PNatW5cwsGtqakJbW9ucnjtHepBEgyRfOdiPEM1gfrEOWoV80pKNmRKhGb7ERaPIXLvxmRJzicVW+JdVGKGQSdFt9aZUqJNIKFi0CqyuNkMulWR8cDJbzm/khDqA61qZCkPKwW47n8NmUMlF4XKZjBvXVOCx91th84Zg84VRbFRCJZNiW+soLllYPP0TJMHeTjs+bh3lf061ECgEjUV6LK80QSGVoN/hn1Q46rH5sLbGggjDYlFp3IlxzbIy+EI0rllWJqigM1sWlHCr0XKpBL12X4JQ5w/RWFNtxskhD3GNlOE/h/rH5T3OBi8RAj3gCqDT6hOdUGciFm5YFtjfbY8ulghDl9XLT7RuXleJ9XXTdyNON2JtKPHSgT488J9jqLBocM+GediwsGhG241dsFHJpfAEIwiE48JTVZ4Wh3qdYFmu5Le+UIdspIUQ6hqL9QiEafx2yym8fXxo3GOlEgrziqZ2mSUIdVlYfqaQSfjmCQtKpnfUkeLtVF1fY5Ad1k1qeVpiSlKNjHCLrRPwelOTr0WX1YtQ1NFXX6CFXiT3ULLqJtPHRJoJdndY8bv3T6F12AMJReG5O9fjN1tO4o3DA6BZFuEIA41CikCYhoTiyrHbhj043u/CwtLpz/exDLg4EVcqobCuNi+jY19yrPn/3juFYVcwpY2ucgjDnk4bVlSaEWFY2DxBGDVyyCQSDDj9KDdrEprbxKIpyJzPcBbed7KRWV31AoEADh8+jOHhYTBM4ht11VVXTbntyMgICgvHrwJ7vV5RT7rPdC5oLMArB7nw8+ZBTmFfTQT2zgarN8QP1H0hOmGQIkZIl1iEYXGwhys96rT6sCyFjguGYbGtbRSBMJO1kxIAOLc+HxTFTcY+PDmSkk6kbx8f4ld+Z95ZMDNoFDLceV4tHnmTc2EOOjn36B8/bE+5UGcb0xFRrNlsU1FsVOFANItMLZfiskUlE7aM77L6+Ky/s4kGAxRF4TNrq4Q74DlSoFdhf/TvvWxRMc6fF//d3i4b/1oYVDK4AhGMeIL44avHUiLU+cfk/hQbhCuzmiljS/73dNgEFerIUiOxZGGWm9XI0ypg9YZwqNeRMoflXOm1++EKRHCs3wVmlnZpiqKglEngCSY2U6rOizuLuqzerL0nNg9wQp1MQqE2XweHL4Tfb01cnI7dL2mGnXYSpCDGS8Esc9QxDMtXJEiomd3LNYQg5wvHFxpUEzSTALiO6yYNt6Ds8Ifxn0P9+MpFDXM88vQS++zIJFSC0JhuJBKKF+kAoHXEi9YRLwJhOuMLxWSOtTHDFRRkdcs3XzyS8Lsuqxe/e3+82YQCcH5jIbY0DwMA3jo2gOp8TVKLqSzLYig6fqQZFgMZLjdtLNLjWDRLeHeHHTSDnFCXhexqt2F7mxUAcMmCQrxzgjtHu6w+lJs1Cc7lmKOZLI3NOeqEIWmhbvPmzbjlllswOjo67ncURYGmp86iWrVqFV5//XXcfffd/DYA8OSTT2L9+vXJHk4OgSAnSBqFFI1FerjmmFE36gmCQjxQOhtcQOfNy+ddYqUmFUqNamxrHcU1y+c+eY5h94XQFF1hri3IzkkJAJi1CiwpM+JQrxPNg26sTIGYSU5eSkTcfCTGZ9dV4Y8ftvNCWoFegV67P+UTbKuH7IJqRp4Iu3hOx5JyI75xWSNePtCHI31OrPjRO5BSXC7MknIT38lv0BnAknIjVDIpGrJ00g5w79O5Dfl8h+Tboh0z3zgyAClFocKiRr5Wic+sq8R9/zoMuYSC1RvGvf88iJ/dsHROHQw9wTCMahmcfm4gJlahbmmFEYeiCyK7O9PXiGUiyOwdsTQ6oigKFy8ohNMfxtIKE0I0I4pSULI7brl55iV7Y4f5MVGAFJ6qiLKqTqv4c8YmIhRh0DbCLXDWF+oS3GQkFg0nwsqlFC5onFqUJoW6bCt9JUs8dUrZjO6FBpUca2ssCNNMwgRxMiGJoii89bXz8INXjuJInxMOXxhOXzjjYs9U+KJOQaEX2uYX63nHp0omQW2BDmqFFEPOAKryM1vWaPPG43FSndWaLDV5GiwsMeD4ACdSqeUSMCz3ft385E5UmtWw+ULI0yohoYCaAi0oUNAopCjQKzHiDuI3W1rROuLFZ9ZWYv0MnXE2byjBNZvpc7iSWDzJ0yog8mbKOSbB7gtjeaUJcqkE84r0GPGEIJdK+EY/5D0qdk0qMamxqsoMhp1+MSlHakjawnT33Xfjk5/8JAYGBsAwTMLXdCIdAPzkJz/B/fffjy996UuIRCL4zW9+g0svvRR/+tOf8NBDD83qj8iRfvJ1Siwp5zrO+UI0DvQ4sOXE4JwaKTSVchPzGJnMXJgp5zYUoNysxqfXVMDuCWJvlx072kfBpHBl4d0TQ9jX7cC+bkdCiVo2cv68+GTDMcdMw0CI5l1GAETbrZJEq5Th84QbbMQdwoAzMM4BN1dGicHs3i47lFlYLl1u1uDLF9TD5g3B6g3B5g1hxBNCr92P4wPx4PzWEQ8O9zqxu9OGEgEDt1NNbYEO3TYf9nTase3UKOjooOdgjwN7u7jsugUlBly/ohy3rKvic3r+vb8Pn3lyZ4LrKFkcvggv0gFAoQhjB/QqGY72xQP4D3Q7BBUkSCeHmM6zn96wFH/47Cp8+YJ6UYh0QLw7LgCUW2YuapLjBwqAMuqOIs/tKmJS2G31zuEoM0e3zYvV1WbML9ajqZQbR3mDifd2CQXUFnCiSJhmpy1Fl0goXqzLNqGOvI+bZ7iopFPJsKvDhv3djoT752SOOgAoMqhg1irQ5whg2B3Eb7ecSulYLdXExntCRzc0EaWYgQiD4wMu7OuywyaCcmEyF9uizex9yqCW8yIdAPjDDKQSCnZfGEPuELrtflzWVIIPvnEhPrOuCmfV5eOhaxfjrWNDGHXHx2inhty46Yld+OOHM2suRrq7gcw3mCOvyVZvCHs67fAG595cMIewHO1z4kC3A7s7bCi3aHCwx4E9nTYMRTus+4j5pyZ6TXL4wtjbZcf+bkeumYRAJC3UDQ0N4d5770VR0cwySMZyzjnn4ODBg4hEIli8eDHefvttFBYWYseOHVi5cuWsnjOHMJCii0Yhhc0XTrhpzQYyi0YjkkyMqbBoFfjNjcsRDDOIsEClRQ27L4ydHdaU7eP9aAMCAKLtyDhTziOFOiLTcDb67r8P9EGtiF+yCvXimTxPxS3rq1Cbr0WpUQUJxU0sulLcwXCs8Jfpgdxc+PG1i6CScee9VMKJJP8mGmX4wxGUmVSotGhE3fV3Jvzik0uwptoCo0aOq363DQAnRhTquY5qX7qgFhRF4a6L6hImU1KKwi/ebpn1QgnZCEgtl2a8vGkiKIpKOI+DEQZH+oTrdDqQEOwuDkedWOmxc9czo1rOh04nC0UBqqjwGAyfXo669hEvdrTb0DzoRkVUyPSPEdoL9Srk6+LXM7LR1mTEcuqyLaOO/BxXzbDpD+ki8gUjKNIrUTdNllqPzYfWYQ8qLRrolTL8a18Pro5eZ8WIXCpBsV6JiiRcqamAHKfpiCxAxxyrZlIBWUo/k6Yj6WRllRm/3bSM/1lCAU98dhU2f+1cfG59Fa5fUYbv/NcCAFxcxx3n1uKJj9oRohmwAN8B9uQQ56796Vst2NU+/dyBzOkzqeUJ2byZoNISvybrVTKoFVJ0WXPdX7ONXrsPZSYVzqqzJOSsxxr9RGgWZSYVGot1UEfvNQqimUTOUScMSQt1N9xwA7Zu3TqnndbV1eGJJ57A7t27cfz4cTz77LNYvHjxnJ4zR/ohSzF8IRpquRRtw3Nb4Y4wDEwaOZQyCdRTrIyKib2dNvz7QB/CNItumx86hSxhUjdX7IToUqDLbiFiWYUJehU3kHbOcdA34PTzDpLzGvKxtMI45+MTAq1ShiuXlqDfGQDDcmGs7SOpc4aEaYYXQaUSClIJBaNa/KL3ZKyvyUcgwg3OGQZw+kIIhhkc6XOgZcCFPnsAfY4Aum0+mKboupYNrKrOw4gnCJsnCJZlwbIsghEG/jCN1mEPn41WZODKDQDOebStzYonPurAh6fGR1DMBCshAqQiOzJdGFUyKGXxgeEeActf+6MuBori8hNzTEyEZnjHR7K5oaTOTIETCbRyCZQyCXqsXrSNeJCvU/Bu+64sddT1EK6gmAjjC9IwquLX6QjDjBHqpnczGVQy6JXShMYS2QDZwTJ/hmMcvVIGmYQ7RwIRBkPuINpGvNAqJ79+KWUS7Om0o9vmQyBMwx+iwTDMnCpB0kmv3Y9BdxD7u+2C7rehUM93z2VYTlCyaBWwzeAcTDcGtRwmjRwSistyzSQmjQIXEY1yGBY4qz4P84sNqLBosKDEkOAQtXlD+PsuriGRlKLAMCwqLRpcsaQEAJfx9ZV/HMCwO9ExNxbSUecMhKHIsJOadNS5AxGY1PKEcvYc4icQpqFRyGD1hOAPMYldtaNOuiEXN9YedAYhjbq35UTkQk6oE4akZ3OPPfYYPvnJT+Kjjz7C4sWLIZcn3iS/+tWvTvscNE3jpZdewokTJwAACxcuxNVXXw2ZLHsnl2cCS8tNfLA5ALgCEbx0oBdXLSud9XPafWFeZMiGTo0AcPWyMjyyuZmfZAy5g2ido2BJYifKDfL12S1EyKQSbFpVAYYFPjo1jFPR14kdl040PX/b1Q27L4y6Ai2e/NzqrJqc3LyuGo9v5VZWvUEaL+zrwQ0pCt8lz5dYdo8uSz5LE2HUyHH4gUuhV8rw63dP4rfvtaJl2I0r/x/nhKghMnPUWVAuPx2NRXp0jHpxfMCNEXcQuzps8IVoLCwxJDTY+cZl8/HWsSEMEqvrj77ZjHPr8yFJMiSmYzTuTBJzCblZq0AH4aLa02HDF8+vE2TfsYy6Qr0yYXAqBvZ12fD28SHsbLfhuc+vy+jnYMAZ4K87yTqByPsARVGQyyTwhhkADM792VYUG1TYef/FqMrT4viAC712PyI0I/rGU2MhM/wqog4ybygCZ3Qs9a3LGvGZdVV4/fAAzp9XgHydMsHZNBXuII0R9/TuOzFxtD9eiVGdP7NzhnPYchl+HqLr61QLDXk6Jd8lXhntKHxswA2bN4Q8kS2CRojyZaGvN1IJhYYiHY72ueAP06DAiUxD0whIQtDvCPBzBIMq8+ManVKGs+vzsK2Vc8KNekIo0CsTGl7F+NO2Dt45u2l1Bd45MYQumw8SCfjnsHuD+OGrx/HzTy6d1Nl++aJinBhw4m+7egA2scFOJsjTKjgnK8UJdQPOANpHPMCC2VXa5RAepz+M1mhuqkUrTxhDxLpqxxy15DVWTnYbj4hzweN0I+mr3j/+8Q+8/fbbUKlU2Lp1a0IQJkVR0wp1x44dw1VXXYXBwUE0NnL5ZI8++igKCgrw6quvYtGiRckeUg6BkEklOHdeAfZ22uANRFBmVs+pZOr/PmjDno64Q0KbBc0kAM5dcVZd/EZdX6CdU17UWNyBeC6ARZPdQh0A3LK+Gg+8eowX6WbDySE35hXq4AlGUG7WZJVIBwAFeiWuWV6Kf+7lGpE4fWEc73dhYQpKGKwTrHrrpnAZZAOx8rn6Qj2q8zQYcPgRirCQSCi+E5VcSmXdeTARJUYV5hXqYNYq8OzOTqysMsMdCKOuILHMR6uUYWGJHsUGBVpHfPAEIzg+4MKrh/uT7gTrJvJkxNyURU+UUf70+iW4cP74jvHpIBiJix9i6fhK8sK+Xvxjdw8ArskGGUshNAn5dHNx1FGJDaXkEgomjRwsy+LeS+aBBTdBzcY4iF47KdRxrxGZUadVyaFXyXHjmkrcuKZyxs8biwvxBbMryzZWgSChgMbimd8DDWo5rGPy6aYS6qQSCkUGFfocfoRpBo1FOuhUcnTbfKIT6oYIsVWZgfvavCI9jva5wLJAkUGJEqMKETrzE/GYWEBRgEEkDvq6Ah0//t/dYcV/LRlvVnAFwvjz9k4AXKfMr1xUjy6bF8UGFQxqGb65cT6+6z+CYITFa4cHAAC/vXH5hItunOAswcoqE+y+MGryM9tEi6IorKox4/1mLqanqVQPTyC7rkFnOuScVauUQ6uQYn6xHgqZBGq5FAzDoq5Ah2CERgnRbEwuyZW+Ck3Sd4PvfOc7ePDBB+F0OtHZ2YmOjg7+q719+mDMO+64A01NTejt7cX+/fuxf/9+9PT0YMmSJbjzzjtn9UfkEI77L5+PT66sgD/CoGXIgy0nhmfdovml/X04Nezhfxa609VcuIaYGLeOeLG7I3UlWZ4xA/hsx6iRY1trYonen7d14smPZhakCwAfnRrFzg4bjva7cMnC7Fy1++9zavjvTwy68ZM3jqfkeSdqTHE6OM0AoNKiQceoD4EICwZAhGFhj66uZ0OX6JmQp1Pg5LAHuzps+L8POvDRqVG4AhH84lNLxz32qVtXo23Ul3CN+MXbJ5MOkyebNNRkeHV+KshJ+Joai2CZhEPO+KRZLB1fSc6pjwtzH58ameKR6afHPt4tNlPGlr6SY4Aww6J5kHOZblhYhEsWFqGhSJ+0e1QM9Ng4YUohlaAomq1KZtTNtpFWbDtfmBZtOedYRt1BPgNJKqGwsWnm5YyGMdmr5zUUTHsfiDWCCUbHrPu67OgUYQl1H/E5ykRmaGNRfGFo0BXEgR4njvULlwk6GY5ooyy9UjanTuep5LrlZTi3IR8A8PLB/gkf89qhfl6Mv25FGUpNalzYWIgjfU5sa7Xi1LAHD127GN1Rt+1rhwfw6FvNEz4Xw7D4x54e7OtyQEpRWFye+diXaiI79Fi/G/uJBjE5xA+ZD6+SS6CSS9E86MbhXif6HD64gxHs67LjaJ8LgUncvjmhThiSFupCoRA2bdoEiWR2Kz4HDx7Eww8/DLPZzP+f2WzGQw89hAMHDszqOXMIh0Etx9PbOkAzLCQU1y1qtvlsZAkXkB3NJGJctqiYX/WUSSjoVbKUDJRZluUHsUB2dMKdDqNanjAY18ileGZnF17c15uwqvPaoX5s+sMO3PjHHfj1uycTnsPpC2FNtQXLKowoNWdnXtT8YgOfMwZwgcKDzrmXlrj8YayqMvPd7xRSyWnhNAOA6nwtFhTroYjmlJnUMijlEqypseC86EA52yEbJpRb1DirLg8XNU7sHKMoCpcvKsb6WgtfBtRt82FL81BS+yRdmEsrTMkftEDML9ZjfW0elpQb8fGpUfzu/VZsOZHc3zobKAq4amkpVlebU+J6TTVn1+chZiz7aJY5haliLo66BChqnOiypMzIT2SzFZZleTGzzKzmhUYvUb4520WH2HYsmzjxEjNvHIkLG+YkKwZWVppQZVFDq5CizKRCnm767UnH8OIyA9ZUmzHiznz22lgGiPFwJhba5hWNb9RANgDLFKPeEKQUBZphRSNGNxYbcHLIDQB45/gQ9nUlLtRHaAb/771WlBhVWFZh4uMaagu0WF1txppqM6zeEBaXm/DYTcsR0x//8EE73pvgXj7g8mNJmRFrayxYU2NJ7x83Q5ZXxseyZSbVaTPmPFMIRuL3H5VcyndcB7h7iZP47JuI6zRZ+poT6oQh6U/W5z73OTz//POz3uG8efMwNDT+QjQ8PIz6+vpZP28OYdCr5LhmOecmY1jgQI8D3bPoxBYI0+OaC6hF2HlwMvQqOe/sijAsdrbbeKfPXPCF6ASH4unijCLz2HxhGgPOAE4MuhMmeTvardjVYcPOdhv+trM7YftDvU7s7rThYI8Tn/7jLlzyyw8EO/ZUctdF8WvcsDuIn26eeAU1GfqdAeztsvMTtdPlnAE4ESvMsHwWhsMfgTsQwe6OeAv5bMdIDILaR7zY3mbFSkLQHcuiMiN2tNvgCkSgUUixtNyI37/fltQ+yVzD+sLMdtKbCplEgh3tVhzudeK7rxzFz95qwb/3902/4RypsGjw208vx7++eBbuulB84xKTRoElZZyronnQjWFX5rKkRj1BLC4zYG2NBZVJujPHTrvHLkwd7nPy5WPZis0b4hffSCHTH4q7YieqJpiJKEFu5wtlR+nZni4H//1ZdXlJbRuiGXTZ/PCGaPQ5AjPKeS0lGsEc6XNhd6cdJwZcU2yRGcjOnjPNJ0wlC0oMuHh+Ib50QR1f3jbXBmBzhWFYeIM06GiTJUokZe9qhRRf2zCP//mRN5sTPq/vNQ9jwMkF8edpFagt4EpVK8wa7Om0Y3enHf85yN3HLl5QhB9dw0U+rau14L5/HR5nfvjr9i7s7bJjV4eNb6iWaVZUmvjv+xwBbG0ZTtrZnyNzJDrqpHzHdQAIRGg4/PExItmcjnTUhURQGn8mkLRQR9M0fvrTn+L888/H3XffjXvvvTfhazoefvhhfPWrX8ULL7yA3t5e9Pb24oUXXsDXvvY1PProo3C5XPzXdHz44Ye48sorUVpaCoqi8PLLLyf8nqKoCb9+9rOfTfqcDzzwwLjHz58/f9pjOZO4eW0V/71SJsEbRwaSfo5hYpJtUMlw8fxC0djaZ8q1y+PlrxqFFF2jcy+nICfQRrUcutOkvO/s+ny+gy0FoMKsRmORHq8e4lbXWZbFrnYrVHIKUopb7emMvp5vHRtEv8OPEkO87E1s4e4z5fyGAnxmbSW00YH4Kwf7cLjHMafnHCU6eFbnabBMxA6p2fDNjfNx36XzsGF+IeoLtJBJKJQaVVhZPbmYlU2srjbj/25eiSuXlKChUIdLFxZhxRRC3bkNBbh6aSmKDUoEwjQO9TpxpM+JthHPpNuQ2LwhBKMDao1CivrCzObdTEVdoQ4rKk2oK9DyDuad7VbROCsyybkNRPlra+Zcdcf6XVEBxJZ8MwnifaQAFBpUMKplkEspaBRSFBuU+PjUKIJhGod6HHjlYB9/z8gWnP4wavO1UEglKCdeH5s3hPpCLdbVxku6gxEaG3/1IVb+6B3c/NSuaZ+7tkCLxWVG1BfqMi6qzBS9Kj4hXEZM9mfCghIDLEQ5vHEGmWVkx+bqPA0WlOjh8InPUUe66zNRbl9sVOGpW1fjm5fNx4aFRWgqNcw61iZVuALxc5p0/IiBT64sR20BV/65p9OO95qH+d89uyu+0Hzz+vh8qcKiwa3rq1Bi5HITd7RxOXefWVuFT60qx852G2zeEB55M76A6wlG8IcPuZgYnVKGxmJxLKyVmdT8dUsmobCkzIhPP7Ezw0eVY6aQ1UwqmSSh3D4QpjHkCqDSosaSciMsWgVODbkRoRkopERGXU6YFYSkVYAjR45g+fLlAICjR48m/G4mqx1XXHEFAOBTn/oU//jYYO3KK6/kf6YoCjQ9dUC/1+vF0qVL8d///d+47rrrxv1+YCBRQHrzzTdx++234/rrr5/yeZuamvDuu+/yP+e60SaysNSA5ZUmHOh2IBhh8O6JITx49aKkhDay7NUViKA/BSWAQnPevAIU6BUYcXMr5icGXVg+xQR7Jti98YGJ0x+GJgMrq+lAKqHwyVXl+P3WNrAAeqJOOpmUwt0X1WPQFUCXzYdwdIXGE4ygy+ZFVZ4GHSNetA57EtwXhQZxBUHPFImEwh3n1uLlA9xqKs0CX/rbfrx819mzzt8aJUKoO62+rOuIOB2XNBXhkqYiHOxx4JrfcZ1f+50BaLLIgTsVJUY1Soxq9Np98IdprKmxoMgweXl3Tb4WDLgcIfKK+9qhAfzPhoZp9/fu8bijXey5oGUmNZ99U2ZSoc8RgNUbQuuwBw0TlGqdSZzTkI/H3m8FAHx8ahTXrUhNF+lkYFkWHVGBuNSYfHMp8ppOUQDDsnD6OWdYhKbhC9GQUkCfw49P/mEHQhEGDYU6XLl09p3mhaa2QIf37rsADMPyAjnAOapbh71oHfbynZeVMim6bdx1YCaO4UCYwZE+LkfMnS1h7sSbvqY6OUddvk4JW0JJ1vQZvmQzmBFPEN4gDX+YRjBCi8adBCQ2k5Bn+Lis3hCO9bugkUvg9oehV2cmK7nPFneWaeTimofJpBJ8Y2MjvvjsfgDAj187gbPq8jDsDuLDk1xuaIVFjfOJBRWVXIqGYj3+vKMLAPDXHZ1YH3WV3v+JBXjn+BDsvjBeOdiPz66rwqpqS4KA6wlGUCSSsS9FUVhRacJbx4YQYVgc7HVCr5QiFKGhENHnKsfEkPcipVya0MAmEGbQ5/Cj1+5Ht82Pw71ObDs1Cn+YSYhqCRMaDc2wkEooRGgG/jCd0Agsx9xI+sr3/vvvz2mHc92e5PLLL8fll18+6e+LixNDal955RVceOGFqK0d30abRCaTjds2RyK3rK/CgegEatAVRMeoJ6kSKtLmr5BSqM0Xb6D5ZMilEpzXUIAXo6VYT2/rwE2E23A2WL1B6JRSeKL5NadLYD7Alb/+fitXoqdTyhCK0DjW78LeLjtu/ONOqGQUyvI0cAcjsHlD6LL6MFQUxCObm6GQUigzqdERLbMuFChUPh3U5Gvx1Ysb8OjmZjAsV87z3J5u3H3R9CLLRDx4dRPuurAOF/ycKwc+HXINJ2J+sR7v3nseXtzfi0CISao7YjZwx7m1uOPcqe9NMeYX67G9VZHQAfHVw/346sX10y6YvXk0voAlxkYJJOVmNaosGgy4Agl/1452a1qFuthioZhZUWmGRiGFL0Tjo9bRjByzzRuCKyoQxdwlSZHQTIJKuHZJJRSM0S6fvXY/qiwanBr2oMvmA8OwWddUQiKhEmIJmgfdUMkkqCnQwqKNO8Py9Qr02Py8U7rP4YdcSuHFfX1YWmHEWXXxbE5SqHJkiaPO6Q9DJZNArZBCr0pufHNWXR623Hse/rm3F2GagWUGGXclhKOuNl+LAWcAnaM+bGsdxUXzxdOYilxwy/T4ZkmZEaeG3LD7wui2+9Ckzkzzgm6iwYYxQ2LhVGxsKsayChMCYRr9Dj/ufGYfGgiH+k1rqsZdpz6xqAQfnxrFluZhvHl0EP4QDbVCCpNGgXsvbcT3XuYMMA+8egyv3HVOglCnU8pQJaLmT8srzXjrGLfwp5RJ4AnRsHpDouyUniORQDgCuZSCSiaBRiGFREJBIZMgFGEQCNP4285ukIba9lFvQryTTErBF4qLfZ/47Uc4OegGC+DTayrw8HVLBPxrTm9mrQK0traira0N5513HtRq9YwHieeff/5sdzknhoaG8Prrr+Mvf/nLtI89deoUSktLoVKpsH79ejz88MOorJx8UhgMBhEMxm+yMynbzXYuX1SCb//7CF/nvrfTPmuhLkSzUGapO+aW9dW8UJeKgOI+h58X6QBAexoJdbUFOqysMmN/lx0yCQVGQkGrkOHhN47DqJbDH4rApFHA6gmiNl8LuzeE3R1WLCo1oNPqTQgxLdRnZ0OJGIvLjFDLJQjRLKyeIH7x9kmsqrLwq6vJoFHIUEwMjE4ncZdEJZeivlCPPK0S0EKwDqBiJF+nAMOyaCjSIRxh0Gn1oXXYg5YhN+YXT978wB+isT1abiOhgHlF4i17BQCtUoYIw6BQr0SeVsFnWu5st+KW9dVp2+8V/+9j2L0hVOdr8ffPr0vbfuaCQibButo8vNc8jBF3cNr3Ph10EHEPNfnJC3UsodRRVOK1Sxad4JYYlfj7rm6+8UAowmDIHcjqyWCEZlCgV3IuhGjESox8nRI9Nj8cvjDCNIM3Dvfjl++chD/MIE+rwNv3nIe8aIxEgV6JEqMKKrlElOWcE+EPMwhEuC9tkg3E9Co59Co5f+2fiVhblafBVy6sR7FRhWFXAM/s7EJjsS7h3BUDZPf2qrzMndsMwwJgwbBAY5EOfXY/mkozI9T1ERnGOpX45ggUReGPt6zEjX/cCVcggo9OjfLlrAqpBJ9aNd7lbNYqoFZIoZRRUMlkuP+lI3jgyiYYNXLctKYSf9vZheZBN472ufDCvl4wRDyAP0SjzCQeoW4F0VAi5tBy+MJZfW0+UwiEGYRpFmGa5qOEKi0ahCIMDGoZ9hFZohsWFCIQobGv08F3K4/QLFqG4lqHNxAGCy7CQiLyRc5sI+kaKavViosvvhjz5s3DJz7xCb689Pbbb8fXv/71GT1HIBDA7t278dprr+E///lPwle6+Mtf/gK9Xj9hiSzJ2rVr8ec//xmbN2/G448/jo6ODpx77rlwu92TbvPwww/DaDTyXxUVFak+fNGhkktxFVF+8uzOzqS2HxoTfm2aQdaIGFlSbuQtw05/GO0zzImajB5bYojs6dQYAAA+f24tSkwqOPxhnN9YiFvOqoZKLsP8Yj2+dEE9fnfTMriDNNpGvDjS58TP3m7B0X4XKIrCHefU8M+TraWvMSrzNPCGuBtlbNXqV++enHX2ljc4dTD56UQyzrPTleo8Ley+ME4NeRLKZF87NHVe6EenRvgBNcPOLOMp05Sa1Oi1+3Go18k7cHa229KaU9dt86HfGUCfY3YdzYXinPq4u+rjDHR/Narl+Nz6KpzbkI+l5aakt2cTHHWJ1y6VXIJt37oIA84gNh8bRKc1Lqx0jmZ3J1inP4x9XXb0OfzjFhzydfGfbd4Qbj+nFiuruE6PVm8IX//XoaiYAli0Cgw4A+gY9Yn+XAW4hhf9xHHO9l6VzD3ApFHgvo2NuHldFe6+qB7uQAQtgx68sC/9TWmSYcOCuLuvPENizKEeB5p+8Bae/LgTTn8YLUMetI1kTtAccMXPFYtGnGO+Qr0KP71+CfRR0TkS/Wx+YnExL6iP5RefXIrPra+BKxDBSwf6sL/HDoBzET9wVROUMgprayz43futONLr5LcrNihF1V11cZmRX1CJIYZOwTmmJxBJbCYBAO5AGN02H5oH3Hw+pZQC/vjZlXj29nX44BsXJDQ623JimH+cO5onyQJ8XEmO1JD0J/6ee+6BXC5Hd3c3NJr4zWTTpk3YvHnztNtv3rwZlZWVWLduHa666ipcc801/Ne1116b7OHMmKeffhqf+cxnoFJN7cS5/PLL8clPfhJLlizBxo0b8cYbb8DhcOCf//znpNt8+9vfhtPp5L96enpSffiiZNOquCBp9SZ3cR4k8leWVRgxvyQ784YoisLisvhq4++imUGzpYew+i8qNYjqppwK/j979x3eRmH+Afx72nva8t4riZM4eyckkBDC3qO0hF0oFFraH93QQQe0ZRRoyyZQ9iqUFSBk773jvbetvdf9/pB8luKd2JZsv5/n8fPY1ul0lk/S3XvvWF6UyPWh+/J4C7z+AJQSAfeVopZhapoKc7K0sLh8yEtUYGGuHudNMqDd3n3FOdalIWcrRS3FzEw1MjRSCMPNWfdUG7lsp6FyePyYk6XF7Cwtss8gs4WMLTmJcpSkq5Gpk8Lk8KDrWPnTI039BrC+iuhPl6WXDnlKZywUJalQkqHG4nw9poYzO4wOL8rbzu6iSF9sbh/X7yuybC4erZhkwNqFWXjxpjmDmoA53AqSlPjdZVPx+m3zcdUZPP7pPer0ChG6LsYL+LxwFq0cmTppVECrtjO+sqH6c+dr+3DX6/vx+Fel3O8iy1S1p5VvRgbq2m0e8HgMHr+uBAmK0HKbStvx8vZqAECWTo6paSrMzdZGXayJV6dabDjVErrozQBRfZFGg1DAx/xcHWZnaaCXC+NqKI2Az2Bejg6TkpVI18XmfTldK+UyZmQiPubn6LigcCxEVqmkauM3S2tOtg5v3bkAWpkQC3P1WDM1Gd9b2HcbHIZhMCVVhTSNBNl6WVQwbkGuHmumpmB3tRF1RifWH2/hbsuOsxZBUhEfk1NUEPIZKMUCzMxQw+QYuLcmiT1P5DCJ8KCWrgoue8RnybQ0DXi80O0GpQQ/X9M9XLPD7sUHBxqwuawdk1PV3LmMdYy0YRgrhvwp+dVXX+HRRx9Fenr0QVlBQQFqa2sHvP8Pf/hDXHPNNWhubkYwGIz6Gmh4xJnaunUrSktLcfvttw/5vhqNBoWFhaio6DsAIxaLoVKpor4mghmZWu4Esdnihs8/+P9fSboaicrQgeehegsW5g695C9efGd+d1n0Nyfbzurgr97YHairM47trIHeSIR83Lo4lBnHsqETlhfXzsWLa+fi9qW54PEYuH1B7Ks1YX+tCZtK27GzqhN3L89He0QPl8QxXvrK5zGYlKxCvdnFBS4B4PGvh5ZV5/D48dQ35XhnXz33nEVOcyLjk0EpgUoqRJ3RhbI2B3eVs6bTieNNvbde8AeC2HCyO1BX2+mKCgrEK7mEj8P1Fmyv6EReYnep7q6qMwtqD6Q5oidQapyX8OQkyFGcqsa6nTVY/rdNY/q1z4CBVibksuy6MlPe+/4i1BldUft1WWvfFQ7xJBhksam0HV8eb+F6OQGImtCqOq33VldADuie6G1QSvD4tTMAhErWO+xeODx+ZOpkONZoxd4aEw5ElCrFq5qIclMRnxeTPpB8Hg/7a83YVtEZ1eMz1g43WLCn2ohTLTYkxej4Rq8QY1lBAmZkaOD0BrC72ojjzZaB7zhCGiIuXMf7RZOpaWp8cu8SvHbbPPzru7O5LNi+rJqShBarBzWdTryxuxYvbq3ibrt/ZSGXqRa5jz5+3cyR2fiz8PxNs/HoVdNh8/hxsN7CDYoj8S3yWKFrqE7X8MLI2LxUFB0mOr2v6N/Wl+KvX57Criojdy4zVtowjBVDDtQ5HI6oTLouRqMRYvHAB/2tra144IEHkJQ0ek1cX3rpJcyePRslJSVDvq/dbkdlZSVSUlJGYMvGNj6PiepL89rOgQO1XW5fmovpaRrMztJiYZ4eqXHe1Lw/S/ITuKbOFpcPB+vNZ7yuyEDdUPu3jBU3LsjkygQ+2N+IttPKoC+cmoxklQQKsQDJKjHmZmuRqZNFBerGekYdAExOUSFTJ0WKSswdhO6vNWHLEErYmi1uPPFNGZ7dWMn9bjCT8MjYd95kA7L1MqRrpVyplEEpxieHey/p2lHZCQEv+iM/Hht0ny5yGzN13Z8TO88w+3QgkaV5Y+FzaW+NEVvLO2B2hsopx5LTr0mkaWRYOdmAK2el4a5z8gBEB7Jk4QEEpS1jI1DXanPDGwiVGGVE7Ls7KjowI0ODpQUJWJATfUJ/ekZdl2WFiVg1xQA+j8G/N1diZ2Un1DIhzilMxJwsLcZCW6DIQN3k1NG7oO0LBFFvdGJPtRFTUhSYl6PD9DQ16jrj52KoJXxyyzA9T4ZHE4/H4FDEMWwsSxkjM3OKxsCU7wydjOv3NRAhn4cHVhXishmpkIkEeHN3HXdbToI8KgEACGWgxuOFtRS1FLOztFhWkID5Obox9xk0UXX1lwe6M+p662+tlUdnfCtEAizI1XHHZW02D1qsbmRopUiQizArU4PCZCW8Q0jcIf0bcqBu6dKleO2117ifGYZBMBjEY489hhUrVgx4/6uvvhqbNm0a6sP2ym6349ChQzh06BAAoLq6GocOHUJdXfcbntVqxXvvvddnNt15552HZ555hvv5pz/9KTZv3oyamhrs2LEDV1xxBfh8Pm644YZh2ebxZn5Odybc67tqB50NFAwGsbOqE/trTWixuMEfYxPcIhlUkqjyld//78QZZdXZ3L6oqTrjtdeYSiLEdxaEDkK8gSBeCpfxdJmSqkaL1Q2r248Ouxeri5MhFfHRZusO6I2HQQKJCjHqjC40Wz2YnaUBAMzK1GBbefug19GVcRFprPZ7JEMzK1OLmk4nGkwulLZasawgAW02D/6zqy6qMXmXd/fVo93ugUbafTA2FgJ1kfuzQsLHlBQVrpmdHtUjdTg1mbvfZ1I08Z3FAQBLCrr71G0dxT51wWBoEM7ZZJCz0WNfIRML8OLauXj82hlcoI7PY6AKBy48/iBsbj8O1JnhCwR7W2Vciew5m64NBdNZlsXhBgsO1ZuxtbwD0zI0UfeJPBl/a28dzn9iM378ziG0Wt1YMzWFy1roGoZgdnqxr9aEnVWdcHnju/y1KiJQZxnFANDfvyrD0sc24trndsLmDmBPtRFHGi2o7hiZ8vmhajA5uf+nPDyBMVZmnLY/xjI7JrLdSWFyfA8+OhP3rMhHq9WN6g4HqjocUc/1vSvyopZNUIjj9jwpSy9Hi9WN3dVGbCprR2AMvDdPdB5/ZOlr6FxTKuwZEjq9j7FSKsSuKmNUVniH3Qu9XAytXIQDdWYcrDNz0+DJ2RtyoO6xxx7D888/jzVr1sDr9eLBBx/E1KlTsWXLFjz66KMD3v+ZZ57Bhx9+iJtvvhl///vf8Y9//CPqayj27duHmTNnYubMUDrwAw88gJkzZ+Khhx7ilnn77bfBsmyfgbbKykp0dHQf3DY0NOCGG25AUVERrr32Wuj1euzatQuJiYlD2raJIvKqT73RiYc/OT7gfSrabHjg3cNQSQSYnq7Gj1cWjuQmjoo/Xj4VCXIRhHwGhxvMWLezZsjrOH2QxHjNqAOA2xbnQBS+8vjl0ZaoK6dzs7V4/nuz8dJNc/DKzXO5ptEdNg/yE+VYUZTIfbCMZdl6GYpTVUhWSyATCpCTIMeBOjNe3l4z6IPjzogDWbVUgNxEObSUUTchFBiUWF2cBI1MiMp2B7L0oexmpzeAV04LfrfZ3PjyWKjXjcMbQIpKHNV+IJ5l6KQoTlUhUSlGi9WDz+9fir9eU4I101JGpMdUs2VsZdRFDpTYOoQg/9lqsbox+5FvUPK7r/DHz06c0TpOHybRl+/Mz0RBkoJbxuUL4EQfJd7xJDJDPiPcd2z98VbsrzEiQS7EnCwtklXRweDI0td6owtlrXZ8dLARMhE/qoKhK+h133n5KElXI1Utxa/+e2wk/5yzFhmo0ytG770nsmwyXStFSboaGVop/nuoadS2oT+V7Q7uxDbWF08iA3VKsSCqn+JoqmizRwWeDWO83Ulffr5mMlYXJyEvUY4LntzK/X5vjRkSQegdjwGglcfvcd0/NpTD7PSBxwAKER//O9L/UCsSe8EgkKGVIt8g5wJ0/gALflePWB6DomQFCgzRPa+VYgHX8krIY7jP5MmpSkxL7+7XTkNFhs+QIwFTp05FWVkZnnnmGSiVStjtdlx55ZW45557BlUe+tZbb+Grr76CRCLBpk2bonpUMAyD++67b9Dbsnz58gEP1O+8807ceeedfd5eU1MT9fPbb7896Mcnob4M2XoZajqdCLDA/lojajoc/Ta0f+bbCu4AqcXqwaL8sdufrsui/AQUJCmxM9w36UCtGTcvGto6JEIerp6Vxj030nEQjOqLQSXBjfMzcaTBgmNNFnx4oAE3h3vX6RVinF+cHLW8w+NHdbhM5fSePmNVhl6O401WyEV82Dw+rJxswAtbqxEIsvjmZNugmsNHZtRZXH5YXH6IxvF+Q7pJRfxQn0enD3IRDwvzdHhrTx38QRavbq/B7UtzuZO+t/fUcz2/kpQSdDq86HTakKiI/5OfBIWYe520WT2obLPh1R21OFRvwpL8RKikAgSCLC6enjosg1Qip2fGe486IPR+WZyqwvEmK443WdFp9/Q5bXA4dWUAWd3+M+41Fj1Mou91KCVClLfaoRALuEbXe2uMKDkt+yfeRA6Hygg3w2+zuQGGQYfDi8UF0h5ZMvkGBR65fCp0MhF+/O4hAKGLOkqJELkJ3VlFXRPmF+cn4rZ1+yHkAccaLTA7vdDI4i8Az7Isqtu7M9hOL6kaSckRgTp/gEWt0QmX1x830+MjS5z9gdgOuIgM1Nk8fmjlQjg8PsjFo3vcZXR44Q0/F0I+My4uzvZmRoYGNrcftZ1OqKRC3PzybhSnqsHjMeAxDAAWT10/E+cXj167qKEqbbWhLbwP+4PBqN6CJD6ZnF6un6BMJIDbF8ChejO63n7EAh5KW+xQnPa65/EYqKVCODx+sGx3TvwH+xtx+cw08JhQ1VSn3YN8w/jLgo2FIWfU1dXVQaVS4Ve/+hXeffddfP7553jkkUeQkpISVXLal1/96lf43e9+B4vFgpqaGlRXV3NfVVVVA96fxJ/lRQbu++NNNty6bm+/y0eObk5WiaEfxQO2kXTpjO5A9d4a45Dvn5uowK8umgJ/kIU/yHJ9A8arG+ZnYn+dCR5/cMCy6eqIK/GRDeXHMoVYgNwEORzeAA7UmXHB1O7gZFf200B6K32Vj9OSadJTYbhvj8MbxA/eOIi0cDDA5vHjtR01AEJDJLr63/CYUN8sly+AKSnKmJZYDVamVgqlRACHN4C399bjvMe34PVdtTjaaMW/Nlfi0S9L8bevyrD2lT3D8njNY6z0FQCWFnRn/G+rGJ3y18jsqGz9GQZII97z+9sTcxLkEAl4UdPo9lQP/TN2tEVmyXdl1JW22GB0eCER8LB2YXaP++gVYnx3QRYKkhTw+EMlZFPC/dzUMiF3vNT1mSgR8vGnK6YiwAJlrfa4zWZpt3vgCvdF4jPAHy4rHrXHjgy4N1ncKE5VweNncaDOHFUCFiuRbT26GrrHikYmisrcrDO60Gkf/eyYyNK63npnjSf/vHEWTv3hAszL1mFzWQee3VSJp7+tgNMXRIFBgfOLk+I6ULkorzvZwuoO4K099THcGjIYjohsVblYgBe2VMHhDUTcHoBYwCBb33MmQV6iAt4AC18QUITfr7yBICrb7eAxDMwuHxe4JWdvyJGAnJwctLf3LK/o7OxETk7OgPf3er247rrruHG/ZOxbVthdeiMT8ZGpk+HrE629Ltth93DTTKVCPtK1sphM/hoJl81I4xo6t9k8cHmHfgDojjholArH98FJYZIS88ONtCvbHdjRT3P4yogr8Xnj6CpNbqIC09JUKDAo0Wx2c733tpS3w+EZuMdDb4G68X5QS7pl6WXcPsMAEPJ4XFnCC9uqYLR78M3JVrSEB7YsyU/ArEwtCpIUSBkD2WIAIJcIkaKWQCnmg8eEgo1CfvdnBg+ATMhHqkaCeqOj7xUNUlfpq1IsgEoyNrJ3l8agT111e/dznXOGmYzRGXV9L5eqliBRIcL0NBXEgtCx475a04iUPg+nyIy69HAQPciymJqmgk4hQlYvJ0FdIqfcFqd2lxTlJoae6zabBzZ3KJiRpZdBJREgRS2JaiMRTyL3F6lIgCTV6AXBIzPqWiwupGqkKDAoMCtDgwZj7KdURl4cUMbBe06PPnWu0e9TZ4po/6GK4XCN0aCRiSDg85CoFEMm4kMrE0IjFUIlEcCgFMd1kA4AFuZ2B+rkIj4ytFLUdZ79ZzEZOc6I81OLy4d/buoeSKeSCELDIRQSZPbyGZWulUInE0Iq5CFDJ+OGAx6sM8GgDLVV6a1PMjkzQ46WsSzba2DFbrdDIhn4g3ft2rV45513hvqwJI7Nz9FzJ04ubwCbStvxp89P9rrswYhsOpcvMK76sMlEAijCQZJAkMWGU70HK/vj6WUSz3h2U0RGwWv99PVLUklwxcw0lKSrMSk5/qd/DdaLa+eg2eLBtooO/O7TE1gdLm/w+oPYVDpwv6l2W88PQ3mMr8iT0XPNnAzs/dVKXDQtBSyAinY7l2UXCLBY+tjGqL6h509Jxu5qI8pb7WNqOvCUFBVsngCCbCh7Kz8iqzYIwOkLYGelETurzj7L6u/XzsBT18/ALy+afNbrGi2zs7Tc58W28o5RCWBFNuLvCh4NVVSPun4CdclqKRrNbhxptHITMY0OLyrb4/tksCF8UVIjE3IBmO0VnTjWaIXN5Yeun2qC400W7vspERNSI8tfazpC68/UyWF2+dFscePwWUydH0mRGZhSEW9UL9Dq5SKuJ26zxY0kpQTlbXbsrzOjdhiC+2er1dodqIuHoNTpgTpLDIK/Za3dk521cVjKPRL+cPlUHP/9BbhpYTaKkpW4ZXEO3rhjQaw3a0A5CXKu16bDG8CuaiO2j9BUdjI8IgN1z3xbDpev+2er2496kwsddk+vvSGfvH4mDjx0Pk7+YQ2+uH8Z10c8yIYylg83WKI+v8jZGfQnwgMPPAAg1EfkN7/5DWSy7ihrIBDA7t27MWPGjAHXEwgE8Nhjj2H9+vWYPn06hMLok4XHH398sJtE4oRcLMAPlucjWS3B9vJ2uP1B1JtcuOLZ7fjg7kVR5VUH6qJHd8e6ce5wm52t5QIs7+9vwMXTBz+Z0O0LRGXUxftVtOFwfnESDEox2mwefH2iFU1mV68N3Bfk6rEgd+z3MuzN+VMMqOl0ggVQEJEt+OXxFlw0vf++n5EZdXOytBDwmXEV/CaDk6WXQS8XgQXg9gXxqwsn4fGvQwdfXeUMOQly5EQEVMZSr8elhYmoMzrRanVjUrISSqkAJ1tCJ3ISAQ/FaWqIBTwcbbTg2jkZZ/w4nXYPfvreYaSoJTh3kmHgO8QJiZCP+Tl6bC5rR4vVjYo2OwqSRvaCRlfppUzEh2GEp3BHBpUje7furTHGbR8crz+I5nAAJiM88fV3nxyH2emFSiJAcaqqz2BVs8WFnREnusURgbrI13BVhx3T0tVI1UixcrIBVe12VHc4cKDOhFmZ2pH4s85YWYsNoY5bwKQk1UCLDysej0GSWox6owvNFjfyDQrMzdaCYRi0WmJfotUe8TleOMKv28GIDNTpZEIY7aOfHcPnAVk6GZy+AM6bPHbei4eDUiLgvsYChmGwKE+PDw82AgCmpqpwrJECNfEsSSnG/Bwd/AEWpS2hi25KSSjZxOUPQCUR4NxJSYNqj3Lrkmy8tK0K6Vopms1u5BoUCATjO9t9LBn0u8DBgwcBhDLqjh49CpGo+wqHSCRCSUkJfvrTnw64nqNHj3JTWo8di55QNV5KICeiq2al40+fn8RXJ1qQrpVx5a1tNk9U2cGB2uhA3VjK6hiMTF13AHt7RQesbt+gyqdYlkXJ776KCs5NhECdkM/DDfMy8dSGcgRZ4M3ddfjp6qJYb9aoKsnQ4M1wT49Vk5Oglgphcfnw7clWuH2BfveDrkCdkM9gX/i1NVYO7sjwefCCSfD6g3hxWzWMDi9S1VKsmZaML4+1gM8AT39nFgJBliuVAwCNdOxkKVw1Kx1XzeoeruL2BfDJoWa4fAHweAxqOuzodPhwpMGMLJ2Mu8I7VE1mN6o7HKjucPRblhiPlhYkYHNZ6CLRwTrziAbqfIEg14iaxzC447V9Z7SeuoipqEw/XeokQj7EAh48/mDUceLeGiNumJfZ5/1iKciy+M1FU1BvcnJlnh8caOCme5r6mYr3iw+O4Fi49FWvEEVlNeRGTn4NZxTyeQwump6CH79zGACwvyb+AnUzMjVgd4S+18TgIkGKWop6owsWlw86uQh7a0Kfl1NSRjdo2JuOiH5O8XCCOzlFBQGPgT/Iwuj0Rb1OR0t5qwO14cf97oKsUX/8WLp9ae4Zf4bFysKIQN2xJisqOxzISZCPub9jojhYb0azxQ2pkAevP9QL8eLpKXjim3IAgNXlw8OXTBnUupQSIVZPTcZ7+xoAAPtrTWg0xb6lwHgx6DO6jRs3AgBuueUWPPXUU1CpzuzDrWs9ZHyRiHjYcKoVQTbUGDdVLYHHH0Rtp4ML1PkDQRxpCF1lEfAYlGRoojKIxoNzJxmw/ngLWq0e+AIsvjreOqjpne02Dzz+INc8GgDEE6D0FQC+Mz8Tz2ysQCDI4rMjTfjRygII+BPjbwdCJ15zsrRweP1os7mxcnISPjjQAIc3gB2VHTh3Ut/TvoqSlJCJ+Ggyu+ELhE4Ax1uWKhmcS0pSsbmsHU6vH6/urMF7dy3CI5f7UdZq5zIk1u2oQb5BDp1M3GuT4LFCIuRjcb4e35xsg9MbwN3L86CWCvHq9hq8vK0aAM7oBKHJ0n1wOVZ6+HVZXZwMpUSA4jQ1NpxoQzDIjtiwkN9/eoILKAh4DGzugftp9kYq5KMwSYGiJCXm5+r6XXZejg4Wlw9yMR+tVjc8/mBcl75KhHzcuiTUt3npo9/inxsrYHf7kawSI0UtwffPye/zvpF9RnNP6/8XWWZcG9EHam62DjkJMrh9QWwua8cdy+LrBDk5oiddqnb0X1spEReMxQIe5mRr4fIG4qKXUmTQNh4m9ooEPCwrTMShejOkQh6c3jN7fZ+NyHLbsZT9PVEtjBgokagUQ8zn4V+bKnHj/CxIacBZ3Ol6fXkDLAIsUGt04tYlOfCzLMCGht0NJXlqfo6eC9SlaSSQiQTYVdU5biuhRtOQUy9eeeWVYXngiooKVFZWYtmyZZBKpX32viNjg0EpwcXTU/HRwUa4fUE0WUIlH3VGJ+aHX6inWmxcHbw/yGJ/rSlur4afqTnZOrRaQ1dHGQAf7K/HlTPTBjxh6u2KpUQwMT7cklQSXFaSiqoOB2o6HdhVZcSSiOboXn8QQZYdtxmG6ToZlw0HAPedW4APDjQgVS3B9orOfgN1L908FwBw/hObUdZqh1TIh3iC7DckWkmGBjKxAOVtdnTavTA7vdDIRFFlTB12DyraHAAc+NHKgpht63BYMcmAb062AQhloSzM1eOhj0P9+D451MQF6lzeAEQCHl7ZXo1AkMXaRdl9vpdEvg9/eawZRxrMI/tHDDOT04tjHx+Hxx/Ep0eaRiwrMHKquUp65iVaXfcrydAMGBhtMLlQ3eGAWirEP2+cFSrlPsMhFqOh65g2MvsQAFqsHtyzIj9qyvfpAhHN+1JPe16y9HK8dus85CTIkRbRJiJdKwOPYdBsccPl9cPt80MSRwOpzJHDAWKUUQeEsg9ZAMcaLXD7QscWseQLBKOmGcfLhbY/XD4Vi//yLQBwmW2jqWt/kYv4EE6gC7djVbpWhiy9DLWdTnTaPQiyoXOgv311Cr+5ePQmPJOBeXwBrkdd1wW35YWJUEqE+MmqM6toijzObAwPx6los1GgbhiM+qd4Z2cnrr32WmzcuBEMw6C8vBy5ubm47bbboNVq8fe//320N4kMk7WLsvFROPVZyGfAsixqO7s/4A9G9KfjMUCaRoqcMZzV0RuFWIBfrJmEv31VCl+Axc4qI97YU4fvDZC6Hzkdjs8AWrmo30bT482KSQZ8+FaovP7bU21RgbpdVZ1Y+8oepGuluHdFPq6bO76Cu0lKCR5YVYjnt1ThVLMNXn8AszO12F9nwlt76vDAqsIB+87ZXD6opAJk6+L3xJWMvF9cMAm//OgomiwuPPTxcfzjhplRt9cZnVCI+JCJBUhSj2xfsZG2oqi7b9HGU234wfJ8nD8lCVvK23Gk0cKVjT+7sQL/3lyJIMuCZUONya+d23sfuy+ONnPfOzz+M84UixWHJ8BlZVe02SES8KAYgZ6VofL80HNz/3mFuGoQWeNnq6s3ncsbwHmT+754ES8uf3Y7VFIhpqd3T2zN1ElxTqEBF07rv/fozYuykaWXw+Ly4uJp0X1uhfxQtlNvrp+biZe3V6PV6sb64624bEba2f8hw8Ts9EEsYKCSiJCgGP1jm9uW5GDtoiwkKsQQ8HlYkKvHwTozKtscCARZ8Eco+3QgLl8AhUkKlLfaIRbyoI+T477I8mRzP2XaI8Xi9EIp4SNHT8c0Y8XCXD1qO51gwGBpgR77akx4aVsNHlhVRL2T44jF7QOfAQR8Hne8cHHJ4Pup9yY3QQ6lRACb2w8+j4FYwOC9fQ347oLsYdjiiW3UXzk//vGPIRQKUVdXh8mTu6eqXXfddXjggQcoUDeGzcjQoCRDg8P1ZvgCLAxKEeye7g/4ww0Wrv9WolKMFqsbGeMsUAcAhcnKqD4jf/n8JM6dZIi6+n26emP3FfcAC3TYvRNi6muXZYWJ4PMYBIIsvj3ViocieiNUttvBsqHnqL8+RmMVj8cgO0EOl88PpYSPd/c1wBLuJeb0BvD50WZcM0CDfKPTB48/CG8g2O9yZHybkalBg9kFuYiPfTVG/PaTY/jBinyux5XZ6YPdG4DdG0CCfOAp7fEsVSPFpGQlTrXYcKLJik6HB1IRH3wGUIj5uP+tg7h7RT6ONJjB5zHw+1nIRHy8vL0aZa02XD8vM2oQgdXtQ2dEGZxWLhpz/R6VEgHcvgA3nKaq3Y75ObphbyUgFymQppEiXSvD4vyEge8wHI8ZnmbtDQTh8gZwsM6ETw43QSYSRH1exAOjw4vD4TYfHXYPsvWhklS9XBwa/KLoP0i+MC8BC/OG/rxm6KSwOL3I1sujjili7VijBWVtdnj8LNrtnpictOvlIuyq6sTf1pchWS2GiM+DkM8gzaBAaYstarLuaFJJhLh4eioe/7oMbl8QSml8vOfIRHzo5CJIhTyMdgyTZUO98YIscKTRiqMNFkyLCHiT+PTdBVlYPTUZc7N1ePjj4+DxAJWEjz99fgLXz82i/2GcsLp8CLBAIBykkwh5OO8sh2fxeAxmZGiwtbwDgSALuVgEiZDPVXaQMzfqnwhfffUV1q9fj/T06CuwBQUFqK2tHe3NIcPs5kVZ+PE7ZgBAm82LA3Wh761uHz47Emr+LRXy0Gr1QCbkISFOrh4OpyydDJH9gB3eAH754VG8esvcPsu7eyt9jZcSiNGglgoxO0uLPdVG1HQ6UdVuR25i6CS6st3OLRfZn2c8ydTJEAgCVnegx1j79/Y39Buoc/u6s2gm0j5DepII+Tj5+wtwx7p9+La0Da/uqMWkZBWuD7cYMIf7kjDM+Bg6cvc5edha3oEt5e14Z289Hr92Bq5/fif21piw/kQr1p9oBQAUGOS4oDgZnQ4v3txTj1MtNlhcPvz1mhJuXYfrzVEZ4G/evgCyMZgF4AsEcd1zO3Ggzgy5WIDzJifhewuzY71ZZ00a0bfN6vLhztf3w+7xQykW4MELiuKqNcL+iFYG2Xo5vjjWAgC4clbaiDZXXzUlGSIBH1UdDry9tw73ntt3H7zR9OQ3ZVyZOhCbQTY2jx83v7oXXn8QerkIf7xiKr460YoOuxfrj7fELFAHRGesxctnOMMw8PhCPfyazG44vf6o3okjyekNRB1Dj7ehc+PV1DQ1TA4vPjrYCIYBDv7mfBT9+gu8sbsex5ps+PiexbHeRIKeGbLnTUoalosnM8OBOiDUd73d5sHuaiNWF/fd5oEMbNRTdhwOB2SynllURqMRYvHYLsUhwIXTUriyBomQB4kgtIv973AT159OLRViZqYG83L14PHGX9ZYulaGSclKzMhQc1lxm8va8f6Bhj7vUx8RqJuZoUFJhnrCXYWIvKLz7anug/qqiIbheYnja/hIl2ydDClqCRRiPkR8BhkaCdLDDbf3VBujmoZ3+fhQIy5+eitufmUP8hMVmJ2pjYsJdiS2+DwGSWoxlGI+MrTSqN5QaRoJZmdpMTtLO2KDBkbTrCwtPjrUiDabBy9vq4bT68eCXD2KkpRIVIiQrJJAKxMiUSGGWiZCmlYKtUQArUyIUy02bAlPSQWANqsbIn7oORHxeWMySAeESiP/ccNMFCUr4fYF8ftPT6DN6h629XfaPXhvXz1qOhxgR7G/V1GSAnOytJierobLH8D5xaHyV5vHj02l7QPce3Ttq+3u4ZemkWJhrh7FqSruPf1stVndeHdvPf78xUlu0i8Qeu0vzNVjTpYW2XpZ1EWuWDraGMou5DMMZmVooJOPfuBFLRVi1ZTQPtPp8KLV6saUFBXmhodKxMqm0jZ8dLABCrEAOQky6GTxcx7U9RnBAlHvlSOt3ebhMmiB0ORjMjbc/to+/Oa/x/D+/gbUdDpQkKRAUbICLMviztf2RV3EILHh8Pij2g9cPL3/VgyDNSNTw32foBBhQa4Op5qtw7LuiWzUoyRLly7Fa6+9xv3MMAyCwSAee+wxrFixYrQ3hwwzsYCPH60shFTIh9sXxJ4aEyxOH97ZW88t02L14GCdGaJx2iBWJODB5vbjUL0FPIaBUszHrEwNfvfJiV4DLkB3oE4k4OFgvRmH6y1xc2V1tJwbEajbWNodqOs62dDJRdCOwwxMANDIRdj5i/Nwz4oCeAMs6s1uzM7Ucre/v79nkLe6w4FjjVbsqjKiot2O/XUmjMPKYHIGvr8sDzZPAPUmFz4+1MT9fl+NCftrTWg2D1/gJpYydDJcMTPUh8vq9uO1nbX4yflFWP/jZfjO/Cxk6WW4aWE23rxzIW5fmot7VhTg7e8vhMnpw9FGC/66vpRb18kWG7yBUOApVTO2y4LTtTKcN8kAu8cPX4DFup01w7buHZWd+L/3j2D53zbhmW8rhm29AwkEgX21JhxpsKDF4salET11/ne4qZ97jr79Nd0no0I+g51VnTjeZEWicnj2q4p2Ox784Aie21yFzacFKRfm67Gv1oRtFZ3YW23sYw2jp83m5gZsBVgWB+rNSFLF5vV19azuSp4dlZ040WzF3hpTVGB1tLVa3TA5fbB7/KjucMZV79AkZfe2fH60ZdQet8nigsMTCp7yecyoZfKRs3dJRNDno4ON+OrH5+CXF07BkQYLvjrRir9/VdrPvcloaLG60WEPXcAV8XlYcZZlr11K0jXc9512L3ZVGfHpkea+70AGZdQiJbm5uejs7MRjjz2G559/HmvWrIHX68WDDz6IqVOnYsuWLXj00UdHa3PICLp0RmrUJK3Xd9bgSLhfS06CHDMyNJiXo4tqsjzeXDQ9GYvy9JicosLi/AQcqDPD7vHjvrcOwuuP7iPm9QfRHM54kEaU70y0dP98gwIZulDGwe4qI2zu0MFr10F+bhxP+BsueYlyzM/RITdBHnXy8M7e+qi+h0Co91GXKSkqLM7TYyFNWCIA0rRSrJqShHSNFGaXj5sq2DXpSyaKnzLBs3XPinyuh9JL4aw6IFTa2/UVKUsvw6xMDbQyIawuH94NX0TqiMg6S9eO/d6paxdlQxjOEHxjdx33vJytfRETX0ez59DCPB0W5+kxL0eHLWXtWJyfwDXe/+ZkK2zu0W943xuPP4Aj4QyyLL0M/oj37eG6+BaZWV7dEZ01l5ugwLwcHWZnaqM+I2LleFN3RkWySoyl+QkxG5S1tCCByyTZeKodywoSMC9bG9OpopFlaIVJirgKSnX1DgaADada4fGPTuahxemDIPy4IzEMh4yci0tSuX3m44ONCAZZTEpWYmZG6DO30ezC+uOjF/QlPXXYuqsspqWrh61thF4hRqYudOzEMMCcLA0UEgGCwdhO1h7rRu3TqaamBoFAAFOnTkVZWRmWLFmCyy67DA6HA1deeSUOHjyIvLy80docMoJUEmFUg+mXtldz309PV+NQvRl7qo3jurRzSooaOyo7sb/WBJc3gOzw0IzDDRY8/nVZ1LKlrVZ0xTUFEeVoEy2jjmEYnBue5OgPsthW3oGqiNKd8Vr2GilVI8XuaiOqOhzciHMAaLN5sKOyI2rZTnv3h+2JZiu2V3aOWmN3Et+EfB7UUiEazC40W9yo7QyVKTrCwZrxFKjLSZDjknB2ldHhxRu76gAAty/NxYtr5/boCSYTCfDnK6fD5PSh1ujEa7tqAADHm20AQhPJr5oVP9Myz1SSSoJLpoeeF7PThw96yco9E/vCpUsMEyo9Hi2L8xOwvbITe6qN+ORwE4R8Hjc91eMP4utwP8JYO9Zo5S7Gzc7Sjkj/MYNSDHn4NVzVEZ2ln66VYk+1EfvrTDgZ3qdj6Vj4Ii0QqqYwOr199uodaQI+j5uE6w0EUWd0Yk+NCburjdzFjNHW1TcUwLAF04dLIMhyFwgdngB2nNY/d6Q0mJxcgFsVJ8M1yOAkKMRYVhA6Dm2yuLGnxogklQQPnF8Y+sztdOLViHNCMvpqIiq7bl2cPazrPqcwEecUJiJLJ8O+WjMO1pnRZov9BaOxLCaXkdRqNX71q1/h3Xffxeeff45HHnkEKSnDUyNN4sPVs9O4q/mm8IGqJDx6PlUjQXGqCjnjOENqUZ4eV89KR4JChN01RjxyxTTu+fj35krsj8iW+uJoC0QCBudNMiBRIUJOghzT09VR2XUTRWQK9oaTrVH96cbrIIlIeYkK3LYkh+uV1RW4zdBJ8eWx6KuQkdkSWXoZlhYkxGSaHolPxakqTE5RwqAUo67TCbcvyF0QiKesjeFw74p8dJ37v7K9Gl5f/5kfWXoZLpyaDJ1chIpWO/bXGtHp8GJyshI3LczGFbPS+73/WHHb0hzu+5e2VZ/1lW2b24eT4Z4zRUlKqCSjdzFJJhLggVWFSFKJYXb68M7eOlw6o7v8NbLEO5YiP9vnZOnQbvcgUyvFrEwNEgeY9jpYDMMgJ/x5WNfphDMiyJSqkWBWpgbZehlahrE34Zk61tQdqMvSyzB3FIO7vbkyIgjv8gVQlKSETi5CbUfvbUlGmjHic1w9iq+nwShKUUb1VfxylMpfu6ooAEA7ji/oj1eXz+x+jf33YCMAYHqaBg+uLkKySoxjTVa8ubsuVps34XX1ABfwGC4rfbj84fKpWHfrPPzwvAJMT1MjTSPF+/vrB74j6dOoBurWr1+PTz75pN8vMj5k6uTwBaJPCi6algq7JwCTw4fjTVZkjIPyor4YVBKIhDx02L3gMwzAsnhw9STIhDzMzdbi/rcPwen1w+Ly4fWdtfD6WWwua4fJ6UN1hwNNZnfMrjrH0oJcPReg/O+hJrywtYq7bSJk1ElFoQEAXb2yuq4q1xtdeHdfPYyO7iy6rh4TDEI9Dp0xbIhN4o9OLsLJZhtcvgBarG5YXD7IRHwwDKIadY8HBUlKrJmajNmZWjAMg8+O9d8XRSLkg8/nwejwgs9nsK/WBJZlcbLFBoMqfnpEna3iVDUW5YXK4Ws6nfjs6Nn1izlYZ+amMc7N1p3t5g1ZSYYGrVYPXL4A1h9vhUEpRpomFEjYVtGBzjgo9dwX0Z9uTrYWnnBri1MtNmiHcYjClTPTsbo4CUIBD098052lLxLw0W73oN7ohN3jgyNGmWJdjjV2l77WdjohifFFgikpKkxKVgIIBYRKW21we/14fktVj7Yko6EtYp/VyuPrvcegkKDB5OJ+/vpkK/yBkX+O2m3dAebhDiSQkXf+lGQu4/ezo81w+wJQy4QoydCgxeqB0xvAy9uq8Nf1p0ZlfyLdOu0edIbPI/xBdsTecyYlq3Ck0QKjIzT9lZy5UQ3UrV27FpdffnmfX1dcccVobg4ZQVl6GTThlHWFmI/iVBWun5eBo40WuHwBGJRipKjHdsPugfzf+YXI0Erh8Abw0CfHcduSHMzP1WNvjQkNJhee+qYcr2yvhi18IH317HSu/GKi9afrIhHy8ejV03HfufnwB9mo/jYTIaMOAK6anY4jvz0f9yzPQ3Fq9xRXX4DFhxGTgzvCH34sQsG6rpMPQgAgO0EOpUQAm9uPslY7OuyhA2QegJyE8Rf0vnlRNvbXmdBoduHtPQNfwb1yVhrkYj4cngC+OdEKk9MHmZA37jK9b1+aA5mQhxkZajz65SlYXGfey21fbXQQarTNz9HhwG9WQSsT4ttTbbj2uZ24uCRUjZGbKMfW8o4B1jCygsEg9oZ7+KkkAuQnKnC0wQJfgEWGTjqsF99WTUnChpNt8PqDeGFrdVTp7w3zMsHn81DaYsfW8thNxDU6vGg0dwd6JAIe8mL8Oc4wDK6YmYapaSrMzNBgTrYWbn8QHx9uQmnL6JcKR7awKEyKr/fl7AQZVBE9Po0OL/bUjPzgjcjgYMoYH+wzEUlFfKyemgwAsLn92BjO4JqdpcWB36zCtFQVKtsdeHZjJWrDg/TI6Di9fH2k2qBk6qTQyIRw+YJR53Fk6EY1UNfS0oJgMNjnVyBAGSHjhVIihF4uRoFBgbnZOnx231LMydJCKxOiMEmBJJUEQsH4nPraRSsXI1ktweQUJVLVEhxrsuA3F0+BKPx3v7C1issYE/AY3L4kB1l6GYqSlSgwxNcB22i6tCQVYiEfEiGP+/mxq6cjQzd+MzAjKSVCqCRCaOUipGmk0ET0NXpzTx1YloXbF+ACvGIBD8lqybhogE+GT6ZWCqmQj8kpSgSDQTRbXChJVyNdJxvWzJ54MTdbxwXzd1cbo/pb9iY/UQGpgA+VhI/D9WbIxXzIxQIYhqk8MV4sLzTgqtkZOFRvQYPJhf977zBY9sxKYCMHScQio04i5EMnF0EpFkAtFUAm4qO0yQKxgIfyVjs+ODA8ffjO1I7KTji8fszP0eF7C7MRYFnu4ptCPLyvuQydDD9fM4n7+YF3D6EmXL6ZrZcjRS1BmkaC13bWnvH/+2wdjyh7TVCEprbHauJrpItLUnGs0YqD9WbUdjqhlgiRqpag2eIa+M7DLDJLPjmOJr4CoaE6MhEf6og+ceuPjXz5K4/XfW6QrqHjmrHoypnpYJjQBeSXt4faLnS9f6tlIsjFfCQqRPjlh0dww/M78bP3D+NIg/msH9cVriyp7nDQEINebK+Ivpg1Eu1y3t/fgO++tAdmpw8FBgU0UiFOtVCw7kyNWqRkIpbxTXQqmRDlbXZsLG2H2xdAp8OLHZWdKGu1QztB0tkfurgYJ5tt2FbRiTd31yE3UYF7V+QDAIIsuBH0V85KA4/H4ESzDaUtNvB4E/v1cs+KfBz4zSo8+51ZuO+8Alw7JyOmk9li4faluXj+pjlcxggAVLU7sL/WFNWfzuMPwuT04e7lNIyHdNPKxXD7Atz7T0WbA4cbLKjtdI7LtgMMw+D6uRncz+/u6z9ok6GTQSriw+oOwBtg4fAE0G734trndo2rchwej8Fdy/O4LO2vTrTipW1Db+btCwRxqN4MAEhVS5CqkfZ/hxE0I1MLi8uP6g4nNpV3whMuWdxV1QlrDKe/rgu3sdhdbcTkFCWsruEfJBHptiU5uHBad+bKBU9uwT1vHIDd40eWXo5Gsxs7Kju5UqfRVt3u4Pryddi9aLa4Y7rfdEnTSDEjQwMAaLd5YHL50GRxo7yt/+D+SIgs175oenwNsZEI+bh/ZSEsrlCwOVklwZfHWnpMoB9uXRdZEhQiXDYzvp4TMjgL8/S4bk4GTrXYsLfGhNd31XK3rbt1Ho797gJ8Z34WHJ4AdlYZ8c6+Bm4Q1JnyB4JY9cQmnPf3TVj5+Ga8sbt24DtNMNtPG0o3Ehl1TWYXd6xQ3mbHN6fa4qaH7Fg0ame+sbqiR2JnZoYGc7O1mJetRV2nE21WN5bk6zE7SzthyvSyEmQ4pzABuQlyHKwzoazVhu+fk4vchO4TZR4TCkw1ml2Yl6PF3GwtpqSo+lnrxCATCXDR9BTkT+DsQiDUtF0bUQr91p56bIso8RLwGJwbMYSDkC6XlKRiaUECEpVifHuqFfmJchQmKTA5ZXy+/145K50b2vP+/gb4Bgi4rZySBKVEAD4TKh8HAINKDME4uyiQppHi8WtLuJ///PlJfHKocUjrONls5fpgzolBNl2kOVla6BUiyER88HmhrGIg1B5gc2lsSj3rjU5sOBkqP01WSbC6OBnbKzqwJD8Bc7O1IzKRm2EYPHrVdBQlKXHZjFS4/UF8drQZr++shdXlQ5pGArVEgB+8sR+XPr0N1z23c9i3oT97a01ot3sQWTwRL9PsuwKcQOj1MS9HB7t79Pv5ef3d50bx8txEytbLka6RQirkocXqRmsvE+iHE8uyXLDdoJRwPSjJ2MLnMVFDJR778lRUGTwAKCUCJChESFSIoJeLcLTRjPXHzzxj88vjLWgwuVHZ7kAgyOLPX5xCPZXWcuo6nag3hv4HKokAC3J13GfncIo8H1FJBJifo+MyHcnQjdrR6Nq1ayGV0hvuRKKQCLG3xoQ9NSbUGp1otXmwraIT+2tNE2aiqUoixLJCA6o6HChtteNIgwViAR9/uaoEF09PwSOXF+O+8wqQpZejqt2BPdUm7K0xIUExMTIOycAMKgk3ORkAPjrYgJ9/eJT7WSsX4pnvzIrFppE4d9PCbGwt78ChejP21phQ0e5AfqIC+YbxGahLUIixakoSgNBU5K7pZn15+JJiHP3tapz4wwXoOl0er71Tz52UhLuX50Eh4iM/SYkfvXMIL2ypGvRF1OoOB0oy1JCL+Zgd48md5xQlotPuhdMbQDAILqMOCE1Vj4X/7KrlBm3cOD8TQj4P35xsw7aKDuytMWHV5KQReVylRIhP71uCknQN10+sw+7BoXozGs1uWNx+7Kk24UijBburjbCNYsbhTQuz8LMLJkEl7T6eiZdg1Jqp3ZnqjWYX9lQb8fnR0c36YFmWG17DY8A14I8nGTopGswuuHzdr7H/Hhy558npDXCD6CZqr+bxYkGuHjfMywQAOLwB/Oqjo1GfN7cvzcWrt87HK7fMQ6fDixPNNvxzY8UZPRbLsnhha3SmuNMbwM8+OEKJQmHbIsperW4/SltsI1LtWJyqgkEp5h5nd7UR+2pHvrfleDVqgbpXXnkFSuX4PDkgvVtWkICFuXqUpKvxzclWWJwjWwYSrxbn6ZGllyFVI8Gm0tCJ47wcHZ75zix8d0E2frSyEADQanWjOFWFudnacdfQnJy5knQN7liaA0V4Umdk1UmiUjxiJ4Bk7MvSy3BuUSIEvFDGWKJChLxxnqF63dxM7vt39g48VAIAWizdUwZTxnEGx09WFeKec/NR2mJDkAX++PlJ/PidQ4M6kdlXY8LhegscnkDMm96nqKW4bUk27lyag2vmpOOi6cno6hZxotmKB98/PKrb4/IG8HZ4XxPxebhhfmgfDEY8r7wRPNoW8nm4dUkODj50Pl5aOweR/061VIBCgxyJ4Qm5j60vHbkNOc3cbB3uXp6HHL0M09PUWDnZwPXojbUMnQxT07orF5JVYrh8QXx+lpORh4JhGCQoRJiersb5xclx2SIoRS3Fojw9pqapwA+/yNYfb4HbNzIZMmaXF8WpSszM0KAoic4Zx7pfXDiJC9psLm3Hazt7lqPmJsqxKE8PjVSIVqsHr+2sGfLjHKgz4XC43LLAoEBq+ILbjspOvLnn7Epqx4vT+9ON1Hk4w0RX+UxKVoIHBu/vj20P2bEqPj4xybg0M1OLfbVGHG6w4GijGZ2O7l4cE+lK2aQUFWxuP5rMbhyqN/W5XGW7HcebrNhbY5owgxPIwJLVEszL0cMe7mc4OVnJfcC22zwTvp8h6ZtEyIc3wMIfDE0HTlZL8JPzi2K9WSNqSX4C0jRSSAQ8WF0+NAyi9KXJ3B2oG8+lVgI+D3cuy8MPz83nfucLsPjd/04MeN+aTgf3fWGMT6D5PAa/ubgYv7xoCh67ugTPfmc21y6CZYFt5R2j0mfQ4vKh3ujEi1uruGm6F09PQUK4L1tkwIw3CkEYPo/BeZOT8MYd87l2CRaXH5OSVTCFJ7B+fXzke4xF8vmDONFsw5FGCxojXmfxIDKrrsXqQZvNg9Lm0Wt67vYFcKrFhiMNFrRZ4+u56cLnMWixuHGs0cq1B7B7/Nhwsv9s5TNlcfpxvMmGg/VmlLfZaCDAGKeSCPGHy6ciL0GOLL0cf/j0BDaXRbcnkIkE+PVFU2B2+dBideOjA41DDgS/sKU7m+6uc/Lw56umAwhlyP/vcFPcvr5GSzDI9ihZV8tGrnJrRUSg7lRL6P3/3X11o/rZM15QoI6MGD6PwaK8BCQoRKjpcKLV6oZEwENugjwuGgqPpgW5eiQqxWgyu/v8AKpos0MjE6I4VYkk5fgsvyJnZl6ODkXJSiQoRPAFg/jZBUUQ8hika6V01Zn06w+XT8WX9y/F5/ctxT9vnB3rzRlxfB6DO5flQsjnYV+taVBX05sieueM19LXLnweg5+cX4TnvjcbOQlyfHa0Ga/uqMFnR/rPJKrtDAU8lWIBdHE4DOru5d3Bx2aLGwfqzCP2WCzLYv3xFjzxdRmWPrYRf/+6jLtt7aJs7vuojLpRzJbKS1Tg5ZvnQirkY0aGBt+casMVs9KgFAvQavPgRNPoBaOaLaFjniSlGDPDAxzixZqp3X3q5KLQRMp3BhhCM5zarB4IeAwMyvjOdJ6TrUWSSgx/xEn2f4fY43KwzK7uwSc7K42IwyRDMkSri5OxZloKajod8AdZ3P2f/Vz2W5c8gxzv3LkAiQoxTjRbccsrewe9/tpOB9afCPW2MyjFuKQkFecUJuKOpTnodHixq8qIP35+cjj/pDGnot2OnAQ55CI+eAyQqBAjewQTQpbkJ0AU7vUrF/GhEPOxt8aEk6N4IWS8oEAdGVE8BggEWaRrpWg2u6FTiFBrdCJZNb5Phk4n4jPw+gPIT1T0+kbFsixUEiH4DAO3j6UsKRJFLRXC4fGjw+6FyeGDw+NHikaKNpsHSRPstUSGJidBjkkpKkxJVU2YTN0105Lh9ocuiLy9t37Aq/PNlshA3cS4iLS6OJmbQA4Av/jwSI9m3128/iAaTKFAXVaCLC5L9M4pSuRK83g8Bk2mkWsi/tyWKnz/9f3YXNadVXTr4mzcuSwXJRHBqMjsgdH+SJ+ZqcXNi7JxqN4MpzeAZrMbLp+fa9o+0g7UmXCkwYzKdhtyEuVweANQhnvoxYvcRAU32MzhDcDvD4Q/a0enj1+j2QmXL4g2mxcifvy9prrIRAI4PH7kJsi4TM1NpW1R7WyGi8MT4F4rMjE/Lt9ryND9eFUhLigOBcad3gBuW7eXy0IGALGAj/m5eji8fgj5DIQCXp+fR6cra7Vxk+zXLsrmyuvvXp7PTTX9+FDTiA5BiXcZWhn+b/UkfG9BFoIs0G73YCRz2+RiAebnhoZOObwBuL0B6GRClLfZRvBRxycK1JERdc2cDJicPpS12rG72ogmsxs8gOsfMFFcPTsdFpcfZW32Xnug2D1+HKw3o9PhRVK4uTAhkbrKxc0uH443WVFndMLrDyJLPzGCL4QMlkEpwYXTQmVtRocX/zvcf/PzpogedamaifPZdOWsNFxSkgog1PT5gXcO9Vqa0mh2cb0xs/Tx2T9VIRZw04wDQRabykemNG9XVSf+Gu7zVt3hxIJcPa6clYaVk5PwywsnRy0b+VTG4uLbjQu6+zXWm5zITZCjw+7F7z89MeIN1v/yxSlc+sx23LZuH6raHbB7/MiOw33nyllpmJ+jg1IigNUTQGmrbdRKdDdFTCiuMw4uKBEL2XoZ7J4AqjqcmJamBhAqmf/82PD38zM6PNzrRimOr8AuOXN8HoMnr5+BeTk6CHjAlFQ17n/7YI/3oX9cPxN2TwBbytoH3WP29V11qDM6oRALcPH07nJ2nVyEn10wifv5oY+P40SzBX/6/CTarG54/BNnEqlUxMfCPD3WTOt+fka6BVVknzo/C3Q6fPj40OgO7BkPKFBHRlS+QYEpKUrMzdKAxzCYkaHBrCwtRBNk6muXLL0chUkKzM7Uwuvv2TvHHHFlUhuHZUUk9hblJWBpfgIytFLsqTZiZoYGuQlyZOri7+SHkFiLLEFct7Om38BEs3niZdQBoabPj1w+levLxzDAwbqefVRrI/rTZcfxhYHLSlIhF/Eh5DM4UGsZ9vW3Wd344VsHuWDmfefm4+07F+Dxa2dgUX5Cj+XZGJW+dknXyrAoTw8gVLqcpVdgdpYGc7J0+OJoy4g9LsuyXOWAVMjH/BwdilNVKIjxEJLeXDQ9FXtrjLC5/RDwGMzO0qBxBLMxI0WWeXY13I9HmToZJiUrMSdLizyDAklKMebl6LCxdPiD4SZn93OinEBD5yYCiZCP5783G1l6ObaUtWNTaTu+Oa3XYZZehqIkJWZnauDy+ge13q7WFf5gEJmnVQ1cNyeDy3KuaLPjwqe24fktVfjFh0ex9NGNUW0vJgK72485WVqUpKtHvM1HV6COxwBqiQDpWgmazC6YI17jZGAUqCMjqjBJCYZhsLfWjBarG4fqzXEz9Ws0pWqkqO5wYH+dCbuqeo6pjkwBn0gTccng/fLCyUhQilHT6USTxY2D9Wa02TyQiiZW0JuQwZiZocH09FD2x7FGKw70EoACQg3djzSEgjoiPg/6CXahRC0V4uFLpiBBIcKuKiOe/raixzJLCxKx7Wcr8Mbt83HlrPQYbOXgXDs3Aw5vAL4AizqjE1vL2we+0yC5fQE8/Mlx2N2hk8elBQm4PzyxvS/RPeqGbVOG5OrZ3f8vhUSA/bVmbKvowK8/Pobb1+3lvl7cWjVsj9lodsEWfp48/iB2VxthdvowJ1s3bI8xXNI0UqwOl+T5gyz215pR2e4Y4F7Do8MeEZSSxO9xX6ZehlMtNuyrNaHD5oFaJsSeaiO+Ot6Kmo7hfa46bN3PiYaOhccdjUwUNdDqkc9ORGW2ZehkKG21YX+dGXtr+h6+14VlWS7YlqqR9iiV5vEYPHLZVDAMolp/bDjVhjabB498NvAgpfGk0+nFvloTDjdYIOSP7Ll4ll6OO5fmIjdRAYvbjwaTG2WtdpS32Uf0ccebiRcxIaPuvMlJmJqqglzER4FBgRlx1lB4NPB5DC6bkYZFeXqopUKUt0bX6bfb3JiersbCXD0K4ripMImt1cVJyEuUcyd9FNQlpHcMw2Dtwmzu51e21/RYJhhk8cC7h9Dp8CJTJ8O/vjtrQvYHXTUlCQJe6HBwZ2UnHJ7oTAY+j0G6VobF+QnIS4zfzye1VIQpKd3DdX73vxPwDcP012CQxU/eO4wvjrUgMZxN9OR1M7ieeH3eLyKJM1a9ti6YmgxFuITw6xOtWLswC8sKEmBQimFz+9FsceNEsxXv7qvHodMavJ+pk83dxzd6uQjzc3RcZl88umVxDve9TMSH0TE6GR/WiAu0Onn8fpana2WYn6PD3GwtgiwbFax/f//wDt+IzKjTjnBpHomNNVOTMT8nFLSv7XRGfTZLhHzcvTwPl0xPgUEpxgPvHOp3XWanD05vKNDX18T2aelqfPrDJVh3y1xMSVHhwdVF3L71+dEWbCnr+4JOMMjC5Q3A6vZhb03PJIuxoMHkxGs7a7C/1oT2iOm3mhGc+tolUSlGRTgwp5YKkZMgw3921o74444nFKgjI25mpgbHmqxweAMob7PHXUPh0ZKXqMCOyk7sqTHiVEt0oK7B5MKRBgt2VnVCOsHKgsngXTA1BS5vgDsBHOkeE4SMZRdNT4FOLoJBKcaBOhN2VnZG3f7Xr0rxebgEsNPumXDTyLswDINzJ4fKVLyBILZXjN2m26qIzKSKNjteH4aTgke/PMVNxW23efCbi6ZArxi4VDEeMupkIgEuCvclsnv8mJmpxbLCRKRrpVBKBAgEWTSZQ5kOz22uHJbHjByY1WrzYHe1ccCgZizNzdZy09Od3gC2n/Y+MVK6sjMBQC+P39JXiZCPeqMTe2tM2FHZiStnpnH/zw8ONPTa1/JMmSLawAzmNUbGHoZh8NAlU7j3xGe+rUCbrTuA9LMLJqHR7MJXJ1rx4cFGuLx995KLHDjRV6AOAIpT1chNVODz+5fiByvy8auLpnC3/faT4332q/vgQANW/G0jrvrnDnznhV34eISmHY+knZWdeOjj47jqXzuwOSIoORoX+q+enc5V0dncPlR3OPHZ0Wb4h+EC2kRBgToy4krSNfjH9TNw0bQUXDg1GedPSY71JsVEvkGB6elqZGilqD+tB0qDyYlMnRTT09XISaCeY6Rvj1wxFX+/Zjr+/d3Z+N2lxbHeHELilkTIx+PXlsAfDkbc8+YBNJicCARZ/Omzk/jXplBggscAz3xnFianqGK8xbGzcnJ34+cNJ0dmEMNouKQkFQWG7s/Qv31Vio8PNSJ4hsGE13fW4LktobJQHgM8e+NMTAuXVA8kMlAXy0DV1XO6M6Ce/rYcV81Kx4tr54a/5uDGeRkAgC+OtWDRXzac9eNFBurSNBLMzNBg1ZSks17vSGEYBncs7c6qq24fndIse0QPrsQ4D0otLkjApGQl+DwGYiEfywsTAQDNFvewBvYj+5LFc98+cnaKU9W4bm4mJAIeZmdp8N+D0QGwn64uwuopSZiSosKlz2zrcz2RPeaGcqHtyplpmJOlBQBUdTjwwpaepf82tw+PflmKFqsH5W12+AIs7n/7EJ7bXNlvz1t/IIh399bj21Otg96ekXSssbtfq1jIQ6ZOipmZGiSrR/71pZWLuAEfQRZI10qRrJbQUIkhoEAdGXE6uQiXzkjDzMzQIInsCRqIStVIcKTBgkazC9+ebIPb130Fp93mRbPFjSMNFqTr4rdZN4m9cycl4arZGbhganJc9vwhJJ4sLUjE1PCkQqPDi5tf2YOr/7UDz2+twpwsLRgG+O2lxVgRMaFsIlqUlwCJMHRI+G1pGxfYCgRZ/OWLU3hrTx0OD1Np5EialKJCeZsDPAZIUUvgD59cXfz0NhxpMA9pXW/vqcNvPj6OOVla8BjgD5dPxbmTBh9wCkYkDcRimESXOVla/GhlASanKFHZ7sBV/96BhvDFwnStLGqAVYfNgye/Los6PhmqrkAdnwGazKF+qiVx3vLkkhmpXDDV5vajrMU6wD3OntPT/Rzr4zwoxQODUy22cAamC9dEBH/fG8by13a7h/t+Ig32mYjuXZEPhmGwuawDz2+pimpTsCgvAUanFyearWgyO/HYlyd7zcI600Adj8fgD5dPhV4uxOwsLZ7aUB4V0AKAp7+tQEd4f0zXdq97a3k7dlT0nnXbYfdg5eOb8eAHR/DIZ71v82g71tT9XsaAQYPJhYN1ZiSrRuf1deP8LO77BpML7TY36o2jM7BnPKBAHRk1ty/Nxe1Lc2O9GTFTmKTEXefkgscwoWaeESc9x5os8AXY0NWGOD9gI4SQsYLPY/D09TO5aaUVbQ4cDL/3Hqw34+W1c3FTRC+7iUoi5GNJeHJpu82DY02hk5Ymswv/3lyJX3x4FM9u7DloIt5k6aVIUIgQZAGJkAdv+ETpZLMV7+ytx/rjg5t2+v7+Bvzio6MAgH21JvzmoilRJxyDEZlRF8M4HRiGwaUlqdzwgqp2B6785w5Ud4Qyx75/Th4+/eES3H9ePoIs8OSGcuwbRCP33jg8ftSGT8ICLMDnAYvz9HE/pEUs4OPymaFgHQvgwQ+OjPhjusLBUAYYleyWs5GslkDIZ2By+tBicePcSUnQhf+n64+3wBJRsno2fIHu10xmHE+YJmcvTSvFikmhzMwOuxcbT0Vncj/znVm4dXE23H4W/9xUhZrOnoNLBlv62pvJKSrcvCgH+2tN8AVY3PfWQTjDGZ2V7Xa8sr0aACAS8PDm7fPxwMoCGJRi7K0x4f53DvXo5QqEenIalKFpqlXtDvw3xpljgSCLE+FAXapGgq9OtIJlgUKDAgmK0XlPnpWpiapW8PpZvLmnblQeezygQB0ho0TI5yFdK4NCzIdaKsTzW6tQ0WZHm9WNBIUYBQYF9HIR+CM8iYcQQiYStUyI52+aA7mIj3PCJVvZehneumPBhM+kixSZLfZNuPy1trP7yvdYyIbXy8UQ8nnINyiQlyDHKzfPRXGKColKMd7YXYefvnsY1f1MqgwGWTz7bQV+/sERdMXZ7liag5sXZw95W6J71MW2R1tuogIf3r0IueH/YapGipte2oPaTgeUEiGmpqmRqpFCLuZDJRHgha1n1q/uZLOVe97kIj4EPB5SepnGGI++Oz+L67fWaHYPsPTZ8fgD8EcEpZLCJ/fxSisTckE0s8sLkYCHy2akAgC8/mCP0sUzVZSkRIFBgZwEORbkxu8AEjI8rpmTwX3/7r76qNuSVBJoZSKoJQJopEI8/nVZj4E3TRGv06EG6oDQRYpp4Yz7qg4HfvvJCaw/3oLvvbSb29/vWpaLTL0c960sxKxMLTz+IDrsHi6QF4lhGPzk/O5p4E9tKBuWgUZnqrrDzl0QSFFJMSNDA41MCK1cNGrvyQzD4LsLMrmfVVIhshNkOFB7ZheDJpoxHRHYsmULLrnkEqSmpoJhGPz3v/+Nuv3mm28GwzBRXxdccMGA63322WeRnZ0NiUSC+fPnY8+ePSP0F5CJ5rsLsvDY1SWwuHzYcLINnx5pws6qTuyo7ER5mx1rwk2fCSGEDJ/CJCW+fuAcvHrLXDx21XR8cf8yzMuh0vFI50YELbv660RmMWSNgQwXhmGgkYlQ0WbHprIOLC1IwP9+uBizw/2IbB4/7np9P5c5Eane6MSNL+7GX78qxbQ0NXgMcPOibPzywslndFIT2RYv1oE6AMjQyfDeXQtx7qREHG20oN7kwk0v70G7LVTedd3cTOQmKmB1+7G5rGNQ5a+Rvf/sHj/+9PlJLnvQ6Qvg++fk4m/XlIzI3zPcZmRouAb37TYPrO7hyRLrTbPZzWV7igQ8COL8Aq06YnBVV/bcNbPTMS9Hh8IkBd7YXdtv367BOtpoQXmbvddsJTL+LCtIRIo6FKTeWNqONmt0gPyH5xXg/bsXwezy4fOjLXhxa3Qvua6MOoYBks4gK1Uk4OHJ62dwQ/ze3VeP77++H01mN+bn6JCqluCu5Xnc8v93QRFXIv/c5iqYIiZE76814YInt+C/hxq54F+90YX39g3vZOShOBpRzuvxB3Co3gyT04eHLpnSz72G32Uz0jA5WYniVBUsLh/2VJvw0raegU7SU3x/MgzA4XCgpKQEzz77bJ/LXHDBBWhubua+3nrrrX7X+c477+CBBx7Aww8/jAMHDqCkpASrV69GW9vYba5M4kthkhI5ehl0ciHWH2/F3hojFuXpMTdbi+lpg2tSTQghZGhSw5k9187NgFRE07VPl6yWYGpaqETlWKMVLRY36iJ6yWTp4j+jDgCW5OkxP0eHeTk67KjsBI/Hw9+uKUG+QQEAKG214YInt+KXHx3Fbz85hvveOohLn9mGS5/Zhp1Vod5DB+vN+OvVJXj4kilnnHkQD1NfT6dXiPH4tTOQlxj6X9Z2OnHzK3tgCwelVk1JwswMDfINctz8yh5c+NQW3PjiLuyrMUatp6zVhiMNZvzwrYO4+ZU9eGFLJS59ZhsO1JnBsqFBANPS1FBKxs5kcoZhMCm5u0Tr8me3w+sfmWwYi6v7BD8vUTEijzGckpQSLMjVYU6WlhuCMSVVjWCQRVmrHWVtdmwbhqES5nAQcDQmUpLY4/MYXD071O8wEGTx/oGeQa10rQyFSQokKUXYX2vCtc/t5C4ivHLzXHz6wyV4ae0ciAV9f6ZvONmK29ftxR3r9uLD0x4jL1GBhy+ZAiGfweRkZffvDQp8cf8yyESCqGWvnhXaXpvHj39HTMo+UGvCqRYb3tpTjyUFCdzvn/62vM+psiPtWGN3fzohj0GWXoYMrRRZ+tH9LFeIBUjVSHE8XIabppGios3Woy8g6Ukw8CLxa82aNVizZk2/y4jFYiQnD37K6OOPP4477rgDt9xyCwDg3//+Nz777DO8/PLL+PnPf97rfTweDzye7gaoVuvIN6ElY1d2ghyripPx/JYqGB0+dNg9aLd5oBQLsDCPUv0JIYTExrmTklDRakemXobXd9agpmNsZdQBwMJ8PV4IX62flanFssJEyMUC/Pu7s3HZM9sgEfJQZ3Tizd11yEmQc6Ww09LUMDktSNNI8ehV06NOts5EV7IZwyCuSj81MhHW3ToPV/1zB5osblicXtzx2j489905+MHyfFw2Iw2//PAoKtvtaDCFMlYEvAqsu3UegFAfurv+sx/1nU4EWSDAsthU2t7jcT65d8mo/l3D4VcXTcaNL+4GEOox1WByIncEAmlWd3fG2HmT47/8PkEpxq6qULDW7Qvg3hUFAIBbl+RgX7iE7eVt1VhakHjGj+H2+bkyva7BNmT8u2Z2Bp7+NtT/9L19Dbj7nLyo90uRgIevfnwOzn9iM8pa7Wi2uHHLK3tw3uQk3L40NzwMp/8kh398W47D9aGg0IE6M4wRmXC3L83FdXMzsCBXj+pOB/53uAmXlqRicX4ChL1kut6/sgAfHWqE1x/EqztqcPPibKSopVFluZeWpOJUsxWV7Q7kJcqxvbwD504e/cnXkYGwgw2h7/MNcijEox/+WZCrx4ZwH8KuTMi9NUZu2Bfp3bh/J9y0aRMMBgOKiopw9913o7Oz90ktAOD1erF//36sXLmS+x2Px8PKlSuxc+fOPu/35z//GWq1mvvKyMjoc1lCAGBJfgKy9TKopQKAZbEkX487l+XG1cE8IYSQieV7C7KQqZehrNWOV3bUoKI9NHBAyGeGNFUvlqamqnHupETMydJiT0QmWL5BgRdumoPHr53J/S4yc0cq4uPJ62bgyx8tPesgHQCuFDAeyl5Pl6KW4rXb5mF+jg52bwC7qoy47vmd+OZkCy57Zhs2l3WXofEZ4ESTBU9+UwaWZfHLj46iqt0BX5AFEz6LkIv4kIn4of1ELcbyojMP2MTSvBwdl23LMMAT35SNyON8sL8Bc7K0WJKvx/lTBp9MECuZOhnWTE1GqlqCFquby2g6f0oS1xtsY2k7KtrsZ/wYVW3dFwVMwzScgsS/TL0MC8P9CKs7HHhjd++DBmZnaTE5WYmiJAX21Jjw5y9OoeR3X3F9JU/3ly9OYvYfvkLRr79AbacDaqkACQoRnF4/HvnsJB757CT+ur4U9UYnGIZBdoIcK4oMePzaGVheZOg1SAeEMvPXLsyCRhqaGPtWeHsP1oUC1jIRH4VJStwwLxN1Ric2lrbj48OjP1QiGDFIQicXYXKKEulaKTK0sbngFtlzUibiI10rxc7KvmMyJGRMZ9QN5IILLsCVV16JnJwcVFZW4pe//CXWrFmDnTt3gs/vmSLb0dGBQCCApKToqHdSUhJOnTrV5+P84he/wAMPPMD9bLVaKVhH+jUvR4eaiCbd7RWd+PXFo9szgBBCCImUqBRjQa4eZa12OL0B1HSEPqcydDKuN0+8M6gkMDt9OFBnBgPA7vZBES7BXJSfAI8/gI0/XQ6n1w8+w0DA5yFdK4VEOLzl0F0nkPH6tOUblHj4kmLc9HIog+xUiw23r9vP3e4NN1MPsEC73Yunv63AJ4eaUBXOQBQJePj0h0vQYfPgX5sqsLUidNK1emoKHr6keJT/muEh5PNw3iQDPj3SDJYFtvSSKTgcdlR2os3mQYpagmnp8Z9RIhHyIeTz0GQJBW/rjU4UJCkh4PNw86Js/PHzkwCAV3dU45HLp53RY5xosXHfS4f5tUji261LcpCuleDzYy34w6cnkK2X97hY8ucrpwMAHvnsOEpbQwFhi8uHtS/vhkTIx4JcPW5elA0Bnwd/IIijjRZ0OkIBX48/iGlpKiSpJFHTZT3+IOqMTmTohha8un1pLt7cXYcdlZ042mDB5TPTuNdGSboGfB6DFZMMUEoEsLn92HiqDb5AsM/g30hweP1YVpiIY00WyIR8nGwOvb7uWZE/atsQaUqqins+3L4AGkwuWJxe+PwBCPspW57oxnVG3fXXX49LL70U06ZNw+WXX45PP/0Ue/fuxaZNm4b1ccRiMVQqVdQXIf2RCPl49/sLcfOiLMxIV+PqWenIHuWeAYQQQsjpHlhVCJ1cBKC7z9pY+3y6clY68hLlkIr4+Oi0iZRiAR85CXIUp6oxKUWFfINi2IN0QHfpazxm1HWZkqrCu99fyGVFqSSh6/cLc/V4+44FKE5VQS7iQyzgIRBkuSAdAPj8QTSZXRAL+dhVbYRaKsDMDA0eXD0pJn/LcFk1pftivdXth30EBhuYnKHSO5ZFVHl5PCtOVSFLL4NYwIvqXXndvAzIw1mIH+xvhNnp7WsV/aqLGFxjUA19MAAZu1ZNSUKQZeDwBODxB3Hbur3YWt57kPz/Vk/Co1dNw33n5qMkXYUmsws7Kjvw96/KcPcbBwAAf/j0BI7Um6EU85GmkeCaWel47db5eHHtXLx95wKsnmKASiKAVibk+iIORZJKgktKQlOPbR4/novoVTczUwMgFPRfURQqa7e6/dhTbeyxnpEk4PHw2NXTsfn/VkDAZ5CgEKE4VYVzi2JTas/nMZgfHuAVZEN96vxB4OuTNAOgP+M6UHe63NxcJCQkoKKiotfbExISwOfz0draGvX71tbWIfW5I2Qw5uXokK6VIUEpxqQU5YicKBBCCCFDoZGJ8ODqoqjfZerGRtlrl9xEOaraQ+VOnY4zCxycrXgufY2Um6jA+3cvxP3nFeDDHyzCncty8dpt87AgT4+P71mMl26eA42sZ3N/PgM8+XUZNp1qhUIsgNXth14hGvODWpYXGtD1H+PzGNR2nHk5Z29c3gDXI6rF6sbemtE9gT9TOrkIjSYnEhRitERM51RJhLhmTqiKSCkR4LMjzWe0/mZL9zr1cgrUTTR/vnIaVheHguQefxDPfFvR62tDLODjurmZ4PN4ONxgRVWHE05vEIFgEEcbzLh93V5sKmuHN8DC5gkgN1GBohRluJcdMDdHj3MnJ8Hq9sPk9J3xdOebF2dz339xrIX7fkaGhvs+Muj/9Yno2MJI+/RIE4ofXo/pv10PuycAf5CF2elDUnjKbixElr82mV3Qy4Woi6guIz1NqEBdQ0MDOjs7kZKS0uvtIpEIs2fPxoYNG7jfBYNBbNiwAQsXLhytzSQTyO1Lc/Hi2rm4fWlurDeFEEIIAQBcOycD+Yly8BhAJxMhJyH+J1NGygqX6jZbPNykudEWZOO79DVSilqKH68qRL5BiV9eOJkr0RLweViQm4BdvzgPWx5cjstmpGJuthbpWin8LHCowYKnN1bC5PThoqnJePbGWTH+S86eWiZEejgw7Q+y2DXMmTBOrz+qB5tGJhrW9Y+UbL0cATbUCL68NTp4edPCLMzI0KDT4cU/N1X22TesPx327qF8icqx8ZyQ4SMS8PD0DbOwujgJxakqHKgz4fZ1+1DRZut1+abwQAIA+PDuRbh7eT6y9HLY3H4kqySYkaHBPcvz8Nqt83qcY0VOiPX4zmwi66RkFRbnhwJPkcNhZoQz6gDgnKJECPmhD4CvT7RyF29GQ1fg2+r2o7rDAbPTB4MytgHwyECdgMegwezGu/vqY7hF8W9MB+rsdjsOHTqEQ4cOAQCqq6tx6NAh1NXVwW634//+7/+wa9cu1NTUYMOGDbjsssuQn5+P1atXc+s477zz8Mwzz3A/P/DAA3jhhRewbt06nDx5EnfffTccDgc3BZYQQgghZDzj8Rj8+3uzsf3n5+LAQ6uwdlF2rDdpSFLUUhQkKZCulaDB6ERpS+8neyNpLJS+DhbDMMjUyTEtTQ21VIhMnYwrd2QQGiaRopVGnQCPZUvyErgA646K4W147vYHo37uLVsxHmUlyJBvkCNdI8HeGmNU0CE3UQGNTIhAkEWj2YVvTw29nM0UUTKbpIpd1g+JnVCwbib0ChF8ATbcg24vN9gmUmNEoC43UQ6lRNDjSysX9TqkL3Kq8Omvxy4vbavCPzaU4akNZTjSYO51mVsX50T9nK6VwqDs3ndVEiEXnGo0u7g+caOh2eLq8buulhaxMjlFxbVXAAMsyNFCyGdwx2v7RjWIOZaM6WES+/btw4oVK7ifuwY6rF27Fv/6179w5MgRrFu3DmazGampqTj//PPxhz/8AWJxd0S5srISHR0d3M/XXXcd2tvb8dBDD6GlpQUzZszAl19+2WPABCGEEELIeJVvUMZ6E84Yj8fgrnPycP/bhwC4sbmsDUXJo/v3BMORunEQp+PcvjQ3Kjvlia/LsKuqEwty9fjxqsIYbtnwOneSAW/tDWV67A9Pcxwu7tMyeDTSsRGoMyglSFXLsLmsHQ1mNzrsXiRGZOjctDALm8LDN17bWRNV9jcYFld3VlJKDMvzSGyJBHz888bZuO65nTjeZEWj2YV73zyAl26eC6Wk+7XSlVEnE/Ghlgp7vDf1RxzRauj01+OLW6uwo7IDG0+1oyt0tLvKiDfvWNBjPSuKugdGdK3r9nV7sSBXz23LqilJ2FoeijN8faIVU1JHp499k7lncFMd44sCfB6DeTl6fHOyFb4AiwALlLbaUdpqR5vNQwH6XozpQN3y5cv7jcCuX79+wHXU1NT0+N29996Le++992w2jRBCCCGExEhxqho5ehlYAEcbR7/8tav0daxMyz0Tkdkr48nsbB3kIj4c3gDMTh/qOp3I1A9tMmRfTg8MxPrkeSiWFiSgttOBIAtsPNWKa+dmcredU2hApk6GOqMTW8s7UNluR17i4Evmnd7uQF2GdmwNryHDSyEW4JWb5+KKf+4ACxa1RidufXUv1t06DzKRACzLchl1qRppr1lz/ZEIIgN1QeyvNeJHbx+CxeWF3RMAywJ8HiAXCxFk2aj+iZvL2vG39aUIBoOwefxwe/3g8YBEuRhCPg8nm62oN7mwZloK0jRSrJychIc+Pg4A+OZkK+5fWTAMz9DAujLqhHwGM9I14PEYZOti/7q6fm4GFubpsSBXh52VnWi3ecCywLen2nDDvMyBVzDBjOnSV0IIIYQQQk6Xb1BAwOehptOJ9cdbuAy30TKeSl/7Ml777OrkIvgj9pcvjp3ZgITeeE4rtVOPkYw6INRjqqbTiTqjE/trzVG38XkMvrcgi/v59Z21Q1q3xdXdt28sBS/JyDCoJFh361zIRQK0Wj3YW2PC91/fD48/AKPDy72OuiZWD4U4svTVF8CRBgvqTS5Y3QEEWYAF4A+G9klbuMfbsxtDgygP1plwtNGC48021Bld8AWBYBBw+QLg8xk0mt0obbGhoi3UxzFVI0VxOIuuvM2GXVXDW0rfl+ZwRp1WJsLeWhN2VxsRD8WlK6ck4bYlOShMUiJTJ0NNpxO1Rife2lMX602LSxSoI4QQQggh487dy/MwL1uHbL0Mf/z85Kg+dldG3VCzPUh8WFKQwH3/+dHhC9RFZtQJeMyY6uuXqZNiVqYGBQYF2iOGP3S5Zk46xILQqeUH+xvg8Ph7LNMblmWjAtpjpRyYjKx8gxJPXDcDyvCU5K3lHbjvrYOobO8eZpJ6BoE6hViAknQ1CpMUqDc6sW5nDdRSAZIUIkxNVeHKmWlYmKvDnCwNvjM/AylqCZ7bXImHPzmGz480QyrkcZOh0zQSfG9+Fv52TQnuP68AJelqZOllqOt0cI/309VFuHh6Cty+IO598+CITzq1uX2whV97kdnO8dIP86fvHcbM33+N/3v/CB69aioydVK0WNz4wRv7Y71pcWd85aoTQgghhBAC4LxJSXjg3cMAALPTC6VYgHtW5MHi9uOjAw3YPcwTPSN12EKBjNNLHcnYII3oY3W4wYLqDvuwTD92ebv3h8jHGAtUUhGqOxwwOX29lnRrZCJcPiMN7+yrh0IiwEcHGvHdhVm9rCkawzAoTlVhb40p/DjxEVAgsTc1TY1Xb52L7764B2qpEDurOnGo3szdnqYZel8zlUSIww0WAACfYdBkdsPrD+KcklT844aZAEK96gDA6vKh2eIGnwHKWmwob7NHZaY1mt34yepCaGQi7KjswOEGC/gM0GjqHuawMFePZ78NZeR12D246eXd+ODuRdArRmYKa0tEqa5MJADDACwbP9m7Do8f9nAgcVKyGm02D9y+IBpMLhgd3pgPvYgnlFFHCCGEEELGHbVMiA0/OQfT0lTosHvx5IZy7K81Yc4j3+Cx9aU43mSFze0fka/p6WrMzdZi7SACFST+/PqiKVicp+d+fmlrzbCs1x6RZSYXj718iVlZWkiEPJS22noNQt+6JBtzsrVotrjxz00V8PgHF6jusHvBZ4BMnWxc93UkQzc7S4dXb5mLnEQ5rC4/Wq3d2ZxnklEXmVlmdHrh9QeRqBBj7aLu9+qu4RRrF4X2Z4ZhsLPKCCGfwcwMNfb+aiXuWZGHmxZkQSMLBZZmZWoxN1sLPp+HN/bUcX30JUI+Xlw7B/mGUKC/ptOJp7+tGLFJp00RgTo+jwHLAolK0RkFNUdCZLbytooOfHzPYqRrpTjeZKWsutNQoI4QQgghhIxLeYkKyIR8iPg8GJRivL+/AelaKfgMA6mIHzUQYTi/VFIh1FIhtJQdMCYlqyWYm6Pjfv7fkSZYnL5+7jE47bbuIMNYzBxRSYRIkItRnKJCg6lnCV9Rsgqq8HTOJosbt766Fw99fAx7Bshetbh8CLAAGxedtEi8mZ+rxx8vn4opKaF+b3yGgV4uQrp26ENeJEI+shNk0MkEcLj9SFCIYPP4kKHruS69QgyFWACDShwqeWUYZOjkSFSKoZWJoobMSIR8yEUCJKnEyNHLYXR4uds0MhHW3ToPCQoRCgwK7Kzs5KbBDrdmc3c2n1jAQ4FBAV+AjZupqkvzE7nvt5V3oChZBZZlka2XQy4SoCqitHmiG3uXcgghhBBCCBmkt7+/ENN/+xXabB68f6ARALBysgEvrp0b4y0j8exHKwvx6o4amJ0+WFw+bCxtxeUz089qnXXG7uBWvPSMGooMrRQfHXShwexCbacT+QZlj2XuP68A355qAwBsr+jE9opOHKwz438/XNLrOlmW5YZJxEt5Hok/uYkKfPiDRfjjZyextCAB5xcnn/G65mbp8N7+BgCA3RtAll4Gg7L3QNart8wDADzxdRkA4MerCgGg1yE6KRopNpW1ox4u1JtcUeWtaRopfrSyEL/+7zEAwBfHWrCsMLHHOs7WJSWpmJauRrPZjT99fhJVHQ4I+QzSziCoORIy9TJuQvT+WhNc3gB+f9lU3LZuHyrb7ZiSqsJPzi+K9WbGBcqoI4QQQggh4xbDMDi/OBlJKjE0MiH0chEye8meIOR0qyYnoasS8+9fl2H3WU5tNEdk5WXp5We1rliYkanByskGFBoU+NfmSuyo6JkVVJKhQYq6O+gh4jOo7rDjmn/v6HWd63bUQCURwKAUIyNOggkkPkmEfPzh8qlnFaQDgHk5OhQlKaCRCpGoEKEwqWfA+XRd2dL9mZmhwdRUFQxKMX7wn/244tntsLm7X/NXzkqDJDx19usTLQiMwDRyuViA4lQ1zptsQIpGijnZWizOS4irkvLF+aHyV28giN3VnSgwKLG0IAF5iXJsLm0bMAN3oqBAHSGEEEIIGdduW5KNVqsHZqcPLl8AD11SHOtNImPA98/JRde5dL3RhU1l7We1vqqO7rKu3ISxF6g7d1ISbl2Sg7I2O/bVmPDUhvJelwtE9N/yBljYPQHsrTHh2Y0VPZbdX2uCyelDm80Dm3twk2IJORvXzMnA+h+fg7WLsvGd+Vl44aY5A96nq29df1ZOScKxJivabB40Wdw4WG9GTUd3Fq1MJMA54Sy6DrsX+2pGLiDVbvdge0UH9tWY4q6gfGlkn7ryDmTqZbh1SQ4q2x040mjFU9+UxXDr4gcF6gghhBBCyLiWpZfhmtnpuH5uBr6/rP+TLUK65BuUKDB0T3utNzrOan2Rk16LkgfO4olHRUlK5BsUUEkEqDf27FMHRE+3lYn4UEn40MqE+PBAAx798lTUss0Rze8NqpGZhElIbwaTJTcUWpkQdy3LRZpGAhE/1Eev/rRejmumpnDff3GsZdge+3T/+KYc87J1WFaQgGvmnF3J/nBblKcHE07w2xbOyi1OUWFJvh46uQgNJhf+/lVpDLcwPlCgjhBCCCGEjGtysRB/vaYEf7lqOu5fWRjrzSFjyJWz0rjvN5W2I3gW5WpaWfcAiUljNFCnV4hhUIphdfvRZHHDFNE0HwC8vgCXGScT8uH0BgAwMDl9qGx3YPtp5bKRAzYMSgrUkdEzmCy5oWAYBj+/cDLm5+jhDbDodHhR3RE9HGHFJAOE/FCUav3xln7fT7481oLKNjv+tr4UXn9wwMdnWRYvbq3CJ4ebsOFUG/bUGLG/1oSLpqUMeN/RpJGJMC1NDQA41WJDm80Ng0qCF26aC6PDi1qjEx8eaBixybhjBQXqCCGEEEIIIaQXl8/sDtQ5PAG8uqP6jNfljMw0E4/dmX5XzExDYZISGpkQ7+2vj7rtoqe3IlUjwcI8PRbl6wEAVrcfCXIR0rVSuH2BqOU7w4E+AY9BfkT2IiFj1a1LcjApWYkEhQh1RlfUbWqpkOvR1mxx43CDudd1NJicuOs/+3He45vxzMYKvL6rdsDHtbr8eOSzk7jvrYNotbqRrpFiaUEiGCZ++tN1WRJ+DlLVEjSYQs+RVMTHd+ZlQiMVotXqQWX72WUwj3UUqCOEEEIIIYSQXqSopZiSogIAsAhlgJwpHhM6URcJeFFlsGNNvkGBslYbfP4ANpe2o7YzdEJtcnjA5/FgdvpgtHvxpyumQREOSHY4vGgwhabFdvEFgrB7Qtl3/iALtVTU88EIGWMy9TKcarHBH2Th9PTsu7hmavcwjC+P917++sXR6N8/9U1Zj+zV0zVZuoOCUiEf7XZPP0vH1ncXZOHbn5yDL3+0FGJBd0hKJxfB4vJBJuKjwdR7af1EQYE6QgghhBBCCOnDpSXdpWM7K89s8qvLG0Cj2QWLywchj4mrKYxDNS1Nje0/OxduP4vtlZ347SfHAQAbS9txqsUGpzeA6+amw6CS4EcrC6Lu6/EHuay6Nlt0ICFBQYE6MvapJEKkaSQwO33YV2vqcfuqKcnc6//dvfVo7CUg9enR5qifrW5/n8NbujRHBOoc3gA8/iDyEuMzSzVFLcEvPzqKmX/4Brev28eVueYmysEwob+3uoMy6gghhBBCCCGE9OK6uRnc961WD+xu35DXsW5nDVfKJRnD2XQAIODzkKqRIEEhgkYmRLvdgxe2VOFksxVZehmSVGLkhgMEaxdlozAp9L1UyEOySoyOcKZPq9Udtd4EBfWoI+NDvkGJ4lQVMrRSuL3RWXU6uQiXTE/BykkGmJw+rHx8C/6xoZwLYNcbnThcbwYAFBgUXPbtaztrcKShZ+CvS5O5+/WUqZOiwKBAhk46zH/Z8GAYBgIeD4Egi2aLGzXhTNvsBDnyDQpkaKX43+EmOHrJSJwoKFBHCCGEEEIIIX3QysXQyYQAAG8giB+/e3jIQyUq2rpLZpVS4bBuXywwDIPdv1wJADjWaMVj60/hha3VqO10oihJieVFBgCAkM/Dn6+cBp1MCJcviBarB7uqQlmJbacF6tSysf+8EAKEStyPN1mxp8aEBrOrx+1PXj8TlnDA3+UL4NmN5Xh+SxVsbh8+i8imu3xmGu5engcAYABc8exOfOeFXfjoYM9hCy0RE5TrjC6Ut9mRrpWNwF83PLp6WALAjsrQkJlZmVrMyNCg3uTCgTrzhM6qo0AdIYQQQgghhPRjWrqa+/7rE604528b8afPTg76/uWt3dMfZ0Ssa6yblalBvkEOlUQApZgPnUzEZdN1mZ2lQ1HElNvHvy6Dy+vH1vLuCbCFSQooRGN3wAYhkYpTVZifo8OcbC0ajD0DdQDw4k1zccvibPAYIFuvwONfl+G+tw7i08NN3DIXT0/BHUtzccO8DKyYZECAZbGjshObS9tx6TPb0RgRBIzsUTctTYU52Vpk6uMzow4AFuUlcN/vqOhuKTA5RYVMnRQZOikazBO3Tx0F6gghhBBCCCGkH4HTMujqjS6s21nTI6ulNyzLRk0wtI+jcq6Xb54Hn59Fp8MHmyeARKUYv720uMdyV81O575vMrux5NGNeGN3Hfc7i8sH3hju20dIJL1CjN3VRuyrMaGqj6wwtUyIhy8pxqs3z0VLOLt0Y2k7jjVZAYR6QWbp5ZCK+PjzldMxOUWFdG0o8PbNyTYcbbTg6n/tQHlrKFu3OaL09WijFYfrzUjTxG9G3bQ0NZSSUHB+Z1Unl6WcqBSjzuhCvdGFqgk8+ZUuWxBCCCGEEEJIP+47txBycRX215jQ4fCCxwBCPoN6owOZ+v4btrfbPFHBOdk4yxz72QVF4cEQDCalKHtdRn9a/7nOiAmWWToZZmRqRnALCRldqRoJpqapEAgCDm//gfllRQb8+7uz8b2XdsMfcUHgoukpUcv95PwiPLCqENsrOvHr/x6F3eNHs8WNK/+1Az85vwhN4ew6HhPKStPLRXE9tIbPY7AgV4+vT7TC6PDiVIsNU1JVyNbLMCtTA7vHj1aLe+AVjVOUUUcIIYQQQggh/ZiXq8Nz35uD75+TC5VEgCAL2D0BvLmnDv5AEC9sqcTTfUxlrGizR/0sF4/tYRKnu3B6Km5enIObF2djQa6+12U0EX35luTrUWBQoCgpFNSrNTrhDwyt5x8h8UwvF+NYoxUnm62oNw5cvrkwT48/XjEVQGjYhFTIx0XTUnosxzAMlhQk4P27F2FqmgoAkJMgx28/OY7a8OMEWeB4kxUW19CH3oy2RXk9+9Rl6OQ4UGdGWasd9X2UDU8E4+tyDiGEEEIIIYSMkDuW5SFZLcUP3zoIAHhhazWe21wNlrs9t8dU14r26ECdVDjxTsGSVGJk6KRosbghFwvw5h0z0WJx4ZJntgOgQRJkfNFE7M9m5+ACZtfNzYRSIsTKyUkIsmy/06ETFGK8dccCvLu3Hn/7qoz7vUIs4LJ31TLRGW796FmcH9GnrrITty/NhVoqxLQ0FSraHChttfVz7/GNMuoIIYQQQgghZJDWTE3mSsoCwdA0RgDQSAT44ZsH8PMPDkctH5lRZ1CKkaiMLgOdCAxKCUwOL1LVUvAYBolKMcwuH/IS5UjXSpGsksR6EwkZNmqpEAalGNl6GXjM4MtPL5yWApGA12+QrotSIsStS3Lw5h3zceWsNGhkQrx5x3zkJsiQoZUiTR3/r6kCgwIJ4bL43VWd8AWCAELTonVyEfRyIdzeQCw3MWYm3uUcQgghhBBCCDlDAj4P185Jx1t76gEAyWoJmixumN1+fH2yDQDwu8umQiwInWxHBurabJ5xV/o6GAI+D4lKCao7HGi3e8CyLJrMLm7IhlpKGXVk/JAI+fAGgmjr9MA3gmXdDMNgZqYWMzO1cPsC2F9rQlVHqARWIYn/UA/DMFiUp8f/jjQhJ1GOdpsHqRopMrQyHKgzo9HsQoPZhXxD/31Ax6P4/+8RQgghhBBCSBy5aFoqF6jzBoJIUUlgcfvg9QeRpBLj/Mc3wxdkoZYI0WAK9VkS8JhQs/QEeSw3PWZmZWqglQkh5PPQaHJhb40ROQky+AMspqSqYr15hAyrWZkamJ0+KCUC+PwBCAUjG6CXCPlotboxL0cHrz+AvMSxEdx68IIi/P6yYkiEfJxotiJVI0VhshIzjWoIBXw0mJwUqCOEEEIIIYQQ0r8FuTpoZUKYnD44PAEc+M25+PfmSu72f3xbDpYFmhCaWigR8uD2BXGkwYIMrSxWmx1TcrEAB+rMAID9dSa8v78RQKj8bW62LoZbRsjwY1lw+7vV7YdeMfKZtKWtNuypNgIAfnK+dMQfbzika2U43mTBj985hEaTC1/cvwwGpRgH6y0AQq0GlhfFeCNjgHrUEUIIIYQQQsgQCPg8rC5OBgC4fAFsKm2DUiLgvtI1EiQqRAi3soPbF4RWKkRuohxpmrFxAj3cJierMD9Hh5J0NTacbMWcLC2y9TIUJStjvWmEDDtNxDCH0ZrAanP7MCtTg/k5OmTqxs4Fgf/sqkVZqx0ObwA/ee8QMvUyzM/RYWamBh12T6w3LyYoo44QQgghhBBChujCaSl4e2+o/PWjg414/qY53G23L83F6ztr8JuPj3O/M7l8yNDLIBJMzFyJRKUYu8PZPnaPn+tPt+7WebHcLEJGRGTfRZPTO+KPx7IsDtZZcLLZCh6DMXVB4FcXTcG2ig7UG13YW2PC1rIO7r1CPQZ67Y2EifkpQQghhBBCCCFnYWGeHolKMaanq7GlvB1fHG3mbnN4/HhqQzn38wXFSbh2Thoeu3p6LDY1LmTrZShOVSFZLUGn3YN0jRQz0jVIHQPTKQkZqgKDAkVJSqilQjSZ3SP+eMebrGgwOqCTCTE1TQ0Bf+yEehRiAf5+zQx0Dch9bkslpqWpkKGVosU6MTPqxs5/jxBCCCGEEELihJDPw4s3zcapZhvcviDue/sgtpS1o8PuwV3/2Y8OeyiL5qJpKZiTrUNhkgqTkifu0IR0nQzHm6ywOr3wB1m02z0wubwj3mSfkFhQSAQobbVBwGfQYhm5QJ3XH0RFmw0vbq1EkAWMTh90ctHAd4wz83J0+P6yPKilQjx+7Qx4/SxarG54/UH4A8FYb96om5h5hIQQQgghhBBylqalaXDpjFS8v78BvgCLW17ZC4YB/EEWU1JUKGu14aeri5AzQSe9RpII+SgwKFDeZud+V5RE/enI+HT+lCQYlGK02Tx4e28d7liWOyKPU9Fmx4X/2Mr9zAC4dk76iDzWSPvxqgLcsjgbSSoJvj7RitJWG6o6HGixupE+wYbwUKCOEEIIIYQQQs4Aj8fgL1dOg83tw/rjrVBJBTA5Q43jBXwGG3+6HBljqKn7SMtNkMPjC8Dk8kEnE9FzQ8YtqUiALL0MeoUIaokQwSALXtd0mTMUDLJ4d1899lQbUdZmg0IkwMopBqRrpGg0u8BjAJlIgEzd2LwwIBbwkaQKZdjmJspRkqFBlk4Glo3xhsUABeoIIYQQQggh5AwJ+Dz844aZePKbcizNT8B9bx/E1bMzcP3cDApEnWZVcTLWn2gFANjcfqyakhTjLSJk5KilIuytMQEAWqxupJ7lgIc2mwc///Bo1O92hYcu3LIoG6rwAIupaeqzepx48KOVhfjRysJYb0bMUKCOEEIIIYQQQs6CWMDHzy6YBJZlsePn503Yya4DmZqm4soBgejJmISMN9PSVKjtsKPF6sEdr+3DNXMycPOi7CGv55lvy7G3xohTzTYkKkRwePzoSjLL0sth9/iRopGAx5xdxh6JHxSoI4QQQgghhJBhwDAMRAI6We7LpGQV7B4/97NaSqejZPzSykUob3cACE1lVR5rPqNA3Ss7atAZHk4DAHqFiPv5VIsNOQly3Lksb1i2mcSHMX2pZ8uWLbjkkkuQmpoKhmHw3//+l7vN5/PhZz/7GaZNmwa5XI7U1FTcdNNNaGpq6nedv/3tb8EwTNTXpEmTRvgvIYQQQgghhJDx7yfnF+KH5+bjwdVFY3I6JSGDtSQ/AT9bXQSVRAC5iA8Rf2jhl9IWG9Y8tRVyIR8ZGgkKkxTITZRjYY4OszM1EPEZKCUCLMrTj9BfQGJlTF/CcDgcKCkpwa233oorr7wy6jan04kDBw7gN7/5DUpKSmAymXD//ffj0ksvxb59+/pdb3FxMb755hvuZ4FgTD9NhBBCCCGEEBIXblsyMtMvCYk3uYkK3L0iH//4tgIuXwD1Rueg7mf3+CEX8fHK9mqcbLYCAM4pTMTSggQAwO1LczH3kW/gDbDwBvzgn+WQChJ/xnQEas2aNVizZk2vt6nVanz99ddRv3vmmWcwb9481NXVITMzs8/1CgQCJCcnD+u2EkIIIYQQQgghZGI5pzARO6s6UWN0wu0LQCLk97v88r9uhMcfhE4uwtxsLaakqHDPufkwKCXcMm/cMR9KiQA+fxCCIWbqkfg3of6jFosFDMNAo9H0u1x5eTlSU1ORm5uLG2+8EXV1df0u7/F4YLVao74IIYQQQgghhBAysYkFDIR8BkVJStSb+s+qa7W6kaaRQibiIxhkoZYKkaGTRQXpAKAwSYkUtRSZevlZT5Ml8WfCBOrcbjd+9rOf4YYbboBKpepzufnz5+PVV1/Fl19+iX/961+orq7G0qVLYbPZ+rzPn//8Z6jVau4rIyNjJP4EQgghhBBCCCGEjCFZejk67F6carGhrrP/QN2WsnYcbrCg1erB7cty8eLaubh9KZWLTzRjuvR1sHw+H6699lqwLIt//etf/S4bWUo7ffp0zJ8/H1lZWXj33Xdx22239XqfX/ziF3jggQe4n61WKwXrCCGEEEIIIYSQCS43UY5paSpIhXy0Wt39Lmtx+bjvtTIatjJRjftAXVeQrra2Ft9++22/2XS90Wg0KCwsREVFRZ/LiMViiMXis91UQgghhBBCCCGEjCPpWhmONobaY01O6T8eERmo00iFI7pdJH6N69LXriBdeXk5vvnmG+j1Qx9bbLfbUVlZiZSUlBHYQkIIIYQQQgghhIxXmToZ5uXoMCdbC4c30O+yDo8fMzM0WJKfAIOSkoEmqjGdUWe326My3aqrq3Ho0CHodDqkpKTg6quvxoEDB/Dpp58iEAigpaUFAKDT6SAShdJIzzvvPFxxxRW49957AQA//elPcckllyArKwtNTU14+OGHwefzccMNN4z+H0gIIYQQQgghhJAxK1EpxtEGC1y+AIx2b7/LlrbacLDeDABIUkn6XZaMX2M6ULdv3z6sWLGC+7mrT9zatWvx29/+Fp988gkAYMaMGVH327hxI5YvXw4AqKysREdHB3dbQ0MDbrjhBnR2diIxMRFLlizBrl27kJiYOLJ/DCGEEEIIIYQQQsYVhmGwvCgRZa02GB1eBIIs+Dymx3JNZheON1qgkwuRpJJAI6PS14lqTAfqli9fDpZl+7y9v9u61NTURP389ttvn+1mEUIIIYQQQgghhAAAgiyLynYHkpRiNJldyNDJ0GByQi0Vgs9j0GHzoqbTAaGAj3abBwUGJRimZzCPTAxjOlBHCCGEEEIIIYQQEs8Kk5T49lQbWm0e1BmdyNDJcPd/DuBoowUAkKQSY1FeAtptHijEfPz6oskx3mISSxSoI4QQQgghhBBCCBkhCUoxktUSJMjFMDlDferUUgFkIh78ASBDK0MwGMSUFBU6HR7kG5Qx3mISSxSoI4QQQgghhBBCCBkhySoJ6o0u1BtdqO10wuz0YltFJ3f7vloTKtqFMDt9SFKJIRXxY7i1JNYoUEcIIYQQQgghhBAyQjTS7sEQFpcP/9lVi2UFCajrdCLAshDyGchEAkxNVaMwibLpJjoK1BFCCCGEEEIIIYSMEHXEBFez04tvT7Whos0OPo9BIBg9BPNPV0wb7c0jcYYCdYQQQgghhBBCCCEjRC8XYVGeHlaXDyebbZAKeViUp0NRkgp5BgU2l7Whss2BNK0UqRpJrDeXxBgF6gghhBBCCCGEEEJGSIJCjAN1Jrh9QWikQphdPgDAzy6YjJIMDdy+AFgWWJCrh4DPi/HWklijQB0hhBBCCCGEEELICGEYBgtz9dhfa4LZ5YNCzEdhkgJFyaF+dLcvzcXtS3NjvJUkXlColhBCCCGEEEIIIWQE8Xmh8IuQz8DlDUInF0MipOmupCfKqCOEEEIIIYQQQggZQf/67iwI+Tw88XUZWJbFfecVxHqTSJyiQB0hhBBCCCGEEELICBKGe88pJaEwDPWiI32hQB0hhBBCCCGEEELIKKBedGQgFMIlhBBCCCGEEEIIISQOUKCOEEIIIYQQQgghhJA4QIE6QgghhBBCCCGEEELiAAXqCCGEEEIIIYQQQgiJAxSoI4QQQgghhBBCCCEkDlCgjhBCCCGEEEIIIYSQOECBOkIIIYQQQgghhBBC4gAF6gghhBBCCCGEEEIIiQMUqCOEEEIIIYQQQgghJA5QoI4QQgghhBBCCCGEkDhAgTpCCCGEEEIIIYQQQuKAINYbMB6xLAsAsFqtMd4SQgghhBBCCCGEEBJrXTGirphRXyhQNwJsNhsAICMjI8ZbQgghhBBCCCGEEELihc1mg1qt7vN2hh0olEeGLBgMoqmpCUqlEgzDxHpzhoXVakVGRgbq6+uhUqlivTlkDKB9hgwV7TNkqGifIUNF+wwZKtpnyFDRPkOGivaZiYNlWdhsNqSmpoLH67sTHWXUjQAej4f09PRYb8aIUKlU9OZBhoT2GTJUtM+QoaJ9hgwV7TNkqGifIUNF+wwZKtpnJob+Mum60DAJQgghhBBCCCGEEELiAAXqCCGEEEIIIYQQQgiJAxSoI4MiFovx8MMPQywWx3pTyBhB+wwZKtpnyFDRPkOGivYZMlS0z5Chon2GDBXtM+R0NEyCEEIIIYQQQgghhJA4QBl1hBBCCCGEEEIIIYTEAQrUEUIIIYQQQgghhBASByhQRwghhBBCCCGEEEJIHKBAHSGEEEIIIYQQQgghcYACdYQQQgghhBBCCCGExAEK1MWZP//5z5g7dy6USiUMBgMuv/xylJaWRi3jdrtxzz33QK/XQ6FQ4KqrrkJrayt3++HDh3HDDTcgIyMDUqkUkydPxlNPPRW1jg8//BCrVq1CYmIiVCoVFi5ciPXr1w+4fSzL4qGHHkJKSgqkUilWrlyJ8vLyqGUOHDiAVatWQaPRQK/X484774Tdbh9w3UeOHMHSpUshkUiQkZGBxx57LOr248eP46qrrkJ2djYYhsGTTz454DonAtpn+t5nPvzwQ8yZMwcajQZyuRwzZszA66+/PuB6xzvaZ/reZ1599VUwDBP1JZFIBlzveEf7TN/7zPLly3vsMwzD4KKLLhpw3eMZ7TN97zM+nw+///3vkZeXB4lEgpKSEnz55ZcDrne8m6j7jNvtxs0334xp06ZBIBDg8ssv77FMc3MzvvOd76CwsBA8Hg8/+tGPBtzeiYD2mb73mW3btmHx4sXQ6/WQSqWYNGkSnnjiiQG3ebyjfabvfWbTpk29Hs+0tLQMuN1kBLAkrqxevZp95ZVX2GPHjrGHDh1iL7zwQjYzM5O12+3cMnfddRebkZHBbtiwgd23bx+7YMECdtGiRdztL730EnvfffexmzZtYisrK9nXX3+dlUql7NNPP80tc//997OPPvoou2fPHrasrIz9xS9+wQqFQvbAgQP9bt9f/vIXVq1Ws//973/Zw4cPs5deeimbk5PDulwulmVZtrGxkdVqtexdd93Fnjp1it2zZw+7aNEi9qqrrup3vRaLhU1KSmJvvPFG9tixY+xbb73FSqVS9rnnnuOW2bNnD/vTn/6Ufeutt9jk5GT2iSeeGMpTO27RPtP3PrNx40b2ww8/ZE+cOMFWVFSwTz75JMvn89kvv/xySM/xeEP7TN/7zCuvvMKqVCq2ubmZ+2ppaRnS8zse0T7T9z7T2dkZtb8cO3aM5fP57CuvvDKUp3jcoX2m733mwQcfZFNTU9nPPvuMraysZP/5z3+yEolkwG0e7ybqPmO329m77rqLff7559nVq1ezl112WY9lqqur2fvuu49dt24dO2PGDPb+++8fxDM6/tE+0/c+c+DAAfbNN99kjx07xlZXV7Ovv/46K5PJot6LJiLaZ/reZzZu3MgCYEtLS6OOawKBwGCeWjLMKFAX59ra2lgA7ObNm1mWZVmz2cwKhUL2vffe45Y5efIkC4DduXNnn+v5wQ9+wK5YsaLfx5oyZQr7u9/9rs/bg8Egm5yczP71r3/lfmc2m1mxWMy+9dZbLMuy7HPPPccaDIaoF/SRI0dYAGx5eXmf6/7nP//JarVa1uPxcL/72c9+xhYVFfW6fFZWFgXq+kD7TO/7TJeZM2eyv/71r/tdZqKhfaZ7n3nllVdYtVrd799AaJ/p733miSeeYJVKZdRBP6F9JnKfSUlJYZ955pmo+1155ZXsjTfe2O/fNdFMlH0m0tq1a3s9gY50zjnnUKCuD7TP9O+KK65gv/vd7w5q2YmC9pluXYE6k8k0qPWQkUWlr3HOYrEAAHQ6HQBg//798Pl8WLlyJbfMpEmTkJmZiZ07d/a7nq519CYYDMJms/W7THV1NVpaWqIeW61WY/78+dxjezweiEQi8Hjdu5ZUKgUQSsHuy86dO7Fs2TKIRCLud6tXr0ZpaSlMJlOf9yM90T7T+z7Dsiw2bNiA0tJSLFu2rM/1TkS0z0TvM3a7HVlZWcjIyMBll12G48eP97nOiYr2mb4/m1566SVcf/31kMvlfa53IqJ9pnuf8Xg8PUrqpVJpv+udiCbKPkOGD+0zfTt48CB27NiBc845Z1jXO9bRPtPTjBkzkJKSglWrVmH79u3Dsk4ydBSoi2PBYBA/+tGPsHjxYkydOhUA0NLSApFIBI1GE7VsUlJSn/XjO3bswDvvvIM777yzz8f629/+BrvdjmuvvbbPZbrWn5SU1Odjn3vuuWhpacFf//pXeL1emEwm/PznPwcQ6q/R37p7W2/k45KB0T7Tc5+xWCxQKBQQiUS46KKL8PTTT2PVqlV9rneioX0mep8pKirCyy+/jI8//hj/+c9/EAwGsWjRIjQ0NPS53omG9pm+P5v27NmDY8eO4fbbb+9znRMR7TPR+8zq1avx+OOPo7y8HMFgEF9//TU+/PDDftc70UykfYYMD9pnepeeng6xWIw5c+bgnnvuoc+nCLTPREtJScG///1vfPDBB/jggw+QkZGB5cuX48CBA2e1XnJmKFAXx+655x4cO3YMb7/99hmv49ixY7jsssvw8MMP4/zzz+91mTfffBO/+93v8O6778JgMAAA3njjDSgUCu5r69atg3q84uJirFu3Dn//+98hk8mQnJyMnJwcJCUlcZH/4uJibr1r1qw547+N9ET7TE9KpRKHDh3C3r178cc//hEPPPAANm3aNKR1jGe0z0RbuHAhbrrpJsyYMQPnnHMOPvzwQyQmJuK5554b9DrGO9pn+vbSSy9h2rRpmDdv3hndf7yifSbaU089hYKCAkyaNAkikQj33nsvbrnllqgMiYmO9hkyVLTP9G7r1q3Yt28f/v3vf+PJJ5/EW2+9NeR1jFe0z0QrKirC97//fcyePRuLFi3Cyy+/jEWLFtEQkliJde0t6d0999zDpqens1VVVVG/37BhQ6+145mZmezjjz8e9bvjx4+zBoOB/eUvf9nn43Q1Of7000+jfm+1Wtny8nLuy+l0spWVlSwA9uDBg1HLLlu2jL3vvvt6rLulpYW12Wys3W5neTwe++6777Isy7I1NTXcehsaGliWZdnvfe97PWrlv/32WxYAazQae6ybetT1RPtM//tMl9tuu409//zz+7x9IqF9ZnD7zNVXX81ef/31fd4+kdA+0/c+Y7fbWZVKxT755JN9/l0TEe0zfe8zLpeLbWhoYIPBIPvggw/+f3v3D9LWGodx3FvEpIHWf7SxCkpRLLYgFBcDgmKdCiJOijSIW7WDFXQIIiIFURCK1rqoCILFwYK6KUXEqYN6aP1DjQQnKYiDXSpK9bnDxVyDHn29CPdw8v1AlnNeXn95eUjkl8P76unTp7bvL57EW2bOY4+6/4bMVNnWfN67d++Un59vNNbtyEyVbc3ntba2qri42GgsbheNOoc5PT3VmzdvlJmZqXA4fOH+2QaXU1NT0Ws/fvy4sMHl+vq6Hj58qLa2Ntu/9enTJ3m9Xk1PTxvXlpGRob6+vui1X79+xWxweZnR0VH5fL4rN6Y823z5+Pg4ei0UCnGYhAEyY5aZMw0NDSotLTWq363IjHlm/vz5oydPnqilpcWofrciM9dnZmxsTB6PR/v7+0Z1ux2ZMf+cOT4+Vm5urkKhkFH9bhWvmTmPRt3NkJmbNV26urqUk5NjNNatyMzNMlNRUaHq6mqjsbhdNOocprGxUcnJyVpcXIw5Fvn379/RMa9fv1Z2drYWFha0vLysQCCgQCAQvb+2tqYHDx7o1atXMXPs7e1Fx0xMTCgxMVEfP36MGXNwcHBlfT09PUpJSdHMzIy+f/+uqqqqmCOjJenDhw9aWVnR1taWBgcHdffuXfX3918578HBgfx+v4LBoNbX1zU5OXnhCPGjoyNZliXLsvTo0SO1trbKsizjE27ciszYZ6a7u1vz8/OKRCLa3NxUX1+fEhMTNTw8bLy+bkRm7DPT1dWlubk5RSIRraysqLa2Vl6vVxsbG8br60Zkxj4zZ0pKSlRTU3PtWsYLMmOfma9fv+rz58+KRCJaWlpSeXm5Hj9+HPcn7cVrZqR/nsyxLEuVlZUqKyuL/r973tm1oqIi1dXVybIsvpvIjG1mBgcHNTs7q3A4rHA4rJGREd27d0/t7e0mS+taZMY+M+/fv9f09LS2t7e1tram5uZm3blzR1++fDFZWtwyGnUOk5CQcOlrbGwsOubw8FBNTU1KTU2Vz+dTdXW1fv78Gb3f2dl56Rznf0EpLS29dEx9ff2V9Z2enqqjo0N+v18ej0cvXrzQ1tZWzJhgMKi0tDQlJSWpsLBQ4+PjRu/927dvKikpkcfjUVZWlnp6emLu7+zsXFpzvD8dRWbsM9Pe3q68vDx5vV6lpqYqEAhocnLSaG43IzP2mXn79q2ys7OVlJQkv9+vly9fanV11WhuNyMz9pmR/v21fX5+3mjOeEBm7DOzuLiogoICeTwepaenKxgMand312huN4vnzOTk5Fxa03XrE+9PR5EZ+8wMDAzo2bNn8vl8un//vp4/f66hoSGdnJwYze9WZMY+M729vcrNzZXX61VaWprKysq0sLBgNDdu31+SlAAAAAAAAADgf8XxUgAAAAAAAIAD0KgDAAAAAAAAHIBGHQAAAAAAAOAANOoAAAAAAAAAB6BRBwAAAAAAADgAjToAAAAAAADAAWjUAQAAAAAAAA5Aow4AAAAAAABwABp1AAAAAAAAgAPQqAMAAAAAAAAcgEYdAAAAAAAA4AB/A7v5APRFgYpCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Get the ERA5 data for a single station (to reduce data transfer)\n", + "your_station = your_dataset.get_station('vlinder02')\n", + "\n", + "#Extract time series at the location of the station\n", + "ERA5_data = your_station.get_modeldata(modelname='ERA5_hourly', \n", + " obstype='temp', \n", + " startdt=None, #if None, the start of the observations is used \n", + " enddt=None, #if None, the end of the observations is used \n", + " )\n", + "\n", + "#Get info\n", + "print(ERA5_data)\n", + "ERA5_data.make_plot(obstype_model='temp', \n", + " dataset=your_station, #add the observations to the same plot \n", + " obstype_dataset='temp')\n" + ] + }, + { + "cell_type": "markdown", + "id": "bf1fae3e-b969-4f82-b63b-3bde86da9257", + "metadata": {}, + "source": [ + "### GEE data transfer\n", + "\n", + "There is a limit to the amount of data that can be transfered directly from GEE. When the data cannot be transferred directly, **it will be written to a file on your Google Drive**. The location of the file will be printed out. When the writing to the file is done, you must download the file and import it to an empty *Modeldata* instance using the [set_model_from_csv()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.modeldata.Modeldata.html#metobs_toolkit.modeldata.Modeldata.set_model_from_csv) method. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "77647240-3ba4-4fa3-90b8-eb1ef783c172", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!\n", + "The timeseries will be writen to your Drive in era5_timeseries/era5_data \n", + "The data is transfered! Open the following link in your browser: \n", + "\n", + "\n", + "https://drive.google.com/#folders/1iSjU6u-kFeRS_YikiyaPoc09SNbmvvO1 \n", + "\n", + "\n", + "To upload the data to the model, use the Modeldata.set_model_from_csv() method\n", + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n", + "Empty Modeldata instance.\n" + ] + } + ], + "source": [ + "#Illustration\n", + "#Extract time series at the locations all the station\n", + "ERA5_data = your_dataset.get_modeldata(modelname='ERA5_hourly', \n", + " obstype='temp', \n", + " startdt=None, #if None, the start of the observations is used \n", + " enddt=None, #if None, the end of the observations is used \n", + " )\n", + "\n", + "#Because the data amount is too large, it will be written to a file on your Google Drive! The returned Modeldata is empty.\n", + "print(ERA5_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fd658a15-06cc-4841-852f-e1bb29809bdf", + "metadata": {}, + "outputs": [], + "source": [ + "#See the output to find the modeldata in your Google Drive, and download the file.\n", + "#Update the empty Modeldata with the data from the file\n", + "\n", + "#ERA5_data.set_model_from_csv(csvpath='/home/..../era5_data.csv') #The path to the downloaded file\n", + "#print(ERA5_data)" + ] + }, + { + "cell_type": "markdown", + "id": "cec4bea4-bdb7-4298-b7ff-f9547403e7ea", + "metadata": {}, + "source": [ + "## Interactive plotting of a GEE dataset\n", + "\n", + "You can make an interactive spatial plot to visualize the stations spatially by using the [make_gee_plot()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_gee_plot)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "bc8d896c-bba7-490c-b173-1f501c44e08f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spatial_map = your_dataset.make_gee_plot(gee_map='worldcover')\n", + "spatial_map" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/examples/qc_example.ipynb b/docs/_build/.doctrees/nbsphinx/examples/qc_example.ipynb new file mode 100644 index 00000000..02d5a24b --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/examples/qc_example.ipynb @@ -0,0 +1,687 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f1af75bf-618b-4e94-b957-220ebdfc6b21", + "metadata": {}, + "source": [ + "# Demo example: Applying Quality Control.\n", + "\n", + "In this example we apply Quality Control (QC) on the demo data. \n", + "## Create your dataset\n", + "We start by creating a dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "62021dd4-8466-4287-80f7-112ad5c692a0", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "\n", + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "324eab20-b913-4e76-9ad5-638cfeaa89d3", + "metadata": {}, + "source": [ + "A number of quality control methods are available in the toolkit. We can classify them into two groups:\n", + "1. **Quality control for missing/duplicated or invalid timestamps**. This is applied to the raw data and is not based on the observational value but merely on the presence of a record. \n", + "2. **Quality control for bad observations**. These are not automatically executed. These checks are performed in a sequence of specific checks, that are looking for signatures of typically bad observations.\n", + "\n", + "## Quality control for missing/duplicated and invalid timestamps\n", + "Since this is applied to the raw data, the following quality control checks are automatically performed when reading the data:\n", + "* Nan check: Test if the value of an observation can be converted to a numeric value.\n", + "* Missing check: Test if there are missing records. These missing records are labeled as *missing observation* or as *gap* (if there are consecutive missing records).\n", + "* Duplicate check: Test if each observation (station name, timestamp, observation type) is unique.\n", + "\n", + "As an example you can see that there is a missing timestamp in the time series of some stations:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e1a0b0f7-817d-40bd-888d-98d2b215e367", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dfn3Huz9yYkEMLeewkoLnC06rdaR2sFtU5cta2/aqu2atXaOvqt36pt3aNDK7a1ihtUZChTQAIJkEBC9t6593x+f4Rc7oVA1t28n3346L3nnnvOJyHJvfd93kNprTVCCCGEEEIIIYQQQgi/Mvy9ACGEEEIIIYQQQgghhATqhBBCCCGEEEIIIYQICBKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIACCBOiGEEEIIIYQQQgghAoAE6oQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIUTAa2xs5Ic//CEZGRkopbjtttsGfEylFL/85S+d91944QWUUuzbt2/Ax/bmMYUQQggRuiRQJ4QQQoigpZTq1X8rV67091L95o9//CMvvPCCv5cxYA8++CAvvPACN9xwAy+//DI/+MEP/L0kvysuLubiiy8mISGBuLg4zj//fPbs2eO2z/79+/nVr37FrFmzSExMJCUlhYULF/Lhhx/6adVCCCGEOB6rvxcghBBCCNFfL7/8stv9l156iQ8++OCo7WPHjvXlsgLKH//4R1JSUli6dKm/lzIgH3/8MXPmzOHee+/12jl+8IMfcOmllxIeHu61c3hKY2Mjp556KnV1ddx1113YbDYef/xxTjnlFDZv3kxycjIA//rXv/jNb37DBRdcwJIlS7Db7bz00kuceeaZPPfcc1x55ZV+/kqEEEII4UoCdUIIIYQIWpdffrnb/bVr1/LBBx8ctT1UaK1pbW0lMjLS30vptaamJqKjowd8nPLycsaNG+eBFR2bxWLBYrF49RwD1fX9/OMf/8ju3btZv349M2fOBODss89mwoQJPProozz44IMAnHrqqRQVFZGSkuI8xvXXX8+UKVO45557JFAnhBBCBBgpfRVCCCFESDNNkyeeeILx48cTERFBeno61113HTU1NW775eTk8K1vfYuVK1cyY8YMIiMjmThxorNs9s0332TixIlEREQwffp0Nm3a5Pb8pUuXEhMTw549e1i8eDHR0dFkZmZy3333obUe0Jree+8955qeeeYZAJ5//nlOO+000tLSCA8PZ9y4cTz11FNHPX/79u2sWrXKWQa8cOFCAH75y1+ilDrq+9VdT7Uje7m5Ht81U6/ruatWreLGG28kLS2NrKyso57nqry8nKuvvpr09HQiIiKYPHkyL774ovPxlStXopRi7969/Pe//3V+Hcfq+TZhwgROPfXUo7abpsngwYO56KKLjrmW7r72rn+Dzz//nFmzZhEREUFubi4vvfTSUc/fvn07p512GpGRkWRlZfHAAw9gmma353r33XdZsGAB0dHRxMbGcu6557J9+3a3fbp+pgoKCjjnnHOIjY3l+9//PgBvvPEGM2fOdAbpAMaMGcPpp5/OP/7xD+e28ePHuwXpAMLDwznnnHM4cOAADQ0Nx/x+CCGEEML3JKNOCCGEECHtuuuu44UXXuDKK6/klltuYe/evTz55JNs2rSJ1atXY7PZnPvm5+fzve99j+uuu47LL7+c3/3ud3z729/m6aef5q677uLGG28E4KGHHuLiiy8mLy8Pwzh83dPhcHDWWWcxZ84cHnnkEVasWMG9996L3W7nvvvu69ea8vLyuOyyy7juuuu45pprGD16NABPPfUU48eP57zzzsNqtfKf//yHG2+8EdM0WbZsGQBPPPEEN998MzExMfz85z8HID093Xvf7ENuvPFGUlNTueeee2hqajrmfi0tLSxcuJD8/Hxuuukmhg0bxuuvv87SpUupra3l1ltvZezYsbz88sv86Ec/Iisrix//+McApKamdnvMSy65hF/+8peUlpaSkZHh3P75559TUlLCpZde2uevJz8/n4suuoirr76aJUuW8Nxzz7F06VKmT5/O+PHjASgtLeXUU0/Fbrfzs5/9jOjoaP70pz91m/348ssvs2TJEhYvXsxvfvMbmpubeeqpp5g/fz6bNm0iJyfHua/dbmfx4sXMnz+f3/3ud0RFRWGaJlu3buWqq6466tizZs3i/fffp6GhgdjY2GN+TaWlpURFRREVFdXn74cQQgghvEgLIYQQQoSIZcuWade3N5999pkG9Kuvvuq234oVK47aPnToUA3oL774wrntvffe04COjIzUhYWFzu3PPPOMBvQnn3zi3LZkyRIN6Jtvvtm5zTRNfe655+qwsDBdUVHR7zWtWLHiqK+1ubn5qG2LFy/Wubm5btvGjx+vTznllKP2vffee3V3bwWff/55Dei9e/c6twH63nvvPWrfoUOH6iVLlhz13Pnz52u73X7U/kd64oknNKBfeeUV57b29nY9d+5cHRMTo+vr693Ode655/Z4zLy8PA3oP/zhD27bb7zxRh0TE+P2fTvy6+rua+/6N/j000+d28rLy3V4eLj+8Y9/7Nx22223aUCvW7fObb/4+Hi3YzY0NOiEhAR9zTXXuK2vtLRUx8fHu23v+pn62c9+5rZvRUWFBvR999131Nf/f//3fxrQO3fuPOb3aPfu3ToiIkL/4Ac/OOY+QgghhPAPKX0VQgghRMh6/fXXiY+P58wzz6SystL53/Tp04mJieGTTz5x23/cuHHMnTvXeX/27NkAnHbaaQwZMuSo7UdO2AS46aabnLeVUtx00020t7c7p2z2dU3Dhg1j8eLFR53HNVOrrq6OyspKTjnlFPbs2UNdXV2vv0fecM011/Sq19s777xDRkYGl112mXObzWbjlltuobGxkVWrVvX53KNGjWLKlCn8/e9/d25zOBy88cYbfPvb3+5Xf79x48axYMEC5/3U1FRGjx7t9u//zjvvMGfOHGbNmuW2X1epapcPPviA2tpaLrvsMrd/f4vFwuzZs4/69we44YYb3O63tLQAdDv0IiIiwm2fIzU3N/Pd736XyMhIHn744Z6+dCGEEEL4mJS+CiGEECJk7d69m7q6OtLS0rp9vLy83O2+azAOID4+HoDs7Oxutx/ZU84wDHJzc922jRo1CsDZ96yvaxo2bFi3+61evZp7772XNWvW0Nzc7PZYXV2dc43+cKw1H6mwsJCRI0e6lQ/D4Sm9hYWF/Tr/JZdcwl133UVxcTGDBw9m5cqVlJeXc8kll/TreEf+XAAkJia6/fsXFhY6A7iuukqVu+zevRvoDP52Jy4uzu2+1Wo9qs9fV7Cxra3tqOe3tra67ePK4XBw6aWXsmPHDt59910yMzO7XYMQQggh/EcCdUIIIYQIWaZpkpaWxquvvtrt40f2OTtWFtixtusjhkR4Y03dBVwKCgo4/fTTGTNmDI899hjZ2dmEhYXxzjvv8Pjjjx9zgIGr7gZJQGcwp7eOta+/p9Jecskl3Hnnnbz++uvcdttt/OMf/yA+Pp6zzjqrX8fz9L8/dPapc+2h18VqdX97Hh4eflQgMykpifDwcA4ePHjU87u2dReEu+aaa3j77bd59dVXjxkoFEIIIYR/SaBOCCGEECFr+PDhfPjhh8ybN88nwSPTNNmzZ48ziw5g165dAM4BAZ5Y03/+8x/a2tr497//7Zbt1V3Z5LECcomJiQDU1taSkJDg3N5dFltiYiK1tbVu29rb27sNFPXF0KFD2bp1K6ZpugWjdu7c6Xy8P4YNG8asWbP4+9//zk033cSbb77JBRdc0G2pqKcMHTrUmS3nKi8vz+3+8OHDAUhLS+OMM87o17kMw2DixIl89dVXRz22bt06cnNzjxok8dOf/pTnn3+eJ554wq3UWAghhBCBRXrUCSGEECJkXXzxxTgcDu6///6jHrPb7UcFnzzhySefdN7WWvPkk09is9k4/fTTPbamrgwv14yuuro6nn/++aP2jY6O7vaYXQGjTz/91LmtqamJF198sdt9XfcD+NOf/tSn7LvunHPOOZSWlrr1k7Pb7fzhD38gJiaGU045pd/HvuSSS1i7di3PPfcclZWV/S577a1zzjmHtWvXsn79eue2ioqKozInFy9eTFxcHA8++CAdHR1HHaeioqJX57vooov48ssv3YJ1eXl5fPzxx3z3u9912/e3v/0tv/vd77jrrru49dZb+/JlCSGEEMLHJKNOCCGEECHrlFNO4brrruOhhx5i8+bNLFq0CJvNxu7du3n99df5/e9/z0UXXeSx80VERLBixQqWLFnC7Nmzeffdd/nvf//LXXfd5Sxp9cSaFi1aRFhYGN/+9re57rrraGxs5M9//jNpaWlHZblNnz6dp556igceeIARI0aQlpbGaaedxqJFixgyZAhXX301P/3pT7FYLDz33HOkpqZSVFTkdowf/vCHXH/99Vx44YWceeaZbNmyhffee4+UlJQBfb+uvfZannnmGZYuXcqGDRvIycnhjTfeYPXq1TzxxBNHZYX1xcUXX8xPfvITfvKTn5CUlNTv7LXeuuOOO3j55Zc566yzuPXWW4mOjuZPf/qTM2uwS1xcHE899RQ/+MEPmDZtGpdeeqnze/7f//6XefPmuQV7j+XGG2/kz3/+M+eeey4/+clPsNlsPPbYY6Snp/PjH//Yud/y5cu54447GDlyJGPHjuWVV15xO86ZZ55Jenq6574RQgghhBgQCdQJIYQQIqQ9/fTTTJ8+nWeeeYa77roLq9VKTk4Ol19+OfPmzfPouSwWCytWrOCGG27gpz/9KbGxsdx7773cc889Hl3T6NGjeeONN/jFL37BT37yEzIyMrjhhhtITU3lqquuctv3nnvuobCwkEceeYSGhgZOOeUUTjvtNGw2G8uXL+fGG2/k7rvvJiMjg9tuu43ExESuvPJKt2Ncc8017N27l2effZYVK1awYMECPvjgA2eWYH9FRkaycuVKfvazn/Hiiy9SX1/P6NGjef7551m6dOmAjp2VlcVJJ53E6tWr+eEPf4jNZhvQ8XoyaNAgPvnkE26++WYefvhhkpOTuf7668nMzOTqq6922/d73/semZmZPPzww/z2t7+lra2NwYMHs2DBgqO+98cSGxvLypUr+dGPfsQDDzyAaZosXLiQxx9/3K3P4ZYtW4DOIRY/+MEPjjrOJ598IoE6IYQQIoAo3Z8uuEIIIYQQws3SpUt54403aGxs9PdShBBCCCFEkJIedUIIIYQQQgghhBBCBAAJ1AkhhBBCCCGEEEIIEQAkUCeEEEIIIYQQQgghRACQHnVCCCGEEEIIIYQQQgQAyagTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAYPX3AkKRaZqUlJQQGxuLUsrfyxFCCCGEEEIIIYQQfqS1pqGhgczMTAzj2HlzEqjzgpKSErKzs/29DCGEEEIIIYQQQggRQPbv309WVtYxH5dAnRfExsYCnd/8uLg4P69GCCGEEEIIIYQQQvhTfX092dnZzpjRsUigzgu6yl3j4uIkUCeEEEIIIYQQQgghAHpskSbDJIQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIYQQQgghhAgAEqgTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAIIE6IYQQQgghhBBCCCECgATqhBBCCCGEEEIIIYQIABKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIAGD19wKEEEIIT6rUNXziWMNb5sfYsHCv9WaGGVn+XpYQQgghhBBC9EgCdUIIIULKRnM7P7Df4bzfbG9hnjGdW61L/LgqIYQQgc6+4Q84Cj9C1xWi4oZgyTkD6/Sb/b0sIYQQJxgJ1AkhhAgpldS43V9prudrcxc3WL5HmLL5aVVCCCECnX3jk9BYAoCuzcdevVMCdUIIIXxOetQJIYQIKVW61u1+PY3s5QD5ZqF/FiSEEEIIIYQQvSQZdUIIIUJKvW4ki3RKqcKOHYBUkviT4+88Yfm5n1cnhBAiUIUv+Qrd1oDuaESFxaDCYv29JCGEECcgCdQJIYQIKQcp5wBlbts6sFNPg59WJIQQIhiosFgJzgkhhPA7KX0VQggRUlxLX3eHf0AOg6mlnk/Mdf5blBBCCCGEEEL0gmTUCSGECClJxHOSmkorbSTrBKYYY0nXyYQRRp3ZQLwh2RJCCCGEEEKIwCSBOiGEECFlg97OZv0NNqxEqgiSVAJvmR8CsIt9zGSin1cohBAiENk3/AFH4UfoukJU3BAsOWfI1FchhBA+J4E6IYQQIaWeRgBiiUYpxTQ1nl1qLw00k28WMtOQQJ0QQoij2Tc+CY0lAOjafOzVOyVQJ4QQwuckUCeEECLoObQDi7JQpxto0E0AxBANQJZK53O9AYB8Xei3NQohhBBCCCFETyRQJ4QQIuiNaTuLA5Si0UQQBkCs6gzUjVLDGKGGckCXsk3v8ucyhRBCCCGEEOK4JFAnhBAiqJWbVdRQh0YDMIg0IlQ4o9UwAIaqTGp0HTkMBpQfVyqEEEIIIYQQxyeBOiGEEEHtdfNdGml23t/LAdDwmu0xACzKwiCVyja9mwKziA7dgU3Z/LVcIYQQQgghhDgmCdQJIYQIWnVmA3+xv+68b8WCHQcAKSrRuf1s4xRSzWRA87ZjJf9jPdPXSxVCCCGEEEKIHkmgTgghRNAq11V8Q4HzfleQTqFIJM65fbFlAb91/AWAVke7BOqEEEIIIYQQAcnw9wKEEEKI/qpStc7bOQwmDBsWLMxX07Gqw9eiJqnRfMdYRDopbNV5tOsOP6xWCCGEEEIIIY5PAnVCCCGCVr1uJJUkLFjIJZt2OnDgoJo6t/3iVAwWLFRQhcbkjo7fUKVr/bNoIYQQQgghhDgGCdQJIYQIWlXUUkE1DhwsNGZTFb6exvDNvBf23FH7PmH7Oc9YH6CNdp42/8a/HB/6YcVCCCEClZE2GcITwLBCeELnfSGEEMLHpEedEEKIoNWsW523U40kolUUACkkHrVvskogU6WRQhKRhFOhq322TiGEEIEv7Px/+HsJQgghhATqhBBCBK8WWpy3o1Rkj/uPNoZRRiUAa/Vmby1LCCGEEEIIIfolqEtfH3roIWbOnElsbCxpaWlccMEF5OXlOR/ft28fSqlu/3v99dePedylS5cetf9ZZ53liy9JCCFEHzRzOKMump4DdYNJ5zQ1h5PUVFp1uzeXJoQQQgghhBB9FtSBulWrVrFs2TLWrl3LBx98QEdHB4sWLaKpqQmA7OxsDh486Pbfr371K2JiYjj77LOPe+yzzjrL7Xl//etfffElCSGE6APX0tdIInrcXylFLfV8oTfxhd5Ii9na43OEEEIIIYQQwleCuvR1xYoVbvdfeOEF0tLS2LBhAyeffDIWi4WMjAy3fZYvX87FF19MTEzMcY8dHh5+1HOFEEIElhaXjLoo1XOgDmCeMZ1KRy0HKKWAIiYwylvLE0IIEUTa/3UxZvEa6GgEWwzG4LnSt04IIYTPBXVG3ZHq6uoASEpK6vbxDRs2sHnzZq6++uoej7Vy5UrS0tIYPXo0N9xwA1VVVcfct62tjfr6erf/hBBCeJ8FCyPUELIZRKTuXaAujhiaaGYSoyjWZV5eoRBCiGBhlm+Btlow7dBW23lfCCGE8LGQCdSZpsltt93GvHnzmDBhQrf7PPvss4wdO5aTTjrpuMc666yzeOmll/joo4/4zW9+w6pVqzj77LNxOBzd7v/QQw8RHx/v/C87O3vAX48QQoielelK8nUR+zlIdC+GSQAMU1lUUctmdrJH7/fyCoUQQgghhBCi94K69NXVsmXL2LZtG59//nm3j7e0tPDaa69x991393isSy+91Hl74sSJTJo0ieHDh7Ny5UpOP/30o/a/8847uf3225336+vrJVh3gvmb/b+8ab5Pk27mOutlnGc5zd9LEuKE4Fr6GtnL0tdUdTjrulLXeHxNweZ9x2f8n+M1rFj4H2MRl1vP8/eShBBCCCGEOGGFRKDupptu4u233+bTTz8lKyur233eeOMNmpubueKKK/p8/NzcXFJSUsjPz+82UBceHk54eHifjytCxz8c7/COXgXAEDNTAnVC+EgzLc7bUb2Y+gqQrBKct6uo9fCKgs/7ji94z/wMAIc2JVAnhBBCCCGEHwV1oE5rzc0338zy5ctZuXIlw4YNO+a+zz77LOeddx6pqal9Ps+BAweoqqpi0KBBA1muCGIz2v6HYl1OOx0cCP/ULXNnftulbNbfOO/XaOlRKISvNLsOk+jF1FeAZBKZpSbRShvtdHhraUGjTbU5byvlx4UIIYQQQgghgrtH3bJly3jllVd47bXXiI2NpbS0lNLSUlpaWtz2y8/P59NPP+WHP/xht8cZM2YMy5cvB6CxsZGf/vSnrF27ln379vHRRx9x/vnnM2LECBYvXuz1r0kEpt26kBrqaKGFYtO9+fxOXYCdw/0L63WDr5cnxAmpUTfTpDv/3isU4YT16nkpKpH1eitbdR579QFvLjEomNo8fBvtx5UIIYQQQgghgjpQ99RTT1FXV8fChQsZNGiQ87+///3vbvs999xzZGVlsWjRom6Pk5eX55wYa7FY2Lp1K+eddx6jRo3i6quvZvr06Xz22WdS3nqCMrVJG+2dt9EcoMztsSaXjB6AL/XXaC0fdoXwttPar2CD3gaADSuql+lgMUQRhg2AKulRRy2Hs4A7tGQYCiGEEEII4U9BX/raGw8++CAPPvhgr44TGRnJe++9N+C1idBRrxvJJoP9lALwsmM5u/U+rrFeTL1uZCy5fEMBGlDADDWBcl1Fukrx67qFCHXtLkGlwaT3+nlKKeaoKTTSTCzR3lhaUGkzD38fE1WcH1cihBBCCCGECOqMOiF8oU41OoN0AK+a/+EO+28AaFBN7DgUpAPQwCd6HaVU+n6hQpxgOg5lugI00tSn57bTwUa9nVV6PQ26b88NNa0uPep26UI/rkQIIYQQQggR1Bl1QvhCg248alsLbcxqu5DhDHFuiyWahkPBgkoppxPC69oODYKwYeUKy//06bnzjenYTCuttLHL3Mt0ywRvLDEouAY5a2UYjhDiBGaddhOOwo/QdYWouCFYcs7w95KEEEKcgCRQJ0QPGo6RqbNV53GQcuf9cWoE6/QWAKqQQJ0Q3tZKZybYYJXBr2239+m5ySqBz/RXAOzSe5nOiRuoq3f5G1dJDXZtx6rk7YEQ4sRjnX4z1uk3+3sZQgghTnBS+ipEDxp1s9t9xeGG9S0cLhlLJI6RKod0UqjWdT5bnxAnqnDCGEImo8jp83PHqZFMUCNJJJ48vc/jawsWWmvKdCXxxBJLNAaK5eYH/l6WEEIIIYQQJywJ1AnRg2ZaSSXJeV/jMnyECOftWBXDbr2PMiqp0NU+XaM4sa1yrOe5jn/ycsdbrHNsYbW50d9L8rp23UExZRRRcsys1+MZoYbwjd6DAj4yvzhhJzUX6mJy1GBMTBppYhCpFOuynp8ohBBCCCGE8AqpbRGiBzW6jgq6D7y5bnedllhFrbeXJQQApjY5t+Ma7Dg6NzggmQSKIz7378K8zDU4F6di+vz8YSqLxcZ83jFXUa2/powqMjjxJjX/y/yIDXo70JktnE8RG8ztfl6VEEL4h25vQLc1oDsaUWExqLBYVFisv5clhBDiBCOBOiF6cLxsnSgiCcPKFDWWUQxjvpqBiYMObffhCsWJ6lPzS9Y7tjKYdEqpRAOxRDHTmMhGxzamhfCABNdJrbFE9fn5hjKYrMawjd1YMNhl7iXDcuIF6lwH3wxnCBkqBTgxswuFEKLtxRnQWHJ4Q0wmEdfk+W9BQgghTkgSqBOiB8cL1DXTQjOwUq/nevU91urN2LGzR++ntL3Cd4s8wsnGTG61LvHb+YVvvOtYxeOOFwD4gXE+Cy2zubrjLlaYn7HYWMC0EB6Q4DqpNEZF9+sYmSqNIjo/kO3UBZzMTI+sLZhUugy+6aCDz/UGInQ4pjYxlHTHEEIIIYQQwtckUCdEDxq1e6AuhkhGkkMee2mjA43JGIYz2zKZx7mTdJXCx461bNe7/bLWQg52ZgepVC6xnOPzNQjfqXQpsU5VyaSQePgxHdqTh2t1AxPUKKKJIJfsfh1jnBrBPDWNBprYp4s9vMLA97T9r/zV8TYWDFJJYraaTCpJOHBQrqvIUKn+XqIQQgghhBAnHAnUCdGDZt3qdt+ByaXWb/GK/V98zS4A4lUsg1Qq11gvAWCvPsB+86DP19pKG9W6lmpq2R3gkyybdQvNtPKq49+YWnObdQlKqZ6fKJyqXIJxt1mXUKQPl+uU6yp/LMlnqqhhm+78/TtXndqvY4wwhrJadw7eMB2a+623YVEWj60x0O0x99N6aHJ1BdVEqgi+MrcBnZl2GUigTgghhBBCCF+TQJ0QPainEYUinDDeszxHsiWBEcZQLrWci0ObOHAQqSLcnnOrdQm34vvS0/cdn3Nex/UAAT/F8iNzDd/tuMV5/zvWRQwl048rCj77dDEWLIwih2SdgIlmKIPZz0H24/tAsS9V6lrn7WSXTMK+SCOZpcZ3eM38D9vYxR69n5EqxzMLDAKtqs15+1XbY3xpbnXed/3+CiGEEEIIIXxHAnVC9KCNdjSaVtrItKaRrQYBkK5SIMASwFSgLeg46nUjqSQ5J+e26JaA+34GMru2k0wCY1UuMURjMSyk62RMTCaokcTR90mowaSNNqapcTTTSppK6tcxlFIMVunEEUMUEezRRYwkx7MLDVBF5kE2ukx3naBGUkYFY8iljgZedLxJua7iYuvZflylEEIIIYQQJx4J1AnRg67SMIAIwv24kr7RAT658Rtd4AzSATTTepy9xZEKdQmf6a8A+B/jTKAz8BSlItiq89ij9/tzeV5XqEvYqHcAkKji+32ckUYOlY7OEuJtOp/FnOyR9QW6N8x3+Upvc96PUdGkGEnsdOwB4K/m26wwP5VAnRBCCCGEED4mgTohehCsgbpA10iz230J1PVNiS5noZpNG+1MUKOc2zvLQPfSSDOtuo0IFZo/s67DMlJI6PdxxpLLfDUdCP2+fq5s2ua8nUUGCcQyimFkkUEplVgwyCCVjeZ2phnj/bhSIYQQQgghTiwSqBNufm9/Ea01t0pjf6dW3e68HU6YH1fSN4GdT9dZ+uqqRUugri/2c5CVeh0A31VnObenqATnP36lriFLZfhhdd5XxeFAXbLqX486gOHGUD7XGwDocHSArYcnhACtNXU0OO+fYZxEhApnpDGUA5QCYAe+oYAN5jYJ1AkhhBBCCOFDEqgTAOSZezit/QqqqAXgl44/8HbYn5hvTPfvwgJA26GMOoXCFuC/MsHUo66RJrf7zbT4aSXBqcp1mIJLoGq6msAetZ/9+iCFupgsQjNQV2yWkUMWQ9UgEnVcv/sbxqgozjIWkK8LKdQlaK1D/iLFrPYL2aZ3AzCW4dxkvRyACBXOq9ZH2WJ+w6vmfwjD5pa5KIQQQgghhPC+wI46CJ8pp9oZpIPOcs8aXee/BQWABrOJvfoAtdQDnWWvof4B3lfqdAMKgzCstGMnnWSaJaOuT0p0OZmkUUsDyS6ln1Eqkp16D0MZzE69l3mEVrC9Rbfylv1DtIIqXUMEYViNgb2UdWCnVFeSzSDKdTXpKtlDqw1MrbrN2cPyGwoYqgY7H7vQuphRZg6PtP8FgKIQnx4shBCuws77G2bFNnR9ESpuCEbqBH8vSQghxAlIAnUC6PzAe6QTvWfYK+a/+JH9Qef9iCAqe4XAHibxnvkZ/zI/dN4vo8oZEBU901rzguOf1FDPKDWM0425zseWGv/Dr/gDBRTxF8c/uNp6kR9X6nmbzG+40vEz5/3XbI8P+JgT1Wg+Yg3fUMAu9pJOaAfqXINv0UQSq6LdHnfN0OzutUEIIUKVkT4VI32qv5chhBDiBCeBOgFAk25hOhPZzHYcmAA06xO7FNGO3Xk7igjmGFP8t5heCpbSV9eyzS4v2N9kg7mNZ2z3Y1EW3y8qQP2f/RW2m/nUUMePjat42XyLDeYOwgkjl2xOMWa6ZXrGGjHMVJNooZUoIjC1iaEMP34FnlVMKdFE0oGDWKIYrXIGfMxRKodpahzRRFFklkDofLuO0q47aONw381ooo7aJ0nHM11NIAwb8cT6cnlCCCGEEEKc8CRQJwA4QCkb+NptW8sJnlHXpjuct5tppVCX+HE1fRfIGXXd9b3awk62mDu5U1/PcDXED6sKTA/Zn6Hy0OCE0QzjGfPvzsdSSeIPtnuOek6UiuATcy0AxZSRzSDfLNaLfm9/Eej82Wk61M/wWdsTHgnq5qohbNQ7AJiqx/F9zhvwMQOVa4sDAKOb4H6EEc4uvZcGmqg+Yn8hhBBCCCGEd0mgTvDrjqd4wvHCUdtP9NLXauqIJtIZFHDtAxaogiWjzsBgtppMm26nnkaKKEGhSCSe3Xofw5FAXZeuf1EDg0aa3R47smSxy2w1hRpVTwON7DL3kW0J3kDd8/Z/8rjjeSp1DTZsLDLmMUNNIJIIRnkgmw4gV2UxQ03AgoV2Onp+QhCrMmuYwChKqWCIyuSHlu92u1+ySqRBN3Wb/SqEEKHKseddzOI16No9qIRcjMFzseSe7e9lCSGEOMFIoO4E16xb+NrMo+GICZwANY46mizNRKujS6NCnUM7KNOVziAdQIpL36ZgEIgZdW26nXY6KNIlrNNbALBgOMutK6iiyDwIUvnq1H6oBNvEZKW53u2xqWpct89JU0l8oTdiYHSWcgbx9zNP72GX3geAFQtbdR5b9E7CCXMbgjAQ6SqFr/Q2AAwzhOtegUpq2cYuAJYY/8NVx+hhmEIC+zhADfXYTfuAB3YIIUQw6PjoNmg8XEHh2Pl3CdSJAWvSzRgYRKqIE2K6vBBi4EL7E4no0f/aX+Yt3dnU34qF77CY8ENDEx7Vz/Gg/Wl/Ls9v/mm+x9/Nd9zy0yYyym/r6a1Az6j7r2MlqW2zedFc7tz2D+v/8jfr4ySTQBhh7Gaf/xYYgFz7iXUFWLocq6R1iMoknWTCsJFPoVfX5207dAFWLBgo7DjYpncTRyynqjke62UYrsKIIwY4ujQ01FRxuOz8eBcfZhgTSSYBBw4OUOaLpQkhhBAh6Z6O35PYNoPI1on8sOMufy9HCBEE5BL5CahcV/G5YwONNLPesQWFQqMJJ4zhlmzaHIcDAy36xCx/rdK1zmESVqzYsBBnxPh5VX0TmBl1bVixYMfh3DbDMoF63egMkHTXv+5EZWqTDFLYR3G3jx/r3zhdJVNGFYCzv12wqtI1zp+XEQxF03klOkF5dsjBeEZSSx3xxHn0uIGkyqzlA8dqBpGGAgaTfsx9o3UUMUQzTGWxRxeRQ2f24r/sH9Km2oknjlgVxUnGNB+tXgghhAhO9TQCne/bXIfVCSHEsUig7gS01tzM9+y3A539rzQwiFT2RnxCja7jt46/OPf9q/k2j3HiXfmp0NXO2/+0/YHFlgV+XE3vBXpG3S4K3YJ0AFFEYlM25/1gDyx5Uh0NxwzSAWjVfaAu2SVTKtgDn5UuGW7O7EANT9vu8+h5wgwb35h7QHcG6pNVgkePHwjeNj/hBfNN5/00lXLMfUcbwyg0iynUxWzX+ZzGXLTWXG2/y9krcZwawcbwt7y9bCGEECKo5em9ztthhPtxJUKIYCGBuhNMk27mN/Y/uWzpDNV1fSiNJ5Yz1Ems01tooKmzP5G2Y1Un1o9KI82cpKYSQTiDVJq/l9MvgZhRV9VNEC6ScKKJ5ALjTL7WeeSbhSEbKOmra9t/cdQ2KxasWJitpnCyMbPb5yUTz+nqJFppwxLkHQ6Gk80gUsmnkCaaseNgCJmMVcM9ep45agqmMnFgstvcR7JlikePHwgiXT4cJJPAWCP3mPuOUbmcpKZiwaBcVwJQrMuYqEazUW+njXaqgjwILIQQQnjLE/YXeNf+KdvYTTSRzu2SUSeE6I0TK/oiqKaODXq7835XMKcrA8dQBm+H/4nvtC/jHXOV8zlpJPt+sX60ydzBF3oTAENU8EzMDOx8Oo6aIBmGzRkEzlApvGV+AMBOvYd56sQuqbNrO//VK533pzOeDWzHjoMIwnkv/LljPtemOnvTFepi4nRM0DYubtVtfKzXApBAHC20OR/zdCA3TSXxmf4K6Pz5m8MUjx4/ELhO8p6lJpF+nIy6kcZQ59/A7Y58UlQSE9Vo1hzaBp3ZjsH6syWEEEJ40xuOFXxF56Aq1wvVXVnpQghxPBKoO8E06sMvDlYsaDRppDBSDXXbb4zKZb86SKNupsKsJs1y4gTqXnX8mypdQwapDFfZJKjQ7VnlawpFEvHUUI8Fg/GMcD42RY0li3QaaSbP3MO8E7z3VZWuZQiZNNPCMLL4reX/sVHtwIqFROJ7fP6Z6iTWsYWDuoISXc5gdex+ZIHKdbDDBEYySKWxi71eCeIOJoOxajgKRbPLtOdQ0ugy3Tu+hx5/iSqe520P82/7R6zU63jE/mdOVjMZy3DKqCSCcFppC9qfLSGEEMJb7u34vVtixDiGU0gJ0UQFZMWLECLwSKDuBNPVzBRw9go7SDntdLjtp9F8rTsnTP6y4w9kdKRwie1c5lum+26xflKoS9hBAQBnqfl+Xk1oKdTFVFMHdP78uU6TzFaDOEAZaSRxUJf7a4kBw7U/3RnGPGbZJjOLyb1+fqSKYJu5m2wGsUcXHXdwQKCqMmtIJ4Ua6hhpyeEp26+8dq5EFcc3uvP3viREf/7adAeJxNNIExcZZ/W4/2WWb/GNmc9yxwdEEcFBKvjm0N9GgCFkBu3PlhBCCOEttbreLSB3heV/+JXjScqposAs4mszj7ftn9Cu7Nxh/SGRKsKPqxVCBKLgbl4k+qxBH86oSOVww/kYot32c21G/x8+5s/8g8UdV6J16F8Fcu27dKX1Ij+upO8CvQStwSWjByCcMOft0WoYMURRTrXbVcgTlev3Kk71feLweDUSKxaKKHEGoIJNJbWUUUk7HaToxJ6fMABR6nD/mFDNqKuhjhrq6MBONFG9es69lptJJ4VmWinQRc7tlkM/Wzv1Hm8tVwghhAhKrhf8rleXcZttKckkAFBOFTPbL+RX5pM85Hia1eZGP61SCBHIJKPuBFOj65iuxmPDSp1uoOJQzwRTu0/izCCFcQx3ZpYBpJBEta4L+Sb/jbqZoQzGxBG0gyQg8IZJ3N3xOPv1QbdtVizO24NVOjlkEa0isMmfJh62P+O8HdPLoIqrISqTXIaQqhJp0q09PyEAufZ0STYSvHquKA5fzXbt5RZKXAOQMUbvfqYshoXJagwNNFKiK5zbs8kgU6VR7jIhWwghgp2yRaMxABMwULbonp4ixFGqqXfezjIyAJhtTCZTp1Gl64gl2lk14drmQwghusin4RPMHvY7s5Wmqwl0xXKO/GAapSLdgnQAZVRSRqXzilAoMrXJy+a/MDEZRGpQDZKAzh5wgUhrzWOOF3DgHhB2YDpvK6UIU1bW6a0Y2qBVtxGhTswR9o26mf+Ynzjvx6q+f1AYqjLJYw95GgbrDE8uz2dch4+kKO9m1EW6BuqCNLDZE9e/866ByZ6cZzmdm+zuZcf7KGafLiZKRx7jWUIIEXzCl0p2kxi4rguNMUTxE9vVADhwsF5vPXpfmaAuhOhGUJe+PvTQQ8ycOZPY2FjS0tK44IILyMvLc9tn4cKFKKXc/rv++uuPe1ytNffccw+DBg0iMjKSM844g927d3vzS/GZjxxrWKBmcLZxMkuM/+Ei4yyuMS7me5Zvu+0X61IKG+dyuyLEsydqqMc8FDyK7Ue5YSAJpIy6Ot1AIoeHcgwilSstF3KH9Ydu+51izGaemsZENYp8s9DXywwY+eY+wrA572fT94Cxa+ZrJcH5e1umK5mmxnGamsMQMr16LtfS15ZQzahzCUBG9iFQN04NZ4GaQRrJZJLKAmYwnfGcpKYSjQTqhBBCCIA23c7o1sXs0fuJIYpzjVOdj81Sk0kgFoXCQBFDNJPVGFp023GOKIQ4UQV1Rt2qVatYtmwZM2fOxG63c9ddd7Fo0SJ27NhBdPTh4NI111zDfffd57wfFXX8kp9HHnmE//3f/+XFF19k2LBh3H333SxevJgdO3YQERG8zT4rzGrW6s2008F8ZnBt2CVcyyXd7uuawVPv0itrr3mAUyyzvL5Wf6k0Dwc0pqvxflxJ/wRiRp3WmloaqHQpY8xWmd0OBohXMazWnVezvzHzGWUMI0zZjtovlGitUUrxRMcLdGDnJsvl7NR73Ae89OOfNZ5YLFhw4KDCDM5A3T5dzEa9A4A/qHu8ei730tfQ7FHnGoB0DUz2ZKSRw2f6K+f9EirIVdns0ftJ0DIVWwghhAAo0iUUHippbafDLVsuw0ih1tEAdBY0NdLEFr2TOUzxw0qFEIEuqAN1K1ascLv/wgsvkJaWxoYNGzj55JOd26OiosjI6F3pl9aaJ554gl/84hecf/75ALz00kukp6fz1ltvcemll3ruC/Cxv5ivo1CMIoerLBced984DmeTRRBOK51Xe25w3Mvl1vOwqqD+0TmmSmqIIoIE4hiqvJvB422BklH3I/uDPOP4m9u2sGP86RmvRqJQaDQ/cNzBcuP/ONtyii+W6Tdvm5/w/Y4fOwNzdzuecD4WRyw/tlzJuWphn4+rlGKaGsc+XewWbA8mJbqcVBIJI4wh/cgq7ItIHU4WGbTRjhmiQ3NcA5B9KX1NIZGT1FTW663YcWDBQipJ7GE/tdTToTuwhXhAXQghhOjJAV2GFQv2Q61eRqqhzscWGfO5U13LQ/pPbs+R0lchRHeCuvT1SHV1dQAkJSW5bX/11VdJSUlhwoQJ3HnnnTQ3Nx/zGHv37qW0tJQzzjjDuS0+Pp7Zs2ezZs2abp/T1tZGfX2923+BqFbXk6uyKaGcycaY4+4br2KJJxYrFto4nJIdQTjrzaP7K4SKaupoppUSyoOyP1ogZtTVm01uQUMLFjJUarf7ZnE4oB6Oje1maJScH0+lrnHPnnPRQgvfsSwi3ojt17GbaKGCasqoHMgS/aaCaiqooZZ6bIZ3A0E2w0YZlVRQTQ11Xj2Xv8QQxQg1lKFqMJH0/u+bUgq0woKFcMLIYTA5DGYYWYwhl3Jd5cVVCyGE73R8+nPaXp5N61M5tL00m45Pf+7vJYkgUke9M0hnwSBeHc46T1GJzLJOwYqFMGxYsTCCoZgBcmFdCBFYQiZQZ5omt912G/PmzWPChAnO7d/73vd45ZVX+OSTT7jzzjt5+eWXufzyy495nNLSUgDS09PdtqenpzsfO9JDDz1EfHy887/s7GwPfEWe95n5Jd/oAppoYThDjrvvYJVOWcQa/p/lWn6mruN96/NAZ+nUG+aK4z43mFW6XNVKxrvN670tUDLqzCMGSPw/yzW8Eva7bvedYoylwbaJBOJoo4M/Of7hiyX61fGmfXVgJ4fB/T521+CXFlpp1sFXzlmvGwH3npneFHWo31qoTn3dpfeRrwup1NV9zoC7ynIhbbTTRjuttJFsJLCXA+xkD/so8dKKhRDCtxx5b6Ard0BrFbpqB468N/y9JBFE6vXhCobHrXdxj3WZ2+OLjfk0hG+mPmITccSQT2FIJ0AIIfovZOoXly1bxrZt2/j888/dtl977bXO2xMnTmTQoEGcfvrpFBQUMHz4cI+c+8477+T222933q+vrw/IYF0m6USpSGxYiTB6l00Rp2LAAqONYcxSkwgnLGQnIgJU61rmqClEqDCGBGHpa6Dl02mt3QYZxBJNrnHsILFSCqvFyhmOuZTqys4eHmYTMYZvAjX+UK8bGcFQ8jl6eMYCNWNAmWTj1Ag0GgsWqnVtn/qSBYJGOrOffTXYJYoI6mgIyqBmb3SV1/TnIsR4YyRTzLEYGMwwJjBK5TBLTSKGKMrNqhC67CeEEEL0XaVZzcP2Z5z3Y1UMhnJ/cXS9f7oxl4O64oR4ryuE6LuQCNTddNNNvP3223z66adkZWUdd9/Zs2cDkJ+f322grquXXVlZGYMGHe6JVFZWxpQpU7o9Znh4OOHhgV0m2abbeVt/AsBcNbXXz7vVugToDLjs1vuooZ69+oBX1hgIdugC1urNoOER6x3+Xk7QO0ApH+rDJeMNNBHL8Ye5AEQQwed6AwAF7Gcyxy/VDmZb9M5ug3QAy8P+OKBjt6hWPjc7v4/B1qdOa009XRl1Pf/MeEKkigAdmlNfTW1SdaikN8VlInBvTbWMY63ldef9Nx3vs153ZgGczkkeWaMQQggRrHbrQvaw33m/p2qASBXhfI+2m0KmMs6r6xNCBJegvgauteamm25i+fLlfPzxxwwbNqzH52zevBnALQjnatiwYWRkZPDRRx85t9XX17Nu3Trmzp3rkXX7g2t5XarqezaFUopzjYVMUWMxMWnUx+7zF8wUMFmNYaIaxdABlBwGgkAofC0xyxnPCBKJYwRD+aXlZmYbU3p83jhjOFPUWCaokZTqCu8v1I/KzSrGkHvUsIRhZPep4X93XN8kNgRZoK5JNzOcIUxRY5nUQ09NT+n6fodi6etBXUEqSUxT45mvZgz4eCkuryPSCFsIIcSJ7saOXzlvW7EyWKUfZ28Yq06c97pCiL4L6kDdsmXLeOWVV3jttdeIjY2ltLSU0tJSWlo6y5YKCgq4//772bBhA/v27ePf//43V1xxBSeffDKTJk1yHmfMmDEsX74c6AxI3XbbbTzwwAP8+9//5uuvv+aKK64gMzOTCy64wB9fpkdUmTUk0NmQPrkfgToAi7KwWX+DiWa3uc+DqwscO3Q+W/ROduiCzrLfIBNIwyTyzULydSHbyaeGeq6wXsDPbNeRoVJ6fG48cWzW37BN7+aALvPBav2jxWyhhjp2sc9t0jJAPQ1HlUz0VazLMRt08ATq2nUHG/R2drOPzfobn609ikgUCgsGDtPR8xOCyB5dhEazUW/3SI18yqHy2XDCqNahOXxDCCGE6I1Ks4bGQ1UAAHbsZKmM4zwDElze6xbrcm8vUQgRZIK69PWpp54CYOHChW7bn3/+eZYuXUpYWBgffvghTzzxBE1NTWRnZ3PhhRfyi1/8wm3/vLw858RYgDvuuIOmpiauvfZaamtrmT9/PitWrCAiYmDZLf5USS21NKBQpJPcr2NMVKOJJJxSKshjb0imaHeVB8YS3TnpMIj5c5iE1pqp7efTgd25rS99sVxL86oI3WydfIrYRzFWLMxVU/nc9jd+0fE4Vm3h5vArBnz8WBWcGXXb9W4Wd1zlvH9kENNboohEo2mkmXbVQSQWn5zXF77RBZRRSTSRjFMjBny8LNJJJ5kyqijQRR5YoRBCCBGcdrGX/ZRixcKN6vssC7vceUHrWNwy00P4va4Qon+COlCn9fEDEdnZ2axatarPx1FKcd9993HfffcNaH2Bol138H/2V4DO4E2Cy6jwvhithpFDFkkqgW3mLrCc68llBoRGfThQF4wCJaPuK/Nr0kmhkhocOMgkjWHq+P0jXQ0ilamMxVAWmkK0zBo6yxEXqBlUUEOmkUaEEU62pbMEtqeSid5IIYEpaiw2rLTTMeDj+UqpriCNZCqoJgwbI44zgMSTwpTNWTPeShuRAyw9DiRVupbZajI11JGrBj7sKM6IJZ0UBqsMopVveggKIYQQgajQLGGumkod9eRashjai4F0KSQygVFEqnAc2vTBKoUQwSSoA3Wid/boIucgCeh/6euZlnk0djTzjS5gu2M391tvC/qssyN1ZR25ZiIFK39m1L1jfsoBSgG42DibkSqH0yxzev38TCOdTXwDGtJ1/zJAg8EevZ/P9FcAZBmdAbquAS6eEKbC2Ky/AYKrj1i+LqKcKgCesd3PpT66KBBBmPN2K+0+OaevrNYbWae3ADDGyPXIMeNVbOfPr4YaXUeiivfIcYUQQohgslXvZI3eBMAIldOr5ySpeLaxCzSM1L17jhDixCGBuhPAle0/w4KBRjNFjWM64/t9rDONeezSe2mmlTJdSYZK9eBK/evbrdfhwEE0kYxWPQ8mCUSBklG3UxcwlMEoYLga2ud+f4NJ5zQ1hzbagyoTrK8qXUodUkjw+PFdM0PrXXqnBLoqXeu8neyF78uxhHN4enerbvNIL7dAYWoH89Q0IokglSSPHPMkYxqY0EIbu819zLJM9shxhRBCiGDw/9p/y4d6NQd1BRPUKCKJILeXFSTJbqWvtV5aoRAiWPUrUNfR0UFpaSnNzc2kpqaSlOSZN/3CO7aSh4POlOrvG+cxztL//kSRKtw5SryA/WQQGoE6h3bwMWtx0NlAvjgEBhj4K6PO1Cb/Mj/CxCSLDO613dTnYyilqKWejXoHVm2hyWwm2gi98roKs8p5u7+ZrsfjGqgLpknNFfrw9yXFC9+XY4lQhwN1bbT57Lze1mQ2s0p/hQMHc9Rkj2VCp6hEZ0boTr2XWUigTggR3CzDFuMo/ARaKiEyBcvQU/29JBHAPtFr2a7zAZyDlTJ72bokkTgUCo2mwqz22hqFEMGp14G6hoYGXnnlFf72t7+xfv162tvb0VqjlCIrK4tFixZx7bXXMnPmTG+uV/SRqU1nkG4EQ7nYevaAjjdCDWWYyqJRN7NfH/TEEgPCQSqIIRIbYUxiFL+z/czfS+qXQMioq6UB89DP3Dij/0Hhqy3fpc3xGvt1Cc+ab3CLMfDhCoGmSB8klUSy1CAGM/CedEdyLeEOpoy6Ql3i/L5keuH7ciyhWvq6i30YKHIYwknGdI8dd5wazng1gmJdRp7e47HjCiGEv9jO+F9s/l6ECBquQ9MAYohyu+h3PBZlYbExn6/NXc52MUII0cXozU6PPfYYOTk5PP/885xxxhm89dZbbN68mV27drFmzRruvfde7HY7ixYt4qyzzmL37t3eXrfohRpdxxsd75FNBqkkMdoYRqoaWPZjskpgrz5ABdWUu2S9BLsqXUsdjVRSzTBL9oACTIHCXxl1B3U5wxlCJmkDCj5NNEazW+8jnHD+7fiYGl3X85OCSLNuIUKFY8fBDp3PIC+UkcfoKFJJZCiDMXSv/twHhDgVQwQR7NH7SRvg36y+iHAtfQ2hjLqvzTxSSKSYUpJdJioP1HA1lDy9lyQSgioQLIQQQniCTVudF8kTiGWoGtyn5zfoJuw4yFaDqDfldVQIcVivMuq+/PJLPv30U8aP77632axZs7jqqqt4+umnef755/nss88YOXKkRxcq+u4Dx2quMO9w3o+jb33CupPsMmq8Moia0/fE9WvxZU8sTwuEjLoiXUIBRQBkqrR+H2e6Gs+PLVfxkOMZKnQ1a83NnG05xVPL9LvtOp/l5gcATGM8hvJ8IC3OiKWCGqCGYoKnnPsTcy011DOCoT4dWBPumlGnQyOjTmvNjfZfYcdOGsncYvmBx449hEFEEsEe9mMxLR47rhBCCBHotNbkU+S8MF5LA1PUuD4dY4jKZLXeSJmupIQyj3xWE0KEhl4F6v7617/26mDh4eFcf/31A1qQ8Jyt5k6iiaSJFsAzvZ4ySOFkNRM7DlpoHfDxAkULrSxUs2il3SuZTf7gr4y61eZGTlNzaKGNaar/g0ssysIYlcsQBmHByn4dWmUBrlNYkwzvTMuM5XBfv2DKeGo+9LclWkX69LypKomT1DQsGJiH+lUGuzoasB8qzYlXMdiU54q6DMNgjjGFRt1MnIrBoR1YlATshBBChL4aXc9UNY7VurN3dxrJzFNT+3SMNJXsvF0Z4gMlXre/yxvme8QQxRnGSVxm/Za/lyREQBvw1Nf6+no+/vhjRo8ezdixYz2xJuEhr+v3nEE6cG8s31/ZxiA+1V923jEHfLiAUalrWKnXA3A55/t5Nf3n/3w6+IfjXYooIZ5YzhlgBtxwYwhFdPZC3KR3eGJ5AcN14uu3DO80q44iEgMDE5NG3eSVc3iaQztoO9QfLpIIn567jXa+0BsBuIXQ6InoOkF36gAC58diYLBGbwLdmU0QzBnJQgjR9urJ6MptYNrBsKJSJhD+/U/9vSwRgKqpdQbpAMqp4juWxX06hms7iqoQqlTqznLzA/5lfghAKRVchgTqhDiePgfqLr74Yk4++WRuuukmWlpamDFjBvv27UNrzd/+9jcuvPBCb6xT9NEHjtVE6QhGkkMScZxnOYNFxrwBHzdOxXCusZBSXUE9DR5YaWBwzQ6MUr4NDoSSZt2CgWKGmsholTPgssVRDGO+mk4jzZTqSg+t0v/Oa7ueNXoTBgYjGOK1LE6lFLFEU0cDDQTH1NdmP/4uhrm0EG+nw6fn9pYqXcMERhGpwhmlcjx+fNfAXJWu8WgPPCGE8DXdXAbmob//ZkfnfSG60cDhC6CDSCVHZTFcDenTMbIZxCw1iTbaqdPBU/nQV426mU3mduf9dh0a77GE8KY+N0X69NNPWbBgAQDLly9Ha01tbS3/+7//ywMPPODxBYr+KdTFFFLMbvZxne0yfmy7iomW0R45dhMtbNDbKdNVVJqhcfXHLTjg4yweb/FH4etus5B6GvlKf43q+5+Xo8QZMezR+9msv6HYDJ3S1416Bw00YWKyi33EerEnScyh8tcWHRyl6s0uWcBR+Lb0NRQDdZXUsI1dfKm/9kq/v66WCjasVLpk7wkhhBChzDVQN0rlcIHljF5PfO0SpSJYr7eyRe+klApPLzFg7DYLqXFJ8AiWKg8h/KnPn6Tr6upISuqcwrdixQouvPBCoqKiOPfcc2XaawDJ03tpppU4Ysgiw6PHnq4mEEs0FVSzi70ePba/NGv/BQc8yd/DJPLYQzV1JBDLZMMzgeGxajhh2NhKHm0h0uC/xSUYBZDixSykQSoVK1ZqCI6puc3aNWju299Fm0ugrkPbfXpub3ENnqUw8D6lR8pQKUQTSQd2qgiNCzdCCCFETxpcgk0LLXO41bqkz8dIdukfXhXCF7t2UkAt9VixYMFgN4Vo7Z9e2kIEiz4H6rKzs1mzZg1NTU2sWLGCRYsWAVBTU0NERGhkIoWCrimm9TR6vKwuiwzSSWG2mkShWezRY/uLa+lrZIiUvvpjmMQ2czdz1BSSVWKf0/+PJVpFOrObqkKg0W6T2cxIlUM4YdiwkkwCSXhnmAR09hCzY6eRZkwd+I0lm2lhmhrPJDWGTB8PdrG5dIMIlYy6NtqYrsYzVg0nlSSPHz+OWGcv1FCaBC6EEEIcT4tuZaoaxwQ1qt+vryk6kdEMY6oahxEQnaa9Y4eZz1w1hXDCGEwGM42JbDN3+XtZQgS0Pveou+222/j+979PTEwMQ4cOZeHChUBnSezEiRM9vT7RT64BjWQPTHt1NdIYSr6jkHwNJ+lpXMa3PXp8fwiV0ld/ZtRprfmz4+/UUM9g0jnHstAjx3W/2lhDpkrzyHH9ZQ+dpbwAlxnf4vmwh716vhgV5ayDbqSZOC+W2XpCI81s1J19TBYw3afnDnOZiNoRIoG6Ql3ChkPfzyQvZG66ZoOGQiBdCCGE6I1yqpyDzvrbUzfFSCSPvaAhXSf3/IQgpLXmGcffqKeRFBIpooQis4T3jdVMxDPVN0KEoj4H6m688UZmzZrF/v37OfPMMzGMzqS83Nxc6VEXQBKIZYGagUKRQKxHjz1a5TJPTUcBtTo0BkrYtJV5aho2ZfPIdNxA4OuMugpd7cwUy/VQNh3ARDWKU405NOhGinVZ0L+oF5j7maOmYMPKdMPzUziP5BqYa6Ap4AN1rqUk3uzd1x3XHnUdhEjpq0s5qjdKrLMZxOlqLk20UKODo7xaCCGEGCjXLPL+tpZIJA6FQqNDtvT1EfufmWVMwoqFNJJ5yXwLCP0pt0IMVJ8DdQAzZsxgxowZbtvOPfdcjyxIeMZacwtFlJBKEoYaeFN/V1kqnc16B020UKLLMbXp8XP4Wj6FrNYbQUOCivP3cvrNnxl1uylkvd4KwERjlMeOG00Un5hrO89hFnKWxWOH9ovtejdr9WYAlqnve/18MS6B5wbdCCrd6+ccCNfmzLHKt0HzkBwm4fJG2NPZ1QCDjQw+0msAiDVD4yKHEEII0RP36qWEfh3DoiwkEU8VtW4X1kLJv82P2aC3oVB8Yfu7M1BXoav9uzAhAlyfA3VXXXXVcR9/7rnn+r0Y4TldTb37+8JxPEopbrb8gHfMVRTpg3xofsEiy3yPn8eXXK9iebNfmC/5OqPudfu75DKECML4lnGax4471hjOVDWOMl3Jbr3PY8f1lzxzL5mkk66SGa1yvX6+LJXOKJVDi26lQTd7/XwD5Z5RF+XTc4dij7oD5kGGkEm2yiBFJ+DpWH46yZyiZlKkD7KXA549uBBCCBGgmnQLOQwmmqgBfXaYZIyhSJe4vQcJFVpr9ukDDGcIo40cctRg5qgpFOsyivRBfy9PiIDW578INTXu0f6Ojg62bdtGbW0tp53W+w/n+fn5FBQUcPLJJxMZGYnWGqVCt4mmL7WarWSoVOp0g1eahwMMN4ayw5HPEDJD4g9tOGGk0dkbwqqC94XSnxl1+zjAHooAz2bUjVBD2aR3kEFq0PcNa9PtaKVp0I2U6nJyVbbXz2mi2XUowOmarRao2mgnk3SaaXbLBvQF16mv7Tq4f9YATG1iUzaadDNlVGEzbD0/qY+UUrTQRjW1ZOtMms0WoozgnZwthBBC9MYBStlH51C9VNX//nK1up4CXYQFS8h9Ht5m7maQSqVIlzCSoSQa8ezSe7FgCeHRGUJ4Rp8jEsuXLz9qm2ma3HDDDQwfPrzH51dVVXHJJZfw8ccfo5Ri9+7d5ObmcvXVV5OYmMijjz7a1yWJI9SpRgp0Z8DEW/3WRjMMTVdj/B1eOYcvbdV51NHAcDzXW83ffJ1R15WVqFAk4rny4SQVTzRRlFLBF3qTx47rD/m6kNfNdwGYwEjCVZjXz+laPtpAo9fPN1BV1FBCGQBxysc96lyGSdhDoEfdAcr4Un8NwMnM6GHv/huvRrJeb6WOXeRTyCTGeO1cQgjhTbYF9+PY/ym6dg9GQi5G9sn+XpIIUF091sIJI5r+X6CKOVQ94MBBK21EBvFQuyP93fwv2/RuAK43vgfAJDWGlXodK/V6GnSTz9ucCBEsPJI6ZBgGt99+OwsXLuSOO+447r4/+tGPsFqtFBUVMXbsWOf2Sy65hNtvv10CdR7Q6FLe5q0PuiPVUMYxnDgVE/SZJx26gzo6h2KkeqGHky/5M6MuXsUyl6lEq0iPZyWmqESadHPQN9r1RD+TvjpymESgc/375evBLuE6jLlqCgrD+cY5mJWYZZyu5lJLAyONHK+dJ1dlMU2NI4E4DpqVTArulqVCiBOYZczFWMZc7O9liAB2Z8ejrDY3UKVrOUOdRIZKGVAWXJyKoevaej2NIRWoa9ItzFfTqaeJMcYwACYZo2kxWwnDRr7ex1Tl/cFqQgQjj32aLigowG7vOQPh/fff57333iMrK8tt+8iRIyksLPTUck5o9S5ZM966SpFoxFNOFV/rXeTr4P53q+LwpEJvNFs/EbTqNj4y16DRzGCCx4+fQgKFFFNNHQ7twKKCc6KEa6BxkWWBT84Zow4HnFz7vwUqX/z9OhaLMlhzaNDHlBDICiukxDno4VLlvYFPGUYaGx2dmdXnc4bXziOEEEL4k9aaJx0vOyfD1+oGqsLWD+iYrm0+GnUz6SFUE/qxXkOe3ksE4QxRmQAMUqms01sA2Kn3MhUJ1AnRnT4H6m6//Xa3+1prDh48yH//+1+WLFnS4/ObmpqIijo6U6G6uprw8PC+Lkd0w21qohczUk42ZlKoSzDRNJnNRBvBmYFSZdYwVY0ljHDGqRH+Xo7H+LL09aCuYLaajAMHk5XnAxwLjJmEm+GUU8VBXUGWyvD4OXyhRbcwU01EocggxSfnTNIJzFFTsGPHoR0+OedAuA+T8G2gzurykmgn8L9XPalym/ia4LXzpHD42KE6tU4IIYQo1ZWkk4KJSbpK4fuW8wbcUy5XZTFHTaGDDreqgmD3mfkVYdrGAjWDSWo0hupMt5+gRjJfTaeRZvaaByA4r70L4XV9DtRt2uTeI8owDFJTU3n00Ud7nAgLsGDBAl566SXuv/9+oLMRtWmaPPLII5x66ql9XY7oRqPrB10v9nhyYLJebwWgStURHaSlYpXUsEl/A8B8pvl5NQPjr4twNdSx9lAm0jTD81fGTEy+0BsJJ4zdupAsgjNQV061s2fYrarnCxueEKHCnf82pzLHJ+ccCPeMOt/2qLO6vFsM9kCdQzvYqw9PYU3Be9nCrpnIpWaF184jhBDeZlbvQtfswWwsRsVkYiQOx0jy3IAsEdx2631UUkMrbXzHWMRN1ssHfMw22p3v0+pV4PcS7q09ZhHfsAe7tvM9y7ed23PVED7XGwAYp0MnQUIIT+tzoO6TTz4Z0AkfeeQRTj/9dL766iva29u544472L59O9XV1axevXpAxxadGmkmnDAiCSdWey8jxTVDo0rXMEQN8tq5vMkffcN8wZejJOq9nAU1UY0ik3RKKGOX3supzPb4OXyhXrsEoXyULRbrWvoaBD3qas0GIggnkTjidLRPo8/ugbrgHiax3cznD46XAbBgOEtOvCGbQYxQQynUxRQfGgQihBDBqP2f34bGksMbYjKJuCbPfwsSAWWnLqCVNjJJY5Ia7ZFjxrgO/dKhE6jbpfcBmlQSyXb5jDiUTMarkezRRWw+lCghhDiaZzu+98KECRPYtWsXTz75JLGxsTQ2NvKd73yHZcuWMWhQcAZ6Ak2zbqWNdtpoJ0J5r5x4KIMZzTDClI1SHbxZFE26mclqDE20kEb/x6sHAn8Nk2h0Lbf2Ql+xLDUIO3amqnE0ErxlAa5r91X/NbdhEkHQo65a1dKq26ijkSij/1PU+sOt9DUIyoSPZ78+iBUrDhwoFEO9GKhLV8k06EZGkTOgyXdCCCH8b7VjA7v0Pmp1PZdbzifVSPL3kgJGgd7PdDWBEl1OjpHV8xN6Ic7lwm1DEL/HPVIlNdhxUEENGepwuxerYcWmrQxhEINUKqY2nWWxQojDehWomzZtGh999BGJiYlMnTr1uLX4GzduPOZjHR0dnHXWWTz99NP8/Oc/7/tqRa+00Oq8HaW8NzkoScWTx17QsE8Xe+083naAMrbonQAkqng/r8ZzfNmjztt9EXPUYMqpolxXMcIc4vHj+4qv+ke6cr1S2xgEGXVdfdWSXfqe+YolhEpfvybPmRX4ou0RIr34WmAog3gVx3adz36z1GvnEUII4X1XddxFIZ3v63ONIZzP6X5eUWCwazt/dLxKB3YmqJGcbMz0yHFdh0kEwwXV3nIdoHbksL40I5n3zc/JM/dRSwNJhM7nLyE8pVeBuvPPP9856OGCCy7o98lsNhtbt27t9/NF7zS7Buq8OOJ7rBrOSWoaBooyXeW183ibrxqu+4K/MuqqdS2z1CRiiXZLb/eUFJcX+EqXUuVgE6HDma+mY8Fwy3TzphgdxTw1DQPDq33KPKFDd5CtMhnDcIYpz1yp7guryzRhR5AH6qp1HQvUdByYjFbDvH6+rsBqPY206w7ClM3r5xRCCOF5Jubh20GeXe5JJbqcBWoGrbR79HU1WSUwX01HoXx6kd3bDAzmqWlEqoijLr663q/SNSSFUKKEEJ7Sq0Ddvffe2+3t/rj88st59tlnefjhhwd0HHFszbrFeTvKi2VII40cvtCdGZRW7fMqao+pdAnUBXogoy98+WK/Wxc6B4vcpW7w+PFjiCIMG+10uAVWg803FDgb6PoqezNKRbD60O9pR4D3Xduj97NBbwM6yyl9zX3qa2B/r3qy2tzABr0dhWKEGur186WoRGdjzCpqGUSq188phBDC81ppc94+IH1Hncqo4mO9FoDJxhiPHTeCcOd7wwV6hseO609aa1aZ66mjgSE686iLd+4X4GsYSY6PVyhE4OtzdOXLL7/ENE1mz3Zv5r5u3TosFgszZhz/D4zdbue5557jww8/ZPr06URHu5d/PfbYY31dkjiCe+mr9wJ1KSqR2Woy9TRi18H7obZddzCaYUSpiKBPvfZbjzrdzBhysSoLwxjs8eMrpZivZnCQcgyCt49FV5AxDBsxPpqSbFVWZ5DT9W9DICoxyxnOECIIZ6zy/SSwUJr6atFWxjKcRBXv1V6lXUapHCaokTTqZirNKgZZJFAnhBDBKIzDQZVmWo6z54nFWxU4MUE29Ks3SqnEQDGekcw2Jh/1+FCVyUQ1miaa3UpkhRCH9TlQt2zZMu64446jAnXFxcX85je/Yd26dcd9/rZt25g2bRoAu3btcnvseL3vRO+100ECcbTS5tXSV+jMnMjXhSQQ59XzeNM+DpDHXizaQoIK3q/jSL7NqNvHTvaAhjQvZUJVUMU3uoBwwtBaB+nfC0UcMcQS7dP1RxFJOx1uZfGBqFRVUkARAFepC31+/lAK1H1NHi20Mg7fBDwVim16NwBV1PvknEIIITyrXXe4Te9u1oH9vsGXynUVaSRTS71HK3Bi3YZJhEagbre5j3hi2ckeTlWzj3o8nHC+1p3TlCuDuFJGCG/qc6Bux44dzkCbq6lTp7Jjx44en//JJ5/09ZSijyp0DbWHPijFE+vVc6WQQD6F1FJPh+7AFoR9iSoPXclJIj7opw75K6OugmoAEonDqrxTBp18qLSujXYaafbZMAZPadYtzjcls9UUn547ighqqXcriw9ElW5Xq31fhh4qpa92bXdmT8b56PfENbug8tDfAyGEEMGlEvegSaBn4vvSPl1MOVXYsDIcz7WUiFWHexY3hsgwiZ26gH0UY8HCuG4qJI4sfRVCHK3Pn6jDw8MpKysjNzfXbfvBgwexWoO3T1koqcJ3wxHGqOGYaKxYqdQ1DFJpXj2fpx3QpYxQQ8kkzW10uOibXLJJUYlezUgcrYbRpJoJw0alriFWBVeg7k3H+yw2FlCla5lojPTpuSNVBOjAf8PdgZ25airttJNGks/PHyoZda5X5GN89HsyiFRmqAnYsAV8QFgIIUT3qnUtkxnDFnYCUvrqqpFm5qqp1NHAUMNzg9NidRQz1AQsWEgI8hY8XSp1DSepadTTyMhu+uQOIpVZahIQOsFJITytz5G1RYsWceedd/Kvf/2L+PjOPya1tbXcddddnHnmmT0+/9RTTz1uydfHH3/c1yWJI3TV+luweD2jzlQm683OIQLV1DGI4ArUbTF38rFeA8A9lpv8vBrP8lXpa4fu4EP9BQBzOLoPhSd9qb8GOoPRw/D9VNCBeNLxCpv1N1iw8Jn1NZ+eu6sEPtBLX/foItboTYDvhm24cgvUBfGkuwaanbd9lXkap2L46tAgkDM4ySfnFEII4Tm/t79IvlnoDNKBlL66+sRcy9d6F1asHp1MH6uina+fwdyH2dUXepNz4OAo4+gJuYONdOcQuhQdOoP8hPCkPgfqfve733HyySczdOhQpk6dCsDmzZtJT0/n5Zdf7vH5U6ZMcbvf0dHB5s2b2bZtG0uWLOnTWh566CHefPNNdu7cSWRkJCeddBK/+c1vGD16NADV1dXce++9vP/++xQVFZGamsoFF1zA/fff7wwydmfp0qW8+OKLbtsWL17MihUr+rQ+f0kmgblqCvEqzut9sFx7NARjjwH3ia8J/luIh/ij9LWKOudtb5Yruo9yr/Xaebyl62cthQSf99ebosYSQzR27Ni13WvlyQPl+u/qj9JXi0ugzhHEpa91ZgPT1XgiCGeMyu35CR7g+u8VzJOZhRAntvDLVqGbDqKbK1GRKagYz2VOBap/OT7kPvv/cVBXYHN5HRxCJtHdDKW7pv3nfG5uwMTkKduvOM0y15fL9QuHdqC0wVw1lQyV4tFWPzZlI4JwWmmjMUR61LXpduaoKcQSRRpH967OIoO5qjOOEE6Yr5cnRFDo86e1wYMHs3XrVl599VW2bNlCZGQkV155JZdddhk2W89/tB5//PFut//yl7+ksbGxT2tZtWoVy5YtY+bMmdjtdu666y4WLVrEjh07iI6OpqSkhJKSEn73u98xbtw4CgsLuf766ykpKeGNN9447rHPOussnn/+eef98HDvT83zlC/0Jppp8UkTcdcPZ8EeqPNHYMCbfJVRV2pWOG97s9Q62PtZVFEL+Ofn7CAVzky1RpoDdviLvwPnhjIwMDAxg7r0tZpaNujtAMxhik/O6XrRptxRTYO1KejK04UQQsVkoGIy/L0Mn9ps7mT7oWFArooooUAXHbV9nbmFvRwAYK9ZjEtsL2QV6YPspIB23cF56jSPHz+WaFppoz7IA3XtuoMGs5ENehvNtDJbTe724rRSimJdRhElpGnftzoRIhj0K60iOjqaa6+91qMLufzyy5k1axa/+93vev2cIzPcXnjhBdLS0tiwYQMnn3wyEyZM4J///Kfz8eHDh/PrX/+ayy+/HLvdftyeeuHh4WRkBN8LdbNucfaTSPbBB91BpJJFBrXUOwMRweSfjhUkk0AS8Zyhgr9cyx+jJEp0GQpFFhlMUKO8dp4kEhhEGs200BBk/SyadQsddJBGEqPV0SUA3nbkRLFADdTV6DqSSSCVZKK6uYrvC1YstAd5oM71b7G3+5Q6z0MC2WSwn1LeYAUft62hJGK1T84thBCi/6qOuPhpw0rHoazyRt181P5lVGIc+t8r5r+4mot8sk5/2qX30oGdbDKYriZ6/PixKpoKXR30/drednzC9+y3A50/R3ONKcfcN0UlUKRLqKIOU5tBP9BPCE/rVaDu3//+d68PeN555/VrIWvWrCEiIqJfz+1SV9dZgpeUdOzIfF1dHXFxcT0Ovli5ciVpaWkkJiZy2mmn8cADD5CcfHTqLkBbWxttbW3O+/X19f1YvWeU6SrGqRG00U6uyvb6+eJUDAcoBQjKQF051VRRixUL8YZ3+/n5mm/y6aCYMiaqUZTocq8Gh2NUFAcpB3BONQ4WldRix0G5n6Zhug4UaNBN/ono9kLFod/HSAb2WjAQIxhCB3a/DLPwlEpdwxiVSwttPusbGq9iKT70+wmdpSz7zGJyjME+Ob8QQoj+aaeDOGJoopk4YkkingI6M+nqca92qjHrGKtGsF5vwY6dcqr8sWSfq9A1TFZj2K9LSVOef38whEwUihgV5fFj+1KNPtwOR6NJ5thVJLkMoY5G55C4NNX952whTlS9CtRdcMEFvTqYUgqH4/hZCN/5znfc7mutOXjwIF999RV33313r87THdM0ue2225g3bx4TJkzodp/Kykruv//+HrMBzzrrLL7zne8wbNgwCgoKuOuuuzj77LNZs2YNFsvR+d0PPfQQv/rVr/q9dk/ap4vZofMBONdY6PXzpQR5X6Ku4GKKF150/cEfPeo26O1s1XkAjFI5XjtPjEtWWHdXeAOZ6+9Gih9KX+OOyKgLRFprKg/9Pqb68fdxP6U00OTWry7Y5OtCduo9AKT7aJq1UgobVtpoBzrLrf9rfsIy43KfnF8IITzBvvU5zKJP0HX7UPE5GENOxTrpKn8vy6s2mtudAbka6qhx6T18ZAXDQSpYqzc77wdjz+D+2KkL2Ky/ASDHC8PMOrB3Bkd1Z3+3cBWcfdu2kue8bcfBCIYcc994I5YCR2dAeB/F3fayE+JE1qtAnWmaHjthXJz7gAPDMBg9ejT33XcfixYt6vdxly1bxrZt2/j888+7fby+vp5zzz2XcePG8ctf/vK4x7r00kudtydOnMikSZMYPnw4K1eu5PTTTz9q/zvvvJPbb7/d7VzZ2d7PZutOkS5mgZqBA4dXyxC7JJPIPDUNhYGtf5XUftNstjBLTcKBgyEq09/L8TitfZNTF6HDOVnNpIEmRnmxrDNOBX6w6VjqdAML1Aw02qOTwnorkzTmq+kYGLTqdp+fvzdqdQMnqamAZoQXA7496Zr8Gsylr020sEDNoJ0On5Zaf8s4lR1mPoUUM02Np0L7J4NUCCH6y77uN9BYAoAu34x5cH3IB+qyyKCOBgopcW6zYWWOmoL1iPf2rn/Xs8ggQ6XQbLYQZfinXYWvVLhURKQanr/gGqeinaUwDTQF5YCFlx3/okbXk0AsbbQzUuUw1nLsfumT1GhOUtMwUOzV+5nFJB+uVojAN6DISmtra5/LVV944YWBnLJbN910E2+//TaffvopWVlHfwhuaGjgrLPOIjY2luXLl/dq6IWr3NxcUlJSyM/P7zZQFx4eHjDDJrbonXymvwLgPuM2r58vRSWw+tD47UgdGN+D3qpXTazS6wE4V4VG2as/MupW6fV8owuIJtKr5cOufdbqdd8Gz/hbKZXO38sLOMPn53cok8/1BgBupsHn5++Namqd36NM5b/+oF2ZdI4gDtR9bK5hrz5ALNFkKt+UvgK8GvYoVbqWwW3z+VxvwKKDNytRCCFOBM26hXf0qqO2W7A4X5M7dIdzyqlrm5sDlHJAl1JAERMZ7ZP1+ou3p9LHHPEe1x/VFwP1puM93jU/BeBmyw/4re3/HXf/HDWYLw59hpxjTuESy7leX6MQwaTPXRsdDgf3338/gwcPJiYmhj17Ostr7r77bp599tken5+bm0tV1dH9DGpra8nNze3TWrTW3HTTTSxfvpyPP/6YYcOOzhyor69n0aJFhIWF8e9//7tfffAOHDhAVVUVgwYF/oj2/eZBxjGcuWoqo8jx+vniiXV+sA220lfXhq2uQaBQ4aupr13/7sfrQ+EJccQwS01ivBqJieeyfH2hys/ThaNcer410+rz8/eG6yTfFB8NQOiO5dDLokMH189YF1ObROgwJqnRnKJmdjttzZuSVQKL1HwmqtGU6xOjd5EQQgQr18DbHDWF89TpXGScxWQ1xmWfzlLYh+zPcE3HzzFQWDAYwRByGEyeudfXy/a5Kl3DOEZwmjGXZB3v8ePHqRjn7cYgqhp53f4uKa2zSGudw2pzAxMYxXCGMJj0Hp87WuUyV01hrBpOoS7pcX8hTjR9DtT9+te/5oUXXuCRRx4hLOxwWu6ECRP4y1/+0uPz9+3b120fu7a2NoqLi/u0lmXLlvHKK6/w2muvERsbS2lpKaWlpbS0dE497QrSNTU18eyzz1JfX+/cx3UNY8aMYfny5QA0Njby05/+lLVr17Jv3z4++ugjzj//fEaMGMHixYv7tD5/qKSGAvazUxf4pM+ToQySiceKBTPIPti6lk/GqtAI1Pk6o840TQwsWLB4PbiSpOJZr7eyXe9mn+7b3wp/a9QtzqulKV4OaHYnksMlKc26xefn741qXUsCnRmZ/ghmdukq8wnWjLpaGviGPWzVebSpDr+soYkWtuvdtOsOKs3guoAjhBAnkiqzlkTiUSgmGCOZZ5nGTGMiY4zO5IkEYik1OwcF7TcP0kwrJhoHJvkU0UAT+brIn1+C1+3XnV/3bvZRqIsJMzxflhpL1KH/j6Y+iCa/1ukGGmmmnkZaaecbCohXMdxmW9rjc7NVBpv0N+zR+6nTgVntIYQ/9bn09aWXXuJPf/oTp59+Otdff71z++TJk9m5c+cxn+c6Ofa9994jPv7w1QiHw8FHH31ETk5On9by1FNPAbBw4UK37c8//zxLly5l48aNrFu3DoARI9xr5Pfu3es8X15ennNirMViYevWrbz44ovU1taSmZnJokWLuP/++wOmvPVYGnUzaw41eD1VzfZZJkWmSqdcV5NPcL1Qu5ZPhmJGnS80qRZKqQAgAc9fYXRlUzYSiKOWerfsq2BQRoXzCmnXmzFfilKHM+paAjSjrkLXUEsDCkWq9l+gzujKqAvSQJ1b9qYXpzAfz6O2nzGn/bsUUMQt9vt5Lewxv6xDCCHE8VVS4xwekUYKt1qXAPB7+wuEE0YtDRygjCmMY53egkYziDQ+sD7H9x0/YYveyZOOl/mZ7fiD+oLZzzseZ4veSSJxPGd92CvniDt0obKBpqDKqHPta9hOBxYsTFPje/Vci7KQq7LZofPdBpQIITr1OVBXXFx8VNALOjNrOjqOffW+a3KsUoolS5a4PWaz2cjJyeHRRx/t01p6apa/cOHCXjXUd90nMjKS9957r0/rCBT7dQkLjdlU6RoyVc8px54SfSjw0EgzrbqNCBXYAc0uzbqVmWoiDkwG+bCPk6/4ovTVPSvR+wGoOWoyldQQRhhaa5+X9fVXA4en1CaoOJ+fPxhKX6sOBV81miQjwW/rsCgLaHAEWXl1lxrqmaOm0EY7OWqwX9bgOpynmcDM4BRCCOFe+pro8v5kCJmMZCgJKp6N5nbONk4mlSSmq/FEEckIaw4jHEOxKSuxRPOV42tmWCb64SvwvjiimaUmUaarmGqM9co5YlzeQwfTwLRGl/e30USSQQo5fRiaFn8oQFlPI+26gzDVtz7yQoSyPpe+jhs3js8+++yo7W+88QZTp0495vNM08Q0TYYMGUJ5ebnzvmmatLW1kZeXx7e+9a2+Lke4OKDLWGmu42u9izTluxHXriWPri/4ga6Car7UX7NRbyeM0Hhh8HXpa4NLVmKMD7ISO5Sdr/Q2vtAb3SZwBTq375MfyqyjgqD01a1Rsx/Kg7scnvpq99saBqJcV7FWb2aT3kG4ny6aBENgWAghxJE9dBOcty+wnEkJ5Xyuv+JFx3L26WJW6nVs0Nudgw4usZ7DV3obn+h1ziECoehDvYb1eitNNHstkBTjUm0RTKWvrtVJTbRQwH5yjexeP991aEYwfYYUwhf6nFF3zz33sGTJEoqLizFNkzfffJO8vDxeeukl3n777R6fv3dv6Dcc9RfXcsBUH/Z4GqtGUKVqsePonPjnw2y+gahya14ffNOVeuL7jDrvB6CmqLE0qxasWDlglpJm8V1AeiDcvk9+KLOOUdEsUDOw43D2YAtEJ6mph/od+u/30TlMIkgz6lwDnv7ohwgQThgKhUbToiVQJ4QQgcqBg5PUNBTurxlKKc42TqFQF9NEC1vNPGaoiUQSzkyjM3MuVw1hlppEGDba8U9PVF/oGj7nzQutru+hg6n01XWt4xhBOGG9Ln0FmKEmUK8aqaWeYrOUQZZUbyxTiKDU509s559/Pv/5z3+47777iI6O5p577mHatGn85z//4cwzz+zVMZqamli1ahVFRUW0t7e7PXbLLbf0dUniEH9NlnTg4HO9AYAKHTxZToGSweNJvs+oO5zy7osAVIyKdvZhPHioN14waHT5PsX4o0cdEXymvwJgPEe3LggEeXovX+hNgPtVfV/rmmIdtD3qAuAChFKKKCJookUy6oQQIoAd0GV8oTcC7uWXAFZl4XOz8/39F+ZGvtJfA3CluhCATJXGer0VgEgdQajqutga58X3uXEcnvoaTKWvrmu91HIu4SqMHKP3bTesysoqvR6AAl3EDEKzfFqI/uhXasWCBQv44IMP+nXCTZs2cc4559Dc3ExTUxNJSUlUVlYSFRVFWlqaBOoGoFrXkUoSccSQhvcnvnZxT1sOnib/NbqOdJKJJYZkLw9C8AdfZNRV61qSiCeeGJ9kUqa4NMev1MHzs9asW8kkjUEqtbMHmo8FQ0lFZQAMQQDX0tfgDNRVm3WkHXod8FdGHXSWWzfRQpP0qBNCBBEjcQRmay04WsESgZEYmBe3PKWeYw9Wm67Gs0ZtYr8+yGb9DQnEMph0xqjDE2ENDExMt2SBUNKuO2ijM6nEmy1e4ohhGFk00xpUmegObTKIVKKJ5MeWq7AYfXuP+x1jEf9U71Gsy/ij4zUusZ7rpZUKEXx6HairqanhlVdeYcmSJcTFuTdDr6ur46WXXur2sSP96Ec/4tvf/jZPP/008fHxrF27FpvNxuWXX86tt97av69CAJ0917r+S1S+Czwlk3go4BVNQ4AGAbpTTjVlVFFGFSmG7wKboaSaOud/EXi/H1a6SiGdZGKIojqIelmUUEYVtYQT5pfzx6nDV2oDtaQiDBtDGYzG9Gsz4cMZdcFZ+lqhqimn878kH74OHGkwaUQSQWqIZCsLIU4MYRf9199L8KlG7dqaI8btsSyVwQFdyhAyqdI1WLCwkz2MUsMAMJRBLtm00+GT94D+UK1rGUYWdhxkefGCdIyKYi8HgM6hUMGijEoOUkEs0X0O0gEMM7Ko0rXYsBKGLagGxQnhbb0eJvHkk0/y6aefdhuIi4+P57PPPuMPf/hDj8fZvHkzP/7xjzEMA4vFQltbG9nZ2TzyyCPcddddfVu9cONWyunDkqcUlUAZVeRTRIku99l5BypQMni8xfv5dL4vs8tSGZRRRQH7yddFXj+fJzi0g2rqAP/1DHO9Sh6IwXS7trNGb6KQYr9MxXVlDfbSVz+9DhypWbVRRAm79D6/rUEIIcTxHa/X8GJjARmkksdedlBAFbWMZ6RbiWyiiqOIEtbqLbRp93ZGoeAApezlAPs5SLyK9dp5YgL8fdqxdK11IO1vxhjDOEApn+mvKKfKU0sTIuj1OqPun//8J48++ugxH7/uuuv4yU9+ws9//vPjHsdms2EYnfHBtLQ0ioqKGDt2LPHx8ezfv7+3yxHdMDCYp6ZhxUKyjsdX7cqSg3RiT4ZKZT7TsWAJmXHgvu5R16ibmaumYsPKILzfAHa4GsJJairluoovHBtpsbYSqQK7L0qtbuBkNRM7dkaoHL+sIZww5qvpQGdPmUCzTxczW03Ggcl45d8yo65hEhqNqU0M1efh6H6VQiLz1XTa6SBRx/nsdeBI4YcmaXeVDAkhhAgMv+34M9/oPRw0K9jANpKIJ+1QZYwri7JwgeUMDugyNusdNOpmxhi5bvvMNCZhM60YGOTrQsarkb78Urxui7mTRcZ8anQd09UEr53HNUja4FKOHOi6Ar0DGbQxT82gWbViU1becaziSuuFnlqeEEGt14G6goICRo489h/fkSNHUlBQ0ONxpk6dypdffsnIkSM55ZRTuOeee6isrOTll19mwgTv/QE8EXxqrqecajJIIdrwXcN612y0YOpR8am5nipqGaay/L0Ur/BFj7oteidrDg0AyDIyvH6+eBVLjspyDh3I14VMVKO9ft6BqKfR2Sg3008TkZVS7ND5VFPHcIb4ZQ3Hs0vvdQ67WGDM8OtaDA6XbjhwYPQ+8TwgfKm/ZrveTRSRhBv+KbUGnGXeoTwJUAghgtFvHc+69aYDaKS524vWD9p+DMD9Hf8HwN22ZW6Pp6ok53uyx+0v8JewX3tjyX7zvvk575ufA/B3y++9dh73yofm4+wZOLTWHhm0caFlEfc4ngAN8cRyJRKoEwL6EKizWCyUlJQwZEj3H/JKSkqcmXLH8+CDD9LQ0ADAr3/9a6644gpuuOEGRo4cyXPPPdfb5YgjNOsWMkglS2WQq3z7QTyFROaoKbTSht/SN/ooEMoRvcHXGXWGNpimxhOOjTSSfXLO8y1nsNbcTAttvOh4i98Z/88n5+0v1yujR5aV+FIM0VRTR4MOvCu1+WYRYxlOgoplohrl17VYlcVZN+7AJNhybesP/fvG+mG6sCvboe+ciYld27Gqfs2uEkIIn2p/92rMolXQVgcR8RjZpxB29rP+XpZHFOmDzGr7jvN9SRg2HDgYRBqXWo7fxN+1162rbxkLqTcaecv8gPfNz/nAsZozLfM8vnZ/qXctDfbiMIlwFcYpahb1NBIV4JUiXZp0M+MZSbiyMW4A1RBDVSanqFnU0UC5ltJXIbr0+p3z1KlTeeutt5gzZ063jy9fvpypU6ce9xhaa9LS0pyZc2lpaaxYsaIPyxXHUkktW8kDDTk+zhCLVdFs1NtppwMzSBqwl+lKoomkkWaSVYK/lxO0vtRbqaaOXJXts+avpxqz2cN+DAz2mgd8cs6BaODwlVFvvsnrSayKBu2+nkBRSAl72E+bbud3xs/8uhaLS0ZdME5+bfRAGYonhKswZ8CzjXas/RsyL4QQPmUe+ByayzrvNLV23g8RRWYxDTQ76y26Mp4PUMqd1uuO+9xbrUu63T7RGM14y04eN5/HhpXdeh9nEjqBOtdhG9FEevVc+bqQYsrI1IHXoqQ7DaqZbewCPbCKEauyUkE1O3Q+ySRwYdtNzDQmcbX1IlKVDPsTJ65e1/TcdNNNPProozz55JM4HIc/vDgcDv7whz/w+OOPs2zZsuMcoTNQN2LECOlF5wWuJae+DjwppZxZaa6NzAPZW+aHNNJMFBF81zjb38vxCm+Xvtq13TmZypdZiXEqhplqIgYGaw+VWwQyt4lqfgyedAUJW2jFru1+W0d3NpjbaKOdwWQwkhy/rsXi8rIYbAMlOstQOgOxcXSf/eArrhOOpfxVCCH8L18X4cBBOGHcZiyhIOwjfmZcy/XGZUSr/mdhj2U46STTgZ2v9S4Prtj/uko7Y4n2es/ars9vldSgtS9Gwg2M+8Tggb2//aftSarC1/M/xpl8oFfzS8f/8rD9mYEuUYig1utL3BdeeCF33HEHt9xyCz//+c/Jze1sJrpnzx4aGxv56U9/ykUXXXTcYxiGwciRI6mqqjpuvzvRdw26idlqMo00k+GDpv5HmqLGkkoSYdiCogF718TXZlpD6mqNL0tfN5rbma4mYOLweZ+4dFIYQy5pRhLfmAWMNYb79Px90UIb09V42rH7dbpwrsqmmRbCCKNeN5IUQJmkqSqJSYzBjp04w78BJqtbj7rgyBDu0qpbmaRG48DBSDXUr2sxzMN/i95yfCjNoYUQws+6Br610c4sy2QGG+kkGvEkEj+g4440crBhI5sMNprbaNGBP+irtwaTToQKJ8YH7SRGqWGAIpJwGnTTMcuNA0W9B1u7DDM6q8HSScFAkUUGLbptQMcUItj1KZry61//mrVr17J06VIyMzMZNGgQV155JWvWrOHhhx/u1TEefvhhfvrTn7Jt27Z+LVh0r5Ia1uktbNe7iVThPj+/oQy26J18qb9mP6U+P39fuU6nDd3SV+9ejVthfsZX+ms26h2cZVng1XMd6ULrYraxi4/NtXxsrvHpufuqWteyQW/na51HGP5r7t9KG1t1Hl/pr2lULX5bx5Hs2s5/zI/Zqnf6tTS4i3vpa2BlHvakWtWzUW9ni97p92mr7S7nv8t+7InxQgghfMOt+ubQhcNbrUuOWdbaW3EqhoXGbPZTyhadxy69b0DHCyRf6E1s1t84K0i8SQFb9U7W6S1un1MClevQC0+9f/uF7UYiiOAApbxpvsfv7S965LhCBKM+N42ZNWsWs2bN6vcJr7jiCpqbm5k8eTJhYWFERrrX+1dXV/f72CeyBrf0Y99fgZllTKJON9BOB7vNvQy1ZPp8DX1hxcJ8NR2FIjmUhkn4qE8cdJYFnqxm0kqbzyfnupbaVgZ4uXWjS0+4OH+Wvrqcu1E3Bczcl66hLhAYQfMcNZj5ajoa3VkiHCDfp95wb4Hg379rroFCX0ygFkII0RPlfO+b4uFqktONuaw1N2Ni8h/Hx0w2xnj0+P7QrFtooRXwzfsT19ftKmoYhm/fW/dVI83MVVOxYWWI8sznPqUUt1ivAA3/Mj/kb47/0kxrjz0UhQhFvQrUFRUVHXPaa3eKi4sZPHhwt4898cQTvT6O6D1/T5ZMJ4XP9FcA5Om9nBHgjWS363w+1xsASPHzB1pv8faH4w16O5/qLwEYPIAmsv3h+oapUgd2cN+tNMCfwyRczu26Jn9z7Wvp7+ASQKmudP5tsKvgKn11DVr7s8wa6MzaPPQnqAUpXxFCCH/L03ucr2+eDjx923IaV9o7h0F9bK7lF9zo0eP7Q4XL+0tf9GJ2fd0Ohp7fFbqKNYd6RV/MOR477l3W62nXHTzQ9n+YaLRd8/8s1wR8WyUhPK1XgbqZM2dywQUX8MMf/pCZM2d2u09dXR3/+Mc/+P3vf8+1117LLbfc0u1+S5YMLL1adM91kmOcH4IBZ1rmMcUxlnoaecvxIcusl/t8DX3RlXkSTpjXpzj5ki971HW9ibBgIZ5Yn50XIJM0ZqlJFOsyiijx6bn7yn2YhP/6jbhm2rpm4Ppbpa4mnRTiiCGH7i/w+JLrdNIO3RFUGXXVuoZBpBJHDNlqkF/X8jfbEyzpuIM9uggbNhzagUVZen6iEEIIr3AvfR1YX7ojxago5qjJlOkq5wCGYPe8/Z+kkki2GsSllnO9fr4slcFolUuDbgr4ahFwbyOU4uHAb5iycbPlB3xofkGBLmKt3sxJappHzyFEoOtVoG7Hjh38+te/5swzzyQiIoLp06eTmZlJREQENTU17Nixg+3btzNt2jQeeeQRzjnn+FH1goICnn/+eQoKCvj9739PWloa7777LkOGDGH8+PEe+cJONI26iUzSaKWdOOXboAlApkqjQldTTJkzTTyQxRBNOilEEO7TclFf8mY+XZ1uIAwbg0jFgsXnV7nSVQrb9W5iiSbQB2NpOgOLzbQSq73fjPhYEokjhQQiiAioQF0VtZRRSRmVhCv/9fDrYnN5WQy2HnWV1HKQCg5SQZSfG3nnGIOJUpFUHPpg2EKbT5pxCyGE6F4UkWSQigMHNmXz+PEbaWYvB4jQ4Witg/79da1qIIIINuudjFG5Xj9ftIokT+8BOktfA51d28lmELXUk0Ccx48/VA0mXxcRTyxPdLzIqLBhIVsFJUR3evXpOjk5mccee4yDBw/y5JNPMnLkSCorK9m9ezcA3//+99mwYQNr1qzpMUi3atUqJk6cyLp163jzzTdpbOwswdqyZQv33nvvAL+cE9defYASyqmjgcH4tgyxS9cfz2AYK75F76SMSqJV6GTTge+Sf9aYm1int3CQCpZav+Ojsx6mlGKiGk0plXyov6A1gCdDlehySiinlnpi/NyjrpJaDlDq1hfO3wKpXBPAplwy6oIuUHf4jb0vynR6EsXhYGEzgTPARAghTkRf612UUkEk3rmQ09W+opW2kPib/7n5Ffs5SARhPukXl+zWfznwA3UHKGU/B2mgiSTl2QxNgKst3+XX1h9RThX/1h/xofmFx88hRCDr0zCJyMhILrroIi666KJ+n/BnP/sZDzzwALfffjuxsYczv0477TSefPLJfh/3RBdLNPPUNOpoJFtl+GUNM9Ukoomigw6qdI3HG9V6ikM7nG8g/FEm7Cve7FG3xtzMqWoOTbQwgVFeO8/xnKJmEYaNSBXB046/cpt1qV/W0ZNGlxKQOD+WvqYc0aQYoFW38X/2V3jHXIUDk1utS/gfy5k+XVc77cxX0+nATppK9um5u+OaURdsgbom3cJcNRUDRQap/l6Oe6BOtwZVGbEQIrDtcOTzqOM5inQJTbQwWg3j+5Zvc4ZlYD2SrROW4ij8AN1QgooZjCXnDA+t2P+6SlK9NdhqqhqLXdnpwE6JrmCkGuqV8/iC1pohajCxRBNGGDbD8xmIR0olidlqMlYsGL3LpfGrZn24girKC22EwlUY49UoRjCEehp52v5XRqghzDAmevxcQgSiPk99Haivv/6a11577ajtaWlpVFZW+no5IeN983MOUsFg0rEqn/+zdlKaL8yNAOzhACkEZqDOtXeGPzOcvMFXPer+br7DPn2AOGI433K6T855pF/abiatbQ4Nuok8vTdgA3X1bhOZ/ffz5to4ulp3ZtRVU8fPHY87t6c4En0eqNurDzibWycqz5dO9FUwB+o26R3Oxs7Zhn971AFEupTfBkNLBCFE8Fint/Kq+W/n/Y16O/m6kO06n1ut/e+HbZ17J9a5d3piiQHFru20HhrsE+Ol9yJWrKzWnZ8D9ur9jCR4A3WNNPOOuRKAhcZsn5wzyYhnnd4CQIr2f1Z8T1xf1yO91G7jVMtsfsktXN7xE8p1Nffb/8i/wp7yyrmECDQ+D9cnJCRw8ODBo7Zv2rTpmJNixfFprZ0lT/6s3R+jhjNTTWKmmkiZrvDbOnriGqiLw38ZTt7mrYy6Ft2KTVuYrSbxLWOh33qQKKW4ynIRJ6uZxBLFR441fllHT7oy6sKw+bUHWwqJzFVTmaEm4MDRuTaXIGIUEVjwfbN/1/KOQCjXDOZAXYQOY5aaxAI1w+MT/frD9Qp7k8vAIyGEGKjWI4L/is62Jr+3vxjw7Vf8ocEH2f1nGSdzqprDLDWJfzje8co5fMX9vUmCT87p2v4jGIZJNOOaUee9vrizjMmcomaRTALbzF08b/+n184lRCDxeaDu0ksv5f/9v/9HaWkpSilM02T16tX85Cc/4YorrvD1ckJCvW7EPBSUSfLjh7MkFc+Xeitf6q/Zr0v9to6e1JuNztsxSpqb91WhWcxBKlint6L8nJo/yRjNp/pLvtEF7DGL/LqWY2k8FKDwZzYddP5tWKM38ZXeRr4uBNzfuDfTynpzi8/X5dpXLTkAmgS7T30NrkDdar2R9Xor5VT5eymA+xv3Jh38/YqE9zi0A3uQ/b4J/zpysqgG2umghPKQmTrqSV2Z9OC99yPzjGl8qbeyXm9lh5nvlXP4SqmucFap+Oq9SaSKIPrQBa46Xe+Tcw5Es8vrujdKX7sMUYO4z3YrVdRSTBl/tb9NbRB8f4QYKJ9/yn7wwQcZM2YM2dnZNDY2Mm7cOE4++WROOukkfvGLX/h6OSGhilocOIgjhqH4r9wpJUiaoNapBgDiiWUQaX5ejWf5ovR1LwdopJkEYhmmvN9c93iyGXToCqRiF/v8upZjqdcNRBFBNv7pHdklkTjnz0fVoSu19UdMf/XHIJj9+iBh2JjEaBK07ydWH8nG4T40HXT4cSV906bbnR9OkwMgMxE6/8bGEYMNKy1aSl/F0b7TvoyI1glEt03mt/Zn/b0cEUSON708kN+D+kspne2FkklggvJOb2GlFAuN2cQQxSa+CehBXz05SAUaTTrJjFMjfHbeHJVFFBFUUuuzc/ZXV+mrgUEY3u3hN1mN4W/WJ0gglk/5kgftT3v1fEIEgj41M+vo6OC6667j7rvvZtiwYf06YVhYGH/+85+5++672bZtG42NjUydOpWRI0f263iiM1AHUE8jEV7qEdAbaSQxlEwcaN5yfMgecz8Phv2YTBVYwbCuIEUdDUSqcP8uxou8Vfra9fNWS4Pfx6RnqBTnegL1jXkDzbTShkOZfl2HRVmYyCgcmM6yyDbamaLGkq8LiSKSbJVBnW4gwUe94hza0TmlWnVmslkM35feHsl16qs9iEpfq3Ut09V4mmn1ewC9i01Zqaczg7lFBe8HNuE9Du1w3q4JoGnUIvBZsRCGjXaXCyoKxRTGUqVrySW7X8dt/fNoaCw5vCEmk4hr8ga6XL8rMouZriZQqatJUN67KBZDFOkkk6FSKdIljFL9+7zob7W6nhlqIgd1OUl4fqLpsZiYNNPqs57TA5GmkhnPSCwYXm+DE6HCmWVMogM7g0h1y+YTIlT1KVBns9n45z//yd133z3gEw8ZMoTs7M4XUX/1uAoVVS4BimQf9VHozmAjg0IOv7nZofPJa99LpkrjZGPmgJr7elKl2/crMDJPPMUXL+xVLn0z/N0HK9ltkmmt/xZyDB26w+vNm/uiVbWzS+9lv9nZJ7SOBjbrb4DOEt1yXUU1dSTgm0BdNXV8pDt7C55tnOyTc/YkWHvUVVLDBr0dgDnGFP8u5hDXUpiuSdtCuIpQEXRdUzpehpQQRyrSB92CdOGE0UY7m9jhnGwuDtuid7JBbwPwavAsWw3ib/yXAr2fA7qMUQRnoO5rvYuv9NcA5Bi+u/jVVZbcRAumNjFU4E5/3WrmcYBSMkjxyfkGqVQsWDhIBR/oL3xyTiH8qc+//RdccAFvvfXWgE767LPPMmHCBCIiIoiIiGDChAn85S9/GdAxT2QNNDFfzWCBmsEQlem3daSQyLeN08gkjXDCGEYWDu3gG7OAfzje4XXHu35bm6tKapijpnCamkOOCt0BJt7KqKvR9cxVUzhdzSXbj6XW0FnOeaaaxzw1DasfBiH0pMGlgX5sAEwY7grk19NIu+7o9oqkLwOeVQEYNHf9OQqqQJ1rAN2PF2xcRbr0qGuW0lfRjUh9OKtdLtmKvmg8og+d60WWSgnUuXFoB1+bu8lhMMPIYrzhvSqmFLcLqMH771DppyQI197ZjQE+hKlrfTE+en+rlOIsYwEL1AwGkSJZdSLk9SmjDmDkyJHcd999rF69munTpxMd7f7Lecsttxz3+ffccw+PPfYYN998M3PnzgVgzZo1/OhHP6KoqIj77ruvr0s64ZXocj7XXwFwrbrEb+tQSvF62P/ye/uLzm3/cXzMVp0HGlbYP+O7lrP9tr4uO8x81urNAPxG/dS/i/EwX2TUfa3zWHPo+/eU4d/fV0MZ7OUA+bqQSB0RcFcf3ScM+z9Ql6ISndkrFbra2V/EVaWu9tl6KlynqgXAlFII5oy6w/9u/i5J7xLl0oqhu581IWzK6vybVBYgQ1BEcDhyYIRrj6wKs5oAvHbnN0W6hI8OZSCNVyPIUN7LgHKttAjUliS94Rpk9OVrahyHJ/LW6QavTegdKK2183fQl+9vbdj47NBn3l3mPqZYxvrs3EL4Wp8Ddc8++ywJCQls2LCBDRs2uD2mlOoxUPfUU0/x5z//mcsuu8y57bzzzmPSpEncfPPNEqjrh0Ar5XQtcf2h8V3O6biGSmoopNiPqzpsj3mAEQwhRSUynCH+Xo7XeCujrtAsZiRDGaTSyCLdK+foi1lqIjasNOtWqqgllSR/L8mp0WxkGFlEEE62H7Ndu8xQEyhUxRzQZRTpEppdgidDyMSC4TYZztv26gOkkcxgle7TZs3HE0cs49QIOujA1P7tK9gXtWYDw8gimqiAGZIjpa+iJ2GEOW9L1mX/aK1JbpsJQCpJ5EW87+cV+caRpdIRhDFbTaZEl1Pk0oZFwDP2vzGUTNJVCrdZlnr1XOmkMEmNpolm6nSDV8/lTVZtZTTDiFDhXpuS251pajx71QH264MU6zK/V64cSwutOOjsMeqrjDqAGcYEtundlOoKdul9TEECdSJ09TlQt3fv3gGdsKOjgxkzZhy1ffr06djtwZO9EEhaaSeFRGqoD5islC7RRhQlupxa6slQqewx95Nr9K/BrydorVFKU6arcGiTKMN748T9wdsZdR1mBxZloeT/s3fecXKV1f9/P3dmtveeTbYlm03vIT2EoiIgIqKIUgXBryKCCCo/BZEiVlQQQUURUUQRFFFEEQKkh/SebO+9952Ze35/zO5kJtnN7uxOubOZN6+82J255czszL3Pc55zPh9pJIYoQ1SvaZg4KsWAI2mdqoyTqOtQ3ZRSBcAHWBPgaCBSRXBQTpBDJsekhG6XtoGhiU0j/qmo65N+KqWGAazslSNueoOB5ogUAQ6NmGChXjU5P2txBmizBgiXcKKJJIJw7EGU9AzhP8JchqGhqsvx0T5oWQRnV1ViGGFYsDjduWOJZYfsJ4VEusTYLYP+poV2euhjpxxgtWmJT8+VoOIcnTScdJoNRkqopIhyEiTOr1rqYcrCQTlBNlNoEON+nzukiwxS6KGPeHxnTnIqmSqN/XKUTNKpps5v5w0RIhD4fZZ93XXX8dRTT532+K9+9SuuueYaf4czKaiQappoxY6dRD86E42VFyw/ZgArW2R3wO20u+llu+ynk26mqoyAxuJrfFFP16Ba2C/H6KbHMFU7rslpo+nSuE4WjGAmcb32MeKIpoxqfm3/M73DJKL81apyWAp5yP4L2uhgOQv4gBb4RCZAhDpZ4dNP8DiVupu8GCPpGa1F0E0vzbQ53V9DhHDFHErUTRjX776vKumNSLlUO5N0ABkkM40MmmjlvcHWuBAO3pNdNNJCJmk+F/531XNrDuLW167Bik1/VtMBZJCKjk4Z1RRS7tdze0I7ndTRRAddfk3UzVJ5RBBODfXs0Y/47bwhQgQCjyvqbrrppjM+/9vf/nbUY/zmN7/hv//9L6tWrQJgx44dVFRUcP3113PXXXc5t3vsscc8De+sxFVE3EjVREPM1wqYzjTiVRw6ga2qcE1CZKjkAEbiG3y95uc66MrQUn18trGRr3JYpRahIzTozQFYfhgZ1+SEEaqcErQ45qp8dHTSVArhhLNKLaZLurFjJ0HFYfLTG1gm1axTyyiVKqZoKYS7JMgCSQQnxe37GAhgJGOnTK+mSVqYQTYKxRRljO+m+3sZPEnPEP7D9XrjL7fpyUYL7UQRQQ99AR9j+ZOhxK4ZMxkkM99UgFm3kEEKKSQxoA8Qpo18XynRK/mx/TeYMDFPzeTz5qv9Fbpf2WLfzQI1c1BmIs3n1WEpJLJSLUKh0Iw0IPOQjkH9NX8bgWVqJxfBjZzobHIxHkv2YzfXdJXNdLKIUzF+0eUOESKQeJyoa211v2hYrVYOHTpEW1sbF1xwwaj7Hzp0iKVLlwJQXOxoV0tJSSElJYVDhw45t/NnmXGwMyR4GkMUESp8lK39T6SKoJs+jkoJR6V4sP00MH9fV3FYo1Sd+ApfrKwb0VkyQcWxXfYDUGSw1UdXDR0jVNSBo1V4m+wDgUgt3GmsAoBAqvgn2f8b20tsFofO6ROm+/xyzrEQjMmlnbKfl/Q3ADhfrSJLGUPTxvW9DFVLhRgWl6HAMSkJXBxBTKM0O1tfrdgCOsbyJ0OvebbKY1f43wD4+MBt7NIdc4l21XVGzdod+n5+Y/8rANlMmbSJuj/o/+A1fSMA71te9vn54rQYiqScZtqolFqfn88X2MXu1FX1txFYiovWuNG6RFxxTSL6M1EXpixYlY3tso/9csxwJnIhQngTjxN1f/vb3057TNd1vvCFLzBjxoxR99+4caOnpxyRRx99lFdeeYVjx44RGRnJmjVr+P73v8+sWbOc2/T19fHVr36VF198kf7+fi666CJ+8YtfkJ4+sgi+iPDtb3+bX//617S1tbF27VqeeuopZs70nZ35eBERLFhYpRaTq6YGOpwR+YzpMrbr++iim7/b/8cV5g8GJI5O6Xau9GUbVKB1Ivh6dala6lioZpFEPLPVdJ+ea6zMVjNYr5bTRz+10hDocNywYWeFWogZk2H0I1NUgrMvutllRXQI12SsL3jXvpPv2X9Fo7SQQya5ahqLtbk+PacnhLuI2/dJcCTqyvVqlql5tEg7OQa6D7i/l8FRnRjCv7guJ7UTvMLzgeTUa3Y/A25J8smIiDiT/66mNa4LYh3SdcYukzppIpooNBRpk7DDYghXkxbX98qXnKetpFrqAeiXAcNUzI+VdulkiZpLJBEsUAV+PXcSCaxVS7FhxyzGtS7ulC7OUQsIw+J3Y7nVaomzWKBBmskwSBdBiBDexispaE3TuOuuu/jJT37ijcONmXfffZfbbruN7du38+abb2K1WvnQhz5Ed/fJKpavfOUrvPbaa7z00ku8++671NTU8PGPf/yMx/3BD37A448/ztNPP82OHTuIjo7moosuoq/PeBUBzbRRKGVsl33DTrqNwkptIe/IDnbJIY4HcNW8hXZ2yH62y76zYsXZ25RJNQfkOO/ITpKUMfQQZ6gsNstu3peDHNILAx2OGw00s1MOsFX2urkbBpIUl4lLq4vD69AEp0l8Zyahi84hOcE7+nYOcYIEFcclpg1kKmPoHQJuVcn9QdL6elxK2S2HKaWKu8w3BjocJ+7vZXAkPUP4F9fK7z766dZDJgCeUiuNbr/3nAXVq67VzpEqwvmza5tiF2f+LBVKGd300Ek3R13GpZYPP4Np3UNo82/CtO4hLB9+xouR+x9XLdoo5Z9EnRUr22Wf4ecmI9FKB3vlCFtlD21+XkBIVvFskT3skP1OYysjUkMj78tBtsgeolWUX8+tKeX8fBm56jBEiInicUXdSBQXF4/JtbWvr48nnniCjRs30tDQgK6762ns2bNnzOd844033H7/3e9+R1paGrt37+bcc8+lvb2d3/zmN7zwwgvOttxnn32WOXPmsH37dqdGnisiwk9/+lO+9a1vcfnllwPw+9//nvT0dP7+979z9dXGKo2vlFo0FCkkMp3AuamOxhptKcvUfMqkil/b/8I3LJ8PSByurYixxAQkBn/hi9bXQ3KCSCLIIoMClef144+HSBXBBdoq9uhH2C/HDNX20+X6eTOARh3APDWTLKZQRZ2zgkVDY4Eq4LiU+HRQWipVfNX2PWKIYia5vBb2S1IM1oIejK2v++UYsUSTw1TymBbocJwEo95fCP9y6n2qijpmYYxq7WChRurRUCgUZsx0SY9hFtJ8hWsyMoqTiTrXNsVOujkTB+QYGho6Oj30OscOpqz1mLLWez/oADHSe+VLXKVlmqXVUItxY8E1+ePvbgiLspBAHG10uOnAGQ331lf/juPc2oN93AUSIkQg8ThR52r2AI7EVm1tLf/617+44YYbRt3/5ptv5r///S+f+MQnWLFihVcn1O3tjuqQpCRHxcju3buxWq184AMfcG4ze/ZssrOz2bZt27CJutLSUurq6tz2iY+PZ+XKlWzbtm3YRF1/fz/9/ScndB0dHV57TaPRIV300EcPfcT4eUXDE+JVLHbsNNOGGXPAkimdLuL+RkmceBPfC6sqstUUGqXFUK3WkRJBInGkqST26kdYapoX6JAA94mCv53DRiKZePrpZ4GaRT8DFKhcTJiwYqWFdjQ07GLHpLzfclEkFSxVcymSChJVnOGSdADhEkY+OZjQCMMS6HBGRURIJYle5RCSt2jGiTnCtfU1SJKeIfyLa6JuDjOolvpQos5D+hkgjhja6MTOAF2jJKgmA13SzRw1Azt2tyRQConMIJswLG4Ls6ciIkQTRThh9NKHIPzB9irLtPnMNeX74yX4DffWV/8k6tJIJpdpxBJNmwRfS3u93sRcNYM+GSArADI5s5lBC63EGbigQMPEHDWDTukmUfxrBJROMrlMJYZo2vHfnDtECH/jcaJu7969br9rmkZqaio//vGPR3WEBfjnP//J66+/ztq1az099RnRdZ0777yTtWvXMn/+fADq6uoICwsjISHBbdv09HTq6uqGPc7Q46dq2J1pn0cffZTvfOc7E3wF48O1tD/G4Imn5EFtLBs2v9t5D9Hp8n75WyDW33i7os4qVl7X38GKjbnk+ySRM15uMV/F5dYvUCKVvKL/1ziJOpeJglEGXLPUdBpooUFaCCeMfgbIUVPJVpkgoKPTRqdPzEKOSCF75Ajg0K00ItFapNOUZK4Yf8LWTidvy3YALlCnLz4FEleNuv4g0fsL4V9cXUqPUkyxVHIBqwMYUfDxpr7FrRJ6tEqyyUAbnRwVhyHdOpY7H49UERRTAUDLGaqRamnkXdnp9tgt9m/xGbmM35oe9X7AAcTVHdei/LOQE6OiKKMKOPPfwaiUUsWRwc9Xiub/BcVILZwTehkINEmrIRc1C6XM+R1M1PxbwRuv4iijGnBoTYYIMVnxOFE3UTOIqVOnEhvr/QTNbbfdxqFDh9i8ebPXjz0a9957r1ulYUdHB1lZ/mlDda/YMW5FHcAyNQ+bstFDH9VST7zyf6JOCaxVyzChkcjkaw3xZUVdjTSwQa2gh14KNGO0vQ5RoPJYqRYRhoUOl6rJQBNDNOvUMjQ0w7i+zlQ5LFZziJVoNrMLgBQSWKrm0af66aWPKqnziYtXs7SyXi3Hio05BjEjORXXhGowTHibXdo+Us4gnB4ITMrE+WolNuykq5RAhxPCgJy6nNQc0hvyiK32PRSoXCxidk5cz1RJNln4qvVkMs11Ucm95bJtxP2fs73Ch7VzOaoX0UAzvYMVv730Ya/chF63G2krRSXkoWUsC+pW2GkqnWgiifbjHCHY7qOn0jQ4VrFhY3YAKnwXqVn0qj6iiaRKag2ZqHP9u/p7Idq1HTmkURdiMuM1jbqx8uMf/5ivf/3rPP300+Tk5HjlmF/60pf45z//yXvvvce0aSf1eTIyMhgYGKCtrc2tqq6+vp6MjIxhjzX0eH19PVOmTHHbZ/HixcPuEx4eTnh4YBy2OuVkUsIoiYCRMGHmXXkfgBKpZC7+r1YpoZItshsgIIlCf+Ltirp6mvmfbAVgMXO8euyJkqMy2S/H6KOfBr050OE4OSTH2S77AUhS/m0NGIloLYpSqXJzWExWiZiVyVlhUCqVLGK218+9Rd/LNnFUZRdoxkzUxbhMZoJhwhtILZ2xsE+O0kqHoTVUQwSOU+9TZ0quhDidLbKHjbLD7bFgTIx4glWsbB4cxwEkcPLe6pq0a5KRJ/C/1/9OqVQRSYQzSQeOLhXrG5+DrhrnY/aYTEy3HPdS9P5nm+4Q3M9V/tMvdZXiCYb76Kls1fc65woztVy/nz9OxbJd9gFwm1zDYub6PYbRGNJgViii/eQmPMSpGoghQkxWPE7U5eXlnVFbrKTkzI6ey5cvp6+vj+nTpxMVFYXF4l6G3dIydsdBEeH222/nb3/7G++88w55ee5VPsuWLcNisfDWW29x5ZVXAnD8+HEqKipYvXr41oq8vDwyMjJ46623nIm5jo4OduzYwRe+8IUxx+YvuqSXWeQRraJIM1g1xaksVAWsUAtpopUTeimYzvd7DK6TAF9UDAUaX1bUBVI4djQ0pfER7XxOSBmN0oxVrH5r8TgTQ0LACcQZIp4hklUC7dKJhmKBmsUcNYMFOL6fzbRSqJeDlzubrx64kx7pJY9pzFX5htWINCkT0UTSTW9QTHj/Y9/EXPKJUhF8UHlXUsIbxBJDKx1uxiohQgzhmqjLIytkOuIhJXolBeRiw064CkNHpyMINcE8oYWTbuULmcXHTCc1pbNUBuvVMupoZpN9Fyn2FSgU52sr+UvY487thsaCaSRzu3YtD+tPoaNjQvPb6/AHdrE7368UH8hZjESwV9QJwnwKSFCxAVnUT3FLOLf5/fxjoWPw7xpLtN81x1NIZJmaTy999GP167lDhPAnHifq7rzzTrffrVYre/fu5Y033uCee+4Zdf9Pf/rTVFdX893vfpf09PQJfblvu+02XnjhBV599VViY2OdGnLx8fFERkYSHx/PzTffzF133UVSUhJxcXHcfvvtrF692s1IYvbs2Tz66KNcccUVKKW48847efjhh5k5cyZ5eXncd999ZGZm8rGPfWzcsfqKBpo4TimI8TXqcrVp7LQdII5YagmMpoAVG1FE0EMfSZOw9dUVr1fUSTMJxNJGp5vjknEQDspxppFBsVQy2wCtldqgIYHRksIpJFJONXZ09ssxzuUc8ga/nzFEUyTldOrdVFPHbG2GV87ZIM0cpxSF4vOasdyzTyWWaKzYsIs90KGMSrFUcoQikMCs/I9GrIoGcdcHDRFiCNf7VCmVlEt1AKMJPrrooZp6uul19hE3TuJWsE7pptxeQzIJtNHBYm0OM7Rs5/NZagqbZQ8mNNrocOo410qjc5sBfYBIwumlj0yVxpfCruP+vsfpoZdjUur31+RLWqWdZBJopcOvC6xDHT7RRNItvX47r7fYK0fopS8gnT9wcjE8nljaDZp4F4RwwgJilJasEtgthwCYIql+P3+I4KRcarCIiW7pJUNLNWzBgCseJ+ruuOOOYR9/8skn2bVr16j7b926lW3btrFo0SJPT30aTz31FADnnXee2+PPPvssN954IwA/+clP0DSNK6+8kv7+fi666CJ+8YtfuG1//Phxp2MswNe+9jW6u7u59dZbaWtrY926dbzxxhtERPjHLckTXK27UzF2Rd1MckghkSZaeV/fH5AYSqSSHvpIJ9lQFU7ewpcVdRVSQxudRBHBdLJH38HPLNRm86r+FpXUckJKA6Ir4oqIUCTl6Oh+d8QajfmqgPfloPP3FJVIPtmkkkQjLTyn/43nBv5GFJE0h++c8Gppp3SzdbDl9cNqPXdabpzQ8XzNAjWLN2ULRVQwIFbCDHytaHZrfTVeAn1IO7WXPmxiw6z8rrgRwsCc3vo6eZNMvmCnHKCbXuKJoX1Qn3Uyv4e3WL/J3/X/OX8/VfIlSkXyRdNn+IX9BRo52aFTLBXOn5tVO/U4JDKm4NDOzFIZHJdSWgxavTReWmh3vg9pJPvtvMnEY8ZMN71BpzvZI71OA45A3VOTScCEiXY6qQ9QYcOZ6JN+iqQcQVigZvn9/PHEYsaMDVtILiHEmLly4DYOSSEAvzI/xPXmKwIc0eh4bcR88cUXc++99/Lss8+ecbvZs2fT2+ud1RWR0SuGIiIiePLJJ3nyySfHfBylFA8++CAPPvjghGP0NZESzgq1kD4GSMRYyYBTidGiyVPTyGUqsSoGEfF7ufTQANbo1YfewLv1dNBFN6vUYlpoJ1sNr/EYSKYzjQJyiVOxVEt9oMOhh16no2GMZqzPW66aSjop9NBLMgnMJIdILZL5WgGt0s5RKcaOnQWqgFppIFOlj37QM1Ckl7NOLaOLHvI0/+nkjJc0lcQiZpNMAlVSx3RlXH21ZBKc94BAOGmPxkyVixU7Fkx0SjeJanJXMofwDNdE3TzyySBUHeEJQy3lscSQo6YRSTjaJGvfdMV2SpWzqxbaENPJJp0UuuhBx44NOwvVbDr1LmK1GLdEZpzmuGbOVzPRReiim3apmDT9Fq4apol+1MlN1OKxYQOCT3eyWdpYrZYwwAAzyQ1IDCkqETuOz7oRzRIqpJbztVU0SyupAZBdUkqxTi2jm56AVPSFCD7+Zn+TVulAQ8Pif4uGceO1SP/617+SlDT6l/V73/seX/3qV3nkkUdYsGDBaRp1cXHGTjYZjf1yjJ1yADBmNcWpxKtY/qdvBYFGWvy6wmcVK610ABi0dXPi+DLtuVHfwUE5gQUz0zXjJS5mankcHmwBnKEHvuKvw82R2VgDiRvMV3C//WeAQz/mMtMFAPw77BkAzu3/DDvlADtkPyeknEwmlqg7RolT/PtT6pIJHcsfpKok9uvHAKihwdBGCFv1vVRSSzrJfl/4GAvd9DpbVDpVz6R02w4xflwXlA5TRLnUjLhtiNMZcjmPI4YD4rhmJUtCACPyLdZT9Kii1OmdLvlaNnX2RrfH3pEdNNBCLDE0uiTqhsaCA9gopAxwtBNPlqtUk5u2cILfzjtWUw8j0kSr0/RqqTYvIDG4tikb8f2rkQbe1rcB8EEtMNq4ffQ5O0O6pYfoYZL2IUIM8f+sP6YaRxFHPwMckzN7KhgFjxN1S5YscZsMiAh1dXU0Njae1lI6HB/+8IcBuPDCC90eH6qustuNrwlkJIZWWhKJC4qWotVqCf2qnx76OKGXkmbyX6KuRTpYqRZixsJ8babfzjtZSCGJNWop8SrGkG3D+WSzXi3Hht0Q4sWu4vlGS9SlkczV2qUIjoqEU/+euUyjkRZSVRKlUsl5rJjQ+Sr1GlaqhVgIY44KjOaLJwSTo1jzoPyB0QxehnDVAOmSbt+uJoQIOk5tfe2ihz7pJ0KFByii4KFfBrAOVi25JsCDrYLJE3rF3Wwkahi3yQKVx3q1nK2y11mVBI7x8gyyqZF6lqi5JBDr1LJ1TWJpk+gi1S9W1qql6Ajpg22+/iBKRXKBtpo+6Q+6Kmq35GaAFvWTJZ6LtPV0SCc2jDcvdm1nDpQG8zJtAUrXMGOiUuoMoUsdwriYT0l5GbFSdTg8zuxcfvnlbok6TdNITU3lvPPOY/bs2aPuv3HjRk9PGbT0i+/dy4YGZEadpJ1Kqkpk02BlzXG9jHWm5X47dzOt7BisPjRyhYy38KaZRK/0sVG2A7AO//3NPCFai6JcaqighhRJRNd1NC1wLUCtclL30miCpUopfhf2/RGfv8VyFX8ZeJ1SqWKlPnE90YNS6PzuPa2+M+Hj+RrXaoBavcnrDrjeokd66cEhJZHsR0c/T3BNUhshgR7CWAx3n2qQZrJVZgCiMT4DYsWMCU1pbt+nOC2aRD2OVjpoklb6ZYBwFYZVrGhomJRBL2Ie0qt63cowIzm9oi5bTWGnHHBL0sHJRZcSqWSvHAHgS+o6wL3LQve6cEjgaKKFLbIHgFvUVX49d6Fe5qj2Fv8tyHuDZhft75QAJaHCtDCOSyllUkWyJAREKuhM1MlJ3bxAJTMjCHNWPtZJU8B1qUMYm1PvBzvtB7CarYYsPHHF40TdAw88MKETbtiwYUL7BxOz+i+iSd5HU75JFljFig0bmaQzV3nHmdHXfES7gD+q1yiTan6h/5Gb+YTfzu2aPfenTb0/8ZWZhBEGLmPhAm0Vb+vbqaKOBtVChh9XkE+lRhoIw0I2mcwLgioyVwrIY4EqoEYaOCrFEz7eYb2QNJLIUlPIwfgT8Bkqm3lqJuVSTTV1gQ5nRJqklViiiSeWApUb6HCGxVXsvUO6AhhJCCPimqibRgb1NFEl9WQHwXUiEHzL9hOesD+PCY2PciExRJNALLlMI1KLYIe+nxrqWdF/JUU4zIzetPzOr4uivsQuOgrl/NwM1/pqUiZes/ySROL4h/4Wv7a/hKDTJQ4H2KNSTCJxZJJOgcoDHBX5k5GeQVMEgKhhkpq+JEUlUim1NNFmuETTmWjR20ginjhi/FqFeCpL1FxsYqWdLtrpJMFAOuTVeh3RRJFLJnkqMLrDrpV8wWZYEsL/DGmGh2EhmkiKKOdl/b9cbbo0wJGdGY8zSCaTiYaGhtMeb25uxmQa24rdpk2buPbaa1mzZg3V1dUAPP/882zevNnTcAzNdJVFlfhuktdCO130UEM99sEPoNHJ1NLokm7CsBBPDJV6rd/O3SGdzFJ5ZJJGqh+18QKFNyvq6qSJApVLFhlMM6CRxBAxKop++skig69bf0CJXhmwWFrpYKbKpY5GYggu7Yw0lUSNNKChcVRKuHXgW+gyvmuMXezEqmjCCaOXfiyasVevAKapDIqknEjC2ahvH5NxUSBooZ1OuqmizrCToHSSyWYK08mixaXKNEQIcL9PtdFJAblUENKpG4k26UAQbNhpUe10DX7/NaWwiQ0bdjJJo40O7OhoaJPqe1dPk/MzE04YCSM4qp9rOocFpllMVRnU0Ug9zU7d2EjCSSSOUirJU1MBR6umaXBKZMwr6fjokZPmfcO1CfuSKaQyjQxmM5126fTruSdCI6200E4Z1ST40YDjVCyYqaKeTrqN186uIFOlUUg50yZoNjZeMlQqGaSST47x3p8QhiNJxZPLVLLIoJtekkgIisVjjxN1I01Y+vv7CQsLG3X/l19+mYsuuojIyEj27NlDf38/AO3t7Xz3u9/1NBxDc1COc1xKfXZ81wtToDQCxsMXzJ+hklq2yl7+rb/rt/PWShPHpZQaGvzqfuVPfFVRVy7VnJAyKqkjTRk3yfl98z08brmPcmr4s/46f9ZfD1gsR6SIw1JIFz1kBVkbl1KKaWTQSAvV1PF7/e9UMT4n3TKpZofsp5I6ZpHn5Uh9w3SVxfnaKhppZZccopbG0XcKAEbQ0hmNFC2RCmopoZIqA1cnhggMrom6Lro5TBH79aMBjMjYuI4pBzgpr5KsEpmjzaCeJoqppJ5mAOzoFFPh9zh9xZB5xiyVR3vEHi41n3fG7V0r7noHq8ve0XdSQhUJLtrOV5ouoit8PwtUAXOvn0baF/IJv7ODiK90EnHLcd+8GD/Q61JRFzlM9aEviVIRVFHHYQppI3gSdUbQXwP37hXXrhYjsF3fT6GUMYB1wmZj42Uq6dTRSBHlFMvkucaF8D6d0s0eOUIZ1UQRxQBWGmjmkJwIdGijMubW18cffxxwTOCeeeYZYmJinM/Z7Xbee++9MWnUPfzwwzz99NNcf/31vPjii87H165dy8MPP+xJ7IbnXG0Fm/T3+aDJN444tdLASrWIcMKYS/C01i3R5rJWLSOcMHbrh/12XtebbzA45E4Ub1bU1Ug969VyBrAaWrDVpEzMVfnkMpVOevib/b/ca/58QGJxTaJkqMC1T4yXD5nW0WBvopk2YomhSC8j2zTF4+O8ob/HBdpqrGJlrWmZDyL1PkopFjOLTbzPAFYu7f8cz4X9gIXa6Pc4f9JJN+vUcgSdLOX538Yf5JPDOWoBEYTTElr1DnEKrnepWUwnXSX7bMFpMjBN0jlCNIIQJZGsV8vR0ckkjRSVyGoWc5Dj9NDvbPWZLNUmIkIXjvbVsRo0uVaRDel5DiWvotTJ54Y0/FJUEggMYKWLHsMZQXlKL/3On/3d+hrjaiQURPqkNrGxRi3Fgpk0kgIWR4HK41x1Dv0MUKs3jqO0xncM/T3DsBCujV6k4wtmqGyWqwVEEk73YFt7iBDDUaxXsE4tQ0dnpsrhoO5YfOkU41+Xxpyo+8lPfgI4bpRPP/20W5trWFgYubm5PP3006Me5/jx45x77rmnPR4fH09bW9tYwwkK3tN3UqM38iB3+uT4xVLBDtkPwCfVxT45hy9Yps2njQ4OSyEWMfNzud8vYo6u7R/BVIHoCb6a4OzSD7NJdgGQr3J8cg5vMVPLJUtNYZPsollaaZF2kgLgOua6AhosZi+uPGS5k+kqiy/Yvk0zbRyVYi5gtcfH+bf+Hm/r2wB43vQjb4fpM0zKQvfgxO4oJezQDxguUVcj9Wwe/F7erD4Z4GiGp0DL5X05CIBVtwY4mhBGw7VL4zglHJcSBkKfkxF5i21OE4lCyikXh3zMF9U1XKqdx/W2rzkTUkMEi7vdaHTT61yAjFUxo2ztwNVsokccCboh3bbhEleu+sVN0mo4IyhPcf0s+Lv1NY6Tf6NgMhLaJvs4KsWEYSFDpQYsjngVy3vyPgBFlAcsjuEY+nu6/o39zVSVznEpccp/hAgxEkcpZvOgkeUGbYXz8aGFHyMz5kRdaamj3P7888/nlVdeITFxfBPPjIwMioqKyM3NdXt88+bNTJ9u3Eqd8bBCLaSNbt6yb+NCk+cT3NEo0auYwwwSVBxzteCpqAO41vRR/mV/h2baeN7+KjeZ/WMqsUjNwYxGIsFlFz8evFVR1yO9HNeLmUIaMUQxQxlfdPlq06VU2erooY9nbX/lq5ab/R6DRcwsVnOIIJx4iQlK4Zu5Kp/VagntdFIqVeM6RrPexmI1mxSSSA8ibchPaBdRKKX8Rf83YEyx4iaXSpkUg7a+RqsoPqKdT7XU00pnUImKh/A9rvepGKLoosdwbV5GQUTodJlYuCZhkklEKcUy5rKTA9gGq+ySVMK49UWNRqd0s5BZmJWZ/DGOQ05tfdVFp2+wymy4RN0SbR4VUksdTZRLNXkERijfa4iwUM0ihihi/ayV66rNGwyVK+CopuuVPpaoucxQWc7W6EAwR81gjVpCO13OhLxRGPp7xgQwka2U4iPa+ZyQUhqkhT7pJ0KFByyeEMZls30Xy9V8dHQuVufyKL8ETkopGBmPC2k3btw47iQdwC233MIdd9zBjh07UEpRU1PDH//4R+6++26+8IUvjPu4RmSnHKBOGikS36yE1FBPEeVsk73MNHiV06mcoy1ks+ymVKrGnQDwlHKpZr8cZbccJm6Mq7HBhi8q6ppoYx/HqKWBCBVGuApMmbsnrNGWUkoVjbTwqv1/AYnhEIXsk6MUSTkmbWxGO0YjX8thm+zlhJRSLZ5r1HXpPTTQzD45RifdQZWgmWOawf+ZPw2AGRPtuvFu6M20Ysbx2TJylXAf/eyVI7RJBw3SHOhwQhgI10TdkKvhgAyMtPlZTR/92LE7f++nH/PgevuQnpVV2enHih07ldSyX45S6KMxqL/ppY8DHGePHKZjjIkf1yqyPhk4RbPt9AqzKCI4b+e7/PblvSz67afo/9OF2LY9OvHgA0Qp1RyQ42yVvST5+R4xNM42Y6IjSMwkqqWePgbYK0fQvSgfMx7yVQ5bZS/HpIQq3TgVYyKCFRsAcQFuDVcodsth+umnUJ8c17kQ3mevHGGXHGKfHGO5tgBtMP1l0+2j7Bl4xrVUUFVVxT/+8Q8qKioYGHAfUD322GNn3Pcb3/gGuq5z4YUX0tPTw7nnnkt4eDh33303t99++3jCMSwpJNJMBwfFN0K02/R92LAzj3xSA6ijMB4KyGUKqdTSyB7xj06da+l9IMu1/YW3KuqaXbTWVmmLvXJMXzNT5fBx7UO8qv+PnRykWdr8nsgYet+MnEAZjWSVwGI1hwNynO36Po/3L6KcauqJIJylap73A/QxKSQ6q3zqDGgoUS41TpfHLIypUQewVM1jK3upp4kTlJFO8Gk2hvANrvepTJVGjTRQQS02sQW0msWInNo+2McANmyEYSFmcML8p7CfECFh9Kp+FvVf5nCMnCQViq5JtqgxGiNESBgWzFix0U2Ps+0Vhq+o+5TpEsKP3Y/W1Q70Il3N2LqqMK++d8LxB4IhfcJIItw0+fxBColEEE4f/bQFQeUKOMyv6mjEjInsAJuAxagozlEL2SOH2SZ7DVON3jjoN2/BzCI1J6CxLNJm85r+Ng20cIJSFlAQ0HhCGJOhSvQ4YtA0jViiaaeTVmV8R3SPR0FvvfUWH/3oR5k+fTrHjh1j/vz5lJWVISIsXbp01P2VUnzzm9/knnvuoaioiK6uLubOnetmTjFZCCeMZWoeVrF5/dhdejc5KpNE4h3iywa4eHtCqkoijhgyVAoR+KdU2bX0PtrPWh3+whcVdfXSxFI1Dzt28lSW14/vC8zKzFTSBweKERRJuV8TZv16P/PUTProJ08Fd+tMBinYsROnYmjXO4nXYse8b7lUs0otppV2sg1qdnAmklWiU8PCiJPdBGJZoubSTiepyriLNdlMYRrpJKp4yvVq1mvLAx1SCIPgmqiLINxpgNBKR9AtQPqaTunmHLWAE1KKBTMD2BjAygBWp5baFJUKChKBBWoWPfQa2qndE0ZLsg1HhBbhrP7pp58e6WO5mo8NO9OGcatMVPH0GUm1f4JkqjTCsLhp9fmLOBXjbDM2onTEcAzd523YDXFPnUIqc8knTkXTIC2kG+C7XCG1nKvOoZGWgGs4ZpNJOinMVTOo0RsgOJtXQviYTnEsFMSc0v4/dG8wMh7fje69917uvvtuDh48SEREBC+//DKVlZVs2LCBT35ydDHrm266ic7OTsLCwpg7dy4rVqwgJiaG7u5ubrrppnG9CKNixcpuOcwb+nteP3YRFWyW3RyQY46BWZChlCJRxbNXjvIv/R26/ODYM7QaHUs0mpo8AzFfUyKV7JHD7JdjJA62JgUDedo06mmmnGqO6sV+PXezameH7Ge/HHNOPIOVTC2dg5xgi+zhBGUe7XtAP8522cdxKSVfC672fHAkwoZK5F0rS43CP/WN7JUjhBNm6MWafC2XE5SxQ/ZzwEcV5iGCE9e67wR18v5ixO9boOmkm/flIO100USbm77OcImrLrrZJ0d5V9/pzzB9Ro+c1OQba+IpgpNSHX0M0EvvYAvUUXpV/xn2DH5EhI36DvbKkdMMRvyBq4lWsDgPu153kl2MRQLFNC2dgxwfHH+VBjocACqllvfkfY5KMVPV6clufzJLy6OIcnbIAf6o/yOgsYQwLk7zk8F2fMtgnVowJOo8rqg7evQof/rTnxw7m8309vYSExPDgw8+yOWXXz6qztxzzz3H9773PWJj3asyent7+f3vf89vf/tbT0MyLBdqa6hSDfTRT4veRpKW4LVjN0kr56uV9NBHgcrz2nH9yVptGRbdTD8DnNBLWWrybWtcHtNIUYmTVp/uVLylrlErjaxRSzChMUcFj+HLGm0pH1CrsWLnbX0bN/Jxv53bbbAXhI6vrixRc1ivlmPFRolewTnagjHt9w3rD6mSOuYwg1gVzSItsC0S48GkTFyuXUijtIy5lfxJ2x/4i91hQJGvcvhN2Hd9Eluv9DldaZMNaiQxRIHKZZ1ahiC0ivFbDUL4D9fvVR7TWKeWoaO7ubSfzfzHtpmv2B6hmnrCXZJOmaTRSbdzAjJcZ8JQ8q6fAexix6SCu9zEvfV1bF0Rru9LH/2nVOUNfwwrNizjjNFIdNCFbXAimqT8b6CWQiLr1XIEQQsSN61GaWWFWkisiiZHTQ10OFygVnNMlWBXOv+ybzRENXqTgZKZM1Q2F2sbOKoX0SxtAZG5CWFseqWPPJVFEnHM0xyt0c5EnRjfYd7jRF10dLRTl27KlCkUFxczb54jwdLU1DTifh0dHYiIw7Wqs5OIiJOrYXa7nddff520tDRPwzE0YcrstAMuooIVXrygVUkdG2UHANdyudeO60+SVTybZBcAx6WUpfg2UbdF9tBBFwUEZ2JzLPhiKPS+fpCtsheAmVrwvHeLtTlUUMcJKSVSIrDrdr+ZOri6cQZ6IDNRstQU5/d0vb6cT41xv5fsb1BNPVFE8G3T7UHZ+gqORPV22Qcwptbf/+pb2CH7ATggx/iV/pBPPneurbgpBh+YTlGp7B80FKmW+kmRNAjhHVwTdSalsVl3jJkaaQlUSIZir36EEioBR8JtiBoanD9HETlsRW2kinSu2PXSf1rbT7AxrtZX10SdDIzpGFaxTopEnXtCxf+LOSkq0Tl2iJbg+OwdkxJ2ygEQeMwceF3CD5vW82nbV7CKzdE+bIAPpmsbc0qAF6LDVRhZKoN/8y4Ax/QS1ppGl+EKcfZwQi/jkJwAIEscupNDJky2yVhRt2rVKjZv3sycOXO45JJL+OpXv8rBgwd55ZVXWLVq1Yj7JSQkoJRCKUVBwelij0opvvOd73gajqGZoXLIVzl0Sy8143BMPBNdrsYIQVohNo+ZLFCzqJF6jkuJT88lIidLXwPsUuQvvGUmUShlZJPJdJUVdCtV52sr0XWdKqmjkjpy8c8KabO0kk4KccQwTWX45Zy+YpbKY7GaQ500jbn1wiY2rFjJYxpztXzuMN/g4yh9x42mj9Nr76NK6vil/iJf02454/bteicxRDGAFQGqVD05eF+UullvJQ2H1ucMle3143sTpRS3m67jVf0tKqSG/+ibuMR0XqDDCmEITt6nEjlZ9dMUJK1yvsQmNr6jPzHqdiMlnFwf76E36BN1fdLPNDIIJ4z4McpwhLlkNvrpp1dcXF9HeN8sk8TEpF06mUIaUUQEZKFsSDpCRw+aVvZe6SWHqZjRfHLf9hSzMnOxtoGD+nHKqDbEIleb3slUMoglihQDVPN/SruEXfohaqSBp+1/CiXqQrhxglLHXIx0lmqOgiCLMoNM0tbXxx57jK4uhy7Gd77zHbq6uvjzn//MzJkzz+j4unHjRkSECy64gJdffpmkpJMinWFhYeTk5JCZGfiLojdJVPEUicMuuk5GrjYcDx0uibrYIB18TVdZHJITZDPFKTjrK7rpdSauYgIsfupLvG0m0a53kqTiqZEGrBi/RPhUYommVhrIZSrFUu63RF0TrdTTRD1NRKvg/H4Oka0yOSYlJBI35ptaM2000AK0MIcZvg3QxyzV5nLIVkgicfzJ9hrd0sOHTeeyWlsy7PbFVDgNKOYyg732w+SYvX9vaxp8jxtowRQECsr5Wg6F9jKymUKl1AU6nBAGwXVBKYE4Eoglnji68b1urdGpkYZB0wjHvTeWaOzomDFhxYYNGxGEj6hT7Jaokz7flNz7kS66qcJx7TCPMVmhlHI6jzpaX09qtY3UPmv2fGpkSNrponaw8tIXRmOjYVImppCKjh4QM4vxUEY15VQTThgRmjFiNqHRQhs5ZFIm1QFfmKujkerB76ERFu9XaAs5IMdII9l5rQxx9nBQP45JTPzZ/i9aaOdxy31uFeY1egPpKoUiqWDaoKbipNWos9vtVFVVsXDhQsDRBvv000+Pad8NGzYAUFpaSnZ2tqGFr71FsuvqsJcdj7pcHExjg7SibprKQBDKqWGnftCn5+p0rUAMVdSNmROUcXCwZHiumjnh4/mb2Wo63fRyjBKOSDEXssYv53X9vqcEeeurSZmYp/LZLYdp0rc42oLUmfsvXIWjg12jb56aSWv4Lr5v+xWP2Z/l+/Zf87T9RerCt552H9NFd2tJPUIxz+l/42N80OtxubafGGGwPBqzyMOKjSIq2CtHAh1OCIPgepdK0hJos3fSRifVXu5CCEYqqXNOPBXKbRwzxJkmGpHqZKLBVd8tWBlP6yvgkqgbW+trIJJavsC18yZQ7pwxKorjUuoXwzhv0Dm4QBBroHnCHDWDv/Em7RRxQkqZQWATda5jHCOM7yzKwmw1g0Nygv/qm9FFDxkGnkV8w/Yj3tK3OX+/j9tI46Q78i/1FymRShKJ4xLNkYuatIk6k8nEhz70IY4ePUpCQsK4TpiTc9L5b8GCBbz++utkZWWN61hGJ4kEVqqFWLCAeEva34EFM2vVUgSI58yaSUYlUosglmg66fa5dXuHdLJGLUUB+SrXp+cKJN4eYJZJNevVcvroZ44WPEYSQyzQZrFOLaNBWnjB/hpXmi4iU/leC9MkJtar5fQzQFKQJ+oAlqi5WDBjwUKpVI1qYFMnjaxUizBjDioDkuEwKRMmTMSpGBKJI40kslUmddLIlFM+Sw3SzDI1D4tYKKSMApXruP77gAGxsl4tZwAraSrFJ+fwJgVaHgtUAbHEYBN7oMMJYRBcF5SSXNoZm4KkVc6XuLYLRhPprNQFyGUqZVQDI0+Wp5LO6kEjKF93LfiD8SbqVmmL6JRu4ohBRGetWoqOkDDG9tlO6QqSejB33BeoA7Og79DGK6WTbu6yfhdEkazi+abliwGJZzSGiiACldgcjjlqOsvVAiIJp8qDavTt9n382v4XTGjM0LL5uvlWr8STTAJr1VKs2EgwyPxzuZpHDFFYMFMptYYwAgnhHyIknGymUEcT2UzhDfsmrjd/zPn8UOFAikpyFhkMjcsnXaIOYP78+ZSUlJCXN3FR+bKyMqzWyVummqji2SEHAJgi3k0OFEo5W2QPAPHKGBfK8ZCsEumUbp9bt7fQztbB92sJc316LqPgjYq6A/oxpxjwN9WZHZ2NyCJtNqu1JfzQ/gwIPGR9kqfCfK+FWSTlzvctIYi/n0OkqWS26w6DhBNSNqohS7FUOA0VruYSn8fnD+4w30Cl1PJz+x8olxpOSBlTcL+ul1DJ++KoDk4hkS2yB000+qSfCHW6K+NEqKbe+Rm7m5u9emxfEKuiaZY2DnCcY1Ic6HBCGAS3RJ1LZaivF++CAddkZSzRbok6159HMizqpY9tg0ZQPZOhok5Otq1GjuDYOhyFUk6xVJBIHBey2jl2/oL69LDba9PWoVe8S39/I63h8F6mjSulJ+hkLDpdOm8CJfmSohKcZbO/sL8AgIbG3ebPEa7CRt4xQHTgkHYyUkVdnpbFLptjXJEvOaNsfZK39G38Uf8HAKl6ktcSdVv1vVRQQypJhqlcS1FJbNf/BjjGqDl+krkJEVi6pId/yTvO34uo4A39Pa7nY4DDGKidTsD9PjmkXWrHjogYusvT40Tdww8/zN13381DDz3EsmXLiI52v5jFxY1thepsINmHg87J0lr3AW01B/UTNNBMr/S5tWp4k8nUincmvF1RVysNLFFziCZq1Coqo3K56UL+q2+mXGr4p76RJ+Q+zD4Wi3ZvOQnO1nRXFmizWKsvpYNuiqVi1O3LpIZFajYxRDNbBbdGnSuL1GzWqCV00EWRlLOBFW7PF+kVzCWfBBVLNFF00k0r7RTqZSwwzfJqLK6TsNgAVUt4yjptOSVSgR07HXoXcVpwxB3Cd7hp1Eksy9UCFIy52mky04+V5Wo+GhrJJGAX+6D2J3xeuxqbshFDNCu0hcPuH+7meBr8FXWu7btRHowVh6rJOulxaPUNHWOEZF/Yxb8B4GHrT9is76aVDhbq5Sw2zRlP2AHDho1lah5mzG5SPP5kmZpPI63s5pDTzCRVJVGklzPPZCw5lV69jwJyiVKRzDXQuGUGOSxT89FQ2BhbNfonBm7nbX07CodpSrpK5mHbL/iWeeKVjEPzWSNJbixUs1ijltJJF0VSwQdZG+iQQviBE3ops8gjgVhqaCRNJbvN91ulg6VqHmZMzHeRb3LVIbViczMdMhoez1YvucRRHfHRj37ULQM5lJG028fe0rJ+/XoiI8e+KhZsxBGDBTNWbLTo7V499tAkLYLwEQcbwUCP9LFD9hNHDIV6OQu9PJkdolYanD8Hc2LTE2SC7dZ90k+pVLNXjhJOGDkqOM1elmsLmK6y2C/HiCCMY1LCfHW687Q3cTd7Mc7K7HjJVVMd1WFolOpVo25fKlUckOMIwkwt1/cB+olslclW2YsJE6VSfdrzpVLJCcqwiY1rtct5U9+CGRM/tv2W35m+79VYOt2SwcFR6aFjd1YcNtMWsHasEMbBNVFn0SwckhP00U8/AwGMKrCICDo6/7C/xS45BMDF2rk0SItzm+vMHyNXO3PViGsVb/8kaH111TmL9mDcO5QgsmFzVkzByK6vQySoOLbLPiIIp0jKWUxwJerqpZndchhwT9r6k3AVxjYcVZ0tOOZBvdJPkZQzD2Ml6lpUO4coBGFEg5ZAkKBiOSjHGcBKvz5Al/Rgx86ztpfppJtvmb9IGx30ywBRRNJIC0f0QqdxSg99HJJCNJvGHaYbJtTW26v3OXUzkw3g+DpEjjaVrbY9KBQ/tz1Pk7TwLfMXDV0pFWLiHJMSKqjlOKWkkcxuOUQmaVh1KxbNQifd7Bm8BuapkzJrQ66vAFashk7UeVyzunHjRue/t99+2/lv6HdPeP3115kyxf+W4f5CKcVabRkRhFNG9YQTJ640SDPhhJFLZlBfiBZrc0ghkQ66OE6Jz85TPZioyyQt4I5JvsSbFXVb9b1skd0kk8AdpusDbgk/ET5r+gRZZNCPlWftL/v8fK5mL55MKIzKTHLIYxoa2piMAHbpB7FgZhGzSXcRdQ12Zqk8Z0vFvmHeh/1yDB2dbDK5zXQNH9M+iELxovzLrW3LG7hX1AVHMti1mjnU2hgC3BN1CuXUHpsMrZrjpZ5movsXsVG2Ox+bq/Kd7s5pJI/puhrBydbCvkmQ+OyUbkyYSCXRoypi18TEUBsUjF6VN1flM4VU+ujniBR5HnCAMYKZxFyVTypJzt8jiaCXPo5gPPkDV01II3XeKKVIGUyKNUsbf7W/QXr/ar5h/xGP2J+iijp+aHuG3IHzSRtYxbyBSyihigjCmE4Wq1lCDFEc4Dh/tP9jQrE0qzas2IgmklwDLd4vUrPZF/YqS9U8yqjiEftT1NEU6LBC+Jin7X/CipV8sjlfW0kcMdTQQAW1AG4LM64L2pZTKuqMjMcVdUPurROhpqaGzZs309DQgK7rbs99+ctfnvDxjUSMRJHLVBJUHPXSTIaXRL876aafAfTgzdEBkKemEU0k09U0DutFfNJHuSA7dpaoudRIA5n43kxgMlAldSxXC2iSFnLVtECHMyEWabOwYSeTNLboe8fkXDoRUlQi8ynAhGYYDY+JEKNFE6diWCpz6Zd+Luy/nk9rl/G+HKCbXn5v+YHzdXbrPUxV6UQTSSJxQb2QcCrpKgUNxTxmEi5hNEgzacoxYd6vHyOScKaQSifdLNJmk2yPJ4l4ooniFft/udZ8uddiiVQRLFCzsGINmkRdJmnMZjpRKpJW6Qh0OCEMgOvypUINVjm10ytnb6LOdaFniBkqm2gi0dCIJpJIbfTWzwjX1tdJUFHXrNqwi51GWklWY2/lzGYK88jHoiy0i0uibpRFtJkqB1BMI53/6pu5T24LqvtZp4uOYVyA7hEzyMaKnQjCsWBGEJaquVjFePrkQ21yvfQZbp6wQM0iSeLpx0ql1JJAHG10kEYy9w38lDoa0dDQccypY4gijhjSVDKLtdkctRcxjQyKxiBdciaG2gq76SXCR1JF4yFChTNbzSBKIggnjGQSKdLLmWIyTmVkCO8iIsQSzaxBw7qpKp1kEpivCqiVBmaQPaKhTiapzKcApRzGbEY2+h6XUNOmTZv45S9/SUlJCS+99BJTp07l+eefJy8vj3Xr1p1x39/97nd8/vOfJywsjOTkZLebnlJq0iXqcrWp/NO+EQROUEoGE0/UiYjzwxeom6+3uMx0AXdaH2GnHKTYXskDltt9cp5t+j5nJVC2ZpxVIF8y0frNvXKEXYNtarOC0PHVlXSVwhptKS/r/6Fa6imTamb60P13t36IBlrIYvJUDO8I/yu/t/2dW23fAoEt9j3O5x6Wr5A76LJVRIVTwHy5aUFAYvUVSimuNn2ER+1Pc0COcZ/1p/wy7CEAXrC/xsv6fwG4RvsomtL4ueXbvNz/X+qp5EHbk15N1B3TSzgoxwFHi1YwEKuiOUYJCNSHVrtDcGpFHUSpSBCcbVtnI65VAEN8yLSOm8yf8Og44a4VdZNAo26o4slTyRelNA5TBOIYCwwxknPswF8vRa/dRZa9j70mxc40Mx+9PIPv2p4yrFvpcHTKyc9RoMwkcrWpdNGFDbszWbxHjpAogdHMOxP1NDnb5Izk+gqOVr1DUgjAI/anAEgingaaeVH+BTgqbW8xXQXAe/r7nKudw32W2wBHh8x+OcbT9j/xqPmucS9UuxrcjGRiE0iuMl/CJtsueqjlqBSxnuWBDimEj6inmbdkGwAf1NYyTWVQShWlUkU5NazDfdErxq2yuotDnAABq5pkFXUvv/wy1113Hddccw179uyhv99x4W1vb+e73/0ur7/++hn3v++++7j//vu599570bTgrzQZjQ3qHA6rIkB4w76Jc7VzJnzMbnqdg9tA3Xy9yRWmD3JEL8KGnbfsW7nQtMbr5xhqs4oi0jERmKR4q/XVKlaO6cXkMg0NxWwV3Ik6gGXaPPbohxGEIilnJrk+OY8uOs2DWiwpBmqf8AbLtfnMIIcyqpwixWkk86r+P+7QbgCgUVq4QK2mmx4KfJgMDRQbtBWUSiV79MPskP3s0g+yXFtAh3SxTi2nSmqdeo5KKW7QruCYlKArnV/aXuTz5qu9EsfQNS2aSJ+Z8HgbN4MlHzt9hwgOQq2vp9N5SkVdBikkSKzHq/6u14XJoPk3jQwSVTyxRHtU2eYmei+wVi3FgmVEWQq9tQhsjmq0CBvMbQ9jKun8R99MjbWRJy3fnsjL8BupJLFeLUcQYiQqIFUjJmXiWu2j1NGEXey8Lduxoxvy+u9uOpcQsDiG43LTB0iVJF6Uf6FQJBHPAq2AfHLZJDtplnZSVRJxg+ZlcSrG+TPAem05sXo0NuwUS8W4Tb5qpYEVaiHRRDHLgAZzc9QM1qplKKBOQouBk5kivYzVaglmTKxUC4lxKVwa0jPtoY81ailmTEx1qZINc1nE6peByVVR9/DDD/P0009z/fXX8+KLLzofX7t2LQ8//PCo+/f09HD11VefFUk6gEtM53GN7W4GsFKnN/GIfGXCpfOdk0yofoO2gp/b/wDAWvtS3yTqBleBjLgC5CtkAjV1xXoFG2UHAIvULMMNWsZDpkqnFIcRwiG9kItNE2/jH452OrEPOnNNhvfNlblaPgu0mRTr5YDjWtRJN8/Y/sKXTdejlKJa6nh7cJXrWrxXQWYUzjOtoEQqeFH/FwjssO9nubaAd/QdlFJFLNHcZ77Nuf1XLTeR3b8BxGGycavpU15pnxqaVBhJ0Hk0XGN1XZkPcfZyaqJuSOC/nwF+Yn0WheJOy40Bii4wdLm0LILDeCVG83ysN5laX0WEt2QbVmwsUrM92jfF5bpTShUnpBQYeyXy0ILbTjnA+/aD/Nj0DSK0wJgzeMJhKWKrOCrfowO4QP30YNU5QE7fBuppptHFGMUouN6TUgx2X73OdDkm0XjW5tBYTiOZv4X9AoCf2Z4D4A7zDc7t7+AGt/0TVBybZTcAP7L+hmfCvzuuOAqljJ1yAIDb1bXjOoYvmanlsGXwdYbrYaNsHSKYOSrFzu6dq9TFxLkULg3lSeqlyXkN/Ky60vm8q3mEFeO14bvicaLu+PHjnHvuuac9Hh8fT1tb26j733zzzbz00kt84xvf8PTUQYlJmfiS6Vre1rdTJXW8q7/PeaYVEzpmu95JLlOJIJwcdWbXr2BglspjuZpPo7RSQqXXjz/Ux55IPPlajtePbyS8tSjwS/uLZJNJhkrhHtPnvHTUwLJBW8GHtLWUSw3P6a9wD755Xa3SQS7TiMDC9EloXHKf6TYu0y5AEF6zv8022UcxFST0L0MQrtQucm5rtPYRbzFHm8EyNY8GaaaIcvqkn2bamM10Fmmz3RJxqSRxv+lLPGP/C/XSxC/tL/J/5k9P6Pw90ksf/cxmOitNiyb6cvxGqkpkoZpFNz10n5KMCHF2cmqiLl9lUyuNlFPN/fafAYrbzdcFtZmRp3RLL3lMYwArF2qrOV9bNa7jxBLNPDWTPvoZEGO394xGJ91O0W9PF8AyVArzVQHlUu1M0lkwe9Rd8UnTxbypb6Fa6imhkrnkexRDIOgdrEo1Y/apJq8nXKitYbccpl4afa4V7Cmd0k0e04ghys0Awyh8UFvLM+ZH0NCYpjKcj7sm6EbiKu1iCrVyNurb+Ku8wZPyAOHK80RWkV5ODlNJVYkUGLCiLo1kzlcrqaTOaSgQYnLSK33MJAeFRqZKc3O2HqpKb3KpknVNvrt+9o1ebe5xoi4jI4OioiJyc3PdHt+8eTPTp4/eHvfoo4/ykY98hDfeeIMFCxZgsbhfpB977DFPQzI8eSqLA/IcWUyhXKonfLxu1UMZjuNsYGJJPyOQp6axV46SSOxpK8neoJ8BigcTgKkyeRwoR2O8FXVWsdJMO620UyE1rDEt9XJkgWGKSqVDuqmSOvKYxkH7MRaYPFuZHwuddFM2WLm3dhLqY8wzzWQeMwE4LqX8w/4WGprzZlcvzc5tg11DcyRmqlx2y2HSSKZH7+NNfQuRRFBEBUuY67atUooNphU8aP85EYTxD/tbXGza4GyPHQ8VUkumSqdMqlgm8yf6cvxGkkrgwKCuXs2gE3eIs5tTE3Vd9FA+OL4ZchcslSry1eReZHOlnQ5n9fc6bTmfNn9kXMeJUOEcHtS1ahuUYwhWdukHySaTdjo9riKOI5ZDcsLtMU807gDiVSzHpIRsplAk5UGRqBvSeRxJiy8Q9Es/5VJNLlOpknryDGRUVkuD83uX6IFZib9I1ZK4Vhtfl0KBlocgNNNOEnHskcOsVks8OkaX9NCr+mmSFqqkzqlLbCSUUvTQR500ksUUuvUeorWo0XcMEXTU0EAhju6eRBWPJhqRRBBDlLOrqY9+0kmmhXa3BZ5wl4q6foNX1Hncf3rLLbdwxx13sGPHDpRS1NTU8Mc//pG7776bL3zhC6Pu/+ijj/Kf//yH+vp6Dh48yN69e53/9u3bN57XYHjmqOloaJRTzX45OuHjdcjkan21KAuL1GyaaOMtfRt2sXv1+G6twmpyX7C9oVFXJBX8RX+dTrpZyORoex3iecsP0REOUcg99h/65BxuduBM7s/bXJUPKOycdO8eMiCByaGhORwpKpFoomigmc2yi09av0w9TcxhOo9b7jtt+xVqAf+y/IoBbLwt23na9sKEzl8hNRyXEvoY8IpBkb9IcWt9bQtcICEMw6murzGnjGm66XVWQZ0tdLiNWcZ/DXUdH7oeMxj5hu1HVFADwG/Mj3i0b8owY5itlj97dIw5OAoRSqnisBR5tG+g6Bl0TjZSoi5Ty6CPfo5RQoXUBDocN5poc/482fSFAT5vuhoNRSOt/NH+D4/336Uf4nX9Xbrp5RwWYFbj8qP0OQu1WXTRw1GKnYmcEJMPVx3bKCKJUzH00kcjLTTiaK2vkBrqacaKjSQX6SvX1tcBgyfqPP6WfeMb30DXdS688EJ6eno499xzCQ8P5+677+b220d37Pzxj3/Mb3/7W2688cbxxBuUzFS5zCKPeBXjEC2cIF24uphMjkTAfDUTMybCCaNCashTWV47tqsw86mTgMmGQnEJG9jKHvbKYRb0XUqelsU/wp522+4+68/oohsdna+YPkuudnJlrEQqWK+WUSpVTNXS/f0SfEqWNoXlaj4mNBKIZaN9B+ebVnr1HCO5DE1G5mr55JBJK+100k08sUQRSYHKJZxwUmTyDXaHSCaBbnqop5kL1CoKpYIsNWXYibVFWZitzSCDFPoY4C37NnSzjqbGp9XaxEktnWD6jkaocM5VyxnANmnuXSEmxqmur6d+f+armVRJvZ+jCizuY5bxf09c9z3VoCKYqJBactVUookikgjCNM9a9lJJYpVaRLFUooAsNYVU5VlrY77KYS75xKloOqTTo30DxVDrq5HMhqa4uO42uyTGjEAKiaxSi7FjnxRFEKcyR02ngFziVSzWcbTCV0gN6wbnBtMMPO7IJ5elap6jGluvZLE2J9AhhfABQwsR4FiMsLgk34aecx0rp7ok308zkzAwHifqlFJ885vf5J577qGoqIiuri7mzp1LTEzM6DsD4eHhrF271uNAg5k0lUw19RyWQipk4j3zrhVicYztfTc6aSqZ3+t/B+CElJGHFxN1ru+Xmhzv10iYlIkIFU7b4ECykHIK9XKapc1ZGdcn/fzI/oxzgrROW0YuJxN1h6SQTYNirN8z3ePfF+AHHrLcyXkD14JArTRyvumPXj3+ZPx+jsQibTb9DNA+WEXYSgetdFA9OLHO0FIDGZ5PSVEJVEgNXfTwtmwHYHPYyJVyU1U6y7T5vKa/TQttzsnneHB3pwuuZGgL7RySQixiNpxGUQj/c2rr66kT5ENSyPP2v3Or+VP+Di1gdHlpzOK6b1cQV9Tt04/wD/1tAB403+Hx/mkqmX1yzGmo0S5dHlcqztRyOUwhuuj06sHhSDxUceJpm68vcW1bbjaYodBWfQ/V1JNJmlcMn4xGkpZAIy0cliKKpcLj/ffLUachxa1ecq/3BdO1aeyxHwYgzG7hCvOHAhxRCF/Q61JRF6ki3Krkhp4busZEEO52HXTVqBswuEbduK1Xw8LCiI2NZcqUKWNO0gHccccdPPHEE+M9rRvvvfcel112GZmZmSil+Pvf/+72vFJq2H8//OHILW8PPPDAadvPnj0xHSulFDeaPs55aiVpKpn/2bdO6Hj1ejML1SwuUKsMpe8wERZqs1inlrFEzaVEvGso0S09nKMWsEotJpspXj22EbnG9FHWqqUkEU8MUWQxhRdcytxfsP2TWeSRSBw5ZPIP+1vO547rJfzD9ja5TGOhmsU52sJAvASfMlflc5fpJmaSQ5008kPbM149/oBYWaEWslotMZxzmC+423wzt2hXcb5ayWq1hGgimUIaH9bWk2RAnRdvcY/5Fp6xPMJFaj0F5HGuOoc0zqyBeaPp48xRM5hOFl+3/WDc5+6VXs5RC1irlpI+yjmNxvnaKtaoJcxSeZRKVaDDCRFgTk3UTVGpZJBKFBHEEUM2U6iRhgmPm4KJDuliqZrHh9TaUa8pZyJOolmvzmGlWmSoZI2nuLpxjsfl2qRMXKZd4Ky4SCbB40RMuArjMu2CwYorHZHxaQD7C5vYmKlyWKUWs1zNC3Q4TvLUVM5Xq1is5lArTYEOx4mIOKtvJpPcy6l8xXQjH1LrmKGyecj6pEf7Nkkr56gFrFfLmYXxjCSGWKrN407TDeSTQ6GU84ztpUCHFMIHDGlwgmMxwvUeN/ScCRMr1WI+ql3gds0Pc9OoM3aizuOKOpvNxne+8x0ef/xxurocVRQxMTHcfvvtfPvb3z7NHOJUdu7cydtvv80///lP5s2bd9r2r7zyyphj6e7uZtGiRdx00018/OMfP+352lr36rV///vf3HzzzVx55ZWnbevKvHnz+N///uf83WyeeB/+Em0uP7X/DoBD+gk+YFoz7mM10OQU5H5AfXnCsRmBXDXNuVITaQvnC+bPeO3YHXTx/qBu1gfU+N/3YOFS83lcaj6PY3oxiwcup4seXrS9zu3m62mTDgop4xglgKMCCv3kxeuQXsheDqMjfEitm5DgvVGJUzF8yXwtj9l/C8Au+6FxXAlHpolWp339F5X3PsdG5TbztYCjtSq139FG3E0v+TL5HG9ducL0QcBR3fae/j7naueMOvm71HQe37Q9RgmVtOud2HQbZs3zD185tc5rWoKK8zz4ABJLNFtlLyZMFOrlFGjGHfCH8D2nJuoUijoanY8NaX4e1gsnNG4KJkqkkj1yGBMmMlXauI8TroWzVw7TRQ9tdHgxQv/S4mKEMZze3FjQxY51UItovFWKAwywXfYRQTilUmloV/cW2tkvxwBINNA9IlOls3GwAn2uGMeQo0t6nBP2YKtS94SbzJ/k3n6HaWOLvZ27zJ8leowyFAfkOEelmETiSFPGXSCcqtL5tOkyfmp/DoDD+olR9ggRjLhr1EVgcZnI9UgfjXoLhVJGD31En9L+H45rRd1JjTpddBSKx+2/p0/6udt8c8Ad5z2eIdx+++288sor/OAHP2D16tUAbNu2jQceeIDm5maeeuqpM+6fkJAwbFJtPFx88cVcfPHFIz6fkZHh9vurr77K+eefP6o7rdlsPm3fifJBbS1r1BIOSSFP2J/nTsuN4z7WUSkmlmhiiSZrklSILVAFXK5dyJv6Frayl17p85quxtnUiujKDJXNp7RLeE3fyG4O0SStfGjgs1RKLZmkEUkE7XRSTjVN0ko0kVxru5sIwshlGk9bHgz0S/AZU0hlmZrPCSllP8e8emxXLaCz6fMWq6LZFPYnXrH9Bxt2bjZ/ItAh+YU7zDdwBzeMeft1ahkt0k4DzVRQy/RxtPm7tgwF2+r/PG0mOfapVFHHMUq4lPMCHVKIAHJa6+spLYnTyXJIh1Do79ACgi46e+QICcSyTM13a9EZD8kqkS7pcWuXDzba9A5iiCKKSOKJHdcxvmO5gwfkDmJUJAPqzPpc5pVfR6/YiLSXoeJz0bLPB+Cz2pWckDIqpIbf2P/KI9pd44rFH7jJIxiosj+HTBaoWZRKJQfEu2OvidBMGxoaicSN654cLMSrWH5m/hYP2B7nOKX82v4X7jTfOOp+3dLDUSkmmQQ2aCsM3xqczRSmkk4n3Rzj7DIjOluw6jbiiSWScMIlDE3TCMPCAFZ66eMEjiRdBqmsUO7dYfHEkkoS3fS6zdne1rfzUev/IYP/fdR0IXPUDH+/NDc8TtS98MILvPjii24JsoULF5KVlcWnP/3pURN1zz77rOdReoH6+nr+9a9/8dxzz426bWFhIZmZmURERLB69WoeffRRsrNHXjnr7++nv7/f+XtHx+krl0kqHgsW0kkhVSVy3F7CLNOZE4Yj0SxtdNJNFz2keSiIa1QiVQSxRBNOOEkkUCTlLFCzvHLsDi8JMwcbFmUhRSUSSTgxRHHdwD20SycxRKGhkU4yA1hZruZTJOWU6zWsUUs4JiVEq8gJreQbHaUUFrGQTjIpJNKj9xKleac1qIse58+T3UziVM7RFrBV2wPAbC2wNzejkkg8YVhYquZRLOXjmhRoaMxRM+iRXpJdnKyCgTym0UU3c5hBi94W6HBCBJhTXV9P1ahroY1UknjX/j63yDf5vuVrk7qlvl6aWaRmUyeNhE0wSQcwmzzCCSNcWcZdwRtoOlQXXfTQRc+4q+HytZwxb2teeBMsvOm0xxeZ5tBsayWFRN7Rd6DL+A2BfE2dNDJPzaSfgXFrofoCi2bBJIoppBJPHHaxB7xiBaCZVnR0mmnDYlA3U2+xTJuHFRvxxPBf+2bmq4JRq5W36ntZqRbRQDMJ40yW+5MEFUcjLQxgNZwWYgjv0KE6aZdOrNjQNMd1eDbTGcBKKklU6NUsUXOplybSXUxsAMKUxekM69pC20wbOjrgSOZVSz1zCOxcxuM7THh4OLm5uac9npeXR1jYxAcVvuK5554jNjZ21Gq+lStX8rvf/Y433niDp556itLSUtavX09n58guT48++ijx8fHOf1lZw0+8bjZ9kkLK2Cp7+Ye8Pe7XMqSjkES8IW5w3mKmyqWVdqqo47h4bwXEW8LMwciPzN+gOmIzt5iuwoaN6SqLm0yfoDD8TT5h/jCV1LJLDnFUL+Y+20/ZInuwYec9y8ii+JOF6do0iqhgu+ynGM+FdUfCvYLz7ErUwWCFmXnsFWZnG7O0PKqoY48c5ogUj+sY2/S9HJViuuklSgWX9lSByqWZNg5xgi2Dcgchzl5Oc311qUK2YKY2fCtZKoNyqnlef5Xd+qEAROk/aqhnm+yllCqymHhnR5SK5ASlHJQTlFPjhQj9j1Gq1LOZwlptGbU0slsOU4Vx3YjLpJrDUkiRlBuq9RUgR5tGIeVskd2UizE+k+4ViAkBi8MfLFPzaQjf7jTC+qrt0VH3eUn/NztkP6VSxedMV/khyomhlHJqRAdzNXGIkTlplnOy+66ZNo5RwhEpYr8cY68coYYGZpLrtq/rfaTTpbjCNanbTue4TFe8jcfLBl/60pd46KGHePbZZwkPDwccFWWPPPIIX/rSl8647+uvv84rr7xCUlISn/3sZ5kz56RlcmtrK1deeSVvvz3+BNaZ+O1vf8s111xDRMSZ2ylPrRRcuXIlOTk5/OUvf+Hmm28edp97772Xu+46WQLf0dExbLJutspjtVqMCdO4LxyH9UKmkEaeypo0RhJDrNaWcK5+DmZMvGd/n0+YPuyV42qiWKeWoxASMdaAxdcMlafHqRhnkjJOxaCUYo6awRq1BBMa/7K/wxw1ndlMJ1/Lca5OTGbO01ZSI/VoaPxbf48FmncqOCMknHVqGSa0s6r1NcTYWKrNY4NagUlpvK8f9Hj/Hr2XeWom08kOyorqGC2aDWoFOjqJk7gyKsTYOLX1NZVEIginj37MmByGXmoGJVKJIDxse5I8Nc2jCqlgwnVsmOIFraylah6NylE5UCTlzMC4umoj4br4FcgqdaUUy9V8jlAEQKFeRrbJmPIzPfRyvlpJNz3kK2N9V+armTSoZqKIoEYaDNFqWiuNrFSLiCRi0l5bhlDKoQW6gNl00kWmSmePfpil2vCmI7+2/YUe6WOuyseExqwg0ZU9X1tFhdTQRz82sWGe5JWSZxu94kjURbok6mJVNIhD21ah2KBW0EU3BVqu276u3XWd4tDBbZdO3tS3MoVUagd1cptp8+2LGAMef2r37t3LW2+9xbRp01i0aBEA+/fvZ2BggAsvvNCtYs3VGOKFF17g+uuv58Mf/jDHjx/niSee4JlnnuGaa64BYGBggHfffXeir2dYNm3axPHjx/nzn//s8b4JCQkUFBRQVFQ04jbh4eHOpOWZyNdy2C77EYRyezXfs9ztcTy79ENsFUdr2Y9MX/d4fyNzrukciqzl1NDAfjnG49znleNWUc9m2QXAA17SvQs2htPRmqnlslX2Ao7KBSsO3ZZnzI/4Pb5A8DHTB7jV9i0A+uwDfM18i1eOe5RipzFKUpDph4XwPXO1fHro5X39IArFr+Qhj6riGlUr/xOHA+aV6iJfhelTuulhlxxCE80wrU8hAsNprq9aGn04pET0weeeCvsO37P9kgdsT9AgLRyTEvKZnJPpoY4J8E6ibqqWzma74350qZzHRayf8DH9jWuiLtYP8iXSVYd01yI9TajIFFTMFFSMo7pxikqjFIdb9VEp4kJW+zye8XBQTrBRdgAOcX0jkaTi2TY49ryWywMcjYNCKWOH7AfgK9wY2GD8xC3mT/JF2wMU6eV83/Yr/hz2s2G3+6v+Bu/qOwG4yzR284lA000PmwbnfuVSwwwDm7+E8BxnRZ3LvH5IOqOLHrbp+9gu+wCYolLd9nXVwh26vzxo+zn/1t3zUEZom/Y4UZeQkHCaa+pIrZ6u/PCHP+Sxxx7jy192uJT+5S9/4aabbqKvr2/ESjVv8Zvf/IZly5Y5E4ue0NXVRXFxMdddd92E44hSkXzedDWv2t+ijU526QdZri3w6BhFegXTySJFJTJXzZxwTEbjc6areEN/j3pp4iXbv/mkeWSzkLFytrcijsRU0rlWfZQ/yT+xYiOZBNaoJaQSfFU64yFOxXCxdi4VUuvmMjhRhi7sYVjOKk3EEGPnWtPlmOwmGmjmN7a/crtl7PeXYDaSGCJZJYKAjk4bnZO+1SjEyIi4J+qSVQL3m28jiQQ313FXQfwmAwyefcWfba8zmzzSVSof1NZN+Hiz1XRWqkU000axHvg2nvFgEo155BOnYojC963+/X/aAF0uLZkxmUTcchxwLLSsUAtpoc0QbVEj4dbKaTAXU9d4jDARBijVqyggl0QVT4EKjoqxiXKhaQ1P8yA/tP2abfo+brV+i19ZHnbb5pe2F6nS68giAzPm07S+jMwnTRdTL8000coz9r/wqOZ5cUwI4zKkLed6TxiqqAOcGnTxxGJRFrd9E4lnuZpPN71USi2z+i9CE8UMsrBgppl2UlQifYNO0IHE40TdeM0gCgsLueyyy5y/X3XVVaSmpvLRj34Uq9XKFVdc4fExu7q63CrdSktL2bdvH0lJSU7zh46ODl566SV+/OMfD3uMCy+8kCuuuMLZtnv33Xdz2WWXkZOTQ01NDd/+9rcxmUx8+tOf9ji+4chVU6mlgXDC+Ln1DzwUdidZamyl8y3SThMt1NBAiVQyQ5t8qwPztZk8aP85sUTzPduv2C2Hx1V56MpQWStATChR50QpRbyKxS4O4UwdnXWm5YZ3c/ImvfRzTErIZgpNegsp2sSTlBoaUUQQT9xZ9V6GGDvLtfncYXuYSML5m/4mtzP2RF2dNJFMwmCCy1gTsLGSTAImTCQRR63eQLIpIdAhhQgQp5pJAPw/8xdO226ouiyBOKrEuNpgE6FSaumhl3JqaZZ2ZnqhBW+mymWH7CcMCzvlAA3STJpK9kK0/uOElFFFHRmSEvB7ar7KYaccIAwLW+x7sJqtp00CjYAdO9FE0U2P4RZChuKJJ8YQ+mH9MkCP6qVK6qiQWrLHOCcLdnJUJp8xXcYXbd9GodhtP0SRqdyt9bdEKqilkR56+aLpM0GlP7xWW8Y18lXCCWOjfQc2c6j9dbIwoA8QQxR99Ltp1MUSPVgkEY1ddCIIH3ZBO0nFs0scerciQh/91NPEfFXAJ7SLeMD+BI3SwlQJfDWy34So4uLiqK93H1ydf/75/POf/+See+7hiSee8PiYu3btYsmSJSxZsgSAu+66iyVLlnD//fc7t3nxxRcRkRETbcXFxTQ1NTl/r6qq4tOf/jSzZs3iqquuIjk5me3bt5Oamjrs/p5yk+kTbLL8CUF4Uf7F92y/GvO+r9r/x7P6y/QzwIfUOq8IDRuND2prqQvfSipJHKaQn9mfY0CsEzqmW9vEWebCORr3WW6jJfx9OsL3cjD8X0F1E/YGS5RDJ7OUKk5Q5pVjForDEjwYnLFCBIaFahYXaevopZ+tsodu6Rl9p0EqpZZm2jChUWAw7aGxMlflo1A00koVdYEOJ0QAObX1dSQu084nX2XTRgd/0F/1R2h+5/u2X7FJdqGheN7yQ68cM1ZF84z5u+joHOA4z9uD770b0gkyQmVYkornJtMnsGLjAMcplPJAhzQsZVJNNz1EE0mYwRKJeWoaccTQThfFUhnocNgvx/i3/h499HGtdvlZJcUQpiwcDfsP4YRxmCJutv4/53N90s8T9j/QQy+5TOV75nsCGKnnpJPMtdrl9DPAPo5SJtWBDimEl+hWvbTSQS/9RLt0LqWSxABWWmijjCr66Gchs0/bP44YzIO1ak20Uk8TUUTwE/P/4+vmWzHhuAYYYSHB49Ryc3Mz999/Pxs3bqShoQFd192eb2lpGXa/FStW8O9//5tVq1a5Pb5hwwZee+01PvKRj3gaCuedd55b28Rw3Hrrrdx6660jPl9WVub2+4svvuhxHJ4Qp2Io0HJJJgErdg7rhTxt+xP/Zx69Yq9RWlitllAiFWSrKYa1hZ8IkSqCSCJIJpFmWkkigRKpYLYavz1yGsmcoxZixUqsRHOGucBZR4KLG1hKkFbnTIQ8sphLPnEqmgq9hjXa0gkdzy52ugfLsc82h+EQY8eiLEwni1SS6KOfL1kf5MPaej5lvnTUfZuljdVqCe10MC1IV/4zVRqzmU4//Txre5lDUki4WLjdcj2v2d+mUup4R9+OLsJ3LXdRECTi1SE851TX15EwKzMzyCFBxRFFJD16L1FacDkej4ZVbKxUi2ilnYXKO+ZGAIu0Wc4JzN/tb3K16VLD6ZaNxKu2/7FMOUTu56r8AEfjYAZZZJBCOOGU6JXM1YwRlytDTrmxBuwiyVaZpJDIHDWDaD+0Mo9Gi8tkPEMLntZOb5GjZTJFpRFBGDFEcl7/NUxRacwgmwu11RzXS5mmphgu4TsaQ6Z5U0knnDDe1XdOeqOQswVXp1bXApx4dbJAYj4FmJWJLO30oialFOvUMkqlEht2Zqk8OsVhOqGUYr1aTjc9hrh+epyou+666ygqKuLmm28mPT19zGXoX/nKV9i6deuwz5133nm89tpr/P73v/c0nKAkXsVSGrGRrL5z2S772Gk7QK/08RXLZ8+433bZ5xRg/bpl5OTjZOAi8zretx2gnS6OSymzGX+i7pCcYI8cwYyZcC3Mi1GGCHZmaNkctB8HAZPdxNVmzxcMXOlyuXnEBIngbojAMFXLoFF3LGz9Sf8nb+vbxpSo2yp7nPeBYHFfO5WZWi6HOAFAoZTzqu0tAN7Wt3OCMjftp4v0daFE3SRmrBV14NBk/I++CYBiKliA95JZRuAN/T3qaSadZJK0BK8dd4E2i5tMn+AR+1M0Sxu79UNMNQVHou6X+otOc6Y/hf0kwNE4yNOyqLU7dG0PcYKPcH6AIzqdoU6SQLrkjkSYstBDLztkP9UGaGN3M3A5CxesAQ6Hvw7AdQP38Ja+HQTMmLFhI5Zojof9J8ARjo/rzJfzTftjAPzU/jtuNn8ywBGF8AZuklYucy3XNtdDnACBa9RHhz1Gr/RSjkOLNEHiuM10jVODsY8+3peDAHRLT0ANVDxO1G3atInNmzd7bMywYcMGNmzYMOLz559/Puefb7ybnS9Zry2nRCrplG5+aX+RO803njHxGUkEa9VSdISpBMcga7zMVwWsV8vpZ2DC5cpOZxjOTsfXECOzQCvgC9pn+J++lSqp45e2F/m8+epxH8/duCRUURdiZC7QVnGndiN/0v9JO51YMHOf9ac8ZLnzjPtFEckatRQNLWiNX2apPNawlF0cxI7OOWoBeWoam/RdNNNKOGEIwjQy+I++mVv4VKBDDuEjPEnUzVP5rFKLMWGiThonVaKuVW8nXaWST45P3AnnawXk2adhw06pVHn9+L7CKjbWqCXEEGWYJMosNZ31ajkDWKnTm0bfwc+IiHMsYlQDtWSVSJ00OduaA0md3sRSNZd44shjWqDDCSgzVQ755BBOGDZs5KlpbDCtCLg25HhJJYlPahfzvn6AbumlWK+YlPruZxsjzbXyVQ4XqFUclSIshJGjMkesxL7Z/EkW6nNQQB1Nbl1Q67TlmHUz3fRyQi9jiWmuz17LaHicqJs9eza9vb2+iOWs44Wwx7hi4Ivsk6Mo4CHrk3zD8vkRy4vf09+nkRayyZyUba+uTFfTnLbas/XxV9MB9EgoURdieNJUMl80f4anBl4A4Le2v3Kr6VPjHpQMtZuAMVeyQxiHpdo8lobNI82axDftP6GKejbat9Nn7idChY+43zv6DjroYqbKDdrBc5yKwapsTv3Ri7VziVDh/EN/i176AYgmkhIqqdMbJ2WbY4ghxp6oS1DxbJd9AFTIZWfcNpiwi50jejEH5RgCzNEmNuYZjukqi1IcCbqXbf/hi6bPGNIEwZUe6WW77MOKjVVqsWGudzNUFltkDzq6uxuKQeilDzt2wLjjkGSVAOKItUvvJkYLXJzlVLNHjgDwvbPcGfR+y5e43/IlfmZ7jvf09zlXOyeotauVUsxUObzEvwE4oheFEnWTALe5lstiRKpK4m3Z7vy9Qmr4tXpk2GNcb76C6xneyDRBxTkruU9IGUsIXKLO42zPL37xC775zW/y7rvv0tzcTEdHh9u/EJ7xkPlOfmz+Bikk8X39V/xdf3PY7XTRnStPqQYQ1PU1+eSwUM0imQSOSNHoO5yB3sGKukgVStSFOJ08NY3PaB8hnhj2c4x6msd9rGZpI4ZoppFBNsGpHxbCv9xluYlfmB9gnprJUYrPaDBkFSsdOEr+jebk5ynPWB5mo+V5/mf5HZ81X8kd5ht4K+z37LC8xCbLC3zVdDOzVB46wvOT1DwgxPCuryPhOvZpdmlXC3YOSyEX2q53vhfzmOn1c8xW0/mW+Yskk8BuDvEv/R2vn8PbVEot4YQxlXTmGUSfDiBChfMBbQ0ZpHKEolG1sv1Nq3QQTSSZpJGPMZMS56gFjqIDNCqkNqCxlOnVpJJELtNC47ZB7jDfwMthPw/qJN0QV2mXsFDNIol4ntT/GOhwQniBVmknjhiymUKGOqkrWUAu8YNGfhbMfFz70LhcnOepfGapPKKI5JiUeC3u8eBxRV1CQgIdHR1ccMEFbo+LCEop7Ha714I7G5ivFVAsFXTQRQqJ1EjDsNs1SSsFKpc+6SdXTfVzlP4nSoukS3qIJYYYoqiVRqao8Tnv9gyK+0cZQLQ2hPEwKzMJxGFHZwppFOnlZJjGJyjcRgdddNNFN5aQDXyIMbJOW8ZdtkeJI5p39O3UyafdBh9D1Eszs1QefTIQ9PeBWdr00x5brM1x/tynBviJ/VmSSeBp2584oB/nfsttTg2REIFhi76HKCJ4076FHbJ/wserlFpiiCKKyFErphKJJ51k4onFLsE/1iyyl1NMBa/a3yKSCHrpQwGJWrzXzxWuwpitptNND6kkc1wvAYObWzbRRhc9dNFjuMowk2hoKPJVDlVSR5aBjH1aaKObXrrpRYxRhHgaZsx008NCCqihgbkELhFbTxONtNBOp5vBWojJwWzTdBqszaSQSLPeyucH7uMpy3cmfWfaZKaVDjroooMuotTJuX2ylogNO2FYsGFjuZo/rr/zDJVNhdQSSxT/07dwv9wWsIpuj2eS11xzDRaLhRdeeMEjM4kQIzOLPPoZoJ5mduuHht2mjGpnVvcDao0/wwsY/2f6NF+z/4AyqeItfSvXmi73+BgiEtKoCzEqc7QZdOmOCcFRKWYdy8Z1nEY56XqdbBA9nRDGJ1/l8IDpdr5u/yH10sxb+lauMZ0ugFtGNcelFICPqPP8G6SfWauW0hC+nUsHbuFt2c5RvZgN+jlcZbok0KGd1dxhfYhDUoiGxhq1ZNQquNEY0mM7Vztn1G0TVRz1NFNPs1MEOpi51fYttg4awwxRa9lKnOYbfdMrtA9yN9+jjkaesv+Jr1s+75PzeIsm1/upi0i4EZilTeff9veokQZOSBlZBqrEapST1aZGrbzOU9Nopo1m2iiRCiBw85qmwfcrhcTQnHaSUhz+FtdYv8rf9f9xUD/BvfJ/Qb/YeTbTyMl7Q8op17iG8G2YlAm72DGp8a1GzVS5rFPLeFO20CAtNNBMOoFZJPY4UXfo0CH27t3LrFmTR8Q30MzQsjlHLSCCcPQRBC/K9GrWq+XYsDNfFfg5wsCw3DSfD+hrqKSWx22/5yPa+R6vdvVIL6vUIsyYKVAh58AQw7NUm8cH1RoqpJZf2//M5aYLSVPJHh+nX6ysV8vR0YetiAoRYjiUUiw3LaDAnksrHTxue47LtAvcxG3BMXG9QFtFl3QzU+UGJlg/MbQKmq9y2CtHSVYJbNP3ORN1DdLM92y/ZLd+CBNmPmhay73mkRMPNrFxl+1RaqWBZmkjUXm/aulsQKGxVi1lACvxKtZrxz31sz4crlo0XS4aNcFKGCc14uaRz3xtFgkm31X0mJSJi7UNlEoVGoot9t2sNY1vUcofdEsv69RyBJ1MPxqohV35GtJagt5VjYrJREs8XTNwgSpglVqMGROVYqykcSddznFItsoMdDjDkqZOGiE1BdBQQkQoUHlMJ2tcY74QwYFJmbhQW8MJvYxmWrnOejd/C/sFKWeBlNRkRAmsV8uxo59mMjSUnBtvkg4cY/IN2jkU2yvQ0PiX/V1uMl85oZjHi8eJuuXLl1NZWRlK1HkRi7LQThfvy0EiJBxd9NNKNQ/IMae5wjfUrYEI0++s0ZaSq03lf/atAByXUlYqz9yGW1Q72wbFp0MX5BAjsUybzxwtnzftW0HgIesvyNeyPdbnqKDa+T39trrdF6GGmKSs1Zay3nQOv7G/RKO0cMXAF/mo6UK3z2CRVPC27hDK/Yq6KVCh+pXHw+7jX33vUCTlNNtbecx8L0opHrI+ya/1vzi322c7wi794Iji16VSxa/sfwYclRNz8L5g/9lAArGcq53DfZbb/H5u12ReJz1+P7/XUcop0nep6TweHMXx2Rt80LSWz1jvAmC9nMPacVaP+4Mq6tg8eD/9srreb+fVkgogqeCMncG52jS22/YBYLfr3BigSdxw1EqjcxxyozJOXK4ku+pNSuD0Jrvo4R3ZAcB5amXA4gjhe24xX8UxKeZJ+x+pl2Y+MXA7V5g+OCl0+M42jkmp8xqX5KNq6ytMH+Jb9p8C8Av7H4MnUXf77bdzxx13cM8997BgwQIsFnfXqIULF3otuLOJC7VVxOrRNEoLFVJDrnK3CK+QWuaRT7yKPasqw5aoeWSzhR56KdTLWKl5lqhrljbnz0ZrnQhhLBYyCwtm7Oj8UX+VMN3CLaar3PQPRqPJReD81FWeECFG4zrT5fRKH5v0XRyWQo7YirnNdA3mQb1D1wnN2XQ9+77lHv5mf5MqqWNB/0cIUxZsYmMG2QwwwCJtDnaxs13fx3Z9Hyu1RazSFrsd4/MD97NMzaObXhKIG1MFV4jhCdR7F0uU8+cO6QpIDN6kXe9ioZrFgFhJ8lOL4iptMZeoDdTRxMv2N85YhRpo3MdvxrqfzlczuUL7EDv0fRyRIgbESphBXHTdxyEJgQvkDCSTwAq1kD76GcAWsDiaxPjvVQjv8WnTR2iRdrbouzkmJTxq+yWfN11NhAoPdGghPMDVTMpXRTg5KpOrtUt5T99FpdRSJ00B6ZTyOFH3qU99CoCbbjq5mq+UCplJTJBootgth0ghkSKpIBf3RF29NHGcMsxiGpeDSbCSpTKooIYYoiiXao/3d7hwRtFFT0gzLMQZSdESsdodA8Ye+tDQKNLLWWiaPeZjtEsnZkzYsJ9ViZQQ3mGVtphVYYtZ3v9xKqWWWKIpk2ryVQ7g+FxaMGPFdlYlgj9h+jBP2v7ITjlAJBEMyAA27CxWc/i06VPcYb6BTw3cQbO0YcbEz61/YG5YvjOhNKAPUEcjZVLNfDWTd8L/EOBXFGI8WJSFCMLpo59e6Qt0OBPCpttoVx2UShWL1GzutNzol/NmqjS6VA979MNMI4MKvYZszZjtkS20u1zvEgIdjhvxKhYzJmpoIJZoiqWSOep0g5xA0CxthGFhAKvhEpxDpKhEdsoBANIkcC2nddJ4co5g0PcqhPdYri3g2bDvsbr/KiqklgjCecj6JDeZP8EMzZgOySFOZ0CsmDChUMThm4VDszKTqpKooZ4YojigHyPDtM4n5zoTHlthlJaWnvavpKTE+f8Q42OemkkcMTTRylEpdnvOKla2yh50dFarxRPquw42ClQuaSTTRQ/75JjH+zfRShc9mDGRRkh/IsTInKetpDj8LR423UkkEXTRw3FKPTpGkVRgw04eWaRIaNAXYnx8wvRhooigk25OyMnPYI00YMVGGBbifTQ4MSp/CPsRLeHv8xXTjaxiMXdoN/Bm2O+cbSu/tDzEY+Z70dD4q7zB6/q7zn1LqaKESkxoLFcLAvUSQniBZWoeGhplVCMyvKZvMFCnmiiRSgDyTlmY9TW3mj5FAnFUUcfz+qt+PbcnlOiVWLExhVSmkeG389qP/YWBN79E/0uXYH3zS9iP/WXY7RZps4kicvA6bZz5T7lUM4CVdFIMZXLhSjyxmAabi10rJ/1NNfV00UMUEczi7OlWOtv5e9gvaAzfQTrJPKY/y6qBTwb1/eRso1SqsGMnh0yfGsDcYLrCmYP4rf2vPjvPmfC4oi4nJ8cXcZz15KlppJDIbDX9tJtWqVRzjlpIJ11MU/4brBiBbJVJHDGEY6FEKmmSVo/KXIdaxWzYSdRCtushRiZChTOVdGaqXKaRThzRvGR9g1ds/0WA2y3XsVZbOuL+xXoFU0glQoURTRQm7exJqIfwLvlkk00mySqBvfoRLjGdB0AnDgF9h5D/2XU9m6ocYvJxKoZ4LZZMLY1YddJcIEHFMUNlk0g8Nuw8a/sr89VM5msFlEglq9US2ukg6yyqSJ+MTCGNhWoW8cTyvn6QFabglFsZGucJQpKW4NdzzyOfROKYqXIM3UIcQxRL1Fxs2InRokffwUtYN90HXQ6DCHvVJuxlb2KafdVp2+Uylamkk6TiqZZ6v8U3GvHEsFTNo40Ow5paKaVYrRbTQx8JeM+UxlPapYs1agn1NIfMJM4i0ge/F8kqAREhkgiuGvgyL4U/EeDIQoyGiNA8aEAT6eOW5TlqBtFEsnRwgTAQjOuszz//PGvXriUzM5Py8nIAfvrTn/Lqq8ZdmTM6s7Q8Sqhkpxxgs77b7bnjUsJW2cNBOXHWTTI0pXGZ6XwqqeOwFPJt68882t9dfyJU4RRidGZpeRRSzm6O8A/e4m/yJn+XN/m9/W9n3O8tfSv/k63slsN80nSxn6INMRm50nQRdTSxRfbwO5fP3ZDTpUIRzdi1EycTd5hv4OWwnw8rAH2RaT0/snydZlp5V97nX/o7AByUE2yTvRyRYmZoWX6OOIQ3ucZ8GfvkKO/KTr5t82w8YCRcxybJfm7rnK5lU0Et78tB3tV3+vXcY6VJWvmPbGKvHCHJoA7NBVouhZSxQ/azWz8c6HCcvK6/xx45jBmzT6tNJsoAVvbIYd6W7fRIb0BiOCQn2Cp7KZYKcrSpAYkhRODYGv4XcrVpHKeU12Qjj1p/GeiQQoxCD7300Q/4XrvUpExEq0j2yGFe09/GKlafnm84PK6oe+qpp7j//vu58847eeSRR5yadAkJCfz0pz/l8ssv93qQZwOJKp6L1Hq66eHU22q51LBKLcKChQXa2ee2+yFtPW/at1JDA2/r24d1xR0JHZ21aikaWsj1NcSYmK6y+ZR2KW/p22inHVDEE0u3nNllsEYaWa2WYMbEHBVylAwxfpRSXKKdS4XU0ksf3dJDtIqiY7CiLpZoQ0/AAslSNY9Z5GHDzlZ9DwBb7bs5T60kXFlYpuYHOMIQE2GhNpurtIvZrR+iVKo4qB8PynFRrTSwXM0nlmhm+dkgLFyFcak6jxbasGLzaEzlLwr1Ms5RC4ggnDVqSaDDGZaZKpd1ahmC0ENgEk2nMiBW2ukE/J8A9pR12nLCdAv9DFCol7PIAz1gb9EkLc6fjf5+hfAN12qX0yldVEodz9v/zh3m6z0ykQvhX1qknbVqKaD8Mtf6mPZB0iSFARngFfubfMp8ic/P6YrHd+YnnniCX//613zzm9/EZDrZ2rV8+XIOHjzo1eDONnpVH5tlN5tkF616u/Pxg/pxtst+NskupquzrxrgfNNK8rRptNBGKVWUS82Y9y2ScrbIHjbJLr+5qoUIbsKUhU+YLqKJFqzYsWKjiVbe1d/HJiO7k+2RQ2yTvWySXczUQhIBISaGWZnZLLvZLYc5oTt06joH29Ri8V8bWLAxQ8smVSVTTAX/0TdTYavmP7KFd2QHXdIbEowOcqaqdJZrCyimkjKq+ZHtN2e8LhuVYqlklxxio+wISMWYrnQ2y252yH4qpNbv5x+NE1LK+3KQTbKLVJUU6HCGJVJFUEU9W2QP7+g7sOr+r7Y4lUbXxJPBDa2SVDybZTfvy0GOB0jjr1F87x4Zwthcb/4Y81QBTbRSQiUP2n4elPeUs4UOutgie9giu+nF96ZS55lW8ra+zXG/1Pf5/HynMi4ziSVLTl/dCg8Pp7u72ytBna2sUUsoULlEEs4JypyPH9OLmUIqS9Rc8jk7Jxn/z/R/rFPLyWYKV1vvHPN+TYN97BC6CYcYO2u0pfzT/Cs+q13JWpayRM1FQ+MLtgdG3OeYXso0MlivloeMS0JMmKVqHnPUDGKI4gTlWMVKKx3kMpVztXMCHZ6hudF0BQvULBKJ44fyG8IJYyY5rNaMWZkTwjM+Zvog/wt7jlkqj//om1kw8JFAh+Qx9dLEVDKYSU5AJE2uNV3OIjWbFBL5pf1Pfj//aBzTS0gmgfkUMNfAFerPWB7hI9r5JBDHrIGLAh0OlYNOlgXksUzNC3Q4Z2QeM5mvZpJIPMfFM+Mub1EpdUwlgw1qRWgB7CzmK+Yb2RT2JxarOfze/nem9q9HFz3QYYUYhiGtZvDPonUBuSxWc8ggNSDXKY8TdXl5eezbt++0x9944w3mzJnjjZjOWlJUIlVSRzaZlEk14BBNNCtHh3KLtBGtRQUyxICxxDSXJlocosJEcUg/Mab9NBTTyCCFxLNW0ymE5ySrBD5gXsNsbTofNq3ngBxnACtH7IXs04+6bVusV/Cs9a9Eq0h66WMAa6gtMcSEmaYyKJYKMkilRuoplWryVQ4ddDFA4Cs3jMwSbS6HpRAbNv5i/zcRhFFDA6mhxZpJQbaawjptGd3SSz/9mMXM/f0/5WvWH3BcN4775pmooo5q6iiknCkqze/nX67N55AUoqOzRd9DrTT6PYYzYVU2YonmKMVMV8atUF+nLaNN76CLHlJUIi0u3TCBoFyqma6yqKKOaIw9X5ihZXFMStFQvKVvc6sG9AdW3UqKSsCKlVbaQ+O2s5h52kzO0RbQzwADWEkino8NfJGP9X+Re60/Zo+BNCjPdjrlZKIuxg+JulSVRKXUYsaEBbOzw8VfjDlR9+CDD9LT08Ndd93Fbbfdxp///GdEhJ07d/LII49w77338rWvfc2XsU56Zqnp9NDHcUo5qB8HoIFmtsgeamlktoFXFf3Bny0/o5ZGtsgevmt7etTtddHZru+nijpSVVLoJhzCY+4w38A9llsoCXubNjrYzWG+bvuh2za/sP2RL9gf4KgU00wbf7L8JEDRhphMzFJ5WLFRRDm79UMclxIOyQlaaD/r7wWjMUfNYCY5dNJDO5200Uk3vRTgXy2wEL7lQm01vfRTSBk/kGd43P57fmp/LtBhjYkhR3oNLSCul1NJ5yfm/0cL7eyUA7xuf9fvMZyJbfpeyqhGR2cq/k9kesI800waaeGAHKfQpRsmEPxO/xtHpIgeernG9NGAxjIa+SqHh0130kwb22Ufb+nb/Hr+RtXKDtlPA81kcXYZ9YUYnu1hL9EUsZPPmC6jS7p5Q97jJ/Znucv6aKBDCzGIa0VdnPJ9ok4pxUuWx6mijjdkE0/a/+jzc7oyZjOJ73znO/zf//0fn/vc54iMjORb3/oWPT09fOYznyEzM5Of/exnXH311b6MddJToHJZouYSTSRdg8L1lXotF2qr6ZAu5mpn9+RshspirVpCvTRTKGVs1nezTls24vZVUscyNQ8bdmYaeEU2hPFJ15LJIROASHG3A7ejE00kNuzkMpUpKjUQIYaYZOSqqc7r3T79GH0ywFzysWHjHC1kiHAmNKWxwbSCans9PfQRSQTpJDPXlB/o0EJ4kXPUAt5kC9300EkP8cSw236I3aZDLDPwd+SQfoIslUmLtBOlIjEp0+g7eRmlFAu1WWSTiR07v7K9yIv2f2LGzOfNn+Jjpg/6PSZXhmRLUkjEpPn//fGEuSqfFWoh4YRRqlexUlsUsFiGEsBhWAzrljuEpjRmqjymkYEFM7XS4NfzN7vo06VpIbmSEA6jHYA4FUOiFk+6nkw8cUxV6Txhe57bzdcFOMIQfdLPGrUUBaSrFL+cs0DlaB9D+wAAWRRJREFUsVjNIYYoBvzs/DrmRJ2IOH++5ppruOaaa+jp6aGrq4u0NGOvdgULWWoKx6SEXvqopxlwtEcMrTJdrj4QyPACjlmZ+ar5Zq6w3gYCj1h/wb/DfzPi9sellE2yC4BVARw4hZgcTFUZbJHdlEk137f+iq9bbgXgf7KVbnqJIpK94a+GKjdDeAWLsvAV801caf0S4DDGAbhUnceHTecGMLLg4HHLfTxuuQ+Ah6xPApCjMgMZUggv8ynzpXzJ/qDz91Y6aKWDm63/jxkqm3O1c7jDfEMAIxyeTfou/q6/CcBH1YUBi2OVtpgoFcExKaGaehgc5jfaWgKeqBtKohjdEAEgT01jpxwAQLNrXG2+NGCxNEsb4EhwBsNYpEDLoYo6AN7X/WtI2DT4XkHI8TWEO3eYb+AOHPeOqX3reFn/D9v1faFEnQGoo5GtsgeA27jWL+dM0RzSZE20UiKVfjnnEGNO1AGnXfSjoqKIijK2BkIwoSmNW7Sr2COHaaGdd+w7QzeSU1iqzWOuyqda6jkshYjIiIORIr2ceeQTr2JZpPxv+x5icnGn+QZm2LN4V3+fJ+zPc4f5BjQ0EEdlx3SVhaY8lv0MEWJElmnzySeHYiocq4ekMFcLVYV5SpyKCXQIIXxArIrmG6ZbsaPTK31UUkulXkufDPC+HGSPfoQ5agYfMq0LdKhu2LE7fw60du7/M/8fHdLFa7aNbGcf4HAOfcX+Xz5u+lBAYmqXTpJJZK7KZ2kADBFUVDrS0wi6DTQzKir9jNsv1ubwOe2TvKlv4agUsVM/wAptoZ+iPYlVrIRh4Ry1gLkqOO4TeWoaG9QKuuim2cX8zR+0STuL1BwiCCNHTfXruUMED981f5U39PdolBYuHvgc/w57JtAhndU0Bygv8g3T53lD3qNNOrjf+jMetNzhl/N6lKgrKCgYdYWmpcW/YqCTjblaPo/bfk84YZyQEhqlFYVCkJBrKY4y1yw1hSNSRBQR1EgDU9Xwg6hyqjlOGTax8bD2FT9HGmKycZnpAl6x/5dyqokgnBK9Ek0pmmihSMrJU1mBDjHEJCNDpZCo4hARBJiusnjIcmegwwo6jFhVFcI7PGD5stvvP7M9x5/s/6RBmjGhcUg/YbhEnc7JDpVLTecFLhDgKtMlAHTTyxQ9ld/pr9BJN0f0ooAl6gr1Mlppp1yqma8V+P384de859H2aSqZOdoMntFfwoyZo3pRQBJ1lVJLKx2USlXQVA+blZl6mjgmJUyVDGy6DbPm0dR03NTTzH5xmIN9Tl3ll3OGCD5uMF/BU/0vsE+OEivRPDTwJF+z3OJskw3hX9qk0/mzP/Mi15gv4+7+76FQ9Nn7+ar5JuKV7/VlPboafuc73yE+3tiaB8HObDWdTNKpoZ5DUogVG4IwlXRyCa34ACxT89nBftro4ISUMZXhE3V75Sg6OtlkMiskIh7CC3zS9GHe0DfRRgfP6X9jtbaYNjpJIp7FKuR6HcL7PG/5kUMXQ1kdFZwhQoQYkTvMN3Cj6eNcOnArB+QYT9r/yF2WmwIdlhuuFXVG+U7fYb6BLumhdKCS7bKfn9mf45vmLwSkffIYJXTQRQoJQdMNcZV2Cb9Sf6ZYKvmF/QVuMH/c7zGUSQ1tdBBNVFAtHK5WS6gShwtyOTXMINsv523ipEZdSqhjKcQZ+KPlx7xk/zffs/+KR/Sn2CArOFedE+iwzkrqaUJDI4k4kvz4vU1U8Txhvp97bT/iEIU8Z/8bXzZf7/PzepSou/rqq0N6dD6mQMtD0JlKOjv0A8xT+SxWc6iVRnK0UKIOIIdMkohntvr/7d13fFRV3sfxz7mTThoJIQmQhNCL9CYdFAR0rbh2imUtK4L6WNbdtaCuYgXXsvrs2te6i+1Rd20Iiii9Iy2U0CIEEkISSJl7nj+QkUgCAZLMJPm+feX1mpl77zm/GX5OZn45pQWL7UqG0qfc8+KIoaNpTSH7iXc0GlFOXkuTSg57Aci2OWy3O+lpOpFt95BqtGuYVL3met8XOS4xJopYomhFGjEmijx3H9FOze+sWpHDR9R5AqRQBxBpIkggnrakE2di+cj7FecG1fzayD/Z3fQ0p7DL7qk1I8MSnDgibQPakk4s0bjWrfGlMHb/XHgqoLBWzcBJNgkkkUC8iSHDZtZYoc6xhm6mA/kUEocGoUjFWjqpNHbjiSSCCMJ4uOQFBob0rBXrQNY12TYHF5dscmlUw2uYdnXaE4SHWKJ43/tFjRTqKv1bRMlYM+JMDIOc3mzjJ5baH/nUncUS+yMeHK2z87MxQeeynZ38YJfwqvf9cs+x1vKRO4Pldg1RVP/2zVI/xB/24XeBXc4CdwUL7HI2sY22jkZtiogEgmZOEqtYz/d2MevY7O9wygjEEXWH/CPkL6xgHTPtXB7x/q9fYpjnLmWBXcFmttPG1J7fq02cxqxkHbPsPLb8vEFCTSqzdlMt2ITjkJZOKuvZzFy7jFV2fY31m2G3sNiuYp3dRKyJrrF+pXa6KuhCujsd2cNevrY/+DZ9lJp1aC3LGKIINsE12ncvpxOtTBq57ON7u5j99kC193lCu75K9Trd6ctCdwUllODFpZNpQ3PTzN9hBQzHOJzpDGaX3UMxJZTYkiP+Z93LPt+H4dr0gUUCW0OiudVzJZ95v6XUeplvlzPQ9KSQ/TX2V2ARETm6bqY9GaYnpXjZYLfQg1P8HZKPi+u7HUgj6gDCTChXOaPZShYuLv/0fsgVnnNrrP8sm02uzSOdZnhw/DKiruTLiXg3fw37syG8EZ60oQQP++sxr+vpnEKuzaMUL+vdTaR5ajZ2F5eBpicuLgk2rkb7PhntacEA0wOAnbbm1jnPp8B3O0oDIaQSepvOrGMTLi7r3E0keRr5O6R6J40mP6/f7J9RsGc5Q8j17sPF5X3vF1wWdHa19lfpQp3rusc+SarE2Z6hXFv6Z9/9rTZLO/39ioPhW7sAgAw3k3aelmWOZ9tf1p6Ip/ZMAZDA5jEeHgr+H/7t/S+Z7AA4+NdYoolw/Lt7n4iIHJRikn2fEQZ4e/Bbzyg/R/QL72GFukAbUQdwY9AVdCs+WJxb4a7jfe8XvmODnF5M9Iyttlk2q9x1zLLzARhoeuIxnmrp52i8Gz+D/O0H75Tk4934GZUZt5FMY1/OrXTXc7qnX/UFWY5Mu93XfwMnokb7PhmtnObMtgsB8HpdKvViV4G8wwt1mnkjlZBoGrGRrQA86/0nA5wemnFYg0ptKV/Z77FYelPzG/YADPf0Z7L3GQD+5n2TSz2/qdYcCLxPCEJDE8PvPBcRycEv/m1oroXqf+USz1n0Mp1oRhLPe98+4vhGdyuxRHEKbejm6LWTqvW34Mn0N919X7I0alNEJHC0NS3oYU4hlSZkkOnvcMpw7eEj6mq+EHUsLU0qbwVP5VrnYtJNM/JsPtluDt+7i5lS+gJXlvyh2vpe424kkXi6mHaM99T8hgwno73Tgu6mI81IYr2t+enW+yj03a5NhadoE8kIZwCtTBqZbK+xfvPtL4W6BugPrXJsIz0DeTXoEdJowix3HleX/NHfIdUrOeRhf17j1V/fuzqYVtzmuZokElhp1/GpO6ta+1OhLkA1NYkUcACDYS2bSNFC9WWc6nRjvl1OKaXkse+I49vZSUNiWM0GImvRBxapHU5z+rLKrscAIQSTQO2ZZiIiUtelmSYst2vYTQ4/uuvJt4XHvqiGHD6izhB4ozFCTDDne4bT0kkl1kQTbSJpaGLIYS/5FLLIXcnbpR+Ta/OqvO9MdlBECcvs6lq3gVork8Yiu5ISSsgjv8b732dr7wixIkrIsruIogHZbs6xL6gCoYTQiIYkEFfjG39I7ZRikjnXM4xMdlDAfla661jprvN3WPVGls0mhSRiiKKR8c/3rggTTkenNT+xi1BCWWs3VGt/emcKUBM9Y9kXupg/eq7nTud3DHK0DfThGpmGpNKELLKZ6c474vhS+yMb2YqLSzvTwg8RSl1mjGFN6OcUhC0jL2wxX4e87u+QRETkZ0EmiAmeMRSwnx/ZwAJ3hb9D8im7Rl3gjag7ZFLQOKaHPMP0kGf4IPQ5NoXMpIRS1rKJ8aV/4APvl1XaX7Et4a/e18gljyYk0sf4Z2rTiWpoYkg3zfiJ3Xzt/lDj/e87rDgYZWpXoa6TaUs+haxmA2vZWCN9rrUbySaHMEJrpD+pG8JMKBtDvsbFspTV3FTygL9Dqje22O1sIYu97KM1aX6L43xnOM1IIoe9PFv6ZrX2Vek16qRmRZiDw7CjTSSYg3/hlLIGOT3JtDuIMGG8W/opFwWd6TtWZIvpZ7qzj3zamOb+C1LqrMN3YdYaFSIigaWNaU5TEgkmmC225qbUHYtbZo262vO7I9FpRCzRFPw8xfJf3v+QSx43B42vkvb/Ufouw0w/1tqNpJjkGt/RryoMND1JIZlwwnir9GMuDfpNjfUdRih9TBeCCSbKNqAWpRbppildTTtiiWGnu7vah5G41mU3e4GDf/gXOR5JTiNamVSMNRygiDOLfseHIc/Vyves2mSuu5Shpg/5FNLetDz2BdUkzITSx3QlhZ2EmVAWeVfS3dOxWvpSoS7ATQoa5+8QAtajwXfSpKg/WJjnLmcHu3yv1+fud2xhBw2JprGJ93OkIiIiUpNaOqls4ycAltgfGcN5/g3oZ2VG1Plhs4STkRU2B4CmBwbwlf2e70oXMdEztkqmDj7kfZ5scmhAOCtDPj3p9vzhseA7SSzqC0C+t7BGC3Wz3YXsYg/JJBDm1K5RYsmmMUvsagCG07/a+9vLPrx4Aa0xLCdmSehHXFH8P/zb/QyAyaXP8GDwLX6Oqm570/ux77v9bzxD/RrL2UGnMa7kDrDwAMG873muWvqp1VNfv/nmG84++2yaNGmCMYYPPvigzPHx48djjCnzM3LkyGO2++yzz9K8eXPCwsLo06cP8+YdObVS/C/OxPBA0M10Ne2xWJ4qfRWv9fKldw5xxDLI9Ga85wKNdhIREaln2pDOANODnqYTO+0ef4fj462lI+oON8j0oi3pdDcduaP00ZNq6yPvV5xRfCWNiGWQ6cWDQbfU2jXDYkwUZzqD6WO6cICiGut3lncerU0a/Uz3gNrhuLIOL5btttW/Rl22zaW76cippiunmNbV3p/UTWM85/EbM5TGxPO+9wvuLHnM3yHVWYH23b6P6cJY5zya05TF7o+sczdVSz+18zfhzwoKCujSpQvPPvtsheeMHDmSHTt2+H7eeuuto7b5zjvvcOutt3LvvfeyaNEiunTpwogRI9i5c2dVhy9V4PagayihlBz2spM9rLYbWGHXspw1fGPn0dXp4O8QRUREpIY1NnGstOtYYJfzo7ueA7bmCidHU1vWqDua10IeZQNbmGMX8Yl3JqOLJzC6eAJPlLx4XBt35Ni9rHc38607n9VsJN0044agy6ox8upXwH7m2qUst6t5oPjZGsm79TaTOXYxc+wi2tbCdZkb8cv00x12V7X3t4dcFtmV/GCXUEJptfcnddMIz0DeCnmSbHLIIJPXvR/yWMnfT/j/+Vybh9d6ybeFFNniKo62djv8u30Xp72/w6G505RUpwmb2EYWu3ik5H+rpZ9aXagbNWoUDz74IOeff36F54SGhpKUlOT7adjw6GsRPPnkk/zud7/jyiuvpEOHDjz//PNERETw0ksvVXX4UkXeCZpGd9OBUIIZU3I7T5e+TgRhnGq6coZT/UPoRUREJLAYY7jJM5amJLKCdXzpzvF3SAC+KXcATi39GB5sgvkm5E22hc7mMs/ZbHF3MMP9nj97p/Gc941Kt3NJyS084H2ORsRxlTOax4LvrMaoa8Zfg/7Mo0F3EEYYf3H/xlfu99Xe525+GYXWqBZO5WxKIu1MC8IJZbut/oERh4/ai9cadXISgk0w34W8zUgzkAIKudv7FJ+7s0+orZHFV9GgqAuNinrzf+6MKo60div73X6Av8MB4ErPaM53hhNGKG/Y/6uW4mrt/IRwHGbOnEnjxo1p27YtN9xwA7t3767w3OLiYhYuXMiwYcN8jzmOw7Bhw/j++4p/0RYVFZGXl1fmR2pOK08aWEMzkvBYD01NIs1MEmGE0tDE+Ds8ERER8YOWTioulh6mI8vdtf4OBwAX67vtqcUfw7s5HYg3sUSbSGJMFC4uMUQxw/sDn3m/Peq1m+12/s87g322gDhi8OLS1mlRZpMmf/G0vRDTqAOExWPiO+Bpe+FxXd/WaUFjE4/BEEsUz5T+kxJbUk3RQqHdz26bQxMaE08sSSah2vqqLjFOFAdsEek0I8KE8ZPNrtb+sm0OHU1rWpk0mpJYrX1J3dfN6UCcicVgaERDJpc8TccDoxh04DIWeivecTzfFvJa6fuMKLqSUQeuJt/ux/z830Mlz9P9wHmMOnA1Dxe/UCMF7EC1z82nmUkiySQQQjBxAfLdvqlJJMKG04BwUklmjruoyvuovZ8QKmHkyJG89tprfPXVVzzyyCPMmjWLUaNG4fV6yz0/Ozsbr9dLYmLZN+3ExESysrIq7Ofhhx8mJibG95OSklKlz0OO7cqgC1jDRpazhnl2GavtBl4P1loBIiIi9dVFziiKKGKhXck/vO/6OxygboyoO9ykoHF8HvIyuaGLKGQ/M+1cJpX+5ajXfO79lt+WTGSRXUkn04Ztod8GzOZpwYP+QuiYuYTdsInQsXMJHnT051Kei50zGe70I5d9fG1/YIPdUg2RHrTZbucp72tsZydNTSJ9nC7V1ld1Gus5j1Vk8B/3G76rhi+8h1tnN7PSrmO93UxjE1etfUn98GLwQ+SGLeQ6zyWsZRMZbGEey7iztOLvoivsWq4tvZtZdj5fM5fNbGOA6UF/urOaDFaxnq+Zy2T3ab5x59fgswksa9nEXLuU9XYzaaaJv8Mp43dBF7GbXDaznek/byxSler0rq+XXHKJ73anTp3o3LkzLVu2ZObMmZx++ulV1s9dd93Frbfe6rufl5enYl0N6+V0ZrznApa7a9hlc2hs4khw9MtXRESkvjLGcL5zBhvtFlzjMtu7kAGeHn6Nqa6MqDvcoYW9TzVd8eBQQimdi35Dvi2kj9MFL16SacxTIX9mp93NZ+53tDXp5Ng82jjpfl8YvKoZY+junMJCdyVwcA25tlTP2nHZh017jSW6WvqoCR1Na/qb7hgMW90sqnP5xiCCGGL6sJd9tDSp1deR1BuH3sOiTSRNSGQHO3FwyLX7OLvoOrLYRQxRXBk0mss957De3cyzpW+QTAK7yaURDUk3zQ6OKjaQ5DbmJ3ZhgXhiOWAP+PcJ+tFn3m8ZavrgYhnqnOrvcMpo57TgNHMqmexgljufA7aIMFN1u27X6ULdr7Vo0YJGjRqxfv36cgt1jRo1wuPx8NNPP5V5/KeffiIpKanCdkNDQwkNrV1bodc1XZ32PO/czwMlz/KNO59BTi9/hyQiIiJ+NsTTmxdL/gUWTnP6MgD/Furq2oi6w30e+jIAbQ6cQSbbAXjf/QIAg2GKvY1VbgYf/7z+Um/TmUeD7/BPsNWsmUlkI1sBWGXXcxZDqqWfw9dbO8MTGGs3nYhWThrflR4cSdfMVvydqyossMuZaecCkKARdVKFJgWN840OPvSdNMfuZTkHl15YX5LJe97P2W53stiuAmCo6cN/Ql88oq1v3PmcUXwlu9jDeptZc08iwPzH/Yb5djkGw/ueijcQ9YdYE02iacQM9wcA1tvNnGLaVFn79apQt3XrVnbv3k1ycnK5x0NCQujRowdfffUV5513HgCu6/LVV18xYcKEGoxUTlS0ifT9iIiISP3WzrSkt+nMbnLJcP3/Zafsrq91q1B3yEhnIEvtj1gLEYSxy+Swxm4grqgXFksqSYQTTl+nm79DrTZtTYsaybv99gDtaIEHDwnU3o0RWpJKP9ON3eSSaXdUa1/7bIHvdhQNqrUvqb8OfR+NJIIutCOEYIIIIs/mE2HD6MEplJgSejinlHt9BGG+24Xsr6mwA461Lh1pRbxpSIQJ93c4R7jQM5I57mIKKOTvpe/wVMjdVdZ2rS7U5efns379et/9jRs3smTJEuLi4oiLi2Py5MmMHj2apKQkMjIyuOOOO2jVqhUjRozwXXP66adz/vnn+wpxt956K+PGjaNnz5707t2badOmUVBQwJVXXlnjz0+O36SgcUwiMNY5EREREf9qaVKYb5cTTBCL7EqybDZJppHf4vHaXwp1dW1E3SF//fmLylOlr2Kt5SHv85QeNpIwkyxu9VzJQ8H/468QK1T0SndsTgbgAg6mYUtCxx//mmmtTRrz7DKiaMAes7fK4zwkhzxWswGAEBNSbf1UtzAnlCyy2W53EkE4e+zeals0fh8HC3XhhBFkavVXYQlgv/5O+lTpq7+sNffzbP9BTq8K1+eM4JeiVCEVT31d4a6lKYnkmQI8ODQz1TsitSZZa1nMarx46UYHf4dTrgFODzazjTBCWeCuZLm7hk5O2yppu1a/Oy1YsIChQ4f67h9aJ27cuHH87W9/Y9myZbz66qvk5ubSpEkTzjjjDB544IEy01QzMjLIzv5ld6GLL76YXbt2cc8995CVlUXXrl3573//e8QGEyIiIiIS2CJMOK8ET+Gqkj+ynLW86n2PO4Ou9Vs8ZUfUVeNCXAHg0BfQy4LOJsh6CCOUB7zPgoX7gyb5Obry2ZIC8P0buT/fP34RJpwuph1L7WpmufOw1lbLWnyHf4E/fARObTTBcwV3lj7GYlbxf94ZjAs6v1r6OTSiLlqj6aQGHe9gkvDDR9RVsEada136FV9MMQd3lp7oGVunlhPYyz7fchHxJta/wVQgxkSRGTqLQUWXsZAV9Cu+mJzQBVXyR4BaXagbMmQI1toKj3/22bF339i0adMRj02YMEFTXUVERETqgM6mHQnEUUwxH3ln+LVQ5z2sUGeoW5soVKSxifeNIElyE8BQL0YytTHNCcJDBOFk2WySTUKV91Fof5kSd/gInNqoo2lNO1oSa6JYYddWWz8tTQpJNCLe1N6pwlL3RZhfCnX7fy7Iv1D6Nu95PyPDbiGPfCIIowmNySKbIDzMdOfhtV485uAfgV4pnc4Kdz157KMBEcxwvyeIIPo53ci029lLPskmgRuCLgvI9d2zbS79TDeKKaW1SfN3OBVqbOJJpBFeXFqZNL525zLc0/+k2637vyVFREREpN5q77SklUljtl3AHruXXJtHrPHPDpn28BF1pm6PqCtPRdO86qJE04h/uf8FYK3dSDJVX6jbf9iIunBTu0fUDfb0Zn/pAZbbNSz0ruSRoNtxTNVOD/daLzPtPCyWXnSq0rZFqlLZqa8HC/IPlD5bZqfnPPLLXLPMrua+0qd5IPhmAO4qfYIc8o5oO9PdTgtSWMpqsBDnjQ3IQt1ucphjFwPQh85+juboHgy5heHF49lid1BUWqRCnYiIiIjIsVzlGU22dzcl1sudJY/xQsgDfonj8BF1Tj0ZUVdfdTHtGWh6sp8DbLBbGEzvKu+jLk19BTjd9CWRRuRTwFabRappUqXt55CH5eBsrECdSicCEG5DGWpO5QBFxBDF2OI7aE0a4YSSRwFFFBFLNIk0opgSYogig0ymez+jh+nIc+6bNCCCAvbj4tKAcCyWZiST7jSj2C0hjhiiaECuPbKYFwgO39U60EfAdjSt+YPnOj5yvyLb5nBl8R94OWTKSbWpQp2IiIiI1GmXBZ3NH0ufIItsdrs5tC1pwe+DLsNiCSGYZ7z//GWh72q00F3hu13X16ir71JNMt/aBQBEeiO4yDOKBiaiSvuoa4W6Biac79yFAKy1m0ilagt1Zb741+JdcqXuC3KCWGxXkUseLWwK2eSQRz7tTAvWhX7pO++p0lcBaGvSOa/k9+xiD9NKX2EBKymlFAeDi2Uv+TQmjkVhH/iuTTswmM1sx3UtxbaEEBNc00/zqHbYXb7bjYj1XyCVEGdiuC/4Jv5x4F2yyWG3m0u+W0Ckc+JrYapQJyIiIiJ13r9Cnma93cztJY9wt3cqDUw4e9jLI6X/SzQNSKYx0SayWmNoTjNSaUIfpwuJxFdrX+JfPZxTmBH8GmNK7mCuXcbw4vHMCX23SvvIc/cRTywxRBFF9eZuTehs2tHSpLLF7mCN3cAw+lVp+zvtHhoQTgzRpFXxaD2RqhZvYsm1eb4iXRMSj5iiemg5gb12H7d4ruRl73R+YCnRRNLetGSCcwU9PZ1wMOxkT5lrbwwawyve6WTaHfyfO4PRnhE19twqY7vdSSghNKcpLU2qv8OplI9CnufB0udY6K6kTfEZbAudfcIbCalQJyIiIiJ1Xi+nE0Vu8c+LcIfzj9J3GeL0IY4YfiKbdqYlUaaad4L8+fN6MyepXq5RV59Emgj6ebpTXFJMA8JJII4vvXMY5qm64lM2uez++SfOxFRZu/7S3GnKztLdtCSVXYeNfivPPlvAbHcB33kXsdBdQQsnlbuCr6OZSarwmj3kUsB+CthPmAmt6vBFqlQrDhaniigm1SSTbXOIpfz1VWNMFE1NY0opJYRgDIYDFPHb4FG+c9JoWuaaNiaN3TaHtjRnm/2p+p7ICcojn3TTjC0266j/XweS7k5HSigljBDSTTNmunMZ6jn1hNpSoU5ERERE6oV+phu/91zONO8rLGcty921hBLCnc613B184wn/5VukIptDZ9K6aDif2dksLFnJVs+3Vdb27p8Xlm9AeK3fTAKgNc3ZRwE/kkFje/QRp0vsj5xfcqPv/tfuXLp7O3J10IUVXpNtc323NfVVAt15nuHcUHovAFttFgDXey6t8Pzfey5nQtAYHih5FoA/Bd1w1PbbkM5e8tnLeha6K6so6qrzjTuf1XYDHjyk08zf4VTaW0FPklB8Kpvtdu4rffqEC3VVu5WOiIiIiEiAcozDAKcHKSQTTBCRRNDRtCbGiVKRTqqFYxwu9pzJRc6ZNDGNOa1oDJl2R5W03dKkMsD0YIDTo0ra87d4J5bfOqP4rTOSPJvP4KLL8Vpvuedm2z0MdU6lEQ3x4BBBOM96/8nzpW9V2H6RLWag6Ul/050k06i6noZIlejmdOC3zig6mTY0JZFOpi3JpuLdow/tkhxtIok2kcfcNbmVk8ZA05N4YvnE/ZrfFt/EEyUvVelzOFGudYklmgGmB8Od/oQ4If4OqdIinQZcan7Dmc4QmphEHi39+wm1o0KdiIiIiNQbv/EMpYEJp4RS8inkUs9vfOv8SP0WfPo0PD1vwWl1Lp6etxB8+rQqafeh4P+hpUllmV3DHLuYZe7qKmn3S3cOs+3CgJy2dqJeD3mMYkpYbFcx1y5ls91e7nnrbSZfuz+QTQ5eXArZzyq7nvtK/+pbYP/XNrONb+0CvrOLiDFR1fk0RE5aV6c9r4c8xjnO6bQwKZzjnFapPyhNChpXqd9pISaY9k5LdpNLPoX8n/s1r7jvVUXoJ20LWcyy85htFxJUCzdeein0Yea7y3jf/ZzHS1+s8D3paDT1VURERETqlb94buUf3nexWH7jDPF3OBIgPC1G4Wkx6tgnnoDOpg2pNKGQ/axzN3Gy3z1LbAlFFAMQSTWvrVjDLnRGssxdQyH7ecn7bx50bjninMN3cL3KuZBcm8c6u5nt/MTU0lfYY/cyOXhimWuyD7sm0HeRFDnk0Ai56tjsaIznPHa5e5hvl2Fw2G8PUGJLCPbzDrC/K/4z3ehAghPHBM8Yv8Zyop4MvosF7nI+8H7Jw6UvcLZzGi2clEpfrxF1IiIiIlKvnBU0hPdDn+OD0L+RfhwfnEVOVHOnGZlsZy/7+Nj7NftswUm1t49C3+3q3q24pg3w9GQjW8kmly+93x0x/TXLZrOPQt9Im4lBY3gz9EnO8ZzGbnLJZg8/2ewj2s0jnxAOFiAambjqfyIiVWBS0DimhzxTLSO/ezmdeCt0Kn2dbmxhB168rLeZVd7P8Sh1S8liJ8tYw2a7jSGe3n6N50T91jOKYILZzHZKKWWFXXtc16tQJyIiIiIiUo1OMa25P2gSFviORcxwvz+p9vJsvu92VB0bUZdEI8Y452GxLGE1m+y2MscfK/07L3r/hQcPY815tDbNAfhz0O9pSAyleFloVxzR7lq7kWJKaEEKcbb275IrUlW6OO0JJ5Qd7GKd3eTXWDLZwdqfY+hlOvs1lpM13jOaxsSTTyH/8P7ruK7V1FcREREREan33J8W4+5agc3LxESn4iScgpPYrUraDjbBtCCFhkQTQRjb7c6Tam8fBfQ0nXDxkmqaVEmMgcIYQzunBU3dxhygmNtKHuHPwTfQwzmFUlvKLptDGk3JZg+pThM8xuO7LoIwctjL7sN2eAXwWi/NTVMiCCecMBxH41VEDmlOU1JpQkMT4/c1LzfYLfQz3cgjn7Ra/t7W0qQQRwwpJolQjm9DDBXqRERERESk3iv+6BLIP2zzgsgmhP1uTZW138Zpzi72ALDAPXLE1/HYY3NZYJcDMIQ+Jx1boPmfoKvoZNpwTsn1/MfOYn/Jfv4b+hIb7VbedT8FoD0t+XPw78tcF29i2WZ/Yje5WGt9i+/nkMdn7mwARjgDa/bJiAS4Nk5z1rARLLRy0/way0q7jjl2MQA3O+P9GsvJMsYQZRow3y5nkV1Fod1f6WtVqBMREREREalmrUhjoOmJ+/MupSdjN7m+2/Gm4UlGFpg6OW0ZSE/WsJEsm83viv/EDruLVqSRTyHdnY5HXDPI9CKWaHLIY4/dS7yJBcpuPhGvjSREyjj8vangsPUv/SHLZtPXdCMID+1o4ddYqsIY5zzibUNKbAn3lP6Ve7ihUtepUCciIiIiIlLNIpxwNtvtZLKdWBtFkbeI5+3beK2XW4OvOq626kPhKdkk8EXYKzQ+cCqr2UCWu4tc9gEHC3Ivhjx0xDXFpoRv3PkAbGCL77X5ye72ndOojhY2RU5UhBNOJjvYbLfR0Ebjuq7fpocvdFfw/c8j6lo7zf0SQ1X6XdBF3FP0FLnkkeHNrHShTpPzRUREREREakBz0xSAXPbRsKQnfyqdyp+9U9lr9x1XOwW2kCQSSKcZcaZub4zwXsizjDAD2Es+HhzOdU7nueD7yj23FWm0MCk0Jp4tdofv8S12BxGE054WdDCtaihykdrjNOdU0mlGPoXsNHv8Fscau4FmJHGa6UuMifJbHFXFGMMZTn/SaMo2fqr09FcV6kRERERERGpAJBG+2y6WUkppTDzr3M3H1c5u9pLFLjaylcg6tuvrrw1werDb5hJMEB48lFBKK6f8dbQaOjFssFvYyW52HjaKLo98UkwSG9lGHHW7sClyIsJsCHvIpR0t2OJuP/YF1WCvu49mJpliSiihxC8xVIcQQsingLa0IMNuqdQ1KtSJiIiIiIjUgLdDprE3ZBF/8txAOs0AyCKbH8k4rnbyD1tHKtrU7UIdwIzQ18kLW0xe2GLeDp5W4XkJ/DKtNZtfpgcvt2tZYzdygCKamaTqDFWkVkoxTdhLPstZy0a2+iWG7exkoV3BTnaTUst3fD1cB9OK3eSygrWstZsqdY3WqBMREREREakBISYYDES7kSSZRjjWwYOHp0te43vvIlba9Tg4XBt0MZd6flNhO3k233c7qo6PqIOfX7dybv9aEgkMND0pxUvBYVPMsu0vU/kSnUbVE6RILZboxIP34O3sw9bArEmHF9cTTZxfYqgO7Uw6vUwnwgjlJ7urUteoUCciIiIiIlKDJgWNY1LQOG4quZ+/e98FYJm7xnc8uzTnqIW6fAp8tyPrwYi6ykpxkvnWLgAg1Ib4Hs+2ub7bdXXzDZGT0ejw0ah+KtSV2SSnDm360tppzvzS5QDEuZGVukaFOhERERERET+41PMb9tp9ZLiZFFNCJjvIp5D1djPNDwyhl9OZf4X89Yjr8m0hXU07GhNPnI0B44fgA1C8iWWEM4Bsm1Nmg44DFNHNdKApSYSZUD9GKBKYmplkhjh9yLY5ZJHtlxi2uDtoRwsSTBytTfnrUNZGzU1TBpve7COfbHIrdY0KdSIiIiIiIn7Qz+lOv5DuPFX6Kt+482ls4/nKfg8cXLtuobuCc4uux2tdOjvtuDX4ShqZhmxnJz/aDJqSSLgT5udnEVj22UIW2pUkEMdedx/7KOAnm802fsJjtES7SHlSTTIz3bkYDK3cFL/EsJ1dbGALq+0G7jeT/BJDdQg2wWSxizV2I03dhEpdo0KdiIiIiIjUe6HjFmCL9mFL8jEhkZiQqBrre1LQOCYxjp12N15cHir+G15ckp0EpnpfoZD9fOnOYWnxKl4NeYwfbQbhhNHP6VZjMdYWvZxOLPeuYRd7WMcm7i99lu3sJI0mPBt8n7/DEwlIUaYBLU0qm+12FrPaLzEstqsooZQUkmhDc7/EUF36mm5ssVlsJatS56tQJyIiIiIi9Z4JiarR4lx5Gpt4AFp5fpn2FU4YhRzcGGGFXcclRTfTzXSgSDuYlqspiSTSiA6mJUu9qwmxwXQ17dlHPp1NW3+HJxKwggmilNIya8XVpHAbSifTliKKiHfqzhp1AEmmEc1IJMqkM6cShVAV6kRERERERALIpKBxR9y+ovg2/u3+l5/YDfbgsXc8T/kjvIDW2kljvXcz6y00sYl8bL8G4E7PtRijxfxEKhL/84YS+RRywBbV6HqOe+0+/mO/AaC/6VFj/daUlk4aa72bsNZbqfNVqBMREREREQlwrUwqaTTF/fm/BBNHc9PU32EFnDYmnQE/f9HPcrPpZ7rhweEUp42fIxMJbKc6XQlyPeSRzzb7Ey1Nao31Pd37GYNML4LwcLqnX431W1PacfB9qcQU8Y1G1ImIiIiIiBxb6cKn8W7+Crt3MyY6FU/zYQT1uMnfYfncFzyR+4In+jaeGOT0ItgE+zusgNPcNGW+XU4RxUQTSZ7NB2CKud3PkYkEOsssOw+A9e5mWjrVX6iz1mKM4e/ed1lsVwHwiFP3/l9t46Qz2y7UiDoREREREZHKKl30DORvB8Dmrqd0z+qAKtQdcmjjCSmfx3g40xnMCruODLuZVJrQ2MTRmrRjXyxSj13ojOBbdyE/2V38r/sOIxhY7X1eXvI/zHB/IJc8AHqYjrSqg/+vxpgohjv9WWc2sEYj6kRERERERKQ+cXDYZrMII5S97MNrvUQ7/t0oRCTQdXU6sNKuJYJwimxxlbZtreU7u4hZ3nnM9S6hmZPMpZ7fsMluJY+Do14dDDvtHsKdsCrtO1AUU8Jum1upc1WoExERERERkTrjOs8lvO9+gYsLHOA6zyX+Dkkk4Blj6GLaM8cuYob9oUo3lNjBLoYVHzYS2IWX3H8D0JymXGhG8mDoLeTbwirpLxBND34Gb2gJscQe81wV6kRERERERKTOaO+0JIVkNrMNgEQT7+eIRGqHzqYte+0+drGbMSW3c5YzhPFBF5xQW9Za7ih5jHnuUjLZTnOakk0OJZTSgHDiaUgh+2lkGpLgiQMg0kRU5dMJKJEmgjyTV6lzVagTERERERGROiPBxBFjIsEevO+1rn8DEqklkpxGrHTXAfB/7gwy7fYTLtRtZydPu6+Veaw1aaxjM0UUs4e9AHwc/L+0d1qeXOB1jOPvAE7GN998w9lnn02TJk0wxvDBBx/4jpWUlHDnnXfSqVMnGjRoQJMmTRg7dizbt28/apv33XcfxpgyP+3atavmZyIiIiIiIiJVZaJnLKeargw2vTjD09/f4YjUCiOdQdzrTCCWaKJoQCghJ9TO3SXTuL74HlqTRjyxJNKIlqTS1+nOOc7phBJCEB4GmZ60MClV/Cxqv1o9oq6goIAuXbpw1VVXccEFZau8hYWFLFq0iLvvvpsuXbqQk5PDpEmTOOecc1iwYMFR2+3YsSNffvml735QUK1+mUREREREROqVK4LO5Yqgc/0dhkit0tVpT9eQ9rxw4G2yyGaj3UKJW0KwE3zMa3NtHg0I5znvm7zmfZ+f2A3A/Z5JhJqDBb9JQeO4uGgSRRzcrCKTHb5j8otaXYEaNWoUo0aNKvdYTEwMX3zxRZnHnnnmGXr37k1mZiapqakVthsUFERSUlKVxioiIiIiIiIiEujOcU7j3+5n7CKHTWyjNc2Pec0dpY/ypvdjoomkBSm0IJUOTkvuCP5dmfMeDr6NJ80fCbHBZJNTTc+gdqvVhbrjtXfvXowxxMbGHvW8devW0aRJE8LCwujbty8PP/zwUQt7RUVFFBUV+e7n5VVugUARERERERERkUDSyMQRRSQtTAoZdssxC3VFthgsJNCQXeQQb2IJMh7aOOlHnNvC+Xmqq4EE4qoh+tqv3hTqDhw4wJ133smll15KdHR0hef16dOHV155hbZt27Jjxw4mT57MwIEDWbFiBVFRUeVe8/DDDzN58uTqCl1ERERERKqZ07gLbkkhlORDcCRO4y7+DklExC/aOOls9m5js93GSruOkQw86vnb7U5ecz8AoAMt+TD0bzUQZd1VLwp1JSUlXHTRRVhr+dvfjp4wh0+l7dy5M3369CEtLY13332Xq6++utxr7rrrLm699Vbf/by8PFJStCCiiIiIiEhtEXLuu/4OQUQkILQlnX6mGx4cdttjT0/dfdgU1hhT8cAoqZw6X6g7VKTbvHkzM2bMOOpouvLExsbSpk0b1q9fX+E5oaGhhIaGnmyoIiIiIiIiIiJ+1dppzhy7GIAS13vM83fbXN/t05xTqyusesPxdwDV6VCRbt26dXz55ZfEx8cfdxv5+flkZGSQnJxcDRGKiIiIiIiIiASOSBPBmc5g2puWbLM/Ya096vkb3a0k05ie5hTaOi1qKMq6q1YX6vLz81myZAlLliwBYOPGjSxZsoTMzExKSkq48MILWbBgAW+88QZer5esrCyysrIoLi72tXH66afzzDPP+O7fdtttzJo1i02bNjFnzhzOP/98PB4Pl156aU0/PRERERERERGRGldEMRk2k1BC2HWM6a/b2QlYFtgV2iCiCtTqqa8LFixg6NChvvuH1okbN24c9913Hx999BEAXbt2LXPd119/zZAhQwDIyMggOzvbd2zr1q1ceuml7N69m4SEBAYMGMAPP/xAQkJC9T4ZERERERHxm+IPL8Ld9v0vm0k07at160Sk3upi2jGDH1jPZtawgcYVFOC81ss07ysUU0IfutLP6VbDkdY9tbpQN2TIkKMOwTzW8EyATZs2lbn/9ttvn2xYIiIiIiJSy7g7l0JR7sE7RbkH74uI1FMtTSqdTVsiaUCmux2cg0W5h0tfYK67FAeH8UEXEEUk/U0PCijkFNOKUBPi79BrvVpdqBMRERERERERkarV0qSx1K4GoIftyOWcwya7jQe9z/nO2e89QGfTlq/tDwA8EHSzP0Ktc1SoExERERERERERnxamGb1MJ4IJwsvBnV/XuZvpZtqz2m4klBBKbCnZ5NLHdCGEYNqY5v4Nuo5QoU5ERERERERERHySTALz7XIArAuudVnHRhbbHwHYzwEW2OXstjmsZRMxRJFktLZ/VVChTkREREREREREfEJMMNFEkkc+u8llg93C7aWPEkUDIgjHg8N2drKJbXSgJXcFXY8xxt9h1wmOvwMQEREREREREZHA0pZ0WpFKDJF84X5Hb9MZgyGaBgDEEUswwawnk8Ge3n6Otu7QiDoRERERERERESkjwglnvrscLCwuXUUpXjqZNswN/jeO4/BAybN8485noOlJAnH+DrfOUKFORERERERERETK6G06U2pK2WKzSDYJRJkG9DVdcZyDkzOjTSTRJpIYJ0rTXquQCnUiIiIiIiIiIlJGoonnO7sIgEy7nQgbzkehz/uOTwoaxyTG+Su8OkuFOhERERERqfeCuk/Au/kr7N7NmOhUPM2H+TskERG/GukMIiE4nv+UzsI1ljM9g3GMtjqobirUiYiIiIhIvRfU4yaCetzk7zBERAJGKyeNVqSRZXcBcInnLD9HVD+oUCciIiIiIiIiIuWaFKTprTVJYxZFREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAEOTvAOoiay0AeXl5fo5ERERERERERET87VCN6FDNqCIq1FWD3bt3A5CSkuLnSEREREREREREJFDs27ePmJiYCo+rUFcN4uLiAMjMzDzqiy9ysvLy8khJSWHLli1ER0f7Oxypw5RrUlOUa1JTlGtSU5RrUlOUa1JTlGsnxlrLvn37aNKkyVHPU6GuGjjOwaX/YmJilLRSI6Kjo5VrUiOUa1JTlGtSU5RrUlOUa1JTlGtSU5Rrx68yg7m0mYSIiIiIiIiIiEgAUKFOREREREREREQkAKhQVw1CQ0O59957CQ0N9XcoUscp16SmKNekpijXpKYo16SmKNekpijXpKYo16qXscfaF1ZERERERERERESqnUbUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAFCrC3UPP/wwvXr1IioqisaNG3PeeeexZs2aMuccOHCAG2+8kfj4eCIjIxk9ejQ//fST7/jSpUu59NJLSUlJITw8nPbt2/PUU0+VaeO9995j+PDhJCQkEB0dTd++ffnss8+OGZ+1lnvuuYfk5GTCw8MZNmwY69atK3POokWLGD58OLGxscTHx3PttdeSn59/zLaXLVvGwIEDCQsLIyUlhUcffbTM8ZUrVzJ69GiaN2+OMYZp06Yds02pmHKt4lx777336NmzJ7GxsTRo0ICuXbvy+uuvH7NdKZ9yreJce+WVVzDGlPkJCws7ZrtSPuVaxbk2ZMiQI3LNGMNZZ511zLblSMq1inOtpKSE+++/n5YtWxIWFkaXLl3473//e8x2pXz1NdcOHDjA+PHj6dSpE0FBQZx33nlHnLNjxw4uu+wy2rRpg+M43HzzzceMVyqmXKs412bPnk3//v2Jj48nPDycdu3aMXXq1GPGLOVTrlWcazNnziz381pWVtYx4w54thYbMWKEffnll+2KFSvskiVL7JlnnmlTU1Ntfn6+75zrr7/epqSk2K+++souWLDAnnrqqbZfv36+4y+++KKdOHGinTlzps3IyLCvv/66DQ8Pt08//bTvnEmTJtlHHnnEzps3z65du9beddddNjg42C5atOio8U2ZMsXGxMTYDz74wC5dutSec845Nj093e7fv99aa+22bdtsw4YN7fXXX29Xr15t582bZ/v162dHjx591Hb37t1rExMT7eWXX25XrFhh33rrLRseHm5feOEF3znz5s2zt912m33rrbdsUlKSnTp16vG8tPIryrWKc+3rr7+27733nl21apVdv369nTZtmvV4PPa///3vcb3GcpByreJce/nll210dLTdsWOH7ycrK+u4Xl/5hXKt4lzbvXt3mTxbsWKF9Xg89uWXXz6el1h+plyrONfuuOMO26RJE/vJJ5/YjIwM+9xzz9mwsLBjxizlq6+5lp+fb6+//nr7v//7v3bEiBH23HPPPeKcjRs32okTJ9pXX33Vdu3a1U6aNKkSr6hURLlWca4tWrTIvvnmm3bFihV248aN9vXXX7cRERFl3vuk8pRrFefa119/bQG7Zs2aMp/bvF5vZV7agFarC3W/tnPnTgvYWbNmWWutzc3NtcHBwfZf//qX75wff/zRAvb777+vsJ3f//73dujQoUftq0OHDnby5MkVHndd1yYlJdnHHnvM91hubq4NDQ21b731lrXW2hdeeME2bty4TCItW7bMAnbdunUVtv3cc8/Zhg0b2qKiIt9jd955p23btm2556elpalQV8WUa+Xn2iHdunWzf/7zn496jlSOcu2XXHv55ZdtTEzMUZ+DnDjlWsXva1OnTrVRUVFlPhTLiVOu/ZJrycnJ9plnnilz3QUXXGAvv/zyoz4vqZz6kmuHGzduXLlfaA83ePBgFeqqmHLt6M4//3x7xRVXVOpcOTrl2i8OFepycnIq1U5tUqunvv7a3r17AYiLiwNg4cKFlJSUMGzYMN857dq1IzU1le+///6o7Rxqozyu67Jv376jnrNx40aysrLK9B0TE0OfPn18fRcVFRESEoLj/PLPEB4eDhwcMlyR77//nkGDBhESEuJ7bMSIEaxZs4acnJwKr5Oqo1wrP9estXz11VesWbOGQYMGVdiuVJ5yrWyu5efnk5aWRkpKCueeey4rV66ssE05Psq1in+Hvvjii1xyySU0aNCgwnal8pRrv+RaUVHREVP4w8PDj9quVF59yTXxP+VaxRYvXsycOXMYPHhwlbZbXynXjtS1a1eSk5MZPnw43333XZW06W91plDnui4333wz/fv355RTTgEgKyuLkJAQYmNjy5ybmJhY4bzlOXPm8M4773DttddW2Nfjjz9Ofn4+F110UYXnHGo/MTGxwr5PO+00srKyeOyxxyguLiYnJ4c//OEPwMF1JI7WdnntHt6vVB/l2pG5tnfvXiIjIwkJCeGss87i6aefZvjw4RW2K5WjXCuba23btuWll17iww8/5J///Ceu69KvXz+2bt1aYbtSOcq1in+Hzps3jxUrVnDNNddU2KZUnnKtbK6NGDGCJ598knXr1uG6Ll988QXvvffeUduVyqlPuSb+pVwrX7NmzQgNDaVnz57ceOON+j1aBZRrZSUnJ/P8888zffp0pk+fTkpKCkOGDGHRokUn1W4gqDOFuhtvvJEVK1bw9ttvn3AbK1as4Nxzz+Xee+/ljDPOKPecN998k8mTJ/Puu+/SuHFjAN544w0iIyN9P99++22l+uvYsSOvvvoqTzzxBBERESQlJZGenk5iYqKv4tyxY0dfu6NGjTrh5yZVR7l2pKioKJYsWcL8+fP5y1/+wq233srMmTOPqw05knKtrL59+zJ27Fi6du3K4MGDee+990hISOCFF16odBtSPuVaxV588UU6depE7969T+h6KUu5VtZTTz1F69atadeuHSEhIUyYMIErr7yyzMgDOTHKNakpyrXyffvttyxYsIDnn3+eadOm8dZbbx13G1KWcq2stm3bct1119GjRw/69evHSy+9RL9+/erG5iX+nntbFW688UbbrFkzu2HDhjKPf/XVV+XOWU5NTbVPPvlkmcdWrlxpGzdubP/4xz9W2M+hRYA//vjjMo/n5eXZdevW+X4KCwttRkaGBezixYvLnDto0CA7ceLEI9rOysqy+/bts/n5+dZxHPvuu+9aa63dtGmTr92tW7daa60dM2bMEXO0Z8yYYQG7Z8+eI9rWGnVVR7l29Fw75Oqrr7ZnnHFGhcfl2JRrlcu1Cy+80F5yySUVHpdjU65VnGv5+fk2OjraTps2rcLnJZWnXKs41/bv32+3bt1qXde1d9xxh+3QoUOFz0+Orb7l2uG0Rl3NUq6dW2HMh3vggQdsmzZtKnWulE+5dm6FMR/utttus6eeemqlzg1ktbpQ57quvfHGG22TJk3s2rVrjzh+aGHFf//7377HVq9efcTCiitWrLCNGze2t99+e4V9vfnmmzYsLMx+8MEHlY4tKSnJPv74477H9u7dW2ZhxfK8+OKLNiIi4qgLIh5anLi4uNj32F133aXNJKqRcq1yuXbIlVdeaQcPHlyp+KUs5Vrlc620tNS2bdvW3nLLLZWKX8pSrh07115++WUbGhpqs7OzKxW3lE+5Vvn3teLiYtuyZUt71113VSp+Kau+5trhVKirGcq14yueTJ482aalpVXqXClLuXZ8uTZs2DB7/vnnV+rcQFarC3U33HCDjYmJsTNnziyzHW9hYaHvnOuvv96mpqbaGTNm2AULFti+ffvavn37+o4vX77cJiQk2CuuuKJMGzt37vSd88Ybb9igoCD77LPPljknNzf3qPFNmTLFxsbG2g8//NAuW7bMnnvuuWW2KrbW2qefftouXLjQrlmzxj7zzDM2PDzcPvXUU0dtNzc31yYmJtoxY8bYFStW2LfffvuILa+Liors4sWL7eLFi21ycrK97bbb7OLFiyu9s4qUpVyrONceeugh+/nnn9uMjAy7atUq+/jjj9ugoCD797//vdKvr/xCuVZxrk2ePNl+9tlnNiMjwy5cuNBecsklNiwszK5cubLSr6/8QrlWca4dMmDAAHvxxRcf87WUo1OuVZxrP/zwg50+fbrNyMiw33zzjT3ttNNsenp6ndzBribU11yz9uBImcWLF9uzzz7bDhkyxPc94HCHHuvRo4e97LLL7OLFi/U79AQp1yrOtWeeecZ+9NFHdu3atXbt2rX2H//4h42KirJ/+tOfKvPSyq8o1yrOtalTp9oPPvjArlu3zi5fvtxOmjTJOo5jv/zyy8q8tAGtVhfqgHJ/Xn75Zd85+/fvt7///e9tw4YNbUREhD3//PPtjh07fMfvvffects4vOI/ePDgcs8ZN27cUeNzXdfefffdNjEx0YaGhtrTTz/drlmzpsw5Y8aMsXFxcTYkJMR27tzZvvbaa5V67kuXLrUDBgywoaGhtmnTpnbKlClljm/cuLHcmDXK6cQo1yrOtT/96U+2VatWNiwszDZs2ND27dvXvv3225VqW46kXKs4126++WabmppqQ0JCbGJioj3zzDPtokWLKtW2HEm5VnGuWfvLX6M///zzSrUpFVOuVZxrM2fOtO3bt7ehoaE2Pj7ejhkzxm7btq1SbcuR6nOupaWllRvTsV4fjXI6Mcq1inPtr3/9q+3YsaONiIiw0dHRtlu3bva5556zXq+3Uu1LWcq1inPtkUcesS1btrRhYWE2Li7ODhkyxM6YMaNSbQc6Y621iIiIiIiIiIiIiF9pSykREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERkXpsyJAh3HzzzfWubxEREZFApEKdiIiIiFTKzJkzMcaQm5tbJde99957PPDAA1UXoIiIiEgtF+TvAERERESkfoqLi/N3CCIiIiIBRSPqREREROqJgoICxo4dS2RkJMnJyTzxxBNljr/++uv07NmTqKgokpKSuOyyy9i5cycAmzZtYujQoQA0bNgQYwzjx48HwHVdHn74YdLT0wkPD6dLly78+9//PuZ1v5762rx5cx588EFfjGlpaXz00Ufs2rWLc889l8jISDp37syCBQvKxD179mwGDhxIeHg4KSkpTJw4kYKCgqp++URERESqnQp1IiIiIvXE7bffzqxZs/jwww/5/PPPmTlzJosWLfIdLykp4YEHHmDp0qV88MEHbNq0yVdUS0lJYfr06QCsWbOGHTt28NRTTwHw8MMP89prr/H888+zcuVKbrnlFq644gpmzZp11OvKM3XqVPr378/ixYs566yzGDNmDGPHjuWKK65g0aJFtGzZkrFjx2KtBSAjI4ORI0cyevRoli1bxjvvvMPs2bOZMGFCdbyEIiIiItXK2EOfckRERESkzsrPzyc+Pp5//vOf/Pa3vwVgz549NGvWjGuvvZZp06Ydcc2CBQvo1asX+/btIzIykpkzZzJ06FBycnKIjY0FoKioiLi4OL788kv69u3ru/aaa66hsLCQN998s9zr4OCIuq5du/r6bt68OQMHDuT1118HICsri+TkZO6++27uv/9+AH744Qf69u3Ljh07SEpK4pprrsHj8fDCCy/42p09ezaDBw+moKCAsLCwKnwVRURERKqX1qgTERERqQcyMjIoLi6mT58+vsfi4uJo27at7/7ChQu57777WLp0KTk5ObiuC0BmZiYdOnQot93169dTWFjI8OHDyzxeXFxMt27djjvOzp07+24nJiYC0KlTpyMe27lzJ0lJSSxdupRly5bxxhtv+M6x1uK6Lhs3bqR9+/bHHYOIiIiIv6hQJyIiIiIUFBQwYsQIRowYwRtvvEFCQgKZmZmMGDGC4uLiCq/Lz88H4JNPPqFp06ZljoWGhh53HMHBwb7bxpgKHztURMzPz+e6665j4sSJR7SVmpp63P2LiIiI+JMKdSIiIiL1QMuWLQkODmbu3Lm+AlZOTg5r165l8ODBrF69mt27dzNlyhRSUlIAjti0ISQkBACv1+t7rEOHDoSGhpKZmcngwYPL7bu866pK9+7dWbVqFa1atarytkVERERqmjaTEBEREakHIiMjufrqq7n99tuZMWMGK1asYPz48TjOwY+DqamphISE8PTTT7NhwwY++ugjHnjggTJtpKWlYYzh448/ZteuXeTn5xMVFcVtt93GLbfcwquvvkpGRgaLFi3i6aef5tVXX63wuqpy5513MmfOHCZMmMCSJUtYt24dH374oTaTEBERkVpJhToRERGReuKxxx5j4MCBnH322QwbNowBAwbQo0cPABISEnjllVf417/+RYcOHZgyZQqPP/54meubNm3K5MmT+cMf/kBiYqKvGPbAAw9w99138/DDD9O+fXtGjhzJJ598Qnp6+lGvqwqdO3dm1qxZrF27loEDB9KtWzfuuecemjRpUmV9iIiIiNQU7foqIiIiIiIiIiISADSiTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgEgyN8BiIiISN3jui4HDhzwdxgiEmDCwsJwHI0VEBERqYgKdSIiIlKlioqKWLVqFa7r+jsUEQkwjuPQoUMHQkND/R2KiIhIQDLWWuvvIERERKRusNaydu1aiouLSU9P18gZEfFxXZeNGzcSEhJCmzZtMMb4OyQREZGAo0KdiIiIVJni4mKWL19Oeno6cXFx/g5HRALMnj172LhxI5s3b6Zv374kJyf7OyQREZGAoj9zi4iISJUpLS0F0LQ2ESnXofeG7du388knn5CVleXniERERAKLCnUiIiJS5TSlTUTKc+i9ISkpiaysLFauXOnniERERAKLCnUiIiIiIlKjjDGEh4eTm5vr71BEREQCigp1IiIiIscwc+ZMjDEqKlSTqnp9N23ahDGGJUuWVElcx2vIkCHcfPPNfum7ttJy2SIiImUF+TsAEREREanf+vXrx44dO4iJiTmpdlJSUtixYweNGjWqosjKN3PmTIYOHUpOTg6xsbG+x9977z2Cg4Orte9jGTJkCF27dmXatGl+jUNEREROjAp1IiIiIuJXISEhJCUlnXQ7Ho+nSto5UdrpWERERE6Wpr6KiIhItbih5F4GF13u158bSu6tdLxFRUVMnDiRxo0bExYWxoABA5g/f3655xYWFjJq1Cj69++v6bC/MmTIEG666SZuvvlmGjZsSGJiIn//+98pKCjgyiuvJCoqilatWvGf//zHd82vp75u3ryZs88+m4YNG9KgQQM6duzIp59+CkBOTg6XX345CQkJhIeH07p1a15++WXgyKmvh9r96quv6NmzJxEREfTr1481a9aUifnBBx+kcePGREVFcc011/CHP/yBrl27lvv8Nm3axNChQwFo2LAhxhjGjx/ve+6HT31t3rw5Dz74IGPHjiUyMpK0tDQ++ugjdu3axbnnnktkZCSdO3dmwYIFZfqYPXs2AwcOJDw8nJSUFCZOnEhBQYHv+HPPPUfr1q0JCwsjMTGRCy+8EIDx48cza9YsnnrqKYwxGGPYtGkTXq+Xq6++mvT0dMLDw2nbti1PPfVUmT7Hjx/Peeedx0MPPURiYiKxsbHcf//9lJaWcvvttxMXF0ezZs18r/Xhr/fbb79Nv379CAsL45RTTmHWrFkVpYeIiIgcg0bUiYiISLVY5a5nrl3q3yDcyp96xx13MH36dF599VXS0tJ49NFHGTFiBOvXry9zXm5uLmeddRaRkZF88cUXREREVHHQtd+rr77KHXfcwbx583jnnXe44YYbeP/99zn//PP54x//yNSpUxkzZgyZmZnlvn433ngjxcXFfPPNNzRo0IBVq1YRGRkJwN13382qVav4z3/+Q6NGjVi/fj379+8/ajx/+tOfeOKJJ0hISOD666/nqquu4rvvvgPgjTfe4C9/+QvPPfcc/fv35+233+aJJ54gPT293LZSUlKYPn06o0ePZs2aNURHRxMeHl5h31OnTuWhhx7i7rvv9j3vfv36cdVVV/HYY49x5513MnbsWFauXIkxhoyMDEaOHMmDDz7ISy+9xK5du5gwYQITJkzg5ZdfZsGCBUycOJHXX3+dfv36sWfPHr799lsAnnrqKdauXcspp5zC/fffD0BCQgKu69KsWTP+9a9/ER8fz5w5c7j22mtJTk7moosu8sU6Y8YMmjVrxjfffMN3333H1VdfzZw5cxg0aBBz587lnXfe4brrrmP48OE0a9bMd93tt9/OtGnT6NChA08++SRnn302GzduJD4+/qj/LiIiInIkY7WCq4iIiFSRwsJCfvzxR9q3b88oz+/8XqjrY7owK/SNY55XUFBAw4YNeeWVV7jssssAKCkpoXnz5tx888306tWLoUOH8uOPP3LxxRfTunVr3nzzTUJCQqr7KRzB5mdhC7LKPhgWixPTHFt6ALt79RHXOIldAXD3rIWSwjLHTEwqJiwOW7gLu29b2QtDInEatjqu+IYMGYLX6/UVj7xeLzExMVxwwQW89tprAGRlZZGcnMz333/PqaeeesSab507d2b06NHce++RIyLPOeccGjVqxEsvvXTEsU2bNpGens7ixYvp2rWrr90vv/yS008/HYBPP/2Us846i/379xMWFsapp55Kz549eeaZZ3ztDBgwgPz8/Ao3pahojbpfrw/XvHlzBg4cyOuvv17med99992+QtoPP/xA37592bFjB0lJSVxzzTV4PB5eeOEFX7uzZ89m8ODBFBQU8Omnn3LllVeydetWoqKiyn39K7NG3YQJE8jKyuLf//43cHBE3cyZM9mwYQOOc3DSTbt27WjcuDHffPMN8Mu/5T/+8Q8uueQS3+s9ZcoU7rzzTgBKS0tJT0/npptu4o477jii30PvEZs2bWLTpk2kpaX5RgSKiIiIRtSJiIiIkJGRQUlJCf379/c9FhwcTO/evfnxxx/p1asXAMOHD6d379688847eDwev8RauvwlvD88XOYxp93FhIz6BzZ/G8VvDjzimrBb9gFQ8vn12B1lp/MGj/w7nvaX4F37PqVf/0/ZdtNOJ+SCD447xs6dO/tuezwe4uPj6dSpk++xxMREAHbu3Fnu9RMnTuSGG27g888/Z9iwYYwePdrX5g033MDo0aNZtGgRZ5xxBueddx79+vWrdDzJycm+vlNTU1mzZg2///3vy5zfu3dvZsyYcRzPuHJ9H3reFb0WSUlJLF26lGXLlvHGG78UmK21uK7Lxo0bGT58OGlpabRo0YKRI0cycuRIzj///GOO7Hz22Wd56aWXyMzMZP/+/RQXFx8xvbdjx46+It2h2E455RTf/UP/lr/+d+vbt6/vdlBQED179uTHH3881ksjIiIi5VChTkRERKSSzjrrLKZPn86qVavKFFtqUlCnq/C0OLPsg2GxAJjIpoRc9m2F1waf8Xy5I+oAPG3Ox0nuXfaCkMgTivHXO58aY8o8ZowBwHXLn5t8zTXXMGLECD755BM+//xzHn74YZ544gluuukmRo0axebNm/n000/54osvOP3007nxxht5/PHHKxXPsfquauX1fbR48vPzue6665g4ceIRbaWmphISEsKiRYuYOXMmn3/+Offccw/33Xcf8+fPLzO673Bvv/02t912G0888QR9+/YlKiqKxx57jLlz51YY66HYynuspl47ERGR+kiFOhEREakWHZxWx7VGXLXFUAktW7YkJCSE7777jrS0NODg1Nf58+eX2RxgypQpREZGcvrppzNz5kw6dOhQHWEflYlMwkSWv7OpCQrD/DzNtTxOXJuK241IwEQknGx4VSYlJYXrr7+e66+/nrvuuou///3v3HTTTcDBddfGjRvHuHHjGDhwILfffvtRC3VH07ZtW+bPn8/YsWN9j1W0icghh6Y8e73eE+rzaLp3786qVato1ari3A0KCmLYsGEMGzaMe++9l9jYWGbMmMEFF1xASEjIEXF999139OvXr8zIwYyMjCqL+YcffmDQoEHAwamvCxcuZMKECVXWvoiISH2iQp2IiIhUi78FT/Z3CJXWoEEDbrjhBt/ulqmpqTz66KMUFhZy9dVXs3TpL2vtPf7443i9Xk477TRmzpxJu3bt/Bh53XTzzTczatQo2rRpQ05ODl9//TXt27cH4J577qFHjx507NiRoqIiPv74Y9+xE3HTTTfxu9/9jp49e9KvXz/eeecdli1bRosWLSq8Ji0tDWMMH3/8MWeeeSbh4eG+zS5O1p133smpp57KhAkTuOaaa3ybaXzxxRc888wzfPzxx2zYsIFBgwbRsGFDPv30U1zXpW3btsDBdfHmzp3Lpk2biIyMJC4ujtatW/Paa6/x2WefkZ6ezuuvv878+fMr3DDjeD377LO0bt2a9u3bM3XqVHJycrjqqquqpG0REZH6xjn2KSIiIiJ135QpUxg9ejRjxoyhe/furF+/ns8++4yGDRsece7UqVO56KKLOO2001i7dq0foq3bvF4vN954I+3bt2fkyJG0adOG5557Djg4mu2uu+6ic+fODBo0CI/Hw9tvv33CfV1++eXcdddd3HbbbXTv3p2NGzcyfvx4wsLCKrymadOmTJ48mT/84Q8kJiZW6eixzp07M2vWLNauXcvAgQPp1q0b99xzD02aNAEgNjaW9957j9NOO4327dvz/PPP89Zbb9GxY0cAbrvtNjweDx06dCAhIYHMzEyuu+46LrjgAi6++GL69OnD7t27j1iX72RMmTKFKVOm0KVLF2bPns1HH31Eo0aNqqx9ERGR+kS7voqIiEiVOXzX12Mtbi8SqIYPH05SUpJvt1Yp36932a0M7foqIiJydJr6KiIiIiL1VmFhIc8//zwjRozA4/Hw1ltv8eWXX/LFF1/4OzQRERGph1SoExEREZF6yxjDp59+yl/+8hcOHDhA27ZtmT59OsOGDfN3aCIiIlIPqVAnIiIiIvVWeHg4X375pb/DqJWaN2+OVtERERGpWtpMQkREREREREREJACoUCciIiJVTqNsRKQ8em8QERE5OhXqREREpMoEBR1cVaOoqMjPkYhIIDr03lBaWurnSERERAKT1qgTERGRKhMcHExkZCTbtm0jJCQEx9HfBEXkINd12bJlC4WFhXi9Xn+HIyIiEpBUqBMREZEqY4yhefPmrFy5kjVr1vg7HBEJMK7rkpWVBYDX6yU8PNzPEYmIiAQWFepERESkSoWGhtKmTRs+/vhjsrOzSUxM1Mg6EcFaS0lJCa7rkpeXh7WW5ORkf4clIiISUIzViq4iIiJSDXbt2sUnn3ziGz0jIgIHC3ahoaH06tWL/v37q5AvIiJyGBXqREREpNrk5eWxa9cuDhw44O9QRCRAOI5DZGQkTZs2VZFORETkV1SoExERERERERERCQD6E5aIiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEgP8HUVKE05Gal5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder02').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "9c0be11b-8d68-4597-9cf4-676c10d3aa1a", + "metadata": {}, + "source": [ + "\n", + "## Quality control for bad observations\n", + "The following checks are available:\n", + "* [Gross value check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html#metobs_toolkit.qc_checks.gross_value_check): A threshold check that observations should be between the thresholds\n", + "* [Persistence check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.persistance_check.html#metobs_toolkit.qc_checks.persistance_check): Test observations to change over a specific period.\n", + "* [Repetitions check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html#metobs_toolkit.qc_checks.repetitions_check): Test if an observation changes after several records.\n", + "* [Spike check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.step_check.html#metobs_toolkit.qc_checks.step_check): Test if observations do not produce spikes in time series.\n", + "* [Window variation check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html#metobs_toolkit.qc_checks.window_variation_check): Test if the variation exceeds the threshold in moving time windows.\n", + "* [Toolkit Buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.html#metobs_toolkit.qc_checks.toolkit_buddy_check): Spatial buddy check.\n", + "* [TITAN Buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.html#metobs_toolkit.qc_checks.titan_buddy_check): The [Titanlib version of the buddy check](https://github.com/metno/titanlib/wiki/Buddy-check).\n", + "* [TITAN Spatial consistency test](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.html#metobs_toolkit.qc_checks.titan_sct_resistant_check): Apply the Titanlib (robust) [Spatial-Consistency-Test](https://github.com/metno/titanlib/wiki/Spatial-consistency-test-resistant) (SCT).\n", + "\n", + "Each check requires a set of specific settings, often stored per specific observation type. A set of default settings, for temperature observations, are stored in the settings of each dataset. Use the *show()* method, and scroll to the QC section to see all QC settings.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "02c8f1d9-c0da-470f-9730-112a89a77f67", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All settings:\n", + " \n", + " ---------------------------------------\n", + "\n", + " ---------------- IO (settings) ----------------------\n", + "\n", + "* output_folder: \n", + "\n", + " -None \n", + "\n", + "* input_data_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_datafile.csv \n", + "\n", + "* input_metadata_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_metadatafile.csv \n", + "\n", + " ---------------- db (settings) ----------------------\n", + "\n", + " ---------------- time_settings (settings) ----------------------\n", + "\n", + "* target_time_res: \n", + "\n", + " -60T \n", + "\n", + "* resample_method: \n", + "\n", + " -nearest \n", + "\n", + "* resample_limit: \n", + "\n", + " -1 \n", + "\n", + "* timezone: \n", + "\n", + " -UTC \n", + "\n", + "* freq_estimation_method: \n", + "\n", + " -highest \n", + "\n", + "* freq_estimation_simplify: \n", + "\n", + " -True \n", + "\n", + "* freq_estimation_simplify_error: \n", + "\n", + " -2T \n", + "\n", + " ---------------- app (settings) ----------------------\n", + "\n", + "* print_fmt_datetime: \n", + "\n", + " -%d/%m/%Y %H:%M:%S \n", + "\n", + "* print_max_n: \n", + "\n", + " -40 \n", + "\n", + "* plot_settings: \n", + "\n", + " - time_series: \n", + "\n", + " -{'figsize': (15, 5), 'colormap': 'tab20', 'linewidth': 2, 'linestyle_ok': '-', 'linestyle_fill': '--', 'linezorder': 1, 'scattersize': 4, 'scatterzorder': 3, 'dashedzorder': 2, 'legend_n_columns': 5} \n", + "\n", + " - spatial_geo: \n", + "\n", + " -{'extent': [2.260609, 49.25, 6.118359, 52.350618], 'cmap': 'inferno_r', 'n_for_categorical': 5, 'figsize': (10, 15), 'fmt': '%d/%m/%Y %H:%M:%S UTC'} \n", + "\n", + " - pie_charts: \n", + "\n", + " -{'figsize': (10, 10), 'anchor_legend_big': (-0.25, 0.75), 'anchor_legend_small': (-3.5, 2.2), 'radius_big': 2.0, 'radius_small': 5.0} \n", + "\n", + " - color_mapper: \n", + "\n", + " -{'duplicated_timestamp': '#a32a1f', 'invalid_input': '#900357', 'gross_value': '#f1ff2b', 'persistance': '#f0051c', 'repetitions': '#056ff0', 'step': '#05d4f0', 'window_variation': '#05f0c9', 'buddy_check': '#8300c4', 'titan_buddy_check': '#8300c4', 'titan_sct_resistant_check': '#c17fe1', 'gap': '#f00592', 'missing_timestamp': '#f78e0c', 'linear': '#d406c6', 'model_debias': '#6e1868', 'ok': '#07f72b', 'not checked': '#f7cf07', 'outlier': '#f20000'} \n", + "\n", + " - diurnal: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - anual: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - correlation_heatmap: \n", + "\n", + " -{'figsize': (10, 10), 'vmin': -1, 'vmax': 1, 'cmap': 'cool', 'x_tick_rot': 65, 'y_tick_rot': 0} \n", + "\n", + " - correlation_scatter: \n", + "\n", + " -{'figsize': (10, 10), 'p_bins': [0, 0.001, 0.01, 0.05, 999], 'bins_markers': ['*', 's', '^', 'X'], 'scatter_size': 40, 'scatter_edge_col': 'black', 'scatter_edge_line_width': 0.1, 'ymin': -1.1, 'ymax': 1.1, 'cmap': 'tab20', 'legend_ncols': 3, 'legend_text_size': 7} \n", + "\n", + "* world_boundary_map: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp \n", + "\n", + "* display_name_mapper: \n", + "\n", + " - network: \n", + "\n", + " -network \n", + "\n", + " - name: \n", + "\n", + " -station name \n", + "\n", + " - call_name: \n", + "\n", + " -pseudo name \n", + "\n", + " - location: \n", + "\n", + " -region \n", + "\n", + " - lat: \n", + "\n", + " -latitude \n", + "\n", + " - lon: \n", + "\n", + " -longtitude \n", + "\n", + " - temp: \n", + "\n", + " -temperature \n", + "\n", + " - radiation_temp: \n", + "\n", + " -radiation temperature \n", + "\n", + " - humidity: \n", + "\n", + " -humidity \n", + "\n", + " - precip: \n", + "\n", + " -precipitation intensity \n", + "\n", + " - precip_sum: \n", + "\n", + " -cummulated precipitation \n", + "\n", + " - wind_speed: \n", + "\n", + " -wind speed \n", + "\n", + " - wind_gust: \n", + "\n", + " -wind gust speed \n", + "\n", + " - wind_direction: \n", + "\n", + " -wind direction \n", + "\n", + " - pressure: \n", + "\n", + " -air pressure \n", + "\n", + " - pressure_at_sea_level: \n", + "\n", + " -corrected pressure at sea level \n", + "\n", + " - lcz: \n", + "\n", + " -LCZ \n", + "\n", + "* static_fields: \n", + "\n", + " -['network', 'name', 'lat', 'lon', 'call_name', 'location', 'lcz'] \n", + "\n", + "* categorical_fields: \n", + "\n", + " -['wind_direction', 'lcz'] \n", + "\n", + "* location_info: \n", + "\n", + " -['network', 'lat', 'lon', 'lcz', 'call_name', 'location'] \n", + "\n", + "* default_name: \n", + "\n", + " -unknown_name \n", + "\n", + " ---------------- qc (settings) ----------------------\n", + "\n", + "* qc_check_settings: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'keep': False} \n", + "\n", + " - persistance: \n", + "\n", + " -{'temp': {'time_window_to_check': '1h', 'min_num_obs': 5}} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'temp': {'max_valid_repetitions': 5}} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'temp': {'min_value': -15.0, 'max_value': 39.0}} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': 0.002777777777777778, 'time_window_to_check': '1h', 'min_window_members': 3}} \n", + "\n", + " - step: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': -0.002777777777777778}} \n", + "\n", + " - buddy_check: \n", + "\n", + " -{'temp': {'radius': 15000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0}} \n", + "\n", + "* qc_checks_info: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'outlier_flag': 'duplicated timestamp outlier', 'numeric_flag': 1, 'apply_on': 'record'} \n", + "\n", + " - invalid_input: \n", + "\n", + " -{'outlier_flag': 'invalid input', 'numeric_flag': 2, 'apply_on': 'obstype'} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'outlier_flag': 'gross value outlier', 'numeric_flag': 4, 'apply_on': 'obstype'} \n", + "\n", + " - persistance: \n", + "\n", + " -{'outlier_flag': 'persistance outlier', 'numeric_flag': 5, 'apply_on': 'obstype'} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'outlier_flag': 'repetitions outlier', 'numeric_flag': 6, 'apply_on': 'obstype'} \n", + "\n", + " - step: \n", + "\n", + " -{'outlier_flag': 'in step outlier group', 'numeric_flag': 7, 'apply_on': 'obstype'} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'outlier_flag': 'in window variation outlier group', 'numeric_flag': 8, 'apply_on': 'obstype'} \n", + "\n", + " - buddy_check: \n", + "\n", + " -{'outlier_flag': 'buddy check outlier', 'numeric_flag': 11, 'apply_on': 'obstype'} \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'outlier_flag': 'titan buddy check outlier', 'numeric_flag': 9, 'apply_on': 'obstype'} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'outlier_flag': 'sct resistant check outlier', 'numeric_flag': 10, 'apply_on': 'obstype'} \n", + "\n", + "* titan_check_settings: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'temp': {'radius': 50000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0, 'num_iterations': 1}} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'temp': {'num_min_outer': 3, 'num_max_outer': 10, 'inner_radius': 20000, 'outer_radius': 50000, 'num_iterations': 10, 'num_min_prof': 5, 'min_elev_diff': 100, 'min_horizontal_scale': 250, 'max_horizontal_scale': 100000, 'kth_closest_obs_horizontal_scale': 2, 'vertical_scale': 200, 'mina_deviation': 10, 'maxa_deviation': 10, 'minv_deviation': 1, 'maxv_deviation': 1, 'eps2': 0.5, 'tpos': 5, 'tneg': 8, 'basic': True, 'debug': False}} \n", + "\n", + "* titan_specific_labeler: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'ok': [0], 'outl': [1]} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'ok': [0, -999, 11, 12], 'outl': [1]} \n", + "\n", + " ---------------- gap (settings) ----------------------\n", + "\n", + "* gaps_settings: \n", + "\n", + " - gaps_finder: \n", + "\n", + " -{'gapsize_n': 40} \n", + "\n", + "* gaps_info: \n", + "\n", + " - gap: \n", + "\n", + " -{'label_columnname': 'is_gap', 'outlier_flag': 'gap', 'negative_flag': 'no gap', 'numeric_flag': 12, 'apply_on': 'record'} \n", + "\n", + " - missing_timestamp: \n", + "\n", + " -{'label_columnname': 'is_missing_timestamp', 'outlier_flag': 'missing timestamp', 'negative flag': 'not missing', 'numeric_flag': 13, 'apply_on': 'record'} \n", + "\n", + "* gaps_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time', 'max_consec_fill': 100} \n", + "\n", + " - model_debias: \n", + "\n", + " -{'debias_period': {'prefered_leading_sample_duration_hours': 48, 'prefered_trailing_sample_duration_hours': 48, 'minimum_leading_sample_duration_hours': 24, 'minimum_trailing_sample_duration_hours': 24}} \n", + "\n", + " - automatic: \n", + "\n", + " -{'max_interpolation_duration_str': '5H'} \n", + "\n", + "* gaps_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'gap_interpolation', 'model_debias': 'gap_debiased_era5'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -21 \n", + "\n", + " ---------------- missing_obs (settings) ----------------------\n", + "\n", + "* missing_obs_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time'} \n", + "\n", + "* missing_obs_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'missing_obs_interpolation'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -23 \n", + "\n", + " ---------------- templates (settings) ----------------------\n", + "\n", + "* template_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_templatefile.csv \n", + "\n", + " ---------------- gee (settings) ----------------------\n", + "\n", + "* gee_dataset_info: \n", + "\n", + " - global_lcz_map: \n", + "\n", + " -{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'} \n", + "\n", + " - DEM: \n", + "\n", + " -{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'} \n", + "\n", + " - ERA5_hourly: \n", + "\n", + " -{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'band_of_use': {'temp': {'name': 'temperature_2m', 'units': 'K'}}, 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''} \n", + "\n", + " - worldcover: \n", + "\n", + " -{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'} \n", + "\n" + ] + } + ], + "source": [ + "your_dataset.settings.show()" + ] + }, + { + "cell_type": "markdown", + "id": "95401842-6906-48bb-b449-2b4df52a9282", + "metadata": {}, + "source": [ + "Use the [update_qc_settings()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings) method to update the default settings." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5f30dd72-b67c-4425-a49e-21d248d244fc", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_qc_settings(obstype='temp',\n", + " gross_value_max_value=26.3,\n", + " persis_time_win_to_check='30T' #30 minutes\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "0769efa4-576c-4e9c-b5f9-536fb23543f3", + "metadata": {}, + "source": [ + "To apply the quality control on the full dataset use the [apply_quality_control()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control) method. Spatial quality control checks can be applied by using the [apply_buddy_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_buddy_check), [apply_titan_buddy_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_buddy_check) and [apply_titan_sct_resistant_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check) methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c3ce19c5-6ccd-44a4-8f67-3efd4f59621f", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.apply_quality_control(\n", + " obstype=\"temp\", # which observations to check\n", + " gross_value=True, # apply gross_value check?\n", + " persistance=True, # apply persistence check?\n", + " step=True, # apply the step check?\n", + " window_variation=True, # apply internal consistency check?\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "05ed9aaf-0998-4a50-b724-f95b5240eca9", + "metadata": {}, + "source": [ + "Use the dataset.show() or the time series plot methods to see the effect of the quality control." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "31918e79-d527-484a-b870-ceb678f8719e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAH4CAYAAAB+C5upAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVdrA8d+5U9ILCb13kKqACCqoIDZU7GUtoGvFsva1d9ey1tcCuipid2XFhoIFFVRElA7SewklvU675/1j0iYzk0ySSWaSPN/PB2XuPffcM8Mkc+e55zyP0lprhBBCCCGEEEIIIYQQYWNEegBCCCGEEEIIIYQQQjQ3EnQTQgghhBBCCCGEECLMJOgmhBBCCCGEEEIIIUSYSdBNCCGEEEIIIYQQQogwk6CbEEIIIYQQQgghhBBhJkE3IYQQQgghhBBCCCHCTIJuQgghhBBCCCGEEEKEmQTdhBBCCCGEEEIIIYQIMwm6CSGEEEIIIYQQQggRZhJ0E0IIIYQQ5fbt28c555xDeno6Simef/75SA8JgO7duzNlypTyxz/++CNKKX788ceIjSkUDz74IEqpSA9DCCGEEBEgQTchhBBChI1SKqQ/0R4oaUivvPIKb731VqSHEdTNN9/MvHnzuOuuu3jnnXc46aSTIj2kBvf+++/XK7hYVFTEgw8+2KLf10IIIYTwZ430AIQQQgjRfLzzzjs+j99++22+/fZbv+2HHHJIYw4rqrzyyiu0bt3aZ9ZWNJk/fz6TJk3itttui/RQGs3777/P6tWruemmm+p0fFFREQ899BAAxx57rM++e++9lzvvvLOeIxRCCCFEUyRBNyGEEEKEzcUXX+zz+LfffuPbb7/1295caK0pKSkhLi4u0kMJWWFhIQkJCUH379+/n9TU1LCdr6SkBLvdjmG0zAUWVqsVq1UuuYUQQoiWqGVe/QghhBAiYkzT5Pnnn2fgwIHExsbSrl07rr76arKzs33ade/enVNPPZUff/yRESNGEBcXx+DBg8uX8H3yyScMHjyY2NhYhg8fzrJly3yOnzJlComJiWzZsoUTTzyRhIQEOnbsyMMPP4zWul5jmjdvXvmYXn31VQBmzJjBuHHjaNu2LTExMQwYMIBp06b5Hb9mzRp++umn8qW2ZTOjguX+euutt1BKsW3btvJtSikefPBBv7ZV856VHfvTTz8xdepU2rZtS+fOnf2Oq9xWa83LL79cPr4yW7Zs4dxzzyUtLY34+HhGjRrFnDlzfPooy7P24Ycfcu+999KpUyfi4+PJy8sLeE6Ap59+miOPPJL09HTi4uIYPnw4s2bNCtq+tvLz87npppvo3r07MTExtG3blgkTJrB06VLAOzNtzpw5bN++vfw5d+/eHQCn08n999/P8OHDSUlJISEhgTFjxvDDDz+U979t2zbatGkDwEMPPVTeR9m/T6B/V7fbzSOPPEKvXr2IiYmhe/fu3H333TgcDp92Ze+3n3/+mZEjRxIbG0vPnj15++23fdq5XC4eeugh+vTpQ2xsLOnp6Rx99NF8++23YXsdhRBCCFF7cttNCCGEEI3q6quv5q233uKyyy7jxhtvZOvWrbz00kssW7aMX375BZvNVt5206ZN/O1vf+Pqq6/m4osv5umnn+a0005j+vTp3H333UydOhWAxx9/nPPOO4/169f7zKjyeDycdNJJjBo1iqeeeoq5c+fywAMP4Ha7efjhh+s0pvXr13PhhRdy9dVXc+WVV9KvXz8Apk2bxsCBAzn99NOxWq188cUXTJ06FdM0ue666wB4/vnnueGGG0hMTOSee+4BoF27dg33YpeaOnUqbdq04f7776ewsDBgm7Fjx/LOO+9wySWXMGHCBC699NLyffv27ePII4+kqKiIG2+8kfT0dGbOnMnpp5/OrFmzOPPMM336euSRR7Db7dx22204HA7sdnvQsb3wwgucfvrpXHTRRTidTj788EPOPfdcvvzySyZOnFjv537NNdcwa9Ysrr/+egYMGEBmZiY///wzf/31F8OGDeOee+4hNzeXXbt28dxzzwGQmJgIQF5eHq+//joXXnghV155Jfn5+bzxxhuceOKJ/P777xx66KG0adOGadOmce2113LmmWdy1llnATBkyJCgY7riiiuYOXMm55xzDrfeeiuLFy/m8ccf56+//mL27Nk+bTdt2sQ555zD3//+dyZPnsybb77JlClTGD58OAMHDgS8gb3HH3+cK664gpEjR5KXl8cff/zB0qVLmTBhQr1fQyGEEELUkRZCCCGEaCDXXXedrny5sXDhQg3o9957z6fd3Llz/bZ369ZNA/rXX38t3zZv3jwN6Li4OL19+/by7a+++qoG9A8//FC+bfLkyRrQN9xwQ/k20zT1xIkTtd1u1wcOHKjzmObOnev3XIuKivy2nXjiibpnz54+2wYOHKiPOeYYv7YPPPCADnRpNmPGDA3orVu3lm8D9AMPPODXtlu3bnry5Ml+xx599NHa7Xb7tQ8E0Nddd53PtptuukkDeuHCheXb8vPzdY8ePXT37t21x+PRWmv9ww8/aED37Nkz4OsRSNV2TqdTDxo0SI8bN67a51Z2rsr/5oGkpKT4PZ+qJk6cqLt16+a33e12a4fD4bMtOztbt2vXTl9++eXl2w4cOBD036Tqv+vy5cs1oK+44gqfdrfddpsG9Pz588u3lb3fFixYUL5t//79OiYmRt96663l24YOHaonTpxY7XMUQgghROOT5aVCCCGEaDQff/wxKSkpTJgwgYMHD5b/GT58OImJiT7L9gAGDBjA6NGjyx8fccQRAIwbN46uXbv6bd+yZYvfOa+//vryvyuluP7663E6nXz33Xd1GlOPHj048cQT/c5TOa9bbm4uBw8e5JhjjmHLli3k5uaG/Bo1hCuvvBKLxVLn47/66itGjhzJ0UcfXb4tMTGRq666im3btrF27Vqf9pMnTw45z13ldtnZ2eTm5jJmzJjy5Z/1lZqayuLFi9mzZ0+tj7VYLOWz9EzTJCsrC7fbzYgRI+o8vq+++gqAW265xWf7rbfeCuC3ZHfAgAGMGTOm/HGbNm3o16+fz3s9NTWVNWvWsHHjxjqNSQghhBANQ4JuQgghhGg0GzduJDc3l7Zt29KmTRufPwUFBezfv9+nfeXAGkBKSgoAXbp0Cbi9ag42wzDo2bOnz7a+ffsClOdIq+2YevToEfC5/fLLLxx//PEkJCSQmppKmzZtuPvuuwEiHnQLNuZQbd++vXwZbWVlVWi3b99e5/N9+eWXjBo1itjYWNLS0sqXa4brNXvqqadYvXo1Xbp0YeTIkTz44IMBg7PBzJw5kyFDhpTnSmvTpg1z5syp8/i2b9+OYRj07t3bZ3v79u1JTU31ey2r/gwAtGrVyue9/vDDD5OTk0Pfvn0ZPHgwt99+OytXrqzT+IQQQggRPpLTTQghhBCNxjRN2rZty3vvvRdwf1lC+jLBZmcF266rFEhoiDEFmsG1efNmxo8fT//+/Xn22Wfp0qULdrudr776iueeew7TNGscR6AiCuDNSxeqYG0bu7pqqOdbuHAhp59+OmPHjuWVV16hQ4cO2Gw2ZsyYwfvvvx+WsZx33nmMGTOG2bNn88033/Dvf/+bJ598kk8++YSTTz652mPfffddpkyZwhlnnMHtt99O27ZtsVgsPP7442zevLle4wr2711VKO/1sWPHsnnzZj777DO++eYbXn/9dZ577jmmT5/OFVdcUa9xCiGEEKLuJOgmhBBCiEbTq1cvvvvuO4466qhGCQSZpsmWLVvKZ7cBbNiwAaC8QmU4xvTFF1/gcDj4/PPPfWYmVV2aCsGDLa1atQIgJyeH1NTU8u1VZz6Vtc3JyfHZ5nQ62bt3bx1GX7Nu3bqxfv16v+3r1q0r318X//vf/4iNjWXevHnExMSUb58xY0bdBhpEhw4dmDp1KlOnTmX//v0MGzaMxx57rDzoFuzfZNasWfTs2ZNPPvnEp80DDzzg0y7UABp4XyvTNNm4cWP5TEHwFqvIycmp82uZlpbGZZddxmWXXUZBQQFjx47lwQcflKCbEEIIEUGyvFQIIYQQjea8887D4/HwyCOP+O1zu91+gaRweOmll8r/rrXmpZdewmazMX78+LCNqWw2UuXZR7m5uQGDRwkJCQH77NWrFwALFiwo31ZYWMjMmTMDtq3cDuC1116r1ay42jjllFP4/fffWbRokc/YXnvtNbp3786AAQPq1K/FYkEp5TPubdu28emnn9Z3yIB35l/VZaBt27alY8eOOByO8m0JCQkBl4sG+nddvHixz+sAEB8fDxDSe+WUU04BvJVsK3v22WcB6lSxNTMz0+dxYmIivXv39nmOubm5rFu3LuJLnYUQQoiWRGa6CSGEEKLRHHPMMVx99dU8/vjjLF++nBNOOAGbzcbGjRv5+OOPeeGFFzjnnHPCdr7Y2Fjmzp3L5MmTOeKII/j666+ZM2cOd999d/my0XCM6YQTTsBut3Paaadx9dVXU1BQwH/+8x/atm3rN/ts+PDhTJs2jUcffZTevXvTtm1bxo0bxwknnEDXrl35+9//zu23347FYuHNN9+kTZs27Nixw6ePK664gmuuuYazzz6bCRMmsGLFCubNm0fr1q3D9tpVduedd/LBBx9w8sknc+ONN5KWlsbMmTPZunUr//vf/zCMut3HnThxIs8++ywnnXQSf/vb39i/fz8vv/wyvXv3DktOsvz8fDp37sw555zD0KFDSUxM5LvvvmPJkiU888wz5e2GDx/ORx99xC233MLhhx9OYmIip512GqeeeiqffPIJZ555JhMnTmTr1q1Mnz6dAQMGUFBQUH58XFwcAwYM4KOPPqJv376kpaUxaNAgBg0a5DemoUOHMnnyZF577TVycnI45phj+P3335k5cyZnnHEGxx13XK2f54ABAzj22GMZPnw4aWlp/PHHH8yaNcuniMjs2bO57LLLmDFjBlOmTKn1OYQQQghRexJ0E0IIIUSjmj59OsOHD+fVV1/l7rvvxmq10r17dy6++GKOOuqosJ7LYrEwd+5crr32Wm6//XaSkpJ44IEHuP/++8M6pn79+jFr1izuvfdebrvtNtq3b8+1115LmzZtuPzyy33a3n///Wzfvp2nnnqK/Px8jjnmGMaNG4fNZmP27NlMnTqV++67j/bt23PTTTfRqlUrLrvsMp8+rrzySrZu3cobb7zB3LlzGTNmDN9++2357L1wa9euHb/++iv//Oc/efHFFykpKWHIkCF88cUXdZqZVWbcuHG88cYbPPHEE9x000306NGDJ598km3btoUl6BYfH8/UqVP55ptv+OSTTzBNk969e/PKK69w7bXXlrebOnUqy5cvZ8aMGTz33HN069aN0047jSlTppCRkcGrr77KvHnzGDBgAO+++y4ff/wxP/74o8+5Xn/9dW644QZuvvlmnE4nDzzwQMCgW1nbnj178tZbbzF79mzat2/PXXfd5bdsNVQ33ngjn3/+Od988w0Oh4Nu3brx6KOPcvvtt9epPyGEEEKEh9J1yTgshBBCCBHlpkyZwqxZs3xmJAkhhBBCCNFYJKebEEIIIYQQQgghhBBhJkE3IYQQQgghhBBCCCHCTIJuQgghhBBCCCGEEEKEmeR0E0IIIYQQQgghhBAizGSmmxBCCCGEEEIIIYQQYSZBNyGEEEIIIYQQQgghwswa6QFEO9M02bNnD0lJSSilIj0cIYQQQgghhBBCCBFBWmvy8/Pp2LEjhhF8PpsE3WqwZ88eunTpEulhCCGEEEIIIYQQQogosnPnTjp37hx0vwTdapCUlAR4X8jk5OQIj0YIIYQQQgghhBBCRFJeXh5dunQpjxkFI0G3GpQtKU1OTpagmxBCCCGEEEIIIYQAqDENmRRSEEIIIYQQQgghhBAizCToJoQQQgghhBBCCCFEmEnQTQghhBBCCCGEEEKIMJOgmxBCCCGEEEIIIYQQYSZBNyGEEEIIIYQQQgghwkyCbkIIIYQQQgghhBBChJkE3YQQQgghhBBCCCGECDMJugkhhBBCCCGEEEIIEWYSdBNCCCGEEEIIIYQQIsyskR6AEEIIEQqNxmQdoDE4BIWK9JCEEEIIIYQQIigJugkhhGgSSngSF+8CYOMC4rg3wiMSQgghhBBCiOBkeakQQoiopykuD7gBuPgQk/wIjkgIIYQQQgghqidBNyGEEE2ADbD4bPGwPCIjEUIIIYQQQohQSNBNCCFE1FNYMehVZasZkbEIIYQQQgghRCgk6CaEEKJJiOF2IBYAC2OxcmRkBySEEEIIIYQQ1ZCgmxBCiKinKcLBv4ASAGycjMIW2UEJIYQQQgghRDUk6CaEECLqufkNk63lj528E8HRCCGEEEIIIUTNJOgmhBAi6hm083lk0CFiYxFCCCGEEEKIUFgjPQAhhBAiGAfv4uJTDPph5UzczAXisUg+NyGEEEIIIUSUk6CbEEKIqFTM/+HiNQBM1vnscfAIBgnYODUygxNCCCGEEEKIGsjyUiGEEFGnhOnlAbdg3CxppNEIIYQQQgghRO1J0E0IIURU8bAJJy/V2E6R2vCDEUIIIYQQQog6kqCbEEKIqFLIIyG1c/IWJnkNPBohhBBCCCGEqBsJugkhhIgya0Js56GIWxp0JEIIIYQQQghRVxJ0E0IIETVcLARKQm5v8mfDDUYIIYQQQggh6kGCbkIIIaKGg3dqeYQLF381yFiEEEIIIYQQoj4k6CaEECIqaFyYLK71ccVMQeNugBEJIYQQQgghRN1J0E0IIURUKOEdwFOHIwtx1yFYJ4QQQgghhBANyRrpAQghhGjZNC6cvIGLl+vRS0zYxiOEEEIIIYQQ4SAz3YQQQkSUgxdx8BKg69yHye7wDUgIIYQQQgghwkCCbkIIISIqHEtD3fw3DCMRQgghhBBCiPCRoJsQQoiI0bgx2VLvfkz2hmE0QgghhBBCCBE+EnQTQggRMW7+BIrD0FNcGPoQQgghhBBCiPCRoJsQQogISghLL5odaIrC0pcQQgghhBBChIME3YQQQkSMDsPS0rKeNI4w9SWEEEIIIYQQ9SdBNyGEEBFjsiFMPRkYtApTX0IIIYQQQghRfxJ0E0IIETFWxoetJ01hmPoSQgghhBBCiPqToJsQQoiIUSQAKgw9OXHzUxj6EUIIIYQQQojwsEZ6AEIIIVquYh4FdFj60vKRVi2TbBw8i0kGdi7CxrGRHpIQQgghhBDNmsx0E0II0eg0Dpx8gMmOsPXp4a+w9dUcFXM3Lj7FwyKKuRGTnZEekhBCCCGEEM1akw66TZs2jSFDhpCcnExycjKjR4/m66+/Lt9fUlLCddddR3p6OomJiZx99tns27cvgiMWQggBUMStlPAYcDBsfZpsCltfzY3Gg4ffqJhVaErQTQghhBBCiAbWpNfidO7cmSeeeII+ffqgtWbmzJlMmjSJZcuWMXDgQG6++WbmzJnDxx9/TEpKCtdffz1nnXUWv/zyS6SHLqKc1pr8Yg9ujwmmBqUwDDBNQGswSnNQBdmnAF3DPq0UlhD2JcRaiLFbIvRKCBF+Gjcefgx7vx5Whb3P5sAbcNsDuKrsSYnEcIQQQgghhGgxlNY6PMl0okRaWhr//ve/Oeecc2jTpg3vv/8+55xzDgDr1q3jkEMOYdGiRYwaNSqk/vLy8khJSSE3N5fk5OSGHLqIEmv2ujnsyeiqgjiii8EvtySiVDgSzgsRWW6WU8TFDdJ3MqsbpN+mysEnOHgQMP32WZlEPI81+piEEEIIIYRo6kKNFTXp5aWVeTwePvzwQwoLCxk9ejR//vknLpeL448/vrxN//796dq1K4sWLQraj8PhIC8vz+ePaFkufntPpIfg54+dJj9sdEd6GEKEhaJVg/VtEn0/v5GiKQkacAPw8HujjkcIIYQQQoiWpskH3VatWkViYiIxMTFcc801zJ49mwEDBpCRkYHdbic1NdWnfbt27cjIyAja3+OPP05KSkr5ny5dujTwMxDRxGQXTk9WpIcRkEtibqKZ8LCywfrWROfPb2SYBAu4AWjyG28oQgghhBBCtEBNPujWr18/li9fzuLFi7n22muZPHkya9eurXN/d911F7m5ueV/du6URNMtiYfdvHDh41T3RTUSeqQpju/fpFMwClEunBVLq/Kwq8H6bmo0OTW0KEZH2e86IYQQQgghmpMm/y3ebrfTu3dvAIYPH86SJUt44YUXOP/883E6neTk5PjMdtu3bx/t27cP2l9MTAwxMTENPWwRpUzyGNljDbueGseP64eRmd+ZGP6JAWg0oPBWO/D+zwS/fQrvfhOwKG9RBl3TPry1GbT21hY0Svcpw2B4FyuDOtka/bUQoqFYGY+TaQ3St5s/sXNSg/Td1Lj4soYWHjQ5KNIaZTxCCCGEEEK0NE0+6FaVaZo4HA6GDx+OzWbj+++/5+yzzwZg/fr17Nixg9GjR0d4lCIaecjAwc0AxNpdnDR4MbCTZOIjOzAhmhkPyxqwb8lTVsZN8PylFaQ4ixBCCCGEEA2lSQfd7rrrLk4++WS6du1Kfn4+77//Pj/++CPz5s0jJSWFv//979xyyy2kpaWRnJzMDTfcwOjRo0OuXCpaFgdPBNh6oNHHIURz52igWW4AmtwG67up8VBTqgULioRGGYsQQgghhBAtUZMOuu3fv59LL72UvXv3kpKSwpAhQ5g3bx4TJkwA4LnnnsMwDM4++2wcDgcnnngir7zySoRHLaKVh2wATFNxzTv3MnvZeDQWiPCX+NQ4ePfSOE44xB7RcQgRDhoPNGixg4MN2HfT4WEPUFhjKw9rsXJoI4xICCGEEEKIlkdprXWkBxHN8vLySElJITc3l+Tk5EgPRzSgAu7A5Cv+8cE/eW/xaUTbsquN9yfSLc0S6WGIMHGzAs1+rBzZomYbudlMEZMa9BwJ/ISF9AY9R7TLYyyhBDdjuIMYLm34AQkhhBBCCNGMhBoravLVS4WoD40LkwNoTEw2AfDThhFEW8AN4PdtnkgPQYSJg3cp4iKKuZkCzkNTFOkhNRoPyxv8HE6+afBzRDM3Gwl1NqGSnJVCCCGEEEI0GAm6iRbLZAcFnEgBx1HIBcBeAE4Y8GtkBxbE6B4yy625cPJu+d8123GzIIKjaWwNP7naw88Nfo5o5uDFkNsadG+4gQghhBBCCNHCSdBNtFglvIBmPwAmawEXAE+e8xyXHTULm2FGcHReCmibCD/eGE/nVhJ0ay40JT6P3fwZoZE0PoNeDX4Oky0Nfo5o5mFryG2LuI58TsTBOw04IiGEEEIIIVqmJl1IQYj6cLO4yhZvIEQp+Pe5z/H0uR9hZQyx3IOS+LQIE+9S0qpL/1IiMZSIcDZg5dIKO9G4UNga4VzRxc1vQF4tjihEU4iDJ7EyDAsDG2poQgghhBBCtDgSSRAtWPU50jR7cPERJfy7kcYjWgJv0M13FqWb33DxA5rIz65saJrMRjlPWY7GlsTDBoq4Aur4GptS+VUIIYQQQoiwkpluosWycDQevg66f3dWa/679HjyClOIUfko7ZuNqvyxUenvGlDex2bpPqPKvrJOtAHKrLQtwL6OqVYuHGEnPVGWljYXilYoeqHZXL5Ns5xibsBgIrFcgIVDUMRGcJQNx6A3Jusb/Dwu5mPhkAY/TzRxsybSQxBCCCGEEEJUIkE30SJpNOAIuv/5by/i0TnXUlHFNFIzkJzc8qmTjy+PY9IQe4TGIMLFJJcCjgOcQfbPoYg5QAwJfISF3o06vsbgZmEjnWcRcF2jnCtamPUMurn5BRvHhGk0QgghhBBCCFleKlokkx14mB90/xNfX0FFwC3y/jGrpOZGIuo5eYdgATdfDhyNkvssEgob5SwmGxrlPNHCwz5cfFivPiz0DNNohBBCCCGEECAz3UQLpYipdr/VcOM2o2dmWWwU54PXaFx8jJvFWDkcG+ejoihgGWkaN05m4GEdEPp7ys0CPOzEQpeGG1xEWKgpn2J4FKHJRbWQIhVFIc/qSwVyAmxPw8rJYRuPEEIIIYQQQma6NXsaNyW8RBF34GlhMz+qY9Aeg8FB9/9n8oN4l5TqoG0ai8WAjy+Pj/QwgnLzNSU8jJtvKOFRXHwe6SFFFSdv4OAF3MzDzRdAYohHFlPI+Q05tEZnUkBoM/3Cw1u0omWonCOwOgo73sBnVdmU8HBYxySEEEIIIURLJzPdmrlCLsNkGeANjiTwJRa6RXhUkacpwcJITFYF3H/y4F84+PwYAJJYiZL4dFAe1lBRBcLAZC0wKbKDiiIe1lbZUlD6/1BmfOXh4SAWWod/YBHg5rdGPJuicWbURZ43R6UrxNadsHESLt7268Ud5PehEEIIIYQQom4kktDMmSyv9Ejj4stIDSVqmOwjn/G4eCOk9o2V+L2psjCWihmBJrSQ5XyhsjI+yJ7QAkKFnIqmeeT0M8lsxLNpnMxqxPNFjkJV8z7zpVlWGnDzXwJuyM+uEEIIIYQQYSVBt2Yv1ueR0cITZXtYRwFnAbkhH+NNfi+CqZq/zc03ERpJdFJ0IFCAY/vBtuzJTsftAV3tKuYCXMxtqOE1KoMOdT5Wa1i8pT9PfX0pd3x8M498eRWFjuqTHbr5tc7na0ocvIeb72t5lP+bzuQvTA6GZ1BCCCGEEEIIWV7anGg0JTyCi+8x6EwsdwDFPm08LIYWnCy7iFuoTcANwCNLrqqlSK70yECRFLGxRKNibiZQgOP576awLy+N9668M4RemscMJGeIs0sD+WXTobz962lYLSaXjv6cQ7uuo8hhJyEm+LJKk211Pl9ToXHi4PEw9aZqLDIjhBBCCCGECJ3MdGtGHMzExX+BTExWUMStfm10eT6plsXNckqYjmZHnY4WwRn0w8IJeGP4qdi4DAczcPFNaa6pli5wMv9CZyxJsQUoBaqGYq9ufm+AcTU+0y+/Xehyi5ModsUyefSnjOq1ihiri7TEwjCOrqmqz++nqsFcjYet9RmMEEIIIYQQohKZ6daMuJldZUtGlcc2YpjSSKOJHm4WU8QV1LYS6Z9b+zD13fvYk5MOOhetS4MjBmgTLKWBElMTcJ/Gu11rMAzQqso+vI+D7UNDSgLcOcHO1LFx4XtBwsTNJlzMQZOFp3xJaRYl/IOy19rO9cRyTcTGGB0SCFSx88KRc1AqtPekh4XAP8M7rIhw1PnICQMWkRSTz2Hd1gAVgcryn72AbGiKUERv9d/68j63HlCnYJkZYMtGYEg9RyWEEEIIIYQACbo1K2aQGTUVXLj5AwuDGmU80cLBDGobcHttwVnc/ckt+OXi0gT6nlrzvupy5lezrzgfbvrEyX9+dbHszuTgDRtZCf/DyQNB9la81k7ebdFBN+9Mv+yA+47r/ydOd01BIy9FevgHFxGJQF6djrRb3Yzpu9xve/WvXS4eNmFt5kGkeP5FERcR/BdQMPl+WxRpYRmTEEIIIYQQQpaXNisGHWts42BaI4wkuphsqPUxj35xDYGS30fKmgxNiSt6lmo6eSrEljloWt4SQI1JMQ+QX0Owx26tOeAGYNA2TCOLtG71OjqUpbi+4jDoWq9zRjsHH9Qx4AaBLgHczKv3mIQQQgghhBBeEnRrJjTFmPxZYztFasMPJurU/kt3Qmz05b6zWSI9Ai+NC0IOpFkBewOOJjq5mY+L/1HbGZbB+2v6FWFNdkEdipIs39GH4Y+8zxkvPsOSbf3ZmRn6TCw756CaSRGKQEwycfAYdQu4EeS4lvfzKoQQQgghREORoFsz4WF1CK0SiOWuBh9LtInhglof8/nU6/F+IdWV/kTOhcMUFiOyM+80RZTwJoVcGfIxNk5GYWvAUUUnJ1+FuUcPOsBSwKZE1yGfm9Yw8YVpZBak8fPmUUx84VUu+M9zIR/v5B3cfFvr8zYV4Smw0dvnkYd1YehTCCGEEEIIARJ0azbcrA+hVRHF3E0J0/GwraGHFBU0JiX8u1bHFDvtHPfMW3h/PFSlP5HzwVLN8l2RraJaxA04eRaTP0I8QmFjcoOOKXq5wt6jmyVh77Mx6RpzTvrzmBa6pGVgNbyJD01t5T+XPliLHhRmM67G6ebHMPSy3eeRWacKz0IIIYQQQohAJOjWDHgowB3SF0sN5OHkJQo5FTe/NPTQIk5zENhXq2O2HOxCiTv6qoW+87t/BczGYlKMh8W1PEpTzA11CrY0dXbOD3ufHnaHvc/G5GZRrY+xWjw8POlFrj3mA1olZGE13BzSoTZBNAMrE2p93qbCU4fluv58A8Q2xoWhTyGEEKL5MSnBbIAbq0KI5k2qlzZhHrIoZCKBKtCFooTpJHJUeAcVdWqfz6lr2l4S7fkUOKMrF9SkIZH7cTVZUafjNHtx8wu2Zhz4CKwhZkY27XskmroFjScMXMyx/f/gxgkfMHfV6FoWUkjCQs86nbcp0OwKe59mHavLCiGEEM2VRlPEVDwsBMDGpcRxR4RHJYRoKpr2t7gWrpibqWvADWjWCcbLeGoxm8/tAacLkmKL+P7Wy4mmnG7xNjiyR8PnRnPxNQVcQBE3YXIAAA/bKeLGOvepmk3lzdCU8B+KubpWxxSWWHF7qm/jYnY9RhV5Lr6s03FKgd3qwWbxcNqhP9fy6Jw6nbMpcLOZuhdQCM7Dj7LEVAghhKjEzfLygBuAi7fR5EZwREKIpkSCbk1UqNVKq+8jI0yjiV6akpDa5ZfEsXDDMHbmeANEx/37LaIpp1uRC67+oGGXaXrYRjG3Y7IaN99RxJ0AFHIJ1HGJqJVJWBkaxlFGN5OdOHmh1sct3jqEDfs6o7U3+KsDxHg16zDZG4ZRNj6NhiY69mjlqUc+N63hzv/dSIdbvmfqu3f776eGCLAQQgjRgrj4zm+bky/RDXDzSwjR/EjQrYnSYZjBYTbxHFGhULQJqV1uURIlLjtxNm+FRRNLQw6rTlbtbdgPdl0lKGLyZ2neiqw69+nmM1xhr+QZvZx1rJS5K7sdecXJbNzXie//OiLoEsqmGnTzzsiqbSDnkGr37slO85kdaJrBgpUFtTxv06DrkVPmgc+n8vrC83CZsRzeY02V160zBt3rOzwhhBCi2fAEKCLm4HGcvBmB0QghmhoJujVRGjv1/+dLaPYzGpy8F1K7Tq32M7LHauLt3plxx/ZdRKSXlFb10MTYBu3fYHCVLW5KeLyevVpw17oAQ9PlZH6djjuu36/0a7eFN38+g4//PDFg8AhAkVyP0UVS7QNEisyg++asPIq/Mnpyzbv3MWfFkVw1837mrhrF6t09/F47Z6XlIM2JjZPrfOyy7f0BxU3Hv8VlR31WJci7zy8AL4QQQrRkwSY7uPi1cQcSJTT5aNyRHoYQTYYUUmiiPCyg/vl8MvCwFqtfsKX58IT4YagUpCVWzIhZt68XkV5SWtWhnRo6Ru4GYgDvbD9FB9x8Us8+PVg5vL4Da0KW1+moLum5aA3j+/2GiTXoTDcX32Chd92HFyEeltX6GF1NvspX5l/AMX3/4Lu1Y3C5Y/hl06FYDDdbD3bl65uu8Wnr4gNi6hGgilYuvqjzsVeN/ZhFW4Zx1diP0Zoq7zcXLuYRw2X1HqMQQgjR1BVzJwRZHWSyFJNsDFo17qAiROOhmDtwMw9IIYHpWJrx90ghwkVmujVRivSw9FPX5XBNR+gzbJSq+PK5LbNzA42n7m6ZHVp+urpy8QH4VJhMgHrfxUqnmPvJ40hc1DYJftPiZk29jlcKjh/0J8cPCD4zMNQchdFG0T6s/R3VdynZxSkUOGLp2XoHk4/8nEO7rqNDyj6/gKXJyrCeOxpo3DiZXufjTx26kE+mXk+hIy5ggNegYz1GJ4QQQjQPRTxZQyEoNw6eb6zhRJybhaUBN4BcinkwksMRosmQmW5NVKDcAnXT3JcRWajL0rakmELyHdFV3dXS4BPvygpGeNfnaTaFoc+yJYJOirkRK3+iomwGYbgUcXNI7bQGU4MlwC0PpcBSTTpBF78Qxy11HGHkWOgBpFK7aqLFQffcOO59MguSmTjkJw7r8hcebWBVJpOP/CxA6+a3hN7DhnodrxSM7bs82F4MDqtX/0IIIURTZ7IbN++E0C54OozmxsU3Po9NNqBxo0pDChoXxTyIyRpsnIida5rtdb8QtSEz3ZooD3vC0o+F/mHpJxppivCduRWgTWkApKoTB0XfrKybjrM3aP92LkTRrQHP4KT+M+ei2cGQWv28cQg/rTvUP/eYWwXN5VZhQ2kl0KbFxXxCDbh5TINX5p+N1pCRm8pDn13F+7+dzOb9vSlb8p0Y66Bb6wMc3WcFCbFOkuNKiI91EmsLFGBrfh9z7gadoaypT/EUIYQQojlwhZin18OPmOxo4NFEB+03X0djshUAN0vI51TcfIbJJhy8jDOEoKUQLUHz+zbSAmg8aHLD0pfJzrD0E41MdlFd3jut4dfNA/lzWz+/ffNWH92AI6ubrZkNG2xx8TW69IOzYXRGYWvA/iPHWzI+tH+fFTv7syWzm8+yviKnjQc/u459ualoHbgKZ9mZqpsBFq08LA257Zin3uKd387gxvfvYORjH3PzCe/yt1Ff06vtJrIK0onjWxL4CUJeYu/BDEO152iiyWvQ/ltS8RMhhBAiEEctKpM6+bgBRxI9YrnAb5uHNTj5kCIuo2ruOycfNdLIhIhuEnRrYkwOUsjpmCwKS3+uZpzTraa8d/vz0yhyxvH+794k6y4PuD2wJ7sVRY6YxhhirYzo3LA/rg6mNWj/Bu2abbVczW5CXcbcLukgqfG5/LFtQHmAbcPebqzd3Qu71Y3HhGJn8Kn4ZhOcLagYHlK7QkcsGzJ64fJY+WDJ6Rx/yM8kxxWV709LPEgxp2MQSwLvh3x+N3/WeszRzMqYBu3fydsN2r8QQggRzUwKgQMht2/O36cqszAAGxeVPlKAlRLupYRHA7bXZDTa2ISIZhJ0a2IcvI7J9jD2GH3BpXCp6QMwJa6A9IQcRvVcBcDvWweyZk8Pflw/Ag/VJNaKkJm/V79Utj40BegGzklh8mcYcxFGDyffUsBEn215xXEczE8IOGPt3JHzOX3oAtbt6cybP5+KUuD0WImLKWH2smPZdrAtsbbgs+ZqM2ssesSH1CrO5sBuKeGuk/8DaEb1WBngNSzGwaso2oR8drOZLZe0MhpCeP5Ol0FWYVyt+9dNcDalEEIIES5ufq9Ve12LAF1T5mE7HlYBqRgcQc1pYxyYIaZfEaI5k6BbE6LRuJgV5l6b54eEyV4cvFFtm1ibk+7pezjz0O8BSIkrYnd2W3q22UU0/mh8t77hZji5WdFgfftqXstLNZoSbqHqMubnvr2Eg/npAStDejzw9arRZBWnEWvzHtc6MYeJg3/i543DyCpKDnhcGVcTXPoX6kwzw9AsuvtCJg2bz2uX3M/ZI77D4fKv9+PkG3QN+RorM1kXctumoJjHCeV39+NfXcFXK4+pwxlCC5IKIYQQzZHbL59bTbUHHWFL/RPNSrgHk9VADia/hXCEgiicyCBEY4u+yIIIysHbQInPthKXgcMZSgL2YDRmNXnPmiKNSSGXE0pl1rTEIuylcaABHbYyoMNmWifmEo0/GsmxDTmmggbsG0Bh42Iszawqojcnov8PX2pcAdlFyQGPmbtmFDN+Pou0hDyS47yve482GZw5/DueO/9pYg13tdnhPCwIw8gbl6cWyy66pe/HasBZw38gPTGfWHugYPMuHDwUcp/usFTijR5uPg+pXWZhKit39Q34+aA1eDyK+WuG43JXzSMoy0GEEEK0XG6WVdlSc+CoofOtRgOT/VSXL7uqGO7EoFXDDUiIJiL6IgsiII0HJ8/6bPt2zSi2H+zETxuOqHZmTM2a19IrKEDXoUCEYUD3Ngfp1XYPoSbFb0yPnRbbYH1bGYOiU4P1H8f/iOWWZlc23M33AbefP/Ir8orjAwY71mf0YtGW4Zw08Cc6pXiDG0pBQoyb1IQihnTbhlHty7Sr/gNvdOGfUVu7ZbbNZ6abm33UVJW5zJ0nv8Ex/Zb4bfeYsGJnLx6bcwWZxSm4PRa/zxBXC6nEJoQQQvgrqvLYUUN7A93MrnGr8hYNq13owMapDTMYIZqYOgXdXC4XO3fuZP369WRlNbeATXTylqL2TUL/9q+nsmDjcA7rtrpefTv5sF7HR58k6pOrTilQtVi61lgO61LT1Pa6U8RjUJdlaKEp5iwKOAkzhNmHTYmDzwJub5+SwwmDfg8YDB/ZYyUxVicHC9IY1n1DHc7aFItRNMSFaG1+xgsb4PyR4eQ/Ibft2CqTUwYv8nsf7s5px/d/jSa3OIn1GT2Ii/F/T5l8U9+hCiGEEE1SbfLGepm4mnkFU80edC1v/BZxJdovgClEyxNy0C0/P59p06ZxzDHHkJycTPfu3TnkkENo06YN3bp148orr2TJEv876iI8DNr6bbv9xDdJtBfTOrF+SwM1++p1fLTxzqZqXa8+Lho1NzyDCZPR3Rv+7plu4BmPmsxmGODdHHRPsNmnR/VexSfX3chjX11V52XhbuoSrIukQvbnpVDksJNTFI/TbeHnjUPYm5OOWfoaZBYk0/+eT/GYob3XNTuxcHrIIzDJqcO4o4+nlhe8gd6HaQm5pCfmsjunNZ1TA//+t3BoHUYnhBBCNG0mmWjW1Po4b4GB5kuRBiTiDR8oFGnE8hiKLvjeXK1YimuytsVUdhWiOiEF3Z599lm6d+/OjBkzOP744/n0009Zvnw5GzZsYNGiRTzwwAO43W5OOOEETjrpJDZu3NjQ4255dDyF5mO4dUX+tkGdtzDpMG+iz1p/ea/U3qBneMYYTfTokJu6PYqsggQ8HnB74Js1R7AvvzXJsTnUJm9BQ+nTRvHF1YkNfh4rY2p9jGlCUUmoM/A0itpXUoxuoc8+LPsZVQpGdF/HO3+/r/bLwrW3H4OEWh4YWdpM5u5PbuKRL6/h3d8m8Z8FZ3Pzf+9k3NMz2JjRDYBr3rmfnOJWON12tK7yO01X+ajSoLVBPI/hN4suyO9C1UyKeCjd2ec51iVwmxhTwgWHf83PG4fx8+ZhfvsLPZOwMqIeoxRCCCGaJoUNtFFxLRLi56zRgGlaooEingT+g5VjsHISCbyPnUkYui+Vr8UsDKdyiEFJcSYhQvvGuGTJEhYsWMDAgQMD7h85ciSXX34506dPZ8aMGSxcuJA+ffqEdaAt3Ra9k4HOe4gH3rXBkYb3y3uc3VXepjZfvrboWHopEyujsHNB+AccYYMcXzHPDh1LPwOCZSEwNUx49jV2Z7ehX/ttHMhPZ9OB7jTMcri62XhA0/aufO+QdMXINJX+XmmfYUBiDNw+3s5tx4ce5BpY8n98bYd2AZ56MQQMlz30+TX8b+kJ3DPxP1ww8uugfStlwcJI7FwS8niaglgepFjfU2M7jfc1jK/yM6rUALRe67Ot8nvVpcFW5d/jaw9cYG1aF3azXMczd/UYbBYPKBjVczk7DnbEo22c8Nzr/HD7FDILU3GbVq55935evPAxEmO8yxGKsbLFvIROxgxSK/V5pyuBaXZFpvlPWqknyn8WPIBR+rPgDWoqYrgR1cQClcHMM3uTpuAwvO+rPRo616GfGJubWJuHuavHMv3H87jqmP8C8ObPZ3L34bPJUvcQb8iFshBCiJalRNu51WXhAZuJgYGBSVzlm11AET1ppcbj4g3AxKAnMdwQqSE3GguDiedFn21/c27lLptJTwU5+lh6GfdQzI2YbMbGqVgZF6HRChE9lNZ1r3vZEuTl5ZGSkkJubi7JyYGrETaG11wfcbPnX3jClM/JgsF5xinEKDvTbQ+Hpc9oklYygqIqlV4D0W4b+t4fG35AEXLDWDvPnFVz4M3UJvGOIbXu33xlOuwY7LvRVozxyPE+m+zY6EhbpljO4k7b1bU+T7T60DOH/7g+4pdaJfX36qW6cqkxiRc973KQbMA7WV/XcEtVociNWYpdNZ2ZW+NKLuHn906DVSdW2lo5bAz0/wnWjaVyWNl65tOcMjqX8cZobnb/C4AE4rBixYaV9+3P0oUOHOI8CaD00rhidqpCYcPKUPqzMPaDBn2OjeV511s84XmVHPJrbGvu6Au/nQFFid7IvAGk7oOxH6JSD6I/vQkWn4NPKP/oDzFOfYkvrNOZYD264Z6IEEIIEYU2mzsY6DwFgHRSyawhPYVC0ZfuPGS7kTMsExphhJHjNDVrHSZdbIo0i+JC183MNRdSUlpoogNt2BIzH1W/Cn9CNBmhxorqnZk9Ly+P+fPn069fPw455JD6dieCWGKuIo4YCijCQGHWs7qmB5MPzC9JIK7ZBd1c2hVSwA1AWV3o1N2Q07RmDoXqwz+dIQXdSgJUZVIoEkkgn2pyBh7+mX/Qrf8vfs2cuNjGbrLIrXEsTcl/PV/VKeAGkKmzedDzos9Pck0Bt7I22/Vu+qjudTpvJGxmB8ZFD2NumQ2LJkFCAYyaBSvHQ1YnGD0bo9tfmHmt4Me/gSsWxn6I2WY3dk6gSJdwlBpOsS5haWmelUTiWWWu5wjLUA6hF5vZgROXz3k1Gicu1rIpEk+7QczwfBJawO3Tm+C3cwPvXHRB6e+9ynPkNIz2BtwAlut1TECCbkKIpqvkxbbgcXiXgiR2QMW3I+aiBZEelohym/R2RqjBaDR79f4a22s0meSy2tzYrINueR7N2K0FrHWYxCrNPzr/yaf273za7OUAhRSTKEtKhfBR66Dbeeedx9ixY7n++uspLi5mxIgRbNu2Da01H374IWeffXZDjLPFW8JKCkqrv9Q34FZZIcXkmvmkGElh6zPSahvYUbddhH7/flh3BJhWvD8WFvxm4jRBgzqGViulOEDQTaPpTVeWsTbAEV7G4V9jGm746nrw2OGIT1EnvRq0/Q/m4pDG0xRordli7vSbXRWqUAInwfzs+ZM+Rvc6H9+YtNbklgZujZ6roGelRMPtZ5b/NZ1UMpOz4fSXfY5PUyms0uv5Rf8JQFvS2U8mxZQw0/MpV1suYBcZfgG3yqrb19RsZGtoDX87s5qdqkrArXTbn5Ngkjfo9r7nC263XVGnMQohRFTwOECXfj4X7Anj1bNortabW/jYM5dteleNM9wqyySLDWaIn89N1Kd5LtY6vD9PDq15MrMIo4N/u288C2mj0umiOrCbfRypDpOZb6LFq3XQbcGCBdxzjzeH0ezZs9Fak5OTw8yZM3n00Ucl6NYAnKaTDXpbg/X/p7macUbohQei3V7zQK3aK6sLdel9xBFDMQ7vktPHPoLitjTlwNvQTgazrwytAEMRxQG3VxdwK2MM/xaGf4v2WNDT/w9910I0CuxFcMWNGF3XlbfdpfeGNvgmYJPezga2hjUIHqrfzBVcRtP4XZuhDwacSVlVsItbm7ays9L75hbjMu40n8aDyWq9nuXmX6STSj6FaJcdPe1l2NOfyj+3DuDwTvksvCmR2KpJ8poQj/YEfb9plx398nTI6BtibwF+t9kqfg/8xWZKtINYFVO3wQohhBBNiKlNLnLdympd+4KAGvhG/0KJWUKsERv+wUWBFEuVawZL4JvHf3Pf6rMsd1fMQlrTqoFHJ0R0q3XQLTc3l7S0NADmzp3L2WefTXx8PBMnTuT2228P+wAFbNI76jSTJlTb9O4G6zsSNpvb63ScEydQGoR74CwALjAm8pb9ybCNLVqV6JqDIjXRn9wOOw+l/Mu8MwGmT0c/Og5leN+/JTgwtYmhQpuBF81+1yvDEnAztwyGDx+AolTovopel7zC1pjqL/gW6xX1Pm9jWa03VLvfXHQ6fH01uBIg+SBcdG95oLYjbZlmVuRi609PhlsH0c3Zke3swURzrOtibKWVSfWH98OeAQQKKK3YbXLRzCL+d0XTLahwUGcH3afffxgy+gXag1/5FeWGI2bDb+dUNFMemOL7Gb7W3MQwS+ACSkIIIURz8oe5uk4BtzI55LGSDYyk9jmSm4LTkqxcn2bn3RwnfWMU/2jTh3c4im/wTSujgOJKaX526320VhJ0Ey1brYNuXbp0YdGiRaSlpTF37lw+/PBDALKzs4mNbZ6R/Uj7zVwedJ92dQBPGsSsQ6m6FVmYZy7kcs6puWETsV3vqdNxBhY8uMsfJxLPLp0RrmFFtSIdeKZbdbS7LbjbQsx6lHLBrv6leyoFO0wbOOIhzru8sBgHhRST1MQrSe7Ue/mXaxoWLFgxcNRx+aK5rxu8No3y12zTSPb+qwt32U6n6yYXL98cw+qh/r+md9N03pfV/QyZv50On/2zYkNuB3jldczbzwXTIOvb67Fqk6TjPyau3R4ONwZzqDqEoao/B3UOhRThxlNxU2Jv79KOAs9mW7knPIVoIqXaLwN7ewXZofz/npyBccbzcMbz1Z7vaffrvG95rhYjFEIIES2ucN7Nj+ZiNPCG7V8cazki0kOKagfIqlV7bRroX86A9UdCv1+xHfUFf5irGGk0z6CboRTPdojj2Q5luaIPJ9+5nW9M36Cbt7prCd3oiE3ZWGNuZKjR368/IVqSWgfdbrrpJi666CISExPp1q0bxx57LOBddjp48ODqDxZ1siNIEEnnn4Tefw9gQOwK6HhDeeBNa9AOS0VjuwcjyOSitbr5JBn/yD2Hl8z36nRsIvFkk+ezLVkl4dEeLMoS5Kjmobb5xXTh0eiMxwAr2DdCp2vgyFkw+058vuSn7IVY30IMB3U2SappB922m7tpSzq72IeuzyzUleOo/HolOgtYO+1k4rQ3+HvmJ24eeCyGV2/wvaHhrhQcjnYFuij4zj8nBtio4PvJsPRUikpfm8xVx/D389czbbT3C0NXoyPxnlgKK+W5NDAwj5gNX98Y9HRXHWmv8/OIBp94vgm+01ZNwZOqcjtjvv0YxqX3VNtsof6TPF1AsgptmboQQojo8Ye5ml3sA2BnC7mJXFce7eEp92vEExtSMTbtsaAf+x8UtfFu2DQa14LJbLz34zCUKYxuGeYBJrv+yQa9lXwKA7axoCigiEPozVa9q5FHKET0qfWvhalTpzJy5Eh27tzJhAkTMEojOT179uTRRx8N+wAFLDT/CLhdZ0+m/At7yVAoGQxxyzGXHQcfPUzV2R7mEbMxznzGr5/9tbyzE83eN79kT+kFRm1VDbgVUMRX5o/sI5OOtA3H8KLWPp1Zq/Y6+yK8xSYAZx8oOgLjiC8xY/Nhzg3gSIABP6POfoqquVOXmWvoYVRN4t60bNDbWMTy+nfUayl8X7b8T3PO+i/KA26Ubr3lKYdf0K0EBwVmIYlG9Acv/2Jz8J29/oCdg6ps1Kgth3vzApZTfP31IVCaerKb6uR3R9rExDjmI8zELO9y1aIUvEspgfg8/nGyg9uPbNo3hraZgS9ctQYO9A6wxw3HvQ2/nQXFqb671h6DNo3ypd+B5JLPcvMvxloOr/OYhRBCRIZLuSnLguFqQjfrGtsacyO/epayUW8PKeAGwO5+FQG3MvmtWbAjD/qEf4zRZLfex0/692rbeNBkksN+nVnrGYRCNEd1isWPGDGCESNG+GybODHQjAURDqsJsqTIkgWuTpQHPyw53v/PuhcIMK1t8Zno499EJfnmBcqtRxXFaFOsQ/ywDJGBwRZzBx0tzTvolonve8IbAqqGNQscJhXvPe/xxtCfYOhP1Z5rhvsTTrYcQ5xqusvRqwZo68rouQLz5P+Dr68F7GQk+L/P8lL8l0pqYLVnA6OMw8Iyjoa0x7M/6D514n+IyepOycqjAQtYnHDqC+iVx0NOe5+26YkVr0OaSvHvC4VGlxf2qKqb5Z9A0w66LWJZ8J3KDbrKTL5OGzBOfANz0+GwM9V3n+EBVf0sTScu/vSskqCbEEI0QU7tLP97SajBpBboSte9LNVrandQQi7++WM1a+L/YIu5k55GlzCOMHoU6iK2mDtDamtgsIGtFHqKeN5W/cx6IZq7WgfdLr/88mr3v/nmm3UejAisbAlVVarN4+j994G7NarVuyj7Nu8OM1iSegVm4H/yA2YWbYy0+g82woItZTN/nQRzrwWPHfouRl10H8pa/V0/c/6lmN9fzDhPHJDbAKOtWYwFLhlp46Vz4zCMhqu6eND0vQtlw4qzmruiqvXzaE8yuDqjUj5Bxa0M2lZr0J/dCH+cDsC8UbO5+rQHeDum6RaoyNI5YevLOOa/mN3WwPTXmNtjHN90PooJu7z5MUpsFs6fHRfwuAX6D0YR/UG3TWwLui9OxVDyt3sw/ua73Rz8E/z7fXAkA4oEO8y+Ir58fxr+QTddQ1GL+iRHjgZaa4qDVIHV2weCvRActoqNMUVw6V3ev196Fzz1PriSvI+VCRfd4zcLNZDZ+jtupvrPfSGEENEnF2/aAQNFHrVIQdDCuHXtZwGq9N3oIz+EXy+o2Hj0B5C+h5c97/KMcVcYRxg9PvF8y5WemgNoFgw8pelXMjiIW7uxqma+7laIatT63Z+d7TsjxuVysXr1anJychg3blzI/WzatInNmzczduxY4uLi0FqjQvkGUMnjjz/OJ598wrp164iLi+PII4/kySefpF+/igpuxx57LD/95Dvz5uqrr2b69Om1OlckBfsyqey7UJ2v9t9xwusw71r8kon3WoxKORCwrxtdj/BBTNNPmJ1IvN82c/nx8PkdFRv+Gou+dy66VekyVAUkZ8H4GST0WUM88agfL2L/Nxc2zqCr4fDA64tcFLngrYv9n1u47KqyJLe6gBuAsh5AdbohpL717Fvh97MqNvz8NxboH+Hc2o4yenjwkEJS2GaJqq5r0enbILM7F53+qnejtQTunoQRH/hCeaW5Liznbmg7CF7YpHJuOgXEEIMDJ0ZiDjx0CiPUIH6O+dDvuJ6qKycaY/jDXEURxbjx1Lh05i+zaeeuzKMg4GeBmd0Opr+Kz+97WzGd7r+EDEsmGjCSsuGRk+t03jV6Y50+n4UQQkSOU7vKA20muvr8qi1cYh2LexmnvwSnv+S3faW5vr5DilprPTVfS9mwYsNKLDEUUERn2vO652OusUb+e5UQkVLroNvs2bP9tpmmybXXXkuvXsGqp1XIzMzk/PPPZ/78+Sil2LhxIz179uTvf/87rVq14pln/HOOBfPTTz9x3XXXcfjhh+N2u7n77rs54YQTWLt2LQkJFb9Ar7zySh5++OHyx/HxDRe8CLffXSvL7xSEyjjuPcwRc2DVGHDGeJcR9f0Do33w6cAL9BJecb/HVOtF9R1yRK1mg//G5RMCtIyD7O4VD7O6wxuHUXj8fyg+fiaWFSMbaIR1M++vulXHDNV+s3Y53WrlrzF+m3LWDm248zWCrXpXWJdlK0Mz8vYn2LezDTu3tCWu/V7i+qwm1ygOGkrawd6wnb+hFJnFxBOHs/S10tq7HLms4IuqFCjSeO+MxmLHg0l3OnKm5YSA/XZXndivM4kjlkxyALDXMDuzqeeuPKCzSSCOQqpUGt48HL8bLK44VG57EtLyKQgyUzpUHkw+93zPJOvx9epHCCEam2XI39HOAnRhBpa+Z6FsTef6v7726H0MpT8r8N6g8/vsEIB3FvmfrA5rn7k6nxLtIFbFhLXfSDu+ZDJLqXkZrgs3SSSQVbpKKE2lsklvb+jhCRHVgq1DrF0nhsEtt9zCc8/VPFPq5ptvxmq1smPHDp/g1/nnn8/cuXNrdd65c+cyZcoUBg4cyNChQ3nrrbfYsWMHf/75p0+7+Ph42rdvX/4nOTm5VueJpB89i+t0nJGUg3HkFxjHzsIYO7vagBtAFrnM9HxCrm66+d201uVT6X30/zXEHhQs9K5zs/VbEr6BhcHoHg07JTurIZfP9lheZYPG1SO6Xt/aOmCGP4DTX/ViQ5//47BjVtKh31Y8hhM3nqDtt1czgyxa7OVAeWVcnT8evfVb9Jb56JxzAPyenxULXVQH4onjXMsp3GoNvKwxRtlBQ36ln/eaZmfmhCkPX6TsZX/gL03dVlKRgbH0/4aLpJSiegfcwJvX7Tdzeb37EUKIxmYb9yz2k14j5uzPsQ6egqX/eZEeUqPZw/7ygBtUpKr5wj2fN92z+NA9h71m4NUvLclBnc0h9MIWxpKjezjASt18Zrvl6DwedbzCYlaEXGjCg5tUklAo9uuD5OvAVU6FaCnC9htm8+bNuN01r4n/5ptvmDdvHp07+1Yv7NOnD9u31y8KnptbGlFP881N9t577/Huu+/Svn17TjvtNO67776gs90cDgcOR0XenLy8yH5Rm8+iavebBSnwzNtQnO7d0GoP/GMyFCXD82+BM6nKERqOfg82jYCM/t5NMYVww2VsbL2dBeYSTrOEvkw4muTpAgyUX5jCGPUZZlZ7WHAJfjNCqkrIAcB24gwuK76Ytxa7a8gU1bAMBSf0t/DRZQ17d7Yhc32o8x9BO+2w/ijvhgELcJ/zCB59FhZlabDzNqSDVQpP1JW5qw9MmwaeWGYCM8kFXoOjfoZhCYAFlf4KKtb/LuwBMsk3C0gyEsMyloawydwBgNYKfeCu0kT/Cp35D2KTfsBlyfL5+TLRbNDbGEp/klX1z2uQ6ssyvTbksYRckSxKBUtcbLTZhXnRXfDfe8EVD0kH4YobyLCE6T2KyS/m0rD0JYQQonFkmAeIwY4DbzGFIu29aXOD+2EyOAjADOsTHM5g2pHOHvbTQ3XBrmxB+2xu3NrNLp3Bcv4Ka78HyWKFuY6RxpCw9hspv5sreVS/UqtjcvEG2RSKHexltvktr/JIQwxPiCah1kG3W265xeex1pq9e/cyZ84cJk+eXOPxhYWFAQNeWVlZxMTUfRquaZrcdNNNHHXUUQwaNKh8+9/+9je6detGx44dWblyJf/85z9Zv349n3zyScB+Hn/8cR566KE6jyPctlBDhZg3n4Xi1hWPszvBhw/Ant7gDDSjT8HPF+MTfHIkwquvUHzPmTzjerPJBt0OkBU0r5NxyquYAxbCqy/5V/grYy+CK/4BgEM5ePXCBF5tIekHghXrqMrc0wNmPAMF6RCfC5f+E6Ob78WKNg30/56AtUdAcelkWmV6C1hccnd5AYts8mhNq7A+j8bg1C421/RzGapXXwZP1UIJCrqPgWITFOi9z0D3iSjl+9420WxgG8MZRLRaqisHCxWVf++U4ERVCrkNojer2UQi8ZxhmcA/rNV/nnQwWlPNREA/sTTtZR7V5fAzBi+EwSeWP04kHkcIL4759RWw8ELQNkjdC1feiJG2z6/dH6yWvG5CCNGE7GBvecANvMtLq64IKaCIcc5L2Y83xciPtncZZTm0sYcaMc96ZnC/+4WQ2mqPBf3uI7B+NCgNoz5BnfpS0IJEC8zfuZLmMbPyoK79TTwbVly4y3PR5lGAS7uwtaCgrhCV1TrotmzZMp/HhmHQpk0bnnnmmRormwKMGTOGt99+m0ce8Ua7lVKYpslTTz3FcccdV9vhlLvuuutYvXo1P//8s8/2q666qvzvgwcPpkOHDowfP57NmzcHzEF31113+QQW8/Ly6NIlcmWf86hhOm5uW/9tmZ0hP72agwJ8QhSlMFj1Y5Pe3mR/Ke7S/l8WKzO6r4XHvQHFOGIpDjDzxY4NJ94lVaY2MVRYVmBHvWBVESvTjjj4v7fw/trQUJgO015D33saKjGnot1Hj8GGo/BZCacVrD8K/eYzqKv+gUKRqXNorZpe0G273k0aKWSTW+3yz5C4AlQmNcBbD6T0vWcmghkPFv9Zt7v1vqgOum0yvbOXldLo9P+Dg7cCCpU2HTxOzNm3wvpR4LazwWLHbLWNvNNeoGuvDjX23YWa21TmpGHzIja0383gFYKrakUyO8kAvHeZAxZgWHAe/HRZxYbszvDsB+iHJqAsvu9rE5NMcppkkFwI0XJ5tn6D9jih6ABGx1FgWDDS+kZ6WI1id6Vr4p50IcM8SKJjqE+e6P36IHnkE0csNqzs0HsZxaERGG1kFGrflA3mrj7w2U2Q2x66rIUznsFIygFAz3zce21b5pcL0fZi1IlvBOz7gG7aeWQrW21uJI1UssmtsVJ8mVhi/CZCZJNHW6r7fipE81XroNsPP/xQrxM+9dRTjB8/nj/++AOn08kdd9zBmjVryMrK4pdffqlTn9dffz1ffvklCxYs8Fu2WtURRxwBeKunBgq6xcTE1GvGXbgV1LTsb/TH8N1VVATSNLgJPpsLACdgwyf4Nvwr4nQMPVUXVpkbGGYZWJ9hR8QmvY2OtGUP+2tsO94YzZdmxXu57Itp5S/mDpzEEdsgY40mNzof8cvp5v1wzfH9aD3QlYpfGWXvHQOd0RPVu9Lys5zD8E89Vdp+p/d9pdGs0uvpR4+wPIfGtF3v4UC4kvL3+wXWVyk0YQLrNfQrfc0S5qMCBNwA1nm2cnoUr9DdwDYAtBkDuecA3sFq7YBHPgdXxRLSEoCCIfDK6+ydcoCarvvbqzY+jw0MzNIvE6YjFrb3h1gTOv2FYXGV72uqzFosdI8jhlFqKAd1Dvs4SH6gmzdrjvHf5o6B/NaQ6v2yZhYkw64+GLEOVvfYzLExI+o6fCGEaHSuz84FXel3f2JHYq9sPrm2qmPHzhhG8DN/soWddKCNX2G27eZe+tKDlaynGNhEy0p2X1TpYtXcMNK7eqjsenVNe1h7DObdp3sDb1sDFAD74VL0hBkow//64ncd+o2yaBej7CSTQFZp4aqaKLxFmBKIo5gSrFg5TA0gR+fRVknQTbRMjT6NZ9CgQWzYsIGjjz6aSZMmUVhYyFlnncWyZctCqn5amdaa66+/ntmzZzN//nx69Kj5C/zy5csB6NChdrMkIkFrTXX/ROby4/wDbijIrul1sPsec/Q7GGf9m/VsxkCxqokm/9ypM0K+A9Nf9fR5HOi4khBmfzV1WmtmmrPxVJmx1YNO/q9Imx1QfteqbK+J6rDZt13qMggwgQuALhVVjz5wfVm3QUdYps4hhaq5EutGTbkTJv0b0rbSJh5Sk0uIGfgLw46+A1uHm1Edbka1eyDo8evMzUH3RQNDl/6eKRkMrko/cxsv9Am4+VL89/sAM3irqFoVrDzg9vup8MB3sPllcE2DDT9gHhzr9x5vSvJ0Qa2qq2WTz296BZvYHnB2mnbZYWeA2R5WhzcnHGDOug0e/Qre+j/M6a9y4p29WJfRdF9DIYRoSVbrDSzkj/Lr28o3lTvTnqGqP5lksxLvNX8n2tVpGWFT5lOcaP6l+K0E0hZYXlpFPS1QWhEremf/gH3HEUuhWf9iRtHgZ/MPtrE75PYa0JgUUoxZOqFhsV7RoPmjhYh2Ic10GzZsGN9//z2tWrXisMMOqzavy9KlwRMuu1wuTjrpJKZPn84999xT+9FWcd111/H+++/z2WefkZSUREaGdzlNSkoKcXFxbN68mffff59TTjmF9PR0Vq5cyc0338zYsWMZMiT6k1seJBt3dRX5Pvknvh8Qdcm3o2DRuXDqdHIo4C+9hS16Vx36ibxNejv7SvNS1ORC41Se9gSeEq5QxBFDkS6hlUoJ5xCjzkGdTTxxPnk/AJYTIH+UrQTar4eMAaUbvEFe/cgc3wBdSgb0/w3WjfDP6XbpXeXNlrAqnE+l0WxmB7mEp8qvUtB39HLOPao999sPZYdZRF/nHWwkjniMwDOUKgmldHskrWaj9y/W/Xin8Cnv/1N2A+0I9jvrkLY1fzRVDbqV++xmaKegLKZkU7DnTtytT6nd4KPIVr2LWGJCvhHgwSxfQn8Kx/Ay75Xva5vh4fKLTuBfh1fNrarhxktQFg/aGQt/nEHlfx+tDa75qJgf/xG9hTuEEEJ45WnfAEflz49dZLBLZ2BikkwieRSwn0z264ONPcyI8lle2mYbbDvMv9GcGzHn3AhGgOrhAGuOhW7+RZ0yyWEP++lD93AMNaJquhYNJFDamjypYCpasJCCbpMmTSpfcnnGGWfU+WQ2m42VK8M33XbatGkAHHvssT7bZ8yYwZQpU7Db7Xz33Xc8//zzFBYW0qVLF84++2zuvffesI2hIe3RNSyTVNUsl0oHigiwzC8ATyzm1sEYPVaRSz4/mb/XYpTRQWvN1+aCkJaQWbEwwOhNrv1PUpzD/ftCU0SJXyCqOVqjN5JdZWkpEHBWkF58BmSEsOw4twO412A8EGD5WiXhqgDa2Haae8Pa31CjHymGd+ZcF9WeI9RQftcrMUIIoq9jC07tispqY1rr8ryJyr4D2j6EzrkQrPtQbZ5Fn3gazLucqoG31DbZTD+/e439By2MUPX3oi7/T5PN07hBbw054JZCUvkSkNEcxh22q3jZVRF0e+/sQn7XgX9PqvSM0r9pymdOV2IYkazlLIQQIhRu7Sa/dFZRWfqUkgDXtPvIJI8CFAoXbr42F7SoojmFlYJJatIL6G2D4EDvsi2+/zf9iwACEBN89tYOz176GN3rPc5IcWs3Fizk6ppvNFux1JjnOF9muokWLKSg2wMPPBDw73Vx8cUX88Ybb/DEE0/Uqx8oW34ZXJcuXfjpp5/qfZ5I+dj9VfUNzn8U3n6S8iWoSnsT1gMkAKOBUFfwZXeEHt6ZR7trKEgQjXLI88nNEEwMNs5VJ6OUIkbF0IPObCXwzL5QK3o2ZUv0KlJJJofAOcN8ZHYKvePsmpdvm5gU6iISVJALmSi1xtxU52NTSEKjy6fYf2R9nsMtQ+iovMsplVJMsozH8ChW6vW+Sx+C2KP3013V4t+mkRSVLisooy2/wffHwbYhaM87cFI8/F2BYYIlm5Suk2ljJPGK7UHiLDWnCoglSN7Ks5+EjAdhrYIBgFNDZ29F6mydR7pKrf+Ta2RbzV1Bi79UZav0sd5KpdDWSPPZ33af5tKDH/P8YZezL6ns51TDsTPLCygouwN95Ifw64WUf+Ew3Iw691vggjA8IyGEEA2lv+NEdpfmNy5bXqoq3UQ5Th3BXg6wRe/0aVNIMXkUhC2FRrTbYu4qDxYpqwt16xQAzJ/PhS9vqrkD5Ya2WzAf/S8UtIYYBwz9HnX68yirm+X8xXhGN+hzaEiPuV/hGc+bOKtbdVUqmUS//NBV1VgcUIhmrNaFFJYsWYJpmuUFCcosXrwYi8XCiBHVJ1p2u928+eabfPfddwwfPpyEhASf/c8++2xth9RsLdN/VbvfGPAr5mNjIS8NSIDcF8HZGvKBVq+AmgjHdYMf/Gcs+LA6UAMXAtCB1iSpBIp0MfEqWGKu6JOhMxmjRrBQ/xG0jQJs2PiHdXL5toNVEuInEk9BabAtlIBHU+fWHgaq3vyigy8LL3fUx/DzeZQlww9Ow4TXfbaY2W1gzZHgjAVMiC+CQQuYaZnNVNtFdR1+RCSpBGpKHWju7APbB0PPZRgdtxJPLGmk0FG1Z4fegwWDbqoTp1vG+91RPtk4hu/NRfSkC6v0hmrPY6BYr7fQnegLumXrfFqRTDZ53sq3j3wOutLstDaU3i+wgKc1ce5uxMTkc4wxMqT+k0hkAL3YywHceDAxceOhZPCf6GTl/TcqAWIVqpX3/Z2lc0gnNbxPtBFsZLtfwM10W+CvUZDdHvosweiwA4DTjHEcIAuN5lbL5SilsGEtryL27B0xPHmbg9XvTCDLlkh2bAKn/V7iF1M3Tn8Z8+RXIbcVWNwYqTksUkORoJsQQkSvPF2AB49fruLK6WpSVBJFZgkWLHQijWJKOET1wkSzW2eQopp/0O0Hz2JSVRIB528cNhfmTK2hKJ2GkZ/Ae09Q/h3LEQO/n4ledxTcdSZ/6brfpI0GOTo/pIAbBK8Qb6CwYiWOWPJlealowWoddLvuuuu44447/IJuu3fv5sknn2Tx4sXVHr969WqGDRsGwIYNvl8oW8p05lDt0hk1tjEsGlplovMPRXtae+MhqRrsR6M6ToF2Q5g04HR2fXsEK92bofNqnOuGQ24biHHBgIVw8jRUjHfpUia59KI7K8x1jLYEyG0QpQ6SVW3ADbzfwZ24GGD0Lt9mrfIjUPlDo2op8ebod70itIAbYLTah3nP6d4LkV39IX03rD8a/2IfCtVhS/kj87MbYdF5+AV+P72LF858n6nVr0KNKnm6gO/1r0H3a1Ohn3kbMiuKBpid1lB0/dXYVTF/6U3EE4sVK61ICfg77xCjF3Zto0AXEUdMwLwYlW3S2zmRMdW2iYRCCskunUGptw32DbgB7AK6Uhocc5BlW8/FxoUhfw6kq1TW4i0kUblyKRYX2DeBswfEKohdiVLei8ZNnu30sXSv/5NrZDZt8Qmcmdlt4cn/4q1C7WX2+JOUq+/kXttUOql2Psf3ogvr2ArAzKtiWTXEwm2PO9jXycGDjypy0wIvuTVsbmh9oPxxbRIpCyGEaHwbzG20Jp29+OZns2GlJ11JUvF0pWNpkQWTA2SRREL5teBuvZ8B9InE0BvV7+YKbNoaMJ2KsjvQ9iJwVBd0c8Dicwg4qSGvLeS1ZldKzd/jotnn5vyQ2zqCXKuWFVJw4mKrDlSMQoiWodZBt7Vr15YHzSo77LDDWLvWP5FkVT/88ENtT9li7a8yCwvAXDwRZv8Tn0DHuBmosb+UPtCACfbtKMNJXPwqeiQN5O1rJ9LGMRELBu5TXvH2tX4kzPg3/HaO9+tq+w04briS7ZbdrNLrGU3TCbpl6+qnNJdJIQmLqpipZakya8uOvTzwFspy1aautklNjaQcuOBf5Y/NRz+FgjaVWmjvMue40mCLaXgLdQScaanY+uVZmGObTp6tffog7WlNBoGTDeudA3wCbgDsHoje342cdtuAioS0H9mfD3qePkZ3vvYsqHE8JpoVZoCiF1Gg8kxRlb679K57pffB98AhgFVD0lxaDY7nX7ZbQ+4/SSWQRAJFlPhcNNuVFWfH6yFvEigPJH9Wvm8xKzmZJhTlLfWLXloecAPg6+uoHHADYOtwLs2dSqd2vgE3gFHqMNbpreWPl46y8bfPap8HMJMcdph76WpEf/VvIYRoidaxmVWlFUkrc+FmPVvoSw+Otgzn/8y3y/fZsGLBQhtascbcyATLUY055Ih41fMhewicO1svPREcqdUcrUFZQAe6di29Do7PYwtNO8i0m9DSDZn/vRPH0lN9N7bZirppSkXaCuCA6f+9VoiWotbfdGNiYti3z/+HcO/evVittY7hiWrkVsmzpV12mH0n3ulsquLP/MvAeRDV9mGIXcHJKfn83H408cRSjIOvzQXEqhjutFyNu3KhgbefwBt3Le0nox964QXsZC+LzOWN9CzDI1PnhNTuKuN8n8eVc1wss33KvZZryx+3hOWldU1qqt02zFdehoI0KtZaau8so8m3oYsTMR//L/run6h2abPh4S/P5jqNIRL2k8WeA7GYD3+KeedCzDt/9v7/tRfQbitYgxTfsHoDuRYsXGdcxHXGRSSr4FUgy3K8haIs8XG08fn5Sd8Nx36Ht4JpaZJ+j4bVGrJWoU56hi50rPU5etLFJ+CmtQVn9rnogzeBfQsq9QOUUZGb8T3zswC9RDfTNP1nPdsC55tMsQZOCXCo0T8sY3Hi4j+5XzD48VzsN+USd3MuV39QFJXvPyGEaIm2mdXPSE7QsXTE9xrDiYuudCCDg7zj+bQBRxcd3Nod9OYpANaaChcp0MFuXCno+wvK5uRgaVGjpsilAy8XrczcOgjznnmw9DR8vpei4EBP9PyKdD4a+Iumc70vRLjVOkp2wgkncNddd/HZZ5+RkpICQE5ODnfffTcTJkyo8fjjjjuu2uVD8+eHPpW1uTOrJo5y2wkcJ1VQnIRqN4+uSSuZFfMVNmVjkvN4vjV/YbfOYLW5gRHGIIaYfVmqS2ckegJ8YCw+jZQj57ElpmndndmnD5JAfI3FD8YbvglNP7I9zz4ycWs3PVQXuhudGWz25aDOZr/ObMghR4U8CtGeJCgcC5ZsiP+Vmlb3Wcx47K/PpHCHb5Ck+8g/2XHWPwAwH/4CisoSuOsq/6fi8YX3MY8xDGwiSxlyPQXw/FvgqRLc2DIC/f7DGJfejdn3V9hQ8T7rN2QLm9P3YgLJJNDVqDm4NET1Z6QawhK9yi8vS1UHyGKb3k0P1bkOz6jhFOpKP4uF46DPBOjjAQxU24dQSd+U77Zh4VCjX63PYa8y20tlT8HMvgzQ6IITodOVYMmC4iPAto1dcSvZYu6kp9Gljs+q8e0kw7/q3CmvguU0+L3ih3XoiK3cn34+gZxmHc8uvY83zI/Ll/zW1dMvHYmn9FejR8OMxS76tjW4dXxsvfoVQghRf+vMLSQQh4kZMD3FFnZysutKn20KxUhjCDZtZb3eRqbOaZJFh0KVoQ+SSFzAxP7mT+fBgr8BTnxnlAe4OLYVgCvBf19ppe+SEIofRavNeke1+7UjHl59hWrzPOf4zrzfqw8EaShE81froNvTTz/N2LFj6datG4cd5l1+uHz5ctq1a8c777xT4/GHHnqoz2OXy8Xy5ctZvXo1kydPDnxQCxRo5oCKK0B3XQE7hvruaLUH2mwDoJ/qgU15PyS6qU4cJBvwViQ9zBjAMGMg2zx7OLi9EwE/QLK7kP3Um6y75+JwPp0Gt4f9fgE302WDP06CPb1AG9h0DJ+k9KL9aDc923jf+kdafJdKJ3sSy5PXP+l+DScubrP+vXGeRAR01t3Ys/s2Slyldz1TZ6LSXwvaXmuFdc/LFO7xDxwd3Nqt4kFRaqU9pe+zwz6HSc+UbzJiPCgU77tzuMV6Wf2eSCPZ5yj2D7iVPb+dAwAwLr8d06PAZfB1/H94i4/ZaHpnmHowfQp5BNNHdcOGlThiKKrhos1AsUXvoAdRFnSrNNNNlxwCePBenLnRjkN8gm4uPEGXeVTnSut5LHWvwVM6g9fMO5WKO62gi0ZA7sVgemcVmm0fYnnaX/Sk6QTdNuvtHK4G8ZteUb7NSMjBPOZdGHIJuIHUT3m+y6CgfXRS7TjaMpyPzDkUUOS7VDVEpiMGfj8FMv1/9n/Y6ObW8bXuUgghGpT9bwvBdKEduRhp/bxLApuxo0suYBUb8ODBCLKYKY8C0kkjv9K2THJIJJ5WpDBGtWeHuYd0S2qjjDkS9rA/cMBt9i2w+OxKWzSc/i847Ad47HNwx1fssjhQ95yF/u5S+PkiKr5TVRQTM9E4tQu7qn06h0jbpoPPmDS3DILfTqf6wmomHPe2z5ZkEjF100kpI0Q41Tro1qlTJ1auXMl7773HihUriIuL47LLLuPCCy/EZqv5l8pzzz0XcPuDDz5IQUHdlro1R5+7vw+4XV07Fb18nPfLj7bC0PmoI75Ald5VOcoyvLxtD9WZYWogscSQpXNpq9J5yfYAn3q+h98nEXTZX0E6XQoGkhWTQ5qRGuZn1jBiiPFNNJ7TBp6YReW3uAv4P+D/5hfy8Ckx3HmC/8yMDrQhnVQyySGTHH72/Nlsg26mNvm5OB/TVWmZQf4pWNJfLw9i+HG3pdjRF7oDVQprdjlsZUUWkdbb4GDl3GYaRs7DiPVNWKvRZJJDhnmA9kYbop07Jg/isyrN4qtkcEW+SsOiMSya2Xou3+qfy7dXrUAZTBejA9k6jwTiceAM/u+B96JurbmZ8ZYjQ38ijcBjVvxbq4Rf0bkX4F1eaqDiK4pRKBQjGERaHaqKXmo9k4/cX/M9pf15qvy7mKnlATfQ6PwT2Zy6o+YCvFFkk97uE3ArY6RPRyd+A1jAvpGPPOeToOI41BgQsJ8+qjs7qVtSZ/NAJ3jmA4K9cJeOrC7ZtBBCRIbRdkikh9BonNrFH6wGwIKBFWvAipIKFTC1yFzzZ3aXfkbsYA+HEfizpDkImtB/2QlVNihYci7GkV+hHpiI8eNkWm8Zh6f7UkqOe4MCeyHq1GmYAxfCT3+D5Ew4/k2M5OzyHnaZGfS0NJ0bfWUO6uyA281pL8J2/9zuXhrStkK/JXD8WxgJvjPrN7Gdg2TTlvQwj1aI6FenJGwJCQlcddVVYR3IxRdfzMiRI3n66afD2m9T9ZteHnC7UqC7r4GP7wYzFraNQH92R/kCtJ/Gr+Ou07x/b6vSWKrXAHCcrqg2e6jRn2+6rIY/J5ZuqZLgXHnQcbls1jvq9EU4EhZ5lvnO3vj2cqp7ez82zxEw6NbWSCezcg6GZlxQN4d8tG03KKc3gIsG++ZqAzxYskk0PBSMVRCj4S9QlmL+dUI6y8b8yjp3HHrfA3BGW5i/D3YkQ2whnP04Rg//wAF477qu0OtoT/QH3ZzKibrjPPTMx2HbENAWsJfA0R+hJrzp09bE5HX9X59tbUnHZbqwGTXfoGhjpLHWDK3c/DTP+1xmPZtEFV9z40aSoSqWEai4ZdDpWig+DGJXoOJW+rRdwir2mLWf6QZgUQqlFQYG2r4d7ewOKFAlEP8L5F5AeR45+xY26F11fk6RsE9nkkRCeQGOylRMRZXg18yPaONJCxp066jaYmAQTywFNSzD9/P1tfgH3Ezs8cVMm5TOecMk6CaEEJG0Tx+kr+rBfp3JWONwlplrAxYEK6smWdXuSjdlskIsTtZULXUHKfzXehfsOcR3Wydvsaq9CT+SeloyAEd9uYcl93/u285eBLde4BNwA1itNzSp2fVltpr+10o6t3WQgFvpt1BlwsUPYXQMfO0ag50M8wBtLRJ0Ey1PSEG3zz//vOZGpU4//fQ6DWTRokXExkpOmDIL9BJ0ySHe2SFGPqrV6yhrjnfn24+DGThh9vzv+3PwOJPWiQadVMVa+sqJuIfSn2+PeBO9bQgsPwFvnrjSX5jWErjsVtZY17JSb+BwmsZdwr1Vl6bF5QduWMoWZKZLKklod1t01uWgY8hNWwPN9Ptkls5BWTOhw63onPPBko1Kn17tMcpw8kq3TP6xbxfZxx9EnfcaFts+zrR+y5v7x6ILLgFXV1AGjI9Hpb+ISv1vtX0WUsQScxUnWsaE8+k1iPXuLajYYtTVN9XY9lrjQqaZH/hs280+clQ+bQgwU66KTvhXoQxmCztZZC5lguXokI9paFmm70W7il0Nsav92qWSRDZ5ZFG3i/wZ9idJIRGrsjKkwxWsyzzBe0Mi9X0oOgpi1nqDo/F/oFq9zkFG19xpFHnTMytgwC0QVc1dgjgVy6HqEJbqNShUea7AZBICLrPxPTjA79OYIk5/8BkusT8b0tiEEEI0nExy2FBapbqNbhUw4Famplyxdf08bio+1HMC77jyH/DiG5BVmoKn2wrUmd7JIKmGN+CWV6JZ8t0o/2OdCfDhQ3D1DT6b1+pNnE7Ty7+wnwB5ra1O/CZqQMVjbYG3/g13nxmwTwdO/tCrGUJ4ijsJ0ZSEFHQ744wzQupMKYXH46m2zVlnneXzWGvN3r17+eOPP7jvvvtCOk9LkOF2oPdMAx0DgHZ2RXumwYcPQFZ1idgVhU5oDXSgLQNULzJ1LhlUzDoZbPRHmaAueBQueLR8u/nT+TD/UvjP85jA9RaDD7vn89/LE2iVEN3r77OrXCCoE19Hrzge8qtWgfR+Lf3o8sBBS4uyoPf+G5w9APi96ChK+mlijeY35S1DHyCBeIy4deTH/TPk44bH2PB0uBMLRWg0GsVt+3PYmD0G3w9ijTaTQpos+Iv5Z22HHxFr1Eb/ehBVpJPCe9ZnWWyuJJ4YiqokMs7WubRRNQfdjjSGschcxlZCm5l1g+tR1lnmhtS2MSwzg9xJrmQQfXHjIZs8iinhadfr3Ga7olbnqZzsOVnZUbFrwZKFLjge8s6m7D2p2j6OMpzk66aTxsClXdVXWKvCXUOutv6qJ5k6m93sJ4FYcilgBINZyB/V53k79UVYczSUtCrdoOHiu8gn8O9RIYSIBs6vrwBnPrpoP5a+Z4EtAeuQyyM9rAaRV2nJ6Jt6Vp37SSSeXF39jeumzKVdgQNKgBFXCHdc4Lf9KCpmdxU5q7kILEr22/SXuSVAw+jnU/RAa+56sJiLZ+by8BFv8EGPsrQ7Aa7wHdVfF9zrfp7LreeEb6BCNBEhBd1Ms5rlZrWUnJzsU73UMAz69evHww8/zAknVF1L33JluxNAV1oqtvcQmPUfalrvmNJxN7OTf+cmptBatWKz3okDJ0vM1fQqGU88cVxhnEs7WrOfg+XxA/Ora2DBJT59eTzw02aT3g/ns+9fyVgt0Rl40lr73bVTNifqnooA7xg1gi/srxKrYmrsSzl7oksT0LrMBDLcmu726Hzu9fGse0aN1V6rOlwNxq7sFFSaGZNKEhtKYqhaWddiyUEnf1FjnwrFOr0Vj/ZgifIkx6FUtL3EOINjrUew0PVHecCtM+3ZVbp0IzPEEvJdVQdaq1ZsDXE55E724tZurKpOWQPCLpPA+UDAm2+mFcmkqiQ66DZsZScuXPzb8wY3Wy+r0/sg36NZueufaHcK3t+TDiq/J7WjFypmIy7tv6wmWu3XWRzKISyj5gBmOqnYqH7ZcopKYjt7AGhHawarfpxhmcBa96by4J42FfrP42HjaOj7G2rYt96728e9DVsOw9J2N55j3sVIzGW52YpLnLfzkPXGJlURVgjRMpjrPwbt/Q7jzvgDEjs226Bbvq64LtOAFQtuqp8IEUgBRRwgK4wjiy7bzN3EEhNyjl2AXezjaMcFmGhsdhv29rfizOhZpZWGU//P79ig+eOiXIauuOH38t+LOGeWmwJrHF0yChln/sD8QztDfh+q3mznxFer7TeeGP7r/przrCc3zMCFiFL1+nZWUlJS6yWhb731Vn1O2WJY7TvBtgNcXQAFm4PkarJnQc/lHBLTjb+GTCdvwK/M8YzgJusUlFKcoI4mk2zW6I3sLv2yv43deDB9w1TLTww6lnwHbMsy6d0mOgMiDpwBy6KXMVDEqdgaA27gna15drKdWXluQBMXs42utqE1HtcUHdBZGKiq74Sg4ojhHMtJJKp4/mFM5gVzJgDZ5DEsaQ0bio/Ge6lXyCEd3mJd7GyUUfNFjUazjwP8ZW5mkKVvPZ5Rw8uh5ru/ZcVMKi/t+JvldP4wV1FMMQs8SxhtHFZjP8OMgWTrvBrblfHg4QTn5Txt+yfDjIEhH9dQqnutPJiU4GS73k1blYZNW3HjxoLBOr2FgapPrc+3tNhNiTu10pYqP+92793mXXUsJhAJWeSEFHADbzB3G8GrjQEMVn05Ug0jR+eyls1s0NsYpPvSnc5kcNAbcHv8v5BfOpt65Ynob66BwuTyqr2e9cDCC1HXXcWBLmv52Pya67ioSeasEUKI5iKvSnGE2gbcKl8PBkui3xxsZ0+tAm4A+zjIbp1BAvF0oT2H3fRv1i/vTvH3F+BwA/1+g3Hv+OVzA1jHFh5wvcBDtn+E6Rk0vPfcX7CRreWPT/zKzd641hx66beYltKbe2WXeEYOJOdC91Uw/h2MNtXfKI4lxj8lkBAtQK2Dbh6Ph3/9619Mnz6dffv2sWHDBnr27Ml9991H9+7d+fvfq6/02LNnT5YsWUJ6um8SxZycHIYNG8aWLU1zGm44mdokT2WhOl2FzroC8s6B9kEaO9NQZz/Lmannst7jreBXebmVoRRrzU3ly47Kcvm0I52Dle9kdVwPeW0JtFbfUNAxJXqXl4YyDb636hpyfzM7x/PdwYfI1Q7SE1dhqC/rM7yotZVdQQNuWoP+z/OwZUT5tkLgdhS3A4d1vhqmvgOG9w5yj9Q/OMy6huXOIoj/mSRba1Q1FzVmQQo8+V9wJXgfA0fY3Wy510O75OgM7gLV5kgpMxbva1ZYqe0E40j+7fkP3enIbvaFdK7WqhUePChqXNFa7i+9mUWeZVERdKvporaAIgoowqXd3GO9lofdLxNPHHe5nuEz+zSfGdGhKDArv0q60h8FRg4qZjNAzfnLokhtk1kX6erfn51UOxbrFXSjIkVBls4lTaV4X6o9/SoCbmXyAuUWVHi+vhrjKu+XiGId/KaHEEKIhlegi2hFMtmEfrOusrLrQYVik7mdzeYOehmhXzs3FYs9gYt6Vaek9MZ+MSXkkE8WuTgOXccFwxQfmF9WG+DMo4CvPQu533p91K/mKPOlZz65lYK4m/oa/C/+8oqAW2VmCuqWs1H20AKZm9jBr+ZS/sHkcA1XiCah1pGUxx57jLfeeounnnoKu70iw/ygQYN4/fXXazx+27ZtAfO+ORwOdu+u/i59S3FAe4NhypKPSvrGu7EzkBLoq7cGu4M/c3pg7nkOM3MqyboiX9RRxnByyKew9AuwRrNF76RjlSTt6uL7oPNKvOGPii+s8XaT76+PJz6Kl1duNndUu99EM0rVPLOojE0pOiUvQyV/QbaRgdahhjyaDq11tcnZ9dZDYcvheAOwlf94Ldulsa6aUP44TxeSEv8XKmUWOPvw154bMA/chvYkBD7B/+4EV6JP3y6njSs/qDmoFUlFNQSSUkgixeLN6VFYKQDSVqXRhjS2spsPPXN43vVWSOcbaxwecsANvLkNfzGX1uKIhlP1rnsw8SqOqy0XcJpxHLvIYL5exDpzMx7twdShpzboFVP5YlaDbSskzYHEeahO16GU93Ontne4I2m3Di1AW6am5eIj1GBsWNlCxXKXvXo/R5b9fqyhAI2PLcMx71yI+ca/KTKbzmsqhBDNSdk16ha9s84BN5/+0PzFZma7v613X9HoC3N+rY/pS3fuUddgw8ouMtjDfty4Od0YH9I12krWsb8JLdldon0rzJ/9ZQIkBMsvq8FSu7QdO8y9OJtQqg8hwqHWM93efvttXnvtNcaPH88111xTvn3o0KGsW7cu6HGVK6DOmzePlJSU8scej4fvv/+e7t2713Y4zdKeStNuVewaSHsVnXMenLcf3m0HxRWvHSe/DJ5DmLd/LKCheAT7je3Qwbv7TMsEjjCGMsf9I5+b35NJDvP1b/zLejO/uv8sn42jrC7U9df6jeV560McZT27IZ9uva3Qwd93AG1JZ3gtZ/6M02PY9O4VFK4ZSYzOoQ7x6XpTQJwNrj7KxhOT4mo986c6u8jAgRMAXTIAig+HmNWo+NKCBiVBljNXYitJKU+9nqcL2FNwCGbxaMg9l3wUFB+CNuNQ7R7xOU677LBtcMA+Mx3R/SFcU8WvDqpN+d8rz4qLV3HE412Kn0cB93me5ybblBrPN9o4jPfML2pMkF/Zl/oHnne9FVL/DSk/xHyBicQTr+I4whjKd+YissjhMNcZAPxq+4hhlup/dp2m5okDDn4v9nBo0naWFyaBNQvV9kFUzFa/9h7Cl6O0oW0zfZdpmAc6wVtPQXZHb4DsnH+Resjq8gBnQQ0z3dKNVMYbo/nNXE4WuSQRzza9m7l6IQAqfTd65Cz4vdLv/MM/hYNdYeuwKr2VBsw3juadb3YzcWI9n6wQQohaO9l1BQvMJZhh/mybZy7gNqpfvdQUrWZDrdqnksTztnsYZxmNw+niWXMGJib96cVJxhgOV4P5TS+vsZ/dOsPnGjFaFesSdlVZkVGYbPDqR5/Co1MqFVQqlboXXZyISgx9Zv4y1vKruZRjLUfUf8BCNBG1Drrt3r2b3r17+203TROXK/gX5rIKqEopJk/2nVJqs9no3r07zzzzTG2H0yztMn1zDqlWb6Nave198ID3f5cYk2ilUpjr+Q0j95zSrD/eoEyhs2ItahfVgS6qA78Zy+lBZ9aVVtFJJIHWtPJZAhfIL56lTInioNtOvZe7PMHfNxYMutCenqp2+YbmvHQBjl1J9R1evWigyAXP/egiuxheu7DmQFiodpoZpJFCZkln9O5peN87BrS7C5W4ANVvMTr+ABQFvkBIiYXEYYsoBmxYycgZz4aDx+OdKVkWoLSAs2qiWdDPz4DiVn7bwWTFxKs4YL5KG6Pm6p7RxoaVY9UR/J/7bR50/x8OXKSQxBFqKK1p5ROuc+FmaMlpvG7/F4cbgQOQAENUP2Kw+wTdTJcVfrwItgyDwT+gRn2GMip6d+LiCc+rHG0Zzohq+m5INd3BHEQfVrMRgPjSCpiDVV8SiPW5Fxyswlhl5+8sYk5B2evTDVJfR8Uv9b7exUMgdi1KVbx+Gt0kinYAfGv+Uv53XZwIz7xP+cd2YTrMfJqO1/yb/O6fo9EUhRDo7EsPslUuq/QGutCRfAp8KuwaZz0HZz3nc4wVKwqFCxfm3T+Aaa+0V7Fxh1QxFUKISCgyi8MecAPYyPaw9xlJs9zzmOy+vVY33iwYdKNjecqOiZZjMZWJFSvpKhWbYaODaoNFG9X225MuPoUJolnQYl9f3AglAa7NczrBk/9DP3giyhJ6HsGl5hoJuokWpdZBtwEDBrBw4UK6devms33WrFkcdljwJXxlFVB79OjBkiVLaN26dW1P3WJk6hy/bVqDLokBqxuLzeQI41AWm8tpq9I4kPArCVmTKDS9Mw+uSU33O/4f1sm0dbcmU+cQTxx2bCQRZOlfJet0dOfY227uwVLNLDQNHGOMrPUssW0RDrhV9eXq8M4A28lesshFF5WV7TYAD7roSG/QzeKB+85A/3UEbB4GHoOTLMfSx9qFo3rYOGOInYvc/Zlt7sSFmw0FnSv1U0ElfVXxd0pzk2UGyBFiy4d7zsAdW8I6vYU2RF/QLcdT/V08F27SVavy5c4GCicujjKGEadimWg5lpme2eVLANezlZ16L4cTPDA2yOhL5Yxu2mWHhz8HV+n7c+sI9C/nw20XUvkt7nHE8L7zW4YnDQrrDMlQZVH9a1UWcANIUN6AzaHGAJ+lMWmkkqdrXqL6XWGVWYA5l6NzrsAbXlMQsxY6XocynOVN8ikkleQQnklkVS5GoXf1x/8jW+FccSzH9diHAydtlP/v/qoGGr35zbOMNFI4SBZDjP5kmTnVHmNBVeSs6f8zrB1Xaa9m7NFbAf8AuxBCiIbVUAlQMjiIqU0MFb05nWtjq95R65nuCsUIYwipynu9MNpyGKMtvt91Y7DX2O8WdrJT763dgCPkoBlkGeyaY4Mf5IqDnHaQviekc6SQxB4txRREy1LroNv999/P5MmT2b17N6Zp8sknn7B+/Xrefvttvvyy5oTzW7f6L/cRvlZ4fJdLmt9fAt9eTVnYwkzN4NJ7+zKXBexmHw6rixW9kvm+0M2gGIPD4wP/s6aqRH4vXac/hhEMUH1YrTcGbFtmCzvRWkfki3soNupt1c7WUygetd1c6367toJtUVS8aViX8M7KySoN7KqYtWgsgAeweJczl1IK1IDFMGAxbWjF57G+y4936IoPV3vseiipCBBZW82kQ9xe9sXNw41vVSzic6CoLKhWmui+9zKMWG9eqP955jLGUlHAIVqsoPplzABJKp6DZJJIAgfI4mbLZfzTdhUAz9ruolAX8aE5p3xpb01BJbuyEUds+Xtcbzy8IuBWJrMrZHaC1rsxd/eBF98gFwsvoXmJPKadH8vfR9dcuTecdpvVVwjtQWd2sJfOtKdzaZWYZJVIPHGU4MSNmyxy2I7/BZxLu5jn+Zk8ClDAkJhjWVJSdsFbuRBM6f8dA6DkUIj/vbyPjXobh6sh9XqODc2lXfzFZrS2oPc9ACXH4fv8vH8/sq+bH/RWdrOPFJ3Ih+45dFbtGGj0oZVK8ev3Isvp3Ol+GgOD/WTyrfkLvehSXmQnEA8ahQGYqEvuQ8/fAIvOgdgCbGe8QIe+o4HxDfNCiCZDa80e9pd/mapuFq8QIjziVAztdRsyOBD2vteYmxgc5VXlQ2XUIU1MX3rwsv2Batt0pSN2bDgJfnM8laRq8yhHkw3mtsA7uq6GtccSqOAehhuSQ5/Jl0s+P+nfa24oRDNS66DbpEmT+OKLL3j44YdJSEjg/vvvZ9iwYXzxxRdMmDCh5g6AwsJCfvrpJ3bs2IHT6fTZd+ONN9Z2SM3OFioKA2iPBb69ispfJHVOB/5vUR5fHv4DAOPUKLraDS6z2/07qyRJJZb/vUAXcollEv91f1XNEd5pxkvNNQy3DKrTc2lo2TXMqDmJMXW6S7f4tiTGPJ/PhvBfw9SKAo7uZfDJFTXPSqyNshxQKmERtL0fXTQaFbsakr4I2L4vPfy2JanE8lussWnvYBgZmK4uqMRvMOOXsNa+lEOcf7CH/b5VUm+aDK+84p2SDtDzT9RF92FuPhTeeIZXzBheIZfLj7AxPYxLautrpa45D8j/PN+UJ6Ado0b4VBIGeNX+COM8o5nsugMgpIuww9UQvtY/eR8EvKjRFQnw33sEKAvQen9n3PBxSaMH3ZaYq4LuUyi24s1Vtp3dHF0pwLox5lsW6xWc4LwMgOwA1Tt36/2c474BgGQSWddtItfuKWa1w4OpnGx2WKh4Dbx01pXonHPgBw+sOpqjUChyeeBkO3efGJ1LI8vzuRUcB4XjIR440QPfmmBawPDAuBmcNXgkf3gSQHt/rqe4/wnAbNvLnGw5xq9fpRR3Wq/mNvcT5dt2sc8v4KZNhX7jadg8EicKlAfOehLj8K9Q49+B8e8A3nD9FjojRAkOejm8wdcj1TDmx7wd4REJ0bw5TAfb9W4yOEAM9vIbehaqX+4Yqlmeuc0m6LaBbbU+ZpCq+bm3N1rjNKtfjZJDPmvNTbU+fySs0YHHqS6633tNsGU4FataFJa4fDxXXI+yOQMeF8xB3XQKSwgRDrUOugGMGTOGb7+tW1WbZcuWccopp1BUVERhYSFpaWkcPHiQ+Ph42rZtK0E3KP9CCoAOPMNsn7NiGVYXo0NI/SZXWk6aRyHJlYJw1bnL9QzfWGaE1LaxHTSrn452pFE1+XdoWiUYrL7Hf5ZIc/FP61W84J5JFrmopO9RSd9X236W/UW/bZXfT0UqDx27HMx47x8gR+WRgH/QzEjOgjsv8NmmTQWvPw+6ohz5m4tdnDbYxcRBAUqUR8CeGipJ9qYbTu3NjaVQTDSO5R9W/5Lovj+H3uBn2WzSQLNKRxlD+drjDboZnddjDvsSllbKWn/yK6iE0t8Hbv/Xymzk4rv5upCbPI8F3V++zLhUAhVBrxhlJ12nlj8+qP1/vvdUSvCbRwFZxk4+6upNd/C7cxtH714LJf1Aub1n87QCR3/YrGFVRTBOAw9+7eTMoTYOaV+nj8IG9aSntBp4pZ8JugI3LsBof3/5ph7GWSSVVgmu/LpWNwP4bMuJfOD5kqV6DRqNAydWLBVLSAH900WweVTFQdoK/7sbfcivqMQcn/426+orSIuWIU7FkkYKWeSym9pV3hWiQdiTwF0MpgfVqg8qoW2kRxRW29jNdvaQTCIufHOX1sRcPBHm3ACeGOi+AibfgWH3DZysqWE1TFOSFeAmXmXmmqPgv3eDMxESszEuuo/H+ta8UqaTahfS+RebK0JqF2nrg6QVUhYP6qqK1+Mi4zTesD/OHa5X+T9P7QOKezlItplLK6P5ftcSorKQpwBlZ2fz4osvkpfnX446Nzc36L6qbr75Zk477TSys7OJi4vjt99+Y/v27QwfPpynn366dqNvpg5Q8UVTWd1w+GdU/jqVEOvhqFE7GEAvRqohDMC/sEUgSVQE2d72zOZHc3FIx60nevO6/WVurnb/OEnSGVQxJSG3TVT+wbPK76eCkh7oPS9Bzt/Q+/6FzjuZbJ3LocYh5W3SqOaD1R3jG1wotWJ36ElZG9qaGi4qOqv25CrvzLU0UoJWD22lUjhCDWWI6o9LuyjSxbR1jKJzyRi6OY5Fa9+L5VFqKEalqfzGeY9jPHF0xZ9j3i/fl3j2i+Bzd1tz14TqZ8CGW03BSQODDlQU6KgcdAPoSFtONsYyUPVmq95V9XAyzAO0oRXxxNGFDuwuPd9ul8mmkkRUm8cxekzC6H42dLgDsAMGZAZeor35QHRWMy17XiTOh1jv7EmMfFSrmYA3j0xfutOVDiQp/5mwBTp4UYUOqg2DVV860pYY7PSiK+2okmd1b6DPFQV5/sVVckPIvSdahiONYQxTA6MyL6doeWKn7iL2xkxib8ohZvIS7OfMifSQwqosf2oeBT7XdGYNQTdz7VEw+y5wJoHHDpsPhxff9GljoCo+h5qBQPmyy5i7+8A7T4Ij1XuDKb8N5vRpWPJqDtJ2Vu3pQ7ca27lw85h7Wi1G3Pj26P38qpf5bTczumO+/jTmy9Mw1x8OVOT8Hm0chi3IHB6zOAHz49sxn3oX85l3ML+Z4l3BhTev2596dQM9EyGiT8i391966SVWrlzJDTfc4LcvJSWFhQsXkpeXxz333FNtP8uXL+fVV1/FMAwsFgsOh4OePXvy1FNPMXnyZM4666zaP4tmxoXvnSbj7Kcxx78FG4djS9/Pvv5v8La5l7XuzaBhsgrtNWutWnEEQ1nGWjSaAyFO7XXj4SX3O1xvvaS2T6XBZau8oFlkrVjopWr+IGyJtNZ0MruzWW1Aq+ovzgwUNuUfEOuuOtONjuRSgK14PPvKKqDiQRcfzlq9hdaVlldWt5RS2UvQbbfA/srJ2E36Hb4WqNtsxXDbzu5q9+/jIL3pSi/VhX5G8KTyKSSxWHvveO717GeRZxkWDEpwkEISe/UBOqqKC73hxuAaL6DBO7supd8abA+djXPdcFwOK7H9lxLb6mzgqtCeZBj8bq4ijhiKK1XErMyNh72Vcs/EK9+gWysjhWydRytSypMXV7aTjPIbE0UUs4O9LCv2cOzWAoq1DUN9jL3TDTiMLNj9QsWB/YAVvrlILBYPx/aNjpmUVZVVo1OGAzpeC57WYMlFKe8ylhjsJKkEEox4hqj+5JLPn1TkZCyqoTJ1N9WRrqojNm0llSRsqpXvF6yj/gsrj8cnd0tsPrTzvwlzkOpnHIuWI1PnsFR734cu7Qr42SFEQzjbeT3FuoRUlcxbtiext4D3Xk2zt4JaOQ6/vFwHfK+XTTR7aR7J7nfovWwLcBOv3P+zd97xUVTrH37OzNb0HkIg9CJSREAEG2LB3hV7F6+9X7E37AX1Z+/t2gt2VBBBEBDpvZNACul1s23m/P6YzWY32d0UklDMcz9cd6ee2ezOnPOe9/1+Vx9Bo88DwfytGmcOj6yp3FWkN8vpdQcFLNPXNt3Y3ch2md/INV7fMAremYr/83n3efTx77Dp2M8A6ElXVNSgTEsA6YiFR74DGTDx+3tv5D+nwuQzsCtWVslNHM0h7XlJnXSyx9DsTLevvvqK//znP2HXX3311Xz55ZdNHsdsNqMoxmnT0tLIyTHKUuLj49m+fXtzm7NPE6osSEkoRhn1C2f1zsCiWMiXhQwRA+gjsugpMpt13FgRzefWF9DRSSKeEllORsPshhBUUs0srXlZcR3JGm0jLhleQ0BDJ05pXgntvwmHLjlmWzUbtr6DlvMJ0hM5Nd6OLeRyDx6yyaOcSgptf2DcTrwYhgwrWK9tIU0mBWzvDXmcOsTNl8ChH0JcPvT5m2F33U127LIWXVt7kh9BpDgaO1JKZsi/mCnnc756UthtA8XtiyhlNosop4pqHOSyk5wG5gExSlREh94Y6koLJSVU0N/aBdew6XgP+p6auDy+1yKXDrc1f8klYQNuYHxWgVmPMSFKkC3CzFy5mO/13/nN+xfveL/iCc/rrNDWsUbfTDIJ/m1LZTnvlbtx++KSurTh3PEGcuf9IOvOIyF9Edx+NvT8B6JLYdAfmO85nRjrnmkSE1jWIwQIU7E/4AZGpmo/0RMAF+6ggBtELi8FGKIMYL3cQrJI4FT1GI5XxmHyaeHp5Wnw2ksEmTb0+gfuOtVwNm6AswVZs53s2wTKVlQRPtuyk07aEk1q/KOv4ne5gK/1XymhfHc3qUOolg4GiF7YaaFu637zfC8CJvQSGhsgOWmZTteeykZ9a2QN6P7zCTWDP7JH0yZmaSSRTtPO4YDfvX5PpVSWE0uDzPkZV9AoIDlvIl1IYaW2nsFKf7wh+vdy+VHBAbc6KtOguDtV1LClU5qik38Rzc5027x5M/369Qu7vl+/fmzeHLnUD2D48OEsWrSIfv36ccQRR3D//fdTXFzMhx9+yODBe6ZYf0cTKaelt5LFCn09W+UO1shNaGj0V3o2+9jpIoU4YtlJCWvkJrLoSj6RHWc8eFkkV5Kr7yRTaZ52QUfwnfydpawJu75h2VonBh+Wu5nj8JXUebsiyy9GpD4ddvtQumwQPLgS9uXQ5Tak4xCEdR3E/ohTXIWFyKWN+qZhhpYbDWak95/Lmvh5LJexoXbbLUTKHKqhFrMwoUjDpTVTdAm7baQyWxWF1zyfkGlJp7uo12q0Y6M6TGctjiiqfVmEbtwsZiXppJBPERLJUtZRrJWSonZMuVepXh5xfQ21qAFGB6F+p5kY95k4YrnB+xDbfFmGv2jz2MQ2/4BKQSFbK2GhI1CNTBj/XAcEHFGAWoWSkg//ucmvO+UGHLK2UbbdnkBTQTMPXvYXxjM5lKZMqV5OmV5BJdVIJIWylEFKX3+p+CgxhFIqqJI19JTdGK+Mqdd0++Y2kIGDOAH5/VGsoYOpjs6gWyc+gjQrZTVJIRx0O+mkrSmlgp0BfdkyWUGGaFwKvy+xXt9Cjsxlvdza5Lb6l3fCPydBnSnOeffDMa/A71eAboL0TXD19Y32K6cypNbs3sZyuS7iZKDSczX66Y/Bd7eAZsNq9fLFxfH0SGo66KYKtVnVCGD0N/ZkdsiCxlUpibmQ08CJOqqcHRSyUK5giBhAFhlsoUEmYXK4zEIJ0RXUUMsSffU+8f3qpJPm0Oygm6qq5OXlkZWVFXJ9Xl6eP4MtEo899hhVVYbT3qOPPsrFF1/MNddcQ79+/XjnnXea2Hvfp1oPPwuiolJFNQe5z/QvO04cTjfCD/BDcaRyEN/rs1jOOsaLMZGjfD4KKWGS515+tL7ZonO1Jzv0xrNygWTRPIOJfxvS//8+SfswZh11DCR0qWRcg9kwEb0AEb3A/75CVkcsO5MSeOsFGgXcAOafjeeAX/mpx2y8uheTsvuF7gPDOg0xY2Kl3IAJlSM5KOKsp0WY2U/0ZW0IhygrFj6VP7LVvYPZ1v/5l8cSHTboNoyB5AVk4QkEBRSjYAQANTSu8TzIZ8rzfidfXeqtcvVtDnmyvhxF6lFQPhEpbYi4rxFmo3yxLqDUlTT6iMbPlL4iiyhsVFJFAvWB1/ksASAKOyoKVdQwvbgfm53BOnb1s7I6/oTu6Nn+LQI7yMWyjKw9MOjWHM3Fbopx788iAzu2oH2m6u+xyLOSuXKxf9kNykU8bTHcTdOVFMaJg5gnl/CTPpvTxNEBRw51Twh/n3Diolo6Qmo/dvLvIjYo061T66+TjqG0gV5X3cSM8+39wV0NXidK5hiwJ2M5/u2Ob2A7cKrnWrJlaNkLvSQDXn8RqtLB5ARPQH9NqvDxFMQjRyGO+l/I/QPZLvPJEl3bqtm7heZo0ymjf4LRP2HFwibrDFJF8/Vwk0VCsyR7mppM292EyhAVZz6FzN4fyn0u5RYHXHUjNThYKJdzJWczUhnCFj04yKb0/wd92HRYfixBWfMnP4+INrIO/5Gr2KRn00/t2W7X1EknewrNHskOHz6cadOmcfDBB4dc/8033zB8+PCIx5BSkpaW5s9oS0tLY/r06S1o7r7PCtaHXWfDQrEspwspmFDZT/RhuDKoxTME6SIFN0aZkkWYmhV0U1CYJ5fglp49RidjrdxMFPawGUgpolPIORQXxlt4r7yaJbUmMBUiEj8EQDoHg5YA9r8RSn1JQZQSurw0NoT7rQh49bX+K8PFoLDtkJUpRLwFlXRD67GFc723hHRP7Ug0GdnQoa501otGupLcZEDrRvUiymUl6/QtfCS/RUNHAMkkolLJFrk9SA8pifiw5a3Vjb7/gniiiSGaXHYikXzP7wxyHU85VejoXKtewIPmxvqcu0qeLAwqj5UFj0LtCON11THQYyKZIpE8n06MBQuqaDyTnCwS/dlTXjTiZCzl84+CeWezX1wSp525lAWp0yimjM1etZEjqvGuFlQnaEkQ9SciZpZ/bQ0ODhJD2Siz2SSzyWLPGlDosmlzBzMmBgojIN5FSQ0ZpHM2mNn3iOASkGHKflTqNWyTO6gUAQGS056FJw+iPiAu4YzHI7YnT+6kv+jVZLs72bfpL3pyoNifciqbrRvbSSe7SmlA6WA8sRTqJcZ8S9UO8N1P9eyZELNn3etby1x9MYkyjiqqGwVKpNcEz/zPl60sgwNuQH02eBSYmy4fXa1vIkvZuz83l3SH6CeEpjtdSG3h+CGZxGZtVyXDaxvvCZTJxoaIwuJCTD7X/z5w3LV+fRIjf6ogu+p29N4j4bRnUez1E8TKeY/AeY/43+uOWPjqdvTZ50HXjdjPeJFFSSvpR8/2u6hOOtlDaHbQ7frrr+fcc8+lW7duXHPNNaiqMVDSNI1XXnmFqVOn8vHHH0c8hpSSvn37snr16oilqv9m1mvhS3SjsLOCdRRQjBULGy2vtyol9wCxH+PFwVRQhVtG1tmqw4yJOGL4UJvGFaazW3zO9iBexOKRnrDrx4gDOq4xexExquCtHqWMcF4MSjVCSGTZRchSn2ajZT10m4QQXqKwM0iEdsdNIYHDxSiWyNX+LCyJERwGQTe6kCfrA0VmTMG6bnn9CJs9o7oRg+YikazRN7FK38Bgpf+uX3wr2SlLmtxmJEPIUFL4r+mqJre9zFSfrbrVtYM8WYhd2EgnmRnyL6qooYxK0nwZc33IYjWh3VNdDTRXdHT60AMPXoooxY0bSb0RhA0bO2R+k21sDTtkATsDRXhrh0NdKamWDvkHcEjJmXzW9TmU5EKGhvmb9hBdOUyMRJMaf7EU/YMpsPZIANaWwNpnjuDoG9eRkLmKgfErWVE91he2hPrvVBSk3wimAhRzcMalBy8mX9BqtdzEeMa03YfQBuTpTc/KxxFDf5+mWybp9KY7WwjWRQ0sExklhvg12+roI7L4h5UMEL0pkMUcwShmswglcSfysSORBVngtkPmJhRz42eF7lVh0zBEbSKretXQv2VJ153sg5hQ/UYKkXQwO+mkLamU1fSnFxvYSgVV/omdfZV8WchS1qC7bKibx6JZqhC9VyMUHSrSAuQBwvSxUrZhU0sZ/ZuHoi4Kaweb0D0W2DIU3Fbouxwlynh+zNIXcDyHd8yFtROb2d7MAlDo3oqsvgPF/qySG6igKuJ2puYPu3cLK7XgxA+pC2TOAChNh5QCRLcNOBQj4KYvPJkF31zu29IGy4+D5Uein/UoKF6jisbqgt7LUaIcSGd0sLFCZQa1jx/K5nt/oZmSeJ10slfT7F//mWeeyX//+19uvPFG7rnnHnr3NmbYt2zZQnV1NXfccQdnnXVWxGMoikK/fv0oKSnpDLqFYVWAeHZDrFjIEKmYMRONrdU18BmksVZuprvIQJEKNqyNMiIa4sKNghIk7r07qZTV/KTPjrjNQNGng1qz91ErnAi1vnMgKwJ+u+4B4BoAttU4GuhvBRIlopgjFwUtEwi/8G4hJeygvgS4oZGC6LYOGVj+V4fqgHtPRdiMubRcdnKC+yoeMt0YFKzqSCK5Xqko2LHhoJYKWc1ApWXfu1+t7/pfX+G+2z8VWyYrSBNGTyRKsUGY5Kd1bMaKxR98k0jWsQkLFp+frIqG5u9wSiSFlLa5jsYqfQN/6UtJII5yfLOl9sVQe5BRS/yljix/HsPv6jCi+qxhv/8sCnmsNJHMn/IfwMiy1dc27vBv+/Nwtkz8AGxLOCrhJH4rrzOUkcY/4YK8t0A4kBn/RdiX+vcVCNbKTfQTPRuVJe0JzNQjG9coCG5VLyfaV87ZVaQFBdyyyCBFJOLGwzAGspx1LJIrydeKuF69iJ6K8VntL/qxQW6lt8jCI73Mpv7vIRSJ6BrekU3fNhheexVQkMC5wP5dKllyZ2ynPsu/mK6kMYBexIsYavZw/aJO9g0WaMt4x/slGzC0zbrRhZ1y3w74Vsoa9MXHwhf3o/kCa1LxIm+fiEjYCcID0kyQlMjA2VCSBUNnMF5/m0/Sa/y9rx8HjuDS8e9S3x+T6Ee/jXL0u6zQ13X49bU1LXnOH6QMbfHx3cLdZMANYBPZuKQbawtKVzuSNQGTu3pNLDz2DWj18hvS4oC7Tsdqd+GZfYn/u1ePFb58uMEyiX7CSxBT2thYQSp8tgjuO65tr6OTTvZEWiTq8+ijj7JgwQIuvfRSunbtSkZGBpdddhnz58/niSeeaNYxnnjiCe644w5WrVrVqgbv60QKapkxM1Ofz3K5NmwgpDmMUoaQVy5YcN9T/Dr5SRyTZ6JP+Ra9tmEKejA7KWaFtp5iGV6nq6MokMWkN+G8Ok4d3UGt2fuolU5E4MPSvAPQMCI7XjDVzxIni4SQx0gOYQggfaEdM6aggFsoRGwZXDsJooqMcwsNuq2G+04NSk934aaQEp70vkH+bupIb5Thgw8aOtU4WMMmblUv26XzJIsEBIJE4igK+J1lRXAoduHB2sCwogYnZVTixI3SoFPkxMVmPSfiNbWGr7Rfmex9uj7gBogu9yKSXoeaX6A8uCy9evMgPCWhjVkCjSh0dLA21obqlWFMFCR5e/BbeTfqZ/S9EPMLSJ++mLQhi4NLaSWScqr4W67gN30eexq/a/Mjrh/BYG4zX+5/bxe2IPe6HPJZIteQI/NZTv2AaQcFzNTrj72/6EsRZSyUy1kol2FrhgOent8b/e6Z8NprNOxCrC6QLNjWvOzpTvZN0pQU1rOVv+VK/tZXUCAjGzV10smu8rb2Bd/KepfunRSxUtvI9nbK6N4TqKIapt1OUCabboLvbwYZB+eYIdq32qrDldejXHoPym0XwZDZPHpFIgI4/eQ3SL1mJZce+R7B93MBM41nzCb2fofJWtl8s597Tde0+PihzIzCsUlv275XW1JEgCTAb1cFBdwAcEcxYvYTmDGhJTf3OgT8dB18fn/ItVUJG1rX2E462ctocZ7rQQcdxEEHHdTqE1588cU4HA6GDRuGxWLBbg/+QZeW/rs1QDbIbWHXFQY4M7XkBt+QBCWO3u99zmZ3wCC4OgU+eQguvz3sfhLJXBbznfd3LjfvnoyjOgooCnKqakgX0shQ9m3nql3BQa0/QAYg0h5GFt8CWiIi8UOEqT64lRjGbTMxwJUuGjs11GLCRDrJ5NJ0eRyAkrUW7j+tWdtuI5fr3A/ypeX/2s0EIBw5el6T26STwuHqqF06T3fRBYGgjMogQ4KBhNfKcuEmJozDLBgZhonEU0ElOhITKpvJYYrnZd63PNVmWUl5If7mQqmFxI+QlfsDJzRaP0LdL+Sx0klmqeVbPLqXt7TPqbruF7568WycXqOtR/RVOG1cIb/rghJRTpB5guKGuGlQXXc+CaJxICiJeEooZ4eMHBzeHaxhI1K3QMV5SG8aIvZ7hK0+eHa0OrbRPluts4gnFpd0k+IejRevX+ctnhhUTJRSznK51r9PDFHEEEU1DnIp5GhlLD/osxodO4g3XgA9tM4jgEnpzHL7NxPozvyR/i2x3mimmu/ejS3qZF9npR48aPeg8Qt/8qjnFZ7fPU1qd8plJSgh0t8VLwgJcTqcrwASlBpEz2X127z5Am8P+Zn9Sjcxt3vjZ0k9Rh9xBwV4pReT2LNLI8NRrleyESNApDvt8Mb/QV5/4/M7+GvEyS9S1w2KI9avpdsSsuiKioIWriQhgCmelzlYDucm0yUtPk974606Clk7AmFfAmroCbR/lGVYcMMF98HUd6GiblI40rM/fJ89f9mB6KPbz9yrk072FJp1B83JyQnrWhqK3NxcMjNDZ2Y8//zzzT7Ov5FCwmtH1VBLD7oSTRR9RY9dOk9FdYiHSkVaxH3MmFBReFp7c7cH3cpkRcT140TrA8P/BpbWgqw9zjBNMJUizDsRGZMbbTdKDOUoJbR5SjIJnKiMY42+iW3sIJ1kvGjU4iSJ+CBh46bQ1xwMP9wAugXGv4ty0E/+dXXfOxceZsi/WCRXMloMa/lF7wJb9O1NbhMnYojaRRdMCxYjswu42nsvZ6vHIYQw9OwieDlEynw1Sn5djGQIa9mCisCOjS/ldHp7s9rMUKFMr6APWWwOMSsuslYjs5ZBzjDqSl26DF7F8SkjQrdZCPYTfUCBF033QRa8+0zwNt9qiUhdItQKopPforrkMoTwQupjYFuNjPsCKs8EUQvxXzQ6RwnlKAhqcbarm2tr2EkJsvg2qDoBkMiq4yBrIsJkTDQMEwMb7ZMg4gCwCStHKWPIlrmsl0a5VTopWISZFBKCgoy/yXlU40AgyJF53KBcyAz+iiw34A6XES1Re6zigO6dGcb/ZpIaZEa7ZdNC7Z100loOc53LMuonEkyoJBGPBBxNyKbszazXt2Kd+CSuDx7GH9AwOeHUZxFqOSS/hCy5BoQXkfoYQXNrjljeHXQ26Y5IWrUSTnzR/+4z/ScuUE9phytpf/6Rq7BiNqRPXn4divqQUFvGizPvYb/3N/G/6X148eVNCKFwkjKuVefoIlKbFXAD+IYZzPDOZ6J6Ihe772CxXIUEnjLdwZWmc1p1/rbgqwoPsvBBQENWnQxjHoFFleCOq98oqgwx7kO8aCg2B9w1kViiUVEwvTeVwnUDiRx8C0FFOmv0TQxWd59ucyeddATNCrqNGjWK0047jSuvvJJRo0JnclRUVPD555/zwgsvMGnSJG688caQ211yyZ4X2d9TcEoXehipTysWetCVDWwD4Dxx0i6d655jrdzydWCHRMIxb0bcp067yoTKn9oiDtvFrJ5doaQJfYZhyoCOacheyMflbh7IHQYMA6Ucul+EMIXOMF0nN9NNyQi5ziRM2LHiwEm0zy2zLuDSh+7NDrrpi46Dr+7F/6D++h704h4oJ7wKgBcvXelKISV0IZX3tW8YrXRs0G0z4dPoBcbv81r1/F0+z2gxlCwyqKQGK2a2ywKyRAZZTQj7ahEichJJKonkspPE2gwKlg/FrESRNGwmn1h/4CL1VPoozZ9UCcdGskMG3ACEAHHtdaiuaK5wX0JWTAxmsyRKHNrq8wVmWkbF/czA6AKsajHzFUMLjvivkVUngYyBwvuQagUi6u+gY+hIKqimgqqwGZ27gzLKoXYY/sGUVMHdG0zFqKgMUxoH3QKpkFWsk1sAOFyMYrQyjLe1LyilAhf15jOFujHokkicuDhEHYFdi6zxqR78Hdq8xmY6ato2jrj2HbaTRW92/fvUyd5JrB5LnKc/FaatCOGhiN0vR9HJvolXelkhg4XfvWgUUYZEslU2PVm2N3K351k8wku3QRvZ9vjhaJVxoGooMfUyDCLhM4j/EpAIUR8MkpoKGZvQ8vYnLz7T0FsNme0uYN7ZcOiXAMzVFu+1Qbff9fmkk2qYSRV3J8rjYMV7R2L3Gcnd81EeowpVLv8ygYnKia06R6ZI5wCxH8sCMskjUUUNubKALXI7NT4n0N2ddf+nwwl4MUIDXqA/ysPHo9dEg8cCFidKVLBOp4pCN7qQLBJQL32dKvdaamvMUNQD3nm5GWeVcMT7zNYO7gy6dbLP06yg25o1a3j00Uc55phjsNlsjBgxgq5du2Kz2SgrK2PNmjWsXr2aAw88kKeeeooTTmhcRhTI5s2beffdd9m8eTMvvPACaWlp/Pzzz2RlZbH//vu3yYXtjWzX8/1ZLg1x4fYH3ACSSNilc113uI2RWSoP/ejkD3Uu3uNeRumyLeI+bjw4cVNGJfP1Zbs16ObBy2D6sYrQGni9le4d3KK9hw/K3fjL8fQEcBwMcT+F3PZAMSjisTJkGtXUIBBBtvWDxQC2yh1hg8hBzD2XRjNji04BX9ANBNkY5Z2xRLNTFrNZz2mTQFFzqaCxplgdEuP7OF6EzghsCQeog7hQP41vtF9JEvEsk2vIIoN4ERtxP3dAICUUZVSSuPY4tr1/CyCMosOvr6brNffyfu9veFi5aZfarUudeGIYRN8gId6GaNYanom7Cksryjca0lWmMUoMYacrjpzceyjU40mxFiG7no9QHFBzeICDG8iqYxsF3eoolRW87/2aGmpx4eFs9TiG7KbAfYVeZdheRP8JFecDGijVYDUGlyZUeopuEY8xQuxPntxJDvnMkYs4X5zMoWKE39HPIz2YhTlIzsCKBYkkhSTKAnT5GmI5+RVqd/SF7OFBy7UDf+IP+TfbZF5n0O1fyvfuf7hqWwrlnndBLYbMa/FYI9+bOumktRRQHDSJUMdIBiMFpJC0G1rV/lRQTYEsIp8ipJAo8aEnOIUInowzhPGngWYL3Cj8icrqK5b+lst3pcm7lZ/02X73drqvYeQ8hz/gVsf4GRoCwTEhpBuaQ6ZIa3bALQobXUnjFs/juPFgw4IZc4uqQ9qDEdFVUBqNUVZhQkQZhk5KdA1QgwUzDfOWNXTcPimLBBHPXdbLeNDyf8iYGqRwBfXBDAKkQMB4/ekUvo/6jOta7l/RSSd7Fc2qp0lOTua5554jPz+fl156iX79+lFcXMzGjUbA44ILLmDx4sXMnz+/yYDb7NmzGTJkCAsXLuTrr7+mutoYzC5fvpwHHnhgFy9n76apG3YUdqKxY8FMktj1rIzRPc38dF0sfS59qcmAG+APoAhgkb5yl8+/K+TIvLABN4Cuu6B5p0nJLfm1dFtXyanZNZRpzTUa3zsYaFXxOzwCWEJnccUQxS8Bzpqh6Kf2pIZaqnEQTwwA0jGSn7Ovw5v9KdIxOkjgPSQZmxsvS8z1v6zTnosnlhWsZ42+ib/0pY33aUcKiGzgcIoyngFq7zY510hlf9aymWyZzzZpfA5CiIgJ+7U4I66vooZt31xIw86Od9ptmNvAwj5PFuLEzXqfe1w4VNQ2CbgBdFO6sESuYUfZUei68d0rdqVA1bHGBuYc6h9xAoQLPecj9OwvkdXj/MdRUCjUinlJ+4hHtFd4WnuL77UmdM3akWVyLTo6IvlVoywo8V1EtysRqtEhH82wJnX4kpVEcshHQUEgyBTp2IWdZXIdebKQqz3345JufxAOjImdPFnIYBHZWVxDg0m3wsHZYNHB7IVj3kQd9wldSaNQRipZ6mRf5qmyAko9vr6JloAsn0i17oi8UyedNMEWfTv3u1/gfvcLaLI+kFSpV9PwySgATej8I1fyi/yzg1vaMXyl/cI/chUWWuiAOfvC4IBbUwQE7fZmQ5Q6iRIAcfWNbBuZ02g6uDwRskTXVstMRAk7CUSeHK3DiZtN5PC3XE4hJThx46CWXNk8LeT2ol90IaLrDZD4PiLjBn/QrY5wk7tDlH4slqtZLFf5HdCF2Q13ToSUzYAHw6StYcCtDsHszzrtSzvZ92nR3cVut3PWWWfx/PPP88033zB9+nQ++ugjbrvtNgYPHtysY0yePJkpU6bw22+/YbHUPzDGjx/PggULWtb6fYzlMrItt4NaaqjFjYcuTTh3toQraFwqFAkJ/CxnU6E3bY/dXgTOCOk1cehPfoI++U/0u+Ygv7qTAbJnq4/9RaWHl0vdFGqSX6u9TClsvuvR3sCUNBtq3HdgW4pInYKwrQ65XTrJTR7rfPVkdlj/pMK6hGvVC5BSRRY8htOTAt6uyPynqCm6DqklhD2GOOsJyFiLPxAYnw9X3txouwqqUBBsZQd/6Uuad7FtRJ0gfTi6idAluK1hgOiNisoO8pmnL6ZGGoNWa4TgpdacnEJTcMlgZmUeM588nRtinqAieSDuWa138dwsc1gm10YscwWa5Y7ZXGzCygDRC68SWO4gQLiREqQWD5b1RvAt/mNwHAKeHuBNR+58CKkZHWQdncWsZofPCEIi+bEpM4F2pK5cSggdEfcjIuldhLneyON8cXKTx/iPeh6F1gXcpV7NZGUSRyqjecp8Bzerl5BPER/r3zNb+5vP9Z+D9tusZzNMCW1uUYcXDVF1GgzpDpcocKmCOFBHIsmjkG3saPlFd7JPkE9uwDvjt1i+m7M3Otm70aTGIPfxPKW/yVP6mxT7ypVrpAMTpiBDqDpcvvJ4HR1X15GItGGIuCzUA6/DNPjSjmx+myOlpNKXee9plHfUBJbaEAvrXOtlg38aXDPJv1UJ5Ti9e19fuFJWs1Ju8OutCVVjxy3/xz1PWPAoxpWWJcAJM2O4Wjl3l87VSzSvwiZURZOGzq/6XEr13Xe/zNHzEPYlKElvI6JC97FjiGK56TsuEacF7feD+Q0c1DJLLiCBWPRpN8ITX0Jxb4yiOkEkrTetJp6oW8t5bHqo72gnnewbdLgVzcqVK/n4448bLU9LS6O4eO+dSWkLtoYRa1dQOJ7D+JHZ/mUZIrLpQUs4znw4kz3PNL2hry0KAh2dCzy38YP1jTZrR0soDdR0+783oTwTECBBLjqFD7tbuO7w1h272Ct9Uu8GRftYpptd6MjUpxtF3HW3BT6/B9aNBq+ZLarKwIRKXp9o44j+oWdUY0SU3zkzQ0k1tKeknfp4vgKVpyHdfRCZ14V0dxImD+KmK5tsdxQ2HDhJJZF5cnELr3rXcBPaxQnAgpk+tF05c5bI8AevvtVnkuIaTZ51LnbCa22FGng04sJ74MV3wGe6MOuzM0j0VPN172N54JDbKf4iEb41OnyqCl3iBS+dbWPCfk3PpjtouqOkoHAgkcuVW0oGqaxOfBfpHAjufpwRa+Wb2F+h+mgonowxmFAQ1s3IyjgCv5eKHo1UjYmDFXqwLtDu1FZZrYfP4AU4WD2gyWPUZULHiRgQhv5iOil0FWmkkIgTFz/LOZhQERiBNIDlcj0XcVrwwXQF/cf/wD8ngtuXJTFKhaHC14fWQavPvA503e3k34WI/R4c3cAxBqxrEYkfsZJy1ugbGaREzqDspJNQ1DR4ttTIWhBwtPsSlnt3IGtOwqI4cUfPRAjjSbhWGtnzKgoLznyQCephu6Hl7UOJ7kCrOhbQqI35vUWa9eKIj5ELT4GqgPHDGU+iHPRjs/b/gT84i70rIylc9tjb19p5+9p646tYopkoIldqNUWaSKY5XTGAAfRiJ8WUU4WKSje6UEARi+UqjuGQXWpHa1mqr2lym2OUsQww9eZ59V7KPJX8qf/DOrYwiiFkkEoZlWh/nwALJgbsFS7DLRivDg9OdzOqp4ljBrZNRUQnnexJdHjQLSEhgfz8fHr16hW0fOnSpWEdT/8tLJGhb3hR2LjHfC1d9XT+1ldglma6tmHQrU8zZ2fAuG3asOLGwwq5Hrf0tFm5WEuIJsqnL+CB8i40vKHP2ujlusNbl1VzTryZ50tc5HgkVgHXJ7UwhX8PZ6O+jWjsQZ1ZKYGnP4eqVP8yTYMtJZJjXqnl1+sUxvWLfLuwY0MobmT8pz4tqjpUcBnC7xYsEbPGBCJkAMkIDgiisSMQqKiUyYogMf32QpeRHanceOipRNbYaglmYeYh9Sbe1j43tNiI51XvJ6SQGFFrqw47Ftx4MWPGhAld6lRvGAwrjyDuxHfpMWopiaqZhFeq+WDgGdx25EONdF28GmSXSk5+vZZvroQTB0f+DTQcGOk7s2DBSeCIBSFBAT1zA9aDy1v8eUTiYvU0uokFVHf/imy3iShLFAIvumsggYLA0jkYkfgOsvQaY8eY6WCq74w3FNwupgwpZZNlnO1BoM5aKLLCGJuE4iZTsHFRd5FBEYZpymp9A0PFAHbIAsqowISJMlnBEHN/AhMo9Defg60N9DvXAv0BO4ALGfMLXUmlm8joDLr9iznHNJ5nM+5spM1epde2sK6ik04MGj5b6iZ4VN2Klvsq0tPLmIqKG4JInQrUS6Fo6FzouZ2r9XOZYr6lI5vdLkgpOT3HjXTcZ7yvORKly93N3l+Y3Yh7zkDXgVo7LDwZCruhF2dAVTIsOQYQMOQPRL8ljeTePtN+5CzT3hV0W6dvYX/Rj9Uy/GSWBTPJJJJmarq6IxIHiP2YzULDJbUJJJKJykmUUc5mfTtWYUGTGld77iPDm4oZE7MsH3VoH2QLkY1HYonmGMUwv7ILG7W4/H3Swz0XYMbMENGfJVsaGp015xrqt/ljo7cz6NbJPkmHB93OPfdc7rzzTr744guEEOi6zrx587j99tu5+OKLO7o5exTlhC7X7EoaB6r7c6C6Py943wdo00CXWWn+sTR0vHh9gQ+FVfoGDlQ73vxihVxXry+QtRJyAkW9JZcc1PrPJ82ksLxvLCudGn0sCqmmfWu0sIy1jTqyOOKDAm4NeesvV5NBt1iiGS2GIlLnsTD2N7SCR8HbBVAg2sjSVJp4+IbL2FJQ0NBIII4aHKSQyBJ9DUepYyIery0I97sMZIBoGz23Ou40X4UXD69on2BG5SttOgnENb0jUIsbFRUbVpzSjWPqG1DYB4BKYOVPOofc/gS5vWy8O/jcyELKwGtz3U0H3WT990n/eRLMvphGHa0l8NuPGvkPaGTEq826lqaYaDqRE7UTGJtTyjqXib+FA1PXNcjoeciKiRgzrCaoOg4yr0ZEzzGEfS0bkQHNKw4wAQFIJoFiWUaq6Hgh7hpZE3adikKUYg+7vin6iCzGigNREGyTuXQTXXDg9A0S3PwtVxCrRAfvtHV44wNVAdOAk4DYaMh/kYqut5FlE9RKJ7rUW62N08neS5RiB73xLWW1tp7Rpk6V7E5ajkM2yHSjFq/0ssRdi/QETN5XTwBf0C2ZBL+xUy3OJt3u9xaKNMlCR8B9teYIpDQhRPhM/JAU9oTnP6Au6525FxH0vF50JjJjPdx4edBveXGYxIA9mc1kEydjmtxuiLLrzplmYWpWwA2gCgcT1RMYqw5nkXcFx3uvxIUHLx6KZAljxIEUyKI2rWpqikJZGnadwAhOXm46y7/sUGUEpXo5S1nDBraSSBxR0k7XEYvZuOxwWpSG6Udy0gEefDN6nXSyT9HhveLHHnuMgQMH0r17d6qrqxk0aBCHH344Y8eO5d577+3o5uxRlIfJYglMjb/JdEmj7IWOxokbF248NLZr7yhKZb3ugfjPjTD8BzDXQHQJH19i5+Qhu5adFq0IDo4y7XMBN4BsmYfS8KdvqwYRvrMwumfT8XmLMLNQrmCBXEaqtZj0bnewX8qPPNqlFpH2KGBkKLYGNx40dMqopAoHO2QB2TK36R3bgNJmdNgzRPiAZWu5x3wtp6lHs408yqhoVJYbDgtmNDQqqcJblOkPuPmRChUzJjLmbwtptsg6kgCjezYdIAsqL51zPuE6W1JXeWpGC3VomuCbKg/rXL7vp7TjzX0e9GiI+zLgxDZkxUSEJQdh3YgQwS1smEFYSCn5dHzGVoVeRSHhjQhaLJzdgEFKXxQUlsv1lFDOWrkZ1TfwUnwTKY2ILgtxJAk9gBhfkFyPwlVxFivkOgpkMdkyL8Q+nezrmPXQz4nVERyNO+kkEjUEG3FUSwfbZQFZJgWEE9AR6GCpN2QqoRyBYdzjReMXfd8wVEhUBWmqQKnTXDPtgAjSF2H56Vr8ATcg5PM6fwCUBFcflVAW1PfeG9igZ7OhCYMnNx6eN9+zy+fKJB0FgdSj0POfQt/yK3rBFKTe+LldRCmzvPMpkxUsYx3VOPDgQQIeNObIRWztYH3UnUSSeBKstU4PWnKnaRLzbJ8xRAxAIimlglVsQO23GC66k6ZrbUOtFxzxrI7l5goe/rlT362TfYsWZbp5PB6uvvpq7rvvvkbloc3FYrHw5ptvct9997Fq1Sqqq6sZPnw4/frtuXofphtLSblfQhsIApsVeHWijYtHB5c+1khH2CyfsYTINGhjAjXMmksxZfytL+dSzmiPJkUk0EhBKDpi4uMw8XEAzrKt6vD27E0sdZfiLbkLpBmR8D7CuhWhasj/XAtvPQ+eukwXoyN27oEmrj+86cF+YEDtFPUoXrI9gB6lU4uT+1yGZlQVNWFLSJvCE9C53MoO5stlXM5ZEfZoG5qaJY8mCptoO4OAQB413cIM7S+yyaWoQTZWOLxoCAQ6Es1STSg9jZKobMyV+/F76pHgCq+3ccpglbuPbdrtrDpwYKR6wRs+0zQpum3LJeKUhsezIHc+BMkvEnRdSnAGWeA30BVCKy9PFjKUgW3WzuawiWzyI3R8u7Hrs96HKyOZq/0DGFkjJ3EkPzILHcl2CqiVThQUv9hzwo23UP7iVKhJJujz9HpB1HchPEoFGi5Ws5H1cgu9aLuS6072Do5Wx3K//kKj5WvlZlzSjVXsW1INnbQ/VTI46OaglmyZx3Z1A6LrjQwsv5/epnh+zPkZ/aWZRiYzgK0K7eprKfv2D1SZjbPOWTKmK7ards9k8a5iFoJfekZzVMEsSkUpIuntphLVQ2NvjgmaBEuwFIgLN794/+Q880mtOGnH49W9zNDn+bMewxFDFJkifZfPN0wMBASUTzR0LVGg5gioPB0SPgtuG16myz8ZrA/gZu+jIY+3Qy/o0NSYEncCetnlgGZ8t8z5/nUjGIxA8IL3fRyylrvM//GvSyHR/1pFYQPbSNi/iHKzI2A8EUhT/X/jSz3lFzc3HmEjIarjZT466aQ9aFHQzWw289VXX3Hfffft8omzsrLo3t3QEtsdujkto+3a59Hhyk+cHNHPTI+k+rtpw/KmQHopbSfSHg4TpqCgRlPUBU5+1xc2vXEb45C1mDGFFJVvaB/fSWN+yT0DPIb7rXSMhJ6nI4QHpcdaeGQCAL3JYo3tpxYdNzogHbyu3FARClGyfrkHDybUsN81BQUTalhr8jSSKPRpUuV2kNh9U1k7cYTqVLQNCSKOs9QJfKP/xhYZWW+jji6kMJDezGIhJOyE0d8gF55ev0FsMQUTpmCZ8iu4gx8BH19i56zhFp7zvsPb2pfMk+Us5Q1GENmdepa2gDSSjSyt836H/51geBg0COdnJGrceXTzymSby8mxJi5PUHmn3Iv/Xi0tEPM7OIdBzeFgXYNIfD/sMRrqDJowURSh1KK9CCf6XMcIZcgun+M89SR+1+ezQC4HYJQylFn6An/JeQnlxBDld8hzxOdgv+8cXA3KZqRUkYV3Qc04sK5DJL7nX7ejievoZN+k4Xekjt9ZwA/aLM40TejgFnWyt3Om5zr/62iicEgn28knkTjstlJu7baBsiqVHz+fTP3zRoAzDl5+G5lpZHo3T8p9z2d/m4qtyxSUiFlJoZES5O8XwpoxGK6lCqE/FQlmBzK3HyIuOPP6e/k757F3BN3WsYU8Cn3mb+EDPX3IapPz9RU9SCCWYj2G+n6PRGqxyJ8mwYIzDLOxoTMQZz7NYmU1j3tfI4FYanHi8PVDBIIUEvlY/55z2DVzh+bikZKyvMf8pkjSNRi6n+sP6lowkeoajYKCRHKL6TL/ZPNU891c7bmfJXI1AkECcUb/4aK74Z3nCP6eNfwl1n0PIdR30eGRJOwTv9xOOmmFpttpp53GtGnTuOWW1ouSvv3220ydOpWNGw1hy379+nHzzTdz5ZVNOxjuDtojKLihUAsKulXK8DNP3ZQubX7+hkQKVqko6Mig7CSBwIyJaGzc6XmaJ813tHsb6yilgiqCs1b07AHw53lQHcvRogJVFYzMMvHfY2zE2/e9EtHWoklJjScN/8NNTwQtAUxF/m2sWBittFx/J0oEBN0CMp+EEPWmF4Ada6Ogm+4xw58T0TcNxaubQJXQfQ2M+xjFZgQDBAIXbpKIR0HpMJ2WLXp22HV2bJyptu9A8gjlIHJkHg5ZS0ETHW09rzf5f1xEbHQy2pHrUeLKEKc/izj9WbrRhZ0Uo6MTrcdQ7m5cNjp/q8ZZw43sgs0yB6BZ5SQ7Kakvi0yxwhUSoyOlI5JfQSR8Yhzf+juWNr6fKkLwWmYM74sX0MouNRYmfIiiViHTHgF3X6SoRdaMRMpoRNTfCLMRFDKhGhmB6BzEUP5mBWDMQhcTqqyyfSmWZX6HX91jgrlnwaYRoAmQCkvVvtzWzcHkY22kxrTuvtZP6cn56ilomnFXP049lMf0V/3ry2QFfcliCYZ+jxfN724aiBAaIn0KMCVouR0bG2Tkcp5O9k3e0b4Mu67OUbKTTprLT9of/uA/GP2KahwUylL//bmrSGNRyU7qB+yB2bhWnNJGjAhv3rQ3UtWg5DYQvSYGZl0IRVkw9HfE8JkIxei7yx+uh3nnNeMMwshQev8Z9CtuQum3GN1ph1nn81PBMN4a6uSyMVbURlnmexb/6CsZRF/WEv7eo6IwVjmwTc4Xp8TgxoOI/xpZNcHoX6ul8EsvWDGufsPFpyCLeqBcewPFsoz+oidu6cVBLeVUkk8RRZSyvQNd1Es1CVqAhq2nO3VGVGBUqXQhlQoqsWPjFe//uNV8OQD9RE96iK7ky0LyKSJDpKJKlfP7Z/HRE0fimvw79eGGht8ZFZBwzgPw+YMEpvaZslZjj9sfaH/DtE466QhaHHTr168fDz/8MPPmzWPEiBFERwdnedx4440R97///vt57rnnuOGGGxgzxhBBnz9/Prfccgs5OTk8/PDDLW3SXodJaayRVUl48eyEurT4diRSdlE6yRRQ3GCeSGLGRCGl/K4tYKYyv0NE7aGxxpb+43/gzwupu5nP8bVv1iYPz87ysO6eGHqmtI1w+96OKgQJ0YsprxlpLLCuAjU4kOPCzSGi5Z2QoEy3BkYNFixGZwSB2uC2I53R8PB3oDcoY9x8MMy+BP3OM1ASilFQqMaBho4VC6kkMUP7i6PVsS1ua0tYq4cPINTi5AAGtev5j1UP5Uftj8Y6fA3Q/zgPpl+HhmAtwPzv0a+7CnP39XQlHScuzJiMbBRFw5y6A09RYBatxD7id+BEkgJcYZsqzYDgv7eI/h1ZfbTvjRui/gKgJ5kkyrh2Szc4MnkVM2PPAgTCnIeUAlnwODgOI3B2VSIhbQoidro/mCSR/oBbHbtDfHuL3I6GjnRFGb8JLVhMeC2wdouHl+Z4WHRHNEMzW+eFNMk0kUmmif73IzyDWM82PHh53PM6Z3CsP+jWUiSSYtnxActOdj+/6/PDrvtAm8YKuY4L1FM4VT26A1vVyd7ATO0v/qd9x3p9CyZhppvIIIm4RhlKDmopDXgmJYl41qW/D+LQ+tLSOhJzsSvOlmun7OGEk+fQC7Pguf/hD1ysPwI563K47XwjY2n5MY13itkJg+ZCWTpsPLTBSgFLjkdPy4bHvwJMOIBr17u4afpOVj1goZep+W7aHc0mmYMLd0Q5ExMmTlfa7n40VAzkL/MS6HEWeDLBvB35zveNN9w+GC8aLlx40RitDiOVRH7U/8ApXaSRTNcONFFIUjSEbRnSeYCxIGpOkEGHF43udKGUcnqKbmwmx79OCME4ZTRz9L+Jxk6prKCf6MEJpnGc6zmdY5oMNQjIGQYPHAdzz0Ap74YybCbJ/TazRH+iw8aWnXTS3rS4x/7222+TkJDA4sWLWbx4cdA6IUSTQbdXX32VN998k/POq59tOeWUUxg6dCg33HDDHhl002vLMNsT/YnrijD+K6UvmV2AkE2vs5hgaKbCp5dFEWcLHnnmaaFnNAQCk2jdwKolWDD7U5sbUk2tLyhXfwPWkdiwUkQptTh50vsGQ5UBHeL2VyLLySSdXHwlTPMmEm4kr0t4YoaL185tnYD/vkhM+hNUVA8BaYKY3xGicYdkiDKgxceNxk5X0rBgxtpA8D2dZKqpQUUlGhtlAZp8ctFJjQNu/pUqzLkATnkBDQ0TKikkUkwZO2QBf+lL2z3otpLIZgPD1fYNugH8x3Qer1esRd/5JugxiKQ3EA00Qph5GcG/AwE/X4M26UaqqMGOFQeGXlcVDrrcfAu9v36F5avTqIzJJv7sqcxMr+ZcvR9pJJFBKtHYqZLVNIUjQHdHxMwG09Xg6g/2RQiLURabTxF2pWl9uNayle1BGiS4+/gCbtDwc5GlVyJi60WB9dJLkOUXg1KO6HI3Ftsmv6ZZR+KVxj1WLj2mUcAtEAnc94OTb69u2pWtOVxuOpsrvfdgQmWZXMt1ygU0dflSmpA77zc0a6wbEF3uRDGVoaNTSgU7ZTHpIqVN2tfJ3kEcMeSGMSDJIY8cPY9M0aUz6NZJI77XZvGx/oPxRsICbQMpBS+j114HtuWILncj1Goj20066CW64ZBO5nuXssm8AXH3mciPHoYdA41M+f3mIs5+HN7avdfV1mhSCzYuCuS3K2gkAlbcA4qzIDUHMtfB+kOpj0IK6LMC8xnPk1rTi7xHxhrLAp+XvZfC7PNpOFz0VCXw9ra/mdJ3zw26FcoSiogsE+HGw0h112Ub6lB9n51QnGA1Muxk+lbYHngOCYoHffJcdgI7gYWAzebGc+f72O0e1rOV9fpWqqWDGNH+45et7EDJuBW9+igQXkOeI4ACivyGU0WyhGw9DymlvxLsIvVUrvM+hIZGKRXEyRjW6Vu4xnwemCt82m6hirx9y3ovQbHXwDEfAkb3oxob8/TFnUG3TvYZWhzN2bp118pGPB4PI0eObLR8xIgReL2tcOHpALQ3elFaUUFcXNtqEQWyRt8ScrlKx2RoWbECoUtcK6kmmqigoBsYGTDR2KnGwTy5mN+1BUw0tb/+QAHF9QE3AJML3OEFmjPiOstL66jQqygUhYjYXyNulyISI64PhUmYqMVJHoUIGfxgtWHMQDtxYadB4CW2CW2SuPr1XjR/Wck6tvCPvgKndLWbkQHAZiJrqfXuAMH4/vREFN7nS/9XkCU3QvSc4CCTJYRobYxR8llOJYovRb8umJSv5pN89p3kX/gZf+oOTvAsYilwi+cx7jRNIh+j5DhH5tMUNdQidYF8/zFfp16A4oWJDyOGGZ9fHG0TIApHMgnBbl9KFUbXreHvX4Jan4klXb2RZVcZb7QUZNGdeLpfxlbZsc5hAEv1tciy88FzbJPbZsS33X1tgOgNGL+vbPJwi6afxbL8XKg5ynjjGoAsuxSZ+hxuPEzX5/CrPo+L1FPbrI2d7PkcoxzC2jB9mTo26ttwSw8WEd5spZN/H40CSRWnU1TbD1DAeQCy4lxE0ltUaNVsJoetcgfxxPKQ/pJh0BQL4pobyCDV/+za1/BIyX93VqDXvIiI/hPivzBWVJyHrBkD5lD9IIl8/1FkcZ35nRf/M7HXYsQ5j6ChMyg6hbzLboMPpoAWBUKH0d+gjPoR/Y8LQrbnd9uvQIjsuT2Eb/TfgqRopMeCfPlVKPBNKiftIOOGO4myhZ/gailpIqVxZuWVN8Orr0CBzzAwrggqGxs3OJ1W+OF6HGc/7l+2Td/BYLV/m7UvHOvkFqTiQsSF1nKuK2m2YWU7BRTJMu7zPM8d5iuJF7GoQqULKf6x2Ro28Yn2AzeZLsF00xV4X3kJHGGSMmwV0L9eH9yOlVpc1OLkLe1zJquTsCidJjyd7P10eDTioosu4tVXX220/I033uCCC0Lf2P8NrJUbQy5Pov0CfYHEhhGD1x2x6M+8Q9Xk6eiT/zT+vfZ/6L4gVw21ZJCKispT2psd0tZGYuOX3gF48OUYBq3qlyq469j2C8jsbfwjVwXpM0kJ+rc3oN87A/3+X9FnXEI/epIlWjd72dXnAJUnC5Gy/m8RmAFpahDrF8NmQs8l1P/9Av7ZSuHXS9Enz0GfPBt98mzklO/QNx1IFDZ+lfOYoy9qVVubSzhx8DraM3urDlVRschYgmYJfaU0/sD8FbcDbvyfXVQJqC70u2egT55N8SMfoa+pnzG0YGYVG1gsVzNaGcoB7IcZM3/Kf4JKhWfof0Vsmy51HDiRc86D9YfjF83VzfDJw0iHUR6fLpJ3+XMIx0qnRknpmcjqcdR97YR5JyL1SVCLQKnECMBJUAsQaQFuYTLw7yf870vbwK26pWyoGogsvQ4y+kHXEL8HH13jBM+e3nYDhZ5Kpv+1hsZSsbrpncrPDWiTAnrwbHxHGZ10sucwRy5ucpsZ8i9GuTve8byTPZuaBi6lUtoI6s/pxvMun0IWyuWkkMjhykiqqMEUMDl9lDLWP8m3r/F8sZtXShRwjkCW3GxkGVcfgyy5HpwjYNj+EFtO0DMjaTsU96Y+g80EJg/i8cNQrr4JoRr9wf5KbywDlqA8eizKE4eiPH44ymlTARCHfQppG4OOazvoJ5amTKeyGZnwu4NKWd1I+1l+dh8U+BxGEVDaHfneM2163kTReMymWJ0oN1+O8sRhJDxxPOLiu8MfYPEJ6PfORP/mVqQu2MC2Nm1fOJrS3PTiJZkEhtCPt0yPEkMUz+hv86E2zb/NHaYr6CMMyRI7Vtawif96n2JMairK/aeiPHEYnPQ89d9F3z9nPHxYH2isxeX/DRdSymo2tem1dtLJ7qLFmW6XX355xPXvvPNOk8d4++23+fXXXzn44IMBWLhwITk5OVx88cXceuut/u2ee+65ljZvr2VTQH18IG3lqtMUiSKu0eyM1AU88SW4G2SobDsQnvoU7j2DROLpQVe6iwxy5U4qZTVxon0zWlzSRTLxlPgGxUrvlfDEOABO5xg+sU1t1/PvzRyqjKAHGWRjZC/JL++CxQFOVDMm4ZY9MJ/cuiyEscqBxOhRVOOgWJb5g21pIsn//WqoryEEiP/cQBS2oBJn+c2tyIVnNjqHrE6Gt17EdfOl9Oji4CXtQ45VG2qRdAwxdFzZ8qlpa/g0/0DABLE/gHkbYATPnOgoXTfBE0cC0I8e5PzvGmqXnlx/gJok+OBp9GuuRumxGjceMkjlRe8HfGx5jitMZ/Gi9wOqqWWaNoPb1cv5WvuNHJnHt9qMsCVh8/Wl9CWL9Tv2C7FWQEUaalQNI0XblXAEssGlMWZLJW55NHAsppTnkfFfGEULcT8g4n6IuL+wrkNGz/RlbWmI5FeAxtqRHUG5OwnQQShwIoCO6H4+wrKD8RzMT7b2qZVKIZGRDGEdmxEIlunrgnxnpRTg2g+EB2HdaLzX4wkSL4/90X+8IaI/Lhk5WN3JvsdwsR/LZNNagA4Zpjyuk38tVmFFSOHvH4i4b5FVx4E3E9RiRLxh0lEpqxnOIFShgoS+9CCXnXjRiCGKLiLF72y/Z8v8t5x1bi3gvqyDpwdSWjEcIFUwaTDpD5TUp/376E9+1vhAXivoKqjG8frRi0FKX3roGRRQEmSEBSBUDXHrpcZrBPvRmwyRRhH9mep9lwfMN7TL9e4KuXoBA+nNZnLqjbsKejfarqa4bSUQRomhvMUXYddbMUPX9ZCyFfzZh4Eo4LXBwjOx16bxygX/4wy16cz3XWWuN/yESSxRVOGghHKGKAMYKgYQQxRlVHC/90We8b7NO+YnGKMcyHT9T8zSQg65JBLHp9qPHMKI+oNtD9VPBIp6+F+aUEknhUJK8ODhRs8j/Gn9pK0utZNOdhstDrqVlQULJHs8HlatWkV5eTnjx49vcv9Vq1Zx4IGGSPvmzUZkPSUlhZSUFFatWuXfrj0cQ/dkwukOJAQImrcnId1LHfGNA251VKeh/3Yu1aN/RRHJ6MJNT5J5peZHJplPR1FA1wEpkUIYIq660Z0SijA075q5zmpSiLbXf1U3y+3+gFtD+otQD7FO6rAKCwPp6w+6seaQRtu4Vx4BJzda3Cw8eFgolwOQRyGpGEG3AaI38cSiI8MaAggE8cRQTS0qAufqwyOcSaCtPpyiLh+TIhN3W7mS1oG6X+fFWfnMehJIO8JUr5vk8RlUBAYzN5KNvv6AEEcRKMuPhR6rUVFIFgkAZMs8zlAn8J73awB+lrN5VLmVL5hOkkjgB21W2KBbLjvZSDaM/RJWHUnQUMdaDWnb0NCDXOjakjk1Gm5Z/53y1hyMEh++09sIoSPS7wfvy9gVL07VKMntTsdr1cTF/E1NeV2gWQAqOIeDZQeK0n6J6UIISiijGgcKCsv0NZgw+QcrsvBeqD7OeJ3wAUry68iYX6D6eOMA1qUI+1L/8VbKDewn+7ZbezvZM+lD9ya3SSWJdJGCV3o7RK92b2GS+17KqMSJi0/NU4nuAB2nPYm1cnPQM0yYSiDrPPB2AVMhQhhGX9vIZQ2bQEJvulPu+8wMHVlJLNH0pQcFFEUU0N8bOTfezEflvskM4Ybo2QhpRpafZ+jfIhAxvwXvNPZL+PHm4GXpm/wZbhLYwFYSRCypIplSWUEtopGBRR0SiYJKEWXEEUO2zGvTa2wrdrCTdTQodR/7JXx3G4F9lHMPbltZo3BVQ3XoSFRFoN12IXLr/rBhJMw7HzyNx1q1G4ZTq3/EOSWT2UEhpmgXl5nO4DJT48noXaXEJ9uiu83gMhuz4RJA4rWaqZNpjiOaQUpf7NgwYcaJiziiyZUFjFcPxiRNJIt4qmQ18cRQSTVLWFl/orFfw/IJNAqJj/7G/9KLhgc3HjyYMLFN5qLrerv2gTrppCNocY/nm2++abRM13WuueYa+vTp0+T+s2bNaukp/xU0nFmqo7/oEXJ5WxNYTgZ1LkgfRNhDwMwbcM28gbkBS/8E7g8n8roLJNhh8wNxxNpEkHNVQ3qp7a+v1ZHkyyIW6SvoKTIZqgxsk2POp35wTPc1sOEQ6gVOJSf0bb1bbh+RRS+6ESXsbJU7GIbRZrMwUeHTDAznkuvB63fB1AB6roRV4wPaFohE9vkbJy6KZCmr5AYOFPu3ut3hKJQlEdc3/N20JyPVwQi1iobai9HYqWgQ0MogjfJuO6jZ0nhWMb7/aqpRSSGBVXIjq+RGLtZP4zj1cEaog/lY+55EGUetcJIg4qiVTspEJf/zfscFplMaHW+WZmhxKL2Xo18zCb64E6pToc8SOPtRf+c+qZ0mEEbYVV/I0dBvE7ZVTe7TECEA807MRPtzLX+XC9qymU3ilV52Wv+CuK+g8iyMclgBVsPII4PUdj3/fqIPlbKaUsrJpwhvXcDNm+wPuAFQfj4y6U1E2mMQMxukBaL+pOE8WaT7dCf7JoHSBeEop4ooWco1ngd5zfyQkbH0L2WDto13ta+olFVMkzOpohozJp70vskg0Ycs0ZWxasudxPdGQrlFC6GBOTdoWQ0Ohoj+FMlStgTorbpw4wJW6RvYRDYAascr6LQrx8SY+U+PX3jNsRjsyxBmX8Cr28XgHArWtQhrsO62ctgX6LFF8PM14ImCYTMQJ73kX2/BTCLxdBcZXK6exU3eR8IG3OrIpxBVquykiBJZxuueTznfdDKxInLAqSMpkeVk0ZUc6oOCythv0GNL4MdrQJqIOupTXjrswTY970ClcTZdIF686OhGhUfv1dB7NXpJb1h5NA37ujIhl0V3vcIif/m0pOK8D8gaOb/NzQVW6lvQn/vQl30X/DCvQULGBsQNVxCrxGASJmzYEEh0dAooZolcw0WcRg+lK4u1VfQXPcmkC1/K6dgCjNWUHqvRr70CvpgM5V0hqgomvIFyYLDOdKnPtMGNGycmvtVmcLrS/hl/nXTSnrTJNKOiKNx6662MGzeO//73v21xyH8ddWV1emkGPP8OuI3Ax1Rgqi+rKzUGlv43hrS4tu+kRjcsk/v0fmDPETour4UHf3Ly7Bl2qmXoACXQIe6pHcWvnr846RUHbB0BCBRRwcvn2LhiTOv1St4rc1Fe8hyYcxApLyAuvhv5zjOw5UAQkthBS3jxrNY7y/UXPdnKDmzSSp6+k7q+QiL1AZcgE4wAGg7YlPMeRH/XDptGQaChiOqGk15A9FyFDuSQz5OeN/jY8lybD+DmaJH14hqZQrQjqSKpUUYbQHWIgH0+hcjLrmXAW9NYnx0DKKB64Og3qRhodG52YgQUFRTWya0cx+FMVifxhvYZ1TiYps3gT8snHOu+jB/0WSzV13CiMo4EpV6zJF8v5Dt9pv+90mMN3H5JyPYHfgfakuF2lde7VzOpfDbCsrVeXBqQNQcjyy8BpQKRMhVhDv3dqyNQv8+Ji1rpxC465m9c5wwmUv4PzAVIdy9EzEyE1dD77CPaV2qgp5LJT9psgGAtHMUBwgXS9zxQK8A3aCD6z7DHq9L3TK2fTtqPXD3y7wuMzNxs8vhQn8Zj3OrPhv438rz2Pu/owVm5bjx+fdwupLBN/aPD27U7CDfx3JAqaiJmV30h612pNXTuHZOI3avTt8bCJf3fAHXv1nurMC9pJHYvLDvAEt74RzngDzjgD//7WKL993g3HlQUxijDSSSOWl9pbiRKKCeOWCqpYicl3KRNob/oyZGmg1t1Te3BFrYHBdzqUIbMgSFzABgvjmjzqqpM0dggIRAvjTPrxLkPI5122Dgao68roedyKMwiqO+LYO0XEzlv2KkUqm03KVjrrcW1cqxP+y8UAvIHIDeMJm5/IyNvtvUjdlJMP5dhpDFPW4w0SR433c5CfTmz5SK6k4Hbl7NmDsicV7LWY71tEq4wE/Bg9L/qSqmrqOFB7f843dwZdOskmCJZikAQRwxevESJjkuEaA1tltu/efPmZrmPOp1O/u///o9Zs2ZRWFiIrgeXZy1ZsqStmrRX4Z9ZeuVVcIc2TyiqhgmvOlh6Z+szkcIRJ6KROlBzFNLVP2Sq8+7GrRmfUWEEC/B42v6z2V3MnzUEttb/PnQJ13zm5JrPjABtjAWeOc3G5WOb14n8p9bLpDwnMAhcg5C1wyDrApRJN/u3+dj0GqrS+k5IX9GDNJIpoZwFcjnXYpij1JUxAtTiDNKL0nd2h3eeQ69IA4sLjn8ZZcy3nKQezm9X3hXxwVx3nG/lTNbomxis9G/TTtQWGdm5dJhom+zD5mJCrdcn8aGhN9LDAxBmNzfc8Bf7ib4c77miUVBTRUFDR0XhLe/n3Gy6hK5KOkcqB7NQX8Yv+p8oUnCkMppNWja57OQe71ReMt/v/4yfr/iGoteehZ19QdXg4K8RJ73UKOsphih6iK5t/4H4ODk2BsXyeNAy6U1CFjxBXSdW7kxEdLs64nHqBiB1ZcOlVJDZQYHVMmlMrgihQcKnQXPNCgpdRVq7nr+f6EkS8ZRSwZ3qJLZqOXzOdIRSC+n3IEuuMzTdUp8O+vvq60bDZ/eDKxpSsmHSTVhiqikVle3a3k72PD7flov+4TRwJEJiPlx5C0pSePfjMlmxT02UtZTsJh2SBVLKfV5uRZMaJZSHnFRqSFMGNyoqOpovZ0jw6jCjP23FwuW21k8o7imsDmO61hKqqMGGBY/U8Hx7AzsWnUosFZw3Ip3M0zLIVZp2LK+kimvF+UyTM8ijkL9ZwZHsOUG3RoZrDTChcrXpvDY/bxwxqKhoYbJ+axr008CnmXfSy+jv9IKKNFB0w+G0oGfjA0iFSqqp0KuIV5oe70gpeWqGk8d+dePV4OgBKl9cEY3FVH9P+UmfDVrT4YBT9eN40DQBAIsw01WmcZpyDD/pf7CC9VRQRYKI4yX1IR77Xyo/rVARwoMY8xXuE/4Pu7D69RYtWPCiRZRoCbwTrGcrBXoRXZT2zfjvZO/ibs+zfKh/C8Dl6lm8Yn5w9zaoCVocdAs0OgDjB52fn8+PP/7IJZeEznAI5IorruDXX3/lrLPO4qCDDtqlzsTjjz/O119/zbp167Db7YwdO5Ynn3ySAQMG+LdxOp3cdtttfPrpp7hcLiZMmMArr7xCenrk2YjdhiNyNsiOsvbRkIolBqpORhZNBjQYC3xrlGvtCVhN8MDxRnCpKoJbUijnoL2Vxbm1EMaFK8ZVxSMzn6DbJ9uYf+e1jLn+hCaPt8Vd993xhaq0DNjxJmTV/24PVoftUpt7ikwKfRlUebJed6yLSGV/+rGZHOKIoZRyvGhIlx2mfog/q9Jtgm//i1w2Ac/FP+OKNgJugYGQQFRMRrp+aRojvt1ITIGdRBHPoC4KU8+00zd11+YV5mr/RFzfVWnfQEhD7NjwNCglNWMmhmhqcfkHLP3piVmYKZZljFEPIJUk8iny75NIPF68uHCTShLlVFIqK0gS8UxUjseKhY2b48icvopMcTbjj09gcY+P+UqfTpdVJ/HjL33ZWQW5FWfhf4xoJph3HlLVECcEO1RX4yApIPDa1iQQ23jApqUSlK3rabr0PLCz3JNMCvUSMtWOeVbsjFDKrKO3u0FNT5HpH9CaUHnX+iSfu3xZI1ELEcIFwgNWQyhf6hZkzgR470785SiFfeHpz/E8MIEapXmZK53sG+RV6JS99gRGn0FCaXd49mPkQ8ciTPUTJzFEU+3Lsin5l5cgR8raB0M/60j3RayVm7Fh5RPzc/tkuWld1pVEYsXcaKJNz+0D398AFenQazmc/CKKPfRnp6GhomLBTG1AgMOFu0Mzl9uLwJLa1hKNnQPEfqz79lSKFhiBSBfw3t8aVu1qOPvBJo8RhR0hFNJJIZUkimT4yfDdgSa1kJORddiwcrgyss3PK4Tw9VfDl9r3oht5FPoz662ueGqnfoC/L6UDK44F4SC45FRiOf4NkkhmrdzMwRzQZHsGzn6NrT+e73//81qNY16qZvbN9QG7z/SfEUNnI3+8FmpCB7USEmoYs7+DeFG/nypUYojyS8bkyUISRByPfdCNaSvqJofN8Oe5mM1eUo79Bhdu3wSwxOOIgu9ugLyBcMCviHEfIxSjD2eUPcf5g/EAz2hv84wyuclr7mTf5hzXjXwvDamywESbClkVbpc9hhaPSJcuXRr0XlEUUlNTefbZZ5t0NgX44Ycf+OmnnzjkkMYC7i1l9uzZXHfddYwaNQqv18vdd9/Nsccey5o1a4iONrQFbrnlFn788Ue++OIL4uPjuf766znjjDOYN2/eLp+/rSjTA2buDpgBS8IHUCYdYgm7bleIF7FIxyCMu70KaRJufxWKNkBVEiBRMKH/fTLsGNpo/x6H/4pM3oFZmDChcqvpEgSiTpUIXUoUVYBuBGoVEXqd7lsX+Jjpl2ZibG8zii8DK5Ige3sO7Duai8Y5mL7cQkN9hVhXFWvePhRb3UP91qt5d1s3Ln56bsTyyqOjTcQInWqp1B/T09O/XvGl6O4K0SKKE5VxVMhq9IAgWRpJrMaYoXXiwoIZ0HyORY3LmGX2MH6eMhju/hMlthyBAg2CbgKBGRPe/B7wwnuAQjVQDWwv1xn0aA3zbolmVI/WB95WsD7sOitm+tOxxh2hNGo8eCihLCh7cAPbQMIBcj9MwkR3Miik1N8RrMaBDQvpJOPGS3/Rkz8dq8ksHsn4mFN4aVUVG785DRCUAatePZnoQ53I2gQeWRwokB/is108Dn3Ib9BlG4rZ6HiNEkPIpP2CV2vkJvpjlDb7NQMtm8CyFtw+Xbu4aUjdglDCu2paMePwfUbbyCWPQoYzqN3aHUi2zI24vr3vbZmkc4g4EAXFyPgTKvHEUi6rkDunQM0RxoZxn0Hya8jc12FJ/8YHckVDbRw10Z0Olf8m/trqpX6Szvd80SxQmgFp9e7s1dSQQCy3mC6jaxOlWPs6TQUdq6mhVjqpoIoKqvzZsPsalYHl7A36O/rqsfDhU/XLy7Jg+QTkvScj7KH7ghoaLl8GeC0uFARWrOzQC+in9myXa2hP1mqbudJ7D0nE+XVvW0LghJSCQEHBiQv7+saZf67VI0kaOZrS5LUoceGzlU2oVFHDUp9bcay+Z1XHrJdbwwbcABKIa7cAbBIJFARMcjakkmp/wC2OGKKKhlAbqi8l62R/qmH8h3QdtBlX5hqsRHF2xT10LxqFPdrNwWmpPGq5pdHuNdJByarhjZYv3h7cl/6LxSgmDf3e05C5fSCvj68zKUDovNXrMi7qNgQhLm50rBHK/uyQBVRTw3q5lUH05Y8NjaveTKvGs+NYYzLWhpUMR29KHnm1Xrbi177IZRMQtxrnENRLoNixYsLEdr3pDMxO9n02yRz//ayc+nvU3pA13+LR6K4aIWRmZhIb2zYlgNOnTw96/95775GWlsbixYs5/PDDqaio4O233+bjjz/2O6u+++677LfffixYsICDD94zUqE3ym3+18o5j6JnLYfZF0JNDIlKIlJAWozg/uOtnHNg++hRpJCAsC9H1hwFGJ1nEbMMkbKaGKJw4UFDw2Tz4P64QdBN6HDkx/SLSiJfFtFFpDLANIaxauOb/a6iSS1ipyOpnXSjdgdn9+qJ8/aVXPG6GarqnRRP3DKjPuDm47g3d1D4dGlEsfUkk8Jz3UuZlJNcv9BUX95iw9YmZSy10kmRLCFDpDFPW8Ih6oF0FWl0I51CSonCjo5uBEdScvDb3TdEqrDoZBj/YUgdjLqbrj53IuEyMp+a4eKLK1ofdAu8oTfEhYfuSsc6XNrCZD6mk0Ie9ZmFFswMFH0w+T7XI9SD+Ftb4V/v8f0vlmhKKafmx0s5e84g8P22BKc3OIOgZu45zWtkTTd4+X1Aop/+BMroH1gkV5KptN8A+299JesJFpAWQoPMa8FxMNI5GMovRJZfCClTEfHTQh4nUEB6AL2opONmziKZdmSRQbJMaNfzZypdmCcNeQebNL5ndqyUa9b6gBtA5VnI6L/A3R8yA4/gmyox14K9kppQv+lO9lkOyvJpEfnD/wIULyQWNNo2hmjuNE3q4BbueegRSqvq1q8PcGAsF3v+TH5rCKxeaPSZzLyMRkZKmgW56nDEqGBts0B0JA6cXLO8ErtXp0uNRl6fT+ltOQS1+2Ft2Pr2Z4Vcy2LZcoOgOiQSMyZ0dGzYsGDGhImj+5t4Z0GDvpUzkdLXnwNAz1qBuOaaRnIRADXUUkYF/emJBYu/r7Gn0JSRTzrJEdfvCvHEhA26GXdHSV+y2EwO1Tgwp24BIlUWxcDv15D3O2CvoCRrOaw/jJ2+38WfJhfld73IrYmn0Uep1359y/sFXQZC5aZgQ60eGbVAPDkyn+neOZRThUQa5g7dNkO3zUHbj7bcEHZskC5SWC030FN0Y6tPjmVML5Wf1waPUbwD5mLFQhdSyCaPzcsH1gfc6ijsg6yJR0RXoCAYRF8KKKLc1w8rkmW4dTcWpX2STzrZOwiXRbpMW7MnSdGHpMNrB5999lnuvPNOsrOz2/zYFRXGLGBSkhHtXLx4MR6Ph6OPrp/NGThwIFlZWcyfPz/kMVwuF5WVlUH/2pvV+qag98rBP6DceS5xD5/DzifiKXw8nlX3xLVbwA0gRsRA3FeI1Echbhoi4xaEbTVgZMV0IRkdHe/Q3+D4F0F1AjpEl8J1V5Bn38wkZSLr2MJfcgkPeF9ol3ZWyZqwgQcAq9i3bsaHdU1C3H0WjP4afBk8W+MbC6qXpijk6o0HNw3pF10B6XeDZSPY50P3q/zrUkhskzbfaZrEerbyj1zJe9pXlOuVbJHbceDEjYdyKv0dNGFzwA2XgbUs9MF+vRp98lz0yX+gT/7T93ou+uNfojvthj5cSvhyix5prbeD9+ieJtRloDcd65bbyPDER11ZoP7d9eiT/8Q5eRbL7nyTH+cbf9OjlbEh98ujEK8GlXNOJcg1q01aK+C72wBDk6wLKW1y1FCEc0YVihui50PFORhzTCZk8S1IPfR9IibAjXY9W5nvXcYmPZtnPe9wp+epdmh5Pevl1rDrcsgnUWnfCYUk4rH6XMbW6VuokQ7GcAAoVYAT41shQVQjTIWADikSxmtg8hjvk3bAbechFIkXL24ZXo+xk32LrCSVnlc8BdZyjAGkB0wqctbv6P/MRV/1gH/bHRSgyaadTvd1ygL0yaQnEz1vKvr295DV4wCoxYUzwNylJLAqYh+iTFb47z0NNUtJDpMBHG55A6bML+P+vyu4anU1o797FM/0K3elqbuFNXJzI//2lnKLehlV1mWU2P4m1zaXWZYPeeWcKM4brmBSGvvDA5AzFPJCZDNjDHzn6v8gkaxiAztkARX6nhMUrpWRDSEOE6Pa7dw9g2ejgpAY2rGbyEFiBJlLrHn0v+FBUqPqtohAbTysP5ygv5jXypuPXMyRs6Zxk3sKDlmLU3fxnv41mw59mvjDv8KsaiC80HMZtkk3s1Rbza/aXO7UnmrSdToxgvP8QWIoRZSxQq5nhW44rX95ZTTH76egChCKBqOm4T3hBVy4ya4zt0hu2G83Pg0sxsRvLW7WsplSKtDRqcXFXywhXxRH/nw62ecJlyEeSe99T6HFKSC9evWKmA2zZcuWsOsARo4cidPppHfv3kRFRWE2B4clS0tb96Hpus7NN9/MIYccwuDBgwEoKCjAYrGQkJAQtG16ejoFBaEDFI8//jgPPfRQq9rQWpbJtSGXt1UQpDkkEWfMZsX9hKDx7OF2CrBgxo0H5YjP4IjPgtZrQKVew5nKBKbpM/hT/kORXkqq0rbpnpWixi/E2RBll7slex7dSOcAZSArTn+OXqd/zhrbz8B4aq4+F++7nyKB6hg4/YconmYnIxkS8XilWjlKzByImdNoXXe6tEmbDxSD6Cuy2CRz+FD/lg/d32JCZaDoQ6mvPCZQDFnJ3Izy0Ml4p90EC84kuPtX97rB9EVFBjz4G7qlBs58FLovg+0N9Oi6riPu2GXAf1p1HZWiJsjNMhRpov0CSaGIIzrkcicu9Ly+8FegMLCg8JvLKRmh0T0qI6y+iR6mkxdthpqIMZPA/SL/9o4RYzGJNvPtaURbZbjGEkNxwAP9DfkZb7jr73WTTVdH7IDuCpE03aD9s3iFENxrupYp3lfYTj5ztcUMVQfwDTOQlq3g9pmGSEM3U6Q9giy/AAYXIsY/7QvEBVODA8s+lH3cSWSS+m0g56ET0b+8A/45DQ4CeuGb3j0WvfJXlDhjwrNElpMm2i/bZG+gBgdSqlBxBrLsItATAIHc+TDYzkCYggeYheybA84SysM+a8XZjyO3DwStG/7E45Hfo/Re3nEN3M3M1Ofv8kRYskhAEfV5FoowIm3vXxLL+8B939fy5MzI/Z2GlFFJOilYMLOJbNazlYNoLD/T0Xikh+1ELkW8ytTMzP1WsL/oxy9ybtj1gY7zdaW/mzJnMuORi3hqzSqmv30SwcPz5oxtBAXfX8xrw07ihPjDSVQSWCs3o6JQdcJzcMJzqAgEgtXojPFMbNa1pJNMkowP24RuShcOEQcyXy7jB/0PNF1DEfDNpGgUoXC/5wW/G3MgSv9/sA2fhWPpEdSVsXLe/Qhz/XfwKs7mXb4OCsRv1/PoobafKVcnezZu6QkbdKsKkinYM2nxKOjmm28Oeu/xeFi6dCnTp0/njjvuaHL/8847j9zcXB577DHS09PbzJXpuuuuY9WqVcydG/5G1xzuuuuuILOIyspKunfvvqvNi8hqfUPI5al0XH1yoohHSsA5HPQYsC8M0j6KI4ZanCiIsIP0G+TDvKw+wFJ9NfkUc57nFmZY32/TdlbL8D8qy56eV9oKTIqJoWIAEtgicyiSpaSKJKJffxpef5oPtW+5ynMPEGxcEI46XbVQZLSRO2KsEsPxYhy/yDlsYBtWLAhghNifDXJrveZWACYU9NOeh9OeB0B++Bhy9RGNtgtGgDsGPnkMy82Xkdalkmpq+Nb8Kkd6LgJgp3J2q6+jOdopye0UgAnHAKU3S/Q1oVeWhip1FayqKWR0dJo/4NbQcEBVJd7D/wdzLsTfs4ouwTr5MoqjZjH8ySrWNfpqSdTeS9C2jIjQWgmnPIsFM/spfZp5ha0jUcQzmH5sJ59qagGJQOBFQwgPpD6HLDKy7kTK1LC6bhVhykktmIkjho0ym4NE+wwqiiPM0kVhxybaL9O5jv6iJ+mkUEEVf8sVHCiMCSxkNMEz66mI2F8Rsb+GPE40djJFOlWyut2ClJ3seZixIh2jYafvexND8GCttjv4gm5feqdzreWCDm/jnoQHr+EKvPU8sAPlwkgq7Q54U6BB0K0pR8a9kQK9iEs8dwKg/3MszLoYbE44+TmUnmsQFhdc/7qhK4kXMCG67Fo/f29CSkmlrCYae6v03AD6kEVKE+OJO4+18cqfbqoCH41ZK6Br6PEJ1GvM1gvp7xnfzwKKI7rgmjDRR21cMdJW9Fd600TymB8LZjx4URA8530XreIYSMgDzY6y/1zM9lpcs86nuYE3+ex7nCZtRvDL+i22oX/BCS+jqR7MmNDQImrdNcSECZMSOVQwXBnEMm0t1TiIdg/DjIkPzE9zunoM56knUSCL+E2fRz5FKD6jHR1J8sT/I3bisxQRutLlXb4mi65sIxcdHQXBarmRQ2l7A4xO9g5y5U5sWKgNkXzTVJLEnkCLg2433XRTyOUvv/wy//wT2ekP4K+//mL+/PkMG7ZrLomBXH/99fzwww/MmTOHbt3qy726dOmC2+2mvLw8KNtt586ddOkSOqvHarVitbb/4CaQLYS2jd9PtO9ANZAoYUeWXg3lPqFM60qUzOsQQhKNHQVBFHaqqcHi04bQ0IMebB48RBNFlshEStgmc6mU1W3quhfJRKEbbauvVVajMWOdmyqXRAE0n8kDBBs+KBI0wq/TkQjfexmwTvUdUwiBLgEar0uJNdG1T3e2mnawv+jHEn01E9R6PZIsMjhMjEAClRFcXevYEKAf2JB0pe2yDg5RhvOx/h02X8nIQNGH7XoB/XOOZUWBBgmF0Hs5isnomQjjiv37yyPfg9UNUujDIhCbR+Hu8jOHKAfyuudTjhGHUI2D4l1w1HI04SxnxdKu2Vuh6EePsOtE/0VItRa0+hJJ4grZlrSaI8RpnK4cwyJ9BbkER9CSSSDmhB/YOf5zqosSIaYCkVCMXaTylZzOirtPIL/cS06Zl1+98/lAfkl22t9oHz0auiHn3AVpOyA9B8XsxYydPiJ8u9uCOGJY1SCg3JNMtpGL1O0Q/QcixtAAjWSkkE6KPwszcILBjYdiysiWue02k++VoUuhTagcqYxul3M2ZKgYSIZIJYsMtskdXOkLWov4z5DFvkk1y0awrYx4nBpq2SC3+QKgnfxb2F54BbJqBAwBtktYIwzdPwE4vNDjF/+2b+tfcC3/7qCbBMgZC18JSAfqYhYJGvL2LUFPPzMmv7bRvkQuO41M7Wk3wYKA7KPX3kC/5A6U/eYjaw+gLuAGGrL2AER0a83Q2kY8oaMoo9IwRtoFNpNDVBOmATFWQfGTcWwr1bi15DVmJnyNOy7yRK6GTgHFHCXGUEk1m/SckPK8HU2+XkgmaY36OnW0d1VMDyUjYtBNIFBR/Q7yKgpCV5j+wYl419WbDOoLzsATU0qwg2kgIZbXpvpPrbuhat4psGYk4r9n4xQuv6KfBy9SgtzeH3b2gMwtiIzNQfp9g+jLMGVgk9fbi+6GJpzvfykk8qU2ndPVY9hP6YOGTgJxOHHhxoOGTizRZImuzJdLwx7Xg5ckEU+xLKOKGqxYWaltaEXkopN9hUJKQgbcANz7YtAtHMcffzx33XUX7777bsTtBg4cSG1t23TEpZTccMMNfPPNN/zxxx/06hXsJDhixAjMZjMzZ87kzDPPBGD9+vXk5OQwZsyYNmlDW1AZJiUy0Aq3vYnCBhVn1C9wDUF390BYt1BFDb3pTjUOKqhCD5PrJoFp3pnsr/RlrdxEDNF8q83kItOpbdbOqgiZbqltWI77f7Od3PZNZE2IjsELnEvqZZvoOzCftXIzE6gPumWIVP6UiwHoJpsuD92hh5+JjArQs9pVRqiDcXpdRGGnkmqiPfHMnvIwHmeAJpnwot9+LkpyPl40FBS/iHJ0t2zE7Zfg+f56qEohacxvFG/rjmfJUSAbBsUlsv98qqlhpb6RviKLHbKAaGHMDOtSDyqraC5NzSpn0fEp7ibF1NDEFfB1uyxO5P0nwvfXQ/ZQGDIb01Ef8bY2EKdwslHPDjn7q6IihSTTFsfG7vUCuoWU8IL2PueYTiAjwURGgonRHInXtYIn5Wz0Ib/DpgbBINWNGDofYarPZnTh5gAlWMi3rQkV2LdgRlaPR+68HzBD/CcoKS+FPUYUNiaqJ/K49hou3EF3uSQSSCaBt71fEoWdE9VxbX4N2WHKYbxobJcd49rVU2RSLMtIELGUU4VD+LIj46cZgTYtBWxLIwYuA4k0SdLJvoVTl+RV+TJfM4EzBSz5G2ZmwJBVMPoFFFN90Ki4CaHzfZ2nXW8ZL1b77pWBj+ZyFZHfG7qv8y8yY8IpnbilB4vYN7L6f9Jm8513Bnas1PxzUoO1Av64CPabj4hahKw8izrTJRG1qNXn9Egv7eNZ2T7kyZ0cLIaxSeZQQlmrQ4axYaQpAhFC0CvZxJg4K3O1mmYNYQWGe7gdGx9q09ghC0gWCYxXDuYQNVImfPuxnYKwATdoXxMFgO4icgKA6sv2qsNTa4Mp34DWuB+jVyeRmFhFWdkujAfLukJ1EkpsOQJhBNw8FuSjX4Ozftwk4/PhvxMRqhG2W8MmBtAr3FH9DFB6oWoqicThxkMKiRTJUqr1GmKUaJJFAmsx+pZ1AT8nLopkKX3IIpeCIO3KQDTp9Y8NNDTWycgSVp3s25ToYfS/Ca95vSfRZkG3L7/80m9gEIknnniC2267jUcffZQhQ4Y00nSLi4tr9jmvu+46Pv74Y7799ltiY2P9Om3x8fHY7Xbi4+O54ooruPXWW0lKSiIuLo4bbriBMWPGtNi5dKm+hiNoH7fTGkJn1HRV2qbcrznYsII5F9x9MerrvUGlDZVUY/d1VSI99P/gL6Ypr/Gy/j/KqeIV70ecrR7XZqVRDlkbFJwJZIgY0CbnALjruz0h4FaHoOirSVTffS4er4dr1Qv8ne6uwnCEjMZOrYycMl6jSxYWnI7ueBSQRvZP6jP+AXS0aLugWze6UGz9GyEEmqaROOeZ4IAbgDTB01+g44sjxRXCrRei2Bw4cSFTNhN/2f1UUMVOYOhBA1l++lPI9x6HTSMAE0RVwrkP4E3dihfYQT6qVMgU6cyXS+kve7JAX94qJ90KvYmAwW6QEIwJ03E25jsFitUFZz3rX64Df7OCv70r6EpakMNpHQUU0Y+enCTGMVW+51+uobNYrmau9g+HqvXp/ONMB/Ox5we2j/4BvTYGZlwOmg2ScuGKm4MCbgBdSWNkXZliOxHb4GEbQxRpJLGu+BYu/+RzHnvqcRRAF3DtmzamndP4fuTGS5KIC5mifowYy2fyJ7JlLn21rHYJulVFCFAliYQ2P18ohBBcazqf27xPkCBjudPzFDFEUY0DYd0MBLuaSVcvZNFdoMciEt9CxM4MWh9pkqSTfQurAKEWIzXfIC6lGjHpdqTTCs/+D77/uf6pPWQGNRc8iSY1VLEHpMZ0ACVenUl5tSx3apwfr/JK3BvGM6THdFjdr8HWEuKD3Q8dOMmWeczVFzNebZ++aEdzt+dZ1tW5s8aWQJmdoAdrF+N+I6LnQpfbkc4DEPbFiKi/W33OUPIWezK5cicL5K7r17Wk4mSUMoQqrXn37kqqOVecxKvyY0yorNcNQ6AftT/4WXlrt8gLZOt5qChoYdyBu9C+Y6uuTUi1eNEYRB/WsBn9owdh1dEEfu/Tqwr4dtqlnHHK2+TFdaWsLAZjAl4CiqF/Jk00rxNqjNjko9/h9R2lngb7V2Qg1x6CGGxoPisoTV4LwFHKGIpsCwG4xv0A7+lf00/24Fd9LmcoE4KMrgL12RKJw4MHJ26k24p87kMoD57MXmyrQd56HkqcMYG7gW1U6JXEK82PFXSy77BSXx92XQnlSF/12J5Ki4Nuw4cPD7ogKSUFBQUUFRXxyiuvNLn/cccdB8BRRx0VtLzug9K05jtavfrqqwCMGzcuaPm7777LpZdeCsDUqVNRFIUzzzwTl8vFhAkTmtXOhlzi/i9b5ex2+WOG0x6IbcOyzKawCxuiy73I4htBj0MkvotQ651biyljAL38Zgp1SE1Fvvs4bDoYUChQvJx32J9ce+IFvK5/wlLWslhfzSHqgW3SzjIqQwbcAPqIttPe29N+sjGqDSdelrCG5fpaRqlGiVuMiCKTdHLZyUrCa28APFBUSm3NofhNi6tPAMs2SPzYOFYbzhIIIZBS8mapi4W1GgmLryK0dUnAJ12ZDl9NhgvuR/tnAnx9B2W61b/NslC7O+LhneeDvhFbff8A1gLjAAKMG5rPQKBOO6ZxGv96wNKq4+4KJ/j+tZzQRewG633/oLGz23gg+PMbAHwR8F7C2Q+jjPgt5LGHMqDdH4JmYcaOjVqfVkk1DqqEg5iqSh73Bdw0ReH18y/EsqMfSuUc9LjggZvuy7YMRZIST7wWSwVV/KK3vZ6QlDKig1h7mygEcr56MhtlNq+7ZvFd+QEkcCgy4bVGou4AcudD4OkJKMjCB8C+PGi7zky3fw9CCKIz7qW65HKQCiL5VYTQkF/cA9XGwO32hS9x09K3UKXkl88TWPPdeoZYB+3mlncM9xe6+KnK+JU/UexFmA5ARP+FOPQz5PqRsHk0xjNGh1OfQ8Q1NlbZwnZe936yzwTdthDgYPif62Hqe5CRYGjauQrgpBf8q0X0fET0/BafI9uTyfF5X5EvuwKCGFHF1xs8jOu/d2QL7mgjnbRwJkyhGCEGk0IixWG0tgLR0JkjFzWa1FvGWmZof3G26fhWtXdX2MDWsAE3MMy+2hN7M3Ipt5FH/IbxlK06Jmh5z4ocZn16JrePu5+8+EAXVBPEF6DcdSbSZUc+EKq/pdN49NLCvpcaML5DNquiI7B/d7/5enZ4Cpih/8WV3nuZoBwW1H8JDIaWUYlbk+jvPOO7/zXuf0lnDOb3n8N7zVXIN5+jIHsY6ULnjGE1fHRxFIqyp43WOmkvpJQ8oP9fxG3cePxO2HsiLQ66nXrqqUE/MEVRSE1NZdy4cQwc2HTt96xZs1p6yrBI2XSitc1m4+WXX+bll1/epXOVUsE2mUsv0a3pjVuB1OKhZiyY8xH2ZQDEieY/JHcVu7QSYy6jJmNyo3XR2HHgZAPbOIyR/LEwDX6/DBQNYkph+1D8QQndzNbZ46lIT6bHgXMoo4LHtdf4QX2jTdpZRQ1SCnCMQXpTAYmwZCPsy0lT285J8q3zbVz0YfPFRtsXnZrzb0NBInXBvd+7WLGwAocbrGaQ+92KPOM+cs07I0b5V3tKgcDPSCK1ZAQwkN4k0rYzR2+Vubku32motXnCZDPU/Ybr2lyejp7fG768j90f+gzlorq72RPaEaJT98UDyH5LQg4UrzQ3zyVrV/nR8gZ2bBzpvsivHZJYm+/vxl1651SmjxoP2RKWnIoYcyXCWj9rpiP5SZsd8tgWaaGnyGS5XEcuO3ne8x43my9ts7Y7ZPhS5t50p6fIDLu+rUkU8exHX8g9E7xpRhGgYyB0v5BGtxYtmXoRHxW0OH+GdE8ym6Uz2cm+g9u6FpH6DNQOA+FBurtDqZHFdfKmX7hz8Wv+6YsTZ5Ww8IbrGfLG77u1zR1FvkdHC5y80ZKRrgHg6oO49GmEuengigmVhXLFHj+b31y8AVkvSnwx8r8PI/OnYpSRZiBqTwDzd60+vpRwSO5Maoihro9aLWOZ8IqDvEdjSY5uuexER1MhK+lNN2pxkx+hZDIcEziMeCWWHi14hsQpMYwQ+0d04AxkNRs5hOGUUoHTp7dkwczr2qe7Jei2TYs0xQhjlbZJAgiHECKi6RwYjvOjK49kZoPlKbWlxGi1bI8JUaJakUJUwSAcXdYgD/kY5tUZLEiMgJtK/QRxOB24cEjI2IAYsCBgiaSLktqCYxiSN1cp56ChsVXmcprnWt4xP84EZTYr9HWUUO6vVkoigdL/TYbNY4hUQ+WpjkO88wxkG383XcKXy7x0iXPy3BltV6HTyZ5Nc4xkanHuW0G3Bx98cJdOeMQRTTkS7plIJIv11fRS2jbo5tW9SC0Guf1d0IxSQZKfx5bwLcltqFHWFFEitDNSLNFIdCyYUVEo//kCmD2qfoOyugd58M197noz40ceRBU1uHBzjecBXjU/tMvtrJBVRjZeZb3grgRIeZrklIRdPn4dE0dYOedACxU1XnRNRygCIUDXfVfqu1ypy7Dr6p55rVkngWX6Bs7SrqUmqhS5fSDa9IuI/Ws8s9z1pSi1GrD0UMTGrxh2772UyHJShPG9+c47kwe0F1FRGa8cTK/47lAxHupm4YQTEfcDAOvYgqmNdWIW1GooSDQEjNThV0Hg9+TO+c8jhcpTo6/3XbeOLX0hzs3D2TOCS500H4HM7x0y6BbbQZMHY8RwZqxzw4bL0bsvp2pgNjuSD2Bdz1582uU0pnc5CmYYbWUjyDWTkbZsqE6G6ApIz2a+Go+u9wMhjRGbBIGFJepInHIQsAUvGvdJN6vVHFJINH7HSN7RvvF9awWXqacbv2MBiq//6+8C+94LITi4t5kTBlkoFeEzJoOyQTqIgfIANG+ARqSnl6GlKILL7kXiB8iSG4039gVg2epft43cZmVKdLLv4HV3R+5426e7qQESDjDBdMn4HGMAL4Dy2DiqYqJJn7ttN7a2Y7k+2coPpS7YqIK7HHmwHVxvYZSLOaD7pQhzLnpVPCw5FpxRMHABSo/6iQEvGvvRhzn6Io5QD9p9F9NGKFJF86aBWo5QHODcnzrdNtCQzv0Rca0PuuGx+gJuUN+nMMyqNhTqjOm15wfd8igMa7bWHMaqw7EJK/YmjBQa0l/0Cht0qwvp1GFCZT3b6C2604+eLJNrURBsljltbqbWHFazKeL6kUr7yl0YNPyUgonBzuhhpcz82g16fZBgadpgiizx3Pv3i5xy2vsEz3SZqH7+Dbj1fJSTX0E/4TVw2BBYkY/+EHDeuv/W/ZaaQsKozxFnvOg/nQUTR4jREc27wnGK6SjecX9JJmlU4yBDpNJP9AAhWSiX4cCFFStFlKJn1yXrhOvzS4jPQW5vrAs8a2No86lO9k1KmqEDW4uLhHZvSetpcdBNVVXy8/NJSwuu8y4pKSEtLa1Z5aF//vknr7/+Olu2bOGLL74gMzOTDz/8kF69enHooYe2tEkdggcPC7QlnGWa0KbH3U4+OA+oD7gBsuokXAlfECM6ThTQQuiAixkz1dSgoBBPLOv/HtJgi9COOkXDP+EV8wuMdZ1DtIjChMp32kxOUY8KsX3zKdJLoOqqxmesPJmklLb9vIQQJMTsvhKEQ7X+1LhLkS+9iSmnH/98eCwHXHxVqAxsZHUSCyvyyEvdaQQCgJVyPZtkNgoKmXoa6dZKRI9Xka5BICXCvhqhlvuPEd2GRgoAx8eY+bDcA2jQA1Kvn0r5zFHE1fSgZOQHXP3Ol7hlNM+OnIRmsoJQcP5zBfXaFc0PvB2xZQ5ChT96HN6m19BJc5GIANHvQDqiNNKjSXrdX0lhDcCFwIXkWBx0/c9mDv9qGua3PdRJB/nJ6Q/0r3+/ERqHDI1vYn3+m/F8cgHvA8GuFqf5Xz0TobQliN81Yq1OPr0vN+LTOKYDs54BDjf3p5t1GztcCcYC2wqE0ljnUiR8BlF/GwLQttUIETzIKJMdXX7dye5ElJ8Hsm4AqYBTwi8Agq/6ncgF677hh6OOZtLjT+M1m9lv28984F3PMFPb6bHuqZgLgPfrHt4JEH8j9MI3NrdBzSHomyqCs7xnTULvvgpx7dX+wfAsFnCSHMcR7N1BtwqtFnfec+AcAaIWMm437iVll1FvmNDyctJAhMVFsiikWAaPV4SiMThj79ASLN2Fe2gm6fzXdFWrsiIHib5h1zUMJelInLg4QhzEVMvd3OZ+jK/0X4knlj/0hbvc728JNbqDJBIopjRkyEsg2jx5IhQ2zDjCuCwCeNBwWcs59qFHWP7rWGo27k+aksrRPWNJfmQxmS+/xqK/H2BUz4doWHUR889EHCc8jaLqEOtASgdElYKjga766Gmw8AwiBrTwTYYvmohcezRMPgNh8iKBVXID/ZSerbr+LiKVjfo2dpBPlusIepLJDnZS7pOcMNeNOfefDX+f0WDvwP6/gJxRhApgnntgp43pv4kKWUUcMRFlS97wfsoD5hs6sFUto8XTPOFKOl0uFxZL0yl9X331FRMmTMBut7NkyRJcLuOmVFFRwWOPPdbS5nQYEnhHfk21DG160Fq2ylwwb8cYvElAA4sxOkzuwHitEAJTiBmRUsoxoeDERT5FKCl5jXdO3gKqA6OjZAw2q997GNutFVy75UXmysXM0P/iSe8buOWuidhWiGowZ+OfRQ/4zHaHYGt7YlEt9CgaA7mDGLf9LzIdRcS6fe5vQb9DCUIjLUplizRmRJ3SxRa5HS8atSUp/HzXQ7z339uR934HUx6DHd6ggBu0rXspwFnxZiZkfm3oA2b+h9Ju3zDi0k/Iv3Uol4yxkdNL56XhVxgBtyBMMGAOxBRQH4BriO5bZ3wPPpt+LZ//eC0P//k40c5K0L0B6+v+28xAiJ/AY2gN3ntbcby2QA/TlrrXNHivB/wL/Cxa83mEweSE6y9GRFWFXJ3UAb/Ln1d7fAG3ANxR7LfFBWnP4e5Szp6qn13lgpf/jjywaokeT1sghGBpr570T/4BJfklRMbt4be1bEXYVyJE8PcpnhgcTZi7dLKP4dyfoMHSSsV/+57b/WAuP+ZZ7r/lv3hVo6+xtufx3Fnz7W5pakdz/RcOgga/5QGvHQryf9eGllXYPhhKgksDS2R5ezWzw3i7KtcIuAFIK7L0CoRtNSLzGqPPkHELIuaPZh1Lair6Mx+iT57b6F/x0V9BjyWAG+P550bqCsmTK7HfUsEfG/bQB4MPLxqpJIXsnze9r7fVZcij1WHN3lZHx0Ety/S17JTFXGmaSAHFrGcr07QZrTp/a9lGrmHEFWa9itIqN/uWYiGyeVwtTqbpvzHJfipFJ05Bveo2tpVovPGXl/QHnMQXXsqong+H3Lc68x/A972f+i7yrrngSAR0EB6w1GA55h2Gn/4z31+rkuZLNFQAswKK4gV7BY3uNdXJyLWHAIbhgYLS6kqF18wPc6ZpAkWUUUoFy1lPvIghxjfOqDMQFKc/C4d8AiYHWGqM/4YMEvoy90y1mBSjr3vfj24sN1eQeU8FFbW7oz/eSUdSQVWTOsEva//roNa0jmaHiV988UXA6Iy/9dZbxMTUpwtrmsacOXOapek2ZcoUXnvtNS6++GI+/fRT//JDDjmEKVOmtKTtHY6DWo51XcJfti+a3riZrNc2IyzZkH4PsvJ0MOchkl4D6PAgkhlzSDHvwNmamsuvxvziR3jKfDOHGesR116DMLvRn/4YSupTkaWE696N4qrHzuFN7XMWy9Xc65nKg+YbiGqlU+Z2WYDocjey5BrwZAE62NYhkl4lSbROYH5PxSXdlJoN+4Fqs5HF98tX5zPhjP9RZYtn7PYFvDZzMqm1pezoYuGEW01ssxtBtyX6Gj7RfzRMOt57CvSA0gKpwkePw5TxQedrS/fSOgZGF/Kb7UMABAr9RE8AblYv4YQfv+f0y8LcQFPzUS67GwD9gZ/A1eC3YKtBefA4pK4g33gOHQUVnWtW/o9rVho33dFLY9jWR0UgkEiO4CB+sb3T/LY7J7CN3LDrF1m+YojSsRkaG/StDHWfHHJdTzJZYf2Bsa6JrPKZagykd707XABvq4/x39oXKXrxaajoBZ7QHfOhBSt4Yu7jnHDWJ2FaJBH3noKwhXc6S5Lx7V4tHGMNfQLNVo6In4a8+jd4/j2oyGBPLF3OtW6LuD6WmIjr2wOPUs7mhKcA2apPrIJqtu1CWVQnex+qqRDNk4V/PjdmDVAvWv5Dvwlgl6BIqAS+hd+dV2FXKrjtSDNTTu647P6OpFo6iLI0KDdbilH5Nfof+KcnbI+gSWsOdlQuozLMhnsPuWIbUKcXJUExAvTCthpsq1t0LPnHhVDcO/TK3/4DWSsRU45BTp8Ecy8gpaaYn786j+7VBbhfs+D+cCqWs0I/V3c3G+RWiijF3MRwTWqxyLLLQYtHxH+OsK2jK10i7hOJAfRq9rbCp182n6VM1/7kdLXeHCCUY3p7skFuIztCvy2hjbWLw58nlvImfqdb2YFEcpxyGL99eBK6wxaiGjTwviH/n73zjo+ieP/4e3avpVcgoSX03kFABRVUxAL2XvGLHbGgYhexYEHEXlERFRuCoNhAaSJK772GkIT0em13fn/s5XKXu0uBkKA/Pr7y/XKzM3Oze7NTnnmezwf6zkPpYXCjy2WXQWZ7/7xCQ3n6bNzAOsDWZitpzxiUQMWylD/11Yxw3QYrh8M3jwU2ylJBM9RcHHn/AbhevYi/9gkgngABAABJREFUtDV8I39GQ0OVKsWVaIyEAHHBG3DBGwDoz82CwhDzgMnNWOtQphYv9VvGHS6B274s44sb6/dw8gTqF1VxH5ejhNLjmvO0xka3KVOmAIan2zvvvIOqVowMFouF1NRU3nnnnWrr2bZtG4MHB4aAxcTEkJ+fX9PmNBhWs4VsPY9EpW741pbpqwEQkYsRkYu96Uk0IlZG1ev+0ILZq/4XCkpYKaaHrkTDGXjRHhWQ5HTDTeol5MlCftP/5E19BptdO5lnOTJhha1yFygaInw1KH9AxCJvSFMMgd//b4ZVWBga35rves/lL3keS5r249T0f5j450u83/UqZs/9n3c6Tjlk57dBCpO378AlXZznGk0qzSimlMyy6MBTPy0wbLauw0vB33uuHSlMMhseM51FW7o17s/b330HL14OhT6Te0Qe4uz3KlSOrn0UPpxKhWOuhGseBUAoOuK2e7gv0szUOxze1+Xby0zsbaN6ckvMmFjCSoplaY3Dtqvjo4oXsTWqpy5RlbF6LwdZqC9noNKTnfo+7DhQUOhDF9ayBTMm3GiEYWM7e3k0fBTP3X8/WXs/hO9j4ZA/516fQ2v54btrUYELtv/E3Hae0HrfMem0T6s0uKmomJVjH6J9RnsTp7RSWLan3GMYaLSXbv12skwqEFaCvO9B5KxxsC7YCb7vTVUv0FMz1Gzw7pwkyO/1Vcjr7Un18jTWJ+KJwYwJJy6v4bq2OFhHynsn8O9AVNy35DjbgBYDEYtg4AZYnwCFPuF9Yjqo58C3jcFtjDmaLnlxgYt+KS5Gdv93qErWBgMdl7PzShe8/GlF+K0OrHJAjgZBCf0971u/2YiYw97UMKw4ZJD1178MVtt6iN4DhRcaAmIJxsG+vuQyWHidwXPV/TfEhVMQajW0NUVViWgJ2N8d+cVTYDIOkH/9+nKalRrGILPu5vZ3DvH933kkRKl8eHUYp7Tx74OlDp0bZpTw21adaBu8MNLGlX2r9mSqK6R7xtA4YsgKSoBgQGY+CWVGyLEsGQQpl9DC3CRk/uqgKlV71unLR8BvN4PLhtplGeZLXwTVzbPut7nBdBH9RQ8OycNky9wjbsORoDrxnrNE/VAYNRLx7JWhjX8AZky8on3ERPM9lC49xMrEEorVYM4WPmuJ4jikphrvRGFCYFbdhJACszBjwcRjad9R+EV7dmWBW7ggIYqkq/ojeq/h4KJdcNjHWJ2yDtHeUHVPJI4eSiCPWm0QKcKZbHmEZu4kPtfmso091Re6djy8VX447r8uO7PZLdz2pMrUUYHjZVZhXa3bTuB4RU2EFFRU8mRBg+zPaoIaG9327DFeljPOOINZs2YRF3dkm4CkpCR27txJamqqX/rSpUtp3TrESdVxhptdDzPHWr2BsSZYy5ag6UUUVzvp1TWCKX5EEY6OpAwHuiccLYoIBAInLm8aAOe8Dd8+gu9AeflAB72VLjxvvp+Nju0IYIO+Dad0YTkC4v4yXSLT3gd3c+N7or9ENHqNtqTUi8t4fWOr3I1y+QK4fBKXvgDNFz3F/vmXcvr+pd6nvCWuDR91vpxmJYf4oXQ5A22GWmQO+fQQHSk450PKvnkAvwksdi/6jCdASqKsFlr13UBkx7r3Mgj3kU534qKRMDgnhBD0EJ1YYPoT+cilQcuWL7OVdmsQkwZzquhLusyihFJyKfA4vwt0dGZfG8X318bgxu311vQ1FGjoNCGBt92f84D5fzVqu0tXka62YD6IUPwH+66ifb14cFVGVYZRK2bW6lsYogzgS/1HVBQKKSJexBAvY3DgQuCmjWjJdrmHu03X86r9R9Dj4XyMPd430hv2NODQKu+h67TfxsFv49iXEEXfd29G3d+FSNVGQeRhdJcZxRw8RCemnjy0hBD8PtYwur/mms4U7SMKKUZwCY1JIN2egDz4LpxkgpN0RPJ9iPB/ANAn/AhlvgtdAdY8GDMaJfGQN1VqKqwaTse0kUzt24cHUq6iyEMSPUD05D39SwC6iw4MUHrymvnxGrc/yR76RHw7e4mk/j2AFKFwpXIeu/T9/MVaj/KiAampyNVnwc7e0Ho99JmPYvLfGDcmgZh68io4gYZHrlsnL3M8aLGAgJIhwFC4woVoPgph3W5ok6wfDH82Ane5qmHFILpop/s/Z3RzSRfFlGJKyEU+PwRZFomcMA8wg2aDXf3BZodICcU+E0qXRSjXPRpQXxmOKo0v/wZ8ry3gdTkdpZEbGk31puvz7oSlV1dk/OciZHpHxJhq5uzTPoW/RlDlliatE/xvLKw7i6TSw95eN+ziz1jfpCs4oSBHcsbrpfS+YwolLVfiwMmv5k84ZWI4WR5bTokLrp9h52/7Dl459dgS8rukizaiJW1JJQwrv+n/gDMFTBkItdJhl6MTXjcpGQ6uZnS1tA+oszawYcEe5IBdX3A9/Hqr97O2Zhgc6ErkuJuwYuFb988UUMR+0gmXYfXqeVJUTfhZe6VlvbSjCUEMYpVgQqWQYvqLHjyz+D7+SurNuDMmECgTXg4BWwchH52PjMxDqAKJji9TlOjxC0kikexcG+G/jWXF6gE+5c2QlUr61Mk0HzeG08e9zmL5T9BvyiYPawiu79qgkYinl+jCbBbQBEELktlDmt+hdvkBu4JAmrUQvvWCQbu3k2gvok/6alY19VWglXQ4bz5w2VG39wSOX6zQ1lebx4mLfTKd+ONUTqHWLIS///77UX3h6NGjGTt2LNOmTUMIQXp6OsuXL2fcuHE8/njNNykNBQEskn/zt7aek9TuR11fOsE9ARrCaytFJJMl/RdzLjTMmLzGNYHwDo5mVBw+Rjel34/oKeth4bXgDoOTv+af1vnAT7QQyQxW+jFXX4gdB6c4riBRxDPedEutVLiczpbgblGRUHw2NHoNLUhY7H8BSiXaxUP/nAzA6ibdcSF4/qQxvN5ndMUkPUGjcNzVyAQHOhqNZQLOvt9Dyirjd9k2AEobQV5r4w8oAtavHsJtnSQ/3UqdIpmKk9bKRtaL1DOZqn0cNKTZF+X9L0vmEi9i2CX3A6AgEJ7/deHGhgWBIIFYTKhk+mxMdHTyKORz7XuGqAPoU4161QGnm7L9nxgCJ0oeNLsNYakIlUuThwhTaqcGVheIqML4IlD4WpvPHMs7OHFhQsWFG4d0YsVCGQ5MqOTKfOKJIZYoWqpm9lq2grM9CIWwG1YyMlOybW0bfoxuyhN/VSznNiR2ZMhlX8FCBQ0oANjWC366G/3hESiRgYajyv23PrBbpnEIwzNkiVxJe9GKg6U98JUHliWne41udPkDVo70r8QRBy9/jT7yZZSBs5FOK3LiHHBFsQU4++8yzG3uJnX0JGKIwoGTgfRiOWtYL7cRpte8bxTIIpzVEM4lNNCpXRORyHRm+6VJl8V4Fk6PQW3deTBvLPKxEQhrhXE6ixyyZA5l0l5r5bwT+PfhzzINXfM9jC1/31Rkyalg3oF86QvIaxGsOCAp6Pk1cP2xbWg9Y7o2mw6ilXdtJfd2g8qbWbsNbhoHG8+DIhMM/Aalw8qQdVbHa3O8Y5PciYsgyoNrzglMO1g9bY0Sl4X+5HD44yo43BJym0JGZ788o8zf0m77ejIvOIVVPzeh/y6DumN9o84B9W3/pxu0nIeKyuTCr8kqviEgz4d/6jxxSiGx4tgdLORRyHK5FoDOWk/kwengSgFRAs3GIKwVyrZELoTCiwEdTBmolr20JbDdtYEVW1CjGyvPD0jSspvh1qBYLWGT3EEP0ZFoIgknjAJZdEyfky+KqJp3u4cI/L2PBZJpXG0eJ26aiSSedb/NRW0KuG7VLCKdxdx2zivVlIyA4ojgQhF7+pC9/HQcc8aSEfJUWBCz/hIKhswI+Q1daEsrEWqsrh16iU6YUGkjWuKWmmflrnj3lSZUetCBvRwkp9E+wA5UWjNYS/jmIp3b34X5s69nXuoQZrYfSWnbXOyPrMEeG80Jo9t/G4v1FTXKt1Puoxf1857XFkck/ZGWlsb333/P/v37cTr9B+RXXql6sBg/fjy6rjN06FBKS0sZPHgwVquVcePGMWbM8as4UQ4JOHDyqTanToxurhAGh2YcuVv4kaIwiEiE3cfDDYxQvTwKiCWKMnSiCPeb5JTGaXDlJO/nfT6D/p2ma3jP+SUKCnlsxyLNPOt+u8ZGN7d04zIfAGEH6Vm06pHoe7/H2mhWwBj9b4eUkh3s9UtzNd0A2U0ptEZz0rXzSY80wjJnzLuds/cvAUB/S3Dx3DDWDDYhBGjLRsL39+NVKQqBhVsEhXZJtK3uTiTDhBGCYUIlAX/v2L5KNwbSiyWE3lwoKLhwo6Kwk710lm1RUdHQ0JEoSFwZLeHVjyjxbGQOIwm79iladd3OHg5467LjYBcHeMb1Fi+ZH6KtEloK/c28QtA8ISt6FLLwEkRixYl8S9G01s+iLmAR5pChfnYcHCaXTHIwYaKYEnR0okUkm+VOSijDgpmDZBFHDNvkHtqqLVjSbAwUnQ3CzYaEcbRslch7fWfynPsdzjw3nPduLCU+D2664gGQQYxomhmWXgnnBIaMB/OePdZ40HQz7zg/R0Ehh3w2y50ISwQSFWMEVxCWXd784pIXkaoTVlResAn46TYYOBu57kxw+R+EuHb1ZGdJAWERYSyRK9nt09dyyMchnfykLSZexOLCzRB1AMGwR6ZRXBABL84FLdCTUSQcJPLhmCOQPTp6lItgSD0cmfG0obS9c3+Fwa0crnDkk78G3QTEYIcqVNyOFO0bC9Y+FIVJPT65O/6/oYNFwSCqV/CjAih/39LbV2FwA3HNI+xtVkKBfhExyn+HKmKq9gnb5d4KeYkmez3jtw9XU3cJ5qegXx6iyeMI644q6yySoUP6/w2QeohQsCa7YXe5AqPnGYUZhzmKhzcsFJSwUhj+ofez/vtV8POtlG9zpmXfwam/9OS91lfT459mvHSXynk/aES6Cym2xFZ8HyBSNlKCHRs2vrF8DcJXlddom7vlOu5wfcxb5qeOmUEp10cwI6+4v4fHGJA2ZP5ViCZPea+LxClgW2+Edkf9hq6U0U/tdlTfH0MkBcF4yZpuh7xm+KlMmssoU0twUMZcbSFtRQp/S8MzJYf8euNS06SGDSv2EHNOFyW0KmtdopnahGB2ZV9oaPyjr2cNG/ny10bcc2chAxduMAixj9AzUC9MxDFnLNUplu5v8TOmKrjvNrGTxDo67GurpHCYHAplMc1EEodlrl/rHLhYzRYjtPyHu/HnsfO0+Yb72VAwnI7X3c6IvQs5c/8SUuRmfnp2CU61jCjZhr16Gqn1oEx7AscOhbKYLfpOiiglkjCsWPlUm8NmfTubqHpeLMck9zs0JgGLMNNJaVNvBv+aoNZGtwULFjBixAhat27N1q1b6dq1K3v37kVKSe/evastL4Tg0Ucf5YEHHmDnzp0UFxfTuXNnP2GG4x0S+Er/gWf1e4lWjq7dQU/7gEQRHzT9WCJc2ILSGQXzwsinyHMtNLeInpGK/vZbWBz5gKB380T23L2Md/mEd/WZ5GzoyR9fPIVFz8esCN650sZ1J4Xmydio7TAUN5uOReZdCaWDARNocWzLvBFXvMR8nJInHglyyPfzAtMPtoEtAymfNNOijcnlpPRVDPMY3ABUKZl+dSnt08z84F4C3/9ETXfsljqOaB6pDiVb/Tskj1oPpSNL9NBGt3KDr4aOCZUNbKc9rdju4YZwoyE+eRnpZ9wRlM18lPBnAt32nLiYLxfTT+vGI8rtIb9XqkXgXSQKUPw9CxIrGRDrExbMOEK8d1nk8qLrfXrQgWWsphQ7Tumk1MPVWP4ur5fbWO7YwsrX70em3wsISN7O5LumMTXiQZbra8kgm4yeZga+eRPMvRtkFdNFRD4AUrcg8/4HzlRE1E9ERNaAw6OO0VRpggkVNxoHySSScJwRvyMSX0JmDYIvuiBL70VyX6WSvjL1Hlg8HJfhwdRFJZidbGQ7No9SWblBNEfmsUrbyBXuewCDvPmQsixoiM1afQt8+RRowd8RmdOcmX+YGH9mjR9BncHrop9/OZT1BxTYFCpkqX7H3u1ZkjeXOBl7ev1wK51A1WhnVYmO+4rC/PNB+ixyresNfjd7c7ASwv4qod1KlslS9st0ulG/AjXHEmnS8KgqX1qJ+EPIi5+D2eMM3rIEJ/S3gowEVxgyazyixc1V1vlv93QLZRDhhgfh7bchox0gICIX7hwNUKXBLSjisqjsUbjUcQqLi09HM+3kvnci+YlBOHJvhTfehNJ4QId+cynp+zUWzNixY1ftcMdt8P5r4IwABPFtdpB3wcvM0jWu1M7jZLX3MeHdzKVi3rGpTvzG2EprEiF0iPrVL63RUbYplabsJz0gXVw1AflOIqR1MRLCChG334ZuD0d/4z3WZaewDgEpIxG3jCWXAtocVUtqjgwOh+5fQAuS66UdNf2eAs9eKsdUwL3vRvKEehMzNoRx02d2XJqxJk9pk86O7TUXgVJdThCgmULNjRpFHz7nqU+Hk79BGfFaQK5mRymkUA4hBGcoA/hO/5UCWcQg0Y8llcJapdvsMbgF26sI+OJpKIojN8rMx92u4uNuVwHQf2lvVp02nkXyH2ZrC7hHOTrvzhNoWPym/cnVbmNt3pqW7GZ/revYxC6GuUcB8KX5VUaqDbB4DoFan50//PDDjBs3jg0bNmCz2fj22285cOAAp512GpddVr1r56hRoygqKsJisdC5c2dOOukkIiMjKSkpYdSoUUd0E/UNBYUCirnR9dAx+44WSt0MdrVBMN6gYIpJCoJwbFixEEeMVwI6AG+871GdNCaK1WmSMdNNxCkxXFh2KXz2HOjGpODS4ebP7aTlh5Z9/ll6DEumNLBtwei+AlDQpAnXf4xHM1HEscL8DWAcfPHWe+CKpvIpUIwj0CBgcwhsWCmRlRZqfcv/IQP+Jl9oxWau242zRZirFC5oXot+bsVCUxqzoxLHlXQG8abSTGxjt18+3R6O/var6I8u4KknzuPtZaE3LifF7IaI340wjvAViFh/9c6GCvcDaEJo0ugIwpkjf/MaxQGWs4auoj0CgcnD+WLBzLOfNGN9Onjfo0Md+GC6ITJQhOFJoWe1hLn3YWxeKqlolf812o04+VsjNfc2yL8SSk9GZk7EbD96b+AjQbSHS04isWB4fBI9D77sBKWRVIwdXv8TKu7P86e44cYHsTgkHzw/n74Z/3heROMvafhXmC2GyED5It+GlaY0pogShrivx4IZC2byKeQAGUHbOkl7F8qq5mzLL2kYvsoL1CGss3xPpN4Iyj2eFU8fOA6ot3JKQs8XJ1C/2O7QKMy7wjAeIQE3WNcjkh41FOoS06D3L+CnY+J5n856D2EzPOb/kuvqv/HHCGXSHkCfICWQ2QpMLggrgDN8RVQE6NUf5GbIw9XmOZ5R4DM/+UKxOlDuGYUyaRDKpFNRHr8AJd4YN99Tnq62Xqkr6N88gP7ELzAr+Pq8UItBair6F4/y02NPIl+dTmTfJYjnB6FMGoxyyUs0IZGLlLN4R53ACIYwpmU/bn3mQ156eQ7OV2P4/Y54wlVjbXyFeyzdHOdxifMupro/OcInEhyFejGxegzWWY+y66VrYIcDpANs6xFxH1RbPoqjU3PsItoFTRcmF8pdt3l/J658EvneVHjqZ8huhXdrua8XctYDfh57xxqF1XiBKkr9zKWtqFlo5in0pjNtGMpAZiiTSf/uOkZ/Ycesws0DzBS8FM2mOzrR5/apGK5zldfuBi7ZOofYUkO0Ytov99E6v8Lz3hh0fKHiu3/izyvQN/oLHKbSrEa8dDXFtepIeonOHkIY/PaNAkG4HkGVRkWXjSDSrhwoKaGbaE8E4SyTq+qsvSdQv7jIeQeR9h5c4644DD8QxOBfW+TU49hTE9Ta023Lli188YWxATWZTJSVlREZGcnTTz/NyJEjuf320N4jAJ988gmTJk0iKso/fKCsrIzp06czbdq0ECWPH0QTgR0HC+RyVukbq+WHCoWPnN8GTbdhpaOof1GJGBEV1NOtMpmqjqQVzdnEThw4ia3EPycQ6JoC7sCN5Pp0jW9MN7CqyM2HlHhLlGPnYY3mscEnxX+0DUjdikz7GLQEv3JDEjYTrpxc43v9tyBe8RC8uy0G6bIXFfcuL+7A4b+hkYfCTAJzHu6ASj6qyYW76wLY6LH0pwC9Ksrbkh6jd2QeLUVTxlhePMZ3E4hWojmtaM4e0oJeL/dYAsOrrbVoYSwkpWA/B3HgxHLee9i/Go8vZ5f51G+wYCEMKxo6pboDJn0Dds/zLLMx9msNRTq49dTA08AcmYWSNDFkuxtSGScUT5qCgkTSkmQ/qXo3Oj1FR8qknTQy0NEJw0bWocBTcFdGKiu1jRWeFBlt8F8IVTxjZdKgwEY42lCxmAPpSq3t7dUJ2oiW5MoNAMQTRw4FhrpbcbnR2hdB7i95K8pYw9vk176FtN8OasonTOwfiyo1Ent3JDezO6bDPchptBENnRYkYcPKFozQ1V6iEwdlFmZUkkVjXndP5yWz/0bwL30th2UOjJgK775JsHMwobi5f0jDeILHixjiRQwdYl9nZdFpoMfBKfnwTSxEetpatcjvMYNFhbGnnfByO16w3anjvylSEElPIEwV6oXKyAnoWaVw0oWAjkicgoiZ5VfPRn0b/xXkUhAQKSA/nwAbfE7ev70OrtsJ1raAjkh4t9p6S6tRmT/e8Zn+fbV5wrHhwu2NBnlCD/TEAcOeINcOgbVnQ2Yq5PsaO/y9l2NFHmdH/8SDb8+CNGPd7gaKF19EbFFjUq/4kIFKT1orLRlrMjxmbjRfEvCdndQ23Kxdxj9yA9kyl32k86O+iMX6P9ypXoNJHBFzTwAKRDG5Hz8C2z2Km394/i6bi2iWX2XZCMJQxdGFLnRV2lMV5W4c0eTsSYGPphBqXrWl9SJH7gooe6yQp+eHvKbWI0dDK1GzMMflrOEm5VLaK6mM/SCaw1srHviHf7nYnaNxbmcTcvsNXHDp35T0+Ran4mC65SVOeSqMQwVw0fYfeHvho/yQcjo3nfs6FreDvDAfcSgRbA1X6fP+LtB1sTd1Lwfr1HtziDKA1/iELqIddumkN11Zwkqk578ySz50WgRbTg9SWsK5b0JaB/j74oqWK25aD15COPHYhJW98mC9inacQN2hQBYFHFCFigQEkLoNnG3AdBBhyg+ZLy9YeHwDotYzQ0REhJfHLTk5mV27dtGli+FinJ2dHbJcYWEhUkqklBQVFWGzVRgQNE3jxx9/pHHj6oknjweUeRY8KiZmab8esdHtgDwUNN2Og2hR/5us6CCnYjp60I6voxNNJCmiKUWyhDIc3pA3iUSoGjJxN2T7Gw+79d/C5+5Mvk9YCuo40Co2TUJ106RFNoRwy97JPuTh+0BrVJEoChAtbuKG8HuP4I6Pf6zRNhNPLJpZIy8uDfIqT+SS0afE0H1XDMPn2Om+Vsd100jWtCpCl7no6CjXPol+4DNYPQxsjYChRlE1G4dtJX/JoqAejfWBRiI+pMENqBiEpUBzK5QpLiQKh/RspFDRhEDv/hNhrdcQvex6DuulxJ20kOImW3FjbE4iCcdZHIXLHhNQ/8d/Bze6rdQ3hGxTLFG0ruEp5rFAgohhrwx8Zjo6KgITJnK1fHQJQjXWWwnEEUc0BziEgoITFxH9fsX52xX+lfScx032RUSoxjMxt12LCxcBbk0ttgSwbgCIqF+Rdo87pVJEu/CsOrnn2qIlzdjCLgSigpOmZDA0FdTo8OxQRQhlo71R3HTWk/zYroLke8cB4EAnWP0alqufIKr7Spy4OFX0IUKGsZP9uNBoQTJOXOTLQuY7lnEvOTQ1G6fHTuniNdenlGBHabUe/fHhsPxCyGkGujTsby23MuSkPBpFvF1nz+ZIUCbdlC8XlAQTFz8yk29W5EGT6yAnGvYAhwqgyPcd06DLAtpZmtJf6VZO72UcuuugmEBqRv+UIa554dkrSQ1Us2BAqpnr+lmwmv97itX/VpwcpmKYMMrnEgXKekLUb375RKOXIO5zEA6EKTuAqysUz+2/ERu0IAbErZUOByWwwIW49SpQCqvcQFQUkUesAN/QyNZzcVdHdkWgYbE4BEG+fP0DSO8UopbyzbebybGPMCp6JhmKgLRAcYaCzT1x4uJZ8/1VeueX42XLeACed73DC9r76LgAwenOa1lo+RSLMKPrOpqmoarqEXlYFcpi2HV64IVV50Gfn0OWiyaStuLoVTrbiAre22A0Y2XYYc0wqvJQsg/8nAOE5s+ta+SF8KIEMNeje3ZjpWYUQTqSpjTiZKU3h7c2C7j++w6d33c4gThWbzkZ68I2nP3A6yRpidzQz8Gk39xcs2UWAjh/3x+s++g0IlxlnLVnIV90vSKgvuCQ0OdHvxQVtU4F/cKEjRgikRgRMMk0YonPAlJFof8NX7Jv36+kr+oOTpuxDoougFO+Q4k7DCfNQ+8/y+j/jfYj+/7IMpObke6zyRclRKsR7JfppIjA53gCxzecsvo5oRxSi0WmfQDuZIPjvekYhG1zQL5YopmrLeQ85TQ6KvUV4F41ar3THjBgAEuXLqVTp06ce+653H///WzYsIFZs2YxYEBwomiA2NhYhBAIIWjfPpATRgjBhAkTatucBoETFxKDnmSltgFpOjLL+u/yr6DpNqw0ryfeAV+Ei8AwUY3A8B0bFnZxAAWFNJlBPDFBOabEvTcivx0Hm04Hi4OIMz9jVf8/WOdWSVMz4NElRHw6GdehtjiTNhN1zSQeFq2ZzVsBdUkpOSwLoHh4pcZsQ5gzieHfwwlYG7ykfUAu+QCY778e1zfjYNOpBhdMXCapl35Cdmp/pFvww0U2frgIOrOHCBlGmQ+vhdJiO7TYbmxqy34AdxMIX0KCqhJJMq2VhjEiJdOYWKIpoiSkAq3+/Rj48wqcQDBxcwmUAeKiqbTtv8JjWBI4cOLEhR0H7ggBwhlAhhzZajvQL6DOAwQ3iIPBZ1guENEQqGohVOhyUzDpDSgxDDsSkJc+w4d9v2a+5QMGO69GR+KmjLAz34XI3fDbzaCboDQGFt3MtkU3g+om5f57CU/IZ8v4y+HTpyGzNZg06PkzYsRrwZWzoueB+SA4UyB8Oa1Nw4PkOvboo3ThW+0nTKgVY5N1G5zbEVYAWyEpbz+j13zFxFMfDEJaXPF5au//8WObs0N8k8D5+dM4luzh9jF/0lJJ5kv3j15D2xOmu9i8M5Kv3jkXUEgFIJ9JN2XRqeshdssKvgolohjODFQTS1Qa5hn6Ir9gCOhhoIP+RSTfFBt8KpiB9nYY+SK89FilUirmSDvdL/6WadZT6rvJJ1DPiDcp2KJ+xV40zJMiwbozIJ8QGGOEB5W5utbLrcewlfWLdcHupclur5eVAQmtVyMsteOuyZLZNBf1v048UmzTd7NPHuQvfV1wRcxqUIYjQERIFsVXYXDzhYkDegqq8HhjRh+GwiT8IgaSdlJECT/rS7lEDTXeB+Jh8208bL6NG50PMUdfwEGZxVr3dq59rjl786D8aCq21S7Oue1LPrZMQhE1M8AVUQwJByCrEvl/69VVliumpE6ECxKUGKQWgcx4Huw9kbY1iOSHEYphALXjhDar4O+LCOBEtRXAyFeI6bWcw/pFR92WmsJahWEtvB7V1mrjZTjj0HomTLmSYOGTleHIbcLch58mnGLKn/eSZv057aCh7NjUbngWR7lr6g0r4YonUZrs86ZEEk6yaFznHmPXmS7iGtf9NCERE6rfu6yhs4L1RKaEI4o05Ixyzjlg1YXoD16KElaK0mwPNHsDAH31WcivnmC2J58popCNjx0gJeyE0e3fBkdtxLaKzzT2sADSjCy4DGELtB/lU8hfci0r9PX/XqPbK6+8QnGxEXo0YcIEiouL+fLLL2nXrl2VyqW///47UkqGDBnCt99+S3x8xSmAxWIhJSWFpk0bRhGwtigfJgzFlY1skbvoLGqviJNFbtB0B856U9jxRVgNJyTfBZMdR0j3TaFqiMtfAF7wqCAVU+ZzXQkvglvvZrX5ay53vcJW0vhDHmajvoOuij+XxHp9G9nkGOSxziiYIzAeXz90lnIhEGMr4M/7ImnXuI7VABoQzUUS/3jC5DA5Ua581u/6fuB7d7Hf5HWAQxQTyGsxaWwJ13/sRpG/sC9FMHRpJEUxFnLJp5NomAEpSST6hUJWhiyJhj+voCYEsqXfjWX7dwASuv+G+apn0YQbDR2hgrzrZnjjXZDlxmXJ2uTvSNdTaKr4e9lupupwiLoimD0SRIcIAweQC26Akkqcb7MepqjvT+S5C4kgnELNjnzndUoOdANFwMllsF7Fb8Gnmdn3xW10v3MySmwWjLmtxu0TYWsgbA0ALZSG2RRer4xkgva6x+BmGHNF0kPIvJvgLCviss+55+JwZra7O7hKmKliAfBhz8urURITFB9ozTMPtjI+RnWDsTeiRBbQjCa8Pn1IQIlHZsRw+bPvs5Yt1d5LQ/IHliPc5IAMBeaCXwisC9hkA0s/UJ2VQuDBFXOI1TK01+g+mc537l8opoRxpv9hq6Ex+889Loa9UYrjv+MU1WCwqjDnlnCGdDh6L5Cujeex0pQOrhaIqPkIy95a12GXda9021DIDhZ7PXosvP0mZLQHIaHzIsTw2nuyrte3Ee9OYsDLhWz1OBS3SRCsGBdJdNjx5wE6xjWRxTLYsVnNEPRQzmLH4JqsfL+BojjJqkfQQgItNsCmJLwTaXQmjLqXgzh40fUeZyj9vcrNNcXJSi9m6j9gx86kpZns9UYlGO3I39OWr3cf5NEO++ggWtWozgJZDLffDm+9DYdbG/2lx6+IoR9XWU5H0r6G31EV4kUsFFxmqFajgr238TmugrtO6fE7evp0WHQVYAKhwcnfYLvgHZy4KAIW6H9il44aj+9Hg+3sDXktup4P5ytT84TCrs9uIaTBTUpS8/cxb/YNJJTl0OzWNeiq/1g9tc9o2uTv4dIdPyCA70eCKMusWSOtxSi9FvglFVPqYV6rWwxTBpFKc7azxxt1oVdy7HDgRM58AlDokbGe2XNGEaHZWfJFby658F0I2KdWtNNdEsOUnzM478I6b/oJHCPoUkcRSkiez6BQ8vAb89X8gCzd6ch6jEMvOw4j0hJZ4wOPY4VaGd00TSMtLY3u3Q1y7IiICN55550alT3ttNMA2LNnDy1btvzPxFyXYGeq9gnvKqH5n0Ihg+ChVyk0pVEDqJcmEBt0EKwJutCGTVUYKgooJopwiihFAI1JoIhSyrDzgf41n5hf4CrXvaSRyeWuu9lsne9X/ld9mbHvTXoU+dkkyA2cPAvscOqrxWQ+V7vF0vGMF8wPstCxnAKK0UJYWn5lmd/nokoGN/3PCxn2ZmdumlvBJ5W6T/L5pSWM+FWhHan0FDU5La57hAkbYdi8IdsB0MoJ/GsCH1L89WfjWn8mmJxwypeIc94Ds8tjcKvIVzDzQVJn6jSOLOCT68IY2sHwhCv3LgyGZBrTnCY1bFPdI0mEFlLAGUTURBr3O1p/jHOV05n5fTs44GEz7wF0DIPVQZ6x28KWIBLdusMGn7wAu7sbRrvUdXDDgyjWwM1yTXlN6hqJajx369fzqvaxNzxemPIQjSoOhkzOLhSaK4XUS2l0j6sfBUBfdjFOk+LREAiibuoHz7WixsS/N4Orx81khDqEcUH2irou+Fb/xY+zMOh9EEdTGp52oUvManbMq8L7w2WD6x+Gj17Cu3lovBtx2mfsQyNNZtC8kqG6SJbQwXG2N0w5Q+bwhuWJkF9h/3gmjoee4aWO1/Jir9uob7XU/yocGpz7dilFk6Mxq0f3TPewGyV+bUC6vqsHfD4BymIgeQeMuh8lIvgiu6w2J97HOQpk4D0qVjvcU7U6aU2QJjO46qMSr8ENYFeO5OIPSvhtTN2FhdUVampMFcDD4jael+/6HSYGzWstRZ73mkf10NN3Oy2B3j/CZ89SvjHraV7P6KhPWFHWiwv3fQJUWl8XNkGUxIP1EOvYyg2uB5lrqZ5bzxd9le50FK3ZKnczz/430Ccgj/blw3QrjKJpVCFf3RTGSalVG7oLZBERYTrm+++slWJtMxrzrOnoKVfiiUFKX0OZROqWgJFXGf4uDPd/Xk4MKo58itjBPka4buMXy0dH3abqUOJ3tO+PqkSojgWsNTS64Q4iBubB5Vvn8NLiiYRrxvujB9s7C8HdZz7P3Wc+D+iI5weBnAtTR0BmuRJ0iLHdEY7+2G/Q6yfERZMRHqGk+DrwlKwMizDzkeV5nna9yXK5JmifduEGXQUpmfvdDYRJF8/1vYMp/W4PfQ8+yHPU3ov2BBoOXRznso+DNVKnlpqK/OJx2DgYeuoGrUkp0FdFjvA/G3f6vHdj3c9wj/sZ5pnfZ6g6sO5vohaolclPVVXOPvts8vKOnDk5JSXFa3Dr1q0bBw4cqKZEw0O5eB7y+8fRi2L90vX1p8Hbb/L95yeTWVQ7Q5WUkpIQhoZwGiZ0zSzM1RrczJgwoZJIHKk0JYoI2tASBdXrKSc8//lCQZBMY55Q7+QBdTTfmN6gj+hCD9GRDfp2eqiduNN0LZcqw2ghkhngqFDC3S8PMUUzJmsRtgaKQp/gFISeb/+VaCmSGaT086pQqahYMKN4nq9I64A+7SWip72L2NcF/dcb0V/9AP2Dyej7O6KvGgbfP0CP9D0BdbfaLelBR5JEYoMZ3cBY2AGYPGcA+qFW6NMmoX/4MrIgEdour0EtwQZsBdw2WHQD8oc7Iac5wUlkVbKKYfjbZSzd5SRfL6ySwPMQWTRVGs7oZgpyIlr+vqlDpoPiS9wt4bQZmFDJIoe5+m/Igz5epLEYRrlTPHl9y3X6A9frb6FPno7++ePo+QlGaOvkGbC7L2AB3Wz8+5XPg7a1VQOFLQOcq5xGR1rThASsBC5qpz+7la45lcK/hKFiKpL2of99Hsy9H7yqWjU3SBTnR5GiNCVOxDDlksrjuYRh76Kjk0yjoOXLkU0e4aL+QmJCobEeBzLESbzQYPibKB3+hifOg77fQeOdEJ6H3N0dkZfEwGlb6fZMAT2eL2DUjBIyi3R26ftoQwo2jxL2V/qPlMnAOTGvVOf1+77FfssDvJpyCS/2qtni+wRqDh3IrQMl2GAGMz2rObz/JpQ0gggLyC7wyteBgnoelITg7vo3Ik8WHLO618ltbM0K/M12HK54sOvS3FzwbhFN31pB0x03k2I/nWdd9c8P+Y77C1YTyLlTGadzEuPV2xhmGsSgvBFYp7+I/t5U9F+vQX/7NWMeym2M/sfl6G++gz57DBxsA4m7jL/Ov8N5r6F0W4IyaTB3v/AOeaktWNz0PA66kzgraw4lemyQbxZwsD0mVKKIYIO+nefcNXMoKEdX0Y6LlbMZSE+iT/4ZTJWjDaQh8qCbSS+QnPpqKQfyqnbVzaOQMuy1MriBwWkaoVTPS1cdwoQNJWYWmDxrblMmIuY7vzyV1/oCgQ0rZkxEetatbjTS5bHnd5VSYq9CZKRFPdP2NKqp+ueArwkVvtAje7PX4AZwx9pPKqmRVvr3KV8aatGKTo97X0BR3VQ9X6rgDoN/LkLOfNKbGldLT8+aoo/SlXYihdIQxlEVBYa9j1l3ESZdvND3dqacdEc10QYGhOqi0ZA5dd3kEziGKMVeI4MbgHzvVdh4FmCFtQoUKOBSYfklyNn3G3ncJvSfRrH9jUfQF1yH1Ix1qwTyOHbzcU1R6/DSrl27snv3blq1OnrX5b179+JyuarP2MBQW5wKG4GNw9HvvwqlURr6Z0/ChrNxAzn7oOWaIjY+UvPQxsreSL4Y0kAqnMGEFHyhoqKjY8ZMISUkEodOHo1FAvkU+G2YVBQ/Dw6JYVR5xFyhbmvWTEQQhhMnTuniTtO13OmaQIyMYofcRwv7YDqIVmyVu4gmklwKjJPPU76E7x8Gi6Dy+nxIu/9OaGk5Ook2bGOPl/esMfEUUETZqjPQvn4UEIZf1vZ38Ztcd/aHRoaxbWbHkdy/6h0/K/v0URYvYXCsUvenWjXFKUofDsoM1sotONcOhplP472PHQPgohfg/Ndg08lYouxMUR7h/byF7A3bijssl+ISi0Hmm94p9MS8+hzEWR8hA3jd/DHk9TJOfvDpgIPwckQQRg/RiUTqTtWptogKEiJR7hGgRhbTZeLtrN8SD3lJ0HUxStxhdI+yqQM3DJoJ+3oAAnYAbYBU4IYyyPsYzNmw7kxYeIu3fuvBpkT92Yvk8e+SVxhk4VrQBKkL7ylpORrSS2ug2otm7iY0Ip4Mstkp9+L0MaZu7Kex/d3XYPIw/KZCcy4yLBfWDgustIbo2meXV/3u2pNsDO9s5ss1TjRNUtDtez6MWEgxETUK6T9Wi9/aINJihsa7IMs3DF2H8ydD/3koZrdxKPXsHPye5Yd90IBMBOVHJVsy3cxYWUCHe99gl4dHJoFYmogEnnC/ykvm8d7iGYUaqU8U8978eQjgu/bnHdsbPYGjQhMS2cdB/8QtpwLCGGOGYhz15kchi5MQURkBdRwJ39fxiAK9iD/lGqQ0A66a7Bm9MPbUZoSoWB/rThMURYMjDCJK+DryF5wDrTDvdr+yF59SCETzxUoHN8woX5N1hO2TCb/4VUoH1K/y6bPut/nGPb9a8QSB4EXTQ3Q3dWDJLjd/vP4A3nXA7r4VGdf7EPcf6OZfSXZb2HwG+q13ktoqi35qd9IiVSJdkvklZxBblk+0vYD9cYH7F6m4CcOKRBKGjT167RwCLMLME+a7iBFRtFd2kvfMi0RvH0rcob6clBjHNZ8GGqR/365xff/Qa9aqPO6rQpO6jJQxHUa0vBLcjcGUhRD+hsJAb0SJ3WN8zyKHeGKwYaUFycdcWdKBs8oNfH3TXTQhgZ3sqz5jXgtCGcY+6XwZ/9vwOQrgUkx83vGiIGqkLu4/zUxm57n8HrWAkrxWpEZEsTTqE27r7WTGPzUkqd/RH4CT6U1H0bqazEeOnkonmulN2BdE1UpDRzntC1y9fmLTTzHMaVOzdVjiJW8S0XsxuimJjfp2Q3n3BI57VGULCcCBLqGvbR6EvGAqcuL34IgxZpu0Tsjll8IjFyEUnRw9rya0iccUtTa6PfPMM4wbN46JEyfSp08fIiL8DTXR0Q23eT/2UGDx1XDJi/6S7xhGpVd+d/D2FTU7XcqVBUFDiwQQEUTQoD4QVY1iqoaGQGDHgYLCbg7gwsVBmUmECCOBWK9hrLLHnESymwPkaHkkqIbBoolIZKm+ihTRjJ/0JYxQh/Cm+UlGOm8nnwIcOFkqV2HBTAEVvGXKST+gRyWD6SZYBuyWqKrgkcFmHjunYZ7dsUKBLEIgOMAhrFgwoZLBYZJpTPGvo/CfqIN4ceUbRo/9MS046aofeGPBIyS6s5j8fB6zrrKCXM35yhn1dTtBUUARy6SHGPjX/xFwTwtGoTxyESTtR0fgUDvSVF/GQbmBDqIlq+RGbtj4Gd+V/EhuZAgjj9uCsJZifvQynF8+CDsGEsrRd+XS7jAiuDJYCWUcIqtBw+OjRWjjuBs3W9StKF39F57l76OGhtJ1CeJ/96DNGQtFYZDzK6LzfrCtRjFnoesgv/WQ4kvJL19fTs9sj1rpdGh61924K3sLhBcEGNyAGqnAHUtcajqHca5JtBYtiSOGTHL8rjsbFWN+9DJcX4yHPd1B2sAVDxMWQHSgQSA4/MNOI0+aT9MLl7BXb06qYhD6JkSq3DGofGy6kse4EoDu9vND1ppEAlEikuTjILw0jmjE2JuQ82435r74dLj8GZREn0Xz3xcSuKQI9Z4obJvyHKL/bBpd9CEmVFxSY6H2Fw/Jlxis9OM80+m8t8yJDvze8lRG7vmNwWnL2ZzYIUSdJ3CkUAUkRh4914ktGIl521WAhG7C4KRCGB62dAYC3zHnf8TotlfL5nD6k1B2Epj3QNN7EKbsastJZwoy/RXQkpCRvyAaT0R+/jhsOAvf9ykfCVc+CVc/DPNvBxQ4+z169TsDaM7T8ysbeQSlv13NvJPuJ9YVRZrMIEKE0Ud05RLTkR8wVIct+k52UL1IhETSTjVULif8aCf02FHd3Cvgl/9x3R2b6ai0ZsC1bSnDjp61n3uv+JxFLU8N0hqJaLGVYsqwYMaESrrM8vIN1Qblhy0AdDf+nG6JOsOBVmmKHJha9Q4wighUlKCCZlWhHUfvFFEOBQVdaGAOLS7lC99bdOKihFJyKSBdZpFPIXEcu0OkIlmCBTNOgjtzNFLq97A0QYkj1E/np9rc4S9YflmlHMZYuT2hLadeMZtPfh1NnqUZ+eHBDKpmJi8CFo0ARgCwFsmlnRzMuSWCnk0dPD3fQaETQMNkchtGcHeE33fR3PBG/ZPV9KEKA8dR4lrTSK41jeR3bQUXum4PEOJTUTBHF3HmWknvR/8G2aZqTzeTk5w+M8lVdCKkhZX6hhNGt38BivUSWopk9sn00BRDvmi0DzJD/K6p65H7u4Cj0vhSnAiH2kCzHeTXhjfuGKHWRrdzzz0XgBEjRvhtPMtPMDSt5szGgwYNIizsX2YkifdsMkx2cPtvKGPji4CabTLzKAjK5SOBTkcgylAXqM7TDSpOtXR0nJ7ZZD/pNJNNyPE5lQt22mTHwWztN25WjcllvOkWejhHcEhm0VprwQjVIBz/xvwab2mf87N7KRIdVajslPvY63OCLlotQx68CQYBg3RGRFl5vGXDbvDrGg7ppIVjMC6ME9hSH32XdLIgKhfyDfGRSHshAiiyVTJ6uyIoXwbti2vBBXc/BrfehWK1epXAmoqG3dSXf78NK1pMAY6cShkiDcER/UAH9Hfe4j7NCpwPUdlk33sd4eFmnnkkj9wz/ua7DiGMGE23IzUV5ydPe07HQ0/gzj9HwprTEY9eiDAFLt6aNiCfGwT3dPNFMO4/qanIt96Cg50BAdYSGHMTSmI6AsFwBrOMUgrwcJoJN0gLg9KW0yu7guxfAMu/uIQzb51FQb6HNyj+INx2R9C2NDRp6UmiO/kUsUZupj2pZJKD/t09sOIS8LCJ6b5cgF4IKEw2wpU2n4r/8Vgw0m4JqhvO/IDimEzmPfQ081CBAno3Fyy5NyqAL6tAFpHm9f8KRBZ5ZMgcUkXDKXFJKXkp28F7BecgrRbEBa8hRr4RkE//aTT8cV3QOkwuB26TJahCrFxxIVkrLqxI6v4zG1zhTNnSAyigfDPwWZdLSSnczyN/vUaGLYHZ7YeDUuvlywmEgCYh7L7QgjY1RsIM6A8oOnR6ECXhL5RmO9AveQbyHjZClD3dIJQBqiqOw38TPi/QocyjjO1qicy73o9TMhRkzu2gecLOi89GaithQzA+RYHp2yd46NnPSe21g1s1gw/RgREpkRijsyun0jsXnUM6mTyuvepNakVzLlbPrvODJF3qbNC38Y1uHGC1oCl9RGdmy9+C5m9GEmGeUPqmcUfXB0RcBtEikh5KR1JpxhZ2oTTej6WjHVfZaUFKSIjKQWKsbXewl0JZxFa5+4hE0irDYhKsfDCCs18vIbsUws3w3tVW2jWp2ui2Rm6utcENoKVadx5dFsxez7UjgcNjADNjZrd+gD7qsTO6FVMa0uAGBpd0faKraMf3LAh6zXePpHT8C/2c1+CXWw3KDjS8aw7VxY6T07nT/QpTFz7p4Z0N/a5aNCc/f3U5XfIM5ejDH/dmzJJvufsM492a6v4Et3Tznutr9sy80eNAokCrNYgbKnif4+tBwGmw0pcrxLlMl7P90jV0o9+rgn+eewu+SIQNQ4x2Vl67W0ow3T0aXTHek+3s4VP3HEaqZx4XUQInEBob5Q6yZV7NDG4Ad9wO702Fg53wUr4IHdr/hbhyAuQ29dgofPuIhEiDEm2ltglpOrbettWh1qvW33//vc6+/Mcff6yzuo4lDIMigIRfRqNv6w9XPA6fvYh3AxZ7iCWnTkTKz2r0g+bI/JDXUpSGUXGNI7bGaju+MGPiIJn0E91YJTdW6d49Vf+YmzGMbu1EKv1FD9bIzczX/0DXdRRFwSzM3tNCKSVL5Eoy5GG/eoRtCyS8iiy4lDhzEVOST6rl3R7/sAoL54hB/CgXUYqdoQxkAT78Zinr4EBXAG7a+CU3bP6Svtf8BKrva12pL2a3hO39odsiJJJkGnGS6H7sb6YKtBEtiSGKAoq4/Lo/mPlSMyj1nObZiuDGcca/333DXx2xqBHWT6ZSdvso0GHKogn8ndSLg9Ge96f81sPz4bpHkL/dCAe6E2hwqzxICyiLRU5/FjHqQb+cYViPqdt9TZBILGZMfrxzfqemPijPJ38aDQe74L1PRyS8+xY8eiESyQKWY/F4qQgB8saH4KMXMcnAzU+zslxuemQmr+nTA67JkgHIsj6IsLWYI1bUzQ0fBdqKFG6UVzBtWl+27OoLSNB9OdaqGatPngVDP4aPXuL0TZtZ0uxkNFPl8GQB4y7HmpiF02FBPvkzvoa51WmS8XPKmHyx/6HAHO23kLwm5S3rL3o0mBgFwJwiN49lOYAYcIxEKgUoCR+gFcXCu1MhJ8U4gHKV8975o3P2VmbMu50zrphFQVgwL4NKZdafE+S60a+fG3gfzw28j9EDzfTJKmbVrhNGt+MO5wiPuJwKWS8h489ACDdKv5+Q7r+RWQ+DqyUi5jtE2PqgVVQXhvhvQYFeisFTUN6HaxrXUimfHrqf65ogVokmXISVizR712/Drv+BFS+cDGXGe2ex2TFd/zhFlKIgiCAcDZ09pLFHptFa1Ix/U3r4pF51fcxSuYpBSl/Gmm4IWPfulPvo76rw3umvdKODaM1sLbjR7Xp1pPffjS+aBjvPhvzyAwefOToiy6PQHWQDDqC4EBe+zFjTKuN7RQ/2yoOUYeeVqZmo46v2AnPhJo5oMslhhbaOzkrdHIJ3STZx8LkYTndcwxq5hdtQuYyq1Vzz5JEZwuvS2BBLFBlHYXQr7/0uXGyVu+lD1zprW2VUxwdZ317jg+gb8pqKwnmczvcsBEA5/Us4/Uvv9ViiuEwZzs8Fm9n77DusaSK4Zvib1RrdJi16hq4egxuAZdVq7E9PJuxpw6A21nQDf2vreVSZgnL1M8AzQeuJP4YeieVQhco9phuZ4ZoTfN9YGoN8awpkt6OiJ1W6d2cEbh1iiaSQYsyYWcZqbnc+xReWV/4zoo3/RSzX15JNHo2IJ5u8aoVzFKsdxtwaOkOjA8hBM2DJNVT0Ex055x645knmqgsolMXEiIYTGqr1qrVchfRokJ6eztKlS8nKykLX/U9x7r777qOuv87hKARbDCBAKrC3N+zrht/iKD+ZfZtTeaL7VCaa76m2ylCEfvHE0KyBPGliRVSVBjcFJeipV/nm/ySlB021xnzPgpCvTjoVxjNFKHQTHdDQ2CPT2M8hUqnw6rhFvYLWjqG4cAVtl4j9GhH7NcOUc2lqHlCLO/33wIHLe/K/mJWoqEgksjgGllzpHVfi7Xk0L87EJPUqtiwCnBHw2bPod/6PhBaHSBKJDe7plkCsVy46IUIl+omrKA4W5+8O5L+y729L/KrLmDJ+BuMmlbH2MyNMRhvYg7m/juI+/XmvmpWe2ZbgRhY3BAuLOhy4OC/DQUw1YdjHGtEiKkDowexpvwOnj5mi4t0ksw0B914Ui/7By1CUSNkpX+I8ab63rNLhb5h0Oks0yc5e0HavUUQCz7wUy4f6F14C5fKJUpYMQGZMBjRkwdWIpMcD1d3rGYpQ+PPtm2F/9V68gdAgaRc8M5e2ufv4bP49NLt1TZB8Ar55hLjbnqSkJJaiIGHL36RvZzI9/dKmuj/x+60qo5voQKpo1qCLxj1O3aeNEtxNsepWyl78CunyGBFdod+HVgX72ZzYiQLb0SzgBQ/csp5nOw/yprScWDti8ROoB6j4O/pbFGTxGWDZibDuQZhyEU0fAEAv7YSc/whs6ApOqyHm4lEO1k0ad3ct4YWRYYRZGtZT9mhgi/oNCgeAozOo2YjYGTUqJ+LfR9q7gB4D5q0QEQ2t1hvh75UgpcIt+vX8plYchpevz7aEraHTkzNJFHFMNT/GWn0rU93RbCaLMGw0Jp5oEYUTJ7vlflpTM6Nba8cQDvms4xZr//CTXMJPlg/98n3unkdzkhAIhimDuNp0PtO12UHrjCScVJ/DhUxzOsr4K6pshz7vLlh6VeAFsx1hcXoVk1uoyZS5DU8KzSJwnfktLL6eivlQwhmfYhEVB1ml2GknUlgpN3ITl1T9QGoJF24cOHEiquQ4c0s3+dTe6Kag0CgUKe0RII5oMqg+LNqMiiuIl6qCioqKGRNTtU+4xjSiztpWGVUplwI0EvUbXtpcTSKU424E4SiKQks9mXSycHvoe8rXU6cqfXnd8gTDiiax19NXD8T6vKO6DroGJv+1a4fcnUhgV0xLbh3yHLviWtP4cClRLxSQXQIt4gQ7z30NS0rwMNwwbHQXHWgh6of/rrPaFpvLSmklbyeBQHvpM++hQXlqIATkNqWwsRE0Hkc0dpz8IpeyQ+6lvai7UOsTqFus1DfSgVaEYeMwuQHX9d3dYf5thprt8HdQ2gZbf/tDOe8d9G0DIKtcME6FzWcgP7Yhbh6HXTgMQbgGwhGtaJYsWcK1117LySefzMGDRsjfp59+ytKlS6st+/HHH9OqVStuvvlmXn75ZaZMmeL9e/XVV4+kOcccItiGQQZy12QuO53Zh7bxhqv6xVVZCPn0XApIFlUr2h0rVHc6pqMTSzQ2LCgIVBTCsRFLNCeJ7iSTSGe1LYpPt1IqDZLFlDLR9ab3cyfRhkgi6CE6MV3zV0Vaq2+lBUl+5OfB0KWBwnHrA01FY6+qpxsX5vxkLKvPpMX7F5FUXBGa9k+T7mxI6MAl2+fVoFYBW04ljwLWyC20Fi2PUetrhvaiFUPFQPqLHggEllBnAa1XBqZJldyv7+HFthPosC+Ka2eGc/761qxY+ADXmkeS5KMOKQbPINDEIaHRpuDpZ73rl6KicLLo7bc5aAjEB3lPdZ8gSYmx8A7HRgxRnEJvok//jsB7NMHOgZDZDmY9hvbRc6i7+qAWVSzYdVVwyvoYTlkZSdicj/gm6xnWX98VFYV4YvzedVnWh4qwCDeW0oaV5i7H7oNHYnADovfAkgsBldPS/sSiu+mdsTZ43r1tyP3tPIrWdgZbXqWLEvX0z3nd/ak35Sf3YsJFOJYgqqrlWCu3ENHAnHgXRZuJ8f7EEhH1A9FlyRUGt2rwR4tTeHLgfXAUYcbhZnis7akA/KQtpov9XApP+pjQ5soTaBBowDafz7obsp5Cpk1HFp3pSVLRd4+B1z6ARedBbgoUJ0FJEyhNgpIkKGjGO8vctHyiCKf73/cbv+H6lN72C3lffIRoNhqRch4i5XJEDTmxhHU7pIwA20pwdYTc2+DMbqAGHjxKKdiVo2PzUby3SwcLtb8QQqIjyZQ5dBJtGKEOIVHE0U6k0kw0Ybh6GmvkZjbJneyWhmjA19p8LnbeRR/HhXS0D6O7/Xya2k+hsb0/sfY+NLL3J5McD+uZ4lkHqkgpWaGv82vberaSRgYHOMSj5tsZKHpRKIuDbpuLKfWG0efLQvbKg9iqGBsBGDCLoIRZA2cRSTifumcDcPd7E8h69wDZ7+xn+cx05rmehsfPgWvGweUPw41joM0yrEUVh48uXEQTiS6OXtG3MsIwKHUksspQyByZzwDRk0bEe9XrawIdvU49OVpSPb2BiooJNQirsMCMCYmOgsAsTeTo+XXWtsookVUb3aLr2cOlmWgSoO4KhumoFc1x4qKZSPK8SUbOcMJoRwq3qIbR2dFkC9gCja9LvjqXJvZAQ8XUvrfwXJ87GHj1D6xP7kmJLZo91iTWH4L0QlixT5Lz9ss41w0O2uYy7KyQ64gT9cfPfo0ykkH080vT3Wolg1so6IjWa1BR6Es3WpBMArE0pTGfanOOTYP/n8Kt6aw+4GLB1jI2pbvQ9aObn/PIp7FICGos1/8ZDu+9BQd6wMGu8MHr6MtqeACSFcTQus84tAple6kv1Hol/O233zJs2DDCwsJYvXo1DodxAwUFBTz33HPVln/88cd54oknKCgoYO/evezZs8f7t3v37trfQT1AOoKR7wUxBO3uz7ZXJjHu8SGk26sm7EuTwUm6m9IYswjidVMPiCeGlComWBWFAoqwexSCNHRKsVNEMXbpIJ0sblAv9ptkgrmLzvAZCG8yXcxauZltcjdz9YW87/6KGe45fOqew1vaDKKIqJZYuaNoU+X1fzPuM91keJroAu2lTymd9CWlXz3JPZ/t5pb1n3mlw39sdw6PDbyfkw6t5qqNX2INskCvgIQOf5JIHInENbinW1ulJSvkOpw4URD0DRF+IEbfC+e8BqYgXnBrh1EQp7DgXAuHUk285P6QIkr40PRsRfnUTTD2WmixBiy5eF3VD/ckgANgyPsovf3DYDR0/pSriW5gT7d4YmhBkl+aRKIhvUYc3fNfAUUsYzUD2oD57ptRWm6ERnuh2UYCTg23nYbz/ddwPfs9+vRn/S4dah+JZfiZbIvIwIGDMGzMt3xAiqgIhRdhayg3uIGJiLCtdX7vR4IeTQMXveZG+4iIz0H0+AViQpB8F7aFRYaC66LmA1nYrD/R9iLvO+ePaJy/3Qq/jAd7+UJR0ikJzGNGo7f9mzX6Zm/uX/WlFMniAALhclgw00G08vP8bQikWhTWt41iRnMLosV1iPCVZIftJzxgipLQ9k+IzISwHDDlAg5KLOHsSmgb4plJMBWCOY/gBjRJp07ppE2MIswiWKtv4VftT3azn9LDyVRPqH4C9Y7FwI/A5iIfzj2BLLgUfVcPeOwPyL2SmogyFthhTdq/i9/NKV1skNvYzE40dIQAYcoPUHysDkJLAHul0LSk8rHC511R3ETHFWIVFQYqB06W6Cv5Rv+ZHeylr9IVVahEi0jmWz/kEmUYlyrnMEwMog0taUwC87XFjHNNYrO+k8X632ySOzlIJtvZSy4FFFKCEydFlCCR9BZdKLGt513zM0QQxjq5lYucdzDMPoqv3AZtTDhhdBcdaU0LGhOPHQez9F+CvukJxNJMGBEea/UtZMgsLxdYKCiJ6fDgpdB2OUQchka74KpHUc55j1LsfKJ9x+XOsZicZVh0HVVKOuW5aFPgRokoNlTMv3oOPn4DPniPwme/Qv/UmPd0JKvkJn7UFtXqd6sJwkSFgbQqLqNDHOYvuZbD5NZO4Y+65eOqiQek5mGeCzy6lDhx4kajFDuHOMzVrvu41DHGG6ZclyiWVT+n+l67hYuwkLPUQTIpkEX0oYtvIBxWLGSSQyvRnBXaOpxqGTwyEvp9C5EZEJNOfJ836JibxmlpywPm1l9ST+fV/ndULTyAQF94Q9ArzWhCO5FCc5EU9PqxQH+1OzvZ67d3FCY32PJrUFqA6kZDJ4PDNBYJ5JBPGXbm64s5VIma6ASODGsOuAm/v4gBk0sZ/o6TXi+WEv5ALudnP4wua384ka5n4cRFFjnBx7ffbySA9mfRtTWrvNG+wLQWm4Cqx9z6wBGpl77zzjtcf/31zJw505t+yimn8MwzwWPDfVFaWsqVV16Jovx7wgbc0/thHvczFHg8XFpshsK4is+VoNsjeGjhQT49t2PIOg/pWUHTI2g4YQmLMJNNZS+NCmjoQTusjmQTO4jUI2ihJBFNJLme8Nlg02o2+WzQttNNbU+4COM8hvLpG+dwIK0rd5aXOvtdIof8gb1SuJz+/V3w5xV44/sveJU+px87lZ2GRluRwlBO5sedpZBTwSV2ILoZD6x8i2hHEY+d8hB2s40VLfqzolczuGUMI6I38v2rV0NmkD7Yey5KymaygT6iK5YGMvKWo4lIxIKZNXILuRRyvXIhv+jLAvIJAeL0L9Ht0fDHDfgNyDYj3ExHkkYmBbKExfo/nKMM8qtDSd4Ld96FPvE7cIZalAhYeDPy9JkIS+CpSH1wXVSFxiKBA5VU/4wQZP+NnW9Idj6FxDTNJPeOW7Fhxv7btf4cb34QsPl0ZEEiIsYIK4knhkJZzDa5h/VyGyoqUXoEYbIiflRE/AlJDxmcbra1tI2sA2L2OsDCsVFc8G4xS3bqSMWNPmgGSefMpQtt+YWlCEBffBn8dCvoNio/k3v/fpPXeo/mihEfGAk1DvcUbMmQ8Pr7pHf9g/XXTOegnokDJ7/Jv9hG6EMmJy62yT00FvVL/BwMSWaFy2PCuNGehg7oisbqR2z0eG0fjvxEsJTBpc+idFscUFZ/7htDkCLoMxOghxH53DmUPvwLuqzEZWUuJfyGJ7BaP6dY2vlB+4Np+jek7tS44u1tPNcvSJUn0PA4CDijDHFSAHQwp8OMxwAFahEZnBzz71knAhyUmXyizz76itQiwAE+Hmxc/Df8bIXtJwEKRGfDqHv5XlzJSfTwZsuR+SgIr4pjUqXIiXLDQzOlCbs8Op7z5WLQwIQJCyYSifOuBWOJoo/oipQSRShYsTBIMQyC1ygX4DQ5udM9AYBF/E26O4suSjsW6X9zmFxakIwqVApl6LVlDvl+RreDZFXL7wOgxGfC/8YFpGto7OUguXpwGhc9rR18/iwBm7pN/vOeHQezXL+wTx4kVxRwt+l6GomjC90Mw9fo5jCEfIMgS+YQ6exM4eE7QI9CxL+PiKg+mgjqdo3SW+0cMkTSF2HYgh4ilXN1aWikk0W6zCKKcDbJHXQVdasweVgP9PzyRVQNhe7qEmHYAjx5JJBNHopUuE29ine0mago6EjyKMCESmtaMEl7j9VsRrEAl7wCvIKKQqlDQwNeW/g437Q7F12t7BWq4yWaD4XMVuhbT0Lp+LdfcgbZhEtbvdIcXa1cwNO8GfjOj7sa3nwD8lKpuJfAe0q6+0vu/edtPut8GXObGIf2uQIOACkAIeicTqA6VB6D/Z+9rpn45ZmHsFEYcK16WICptStS2Ah9fM3GwIC27+qHPn6pZ6ZsuP5Q6xXNtm3bGDw40C01JiaG/Pz8asvffPPNfP3117X92oZFaQbcfhV0+R2QcKALFFTtgbBCX1vl9X3yYND05vUURx8KCSGXAKFRPlD+KVdzUGRypji5yvwllHKFaywA2Xoeny6MgrRyRUkBKPDLbZQURDGAniSRCIB+qBX8eRVeAt02CuTey4LDtW/zvwVCCB4yjUapNJ5N6XsrKxt347qts9j/YX/WzhtMxJOnojxwFUpMNnOL13oMbiLwb/UFyNIoBIL2IrWe7yg4yhfch2QWF6pDq8wrzpoGTctDQiWYy+DWO73XTSgUUcxU13RMwsQQgvD9VTs/qMhZDwa9Eiy8sz5hE1YaEeh27xuqGF6JTC1b5tHGQ5TtxIUY8gk034D3GQZBuKio4wAZdHOczy/6Uly4seOgk3s429njV0ZELEVJnIqIXESrGnIEHWtYTYJf7oyibEoMS186RMtz5nKQDH6hYvJWBn+N8tyZhPVe6Fc2tWA/D6982xCUEKIWBrdyeN65jWew/uFptLrPSqf7I9jy2bVE6NWHDJW/F8cDGvvwBJlichj58Lsozw9GmTAsqMFNSiClvI+FgK5SPP4XdBlkKWLSWMMW1uvbWKKvZKL2Ji5czDm3jLH/TKd53l7jS2ToPnwCDYTDgPgMLDshYhHEvwXl/f3XYAVkwN8z51loGffvMrql43+Yqh/ogD5hLvr4xehP/Whw1NQAQimFpAdAyQVcYN6JaDIZZdSDKJNOR5k0GOWRi1GS9jFdzsbqM/bP1Ofxof4NTlxEEs6D6v/86h5ruoGxphuCji0Kgi6iHf9TL+MJ9U7OFqfQS3ThbPVUhpkGcZZ6Ct9a3+Ae841GfqFwqXoO/1Mu4yYuoQOt2Mk+Lnbe6eXoKfekL6rCCymBWMKEDV3qzNcXoR+BYmcX2gWkFYay8L7/OiEXAT7JBRRxtXYfD+uTeUn7wOvFdzSw+czNZTK018VBmUlhxsNg7w7O1siMZ5FabLX1JxBXp4f3NVVvLaCo2mWVBTMqCkWU8q42s5rctccOEcTDxQcNEUVUlWJqFjmslptYYfma4cpp3n7flMYgYK/PPrH82Wro2HPacM2FzzE/5TQSi7N95kBpCKxd/RjVz4kKfPwKenZl4T7Jucpp9ao8rwiF8abR2LCg7+6G/tgP6OOXwDM/QF4rKkRTgh/ePfj3m+yJTWVdUjefdZqooswJ1AxVPEcpUdyu4NeOqO5gf0dSJvBPcbtRNbfnlWjY/lBrT7ekpCR27txJamqqX/rSpUtp3bp6Vb/nn3+e888/n59++olu3bphNvsPgq+8Ur2keoNg3sOwaSg1+sFshRwe/DqavAxVBFes6kArfmEZ+saT4afboTABpGSJaqFHTCEvjrQxrHM1nBbHAPEihv0yPeg1Eyo6ukHk75NuxYwVK2ZM/CM3MMp0GQtcy8nWC5C/3ARrzoX4dLjkeZREg9dkNwdIl1msl1uxZLcKJpPA0JLzKI5dTW65glPGmRWX2wJnALpgdI6DpAiVYVEN67F1rHCS2p12bXLZ1ng7ZBkng7qicv6lXxgZhB3FVoY+azVc/AJKeAkUlaumBYOAsmiejRzNFebz6uUeqsNJogcSKJCFiEpnAVbMOHDRboubyWPKCC+TPP30TSy+20JLkskmDycuL6uZipneogOb5A6W6CsZpPZlh7aXNDK8/dZ80yO4Xn+PKs8dcv0XI8k0oolIJK6BPd0ABii9mKv7G4h8NyrRRBFOGLkUoCAopNgglPU8gDDFhP2u2z0FBfqr07x9CyTE7aXkzalGKOplz6HE5JDpIVPWSyPgm4dgb08c4YUw/C2ULn8GtLGT0rAqr8HQW3Sms2jnDe83efhmNHQSiKX03LewrjsDh2b0i6SSwwjg5UUTGDP0+SMwuvlCYNGc3L3yXYZ9uYhlszrwzJer0NXAOpuQQCelLW1FylF8X91ghjaHj9yzKKAIC2Y0dFbpm1ivb/fm0Uui4avxsK8rWF3Q6wdYPwRyPdwaUhrEz4ri8wwN9sHgkBCdjj5xDje30Ai/5HPaR6WiIYnLL2Bu6zNJi0utVsntBBoKEhJnEh79PnZc6FnjYXAUzJOgBfm9zHaUiRXze1ta8qDt36Fu74t8vZB2pLCDfUh7BLz5PkbIvQR7NLz3JvKxCxCR+dVXpjUGPR7QwNUOHB3B9FdAtvVswyYt9BAdvR6y5XDgDMnVG00kjyi38b7+lddAFk8M5ylnMN58S43vOUZE8YblSQDud03CqllY70PuV05kHsoA1pwkr0f6Brmdv+S6Gn93OUyo3Kxeyn3a84BxQJBNvpdmIWAV7ghhlFLLkN/dh7x0EkqEse7sR1e2sJswbEzWpnGH6ZqjErfxPcyqKtQplwJwN6ZCsE1BHm6LnH09HE6BlI1w6fMo4f7P9VSlT52K76QoNaM4sGAmDCsFFPntD3yV1nV0wgmjhUimUNa9GE6mDC34YK79drdOcIroxR6Z5v2sohih5xjrtH/kBp5XxnFwfUf0n0eBlDgbO4jddwiHe6I3fFQ1C8I6rKLkvBfgtWksaGpmQdPKohQSDraGeXeDtQQc1XHYCZgyA/n0WQjVcGfsRnt6iNBRWscKZ6qn0qPgZJa/N5HaGnIsbgebEjscs7adQCDO3rOQEksEy5of3yKGZs3J9Rtm8mXnCym21h9PYSjUehQaPXo0Y8eOZdq0aQghSE9PZ/ny5YwbN47HH3+82vLPP/88P//8Mx06GC+I7+RwXEv77utLjQaBmDTU8VcihJXN+g66qcEHr70yE33xjTD/f371Ol2wxS654L0y3rlCMmqgNWj5Y4WeohPr5bagJ40qqldJU0F43caFrmLf1YWEgh6s6LSfFxOGcbbrVD57cyQc9MSYFCTDy1+hP3AFSkI6YVi51jmOa9UR9Dx9DX+vPgvfDZg5opgnWgzjaX1rhRhD4+agSNAFJGF4UCvGkmRZqfafNbot1VeRo+Sg3jcKvSSKlKyTGFt0D8/sXEnO32eCtKGX2WDjUNh4KnqHBWCzg6kI3EEm3dh0iD/IfZZR9X8zISCFZKNnE3+z6xG/aw5cdFvr5tfBJQhgZ1QLzh3fl6Jrwth0Vin2DotRTEa/jCQcgcAhnfRSOvO5NpdzlMHEEkMOBZR63PwtzXbT4rmrafHrIyz6PZj3gYQzp/mlHOIwh+RhEuqQL+VIEYwDIRwr0SSSQz4FbjPNlHjylELcaORSwAXiDMIVG9v0PWxhF2AILkQoYcj77qS0xIq7MAqmv+g5XQQKkmDSbPSHR6BE54EzDJ6ZC7pnXCpNgE9fRD//VZRTv/FrT1sl9Vg+giOCIhQuUM9gt3s/eRTSgiT2kU4pZSQSR3RUJNc8/xN3574LhZGsKraQ9ytcuX0el+yYz4u9RvNq/zuPyNAjpM6kRRO5dut3lJjC2LUzhQdGDOb5metQovxDcVNphiY1P868hsIheZhlcpVf2kxtnpf6WbeHwTNzDI4kADvwx81++d/8+QF+aDuMH9ue5ZMa5BlasukRm8i6LOkNjd+8FXj2OdqeNxez08aU81bxcvz9niqO4zXD/2sIlEPtsUd7jERlvSFZgf8BO4BFHj7NcrT7E/3PC6DZdkTLbajCRJ4sqFbc6XjDIbLYru9H7ukKWwdQYTCpCI2SGa0RbVdXWY+UQO6tRljfARVKdaR+MqKd8Tz1zBawqztIFcJKebnTTNb5cGgKBE1pzIXKWSHX1UIInrDcxUrHBn6RBp1DBtkkicQjvv+uoh1vYgiJmVCJIJwBihHQs0nfQbyMJXtvMmSlQrtVKPFZNKUxsR7S9unu2cQRTXqRE1YMh8xW0GEl9P6NqhhprFhpo7RkkN4XHR2XdFNESYDKtxc9f4a1QQ4ctTDYcho8czLyyXNRbXYai0SkBJuwUUoZe+SBoxKfSqEpg4TRzjJCk3rnyQJE3OfIXI8B1LEW3p+Cd528+XR49mTkE+cirGUIBFbMXKmce8RtC4aarnccOGlMPIWUIH32D76/gQUzxZSyWe4MEFmrCxyWocNLqxXmOEZoI1L8nM40z7MpT7LjYPLCElZ+fzXl40R6ENuh5oSS1UNgTX8g1F5HGGv+wvJ1f6VxNhg0K5TEQnQOZsyEi3A6KvXPk91SJJOaMYjlNQnAK+ex84xtfyf3wl2PnnknAHevmUaeNYZlzfobv0Ol3+R4QbPiDO5Z+wHJZdk8M/DeBm9frY1u48ePR9d1hg4dSmlpKYMHD8ZqtTJu3DjGjBlTbfnJkyczbdo0brzxxiNpb8Oh3RJYfXkVGTQ4/WPE2R8jhcSBi7e1L3hLnRCQc49TZ96+O2Fx1SqlU3531rvRrYCikK79DpwetULpNbjppZGUPvsdaOHsAl5FIocUct2wi/nsYGW+BgX+HgHD38GBky1yJ8u1NaxsPBceWs7gH2bwT1YRkZ1X0vGsP/hOdjRcqcv94BQTXC9gBQYRswICHR2FIZENc4pVH9gl91OGA4lEjSjC3mo1Hc2H0H88lcAJ1QrbKi+6XBCdYXig9PgVccZnND5KXpK6Rmfa0INOZJHDbgKJ7W9524UALrzgA5a18JysZACfAkJHv+c6lCZ7KaYUFYW9HMQizRwWucSIKLI8Xlrlqp4u3JgUgeucd5nY7Ta+mJvC5oNu0C3QbDtc9DJKUmCogoJCNA0rpADBOVucuDggM5CHx0PRBWwXTpQmT6BGLCOGKNqIlryqfeKnmKZ7eBojCad1RBS5QpKdVyksVCqw7iwY9BX6nq4VBjcvBCy9EioZ3ZKVhlFhrg6jTZcz2mSM5fPdi7jTPYEEYsghnySRyHfyN9rFhrMrdi8a0H1PFA9OLKPfPzr7b/4Yem+BLx+B4nggkAOuMqJLsimxRtO8JJP2ubuZn3I6N5z7esXk/6xEH/Y2yhmfecuUCjtxIrZeQzxCwTdUyYwJgWCh/ItWNDe8nrf3qzC4hUBeRDy/pJ5W/Zc5E1mXBYEecCo7f7gQgC1NzqlV+0+gISDRk7dhw2IIIYX/CYWXgtChYwn0vB/m3wAFjQz15M1DjT9ARh1GG38fq/XNDFWPDwXk6vCm6zNyyeerst+RE+eDKwr/qDLP5lfoiKY7qq/QnQR5jeDL8gQFll2C3j7J2CAf9Oex/QQJl+Sj9PvR822SnkonJlvGV/tVSaKR1wJgQg3ggKsN2iopdKMDaRxCAk+b7uZm02V87p7LO/ZvyX52ho8ioUTv8Ss5V02jo8crOpd8Dv96MSy4Hu+4uuEC+PZx9AlnoViCC8+cq5xGE5HIEmkonA+kJ9FEkROCo1i58jn0Dsvhj6vAHQE5qf4ZpBm5diimAT/hRmO4ehoztXk0Fgms1bfSWjlyo1sZDm87q/L2MqGSEPct+eF/o2lhyEX9gJ7+mTQLcldvROdlSCR2nPRW6pbjuDbOECbMVYYGO3GhouBGI6sKA9mR4pAMzpUN+Cn81ieaK0kBIrsCgYKglDLyZSET/siGmlL7yAhqZEzzfJOnUOj8llKINN4TBcFOuY++SnAxs2ONySmX8gUFEOib6kX73F3c+/eb3HHWC0jVMD5+0v0KOuavDOL5riOislAVQSxRRIhw75Pw/UnKVxvlxau65ktm4b3m+bde6XPla+XfW9tytblWniBF8HK+0CWowv9aIYWUUIZLugjDRmORSJqeiYYbhE6kiCROxrGm3ckkZuwFIYhwlbLy46Hoqoln+93N8mZ90JOTkWFhxvP2abAQBt1NqbQjcWMTYdhlqcH962dMdhv71pI40IJQsUQeAtUFJfHgDr0nS4tMJtpexN1rp9Hj8Cae73s7mRGNUFNSvL+1qPycfPpBwDUC+48qICUO/KX3gqPWlgohBI8++igPPPAAO3fupLi4mM6dOxMZWbONqNVq5ZRTTqnt1zY8hr0CVgnLLyf44KXCH6OQ/1yIHHcVhJUwX19CtswjUcT55Zya40DT4iEaqhIl6tik/jdcUaJqnqGACXXRNaD5kpMKXluo8+S5XUAtMU5RfJG8w1OPJI9C1smtxBJFflw2n95sZbJ7Bm9oM0inOb/o2ezmgDeYVYT/gyw9DU71PP/obznT1JMHortzesR/1+j2vbbAG4bwyGMl3PVaPnA5XUZ8wNIaufaaYchnKAPmelMa6tQvFJopSazTtmDDGpSMd0NXQf+oZhUGN19IBWbfD7caRn/NEwL9j9xAIxnHH3IFTlw4cKKjU0wpNizsZD97ZBrOpq8xe8wrpCqtGON4mvflV0HbGEk4NqzHhSEkmAeICzc420HRBUaCNKFnj4GIJeRSwBK5kk5Ka+bpf/iVc6ORTxFlOGhjbU0uAWtESN4JgEhI97yPlcbAxAMB7alPIt4jRWelnZeHyYKZZfpqwgmjhFIA9Nwk7JOn87QWDr2BNcDmEhhzE7w/1fDgrQYtiw9ht+dxKKopByKTufeMpyotDAX8cgt4jG5mTGyQ2xkuamCkqgeEe4xuUlNxvP4uZHTADqxFg8R9kN2a6jYBjUsOE2vPIzvy+O8TJ1AXELD0Mpznvmd8SnwdqSVA6UlgTkMk5iBGPYT+9psEGFiLGnFgYwf+6b3+X2F0k1LysvYBhziMvuxaw+AG0BeIBH4CSgVE5sOouxDhVSvbA6AWwHJDBdoP20OtnQXMvRf6VYTkHgkNwg3qxZyjDqo+YwgMUvryj+1bJrreBGC0egUAr2nTWb26jY/BzdPmdWdRctHHXGMdgVu6+VL/EfeC3wnkDzLBEwsr5iXFBXfeitLM8I6PFzFejroYIkkkji3s9kZmBIPS63fo9TvSHoF86ufA75z9EPbZDzEf+D2mAMf9H5JhyeZdbSYXm84+oucD/gqaRVWoiuyU+8glH6z5xsavaWyQXBIS/OfeFseAF7p841kd4ojysrxKtxk5eTqUH+IpbvTb70BvYah4F1KEruteUb0/9dW0oSUHOEQb0fKIvFwzyAl5LaIBRBQgkJdVuizokz9FyzfCdrcDhNdWYbPyL1KdAa6KX9BtRqZ1QLTcghMXNqwNJuCUGKkycOyrLJ92FRQ1oWJuqLi/FxZPZMLA+7wGNwMqW/so0P8R+GY8uCIgKhfl+oeg+XYECql04gvrlOMieuB4xh2uKczWfiWXAlaa59FOjUHKaK/xXUqJEAIpH+av8R+AXfK/dTNIdBWBC6YuMRyNREpzoncsD6g/XWbR2nE+AmhPCk7c7NnRBD58vVJOEwz4AdwmWDgK/z4uEffdhAgvQuoC+d39sGq4xyHA/11wq2YGXjefL+f8jwGH1vDCqie4fGkec5t8wUlqjzp7boWFhcSMrT7fEe8eLRYLUVFRJCcn19jgBjB27Fhef73ywz3+IQQoI18DtayqXFCSAF8/BhihBvPcfwTkspT3ibOAyEACYYAOjQWfXFf/k0StvXjMQdzjhSRCDaf5LRM9z8tzXz1+hlVnGaTC45egPzeLtXl55FNEJOE0lvGMUa8jmUbsIY0t7MLlKxsf/T3EfQzWjRD3ESLxVR5uJP+zBjeHdNLGPpSf5BIAUvbo3PWaiyJzOK1vWsLSZv1rTiKeler3sTFHHkJyLNBfdCeGKOwej77KeP9OK8tPqUJCy1RhqNM3nkr+o7PQxy8h85FZTPqjmDwK0XwW4HacNCIO97Z+rHx0Cu3vi8RyTwHvPnQ3+sS56JmBJ9nFlDJI9D26G60jBBM80dCJEpXeBVHx/qzSNzJYOQk1yLBvwYwbN5vVrQwb9RUmBYx+pYNSBh9MRR+/FDn5C0jchRH35Ol78Wlw7aMBdcaJhudPqA5NRSNkdjP0id9hH78Q5/g/yB//A67xi9AfXgyvfuI5VPAhZnVEwpvvQUFTKk/wHbI2Y3F55giPjLoAmhVnUmIO494zJmC3BDnY8FHudOGmOcncbrrqWNxyrREhPEa3xVdBhq84iwmy2/h8roDVWUyvg6vA6QApeaXfbdy48auKEIQT+O9j8fXGxlsXyO9eNDj+FkXC5k7INW8bXcHkClq0zFTEy9qHOPTQ4XfHC6Zp33AIz6bZ7HNgpGM4r1wN/A/EPc+jJO8JrCAIhFIGEWtq1xClYn7LsfzNa+bHalTsefM4DlmXUWxdy2RT9Z5xNUG0iCRaRHo3ajvkvuBrRWCoqT9OXEx0veU51K0YI4Tm8hkzfMZg3QIfTPHmay9akUgcPURHCihmLVt5XL3Dy+OV5U6g2/7FRO/bT6fNe9HHL0V/dCH6XxcgbCWgBGtbxffZC2KJnP0ERZSwWP5Dtp6HQwb3uqv22VAx/hdWceqeL/2Ns6L7QujxI3ifkQ5nv4fSpCIyoAvtjsmhoFKF55Ev1rENkyev/PF2yGtJxW9mxj1tsnf9YcfJL5ohZlSm2znbOYoU5+mc6ryKBVrgZr0mKK7CiFmX4hK1QTKN/T7LeXdBfnP8+nNpdd6lweZNn/JARb8INceK4H+6GaZN8XyLZJhyanW3dEzxVMvzGHLmNWz7rAeKrlF5bfF3k56oepC9gMmJ0n0xytPnojx/GsojF0FzwyivobOaTdzmqJ4C6/8zpJT8pC0mlwK60Z62isEpHIwGTAjBwBdGM/5sC3aTLbAui38ItJSSe74pofV9ZmP/P3kGUWVJpJPpP2/6wuxAnPkxpK7C27+FG675Flk0Fll4AQiJcsnLiAnDCdX30yOTGHTNXFo8Opuz1zooiFd42fVRbR9PnUBIWbtVsNvtZsKECbz22msUFxsDXGRkJGPGjOHJJ58MEEaojIsuuoiFCxeSkJBAly5dAvLPmjWrlrdwbFFYWEhMTAyWzI7Iwk7wxjRAYHWU4FZNaKYgLsvNtqCMMRSj2pPKets8v8tbHDn02L8DnJ0gbAUi6RGEYieJRNZZ5hKjVEd+eezwlOt1Jmnv1ji/dFmQk742jI0ehI14k9wzxnOP61k+07+n1OOlpX/5qCGqYJQEBFiLUSYMozlJ7LQZzpn3OZ/nXf0LNHTDC47QJ8NpliUkKnEhr//bcU3ORL7+vD+kdaJXyRJ+ee8h2t2wiPyIWp5EnT/Fj3PrAnEGX1uPL+P3DG0Of7hXsF5uYw9pFFPqZ4BTELhnPgxrz8XPbd7kpPEDt+OKSacgPwx90iwqTvaMfOqo+2jSfhcZVJBlxBSlkvfspwQ9e1CdiKfP9JLLAnSlPSPVoTxuvjMwfz1jivsjHnZPDkjvSUfW5w7GnXcNKEWIpEcRYesAw/PsZ8s0NujbuNp9v/fZWjDjwk1furKOrYa6KYKztNP56dEJBLr6S0S/7zFfMpkedGQVm4K2sdS6/rjwCqwKUkoiH8jD5a7ZpsILxREQZhtrL+DajV/yRp/RNCrLoXvmBha0OoNwewFvLHiUUcOnghLkewSQqiOufgoiFxMvwjlLOYXplheP+L7qEj9qf3Cx6y707+6HFRfXqMz9f73GTylD2JTUpXoOjcohIW4nMc5iyizhOFWr5xX2P+U0cHxxh5xAECilxqauiQnMAoZgxGBkAroT0ECWn06Xj9k6KHYQArO0oqIae0MJiqj49aX0jNxHcK28S0nPNTzf7HcN/5CSUNdcONF0t+eiBN1mXI0R0FbCRsDlhvIDxPJ8+MSveMNPy/+NR3DCRs3OxiXgAFUDXWBVwr2p+N6/j0NqwLVKtSGDvHq1uCZ86nXIEiPeSVqpUCKUgBtFlejSw/ulC8AKuiS5MIOzDixmerdQhw86qHZjCYAFkzBhl3bKDQ8mYcGtuTC8BcsPoyqPGRKE3ROLFegl4Q+3Ec6kS293tcjwWvcft3ChSRcIUDFhwhK0nB27cY/ePuJ7C8H7jyJMWLDUrC0+7a7qGhKcwmMc1AVGrJjPsyz/7O1EnnTdQmAwlefd9mYVWAlDouGUdsofrIKKRVj8+mVA3wrSl52UGu3x69DlD0/BJmx+YYL4PKfyOitfO9Ixxveat10I0II9l5rA54aDQdhB6KAfibOGC2XS6XSiDWNM1zHKdOkR1FE3KC3MxpHYC7diotmtawLWD9FlBaQU7mdHXGufA0wdEvZD8jbY0c8YZ5pvhqsm0Lwgh7dGFdMiDT4abeXph9YTrjSMAfZ4R7bMo7djJLFE00PpyKeWl2tUTjqdFHY4BXkwAwFoCkxYehpT+87w5rl80WJmf+fvWdY0wYn+wKVkuArh+W8MjujyuUF1wIOXosTk+X9XyanIjBcwDv5VRKNnEdGGh7f+8yj4vbJXnA/UUrCVwakzMZ0+k9Kw9TW6v5qg3FZUUFBAdHRoh4Nav/ljxoxh1qxZvPjiiwwcaLj+L1++nKeeeoqcnBzefvvtKsvHxsZy8cU1W7gfd9jdCxB0ydrMD7OvRxMqHW9chMvsa+WVMOwd76eDZHJY5tLIh0NrqbIApcXTSKkgREUgVwmlDWpwA2ghkmhBMgc4VGU+gUAiEWYnyuMXorlUcCsk2MKIEZF8onXgfOUMZuu/4cBpkIfu7e5XAwCOSFq4W3K1dZj3yjDlVLLIxoSJHyqFwlXG8UBqf6xQZJd888ydXi+Y9cowMmwvkB9WSyOjcCL6/OSXFHMceiFdq44kR+bTjQ58pc1ng9zm5R9TUQ0+qSsn4brseXCYaaw0wiVcaNYSwolBJYa8Q+Unq+A78Fp2nkxEy3war76QjCwbNErDFq8RckOjWaA0GqKMAT+SMOJEFO2VVsfuAdQC8UE83QSCUhxEx39BWdynJBJDrIhic2Yq2rohlCYWsb1PGruVNMyYMXnuvdzoFk4Y7UhhO3sxoXK4CIJzawjknp4oKF6DejAc7wY3gCIHNTC4BVnsNtsEB3r5pbcu2Ed2eCIIQfvcXTy97CWWNOuPyxzOufsX0ytjPWua9gqsfgjQWkFmPQ1F/5Cc/CapomaKcfWBTqItt6hX8MNpCzmwYiT+fcKXoQRAIqRkX3RLNjdqX63BrXFhBr0y1/Fz27NBCEyai9HrpjN83yIuHDktRPkTxrZ/Dco3gFlADwwOTu+GOBjFgQBU0I3NlAsI7gt3PMFi/FW2XBUAq8r7qpmQ5Od14vzpMdB5zogcVTiFNwyC0ZYIwIzhtFLRF4Su0aToEFdu+55Ye26gUd4LxUtt4vb8GUZKvGnVb3EEyJpuwE2geerz/GZH5utW0Rc0qCIA1mdfUVUf8bmmQxUz8tHA5/c7qv6qBBiFDB9D1e87jvw+qjY4HZtnUxPURdRSdYdXtiP/bRSJ1FTi1Gi6icpc3PUL697DuIBxgx4P+t4XhsWwIaybMS7oGigqYS471v1R5OdU7CPZ3Y+Exz/gn2lnYgJ2RLekYP6VDNq7jMFnDeCGAVZ6Nv9viu8dKQ7KTLLIJYtcThF9alxOWCzE7PmHnfYdPOCYxBbrQVwcYorUvfuAtdsCo+gy88zoMgeemxdIPaDZ4MVvkU8OR1gqPJGlvQvlBjfQkI7OCAyjmzJsGvKsj5CvvwuHgnBbauFQEg4/34k7oy0trxrMYsvnpCrNa3yvR4taG90+//xzZs6cyfDhw71p3bt3p0WLFlx11VXVGt0++qhhXPrqBJ2Xwo9juGv1B6xq3I3/DZtcyeAGIODHO5HtbvKOF6+5pzPRfI83xwLNUIryNbgBnCR6Hru21xAKSrUGN8DPA0kiUcxuMEMeTiQ6m+UuRpkvRborJLLpsQD+uMG/ougs0kz76UVnb9Iw0yCGMQhd14lzVv3iH9eKt0eJFfvcSJ+wM00x0fPGhURqhylWasGNJM3IZZcabrpAH7rQ8jjlNRhrMvrHMn01q+RGb7pu0HiioaOooIa7KSOXZjRhD7mYMRFNJD1SNNZ5B+RySFzJm9nx1Af4GggOoUNAXg9sRRCR7/0oUEiTmfT26acNiSTRiI60Ziu7vWkSSRllhmeoAIVYDnx3LdqKoYAgB7joWxetH52KM9yJE0gikSJKUFEpw8Eb5ie53fUkRZQQEVOMxeLC6QyyMOnxK05cZIXgUPm3vJVRVkiMgOwquDWD3k0lgxvA1vg2DN31B5GOIjY06kSrwv24VTO6amZ6hwvJiAryzipAa5/PZf0o06x0NLcOzNtAaKU0J1GLQ4s/QMrjo2n/6/OsyM4h7OTZRLbahfjlFnZmAQNnQWwmctrz/JPUExnMq68Srtv8NXPanUOrvD3sj0wmteQQ7fL3khneCF09sSD+z0AC+6gjA9MJ/JfRvDiD0/cv5qNul2OoZf1bZpMTOIF/KXQL6uFUDiZl0V3p2KBNUTq0BrOJ2e2qEUzyuCe2y93F4pkjSb59Q0CWM/f8hQl4cNAjfNT1Ku9YsmGpxptLSzm/i8qs0Q0vjHa8IIIwRqmXclBm0lvUfq/T1taOeKUJqn4IF5IRztt40fwgnZW2tOyzjr2bW+O7bm7f3MGWqdMqGdx8oFkhrRO0XutNEuF/IfOvxTDNq4jwP/2KCEUiD3WovrGbTieLp3nUPYXPLIFRQ8cKtXZFsFqtpKamBqS3atUKi+X4ImevayiJB+Gc1/m082W82WsUeWEhFCAz2sNhIxa6hDJ+1P6gUK8IkdzIzqDFYmlYLzeoG8+xYsrYLvcAcLd6HU7PmaNyznsw9D0wFeONzy5shPbwYhbs9OfKG/t1Cbb7Cikb/7vBv/FN3XCN/JvQNlGl8i5FU0wUmxtTwd1Q/qeD1FFcdgJ5kwQsvNH7aRWbjnujSA/hP/EbgSgVZ8LlYgn7SMeMiYNkkEs+G8JXwD3XQvw+g2w58jDcPBb33+cTONwp0GwrJO7BOLN2g+KEluvgwUsRSsVzdOCkgCIvx0FDI0HE+BncypFDgfff++Uh8lcMwXeSk5qZvYsHA0a4bnORRAllFFLMbvazSP+b89UzyCSHXWIP7R+6D7XZVrzPx1IMw95COcs4PAmtVHa89zADQgi2PR7FoNYCk2JEwMXawKRCjA0eHxZqTgu8v1JzBJ93vZQb139O+9zddLl+IbrnlO/BMyZwKDIpsBpdAofx+jwoeZSp2VxtuqCubrFO0EfpSgbZKBHFDLrkd2679S9yOs/ncNh+rCPfJGL0I8R2XYvSfAfirrvYH9McBRlkLPJHemQSOgqnpK0gpSidbFs8h62xpObvrbbsCfzL4BclUkPXnf8kjvz+hOamdbZn/fiveT9q91sfDotnU3wH8sMSyLfFhrjPI+0/9X2tKtR3ubrCf/35HgvU9/3V9ppEjz5ME5GAVTTsPl5YrUTuWE5zZ3XqtkYo8mPLp2BXbUHHiU0J7dCBj7pcCUIQaS/wyzdvo5uCsuOpn1SPHJnPIu1vduj7jpj7MBTaKim8ZX6KOZa3GW264ojq+NDyHPeZRnGQLFbLTfykLUFKiaXrMsIvewnC8gkzweW9TIy+chtkBDOQeQO1kTMmIh0V3sgibB2i2W2I+A8QTccgIv4MLB6RF5hWOVjdbUEfv5RvJt7BXntthUyOHLX2dLvrrruYOHEiH330EVarwWnjcDh49tlnueuuu6os++OPPzJr1izi4+O56aab6NSpk/daXl4el1xyCQsXLqxtk+oXLbbwZ7M7UaqQxQbAXOHIvImd/CM3MJSTkVKyh0ClP4BOSsN7NxyJYlBluHHzu/4Xh/TD3K5ezRTtY/I8xgDlrE/QS2Nguc8LLVXe/bgvjz5/mIMHYjnrjVKKXeC3sV15AXLwF4jG+4wiWiTk3cy1spQ7EiycHP7fE1NYWLIelCaglw84gWGTj/05mTvWTWdqz5vYHt8WpMZ3HUYEVqb4BzHE18HvfCwxRr2W57S3DQ/JECjFTgRhlFCGCZV9pAOgJO2n+YP3kUaGN6++9PLglUTloYy5pdr2OHHRQbQ+bjwrm4rgno6lVBZ6qRz+B5qt0KPeLUnyEdTIJo/PtO9ZYJnOFrmLH/Q/yIjIRo65OeTpTFEIImjxLzG6AUTZFBbcHTrcunms4PYvHZ6eWDWvysHoprzR79bAC0KELtf0Hii4GaSKiJ/G2WpNFInrF/1EN2KIYh8HWaKvZIblZbbqu5gn/2ALu1AQXoVlEZ+BfvEryDn3VlGjsQD6ovMlmNx2OofFkBMWS4Hnr0fudp748yWeHnh/cB68E/gXovLmxvezz7sRKaA4yMHRcYsQ9+G9FqztNdzoWfDEMBp13Ln2Yx5dMZUJA+7lnZ43gKjq3aiGA6peICv9f/Wwm8NY3bS38UGpyi+gErdY0GtVlfNFsPG5qv5am7ZUlb+q30gav78r2FeHasux+r2P5Fkci2tV3Z9PeRueWNLjaRyp6b1X0R/88ojg16TO+dvmowqY0/48EIJzts9nW3x79iR49pjCJ7/qgiufhPBCHjD9ryY3csyhNk1i0ZRG9HqhmMzQ2hiAYHabYXzbbjiK1NE1CWrFmLixcRcmnvo/FHRszjKu2DKHz7teSpmpwojT6OFCejVX+OPuSMIsDT1eVo/ftRVc674fMKhh9oo/iFeOr/3cFeq5THS/SQaHeUP7lDPFQJbIlbj6uLmsr53PrIZn2XM5mQQfA332uqXxyDn3Ii5/ruKqbRPYgnNJA3DXLfDaB1AW71N/ADEmALIokfbjJXhsFFFW+OG2cAa0OjaRFrW2VKxZs4YFCxbQvHlzevQwSPHWrVuH0+lk6NChfnxtvqIIn3/+Oddffz3nnHMO27Zt4/XXX+eDDz7gmmuuAcDpdLJo0aKjvZ9jDtF6PTRKQ89tSchBtM88RFym96MFM3e5nuY2eRXnK2eENCS0OQ68aNrQkl6iM2vk5irzXctI/mYd29kb9LpE8o9czwh1KD1FR/6Qf1eEpBYHEQFwW+haNoLSV+fjDvFYZWkCFHYH3MiSwVB6Ct/g4vsiF9vaRZFsPv45pGoKTZfc+WoK6KHvafju3xi79iN2RrfghQFjGbvqfW5dP52s8ASWtTilIqMArvJX7Yk/zrnwopUoRipDma8v8W7mg6EL7TjAIQ5xmDCsOHAigTAqCZxc9jxM+grcPtwallLiLn0DJzZKDyUjP3sKcpobBhJbCZz5IcrJs73Zjyep8cYynh6iI+vk1oBrUYRTRClCgPmSV3B+Ow7vJBN3EDHoS2/e5no7Uoq6kCZ2okb+wQ6xj2fcb3GZOpwVuzWyvrwTihKhyW64/hGUGEOIYiC92MA2iikN2j7zEREFH5+4aaCNmwYaNAKtnyogLb+6EuXep8He3UqD27mvo4TthbD/Y++s46So/z/+/MxsXXdzHF1HN9IKCIKgYoLdhWKD3WICttiJih2ISId0h3QfXHdtzef3x+zt7d7uHgcKHPy+Lx6rtzOf+cxnZmc+n3e+3tXvZzdRP6qWeiJeiaGv0pUN2jYWylV87PieFwz3s8m+k/1koCHRdneAbx+GojidVTo8H0a+Cn9fDHu6VXcm7CBNgARFwWEK5rdGZyNcCnaYvQwBjNvwGRWGEF7uUbNwSW3393+oP/B41oOK4cFL9FSRD6cS0NgQBVzk2iUkSvhP/JzcjHPVvidlxMeD3pWXs6rwCEz6Dl+eOg3id0N2c3ycZl1+RblkUsB+pRTIAzPAFg8f6sUHEipyMSB5ZvlrPLzqLbqOmUl2aLyfWykhdSNkNaNFZBhfXh1MhwYnf07+yfkXl2dMRvviKchPhahMuOJxlOQ9Oi/wng5o097yPfAozi1DUDnXPvUesSKap413e+3Ll0XcbnuCBXIF5VQyMa83u5y7Kak8Ql5MHGZhYWnwYVQE5VSivT8Zdnf3OUfQ2KewtvvLa5sJIxqSH4xvUimtfOj4nj9+6gBrh6PaQwgyCa7samTK6CAUJfA1XGK7iw2aXrRom3kWFuEtr2TKXBpZB6BlvAmVLi5kUYFodCFC8b/mDhF9+MX8rt99/xaX2Mbxqza/Tm2lU0XOeAh160CUkBK48EXsH72MD43HoGkogz5FILBgYpjSn48ML3Cv8wV+ds4hj0Kv5k8axjHB4Meh5cKv9vlc4hyHzL8OWXC9a6uCSL4dEbSBR9TbTlkRrLutz/Ke/NprWxWXridVj/boX94yqidC8yBhB+zugV9KlEbr4KqHefy5bG6bZ2d+am9+bjGcpvl7+GzOA+7SJQLY19xIjzXe52lCKn2Vrv/qOv9LxIapHHw2gms+L2X6mqqggRrRSij81OxcDJrG+XtmMyttAFYlqHr+kJI3u94MI18g+LNbeWjVWyxP7sqWhDbu/QDrDmmMnFbKX3ee+myzo2GZXIsZEwoKduxcab+fmeb3/5O+cxwa3xfbiTcoXBhmOO4gg1ARzGTDw7zl/IJ/5G5ucT6OE414YuihdHC32xe+AXqU1CjQpaeNeqG07jzmCgpEZcMT1cEn2iNzdY64OqDECv2mlvPC+WbuO6duxxwLjnkVjoyMZPTo0V7bUlNTj3rcyy+/zGuvvcZdd90FwLfffsv1119PZWUlN9xww7EO45RBCDjrwZdZ+fp4bIeb+W+UUq0ICyCcUMzSzHOb1vHJhvZokTdA32/1BcmFICyk4if96CQjScQRQSgGDDhcaaE1EUIQFxmGEKSZ2adluMnudVuygopCe1ryifMHRqrn0F1pzwbnNgoo0qfMwR/ApoFUv1gSEbWH7s+2Y04gZ1BYDhhuRua007+LSkDVCVcl7LRpZ5TRrahC4qzF4AZw1uHVSGBjnF4h8JP0S9GALbE1KwZKSNJTEZOIpYVo4lPGvD7iHKU3K7VNXhFrNbGZne4S9BVUk21WelAcq6iI0CLUZ4fRiAYMU/rxsfYDNqwk0ZAWxRfw09Q7cCvxEig3wy8PoFWEo5zzGQNED3p6LBanGgbFQJ4s9LvPgoUSlzHM2e0XlG4/19hvohInUhr5/uAlZNmDAYGo7ERi3AfM0f6mMiON7HdfwK3NZaTDi98T/vildAxqyCgxiIPaEcoo9+t6MAUiDT/N8cJIC1d9VkGtHvOwXMSE0chHZ4GsIUC3Woxy7URa0Mivw8KCmR5q/XnOPHGO0otoIlmmrWWq8zNuN4yltWjCfpmBtq8tvP8W7vuiAcUJ8MWLcNUElJv1qDfpVJEfvgJ7uuN1D40W93M0s/E53Lb+U0I0Gzdu/pLJXW7E4VklvM1CaLQeZt5Nrb/D/3BKIUJzsDx6GVaPuVjbV/VsB4gIi6K67N8RgbZgAPcZSpimFJOeaGD82RaiQ+rXOj/U2Z9Vky7HrxG4549YLniDyqd+hopI730H27r/VFGwYMaGHXuV3CWDwJGkd9se2AhvdrqeGzZ+hRGNIKeVzZ+fw9hvg5g7tNrYJyXI53+Egx0B2JEt6fZKGf88EkrTuJMXNerYdxBlytdofIFb1stpDK9/htZmHjRfC11mQnAOlMcdQ8+S84fu4G3TU373RosIphof5Szb5UQSzt0zPkOR0vWE7SY3xMKYawZzWGZTTiZc8BK8OgPvZ9KO3SEIl2GUiTK3o9yGnT6iCx86Z/CNaSrPv9cSduqKuhMotcK7S+1syXQyd1xgBd6GnQOuyPwyKrDUcBLmaYWEEUKRtUX1vZOhYE8Esy+tBECEOHEGg1j8U+kIdCVXRXXrAXLqh5DdXCdMsAXDR6/ib54W+zoRzDeoqFgw01m0waKYOVvryRKxGkUq2FxO1BgisUv/+kgVNmh6oIC0NXdtcb2PtuaEBe0iJUB2wMlAb7Uz7zlqGt1MmDDixIkTjWAslJ7zBbY/b8Lv/FgZArvPCnAGAfs6wzO/Ej7vKX5vXMqNQyeDELTP/ccnRyZ5vwMzRqweZWqaizQi62GBtU+vCuXTq/S/P3DM4GPHd6xjK451g+CbJ5AGE3YpGb9mGqP/+YXtsS2Y1GMcThcnrMFZiOPvC8gd9ht7NzvJDvWYazz0pM1HjpK9Vk+wWztIG5qynwxiiWKT3I5V2v51WnCpU9JzTykH7bokdl+MiRcSj7/K6yj1HD5wfks0keyQe2lOI0IIopfayd1mj3YQ5cKf4MLX3Nu0eVfB7FuoflolDK27M6Eqps0dS6wpHC0x0d/8NPFXK7tyHbxz2X/L+XfMRrfjLYSwc+dOzj+/mqfm0ksvJS4ujpEjR2K327nwwguPq9+TDSNGcinAdriWVNBVo8AVIaOg4MDJ7ncmYD3QxuW7aQILrkMbdx1Kyk4AKqgkSZx6Q4gQglgRXWskdBkVxCvRpMlkt6AIVfEHGhoapZQTI52s1jYxWO3Du86vUVFwoKHEH0R74jxiFtxC3sqzUcrCmDf1ft7sdAO0lr5ezg4zCRn9CWUHv63eJnULtABSDIJOljMrBSkqWBAXCjm1hFZ/3XIUVmHg69YXAFAUFMkbXW7y4yUWsKU/at/vOEIuR2Qur4r6z5GXKGJ9DG4KAs3j4fRNp9SR40HwH4yFUspw4mQPB5mvrSCGCMyYMGOi4T8BFCaANcNRzvmCXApI4FgUgxOPHkoH8rQCL2OjgqCcCowYsOPAgIqK4mWErMRGCEE0sg9kk726Ypiz9Bwcce9SQhm/r9INcV7QDBQeaMi6FluZYXqd96zTMWHCis1rkQPd0XAm4rLOZjqkOjl79mxyM6PhYDt8np2OsxGqE54bgvzjelg7BELKYOi7KG1WArCT/X77V1BOOZFxINxmGMME+8t64RwEl9nGE0UYjUghc/Voyv0awASsuADSlyBtZuSzP4OtduVwU0JbOl/5J9dvno4Mz8MyYQhlGy/HkN0CrcvPyOZrANCaroZvH4KChkSJiOrnT0BVjSINPejumPYJnWrPcxoVrn2yxj7p6kNobmZNfZ/U29Z1n6w6vwRNuARH11ik61xCevxd2z7XBUlXPwTYV1g9bZwQGCw2wgj2MrrR4S+Yex0B00kqDgFRMDcY9gggmh1EswPJr1vsTJprZ8V9IXRKrT+RtHtWdsP/+uFAuWAyEiO0n1fDmw9q15nuZ8+JRplrLVNQdK5MUQ6W1VDZFXpAdOvDaDv202zgndy09UNii228c5eJzJoRbNYQKPGVJWestzNh8MmRk6zf/EzlVXdyqOUFcE7NcwrYeo7++f12cJj9deEXccEw7+5QWiYMqLVdvIihkCLKqPCKJAKdG9aIgW604xCZKHFH0B4fAi99A5VVxiUjjm+eoGjufqLvu40CUeQ+fq88xAF5mH6VY1i76w2/5/97T+1aXqhHNcsyKoipUY28QBTp1A2h86DkfECC8QCYDvj0FUwQKgotRKNaz/lvEIv/SBMJboOkgsApJWTXDEYQ6DmyRq8jRfdfEAjsOGgvWhIn9AyYC9XBPO94h1CC2YvO61VMKTvkvlrHuFnqXIciZAGyrL8+OmGFoBWUUIZRnDpHYKpIwoTRrSsBlLqoOcIJRUXjLvVq3hr4JTmtF6AuvpJrTSOQmsCgCKI7rWLS250Cde8BIx+0HUu4o8y9SC1q0JMFyT1oWbiHhPIcFGBunziseC8Ab5me/I+u9sThRsMlHJKZ7HdmkNvpL7SGm+GrCZDRhY9bXcTwfQu5feNnvNXxGgqDY0AIHM5kOJwMh9txbreraR43m5zcYT59m9ovRMrz6w2FjD9Md/6GWRiJEhFka/kIBJEinO+csxhr8EMrdAxYX+l0G9wAphfZ/5XRTREKcUSzjT0YMZJFDpcoQ+mmtHO3sfupTa6c/Tlam8Ww6FIILYT+070ClHzaoyBd/0Cfj8IJxYyJHPKhIMltLzhWfLjMSccUK7f0qfsadTScNMklPDycrKwsGjdu7N42cOBAfvvtN0aMGMGhQ4dO1lD+Feyuin3moEqsFcH4pklIaFhdddGJhqMkHOuBmpVABLzxsb5cNVuJ4Yb7Sa4HRjeA1kpTvtNmBdwvEMTLaDqKNpTgaxUSwHb2YpQGZjkX8ajxDt1rR/WLowSVUnbWdFh4EZ2z13MwIpUfWp7nP61gwzDKNg+B6wuhqtiE4RCxMd/yiHiMiyOMhKn1d6I8Hggh2PFYGGkfLaF4R3Pd611DUdkS15otsa28QqndWpbPM7kFJ04SiaWQEpJPg0i3YHwnfK2GAA368yiRGFGxu4otVBmZggnShdfSCLQXvwF7KBtdPZGyHTJas87v2V33MGUbBlQ2yx10U9v5bXkqUVFDcNKQbuWtCmoNhVBFoYwKNquLCRIalVJPB7eYD3CTehkvOt/H0Hgp/D0Yby4ViYjfT7SIJEKEsdHyG4mVZ7lTej0RSf3zmP5XaBUXTMzFH+CUeRQUmuGzFyCzCZisMOBzlAHTARCKRAz/EIZ/CID2zQS0z17z7dBYCfdfihKR76N81TdMMj5AM9GIOx1PcUTm8JbhST4xvMQnzSu5ebX+LDYq2MevP17DS91v5/tmw7j189Ws+WsSCxv28T+/K+WgOFzKty6S5EcF88q4VMSFMxCKhjj7C48yKq7DUvbCPbfyqmEidxjGntgLPwORMLGIAv8+i/8E8R3WUlpDqDbGH8J+xw3w1ZNQkIyPCHokBRZshT2BK6fd92MF8+6qP2lAG1Y297NVgpBITcGu2BEXvIoMzYW/LwVFg0HTkL1+dbcOIwQVBSv2am5EASQ9AKXnAlDQ+E9EJxsmjLx+oQE57U140yMdrP/nKMPeA1M5KFbQzHjKAmraFqC6GvwfW22Mmub9ADx1npn7zzHT4YViduVWX8sTl5TySO8Gtd4Hu1O6j1v/ydOkAB1ztrjkEs/kNg84Qvz0VBMaQSbJFZ0tvHVpEGotaZtVEEKQRgqFFIMfB8dSuRbAbQgRQkFW+kZzydw08rOjEAnVRrcMsjBi4ABHICILCpOpKW9Fh9ecrbwRLKplm3JZ7nNb8l1R7CLuJQhaC1oIhM5BCN9oryrHYwulUa3n/DeIFbWnd1UZ3uQRT4Obx+990Uuwboge3WkphZGTof1CNyPsNrmHldoGruFCFBQyPpxAwc5qzm96f0P+qNW1jmG1S7ITYbNBzQVbMwhejjDpHNrRnDreqzZKMy+DWxVMGCmjnA6iFbcbxjJLW4wlMYuoS2fwjrmaZuKOsmVAO7znS/8p+mO3/ciBsAasTNbnhrzgGC4Z+T5GpxW7wWV8EECV373BFsx33EkDceozreqCJ43j+Nk5h1wKUWKOwLi70T55ls/kVfzdoBePLZ+sG9w8MP2XG1E0eLjvQ+xkKPr8XL1fpM/DMPJtftNCOV89++ReUB2xS9vPIucqlmpryaWABaYvGGC7kiYylRXaBsby74xuTU0KFgE2163p/B8EstxsvIyvbb+joqLh5Hnj/e59uVoBuQGydZTEfXDpS0ftX0XBiYYB1avQnr00jMIXPgFn1fpSF85E/xj3XSXjvtPX5FcvNDOu/79LOT1mo1teXh6PP/448+fPJzs7G03z9ujk5/uvONK9e3f++OMPevb0Jonu378/v/76KyNGjDjWoZwyFFJC3F13kfXmC1Dm+XJLaLYKMXKKV/sSYz61kgXu6kHwvh4Etf7v84ePBz1Fx1r3SyQOqdFSaew3IE4CIQSzmZ3kO4u4Sb2MXkpHZtQw5FmNJYCkyBSGyWlDUwI9jgKcBvjTCqNXgHAgoj5kuLknd5j+Owt0fUOIWWHQDT/wkzYHbX8b+OA1sFdFEFWFLtQIx6hJXCycMGQaStpmBIJMcjGgnhZGkRCXYCo1gfz4JdjZE/26Nej3Fcp5esixbnAzVKflAFp+IrwxjdIqIs2wXLB7KmoqZPhT7Dye6LQNiMuewYaD5qTVO6GkLkZ6Ow6v+wLVArJQS/ggrZg38xwsF4spj/oAlTH0pQsL2/0FfVrAkksAA6g2GP0cIjKbaKrvW2UAvr0QcfwestMB/ZSufOj8DiWyBO66Ca0sXCdunXU72qw76FC8hB9+uI3Qcqi0wNiP2rJkXYCKpPYg+PZxuGk851J/uauqkOLx3O2WukJ7bQ8LM/fm8NPyYH74+XrsBhOft72My7Z8T4S9nBXJXXhyyUs82fehGr1JvVCMpxihOOCW21Ea+K/yre3sBB+/DJq+Xt4D3ONRtfd/OPWIDoZLh2QzVVYXWjmbnsxjOUrqdnjoCrTFl8Lvd9c4UsDOdGoLtd+dV7tB42QjXysFn8heAdKIfOF75P1XoJgrEYM/hcGf+u3DX0Ea6YxA5t0CzlhExLcIRXck2bAjd3WBvd28D1h4FdrCqzx7qP6/Yuf1+Ee4UvucJCWObW//yIX/9AXVO/rniZlWnphZMwRS8NSMUJ6aUUSnBgoL7w7FYhSUVmr0mlzC9ix8UGIKgXJIz9/Jc4uf5/Gz7sdpcPE4HmtKuOoka1IoFuXY5ONOShu+1H7x2e5ZcTuUYPIpAoMNf0WHQOr8rjXQgVYUUsKOO2/S5/3ipOqdEVkk3vEyTvkeaoBCFyEeDsWaTjKAHE3Xo4TQIGx24Iv0QHdx4mgJUpQEfLwe/vCpByWFx+8smq1DdJ/p01xFwf7breQsuYz3UXnfPY/XkM2WXsaclRewZpyDLg396wmHqa5AKILXQvBar/1RpzB1Uo9mU3z4vKsMcc1EIxZpq1gpdcPhzYpeaK5QFhOEhW/UH+GWDfDhq9WGauGEyMNQ0NCrz4t2zuSFHuO8B6Ao2JUAMtmhtqRsvgy6+d9dHzHP9Bkptr7V73JsBgjBrugmPNxnIjjt7rmtTc42emesZkK/R9gd489BAnLL2RyclM4j457l/Nj6aXT7zjmLT7QfkEguFIPpITqQRrIre2c5Usp/FaWXZFT4Iy2EN/NtJBgET8T/e3tEN9GOXPNKJjs+plJaCRPVTpZtcjf7yPhX/VfxxGV7ZDYBlH17DziPI9vG6dT16AAFfO770cp9P1qJsMCCu0NJTzp2w+QxG92uuuoqdu3axQ033EBCQkKdf+R77rmHv//2U9oVGDBgAL/++iufffbZsQ7nlCEn6h+Uxy5wf6+KtvEHYSlHxu+B7KYB+4urbBhw38lGG9GUICy1EtgfUXLoJToG5H4zotJDdGCL3MnVjgd5TrmHWdpiL+FSBJcgz/mAnXNv5HBIImhOUGvha8k3oCQ87f4aUQ/5B/5r9BFdWMBKCtO2wjNDATBURGJ76UuoqOm588xmF9D+L5QxT7r3GjFgw04MkSi1VgWrH6gSTOXsG2BnL6qFOAUWXYXWbA1Ki1UA7lRKt7fjjQ+gIgo34bqfdBu/GDEVpc8Mr00RhHGOGohL49QhVSQRRTgFFLu3Sc0MJcMBBcJm+pAu10wD7RccwtnBBm61r2WFpvKy8wO3kU4Z8RaMeMtrLjBg4E5VV+yklD4GvSpEnQZG3X+DHqIDi8RqdlalvLz3OhSlAKBoTn7/4k43S09QJTx1t51zLqmlw0pdQOhhqJ98bp5oJZrSWbRho9zBLPsyDnxZyk+bnEgZTqvGBQSbsvm64dUAmDUrFkclb8x9hBF75/JWp2vICXFx6/hUdHXNW5oR3v4A+dwAFOG9rkq7yUXEr3gcWwsXwv9wSpBfDiy5lPDeMyimlGAsdFBaM09b7m4jzvoeuXwk5DUO3JG/vqM3A33+2wEfJ3JLNQ5n1SLcl8TDZ5PgpvF17jOYIFrTlFXZV0G5vu7J8u6QdgnC4DIsVPo7p593qepvzUTWk9NJA/rv/51mhRlo7Y8i/kuNqPI8CkLiqFo51h3SCH+g2G/blKIMMiJ1fuerznuThV9fQJBm56bN0+nOdwxbHIRj0Vj487bqsTVZDVlpUBZofZZcMnYJFuWC2sfqB+erZ7NMrsNfpFsz0sghH5tr/RJGG3LEVPitBk9kn+mIiByf41ezmbNFL16KeoC7Hx5HBtm0EU3pLtrzvTabLZSwTe4hXfhX8o9mdNsvD9f5OgWCVJJowInjLGsq66if2AMo6rYgH9kDIGT7AAqXjKXqee1z4G8u3/4Tdw6uGeUikHYL/aeWUfJKuI/eWS4rvIypNRFNBAkeldpPNoQQ9BFdWChXeW2/hgtxKk6eN97H784F7u0yP4kGHx4gOzsYsIPxZ+j0B+LpoYQrQSgoFFGKNvM2WHSlV583nDuZpLLAPMj+MMA26Hgv7ZQgSolgkOjFbLkUAHHuh8jlw8ERiV01cPm2n/m6zWgQglB7GUtSenAkON5FeKn5qYguoCiBbe8+wKFHMk+pg32qQ3fM3G24xr3NKm0873yXOKKIE9G0U1oihGCQ0ptZ2iJ2sp+98hBNxNH59WtD7xADvUP+uwRIozBixEi4CCVceK9Za+VWnHWy5NeOoUpfvtP+9KIaUq3htfTsQOfJ9LVdffPrTVx93ltYTbUHDRRVQu/XSil8+dijZ4/57i5evJglS5a4K5fWFf3796d///4B9w8cOJCBAwce63BOCQTVvBuKy3sRyOBWheirXiT/1XcAFRoCWeDODAspolVL34X9VCFRxHnzsNRAJOFs0XbS29CZy5TzmKH94RU6LRBYsRFNJG1EMw7LLDqpbQh2WNxGtyqvjzL4Exj8CY9ghnkf1iBQ9ISEEVO9tpzKcPGThVSR5JUeGEk4hUGFKE8MJwgzFVjRVg6HHx72OMp1/zJaevVVZZCq75VLq+BOLz2Ujvcz4fr7YGtoUS3EeIYXUxHu3RbwUUSM5eDBaYapHNHtN59xpIgEWolaOBxPEcII8TK4AcgjL0FlZ/1LyRDMKXdiFzbPmAe0SgvqvOuwZLZlYa8gLukYTFPRkFVsclH6eguvnsZ3E0a6KLoXeqa2KGAl5pijpKOc7mghGhNOKLFEkkshFKS49wU7KjB7PIsCaJezHTVyD85Cf8+R1NNtgHYBlLT6hDSRTFPRkDxZxNa3HmBzhn6tLXJ3cNcf77Mi8iwyQnWhdU5af+LK8xm5+y9Gnz+NnNDahFmPd1UzgsOEMNoJI5RCuxUWjIHdXfCt3HZmUQucKdh/IJqr+o5CColTanQV6XSkNev5BwChOhEPXIk2bYp3ddtaoWFXK1h4OJf+yadOia7CgYI6GHyzvN/52hy0AJGE0ViksNnWlgr3s66APQVcRjfReinSku/BQVYTftZLFBJKs/n691u5e+Az/lO9XUguOkTPw6v5oZVnylKA9lLSI2MVceV5bqPbvsg00m6tJm4Qjw5HqIXQ+zuwWWBXJzA4oeNfejGFNz6ETG95RQ0q4+xHn+eeoMAVK2tDFyWdPfKgz3YjRhJFLC1EI9ZpW9zcWkqf76DPd377qmkwMqCyTK7lLfE4UURQSjmHZTZJShxRRGDBxCptE+mK//k8UcTRU3TAiUal9CVX3Otn3P6gotCFtowyDMKonDjOshQl0YdPt+r8TjRXJU47xhFvY//2Ebyelfg9BCVkUInvs198sJHrL0HHrE388NvNOBQDT/W6j5xQXyOizQmLKjbTP9ib6uOwzK51/PkUkSROLSdvskjwsTpqQqOd0pJ4EaNHXALSGszjL/TCiwPPboCVo5GlsZRc/TDj1WvYJHfyd78fKFt8KXo1cB3LG3QmODYLcqkbFDsPdKk9dbw+Il1pwQrnBoooRRhtiGdHEEowHd5uSIe1jfjaNb+tTOzIuAFPk1SeTe8Dy1iaFrgYhShM4nXHx7xkfPDkXQjwpP0N3nd+SwmlaGhEEk5XpR29FV2Wf8vxJa1pSqyIYqDak/sNevHJ3kon9ssMkojjdednTFEeOanjris8DYhVyJB+QqSPAykiwW1wCyGIVjTl8MjPyXhjEv65Vg1gKgFbKDXXtL6HVzNx5es82fvBWtdHgHI7ODVZJ7qDGmc/NrRq1YqKihNIBFJPoS8qLt4C1zYFtc6W2qK4rRifGoZj9VCk8UKISoODCuCEDjPoZGxxYgZ+HBBCkEgsh/G/kAVh5oDLE2fC4MMZBRIFhT3yAHEihjRS+M75J2mkUIGVSqw+yroTJyFnf0tF+3moK0chy8JoqCYyUPTg85CPsPX8HiW8wOuYQOSuZxK6qG2xOmxugaeEMiIIo4VoxGq5ydUqgACfPtf9ZyxRmDHRSDSgiTg9FthQgjlLdGJPryUc3tUNHwNaR9+0CwMqRgyUpW2E/Z282idf/zyHM4OhMgy6/4IIz0du7o1pdy9sqeuh9UKk4qihruhCYiCP9alETA3jqdRMOul2FazpSC0Mg1rkjkjTSsPhuZ9xShNlwJU7HHyyvIx2N0rs2AMa0aoQQZjbwL7IucKv9xogLkC1szMFTZWGrJHV3J20nwNrdAW11BTKvpAkGpUdce8uiAblgavR5l6PnFeDSL7NApS0LYBuzKvvUIRCf6UH67VtaBn6e3H51u95fcET7qtKKcnh/Y5XcTg8hbe63Mj4tR+wMqlz3U8ScQRhtKEBTqsJnv4JnGd2yvKZhlv7mBlgmuj+vsC5kvXOf3zaiWsfQj4+r+bWAL0qaLu6M/glybhLN/PqWW0DtDs5SE9SMKgOHM5aROmu1dxtKgohBFHsMvQYUDFgoCkN2cleQgnBgpnmSmMahK1hZ8E5+oGGDDBvc/cjDA54fCRyc2/Y2R1Wja7TeAcc/BsDEF+SCZoWMI2mR+Z6EstyQBw9Ij7MWkyLgj382vTcAC3sSFOxXn3x6V/caeGAniK7aCzcOwZ2dyR8y3Da0YbKpn8T03YDoWoQXZV2AfqtHUnE0V20p2akmw07oSKYDC3rqOsdgGZX9eAIk4ai6qudw+We6mAbSQyRRBFOKRV865xFOKE0EAnskr4RdlVw4mS53AD4Ty121GFcVQglmPsM19e5/fEgQoT65dMF4eLSdaCiYuw8D5quRiy/AEdFCFqbxYjma4gUceRRgBOn7vhzCrArhLZfQumc6wHBhTtnIgCj5mDzZ4O4r++jfNHuMu/TRR8k33QEnd+sGju1fbWOvzVNvXj0TgV605nvmOWVHVAki90GiSNaDq1owt7DMVQEqP4udvagu2jPWXThd20BFaFZ8PRgWDcI1pwH+zsDKuW5yXUfmGKnsfnUVXY9XrQRTWklmrJWbnHf0zIqWH3RIbpOT6/mklRU7KqBO9Z9QuPSQwxt0B3UAPN1yyX8VvY348z5JBoiMBpPbOEZKSVWq4PdzkNoqhMHTgR6Fft19m10ke1QTbBErqGcCrbJAl5XHnMff5F6Lq87PqeUMuY7l3PYkF1vuOGPhnx5fJQg0lV1SriqQtmlg550ZDt7MGFCRSUhJZ+gJ2+kYPnZ5M0ai488YQuDey6Hd9+GimpdZWFKD+7Y+Dnr49L5qWXtlGfhsbmoyrEH/hxzjtnbb7/NI488wsKFC8nLy6O4uNjrc6aiJgmmE003FPkhe/cHicRpLkP0/h7R8jtd2ElzQpqKsGyj8b8MC/2vodTyaJRQxl6pF75oqTRxk9dXQQLlVFJMGcvlOjJkFqulXsW02FV4oaax0o6DCqxEx5Zyx4hSJl5ezLYxg3n+colxyOc+BjeAWOXMN7qVamWMFOe4BR4nTkooZbXcXC0CNVmPD5cbEhZdi/bOW0gJhRSTQRZL5Zpa04brE8JECH/LdWSmfw/X3QMRB/XotKRtcM8YlBjfEHoHTiqxIm4ZB72/hOB8iN0Ht95KZouZxPb7i4ZD/kCJzEMoEqX9Emw2Fb57Ap6ZB48tQnvyD7QKPQJOItktD9BZCUzsfaoQQxQpeEQOCRsY96GTrzjAkIlNKfBK/1ZXXuTlFQWYs91BpCMWOw4kEhU1oMqrIXnI/jJ2aWej3B4wXiNOnNlGt1iiSCCGBq77Ly5+EYa+ia6dSc66ciZfNz+fI0Gx/NymO523hKGpIIZ8CNfeB5GHICQXBr2HuOpRd7/BgXhX6hluNFzCLYbLICIbkDyy4nWvZ6ZD3k7eDVkESCoNFtpfM5e4srq43jVouRjxYLWyVbKpx/8MbqcZOjUQ9G/mrbCkikQiCMWIkSAsGDEgNQU59QOOPUVY8O4fYWTKuoZznBiYDYJeE59CT1uQ3h9jOYyahDL0fXf7pqIhR8zVNCsOnEQQyhrLjxRb1nObOoYr1BE8YbyTIbHbCE18DBH3PKLBDQjFe92uWr/EBVP1ub8WmByVGCuLWZ3Qjt9T+/NNm4sItpUTWllEctFBwsrzXalX+u+wJyyFbdHN3N9rQ4k5DKtqodIQiF/XCI8vQj73o7fBrQq5aQTnN8XUfDPPXyxoftEMjrT7hvnib94zPu3bvo4wCAOHZLWMUDU/qSjs0Q7SU+noKrTgH9JmRnvqV3hsITy1EB5ZjPbZc9X7kdiwk0shwQRTiZU8CtnMdjbK7fzqnMcr9g/41VnToOydXloqy332b5Lb63SNTjRuNlxep7b/BmZhQviRCpwu46NE6lF72HBG5JBw7i+EXPAehhZrMQsjmeQg0dCQaF8/DI8shicXUvraR+iVTSWLGuh833o+gmTy4meYlvs5yeGApQQ6/4b53utYpq33GccWzT//ZxX8GTZPNnqoHXzoOFazxf33z9octrGHyridEMDoKuP3sl7+w0rnBjJdoWyK0YHSfRbkNuZ4or4NiYdQ6mBcr2+4Uh3FbnnAK+NJIikobcbL3W/V00hd89flO3/j3P0LOGyJ9pNaqh8JErllILue/ISmExVCHiilxdPF2J0nhr7ivh/KMd9TTPiEcr55ZCL5j/1IQnELpKZw6OXJ3PvQeYRPKCfk3jL+ntWJ/RwmjBCaKtWp3hZhZojah0NkUkQpa51bajlj/cFhmU2u9NXpjwZZmY7c/zNyz3y0/BsB2M9hlrOeAorJIpdkJY4OaiuyLAdQBnyFOVTnjveCoRIRfxDaLvLad8XIaUzpeD29jqypOmOgkVCcG0PIA3l8VrDwmK7hmCPdIiMjKS4u5uyzvckGq0j8nM76RXJ7ImHEQMmuVjq5ZZUiay6FcTegxHoTBGpbe8LnL4B0eTB6Z0C3zYiQZYiQZXQWJzec9WhoJtK8BBZPlFLOUm0NJVoZPURHv5xuEskRsgnCzD/sJtwZyjPKeJ5DN2D6IxUFKKKEudoyrlCGkyGzWOhY4VWhUdoaIfNuB6mSH5/oy198huEnbQ5fSd1Tru1rA9NeR/MUXCMyYfw1cPnj8PWTVKdeuRbf/R2RezrhaFqd6pFSzwoCBIIZk7tAgtJyFUz0Fi5rFk+ogsRVOfL8t+H8t732FVNKPkWk05xNZZkw+XMorZF2UBkOM++A0TqvSAdaESKC/9Nr+y8QL6LJwEOpEEDyeGTBVYCKiPwcIbz9084IP++00PhwjpHCuTMBxfutDMmHu69FCc8nlGCOzLyQI4uuJIQy4FVdGL7zRp/5Llqc2anfQgiCRBD75CFdiVg/DHeRDwR21ci4wS/ojSOO0HnrKH4YXkJwJdgNs7lz2mJ+vtjb+KmcZmmSN6mXUTh+Bi+90Z18SySJFd5ktmNb2fgjdQO//tKWguBoCCoAy0GPVFx/gr6E7X2Qjyx0Pbf+yM1d7bxwet27Mx3rDkneXWzltn7Va1UjkYIVu/sfgNwwGPKOL3XfHpzHXOdGxhoCFCg5SSja0BPwY3CyByHaLfba1Eg0QBV6IaMqg48n3YMn780LxvtYEXo1a6V/RUorC4Opn0BxVZRK4AptI3fOYn9EKquSu3Dt8DdAUbhqw1esTWxPy7yd/NBqlFc6zdjtv/Bj02qeJ8VeiWYw+0+5EQqzUvvgqFLcNQ2hOZAGz/lNeFM5eEFSEZRLI+I5JDP5UvsFJxqXiGFEiH9XpTZF+EbwONHYRwZDlb58r/1JLv6VPzn3Wq8oCAC2DkBmN0TEHwBA2zAA6/Qn2eipSllKKLzzeopj9/Kocwptnc0ZoQz04iHzql7qh9Ot4BgKwwwQJ4cBv4oT2BOeKaeeaaMZZNGKJmxjj/sYBxqyMAHWD6/Rs/6czG3Un2e73cn9a97DjBO1Xy+u+ehmrjWZ+MKxgBsdL2AHvtF+50X5gNf9rKpGGwinks+tCm1EMzctURUOk80Bx2GyM+LY//pn1c6l0GyoCAVnldwpUJJ3ot18JzbsvMKHXn1rP42HsroEIdRYN01l9LzhI06rKgouCCGYaLiF+xyTUBA4Fo+G3+8CFBxG73mqwBLBlC438XrXm0FKjI5KvZKr+xnyLz/sy5dEPFDMX3cG07tJ3dO3J8+r4KFfvB0hQ1qp/HJzCOsPOeg/tRyrl6lE5yzMeP4DCCqCikivffnzRsOmzsTf/Z7PuXoqHXjJaSOTHN52fskIw/HRdEkpeSnXyh8lDnqHGHgq3ozhXxRmqA3znMuYJ5cd83Ey5wFwRgMKFFyHDJlPhtlbp0kRCTxruAchhV544u4xRLz9JUUFLsqh0Dxo8Tdy4iK9H/c7IUgrOsDVW78lylbKodBE3uh6c4CR6PfFbjdw41MduJEiYuuoIh6zeXvs2LEYjUa++uor5s6dy7x585g3bx7z589n3jxfj86ZjKbOxvDBFJBm3CT21jB4e5pXO2k3wWcvuQxurnZLU2BFCSLsLwBaiEYnd/BHwdEIGTPJZY3cQrpoRiyRAdulkEhDkljBBvaKg+7IkEBh/RLJFnbyqDaFS213857z2+p9EuSRV6G8J1R04/aDUTSqGMwSbY3fvs4ELJZ6mXQpgWlv6ZX+3AUTBBQlwUevonScB4m7/XdirxZ+G5FCV3F86RonG0IIwmuxqgYi8fdMdzbVCNN34KQzbXjVMAHjh2/6GtzcnetKlILCQLWn/zanGP7CyIUhByXuNZS4lxFG78WoAy0RnWdB4zVUR2RoMORtDswdQTW5qMenLFoPwQaS9veHRdd4t6sMh7d9BYGYWuaEMwUpJKBtONulRFQR+/vxojpVfhpaTnAlvND9Tppcu4IfVy5Hm7AI7Zlf0bbrAm9do6brC8zCxKNRY3nm4b/Z8veFEFw9frVvD0xXjmbGgP5UvhbDkBcfRHnifJSHLkeZ1BceHwbBeXhHB2n4PoP+CW99ntP/od7hnh+tXlECqlBpJqq99K1oEph43Q3p/2Msh2se4CXntFqPPhkIsdXCq6Z5+7WHiN4AtBfV/GVRHpEadxuucaebWYSZqYZaOHo+nAzFidR8F0Iqi2mWvV0vTOUiDo8vy6FMdRkGXSmlWUFRNMjfj1mzexvTNA2nELQo2AdAfGk2P/94Xa1Rb8VhcTiM+vt/w7pPGXxgccC2XQ6tpk3OPyiaE6E5MQ35gOvDBvGxcRIvO3VjQhzRtA3Ah3YsGKhUr93VtDAKNuy8rX1FOi3Rvr8X7ZG5aI/NQZt1U/Vl2gI8mw79PsrKEJj+DDr3lsdvUBkO70yjIUmEEsxmdvpwrx6tkEKRKyPkaIgjikj15Di4aspSoEe+15x9q7JktrOX55X7CMVDG3XUHucxtdutpN66ljmFHxM6+2uESZddR4lB7oimLPI46OFslFKySK6std+4epAVoyoqzfAtSPG9nM3A18tdBjbXM1SaANIAt96CMqkPyqTecNe1KGY92tUz6lDb3g2WX8LR18Fq44L7Ywuh7d+P1XJM/UZ3pQNJxOHMT4Tfx+NPXhBSY0bz4bzX/koQCoP2L+ScfYuOytlVBYcGQ94qR9Yh6hdgT67mY3ADmL3NSf9v1tHztZoGN6/R1jC4eWzPaYLl2+d99vRRunKBMhgzJubLFZT5iZytC6YX2Xks28rfFU5eybXyRl7t0dP/Bt84Z9bKGw86f7kPamTpqDKIDLLc70MYITQWqQQJC5OM99NGNCMorJyyh0bwxEtfkTTpArjicVg7kmqZvboo18zvryTaVspHbS5jWtsxOgWDW+4IBP3Y3Dre9mOOdNu8eTPr1q2jZcuWR298BsOEkXKrwO8trPD2zsmcBvhVxo40A3QP0okkQT0exB2FCD2JeFZrmxhg7O5NYI836Ww+hbQRzQglmPVsY7RyLm9pX7q4HaTHMYJQggkmCDt2JFAmy9nOHo+eVXB4RGlp4RxxVmLG+0U8k/Cc4V522e5mnyMXtADXma9HjhhHv4r9rXfxWnQijyCaryaWKGKJJFZE07SepTLXhmCCyKMwYGRkTehTqIJA6IU6rMFoM6+BPV0hMhNx3rukpiQzwNADc0FuDb+tC4oDhnyDLO9OmPkwbQ31j88NIEQEc7FyLjO1RX695Z5QUThEFo1FCvtuuQsV1XWXFOwb+7iYJPxBQFEsRow0yu6P36SXinDCCXWnjgOEikBRDWcOBim92HM45ihFzyXGES8R9BK80O0OJne91Xt3WTR8PBlt/FVEJ/oSap8OuNtwDTQFCu8O2Ga4OoD1++1k/3E52I16WmpoHsYWa2l5/m8cCtlG4ePf6Vwb/8MZAU1CcaUkJqR6brlNHctObR/RIoIQGURu11Kem1kElYEMBwJCs2D8dZhCy3DiIJE4cshHQ3JQszB5cRHTl0FsmMIL5wfRocF/V32tLnh/YAfa/mmHGkYJc/N12MOr0189U4NssnrlaSsC8/lO137DjIlKpxM5/wrY2h+lyQbkkGmQ67uOG5x2rt70Ne90vcnNx6Y67BwOjmVrZDOvtrObnM0VW3+iICjSvc1SUYwByaTud2BV9UiQ5oV7KbKE10lJ7XZoJWcfWsYmawGzG59dfYyLX+ni7b/wztyHvY75ukl78geP5Er7/TQiBRt2+indeMgYKMqg7mgoknnivJ6Ua0VcXNmVNg2uYI62mLasZru2l4Kv74L1ffXGTmDBtUgEYug0OOdjWDHSOyU2aTsk7dT/LokhYNxCWQQHZ16E859uYHDSpdeH7Ol7jzs6K8TDEFUmvddup3Qi68jpNlicvCq+TWnIJnb4FFqKJpI8CgFd9lIRGDASQyQd1JbEaLouUUo5sjAWjCVg95znnVTrRxLR5Xdmi38o/Pss3ltsRVUFdw8w065dC1bKTVixcaHtdtaYfwTgI4f/4hdVUFFoTdP/4A78e6SIBHbLA16y7If277E6L8DHaKaZ4d330B4ajTEq28WGp/NodyQdM0YWsxqO1JUP3L/zKuPw6Vtpvp1owbXqaD7J30dGABn28i3f8WOL4VSadQd+mLWEIvOxXbPdCRV2CA6ggu3NdfDgjxVsPqJR5lep0LFixb8ryLY309dOEC5CaSWasI4tFFHKGm0z/dTux9z3TpuGiv42Kq7vJwrlsnZ9BfBJ/df2tYa1Vp3OUQEldDZO82byCHbbEkooI9Zlu4gU4TxguJEl2hrmOZcxRfuUXnTiyJEkV4++z0uUtYhvW4xgwgB/hmjPQnzHj2OWTrp27crBgwf/3xndzJiweRiXnDgxB9uwRGVTWVAj4qRFddikVhgHr3/ip0cJfb8CdKNbfUOboxDHG1DZh87rNlwZwI/aHLfiL6lKlRIEY+GQzKSUcqY7fyOcEL+lvSUSE0a6Ke2QUrJV7qaAIu+ECeFEhs6C0qH6hqBloBac0VVM40UMlRUqsjgKYvb4T8Xp+SNmTCSlFjDhub+ZsmEvW4vzoPFmRMOtbrk3TsRQQBFtlfpTtONouFwdzhptM1kyj+3s9ZvK7AmJHs1mxICt3EL5Mz+6IlGBnKbIqWfx45iHCUoeQvOOD7BtWXfvo3t/BefMg8y3kTKIAqWE6MbaccyUJwdONMIJoYJKNx9bEGZKqel2EThwss9lInLiJIII8ilCtlihcwLJABKFZqZLRS/S0vfA92fh40BotdTL4Aa+RR7ORKSIBJK6LyFj4SC8lK+EHTDgMz1ast0inEHlbEoX/NpkcICeBGztQ6PEuvH4nI6I3Xgx2Z+dR02hxZ7dgs0bziHtwTup6D4b6+KL6uyB/h/qNxrHCGJCvI0SNxgu9m5kggVPXsXSnRp89DJIP8b60gR49jdsd1yFMDmQajR2DIiwfMo/fI2HDlQ11JizvYyvr7VwUcdA/GL/PVpYkrBOlny6vJyZWxwUxW2hS9fDRMTl84ymoiEJxkIzkUYnoXODtlIas9zFTZUXIL0RYI62jErNjnzxO1dUG2iH28DKkRCRBTnekeANSo+QGZroVQDBCcxOGwCmGvfEYGZeWh/sqj7vx5Rk0evQSg5EJLMxuQsAwZVFLEvsQHSrUTTJ3cmeuACyg8uo1rxoP+91vJK1cW3d73Fk0REKw/WxX7Rzpt4cyDOFoyDp/N0BLrl1OmZMlFNJZ6UNH5sm1XrP64r2oiUfp8UQTAp/Ko0429iXm+jLG5UjKKCYou1+ov43D4Ch01BCi5HPDkZu7wo5DaDxRpTUXUgJWlEkSBtYCqEy0s+ZVZyLxri/ZfzQisEbypgzTv+9Igmjn+iKEw0VlRcc7zHPuYw4Ec1Y5fw6ORgBPjA+d/RG/xHKRSWa9B1XBKHkU1jFioVAwYhBj/KTO3nD+Bgv299nycJW8MdtVK8BEs6dCv2+Q9nTha4557Gy1XuI6Cy+eOcdPtlndbe75otK0tveT/yV95BPEXvL87gn52NaGNP4O2wNmhL4fjnRcIj6QXvUWKQyX67w2paj5BCUspeKDH8GGUHUrnOwd/uBchcXc0/RkdnmT/jL+Tc77HvJ6zQX26xb8BvYcVRI7hpwtGjj+guLMPOE8U6KG03mDcWqGyprQCBpWrCPLQnpAMxp1B+jo0aUVVUUm/B4Nj1klbj4QoJN3nqmZrVSdmg/g8s/ZO2HEzm6QebfGm0kw/plAK2QUpJd7KTUppEUrtJebckSsYrmWPhBm31cRrfR4UZey7VSIfVRjon47wOB/nAu5HvnbJazvtZ2+vwR4k6z15aNhJ8fBASsA4wS8/lraJfYlj3yICkkUEo5TUQqqR4811eoI9gvMzBipIFIJEvmYmm/k8rf7sSfUjc7rR8/Nh0aYFQCWi5AaboRzamgbOuLtr/DMd+DY1Ylx40bx913380DDzxAu3btMBq9f5j27dsf8yBOB1ixITwmNSeaHpF1/xWYfrsT24Z+YLBDrx8QA76sPnDmrfhOhhLS1qKkLwWoNYXuVKENulc0UIRRKWUUyGKWamuxS71yURWqj5EcQi8LXMW/VUoZwVj8GAUgj0KWa+toKJJ50HATdzie8Gkj4p+D0LmASpvgLCpFgzPW6Cal5LIpFo7sn071ZK2BuRCkCqHFMPh9lE5zkRiJEhGsNq4movN2FDZ49VVAMYvlapqLRphE/YqqrA3PGMcDoEmNcGunOh0jkdhWDIcf78d3kRPw1fM4EWwDDEYrjpAcMFphxJsoLVei5dxXzb2oBfN3cTCD6qlckiBi3YS6oBvTSin3qSpaFVmqelRcTiaeAopRLOU4HrkAvngK9vnh9pAKe9amI3ovo+cjO1n39WishxqDuRLO+o7o/jOxE+SVJhPJmR+xdKU6iokxr9L8vofYOeNKKEqADrMRQ99H1FAChiwJo+Mjy4FmfnqS0HwlCeLfeUHrM56eVUlAgVMqZCzrT/hZr/DFgz9xycjP69irE4xlhAqX17pKpq1JbSX9/H2s+/D+LqTr63+4z/Nvid625j4hXKyBR9tXo3+ffQIvrm4pvPcJrXo4x7rPYoJLOhl5+cK6pUunKAkozWehydraK/DWl0jgsPvS/CsxT/1hO6lGN9CpEK7tFcK1vQDOAmChcyUOTZ9rjRgoppRERaczCBOhmDBixkSaCFxpMJpwPaKtuAYPqy0EWi+FnCZ4KnOHQxOxRFXPMdHleTTO282aBv45m7IiUtwK572r3mVZg67sj2zs3n/vmml81uYSbMLAoyuncv15b/oaxZ12ECphFQVsjmjM7qhGlAXp0QZhpTm0zd/BEpfRbXbDfkSXF3DZ+e9R5IqwCyGbCselGA2SziKdH03ePKz/Bu2VlmyTu1FQ2O08QGvRjGsNF9FT7chPzjmQthG29cNLIW622n28UDRE65XQeiUmjFTmJsMrX1Ed1SjRi2gc/XlbtNvBteWP8lHQ04SKEBa5qEOa0JAjzmydSkRCuFY3fUAgUAJUnz0RiJER7PSz/XxxDlPlp4BL9sKBDQf7OMybji9oRRNCRQjO+WPwfl8FbDwPZeAMRPPViOZWIimjyGHEsc/XGLp1cwOeVS7jkcnpcKQ1b7n3dIbzzSi9vw849qh6wjHbRUnnI807Mq+IUoLuuBn+uBoWX0k1z5R+r5a0eIjpaji/aPMop4KHDLcAsExbSxZ5EAHqQ5fg/HYi7O1EndV6Yxmf3lFB/0aR/9XlnTK8FHIXXzw6lMLp9yN3etPBCAnn75nDlvg2IAQllgg9bdDlKDDYKwiyWykJjvQ8CpBgKcLcdQ7J5/3BJPsQLlGH0lRpSPn9T2F//QMAYoa9AY0DGdM8OWn9t1EiM9CsRrB5cvhVQer8fpZyDMPfYVXrcl7Kv4Cnnx2EZyDaFV16c+CSV4gknBgZyXTnb1yh1l59sybaWlQ2NAtjabmDLkEqrcz/feXWVdomlmprjupUsOOggCJCXQVqbPOuw33/7IBd4JxzHZmd7kCgUEAR5VSyTm4lqQbtzgTDLcxwzkJKjUgRhi18G0wcDd9MhNwmYMmFbN0ZdsPQyTy55CUWp/TAavKUR/T3Uek8D7XDfEBDDpiOeenlBC2+nnAlhHG9YfzUo9+DYza6XXaZXlXs+uurS1QLIf5fFlLYz2GkKmHUK4SOeoNy/KQH/dPbz5EC9ndG2iwIUyVdST/hYz1WtBF6OHagl6OAYn7U/uKA7QjD1f586/zDvc/fMVX8Wz3oQH+1O7Oci1nrUbmnCrkUUiltNCWVCMJ8uDCE0CBEr/71D3qab2SV0nWGYdV+Byv211QsFAgvQrnvSq+21tIQ1rz6PGsqXISxkYdh/DUoFt0QohtCnX6JhU8HKELhGXU8E52v1qm99vPdeN43s8PKrBmXMfCyH9ycNgAOuxkKU6D31ygtdV4QYchBuhdKlRRD/a3sFOj39MdAUDMa7Wx6soeDlH57D6ytikLyr8hm/jqW7E3tUW4eh3bTfPrShaXoXIqFQBDeVsl/S4B9OkARCvep1/Nw3Gsot/9da1tNFax5/l34NhrWD8btiDFaYeSrKKnbSRI9TvygTxEaRClszw4sG1jMdiYMP5s94WbQNCyOCipNR0tRVkm9ZyK7k7/4bwf7P5xU3KBczHfaLDBUgiMAG7GUCM2JVD1FVv/zVWzkieOiORY08ChYVEAxg6mWBV8w3MdLhge9yOD9IVpEQsg+/M7Lnf7UNy8eQxUvjU01sS2uJUi9oEu5KYTE8lxdwVQUnefNo3qf2VqK1ZV2lR0aj021UGSuNlBkBceRHRyHM96AqSb3GxBdnk+z3O1khiaRUprJslTXHCYE8eW5GO3lZERWp8F+0n4Mn6VfiubxO5YRz6AVL6H0mcE5Sq9a78exwiLMXCiG8IX8mRLKeMDxItvlXt5UH2ea8VkqbrTTZtomMnam6be37VzEyMl++7JhhxmP4J1GLKiLwQ0Axcl08RMPatcSo0S6Nx/SMtkh97q/Z5JTp+4GnOT1IkGJ9VtUc45cSoxHimkV7Ng5yBEOckR/TkNvdqWRezxDUUcAffcaNtOHbixUVqHHZ3qrp6rBQePd58ORmvdbwG93QS1Gt/rCMdtD8R8ZU6FUoAx/D63LH/D+61AWTYhJ5eOxQTRPUMmy57Fd7sGOgxZKIwA2yG3u49OiDOy7ZTza+1Ngdx2LIthD6GAJwGl8mkEVKl1C0ph71cPw+Bw8Mw++bXMRw3b+4T13eegAt6//hHxzFF+kXww115fKCKxLRrNhyQVsUKw8rgUTZM9k3/sfuM/QuOgAgRFofq+W0LWSWLhpHEqjLWh/3gjzrwQMYLDB0LdR+uhGWg1YBiz9aZTPezh9jYPd5//GuUGj+EabyTZtNz1FBxorx0Yl1Mik0Mh0YuiaNKnxivNDbNgRCC96qUBwB+eE50GJtzEtIrKcQx7cjlXwx3U90/g+abYBCLkHCyYqI3Lh5vv0cT06293uwl1/cOuW6SSU53Lzua+4I8bDrMUs+ulcUt7Wdai/zjVw1bfB2Pt8zci+BXxpfpXi4mLG1+E+HLPRbe/evUdv9P8Emt2I/PhF2NuJUtWJacB0HIM+8G5kcOCfOArdTQw0E40DNDh1UFUVg90QMJ3PghkNjVVs5EIG+W3jD6OUQUghGa2ei9Qk6+RWALQlo2HWreAwU2wpZhAGsP4K4blww3iU+IN++0sRCUcVXE9XaIHmJM3bCBROCDEff8vuCg8ltTAFpj8J1z0E6AJjEBZakHZiBnsS0EPpSLwzmmzyARhKX2YRgLBZej8TL89/ktaFewKsgQKWXoG2qxvcfgsi4muwJ0NFJ5qFHOLaqCH/7YX8h+gs2hBLlE8FtkCVXT3RTG3ExO2f8MhafwtzzTAfgbavPdr8sYwdnOdOjaqCE2+DiidnzZmMHkpHGjqTOeCOvwkMoUjE5c/B5f5TglJJ8bv9TMBXVwfT/oUSskq9J7V7Vr3L3eun0bX8L/6JFHTN3kCfg8swSo35jfoetd9m1L+18384NnRUWutEyDfcA9Ner5Hmrs8/g/ctoEI1szSlO1JR8a06pz9XXQoXcN+U12m4+i0yQxK8DEwnEiYV7uhnZNLIILc8kkoiDUjgEFkoKPT3SPkxiLqJ3k1EKsEhyykb/jr8fiduZbLXDJSkvTD8XRj+LhMcd/D8o5cCBi/FsdJgocgYTLuMtSTbCompKOCrtpcAcNahFfQ4tJrJPW4HIXizy42EVRYRWl5AaVgsSMnOyMZUGs1kmBuQEVptRBQOG1I1YpQOWhTsJSskgRJziJdiK6SGUTrZG9FQNwIK/bfQVN9rN8tgBqi93UUk/ku8vCSPqyqDMJTl8kWzcg4a3mR3+iha04wgg5FxN67nCe36gOulltsApk12VYmt4YBzOnUF3ksGDSC4Xfw0QsBMx0LGGa9yb14pN1LmkfmxkNqLAlThFeNDdWr3X6ERDfxu38IuHuFWnuNdv/vb05K9HKL4xnuRr33qzdu5tTfahIXoVdMlC+L3E33zI+R3mAUbPKqcCieO68exX04EP8UIakvbU1HqjdEtXTQnCDMV/gI0ACXxADx2AQ1JZoel2hgwT1uGE42mpNKARI5oOfyuLXDvv169GCMGJo+dQuYrU6E8prrT+J2Q7T8tXJP116F8rHjNMJGbeJQVFz8H3z1M1btqVw380sqjwrWm6e+r6529cdN0Qu1l/NZsMIXBMd6dSslFW35iZotz3U7AKnNRoSmMC8//gM2xtVBtSdd/fHRUj+9OF3efuQz6fAFBxXoxBcUB5jIAogivDkDR/P9mTZ+sIMTyJcmXTGZj+k/cbn+SP8wf+m17KpAj892VjOticPPCtQ/AK5+DNRKAsBAb310bzjUkcYAj7maDRW8swtcJkqDEcrd6De85v6bS493TKoPAUR0woEq9FvNtg1/0kh0+mXUPyfmlTOpyG5O73oxUVEIfO0TpA+OYE1G7w70mjvmNS0tLq/VzMrFo0SLOP/98kpOTEULw008/ee2/9tprEUJ4fYYODZSvWzu8g6L1f/Ltt2FPdz0VzWHBNuc6tOUjvQ8c+xi+i7CE5ssRZj0KKVVNoj6ig2jlt6KeARUHDhKIJZxQKmQlA4R3DrlO1K4/XtretmhvvoM25SNWb43kbsM13Ge8nicMdzKaIRg3DYLf7gVHMK1zd0J5BFSG6SmURYkw5QukzfdF6iha0Vt0OTEXXw/Qo5GB9kk1J2sNLn3Wa4sFM8VFfqJC8r2FpAoqiTiNowI7Kq3oJTphxIhA1F48YNjbeL53zYr2kRMU7f0qSlnN5SAlZDWD1z9GKDaU+EkoaZcxKH4Faj026jYXjUgViT7bHTgIcnngk4hDQcFQI809WFgw5QTibhSAn8ikOVcxd/It7P+nEaALtD1FB59iKqdTCvO/QQfRkkYihVSS3PPd8SJOjfxvBlUPERWicPDZCD5+ZRGNJ11K9KTzmNbiVh5e9RZCU8i1RPF5m4vZHdGQh1e+yVVbvnG/m+GVRXQ5vNa3emKzFSTG1o+opv/h+BGlRGDBhNJ4M8oLZ7uq9fWBFtXCbMfcf3h+0fMs/HoUkZWFfnoRxJbn8+23D3LBkG/JDEs+aQY3AJsTJs+38/zsSvc2k2LiAfVmXjc8yiTD/fRT6hiB4oEwQqnAitL3W5pNGsttL71JxeQwOo3607UO6nzDmB20vPAHv30saTKATaldaVWwhwdWv61Hu6FHqUXaqzMJnKqRwpBY3eAGGDUHqSUZhFldEdIuY1lsSRYdsnVnaVZwHF+kj2Z/VCO2RHsr9lkh8ZS4K6YG/i2ig+GrfmedEIMbQNCm6fTYsY3OGblMXpjDs8uLeMX5kXv/JcZhfnmGAaTdBK98AcXJ1KSJMTpsjF8zjZE7f/eSI5SOczCf9TPVedwu+eGHBwF4TE6htW0ol4ihtBUtqKCCCA86hkAGGU/0E91odZLpCBKICbgvXIT7pXmp4mkOJZiUSAh7dCy6XFF1XwyujwKokN2E/EkfwYaq1DhXO6kSppp5u9G9ELOvxlkkDPGtoF4FJ1q9yYYRQhDncR+13e3R3ngPbeqHsK0nRlQ6i3TOV852t5FSkiGz0NCwCAtCCF50TCOWSIwYiCaCdKU5VxpGMSH8Cm548jMefvkzbFMi2fhaHi/d9w9hUYU+YzmriUJ64pljdGulNuUSZSgDuuUhOsx3ba3xDkrJoL3zvI67dcjLlJnDCLHVoDySkvN3zCIYB5XGaidyuTGYIRd9Rbexv7M5Ib1GdFw1VM3BlD8fBK1257d7nNZQmHsLVMQQU17IBz8/ws9j/qHhs0+R99wnaE/9iPbcD5AZOHqtrFLl0Of30TRzANvkHr8cjKcKW+UuYoikI62O6bggzDQMM6M+dT7GSf1ImXQhfz6TTY/QxsSKKBd/PKSQQEslsBO2s5JOAjFEEl6tC039BM95/Yfmw9kfkoDT4B3tV2608EH6pbzW/XakagShUOpoCK98jaKp/O5cUOfrOS568M8//5x3332XvXv3smzZMtLS0pgyZQqNGzdm1KhRx9PlcaGsrIwOHTpw/fXXc9FFF/ltM3ToUD7++GP3d7P5+Lg+agb3mzFSnuVbEUfZMhCl52/uRVxptg7tmf6wZgDsbqevLS3XQttqMs2mfj03px6hBPstZ27BhEAhiVhaisaslVsoo4IQgiinAoke+WLEgGNDf1dZdf3uff1JS1oOreCRoUEMVfsxVO1H6y3L2A0M3ruAq7bO4OrhVWwNrjuuGZB5yYgk7yjL9XIbLUX9qEp0IiCEYPVD4ezPdbD5sINnjS+xJvV7FIO3gSOHAtS+78EfN+Pl+R/wqbtNJ9IJETqZ8+mKYBFER6U1vzrnIZFsZXdAzkGl37co7RfimPQ1YGJKl5u5cut37rDy9lmbiK4sZEGaK5qmyrBWw1DZQKmfBvEqpIokggnCghkbNjSXVVFSLbznUQRIHK77pKLQlIaki+akdDXwwM+evBMuhOVA0j+wo5/3dhmEdU8lPZ4ZyZFLm1JxwW840XS+G9f5lFq8zmcaQpUQEkUcRgyUy0oKKAqowB0Nfkukn2HoqrSlq2jLXjJo+MsWbIqBNtfMB0XFoai81u0O9oc2INJeAkJw2T8/8sb8xxBApWJkVXxb7nwznMzuGQyLas1A5ZxTfUn/w38AC2bKpRV5uAkUxEFkDuRVz8Wft76Ie1e9jQHoe3AZvzYf5hM9MHLnH/zQdCiop87gP321nUfOrXZU3mK87F/11060oBvtWMUm9nAQq7ChCpVs8rG7ogYMGJjh/IPCyvOojaz7r4Z9uXP9x24D2Jy0fhwJjSc9Zytb4n0pTuyqkT8aDUDVqlM1giuKGLXzNwos0ewLS6IwNB4MukxttDuQFQ7sQdUOwLyIwNG7Alh+bzAdUw0nJVuh6gwGDGST596+xrmFhiSz11UYzBNy8SX4ppPqSCs+yDX/zKBBWTa5i55nc0xL2ubv4JyDERyeXDPCRIAjFO3bBwm6dAoOnMyVy+hAK6KIwIgRMwaKKaOSozsSIkQYqjh5RmWAWCXab3qpQLCS9XQinbl4R33YsBNMEIPV3nzm/AmZ15Sjqp2OqvfHO9TB/k9PitM+IuSBGyjPjULNakK6MY3dqX9SHpTnryc3ousJpxtAS9GYA/Iw2upz4bvHqLpO7ZNXSDjve4L7LyLSg54jXxbRS3TCiZMiWcI11gf5TS6ggko0NPIpIkqEEyeiud0wlqmOarm/ldKUVuamjH8CdufY2ZbpRFUE7VJUUiLraXWwf4GbDJcx37YSdnWh5jzY7dAqxmz7kdygGOY0qZYb/m7Qg3t6T6TQXM2l2Dx3BzujmmDESYE5zGet2Zh4dO76hLIcGpcf8VmPLt3yA9tjmrIh0V+qsSC2LJdNnw7Eqai0vHYRZaU15MKSo1EECco3nEVqUh7b7Dtptq4MYVAxdGqHOIkckDXxvXM2HUVrCmRxre08dToFQQVWDpGJiooJI6WU87NjLt/xBzkyHwN6Rl4lVpqIwLaU9rQkQcSSShIb5TaKKYMCbz5Vu2qk29VzMNgrcRirI+Am9J5AmSnYN2LRHkR+OawwbqQvnet0H475rXvnnXd4/PHHGT9+PM8995ybwy0yMpIpU6acVKPbsGHDGDZsWK1tzGYziYm+kSDHighCKaHSxSKik4WSsBuOtPZqJ9IX+ipdBSnw0+O4b/eGS+BbiTb6eZRuM2ley4NyKpEumrFQ+oa6l7oMccWUUSrLiRaR2KUdBdUrkCiMEKzzrqHm5PfaIt3oVoVnOnZizHor96yZRmrpYT38t+bk8NYHaBMvQAkpAfRIupaiEU2E/5D3MwlpsQbSYg1stzdgi1PB7jJoxhBFJjlIJM7+n0H8dvjzFjA4SB7+NZmNdY+OgsI6toCE8eLaU3sx/xKtRVOquHz0ggEByElR0CKz4PER8NN9zI5oy8E2/aBcA6Hw2PIpRFYWsSD1LF0JcZGqEl0teJswklbPU/6EEMQTgx272+BWE3bsXuHcKipvGp+gk9oGwmDyk39zz7dW2J+OahCIdgvpMGw+6/5ujVbD6PbKvMe4etuP+i/wG/x2STD3fFiJEYOH0e3M8Z7WBRepg7nf/iIRhBGEmcNkBfwtakMs0SdgdPULLZUmfGl+jeTK3vwyUkHbkk6ZxUOoFILv21xA85wdICV3r/3A/YZbNDt9M9dx3+9mXhqSzEK5kleUCafkOv6H/xbx5Y3Ie/4VcPhGbEeV5iA0jeSb1zL/m4tYk9jBT7oOtM7fxbLkridjuAFRVHns731tSFOS2cIuggkihCBaozsZ29GCI2QDYMVKLvkULBlGbWl2gw8sJsJWQmhlCaWWMCrNIaxJ6kyY1VcJCi/Lo9QcSm6Yt9OpTf4ulid3x+R0MOjQcr5rVZ3ZccX2n9gX1pCFjQOnhRuB+Ag4p6WBKRcFEWo5+WuFhoZTOlnp3EB3tQNL5RqCCVApac1w/9sN5RyOjiGuTDf2xNiK6X9kFQVRkGURiNACZJEfh93aUViLk8m78V6iiWQVm9y8RderF/O28Ulusj3C59rPtV5D4wCpnicSCcQGpK3YLQ8yQh3IXKdvqtVybT0XqoNJpzlqbDDrcVCr6mmocBnevCvCWFvPQ2IljBAqYo+gxOZQzH6c1K7ExxFdb9JLAYaqfZnj+BsWXE1Nw2LGokGU9PuA25Wx7q35FLr1sBQSmC2XutORjRhoIlJpIKqftUARo03jjDSNO7MzEIKEhW9MU4ho9gvODefgeX+fXfYKnXO28FtqP3e6e9OcHZhwMqfZEK815fw9s5nTsC+FhmAOhR2fDpAVEsf66NY++uz4dR9SbrQw6NLv/Kxjkot2ziQ7OJaMsGRv2egYcGj+eYQtjSbx9UFUVJkjTEZCdy5DTTq5vN4/Ov7iT20xK+VGDKgcIadWTrdQQiijgiDMmDC6uSKdOKnASRBmXtbex4CBs+jEQTIRCEopp4MSOIqupdKYg/IIcSKaaCJ1o1vUYSioMZcK4WVwA8iIbOibaQFgsEJwEa87P2G7bVed7scxr3hvvPEG77//Po888giqWu1p6dq1K5s2bTrW7k44FixYQHx8PC1btuS2224jL692j4jVaqW4uNjrA9BWtEAi0VyPioaGuP12aLIChF0nAR40jaCeswDQ/r4QbcIitAlL4LWv8F1kBPxyLwDxSux/fNX/DRop1Q+jdqA12sR5aBOW6J/XPyDYGcpWdrNPZjBA6UFJDaJ2MyZErC/XkSP8iNf3izta6Hf+UnZGNyCxPJezDq3wOQaHBf66yf3ViZOtcjexIupfXuXpg+5KB2zYMWOmp+jE3eo1DEAn05WAsfVqBt/zPmeNe4uixkvRDrZAmzgPh+s51KZ+SIJ2ehZSqEJ3pYPbqF2J1SetsQruSNPgMpQxT6NMvJTtT7wOt94GQXnsiGpMx7xtzPj5JnC6hEgpoTwCrVh/pmzYiTsNDCFdlLa1VgNqRkOvNOybxWX0VaqVU0NoCWpoCZTF4yyKx7HkEtZMegYt0vs9DbGXc/n2X5jboBcNbl5N/G2beNo4g6AjqrucPeBVyfj/A0YpgxilnsMeDvjMgceCZMWXAPZMRYpI4N3rncy7zuFXmNmZ0ARx3pvsC/dVLre3FOSQTxopNBHHRhT8P9RP9Fnwpl+DG8DAQ8tJKs1EGkwMuPwnjgT7l5cOhiSiovkXjk8ShrX+b+e+drSgEivlVJBDPlcZLgAgVFSnOzlwUkQp1JivdUj3Z0dUEz26bPoIQsry3fepxI9iN3b7z6iaw4v7CCA7KJrMkHiOhMThUFRiynJomKdnIGyKa8NV/3zn01fVOOLbbKL4tXD2PhXBB2NCTonBDfSiXgsPFNPn/mRM4wuZ+sAtbJr4Edr6gb6NY/xwdZpLEE8Oo3LScB5c25OK1BjsRvintaD3mjAkEtnn64Dn13Z1w5GXRB6FGD30gmTicGpONkt/NUK90VVpW6dr/S8Ro0T4NbhJJHs4wG1coX+3tkA7NA3t4KfI8h6sZQuxRLGFnWz7awB6Opf0+GiujxPid8OEi6Hfp95tzKXIiCysz08nd8LvaBOWYJuwgL0TvqZiwny0N99DBuC6yiGfeBE4NfZk40p1lK5FRvu+r87IDJqLNC5UBru35VGINm8s2oTFHJzwPXkTfkd7/QOkU8WOg0MykxT+/8gOR4NJGHluTAlx7deAYqcqPHN3hJ7ls7pBVxAKQfZyHl71Bv/EtNSrmDqsdMpYDZpGdEURmcFxzGtyNjvi/PPhHQ1OxcAT/R/2MaxN7nIjieW53LfSu0pz7/1LuXzz9yxN6cpHbS9nW2Tjf7WWPfndh6ieaoHNTtYDDxx3fzu0vWRoWWzRdlJ4lGi1PeX5pDyWj2l8EZfd342PHruZzfnFbJTb6S0618rpVkQJI8RAciwrGKF4z8kqCg1IRCAwoLLGVYyxFx25T7mes0SngP0qQiFdNGej3E4FVrR/ekFBItXzTG3Q/BpIcZiQz/9MebmJn7S/jtKHaxx1auWBvXv30qmT74WZzWbKysqOtbsTiqFDh/LZZ58xd+5cXnzxRRYuXMiwYcNqrbD6wgsvEBER4f6kpupC/dnCuwyxAQPCaEO5+V7avHAdyrPnoAz6lGCCkeVhLoOailc+uQ/0Hzq0npKOe5Wy/2AKSDPu6znciowF5xJFBIfIZLvmW2DjCDn0uvwXiNqP+8EOzqfi+ts44sjGIasX8M/7d+WJRSvZ2gL+DlDeHsV3wT9dq3EeDzqLNjQhlUqsFMgixhuvZab5A9aYfiTftIp1pp8YovZhvzyspxZ+8Lr3b3akFb/+dfqml4JumPBn1KlrdJXSeDPKEyN5esFMNraF17rdAqqBRkUHWP/p2Rx5rS/r2hSTtkefI2I9qozVV1ytXlCrcfAgR0gXzdzfF8pVXuk8Ww4JnCsvoKoCHggoicWy8lLo9Bu60CKRSN5ufzVXn/cWVoMFhGBfZBqZU3/DPrvau2o6PtaC0xZCCG5TxxBJOEWU1rp8a1Yz2hvvuhwyi9Ge+xktS490jpChtRx5ZuEN4xMkE89rDx8i/TxvYUUoDpTr7kX0/5pblm0kM9XkFovmD1T58FYTYYRwttrzjC2i8/8NwWpg2o9iUyg7Il38VaoBafBt2z1jNbHWfEZu+5W4okxvvs6TBIsBpo35b99hk2JirWt9X2v6yZ0m10Cpzt5Qq9a+ax8Ac0GNHqo5jf5oOogZzc/j18bnUBYc5WFQ81OtOjgWTfiuqQeiGpEXEktmZAP2hSay4NuLaVWsy35rEzvyUo9xjP7nZz2SRLreWuEk7aJPWXJjY1Tl1L+vMURi/+A1V8GOKs4wBb55GumosXaNeRwiDuGWX0Nz4dp7kC98hzZhEV999CaPTZpH49wYBq4IJz9Wv2ei41xIn0sgZU6++iWOn8dRKEvc25qIhmSJPHdxsUAIxsJQtV+tbU4EUvxwx1ahmDLmyGUAyCOTwNoKbE2QmS/g0CwUOIvpmTeCykWX4M2zJQAFxl+FMqkfyr1Xo4QWwpoReMkj1jCY9JOLW6/m8QIOtUUuusLv2MIIIUgEiGQ8BYgQYTqlkN9n635SSEAimer4lNfsH7OrsAxm34bX/TjcCjn/agBa0OSkpxrXd9xrvpYHrz7Eyy/9jhpapG87+2m2RzRC1ZwgBBLB0uRubmNKj8OrsRssoCg83Ws82cExrjnyGMwk/tadGjLKjOYjuHjk+zQrrNaZjU4bPTLX8leTgWyJa8M7Ha7m3oFP+43oriucfp6JOcJPQEsdcYX9XprazqGL7UK+d/xZa9uLP88lp6Tq/Pr7a/74TbqQzk9yzlHPtV9moGkaf2iLvLb3oCO9lE5IJJVYKaOczqQzUj2HCCXsqPLgAKUHIQSTKXPh0xfQg6Fqs9G4EJyPL8e167jSGPjqmaNeUxWOWTtq3Lgx69ev9ymaMGvWLFq3bh3gqFODyy+/3P13u3btaN++PU2bNmXBggWcc45/LpiJEydy7733ur8XFxeTmppKc7UxEYRRQikaEs3jBzhMNqEEY8Wmk7tXRHN0e6aEi58HqLeKQ6pIIoEYssgDW81FS1CeG0Nb0YQjMpsd7MOMCasHH4UJI+1Mqex+6A5yalRXbOI4h5d4kHEGvYpTkiGegcH9uGjFOnjEzwKi2mCwd2XYtrSgAfWbc+u/RLASRHelPRZpZrc8QLEsJVyEki50MvwWNCZRxPGk4w2CMFNm9S2Csbdu1ejrNSIIJZ8ir21mjAEJiE0YsONEIlEQaEisZQmcM+ZtONQeVXOw8OsLCdZsSKBBcT6LekDjzHCiReSJv6B/iXglhr6iKz/JOT6p7QKBFTuNlBSitHCKKWUX+3FKp1tQO5LvfxmIKGqG7YY74bIX+MD4HMOtI+lw5xXYfTiTFJh3A1rMYZQuszBxYkqO12c0U9IYr17Dx84f2E9G4PD5d96FTA/PaUksTP0M8fQQgsz1RzE40egm2tJKNCGUECr7f4jt3Evc++6xPc+32m7ygLJwhb+2P0k4YdzjeI4yKlBQ6C7a87Lh5Fbv+x9OHB4bEsTUpRlg8426WpPQFqvRUk0BAPrfTgcY9LkoqrKQA+GpPN5n4r9SVP4NKh2wMcNB+5T/1unQStFTSttQ7ThpLhoR7OLQdaKhoqBt6c/R5M7bB7+k/1GlHAa4V3nmCJoX7mVbXBvvHUK4q5CuT+lKXGU+ryx4ms4pPXAYg9kR04wdMc0AqWd/jHqV8G4LuVa9jkZK/aBqMAsTWGs6ugVIQZg9mkpDnkvG11As5TCxmpdPOgzIx/4CaSLEWsqUeY/S7rNtxP7WlMnvbgMh0JaOgsVjwFyBOO915MxxeP4uodYSJs97jHafbeObP5oz9Z3t3KFeRT+lKxky66jjb00zwsXJd9DEE00CsWSR63f/LLmIOBlDljMGNzm5NIMWypvK51xT8gx/B1Jui+IhcR8A2t8XQNlxRKbl+X++BtP72Ps6wRis9Oaw5QcqJl7mIkupRj+lG1FWPRPBgZN7i5/H1yggiMhtzWBlCDeoF5+kUZ9eqEqzLR27gqfei6DSYKHP2N9AODCKXEx2he9ajHDPg02K9vN7Yz3C0GbyH3XtgxpzaHrWJsJsJSxPPYtGBbspMIVTFFojCtFgZFtMC2479xX3piB7BaCQb4nUz2/01d2OFfcNeIKVnw/D4opOLbcIJrygcMj+Lg8bbz2mvjSpcUhmEkwQAnhH+4obuCRg+z0FvryUWmkkm9lJCEF+ueKrIBAUUsJeDlFKGY1JoYloyHBlIL2Vznyp/eJu25RUuqrtGG+8tk7XMUzpxzy5jAP2HHYci/mrPIZao+EK4wkhuA5snMcQ6fb0009TXl7Ovffeyx133ME333yDlJKVK1fy3HPPMXHiRB588MG6dndK0KRJE2JjY9m1K3DurdlsJjw83OsDECnCKKIEDYkZk5uzR0UhmQQqsWLHgRMn3aKjITIjwBmc8MAoeK4vSof5RFB/oxuSRLxucAPoWDN0UqL2n44FMw1EIsWUeBncACIJwyxMhBGKCW9FXQCznUu8tt1vuJEYNRSarK5xLic8cAlKkHd1mc3sOONTsv5yLuVh+6uMsN2MUzpJF81JIo6uoh0fOmb4tF+rbaYNTXWus85/+Ox/cPDxFRKpT7jfcCOxRHmJIa1oyghlIK3wrehlw4FEYsSAU0q0LT3hxe/hUEdAIaaiAOHyTrn5o6xwdm4LomX9IeCtDQPU7n4J/KXrX6GzhCCCCCOESML41Pmju01Mi21gKPc59tJzq+ewAllMVLAgrJW/1C7XXdt2FkBgfpwzHFcbLkSgOxsChs9n+4k01YwEF6fWW+fLiYAqVBJFHPHEECnCydCqlc3njffSTbSnFU3oQCt6Kh3pKTq4jepmTHRW0lGOxQP9P9RrhAcpBD99ATxwEQhv50lBSBwdMjfS2VXBttfBZYxbM82rIub8tD7MTBtwygxuVbjta9959EQgSoS7q3cbMSB+uh9+mAhW13pVS9U6g9PG4N1zMNsDKD5S0jN7A48tmxK4H5fRblZqPxIrctn1SX+MDs/fTei8XN8/iv3XOxiqBuZ5O9kQCK7s6isHWVL2UhqUjRONIMzVEYSeKIkBacLssLLl435csHcOEdYSEtY14Kqrz0f7/Gn49UEobABZzZEz78J49aMw/nIQdswOK5s/7u8+LnltA+4Z2419jkwaKEns0wLpDdVoKQJX6DuRUIWKLYBaacDARrmdHJEHkdOrd4QsADWbw2STmTYfg9nPM2cqI7TJtupshW2BjGS1vdsa9PvK755wpf7pWCOVc9zUKBI9UyOScGKIZLW2mQYkoqISU5LGZ/t2gtk3nW/huUP4yvQa56hnneTRn154pHUPHp30FcaHRqM8NIrgJwaw44MB7PqkH9dvmq6vGVKSGxRLsL3u87fBVoZwer8P/TNW0qgkC4QgsrKEyJoVUT3hERVXbIlgS3Qzwv3wax4vjoQlkXrbOlpfM58W18wnbW0X8mNVXnd+pkd61cAubT+jbLfxrONt1mne0bY7tL00FQ0JxkI4oSSTwCrNP52YlBLn4GnUNFLddbags0iv1eAGus4SIUJ5xv4WbUULUkQig5Xe3G4cQwe1FVEeRVHMmGl6DBQj6WpzWoumdDa2QGm8zreBuQgGTfVzpCsiN8CIGfw+0XXkjayz1PrUU09RWlrKjTfeyIsvvsijjz5KeXk5Y8aM4Z133mHq1KlekWX1EYcOHSIvL4+kpGOPjvIshy2RCNc/Jxp27BgxYMSAGSP5ohDx4OXQ/nd8raMKFDZAUU8d70hdEU806S7vqnL5szDmYSwNdkDbOTDhAsoTtxBJmDtEvgkNvJbFCqxkk08CMbQRTekoqiMhJVBOBbladQRcN6Udl6sjCL5pAoaLXoQGm6Hzb/Do+SiRvpNEK9Gk1jLmZwI+c/zIbOdSKqWV7XIvY9Tz2Si3Y8Xm1+O4Ve5GQ8OBE+XSSTD2YZIbZjG6vcruJ0Jol3z6p/7da7iOwUpvrzfrPuP1fGd6g4vVoV48KaCnb6soaJpATvoaPn8Vz6kvOziGxanV3HgAJaGwJi6TYOXfe5xOBlqKJtVlsGtARSWfQhw4KKOCSqxsldWOh73G3fD4cDhrOsTtoVmLw6y6P4ShHR20Ey3oITq4jUiv3ruNpuf9jG8ZMwkd9LDxkHqaLn+ikSziaak0wYY9cKNUP6lDhkpaR9TRs3oGIZ5osmQOUYSzS+53bw8SFn4yv811htGMMZxPV6UdyUqC26icLOJ5xjj+FI36fzhRCMKEEpMF915FzfmlV9Z60gt2gxA8/ferGJxOL3Jqm8HC4YhTX1RpXcbJkeuaiFSSiUeg89va1gxy75v+y02EVwZW3jplbuLZZa9ywc6Z4KE0CqedZnk7uXTrD2yLbEKYo5ztH55F05xtXilTt637hH3vdSWx5AgbE9shgLXx7bAb/Ttb7KuH0uUUcJDVho+uDGH6NRa6pED7JMGUi0xccdcPpJKEEQMVWP1TVoTnglpBh5wthGg23m97Oa2vX8KDZz/NpykTYUvNDBqB/c8bYMpXII10dB03re0VtL5+CQ+c/QyvNpzKr48+xq3ZbzHd8YvvOWvgHLXXf3MTjgPNSPNbvMqBg/3oBkMR/S5qyk2I5NsRCY8hBDjR2KZsJ/eZWO4baKBlHITFZaL0nU7Io5egGStJIk7vzMfB7w+StChoHgsJ7dfCxAtQ4nyrzwI0JNnv9lOJPkpnL368MEKIIZI4oskkhwYikcql55P53Gcc+ek6sIYDTojdy6gOsOeJENoknf6y/MnC45Y7MEYVEBxVRvomB6GV8EmbS5jS/XZ3mv2l23/hhk3T/R5vqSwGe6XXtu6ZG+icvcVr22+NB7ExtgUphQfJsUTpZlU/NAcmh5XIigIvJ9Gfzc+lyBXpVhNGWxk4bAhbBWgOQisK60afIAS5IXEUhMTBygsAqKCSddoWn6Zr5RZKZRkznH8wp0ZBlA1sJwgLCgpHyGG2XMIGbZvfU2bJPNq1zaTN3U+S1HwX/ZoqzLkzmIEDd7NM+jF0eaCKOsghnWyRu1BROSgzSVeau9s0pSFJxBNCEJnkuDO96opXjRPJkflYbr4fLnoOkrZC/C7o/ynisZGIHnPwW6bZH4Qd7rwWpcMCCmtkXwVCnd9a6fEDjx07lrFjx1JeXk5paSnx8acm2qi0tNQram3v3r2sX7+e6OhooqOjeeqppxg9ejSJiYns3r2bBx98kGbNmnHuuece87kiPayrdlfkTBV2cxADKg6c2HGgoKAoEudZv8DGmtWPBPzwEDyg8w9EcnzVSU4GVKF6Rc8o7Rdia7/QLYrYETRUkvnR+RdmTD58RiWUsU3bQ2clnU+1H2lBI3f1I4lkrzzEDrmXWKqLIXRwtqf8pU+qK4ocSoet/dDuHYMS7p2iWirLz3gug05qG2Y4ZpEmU9gg/+EK9XwqsbJCbiBfK2ISOjFmuaxgjbaZDxzf8g+73b+Dud1SxnXqwn2G60/dRZwANBfeEUNBruiq9qKlD9lvVXUwbXcnKPLjFREKVw97g9fnPcKQ/YvZG9GAK5YfIkGJ80rDrM9oqjT0KSpRleLoxMlMuZCmIpVlMo8CilniXM0OdS8tlMZkyCwUkw1GvkkaP7DVMhuAZVowm+QOALpLvUT6P+xib/9Xoe0XxH30KXn5IYSaoGz4i8i2Ov9CqPj/Z0CqQopI8EkX8YS4+W7kV4/Dlr56mlb8PrjhHkyG05tr8XiQrrZgivYpO+V+zpdn05/uXvs9q7DlyQISiaOYEjqIwBWq/ofTF6GEUEAJ/HIXNf3BKhr7XFXkvm51AQuTu/t2UA8iRaNPkr+hs5JOKMEuNigJEdmQ25iEshwGHVpGWskhNgVFVo+rPJcyQzBWUzB7IxvyQdsxmDQHBk3icC1vnbI2cfvGz9ke1ZSXe9zJnEYDWfbFMJbNuJjZqX25csTbIAQPL5/C8pSuZIYnszFOd6Q2LDkcMF01Oap+OphHdzIzulN1xNvD9ggOOqvJ7atkX60yCF75Ckrj3PsOhiUhgad63XeU506iFibhdD3PLXO2u4671/s4zcBHz491H8PFz6F0neW3x0vVYcdymf8pYkWUly7oiVLKCSWYclGJZtnqY5rbKLeRZTzCC6NSeWEUrND20d/2JhXoabsHp7wGuVXrYNU5qnsJtZaw/IvziLfqekBxo0RSNy1hmPyCHPKQZb2RuXeBsCPiXkQE6ZE4TdT6V2zHpJhIJp58CqnEhhEDuzmAgsIOuY9YIlFnTq4hyaqEJWcy47qOp2bQpzkuV4bzifYDB5MM7A1J5JHeD7nfwajKQkbsX8AfqX295zGnAxSVXofXsDkunRwPx0JUZQGNSw6zJrmze9uB6EZ0OLKex1ZMRRPwwFkPkliUQV5IrE7LEloAlWGM3vELzQv28XyPu3EYPOhY/JH1Ixh0YAmHQxOxKgYsTgdX/PMjDw184thuwMpRaEm7kL1+42PHDySIWGJFNAVaEXe/G8vfO88CzgIkqy9dyU0dn+CHNy6l5EiKvl30hCsfgpUjYXtfbgdupwiDAnPHBdOrsZ7NtlnuoJhS9iTN486bk3nJ2AUpJU/a17rpffwhhkhXUaASdrMfC2Y0KSmmlO5Ke3e7BBHjrtxdRgXdlHbHdh+AuwxXM9++AqX7TOg+03tnWD7yzuvh7XdAqxl0YYfgIqiMgITdcOM9KCG6g6uEutU0OKb8jJrpL8HBwafM4AawevVqOnXq5C7scO+999KpUycef/xxVFVl48aNjBw5khYtWnDDDTfQpUsXFi9ejNl87Cl2MTLCrdjXTB0KIchL4S2kRG+jBoh4MFRvT6B+Vi6twi/m9xinXO21TXEthBLJcudGgrFgxYYNO8l4FzbYyHbOohMxRLId72ILh8lmlbaJqY5PmWz/hGdnlzB6QlsoSMWLJLUyHL581mds/x+KKPQUHQknlP1ksMypewmShf7OHZKZaJqGXdpZrW1msP06tnoY3EA3EEcQdgpGfmLRHm/F24L+Tg9We7PTNJt++CnGYfLP+QYSp2rgjsEv0vzWeQxZEE5BnMI29jDR8ep/PPITgwYi0SuFW0XxmqcOk003Ub1wrWcbk2zTANwLGEA61V6jEKoXnKqQ8Kr/KzFH+ODhnVROjiD3xQiU7r+724ZyekQHngiMU6+stXqrUJ0oVz2BMulslBf6o9xzDUp4Pk1Fw5M4yvqBZI+Ka0fjMsoij0xyKKeSBpz58/7/RwxUXMWqTL7pJ+91uIYguy7Uftj2cnZF+9II1AeczDoBI5Sz0X69E23CAshtBEjsiooEvv/1ZpKKdUOY0Jw8smwKzQr3AZAbEseXbS5CkRpBzup77VAM2FUjIQ5928MrppJszUcA5x5czI8/XovirMQpFMyuVNI5jQawNzSZtJIMUor9p0a+c9EpTu9TzS4ydAGhyYhg//NHc9HI//E/PACl8XjKpEdCk7hjwNM4FH9zvUfVTUsBTquuN6iag5eWPIcAVOmvmJtHYYHvHkX762o/LQRGUZNT9eThaNWiSylHQ/PJNgC92MImbYf7e2fRhl3mOVgwI+dc73qGaxZJqMYbcx8mwVrAT02H0OCmlTQbNhvzQxXMf/EBtKJkZNaz4EgGexoy83l3IFBKPV0vJhpucVedz6WAEILQXP96iU4Y/GjnKcbIkzvIMwhPGO7kLuVqMjfeQo8r/8DuUZDHIVQqUbl+6BS34avd4Q0MPLAUgO2RjTA7PfQHzcHvzYbxTsdrqIlyYwhD9s7nvgFPUhYaT2ZkAz0KWFGhPBqar8I+/EOu3jKDn36+DpO9opaoNX0sMeX5hNjKyTLH41BVVid1PI47IODn+6icMI+fHnqKnvem0O0ZjW5LPuHvnUY8558fv+3Op4uMlBxpUL1dqvDFi7C9H57vp0OD/lPL6Tu5hEq7ZIW2gV3yABZM9HJVE90rD/GiNi2gwQ2gkGKKKCGFRCqwUuD63kd0IUJU67A9lY7sNs/lYeVW7lDGeu2rKwYoPXhIuRltRxe0x/7Ui5o9/hfaNj3jSWmwE/HUeRC/E5AM3jufPdO6kvlOJ5b/MJCY+/qh3H2D2+AGNWerwDgmo1uLFi3cUWSBPicTAwYMQErp8/nkk08ICgrizz//JDs7G5vNxr59+5g2bRoJCcc3ARsUA1E1otJiiCKeGM4VfUj1IPQ3u5Rf0WA7NF2O1yKsOGDMY+62yfW81HOqSCLFgzctnmgvovQVrHO/RiFYGKj08Fpw44nmae0titBTUO04sHgc/5DzZR6vfIuH3kni6ZkaAR/dMt9nq5PSxk/DMwsdRCvaihakksjfrtDc85T+tBJNsGPnAIeZr61gpP1W9301oHjxakUex6RU35GqVr9vI8QAOou2fF9k57sihWiSuMgwxOcY0XAzNFqD9/toh/suR5nUh1aTrkJ5dhBKanXYdPBpZEDyFC7jidErZHkggyzGi2vd7+evzAOg0qMAxRT1YfffnmmiZVJXxMpltZIWIvT9Ukq38Aj135FwItFcNOIF9X6a0wj2tkN76Uu0p39D++12pCaI8cP7oKLQ5P+h0S1VJNJetKIhyWT54RjxhKdRLk45sykF/r8iVrgi3i9+CbDiOU9XGC3MbjZY/66qoLpkDClB80gFOckVS2sir27O7v8EIWtHw9IrgCqFCfKDotk2+kKirMVs/GIIOe+0ozDuUy7Z+TvNC/a470+5OZT9YSmojmoH8MaEdsxP7sl5e+aSXJRBcqm3IbxP5hr+2NiHRz+JpHvmOnocWgFSMvSir7CiYPBrSAJFnloeWcu4bCzji7DcU4zlpu2Yxy7y287ToJRGMqFV619JnN/2M9pchFM14SVPIKHPVyiT+sCAT6GyuqiaUXO4o6Cv2vLdUSrsCph7M9re9l5bW9Cobhd9gtBKaeIOPqgNNWWPKnzrrOYZNgojDUQil4ihRBQdzYguSSzLYX9YMjcPeRWbMRgk3L/ibdZPHsNn58a4qtEq+kcLp+q+11fn/EClJ31FV0IJRkG4igTptEVtlZZ8enUQVZXjQYK5lDtH5Z3iUZ++SFLiudpwAZb8JkjV6BVVVmIKpeeYX3G4ioQ1ydvFufsXkFiaCcDhiFQyQ/R5oFHBXtKKDoKiuN5/b+yMacY5l86gwugv7FmB7X34IfI2jjQup3vWBg69342p8x7207YaX7e+kNUJ7SkIjWJzXDozmo+oW2S3z/xSxU2mG80K8kPgt7v8jjO+yA8lgAxsMlqxX+P890r5W1vrSpeOopOiR0K/7Pwg4HHVZ1RIpzmDlV4MEN3d27oL7znQLEykiAQilDAaKseXOh4kLJxrHQ4fTQF7CCDAFgyfvIr25O9or32GzGoEYx4nIWQ5X/4xjjBHJYqEJnskc3uX+vRZV8njmJLCn3rqKSIiTg9i8ROBAUp3tmt72cl+IgjjIHooeryIJVyGuKt3Wl2cPkKAuOk+NKcAu0H/bvaOfuug1K+Kr/7QW3RmhDKQv7SlZO5Ngg1nowgFrd0clCZbsGPHgpkBoidjlfP5VZvrTvETCIooJYYIMslDIKj0IGMVCCpe+RQKa3t5JJz7js9Wf960Mw0hSjBJIg4FQQFFlMgy4kUMsUQRLCys1jazVx6krWjOJrmDOKJpI5ohgAVyJUCdCR5PJzQkiXNFXwopxik07j+i8nmhnkb6br6NSQ1b0pl01vOPO01ECBC33uV6HxVaiqbsNOue10akuImpPREiTh+j24XqYD5yfo8VKyoKuzkA6O+YgiBH5vOO8Sk+sH2LAQMhBPOQ7WUv71Oqofo9rDKqAe5740mCWhUJVyLLUFHchjeLOP2LdRwvDMLAOONVrN9rYPt7w3A7EZaMRWa0xn7Lw8QQSR6F7mOcaASL/3/FJ5JEPBulbuDeJ2snEC+VZfQWnZHg5eD6H84cJLo4nZSgcph0NlqlClt6wYxJeDvj7OBybAbZSt3KTVxpNpFluexMOHXOuJOZ4bpjZxx48UfqJ//yokm8/tVUHFYrBrMZIQSbVn3PlohWXgNc0Li/d4dC8G36RXzbehSK5qDne/fCuXPdu50I7r9xKFbnhbT8KA+7NR+DbSGvfvQuZjQeWz6FG899zescUUHQt+npIaeliET6iq44cdJQJLNW28ou9qOd+x68+y6BYxk8tvf4DsOgz/UVdZd3tH2lwcLF572DABY18iwsIQP0LWB3Z2i80b1ljDLyeC7tP0OUiKCCyqO2a0EjtrHHZ/t8udxn2/vm53hgmJO264rxGwdiLqT7A88yPfUs+k/b7X6+Ppo1nhH75pEdHIuoUBg8fx5/DTzbNdDPEULDjKmaK66eoZmSRjQRWLG6ZTALFiSSac6vSWjxF61fcLDdloFQJKnGWAaYpp3iUZ/eaKu0YGrXKG7ZXP3ONcvbyQU7ZvFKr3Hudu1yd5AfFMV3rUbqz5tqwOFy9PQ+vJqLtv/O6As+9Crm44YQ7D1KJLa2uyt9n3oQEbsPY7vZ2A2r4JlycPjnJ3AYLcQVHyHHmKCPx3D0OTWmLId7V73LY30noKmBomMF2H3PaQjL5+/Bw2m2rBTPd/KC9gZ+3ugMaGBamVFJDxwkEodZC2LJ6hjGHFqI2l4gGgQ2TCkIOok2qKiMUgezVttCikzEiZNeSke/x3jSjxwP1Lw08EkJFVAZqX/e/AiAFgeXu2fnhQmdeafTdfTMXIVm+0On5TlGHNNqePnll5/SdNJTjTIqWINOQBhDBOGE0k60IEHEUkyZu3pnFOEYMFBIsc7xpgZONT0d+Gm6qe3JsGdhf28quDxvGsCyS9HS1uO47Q4SieNZ43haK80Id4RR7HqY8ygkjBDMrvQ/EwYcON2LjMEaijOgwc0KHebBoI9R4ryVMjOmo4a6nylIIo5dHCCKCNZpW2lOI47IHFJEAodlNuvkVrJlPk40EoghTISQTDxlVGDEUG+Fjn+DKCWCLJlDBlkckiYyCq1ULQ6rKpxUOCJZiy9ZKECIaiJBjeV2w8Xc43gegH1kEISvsSjkNIp0C3alJ6ioGDDQlbas5x9XTWVJrizAIsyYMZFHIXbs/K7N90pD9aQQ8E4v1Q2aZdLX6HaEbK9IN3fEyv9j2JePhBqMLOzriBMng5Xe/KktcnMNAkTx/8+ZFSZC6CbaoyCIFpG1tt0nM1gq1wLwoLjxJIzufzjZaCmauDlfARSLE239BfgaJHQFwmKvoPORDSxN06sd9jmwlIzwU1tMweY/2OuE4MpuRqav8ZUrr+hiQgiB0VJtyN/4/XgOPBhTJ3d8fJjKhomRxITGox1aS8Uzk1lh3cJ5kW+grfGdpwZtHA/AqD1/kf7lcF7qehvZ3Xozon8Sdw00Y1RPPddeXZAi4lksV7u+CdJFM/bIAyiNNqNNGAWzb4DDjSEzHQJRCKy4GMeK0XDnDdBurs5J7IHFXsa2KgS6PxLazffaEq2c2nWiAYlEEUEJZThqrm/oynMUEZyr9uMX5zyf/SWU8pXjF8YYvI2HLeJVjjwbQdKjxfjcD2sEK599kZWozOqTqUe2KgqNig/xffPzuG34izBSQBSojnKcKU+jhC4GwIadIKX+OrRSRCLI6uutxIoRlVwKKJTFmIQRzDYkcLk6ghbKqalceyZh5bYQPJ0Vgw8sZuTuP3mlxx3u4jzLkjvTKWsjdmHw4aqc27AvLXJ2YnBYcZiOk8SzOAWWXI0EbL9OgIdHwhPnwdtvwxH/TqP7Vr/LpK63Uxhet8jN4XvnccM/M3ik/6PHPDzVFkrDaCPZz0fw7KxyduTAbX1MDEs3EfVAEWUBmLNMrVeQIbM4Yi2h8tmPuN5uAzrCoo6Q3hHlKv9j0ZCslBsxYWSo0pdhar9jHvOxom2S+n/snXWcHEX6h5+qHll3983uZmMb94SEQNDD3R0OuDsOd9fgzg8OlzsOO9wJGhJC3N02su4+M931+2NmZ2d2Z5MQkqz1w2c/zHRXVVdPWqreet/vixQKQ+18MWVJwmBWRWZx5UF3szBpBAjB9/2mwR3XYlx3MjKm+A8dd7fDS9vrufVFUkgggnCCsLODUmqp51e1kGpqGSeGecvVUU+Vx+Dmi6o8D2PTFxhbX0E53IPDPREB7AoObzweVztXdwC2DEfVxBNBKIv0VSzT1/hNul3oVFPLFnYwTAygBSc6BtIj8h5qle4QPy/uUaFMXc19931N4unPdTC4AbTg6DOT+2HaQJaq1RSrclaodQySuWygkJ/VPL7Wf2ad2sI2itEQrGETA0UOjTRRqHYwVy0lQ/ZOz5AUkUAZVWynBGHbgob7gRYpocAaFzDLFriz6jbTQrpo+13CCQmoN9CTwktHycHUUk89jZRRSRW1flqTlVTzozGXdJFMKCG40Fnv8YYDOvxeIQQRSThJxBGk3G70DhyEE0owQV5PuE1qu1/dePavzEB3ZFyW76TMc10F19BIEz8Yc2j08RawYiGqF+ou7g4NNDJXLeFr4xevQLehDL7Qf+QexzPc5HyEecYyqnwyQ+3KQGfSM8mR6R3GTGS0XzhpDeMDXUhO3PCVN4RmdXy+ewGhNaSmC0JNw/aj3NYhA6y8e34QcSGgSUgMF3xySTAT+3VcSx9TejwtaufjJSHgzNEWNt8dQWyYe2ogE+IJffp+yi97D8MR2OBTFJbofXPm1hbyr+9v4tvTHVwzPajHGNzAHXIURzQJxKCjM1jL874/ZVQF8pSHYNw3dGpw8yLgkyuxTP4QfN6/Zy//rztj4W5hwMV/QyZu8ds6WObu9vnsC1JkIlXUBDS4gXvyXEUtGSKZKML9dGYBHLiY4XqR34zFHerGhkniwwPds4LW37w0PMljGFHcM/6f3DnhGsiF1mAOXQZDQ5sHZ3ePhnnQdh3nyxO9361YvJFSOnqbhi6StG4aJtvTGJftf01sjMzkjsnX+2XDHlC5nqvnv0B63bYO7svF4UncMfWmPTS46XRY+dBt8P052O58m7BNgRaN3O+82enjOGrrT7tov+39uDR+ECVBMf7yCwFpPb+2fkUkVHL8q5Uk3FzHUz/rfLVK58d17mdZQmx7T1cFGHDAf6g/+SY2spWweafhcrZzYlhxIMqx8yiYSML3m60p1C5Ye1s4WuIm0Jppe1b7//vU2sOZdtr/vAY3L0rCo29jNP2xxHG7bXTrLGNNXyJNJFNLHc20eB+MABWqmidtt3of8C6MDi8l1TwIVXUxGJHgyEWVXwNAbA+ZQGRYYwi8TKrA4mAlG3hd/4gxzhNZrFb5lThETOJaeSEnyDadrVbPmGpZA5ddQqjN0xYGTHmTE654hx22rZRR6T5KSz5GyZ0YZdehXO5JfXfVatjbjBNDCcbOerYwW1/kTaQAsIntLFNrMTC81+QEOYKPjO8ooYIsUv3CBHsTL9ru50J5MgAy6XoODW/m6HALX2eFkSTD2zRZAhAjIrH7aAvW0ej1VPWlJ4WXtmqEgNsrd4OPQQ2gmHLudD3NCDHQ67nmi9Y+Y6DQcOKimHK2UESzauFd40vqaCCWKK/RslDt8POWSxJ9V9OtlcsPsHPKcA1v6vHQSvj7RSgUldT4ZYV24iK6iz0YuorWZ3gzLZQot15NoSriVOeV3Gc8z+P6a9ztfIYKVe2tE0gXz6TnkyMyiPdkMldOG8Yzz8PMC/DXzGpFYUiN49Z9yaByd4jyqriBLEga0VakCxaKO10030ccN8zOjvsjaXoskq33RHD4oI4aQwBhu4j4H5wkqXowglfPCsUSwFAWFdz5iR15wr/ZERKPATiFhv2h27AMyv8jp7FPaXl9FM0v5tP8XBqOz87G+V0gDSM34+VwSqlkqVpDnsrq8E4kqG73DurSMDQHXHwZoIhoqeWBXx/gp/8eh2WnwukeLC0In7DSVlJF0u4dfx+RvBt6rQpFOZVUU4cDZ4ffcC2buN7xMLWqoy7Sof94BV9DZecIfsiYTFVQlNtpqfXyFApk29jGd4zXXbnb+k8OFhMA9293M5cx7IOXcd34M8aNszDu+xhXVRzDRPeXIuoJnDvWytlj2gznX/c7mN+S2zKQxjRV8crXVzOycg0nrwucQbiDluhu4zMm9JBau51D/xPHtDXLOWXtJwHqGIDOJzmH8U7+sTtv3eWg9WZYnFjAqLO+cmugAkIZxNWX7aS2R3HSXk3Z1jg+X+K/uPD4jw7WVNfSfPFFYKnD/30sYO1Y9B9OR7/xe4o/O5OAyM7v7QH0Y5Oto3fsviQjRuPF67Zgve8QuOossLcu7how5iOY/G9AR2+nAehFt8FrD/yhY+620c0wjD4dWgqQIgOffxU1xIooxovhfh4fSfgIPhu+ngwCdHdSBil3+5+gSzkmbBz9pv5Ae9FYbcrbiFD3hVpDbcC6LTiJlzGMl8M7hNMavx0FLz+KQzdITWxEu/psBh35NePlcBYZKwFQRghq+1NQfxDUHo0qvo8Qgrp9Eoq9Ra7IZKwYRiJx/KLmYcfGRDGCFBIpp4p4ognCThjBDBX55JHlDV1L76VebuA2WOfLbPqJdMKt9Zya+juTU97nF+tbCCGIo+PKvlGZBI+/zsqbX+bCe/tjbB4coGU36SQTzh9bxehKgoSdQTKXJOLRkB0GnHZsbFCFvGl8HNAHMJD2X4Tn/GtVPTtUW5bTGNFmJFqo/L1RolXfNCD5IoTgrfPCeOThT5EzJiNvO3qnbug9KYx5b3KgGEt/kY1EstaT3XqZWkMwQViwYMfGr2ohJUY5icQxmLyA97VJz0cIwSQ5CgD1n7tgW9mUkY0AAK3vSURBVAE+s+kOn3WhMWPcP7j/5/tBdw/mDUsng+P9RFMnYTddTU6cxtljOnr9RAdD6f3hLLoxnBBb57/bIfkWDsgJPFYtD41j+Hk/kHj5cr6bvYagKy/Za/3eG6iq9VC/A1pqMNZ9hL7p607LnqQdzkgxGIlgDos4WEz02y+GzYSkVXRInuCdgHo+7xiIagpDZLsXoINdLazo359LD3kYlzXYfY0qfyOyH64g1Df+YfSxRJGsunZByyqsjKWgozHSQwhBaEhm6G3aYxmkINuNOOaxlOMdl3eoXxu1CS67FLc0QyeL/K1IDYfFDusFrANcCmwrENGveIv0hDlClIhgkjaKbNJx4OS+eYUsnJePd3peF4ft6bcYLPN22o7J7iGE4OUzw3A8Een9e+pvVlqTVoS4GglzuedP1y58geCmGs+96r72whorOWjLT0R26rXafoGoHaM/wzdBxnfvn0ijjMCmXFy85K0ACVY095/U/DKutie6oZyBFet8uqFwWdtCq6+a9wLffHAah6//rlOj/wkTa6Elis68eQvudFF0z2vgCqfDu7kkF765HDoYuj2/x5FPISyBPWRjieJAOQ6L3P+eqdO1SZwtj0MmFiLvOhI5YzJ5M84g7MSnkUc9h5wxlbjrLiaglyLAlpGolhCGs3tG8e7te9vNyCCFyWIUDaqJGuoopQILmnfCNFYO5Xd9KS6Palkx7pV7DQ1X8AIIWgzNwwEDEfPqbqeY7Q7EiijOOaqEhX+5lRpVzwK1gkaafDKXhlCMfwY66bkZ40QU/7ScS42qI10ks05tppFmjFknw2dXAu7Fqu0lofDYW4TfcjuDYnJ5sPXF7UwE5ZN23pFLI82k9BFPNykk2SINJ05KqWSL2kEDTeygBIGg1vOvMJERZIk0Kqgil0xSRAIHyrFd3Pt9S7pIZqPaCsD3+m8sV2vZoUo5WzuOqyzn85n+Pd8od9pv1RgOD72DgQWbq4XjZv6bzI/SeeHxChzjXR2u360U7Vamru5EvIihGPdqVgJR1NNAHQ0IBC50oo0oHAum41g9ApI2wAHvIIPc7uLDA6ykhoswilU5dTSwQ5UySgzGjp1D5CRvma2qyL+O1nMMlfuaEXIQKXoCOyjdabm+anQrEPlkiBTiiOJF17tMsY1huyqhFrcXRAbpJIhYtqgdlFBOPQ1EiLBdtGrSUzlCTOV7fqN6e3/PlvajpLbvR6/7gqiWWo478c0uNbT5Et+NL82Xzwzl5U4cEHaFEIKZ/+j9IfDTxURe5j0Gizy2qO1MEMP4Xs3xhpkKqRBXuo1hNmw4cGCsHgevPeZpwWciWp2ISN6AGPYdJUsO4c4rrmP17z6GE79rNsB1vsVfzkVHxya73nMrWSagG8u834VHKgbc77EEYqlUNRwoxtFEE9WqDjt2vwQMAsEGtZXP9B84SpsGwFXO+6lRdaRkllI74zDq1w+Cl57C/7cJcJ8r4EfgR4G4+58IS1s29p6S1GmyHMV3zGIz2zA2D/PZ4z5fR2MIYb00YqU7cO6QBGIe/Z5HXC+xRm2m6V0Ia4FGzc6lS99kSdwgSsdOYXmFxoCqDRSUrmRHaBI1oYEyqfuGa7a7Xi0NiGOfQJz0kHdTzHP13DnnUc457HHeHHxyJ++yXb/fBlesweVrtGrXzriiBUS31PJt1pTAxxDNzFzTOqPv7Hi7EVrfob7nc1lWp7XGyqEcqHXNXDVJxDFeDuc1438AyG0D2fTrybiitsOU/2ILbiYotoIvH13NsTMicJS115IXUBPHkqBVHRsPQM9ws+omJIk4ZqkFLGIl1dTSSDPV1LHIcP/Yo+QQWnCgY2DFQhJxpJOMjo4QLmTKFYi0cxCZxyFCZ2HrAa7PvlxnuZANRiEu5SIIK/3IIMgjPt9AIyXtjBYGCgODclWNUopIEU6+yEZDc3sEzguUiUmyel00+WS3hazZCsG6Ea+VOWwmicS6RUb7CIkiljoayRQpbFCFTBQjmShGEkGoxyMrjHqamCrHUEQpmSKFSmp6lCbZnpBKAqNFAZPESNaojZSqCqJEOOuMzVxiOZWzLG3u2GpLAWAhvKWOdS+O457fHuOiFe/w+6FrOOjNooDt96TwUoCB5DBRjGSMKMCFi2zh1ohQKFyGYuMDT9DwwbWw4mCYeQnc9Q1GVQIa0s97rZVWT7ca6rjd+QQL1Apmq4VYfV6+ie1CTkJ3Etbb14gT0X4GN7c6TcfXbm8NAd8Vh1omU2XUoIByqjCUQaNqYrIYRRLxbGQrv6nF2IXbu/cQOcnUl+3FTNHGuA2uo77YZVknGj+nj+82BjeAs8f2nTFJbyRORtNEMxKJBQvj5HA/XVRoe34L3B4aEVkb6RgSqVBlqQDYTr8P7ZLLmJMZRV3B7j7nFYz7yG/LGBFAU7kL6KfSCcbu9V5TKAQCCxphhFJDHRLBGrUBBQyQOYS1ixhQKCqo4mbno5SpSgpVEVvUdopUGZVU00gzMnchkUe+EqAHnRBVhLC1+G3qKVIEU+QY+st+bg280Z/S3qNmVPqujB0mf5ajtYM4V57AHf+sIKwFNoWnknvBrzw+7u98n3MQyyssgGBlbH++y5pCg2UncwPNAaffQkcP1hDUj/4rH0uGCYaVr+LH905hdtJIAtPew6qjx9XK2P6sjeo8a2q5PZJ/FZyJbglgdwipABVETUVUp/X/NPOPDLjZjo1QQjhOO2TfHXsXjJKDCScU4/PLcD3zIq5Fh8EPF8BdXyHLMrFjowUnpx6+g0D/Fiqodme+jX6YRrc/QIpIIJRgskglCLtXl2cHJd79rUaoVi2krbRN5oUwEPYNCIvbLVXt9j9T98AqrESLKNaxhUpq2UghDh9tu87Op1Dt8HrDDJMDaKLZXTZjWYDSirTUWu52PkOlRzxbCB2Rehki7mFEwh2I+IfQdmlx7130l9ksVav5zpjNKrWecBHKIrUCJy5KKKeRJpaxhtGygMXGamaqOSxXaxkocrq66/uUFJnIfLWMX9VCmmlhB6WsVZtZozZRrMpZaazH4rlWRKLbcHv2yvcJUW1uzgK4+Y6OGmfQ8wxIGTKF39RitqjtNNLENlXStnN7f6hrpwmjNPjxLHQMztGO79BeInGkk0Q6SSxjLeD+vcJ9vI1+Mn73q9NXvbYC0d6QqcAv02srffk3SxHxrFIbqDCqeM31P742ZjFLLaCYMqKJIJtUGlUzK9WGPvfc72tkiGQiCEMb/sMuy/6UPpFV0blg7MeUobvg+zWBw2dMeg6xIprf1GI+Nb4nVfpHU4QQzJFiKhGEIZGki2TqbBUE9FT7yh0+6cCJ6rcUbdKFuE69E6b8BPZqfDMoekkFzgTOU4h+/mOP7pIUYLw2nCZavImn3EpQChc6xZRRRS0lVFBONb+rpXxsfEdkAKObExdb2MEM57/4VJ/JCmM9m9hGjI98QE3mHAA03cm1s5/gsA3f+oTG+YTxZS5CXHNGh772JCmC5213c53lImKyN2O96GqI2o7N3sL546z8cmU3dqHtRZxnOYFTXmukUVq54YCbQet4zzUGRbIifiBbozM7byhtOfxyJgGfCz+c67flLz+E89ZZGkZYLUc0vuHZGmgurQMGMSGw4LpQ3j43yMeAo6gMjacyNC5g6GhiQynVwZH8a+hZARINKWgM5LHX1vZeQVlQjsCRQ/mia7PyFsh8dyj6rFPx/zeTNH93NsWU85u+iBPsBxLw33Tecbt9rO7xFO8hBIsggrCzme1+Wk8NNFGilzNI5O7UkNZ+X08Q+WzPjZZLONZ5mfe7EWAC2Z5NbGOBsYIMmcIx8mDu1K7gVv1xxHGPoioTYcMYQILmhKMfJyvRyZt87NeG0Oohsm1bZB/L9pdK2+BvvVHIYdpkHtJf9CtzhJjCQJFDkY/2Vm9PNpFEHBKJgUGTagtf2K5K+NY1i0f1V9pCQ2KKUafcQ8naIR3aqYsI7C0R0sM83UaIgfxFHsinxvdoSqPuzVtg5VRAQFBgzUXC3clKfnb9zjA5gDBCsAv3s0kTGluVvxbZYWIKl2iner/X4C8u3dN+s31JNLunb9fTjLt7k/4ym0/1H6imlsv1O/32VVFLFbWtEr9MECMCNWHSS9CExkXyZB4N+oyA4TneMZSgyR7KgRtn8nvyCCpC4/dvRzthXWnPWkg16YjvmKneaOIMeTT/MT4FoJEmlqq1xBPLBrawTK0lQgRTg0EHH4YQ//etEgYy/Gc48mc40iPd9PxTsMXHu+VAIBgQElV2PYT+jNDci8/dRZ83Q6b4ffe94ptwe5opVywtFZeBEYGI+g/5wZF+mdIBjOZgmp55kafLszxbjgJgh8UJ51yH7D8fkboehcG0wl9JayzlkX7/9GnB81ZIXY687O8B+5osusdzYXe5RbuMN10fU537O/LGU/iv5WmOskzr6m71GaSQWKxWLp76AD+kT9pJwcCmk8T6Er599xSSmis48ajn+SUjQCHDgvHcM7B1ECgbhtC56pzHuOa5j4Hf4Ys34efT8TfPuGMknjhZ4/JJbgNsQSqcOMLt5FOw/a+seeJWcAaeFzdaglkRk0+t3We/EIABp90B/72bzkNKO2Y37ZydeZ0r9xy/HS04GCeH70bb+5ZpYjyrLA5wtvNWD6ukiWZeMd5ncug5BAyxDS/vuK0TTE+3P0jrC7mRZoYz0Otqfol+KxEyjPPliR0uu85ER8N74ERrtChgmBjglzBid5il5gNujYXj5CEEYUdoOvLia4ia4RYvtNx3EHL8J2xhW4f67Y+WKHZmme99jJZDOFkeQSxRvGp8QAH5xPhM6KOJZKQcjBSSQlVEJOHkkEEyPWvQ8UexCAvjxDBiiaKOBq+n6V3609ytP4sVi98KsRz5NR+9/wjzxmreddJmO5z5XmAdsp7mgWQRFibJkcQQifOXk2DlNNyPeQHNkSCb8F0h1uK2o017C4AZ6l+ktkzmR2Out71AiSROshzmDfEzlOFN2tFKT/vN9iU2YWWEGBRwn0AQhJ1s0vpUqHx7skV7jQz3O/MwMdm7uKJwh06Plh0N5ia9i/MtJ3JF9OGMOmApgUWpPaMBKbnp92cYW7x4/3ZwJ+zv7KUme5+T5OH0I50wQvi3+pjBwl/AvpAdvGt7gnetT5JILPWiEU67G19xdKyNcNYtOz2OECAvuwI5YzLWGVORMyZDaJNPuLQE5Vn8QjK2m4SX5pBB1C4WvVXJXTD7UHhmAuqup/n0jpsxfj3Br4x4/WEoz8Z7Pyu47rdnWPd/U1h2wBKu+CKPBEs48tjHCdJbKApNdP827cPJtw/BmHtUwH6ki5SA27srQgjetD3Mb9b3+NL6ElO0MV3dpT5H8Lv/os4WFtDLrXPc9/0XH5xJUnMFAnjwl86yWgooHAHK7v6sLPDRdahKdxSKPPJ5OPfGgDUbmwP36ZD4LOQ9R7ifISfej9+zCKizh/Nh/8Dhnbx3C9hqfMr7v29jGisZUL6GjsmMQNxytDtR2IzJMOG/fvWsjiaGlizj4iVv8tfFrxN66L0IraNX+jAxgNGi84R2+4urbOdz5/lbaUvioiCyCHH4CwBUUsvctLcZU1CG32+VuhIx+vPdnveYnm5/kPFyBCFGMA00kkcWi5Vbz229sQWlFMfJ6bxgvI1RlgZfXQTViRgDfocD30Ja/a287XUOegIxMpKD5ASK9DLKcXvIRHr0xByB3OVxTy5/N9rSn+dqGWQ5U9nENhw4CCGIRpqwY0MiWMcWr2dDK+2H3QkiZu+eWDcnVIQQSRg5IgMdnUaaGMFAFrEKHYPJYiS3Wf8GQBGl1FCHCxdRIqKLe77vceGigmoEAulj4K7y6C62R0nBUd/t3F2/P1lEi0hClH13NEy7FVPkGH6QvzF320TPHeqDsmGdMQUFxBCJhqQEd0iURBBFBF8Zv3CYdgBAQNF6X2NvA01+++zYCFXBPe4325f4at4JwI6dZlpQKJpp8SYN6KsMFrmMZgjLWYcLnQySucRyGnashBmhfGX8goFBvIhhmByw6wZNejR5MouHbTfAicCJkHJLDeUNrXv9BZpnjPs744oW8l36ZJy2rjf228xl7B5PrsxkI+7kTNtVCeO04X6SbXZsVKkaDpITCMJONBFUDp8Jw2d6yyhdQ/18MsbyA6ApHCwGYsBc0qd/SZOtmuqVBTh/Ph7QYMLH2IbOQhc6IvZZVPk1gISI9xAWd1KkLFIDLk50BREyjDSSaMZBM20aaha0Nv27+QNgro9HSEsYfHoNhlDIiR+6t5X6hucJ7pj9MH9f8rr7q7Oem08rZ/Y3oZRN+B8/3bieTc/+LUBvPM+DD29ADfseEeS/AJgouzbb654wVnYP42pfxXbkdJ4c4WL4gw27LgyAAedfBa8+QWJDufcNlVezhSlbZvFz5uTdaEOgytMRngz3ov/vqNAyaGhzmgixwV8nBU4MMl4M5W0+pY4G9DFfYhvzLToGjvnT4f3bcHuGBzKUS8IaWqgPimq33e1lrhku5r9xKKPO/davr94+v3ML6oSHERGVMOdEbwnNcLH2lcmEGS1ef/UrL4TBGyP8jOa5ZJIt0oiR7Y+//8kUKdw8KAXLwy9yl/40OgYHfu0g/4KD+SL1OAoTonnSbiVk6NeI019ASP8ov6DdTLpnDhH+IAY6v6nFLFNriRPRxBNDNBHEiRgecb3EgZZxhK44DB79L6w4BLYPhZkXwT2fo5z+4aTxPdRw9E/LOTTRjI6BjkE6yV6Dm69XnwUN4fl/parBodqMcv1Iw4kLgaCCalzoNHgMd27No7Yb047VT7gd8NN96CvEiCh+V0uZ17yO1S07GKYNZLDII1ukcbXlQgCUUqSSxGQxigPluD4hOn6knMoRcgoHynF+qenjiCKdZJKIJ6hdKHcB/Rkvhnn13tqzls3MVUsI7oGhkiPlYOzKRuaEOXQwV+csQMdwJzihiircITBuR3NFJTXMNhZ6i/t6ukUSzhhRQAJtXqZ1qp4h9Pd+d+DskrTf3Zl02nT0EojzTlRavYXD+3g2zlyZSRFlNNOCCxeXWc7gSsu5XGY5gypVSwONXh3QYNGzsgmb/HnOG9e5F+gXOYfy0OjLcVq7x3Vherr1fJKJY6oYyyQxkhacDBI5xNM2Vnfi4krnffxH/5RckdHBGKZ0DXXvh/D1P2D7cKjMgdI81M9nUXj7q5S9chPON2bA5nGweTS8fQ/N/7ofABH5ESLzGETGCcj4J7xtCiTDu9GCQzyxXr8XCxoWNG9CBQGwIbBGLosOB9zvPvuYr/x2HbvhG7/vAjj9ffcN1TB6KSsu/DygXpUbiSrK67C1J2m6mXQfBiVbqJoRzk0H71pD1jblPVg6HRB8kzXFb987X11K6OkXE1C/0Q8F29rG0ULTOfm2/+PDC+1cNdXCv88OomJGBOFBgV8w47QROHB6kzPasSN1K1S3j3RSELvJ++2Nzy7HbgTqmwBDJ6V+O/W2UE5b9WG7Zjz34foJ8NAHqJ+OBJ85VlpdEWFG6zjXTVwFhLdTuMmUKeSKnWjjdQEHaxOIJYon/tpA6lPX8H8p97OF8ajSfGq39qP487NQM95HGf7/Fmo3pLbANLr9YdJJJp0khtAfFy7KqKSKWrapYtaozXyqf4/r64vo4OrhCEWtGe+3KZmE/dfxvUiiiCPRZ+K9hk0kebw5dAxPdlJwoaNoTSpRxjJjjbdOvujnmfq7BVUtaNiw0oLTs1V5PN8kVqy42l3QSaLnrWD9abYOwLjxZ7jjB066eTCP3HAeG8oM1qhNjJADAailnu/VHGapBR28kHorN1guYbaxkM3GNpy0CVkXUsRWiiimjGYcfnVWsp4aVU8oIR1CUFsJJqjHGi3PshzL+uyP6X/pDKLiyyG0HA58DXnh1X7l8unn0RNzn2ccUUQSwW/GYgDSRJLXMFlDHfPUMuJl273fQBPLPQkWoPNQ+r7MENk2mHLi9Oq3tWp8RvRAj+e9SbyIQUcnCDthhJAh2rSLknzeM1ZhGnP7IvcfE8Kzp9hJCAMpdNCaQDbTuqDQGBQOQjB2xwIe+OHOLu3rtDwz0UdPxyqslKtKtqkSDHSiiOBcnyRDOjrLWccbrg/JkClsVv5yKGL7AGjqTP7EBmsDeL5smoBxy/cY1fEISxXCWuK3O1QEdyut1HFyKE24vVhc6FixehbLPW+1/C8DV8xZAJ5SjsOfJen4f5EYDkEazE/uqNf5zbS2cb+c/AmcfT0EtfrvtyZRUHCuAuMJVM1xfvXjTaObyR4SGiS56+gw5l8XSkES2H2GtpqA5Ah49uQgpv9lEdb+7oXqC454gnvH/J2toYn8kj6MESvDaBq2Em4/ChLWdnIkAAG/nOX9Nk4M5d9Bj/KXgiAePD6Uk0fZ0WTnc5EMkYyO7o2gqH71dppv+Q6+u5T23uFIj7SM4eKwwp85yic5SUxDBcl1Rcx892S+f+8UikOTeXzUxSQ2VaC5HGAYBDfXEtFc45OQAfj2enwX+IvCEnF6sxu7aQqCeh9nO4lgg1HIvdardvK77H9GySEMFnmM/zyBZfEDQQSY09QmQrF/ksLWxI+7wpwh/UGSRDxbKWY5a/0m8tXU8pbxMQ86XyQsomNIGwARpX5fe7IuWaKP0asFJ8W0CQnqHmObLw008bnxo/f7nbYrGFN8DMZtX2HcOAvHjT/R/Mr9GNWxGHd/gnHjLJpu/B7XjT9T+99rOixwJfTg325PeeffE2gTcRRgWNj230sZSj5Bwu12vN0o8RqQfJMv9GakkOSKLDa10wLcWZKPIIJYxQaaaMaJy89Y1xqbH0xgV+6ewBFyCnkii/VZnxF5zaXI245FHv4iCP8baRlraKCRo8U0Fls/ppxqflHzuM3xBI2qiSjC20JGPPjqBLY37FpMxYIOnKb9xfu7+IaathJO3/Z0A1hj/4bqoAWUB/3Osdp07/Y42TZpCuuBGqgme4eLJwax7d5IGh6L5K77PoFbj4PQUnw1aF78+hqKw5J21sw+p7Su+2RSNXEjEoYjonMhJAFtyDlo+Sftss6lljPYwna+MX7lS+MnottloQb3u2+8GE4F1X7b80Nj2C3RccPA5mjkmrlPU/TcUEqfHsXmnEKGLOroeTJJjAzQQNcxsV1/mjwyHgq3d7w44nko+AavPpLQCR/+C+Kwf/nVKx/3Jq/cuYzaRyM5d8mzyEOngiZx2SQP3GLju7/YOUseyzDyAZBDZiPvPBoOermt7QMBK4ANVX4tRsmtKMP9rkiQfW+eYLJ3GZpqYcGNkdQ9FonjCfdf0+ORbLk7kosn2cmW6ejDvoEDXwHp4skxlzDyqtc54bcaSpPd8zUZUg/HPLPzAwXXEEIQ+fTjGDl952XbIYQgiXi3w0pxNqyZhL8Gmw9l2YBCFxr1WhAXLX0LdPd76/bfHuXWuU8yqGIN9dYQnJqNV4eczp0Tr0XXrCAEJ677AlCk1G4D3eUTLtqWcMGh2TjkpHcpt0diICgOj2Tqb2EoH8OhgWK8GP6HznN/cbPlUuzUsz2ss+Q1CkKr96ht0+j2B/HNbNSo2iacY8VQ0klmPssYccbbEFyFn9jeiM+RGav92ooVPXcV5hjtYO9n36ysNjoPBXlKfwPlsZ7ZsLLi/671ZFvxPBzWToRH3obGmLZtCFh8OMaSg/zayqRnCaTuDRyujgO5OD2Rp2y3eb9vpwQnLmKJIq+bue3uS9JFx8lW6E5i7OOq8zAefovmG7/DuO1bjB9PA/yz4gbvZox+d8QqrBwsJxBPDFspCpgQwZcIEU6ezOJ160OEE8osFnCl6z4OkZP4THuBH6xvco44nsvk6X6i/+2Nbju7//sqkTKc5yx3EkMUq9iAy8fAG0YI/fvQfdoZrdly23Ol5XzmWt9jg20mz1jv2M+9MuluaELjpqBLGKplImpjPLYN90D+o5zDeD/vL13avzmbdl3GZP9iP+Mn7OctIuivG7Ae8izWKfftsk6WSPV+3moUE0sU9nYSFWvZxJv6x8QS5d0WQhBrY2fB5LfxFybvOHYbWryUaYVzuHLBS5SExHHYCf9h8qmfcsbfD/MrJ4AJWvfK2txP66gv55aBsaCjM04rwH7mfXD7kZCyAjCoWzOU8BVH+NUxMHjY+TIAwmIh/LO3+L5kPXeuX8BvV16GFQtvGR/7LeoDhB76byJn/AXLA1PA3uI/8a8/FFVxGeCvP2tisi8YijvsWx7+MlEPHIU24wDk9aciw6sA9xgvnmhk7gIYPJOOzwUF1ia44GoulqewJOgTrrFe8If7kSI8kXOuwGOpNjzzaiEYedY3TD31f2BxLwoPL1vJQYWzEEBMi8dzS9PaEpgIQX7lBrKrt/D3hS8T6agL0L77nFYkDGDCGZ+yND6PqJYa3jylkeRtbYtSsURzgDb6D5/n/mC0LODVtwcS29RBFdtN/18RkbufsdQX0y3hD5InMjlETmKbKqZUVTBJjKSWBpJEPEHCTqKKZXnIPOQdbdl0jM0D4atLMR5+C/LnwuEvIG0OYgKsnvUUxovhRBJGLQ0olEfXwYpAMZR8trCDZlow0HFhoCFpoImcFrex7gztaOpbAjxYXJ0YB4py/YRqU2Xf8OLy5YXTgjnqBV8jh+KMk5czTB7r3bJducMSKqju0dfXH2WyHM1aYzOr2OA1AjcESKIAMEDvz5qHngbD4zXotMBX/8AIbqBm3Kde/beerh91kJzAYmMV5VRRrNyCzA00YgSYAESIUDShcaic5BX2f0P/iH/rn5Ivsllo/Yjf1dIO9XwXHsDUUOmM6XIiwdhJJZFKH8+Iehqxi57rUbmvSREJpGg9U4bBZN9x/5N5XNxQTlFE20r0c8PPpSK4a58/xm44OJl0f3JFBtPlRLarEtaymWFiAC3tJCp0DH5Sv/tJU1ixEEUEO456Fo561rvd2JEDT70KPhqyaXU7CFIuFiYO5dRjXqDZGgJKcePku2F5C3LIr4A74Vq+6LdvT/gPkkoiA+jHJrbS4tWrEhwkxlNMGfWqkQRi2ProS9Dg8TZriqT2rVsIvbyEpow23dh5LENXOprQeLPawYXbm9CworiICWlONtq/9nrStdJECzEEkSji2BH3BKrsetp8SCQ4M8ggGYspSWCyj5mmjeN6LmKhsZJYEUWpqmC12kg5VcQQyWCRh1CSmcxGnn07cDsAGhqDyWMpq7FgIZYoHrRdv8f9GCEGsVytozF1A86k9aji3MAFlfIaqWtC/XXlr5l6J59+eDbrorK5deK1BDvqabKF+dX9JHs6iY3lTCxazCM/3sXFhz/eLqOw+z4cULKKLz88ixCjBQH0X2swZ0Q9uTsicFkFA0Q2BSJ/j893XxIsghgw7TT+b+C98Mhr+JnKQqoRZ9/WWdVdYj6R/iDpIplaVU8sURgY/KrcL480kUgKCSih0JAEKzs2bGyeN5LGD67E63o5OxvmH4267ShiLFFddRp/mlSZSI1nci4RGCisaNixsZ0SaqhDQ/OE6Dlxel7M5VQRjJ3PjR+xWc/F4dy1BooAGPup93sMkUT1wRWsQwfaqHrQwhcrHFg0wZGDrNitx/qVqaOByWI0CqPHpUv/MyQRS7NHbN1/ezwllPltXVXdgDICXHdLp8O4T3F6wil7cngpwEFyPE/zBqkkUkUNJVR0WrY1xDGKCAaRy0rWA+5Q8U1qGye3XME4OYxrrRf61WvAXzC5fSiqiZtkEU8F1TTT4pdhd5gYwDDRfQSyTUx6AuM/nsvf9WZumXqLd8BfEpHinlD4TCr2N4cPNINHegOZItU7zq9XDTv1FPeVpqiniQg6ZgmUKRsw7jkIVoyD7y6C8v7MTh+PTXewJTzNbXCDtut22XTwGN3qaCCnm2QubSVYBhFPDIUUIXB6x1ez1HxGisGEiRBqXbFsbWgf3ilQKw7AmrHU+7sZ6GS1TGOjfSbf1ruQuJPFCgSHOv7JW/ZfaPTxqLd4NHhTSaKIUkTEp6ighbD9BTDcRncR/okpdWGyX8iSqdwtr/R+z22eThFl2LAyWPQnRSTwT+s5XOtw8gvzvYveOjrr2IRAYKD7JSjbEzJlKrVGPQgIu/IycosPpHJjJls+adOKs+hOzlj+Hp/kHU51SMdEjguSh5Ny6WK3jlm7d2hEYyUHb5nFjtBEZqWM4fuUMbQEzIgKB236gTBHA8VhCWTXbkN6zjm4BVK2Kgr7CZpoYajsnkY3gAlyBM64O+HegwhfeyBjag5iRdLXVGX9iku45zmtto8/gjlC+INIIQknlCJVhoFBCvEMJo9wQnnMejOzjUVsUtvYxHYkgsaZpxEwqcLmAqJE4Au2J5BEHBm4V5ndaQ8UdTRQThXZpBFFBDo69TR6DW7gnpTX0Ui1qmXo+FU7OYJCWFqYkiP57pZGROwO755KaojtQ15cvoTaJSePDOL4YXbs1o637yq1gVlqPr+qhX0q2cRIOYStFBOEnSDshHhCQ4vbGdwAiCxFCzAnCx2wkDyy3Pe0yCVLpO3zfu9LhBA8ZL2en9U8HJ5MwYGwYSXTY6AVQlCGv0t1E818pX5moVrRoW6zchBCm8BzaDcSe+5OCCEYwSAGkYMFDYlEIlirNvlJFpiYmOway2EHktxU7jcxuO+n+1j10iROW/YOuJxg7F42sb3FZZMtfPzXnjumM2lDCkkYIRSpMppooUm1BCwXhN0ve7fCoJiywG1aXcjhv8KJjwGK6pAYSsMSWJAy3EeU3PP/gb966yUTT6jofnqWl1pP9yx0umnBQQNN/KLmM08t47uQl8DeXlxcYcuf72eobMFJDbUc3HIu44LdOQA13EFqB4TYeNl2vzfjN4AFiQ0rSiiqqSOKcKRtOyLjLETC7Yi0CxDhMxkth+zjX8DEpCMRnmz0LlwsVCs4TfsLBTKfr4Ne5SbtUj9N5CZP4gMDxfnaiX/quANFDjasHokXRW3SUvpNXgBB1d4yI0qX88iv93PHnEfaZQJ2J0EBQGoBF62GVKwhubEMXUpSGkq5e+rNPDj+HwHLHrR1Nr8njeCBsVfwe9JwdCFxCY0doQnsCE0ihGAsaF4t8u5ICgmEEozdIggbtJj+k5ZiZC/FLmzemZThydj8RzCXAvaAsXIo3+mzqaUeHYMVrKPaqMUubPxNO5MH9BcAWMkGRGQZqrq9GJ9CRJZ1q2xEfxRNaISLMO992uphZEUDAdWqNmC9VnH7IsqwHHknNJwDC4+io/1XgMvO138LYxnb8PXst2PDKkztqEDUKLeHoY7epybzWaRixUJjgJDS0/gL7/EVuscLy2pRzLs+lMOebaC4XoF0wcT3aZz8OutaKymI7wXJOnLJxI6NUirIJZN1bO5QxoHTz3AWLkIpU27D2+eWF7lTf4p5ahlLjFVsNraTJdv0bsqp9FuFjjCTAnRKvIxmjrEIDel9DjbRwigxuIt7ZmLSswi+7yayKx/zfg91NnLxireptkfwfb8DQWsd2ioCiknvA75drdPkUATbembG695K85MxYHgWfm3hiNAk7Oct3HklYIws4Hv9N4pVGa/o7wcs48DJirZRAwYKw8egFAiRtQyVsAZK8z0TVp/rRQjAQAz7zrspkohd9rUrGCsKOvXyqKQGhUJecw7G/z0FVWlgcSCOforafr/6lVUuK813f8hvjih+wwnxAr0CMOAgGoBsMge9ROHZ5yEENOPAgYvlai0hBFGNW1dKaNUQ3iZBc6p25D46cxOTzmn1ijVQVFPLaNFm/I0QYYwXw/lQfetXR0NyrjzuTx03V2Ti8Di4OHCyiW0UGWVYrjkH1/89CZUZlHjCSW+acmvAkNCdUW8Lw244OG/le8xKG8f6uLxOy85NHkmEs54v+x3E7LSxXLz0LYJdzbw49Eyckefjosnvd+mORIgwXOi0fPgPiuaewPMI4B8QvR1x1bkIW2vyGNPTbZ+TL/sRQRhlVGLxaDS0ZjC6QDuJRB83Ue2cmyCkAj/RxClvIRIKCVE9WzNqmBiA5nMJWbHgRPcLn2plBIO4lNNIIt5rGd4qipCnPAg3HQ8BBiqtl3KJ7i9YGN0HQ0t3l7Vqk9vgRhJxqu/oa0kp+dn2H4pss3nL8ojfvjgtmmifgasNCwOTLRTeG0nTY+GMeeDvaEc922HBJpSeaxRvRUrJ69aHyBSpHQxurVo0F4lTOFKb6t3+o+0tymy/Mc/2AZO0kVytnU8qiWxgKxc7bvFro0L5r2RHddMJQnfgAcu15JON7jG43SIvY47tXWJl37lPTUz2BkIIJj1/DZdO9l98O+fwpygNS2oTft5PBjeA9eWKS99p3HVBk/2L8pE8cNShnA27Ve2vltM5Qx5NCw6+UbNYaf2Sm+Rf/RaWDAwO+9LF6rQatsbW8Pbx9Vgd7pGrUZKOcd8HGDf+jHHTTxgvP4ZyWVCLDoHSAXSaXRBQjjYx9AzZWQa9riVNJHf6vjcwmOH8F0kRIG84AzljCvLe6Yhxn/iVC601mHDpLeCIxvt7lEH7xPNbVuahlrQlb2tdtArqRALkWA7mQDluT0/NxGSP8Z03TBPjiZJt98g/LedynuVEvzJJJDDb9i6h2p/zZs0SqX5h8Llk4MSFEV6BvP4s5IwpbHvuDB65/g86rBju5+fShCGU2aOJaygn2BVYL7uVT/tNp0Va0HQn5cExPDDuCm6ffB1bz30LEdRIKolcajn9D5/j/kQIQejmMTD3JNymMs/zqSoN9e7NfmUtWJjI7iW7MT3d9oB+It0rNt5qdGqmhSbVTLpMZqocxw/Gb1RSjRbagHH7MQHbCeuGLuN/hCQR551ARhCKAxf9RRZB2BhMLhsopAUnCkWVqOUJ+600OxzMNOawlSJvOzKyHOMfF8HTL9MmNKu4/mA7mhSsdWz2O67pGdI5rYkUrMKClH3Lpj5EusM8jhRTeYn7+J/+DTZh5XztRNYbW/hK/QL4645pUmOIyGOL2k45VX7thfQCoxvANDmOy7TT+a/+GcvUWnQMrFgYzkAqRQ2FYrvXJR4gQcSCgALcegtTtLFMMIbzq7GQ31lKvWr0Pruq8De6mYkUOidHZnCt5UIcOHHg5AA52nvNmpiY/HGeOimEp04CiKTBOIOtjq7VMV1Xtn9DWk32HSkigQGiH8nEU0Utq9lAlIwgwgjzjv8L1tl47VR3OOkTw87nrcSTSL6mkc2XvQxvPACt2bwVsG4c6uUnwLGr7IISHnwfbj+GUII5UIzdV6f4pxBCEEow1QSOarnfeN7PCKAh0THcsou/HQ0/n84PT5/PoccN363jaR9fh65L5Kg2LyHfsFNfTpV/6ZYhuSa9n7us/+RC42S2soM0kjrsTxHxNHiiQ/qRxmPWmxkm/7yurxCCcEKpowEBZJJKoohjvlrulwTmkVtDMOY9Ch/cyq4WpQaWreaen+/n3COfpiE4kreGnsZ/Bh5HWt2OnWunala2xOT4bxswCznOrc3eX2TRX2b/ibPdPwRVdJKMoqJNYzOYIIKxM1QbwI+70aZpdNsDMkjmEDGJBhopVZVMEWNw4KBUVZApUkkXSdixE0wQKSTgQmcjWzu005PDS8HtzjpZjGa2Wkgt7tXDFWo9A0U/VrERcLvaCgRhKoRm1UKmSCGOaOqop54GXB6jXV5qC+vuOxCKs6EpmPxUA2vYFODvLGKl33ErfLL/mbTRaDQxQOSgIcn0SXnf1wgRwZxlOdZ7nQyWeWSIFK/rpAsXW1UR6cK9gpwpUgPG5fcWfTJNaFxhOYcPXF8TQjA6Olmkud3fVS1zVQUTWk7hQet1TJFjOtSPFVFkiBQWsIJEYllorGCK5i4nFN5wZsCrDWcSmLMtx3V1F0xMeiWh//cg139Xwz8/238hpe255bDuq1Fj8sfpL7JJE8mkk8JytY7rLRfzkf4d21QxAMf8HIagjCOPfY15qaPbKr7xMAGvwW0DILiq4/b2NLoXr+zYyRGZe+FM9g2jGUots3Gh0+zRpxKAFSsGyi/RUusCvfrPHbDsUADSa0uJb66kMqxN58qtNaXcYu4+6E3h8N6dGPOnw+gvAUWTsmJoTrA3Qc5SpN3tgTPROnJfnraJSaeMkQWMkQWd7k8nmcPkATSqJuJENIdrU/basSeKkXyjZuFCJwg7LnTCCOmQeVmO+Qpj2Ex49nko6dzgd+iWnxlZuYYWa9tcyLAGURizB9mU147AaAxFhjSQ0kOkj6YOaeLf7ztA+S6UKMRBr3u/teBgghju9b7dFabRbQ9IELGsU5uJEGG04OBnNQ9w65Rlkkp/smmgkXoaWcvmTj1menr4WrSIZJaaD+DNkJhBCkEqiHyyKaacZlrcRjdCWK8KGShyeJH3yBf9mK+Wedsqp4pwzY4rdSsOnLhIYYcq4S39Yxay3O+4IaJnh+XuK3ZQymxPNt0kEb+L0r2ff1rO9X4+z3ICbzg+pBkHVqws0leSbnEb3QaIfjTQ5BbNxEalx3urp9+f7TlWm84G/WWaaKaJJvJFFivUWppoYY3axCJjZUCjG0C+6OfxkLPykOtFJsoRWISFJWqN1+AGYDO1Fk1MTLqIy6ZHMjDTyc0fN7KtxrMY79mnhHuRANqkK9rvEwIMFXgfok17WrS2IdyBJznxkkePD2ZEujmk7k2M0gazzuUew3+gf80V2jkMFfk000IjTVw6/W5c4jjmpYxqV7MTo2/6CkjaALNP3fmBw9yaqgqDY7SD/vyJ7COiZTh1hn+4rgWrV1vKl36kU0I5dcvazmdzeCrnrnyfm6e4ZSve/egCRpUuR6C4adINvDP4BDqoIG2a7P6DdrnSFcZpd2Ad/kOfSiJm0rOIkhF8bPu/fdJ2ikigXjUShJ1KqrFg7dQYJG1O1JUXon45GX47FlpCoCEaaDMwfZM1lWah4bLsyjt3NzDC4O6vMQ5/lryDe8b92RhcAbcfBR/9k6Qth1EeuZqwv7xIbYbb7uFW4DTYrkqIUrunZ22OEPYAIQRDZB6fGT96w6liiaLIKAMJ4+RQqnT3xL01vXUgQunZ7s+tQv1B2NhOCRY0VrORPDJZxxa/sr+xmLVqE+PlcHZQQqkqx3dg0kILGprXIl/a5ODVR87l1YY4YCoIA06/HTn0R4IxjW6B2KS2Ekc0FVST1kNWEvYXI+Vg/mN5nBNcfyOcUBao5RyDWyNkrBzqTQbQanxrxtFrwktbGSuHUq5XA1BIMdPEeBZaP2aA4zA0JMuMtZ3WPUc7jk+MmXxu/MgGVch6Veg2Vip/DaN40TENuYmJicn+4sA8K7OvNXVfTf48aSRxuDyAt4xPqFF1LDXWYAiDRcZKcshgba7B6E/fwPqJA6dlF16O/eYjLrwapI7SNZh7HN4pmOb5cwAoyFkAQDZpiM5CuLoB6TK5g/6aM4DBDWAjWxkrhvJbUB00u+dN0079H29/9leunvscn+QewrQdv7MyOoepp34AQvuDeVAEfHg99uGz9/h8TEx6MhPkCJ4y3qCRJlaxkTyVSVUn4d/gXmTSpnyAmvIexvb+qKdf9du/Ki6fVbGdJ0xoT0Z1IZ9/eDZhzgZOOfL/mJcy0p0Nte2I8M2lTDtk2x89tS4hRkQhgxvg9Pv53DaKIWIieS13eH/R1sW7NWxitbF+t9rsW6JPe5EBIgeJpJwqLGhUUO3VKesvs+kv3PHKLlwBdY4kssd7heSTRTrJXu+hVq0sX4Obb6KF7aqEFJnA37QzMVB+HjLN9ZNJKXscVXskSkHOu69AQzxe8UIl4e27UbpGcCfiqX2d1Woj5VQRRgijRefuzX2VA7WxHCmnUkkNj+ivUGe4dVnSZBIWH8N4A02EENTrtANHikFkkwa4B8ZfGD+RQTKjxRDqaOBL4ycchiNgXSEENarO+/10x5VUGTUsYbVfuRii9ln/TUxMTExM9hdCCA6QY7Bjo4Y6fjeWcJPlUnJEOhso5Azn1dgPnco3V0djldCWMC1AW8c9htB0hAB5/OMw+vO2ndnQFgEmYMlhGJsKOFhO3Kfn92cZKQb9ofJhKoTcv80ASz2gaLSFcOxJr/LYcxuZfNtzABx2wlsgLT7JUHYDKzAaGGcj3NG7xm0mJrvLODmMMI8zTzW1zGPZLmq4vWkVgNQDFxC7byb64JOLSGqqIMzVzBefnM9fl/47QHuKYeLPa9jtD2J8kjZWqhqEEAwQbaG1ymXFeP5JjBt/Rj0wa7faNI1ue0imSPW6bbYam3Z4ROylkBwvp3vLbqfE+1kAFjSyPJPfnkykjKCfSPdchP4DjcEilxwysGLF5vkrUe4spKdpR3GWPIb+ZKKhoTUcgFFyD2trB6PKbiG47njKq9t7BwpQGrhsBJmebgH5TV9MGkkMErnkyayu7k63I0QEM1wMpEDkE4ydhcpXK7Dt+o0knGgiyJS9SxcvRAYzTg4jiggEggqq2SZK+Jt2JgfJ8ShgnPPkTuvH+2RlbqCZ+Wp5BwO4b0IGExMTExOTnsyB2jgOkZMYIPrxiP4yycQT5kkQUEkNSikm9bPS8Fgkcx7bxuAZ50LO77SNKRTk/4pIcC9GC0PD+PIiWDURcLmLBJiJWavSOViO3+fn92cYIQdzMod3mkXUFwsWNovt3JFyDKff/yRDH7yA6BlHEHL/oWgD5/BuxhKKjhtBs2UPxvfTgGEK+muUbX+AGj2w4dPEpDeTIhMYIQaRQgIaGjasHfSq23/33ilJGyBnLn7PrcS1dLaIEIiY5mq/7zfMewaLn6edYuRxXxAke4bjTJpIYrDII5s0qpT7PP5qOZXBuL3/1CsPwebRgAZq9wJHzfDSPSRLpHKAGE2jaqKOBmJEJDtUqXf/cfIQntX/QxNNfhl2FG4jXc1OXD57EjoGq5U7acJAcimilHiiKVNVlFKBQKA8N+1GoxDwCE3aCjjV8U/WGlswmgcAOgoN0AlvGc+ow+aw7bXD/A+WsQRhbzI13TqhlEqyPAkUBomcXZTum/QXWfzMPAaLPL7Uf+ZK133YlAUrVkIJpp5GbFixYGGI2H236p7CODmMb41ZCAQuXDzlfJ2HrTfwnv4VkYRRq+pZaaxnkOyYtSdJxHjfv9XUssRYRQJxbGE7ADasRIuIDvVMTExMTEx6Iq3Jv6qpI0jY2ai2Ei0iQYETF/U0erN0jpJDOFhMYOPFN9DUAjSGQUgd0t4Wcqk//yQUjvA5goLGMrAkeG1wWFoIGjyH0dqd++s094gkEccDtmv53vEbCoUDR8ApejB2rFgJUyFME+NYJTYAgkyRwnfGbOzYMTC46I0QEt+dQ8nCA9ituNKQUvj7xVD9b1BhgIbLCGGjw2BEsLbL6iYmvY1BMhdlKJzKRTB2mmmhlErv/ghCqfFkX25FILALC4kXP0xRSz0tTRYIrkfancTrcZTU69AQCpYWqEqDV58i0ErB0yMv4Obfn/HeuTbRSOhNh1NjCQOXFWtYA1fb79uHZ793sWNjhVoHuHXnAYaKAUSIMKxKo2X7wD/cpunptockilh+UfNZwAp2UIoLHenzc47QBiFoy9jTnp6u59bKQNGPEWIQuWSyivVUU4sTnQRiGCkGE08MNmyEEUKZ8s/aNFGOZAD9sIYswH3bG4BGZMhyggfNZ/GNoRw5EEhbBsffj7jsckIJJldkdMWpdmsW66sIF2HU00iICMYiTHt6IIaLgWxRbiPRGmMTG9VWlrKWJpo9LyJBI03kikysPTz8OxCXWc5A4Rb/1DFYqFYghGCaHOcxOFpYZLg9AJVS3OJ8lFudj/O481U0nzUaHZ1So4Jmmr3bHDiJJHx/n5KJiYmJick+I0ukUq4qCSWExcYqcshgpBjMBDGCKlXjV/Yh6/UYGGh2JzK60s/gBkDhsHatC0TyHDjiOei3ASZ9gLj9CGLtwYSJ7j9PSJNJWLGgvMvrHWmihVrqiSCcdWoLd1r/QYtqYasqIo5ommnBhc5iVqGd8iiWU+4BH2eFTmlMwGo3IHQW7hVBnRhLC/l2c2pr0jfJIZ0yVUl/kYUFC/UevepWAmmixxDJKDGEyy1nMjgoHRlV5X1uVWlVyMgqZMo2ZEIZWv4iuOF4KPga4teDcHnbeWL0pRx9zKt8mz6J5y+1MnBTBHWRAhnagIysxtBcnGI5ct/+AHuRWBHl/VzlSbCXIVIoV5VYsEL/3/9wm+bMfA9pTXkbSxQ6BvPVchaoFbyo7vVO1k/RjuRl/b2A9cN7idEtQoR5J+mtXm2b2UYsUVSoam85Bw62U4LLcGGR7stutdrIajZCMNhSriS+6VCMoKVsD5lJlMojOKGIZy+2keO41NtOA02Mk8P35yn2CL5Vv/KF8SMAb1se79rOdGP6y2xqaaBGbSCB2A6ptHV0mmjmHdsTXdPB/cCPtrcY6jgagG2qGIDRWgFleiVWEij0GCXLqeJR3S2sGoSNM7RjvG004+BN9XEHkdYYYQqYm5iYmJh0D7Sx14GzAVVfhJZ3LOxB+OIoOYQ79aeJVGH8S3+HfjKdhcYKAGrbeY1IKTlSHMjH6rvAjdkaweEvw6Dmtb1biVuKsLXwre1VegqZIpVij3xMIFrnBrOYzyq1gUmMZKg2gI9c35FDBhMYzhwWYwDFlMPIrxEjvuas7z7ivR/jadZd7mRqyoZvdgVNgCuoBhHyAAQtAyOCd2JOJkQm7JfzNjHpbozSCrhef5ha5X4uNbYzupX5eL21UkE1i9Uqyl1VaPh7iLroqPUmo8vhzLvdn595Bde2fO++uWljOCM3H3nnER3qWXqYySlaRGJBI5oI6pQ7S7MQgmSZwDpjC+L0O1C2Olh8OJoUnaSQ8cdcDthDYomiQPSngmrvxF2h2OqZxEJbds9ARIje4RHie45XyfO8n30n463JFDaylR2irK2MzwqhPXgVRTEPEBKyBAHMV8v4j/4Z69TmDseMNcXaO7BdtekG7uy66+tIIbnVchnNtLDeJ+HHaeIorpYXUGWdz2r7NwT34hDm/jLbK7ZaSBH1rnoGkIMFjR2U8oNyr974XlMtOKn1SaSgo3cwuAmE6elmYmJiYtJtsE68FevUB7D95TW0/sej9es4GdwVB8jRHCGnUEM9v6h5WI02L/j2RjeAR6w3dN7Y5X8FWx3+SRdE29/vx2Mtze1RmrI5dB598rr2oJ8P3CbDnblwghhOKCFsoBAnro7aUwLGHTGf2kcjWf+4gycf+g4m/wd3ulSF0By8fyme5BQuRORHiOg3GG0zx78mfZcRDCSZeIooo46GDvsDRd8dwmQaaWYtm1nFhp227+vNqiFxXXAFMrKkba+9Dv52ScC6oT1Mjz1JxWGgKKOKQrXDuz0V9zNGSIU8+WHkfQdjXDd1t9o0jW57iBCC/iKbHJEBKAaKHOzYWGNs9JYZwSBGiSF+YacCsGIhh/T93+l9wFCRzxhRQARhNNJMDJGeQFGDPDJJIMZPZHW7j1HS1xOun0gjlii2UsRAckgkltlqoXc10ZcYH5dPEzelRgVpJFFAPinEd3V3ujWjRQEFoj922gbOV1vP437b1QRrQWSI5C7s3f4hX/TD5jn/y4y7iJYRhBAMtBnbthlF2D0Kd0HYOoSHtyeZeOQfyHRkYmJiYmLS3QkSdkaLAhKJQyKpE22GtlYPCF/SZTIh7SaYScQRQjAyaTOHpl7smb0G1i1LbOhZmryTtZGkE3jc1E+2GeTs2FiDe440WhZwlDyQWKJYwAqOFQd3CH3b5hmLZIhkxmpDGXv0T1hmHEjQjGmE3ncEg3I7amO3jmNMTPoiITKYA+QYckSGVzJmV3xLW+ZNozkE46WHMW77GuPBdzDWju60XjhhyJB6rDedgpwxCTljMvKuw5HxWwOWT6FnGcSTZYI3YaavE8IkOYqhIh8NSQoJCARxRO9Wmz3L16+bESqC2eBJDqApyRhRQBFtnlzpIgmXchJCEAKBExfNtODEhbWXaG5li3R0DApEfxSKAfRjIStwYbDO40nUOvjQkKw2NjJBukVkQ0UIExlBqHCLq36vfqNBNdKsnIyRBdSoej4y/F30+5FOJGaGxPZsYTvbKGYHpSQJ0+i2M4bJAQQTTAjB2LAzRY4mqY8ZKseKoRSpUsqp4kPjGzKaf8eOlcliFKVU0KIc7KDU68XrxIUFjXBCvatndmwe8WS3U3XLbjlXm5iYmJiY9CwGiBz6iywaSaLSJ0ojkKcbQCzRNFIEgFEXRfHs47E2R3LpkufI/GIQ3xzYSaKA0Couzh681/u/L4kTMSQS6x47eMYMaSSRIGJJEW2hnqEEU2KUM7zlaEDQqJppohmB4DP1I7onlM2KhRQSWK7WeusWiP4MFv3ZrLbTQBMRhDHD+a8OfRFiNxIwmJj0YrJFGkWqlG0U04IDY3sOzDsSXEGQPxs5ZDaIjgqMStfgvg/B6ZljV4XBK09gnH8NMn9uh/L9RBoAy9U6NGSnGvYA4YQyRY7ZOye4nwgXoRwvD6FYlft5DaaJRCIII51kdAwSiWWMGMz7zNllm73D8tNFjBFD2SqKqVG1LGQlKChQbbHNuTKTJazxfrdh835OIG6/9nVfkSISWKnW00wLVdRylDaN2foiwD0pHyYGsF2VYKDQ0Fijb/JedXOMRdRQRw4ZPG+9m9dbPsJAxyosLDXWYMXq1nfwoZQKNGFmJfJFKUUQdsaL4YQRYiZR2AUhIpgwEUwmKRgoilQZ8SKmq7u1XzlTO5ovjB9x4cJAUUoFYYRQqWrIEqlsUIXsUKWkk0wl1WSLdFapjdTRgECQRJzfAgO4syKZmJiYmJh0F1yr/gvOJlRjKVrGgaDZkIkjdlmvPSPkQIpcZZRSwQrWEk0Ewdh5wPkC8/Rl1NFAukjmZqtbg3isGMZWVYSxYiK8+RAGghbgnLf+RZD+EzcoA/w8wxVMewkx/U0OsPQcPTeAXJHJfJb7bYsnhlO1I4kT0UwSI1moVtBIMwrFarUJwOMpkuhJRufybNMwMNjCDgqNIpzKiVVYsQkrz1pv55OW73DgpAUHC/GPhNHM4C0TE/JFFp+qmdiw4njnBlh0eNvO+cdhRBYjbjgZIdsZySrS2gxuXgTMOQHaGd1ao1+2ehYWdkUdDdTTuAdn07XoSseJkzBC2GYUkSaTGSEGsUXtIJoICtnBIJFHitw9Lz5zdv4nuNhyCq/pH7COzQCkEO+nUxYk7EQRTh2NgCKMEGpwoVB+WTF6MkIIMkQKtaoODckA0c9r8W7BwWa1jTBCaaYFCxoLlPvFXGc0kCzisSkraSSRKhK50XoJ5ztvJEKFY8NCOUUdXqKmZlRHtqgdNNDEBlXIeDPJxG7xke3/uroLXcpQOYAdlLbLNyZYyXpWqvUcoI+hlnoqqaaBJpartYR6wjYUqoPBDSCql+hUmpiYmJj0Dlxf/xWUe3Kpz7kXwlIIunjNLmp1pJ9MZ4DIYb1yR3C04KAGQTMOnjLeAGAgOV6jm0s43SGkn12JbxjpsrgBHLfxW7575yTOP+wxisOTsQWX0vDX25Bp6wAYIwv2/IS7gFSRiBULEun1dCtkB/+0nAtAsoinSbmzkZZR4TYG4CScMBbbPiZUhvAPx928aLxLDFFY0WigiWDsHN5yEUNEHi2iBU1pWLGio1NHA5vZ7teP9iLwJiZ9kdGygJVswGLY0Bcd2rFATRLq4ytQc0/E+2zKXALnXQfouJXHfDxGM5Z1aKIZB9so7rBd6Rrq0TehsqPO4xvA7LhaltwUjlXrGR6pA2QOX+m/kEcmi9Qq0kgmUcZRR4PX4LhBFRKq7LtoyY25LPAnmSrHeoxqsIMylhir/fZnilR0dHQMqqhBx8BAESN7T5a/MWIIxZSzVm0mRkX6TeNLqaQQtwChC53fWUqxUc4OSlitNlJGJcme0L5j5cGEEUItdZTj1o9q764abWZH7MA8YylL1RrqaGCyGNXV3THpAdiElWlyvN+9Wu/jPv2m/hHP6f+hkWbvNt/PraT5aDREEbFP+mpiYmJiYtLVvGi7h7vlP4nBPc41UFTSttC+xccI9Lz1burti0mwh7Q1kA5/m/Eg87IHU1C1lgXvHM1LzYfTdM9pXoObhsQq2/RmewIRhHGxdopfNvgKqlnpXEe1qiVVJHm3b6HIK0lRTS0P6y/xpOt1skknmCDKqGAHpdRRTzHl/MoCXlD/5TXjQ15W77ujXdBweQxvvrQmiDIx6cvkiSziicEpHNBZyOfcE2kzrgnYMhw2jIbzrgHZDJ4nHIN/QBz474BN+C/ae7b9fDpUZuKXHMbnb3254tGZLX/uBPcjE+RwDBQrWM9zrrbfIdlHkqiEcn4x5u1We6bR7U+SJ7LIFmlYsRBNBKvY4Ce45zsR9b1AY+g9xqMRchD5IhsXOmVU0o80Pw81FzqjGYINKy04ONVxhVcgFSBNul/IISKYD6zP8LrlQQaTF/BYO8uS1Fe5X3+eGCKZLEZxknb4riuYmAA3aX/tYChLIg4LFtaymXBCySaNNNz3p0TQj3RiPYKhYYSQ6dF0AEgQsfuv8yYmJiYmJvuRaBHJ9baLmWG5lgH067Df6dEkay1rERbevEBDCBdEKjhU4ci1cuQHb5O4bgY/1L/Elc/4e0j0xEQAQgiGigF+SeMARurHc7HzVsbIArJJC1j3If0lbnM9wVXW83jX+iRXiHMAt0EzEEHYsWP1et4DKD0CVXMStrpjcKnA9UxM+gpCCF61zuA32ztcfWoJbZmSPX9hRQQ0/zREIQfMQ94/3Z0UYcYByLNvRcjA91QCMYQRgh0bdmxkkUpsQ+Yu+1dW33Pu0QlyBMfKg4kgjB/V79Qrt5NVjvS3RezuGZnhpX+STJHKJuVOgR2EnXFiGBuNQlI1tweIXVgD/mv0pgycg0Ue8cQQIoJZwXqySaOEShppJJ4YwkQo6SSzQd+B8/epLFoziVcGNzFgZB4pWixZpHG64ypCCOYAOZrzLCeQKVK51jWDNWqT32qWNEVS/ahRdbQoB3kikxSR2OFBYGLSGRO0EZylH8Onxvdsoxgdg2LKEQhEUwSOmRfg2DGBYsowUpdjHPQmG4O3MphcBohsnLhoUW0rVgNFbheejYmJiYmJyb5nmpzAa+JDQlQQLTgRuBeXnThxKZefru60hHR+e3Ql51R+zpqSSzxbBVrLQG5x3cJQkc8var63vKWHTsvGy2EczERmMZ8mH694p3KRTSpxIpoyVQngp+1kYODAoJZ6DtEmkUkKi5wrWcAKGmnyO4YAmmkhCDtJxNJMES6lobb9C1yp7EByuaOJf6WaHm8mfZvp2kQARkyA+8brnOj4BzPVbFoeexlKA4zVLQ1QlI3xwmPuGy2qBKa9iYzf0ekxSqn0+76Z7dw5zcLts5xAYG9di4TrDrYF3NcdiRIRJBFPFOFEEcEGo5Bh2gBOkIfSZDQziwW04KCZ3fPeMz3d/iSZpDBJjCSbdIooY65awnpV6N0fotpWY4KwE0YI6ST7uSb2dEbIQZSrSkIJZocqZZDMw+kZiFRSQzzRoGtU3Pcq+kfX0rxqAu+9P4oNDz1KiVFFGMF8aHzLv41PmKPcSRjGa8OZZf8v0+R4v2P1NcH7XfFf/XP6yXRAkC1Su7o7Jj2MR2w38qp1htvQ5tFw0MtS0O/6jKZZJ1O4MQ3HxhHwy9lw11eo8jTiRSzHaAdzonaYn/duuk8IiYmJiYmJSW8kTSTixEkzLejouHw83BraGYrAPUb+Ieoa4n10jFT4V2xmm5/BDdwJCHoiA2QOH9if7jD5/EXNp0AOoE41Uk9jp2LqFaoagP5aNs9a7yCDZEIIIpIwwgihv8j2GiSdOIkknFBCwJEFrnRap7P/qzWzqJuY+KIJjTMsR+HEBaUdPXRJXgGuYPjtFNg0DjaOg4XHwKPvYiyaHrDNFBIYJ4aRTRoRtCVfOCd6KrF3n4z9L/+HdcgPZBasYPCQQk4ZLnn4WBsVM8JJiuxZ2ovxMppCiihkB5txO1mdYTmaz+z/IoUEwgklfDcTyfXMJZVuRKZMYZFaSSghWLGQSap/eKmIAAUS6X0ZNdPil0a7pxMlIjBQbFCFGCgOlZNw4MTAAAx2qFLs20ZBg3/G1pbqWNbu0EjLSqZ1zOLrMr7QWEGJUeFXJ6kXGSv/LOuMzSw2VrLUWEMZlbxtebyru2TSA5mojcTmtLZptn13PgQUJJaEfHc5G097mh9cv3GR5RS20LYKNkjk7Jf+mpiYmJiYdBVCCFJFojcxmC8NNAVM+BVnkczLCeNv1d/zhfY2KnguBhBLFBVUe8sl9OCFZZuwkkYiW30E1kMIokU5iBJhSNXq56H8wkf7k02lqqYf6QDkySxKKCeGKKIIZ6IYSYNoJJcMVqoN2LDwkvU+LnLezGLLNhD1oIKRSEYEmdNaE5P2pJBINBFUBNVCcxTuEDzPIoDSCOyDJeDzv2N8eC04/LOabvP8tScLAXzk/b7F8/8VGLy72MF1Hzv8ymsCZl8dyoj07nvfppJIPDHEEEmlT7JMIQQpJLCJbdh2M4mL6en2J7EICxPlSMqoxImL9Wxhndri3d/qZm34iBlmkIJV9Cyh1F1xgBxDEWUsUavIEqmEbzgA4+bvMG6cxaYb/8vi+dkBainSg8Pd1ncPvnoWr+ofMJfFfjUiRft0xn2XD41vecP4mFIqOE5MJ0nE7bqSiUkAJoiRAAgEIyOSOy03MDKSQor4il84yfUPqqn17tvdlNkmJiYmJiY9mQlyBAYKKxbGMdS7/SHHi17dn/akWCVvxx3AOaFJtCqlVFCNzScU6yJ58j7t975mjf0bThZt2sJlVLLKWM8kOQrD+5+/5s5aNlFMufe7EIID5Gi2Ucxy1vEv9Q7/Nj5FVzqb2cY6tnCv/hyV1CK0BkTq3yHsG86MdvJ2uhlaamLSnjSRRBW1cOV5EO7ReRMumPwfSFvbeUWnHRzhdJYYoePfH0NXcPIrgZ+X3YVUkUQZlaxhExt8IhkBDhbuMF7fJDI7wzS67QUOEKNJxz1RDSGYmcZslEfMM5Ar9eBeqH00QQ4nR2TQSDPzXKupevFeMIJx34Qalb9Pg4E/4ifmOOkdcuIsNPj8RqGi7YU505iDtZ0zZthuunD2BX425mFBI5E48mUgo6aJye5xkBxPOskoFHceFURWdMcy2TGCl/6SxWWcTiJxBGHzC6uJ7kXJYUxMTExMTDpjjCwgbe2xtNzzAb/d8iTGC09jNAfzvHqbj4xvAXjS9TpPul73qxck7JxtORYAY95hGHd+QfOtX2G8dQ8heihHigP385nsXaSQXGg5CZvP2P1V43/ki34dEshdr13i/ewbIQRwgXaSd/wfhI0QgvmGWWSSShghfGH8RA11AAj7OmTivTybFEGcxZzWmpi0pzW6TkaVEX/LBdhnTEM+MBV51LOIY56EsFI6JFywNEHa6n3etxZX906skOoTmbhNFfvtm2AZgWU3vdzADC/dKwySuWQaKdSpBkJxuzhvVFvJERnUqnpvuSTikEjGyWFd2Nt9w1CRTwoJhIoQ5jVsIpA915q3BM69Dd3j9WdBI4bDuNx5p7dMqEcD7339K6zKQjwx7KDUuz/C9HQDwFAGm4ytDBX5xBHNHZZ/dHWXTHowGTKFTCOFMEJYJpex9o5xHNlyEevVFhpp5lnrHRyrTQcieJxb0Jwan+rfe8NL7Vix9TLvXRMTExMTk0CI7f0pfOU6QLj9tjaNhEf/i7jlOO53Ps+/XO+wVm3ChU6yiOcU7Uhv3UlyFGnLTqXwg3/g9Q5ZfhD6c9lEXNfzx7iT5WgGkMNS1gDwpvERC9RyKnGHZqWSSL7IZrIcyQd6OpvZzm2uJ1iiVvGc9S4ApsqxXChPJkQEYVM2ZhqzWVPmYssXZ2JUpIBUtGQthcNeQga7k60FSXvgDpmY9HFswspBYjx1NNCCg0mMYoPawmo2otuaUSffD68+jp+3WkwRHPcIPPo2gSVn9g5PnBi0z9reG6SSyCQxkmYcOPHXjBwhBpJDBk00so5dGyhNo9teYJgYQDlVRBNBE81kizQWqZXkkOH1dBMIr/v0cDmoK7u7Txgkc6mnkQhCaQjdQWokbK/xKSAMnEO+Q2IgcNvRHU0WdhjNlIRUIARkk0aBzANglbGeeBFLpUdctZXdFSvs7awxNpEo4lEo4kQMwszqavInGCkG0YIDl3Lxb+MTrlbnM1ctpYFGgrDzmf6Dx+jm5nA5hfnGckpUBQYGB4gxXdh7ExMTExOT/ccXizXw8fQGoC4OuzMUYYXf1VLArVP8hf4TK40NrFDrsGPjBu1ihi+5isJ29Zt3ZO6n3u9bLMLCREZ4jW4udBpUI5MZjSF0WnBymHYAsSKKDWwFoJZ65hnLvG0EiyCesN3i/b58RSRzXzwGP6NA8QCYewLGzcdiC6/bL+dmYtJT2U4Ja9Qmwgnl96APeNL1Ov91fc4iVsLiw+gQHlqahYzfjnHPwbB4GpRnYMVCOim0KHc45WnaXxCAFO7aSrnDwxUKw+PA1rrfd58CkiIsnDHaRmxY906sECZDWa7WUUMdVdT47YuSEQyR/QnXgljH97tsyzS67QXSRTKb1DZacCCAROKYqc/GrqwYGCQTjwOnVyy1N3prWYSFUBVMIUWkiAR+uMXBee+WMXtVMMRthdPuwh5RSxgRVDQacP8H4ArjJwDuJua0x7ht9BimaRMA2KS2U0EV5T4Cs3ZsptHNwzK1BgcONqltHKlN7erumPRwcmQG6SSzmo1EqDAW6CsYKHJYolYBsMBYzsvO95BCMl2byHRtIpPlKKJaRgFQT0NXdt/ExMTExKQDtotWgzJQzkZkaCLspQXK6QMsPDizVcfHI0pub6DZWk+xj4azExeFRhEzmUMZlQAcKidx2MAsPlnub3SLj/HP/NmTOdw6leed//V+L2QHG9lKnspigMjhZO0I78S9FYsKPCX9Vv+VX78cQ0DNKGWBucfD9Df2ZvdNTHodMUQBUEcDDuXkn5Zzma8vY53aTG3+b7DoCNoSLCiIcDsKSasTxnwDQK7IZqsqppEmBolcHrCf1iXnsr/JI4saakkgFqWUn6PLv22PUmut5QXu32U7ptFtL9CayWij2ooClqjV1Kg6XjX+5y3jayyK6KWGownaCGbpC6hVdSyyLOL7M6eT2DKBOhowvryElp/OogUJGPi7qgoq3v8bCWM2AFBqVDBPLWWd2oINKw6PO2cLDsKEKZJapxpYqtawSK1CR2esGLrrSiYmu2CCNoL/ub6hBQez1QLmK/eqsxMXq9nE33R32MdT+m0cZB2PFQsWNFzopIqkruy6iYmJiYlJB2RY54mB/gxT86w8cqyNmz914DQEqVEC7a/XsxX8dIodOJnNQr8kYXU08LdJdtaU6jz1cxMoAQmb+eKK3pOMaIIYjob0ysk4PV59a9nMZrWdmfo0jtEO9quznMCC7i/o/6Ui6mDYlhL4YNFF2LHtvc6bmPRCYkQkKJBI1qstDBK5DJZ5vKd/hRz+HcbaEbDwmLYKCRs83mltmxpVM400AX1LxzlUBjPfWMY6tYUGmghjz2wRpuLkXuJQOZkI3B5sQdjZzHakz6qM7uNGHt4LPd0AztNOpED0p54mHnK+iBSSo+RBqG158NO5uA1tgoCx4UoQQyRKKV423med2oIVi9fg1koQpmbDZ/oPPKK/TDB2poqxjJWm0c3kzzNWDqWfSMeBk9f1D73b7dj8si9foe5hhONYdqhSXOiEE0oqvWeyYGJiYmJisiuumBZM/WORtDwRycY7Izg6bhBaJ9pHrRNVcBvdAB481k70A0cRPGM6U695ioLQToxKPZBIGc7V2gUBjWEOnNzvep5wFeo3eXXi4qGWfwGglMIwDBzKyTfGLIJPehTCyugg9p4zDzHyK0L3cBJsYtJX+Jt2Fv1EOgYGVzvvRylFhvR55iw7FLdZyJOJdP0E1Nzj/NrYSpH3c6zoO0a3WI+XIODVptwTTE+3vUQ2qQwSuaxQ64gknG0UY6BIJI6/W87iK9fP1ItGgrETocL2JLNutydHppMvsrFiZZsqokk1c5J2GF+WWT1O9Z2h4MhnaOI4flULedn1HpmkUkYFKSSyhe3ekiEieCft9A0WGCvIIwsnTvJEJsGie4tQmvQMhop8RonB1KtGVrHRu93uyVLaunAgkUQQxlq1GXBPICJk71xIMDExMTEx2R2OkgcRqUfwKC93WDD25Rd9Pjda/sp6tmDHSp7IpED273XavKPlEKTedk4S6V3AC8LG8c7LySSF9RRioGOguF09xR3NT6NQTGcij1lvIpdMgoJtJN32OBEqjHf50m8hUDnSSXAeTI1VEan1rt/QxGRvUSD7M11O5Bt9FovUSr4xZjFZjuYpy21UU8utzgDz63UjMRYfCK4gOOQlovJXkUgc4SKUHJGx38+hq4j2MTBWqmoyxJ55UJtGt71EtkinhRbSSaacKsIJI4JQbrBcwiWWU3lf/4olajVWLL06RDJFJFKkysgRmSw2VvEX7UAmDvyCz4QDVCfu37IJbdKHvKbraEgSRRw7VAmRRHRw4Qw2Pd3YQQmJIo5GmrjHemVXd8eklxAsgpgoR/KrsdC7LY8sbFhpoJFtlODChYFBBdVsVFu95XxXgUxMTExMTLoDjo9PRbXUQlM5sv/xCFs4llH7Jtv7Qdp4DtLG83Hzd5RRQTV1OHF59+eRRbgIIVHEAbBRuTPQ11BPEvH7pE9dyXA5iDSSKWQHOjpWLLjQ3YkVaGKxWk2JJ8FcJOE00ewxvbkV2GupZws7WMl6UHCddhHnyRNY49rEJrWVaupQDZNRxfezFI0R5XX8nhNGnMUM4jIxaU+8iGGMKOAzfiSROMqpIkMkc4nlVAC+y63jx/WGTw0FKw7C6yX06hNUH/oCtQe9CQomMnK/n0NX0V9kMUWMxolOhara43bMJ9NeYoDsxyK1ipWsp5paLEiqqSVZuF+kFZ4snLFE9brVLF/yyGK9KkRHZ4VaB8ATkVcx6tabIGp74EqZbmPkPGMpi9QqlqrVHC6nUEQpK1jnVzSYvu3VtcrYQD2NVFGDA4ef9d3E5M9ymeUMYokmglBiiOQ6y0UsCPqQM7VjCCEIOzYkkhwyqFRVjBCD6C+yTaObiYmJiUm3w9j0FWr7LFTlavTfHsC18Jl9fsyFQR+xNegXDhOTEZ7/oghnWdBnzLa/yyu2BwBYqTbwnZrDPLWMfjJ9n/drf5MpUvjK/jIGBnFEE0wQTlxY0NhGMfU0kkAsMUSio3fwDvydpVznfIhg7MQTQ57IIkfLYI79Xb6xvoYVK6rmeFqNAttcis/rXAF6YmJiApAt09lBCWvZzFJjjd++r/8Wxj1H2kmKcaBlLYW4zfiH5Qn45XTvt3D6ToSLHRs/q/nMUYvYrkr3uB3T020vkSLcmkYaGpMZxRdBL6GU8q7YtIZm9XYjyXg5jBK93G0JdsGF2snMM5ayJnQJ4vpTUe/ejFh8uPtXEQbkLkCcez0OXG4Xc6WIIAwLGhGEUUu9t22BwIa1y86tO/CNPovfjaVUU8srlge6ujsmvZC5dneWUl8iRBg3aZeSJhM523kdGygki1QWqZXe/SYmJiYmJiZuLtRO5jPXj9iwUkB+h/2Vqho7NlpwkCISuqCH+55UkUgowZRQQT7ZVFLj9f5roJEmmjEwOIIpfMnPHeqvxp1gLZQQDpOTmanPpkU5WWAsx4kTrMXQpLzlM6ymL4mJSWfsTJusBQd/O8RAm/oJ36hf+PGN46E827+B8ArvxwjRO5NCBqL1+RyEnTJVsYvSnWMa3fYSYSKEKWIMv6qFLGQFhmEgpUQgaFEOiihDIHq94Pggmcu58nj+bXzK7yxlnbGZR10v00gTQoI47T4eOKuZBpq41/UcAJmksIUdOOYeBp9cRaUexAsIsF2IdvIDqIIfAbCg9WovwV1hKIOf1TyqqSWKcDOBgsk+ob3BDeCflnMBmO0TelputLlY99bkMCYmJiYmJnvCGFlANmlsYhuF7Oiwf4MqpAUHUYST0ovnBh9an+MC182sVhv9MpoCGBhMFCO4yXIpXzo7Gt1aqaOeTMeBHbaLmOfR9EjyXAdzXpSNaWHmtNbEpDN8HX8qDP8wyY+NmZzrvN773X7qWloey4WaVM8WB5SlY9z8Ewz6mdBz+o5XaRpJRBJODXVsYtset9OjlwR+/vlnjj76aFJSUhBC8NFHH/ntV0px++23k5ycTHBwMNOnT2fdunWBG9sLDJZ5DBX5GCjWsdm7vdWarFC9XvReExrDxACSiSOMEH5nKTvauWJ+rv9IjE+q4WzSMDYOgw9vBj0Eb/YURxj6v+/FKMkEYDgD9+OZdD8e119jibGGTE/Sjr4kYmnSPehHOgeJ8eSIDErxWfGi76x4mZiYmJiY7Io4GcMwOYAhoj+11ONQ/uGTrWPjGup7racbwHg5nKliDCkkoFBYPf4eAkEOGVxuOZNhcgDXigsZQn9C6SjoHkKwN9LFgkR6wt6EVkd80uMsyQ3nqjhT89nEZGfEEcVRchr5IpuNbPXbV6X8Pd+c9lrkTaeSNeMURoxbC9hBWcGwwPKD+PI/B+3HnnctKTKRGuoAOtg0/gg92ujW0NDAsGHDePbZZwPuf+ihh3jqqad4/vnnmTt3LqGhoRx22GE0Nzfvk/5kizRCCWaQyGWhscK7vdKj5wYQLSL2ybG7EwNlLqkk02/7Qbw9r4XwmmzGi+FkkUoWqWxS2xjOQI4WBzFJjMSBk5DVBxM4pauA9WMACO3jmUs3GIVkiRRAMU4M79NefyZdQ6KIw0CRQgItOLzb+5K2g4mJiYmJye6QKhKJIpxckckyHw0lpRQ6BpPFKI6Xh2ATvVc6RQjBgXIcwQQRRQQuj9yOQiERnCgPwy5s3Gu/irMtx9KPjvp2VdTiwIkFC1mkY/EJ1BovRuy3czEx6clYhIUKo4qtqpitqph7nc9591VQ3aH8ZDGKQ7SJVK8f0GHf/A19x6s0gRimiDFMFqM6aMvf4XyKu527pxXao3+xI444giOOOCLgPqUUTzzxBLfeeivHHnssAG+88QaJiYl89NFHnHbaaXu9PwXk84R6nXSRyDpV6N1ereoYI4bSQgtpJO3143Y3CoxBzL7nTmiI82w5lPBhc0g+/RnqaSCMUCpENevYTBih5Mssjhw2iJsDepYrQvovQSOYY7Xp++8kuiEllNNAEzoG91mv6urumPRBhBCEEcx6VUgwdoaIPEAQTu/NyGxiYmJiYrIn5JDJF+onQPCM6y3GqmEkiTiGinyCsVNJDdH0/sX4U7QjuNX1BJGEU00trSpsW9jBUS2XECUiOMVyBP+0nMss13yWsdavvoZkADkg4BztOO51PedNvDBGK9jPZ2Ni0nOJEVE0qiYAPjW+51YuB8CldEaJwaxXW4gmks1sZ5ZaQJKK46hBFp7+xd9T95ABvXehoD1SSDar7RSygzgV7bfvNf0DivXd837r0Z5uO2PTpk0UFxczfXqboSYyMpJx48YxZ86cTuu1tLRQW1vr97e7jJKD3Rk31XpWqLYXRjmVzFNLWarWECR6v/vzN0vsPgY3AEHdkgkc33w8xZSzjWIedr3IAuuHbFSF/Nv4lJfS7uQ/5wYRbmutAeEhTrjgSprj19FAE1F9wEswEHWqgS9cP7JJbWOpWkOuyAyou2Visj8YIHNYzUa2U8pytY7laq2p6WZiYmJiYtKOMbKATWxjM1t5W33GVa77uNv5DG+4PmKz2sZKtZ5hovdLp0ghyRdZFFLEIHJJIBYAB05mMof/qW+43vkQlzvupFLUdKivY7CCdQwR/fmHPBvhExmTKnqvHp6Jyd7mP9bHALCiUa8aaVYtAKxRG1mgVlBDPZvZ7i0fIoJ55IRgLjvAgt0Cdg3OHWvhpdP7VvRZikjAgoYFC/VGAwAOw4EN624neezRnm47o7i4GIDERP+HcWJiondfIB544AHuuuuuPTpmhAzjIDGe79VvfGH8RIPRSKgMocI3vJTenb0UwKYF3n6MdRolcjNvGh/zu1rGWrWZVJFIpaphuyrm6GGCk0a4fx+ncvKa/iH/cM331g+k89DbOddxA+8aXwB4M+EOErld2SWTPk6a8PfWDcLeq0NjTExMTExM9oThcgBjRAHz1DLArWO2ig2sMtxZOW1YuVg7pSu7uN94znoXJzgvZ7laRygh3qQKoYQQrIew6fUreGntRPeqe+7viPNuQGi6XxtpIpFaUU8t9QBYsDA0QGZYExOTwNiljZu0v/KQ/iIbKGS+sZzJ2ii2qqKA5UMJQQjBkyeG8uSJ+7mz3YgpcgwL9OUUU8YKtZ5xDGMHZWylGIW+6wboxZ5ue8pNN91ETU2N92/r1q27ruTDGFlAgeiPFQuLWAW4tQhaiRVRe7O73ZLjh1nJj/fdosia9CujQrI5TjuETFIJws75rhu5VDudcWIYoYTwmvE/b4239c+51fU44T4C7SF90OjWX2QxVOT7WdGzZOpOapiY7FuGyP5MECO8K81mEgUTExMTE5OOWIWVey1Xcao4kulM9Lw73WSQzF3aFSTKuJ220VvIlCmMFgUMEjk4cXKkmEYowTTSROh798PaAwANlIR1E0j471N+9QWCkWIQlT6C79FEkCsz9/OZmJj0bPqLbJJJwIqFx/RXMJTBOrWZXDKYLEb7le2LDi+BaJ2PRxPJ72opANsp+UNt9FpPt6QktzdGSUkJycnJ3u0lJSUMHz6803p2ux27fc9DQPNEFhEsYIjozyJjJZPlKFy4mChGIhHEEb3rRno4mhQsuyWSZodOU7POq/a30TS3e/khciL5IhuhoFRVkC6SQbldzG92Pcb/Nm9hyvp/8HnaGkbkDmKxx3AJfTORwgDRjx/4jViiAMEgmcNAkdPV3TLpw+SLbMJECEKBAsKEaXQzMTExMemGBMeBswEMJyJhGCJ4/xu4pmpjmaqNBeBH11yucT2IRUgmy1FcZT1/v/enKxkvh1OhV5MuU9hkbCWDVHR0tmxO8SnlNktqW0YwTYzjZzUPHQOFIk0ksVm1hb5FEIZd2PbzWZiY9GzGyAKmyDEsMlayxtjENY77GSeHU68aiBfReEUXcYeXmrh/s3eMSCKJ4CP9W/6unUWpUcEEMQKEzo+s3mUbvdbolp2dTVJSEjNnzvQa2Wpra5k7dy6XXXbZPjvucDmQ7S635fMt18f8TTuTzWo7s9VCAKJE+D47dncjyKYRZNO4mnO926zCylg5lMX6SkIIZqY+mw0U0qCaUM89zw9bC/gBJ3ApQVFVJFx3CdWa21MwrA+KtQ8XA9msttNMC05cLDRW0M/SMbOTicn+Il7EkC+ymcMigrAxUYzs6i6ZmJiYmJh0IOivG7q6C34caBnHAsv/dl2wl3K+5UQ+0L+hRtUSKcJYp7YAIIf8CLOO9yt73FAr65CEEEQDzYQTiiYsfO76gQjCcOIiRSR0wVmYmPRscmUmN2gXc4BxBjFEspIN/GTMA+BReSPzWU4l1YQTRg4ZXdzb7kG+7EeoCmUTW4kgjA2qkC1sZ45ahFK7F17ao41u9fX1rF+/3vt906ZNLF68mJiYGDIyMrjyyiu59957ycvLIzs7m9tuu42UlBSOO+64fdanwTKPAtmfz4wfiSeaOcZiKn003WL6QHjprhgjC7hHf5Z0knnT+IRKqqEyFbb6ZyBqro4md9PxVOW+ghNXnwwv7SfTqaeRWuoxMBhMLjnSfACadC2PWG/kEeuNXd0NExMTExMTkx7E3y1ncpzzcqKJpAp3qKj6yyOg1cDsk0EIwsZ/yYSjkvmH5Tbur/iANx88hSpXKBMBuMz9lz+HKRduYp3h1oc2PXJMTHafXJlJA03UUk+javZuzxApbMWt79ZAEwdp47uqi92OoVo+H7u+I5cMlqjVNKlmkkmghN3LXtqjjW7z589n2rRp3u9XX301AOeeey6vvfYa119/PQ0NDVxyySVUV1czefJkvvrqK4KCgvZpv67WLuAr4xdKqOBV/QM//YGYPpBIYVeMFkMIXnQ0W967Egw72BoJPfFxGgKU/dH6E9BEKol90tgkhCBfZDNXLQEgTSTvooaJiYmJiYmJiYlJ92O0KCCKCK/BDUAIEEe8CEe8CEAjcK4BOIDXXwJXgAzpayaycE0p9+UdBcDzlrs5z3LCvj8BE5NegCY0kohjOyXUUOfdnilSEAgUCgF9QhZrdxkvhhGMnXVsYa6+hEpqKKJ0txMp9Gij24EHHohSqtP9Qgjuvvtu7r777v3YKxglBzNODGOD2sqvxgISiCWdZGKINFdigLrqCBreuQG3boMCRwiNb99C7MhZVCyc1FYw73dUxnIEENmHwnLb85D1espVFU7lZKQ2pKu7Y2JiYmJiYmJiYvKHiZPR3GT5K3e4nqQZR+tMICDRRFLR2Pn4v7a2zYkiSfSNhBQmJnuLqyzn86b+EUvUasIJZbgYSKZI5VPr87jQ0dAQQuy6oT7CSDGYISKfLR7ZsAyRsutKPvRoo1t3xSqspItkFIpyqtistlNCOfpuWkJ7O8t2uMCbv8n9fwV8OX06J59yFKVUYMeKBQvhpJAt0jlcO6CrutvljJPDuroLJiYmJiYmJiY9iuYXcjokUrAd+25Xd6vPc6r2F/7r+pwSynHiRKJRThUSgQ0rTlw4cdFMM/KI5zD+fR9t8wYPtkb6D9uILoZjxUKqSOqSczEx6amMk8N4x/UFoQRjwUKqSCRShjOdSbuu3AeJkhGMFkNIENHUqHqWqjV/qL5pdNtHpIkkVqn1xBPDRrYCECPM0FKAidmWDitbwVYYlGBjneVbznJcy1xjKXXUUUoFzcrB+eLEruquiYmJiYmJiYlJT6OpHJQBgCqahwr7Y54JJvuGJBHHnKB3edL1OgCz9AV8qr5HB5KIR6EoohQHLmTBzxjXnwwzz4KqRJAK8uYRO/F7Cq15/KYWA5AqErvuhExMeiBjZAGhIpgUlYgLF4fKyV3dpW7PTda/cnDLOejoFFH2h+qaRrd9xHA5kEf0l8klg2CCiCWKFPOFAEBMqGTVLWGc+FI9myqhIEXyv4tCsVncq1hv2R7hEefL3Ko/DkAyCZyqHdmVXTYxMTExMTExMTEx2Uv803IuANtVCUIHDY1pchz/st3LhJZTWKbWEE8sjTF11J78sF/dE+TJFFNGqkqkjgaiieiKUzAx6dF8ZX+5q7vQo4gXMUzRxvCa/j+Ex/tWInerrml020ccKacyUgxmvloGQA11nCpMw1Er/eI1Ft3Uueff5ZYzAJhtLDTDK01MTExMTExMTEx6IXdY/s49liuxC5tXqztPZLFYraSYcgDCCaXOJ+VaFql8YsykjEoySDG1p0xMTPYL91mu5lv9V7awA4AQgmneRR1gN01zJn+YIGHnfO1EknALe4YSTIHI7+Je9RxCRDDXWi/kf/ZnucF6SVd3x8TExMTExMTExMRkLxMqQrALG4DXeHaL5VIGk+ctM1TkM5LB3u8XW06h0pMBNVZE7b/OmpiY9GkiRTjXahd6v2eSvFv1TE+3fcgh2iTWGBtZpFbgwMV4Obyru2RiYmJiYmJiYmJiYtJtyRNZBGH3JlY7WE5AQyPMCGGrKmKesdyboM7UzDYxMdmfHKpN5jx1AjaspFjiWMRnu6xjGt32IRkimYds13uFQnNkRhf3yMTExMTExMTExMTEpPsihSRLptGsHBjoJIl4dAzqaSBVJLHAWM4EMQKJYIjI23WDJiYmJnuJTJnK87a7Aai11HITl++yjml02w+0CoWamJiYmJiYmJiYmJiY7Jy3bI/4fV9gLOcq1xpiiaZCVbKKjQCMYkhXdM/ExMRktzE13UxMTExMTExMTExMTEy6LcPFQI6QUymhnNUegxtAqkjswl6ZmJiY7BrT6GZiYmJiYmJiYmJiYmLSbdGExu2WvzFFjEF4prDRRDBcDOzinpmYmJjsHDO81MTExMTExMTExMSkVyGzD0e11EJTObL/8QhbeFd3yeRPUiDzudpyPhGuUNarQhJELANlTld3y8TExGSnmEY3ExMTExMTExMTE5Nehe3Yd7q6Cyb7gMO1KRz+/+3deXhMZ/8/8Pdk31fZkEUtESpCUUmQ2Brqq7aultBSSyUprfVRYqmi9oeipVU8lJY8ravULkqqtkQiaEQIrcZDSTAJ2ebz+8MvpyaZycJkUe/XdeW6zDn3uc8993zOOTMf59y3cQdlojpXlXM1t4iIqHRMuhEREREREdFTgxPVEdHTgmO6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBMelGRERERERERERkYEy6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBMelGRERERERERERkYEy6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBmVR3A2o6EQEA3L17t5pbQkRERERERERE1a0oR1SUM9KHSbcy3Lp1CwDg6elZzS0hIiIiIiIiIqKa4t69e7C3t9e7nkm3Mjg5OQEArl69WmpHEj2pu3fvwtPTE7///jvs7Oyquzn0D8ZYo6rCWKOqwlijqsJYo6rCWKOqwlh7PCKCe/fuoXbt2qWWY9KtDEZGD4e9s7e3ZwBSlbCzs2OsUZVgrFFVYaxRVWGsUVVhrFFVYaxRVWGsVVx5bsziRApEREREREREREQGxqQbERERERERERGRgTHpVgZzc3NER0fD3Ny8uptC/3CMNaoqjDWqKow1qiqMNaoqjDWqKow1qiqMtcqlkrLmNyUiIiIiIiIiIqIK4Z1uREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZWI1Jus2ZMwetW7eGra0tXF1d0bt3b6SkpGiVefDgAUaPHg1nZ2fY2NigX79++N///qesT0xMxFtvvQVPT09YWlrCz88PS5cu1aojJiYGXbt2hYuLC+zs7BAYGIjdu3eX2T4RwbRp0+Dh4QFLS0t06dIFqampWmXi4+PRtWtXODg4wNnZGcOHD4darS6z7qSkJLRv3x4WFhbw9PTEp59+qrX+7Nmz6NevH3x8fKBSqbBkyZIy6yT9GGv6Yy0mJgatWrWCg4MDrK2tERAQgA0bNpRZL+nGWNMfa19//TVUKpXWn4WFRZn1km6MNf2xFhoaWiLWVCoVevToUWbdVBJjTX+s5efnY+bMmahfvz4sLCzQvHlz7Nq1q8x6SbdnNdYePHiAIUOGoFmzZjAxMUHv3r1LlMnIyED//v3RqFEjGBkZYcyYMWW2l/RjrOmPtSNHjiA4OBjOzs6wtLRE48aNsXjx4jLbTLox1vTHWmxsrM7va9evXy+z3TWe1BBhYWGydu1aSU5OltOnT8vLL78sXl5eolarlTIjR44UT09P2b9/v5w8eVLatm0rQUFByvovv/xSoqKiJDY2VtLS0mTDhg1iaWkpy5YtU8q8//77Mm/ePDl+/LhcuHBBJk+eLKamphIfH19q++bOnSv29vby/fffS2JiorzyyitSr149uX//voiIXLt2TRwdHWXkyJHy22+/yfHjxyUoKEj69etXar137twRNzc3GTBggCQnJ8s333wjlpaW8vnnnytljh8/LuPGjZNvvvlG3N3dZfHixRXpWiqGsaY/1g4ePCgxMTFy7tw5uXjxoixZskSMjY1l165dFepjeoixpj/W1q5dK3Z2dpKRkaH8Xb9+vUL9S39jrOmPtVu3bmnFWXJyshgbG8vatWsr0sX0/zHW9MfahAkTpHbt2rJjxw5JS0uTFStWiIWFRZltJt2e1VhTq9UycuRI+eKLLyQsLEx69epVoszly5clKipK1q1bJwEBAfL++++Xo0dJH8aa/liLj4+XTZs2SXJysly+fFk2bNggVlZWWuc+Kj/Gmv5YO3jwoACQlJQUre9thYWF5enaGq3GJN2Ku3HjhgCQQ4cOiYhIVlaWmJqaynfffaeUOX/+vACQo0eP6q3nvffek44dO5a6ryZNmsiMGTP0rtdoNOLu7i7z589XlmVlZYm5ubl88803IiLy+eefi6urq1ZQJCUlCQBJTU3VW/eKFSvE0dFRcnNzlWUTJ04UX19fneW9vb2ZdDMwxpruWCvSokUL+eijj0otQ+XDWPs71tauXSv29valvgd6fIw1/ee1xYsXi62trdYXXHp8jLW/Y83Dw0OWL1+utV3fvn1lwIABpb4vKp9nJdYeNXjwYJ0/Th8VEhLCpJuBMdZK16dPHxk4cGC5ylLpGGt/K0q6ZWZmlquep0mNeby0uDt37gAAnJycAACnTp1Cfn4+unTpopRp3LgxvLy8cPTo0VLrKapDF41Gg3v37pVa5vLly7h+/brWvu3t7fHiiy8q+87NzYWZmRmMjP7uUktLSwAPb8vV5+jRo+jQoQPMzMyUZWFhYUhJSUFmZqbe7chwGGu6Y01EsH//fqSkpKBDhw5666XyY6xpx5parYa3tzc8PT3Rq1cvnD17Vm+dVDGMNf3X0C+//BJvvvkmrK2t9dZL5cdY+zvWcnNzSzwmb2lpWWq9VH7PSqxR9WOs6ZeQkIBffvkFISEhBq33WcVYKykgIAAeHh7o2rUr4uLiDFJndauRSTeNRoMxY8YgODgYzz//PADg+vXrMDMzg4ODg1ZZNzc3vc/5/vLLL9iyZQuGDx+ud18LFiyAWq3G66+/rrdMUf1ubm56992pUydcv34d8+fPR15eHjIzMzFp0iQAD8ddKK1uXfU+ul+qPIy1krF2584d2NjYwMzMDD169MCyZcvQtWtXvfVS+TDWtGPN19cXX331FX744Qf85z//gUajQVBQEP744w+99VL5MNb0X0OPHz+O5ORkDBs2TG+dVH6MNe1YCwsLw6JFi5CamgqNRoO9e/ciJiam1HqpfJ6lWKPqxVjTrW7dujA3N0erVq0wevRoXkcNgLGmzcPDA6tWrcK2bduwbds2eHp6IjQ0FPHx8U9Ub01QI5Nuo0ePRnJyMjZv3vzYdSQnJ6NXr16Ijo7GSy+9pLPMpk2bMGPGDHz77bdwdXUFAGzcuBE2NjbK3+HDh8u1v6ZNm2LdunVYuHAhrKys4O7ujnr16sHNzU3JBDdt2lSpt3v37o/93shwGGsl2dra4vTp0zhx4gRmz56NDz74ALGxsRWqg0pirGkLDAxEeHg4AgICEBISgpiYGLi4uODzzz8vdx2kG2NNvy+//BLNmjVDmzZtHmt70sZY07Z06VI0bNgQjRs3hpmZGSIiIvD2229r3RFAj4exRlWFsabb4cOHcfLkSaxatQpLlizBN998U+E6SBtjTZuvry9GjBiBF154AUFBQfjqq68QFBT0z5i4o7qfby1u9OjRUrduXbl06ZLW8v379+t8xtfLy0sWLVqktezs2bPi6uoq//rXv/Tup2gA3B9//FFr+d27dyU1NVX5y8nJkbS0NAEgCQkJWmU7dOggUVFRJeq+fv263Lt3T9RqtRgZGcm3334rIiLp6elKvX/88YeIiAwaNKjEM80HDhwQAHL79u0SdXNMN8NhrJUea0WGDh0qL730kt71VDbGWvli7dVXX5U333xT73oqG2NNf6yp1Wqxs7OTJUuW6H1fVH6MNf2xdv/+ffnjjz9Eo9HIhAkTpEmTJnrfH5XtWYu1R3FMt6rFWOult82PmjVrljRq1KhcZUk3xlovvW1+1Lhx46Rt27blKluT1Zikm0ajkdGjR0vt2rXlwoULJdYXDSq4detWZdlvv/1WYlDB5ORkcXV1lfHjx+vd16ZNm8TCwkK+//77crfN3d1dFixYoCy7c+eO1qCCunz55ZdiZWVV6mCARQPz5uXlKcsmT57MiRQqEWOtfLFW5O2335aQkJBytZ+0MdbKH2sFBQXi6+srY8eOLVf7SRtjrexYW7t2rZibm8tff/1VrnaTboy18p/X8vLypH79+jJ58uRytZ+0Paux9igm3aoGY61iiZAZM2aIt7d3ucqSNsZaxWKtS5cu0qdPn3KVrclqTNJt1KhRYm9vL7GxsVpTxObk5ChlRo4cKV5eXnLgwAE5efKkBAYGSmBgoLL+zJkz4uLiIgMHDtSq48aNG0qZjRs3iomJiXz22WdaZbKyskpt39y5c8XBwUF++OEHSUpKkl69emlNnysismzZMjl16pSkpKTI8uXLxdLSUpYuXVpqvVlZWeLm5iaDBg2S5ORk2bx5c4lpmHNzcyUhIUESEhLEw8NDxo0bJwkJCeWeIYS0Mdb0x9onn3wie/bskbS0NDl37pwsWLBATExMZPXq1eXuX/obY01/rM2YMUN2794taWlpcurUKXnzzTfFwsJCzp49W+7+pb8x1vTHWpF27drJG2+8UWZfUukYa/pj7ddff5Vt27ZJWlqa/Pzzz9KpUyepV6/eP3ImtqrwrMaayMM7WBISEqRnz54SGhqq/A54VNGyF154Qfr37y8JCQm8hj4mxpr+WFu+fLls375dLly4IBcuXJA1a9aIra2tTJkypTxdS8Uw1vTH2uLFi+X777+X1NRUOXPmjLz//vtiZGQk+/btK0/X1mg1JukGQOff2rVrlTL379+X9957TxwdHcXKykr69OkjGRkZyvro6GiddTyaiQ8JCdFZZvDgwaW2T6PRyNSpU8XNzU3Mzc2lc+fOkpKSolVm0KBB4uTkJGZmZuLv7y/r168v13tPTEyUdu3aibm5udSpU0fmzp2rtf7y5cs628y7jx4PY01/rE2ZMkUaNGggFhYW4ujoKIGBgbJ58+Zy1U0lMdb0x9qYMWPEy8tLzMzMxM3NTV5++WWJj48vV91UEmNNf6yJ/P2/xHv27ClXnaQfY01/rMXGxoqfn5+Ym5uLs7OzDBo0SK5du1auuqmkZznWvL29dbaprP7h3UePh7GmP9b+/e9/S9OmTcXKykrs7OykRYsWsmLFCiksLCxX/aSNsaY/1ubNmyf169cXCwsLcXJyktDQUDlw4EC56q7pVCIiICIiIiIiIiIiIoPhdEpEREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhERERERERERERkYk25ERERE/xChoaEYM2bMM7dvIiIiopqISTciIiKiZ1BsbCxUKhWysrIMsl1MTAxmzZpluAYSERERPeVMqrsBRERERPT0c3Jyqu4mEBEREdUovNONiIiI6CmUnZ2N8PBw2NjYwMPDAwsXLtRav2HDBrRq1Qq2trZwd3dH//79cePGDQBAeno6OnbsCABwdHSESqXCkCFDAAAajQZz5sxBvXr1YGlpiebNm2Pr1q1lblf88VIfHx98/PHHShu9vb2xfft23Lx5E7169YKNjQ38/f1x8uRJrXYfOXIE7du3h6WlJTw9PREVFYXs7GxDdx8RERFRpWPSjYiIiOgpNH78eBw6dAg//PAD9uzZg9jYWMTHxyvr8/PzMWvWLCQmJuL7779Henq6kiDz9PTEtm3bAAApKSnIyMjA0qVLAQBz5szB+vXrsWrVKpw9exZjx47FwIEDcejQoVK302Xx4sUIDg5GQkICevTogUGDBiE8PBwDBw5EfHw86tevj/DwcIgIACAtLQ3dunVDv379kJSUhC1btuDIkSOIiIiojC4kIiIiqlQqKfqWQ0RERERPBbVaDWdnZ/znP//Ba6+9BgC4ffs26tati+HDh2PJkiUltjl58iRat26Ne/fuwcbGBrGxsejYsSMyMzPh4OAAAMjNzYWTkxP27duHwMBAZdthw4YhJycHmzZt0rkd8PBOt4CAAGXfPj4+aN++PTZs2AAAuH79Ojw8PDB16lTMnDkTAPDrr78iMDAQGRkZcHd3x7Bhw2BsbIzPP/9cqffIkSMICQlBdnY2LCwsDNiLRERERJWLY7oRERERPWXS0tKQl5eHF198UVnm5OQEX19f5fWpU6cwffp0JCYmIjMzExqNBgBw9epVNGnSRGe9Fy9eRE5ODrp27aq1PC8vDy1atKhwO/39/ZV/u7m5AQCaNWtWYtmNGzfg7u6OxMREJCUlYePGjUoZEYFGo8Hly5fh5+dX4TYQERERVRcm3YiIiIj+YbKzsxEWFoawsDBs3LgRLi4uuHr1KsLCwpCXl6d3O7VaDQDYsWMH6tSpo7XO3Ny8wu0wNTVV/q1SqfQuK0oIqtVqjBgxAlFRUSXq8vLyqvD+iYiIiKoTk25ERERET5n69evD1NQUx44dU5JRmZmZuHDhAkJCQvDbb7/h1q1bmDt3Ljw9PQGgxIQFZmZmAIDCwkJlWZMmTWBubo6rV68iJCRE5751bWcoLVu2xLlz59CgQQOD101ERERU1TiRAhEREdFTxsbGBkOHDsX48eNx4MABJCcnY8iQITAyevjVzsvLC2ZmZli2bBkuXbqE7du3Y9asWVp1eHt7Q6VS4ccff8TNmzehVqtha2uLcePGYezYsVi3bh3S0tIQHx+PZcuWYd26dXq3M5SJEyfil19+QUREBE6fPo3U1FT88MMPnEiBiIiInkpMuhERERE9hebPn4/27dujZ8+e6NKlC9q1a4cXXngBAODi4oKvv/4a3333HZo0aYK5c+diwYIFWtvXqVMHM2bMwKRJk+Dm5qYktmbNmoWpU6dizpw58PPzQ7du3bBjxw7Uq1ev1O0Mwd/fH4cOHcKFCxfQvn17tGjRAtOmTUPt2rUNtg8iIiKiqsLZS4mIiIiIiIiIiAyMd7oREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBmZS3Q0gKo+CggLk5eVVdzOIiIiIiIiIqpWZmRlMTJjOeRrwU6IaTURw9epV/PXXX9XdFCIiIiIiIqIaoVatWvDy8oJKparuplApmHSjGq0o4VanTh3Y2NjAyIhPRBMREREREdGzSaPRQK1W49q1awAAb2/vam4RlYZJN6qxCgoKlISbu7t7dTeHiIiIiIiIqNrZ2NgAAK5du4azZ8+iXbt2sLOzq+ZWkS68bYhqrKIx3IpOKERERERERET09+/kixcv4scff8Tdu3eruUWkC5NuVOPxkVIiIiIiIiKivxX9TnZ3d0d6ejpSUlKquUWkC7MZRERERERERERPIWNjY6hUKqjV6upuCunApBtRNYiNjYVKpUJWVlZ1N4Xomefj44MlS5aUWmb69OkICAiokvZUtfT0dKhUKpw+fRoAz0//JP/kuK0sX3/9NRwcHJTX7EPDCw0NxZgxY6q7GTXekCFD0Lt3b+U1+42eJcXPxU+b6vhupVKpoNFoKq1+enxMuhER0TNB3xe4EydOYPjw4cprlUqF77//XqvMuHHjsH///kpuYeUr/iNOl6CgIGRkZMDe3r5qGkWVpiJx+ywml8qTcP+nHPs1SUxMDGbNmlVp9ZfnPFeTFP9xrk9l9xsRPR5+t6KycPZSIqJnWH6hwNRYpfd1ZcvLy4OZmVmV7U8XFxeXMsvY2Ng8M5O6mJmZPfGM0TXhcy2N5BdAZWqi9/XToLCwECqVqtRxT5+luK0shujD/Px8mJqaGqhFhpcvAlOVSu9rQ3Nycqq0uv/JnrTfynPOqI66nnaCAqge+Uld/HVNUNOvyc+CZ+G7FenHMyU9NUblRyMkd0C1/o3Kjy53e3NzcxEVFQVXV1dYWFigXbt2OHHihM6yOTk56N69O4KDg/lIF1UZEcHu8wVot1gNxwl30G6xGnvOF0BEKm2foaGhiIiIwJgxY1CrVi2EhYUBAJKTk9G9e3fY2NjAzc0NgwYNwl9//VViu4iICNjb26NWrVqYOnWqVltzc3Mxbtw41KlTB9bW1njxxRcRGxsL4OFt/W+//Tbu3LkDlUoFlUqF6dOnA9C+28XHxwcA0KdPH6hUKuV18buANBoNZs6cibp168Lc3BwBAQHYtWuXsr7ozoWYmBh07NgRVlZWaN68OY4ePaqUuXLlCnr27AlHR0dYW1ujadOm2Llzp96+y8zMRHh4OBwdHWFlZYXu3bsjNTVVWa/rTqUlS5ZovYd169bhhx9+UPqgqH8epesRiCNHjqB9+/awtLSEp6cnoqKikJ2draz38fHBrFmzEB4eDjs7O607B2saEUHB7oNQt3sFdxx9oW73Cgr2xFZJ3D9u/AJ/36m5fft2NGnSBObm5rh69SpiY2PRpk0bWFtbw8HBAcHBwbhy5QqAkjGhr+zXX3+NGTNmIDExUYmNr7/+GgCwaNEiNGvWDNbW1vD09MR7772nNWZMUbt2794NPz8/2NjYoFu3bsjIyNDqg6+++gpNmzaFubk5PDw8EBERoazLysrCsGHD4OLiAjs7O3Tq1AmJiYml9umZM2fQqVMnWFpawtnZGcOHD9dql65H8Xr37o0hQ4Yo669cuYKxY8cq71kXXcfVmjVr4OfnBwsLCzRu3BgrVqxQ1hUd+1u2bEFISAgsLCywcePGUt9LdRIR7L5XgHaX1HA8fwftLqmx517lXwce/Wx8fHzwySef4J133oGtrS28vLzwxRdflFrH1q1b0axZM+Xz79KlC7Kzs0s9z/3+++94/fXX4eDgACcnJ/Tq1Qvp6elKnUV3q8yYMUOJxZEjRyIvL6/Utmzbtk2JbR8fHyxcuFBrva67px0cHJRjrF69egCAFi1aQKVSITQ0tFz99rjnDF22b9+Ohg0bwsLCAh07dsS6deu0rgP66nrS6xLw+P1eEwgEBTiCbPTHXbRGNvqjAEcgqLzj5969exgwYACsra3h4eGBxYsX6zymdF2Ty4rVFStWKHHg5uaGV199VVmn75grTqPRoG7duli5cqXW8oSEBBgZGSnXp7KuLcXpuptszJgxWseLRqPBnDlzUK9ePVhaWqJ58+bYunVrqf3J71ZUFZh0o6fGOc1FHJPEav07p7lY7vZOmDAB27Ztw7p16xAfH48GDRogLCwMt2/f1iqXlZWFrl27QqPRYO/evU/1+AX09MgvFOw4W4B+X+bg+JVCZOcBx68Uou+XOdh5tgD5hZX3hXHdunUwMzNDXFwcVq1ahaysLHTq1AktWrTAyZMnsWvXLvzvf//D66+/XmI7ExMTHD9+HEuXLsWiRYuwZs0aZX1ERASOHj2KzZs3IykpCa+99hq6deuG1NRUBAUFYcmSJbCzs0NGRgYyMjIwbty4Em0rSoyvXbsWGRkZehPlS5cuxcKFC7FgwQIkJSUhLCwMr7zyitYXNQCYMmUKxo0bh9OnT6NRo0Z46623UFBQAAAYPXo0cnNz8fPPP+PMmTOYN29eqXfUDBkyBCdPnsT27dtx9OhRiAhefvll5Ofnl6vfx40bh9dff11JiGRkZCAoKKjM7dLS0tCtWzf069cPSUlJ2LJlC44cOaKVNAGABQsWoHnz5khISMDUqVPL1aaqJvkFKNixDzn9hqLweAKQnYPC4wnI6fsOCnbuh+QXVNq+nyR+i+Tk5GDevHlYs2YNzp49CycnJ/Tu3RshISFISkrC0aNHMXz4cJ0JpIKCAr1l33jjDXz44Ydo2rSpEhtvvPEGgIczo/373//G2bNnsW7dOhw4cAATJkzQqjsnJwcLFizAhg0b8PPPP+Pq1atax9fKlSsxevRoDB8+HGfOnMH27dvRoEEDZf1rr72GGzdu4KeffsKpU6fQsmVLdO7cucT1skh2djbCwsLg6OiIEydO4LvvvsO+fftKxGRpYmJiULduXcycOVN5z+WxceNGTJs2DbNnz8b58+fxySefYOrUqVi3bp1WuUmTJuH999/H+fPnlf9cqGnyRbDjXgH6/Z6D4/cLka0Bjt8vRN/fc7DzXgHyKzHxVtzChQvRqlUrJCQk4L333sOoUaP0zsKXkZGBt956C++88w7Onz+P2NhY9O3bFyKi9zyXn5+PsLAw2Nra4vDhw4iLi1MSxI8md/bv36/U+c033yAmJgYzZszQ2+5Tp07h9ddfx5tvvokzZ85g+vTpmDp1qpJQK4/jx48DAPbt24eMjAzExMSUa7vHOWe4urqWqOfy5ct49dVX0bt3byQmJmLEiBGYMmVKiXK66nrS61KRivZ7TSAoQAEO4T4iUYgkAPdRiCTcRyQKcAiCyrmefPDBB4iLi8P27duxd+9eHD58GPHx8SXKFb8mlxWrJ0+eRFRUFGbOnImUlBTs2rULHTp0AFD6MVeckZER3nrrLWzatElr+caNGxEcHAxvb2+lXFnXloqaM2cO1q9fj1WrVuHs2bMYO3YsBg4ciEOHDundht+tqEoIUQ2VnZ0tJ0+elOzsbBER6fCgv5jfb1qtfx0e9C9X29VqtZiamsrGjRuVZXl5eVK7dm359NNP5eDBgwJAzp8/L/7+/tKvXz/Jzc2tlH4k0id40T0xfT+rxF+7xfcqbZ8hISHSokULrWWzZs2Sl156SWvZ77//LgAkJSVF2c7Pz080Go1SZuLEieLn5yciIleuXBFjY2O5du2aVj2dO3eWyZMni4jI2rVrxd7evkSbvL29ZfHixcprAPLf//5Xq0x0dLQ0b95ceV27dm2ZPXu2VpnWrVvLe++9JyIily9fFgCyZs0aZf3Zs2eV415EpFmzZjJ9+vQS7dHlwoULAkDi4uKUZX/99ZdYWlrKt99+q7ONIiKLFy8Wb29v5fXgwYOlV69eWmWK2pqQkCAiopyfMjMzRURk6NChMnz4cK1tDh8+LEZGRnL//n0RediHvXv3Ltd7qW73gntKlmndEn/32r1Safs0VPwCkNOnTyvrb926JQAkNjZW534fjYmKlC3Nd999J87OzsrronZdvHhRWfbZZ5+Jm5ub8rp27doyZcoUnfUdPnxY7Ozs5MGDB1rL69evL59//rnObb744gtxdHQUtVqtLNuxY4cYGRnJ9evXReRhn7///vta2/Xq1UsGDx6svC5+7Be9n0fPE8X7pX79+rJp0yatbWbNmiWBgYEi8vfxtGTJEp1tr2mC0+6JaXJWib92aZV7HXj0s/H29paBAwcqrzUajbi6usrKlSt1bn/q1CkBIOnp6TrX6zrPbdiwQXx9fbWOwdzcXLG0tJTdu3cr2zk5OSnfO0VEVq5cKTY2NlJYWKhzX/3795euXbtqLRs/frw0adJEea3rmmJvby9r164VkZLnYH3v49F+e9xzhi4TJ06U559/XmvZlClTtK4Duuoy5HWpov1eU6jlLbkjTUv8qaV8vxcq6u7du2JqairfffedsiwrK0usrKxKHFPFr8llxeq2bdvEzs5O7t69W2K/ZR1zxSUkJIhKpZIrV66IiEhhYaHUqVNH7zEtovva8ui5WNdx/f7770tISIiIiDx48ECsrKzkl19+0SozdOhQeeutt3Tu85/w3aro9/LWrVtlzpw5sm/fvlLLU/XgnW5ElSAtLQ35+fkIDg5WlpmamqJNmzY4f/68sqxr165o0KABtmzZwmf0qcqdzSis0HJDeeGFF7ReJyYm4uDBg8rYSTY2NmjcuDGAh8dSkbZt22rdwRMYGIjU1FQUFhbizJkzKCwsRKNGjbTqOXTokFYdhnD37l38+eefWsc3AAQHB2sd3wDg7++v/NvDwwMAcOPGDQBAVFQUPv74YwQHByM6OhpJSUl693n+/HmYmJjgxRdfVJY5OzvD19e3xD4NLTExEV9//bVWv4aFhUGj0eDy5ctKuVatWlVqOwyl8Kzuu2f0LTcUQ8SvmZmZVkw5OTlhyJAhCAsLQ8+ePbF06VK9d2xVpOyj9u3bh86dO6NOnTqwtbXFoEGDcOvWLeTk5ChlrKysUL9+feW1h4eHEuc3btzAn3/+ic6dO+usPzExEWq1Gs7Ozlrv/fLly3qP3fPnz6N58+awtrZWlgUHB0Oj0ei9O8oQsrOzkZaWhqFDh2q19eOPPy7R1qfleDibq+c6oGd5ZXk0rlUqFdzd3ZUYKq558+bo3LkzmjVrhtdeew2rV69GZmZmqfUnJibi4sWLsLW1VT43JycnPHjwQOuza968OaysrJTXgYGBUKvV+P3333XWe/78eZ3XgqJju7I87jlDl5SUFLRu3VprWZs2bUqUK16XIa9LFe33mqIQqRVa/qQuXbqE/Px8rc/H3t4evr6+JcoWPweVFatdu3aFt7c3nnvuOQwaNAgbN25UzvMVPeYCAgLg5+en3O126NAh3LhxA6+99ppSpjzXloq4ePEicnJy0LVrV61jYv369aVeS/jdiqpCzRrlkegZ06NHD2zbtg3nzp1Ds2bNqrs59Ixp6mGM41dK/iho6mFcqft99IcyAKjVavTs2RPz5s0rUbYoUVUWtVoNY2NjnDp1CsbG2u2vzoHkHx08vSjhUjSd+7BhwxAWFoYdO3Zgz549mDNnDhYuXIjIyMjH2peRkVGJRz0q+oiPLmq1GiNGjEBUVFSJdV5eXsq/i3+uNZVxU9+Hj5bqWF5dyhu/lpaWJR4dXbt2LaKiorBr1y5s2bIFH330Efbu3Yu2bduW2E9FygIPxyf7v//7P4waNQqzZ8+Gk5MTjhw5gqFDhyIvL0/5kVx8kgCVSqXEoqWlZZnv3cPDQ+cYOE8y3EJlHA9F4w2tXr1a60cagBKf29NyPDQ1N8bx+zquA+aVex0oTlcMFZ0rizM2NsbevXvxyy+/YM+ePVi2bBmmTJmCY8eOKeOjFadWq/HCCy/oHF+vPJPpPIlHj4cihojFxz1nPK7Hqauyrks1hTEa/v9HS0sur24VPQfZ2toiPj4esbGx2LNnD6ZNm4bp06fjxIkTcHBwqPAxN2DAAGzatAmTJk3Cpk2b0K1bNzg7OwMo/7XlUWXFUtH5eceOHahTp45WOXNz8wr1RUX2+7j+ad+tqHRMutFTo4lRA0D396+qbUM51K9fXxmzqmjsgvz8fJw4cUJroNO5c+fCxsYGnTt3RmxsLJo0aVIZzSYqIb9QMLmrOfp+mYNHv0uoVMCkLuZVOotpy5YtsW3bNvj4+MDERP9l6dixY1qvf/31VzRs2BDGxsZo0aIFCgsLcePGDbRv317n9mZmZuW688DU1LTUcnZ2dqhduzbi4uIQEhKiLI+Li9N5d0BpPD09MXLkSIwcORKTJ0/G6tWrdSbd/Pz8UFBQgGPHjiljhdy6dQspKSnKecPFxQXXr1+HiCg/jE6fPq1VT3n74FEtW7bEuXPntMbgelpJfgHMJ0chp+87KB745pMiK3UW0yeN39K0aNECLVq0wOTJkxEYGIhNmzbpTaTpK6srNk6dOgWNRoOFCxcqsxR+++23FWqbra0tfHx8sH//fnTs2LHE+pYtW+L69eswMTHRGly9NH5+fvj666+RnZ2t/CCJi4uDkZGRcseHi4uL1p18hYWFSE5O1mpDRY8HNzc31K5dG5cuXcKAAQPKvV1NlS+CybXM0ff3HK1h31UAJtUyr/RZTJ+ESqVCcHAwgoODMW3aNHh7e+O///0vPvjgA52fa8uWLbFlyxa4urrCzs5Ob72JiYm4f/++kiz+9ddfYWNjA09PT53l/fz8EBcXp7UsLi4OjRo1UpJhxWMxNTVV626eoicdKhKLT3rOeJSvr2+JSXz0jWf6KENdl4CK93tNICiAGYbjPiKBYkeQGd6tlFlMn3vuOZiamuLEiRNKYubOnTu4cOGCMv6aPuWJVRMTE3Tp0gVdunRBdHQ0HBwccODAAfTt27fUY06X/v3746OPPsKpU6ewdetWrFq1Sln3ONcWFxcXJCcnay07ffq0krB/dIKPR7+bldUn/G5FVYFJN3pqrDSt2QOqPsra2hqjRo3C+PHj4eTkBC8vL3z66afIycnB0KFDtWZlW7BgAQoLC9GpUyfExsYqj9URVSZTYxVebmqCmKFWmLsvF2czCtHUwxiTupjj5aYmBvuf8fIYPXo0Vq9ejbfeegsTJkyAk5MTLl68iM2bN2PNmjXKl8GrV6/igw8+wIgRIxAfH49ly5YpM281atQIAwYMQHh4OBYuXIgWLVrg5s2b2L9/P/z9/dGjRw/4+PhArVZj//79yqMsuv43tShBEBwcDHNzczg6OpYoM378eERHR6N+/foICAjA2rVrcfr06QrNUjhmzBh0794djRo1QmZmJg4ePAg/Pz+dZRs2bIhevXrh3Xffxeeffw5bW1tMmjQJderUQa9evQA8nNnu5s2b+PTTT/Hqq69i165d+Omnn7R+YPr4+GD37t1ISUmBs7Mz7O3ty2znxIkT0bZtW0RERGDYsGGwtrbGuXPnsHfvXixfvrzc77cmUJmawOTlzrCK+Qq5c5eh8GwKjJv6wnxSJExe7lypcf+k8avL5cuX8cUXX+CVV15B7dq1kZKSgtTUVISHh1e4rI+PDy5fvozTp0+jbt26sLW1RYMGDZCfn49ly5ahZ8+eyuQnFTV9+nSMHDkSrq6u6N69O+7du4e4uDhERkaiS5cuCAwMRO/evfHpp5+iUaNG+PPPP7Fjxw706dNH56M1AwYMQHR0NAYPHozp06fj5s2biIyMxKBBg+Dm5gYA6NSpEz744APs2LED9evXx6JFi0rMDu7j44Off/4Zb775JszNzVGrVq0y38uMGTMQFRUFe3t7dOvWDbm5uTh58iQyMzP1/visqUxVKrxsa4IYTyvM/SsXZ3ML0dTcGJNqmeNl26q9DlTEsWPHsH//frz00ktwdXXFsWPHcPPmTeX8qes8N2DAAMyfPx+9evVSZp6+cuUKYmJiMGHCBNStWxcAkJeXh6FDh+Kjjz5Ceno6oqOjERERoSQGivvwww/RunVrzJo1C2+88QaOHj2K5cuXa81o26lTJyxfvhyBgYEoLCzExIkTte7sc3V1haWlJXbt2oW6devCwsKizHPz454zdBkxYgQWLVqEiRMnYujQoTh9+rQyuH5pMWCo6xJQ8X6vCVQwgQlCYIllyMNqFCIVxmgIM7wLE4RABcMfP7a2thg8eLDy+8LV1RXR0dEwMjIq83gtK1Z//PFHXLp0CR06dICjoyN27twJjUYDX1/fMo85XXx8fBAUFIShQ4eisLAQr7zyirLuca4tnTp1wvz587F+/XoEBgbiP//5D5KTk9GiRQulb8aNG4exY8dCo9GgXbt2uHPnDuLi4mBnZ4fBgweXqJPfrajKVNdgckRlKT6RwtPm/v37EhkZKbVq1RJzc3MJDg6W48ePi0jJwTRFRCIjI8XDw0MZOJ6oKuQVaEp9bWi6BjcXeTiYbZ8+fcTBwUEsLS2lcePGMmbMGGXQ65CQEHnvvfdk5MiRYmdnJ46OjvKvf/1La1DsvLw8mTZtmvj4+Iipqal4eHhInz59JCkpSSkzcuRIcXZ2FgASHR0tIiUHU9++fbs0aNBATExMlIFyiw+kW1hYKNOnT5c6deqIqampNG/eXH766Sdlva6BsTMzMwWAHDx4UEREIiIipH79+mJubi4uLi4yaNAg+euvv/T23e3bt2XQoEFib28vlpaWEhYWJhcuXNAqs3LlSvH09BRra2sJDw+X2bNnaw32e+PGDenatavY2NgobSlrsF8RkePHjyvbWVtbi7+/v9ZEEroGpK/JNHn5pb42NEPEr66JQK5fvy69e/cWDw8PMTMzE29vb5k2bZoy+PijcVtW2QcPHki/fv3EwcFBACiDvC9atEg8PDyUmFu/fn2JAdaLt+u///2vFP+KuWrVKvH19VXeW2RkpLLu7t27EhkZKbVr1xZTU1Px9PSUAQMGyNWrV/X2aVJSknTs2FEsLCzEyclJ3n33Xbl37+/B//Py8mTUqFHi5OQkrq6uMmfOnBITKRw9elT8/f3F3NxcaW9ZEymIiGzcuFECAgLEzMxMHB0dpUOHDhITEyMi+gfFr8nyNJpSXxuarokUip8/mjdvrpyjizt37pyEhYWJi4uLmJubS6NGjWTZsmXKel3nORGRjIwMCQ8PV76XPffcc/Luu+/KnTt3ROTvwdCnTZsmzs7OYmNjI++++26JST6K27p1qzRp0kRMTU3Fy8tL5s+fr7X+2rVr8tJLL4m1tbU0bNhQdu7cqTWRgojI6tWrxdPTU4yMjJSB4UubSEHk8c4Z+vzwww/SoEEDMTc3l9DQUFm5cqUAUAZ011eXIa5Lj9vvNYVG8kt9bWh3796V/v37i5WVlbi7u8uiRYukTZs2MmnSJKWMvmtyabF6+PBhCQkJEUdHR7G0tBR/f3/ZsmWLiJR9zOmzYsUKASDh4eEl1j3OtWXatGni5uYm9vb2MnbsWImIiFCOF5GHk7AsWbJEuda4uLhIWFiYHDp0SG8bn/bvVpxI4emgEqnC+cCJKiAnJwfnz5+Hn5+fzrtRiOjZERoaioCAACxZsqS6m0JUYYxfoppvyJAhyMrKwvfff1/dTal2s2fPxqpVq6pkIgP2+5PJzs5GnTp1sHDhQgwdOrS6m0NVrOj3cnp6OlJTU9G6dWu9ExdR9eHjpURERERERM+oFStWoHXr1nB2dkZcXBzmz5+PiIiI6m4W6ZCQkIDffvsNbdq0wZ07dzBz5kwAUB6HJKKah0k3IiIiIiKiZ1Rqaio+/vhj3L59G15eXvjwww8xefLk6m4W6bFgwQKkpKTAzMwML7zwAg4fPlyuMSmJqHrw8VKqsfh4KREREREREVFJfLz06VBzp4QhIiIiIiIiIiJ6SjHpRkREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhHVELGxsVCpVMjKynqietLT06FSqXD69GmDtKuiQkNDMWbMmGrZNxEREREREVFNYVLdDSCih4KCgpCRkQF7e/snqsfT0xMZGRmoVauWgVqmW2xsLDp27IjMzEw4ODgoy2NiYmBqalqp+y5LaGgoAgICsGTJkmptBxERERERET27mHQjqiHMzMzg7u7+xPUYGxsbpJ7H5eTkVG37JiIiIiIiIqop+HgpUSUIDQ1FZGQkxowZA0dHR7i5uWH16tXIzs7G22+/DVtbWzRo0AA//fSTsk3xx0uvXLmCnj17wtHREdbW1mjatCl27twJAMjMzMSAAQPg4uICS0tLNGzYEGvXrgVQ8vHSonr379+PVq1awcrKCkFBQUhJSdFq88cffwxXV1fY2tpi2LBhmDRpEgICAnS+v/T0dHTs2BEA4OjoCJVKhSFDhijv/dHHS318fPDxxx8jPDwcNjY28Pb2xvbt23Hz5k306tULNjY28Pf3x8mTJ7X2ceTIEbRv3x6Wlpbw9PREVFQUsrOzlfUrVqxAw4YNYWFhATc3N7z66qsAgCFDhuDQoUNYunQpVCoVVCoV0tPTUVhYiKFDh6JevXqwtLSEr68vli5dqrXPIUOGoHfv3vjkk0/g5uYGBwcHzJw5EwUFBRg/fjycnJxQt25dpa8f7e/NmzcjKCgIFhYWeP7553Ho0CF94UFERERERETPACbdiCrJunXrUKtWLRw/fhyRkZEYNWoUXnvtNQQFBSE+Ph4vvfQSBg0ahJycHJ3bjx49Grm5ufj5559x5swZzJs3DzY2NgCAqVOn4ty5c/jpp59w/vx5rFy5sszHSadMmYKFCxfi5MmTMDExwTvvvKOs27hxI2bPno158+bh1KlT8PLywsqVK/XW5enpiW3btgEAUlJSkJGRUSKB9ajFixcjODgYCQkJ6NGjBwYNGoTw8HAMHDgQ8fHxqF+/PsLDwyEiAIC0tDR069YN/fr1Q1JSErZs2YIjR44gIiICAHDy5ElERUVh5syZSElJwa5du9ChQwcAwNKlSxEYGIh3330XGRkZyMjIgKenJzQaDerWrYvvvvsO586dw7Rp0/Cvf/0L3377rVZbDxw4gD///BM///wzFi1ahOjoaPzf//0fHB0dcezYMYwcORIjRozAH3/8obXd+PHj8eGHHyIhIQGBgYHo2bMnbt26VepnQkRERERERP9cKin6lUtUw+Tk5OD8+fPw8/ODlZWV1jpRX4dkX9fewMIBRvY+kIIHkFu/lajPyC0AAKC5fQHI1050qey9oLJwguTchNy7pr2hmQ2MHBtUqO2hoaEoLCzE4cOHAQCFhYWwt7dH3759sX79egDA9evX4eHhgaNHj6Jt27Ylxkjz9/dHv379EB0dXaL+V155BbVq1cJXX31VYl16ejrq1auHhIQEBAQEKPXu27cPnTt3BgDs3LkTPXr0wP3792FhYYG2bduiVatWWL58uVJPu3btoFar9U7IoG9Mt+Ljqfn4+KB9+/bYsGGD1vueOnUqZs6cCQD49ddfERgYiIyMDLi7u2PYsGEwNjbG559/rtR75MgRhISEIDs7Gzt37sTbb7+NP/74A7a2tjr7vzxjukVEROD69evYunUrgId3usXGxuLSpUswMnr4fxKNGzeGq6srfv75ZwB/f5Zr1qzBm2++qfT33LlzMXHiRABAQUEB6tWrh8jISEyYMKHUNhAREREREVVU0e/l9PR0pKamonXr1srvPao5OKYbPZUKznyFwl/naC0zavwGzLqvgaivIW9T+xLbWIy9BwDI3zMSknFCa51pt9Uw9nsThRf+i4KDH2rX690ZZn2/r3Ab/f39lX8bGxvD2dkZzZo1U5a5ubkBAG7cuKFz+6ioKIwaNQp79uxBly5d0K9fP6XOUaNGoV+/fsodc71790ZQUFC52+Ph4aHs28vLCykpKXjvvfe0yrdp0wYHDhyowDsu376L3re+vnB3d0diYiKSkpKwceNGpYyIQKPR4PLly+jatSu8vb3x3HPPoVu3bujWrRv69OlTIjlb3GeffYavvvoKV69exf3795GXl1fiEdqmTZsqCbeitj3//PPK66LPsvjnFhgYqPzbxMQErVq1wvnz58vqGiIiIiIiIvqHYtKNnkomzd6B8XMvay+0cAAAqGzqwKz/Yb3bmr60SuedbgBg3KgPjDzaaG9gZvNYbSw+g6dKpdJaplKpAAAajUbn9sOGDUNYWBh27NiBPXv2YM6cOVi4cCEiIyPRvXt3XLlyBTt37sTevXvRuXNnjB49GgsWLChXe8rat6Hp2ndp7VGr1RgxYgSioqJK1OXl5QUzMzPEx8cjNjYWe/bswbRp0zB9+nScOHFC6667R23evBnjxo3DwoULERgYCFtbW8yfPx/Hjh3T29aitulaVlV9R0RERERERE8nJt3oqaSycYfKRvcMnSoTC6j+/6Okuhg5NdJfr5ULVFYuT9o8g/H09MTIkSMxcuRITJ48GatXr0ZkZCQAwMXFBYMHD8bgwYPRvn17jB8/vtSkW2l8fX1x4sQJhIeHK8tOnDhRyhYPZ1sFHj5uaWgtW7bEuXPn0KCB/sd6TUxM0KVLF3Tp0gXR0dFwcHDAgQMH0LdvX5iZmZVoV1xcHIKCgrTu6EtLSzNYm3/99VdlXLmCggKcOnVKGYOOiIiIiIiInj1MuhHVUGPGjEH37t3RqFEjZGZm4uDBg/Dz8wMATJs2DS+88AKaNm2K3Nxc/Pjjj8q6xxEZGYl3330XrVq1QlBQELZs2YKkpCQ899xzerfx9vaGSqXCjz/+iJdffhmWlpbKRA9PauLEiWjbti0iIiIwbNgwWFtb49y5c9i7dy+WL1+OH3/8EZcuXUKHDh3g6OiInTt3QqPRwNfXF8DDceSOHTuG9PR02NjYwMnJCQ0bNsT69euxe/du1KtXDxs2bMCJEydQr149g7T5s88+Q8OGDeHn54fFixcjMzNTa7IKIiIiIiIierZw9lKiGqqwsBCjR4+Gn58funXrhkaNGmHFihUAHt5lNnnyZPj7+6NDhw4wNjbG5s2bH3tfAwYMwOTJkzFu3Di0bNkSly9fxpAhQ2BhYaF3mzp16mDGjBmYNGkS3NzcDHpXl7+/Pw4dOoQLFy6gffv2aNGiBaZNm4batWsDABwcHBATE4NOnTrBz88Pq1atwjfffIOmTZsCAMaNGwdjY2M0adIELi4uuHr1KkaMGIG+ffvijTfewIsvvohbt26VGMfuScydOxdz585F8+bNceTIEWzfvr3MGWWJiIiIiIjon4uzl1KNVdrspVT5unbtCnd3d2XWUdKt+GyxRERERERElY2zlz4d+HgpESEnJwerVq1CWFgYjI2N8c0332Dfvn3Yu3dvdTeNiIiIiIiI6KnEpBsRQaVSYefOnZg9ezYePHgAX19fbNu2DV26dKnuphERERERERE9lZh0IyJYWlpi37591d2Mp5KPjw/4lD4REREREREVx4kUiIiIiIiIiIiIDIxJN6rxNBpNdTeBiIiIiIiIqMbg7+SnA5NuVGOZmZkBANRqdTW3hIiIiIiIiKjmKPqdnJ+fX80todJwTDeqsUxMTFCrVi1cu3YNAGBjYwMjI+aJiYiIiIiI6Nmk0WigVqtx7do1ZGVl8Y63Go5JN6rRvLy8AEBJvBERERERERE967KysvC///0PACAiMDc3r+YWkS5MulGNplKp4O3tDWtra/z0009Qq9VwcXGBSqWq7qYRERERERERVbn8/HxoNBqICG7fvg1zc3O4uLhUd7NIB5WISHU3gqg8/vjjD+zcuRO3b9+u7qYQERERERERVTtLS0u0b98eLVq04M0pNRCTbvRUuX37Nm7duoW8vLzqbgoRERERERFRtTE2NoadnR08PDyYcKuhmHQjIiIiIiIiIiIyME4FSUREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGD/D3rykYqFLQpGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_plot(obstype='temp', colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "a00c0384-0115-4c7d-ab9f-a0bb963922db", + "metadata": {}, + "source": [ + "If you are interested in the performance of the applied QC, you can use the [get_qc_stats()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check) method to get an overview of the frequency statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a9707e22-b29a-4e79-9e8d-e321d4dba651", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBwAAANoCAYAAABjj/lcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU+f8H8NfsEkuHoCAqGIDdZwcmdpytZ3frmXd2n54YZydYZ+eZWJzY2N2gZ4uCCkjtzu8Pv8yPpSQWhng9ffCQnf3MzHtmh5nZ93xCEEVRBBERERERERGRDinkDoCIiIiIiIiIsh8mHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIgoUQEBARAEAfPnz9fZMn18fCAIAnx8fH5Y1s/PD9WqVYOJiQkEQcCNGzd0FgfJz8nJCT169NDZ8gRBwNSpU3W2vKwkob+rHj16wMnJSbaYkkvXx4Gubdq0CUWLFoW+vj4sLS3lDoeIiChLYcKBKJvx8vKCIAi4cuWK3KGkSVRUFNq1a4dPnz5h4cKF2LRpExwdHeUOK0cJCwvD1KlTk5UcSsz58+cxdepUBAcH6ySmw4cP59ikglwy43GQUR48eIAePXqgcOHCWLNmDVavXp0u64lJ7ibnJyAgIF1iyApmz56Nffv2yR0GERGlgJ7cARARJeTp06d4/vw51qxZgz59+sgdTo4UFhaGadOmAQDc3NxStYzz589j2rRp6NGjR7ynww8fPoRCkbK89+HDh7Fs2bIEkw7fvn2Dnh4va7qWGY+DjOLj4wONRoPFixejSJEi6bYeW1tbbNq0SWuah4cHXr58iYULF8Yrm1PNnj0bbdu2RatWreQOhYiIkol3ZkSUKb1//x4AklWFOTQ0FCYmJukcEemaoaGhTpenUql0ujzKGLo+DnQpJeeh5AoLC4OxsbHWNBMTE/zyyy9a07Zt24agoKB407MLjUaDyMjILPV3y2sNEVHKZc5HCkSUriIjIzF58mRUqFABFhYWMDExQc2aNXH69OlE51m4cCEcHR1hZGSE2rVr486dO/HKPHjwAG3btoW1tTVUKhUqVqyIAwcOpDi+Hj16oHbt2gCAdu3aQRAE6clqjx49YGpqiqdPn6JJkyYwMzNDly5dAHy/gV20aBFKlCgBlUqFPHnyoH///ggKCtJaviiKmDlzJvLlywdjY2PUqVMHd+/ejdeWfOrUqRAEIV58Mc1W4lZtPnLkCGrWrAkTExOYmZmhadOmuHv3brxtMzU1xatXr9CqVSuYmprC1tYWo0ePhlqt1iob82S1VKlSUKlUsLW1RaNGjaTmMrVr10aZMmUS3Ieurq5wd3dPcj9fuXIF7u7usLGxgZGREQoWLIhevXoB+F7FO+ZJ6rRp06Tq3DE1C27duoUePXqgUKFCUKlUsLOzQ69evfDx40et/TdmzBgAQMGCBeNVCY+7v6OiojBt2jQ4OztDpVIhV65cqFGjBo4fPy7tu2XLlgGAVhXzGAn14fDq1Sv07t0befPmhaGhIQoWLIiBAwciMjIyWetMyrNnz9CuXTtYW1vD2NgYVapUwaFDh7TKxPStsGPHDsyaNQv58uWDSqVCvXr18OTJkx+u4/nz5xg0aBBcXV1hZGSEXLlyoV27djqtVp/ZjgNA9/v28ePHaNOmDezs7KBSqZAvXz507NgRnz9/TnS/ODk5YcqUKQC+1yqIe3wtX74cJUqUgKGhIfLmzYvBgwfHazLi5uaGkiVL4urVq6hVqxaMjY3x+++/J/5h/EBERASmTJmCIkWKwNDQEPnz58fYsWMRERGhVU4QBAwZMgQ7d+5E8eLFYWRkhKpVq+L27dsAgFWrVqFIkSJQqVRwc3OLdzzFjrtatWrScbFy5co0x7RlyxZpvx09ehQAMH/+fFSrVg25cuWCkZERKlSogF27dsWbPzQ0FBs2bJCOoZjjJrH+SuKew2Oarnh5ecUrG/fzjZn33r176Ny5M6ysrFCjRo148xERUdJYw4EoB/ry5QvWrl2LTp06oW/fvvj69SvWrVsHd3d3XL58GWXLltUqv3HjRnz9+hWDBw9GeHg4Fi9ejLp16+L27dvIkycPAODu3buoXr06HBwcMH78eJiYmGDHjh1o1aoVdu/ejdatWyc7vv79+8PBwQGzZ8/GsGHD8NNPP0nrAYDo6Gi4u7ujRo0amD9/vvS0sH///vDy8kLPnj0xbNgw+Pv7Y+nSpbh+/TrOnTsHfX19AMDkyZMxc+ZMNGnSBE2aNMG1a9fQsGFD6UtoamzatAndu3eHu7s75s6di7CwMKxYsQI1atTA9evXtW6G1Wo13N3dUblyZcyfPx8nTpyAh4cHChcujIEDB0rlevfuDS8vLzRu3Bh9+vRBdHQ0fH19cfHiRVSsWBFdu3ZF3759cefOHZQsWVKaz8/PD48ePcLEiRMTjff9+/do2LAhbG1tMX78eFhaWiIgIAB79uwB8P0L1ooVKzBw4EC0bt0aP//8MwCgdOnSAIDjx4/j2bNn6NmzJ+zs7HD37l2sXr0ad+/excWLFyEIAn7++Wc8evQIW7duxcKFC2FjYyMtOyFTp07FnDlz0KdPH1SqVAlfvnzBlStXcO3aNTRo0AD9+/fH69evcfz48XjVzxPy+vVrVKpUCcHBwejXrx+KFi2KV69eYdeuXQgLC4OBgcEP15mYd+/eoVq1aggLC8OwYcOQK1cubNiwAS1atMCuXbviHe9//PEHFAoFRo8ejc+fP2PevHno0qULLl26lOQ2+Pn54fz58+jYsSPy5cuHgIAArFixAm5ubrh37168J+UplRmPA13v28jISLi7uyMiIgJDhw6FnZ0dXr16hYMHDyI4OBgWFhYJxrFo0SJs3LgRe/fuxYoVK2Bqaipt99SpUzFt2jTUr18fAwcOxMOHD7FixQr4+flpnWsA4OPHj2jcuDE6duyIX375RetclhIajQYtWrTA2bNn0a9fPxQrVgy3b9/GwoUL8ejRo3h9G/j6+uLAgQMYPHgwAGDOnDlo1qwZxo4di+XLl2PQoEEICgrCvHnz0KtXL5w6dUpr/qCgIDRp0gTt27dHp06dsGPHDgwcOBAGBgZSQiqlMZ06dQo7duzAkCFDYGNjI50XFy9ejBYtWqBLly6IjIzEtm3b0K5dOxw8eBBNmzYF8P0cG/N32q9fPwBA4cKFU7UvU6Jdu3ZwdnbG7NmzIYpiuq+PiCjbEYkoW/H09BQBiH5+fomWiY6OFiMiIrSmBQUFiXny5BF79eolTfP39xcBiEZGRuLLly+l6ZcuXRIBiCNHjpSm1atXTyxVqpQYHh4uTdNoNGK1atVEZ2dnadrp06dFAOLp06eT3I6Ycjt37tSa3r17dxGAOH78eK3pvr6+IgBxy5YtWtOPHj2qNf39+/eigYGB2LRpU1Gj0Ujlfv/9dxGA2L17d2nalClTxIROkzH72N/fXxRFUfz69atoaWkp9u3bV6vc27dvRQsLC63pMfFPnz5dq2y5cuXEChUqSK9PnTolAhCHDRsWb/0xcQcHB4sqlUocN26c1vvDhg0TTUxMxJCQkHjzxti7d+8Pj5MPHz6IAMQpU6bEey8sLCzetK1bt4oAxDNnzkjT/vzzT619FZujo6PW/i5TpozYtGnTROMRRVEcPHhwgp+JKIrxYu3WrZuoUCgS3MaYfZicdSZkxIgRIgDR19dXmvb161exYMGCopOTk6hWq0VR/P/juFixYlp/c4sXLxYBiLdv305yPQnt5wsXLogAxI0bN0rTEvq76t69u+jo6Jjk8jPjcaDrfXv9+vUEzyXJEXMO+PDhgzQt5hzSsGFDKRZRFMWlS5eKAMT169dL02rXri0CEFeuXJnidTdt2lTr89u0aZOoUCi09osoiuLKlStFAOK5c+ekaQBEQ0NDrf29atUqEYBoZ2cnfvnyRZr+22+/xftsYuL28PCQpkVERIhly5YVc+fOLUZGRqYqJoVCId69ezfetsY9jiIjI8WSJUuKdevW1ZpuYmKidazESOxYj3sOj7mmeXp6xisb9xiPmbdTp07xyhIRUfKxSQVRDqRUKmFgYADg+xOqT58+ITo6GhUrVsS1a9filW/VqhUcHByk15UqVULlypVx+PBhAMCnT59w6tQptG/fHl+/fkVgYCACAwPx8eNHuLu74/Hjx3j16pVOtyF2TQAA2LlzJywsLNCgQQNp/YGBgahQoQJMTU2l5iInTpxAZGQkhg4dqlXVdsSIEamO5fjx4wgODkanTp201q1UKlG5cuUEm6oMGDBA63XNmjXx7Nkz6fXu3bshCIJUpTu2mLgtLCzQsmVLbN26VXryplarsX37drRq1SrJtsYxbdIPHjyIqKioFG+zkZGR9Ht4eDgCAwNRpUoVAEjwGEoOS0tL3L17F48fP07V/LFpNBrs27cPzZs3R8WKFeO9H7MPU7vOw4cPo1KlSlpVrE1NTdGvXz8EBATg3r17WuV79uwp/c0B3z9vAFqfeUJi7+eoqCh8/PgRRYoUgaWlZar3c2yZ8TjQ9b6NqcFw7NgxhIWFpSqm2GLOISNGjNDq7LJv374wNzeP1/TD0NAQPXv2TPN6d+7ciWLFiqFo0aJa55m6desCQLzzTL169bRqVlWuXBkA0KZNG5iZmcWbHvdY1NPTQ//+/aXXBgYG6N+/P96/f4+rV6+mKqbatWujePHi8bYt9nEUFBSEz58/o2bNmjo5xtMq7rmaiIhShgkHohxqw4YNKF26tNRu3dbWFocOHUqwTbOzs3O8aS4uLlK73ydPnkAURUyaNAm2trZaPzFfmGM6X9MFPT095MuXT2va48eP8fnzZ+TOnTteDCEhIdL6nz9/nuA22drawsrKKlXxxHxZrVu3brx1e3t7x9v2mP4YYrOystLqa+Lp06fImzcvrK2tk1x3t27d8OLFC/j6+gL4/mXo3bt36Nq1a5Lz1a5dG23atMG0adNgY2ODli1bwtPTM16768R8+vQJw4cPR548eWBkZARbW1sULFgQAJJsF5+U6dOnIzg4GC4uLihVqhTGjBmDW7dupWpZHz58wJcvX7Samuhync+fP4erq2u86cWKFZPej61AgQJar2OOtbj9i8T17ds3TJ48Gfnz54ehoSFsbGxga2uL4ODgVO/n2DLjcaDrfVuwYEH8+uuvWLt2LWxsbODu7o5ly5alKT4A8WI0MDBAoUKF4sXn4OCglRBJrcePH+Pu3bvxzjEuLi4A4p9j4+6XmMRL/vz5E5we91jMmzdvvKRlzLpizv0pjSnm2Ijr4MGDqFKlClQqFaytraWmPLo4xtMqsZiJiCh52IcDUQ60efNm9OjRA61atcKYMWOQO3duKJVKzJkzB0+fPk3x8jQaDQBg9OjRiXZUqMsh5QwNDeMNo6fRaJA7d25s2bIlwXlSM5RcQh1GAkiwc0fgextjOzu7eOXjDtWoVCpTHEti3N3dkSdPHmzevBm1atXC5s2bYWdnh/r16yc5nyAI2LVrFy5evIh//vkHx44dQ69eveDh4YGLFy/C1NQ0yfnbt2+P8+fPY8yYMShbtixMTU2h0WjQqFEjaX+kVK1atfD06VPs378f3t7eWLt2LRYuXIiVK1em29CoGbXOxD5z8QdtwocOHQpPT0+MGDECVatWhYWFBQRBQMeOHVO9n2PLjMdBSiVn33p4eKBHjx7S5zxs2DDMmTMHFy9ejJe81LXYT+/TQqPRoFSpUliwYEGC78dNJCS2X1J7LOoipoT2ha+vL1q0aIFatWph+fLlsLe3h76+Pjw9PfH3338nK47knquTW+5HMRMRUfIx4UCUA+3atQuFChXCnj17tG7AEqq+DyDB6uaPHj2SqusWKlQIAKCvr//DL7rppXDhwjhx4gSqV6+e5A2io6MjgO/bFBM38P2JeNwnfDFPSoODg7WGxYv7BDOm47LcuXPrbPsLFy6MY8eO4dOnT0nWclAqlejcuTO8vLwwd+5c7Nu3D3379k12UqNKlSqoUqUKZs2ahb///htdunTBtm3b0KdPn0RvzoOCgnDy5ElMmzYNkydPlqYndJwktozEWFtbo2fPnujZsydCQkJQq1YtTJ06Vfryn9zl2drawtzcPMHRVFK6zoQ4Ojri4cOH8aY/ePBAel8Xdu3ahe7du8PDw0OaFh4eHm80hLTKTMdBeu3bUqVKoVSpUpg4cSLOnz+P6tWrY+XKlZg5c2aKlhOz/ocPH2qdQyIjI+Hv759u58DChQvj5s2bqFevXor/rlLj9evX8YaBfPToEQBI535dxLR7926oVCocO3ZMa4hUT0/PeGUTW4eVlVWCfxNxz9Wxz+lJlSMiIt1hkwqiHCjmy2jsJ1qXLl3ChQsXEiy/b98+rT4YLl++jEuXLqFx48YAvn/RdnNzw6pVq/DmzZt483/48EGX4Seoffv2UKvVmDFjRrz3oqOjpRvM+vXrQ19fH0uWLNHa/kWLFsWbLyaRcObMGWlazLBssbm7u8Pc3ByzZ89OsB18ara/TZs2EEUR06ZNi/de3CeRXbt2RVBQEPr374+QkBD88ssvP1x+UFBQvOXEjE4SU50+ZgSEuDfnCR0/QML7MObLSnK+IMceShH43m6/SJEiWtX7k7s8hUKBVq1a4Z9//pGGEY0tJvbkrDMhTZo0weXLl7X+ZkJDQ7F69Wo4OTkl2E49NZRKZbz9vGTJkiSfyKZEZjwOdL1vv3z5gujoaK1ppUqVgkKhSHbTkdjq168PAwMD/PXXX1rbvm7dOnz+/FkaVUHX2rdvj1evXmHNmjXx3vv27RtCQ0N1ur7o6GisWrVKeh0ZGYlVq1bB1tYWFSpU0FlMSqUSgiBoHdMBAQHxRrgAvh9HCR1DhQsXxufPn7WaQ7158wZ79+7VKmdubg4bGxutczrwfYjT5Hr69GmqagISEeVUrOFAlE2tX79eGuM8tuHDh6NZs2bYs2cPWrdujaZNm8Lf3x8rV65E8eLFERISEm+eIkWKoEaNGhg4cCAiIiKwaNEi5MqVC2PHjpXKLFu2DDVq1ECpUqXQt29fFCpUCO/evcOFCxfw8uVL3Lx5M123t3bt2ujfvz/mzJmDGzduoGHDhtDX18fjx4+xc+dOLF68GG3btoWtrS1Gjx4tDRHXpEkTXL9+HUeOHJGG64vRsGFDFChQAL1798aYMWOgVCqxfv162Nra4sWLF1I5c3NzrFixAl27dkX58uXRsWNHqcyhQ4dQvXp1LF26NEXbU6dOHXTt2hV//fUXHj9+LFVR9/X1RZ06dTBkyBCpbLly5VCyZEmpA7fy5cv/cPkbNmzA8uXL0bp1axQuXBhfv37FmjVrYG5ujiZNmgD4XpW4ePHi2L59O1xcXGBtbY2SJUuiZMmSqFWrFubNm4eoqCg4ODjA29sb/v7+8dYT88VkwoQJ6NixI/T19dG8efMEO7QsXrw43NzcUKFCBVhbW+PKlSvYtWuX1rbGLG/YsGFwd3eHUqlEx44dE9zG2bNnw9vbG7Vr15aG7Hvz5g127tyJs2fPwtLSMlnrTMj48eOxdetWNG7cGMOGDYO1tTU2bNgAf39/7N69O16Tn9Rq1qwZNm3aBAsLCxQvXhwXLlzAiRMnkCtXLp0sPzMeB7ret6dOncKQIUPQrl07uLi4IDo6Gps2bYJSqUSbNm1SvM9sbW3x22+/Ydq0aWjUqBFatGiBhw8fYvny5fjpp5+SlfBLja5du2LHjh0YMGAATp8+jerVq0OtVuPBgwfYsWMHjh07lmAHqamVN29ezJ07FwEBAXBxccH27dtx48YNrF69Whr2UxcxNW3aFAsWLECjRo3QuXNnvH//HsuWLUORIkXi9adSoUIFnDhxAgsWLEDevHlRsGBBVK5cGR07dsS4cePQunVrDBs2TBqW2MXFJV7Hk3369MEff/yBPn36oGLFijhz5oxUcyM56tWrB+D/+7EgIqIfyPiBMYgoPcUM2ZjYz3///SdqNBpx9uzZoqOjo2hoaCiWK1dOPHjwYLyhxWKGEPvzzz9FDw8PMX/+/KKhoaFYs2ZN8ebNm/HW/fTpU7Fbt26inZ2dqK+vLzo4OIjNmjUTd+3aJZXRxbCYJiYmic63evVqsUKFCqKRkZFoZmYmlipVShw7dqz4+vVrqYxarRanTZsm2tvbi0ZGRqKbm5t4586deMPziaIoXr16VaxcubJoYGAgFihQQFywYEG8YTFjx+zu7i5aWFiIKpVKLFy4sNijRw/xypUrP4w/oSE4o6OjxT///FMsWrSoaGBgINra2oqNGzcWr169Gm/+efPmiQDE2bNnJ7pvYrt27ZrYqVMnsUCBAqKhoaGYO3dusVmzZlqxiqIonj9/XqxQoYJoYGCgNWzcy5cvxdatW4uWlpaihYWF2K5dO/H169cJDp84Y8YM0cHBQVQoFFr7Le7+njlzplipUiXR0tJSNDIyEosWLSrOmjVLGoIvZp8MHTpUtLW1FQVB0NpnCa37+fPnYrdu3URbW1vR0NBQLFSokDh48GBpGMXkrDMxT58+Fdu2bStaWlqKKpVKrFSpknjw4EGtMokdx0kNzxdbUFCQ2LNnT9HGxkY0NTUV3d3dxQcPHsTbd6kdFjMzHgeiqNt9++zZM7FXr15i4cKFRZVKJVpbW4t16tQRT5w4keS+EcWEh8WMsXTpUrFo0aKivr6+mCdPHnHgwIFiUFCQVpnatWuLJUqU+OF6EhJ3WExR/D5c5Ny5c8USJUqIhoaGopWVlVihQgVx2rRp4ufPn6VyAMTBgwdrzRv7fB5bQvsxJu4rV66IVatWFVUqlejo6CguXbo0XpxpiSnGunXrRGdnZ9HQ0FAsWrSo6OnpmeA58cGDB2KtWrVEIyOjeMMYe3t7iyVLlhQNDAxEV1dXcfPmzQkuIywsTOzdu7doYWEhmpmZie3btxffv3+f6LCYcT97R0fHH/5dERHR/xNEMRW9BBERZUNOTk5wc3ODl5eX3KGk2OLFizFy5EgEBATE652eiCgl3NzcEBgYmKw+UIiIiJLCPhyIiLI4URSxbt061K5dm8kGIiIiIso02IcDEVEWFRoaigMHDuD06dO4ffs29u/fL3dIREREREQSJhyIiLKoDx8+oHPnzrC0tMTvv/+OFi1ayB0SEREREZGEfTgQERERERERkc6xDwciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQdKNz4+PhAEAYIgoEePHhmyTjc3N2mdAQEBSZb18vKSyk6dOjVV6+vRo4e0DB8fn1QtQ5fxeXt7o3LlyjAzM5PmDQ4O1mlcOcHUqVOl/efl5SV3OERE9D+JXXdjpjk5OckWm1y+fPmCIUOGwNHREUqlEoIgYMSIEXKHRUQEgAkHSqHYX8QS+rG0tJQ7xBwrICAALVu2xOXLlxESEiJ3OERElA29e/cOv/32G8qUKQMzMzMYGRmhUKFC6NmzJ27evJnm5QcEBGDq1KmYOnUq9u3bl/aAc4CxY8di2bJlePHiBTQajdzhEBFp0ZM7AMq+ypUrB19fXwBAnjx5ZI4m+ztx4gTCw8MBAK1atcKIESOgVCphZmYmc2RZT69evVC/fn0AgIuLi8zREBFlDmfOnEHr1q3x6dMnren+/v7w9/fHxo0bsXDhQgwbNizV6wgICMC0adMAAN27d0erVq2SNV/M/YZKpUr1urOqgwcPAgD09fWxefNm5M2bFw4ODjJHRUT0HRMOlGqNGzfG77//rjVNT+//DykLCwvUqFEjo8PKsV6/fi393qJFC9SuXfuH84SGhsLExCQ9w8qSChQogAIFCsgdBhFRpvHy5Uu0atUKQUFBAICaNWti+PDhMDU1xY4dO7B+/XpoNBqMGDECRYoUQZMmTTI0vvS838iM18rYMcVc/+3t7dG+fft0XRcRUUqxSQWlWu7cuVGjRg2tnypVqkjvJ9aHQ+z2l97e3pg8eTLy5csHlUqF6tWrx6uSuW7dOri7u6NAgQIwMTGBSqWCs7Mzhg4disDAQJ1v1759+9CiRQsULFgQZmZmMDAwgKOjI3r27JlkvxDR0dGYNm0a8ufPDyMjI9SqVQvXrl2LV87f3x99+/aFo6MjDA0NkTt3bnTo0AH3799PdcyCIGDKlCnS6169emm1ZY3dt8W1a9fQq1cv2NjYwNTUVJonJCQEU6dORcmSJWFkZARzc3O4ubnhyJEj8dYXGhqKoUOHwtbWFqampmjRogUCAgLg5OQkrSdGYn1RBAQESNPd3Ny0lp/cWOIuw8/PD3Xq1IGxsTHs7OwwceLEeNVL1Wo1li9fjqpVq8LCwgJGRkZwdnZG//79pTJJ9eFw69YtdOrUCfb29jAwMICDgwP69OmDly9fapX79u0bxowZA2dnZxgaGsLExAQFCxbEzz//jL1798b/EImIMrF58+ZJyQZXV1ccP34cbdq0gbu7O9atWydd50VRxPjx46X5EjufJnSP4Obmhjp16khlNmzYkOy+oBLrwyEqKgoLFixAhQoVYGJiAhMTE1SuXBmbN29Ochm3b99GgwYNYGpqiqZNmyZ73Y8fP0azZs1gamoKGxsbDB48GKGhofHm2b9/P+rXrw8rKysYGhrC1dUV06ZNw7dv37TKJXX9jtm3oigCAF68eBFvX4uiiNWrV6NKlSowMzODSqVC0aJF8fvvv+Pz58/JXheg/VmuW7cO06ZNg729PczNzdGpUycEBwfj06dP6Nq1KywsLGBtbY0BAwZItS9jjBo1CtWqVYO9vT0MDQ1hamqK8uXLY/78+YiOjk5y37Zo0QKmpqaJLhsAtm7dijp16kj71snJCV27dtXa3pQcF0SURiJRCkyZMkUEIAIQu3fvnmTZ06dPJ1i2e/fu0vRChQpJv8f8ODk5iVFRUVJ5d3f3eGVifooVKyZ++/ZNKlu7dm3pPX9//yTj8/T0lMpOmTJFmt6/f/9E15cnTx7x3bt3CW5L6dKl45U3NzcXHz58KJW/evWqaGlpmeCyTU1NxUuXLv0wvoQkFq+jo2O8/RJ3n4uiKAYHB4ulSpVKdDnLli3TWl/jxo3jlcmfP79obW2ttdyktsPf31+aXrt2bWl6SmKJvQx7e3vRyMgoXvk1a9ZI5SMjI5M8nmLEPs49PT2l6YcPHxYNDQ0TnNfOzk589uyZVLZXr16JrqdLly5Jfp5ERJlNvnz5pHPY0qVL471/+/ZtrfPc06dPRVFM/Hya0D1C7GtV3J+YMrGvu6dPn5aWF/e6J4rfz/n16tVLdJljx47V2oaY6RYWFmKuXLkSvEYlJKacpaWlmCdPnnjradSokVb5SZMmJRpTzZo1xYiICKlsUtfv2Ps27o+np6eo0WjEjh07JlqmaNGi4qdPn5K1rrifZeHChRPczkqVKsWbPmHCBK3tT+w6CkDs2bNngvvW3Nxc6zNJbNlJXXtj7gtTelwQUdqwhgOlWuwnD6kdjeK///7D3LlzsWfPHuTPnx/A96fWx44dk8p06NAB69evx6FDh+Dj44NDhw6hW7duAID79+9jz549OtsmAGjYsCFWrVqFf/75Bz4+Pjh69ChGjRoF4HtnWWvXrk1wvidPnmDx4sXYt28fKlasCOB7z9G//fYbAEAURXTv3l0aNWLUqFHw9vbG3LlzoVQqERISgp49e0pPKlLC19cXPXv2lF7//vvv8PX1xa5du+KVffHiBaZMmYJjx45h4cKFAIAJEybg9u3bAIAmTZrg0KFD2LhxI+zs7AAAI0eOxH///QcAOHr0qFTTwMjICIsWLcK+ffuQJ0+eeO16UyMlscT25s0blC9fHvv379dqP7xq1Srp97/++ks6toyNjTFjxgwcPXoUa9aswU8//ZRkXGFhYejevTsiIiKgp6eHWbNmwdvbG2PHjgUAvH37FoMGDZLK79+/HwDg6OiIXbt2wdvbG+vWrUO3bt1gZWWVml1DRCSLr1+/atXiKlu2bLwyJUqUgL6+vvT63r17KV7PkiVL8Ndff0mvGzduDF9fX/j6+mLChAkpXt7ixYtx8uRJAECVKlWwd+9e7Nq1C66urgC+19q4dOlSvPk+f/4MpVKJ1atX49ixY+jTp0+y1hccHIx8+fJh3759WLJkCYyNjQF8v27+888/AAA/Pz/MmDEDwPcmEOvWrcPRo0elWhS+vr7StTmuuNfvXr16SX1XAICdnZ20v5o0aYIdO3Zg27ZtAAArKyusXr0ae/fuRenSpQEADx48iNc0NrF1xRUQEIB58+Zh+/btUl9RR48exb1797B27VqsWLFCKhv7Ogx8v85v3boVR48ehY+PD/bs2YPKlSsD+F4rMm6NQeD7/ZStrS12794t7b+4y969ezfWr18PAFAqlRg9ejQOHz6MjRs3okGDBlLty9QeF0SUSnJnPChrSSqbDmjXZEhODYfhw4dL0//44w9p+qJFi6TpL168EPv27SsWLFgwwaz4yJEjpbK6qOHw8eNH8ddffxVdXV0TfGLeunXrBLcldpb90aNH0nSVSiVGRkaK169fl6aVLVtW9PX1lX6qVq0qvXflypUk40vOZxP7KVLc/fL7779rvadWq0UrKysRgGhgYCCeOHFCimvQoEHSfPPnzxdFURQHDhwoTRszZkyC2xz71JKSGg4pjSX2MgwMDMS3b99KyzE2NpaeOMUoU6aMVH7VqlUp2pd79+6VpjVu3Fjr83NychIBiIIgiB8+fBBFURTt7OxEAGKZMmXE69evi+Hh4T/8DImIMqOXL19qnd9j19yLLea8B0DcvHmzKIopq+GQ1PQYKanhEPucv2PHDumcPX36dGn6kCFD4i0DgOjt7Z3s/RN7vsePH0vTJ0yYIE3v1auXKIqiOHz4cK3rcUxM//zzjzS9ZMmS0jKSun4nte2iKIotWrSQ3luyZIk0PXZtFCsrK1Gj0SRrXbE/y86dO0vTmzZtKk2fNGmSNL1EiRLS9ODgYGn62bNnxZYtW4p2dnainp5evPus/fv3J7hvr1+/Lk0vWrRovGW3bNlSmvbbb78luK9EMeXHBRGlDTuNpFRLqNPIlI5GEbtjw1y5ckm/x9QC+Pr1K6pVq5ZgtjtuWV1Qq9WoX78+rl+/nuL1xWTnAcDZ2RlWVlYICgpCeHg4Xr9+jUePHknv37hxAzVr1kxwOffv30eFChVStwHJ0Lx5c63XgYGBUrvcyMhIaXSGhOICgGfPnknTYtcKiL3NqZXSWGIrWrSodPwpFApYWVkhLCxM6/OK/Rk0a9YsRbHFnvfIkSMJ9m0hiiIePHiAGjVqoHfv3pg1axZu3ryJcuXKQalUwsXFBY0aNcKYMWNgb2+fovUTEcnF3Nxc6/WHDx/ijeAjiiI+fvwovbawsMiQ2JIS+7ydWGeKCV1PVCoVGjRokOL1WVtbo0iRItLrSpUqSb/HXDtjxzR79mzMnj073nIePHiQ4PLjXr9/JPa6Yt+jlCxZEsbGxggLC0NQUBA+fPiA3Llzp2hdsbfN2tpa+j2mhicA2NjYSL8HBwfDwsICly9fRp06dRAVFZXoshO6zzI3N9eqWRP3ntHCwiLZ1/jUHhdElDpsUkGpllCnkc7OzilaRuyq5bFHuBD/16xg7969UrKhaNGi2L59e7zqhrocc/rcuXNSssHe3h4bNmzAmTNnsHXr1hSvL3bHiSmRUOdSupTaIUqTE1dC2xx7mlqtln5PS4efCcUSt5lC7OMpI8XENmPGDGzduhXt2rWDq6srBEHA/fv3sXDhQjRs2DBex1hERJmVmZkZ8uXLJ72+ceNGvDL37t3T+hJZvHhxAOlzDdClhK4ncb98p1Zq7wOio6MRERERb3pGDjH+o3XFTigpFP//dSJucipGzH3dypUrpeOkWbNmOHz4MHx9faWmskDC91lJXeNjlq1L6X0vRpSTMOFAmdqrV6+k3wcPHoz27dujRo0aCfZKrOv1de7cGd26dUu0JkJcly9fln5/8uSJ1J+BSqVC3rx5tZ4G1a5dG6IoxvsJDQ3VGi0hPcS9AbKxsZEu5Kampvj69Wu8uNRqNTw9PQEAhQoVkua9cuWK9HvsbY4t9k3J27dvpd+PHj0ar2xKY0mp2J/BoUOHUj1v9+7dE/383N3dpXIdO3bEjh078ODBA3z9+hVt27YFANy5c0frCQsRUWbXqlUr6fdly5YhMjJS6/0FCxZIv5cqVUq6VqTkGgBof3lN6wOF2OftZ8+eJXjejmnLH1tqEwWfPn3CkydPpNex+wGI2R+xY/L09Ez0WmJoaJjmuGKvK/Y9yp07dxAWFgbg+xd5W1vbNK8ruWLfZ82ZMweNGzdGjRo18O7duzQvO7nX+NQeF0SUOmxSQZmao6Oj9Pv69etRqFAhPHnyBDNnzkz39e3evRs1atRAUFCQ1hBfiVm4cCHy5MmDAgUKYNasWdL0xo0bQ19fH2XKlEHJkiVx584d/Pvvv+jWrRvatWsHfX19BAQE4PLly9i7d2+amiSkhkKhQKdOnbB8+XKEhISgYcOGGDZsGGxsbPDy5UvcuXMHe/bswfr16+Hm5oYWLVpInUEtXboU+fLlg6Ojo9Y2xxa7eunmzZtRuHBhhISEYN68eWmOJaV++eUXadjVkSNH4v379/jpp5/w6tUrrF69GhcuXEh03gYNGsDW1hYfPnzAxo0bYW1tjQYNGkCtViMgIADnzp3DzZs3pY7SqlevjnLlyqFSpUpwcHDA169ftTpRS+jpFRFRZjV27Fhs3rwZwcHBuH//Pho0aIDhw4fDxMQEu3btkjrrA6DVTCD2NWDBggUwNTXFkydPtMrHFvtJ9tmzZ3HkyBGYmZnBxcUlxTUPunTpIp3zmzVrhrFjxyJfvnx48+YNHjx4gP3792PUqFEp7vA6KZ07d8bEiRPx8uVLLFq0SJresmVL6f3FixcD+H4d+vTpE0qXLo3g4GA8ffoU3t7ecHR0THT/pDSWAwcOAAAmT54MQ0ND2NjYYNq0aVKZDh06pFtyISGx77PmzJmD7t2748iRI1qdhafWL7/8InXYPG/ePERHR6NOnTr4+PEjNm/ejJUrV8LR0VGW44IoR0vPDiIo+9H1sJixO3xKqHPBL1++iPb29vE6FKpevXqCy05rp5HR0dEJDm8Ze32xh8eKvS3Ozs7x5jM1NRXv378vlU9qWMyYn6TiS0pyO41MaL8EBQUlORRl3M8qoWExHRwcEhwWUxRFrU4xY36KFSuW4D5NSSyJDa0piqLo6OgYL5bIyEixfv36P9z3ie3LQ4cOJTmcV+wOuxIaMizmp3jx4mJ0dHSSnycRUWZz6tSpJK9hCoVCXLBggdY8kZGRYoECBZK8BsS+jkdFRWl1Phn3XJySTiMjIiKSHP4w7jk+oWUkR8x81tbWWsOHxvw0aNBA6phRFJMeFjM19zWJxa3RaMQOHTokup6khsVMaF2JXRsT+0wSWt6lS5dEQRC04hAEQes+ITmfSWKxxo4l7k9MuZQeF0SUNmxSQZmamZkZjh8/jrp168LU1BQODg6YPn06pk+fni7rUyqVOHToEFq2bAkLCwvY2tpi+PDhiQ6FGdvSpUsxbtw42Nvbw9DQEDVq1MDp06dRtGhRqUz58uVx48YNDBgwAIUKFYKBgQEsLS1RsmRJDBgwQLYqfJaWlrhw4QJmzJiBMmXKwMjICMbGxnB2dkbbtm2xdetWVKlSRSq/c+dODB48GLly5YKxsTGaNm2KM2fOSENjxbVlyxa4u7tDpVJJ+3Tnzp06iSUl9PX1ceTIEfz111+oVKkSTE1NoVKpUKRIEfTt2/eH8zdp0gRXrlxB165dkS9fPujr68PGxgZly5bFr7/+qrVNv/32G1q2bAlHR0cYGxtDX18fTk5OGDBgAE6dOgWlUpmqbSAikkudOnVw//59jBs3DiVLloSJiQkMDQ3h5OSE7t2748qVKxg5cqTWPPr6+ti3bx+qVq0KAwMD5MuXD9OmTdMa/jI2PT09HDhwADVq1Ej0mpJcBgYGOHr0qHTONzMzg0qlQsGCBdG0aVOsW7cOrVu3TtM6YjMzM4Ovry+aN28OExMTWFtbY8CAAdizZ49WLYLp06fj4MGDaNSoEXLlygV9fX04ODigRo0a+OOPP7RqIKSFIAj4+++/sXLlSlSqVEn6vFxcXDB+/HhcvHgxw4dprlSpEvbu3YtSpUpBpVKhRIkS2LlzJxo2bKiT5Xt5eWHTpk2oXbs2LCwsYGBggAIFCqBLly7Stmb0cUGU0wmimA49rRBRjuTk5ITnz58DQLp04kRERJTZxCQTHB0dERAQIG8wRESZDGs4EBEREREREZHOMeFARERERERERDrHhAMRERERERER6Rz7cCAiIiIiIiIinWMNByIiIiIiIiLSOSYciIiIiIiIiEjnmHAgIiIiIiIiIp1jwoGIiIiIiIiIdI4JByIiIiIiIiLSOSYciIiIiIiIiEjnmHAgIiIiIiIiIp1jwoGIiIiIiIiIdI4JByIiIiIiIiLSOSYciIiIiIiIiEjnmHCgH/Lx8YEgCAgODpY7FCIiIiIiIsoimHCgDCOKIubPnw8XFxcYGhrCwcEBs2bNSrDsuXPnoKenh7Jlyya5zIcPH6JOnTrIkycPVCoVChUqhIkTJyIqKkoqc/z4cbi4uMDc3Bxdu3ZFZGSk9N7nz5/h4uKC58+f62QbiYiIiIiI6Ds9uQOgnGP48OHw9vbG/PnzUapUKXz69AmfPn2KVy44OBjdunVDvXr18O7duySXqa+vj27duqF8+fKwtLTEzZs30bdvX2g0GsyePRsajQadO3fGb7/9Bnd3d7Rt2xarV6/GkCFDAADjx4/HgAED4OjomC7bTERERERElFMx4UCIiIjAmDFjsG3bNnz58gUVK1bEwoUL8dNPPyVYPiwsDG3atMGXL19w6NAhWFpa/nAd9+/fx4oVK3Dnzh24uroCAAoWLJhg2QEDBqBz585QKpXYt29fksstVKgQChUqJL12dHSEj48PfH19AQCBgYEIDAzEoEGDoFKp0KJFC9y/fx8AcP78efj5+WHp0qU/jJ+IiIiIiIhShk0qCGPHjsXu3buxYcMGXLt2DUWKFIG7u3uitQ8aNGgAjUaD48ePJyvZAAD//PMPChUqhIMHD6JgwYJwcnJCnz594q3D09MTz549w5QpU1K1LU+ePMHRo0dRu3ZtAICtrS3s7e3h7e2NsLAw+Pr6onTp0oiKisLAgQOxatUqKJXKVK2LiIiIiIiIEscaDjlcaGgoVqxYAS8vLzRu3BgAsGbNGhw/fhzr1q3DmDFjpLJv375Fhw4d4OzsjL///hsGBgbJXs+zZ8/w/Plz7Ny5Exs3boRarcbIkSPRtm1bnDp1CgDw+PFjjB8/Hr6+vtDTS9mhWa1aNVy7dg0RERHo168fpk+fDgAQBAE7duzAyJEjMXz4cDRp0gS9evXCH3/8gTp16kClUqF69eoIDAzE0KFDpaYWmVmEGImPCEaQ+Bmf8BnfxHCooYYGIjTSPxECAGMYwVgwghlMYA5TWAnmsIAZBEGQezOIiIhyvCi1iI+hIoLCRIREiAiJAEIiRXyLFKFQCNBXAAZ6gL4SMFAK//sf0NcTYGMiII+ZAKWC13QiyryYcMjhnj59iqioKFSvXl2apq+vj0qVKklND2I0aNAAlSpVwvbt21NcK0Cj0SAiIgIbN26Ei4sLAGDdunWoUKECHj58iCJFiqBz586YNm2a9H5KbN++HV+/fsXNmzcxZswYzJ8/H2PHjgUA1KhRA35+flLZR48eYePGjbh+/Tpq1aqF4cOHo3HjxihZsiRq1aqF0qVLp3j9uhItRuOF+Ab+4ks8E/9DgPgS/uJLBIgv8U78+D3BgPA0rUMBBfIgFwoIeVFAsEcBIS/yC/YoINijiOCIIoIjFAIrPxEREaXVt0gRTz9q8OSDBk8DNXj6QYMngWo8/6RBYIiIrxFpW75SAeQxE5DXQgF7cwEOlv/730IB59wKlMqrhKkhExJEJB8mHCjZmjZtit27d+PevXsoVapUiua1t7eHnp6eVjKhWLFiAIAXL14gT548uHLlCq5fvy7VMtBoNBBFEXp6evD29kbdunUTXX7+/PkBAMWLF4darUa/fv0watSoBBMj/fv3h4eHBzQaDa5fv4527drB2NgYtWvXxr///pthCYcIMRK3xYe4rrmHa+I9XNfcw13xMaIQna7r1UCDN/iAN+IHXBJvxnvfGEYoIRRBKYUrSguu0v9mgkm6xkVERJSVvf2iwQV/NS4GROP6SzWefNDg1WcRoph+61RrgNefRbz+rE7wfYUAFLJRoHReBco4KKUfB0s+WCCijMGEQw5XuHBhGBgY4Ny5c9JIDVFRUfDz88OIESO0yv7xxx8wNTVFvXr14OPjg+LFiyd7PdWrV0d0dDSePn2KwoULA/he0wD43tGjubk5bt++rTXP8uXLcerUKezatSvRDiYTotFoEBUVBY1GEy/hsG7dOlhbW6NFixYICgqStjfmf7U64Qu2LnwVQ3FG44dTmgs4p7mWIcmF1AjDN/iJt+Gn/v/PQwklygiuqKX4CbUVlVBdUQHmgqmMURIREclHoxFx67UGFwOipSSD/8d0zCykkkYEnnz4XsNiz83/v+ewMRFQyUkJtyJ6cHPWQxkHBZtbElG6EEQxPfOulBWMGDECO3fuxLp161CgQAHMmzcPBw4cwNOnT2FlZQUfHx/UqVMHQUFBsLS0xMiRI7F161b4+PigaNGiyVqHRqPBTz/9BFNTUyxatAgajQaDBw+Gubk5vL29E5xn6tSp2LdvH27cuCFNW7p0Kfbu3YuTJ08CALZs2QJ9fX2UKlUKhoaGuHLlCkaOHIk6depg8+bNWst7//49KleujHPnziFv3rwAvteI6NChAxo2bIiGDRvi1KlTiY7OkVJqUY2L4k2cVJ/HKc1FXBHvIDoTJhhSQwklygpF4aaojCZKN1QVyrIZBhERZWtBYSIO3Y3CgdtROPkwOs3NITKTXCYC6rrowb2YHhoV00NuM17TiUg3WMOB8Mcff0Cj0aBr1674+vUrKlasiGPHjsHKyirB8gsXLoRarUbdunXh4+MDFxcXuLm5wcnJCV5eXgnOo1Ao8M8//2Do0KGoVasWTExM0LhxY3h4eKQo1sDAQDx9+lR6raenh7lz5+LRo0cQRRGOjo4YMmQIRo4cGW/e4cOHY9SoUVKyAQC8vLzQvXt3/PXXXxgzZkyakw1qUQ0fzWXs0XjjgPokPiD+SB/ZgRpqXBXv4qr6LjzU62EHGzRT1kFLRX24KSpBX9CXO0QiIqI0exWswYHbUdh/OwpnnqgRrZE7ovTxMVTEzutR2Hk9CoIAlM+nROsyeuhUwQD5rZh8IKLUYw0H0glHR0dMmzYNPXr0kDuUDKcRNfDRXMZuzbFsnWRILkuYo7GiFn5RtkRdRRVW0SQioizlZbAGf1+JxL5b0bj6nzpd+2DI7AQBqF1Eic4VDPBzWX2Yq3hNJ6KUYcKB0uzu3bvo1KkTbty4AYUi52TBX4vv4aXeA8/o3fgPb+QOJ1NyEvKhu7I1uilbwUHII3c4RERECYpWizh4NxrrL0TC+0E0NLw7jsdIH2hWUh9dKuqjYVE96CmZfCCiH2PCgSgFRFHECc15rFXvwCHNv9mmT4b0poQSDRTV0FvZDk0VbuzvgYiIMoU3nzVYfT4S6y5E4u0X3hInV25TAf2qG2BQTQPYmPKaTkSJY8KBKBm+ieHwUu/BUvVmPBVfyB1OluYsOGGEsgd+UbaAoWAgdzhERJQDXQqIxmKfSOy/HYWo9BugKtsz0ge6VzbAcDcDFLaJPxQ5ERETDkRJ+Cx+xQr131gWvSXH982ga3awwWC9X9BP2QEWgpnc4RARUQ5wOSAa049GwPsBayjqkkIAWpXWw6i6hvjJkX3SE9H/Y8KBKAFB4mcsid6EZeot+IyvcoeTrZnDFP2VHTFKrxcsBXO5wyEiomzoyotoTD8SgaP3mWhIbzULKzHBXYW6Lkw8EBETDkRaIsRILFVvxrzoNUw0ZDBrWGCcXj8MUHZiUwsiItKJ6/+pMe1oOA7fZaIhozUuroc/WqhQzI5NLYhyMiYciP5nt/oYJkQvRID4Uu5QcrQCyIup+kPRSdGMQ2oSEVGqPAvUYOz+bzhwm4kGOekpgN5VDTC5sSFs2bkkUY7EhAPleH6a2xgbNQ8XxOtyh0KxlBGKYr7+eNRUVJQ7FCIiyiIio0XMPxWBuccj8C1K7mgohrkKGFdfhWFuBjDU48MEopyECQfKsYLEzxgX/Sc2qfdDBP8MMqtfFC0xR38UbAVruUMhIqJM7NSjaAzd+Q2PP2jkDoUS4Wgl4I+WRmhTVl/uUIgogzDhQDnSXvVxjIyahbcIlDsUSgZrWOAPvTHoptdK7lCIiCiTeftFgzH7wrH9Gqs0ZBUtSulhaTsj2JmzmQVRdseEA+Uob8VAjIiaiX2aE3KHQqlQV1EFy/SmoqAin9yhEBGRzERRxMqzkZh8KByfw+WOhlLKyljAny1V6FaZHUUTZWdMOFCOsUm9H2Oj5iIIX+QOhdLADCZYpD8BXZQt5A6FiIhk8v6rBr23fMOxB+wUMqtrVlIPKzsYIbcZazsQZUdMOFC291UMxZCo6diuOSR3KKRDHRVN8Zf+JJgLpnKHQkREGejkw2j03BKGt194C5td2JoKWN7eCC1Ls28HouyGCQfK1m5o7uOXqNF4Ij6XOxRKBwWFfNigPw+VFKXlDoWIiNJZtFrElMMRmH8qArx7zZ76VTPAgp9VMOBIFkTZBhMOlG2tiP4b46PnIwKRcodC6UgPepisNxhjlH0gCLxBISLKjgI+atB1YxguPVfLHQqls6oFldje05gdShJlE0w4ULYTKoahT9QE7NUclzsUykBtFO5Yoz8TxoKR3KEQEZEO7b0ZhX5bw9gxZA6S10LAth7GqFJQT+5QiCiNmHCgbOWl+BZtIofgpvhA7lBIBmWEothpsAQFBHu5QyEiIh2Y7R2OaUfYhCInMlACi9oYoU81jmJBlJUx4UDZxlXNHbSNHIo3+CB3KCSj3LDGNoNFqKYoL3coRESUShHRIvpt/YatV6PkDoVk1ruqPha3MWK/DkRZFBMOlC3sVR9Hr6jf8A2sb0mAAfSxRG8yuuu1ljsUIiJKoU+hGvy8Ngzn/dlfA31XtaAS+/qawMqYSQeirIYJB8ryPKLXY2L0QojgoUzaZuv9il/1eskdBhERJVPARw2arwrFw/cauUOhTKZUXgUODzRBHjN2JkmUlTDhQFna5KjFmKdeI3cYlImNVvbGTP2RcodBREQ/cP2lGi1Xh+LtF96aUsKK2CpwdJAJClgx6UCUVTDhQFnW6Kg/sFS9We4wKAvoq2yPxXoToRB4g0JElBldfRGNRstDORIF/VB+SwFHBpnAJbdS7lCIKBmYcKAsRyNqMCR6Otard8kdCmUh7RVNsE5/FvQFfblDISKiWK6/VKPR8lAEhfGWlJInt6mAQwNNUMaBSQeizI4JB8pS1KIafaImYKvmoNyhUBbURuGOjfrzoBR4g0JElBncfKWG+7JQfGKygVLI0gg40M8EVQrqyR0KESWB9YspyxBFEf2jJjPZQKm2W3MMA6OngHlWIiL53XmjRuPlTDZQ6gR/A5qtCsWNlxzNhCgzY8KBsozx0fOxWbNf7jAoi9uo3ofR0X/IHQYRUY52/60ajZaFIjCUyQZKvS/hQIvVofD/yFFNiDIrJhwoS/gzei0WqzfIHQZlE8vUWzAl6i+5wyAiypEevVfDfXko3ocw2UBp9/aLiKYrQ/EhhEkHosyICQfK9NZH78Kk6EVyh0HZzFz1aiyK9pI7DCKiHOVjqAYtVoVx6EvSqScfvh9XoRE8rogyGyYcKFM7oD6JodEz5A6Dsqnfoj3wj/qU3GEQEeUIUWoRHdaH4Rmrv1M6uPqfGh08wxClZtKBKDNhwoEyrduah+gZNR5qsDMgSh8iRPSMGo9bmgdyh0JElO0N2fkNZ57ymk7px/tBNPpu/cbOoYkyESYcKFP6KAajXdRwhOKb3KFQNheCMLSJHIp3YqDcoRARZVuLfSLgeTFK7jAoB/j7ShRmHouQOwwi+h8mHCjTiRaj0SVqFALEl3KHQjnEf3iDDpHDESFGyh0KEVG2c+ReFMYfCJc7DMpBZh6LwOG7THARZQZMOFCmMz56Pnw0l+QOg3KYi+JNDImeLncYRBnKyckJixYtSrLM1KlTUbZs2QyJJ6MFBARAEATcuHEDAODj4wNBEBAcHCxrXNnJ3TdqdN0YBjW7baAMJIpAj81heBrIJjxEcmPCgTKVzer9WKreLHcYlENtUu/DFvUBucMg0jkvLy9YWlrGm+7n54d+/fpJrwVBwL59+7TKjB49GidPnkznCNNfjx490KpVqyTLVKtWDW/evIGFhUW6x+Pj44OWLVvC3t4eJiYmKFu2LLZs2aJVJioqCtOnT0fhwoWhUqlQpkwZHD16NMnlTp06FYIgxPsxMTGRyhw/fhwuLi4wNzdH165dERn5/7W7Pn/+DBcXFzx//jzN2xgaIaLd+jB8YeUGkkHwN6D9+jCER7E/ByI5MeFAmcYjjT+GR82UOwzK4YZHzcQTTdpvtIl+JPaXPLnY2trC2Ng4yTKmpqbIlStXBkUkLwMDA9jZ2UEQhFQvI7mf6/nz51G6dGns3r0bt27dQs+ePdGtWzccPHhQKjNx4kSsWrUKS5Yswb179zBgwAC0bt0a169fT3S5o0ePxps3b7R+ihcvjnbt2gEANBoNOnfujAEDBuDChQu4cuUKVq9eLc0/fvx4DBgwAI6OjqncA/9v1N5vePKBVRtIPrdfazBqLzNeRHJiwoEyhUgxCt2ixrKTSJJdCMLQNWoMIkW2/STdcnNzw5AhQzBixAjY2NjA3d0dAHDnzh00btwYpqamyJMnD7p27YrAwMB48w0ZMgQWFhawsbHBpEmTtHphj4iIwOjRo+Hg4AATExNUrlwZPj4+AL4/Se/Zsyc+f/4sPe2eOnUqAO0mFU5OTgCA1q1bQxAE6XXcJhUajQbTp09Hvnz5YGhoiLJly2o9dY9pprBnzx7UqVMHxsbGKFOmDC5cuCCVef78OZo3bw4rKyuYmJigRIkSOHz4cKL7LigoCN26dYOVlRWMjY3RuHFjPH78WHo/oWYfixYt0tqGDRs2YP/+/dI+iNk/sSXUpOLs2bOoWbMmjIyMkD9/fgwbNgyhoaHS+05OTpgxYwa6desGc3NzrRojSfn9998xY8YMVKtWDYULF8bw4cPRqFEj7NmzRyqzadMm/P7772jSpAkKFSqEgQMHokmTJvDw8Eh0uaamprCzs5N+3r17h3v37qF3794AgMDAQAQGBmLQoEEoUaIEWrRogfv37wP4ngTx8/PD8OHDk7UNSdl/Kwrr2UkkZQJrzkdi53X5E7xEORUTDpQpTIlejBvifbnDIAIAXBfvYUL0ArnDoGxow4YNMDAwwLlz57By5UoEBwejbt26KFeuHK5cuYKjR4/i3bt3aN++fbz59PT0cPnyZSxevBgLFizA2rVrpfeHDBmCCxcuYNu2bbh16xbatWuHRo0a4fHjx6hWrRoWLVoEc3Nz6Yn36NGj48Xm5+cHAPD09MSbN2+k13EtXrwYHh4emD9/Pm7dugV3d3e0aNFCKwEAABMmTMDo0aNx48YNuLi4oFOnToiOjgYADB48GBEREThz5gxu376NuXPnwtTUNNH91qNHD1y5cgUHDhzAhQsXIIoimjRpgqio5H2hHT16NNq3b49GjRpJ+6BatWo/nO/p06do1KgR2rRpg1u3bmH79u04e/YshgwZolVu/vz5KFOmDK5fv45JkyYlK6aEfP78GdbW1tLriIgIqFQqrTJGRkY4e/Zsspe5du1auLi4oGbNmgC+12qxt7eHt7c3wsLC4Ovri9KlSyMqKgoDBw7EqlWroFQqU70NAPD2iwYDt/MBAmUeA7d/g/9H1rYhkoOe3AEQ/au+jMXqjXKHQaRliXoT6imqopGyltyhUDbi7OyMefPmSa9nzpyJcuXKYfbs2dK09evXI3/+/Hj06BFcXFwAAPnz58fChQshCAJcXV1x+/ZtLFy4EH379sWLFy/g6emJFy9eIG/evAC+f8E+evQoPD09MXv2bFhYWEAQBNjZ2SUam62tLQDA0tIyyXLz58/HuHHj0LFjRwDA3Llzcfr0aSxatAjLli2Tyo0ePRpNmzYFAEybNg0lSpTAkydPULRoUbx48QJt2rRBqVKlAACFChVKdH2PHz/GgQMHcO7cOSlJsGXLFuTPnx/79u2TmgokxdTUFEZGRoiIiEhy2+KaM2cOunTpghEjRgD4/vn99ddfqF27NlasWCElA+rWrYtRo0Yle7kJ2bFjB/z8/LBq1Sppmru7OxYsWIBatWqhcOHCOHnyJPbs2QO1Onkd4YWHh2PLli0YP368NE0QBOzYsQMjR47E8OHD0aRJE/Tq1Qt//PEH6tSpA5VKherVqyMwMBBDhw6Nl1xJjr5/f0NgKNvNU+bxJRwYuD0MRwclntgkovTBhAPJ6osYgj5RE6ABs86U+QyOmoYbigMwE0x+XJgoGSpUqKD1+ubNmzh9+nSCT/efPn0qJRyqVKmi1a9A1apV4eHhAbVajdu3b0OtVktlY0REROi874UvX77g9evXqF69utb06tWr4+bNm1rTSpcuLf1ub28PAHj//j2KFi2KYcOGYeDAgfD29kb9+vXRpk0brfKx3b9/H3p6eqhcubI0LVeuXHB1dZWaAqSXmzdv4tatW1qdOYqiCI1GA39/fxQrVgwAULFixTSt5/Tp0+jZsyfWrFmDEiVKSNMXL16Mvn37omjRohAEAYULF0bPnj2xfv36ZC137969+Pr1K7p37641vUaNGlo1WB49eoSNGzfi+vXrqFWrFoYPH47GjRujZMmSqFWrVqKfTUKW+0bg2IPoZJcnyiinHqmx4VIkulc2kDsUohyFCQeS1aToRfgPb+QOgyhBr/AOk6IXYZH+BLlDoWwi9kgBABASEoLmzZtj7ty58crGfEn/kZCQECiVSly9ejVeVfikmimkN319fen3mGSJRvM9udynTx+4u7vj0KFD8Pb2xpw5c+Dh4YGhQ4emal0KhUKrTwsAyW5ukZSQkBD0798fw4YNi/degQIFpN/jfq4p8e+//6J58+ZYuHAhunXrpvWera0t9u3bh/DwcHz8+BF58+bF+PHjk6wREtvatWvRrFkz5MmTJ8ly/fv3h4eHBzQaDa5fv4527drB2NgYtWvXxr///pvshMP9t2r8doAd9FHmNW5/OBoV10MeM7YqJ8oo/Gsj2VzR3MYa9Q65wyBK0mr1dlzU3JA7DMqmypcvj7t378LJyQlFihTR+on9JfbSpUta8128eBHOzs5QKpUoV64c1Go13r9/H28ZMc0HDAwMklUNX19fP8ly5ubmyJs3L86dO6c1/dy5cyhevHhKNh358+fHgAEDsGfPHowaNQpr1qxJsFyxYsUQHR2ttQ8+fvyIhw8fSuu0tbXF27dvtZION27c0FpOcvdBbOXLl8e9e/fi7dciRYrAwCDtT0l9fHzQtGlTzJ07N8nOJlUqFRwcHBAdHY3du3ejZcuWP1y2v78/Tp8+LXUWmZh169bB2toaLVq0kPZPTLImKioq2ftMFEUM3P4N39hPJGVin8JEjNzNpBhRRmLCgWShFtUYGjWDTSko09NAg0FRUzlqBaWLwYMH49OnT+jUqRP8/Pzw9OlTHDt2DD179tT6ovfixQv8+uuvePjwIbZu3YolS5ZIIwm4uLigS5cu6NatG/bs2QN/f39cvnwZc+bMwaFDhwB8H0khJCQEJ0+eRGBgIMLCwhKMx8nJCSdPnsTbt28RFBSUYJkxY8Zg7ty52L59Ox4+fIjx48fjxo0bKRrZYMSIETh27Bj8/f1x7do1nD59WmqeEJezszNatmyJvn374uzZs7h58yZ++eUXODg4SF+83dzc8OHDB8ybNw9Pnz7FsmXLcOTIkXjbduvWLTx8+BCBgYHJqgExbtw4nD9/HkOGDMGNGzfw+PFj7N+/P1X9GsR1+vRpNG3aFMOGDUObNm3w9u1bvH37Fp8+fZLKXLp0CXv27MGzZ8/g6+uLRo0aQaPRYOzYsVKZpUuXol69evGWv379etjb26Nx48aJxvD+/XvMnDkTS5YsAQBYWVmhWLFiWLRoES5cuICTJ0/Gaz6TmI2Xo3DeP2UJHSI57LoRhX/u8JpOlFGYcCBZrFD/jeviPbnDIEqWe+IT/Kle++OCRCkUU1tArVajYcOGKFWqFEaMGAFLS0soFP9/ie7WrRu+ffuGSpUqYfDgwRg+fLjWE3FPT09069YNo0aNgqurK1q1agU/Pz+p2n+1atUwYMAAdOjQAba2tlodV8bm4eGB48ePI3/+/ChXrlyCZYYNG4Zff/0Vo0aNQqlSpXD06FEcOHAAzs7Oyd5utVqNwYMHo1ixYmjUqBFcXFywfPnyRMt7enqiQoUKaNasGapWrQpRFHH48GGp2UaxYsWwfPlyLFu2DGXKlMHly5fjjcTRt29fuLq6omLFirC1tY1XSyMhpUuXxr///otHjx6hZs2aKFeuHCZPnix1zpkUNzc39OjRI9H3N2zYgLCwMMyZMwf29vbSz88//yyVCQ8Px8SJE1G8eHG0bt0aDg4OOHv2LCwtLaUygYGBePr0qdayNRoNvLy80KNHjyRHnBg+fDhGjRqltT1eXl7Ytm0bmjVrhjFjxuCnn3764bZ+CtWwKQVlKcN2fsOXcHZsSpQRBDFuo0eidPZKfIeyES3wFaE/LkyUSRjCADcN/oGTwkHuUCiHcXNzQ9myZbFo0SK5Q6EUcHR0xLRp05JMOmQXQ3d+w6pzkXKHQZQiA2sYYHFbI7nDIMr2WMOBMtxvUR5MNlCWE4FITIxeIHcYRJQF3L17FxYWFvE6gcyO7rxRY+0FJhso61lzPhKPP7AZEFF6Y8KBMtQNzX3s1Bz5cUGiTGiX5hjOa67JHQYRZXIlSpTArVu3tJrFZFdj9oZDze6YKAuK1gBTDkXIHQZRtscmFZShmkf2x3HNj9vNEmVWVYQy8DHcIncYRESyO3Q3Cq3XJNwBKVFWIAjAxV9NUS5/4n2dEFHaZP/UO2UaPurLTDZQlndRvIkD6pNyh0FEJCtRFDHpIDuKpKxNFIEJPI6J0hUTDpRhJkUvlDsEIp2YHL0YGpF1iIko5zpwOxp33vA8SFnfiYfROP0oWu4wiLItJhwoQ+xTH4efeFvuMIh04oH4DHs1x+UOg4hINn8cZ9t3yj4mspYDUbphwoEyxJzoVXKHQKRTf0avlTsEIiJZeN+PwtX/2Ls/ZR9+L9TYezNK7jCIsiUmHCjdnVRfwE3xgdxhEOnUDfE+jqvZJwkR5TxzWLuBsqH5J3lcE6UHJhwo3S1Ue8odAlG6mBe9Ru4QiIgy1Jkn0Tj3jLUbKPvxe6HGpQD25UCka0w4ULq6rXmIE5rzcodBlC58xSu4qLkhdxhERBlmjjefAlP2teTfSLlDIMp2mHCgdLUw2kvuEIjS1YLo9XKHQESUIa7/p8ZJ9uZP2djeW1F4/ZmjrxDpEhMOlG5ei++xU3NE7jCI0tVhzRm8Ft/LHQYRUbpbd4FPfyl7i1IDK8/yOCfSJSYcKN1sUO9FFPgkhLK3aERjg3qv3GEQEaWrb5Eitl/jFzHK/taej0R4lCh3GETZBhMOlC5EUcQm9T65wyDKEF7qPRBF3pwQUfa1+2YUPofLHQVR+gsMFbH9GofIJNIVJhwoXfiKV/BM/E/uMIgyxHPxFTtHJaJszesiazdQzrGCzSqIdIYJB0oXG6P3yR0CUYZap94pdwhEROniyQc1zjzlUJiUc1z7T40H73jME+kCEw6kc1/FUOzVeMsdBlGGOqjxwUcxWO4wiIh0zusSq5dTzrP1Ko97Il1gwoF0brf6GELxTe4wiDJUNKLxj/qU3GEQEemUWiNisx+rl1POs4P9OBDpBBMOpHN7NcflDoFIFjz2iSi7OfNEjdef2Sku5TxPAzXwe87R1ojSigkH0qkQMQw+mktyh0Eki9Oai/gsfpU7DCIinTl8l095Kefac5PHP1FaMeFAOnVM44sIsOol5UyRiMJBzWm5wyAi0plD9/iEl3Ku/bd4/BOlFRMOpFNsw0453T71CblDICLSiUfv1XjyQSN3GESyeRKowa3XHK2CKC2YcCCdiRajcVTjK3cYRLI6rjmHb2K43GEQEaXZ4bt8ukt06A6bVRClBRMOpDO+mqsIxhe5wyCSVTgicF5zXe4wiIjS7Mg9ftEi+vcJE29EacGEA+nMac1FuUMgyhTYcSoRZXVfwkWcfcaq5EQXA9SIjOZILUSpxYQD6Yyv5orcIRBlCv9qLssdAhFRmhx/EI0o5huIEBYJ+L3gHwNRajHhQDoRLkbgqnhH7jCIMoWr4l18EUPkDoOIKNV8HrMaOVEMNqsgSj0mHEgnLmluIhJs60kEAGqocZY1fogoC7sYwC9YRDF8n7CGA1FqMeFAOuEr8ssVUWxnNH5yh0BElCohESLuvOFwmEQxLgREI0rNfhyIUoMJB9KJc5prcodAlKlcE+/JHQIRUapceaGGmvkGIklYJOD3nLUciFKDCQfSiWuau3KHQJSp3NI8lDsEIqJU4RcrovguBvDvgig1mHCgNHshvsFnfJU7DKJMJRhf4K95KXcYREQpdv0lv1gRxXX/Lf8uiFKDCQdKs7uaR3KHQJQp3RTvyx0CEVGK3WDCgSiee2/ZzogoNZhwoDS7LTLhQJSQ6xomHIgoa/kSLuLpR36xIorrwTsm4ohSgwkHSrM7msdyh0CUKbGGAxFlNQ/fqSGyM36ieL5GAP8FMRlHlFJMOFCa3WENB6IEPRFfyB0CEVGKBHziFyqixLAfB6KUY8KB0kQjavBEfC53GESZ0n/iG4h8VEhEWcjzTzxnESXm/jsm5IhSigkHSpPXeI9IRMkdBlGmFIFIvMZ7ucMgIkq256zhQJQo1nAgSjkmHChNXoiv5Q6BKFN7Lr6SOwQiomRjwoEocU8+8O+DKKWYcKA0+U98K3cIRJnacybliCgLYR8ORIl7H8ImR0QpxYQDpclr8Z3cIRBlagGs4UBEWcgL9sJPlKhAJhyIUowJB0qTN+IHuUMgytTe8m+EiLKI9181CIuUOwqizOtTmAiNhkkHopRgwoHS5K0YKHcIRJlakPhF7hCIiJLlzRd+kSJKikYEPobx74QoJZhwoDT5gq9yh0CUqX3m3wgRZRFhkfwiRfQjH9isgihFmHCgNPkqhskdAlGm9jkDajj4+PhAEAQEBwenaTkBAQEQBAE3btzQSVw/MmnSJPTr10967ebmhhEjRqRpmXG3IaX7Jjn7QFf7Oy5BELBv3z4AQGBgIHLnzo2XL1/qdB1ESQmJ4Bcpoh9hPw5EKcOEA6VJKJhwIEpKENI/4VCtWjW8efMGFhYWaVpO/vz58ebNG5QsWVJHkSXu7du3WLx4MSZMmCBN27NnD2bMmKHT9aR032TkPkiKjY0NunXrhilTpqR43vDwcAwePBi5cuWCqakp2rRpg3fvku7gVxRFTJ48Gfb29jAyMkL9+vXx+PFj6f2IiAh07doV5ubmcHFxwYkTJ7Tm//PPPzF06NAUx0qZSyj7byD6IdZwIEoZJhwoTb4iVO4QiDK1z2L6N6kwMDCAnZ0dBEFI03KUSiXs7Oygp6eno8gSt3btWlSrVg2Ojo7SNGtra5iZmel0PSndNxm5D36kZ8+e2LJlCz59+pSi+UaOHIl//vkHO3fuxL///ovXr1/j559/TnKeefPm4a+//sLKlStx6dIlmJiYwN3dHeHh4QCA1atX4+rVq7hw4QL69euHzp07QxS/33T7+/tjzZo1mDVrVuo2lDKNUDapIPqhT6EpG8lFF7X3coIePXqgVatW0mvut+yDCQdKk1A2qSBK0pcUJuXc3NwwdOhQjBgxAlZWVsiTJw/WrFmD0NBQ9OzZE2ZmZihSpAiOHDkizRO3iv/z58/RvHlzWFlZwcTEBCVKlMDhw4cBAEFBQejSpQtsbW1hZGQEZ2dneHp6Aki8OcLJkydRsWJFGBsbo1q1anj48KFWzDNnzkTu3LlhZmaGPn36YPz48ShbtmyS27lt2zY0b9483rbHvrlwcnLC7Nmz0atXL5iZmaFAgQJYvXq11jyXL19GuXLloFKpULFiRVy/fl3r/dj75suXLzAyMtLadwCwd+9emJmZISwsLMEmFYcPH4aLiwuMjIxQp04dBAQEaM0/derUeNu7aNEiODk5Sa/9/PzQoEED2NjYwMLCArVr18a1a9eS3EclSpRA3rx5sXfv3iTLxfb582esW7cOCxYsQN26dVGhQgV4enri/PnzuHjxYoLziKKIRYsWYeLEiWjZsiVKly6NjRs34vXr11ITj/v376NFixYoUaIEBg8ejA8fPiAw8HunwQMHDsTcuXNhbm6e7DgpcwpjkwqiH4pUp6x8etTeiy3uF/XMLrnNN9N7v2V1Ka3NGBUVhXHjxqFUqVIwMTFB3rx50a1bN7x+/Voqk161GZlwoDQJYZMKoiRFIzrF82zYsAE2Nja4fPkyhg4dioEDB6Jdu3aoVq0arl27hoYNG6Jr164IC0v472/w4MGIiIjAmTNncPv2bcydOxempqYAvvebcO/ePRw5cgT379/HihUrYGNjk2Q8EyZMgIeHB65cuQI9PT306tVLem/Lli2YNWsW5s6di6tXr6JAgQJYsWJFksv79OkT7t27h4oVK/5wX3h4eEiJhEGDBmHgwIFSwiMkJATNmjVD8eLFcfXqVUydOhWjR49OdFnm5uZo1qwZ/v77b63pW7ZsQatWrWBsbBxvnv/++w8///wzmjdvjhs3bkgJlZT6+vUrunfvjrNnz+LixYtwdnZGkyZN8PVr0jVgKlWqBF9f32Sv5+rVq4iKikL9+vWlaUWLFkWBAgVw4cKFBOfx9/fH27dvteaxsLBA5cqVpXnKlCmDs2fP4tu3bzh27Bjs7e1hY2ODLVu2QKVSoXXr1smOkTIvNqkg+jF1yio4pEvtvZwgrftNrVZDo0nhh5UBy9KVlNZmDAsLw7Vr1zBp0iRcu3YNe/bswcOHD9GiRQupTHrVZmTCgdIkGilM8xLlMGqk/AJVpkwZTJw4Ec7Ozvjtt9+gUqlgY2ODvn37wtnZGZMnT8bHjx9x69atBOd/8eIFqlevjlKlSqFQoUJo1qwZatWqJb1Xrlw5VKxYEU5OTqhfv368mgZxzZo1C7Vr10bx4sUxfvx4nD9/Xqpqv2TJEvTu3Rs9e/aEi4sLJk+ejFKlSiW5vBcvXkAUReTNm/eH+6JJkyYYNGgQihQpgnHjxsHGxganT58GAPz999/QaDRYt24dSpQogWbNmmHMmDFJLq9Lly7Yt2+flKz58uULDh06hC5duiRYfsWKFShcuDA8PDzg6uqKLl26oEePHj+MO666devil19+QdGiRVGsWDGsXr0aYWFh+Pfff5OcL2/evHj+/Hmy1/P27VsYGBjA0tJSa3qePHnw9u3bROeJKZPYPL169UKZMmVQvHhxzJo1Czt27EBQUBAmT56MJUuWYOLEiShSpAjc3d3x6tWrZMdLmQubVBD9mDqFfyapqb0X165du1CqVCkYGRkhV65cqF+/PkJDQzF16lRs2LAB+/fvhyAIEAQBPj4+AL4nzNu3bw9LS0tYW1ujZcuWWjX0YmpGTJs2Dba2tjA3N8eAAQMQGZl05nH37t0oUaIEDA0N4eTkBA8PD633Y3eAHMPS0hJeXl4AgIIFCwIAypUrB0EQ4Obmlqz9FhERgdGjR8PBwQEmJiaoXLmytK0A4OXlBUtLSxw4cADFixeHoaEhXrx4keCyDxw4AGdnZ6hUKtSpUwcbNmzQqima2LKCgoLQrVs3WFlZwdjYGI0bN9bq7yg5NR5Tu99jS01tRgsLCxw/fhzt27eHq6srqlSpgqVLl+Lq1avSfkqv2ozyN1KlLE0PSrlDoFhyhxhi7CF7IL3vGQUAYvquRExjfwTJInzflPRdhwB0TdkspUuXln5XKpXIlSuX1pf4mC+G79+/T3D+YcOGYeDAgfD29kb9+vXRpk0baZkDBw5EmzZtpJoSrVq1QrVq1ZIdj729vbTuAgUK4OHDhxg0aJBW+UqVKuHUqVOJLu/bt28AAJVKleR6465bEATY2dlJ233//n2ULl1aazlVq1ZNcnlNmjSBvr4+Dhw4gI4dO2L37t0wNzfXerof2/3791G5cmWtaT9aR0LevXuHiRMnwsfHB+/fv4darUZYWFiiN0MxjIyMEq3JkpH09fWxbNkyrWk9e/bEsGHDcP36dezbtw83b97EvHnzMGzYMOzevVumSCktIlJeIYvSWR3Hl3BTBCDyrRIRhoYIN1QhwsAQEYYGCDcwQKSBISL19RFhoI8ofX1E6elBzIDLZ05mlDvty/Dw8MCMGTPw+++/Y9euXRg4cCBq164NV1fXeGXfvHmDTp06Yd68eWjdujW+fv0KX19fiKKI0aNH4/79+/jy5YvUPNLa2hpRUVFwd3dH1apV4evrCz09PcycORONGjXCrVu3YGBgAAA4efIkVCoVfHx8EBAQgJ49eyJXrlyJPsW+evUq2rdvj6lTp6JDhw44f/48Bg0ahFy5ciU7GX/58mVUqlQJJ06cQIkSJaRYfmTIkCG4d+8etm3bJjU3bNSoEW7fvg1nZ2cA35/iz507F2vXrkWuXLmQO3f8D8vf3x9t27bF8OHD0adPH1y/fj3B2pEJLatTp054/PgxDhw4AHNzc4wbNw5NmjTBvXv3oK+vn6ztAFK+3+P6UW3GKlWqJGs5nz9/hiAI0kOKMmXKYNOmTTqvzciEA6WJkgmHTOXUABPk2X1I7jAoNqUyxQmHuBctQRC0psV0gJhY9b4+ffrA3d0dhw4dgre3N+bMmQMPDw8MHToUjRs3xvPnz3H48GEcP34c9erVw+DBgzF//vxkxfOjdSdHTBOOoKAg2NraJlk2oX2RlnUbGBigbdu2+Pvvv9GxY0f8/fff6NChQ5o6iVQoFFKVwxhRUVFar7t3746PHz9i8eLFcHR0hKGhIapWrfrDJxqfPn364T6Kzc7ODpGRkQgODtaq5fDu3TvY2dklOk9MmZiEUszrxPriOH36NO7evYu1a9dizJgxaNKkCUxMTNC+fXssXbo02fFS5mLIu8JM512ECQaPmw4xWIDiij0EPxVwNhSaKy8gvvsYr7woCIgwNUWEuRkiTU0RYWqCCBNTRJoaI8LYGBEmJogwMUaEyggRRt9/IlUqRKgMEW5oiAhDw+8JDQMDROgbIEJfHxF6egjX+/5/hFKJCKUS4QolIhUKhAvffyIgIAICwgFEiOn/3ENOzXMn/4tlYmJq7wHAuHHjsHDhQpw+fTrRhEN0dDR+/vlnqaPl2A8hjIyMEBERoXWO37x5MzQaDdauXStdtz09PWFpaQkfHx80bNgQwPdr4vr162FsbIwSJUpg+vTpGDNmDGbMmAGFIn5F+AULFqBevXqYNGkSAMDFxQX37t3Dn3/+meyEQ8w1LVeuXIlel+J68eIFPD098eLFC6l25OjRo3H06FF4enpi9uzZAL5fe5cvX44yZcokuqxVq1bB1dUVf/75JwDA1dUVd+7cifdlP+6yYhIN586dkx7UbNmyBfnz58e+ffvQrl27ZG0LkPL9HldqajPGFR4ejnHjxqFTp05SrYVevXrh1q1bKF68OGxsbLRqM/r4+GDixInYtm0bChcujPXr18PBwSFZ6+KlhdKENRwyj50eTkw2ZEZKef5G8ufPjwEDBmDAgAH47bffsGbNGqmjH1tbW3Tv3h3du3dHzZo1MWbMmCQTDklxdXWFn58funXrJk3z8/NLcp7ChQvD3Nwc9+7dg4uLS6rWCwDFihXDpk2bEB4eLtVySKwqYWxdunRBgwYNcPfuXZw6dQozZ85Mch0HDhzQmhZ3Hba2tnj79i1EUZRu7OJ2hnXu3DksX74cTZo0AfC9qmtMNcWk3LlzJ9HqpgmpUKEC9PX1cfLkSbRp0wYA8PDhQ7x48SLRmhkFCxaEnZ0dTp48KSUYvnz5gkuXLmHgwIHxysd0VLVlyxYolUqo1Wop4RIVFQW1mk3tsipjAz4az2zuvbXC2UddUcN1JcQGjyE2+P/3hBeFoPDLDfgpIV4JhuaaP4SQMKi+foXqB/3DpLcIExNEmpkiwswUEaamiDQx+Z7sMP2e8Ig0NkF4TMLDSIVwlQqRKhXCDQ0RaWiI8P8lPSL1DRCur48IfX2E6+khUk8P4UolIpR6iFAoESEoEP6/xEfk/xIe4RAQISIVDRqTR08HfyZJ1d6Lq0yZMqhXrx5KlSoFd3d3NGzYEG3btoWVlVWiy7958yaePHkSrw+E8PBwPH36VGvZsfsvqlq1KkJCQvDff/9pjSIV4/79+2jZsqXWtOrVq2PRokVQq9VQptM9z+3bt6FWq+PdM0RERCBXrlzSawMDA619m5CHDx/ip59+0ppWqVKleOXiLuv+/fvQ09PTqvWYK1cuuLq64v79+ynanpTud12LiopC+/btIYqiVr9b6VWbkQkHShMmHDKHUScKwG3ykR8XpIwnQ8JhxIgRaNy4MVxcXBAUFITTp0+jWLFiAIDJkyejQoUKKFGiBCIiInDw4EHpvdQYOnQo+vbti4oVK6JatWrYvn07bt26hUKFCiU6j0KhQP369XH27Nk09azduXNnTJgwAX379sVvv/2GgICAZCVOatWqBTs7O3Tp0gUFCxaM12QitgEDBsDDwwNjxoxBnz59cPXqVakdagw3Nzd8+PAB8+bNQ9u2bXH06FEcOXJEq52js7MzNm3ahIoVK+LLly8YM2YMjIyMkowzLCwMV69elZ7cJIeFhQV69+6NX3/9FdbW1jA3N8fQoUNRtWpVrSqWRYsWxZw5c9C6dWsIgoARI0Zg5syZcHZ2RsGCBTFp0iTkzZs3wc9nxowZaNKkCcqVKwfg+83mmDFj0LNnTyxduhTVq1dPdryUuRin/cEtpYNeG9vhwYw9UCjifCEt8BGaAh+BNv97rTGA4r4ThCuWgJ8Gol8gNHeeA3FqXGUEw9BQGIaGwuxt4r3mp7coQxUizM0QYW6qXdvDxBjhMbU9jI0QqTJChJEK4f/7P/J/tTzCDQ0RafC9lke4gQEi/lfLw9XABLBJ3pPdxKSk9p5SqcTx48dx/vx5eHt7Y8mSJZgwYQIuXbok9YcQV0hICCpUqIAtW7bEey8lteZSQxCEH9b6S6mQkBAolUpcvXo1XlIjplNs4Httj7QOEZ6WZSWnxqMupKY2Y+x42rdvj+fPn+PUqVNJ9smgq9qMTDhQmujxEJJddX9rjOt2AchkvefS/xgaZvgq1Wo1Bg8ejJcvX8Lc3ByNGjXCwoULAXzP2Md8OTcyMkLNmjWxbdu2VK+rS5cuePbsGUaPHo3w8HC0b98ePXr0wOXLl5Ocr0+fPujbty/mzZuXrOqDCTE1NcU///yDAQMGoFy5cihevDjmzp0rPdlPjCAIUnvYyZMnJ1m2QIEC2L17N0aOHIklS5agUqVKUmdfMYoVK4bly5dj9uzZmDFjBtq0aYPRo0drdQK2bt069OvXD+XLl0f+/Pkxe/bsJEfUAID9+/ejQIECqFmzpjTNy8sLPXv2jHdDE9vChQuhUCjQpk0bREREwN3dHcuXL9cq8/DhQ3z+/Fl6PXbsWISGhqJfv34IDg5GjRo1cPTo0Xj9bNy5cwc7duzQqsHRtm1b+Pj4oGbNmnB1dY03CghlHUas4ZApfQpVYfvl/uhUJekhAgWFCLHEK4glXgHd/zcx3BLKGw6AnwngFwnNlTcQn7xM/6AzAf2IcOh/CIfphw86Xa7R6j8B5446XeaPCIKA6tWro3r16pg8eTIcHR2xd+9e/PrrrzAwMIhXs6x8+fLYvn07cufOneQXyps3b+Lbt29SAvzixYswNTVF/vz5EyxfrFgxnDt3TmvauXPn4OLiIiUCbG1t8ebNG+n9x48fa/VFFNNnQ0pqw5UrVw5qtRrv37/XuiamhqurqzRUeIwf1cwEvm97dHQ0Ll26JDWp+PjxIx4+fIjixYsDSF6NRyDl+z2u1NRmBP4/2fD48WOcPn1aq3ZIXLqszSiISd21EP1A8YjGeCb+J3cYOZZ1mAFu1wmDwa2HcodCiRAKFYJprOqLOUGDBg1gZ2eHTZs2JVpGFEVUrlwZI0eORKdOnTIwuqyjSpUqGDZsGDp37ixNmzJlCv7991+tnrmJdGXXjSh09pK/k1KKT6nQ4MUffWBooIPr/SdTCDH9QVxJvD8ISpjRluUwaJf06E6xubm5oWzZsli0aBGA76NUjBgxQmsEhrJly6JVq1aYOnVqvPkvXbqEkydPomHDhsidOzcuXbqEX375Bfv27UPjxo0xe/ZsrFq1Ct7e3siVKxcsLCwQFRWFsmXLwsHBAdOnT0e+fPnw/Plz7NmzB2PHjkW+fPnQo0cP7N69G82bN8fEiRMREBCAXr16oWfPnpgzZ06C23Lt2jX89NNPUqeRFy5cwMCBA7F8+XKpD4dOnTrh5s2b2LJlC9RqNcaNGwdfX1+sXr0aPXr0QHR0NMzNzTFhwgT06dMHKpUKFhYW6NGjB4KDg6URLuLut19++QXnzp2Dh4cHypUrhw8fPuDkyZMoXbo0mjZtCi8vL4wYMUIaaSIx/v7+cHV1xciRI9G7d2/cuHEDo0aNwsuXLxEcHAwLC4tEl9WqVSs8fvwYq1atgpmZGcaPH48nT55InUbev38fJUqUwJw5c6Qaj5MmTYK5ubk0Qkhq9ntCBg4ciMOHD8PLy0uqzQgA58+fl8rErs0YFRWFtm3b4tq1azh48KDWyFTW1tbxOu+cMGECIiIipJqjO3bswJgxY/DPP//gr7/+wps3b3DoUPKacnNYTEqTXLCUO4Qc7fQgMyYbMjnB2lruENJVWFgYFixYgLt37+LBgweYMmUKTpw4ge7duyc5nyAIWL16NaKj2S1+QgIDA/Hzzz/HS8YcOXIE8+bNkykqyu7YpCLzUmsU+PPoEN0szDoEYsPH0Ey4Dc3eZ8B/0RCeFIJyaxUof60ORa0SgKnxj5eTQwkmGbtvzM3NcebMGTRp0gQuLi6YOHEiPDw80LhxYwBA37594erqiooVK8LW1hbnzp2DsbExzpw5gwIFCuDnn39GsWLF0Lt3b4SHh2vVeKhXrx6cnZ1Rq1YtdOjQAS1atEgw6RGjfPny2LFjB7Zt24aSJUti8uTJmD59ulaHkR4eHsifPz9q1qyJzp07Y/To0Vr9Fejp6eGvv/7CqlWrkDdv3nh9QiTG09MT3bp1w6hRo+Dq6opWrVrBz88PBQoUSNH+LFiwIHbt2oU9e/agdOnSWLFiBSZMmAAAMPxBrVRPT09UqFABzZo1Q9WqVSGKIg4fPiw1kYmp8bhs2TKUKVMGly9fTrA244/2u5eX1w+bcyxcuBDNmjVDmzZtpKaie/bs0SoTuzbjq1evcODAAbx8+RJly5aFvb299BM7SQH8f23GadOmSdPatm2Lpk2bombNmrh16xYWL16cZHyxsYYDpUmryIE4qvGVO4wcaetiJ9Qfz04iMztlw4YwPnZM7jDSzbdv39C8eXNcv34d4eHhcHV1xcSJE/Hzzz/LHRoRpZDP42g0XBYqdxiUhMczx8DK9PyPC6aRqBGguJc3Tn8QAQCTxDA5vgN6tVM+PHJGmjp1Kvbt25dgdf4YcWsU5GSzZs2Ch4cHNBqNVKshOfswNZKz37NbbUbWcKA0sWYNB1kM9SmA+hOOyh0GJUN2r+FgZGSEEydO4OPHjwgNDcW1a9eYbCDKokwzvssZSqHh2wYDYvp3RiwoRIglX0HT4y40y+5DvPwB+GQF5ZmyUHpUh7LjTxCK5Ev3ODIjwdJC7hB+aPTo0Th58mSyyk6dOjXRIZCzq1y5cuHXX3/Fs2fPsGnTJvz555/xOjxOyT5Mq7t376JNmzZwcnKCIAjw8vJKVm3GW7duoWbNmlCpVMifP3+8eY4fPw4XFxeYm5uja9euWkNxf/78GS4uLnj+/LnOtycuJhwoTWyExIfkofRR5bk1Jv1yCeDQc1lCdk84EFH2kduMt4WZ3eE7Tnj2voUs6xZUkdBU8Ydm6B1oNj4C7n2F8NYBioMVoZxSA4omZSHkSbwTuuxCcEh6FID0plarEx3RIoapqWmSHQLmdFFRUVi3bh2KFy+OGTNmYNSoUfFGZdLFPkzuCBVhYWEoVKgQ/vjjD9jZ2WHkyJEJDtUZ25cvX9CwYUM4Ojri6tWr+PPPPzF16lSpw2qNRoPOnTtjwIABuHDhAq5cuaLVmfX48eMxYMCADBmGk1cWSpNcgqXcIeQolt8MsKtTIISPn+QOhZKJCQciyirymgtQcKCKTK/nhl6AmPSwuhkmVn8Q4j7/7/1BPC4M5d9VoPy1WvbrD8LAAAqb5F/X3dzcMGTIEAwZMgQWFhawsbHBpEmTtEYaioiIwOjRo+Hg4AATExNUrlxZqyq9l5cXLC0tceDAARQvXhyGhoZ48eIFfHx8UKlSJZiYmMDS0hLVq1eXnlbHrbWQUNlp06ahVatWmDZtGm7evAlBEKSn6wCwYMEClCpVCiYmJsifPz8GDRqEkJCQeHEdO3YMxYoVg6mpKRo1aqQ1QgUArF+/HiVKlIChoSHs7e0xZMj/90USHByMPn36wNbWFubm5qhbty5u3ryZ5D69ffs26tatCyMjI+TKlQv9+vXTisvNzU2rQ07ge2ePMf1MuLm54evXr/jy5QsiIiLw+PFjTJo0Kd5wmwnV/Fi7di2KFSsGlUqFokWLao0AFRAQAEEQsH37dtSuXRsqlSrBYUm9vLziNaf46aef8Oeff6Jjx44/7EcixpYtWxAZGSnt344dO2LYsGFYsGABgO99QQUGBmLQoEEoUaIEWrRogfv37wP43rGkn58fhg8fnqx1pRUTDpQmtuCXqYx0eqgFDK/flzsMSgEhVi/ARESZmZ5SQG4zZhwyu7uvrXHhSVe5w0icYyA0be9D88ddiCdeAoEGUFwrDuXqalD2rQJF2SKAXtYcVl3Im/Jr+oYNG6Cnp4fLly9j8eLFWLBgAdauXSu9P2TIEFy4cAHbtm3DrVu30K5dOzRq1AiPHz+WyoSFhWHu3LlYu3Yt7t69C2tra7Rq1Qq1a9fGrVu3cOHCBfTr1y/Bjgajo6MTLduhQweMGjUKJUqUwJs3b/DmzRt06NABAKBQKPDXX3/h7t272LBhA06dOoWxY8dqLTssLAzz58/Hpk2bcObMGbx48UKrk8QVK1Zg8ODB6NevH27fvo0DBw6gSJEi0vvt2rXD+/fvceTIEVy9ehXly5dHvXr18OlTwg/WQkND4e7uDisrK/j5+WHnzp04ceKEVhLjR/bs2YN8+fJh+vTp0jYnx5YtWzB58mTMmjUL9+/fx+zZszFp0iRs2LBBq9z48eMxfPhw3L9/H+7u7smOK6UuXLiAWrVqaY0u4e7ujocPHyIoKAi2trawt7eHt7c3wsLC4Ovri9KlSyMqKgoDBw7EqlWr4iVZ0kvW/GunTMNRcJA7hBxj0zIn5NvCTiKzGkXhwnKHQESUbA4WCrz9wiZ7mV13rw54MGMfFIr3cofyQzH9QYglXwE9/jfxmzWUN+wBPzPALwKaK68hPn0lZ5jJosib8uYU+fPnx8KFCyEIAlxdXXH79m0sXLgQffv2xYsXL+Dp6YkXL14gb968AL73HXD06FF4enpi9uzZAL5XzV++fDnKlCkDAPj06RM+f/6MZs2aofD/7jOKFSuW4Pq/fPmSZFlTU1Po6enBzk5722LXEnBycsLMmTMxYMAAraf6UVFRWLlypbTcIUOGYPr06dL7M2fOxKhRo7SepP/0008AgLNnz+Ly5ct4//699FR//vz52LdvH3bt2oV+/frF25a///4b4eHh2LhxI0xMTAAAS5cuRfPmzTF37lytoR4TY21tDaVSCTMzs3jbnJQpU6bAw8ND6qeqYMGCuHfvHlatWqU1MteIESMypC+rt2/fomDBglrTYrb/7du3sLKywo4dOzBy5EgMHz4cTZo0Qa9evfDHH3+gTp06UKlUqF69OgIDAzF06NAUJW1SigkHSpPCQsqGoqHUGeibD43GZ9+RDrIzhbOz3CEQESWbo7WAq//JHQX9yKdQFXb59UX7yrPkDiVVBKMIaKoGALEGexA+OUDwywvhiiFEvxCIV15AfJ+5mpAqnPKneJ4qVapo1TyoWrUqPDw8oFarcfv2bajVari4uGjNExERodV/gIGBAUqXLi29tra2Ro8ePeDu7o4GDRqgfv36aN++Pezt7eOtPyVlYztx4gTmzJmDBw8e4MuXL4iOjkZ4eDjCwsKkYS6NjY2lZAMA2Nvb4/3770mw9+/f4/Xr16hXr16Cy7958yZCQkLi9ZPw7ds3PH36NMF57t+/jzJlykjJBgCoXr06NBoNHj58mKyEQ2qEhobi6dOn6N27N/r27StNj46OhoWFdieiFStWTJcYUqNGjRrw8/OTXj969AgbN27E9evXUatWLQwfPhyNGzdGyZIlUatWLa1jTJeYcKA0KSDYwxAGiEDkjwtTqlT4zxLTulzlUFRZkZ4eBCcnuaMgIkq2grnY2jarGLq9EVqV3wED/cc/LpwVWIdAdH8EMVYtdOF5YSj8bIErCoh+wdBcCwBCw2QLUVFItx3shYSEQKlU4urVq/Gqt5uamkq/GxkZxWsu4enpiWHDhuHo0aPYvn07Jk6ciOPHj6NKlSrx1pOSssD3/giaNWuGgQMHYtasWbC2tsbZs2fRu3dvREZGSgkHfX19rfkEQZD6pzAySrqfkZCQENjb2yc49KOlpWWS8yZFoVBo9ZEBJL/zxsTE9BGxZs0aVK5cWeu9uJ9b7GRIerKzs8O7d++0psW8TqzmRv/+/aXhP69fv4527drB2NgYtWvXxr///ptuCQdeVShNFIICTmxWkW4swvWxr3MwhA+BcodCqSA4OkLIou1UiShnKmyTMW16Ke3UGgU8jqVfNehMIXZ/ECdfAYGGUFwtDuWqalD2qQJFmcIZ2h+EomDKa/ZeunRJ6/XFixfh7OwMpVKJcuXKQa1W4/379yhSpIjWT3Kq+5crVw6//fYbzp8/j5IlS+Lvv/9OcVkDAwOo44x8dvXqVWg0Gnh4eKBKlSpwcXHB69evU7TdZmZmcHJySnRoyfLly+Pt27fQ09OLt+02NjYJzlOsWDHcvHkToaGh0rRz585BoVDA1dUVAGBra6vVL4NarcadO3e0lpPQNiclT548yJs3L549exYv1rjNGjJK1apVcebMGa1kyvHjx+Hq6gorq/ijCK5btw7W1tZo0aKFtO0x80ZFRaVof6QUEw6UZmxWkX5ODbeC6spducOgVFLE6hiJiCgrKGTDW8OsxONERQSHVP1xwWxCUGoglnoFTc+70Cy/D9EvEPhoDeW/ZaGcXwPKDj9BKJx+D8IUhVNew+HFixf49ddf8fDhQ2zduhVLliyR+jRwcXFBly5d0K1bN+zZswf+/v64fPky5syZg0OHEu+3y9/fH7/99hsuXLiA58+fw9vbG48fP06wH4cflXVycoK/vz9u3LiBwMBAREREoEiRIoiKisKSJUvw7NkzbNq0CStXrkzxtk+dOhUeHh7466+/8PjxY1y7dg1LliwBANSvXx9Vq1ZFq1at4O3tjYCAAJw/fx4TJkzAlStXElxely5doFKp0L17d9y5cwenT5/G0KFD0bVrV6k5Rd26dXHo0CEcOnQIDx48wMCBAxEcHKy1HCcnJ5w5cwavXr1CYGDyHupNmzYNc+bMwV9//YVHjx7h9u3b8PT0lEaFSIvIyEjcuHEDN27cQGRkJF69eoUbN27gyZMnUpmlS5dqNU/p3LkzDAwM0Lt3b9y9exfbt2/H4sWL8euvv8Zb/vv37zFz5kxp31tZWaFYsWJYtGgRLly4gJMnT6J69epp3o7E8KpCaVZESP/xW3Mir5UFUWDjabnDoDRg/w1ElNWUystbw6xm5PZBgJhzP7fv/UH4QzPsNjSbHgH3QyC8dYDin5+gnFwDiiZlIeTWzahqiqIpf5DQrVs3fPv2DZUqVcLgwYMxfPhwrQ4RPT090a1bN4waNQqurq5o1aoV/Pz8UKBA4g/0jI2N8eDBA7Rp0wYuLi7o168fBg8ejP79+6e4bJs2bdCoUSPUqVMHtra22Lp1K8qUKYMFCxZg7ty5KFmyJLZs2YI5c+akeNu7d++ORYsWYfny5ShRogSaNWsmjb4hCAIOHz6MWrVqoWfPnnBxcUHHjh3x/PnzRPtiMDY2xrFjx/Dp0yf89NNPaNu2LerVq4elS5dKZXr16oXu3bujW7duqF27NgoVKoQ6depoLWf69OkICAhA4cKFYWtrm6xt6dOnD9auXQtPT0+UKlUKtWvXhpeXV7JqOMQebjQhr1+/Rrly5VCuXDm8efMG8+fPR7ly5dCnTx+pTGBgoFbfFhYWFvD29oa/vz8qVKiAUaNGYfLkyQl2tjl8+HCMGjVK6pgU+D4857Zt29CsWTOMGTNG6swzPQhi3EYuRCm0IXov+kdPkjuMbKXf2XyY1fgk+23I4gyXLYPBoEFyh0FElCJFpn3BiyDeHmYlfr/PQ8Hc++UOI3MLsIHCLzdwVQHRLyjF/UEIjvlg/vhCilbp5uaGsmXLYtGiRSmLlbINf39/uLi44N69e3DOoQ+i2LiY0qyioqTcIWQr5V5aYGaXa0w2ZAPKSpXkDoGIKMXK51fiRRCvQVlJn429cHKUNyB8kzuUzMspEBqnQKDd/16rDaG45wThiiXgp4Ho9wGau88Tvf9SluX9LqXc4cOH0a9fvxybbACYcCAdKCoUggmMEApe5NLKLEIP+7t8gfD+g9yhUFqpVFD8b7xsIqKspGIBJfbdYsIhK7n50gaXnv6CykXWyB1KlhHTH4RY6hXQ838Tv1lDeT0v4GcK+EVAc+UVxGffO0tUlmPCgVJu8ODBcocgOyYcKM2UghJlheI4J16VO5Qs7+SIXDC6fEruMEgHFOXKQYgzXBQRUVZQIb8egAi5w6AU6u7ZAfdn7IWg4MhWqSUYRUBTzR+oFmvax3wQrthDr1DFFC8voSEfiXKanNvDDOkUm1Wk3dq1TijoxWRDdqGMM04zEVFWUSE/h8bMigJDjbD7SvwO4yiNcn2F6P4YSudSckdClCUx4UA6UV5RQu4QsrReFxzQ8ldvucMgHWL/DUSUVVkaCyjM4TGzpKHbGyEyikMy65oChSHAXO4wiLIkXk1IJ6opyskdQpZV5rUF5nS+AURFyR0K6RBrOBBRVsZaDllTlFqJRd5sM65rSpSVOwSiLIsJB9KJ/II9XIQfj0NL2kwilTjwSwgUb9/LHQrpkJA3LxSFCskdBhFRqtVxYTdfWdW845XwObSK3GFkK0rwwRpRajHhQDpTX1FV7hCynBOjbGF84ZbcYZCO6TVuLHcIRERp0qgYEw5Z2agdgwCRt/m6oseEA1Gq8UxEOlNPUe3HhUiy0qsgiqw9KXcYlA6UTZrIHQIRUZo4WCpQKi9vE7OqfTcL43lgU7nDyBYUKAgFCsgdBlGWxSsJ6UxtRSXoc6TVZOl22QFthrOTyGxJXx96DRrIHQURUZo1Ls6hfbOyPhv6AKKR3GFkeXrgNZ0oLZhwIJ0xFYxRWSgrdxiZXom35viz0y0gMlLuUCgdKKtXh2BmJncYRERp1rg4HyJkZddf2uDys85yh5Hl6aOh3CEQZWlMOJBONVbWkjuETM0oSolDXb9B8fqt3KFQOtFjcwoiyiaqOClhbSzIHQalQQ+vjhA1ueQOI8sSkB9KFJU7DKIsjQkH0qk2Cne5Q8jUTozNA5OzN+QOg9IR+28gouxCqRBQ35W1HLKy91+NsfdaP7nDyLL02ZyCKM2YcCCdclI4oJJQWu4wMqUlmwvCZeVxucOgdKQoWhTKEiXkDoOISGealGDCIasbvLUxoqI4VHNqMOFAlHZMOJDOtVU2kjuETKfzVXt0HMJkQ3an17Wr3CEQEelU85L6MDGQOwpKiyi1EotPDJY7jCxHgD2UKCV3GERZHhMOpHNtlO4QwDafMYq+N8XCjveAiAi5Q6H0JAjQZ8KBiLIZM5WAn8twtIqs7o9jVfAltLLcYWQp+qgvdwhE2QITDqRzDkIeVBPKyx1GpmAYrcThblFQvHwtdyiUzpRublDkzy93GEREOtejCqs4ZAejdw0CRN76JxeHwyTSDZ51KF10UjaTO4RMwfs3O5j9e03uMCgDsHYDEWVXNQvroYgtbxmzuj3Xi+DFR3ZsnBwCbKFEWbnDIMoWePWgdNFB2QSmMJY7DFkt2FoQxZd6yx0GZQRjY+i1bSt3FERE6aZbJTaryA76bOwDiCq5w8j09NESAr8mEekE/5IoXZgJJuigbCp3GLJpd8MeXQeflDsMyiB6rVtDMDOTOwwionTT9ScDKNg9U5Z37YUtrvh3kjuMTE4fBugidxBE2QYTDpRu+irbyx2CLIoEmmJJxwfAt29yh0IZxGD4cLlDICJKVw6WCjRw5RCZ2UEPz04QNdZyh5Fp6aMJFLCVOwyibIMJB0o3ZRXFUFUoJ3cYGUpfrcCxbmoon7+UOxTKIMoaNaD86Se5wyAiSne9qrLzyOzg7VcTHLjeV+4wMi0DdJM7BKJshQkHSleD9XJWlTTvCXlhfvqK3GFQBtL/9Ve5QyAiyhAtS+mhiA1vHbODQVubICq6kNxhZDpKVIUSrnKHQZSt8KpB6aqVoj4cBQe5w8gQf+4oiJKLj8kdBmUgoUgR6LVsKXcYREQZQqEQMKIOazlkBxHRelhycpDcYWQ6hughdwhE2Q4TDpSu9AQ9jFb2ljuMdPfzLTv0GMBOInMag+HDISh4GiWinKNbJQPkNmXvkdnB7CNV8TWMTQJjKOAMPVSXOwyibId3ypTuuitbwwF55A4j3RT+aILlHR6xk8icxsoK+j17yh0FEVGGUukLGObGWg7ZxdhdgwGRCSSAfTcQpRcmHCjdGQj6GK2XPWs56KsVONZdhDLgP7lDoQxmMHIkBBMTucMgIspwA2sYwtqYX1Kzg53XnPHfx8ZyhyE7ATbQRzO5wyDKlphwoAzRU9kG9tlwiKEjUxxgcdJP7jAogwm5c8OAnUUSUQ5lpmIth+yk78a+gGgodxiyMkAnCNCXOwyibIkJB8oQKsEQI/WyV/Xz2XucUMbjqNxhkAwMJk1i7QYiytGG1DKEFWs5ZAtXXuTGtYBOcochGwG2MEBXucMgyraYcKAM00/ZAQWQV+4wdKL53dzo289H7jBIBkKhQtDv31/uMIiIZGWuEvB7w5z9VDw76eHVGaLGSu4wZGGIkRBgLHcYRNkWEw6UYVSCIWbrZ/1q6I5Bxljd4RkQGip3KCQDwxkzIOiz2iUR0aCaBnDNzVvJ7OD1ZxMcvNlH7jAynBJloI/mcodBlK3xKkEZqq2yEaoJ5eUOI9WUGgHHeyqg9/S53KGQDBRly0KvU86tdkpEFJu+UoBHa5XcYZCODNjSDNHRTnKHkYEEqPAbBLBpEFF6YsKBMtx8/XFZ9uR+aHo+WB27JHcYJBPDP/+EIGTNY5eIKD00LKaPpiX05A6DdCAiWg/LTg2SO4wMo49WUKKk3GEQZXtMOFCGK68ogV+ULeUOI8Vm7HdChbnsJDKn0mvfHnr168sdBhFRpjO/tQqGzDlkCzMOV0fItwpyh5EBzGCIEXIHQZQjMOFAspiuNxwWMJM7jGRr9CA3BvT5V+4wSC5mZjBcuFDuKIiIMqXCNkoMq80OJLOL8buHAGL2rs1niIFQIJfcYRDlCEw4kCzsBVvM0RsldxjJ4vDZCJ7tA4CQELlDIZkYzpwJRd7sMcIKEVF6+K2hIfJaZO8vqTnFtisuePWpkdxhpBsFCsEA7I+JKKMw4UCy6aXXFnUVVeQOI0mCCJzqpQe9x/5yh0IyUVSpAv0hQ+QOg4goUzM1FPBXWyO5wyAd6bepDyBmz1orKoyDAI42RZRRmHAgWa3Qnw7TTDz28T+zCsD68EW5wyC5GBhAtW4dBAVPlUREP9KilD56VuEXuezgUoAdbjzvKHcYOqeHJtBDdbnDIMpReBdNsnIU8mKm3ki5w0jQpINOqDybnUTmZAZTpkBZvLjcYRARZRkerY1Q2Ia3l9lBd8/OEEUrucPQGQF5YYRJcodBlOPwikCy66/siJpCRbnD0NLgkS2G9vYFRFHuUEgmyjp1YDB+vNxhEBFlKaaGAtZ3MYKSd5hZ3qvPpjh8s7fcYeiIAkaYAyELdVhOlF3wckCyEwQBngZ/IBcs5Q4FAJD3iwob2r+A8OWL3KGQTAQbG6g2b2ZTCiKiVKhaUA9j6mXP9v85zYAtzREd7Sh3GGlmgN7QQ04Y7pMo8+HdNGUK+QQ7rNefAwHy9nAtiMDJvobQf/hM1jhIRoIAlZcXR6UgIkqDSY0MUT6/Uu4wKI2+Relhpc8gucNIEwVKwRCD5Q4j0/Dy8oKlpaXcYaRaQEAABEHAjRs3AAA+Pj4QBAHBwcGyxkWJY8KBMg13ZU2MUvaSNYZ9fzjC5sB5WWMgeekPHw69pk3lDoOIKEvTVwrw+sUIxgZyR0JpNfVgDYR8Ky93GKkiwALG8IAAPblDoVTo0aMHWrVqlWSZatWq4c2bN7CwsMiYoP7nyZMnMDMzS1by5uTJk6hWrRrMzMxgZ2eHcePGITo6Wno/ICAAtWrVgomJCWrVqoWAgACt+Zs1a4bdu3freAsyDhMOlKlM0xuG6oI8Vd7GH3VEtRlHZFk3ZQ6K8uVhOHeu3GEQEWULRfMosa6zMQR5Ky+SDkzYOxgQs9oHKUCFOVAg/WosRkZGptuyKXkMDAxgZ2cHIQ0nmpR+jlFRUejUqRNq1qz5w7I3b95EkyZN0KhRI1y/fh3bt2/HgQMHMD5WP2GjRo2Cg4MDbty4AXt7e4wePVp6b/v27VAoFGjTpk2KYsxMmHCgTEUpKLHJ4E/YwjpD11v3iQ1+7XHu/9i77/AoqreN49/ZlkYn9JLQe28iRUREQUCUIogUFRQ79leKgtjAgj9AxYKCCIgUka60IIIiCAEpSgelSW+BJLs77x+RNSE9bDJJuD/XxcVm9syZZ3Z3ZneeOUWDRF7HjNBQgmbNwnDpdpyIiL90qetkSFuN55DTTf21KodPt7U6jHRx0R8nLdNc/vz58/Tq1YuQkBBKlCjBmDFjaNWqFYMGDfKVCQ8PZ+TIkfTp04d8+fLx0EMPATB79mxq1KhBQEAA4eHhvPvuuwnq/vDDD6lUqRKBgYEUK1aMrl27+p6bNWsWtWrVIigoiMKFC9OmTRsuXryYKD6v10vp0qX56KOPEizftGkTNpuNAwcOAPDee+9Rq1YtQkJCKFOmDI8++igXLlxIdr+TakUwaNAgWrVqlWDbb775JuXKlSMoKIg6deowa9asFF/P06dP06dPHwoWLEhwcDDt2rVj165dvueHDx9O3bp1E6zz/vvvEx4e7nt+8uTJfPfddxiGgWEYREREJNpOUl0qfvrpJ1q0aEFQUBBlypThySefTPCaJvc+ptXQoUOpWrUq3bt3T7XsjBkzqF27Ni+//DIVK1bkpptuYvTo0XzwwQecP38egB07dtC3b18qVapEv3792LFjBwBnzpxh6NChfPDBB+mKL7tRwkGynZJGUb52vU8AWXPhV/x8IF91/xvj7Nks2Z5kQwEBBM6di61cOasjERHJdYbdHsDdddSkPad7eMpDYOaMpLydJgTweLrWeeaZZ1izZg3z5s1j6dKlrF69mo0bNyYq984771CnTh02bdrEsGHD+O233+jevTs9evTg999/Z/jw4QwbNoxJkyYBsGHDBp588kleffVV/vzzT5YsWULLlnGJkCNHjtCzZ08eeOABduzYQUREBHfffTdmEjfAbDYbPXv2ZNq0aQmWT506lWbNmhEWFuYrN3bsWLZt28bkyZNZsWIFL7zwQrpei6u9+eabfPnll0yYMIFt27bx9NNPc99997Fq1apk1+nXrx8bNmxg3rx5/Pzzz5imSfv27YmNjU3TNp977jm6d+/O7bffzpEjRzhy5Ag33nhjquvt2bOH22+/nS5durBlyxZmzJjBTz/9xOOPJ/w8XP0+ptWKFSuYOXNmmpMA0dHRBAYGJlgWFBTE5cuX+e233wCoU6cOy5Ytw+v18sMPP1C7dm0Ann/+eR577DHKlCmT5viyI539JVtqZqvPBOer3B+budMSGiYsfygQ5449mbodyd4CP/sMR7NmVochIpIrGYbB572C2XvyApF/e60ORzLo533F2XzwHuqETbE6lBTZqEgw72GQ9kFLz58/z+TJk5k2bRq33HILAF988QUlkxhAunXr1jz77LO+v3v16sUtt9ziu2itXLky27dv5+2336Zfv34cPHiQkJAQOnToQN68eQkLC6NevXpAXMLB7XZz9913+xIGtWrVSjbOXr168e6773Lw4EHKli2L1+vl66+/ZujQob4yV7fIeO211xg4cCAffvhhml+P+KKjo3njjTdYtmwZTZs2BaB8+fL89NNPfPzxx9x0002J1tm1axfz5s1jzZo1viTB1KlTKVOmDHPnzqVbt26pbjdPnjwEBQURHR1N8eLF0xzvm2++Sa9evXyvQ6VKlRg7diw33XQTH330ke/i/+r3MS1OnjxJv379+Oqrr8iXL1+a1rntttt4//33mT59Ot27d+fo0aO8+uqrQNz7D3HJj4cffpjw8HBq167Nxx9/zI8//khkZCSjRo2ie/fubNiwgbZt2zJ27FhcOaw1rlo4SLbV096BoY7MHRl59tthFJ27JlO3Idmba8gQnPfdZ3UYIiK5WrDLYPaDIRTLm9PGAZD4+k3qhWlm7eB86WFQimA+wSB9Me7du5fY2FgaN27sW5Y/f36qVKmSqGzDhg0T/L1jxw6aXXXTolmzZuzatQuPx8Ott95KWFgY5cuXp3fv3kydOpWoqCgg7s72LbfcQq1atejWrRuffvopp0+fTjbOunXrUq1aNV8rh1WrVvHPP/8kuIBftmwZt9xyC6VKlSJv3rz07t2bkydP+raZXrt37yYqKopbb72VPHny+P59+eWX7NmT9A27HTt24HA4aNKkiW9Z4cKFqVKliq+7QGbZvHkzkyZNShDrbbfdhtfrZd++fb5yV7+PaTFgwADuvfdeXwuVtGjbti1vv/02AwcOJCAggMqVK9O+fXsgrjUKQKlSpViwYAEHDx5kwYIFhIaG8uijjzJhwgRee+018ubNy59//smuXbv4+OOP0x231ZRwkGxtqONR7rV1zJS6n/8hjBYjlmRK3ZIzOLp1wzVypNVhiIhcF8oUtDHzgWAC1L42x/rrdF6+32LtjGLJMShEMJ9go2imbickJCRd5fPmzcvGjRuZPn06JUqU4OWXX6ZOnTqcOXMGu93O0qVLWbx4MdWrV2fcuHFUqVIlwYXx1Xr16uVLOEybNo3bb7+dwoULA3GzHXTo0IHatWsze/ZsfvvtN1/T/+QGRrTZbIm6cMTv9nBl/IeFCxcSGRnp+7d9+/ZUx3FISWrbzagLFy7w8MMPJ4h18+bN7Nq1iwoVKvjKpfd9hLjuFO+88w4OhwOHw8GDDz7I2bNncTgcfP7558mu98wzz3DmzBkOHjzIiRMnuPPOO4G4liJJeeONN2jbti0NGjQgIiKCLl264HQ6ufvuu5McxyK7U8JBsr0JzldpYaQ/C5mSFnsL83zfNeBV087rla1pUwInT76mUY1FRCR9bijnYNJ9wdj1CzTHGvBVZ9zuslaHcZU8BDMBO2EZWrt8+fI4nU7Wr1/vW3b27Fl27tyZ6rrVqlVjzZqErWXXrFlD5cqVsdvjunU4HA7atGnD6NGj2bJlC/v372fFihVAXJejZs2aMWLECDZt2oTL5eLbb79Ndnv33nsvW7du5bfffmPWrFn06tXL99xvv/2G1+vl3Xff5YYbbqBy5cocPnw4xfiLFCnia9p/RWRkpO9x9erVCQgI4ODBg1SsWDHBv+TGFqhWrRput5t169b5lp08eZI///yT6tWr+7Z79OjRBEmH+NuFuBkoPB5PivFfrX79+mzfvj1RrBUrVrzmrgg///xzgkTGq6++St68eYmMjOSuu+5KcV3DMChZsiRBQUFMnz6dMmXKUL9+4ulmd+zYwbRp0xj57w0xj8fjS8TExsam+/XIDnS6l2zPZTiZ4/qAxkZtv9QXetHF1/ccxTijQSKvV7aGDQlevBgjKMjqUERErjtd6jqZcE+QpsvMoS7FOvj0x4FWhxGPi2DGYqd6hmvImzcvffv25fnnn2flypVs27aNBx98EJvNluqNiWeffZbly5czcuRIdu7cyeTJkxk/frxvasMFCxYwduxYIiMjOXDgAF9++SVer5cqVaqwbt063njjDTZs2MDBgweZM2cOx48fp1q1asluLzw8nBtvvJEHH3wQj8dDp06dfM9VrFiR2NhYxo0bx969e5kyZQoTJkxIMf7WrVuzYcMGvvzyS3bt2sUrr7zC1q1bE7w2zz33HE8//TSTJ09mz549bNy4kXHjxjF58uQk66xUqRJ33nknAwYM4KeffmLz5s3cd999lCpVynd3v1WrVhw/fpzRo0ezZ88ePvjgAxYvTjg9fXh4OFu2bOHPP//kxIkTaWoB8eKLL7J27Voef/xxIiMj2bVrF999912iQSMzolq1atSsWdP3r1SpUthsNmrWrEnBggUB+Pbbb6latWqC9d5++21+//13tm3bxsiRI3nrrbcYO3asLyF1hWmaPPTQQ4wZM8bXAqNZs2Z8+umn7Nixgy+//DJR952cQAkHyRHyGiHMc02gnpHxL5MrVg7Mg2tr6hlryZ1sdesS/MMPGPmzbx9UEZHcrm8TF+/dFZh6QcmWhs27iajLdawOA7ATxNs4aJx60VS89957NG3alA4dOtCmTRuaNWtGtWrVEs0wcLX69evzzTff8PXXX1OzZk1efvllXn31Vfr16wdAgQIFmDNnDq1bt6ZatWpMmDCB6dOnU6NGDfLly8ePP/5I+/btqVy5MkOHDuXdd9+lXbt2KW6zV69ebN68mbvuuougeDdP6tSpw3vvvceoUaOoWbMmU6dO5c0330yxrttuu41hw4bxwgsv0KhRI86fP0+fPn0SlBk5ciTDhg3jzTffpFq1atx+++0sXLiQcinM7vXFF1/QoEEDOnToQNOmTTFNk0WLFuF0OoG4i/cPP/yQDz74gDp16vDrr7/6kjRXDBgwgCpVqtCwYUOKFCmSqCVJUmrXrs2qVavYuXMnLVq0oF69erz88stJDgB6tVatWvnet4w6e/Ysf/75Z4JlixcvpkWLFjRs2JCFCxfy3XffJZqKFOCTTz6hWLFidOjQwbds+PDhXL58mSZNmlCxYkUee+yxa4rPCoaZ1LwrItnUKfMst8Xcz+9mxhIG37wXzs1DFvo5KskpbDVrErRyJbbQUKtDERER4N0V0bw077LVYUgG9Gmyg/d69rc0hkBexcXdmVL3xYsXKVWqFO+++y4PPvhgpmxDspewsDBGjBhxzUkHSUgtHCRHKWTkZ5HrM6oZFVIvfJWnl5fl5mGLUy8ouZKtShWCli1TskFEJBt5tnUAb3ZSS4ec6Mt11Th6+lbLth/AM35NNmzatInp06f7ugxcGRvhShcAyd22bdtG/vz5E7XukGunhIPkOEWMQix2TaSWUTnN69y4vxAv9flFg0Rep2xVqhC0YgW2YsWsDkVERK6ipEPONfCrh8F0ZvFWbQQylAD8P1vGO++8Q506dWjTpg0XL15k9erVhOpGxXWhRo0abNmyxTdVpfiPulRIjnXWPE+XmCf4ydyQYrlCUS62tL5EwOY/sigyyU5sTZsSPH8+xr9TRomISPb02doYnph1CY/uDeQoEc9+SM0yU7Noa0EEMRonN2fR9kTkWimFIzlWfiMvC1wfc6ftlhTLrXwsn5IN1ylHp04EL1+uZIOISA7Q/0YX3/YPJk+A1ZFIevT9ojemmS/Tt2NQiBA+V7JBJIdRwkFytEAjgGnO9+hv75bk89PGhlPy61VZHJVkB86HHiJwzhxNfSkikoPcXt3J8ifyUDK/5szMKQ6cysvSrf7v3hCfjTBC+Ao7tTJ1OyLif0o4SI5nN+yMd77CUMejGPz3A+WJiLLcOniJhZGJVVyvvkrgxx9jXDW/sYiIZH/1SttZPSgPNUroZ2pOMWBKZzye0plSt506BPMVNspmSv0ikrl0JpdcY6jjUaY63yWEIBofKMiw3r+Cx2N1WJKVgoIInDKFgGHDrI5ERESuQZmCNlY9lYdbKjusDkXS4GKMk4mrH/F7vQ7aEMxEbBT0e90ikjU0aKTkOlu8f1C0yxOEzF1mdSiShYyKFQmaPRt77dpWhyIiIn4S6zF5evZlPlkbY3UokgYH33qE4MAtfqnLxX0E8AKG7o+K5Gg6giXXqW2rSrHPv8Herp3VoUgWcXTqRMiGDUo2iIjkMk67wfjuQUztG0R+zZyZ7b0y73E/1JKXQN4kkP9TskEkF9BRLLmSUbAgQQsX4ho+HDSfbu5lt+N6800C587FyJ/f6mhERCSTdKvn4tfn89KorMbmyc6+WFuDY2dSnj0sJXYakofZuOjox6hExErqUiG5nnvNGi737Yu5Z4/VoYgfGSVLEjhlCo7Wra0ORUREskisx2TYgsuMiYhBv2Czp5aVDjPn0Z5guNOxloMAHsPFg2rVIJLL6IiWXM/RrBkhmzfjfPhhq0MRP3H06UPItm1KNoiIXGecdoO37gxi7oBgQkM0dWZ29OOukmw/lPR05UmxUY4QphLAACUbRHIhtXCQ64p78WIuP/gg5pEjVociGWCUKEHgJ5/g6NDB6lBERMRih896eWLmJeZvTc+ddMkK5Qqf59eh3TCM8ymWc3IPgTyHQVAWRSYiWU1pRLmuONq1I2TrVhw9elgdiqSTo3fvuFYNSjaIiAhQMr+N2f1DmPVgMGULqrVDdrLvZF6Wb7s/2ecNChHEBwQxTMkGkVxOLRzkuuVeupTop57Cu2OH1aFICozwcAL/9z8cnTpZHYqIiGRTF6NNRi65zNhVMbi9VkcjAHkDYtj9xn3Y7YfiLTVwcicBPIONQpbFJiJZRy0c5LrluPVWgjdvJuDddyFfPqvDkavlyYPr9dcJ2bFDyQYREUlRSEDc2A6/PJeHG8I1k0V2cD7axaSfHvH9bacuIUwniNeUbBC5jqiFgwjgPXqU6P/7P9xffomGvbaYYeDo25eAN97AVqKE1dGIiEgOY5omE3+O5ZVFlzl+Qd/pVtv3+isUDbkVJ3dYHYqIWEAJB5F4PL/8QvTgwXhWrrQ6lOuSvXlzAt5/H3uDBlaHIiIiOdyFaJP/RUQzZmU05y5bHc31p0AQPH9LII+3dBHk0hgbItcrJRxEkuD+8UdiRozAs2KF1aFcF2yNGhHwyis47tDdDxER8a+TF728vTyaCT/FEBVjdTS5X6ATHm3h4sU2gRQMVqJB5HqnhINICtyrVxMzfLgSD5nE1rQpAUOH4mjf3upQREQklzt+wcuYlTFM+CmaC9FWR5P7hIYYDGzu4pEWLork0TBxIhJHCQeRNHD/9BMxb72FZ/Fi8Gr462tlb98e14sv4mjZ0upQRETkOnPyopcPV8cw8ecYDp/Vz+BrVamIjadauejdSF0nRCQxJRxE0sG7fz+xEyYQO3Ei5okTVoeTsxQsiLN3b5wPPYS9Rg2roxERkeuc22Myb6ubT9ZEs3KXR2NGp9ON5ew8fXMAHWs6sNmUaBCRpCnhIJIBZnQ07pkzifnwQ7w//2x1ONmavXlznA89hKNbN4zAQKvDyRKGYfDtt9/SuXNn9u/fT7ly5di0aRN169a1OjQREUnCzn88fLImhinrYzkdpZ/GySkUbNC1rpO+TZw0CnNYHY6I5ADqYCWSAUZAAM777iNk7VqCIyNxvfACRrlyVoeVbRjFi+N8+mmCt28nePVqnL17pzvZ8Ndff/HAAw9QsmRJXC4XYWFhPPXUU5w8eTJR2d27d3P//fdTunRpAgICKFeuHD179mTDhg3+2qUkDR8+PNUkQpkyZThy5Ag1a9bM1FjSolOnTpQtW5bAwEBKlChB7969OXz4sO/5/fv3YxhGon+//PJLsnVOmjQpyXUMw+Cff/4BYNOmTdSrV488efLQsWNHTp065Vvf7XbToEEDfv3118zbcRGRVFQuauedu4LYPzwvn/YMonVlOw79SgYgyAld6zqZ3T+Yv0bmZXz3ICUbRCTN1MJBxI88GzYQ+803uGfOxNy/3+pwspRRvjyOu+7Ccddd2Js2xbBl/Jfa3r17adq0KZUrV+a1116jXLlybNu2jeeff56YmBh++eUXChUqBMCGDRu45ZZbqFmzJoMHD6Zq1aqcP3+e7777jhUrVrBq1Sp/7WIiw4cPZ+7cuURGRiZYHr+Fgz/ExMTgcrmuuZ4xY8bQtGlTSpQowaFDh3juuecAWLt2LYCvNcayZcuoEa/bS+HChXE6nUnWeenSJc6ePZtgWb9+/bh8+TIREREANGjQgFatWvHwww/Tv39/GjduzDvvvAPAqFGjOHToEGPHjr3m/RMR8adTF70s2Opm7u+xLPvTzeVYqyPKOjYDbq7koGcDJ53rOMkXqC4TIpIxSjiIZBLP+vW4v/0W97JleDduBI/H6pD8zlar1n9JBj92F2jXrh1bt25l586dBAUF+ZYfPXqUChUq0KdPHz766CNM06RWrVoEBgby66+/YrsqyXHmzBkKFCiQ5Daio6N5/vnn+frrrzl37hwNGzZkzJgxNGrUCIi7cz9o0CDOnDnjW2fu3LncddddmKbJpEmTuP/++xPU+cUXX9CvX79Uu1Rs3bqV559/ntWrVxMSEkLbtm0ZM2YMoaGhALRq1YqaNWvicDj46quvqFWrFitWrGDEiBF8/vnnHDt2jMKFC9O1a9drulCfN28enTt3Jjo6GqfT6ZfuH8ePH6dUqVJMnDiR3r17AxAcHMzGjRupWrUqH330EQsWLGDhwoXs3buX22+/nd9++428efNmeD9ERDLbhWiTJTvczN0cy+LtsZzPhbNclC5gcEtlB62rOLilsoOiedXEQ0SundpDiWQSe6NG2Bs1IuCNNzDPnsWzahXuFSvwrFiBd+tWctzoVDYbtlq1sLdsif2mm7C3aIGtaFG/b+bUqVN8//33vP766wmSDQDFixenV69ezJgxgw8//JDIyEi2bdvGtGnTEiUbgGSTDQAvvPACs2fPZvLkyYSFhTF69Ghuu+02du/e7Ws9kZJ77rmHrVu3smTJEpYtWwZA/vz5U13vzJkztG7dmv79+zNmzBguXbrEiy++SPfu3VkRb/rVyZMn88gjj7BmzRoAZs+ezZgxY/j666+pUaMGR48eZfPmzaluLzmnTp1i6tSp3HjjjYlaL3Tq1InLly9TuXJlXnjhBTp16pTmer/88kuCg4Pp2rWrb1mdOnVYunQpFStWZPny5dSuXRuAgQMHMnr0aCUbRCTbyxMQN3ZB17pOYtwmm/72sHafhzV73fy8z8PxCznsOx3IFwgtKzpoU8VB68oOqhazWx2SiORCSjiIZAEjf34cnTrh+PfCzXv8OJ41a/BGRuLdvBnP5s2Y+/ZZHGVCRunS2GrWxF6nDvbmzbE3b46RwgW8v+zatQvTNKlWrVqSz1erVo3Tp09z/Phxdu3aBUDVqlXTtY2LFy/y0UcfMWnSJNq1awfAp59+ytKlS5k4cSLPP/98qnUEBQWRJ08eHA4HxYsXT/O2x48fT7169XjjjTd8yz7//HPKlCnDzp07qVy5MgCVKlVi9OjRvjILFy6kePHitGnTBqfTSdmyZWncuHGat3vFiy++yPjx44mKiuKGG25gwYIFvufy5MnDu+++S7NmzbDZbMyePZvOnTszd+7cNCcdJk6cyL333psgWfTZZ5/x6KOP8s4779CsWTNeeuklpkyZQnBwMI0aNeK2225jz5499OjRg9deey3d+yQikpVcDoMm4Q6ahDt4+uYAAHYd9/DzXg9r97lZu8/DruNePNloFm2nHaoXt1G/jJ16pe3UL22nfhk7Dru6SohI5lLCQcQCtiJFsHXuDPH6+JvnzuHZsgXv5s14t23Du38/5v79eA8cgKiozAkkf35sJUvGJReqVYtLMNSoga1GDYw03K3PTKn19nK5XKmWSc6ePXuIjY2lWbNmvmVOp5PGjRuzY8eODNWZVps3b2blypXkyZMnybiuJBwaNGiQ4Llu3brx/vvvU758eW6//Xbat29Px44dcTjSdxp//vnnefDBBzlw4AAjRoygT58+LFiwAMMwCA0N5ZlnnvGVbdSoEYcPH+btt99OU8Lh559/ZseOHUyZMiXB8ho1aiQYS+PkyZO88sor/PjjjzzxxBPceOONzJkzh0aNGtGkSRM6duyYrn0SEbFapSJ2KhWx06dJ3Hg70W6Tnf942XHUwx/HvOw54WXfybh/x85nTmuIQCeUyGdQPJ+NkvltVC1mo3pxG9WL26lc1IZTyQURsYASDiLZhJEvH47mzaF580TPmadP4z18GPPwYczjxzEvXoSLF//7Pyoq7v/oaAyXCwIDISAAIyDgv8fBwRjFi2OUKBGXZChRAuOqLgvZQcWKFTEMgx07dnDXXXclen7Hjh0UKVKEAgUK+C7O//jjD+rVq+fXOGw2W6KERmzstY8YduHCBTp27MioUaMSPVeiRAnf45CQkATPlSlThj///JNly5axdOlSHn30Ud5++21WrVqV7ICOSQkNDSU0NJTKlStTrVo1ypQpwy+//ELTpk2TLN+kSROWLl2apro/++wz6tatmyhZcrVnnnmGQYMGUbp0aSIiInjttdcICQnhjjvuICIiQgkHEcnxAhwGtUraqVUycTeFi9Em/1wwORNlcuaSyelLCR+fvWRyKcbEaTdw2MFpA4cd7DYDpx0cNghyGhTPZ1Ain43i+QxK5rdRMFgJBRHJfpRwEMkBjIIFsRcsCPFmDsitChcuzK233sqHH37I008/nWjQyKlTp/LYY48BULduXapXr867777LPffck+ZBIytUqIDL5WLNmjWEhYUBccmE9evXM2jQIACKFCnC+fPnuXjxou/i/+rZKFwuF550DgZav359Zs+eTXh4eLpbJwQFBdGxY0c6duzIY489RtWqVfn999+pX79+uuq5wuuNa+8bHZ386GeRkZEJEiHJuXDhAt988w1vvvlmiuWWL1/Ojh07+OKLLwDweDy+RI4/EjoiItldSIBBuQADClsdiYhI5tPwsyKS7YwfP57o6Ghuu+02fvzxR/766y+WLFnCrbfeSuXKlXn55ZeBuOknv/jiC3bu3EmLFi1YtGgRe/fuZcuWLbz++uvceeedSdYfEhLCI488wvPPP8+SJUvYvn07AwYMICoqigcffBCIu7MfHBzM4MGD2bNnD9OmTWPSpEkJ6gkPD2ffvn1ERkZy4sSJFC/cr3jsscc4deoUPXv2ZP369ezZs4fvv/+e+++/P8XkxaRJk5g4cSJbt25l7969fPXVVwQFBfkSJqlZt24d48ePJzIykgMHDrBixQp69uxJhQoVfK0bJk+ezPTp0/njjz/4448/eOONN/j888954oknfPV8++23SY6ZMWPGDNxuN/fdd1+yMVy+fJnHH3+cTz75xJccatasGR988AGbN29m9uzZCbq5iIiIiEjOpoSDiGQ7lSpVYv369ZQvX57u3bsTFhZGu3btqFy5MmvWrEkw/kHjxo3ZsGEDFStWZMCAAVSrVo1OnTqxbds23n///WS38dZbb9GlSxd69+5N/fr12b17N99//z0FCxYEoFChQnz11VcsWrSIWrVqMX36dIYPH56gji5dunD77bdz8803U6RIEaZPn57qvpUsWZI1a9bg8Xho27YttWrVYtCgQRQoUCDJmTauKFCgAJ9++inNmjWjdu3aLFu2jPnz51O4cNwtsuHDhxMeHp7s+sHBwcyZM4dbbrmFKlWq8OCDD1K7dm1WrVpFQECAr9zIkSNp0KABTZo04bvvvmPGjBkJpv88e/Ysf/75Z6L6J06cyN13353izCAjRozgjjvuSDDl5tixY4mMjKRly5Z07NiRLl26JLu+iIiIiOQshpnRUddERLLQK6+8wnvvvcfSpUu54YYbrA4n2+nbty+GYSRqhSEiIiIiYhUlHEQkx/jiiy84e/YsTz75ZIqtAa43pmkSHh7OTz/9RJkyZawOR0REREQEUMJBRERERERERDKBbhGKiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3mZ5wmDRpEoZhYBgGw4cPz+zNAbB//37fNlu1auVbPnz4cN/ySZMmZUksmSkiIsK3P/369bvm+sLDw331ieQW/fr1832uIyIirA4ngeSO4fTG3KpVK1/5/fv3p1jWinOyiPhHeo71K5L7TSQiktuujSR7clgdQG4VERHhu1Do3LkzdevWtTQeyJ4xXYv9+/f7To5169alc+fOlsYjIv5zJRlSoEABBg0aZGksIlklMjKSuXPnAnHJhbQmCCZNmuRLQAwaNIgCBQpkSnwiIiLpdV0lHB544AHatGkDQOXKlTN1WxEREYwYMQKIazmQHS7uU4tp1qxZXL582YLIMmb//v2+/enbt68SDpKkIUOG0L9/fwBq1aplcTRpk5kxt2/fntWrVwNQtmxZv9btT1eO7bCwMCUc5LoRGRnp++wDiRIO48aN4+zZswCUKFHCt3zSpEmsWrUKiGshFT/hUKJECd8xnz9//kyKXEREJGnXVcKhbNmy2foHttUaNmxodQgiflepUiUqVapkdRjpkpkxFy1alKJFi2ZK3SI5TUxMDDabDYcjZ/wcykgCMiAggObNm2dCNCK5y8WLFwkJCbE6DJFcx69jOKxYsYJGjRoRGBhIhQoV+OCDD5Itm9x4Acn1Xb6yLDw8nF27dtGhQwfy5MlDaGgojz32GBcvXkw1vpT6Ke3YsYN+/foRFhZGQEAARYoUoXXr1ixfvtxX5q233qJVq1aULl2aoKAggoODqV69OkOHDiUqKipBrPHvUNx///1JbnfLli307NmTEiVK4HK5KFWqFP379+fvv/9OFHtkZCStWrUiKCiI0qVLM2LECNxud6r7nJ6YknpPru5jPnPmTKpVq0ZwcDAtWrTg999/x+v18uqrr1KqVCmCg4Np164dBw4cSBRDWvf30qVLPP/881SqVImAgABCQkIoV64cd999N99++y0Qd9fn5ptv9q0zefLkRH3hf/zxR7p160alSpUoUKAALpeLkiVL0r17d7Zs2ZJgm/E/GxMnTmTEiBGUKFGCfPny0bNnT86cOcOpU6fo3bs3+fPnp1ChQgwcODBBi5Cr+8muX7+em266ieDgYEqWLMmwYcPS9Z6Jf6T1nNKpUyfy5MmT6L3duHGjr+ydd96ZoO5Dhw5hs9kwDIPGjRv7lj3wwAPUqVOH0NBQnE4nhQoVonXr1r6m0hmN2ePxMHz4cN+xdvPNN7N58+Z0vR7JjeEQv2/4li1beOKJJyhatChBQUFJHtPpOSenNN5M/Hrgv2PxigMHDiQqI5Je8Y+pxYsX8+yzz1KiRAkCAwP5+++/iY2N5b333qNBgwaEhIQQEhJCkyZN+OqrrxLVlZHfI9999x1t2rShYMGCBAQEUKVKFUaMGMGlS5d8ZcLDw7n//vt9f48YMSLRsXr1GA5Xjq0rrRsAypUrl6BMSmM4nDt3jiFDhlCtWjWCgoLImzcvTZo04eOPP8Y0zRT3O7lz5hUff/wxDRs2JE+ePAQEBFCqVCnatGnD6NGj0/y+iaTVqlWrElyDjB8/Pk3fdxs3buSBBx4gNDSUPHny+Mqk59iIiIigTZs2FCpUCKfTSZEiRWjcuDFPPfWUr0USwOzZs2nevDn58+fH5XJRvHhxmjdvzosvvpiozvjee+89X7xjxoxJ8Ny0adN8z73wwgtA+n7/Jie5792UxpFJy3lOrlOmn6xZs8Z0uVwmkOBf7dq1fY9feeUVX/mwsDDf8vj69u3rW75y5Urf8ivLChQoYBYrVizRdm6//XZf2X379vmW33TTTb7lr7zyim/5F1984Vu+ZMkSMygoKFGdV8dcpUqVJMsA5s0335wo1qT+XdnuokWLzICAgCTLFC9e3Ny7d6+vvl27dpn58+dP8bXt27dviu9PWmJK6j1ZuXKlb1m5cuVMwzASxTpgwIBEdTZr1izB9tOzvw888ECysfbq1cs0TdO86aabki1z5bV48803ky0THBxsbt++PcnPRoUKFZL8fDVu3DjR8iFDhiT5uStdurQZEhKSqPzDDz+c4vsk/pfaOSVfvnxm4cKFU3xvq1WrZgJmYGCgee7cOd/y//3vf77y//vf/0zTNM2ff/45xeNt8uTJvvXjH1/xj+HkYn7ssccS1ZcvXz4zPDzc9/e+fftSfD2++OKLJM9v8Y+p8uXLp3pMX1melnNycvsZv56wsDDTNBMei1f/u1JGJL3iH1NXf7537txp3nLLLcl+7l544YUEdaXns2+apjls2LBk627RooUZHR1tmmbC7+Cr/105VuMfp/v27UtwbCX1b9++fcn+Jjp16pRZtWrVZNft0aNHkvudlnPml19+mWy9pUqV8uM7KxL3vZvUb8w6deqk+/vONNN3bPzxxx/JXkMA5q5du0zTNM2IiAjTZrMlWy42NjbZ/Tt8+LBv3RtvvDHBc3fddZevjs2bN5ummfHfv/GvjZL73r36HHRFWs9zcn3yWwuHZ599lpiYGADatGnD/PnzGTlyJNu2bfPXJgA4c+YMpUuXZu7cuYwbN47g4GAAlixZwvz589NdX1RUFH369PFl31q0aMGMGTOYN28ezzzzTIKmVQMHDmTKlCksWrSIiIgI5s2bR/v27QFYuXIla9euBWD16tUJ7lIMHjyY1atXs3r1atq3b09UVBR9+/YlOjoah8PB66+/zg8//ODLTB49epRHH33Ut/6wYcN8GdJ69er59n337t1p3s/UYkqLffv20a9fPxYuXOhr1nn06FE+/fRTXnrpJb799luKFSsGwJo1a3zvfXr397vvvgPi+m7PmjWLH374gYkTJ9KnTx8KFiwIxPVjHTt2rG+ddu3a+fZnyJAhADRu3Jhx48Yxb948Vq5cydKlSxk1apQvpquzxFfs37+f0aNHM2PGDPLmzQvEfb62b9/OZ599xkcffeQr+/HHHydZx99//02zZs18x4HdbveVT2t2WbLGuXPnKFKkCLNnz2bkyJG+5fHf2169egFw+fJlFixY4Fs+a9YsAOx2Oz169ACgePHivPXWW8yePZtly5axcuVKJk+eTJEiRQB47bXXMhTnH3/8wYcffgiAzWZj+PDhLFiwgKZNm6Z5tPq0On78OBMmTOCrr77y9QWPf0zH5+9z8gMPPODrbw5xr+eVY/vK6y1yLfbu3cuTTz7JkiVL+Pjjj5kzZ46vNeMNN9zAt99+y6xZs6hSpQoAo0ePZt26dYnqSctnf/369b7zSokSJZg4cSJLlizhjjvuAOK+m698F82aNYvBgwf76r///vt9n/0HHnggyX2pV68eq1evTjAm08yZM33rxR/n4WqDBw/mjz/+AOK6asyZM4fPPvvM9z379ddfM2PGjETrpeWceeV73OFwMGHCBJYvX87UqVN59tlnKVeuXLIxiWTEM888Q3R0NAA333wz8+fPZ8SIEfz++++prnvw4EFeeeUVvv/+e9+xmJ5jY+nSpb5riKeeeorly5cza9YsXnvtNRo2bOhrsTd//ny8Xi8Ab7zxBsuXL+frr79m6NChVK9ePcUZ4kqUKEHr1q0B+Pnnnzl8+DAQ1wVkyZIlvjhr164NZPz3b0al5zwn1yl/ZC2OHTvmy2IFBASYJ0+e9D3Xq1evJLOLGW3hQLxsoWma5pAhQ3zLH3jgAdM009fC4dtvv/UtK1eunHn58uVk93Pr1q1mjx49zNKlS5tOpzNRBu/KHc7ktnVF/G22a9fOXL16te/flTuVhmGYx48fNz0ej5knTx5f+W3btiW576m1cEgtJtNMvYVDmTJlTI/HY5qmab799tsJMpdXxL8DO3fu3HTvr2maZvHixX2Z6U2bNiX7nqR019Q0TfPixYvm8OHDzVq1apnBwcGJ3q969eol+drce++9vuV33HGHb/mwYcN8y2vUqOFbfubMGdM0E37ugoODfctNM+Fx8Oqrryb7Hon/peWcsmnTJt/y+Hc1rryHe/fu9bXuufvuu03TNM0jR4747jhcfUdz0qRJZosWLcwCBQokahUEmGfPnjVNM30tHEaNGuVb1q1bN1/ZM2fOJPh8+6OFw5gxY3zLBw4cmOiYvvr1S+2cnJ4WDqktF8mI+MdU/HO8aZoJ7oJ+8803vu+nV1991bf88ccf95VPz2f/qaee8i0bPHiwr+758+f7ltesWdNXR3LH5xXJ3V1MbrlpJv2byOPxmAULFvQt//33333lx40b51t+5513JrnfqZ0ze/To4fsuXLZsme+cJ+JvV1+DnDhxwvfclc9hSt93gwcPTlBfeo+NCRMm+Ja9//775pEjR5KM8//+7/985WbOnJkgzrSIf24YO3asaZqmOWPGDN+yt956y1c2o79/M9rCIb3nObn++KWFw969e32PK1SoQKFChXx/X+nX7C+FChWiYsWKSdYfP4602rlzp+9xmzZtCAgISLLcgQMHuPHGG/n66699/T2vdubMmXRvc/HixbRo0cL378qdStM0+eOPP/jnn3+4cOECACEhIVSvXt23rr9f29Q0aNAAmy3uIxP/PY4/2GRoaKjv8ZXXIz37C/Dggw8CsHnzZurVq+fb72eeeYYjR46kOd6ePXsyfPhwfv/99wRjbFwd39Xiv67p2c/4qlatmmA08Gv9nErmyZcvX4K7g4ULF/Y9vvLelitXjhtvvBGIu3t58eJF5syZ47tbcd999/nWGTNmDP369WP16tWcOXMmyX6ZaT1XxBf/c9OoUSPf4/z58/vuxPrLTTfd5Huc1OsRn7/PySKZrWPHjgn+jv8d1b17d9/308svv+xbvmPHjkT1pOWzH7/uN954w1d3/BiufPdlpePHj3P69GkAgoODqVmzpu+5+PsRP/4r0nLOvDJOVFRUFG3atCF//vyUKVOG++67jw0bNvh5b+R6dvU1SPzPY9OmTVNd/+rzQXqPjTvvvNO3zUGDBlGiRAkKFSpEu3btmDlzpq98r169fNcY3bp1IzQ0lGLFinH33XezbNmyVOPs0qULQUFBwH+tK6/8bxgG9957r69sRn//ZlR2Pc9J9uHXQSOTklwTofjLPR6P7/GJEyf8Ur+/TZ48mXPnzgFxJ7C5c+eyevVqX7cAwHfx4S+pDYSZVft+RfwL6CuJB4j78ZGUpC60UnJlf0eOHMn06dPp1q0bVapUwTAMduzYwZgxY2jbtm2aBl48ePAg8+bNAyBPnjx8+OGHREREJBiAL7n3KzP2M6vfK0m7K00kr4g/Wn389/ZKUiEqKopFixb5vuhDQkISTMk6btw43+MXXniB5cuXs3r16gSjy/v7XOHvz1f81yS51yM9sfjrfC/iD1e6/qVHWgamzuhx6Ha7fc3BrXB13KntR1rOmW3btmXNmjUMGDCAevXqERwczN9//83UqVO56aablIyUTJGRYzCl80Fajo3ixYvz22+/8eKLL9K8eXMKFy7M6dOnWbJkCd27d+frr78GoGbNmvz22288+eSTNGnShPz58/PPP//w7bffctttt/m6ZScnb968dOrUCYCffvqJffv2sWjRIgBatmxJmTJlgGv7/ZuU+N/ZkPHvbavPc2ItvyQc4vfH27t3ry8zCCTZ7xESXtQdPXoUgPPnz7NmzZoUt3Xq1KkEYxfEr798+fLpCxyoXLmy7/GyZct841Bc7dChQ77HgwcP5s4776R58+YJRp+NL/6F6tUHdvxt9u3bF9M0E/27ePEit912G0WLFvWNI3Hx4sUEd1mSe22Tk1JMmSk9+3tFjx49+Oabb/jjjz84f/48Xbt2BWDr1q2+TGpK+xP//brtttt45JFHuOmmm5JtweJvf/75py9BBdf+ORXrdevWDafTCcBHH33Ejz/+CEDnzp0TjPVy5bNXuHBhRo0aRevWralXr16Cz2RGxP/cxL9DePbsWf78889rqvtapOWcnNT5HvD1PU3KlR92WXmukuvD1RcN8b+j9u7dm+R3VPwZq65Iy2c/ft1ffPFFst9/V76bMvo9nd71ihQp4huf5eLFiwnGZ4m/H/HjTw/TNGnatCmffPIJGzdu5Pz587z77rtAXNI2pWNfJD0qVKjge7xnz54E1yA///xzqutffT5I77FhmiZhYWG89dZbrF69mhMnTrB+/XpfuTlz5vjK1ahRg//973/88ssvnDlzxnfjwuv1pmkWqyvjSXm9Xh5++GFfIjR+K0t//f698r198uRJX6vu/fv3J9lSIb3nObn++GXi6WLFitGkSRPWrVvH5cuX6dGjB08++SSbN2/2ZfauVrFiRd90bn369KFLly5MmTIlTc187r33XoYOHcrff//N+++/71t+9ZR1adG2bVuKFi3KP//8w759+2jbti2PP/44gYGB/PTTTxQuXJjnn3+esLAw3zpjx47F5XKxbt06Jk6cmGS98e8AzJ49m3LlyuF0OmnUqBG33norRYoU4fjx43z55ZcUKlSIW2+9FY/Hw/79+1mzZg2bN29m+/bt2Gw2OnTo4Bucpnfv3gwbNoxDhw4l2Pe0SCmmzDwJpGd/AZo1a0a9evVo3LgxpUqV4vz5877nAF+GNP7+/PTTTyxevJi8efNSuXLlBO/XihUrmD59Ona7PcGAXJnp4sWL3HPPPTz++OOJjoOMfE7FeoULF6Zdu3a+QZiuiP9FD3GDne7atYuTJ0/y1ltvUbt2bf73v/9x6tSpa9p+x44defHFFwF8g7U1aNCA8ePHp+nua2ZK7Zxcrlw5bDYbXq+XFStWMHjwYPLmzctbb72VbJ0FCxbk1KlTHD58mKlTpxIWFkaxYsWoVKlSZu+OXGd69erl+z3SoUMHXnjhBUqXLs2RI0f4448/+O6773j22WcTTekKqX/27733Xv73v/8B8PTTT3Pq1Clq167NmTNn2LNnDz/88ANhYWF8/vnnQMLvtSVLltCyZUsCAwOpVatWgsTd1eKv9+mnn9K+fXuCgoISdAWMz2az0aNHDyZMmOB7DV555RVOnz7NK6+84ivXs2fPlF66ZD355JMcOXKEW2+9lTJlyuBwOBIMBqs7neIvRYoU4cYbb2Tt2rUJrkE2btzIN998k+760ntsTJ8+nQkTJtC5c2fKlStH/vz5WbFiha/clc/66NGjiYiI4I477qBs2bKEhITw/fffJyqXkttvv53ChQtz8uRJli5dCkBAQIDvphzgt9+/FStW5LfffuPSpUvce++9tGzZkg8//DBRiwdI/3lOrkP+Ggzixx9/THIgxUqVKiU5YMv333+fqKzD4TArVqyYaLA00/xv8JJChQqZpUuXTrTurbfeanq9XtM00z8tZkpTNl6J+cCBA0kOvNKsWbMk92/Lli1JDhZ3ZYCVhQsXJrtNrhqkZefOnWa+fPlSfG3TMmhkajGlNmhk/G0kN7BVcq9xevY3qWkpr/yrXr266Xa7TdM0zdjYWN8Ak/H/Xdlu/AEfk3q/4m8zubiTG3AwqUFz4n/uwsLCknzP+vfvn+r7JP6V2qCRaZ3yyTQTDtAEmEWLFk00lVX8AVWv/AsNDU0wre6VetM7LWb8ARyv/AsKCjJLlSqVbMxXS8ugkfHrSG1AqbSck03TNHv27JmozJXpRpN6H7p06ZKofFrOcyJJSe6YMk3TjI6OTnFazGv97Kc0XdzVn+vjx48n+V15JebkjtP4g9ldfUwl95vo5MmTqU79F38/0nPOfPDBB5OtNygoyNyzZ09630KRZP3888+my+VK9FmLP318Wr7vrkjPsTFlypQUj+/p06ebpmmaI0eOTLaMzWYzf/rppzTt6yOPPJJg3SsDWcfnj9+/H3/8caI68uTJk+Ccl9ZpMfX9LX4bw6FFixYsWrSI+vXr43K5CAsLY9SoUbz00ktJlm/bti3vv/8+pUuXJiAggMaNG/P999/TrFmzFLeTN29eVq9eTceOHQkJCaFQoUIMHDiQOXPmZLj/ZLt27fjtt9/o3bs3pUuXxul0UrhwYVq1akWLFi0AKFu2LD/88AONGzcmKCiIChUq8OGHH9K/f/8k66xVqxZffvkl1apVS7L1QPv27dmwYUOCbYaGhlK3bl2eeeaZBAPNVKpUiZUrV9KyZUsCAgIoXrw4L774YoK+4mmRWkyZKT37+9JLL3HnnXcSFhZGcHAwTqeT8PBwBg4cyIoVK3xTTDocDubNm0fz5s1901fGN2XKFPr27UtoaCgFChSgd+/eGZqmLyPCw8NZtWoVrVq1IigoiOLFizN48OAEU2pKztOpU6cEY3n06NEjQf9liMvuv/baa77Pb6tWrVixYgXFixe/5u2PGzeOYcOGUaJECQIDA2nWrBnLly9PMHBdVkvrOXncuHF069aNkJAQ8ufPT58+fXzdUpIyfvx4unfv7ptOVCSzuFwulixZwtixY2ncuDF58+YlMDCQcuXKcccddzBx4kTuuuuuROul9bP/6quvsmDBAt/dSafTSalSpWjevDlvvfUWI0aM8JUNDQ1l7ty51KtXzzdAXFo8/PDDvPjii5QtWzZB94qUFCpUiF9++YWXXnqJKlWqEBAQQEhICI0aNeKjjz5i2rRpGf5d1atXL/r27UuVKlXInz8/drudokWL0rlzZ1avXq2uheJXN9xwA99//z0NGzbE5XIRHh7O+++/n2A62SvT1qZFeo6Npk2b8tRTT1G/fn1CQ0Ox2+3kz5+fFi1aMGPGDN+U2e3bt+fhhx+mZs2aFCxYELvdTqFChWjbtm2arn+uuLpV5dV/g39+//bv35+XXnqJokWLEhQUROvWrVm9enWCLizxpec8J9cfwzTTObKfRa4c2GFhYX6fc17EH/bv3+8bz+Smm25KMECPSG6jc7Jcr/TZF8leTNNMMjnWo0cPX5fkOXPmJJk4FJHM55cxHERERERERLLagQMHeOSRRxg4cCC1atXi8uXLzJw50zeGQ6FChWjTpo3FUYpcv5RwEBERERGRHGvJkiVJzn7icrmYOHFikl1vRSRr+G0MBxERERERkaxUqFAh+vfvT9WqVcmTJ49vLLk+ffqwfv16OnfubHWIIte1HDOGg4iIiIiIiIjkHGrhICIiIiIiIiJ+p4SDiIiIiIiIiPidBo3MJS6ZlzliHucoxzlhniaaGDx4sWHgxEl+8lLCKEIJowgFjHxWhysiGXTGPMdR8zhHzBOc4RyxxOLFxI4NF05CjUIUJ5QSRhGCjSCrwxWRDPCYHg7zD8fME5w2z3GW81wimhCCyEsIeY0Q8pGHPEYIBchLPiOP1SGLSAaYnvOY7hPgOQfes5ies3GPDSfY82PY8sb9b88LjmIYtgCrQxZJNyUccphYM5at5i42erezydzGJu92dpsHOcv5NNcRSABljZLUMapS31adekYN6tmqkd/QCL4i2cV58yKbzO1s8m5no3c7keZ2DppHuMTlNNeRjzxUNMpSz1aDekZ16tuqU9OojMtwZmLkIrlHREQE48ePZ9asWZm2jQtmFL96t/CLGcnP3k1s9+7mKCfw4ElzHaUoRl1bNeoYVeP+t1UjzCiZaTGLSPqYpol5eTvmpc14L2/DvPQ73svbIPZQOmqxYbjCMAKrYgTWxBZcD1twEwxXqUyLOy1Gjx7NCy+8kOby/fr1o2vXrnTo0OGathsaGsqJEyfSvV5WnNclISUccoB/zJMs8qxikTeC5d6fucila6rvMtHsNPex09zHTO9iAGzYaGzUor29FR1sN1PdVtEfoYtIOvzh3cNC7yoWeFayztyMF+811XeOC2w0t7PRs923LJggbrY14Q5bK+6wt6KYEXqtYYtIOnhNL8u8a1ni/ZGfvZFsMf9MV3IhKYc4xiHvMRYSwZWqClOA22wt6Ga/nTa2G3Eq0SiSpc6ZF9gc8xNNjk7He34FuI9fY41ezJh9mDH74Nxi31nDCKyNLX877PnaYwQ3wjCytsd8ehMOcv3RGA7Z1HnzIp+5Z9Iq+j7Co29moPtl5nlXXHOyITlevPxibuZl9/+oH9OZatG380rsWPZ705N5FZH0Omge4dXY8dSMvoO6MXcyxP0eP5ubrjnZkJwoLrHQG8Gj7uGER99My+h7+cT9NefMC5myPZGcZNSoUdSsWZNatWoxderUBM+tXLmSpk2bcvx4xi4adnsPMCz2fSpF30qn2IF86JnGJnP7NScbknOSM0zzzueu2McoG30TD8cOY6lnDW7TnSnbE5G47lBzPD9wV8yjlI5uwd3my1w+860fkg3JMy9vwXNsFDG7biJ6Wzixfz2G99LWDNW1f/9+6tSpQ9++falWrRr33HMPVyY0/OGHH6hbty41a9bkmWeewTRNhgwZwpkzZ6hbty4DBw5MVN/ChQupV68ederU4d577/UtX7p0KTfccAOVKlVi1apVAHg8Hp599lkaNWpEnTp1fOdgt9vNU089Ra1atahduzbffPNNgm0cOnSIxo0b8+uvv7Jnzx5uu+02GjZsSOvWrdm/fz8Av/76KzVr1qRu3brMnDkzQ6+NZJymxcxmdnr38YFnKlM987hAlNXhYGDQ1tacx+33cau9mdXhiOQaKzy/8IHnKxZ7f8y05EJ6BBPEvfYOPGa/j2q2ClaHI5Ll1q9fz8CBA1mzZg1RUVE0atSIkSNHMmfOHB555BGGDh3K/PnzCQ1Ne6ugy2Y0X3sWMtnzLT+bmzIx+rQrQiEedvTgMXsvChr5rQ5HJFe4YEYxyTOb8Z6p7Df/TvDctyeKcfOJNVkeky1PS+yhj2HL3wHDsKdpnf3791O5cmUiIyOpVq0aN998MyNHjqRhw4ZUrVqVVatWUbZsWTp27MiDDz7I3XffnWzXhn/++YcbbriB1atXU6pUKU6dOkWhQoXo168fHo+HKVOmsGLFCl5//XWWL1/OJ598wrlz53juuee4dOkSN9xwAytWrGDGjBn8/PPPTJ48GZvNxunTpylYsCChoaFs2rSJu+66i48++ohGjRpx22238fHHHxMeHs6KFSv46KOPmDlzJrVq1eKLL76gYcOG3HPPPXg8HnWpyELqUpFN7PEeZIR7PDO9izHJPjkgE5Pvvav53ruaeu7qvOp4SokHkWsQ4fmVYe4xrDd/tzqUBKK4xGeemUz0zOJuW1tGOJ6koi3M6rBEssyaNWvo0qULgYGBBAYGcssttxASEsLmzZt59tlnWb58OYULF05TXV7Ty1TvfEbEjuNvjmZy5OlznFO85v6Q992TeMh+D886HqSwUcDqsERypEPmMT5wf8Xnntmc4VySZZbkK8rN6R9q4Jp5L/yI98KPGK4w7EWexh7aH8NI/dKvSpUqVK9eHYB69eqxf/9+8ubNS5UqVQgPDwegV69erF69mrvvvjvZen755Rdat25NqVJxY0wUKlTI91znzp0BaNCgga8Vwg8//MDWrVv56quvADh79ix79+5l2bJlPPPMM9hscQ3zCxYsCMDly5e5/fbbmTRpEo0aNeLChQusXr3aV7dpmoSEhHDmzBmio6Np2LChL/Yvv/wyDa+g+Iu6VFjsmHmCQbGvUzemE994F2WrZMPVNpnb6Rj7MO1i+vObN2NNtUSuV5HeHXSIeYjbYx/IdsmG+ExMZnu/p27MnTweO4IjZuY1AxXJCUqVKoVhGGzbti1N5Zd61nBDTDcGxA7JdsmG+C4QxXueL6gWfTtvuCdw0bS+VaVIThFrxvK2+zNqRXfgPc8XySYbABa7jmVhZImZMQdwHxpEzJ+N8Jxbmmr5gID/ZsKw2+14PP7v9nVlG/Hr93q9fPzxx0RGRhIZGcn+/ftp1KhRsnW4XC5q1qzJypUrfesXK1bMt/7mzZtZu3YtAIZh+H0fJO2UcLCIaZpMcE+nRnR7JnimE0vO6VO50vsLzWJ68HDsMM6aaZ8dQ+R6dN68yOOxI2ga051l3rVWh5Nmbtx85plJjej2jHNPwWta3+1DJDM1b96cOXPmEB0dzenTp1mxYgVRUVGEhoYyb948HnvsMTZtSr5bxO/eP7kjZgAdYx9mi/lnFkZ+bc5xgVfd46kbfScRnl+tDkck2/vRu57GMV0Z5n6fqDSMrXaQf9iet3oWRJYy8/IOYvd2JGZvF7zRu9O1bpUqVdi5cycHDhzA6/Uyffp0WrZsCSSflLjSJeLQobjx4E6dOpXiNtq2bcuHH37oq2vr1q14PB7atGnDJ598gtcb9zvk9OnTANhsNl+3jM8++4x8+fJRrFgx5s+fD8SNCbF161YKFChAQEAAGzduBGD69Onp2ne5dko4WGCf929uj32QQe7Xs8U4DRk12fMt9aM7s9ST9f3SRHKCFZ5faBB9F595Zmbr1kspieISz7tHcWvM/ezxHrQ6HJFM07BhQ7p160aDBg1o2bIlI0aMoESJEgCUKVOGWbNm0bt3b3bu3JlgPa/pZZT7E26MuYfl3p+tCN0v/uII7WIf5IXY0Vw2o60ORyTbOW6e4sGYwbSNuZ8d5p50rbukUPaZ/c17biExf9THfexd0jqUX1BQEJ988gl33nkntWvXplKlSr6uC3379qVWrVqJBo0sWrQoY8eO5Y477qBOnTo8+eSTKW5jwIABhIeHU69ePWrWrMnTTz+NaZo89NBDFChQgFq1alGnTh2WLVvmW8flcjF79mwmTZrE7NmzmTZtGuPGjaNOnTrUqlWL5cuXA/Dpp5/Sp08f6tWrl+auceI/GjQyi33mnsmL7tGZNtuEVe63d+E9x0sEGYFWhyJiuWgzhufdo/jU802OTTQkJZgg3nA8w0BHT6tDEckW/jaP0i/m//jJ3GB1KH5V3ajI5843qWurZnUoItnCOu9mesQM4ggZ62bYyCzP0j9/8HNU186WpxXOsC8wnCWsDkVyMSUcskisGcsg9xtM9OTeqVjqG9X5xjWW0kZxq0MRscwR8zj3xDzFr+YWq0PJNH3snRnveAWX4bQ6FBHLrPSso0/s8xwn5WbCOZUTB8MdT/Ks4wGrQxGx1Bfu2Tzlfo0YYjNch4HBn/vOUzQ6G47r4iiOK3wKtjwtrI5Ecil1qcgCJ8zTtIsZkKuTDQAbze00j+7BOu9mq0MRscQG7+80i74nVycbAL70zKVtzP0cMy0YdlskG/ifezIdYh/KtckGgFjcDHG/x6DY1zWGi1yXYs1YnowdySPuV64p2QBxAzIvLVzXP4H5m/soMbtvx33iM6sjkVxKCYdMttO7j2YxPXJdc8vkHOUEbWPu5xvPIqtDEclS33qW0iamH4f5x+pQssQvZiTNonuww5u+fqwiOd1r7g950f02Hvw/cnt2NMEznb6xLxJrXtsFl0hOcso8S7uYAXzimeG3OpeEuPxWl/95cP/9OO5/3rM6EMmF1KUiE2337qZdzIMc46TVoWQ5GzY+coygr+Muq0MRyXTTPQvoHzvkurkAia8IhVjo+oTatqpWhyKS6UbEjudNzwSrw7BEG9uNzHC+T4gRbHUoIpnqlHmW9jH9iTR3+LXeEILYu3MnAd7sPSirvdiLOEuMsDoMyUXUwiGT/OHdw20xD1yXyQYAL14Gul/mS/dcq0MRyVQzPIt4MHbwdZlsADjOKdrF9Gerd2fqhUVysGGx71+3yQaAZd61tIvpz2nzrNWhiGSa05mUbAC4yCVWF2rk93r9zXNsFLF/P5vmGSxEUqOEQybY6/2LdjH9c3XfzrQwMRnofpnZnu+tDkUkU8zzLOfB2MF4ub77N5/kDO1j+rPLu9/qUEQyxeDYd3nbo/7Nv5pbuCd2kLpXSK50ybzMXTGPZUqy4YrF+YtkWt3+5DnxAe6jI60OQ3IJJRz87Lx5ka6xT2R42pzcxouXB2MH85t3q9WhiPjVZu8f9Iv9P9y4rQ4lW/iHU9wd+zhnzHNWhyLiV+PcU3jP84XVYWQbP3rX87T7DavDEPErt+nm3thn+MWMzNTtLHEeydT6/clz7A08p/03hoVcv5Rw8COv6aVf7ItsN3dbHUq2cplousc8xRFTSRjJHf4xT9I15gmiuGR1KNnKLnM/fWJfwGNen91LJPf52buJwe53rQ4j2/nMM5MJ7ulWhyHiN8Pd41js/THTt3OIE2zJVyvTt+MvsQcfxntxndVhSA6nhIMfveIey0JvhNVhZEuHOMY9MU9x2czeA+WIpCbGjOWemEH8Rc65S5GVfvD+xGC3RrmWnO+4eYr7Yp4jVq2YkvScexQrPL9YHYbINVvmWcu7ns+zbHvfFyyfZdu6ZuZlYvZ1x4w5YHUkkoMp4eAnP3h+Uv/OVPxqbmGILkQkhxvuHsvP5iarw8jW/ueZzEJPhNVhiGSY1/TSJ/YFDnHM6lCyLTduesU+w17vX1aHIpJhx8wTPBj7EiZZN0Di4sCoLNuWX7iPEXPgfkzz+h6vSjJOCQc/OGue55HYV6wOI0f40DON1d4NVochkiG/eCN53zPZ6jByhMdjR3BKo9lLDjXCPZ6V3qTv3nt3RhPTZI/vX3TB7XjmncPcG0NMsz1E19hF7BOHkxzh3f3iUWIa7Sam0W5i7/0LMyruB7x77AliGuwmtu/fvrKeyafxfHk6c3bQT05zjoHulzWaveRIpmnyQOxLWT6j3CZjP0cDSqap7F9HTdr2j6He3TE06h7D7KVxXRaX/+KlyT0x1O8Sw/PvJN0K674XY2lyTwxN7omhfNtouj0dN9jrrB881O8SQ8dHY4iOiTt2I3718tqE5FtzmRfX4jnxUXp2U8RHCQc/eME9WndB0sjE5OHYYUSZ6vsuOctlM5qHYodd9zNSpNURjvNMrAaWk5xns/ePFFss2ioH4FpXAde6CjiXh0OIDdsteXAPOYZ9SFECtlWCEx68iy8kWtc+pAiu9RVxra+IUcaJ57O42ay8U8/i3FABHOD9/TJmlBfvt+ew3Vcgk/bSf370rmeiZ5bVYYik2/ueSSz3/pzl2zUx+SG0TprKOuzw9vMONs1xMf9DJ8+/7ebiJZNHRsTyzRgnG2e7uBhlsuznxL9NvhrlZN0MF+tmuLipkY1ON8dd9o2f6mH1V04a1bSxdK0X0zT53xQPg/rYU4zFfeRlvNF707/Dct1TwuEaLfWsYbLnW6vDyFH2mn8xzP2+1WGIpMsI9zh2mvusDiNH+dq7kPmeFVaHIZIuz7tHpTmx6F1wHlurEAg28P4Sha1dHgBsPfPjXXQ+UXkjX9wPetM0MaO9YBhxTwQY4AZMwAGesSexP14Yw2b4Y5cy3RD3exwzT1gdhkiaHTNP8Lrbujv2i4MdaSpXoohBnSpxl2vFQw1CCxicOA15gg3CSsadH25qZOO75ckP1hwdY7JsrZeO/yYcAlzgdoNpxiU0vl7kpUMrG3mCUznfeC/i/utRtWiSdFPC4Rp4TA/Pud+yOowcaYLna/70KksqOcMe70HGe76yOowc6UX328SasVaHIZImcz1L+dG7Ps3lvbPPYeuaH056MArZMf5NIBglnXA46c+9+5kjxJTfibk9Gnv/ggDYBxQktvleyGfHKOzA3HIZW5s8175DWeQs53UjQXKUV90fcAHrxlKIsO/lki0oXets3O7F44WyJeDiJZOtu7x4PCYLV3k5nMJEcN+v8dKkto0CeePOT8/2c3D7Q7HsOmjSrL6NGYu99OuctktC74UIPKe+TFfcIko4XIMvPXP5U3c8M8SDh1fcY60OQyRNhrvHaaT6DNpr/sXnntlWhyGSqhgzNl0zrJjnPHjXRWG7PX2JAcd7JXDtqYytTiDemXHjnNh7F4zrovF+CdxvHsc+uAieT04R2/MvPJ+eSlf9Vpni+Y4N3t+tDkMkVdu9u5nkmWNpDJeI5sfCjdNc/tRZk/7D3Iwf6sAwDD5/3ckTr7tp1S+WkkUNbClc0c3+wUuX2/4r0LaZjZ+nu/hqlJNPZnp4+B4b8yO89Hwultc/Tv23jvvoq5jey2mOXUQJhwy6bEbzmvtDq8PI0eZ6l/Grd4vVYYikaJN3O7O8S6wOI0d7w/0RF80cNiq3XHfGe6aw10z7jAveBeex3ZIHI9AGhe2Ypzy+psbm4Vgo4Ux2XcNmYOueH+/ccwnr3BkNsSZGOReeBedxTi+DZ/55zIvZf+wYE5MR7vFWhyGSqpfc7+Ih+S4IWWVxvoJpKhcdY9L96Vieu99O07pxl27N6tlYOcnF6iku6lQxqFg26e4Qly6brPjFS4ebEl/ynTxjsv53k3Yt7HwwzcPU0Q7+OmKy60Aq55vYQ3hOfJym2EVACYcM+8gzTQNF+oGaYEp297L7f1k6XVZudIyTjPNMsToMkWSdMc8xyv1putbxzj4b150CMAwDW+Mg30CR3q/PYmufN/E6u6P/e7zwPEblgATPe944jmNwEYgx4d8ZLLjojfs7B1jqXcMO7x6rwxBJ1krPOr73rrY6DACWOA9jkvK4CaZpMuBlN60a27i3w3+DOv5zKu6ccCHK5MOvPcl2iVjyk5dm9W3kDUm8nVGfefi/AXF1njkfN6RMjBui0tB4wf3PGLVykDRTwiEDYs1Yxrn149kfVnl/5TfvVqvDEEnSFu8fLPWusTqMXOFD91SizRirwxBJ0peeuZwl8SCPyTHPevBuuITt1hDfMvvrxfC89g/R1XdCQbtvAEn3q//gWRDXksH97FFiGsZNi2nui8U+uIhvfe9PFzHKuzBKOjEK2rHVCSSmwW5s9QIxCqY8enx2ovFuJDsbn42S30c5RWT+2imWWRtpMusHL/NXen1TXG7d5eXtzz3UvTuG5vfF8sg9dqqUi7uke/VDNwsi/mu9MXuply5tE1/u7f3L5PxFk7pV4567t4ONBl1juRwNtSunYbBa91E8JyelfWflumaYGmo03WZ4FtE39gWrw8g1eto68IVLg29K9jMw9mXL+3nmJp84XqOPo7PVYYgk4DW91Iy5I13dKSR5QQSyO2AZhY0CVociksAh8xiVo9tmi+4UV/zf5Zr83/65VoeRIUZARQKq6aahpE4tHDLgU/c3VoeQq8zx/sBJ84zVYYgkcNY8zzeexVaHkatM9My0OgSRRJZ51yrZ4EeXuMxnHv1OkuxnsufbbJVsAFgckPaWVdmNGb0b78V1VochOYASDum007uPn8wNVoeRq0QTwzTPfKvDEElghmchUVyyOoxcZZ25mW3eXVaHIZLAFM9cq0PIdT52f43b1Mw+kn14TS+T3NmvxeJm4wCHAktZHUaGeU5PszoEyQGUcEinWd7vrQ4hV5rl0SwAkr3M1GcyU+h1lezkjHmO+d6VVoeR6xzmH9aam6wOQ8RnqXcNBzlsdRhJ+qFwHatDyDDP6VmYZqzVYUg2p4RDOi306IdJZlhv/s4x84TVYYgAcMo8y89mpNVh5EoLdXEn2ch870ouE516QUm3Hzw/WR2CiM/XnoVWh5CsxSE5+HLMcxLvOd1IkJTl4E941jtiHmejud3qMHIlL14We360OgwRAJZ4f8SNmgNnht/NnRw0j1gdhggAqzy/Wh1CrpVdph4UMU2T5d61VoeRrFW2vVy057E6jAzznJlrdQiSzSnhkA4LPRGYaFKPzLLQG2F1CCJA3LEumUctxSS7WK0xmTLN7+ZODpv/WB2GCJvNP/iHU1aHkaxoYlhVuKHVYWSYeVHTh0vKlHBIhwjvL1aHkKtFeNehWVolO1ipYz1TrdDrK9nAQfMIB8xDVoeRq6lbhWQHq7zZvyXTkrwFrA4hw8yY/Zix2XN8DMkelHBIh9/MbVaHkKud5yK7zP1WhyHXuX3evznFWavDyNU2enUuFeut9q63OoRcb6lXdz7Femu9G60OIVXfOw9hYlgdRoZ5L+hYl+Qp4ZBGZ8xz7DP/tjqMXE9jZIjVNukzmOkOcYx/zJNWhyHXudVedafIbJHmDqtDEOEXb6TVIaTqGKf5rUA9q8PIMK+6VUgKlHBIo01efWlmhUivLvbEWpv0GcwSep3Fauu8m60OIdc7aB7GbWoAXrHOKfMsx8gZCe4lBcpaHUKGeaN+szoEycaUcEijLeYfVodwXYjU6ywW22L+aXUI1wXd+RSr/aXZUjJdLG7NSiOWOmjmnLEFlgScszqEDDNjDlgdgmRjSjikkX6YZI2/zaNWhyDXOX0Gs8Yh85jVIch17Lx5kQtEWR3GdWGPedDqEOQ6lpMSDluNgxwMyqGtHNzHMb2XrY5CsiklHNLoqHnc6hCuC3qdxWr6DGYNvc5ipcNKeGWZfeZfVocg17GcdsPwh8K1rA4hg0zMWI11J0m77hMOERERdO3aNdVyR8wTxHY/SHSJHcT2/O/L07s+ipj6u4musQv3G//NN23ujSGm2R6ia+wi9onDSU73aJ5wE3PbPmJq7iL2noOYl70AuMeeIKbBbmL7/nfgeiafxvPl6WvZ1QyJffUfovNtIzrfNmL7Jz6RuCefJjr/dqLzbiPm9n0AeL1eoiv9SXSB7cT0+O/ORnStXXiWnk9xexeI4oKpu07iX2k9zmPMWE5yRsd6FhzrR5RwEAsdvo4/f55F54mpvYuYmrvwfJH4XJPUuc40TWJ7/0VMg924P/ivP3zswEN4d0WnuL09SjiIhXJal57FwVZHkHFmjFozSdKu+4RDWh3lOPbHC+P4rHSC5e5BR3BMLo1rS0W8Sy7g3RrXnMg95Bj2IUUJ2FYJTnjwLr6QqE7POyewd86Ha2sljHIuvP9+8XunnsW5oQI4wPv7ZcwoL95vz2G7r0Cm72d83stevO8cx7myHM6dlfF+cxbv7oQ/LDzPHMHxRSmcJ6thbriEZ+5ZzDnnwWHgPFUV8/u4/fbMOIMRZGC/NW+q2z1i/pNqGZHMcIS4ixAd65l/rCvhIFY6wvX5PWO6TTwvHsW5OBznL+XxjDmBeTLhoI5JnevM36PBZeDcUAHvlDMAeCMvYYTYsFUKSHGbx8wTmbU7IqnKad0kV9v2ct6ez+owMib2kNURSDZ13SUcRo0aRc2aNalVqxZTp05N8NzKlStp2rQpx48n/iF81jyPrWUIRt7/XjLzcCx4wFYrEMNuYOuWH+/i85imifeXKGzt8gBg65kf76LEd/u8C89ju7eAr4znSpkAA9yACTjAM/Yk9scLY9iydn5e75QzUNiBrUEwtuJOjGoBeD449d/zmy6BF+x358fmsmG0zoNn4mkI+jfOy4A97qH7pWM4viqdaBtJOUvKd0ZFUpPR4/ycGffZ07Ge+cf6ORInZkSyyvV6EWyuv4RRLQCjlBMjjx1b2zx4l1387/lkznU4iTtPuQFX3HHvees49peKpLrNWDRLhVgnhlirQ0iXGGJZGdrQ6jAyRGM4SHKuq4TD+vXr+eabb9iwYQOrVq3i5Zdf5vDhuMFkli9fzuDBg5k/fz5FiiT+AnXjSbTMPOLGKOnw/W2UdGAecsNJD0YhO4Zh/LvcCYcTn/DMcx6M/PZ4ZeK+lO0DChLbfC/ks2MUdmBuuYytTZ5rfwHSydwdDYXt/y0o6cQ8EOP707s9GuJdlBnhTswjbux35IMQG7Gl/sDWLT+xb/yDUSMAW+XANG03qddaJK38fZyDjvXMONZ1nItkPfNILJR0/regpDMuyeB7Pulzna1aIOSzE9t8L/YBBfF8fx6jQRBGqIPU5LQLPsldbGRtAt8fluTNoS0cNAWuJCP1b4pcZM2aNXTp0oXAwEACAwO55ZZbCAkJYfPmzTz77LMsX76cwoULWx0m9t4FsfcuCEDs00ewDy6C55NTeFdexNY6BPuAQhZHmLqADRUB8Lq9xJbfiXNDRWIa78Y84cH+QiiOgcm/ziaJ+8CLpNW1HOdZ/dm7no91HedipSDSlgDPToJi7Wzr6MAWm/Fk3YITdtaeM3jj97iffx8eirsce2RB3N+RF+y8+5fBlFvi/p5/ws7PvvJlIA94vzDps2Mfn1QJ440Pj3IkJpaHSobSJF/SyVJvs2gYneGQRa6JLQfeW/3OsYfqF+6k07woSq79C8PtzVA9UR4vDbbs5K5C+XkjrESC52acOM07h4/jNaF3kYIMKlkE0zTpt/svtl+6zP1FC/Fo8VAAHt37N0+XKEKloJS7T9kHOaBHhkKVXO66Sjgkp1SpUpw9e5Zt27bRsmXLJMvYkzhhGSUcmIf/y+aZh/+9M1DYjnnKg2maGIYRd/eghDPx+vnsmGfj7nzGlUn4dnh3RkOsiVHOhXvwMVzzwojpdADbvQUwQjL/BGpUDIBv4s0JfDgW44b/RrOxVQ/Ac/6/k6C5PxajeMJ98DxyGFunfHgnnYbCdpyLwomtszvFhINDH0vJBGk7zu1JLtex7v9j3ZHMay2SFQJJ+YdzdvTQTyXJu2rJNdURDnwHhByNG/jxBNAACDkQN7BeeeAfIGTtZgBOAmXilQf4EugObFm3leLA68C9p84yN5ltOopXuKaYRa5FTkw4XOQSQxtuY2hDqHgiD08tKcKt352i8LKNcDnt3RZGA40A8+gJvEf/60Z2EhgJrALyAd3+Okq7v45ymbjeU78ALQ4cYeCBI2wGgoEKx0+TWtrDPKOWi5K0nHcUXoPmzZszZ84coqOjOX36NCtWrCAqKorQ0FDmzZvHY489xqZNm5JcNwBXomVGSSfY/x3szWPinXkWW/u8GIaBrXGQb/A479dxy69ma5cX77QzcWWmn8V+VRnPG8dxDC4CMSZE/XuYX/TG/Z0FbL0LwEk33t+i8B6NxdwRjf2J/y4ebPWCwAaeOWfxxngxV1zA3r+g73nvCTfeHy5gH1sc87wnLm4vEJ3yKSuAxBdsIml1Lcd5YBLHOehYz4xjPalzqkhWCTJyXguHLosydpczvgbAduAwcAFYCtwS7/kSxA3HshXwALOBdvGejwIWEHcT8xIQQ9zQDvHSlYk59Z0u1smJXSri2x16gSfu20fVmWep8Vd1Pp5+B4d63oSZP3/K6wE7gVuTeG4fUBkoSNzx3gyYz1VDtfxb9m3gxTTGagTkvESuZI3rKuHQsGFDunXrRoMGDWjZsiUjRoygRIm4JkZlypRh1qxZ9O7dm507dyZat6hRmJj2+4nt9Rfe788TXeFPvL9E4XivBO6+fxNTaxe2tnmw1Yz7EWN/vRie1/4huvpOKGj3DSrnfvUfPAvivprtz4fimXOO6Bq7MPfEYLs/3g/4ny5ilHdhlHRiFLRjqxNITIPd2OoFYhTMmjuDtkAbtqdDib15H7GVdmLrkh9bxQCiy/wRN4gcYH+7OO77DxFbeAdG/SDsnf87Abp7/4X96cLYbDbsT4dibo+Oq6dPweQ2CUBRIzRT90tyt2s9zgEd61lwrF95rUWsEJQDWzhUXvjHNdfhAN4A7iDuIuMJoDDQBbgyeeDbwANAPaANUCPe+uOAxwCDuETFr0Ar4NEUtmmE6jtdrOPKRcntf/JEM7Tzfup+foKwv8J4Y0E7dj3UBm+JYonKDgVeSaae8sAO4hKPl4lLPB4GqhLX4qEV8CDwA1CfuHNEmvgh4TB69H/9r/bv30/DhnEDaM6bN48xY8Zcc/1iDcNMatJ4SaRzzCMs8a62Ooxcz46d8wGbsBnXVS5MspEClxtwmZTnlZdr19p2A4tcn1kdhlynlnrW0DH2YavDSLP2O4oyuf5Kq8PIENeoUQS88ILVYch1anjsON7yfGx1GJnKMKHPryXpPd9Oje/+4Pvd+/kZeA2YSlyrptevWmcBccnFAKAmca0bRsV73ktc16nJwHDiEpKPAU1TiCNo5UocrVpd076EhoZy4kRc94/9+/fTtWtXNmzYkO56PB4Pdru6bmYXuqpLoxJGUatDuC4Uo7CSDWKpYmphkyWKk/p0eiKZpXgOO84fWBhkdQgZZitb1uoQ5DpW3ihjdQiZzjRgcpPDtHntL0r8HsIr/coyLV8gNVxOhhCXNHjrqnU6EDeGww9AceDqkVa+Iq7l0y9AKPAJCRMSSbGVK5fk8qunKo+IiKBr166+57t27UpERARDhgzhzJkz1K1bl4EDByaoY9KkSTz33HMAHD9+nLvvvpuGDRvStGlTXzfZfv368cgjj9C4cWPeeuvqPRYraXS+NCqhH8dZIqf9CJTcpwRFOMAhq8PI9UoYOqeKdSoaYRgYOWa2lEaL/rY6hAxTwkGsVN6W+xMOVzvwUV74KC/ngbAxMVT+3sNjFICfNoMnbmDH40AR4BgwB1gUb/0rY7XMABaSxrFaHA6M0qUTLY4/VXlUVBSNGjVi5MiRSVbx+uuv8/HHHxMZGQnEtXBIyqBBg3jppZdo1KgRu3bt4r777mPdunUAnDx5knXr1vmmK5fsQQmHNKpsK4emjc98lY2ks6MiWaWyLZxfPJFWh5Hr6VgXKwUZgZSmOH/5Ri7Iviofz0PwuvVWh5FhhhIOYqHroYVDSvaGXmRP3WjKvxWEs30eXmnXkK4/XuLZRb+ww+vFTlzXi/iTcF89VsvHxI3rkNLgkUb58hhJdGFIbqrya7Fs2TK2bdvm+/v06dO+x127dlWyIRtSwiGN6hvVrQ7hulDfViP1QiKZqL5Rgy+TneBN/KW+TedUsVYNW0X+8mb/hMPjPxQB77XPUGGJfPkwSpa0Ogq5jpWgCEEEcom0TyeZm9h7/zd4c+yi0gzlKEOfgKIX6vLkshJ0mHeBkosi4exZX7n4iYUg4mawSHU7tWunOabIyEi88c5p0dHpHzdrw4YNOByJL2ODg4OTKC1WU2f5NKpkhJOXa8vISerq6SJELKbPYOYLIpDqRkWrw5DrXD0jZyS4b1l4xuoQMsx+440YNv3UFOsYhkFVo7zVYWQ7V8948db8duwe0AZv8YyNWWdLJuGQ1FTl/fr1Y/v27bjdbo4dO8batWt95e12Ox5Pyk3Kb775Zj766CPf35s3b85QzJJ19C2QRoZhUMeoZnUYuZqBQV29xmKx2kYV7Ghk48xU26iC3dBrLNbKCa1s8kY7KLo00uowMszeooXVIYjQ3NbA6hCytUtOD++2OUjTsUcovrcIz0XcyuZnb8ddMTzNddjr1UtyeVJTlYeFhdG+fXuqV69O//79qRdv3b59+1KrVq1Eg0bGN27cOCIiIqhTpw7VqlVj2rRpaY5TrKFpMdNhaOwY3vFMtDqMXKumUYkNAd9aHYYIN0Z3Z6O53eowcq0n7X0Y7dQ0eWKt4+YpwqJb4SX7dld4dllZ/q/jYqvDyLCgVatwtGxpdRhynZvnWU732KesDiNH6rC9GP3nBdJg/n4CNybzu8jpJM/Jkxh582ZtcJJjqIVDOrSz32R1CLlaO5teX8ke9FnMXHp9JTsoYhSimVHf6jBSdPdCt9UhZJzLhb1xY6ujEKGlrREODVuXIQuqH6Pz/x2gzBqDO/5ozpJ3O3D+pvoQb4BIe/PmSjZIipRwSIemRl1CKZh6QcmQDvabrQ5BBNBnMTMVIB8t1LxVsonO9jZWh5CiCotybksre/PmGIGBVochQgEjHzcYda0OI8f7New0vR/dR/kl0TTd35AZn9zByQ43QueOVocm2ZwSDulgM2zcZlN/xMxQjMI0MmpZHYYIEDdwZCmKWR1GrnSrrRkOQ3eaJHu4094Gg+w5hVrn34thP3jI6jAyzHnffVaHIOLTzq6uPf60O/QCj/feT9WZZznyeBerw5FsTgmHdOpkb211CLlSe3srbIY+jpJ9dNSxnil0DpXspLRRnIZGTavDSFLfRUFWh5BxQUE4una1OgoRn272dmkeENrcH0PMbfuIqbebmIa7MS96iWm7j5g6u4hpsoeYJnswLyUe+8X92j9EV/jTV8b700UAPLPOElN/NzEd92NGx63njbiA+7V//LeDFqlnVKeCrazVYUg2pyu8dGpnu4kiFLI6jFynj72z1SGIJKDPpP8VJB8dbUo4SPbS2X6r1SEkqcGiA1aHkGGOO+9Un27JVsoaJWifxvGDYgccwjGsKK5NFXH+EA4Bca2gHNPK4FpXAde6ChhBSV9COZ4L9ZWxNQ8BwDP+JM7V5bE1Csa79AKmaeL530nsgwr7Zd+s1M1+u9UhSA6ghEM6uQwnve13Wh1GrlLdqEhTW9LT6YhYpb6tBvWM7D9tXk5yr70jgUaA1WGIJNDDfgcunFaHkUCNo/kIWr/N6jAyzNmnj9UhiCTykP2eVMt4t18Gp+FLFhiFHBiOa+x2FWCA2wTTBIeB9+uz2DrkxciTs6eHDiGIfnZ1p5DUKeGQAQ/Ze6S5WZak7hH7vVaHIJKkgfaeVoeQaxgYej0lWyplFKOXvZPVYSTw6A+F4y5OkvE30B5oBDQFrkwovQJoBjQG/i+Zdfv9W6YZUAW4clTO+Xe9zkD0v8tWAW+kM3ajbFnst2bPViNyfWtju5GKRliKZczdMRghNmK7HCCm6R7co4/7nnP3+5uYG/bg/t+JZNd3jz1JTKPdxD55GPOCBwDHs6HE3r4fc1cMtmbBeGecxdYv5w9Cf7+9C4WM/FaHITmAEg4ZEG4rRUebRrH3h0Lkp5ddo9tK9tTDfgdF1YXKL263taCSLdzqMESS9Jz9wWx1I6H1glMpPu8A3gLWA3OJSy5cBJ4ApgG//vv38iTWnQSs+fdfC6DDv8s/BFYCDf9dzwTGAU+mM3bXc89hODQwrGQ/hmGk3srBbeJdG4Xj/ZI4I8rhXX4B7/ILOL8ojWt9RZzfh+NdcB7P4vOJVrUPKIRrayWcv8R1ufC8HpessLXNi+vnCji/KoPnk9PYHi6Ed/55Ynv+hfv1nDmOgwMHTzr6Wh2G5BBKOGTQUMej2PTyXbPnHA8SbOTggbEkVwswXLzgGGB1GDmegcEwx2NWhyGSrAq2snSzZY++yPkvOwldHplimeJA7X8fFwMKAyeBEODK/duWwPwU6ogmLrFwx79/BwBu4hINdmDGv8/lSUfsRrFiOPv3T8caIlmrj70zBcmX7PNGSSdG/UCMMk6MABu22/Li3XwZo1Rctysjvx17l3yYv11KvG4xB4bdwLAb2PoWwHtVGfOkG3N9FPZ2efF8cBLH1NKYf8Xi3RWdqK7srrutHWWNElaHITmErpgzqKatMj1sd6ReUJJVimI8au9ldRgiKXrI3oMwo5TVYeRoXWxtqW+rYXUYIil60fFQtpgi85GIkhAVlebymwAPUAaIArb9+/ci4HAK6y0lrgtFgX//HkRca4c9wI3ATCC9IzG4hgzBCNJNBMm+Chj5GOJ4JNnnjYZBcNyDedqD6TUx11zEqBqAecINgBnjxfvDBYxqiccjMo/E+h57F5zHqJ6wjGfUCez/VyTujzMeMIAYE6ISz3iRnRkYPOt4wOowJAdRwuEavOx4PNsNNJWTDHE8ogHkJNtzGU6GOR61Oowcy4GD4Y70NsoWyXrVbBXobGtjdRjcuSgmzWVPAQ8DY4m7dvmUuMRBG6AkpNhJZA5wd7y/bwVWE9flYiIwAFgI9AbeTEMsRng4zocfTnPsIlYZaO9JVaN8ks8ZDgP7iKLE3rqP2EZ7MCoEYLsphNhOB+LGZrhhL0b1QGx3x7WScL/6D54F5+IeDzlGTMPdxDTajbnpMo6Xi/rqNffGYJ73YKsbl5Cz3VuA2AZ74LKJUTswk/fYv+61daSGrZLVYUgOYphmCqMSSaqejx3FOM8Uq8PIcaoZFdjgmoPdyD59ZkWS4zW93BDTjS3mn1aHkuM8ZL+Hsc5hVochkiYHzMM0iO7MBdLewsDfjlU8he3QkVTLRQN3An35b+DH+L4GtgKvJfHcJaA6sAW4evLKk8BTwFdAO+KSDk8Ql8hI6RIjcM4cnHfdlWrcItnBD56f6BQ70OowcpxQChIZMI9QI+cPeilZRy0crtErjifU3DqdbNj4yDlCyQbJMWxG3GfWgQZCS49SFGOkY5DVYYikWZhRkjcdz1q2/W6RJdKUbDCBgcSN0xA/2XBlPP0LwMck3yXiB+Jmqbg62QDwDvD8v4/P8G+rb+KSFMlx3HOPkg2So7S1N+d2Wwurw8hx3nI+p2SDpJsSDtcojxHMBMer2aLfZ07xlL0PN9jqWh2GSLo0sNXkWbv6LKbHR84R5DeSuqQRyb7627tzs+0GS7bde5ErTeV+Ia5LxEL+m+JyG/AucbNMtAIeAir/W/414sZ0uOJbIKn0wF7gPFDn3797Ak2Ia01RK5lYjCJFCBg/Pk1xi2QnbzteJBiNOZJWN9tu4D77nVaHITmQulT4yZOxI/nEM8PqMLK9KkY51rlmaewGyZFizFhujOnOVnOX1aFke/3sdzPB+arVYYhkyH7vIRrG3JXlXSv+am4S+Nv2LN3mtQqcMQNn9+5WhyGSIVM983gwdrDVYWR7QQSywTWHCrayVociOZBaOPjJG45nqWKUszqMbC0AFxOdbyjZIDmWy3Ay0fkmQeSsAZ6yWgWjLKMdL1gdhkiGhdtK8YbjmSzdZr1DBQjcuCNLt3mtHPfco2SD5Gi97J24397F6jCyvfcdQ5RskAxTwsFP8hjBzHaOp0AKc/te7z5wvkJDW3KNMkVyhjq2qnysO/fJykceZjvHkc/IY3UoItdkgP0eutpuy7LtPfJ9QchBjU5tDRoQ+PnnVochcs3GOAZTx6hqdRjZ1lP2vvR1aIwWyTglHPyooi2MKc63sac4EdX16Sl7X/X7klyju709z9kftDqMbMeGjUnOt6hqq2B1KCLXzDAMPnW+TiMjaxLlNy08kSXb8QejZEmC5s3DCA62OhSRaxZoBDDN+R75UKL8arfZWlg6kK7kDko4+Nmt9ma85XjO6jCylba25lneNFUks73qeIo7bK2sDiNbedXxFO3trawOQ8RvgoxAZrnGEW6UztTtFIpyUWhFZKZuw2+CgwmaNw9byZJWRyLiNxVsZZnqfBcXTqtDyTaqGuWZ4nwbm6HLRbk2+gRlgiccvXne3t/qMLKFpkY9pjvf0xSYkuvYDBtTnG/TwmhodSjZwlP2vjznUKsPyX2KGaEsdH5CcUIzbRuPriwJly9nWv1+43AQ+NVX2Bs0sDoSkQyJiIiga9euST53q70ZXzpHq6UyUJxQZjvHq3uk+IUSDplkpHMQg+x9rQ7DUo2N2nzn+ogQQ00uJXcKNoL41vUhNxr1rQ7FUo/a72WU83mrwxDJNBVsZVng+oRC5M+U+jsuygHJhsBAgr79Fudd6sstuVdn+61MdL5xXScdSlGMpa5JGiRS/EYJh0z0lvN5XrAPsDoMSzQzGrDQ9akyo5Lr5TGCme+awE22xlaHYolB9r6859SUYpL71bRVJsL1FeWNMn6t1zAhfNHvfq3T7/LkIWjRIhwdOlgdiUi6jBo1ipo1a1KrVi2mTp2a4LmVK1fStGlTjh8/nmB5D/sdTHG+jRNHVoaaLYQbpfnB9QWVbOFWhyK5iBIOmexV51O87xiC4zo6aXWztWOB62PyGiFWhyKSJUKMYOY5J3CvraPVoWQZO3ZGO17gLbVskOtIZVs5Vrum+7VVU8/fSmA7+o/f6vO7ggUJXrYMx803Wx2JSLqsX7+eb775hg0bNrBq1SpefvllDh8+DMDy5csZPHgw8+fPp0iRIonWvdveltnO8RS8jmafq2tUI8L1lVo2iN8p4ZAFBjp6ssD5CYUpYHUomcrAYITjSaa43ibICLQ6HJEsFWC4+Nz1Jm86nsWWy0+tBcnHXOeHPOnoY3UoIlmusFGAxa7P6GG7wy/13bfY5Zd6MoOtShWCf/oJe5MmVocikm5r1qyhS5cuBAYGUqhQIW655RZCQkLYvHkzzz77LAsWLCA0NPmxWdram7PGNeO6mDKzve0mlromUdzIvLFq5PqVu38VZyOt7I1Z7ZpODaOS1aFkiryEMNM5lhcdD1kdioilnnbcz7fODyiQS++KVDXKs9o1nVvtzawORcQyAYaLSa5RDHU8ioFxTXXVXrjXT1H5l6NrV4LXr8devXqG1h89erTv8f79+2nYMG6A3Xnz5jFmzBi/xCiSEaVKlcIwDLZt25Zq2fK2MkS4vqKXrVMWRJb1AglgjGMwc1wfqGWyZBolHLJQeVsZ1ri+5ml7v1x1B7S17QY2BHxLB7uaW4oA3GZvwYaAObS1Nbc6FL+xYeMJe29+dn1DRVuY1eGIZAtDHY+y1DWJyka5DK3f6GBBAjb/4eeorlFwMAGffELQzJkYefNmuJr4CYf4OnXqxNNPP53mejweT4ZjkOtb8+bNmTNnDtHR0Zw+fZoVK1YQFRVFaGgo8+bN47HHHmPTpk2p1hNkBDLR9QZjHUNz1bSZNYxKrHF9zSOOe60ORXK53HPVm0MEGgG86XyOFa4vM/wDJbvIQzDjHMNY5PqMMEPzcYvEV9oozjzXBD5yjCAfOXvw1ApGWZa6JvG280V1lxK5SnNbA9a7ZvOi/aF0DzI38PsCmRNUBtlvuYWQjRtxDUh6wOurB+C7eorBrl27EhERwZAhQzhz5gx169Zl4MCBCeqYNGkSzz33HADHjx/n7rvvpmHDhjRt2tR38devXz8eeeQRGjduzFtvvZVJeyu5XcOGDenWrRsNGjSgZcuWjBgxghIlSgBQpkwZZs2aRe/evdm5c2ea6nvI0YPfXN/mGaLYSQAAuR9JREFUipsJj9jvZY3ra2rYcmfLa8leDNM0TauDuF5dNqMZ7f6UsZ4vuUCU1eGkmYHB3ba2vO54hnBbKavDEcn2/jKPMCR2DDO9izHJOafcYIJ43H4f/+d4iGAjyOpwRLK9rd6dPBo7nF/NLWkqv7NzHgp+vy6To0qdUaECAe+8g7Nz52TLrF+/noEDB7JmzRqioqJo1KgRI0eOZM6cOcyaNQuISzg8/vjjtGrVitDQUE6cOAHEdano2rUrGzZsYNKkSWzdupV33nmHXr16MWjQIBo1asSuXbu47777WLduHf369SMqKooZM2ZgGNfWZUUkM8z3rOB592j2m39bHUq63GRrzOuOp2loq2V1KHIdUQsHCwUaAbzsfJztAYt5xH5vjph+p7XtBn5yTWeq610lG0TSqIxRgi9do/nFNTNH3Blx4GCAvTvbAhbxqvMpJRtE0ujK1JkfO0ZSJZVWjEUvBFAwIjJrAktO3ry4Ro0iZPv2FJMNkPwAfNdi2bJlDBgwgLp169KtWzeOHj3qe65r165KNki21dHemkjXdwxzPEYw2f87srZRhXnOCXzv+lzJBslySjhkA0WNwoxxDmazaz7327sQSIDVISVys+0GFjo/ZZHrMxrYalodjkiOVMdWlXmuCSxxfk4b241Wh5NIAC562zsT6fqOcc6XKWEknipMRFJmM2z0ddxFpGses5zjaGrUS7LcYyuKQ3R0FkcXxyhbFtdbb5Fn/34CXngBw5WxmTIiIyPxer2+v6MzsD8bNmwgMjKSyMhIDhw44FseHBycoZhEskqgEcAQxyPsDljG645nKEMJq0NKpIpRjs+db7LONYu29ux/w0NyJyUcspHytjJ85BzBnoDlvO54hgqGtfPg5icvD9vj+qstdn3GLfamlsYjklu0sjdmgesTIl3f8aj9Xsvn+Q43SjPC8SS7A5bxqfM1DQop4geGYdDBfjMrA6aw0jWFTrbW2LH7nr9j4eUsj8l+000Ezp5NyN69BLz4IkahQmleN6kB+Pr168f27dtxu90cO3aMtWvX/rctuz3VAR9vvvlmPvroI9/fmzdvTv9OiViskJGfZx0P8EfAEqY7x9DcaGhpPHkJ4X57FyJcX7E5YD732juqtZBYKvu34b8OFTYK8KzjAZ6x389acxMLPStZ4I1gp7kv07cdSkFus7XgDnsrbre1UFNqkUxU1VaB92yDecPxLN97V7PAG8ESz48c51Smb7uiEcYdtlZ0sN9Mc6OBfoyIZKKmtno0ddXjH/Mk8zwrmOtdStnlCzJ/w3Y79mbNcHTogKNTJ2xVqmS4qvgD8BmGwYgRIwgLC6N9+/ZUr16dKlWqUK/ef605+vbtS61atWjZsiX/93//l2Sd48aNY+DAgXz22WfExMTQqVMn6tSpk+EYRaxkN+zcZb+Vu+y3ss27i2+9S1ngWUmkuSPTt+3AQTNbfXrb7+RuW1v9fpdsRYNG5iC7vQdY7P2RX71b2GRuZ4958JoHoCtKIerZalDPqM6t9mbcYNTBbthTX1FEMoXX9LLO3MxSzxo2mtvY5N3OMU5ec73ljTLUN6rTyFab220tqGIr74doRSSjzPPnca9YgWfZMjwbN+LduhXOnbu2Sm02bFWqYGvYEMftt+No1w6jYEH/BCwiGXLIPMZK7y+s9KzjFzOS/eYhPFzbdK8BuKhnVKOJrS6tbI1pYWtEHkPdkCR7UsIhBztrnifSu4Pd5kGOcpyj5nGOmic4bp4khljceLBjx4GdAkY+ihtFKEERShhFKGOUoK6tGqWN4lbvhoik4pB5jEjvDg6ahzliHv/3eD/BafMsbjx48ODAjgsnoUYhihuhFDeKUJwiVDDKUs9WjQKGtd02RCR13v378f7+O57ff8c8ehTz7Fk4exbzzJm4x14vRv78kC8fRr58GPnzY4SGYqtcGVvVqtiqV8e4xoEcRSRzxZix7DUPsss8wE5zP7vM/Rw3TxGLm1jcxJixuHETSyz5jXyUohgljaKUNopRyihOaaM41YwKuAyn1bsikiZKOIiIiIiIiIiI32nQSBERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JhxwkIiICwzAwDIN+/fpZHY6IiEiWyuzvwX79+vnqj4iI8Hv9Oc3+/ft9r0erVq0yZRuTJk3ybWP48OGZsg3JPaw6Rlu1auXb7v79+1MtHx4e7itvhfTGm1tjkOzBYXUAknUiIyOZO3cuEHcSyKwfDyLiPzpuRSSnu5JIKFCgAIMGDbI0FhERyVpKOOQg9erVY/Xq1QAUK1Ys3etHRkYyYsQI39+6cBHJ/nTcivznWr8HJX1KlCjhe73z58+f4XqunMPCwsISJRzat2/v20bZsmUzvA0REcmelHCwWFRUFMHBwWkqmz9/fpo3b57JEYmIiGRP+h7MOld+n2T26120aFGKFi2aqdsQERHraAyHeOL3C1u6dCnDhg2jVKlSBAUF0bJlSzZu3Jig/L59+xgwYABhYWEEBARQtGhR7rnnHnbs2JGg3NX9EydMmECVKlVwOp188803AMyePZvmzZuTP39+XC4XxYsXp3nz5rz44ouYpgkk33f15MmTDBw4kLCwMFwuF3nz5qVy5cr07NmTVatWAXF9ye6//37fOiNGjEjUZ3Lu3Ll06tSJcuXKkTdvXlwuF2FhYdx///2J+l7Ff61++OEHXn75ZUqXLk1gYCDNmjVj8+bNiV7fHTt20K9fP9/rVaRIEVq3bs3y5csTlFu9ejWdOnWiSJEiuFwuypUrxzPPPMPp06fT/maK5ACpHbtpOW4h4+eir776iho1ahAYGEj16tWZNm1aVu26XKfmz5/v+wwOHTrUt/y+++7DMAwCAgKIjo4G4r4zrpS95557gOS/BzPynTR+/HgqVKhAUFAQjRs3ZsWKFSnGvmLFCu644w5CQ0NxuVyUKVOGfv36sWvXLl+Z33//3RfHfffd51s+dOjQRH2ZL1y4gMPhwDAMmjRpkux258yZ41v3qaeeSvDc2rVrfc91794dgK1bt9KrVy+qV69OoUKFcDqdFC1alDvuuIMff/wxwfqp/T5JbgyHtG5j+PDhCfqwHzhwwFdfeHh4kjHEt3v3bu6//37KlCmDy+WicOHCtG/fPtHvhqs/F99//z2NGjUiMDCQsmXLMnbs2GRfX8m53G43I0aMoEyZMsn+Vk9uLIXkxoLweDwMHz6cUqVKERwczM0335zk+eOKqKgonnzySYoUKUKePHno1KlTkuMVLF++3Le9vn37Jnhu8+bNvuc6duyY6n6fOnWKl156ierVqxMcHEy+fPmoX78+48ePT7L8xYsXefrppylWrBhBQUG0a9eOAwcOJCqXnt/f6Y3hikOHDhEWFoZhGNjtdr788stU91dyAVN8+vbtawImYFapUsX3+Mq/fPnymX/++adpmqb522+/mQUKFEhUBjDz5Mljrlu3zlfvF1984XuufPnyCcp+8cUXZkREhGmz2ZKsCzBjY2NN0zTNlStX+pb17dvXV3/r1q2TXXfIkCGmaZpmWFhYsmVeeeUV0zRN8+GHH062TLFixcxjx44l+VpdvU+AGR4e7ovbNE1zyZIlZlBQUIrbN03T/PTTT5N9LapUqWKeOnXK32+7iGVSO3bTctxm9FyU1DkOMKdNm2bRqyHXg1OnTpmGYZiAecstt/iWx/8eWbt2rWmapjlx4kTfsvHjx/8/e/cdHkXVtgH8ntnd9JCEBEIIvUgLBKQI0otUBT6p0hURrDQBFRQFC2BBijQLKCBIEaRIL4IoTYp0BEKvgSQEUnZn5nx/5M2wIT3ZZJLN/buuXITZMzPPbObMnn3mzDlCiNQ/BzP7mfT5558nK2OxWESVKlX0/+/YsUMv/8033+hxP/7j7e0t9u/fL4QQQtM04efnJwCI8uXL6+vb1/XEOrZt2zZ92dtvv53qexYXF6fX8RIlSghN0/TXhg8frm/jt99+E0IIsWTJklSvG7Isi+3bt+vrp9c+CQsL0//ftGlTfb2M7mP8+PGplitdunSyGOzbA/v27RPe3t4pritJkpg1a5Ze1v68KF26dIrtiC1btqT6HlP+YV/Xa9SokezvbN9WFyJp+ze17djX9ddffz3FbZYpU0b/f1hYmF6+Q4cOycqXKFFCFC5cOMl+NU0TZcuW1a8ZMTEx+jYmTJiQ4c/gy5cvi1KlSqVYL+zraNOmTfXl9te1xJ+GDRsm2W5m2t9ZiSEsLEzcu3dPVKtWTa/D8+bNS/NYyXmwh0Mqrly5gmnTpmH16tWoU6cOAOD+/ft49913IYRA//79ERkZCQAYOXIkNm/ejMmTJ8NkMuHBgwd48cUX9Z4J9i5cuIA2bdpg9erVWLZsGapVq4a1a9dC0zQAwKeffopt27Zh6dKlGDduHKpWrZrmCLfR0dHYsWMHgIRnW9esWYMNGzZgzpw56NKlCzw9PQEAK1aswHvvvaev9+KLL2L37t3YvXs3XnrpJQBA69atMXfuXKxduxY7d+7Exo0bMXLkSADArVu38N1336X6Xk2ePBm//vorSpYsCSBhZOtNmzYBSMj+9uvXD7GxsQCAxo0b45dffsGaNWswYsQIPcZr167hjTfegKZp8Pb2xowZM7Bp0yb9Du+ZM2eSHANRfpaRuptevc3OtejMmTMYOnQo1q9fn+RO7IgRI2Cz2XL24KnA8vPzQ0hICABg//790DQNt2/fxoULF/Qyf/31V5J/gYTPjYxK7zMpIiICH3zwgV7+zTffxPr161PsFZS4veHDh0MIAVmWMW7cOKxfvx7dunUDkFCXBwwYACEEJEnSH0E4f/487ty5A1VVsX///iwfn6urK7p27QoAuHr1Kvbu3au/tnLlSgCAv78/2rVrBwCoVKkSvvzyS6xevRrbt2/Htm3bMHv2bLi6ukLTNHz22Wcp7iel9klqMrqPl156SR+fAQCKFSumX8NWrFiR6vaFEHjxxRcRHR0NAOjatSvWr1+P999/H7IsQwiBYcOG4cqVK8nWvXTpEp577jmsXbsWPXv21JfPnTs31f1R/nTu3LlU2+pZcfr0acyaNQsAIMsyPvzwQ6xbtw4NGjRIsdfCpk2bsH79egCAu7s7vv76a6xevRrFihXDvXv3kpSVJElvz0ZHR2PNmjX6a4m/e3h4oGPHjmnG+Nprr+Hy5csAEsY8mTdvHjZu3IgpU6bo17vHXb16FXPmzMGiRYvg6+sLANizZw9OnDgBIPPt76zEEBsbi2effVbf59dff41BgwaleazkRIzLdeQ99tnOxJ4BQghx9uxZfbmbm5vYv3+//v+aNWuK3bt36z8NGjTQXzt48KAQImn2vnTp0knusgghxDvvvKO/vnz5chEeHp5ifCnd2YmJidEzks8884w4efJksu0nSu0uQqK7d++KESNGiEqVKqXYG+H//u//Unyvhg4dqi+fNGmSvvzrr78WQgixatUqfVnZsmVFXFxcivFNnTpVL/fiiy/q7+muXbuEh4eHACB8fHyEqqoprk+Un2S07qZVbw8fPpzla5H93Q1FUZLcrdi1a1eOHjsVbK+99pp+rh09elSsXr1aANDvfHXp0kUIIUTVqlUFAOHr66tf9zPSwyG9z6RffvlFX1a3bl297OP1IPGu51dffaUvS4xNCCGsVqsoVqyY/trhw4eFEEJMmTJFX/bbb7+JI0eOJDm+2rVrCyGEaN++vX6n7+7du2m+Z/bHPWLECCFEQg+AxGVDhgxJchxff/21qFu3rvD29k7WM8PPz08vm177JLUeDpnZhxAiyT4el9I17tChQ/qyYsWKCavVqpfv0qWL/trUqVOTvT9FixbV2xk3b95Mco2k/C+jbfXEcyYzPRwmT56sL+vWrZteNjIyUm+HAo96OLz66qv6slGjRqUYi/1+L1++rH/uP/fcc0IIIa5fv67Xn549e6Z57Hfv3tXXN5lM4uTJk6mWte9dkFhPhBBiyJAh+vLVq1cLITLX/s5qDHXq1NF/nzx5cprHSc6HPRxSYf88ZcWKFeHn5wcAiIuLw8mTJ/XXjhw5gsaNG+s/f//9t/5aSndK2rZtC7M56VidvXv3hqurKwCgW7duCAgIQGBgIJ5//nls3bo1zTjd3d3xwgsvAAC2bNmiP0tVq1YtfPDBB4iKisrQ8aqqilatWuGrr77CmTNn9N4I9hLvoj6uadOm+u/+/v7Jyp89e1Zf1qpVK/1YH2dfbv78+fp72qRJE8TExAAAoqKicP369QwdE1Fe5oi6a19nMnstsr/GmUwm1K5dW/+//d1mIkdr0qSJ/vvff/+tn6uvv/46LBYL/v77b0RGRurnbcOGDSHLGW+upPeZZH9+161bV//98XqQyL6e2dcbi8WCWrVqJSuX2vF16dIFJUuWxNGjR/Hw4UO9p0LiOAjpHVPincPEXg32PQQe76U0bNgwHDhwANHR0cl6OKX2WZ5S+yQ1Wd1HRtm/508++SQsFov+/3r16qVYLlH9+vX1dkZKf39yHmm11bPSVkzt2uDj44NKlSpluLx9LPZKliyJ1q1bAwA2btyIu3fvYu3atXr9SWwTpObcuXN6j+hy5cqhSpUqGTmsTLXT02t/ZzWGgwcPAkg4xtGjR2doHXIeTDhkUFqPNaTm4cOHyZalNI1XSEgI/vnnH7z11lt46qmn4OPjg9u3b2PVqlVo06ZNkm6XKZk/fz7mzp2Ljh07onz58lBVFUeOHMHEiRP1gbbSs2fPHhw+fBhAwjRYP/74I3bt2oUlS5boZRIvMI+zv6jaN1Yeb4A4SkrvK1F+5Ii6mxEZqTNZucYRZUVqX8ibN2+OWrVq4fr161i6dKn+GZKZxymA7H0mZbYepFS+du3a+qOC9sfXoEEDNGjQAIqiYOHChXqX64wcnyRJ6NWrF4CERwYOHDigJx7Kli2Lp59+GgBgtVoxb948AAnHPmnSJOzYsQO7d+9GQEAAgNTfh4xOM5qdfThCen+j3G6TUN6R0rlhv0xVVf338PDwbG87K+UHDhwIALDZbFi2bJn+OIWfnx/atm2bqX1klKPqRHba3yaTCUDCILj2j1lRwcCEQyrsn7c8d+6c3jBIHM09UdOmTSGESPbz8OFDDB48ONl2U7oACSFQrVo1TJs2DXv37kVkZKR+50LTNKxevTrNWM1mM1555RX89ttvOHfuHCIiIvTGx+bNm/ULhP0doseTB9euXdN/79WrF/r165fpRl5qnnjiCf33rVu3wmq1pltu/Pjxqb6vKWWZifKjjNTdtOqtfZ3J7LXI/hqnqqp+9wFIuGtBlFOCgoJQvnx5AAmjoh88eBB+fn6oVKkSGjRoACDh+d5E9gkKR7A/v+3P+8frQSL7emZfb2w2m56oty9nNptRv359AMCBAwfw559/6jNRZOf4evfurf8+duxY/e5qr1699LbF3bt3ERcXBwAIDQ3FmDFj0KxZM5QrVy7ZM+WPy+gXqqzsI3Hbqd24eJz9e3748GEoiqL/f9++fSmWo4InrbZ68eLFAST0Tkh08+ZNAAljKOzZsyfZ9lK7NkRFReHMmTMZLm8fy+M6duyoJ+a+//57fcaVLl26wMXFJbVDBQBUqFBBbxNcuHABp0+fTrN8RmWm/Z3VGL744gvIsoz4+Hh06tQpxZ6X5Lwy1neuAJo6dSoCAwNRqlQpfPLJJ/rydu3aoU6dOggJCcHx48fxxx9/oF+/fujWrRssFgsuXryI/fv3Y9WqVRmexnHKlCnYuXMnOnTogFKlSsHT01Mf3AqAPkVYasqXL48uXbogNDQUxYsXx+3btxEWFgYgIZkRHx8PT0/PJBnOjRs3okmTJnBzc0P16tVRunRp/bXEKTojIiLwzjvvZOgY0tK6dWsULVpUj6t169Z444034Obmhj///BP+/v4YNWoUunbtinfeeQfx8fGYNGkSJElCgwYNEBMTg7CwMOzYsQOxsbHYsmVLtmMiygsyUnfTqrehoaFZvhb9+eefGDFiBJ555hksXbpUHwAqMDBQ/7JElFOaNGmC8+fP61+amzZtql/zp02bpjfu3d3dU3zMITueeeYZuLm5IS4uDvv378ewYcPQpk2bJPXAXteuXTFmzBjYbDb8+uuvGD9+POrXr48ff/wRN27cAJDwWERoaGiS49u2bRtiYmJw4cIFVKlSBX5+fnrCwf7LS0aT+9WrV0eNGjXw77//JvkctH+cIjAwUD+2Y8eOYd68eQgMDMTEiRMz/GU/PVnZh5+fH+7du4fr169j8eLFKF26NAIDA1GxYsUUy9esWRNVqlTBqVOncOPGDfTu3RsDBgzAvn37sGrVKgCAi4sLunTp4pBjovwprbZ64mM4FSpU0Ke17NevH7p06YKFCxem+IjNc889hzFjxgBIaAtPnDgRtWvXxsyZM1O8u9+xY0fMnj0bQMI0uyVKlEDp0qWTxPI4FxcX9O3bF1OnTsU///yjL0/vcQoAKFy4MNq1a4f169dDVVW0a9cO48aNQ8mSJXHixAkcOnQICxcuTHc7j8tM+zurMXTu3BmKomDUqFGIiIhA27ZtsXfvXgQFBWU6XsqHcnyUiHwkval2vLy8xKlTp4QQaU9Fl/iTKL3BGidOnJjqNmRZFn/++acQIvXBskwmU6rrt2nTRi93584d4erqmqzMjh07hKIoKR5zw4YNUxwwKrXphFI71t9//z3FfT9eLq1peR6PgSi/y0jdTaveCpH1a1H16tVTLLtw4UIj3goqYH744Yck592ECROEEEJcunQpyfJmzZolWS8jg0Zm5DPJfjBJ+89b+6khszItZqLt27cnKfPSSy8JIYSIj49PUp/LlCmTqffNflA7AOLJJ59MVialaf0qVqwoihYtmun2SWqDRmZmH0IkHejx8b+fo6fFtD8vhEh7wErKf+zresWKFZOdG/ZtdSGE2LRpU7IyZrNZVKhQIcW6bj+oYuKPu7u7CA4O1v9vPy1mu3btkpUvUqSI8PHxSbEuCCHE8ePHk5QPCgrK8IDoly5dEiVKlEi3jfz4lJSJ7KeqnT9/vr48M+3v7MTw8ssv68tCQ0NFVFRUho6b8jc+UpGKL7/8Eh9++CGCg4Ph6uqKRo0aYceOHahcuTKAhEGMjhw5giFDhqBcuXJwcXGBr68vQkJCMGTIEL2LVEa0b98egwcPRkhICPz8/GAymVC4cGG0bt0amzZtQsOGDdNc/9NPP0WbNm1QokQJuLq6wtXVFZUqVcKoUaOwfPlyvVxAQABWr16NWrVqwd3dPck2TCYT1q9fj06dOsHHxwdFihTB0KFDU50KM7PatWuHf/75B3379kWJEiVgsVjg7++PZs2aJbm78/LLL2PXrl14/vnnERgYCLPZjMDAQNSrVw/vv/++Pl0RkTPISN1Nq94CWb8WPf/88/jll19QrVo1uLi4oFKlSli4cGGSu6VEOeXxxwgS7/yXKlUKwcHB+nJHPdr3uDFjxmDatGkoU6YMXF1dUbNmTfz222+p7u+1117Dli1b0K5dOxQuXBhmsxnFixdHv3798M8//yQZMA5IGLjQvnt04vG5uLgk6bGR2ePr1atXksesUqqvX3zxBYYNG4agoCB4eXmhY8eO2LZtW4rXj6zK7D5mzpyJ7t27o0iRIhneR7169fDPP/+gf//+CA4Ohtls1p9z37x5M1599VVHHQ7lUzNnzsSYMWMQFBSUYlsdSOhl+/XXX+ufs/Xq1UuzbT1jxgy8//77CAoKgpubGxo2bIht27ahQoUKKZZfvnw5Xn/9dfj7+8PDwwNt2rTBrl279OknU1KtWrUkA1527949wwPjlipVCocPH8bo0aNRuXJluLm5wcvLCzVr1tSnz82KzLS/sxPD7Nmz0bJlSwDA0aNH0aVLF07FXQBIQnAUnUQDBgzAjz/+CADYsWMHmjVrZmxAREQOtGDBAn1e7fHjx+PDDz80NiAiIqICaMKECRg/fjyAhHFJ7GdfIXI2HMOBiIiIiIgohz148AA3b97E0qVLAQCVK1dmsoGcHhMOREREREREOczb2zvJ/99//32DIiHKPRzDgYiIiIiIKBdIkoTSpUtj2rRp6NWrl9HhEOU4JhzsLFiwQJ9vluM3EJGzGTBggH6Ny6nxG6ZMmZLpmNatW5ft/SbOa55ZO3fuzNZAW0QFFes6UeYJIaBpGi5evIi33nrL6HCIcgUTDpSr2EAhcm6ZreNElD+xrhMRUUYw4UC5ig0Uovzj4sWLCA0NRf/+/VGlShX06NEDiRMbbd68GTVr1kRISAhGjBgBIQTGjh2LyMhI1KxZE0OGDEm2vfXr16NWrVoIDQ1N0o10y5YtqF+/PipWrIg//vgDAKCqKkaOHIm6desiNDQUixcvBgAoioKhQ4eievXqqFGjBpYtW5ZkH9euXUO9evWwf/9+nD9/Hm3atEGdOnXQokULXLx4EQCwf/9+hISEoGbNmkmmDiYqqFjXiYgoxwiiLAoLCxM1atQQ/fr1E5UrVxbdu3cXmqYJIYTYtGmTCA0NFdWqVRPDhw8XmqaJ9957T5hMJhEaGioGDx6cbHvr1q0TNWvWFDVq1BAvvPCCEEKI/v37i7feeks89dRTokKFCmLnzp1CCCEURREjRowQderUETVq1BCLFi0SQghhs9nEW2+9JUJCQkT16tXFL7/8IoQQwt/fXwghxNWrV0XdunXFvn37xLlz50Tr1q1F7dq1RfPmzUVYWJgQQoh9+/aJatWqidDQUPHaa6+JLl265Oj7SJRXhYWFCYvFIk6cOCE0TRNNmzYVu3btEjExMaJUqVIiLCxMqKoq2rdvL1auXCmEeFTXHnfr1i1RtmxZcfXqVSGEEHfv3hVCJNTxPn36CCGE2LZtm2jRooUQQoi5c+eKzz//XAghRExMjKhRo4YIDw8X33zzjejTp49QVVUIIcS9e/f0/V6+fFnUrl1b7N+/XwghROvWrfV6vW3bNtG1a1chhBAhISHiwIEDQgghunfvzjpOBR7rOhER5RTOUpGPCaFBxJ+FiD0CEX8eQrkLoYQD2n1Ai4XQ4gBJgmTyh2QOAMwBkMz+gCkAkkswZPfakMy+2Yrh1KlTWLJkCapUqYLmzZvjzz//RJ06dTBo0CD88ccfKFWqFJ577jmsWrUKn3zyCebOnYsjR44k287t27fx5ptvYvfu3QgODsa9e/f01+7du4e9e/di+/btmDBhArZt24bvv/8eQUFBOHDgAGJjY1G/fn20bdsWv/zyC+7du4ejR49ClmVERETo27ly5Qr+7//+D7Nnz0bdunXRpk0bzJ07F2XKlMH27dsxatQoLF++HAMHDsSCBQtQp04d9OjRI1vvD5EjCNt1iPhz0OIvArbLELZbEMpdQA2HEBok2R2QPQDZDZLkDsjukMxFILlVg+QeAsmlHCRJytK+K1WqhKpVqwIAatWqhYsXL8Lb2xuVKlVCmTJlAAC9e/fG7t278fzzz6e6nb1796JFixYIDg4GABQuXFh/rXPnzgCA2rVr63cmN2/ejOPHj2PRokUAgKioKFy4cAFbt27FiBEjIMsJHfT8/PwAAHFxcWjbti0WLFiAunXr4sGDB9i9e7e+bSEEPD09ERkZifj4eNSpU0eP/aeffsrSe0PkSEKoENaLEPEXIKxhENYrgHIbQrkNoUZDklwA2Q2QXAHZBZLkBsgekFzLQ3KrCtmtGiRLYJb3z7pOlDv09nvcaQjbDQjbdUC5CWG7DYhYCKECACTJDMjekCzFIFmCAEsxSJaSkN2rJ/yfKJ9gwiEf0eIvQnuwEyL2CLSYIxBxxwDtYbrriVRfkSC5PgHZsx4kj3qQPZ9K+IIimTIcExsoRI6XUNd36T+wXU6zfOp1/H9kz0dfSDxqw+TTAZKleIZicXV11X83mUxQVTVD62VG4j7st69pGubOnYumTZtmaBsuLi4ICQnBjh07ULduXWiahsDAwGQJzsjIyCwnX4gcSQgBEfsvtAc7//ezJ+GGQWrlM7JRUwAktyqQ3atB9moGuVBrSLJHhuJhXSfKGUK9Dy16C7QHf0OLPQQR+y+gPUh/vbReNBeD7FELknstmLybQfJsmKn2O1Fu4hgOeZywXoVyexrizzaG9VRlKFeGQA2fAxGzN0PJhnS2DhF/Buq9hVCuvgnrmXqIP14atqvDoD08kKEtGN1AOXLkCI4cOYKLFy+ibt26qW7DvoGSuH5iA+XIkSM4evQo/vrrLwBgA4UMoUbvhO3yK4g78cT/6vor0CIWpZtsyBDtIUTMAaj3FkC5+ibiT5RH/NlmUG5Pg7BeyvTmKlWqhLNnz+LSpUvQNA1LlixBkyZNAKR+Hahfvz62b9+Oa9euAUCSXkwpad26NWbNmqVv6/jx41BVFa1atcK8efOgaRoA6L2YZFnGwoULsX37dnz33XcoVKgQAgMDsXbtWgAJz4kfP34cvr6+cHV1xaFDhwAAS5YsyfTxE2WV0GKg3P0R1rAXEH+8BKxnn4JyfQy0+xvSTDZkmBoO8XA31PA5sF3sifhjwbCGdYd6bzGEEpnpzbGuE2WNsF6GcucbWM+1R/zxYNgu9oYaPhPi4V8ZSjakS7kJ7f4GqLc+hfVca8QfLwnrpQFQI1ZAqNHZ3z6RAzHhkAcJNQrKndmI/6854k9WhHJ9DERMxhIA2aaGQw2fA+t/jRF/qgaUm5My/YWEDRSijBHKXSi3v0b8qeqwnW8L9d5PjkkwpL9niJi9UK6PQfzJSog/8zSU21Mz/IXE3d0d8+bNQ6dOnVCjRg1UrFhR7y3Uv39/VK9ePdlAckWLFsX06dPRoUMHhIaGpjsd2KBBg1CmTBnUqlULISEhGD58OIQQeOWVV+Dr64vq1asjNDQUW7du1ddxcXHBypUrsWDBAqxcuRI///wzZsyYgdDQUFSvXh3btm0DAHz77bfo168fatWqBX9//4y/bURZpMX9B9vVtxF/ohyUK4OhRa0C1Ls5v2MRCy1qDWyXByL+RElYz3eAGrFc77KdHtZ1oowTQoEa+WtCkuFkJSjXRkJ7sB0QtpzfuXoPWsRS2C71QfyJMrBdHgwt5p+c3y9RBkhCiAz10qOcJ9QoqHdmQLkzE1AjjQ7HjgS5UBuYA8dC9nzUi+DixYvo2rUrDh48CAB4++23ERISggEDBmDz5s0YPXo0FEVB69at8eWXX0KSJIwePRrr1q1DkyZNMGfOnCR7WbduHcaNGwchBKpXr45FixZhwIAB6Nq1K5599lk8ePAAISEhuHjxIlRVxXvvvYcNGzZA0zQEBQVhw4YNAIARI0Zg27ZtMJvNGDduHLp164aAgACEh4fj4cOHaNOmDYYPH45atWphyJAhuHXrFmw2GwYPHoyhQ4di3759GDhwICwWCxo2bIibN29ixYoVufd2k9PTHu6FEj4HWuQqQMQbHc4jsjdM/i/BXORNSC4ljI6GKF8TQoUWtRZq+FxoD3Yigw9F5ArJpTRMRd6Cyf+lhDFgiCjLhPoQavgcKOGzANs1o8NJQvKoD3PR4TD5djI6FCrAmHDIA4QSCeXODKjh3+SxRENysncbmIMmQPYINToUonxHiw+Dcv1daFGrjQ4lbZIrTP4vwxw4OluD0BEVVGr0NihXR0LEnzY6lLSZi8EcOAom/5chya7plycinRA2qHd/gHLzM0C5aXQ4aZI86sIcNBEm72ZGh0IFEBMOBhLCBvX2V1BufQVoUUaHkwkyTIX7wBz0YYYHniMqyIT6AMqtyVDvTM9bPRrSI3vAXHQUTIGjEkbLJqI0Cesl2K6NyftJxcdZSsBSYgZMPu2MjoQoX1AjV0K5/j6E9YLRoWSK7N0K5uKTILuHGB0KFSBMOBhEi/kHtsuDIeKOGx1K1snesJSYClPhPkZHQpQnCSESBmW9MR5QbhgdTpZJ7rVhKf0dZLcqRodClCcJLRbKrS+g3v4KELFGh5Nlsl8fWIK/yPaU2UTOSthuwnblDWj31xkdStZJFpgD34EpcAxvJlCuYMIhlylCwcfKbLS5tgS1Ig8ZHY5DyL7dYSk5A5LJx+hQiPIMYbsN2+WB0KK3GB2KY0iuMBf7AKaiwyFJHG+YKJH2cD9sl/pBWC8aHYpjWIJhKTkLpkJtjI6EKE9R7y2B7dpIQE17YPP8QnKvCUupbyG7Vzc6FHJyTDjkogvaFQywjcF+8S8qowR2nt0LNy3O6LAcQnIpDUup+ZC9njY6FCLDWR/shnaxX77u1ZAayaN+Qm8H1wpGh0JkOOX2DCg33sudUehzmalwP5iDv4Jk8jI6FCJDCS02YdaHyGVGh+J4kgXm4p/DXGRI+mWJsoi3qXLJPu0oGltfwH7xLwDgNK7ik9JtDY7KcYT1EqznnoFy81OjQyEy1HTlJzQxTUasFml0KDlCxOyF9WwjaA/+NDoUIsPEijgMj38fN8M/d8pkAwCo936C9dwzELZbRodCZBhhvQrrfy2cM9kAAMIG5dow2K68AeGk1zIyHns45IK16nb0s41GLJL2ZpAhY91tXzx9b79BkeUMk/8gmEtMY7drKlAUoeBV5UMsVFcDAF5QQjD73GpDY8pRkhsspX/kVFtU4FwXt9Hd+hYOiuNoolXEr2e3wAzF6LByjORSBpby69iriQoc7eFeWMN65vkZKBxF8mwMl7JLIJkDjA6FnAy/Eeawb5Vf0NM2PFmyAQA0aHitqAUPTN4GRJZz1Lvfwnb5JQjhvA0wInuKUNDH9raebACAJebjmB/c3rigcpqIg+3iC1DCvzU6EqJcc0XcQAtrPxwUCQM+75L/wwdlnzU4qpwlrBdhPdsM2kPnujlClBY1agOs59oWmGQDAIiHu2H9rxmE9arRoZCTYcIhB31km4k3lYlQoaZa5iJu4f0yLXMxqtyhRSyFLewFCC0fTQFIlAWKUNDPNhqrta3JXhvjHYZ/fJ80IKrcokG5+iZsNyYYHQhRjrsubqOtdSAuiqSN8Vmux7Es6BmDosolajis59tCjdpgdCREOU6NXAPbxR6AcI5x1jJDxJ+D9VxLCOslo0MhJ8JHKnLIdOUnjFamZLj8yvBiaBnufM9Ey14tYCm3ApLsYXQoRA6nCAX9bWOwUtuUaplgBOCPCxcQYL2di5HlPlPgO7AEfWh0GEQ54pYIR2vrizgjwlJ83R2u2HRdRo37x3I5slwmWWAptwYm7+ZGR0KUI9T7G2EL6w4Iq9GhGEpyKQuXClshuQQbHQo5AfZwyAGr1C14R/kiU+u8EWBDpKVwDkVkHO3BdtguvWx0GEQOpwkNL9reSTPZAADXEI6BZepAhSmXIjOGemsS1IilRodB5HDhIgLtrYNSTTYAQCzi0ae4N+5ZnPzZZ2GD7WIvaHH/GR0JkcNpD/fBFtazwCcbAEBYw2C98CyEet/oUMgJMOHgYH9rh/Gi7R1o0DK13g3cxejSjXMoKmNpUb9CuTXZ6DCIHOpjZRaWaxszVPYP+Sw+LfNcDkdkPNvlIdAe7jM6DCKHsQkbulrfwAmR/hfsy7iNl8rWc/rkItQI2C50hlDuGR0JkcMI6zVYwwrmYxSpEXGnYLvUH0Jk7jsN0eOYcHCgc9oldLW+iThkbdyCZeYTWBvYwiGxREYLNOxlxVM9rKjd1Yoffn00joSmCTTua8ULb6c8/c2gD2yo8mw8nuqRsP6FKwlP3UxfpKB2Vyv6v/tovR9Xq/jpt9THqEik3PgI6v2MfTkjyus2q3/iM3Vuptb5yu0Efi/azKFxpFbPW79sRej/WfU6HBuX/Mm5j+coKN/mUT3/81BCg2LFZhVPdrHiudesiLcmrLdzv4aP52RgEFgRB2tYdwjrZccdJJGBxilfY684muHyO+Wz+KisY5OL2annfcbY9NfLtY5Ht+EJn9/ZqucAhPU8rGE9OI0eOQWhxcIa1r1ADRCZUdr9DVBuvG90GJTPcQwHB7EKG562dsfxDNwFSUsAfPBX2DUUjc/eRU9VBeKtgIe7hIexArW7WrFnsQv8fSX88KuK7fs0qCqw5AtLsnUHfWDD/7WS0b5J0rs0T/WwYu9SC15+X8GwfiaULymh1ygFv043Q5al9IOSfeDyxJ+Q3Spm69iIjHRZ3ECD+G64i8hMr1sInth55SHKPTznkFhSq+cvvG3D1HfMqFYh9Zzyx3MU+PtKeLVn0nrerL8V6+dY8OV8FU9WldChqYzn31KwcLIZXh4ZqOcAJLcQuFTcCcnkla3jIzLSOnUHutrezNK6P0SWwfM3kw8kmxXZqef2XhxrQ4unZPTtaHJIPQcAU+H+sJTKXPKVKK+xXhoAjY8EpslSegFMfj2NDoPyKfZwcJCPlVnZTjYAQDiiMKJUvWxvx2SS4OGe0GiItwJCJPzcixJYvknFwOcz3+XT1RVQFEAAMJuA6YtUvNHblLFkAwBoUbCFdYVQH2Z630R5gVXY0Ns6IkvJBgC4j4foW6IkYkyeDokntXqeHa4u/6vnIqGeL/1dw7PN5Ex9CRFxx6FcG5G9QIgMdFG7hkG2sVle/w3fmzjhXc0hsTiinsdbBbb+peG55gnNPkfUcwBQ7/0INeKXzAVDlIeoEcuYbMgA25WhnC6TsowJBwf4RzuOL9UfHLa9daaTWBLUJtvbiYwWqNfdigptrRje34wAPwkfzlTw7iAzTOnkG96dqqJedyven65AVRNaNoO6mtCojw2FvAB/Pwn/nhVo1SBzp5CIPwPl5kdZPSQiQ32kzMABkb1R6E9IVzCsbCsHRZRyPQeAAe8pqN/TimkLU+8iPX2RgrrdrXjrExsexCTU85EDzGj7ig3/XRZo+KSMXzZoGNA58x8V6r2foN7fkrWDIjKQIhT0tb2NCGR9sLQYxKFPsB8iLP4OiSk79RwANu3R8FQNGb7eCes5qp4DgO3qCAibc8/CQ85J2G7BdnW40WHkD1oUbFdeMzoKyqf4SEU2xQsr6lu74ZQ479Dt+sALey6Go0Rc9rOJt+4K9Bxpw+SRZsxYpGLhZAt2HdQwe6ma4iMVN+4IFAtIuJPy8gcKGj0pY0iPpBmK4ZNsGNjFhL8OC+zYr6HFUzIGdctorwkTXJ7YBdmjdraPjSi3nNXCUNv6f7AhY884p+fzB5Uw6Op6h2wLeFTPl35pgaICwUUlREULdB1mw4gBJrRrbEpWPsA34ff3vlYhy8Bnw81Jyny5QEHV8hLircAvGzSEVJQwdnDSMmmylIRr5cN8tILyldnKzxiufOqQbbXUKmH52Q2QMzmQdGoyW88T9X/XhraNZbzQPvnr2a7nAGSf5+FS9ucsHRORUaxhPaBF/WZ0GPmKueQcmP0HGB0G5TPs4ZBNE5VvHJ5sAIAoPMAbpWpAIHPdG1MS6C+hxhMStv2tYc9hDZXax6PfOzZs3qPh9YnJB3wKKiJBkiS4uUro/ayMf04kbSidvajBpgBlS0hY90dC0mLtThUPYzOau1Jhu/IGR72lfGWkMslhyQYAeM/rPPb7OS7plljP9xzSEFw04brh4y2hS2sT/jmRvG4G+kswmRJ++ndOXs/vRgocOCbQrrEJ3/ysYvEUM67cEPjvUibqre0KlFufZeu4iHJThIjCROUbh21vm3wGH5fp6LDtZbaeA0BsnMD2vRqebZq8yeeQeo6E2ajYo4nyEzVyNZMNWaBcG8MeTZRpTDhkQ5h2FdPUH3Ns+zvls/ihRPssrXvrrkD0w4TGR1S0wJ+HBJ5rLuPCZlec+d0VP02yoHVDGd+8n3IPByBhNov1f2ioUj5p0uPTeSree8UMqw2IiU1Y9jAWsGZisGoRexjqvZ+ydGxEuW2tuh1btD0O3aYNCgYEWnDbtViWt5FSPX+ijITwiIRlVpvA5j3J6zDwqJ4DwLqdGqo+VmbydyreGZRwNzQyGpAkwKoAMZmcMUy9MwNa3NnMrURkkI+VWbiHKIdu8yu34/gtsGWW189OPQeAjX9qaPikDG/P5K87qp4DgHJtJGetoHxBCIUzL2SVFgXl1iSjo6B8JnN95iiJCcpMh97xTMn7XpfQ3KM8ysVkrhfF5RsCb0xUEgaXAvBqTxNCKqaeX3r1Ixte7mpC7WoyXhxrw91IQNOAetUlvP7Coy6Yfx7SUK6EhOL/u7MSWllG7a5WNH9Khl+hzPXGUG58CJNvF0gm70ytR5Sb4oUVo5UpObLt6wjHwDK1sOrMFpizcC1JqZ6XLSHhmYE22BRAVYH2TWQ83yqh7k+YpeDJqhKebWbC2GkK/j0jIElAhVISvnn/0cfBhSsJX3BqVk5Yr9ezMmp3taFyuYS7q5kirFCuvwuXciszfXxEuemMdgFz1ZwZAPE1v9t4IqYKqkSfyvS62annALByi4YurZN//ju0ngMQ8Wehhn8LcxE+5015m3p3AUR89gd6L6jUu9/BVORNyK5ljQ6F8gmO4ZBFp7XzeNL6f9Ac9FxmWuqL8vj9zBaHPQOal5iLfwZzUQ7YQ3nXdOWnHEs4JBoaXx0fha3K0X0YS4JL5cOQ3SobHQhRqv7P+ho2aLtybPvlEYRt54/D1xaRY/swmuRSGi5VTkKSMj8TFlFuEFos4k9VA2zXjQ4lX5P9XoBL6flGh0H5BB+pyKIpyne5kmwAgL3Secwo9Wyu7Cu3qeFzOJYD5VmKUDBdyflHf6a5HsPawBY5vh/jCKh3ZhgdBFGqjmlncjTZAADncQODyzaE5sRNL2G9BC1qtdFhEKVKDZ/HZIMDaBG/QIs7bXQYlE8476deDrqoXcMybUOu7vMTj/9wyrtKru4zNyQ0TtYZHQZRilZom3AVN3NlX6/5heM/rydyZV9GUO/9DKGEGx0GUYpmqAtzZT+b5NP4rMxzubIvoyi3pxsdAlGKhFCh3HHcoLAFmwaV7yVlEBMOWfCDugJKDo/d8DgrbBhcvDhsUvJBHvM7NXym0SEQpWi2knvTvEUjBv1KFMcDZx3TRMQm3FkiymPuikj8ov6ea/v7wu0k1hdtnmv7y20iZh+0h38bHQZRMlrUesB22egwnIYasRhCdewgu+ScmHDIgtzu3ZDoX+kSPi/dwZB95yTtwS5osceNDoMoiWPaGewTR3N1n6dwFUPLOu+jFUr4XAgt3ugwiJL4WV2LeFhzbX8CAkMK38VZr0q5ts/cxl4OlBepd783OgTnosVAjVhqdBSUDzDhkEl/a4dxUVw1bP9fup3CId9ahu0/p6jhc4wOgSiJ+aoxsyqsNJ/A7JLOOWYLlFvQ7vMRKspbFqi/5vo+oxGD3iUCcd/sk+v7zg1a1Bo+QkV5irBdhxa9xegwnI5690ejQ6B8gAmHTMrNbpcpUaHi1WKFECe7GRqHo6lR68AJUygvWafuNGzf73uew99+dQ3bf07S7m80OgQi3SntPE4IY6bH+w/XMaRsEwhkfgrKvE+Fdp9f7ijvUKPWA04425vRROwhCKtxN2Ipf2DCIRMUoWClusnoMHAG1zCxdDujw3As5SZE3DGjoyACkDDt7WUYN4q1AgUvBkq46RpkWAw5Rb2/hclFyjO2aHsM3f/vplOYUrqjoTHkFDXa+PYSUSLt/nqjQ3Ba6n1jb8ZS3seEQybs1v7BHdwzOgwAwCzX49jj/5TRYTgU74ZQXrFJ+9PoEHAT9/BSmVAoMBsdimMpNyFijxgdBREAYKv2l9EhYJL7SWwq0tToMBxOu7+V015TniDUh9CidxodhtPibHOUHiYcMmGvOGJ0CDoBgdeKmBFtKmR0KA6jRW82OgQiAMAmbbfRIQAA/pLOYXxZ5xvPQbvPO59kvHhhxZ/aP0aHAQGBQf6ROOdV0ehQHEsNh4g5YHQURNAebAdEnNFhOC3twR8Q6kOjw6A8jAmHTDig/Wt0CElcwi28X8Z5RrTXHv7NCxYZ7qGIyRNfQhJ943ocq4q1MjoMh2JXa8oL/tIOIwaxRocBALiPh+hTItipbiIAgMrkIuUBnKY1h4l4iNhDRkdBeRgTDplwQMt7YwwssBzHliKNjQ7DMYQV2kPju7JTwfaPOAErbEaHkcSbvrdxxruy0WE4jHi4H0LLG1/0qODaoe01OoQkTuMqXi/XzKkGkdQe7DI6BCKImMNGh+D0tJgjRodAeRgTDhl0QbuSZ8ZveNyb/vGIsPgbHYZDiLhTRodABdwZLczoEJJ5gBj0DQ50orufKkT8BaODoALulDhvdAjJrDGdxFelnzM6DIcR8eeMDoEIGscNynEaezhQGphwyKADIu/1bkh0E/cwqnQjo8NwCH4JIaP9Jy4aHUKKzuIa3izXzOgwHEbE570ve1SwnBeXjQ4hRZ+4n3aenovKTQj1gdFRUAGmxV8A1Aijw3B67EVCaWHCIYPO5sG7nvZWmE/gt8CWRoeRbcKat99ncn5nRd49B1ebTmJmSeeYQk9YmXAg4wghECby5tzxGjQM8o/GBY/yRofiEEwukpFE3BmjQygQRPx/EEI1OgzKo5hwyKDbuGt0COka4ReJW65BRoeRLezhQEY7m0d7OCQa73nGKabE5ZcQMtJV3EQs8u6o9ZF4gD4lS+GBydvoULKNyUUyklCuGx1CAaECym2jg6A8igmHDLot8n7C4S6iMLxUHaPDyBZhu8wMKRnGKmy4JPJ240SFipeKaLjhFuzQ7f6+S0WNzlaEdLRi/q9J62BMrECn160I/T8rnuxixawlj14f/YWCOt2seHeqoi+bMEvBHwe0NPfHhAMZ6bx2xegQ0nVSuoI3yzl+Jqq06joAHDiu4ckuVlTrGI9P5ybUayEE+o6xoXZXK775+VFdH/KhDf9dYl13NlOmTMlU+QEDBmDdunXZ3m9AQECW1tu5cye6du2a8ou2m+g+woagJvF44e1HA0KndJ4DwIUrAg17JSx/82MbhBDJNhkeIdBmUEId6jHShrj4hDLTFymo3dWK/u8+2s+Pq1X89Jsx7doJs2woVDceherG4+X3kw+G/eNvCnzqxcO7bjzaDrICADRNQ8V28fCtF4+eI6162eqd4rHlr7SPQ9huOvYAyGkw4ZBBt0XeHDDycb+bTuHn4m0ctr2ULtL2HN0wgbBBWPN+Q5Cc0308gIq8n/C6hQi8WDoENsnikO0pisCYL1VsmGfB3qUWTP1Jxd3IpI2st1804+gqF+xaaMHcZSrOXxaIjBY4fErDweUuOHhcQ1S0wPXbAv9dEmhaN+2PF0c9PmXfML548SLq1ElIuq5ZswZTp051yD7I+VzHLaNDyJBVphP4upTjHqPKSF0f9pmCHz8z499VLti4R8Px/zQcOyvgYgEOLrdg4ZqEz/EjpzV4ekioWDp36jrlnswmHPIyYbuBN3qZ8N1Ec5LlKZ3nADB2moKxQ0w4scYV4ZHAht3J261fzFfRuaUJx9e4oGywhPmrEsosXqvh4HILzCbg2FkNMbECq7Zq6PNc7n/diovT8MV8DTt+tODsBguWbdRw7rE2+IhJKuZ/YsbdPRYcPCGwepuKX7cKmE3Avb0WbNqTcG34ZYMKdzcJzzxtSnOfwnYjx46H8jcmHDIor85QkZJ3Ct3EZfdSDtlWShdpe45umAAAtOhsx80vIZQVeW06zLTslc7j/bLPOmRbB44LVCkvIbioBC8PCa0bytj696OGiYe7hMZ1Euqul4eEJ0pLuBEuYJIBWQY0TUD+3++fzVMwdnDajRIAENpDh8SeWsO4Y8eOGD58eIa3o6p5P9FEjmMV+aeuT/A4je0BDR2yrfTq+vXbAqoKVH9ChskkoVsbGRt2abCYAQFAUQAXl4Syk75V8e6gDNR1DhppqIsXLyI0NBT9+/dHlSpV0KNHD/2u/ebNm1GzZk2EhIRgxIgREEJg7NixiIyMRM2aNTFkyJBk21u/fj1q1aqF0NBQ9OrVS1++ZcsW1K9fHxUrVsQff/wBIOG6OnLkSNStWxehoaFYvHgxAEBRFAwdOhTVq1dHjRo1sGzZsiT7uHbtGurVq4f9+/fj/PnzaNOmDerUqYMWLVrg4sWLAID9+/cjJCQENWvWxPLly1M9fqHcRpM6Mrw9H003m9p5LoTA3qMa2jVO+Lx7oYOM33clTzis/0NDrw72ZRI+P1xdE+qIAGA2AdMXqXijtwmynPtT3S5cq8HfF6hdVUaxABlVykv4xq534uFTGjQBPP+MCS4uMlrUl/D9ChXu/6vfcfGA6X9N9nenKlg0OfXvAomEkj8SuZT7mHDIoHCRf0a4vY+HeLNkiEPm8n78Im0vJxomAABhTb9MOvglhLIi3gHnXm6a43IMK4KeyfZ2btwRKF700f+LFwWu30nejRQArtwUOPafhlpVJHh7SmhZX0b9nja0rC/j8g0BkwmoXC4jicXU3+vJkycjJCQE1atXx+LFi5N1l+3atSt27tyZZsN4wYIFePvttwEAd+7cwfPPP486deqgQYMGOHw4YTTtAQMG4NVXX0W9evUwadKk9GMmp6Hkg55MiTRoGBgQg4seZbO9rfTqesLrkt3rEq7dEahSXkYhL6BRHxsGdTVh058qaleTEOCXgXZGPkruOKtTp05hzJgxOHnyJG7duoU///wTsbGxGDRoEFavXo1///0XZ86cwapVq/DJJ5/A19cXR44cwZw5c5Js5/bt23jzzTexbt06HD16FDNnztRfu3fvHvbu3Yu5c+diwoQJAIDvv/8eQUFBOHDgAPbu3YspU6bg7t27mDdvHu7du4ejR4/i33//xTPPPPocu3LlCjp16oRvvvkG9erVw2uvvYa5c+fi4MGDGDduHEaNGgUAGDhwIBYsWIAjR44gPDw89YPXko/Vktp5fjcSKOwjQZIkffn1FIYluP9AwMf7f2WKPCozqKsJjfrYUMgL8PeT8O9ZgVYNjPmqde6ygL/vo/8XLwJcuv6orp88p8Hb89HrZYITbiR0aGaCpzsQ3NyGbm1kfDrXhmoVJDxRJiOf6/GOOwByKumnqwgA8kU3a3t/yGcxtXRHdL10Gr5RGryj1IQsQBaImw+BmAiISyWSLL9+LhZB3uEQl0oCAIpL97H7QgwqtyqGQuImGnaPwRvPFcPGX82oHRwH//sBEPczsL+SCuCRfPnkyZOxcOFCSJKEd955B8HBwZg5cyZWrFgBIOFLyBtvvIEtW7boX0Lq16+Pd955R9/GggULcPz4cXzxxRe4c+cOBg8ejMuXL8NisWDWrFmoVasWBgwYAHd3d/zzzz/o1KkTxo4dm7U3jvIdWz7q4ZDoLZ8bCLA1RLHYezCpgKwKmDTApAqYVCQs08SjfxVA0v5XRhGQNQERfh+IjoG4VCxhoxF3AQkQl/yT7CvepqHvuMv4tE8wPG4XggAwqlXCDwD0/fwqvhhUDB9PjsCJS/Ho0bQQOtUvlHLgJjegRvLFBw4cwLJly3Dw4EHExMSgbt26mDhxYoqb+OSTTzB37lwcOXIEAPQ7X48bNmwY3n33XdStWxf//fcf+vTpg3379gEA7t69i3379ukNTCoY8ttnegSi0bdkWcy64QlZpPNoYhquuEfgnuUBTngnfG7fcr0FSQJOeAcCAC54xiDafAMnvBNmyLjq9qj8oE+AQUjo0TT8lQuYNL0MBnxxA7dvWdH7xaKoWccrxX36uPqiQpYjJkeoVKkSqlatCgCoVasWLl68CG9vb1SqVAllypQBAPTu3Ru7d+/G888/n+p29u7dixYtWiA4OGEMocKFC+uvde7cGQBQu3Zt/Vq8efNmHD9+HIsWLQIAREVF4cKFC9i6dStGjBgBWU74Euvn5wcAiIuLQ9u2bbFgwQLUrVsXDx48wO7du/VtCyHg6emJyMhIxMfH671Xe/fujZ9++imVqHOvrvftaELfjgk314ZPsuG9V0yYt0zFjv0aWjwlY1C3DN54M9jB5a4AAEXRUK61DQdXWFCvuxXhkQKjB5owpEdqXx+VVJZTQceEQwZZ8uFbNcH9BCZUTvjdpJkQdN8NwVFuCI5yRbFIM4pEmeAfJcM/EvCJVFEoUoFXlA0ekVa4RsbAJTIG5shoqOEREHFxUDqfSrJ9Ff/ryfC/5SoADYDyewQ+/18ZbcYNdAfwI4DhC+/gBoDXATRII26XPSrwdNJl/BJCuSEe+auHAwDEIA6dA7I62r4EQILm4QL11H0sbmWGiyohboMG11qe+LaBByyqDIsqw6wIXH7jPDzbBWDOS6XxvSbBLKSE11QJ9/6+h4iQAAx1D8Cp6Ido8mlNjBj6D/a0CoFZA8yqDLMqYNIkmFUJbjYXvJNCRHv27EGXLl3g5uYGNzc3tGzZEp6enimUzLitW7fixIkT+v8jIh71WOvatSvreQGk5MOG8THpMhoXz942tGoS1M3xWBOccK1THsRBquOOOf/7v5AEbPesaJj4elwcUFHWywOAuiAC6OuNFpeioJUBTFOLY2ePy3DpVCbFfT4rm7Eie2FTNrm6uuq/m0ymHOm9mbgP++1rmoa5c+eiadOmGdqGi4sLQkJCsGPHDtStWxeapiEwMFBvzyWKjIzM1nU7qIiE67cf3YW7flugeBEJ/r7AvSgBIQQkKaFMUJHk6xfykhAVndDL4fqd5GXOXtRgU4CyJSS897WCNd+4oOPrVvR6Voane+583lQoJWHZxkf/v34HqB/6aN9VK8iIfvjoPLh4TaBYQNLYXp2gomMLGQtWJTye8ftcC0L/z5ZGwoGfpZSy/Pct2iAucMzgbEZRZYGrvrG46hubibUsAApD2+UKMSsC9WdWQvB9VxSPdEVgpBkuF2049dkBbH+9MXwiVRzddQGeD6yICA6Ea2QMLJExWHz9NrrExmGvzYYAAB8B6AVgdVq7tftgTMQvIZQbVGT9zmF+JtV1hzgZD+vNeFh9ZNi234fyvj9iCj1KZCjjbkEUVhHzWSHcQdJHzIQQUMZehnlhSZz57xbUQg9x6anrsGkx+Lbh1RT3WRg+KSYcUnLkyBFo2qO/TXx85rttHjx4EGZz8o88D48UulOR0yvodV1cswE+MrTND2B599G3Jam4BTAB2rE4SFVdoS2PgnnWoyyHiNGgrb0P84pS0NZGA1aRcOchKvX3M7+3n5xVpUqVcPbsWVy6dAklS5bEkiVL8NJLLwF4lDQwmZLeka9fvz6GDRuGa9euITg4GPfu3UvSy+FxrVu3xqxZs9CoUSOYTCYcP34cVapUQatWrTBv3jw8/fTTkGUZERER8PPzgyzLWLhwITp27IjChQvj5ZdfRmBgINauXYvnnnsOqqri1KlTCAkJgaurKw4dOoQnn3wSS5YsSeNIk1/3ixeVYJITBnasWl7C8k0aZr1vhiRJqFdDxobdGto3MWHp7xp6P5v8UYJ2jWX8vF7Dqz1NWLI+oay9T+ep+HSYGVYbEPO/ZvfDWMBqAzzd0wjVgfo+J2PkFBX/nNQQXBQ4dV5gsd04DLWqyJAl4NctKp5tKmH7XpFkzLbwCA2b92gI22LB+JkqrDZAE0B8WvdlJH6tpJTxzMggL8kTEGk8I+bkNEngfMBDnA9IOtCb9XsrurU8DamqK2zNr8D8Q3HMDkkYIErEuEDpK2BeURFuv8bAfa8NB3uXw7GB/2LypKdRJFKGfxTgGyngE6XBO8IGzygrihcphIykEvglhBzNB/l/zvuskMwSTJMCYWt7EUIDzCP8IfmbYet8KeHLhgaoX4ZDquIK61MJU9yZPw6E/ExCF2ptSRTkjoUgechADTcgTsBW+zzkvr6p7tMNyROLANCoUSMMGTIEI0eORExMDLZv345t27ahTZs2UBQFd+/exV9//YWRI0cCSL1hbK958+aYPXs23nzzTQDA0aNHERoampW3ipyEeyrnn7NLr65LxS0wfxUEpf9ViDgNpl6+kEPc9PXVaeEwvekPSZIgP+MF2+x70BpdgOndFG4D/w8TDnmTu7s75s2bh06dOkFRFLRu3Vp/dKF///6oXr06mjRpkmQch6JFi2L69Ono0KEDhBCoXr26/rhESgYNGoSwsDDUqlULmqYhKCgIGzZswCuvvILTp0+jevXqMJvNGDduHLp16wYgoZfDypUr0aZNG/j5+eHnn3/GkCFDMG7cONhsNgwePBghISH49ttv0a9fP1gsFjRs2BA3b6YyJaOpENoPtuLYWYGHcUD5NvFYPMWCr94xo/+7CuKsAr06mBBSMSGx8MlbJvR7V8HbnytoXk/WB5CcMEvBk1UlPNvMhFEvmdBrlA0zf1ZQtbyM8a89+vz585CGciUkfYyI0Moyane1ovlTMvwK5d6NLDc3GcP7y2je3wYBoGtrGRVKyyjZIh5rvrGgVhUZn48y4cWxCjQNaFBTQueWj46j7xgFw/ubIMsyhvcDvltpQ8W2NgzskvpYDpJcMNtQlD5JpDTBLCXTML4H/hEn0i/oZKztL0IciwMeaoCfCZbFJaFOuqM3TLR9MVBeva43TMzjHo1GpXx2G3IDD8jNvCBiNdievwzcVGB6twhM3X1S3ec11z/hL/kmWXbw4EEMGTIEe/bs0R+pSPwScvz4cdy9exdVq1bFypUr0axZMwQGBuL69eswmUy4ePEiunbtioMHDyYZw6Fnz55o2LBhsi8hAwYMQNeuXfHss46ZAYDyjwciBgHx9YwOo0CoKlXAIdfVKb72+HgtvXv3xogRI7Bu3TpUqlQJsbGxGDduHJo1a4bRo0dj3bp1aNKkCd55550U6/qdO3cwZMgQnDt3DlarFR07dsTkyZNZ1wuw39St6GEbZnQYBcII04v41DLS6DCogLJdGwX1zgyjwygQLOV/h8m7hdFhUB7EHg4ZVFjyzfKgi/mZy+9lki2TV5d+9PtTHnA5lPJwUOZ3HyUfJHcZLhuSbyvZOjCjMJInI+rUqYNu3bqhdu3akCQJH330EUqXLo327dujatWqqFSpEmrVqqWXt8/O2w8aaW/GjBkYMmQIvvvuO/1LCO96Fmxekgc84I4YZObRI8qKclLJVF8bM2YMxowZk2TZV199ha+++ipZ2SlTpiSZlebgwYMAEmagSFSkSBGsXLky2boLFizIZNTkLIpJqd+RJ8cqLQUbHQIVYJIlyOgQCgzJks1BZshpsYdDBo20fYZv1MVGh+H0iqMoLrhtNzoMKsBC45/DGRFmdBhO7y1TP0yxjDY6DCqgrolbKB/f0ugwCoTfLLPRxtTY6DCogFLv/Qzb5ZeMDqNAcA25Ccnsa3QYlAcZMzlsPlRF4qROuaGaXNHoEKiAKyUxQ58b0urhQJTTiqNoquOIkGOV5jWVDCS5lEi/EGWf7MVkA6WKCYcMqiqXNzqEAiFUqmx0CFTAPSGVMTqEAqG8VMroEKgAkyQJZdjVP1fwkQoykuRW3egQCgTJne8zpY4Jhwyqyh4OuaKmXMXoEKiAe0rmOB65gT0cyGi1pRCjQ3B6JVAM7pJb+gWJcohk9oPkUtboMJye7P6k0SFQHsaEQwb5SoUQjECjw3B6NSUmHMhYT8v80MxpRVCYCQcyXGO5jtEhOD2+x5QXSB78XM9psket9AtRgcWEQybUlqsZHYJTKwQvdrMmw5WQiqEkOKp1TmomPwVJyr35yIlSwi/DOa+Z/JTRIRBBdueX4ZwmsYcDpYEJh0xoJzc1OgSnVk+uwS8hlCc0kNk4yUkt5QZGh0CE8nIpFEfR9AtSljUzMeFAxpO9mxkdgnMzF4Pkxh7KlDomHDKhvakpJPALcU7pLD9jdAhEAICGfKwiR7U0MeFAeQPres4pK5XgDBWUJ0jutQEzey7mFFOhdrxhSGliwiETAqUA1JU4CmtOMMGETibOiU55QwdTM8i8POaIJ6SyKCmx4Ud5Q0v5aaNDcFp8nILyCkmSYPJpZ3QYTkv26WB0CJTHsUWdSR1MzYwOwSk1kmujiFTY6DCIACSM49BUrmd0GE6pndzE6BCIdF1MbeABd6PDcErPy62NDoFIJxd61ugQnJPkDtmbNwwpbUw4ZNJzcgujQ3BKbJhQXtPH1NHoEJzSi6bnjQ6BSOcteaKz3MroMJxOGakEWrH3COUhsndLwORndBhORy7UDpLMpC2ljQmHTKoqV0ADiQPKOVLC4xRs8FHe0lluBS94GB2GU2ki10VlubzRYRAl0d/0f0aH4HReND3PZ7opT5FkV5j8XjA6DKdj8n/R6BAoH2DCIQuGmvsZHYJT6Sq3RTEpwOgwiJLwlDw4kKmDvWLqYXQIRMk0keuinFTS6DCchhlm9GdPJsqDTAGDjA7BqUgu5SB784YhpY8JhyzoKLdEWamE0WE4BQkSRpkHGh0GUYpeMfMLsqMUQwA6yXzOk/IeSZLYy8GB2stNeBOB8iTZrQpkLz4a7SimIq+xJxNlCBMOWSBLMt409c3SuuKiFdY2YbDWOgdrnXMQD7WE5ZqAtfEF2F64kuJ6tkHXEF/lLKxPnYf1qfMQF6wAAGV6OKy1z8HW/6peVv0xAupPEVmKL7e1k5sgRH7C6DCIUlRPrsFBDh2kv+l5WCSL0WEQpWiI6QUUho/RYTiF10x9jA6BKFWmwBFGh+AcTP4wFe5vdBSUTzDhkEX9Tf8HXxTK9Hq2Qddgfr8oXA5XgGVzGcA1ITOoLYiAVDrtxrj5yyC47CsPl33lIZVzSVhvcRQsB8sDZkA7FgcRo0FbdR9yH99Mx2aE0WZ2b6O87SPzW5CQ9Qx+lpOM/a7AWu9cQkLxresQmgAAKKNvwlrnHJR3b+pllQm3of3xMMsx5jQfeOMtPopGeZiP5I1R5peztQ3WdaC5XB/NTJzhh/Iuk3cryF5NjQ4j3zMHjoZk8jY6DMonmHDIIk/JAyPNL2VqHe1kHGCRIDfyBABIhc2QzBLEPQXq8vswDczC6LmuEqAAEADMgDr9Lkxv+EOS834Xp8ZSHdSXaxodBlGaasiV0SUbs6hkNclonlkcLvsrJCQUw1Voa6MhIlVoh2PhcrACtIOxEFEqxHUbxH/xkJt6ZjnGnDbC/CL8JV+jwyBK06umXiiBYllen3UdmGAeanQIROkyB31sdAj5m6UkTAFDjI6C8hEmHLLhLVO/TA00Jc5ZIXnKsHW5BGuD81Cm3AEAKB/ehvndIoAp7SSB+u5NWOudg/L+LQg14Q6IaZAfbI0uAIVMkPzNEP/GQW7llfWDyiUyZHxmGWl0GEQZ8oH5DZhgyvR62UkySoX+tz8VgFUAEgATADnhjinkhN+Vz+7ANLZopmPLLSVQLMuPoBHlJjfJFWPNr2ZpXdZ1oJvcDnXl6kaHQZQu2bMuZB+O25JV5mLvQ5JdjQ6D8hEmHLLBVXLBFPPojK+gCGh/xcD8dXFYdpaFtu0BlK/CgQgVcpO071iYJxSF5UgFWHaVgwizQvv2HgDA1NcPLvvKw/J1UEJj5L0iUOfdg+2FK1D/VyYvGmjqijpsmFA+8YRcFi+ZumR6vewmGW0vXIG19BnAU4b8rDckbxPkll6w1T8PuaUXxGUbYALkynn3g/9zyxh4SJyjm/KHfqbOqCyVy/R6Bb2ue8CdNxEoXzEX/xjgZ1OmSe5PwlSY47RQ5jDhkE3Pmpqjs5yxKWGk4hZIT7pBKmmB5CpDbuMNxGvQ9sQgvtJZ2PpdhbY5GrbXrydfN8gCSZIgucmQe/tC+ycuyeva2XjAJiCVdYG6LhqWJSWhro3WnyHNS4JQhN0uKd/5xDwi892ts5FkBADLkpJwCXsCEAJiR8Jz2+bRReCyvwLMo4tA/ewOzO8WhfLJ7YQk42/3s3JoOaaV/DT+z8SpRSn/MEkmzLZ8BDmzzaMCXtfHml9FCSnrj6MQ5TbZtTzMQR8ZHUb+IrnAUupbSBK/PlLm8IxxgKmWsRkaQFKq4w7cUSEiVAhNQOx5CCnUHa4XKsH1zBOw/FQCcmtvWL4pnmxdccOW8K8moK2PhlQl6V0O9dM7ML9XJKE7Zsz/kgwPtYT/5zEzLePhJ3E0cMpfCklemGX5MFPrZCfJqG/DRYbcsRDUtdFJlms7HkCq5gpxX4W4YoN5cQmoM+9m5dByRAD8MNcy0egwiDKtgVwLw0yZG329INf1FnJ9jDC9aHQYRJlmKvIGJM+njQ4j3zAXGwvZvZrRYVA+xISDAwRJRTDXMiHdkewlswTTR0VheyYMtrrnIZV3hal96iO82l69Bu2f2ITfX7wGa91zsNU9D6gCptcL6+W0Px9CKueS0ODxM0EOdYO19jnItdwg+WX+ufOc1FvuiA6mZkaHQZQlrU2N8KqpV4bLZzXJKGwC4lLC1LdCFdA2REOu5PLodSGgzrwL09CAhARj4nPfkapDjjO7JEj4wfIZgqVAo0MhypLx5jcRKlXOcPmCWteLojB+sEyCJOX9gaqJHidJMiyl5vHRigyQ3GvDVPRto8OgfEoSQuS9W+D51HjbdExW5xkdRp5VU6qC7S4/8XluytfihRWNrD1xTJzNUHl1UzTUsbcAAcgtvWCe8qjbsbbrIdTZ92BZkjD4rO3VazC9XBhSFVfY2l1M6KUkAKmxJ8xfFINkTmjUqz9HAjYBU38/CCGg9L4KcToecl9fmIcHOPqQM+1t00B8bBludBhE2fKfdhENrN3xADEZKl/Q6roECb9ZZqO1qZGhcRBll3pvMWyXBxodRt5lKgyXJ3ZDdi1vdCSUTzHh4ECa0PC87XVs1HYbHUqeE4Qi2O26hM94klM4r11GM2sf3EHeHZjVKA2kWtjiMh9myWx0KETZtlzdgH620RBgU+lxw0z9MckyyugwiBzCdv09qLe/MjqMPMgMS/m1MHk3NzoQysf4SIUDyZKMHy1TUEEqbXQoeYo73LDcZTqTDeQ0ysulsNplFjzB3jr2SqAYFrp8zmQDOY1upnaZm42qgHhWbo6PzezFRM7DHPQx5EJtjQ4jzzEHf85kA2UbEw4O5iN5Y7llOvzha3QoecY8y0ROgUlOp7YcgqWWr2EBv1wDCb2YNrp8z8QiOZ03zX0x2jTI6DDyjOZyfSy2fMnEIjkVSZJhKf0TJDe2VxOZAobAXORVo8MgJ8CEQw6oIpfHZpf5KIrC6Rd2YhIkfGEeg26mdkaHQpQjnjE1xFzLxHQHjHV2RVAYG1y+QwWZvbvIOU2wDMVAUzejwzBcfSkUKyzT4Sq5pF+YKJ+RTIXgUuF3SK4ZHzDWWZkK94M5eKrRYZCT4BgOOeiMdgHtrC/jOm4bHUquM8GEOZYJ6GvqZHQoRDlutvIzRiqToEEzOpRcVxg+2OTyA6rLlYwOhShHaUJDX9sorNQ2GR2KIUKlytjk8gN8pfSnASfKz4TtJqzn20PEnTQ6FEOYCveDueQcSBLvS5Nj8EzKQZXkctjisgAlULC6GLvCBUstU5lsoALjVXMvLLVMhUcBG9OhKApjrctcJhuoQJAlGQstn+MtUz+jQ8l1DaXaWO/yLZMNVCBIlmJwqbAZkvuTRoeS60wBr8Jcci6TDeRQ7OGQCy5q1/C87XWcFOeMDiXHecMTyy0z0MxUz+hQiHLdQe0YuljfwC3cNTqUHFdbqoZfXKZxzAYqkL5VlmG48ikUKEaHkuNeMnXFNPNYWCSL0aEQ5SqhxcJ2+RVokcuNDiUXmGEu8SXMAYONDoScEBMOuSRGxGKo8gkWqquNDiXHVJHK4yfLFN7tpALtonYN/2d7DafEeaNDyTG95Y74xjIebpKr0aEQGWa7uhe9bCMQiftGh5IjzDDjc/NovGruZXQoRIZSbk6CcvMjwFmnxzX5w1JmMUzezYyOhJwUEw65bKH6G4baPkYMYo0OxaFeMfXAZPMouEtuRodCZLgoEY23lclOl2A0w4xJ5pF4w9zX6FCI8oSzWhj62UbjiDhldCgO5Q9fLLJ8ieamp4wOhShPUKPWw3ZlCKDcMToUh5I86sJS+kfIruWMDoWcGBMOBjilnUcv2winuAMaAD/MsUzAsybO0Uv0uE3qbrxm+xDXcMvoULKtilQecywT8JQcanQoRHmKIhR8pc7Hp8ocxCHe6HCyrbPcCtMs4xAoBRgdClGeIpQ7sF0dBi1ypdGhZJ/kCnOx92EqOhySZDI6GnJyTDgYJF5Y8ZU6H1OUbxGLOKPDyZLn5BaYbnkfQVIRo0MhyrOiRDRGK1Pwo7rK6FCyxA2ueNs8EKNNg+DCZ7iJUnVWC8MQ23j8JQ4ZHUqWBCMQUyyj0cXUxuhQiPI0NXIlbFeH5dveDpJHXVhKzYPsVsXoUKiAYMIhF+zcuRMzZ87EihUrkr12SVzHONtXWKFtgsgnz4bVkCphinkMB4YkyoSt6l8Yp0zNV12vO8otMNk8GmXlEkaHQpQvCCHwrfoLJiqzcAf3jA4nQyww4w1TH4w1vwYvycPocIjyBaFGQbn1BdTwbwAtxuhwMkRyKQ1zsQ8g+73AWSgoV/FsM1hpqTgWunyBP12WoLlc3+hw0vSEVBY/WaZgr8tyJhuI0rBz50507do1ybJWpqfxt8syLLZ8iSpSeYMiS58MGc/JLbDN5Scsc5nOZANRGh6v65Ik4RVzT5x23YiJ5mHwh69xwaXDG54YauqPU64b8ZnlbSYbiDJBMvnAUnwiXKucgMl/EACz0SGlzlwE5uAv4VL5GEyFezPZQLmOZ1wOmDx5MkJCQlC9enUsXrw4yWs7duxAgwYNcOdO0m5YteUQbHD5Dv+4rMJgU094wzM3Q06VBAkt5QZYZPkCh11Wo7upPWReqIiyRJIkdDG1wSGX1VhhmYH6Uk2jQ9K5ww2DTN1x1GUNlrtMR0O54M0/TuQonpIHRplfxn+uWzDV/B7KSHkncVcUhfGR+S3857oFky2jOLUtUTZIliBYSs6Aa9UTMBUZDph8jQ5JJ7k+AXOJaXCtchrmIq9Dkl2MDokKKH5zdLADBw5g2bJlOHjwIP744w988MEHuH79OgBg27ZteO+997B27VoUKZLyuAfV5IqYZhmHMNcdmGF+H9WlJ3IzfF0pFMdY06s47boJ612+RVdTW5g4qAxRijKbZJQkCc+ammOn6yL867IWY02voqJUJpejTlBLqqp/+Zhh+QAVZWPiIMoPMlvXPSR3vGruhRMu67HOMg8vmboiAH65HTZc4YL2clN8a/kEZ123YIz5FfhKhXI9DiJnJbmUhiX4M7hWuwBLqW8heTaCIV+zZC/Ivt1hKb8RLpWPwhwwGJIpb9zEpIKLYzg42Ndff42YmBi89957AIBXXnkFHTp0wNtvvw1PT09s27YN/v7+mdrmWS0MW7W/sE37G7u0A4jGQ4fHbYYZtaQqaCzXQSu5IZrJ9diTgSgDDhw4gCFDhmDPnj2IiYlB3bp1MXHiRPz666949dVXMW7cOKxduxYBAemP+H5EO4Vl6u9Yr+3EWXExR8Z1cYEFTeS6eE5ugQ6mZry7SZRBjqrrilCwU9uPldomrFN35NhYD97wRFu5MTqaWqKt3ATeEr90EOUmoYRDu78BatR6aNFbAe1BzuzIUgImnw6QC3WA7NUUkuyaM/shyqI8/MCRcwkODkZUVBROnDiBJk2aZGrdJ+SyeEIui9fQGzZhwz7xL/7Q9uOMFoYL4jLOi8uIwP0Mb88VLighFUNJKQh1pBA0leuhgVyLz28SZcGePXvQpUsXuLm5wc3NDS1btoSnpyeOHj2KkSNHZirJWFOugppyFXyKkYgS0TioHcdBcQz/aMfxj3Yi09NresAdVaXyqCpXQDWpIqpJFVFProFCkldWDpWoQHNUXTdLZrQyPY1Wpqcx2/IRLmrXcFicxCHtBA6LkzisncRdRGYqNh94o7pUCTXkJ1BDqowaciWESE9wZhkiA0nmAJgK94WpcF8IzQoRdwxazCGI2MPQYg5DxJ0GRGzmNmoqDNm9OiT3JyF71ILk8SRk1wo5cwBEDsKEg4M1atQIQ4YMwciRIxETE4Pt27ejefPmCAgIwMKFC9G+fXv89NNPqFWrVpa2b5EsaCTVRiO5dpLl90QULojLuCZuIRbxiBPxUKBChgQZMnwlb5SUglBCKoai8IckSY44XCJKRXaSjADgI3mjpakBWqKBvswmbAhHJMLFPdwREQjHPdwTUTBBhgUWuEmu8IU3fKVCKAp/lJGC2VOJKIdlt66XkYNRBsH4P9Mz+rIIEYV7IgoRiEKEuI97iEKkuA8JgBvc4C65wheFECD5oajkj2Ap0IFHRESOJskukDxqQ/ZI2n4XSiSEchPCdgNQbkFocYCwAZIMwAzJ5A3JXAywFINkCYIkuxtzAETZwISDg9WpUwfdunVD7dq1IUkSPvroIwQFBQEASpYsiRUrVqBLly749ddf8cQTjhufobDkg8JSddRBdYdtk4jSl9NJRnsWyYIgFEGQlPIYMESUc3KzrvtJPvCTfBwQNRHlZZLZF5LZF3CrbHQoRDmGYzgQEWXT5MmTsXDhQkiShHfeeQfBwcGYOXMmVqxYgTNnzuRIkpGIch/rOhERUeYw4UBEREREREREDseHe4mIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHy5cJhwEDBkCSJEiShJ07dxodTqoWLFigx/nhhx/m2n4//PBDfb8LFixIt7zR72dm43XWGPIyo88RSp9R15u8Li+8L3khBso5vD6Ss8jL53JiXGXKlMmxfeTl439cfoqVyGx0ACm5ePGi/qWvZs2a6Ny5c4bWW716NY4cOQIgoSLm5EWJyJmwzqUsq+9LfrRz50690dK5c2fUrFkz1/bt7OcRERFRZjhj+yMx4e7r64thw4YZGgvlrjybcPjoo48AAP37909WycaOHYuXX34ZAFC9enV9+erVq/Hjjz8CAJo1a8ZGK1EGsc6lLL33JS9p3749du/eDQAoVapUptffuXOnfqxlypTJ9YSDM59H5NxSuz4S5Td5+VxO/Hxzc3PLsX3kpePParssL0s8ntKlSzPhUMDkyYRDeipWrIiKFSsaHQZRgcE65xgPHz6Ep6dnjmy7aNGiKFq0aI5sm4hSx+sjOYu8fC43atQox/eRl4//cfkpVqI8N4ZDs2bN0Lx5c/3/P/74o/6M0oABAwAkf27p4sWLkCRJv0MGAM2bN0/2bNOkSZPQrFkzlChRAu7u7vDw8EDVqlUxbtw4xMTEJImjTJky+vo3b95E37594efnB29vb/To0QP37t3L9LEtW7YM1atXh5ubG6pWrYqff/45yeupPY+V1vO/y5YtQ7Vq1eDm5oaQkBAsW7YszRhmzpyJ8uXLw93dHfXq1cP27duTlYmOjoanp6f+rJwQQn9NVVUUKVIEkiTB398fNpstzf2pqopZs2ahQYMG8PHxgbu7OypWrIjBgwenus6sWbNQsWJFuLq6IjQ0NMUYw8LCMGjQIJQuXRqurq4oWrQoevTogVOnTjkkBgCw2Wxo166d/t6/8sorSd4LZ+FMdU7TNHzyyScICQmBu7s73NzcUKpUKXTo0AHff/99krKxsbH49NNP8eSTT8LLywuenp6oVq0aPvjggwy/L6mxP5bLly+jS5cu8PHxQUhIiF7mzp07GDFihH6u+/n5oUOHDti7d2+y7c2dOxd16tSBl5cXXF1dERwcjFatWmHKlCl6mdSuExcvXkSvXr1QvHhxWCwW+Pr6omrVqnjxxRfx77//Akh4NjbxzgMAvPjii8nGNPn+++/Rpk0blCpVCp6ennBzc0PFihXx5ptvIjw8PEm8zZo109f/999/8eabb6Jo0aJwd3dHu3btcOnSJT22jJxHaVmyZAmaN28OPz8/uLq6okyZMujbty+ioqJSLL98+XLUqFEDrq6ueOKJJ1K8Zmbmb5OVGBK9/PLL+rF26NABVqs13eOlvCe1z+6dO3eiVatWKFy4MCwWC4oUKYJ69eph6NCh6Z4bAHDp0iV07twZXl5eKFq0KIYOHYqTJ0/q+2rWrJle9vjx4+jduzeqVq2q769o0aLo0KEDdu3alWS7j18rFi1apLcjUmqbUMGRE+fy4+fbN998gzJlysDT0xPt27fHlStXEBcXh6FDhyIgICDVz/yUxnDI6Gd+bGwsRo0apV/TPT09UbZsWTz//PNYtWpVusdvv+///vsPHTt2hJeXFwoXLowhQ4YgLi4uSax3795F//794ePjA19fX/Tr1w/h4eEZHociK+2ylGL9999/0aRJE3h4eKBy5cpYsWIFAGDFihWoVq1amu1sR7ZREsdJS3Tp0qVk78W1a9fw0ksvITQ0FAEBAbBYLChcuDBatGiB1atXJ9nfzp07k7wfy5cvR5UqVeDh4YHGjRvj2LFj0DQNEyZMQHBwMDw8PJK0PRLZt9Vu3bqF3r17w9fXFz4+Pujduzdu376d5t+JMkHkMU2bNhUAUvzp37+/EEKI/v3768t27NghwsLCUl0nsYwQQlSqVCnVMs2bN08SR+nSpfXXypUrl6x879690z2W+fPn6+WrV6+e4n5//vlnvfzjx5XSdsaPH68vX7ZsmZAkKdk2a9Soof8+f/58vfznn3+erKzFYhFVqlRJtl/7WHbv3q1vY9euXfryV155Jc3jt1qtok2bNqm+54nGjx+vL7OPJfHH29tb3Lt3Ty//zz//CF9f3xS36eXlJfbt25etGObPny80TRO9e/fWl/Xt21eoqpru3zw/cqY6N2HChFT317BhQ71cVFSUqFmzZorlSpcuneH3JTWpHUviti9duiRKlCiR4rYtFov47bff9G399NNPqcYRHBysl0vpOmGz2cQTTzyR6vrffvutEEKk+bdMvIakVY+qVKkiYmNjUzynUvpbJv4tMnoepeall15Kdd2wsLBk70vlypWTlZNlWZw+fVrfZmb+NlmJIfFv8+677+rLWrZsmeT9o/wlpc/u06dPC3d391TPjf/++y/NbUZERCS5jiT+hIaG6r83bdpUL79kyZJU9yXLsti+fbte1v58TO0abd82oYIjJ85l+/OtfPnyydavUaOG6Ny5c7Llj3/mP/45KkTGP/PTuk7b7ye1dnjiskKFCgl/f/9k2xg7dqxe1mq1ijp16qRZd+2PISVZaZc9Hquvr2+yWCVJEuPGjUu2zcfb2Y5uo9i3sR//SXwv/v7771TLABA//vijvs8dO3boy8uWLZvsu1CxYsXEoEGD0jwnhEjaVkvpWlijRg0RFxeX5t+KMibP9XCYMWMGpk+frv+/Xbt22L17N3bv3o2xY8emuE5QUBB2796Ndu3a6cumT5+ur1erVi0AwJAhQ7Bw4UL8/vvv2LlzJ9asWYP27dsDAHbs2IG//vorxe3HxsZi0aJFmDVrFlxcXAAAS5cuzdAdikTHjh3D0KFDsX79evTp00dfPmLEiHR7CaREVVUMHz5cv+Pes2dPrF+/HsOHD9fvWtqLiIjQ79wCwJtvvon169en2itg4MCB+u+LFy/Wf1+zZo3++wsvvJBmjNOnT8emTZsAAB4eHpg4cSI2btyIb7/9FnXr1k1xnVOnTmHMmDFYs2YNQkNDAST0uEi84yKEQP/+/REZGQkAGDlyJDZv3ozJkyfDZDLhwYMHePHFF/X3JSsxAAl/l8Tj7tatG+bPnw9ZznPVxSGcqc799ttvABIGJFq0aBG2bt2Kn376CUOGDEFQUJBebuzYsfoghYULF8bUqVOxceNGzJgxA5UrV87y+5KSW7du4auvvsLmzZvx3nvvAQBee+01XL16FQDQr18/bNy4EbNnz4aXlxdsNhteeuklPHz4MMkxmc1mzJkzB9u2bcPixYsxcuRIlC1bNs19nz59GmfPngUAtGrVChs3bsS6deswY8YMtGvXDq6urgASno198cUX9fXee+89/VgT/149evTADz/8gPXr12Pnzp1Yv349+vXrByCh3v76668pxnDnzh3MmTMHixYtgq+vLwBgz549OHHiRIbPo5SsXLkSP/zwAwDAZDLh7bffxu+//46ffvoJzzzzTJK7Kfbvx8CBA7Fu3Tq0bNkSQMIdsu+++04vk5m/TVZiAIBp06bhs88+AwA0btwYa9asydHnkin3bdmyBbGxsQCAoUOHYtu2bVixYgU+/vhj1KlTJ9VzI9GUKVP0u3GlSpXC0qVLMX/+fP3cfFylSpXw5ZdfYvXq1di+fTu2bduG2bNnw9XVFZqm6efb486cOePQtgk5n+yey/bOnz+P0aNH47fffkNwcDAA4N9//8W6devwxRdf4Oeff4a7uzsAx37mJ5YrXbo0VqxYgc2bN+P7779Hv3794Ofnl+H479+/jyJFimDlypWYOHGivnzu3Ln67/Pnz8fBgwcBAH5+fvjuu++wbNmyTH1ncET7IzIyEhUrVsSaNWvQs2dPAAlt6I8//hidOnXCunXr9MdU7NvZgOPbKC+99JI+BgcAFCtWTD+exF4XxYoVw6RJk7By5Ups3boVO3bswI8//ogiRYoAAD7++OMUjzMsLAwDBgzA+vXr9bEsbt68iW+//RbvvvsuVq1ahcDAQACP2h4psdls+OWXX7BgwQIEBAQASDg3582bl6H3m9JhbL4jZfaZq5TuJKaW1UtteaLjx4+Lnj17ihIlSgiLxZIskzVt2jS9rH3Wa9WqVfrytm3b6suPHDmS5nHYZ3Xts2qKoohSpUrpr+3atSvN+FO6O7Zv3z59WfHixYXNZtPLN2zYUH8t8e7kL7/8oi+rW7duqrHY7zfxzqi/v7+wWq1CiEd3rIsXL57uHX/7bO7cuXNTLWef+ezUqZO+fOnSpfryYcOGCSGEOHz4sL6sZs2aYvfu3fpPgwYN9NcOHjyY5RjsM9MdO3bUj92ZOUudq1+/vp5V//vvv8XDhw+TlVFVVRQuXFjf5qZNm7L8vqTG/ljmzZuX5LW7d+/q2fhixYolOYf/7//+T19vxYoVQgghevbsKQAIDw8PsXXrVhEVFZXiPlO6Tpw+fVpf1rdvX3H+/PlU6+3jvXwed/nyZTFo0CBRtmxZ4erqmuxvOXz4cL2s/d2ZqVOn6suHDBmiL1+9erW+PL3zKCWdOnXS13n33XdTLWf/voSGhurL9+7dqy/v3LmzECLzf5usxPDkk0/q+3jqqafE/fv3M3S8lHeldP7OmTNHX/b111+LGzduZGqb9r391q5dqy+33659DwdFUcTXX38t6tatK7y9vZPd8fPz89PLZrZtQgVHTpzL9ufb008/rS9//fXXk3w+JerQoUOKn/mJy+x7B2TkM18IIYoVK6Z/Bhw+fDjVu9bp9RoAIA4fPqwvt+81FxkZKYQQol27dvqyGTNm6GU3btyY4jGkJqvtMvtYz549K4QQ4sCBA/oyDw8P/XNn+fLlydrZOdVGsY8tteNfsGCBaNy4sfD19U2xB3fitu3fm5IlS+rtGvue3I0bN9a3a3+u2bc97NtqW7Zs0Zd/++23+vIWLVqkejyUcc55yzYFly5dwtNPP42lS5fi6tWrKWbuE++aP65p06b67/7+/umWT8lTTz2l/24ymVC7dm39/xcuXMjwdlJap2bNmjCbH43/Wa9evTTL29/ZfzwWey+99BKAhGfRNm7ciP/++w9nzpwBkHC3M707/ol3VgHg2WefTbNsovTea/ttHjlyBI0bN9Z//v77b/21xF4bWYkhMTNdpkwZLF++HBaLJUPrUVJG1LnEnjnXrl1DgwYN4OXlhQoVKmDw4MH6uRAeHq4/G+rq6opWrVpl5rAy7bnnnkvy/3Pnzuk9cG7evJnkHLZ/ljTxHE4cTyEmJgatWrWCj48PSpYsiT59+ujnamoqVqyIxo0bAwAWLlyI8uXLw8vLCw0aNMDnn3+O+Pj4DB1DdHQ0nn76aXz77bcICwtLcb2cvH6mJCeuL5n922QlhkOHDkEIAW9vb6xfvx7e3t4ZWo/yl06dOunn2LBhwxAUFITChQujXbt2WL58ebrr239m27cfGjRokGL5ESNGYNiwYThw4ACio6OTjTeUWn1zdNuEnE92z2V79u3TwoUL67/XqVNH/z3x7jLgmM98+3JHjx5FrVq14OnpiapVq2LEiBG4ceNGhuMvVKhQkhmcUvocyWzdzSm+vr76oJL273WlSpX0z52U3uvcbKPYmzp1KgYMGIDdu3cjMjIyxTHTUjofateurX8fyc45Zf+3sj9PeR10jAKTcPjxxx9x//59AAmVfvXq1di9ezdGjx6tl9E0LcV17btb2X+xT6kyZFRKXdDsl6mqqv/++IBsWdl2Vsr3799fP95Fixbp3aYAoFevXpnaR0Y56r1O7OqVFSaTCUDCgHbTpk3L8nYKOiPq3Msvv4wNGzagb9++CAkJgYuLC86fP4958+ahadOmyT5oEgcLykmJXfkyK/Ecbt26Nfbs2YNBgwahVq1a8PDwwNWrV7F48WI0bdo0zQ9DWZbx+++/48svv0Tbtm1RqlQpxMbGYu/evRg9ejSGDh2aoVhWrVqld6+sXLkyfvnlF+zevRtTp07Vy+Tm9TOr8tL1JTo6OsljbuRcihUrhn/++QdjxoxBo0aN4O/vj4iICGzcuBHdu3fH0qVLM7yt9K5RVqtV7/ZrNpsxadIk7NixA7t379Yb2hk9x3P6ekj5jyPPZR8fH/13+5tWhQoVSrG8oz7zJ06ciCVLlqBbt26oVKkSJEnCqVOnMHXqVLRu3RqKomQo/scfv0jvc8TI+uTo9/pxjmij2JsxY4b+++jRo7Ft2zbs3r07yZSfKbUzcuI4eR10vDyZcLA/YVJrxGZ2vWvXrum/v/fee+jUqRMaNWqUqWeqsmP//v3676qqJsn6lStXDkDSSnPz5k39940bNybbXuI6QMKdfvsExb59+9Isb7/vx2OxV6xYMf357bVr12LJkiUAgAoVKiTJHKbmiSee0H9fv359uuUzwn6bTZs2hRAi2c/Dhw/1GSiyEsN7772nN9LGjBmjH7czc5Y6J4RA27Zt8dNPP+HYsWN48OCBPtfzzZs38ddffyEgIEBvNMTFxWHr1q2pbi+r74u9xz+4KlSooC8rX748FEVJdg5brVZMmDBBP6YGDRpg3rx5OHToEKKjo/Hll18CAGJiYlK8PiQSQsDLywsjRozAhg0bcOnSJdy+fVt/rtJ+3IWM/i1ff/11dO/eHY0aNUo2MndWZeV9zonrS2b/NlmJ4dVXX0WFChUAJMzIM2nSJIfETnmLEAKlS5fGpEmTsHv3boSHh+PAgQP666mNeZKofPny+u/269n35Et09+5dvS6GhoZizJgxaNasGcqVK5fu7D4ZaZtQwZbdczmnY0vvMz9Rz549sWzZMpw+fRrR0dHo2rUrgIQZXux7Q2RXZupuWhzR/siKnGyjJG43peNJbGf4+/tj8uTJaNGiBWrVqpWk/ZGT7K+F9t+jeB10DHP6RXKffQbxzz//xIYNG+Dt7Y0nnngizXnm7ddbtGgRTCYTTCYTGjVqhNKlS+uvTZ8+HS4uLti3b1+yqfJyyp9//okRI0bgmWeewdKlS3H58mUACXc/69evDwB6IxQAxo0bh8jISPz111/Ytm1bsu3Vrl0bwcHBuHbtGq5fv45+/fqhT58+2LZtG/bs2ZOs/DPPPAM3NzfExcVh//79GDZsGNq0aZMklpQMHDgQa9asQWxsLA4dOgQg/cEiE/Xp0wdHjx4FAAwfPhy3b99G3bp1ce3aNcybNy/TF18goTEVEhKC48eP448//kC/fv3QrVs3WCwWXLx4Efv378eqVasQERGR5RjKlSuH1atXo2XLloiPj8eAAQNQrFixJFMUORtnqXNdu3aFt7c3GjdujBIlSkBRlCQN6Pj4eMiyjF69euGbb74BkNBb5/3330flypVx4cIFrFmzBr///nuy48vM+5KWxK6ov//+O86fP4+OHTti4MCB8Pb2xqVLl3D48GH8+uuv+Pvvv1GmTBm89dZbuHHjBp555hmULFkSZrM5yeBLaT0Wce3aNbRq1Qrdu3dH1apVERgYiLCwMNy5cyfZuvbHunLlSpQtWxYWiwV169ZN8rf84YcfUK5cOZw7dy7VQZwyK63zKDV9+vTRe11NmTIFiqKgefPmuHv3LhYtWoQ5c+YkiTsjMvu3yUoM/v7+WL9+PerXr4+IiAi89957KFGiRJIB+yj/W7JkCebMmYPOnTujbNmy8PHxSTL1XHqPM3Xu3BknT54EALzxxhuYNGkSYmJiUhwwLjAwUP98P3bsGObNm4fAwEBMnDgx3S8qGWmbUMGW3XM5J2XkMx8AGjZsiFq1aqFevXoIDg5GdHS0Xr/syzlC586d9TbEBx98AHd3d3h6emLMmDGZ2k5OtD8yIifbKH5+frh37x6uX7+OxYsXo3Tp0ggMDETFihVRunRp/Pfff7h79y4mTZqEGjVqYNq0aRmaEt0RBg8ejM8++wxxcXFJrrOdOnXKlf07vZwbHiLrbDabPsCL/U/iQGapDZSydu3aZOskHuKlS5eEh4dHstfsB1i0n3LSfiARe5kZ3Mx+oJwKFSqkGNvChQv18uHh4cLLyytZGfvBo+xjTG0aLPt92Q/+NmnSpGRlZVlOMm3d48eU0t/i5MmT6f4NhUiYGqhVq1Ypxmj/vqY2WF1qA+akNS3m49vOTgyLFi3Sl/n4+Ih///03Q8edHzlLnWvZsmWqf+vAwEB9UKfIyMgk08fa/9gPZpTe+5Ka1I4lUVpTTiX+JE6pOHDgwFTLuLu7i/PnzwshUh408sqVK2nuY/DgwXpM//77b4qDNIWFhYn79++LoKCgNP+W9nXUftDIxOMQIvW6ntZ5lBb7cyO19y+1aYXtp+S0H3wvM3+b7MSwY8cOfSBVi8WSZMAqyl9SukYtXLgwzXNoyZIlaW4ztWkx7a9b9uet/aBoiT8VK1YURYsWTVafMjJlt33bhAqOnDiXU7sGp/Z5kN5giPaf0Rn9zE9pOs7En6pVqwpFUTK9byFS/qxLbVpM+7qbkUEjs9ouS2kfqX3epdbOzok2ihBCdOnSJVmZxP3aD/iY+BMQEJBkusrEfaYWd2bPNftrbEptwpCQEE5Z7SB58pEKs9mMNWvWoFGjRpkaUOvZZ5/FF198gfLlyyd5rgpImFZq8+bNqFevHtzd3VG+fHnMmjULL7/8sqPDT1Hv3r0xf/58VK5cGS4uLqhUqRIWLlyY5K6Wv78/Vq9ejRo1asDFxQXly5fHN998k+SZd3s9e/bEkiVLUKVKFX2bP/zwA3r37p1i+TFjxmDatGkoU6YMXF1dUbNmTfz222/6oHIpMZvN6N+/v/7/0NBQVKlSJUPHbLFYsGHDBkyfPh316tWDl5cX3NzcUKFCBQwaNChD20jJk08+iSNHjmDIkCEoV64cXFxc4Ovri5CQEAwZMiRJj5DsxNC7d2/9GeuoqCi0a9cOV65cyXLceZmz1LnXXnsNPXr00AdHNJvNCA4ORu/evfHnn3/qjy35+Pjg77//xsSJExEaGgp3d3d4eHigSpUq+lSPQNbfl/SUKlUKhw8fxqhRo1C5cmW4ubnB29sblStXRr9+/bBmzRqULFkSQMJ52L9/f1SqVAk+Pj4wmUwoWrQoOnfujN27d6fZ3a9w4cIYP348mjZtiqCgIFgsFri7u6NGjRr4+OOPkzwzWb16dfz000+oUqWKPl1mIm9vb2zZsgUtWrSAl5cXgoODMWHCBL1LZXaldR6lZcGCBVi4cCGaNm0KHx8fuLi4oFSpUujdu3empjqzl5m/TXZiaNasmT6Vms1mQ5cuXfTeWJT/NWjQAEOHDsWTTz6JgIAAmEwm+Pj4oHHjxvjll1/0aepS4+vriz/++AMdO3aEh4cH/P398dprr2H27Nl6GQ8PD/33L774Qh/Qz8vLCx07dsS2bdv0KQZT8/zzz+OXX35BtWrVUm2bUMGW3XM5J2X0M//dd99Fp06dULp0aXh4eMBisaBMmTIYMmQItm/fro+t4wgWiwUbN25E3759UahQIRQqVAgvvPACVq5cqZexr7upyan2R0bkVBtl5syZ6N69uz7Vpb3hw4fj448/1v9GzZo1w/bt21GsWLFcOeZt27ahb9++8PHxgbe3N3r27ImtW7dyymoHkYQwYOQuyld27dqlj+4+efLkVBMgRERE5BhCiGRjwMyZMwevvvoqAOCtt97K0sDGCxYswIsvvggAGD9+PD788MNsx0pEj6RUdzdu3Ih27doBADp27JhkIHYyRpkyZXDp0iUAMGQg64IkT47hQHlDbGws7t+/r99RMZlMOTY7BRERET3SoUMHdO3aFU899RTc3d3x559/Yty4cfrrPXr0MDA6IkpN//79UbduXTRu3Bh+fn44dOgQhg8frr/OuksFDRMOlKp27drhjz/+0P//0ksvoUSJEgZGREREVDCcPHkSAwcOTPG1UaNG4emnn87liIgoIy5fvoyFCxem+FqPHj0yPPg6kbNgwoHSFRAQgC5duuCrr74yOhQiIqIC4eWXX8Zvv/2G8+fPIzo6Gn5+fqhTpw6GDBmCjh07Gh0eEaXihRdegKIoOHPmDCIjI+Ht7Y3Q0FAMGDAA/fr1S/a4BZGz4xgORERERERERORweXKWCiIiIiIiIiLK35hwICIiIiIiIiKH4xgOTkao0RDKHUBYAaECkgxIFkgmH8AUwOfGiJyAEAJQ70KokYCwAUIDJFNCXTcXgWQqZHSIROQAqlBxC3fxQDyEAhUAYIIMN8kNxRAAV8nF4AiJyBHiRDxu4S7iRBxUaAAAM0zwkjwRCH+YJJPBERJlHRMO+ZDQ4iBij0GLPQwRcwha/DlAuQlhuwloD1JfUbIA5kBIliBILqUhu4dC8qgF2f1JSObCuXcARJQhQomAFnsIIuYwtNijENZLELYbgHIrIamYGtkTkrkYYCkG2bUCJPdakD1qQXKvAUl2z70DIKIMuSxu4LB2Aoe0kzguzuKquImb4g7uIALa/758pMQPhRAkFUWQVARVpPKoJVfFk1I1VJLKQpbYiZUoL1GFitPiAg6JkziincQpcR43xB3cEHcQifupridDRlEURjGpCEpIxRAiPYEn5aqoJVdFSSkoF4+AKGs4aGQ+IISAiD0ENWo9tPsbIWL/BaA4dB+SSxnI3q0gF+oA2bs5JNnNodsnovQJLR7agz+gRa2DFr0Fwhrm4D2YIbmHQC7UBqZCz0LyqMNeT0QGuCeisEH7A7+rf+APbT/CEeHQ7XvCHfXkUHSQm6KD3BxlZU5pTWSE89plrNd2Yr22Ewe0Y4hBrEO3XxSF0VSuh/amZmgrN4af5OPQ7RM5AhMOeZj2cB/Ue4ug3l8P2K7n3o5lT8jeLWHy7Q7ZpyMkmV02iXKKEDZoUeugRvwCLXpr2r2UHM0cBJNPO5j8+kD2ejr39ktUAEWIKCxR12Gluhl7xRGo/3tEIjdUlSqgo9wS/UydUU4umWv7JSqIzmuX8aO6Cmu0bTgtLuTafs0wo4FUE11NbdHT1AE+kneu7ZsoLUw45DFCi4F6bzHU8LkQcceNDgcwF4GpcH+YAwZDcmEjhchRhO06lPC5UO/OB5TbRocDya0KTAFDYPLrA8nkaXQ4RE7jkHYC3yiLsVLbhDjEGxqLBAkt5Pp4zdQb7eWm7OFE5CCa0LBW247Z6hL8oe2HgLFfr9zhhm6mtnjd1AehcmVDYyFiwiGPEFos1DszodyeCqj3jA4nBWbIfj1hCfoAkkspo4MhyreE9SqUmx9DjVicMOBjXmPyhbnIUJiKvMXEA1E27NOO4n3la+zSDhgdSooqSmXwvvk1dJPbMfFAlEWa0LBEW4ePlVkIE1eNDidFLeT6mGAeijpydaNDoQKKCQeDCaFAvbsAyq1Pc/exiaySXGEKeAXmwHcgmf2NjoYo3xDKPSi3PocaPhsQcUaHkz5zMZiLvQuT/0uQJIvR0RDlG6e18/hAmYY12najQ8mQWlJVTDAPxTOmhkaHQpSvbFD/wAfKNBwTZ40OJUOel1vjI/NbqCiXMToUKmCYcDCQ9mA3bFdeh4jPHxeqJORCMAd9AFPA67wzQpQGIQTUu/Og3BgPqJFGh5Npkkt5mEvOgMm7hdGhEOVpD0QMxipf4Tt1ea6Oz+AoreSnMdM8HmXkYKNDIcrTzmuX8aoyPs/2XkqLGWYMNvXARPMweEictYpyBxMOBhBaDJTr4xLudBr8jFd2SZ4NYSk1D7JreaNDIcpztPiLUK4MhvbgD6NDySYJJv9BMBf/FJLJy+hgiPKc7epeDLF9gMvIBz0V0+AFD3xqHoFBph68mUD0GCEEvlEX4QNlusNnm8ht5aSSmGuZiMZyHaNDoQKACYdcpj3YA9vlQRDW3Bu1NsfJHjAHfQxzkdeMjoQoz1DCv4Vy/d3cnXUih0kupWEuOQ8m76ZGh0KUJ8SIWIxRPsd36nLDB4lzpGbyU5hn+RilpCCjQyHKE8K0qxhkG4c/xUGjQ3EYCRJeNb2AT80j4Sa5Gh0OOTEmHHKRcmc2lGujAChGh5IjZN9usJSaB0lmFy0quIQWD9uVV6FF/Gx0KDnEBHPxz2Au+pbRgRAZ6rK4gW7WN3FUnDY6lBxRBIXxs8tXvANKBd52dS/62EbiHqKMDiVH1JaqYZnLdARLgUaHQk6KCYdcIIQNytVhUO9+b3QoOU5yfxIuZZdBcilhdChEuU7YbsAa1gMiZr/RoeQ4U+F+MJeYCUl2MToUoly3RzuEF6zDcBt5cVYpx7HAjKnmsXjZ3M3oUIgM8Y2yCGOUL6A46c3CREEogl9cpqGeXMPoUMgJMeGQw4QSAWtYd4iHu40OJfeYi8Gl3ArIHrwrQgWHFnME1rDn88dsMw4iedaHS9kVkMwBRodClGt+UlbjDeUjWJEHp7XNIa+aeuFL8zuQJdnoUIhyhSpUvKlMxA/qCqNDyTVucMVcy0T0MLU3OhRyMkw45CChhMN6vgNE7FGjQ8l9sjdcyq2G7MVptsj5aQ/3wXq+I6A5Z3fLtEhu1eBS/ndIFnbFJOc3S1mMkcokpxqvIaNekJ/Fd5ZPYJJMRodClKNswob+tjH4VdtsdCi5ToKEmebxGGjuanQo5ESYcMghQrkL67nWEHEnjA7FOLInXMqtYdKBnFpCsuFZQIs2OhTDSK6V4FJhCyRLUaNDIcox3yiLMFKZZHQYhuomt8OPlsns6UBOSxEKettG4jdtm9GhGEaChOnm9zHI3N3oUMhJ8BMjBwg1KqFnQ0FONgCA9hDWC52hPcx/8xQTZYQWc+R/PRsKbrIBAET8GVjPt4dQnPt5diq4vlOWF/hkAwAs1zbgFdv74L0qckaa0PCi7d0CnWwAAAGBt5SJWKj+ZnQo5CSYcHAwIVTYLvaGiD1idCh5gxYNa1hXCOsVoyMhcihhu54wZkMBfIwiJSLuOGwXX4AQzj2wFhU8W9Q9GKp8bHQYecYi7Td8os42Ogwih/tAmYbl2gajw8gTBARes43HH6rzD4JNOY8JBwdTrr8LLXqr0WHkLcotWMO6QWgxRkdC5BBCi4M1rEeBGiAyI7QHf0C5NtLoMIgc5j/tIvraRkGFanQoeconymysVrcYHQaRw/yi/o4vVOefTS4zbEh4vCRMu2p0KJTPMeHgQMrdH6HemW50GHmSiD0C2+VXjA6DyCFsV16FiOGjQilRw+dCCf/W6DCIsi1KRKOL7U1E4r7RoeQ5AgIDbe/hmHbG6FCIsu0f7TiG2D4wOow8KRwR6GZ7Ew8EbxpS1jHh4CBa7DEoV98yOow8TYtcAeU2EzKUvynhc6FFLDE6jDxNuTYCWswho8MgypZXbONwVoQZHUae9RCx6G4byi8ilK9FiWj0sA5DLOKMDiXPOi7+w2u2D40Og/IxJhwcQAgFtsuDABFvdCh5nnJjPLS4/4wOgyhLtPgLUK6/Z3QYeZ+wwXZ5EIRmNToSoixZoq4r8APHZUSYuIr3lC+NDoMoy0Ypk3EVN40OI89bpv3Ox6goy5hwcAD11mQOEplRIha2K4MghGZ0JESZIoSA7fJgQHtodCj5gog7AeUWB9qj/OemCMdI22dGh5FvfKsuww51n9FhEGXaRnUXflJXGx1GvvGWbSLCRYTRYVA+xIRDNmmxx6Dc4lRZmSEe7uVYF5TvqOGzIR7uNjqMfEW99SW0mH+MDoMoU96wfYR74OwzGSUgMNj2Ph+toHwlSkTjddtHRoeRr9zGPQy3fWJ0GJQPMeGQTbarwwBhMzqMfEe5ORHCxi5slD8IJRzKjfFGh5EPqbBdHW50EEQZtlHdhXXaDqPDyHcu4zqmKBwslvKPT5U5uIZbRoeR7yzXNmInp8qkTGLCIRvUqA0QD/cYHUb+pD2EcotdVil/UG5NBrRoo8PIl0TMfqiRq40OgyhdmtDwvvK10WHkWzPVRbgh7hgdBlG6LosbmKNy8Oesel+ZanQIlM8w4ZBFQmhQbrxvdBj5mnr3B2jx540OgyhNwnoJavg8o8PI15Qb4yGEanQYRGlaqq3HMXHW6DDyrRjE4lNlttFhEKVrovIN4sFBjbPqgDiGVRxAkjKBCYcs0iKWQsQdNzqM/E3YoNzg83OUt9luTOQMNNkk4s9AvfeT0WEQpcoqbJigfGN0GPnefPVXnNcuGx0GUapOaefxs7rW6DDyvfHKdKi8kUAZxIRDFim3Pzc6BKegRa6AFn/B6DCIUiSsl6FFsNulI6i3vuDsNJRnLdN+x0Vx1egw8j0FCr5S5xsdBlGqvlC+hwp+Uc6usyIMq7WtRodB+QQTDlmgRm+FiDtldBhOQoMazi6YlDcp4fMANkwcQljPQ7u/0egwiFI0S1lsdAhO42d1Le4JzvJBec8tEY7l2gajw3AaM5VFRodA+QQTDlnA57kdS723EEKLNToMoiSEZoV6d4HRYTgV9S6vnZT3HNCO4ZA4aXQYTiMWcVik/mZ0GETJLFB/hRWcWc5R/haHcUw7Y3QYlA8w4ZBJwnYTWtTvRofhXNRIaJErjY6CKAkt6jdADTc6DKei3d8MYb1idBhESfygrjA6BKfD95TyGiEEFqi/Gh2G0/lBZfud0seEQyapkSsBKEaH4XTUiKVGh0CUhBrxi9EhOCENauRyo4Mg0tmEDb+qm40Ow+mcFhdwROOjp5R37BNHEcZxWhxuuboBGsdnonQw4ZBJWhRHts0J2oNdEGq00WEQAQCEFgstepvRYTglNWqd0SEQ6XZpBxEFfvbkhP9v786jo6jSPo5/763qTkJIk5CwJAEBAREkxrANrqO4oKDiAuMoIrjguCuoM6+izisuo86MjuKooB5xgxHXV0FHZR2XwygjyyAoioMw7DuBQKe76r5/BBMwCSQk3bfTeT7neI7pVFf/ulJPUfVU1a2p/izbEYQoN9WT9TEWNrGVuWaB7RgiwUnDoRaMtx1/12e2YyQnU4pfLM/0FYnBL54BRsYViQWz65+Y6GbbMYQA4H1/tu0ISWuaN9t2BCHKTZNajxmpdXEw0nCoBX/Hh2BksJlYkTOfIlH4si7GkIe/Q0YJF4lhmj/HdoSkNd8sYbVZbzuGECz3V7LULLcdI2lJM0ccjDQcakHOwMeWXyzP8xWJwZNajylvh9wzL+z7zl/BCrmnO6Y+9uSqUGHfdP9z2xGS2jfmB1aatbZjiAQmDYda8Eu+sh0huUU3yAj2wjoTWQ+R1bZjJDWzW7alwr55ZrHtCEnvK/O17QhC8C+p9Zj7ypdlLKonDYcaMn4JZs83tmMkPb9kvu0IopHzd8s6GGsmvBzj7bAdQzRy8/0ltiMkPVnGIhHIehh7X8kyFgcgDYcaMrsXAZ7tGEnPlzOfwjIjVzLFgZHmorBOdpBj799mGVEjjxIX9uwxYZaaH2zHSHrzjWxPRfWk4VBDfskC2xEaBbN7ge0IopHzZR2MC6l1YdtCs9R2hKS3h7AM1ies+rdZRhRpesXaAl+2p6J60nCoIVP6o+0IjYIsZ2GbrIPxIctZ2LTZbKOYXbZjNAo/mjW2I4hG7EcjYzLFw0a2UCKPExfVkIZDDZmojL4aDyayznYE0cjJOhgfspyFTevMRtsRGo21sqyFRbL+xY8sa1GdmDYcHnnkkVpNP2LECKZOnVrnz83JyTmk982ePZvBgwdX/cvIWn41OkLuSWEuvi1S/vKXi316XFjKUeeGeXB8xSVbP6wyHH9J2es33h/BGFNplpu2GvqPLKX7uaVcdGuEPeGyaZ54JUrPwaUMv6Pic158x+Ol/4v/GBJjn4oQ6h0m1DvMVXdHKv3+xf+L0qxPmIzeYc4cWQqA7/t0PitMZp8wv761tHzagkFhPv78IN/B24rx99TrdxCxlyy1bowH0Y1S63GodWniilg44L/j+1hrNhL51UrCuUuJXFzxdCT/yxJKe3xP+KjviD64ofx180MppccvJ3zUd0RuXFNlnZtNUUr7/4fS7t8RuWglZo8PQPSJTZT2/J7I8IpHcHovbsV7aWtdvuohi4zdQDj0NeHQ10SuqvxY0OiLWwk3W0I442tKz/wPUFbr4c7fEs5cQumvV5ZPGy74Du/j4gN+njR3RCzUtNbXSa3HrdbXUvda33d/csWKFfTq1QuAd999l8cee6zO8xd2JFTDIZGZyDpuuMThufvc/V6/5Q9RXvyDy6K3g/z9M5/F35VtdMY8HmXMNQ5fv5vCpm3wwSd+pXn+6QWP8051WPxukA75ihfeLpvm1fd85r0ewHXg38t8SnYb3p7uc+k58b0gZc8enz+94DPrxQDLPggw5e8+3/+4//cY/ZDHCw+4bP4swLyvDe/M8HhrusF1YMvcAB9+Vrahfu0Dj7RUxenHOQf9XBORA5GGJmlqPboe8KXW41HrcoWDsGgdG3FuyMZ9rs1+r0dvWYv7YhuCizrh/30n/uKyBnh0zHqcMS1J+bozbPLwP9hZaZ7enzbhnBciuLgzqkMQ/4Wygwz/1e0E5nUEF/x/78GU+Phv70Bfmhnz7/lz/h4f/08bCczqQGDZEfhTtuN/H97/e4xei/tCPoHNXTHzduO9sx3zVjG4isCWIzEfln1377VtqDSFc3rGAT9zHZti9n2EOJi1Rmo9brVeD83F6vYnzz33XEaNGlXj+XieDPSfSGq8V7tixQoKCwsZPnw4Xbt25aKLLirv+n300Uccc8wxdO/endGjR2OMYcyYMWzbto1jjjmGa665ptL8pk2bRlFREYWFhVxyySXlr3/88cf07duXzp07M2fOHKBspbn11lvp3bs3hYWFvPrqqwBEo1FuvvlmCgoKOProo5kyZcp+n7F69Wr69OnDF198wfLly+nfvz+9evWiX79+rFixAoAvvviC7t27c8wxx/D6669X+/2Nt5WTemky0lX5a2s2GDwPCo7QOI5iSH/NB//wMcYwd6HPWSeWLd6LB2re/0flg5Bpc3wuGbjvNGXFkZIC0SgYwHXgiVc8bhjqoLWqNI9Yevk9n+xM6NlN0zpH07Wj4q+TKwp4/lIf38AFpzsEg5p+fRXPv+GRFiz7/Z4wOHvXsDsei/LKw27lD6mKZ6cTLMo05lo30bJ1T2o99rVupM5FPXj44Yfp3r07BQUF5duLn8yaNYtjjz2WjRsr7wRvNTvQJ6WjMip2g8yaCHigC1JRjkIPaYb/QTHGGPy5JeizmgKgL26G/37lM33+tGL0JZnl03g/TZOiIMreQgfvic04N2Sj4lznAP7L2yDbRfdsgm4dQHVNwfvrlorfz98NPjgXNEMHNapfU7znt0La3qx7gL29xOgd63FfaVPpM35uq9le/19ENDqHXOtsl1q3XOs//9v9/OqUwYMHM3v27APuT06cOJHbbrsNgI0bN3LBBRfQq1cvjj32WObPL3vq1YgRI7j22mvp06cPDz30UA2XlIiHWp1GW7p0Kb/73e9YsmQJ69ev59NPP2X37t2MHDmSd955h0WLFvHtt9/y9ttv88ADD5CZmcmCBQt45pln9pvPhg0buPHGG5k6dSoLFy7kySefLP/dli1bmDt3LuPHj2fs2LEAPP/88+Tm5vLll18yd+5cHnnkETZv3syECRPYsmULCxcuZNGiRZx++unl81m1ahWDBg3ir3/9K3369OG6665j/PjxzJs3j7vuuovbb78dgCuvvJKJEyeyYMECNm06QBfeVL7EeO1GQ17Lio1IXkvF6o2GzdugeTOFUqr89TUbKr2dHTsNzTL2TtOiYpqRgx1OuDRCqClkZykWLTOcdmz8h9v4fqUhO7Pi57wW8OOaikvLlnzvk5Fe8fv2+Yq1mwwDT3ZIT4P8UyIM6a95cHyEozopjmhfw+9QxbIW8dVoa72adU9qPQa1LnUu6ujLL79kypQpzJs3jzlz5nDPPfewZk3ZAIUzZszgzjvv5L333qNFixaV3huh8vpn1kZReRXNMpXnYlZHYbOHau6U17nKC8CaKt6/w0M1c/aZpuzWK2dkFpETfoCQg8p2MYv2oE9rWvcFcAjM92HI3ufqo7wA5seK26H8JWHY58BMtQ9g1kZxBoYgXRPJ/wY9pBmRBzegjkpBH5F60M+MyBMCRB3VrdYrr39S6/Gr9QP97X7uQPuT+7rlllu44447mDdvHi+99NJ+zYnNmzfzz3/+kzFjxhw0r4ifGp5yLtOlSxe6desGQFFREStWrCAjI4MuXbrQvn17AIYOHconn3zCBRdcUO185s6dS79+/cjPzwegefPm5b8777zzAOjZs2f5mcmPPvqIxYsX88orrwCwfft2fvjhB6ZPn87o0aPRuqxgsrKyANizZw9nnnkmEydOpHfv3uzcuZNPPvmkfN7GGNLT09m2bRvhcLj8/qChQ4fy0ksvVR3aVD5rGSvDznUYdm7ZRmLUQxHuvNphwhSPWV/49PuFZuSQg9+WYNu811MAiEZ9Dj8jwrw3AvT5VSmbthl+e6XDNRcdaNWL37IWVWu8tR7fS/Aada3HcZsqktNnn33GhRdeSGpqKqmpqZx66qmkp6ezcOFCbr31VmbMmEF2dnaV7/WpfF92rDjDsnCGlW2zIqPW4tzZAm/CFvxZu9D90nFGNj/IHBJDyrxOAPhRn8jhywjM60Rpn+8xmzyc3+bgXlP1svbivF0VyadutR6/f2saTK0bU/bfT///s9+lfNkR+KnWvyMwr+P+tf6bqr9HVcu6ur9dXUyfPp2vv/66/OetWyuumBw8eHB5w0gkjlqdSktJSSn/f8dxYnJ/zE+fse/8fd9n/PjxLFiwgAULFrBixQp69+5d7TyCwSDdu3dn1qxZ5e9v1apV+fsXLlzI559/DlDzlVJV3vHPbaFYs6GiUNdsMOS1UGRnwpbtpvwy9DUbDLmVm66Emiq2F++dZmPlaZat8IlEoUMbxdQ5HpP/FOC92R67dsdnR6nTYYrN2yp+XrMR2uZWLK9unTTF+zxVbMVqQ+uc/ZfntWM9zu2nmfh22SXbX7wW4L6nD7beJP5BVrJrvLVe9cGx1HoMar2KbaoQ9SE/Px+l1H47pD/nVLH7o3JdzJqKM3Rmzd6zoNkOZotXXudmTQRyA5XfH3Iw2719ptl/e+IvC0PEoDoE8aYWE5jcFu+9Ysyu+B0QqU4psHmfulwTQbWt+C66WwoUV+QxKyKo1vt/D+/aNehzQ/gTt0K2Q+CLjnj3VX/vtiv/posYqVmtV17/Gn2tK4U+KrWs1pUCpSpqfe/PKIV33Vr0oBD+i9v2r/V9ptn3P7eG57EXLFiA71csi3A4fICpqzZv3rzyfb0ff6x4zHaTJk1qPS8Re3W+drdLly4sW7aMH3/8Ed/3mTx5MieddBJQ/YFK3759mTlzJqtXlz0bd8uWLZWm2dcZZ5zBU089VT6vxYsX43kep512GhMmTChfaX/qcGmtefnll5k5cybPPfccoVCIVq1a8d577wFl94kvXryYzMxMUlJS+OqrrwCYPHly9SFUsNJLeS0Vji4b7M3zDK9/6DPgJI1Sij5H6/LB4/72ftnrP3fWiZpJ08qmmTzNZ8BJ+28UH5zgcefVLqURKNn7aNtdu6E0TlciDztHs3kb/GuJz7pNPkuXG268pCJjUVeNVvDWxx6lpT4z5xquGlzx+01bfT76zOeJOx2KdxlKI+AbCJdW8WH7UpU37sK+RlHrunKdg9R6TGpd6lzU0QknnMBbb71FOBxm69atzJw5k5KSEnJycnj33Xe5/vrry+/t/bkgVRxE5AXA2TvYm2fwX9+OHpCBUgrdJ6188Dj/b2Wv/5w+KwN/0rayaSZvx/nZNN6DG3HvbAGlBkr27mzv8st+jhM9LBM2R/H/VYK/LoJZGsa5seLMsC5KAw3eW9vxS33MzJ04V2WV/97fFMX/aCfOE60xxV5Zdh8IV38gFahiWQtRG1LrtWej1qtqOFT1txsxYgRLliwhGo2yfv368hNDULOTXKeccgpPP/10+c8LFy6swRIRNtW54ZCWlsaECRMYNGgQRx99NJ07dy6/nHn48OEUFBRUGvijZcuWPPHEEwwcOJDCwkJuuummA37GyJEjad++PUVFRXTv3p1Ro0ZhjOHqq68mMzOTgoICCgsLmT59evl7gsEgb775JhMnTuTNN99k0qRJjBs3jsLCQgoKCpgxYwYAzz77LJdddhlFRUXVXo4FoNxsBvymlKG3R/jwM5+O/cPMXejz6P+4DL8jSsF5pZxxnKZ757JF+sBNDvc/49HtnDBZIcoHlRv7VJSps8sK6fYrHN762OOoc8MsX2W4/PyKP8enX/kc3kaR11KRFVIUHqnpObiUoq6arFB8LhVKTdWMGq45ZXiEzmdFuPAMTad2mrb9wsxfWrbB+ePtDpePiZJ9XIQe3RTnnVpxEDLsd1FGDXfQWjPqMoclPxg6nxnhskEHXu2Ue2iPOhSx1RhqXTllr0utx77Wpc5FXfXq1YshQ4bQs2dPTjrpJO69915yc3MBaNu2LW+88QbDhg1j2bJlld6brbIoHbCCyNBV+B8WE+74Lf7cEtxHc4kO/y+lBd+hz2iK7l5237LzQCu8+zcQ7rYMspzyQeWiYzfgTd1RNs3tOXhv7SB81HeY5aXoy/fZef90F+rwICovgMpy0IWplPb8Hl2UisqK3xUAOlWjR+UQOeU/RDovQ1/YDN0phXDbb8oGkQOcP7YmevlqItlLUT3ScM5rVv7+6LBVOKOy0VrjjMrBLAmXzeeyrOo+khxV/e+EqIm61Xqm1Hqcar1FFbVe1d+uXbt2DBgwgG7dunHVVVdRVFRUPn11+5P7GjduHLNnz6awsJCuXbsyadKkQ1lEIo6UqeoBs6KS0uVn4xdPP/iEoo4UKYU7UHL2U1hgjCG8MANkkLOYU+knktL5Y9sxRCM12/uCMyNX2I7RKPzevZE73N/YjiEaqXsij/OI96ztGI3CnOCr/EIX2o4hElD8h0NvqNzWthM0Dm6ONBuENUopCLSyHaNRUAHZpgp7cpVcYRMvrZFlLezJUy1tR2g0WqsqBrESAmk41JjsHMeHksaOsEwFcm1HaBRUIM92BNGI5cpBSNzIAZ+wqbU0F+MmF2k4iKpJw6GGVEpH2xEaBVnOwjYV7GA7QqOgUg63HUE0YiHVlBYkyCPqktzhqq3tCKIR66gOsx2hUWhDa4JyhbKohjQcakin9bAdoVHQTYoOPpEQMaSbSK3Hg06TWhd2HaO72o6Q9EI0pZNqZzuGaMS6qo6kknLwCUWdFOlutiOIBCYNhxpSad1AyQYr1pQ0doRlSg6E48BFpR1tO4Ro5IqU7CDHWqE6smxsHCEscZXL0aqL7RhJTxoO4kCk4VBDSgVQaQW2YyQ9ucJB2Fa2DsoOciyp1K4onWo7hmjkesgOcsz10EfZjiCEHAzHQQ9p4IoDkIZDLegmvWxHSGoq2B7lyuA+wi7lNEOldLYdI6np9N62IwhBby1X2cRaL93ddgQh6KXlhGEsKRQ9pdbFAUjDoRZ06EzbEZKaLF+RKGRdjC2dIctX2JevWlGgjrAdI2m5uJymj7MdQwj66xPQcsgTM71Ud1ooGYRXVE+qrxZ001NAp9uOkbR0aKDtCEIAsi7GlEpFh06znUIIAAbqU2xHSFrH6SKyVDPbMYSgpcqmt5KrHGJlgHOy7QgiwUnDoRaUTkFnnGo7RnLSGeimv7SdQggAdNPjwZFufSzojJNRuontGEIAMFB2lGPmbGnmiAQitR47Z+uTbUcQCU4aDrWkQ2fbjpCUdOgMlA7ajiEEAEq56FB/2zGSkmxDRSLppbqTR0vbMZLSQDkIEQlEGmCx0U7lU6DlKSDiwKThUEtO5vlyW0UMOFlDbUcQYj9Oc1kn651Kxcm80HYKIcoppbjYkSZYfTtWFdFRH2Y7hhDluulO8ijcGBiqz7EdQTQA0nCoJeVk4GQOth0juQTy5WyySDi66amoYHvbMZKKzjwf5WbZjiHEfi53LkTJo3Dr1RWu7CeJxHOFIw3v+qTRjHBlmYqDk4bDIXByrrEdIam42VehlGM7hhD7UUrh5FxtO0ZScWXbKRJQJ92OU/WxtmMkjRyyGKLlSTQi8VzsnEMzMmzHSBoD9ckcpnJtxxANgDQcDoFuUoRKP952jOSgUnFyRtpOIUSVnOaXyy1U9UQ16Y1O/4XtGEJU6QbnUtsRksYVzmBSVYrtGEJU0lQ1Ybhzvu0YSeN62W6KGpKGwyFyW99pO0JScHKuRrk5tmMIUSXlZuHkXGs7RlJwW8k2UySu/vpEeqqjbMdo8DJI50Z3mO0YQlTrFncEaaTajtHgHad6cLLTx3YM0UBIw+EQORmnopv2sx2jYdMh3Fa/s51CiANyW94Gjow7UBcq/XicZmfZjiFEtZRS3OeOsh2jwbvFHUELJY8UFokrT7XkekcGha6rBwKyvRQ1Jw2HOnDz7gcZaOqQuS1Hodxs2zGEOCDlZpY1HcQhC+Q9YDuCEAfVz+krYznUQUuac7Mz3HYMIQ7qNvdKsgjZjtFgna1P4VhdZDuGaECk4VAHukkPtDzi7dC4rXFa3GQ7hRA14rS4DgL5tmM0SDp0Djq9r+0YQtTI/e4oeWLFIbrDvYamqontGEIcVKYKcbt7le0YDZKDw1j3ZtsxRAMjDYc6CuQ9DE6m7RgNTqDNn1GODMYnGgal0wi0edx2jIZHZxBo82fbKYSosSLdjWudi23HaHB6qwKudi6yHUOIGrvRGcbRqovtGA3Ozc5ldNOdbMcQDYw0HOpIBfNx8x6xHaNB0ZkX4siVIaKBcZqdjc6SA5HacPP+gAoeZjuGELVyvzuKw1Vb2zEajBSCPBu4H0ceby0akIAK8GzgAQK4tqM0GF1UB+5xb7AdQzRA0nCoB272ZeiQPHO6RtwWBNr8xXYKIQ5JIP9RcOWZ0zWhM07FzZFLVkXD00SlMT5wn9xaUUN3u9dzpO5oO4YQtVaoj+S3jjyavSYcHJ4NPCCPvBWHRBoO9STQ9ilwZADEgwm0GYdyW9iOIcQhUW5WWa3LgciBOVkE2j5tO4UQh+xE3YsbHXm848H0VYWMckbYjiHEIfsf92p6qG62YyS80c7l9NFH244hGihpONQTFcgj0H4SqIDtKAnLafVbnMzzbMcQok6cZmfhth5jO0YCcwi0f1lupRAN3oPuaH6p5Tnz1cmnFZODf5FbKUSDFlABXgs+TivkpGF1ztAn8L/ujbZjiAZMGg71yMn4JW6+DJBWFR06G7f1vbZjCFEvnFZj0M0usB0jIbl5D+FknGY7hhB15iqXSYFH6aDa2I6ScFJJYUrwcXKVXLEoGr62Kpe/Bf9CEDlp+HNHqA68HPijNBZFnUjDoZ65OVfjZMv9YPtSqUcRaPcCSsll6CI5KKUItHsOlVZoO0pCcZoPx20pZ0FE8shWmbwZeJIM5KlK+3omMJaeurvtGELUm2N1EePce2zHSCiZhHgzMI5mKsN2FNHAScMhBtw2j6GbDbIdIyGoYDuCh7+DcmRjJZKL0k0IHv42Kni47SgJQYfOwm37pO0YQtS7broTrwUeJxUZLA3gAXc0v3YG2o4hRL0b7p7P3e71tmMkhCak8UZwHJ11e9tRRBKQhkMMKOUSaPcyOnSW7Sh2BfIJdPwAFZTHi4nkpAJ5BDv9HRVsZzuKVTrjNALt/4aSMWxEkurn9OW1wF9IIWg7ilX3uDdwq3uF7RhCxMwY99pG/+SKNFJ5IzCOE3RP21FEkpCGQ4woHSTQ/jV0s3NtR7FCBdsT7DQDnSJnf0VyU8HDCHaajgo2zsfC6dBZBDq8idJy9lckt/7OibwRGEcaqbajWHGfewt3utfYjiFEzI0N3MwY51rbMaxoShPeCTxFP6ev7SgiiShjjLEdIpkZEyX635vxNj9vO0rcqLQeBDu8jgrm244iRNyYyDpK//MrTMkXtqPEjdP8Mtw2T6J04z7rKxqXz/2v+HXpLWxgi+0ocRHA5TF3DFe5Q2xHESKuno5O4vboI0SJ2o4SF7m0YErwCXrrAttRRJKRhkOcRDc+Q3T1bZDkGy2dOYTAYRNQOs12FCHizvh7iKy6Dn/rJNtRYszBzfsDbsubbAcRwoqVZi2DS29gkfnWdpSYyiGLycHHOFH3sh1FCCtmenMZGhnNVnbYjhJTvVR3pgSfIE+1tB1FJCFpOMSRVzyLyIqh4CXjWRGF2/r3uK3/x3YQIayLbniU6Jq7AN92lPrnZBJo9zJO6HTbSYSwapcpYWTkLt7yP7IdJSYK1BG8HhhHey1XK4rGbbm/kgsjN/CN+cF2lJj4tR7IM4GxpCq5NVLEhjQc4syUriKy6lr84um2o9QbFWyH2/YZnIxTbEcRImH4Oz8lsvJqTGny7KDopifjtn0GndLedhQhEoIxhme917gz+ig7KbEdp14oFNc5l3CfewtNlFytKATATlPCndE/86w3BUNyHDqFaMpD7m1c4Q62HUUkOWk4WBLd/DzR1XeA35Av0VI42SNx8x5EOU1thxEi4Ri/hOiau/E2PQUNeQdFN8XNexAneyRKKdtphEg4K/zV/CZ6N3P8hj2Gy+GqLRMC98vo9EJUY5b3T34TuZuVrLEdpU5O08fxdOBe2qpc21FEIyANB4tM6Soiq2/F3/6u7Si1plK74ub/GSejn+0oQiQ8f+cnRP47CrNnse0otaZDA3DzH5WrGoQ4CGMMz3lTuDf6JJvYajtOraQQ5FrnYu5xb5CrGoQ4iJ2mhN9HH2eC9xqRBjY2Wyuy+V/3Ji53L7QdRTQi0nBIAP6uuUTW3IXZ9antKAcXaIvb+m6c5peilDxVVYiaMsbH3zqZ6LqxmNIfbcc5KJXel0DuA+imx9uOIkSDUmx28Vj0BZ7wXkr42yw0mkv0OdwduJ52Ks92HCEalOX+Su6NPsnr/gcJf5tFiKbc4o7gZucy0lUT23FEIyMNhwTi7fg70XX3Y0rm2Y5SWSAPt8XNODnXoLQMKiPEoTJ+Kd7mZ4lueBQiq23HqUSlFeG2HoPT7GzbUYRo0DaYzTwcncBE7y12sdt2nP1oNOfoU7jHvYGjdGfbcYRo0Bb63zA2+iTv+3MSrvHQlCZc6QzhdvcqclSW7TiikZKGQwLyd80luulp/G3vgAlbzaLSj8PNuRqdeSFKBaxmESKZGBPF3/YO0U3jMbs+sRtGBdHNBuHmXCNXNAhRz7aZHbzgvcnz3ht8b+xe3ZRNJpc6g7jGuZgOuo3VLEIkm+X+Sp7xJvOq9y5b2G41SxfVgaucXzHcOZ+QknHWhF3ScEhgJroFb9vr+Nun4u+cA6Y0Lp+r0grRoQE4WRehU4+My2cK0Zj5e77D3/Ya3vZpmN3z4/OhKoBOPxHd7BycrCEoNyc+nytEI2WM4R/+l7ztf8w0bzarWBuXz80kxBn6BAY5p3KO7kdQTh4IEVN7TJj3/Jm8683gI/8ztlMcl89tr9owUP+SC5z+HK97xOUzhagJaTg0EMYrxi+ejr/jA/ySLzF7vgX8+pl5IB+dVoQOnY4TGoAKtq2f+Qohas2Ursbb8T5+8cf4Jf+qx9suNCqlM6pJb5zQmejQGSgnVE/zFkLU1iL/G6b5c5jjf8ECfynbqJ+nVqWSQoE6gmN1EQP0yZyge+Aqt17mLYSonYiJ8A9/Hu/7s5nrL+DfZhmlROpl3lmEOEZ342Tdh7P1KXJ7lEhY0nBooIy3C7N7If7u+Zjw95jIOkxkLUTXYqIbwS8FPECDcsHJQgVyUYHWKLc1KngYqkkROq0IFWhl++sIIaphIhvK6rxkPiaysrzWTWQdeFvARClrPjqgg+Dk7K31vfUe7IhuUoRKO0YeXytEgjLG8INZxXyzhEX+t6w261nHRtaZTawzGylmF1E8DAYXhzRSaaVyaE0OuaoluaoFXVVHeuhudFOdpMEgRIKKmAhfm+/5yv+ab8wPrDUbWWc2so5NrDeb2EOYCFEUCheHDNLJVS1orVrQmhbkq1YU6iMpUt3ktijRYEjDQQghhBBCCCGEEPVOnmsohBBCCCGEEEKIeicNByGEEEIIIYQQQtQ7aTgIIYQQQgghhBCi3knDQQghhBBCCCGEEPVOGg5CCCGEEEIIIYSod9JwEEIIIYQQQgghRL2ThoMQQgghhBBCCCHqnTQchBBCCCGEEEIIUe+k4SCEEEIIIYQQQoh69//GMbbWVyMu8wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "({'ok': 64.28984788359789,\n", + " 'QC outliers': 35.707671957671955,\n", + " 'missing (gaps)': 0.0,\n", + " 'missing (individual)': 0.00248015873015873},\n", + " {'repetitions outlier': 29.658564814814813,\n", + " 'gross value outlier': 4.869378306878307,\n", + " 'persistance outlier': 1.0085978835978835,\n", + " 'in step outlier group': 0.17113095238095238,\n", + " 'duplicated timestamp outlier': 0.0,\n", + " 'invalid input': 0.0,\n", + " 'in window variation outlier group': 0.0,\n", + " 'buddy check outlier': 0.0,\n", + " 'titan buddy check outlier': 0.0,\n", + " 'sct resistant check outlier': 0.0},\n", + " {'duplicated_timestamp': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'invalid_input': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'repetitions': {'not checked': 0.0,\n", + " 'ok': 70.34143518518519,\n", + " 'outlier': 29.658564814814813},\n", + " 'gross_value': {'not checked': 29.658564814814813,\n", + " 'ok': 65.47205687830689,\n", + " 'outlier': 4.869378306878307},\n", + " 'persistance': {'not checked': 34.52794312169312,\n", + " 'ok': 64.46345899470899,\n", + " 'outlier': 1.0085978835978835},\n", + " 'step': {'not checked': 35.53654100529101,\n", + " 'ok': 64.29232804232805,\n", + " 'outlier': 0.17113095238095238},\n", + " 'window_variation': {'not checked': 35.707671957671955,\n", + " 'ok': 64.29232804232805,\n", + " 'outlier': 0.0},\n", + " 'buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},\n", + " 'titan_buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},\n", + " 'titan_sct_resistant_check': {'not checked': 100.0,\n", + " 'ok': 0.0,\n", + " 'outlier': 0.0},\n", + " 'is_gap': {'not checked': 0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'is_missing_timestamp': {'not checked': 0,\n", + " 'ok': 99.99751984126983,\n", + " 'outlier': 0.00248015873015873}})" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.get_qc_stats(obstype='temp', make_plot=True)" + ] + }, + { + "cell_type": "markdown", + "id": "db416ba5-b549-469c-bb45-f5a344f19d52", + "metadata": {}, + "source": [ + "## Quality control exercise\n", + "For a more detailed reference you can use this [Quality control exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Quality_control_excercise_02.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/examples/using_obstypes.ipynb b/docs/_build/.doctrees/nbsphinx/examples/using_obstypes.ipynb new file mode 100644 index 00000000..bdbccb5e --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/examples/using_obstypes.ipynb @@ -0,0 +1,674 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e4b8a66f-c3df-400b-a1d1-c031ff7d5f1c", + "metadata": {}, + "source": [ + "# Working with specific observation types\n", + "In this demo, you can find a demonstration on how to use Observation types." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "80d48024-5cda-43de-8f32-9b231f1243c7", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "#Initialize an empty Dataset\n", + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "24e53b6d-f2e9-4ac0-b175-b765c16988a6", + "metadata": {}, + "source": [ + "## Default observation types\n", + "\n", + "An observation record must always be linked to an *observation type* which is specified by the [Obstype class](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.obstypes.Obstype.html). \n", + "An Obstype represents one observation type (i.g. temperature), and it handles unit conversions and string representations of an observation type. \n", + "\n", + "By default a set of standard observationtypes are stored in a Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "361a4341-e217-411d-a3b8-9c0829b0de92", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "03a66ed6-de2a-44d6-8f4e-5fb577f0d0d5", + "metadata": {}, + "source": [ + "From the output it is clear that an Obstype holds a **standard unit**. This standard unit is the preferred unit to store and visualize the data in. The toolkit will convert all observations to their standard unit, on all import methods. *(This is also true for the Modeldata, which is converted to the standard units upon import)*.\n", + "\n", + "A **description** (optional) holds a more detailed description of the observation type. \n", + "\n", + "Multiple **known units** can be defined, as long as the conversion to the standard unit is defined. \n", + "\n", + "**Aliases** are equivalent names for the same unit. \n", + "\n", + "At last, each Obstype has a unique **name** for convenions. You can use this name to refer to the Obstype in the Dataset methods.\n", + "\n", + "As an example take a look at the temperature observation and see what the standard unit, other units and aliases looks like:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "14e49af0-77cc-4539-8a59-8374d06c9d18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obstype instance of temp\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "temperature_obstype = your_dataset.obstypes['temp'] #temp is the name of the observationtype\n", + "print(temperature_obstype)\n", + "\n", + "temperature_obstype.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "f6cdac58-d288-4af0-990e-e1e5403fea0c", + "metadata": {}, + "source": [ + "## Creating and Updating observations\n", + "If you want to create a new observationtype you can do this by creating an Obstype and adding it to your (empty) Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b80f7106-f6ec-45f2-a5a5-ef175480fcda", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "co2 observation with: \n", + " * standard unit: ppm \n", + " * data column as None in None \n", + " * known units and aliases: {'ppm': [], 'ppb': []} \n", + " * description: The CO2 concentration measured at 2m above surface \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "co2_concentration = metobs_toolkit.Obstype(obsname='co2',\n", + " std_unit='ppm')\n", + "\n", + "#add other units to it (if needed)\n", + "co2_concentration.add_unit(unit_name='ppb',\n", + " conversion=['x / 1000'], #1 ppb = 0.001 ppm\n", + " )\n", + "\n", + "#Set a description\n", + "co2_concentration.set_description(desc='The CO2 concentration measured at 2m above surface')\n", + "\n", + "#add it to your dataset\n", + "your_dataset.add_new_observationtype(co2_concentration)\n", + "\n", + "#You can see the CO2 concentration is now added to the dataset\n", + "your_dataset.show()\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "caa6522b-f0d7-49ac-96a8-7ace2d564d88", + "metadata": {}, + "source": [ + "You can also update (the units) of the know observationtypes :" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5a9e5569-d917-48a6-8c9c-5b44a70f4a63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit'], 'your_new_unit': []} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "your_dataset.add_new_unit(obstype = 'temp', \n", + " new_unit= 'your_new_unit',\n", + " conversion_expression = ['x+3', 'x * 2'])\n", + "# The conversion means: 1 [your_new_unit] = (1 + 3) * 2 [°C]\n", + "your_dataset.obstypes['temp'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "38f08e3c-88d7-484d-823e-38b324d6a940", + "metadata": {}, + "source": [ + "## Obstypes for Modeldata\n", + "\n", + "Obstypes are also used in Modeldata to interpret and convert the modeldata-data. Similar as with a Dataset, a set of default obstypes is stored in each Modeldata. To add a new band, and thus a new obstype, to your modeldata you can you this method:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ee043b1b-f195-484b-a752-90bb5e501ada", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['cumulated_precip'] \n", + " * Data has these units: ['m'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n", + "\n", + " ------ Known gee datasets -----------\n", + "The following datasets are found: \n", + "\n", + " --------------------------------\n", + "global_lcz_map : \n", + "\n", + " No mapped observation types for global_lcz_map.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'}\n", + "\n", + " --------------------------------\n", + "DEM : \n", + "\n", + " No mapped observation types for DEM.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'}\n", + "\n", + " --------------------------------\n", + "ERA5_hourly : \n", + "\n", + "temp observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'temperature_2m'} \n", + " * standard unit: Celsius \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + "pressure observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'surface_pressure'} \n", + " * standard unit: pa \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + "cumulated_precip observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'total_precipitation'} \n", + " * standard unit: m \n", + " * description: Cumulated total precipitation since midnight per squared meter \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''}\n", + "\n", + " --------------------------------\n", + "worldcover : \n", + "\n", + " No mapped observation types for worldcover.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'}\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "era = metobs_toolkit.Modeldata(modelname='ERA5_hourly')\n", + "era.obstypes\n", + "#Create a new observation type\n", + "precipitation = metobs_toolkit.Obstype(obsname='cumulated_precip',\n", + " std_unit='m',\n", + " description='Cumulated total precipitation since midnight per squared meter')\n", + "\n", + "#Add it to the Modeldata, and specify the corresponding band.\n", + "era.add_obstype(Obstype=precipitation,\n", + " bandname='total_precipitation', #look this up: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands \n", + " band_units='m',\n", + " band_description=\"Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). ...\",\n", + " )\n", + "\n", + "\n", + "# Define locations\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "# Define a time period\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "#Extract the data\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=[precipitation.name]\n", + " )\n", + "era.get_info()\n" + ] + }, + { + "cell_type": "markdown", + "id": "4d97ff9f-940f-4d4d-8052-9e8ad249850e", + "metadata": {}, + "source": [ + "## Special observation types\n", + "### 2D-Vector fields\n", + "At a specific height, the wind can be seen (by approximation) as a 2D vector field. The vector components are often stored in different bands/variables in a model. \n", + "\n", + "A common problem is that observation measures the amplitude and direction of a vectorfield, while the models store the vector components. So we need to transform the vector components to an amplitude and direction. \n", + "\n", + "This can be done in the MetObs toolkit by using the **ModelObstype_Vectorfield**. This class is similar to the ModelObstype class but has the functionality to convert components to amplitude and direction. \n", + "\n", + "By default, the *wind* obstype is stored in each Modeldata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "53e08158-082f-4bb0-957c-ed97f07d8b84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n" + ] + } + ], + "source": [ + "era = metobs_toolkit.Modeldata(modelname='ERA5_HOURLY')\n", + "era.obstypes['wind'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "633d3eb8-78d2-4b68-a198-a0a58d312f4c", + "metadata": {}, + "source": [ + "When extracting the wind data from era5 it will\n", + " 1. Download the u and v wind components for your period and locations.\n", + " 2. Convert each component to its standard units (m/s for the wind components)\n", + " 3. Compute the amplitude and the direction (in degrees from North, clockwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a1c15608-02da-453f-a58c-51695230fdc1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['wind_amplitude', 'wind_direction'] \n", + " * Data has these units: ['m/s', '° from north (CW)'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=['wind']\n", + " )\n", + "era" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e7750ef4-4ff7-4fa5-8458-697eb51981cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8DklEQVR4nOzdd3iT5f7H8Xe696K00FIKLXtTKrKXiDLEBYqiDCduxe1xHReOg6L+FMWFA1BBFBVcIFM2Ze/ZFuigLd07ye+PQqCy2tLm6fi8riuXyZNnfHJOaZNv7vv+mqxWq5Uq5uDgQGJiIkFBQTg4OJxzP5PJhNlsruo4IiIiIiIiIiIiVcpkj6KbiIiIiIiIiIhIXXLuYWdVJD8/396XFBERERERERERsSu7j3Rzc3Oja9eu9O3bl379+tGjRw/c3d3tGUFERERERERERKRK2b3otmLFCpYtW8aSJUtYuXIlxcXFREdH24pwl19+uT3jiIiIiIiIiIiIVDpD13QrLi5m3bp1fPzxx8yYMQOLxaJGCiIiIiIiIiIiUuM5GXHRPXv2sGTJEtutoKCAYcOG0a9fPyPiiIiIiIiIiIiIVCq7j3QLDQ0lLy+Pfv360a9fP/r27UuHDh0wmUz2jCEiIiIiIiIiIlJl7N69tH79+uTm5pKYmEhiYiJJSUnk5eXZO4aIiIiIiIiIiEiVMWRNt/T0dJYtW8bSpUtZunQpO3bsoFOnTvTv359XX33V3nFEREREREREREQqlaGNFFJTU1myZAnz5s1j1qxZaqQgIiIiUs01adKEdu3a8euvvxodpZSTawMvWbLE0BwiIiIiJ9l9euncuXN58MEH6dChA8HBwdxzzz1kZ2czefJkYmJi7B1HREREpMpNnz4dk8l0ztvq1asBztju4+ND3759mT9//jnPnZ6ejpubGyaTiZ07d551nxdffPGs13Vzc6uS1ysiIiIiBnQvnTBhAn369OGuu+6ib9++tG/f3t4RRERERAzx0ksv0bRp0zO2N2vWzHb/8ssvZ8yYMVitVmJjY5k6dSpXXXUVv/32G1dcccUZx86ePRuTyUSDBg2YMWMGr7zyyjmvP3XqVLy8vGyPHR0dL/IViYiIiMi52L3olpycXKb9Xn/9dSZMmICfn1/VBhIRERGxk8GDBxMdHX3efVq0aMEtt9xie3z99dfTpk0b3n333bMW3b755huGDBlCeHg4M2fOPG/RbcSIEQQGBlb8BVRDubm5eHh4GB1DRERE5Ax2n15aVq+99hppaWlGxxARERExVOvWrQkMDGT//v1nPBcXF8fy5csZNWoUo0aN4uDBg6xcufKc57JarWRmZlIZS/quWLGCrl274ubmRkREBF999dUZ+xw4cICRI0cSEBCAh4cH3bp1O2Oq7Mmpt4cOHSq1fcmSJZhMplJrtPXr14927dqxYcMG+vTpg4eHB88888wZ183OzsbT05OHHnrojOcOHz6Mo6MjkyZNqtgLFxERESmjalt0M7C/g4iIiEiVyMjIICUlpdQtNTX1gsccP34cf3//M56bNWsWnp6eDBs2jK5duxIZGcmMGTPOea6IiAh8fX3x9vbmlltuISkpqUKvY9++fYwYMYLLL7+cyZMn4+/vz7hx49i+fbttn6SkJHr06MEff/zBvffey6uvvkp+fj7Dhw/nxx9/rNB1oaQR1+DBg+nUqRNTpkyhf//+Z+zj5eXFtddey3fffXdGk65Zs2ZhtVoZPXp0hTOIiIiIlIXdp5eKiIiI1FUDBw48Y5urqyv5+fm2x/n5+aSkpGC1WomLi+PZZ5/FbDYzYsSIM46dMWMGV199Ne7u7gDceOONTJs2jXfffRcnp1Nv8/z9/bn//vvp3r07rq6uLF++nA8++IC1a9eyfv16fHx8yvU6du/ezbJly+jduzcAN9xwA2FhYXzxxRf873//A0qWCklKSmL58uX06tULgDvvvJMOHTowceJErr76ahwcyv/9b2JiIh999BF33333efcbM2YMM2bM4K+//uLKK6+0bf/mm2/o06cPjRs3Lve1RURERMpDRTcRERERO/nggw9o0aJFqW3/bmbw2Wef8dlnn9keOzs788QTTzBx4sRS+23ZsoWtW7eWmiZ500038dprr/HHH38wdOhQ2/Z/T7O8/vrr6dq1K6NHj+bDDz/kqaeeKtfraNOmja3gBlC/fn1atmzJgQMHbNsWLFhA165dbQU3KBmBdtddd/H000+zY8cO2rVrV67rQkmRcvz48Rfcb+DAgYSEhDBjxgxb0W3btm1s2bKFTz75pNzXFRERESmvaju9VERERKS26dq1KwMHDix1+/f0yKuvvpq//vqL+fPn8+KLL2IymcjNzT1jVNg333yDp6cnERER7Nu3j3379uHm5kaTJk3OO8X0pJtvvpkGDRqwcOHCcr+Os40S8/f35/jx47bHsbGxtGzZ8oz9WrdubXu+IkJDQ3Fxcbngfg4ODowePZqffvqJ3NxcoGRkoJubGyNHjqzQtUVERETKQyPdRERERKqRRo0a2aahDhkyhMDAQO6//3769+/PddddB5SsfTtr1ixycnJo06bNGedITk4mOzsbLy+v814rLCysQo2r/j0676SKrMlrMpnOuv3fa7GddHIqbVmMGTOGt956i59++ombbrqJmTNnMmzYMHx9fcudU0RERKS87DLSbeLEieTk5ACwbNkyiouLL3hM7969y/WmSkRERKQ2uvvuu4mMjOTZZ5+1FbWWLl3K4cOHeemll5g9e3ap27Rp08jNzeWnn34673mtViuHDh2ifv36VZI7PDyc3bt3n7F9165dtucBW4OI9PT0UvtVdCTc6dq1a0fnzp2ZMWMGy5cvJy4ujltvvfWizysiIiJSFnYpur3//vtkZ2cD0L9//zJ9o7pgwQIaNmxY1dFEREREqjUnJyceffRRdu7cybx584BTU0sff/xxRowYUep255130rx581JTTI8dO3bGeadOncqxY8dKNRmoTEOGDGHt2rWsWrXKti0nJ4dp06bRpEkT2wi9yMhIoOSL2ZPMZjPTpk2rlBy33norf/75J1OmTKFevXoMHjy4Us4rIiIiciF2mV7apEkT3nvvPQYNGoTVamXVqlVnbXsP0KdPH3tEEhEREbG73377zTbS63Q9evQgIiLinMeNGzeO559/njfeeIPBgwfzww8/cPnll+Pm5nbW/YcPH867775LcnIyQUFBhIeHc+ONN9K+fXvc3NxYsWIF3377LZ06dbpgF9CKeuqpp5g1axaDBw/mwQcfJCAggC+//JKDBw/yww8/2Naoa9u2Ld26dePpp58mLS2NgIAAvv322zLNjCiLm2++mSeeeIIff/yRe+65B2dn50o5r4iIiMiF2KXo9tZbbzFhwgQmTZqEyWTi2muvPet+JpPpnOt3iIiIiNR0zz///Fm3f/HFF+cturm7u3P//ffz4osvMn/+fNLT07nqqqvOuf9VV13F5MmT+fbbb3nwwQcZPXo0K1eu5IcffiA/P5/w8HCeeOIJ/vOf/+Dh4XHRr+tsgoODWblyJU8++STvv/8++fn5dOjQgV9++aVUZ1UoaXBw99138/rrr+Pn58ftt99O//79ufzyyyslx6BBg1iwYIGmloqIiIhdmawVWfG2grKzs/Hx8WH37t0EBQWddR8tbCsiIiIilenaa69l69at7Nu3z+goIiIiUofYtXupl5cXixcvpmnTpjg5qXGqiIiIiFSthIQE5s+fz3/+8x+jo4iIiEgdY9eRbieZzWZ++ukndu7cCUCbNm24+uqrz9l+XkRERESq1rFjx867zIeLiwsBAQF2THRxDh48yD///MOnn37KunXr2L9/Pw0aNDA6loiIiNQhdh9utm/fPoYOHcrhw4dp2bIlAJMmTSIsLIz58+fbOliJiIiIiP1ccsklxMbGnvP5vn37smTJEvsFukhLly5l/PjxNG7cmC+//FIFNxEREbE7u490GzJkCFarlRkzZti+LU1NTeWWW27BwcGB+fPn2zOOiIiIiAD//PMPeXl553ze39+fLl262DGRiIiISM1m96Kbp6cnq1evpn379qW2b968mZ49e5KdnW3POCIiIiIiIiIiIpXO7tNLXV1dycrKOmN7dnY2Li4u9o5zQRaLhaNHj+Lt7Y3JZDI6joiIiIiIiIiIGMhqtZKVlUVISAgODg7n3M/uRbdhw4Zx11138dlnn9G1a1cA1qxZw4QJExg+fLi941zQ0aNHCQsLMzqGiIiIiIiIiIhUI/Hx8TRq1Oicz9t9eml6ejpjx47ll19+wdnZGYDi4mKGDx/O9OnT8fX1tWecC8rIyMDPz4/4+Hh8fHyMjiMiIiIiIiIiIgbKzMwkLCyM9PT089ax7F50O2nfvn3s3LkTgNatW9OsWTMjYlxQZmYmvr6+ZGRkqOgmIiIiIiIiIlLHlbVWZPfppSc1a9bsvIU2Hx8fNm3aREREhB1TiYiIiIiIiIiIXLxzr/ZmMIMG4ImIiIiIiIiIiFy0alt0ExERERERERERqalUdBMREREREREREalkKrqJiIiIiIiIiIhUsmpbdDOZTEZHEBERERERERERqZBqW3RTIwUREREREREREamp7F50e+mll8jNzT1je15eHi+99JLt8W+//UZoaKg9o4mIiIiIiIiIiFQKk9XOQ8ocHR1JSEggKCio1PbU1FSCgoIwm832jHNBmZmZ+Pr6kpGRgY+Pj9FxRERERERERETEQGWtFdl9pJvVaj3rem2bN28mICDA3nFEREREREREREQqnZO9LuTv74/JZMJkMtGiRYtShTez2Ux2djYTJkywVxwREREREREREZEqY7ei25QpU7Bardx2223897//xdfX1/aci4sLTZo0oXv37vaKI1LliswWnB2rba8SEREREREREalCdiu6jR07FoCmTZvSo0cPnJ2dK+W8y5Yt46233mLDhg0kJCTw448/cs0119iet1qtvPDCC3zyySekp6fTs2dPpk6dSvPmzSvl+iJn88OGw3yy/ABf3taVYB83o+OIiIiIiIiIiJ3ZfRhO3759cXR0ZM+ePaxYsYJly5aVupVXTk4OHTt25IMPPjjr82+++SbvvfceH330EWvWrMHT05MrrriC/Pz8i30pIme1aGcST/ywhV2JWYz8aBVxqWd26xURERERERGR2s3u3UtXr17NzTffTGxsLP++tMlkuqjupSaTqdRIN6vVSkhICI8++iiPPfYYABkZGQQHBzN9+nRGjRp1xjkKCgooKCiwPc7MzCQsLEzdS6VMHvluE4383fkh5jBH00sKu0Hernxzx6W0CPY2OJ2IiIiIiIiIXKxq2710woQJREdHs23bNtLS0jh+/LjtlpaWVqnXOnjwIImJiQwcONC2zdfXl0svvZRVq1ad9ZhJkybh6+tru4WFhVVqJqm9dhzN5MeNR3j/733U83SlWZAXAMlZBdzw8So2x6cbG1BERERERERE7MbuRbe9e/fy2muv0bp1a/z8/EoVuE5vrlAZEhMTAQgODi61PTg42Pbcvz399NNkZGTYbvHx8ZWaSWqvORsO2+7fcEkY39/dnQ6NSn6m03OLuPmT1azcn2JUPBERERERqcGyC4rPmC0mItWb3Ytul156Kfv27bP3ZcvM1dUVHx+fUjeRCykstvDTpiMAuDg5MLxDCAGeLsy441K6RQQAkFNoZtwX6/hrR5KRUUVEREREpAb5fVsif+1IZPQnq3nw201k5RcZHUlEyshu3UtPeuCBB3j00UdJTEykffv2Z3Qx7dChQ6Vdq0GDBgAkJSXRsGFD2/akpCQ6depUadcR+XtXMmk5hQAMahOMr0fJz7W3mzPTx3fl/pkxLNyZTGGxhQnfbODtGzpydadQIyOLiIiIiEg1V2y28PKvOziSngfA5sMZbDmczvs3daZDIz9jw4nIBdm96Hb99dcDcNttt9m2mUwmrFbrRTdS+LemTZvSoEEDFi1aZCuyZWZmsmbNGu65555Ku47I6VNLR0aXXgfQzdmRqbd04bHZm5m36SiuTg6EBXjYO6KIiIiIiNQwC7Yl2gpuTg4mii1WYlNzuX7qSp4a3JrbejbBZDIZnFJEzsXuRbeDBw9W6vmys7NLTVc9ePAgmzZtIiAggMaNG/Pwww/zyiuv0Lx5c5o2bcpzzz1HSEiIrcOpyMU6llXA4t3JADTwcaNXs8Az9nF2dOCdGzoR4OnCZa2CiWrsb++YIiIiIiJSg1itVj5ZdsD2+H8jOzB9ZSyb4tMpMlt5+dcdrNqfwlsjOuLv6WJgUhE5F7sX3cLDwyv1fOvXr6d///62xxMnTgRg7NixTJ8+nSeeeIKcnBzuuusu0tPT6dWrF7///jtubm6VmkPqrnmbjmC2lCxoel1UKI4OZ/+mycHBxAtXtT1j+8nFUPUNlYiIiIiInLTmYBpbj2QA0C7Uh6s7hTK0Qwj/+2M3H58oxi3cmcyQ95bz7qjOdG0aYGRcETkLuzdSAPj666/p2bMnISEhxMbGAjBlyhTmzZtX7nP169cPq9V6xm369OlASSHjpZdeIjExkfz8fBYuXEiLFi0q8+VIHWa1Wpm9/tTU0hFdGpX7+Ffn7+SpH7baCnciIiIiIiKnj3K7s3cEJpMJZ0cHnh7Smi/GX0LAidFtCRn5jJq2iv/7e69RUUXkHOxedJs6dSoTJ05kyJAhpKen29Zw8/PzY8qUKfaOI3JR4tPyOJCSDUCXcH8i6nuV6/gPFu/j0xUH+W59PA/MiqGguPLWNBQRERERkZrr8StbMqJLI5rU82BI+4alnuvfMojfHupNt4iS0W0WK2TkqaupSHVjsp6c22Ynbdq04bXXXuOaa67B29ubzZs3ExERwbZt2+jXrx8pKSn2jHNBmZmZ+Pr6kpGRgY+Pj9FxpBo6nlPIvE1HCPFzZ1DbBuU6dv6WBB7+biNF5pJ/hr2bB/LxrV3wcLH7zG8REREREamGCostuDidfbyM2WLl//7ex9I9yXx7V/dz7icilaustSK7/4s8ePAgnTt3PmO7q6srOTk59o4jctH8PV0Y17NpuQtuAEM7NOSTMdG4OZf8U1y+N4WbP1nD+kNplR1TRERERERqoPMV0hwdTDw0sDnf331mwS0m7jhFZktVxxOR87B70a1p06Zs2rTpjO2///47rVu3tnccEcP1axnE17dfirebE/4ezuxNzmLER6sYMXUlf+1IwqK13kRERERE5DycHEt/tN9xNJNR01Zz48erOHw816BUImL3OWwTJ07kvvvuIz8/H6vVytq1a5k1axaTJk3i008/tXcckQorNlvO+ONWUZc0CeDbu7rx86ajtk5E62OPs/6r9TQL8uKuPhFc0ylUw8VFRERERGqxvEIzoz9dzbVRjRgR1Qh3F8dyn8NisTLx+00UFluIiUtn0DvLGNAqiKaBnvh5uBDg6Yy/hwv+Hi4EeLrg7+mCp4sjJpOpCl6RSN1m9zXdAGbMmMGLL77I/v37AQgJCeG///0vt99+u72jXJDWdJOzScrMZ/C7yxnaviGjuobRNsS3Us5bWGxh3qYjTFt2gL3J2aWea+Djxm29mnBT18Z4uzlXyvVERERERKT6+Hp1LM/9tA2Am7qGMem6DhU6z6b4dB6YFUN8Wh5NAz04mHL+0W7OjiYi63vx+8N9Sm3PzC8iv8hMkLdbhXKI1FZlrRUZUnQ7KTc3l+zsbIKCgoyKcEEqusnZTF2ynzd+3wXAgwOaMXFQy0o9v8ViZfHuZD5aup91h46Xes7bzYn7+jdjQt/ISr2miIiIiIgYx2yxMvDtpRxMKVnr/NcHetEutOJf7mfmFzFpwU783F2YunT/BfdvHuTFXxP7lto2acFOvlkdy4S+kdzRO6JCI+9EaqOy1ooMbZHo4eGBh4eHkRFEys1qtTJnQ7zt8YguYZV+DQcHE5e1Duay1sFsiE3j46UH+HNHEgBZ+cUUFmtBVBERERGR2mThziRbwa1HZL2LKrgB+Lg5M+m6DhzPKWRI+4Yczy3keG4haTmFHM8t4nhO4WnbimgaWPqzeXxaLl/8c4hCs4XJf+1hxpo4HruiJdd1DsXBQVNRRcrC7kW3pKQkHnvsMRYtWkRycjL/HmhnNpvtHUmkXDbGp7P/WMkfw0ubBtC4XtUWjruEBzBtTAD7krP5ZNkBft+eyK3dwkvtk5yVz+HjeUQ19q/SLCIiIiIiUjU+ObG2M8CdfSIq7bz+J9ZtKy9PVyduvCSMmWvjMFusJGbm89jszXy+4iDPDm1Nj2aBlZZRpLaye9Ft3LhxxMXF8dxzz9GwYUMt1ig1zuz1h233R3RpZLfrNgvy4o0RHXhxeNszhnV/tvwgX6w8xPwHetEsyEv/rkREREREapCYuOOsjy1ZVqZ5kBf9WtQ3OBEEeLrw8jXtGNsjnNd/28XCnckA7EjI5OZP13BZqyCeHtKKZkHeBicVqb7sXnRbsWIFy5cvp1OnTva+tMhFyy8y8+vmowB4uDgypH1Du2f4d8EtI6+Ib1bHElnfk6Hvr2Dq6Cguax1s91wiIiIiIlIxny4/bZRb74hq9SV6syBvPh17CSv3pfDqgp1sP5oJwKJdySzZc4y7+0TwxJWtDE4pUj052PuCYWFhZ0wpFakp/tieSFZBMQBD2jfE09XQZREBcHN24LqoUHYmZFFYbOG1BTspNmvNNxERERGRmiA2NYfftyUCEOjlytWdQwxOdHY9mgXyy/29mDyyIw18SrqZmi1WAiowdVWkrrB70W3KlCk89dRTHDp0yN6XFrloczacmlo60o5TS8/H1cmRl65uR5fwkvXc9h/L4bv18Rc4SkREREREqoPPVxzEcmJcyvieTXB1qr4dQh0cTFzfpRGLH+vHY4Na0KahD7d2L73edF6hGYtFA21EwICi24033siSJUuIjIzE29ubgICAUjeR6upIeh4r9qUA0DjAg65Nq8/Pq8lk4pkhrW2P3/lrD9knRuSJiIiIiEj1ZTKZcHF0wN3ZkdGXNjY6Tpm4uzhy/4Dm/PpArzOKhK8u2MHVH/zDpvh0Y8KJVCN2nxs3ZcoUe19SpFLEpebSwMeNhIx8RnRpVK3WWQDoEu7PkPYNWLA1kZTsQj5eup9HB7U0OpaIiIiIiJzHi8Pbcm//SLYezsDPo2ZN1XRwKP2ZaF9yFrPWxmO2WFmw5SjHcwvp3zLIoHQixjNZtcDaeWVmZuLr60tGRgY+Pj5GxxGDmS1W/tmXQssG3gSfWMegOjmUksPl7yylyGzFzdmBJY/1p4Fv9cspIiIiIiK1z5bD6Tw2ezNZ+cUkZOTj5+HMggd7E+LnbnQ0kUpV1lqR3aeXApjNZn744QdeeeUVXnnlFX788UfMZrMRUUTKxdHBRJ8W9atlwQ2gSaAnt3ZrAkB+kYXJf+42NpCIiIiIiNQZHRr5seDB3rRq4A1Aem4R982MobBYjd6kbrJ70W3fvn20bt2aMWPGMHfuXObOncstt9xC27Zt2b9/v73jiNQ6DwxohrdbyczxOTGH2XGipbeIiIiIiFQPVquVuTGHySusfYNPnBwdmHJjZxr5l4xu2xiXzpu/7zI4lYgx7F50e/DBB4mMjCQ+Pp6YmBhiYmKIi4ujadOmPPjgg/aOI3JBeYVmjqTnGR2jzPw9XXhgQDMArFb4bMVBgxOJiIiIiMjplu45xsTvN9Pj9UV8vz7e6DiVztfDmQ9HR+HiWFJy+HTFQX7flmhwKhH7s3vRbenSpbz55pulOpXWq1eP119/naVLl9o7jsgFzd+aQK83/uaWT9cQE3fc6DhlMqZ7E9qG+PDs0Na8dl07o+OIiIiIiMhpPll+AIDjuUX4uDkbnKZqdGjkx7PDWtsePz5nM3GpuQYmErE/uxfdXF1dycrKOmN7dnY2Li41q1OL1A1zNsRjtcKKfSnUlL4jbs6O/PpAL+7oHXFGC28RERERETHO9qMZ/LMvFYAm9Ty4vE2wwYmqzq3dwhnWoSEAWfnF3DtzA/lFtW9Krci52L3oNmzYMO666y7WrFmD1WrFarWyevVqJkyYwPDhw+0dR+S84lJzWX0gDYCIQE+iGvsbnKjsTCbThXcSERERERG7+nT5qeVfbu/VFEeH2vu+3WQy8fr1HYgI9ARg25FMXp2/0+BUIvZj96Lbe++9R2RkJN27d8fNzQ03Nzd69uxJs2bNePfdd+0dR+S8fog5bLt/fZdGNbqQtf9YNrmFxUbHEBERERGpsxIy8vhl81EA/D2cGdElzOBEVc/L1YkPRkfh6lRSfli0M4n03EKDU4nYh5O9L+jn58e8efPYu3cvO3fuxGQy0bp1a5o1a2bvKCLnZbFYmbOhpOjmYILroxoZnKhiUrMLmLJwLzPXxvHQZc158LLmRkcSEREREamTpv9ziGJLyZI1t3YLx92lbiwF07qhDy9f3Y4F2xJ4+4ZO+HloaSmpG+xedDupefPmtkJbTR49JLXX6oOptq6lvZvXp4Gvm8GJKiY9r4iZa+MwW6x8tHQ/o7qGEeRdM1+LiIiIiEhNlZVfxMw1cQC4ODlwa/cmxgays5HRjRjRpREOtXg6rci/2X16KcBnn31Gu3btbNNL27Vrx6effmpEFJFzmrP+1NTSEV1q5ig3gMj6XtzctTEAuYVmpizca3AiEREREZG657t18WQVlCz3cl3nUOp7uxqcyL5MJtMZBTeLpWY0qhOpKLsX3Z5//nkeeughrrrqKmbPns3s2bO56qqreOSRR3j++eftHUfkrLLyi1iwLQEAHzenGt9R6KGBzfFyLRnY+u3aOPYmndlBWEREREREqkZRsZkZJ0a5AdzRu6mBaaqHlOwCxny+lu/XxxsdRaTK2H166dSpU/nkk0+46aabbNuGDx9Ohw4deOCBB3jppZfsHUnkDAu2JpBfZAFgeKcQ3Jxr9loLgV6u3NMvkrf+2I3FCq//tovPxl1idCwRERERkTrhr53JZOYV0bVJAPW9XWkW5G10JEOl5RQy9L3lJGUWsO5QGu1DfWnd0MfoWCKVzu4j3YqKioiOjj5je5cuXSguVmdFqR4a+LrTPaIeACNrSUeh23o2pYFPyVpui3Yls3JfisGJRERERETqhukrD5GaU8jaQ2ncdGLpl7oswNOFy1qXzCYqKLZw34wYsgtUD5Dax+5Ft1tvvZWpU6eesX3atGmMHj3a3nFEzrAvOZtpy0oaDvz9aF86NPI1OlKlcHdx5LErWtoev7pgp9ZQEBERERGpYjsTMll7MA2AyPqe9GxWz+BE1cPzw9rQNqRkdNuBlByenrsVq1WfT6R2MbSRwh133MEdd9xB+/bt+eSTT3BwcGDixIm2m4gRvl8fzz/7Unno200s3XOsVnXXvbZzqG3Y9vajmczbfMTgRCIiIiIitdtXqw7Z7o/t0aRWfb64GG7Ojnw4OgrvE2tP/7L5KN+ctu6dSG1g96Lbtm3biIqKon79+uzfv5/9+/cTGBhIVFQU27ZtY+PGjWzcuJFNmzbZO5oIhcUW5saUdC11djRxdadQgxNVLkcHE/8Z0tr2+MeNRw1MIyIiIiJSu2XkFvHjxpIvur1cnbguqpHBiaqX8HqevDWyg+3xy7/sYOvhDAMTiVQuuzdSWLx4sb0vKVJmf+9KIiW7EIBBbRoQ4OlicKLK16t5INdHNaJLuD83ROuPvoiIiIhIVZm9Id7WoO36qFC8XO3+Ebzau7JdQ27r2ZTP/zlIodnCvTM38Ov9vfH1cDY6mshFM2R6qUh19d26U+2qb7ykdjRQOJvJN3Tk5ksb4+SoXwEiIiIiIlXBbLHy1apY2+NbuzcxLkw199TgVnQK8wMgPi2PD5fsNTaQSCWxe5k9Pz+f999/n8WLF5OcnIzFYin1fExMjL0jiQCQkJHH0j3HAAj1c6dXs0CDE4mIiIiISE11PLeQUD934tJy6d08kGZBXkZHqrZcnBz4YHQUV72/nIj6Xnz+zyG6RwbSr2WQ0dFELordi2633347f/75JyNGjKBr165aRFKqjTnrD3OymeeILo1wcKg7P5vbjmTg5epEk0BPo6OIiIiIiNQKgV6uzLqrG7sTsygyWy58QB0X6ufO04Nb8/icLQC8Mn8nPZsF4qzZOVKD2b3o9uuvv7JgwQJ69uxp70uLnJPFYuX7DSVTS00mGFlH1jpLyynklfk7WHswDXdnR2bd1Y1AL1ejY4mIiIiI1BotG3gbHaHGGNGlETPXxrExLp19ydnMXBPH2B5NjI4lUmF2LxmHhobi7a1fOlK9rDqQSnxaHgC9mgXSyN/D4ET24erkQJC3G8lZBexNzubGj1eRmJFvdCwREREREamDTCYTzw9rY3v8zsI9pOcWGphI5OLYveg2efJknnzySWJjYy+8s4idbIw7brs/6pLGBiaxL09XJ0ZGN6LeiS6t+4/lMPLjlcSn5RqcTERERESkZsopKGbJ7mQsJ9eukXLp3NifazuHApCeW8SUhWqqIDWX3Ytu0dHR5OfnExERgbe3NwEBAaVuIka4f0Bzlj7ej4cHNmdgm7q1WGdkfS++v7s7jQNKRvfFp+Ux8qNV7EvONjiZiIiIiEjN8+PGI4z7Yh2Xvb2UFXtTjI5TIz1xZUvcnR0B+Hp1LPuSswxOJFIxJqvVatfy+8CBA4mLi+P2228nODj4jEYKY8eOtWecC8rMzMTX15eMjAx8fHyMjiNSZZIy8xn96Rpbsa2epwtf334pbUL0cy8iIiIiUhZWq5UrpixjT1LJe+pfH+hFu1Bfg1PVTO8u3Ms7C/cA0L9lfb4Y39XgRCKnlLVWZPeim4eHB6tWraJjx472vGyFqegmdUlqdgFjPl/L9qOZAPi4OfHlbV3p3Njf4GQiIiIiItXfyv0p3PzJGgCiw/2Zc08PgxPVXHmFZgZMXkLCiTWnp4+/hH4t69asJKm+ylorsvv00latWpGXl2fvy4qcVXZBsdZaOE09L1dm3tmNqMZ+AGTmF3PLp2tYtT/V2GAiIiIiIjXAVytPrV2urpsXx93FkacGt7I9nrEmzsA0IhVj96Lb66+/zqOPPsqSJUtITU0lMzOz1E3Enl7/bSe931zMlIV7yMgrMjpOteDr7szXt19Kj8h6ABSaLeQXmQ1OJSIiIiJSvR1Jz+PPHYkABHm7ckXbBgYnqvmGdwyhX8v6PD+sDR+OjjI6jki52X16qYNDSZ3v32u5Wa1WTCYTZnP1+nCv6aW1V16hma6vLSQrvxh3Z0fW/ucyvN2cjY5VbeQXmXlg1kau6xzK4PYNjY4jIiIiIlKtvfXHLj5YvB+Ahwc25+GBLQxOVDucrBWIVCdlrRU52TETAIsXL7b3JUXO6rdtCWTlFwMwtENDFdz+xc3ZkWm3dtEfOBERERGRC8gvMjNrbTwATg4mbu7a2OBEtYc+j0hNZveiW9++fe19SbKysnjuuef48ccfSU5OpnPnzrz77rtccsklds8i1cd36+Jt90ddEmZgkurrbH/gPlq6H09XJ27tFm5AIhERERGR6mf+lgTScgoBGNK+IUE+bgYnqr12JWbi7uxIeD1Po6OIXJDdi24A6enpfPbZZ+zcuROAtm3bctttt+HrWzWtlO+44w62bdvG119/TUhICN988w0DBw5kx44dhIaGVsk1pXo7mJLDmoNpAETU96RLuLpzlsVXqw7x+m+7AMgtKObuvpEGJxIRERERMd5Xqw7Z7o/toS+nq0JGXhFv/r6LWWvj6NcyiM/HaRCNVH92b6Swfv16IiMjeeedd0hLSyMtLY23336byMhIYmJiKv16eXl5/PDDD7z55pv06dOHZs2a8eKLL9KsWTOmTp1a6deTmuH79adGud0YHaYhy2WUlJlvuz/pt128/dce7LwspIiIiIhItfPqte25IboRXcL9iWqsL/SrgrOjiUU7k7FY4e9dySzdc8zoSCIXZPei2yOPPMLw4cM5dOgQc+fOZe7cuRw8eJBhw4bx8MMPV/r1iouLMZvNuLmVHt7r7u7OihUrzti/oKBAHVVruWKzhR82HAZK1lu4LqqRwYlqjsevaMXjV7S0PX5v0V4m/bZLhTcRERERqdPahfry5oiOzL67u77QryIeLk48NbiV7fErv+6g2GwxMJHIhRky0u3JJ5/EyenUzFYnJyeeeOIJ1q9fX+nX8/b2pnv37rz88sscPXoUs9nMN998w6pVq0hISDhj/0mTJuHr62u7hYVpra/aZsnuYyRnFQBwWesg6nu7GpyoZrmvfzNeuKqN7fHOhEwm/7nHwEQiIiIiItWDg4MKblVpeMcQOoX5AbA3OZtZa+OMDSRyAXYvuvn4+BAXd+Y/jPj4eLy9vavkml9//TVWq5XQ0FBcXV157733uOmmm3BwOPPlP/3002RkZNhu8fHxZzmj1GTfntZA4UY1UKiQ8T2b8sZ17Wkf6svyvSn83+J9fH3aOhYiIiIiIiKVzcHBxPOnDQB4+689ZOQWGZhI5PzsXnS78cYbuf322/nuu++Ij48nPj6eb7/9ljvuuIObbrqpSq4ZGRnJ0qVLyc7OJj4+nrVr11JUVERERMQZ+7q6uuLj41PqJrWH1Wol1M8Nb1cnGvi40ad5faMj1Vg3dm3MiC6npuY+//N2ft925uhREREREZHaqMhs4dbP1vD16lhyCoqNjlNnRDX25+pOIQAczy3ivb/3GpxI5NxMVjsvxlRYWMjjjz/ORx99RHFxyS8mZ2dn7rnnHl5//XVcXat+qt/x48dp2rQpb775Jnfdddd5983MzMTX15eMjAwV4GqRvEIzB1KyaRtSNR1z65I3ft/F1CX7AXBxcuCb2y+la9MAg1OJiIiIiFStBVsTuHdGSTPAYR0a8n83RxmcqO44mp7HgMlLyC+y4ORg4s9H+hBR38voWFKHlLVWZPei20m5ubns31/yQT0yMhIPD48qu9Yff/yB1WqlZcuW7Nu3j8cffxw3NzeWL1+Os7PzeY9V0U3k/KxWK4/O3szcmCMA+Lg5MeeeHrQIrprp4iIiIiIi1cGNH69izcE0AL65/VJ6NQ80OFHd8s5fe3h3Uckot8taBfHZuEsMTiR1SVlrRXafXpqRkUFaWhoeHh60b9+e9u3b4+HhQVpaWpV1Cs3IyOC+++6jVatWjBkzhl69evHHH39csOAmIhdmMpl44/oO9GlRMlU3M7+YsZ+v5Wh6nsHJRERERESqxq7ETFvBLbK+Jz2b1TM4Ud1zd98IGvi4AXA0I5/MfK3tJtWP3Ytuo0aN4ttvvz1j+/fff8+oUaOq5Jo33HAD+/fvp6CggISEBP7v//4PX19NK6xrlu89pkU2q4izowNTR0fRoVHJv6uEjHzGfr5W/3uLiIiISK305cpY2/2xPZpgMqlrqb15uDjx4vA2vH5de359oBc+bhpUI9WP3Ytua9asoX///mds79evH2vWrLF3HKkjMvKKuPOr9XR9bSHPz9tmdJxaydPVic/HXUJ4vZKp4nuTs3n+Z/1vLSIiIiK1S0ZuET9tLFlaxcvVieuiGl3gCKkqV7ZryKiujXF0UNFTqie7F90KCgpsDRROV1RURF6epqNJ1fh581HyiywUFFvQr+OqE+jlyle3daWepwutGnjzzJDWRkcSEREREalUszfEk1dkBuD6qFC8XJ0MTiQi1ZXdi25du3Zl2rRpZ2z/6KOP6NKli73jSB3x/bp42/0bLgkzMEntF17Pk5l3duP7Cd0JPrHGgoiIiIhIbWCxWPl69amppbd2b2JcGDnDtsMZ/HiiwZtIdWD3kvwrr7zCwIED2bx5M5dddhkAixYtYt26dfz555/2jiN1wPajGWw9kgFA+1Bf2oZoPb+q1rLBmZ1LLRYrDhr2LSIiIiI12NI9x4hNzQWgd/NAmgV5GZxITnr51x18ty6eQrOFbpEBNPR1NzqSiP1HuvXs2ZNVq1YRFhbG999/zy+//EKzZs3YsmULvXv3tnccqQM0ys142QXFjP1iLbPXx194ZxERERGRamr53mM4O5Z8kTxGo9yqFScHE9kFxRQWW3j/731GxxEBDBjpBtCpUydmzJhx3n1ef/11JkyYgJ+fn31CSa2UX2TmxxOLnLo5OzC8Y4jBieqenIJiRk1bxbYjmazcn0qgtyv9WwYZHUtEREREpFzScgr5clUsXq6OdGjkx4BWek9bnUzoG8mMNXFkFxTz/bp47u4TQXg9T6NjSR1n95FuZfXaa6+RlpZmdAyp4f7YnkhmfknjjiHtGuLrrjbS9ubh4kh0eAAAZouVe7+JYVN8urGhRERERETKyd/DmdkTunN9VBi9mgWqY2Y14+/pwh29mwJQbLEyZeFegxOJVOOim9VqNTqC1ALfaWqp4UwmE88Na8PQ9g0ByCsyc9v0dRxMyTE4mYiIiIhI2ZlMJqIa+/P8VW24u2+k0XHkLG7v1RR/j5KBFj9tOsLuxCyDE0ldV22LbiIXKy41l5X7UwFoUs+DS5sGGJyo7nJ0MDH5ho62/w/ScgoZ8/kakrPyDU4mIiIiIiK1hbebM/f2awaA1QqT/9xtcCKp61R0k1rL18OZZ4e2pkWwFzdcEobJpOHfRnJzdmTamGhanehsGp+Wx/D3/2Hasv1k5BYZnE5ERERERGqDW7uHE+zjCsCfO5LYrKVtxEAmazWdx+nt7c3mzZuJiIgwNEdmZia+vr5kZGTg4+NjaBapGKvVSrHFirOjaszVQWJGPtdPXUn7UB9+354EgLuzI9dFhTK+ZxOaBXkbnFBEREREpLTn522jaaAnQ9s3JMjHzeg4cgHfrI7l2Z+2AdC7eSBf336pwYmktilrrUhVCKn1TCaTCm7VSANfN/6a2KfUm5W8IjMz1sQx8O1l3PrZGv7elYTFUi2/DxARERGROuZoeh5frYrlv7/s4JbP1hgdR8rghugwGgd4ALD1SAZJmVrWRozhZHSAc+nduzfu7u5GxxCRKuDh4sRLV7djbI8mfLnyEHM2HCa30AzA8r0pLN+bQpN6Hozt0YQRXRrh7aausyIiIiJijAVbE2z3h5xoDibVm4uTA09e2Yq9yVnc3qupPk+IYew+vXTgwIHccsstXHfddTViuqaml9Y8xWYL986IoV/LIIa0b4Cfh4vRkeQCMvOL+H5dPF+uOkR8Wl6p5x4b1IL7BzQ3KJmIiIiI1HVXf/CPbV2whRP70izIy9hAImK4staK7D7SrW3btjz99NPce++9DB06lFtuuYUhQ4bg7KzKs1SOVQdS+XNHEn/uSGL53mNMvaWL0ZHkAnzcnLmjdwTjezbl713JTF95kH/2peLi6MCoro1L7ZtfZMbVycHWGMNqtZJdUExGXpHtlnniv00Dvej6r66198+MwWK14uPmjI+7Mz5uTif+64yPu5Nte6ifO56u1XYwsIiIiIjYQXxarq3g1qqBtwpuIlIudv9E+e677/LOO++wcOFCZs6cyZgxY3B0dGTEiBGMHj2avn372juS1DI/bTxquz+8Y4iBSaS8HB1MXN4mmMvbBLM7MYsth9MJ9HIttc87C/fw29ZEHB1MtiKb+Rzrv93SrfEZRbe/dyXbprKez3s3dS7182O1WvlwyX6u6hBC43oeFXh1IiIiIlLT/Lrl1NTSq/TZokZLzswnMTOfDo38jI4idUi5i24HDx5k+fLlxMbGkpubS/369encuTPdu3fHza1sXVwcHBwYNGgQgwYN4qOPPuKXX37h1Vdf5bPPPsNsvvCHYZFzyS8y88f2RAC83Zzo3yrI4ERSUS0beNOyQelOprmFxXy7Np7GAe5sPZJ5wXOk5xaVelxktpSp4Abg41b61+PK/am89cdu3v5rD9d1DuX+Ac0Ir+dZpnOJiIiISM3065ZTX+hf1UFFt5qoyGzhf3/u5suVhwjxdefPR/rgpEZ7YidlLrrNmDGDd999l/Xr1xMcHExISAju7u6kpaWxf/9+3NzcGD16NE8++STh4eFlOmdiYiLffvst33zzDVu2bKFr164VfiEiAIt2JpNdUAzA4HYNcHN2NDiRVKaUrEI6N/ajoa8bh1Jz8XV3xs/DGV/3028utvv/Hv7v5GBi23+vIDOviMz8IjLzik+7X0Rm/qnHYQGlR7N9uvwAAGaLldkbDjN34xGu6RTKAwOa0SRQxTcRERGR2uZgSg7bj5Z80duhka9mO9RQTg4mNsalk19k4UBKDnNjjnDDJWFGx5I6okxFt86dO+Pi4sK4ceP44YcfCAsr/QNaUFDAqlWr+Pbbb4mOjubDDz9k5MiRZz1XZmYmP/zwAzNnzmTJkiVEREQwevRovvvuOyIjIy/+FUmd9tOmI7b7V3cKNTCJVIXG9TyYPr4rVquVSdd1KPfxJpMJL1cnvFydCKF83ZGnjOrMF/8c5PMVB8nML8ZssfJDzGF+3HiYazqH8sCA5jRV8U1ERESk1vh186lRbsM6qGtpTWUymXj8ipaM/GgVAO8u2svVnUNwddIADal6Zepe+scff3DFFVeU6YSpqakcOnSILl3Ovni9u7s7/v7+3HjjjYwePZro6OjyJbYzdS+tOTJyi4h+9S+KzFaCvF1Z9fRlODqYjI4ltUxmfhHT/znEZysOkpF3avqqg6mk0PvIwBb6FlRERESkFhj87nJ2JpSMdPvnqQGE+pXvS1upXsZ9sZYlu48B8OJVbRjXs6nBiaQmK2utqExFt8r0119/cdlll+HgUDPmUKvoVnPMWhvH03O3AnB7r6Y8N6yNwYmkNsvKL+LLlYf4dMXBUmvHzZ7QnUuaBJznSBERERGpCVKyC/htWyL7krL479XtjI4jF2nbkQyGvb8CgEAvF5Y90R8PF7v3lpRaoqy1onJXvmJiYti6davt8bx587jmmmt45plnKCwsvODxl19+eY0puEnN8tPGU1NLr9HUUqli3m7O3D+gOSueHMDjV7TE38OZns3qnVFwKyhWcxgRERGRmijQy5Vbu4Wr4FZLtAv1ZWj7kmnCKdmFfPHPIWMDSZ1Q7urX3XffzZ49ewA4cOAAo0aNwsPDg9mzZ/PEE09UekCRskjLKWR97HEAIup70i5UoxLFPrxcnbivfzOWPzmA1/+1zpzVauWGj1Zx+5fr+GHDYXYlZlJkthiUVERERESkbnvk8hacXIHo46X7Sy0XI1IVyj2Wcs+ePXTq1AmA2bNn06dPH2bOnMk///zDqFGjmDJlSiVHFLmwAE8XVj41gF82H8XHzRmTSWu5iX2dbNBwur93JbP5cAbtQnx4dPZmAFwcHWjRwIs2DX1KbiG+tG7ojbebsxGxRURERETqjGZBXlwX1Yg5Gw6TmV/MJ8sO8NgVLY2OJbVYuYtuVqsVi6VkpMbChQsZNmwYAGFhYaSkpFRuOpFyCPZx447eEUbHELHJLigmxNcNj9OKcYVmC9uOZLLtSGapfRsHeHB9VCMeGtjc3jFFRERE5DTTlu3n8PE8hnUIITrcHwc1Z6tVHrqsOfM2HaHIbGX+1gQeHtgcJ0ctgSVVo9xFt+joaF555RUGDhzI0qVLmTp1KgAHDx4kODi40gOKiNRUV3cKZViHENYdSmNjXDo7EjLZcTSDAyk5/LuFTVxaLjmFxaW2Wa1Wvl4dS0SgFz2b1dMIThEREZEqZrVa+WZ1HHFpuXyzOpY1zwykvrer0bGkEoUFeHBP30i83JwY072JCm5SpcpddJsyZQqjR4/mp59+4j//+Q/NmjUDYM6cOfTo0eOsx7z33ntlPv+DDz5Y3kgiItWWo4OJbhH16BZRz7Ytt7CY3YlZJ4pwmexIyGRXQhZtGpZei/BQag4fLT3A0fQ8OjTy5d5+kQxq00DftoqIiIhUka1HMohLywWge2Q9FdxqqYmDNKVU7MNktf57vMXZHThwgIiIc0/dy8/Px9HREWfnM9clatq0aanHx44dIzc3Fz8/PwDS09Px8PAgKCiIAwcOlCN+1StrG1gxhtVqZeRHq+gU5sc1nUNpF+prdCSRCjFbrJgtVlycTn3TNnXJPt74fXep/SLrezKhbyRXdwotta+IiIiIXLzXFuxk2rKSz6STrmvPTV0bG5xIRKqjstaKyvyJrUOHDrRr145nnnmGtWvXnvG8m5vbWQtuUDL19OTt1VdfpVOnTuzcuZO0tDTS0tLYuXMnUVFRvPzyy2WNIwJATNxx1sce59MVB3nzj90XPkCkmnJ0MJ1RRLurTyT/d3PnUiPg9h/L4fE5W+j31mI+X3GQ3H9NSRURERGRirFYrPy6+SgATg4mrmzbwOBEYi/xabkcSc8zOobUQmUuuqWkpDBp0iSSk5MZPnw4DRs25M477+SXX34hPz+/zBd87rnneP/992nZ8tRwzpYtW/LOO+/w7LPPli+91Hk/bTxqu391xxADk4hUPkcHE8M6hDD/wV5MH38JXZsG2J47mpHPS7/uoNcbi/lo6X4DU4qIiIjUDhvjj3M0o+Szbc9mgfh7uhicSKpaRm4Rz/20jQGTl/DGb7uMjiO1UJmLbm5ublx11VV8+umnJCQk8MMPP1CvXj2efPJJAgMDueaaa/j88885duzYec+TkJBAcfGZIzPMZjNJSUnlfwVSZxWZLczfmgCAm7MDV7TTN1FSO5lMJvq1DOL7u7szZ0J3LmsVZHsuLaeQ2NRcA9OJiIiI1A6/bE6w3R/WoaGBScReHB1NzN+aQJHZysr9KWw7km50JKllKrQgkMlkokePHrz++uvs2LGDjRs30rt3b6ZPn06jRo344IMPznnsZZddxt13301MTIxt24YNG7jnnnsYOHBgReJIHbV87zHScgoBGNg6GC/XcvcFEalxopsE8Nm4S/jtod5c3SkEF0cHJvQtvd5mbmExsak5BiUUERERqXnMFisLTnyh7+LowCBNLa0TvFydeOiy5vSIrEdGXhGvzt9FGZe9FymTMjdSKKvU1FTS0tJo3rz5WZ8/duwYY8eO5ffff7etAVdcXMwVV1zB9OnTCQoKOutxRlEjherroW83Mm9TyfTST8ZEc3mbYIMTidhfanYB9bxKd9X6fMVBXv51By2CvWlcz4Mgb1eCfdwI9nElyMfN9jjAw0WdUEVERESA1QdSGTVtNVDyhf6nY6MNTiT2UlBs5vK3l9m61n58axeuUNFVLqCstaIKDQ06evQoK1asIDk5GYvFYttuMpl44IEHqFev3jmPrV+/PgsWLGDPnj3s2lUyZ7pVq1a0aNGiIlGkjsopKObP7SXTkf08nOnbor7BiUSM8e+CW2GxhU+WH6BFsBe7k7LYnZR1zmOdHEzU93bl94f74Ot+qhGO2WKloNiMh4tGj4qIiEjdsHDHqaWOruqoqaV1iauTI88Mac2EbzYAJR1s+7Wsj6uTo8HJpDYo9yeq6dOnc/fdd+Pi4kK9evUwmU6NkjhZdCuLFi1aqNAmFfbXjiTyiswADGnf8IyujyJ1ldliZfSljSkyW9mbvBfLecYyF1usHMsqwPtfU7OX7E7miTlbePLKVozo0kij4URERKTWe2pwK/q3CmL+1gQua60ZNHXNFW2D6R5Rj1UHUolNzWX6P4e4u2+k0bGkFij39NKwsDAmTJjA008/jYND+QsdZrOZ6dOns2jRojNGygH8/fff5T5nVdL00upp3BdrWbK7pGnHd3d149KIc4+uFKmris0WUnMKScrMJymzgOSsE//NzCc5q4CkzHxMJvj1gd62YwqLLVwxZRkHU0rWhOsY5sdLw9vSMczPoFchIiIiIlL1dhzNZNj7y7FYS9Z6W/xYP+p7u174QKmTqmx6aW5uLqNGjapQwQ3goYceYvr06QwdOpR27dqVGiknUhb5RWa2H80EIMTXjUuaBBicSKR6cnJ0OLGWm1uZj8ktLKZ1A29b0W1zfDrXfPgPN0aH8fgVLc+YzioiIiIiUhu0CfHhxksaM2ttHNkFxbz9124mXdfB6FhSw5V7pNsTTzxBQEAATz31VIUuGBgYyFdffcWQIUMqdLy9aaRb9VRktrB87zGyC8wM7xhidByRWmflvhRe+Hk7e5Ozbdt83Jx47IqW3Ny1MU6OmtItIiIiIrVLSnYB/d9aQlZB8YkZIb1oG+JrdCyphspaKyp30c1sNjNs2DDy8vJo3769rQPpSW+//fZ5jw8JCWHJkiU1Zj03Fd1EpK4qMlv4cuUhpizcS3ZBsW17qwbevHR1O7o21ShTERERqdmW7TnGtGUHGNahIYPbNcTXw/nCB0mtNm3Zfl5bUNL08dKmAXx7VzfN0JMzlLVWVO6hCpMmTeKPP/4gKSmJrVu3snHjRttt06ZNFzz+0Ucf5d1336WctT4REbEzZ0cH7ugdwd+P9eX6qEa27bsSs/hwyT4Dk4mIiIhUjnmbjrJiXwpPzd3KmoOpRseRamBsjyaE1/MAIDEzn2PZBQYnkpqs3CPd/P39eeeddxg3blyFLnjttdeyePFiAgICaNu27Rkj5ebOnVuh81YVjXSrXorNFk1rEzHIhtg0np+3nT1JWfzxcB8i6nsZHUlERESkwgqKzUS/vJCsgmK8XZ1Y/9xAXJ0cjY4l1cDiXcnsScpiXM8m+pmQs6qyRgqurq707NmzwsH8/Py49tprK3y81F1Wq5Wr/u8fGvq6cU3nUK3lJmJnXcID+Pn+Xmw5nH5Gwe2ffSmYLVb6tKhvUDoRERGR8lm6+xhZJ5bQuLxtsIorYtO/VRD9WwUZHUNqgXIX3R566CHef/993nvvvQpd8IsvvqjQcSI7EjLZeeKWlV+kopuIARwdTHRu7F9qW36RmSd/2MLh43nc3qsp9/VvRoCni0EJRURERMrm1y0JtvtXddBnCxGpfOUuuq1du5a///6bX3/9tUZMD5Xa4+dNR233h3cKNTCJiJzux41HOHw8D4CNcce5fupKvhh3CU0CPQ1OJiIiInJ2eYVmFu5MAsDX3ZmezQINTiTV2b7kLFbsTWFcz6ZGR5EaptxFNz8/P6677rqLuuicOXP4/vvviYuLo7CwsNRzMTExF3VuqZ0sFis/by4pujk5mBjavqHBiUTkpFGXhOHq5MCXKw8RE5cOwHVTV/LJmGi6hPuf/2ARERERAyzenUxuoRmAK9s2wMVJ60bL2U3+czcfLtmPxWolukkA7UJ9jY4kNUi5i24XOz30vffe4z//+Q/jxo1j3rx5jB8/nv3797Nu3Truu+++izq31F5rDqaRkJEPQN8W9TV1TaQaMZlMXBfViEsj6jH+i7XsScomLaeQmz9ZzZQbOzFYRXIRERGpZn7dcmoWzbCOeq8i5+br7ozZUtJ/8qVfdvDd3d0wmUwGp5Kawu7l/A8//JBp06bx/vvv4+LiwhNPPMFff/3Fgw8+SEZGhr3jSA0xb9MR2/2rO2tqqUh1FOrnzuwJPegRWQ+AgmIL986M4dPlByhno2wRERGRKpNTUMzfu5IBqOfpQveIegYnkupsTPcmRJxYNmXtoTQWbE00OJHUJGUqul155ZWsXr36gvtlZWXxxhtv8MEHH5xzn7i4OHr06AGAu7s7WVlZANx6663MmjWrLHHKxWw289xzz9G0aVPc3d2JjIzk5Zdf1gfAGqSg2MyCrSWLnHq4ODKwtbrIiFRXvu7OTB/fleuiSorjViu8Mn8nL/683fYNoYiIiIiR1h5MI7/IAsCV7Rrg5KippXJuLk4O/Gdoa9vj1xbsJL/IbGAiqUnKNL105MiRXH/99fj6+nLVVVcRHR1NSEgIbm5uHD9+nB07drBixQoWLFjA0KFDeeutt855rgYNGpCWlkZ4eDiNGzdm9erVdOzYkYMHD1ZJIeyNN95g6tSpfPnll7Rt25b169czfvx4fH19efDBByv9elL5luw+RmZ+SSvvK9o2wMOl3LOiRcSOXJwcmDyyI2H+Hry7aC8AX66K5Uh6Pu/d1En/hkVERMRQv21LIMzfHT8PZwa1aWB0HKkBBrQKonfzQJbvTeFIeh6frTjIff2bGR1LaoAyffK5/fbbueWWW5g9ezbfffcd06ZNs00FNZlMtGnThiuuuIJ169bRunXr855rwIAB/Pzzz3Tu3Jnx48fzyCOPMGfOHNavX3/RDRrOZuXKlVx99dUMHToUgCZNmjBr1izWrl1b6deSqlFqamkntfIWqQlMJhOPXN6CRv7uPD13K8UWKwt3JvF/f+/jiStbGR1PRERE6rANsceJP55HQkY+l0YEGB1HagCTycRzw9pw5ZRlWKzwweJ9jOzSiCAfN6OjSTVX5uEGrq6u3HLLLdxyyy0AZGRkkJeXR7169XB2di7zBadNm4bFUjKU97777qNevXqsXLmS4cOHc/fdd5cz/oX16NGDadOmsWfPHlq0aMHmzZtZsWIFb7/99ln3LygooKCgwPY4MzOz0jNJ2R3Lymd3YskU5HqeLvRSK2+RGmVkdBgNfd2555sNNAv24sHLmhsdSUREROqw9NxC9h/LAaBtqC9uzo4GJ5KaokWwN6MvDefr1bHkFpp584/d/G9kR6NjSTVX4Tk+vr6++PqWv1Wug4MDDg6n5syPGjWKUaNGVTTGBT311FNkZmbSqlUrHB0dMZvNvPrqq4wePfqs+0+aNIn//ve/VZZHyic2NZfM/GKaBXkytnsTrbcgUgP1ah7InHt6UM/LRW9sRURExFAb49Jt96Ma+xmWQ2qmRy5vwbxNR8jML2bOhsOM6R5Oh0Z+RseSaqzWVzC+//57ZsyYwcyZM4mJieHLL7/kf//7H19++eVZ93/66afJyMiw3eLj4+2c2D6sVit5hdV/8cfoJgEsfbwfV3cM5Yq2Wm9BpKZq2cCbQC/XUtvi03L5ZfNRgxKJiIhIXRQTd9x2v0u4v4FJpCYK8HThoYEtAGgR7EWxGoXJBdT61awff/xxnnrqKdtouvbt2xMbG8ukSZMYO3bsGfu7urri6up6xvba5sMl+/l501Gm33YJDX3djY5zXh4uTjygKWkitUpGbhHjvljL/mM5xKbmcF//ZphMJqNjiYiISC23IfZU0S2qsYpuUn5juofj4+bEtZ1DNRNLLqjWF91yc3NLTWcFcHR0tK0rVxfN23SEt/7YDcB1H65k+viutGzgbXAqEalLfog5bFtP5X9/7iE+LY9Xrm2HCcjKLyYrv5jM/CIy84tsj7Pyi8gpKOb+AaWL8Et2J/PzpqM0C/aiRZA3LYK9aeTvjoODingiIiJySrHZwub4dAAa+roR4le9Bx9I9eTs6MDI6DCjY0gNUeuLbldddRWvvvoqjRs3pm3btmzcuJG3336b2267zehohunQyI/weh7EpuaSkJHPiI9W8vGtXegRWT2aFFitVv7v731cGxVKI38Po+OISBUY37MJBcUW3vh9FwDfrY9n7sbDFJkvPET/rj6RuDid+jJl7cE05m48UmofN2cHmgWVFOGaB3vTPMiLVg299TtFRESkDjt8PM82HVCj3ETEHkxWq7Xck5DT09OZM2cO+/fv5/HHHycgIICYmBiCg4MJDQ2tipwVlpWVxXPPPcePP/5IcnIyISEh3HTTTTz//PO4uLhc8PjMzEx8fX3JyMjAx8fHDontIyW7gNumr2PL4QwAXBwd+N8NHRneMcTgZPDXjiTu/Go9Lo4OPDm4Fbf3amp0JBGpIj9vPspj32+mebAX24+WrVv0hmcHUu+09eHu/Go9f+1IuuBxvZoF8s0dl5balpVfhLdb2Ttwi4iISM1WZLawMyETRwcTbUPK3xhQ5HRWq5VtRzLYGJ/ODdFhahpWh5S1VlTuotuWLVsYOHAgvr6+HDp0iN27dxMREcGzzz5LXFwcX3311XmPT01N5fnnn2fx4sUkJyefMc0zLS2tPHGqXG0tugHkFhZz34wYFu8+Ztv2nyGtuaN3U8PWVio2W7hiyjLbtLOPb+2iBgoitdyG2OO4ODow8ftNeLs54ePujLebMz5uTni7Odu2+bg54ePmTPfIeqXe0OQXmTlwLIe9yVnsTcpmT1IWe5OziU3N4fS1bcf1aMKLw9vaHlutVn7YcJisgmLG91RxX0RERETK55m5W5m5Ng6AORO6E90kwOBEYi9lrRWVe3rpxIkTGTduHG+++Sbe3qfWARsyZAg333zzBY+/9dZb2bdvH7fffjvBwcFaONtAHi5OfDImmmd/2sa360q6tL66YCdHM/J4bmgbQ9ZD+n79qXWeosP9GdQm2O4ZRMS+TnYO+2ti3wod7+bsSJsQH9qElP5jd3oxbk9SFpc2rVfq+fcX7eXdRfuwYKVJoCf9WwZV7AWIiIiISJ3UoZEvM9eW3F8fe1xFNzlDuYtu69at4+OPPz5je2hoKImJiRc8fvny5axYsYKOHTuW99JSBZwcHZh0XXsa+rrzzsI9AHzxzyEcTCaeG9bGrllyCoptGQCeHtJaRVkRqbBzFeNOKii2Yj4x2PuhWRv55YFehNfztGdEEREREanBopucWhtw/aHjULHvkKUWK3d/W1dXVzIzz1x3Z8+ePdSvX/+Cx7dq1Yq8vLzyXlaqkMlk4qGBzXnz+g44OpgI8HTh1m7hds/x6fKDHMsqAGBwuwa20S8iIlXh0UEtbKNpM/OLufvrDeQWFhucSkRERKrCsj3HuOPL9Uxdsp9DKTlGx5FaIiLQCz+PkvWBN8SmUYEl86WWK3fRbfjw4bz00ksUFRUBJQWbuLg4nnzySa6//voLHv/hhx/yn//8h6VLl5KamkpmZmapmxjnhkvC+HRsNJ+NjaZJoH1HexzLKuDjZfsBcHIw8fgVLe16fRGpexwcTEy+oSOR9Ut+3+1KzOKJOVv0ZklERKQW+md/Cgt3JvHG77vYlZhldBypJRwcTHQ50Qn3eG6RbakkkZPKXXSbPHky2dnZBAUFkZeXR9++fWnWrBne3t68+uqrFzzez8+PzMxMBgwYQFBQEP7+/vj7++Pn54e/v0Y2Ga1/yyA6/6t9dkGxmX3J2VV63XcX7SG30AzAzZc2JqK+V5VeT0QEwNvNmY9vjcbLtWS1hV+3JPDJ8gMGpxIREZHKtjE23XY/KtzPsBxS+3Q5bYrphtjq1RhSjFfuNd18fX3566+/WLFiBVu2bCE7O5uoqCgGDhxYpuNHjx6Ns7MzM2fOVCOFGsBisTLx+80s3X2Mj2/tQs9mgZV+jf3Hspm1tqSRg6eLIw9e1rzSryEici7Ngrx4+4aO3PX1BgBe/20XbRr60qt55f++ExEREfsrLLaw+XA6AGEB7gR5uxkbSGqVS05rnrD+0HFuvKSxgWmkuil30e2kXr160atXr3Ift23bNjZu3EjLlpo+WBN8ueoQ87ckADDui7W8NaIj13QOrdRrpGQV0NDXjcPH85jQN5JAL9dKPb+IyIUMatuABwc0472/92GxwgOzYvj5/l6EBXgYHU2kUu1MyCQlu4DezS+8Dq+ISG2xMyGTgmILgG0qoEhlaR/qi4ujA4VmCxtijxsdR6qZMhXd3nvvvTKf8MEHHzzv89HR0cTHx6voVkOMuqQx/+xLZeHOJIrMVh7+bhNH0vO4t19kpY1SvDSiHose7cu3a+MZGd2oUs4pIlJeDw9swdYjGSzefYyCYgv7j2Wr6Ca1zg8bDvPr1qPc1TuSTo39iNKHTxGpA04vhESpWZtUMjdnR9qF+hATl86BlBxSswuop4EkckKZim7vvPNOqcfHjh0jNzcXPz8/ANLT0/Hw8CAoKOiCRbcHHniAhx56iMcff5z27dvj7Oxc6vkOHTqUI75UNXcXRz66JYrnf97OzDVxODuYmL0hnm1HMnhjRAd83JwvfJIycHVyZGyPJpVyLhGRinBwMDFlVGcenLWRZ4a0pmUDb6MjiVyUrPySplfep/2tbtnAm09XFPDSrzu4vVdTFd1EpE6IiTut6Kbfe1IFopsEsCsxi86N/UjPK1LRTWxM1nK2aZs5cyYffvghn332mW202u7du7nzzju5++67GT169HmPd3A4s3eDyWTCarViMpkwm83liVPlMjMz8fX1JSMjAx8fH6PjGMZqtfLhkv2sOZDKsr0pADQO8OCDm6No38jX4HQiIiJy0qGUHKavPMScDYeZ0DeC+wecWiv1eE4hnV/+C4DOjf348d6eRsUUEbGbHpMWcTQjHw8XR7a8MAgnx3L3ExQ5r6z8ItydHfWzVYeUtVZU7jXdnnvuOebMmVNqemjLli155513GDFixAWLbgcPHizvJaUaMJlM3Ne/GS2Dvdl8OIOMvCLi0nK5fupK/jO0NWO6h5drummR2cLLv+5gbI8mRKpTqYhUcynZBVpvUqo1q9XKqv2pfP7PIRbtSuLkV6pfr47lrj6RuDiVfAjw93QhItCTAyk5bD+SSUGxGVcnRwOTi4hUrYSMPI5m5APQsZGfiiJSJbwraQaY1D7lLrolJCRQXFx8xnaz2UxSUtIFjw8PDy/vJaUaGdgmmPkP9uL+mRvZFJ9OodnCCz9vZ83BVF6/vuzTTb9dG8dXq2KZsSaO54a2ZlzPplWcXESk/AqLLbz063Z+35bILw/0oqGvu9GRRErJLzLz86ajfP7PQXYlZpV6zs3ZgQGtgskrNNuKbgCdG/tzICWHQrOF7UczNdVKRGq1mNh02/2ocD/DcohI3VTuottll13G3XffzaeffkpUVBQAGzZs4J577mHgwIHnPbawsJCffvqJVatWkZiYCECDBg3o0aMHV199NS4uLhV4CWJvjfw9+P7u7rz5+y4+XVEycnHB1kS2Hcnkw9FRtAs9/3TT7IJipizcC4DZYqWT3uyLSDU1+c/dfLM6DoAJ38Tw3V3dcHPWqCAxXmZ+EZ8uO8CMNXGk5hSWeq6BjxtjeoRz0yWN8fc8871V58Z+/BBzGICY2OMquolIrRYV7sek69qzIfa4OjeLXVgsVgrNFr1nFADKPbb2888/p0GDBkRHR+Pq6oqrqytdu3YlODiYTz/99JzH7du3j9atWzN27Fg2btyIxWLBYrGwceNGxowZQ9u2bdm3b99FvRixHxcnB54d1oZpt3bBx62kdhuXlst1H67k69Wx5z122tL9tg8Iwzo0pFOYX1XHFRGpkHv6RRIWUDK6bXN8Oi/M2045l0IVqXQ7jmby35+38/k/h0oV3Do39uP9mzqz/Mn+3Nuv2VkLblB6EfGNcelVHVdExFANfd25qWtj/jeyI90i6hkdR2qxHUczGf/FWjq99Cef/6NltaREuUe61a9fnwULFrBnzx527doFQKtWrWjRosV5j7vnnnto3749GzduPGORuczMTMaMGcN9993HH3/8Ud5IYqBBbRswv6EP98/ayOYT000TM/LOuX9SZj6fLC/5BeTsaOLxK1qec18REaP5ebjw8S3RXDf1H/KLLHy3Pp4OYb6MvlRLJYgxNsenM+bztWTkFRER6El+kZkh7RsyvmcTOpdxxFrLBt54uDiSW2gu1dFPREREKs7FyYHFu48BsOGQ/r5KiXIX3U5q0aLFBQttp/vnn39Yu3btWbs6+Pj48PLLL3PppZdWNI4YKCzAg9l3d+f133ax7WgGjww898/FlIV7yCsq6VB7S7dwwut52iumiEiFtAnx4Y3rO/DQt5sAePHn7bRq4E2X8ABjg0mds+5QGuO/WEd2Qcnaup6ujvz+cB+aBZWvIZGjg4mOjfxYdSCVhIx8EjLytF6hiIjIRYqs74m/hzPHc4vYEHcci8WKg0PZmw1K7VTuotttt9123uc///zzs2738/Pj0KFDtGvX7qzPHzp0CD8/v/LGkWrCxcmB569qQ2Gx5YyOQLsSM2kZ7M2+5Gy+WxcPgLerEw8MaG5EVBGRcru6UyhbDmfw2YqDFJmtTPgmhvkP9CLIx83oaFJHrNyXwu1frrd9cdUtIoDPxl6Cp2vFvj+NCi8pukHJFNOG7VV0E5HaZ0NsGtkFZjqF+eHrru6SUrVMJhNdwgNYuDOJ9NwiDqRk0yzI2+hYYrByv1M7frz0MMmioiK2bdtGeno6AwYMOOdxd9xxB2PGjOG5557jsssuIzg4GICkpCQWLVrEK6+8wgMPPFDeOFLNnN4dDWDL4XSun7qSQW0bkJNfjOXEUkj39I8k4BxrzYiIVEdPD27F9qMZrD6QxrGsAl6Yt533b+58xhcNUvOs3J/CVytjGdsjnG1HMrmzT4TRkc6QmV9ModkCQJ8W9fn4li64u1R8geaoxv6E+LrRubG//h6LSK01bdkB/tiehMkEiyb2JaJ++UYGi5RXdBN/Fu5MAmD9oeMqugkmayWsCG2xWLjnnnuIjIzkiSeeOOd+b7zxBu+++y6JiYmYTCXDLK1WKw0aNODhhx8+77FGyczMxNfXl4yMjLNOjZVzKyg2c/nby4hLyy21vaGvG4sf66duLiJS46RmFzDsveV4uTmTX2Tm7r6R3NJN67vVZDuOZnLjx6vIOjFl0wT88kCvC3biNsK8TUf4bWsi797UCVeni/sbarVabe/FRERqI6vVStfXFnEsqwBvVyc2vzBIU/2kyq0/lMaIj1YBcH1UIybf0NHgRFJVylorqpSiG8Du3bvp168fCQkJF9z34MGDJCYmAtCgQQOaNm1aGRGqhIpuF+f3bYk8PmczWfnFuDg6UGi28NaIDoyMDjM6mohIhSzelcz46esACPRyYfFj/fB205SVmig+LZfrp64kOaug1Paoxn7MmdCjWn44U7FMRKRs4tNy6f3mYgB6Nw/k69u1frhUvfwiMx1e/JNCs4Um9TxY8nh/oyNJFSlrrajS5sTs37+f4uLiMu3btGlTunfvTvfu3at1wU0u3pXtGrDgwd5c2jSAn+/vyXs3dea6qEZGxxIRqbD+rYIY2r4hACnZhXy0dL/BiaQi0nIKGfv5WlvBrVOYL5H1S5r7xMSlM3fjESPj8f26eKb/c/CM7Sq4iYiUzendmbuEl627s8jFcnN2pEOjktHyh1JzOfavL/ak7in3mm4TJ04s9dhqtZKQkMD8+fMZO3ZshYPEx8fzwgsvnLMRg9RcYQEefHd3dwBaNdRoQRGp+Z68shV/7Uii0Gzh0+UHGX1pOCF+Woi+psgtLOa26es4kJIDQER9Tz4f15UdRzO55bM1ALz+204GtQ3Gx4BRjF+tOsTz87YD4OrsyE1dG1fp9fKLzGTmFxHkrcYgIlJ7bIg9VXSLaqyim9hPlyb+rD/x87ch9jhXtmtgcCIxUrlHum3cuLHUbcuWLQBMnjyZKVOmVDhIWloaX375ZYWPFxERsZfG9TwY26NkLbeCYgtv/bHb4ERSHn/tSGJTfDoAQd6ufHVbVwI8XejVPJDBJ94Yp2QXMuWvvXbPNm3ZflvBDeDAsewqu1ZyZj5X/98K2r/4By/9sqPKriMiYoSTI91MJujU2M/YMFKnRIcH2O5vPZJuXBCpFso90m3x4sUVutDPP/983ucPHDhQofOKiIgY4f7+zZm94TDpuUX8uPEI43s2oUMjP6NjSRlc3SmUrPxi/vfnbr68rSuN/D1sz/1naGsW704mv8jCl6sOceMlYbRsUPWdx6xWK+8t2sc7C/fYtt3fvxmPDmpRZdcM8HRhb3I2RWYrG+PSq+w6IiL2lltYzM6ELABaBHkbMmpZ6q6uTQJ48/oORDfxp2mgp9FxxGDlLroNGDCAuXPn4ufnV2p7ZmYm11xzDX///fdZj7vmmmswmUycr2+D1ikREZGawtfDmYcua85/T4wQemX+Tr67q5v+ltUQt3QL56oOIfh6lP4g1sjfg/v6NWPyX3swW6y88PM2Zt1Ztf+/Wq1W3vxjN1OXnFof8LFBLbh/QPMquyaAk6MDHRr5svpAGkfS80jKzCfYR1NMRaTm2xyfgdlS8rkzSuu5iZ35ejhzwyVqHCglyj29dMmSJRQWFp6xPT8/n+XLl5/zuIYNGzJ37lwsFstZbzExMeWNIiIiYqjRl4bbvsFcezCNP3ckGZxIziU5K/+Mbf8uuJ10Z58IGgeUjH5bfSCNX7dcuDN7RVmtVv77y45SBbdnh7au8oLbSZ1PW+do42mLjouI1GSnN1GI0tRSETFQmYtuW7Zssa3ftmPHDtvjLVu2sHHjRj777DNCQ0PPeXyXLl3YsGHDOZ+/0Cg4ERGR6sbFyYGnBreyPZ785279LauGFmxNoM+bi1mwtWzFMzdnR164qg0AnRv7VdnUEIvFyjM/bmX6ykO2ba9c0447ekdUyfXO5vTFxWM0xVREaglfd2faNPTBwaTOpSJirDJPL+3UqRMmkwmTycSAAQPOeN7d3Z3333//nMc//vjj5OTknPP5Zs2aVXi9OBEREaMMahPMpU0DCPRy5ckrW2l6aTWzan8qD3+7iUKzhftmxjBnQo8yfQC7rHUwX97Wld7NAnFwqPz/T80WK6/8uoP5J0bROZjgzREdGdGlUaVf63w6nzYCJCZWI91EpHa4pVs4t3QLJ7ugGE8XR6PjSB1ktlhZtucY6w6lYaWk873UTWUuuh08eBCr1UpERARr166lfv36tudcXFwICgrC0fHcv9B69+593vN7enrSt29f2+PDhw8TEhKCg0O5Z8CKiIjYjclk4svbuuLmrDf11c3OhEzu+mo9hWYLANdHNSrXNKO+LepfeKcKKDZbeHT2ZuZtOkpkfU8cTCZevqYdV3UMqZLrnU+glyuNAzyIS8tl65EMCostuDjpvZeI1A5eruVewlykUjiY4LHZm0nNKcTHzYnHB7Wski/xpPor82+h8PBwACwWS5WFOV2bNm3YtGkTERH2m2IhIiJSESq4VT+Hj+cy9vO1ZBUUA9C/ZX0mXdf+okYimi1WHEwX1/ipyGzh4e822Ua4xaXl8sHNUQxq26DC57xYUY39iEvLpaDYws6ETDqG+RmWRUREpDYwmUxEhfvz144kMvOL2XcsmxbBVd8NXaqfMhXdfv75ZwYPHoyzszM///zzefcdPnx4pQTTmjgiIlJT5RWayS0spp6Xq9FR6qS0nELGfL6W5KwCADqF+fHB6CicHSs+gmv1gVRe/Hk7Ey9vUeECWZHZwoOzNvLbtkQAXBwd+HB0FAPbBFc4V2WICvfnp01HgZLFx1V0E5GaLK/QjLumlEo1EH2i6Aaw/tBxFd3qqDIV3a655hoSExMJCgrimmuuOed+JpMJs9lcWdlERERqFIvFyk+bjvDWH7uJCvfng5ujjI5U5+QWFnPb9HUcOFayjmxEoCefj7sED5eKTzHaEHucUdNWA/DSrzvo06J+hUY3Lt197FTBzcmBj2/pQv9WQRXOVVlOb6YQm5prYBIRkYt3zQf/kFdkpmvTAN4a0UFrrYphopsE2O6vj03j5ksbG5hGjFKmr3wtFgtBQUG2++e6qeAmIiJ1WW6RmdcW7CQhI5/5WxLYoIXp7aqo2Mz9M2LYFJ8OQH1vV768rSsBni4Xdd6oxn70iKwHwOHjeXy0dH+FzjOwTTDPDm2Nq5MDn4yJrhYFN4CWDbz5dEw0G54dyIvD2xodR0SkwjLzi9iTnEVcWi67EjNVcBNDtQv1sa2Tuv6Q3hPWVVopV0REpJJ4uTrxyOUtbI9fmb9DyyXY0T0zYli2NwUAb1cnvhzflbAAj4s+r8lk4r/D2+J0YgHkqUv2E59WsRFhd/SOYNGjfausSUNFODs6MLBNsKZDi0iNtykunZN/dk8fxStiBFcnRzo28gVK1nBNzso3OJEYoUxzLd57770yn/DBBx+scJjT6VsJERGpiW6MDmP6P4fYm5zNxrh05m9NYFgH+3elrO2KzBYcTaZSncAGtW1ATqGZvUlZvHdTZ9qE+FTa9ZoHezOuRxM+XXGQgmILL/+6g2ljos97TH6RmS2HM+jaNKDU9kb+F18IFBGRM8XEnRpN1CVcRTcxXpfwANadGOW24dBxBrdvaHAisbcyFd3eeeedMp3MZDJVWtFNIwNERKQmcnJ04JkhrRk/fR0Ab/y+i8vbBOPqpEWdK8POhExmrz/MvE1H+L+bo+h+YtonwND2DVmwNYElj/XDy8250q/90MDm/LTpKCnZBfy5I4mle46dc8RaXqGZO79az5qDqUwd3cXwZgkiInXB6cs6aKSbVAfRpxV/18eq6FYXlanodvDgwarOcYYdO3YQEqKRASIiUvP0a1mfXs0CWbEvhfi0PL5ceYi7+kQaHavGSssp5OdNR5i94TDbj2bats/eEF+q6Obp6sT08V2rLIe3mzPPDGnFxO83A/Dfn7fz+8N9bOu1nJRbWMzt09ez6kAqAE/8sIVlkf3xcq14M4eqZrVambPhMBvj0zGbrbwxooPRkUREysVisbIpLh0oWdOzkb+7sYFEKD3icv2hNAOTiFEu6t3fydFoF5oKet1115X5nHPnzgUgLCys4sFEREQMZDKZeGZIa4a+vxyrFd7/ex8juoRd9IL+dUmx2cLSPceYvf4wi3YlUWQuPQLexdEBRwOWori2cygz18SxPvY4B1Jy+Pyfg0zoe6qgmlNQzPjp61h7sOSNtberE5+Mia7WBTco+Zl97++9xKfl4ebswCvXtsPZUUv/ikjNsTc5m6yCYqCkAY6WK5LqwN/ThSHtGxDk7Ua3iIALHyC1ToXeTX322We0a9cONzc33NzcaNeuHZ9++uk59/f19bXdfHx8WLRoEevXr7c9v2HDBhYtWoSvr29F4oiIiFQ7bUJ8GNmlEQBZ+cW8t2ivwYlqBqvVyoKtCXSb9De3f7me37cnliq4dWjky8tXt2Xtfy7jrZEd7Z7PZDLx36vbcnIpuQ8W7yPnxIe87IJixn6+9lTBzc2Jr++4tMasK3RyKlZ+kYVdCVkGp6kcVquVjXHHKTJbjI4iIlVM67lJdfXh6C68OLwtV7bT1NK6qNxfuz7//PO8/fbbPPDAA3Tv3h2AVatW8cgjjxAXF8dLL710xjFffPGF7f6TTz7JDTfcwEcffYSjY8n6NmazmXvvvRcfn8pb8FhERMRojw5qyS+bE8grMvNDzGEmDmqBTxWsNVZbWK1WHp+zBQcTpGQX2LYHerlyXVQo10c1omUDbwMTlmgb4svoS8PZl5zNi8Pb4unqRGZ+EeM+X0vMialNvu7OfHP7pbRvVHO+UOwc5se8TUeBkg+vNSn72SzZnczrv+1iV2IWH93ShSvbNTA6kohUodPXc1PRTUSqi3IX3aZOnconn3zCTTfdZNs2fPhwOnTowAMPPHDWotvpPv/8c1asWGEruAE4OjoyceJEevTowVtvvVXeSCIiItVSsI8bE/pGEn88l8cGtVTB7QJmrz/MnA2HAfBydaJ380BGdGlEnxb1q91Ux2eHtcbF0QGTyURGXhFjPl/L5vh0APw8Sgpu7UJrVtEq6rQPqTFxxxnbo4lxYSqByWRiV2LJiL1Za+NUdBOp5bYezgDA2dFE25Ca9ftXRGqvchfdioqKiI6OPmN7ly5dKC4uvuDxxcXF7Nq1i5YtW5bavmvXLiwWDf0XEZHa5cHLmmldmTLYmZDJc/O22R6/fE07ru0camCi8zvZjdZqtXLHl+tsBbcATxe+uf1S2oTUvNH7rRv64OrkQEGxhY0nRuzVVHuSstiblEWQtyvJWQUs23uM+LRcwgI8jI4mIlXk5wd6su1IJnFpObg5q2O4VD+JGflsiD3O4HYNcHDQe8O6otxfG996661MnTr1jO3Tpk1j9OjRFzx+/Pjx3H777bz99tusWLGCFStWMHnyZO644w7Gjx9f3jgiIiLVmgpuF5ZdUMx9M2IoKC758u2Wbo2rdcHtdCaTiXv7NcPF0YF6ni7MurNbjSy4ATg7OtDhxJTSuLTcUlN8a5q/dyXzyvydJGeVvAarFb5bF29wKhGpSq5OjnQJ9+fazo2MjiJyhqfnbqHbpEXcNzOGvcnZRscRO6pQK63PPvuMP//8k27dugGwZs0a4uLiGDNmDBMnTrTt9/bbb59x7P/+9z8aNGjA5MmTSUhIAKBhw4Y8/vjjPProoxWJIyIiUmNk5RcRm5pb46YeVhWr1crTc7dyICUHgLYhPjw7tI3Bqcqnf6sgPr61C4383WkebPyacxcjqrE/6w6VrIsUE3ucQW1r5pTMLYfTbfcdHUyYLVa+Wx/PQwObV7upyiIiUvtFBHrZ7q87lFYt1qgV+yh30W3btm1ERUUBsH//fgACAwMJDAxk27ZT00LO9c2+g4MDTzzxBE888QSZmZkAaqAgIiK1ntVq5evVsczbdITwAE/+N7KjphYAM9bE8cvmksX7vV2d+HB0VI2cFtS/VZDRESpF58an1nXbGJ9eY4tum+NL1nbycHGkd/NA/tiexLGsAhbtTFL3OBERsbsuTU79fd0Qe5xbuoUbmEbsqdxFt8WLF1faxVVsExGRusJkMrFk9zE2xKazITadkdFhdI+sZ3QsQ207ksFLv+ywPX5zRAfC63kamEiiGvvZ7sec1gmwJjmWVcCR9DwA2oWWdJr9Y3sSADPXxqvoJlLLFJstPPL9ZjqE+tI9sp5Gkku11C7E17Zu6vrYNKPjiB3ZfXx9UlISt956KyEhITg5OeHo6FjqJiIiUltdc9o6ZbPX1+31paxWK//5aRuF5pJ13Mb1aMLg9iqGGC3Ix43rokJ5ZGALHh7Ywug4FXL61NJOYX70ahZIWIA7AMtPNFQQkdpjV2IWv2w+yqsLdvLxsgNGxxE5KxcnBzqG+QEQn5ZHUma+sYHEbso90i0/P5/333+fxYsXk5ycfEbH0ZiYmPMeP27cOOLi4njuuedo2LBhlS8w3aRJE2JjY8/Yfu+99/LBBx9U6bVFRERON6hNML7uzmTkFbFgWwIvXt0WHzdno2MZwmQy8eHoKO6fGYPFCs8MaW10JDnh7Rs6GR3homw+nGG736GRLw4OJkZd0pi3/tiN1Qrfrovj8StaGZhQRCpTTNypUbmnj9YVqW6iw/1Ze7BklNv6Q8cZ2kFfNtYF5S663X777fz555+MGDGCrl27lrtotmLFCpYvX06nTp3Ke+kKWbduHWaz2fZ427ZtXH755YwcOdIu1xcRETnJzdmRazqF8OWqWPKLLPy6OYGbL21sdCzDhPq5891d3cnML8LFSYvbS+XYHJ9uu9+xkR8AI6Mb8X9/72Ngm2AG1JL190SkxOlT4buE+59nTxFjRZ+2rtv62DQV3eqIchfdfv31VxYsWEDPnj0rdMGwsDCsVmuFjq2I+vXrl3r8+uuvExkZSd++fe2WQURE5KSR0WF8uapkBPb36+PrdNENSqZbBHq5Gh1Dagmr1WqbXhrg6UIj/5JppUHebqx/diCeruV+6ysi1dyGEyPd3JwdaN1Qa4ZL9RXVuHQzBakbyv21cmhoKN7eFW9vO2XKFJ566ikOHTpU4XNUVGFhId988w233XbbOUfoFRQUkJmZWeomIiJSWdqF+tLmxIeCTfHp7EnKMjiR/WTkFvHiz9vJLig2OopcgNliZcfRTH7ceNjoKOUSn5bH8dwiADo28i31fk8FN5HaJzkrn/i0ksYpHUL9cHbUqGmpvvw8XGge5AXA9qOZ5Bbq/VBdUO7fSpMnT+bJJ5886zppZXHjjTeyZMkSIiMj8fb2JiAgoNStKv3000+kp6czbty4c+4zadIkfH19bbewsLAqzSQiInXPDdGNbPfrSkMFq9XKo7M3M33lIYa/v4K9dajYWBON+XwNQ95bziPfbSY1u8DoOGVWbLFwdacQmtTzsC1YLSK1V0xsuu1+lKaWSg0Q3SQAVycHuoT7k5pdaHQcsYNyf+UXHR1Nfn4+EREReHh44OxcegHotLTzt7+dMmVKeS9ZaT777DMGDx5MSEjIOfd5+umnmThxou1xZmamCm8iIlKpru4UymsLdlFotjA35ghPXNmq1n87/+nygyzcmQTA8dxCjTqq5to09OGffakAbIxLZ2CbYIMTlU1EfS/eHdUZ4JzLmeQXmVmwNYEis4UbL6nb07tFarqNaqIgNcyTV7bkv8Pbai3bOqTc73hvuukmjhw5wmuvvUZwcHC5GymMHTu2vJesFLGxsSxcuJC5c+eedz9XV1dcXbW2jIiIVB1/TxcubxvM/C0JpOYUsnT3sRpT1KiIDbFpvP77Ltvjt2/sRIifu4GJ5EJK1p05CJR0BqyJP59ne4+aX2Sm1xt/k5JdSKCXK9dFNar1BW+R2uz0dbE00k1qAj8PF6MjiJ2Vu+i2cuVKVq1aRceOHct8TGZmJj4+Prb753Nyv8r2xRdfEBQUxNChQ6vk/CIiIuVx0yWNcTCZuCG6ET0iA42OU2XScgq5f+ZGzJaSUUf39oukf0t1j6zuTv/wGhNXexZ7dnN25JImAfy2LZGU7AIW7khicHt1jxOpiQqLLWw5kgFAeD0PNeURkWqp3EW3Vq1akZeXV65j/P39SUhIICgoCD8/v7N+82i1WjGZTJjN5vJGuiCLxcIXX3zB2LFjcXLSdBYRETFer+aB9Gpee4ttABaLlYnfbyIhIx+Ark0DmHh5C4NTSVkE+7gR4uvG0Yx8thzOoNhswamajwjLLSzGhAl3F8fz7nfzpY35bVsiADPXxqnoJlJDmS1Wnh3ampjY4wT7uhkdR6TcrFYrxRarRlzXcuWuQL3++us8+uijvPrqq7Rv3/6MNd3ONlLt77//tjVJ+Pvvv8s9JfViLVy4kLi4OG677Ta7XldERKQum7p0P0t2HwOgnqcL79/UudoXbuSUzuH+HN2SQG6hmd1JWbQN8TU60nn9ujmBp3/cSvMgL54a3Ip+5xhR2TMykMYBHsSl5bJ8bwpxqbk0rudh57QicrHcXRwZ070JY7o3MTqKSLlsOZzO+3/vIyb2OA9f3oJbu4UbHUmqULmLbldeeSUAl112Want5xup1rdvX9v9fv36lfeSF23QoEHnXExXREREKt+aA6lM/nM3ACYTvDuqM8E+GolQk0Q19mf+lgQAYuLSq33RbfPhdMwWK7sSs3BzPvdoNwcHE6O6hvHm7yU/n7PWxfHkla3sFVNEROo4s8XKXztKmkttOJSmolstV+6i2+LFiy/qgn369KFfv3707duXnj174uamN+AiIlJ35ReZ+WN7It+vj2fi5S3pUgsWgj6ansc7C/dwYhk3HhzQvNZPpa2NTu8EuDHueLX/ULD5cDpQUuRtF3r+AuHILmG8/eceii1WZq+P55GBLdRJTkRE7KJtiC9uzg7kF1lYH1t71k2Vsyt30e30UWsVMWjQIJYtW8bbb79NcXEx0dHRpYpwHh4a3i8iInXHgq0JTPx+MwBh/vE1vuiWkVfEuC/Wsicpm57N6uHk4MCDlzU3OpZUQJsQH1wcHSg0W9gYl250nPPKLzKzKyELgGb1vfByPf9b3PrergxqG8yCrYmkZBeycGcSQ7S2m0iNsvpAKk0DPQnydrX78kUiF8PFyYGOjfxYczCNw8fzSMzIp4HWJay1KvyVXm5uLrt27WLLli2lbhfy7LPP8ueff5Kens7ixYsZNmwY69evZ+jQobZ130REROqKK9s1sBUIftl8lNzCYoMTVVxBsZm7vlrPnqRsAA4fz2PKqE44OujDUE3k6uRIu1AfAr1caRHsRZHZYnSkc9qRkEnxiaGVHcP8ynTMzV1PjdybuSauKmKJSBXJLihm1LTVXPraIsZ8vtboOCLlFt3k1Jes62PTDEwiVa3cI92OHTvG+PHj+e233876fFm7jx44cICtW7eyefNmtmzZgre3N3369ClvHBERkRrNw8WJqzo2ZNbaeHIKzSzYmsiILo2MjlVuFouVx2ZvYc3BkjeOAZ4ufDm+K/4eLgYnk4sx/baueLs6VftRJFvi0233OzYq29pzPSLrEV7Pg9jUXFYdSCU5K58gb400EKkJ9iZl2e438nc3MIlIxUSHBwD7AVh3MI1hHUKMDSRVptwj3R5++GHS09NZs2YN7u7u/P7773z55Zc0b96cn3/++YLH33zzzYSGhtKjRw9+//13unXrxm+//UZKSgo//vhjhV6EiIhITTYyOsx2//v18QYmqbg3ft/FL5uPAuDm7MBnY6NpEuhpcCq5WD5uztW+4Aaw+XCG7X5ZR7o5OJiY0DeSBwc0Y+nj/VRwE6lB9p4YUQ3QPMjbwCQiFdO5sR+9mtWjbYgPG+K0rlttVu6Rbn///Tfz5s0jOjoaBwcHwsPDufzyy/Hx8WHSpEkMHTr0vMd/++23BAYGcscddzBgwAB69eqlddxERKRO6xzmR7MgL/YlZ7P2YBoHU3JoWoMKVl+vjuXjZQcAcDDBBzdH0blxzV6bTmqWk00UXBwdaNXAp8zH3dS1cRUlEpGqtPu0kW4tglV0k5rHz8OFrPxith/NBNBo61qs3CPdcnJyCAoKAsDf359jx44B0L59e2JiYi54fGpqKp9++imFhYU8/fTTBAYG0qNHD5555hn+/PPP8sYRERGp8UwmEzdEn5pSOmdDzRrt1q1pAKF+JdN7Xr6mHZe1DjY4kVSFwmILlpMtacshNjWHt/7YhdVa/mPLIiOviAPHcgBoHeKjLqQidcCeUkU3LwOTiFTc6Z3d/9mXYmASqUrlflfSsmVLdu/eDUDHjh35+OOPOXLkCB999BENG16465O/vz/Dhw/n7bffZsOGDWzZsoUWLVrw1ltvMXjw4PK/AhERkVrgms6htoYDczYcxlyB4oZRmgd7M/feHrx8TTtGXxp+4QOkRvlx42FGTF1J+xf/KDW6pCzi03IZOHkpHyzez03TVnPrZ2sqPd/pH77Lup7buVSkqCgi9ndyeqmvuzP1vV0NTiNSMb2b17fdX75HRbfaqtzTSx966CESEhIAeOGFF7jyyiuZMWMGLi4uTJ8+/YLHp6amsnTpUpYsWcKSJUvYsWMHfn5+XHXVVfTt27fcL0BERKQ2CPJ2o3/LIBbuTCIps4Ble4/Rv2WQ0bHKLNjHjVu7qeBWG6VmF7I+tmS9mZi447RuWPbpm2EBHgxoHcQf25NYfaLJRnxaLmEBlbe0yCVNAtj8/CC2HsmgnlfFGnccSc/ju7VxzN5wmFl3dtN6hCLVWEZeEYmZ+QC0DPauEetOipxNVGN/PFwcyS00s3xfClarVT/PtVC5R7rdcsstjBs3DoAuXboQGxvLunXriI+P58Ybb7zg8UFBQdxzzz0cPXqUO++8k40bN5KSksLcuXN56KGHyv0CREREaovTp5huPq0bY3WTnJXPpAU7KTJbjI4idnD6+nwb49LPu+/OhMwzppE+O7QN3SICbI/nb02o1HwAvh7O9GoeWK6C4Ol+2XyU9/7eR0JGPt+uq1nTu0XqmtM7lzbX1FKpwVycHOgWUQ+AY1kF5R5NLjXDRS964eHhQVRUFIGBgaW2+/j4cODAgTP237JlC0lJScyZM4cHHniA9u3bn/W8//zzDwUFBRcbT0REpMbo3yqIxwa1YPkT/Xl4YAuj45xVdkEx479Yx8fLDnDb9HVkFxQbHUmqWNsQH5wdS755jzlHh7XkzHwmfr+Jwe8u5+cTXWxPCgvw4I3rO9geL6iCotvFGtGlke01ztkQT2GxCsoi1dWe0zqXqomC1HS9mp2qo6zYqymmtVGVrTR7rsVy27ZtW6bjBw8ezJEjRyozkoiISLXm7OjA/QOaV+rUu8pUZLZw74wYW6etA8dyyFXRrdZzc3akbUjJWmkHjuWQnltoe66g2MyHS/bR/39LmBtT8r7t9d92kVtY+ucivJ4n7UJLRqFtOZxBXGqundKXTaCXK4PaNgAgJbuQv3YkGZxIRM4lPa8QF8eSj7Ea6SY1XZ8Wp4puy1R0q5WqbXunqupwJSIiIuVntVp5eu5Wlu0p6Vru6+7Ml7ddQpCP2tvXBVH/mmJqtVr5c3sig95Zxpu/7yan0AyAj5sTd/eJwNnxzLeYQ9qfarhVWVNMV+1P5ck5W5ixJpaj6XkXda7RXRvb7s9cG3ux0USkitzbrxk7XrqCRY/2pXOY/4UPEKnGIut70eDEe6m1B1PJLzIbnEgqW7UtuomIiNR1Fou12kzffOevPczZcBgoWYPk07HRNAvStJ66onNjP9v9hTuTGPP5Wu76egOxJ0asOZjglm6NWfJ4f8b1bHrWotvQ04pulTXF9J99KXy3Pp7//LjtotdB7BZRjyb1PE6cN5VDKTmVkFBEqoKTowOR9b1wd3E0OorIRTGZTPRuXjLaLb/IwtYjGQYnksqmopuIiEg1k5FbxNt/7aH3m4t547ddRsdh1to43vt7HwAmE7x7YycuaRJwgaOkNokKPzWaZMaaOJafNgWmW0QA8x/szSvXtCfA89zdQ0+fYrr1SOVMMd18ON12v2OY30Wdy8HBxE2njXabtS7uos4nIiJSFqO6hvHmiA6senqA3l/VQlVWdFOrWxERkYpxcIBpy/ZzJD2PeZuOGDrV4O9dSTz70zbb4+eGtmHwaSOWpG4I8XUj2McVh9Pe3oX6uTN1dBSz7uxW5q6hQ9uH2O5f7BRTq9VqG90W6OVKQ9+Ln+p8/ekNFdYfVkMFERGpcl3CA7ghOoyGvu5GR5EqYPdGCmWlop2IiNRV3m7OtvWvMvOL+WN7oiE5ftuawH0zNmK2lPxNv7N3U27r1dSQLGIsk8nEt3d1Z8nj/Qj0cuHRy1uw6NG+DG7fsFzv2U6fYrruUNpFZTqUmktmfsn0605hvpXy3jHQy5UrTjRUSM0p5Pft1a/Tqkhd9uuWo9z99Xom/7lbU8BFpEaosqLbb7/9RmhoKAA///wzRUVF5TpejRRERKQuuyE6zHb/5Fpq9pJdUMzz87Zxz4wYQvxKRg8N69CQpwe3tmsOqV6aBnrSOMCTFU8O4IHLmuPmXP61lBrX8+CZIa2Ye28PPh0TfVF5tpw2tbRDI7+LOtfpbu7aGJMJ2jT04b1F+87oxCoixll7MI0/tifx/t/7SMrMNzqOiMgFOZVlp4kTJ5b5hG+//TYAvXr1sm279tprSUxMpH79+jg6OpKQkEBQUNB5z5OVlVXma4qIiNQ2lzYNILyeB7GpuazYl8Lh47k08vewy7VNwMIdSQBk5hVxX/9IHrysOQ4OGoUuVKjYdrq7+kRWSo5NpzVOuNj13E7XPbIed/WO4ONlBwB4Yd523hrZsdLOLyIVtyfp1GfEFsFq5iO1R5HZwoq9KSzfm4K3mxOPXN7C6EhSScpUdNu4cWOpxzExMRQXF9OyZUsA9uzZg6OjI126dDnr8fXr12f16tVcddVVWK1WTR0VERG5AJPJxMgujfjfn3uwWuGHDUd4aGBzu1zb09WJ569qwyPfbeaO3hHc1uvs3ShFjLTl8KkObx1CfSvtvCaTiRsvCePr1bHkFpqZveEw3SPrcV1Uo0q7hohUzN6kbKBkKrj/eRq3iNQ0ZouVe2ZsIL/IQgMfNx4e2Fx1k1qiTO+gFy9ebLtdddVV9O3bl8OHDxMTE0NMTAzx8fH079+foUOHnvX4CRMmcPXVV+Po6IjJZKJBgwY4Ojqe9SYiIiIlru/SiJPvt2ZviMdiqfylF3IKipn0207i00p3kryibQOWPdGfu/tGquAmVaoiS4oUmS1sO1JSdAuv51HpH74j6nvx2rXtbY+f/Wkb+49lV+o1RKR8UrILSM0pBKBFsJfBaUQql5uzI12b1gMgMTNff3NqkTKNdDvd5MmT+fPPP/H3P9U63t/fn1deeYVBgwbx6KOPnnHMiy++yKhRo9i3bx/Dhw/niy++wM/P76KCi4iI1HYNfd3p07w+S/cc4/DxPFYfSKVHs8BKObfVauX3bYm89OsOEjLy2Z+czadjL7E9bzKZqO/tWinXEvm39NxC5sYcYcHWBAa2CWZC3/JNOd2TlEXBic6ilbme2+mu6RzKyv0pfL/+MLmFZu6fuZEf7+1x0dNrRaRiNLVUarvezQJZtucYAMv3ptAsSD/ntUG5i26ZmZkcO3bsjO3Hjh077zpsrVq1olWrVrzwwguMHDkSDw/7rEsjIiJSk90QHcbSE2/Avl8fXylFt0MpOTz/83bbGzuAZXtTOJiSQ9NAz4s+v8iFZOYV89KvOwDILzaXu+gW4OnC41e0ZHN8Or0rqRB9Ni8Ob0tMXDr7krPZmZDJq/N38vI17arseiJybienloKKblI79W4RCAtK7i/fm8L4nuoYXxuUu+h27bXXMn78eCZPnkzXrl0BWLNmDY8//jjXXXfdBY9/4YUXgJIi3e7duwFo2bIl9evXL28UERGRWm9gmyD8PJwxW6y4ODmQnJVPoKdrhZoa5BeZmbpkP1OX7qfwxCghgL4t6vPf4W1pooKb2Enjeh60D/Vl65EMth3JJDY1h/B6Zf/5a+jrzn39m1VhwhIeLk58cHMUw/9vBQXFFr5eHUv3yHoMad+wyq8tIqWVHumm6aVS+7QM9qa+tyvHsgpYfSCVwmILLk5a4qOmK3fR7aOPPuKxxx7j5ptvpqioqOQkTk7cfvvtvPXWWxc8Pjc3l/vvv5+vv/4as9kMgKOjI2PGjOH999/XCDgREZHTuDo58vVtl9I82Isxn62l66uLcHIwEezjRrCPKw193Qn2caOhrxvBviX/jQj0pJ5X6amhi3cn88K87cSdtnZbQ183XriqDVe0baDFesXuhnZoyNYT67LN35rAvf2qvohWES0bePPf4W15au5WAJ6cs4X2ob6EBeg9q4g9nT7SrblGukktZDKZ6N0skLkbj5BbaCYm7jjdIuoZHUsuUrnLph4eHnz44YekpqayceNGNm7cSFpaGh9++CGenhf+hvKRRx5h6dKl/Pzzz6Snp5Oens68efNYunTpWdeDExERqevaN/LFzdmRxMx8AIotVo6k5xETl878rQl8/s9BXl2wkwdnbWTkR6v4dl18qeOfn7eN8V+ssxXcnBxM3N0ngoUT+3Jlu4YquIkhhp42Wmz+lgQDk1zYjZeEMbxjCACuzo4kZ+UbnEikbrFarew+MdIt2McVX3dngxOJVI1ezU8tmbBib4qBSaSylHuk20menp506NCh3Mf98MMPzJkzh379+tm2DRkyBHd3d2644QamTp1a0UgiIiK12oBWQcSn5ZKQkU9SZr6ti9u/NfBxK/W4W0QAX62KBaBr0wBeuaad1sMRw4UFeNChkS9bDmew/WjZp5gmZeaTnFlAywbedpt2YzKZePXadrg7O/LYFS3VZETEzswWK49d0ZK9SVm4q5mJ1GK9TlundPneYzx2RUsD00hlKHfRLScnh9dff51FixaRnJyMxWIp9fyBAwfOe3xubi7BwcFnbA8KCiI3N/csR4iIiAiULOp+uoJiM8mZBSRk5JOYmU9iRh6JGQW0Df3/9u48Luo6/wP4awYYhmtmQG4BQRE5VMD7Fo80r7JLszWPymxXwzyy9GeRbZu2raWl6266oVZ2mO7mZlYeiHceHN4KKCrKrTDcx8z39wcyC4FyOHy/M/B6Ph7zcOY73/l+XtTHL/Lmc6hqnRfRxRVT+nijj58TJoa158g2Mhlju3ngTFrTppj+N/E23tt1EQpLOT55NgyPdhVnfTUHpRU+eLrpv3AmoodnaSHH8/06SB2DqMW5qpQIdHfApYwCnLmVj7zicmhsFVLHoofQ5KLbSy+9hNjYWDz//PPw8Gj6lJT+/fsjKioKW7ZsgVJZ9Zv4kpISLF++HP37929qHCIiojbL2tIC3k62Da4tpbS0wIonWSwg0zOumwdW7r4EoGqKaWOKbtVFuvJKPbwcpV1XTRAEFJRVQqXkVDciIjKOZ3p5Iz2vBIM6O8NGwZGd5q7JRbfdu3dj165dGDhwYLMaXLNmDUaPHg0vLy+EhoYCABITE6FUKvHLL78065pERER0f83Z6ZRIDN5Otgj1UiPx3hTT1JyiBnfRPZOWBwCwtpSji7t006TvFpXj9e8TkV9Sga9n9YOlBXeYIyKih/fiID+pI5ARNflfB46OjnBycmp2g127dkVSUhJWrFiBsLAwhIWFYeXKlUhKSkJISEjDFyAiIiKiVmPsvQ0V5DIg/ubdB56bV1yO1Nyq5UhCPFWwkqjQJQgCXv7iFPZezMLJ1LtYvTdJkhxEbcXZtHzkFJZJHYOIqMmaPNLtz3/+M95++21s3rwZtrbNG9Jva2uLWbNmPfCccePGYePGjfDwEGedDiIiIiIS34RQT9hZW+LRru5wtn/wBgXVU0sBoLuXpoWT3Z9MJsObY4Iw6Z/HoNMLWHcgGf06tqu16xwRGYcgCHhu43EUlFYixFOFXZGDpY5ERNRoTS66rVq1CikpKXBzc4Ovry+srGqvYREXF2eUYAcPHkRJSYlRrkVEREREpslTY4OpjVwgPfFmnuF5mLemZQI1Us8Ojnh9dBes3H0JggC89m0Cfpo3CK4OyoY/TESNlqEtRUFpJQBw52BqU9LuFuNwUg48NTYYEuAidRxqpiYX3SZOnNgCMYiIiIiIHiyx1kg3tYRJqrw8uCOOpeQi9ko2cgrLMP/bBGx5oS8suI4ikdFcySw0PA9wk24dRyIxXc4owOjVBwEAjwS7sehmxppcdIuKimqJHERERERE0OuFejf/EAQBifc2UVApLeHb7sEbLohBLpfho0mhGPvJIWRqy3AkORfrDyRj7vDOUkcjajWSMgsMzzu72kuYhEg8nV3t0c5OgdyichxPyUWFTi/ZOqb0cPh/jYiIiIgkdzYtH2//cA59V+zDtZyiOu9naEuRXVC1kHp3L43J7Mrbzt4aa54NR3Wcj/ZcwYlrd6QNRdSKXKlRdONIN2or5HIZBvpXrRNaUFZZa3kFMi+NKro5OTkhJycHwP92L73fg4iIiIioqY5dzcGWY9eRXVCGn86m13k/Pb8UHuqq9dJCvaWfWlpTv47tEDmianSbXgBe2nwS/4xNwfXcusVDImqamtNL/TnSjdqQmpvzHErKkTAJPYxGTS/9+OOP4eDgYHguk5nGbxaJiIiIqHUY09UD7/90CQDw45l0zBnmX+v9Hj6OOLZkBLIKSqWI16BXh3fG8au5uJ5ThPzSSqzYfQkrdl9CZ1d7jAx2w8ggN4R5a7jeG1ETCIKA5KyqopuXow3srJu8OhKR2Rpcq+iWjfmPBEiYhpqrUXet6dOnG57PmDHjoRo8ePAgBgwYAEvL2k1XVlbi6NGjGDJkCABg6dKlHDlHRERE1EZ4O9ki1FuDxJt5uJiuxdXsQnR0qTuqxVR3B7WQy/DplB44k5aHFzefMhxPyipEUlYh1h9IQTs7BYYHumJksBsGd3aGrYIFBKIHuZ1fisKyqp1Lu3BqKbUxHmob+LvaIzmrEIlp+cgvqYDaxkrqWNRETV7Tbdq0aYiOjkZKSkqzGhw2bBju3Km7zkV+fj6GDRtmeL1kyRJoNJpmtUFERERE5mdcN3fD8/qmmJo6FwdrDA90xd4FQ/DGo4Ho2cERNSeI5BaVY9vpNMz+4jTC3t2DtLvF0oUlMgM113PrzKIbtUHVo910egHHUnIlTkPN0eSim0KhwIoVK9C5c2d4e3tj6tSp2LhxI5KSkhr1eUEQ6p2empubCzs76XehIiIiIiJpjO3mYXi+62yGhEmaTyaTwd/VAX+M6ITtfxyAk/83Eh8+3R2jQ9xgY2VhOM/VwRrtNTa1PnssJRcnruWirFIndmwik5SlLYXlvSnZAW5cz43anppTTA8nZ0uYhJqryWPaN27cCAC4desWDh48iNjYWKxatQqzZ8+Gh4cH0tLS6v3ck08+CaDqHyIzZsyAtbW14T2dToczZ85gwIABzfkaiIiIiKgV8HKsf4rpzsTb+NfhawjzUmNKXx8EuqukjtpozvbWeKaXN57p5Y3SCh2OpeRiz8VMuKuUdX4R/Y/YFMReyYbCQo5gTxXCfTTo4eOIcB8N2mtsuK4ytTmTe/vgiXAvXMspgpvKuuEPELUyff3awcpChgqdwM0UzFSzF5JwdHREu3bt4OjoCI1GA0tLS7i4uNz3fLW6apcpQRDg4OAAG5v//WZPoVCgX79+mDVrVnPjEBEREVErML6bBxJv5gGommI6d3hnnE69g8SbeUi8mYdHgt0B9wdfw1QprSwwLNAVwwJd67yXpS1FpU4PACjX6ZFwMw8JN/MQfSQVQNXU1R4+GoT7OCLcW4M+fk4swlGboLCUo4s7p5ZS22RnbYmB/s7QC8Bgf2fo9AI35DEzMkEQhKZ8YOnSpThw4ADi4+MRFBSEoUOHIiIiAkOGDIGjo2ODn1++fDkWLVpkNlNJtVot1Go18vPzoVKZz29ViYiIiMxR2t1iDPogBgAQ5KHC7nmDMXHdESTcK8QlRo1qlQtJ55dU4OCVbBy4nI34m3dxNbvovue6OFjjxNIRtYpuWdpSqGysoKwxhZWIiMzf/ZboImk1tlbU5JFuK1euhIuLC6KiovDkk08iIKBp29ZGRUU1tUkiIiIiaiO8HG0R5q1Bws08ZGlLkaUtxYXbWgBAR2e7VllwAwC1jRUmhHpiQqgnACCvuBwJN/MQdyMP8TfuIuFmHgpKq3Zx7OGjqfMD2NJ/n8Pei5lQKS3hplLCVWUNNwclXFVKuDpYG455OdrAQ21Tp30iIjJNLLiZtyYX3eLj4xEbG4sDBw5g1apVUCgUhtFuERERDRbhMjMzsWjRIuzbtw9ZWVn4/UA7nY4LxxIRERG1ZYtGdYFcBvTxc8LF9AKU35t22d1LLXEy8WhsFYjo4oqILlVTUfV6AVdzChF3PQ9uamWtc8sr9SgsqwAAaEsroS0tRFJWYb3XHRXshs+m9ap17G5xOaws5LC3bvbKM0RG99vVXGw5dh2d3ewxpqsHp5gSkVlq8nfW0NBQhIaGIjIyEgCQmJiIjz/+GHPmzIFer2+waDZjxgzcuHEDb731Fjw8PFi1JSIiIqJaBtXYrS0hLc/wvLuXRvwwJkIur9oV1d+1buEhr6Qc3b000OkFZGrLkFVQitIKfb3XcVPVLdi9ujUOeSUViJ7RBy4OXKyeTEPcjTzsOpsOnAX8nO1YdKM2r1KnR2JaPtzVyjq7X5PpanLRTRAExMfH48CBAzhw4AAOHz4MrVaL7t27Y+jQoQ1+/vDhwzh06BDCwsKak7dZbt26hTfeeAO7d+9GcXEx/P39ER0djV69ejX8YSIiIiKSzJl7a7kBQKi3RrIcpszVQYmlY4MMrwVBgLa0EtkFpcjUliFTW4qsgqo/+/o51frsO/89j8PJuQCAp9YfxZYX+sDX2TzWXqbW7UpmgeF553qKzURtyaGkbPzpqzgUlFZiwSMBiBzRWepI1EhNLro5OTmhsLAQoaGhGDp0KGbNmoXBgwdDo9E06vPe3t51ppS2pLt372LgwIEYNmwYdu/eDRcXFyQlJTVq0wciIiIiklbivZFulnIZQjy5qVVjyGQyqG2soLaxqndkXE3T+3dAzKUspOeX4sadYjy1/iiiZ/Zu06MKyTRUF93kMqCjCwvB1Lb5OdsZ1vU8nJTDopsZaXLR7csvv8TgwYObvZPn6tWr8eabb+Kf//wnfH19m3WNpvjggw/g7e2N6OhowzE/P78Wb5eIiIiImk8QBGw5moormVVrkwW4OXBnzhbQxV2FHX8agOmfn8CVzELkFpXj2c+O4x9Te2JIgIvU8aiN0ukFJN9bl9C3nR3/7lOb5+VoCz9nO1zLKULcjbsoLKvkOpxmQt7UD4wbN67ZBTcAmDx5Mg4cOIBOnTrBwcEBTk5OtR7GtnPnTvTq1QvPPPMMXF1dER4ejg0bNtz3/LKyMmi12loPIiIiIhKXTCbDF7/dMLz240iXFuOhtsG22QPQx7fq3+LF5Tq8sOkk/h2fJnEyaqtu3ilGWWXVuoQBbpxaSgQAg++td1qpF3A8JVfiNNRYopdGV69eLWp7V69exfr167FgwQIsXboUJ0+eRGRkJBQKBaZPn17n/BUrVmD58uWiZiQiIiKiup7v3wEHL2fD0c4K47t5Sh2nVVPbWmHLi30w75t4/HI+E5V6AfO/TUR2QRleHtJJ6njUxlyusZ5bgJu9hEmITMcgf2dsOXYdAHA4OQcjg90kTkSNIRPEXGBNAgqFAr169cLRo0cNxyIjI3Hy5EkcO3aszvllZWUoKyszvNZqtfD29kZ+fv5DjfAjIiIiIjJ1Or2AqJ3n8OXx/40yXPVMKJ7q6SVhKmpr1u5Pwt9+vQIA+HRKOCaEsuhOVFBagbB390CnF9DRxQ77F0ZIHalN02q1UKvVDdaKmjy91BhSUlKwbNkyTJkyBVlZWQCA3bt34/z580Zvy8PDA8HBwbWOBQUF4caNG/Web21tDZVKVetBRERERNQWWMhl+PPjXbHwkQAAQB8/J4zr7iFxKmprqtdyBDi9lKiag9IK4fd28b6aXYRbeSXSBqJGEb3oFhsbi27duuG3337Djh07UFhYdUNNTExEVFSU0dsbOHAgLl++XOvYlStX0KFDB6O3RURERERk7mQyGV4d0RlrnwvHhud7cRF7El31zqWWchn8nLmeI1G1wZ3/t8HN4aRsCZNQY4ledHvzzTfx3nvvYc+ePVAoFIbjw4cPx/Hjx43e3vz583H8+HG8//77SE5OxtatW/HZZ59hzpw5Rm+LiIiIiKi1GN/dE2pbq1rHbt4pRlZBqUSJqK14vn8HPNfXB+O7e0BhKcnkLCKTNOjeZgoAcCgpR8Ik1Fiib6Rw9uxZbN26tc5xV1dX5OQYv9P07t0b//73v7FkyRK8++678PPzw+rVq/GHP/zB6G0REREREbVWOYVleP5fv0EnCNjyQl+OQKIW84e+nJVEVJ9QLzUclJawt7aEh1opdRxqBNGLbhqNBunp6fDz86t1PD4+Hu3bt2+RNsePH4/x48e3yLWJiIiIiNqCt/5zDqm5xQCAp9cfxeczeiP03vpCRETU8iwt5Ni7YChcHaxx9lY+LqZrEeTBdehNmehjdZ999lm88cYbyMjIgEwmg16vx5EjR7Bo0SJMmzZN7DhERERERNQIURNCEOhetah9blE5pmw4jsOc3kREJCo3lRIp2UWY/vkJTP7nMZxMvSN1JHoA0Ytu77//PgIDA+Ht7Y3CwkIEBwdjyJAhGDBgAJYtWyZ2HCIiIiIiagR3tRLfzu6PPn5OAAC5DNh9Lh1pd4slTkatSXJWIfKKy6WOQWTSVv16GXeLK6AtrcTUjb9h/6VMqSPRfcgEQRCkaPjGjRs4d+4cCgsLER4ejs6dO0sRo0FarRZqtRr5+flQqThsk4iIiIjattIKHV7ecgpn0vKRV1KBx8M8sebZcKljUSsx6uNYXMksRHuNDQ4tHga5XCZ1JCKTU1RWiVe+PG3YTMFCLsOHT3fHkz28JE7WdjS2ViTZVjA+Pj4YO3YsJk2aZLIFNyIiIiIiqk1pZYFPn+sB2b1ayA8Jt5FwM0/STNQ6lFfqcTW7CABgb23JghvRfdhZW2Lj9F4Y390DAKDTC1jwXSI2HroqcTL6PdE3UtDpdNi0aRP27duHrKws6PX6Wu/v379f7EhERERERNQEahsrvDYyAFE7zwMA3t91Ed/O7geZjEUSar7U3CJU6qsmYnV2s5c4DZFps7a0wJpnw+Foq8AXx68DAN7bdRF3isrx+uguvB+bCNFHus2bNw/z5s2DTqdD165dERoaWutBRERERESm77m+PujobAcAOJF6B7+c55pC9HCuZBYYnndxc5AwCZF5sJDL8O7jIXht5P9mD/79QAqW7DiLSp3+AZ8ksYg+0u2bb77Bd999h7Fjx4rdNBERERERGYmVhRxvjgnEy1+cBgCs3H0RwwNdobCUbAUbMnNXMgsNzzuz6EbUKDKZDK+NDEA7OwXe3nkeggB8c/Imxnf3xKDOzlLHa/NE/46oUCjg7+8vdrNERERERGRkjwS7oe+93UxTc4vx1W/XJU5E5iypxki3AE4vJWqS5/v74pNnw2FlIcPSsYEsuJkI0YtuCxcuxJo1ayDRpqlERERERGQkMpkM/zcuyPB6zb4k5BdXSJiIzFn19FKFpRwd2tlJnIbI/EwI9cSv84fi5SGdpI5C94g+vfTw4cOIiYnB7t27ERISAisrq1rv79ixQ+xIRERERETUTN29NHgivD3+HX8LecUVWHcgGUvHBjX8QaIayip1SM0tBgB0crGHBXcuJWoWP+e6Beufz6UjxFMNbyfbZl+3vFIPnV4PSws5rCy4jEBjiV5002g0eOKJJ8RuloiIiIiIWsii0V3w09l0WMplcLZXSB2HzNDV7CLo7u1cyqmlRMYTcykLc7fGw8lOgS0v9kGgu+qB55eU63ApQwu5TIZQb43huIVchk1Hr+ObEzfx5phAPBLsxh1SG0H0olt0dLTYTRIRERERUQtqr7HBp1PCEe7jCBcHa6njkBlKu1sCuQzQC0AAN1EgMgq9XsBHe66gUi8gq6AMk/5xDJ/P6I1evlVrceYUluHCbS0upGtx4bYW52/n41pOEfQCMCLQFf+a0ft/1xIEbD56HbfySvDyF6fRx9cJS8cFIaxGYY7qkgkSLa6WnZ2Ny5cvAwC6dOkCFxcXKWI0SKvVQq1WIz8/HyrVgyvCRERERERE1DylFTqkZBfCyU4BD7WN1HGIWoW7ReWYsekkEm/mAQAs5TKEeKqQoS1Fprbsvp/zUCtxbMkIw+ssbSle/uI0Eu5dp9pjoZ54fXSXh5q6ao4aWysSvehWVFSEV199FVu2bIFerwcAWFhYYNq0afj0009ha2ta/6NYdCMiIiIiIiIic1VUVolXvjyNQ0k5UCktoS2trPc8hYUcAe72CPZQIdhDhWn9fSGvsb6iIAj49UImVu6+hGs5RbU+N2OgL+ZE+ENta1XfpVsdky26zZ49G3v37sXatWsxcOBAAFWbK0RGRuKRRx7B+vXrxYzTIBbdiIiIiIiaJq+4HGv3J6OXryMe7eohdRwiojavvFKPqJ3nMdC/HeZujYdKaYkQTzWCPasKbMGeKvi72jdqk4QKnR5bf7uBNfuScKeo3HBcY2uFyOGdMXOgb6tf781ki27Ozs74/vvvERERUet4TEwMJk2ahOzsbDHjNIhFNyIiIiKixruVV4Kxaw4hv6QCPk622LNgCKwtLaSORUREqCqYZWpL0V5j89CFMW1pBdYfSMG/Dl9DeWXVTMZHQ9zxj+d7GiOqSWtsrUj0fV6Li4vh5uZW57irqyuKi4vFjkNEREREREbkqVYixLPqB5Abd4rxxbHrEiciU5ecVYh538RjXUwyzt3KlzoOUatmZSGHl6OtUUaiqZRWeOPRQMQsisCT4e2hsJDjjTGBRkjZeohedOvfvz+ioqJQWlpqOFZSUoLly5ejf//+YschIiIiIiIjkslk+L9xQaj+ee6TfUnIKy5/8IeoTTt7Kw8/JNzGh79cxuHkHKnjEFETtdfY4KPJYTj0xjD4OdvVeu+HhFv401encT236D6fbt1EL7qtWbMGR44cgZeXF0aMGIERI0bA29sbR48exZo1a8SOQ0RERERERhbiqcaT4V4AAG1pJT7ZlyxxIjJlVzILDc8D3OwlTEJED8NNpaz1urRCh7/+fBk/nc3AnguZEqWSluhFt65duyIpKQkrVqxAWFgYwsLCsHLlSiQlJSEkJETsOERERERE1AIWjQ6A0qrqx40vjqciNadtjnKghiVlFhied3Z1kDAJERlTSnYhyip18HGyxfP9O0gdRxKWUjRqa2uLWbNmSdE0ERERERGJwENtg1mDO+LT/cmo0An44OdLWD+19S+uTU1XPdLNVmGB9hobidMQkbGEeKpx4PVhuHmnuM1uqCP6SDcAuHz5MubOnWuYXjp37lxcunRJiihERERERNRCZg/tBGd7awDA7nMZOJV6R+JEZGpKynW4ebdqQ73Obg6Qyx9+cXciMh321pYI8rj/7p6tnehFt+3bt6Nr1644ffo0QkNDERoairi4OHTr1g3bt28XOw4REREREbUQe2tLLBwVYHj93q6LEARBwkRkapKzClHdJQJcuZ4bEbUuok8vXbx4MZYsWYJ333231vGoqCgsXrwYTz31lNiRiIiIiIiohTzT0wvRR64hq6AMj4d5Qi8AFhzMRPdcrrGeW4Ab13MjotZF9KJbeno6pk2bVuf41KlT8eGHH4odh4iIiIiIWpClhRxrn+sBNwcl1LZWUschE1NrEwXuXEpErYzo00sjIiJw6NChOscPHz6MwYMHix2HiIiIiIhaWICbAwtuVK8zt/INzznSjYhaG9FHuj322GN44403cPr0afTr1w8AcPz4cWzbtg3Lly/Hzp07a51LREREREStjyAIkMk4z7Qt23cxEyeu3kHPDo6wtpTDQ62UOhIRkVHJBJFXMpXLGze4TiaTQafTtXCahmm1WqjVauTn50Olars7bhARERERGUNWQSk+3pME33a2mD20k9RxSCK/Xc3FtM9PoKxSDwDYNLM3Irq4SpyKiKhxGlsrEn2km16vF7tJIiIiIiIyAWWVOsz+4jRKynXYEZeGp3p6wdneWupYJLJzt/Lx0uZThoLbhFBPDO7sInEqIiLjE31NNyIiIiIiapusLS3Q08cRlzIKUFapx6YjqVJHIpGlZBdi+ucnUFBWCQCI6OKCVc+EwkLOqcZE1PqIPtINAE6ePImYmBhkZWXVGfn20UcfSRGJiIiIiIhE8OJgP2w+looKnYAtx1LxSkQn2FtL8mMJiaysUocZ0SeQW1QOAOjVwRHr/9ATCkuOBSGi1kn0727vv/8+li1bhi5dusDNza3W4qlcSJWIiIiIqHXzUNtgYlh7bDudBm1pJb7+7QZmDekodSwSgbWlBZaNC8arW+PRydUe/5rRGzYKC6ljERG1GNE3UnBzc8MHH3yAGTNmiNlss3EjBSIiIiIi40rOKsDIjw4CANxVShxcPIyjndqQ367moqOLPVwcuJ4fEZmnxtaKRP/OJpfLMXDgQLGbJSIiIiIiE+Hv6oBHgt0AABnaUvwn4ZbEiail1DfGo2/Hdiy4EVGbIHrRbf78+Vi3bp3YzRIRERERkQl5ZWgnw/N/xKZArxd1Ag6JoFKnx+wvTmPTkWtSRyEikoToa7otWrQI48aNQ6dOnRAcHAwrK6ta7+/YsUPsSEREREREJLKeHRzRx88JJ67dwdXsIuy5mInRIe5SxyIj0esFLN5+Br9eyMSvFzJRXKHDnyL8pY5FRCQq0Ue6RUZGIiYmBgEBAWjXrh3UanWtBxERERERtQ1/rDHabf2BlHqnIpL5EQQB7/54ATviqqYNKyzkCPXSSBuKiEgCoo9027x5M7Zv345x48aJ3TQREREREZmQiC4uCHR3gLtaWasAR+btk33J2HQ0FQAglwGfTAnHQH9naUMREUlA9KKbk5MTOnXiN1QiIiIiorZOJpNhx58GwFYh+o8l1EI2HbmGj/deMbxe+VR3PNqV04aJqG0SfXrpO++8g6ioKBQXF4vdNBERERERmRgW3FqP/8Tfwjv/vWB4vWxcECb18pYwERGRtET/DvfJJ58gJSUFbm5u8PX1rbORQlxcnNiRiIiIiIiI6CHsvZCJhdsSDa/nDvPHS4M7SpiIiEh6ohfdJk6cKHaTRERERERk4nR6AXsuZGDDoWtYPTkM3k62UkeiRjp/Kx9L/30WOn3VRhhT+/lg4agAiVMREUlPJnCLoAfSarVQq9XIz8+HSqWSOg4RERERUav0r8PX8Ocfq6YmTu/fAcsf7ypxImqMnMIyjPvkEOwUlsgrqcAgf2esnhwGuVwmdTQiohbT2FqR6Gu6VTt9+jS+/PJLfPnll4iPj5cqBhERERERmYAnw9vDxsoCAPDtqZvILSyTOJG0qkeNmTKdXsBr3yQgU1uGqzlFCPFUYdWkUBbciIjuEb3olpWVheHDh6N3796IjIxEZGQkevbsiREjRiA7O1vsOEREREREZAIc7RSY0scHAFBaocfmo6nSBmpBer2ATG0pTqXewb/j0/DJviRkaktrnZNXXI7Ir+OxM/E2THVy0pp9STicnAMAcHGwxqpJobCykGxcBxGRyRF9TbdXX30VBQUFOH/+PIKCggAAFy5cwPTp0xEZGYmvv/5a7EhERERERGQCXhrshy3HUlGpF7D52HXMHtoJdtbmu7upTi/g1/MZuHm3GDfvlNz7sxhpd0tQVqmvdW6otwZuKqXh9Y9n0rEz8TZ2Jt7G9tNpeG9iV5Na5y72SjY+3Z8EAJDLgE+nhMPVQdnAp4iI2hbRv4P9/PPP2Lt3r6HgBgDBwcFYt24dRo0aJXYcIiIiIiIyEZ4aGzwW5okdcbeQX1KBb07exIuD/KSO1SyXMrS4klGAN7afRUmFrsHzb94prvX6TFqe4XnslWyM+vggFjwSgJkDfWEp8Wiy23kleO2beFQPwFs0ugv6dWwnaSYiIlMk+t1ar9fDysqqznErKyvo9fp6PvFw3nnnHchkslqPwMBAo7dDREREREQP75WhnQzPNx66ivJK4/+M0NKKyiox56s4RH6TAIVl7R+5lFZydHa1x/BAV0zv3wHLxgXhH1N7YkSQa63zVk0Kwz+f7wn3e6PfSip0+MtPF/H4uiM4m5Yv2tfye+WVeszdGoe7xRUAgBGBrnhlSKcGPkVE1DaJPtJt+PDhmDdvHr7++mt4enoCAG7duoX58+djxIgRLdJmSEgI9u7da3htaWm+Q9SJiIiIiFqzADcHjAxyxd6LWUjPL8XOxNt4uqeX1LGa5O0fziMluwgAYG9tibfGB6Gjiz28HW3hbK+ATNa4jQZGh7hjQKd2+Nsvl7Hl+HUIAnD+thaPrzuMmQP9sOCRANGn367cfQlxN/IAAO01Ntw4gYjoAUQf6bZ27VpotVr4+vqiU6dO6NSpE/z8/KDVavHpp5+2SJuWlpZwd3c3PJydnVukHSIiIiIieng1R7v9IzYFejPYybPa96fTsD0uDQBgp7DAFy/2wdM9vdHDxxEuDtaNLrhVc1BaYfnjXbHjjwMQ6O4AANALwL8OX8Oojw8iv6TC6F/D/QiCACc7K8hlgMJCjvVTe0BjqxCtfSIicyP6kC9vb2/ExcVh7969uHTpEgAgKCgII0eObLE2k5KS4OnpCaVSif79+2PFihXw8fGp99yysjKUlf1ve3KtVttiuYiIiIiIqK5evk7o1cERp67fhZ+zHQpKK6G2rbtEjalJzirEW/85Z3j9/pPd0NHF3ijXDvdxxH9fHYQNh65izd4klFXq0bejE9Q24v13kclkmDu8M8J9HHE7rwTdvTSitU1EZI5kgqnuP20ku3fvRmFhIbp06YL09HQsX74ct27dwrlz5+Dg4FDn/HfeeQfLly+vczw/Px8qlUqMyEREREREbd65W/mwtpSjs1vdf7ObotIKHSauO4JLGQUAgGd7e2PlU91bpK3ruUX468+X8eeJXeFk97+RZoIgQBDA6Z5ERC1Mq9VCrVY3WCsSvegWGRkJf39/REZG1jq+du1aJCcnY/Xq1S3afl5eHjp06ICPPvoIL774Yp336xvp5u3tzaIbERERERHd15IdZ/H1iRsAgAA3e/wwZxBsFBaiZvju1E1sO3UTK57sBn9X4xUrr2YXGm3EHhFRa9DYopvoa7pt374dAwcOrHN8wIAB+P7771u8fY1Gg4CAACQnJ9f7vrW1NVQqVa0HERERERHR/exMvG0ouNlYWWDdcz1EL7jlFJbh/Z8u4mTqXTy+9gje2XkOWdrSh77ud6du4pGPD+KfsSlo5ZOkiIiMTvSiW25uLtRqdZ3jKpUKOTk5Ld5+YWEhUlJS4OHh0eJtERERERHRw6vU6fHfxNtIziqQOkq9bt4pRvX+CO8+HiLJlNgsbRk099Z369pejU1Hr2PQX2Pw9g/ncCuvpFnXvHBbi7f+cw46vYAVuy/haEquMSMTEbV6ohfd/P398fPPP9c5vnv3bnTs2NHo7S1atAixsbFITU3F0aNH8cQTT8DCwgJTpkwxeltERERERGRclzK0GL4qFq9+HY91MSlSx6nXnGH+2DyzD14Y6Iene3pJkiHYU4WfXxuCJWMCkZJdCAAor9Rjy7HriPgwBm9uP4PruUWNvl5BaQXmbI1DWaUeADCljw8G+ju3SHYiotZK9N1LFyxYgLlz5yI7OxvDhw8HAOzbtw+rVq1qkfXc0tLSMGXKFOTm5sLFxQWDBg3C8ePH4eLiYvS2iIiIiIjIuHycbKEtrQBQNY1z4agAeDnaSpyqriEBLhgSIO3PGEorC8we2glP9vDCxkNX8cXx6ygu16FCJ+Cbkzex7XQaHg/1xJ+G+cPf9f5rtAmCgDe2n8G1nKoiXYinClETgsX6MoiIWg1Jdi9dv349/vKXv+D27dsAAF9fX7zzzjuYNm2a2FEa1NjF8YiIiIiIqGV8tOcKPtmXBACYMcAX7zwWInEioLi8ErYK0ccwNMndonJEH7mG6KOpKCitNByXyYCx3TwQNT4Yriplnc9FH7mG5f+9AABwUFpi16uD4dPO9AqdRERSMdmNFADgj3/8I9LS0pCZmQmtVourV6/WKbgdOXKk1i6iRERERETUNs0Y4AulVdWPLlt/u4GYS1nQ66Vb1P/mnWIM+WsMoo9cM+nNBRztFFgwqgsOvzEci0YFQGNbteabIABHk3NgZ123aBh34y7+suui4fWqZ0JZcCMiaiZJim7VXFxcYG9f/7DmMWPG4NatWyInIiIiIiIiU+Nkp8CzvX1gbSmHnbUFZm46iYEf7Meff7yAuBt3RS18lVfqMffreOQUlmP5fy/gX4evidZ2c6ltrDB3eGcceWM4lowJhLO9Ai8N7lin6HY2LQ9zv4pD5b2C5uwhHTEqxF2KyERErYIk00sbw8HBAYmJiS2yuUJTcHopEREREZH0cgrLkJpThKf/cazOe+01NhjbzR3junsi1EsNWfVWoi3g/Z8u4rODVwFUrTf3Y+QgqJRWLdZeSyit0EEvCLWmx2ZqS9FvxT5U/3TY29cRW2f1g5WFpOM0iIhMUmNrRaa9CAEREREREREAZ3trKK0ssOqZUOw6m45DSdmo0FVViG7llWDDoWvYcOga2mtsML67B2YP7QQnO4VRM+y/lGkouFlZyLD2uXCzK7gBVRsu/N5nB69CEABPtRLlOj3WPteDBTcioofEohsREREREZkFe2tLPNXTC0/19EJ+cQV+vZCBXWfTcTgpxzAl8lZeCaKPpuLVEZ2N2nZ6fgkWfJdoeL1kTBC6e2mM2oaUunupMbmXN96aEIzUnCK41bPBAhERNQ2LbkREREREZHbUtlZ4ppc3nunljbzicvx6PhM/nk3HkeQcDOviAvvfrVf25x8v4E5ROQLdHdDRxR5+znbwcbKFwrLh0VyVOj0iv45HXnEFAOCRYDfMHOjbEl+WZB4Pa4/Hw9oDALq2V0uchoiodTDZoltLrsNARERERESth8ZWgUm9vTGptzfuFJWjoLSi1vulFTocTsrG5czCWsflMsDbyRZ+znbwc7ZDR2c7+Dnbo4+fU61i3Md7r+Bk6l0AVevHffh0d/68QkREDTLZopuJ7u9AREREREQmzMlOUWctt3O38tHJxb5O0U0vANdzi3E9txgHLmcbjp9fPtpQdDt4JRt/j0kBAFjKZfhkSjg0tsZdK46IiFonky26FRQUSB2BiIiIiIhagV6+TgjycMArEZ1wLacIV7OLqv7MKcS17CIUlesM57qrlLCrMTXV0VYBD40St/NK8froLujZwVGKL4GIiMyQ6EU3Pz+/Bw7Fvnr1qohpiIiIiIioLbCztkJ3L02dzQ8EQUB2QRmu5lQV4qo3ZKjWzUuN6Bl9EHM5C7MGdxQxMRERmTvRi26vvfZardcVFRWIj4/Hzz//jNdff13sOERERERE1IbJZDK4qpRwVSnRr2O7es/p0M4WrwztJHIyIiIyd6IX3ebNm1fv8XXr1uHUqVMipyEiIiIiInowpZWF1BGIiMgMNbw/tkjGjBmD7du3Sx2DiIiIiIiIiIjooZlM0e3777+Hk5OT1DGIiIiIiIiIiIgemujTS8PDw2ttpCAIAjIyMpCdnY2///3vYschIiIiIiIiIiIyOtGLbhMnTqz1Wi6Xw8XFBREREQgMDBQ7DhERERERERERkdHJBEEQGj6t7dJqtVCr1cjPz4dKpZI6DhERERERERERSaixtSKTWdONiIiIiIiIiIiotWDRjYiIiIiIiIiIyMhYdCMiIiIiIiIiIjIyFt2IiIiIiIiIiIiMjEU3IiIiIiIiIiIiI5Ok6LZlyxb88MMPtY798MMP2LJlixRxiIiIiIiIiIiIjEomCIIgdqNyuRyBgYG4cOGC4VhgYCCSkpKg0+nEjvNA+fn50Gg0uHnz5gO3gSUiIiIiIiIiotZPq9XC29sbeXl5UKvV9z3PUsRMBnq9vs6xS5cuSZCkYQUFBQAAb29viZMQEREREREREZGpKCgoeGDRTfSRbkOHDsWLL76ISZMmQalUitl0s+j1ety+fRsODg6QyWRSx5FcdTWXI//IHLH/kjlj/yVzxv5L5oz9l8wd+zCZM1Ptv4IgoKCgAJ6enpDL779ym+gj3cLDw7Fo0SK8+uqrmDRpEl588UX069dP7BiNJpfL4eXlJXUMk6NSqUyqwxM1BfsvmTP2XzJn7L9kzth/ydyxD5M5M8X++6ARbtVE30hh9erVuH37NqKjo5GVlYUhQ4YgODgYf/vb35CZmSl2HCIiIiIiIiIiIqOTZPdSS0tLPPnkk/jhhx+QlpaG5557Dm+99Ra8vb0xceJE7N+/X4pYRERERERERERERiFJ0a3aiRMnEBUVhVWrVsHV1RVLliyBs7Mzxo8fj0WLFkkZje7D2toaUVFRsLa2ljoKUZOx/5I5Y/8lc8b+S+aM/ZfMHfswmTNz77+ib6SQlZWFL774AtHR0UhKSsKECRPw0ksvYfTo0YaNCg4fPoxHH30UhYWFYkYjIiIiIiIiIiIyCtE3UvDy8kKnTp3wwgsvYMaMGXBxcalzTvfu3dG7d2+xoxERERERERERERmF6CPdDh06hMGDB4vZJBERERERERERkahEL7oRERERERERERG1dqJMLw0PDzes19aQuLi4Fk5DRERERERERETUskQpuk2cOFGMZoiIiIiIiIiIiEyCXIxGoqKiEBUVhWXLlmHYsGGYN2+e4djvH9Q069atg6+vL5RKJfr27YsTJ07Uev+zzz5DREQEVCoVZDIZ8vLyGnXdyMhI9OzZE9bW1ggLC6vz/oEDB/D444/Dw8MDdnZ2CAsLw1dffdXgdW/cuIFx48bB1tYWrq6ueP3111FZWVnn2j169IC1tTX8/f2xadOmRmUm82Nu/belrkvmSar+e/nyZQwbNgxubm5QKpXo2LEjli1bhoqKigdel/dfqsnc+i/vv1STVP23puTkZDg4OECj0TR4Xd5/6ffMrQ/zHkw1SdV/U1NTIZPJ6jyOHz/+wOtKfQ8WpehWzcLCAqNGjcLdu3fFbLbV+vbbb7FgwQJERUUhLi4OoaGhGD16NLKysgznFBcX49FHH8XSpUubfP0XXngBkydPrve9o0ePonv37ti+fTvOnDmDmTNnYtq0afjxxx/vez2dTodx48ahvLwcR48exebNm7Fp0ya8/fbbhnOuXbuGcePGYdiwYUhISMBrr72Gl156Cb/88kuT85NpM7f+29LXJfMiZf+1srLCtGnT8Ouvv+Ly5ctYvXo1NmzY8MBfXPH+SzWZW/9tzHV5/207pOy/1SoqKjBlypRGbQ7H+y/9nrn14cZcl/fgtsMU+u/evXuRnp5uePTs2fO+55rEPVgQWc+ePYW9e/eK3Wyr1KdPH2HOnDmG1zqdTvD09BRWrFhR59yYmBgBgHD37t0mtREVFSWEhoY26tyxY8cKM2fOvO/7P/30kyCXy4WMjAzDsfXr1wsqlUooKysTBEEQFi9eLISEhNT63OTJk4XRo0c3KTeZPnPrv2Jcl8yHqfXf+fPnC4MGDbrv+7z/Uk3m1n+be13ef1snU+i/ixcvFqZOnSpER0cLarX6gdfi/Zd+z9z6cFOuWxPvwa2TlP332rVrAgAhPj6+0dcyhXuwqCPdAOC9997DokWL8OOPPyI9PR1arbbWgxqnvLwcp0+fxsiRIw3H5HI5Ro4ciWPHjkmSKT8/H05OTvd9/9ixY+jWrRvc3NwMx0aPHg2tVovz588bzqn5NVWfI9XXRC3DHPuvqV2XpGNq/Tc5ORk///wzhg4det9zeP+laubYf5uL99/WxxT67/79+7Ft2zasW7euUefz/ks1mWMfbi7eg1sfU+i/APDYY4/B1dUVgwYNws6dOx94rincg0Uvuo0dOxaJiYl47LHH4OXlBUdHRzg6OkKj0cDR0VHsOGYrJycHOp2uVucBADc3N2RkZIie57vvvsPJkycxc+bM+56TkZFRb97q9x50jlarRUlJiZFTk1TMsf+a0nVJWqbSfwcMGAClUonOnTtj8ODBePfdd+97Lu+/VM0c+29z8P7bOkndf3NzczFjxgxs2rQJKpWqUZ/h/ZdqMsc+3By8B7dOUvdfe3t7rFq1Ctu2bcOuXbswaNAgTJw48YGFN1O4B4tedIuJiTE89u/fb3hUvyZxjRkzBvb29rC3t0dISEizrhETE4OZM2diw4YNzb4GUXOYcv/l3wtqyMP232+//RZxcXHYunUrdu3ahb/97W8tkJKofqbcf3n/pYY0t//OmjULzz33HIYMGdKC6YgaZsp9mPdgakhz+6+zszMWLFiAvn37onfv3li5ciWmTp2KDz/8sAXTPjxLsRtsiekDbZGzszMsLCyQmZlZ63hmZibc3d0bfZ2NGzcaqrdWVlZNzhEbG4sJEybg448/xrRp0x54rru7e52dTarzV2d2d3ev92tSqVSwsbFpcj4yTebYf03humQaTKX/ent7AwCCg4Oh0+nw8ssvY+HChbCwsKhzLu+/VM0c+29T8P7bukndf/fv34+dO3caisSCIECv18PS0hKfffYZXnjhhTqf4f2XajLHPtwUvAe3blL33/r07dsXe/bsue/7pnAPFn2k28GDBx/4oMZRKBTo2bMn9u3bZzim1+uxb98+9O/fv9HXad++Pfz9/eHv748OHTo0KcOBAwcwbtw4fPDBB3j55ZcbPL9///44e/ZsrZ1N9uzZA5VKheDgYMM5Nb+m6nOa8jWR6TPH/iv1dcl0mEL//T29Xo+Kigro9fp63+f9l6qZY/9tLN5/Wz+p+++xY8eQkJBgeLz77rtwcHBAQkICnnjiiXo/w/sv1WSOfbixeA9u/aTuv/VJSEiAh4fHfd83hXuw6CPdIiIi6hyTyWSG5zqdTsQ05m3BggWYPn06evXqhT59+mD16tUoKiqqNXc+IyMDGRkZSE5OBgCcPXsWDg4O8PHxeeDClsnJySgsLERGRgZKSkqQkJAAoOo30gqFAjExMRg/fjzmzZuHp556yjAfWqFQ3Pe6o0aNQnBwMJ5//nn89a9/RUZGBpYtW4Y5c+bA2toaAPDKK69g7dq1WLx4MV544QXs378f3333HXbt2mWM/2RkQsyt/7bkdcn8SNl/v/rqK1hZWaFbt26wtrbGqVOnsGTJEkyePPm+vy3k/ZdqMrf+25jr8v7bdkjZf4OCgmqdf+rUKcjlcnTt2vW+1+T9l37P3PpwY67Le3DbIWX/3bx5MxQKBcLDwwEAO3bswOeff46NGzfe95omcQ82yh6oTZCXl1frkZ2dLfz6669C3759hb1794odx+x9+umngo+Pj6BQKIQ+ffoIx48fr/V+VFSUAKDOIzo6+oHXHTp0aL2fu3btmiAIgjB9+vR63x86dOgDr5uamiqMGTNGsLGxEZydnYWFCxcKFRUVtc6JiYkRwsLCBIVCIXTs2LHBrGS+zK3/ttR1yTxJ1X+/+eYboUePHoK9vb1gZ2cnBAcHC++//75QUlLywOvy/ks1mVv/5f2XapKq//5edHS0oFarG8zL+y/9nrn1Yd6DqSap+u+mTZuEoKAgwdbWVlCpVEKfPn2Ebdu2NZhX6nuwTBAEob5inNhiY2OxYMECnD59WuooRERERERERERED0X0Nd3ux83NDZcvX5Y6BhERERERERER0UMTfU23M2fO1HotCALS09OxcuVKhIWFiR2HiIiIiIiIiIjI6ESfXiqXyyGTyfD7Zvv164fPP/8cgYGBYsYhIiIiIiIiIiIyOtGLbtevX6/1Wi6Xw8XFBUqlUswYRERERERERERELcZkNlIgIiIiIiIiIiJqLSTZSCE2NhYTJkyAv78//P398dhjj+HQoUNSRCEiIiIiIiIiIjI60YtuX375JUaOHAlbW1tERkYiMjISNjY2GDFiBLZu3Sp2HCIiIiIiIiIiIqMTfXppUFAQXn75ZcyfP7/W8Y8++ggbNmzAxYsXxYxDRERERERERERkdKIX3aytrXH+/Hn4+/vXOp6cnIyuXbuitLRUzDhERERERERERERGJ/r0Um9vb+zbt6/O8b1798Lb21vsOEREREREREREREZnKXaDCxcuRGRkJBISEjBgwAAAwJEjR7Bp0yasWbNG7DhERERERERERERG9/+5C7/VEageQgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "era.make_plot(obstype_model='wind_amplitude')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/examples_analysis_example_7_0.png b/docs/_build/.doctrees/nbsphinx/examples_analysis_example_7_0.png new file mode 100644 index 00000000..e643afbb Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_analysis_example_7_0.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_doc_example_22_1.png b/docs/_build/.doctrees/nbsphinx/examples_doc_example_22_1.png new file mode 100644 index 00000000..035833c9 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_doc_example_22_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_doc_example_24_1.png b/docs/_build/.doctrees/nbsphinx/examples_doc_example_24_1.png new file mode 100644 index 00000000..96fe2305 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_doc_example_24_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_doc_example_26_1.png b/docs/_build/.doctrees/nbsphinx/examples_doc_example_26_1.png new file mode 100644 index 00000000..03ad8be0 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_doc_example_26_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_filling_example_11_1.png b/docs/_build/.doctrees/nbsphinx/examples_filling_example_11_1.png new file mode 100644 index 00000000..9a8e9539 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_filling_example_11_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_filling_example_13_1.png b/docs/_build/.doctrees/nbsphinx/examples_filling_example_13_1.png new file mode 100644 index 00000000..ebe7953b Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_filling_example_13_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_filling_example_15_1.png b/docs/_build/.doctrees/nbsphinx/examples_filling_example_15_1.png new file mode 100644 index 00000000..1c036bf7 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_filling_example_15_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_filling_example_19_1.png b/docs/_build/.doctrees/nbsphinx/examples_filling_example_19_1.png new file mode 100644 index 00000000..18c39d8f Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_filling_example_19_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_filling_example_7_1.png b/docs/_build/.doctrees/nbsphinx/examples_filling_example_7_1.png new file mode 100644 index 00000000..53871adc Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_filling_example_7_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_gee_example_11_2.png b/docs/_build/.doctrees/nbsphinx/examples_gee_example_11_2.png new file mode 100644 index 00000000..c4e744a4 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_gee_example_11_2.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_gee_example_17_2.png b/docs/_build/.doctrees/nbsphinx/examples_gee_example_17_2.png new file mode 100644 index 00000000..2a2fd4d3 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_gee_example_17_2.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_qc_example_11_1.png b/docs/_build/.doctrees/nbsphinx/examples_qc_example_11_1.png new file mode 100644 index 00000000..cc7cd2af Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_qc_example_11_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_qc_example_13_0.png b/docs/_build/.doctrees/nbsphinx/examples_qc_example_13_0.png new file mode 100644 index 00000000..3f2b6767 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_qc_example_13_0.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_qc_example_3_1.png b/docs/_build/.doctrees/nbsphinx/examples_qc_example_3_1.png new file mode 100644 index 00000000..03ad8be0 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_qc_example_3_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/examples_using_obstypes_16_1.png b/docs/_build/.doctrees/nbsphinx/examples_using_obstypes_16_1.png new file mode 100644 index 00000000..75222a56 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/examples_using_obstypes_16_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/paper/paper_figures.ipynb b/docs/_build/.doctrees/nbsphinx/paper/paper_figures.ipynb new file mode 100644 index 00000000..d8c6fcd7 --- /dev/null +++ b/docs/_build/.doctrees/nbsphinx/paper/paper_figures.ipynb @@ -0,0 +1,813 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4e711329-5eb3-44e9-a2c8-8a0ff4d7cf12", + "metadata": {}, + "source": [ + "# JOSS publication figures creator\n", + "This script will create the figures that are used in the JOSS publication of the Metob-toolkit." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "312b112e-0589-4c66-9f7a-65f17191af49", + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "import math\n", + "import os\n", + "import sys\n", + "import time\n", + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import metobs_toolkit\n" + ] + }, + { + "cell_type": "markdown", + "id": "98236314-525a-41c3-81f9-3ce8ce0ec574", + "metadata": {}, + "source": [ + "## Creation of the Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0f4b7767-ecfa-47d8-abc6-05c726e450e3", + "metadata": {}, + "outputs": [], + "source": [ + "datadf = pd.read_csv(metobs_toolkit.demo_datafile, sep=';')\n", + "metadf = pd.read_csv(metobs_toolkit.demo_metadatafile, sep=',')\n", + "\n", + "# Subset to regio ghent\n", + "ghent_stations = [ 'vlinder24', 'vlinder25', 'vlinder05', 'vlinder27',\n", + " 'vlinder02', 'vlinder01', 'vlinder28']\n", + "\n", + "\n", + "datadf = datadf[datadf['Vlinder'].isin(ghent_stations)]\n", + "metadf = metadf[metadf['Vlinder'].isin(ghent_stations)]\n", + "\n", + "# subset period\n", + "datadf['dummy_dt'] = datadf['Datum'] + datadf['Tijd (UTC)']\n", + "datadf['dummy_dt'] = pd.to_datetime(datadf['dummy_dt'], format='%Y-%m-%d%H:%M:%S')\n", + "\n", + "#Subset to period\n", + "from datetime import datetime\n", + "startdt = datetime(2022, 9, 1)\n", + "enddt = datetime(2022, 9, 10)\n", + "datadf = datadf[(datadf['dummy_dt'] >= startdt) & (datadf['dummy_dt'] <= enddt)]\n", + "datadf = datadf.drop(columns=['dummy_dt'])\n", + "\n", + "# Inducing outliers as demo\n", + "datadf = datadf.drop(index=datadf.iloc[180:200, :].index.tolist())\n", + "\n", + "# save in paper folder\n", + "folder = os.path.abspath('')\n", + "datadf.to_csv(os.path.join(folder, 'datafile.csv'))\n", + "metadf.to_csv(os.path.join(folder, 'metadatafile.csv'))\n", + "\n", + "#Importing raw data\n", + "use_dataset = 'paper_dataset'\n", + "dataset = metobs_toolkit.Dataset()\n", + "dataset.update_settings(output_folder=folder,\n", + " input_data_file=os.path.join(folder, 'datafile.csv'),\n", + " input_metadata_file=os.path.join(folder, 'metadatafile.csv'),\n", + " template_file=metobs_toolkit.demo_template,\n", + " )\n", + "\n", + "dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "00d37a3e-804d-47bf-9f24-a1f6f7ad6ef0", + "metadata": {}, + "source": [ + "## Styling settings" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "65472b11-7c51-4fe2-9352-e82b613d44cf", + "metadata": {}, + "outputs": [], + "source": [ + "# change color for printing (avoid yellow!)\n", + "dataset.settings.app['plot_settings']['color_mapper']['gross_value'] = \"#fc0303\"" + ] + }, + { + "cell_type": "markdown", + "id": "591b6a9e-c62f-49cb-be4e-1dd8ced9b54a", + "metadata": {}, + "source": [ + "## Timeseries for each station" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ff3aa9ac-4e8a-452a-a673-35ee0dee7a93", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAGUCAYAAABuqV+MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU9dX48c+9s2/ZFxISAoR9E0REUHHf6l6trT591D62tVXbWtvaandta9XW2uVXtdaidWktVq1WBTfEHZRFWZMAIWTfk8nsc5ffHzfMZEhAUCAI5/16QWbuNt9ZMpk593zPUUzTNBFCCCGEEEIIIYQQQhzS1OEegBBCCCGEEEIIIYQQYv+TQKAQQgghhBBCCCGEEIcBCQQKIYQQQgghhBBCCHEYkECgEEIIIYQQQgghhBCHAQkECiGEEEIIIYQQQghxGJBAoBBCCCGEEEIIIYQQhwEJBAohhBBCCCGEEEIIcRiQQKAQQgghhBBCCCGEEIcBCQQKIYQQQgghhBBCCHEYkECgEEIIIYQY0p133snYsWOx2WzMnDlzuIcDwM9+9jMURclYNnr0aK688srhGdAe2rZtG4qi8OCDDw73UIQQQghxGJNAoBBCCCH2C0VR9ujfa6+9NtxDHTZ//vOfD9rA0IsvvsiNN97Isccey8KFC/nVr3413EPa7zZs2MDPfvYztm3b9rGP8dhjj3H33XfvszEJIYQQQuxL9uEegBBCCCEOTQ8//HDG9b///e+89NJLg5ZPnjz5QA7roPLnP/+ZgoKCgzKb7dVXX0VVVR544AGcTudwD+eA2LBhAz//+c858cQTGT169Mc6xmOPPca6deu4/vrrM5ZXVFQQjUZxOByffKBCCCGEEB+TBAKFEEIIsV988YtfzLj+7rvv8tJLLw1afqgwTZNYLIbH4zkkxtHW1obH49lnQcCD5fEZLoqi4Ha7h3sYQgghhDjMydRgIYQQQgwbwzC4++67mTp1Km63m+LiYq6++mq6u7szths9ejTnnHMOr732GkcddRQej4fp06enphU/+eSTTJ8+HbfbzezZs1m9enXG/ldeeSV+v5+tW7dyxhln4PP5KC0t5ZZbbsE0zU80piVLlqTGdN999wGwcOFCTj75ZIqKinC5XEyZMoV77rln0P7r169n2bJlqWnSJ554IjB0HTyABx98EEVRMqau7m4cPT09XH/99ZSXl+NyuRg3bhy33347hmHs9nlRFIWFCxcSDodTY9sxhVnTNG699VYqKytxuVyMHj2am2++mXg8vsePz1DeeOMNPve5zzFq1ChcLhfl5eV8+9vfJhqN7nase+Of//wns2fPJhAIkJWVxfTp0/n9738PWI/t5z73OQBOOumkQVPX//Of/3D22WdTWlqKy+WisrKSW2+9FV3XU8c/8cQTee6556irq0vtvyOzcFc1Al999VWOP/54fD4fOTk5nH/++WzcuDFjmx2vh82bN3PllVeSk5NDdnY2X/rSl4hEIhnbvvTSSxx33HHk5OTg9/uZOHEiN9988z57DIUQQgjx6SYZgUIIIYQYNldffTUPPvggX/rSl/jmN79JbW0tf/rTn1i9ejVvvfVWxjTKzZs3c9lll3H11VfzxS9+kd/85jece+653Hvvvdx8881cc801ANx2221ccsklVFVVoarpc566rnPmmWdyzDHHcMcdd7B48WJ++tOfomkat9xyy8caU1VVFZdeeilXX301X/nKV5g4cSIA99xzD1OnTuW8887Dbrfz7LPPcs0112AYBtdeey0Ad999N9/4xjfw+/388Ic/BKC4uPhjPY5DjSMSiXDCCSfQ2NjI1VdfzahRo3j77be56aabaG5u3m0du4cffpi//OUvrFixgr/+9a8AzJ8/H4Avf/nLPPTQQ1x88cV85zvfYfny5dx2221s3LiRp5566iPHtSuLFi0iEonw9a9/nfz8fFasWMEf//hHGhoaWLRo0cd6XAZ66aWXuPTSSznllFO4/fbbAdi4cSNvvfUW3/rWt1iwYAHf/OY3+cMf/sDNN9+cmrK+4+eDDz6I3+/nhhtuwO/38+qrr/KTn/yEYDDInXfeCcAPf/hDent7aWho4He/+x0Afr9/l2N6+eWXOeussxg7diw/+9nPiEaj/PGPf+TYY49l1apVg6YnX3LJJYwZM4bbbruNVatW8de//pWioqLU/Vm/fj3nnHMOM2bM4JZbbsHlcrF582beeuutT/z4CSGEEOIQYQohhBBCHADXXnutOfCjxxtvvGEC5qOPPpqx3eLFiwctr6ioMAHz7bffTi1bsmSJCZgej8esq6tLLb/vvvtMwFy6dGlq2RVXXGEC5je+8Y3UMsMwzLPPPtt0Op1me3v7xx7T4sWLB93XSCQyaNkZZ5xhjh07NmPZ1KlTzRNOOGHQtj/96U/NoT6mLVy40ATM2trajxzHrbfeavp8PrO6ujpj+Q9+8APTZrOZ27dvH3T8ga644grT5/NlLFuzZo0JmF/+8pczln/3u981AfPVV1/9yHHtylCP2W233WYqipLx/A712FRUVJhXXHHFbo//rW99y8zKyjI1TdvlNosWLRr02tnd+K6++mrT6/WasVgstezss882KyoqBm1bW1trAubChQtTy2bOnGkWFRWZnZ2dqWUffPCBqaqqefnll6eW7bjP//d//5dxzAsvvNDMz89PXf/d735nAqnXsxBCCCHEzmRqsBBCCCGGxaJFi8jOzua0006jo6Mj9W/27Nn4/X6WLl2asf2UKVOYN29e6vrcuXMBOPnkkxk1atSg5Vu3bh10m9ddd13qsqIoXHfddSQSCV5++eWPNaYxY8ZwxhlnDLqdgXXwent76ejo4IQTTmDr1q309vbu8WO0p4Yax6JFizj++OPJzc3NuC+nnnoquq7z+uuv7/XtPP/88wDccMMNGcu/853vAPDcc8995Lh2ZeBjFg6H6ejoYP78+ZimOWiq98eRk5NDOBzmpZde+lj7DxxfX18fHR0dHH/88UQiETZt2rTXx2tubmbNmjVceeWV5OXlpZbPmDGD0047LfVYD/S1r30t4/rxxx9PZ2cnwWAQsO4jWNOYP2r6txBCCCEOTzI1WAghhBDDoqamht7eXoqKioZc39bWlnF9YLAPIDs7G4Dy8vIhl+9c009VVcaOHZuxbMKECQCpmnt7O6YxY8YMud1bb73FT3/6U955551BNdx6e3tTY9xXhhpHTU0NH374IYWFhUPus/N92RN1dXWoqsq4ceMylo8YMYKcnBzq6uo+cly7sn37dn7yk5/wzDPPDHru9kXw9JprruFf//oXZ511FiNHjuT000/nkksu4cwzz9yj/devX8+PfvQjXn311VTg7ZOMb8djNdR06cmTJ7NkyRLC4TA+ny+1fOffgdzcXMB6rWdlZfH5z3+ev/71r3z5y1/mBz/4Aaeccgqf/exnufjiizOmyQshhBDi8CWBQCGEEEIMC8MwKCoq4tFHHx1y/c4BLJvNNuR2u1pu7tQEZH+MaagOuFu2bOGUU05h0qRJ3HXXXZSXl+N0Onn++ef53e9+t0eZWkM1CgEyGlN81DgMw+C0007jxhtvHHKfHUHQj2NX49uTcQ1F13VOO+00urq6+P73v8+kSZPw+Xw0NjZy5ZVX7pPstqKiItasWcOSJUt44YUXeOGFF1i4cCGXX345Dz300G737enp4YQTTiArK4tbbrmFyspK3G43q1at4vvf//4By777qNe6x+Ph9ddfZ+nSpTz33HMsXryYxx9/nJNPPpkXX3xxl/sLIYQQ4vAhgUAhhBBCDIvKykpefvlljj322D0OGH0ShmGwdevWjABYdXU1QKopw74Y07PPPks8HueZZ57JyODaeVox7DqgtiPTq6enJzXdExiUcbc7lZWVhEIhTj311D3e56NUVFRgGAY1NTWpJhoAra2t9PT0UFFR8bGOu3btWqqrq3nooYe4/PLLU8s/7jTeXXE6nZx77rmce+65GIbBNddcw3333cePf/xjxo0bt8vn47XXXqOzs5Mnn3ySBQsWpJbX1tYO2nZPg6Q7HquqqqpB6zZt2kRBQUFGNuCeUlWVU045hVNOOYW77rqLX/3qV/zwhz9k6dKl+/S1IIQQQohPJ5kjIIQQQohhcckll6DrOrfeeuugdZqm0dPTs89v809/+lPqsmma/OlPf8LhcHDKKafsszHtyLoamJHY29vLwoULB23r8/mGPGZlZSVARh2/cDj8kZlrA11yySW88847LFmyZNC6np4eNE3b42Pt8JnPfAZgUMfhu+66C4Czzz57r48JQz9mpmny+9///mMdbyidnZ0Z11VVZcaMGQDE43GAVOBt5+dkqPElEgn+/Oc/D7odn8+3R1OFS0pKmDlzJg899FDG7a1bt44XX3wx9Vjvja6urkHLZs6cCaTvoxBCCCEOb5IRKIQQQohhccIJJ3D11Vdz2223sWbNGk4//XQcDgc1NTUsWrSI3//+91x88cX77PbcbjeLFy/miiuuYO7cubzwwgs899xz3Hzzzakpv/tiTKeffnoq8+zqq68mFApx//33U1RURHNzc8a2s2fP5p577uEXv/gF48aNo6ioiJNPPpnTTz+dUaNGcdVVV/G9730Pm83G3/72NwoLC9m+ffse3d/vfe97PPPMM5xzzjlceeWVzJ49m3A4zNq1a3niiSfYtm0bBQUFe/UYHnHEEVxxxRX85S9/SU2XXbFiBQ899BAXXHABJ5100l4db4dJkyZRWVnJd7/7XRobG8nKyuLf//73oFqBn8SXv/xlurq6OPnkkykrK6Ouro4//vGPzJw5M5XdOHPmTGw2G7fffju9vb24XC5OPvlk5s+fT25uLldccQXf/OY3URSFhx9+eMjp57Nnz+bxxx/nhhtuYM6cOfj9fs4999whx3TnnXdy1llnMW/ePK666iqi0Sh//OMfyc7O5mc/+9le38dbbrmF119/nbPPPpuKigra2tr485//TFlZGccdd9xeH08IIYQQh6Bh61cshBBCiMPKtddeaw710eMvf/mLOXv2bNPj8ZiBQMCcPn26eeONN5pNTU2pbSoqKsyzzz570L6Aee2112Ysq62tNQHzzjvvTC274oorTJ/PZ27ZssU8/fTTTa/XaxYXF5s//elPTV3X9+mYTNM0n3nmGXPGjBmm2+02R48ebd5+++3m3/72NxMwa2trU9u1tLSYZ599thkIBEzAPOGEE1LrVq5cac6dO9d0Op3mqFGjzLvuustcuHDhoGPsbhx9fX3mTTfdZI4bN850Op1mQUGBOX/+fPM3v/mNmUgkhtxn58dsZ8lk0vz5z39ujhkzxnQ4HGZ5ebl50003mbFYLGO73Y1rKBs2bDBPPfVU0+/3mwUFBeZXvvIV84MPPjABc+HChantfvrTnw56HVVUVJhXXHHFbo//xBNPmKeffrpZVFSUekyvvvpqs7m5OWO7+++/3xw7dqxps9lMwFy6dKlpmqb51ltvmcccc4zp8XjM0tJS88YbbzSXLFmSsY1pmmYoFDIvu+wyMycnxwTMiooK0zTTr8uB98U0TfPll182jz32WNPj8ZhZWVnmueeea27YsCFjmx33ub29PWP5zq+HV155xTz//PPN0tJS0+l0mqWlpeall15qVldX7/axEUIIIcThQzHNj1FJWwghhBDiU+TKK6/kiSeeIBQKDfdQhBBCCCGEGDZSI1AIIYQQQgghhBBCiMOABAKFEEIIIYQQQgghhDgMSCBQCCGEEEIIIYQQQojDgNQIFEIIIYQQQgghhBDiMCAZgUIIIYQQQgghhBBCHAbswz2Ag5FhGDQ1NREIBFAUZbiHI4QQQgghhBBCCCGGkWma9PX1UVpaiqp+evPqJBA4hKamJsrLy4d7GEIIIYQQQgghhBDiIFJfX09ZWdlwD+Njk0DgEAKBAGA9uVlZWcM8GiGEEEIIIYQQQggxnILBIOXl5amY0aeVBAKHsGM6cFZWlgQChRBCCCGEEEIIIQTAp76E3LBOar7nnnuYMWNGKuA2b948XnjhhdT6WCzGtddeS35+Pn6/n4suuojW1tbdHtM0TX7yk59QUlKCx+Ph1FNPpaamZn/fFSGEEEIIIYQQQgghDmrDGggsKyvj17/+NStXruT999/n5JNP5vzzz2f9+vUAfPvb3+bZZ59l0aJFLFu2jKamJj772c/u9ph33HEHf/jDH7j33ntZvnw5Pp+PM844g1gsdiDukhBCCCGEEEIIIYQQByXFNE1zuAcxUF5eHnfeeScXX3wxhYWFPPbYY1x88cUAbNq0icmTJ/POO+9wzDHHDNrXNE1KS0v5zne+w3e/+10Aent7KS4u5sEHH+QLX/jCHo0hGAySnZ1Nb2+vTA0WQgghhBBCCCGEOMwdKrGig6bfsa7r/POf/yQcDjNv3jxWrlxJMpnk1FNPTW0zadIkRo0axTvvvDPkMWpra2lpacnYJzs7m7lz5+5yH4B4PE4wGMz4J4QQQgghhBBCCCHEoWTYA4Fr167F7/fjcrn42te+xlNPPcWUKVNoaWnB6XSSk5OTsX1xcTEtLS1DHmvH8uLi4j3eB+C2224jOzs79a+8vPyT3SkhhBBCCCGEEEIIIQ4ywx4InDhxImvWrGH58uV8/etf54orrmDDhg0HdAw33XQTvb29qX/19fUH9PaFEEIIIYQQQgghhNjf7MM9AKfTybhx4wCYPXs27733Hr///e/5/Oc/TyKRoKenJyMrsLW1lREjRgx5rB3LW1tbKSkpydhn5syZuxyDy+XC5XJ98jsjhBBCCCGEEEIIIcRBatgzAndmGAbxeJzZs2fjcDh45ZVXUuuqqqrYvn078+bNG3LfMWPGMGLEiIx9gsEgy5cv3+U+QgghhBBCCCGEEEIcDoY1I/Cmm27irLPOYtSoUfT19fHYY4/x2muvsWTJErKzs7nqqqu44YYbyMvLIysri2984xvMmzcvo2PwpEmTuO2227jwwgtRFIXrr7+eX/ziF4wfP54xY8bw4x//mNLSUi644ILhu6NCCCGEEEIIIYQQQgyzYQ0EtrW1cfnll9Pc3Ex2djYzZsxgyZIlnHbaaQD87ne/Q1VVLrroIuLxOGeccQZ//vOfM45RVVVFb29v6vqNN95IOBzmq1/9Kj09PRx33HEsXrwYt9t9QO+bEEIIIYQQQgghhBAHE8U0TXO4B3GwCQaDZGdn09vbS1ZW1nAPRwghhBBCCCGEEEIMo0MlVnTQ1QgUQgghhBBCCCGEEELse8PeNVgIIYQQQnw6GTGNeH0fik1Bsau4Rn16z44LIYQQQhwOJBAohBBCCCE+lnhtL50PbQBAzXJSevPcYR6REEIIIYTYHZkaLIQQQgghPhatM5a6nAjGOe03y/jz0s3DOCIhhBBCCLE7EggUQgghhBAfi9YWAaDB2com91ZiPY28sXXb8A5KCCGEEELskkwNFkIIIYQQH0uy1QoE/rXwSZZnrbWWxY8FTh3GUQkhhBBCiF2RjEAhhBBCCLHXTNMk2RrGxGSzZ3tqeV88jmGYwzgyIYQQQgixK5IRKIQQQgghPlK8LojqtZPY3oejxIfN58CM6dQ7W+h09Ka2M9Q+GrqjjMr3DuNohRBCCCHEUCQQKIQQQgghdss0TboWVaF3WM1BnKMCBE4ZBcB7/vUZ2yr2Xqpb+yQQKIQQQghxEJKpwUKIT6TrqRraF66j7d4PMGUqmBBCHJKSDaFUEBAgsb2P6Jo2bEorqwPPZWxrtwepbus70EMUQgghhBB7QDIChRCfSOS9FjCsy1pXDEeBZ3gHJIQQYp8Lv9cyaFlkfSeoG+i0hwAHTsMgoaqY9gh9dSsglAX+ogM/WCGEEEIIsUuSESiE+NhMzUgFAQGSjaHhG4wQQoj9Qo9qRNa0A6A4bfgWjMRekQUJgxrPJrY5HRRoGiWaltrnsvrr4P2/DdeQhRBCCCHELkggUAjxsRnhZMb1RJMEAoUQu9f99GY6H6+i7Z416L3x4R6O2AOhtxqx5ThxlPjwziwk+5RRRDUdgPX93YI77HZK+5cBtNrtmKsfAcMY8phCCCGEEGJ4SCBQCPGx6TsFAiUjUAixO3ooQfjdZqKr20jU9RFe2TrcQxIfQeuNE1rWgNYWpbWrBfdJI1BddlbNLeC3RFnv6kltOz6Z/pvQZrOh9NZD7WsHftBCCCGEEGKXJBAohPjYds4ITDaFME1pGCKEGFqsqjvjevj9VmkydJDrfb4WM2ll9f18/H3MfeZYZv19Fi82LOFZojS4rOnADhMmTrwstV+bzWZdWPX3Az5mIYQQQgixaxIIFELslciH7XQ/vZmeF2pJbA9mrDMimkz1E0LsUqyqK+O63hUjvrV3mEYjPooRSWILOLHlu0l6TbYa2zEx0UyNxmAX5Wo9dQ6r79x4m5eymZ9L7dts99JAJWYsCHHpICyEEEIIcbCQQKAQYrdM00xl+ZlJg9DbTYTfbSa0rIHY5p5B28v0YCHEUEzdIFbdnxHoSH/8GKobrTg4JDuihN5sRO+MsWlcE5qZbgbSEm6j1LMRU1EAmOwtpcib7hDcrBZSxhaULa/AlqUHfOxCCCGEEGJo9uEegBDi4GaEkjT/egWKqqA4VBS3LbXOTOiDtk80hvBMLTiQQxRCfAok6oKYMes9wz0xF0VVSTb2Ef2gnfj8UlwVWcM8QrEzvSed4b3CvRYGVIMIaZ143e2p61Pyp2QEAtvs7vTGNUtgynn7daxCCCGEEGLPSEag2C9M06Tz8U30vrpdisF/yiVbw6CbmEnDmvrblf5iaITT2SGK145jpB+jLzEcwxRCHOSS7RGcY7JQPHY8k/JxjclC64wB0PPMFqkVeBDaEQg0MXkn/l7GOsUeJDkgEDh55HycNie5rlwA2uxJdNNpHWfdYkxj8Ikj8elm6gZt939I70t1BJdux9SkQ7QQQgjxaSCBQLFfJLYFia5up+/FOroXVWMMkTkmPh2SrZFdrjNiAwKBikKyMURkbad8oRdCDBLb1E2iNogZ1XBWBPAdXYJjhBeAZEuYZJOUFTjY7AgEPlTwJI2JZmth/9u74uil02X9fbCZJuNHLQCg2FcMQKcjSJ8xw1qf7EBbu/wAjlwcCKG3m0ls6aXvle0El9SRkNIgQgghxKeCBALFPmNqBkZCx4hphFZk1nySBhKfXtpuAoFmIn3231kRsJbFNLS2Xe8jhDg87TipoDhV7PkeFJtC4LQK1CwnjmIv4fcle/xg09DdwHVjbuPN7DcBWBCOUqBbJ/Zs9h4iqs54TeVkdylul/U3YMf0YAOdZ5Qp9KrWR83ovx/NOHkkPt30UILgy3UZyxLbgrvYWgghhBAHEwkEio8luqmL8OpWOhauQw8l0MNJ2v+6ls5HNtL+wDqia9oyth9YZ0h8uuwuI5D+zD/Fbcc1Jju1OC5fBoQQAxgJHb3bmgZsL/KiqFaDCc/EPIy+BMmmMIkG6Sx7sGkPtbLFXU+jM47HMDg6FqM82Z/hb0vQ5rBTYzewOdL1AEdnjaYyu5KKQAW/G7OcU8pLeTBQjot3iKxpGqZ7Iva14KvbcZT4MpbFt0kHcCGEEOLTQAKB4mPpfHQj3Y9XE6vqpuc/W+h5sobEtiDx6m6S9X2pqUM7SCDw08k0TZI7svv6v7gPxeZ34BqdDgQm5MuAEGIArT2a+rvgKE4HDxS7ii2rv45cf6BQHDy6Ip2py1f1Bjm+x0vhEHXgKstPSF3+3pzv8fQFT3PyqJPR1ChxVeWePJMmZx3mG/cekHGL/StR30f4nWYS24LYS70oHqv3YKIuKKVBhBBCiE8BCQSKvaaHk5BMfxGIru0gur4TR7kfxWMDp4prUi6ucenAkCaBwE8VI6FjmiZGXxIzak3lUvyO1HrFZcvYXvU5cJT6UBzWW4pkBAohBkq2hlOXHUXejHW2XCubzAhrGHGZOnqwMBI63Xr6pE6ervML7YvY9MCgbccVHzFoWZ47D6/dCyaMSST5YmkxSngh8aqt+3XcYv8yDZOeZ7ekAvu+I0fgGm11/DYiGlpHdBhHJ4QQQog9IYFAsde0zp0+5Nn6M8UMKPrGkYz41pEUfHEKOedUpjaRjMBPD607Rtv/W0Pw5Tq6/7M5tdxR4LEuqFYG4ECqz4FiU3GWW18Q9Z64BH+FECkDa43aizMDgfa89LRSrUveNw4Wek+cXltX6rrd8LLCNpuOnFMGbdv2Guh6ZqbgldOuZPn/LKfYPof1bhdBm40l/gLs/zgZ/YlroXHl/r4LYj/QOqLYclygKtiLPPjnlWTMCJDpwUIIIcTBzz7cAxCfPlp7OhDomVVE4MQy+l6tJ/fCcaju9EvKluNKXdZ7ZMrXp0Xv87VorRH6dqoN6J1RQMGVU1EcKtF1HXQ9uim1bkdg0Dk6i/hW60tAoq4Xe07RgRu4EOKgNbDWqGM3gUC9KwY71R0Tw0PvidNnT9f02xYfDaqNWROP4b2qxanlqmGjc7nJC70v0LjxXxSNqaStdkvq53nzpnI/7wHwlN/LRaHtsO4RTGIoFz9woO+W+ISiazuIftgBgHd2sXUSsD8jECD8Xiu+OSNQlF2XExFCCCHE8JKMQLHXBmYEemcU4Cz2kX/ppIwgIIDqtqemkEpG4KdDeGUrRlwHt21QTUBHqR/VaUNRFOwFmV/kVZ8VCHRVZuOszMFR6iO+uedADVsIcZDbUWtUcdoyThJBemowWBnJ4uCg98QJ2jtS1+u0sbgdduaPrszYLidahIqNuo12Qt0REpEIoa5O+jo7CHV1ory2EkfSOin0gSdCtd36e6GtfxEM/cDdIbFPpOoGA55JeQA4R/rxzinGMdJPsr6Prn9WYepSK1AIIYQ4WA1rIPC2225jzpw5BAIBioqKuOCCC6iqqkqt37ZtG4qiDPlv0aJFuzzulVdeOWj7M88880DcpcPCwPov9h3TRXdhxxc+rTcuBaQ/BeK1vcSruyGmk3XqKGthfzxwYF0v+05f5FOBwFFZJOqCJJvCRKu6MU15zoU43BkJ3cr0A+xFnkGZQvb8nTICxUFB64kRtKWneTYkK7h4dhkjAyMytsuLlgBgaBFc2VcQjU7Gl1uBFrdOACbCYeaYUwFQkgG+V1ROp6riMIOYdcsP0L0R+4q2o96nqmDPtz4DKnYV35HFJJtCqe1im7qG2l0IIYQQB4FhDQQuW7aMa6+9lnfffZeXXnqJZDLJ6aefTjhsfcgoLy+nubk549/Pf/5z/H4/Z5111m6PfeaZZ2bs949//ONA3KXDQioQqGZO6RpKKmCkmRjh5H4emfikBtbx8h87kpzPjqP0p/Mo+fExGRmfituWrg1Jemqw4rDhrrRqBRnBBMmmdIMAIcThSWsbOC148LRf+8CMQAkEHjT0njg9Nuvvvd002ayP4fNzysn35GdslxsZgRZdjpGsQ1G8hHvLmXrSt/jMdd9JbXNsZ4D/GfcNcITZ6tK4tSCPPkUh+c5/Duh9Ep+MqZsk+8vD2As8KPb01wjXmGzyLpuM4rET/aCd7qdqMPXBHaaFEEIIMfyGtUbg4sWLM64/+OCDFBUVsXLlShYsWIDNZmPEiMwzz0899RSXXHIJfr9/t8d2uVyD9hWfzI7srh2BQHuuG8W2+1hyZp3AOLaAc/8NUHwipmmmpvzYclyoLhv+o0uG3FZRFBSXDTPS31HYm24e4p6UR6yqG7AyApwjd/+7KoQ4tCWaQjhG+lHcNlwVgzvOqgEn2BXQTJkafBDRe+J025OASrZuMnnaRMYUWIFcj91DVLM+C+RGR6DF38bmnJ7at72+j+M+Nwtvdg6R3h66N2zinCs/z0uNjxMMh6l1JPhFQR63bn15OO6a+Ji0zij0T/ndudYngHd6AdEP2oiu68QIJYlt6sIzteBAD1MIIYQQH+GgqhHY22tNQcnLyxty/cqVK1mzZg1XXXXVRx7rtddeo6ioiIkTJ/L1r3+dzs7OXW4bj8cJBoMZ/0SaaZj0PLuFnme2EHm/FTNhneH9qGnBALacAZkeUifwoKb3JjDjVr2moT7g70ztr/8IoNrT2YHuSenf31iVTA06XGk9cRJNIbSgdJA+3CXq+kg2hkhs6cVeNPi9RVGVVFag3hWTkgIHCS3WQXd/5rdHt3P5vNGpdV67F/qfprx4HphR9PgKfNnW+eX2+hCgMGbmUdax4nH8LUkeOOMBTBtsdTp53u9jlV1Da248kHdLfAK7a/qzg29O+iR8+L3W/T4mIYQQQuy9gyYQaBgG119/PcceeyzTpk0bcpsHHniAyZMnM3/+/N0e68wzz+Tvf/87r7zyCrfffjvLli3jrLPOQteHLkp92223kZ2dnfpXXl7+ie/PoST0RiOht5oIv9NM979rUsv3JBA4sJZcvLZ3N1uK4Zaq+wPYh5i+t7Oi62ZReut8Sn82D2dFNtGE9ftlz3Vj7/+CkNjeR6JVpgcfjoJLt9P2h9W0/GoFPf/ZPNzDEcMosa3/vd+u4CwbnBEI6YYhZtLACEkZieFmmiaR9g9I9tdz9Co+5lWmpwT/87R/8eXlv+GyVT8mL5n+LFA4ynp+tbhOT1uEMbNmo9pHA7D5/XcZnT2az4/7Wmr7P+ZGSSyXrMBPi4HT/IcK6gO4xudiy7Y++8WqutB65USQEEIIcbAZ1qnBA1177bWsW7eON998c8j10WiUxx57jB//+McfeawvfOELqcvTp09nxowZVFZW8tprr3HKKacM2v6mm27ihhtuSF0PBoOHfTDQ1A16nt6CFoyTqA+iZjkwgplfzvYsIzAdCAy/22RND852knv+uH0+ZvHJ7MmZ/oFs/Q1CcMAb1e1c89gqjh6dx/hiP9fMLCRe10diay+dC9dT8KWpQ9YGE4euxPa+1GW9W74IHq70vgRapzXd11kWyKgpNpA9z82OV4nWHZMyEsPMjOlEbFtT18tzijPWG51O7KaDrHgBqNUAuH1+isfksG2tVRqipbaXbR8EcAY+i8PZRtUKk2Mu6uHaoy7jyfX3UUg34xMJmra/xTiuOHB3TnxsyQEn9nb1OUFRFTwzCohVdWPLdZFs6MOe7RpyWyGEEEIMj4MiI/C6667jv//9L0uXLqWsrGzIbZ544gkikQiXX375Xh9/7NixFBQUsHnz0FkpLpeLrKysjH+HO607Tvi9FuJV3ZgRHc+MInIuGp/qIAt7HwjEgNiGTiLvt2LEtP0wavFJDBkI1OJgmtC36+k9Sd3glv9uoC+m8cqmNh56u45AWTX2yAZI9GL0ddH1RA2xmu79fRfEQUIPJtCa018Yk+0RTE2Kxh/K9N44Rlyn740Gmn+1nI6H1hN8dTu9S7altnGN3vXf1lTjKSUz60gMj3hPjJB9e+p6Se6ojPVdA36/E+EmAAIFhRSUpzM+N73bSk+bFd5NJopALealvz6F1+kkhyOodTr4d1aA7ZGNmEl5f/g0SH1OsCm7/QzonpSH1hYhXtVNbHPPgRmcEEIIIfbYsGYEmqbJN77xDZ566ilee+01xowZs8ttH3jgAc477zwKCwv3+nYaGhro7OykpGToxgdisFRnYEBx2bBnO/HPGYEZ13GUeLEFXKmpH7tjy3ZR/J3ZJFvC9Dy1GSOiYSYNIh+0458rz8fBwjRMEvXpDK7UlJ87xkIiZF3+wXZwZw/a9x8rtlPTFkpdV5MhjCe+Q068h1w39Pm/QW/9GXQsXEfxN4/EMUIyAw91g2pD6lYjGmepNI45VPU8t5Xoug5UnwOjL4nijhLf3JMR4HFW7DoQ6CjzYy/0oHVESbZIIHC4dbeFCdpbUtdzc8dmrB8YCDS0NsAKBO6YGgzQVNWNw23D6VZJxKzXQf3GJG3btlJeOJGG3rcACNqaiW/twT1x6PrQ4uBg6ka6WVyBZ7fN4gb+nZfAvhBCCHHwGdZA4LXXXstjjz3Gf/7zHwKBAC0t1ofO7OxsPJ70mcbNmzfz+uuv8/zzzw95nEmTJnHbbbdx4YUXEgqF+PnPf85FF13EiBEj2LJlCzfeeCPjxo3jjDPOOCD361AwMBCYc24lvqOsaUGB40bu1XEUVcFR6MVR6MWW46b9/60BIPxeiwQCDwKmZtD7Qi2J1nDqw7ot14Xq7G8Eog3o4NleDeVzMvc3TZZv7WLumDxW1HZhAt+wP40t3pPaxoE1vcx3dAnR6m56l2wj2Wh1Ed35J7DLdQfTNmrAgdYZwz0+h/z/mbJPn5NDQXTT4CYxycaQBAIPUaZpEt8WBAOMiIaa5URx2gZlebl2Fwgs9qG1W3934nXSsGu49bZH6LKlG0LlBTL/9pu6Qen4HMI9IVp7rGZsWQWF+LJdeLIcRPtLiSRjOsd/fjzvPl1FMq5ic1by5K9vJzA6Dv0fAXptMaoe+xeb3U0011RTNnkq008+g8rZRx+YOyv2SLItgqPUj2JTcJT6YeVDsP0d6NoKx90AE89MbWvzOVD9DoxQMmO2gRBCCCEODsM6Nfiee+6ht7eXE088kZKSktS/xx9/PGO7v/3tb5SVlXH66acPeZyqqqpUx2GbzcaHH37Ieeedx4QJE7jqqquYPXs2b7zxBi6X1CjZUwMDgfbCj54CvCdc5YFUcEXvjZPsin3EHmJ/0zqjhN5qIrE53cglNS04HgIjPYXbaNuAaZr8ZPFz/HbpMmra21i8YQvPrW1meW0X44v8ZNPHEUrmFHyXr46cC8eRc24lZlzHiGnowcSQP3e37mDaJtkWxYzpRDdKV+SdGZqB1v/FT3Gn/8QkmkK72kV8CplJnURTCDOpE6vqwggmAHCNzab05rkUXTsT5/ic1Pa2PDeq17HL49l8DuxF1t+aZGMIIzF0cy9xYMQ6OgjZ61PXc925Geu3b+iiqaaHUI8GpvV5IZBvzdjIHZANllfqY9oJZUw7oQIARTFJJI4mW0sHGbtsKkXJXpSgSTwcYsv7y9n01rL9dt/Ex5PY3keyvo/EtqDVCO6d/wcf/APql8PKBwdt7+ifWWCEkuhhaQAkhBBCHEyGfWrwnvjVr37Fr371qz06jsfjYcmSJZ94bIe7jEBgvnufHdc7q4hwXEfrihFb34Hj+KFrQooDY+CZesVnp+CKqSgO6wua3teGbcC2Gz5czsL6QhZ33IZi72VhHeQmzwBOAuDsGSX0LF3EXHUjzbaRlDijEO1Cad+E/8hcsCmobhuq244tyznkT2CX6w6mbYy4jgmwZ29hh5VkUwitI4otz41rXDaRFVZ9yWSjBAIPJZG1HXT/q9qqGzugAciOrD9FUcg9t5LQu014ZxSC8dG/LK7R2WhtUegvVeCuzNlPoxcfxda1ha4BUz/z3Olpu4ZuEOqyav+5PBo7JglnFViBwOMuHo+u6Wz7sJOKafmoqsK0BWXYHDZWLanF5hyDOxoGVgDQZbPhVeo40riYPlcbHfFGon2SFXqwSWxLPyfOUT54PR0oZvNLEGoHf7p8j73YS3yrdZJRa41gGzu4tIgQQgghhsdB0zVYHFx2BAIVtx3Vt+ssjr3lHpdD73+tqaLxbUECx++zQ4uPYWAgMPe8Slyj0lP36uu3MRqIKAr/LzebdZF3WKW8iepIf6HvMtayIxB4/sxSmt/8EBUo0Rsxy89CqX7Byips2wAjjyRwfBmBQyD42/r7VSSbwxnNcw5HoXebSDSEUFw2vLOKcJUFUl8W9a4YzpFlxPN60btiJJvDmIaJoh7mD9ohIvJ+fwMhExhYB3B0+su+o8hL7nl73iHeWZFFeIVVIiSxLSiBwGHk7quj2z9gavCAQGCoO47RH9i12dKZ/YGCIoBUncARY3NS67IKPBSWB8BUUR0K046YB9H7Aei22XCqW/CW53OSeSnvdywhHJRA4MEmvs0K6ikOFae7FbQBU34NzcoOPPabqUUDuwon28K4JBAohBBCHDQOiq7B4uBiJg30Xutsv73AjaLsuy/u9iIvSn+mVWJbcI+zQsX+obWmC747dqrftq2uFoAPXU7+np3FKr8GSv/z1f9DdTeh2IOMLfQxOgBHsQGABrOAYMn89MGaP9h/d2I47Ahm7UGW06Gs741GIu+3En6rieiadsAK8O/gGp2Fs78cgJk0aP7VcoKvbcc8zB+3TzutI5rK9MmggnNAs4i9NbCr8I6ggxge3vj2jIzAgVODg53p4J9ppH/fd2QE7srYmYUcd8l4jKTBlld7Usu7VRWbcyuJbb2oio3R/um4I/umJInYN7TeOHq39bnQWR5Aaftw8Ea1b2RcdRSlp4hLnUAhhBDi4CKBQDGI1hVNBXocBfv2w7iiKqkve0Y4mTEFWRx4yR3d/OwK9rzM57q12Zr2s9qdrq1ZqGnc1NHNkbH0F0G7fxMnTyyC2mU4sOoALdVnUq1Wpg92iAUCU1ltxp6XODjU6KEE+oCAgNYVwzRNEv0BHNVrx17oxX/8SAq+PA3XxFyMUJLgkjrpIvkpF96RDQjgSn+MsBf50o2G9kSP9R7T2BMFXcPm6EYNWBnoie19EjAeRl69gW7Vei7tio2AIx3gDQ74u63FOwBQVBVfbmYdwaFMPHoEACo23LoVKGqxOXHqbQSmdxI3o+Q4CznSfRJGROrKHSwypgWPzsr8m152NBRMhK2vpn6nwZoavIMmgUAhhBDioCJTg8UgGfUB93EgEKwPkbH+rqKJbUEchd6P2EPsD6ZmoHVYgRxHgRfFlpn52dfRBMCqAYHAe1vamJDUmKqbfNFj1Y70BdZz4sRC2Hgv9XY7r3vc/Ntrp37lUt5DQcU85AKBDJzeanJYThGOVXVnXE82htDaoxgRq8GMsyLLCvz3TzcPvWW9njCtbC/HgIYC4tPDNE20zgiOUh/J1gjeI4qIrGpFddpw7Wk2oGnS9+pvcb9xG2sLz6G0bRmd+RXkx5vwlvyamKcC1W0n0dCXUa5AHDhes5EcXWdKLIGrbA7tdbW0bKmms6Geje+EgRkAaMkucktGEsjPR1U/Ogjs9NjJLvLQ2xbFnfAT84QJ2ayAb3ZgKdtsx5GvWO2Ee16sJe+CCfvtPoo9NzBD1zU6G94e8De9fC6880fr8vZ3IacckM7BQgghxMFMAoFikP0dCMyc/hXEN2fEPr8N8dG0jmhqauvAM/dgZei44p1odvigv9t2kaYxPqlB4WSmuwPk6Y1WkffAVmaXAM++zBseF78uyAM2YLq28Hy0hNOTTfwjvIW/P34CUwqsL48bujYwJW/KoJ+7W3cwbVPpKqN63FY+23UK3zCOzQwMHiZiVZkdk/XeeCrAD5m/5wBZJ48i1t9lOb4tiP+Y0v0/SLHPJZvDRNd2AuCakEvO2WPIPa8Sxa7ueXZsexX6O/fgQGNq239xKRp0WYFlX84zhNq+BNiIV3dLIHAYGHENU23iXW8+ADMw2fzeO7zzxD8AcHjPwtZ/fijHrTFOd5L18tvUN11DbMMGcq+4grzLLkV1D91orHBUgN62KJ6knx5PKxFVJaYouNf9m7acErI7CrCrDqLrOzE+o+9dlqnYLxK1/RmBCjjLfamTe2aglH90jeeyHRtufwdmfC61n6PISzzUa80A6Y1hz953zeeEEEII8fHJ1GAxyI4sMdhPGYEjA9CffZaok4Lgw2XgGXrHToHA97d1UaD0UuV0EFWtt4kjY3Er8e34G1DPvJ3PxA2m6iqKFmPTU1dAsJGWvIrUMRRbnJtLnZw2ciwbnHbaYl2Ewm2EkiHaIkP/3N26g2mbjepmOh09PJfz+mE5fdHUDWLV/RmBAzJJU8vIbBoB4Cj1oTis19LAaWbi02VgsNczOQ/VZUfp7xq8R/VkkzG0B86gI+Egbtp515xKGzk0k0enGSDctpws+z8BiO6UdSoODK21mRZHPHV9pH8krbVbUtdtTqtxiCfSxvTnnsK9YiVaaytaVxdaayudf/4zbXfdtcvjF5ZbmaOeZLoubbeqQiLESFc1W/vWEEx0YqomkZWtuzqMOECS7RGSLWEcpT58x5SgRhsgbr2Hr06O4pcf+NBM6z1Ar3snY1/31HycFQEUp43E9r4DPnYhhBBCDE0CgSKl59kthJY3owXjYFNQnOrHDgTG9TjXvHINj296nCdrnszIFFEcKo5SP7ZcF7ZcF7rUARoWyYGNQnYKBP5nTSPlzhCrB2R0zEoaYPfA5HNh5JGMm/l/rLcZBG02VnVYhcProm0ZxzFVgy6nRqPdRr6u4ouH8Ldtokg3h/y5u3UH0zZx0/oS1OHoOCwbhmjtUZyjslD9DhwlAwrCN4eshkBOW6pJyA6KTcXZHwDQe+JoPTHEp8/AKeHuiXm72XKwxetaWPPyI9jjPYxTm3nFmEXdWX/n+dNe4wuxH5Gv9JGTbMbm2AhAsqEPPZTYp+MXuxbd1EVoRTPBl9+m0Z6eMFIWKKOtPxDo8vrwZltTP0d1r0AB1K5uVL8fW8D6/TZCIULLlu3ydnZ0FXYPCAR22VSa3OMp0LezPbyJLGc+9OpWd3YxrHbUBE02hbHnuWHr61A8jWdzSliak0+icBkLRpXx4/w8aN8I0fR7hD3fQ6KuDzOhDyonIYQQQojhI1ODBQDxumCqhpct1wW6if/EclT3x3uJPLT+Id5oeIM3GqwucseWHkuxrzi13lniI7yiD707jt4Zw+Z1fPI7IfZKdENn6rK9KB0IfHtzB69uauV7ri5WDKgPeOT/vgCqFxxWcHjmqM9A9cMopslqlxvoY6snD8gM8CiGmxMax3Kv/r98vuJtijrfY2K8nirXjEE/gV2uO5i2OX9kCVudDuzomPrhFwhMNIWI92f/eY4oJNkQAsAIaxhhjeyzx6CoJpgmDMgSc47OSnWbTWwLYp8p08QOdqZhpprj6OEkie1WENxe5LWCAnvh7per+VHn36B/pmftmP/ha3MrsKkKeb4zaX76l5TQidPYCGhg2olVdeObXbzb44q9Z8R1FIeabnwE9C6uRWuJ4FU30pCf/ttfaMulqcv6e1FYMY6OlgSKoVPU8La1gd1O5ZLF2PPzqfvfy4m89x7Juu3Ea2txjRkz6LZTGYFaOhD4hjKWr8WqIAY20lOBpbbc8DJ1I52VaVPwziqCJ56A1nXcP7KEWudaXG7oU+DpLD/Xd/eQX/8eTDgdAHdlNopDxUwaxKq6MU1zzzKHhRBCCLFfSUagwDRMep5JT/txlPqxZTlR3R+vLk9LuIW/rv1rxrKNXRszrtty018gtZ444sDpfamO9gfWpqa0OsflYM+3gnsPfPg3vv76Z/FP+Bl/KzB4z+1msg6nV5zO+NwJkGtN/TVNE/NL3+Gvv9f52+90Ih1eWowxNGA1ivAmszghcTYnlZ/ESUWX82vtan588TwMZ4AgHprNvCF/7m7dwbSNalpfZAyUwzIjUB/wO+uqyAL7gC92NgXPlHx44zdwWzn8dhIsvtnadkx6unBcpgcftBJtYRp/9jZNv3iXlrveTy2PV3enOsq7J+1dNmBTT5RQ6xaOs60HoJ4SXOMWYOsPRJ03cyRtObMAcChxHMpWYHAtSvHJdDy4nqZfLafp5+9kTPPWw0m0FivoZlcbMzICvQN+VbNHWM078rvW44haQf3AySdjz7fqCfpPPCG17a6yAt1+B4E8d8bU4OVKuqzE5OwGIpp1o8nWyGHbmf1gENvYhRGyZm14puRjSzTAtjdosNuodVoncFXSJww77DaoTT/visOGqzIHAKMvQbJJMjyFEEKIg4FkBArCq1pRnCrYFOwFHvIvmzyog+zeeLPxTSblTWJ12+rUso2dGzmx/MTUdXtO+oOjLoHAAypR30e8pgcANeDEMzE3lRXyZv0aDFs3CvCa30VMVdkITHEGsA3oCBlbt47k9u3sKOM/cYvG3SOuRVPvBaCor4IpNWdwxSXz8WY5+fbcCKMLfPw1dAXvKuewrjHItNKsQT+BXa47mLYp5XoADLCy3g4zA39n7XluHIVeku0R0Ez8x420Asu1b0Ciz/rXbL0XOEcFQAFbjgsjLCUBDlbJuj7MmI6JDqEkWk8ce46LWG0v9kIPWnsUz6TcvTrm0qo2jlc/ZLVRyUx1K+WnfIUvH1+Zsc34o06Dl18GQLVvwHROQQ8mMJM6ikMaRuwLibogRtQ6YRNe1WoF7YF4zYDpnEo99fZ0kM7Wls7K8/V3hPWGW9CLK7C11pFz8UWp9f4TTqDtzt9Yx3/9dfKvvHLIcRSOChBoT58YWKmOJIEDJ0mmZLeyIdiM156FGdMw+pLYspyf8J6LjyNe34e9yIvWFrEau622ugO/7kmXjRkTmMjWkFUeZLM9n4krF1olREYdA4B7Um4q6Bzb1DWobIQQQgghDjwJBB7mjKhG8IVtGOEkthwXOedX7nUQcOBUj4SW4L4P76Ml3ILf4SeUtKYMDsoIzAgESq2wA0nv7Q/i2BVKbj46Y5pOVee21OVYf5MQTJOLs07ov2g91z2Lnsg45pGbTRZO2pC6nh0txDRMNr3TzOwzRzO6wKoj9+Xjx/Ll48fuh3t1YF30F+unoXDYNAsxdQMUBUVVMrJ4bTkuiq45AuwqsY1dVvZHIgL1K9I7B62yA6rLjrMii8S2INGeOEZUQ/XIn6GDzc7ZmrGqLjzTCqwpgrqJY5QfZ0X2LvYe2tJN7XzTtpQZai263Ydt6kWDtvGOOw6sOCAdrMUfvoBEOEh0fSfemUUf+/4IixHTUkFAgNiGLvRQApvfmQrUqPTgUd+jyVEAOFFR0eo6UvvYXYVAO2VNr2OLd6NmZeGdPz+13llZiWPkSJKNjYRXvEeyvQNHYcGgscw+q4LlfwukrvuzVV7om8P5trfx2jUc6rvARMCqZyuBwAPPTOqE327CTBrYCz24Rrvh2ccAeN2bLidyYsVRbF1vBQLDahQSYXjqajjpxzDj4v7sYWvWSXR9B1mnjDrg90UIIYQQmWRq8GEu+Mr2VGaOszyAe2zOXh/jpbqXOHXRqZy26DQuf+FyWsItAMwomIHfYZ353X0gUDICDyS91yq+b8tyZQQBE5pGn94waPvzN7uxXXIdW848i20Xfw4jHCb43/8CYPZnEpZ1QtKsSe2THSsEYMNbzYdkoEylv2YawCFeI7DzH5to+e37NP383dQ0zdTvrF1F9TlQHDYUxZoSrLpssO0N0Af8XnfXWcFBwFnanw1iQny7TA8+GCW29WZcj23qIrK6LfVad43O3qsTRrGkTvXmGmaotQCoBWMhb/TgDYsmY7qsTNwSdRNK/zzk8IqWj3EvxM4G1dszTCKr2jANM9Xx2+d6DUXRaOifGpznKqJjm/W82V0uYmE7xYUG7ri1vXviRNQB04gVRSH3f7+I/8QTUV0uuh95ZMixFJT5yXWnp5cX2qIs0k5gvT6K5qifXMcHux63OCBiW3sxkwYAzooslPcfgGgPm7KPZrnbygj02fKZVjAttc8HaiGmw2+VEHjyKnjjt9hz3HjnFOMcm02yOUxsQPapEEIIIYaHBAIPY0YkiRHXrILhDpXszwwu6r0r7za/S1VXFY9ufJTXty6mNdJKS6SF9Z3rUtssKF/ApLxJgFU3sCuWrkdky3LSH0tB65VA4IFiJHTMmJURsnOGxYvVm0C1gsI2U0UxTRxJk4tf0cAwSGzbRmz9eroXLcJRYdVzck+ektq/sqGdwh6TGVt05iQU8rrWY3eobFnTfoDu3YGj9sf+TEXB0PThHcx+FqvqRmuPYiZ0K2hgmqlAoD3HNXTh9+olOy0woaMKsBqG7JCQOoEHjURzmERzmK6na9A6+7O0+wP9sZrujGCc76gRe3XsN2vaOd+/PnVdGX/G0BuqNpTyuSRw0GF66VA2AxDf2ovWEd2r2xSDaTsF1NSAg/i2XjoWrsOI66CYeB0vEVQV+mzWx8NiZwF6MonD5aKoYiwtW4Mkq6pSx3BPmcLOAiedROittzDCYboWLiRRXz9oG9WmcvI5M9IL9CDvG1MpUbso8YQY4amF/pqzWpsEAofDwBqSntEGLLsdtCjt8Q9RErmYpsoJ5cdT6C1MbfekciRNE/4HerZZC0wTurfhGptDYmsvmNDz7BYrw1wIIYQQw0YCgYexWE0PkfdaMTUDz8xC7Ll71gEyqSf52ktf4+JnL+bXK37N0sbX0ysHBAUWjFzA5PzJqeubOjelN7OpqUCUZAQeOHowkbpsy3ZlrFtcvSZ1eZ5jLG/UNfDIUyFc3ZnPT/cjjxDfuBF7cTF5V1yRWj69NsZJHxj86F8mc59+hEmbHqGrMcTb/65GTx5aH/p3ZAQCGHpiN1t+uunBRCpwDFanaa3DCgpCZmZvimlCzUvWZWVAXbc26/ffVZEOBErDkINH1z820fb7VUTeTQf87EX9dcA0MxWMcY7OwjGgy/ie+PeqRqaE3k0vmJAOBPbGe3ll+yuYpkk0lICZ/4PqcFOpNtNtW5raLryjc6n42JKt6UYN2WePoeQHc3GU+DE1A3QTo7IGh1aX0SjE3RYh1NWJ3eXmyHMuoaspTKAvHdhzTx0cCHRWVJB/xeUAmIkEbX/4w5DjmTx1NEr/e2ko2ctxCTfL9COsY6hJXOqG/nFLIPBAM00zHQi0Kbg//A7Erffr+z3jSLq7sClOzq48jXBN+u+haQ+xtOwamP0l6/3/1Vvh/YV4jyi0asQCWluU8Jq2A36fhBBCCJEmgcDDWHzH9C8TvNMG1/AZyDRNDNMK5mzo2oBuprOggkZ8x0apZaNNO+VZ5UzOSwcCN3Sla8gB2HKswKMRSqamn4j9Sx+QfWnLzswIXNWcDtSe5skn/G4WyhYP7okVqDnpemDJhkYAwkknr24cQUv+GDaUK4xpgyO3pF8D7kSQ7N4t9HUmeHPRqv11l4aFMiAQqCcP3UBgoimUuUA3Ca9oTl0dMhDYsx0CI2DUPCibk17ebr2+bNkubHnW736ivs8KQohhZZom2hC1Wj3TCvAeWYRrqjWF017owTe3ZK+O3RGK89qGRo5TrWxx05sPI2cD0NDXwBeevpTrX72ec+79HFc98E1+1P4Wlxb6OK28lK7st2m1a9grAsRre6V77CeUHJBZ551ZhGJTUN02VLedhFtF2/5XtlHKUnt6doCx3QoGKYqCaisFwB/anlrvnpz+Gz9Q/te+jr20FM+cOYReepnQm28N2sau2slyWCcGoo4+ZsZsrNBmpdcr1j7SOfjAS7ZE0Lvj5DnuJD/nLyjuLBi9gG5bPqutkr8oik7sjWzefyR98sBj66OmLQQn3Ag7Pic2f4CiKuScW4niteMck01oWeMhWTZECCGE+LSQKu2HsURdfzaOYtV/2RXN0Lh9xe0YpsE5Y8/hxboXh9yuVFdo6n9FzQkFQYunAoFeu5dNXZsytrfluKDOuqz3xrEXeBD7V0ZGYJaLSDLCwvULmZW7gJhzZWrd5LXvYOjWkxmrqqP8wQdpvvkmtKZ0EKguby7NtX14vZVMqbdqSOWkE04AKG1+i57sMWz7sIV1rz+Ly2MFG+JRNy5PbNDP3a07mLZRBsxoW/bIX6lvqKFoTCVttVuG/Ans8brC0WNpq93CrDPPZc55n0VVh69barJxp0CgQyXRmH6S7UMFApvXQEN/o5C5X4P6/kyw9vTvv6sii0hXDDSDRFMI16hdv/+I/U/vTUBicEA2ML8U1eug740GtPoQvqNH4Ju1h007Nr8MuWOoe/Y+TkclaHoJKFGUcaeCaiOmxXh046OE4mFQYLu3CptrK9XbbcRd1kmKF/1J/q/7XbS64wDQ2qN7nY0o0nZk1qleO6rfAUDg+DKiMwuoe/FBTlprnawz3GXsOE+cZ1g1PRf8z5foqLfeE3dkBCpuN84xQ5cUsfl9FH7rmzR//wcAtN52G76nn0JxODK2y/PmEewNois6uFWi0SMxXNasdLf6PiEdbF4bRkTD5nMMdVNiHzMSOt1P1aC6k3jMN1DCBjQWETv6Or6m/Q84fgnAFPd09G4Vu+nApXmJ2yO4bH00dEYgMBV8hRBuh+YPwDRxlgdwlQeIVVk1AmM13Xgm5u1uKEIIIYTYTyQj8DBlxDSSzdYXekexD9U9dExYN3QWrlvIP6v+yb+q/8Xliy9n8bbFQ247t7WcbzeW8Xx9E1/p7oamNYzJHsOpo04lpsd4dfur9MR6UtsPzCbSZHrwAZGREZjl5P6193PvB/dy9WuXkbRbjUJUE9yvROnb7kJx2Cn5xa34j5mL77jjUvuaqo2WYivbq7EoHRXbkSenOK0v8kUdqzjhfBv+XB3woWsKuqakLu/8c3frDqZtBk4NTsSjhLo6SUQiu/y5N+s66moJd3fx5j8eomFDuq7acEgOyAh0jcsGw7TqPPUbMiOwOV3kn9HHg7O/OUjjKkhadd6kTuDBRRswZdQ5NpuSHx5N8fVHonrTwaKSm+cSOL5szw7YuQUeuQjzj0cye9t9/NDxGCPVTmLFM2Hu13i/5X3u+/A+Htn4CDEjikOzMkR1W5I46czEdzxuEq4XUtcH1iwTe8eIahj9J4LsRd6M2p7PrKqn8oPfpK53j093AXZ1a/jyZjH5uBNp3tKDPRnBG7O6CLsnTkSx7/p8cva55+I5wprqm9iyha5/Pj5om/ml87GrdiKuXkJqK+PjuTRp1uvMY2vFrrSgd8Uz/naJ/av3ua0kt/fhSKxHUfpPEEw6m3dHXMrq7vQJw+xNY9i6uh1frhO/bs0aiDn76F3bQTihQ4n13BPtgl7r84Xv6HRGcUSaAAkhhBDDRgKBh6nE9j76GzJmfCkfyDRN/l3zb56ofoJRgVGp5R1R60uA3+GnWHEyOxrj+EiU2tDxVIWnUq5plOg6bH8Hm2qjxF+CYRokjSTP1T6XOo5dOgcfcMaAjMAmRzsPrX9o0Dalmk6ixwrkqQEfORdfDEDg9NNxH3EErmnT6Ciehebwo9qgR19Cly+zvqR3/jxckyeTNe8YxmQ5cXrsQBib3cRmN1OXd/65u3UH0zYDpwY7nC78efk4vd5d/tybdTZHesq2aQzvtNkdU4MVpw3X2JxBHZI/MhBYOhMKJliXw21w/8nw0Hm4CoI4x2TjHBVIdSIWw2dgDTbf7GJsAReOEb492/m9B+C+E+GB02HJDwGIrreCdzt+S4oUK3h8vzvBt6sf5qsvfpUH1j4AQJw4R9UP3TzEVBReCoRQsMYngcCPb0d9wHzHj8ntux7+dDQ0WEEd+7rHaTNzqDLKCJctoNPl44j8GYzsLiePC9HNk1j6WDWt24L4Q+nO8kPVBxxIUVWKf/QjFJ8P75yj6Pzzn9E6OzO2KfAUkDSsJlWN3i0ANMSPoSXqpzM+FodiZZtLCYEDI1bdjZkwUL12XI4BszhGzWN9UxCbP72svNN6/sfNLmZU8UgAdDXJMbEI/7jjLlatSU8hf+3Ob/HHKz/Hf/55O2rAOsEQ3diF3nfoltYQQgghDmYyNfgwlaoPCLh2CgS2RdpQUfnW0m+xtXcroaQVDDi25Hjean4jtd3srEr+sO5NiPYQxcksYzLlyoAC0NutKYGfHfdZHt7wMABPVD/BZZMuQ1GUjGYV+hD1qcS+NzCrokrfjN/hpzvejU0PoNv6AJjakcBIWB/UPTPS9ZoCxx2Hb/6xLH14I7Vr2iGqU1iuUtcRoz4vi7yw9RwqHg85F11E4ze+SRyrhtS537nhwN3JA2DF//tZ6vKMz5zL2UfO2vXGe+ntRY/yzhP/AMAwhq8jsRFJovc3inGU+nBPzif4Yl3GNrrfQVc4QZ6vP3hpmtC0xrroySfoKMKZMwFPU3+NyDZr6qF98usYoVlo7VaGYLI9gqNQpnwOl4GBQEfxXj4P7/8NWvu7xbdtgJN/TPcHzzKw0IMJmCg85bbTvv1lIF1nc1rL8Uxqn8fy0f/FUPTUDmr/BcXRRcRejUebSXxbECOm7TKDXeya1h3Dbm/AY1sNYax/q/6OOfJIjmz/DzNsNQDET/h/vL3iRqJaFL83B78yCYDGTV0Yukl27xZMuwNFSw7ZMXhnnunTyD7/fHoeewyAtrvuovSXv0ytn1WUfu8MljdAO3SZ4zjGEwJCBLUqYsY8qSN8gMRquomstj7HeUduhR1x21HH8NoHz2NzWeVB8rQRZMcL8GQ5OfrsMTz3/ghW9/Qfw50gvNVJg83Gkf0J4d7INhLRUhqrN+C87P+IvdOO4rYRercZe74bR1mA5LYg7om5gxqZCSGEEGLfk4zAw9TA6XjO0dkZ67743Bc5edHJfNjxYSoIWGKbz5I3jsnYbtaWt1Bj3awyxvP15PVgd7HFLKXbtDrDsf0d0HXG5Y7jiEJrisjmns2s67C+NMrU4AMvVSNQgT9s+n+EEiEKPEWc0TCK73Z280R9H9d2pGv27PxFb+UL29j0TgvxqM7ssyooLO8BoDnHB1ddSeWLSyi/5x48M9LThWMbMpvEHAoGTg3WtH2b0aCo6bfl4cwIHNgoxFnqxzHCO6jBzKy7l3HNo+mpYvTUQ8TKGG5wj+eIW17ilFXz+WreQiifm9pMqXkR35wRqeuR96Uj7HAa2ETCvjc1+Jo/SAcBAeJ9mGsXUdj5vrXazOX/KV/g2dkPUn3Ct2lP9ABWzdi7T7qbC3Mv5aj6M3HpHsY4xqUOUxArZXQoH6dp8mRWgAa1P5BsmMSquz/2/Tycaa1RfOxU1mPdEzSse5MZVAOw3VFJTU4+Uc0K0I/oGwuA3Zlk3FHFYJhURNehaEk8s4/EO38+e6Lw2mtQA9bngt5/P0n0ww9T66YVTMOhWieeWrNr8eW66IynZyDYlSaAVKdysX+l68Lq2IL92d2BUlYlOthk3INii5PVM53jN34eT8DBjBNH4vTYKfQUpo4RcQSxOacTdKXf84vd6fID+lgV95Q8zJhG3+v1dD9RTdtdK+l+ciO9z289EHdTCCGEOOxJIPAwZCZ1jISOc0wWzjFZGVN0I8kIzZFmzP55w5MDFXhR+X7TZn5lPokWqcBjFjFBg9k54wFIYGe1MZ4TJxRy9Jh8usacjT56AdicsOFpAC4YdwEj/SOZO2Iubza9Cew0NVjq/xwQOx5nzQfN4WaSZhKPksN12vtcEexjgtaDL++s1PYDp3411fTQ3RzGl+NCUSEr34OetAI4hqqSde65OEeNwnfMXOxFRdjy8wErEHiodXxUzQFdgxP79rU7sDmIoQ/fl9/49j6cowI4K7JwVmShKAruSekgcQiTBNAWjMPS2+DfX4H7jk+t39Yf2HFEwvRWbWBR41GENOt33qx9He90v9URAAivbMXUJeNnOJimidafEWjLc6M696I5zaqHBy2KvfFHHGgArPbM59qf3sd5517I6/np2mDfPPKbnDzqZE7ouRCXbgUeTyg9kdFZoyn3VFDRMR13vIRYf1A8bt+InuPEVZmN1h4ZdJvio22vbcdrexUAY8eJjEQIx7J0dl5dxWdZ1bY6dX1E0AoEjpsVxhtwUqi0YG/dBoCZ1HCWlu7Rbdvz8ym87lrUQADP7Nm0/uq21EkOl83F1PypADTGGggrvfRpReimlfW5IxC4+E+/58HvXsvTd97Kprdf/5iPgtgd0zRTJ4Bc/gaUpBW821Y2kxuWfhctWg5ArmGjKFxBtC/Je8/cxVN33ELNc+kmciFHB92qTpDziRtWiYECRxzVaTWPi+p9VtafASRNfMrz5NrvZoTrKsy1T2TMWBFCCCHE/iGBwMNQbEsvyYYQidog9vzMTr1berakLs8ums3j/iN5rm47p0Te53O2ZbjqLuWHTSP4d/12ZtYu5z31CK5I/oCE3c9dl8zkX1fPo/Lk/8O27XWrJtjLP4NklFNGnUJLuIXlLct5dsuzmKaJ4rGjOK2XoNYlU4P3N9Mw0UNW9lpbbm8q2JsVs1GutgPQUTSf2Nam1D4DMwK3rG6j5v02wj1xjjy9ginHldLX0Z5aHyhIZwQoipLaV+/uRmtOdxs+FAysEajpyX177IMkIzC+qYvE9j4SdUGco6xsHtf43NT6SP/rpy0YwXz7D7D2XzCgGdBqzcrqqQzXcnTHuzRUx9gaKgBA0WLo9W/hmWIFFk3dJLIm/VoSB47eG09lW+1VR14tAa1WMxvT5qbbZQWF1J5t7Ij7+6Z9JrX56w3p4M2J5SdiGCYtW3qsfewK3zju6zx74bM8d/GzLOg9H2e8OLW9y9mA2hMlvqWX6EapE/hxJNvSmZvLdSvwZqIQ6LKWx00HvjmXsXpgILBvLKaZpGCUn5mnjuL4ETWpdTkXXbRXt5972WU4x4whunIl0TVr6H3mmdS6WcXp6cGRsa2Y2Ajq1vPvUJoAAz0Wp7O+ji3vL2fVC8/sfHixD+hdMcyY9V7gym4G1QrG3mHrozPegd27nWTvTE6v+Tw204ZpJol0byMRiaB2Dyg74g2SZ9oxdWhPWsFkj9LLpFwn4CDU0032aRUoHuukg9/2H3z2l7ErnWQ7HiTyQf0hd/JQCCGEONhIIPAwNLA4v2dAhg9YU3d3OHnUyShbXqGgPxhhVwxutC3i7PjzAERx8cesb3PpvEp+/4VZ+HfUbSo/GsaeZF3u3Q5v/YFcd26qFlB9Xz11wToURcEzvRA14EDvimHEtP11lwVghBLWGXigyd+RWj66Nx2kc8y5IjWV15abi31Eevpm3VqrWJCiKsw63QryBPsDgYqq4s/NfC0NDCIeatODBwYCk/t4arBqG5AROEw1AvVQgkS9VTPSXuzFnms1g3FPyCX3cxO4u8zGd/obOJQmt6MkB2dpLQ1agSGvHkFRC3D4PkO9cUlqfc1jD+OdX4prYi5mXCP4ch1mUqb/HWgfuz5g40rY/jZmdjlrck/jO32X8b/aj1mW/wUUBZ4MHM2RJ5wLQHesmw/bremgY7PG4g3lsG5ZAz2tUbIK3Rxz/ljsDut1r6gKFVPz8SdyUjcVtBvE3Nus8baEJXv0YxihvY5CnIRRxIvu0/h58n/5w7Qn+KfyGR7RTuYn+peZPGZUKhDo1NzkRUowtGYCubno4TDB/1rNvhSPh6yzP7O7mxtEcTgo/NY3U9fbfvtbtKD1HnNk0ZGp5e25VnOQHs16/1CUBDY6cXrStYzNYcyUPpQNLAfhtq0Hm5tlRaN5I2zVhjWS2ZiNn8VmWO8Tpt6OPzcXp9dLvjN9kig5QqPapVPvg+1l11OjnYqqGJyR+2emF3gId3eheh3knFtJzgVjsdvSn0fsSge29/40YIqyEEIIIfYHCQQeZkzTTHdetCm4xudkrN/am67PMs6ZnVn/Cfi8fSk15kjCpos/Js+n1cxjVJ6XM6elA0YoCpx1Oyg2GDnbKiCvJ1lQtiC1yY7sEMWhYvQlwezvZCz2G713QMdgdzr7amRco9o+kW41F1/pPPQu6/XhnjIFRbECXj2tEXr7GzuUVGbj8lo1nXZkBPrz8jMCWDv23+FQCwQOnBqsJfZtRqA6ICPQGKaMwFh1d6qr+MDpwKrThm92MSsicWoxsPk24ir+Dz8ozOddtwsT0LNGoRVNY00oBwCfHsbuPQlFUWlMziGk59CUmISfVqJum9WJ2AC9O07f640H/s4eppLtEfqWNRB+txkcKvYCN87ywJ4fYPs7ACi99axIjmOVay5vG1MIKh5+nTuCnxa0cNe6u7n1nVt5p/kdpmUdQX6slJKWSfz7zpW8ucg66RRsjzFiTGad2orpBfgS6WWtNhuKs79bqWaSbIt+sjt/mOkJJ8iiCVWJ41TbeD02hoX6Wfzu/TgtcTt6biVdEy6mPdZEZ8w64VPcNwYVFVNrwpudQ/fDD+MoKcFZWUnWWWdh8/v3ehz+Y48lcNqp2AoKcI4so/PeewGYWTiTMn8ZMwtnEnRbt9+jp6cd29VGik/4LDa7dbJRl0DgfpFsTNfxsxmNJJIh/mCPMbvwCBRslG2Yy49X/JMJ1f9g/ts/ZFbVPzl543Zmb2ni0tfq+e39GoGISULp5T/uBIvsUZRTj6NiglVbtj1RxmkFzzNi89/B0PEdWYx/QhzFtLIJTSBujMdGG+EV8rdACCGE2J8kEHiY0doiqU6grjHZqK7M7osDMwIrO9IdQhsNq96bTYHJaj33aufygP4ZPndUOV+aPxrDMFnz8nYe/MFbPPfnD3jwtx305h5vZY1seBpqXmJBbjow9HqjFQgc2LFY6sLsX9qAzswNtnRzhpPim5mgVbE9/3ii6zamlg8M5G1bmz5jXzHdei0k4zGifVbTmawB04JT+w+oLxhbf2gFAgdmBOr6Pm4WMiCgOlyZL6mTBYBnYmamp6YbNPVYgRhn3ttsy23gOb+PF3xevha/nudPWcLqzzxLtm6jSFMosE1GtY/kvfLnqQmspTOeQ6lzExXuVQQ3ribn3LGpv0Sxqi708L59PMXQ4rW99L5QS2xjFyQNPEcU4ZlWsOcH6O8KD/B420giRhu3f24iXcdX8s9cq+TEE9VP8K/qf/HY8kWsDa6h091EXu1Y4mEN07AizROOLqZkXE7Gocun5OFPpjOM2uw2oolNqeuSLbR3NtZ141KaSAK35uczf24+rhFPorqauF87mz9Gz+Tuz89k8bZ0M5EdjUIMrRG3ptP5l/uJ19SQbGyk4LprP/ZYim68ETOZJLpmDV0PP0y8tpYcdw4BZ4A17Wt4q+N14r4QvVq6pqRdaSIZ11Bt9v4xyeyB/WFgRqAa2cbD2QGqXU5Wtn+ALTqV0zZ0Mbv5Q8qa3sSd6MFj09BaW4nX1EAwRHkHLFhnErKvxpH/Goazg0VrWnB+8VE2B64kz9GKopjkh9ZZnw0B2tK/1+SMxqXW4LO/QvKD9zCkQYwQQgix30gg8DAT25TuuOje6Qs+pGsEBhwBira+lVp+n3YONyS+xuv6dF7Sj+QB/TPEcXLU6Dzq1nZy/7df54NX6gn3xOluCRPuifN+XbruD2/cxdj7z2Bk/wf4la0rCSfDGR2LB3YyFvue1hlD8diwl/hoVFpSy0dpVkZb4VEXElm5EsXjwXPkLLzHpDv+1a3rTF0e3R8s6OtMBwcD+YMDgY6RI1GzrEBvdO3aQ6rmjzLgrVPf11ODhzkj0NRNYtU9AChuO86KrIz1zb0xtP4gzo46kwCNdievmkeysq6bqpYgp0Yd/G/IxaoJm1g45yZWli1h8ZRHedYxIOus+kUcxT58c0twlPhINPQRXiEdhA8ErSN9YkD12lHde9EkxDCg3goEdpoBtpollI5/lt9u/CKvbn8V3dSxq+mTTOujVvdRl+Fhes4MPAEHx148jvFzipn/2XGDDu/y2Jk0bnTqep3NS66Zrk+XbJJA4N7YtrUDu9LM94oK+FeWjyU9t+DMXUFO5V/IyurklxdOQ7UleaL6CVyqi4ndRzG2axJaohpDayL8wN8wItYU8uwLzt/jJiFDcZaXk3vZpdaVZJLWX/8agOPL0o2Geiq3ZmYEKo1ocR3Vbr1Gh7OJ0qHKNM1UgN3mTdAe7+S+HOvzmYJKrP5YTm5cA4Cu2Ig7s3EV5GAvLsZZXp46zoUb/ehGAnfhK3jKHua5tU30xnUCn/0Zb/b9Hwmjv0nI38+HWBDa0ycflVHHpC47tLVEP0x/xhBCCCHEviWBwMOMEddwVgRQnCquibkZ68LJMM1hq15cpb8MpX0jlMyk017Ew8ZpPGks4Orkt7k6eQMR3LgdKlNLs2jf3ocW1wl1x3H57Cj9nUBrIzMxd7zEmlajYHJ8JEpFIsGUrLEsrV+KPceFrb97cKK+T2o/7UdaexQzqqM1h9mesKbdZOsGWYZJAgels84gtGwZZjRKdM2HbGrN4sW/rqNhUxeJmEZBuZ/sIg+5JVZ9oOCARiFDZQQqioJv7lzc06dj9PXR/KMfYyb37TTa4ZIxNVjb181ChrdrcGxzN/ZCD/YiD+6JuSg2JWN9fXe6ppzTlp7OX2Nz8Y2VTxB+bSnu+x/gnA8eZPyW/9Dj7SXhsIJOvqidVQ6TYP97hL9jGQCB48tINofBgPD7LalsMbH/aB3p6bVF180icHzZHu1nmib3P/k8xKwM7rXqZAL+Hjr1DYSSIZpCTRR5i/jCxC+kb0u1fkeO8M7mkhvn8sVb5jHz1FGcftVUfAO6xw9UHChCMa2/H0G7xgiaoL8bcUIyAvdKaPtWqlxQmUigmBDTrd/HKQUTmTz9BeZWunlw3YM0h5uJG3HCSh850XIUTAIOFcXhwFFWhpqVReG3vvWJx1Pwla9gKy7GVlyMPS+PeF1dRumQbVnr0bJGp67blSb0hJ7OCNQlI3Bf07vj2AvcOEp8uEuDfOh0MC8aw4GCGjqGY2vb8CSt101r8VzenHcLY/56L+OXvUbFQw/iPeooALKagkxptoGaxOZuZfrYXlbUdlI8Jpf14SPYHDsOv60bkhFY/yS0V6UHMf7U1EWPv4ZEg5SLEUIIIfYX+0dvIg4l0Q87rC+AThXnTh0iB3YMHtvbCj110FPH3XwdExWHqpAw3ez4jj6rPBeHTaW9Pv1h7ZKb5tBaG+TFB9YTN7MIB2bg71sDpvXB/by+EP/MCkBPNd7N/+GcsefgHJ1FdE07ZtIg2RTeuzpVYo8l26wATlSN0ZGwzrSP6Q/MdRbOJa+xjWTddgCCeeN4/0Ur0BfsjNG2zXqO55wzOlU3MLNjcNGQt1l65x1s/czZmMkkwRdewJabS2LLFmIbNuCeMmXQT2CX6w6mbT7j6ePSTo3/Hq2iH79vv5Sqw9w1OLKqjWT/73T22WMHrW/oilJEN34lSszRwY7f/jHbDU6rfx/q30dTHdiNJCYKaqL/fcaAsFfjvTFB3mwcwWcSzeRp6zAj3djzcnGNyyG+uQe9M0a8thd3Zc6BucOHqVQg0KakTsbsifVNQbatfgUc/QtGzeOCykaetno88H/T/o8rp12JaZo8v/5FutS21L7nH3UWNruKzf7R5yALSrPwVgcIu3pptdmxKwaOrG6SwUKSzSFMw0yddBK75+zcwvNZPhbmWNm9N875Hq83vM67zVZW54/f+jHrO60O0Kpp49htn0VBQY+vpVg36f33kwBkf+5i7Lm5Q9/IXlC9XnLOO5fO+/9K71NP454+nWlf+Dy5rly6491sMj/kqM6LSBa6cKhx7EozesJI1aGVGoH7XqI+SKLOejcPzGjliWSAt7wewCTafjSzW19ObdtUMg+bLYgvJye1LPvii4i8/z4A1/XN5RqsGqJr+17kpQ1TOG3KCFzuetZFzmKK9xUAzJV/RzGszyAR1cbv+zZytctPbjyEI7aGjhXNZJ85GtUtX1WEEEKIfW1YMwJvu+025syZQyAQoKioiAsuuICqqqqMbU488UQURcn497WvfW23xzVNk5/85CeUlJTg8Xg49dRTqamp2e0+hwPTNFN14nZ0AR1oYCBwXLt1uZMcnorNBmBskZ+CQPoL45GjcgBo72/y4fLaCeS7CRSkj93mnJdxG9OSBqP6g0/vNr9LQ18DroqBdQJlevD+YJomWn930JaCdC3Giv7nIm/mOYSWLUstb8uZnL484DkZf1Rx6vJHZQQCqG43hTfcgOJ2M/K3v0F1udBDIbTW1iF/7m7dwbTNiJYk+X1wxkoDXd/HzUKGsWuwHk4SXWcFiVWffchg3PauCDc7HuU55/cJ2dLjO/mDdBZf2Gu9ThRM5tRYASdHPH3i4U27Nb1cVQyiKxYB4JuTbjgUeS89dV3se6ZhonVZz4s937NXAbWlm9qYr6abSHXkz+D1ZquTvF2xc26l1SnYNKG8I10nVEHhuJHH7fHt5JX68PV3Du6yqSQBJct6zzETRkZGo9i1cFwjP7adLlv64968knn88rhf4rVbv5OvNbxGe7Sd00aewczGU8iNjsDUezG07eRF0lPIs04/fZ+NK3D6GanL0ZWrsKm21OsjakRoDtTSq1t1Au1KMyQSqfdG6Rq87w387GV3trDRZTX4cBkuxnvLObqtipCvhO7scSRGuJhybGaDn6wzzsBz5JE4KyspWroWv2q9thxZH7KizpppkpXfR3Ooj/aENZVYaVqJ2b6JJHDVyDIeq1nE2aX5HDdqJAm1G5vZSqymGyGEEELse8MaCFy2bBnXXnst7777Li+99BLJZJLTTz+dcDicsd1XvvIVmpubU//uuOOO3R73jjvu4A9/+AP33nsvy5cvx+fzccYZZxCLxXa736HOCCdBs76s24fIAFnbvhaXUYYn6cKMW4Gd27XPE8JLcZaLaaXZjCv043PZcNgUpo7MJtwbJ9LfjbagPICiKGTle1LHrE8eZXUPdvjAFUCZdDYXxtIBg6c2PW7VCXSo2Et9JNsjiH1P74lj9hfebsnvSS13JwLo2HBNOSsjENiROy11eUdpP6erl3/9/BqeuuMW7vv6FWx+/11sdjueQBZZhUNnBAJkn3M2415+icBJJ6H6/dj8fuzFxUP+3N26g2kbu249KHl97PNAoDKMGYGR1W1WF1/Ae2QxyhCZW47Gd7nA9ja9dtgxQzq3z+TIzdZ+QVc266d8GbO/ocpJHxoopoktms4k+tBtkDSddGsluN76JTStwTM1H9Vrx5bvJtEcRuuUQM/+ovfE038LCjyZK9/8Hay4Hx6+EKI9g/dd8w/mbN5AVXUp9WsKedm5BIBcVy4nlp9IvsdqJtTVFGJkx0QUQ8VpuhiTPYY89+C6tLtiBQKtYIOpKHTYbBiOJtRsJ85RAflbsYfWNPQwztlO94ATDHmePIq8RVx9xNUAqYBgW1MPn1E/j82hoCWsDEF/V/+JI0XBM3PmPhuXe/IkFK91u5FVqwBYULYAj83DBN9kWgPb6NZLCGslxI3JOBMd2GzSNXh/SdVoVqBLr6Vrx+slWoRZsxlvMoo/3EzUU0gkZGfaCVMz9lc9HuxFRSS2bMHo7uEy4ygU040WHkt9aDMdoTiBvGz0xCY2RE9DM+1EbCNQ9ASr3S7GO3MACGEStNmodjpwKRsy6loLIYQQYt8Z1nz7xYsXZ1x/8MEHKSoqYuXKlSxYkK4X4/V6GTFixM67D8k0Te6++25+9KMfcf755wPw97//neLiYp5++mm+8IUvDNonHo8Tj8dT14PBQzMrTe9J38edp4LFtBjP1y4mrvZRYOhcGm/E9BZy+WU3UbKxneum+FB9PtRAACMaI4EDp9fB+mUNqWMUjrKm9HoCDuwuG1pcp76nFH64HdPhRelrIqnbOOvZb/IncyO6ovDfmqf4yvSvY/M50JrC6B1RzPMqhwxAiI8v2Zr+0tzs64T+WPvRWhtxVx5Kc4TIiveshQUjiHgH/745XfV0tHSSU1xCqMv6qWsaM884m4Lyit3evr3AygDL/9KV5H/pyn1yn4bTm/Onk9+lYaig7eN6VRkZgQf4C290QHfogRl6KYbO/JZHAKuT69xNBiEPnLHSxNYfMK4vOYaYt5CuvMnkd22gqBf+8gedLXm9jO7RefZoWDy7j5drv8pZ2X+CJPD6nSife4isz4yh58kaMKDnuVoKLp8yeAziExsYZM0IBHZugZd/lr6+7HY48zaCixdjy8sjkZ3goqYH6VxtZXGHcBB89226xqicXH4yPzzmh6ldmzf3UtY7kaveu50TL5rKuAV7HgQE8PidZJPep9VuY4TRgNGbINGbINkQgql70eX4MPVGdQeXaw2pjEAFhWynFWD94uQvMqtoFnnuPB5d/U+yHp9NhxEiK99GuH0Ndt3A1WkFYlwTJ2IL7LuyHYrdjueIGUTeeRetuZlkYyPzSudhYlId3kh2YSexvgJ89magGZfRnXpvlK7B+5YR1Ui2WB8KHCU+NvZtSU39j0QrmNm1PbVt0FfAjBOS5JcNbhjjX7CAvv7P9bO3wF8qYzgCmzDipTy1qpHxObmYehMfthXgtF/GPN/fAbgnJ5v3jcyA30ank0p1HcGqLikDIIQQQuwHB1W0pbfXOvOcl5f5heHRRx+loKCAadOmcdNNNxGJ7DoToLa2lpaWFk49NV10ODs7m7lz5/LOO+8Muc9tt91GdnZ26l/5gA5oh5LdBQJf2f4KYc2a4js/GsUBKKPmMq0sl+tPHU/j939AzQknUn3MPFru+h0P//BtHvr+m7zxeHrKdeEoP0B/VqA1PbivK47p8FGzso2Fv9zG335WzbrqU7g0FGOuptCa6OGf79+Ja2x/5kfCIF7bi9i3tAGBwKA7glsr4YhYjPKkRtKsZPuVXwJdJ/uzn6Vv3kXQXwdQT2xF4QM8vjb8eUH8efk4vd7Mnx7vrm72kLUjE041wDD27ZfS4coI1INxtGAcR5kf14QcHEVDPK+rHmJ2YgUr9InUV43kO08ZfOdJg97+WFJdsYPe4vkANE4+jXVzy3lhtkJ2BAqDGnkhk0veNCnqNakuzqLdmEDUCGC0VcGLP8Q7vQDVZ30DjW3oJFYt2SD7w8BptfYBpRyoeTFzw+X30XXPXTRe/222X/Vl2r9wFQ1VmX87Prspm4AzwGWTL6PAkw7MNW3uQcWG3XBSMi4bn8O31+MsdKczjVttNmyJ+tT1gSc3xK4t3dRGjtJMd38TohxXDrb+y06bk1lFsyj3lzN55WkohvXeU1ihgBkjJxJDMXdkCB+5z8fmPXJ26nJk1SqyXdlMybeC/72eNhoGnKq261FU+45mIZIRuC/FtwfZ0QDeNTqbjbF0XU8jUsqC9nQpgGSRi3kXf27I4/gXpDs/562qTV1WHR388vmN/OU9a2p/QuugK+84OpLldCQrqPVan/kDznSgeb2nEKe6FSOUlC7hQgghxH5w0FTgNQyD66+/nmOPPZZp09LTEi+77DIqKiooLS3lww8/5Pvf/z5VVVU8+eSTQx6npcWqLVVcXJyxvLi4OLVuZzfddBM33HBD6nowGDwkg4FaRiAws0bgv2v+nbp88cYEfQkXwc1dFJ/WSWTlSqL9RaDNeJyeJ/+DdvQcknFHxjFifXVsfKuKvo52upvCQDmGZvLEbb8mEZ9AJGhNDdzcOYG548/jUV7EVBTu3fo0p0z9Asqq/uNs6sI9/pMXJBdpOxqFANRodcTszXxgd1Oa1NCTOdhywAgGidfUUD/7AuizgsI25Q2uufeh4Rn0Qczsz06wGaDv40CgOkxdgxONIYzuOEZ3HP8JQ3SQjXRhvHIrKjAzsplH4kcy0t6IPwZlnQ66/BprpuTgUDy4DRhz4Rnc27CYorUKnQETxbTulycBkxpMqke08Gz7TVxZ9GXUrhqo1lDP/DXZZ46he1E19iIP0Q0duCfIe8G+NjAQ6BiYEVi9JGO7hGsSxsYlYLdDMomeVDHbTCCdnTN5XZB//WYRZSXpuqKmaRIPaxQ7Osjb8CI8s4GaJ57IaLoTXbsW18SJlP3+99j8QwcJS7NGQP+vQJvdjjtSR8KhYiYNtNbwkPuItMaeKFtau/G4WumyWRlcO0/P1pMGrz6ykd72KHaniifgpGhUL+uB3HC6nIpn9n4IBA44ZmTlSrLPPZcFZQtY1WZ9GFjlj3CWVXnECgTuyAiUrsH7VGJAfUBnic6GhvTfndxeJ7lh6/OAicLMqy7D6fYMOgZYmf/u6dOJrV2LubmWwj4n7QED1WVlmrcb6c+dnhIPTy7/NboaptP8BQAFyQBhQhiYVNmjONUWHIUaoRUt5JVJEzkhhBBiXzpoAoHXXnst69at480338xY/tWvfjV1efr06ZSUlHDKKaewZcsWKisr98ltu1wuXK4975r4aTUwI9Ce7aIt0sabjW/SFGrivRZrWmhO3InnNT8Nugpsw/zlL4mtXZdxHDUWorDjQ9qK0mfzbQ6VD178J221NdgcDhT7sdjdVjC1dWsrpjIadcCrrbXqFC4qfZInsgKETY1nzZc5T50BhhUI5Nx989wKS3LHl2YF6iJWQNxnGDi7bWxb8iEA9rJyAr/+E22/s2pDGXoP/uzDL9tvT5j9GZM2Ewzj0KgRmGxMZ104S/2DN3j7T6jRLuIKbN5SwbxNjdbiSQpPHz+FbQXrgG7OXd/EyOB4Rk/Pp62+i/eOVnnuaJWKNz/LnW8sBKxA4H9LlzOVz9CUmEyZax1010LnZryzxhFZ2Up8ay9aWxTfnBKcI4cYj/jYMjMC+7/Ux0NQ95Z1OWsk9UXj8fznfdrXWtOAFZuJqStkB63X/o5woKrphC+8gqZzzyNw8okk67YTm3os5ov/ZmTHanJ6t9D5lxVWIHHUKLTWVuJOJ3pHB5GODoIvPE/u54bOMBpVMBJarcttNhv+eCuRQhvJJgOtK4aZ1FEctiH3FfDqpjaOVTcQU02i/e8rue5cdN1g7dIGpp9QxtJHNlK93HqQK6bnM/vMCratfgGAvFD6deKdPXvwDXxC7hlHgM0Guk50ZbpO4N2r7gbgg6xe6K9W4DAHBgJ1TNNMdbAXn0x8W3oWhsvflmoU4jZUTm9cSVakE4CIbwSz5k7c7bH8J5xAbO1aAO78q8ai+SZLZrYTwSRiS3+eUNR2vAVT2BLuSi1T63vJyrbTE0hS43SQAGydq4l02gkcW4qjeO+zioUQQggxtINiavB1113Hf//7X5YuXUpZ2RCZKAPMnTsXgM2bNw+5fkctwdbW1ozlra2te1xn8FCl96TP7tfZmrj0uUv56ds/ZXOP9VhqkVFcVA+mnn5Z9D3/Asn6etrzZ9AbGJ1aXtr8NlmFHgL5bqafVMbU47Jpq7WmCXt9fpxuDaU/QOLwlKDYrOYjqk0nt8SHLbeYr+ql5Gk6R8TirGlbgaO/e7DWGSMpHSH3GdMw0fozAtU8F91Ja9pPiaYRbXemttvkP4an/rQJo7+JgKm34cvOOeDj/TQwB9Qr2tfZKZldgw9cIDDRlM6wcuwUeDNb1nHR1kc5payC+aPK6exId4n+1wKVqYXpLO4OXwMF5X4KywN02q3gojNhoypnAlp/sf9p9SoYGk73ZrZFB3yxrF6Coip4jkgfPywdhPe5HYFAxamiBvrfA7a+hqkn+EJJMWcU+PiMtpXWrnQGj1pqvc53/HVIlhTTUTyLjrK5GH19dD++iPovf4XWW2+l46v/y4QtT5DTa3WfV30+7EVF6WY7Rekpv71PpLPRdzamNP15oNVuQ8HEndMfODAh2SZ/J3anbs1r/MHxR7oGZBnnOnP57x8/4K0nNvPao5vw57spqghgc6hMOqaEksocwj3dOJMaWZE4tsmTyDrnHBz74fOTze/Df9JJeGbNAkXBiEYZlzOOEp/VLbjG10OkP9jnNGOotvTZxAPdSOlQZZommCbOUQFcldn0tL5Ja/8UbE8sh7JwFNW0MgSTJZXYHLv/2hA47TRyv/hFAmeegTdmcMG7Jpe+GWPcCAPTk5XaLtTTxcxTy/FOT6SW5USLyO+13o80RWGz04FTXW/VjH12qzVWIYQQQuwTwxoINE2T6667jqeeeopXX32VMWPGfOQ+a9asAaCkpGTI9WPGjGHEiBG88sorqWXBYJDly5czb968fTLuT6sdU4N1Ree17tdx2awsyFWtq3AruWh90/h8Y0fmTg5r+q8n1sHKmd8i4ilAVxwoepIZ01T+99Z5LPj8BJKRFQC4ExrHbm7ilFI3c97/NeX1r1I+5RQUxXqpGXoT3c1hWrcGiduPZXwyyQduF++0r0Ibb30AtBV5iW/pOQCPyOFB741jy3WjuGxEinQMrABtsaYT7Uhnwnb5xpKIWl/2TdPA0NvwSiBwSOaATBRDS+xmy72XmRF44KYG76jDpLhs2PMGlA4wTVoXf5dql5M2h0lSAX/QCs4FPdCUB2fOSk/x68ltYuLcEUT1KCGn9VrzRVwkbQ62F1pNZQq7dULeKL7sRuqS81P7GlVWoXnvEYUo/V84I2vaMBJSE2xfMTQdHCqq144935POqmpaTUveaNa7XTSZMRRM4h3978kunbemZgZeooUz+XDyl+l2jURTXah6ItUp2hG0aoEZihWAKv3Vrxj/+jLK7/kz45e9RsUjD+OaNMk6zgcfEKuuHnKs40ZVgKmQlXCk2pc7vemTfANLHohMWiJOrtmNgYNuW/o9xWsEcHqsQE/1+63oSYPS8S7mX+ilq+F17vv6FWz7cDVlPWEcpom+cROOkv13EtUWCBBdvZp4dTXxrVtRFIUFZQtQDIWchJf/9E8bdxDLOEmiy/TgfcKIaCS29ZHY3geqwqa6pYxJJHGaJmq4kOx4+m+Ba+Lk3RzJ4p44gRE/+iGu8RMwgewILFhncttnCzlm2mh0VMKqm/otW5m6YCRtRnNq3+zYCApC6WDhRqcTt3MTKNZJi2SzlAMQQggh9pVhDQRee+21PPLIIzz22GMEAgFaWlpoaWkhGrXO8m/ZsoVbb72VlStXsm3bNp555hkuv/xyFixYwIwZM1LHmTRpEk899RRgNaq4/vrr+cUvfsEzzzzD2rVrufzyyyktLeWCCy4Yjrt50NgxNXh1QQ1//OBPNPY1MiZrDE+e/yS5nbdS1DUZW/eA2jBf/B9GP/EEXcUzWH3Et1CdLrwXXYrdbSc3uIWCbW+w8vmnefLXP2P1kv+SFYkzs74dtbEJ/bH78EdaGL/l3xhr16SOmQhtTF1esSmfsgHd/zrKI6heO3pbJKN7qfhktPYoWmsEM67Tmp2uBVSS1Ih0WNMCNZuLsG8kpeOymXJcgHjPH9Bjq/Hm5AzTqA9uAzMCzf1ZI/AAZb3o4WTq/cFR6svo0Fj38DVsal2Tuj6yAzwJK8BXVabg0FQCzRoO1TppEB/VwcxTR1HduiG1jyduZRhWFYxNLRvfZHDG92+gOxEjqFkZYkrd2xDpRnXb8cywsgLNmE5E3g/2Ga0titYSwYhoOMr7626ZJqx5lI2xdJCtrB08/dUkmkYUce9kLwNfjfWaVXOuvvwUXj/+N2wvO5lNE79IQ+kCqsZdTEfeVDac/WtKbrsN/0knZoxBURRyLr44db37kUeHHGtuTjYO00HQmaSmf7qiXU0HDjRpGLJLnQ1VXNv6U3KVHtrVdF3AniqdravbQYFzv3EEx140HiO5mpfuu4U3H3+YUFcngdw8yjrT00VzLrpov43TNW5c6nKif6bH/0z+H/ISJXS4w9yfk0VYUXARw1TSH1kNTU4O7At6V3qmiD3bZHVvNbVOBwZgdJeQHUs/ztlHzxjiCEMrvPYaeo61Gr9kR6D71Zc4cVo5bxdOw2PEibbUU/X26zjGp28/zzieSv9JqesbXU4cZhWKXSO2oYvIytZBtyOEEEKIj2dYA4H33HMPvb29nHjiiZSUlKT+Pf744wA4nU5efvllTj/9dCZNmsR3vvMdLrroIp599tmM41RVVaU6DgPceOONfOMb3+CrX/0qc+bMIRQKsXjxYtzuzAYZhxMzaWCErC/vi3OsOlAGBjccdQN2M4vq1hDT1a3EutMNQPKvuooeezHNn/keeRNLGTurkMqrLsSIWR/cuv71D+K9QZKxGEW9IeZtbSZbN7EVFqAErC+YPVljGfPa7wkEtwEwdtYIDN16rtqSM/CF01N9WtRmFJcVBInX9mLE5Yz/vjCwHlgN6YDK6B4Drf97dKx4PN5cD2dfewRlE5KAASTxZUujhqEMzAg09/XU4AEZgQeqWcjAroyp+oDL7mDbH85mS80GNrrS7wuTGtLTszaVK3hjdlqqqhifOx6A2t5aIskIy2qX4o/YKGv1kNtnZRStzRudPk69SUesg9yiPjZFT6I+Pp0whbDpvwB45xRjH+nHUR4gKl8A95mBtSBTjUJaPoS+ZjY606UCJtaln/PFld2YShbLJ/upKRtBe/50erKsOq6Kav23edxFtJQcQ/WEz9NYdhIfzriG0nmTyLnwgiFruWWfew7u6dPxzJpF7zPPkGxsHHK8btOqK9ajuFhnm4rqTv++JaVhyC6FmqpSl1uUKanLaq/1Ocif46JsohUgrF1l1Qg2dR1fTi7ZfRH8cevzgnfOHJyjR++3cbrGpesBx/sDgWOyx5CrWScC2u127s/JwqHsFAiUjMB9QutOB+JcrGGN0/pMpikKExM+PPEk3YEyQsUTGHHC3jWMsZ93Zuqy+/k38GRvYcvs53ju2CaWHdHOskf+xoa6ValtsmMF5PTNYlQ4l4khg3q7HcVM4jCssjPRTV0yPVgIIYTYR4Z9avBQ/6688koAysvLWbZsGZ2dncRiMWpqarjjjjvIysoadJwd+4CVbXDLLbfQ0tJCLBbj5ZdfZsKECQfwnh189F4rtaPL1ss79tUAFHoKOW7kcbxR08GEbINv2Z4g2t0/FSzLh33ECBqrummtDdJaG6Riaj5Rm0qkwmoCYg9HyPr9/6Nk0xZmNLSjGga2aBTPrFmMW7KYpjGnkBPcimpqTNi8iECuk5ETK7DZegBQFDfZsfTU1Kb6t3FP6s9c0E3iNT0H5sE5xA0MBG5KpuutjRrwvbvNWcH4o4txeuxEentSy2Vq8NAypgbv62YhA6a/Hag6WImBwaH++oDBlYsY3fUmJ6prWO1MF2mfVD8gEFim4IvZqH73TUZq1u+uiclf/vR9/rPpSUJenYbiKD7dKuWwKmsUAFEHTGww6ehro3RCIXXR0ZS71uKnBe29hwFwVWRBQidZ30d8ay/Jdsn+2hcSTYOfa6pfBEg1CQCYsLUgdXlTuULU1cfqC09h9E8fYu30r5FwWycJRk9Pb1dQ7ke1p383Rk/L3+U4bNnZ+OYeTXT1asxYjNY77hxyO59qjTFs05mmr0ftWZ+aNi5Tg3ct2VaTutylpps02ENW8De7yPoZ7Ginffs2AEaMm8DX7nuYGU4ftgLrec35XDpzc38YmBEYr0nXfj49+AVshorNNOlUbcTUUGqqORzYjuqHMm1ARiChN/iw/z3AmfRS1GajoGcLuX0N2BMRfCPydnGUoZWedCZt2Vbj73gsxANv/RpUg87sBNtKIxg2aIxZGb6+uB+H4cLocRJzqlT5Vd71uAl6C/EUWB9W9M5YxucZIYQQQnx8B0WzELH/7agP+ELumxj9E7wuGHcBdtXOfz9o5GuRexkXb8aIWy8J97TpKIpC84BafSMqs3n1wfvYSLommj3Yx4jGVpxJncBJJ5F1zjmMvPNO7Hl5zP/HHTgrramA2cFtnDqlmaPOuZCjz0tP/dCCo1KXG1rXpAOBWGd/xSc3sPFKdSwdCMxvTn+p6s2uZEz/VMxwT09quQQCh5YxNVjbjxmBB6hG4M4ZgcGWWrKCVt22jep4PgxYGX0OzcXMWit4n7DD1hHgidswNI3wu+kMpHVqHe1O65hjlZFEy88DoNfuof7SE1GA8c2QeOYFRoytpDGUoDNpNYawNy+H9moURcE3J12bLPy+ZAXuC0N2h65ZAsBGpwN33EQxPMyutzqFJhwqJdELmNw6j28dcT3Tji3n2IvH8aXbj+Xsa2dw7MXjuOTmOXzx1nmc/L+TOee6I/i/O4/jczcdxYhx2bsdS/7VV2PLt4KFfUuWEO3vNjqQ32lll0dVlSSghFqxF1uBLb0rJvUjd0Ht3pq63DmgyYZbs57znCLrMaxd/X5q3dhZc4i89x69T/8HvauLrHPPJXD66ft1nPbSUlSvNZb4li2p5cWOEqZ2TsZmmjyd5We1twvNHNikSZ73fSE9NdhgS/ebqe7SsUgl40OgYJ348Ry5d9mAACX+Ut6ZakOzQ1l1Dzkf1qXWmQpEZ44h5rSex2J7+oTCyKiVXW4oCuuNIJ7+k9cAMflcKIQQQuwTEgg8TOg9cUJqhGdzlzHdPYUx2WO4cNyFtPXFqKx+gGK66OhOZ1q6p07HMExatlo15TxZTrILPXQ3N9Ge5aXX68Y33yryb8/NxV5UhHfOHErvvAPVZQUKPDleim++GdPrxxg7lfD9f0IPhSgoT3ckDfXN/v/svXeYZGd5p32fWLm6OucwOQfNjDISIkoGTDbGrI3lBeNlBV6vvYvB5lvvetfmsz+vvd61AQdswDYGYyQMWhAWEhIKKEzQaHLsns65K8cTvj/e03WqJml6pvOc+7r66lN1Tp16q+qE9/29v+d5ysuDyX78a6Jlt0f+1IwXBjIPuBVCFYYqhEC/1ky6rotkuIN883pa1orfv9IR6FUNvjxVocHznSNwCRyByBL6mhq09jBqY5Af/183Z9uR+lvJWEIUuvdojEDB4EiXxFM7Ze4O38rttXtQfT7aTdf9dTY8UV6+L3grwWCg/NjYvgW/Y6Ks+8r3aWhoxjIGOZF7i9ueQ8IVGNzTBIr4rrMHxrBNr1LojWBbdjnhvlLnRw6okJmEwf1MKjJ2WuELf27ygSdUDjWs53zTWqY638C28Tfwhv6fo3tzI7IssfvNXQRrfPTsaKCmMUhjV4SaxgCNXRE6N9cRiOg0dUdRlKt3MZRIhMZf/SRyLEbonntI/fCJS7ap8VVUGpVl7NQovrUx9LVR9I6IFx58BfwJVwicUdzrVaAkhNUaRwg8f+jl8rqenbcw+j9+TzywLIL79iEvcEoVSZLQHVdgaXAQy8kRrflUNkxvoegIU68G0oAraHqhwfPDbGiwLp3gkN9NByCne2hMu47b5jffPed9K7LCxOYWfM5PdfdkHYrkuo6P2P3l5Vs27SXa6Kd1fQ1dJbeS/Ct+H0r6MDgT2J4Q6OHh4eHhMT94QuBNgpnI8w+N3yOhpjmSP86uxl10Rjt5+MAAH5Cf5G7lOOq0gaSLjmCuvpvnvnWmXEW2bV0NtmWRGBvFliROv+luuv7mS3R8/vOs+fYjbPjx09T/0oOX5IIK3303Nffdg3z+GMb4OJNf+AKNXZHy+oK0G78pxL5hDIifxbcuBoCkSl4y+BvENixMp6Ov1PvRLTE4lE0L82SC8HQ/ilmiY2crsjNorwoN9oqFXBa7srKvPb/OFGkJcgTmT0xT7E1gF0ymsgU6J58pr4veKsR61bB5/3MzaKbBjn6b3fd8kD//wN/ymX//eX7ms7/HQ5/+PyiSgizJFBzdL6gG+ZV3fYawzx3As2Mfz20R14mSJmM9/kMUNcHJ7N2YtoplS9D3LBRSKGGdwBbhEpY0mfzpmUX5PlYrxkQWuyQG1PpsWPCZf4VgPSd0nQ8/aREqwPv2zxAyCsQ793F2488gIdGxqRbNp1xl79dHzXveg10okHnmGRLf/vYlkz81oWohkMwESkSleD5JcSDlVRK9AjVZIbKYdpS46oZ/Bkridz/57Hf44r/7MMOnRAGvYE0M/+EjZYezb+sWYu9fuCIhlZTDg22bwjlxj9L9Ck0pN2z4sD+LTUXVYK9YyLww6wgM6T/kkO2eSx3xJmoSbqh2+La9l7z2WrC3bcByuoUNZyd5b/dHyuvO+eP4FDFx3FPTQ2NnlJGzCcJ9PeVtDvp9SIU4vhrhCDfTJcycJwJ7eHh4eHjcKJ4QeJPQO36e79Q+BYBP9vHvd/17bMvEeP4L9Miig5WaacQqlkiF2vnXH0u8+sRg+fWt62MkJ8bLs/CxVlExMvLGN1QJF5ej8dd/HclJQj/91b9DnR4mWCMeh6QYMScceUhTmXzqS/g31yFHdMyZAvmz8Xn7Dm5GjOk8TmQPuaCBpMYB2DplicQ9QCbUSndFnq9MVY5Ar1jIZak85uc5fLcyNHgxHIFW3sAuiM+gRHW+e+A8G7MigXtaq+egJXI4PXDAoj4phPnpkJ+tb/+F8j7aNm6mvr6Ff3z7P/KTn/sJv7D1F/j5LT/PH9z7BwS1IGG/KwT6pBh//0aZV3skfMks03/xl3TF6siWsryU+iBpqwGGD8KPRc644O2tqM1BzJkCmRddR6vH3CkNuwN9bTYs+JWvQXaSo5ON3H5KXCxm/H6+ueuXiEdeTylvsu3eNu58z7rL7fKGkXWd4C27ATDGxjCGh6vW10di5eWkLCFZBnqdm56iMtTZw6GYocYQrlzDbiOhpACQbAmfIZyAljlNZmaahs5u9r7j3bzjlz/BxB/9T4rnzhHYs4eW3/7tqnylC4lvXWXBEJHbUPMrKEYt64vitz7jMyjY7vXQcwTeOLZlY8QLSGQJSM9w0C9EOdv0syfVQk3SEZMjNahtbdf1Hp+673fQNolQ3+4JiV/e9K7yuoQ5SMEssK1uG69rfx2NXeKaFC7WEsoLJ+phnw8DCHUMIIc0jLEsBa9f6OHh4eHhccN4QuBNwvGZE9yZ2knIDPChDR9g5i/+Lcf/8C18ovglAIyCTGGkgARItklRj1W9vnV9DTMjbnWJ2tb2a35vvaOD+o9+BKWhgcC2bYz9/ufYsLeJzu11aEgESj0AlCSJwbNPoXdHsVKi81/sS1xlzx6vRWVi7WnzGDOqOOXXT7tFWozGTrq2ubkZswnhuvKFQqiaGyrk4WLJC1c1WJIrE+IvvBBoJl1RRYnqpF59lHN2Ky+bG3l07W3885lv0T1Zz7t+IjNR14kpSRxrb7hs2PiW+i0EtSAhLURLqIX7Ou8DIFThCFTtGFNRieNdEophg2my/vwgDW0aZwt3E5TjAFjP/R/+7mM/zfe/+acUE0LAyp+axnAKH3nMncqiMHp7GKbOQZ9wfwZGTA50B8hpEo9seSO3G2GUOjFh4w9q1LeHL7vP+SBwi5t/LHvwYNW6moCbZzDliORaOFV+rjjsOQIvYdoNCxZCoPjdfaUAMjJgEYhIhOvq0YNBwrX1aN9/HDMh7rdaezvBvdfnALsefBtc51/RqRys+1QMW2dPXpzvpgQjuusI9nIE3jhmsgCmTVD5MeNKkc2FIuuMEEZmA+2JSVRL3Bu07dsuW/n7WmgJtRDddzsAkm0TOXMexWgS74/on0wXpllTs4amLuH+lZBozzmFpWSZU7qGbh7ByoicEvlTXniwh4eHh4fHjeIJgTcBtmXzlP0Tnou+QkbJcWcxxtbU82zLHyhvk56qKzvHpuq3s/lON0m/oso0dISZGXWdGrUtc5sdrvvlX0YJh8m98gqZZ55he+0AUwNpZMCX7ShvZ0gD7P/RQSyfODQLfUkvT+ANYEy5QuBY9tnyck/SDbfL17QTCLt5e2ZDgz034FWQFi40WFYqHYELP9g1K4Q1M6Sxc/L/sl2+QL3/PCdiEUzb5B0/GacmZ9I4PcCF+iipoB9/JHLFff7itl/kF7f9YvlxpEIILBkKES3Cd2+XmKoVzwclhbvu20bSbOGVjHCMmLZEszRM7+H9DJlOEQEbsl7RkOvGjLsholpbCA79PQBZJLYeg70XchiyTbDmzdQgY04X2fPWLu5497rrFgKuheDeCiHwwIGqdRHdPc5mhUC5OInaIOLPSyNpL3fkxUy5RTcMq524KoTTgCG+y2hDkPf+5v/Dr3zhK7znU/+F7eu3kDt8GAApGKTpP/3Goja3snJwcVg4kDW/AsjszLm/7aBvvLxszXORppuR2bBgTTrPOV3n+WCAc2oGq1hHc2q0XKW59p655wes5OLzu14XReRmLyn+/B08e3aax4amytu1Z0WeQMW2OatpKPGDFfmjp7Etr1/o4eHh4eFxI3hC4E2AMZ1nVJ0EQEGh4bybHHzIbuTRHZ8nmd5Rfi7duZvXfWAjO+7r4P2f3sfbH9qJrMhVjsDZ0OBrRQkEaPwPv1p+PPGHf8BbP7wBJaxy3o6Vnx/RZJIvPcUpR2ix0iXMqfzFu/O4RiodgUMl9/frnHGdfnpFWFapWKDoJGv3CoVcmcocgcx7jsAKR+AihAZXOgKHUoPcKwlB4HP1LXx7/CV2jYR4/VEx6CqpOueaawmEI8jytYcNVuYITBcMGoINlFSJ796hoLa0UOztRf/J9wCbA5n3MWV0YEsq9zX1ImHTlz4CzqAxs3/UGwReJ4ULKaSggtYRRvEDr4iiMC/nQ0ScS8X55lqaEI7hus4wd7x7YUKCK/Hv3AVOGGruQLUjMKxVFJeaPe/So0LIBDBsjIkcHi7WpJvbbVxqpCgLJ9VsoZDZisEAtm0z9nu/T/7YMfw7d9L4yU+gNTcvanvV1lZ8Gzci19RQOHkSmBUCYXvOFaCH/e4kwGJVVF/NGNMFJPKElMfo87mCu16I0RA/j21DKtRE9K4bEwIrKw7nDhxkXXSju9KGIyc38dA/HOSl4TgJSdzzovEewlkFzYJDfj9S/AKBbnEcW6lSVaV7Dw8PDw8Pj7njCYE3AaXRNKOaEAKblUYah38MQCatMWb+PNu+8R0yB0+JbZUA2rad+AIq935wI809UTqdZP0zI64jsG4OocGzRB54gOCtt6K1taFGo/ie+w7v/eytJCzXeTaoqnTrB8lWuE8Kfcm5f2gPoFoIHFUm2VYosDeXp37M6VBLMpEtrhsjG4+Xl4OeEHhFqoqFzHOIWqUjcHGEQNcRaIw8jCzZjCoKLwVkLCxed7BAqnUrlqJztr2LkqrM+dioDA1OFQwaA40APLvBwBgdBcOgdPokXdsaaFrfwrTRg04BXTFp9GeYnBnAtz6G2hJErQ9QHEhd6a08roBtWFipInbWFFacg18BX5Sz8loOzzSWtxuuXY8hCYP4Gz60CUleOCfgLEo4hH/zZgAKZ86UQ1QBorrrXk7OnnepUbfYCdUhzx5QGD9TXs7IsfKy3ykUUtPsCoGpxx4j+7KYHDTjcWo/9KHFaWQFkiRhGwZWIkFpZATbttGdvKL1JR9riiV25AzCJVessrxiITeMMZ1Dky4gSRYDsuuwbE36qEmcQ8EkWEhUhW5fD1pzM/7t2/Hv3o2k67yufSe61YxqxaDQjWrXYtk2lg3jqpjkqc22kg6a5BWJPi0A3XcTaLhQ3qdXPdjDw8PDw+PG8ITAm4DpkXGyinDVtesxYkWRcP/I1BoC//wN8q++6m5bt4W6jprL7mdWCNQDQQLRy29zNSRJovn/+SzG1BT5Y8eY/OIXqS0k2VjXXd5mUFXo9h1gpEJ0LHh5Aq8bw3FTGrpMbzDHMZ+PQz4f/jGRaykXaKKuK1bevqpisCcEXpkFdQQunMh4OczErCOwRGNa5It7JBzGAuqSNvccyRMZOY4RiNAXFe0JRKOX39kViFQUC8kUDBoCojhNMiQhNYnl/PHjvPnBzUwNpRkpbilv3x7MUszl0DdHMUZFovj8iSk85kZlCLgWKcCPfh+mztBt9uGfdB2W7fX3oNqw6w0dtKyZ+3X+eglUhg++cri8fLnQYNJjbrETvIIhF2NNuqHBw6p77s2GBseaRFi1bRikn3FTRjR/+tPIPjd/7GKitbaKNuVymPF4uUK1Yfvx2zZHAiqnoqfL25tesZAbpjSSQZPFsdKnucfJ7vEivqKYgC12rJuXojF6Vyf5V14h89xzfCC6hgO/9EM+3PElUn2/zNt3tPJPv3InX3rwVurahdPXZwTRDRG5MKZacOE5fLjXhfx5r1/o4eHh4eFxI3hC4E1A/3hfebnTdjvPE2k3D6DVvoZXt32MgY43UjcbclWBUSqRnBT5eWpb2687X5R/40Zi73svAHY2y/gf/U/etH4zZq6NWEliRFUJKgnq1GEMS7S1eMFzBF4Ptm1jmxZKrY9+v8ERMfZj4zTITn6lTKi16veurBjshQZfmSpHoD2/rj15sUODHYEorHyHbvscp6Qevh4Tydzve9VGdjQi35sfKH/uYGRuAlHY54aip/OuIxCgtKETACudRpkZ475/s5lJZXt5fWckDMiUmuxyeLDnBpk7lUJgKP03kBPf4V+ou1k/LMRgQ5ZoufMOQjEfkXr/orYveMcd+LduRQ6FyO3fX37+ckKgnRqtEgKLXphgFUpykCmrkby5k17fFLIFjclGOhLraV1fQ8tacf7mDh0i8fDDaD09hO65h/Ab7luyNmttreVlY3QU3QkNLtl+NCdPsCVZ2E4yY69YyI1hGxaFvgS6LgrL9DtCoG3qbJtwJ1p8u/Zc9vVzxb91a3k5f/w4ICaIWiJhtrfXsL1dHJPvuK8HEAVD/EURjTKqqhiANPoywX3NKHV+iucTlMaz89I2Dw8PDw+PmxFPCLwJGIwPlJcbZB8vmZtI2X7UQqD8/PTbPslk4y6SNWuobb1UCEyMjYDTGa+dY37Ai2n45CeRo1G0ri7MRIL7IxKKniSu2VzQdEaKm1jjP8RIfpi0lEAOqF6l0OvALppYqRLmTIGj0n7yziD6TVPuAD8TauH8/sd55A9/l7/4+C/y8ne+harrxFraqOvoXKqmL38qwneZZ7GuyhG4GMVCkkVkpomqXwdgUh8l6mujTWvj/ledwSES0Xe+ofyawJxDg11xM13hCARIrWkqL+ePH2f93ibu+nfvpGiL61OrfhrVfzuZXBytQ4hCpdEsRtzLHToXjLi4hkqkkaUkNGzknB7i4XCeVqcY63RrI6//hR08+P/eze43dy1q+wLbt5M/fhwrk6mqHBzWK3MECiW4NDmMEtLQ2sNoHWGQJWzTyxsJQDGLPzdCvTyBJJXYHz6OJcNEdIJIvoGJgTT1joiafvppAEp9fdS84+0LWhDmtVBbXSGwNDKC5riIjQohEMBymmh5jsAbInd8CjtnoplnKAFDjnPUKjbQnnCLstS9/nXz8n6XEwI/es9aXvitN/HRe9aW123aUk9ahRHFJJwX9wZDkhhTFRg9itZgl4ucZPaPzkvbPDw8PDw8bkY8IXCVY5s2Q3k3zLZj9Di3KaeQsWhIxgGQNI1Jyx2Ya3oO27bZ/+gjZYHo+5//k/L6GxUC1dpa6j78C5T6+8n8+Mc0PvsDZFPM/E4qEvX6KbYGnmC8MEHYrqHYn6JweuaG3vNmxMq5ItKr/kPl5V0z7sA65Y9w5uVnKWazpKenkGUZo1hky+tez8bbbyxB+GrGriyUMe9Vgxe7WEgBv3wQCTG4+l+RtfSVegn2DhJNicG2svs28n63snTwBkKDZ4uFzDLR4Tq+8sfEALFlXR1S120AhNUUtaEuZkanCGxy84nmT3nXhLlgOkKgXz6INvY9ClOn+ZvIRronXcd11+vuX6rmoTU1oXUJ8TH/6qtYBdHeyhyBcVkcg+aMuKep9X5Kg2nhDhrNLHKLlynx/vJimkZeDYpw2lChhvpsO52ba1Gc6quzQiCSROieexa9qZVoFf2K0vBItSOQCiHQsSh7OQJvjMzLo0AJTbrAoKZiOSKwlo9QmxICmyXJ1L9u77y8n2+Lm+5hVgi8HKEaH6UGnVZToSFfX35+SFWRsAg2XABFtDV7YBzb8CqGe3h4eHh4XA+eELjKMaZzjCqT5cddGREONmLWE5pwcv6tWcP0qBABglGNf/x/fpWv/udPMHDs1bJApGpiALb57nvZdOe9N9yu2p/7OdBEuGDi2/9Cq0+EKduSxLCqElJmCCivlLf3QgHnjp0XIo6NzcmwyAOk2jb1I5Dz1TFds4FkIEjHlu3owSDhunr3fyB4tV17VDoC5z00uKJYyAKHv9mmhZUuEVH/ibTdzlEaORkWBWbedFTDUAIkIt00/Nz7ySbdnEzBaGxO73O10ODBNldgrBwgautdJ0qbfpr+4xn8m+vcbb1rwpwoC4GKKAzxaCjEo6EEO3p1psIy6aYuGt5w11I2kaBTXdQulcgfOwZUhwbHJXEcaaVJirkSvm5XJCx6uWQFcbegwksBf7licFd8KxIS3duFuFIaGqJwRlQXDuzciVpXd+m+FhGtyhE4XM4RWLJ9aBVmT3NWCPSqBl83xnSewpk4mtSPJBlcUN3rc/uERCgnQoMzNV3o0fCVdjMn1NpatDYh9haOn8C+yiRXeEsMG5tooVoIBJDHXiKwTTxvZUrkTnj3AQ8PDw8Pj+tBfe1NPFYyZrzARDRefrymKFwT2VQMzRQDpwlTJ58RgwU9UKCUzzE5cAHV7ycYrSFcV48vFCJcV0/z2g3Uz0PIqFpfT+SNbyT1gx9gTk5y/9g2/saJEBzSVHoMg/WhwxTMLD4lSP5sHNuwkFRPu75WLEcInFITNBd9+KU4zYaBeSFOoFBANfNENnXz+p//4BK3dAUiu5fOqw1orofKxOzzve+LMVNFJDuNJg+jAY9E1oFUAttm32kJXymDZhaoffMbOPfD75dfN9diQReHBreEWlgTXYOmaIwFiyj19ZhTU+SPH8e2bRGi2Hk7hhphMttCRBmj94KG2hpCimjIfhW7ZGGXLCTNuyZcCyI02MQvHwDgqWAYSzFonzapT9uQ7q8K31sKAnv3kPj2twHIHjhAcM8efIoPXdYpWkXijhNXlYoMnhmiqcd1lhYuJAnfPfdq9quOmb7y4rNBN6VG18w2ALq3i+8sNesGBML3vX5x2nYVqnIEjowQdlzEpYtDg8uOQC80+Hop9CbwratBHRD5AS84+QEDeZtfe2qYohrEUIPk2zbO6/v6tm6hNDyMlc1SvHAB35o1l91uw5Z6vvPcMJG8K04POkJg8fSThN78ELkjk2gdEYoDSYI7Gi67Hw8PDw8PD48r4wmBqxxjPMuwMQYKBCQftY6woE0FAUcINDrK2+eSrpvgjQ9+jNb1mxasbbH3v5/UD34AwK2np8pC4Fm5hrvJ0xkYYP/MMTpDt2IXTL71a7+F0hVkvPcce9/+bva94z0L1rbVgJUTA6U+3xDHw1OAyrsHs5ATp32iZi1r9yzc77uqqXDtSSvYEWgmimiSG0r4fEgBSnROQk1GuITz7U4Bh5QbQjrX0OCQXh0a3BZuYyQzQt7Mky1l+ejWrWSeeQZzZoZiby++tWuh7RYUI02LfgZJstk/9bNM9KcIbq0n8+Io5kSOwvk4/k1L62RaKZjxArp0BkVKUgSeD/jBtljrpNlSGhrQmpquuo+FJrjXDUPMHTgIvyyWI3qEqfwUKcXNYTf26mnaf64byadgF0wKfUlXRL6ZmXHv4S8HhbNLthQ6EhupaVQJ14qqwJnnni9vF3790guBaotbvKw0PIJWDg0OXDZHoOkVC7lusocnKJxLEFSPgSwKhciWzR0nLTqnhMNupnYT9rs/Oq/v69+6lfQPnwCE+/tKQuDG5jAv+kq8t8IR2KsI57g6/ipSdxClxkdpIIUxmqHmLT3ehJCHh4eHh8cc8e6cq5xSIs+YJjp2bWrNbNFNSgn3p0/5hBtQop/k2E8AaOjqoWXd/M4GX0zorjsJ3n4b/m3bqDtwlkBBdPaP0c1YcT15qZa1O+Ll7WvNRtJTU6Snp3jlB49y/MdPLmj7VjpWXgyURjW3AuD6IXf9TLielnX1F7/M41pQK1x7C1g1eMEdgckCmiyEwGlZJqMrbK7dwtsH3Xxd9g6Rqy9XGRo8x2IhsiwR9gkxMF0w0GSNbQ3CoTSYHoQ33UXwrruQQyHSzz4rXuSPQv16ABrUXhQpw/HnRvBvcPME5rzw4GvCtm3MeKEcFrzf76co2zQmIJwX113/tqV1A4JIU6HEYgBkDx0qH/+z4cEZ2RWEcsP9SIqE3iXWWcki5oxXVGo2NHhMUbCRact0smZqB3J+kI23xQBxPBT7+vBt3Upg376q/G1LhazrKA3C2VUaGUHTxXXQsH1oFduVHYFesZDrwrZsiheSgIlfPYjdsJG+WBu3nLP5t4/bpIJNlBQ/o90tbHnd/BYMulzBkMvR0xAirUnkSu61vlcOMJILkzX9yDNn8a2Pic9Tsiicj89rOz08PDw8PG4GPCFwlTOWGMWQRYe5SXLzvpkpdzY95dOwrRS+QApZngJJYscb37rgzgpJUfCt30D+2DGkbJ6dvaKD36cFaNbPEpHGaaqfxMYmJ2eIBhqQnRCWxPgYMyNDV9v9TY/tOALHdDdHZMOIKzIlandS1z43Z5eHQ0VosLSAVYMXOg+WmSiiSkI4uKCpzCgZTs6cYMuJbHmb0D0iJ2g2ES8/N9fQYHDDg9NOyPqepj3ldf+iHSf7/PNYmQzD//hVbMcBJLXtBkCRTGLKBGdeHkPujJSTxedPzZS39bgyds7ALppIJCnKXfw4KCoyrxlzv7ulDgsGkCSJwN69KA0N6F2dFE6LQhezQmBRtoib9UyWusiNj2FbNr4e91gseHkCMad7ATij+RjV4wyHBgiX6pC1Djq3CGHFGJ+geO4chePHkf3+ZeOinM0TaIyPg2mg+RRKlh+94hw3vWIhN0RpNINdMPHLh1CYxpo8TbJU5P6DGj4DItlxjrc3EL29jZa1c7/OXw3/1q2gquhr1lA8e+6K22mKzJqGEBcUhWBR9FEm/AqtgTQROcW//t5DnOz/SXl7b0LIw8PDw8Nj7nhC4CpnMD1YXq4z3Z9bTomCAJYkk5bP8LOf3cWWu+owSyX2vO2dbHv9mxelfZW5ifY4/cIRvYhpO0LL0Iv4N9URsEK06mt5/TsfLG9fKnjuj6sxGxo8UuEI9I87VTcllXhAwecIAh5zpDKP3wIIUbOVgxfFEeiEBl9wivfUJyya+51k8YEmXj3yDH/x8V9k+PRJ8SJJwh+eewL5WUdgpiCOy1uabimv+0ruSU456d3U3iHSh18RD1p3lbdp1M5TKpicOzqFr0cMDs3pPMZEbs5tudkQ+QFLhJXH0a1+ngyI32/NqLvNchACQdwTzMlJ8keOknHcoeWCIRLI2jQNWj8Ba4LkVA69omBIofcmFwJtuxwafEZz3VS12RaM3E+INojfvXD2THmdb/36xW3jVSgXDLFtSmPjaH7lMjkCnf+eI/C6EG5ACCr/CogUAWPZPDt7RX8qp/kYiuk0rVk37++tNTURvuceir29pJ9+mkJv7xW33dgc4bxmEnEqBydUk5wjWEetSV5+6V+8CSEPDw8PD48bwBMCVzljuXHW5zrZlltPW16ICrblCEHRNYzFmoi1ddDY1YMeEBVjI3UN+IKLUzU2eNttSH4/AHvPg2TbpH3TjJdEJ1SaPou/3e3wy6OuMGIUi4vSxpWK5QguY9oEALUpCzspOs6paDemNV6uBu0xN6SK0OD5dgSC6wpc6ByBVqqErAwAcEoV5/zbXrYwZJWJ+u0Mtr8eyxDh+NFGkT9u7S37qsKXr5VyaHDRwLZtdjXtQnKSFRTMAk/ucm9H+//6/xULlUKgKhLbn3huuLp6sFc18jUx44VyhdAZWQZLpz7VzdZBV9ANLBMhMHTrreXl9FOioEVl5eCUc24E5CQT/Wn0rgi+DTG0jjDFC6mbWxDIzaCU0gCc0dxJnljKj1l4Bc0n8gMWz7luLN+GZSgEAsbIMLpfvVQIlGZDgz1H4PVQ6EsiM0NAfhGAb9XWc9+rNrNR94N1QZAkmhdACAQI7ttXXk48/PAVt9vQHGZUsQkW3Gv9sHPfrdezGHYRuVUcz96EkIeHh4eHx9zxhMBVjG3bDJhDnA0McCxwllhODBBKGYVAeopYshfsEg0dIg/Mvne8h1/5wlcWtQiH7PMRuuMOAKJpizWjYKg5ThtufsJA5Kz7gsFSedEoeo7Aq2HnxEBpNjT4lhELpc6HJSnEa9YhyxPLJiRsxaFUVA1mARyB8uI4AkuDw+gIIe2kFqJtyuanDoBuGtTNnGKqYR3+sE9MEDQ0Eq6rp3Pbzut6r/qwj8awj45YgHTBIKpH2VC7obz++S0SOR3SARgYPsl3Tj4MLe57NainkBXwhTSsdiFgyUGVxJMXiD96zgsLvQpmooAmC/HngqYy4i8xFblAx4QoCKPU1KC2tV1tF4uG3tOD3t0NiDyBZiJBWHMFy3RZCEww0Z9C1hUwbUqDaYzx7M0tCMy4DqvTFcUTovFBwEJ1hMDCGfeeuqwcgRWVg0sjIyI02PajVVxiZ3MEesVC5o5t2xR7E2jyGUqsZ1KWecqnEs7ZzIQkbGCwTojujT1rF6QNNe9+FzgVgOOPfBu7VLrsdhubIyIVr12HZvioLzUz6ojb9T6RuqLUII4BpSFA+qWRBWmvh4eHh4fHasUTAlcxds5gVHbzw3Vm4wDkU27q7YyuUN85vwmh50pVePBZ0ck/LbuDUiVxEKVGDGCsoTyqJNrvhQZfnUKmSFrOklLEYH93v4U5XUCyTRKRLlTNE06uF0mtKLg+z8VCYHEcgbZhIU2fLj8e1lXe87yF6nyc/s630LR3N+/51H/hV77wlfL/650o8GsyE+kCAzM54lkx+NtS5xYp8IdjFO/cRTgHtx4v8nff/l2GzSx5vRGARq0f2zS5cGSKyUSRlv+0j+CtLVCwSD87TOJ7Vw4zu9kx4gV0SQiBfU4IeCxtE8kJV7V/29ZlNSlQvieYJpnnniOqu+G/yUohcCAFUO0QvZnzhTlhwTbQ7xQBi+RrkXPnUTW9PMFQOOsKgfq6hXF+XQ9qhSOwNDyC7oQGq1wmR6AXGjxnzHgBM1kkqDyLLp3i/4ZDyIbF21+2qc3YJP0hcrpGrLkVf2ju6R+uBbW+nsgb3iDaMzlJ4v9+77LbbWmJIkkS04UIJbXAlDbGeb9wpcf0HIpkEQ9Po6+JYk7myLwwijGdX5A2e3h4eHh4rEY8IXAVYyaLjFYUilifF3m/Ukl3UJXxSdR3LK0QGLr3Xvzbt5PY1EbXuOjkn5fdJNXSwAv4Nzv5jkybpoBwi3iOwKuTSxWrKgZ3O4UBJCAZDKD7tSu80uO1kJTKYiELmCNwAUTGWYypHBqucOCPF9l53uZMq0rWX0/gg7/Apjua5+396kJuGPp0RghQb1v7Nn567U9zd9vd/NyWn2PDfe8sb/OGmWY+9+LnsFt2AKDJJWLKMABDp4ZQGwIoYa18FysOpbFLnkvoshg2vkAfAP1OwaXuUYvJmkbYvIvAbbctYeMuJfx6d3Io/fTTlw0N9stJJvpFKLAnBDpUVAzOKeJcaMjXAiVUJwWHbdtlIVBtbUW5jnyfC4Xa0kLgllsI7N2LbRpoflVUDb5sjkDvXJ8rxmQOfW0Nuk8UWjvs09k53FEeCKT9Ml07drP7/ncsaDtiP/uzBG+/DX3tWqb/5kvYxqWibnd9EF2RiVtuX7BfEn1XWYI6PUs8Pore4VwbDIvE984vaLs9PDw8PDxWE54QuIoxk64QFJOidNrCAZZPurmDsj6lHBq8VOhtbZjJJDWnhtlzzkbNhZjWC0wbHZgIscq/XuQvkyIadbpTWdATAq9KKVtyhWDbpn5cOH6KWpicnELz+ZewdSsctVJEnX8hcDEcgaWxLArjmHYN44rCPa+a1GZhw4jBQPt9TI6W2LBv/oTA+pCvvDwrBN7Vdhe/f8/v88W3fJGHdj9EeJ+bHy50YoCnBp+iuFY8l6aGGkWEf00NxQGI3NNBcI/TRtOmOJCet/auJkrDcZSiEH+Oq0L4WT8q0ZCYgJOH0Ts7l7J5lxDctw85GIRAACOVJlIRGjwmiftXUEmgqBJ/+5vP8sS3zyHXOmGvfUms/E3qFstMMkOEc7p7farLiOv+bH5AY3wCKyWclMspLBhAjcXIHTpE7sABiud7UXUZUw5UhQa7VYNv0t/4BjAmchTPz6CU+ihI8FQohJwbKK9P+zXW7N7L3re/a0HbEbr7Lqx8nuL58xROn2Hm69+4ZBtZltjWVkPWdCeuB0z3uK73ZUmOjxF9Uxdy2HlelTGzlw819vDw8PDw8KjGEwJXMdmZFNOqEP+aZNcxUUq5if6zfh+x1vZFb9vFBPfsAUA3Ye1UmsngCGPFjci2AUMH8MUmUZuD2KkSayLCIeSFBl8dO2cwqgkhsC4Fel6c7qlwB5Y5hub3hMDrRa4UAhcgj9+sI9BawByBpbEsunwcRUpwQopy7xExwDZkidTGW3nHJ3bNa7hofdh1BE6mL3/u6uvWIdcIB8jmARtsmxP+AMgaYRI06sLxkZpyB3u+HtcxUrjghbtfDilxHlkS3/l5TQhCa0ZddWW5VAyeRdJ1gnfcAbkcmSefpCblCuLjshACo8EMdW0hcskS5w5OMFPvTHBZNvkzM0vR7CXHGDpMLSlOqe5kXyQhwiV1v3huuVYMBpAjrvPTTCbxBVUKhg/9MsVCvByBc8dMFFCkcWSpwDHdR0mC1opTxWzrXJQc0ZIk0fKZz5QfT/75n2PlLw3r3dYexSq51/dxxb0f1fuyxMdHkf0qge2isnDulQkKp2/Oc9/Dw8PDw2OueELgKmZoegDb6TTX2aHy81ZaiAuG6qN55y2o2tKHiAb27ikvbx60mQ6NkjBbkJz2y6k+1JgYwAbVCDG90asa/BrIRYtxTYRSrhlzB1KpSBe2Oek5Am+A6hyBC7B/xxFoL+Bg1xhNoUhCWEsP+Yg447CzHZ1sfUuYQGR+K0pfzhF4MZIsE7zlFgCiOWidhhMUwBLCX1QWIW25lPsaX4/rGCn2Jee1zasFOXMCEIfqhCau/+tGxTEmB4Pl4hzLCb2np7wcG3J/8ElZHEdSIUW4xhUG+uJF9I4weneEwrmbUxC2pkQeyHO6e+6GZ8TvXa4YfHZ5FgoBUKLuuWwmE5evGuw4Ahfy2rhaMZNFNKkfgIN+cTy0Trvfrd7atGhtCezeTfRtb0Pv6cG3aSPJRx+9ZJvtbTVgBZAscb+dVt0JoFlHIICv2xULzbTnCPTw8PDw8LgWPCFwFTOUGiwv1zghFZYJOAniM74IpcLySK4c3Lu3vLx5wGbGP0rcdBOHM3W2Kg9Ua2CdFxp8FWzbRjNsxnRxDKytcP+kwu3YVtwTAm8AqdIRaC9AjkB54R2B6YHTaLKosJpJBMg62sH55jpqmuY/b9jlcgRejosnBU7kxsuPo06OQKOkUsyJ0ECl3l8ODStcSGIvQM7GlYxVNFHMQSzbx7iiYMgWkaxNveOy823dUhaelxOVIlVoUKS4sG2YwT33Xv/OeoJRcVz1n0+SGslQvJAid3Ty5jsOiln0jDg/JqQAki1+05q0EFFmr/e54yeQHKHQt375FAoBkBQF2clZaCVTTrGQABqVQqD47zkC546ZKJSFwEOXEQKV1vlLBXEt1D74ixT7+si+8CLJx35wyfrt7TWAhO24AlN6GhMfFhBV8+QzKfKZNHLIvSZYGU8I9PDw8PDwuBaWX+/fY94Yyg6Xl4M50WkupVVmPRQZf2jZhIfqa9agxGIAbBq0sZQc/bLrDmDqPP5NrhDYFlznhQZfDcNCBUZ1kTh/XYUQmAxGAavsEPGYO3KFi1ZaECHQyRG4QEKgbVgkZo6JZRs2HCuil6C/AdJSAl8wOO/v2VAVGnxlIfDiSYET8TMQbAAgorjFjxITQsSUJKnsCrTzJqWx7Ly2e6VjpYr45aNIFDipiArMPWPLNyx4lkqRSr8whib7kSSYqSjUo+Sn2XynmDCyLJszinPepEuUhm+yfJEzomq2DRwOArZNd2ENmim+E83vx8rnSf/oR9iGQei++9A3b1669l4BOSrCg81k0ikWol8+R6BXNXjOmMkiqnwBCzjk3P/bpkWPsKAqaDU1V3n1/BPYsQO1pQWA7EsvYWWrr93rGkP4VBnDENf3oprn5eLbMCUfzYEMLf40ifExN0cgnhDo4eHh4eFxrSypEPi5z32OW2+9lUgkQlNTE+9+97s5depUef309DSf/OQn2bRpE4FAgK6uLn71V3+VROLqYT8PPvggkiRV/T3wwAML/XGWHcOF0fJyKJVmv7WB03F3cJX1+ZaNEChJEgFHAIjkoW0KLugVvf+ps6h1ftQmIVDU+dqQSvOXv2y1YWQMLCwaDZO9uTwbR8R3WVICZJ3QwOXy269EZK0ibHYBnEfSbNVga2FcL8WxLCDCCI28TKBgo9qQ8SmEChK+YOjqO7gOqh2BVxbx/du3o2/YQO+6EJJt05fsI10rChpF1CQKQkSMVwh+vk116GuiaG0hcscmL7vfmxUzmUeTziFJ0O8oKmvdW8PyFQLXufcq+cIwJUu411Oym+OWzARb7molXOujsTvCufE8p/Mmtm3ffNWDp0TI74wsk1UsbNkmKLu5AlWfn9TjP8RKJsGyUGtqUJbhZJASFWKUmUyi+2RsFGTL/c1ncwRahucInAu2bZcdgec0jZQi4y/YxDLi+8z4NPTA/E8AXQ1JksoVwu1ikcwLL1atVxWZza1RbMMVKAeUWjRb3D+2x0ZJjo+hVDgCvdBgDw8PDw+Pa2NJhcCnn36ahx56iBdeeIHHH3+cUqnEW9/6VjKZDADDw8MMDw/zR3/0Rxw9epQvf/nLPPbYY3zkIx95zX0/8MADjIyMlP/+8R//caE/zrJj2HJHe/vyfeyTz9CaHSo/l/Epyyo8dLZgSFGB9cMWE4Fp0qbjApwWosVseLBhFWmQlr7IyXJlajrLtJrkQLDIWVNHc/rG6UgHliUGyMvpt19pKIvlCDQXxhE48eok9arIDziRcgW6kToJCQl/aP5Dg2NBndnaI1NXCQ2WdR0sizXnMtx1ErBtTkUbyusjygQA8XFXCPSvi1HsTVIazpA9NI69AL/JSsUaOYssCffkaaUWqM4ZulyFQDkUQmtrA8DqvVAOwc/IFRNAmSlizUFe/6FNTFwQeQRHSxavZE0yx6cWvc1LipMfsF9zHZNtmpteQ/P5iP/zP5cfx37m/YvXtjlQzhNYKqHJQuyT7QrHl9Nr9RyBc8POm9glA1Ua5ISu4bOrC4VkdA09ELjyDhaIWSEQIP3005es394WxTbc6JBXiz0UbdF32RKdIDXS54UGe3h4eHh4XAdLKgQ+9thjPPjgg2zbto1du3bx5S9/mf7+fg4cOADA9u3b+da3vsVP//RPs27dOt74xjfye7/3e3z3u9/FMK7eCfT5fLS0tJT/amtrF+MjLRtsw2JUEgNm2Za42xR5YZIp93vIaG4lweVA4NZ92Gs6kW3YfgFmgiMkZvMEZiYgnyCws4EEU6iyTldwM/YC5lBbyYyNZxjTBgDYMAy+okROr2Wydiu2KQbInhB4/ch6ZSGNhRMCF+r47j04Rr0mhIPTaXeQlXEcQr7Q/DsCFVmiLii+t6mrhAYDaB1C5NcNiGXgZIVzKaqIBPFTQ64zXK3z41sfA8CcylM4f3MWi7gsI4fLi32q+B57nFQBks+Hb+3aJWnWtaBvEHkC7XSGeqdeSK6y15IR97ju7fXc/s611LWFSFjQX7I5cDaBkbh50kdYk8IR2FcxSdEZakG2LML5Iv5snuyLwnGl9/SUHfjLjdnQYADNcML/rYqJF8ct7eUInBtm0q0YvD/gxwDWjrrfdcan4VtkRyBA6I7byzkr008/fckkzn0bG2nwN5YfJ7U8Z3L3AKArJjXnvoWkykh+J6+uJwR6eHh4eHhcE8sqR+BsyG9dXd1Vt4lGo6iVVTsvw1NPPUVTUxObNm3i4x//OFNTV3YHFAoFkslk1d9Kx0gVGfML51e9FcbvhNPkihHSjeuJh1tJ6waaf/mEBgU2b0YeHke1RJGAqcAocaPN3WDqHHp7GF3yI0syLYEe8mMr/7daCCans0zqYmC4eVD89oHiDLlQM7YpQie9HIHXj1IVGsy8FyaQZouFLMBg10wVKU1ewC+LHGrTKVcQNiQ/SNKCTRDMhgdfrVgIgN7RWV5+vbKFlO46FGeFwJnR6hxwoVtbysvZl0fxEMiTR8rLGfx0TnaTioXw795F8LbbqitgLzMqC4asnXaq3soV4nhWXMskSWLf23rY97YebECRIBDSGPxe72I2d0kpjJ8Bqh2BPVKYO84Oc/u5IcJHjiOHwyj19cR+5v1I0vJMrTEbGgyglkR0SNZwz21bWfiK6qsRM1FEo5+CtY3j/iimBLG023/K+jS0JXAEysEgwbvuEikherop9lafs7s6Y4zNuPeojC/OSPQdZK0wM3Y9a1JPwuGvl8ODzdeYZPLw8PDw8PAQLBsh0LIsfu3Xfo27776b7du3X3abyclJ/vt//+987GMfu+q+HnjgAb761a/yxBNP8Ad/8Ac8/fTT/NRP/dQVZ5A/97nPUVNTU/7r7Oy87HYriemZCVKS6EQ3l2bDDEEaShKeOItu5DEUC20ZOQIlXSewcycAzXHAHCZeMQBg6hySJDHpdwf5mZfHFreRK4TETJ4xXTgCNw9UFAqJrcW2hODu5Qi8fhS94ruz7XmvHCwtoCMwc2AMn3Sh/NgXd9uuGiF8geCCVZGtdwqG5Eom2eKVXd1aR0d5eerccfYXJ8qPI4o4rpNTxSr3SGBbPXJQiCD5vuRN5Qa7GnLyOACTssyZmhGw+9jUmyH/ymHUq0y6LQd86yqEwCnx25bkiuMmU50PcsO+Zm55UyemDSdnigzsH8OYzi9KW5ca2UmfcU4Vri7JtmmbKRLNF/AZFoHjJ7HSaWI/+7PUffjDS9nUq1IODQaUknAERki5GzjXJtMLDZ4TZrKAJp9Fko9xThV94e4JdzJwqRyBAKFbbyV/9CjZF14k+/L+qnVNUT9rat0Qd6mtyKnBTp5JfIxaaQoZC44+jE8T1zk7b2IbXqSIh4eHh4fHa7FshMCHHnqIo0eP8vWvf/2y65PJJG9/+9vZunUr//W//ter7uuDH/wg73znO9mxYwfvfve7efTRR3n55Zd56qmnLrv9Zz7zGRKJRPlvYGDgBj/N0nNm8hSSDR2FZm7NigFxflpHskUHaSYsHDbLLTw0sHdPeXn9SIFjSkXlYGegEw9NYTmfo/DqNLbp5QO7mFSiwJg+jlayy4UBMsFm1LoQ4BQLWWa//UpCqQgNlmx79iudN+RZ14ttzWu+O9u2yb48Slg5T94KMVBqp2laDAqnwxKKpS1IWPAs9SF34Hm18ODZ0GAQkwIjhisERKReLDOOUYDUlCvySKpM9E1d6N1RrHiB5OMXuOmxbZTcSQBe8gnRr6lC+K0UXJcjvg2uENjp1P6w5IrQv8ylhWGa18XKyyXTJv7ouYVq3vIhn8RXEFEPs+HfbdMyNf/zrymoCkVFxrhlF2pzM0okglQRPrzcqAwNVgrC9SvZlaHB4v9CuKVXM2aiiC6f44yuYThu0K5xKGgRZkIhJ0fg0giBwYp+X+7ggUvW37PGvQ5MBeKAxLnCXRxJ302qpGP3PkU09d+REMKxFx7s4eHh4eHx2iwLIfATn/gEjz76KD/60Y/ouMzAJJVK8cADDxCJRHjkkUfQ5tiJXbt2LQ0NDZw9e/ay630+H9FotOpvpXNo+jC2BIO+MXoMoQTNjLv5Aaf8oqO03FxhswVDALb2RplUKtrnJEOXgjLD2bMkS9NIUYX86ZmLd3PTIxdMRrQk60dAdUSqYvtmInVuB9kLDb5+lIpwSsleuNBgmF9XoDGZQ20NE1BG8MsZRpQpwo5xbioiPtNCVAyeZdYRCFcvGKJX3AeaEjajuSksSdyuatRpZCUGwMi56lyAgV2NlEadcMIDYxQHUtzUJAaQLRH+94I+KwS6q5e9ELh2LVpXF4Hdu9Al55xTipQloOylQqAedM9N069iTOfJn13l9whnkswGhnRxLdo+FEaybQIlk776Gnj/e9nw9FPU/9KDS9fOa6AyNFgqiIJAklUx8TIrBL5GnmiPaoQj8BwnfOK7VA2b5pk8vlIK1SxhKfKSFAsBUbBIcvoj2QMHL1n/U1s2YttCvBwuTVDbEsRG4cfp32CyUINkFFDMCSLqNwEwPSHQw8PDw8PjNVlSIdC2bT7xiU/wyCOP8OSTT7JmzZpLtkkmk7z1rW9F13W+853v4L8O4WpwcJCpqSlaW1tfe+NVwivJV8vLtxbEwDg57s60zzj5VJabKyyweze2M1u9YSzOgL9Y7gAyJYRcVdc5nzpMVKvDGi6Q8fKBVVEwTEbHM4xoxXJ+QIARuZNgxHVQLaew8JVGpRCIZYu/eWTWEQjz63wp9qfIHpkgKovq4Rcy7vmf9olrwkI6AmdzBAJMZ64culspUDXGoWgVmY6J56KqK+qMnI1XvU4J60Tf0i0e2JA5NH7jjV7JjLr5AV9xkulXOgL1zuUtBMqhEHapRO6Vw2w65uYzG5Ode1lm4pLX+ALuuVnMGhijWeLfPY+9QBW4lwWTIj/guKJQkMXvu2nMnTBNhHzoy2zS70ooFY5AKesI+VbFpJXz+TxH4NywpkdRpUlOOG72zglQHLd5IiCeWypHYGVamNLgIKWx6pQve7sakCwRxZIxptl892xfXuKpqbdiy+JY98svA6bnCPTw8PDw8LgGllQIfOihh/j7v/97vva1rxGJRBgdHWV0dJRcTtj7Z0XATCbDl770JZLJZHmbynx/mzdv5pFHHgEgnU7zn//zf+aFF16gr6+PJ554gne9612sX7+e+++/f0k+52JjWAZH8icAqDd8hEshRlmPNS06R2YgRMYZ9C+3wYESjWKvFTkae8ZgWh+nr7CXaaMdKzkKto2q+xjN9ZJzwgXzJ6cwU16C6FmODiUJkWBMkdhUkR8w07iRYNQdTC83EXgloaoVoWoL4AiUK3L0zacjsDSepWBDjToCwFTSHfgVZXE8LKwj8NpCg5VIBKVGOIOaHeFqtEbkC/UrJXTEcXyxIxAgfGcrencUtTlI5vlhikPpS7a5WfjJ/oOUrGamrS4uBIS7qivunvfL3REIoHcLYTeQNQhnxbEwLDuu/cylRcD0CiHQdJaNsSzpF0YWuKVLhzl2nDE7xn65p/xcz4R73UgEfKjL7F5/JeSKiAwrlULzKUiVQqAijgEvR+DckGeOAXDSEQLXjFXkDg6I73ephECoTguTO1jtCpRliajWIB4oSaQeP6EaG8ucIa3czVTt7ZiBLmQpRUB+BivtCYEeHsuJ7JEJhn7neQY/+xwTXzry2i/w8PBYFJZUCPzCF75AIpHgvvvuo7W1tfz3jW98A4CDBw/y4osvcuTIEdavX1+1TWUev1OnTpUrDiuKwquvvso73/lONm7cyEc+8hH27t3LM888g+8mCYU8M3OGnC3E1N05jVopSW2iD7kkOkdGVzs4rrvlKAYFdt/CaAyOd4KeGkCRStSpQ8jpYchOofl82Nj0pp2biSUKIHgI9vdNE9JEXjBLgvF6mZyvls57t2E6ydeBZVUxeqWhXCQEzrcjsDI02LLmz/lijGUpWkkCshDR0yWZM60wFZUoLYYQGHrt0OB8yeQ/ffMw8VijeE0KFNNmJNaO3bSN8UKYWvkwANPDGfIXuT8kRSa4pwljTAhfN7NjWJvqRZPHOBscw3Iqx7clhTgmaRpqU9NSNu+a0Hu6y8utjhl0WHKqSBdTUKouBuKrCA2264XrWW0OYkzl5zXf5nIiP/AKzVKc7GwhLdumadyZKFMVipq6LO/1l6MyNNhKJdH8Clhu223HEehVDZ4bSuYkBnBKF/euTUPud5ooC4FLFyVQmRbmcuHBTb41GPkWjFwbp9OjSIqKrNQiKY0M2mtQcv2o0iSaPOSFBnt4LDOsooVdMMGwMGe8Qm4eHsuFJQ8Nvtzfgw8+CMB99913xW16enqq9jP7mkAgwA9+8APGx8cpFov09fXxl3/5lzQ3Ny/+B1wiDo0fKi/f4oQFp8dd0afY4YZIL7ccgQC1u/fSEoft/dA+M0ncaHNXTp1D1cVnOZ9yZ5Wyh8a9oiEOL/fNgO88TTOw75xN05RFOtTOlnvaKRUqQoNXyMBwOaJoFaHBtr2gjkBrPh2BYxmQhgGYUGTWDVhsGIH6pE3GEYYXLzT48kLgD46N8s8HBjlUEu4U2YaGJIyEYkjjx2jypWnX3MqSo5dxBQZ3NSJp4jvMvjKOVbw5RYNAVkyQHJoV/W2bWEJcA7T29gWrDj2f6N095eXWaXGejVAhWFyUJ1D3uyJ6ybbRu6MYY1kyzw9jTOZYddg26phIBXJOFeduYwL0nBhszbq9Vsr1vjI02Ewk0f1qVWiwVXYE3pzn9PVgGxaqcYpeTaPgnPPrRqXy+tQyEAIDu3eXJ6izlykY0hiMofpHUYNDHJ84R1O3EIwlSWVw0j22VWnYcwR6eCwzZF9Fnzbvubk9PJYLy38U4DFnKoXAfXkxEExM1JDxN5Jr3Uy2ubG8fjkODvwbN5aX22cynMZ1rViTZ8pCYMaIU+yx0Xucgd7Lqzf061qxLJsDF6ZJaoOsrQj9kdZsorknSqngzsQtx99+paBqlVWDgXkWoSWloljIPA14rYKJOVNAkUR+wBOaTqejoWRqA5hOXkJfMDwv73c5GiqKhUymLz8r/I2Xhdt7LFRXfq4pbjMScAWC9VG38NPAyelL9iH7VQI7xXXOzptkDt6cjuFIUeRIHFBUGnJtbMp0oxScQlErICwYLnIEOkLgaeqx2m6B+vWQrv5tZUVG84nzp5gz8G9xj6NiX5JVR2q0XDH4mBqiLtvEHb3u5FkiOCsErgwHeGVosJlMovsV7EohcDZHoFcs5JoxkkV09TxndI2OooE/1UGbU3E9F4xiKDKqz4dc4URfbJRolPCb3oh/61bMmTh2sXqiaHP9hvLyucQ5Wta65/XwRATbKSalSkNejkAPj+VGxXy2lTNWrTvfw2Ol4QmBqxAJidZSM0FTZ5MTNlWY1AjlJ/BPnCdb4w6ol2PBCH3d+vJy56TNKdUVJnJ9J6oGNPmmYnlwl/zXCzd9SMj5yTQz2RIJLcua0YqiAJs2I0kSRqUjcBm6QVcKakXlcskC5rlTsxCOQGNchMpqjiPwnOEj5GhxxZb68na+4MLliaoLuefu5RyBF6YyPH9OiBqjwUohEEZLaWjeDkCDPIxfmsYXsjj+zPBlxcDQbSKnoNLgJ/n9PgrnL3UOrnaillB6j/oCTAaGsROD5XVaR/tSNWtOVDoCW5zQ4LxsIw8fEgWkUpeGfs+GBxdyBr4eV1gqrEYhcESEyRvAiYDNdHCc2Izrkiw7AlfI9X42NyiAlUyi+VUky70mWbK4HnrFQq4da3ISw6jnlBZjUFdpzA+gOt9fKizOD98S5gecRfYHyB8/jjEyQqGvr2rd7pZN5eXhbB+NnRX9wlwYOyJyS6vSMOZV8s96eHgsPlURW6btuXY9PJYJnhC4ysgbeb7f931GtDG6i0FUoJSVISsuutK6LZRK7gV4uRULAVDCIfL1opPXOQmHfW4IS2n4NKruuooKoTzB3cL5Y2UNMvtv3nxg4IQFYzOtj7Gm4quou/MWAEr5ytDgleEQWY6oarUjcP5DgytyBM7TgLfkCIE+WQiBUyn3M8jNroNoIUODYwEN2TmdT44kKRrVIud3Dg+Xl0eDrjjZlLAZyYzAhrcCIoKs3f4LChkwShaPf+k4X/70s7zyw/7ya/SuCHUf2ow5U8AumMQfPYdlrOLKsReRzOaIEscCBjRxPG3MxMrr9ZXiCOxoB8chO+sInFIqrl3J4Utf4xQJKWYN9PYIKOKgK/atQjHYEQJP6RoFRRzfW0bd72e2IuxKcYDLPh+Sc4+fdQRaFTkCTWlWCPQcgdeKNXIGv3KM87oQyConCZNOKP1SFgqZxbfenQQunj1bte7Wti3l5XhpgIZOd0JbVpsohcXEhixlsVM3pwPcw2PZYlb3vYyZ/BU29PDwWEw8IXCVMZxxB0WdJXHhzU26A/7Anj3VeeKWoRAIYPaITl2wADNmEtMWnVU5fh61QsAyCgVqfmoNSq0PrTNM6smBmzr/xPmJNG9uLnBKg/Vj4vcvaGFab10H4P72klQOsfaYO5q20MVC5r9qcMkpnhFUxDWimHA/g9bgCoH+BQwNlmWJ33vPdm7pjDGaLPDg375EvuQKnY8eHmZnRw3b26PYTc0cr+3mTIuKXqJKCARYE+zDMvrwBVU6t9SSiRc5/MQAR58WrjdJkvBvrEVfU4OkyyBLzPzTqQX7bMuNieEBZMliTFEoOofThmKFG7yjc4laNjckXUdrF/eD1hnAtpmR3Hva5YTAWUegUbKwJNA7xOc2pvKrrsK8NfwKAIcq7uVROYR/1y4yjfXknXymK0UIBJBrhEtNCIEqWG7kwqwj0MsROAcmewE45xQKaZuUSYY6SNauZ0oV/aWlzA84i2/9uvJy4SIhMOILI5u1ABTlEfSAgh4QbZeUJrKqO3Ekp/sWvrEeHh7XzMU53M1pTwj08FgOeELgKmMw5YZ+dZqiUEh2wh00xe65/SJX2PIcHAQ2uPlg6rLDJExR7CVQGkCtqNhaKhRQanz4N9VRGkhjF0yyhycWvb3LhYP9cbTET8gUNEI54YLJ1/cQjonfeTZHoKb7kCTpivvxuDpKhRCIZc97oRpZmf+qwcZYBrCJyMPEZZnojPv7FyvSBSykIxBgV0ctx0ZEiGbEr/JdxwXYO5nh1FiaVwcTBHWVDVvXsHXmAhtGDbomYDo/Tb5lB/hjFKQQISWPlX6YW9+uEYiIa1x6psBIRfEQ2a/S8IvbQJEpDabJn5rBvklcgTNjFwDoqyhs055yl1dKjkBw8wQGihDLQEKuKNaTujQ37KwjEESewNUcHmw6QuB+n3B0SbZNY/8o+cOHkYvFcgGGlVQlfrZysOU4Ak07gOykXzAcR6BXNXgOzFwgJ0kMquK82DysEc0MEp05S9ovnltujsDCmbOXrA/L4polKXlOTQ1R0+hUQJc0RpNuX1bOXVjglnp4eMyJi/pdhicEengsCzwhcJUxlB4qL3cZItdWakI4fGwkIrfuoZQXlRMVTasSHJYTdVt2l5e7khOM26LSsSYVMOPx8jqjJNwds/nAADIv35zhwbZtc2YshRo+VhX6I69xi6/MOgKXqxN0paBUiNHyCnIESvYMmpzne6EgHZNum7MhdxDoCy6sELi1LcrXPno7dUGNHxwb43e+c4x0weDJk+Plbd64uYmdG9soOoJPTUa0dawwBbf9MrqdoyOUZH1kkvFzB7jzPeuQnfDPif5U1fvJmkxgk3CS2AVz1QlBVyIzKYqu9FeI1nUzFWkhVkiOQLi4cjBkKqsdJ4cu2d5XIQQWsgZ6pRB4Pr4QTVwaMpNo6WFsXEdgfdKH5IhkBZ8QyBVNW9JCEHNFiYiJCSubRdPBsHU0RwicDQ32HIHXjpTqp09TsR1RuH1KfHd2IERBXT6hwVpnJ5IT8VE4d+6S9Y2+rvLyy0PH6drmTmac73Pbr5iDN82Ej4fHSuDiyXJPCPTwWB54QuAqYyjlDoqai40M5jdTiovHxYYulEjEdYUtw0Ihs8S27Cgvd8WTnDNdoa80PFBeNpzPoreF0dqF4FkaTFMcTi9SS5cP46kCybzBaGisSggM73a/y1k3qJcf8MZQlApH4ELkCFTmN0eglS2BLKE1jfAvegd/VFtLp2OctZrryRuuQLTQQiDAvp46fmqHEPezRZNHDw/zo4uEwFu6a8mEhIATE+ZmRjOjsO6NSE4Jun1tKTKJGRRVpt45/2fGspQK1d+Zf7NbeCR/mcIiq5HSjHCHVzoC/UWJwJ5bCL/hDcgVRRmWOxdXDi7JBobiDPyTlzoCq4TAnIGvO4p/Uy1aR1i4Quf5fF0yRl5lLLSJ70ubmFbFZ9oy6Qq8KzEsGNzQYADdzlOy/cxecWcdgV7V4GtHyg1x1pkQCORtapxCTVJnV9kxuhxCgyVFQV+7FoDihQtYF1UO7o6sLS8fmzjD2t0tBIL92FaWqeJt5XV6cHzVpQDw8FjJXHzPNb0cgR4eywJPCFxlDKbd0OAeq4+61DnsaBAbCdaLiptFxxG4nMUg3zo3V0znpMUR3PwvSsIVAmdFTYDQrU6V0Dof+bPxhW/kMuP0WArkPGcCRaJZSDv9+sZ795S3KQuBy1gEXglUhgbLFjDPusJ8OwILF5KY03lm4i9R0GeoT9kEnXFSZNNWChlXOF/o0OBZPnir6+74hxf7ebFXOJjbYwE2NIVZ1xhmXBFtCeegRW9kKjcFXXdCvQgha5aGmT76Y0yj5FaRtGFysHoiwL+xFpxI6Pypm0MIlJzceRecYzWStVFPnCN38BBWKrWiUgPoPT0ATIegNmWjayVy/iax8nKhwcGK0OCsgRzUsC2b0mAaczq/elyBI6/QnDlF1HeB5rw4/renG8ur84q4jqw0B/hsaDCAbuYwbH/ZEWhI4r9XNfjaUUrD5fyAHW5BafQ17jV4OTgCoSI82DQp9vZVrdva4KaMOZ84R1N3lKY13UhykJTZiOXkklbyFzwh0MNjOXFxaPBM4Qobenh4LCZzEgKTySTWZQalpmmSTN4c4VbLndnQYMWWaDZM8tM6ctIpErBzG+CKZ/oyFoPkUIhUvWhf53SJQ6rrELAm3fwvRtG9mQR2NqDU+TGnC2ReGMG2V4nr4xo5PZamLvQKpiSxq9cmnIOSP0rdTiGqWpZZDqVeziLwSkBWXKFBspn3MKT5rhpcdMJh90eO8t8b62mZcted7D3D8Bm3iMZiOAIBtrdH2doqzusjQwlKTujIGzc3iUIfmkIuLAQBGchPjzOQGhAOlj0fLu9nW2SEmeEhGrvcPIeXhAcHNfRu8V7GRA5jKreQH21ZEMiIypn9jits04QrXvu3bV2SNl0vvrVrkQIB6jKwfhRKdpaUzxECi2nIV/c/fAH3sxZywjk2O1EEkHl5lVQVdSoGH/HrjPmF+N1Rcu/rWSdcfqU5AmdDgwE0M0vJ9lUIgRYSslc1+BqxLRPFGuGcMyHQWZESgrbW8qJvGTgCoXoSuHD2TNW6PS2by8ujTh7At/7yXWANgaQRdyJHVGmEx/6/P+KRP/xd9j/6yCK02sPD42pcUiwknp/33NoeHh5z55qFwEceeYR9+/aRz19q583n89x6661897vfndfGecwN27bLxUJaSioqUHSSw0vY1O3dgm3bbp64ZS4GTe7q4lgnjNTCdMGm39zHSHEjwUIvIISSSiFQCWqoteIzmdN5jInVP9iv5MxYigb9HLenczQmxA3WjtShOGGmRoV7cqUNDJcbslpRrMAGc56FwHl3BPYlAYMTAeGG65ywmayrIdPazIRsE4qJHHodW7YvWt5QSZL4N3d0cf+2Zh7YJooBbWwOc/82V7AxamrLyzUZmMw5dpZdP0dOb2IgE6U9mGBqsJ+GSiFwoFoIBPBvqUPviqB3Ryn0JS5Zv9qoKY5TgnKBgN0z7mSKf+vKEgLVlpZyCGPHpI2kFIgrDe4GF1UO1gPuMVx0hMDA1nrkkPguckcnMTMlVjq2IwROyK7w2Yz72TOOe26lXe8rQ4PVUg7D9qE5Y8aiZKHJOpZp3nSTfdeDNTaIJBmcdRyBXePuvcVsdt2jy8YRuKGiYMhFlYM3NNVTSm3CyKyhaIg+r+730blF9PtGi5uIl7ZSsDbjK2aYuNDL6Ree4/Dj31/Uz+Dh4VHNJaKfBWbCcwV6eCw11ywEfuELX+BTn/oUweClnYVQKMRv/uZv8md/9mfz2jiPuZEsJkmXhCugzREmiil3UBDbuUkIZ07nebmHh6o1MbYNwLpRaE7GialDtOqn6dBfxaeJgUJlaDDcnLnAZjkznqYUHqC/4Eexnbw/nW7oT+V3tdJCxZYdFWKZbIFdmmdHYFXV4Bvbt12yKA6m0KTzHHYqRG7rh4bpBKGRMYymBmItrYTr6lm37/Ybeq+58m9u7+YvfmEf+3rqaIn6+cC+Tl63wRV4lHo3JUAsY7tCYLgJO9JGZyhJRzBJ5txLNLSHkeTLFwwB8K2podifonghSeHs6hYCTcumzpxiWFUxHQFt/Zh7u19pQqAkSeWQweY4+Mwsk5J7rSdVLQT6ghWOwKwQAiVVJniLEJyViE7u2CQrmlwcaaYXgBHZFcGzx4+VlwuOC2wlVQwGUCKOEOjzIeeSFzkCbTRZfJ75KqS0mrFGzpGRwJAkJBt6KpzBRr17Di2HHIFQERqs6xiTU1XragIamiKhhnrJymcYywpn7y33v9nZQiamHcevvEpDKEBqcoKRMyc589Lzi/gJPDw8LsGsvlZLAcUrGOLhsQy4ZiHw6NGj3HfffVdcf++993LkyJH5aJPHdVKZH7DTEBfYfEpUDbR8IZRYrJwjDpa/I1De5IaIrIuP0uu/AwBFMukJC1HLuCiZ9M0qBNq2zemxFDk9Seu0O/NWs8PNqVP923tC4I0gVQh1kg3mPCeur3QEWtaNhQYXh1Jg2iTVQ/TpGpJts8mpKVTSND781W/ynk/9F37lC19h3zvec0Pvdb189J61vPBbb+Kj96ytet7X5DpWajIwkZtwV258q7vd4DOoukJti5iomhnOYF4kzuptYVDF97raHYHjyRx10jQXKgqFtAyJFBGS34++Zs1SNe26KQsEQMdMlhEqhMCLCoZUFwtxnX+hW5vRWoKY8QLp54ZXtqNs1O1vTcjuvVxLuWHStVu3ccf7Psj7PvO7i9q0G0Xv6UaORKBQQElPixyBTiLWkmSjyaJfY3rhwa+JPXqO4z4fo6qKbsnlavFyNEqx4vqwXByBans7Wns7lErkXzlUtU6SJJr8buGgk1MidNgfEeJmznIF8Q3b3DDi0mUimTw8PBaPSkegpMvYOfOmSNHi4bHcuWYhcGZmBuMqg91SqcTMzMy8NMrj+pgNCwboNDJYJphZ8RNLrZ1IklQOC4bl7wj0b9tWXl43PcnR8B3lx2vDYia4MjQYQG0IoNQLkavQl8TK3xwDhbFkgXQpTka1aK04DYOb3cFz1W+/zEXgZU+lEGiBbcxvmGGlI/BGXS8FJz/gsaAQDtqmIJR3Eu6v7VnWRSPCLU3l5arQYMC/5/3l5brMcQDaN8ZoXVdDy7oapkczVfuSVBm9UwwUzZkCxioOS5mamsAnFYjLMjszKlsyawiOiePAv2kTUmVo+wqhUgjsnCkwZLhh45eEBl9ULGQWrTmE5BPrjLEspYuKyqwonLBggGmnKIhu+PE71yJTllBiNfiCIVRdX5ImXi9qYyNWSrh67ZFBTLRyaHBJAlUS9y/L8AqGvBb2dB8HHUeoUjKJZkU/wLdhA4W8OxBfLo5AWVWRAn6wbYoX+i+5/9VqneXlAyMnAQiExfGdt9yQclJT5aJelX0fDw+PJaBCCLSL4pw2Jj0h0MNjqbnm0UBPTw/79+9n8+bNl12/f/9+uru7L7tupfI3//FX6N60hfHeczStEe602eUr/Z+Pbfa+/d3X5cyZLRQC0G4YlNLuz+tf1wNAsWJmVF/m4aG1azaS9kM4D+um4vyjfwcfsHxocoHuwHlg5yWhwZIkEdhUR/r5YSRNJnNwjMhd7UvzARaR3sk0/qBwS1U6An1resrL1ULg8v7tlzsXOwKt0vwKznKlI/AGi4UY41mQipwIjAMqmwfc4yN6xx1XfuEyoK7TzRcYy9hMZCewbRtJkpAbN5G0IkTlFM3KOGZ6ikhdgCNPievg9FCaxs5I1f58PVGKvcINWOxLou5qZDWSGh/AtBX6dI1XQwZbL5wrr1tphUJmqcwd1jVVorc17K68ODS40hFYMRk0PZJhsjGAvzdO0ZYIvTxaFodXHBVCYFIV4l/IiBCWk9iAv6OT9/zm7yxR424MvaIvaY0MQFRCddJdmBKoTk5Er2DIayMl+jnkTPx1TNoYsoZqlfCtX0+pSghcHo5AAL27h+LZc9jFIsbIiHAIOmyIreeUEzF8YvI0AAHHEZi3K4TA7CSaz49ZKnlCoIfHEmObl05oe0Kgh8fSc82OwPe+97389m//NmNjl1bbGx0d5bOf/Szve9/75rVxS01mZppiNkt6eopiNlu1fKX/N7LNwLEjpKen+Mk/f+262juUcoXAjpJRLhQCENkiBlErKTy0PtBAb7Po/NdlSySm4oxKtwAQUpI0+7OXOAIBgrc249tUi10wSf94CKu4+l0DZycy+NQ+AFoqHIFaxYCqlPdyBM4bF+cInPfQ4PlxBNqWTe74NBHt2xwJiPNg86ArBDbf/8D1N3IRaOluKy/XZKBoFUkW3dDHqcAWAGQJcj/+c+ra3IrH0yPVjkAQQuAsqzk8uBgfQsZkTBLn+ZqK2/ZKyw84S2U10Y4JOFusuIZdFBqsBy51BNq2zdNfO8mPfjjI95Mmh3Mm2VcmsAor9P7gCIFJVAqqSJFRlwlip8VxrzU1XfGlyx0lGkWpE6HfxsAAQFkIBJAVJ+XJPFRUX+1YmX4OO47ADcN+VKuE0tJKYNdOCtlsebvl4ggEERo+S6Gvr2rdzuaN5eULqfMAKKqMHlCrQoPJTZf7uF5osIfH0lJVLEQV13JPCPTwWHquWQj89Kc/TSQSYcOGDfz7f//v+dM//VP+9E//lI9//ONs3LiRcDjMpz/96YVs66ITqq1DDwYJ19WjB4NVy1f6fyPbzGJep7soa2TZ07SHTfkoHUa1EKj39AAXCYHLPDS43l9Pr2sIYnt2lETt65ksdTNU2EpXqHBJjkAArSWEk04IM14g9fTgJdusNkbiOcK+CwC0OY5AyR9GrXXD54oF96a73EXg5Y4kSczKc8IReOlxeCPI85Qj0BjPIudHKKrfJCNL7MkV2H5BiIyWohDcvv2G27qQNF8kBEJ1eHC+/W7GciFmCn6C+/+MxoKbFH56+FIhUO+OgqMnFPuSl6xfLZjJUSQJEpo4SgMFG23fLfg2bMC3adMSt+76UFtbKTrFbjonbXoLMrbkCOZXcQT2xP8WvvVRin9yBxNnR8vPT5s2UnOA3JEJVhzFDIQaOCRt5hlcYbct4X5utbl5KVo2b8z2WcyJcVQzj2K518TZqu3znZt1NXJWkkk795ONQ8L1Z46OoPesoZirFAKXkyPQFQKLFy5UrdvU3IBVjAEwWRgo5/kMRLSq0GDZThDwCWHQcwR6eCwxFY5AtVaMP4zpPLa1gvP0enisAq45NDgSifDcc8/xmc98hm984xvlfICxWIyf//mf5/d+7/eIRFZoiM0V+Ld/8hdEo9HX3nCe+Opv/ioTfecpq1hzwLZtnh16lnghTq2qELMsRisqBpeFwBWUJ05TNEbbg4AY0OeOHcf+hQ/QEP8DAJRoI6+MXBr2K0kSsXesZex/HQTLJn9qmuDeJrS65S183gjD8RyabxytZNPg6BtKfSv7H32EgeNHGO89RyBaU95+uf/2KwFLFm5A2Zr/XFXzlSOw0JfEJx/mkbCf87pO04xFNCv2J61bi7TMc4dpsRpKsopmGdRkxXVxIjfBuphwh6lb7ufET77Nfc29YMHA9/4XqvSrGHaEviN97H/0fFWaBdmvorWEKI1kKE3nsbIl5IoKs6sFKS0Eryknd9y2fij1i8T7K7FQCIjrerItSsP5aZoSIBkp7LpmpNQwJKonexRNRtVkjJLJluJX4IiFD1jvf5YTubcAYNkwfD6JKkmE9rVc5h2XMaNH4cJz3AK8Kt8FxAFoTrrXDbVlhQuB3d3kDh4EIGLNoNiuECgpoutq32AhpVVPLs4R+TQ4hXXWjjnuWOAfvvg/MSryw/qWkxDo9FcBihc5Atc2hLCKzch6HIMco5lRWsOtBMI6uSm3v65IScK+tYwjoiFmU0p4eHgsPpWOQLXejzGRA9PGnMmj1q/esZmHx3Lnmh2BADU1NXz+859ncnKSsbExRkdHmZqa4vOf/zy1Fc4jj+tDqZjlnms1w9HMKPFCHIAtRRsJLnIEihnWypwwy90RCJBY01Be7pwaoG7zRmYQlUVb/BPoRuqy35XWFCRyXztaZ4TSYJrk93oXrc1LwXA8T1ZPVoUFZ1B58dvfpJDNkJ6eQndcgLvvfztb7nnDErV09TBrUJFsCXuec1VJ85QjsNgbJ6r9DQ9HxCDv9lOgmRZxv07Dz/7sDbdzoZEkiVxIDO5ijsFvIus6uDq2bGf9x7/EjH8DOUNlnXmIXf5/AsC2wzz7j1+75PsL7GpEbQxAwaRwfnWGB6uZcQCmHEG5KSUGwHI0ihIOX/F1y51sh+uc70qNkFnzANR0QnYKUtVpS/SAik9KIUuukL636Wm6d7j7GCvZFPtTlMYudY8uayryAw7h3iMbM+69UFsljkCASHECtUIIlJXZvpInBF4Ne+wEzwTFfV8xbRriYpawEA2TTMSJNQkBfNdb3kawJrZUzbwEvbunvHyxIzAW1NHM1vLjcwmR/zQQ0chVOgJJEtTF5KdtW5il+S3o5eHhce1UC4Hu2NOY8ty6Hh5LyZyEwFkkSaKxsZGmpiZvhm0eUSoqOc518H98+nh5eWPeR7y0kVzKCf+sqS0P/iqLa2j+5e8Ks9tbGKyDU22AZRBtC3E+c0t5fU9o6ooJwyP3dmLOiJtM7ugU+bPxRWjx0jCQnCCrGrTOuDfbnOajmM3gC4YI19XjC4cJ19VT09RCILJ4TtfViuVc+kRo8DxXDa4QAm/EEWj0HuOVQIF+XQHb5v5D4hoTyxeJve51N9zOxaAUjQEQzYJk2VWhwYFwhI6dexlc90sEVAMVkyZfH+CEb9sR8ulU1f601pCYjQZyJ6cX5TMsNsH8BDYwJStItk1tUhxDWmvr1V+4zCmsaaG3CY51QnN2iix+SIgccgy8ULWtL6gSUSarnqspHOP+n5aQnRxFYyUL27bJvHxp7uNlTYUQOCW5kRj12Yrwq6YVLgRWhIfWqXFkuyIvq+JUPfeKhVwR27b50itf5plAgB35AruG/Ci2OD4KjfWE6+rxRyKE6+qJtbRWudCXGrWpESkoJq8udgQCNPrdY+Pk5BkAAhGdoh3EcgRjWUoSVNxzwwsP9vBYQoyKe1NjhRA4kb3c1h4eHovENYcGT05O8tu//dskEgk++9nPsn2Z55ZaiVQJgYZR9fi1ODF1ory8s9RPxMozkheDPq2rIt9KZZW4FeAIrA81kArClkGAE2RnZkjE7oHStwC4vWEAY+gwyqt/B3f9KtS7CeVlv0rNAz3M/LPoKOaOTeBbV7PqxGvTspks9OIHWit0jazPhy8o8Z5P/Zcla9tqZtYRKFssgCPQHZRdryPQiBdQM6+wv1EI/psHoSkuchkaa3uqBtrLmto6GDqPbEMkJ0KDL2bH+z4OZ34fimnaa6ZnIyWRlHpyqWSV28W/tgZJk7FLFvlT09iWjSSvrmtCtDhJWpIoyhKxtI3qHEIrXQi021tYI8yOHI2NMxa7l7Lc1f8CbH1XeVvNrxBSLj1WtOHnad94BwPHp8nZcKFosf7MDFbJRNaWjxhyVRwh0LBl4rI7oRfLu9cKtXnlFgsB0Csq3suTQyiWAogJF1kRg0qvWMiVSZfSPBp/BSSJEz6d/3p0C7AfgA3v/yB3/NKDS9m8qyJJEnp3N4UTJygNDmGXSkiam8KhJ7KWcSct76Fx0fcNhDVAIm9FCSpxZCmJX3aLR5UKeW8C1MNjiajMBag2umkIPEegh8fScs2OwAcffJDm5mbe85738La3vW3Ooaser42iuh2duSbBPjHtCoFbikXycQ1bgmSoneh995TXVecIXP4FI0TBEHeQnjp6DH39neQt0cGr1XPof/9OOPBl+Os3wXR1CHBwTzN6dwS1KUDmhVGMsdU3+zSeyqNrI0RNi7Vxg0IY5Gg7aU3xqgMvIJVCIPM8IJWVG3cEFi8k8MnH+UEoSFexyNsOuBMLNe9//w23cbEItriCRk0GJrOTl24ky9CyEwBfYRifJELgZKWNXLK6KIikKfjWxQCwUiVKw+mFafgSEjOmy2HBDRXRz1rbyhYCA2vciZ62VJwLwYoJyf6fVG9sQ7jSERhuhto1cOwRbnlrF7ve1AnA4ZxF/2Ca/IkV4g4t5WFC3O/P2u3kVPeeHjJB6+jAt3nziq4aDKB3dZWX/elxlApHoKI6QqBXLOSKfOKJT5A18/gsi4/FE0Sn3O9qJVQOL09UmSbFweocoFsbNmCk12MVY5x2+r6BiMh3O1s5WCbJeEWERClfwMPDY2kohwZL1Y7Aklc52MNjSblmIfDgwYP87M/+LB/4wAcYHR1lYmIFVtpb5shVQuDcQg1nHYEhS6PdMMlN6kg2RDND6C1uIvTqqsHLXySqD9TT2+wKgYXjx2ndUEd/YS8pw8n1VHLEvZpO+Nu3wdc+CH+0Cf727UhPf47AzkaM8RzYqzMUcDieo9Z3gaQio6cUfGmwkkNkVGtFiL0rldnQYNme/xC1KkfgdQqBpYkcsn6SXk1jWNbQSjLpYAslVaH9Q/9mvpq64ETb3BDHWMa+rCMQgNZd5cVGTUwIKL4dHH9umuPPVVeV9W+uKy/nV+E1IWrPMKk6QmCyYiZ+hTsC1fY2TOe8a08mGSsFoMkRNUZehYIr6jZ0hKkNVP62Nsz0wvgJOjfVUsiJczYkQ8qw+Ye/OMrf/fbz5NPLPJfY+HGwRNuP2T3kNDf0PZLJURocpHDyJGpj41K1cF6QAwFUp++ix0eQ7YqICVnYwUzPEXhZTMvkxPQJRlSLOtPil6Ytgin3uunfsnkJW3dtzOa1hkvzBG5sqkdScsh6nNH8BRKFBIGI6D/nbeH6k6UCwYohjhca7OGxBBhFeOmvCKX+lrDyCMgSSkRH8on+ieEJgR4eS8o1C4Hvfve7+cxnPsN/+A//gZ07d9K0wmeblyOVocBzcQRO5ibLg+MNRR0JyE661UCDe/eUl1eaI7Ah0MD5CkegceokLetqeCLxCb46+dc8NfMzxH/qr+Du/wAb3gqpYcjHIT0KF56FZ/+EQItriVmNg/6heB4pIGbM61Ozs24yKbnkVQdeQMrFQiyw571qcEWxkOusjFk8cppReQxTklgzCnvP5ghnR4m96U0oK2ASYJbadncioyZDVY7AKiqEwCZdJJCXJJkzBwye/aczVaEp/s1ucavssclV5XA3sgl8Up4pJ89kQ4UhUmttW6JWzQ81oTrGYmK5NZlmJlOAztvFE7YJQ/vL277hF7awY3fF71orikxRSEBmkjf+wmZuf+ca7m4PMW3YFE2b5FSeF797fnE+zPVSkR/wqNlDRnPFTy0jBlVKLLbsK4JfC7OuMDmXwp9zr4khXxgJGdsTAi/LhdQFcoY4FrYVi0wWOginRR5MrasLJbr8Q2QrC4YUzlefk2saQpi52fU2hycOEwjPOgKjWIjKyLWKe3xUFsrz8PBYJPJJ+N5/Ipz/MlH175EUGUmSUBuEK9CcyWMb158H28PD48a4ZiHwz/7sz/jgBz/Ipk2beOKJJxayTTctF+cIvFYq8wNuyRexLcg5QqAZrEGryAW24hyB/nqGGqDofDXS2dOEanwoPjHAO5r/AJnoDnjL70KgFiJt4I+B7lTGNIuoL/63shW92J/Eyi5zx8ccuTAdJ+GPA9DgmEMkfw05K70ixN6Viu3kmlQssOfo4H0tKqsG2+bcO0lW3kCe3E+/c03ZPOgKIpG7777xBi4ielcnA63rGI4p1KZtxrNXcgTuLC+ub71AKfsUtpMcv1QwSUy4A0E15if0una0jjDGSJb88dUzQZCaHALcisGVjsCVHhoc88UYrRPnXcCwyI2OQ9ed7gb91QVDSFSEFDZXhENOn0OSJPa9bQ3Nd7USq0jHe+zHQ0wOVheYWVaMvlpeNGu3lR2BuqEjJYTqu9LdgLME99yCf/s2rLpmYhVhniglYnoTplcs5LJU9QkLReKjtUiWSWDPHmIrJC2Ef/MmgnfcgdbZSeH4iap1axtD7Gt2J7gPjB4kENX4ztb/w89vHGFfTydHfBpROYeEuF5UFsrz8PBYJEz3vJMokCjm+d3vHkNrDYm/lhBmuriEDfTwuLm55moUsizzoQ99aCHbctMjVzkCr11YGMuMsb1+O4PpQbYVBikkVaySEBKstduqimNUCoErolhIoB5LlrjQCBtGQBsewEynqWmEycEcspThX/74Mdo2xAAY772NJnMd04MKH2p+CswCM2fPMpp4mCbtp8CCRz/9+5gdEuO952has+6S/2I/l1+30NvUtnUw2d/Hpjtfx30f/mhV3sgrcXriJLYEqmETntU6/FFM21gRYu9KpapqsDW/A1L5BkODixeSqAxyTm0FzCohMLh373w0cdFQ6+vpHBEOv+a4RNbIkC1lCWrB6g0bNoHqByNPLb2YBRukEFrgVgAmBlLEmt3X+LqjZJ4Voln8/57Hv7EWSbvmubFlS2ZqgFoqhUB33UovFlLjq2HENXMiDfbDu+4FWYeGDZCsDgEvC4HhZmjY6D4/dRa67gAgtLeZLf96AS0ic2yyQFN3lNMvj9HQEWHZYRThwk+YCa1FTw/x4lgTuTohBDalg2CINBmrRQiUI1HyR48hAzWJhvLzplSg0d/hFQu5AvtHjpSXtxSLGH05fLZN7uBB6j/6kSVs2bWjr1tH7tAh7MsIeEFdRSutLT9+qv8lPrb+48wExsgpFiBxVPfxFiVPWKslVZr2QoM9PJYCwz3vJAmQxjg7HoKaWkojGQDsgncd9/BYKlb+qGcVcb2hwa9MvMLRqaPEC3E2GimyE25I0Jii8Bcf/0Ue+cPf5S8+/osMnDhaXrcS3GL1fpEHsLJgSOHkSfY+cAsQwKYBo9hEMZulmM2Snp6imM0Sn0pw3N6NTyrRZp0lwmPl1zfZHVXbXvz/ausWepuJC73kkgle+cH/vaTIwZUYnToFQG1FzQPTJ4qpqCvgN16pzIYGKxZY8+wIlCscgdcz2C30JQkoLzCkx5Fsm02zQmA4ir527dVfvMzQOjrKy01x8f+y4cGKCs3bAFBTA/jlIrbpOsImB6pdXoHt9fjW1gBgTueZebg6fHilkhocAC7jCFSUFS8Q1fhqGKlz7wX66BDEuiDaAuPH4Mg/w6xLzChCatR5YQfUuYVGmDpXXlSiPqJv7mZNySQiw1hfklceHyCTWIYOohe/CBMnqM2c56+Mt1Nn+yioYvanJe7e91f67zyL3tNTXq5JuBMihpSnwd8x77lZVwsvD7tC4Ka4gT4uXNRqYyPhe+9dqmbNCVnXCezYAUBpYIDS2HjV+g/fvgOr6PQPUyeQ/BZFxXV9H/L7kElSq4scs5WT4B4eHouEUX0f1aQhErkSsu5OdttFLzTYw2Op8ITAZYRyncVChtJD5eXOkkGuQghM1dZUCU2ROjGrvv7WO9ADy98RWBcQSf0rhcD88eO0bazFifhADaxHDwbRg0HCdfXl/0OBPRhOgvGeUB/TWh8ZJUVbcD1RX0PVtpX/L/fcYm1zPWJwoiQKI9RV6BwlXQiAXo7AhcOucAReb2XfKyEpFZ2k63EEnh9Fk85zQdNom4KoMz7Sd+yucgivBJTaWnCuVU0zKn6aGUgNXH7jHT8Da+/D1iOsCc9gGe7gcaK/WgiUJInYO9ehtodQm4NkD40z/fWTKz5fYLFfJNafcvJMzlYNVpubkNRrDgJYlmiyxkyjO7kRGh8WNoP2feKJUgbGHBEkNYzIFIYQAusrhcCzVfsN3tKEoim0Oo5Q27I5+ZORhfoYc8MyoZQToubTfyCesiUet/bR4XfFjcaEe16rTatFCHTTmkQT7v3QkAo0+NqxSp4QeDG2bTOUOQ1Ag2EzfnIXknNNq3nPe1bUNSBQ4V7PHTpYte7eDY3ojivQxuBf+57DVNzj4aDfhyQlqPWJHLOeI9DDYwkwqs87TRoWec19FVEvniPQw2PJWNIewec+9zkefvhhTp48SSAQ4K677uIP/uAP2LRpU3mbfD7Pb/zGb/D1r3+dQqHA/fffz+c//3mam5uvuF/btvmd3/kd/uqv/op4PM7dd9/NF77wBTZs2LAYH+u6ka/TETgrBIZtnbBtk5DA9AegaGJ11BKWXKEpXF9PNhmnffM25AqxYbniU3zEtAbO1ecxpDj5hjbqhoapi+o0dUcZ70sCdbz5o58iUncZ99t3U3Dgb9Fkkw3rJ5g62gMS7Gu8nwc+/RvLThT5/p//Mcd//CRw7WJwVu0HoD7lCkZ5TRxLK8H1uVKxZAmwRdXgOZyv10KVI3COxUJsw4Lh/UiKxQVNZVtFWHD4tpUVFgxCsNM7OiieOUNjqkTBGuV7Jw9z/FwL46kCm1uivG+v4xps3QWPfRoJ2B6TOZFsRpLy2Lafif40tm1XnfNaS4iat/Yw9eVjs29G6ulBovd1Lv4HnSfkaSFgTSsKeskui8ArvVDILLnWWkCEwMamHcdf151w7GGx3P8CtN1SnR+wphNi3SCrouLudHXxAbXOT+Tedroe7+d0QVxHjz83wp77u5f2HlFIw7c+ItrduKVcLfjr5hs4ZvdwlxanNttCQc3SnKkQAleLI7CjA2QZLItI0r0flqQ8ATVMJukNIC/mXLwfQxKD723FPEoxR1b3ESwWiL3/fUvcurkR3LuHKWc5e+Ag0QceKK9TFZnb2vbw3MxBfHYr3z35YtVrx1WVCW2CWl0UkfJyBHp4LD5GIVclNBjmEIVkEVNx71d20buOr1Zyp6bBsgEJ37oaZF2hNJWjNJRGDmqotT7U+uVvSlrNLKkj8Omnn+ahhx7ihRde4PHHH6dUKvHWt76VTCZT3uY//sf/yHe/+12++c1v8vTTTzM8PMx73/veq+73D//wD/nf//t/88UvfpEXX3yRUCjE/fffT36ZhwaomusIvFZhoWSWGMuKanBNhoJtQbI/gJLPkQk28d7f+gy/8oWv8J5P/Zeq//ve8Z4F+QwLgV8N0N+aJOuH8MQwqR/9CICeHfXlbS4cnbr8i/d82N1P/jGUmHDIFc7GKfZfW+jtYqJUHANm6bWFwKl0hlRADPzXx10hMKeKU1v3cgQuGLM5AhUL7HnOEXgjjsDiUBqffZS8JDGqqmweqCgUcvut89bGxUTvFMKcZkJdGh45dpC/eqaXv3qml09961USswWAuu6E+vViMZQgpuWQnKFkPlMiPXPpYDCwqY66D29FifnIHZ4g+a8XKI1nF+eDLQA+p4L8lKJQv4ryA85iN9VRdE6PxsSYcHA6+f4A6P+J+F8lBHaI0PHaHvF4+jxcdF5F7uukfmsdjao4sZMTOQ4/cQXn6WJgGvDyX8Hpx+Dko9D3YzDyHKh5C39kfEBsYqeZCY6S1ZPEcu5garUIgZKuo7W3AxBNFsBxthmSSC4vT3ghZRfz/VfdYn6bMhb2uQTBYgE62tG7upawZXMnsHu3k1gMcgcOXLL+pzbuQ5JNisoghycvXX8kMOaGBnuOQA+PRScZr47E8Ekj7CuopCruv54QuHqZ/tpJpr5ynKmvHKM4LPJXpZ8ZYvprJ5n864OMf+eUuK+bq6uI50piSYXAxx57jAcffJBt27axa9cuvvzlL9Pf388B54afSCT40pe+xB//8R/zxje+kb179/K3f/u3PP/887zwwguX3adt2/yv//W/+OxnP8u73vUudu7cyVe/+lWGh4f59re/vYifbu7IytwdgSOZESynMmZLSSGT2VSOWSyFgsjy8nK8XQ91/josVWbQyRVe6u+nND5O93ZXCOx79QqVRNtugTX3QucdSKlhYm/wodT60DrCJB7rW/jGz5G5hgbvP3WG9mwju/J5NsTd7TOqGDB5jsCFYzZHoLwAQuCN5AjMn53B5ztFv6qiGja7ztv0N4bJrd2Mf/u2eW3nYqF1tJeXm+IQDk/SUStmEU3L5ukzzvkvSVXi//bYGGZptPz44vDgWYJb6gnudVzmls3Md8+tyBBho2gSlGewEaHBVRWDV4kQWBOoZdQpGNKamSKRKYjckLpT3KP/BdGxTFSIeDWOY3Q2T2ApC6nq0F9ZVwjubaZHl2nVQJclnn/4LCeev6gAyWJx/Nvw0l+LNvsi4jNG2jirrGNtdzfbWyOkTXfStKbgDqxWixAIbp5AzbCocT5uxpohXpxAXSbR28uJmd7vsbEgsyNnUTu4BckJj1fXrXuNVy4/lGgU30ZR5Cd/8iRmOlO1/oGNu8v93TzjF7+cVwNxdMVPSK3xcgR6eCwBU+kp3tXewts6Wvnl5kZq1GF8NsQNt1/rhQavToxEoaoQjDkuwlOei7/IQ2t+n5/f8B/574UPwR9tgJf+aqmaedNzXULgE088wW/91m/x0Y9+lH/7b/9t1d+NkEiIZEZ1dSIv3IEDByiVSrz5zW8ub7N582a6urr4yU9+ctl99Pb2Mjo6WvWampoabr/99iu+plAokEwmq/6WguvJDzeYdl0Pa4ozKEU35KkUWIZVD6+D+oAQ/E51uKJm7uAhGjsjBKI6qk9m+GyC0y+PXvpiSYKee2DgBUgM4JNeQlJlSoNpir1JShPLy/lTlSfyGhyB5wYHGQiPcdjvJ5J2v5+kLF7rVQ1eOGzHqSBbYJrFed13ZdXguToCCycn0Izj9Gsqt56xiWWhayKNHgsg6/pr72AZolcVDLFRA+P8xze7VWCfOlkxCNz1cyCrFGydGi1HKe+kTqjzMTNaPZCsJPL6DpQa4Rg2J3PE/+UctrmyxMB0vEDQniYrSeRlmVgakrU6qCpa2yoRAvUaRusk8ipMhaJMnjoHsgKdt4kN0mMw0wvJUVEtWJJdIdBxiwIwfe6SfQd2NNCzqZaQLFO0bOGwn8wxNZS+ZNsF5+BXITko2vm2P+Il82563/p1vnGyhh3P/Ck7TnyXrOwWR4jk3WN1VQmB3W6ewNYZ8V9SZWJ6I+qUjJn0Qj4rGcmd47TP4khARh51r5H62jVL2KrrJ7DnFlAUtK4ushf14f2qH7/kTOCo7iSPZNvUmCZ5WRwbtXqL5wj08FgC0tkk53WdAU3jVb+PiDxJ2C4xWXTHuJ4jcHVS7KvWUkpjov99NnOW8/5BplSLF/0yqewkvPL3Zcc/iJDi1PNDFC4kKQ5efgLfY36YsxD43/7bf+Otb30rTzzxBJOTk8zMzFT9XS+WZfFrv/Zr3H333Wzfvh2A0dFRdF0nFotVbdvc3Mzo6GVEH+c1s9tc62s+97nPUVNTU/7r7Fya/FCVQuC1ViGtLBSyppSmlK3I+xdbHYUimoLCCniyQgjMHjyAJEv89Cd2UtscopQ3efxvjnPo8f5LnTwb3lpelM/+kNBtLeXHmZfHFrbxc6QqNPgajoGxadcJGa7IERV3OsCeI3DhsBy3rQxY82xrl64zR6CZKWEPvYos5enTNN74insuKG98/by2cTHROtxrclPcJlVMsbbVIuRUnnvq9ATmbMXfcBNsew+6VGJzzSSN6kn0gEJ6usDgySvfo2RdofZnNhLY3Yg5UyDzwgjpnwyvqErCmXiBoDJTrhjcMmMTnSmCYaC2rBIh0FfDsS5QLWhJzZA64uR37LrT3aj/BRh8UYiCwUZocPIO11dUzJ48fcm+JUmi5oEedjT76dAkVBn2f+8Cryx2iPB0L/Q+LZbr1jIevZVn//GrPPw/fpsNyVOEzQw1BCgqFcVCtHB5edUKgdPiXMxYcQAkWyJz4FIn2M2KXcwyqYjJTdm2qZlxJ5H8yzxH9pWIvv3tKLW1lPr6SH7/e5esbwuK40OS3M/aXTJIKAo/DJewsKj1NXmOQA+PJaBQcM0WRUlCkmxa5TEm8xVCoOcIXJUU+hJVj0vjWayCwVRx2n1Okvh+OARjx2DkFQDsksXMw2dIfOc8E184TOLxC4vZ7JuOOQuBX/ziF/nyl7/Miy++yLe//W0eeeSRqr/r5aGHHuLo0aN8/etfv+59XC+f+cxnSCQS5b+BgaXJCyRXVQ2+RkdgynUEdpoljJwrBCoNq0MIbA6JQc3pdonZrl7ugKggV9ceprFLOB9b19Xw/LfO8sMvH8c0KlxUrbsg7Ih/558muCMKTqLa7MExUVxhmTBXV+hM2r2g+mcdgVqIHKLT61UNXjjsiqj7eXcEXmeOwMLpGTR6yZtbGEvVsatPDJxTfgXfLbfMaxsXk6rQYKdv0Z86zz0bxLVhOlPk8GDcfUH3XeWQuLWhIWYvraO9SUzzyt+nf30M/4ZakEFtCZF8op/soZUjNGTGp0kYTZw017El62dzyU2foLWtjmIhMX+MoXoJ1fkZi6841US7Xyf+2vfB+adExxIg0gR6UCy374XNbxdhtud+dNn9+7qjqLUBdgUVZm84Z/ePUcwtYoXag39XXrRv+TBPfvkvsZ0UIBk1TFoJEfW1UlRcR6A+I1yLciiEHAwuXlsXmNnQYHCFwKztOjQz+0fLYn0uU+Ibv/cS//T7L/HYXx1d1HYuB6ZO/4QBp1BYY0knknEnOgNbtixVs26I4M6d5Xyeqcd/iHGR4WBbw8ZLXlNXEH3CkgRnzJOE1TrPEejhsQTkiu612pAk8pJEmzzCaM7tM1vF5TMG85g/LnUEZimNZJhQp6ue/+dISCwc/CoAqWcGsRLu8VHsTS6rcfpqY85CYLFY5K677prXRnziE5/g0Ucf5Uc/+hEdFSFgLS0tFItF4vF41fZjY2O0tLRwOWafHxurdnpd7TU+n49oNFr1txRUiUDXEBYK1Y7A9pKBkXV/UqkuNm9tW0oagmIwmwlIDNXHAMifOIGZzqAoMvf9m03c+3MbGTkrFIJcssSxZ9zvBUmCDW8Ry0YOZeJFAtvEPqWgSv709TtZ55u5hganC3FAhMJoWaFMScGa8nrVCw1eMOyK/JsL6gicQ47A3MlpfPJx/MoJzKk8486lbLA2ij+yNNe1+UBvr8wRKAb95+LneOPmJgAawjov91V0LjbcX15cG56mtlkIq0bBZGrw6mGeob3N1Pz0OozRDHbOIPH9Xqz8IopAN4A5fpZm/TxWcIATwTyMuUWUVlNo8Jl2qVysRz12RCx07IHhQzC0H059HxzhrMop2LQVLvxEiIRnHodsdYd0ltCtzaiSRIcuzkOjaHFm/yK5x3t/DAe/gq34sCWFA8MhRs8J96Ica+R7zffzt10fprZjL0XVFTfkadHpXk1uQAC9p9IRKP6bsslorg8A2aeWi/tkZvJMDqSZ6E/Tf+wKBcRWMb0nHifj3Dtq87WEMiKJoilJBFdgjkAQBWNq3v1uAOxSicS//EvV+ts7t1Y9DhQjdFTkHzPCJq3BtZTy8ztZ5+Hh8drki9XplwalEI3yKMNZN6WDFxq8+rDyBiUnFY/k9KOsZJFCX5IJzZlcd6L3RlSNL8RqsVPjZA8OknlxpGzWAXF8FHqr3YUe88echcCPfvSjfO1rX5uXN7dtm0984hM88sgjPPnkk6xZU53DZO/evWiaxhNPuFXQTp06RX9/P3feeefFuwNgzZo1tLS0VL0mmUzy4osvXvE1y4XryRE4lBKClwS0GgalCkegVF83r+1bKur9rqvlVGtMLFgW+VcPAyKca8frO3jgV7YTrvMxeHKaZ//pDJOVA/6NrjDA6R8Qur0FtcGPOZ4TF51lwlxDgwtmHIBIFqTZkXHIFQK90OCFw6pyBM6vEFiZI9C6RkegbdrkT8+gyefISRLbjss0JWEmJDFWE8EfDr/2TpYpciiE4uSObY6L587Gz3LfpkbWNoSYTBf5zisVRR1q2skGRDhxSyBNXc1kedXshMHViNzZht+ZLLDSJWYeObsiiodYo2cBGHMcpbPFQuRwGCWyOnLG1vhqyPkk+oQGTGCwFzOVAtUH694gnixUzERXVhRWfSKHJIBZgKc+B4UUFDNV+WkCOxqRfArduttFOvbjoYU/BlJj8A8fgOwkOV8z3+nfyLOPPoZZKrH57teT3PNuLEn8tkrGLDsCfUUbKSdEwdUmBGptbeDcF1tnxPdvyzCYOYWlWJSG0+RPCoUwE3fFHqNorohzdj4ZG3upvBxNthNwKoinAzqqvnKjA2Lvf195eeaf/qnqnri5rjrkOVysJZaPlR+P6+fRZB1ffmXmx/XwWMkUjGohMKUVaVN7GUhXCIFeaPCqo9ifwgnKQal1x6GF3gQTmuiP15kWP5VoJq7IfL42wg8GnyT1zccxE0X07ijBW90Ub/lTy8ews9qYsxCYz+f54z/+Y17/+tfzyU9+kl//9V+v+psLDz30EH//93/P1772NSKRCKOjo4yOjpLLic5tTU0NH/nIR/j1X/91fvSjH3HgwAF+6Zd+iTvvvJM77nA795s3by6HJUuSxK/92q/xP/7H/+A73/kOR44c4cMf/jBtbW2825lVXK5clxDoOALrbB86YFTkCJTq6q/wqpXFbLEQgCOtfgK7dxPYt5fcseNV2627pYnt97Zj22JM98w3TrsDgbX3QctO6LoL+p7B1x3GNsS6/OkZu3DAZgABAABJREFUjPjySDg+l2OgmDOwFOeCWpFL1Qq5A35PCFw4qh2B8+s2qHQE2tfoCCwMJFHrJDS5nzOKxnpH37aRyPo0fMHQvLZxsdE6hVu8Lg2aYXMufo6mqJ+QT5wzx4aTjCVdh1S68dbycqvlJpkfORu/pveLvX0tkk9BXxsld3iCmW+exiot7w6rNCMKYIypCpJtU+/oYaulYjBAzBcD3OJRkm2Te+UVsbIiH2yZzjuqH+/5BXf5pb+Ev/kp+D974cR3yk/LPoXgniaaNtRQ75NpbvCTnM5z4cgCu8y+9xvQLSIuknmZC9kYZrFIMFpD89r1nFXdqIZi2ijnCIxVzHmtNiFQUhRq3vUuJjq7CeYhkrWxFZ1hNnIhK+7hJaeYS6biPm5bkEvN7wTNssYySRd6yw/bxmvL6RFyoZUdKu5bu5bgPa8jePttWDNxUo89Vl63pmYNYipcECnUEiq4A8hxXaTPCRVXriPew2OlkjeqQ/InFIUW7TwXKvpqlucIXHUYMzn09TVo7WG0NnfskRmJM6OK8VKnYdBaFBP264pFng/4KTWJe5ha56fm/p6ySjU72ecx/8xZCHz11VfZvXs3sixz9OhRDh06VP57ZbYzfo184QtfIJFIcN9999Ha2lr++8Y3vlHe5k/+5E94xzvewfve9z7uvfdeWlpaePjhh6v2c+rUqXLFYYBPfepTfPKTn+RjH/sYt956K+l0msceewz/HMMkS+NXrjC5EFTmCLyWYiGZUoaZglDJmw3REZp1BJZkGTWych1AlVQ6Ak+0KOReeYXc/gNknn/ukm13v6mLaGMAgFy6yLlDTjENXwRiXdD/PEycRDr7OKF9TmfRhuyB5VE0pMoR+BqhwfHxLIYWByCas0UINGBW5IfycgQuHFaFEGjb8+wIVObuCCycnIbh40iYXEgG0B0deaRWHFMr2REIoLcLIbCoQNeYzUx+Btu2ecMmV/j4UUX14GLnvQAYFkSzh9EDQjAcPpe4JqeQWuen8WM7KPYKNa04nGbqK8exsstXXPDlRFLlcUUhmgXd6V+rqyQsGFwh8GRnRfGoAwfEwsVCYKwLatqrn2vaAh23uY/HjkBqBH7w21ARxhS5r4Nif4r1CoxN5ilkDJ795hnM0gLlqpk+Dye+C+eewKrfwD+dWUvJUgnV1vHv/vLv2feO93B+QvRJorpKPm9QVMWkaW1FV2W1CYEASk2UxoELNKTg3qM2uhonoAcZcHJLFYeFEJi+aEIvPXMT5YWbOsv5ionEjgn3GpePrXwRrOGjv0z2xZcwZ2YY///+CCsrzlVd0WkJusJfqBDDl3NTDI1qog8YtWsXt8EeHh4YFwuBqkKtMoxpuDctLzR49VHsT1M8m6A0lMbX40apjefdsXabYfDBqbdzt7aRc7rOI5EwA5nDBPc0Ufu+DShhHb1L3Lssw8KYzl3yPh43zpyFwB/96EdX/HvyySfntC/bti/79+CDD5a38fv9/Pmf/znT09NkMhkefvjhS3L9XfwaSZL43d/9XUZHR8nn8/zwhz9k48ZLEwq/Fskf9s/5NTdCdVjoazsCKwuFtBeK2DblYiF5TVk1IlClI3AyVkBxKkLnDr+KfZFYpmgyr/uZ9bSsjTIzkuW5b56hNGs73/OL7oYHv0pwX0t5Ijnz8uiyqA46lxyBifEceU1YAWtTCBukFiDvd0UkzcsRuGDYUoUQaM5vDrkqR+A1Vg3On5xGl4UjLD3phkElAgFUn6/q2FqJRN/+dvQ1a9BNuLVf40LqAtP5ad7g5AkE+NEpVwiUO2/jdLIeC5nG+Et09TjumGSRxMS1dSj09gh1H9os0ggkihTOxpn86nEsY3l2XEO2cIiPqwoNFRHQq8kRWOMTncrKKvKzxaOItkLdenfj1t2X38lbfhc+8kPY/A6IOTnoEgPwwp+XN1Fr/ITvaqNZk6l38tUkJnK88uQCFRM7/a/lxXjTvZSK4vq/Zvc+JEkiXzIZTojj9jZ/gIJhU3IcgfVp97tQm1afEBh73/vLy288bFFCott3AEsW57Q5lcfKG1WOQIDU9M0jBCbPv8SE5orUzRXfRbFu5YtgwdtuJXTvPQAYIyNM/vVfl9fVBdw0OKrpQ8m64cIjurgQxqSmmy5U3MNjqSma1dfgSUVBkmw2Su591AsNXn0YFfde37oKIVB1Q3xbDAvTbuAWY0/5uWH/ILF3r0dyxleBrfXIUR0rXqBwzssTuBDMWQi8mcifmcFMLl7I6FxDg0czo+xt2sstjbewNZ/GKknYpjh58pq6onPCVBJQA8gIQUvSMii7dgNgZ7PkT566ZPueHQ3oASF6pGcKHPyBU3p8/Zsg4lTOPPMDVHkK38ZatPYwclgjf40hgwvJXI6BmbEMOSdZfG3eGQCUcpQ0d1Co+wPz30gPoNoRaNrzKwTO1RFoxPOURrNoksgR5xtzj6O8GsK/wsOC4f9n77zD27jOrP+bhg4C7J2iSIrqXbbc5N57ix3bSeyUTd9sirMpu1/6pjjZVMdZ23GLHce9xHEvsiUXyeq9UBR7J0H0PjPfHwMCoERSlCzZEsXzPHgwwFQAg5l7zz3vOWCZNZN4czMAp22IIeg6Lf4W5le4ybcbxOfbDf3EUiSd1Z2LL2HBJGqIqMzJfYfSWheFVU72buwb935tcwvJvX4GgiSABIIiMviP/a87HzU0TSdHNIjAbslEfiDT6VVKJ0ZiMGSIwEGnwPZSK7uLa41BxHiqPH/GRZBfB4UzoeaskTcy5WSoPAGu+xvc9DiIJiNUZPcrw1SBOedUIToUFk5xIAAlU5xseaNtP8LpsKDh5czkYEa9W7NoCQCtnnDaxrA+VQocTXkEupMmrEuWYF24EHmCpENnw1wzFX+NQfBW9kNOj0i1eR2RLNuERGeQ4OA+ikDP0WH58WEg0LqF5lRisKyJ5EVVPA43XquZZP6xbxMjCALF3/0eKArWxYvxPf4E8XZjMPzk0pOpcdVQ66yjMFRONF5Fburc6JKNc8Ai2lCPI2J4EpM4GhDXh9vm9KXatue5u9BSA2yTisCJh0CP0UgJS/DuQADLzDzkElvaHxCgKOEEJEq8GXFXh2kQUdJ5u/1tvvnmN/me/394TnwNgNg+KcSTODyQD7wIXH311dx///3k5ORw9dVXj7nsvmW7xzJM+i5C62aTc1blh7K/bBJIG4fCaK9vL+t6jZKo67UwiSx/wJgio5gmjjmyWXAR0aOIcgB19jx4xeg0Rdavwzp3zrBlBUHgtI/V8chOD5qqs3NVNwWVDmoXFsHCT8CK20Ayw9r7sJ/wBTwP7QAgvLYba/1HO3J+MGEh/d1hgimvhdyYzpC8MSJmbrwTRRV6NCJbESjE4mixJKJ5XJfUA0I8yNTg6E5jlE0SGonrUNFpHFvQAlHFTL792C4LBkPVZl92GqEVKynywZxmwydwRt4MTq/P5+lNewEHO7r8LKjMxerMYau3hBPyDXLMsfdeurqXAgJ9ra00b3iAvuZGiqYaaZq9Tcb0aM8m0cz0xAJoMI7n9f/5E3va1457/SO9TEl5NVdIfjSgTxZZ6MsQyJvWr2LPl945rMfzUX3mnqY9CEtBF8Cbo3LKrkYiPfDS92+lNeRLrTfHeL73LYqWtx9wXxeV1VDVavhIrv3Np1nXZknPm19yNhWeGmrMIo0thgL70Z89TSL04mH7zKXVlVwSfhNJgKBqZd1a4yQTJZkpcxcA0NRvlFLZNbD7jPZBIjUQVOmViaxdC0Dhf/zHQf2vjhV4zziTnL17SAqw6C2FstM2k1SNQBBBEIh3hI5rRWCydzttNuP+kxPLxTmwDUvMS0IUEYsKPuKjOzww10yl4N8+R/8dfwGg91e/ouJPf+Lri7/O1xd/nVg4wV9fWYkKlCQFBiXok3XiQhxZk4g2eXHkTw6OTmISHxYS2nAisD9FBOYGdpKQLses6mjxI2S3MYmPBHpSQwmrRIUY/1P8ELbNl/GnT16BoAsEnnsGUsK+ooSh5C7pc0NKNNgiAQMNvNryKq+2vApAV+4ULvGeTrxlkgg8EhiXItDlcqVlmi6Xa8zHRIJb+QuhNW0fWsmoeJCKwBZ/S3q6OpFMlwWDURosTyASyCq6ARCkKMFpM9Lvh4dKwvZBbomdk6+qpW5JEUFPlJfu2srWt9rRF30SZl1h+Om9dzvWsgiiwyDfItsGUEMfrf/XwXgE9nX7CEnGuZkTy5yjITI33ol0DhxtGBYWkkzQd89WEofJk0rISg3Wx6EIjO4cAJKYxGYaoxacqcrX1gIZBOGY9wccgvvaTIngOZt0VnasZOnDS3k9egvumntIajrv7DECHcw2O5f+7B68FiON3kUf1fILqbVzCftkgp4B4uEw8XA4PT3qc3yQTQPL0/uvDNYS8niIh8a3/pFexhY2SKpBUSQpZBKDAcKSdNiP56P6zCGPB4tmXCd3ZazAMLV3HvK+dqsz09upim8aNq9D24OqJ6k3iyhCqrw8WETIZ0ovE/FD0OMl7BPT78VCEUJebVzHkRtpQBKM/3mj34W1qJwFF17KJf/xbUxWw/N1iAicE5fTaXxDYSEF2aXBxZlS+YmE5LLTePQ0AZ8D8vpFulbaqbW8Szz1XQQaugl5h19/g8cRERgJNhJLDSCVegqwxLwA+K0mTBNAET6EvM98BqnAIDYDr76G94kn0vMUS6YNXRg3qkh0QaBR34COPpk8OYlJfMhIjKIInCE2EU3dTydLgycWVG8MEfhZxd2sd63j7dCPWfLQEloCLQxYutPLFaiGZU1xIh9JN9owrYoCXZtoD2aszzrMvWhoJPsjqIHDG8w4iXEqAu+7774Rpyc6FLETs+UFEn0LMBUf+dS14WWhByaksonAqkSCZDgz0hlVZJQJUhoM4JDdeFL3is4CJ9McDrRgkPD69WlFwL6Yf04lr91nJAvnlztY8ehu+tvLOMNdhJAwyr+E5T/Gtui/CK5oB1UnvL4X57Ly/bb1YUGSxu8TGbNn1A/OWIbTj+vGFyUrJsQsQmkShxfZpcGgQkKj745NFNw8C1OFc9T1xoODUQQm+yOGWX5+B37/VHb7Y4gVGqaIQJ/TUAUf64nBQ3CeeSbk57JHGcQW1enqMxLGdHSS4gCxpEZDj0GICYJA4ZSpNJWcg9L4IJps5Zy8h3h+sIbuxEwSiWocebswpcJ1HHn5mGy2UZ8Bek2NBCUfQhxC1hBXTPl3hLhIo2Mb3ryuA64/nn0c6jJu0bhn9MrGf74ge/C0IA+HHj+sx3OkP89Yy9j0ASIk2F6VITudHi+O2vJD2lfAOhVPwEmeHKCILsoLZ6XniXaFnkALZaZaZlokNkeSmCw+4AoCvgiW3NMY7DdhyV2Ad8CB1dGDJfdU/IMaZpcZjd049jk39j2OcqmR7kgeDrNKY7yCtb4ozXaV59rCLG1Yx6XzyvCG4yypcjOzMYbbqTAYDKOKxj3CHcgMFijFmeCEiQRnQR4b6kQuWquiAZJLZlHgQbzmCmAW/VtbiYaHD0YfN4rAeIig1s+SiJsAVmZ0ZNqrfqt5QlmESA4HRd/6Fl0/+AHm+nq6f/ozRIeTnAsvQBQFTBaJeFQlN+ECDAuIsK0XKSwTa/Ciq7ph8zCJSUziiENPxPj0KyqiBv05Am+daLRJq8V2NmgxXJgmS4MnGGIDETbadlEVK2GdfTsIOqqu0h5spyvYkV6uUKoBQEaiNOGk3eSnRZHROjaw07czvVxIiNBm6mZKvIx4ix/rnImhcD9acHjq2CYw5L7lxHd/ElPx9CO+r4MJigBo9RthJjm6Caeu0xfJkAcTySMQwKnkQor36o56mLdwIaGVK1E9HuKtrZinTNlvHUEQOPfTs8gttbPh5RZ0DRo39qHWXc3Z1icRIh5oW439Yj/BFcY6scbBj5YIVMZHBmuqxmBbI6Q8su0xCTBupjHN6BzKk0EhRxTZpcGqopHoMhQ7vpeacZxchnX2ofsyZXsEHkgR6H1+L5o/QZJ3yLXsJjlYxKx24zzaUWZ0jC0ToDQYQDCZyDnnXOoeexyAlds62VmbmidFEKQAu1PeJEOY+slfwjul8MZPQYRZjuXE/A6iQi1m1+cxORyUTXNzwRdLseUc2E4h6Y0hORQ8T+wmsrEPdJjnXMa5f/4agvjRdTD3/vJrEIUeyfjt04pAUeTS//czBOXYDovJxsoXPsFA3yZaizUCihVnIoLbH+Lzd9w/4qDQuPBeAbz8fQA+vjgKn/wOyMY9NNowSP89W5liEqmaUURPWQ1rnm8mr7yErj1DjKvxH4uGDCIukRq4li0nY3YtxuRwYHYFKa4r5uQrazPnStQHv5kOpgiaJY/fVXybtoCKHISkHufFrd14wwliSZW+Rj9nhcx4SWA3ZwJvXKlSYTEnB9F25ActPwo4bBb2lgr8+lqRnz6kEdorQkTAUrYakrXIopu0VFJQQZfobx/gzi/dPK7y7LzyOQy0byO/chaSHE3bBhxNpfGLL7mSJZdetf+X07eLFkVhrdUC6FzUmxkk9NnMlE2wc8J1xeVokQg9P/kJAAP33Uu8pZn8z38ek00mHlVxxgoZIgLbpJ0s5jL0qEq8zT8sxXISk5jEkYMeS3DxOuO6HDTrPHuKSAJQBBVVawGmoSc0dE3/SNtPkzg0aOEE3uf24jynksDrbbgunkpvu5+3ctbyUu47w5btCHbQFfUAYNU0bPZ6Iqky4bJEGe0mPxFRZOvup/HnDucvttkamRIvI9Y8SQQebkyGhYyBuDYFs7gdcfsjH8r+DiYoIpwI0xsxEjLL4wIxzYYvmEkLjCryhCoLdZkzqXB94QEcZ5yOeeZMBJMpkxg5AgRBYMlF1Zx+w3RMVgmLTWHnhijro9ejF8+DYB/K1juwzC1ALrQS3TlIoi886vaONMZLBkdDSQRzRjptjWWFQ6TOnUl/wCMLXcpcPpM2EdOUHExVTmJ7vAw8tJ3Ae52HnFKYnRqsjZEaHN3lIbrDuLG6FMMjTPBmSERBN5SA5glSGgzgOuec9PTsXcPTf0VLJ419QdRsOwdJgRM+B1NOg9waZliWc/WMB5h9aikhb4y+1gBrX2jhsZ+vGdfvJbvNCLKIUmaHVMM10RnC/+YRSpMdJ5SIoRDfVxEoFxVNKBIQwG12AwYZvz3f8PBVvV7iTU2HvtF5H4eTvwbOUmh5Bx79BEPpHOZaN9bFxZgKrUhNPoRAHLvbjNmmYHEoKBaJpVfUYHUqVM8rwOYykV9up7zeTeXMPELeGP7+CCFvjA2vtNLZ4M3sd8sTkDTO46cTJ6FLJkySyIVzSodOL3b3+GnoCTIvnvlv51lTTKOu40h54ykTtCwYwJYiZXdVCERMxvUx6jNRIr+AwMPEs5qzgmDcOzXVRNDjHUd59iC9HfNI6jfS27aE4KA9Xd4dHIx+5KXxoUEPQc8Aq59+jHce+/t+302yZwftWYOIpQOZNsxEUwSCcX/MvfYaXFddhammhtiuXfT97vf0/fGPmFNBceZQJjSny5QpR4vu9HzoxzuJSRyv0PVM+zUV8s4evQqfloOsZ+7Xk6rAYw+J/gi9f9lEeEMvvX/aaDz/eSO+Nj/95k37Ld/mb6NbNe5NpUkVLBkBT6WlOj39rh7Zd1V22Q1bnljzZHLw4cYkETgGTGILgqBh6n0q3SE4ksj2CNQOQAS2BlrT03VxH2YxjFkIoLkrCJgVwyNwAoWF5GURgZ7oAOb6emI7dqBHo4TXrzvg+tOXlnDpV+YTDRodhP7ia0n2NhkdsO3PYC7WifeG2RlRWf7ADu799kpevnsr29/pPGKfaSSMNywkGkyAqSf92hLPUoOmicBJReCRRLYiUEel8HNzkQuMDpeUa8H/UjPeZ/agqwdvhDweRaCe1PC/3oppihNBH8QtNtAniRR6jOMKm0WSonFNmSiKQADb0qUkFON8X9CoD7s2S5ZOYkmNNs8+ZL7VDTc9BoKAoCexDKyjOPQKdrcZTdWJR5KEvDH624erCcdCzumVFP7bXACUUjuB11oIrvpwrxfZSCRFeuJ1tAo5KEkdtyFQRSkpGXvFYxBVzipKLLUkw5VsK8yUwobXHfheMCrs+VB3NkS8gADuKthmhJ8JooB1mptkfyqcozPIzT87mUu+PJ/P/mYZt/ziVJZcVM0nfnIyF39pHp/+1Wlc/18ncvGX52GxK9jdZkQ5c40edl9Z/7f05F9Dy2j3RphTnsPtNy1i6VRDVTwQSpCIJKlPGNcFRQCb2SD/HBGQksY1Qi6amGXBAFaTmWRoKmq0nK58496mhkXERJQ8UwfRrMukJGfaT/bcyhHLxLOnbbnzQVcQBON6mYhXYc8tI+A7EYv740Rj07HlLh11/dGeD9cySorIiwYDBPr3TzwPtm2lI6v9WOg1fFJVQSBoVtI+kxMJgslE6c//B9fVV6NHYwhWK5LDiT1hfHY5WMfUuM7UqMYmRwg1RUhMEoGTmMSHh2xrGyl1jVbN3bhEPxYxUyY6SQQeW4g1+ei7YyOi3eizDv1+SpkDc2uQLsUg86xZ/ZcmXxN1SZ1ZsRizEypSeRWi04SgiFTnT00vt9mS4S6UVPt+i82PuTiM5DKjJyfDZQ4nJkuDx0BcnAnsRFab0VvfR5iy9Iju72AUgc3+5vR0TcLonAR77YihdqyiQFyWJpQiLN+aKbP0RD1Y584FRYFEYkxFYDZK69xc853F/Ov2TezZ6KfEeTrz7c9DMopNWE6TOoddMQ32GCMOe9b10tPsZ+YppYdebnaQGK4IHP0ciIbiqEqmQ2DKUopEk4ZSZJIIPLLQhvn4JREUkdyP1SPlWwi/340eUwmt70GLqeReWYdokQmu7kLOtZDoCWOqcGCeOnKJkjAOj8Dgu53EWw0/PEv5TgSPzkbBQkVKCTaQ7zBCcQCzbeIQgaLFgmd2OcUb28gLwtQeaCoZmmc0LHf3BKgu2McX0WSHi26Dv18DQHX0n9zy40+y5T0vKx7ZDUDLlgEKK8fv72ie6iLvphl4Ht0FGgTebCfpieK6cOqHWuaiqxrl0hrMYoB+pYy8LH9Apaz0QzuODwuyKNMdbUS2wY6SebDFeD+8Zi25H/vYoW+49iy4/m/w94/Bmr9C5waYY5wv1vmFmFZ1EW/2k/REGHyygdyP1SOIAiarce8eegaDPDRZZBacW8WCc6tIJlTu/+47xEJJGtf3sez6BJa+1dBr+NgG8uayo9MYIZ9X4QagvtjBe3sHQIdzIwpyKhm+0iQSTQWF5GVx13LJxCUCHSYLomkQUfHSXKhT02W8H/PLmIt3Es3qcBQXFNPRaTDhSy7/FosurEZLasimkT1zn/vTRlq3ZQiiaCSfqllfpnW78V5w0EVO4QyuvPWkj6R8LeDp564v3QJALBzab36ye3uaCLRFdBxhIxTDbzWBIGCyTSxF4BAEQaDgc58l3tyE74kn6f31r3Gd80VgLkJkBlPiSd5MhcH9y/YSV0QuIdETRg3GkRwTZ6B8EpM4WqGPQAT2yRLEwSZ0pedpMZVJR/NjA6ENvYRWdaGFk8Sb/VjmFuBYVkbfQ9uJbh/Aikq3bPzulYkke00KSUGgxd9MmwzIZhZLJtyX1OK+pBZd15neIcLrxvabcoogaTRsZop2NuthuuQwHs972HtsqMEEsnvi8BsfNSYVgWMgXnBZelp798iHpAwjgQ6kCPRnFIFViQS6BnrYWCdsUkAQJpRHYLEt4wngiw8gWq1YZ80CIN7URNIzvlFed5GNpZcbBqU7Iuem3xcbHsGb1UkQUv+MwECUwa4Pr1R4vIExkWCCpCmTgKckjM6JkFUCpFgmzu9/NCI7NXiosSMIAq5zpuC6cCrIAkqRncjGPnr/sgnfqy14n95D/9+24Xt+L31/3UJ098gphuIBUoNVfxz/a6lrgAAKawBoygoMihdkrAImSmrwEJJL56WnF+3RUUTj2ilZDKVVQ+8oyr5p58Kca6HqJGh9D1b+L1PmZAYZWrb2H/SxWGcX4DilHMFq/GbBFR0MPLwD7UNMwku09WAWDVK4WzJT5NPodYEycwbmmTMPsPaxhwJr5n6wp8hKx/SFmKZOJbxq1SGX46cx7Xwomm1Md6yHoDHgIggC7stqMU9zIzlNhDf04nls17g3KysS05cajLWa1Ni9uhve/CUIEmrNebxXdGN62TnlxgDBtGKDlD43ojAzIRNEp7jQzBSTSEgyRtzzs9KhJ2pQCIAii6jhagDaCjOfOeaTEZNeZFdmYMziy3jkvf9cE/d8ayVbV2TUJ9kIeKJpws+U+g+jQ+t2D2XT3IipYAl/X4SOVEl35ENOLswOe4pH9icCzYO706XBszozy/qsRhvAZJl4isBsOM88Mz1tig+VjgksSWRUJv8oe4VgbgzJZSbW5GcSk5jEh4CsihhZA1HT6U1VqjiFjDJej0+qvI4FBN/tZPDRXcQ7AsiFVszT3ORdM412Zx+Xl3+Ja+q/yb/V/Bg11T2qSCYpSfEZPeGMRcPMgvnpaUEQmOLOlAn3asb91WV2sThvFtNicWrjcbpTFg9acDI5+HDikIjANWvWcNttt3HrrbfyzW9+c9hjIsFbdC6abiGhlaIFQqCOTc59UGQTgdoBUoOzE4OnJJLEggpCqgMUMhvbmVBEoKMANZ5LMlJCUjU+p3XRovT8yPrxqQIB6hYXUTbNjZepDEozSJgKEHLKiCmZUts58zMkSvMhkAOHioMpDY4pgcx6CeM7EbJMwScVgUcWepZqD234tcG2sIjCz81FHTRUO6JdIbSq07jiJo3fSnKaiGwfQB2hUzncI3D/BpL/9RbDo04A+5ICklE/nkQ5nkDmN7cWVaSnzROoNBgg58yzSArQVAQ13Ro1LoPcF00eEMPs7gmMvvJZ3zcIHnR473ZyhE5yS43Oc3eTn8hBNjIEUcB98VTcl9ai+g0CQvXF6LtzE2oWIXEkEdy2LT3dI0sUeQWKfJDYsRPJ+cESrI9GFNoy12fVHCaR1IwBod5eYjt3jrHmOFF/fmpChz2vpt82lTtwnFSa/s+KZonwxt5xb3bWqYZvWX6FndB7j0HzSkhGiDRtY+v6aVhTf/W5KSKwvthJXVxER0dDxw6U6JBXZiecKg0epgicwKXBJkmkSDFC29qyvMJjfuOe6XbvSb/n1DSsqY6IrkM8kqRl68CI292zroeSGheySWTmKYZ6dogQjIbinPaxuvSy29/uZNvKDv72X++y8bVW/vXnTSQ/hJI2xWxJ3xNi4X0GJuNh2uRCPCk7iaoeC1L9LDSHw1AEAmbrxFQEDkEuzFwPTLGMh9T0oss4OxRG0nWmRTQ2JrahemMkuvcnUycxiUkcfuxrjVPiLWKbbNzfXEIXQwFP+oc4cDqJQ4Pqj4GuI5glSOpYpudScMtsRIvMhr4NJFEJS1F6TJl7bVlSpTBp3LviWf2kmc6KYdsusZdQYi+hzF6GpmsUWguZUzCHfHsxDWYTjSYT/YoxYKcGDxymOonx46CJwJ///OcsXbqU++67j7Vr17Jhw4b0Y+PGjUfgED86rG2LEdPmoYhdKJ3/hP7dR3R/h1oaXJVM0uOtSr/OEIETp/Sh1FGIZBpEtnYzmDRM+W2LM0RgeJzlwWCMPpx4mTFSvNu7ACXeD7tfwhY1VFWKAFWmjNqrZcvIHYgjgWFE4BhhIZFggoic6RBIqTJiIasEaJIIPMIYRgTu34gxV7so+vICHKeVY67OQQslsc4pwHVFLeY6N6o3RmhVF+EN+xMJYta29X22HWv1E1rdTbzZj1xqJ2dmN/nhVZhNncjezHk74MkQ2BbbPmWyxziq6hezsQam9sIJDXBGJHP9kyyd+yUHD0N+LZz8VWNajcPae6keUgXqsHNV1+jrjgH74mIKPj0H8zQ3ibagESCyog01dOQbLb49GfJrQFYp8mWpxMorRlrlmEa2IlCU/WytmpN+HXzrrQ++g2kXZKZ3vzxslnV2AXk3zABJILS6G/9rreNWIeaXO5h3dgWD7V6qgk+m33/Lcwtmv8QFYYUv+S00PLmXDa+2UJAUOCmmsCiuoAE+q0Z1UiPZEyZRY9wr8gKZfcsTOCzELIt4B41gmLbCzHUu5jPaTXZ/pg1QYRI536Vw+nQXZrsxv7PBSzw6vF2laTqbl7fT3ehDEAXmn1PFad+Yx00/PZk5Z5RzzbeXMOvUciwpH6Q963t48+FdJOMa7zyxh5YtA2x8rZUjDUEQMKd8/vYrDfa2oMS2p1/O7NBQd29HDAbTikBlAnoEZiObCJTD3vR0bt353DwYQAfWulT+mWdcG5K9H10g3CQmcVxBHX5vTIi9rHDIJAGTEEPE6F9pkx6BRz1ie314n9uLHlOxzMjDdUkNgiRC91Y29GTuv7qQ+c3zdRs1yeHhHxZNo7pq2bD3REHk1Wtf5Yq6K0jqSa6tv5Y7zrmDXHtmcNMvGUpu7UNW5E90HDQR+Ic//IF7772XHTt28Oabb7J8+fL044033jgSx/iRYU3TIHFtVuaNrv1TcA4nxIMgAodKgwuSEIhNxePNGMKHzAqiJA8jFo91lDhzQDdGvOO60ck/VEUgQHl9LnllDlrjC9PvFWCoavLtMkprAFehQap1NfqIhT+cEYjxksHRQBTfUPWoriOkfAEFa4b8UyyTROCRhH4AIhBALrDivrQG0Soj5ZgwVTpxnlxG7pUZlUloTfd+RIKQFRaiZY2o6pqO95+N6deOxcVEtz0PwGaziereLP+qYqNzNO3Ek8mrqDz4D3gUo8hWhOOMM9Ovl6zxMa9gHlKyDNHUv39y8L5Y9i0onAHli+H9u5hWH6FuSRE2l4ntKzpRD9GM2DIt1/i93SbkAivhNT34X24+pG0dDBIDRvqeRxSRUaiPuNPzTJUTjwgstGY6/oIcYFVRpvw5+OZhIAIrTgCL25hufAPU4dd/29xCzFNyAEj2R4g3j7/UcMbJpdRaVlGg7KU7Xk9LbCFt2olsV5L0SjoOTSDsi7FleTsv/W4DpapxnfFLOtcN+f4KEE99BXlZ4teJXBosCAL1ebXoqoVBB4RTg3Uxn0HS5SY2U1Dp4MTLpmJyG/e+3J4wdXMN0lhTddp2DLcQad/pIegxlJXtkso5f3mbK+9bzVNbOznjhumYrDKSIrL4oimcem0d88+uNAQsQuoBrHuphYAnesQ/vyk1mLOfInCwZVhQSNWA8Xl0SSSYsgeZ8IrAgszAgBTK2G2IohNHoozyVFtqm20PQTFMomdSETiJSXwo2IcItMVgQNF4N9VXUUSjPHgyLOToR3Iwc5+zLS42vPM71sH/ncr6hn+OuE6+pZSKffzu6+MJ5NJFIy5vV+wU2YqwK3ZEQcTtyKS/+2Xjuj2pCDy8OGimSBRFTj311CNxLEcdcjSBHmoYsvPXOzciLLjhiO0vOyl0rLLQQDxAhbMCs5qgKjJAkamX5mAFQ7RPyGyaUGpAgFybGS1pQ1QCRFSj0yXn5WGaOhUtFEIXBNRgEOkgvNBmnVrKyn/UkNBNKEKcUtMOY19JDT2SpLwyh6AvRk6+he1vd7Lw/CkH2OIHx3CfyNHPAXWwjaCcAMyYE4BuEBe62QwYF+tJReCRhS5lEYH62I0Y57IKnMsyhIxcYMVc4yK210eyL0K8xY+5OhMcIo5SGpzoChphI10h5AIr9pPKCP3CUCxtMFuY5zGWjSoiSkkJjmiYsumzsOWMHEpyrEIURC7/0m00PHw6ejSK682N7JgRQ1UEHM5+chUrWzu8zK/MHXkDZgfMux5e/zEABb3PEBq8mLAvThjY/EY7C8+vGnndA0AptlNwyxz6/rIJPa4RWtON/cQSTBVHpkRX13SkeBdYYKfZRECKYh5SRAoCclnZ2Bs4BpFdGmyxhEgWFmOqqyW+p5HIpk0kBweRc0f57ccDSYa6c2H3K1BQD23vQ/Xwdo/9xBJie40yxNCa7lGDf/Y79konJ5SuwByJUGLazTO+n/LOFJl3+8IsjMmoZpF4VCXgGV5WPt8k4VcErAmwLy1NlwbnZhGB8gRMiM5GfbGLbZ1TkB27aCvUmd4BybBEKOHGLnmZ6rkbWf5vbEuKCbzRiuQy427PkLQtWwaoXZhRTW5/O6P+fU+P0RvQuFJ8m8RLj6KtXI048xIons2Ccz8LwMbXWrG7zUw/qYRkTGXz8nbyyuysfbGZs26acUQ/+xCZF99HERjs2Jn2BzTHddyDxgkRstsQFBmTxZImEScqBJMJye1G9XoRAhkiMB5J4s07kdNCr/APt4Im6Gyw7+TUngU886ufogs6vU2NFE2tHfUZOCqW6dm7h/yKSgqn1DD3rPPJn2CDe5OYoNinaWxL3daedDo4PRJFFjqJMW+yNPgYQHIgQwTKeRbQNHjxO/RIEh3SyLqyyuJ5WBq2D3tvJiaw54+4/M2zb+bm2TenX+e6Mu1wn2goCyc9Ag8vDloR+I1vfIM///nPR+JYjjq4NJHXkpmbrd58cKqzg4UgCGlF2FhqsL5wH1v7t9KTDKVNOMVg5g8aMisTKjEYQJZEJN0g+VQhmFZQOc87l2RvL9GNGwmvXn1Q25x2QjGiYqInXg9AjtSHQ+wnXzaG+qs1DYfLzGBXmPUvtxL9EEr8hikCxygNxrcXbypQoiiSxedn/e6TisAjC32M8t3xwH5Clop3Xc+wedkegdmpa+GNfUS29IOq4zi5FG2wBUfSUAdvwE1+ihSwzpzJVd/5IV/4ywMsufSqgz62YwGS00nOhRcCIATD3PimQYLGhB729oV4YUv3WKvDghtBMP5DwsaHWfaxmrTKZ+PrrYS8h+7vZyqxk3NuqgGjw+DTe9AiR8ZjNtkfwSQYn3V7agCoyGvMk4uLESfYoBAYo8ZWOUWM4GNTuw/llFSpia4TXL78g+9kxqWQCEHHWtj94n6zrbMLEFIpweFNfcS7xihHz4ZnL7mRtQB0S2X8VqxjZb8fVYC1liRFN9Vw/X+diM01/Hebq0gUJ8B5ViU5500hmDD2l58qDRYUBemDkJ/HAOqLHOnAkPaCjPrZO5CHIsZY4niC+er/4ZSfxnWaiOqNkRuII6WCnfas6+W+77zN83dspnPPIHs3poJgLBKNikYJA/zedAef5lnEUDesvQde/i+IeAFYcG4Vt/zyVE6+spYTLp1Keb2b3uYA21d20tkwcvDT4cIQmacmkyTjmY5Qx9ZVdMjGdWxKb/oSRqwgH01VWXTR5eRkBUdNVAyVBws+j2EMCcTCScou/gaLIplz5X3HFkRBRAwJxMNhgp6BMZ+PlmVCgx5at2xi3b+e5vV77vhIvuNJTOJgIeyjCMwPGzYFK2xWfKKILBghTpOlwUc/1CxFoJxrhtZ3oX0NG8YIppxZvRQh4R723izH+Acx3Flegj4p5cE9qQg8rDhoIvDWW29l165d1NbWctlll3H11VcPe0wkiDps0+0kdaOBofdtMRjwI7nPlCJMG4MIHIhmPOvyU2WDSthgABKyREISkScYEQigCClFjZAgnDDKY6wLM6W9B1sSZrYpzDu7EmHqKen36suaKSg2blRKR5CCEmM6Gkrw/r+aPsjhjwuCKKaVoWpi9HPAHG6hLJlkQSTKvECm86dndfonGhl8tCFbEThSsu+BYJ2Tj1LuwDTFSWyPd5ipsiAICKno6mxFYHYJonVuIZ63ngIgCXhDGnuLYXelQu7SzDk9keG+7jqc55+PXFLCJWt1rnpXQzAZ3ohPrm8nPlaJr7ME6g0ikUAnhZF3mHVaGSW1OWiqzqpnG0dfdxxwnFyGUuHAPCOXREeQ3js2khiIHHjFg0Rwrw+7ZBDJ201mzHGdnNRulIryw76/owVD5cGibPwn/EtOxnbKKZimTcP/4ksffAc1ZzBkZM7uV/abLSgiztPKsS4oBB36795CrHUcJcIbHkpP3h89nVZFRwDmV7r497PrOHFqHopZ4rRrp5FfaGGKWWSqRSRsEYm7TNiXFCPZFYJxgwgcKg2Wi4qMUp0JjPpiJ8ngdOK++XQUO9hbaSZaUkuntw5dF/Au/H+IWgxx0704Nn0c2RFCcZmpzzNxwonFTD+pmLAvTvPmfp757UZAp/7EYtqLJDQBlogZH+h4yoqEZAS2PrHfsVjsCtNOyJRir3ikYZiNw+GGOSsIbJhPYO8e2lMDiFO7M53uREkhjrx8TBPcH3AIaZ/ARBw55UkVjySprp1BfqwYa+o+utaxGQ2NHCUfk81mfEdjPB8ty9hz8xiieWORSY/DSRwD0DSEffi9+kANxcESZsfirLOYkYXJ0uBjBclBg4gTLBKiTYG3fw8VJ7LRmZdeJier21qQVLHn1xKWh6vlZxbOZ7zItWT6tz7J2PikR+DhxUGXBn/ta19j+fLlnHXWWeTn50/4hufCeWXEd9UiS31IeoR4XwOm4ulHbH+SLJNg7LLQwWhm5DlPU9FUUKJGByRsNhnlYMrEU4FYJSdDf/+OQD/1+XbsJ52EYDajx2IEV6xA1/WDOidPvqoW9lwID90FQF1hI5aZN+J7oQm52MbC6W5adg2i6zohb4yAJ4oz78gq7SRZQVPVMc8BW6KVtRYzuiDgylKMaSYFUm3EydLgIwwxU8rPGKTtaBAUCbnQSiSlSok1+7HUurM2L6ImNbSU2lCLq8Q7jM6/XGRFsivobe8TUPNotQYo9OjU9AAkPlhZ5DEE26KFRLdtI/CKQdQUenVO3ePhFSFJfxDe2NnDhXNKR9/Aok/BrufBUQrPf5OTr32ah/4YJhZOsvO9bmafXk7JOEs+94UgixR8Zg49v11nvCEK9N+1mbwbZ6b95Q4Herb3UysZgTPbTJa0GhDANIHLxwqsBbQGWhGkGAhx2opqqGtuItnZRbyxkURXF0rp8N8+FEvSF4iyrsWLNxLns6fVjL4DW57hFdi2Gvp3wWAz5FYPW8R5diV9d24GTUcXjPAQOdeC5Bzl/qtpxnaseWgRH0+qpwPwuWU1fOO8adhMRpNM13WKfFHOcClo6OgJDUt9PnlX1xkNcCCQCKAkdJypQXp5AvsDDmFasRMtVopk8tDjCFHTpgGNtOVeya4Fn2PGlRfA3WeDtwUBKKh9hu5tN1EPWETYbc40eUUR1CQEfTGeihhs6umWPZDi8n6S/BQ/U+4zXqz/G5zwuf2OZ+apZWxb2UlfawCrU6F1u4fquQX7LXc4YM4q742Fw9jduWiaRp7moSMVMlbbnWn7nPT1b3PWvHlH5FiORgxLDo77SCo2YpEkgiDQWnkNJ0f+jxU2K+UJjTZTDwtPuhjXeUfe7uVw4s+fvYFoMEB8X5/ISUziaIQaA3V4f6wilk+PYxs9mNkaNbEsaCgC9diRFdlM4oNBV3VUr9HYkPMshkq+8Q3QVXYXV2AXXYRVH/NjYVbKxuBTgaqCqwIt/0RkvQENY2i1bp+gkLFgV+zIOiQF8ErGFiYVgYcXB60IfOCBB3jyySd58cUXuf/++7nvvvuGPSYallbk0ivWpl9vfPP1I7q/8ZQGe6IZw+tcVSPoz0FIKReCqY7ERFSDOeRMh7x50CBPRKsV29ITAUj29BDbtevgN1xxAqTUV4XqVqzzCxAdCsmeMGwdYP45lQiCwN4NfWx/u/ODf5ADYCg5eCwi0EQHeorwzIllfmtNyXR0JonAIww5QwTqSZXmLf1jLDwyrDMyI2nRncON7IUU0TikNoy3BSAVgGGudpHoa6Fw8CWckofXxKmUDmbUIKbq6oM+lmMVuZ+4iYJvfIOQy8y5m3Q+/aqKHeN/+uiatrFXrjsXLv8TRL0Q7MHy0pc4+YLMdWbVM43oY4WOHACSTaHoS/MxTc1BC8RRfXE8f99x2Mpg9KSGZ+deFCGOXxToNAkUe7MSgysmXlDIELJ9AgU5QKsvhvvqa4w3NA3v00/vt86qvQOc+Zu3+Nbjm/j5Cztp8xygQz3t/Mx0w6v7zRYEgYJbZmOqzoGkRnhdD76XmkffXvcm2PokesTDa8JJ9OFGEgX+7fSpGRIwqeF7qZnAa62o/VHkYhu2E4rJv2F6mgQECMaD5GVVIyslE58ILHCYyLWZiHZfRn9OpoM5e47EjKtSSc83PAJmg2iX9j6KYjeuy7FGLydfNpVr/nMxNQsKufRr86ldVIS4rIhowrjGnmraA4CGwLPqqWzUUkRx1yZoWrnf8YiiwNLLp2J1KrTvHGT9yy1H6qMP8/kb8glc9f5mcuRAWhFY15Nq0ksS5vr6I3YsRyPkosz1wBw3vDtjYaMdXXDidcyIaCQFgW3WGDutu0geg4EhQ6rQSUXgJI4JJKMI+xCB+clMcNEeRUEWugF1UhF4lEP1xdKDZHKuJU0CbjcprLGJhFQfpw0WUpUlirDoOjiKMdecxurmNjY1t/FWawdK+eJx71cQBHJTFj6DkohAaNIj8DDjoInAvLw8amtrD7zgBIG3N4y57oT0a7Fh7X4Jn4cTQyTQWKXBwxSBqkrYn+m4hlKdiYlYGuwyZ1RO7b4M6eI444z09CElRlpyYN4NUL0Mgl3IWjeS2/j+Et0hZi4sRE11FHa+14X2AYiB8eBAZLCa1JDljMm5I4sIVKUsInDSI/CIQs9SBAq6xsrHdpM8SMNjS31u2tRpXyJQTJUeaynFZ3ZZsGlKDsE37kUQjHNxvUWiNGt1U/WxpXT4IBAEgcIvfJ7QdIP0cofgCy0rOKE6l/5gnFBsDLWmJEPtOZBfByY7oDGr5Rvkl1sprXPR1xJg56qu0dcfB+R8KwWfnIVcYgMR5EIr/fdt+0DbHEJkhwctaZCeu/bxB4TjozQYQJQDtA2GcV99FaQGSHxPPrVfyX4w61xQNZ2fPT/cxHo/1F+Qmd41crmxaJHJ/8TM9H7D63qINvtG3l6qxFgANktzWDo1j8vmlVLkNK7VaihB3z1bCL7VjmmqQWZZ5xSQe/U0hH3MuIOJIDWdGt15AvZTT8V24oljf5YJAEEQDFVgtIpuYVb6/Y7GzZmFHEWw7FZwVyOUL8btfAwAPaER3eujpMbFRV+cS0V9Hhf822z+9n4rU/JtXFpvoyxm2AGEXNOxOnN5x30FW5R5kDsV3v5d2nsuG1Wz87E4jP9e1x4fg91HhmAaXhpsEEFbVrxMSE4wIxZnvl+irN84v821tYjH2f1/mCIwZtwr4ylf1hOmleOPT0vPb7PsJNFz7JFpQ2Xe8UkicBLHApIxxH2aX05VQlaN6+UOxU5cq0dkAG0yLOSoRtKT8QeU8izQYLRlnnKmAjoFyPHP5oxIhNPCYc4NhrhKNYMoUl03l5XJBbyoLqHZcYZhy3MQcItGH9crSoiCFy2cHGalNIkPhoMmAn/0ox/xwx/+kPBxIk339UYoOMUgmlTdQnmsiYaewAHWOnSMRxGY7RGYp2oEg1YwGX/GkNkgEmXTxCMC87K8ArqC2UTgmQAIdjuxxkP09SqoheaVEB6ADQ8NU2pJXSGmzDESjoKDMdq2e0bbymFBWhE4SlhI1B9GVDLngCOWlTYtZ/7SE1EVelRhWMdcAw1evGsLiYMY2RRtCqYqo8Of7IuQzPKQGwoMGSIzYi0ZItBcZcfa8AgAqi7Sg5ghAkUR0wRWgo2GyBevIy4ZJQTl4QEadzSzpcPHxjbv2Cu6yuHTL4CjGLq3IHSu4/wlW+ja4yMeVXnv6UZiHzDoQ7QpFHx6DlKuhVijj3iTj8RhUKQE3+8iqe8TFOLLUoZWTuzS4CEIsp82TwSlrAz7aacBIDochFe/P2yd4D6ksCgIeEJjhMIUz4GcchBkaH8ftj0z4mKSw0TOeUY4jGCXGXxkF4l9CKHb32ggvO2F9OungrNZ3eThsvlGqnOiP0LfXZvSoTLxtgD5n5xJzpmVI9pdBOIB5rZCiUcn9M47x0VpMMC0IqOt0x86i3hq3Cve2cH/vrKLHV1+fv3yTuKLPg0xH7SvweR/DQFDOrnvYMtzm7tY1zpIy0AYW+8GBN241pps87knZMbaexJ18U4YbILG12H3y/sdjyAIzDo1U4K+450PNnAwGoaVBkeMc8vkbadfktlgteCJJgi5rSAIWGbNGm0zExbZRGBGEZhg9T/38tZ9O8jTMgP6O5U2tvZFSR6hAKcjhSEiUE0kSI4VJjeJSRwF0BOR/YhAJRklN2Lcq3oVDV3egSwMTCoCj3IMDwoxQcOrRASB5+3GfUlWTRT3XsDCqJW/9PTzu74BrrYY/ZD6Uidf0L7D1/VvcVfR/zvofedKqWA4USAuGNWA2mR58GHDQROBf/zjH3nxxRcpLi5m7ty5LFq0aNhjQkHX8faGkWum0mM9H5EEJeIGOp5fRbzryIz6itKBicBsRWCupqJ6JYgHwWYnaDFIJGUCEoGFtgwR2BvKNOhNFeXYzzwTPRrF//zzJAcPIb1vfiZBlA1/x1Kf8fCK7vQw89Sy9OttKzsOfvsHAUkeuzQ43tVIRMx09u3xTCexvSlDhE6WBh9hSFkegSYB/0CU1m0e3n1iD8mDaNRYskjnyNYMwS2mFIeapqKpGvEUESg6TYh9y7EkDQLofW0OHW4/JanSYKW8HGECJsUeCOXTFvKvEwTCFpi1s40LWgwSaE3zOIh7Sw5c+rv0y7ztv6VuvqG0jgQSLH9wxwdWgouKhPOUzHUktKZnjKUPjKQ3infXIBbR8AfcYTZ+82JvZpnjqTR4qMw398YbUMrKiO3ahffxx4atE4xm7quCAC9u7ea17b2j70QQ4Lq/QdWJEPPD4zfD6rvB3wVta+Dd2+F/Z8Lbv8exJA/nWZUIopFW23fvFqK7jXPvjZ093PfKGiy9mwDYqVXSSQHFOWbOqC8kutdL/31bSfZEUH0xlDI7hZ+fh3X26H5zwViAhY2pxGCzGftJJx3cF3iMor7YCA3T4pUM5BjXSJsnzJ/e2MZFf1jJn5c3ct+aPph/AwCCFsemvAlAZKcnHb4UjCa47aWd6e1+pTpzXw+2TSFXg7OxEU58NrPzF26FUGYQbgjTTypBlIz78La3Owj7Dz1xfDTsGxaiqSoFnlb6UxYVVX3g9IRBkjBNqzvs+z/akU0EWlRjsH6gM8TaF5rZu7EPR7ienJS6vsviZ5c3jrdxFOXuUYrsc2BSFTiJox2JWARxn9JgixgjP2YMnGiCQLMiIwkDaNEk8VCC8A4PG19r5f7vvsP6V1pIJiYJwqMB2YpAObkZwv28arcSTAkiagcWYlJtdEYzGQq6ZPRlzbJEVZ6NWFLnnT0Hb6HkNjnT0wHZIAInfQIPHw6aCLzyyiv51re+xa233sq1117LFVdcMewxkVDd+gr+/iiapmOqmIEgqAiCzsK9T9N35yb6H9hGcPXhHf2V0qnBo5/k+3oEEkhJZCNhQqnO4EQsDS5xZjpFA5HhnXtzTQ2oKmgaobffPviN55RmysACnSjh1YgO47eI7fFSNSOX3DIbZdPcDHQECfuPnEfBAUuDexoIi5m/ri2WudEKqXKgsukzcZeU7bfuJA4jxEwZtiCBYpGwu8207x5kzfPN496MdWYepqk5KOUOgqu60FNJt9mKwNheH6JdwVzrwjY/H3X5bfTFp9KTqOUlqRJXCGypU/J48gfMRlVOFa8uFnGkRJUXtLyPoGusbR7nwEDNmTD9EiiYDq5KTp/+HmabTHm9m8b1fbx233aScRVd1w+ZFLQtLAI5VUK6vif9Wx8KIjs8+NwWZCFGR2w2bYKTMrGaqqBxDRBMpmGd44mG4YrAAO2DETRNx3HqqWhRo9EaePW1YQND2YrAoZ+wy5dp4I6IknngTpXaTzkVXrwV/rQI/n4tDLZAoBPe+QPC6ttxnFyG5DKBYKgE++/fhuftNn76rx2cKW5CTJXyL9cWAPCxxZXENvXRf89WBFkEWUDKMZP3iZmYq0YPlIkn45wdryE/VZxgW3oiotU66vITCYuqcrl6YTklORZ6bYY60BqHHGVHepk/vt7AQP116ddO66uYpuYgCAKJVODS/721F0GAWaU5XDDNQVXrc8T0eiLqYuLJWWCRiAI92ikEtDnE9FnowT6451z0vt3DjsliV6g/sZiqOXkkExpP/3YDvr7DmxA+3CMwTFNzO3lm6EsNSKUtAZLJCR0SNBqyr3XF7gQnXFJN2TQXriIrCKDm1FEbN/7/HkUlJoXxN3k/oqM9NGQnQE8GhkziaEcg4sO0TzdGSkZxBTOloXsUBUkYILbHy8qfv8/jf9pI59oeQt4YG15uZd1LR853dRLjRzYRaNp7P2puLf+wFjM1mI87XMySxJkANEZPIuasp0dawurG+bx45xY6dg+SYzX60/5oEvUg7bVyzRn7s6Bs9P3VSZ/Aw4aDTg3+4Q9/eCSO46hESfcqPLOvxtMVouDSL6D/9nYEQcMhv0owej3RHR70uIpj6RiplAeJbBJotARcT4oEs2oaVk1HCxgNArG4BC1FHsgTUBFUmZPp+Hlj3mHzHGecgefeewHDJ9B12WUHv4NFn4JdL4BiR2h8Dcv0zxNe14NgkUm2B6ieW8CGl1sB2Lmqi0XnHxkftgOVBuv9jYSEDBFozVIEmvLzcSQjTDvxFNzFB+fDMImDRJYiUBB1Lv7SXJ774yZCXp2N/a3MPLUUd5FtjA0YUErsiCaJaJOh+Au83UHOmZWIqe1rqkp4XQ+qJ4rqiZJT/C5K32YKTdCXqGGryUdpFtdlmnL8+ANmw2V2oRXmsbGmn0V7dYojgyzsa2C9WSGpasjSOMa9Tr8V7j4LAGs8yBVf/xSP/2ItAAMdQZ7700ac+VbyyxwIImx8rY3CKoOM6GsNMntZGaW1LiqyVJ7ZEG0K1jkFRDb2IcgiofU9OE48tPtHdEs/vd1h5tr3YLXuYLO9AtQmTFHjvFHKytJk8kTEcI9AP1FVozcQo8RlwXXllXjuvRc9kcD/z3+Sd/PNAASi+w+udPsPQATKJrjyL1A6H176rvFeMgqJMOxO+QZGPLDyt0jzb6Tw8/PwvdRM6F3Du3Hb6y1cp4IkthLFhIU4b6gLAbg+KhF6vxtUnWRPGNsJxbgvqUG0jN008yf8WN/PEF/ZPrkTHXMrXFTm2ejeEKPHXAQYqq5SfSvuvFNo9YSxmWTu3Gnm+xUnQPsaRH0Ac+udBNSPE17bQ49N5q6Ve4knNWQxwt+r3kNo60EWerjHPY9lVcW8P6uBhvWzmbHNjyv+/yg0/ReCGkX39pC88yZiM75DYHcl5mlutFCSM66bxhP/uwEtqRP2xWjdNsDsZWVpr9cPin0Vgbt2NlClhNkxRARmWQJMZG/Q0ZBNBLpMEeZdVsPG11oprdUoqspBKbex8QEZUnz5oLULX/uxRZgOOwcmFYGTOMoRDAZGIAIj5McyfZNGk8IZQj+hpM7uQAwNCDYbI1zRUIINr7Qy8+RScgqOj4GuoxVDpcFmcTNi88s0yzJbK8uAAXLDxSybfiIbW9vZo55Ne+/5hH0poq63j/wyO7lZQWe+SII8+/g5CnfWoK9fMvgPLTCpCDxcmLi9hMMAc9xPTucWevb6EVwVNDuN0htZ6MMkGyU+sSY/2gidi0OFKGc6AJo68nb7U6UpuapGIiQZSjhArMqUgU3E0uAp7qL0dCAxvKTDtmghotOQDwfffht9jNLqUVF3XiolUoO192Kt0ZDyLWiBONHtHmZllfXteKfriIXGDKlCdU1D0/aXxYveRkJihvyzxDPHcdrNn+MLf3mAJZdedUSObRJZyCICdU2nYnoeC1I+YVpS590n94x7UzkXVKdDQwJvtJH0x9Ikjqwr6ZJh0aph2vXb9HrveK+gx9VDqef4TAzeF1NypvDGgsx/48Km9wjHVXZ0jdPXtXwRVKRCF3q3Uyg2cOEX5uIusRHwxOhs8LFrVTfvPr2HniY/IW+MeCRJLJwg5I2x5l9NvHTX1jFLw52nlWOuc6H64/hfaz0kk2wtmiTW7GcgqeGU+tlgMa73zgi4vHGwWjHPmnnQ2z2WkE0ECrLx+7YNGp1j97XXpOd5HnwQLWaUao5EBPYciAgEo0T4pC/BNfdA2UK44s9G2vy/vQ4nfsFYJhGGN36KaJJwX1qD4/QKuuwSUyM6l8VFPqW8h0nQ6TdP51dfuYUnp1civNdFvNmPqToH+9IScq+cdkASEMAX87GwMaMmHfLJPV7wlbPquHZxBaU1c9PvVeh7uf2G+Zw+rYBgLMldK5rYNf87sORziAkvLuXv2MTlhDf28d+PbyKeUuPeVj+Ae9P/AfCEM4c/FXi5PvxFfrP2NxTVN/B4scwKTKwXv09cqyGRLEZJ7sa+9QuYgq8R3tBHdKcH7xN7uOiL83DkmhEEgRWP7KZ12+HzEzZbszwCw2Ha9zTjUqL076sIZGJ7g44G0WZDTPlVJfuM8rEF51ax+MJqKmflUZxjxp50p5ePOHYT7D22yLThisBjL/V4EscXAuH9FYF6KMhUZ0369ZAicHtUHQqlpc4sUms22r9qQmP5gzuOeEjjJMaGoQjUcZv/CmSFhADzOIuF51Vz1idnIMtChgRMYbAnjNuWIf4Gwwen5su1Zfr+ftkQTEwqAg8fDooIvOOOOzj33HO57rrreP3114fN6+/vp6amZpQ1j12Udb1LyxajEx5b9Am6xGK2yHMIyG8aC2g60QbvYduflEUEjlQaqmoq/qTxR8jTVGL+rPLE8gxRNRFLg6vzMh2/iOofNk9QFOynngqA5vMR2bTp4HcgyVAyFxIR0FXMgedRvUYHMrLTg6vISnm9GwBvT5iuPUfGX+ZA50A8AR1aZsTfHM90CIcawpP4EJCV0DwU6LH4winYXCaKqp30tQZo2bq/n9RIMJU5sC8tRXSZkIus+F5sSisCy+QaSBqNIHflKnz2qfiSRTRGl7Jbm4rPERtOBB6nikCAMyvPxLLsNHpzRTprypg30ES1r2t8PoFDWPSpzPT6B6hZUMi5t8xCVkQkWcDuNiNKAqJkTJusMmabgqyI6DrEwkkaN/SNunlThRMh5eul+eME3mw76M8Z3T1IPKkR0HQcUl+aCCwYuixGIkh2x+gbmABwmV0oojFoMkQEtg4YHXtzTQ22pUuxLV1KoruH1s/9G6rXSzCWGUWWUoMp3QcqDc7G3Gvhc6/DghvhMy8bCbVnfQ+seVC2CPp2wfZnEe49n2T7N8mTf4OKTrfQgUUfRNQTOMIOLPfuprjRj1xolC1aZuXjvrIOQdq/AmAk+AP9+G2wsxwGawowHWcKMJMs8utr53HeGRlf6uKQSo+6jnNmFhNJ+Up9e7UV3WYEfSXN1dikV5DjDTiaAyyZkssXLXu4svm7qEIBA0IBf8o1lAc6xvX0mZa78Wphvk+Et6Mu+uI/RzcZy8SFmeSbbiNHfhBMgADCtn5O/3g9sbBx397+Tudh+8z7KgL9bT50BFoFwzu52Gscs5iTg5Qzeln5RMaQKnCICMyGIAjYxAxBGrQ3EfLG0dVjh2DIJgJjkcNbej6JSRxuhMJ+lH26MFooSF1ZNbJq3Lv3mhRidDPP9nvOz/0Jl+b+iFqLyMwCM2ZJoLDAQkeDlxf+spn4YRTdTGL8SHgiCIqIraofzT2DeO5UnnYY9xhRkzi/8AJsOSYKK53IJglREsgtyVyrPJ0h3FmKQO8+ROD3ntzMF/62jkv+uJLG3v0H7d2OTNWMXzKsPSbDQg4fxk0E/vGPf+Tb3/42M2bMwGw2c/HFF/OLX/wiPV9VVVpaJl4tvz3YTv+6XSTjKjNO/xgWPcbc5Fam6G8h4gX2T6L7IDgQCdTc2gkpn6FcVSPuyyIjSjNy64lYGpxjtoOW8u3T9r9YpMujZJnQ2rWHtpOFn0hPipv/jnmKoTJUPVGSfZF0aIggQdeeQwglGQeGSoNh5PJgu3ctJqU7/do0SQR+JBCyiEAhRQSaLDLLrptGb3OA4GCMtx9vQB2nD1zOuVWg6STag0Q29JErFeOQc6m1zk8toWMNPoW7dxUuuZf1wavothvneWnWJcg0tfpwfLxjEqeUncKK3nd5eqlO2d5OXPEQX9jyDMt3HEQwx+yr0ins7PwXNK2guDqHa7+7hIu+NI8rvr6AK/5jIed9Zja3/PJULvnyfC758nwu+9qC9CZ2vDs2AeC+tAZSpE94Qy/hzaMThyMhutPDYFLHJgRQhDgbzENEYFZ5YNnhs6w4GiEIQtoncF9FIEDlnf9HvK0Vkkliu3bR9tV/R+nOBEIUOY3v7IClwfsiFeKTfrbmwon/Bp3rjcdbt0H7+xR0vsHU6Ov8glb0uZnzL6bNMpKBkzpaQiPvEzPJOb1iRBuQ0RBsbeLEBpjRAYnS/IM7/gkCQRAwZQ1+5njD/O+6/+WaxUVUVe7CXPI0fcEw/8i5GhbdghxrxiJtxSq9ws2YOadzN1+xbkIkhKx3sTpvPliMzkuxzUi1VDWVE2f2owO3E+PtWaUo3/oX8fqvYNa3AGAv2YNFXUl02wCh97qompWH3W2cW81bBgj5Dk9wyL4egZZAlCrzJkKmIKKmk58aBDgey4KHMEQEaqEQamD/NmKeM6Mg9Vh7iCQ1kv3HjipwMixkEscSwtEQpuRwol0NBimucpEbMfqrfZJEiF5KbW9RbtmI37mDhy2NEEqwzCbiHYiia9DfFsDbM3nOfxQIr+tFHYwhdKzGNPgCtwleIqlwzQrvXC6+3LA6Kaxycu13lnDxl+dxww+W4i42rlfenjC5lmwiMNOv9YUTPLK2jZe3d7Ot08/j6/YP48zNyVQ7+iTjHJhUBB4+jJsIvPPOO7n77ru5/fbbefDBB1m+fDm/+93v+MEPfnAkj+8jRby0FlvMQ1XD03Ts9oJsIjjDMKCWBRWT9AYAke0DaIcp2UiUM38WbQQicN3qjEl1nqoS9WWUf1pxRj47EUuDAUTd6KCrQnC/efZlp2GZPw9BUQi88OKh7SCvBqaebkx7GrGXNKVnRXd6qF1YSGGVA8Uks+XNjiNSHnwgItCU9BDK8v4yZZ17k0TghwddHl4aTNgD3jZqFxVRWmuY23p7wrz3dONomxgGyWEi5+yq9OuZylLOLfsENikHucyOvGAQwWOkXHbFZ9CbnE6XswGA0lRisKAoKKUTmwAaCzPzZ3J25dmsmCvS7TbeW9DfSMFLT7J2vKpAswMu/b0RHBIegAevhi1P4syzMGV2PrkldsqmufdbrbTOlW74dOzy0rnHO+ou5AIrrounYp1fiOqN4Xl4J+Gd41OPagmVyA4PA6qOTeojIghsT4VETY9nSCH5ODgPZufPxmXKRZAiICRp82RUMqLFQsXvfodUWoJSXExk7Vpufvh/cMRCCAKUuoxQFU8oTix56PdvTdNhyWczqfM92zLHIMBM+Q0W2jI2AXFlDrkfq0dymyn4xExsYyQDj4ZoW2t6Wi8rGmPJiY3sa12BDzqCHfx09Y8ZdNyHKXc1gZJv86vVt7G67j+IYvxHbNJyyonzGeFunJEnSUrlxC1L+L+yGEldpcJRwa+W/YrqnGqiapTt0cfS6tHftPaRlGVMN/wPXPALcBQhDW4n3/Q7JKEH1RcjsdfHjJONTq6u6exa1b3/gR8CzFlEYDQUpEwymL8+SSLfD1KqKXI8BoUMwTJ3LnJREQgCye79v/f80sW4UlY6PZYAUQ3iHfu3JY9WTIaFTOJYQiSW8Qgc6inp4TAF5TZKfXUUJiAiimx1xFlaXclJUyr4TGkR55Wt4p8ksEsiJ9gkJAGSCY0nf71uMkX4Q4au6YTXGgOZstDKXe4cHnU5iYkqZV1nU225DNmU6QsNtZMFUaCgwuiva6pOThadMZhFBK5o6CO7G/3EunYS6nDxhNuRGfDzScbA7aQi8PBh3ERgU1MTp5xySvr1KaecwhtvvMFdd93F9773vSNycB81Yv69AJT0bWTvsy8AUHnOF9LzraZXiRVb0BMaAw9sPyxegcNIoBGSg4NkSmLzVI2oP0X4CQLJvNz0PNls+cDHcjTCJKSUOlKIYHT496MUFIAOeiRCbNcuEp2HWJaz6GawF8OUUzHHlqffju70IJskLHaFeCRJyBcnMHCQapJxQJLGUIVqKibdN8wjUBEzV9FJIvBDhJxR3VpjHrj7bLj7bITO9Sy7vh5BFCiuyWHT6228/6+mcZHG9hNLUUrsyMU2/PQjIJHQdd5pCTK48cH0ctsj56LpUfqc/dTECtAsFpT5c7GfcgpClnfh8YhbT7gVXVFYflU1miiwM7eSz2x/ged/+X/jTyubeRmoqRHHskXw5GfgjZ+BNrq6UxAEZp5aSk6BBUeumZfv3kpf2+jehI5TyoykWEAuteN/vumAnVItkqT//m3oCZVBWcQp9bPVbCKZUpPVxzMhJUrpxE8NFwQBX3wQQdCYP0VA3EdUZ50/n+qHHkq/bs6v4hfv3oVbhhJX5h7Z6x+faqvNE+a7T27m1sc3seRnr3L57W/z/ae3gLMYpl+UWso4x4ZOtRtMK5DbVxkvRIWC73wC+6JiSm5dgqnCeUifW+3IjJqLE1z5ORbkkkwVREEALpp6EWX2MsrthipOEDQSchs3PrST1ZZlxjpCCJd8P2Zxq7GMCMEvPkBTsJVQMkSeJY/FJYvJteQSToZpDTRx6nSBmaVOnBaFR9e2G56RJ38Z5lwDiTCCHscl3wNAaE03M08pQ7FIlNa5aNvhOSwDhiaLxdgvEPL5KDYH0IF+SUqXBQMoFRWjbGHiQ7TZSPb2gq4Ta27eb35RzVxOCUeZH4mSp6r0SYPpFOljAaZ9ysMnMYmjGdF4OF0anH0FzM0FW9JJX6q7u85qtKV1QSAqivSGXuNROYwfnZBFoEQWiIWSaEmd3pZx+j1P4rAg1jCImlK1b3G00CnJ5KsqIGA15XHmCSePum5uaaY/aolk2s7ZpcHLd/YOW6c/GOONfd7LtWTatT45ianKiT5JCB82jJsILCgooK1tuJfRnDlzeOONN7jvvvv4z//8z8N+cB81Hjs106tIvvkU619oZG+7i4GCJQBoWh+S711IasSafQz8Y+ewiO1DwVilwbqus23r3vTrXFUl4TOOUS4qI5l1qZ2IpcEAVsnwJRAEjVbv/gofxxmnp6eDK1Yc2k5mXAp6ElreQdz1CHKu8TvEu0KooTglte70ol2Nh98ncEwyONSPiEY4SxEoxVPniSQhTEBvyKMVgpIhEgQtCYNNEOqFTf+g0N7LZV+dR18q/WzPul72bkqVfyai8OxXDeXQu7cbD3+XsR1JIP+W2RR/bREJIY4imtgS7ENIbqba9B4Acc1KY/QUeixr6cmPIfX3Ud0WJbFpC6Lr+PSGykals5JFxYt4uriN2y8RmDHYhqxrLNm0nK0//J+0n+OYUCxwwyOw7Faj3BNg+3PQtXHM1eafXUn13AKCgzHCvjjvPrmH5s39Iy4rCAK5107DdkIxya4Qyb4I3ucaRyUNdE0ntKabRGsANaHhCSdxSn1sybrWl4cy0xO9NBgyJZwAW3vaeHvP/t+1qbycKQ//Hcvcucxp30adr4Or975NcU7m/zve8uA3dvbyyJo2nljXTn8wzuZ2H4+ubWNTm3e4tySwTqsHIFfzQr+h3KVsAYLVGMwaIoEPCZ2ZhrL5OAyGGIJosSDlGyrYGfECbjv9NhRJ4fzq88m3GGWiormXBd1buKd3EZ2rXfhaLPg3rGFgh52GZ4vp3DWLzks/xqdeUyka1FlYZJQ5nV6RaUssmdXN7p4ge/tD/O613fiGFA1nfh/shiLTJDUi00ysJYBdgtIaF117fLTvHKTzMPhIC6KIOaUICwckCk2thASBiCgOCwo5nkuDs4OyEiNYFdWVFmBPWthktbDHAntc2wms6qT/gW10/Xw1vpebiI8xePNRw2ydLA2exLGDWDycUQRmjdJJsQhV1ur0653m4f3V5+wyK6/28ug0Ky5VpzDrXtm5fXyVE5M4PIikvu+EpvOmtY+nchwMSBKu3mVs7lvCWTNGr0jIyyIC5WCGzxgqDVY1nTd3G/0ic9ZvvLJhuFWO2+JOT/vEJPFWH/GWAIn+SZ/Uw4Fxt0RPO+00nnrqqf3enzVrFq+//jovvnjwpZgrVqzgsssuo6ysDEEQeOaZZ4bNFwRhxMevf/3rUbf5ox/9aL/lZ8yYcdDHBrBlYS5rpol0FMlUtO2k5Z57ePH/thCa9nneUOdjIYEiP4hgFVBK7MR2DdJ7x8Z07fqhjAJnE4H7lgbHwknCYmb00ul1o6dIcVNtLcl4hmVXJigh5JBd6ekWb+/+87PSE4NvvnVoO1EsMPdjAAjJKO7KtSjlDvRIksiWAUrrMsdwxInAfUqDVZ9R7hLK8pOSVGMZ0W4/KJ+pSXwwZHsEJgUzuKsgrw7e/yu8cCsVM3I56apazDaZSCDOK3/dhr+lBR7+GGx4EB6+3vCgW/kb+P1ciBkdENltRpAEVEGlMRpGkndxuftHWMUgO8JLWOm9nICwkR2Fxvk9oz1znbEtWvzhfglHKWrdtSAIvDNLoPPCs+jNKaA00Ifp8b/T87P/Gd+1WZLh7P+G839qeAZGBuChayA5unpMkkUWX1RN8dQcSutctO8c5IW/bB6bDLyiDrnACkC82U/w7f09UsBQGvleaELKMeGTRTQdHFI/71stuFWVQq0ElzcxtGHk4uIRtzORUJSVJifIPrr90RHLfCWnk9Kf/Bg1Fc196eYXmaJl7qXjDQzJHqm2pcphdB2+//QWYlPOhDO+Cx9/hLcqvsCvk9dxZ/ISJLKOp+qkg/l4o0LuznSG7FVTD8s2j1UMlQfrff3oiQR2xU6+NZ9Tyw2lQpFP5Yer/satrzyGr8lO53t5+BslfH1lJCMSyYSC1O/l0jU6t7ymsbDYIAKXlS9L72O7bzUXzTHUh55QnN+9lrJoseTAmd+DknlIog+3+ym0QBz/q63MODlDxB+u0JAhRVgy7qZQ2Utfyp6iyJcVFnUcKwKzg7JGUgQW55gRI5n+QFfeOuIJHTWSQPXHCbzVjuexXejj9PX9sJFdHj4ZFjKJox0xNZJRBGZ1TdRgkIvPPzX9uj2r3wuw2mJi2zu38ZWr6vi1EMMkZ65vLW92oCeOzv/nRIMajBNa04PoNtFiDfGezbjfiDq0e8/kzOlFFDhG5xryyjLXK82b6csOpQZvavfiCRnTZ9QXcGpdPuVuK4+taScUy/AfVtmKJWW9MihJyILRRj6c+QzHM8ZNBH73u99l3rx5I86bPXs2b7zxxkH7BYZCIebPn8+f//znEed3dXUNe9x7770IgsA111wz5nZnz549bL233377oI5rCC9e9zL+68+hvNc4IafufgElHmT12imUi14UQaU82UDxmTvQo0ZjXy6y0vOH9fTds4XBx3aPtfkRMZYiMOyPE1Eyo5Xlg4Mo+YWIOeVY588mEct0UOUJ6hHoMmfKn9t8+3euLbNmIhUYnkuhVavQooeo0Fz4yfSkaeCZdPlIaE03xdU5CKnRra4xfMAOFWOdA6HOduM5SxEoJowL6WRZ8IcLIes3aM5ZCl9YCWoM0KHxDYTdL7LwvCpmnFxKNJjApbciP3ABRP1GPVrYAxEvRAZBS8DeN4dtv0Nsxiw9wUXu2/AkDe9ARWpn1UCQ0ilRmsqM8392e+Y4bIsXMQmocBidYV0UCP/7Rbw4+zxMyTgRyUS0swvPvfeOb0OCACd9CerOgVAfRDyw8/kxV7HlmLji6wvSgQEFlU56W/y8/sB23n1yz34kpCCLuC6tAUCpcOB7sZnQuuHhJlo4gf/lZgCSA1EiMw0VlE3sZaPFjFeSCElhxB6DIJILChAnqCo8G8OIQMWPrkOnd+RrvlQ/nZeqTyIqynQVTWHGi4+k542HCAzHk7y31/h+S10WNv7gPOqKHJTkWOjyRvnsgxvxn3wrzLiIP8Sv4H19Fn7djogGihVyq6Fq9DKag4Gl1xiAUgVwVtQclm0eq7AuWoh14ULkggKC777HzbNv5ubZNzMrfxYAn3pdQ9E0lJS6fqicWI0KyEVFSA4nWqqTumSPzqzdxrlQn1ufVpyu6VrDN8+vxiwL1BbZ8YTiGVXgwk+AvxNBi2KOrkDER3hDL2W5Jsx2417euL6PaOiDexoNEUGKYMUtddKfsoEYrgg8fhWipuoMEZho3l8RKAgCdfZ63CmfwGZXEyEbiBbZCG/SINkXIXiAsKePCiarNT09qQicxNGOeDKaVgRqWe1lLRBg4bwZWEVD9OBNXcckIBeRskSSb1mThNb9GsvMPL4nRpBT1+iBmErXbe+nVbzZz333b6XzJ+8x8OhOoruPTJjj8YTw+l7QdLwDMTrVDTSbjN+rLGIDzcb1J4x9r3EVWRFToXjR/kwba0gRuKXdx9KpeRTnmDlrejFTC+x0eCPEVY139qnucEtGBYdXFDGJO4xtThKBhwXjJgKfeeYZrr/++lHnz5kzhx/+8IcHtfOLLrqIn/3sZ1x11VUjzi8pKRn2ePbZZznrrLOoqRm74SvL8rD1CgrGNuOOxWL4/f5hjyEUnXAab841TmQlGaegfwsDPVGetn4xs4Fdj1D0mSnknFuFaUoOWiBBrMFLeEMv0YMkisRsEmgfNVjEHyeiZFQMOQMSiYE+NH8H5pqpJOPZRODE7ATmWd3p6Q7//kmbgijiON0o6dGjUcKHmh5cMgfKDXWV6G3AVmiUdiU6guCJUlhplHd5OkOHpYGfDUkeXREYTaVeZnsEEjMusKLdxiQ+PAjZo5iqClY3XPA/mffeug3+dyYnx/6bywp/ybX538GmdRnlpXXnwWdehPN+kll+98vDtl+U9DHHthxR0HFLrdyfOI+L9NsQb/p/5Fy7FFUGdJ1ZnalRupwcTLW1R+zzHksod2bK49qD7UiXX8UvTjASwSNvLqf/z3eQ6NlfUTwqlnw2M73hwdGXS0Exy5z/mdmcfFUtl3x5HrtWdbPzvW42vNqKr3d/JYd1Rh65108n0RkETSewvBXfK83omo6e0PA8sstImgWsCwrp9xnkf5+tLz0oUKXMJNlnXBPl46AsGIYTgaJskGOtnpE7yKFYkgdmXkCvLY+pHbtxvfkSMzzNwPhKg9/dM0A8pRQ6c3oRJlnirk8upiLXiicc593Gfpbv7MUXjrO1w2hDvJh7E1xxB3z6JfiPTTD94g/ycdNw9Bv+YP0ucNvzDrD0xEbOhRcS2bSJZF8ffb/9LXoySXjtWua+tIdrVqqc0GAQ72JBPnn/9jmmPvsMBV/+MrWvr2Dairco+ssfuePyzD03etcDtH3py+w58yw+tymf6e06cS1Oe2Qrl84ro7E3xD83dbJyT6r9IZtgwQ0ACCSxSW8CEHy+iWkLjPJkNaHx0A/e45V7trJrdTcrHt1N0BulfafHCJoaJ4zUWIFiuxlB0LOIwCyPwKwk5eMNktOZLhWPtTSPuEyibCmnRoz/e1RS+cvCJ/BcrvDE+avRBOP/HVrfQ3KcvqEfJrLDQiY9AidxtCOuxTJEoJShG9RAAFEQqbUagzJDcodaycmVUy+jU5HpVGSea3ia/+m6gZ+ZfsSgyej7JFQdrzeOFk2i+oc/a2HjEdnQR2Bl+4f5USccdN2wotF1na0Rld22Del5jlAZBQ4zZ49RFgwgSWI6QC80EEVMCTmHFIGvbO9mdZOHHn+Mk2vzh21v+a59fQKN67pXEjFbDCIw1uRDiw0Xy0zi4DFuIvDHP/4xweBHZ6rb09PD888/z2c/+9kDLtvQ0EBZWRk1NTXcdNNNtLa2jrn8L37xC1wuV/pRmeW5U+uu5e9ninTkgb/QwbTmZ7DZZRT/XB5NnsH72nSkznWIq/+XnHOnINkUBEvGrH/w2T1osfGbWg4jgfbxhwsH4qimDEuuDLrT0+a6umFE4EQtDa50Faan2/0jl9s5zjkH66JFSHl5BN9YPuIy48IpX4Np54Mg4JIfYsjuNrSmm9Isn8DuvYe3PHgsj8D4gOElFxaMv66iiehRg1iYVAR+uBCzUoPTIRIzL4d5H4dr7oH6CyDQiZQIUFCgYRIjDKqVePQ61It+C6XzYeoykFOj/A2vMhSfpfc3cLb1CTRdJ6GZeSu6lB+pt5BA5mNLKnh016PkmnM5T5iNJWj8720LFw5TKR7PGFIEAnQEOjh7RhHvlM/n9SqD3NfCYXp+Ps4SYYDqZeBOqU0al8Pg/mqTfSGIAosumILdbSY3q0SiecvI1y3bvELsS0sRHQpaVCXwRhuDTzfQd+9WorsHkQusmOtzybmgOm1JsMeeGbRaIGRI4OMhKASgxJYJixBk47toG4UIDESTBMwOnqvJlCR9afMzCLo2LiLwjayG6VCDtabQwX9eOAOnWaKm0MHXH93I3Sv3omoai6rcfPyESlh4E5QtSB3k2NYNyf6Rz41sqD4f5ojRpuh1CTgUxwHXmciwzp+PJWX/Etu1i55f/pKWT38G5c5HmNqTKmOqslHyn/9J8be+hexyUfi1f0dMqau29m9lxUyNt2cJvPOlk7EvW4YaDJLs6WHuiw3892M61QkXb7a/yZULMwMMwwzNF2b8IR221zDXukh0hSje62XxuZXMO6uCWChJw5peXrtvO1uWt/OPH63m2d9vZPf7408VNtvsCHIZRSajk9u3jyJQLipCnKBtv/FiyCdQ7etHDe5PltUvOIWTQpnO49ve5dzy0i3c03w/f5z3BKbqHJK9YfwvH/ga/2EjOyxkUhE4iaMdiSxFoJ6tCExxCTWuauON1H2xzlHBjYu/ylTZSbns4EGHmSfNUU6SdvIV9/dxSUb/p1cUEC0yUo5p2LNoyxLS+DJWWZM4eMRb/CT7InQndPqSOrtdmYyIAuVEPn5CJYp04P5G5cw8CiocmKwyBal+qzecIKFqbGj1AkaFxZR8GyfXFKS9At/Y3ktnV4BgLEk4nmR+6VLq4wlcqkZI2WlsXNWJHQb/3eMd4+41Ho7Usw+CBx54AKfTydVXXz3mckuXLuX+++/npZde4i9/+QtNTU0sW7aMQGB0A+Dvfe97+Hy+9CM7FKXOXYfPIdBaJODuDSDHg4jNO7B4E9yevJa5QhMCOrx/F/TuwLmsgrIfnIxS4QCTCAmNgQe2oYXHpxo7UGmwasoqGfOmzM4FEdPUqcdFaXBtbhlqtAg1UkpXYGRZsH3piUS2bEH1eAi+9dahn7vTL4KBPZCMIg2uw2Z6G6nIRmyvj+JyOxaHTGGVk/adh1eCPtY5oHmN3z+YUgS6oxnDe2mSCPxQke0RKAwRgYIAV98Jc68Fcw44y8Ccg7WwgLBQwI7QGTzR+xM2r0str1iJlaTS2IPdbH/qJQASz/4nkqDiUgbYEjyJn8UuBwQq86yg9LCxbyMD0QHys0x1rYsn/QGHUO7IdNg7gh2cUms0MP4280KCJhtSURGh91bR/ZOfoO+bzD0SRBEWfRJkG1QthW1PH9TxnHJVXXq6ZevIZteCZPgF5pxbhRZKgGiUsiW6jEaz6o2Rc04V/Z4YznwLuUUS262ZQaaFZEixId+0iY5CW2ZgSFAMcrRtcOQOcjA1cvxC9UkMllQhOJzERIXzWtbQM47S4HhCZUaJE4sicmpdfvr9E6fm8V+XzGJPbxBdh0fWtKHqsL7Vy7xK97g/S/Ctt2g8/wK8Tz5J/z330vnf/4/e3/xm/+NoyygdBvMUJPH4TgkXJIni//4vwCAFtaSKlGOEJlX5ZAac8FZ9AtulF424/qrOVcwqmM3fry+i4JLLkRxOJIcDwWpFDEUwxzQuecnDivYVnFCdm/aGfGtXH9qQmq+w3ij7dpYhuW1IfW8AkF9qpzYQw+E2I6fWU1IDxfGUncy7TzUSj45P1WCy2pCUqdhEDz2JWnpEK6aYRncuqNXlmGdMP4RvcGIh2ycwPoIqcPHUQgrCFSiajjNVIhxMBBEQKKgq5V3fatAgvK6HWKt/v/U/SsiKCTHV7oiHJz0CJ3F0I6nGEVOXSE3K3KfUVH+8LmXfMIS6/JmU2Ev4/SUP0ZkMEdVVnnY60IC9WgnV1hU4Cyw0xHXUMyop/f5SCm6enX4uvGUOcr7RJ1KPQkXvsYTAinbkcjvPu94jUNmMJEQpTiYpTyR5u2sqZ80oPPBGALNNpr89SDSYoColdPKG4+zo8hOOq6DD5UGFdS81s/XVVs4qdXNiVGZ+r8Y/fraGW+98n+vvXEUwqbHbpDAgS3TrPYiKD6XCcdBVl5PYHwclH/kogwjuvfdebrrpJiwWy5jLXXTRRXzsYx9j3rx5XHDBBbzwwgt4vV4ee+yxUdcxm83k5OQMewzBZXZRYC1gfW3ms+cPbAMNLPFC7khebrypq/DPf4fIIIIokHfddKzT81C9MWJ7fQw+1UBy4MA3bjGLXNg3LCTijxNPdXZsqoqaUjHIxaWIFgvJ44AInFZQimTpRbJ20RMZWfotORzYUqRIoqOD+N69Iy53QMhmuPCX6Zcu+z8Q+hpI9oTJafMjINDXGmDX6m7Uw2heO1ZpMCFDhTCUGpybzPzOk4rADxfZ/1W0EVS/p3wVvrUDbnwE4cZHCH16Ixsi15DQrWx4pZXuJh/bOnxs7Z6dXqV202dQ770Upc3oSAbVfHbP/DYtFoPYOnt6EU/vyZBQZ/ZkygIn/QEzcJgcuM1uwCACrSaJk2vzCZjs/L+lnyZmdaD5/Xgfe5yuH/wQdTxq9/k3gSRB6ypj4Gek33wU5JbacKYaqJ0N3jE7/o6Tysj/1Cxyr5qG6DShR1VMNS4KvzAP85Qcdr/fTX9bkORAO+ssxv/fpAnUJzL+UccLEWiRLbjMRniTmFIEtntGvs8GUt+5JkpsuvpzCJLIXE8Tn97+At7esb1mAtEET6zvYGd3gOnFTmym4ebmVy0qJ89u2HH0p8LCqvNtLJ06dtmunkig6zr999xL21e+ihYO0/XDHzH44IP4nniCgb/eQ3TXrmHrJNoz971AwaQdBIBt0SKmPPQgU/7xMEp+PjkXX0z+5z7LSz8+ny99VebZE3R2e/b3bFY1lWf3Psv2ge1Ek1HOrjyb/E/fQuVf7qDujdcRU23Bpbt0Zr7XRUugkdPqDKuZgVCcTe3ezMbO/gFEfQh928i1P4BSZia210ds1yB1FpHP/+F0Tr6qliu+vpATL5tK+XQ3YAzw7lnbw3hgttkRlRqmmNdTrDTikVWK/QIzOkBq7kDOzT3wRiY4sonA7OTg2N4mtFAI/9/+huu5MM+/PMgLbZ2cHZnBfy/9b3R0/r7nHzw39Z30Ot5n9qTD/6J7vIQ3GSWHXT9fTf/ftpHo+XDLcwVBSKsCJxWBkzjaoWcFq+lSpl+jBYz2Vm3h8NyB2rITAKhx13BquaHc75RlXnWUMF/azWmORxAH9xKPJFn7QjOqun+/S8wx2kR6VD2oarxJZBDdPUh0u4eOVg9PVz3C3yt+R7MlwdWBEP/XHka25bGgcnz3muzAkBJSgR/hBGubDQHN7IREzkCS1c828f5zTSyKyJwRVZgfl7GoYG4IsaXDR58n09bpkGWs1t0k2oOE1/WgjXMgbRIj46CIwPr6evLy8sZ8HAmsXLmSXbt28bnPfe6g13W73dTX17Nnz55D3n+tu5aNw4jArQDUJCXuUi9lp2k21JwJ7WvgnvPB04RSZMNxWjmiXcFUnUNk6wC9d2wk0T12w2EsNZipZzUWYtRH4LROB6TSYs21htrkeEgNrs6pTk+H9R7C8ZEvAI4zzkhPH3J6MBjlnXOugZmXI0VaKTLfiiLsJbGxj7IpTgCiwQRNo6SCHgrGKg0WY4aaaCg12J20YK6vxzJnDkrVFCbx4SHbzzOtCBwDhVVO5p5ZQc2iQsKBGI/etpZf3raKrZ1zWRu8lu3hczCLYSLeCAIwkKjk3cDNrJOs6dKJ0+rdPNf4HAB2TSFvUyum+mk4Lzgfy5w5R+RzHqsYUgV2h7pJqAluOLGSC2YX015WxytzzgVZxjpvHr6nnqLlhhuJd4yc1puGqwympMpK/R3Q+Ma4j0UQBKrnGCoyTdVp2zE28WSdmY/9hBJEi4SUY8I6Mw9ThZNEXGX3+wZpoDta6E2dg8VROw5/ZpvKceIRCBmfQKM0WB/VIzAYy1xLE7MXYD/ZCO5wx0Ocs+a5jLprBOzpzRDFM0tz9ptvliWuziobBbj+hKoDDp7233kXjedfQOCllyCZRLDZcJ5zDpZZGaWE94knh60Ta8tYnUSKnGNu/3iCbckSBFFEdDhQysoouvVWTq08nRNLTqTAWsC6nnX7rfNe13t0h4zS3CUlS8gxZ35bOTeXwv/4Gt4T69GBL7+g0XDf7cN9jLLLg6ecDKVGx1YY3Ev+tLdIhVTje62VZH+ERRdMobg6hxMumcpZn5iJq8hKQYWDd59qJBk/cKc1EZNRJCd5slG10ivZ9/EHPH4Tg4cwVBoMEE8RgXoiQfu//zuNF1+C/9VXkUMxfJudWDwSn+lUuG76dZTYDUX1htgWtDoL5vpcEp0hev+8keDqLvrv3YrnsV0kukOo/jjR7R5679hEpOHDDSUwp0raJz0CJ3G0Q0tk+qSqYkIum4mpro7kgNFfqsutG7Z8XRYxeM20TCjowwXVmWUKNmO2ywx2h3jnsYb99im5Mv74k6rAg4cWS+L9ZyMAa8RONNG4L5UlE7Sp5fwufiNn1BciieMThuWVZojAfNWgnCIJldVNAyg6nB5Rhi0v9WZ+s7igk6eLXICVDXszdFW7LGN1bgdAT2iEN+6fFzCJ8UM+8CIZ/PjHP8blch2pYxkV99xzD4sXL2b+/PkHvW4wGKSxsZFPfvKTB154FNS6alltX82eUqjrAmeoA3N0kFrRzcu6iW/zDZ7r/o6xsMUNfz0XPv4w5ilLKfzKfAYeME5Y0WEitL4X1wVTEEaprR9OAmWRXGqS0r5fs7vSuMjN8WZmtQb6efFLNyPJCqIkYbbZUcxjKyePVbgtbhQcJAgimvrY0xtkXoV7v+UcZ5xB769+BRglV/mf/cyh7/Squ+DuMwHQbYU41X8QzPsuleg0phbZ/k4ndYvHNk4dL0Yjg+PRJBbNQ1KC2JAiUDMT220oHawLFhyW/U9ifMhWBAojjEyOhGXXTeNvv1qDgEBQ0LBpAr3kEwzexHzbswTVfAZ9Mmj57IicQ5P5bP65t4+KXCv9wRjd2gqK7cVEkhFu7qsH/3ri/gCW6TOOe2+ofVHuKGfbwDZ0dLpCXZxWV8YPn91OMKbyJ6WepT/5HUW/+m8ARIeD5uuvp/KOO7DOmzf6Rhd9CnYb5dusfwCmnTfu45kyt4AtKzooKHfg7RmfmsO5rALnskznfu/6XuKp0BC9up9pUegw6bhjRegDGa8x+ThRBIJBBDYMNiCIKoIUom1w5KCsQNaoscMsU/yf38bz2huEZRNTtSB9TW0U11aNuG5Dl59Pbn+JlpwSLml/Fu2SPyLuU51w/QmV/PXtJkySSFLTuGZx+YjbykbwrbdItLWRaGtDKijA/bGPUfjvX0ULBmlYdjp6LIbvn/+k6NZvpf/fkdbm9PqJouM7KGQk5H/6lvT0jPwZ/Nc7RtnwO53v8KnZnxq27FMNT6Wnr562v+1M3k03Udi8i8T7u4koEFm/gVPnGIPKUwvsbOvyo+u6QfgKAlx0G9x1BjhKkLtex7HoNILrksi5Fvrv30bhZ+Yg5xtEjqvQSslUF7tWG//bvRv7qD+xZL9jyEbAV0SeuBkxFWph1uxU+ATAC4CS5W99vCI7OTje3AzA4MMPE280Wmta1Kik0TWB3vZCcuytfP6+9+mP1ICjm4SWoOEML7MeN75jQRHxvdqCIAvocY14V8hIGFZ1RLuC5+GduC6sxrH0w7nmmlLJ0fFIGE3TePXna6heWISnPUB3sx+PP0FejjLqMzChljlajuNo+sxup4wr10KJQ2H2F+YhyB+Nd3R2VZuumEl2GiEPQwOVpfZSTJIJdNDRh1m6nFFxBnmWPERE/DjwiCJ5mkZF7kY29F9ELJSkWR1g2dD1NwXJlWkHq744SuGkan680CJJ+h/cjq7pJATYbs7YpF0SDHOeP8GF2gJ+coCQkGy4Cq2IsoCW1MmJ6ZD6edY2D1KSFOhXdBxxAUEU0DWdqN8gj812GUJJCpLgC6oMWpzYU44sHXY35p7nMIvziWkLCK3pxnHS8dPmPdw4qKvDxz/+cW6++eYxHweDYDDIxo0b2bhxIwBNTU1s3LhxWLiH3+/n8ccfH1UNeM4553D77benX99666289dZbNDc38+6773LVVVchSRI33HDDQR1bNmrdhgn7+trM11XSsxq7JvBlv4W6TjePDfyKHtNJ6F0bIdwP//wKbHkSJc9K0RfnIxfbSPaECa5oJzqGp1w2CaRlq8Ga3iIsZL6X6j53ejpksxD0DODML0BTVRZccAkWx8Q1EM8zG0b4ouJje9fIflumqdUoVUanLrxuHYnu8Rty7wdJhlueh6pTEKOt2KT3sA3cRU57AKfTuCm3bffQ3zG6D+VB7U4ZuTTY1xvBKvqGJQa79UynV3RO3N/8aMS+isC/rtzLST9/nT+93sBgaGSjYkEQWF0mstGU5Cl7nICos0FO8qI7yWb7dTzQ91f+2fMdHuj7K5vCV7A+GSOW1IgmNB783Dz+uvVOdnp2kmvJ5ayNGQWJ+9prj/jnPdZQ4cwQaO3Bduxmme9dPCP93g+bZBz3PID99NMNT9H+Adq//nUazjiTti99mYYzzqT3939Azy7Pn3Y+OIqN6V0vQuvqcR9PSW0OoijQ3x5kz7qDSCxOIR5NsvbFTKlbj6uJBguERQG7MIVEV1d6nlJ2fISFwP6BId5wAn90f0/eYUSgRUYpK2PHyRfiiIaYv3c9nqdG9330vvMuN+5+je+tfYiCtSsZuOee/ZaZVuzktW+ezq6fXcgr3ziDIufYg3HJ/n6iW7YAYJ4+nfq3V1L0H19DEEWknBxyLrwAAM3no+GMM+i/9z60WIxolu+ZXnZ4Bp8mKqa5p6WVXmu61xBOZAj4Tb2beKPVUPUWWAtYVrFsxG3Ufv/HrDzNhSbCnHUDhH/7S66YXUhTf4jXd/SypSMrLKx0Hiy71WgDtr5HDvfhPKuSZG8YdSCK58kGYs2Z5Wedlum8bH+nc8zPEhyMMtjtpsicafNstsYxDWa2Z6o4MPk80WGqypD5offXEN60mf477zLeEARK/+d/0vO1ngRTTVs4sfVtkoMZEvWVzpUUfWUBtoVFWGblowcTOOp6cc/ZS/Elfspu0bEuKERPauiRJN5/NeJ7tZlok88oq9s9SKxlbH/BjQ/vZLDRy+q7tnDPV5bzzI/eY+NrrQdUhppTycFqMsnO5xrZ0x7iteea2LvdQzyuEVX1MZ8n2jJHy3EcTZ+515dgV1OAt7d4CLz9EabnqlliFtkGisECDSl1BUHg/RvfZ90n17HmpjXD/G4VSeHGGTcyEB1gT3Q3f3cY97pS3zqq6ox+T2AgymD38EFVKSdLEeibVASOF7quE3q/i/heH6oniqfMgceeqaQsi5u5MvYTgqKTM+rH5w8IIEoiuankYHNUS3tGDoTiLIwrVMcNXqWkZnilRfW8AoMMBEo0ES2eGfRs1+MIahSH8mfeCzazcpeX+25dyYZXWkYsF5/E2Bg3EXgk/AHXrl3LwoULWbhwIQDf/OY3WbhwIT/4wQ/SyzzyyCPouj4qkdfY2Eh/VtJee3s7N9xwA9OnT+e6664jPz+fVatWUVg4/hN3X9S5Dfny6ukCbUsqoaiMqd73katN2HUBmyDS58vnn21fpVebjW7JRY+H4MnPwIrfIFokXBdPTW8vtGZ0Ump4anDWRXTNPewQM9so6c/MU4sLceTlY7LZjGfrxB4BqXJmRnw3dI9c8i0IArmf/ASOM89EMJvx/O3BD7ZTiwuuvRdBMm5kdulFTGIz1YJO5YxcLHaF9Vmd9A+CbIIpmwj09gSxir50YjBAjp45XyTHZJnYhwlRyfxOgXCMf27soNsf5c9v7uEXL+7Yb/loQqXbF+GVnb28akugORWcThM15U62kuAtLcp2u8bUE4wGT4ek4itQUCSB82YV8Vr3Q3iiRvnnKUId+tpNAChTqrCdeMKH8ImPLWSPLrcHjMbw5fPLWDatgPNmFtHYF+Lqf7YT+/b/w7ZgAVJhAc5zzyPZ00PS5yPZ08PA3Xcz+I9HMhuVFCNNfN7HjdcPXQNNK8d1PGargjvVIPJ0hg7KVzTojfL0/67H2xOmanYe05YU0ZLMkIl263xijY1Y5s4l55JLkNzucW/7WMdQaTBkBYaMUB48FBYC4DQb/93eMy8Zqt5E/dez6KOU+Oe/9dKw1wN3/5VE5/7ETV2RE0EQqCs68KBMcOXb6elsK4shuK+/HteVV5Jz2aVoXh+eu+6i7/e/J7ljFw2l8Po8AVN+wQH3czxDEAROLz8dgISWYHWXQdy/1/keX3ztiwBcWnMpt8y+BUVURt2G85tfw1duVMNoLW1cvjfz2z2ypm34Cku/CIrxPxe3PYq9oh250IKUK5JoD9L31y2ENxn/3dI6N64iQyHYscuLry+MmtBGDDgzyoc1ChXD8zgB+KQERVk8pFIxWRosWq0U3nor1sWLSXZ10XLDDah+P46zzsJ97bXknHsOplpjcD8yoJCMCXwseSevJu/AnLIHWLn3ZcQcE7ar65DsCjbHBpzNX8TU/J8Ij96I+I+ryJu9Hds8o1+hFNkJvN5G/12b6X9wOwMPbqfv7s1Etu1vGaNrOsv/dx3vrOjkuT9sJDQYJarq+HsjbHmtjYd/vHpMmwJTqjRYFEy8/2qG5HHnmjGZRCySMObzRFvmaDmOo+kzK5JxV1OB3lfbUP0fTYJudhCbIFmQ3MbAR6K9Iz3AOkT+ZZOAeiKBrqqcV30eOsZ/4UmHAx2Q9CSzSjN+ry1bhotBpJwsReBH9LmPRUS3DxB8vxspz4JglemIqgTcGX/97dFTmDK1jmsXV+C2jVx1MRqGyoMFHXI149wsyjFTJRrtMFkRmb6Pom/q3AIKK40+rV0TsCet6Krx2zZLVuKamYRo4qLcH5IUIoSDCdY830zDmvH57U4ig3GXBh+J1OAzzzzzgNv9/Oc/z+c///lR5zenpP9DeOSRR0Ze8ANgSBEYm1KMvjIAvV5EYGbrct4VTiGmaehIxHU7b+g/Y07wPubKT6AD2rZ/IfU3YLn0D0guE6ovTnSXB9UXGyZhHoI4UlloIoq+51UiNgUwtLH53tRIhyBy4U9+eVyVBc4oqGFNqn21a6Bp1OWcZ51F369/gx6P43nwQdwfuxbz1KmjLn9A5JTC6bfC6z9GVSqxJt9minsGuxq8xFWdhrW9zDnDS9k096HvA5BHIYMjvd2IgkYoq8PiTGRunpOKwA8XUlZpsJ5U2dxhKACiCY3H17Vz09Ip5DtM/HVlE1ML7Nz7dhM2s0SR00ynL8r1J1TynQunc8/bTZhf9rE6GQUFwg3dzFVEdksa6/xBfnL5bC6a7+B36/3YZBuarnFzbz16fQex3btxX3PtRxrkdLSiwpHpFHcEDf8/QRC45+YlXPh7g7yzKCJ3bhzgR3+5E6W/h+CbbyEXF2e+T1Wl7/bbybn0EuQhD9xTvgoPXg1aEmQTNL8NxbPBduAyzcJKJ57OEJqq4+kKUVh1YPK+ry3A83dswuY0rvHde/3c+KOl/PapAIhg0zSqIjkku7pIdnUhFxQcV+dDNhEoyn5UoM0TYXbZcBuTYJYi0GkxrqH2KZVsKJrG4t7dSD1dhN9/H/tJJw1bLzk4yLSG9QDEJAWzmsBUW0NozRrcV1xxyMcdfCvjXes4c38i0LZoEbZFi+i7/c8AqF4vg48/gRAMMS0A7YXgsrgPef/HC06vOJ3HdhthcSs6VtAX6ePuzXejiApBPchAZICbZ49dzXLWlLP56tm/4cd7IWSBkl2rKCuvoFOy89zGTv77kpmZABl7Ppz1X/Dit8FehPz8zRSVLkZrb6E3/j10pRD/qy0k+6M4z65k1qllvPd0I858C0/8ai22HDMFlQ7O/sRMJMUY9OtoGCTkjSHJAvkpInAg1Yka8ggUFAW5aFIhCuA88wz6//hHAARZRo/H0ZNJSn7yY8Ag3j2NjaALhLosuKuNzuMJURvvWyy4VZ33fl5LLDGVGcUO8k3b+C9HDkE0Tg9HsFjsXLb3DdyLp6CU1jP4ZIqYEAVIaOiAYJaINfvxPtuIUm60zSJtAdaFVMKpAJJAXCMwEMUiQEyHeKpd37bdw5Q5+YyEoYH+Uuc5CCaBUFIn3y7TcWYB77d42doRY065edRnYEItc7Qcx9H0mS9ImCjqMoi2sEmk54/rMVU6SXQEUcod6Wdgv/cO5zJiMqNuFWQrcqEDta8ZVJV4e/uI/THV76f9P/4DU00NOcUlXBWu5encRgbMcTabTeTFCyhx9QCGIKRlaz8Lz8+ogCc9Ag8N0Z2DqAOGbYL98lriv/0b5gUDXNKpceUqDZ+5lb+c0smVCw5edJAdGHJmWGaVJYmjP4E1ZtzfCiodVM81rndDTdfKmXn0NPtpT1VQFqsSg/F8ktZOemWd7kQtVeJ2kGCO5UneStxEIqay/e1OZkyWCR8Uxq0I1DSNouO0keEyu7i05lJ6I7384fQApPz9itY8x6qiQZ5wxrnfGaVkZi7V80tY0X8j7wY+RWdsNlLPBtj8CMIL38Q+P1UqpENw3cis9XB/uJQarGsjghqnKzVP0HXsXoN0UCoqjisSEGBuYW16uj04ugrPVFFB3mc+bbxIJOj70+2jLjtunPwVKF+CnGzBqTyOabCdmabM3+itf+wiGtq/LO1gMFpYiL/ZKA3PLg12xLO8MZyTisAPE9m/k5ga0Pja2YZ6WNfh+09v4cfPbef+d5v54T+30eIJs6MrQKcvyjfOq+czp1YjCAKfW1bDa988A3PKx2U5Mf5oj6DMcvGXmxbxyZOreav9Lf7Z+E9iyRhX11xB8pFniO3ejVJVieuKyz/8D38MILs0eIgIBDDJEo9+4WTmlrvo8kV5Yl07d7zTinnqVPI/fQvT3nqT6r8/hOvKKwHQ/H4G7rpr+MavfxAqToSYH976JWwePZU+G9nEX1/rga0Emjb38fLdWwkNxvF0hyird3PNtxcj2lQ6Uz5hFXGob8koUEdSl01kDFMEyoY8qn1wbEWgw2LcSwucZl6asjT9vufvD++3Xs9DD6NoxrrrZp2G6HQS27adgb/83yEfs55IEHrbUJVJLhfWMfyPC7/6FZznn2+sl5Vu/fp8kRzT/sElkxiOE0tPxJxS8r+w9wV+uuqndIe7yTXncv6U8/n9Wb8/4DZK7CWcc+6/8dSpApIG4votfLfdKCsOxJK8sLlr+ApLPgNX/gUW3wLhfsTGl5FjOynI/xPWvE6S/VH8r7YQ3dbPrFPLuOGHS5lxUgnRYBJPZ4jdq3t48+FdRIJxNE3n7cca6GzwYrFBvmy0eXrFEtB1ir3GLpWyMgRJYhJgrqtjyt8ewHnhhVTd81dyLrmEij/+IT1AMixMrjPTfj5ZK0aXZNqUCNtsCaxakG09XfzUpvIvu4U37TZ+UpjPr9wOfJv+jvqvb2NfWEjBLXOwLS4m/xMzsS0pxrakmLwbZxDVdFR/nJ2tAVZu8/BCe5iOwRiDCZ1Ch8xJJ5Vw+S9P49LZuSywZX67scrEzTY7FslJXJlBf1hDEuBxwty5splANEG3P0ogmhz1eax5x+IyR8txHE2fuSEcTZ8vgQIrWjCBFk2i+uPDnkd673AuQ1aZplSYi+P0uenX8Zb9+24D991Pw5lnEX5vFd6/P0zfb3/LNf/yIKlG+/pxh4tKvRNLy/O4Cg1lbNceH7FI5t6+r0fgJA4MXdeJ7EqFzckiAySZtvNRfvyQytXv6rjCAlWDvdzUuJzL5h88yZabFRhSo8rcGLJwYThD2BZWOrG7zNz0k5P44p/P5MYfn4TJKg9rL09JiJSFjQoIXdC4K3EjiZSWbZbtOUpko9Kya4+PwQOEsk5iOD4aB9FjENNzpwPQVijQcu4szLNnIzmdfL3xVQD6JZ2WmTasThOSRWZV+EpWRS8mqZvoitehb3wY5+5bMBf6ME1xEtnQiz6C/H/EoIjW9wDoTimQigZ11JxC5NIZOE4/7Uh+7KMSU1yZ0uCA2k0oq4O3Lwo+/3mUykqsJ5xA8PXXCbz55gfbuWw2fMIAAQ27bTlT803kWiTKSmx4OkM8eds6vL3jCwMYCaI8skdgpNsoAwlllQbbsga8xMnS4A8V2YpAUddw2xS+enYdM0tzOHN6Ids6/by63SD8JVEgz6ZQX+wg327itLoCinIyHmKVeTa+eEYtJ1TnUp1vo9Bp5rsXzeDCOcZNd0X7CgBUVC7tqyDZY2zXPK0epbj4w/rIxxRK7aWcXXU28wvn0+xrHjav0GnmTzcsZEiQ/teVTTT3D288FH7zG0jFxVj/P3tnHR9Xlf7h595xzWTiLk2aNE3dvRRaoLQU2kJxl2WBxZZFV5CF3+LL4ru4S5HiUqAu1N3SuHsybvf3x01mkjZJleo8/fRz79x7zplzMzP3nvOe9/2+Q4fS8M67ODdvDp1UG+Ds/wQzt7PmTdgPr/mY1JDX7r4MgRt/LePbFzciBUClURCdZOT0a/KxJhrYXbkaqW1SGxfQk7JjbbCeccL4ffbjRCJOH/r+J0V7yE80s6Gsea9yHXUDjW2hwdFGNSvi+7LJmk5tZh72X3/FtWVLsJy/tZXmd95hZ0QSWyLTqDl1Opos2djvKSrCV9+1Ru2+cBcWounTB+3AgRhOOWWfBhzLeZ01QMuiYEeSvEgZpmd0Sh0X5V7EzYNuZmrG1ODxccnjeGz8Y+hV+yelcmX+lWyckIrY9lllr13AVEUdA1IsfLx6Dx0uhRIGXiRLiuhj5CRy5iRU/l1YbX9CI/6GOtVE/fvbodqONcGAWqdEo1ciKgRi0kxsW17JJ/9azepvi6grlQ3AkbpyVII83qlWJGJygrbtax0OC+6MbuBAkp95Gv2wYSQ9+QRiW0gtgH7wIHRDhqDrl4Oj1cxux2BqvJk4m+/CK8leTD/pTexWaPi/FA+fGw2kOUwIbWFtzQqRZyMjUFStxrbwDbS9I7Ge1xtdnyiss3tjmZmNN1rHF9+VsNYj4QxIeCXwAQaNiFKA/sPiGHJFHoIoYJnei4QoDVql3P7utbW0Nrq6nCOo9XqyI0+nta0vXlFitcpPtFGDSasi3qzFpFV2u+3p3PFY5ljpx7F0zb42o7KAn/JGFwqzGlGr3Gvb1bHDWabj91el03fO6N0hms9TUkLRBRfS+sMPSA4HiuhoaLvPqstquXRzFAYpmzUaLT6Amq30GhhBQlYEUclGKnc1BdtSGNXBbO1hj8D9w1thJ9CepCPTRM0XX6P2ycbkBiO0f4rn7FyAurykm1a6p2Pm4HbUhJxYotsMfpZYPaIoYomVn8ntocEAQ7wqTIQk3j61wDztDLYLmQSUViZEvxU8t3XJHgtzYXrkgLIGn8xM7zWdf6/5Nz7Jx78HV/PMSh+BxkbiKiror89nd0Jv1pQ0skXVwhqrB5/dwxT7CAL1DzHF8gQCEh6fB416Gy3FZkDAvbsJbVZkp/fpaAQKZlwqWQ5ApVK+MSbXg6qxEh+ViKaTy/sDIM0cMgTq9A3srrXRr4vMwQCiXk/MrbdQccefAah+9FEMo0cjqg9M46ATgy6GXx8FJEz6n2mpm81oNfxS5wTA5/Hz1X/WM+nyPiRmdd2vnlB2YQx22b1IrbVgkZMDtKN1dVhxC4cGH1E6hvGLkkR+YoTsbXbdSE57Sg77U4gC/oDE36bnMSLDSqRejdsbIDVq78nnzZOyuPW0bCqbXQQkieRIuYzH72FZpbwYYNVasfywina/IMvsWb/vRR7HqBQqWtwtrK+VtRSLW4o73TvSow1cMy6DF34tID5Cw1cbKrmpzaMTQBUbS9Tll1Hz2OMAVP/zEdLefScUdhubCykjoHQF1GyB8jWQPKTHPkUnd/AILO3eEFi0sY76chuSBC11TvpNTGb0zF4o1fIzoKBiZbCsvtaAetc2QE46oTqJMgZDyBBoUBqpbWqmsKKF8iYn/oCEosO9snNosPzbjTFq8CqULE3sx3WbvkQCqv75CGnvvI0gCNQ9/wJCcxPZNLEgaSBx+bnobYNxrpUNr441azBP3v/M0e24d+7E+dtvcl8mTdpnecPo0SisVvwN8qr9z/3lLLVmTdgjcH+4fejtALy5+U1i9bFMSpnEn4f9+YDa0Cq1XDvhDt777Vau+hGaTSKj1v3A33xWJEFkV41tb23I0TfJ/2018OWfELZ/C6Iaq+U9Wsqr8Pin0zSvgLg/DWbgaakMPC2V6qJmfvjfZnn2JUnUFLWgUAr4fRLRWU3UFkQTQx21YhSxTR0SBKWEDYH7i6BSoYyJofW71QBsc19NWUssRsFIXCCJarGcrVol2rSB2KUNINTTIKo5Y9u1/JjzBn7RwwK9jiSvyPT131C5cjWOFh9lCTdQU2LDaNHgsnvx+SVKHD4Sk4wYYvQ4Smzkj08kY2AMUYmh74omzYx1RhYpr2xip09CoxT46u/LGZtmxNTHSsQZGXJWTUkiui6W7UJo7LHLX8SVJT8QLWaS6NUxrLSAWGWvbrfACVXmWOnHsXTNquhs0nUO8vXfsb0xH5P+e1qLEzF5Kzptgb2OHc4yos9Cu79RdUMhmz/ayqC27+32z+eyccUvxGb0Qli6nJxtssyTT6GgNjme6ngLfTftIiAIpOyy48+pp1QjsE6rYajLTdOGt6mslp+93zz/HgmZTQDUFBYw2XIpajTYy+t5+YbLic3oRU1hAbEZvYJlOh7bc3uslDlS/RgQP4lkMvHi5BnH7Zzxm4t2y8SrZyi4dIWS7J1ufGoVm2fPomLaFMrrqvf7vap37wYuQZKELmVrNv38Pove2bBX/erdBQjCxUiSUtYXbI5sV0djVOtXLKlJY0pSOUqlm2gqSVWvo9TTny2L11G1631qi3b9rn+74u17a8Efj4QNgftJlC6KU1JP4cfiHymjke3nTST7lZ8AeGTbXNTbJIrT83l11EU0ODxM6RuHG9i5Lofmxoe4wHofOlsFZh7CIbyIT0rB/lv1XobAvUKDA4GgIbCizUiYWa0C5JUOTa8sTjYMKgMGRSR2fyNesYbt1d0bAgHMU6fS+P77OFetxltcQvXD/yShTSvmoIhIhqzTYNePCLYyjEmbsJX3Z4xOYJ1RjcsdoLnWyVfPreeUi3PIHha/7zY70FVocF2ZDb3YBIBdDHkEdjQEiuHQ4COKssPnpJQk+ibJk3KzTsWH14/iL5+s5+EZ+SwpqOfSEWmI4t4PwE7ttUkOJFp0nY6vql6F0ycbmae7+2D75Re5fGwsxnFdZ7oMIzM+eTyrqlcBslflpXmXdjp/4ylZLNlVx4byZv49fwcXDk8hyhgKLbFecglNH32Mp6gI55o11P7nOWL/dHOogcGXyYZAgN9egeSXe+yPWqckIlZHc42TujIbAX+A4s0NpPSJZNOCcqSAhDFSy7LPCmhtcGGwaMgeFsvoc7MQOnx/CupDXmvpJaHvy8kWFgyyV1yqKZWS1hK0xkpsQKPDy7rSJoakhZ6vnZKFtIcGt33WX2WMYVb5SqIaq3GuXk3t88+jGzCAhnfeAcAtKnktbypPxZnQDR4CyFmDnasPzhDYMSxKnZ7WQ0kZQaEg+bnnUKWm8Pb3/+LXlm8BwqHBB8jlfS/fpx5gT5yWehofnTmSJWXLGLYzwNCCNZye6OXHlDF8tCqTe6f2CZb122w0ffwJDW+8geW889APvhGDQgPNZSjKVxGp2olIK63Vc2j6ejeRZ8uTjrj0CM65fTA/vb6FCRflsGtVNZZYHZZ4A62bPiSGOgKShlrRQFxDyONGHfYIPCCMEybQ+p2cBCg/opSIPsPYuKCceEMO1YnlSEisEX5B5dcQ6Yqn965rcHus+KrPo3/eLjY0reDpKCUNjkr+1DgftTKAuzWboubBODqEJGqNKqbe0A+Nvm28ULsDAsVQ7gJ9NETKv39932gGzuyFbnkVGwpbcSOxsrCVflV2inY2EdPqpgoBfZOeKl/buE/yMiTwMU0SjFCuJd5RSYS1gmZHYrdb4IQqc6z041i6ZocYRVyEvEigEloxKlw4As69tkC35w5HGa9fhZyyBCQpQJ3HGfxdKBubsGkkLHEJRNaEkur8lh6HIbcXZVs3Ed8rDUthCf222xmdKfLzQIGFOh1DXW6ipG3sRn72+n1WPA45nN7WUI/b4kSNBpWkxt7QiCfOga2hHktcQrCMJS6h2+2xUuZI9cNsicRPM1/EPs46r4OrK+T7S4UVktRQaIhBmakitaQUhc9H0g+/Uh1twrOf72VvrCOx90IqdmzEbphAlLp/8POWJB8BX12X9e2N9RhibPh9FgBMrtB4x6W2ERGQWFSdxtQkWaN1vPlNPqx7DLfTiq3R8Lv/7eyNDZwIhEODD4CZ2TMZGDOQFFMKf7cuxNUrEfPUqUSfeTr+mhqSV/7MJV8/R5oWhmdYefbSIVx+2xDc/jjW2c9Ggfzj0mnlVUjnpjr8e+jJ7RUaXLcdXE1y9qc2j8D02tDHpsk++QyBAAn6FABEpY0tlT1nCRIEgfj77kMwm9ENGkTTRx9R9dDDSH5/j/V6ZMjlkDQE4vIxBT4EAugVAmMzTFjiZU8ua4KBH17dwsqvCg8o2U5XocG1Ja1ohVYq3TnUSaEBv7qDl0s4NPjI0vG3KgYC5HdITpARbeCj60eRk2DmqrEZ+zQCtn8/uvqeLCqTE1tklQc44/lViHo9hvHjsZx/PoIyvJbTE+OTQ2Gy7eHVHTFolIzsFYUkgdcv8dna8k7nBbWauPvuRbRa0fTpQ/0LL1D7wgsE2rPL5p0DMXmQNga2fgn1BfsMEW7XPfF7Ayx4fwffvLCBn9/cisvuZdfqGn54dTOtDXJYRmS8jtEzOxsBAbY1FQX3k206dMOGos3LwzD+5DMMC4KApS1phps6EORFsl+2hbIq2zw2doj/Qpf2AtrED9Cp5GdphE6FUhTwKpR8Ouo8xKgo+XN+7nnKbvgjyqgommOTWDZ8KvE5GWTE6NENGhhs17FmzUH1uWNYlDotfb/q6AcPQhUdTVG6Dpte/j6EQ4OPLIIg8JdRd7NsmBF126P38tWbiIr9Hx9t/xBPm4HGuWEDuyZMxLZgAb7qapo++YSS6/5II1MhQ74nBeKGE6F6jxjzoziW7qLpm0ICbZpaJquWc24fFAwZNkRq6TsuCX3zTgBEwU2DQkVsU6hv4dDgA8PY4V4prVtOch8rSrVIHoM7lfOLXqaVX0NWSgY7szQovYNYUyB786l9vXhT38Kf4qJoFQT6eV7GoPeCAJEJekxWLSNnZKLRtT2nCxfCq6fJyabemQX/OxXKVrV1QiJ2QgoZM3qhVovoRKjzSfxs87NkaxMLK10sL3Pwq03+jmgD9QzQvMRlScs4M3kXRrWERvBhUnl63J5oZY6VfhxL1yyKCio82QA4/FHY/Fr8om6vbVfHDmcZwR8atyh1OjSxsfjborG0NgdGaxRqvZ6oNtkOSRTxJyWi1usxWqNo7ZuLsi28eNJ6+Xu/SC9L6kSr6wFZAkRUxqHSGoP1fEq5PQGBqKjk4HG1Xt9pv7vtsVLmSLyHxRqPRqxlfuxf+Npcw9nrAhTEQ1WsyPJ+oPQYsauicQ/Iw2fQ4xcFBAlGFlYSVVmz3++lNSnRR5rAWIqHkHSLILSg0Wu7rW+MqAOKEBVuItwhw5vLoiA2ysJaVyaF7mjqPYnoxBby9PIiqced+rv/7QyR+04QeDwQnkUeAGOTxrKrcRdPrn4SBPj6ztGclnMWmR//FizTR2rljS1vkfwHWZg4KcWMOlFHUfUQxvI6AHrjOlqd5yAaVLi21GPo4DGm2DNjbMkK0EVS72nB155Np33xRBRRH0oW3OOYrMh0drVuQPJp2VC7A+g5JE/bpw8p/36GkiuvAsBdXEzT558TOesgQytzp8Gv/4LqTSgAg24hdudExHoXp1/Wh7VLqlj9TREAzbVOqgtbiM/cv0mbUrXHdwDZEJij3k2CZjuS0gxYAFA5QobkcGjwkUVUhcLLRUkiP6nz57u/mVtbf/qJhrfeJvLCC2n6+COSnn4aRYTcliRJ7GzcyZitMG15AIXDQ8DrRVAqibnpxsN3MScomRGZJBoSqbBXsKp6FXavHYOqs17J+UNTeHmBnInzg99KuXpsRqfPzjhuHHF/uZPKu+8BwL50Gd7iEuIfehBRY4R+M+Hnh+XC718AiYNg3J/B0yovFuxBTIqJXatqEFUC25fLAsc7V9WQ1i+KmuJQuLAoCoybk9Pl92i3pyGYMTi9uBpnYwOCVou+h6QTJzK9InqxoXYDAKKmhoArhZ+31fDn02Vt31ZPK27lLpRKIFAd/JuKokC0UUNVi4uF1t7cdMPNuB/+h9yoz4evupoN/SfxVMxo/OXNxJt1KEQ96qxeeHYV4NqyhYDDgajfP525djp5BKal9lByb1o8LcH9CHXYEHikyY7M5j93/sraHRdhXb4dt0rizNV+vh5cx9xNK7ig/wiqHv4nAbsdx/LlCBoNvir5d+7ZXYRrwIVoZ+YhzrsJANFVTrT6flp3/5OG95xY5+QgqhXB7+jA00Lfj3iXHD4XkIw0KN30bu6gwZWccqT+BCcEyqgotP364dq4EfeOHWTFejnn9kH8+JYKpU+NT+EBAU5Rn8VfHp6Dy+un5tONbKlsRXBMRnTGIiV+ggAUqU1cmyDylF3BFWnPUz3yJSKSYlCqRcTy5fC/y2Rt6RUvgauFdgMGCjWs/wDev0jWlbzgPZJzBzL73mH88s42Knc1B5W0GtoSJkht/42K7ZiELZQqFSQb6/ioVw6rvGa2+FLIU5q63QInVJljpR/H2jU32nUUKnOJtGVQYlYSocyg2W8gQhHaAnsdO5xlzmwIjWcGTZ/BqTPPoXDOHFzrN6CyO7j26ZcJOBzsfO19APT9+3PtK28H60iSROGOmbi3baN3BaTUSuyKUVOhVJAZp6RPWm6bHpyCkbNuJDFbjgBo/GIX9mWyR+QFd/8fmtSw53x3uLY3UPz2y/w3UsQBDN3kJ9IOfgE+Hvx3ZvTL57a/9EGnVuBvaaH60f+j+bPPAMhqdTNw3Fii/vCH/Z7vAPz63jY2L5Q9ODN7xZK3/guibvgDmvR0lHFxXTo4+H0B3P6JfPDB5/LrXlZuuflR7v98EzevXcg81d8QBYnhxg/Z4RqP02Xlsn++jMmq3autw0VLSwu3vfbB79b+kSLsEXiAXJp3KefnnE+iMZEPiz/ngaUPEHHjdaS+/hrqzEz89fW4Nmyg5OprguLyE87IoNmfSLNPNvgpbetQx0sEWjy0Li7v5AXU0cso4PPBrh/B2chOlewOLgQkohtljwd1aupJlzG4nbHJw8FnQlC6KG7dsV91DKNGkfDIIyjj43AsW0b1Px7o5JlxQAgCTHkw+DJC9TpKawBftQP7jyWMmJ7BiBmZaA1Kdqyo4td3t++3V2Anr9A2j8C60lasylIAbELIAKV0tInhKhQIus4hpWF+X1QdjPYKSSLNKhsDXFu24Gts3K82HBs2UHbzn3CsXEn5HXdgX7qM0htvwlMiC/KurV6D5aul3PK5j15VoMvLQz98OImP/PPwX9AJiCAIjEuWPT98AR/LK5bvVaZXjJHh6fLK3q4aG2tK9v7sImbMIOaO29H2749z9Wqav/iC6scfR/J4YMQNYJLvz9TtgA0fwvPD4Pv7uuxT7qgELv3nKAZPScPvCxARo2Ps+dlMu3EAp17eh4SsCGb9ZQjjLujdpciyw+ugSpQXCAbU+9C0hSfoBgxA6LCIcDLRyxLKJJ8aL08+tlS2UNUse1bavR0SwQidk0tFm+T7ab3Nw6SNBl7PO5PVqf2JvvlmzGedxTv9p+NVKLEaNEHNQf3gNgOvz4dzw8YD7q+nSDYEKhMSELUHNlBtdodW08MagUcHvUrPsIefRz9qJNGtArOXSEQ5f+Xljc/RPO9LXBtko7Q6qxe9VyzHMnsWCquVhjfeoPY/z0L/8+DijyE6B4XGjkbcQUTNn3FtrqXh/W1yxs09aG6sIxb5t+6VUmnW2jt5BKqTk47EpZ9QdJRSaP35Z+LSI5hx0xAubrydV/Pf5xz9Rdx/lqwlqVUpePCcfE7JieFvZ+cxKGoCzpIr8btiqBLUbNZouN4EzsIFxG38K1qjCqWrBvHdmXjKV8kJpZwNONNOwZEygZ2pQ6mb+hgVTiXYq6GlHN6YDju+IzLewJnX9yMhK4JTL+9DXIaZgZNTiEk1ceqVOcSmGRmZ+CkDIqu4JTaOkekpvCbYaI3JoUYhYIvN7Xbb07njscyx0o9j7Zrthhha1A48CieSshl3wI6k6Lzt6tjhLBPhCi1UKfTy/ESdFpLC8JSU4OzgVa8b0tkbVxAELLNDibJOWytHcS3U6ZCqNpGQERofVexqRpIk/N4AAb2KhjbvbF+DizDd49m+lY/jXsYmCgwqkIhsGyptSRvAnCkD+Pv0vujatKkVZjMJD/yDiFkz0Q8bJsvl/PtZmj755IDec8gZ6Zx/3zAue3QUvVe+gGPVKkqvvoZdp57W7ZxcoRTRa3TcOfROjCojBc0FLKyYzwMz8jFlDOdr5akAqEUHw40fgARbFneffT1MiLAh8ABRiAruH3E/iQZ54ldmK+OtzW9hGDWKpGf/jWg0glKJoFBQfMmltP78C5mDYvBpFWzyyDc5QfKhkeTwYF+1A2+ZLdh+xwQEAa8TCmQ9sHqFrK0Q2wTKtvCRkzUsGCDTkglKecLXyq4eMwd3xDLzXCLOngF+P5LXS/Wj/3fwneg1SfYMjMpCMMdicMgrWY51tXiKWxh6ZjoRMbJxqL7cts8soe10Cg32edm6dCm26jpMiloAmoWQ55/okB9yCqPxgFZkwhw6GoOer4cJbE6BPtUtlN94IzvGjKXokkspvuDCfRqZPSUllN3wx+DgR1AqEQwGfNXVFM25APvKlZTfdx9X/yixtS3qS52ZScp/X0Fhsfy+F3cCMTJhJBnmDEYljKLS3nU2sZmDk0iz6hmbHc2qor0NgYIgEH3ttURdfRWCWo0iJgbnb6uo+9//QGOEKQ+BxgzWkEGKkmWyHtQe6M1qzFE6NDolBouGvuMTGTBJ9ubJHZXAubcPJj4zgvzxXU/sq1orGe1wMcDlZmBxKNusfo9B9MlEliX0LEyKaWFAcgRD0yJZtFO+Z9q8oWcsgh+XLzQ5aNcJlAAEgY96n8qjIy4n+o83kPD4Y1Q5pbZyoQUY/ZjR6IYOQZufT+v8nw6or77GRgLNsjFvf/QBOyJJEk6fk8Gxgzkt7TS0it9vtTtMz6iTk9APHoIiIKEMwBU/BnDY11P59JPohg5F0OmIv/deRK2W+H/8I+jlYPvlV3y1tXKI8Jx3EI1mJEGJT0gkUvcSnrJWap5fh7eqcxbzyp2hzODeQCpNGhs+UWJrioh+xAjEiLB36IFinDgRbX4+2n75NL77HpLPh8mq5Y7bL2L40HweOu8eoi2h8C+jRsmrlw/jytEZfHTdaCamjcRZdhlenx4RgQS/xLXJSQQsafBkH/jqNjZqdZyeksSfTUpOTU1hlquRkUIdc5Q2Tln3Oi9uKcbbHpwVnwfvXQDLnkdnVHHu7YPJGZnArDuHMGZWNufdPZScEUnMvtJImr8AD7BbLYsOCYKASW0iVh+LUWXsdtvTueOxzLHSj2PtmiN0ZgzuCNR+HSpvBBrRgODvvO3q2OEso/OExicKnfys0o8ciX7MaNRZWdiXLMWxOmQI1A/ZO4IiYvo0FAnxMDCPsVtEBlQr2ahRI/jdJEXVBstV7mpm1+oa3n1gOT8urmCJ3U+5SoFzQ91ebYYJYS9cQY1CpL/LzeS1IWcVcfoM7pnaZy9ZI0GtJuHhh4MyNOqMDJq/mIezbfFrfzBZtcSkmHD89znUsaEM0QDuXbt6rJtqTg2O555Y9QQKhZf/XTaUlxQX0SrpsftziVftJEldz5ZF5bj2kF8Lszfh0OCDQBAE7hlxD+d9eR4BKcDcnXPJjsxmYtZE0j/6kOr/+xct8+YB4Fi9Ck12FoYUA/XFw0D/DX5EdNZCWquHAmD/rQp1W5rsjqHBEY4CaPNk2Eoy0EBKXQdx6KyT1xCYG5WLiJoAHhT6InbV2BiQYtmvutHXX0fzF1/gq67GU1qKbfFijGPHHlxHpvwTXhiJ4HNiFHZhF07DJyTh2FSHOs1M3thEqovkUK4tiyuITdu3B8eeocEbftpEpCJ0M3OIRkBuU7DLBuJwopAjj95s5M3TFJy3yE/fUh9+mw1/fT0A3ooKGt56m9b589Hm5aFMTMRfU03Co/+HwiivYlb/37/w19fjrK+nZcIAcu9+iKpHHsG7SPZaq3nnLdKXyZ5D2eVgvetOYq+4MmzwPUD6RfejsKWQwpZC1Ao1l+RdsleZKXlx3P3pRoobHLQ4vVw/oVcXLYH59NMRtFrKbrwJf20tnqIiLOecgyp/lrwwIIiyJ+A6OckEa9+C0x6E1a9D3gxZR3DIFSAIwSyhe7KnHuCeFJWsZGmbTs7MKhGQvYd0g3uWRziR6egRKGiqWF8mG9qsBjXnDU2hwdncqXyts5YUk2x8jTbu7VVv90q4vAE8vgCetoW3GFOonHHECCr/fCeS14u3vJy4O+9E2M9M9N5OYcEHZggsbClkc70caTA8fnj4XnCUibrmapo++xRfRSUptRL3f+iH6lqc1bWYz56OYfRoQF7kiZh5LvUvvQx+P02ff070tddCTG+48nuE54eicy9DklQ0t16CXzDT+PkuTKekoMuRDVEtJaGJlldKw+5bwuDdAAECkc7wd+Eg0OX3RWGxYF+8GIDG9z/AeuklPd6D2yfGoigwZ1gK87fV4Cn5I6qMl1imlXVJv3KWcnZrBQFrOo+a1NQpFXyPBAj4JDNKRSFeCSSFkw8N/fnB+TzPxixgRMl78pts+RzqCxDOfAxQBvvTvnWsfAMDsFOtwt/2uY9OHM0j4x457H+jMMcnFTsb+exJefFApVGQlGOhtsRGTKoxuAX2OnY4yyTUfQLICXmEtug1bU4OVffK0RLN33yD0K63DOgGDWJPFBERWM45l/oXX8QEjF/u5pXpeu6pb8FU/SM681icLR4qdjZSW9KCszU0V6pqcqPZUIu5tDU4xw4TQvIF2GpfTo1PR2ZFgAGFsn1BGR/PrD/M7rZe+8K4r6aWxrffhsJCmj6Zi65//27r7EnA4aDpo48I2GzQwQHKvXMXnNF9vQnJExiTNIYl5Utw+Vzc/uvtPD3xaW6YNop3P5rEH5RfYVBAvOoXyltns+LTXUy4tE/3DYYJewQeLL0je3Pb4Ns4NfVUym3l3PLLLaypXoPSaiXhoQcxTpyIIiaGhldfo+6FF8keGEu5py/l7r740KCq/hpB0/ZQX1dLwC27PHcMC412bgvuFyIPBpM7LG5oTmJDoEpUkaiV9Z9EVRO/lRbsd13RYCDurr+gGzwYz+7dVD/0sBzidzBY02G0rPUjSF6sphcQdSL2xRV4y21kDY1FqZFXO3b8Vo3Xve8EJR2zBnvdHmrLTESpQkkMmoS2Cakkgc0hX1PYEHjEEQX59unQCDgidSiMRhTR0ShiYkj458MoIiPxVVfjraujee5cWn/8ifK2jLO2JUuw/fwzAE6LjpuGbGLcwlncNaEcw+hRRN94I5uNTSgD0KqF1TeMI+7Kq8KTvYMgRh+DWpSNNGWtZV2WsRo19I6TB7SbK1p69DA2TZhA5EUXAiC5XFQ//oQsFaC3gs4Ckx+UtZ8A1rwNK1+Br2+HJ3rDV7fKxsBDoHJnKOlJbHXb80IU0Q08OfUBAeL0cRhVbRMSV0nQe2/xrjrcPj9FDZ29AuqcodddGQIBShsd1NrcXZZTWCyYJp8GgL+xkdaff9nvvro7JgpJT9/vehBKHASdE+GEOTqIOh3x9/+VivGTiLJBdpvDsaBWE/OnP3Uqa+mgR9z0ySchqRBzPAyWMxkLeDFal6BOM+MpaqH+jc3YVlUheQPE7QyFoNf2zsdUGzJun8xjwUMl5uabgvs1//43rh37JzUDcEpuLH85I4cYo5XWiunB4481rqXclMCzONmole8bSswEvGZ0CgNiwIxOtCD4rGiiFzBk2Foe81/Cc/5ZbJNSkcrXwqpX4bu7IbDHmNHnRrXpQwA2qkNyMHlReQdz+WFOUGJSzZx/3zAGn56K1+3H4/Rhb3J32nZ17HCWMehDjitBQ2BeHpo+smHGvXEjrs2bUcTGEv2nm1FGRnZ5LVGXXxaMghm3RSKtQmCVVo2w5m3OuDyd5NxIfJ5A0AhosKgxGJSUeSXWOvzUf76rS2kmKbD/SRxPRDwVNirqCvj7ewFmLgNFAAr6TiD+b39D6OCl1x2xt94S1Edu+eorAnb7PmqEaPn+B9kICBgnnRI8vi+PQEEQuGvYXczKnoXH72Fx+WLuXXwvZ/SNZXfaBQTaVFX76H4CAmxaUkl1YXOPbZ7shA2Bh8AleZegEmWjTR9rH15a/xLN7mZEjYbEp55EcsnhRy3ffcfgvia8KHFLBjQ4ERx1GLNqUcbqUSUYcG6UXZw7hgbHeOUMcZKgwOaPJb4lk+yq0INfk5V9pC71mCQ/amBwf2XVgWVvNJ15pjx5RxZub3j77X3U6IGxt4E5CeL7ofJtI9LzVwQc2FdVo9YqyRocgyVeT1y6mdKt9ftsruN3oLlWjyDGBfUBAby+SJJ0eQy29IO2ZCIKYzhRyJFGIcgPyq+Hi3z2+FRSXnyB3osXkf3zfCLOPhvRaEQZFxf8PAW1GnVmJjsnTKThzbcQDAZQiLw63oNLIyAhUeCvhCf+yuLTE1navI7mCCXfjdUz6pI7jualHteIgkiiUZZyqLBXdBoQ2j12bv/1du5ffD/m+AUA+AMS60qbemwz5qabUERGoumTi2vTJuwrV4ZOGqJkyYDEwfIk7oc2rUCpbUL3/X3gdR7cxUgSQuUSAHQuCWutvBCgyc05qe8BgiDIchHIn/GYbNnz2uHxs7KwgYL6zvfdzobArj35Shsc1HUyBHYu11G76EA0cjyH4BHYMfN1u/ZlmKOLadIp9Bo6hADQrBOwaxRIF5+Deo8svuqUFPSjRqLJy0NpicTxWyjJHIMvC7Vn+BmFQX5mqJJNNH2yk8rHVhLtLAqW8cckkVwbuo+FDYEHj27AACLOPRdFdDTKCDOl112Pa9u2fVcEVAqRyX3ikCQIOLKJUwwFn4Vmr5ozIi38T6jHRC8kSaSl+Dzsu+5FrL2KX+f8wpczP8GklxegF1V9g1Ms5AnvLF70TiMgSaCLhJrNsPjpzm+67RsqVSlsDaTwgzokH9EnKuz1EiaESqMgJsWEzqTGYNHI2cf32HZ17HCWUYkhI3a7nr2s+9c5SaO/pgZd377dXovCYiHm1lsJqFWsTxeYtD7AYr0GWsqIK3+dQFsinch4PaJSYPqfBhCRKEfeOAJQ4A1Q9ehK6t7cTN2bm6n453JqXl5P3Wub9lu7/UTEVdCEYadsvDO4wa3SETkkD1MHw1xPiAYD5rPOAmQPv5bvvt/v9+44ZrJedllQ33pfhkCAjIgMpqRNAUCr0GLz2Hh81eNMGjWUxf58ACKU1aSoNxFjUrHwhQ0EOniehulMODT4EFCKSv41/l80uZtYXimH831T+A0X5l7IVsdu1FPGw9yvkZxOvnv7bupMMyl2DyFTK08aDeZ1tG6ODrZnGBof9Ag0K52ofS0gQqUrgcqocmpMxUS2tHmqKBSoM9KP6PUea4xPG8Z35bIBb1fLgQm2C4JA/H33UjhrNkgSLT/+hHnadFRxsQfeEbUBrvgK3jwbIeBGI27FoPge+9qZREzNIGtILNuWVdFU5UAfoSZzYM/voQyGh4s4bfKENrKDIXCnxk6Tsxxbh4lA2CPwyNPRO0+iw8pn2wMt6soriLryCgDcuwvxFBXi2rwFX3U1qtRUJLudbZOzWNy3GDrUf2fH+5S0lrBkuMCXw+Hpif8ix5pzRK7pRCXJlERRSxFOn5N6Vz3ROvm+W9BUwI/FPwKgEfW0Zx//raiBMVnRfLWhgsl94thZY+uUFVphNhN7911U3nU3ANX/fISMuZ+Esp2d8xK8NV3OHNyOIQbsteBsgLnXwOzXQbl/4aRBSpYT8DUAkeSUSfJihiSFklecxGRZsoKZg/ukOvmiTVLt5201FLs6GwJrHSFtoY4hvx0pbXAQ3eHcnp6D+pEjUSUl4S0vx7V1K66dO9Fm73txznOQHoGtnlbWVMsLXsnGZDLMGftdN8zvS/p1V3HTjuXsSFyKTQcX9UumK7OMZfZ5VNwhL+qUvfsB/9ml5IGz+/JbdQRnpIyA0hUIrRVYp1TRmphFyy/ycz/Q6kWrkQ3INsmIMDyR5A87GAJPYr3ow0HcXX8BUaR57lwAqv/1GBHTp2FbuIjoG2+k7oXnif/b31CYzdQ8/gT6USOxL1yEcdIpZI8Zw+c3jmFZQT1bqmN5a+fTqMzyeFQAWinAVXYRfod8b7jnzD5E6tVAHDcMvIHHfnsMAYGhfarZUhTJF4GxxBqjuM/xLyheChXrYMCFENFm9Fv7Fmn2jSDCJvUgQJ7I51pzj+wfLcxxQXcSJEeCiru/orltaiZ0SIoVMW2arM/e5shgGD++U+KeroiYPYva//6XAUXlBIAHRuiQaESx7VPOkd6hsf9wLNe8gt0mYLJqGX9BDh8+vBJJgsIKB9vtXqxNsuG9odVLWo0Tq1LEsKEO/YCY3+X6j3Vatq0jq0Cex7To4YbT/s6iO846oDYss2fR9PHHchvffE3EzHMBqH/5FVQJ8agzMxH0Bjw7tmOcMAHbggUok5Lx7N4NyAm19EOGoM7MxL19O57iYiSPZ59SK6OTRvPfKf/l+h+vZ1nlMlZWreTsM2fytmoy4wMbCUgwzvw6n9T3wiMZ2Pr5bvrODD8nuyLsEXiIiILIX4b9Jfh67o65ePwe7lt8H3+J+DF4XPvNIsrTN1HsDk3YFFW/ooqX3Wo9xS14q+3oTGauePIFxo5IRcRPE5FUuYbhUDcjBCSSa+VMg8YJExD3U5PoRGVi6lCQ5JtYvW87ALtrbT1V6YQ2Lw/rFVegHTAA17p11D711MF3xpoJ57wIWguSOhKL6lV03vnYllaQnGtF1RYeXLK5gcA+3NHbQ4NFZQoSvQj4G4hWypOAgGTAqZLrW3yhz19hOnm9gY4W7R6BAH6p55BvTWYGpkmTgl6CCqMRX1QEKwK7STIlMyg2pI3yyc5PWF29mhhdDBflXsTElIm/1yWcNCQbQ945HcODd7fsDu77JDftBtlVRY38vK2am95bS/4/vmfafxazq6Zzsp+IadPQtq1iu7dvp/aFF0InVRqY9jREpMDpj8KgS2Dm/6DfbFBqYNtXMPdqObz/QFjzFq1tOlEDiiRQKND2y8cw7iA1Tk8gekWEdAIjIuqDGX5/2VZDeUvnBDD7Expc0uCkrrXr0GAAQRSJ+uMf0Q8fjr++ntpn/r1f/XTvkD39USj28hrrsrzfTaWtkq93f41PkidO45LHhWUCjjH6zJxDZZRAq15gXuG6TmMRt89PWaMD02mnBpN6uH76iV9XFTDm/37mD++sZnfva6DXqeBuRfjlYcynpBB5dhaiSY32FBMKQc4YXKJOp8HdSEpYJuawobBYiL31FrT9+6MbOhTHsmVU3nsfrd99R/GcObR++x3Fl15K1QMP0PDGG5TfdDON775L6XXX0/T5F8SZtZwzKIlYQxRG27nE1MXQTz0dhS+ORKYRwWD+c+FALhyeyrmDQl58c3Lm0C+6H4nGRD4reoPeifI44r+1fWjoc7FcyOuAH/8q7+9eiNSWQLAgEItTK4e8pZvTMaj2zjAfJszRJOAOJeUS1B2kNSIiiP/rX0l+8QUs559H3D1377MtUanEep7shS8C+VsF/qy/El/6RARbFdaaeYjLn8cklYPfS5S+juHTM5hyTV/S0024JPC2/XdJsNMt8ZvdT/WXuwh49i3ZdCKy+Ze3UbY5ym3J1fPXC4Zg0ByYf5i2f38sc+agSkvDvmQpzV/Mo/rR/6P2mWeouPseis47n/LbbqP8ttvZPmIk5bfdTtX99+NvbEQ/ciTRf/gDgiCEnmE+Xyf5lJ7oH9Ofq/KvAuQ52JNr/oVl0Az+451BsRRHpLKIc633I+Bj+U8lNJe1ULu1nkAgQO1+ROedLIQNgYeB7Mhs+kfLIpnbG7fz7zX/ZnfzbgriApTEKyiNApsWXIFfqQtYqfCmAyBUrsPQP2RMsP9WjahQEJWcSoxQhVIEC43YGIJD1UpcE2h94Kus3K/4/RMdk8aESchAJ6WiFyO57q0lTH56IW8vL9535TairrsWT2EhAM1ffIFz3bqD71DGODjnBRReWc8vQvMGrT9txbO9gZQ+ssajy+alpi15SHcIogiCgKiSPT40Si0GhTwJcEgpOCX54Wr1hh6sojHsEXikadcIBPbb7TzqyivIXvArUc8+wa23Gvh6uEhpaylX519NnD4OAG/Ai8vvIj8qn3tG3INSDDtuHyodDYHltpDeZkFTSFvUL/mJs8iGltXFDTzw5RYAvG1hJx/+FvLKBRAUCuLul8N+tfn51L/0MvVvvBEKNYnrCzeugFF/hBnPQ6+J0G8OeOwgqkAKwA/377vzkgTzboZ17yNJAUpF2Ut40C4JwevDtWUr+i5Etk82ell6kWHOYFDsINyBVkZkRNInwYRJq6TW3tSpbK0z5BHYk0ZgnS2kHRvdheeg+fTTcRfKxmTb/PnYFi/ptn+SJFH77LN4du9GO2AAhjGjg97DXbG+dj0PLH2Am+ffzKwvZ/HU6qdIM6cRq48N6wMeg8zKDy1Mljl2ctpTC7h77gZG/PMnZr24lLOfW8LaKju1I+WwK7Xfy8Sytbh88rPjz+vjkFoq5PtCxRpY/x6G4fHE39wb9e47caFlszKPxugh1LvqSW5LHOfXqVHGxx+diz6BUMbEkPrmGyijouTXbX/TQJvEjyY7m9af5oNKheT1Bo9V3n8/1Y89jhQIcM24TBaensULHzt5fI2Peb7ZPPfaMuaWfc7Al/7JVf++mfIbb2TH2HHsnjWbllffZGzS2OAzqV92BZF6FaN7RTEv8nLQWSFhAOij4P/S4a3pCG2LVXNNY0CQn1d9rOGw4DDHHpI79PwUtZ2fn5Fzzsd0yikkPPggmoz9826POPdcpLYFvonrRb5RNbKhuoO++y+PwMvj5UXWlycwtE8Z2UPjMOVaMVg0GDLMGDLMKNUiAcAHbHVLODfUdvl+JzKBQIAWZSVbk8GrgI25WUzIOfCIOEEQME06JZgEreqvf6Xlm28QLZbgQrenXXe17b7pbnvtLSnBdJqstdzRq92zH+HB7VzW9zKSjckkGBLQKXXk93bwkzAKq0KW33ESz5mWJxEE+OTRVXz87/X88MhvfPzv9Sx4eg0BXzhkODzDPEzMzJ7Jhjo5LOndre8GjyfNmIPi5fdIqYcNWwup1VdQ4R5KoqoIAL12FU3KXPBJONZUox8ahzreQLRfHhj4BTWFUhIB0R8c+EE4FKSdSb368UXBF6CAn3dvwR9I5L0VJZwzMBGTtvtJVjvKyEhi/vQnqh9+GIDKBx4k5aUXUcXFHVyHcs9CypmKsP0bxEAzVuEJWpc8SlKShd3r5CLFm+qJz4zotglBEFAolIgqWfMqWhHyWqoIpIAoezRZ/CGPQPEk1gc7WnT0CAxwYA+T+SXzaXTJXkrjksYxIWUCv5T+wtydcmiSSlRx14i7Dl9nT3KSTCEvjN1Nu5EkCafPyc7GnZ3K5Sb7qW5S4fQGKK6X9fcEZD/BuWvKufP0XNTKkAFYP2gQyc89R/ltt0EgQOMHH6LplYWx3UNPvYeXRu8pcOln8MHFslegoIBBl0JsD2FdletgzVuw5i385lS2qWKIb6gjsTHUB4V539nIT3RSzakUthRCC0Trojl30Knc+Yn8TNYmOun4NOhsCOzsWa8QBfwBidIGB1EGdbflABRGA3F//jMVbSHije+9i2HE8L0MfAG3m6oHH8K+aCFIEp6dO8n8+qser+fj7R/Lz7YOFLcUc+/wexmdOLrHumGOPPHmCKI1KdR5ShA11QTwMXdNGV6/RHWbZ+lDX23B7u/Fs211zrEXsC16MrvqHOyocbJ03J8ZU3u1fHLtu5BzJuKm9zDWrEbEj8fjobD/7QQafiCrTf/cl5oQ9g49TCh0OpKefoqG117DfO65NH8yF+P4cTh+W4W/uZnWb7/DPG0aEefMwLFqNY3vvgs+H40ffkjLl1+izc/Hvnw5ktNJy5dfYhg3LigF4gd81dX4EhPx19Xhr6ujrrCQ8eOe4sW2928VN9LsTGFpQT21rUauuOp7iOoF394NrpBXs18S+MArGypjmiT6ROZS//obOFauxLVlC9q8vG63wAlV5ljpx7F2zbqhQ9Hm5mAcM+Zw/TwOmHadfOgcGnywqOLi0I8bh3PBQix2P72dq7hKO5TXe89mQ9X3OASBWqWCO7bOwyBJ8Ms/ofkyBp52UafwaEeLh3f/ugyP209ZrYsNXxUyckjcSXUfddW7SN7dSGQT2NVw6ZwrsRoOLsrQOGFCMOxX8nrx19Whyc1Ff84MGt94M1hOjIgg0BxK3BF7912Ibd8Lda9QRMf+6AS2o1FouCr/Kh5c/iCV9koi1BHccfltTH9Nw1uq/yNdtRxU4JWeZIPjLOI12xnonkeyaQjLd/4B9/PrmXRDf5Tqk9e5KuwReJg4I+MMruh7BXNy5uCX/IxPHs/leZeTPePiYJnBBRI7U39jl3MUJe6BBDSRiDs+J+L0DHT9ogk4fNS+uB5vQQE0ydb1pkA2VQp5QhoOBdmb9Ij04H5WkhOtSsTu9nHtW6v2u43IC+ZgnDwZ/YgRuLdupei883Ft3XrQfRJOfwQpawoBdRw6xQrMFX/BuK4meL6gw363bSgiERUWABI1O/BjpDmQw9JALoIor4BFeEJ2/HBo8JGn46AhIO2/IdAb8PLkqieJ1kWTbckOSgvM7j2bv4/6O9f1u44bB95IkjFpHy2F2V86/i3f3/Y+w94dxqj3R7GlfkuncqNyFLx86RCuGyevUPeONTIuW9YTbLB7+Glr9V5tGyedQtS11yAajUgOB2U334y3srL7zqSNhpE3yPuSX84kvGdmyI6seSu42xDRF4cIg3eFFoWME3vW1jlZiDfEB43zZa1lTMmLR9NmtBVEV6eydY7Qw1TW6+rQjlkemJY1OjtlDY7pxnPQPH06xkmT0Pbrh+3nX2h4991O5yVJovS662meOxdBq0M0GuUMiT14cbV6Wvmh+AdAXnAYHj+cIXFDGJUwimm9pnXyRg5z7DAyWY4MEYQAJlMdE3NiiTVpSI/SMyozirFZMew0JrAodTCNCWkkFWzgob4qhqZFolSK3LLCgif/AkgZASVL4aMr4If7qVan0iQZeMR7EfnJlqC+EoDY68ASzoTpGUEUibrmGlRRUURffx3aPn2wXnZpUNZD27cvxrFjib31FmJvv00WzJ86FV9tLX6bDcnpRJWUhH7USPSDBwelQBRt9ZUWC4JOTvonORxYXvuKKK3shbiu7jf6p8iLRztrbJQqkkFUgCUV1CZQ6vgk6S887puDTe0kTpXAo+8KDLvlDWwLF+C32fBVV/e4PdHKHCv9OJau2VNZScPrr1N69TU4Vu3/XOhwE/CEnp+HS8oqcsY5tKbH0KqXMwj79Wu4zFZAiSWdT2OT+Nhs4orUdLyxfaB8NXx+A6z8b6c29GY1o2b2ItWiwgesqXKy8cvCw9K/44XWMhsqjzxv8Wigf69TD6m9uHvuxjR5MlE33IAiKoqEB/5B3F13EXHOOcT99X5Mp08h8dFHME6ZQtzf/krEOedgmjw5WL+jTcO5afMBvffZWWdjVsuL4T8U/0C/ZBUTRgznNc0lwTK9dYuZZn2UOFUhRkUD+YYfydEtZOfWRr54YjWOFnd3zZ/whD0CDxMGlYE7ht7Bm5vfJFYfy/D44Vze93IkSUKRnIS/rJw+pRJeqYk6fzomRS2iuxGKFmE800nNOnmioozR4fjqK9r9xURfHo1KOZS0Y5Y4ddgQCECqKbTKM3OEljfq1ZQ0OKhpdeHxBTp573SHoFSS8I+/UzTnAgBUKckUXXwxSU88ud/ZkzphzUAYfRNi0fkA+HyRRHrnERU5jYBGQUuti4Uf7GDs+dmIYtcrUObYoTjaJIYyTUUosBEhbmeFdBmCKLtXm72hn284NPjI00kjsCdDzh4sLFtIfVvygslpk4PG7PzofPKj8w9rH8PIJJtCocGt3pDWX6O7s3acwdDK6XnxlDY4iDdrOX9YCrnxZpbsqqNfsoVfttcwtV9CpzqCKBLzpz/hq6uj6SNZNLnm8cdJ6klzdPTNsPZt8Lqgbid8cqWcYESt71zOY4eNbdnVVAa+ybiP4m33c2VBaDFhXyLbJwsqUUW8IZ5yWzlltjIi9Cqm9kvgs7XloOhsCOzoESiKAsmROlqcXgKSREa0gfImJza3j+pmuZ4g0O1quSCKRN/wB4rOnwNA3XPPEzFtGspo2YBc/dDDKKyRAPhqa0l6+ilMEyf2eC3fFn6L0yeHtszMnskdQ+8gIAXQKrWoxH17uoc5OuRF5fHVbtnT887pBi7rNxQArz+Ay+vnw99KiTdriRo7isj3ngcgfcVPRPeazqpi+V70ing+N1VeJDdYJGeJTnAXcpnnLtYIfciNN7GlLKRvpM3qfaQu76SmY/KvdiIvvBDTGWfQ/PkXQYOfMi6OiPPOI/rqqxBUKqJv+MNebfmbmig4/QxEkwlRqeLJZ1rYHOXDqbGRLj3DDdlXExBEft1ew6Wj0mHMzfJ/RwPvv7mN1f5GtJp3SdpSjrklAC21+IwW1MnJnfrR1RY4ococK/04lq5ZCATw18mLXVUP/1NOZHYU5KQkV5txRRShBxmMA8E4ZjSmO+pAgj5lbfMndQvf+fvjCmwCIC5lDFMqVpApWhjhF7mutRKe7APx/cEQDa0V5F/wPnUb65CaGlADBSuriMyykJJnPSz9PNZpqbShaouqdmhAoTy0z0ednk7yf55FkiSsl12KMlIe8yT+36MAWC+WnaJMkybJFS7ao35qKqrERASDAfuSJTR/+SUR06fv13trFBqm95rOu1vfxe13833xdzw4Yw5Np2VT/t9fiGzahAYfalpJy/BAlVxvsP4ttjpG4K1XMvdfqznrxgFYE08+rdWwIfAwc3nfy7m87+XB14IgYJ54Co3vvIMiAHE1q2nSnskWx2mMMcsus8LGd4m5/n7q3tiMZ3czeuVvwU+m1Z+HQy0bAlPaQ4MVigPKNngik2YOrYYXtxQzImM4n60tx+UNsLmimUGpkfvVjjIqivSPPqTq4X/S+v334PdT+5//oO3fD1V09L4b2JPMCQiXzEV6exZGfsQv/cYo5VkscgXwewNsXlyO1+Nn3PnZqLV7/wwjk0bh2N4ISEQiey0FJB3zhVja/VKMntCDXQx7BB5xOmkEdvAIlCSpxxCDT3d+GtyflT3r9+lcmE6Y1WZMahOtntYey1XaZU++a8Zlcs04OTQ/EJDITTCzrrSJ9WVN3HJqNsmR+r3qxt5xB60//oS/sZHWBQtxrF6Nfkg32XxVOpjzHnxzB5SugC3zIH0cDL1aHjS3U/ALuNs0RfNnsrk+gM5vJ7dMfhYoExPDi0IdSDImUW4rp9XTSrO7mTnDUvhsbXnQI1BAQEKi0dWIL+AL6m8uvmtSsI17Pg1loK9pC+mM1KtRKrpfVNL160fErJk0fzKXgM1GxV13k/z8c7i2bqXxvfcAOclX8n+eRZe/b2P/z6U/B/fPzzk/nAjgOKGjVluxLSQ7oFKIqBRi8L7it41k5+evIzkctHz1NffOu5lfttfg9gV4e6vEFUNvwrj8iWD9uf7xLJQGkBtnRKtS4CkIaZtG9ul/ZC4uTJcoIyO7NBL2hMJiIeXVV9FkZ1H/yn/RNzrp5QGrXQK2c7p6Jd+mj+TnbW2GwDYkXSQ7quVnmEbbxKQNIeeA2Ntvw3TKQSxchznhkPx+Cmefh3vrVtw7drBz3Hh0AwYc8TDmgK3Nm0GhOGxht4qICDTZ2bh37CCzBnI9s1lbEUerM4VROTMZN6iMwroW6qSF1Om0rBWUTA24SW6tAEGElrZkccufZ9w1t+C6ZwmFTj8VdS4WfbidOX8bgaKHZ/2JQlN5C0ZZYhT3Ycw7KghC0Ah4QPUUCpJfepGi886X599PP4OntJToG27Yr+/OuVnnBmXZvi/8ngtyLyDSqCHy8lf5548lVK//ATtaTh96Jefvuhu2fYVB0chUy7N82XgHAbuSRR/toP+EJIrnlzLkohxWvbedkVf1RWc99LD2Y5kT/9t+DNDRY2NwgUSZuYDtron4pTZDzrp3ERUSUXNyENQiGlE2/EiSQJ03B4dKzhic2LYIrE5LO+kzBreTag55BBa3FDM0PXQDWlXU2FWVblFarSQ++gimyZMRjUYCNhvlN9188J1LH4vQW3Z9VghNGD3L6W3VICggJsXEtqWVfPbkGjwuH35vAG9b5ipbo4uKHY1EpxrJ7+tFhfzB1wZ64xVDnmdGT+jmqDCFPQKPNN1pBJ4771zGvD+Gke+NZHvD9k51quxVLC5fDMihjCMTRh6ZzobplDCkO6rsVXsdE0WB0/vKYZySBJ+sLturDMgD1Ohbb0E3eDCiWk3Vgw8h+Xzdv1lCPxj3Z1DpIb4ffPNnWNc5rJR174I1C5KGwICL2FFjY0CpDbcSCpKVRJwz46TStdkXHT0/y23ljMiwMntwEhEG+b7ZbviTkKh3dp01LtUaMvI2OuQl8670Afck9rbb0A4eLOuELVlC8WWXU/XQw8HzUVdfvV9GwGZ3M9vrt5MXlceIhBHkWnvQjwxzTNHxs9rWsK3bcgqjAfMZZwAQsNkwr1zEVWPS6ZcUgTcg8R/3WfLCwKS/Yosbzv95ZW/TvolyrIimponiaNiRoiAiN+xFfjyiy++LqNEgGo0oYmPxxoc8ka7c+g1Gj4OlBfU4O2Q0rW5x0+qSnykWdx1DdrYtCMXEYBw37sheQJhjFkGhIP7++zCMH4flggvwNzQclTBmVao8PzOffvphvT7dkMHyTiDASzmTiFFnA7BsuwJb1STmrWlCatNQ90o+nmjeAKZEiExDVn0GFj6Bwl3NqKnpRBrkcUFjtZONv3Q9vjvRsFeFxroe9bExhtRkZBAxYwaiyYQE1D37H6r+9rf9qptjzWFK2hT6RfdjXe26kOyPNZOzRg9kXmAM8wNDeHdFMUx5GF/ScALmbJI1yznb+ihmMUD5tka+eXkTm3c18+HDK9myq5mP/7EcZ50j+D4Blw8pIBFw9jC2P84IGwKPAPrhw5B0GiojZWHfMnMBzoCFIvcwAkojGONh3TsoIjSYxxgBCbcUh0dKo9qnx6OTMwar28YDYX3AEDqlLphttbilmGHpVhT6naisv/Bd4Y97GWL2hajRkPjkEyhjY/GWluJct+6AhEv3YnDIO1TPdyTWOjhzdjZN1fKNRalW8O7flzP38dV8/uQa7M1uti2rRJKgrsRGfJurO8CWQC6IIR0DfQdJg3Bo8JFHKSrpHdmbWF0sKytX8tclf2V+8XwKmwtp8bRg99rZ0bijU503N79JTmQOKlHFuVnnohBPXoHaI02iMTG4rxY7G3aEtsFhpa1rbb/ZQ5Jpj+L/eFUZ/oDUZbnI2bORXC78jY24t2+n6eOPe+5U7ykw4zmokpNa8NM/wNkk73tdsPtXaNgFzWXURQ2ivtXN0CIHJhf0KvOhHzCg5/ZPMjpqQZbbyhEEgSfOH4jQFhqsUYR0/uqcdXvVB0iL0hNv1pBu1QczRneXWbgjyqgoEv56P+42/TZBp5Mz6SmVaLKzibxgzn5dw7aGbdS56thSv4XMiMz9qhPm2MCoNpIRkUGKMQW3383W+q38d8N/eXfruzz222OdylpmzwZA3bs3rs1buH5CL7ZXt9Jg9/DR+jrcl3wB4//MvMGvUou8wJmfZMYf8JNU6iStDlJrJVThjMHHNVFXXkHvhQtY/cBMFucJBIDqWAWX7f6FrFgjY//1M5e9toKKJmfQGxDRxZkrbRTFgk8hEDFzJoIyHOAVJoR+yBBSX3kFdUpKt2HEPYUmH44yqvj4oK7mYb22waFIi8D69dw7VfbETrJoeW9FCQrbBGy77iXgMyL5tZQrEtl2xWdw5Tcw7Bq5YuIg2PQJhiFx9FXKgzu9ALtWVuFo8ez1nica/sby4L5XfWyYggSVivgH/kHMrbfia9PZDrg91L/2OiBLKpTdfDPVjz3OjvETqLjvfhrffz9Yf2TiSDbWbcQn+TpFXg1IjiA33oTVoGZ3rZ0LPqni2vKzkFqLAIgQDYwwvYcEtM/I3G2+HUpR4L2/r+Czexbz6o2/8Nk9S3j9ll/57O7FvHPf0t/7T3JECD85jgCiRoNl9myEt98loRHS6mXj1MrW80kw7ERftV5Oe54/C6NhEYIoTyQavNexyyvRLDaHwoIJGwL3JM2cRrWjmiZ3EzFmP/q4H0Bbyg6+57VNu/nX+H8dUHuiQkHkBRdQ/cgjADR9Mpe4uw8yg2uvSWBOgpZytOJqROrQrdNzzo392bSiGp1RyaqCZhzN8oPn57e3Ul/W5k4vQFIHQ+ACKTuYKAQ6GwLDyUKOPEa1kblnz+XJVU/yxuY3+HzX52ys3dgpTHhL/Ram95J1LnY37+aDbR/gk3z0sfbhgpwLjlbXT0rUipDxr3dkbzbVh35bUboo6px1VDn29ggESLTomNA7hl+211Le5GR1cSPDM/bWkhEUCuLuv4/ii2Q9lNoXXkQ3ZAja3iEdr0BAorjBQUZ0W7hn/izY8oX831EHX/wRznsLihaDt20lMmsyj3+/k7JGOwN3yxqhXqWAfvjwQ/qbnGh0MgS2ygNdSZKwe+2AvHBk88r31446gR0Zlx2N2xegqoN49P4YAgG0ffqQ/u47NH36GaLJhHPFCiIvuwzLuefs90R9a30oUVXHUNMwxwczes3gmTXPAPDM6mdYWhmaLExOm8yg2EEA6AYNRJOTg3v7djy7d9P7TzdzRt945q2voNHh5cct1Uzrn8imilCWxfykCOoaSolpO9SYYAp7BJ8gXN//ei4+4zOS6uvJKm2ll7iAprGT2WxXs3BHHZ+sLkPfltkyyVXA1NUSKj80JJnoc+kl+2g9zMnKgYatHw/oBw8K7jvXrmHaTTdi0ChYV9LEsz/vYs6wFFqdXn4on4g27hu2tSzl1fWxPD7pIZhwF2z7GoqXQNUmlMOuJfXUFLK/LmKXO4CjxMbyLwqYdOmJ/ez1OiqC+x7tseOQIAgC1osvQhllperhf9Iybx6tP/yA+YzTqX/1NVp//ClYtnnuXFq+/Rbz9LNRGA2cmX4mj//2OE6fk693f80dQ+9Ap9QhCAJ/OzeWx7+uYZPtGzaKi/BHJ3GaYxqPuBczikVkKQTeioxgYvMYvjFtYGHsfBKdyZxZcQ0Bl4JmmweXH7weP04/6BUSDqf3KP6lDh/Hhhn4JMA8fmJwf9SGJkqtrZSIGZR5ZZdmbNXw8yMI698OltvhHYAYAIe6heQOcxZNdtgQ2JGOOoFra9eApjT4urRl7yyf+0PE2dMR2sKvm7/4goDnIFeIRAUMvRopbQwBhZWIhKX4qh14P97B2CmpaPQqdCYVap2SqGQDpZsbsDfJ75Xax4qmdR0AkiTyZSATQQhNTrWuUMiIGA4NPmpE66KDYcIFzQWdzm1tkCf1kiTx2MrH8EmyO/mElAlYdSeHKPGxwoW5F3J1/tVMy5zG5fmXM6PXDC7KvYhr8q8JGpDqnHV4/F3/1s8dlES/JDP5ieYuswe3ox88mIhzzsF42qn4GxoovuhiHKtXs7O6ldOe/JUhD//IjOcW0+LqMIiY8jDE9JFDgLd9De+dD1u/DJ4uso7ho9Wl9Gopwtq2TlDa24LYln0yjExHQ2CZTQ7xcfgcQeO8URVaMOnOEGjSqshPiuh0bH8NgSAbA+PvuxeFySR7RSQkoO2z/5OKLQ2hTNZ5UXn7XS/MscGIhBHB/RVVKzqde3TFo/gDflw+F4LQwZDv82FfsoQLhqUEy374mzyO2VwuW/0EAfokmKnevDpYxpVyEPrFYY5JjGojV076M7sHyR6eQiDAmQveA0lC7ffy4W+l7Ky2gSRx/fofULUN/2zDegcTE4UJczKgTExE2eYJ7Vi3Hvx+JuXGYdapiDdryY418sIlQzg1aRoKQU6C8V3xtyzaVQbGGNlBA8DdDFvnYZqYQu9EPYq2sI+tSyupLmo5Ktd2pPB7QxERfs2xl4DMfMYZRJw1FQDJ5aLib38Lef+pVAhaWbdPcjho/e5bQL6Hnp4uh6HbvDZ+LP4RAKfPyT9++xMt1sdRaisRVS2Iihbqo4q4IdlAqVLBU1YzXyT8xGMZL1FjseFWtVBo3sLHac8gKR1IooRW8KIQBAQBlAoB3THiSXmonBhXcRxgGD0KZ5Q8CRm0W8LvWo/RC8vqL0NSaEBjlvWgamVdmRWBXN5yxQKyIdDskKi1iHKikF69jtp1HIt0NATOK5gXlIAAKGzefVBtKiwWObW5QoEqJQX7ggUH38F+sxGKl6II1KFpmgcEEDQKWn4uYcCEJK56fBwX/n04Gr0KSQJRIV9A33wJBIEAJpxiFvVooYNHoMbZwRAYDg0+alze93Iuy7usy3PbGrYRkAJsrNuIUlQGM5telX/VEe5lmEGxg7h1yK08Ou5Rzkg/g4fHPsw9I+7hliG3kGAIZQKutndt5DslN5bNFS1sqmhh0c6uw0rbiX/knwRaWsHvR9BqafzwI3Zu3s2uWjuNDi8tLh//mR9KJoAlVQ4RrmwLEfY6QnqBooq16kFkxRoZXrM5WKWif+fsxWE6awS2GwI7JogxqU0YVUaSjEk0uZq6bWdOB4MMQLTpwDV5o668guwFvx6wN0a7R6BKVJFpCYcGH2/0jepL70jZA9gvyc9ok8qEKIhoFBpO+/g0zph7Bs+vex7jhPHBerZfFzAyM4pUqx6jWoEkQUmdnYAka1RmRBkwapQ0bw/dA8jo/D0Nc3xzdubZLJ8YS5UFfCJo1K18/OPDvPX9Qwxf9R1rC2v54/pPSW+sx6OABiN4L5lxtLsdJswRRRAE9IMHI+j1KKOiaP1ZTq51zbhMlt97ajDR2wsXjsLgaQsjFt386cu3+GxtGQzuMF5f/SaiWkHU6ERy27TyzHola38oRupGAuZ4R/IFkHwhDX2/7tjMORB9440orFYEjQbJZoe2zNcxN95I2ttvBcs1ffxJcL89AWOSMYkvC74kIAV4Y9MbVNorqXEXkZpYS6w+lsQoCUlZj18McGliEmvbDIuVmmpQLESQ5M9eq6zgk0F38VvunVRm382bxhpeT/BTNyGGN2JCc/DjmbAh8AghKBQEzpoIgChBZtUyAGz+BH6L+ztYe8mrE2185p1IjleBhIRD1cKAQomYpgCCXo86I+NoXMIxS6oplDBkSfkSQBb1B7D5Gnuc8PWEZc4cFCYTrg0baPzgw4PvYGQa9JKzuSmlKvQxO/DVOnGsqaF1gTxZNVq0TLtpAL1HxDHrL0M4/95hJNV8hcq/G0FysMNwFkCn0GB1m2g0ooho2DuLaZgjx7jkzkLdKlFeYbN77ZS2lvLu1ndZULYAtajm+v7Xo1OGPbmOJToaAtszB++JSasiN94MwLaqls4efXsgiiIpL76AfuRIAg4HLfPmoXn1+U5l3lxaxK/ba0IHkofCpZ9B+ngoWQaBtvbTRvHYLxXsrLYxsjpkPGwYHH4O7EmUNir422oPDbZ5bJ3O27w2ym3lFDYXdtvO5Lw4dKrQ8MioOXAVlV2Nu1hacWAaMnavneKWYkAOX2+/j4Q5fhAEgZnZMzsdu2XILXw07SNGJIygzlVHvauel9a/xNZUEUEvP7ttixYhIDFzcBIOr5/Fu+p4bWkhG8ubqbN5mNJX1kL27Ap5neuyexPmxEEURe4acz/PT1dwxzUKFkfVYXQ0E+FxcM2mr7jo6xeYXrSMGIeL9Rnw7HSRpNiwY0CYk4+oa65BYTbjLS2l7j/PdZmYTaEQeeLM64Kv3YbvuW/pHYxfeg9vJmTiAyhZCnU70A+OI0OvIFEl0GL3UbCmlu0ru5aKOd7x1DshEFoglY7RyBKF2UzSk0/Q65uvMYwZA14vpsmTsV55Bdr8fDQ5OQA416/HsXYtAANiBnBBzgVU2CpYXrmcZ1c/y+ubZY1BpaDkxdOeY/558/nsnE+wauWorHoFbNBqGK6J5e919byjjuWT8iomSzpOV2qpV4os0nuZa/VyT/TTLNHexITKB3Hauk44d7wRNgQeQTIuuobydBMVyXqGbylB6ZFdj1dsy0PKlrPLtvaaxmqxH2rlqaAUiM3To/C7gxmDNampiKrw5KAjaREhj0CX38WklNOQPLHBY7uaDi7Zh37oEESj7MVpX7oUT1n5Pmr0QIcVKEvsQkC2VLYuKMPXJAvZq9QKJl/Zl9g0MzEpRpQFHwEgCH5WGwbKlTskC1G2ZbQUjcawTtBRZmDsQPTKkDG2Y4ba1VWr+alY1rVQKpSc3evsI96/MD0TbwgJ7ndnCAQY1paVXJJgTXHPWclFg4Hkfz8TzPCeuHoRfetkD+X+CQb0GiXXvb2abzd2eL+McTDtaYjMAGMcDL0aT7+LqGx2ofe6MAXcbEmGNZmgSAgnCdgTQRBINMhJYcpt5QSkQFATECDOEBfcL24t7rYdjVLBnGGpjMuO5uqxGYzuFXVA/VhZuZJLvrmEm+bfxMVfX8yL617cr3rbG7YjtT0b+kSd2BpFJzLTMqcxKHYQUzOmMiZxDOf1Po8caw5GlTEYnt7H2oe3dr2PfqQcSuyvr8e1aROTcmNpd0SZvzW0UNA/2QKAWBQah1j69D8yFxTmiNEvph9Z46YRkd0Hv0GLTyuP90svuBYhuzeVcWn4FAIrc0S2pIud5BDChDlZ0OTmBEPi3Tt3duusMSppMKeknEKe5iL8tr7odR4a3bW8b9Tzh/RsiMmBNW+jMKgw5EeT1iHcc+ncXbjsJ4YOXEdaym2IgdC4CKPh6HVmHxhGjUKVlITYloBGN3gwokaDIAhEXnIx+jGjUSYkUP/KfwF5DDglfUpwHPXq5lcRBZFhccO4qM9FwSgLk9rErYNvJc+aR350PiaViWuihzGbCNCY6a2N4Sl1JhaFAX3bA9knCLybZETtqKJP3fd8oH306PxRDjNhQ+ARJCo9h5pYNYllDvSuAFGlnyAh4XVLLKiaTeCqn/gg9UGubb2X6FoFSh8UlJSQVhP6oLR5Yc2gPUkxpiC0/QPY3riVOOGU4Pn11QeWObgdQRSxzJbdjJEkmj/9tOcKPZEzFfRRoNAgViwiMnsVAAqzOugV2BGpaCkKbwkAbvrzqzKurU8hj0BBqUQ0GFCYzQffrzCHBZWoom9UKDNarjU3uP9N0Td4AvLnNj1zeqekFWGODdo9AiM1kZ0yje9o3EFRcxEf7/iYgsYCdJYtCMpGBIWNVUU9GwIBFBERxNx2GwAOtY6/rnyTu1e9w51fPoHQUE8gEGBnjY2iOnuoUnQWXPszXPktTHuKggTZGzi3oZiEhnryyqA6UsCkDssBdEV7eLA34KXWUdspNNiitXTKMt8T/zi7L29fPYK/TssjK3bff2tJkphfPJ+X17/MnQvvxOP34A142VC3gfkl8/er7+2aohBOFHI8E6GJ4K0z3+Jf4//FS5NfQhTkEdwV+Vew7KJlDIkbwtaGrfxa+ivSqMGArHtlW7yE/MSIoCZlWaNTPicKjM2WJ72GMnlV2KGB+LTwePBE5PoB17OtYRtvDWzmnr+nkvbB+5z+91uJiY/GNfZUXrwhhQX95VDzaF1YHzDMyYcgisTff5+8bzDg3LCBgNO5dzlB4NlJz/LBnLvpG5uMzaFEkkTKfS2sENyUNBbA+vfB78UwNJ5YlUiCVr5fK5UiXz23/oQzBrZWOhD9ob+VwnjszyG7klqJmD4dz85d+Corsf3yC7ZFiwAYFj8sqBUoIGD32onRx3DbkNs6tTkjawbvT3ufVya/wjtT32HUaf8Hd2yFiz4Ibi+/9Cd+uWQlsVr5PlsQsPOo1YofSLWeGEk6w1mDjzDOq8/Fse5/6D3Qp3Q1y9OmkkE8mxeWI4hJLKiv5gyHCkWbUStpjI76n0M6Bdq+4YHfnqgUKhZdsIgmVxMPLn+Qh8c8zGPzl/FTk3x+ZflWrh5wcG1HnHsutc/+BwIBGufOJeqPNyDuZ/bHTig1cibQXx6GkmUYiv+BFP9HmqrPwLfMhS4/Gm0vS7B4YMFLwTTmnriZ1NjkB5FSKW/VXgl1aQ0BQDtoEGGOPg+OeRCjyoiERIOrgW+LZAHbNdVrgmX2DBkLc2wwNG4oOZE5bG/czoKyBdw57E4kJOZ8NQdfQA45GRQziLW1azFmg7d5AL8VpXbZVrPTS4Qu5LVtmT0Lr9vNh58sZ86OnxlXvh5RkviP47/gdLB8TR8+uPw67r5wVKgRvVX+D0EjYd/6UCjrtmSBiWFDYJd0yhxsK+/kEWhUGUk3p1PtqKbZ3UyTqwmL1nJY3rewpZBbf701+PqsjLNYVL6IFk8L2xu3U2Wv6uR52hUdMwaHE4WcuGRZslhdLSf9aB6Rg7Ete3DTxx8Tff11nJITw8ery2gf+Q1Lt2LWqvDb7Jga5AiCsmiBAfqYo3QFYX5PMiIyGBE/ghVVKyhuKWZLvI+hgsDUh+5AkiT+9u6H4IdEY2LQyBwmzMmGbuBAImaeS8u339Eybx6G0aOwnHNOl2UFQeCN2Xcy6YlfaXH8iCZOHp9/ZjJwS2Mt7PgOTc40LLOyyP+iAH3AR0Gjm9ZGNz+8tpnxc3pjiQ1F/ThbPdSV2jCKYGv2YPH4sC0qR5VkxFtuQ5UkG4na97vb9lTmUOt3V6bBHUDwhaLLVJEHFvFwrCBqtcTe+Wcq7vwLANVPPol++HBEjYY7htzBKSmnoBJV/FTyEw+OeRCl2Hnu3n7vNKlNPS6s61V6Hhr3T74s+JKvdn/FexFG6swxrJJODKeOo/oEWbhwIdOnTycxMRFBEPj88887nb/iiisQBKHT/zPOOGOf7T7//POkp6ej1WoZMWIEK1eu/J2u4MAZlX8mn44SqDdBQaaZwY2/EQCwqtn0azlDNjpJ8iuo0oE5WktkX5HM6g6GwLBHYJdEaCJIi0jj1dNfJcGYwMSM/OC5nY0HFxoMoIqLwzRlMrohQ1DodDiWHpjmUydSR0J8P3k/bQzGphewKh8H3DTN20XAJ2e2pGYbYvEPuPz98AQyEQfPpM4m37T1WtkoEd/BGUkVFc4+eyyQbErGorUQqY2kl6UX52adyy2Db2Fs0lgGxAxgYvJEsiOzj3Y3w3SBSWPCorEAUNJawqrqVdQ4aoJGQID1tes71JBYV9qEp+03W1Rn5/yXl3H60ws57akFOD0hEWFBoaB+8gya1QYa1Ua8Gh2KqChSTp9ElLOZ04tXMvKJO2nZ1rXn8u52Q2BDyBC4PTnsEdgdA2MHMiZxDL0je7OxbuNeyUJSzSEDbk/hwQfKorJFwX2jykifqD5c3Ofi0PnyRV1V68Tu5t0Mjh3MiIQR4XvFCUy7VypAjcaNKkH2SPZVVmJfupRTcmM7lT8lVzb4eXaH9AHr4vV7TWzCnDh0XDT8dGcoGqXOWYfbL48Hw2HBYU52LLPPQ2rzBGz65JMey5q1Ku6YkoPJOxwk2dXic4NB1gpc8xaCKKDtbSUiRk+iTkSjENAKULOrmbn/Wk35Tnni1VBp45N/reKr59bxxX/W89XrW9i1pQF/i4eAyxfcdtzvbnuw5w6ljBMJ0R+KLtNZj98FJfO0aWgHDUI7YACB+gYa330PgARjAmdlnsWU9Ck8Nv4xNArNIb3P6MTRDI0bilJQMiF5AhkDLqPW3XA4LuGoc1RHEXa7nQEDBnDVVVcxc2bXnjJnnHEGr7/+evC1RtPzh/nhhx9y++2389JLLzFixAieeeYZTj/9dLZv305sbGyPdY8Efax9WDMmlvOXVBO1u4Va3TJeTJvMOc2ghaAXWKxPYNZfhvBW4etkVguAhCSKaHqHxaH3hwlZ6QR+MyIqbdR7Sg6prYjp0ym78SZAzk5kHD9+HzW6QaGEqY9DXD58dSsASnU1McL9NLkeoPHD7VjP7430xZ8RJRdaxUaavFeiy42j4fNNAGjVPjxAQkPIOKxOTz+Eqwvze/HgmAcBeHPzm4CcXTjMscvM7JmsqFoByBOvc7PO7XQ+QCC4LyicGDRK5m+t5sx+CawsamBlYWhQ8OKCAm6fHLpX76hu5bOsCXyWNYH7RsZyaW8DtuUraBUVKAN+9G4Hu2++jewH/4ph1KhO71tUZ0cZ8JHTKN/HaiKgwRw2BHZHRkQGSyrkpFErKlcwNH5o8JxRZeyUZb6kpYQBMQfpLr4HC8sWBvffPetdMiMy2VS3iRfXvxg8f17v87qtX9RcxMa6jYDsoXqoA9cwxy4dtSqrHdWMOG82tl9/BeQxxtjHnkAe9clMajMMNq9aiUMNeg84Uo5PL44w+8epaadiXmGm1dNKaWspze5mIjQR/Fb1G3qlHofP0UmLOEyYkxHdoIGoe/XCU1CAc9Vq3LsL0WR2n0htSulqFD+8zZrMSKZtqqLFDJsjIukfVYxQsx1lbA4xf+iP+utCNMsqWe/0U+v2I3j8LP5oJ6l5Voo21uNq8RAIgL3tLl1S0MIauw9rUSsNrfIWCO53t+2pzKHW766MyhUgyRta5DbGJB7+D+YIIQgC8X+9n6JZs0GSqHv+eSKmT0MZc/iNm7N6zyI9Ip0+1j58vONjYnQxbGXrvise4xxVj8AzzzyThx9+mHPPPbfbMhqNhvj4+OD/yMjIHtt86qmnuPbaa7nyyivJy8vjpZdeQq/X89prrx3u7h8UgiAwPGsCm1Ll0N8YZzNKZznv6V20aAU+NXioVgTIntMLvVnD9qqNJNXKE1AxMxWxLcV1mJ6x6NVoJfnmFhBbKW+pPei2jOPHo4iR9QFaf/kFX13doXVuyOVwwXsQ1xeVWI5G3IrFeR/eTatxvvZ3xDbPEZ8Qj2bOnTSLoSzIapV8807osBChTkvb8x3CHENc3vfysBHwOODUtFMxq2WtlB+Lf2Rb47Zuy+p1TurtHp7/dRf+gMSqos4rgy8tKKCm1RV8vbM6FJ6a3jsVbV4e0VddSevrH7HdkkKtPgJNaSEl115H8xfzOrVVVG+nV1M5Wr8sC7AtWX52hA2BXZMTmUOsXjacrKxaSaMr5D5tVHc2BO5LJ3B/afW0BiUAko3JZJjliUheVB5RWtlgs6JyRdCTpys6GhLHJx/kYlOY44L27yfIhsBOY4yff0Zvb+GTUVpW/3ks710zgl4xcnhX8/wf0Xtgdyy0DA5niz2R0Sg0XJp3KVatlXW16/i28FsCUoB3tr6Dw+egX1Q/5uTMOdrdDBPmqCIIApbZs4OvGz/8YK8y9mXLkLxeHKtWUXPfvfSr3sH4rW6iWiGjHNRbdDQsLoMf/0rA5ULUKLHMyCJuXBKjcy1EK8AiCtSV2ljzfQkNFXY0vgARIqRGqumTbCB+dAIuvwTRuuC2435324M9dyhlTClGRF9oYdsQefx6BALo8vKC34GA3U7Nv//9u73XkLgh6FV6Lu97OV+e++Xv9j5HkmNeXOLXX38lNjaWnJwcbrjhBurru0/X7PF4WL16NaeddlrwmCiKnHbaaSxbtqzbem63m5aWlk7/f09OST6F6gEhl/7hVVupV0i8rHEQnR3B+j5aJo5IwuP3UL5hOcq236sp//B4LpwsZJn7ovVnofNnM3/XpoNuR1CpsJzTZqz2+Wj+4otD71zOmXDOSwjaCCSFHlGwE6u5DV3lf/DQi4BkxG66EXVmDHWtIRfudo3AhMawR2CYMIcTjULD6emnkxOZw+DYwayqWhU8F6mJJD8qH6UgO9H7Bdmwt6m8hY9WlQYThwhAtFHNKTkxLN4ZWjDYUR0KT+0dFxIYHjm8D6+e+2c8UbKHkLLfACruuouaJ59ECsg3/sI6e2d9wJSwIbAnBEFgXNI4ANx+N7ubdwfPmVR7hAYfJkPgsopl+CR5kWZ88vhgFndREBmZMJI8ax6jE0ZT1rp3Yqh2FpaHDYEnCx0NgTWOGnmMMXMWhrFjMZ91FrvPmob+3ltoufE6hlvk77SnpITA6g0AaL1gyAyHjp/onJJyCvUuec7z6c5PmVcwL+g17PQ7SYsILwKHCRMx42yUiYnohgyh5Yt5eGvkbOuSJFH30kuUXHkVVQ8+hGPDBrT95UzrDtGETQMBAYrjIRAQ2P5/69kxcgTOTZsRFAKWs3sRMTiWkUYFkRGyHlxkW1Zho17JGKOCceMSmXDPUDRGFQaLBrVOGdx23O9ue7DnDrWMwhsyBGotx7+8VMxttyKazeiGDMH203yc69fvu1IY4BhPFnLGGWcwc+ZMMjIyKCgo4N577+XMM89k2bJlKBSKvcrX1dXh9/uJi4vrdDwuLo5t27r37nj00Ud54IEHDnv/u2Nk4kieTGnhzPbXNVv4MOdUEGBVUSNf/2ksWpWCpeUrSC514VWAyg+6vL49thumM72sSWxxfgbAkpJNXDb4lH3U6B7LrJnU//e/IAg4Vq/BetVVwcneQZPQH66dj/Dd3ai2hIyLagpoibsH8zV/RFArKSsOeRspFB7wdw4NVqWGB4NhwhwOJqdO5uMdHwOQaAiFS3xw1gckmhKZNW8WOxp3ICjsyIF7AvPWVQR1/HLjjGyttvH95moCEswcLIduVTTLGjZalYjF4MfutePxe3D6nIwbkModDRczRxPPZWu/B8C+dBme0lKMf38QX109Z+9eTEAQECUp6BHY7r0YZm/GJ49n7s65QGdjn1FtJNmYjCiIBKTAYTMEfl/0PSpRhTfg3cuIlxGRwdeFX7OlYQszsmbQy7K3J5fdaw8mj0gyJpEZkXlY+hXm2KSTRqBDnrTG3HoLgiBQ88y/8Tc1AeApKqb0pptIfOghmr/6Oljn54Ei/Y3HbzhXmP0jx5pDflQ+m+o3sbVhK8+tfS5477pr+F2oRNW+GwkT5gRHabVinjqVhv/9D4Dap54m4cEHqPjb3/EWFQHQ9PHHmKdNwzB6NNqLL+Uvy0CT8gYD6rZSHi3wymca8Irg9VD98EOkvf8+giBgGp2EKlpPUoKeLZ/sImJrHXWJRjIGRKNLMaPLlz25B56WysDTuk4gd8wRCLDk/bZdAfSm498QqLRaib3tVqoekCWZqv75COkfvI8gHrq/mxQIUPv00ygsFhAVNLzxBtq8POo2bDjkto8FjmmPwAsuuICzzz6bfv36cc455/DVV1/x22+/8Wublsrh4p577qG5uTn4v7S09LC2vydapZYRg6dTKt8/6N1QwmeX9CU33sRjs/rTNzECkD0E+hVLKPzgzkxCN2xoD62G2ZOxaaGEITsadx5SW+r0dCJmzUIRFYXt559xrlmz70r7gzkRZrwAOVNhzC34osZiEy9AyL8IQS3b6YvqZSNDepQejbotWUibbVAZE4PCaDg8fQkT5iRnQOwAFIK8yFTrlOUENAoN8UY522ukVpam8EleLhoZS2a0gWW7Q17q43rHYNTIv9vN5c0ANDk8bCpvwaxTcmZ+Am9ueYOR741k/IfjeWDpA0zKjSUgiLyfO5kFZ1yOOjMT9+7dtH73PeV/uZt/Ln2FOGcTTqOFry/vTXnbc8OoCnkWhunMyISRwUlypa0yeNykNqFSqIJG3uKWYiRJ6rKN/WVj7UZ+KP4BtajmvN7nddIkBIJJaACa3E1dtrGsYlkwMc24pHGHvsgU5pjGoDIEf7/thsD2z1wREYHCakW0WFDGxOBat57Ciy6maa5s2PaJ0DixP8MThh+dzoc5oszsHdJPr3ZUMyR2CH/o/wdGJow8ir0KE+bYIurqqxDN8uJo8+efU3bbbbR8/jnOTZvQ5PQm5o7b0fbNQxERQcKMaQxJt+Kz5bI5XaTJKLA7N14O6QCc69bT8vU3wba1vSNRmjRkZEWgtmhJSzCgMqqDRsDjDbe9EYUcXIZDIz+PTgQss2ejyc4CwLVhA7XPP79f9bw1NXgrKvY67tywgYDTSdWDD1H/3/9R88STONevx1ddjd9mw9fmeXq8c0wbAvckMzOT6Ohodu3qOgtsdHQ0CoWC6urqTserq6uJj4/vtl2NRoPZbO70//dmVvYs1mRCYSwU9TKQVVXAVzeP5fxhKYDs0rykaAH9CyVEQFffijacKOSAGJUcyrBc6y7B5w/0UHrfGEYMx9+mD9j0cc/ZqQ4IjRHmvAOn/gPlH7/A+LeXMY0PrSz91hZ2WFTvANGDziVhccjnwvqAYcIcPvQqPbnWXAC8AXmklGJKQRTkR6VVG1o5PXeoJejp186wjCjyEuXnR0Wzi3qbm9XF8u+3xekjUq+m1BZaaNpUv4kBKRFY9LLR6vmIQUT95S8IgoBoNNIUEUOUs5kAoFSIFEeDJAiIgohepf99/ggnAHqVnokpExkePzz4OULIeNoeUufwOYKhdwdDQArwfyv/DwC7z05mROZeST4itBHB/RZP17IjFfYKRiaMJMWUEp7gnyS0hwdX26s7GaOjrryC3kuXkPnF54htyfH0gwfj97ipjITV2QK7lY2dtC7DnLicmX4mUdqooCexSqHiyvwrj3KvwoQ5tlBGRhJz882IBgPGU07BuW49gk6HoFAQ/cc/En3ttURdeSVRV14BwOS8OHqbQot2758WT8r4BhAk9HE+mj/7ZK9FQtO4ZBLuHUH05X0xjTt+E/XYGmtQeWSrp0PDCTOWFFQq4u69F1QqtAMHUv/Ci9S//kaPi72u7TsomnMBpddfT91LL7FzwkRKb/gj24ePoOj8Oew6bTIt33yDMiEBBAECAZRxcSiMRpTHQALaw8FxZQgsKyujvr6ehISELs+r1WqGDBnC/Pnzg8cCgQDz589n1B6ZGI82faL60Nw/nYwayNxlo2j+PJSK0MdR3FJM9M5a9G3ycMZx4xG6CIcO0z2RukhUyJMwSVXFtqrWfdToGdOUKcEVp5bvvsPfemjtdUJUgCjKmYU7IEmhRAQWvQo/LhJC2veoM9IPXx/ChAnDoNhBnV53nHB3NASq1A5unJjVqeyQtEjyE0OGn80VLUFDPsCw9Eh2NOwIvm7xtLC1YTMTestiza1uH1tT8kl7/z2S//MsjQGRCK+DxQn9qP3Xi+yOkr3GjCpj0DgZpmv+Ne5flLWWIbVl9VMKyqCRLs0U+kx3NXa9sLg/FDYXBj1He0X0Yk7u3uL9EerQ96E7j8DFZYtZXrmc0tZSBsUN6rJMmBOLdkOgy+/q0kCsiosj7e23iH/wAbT5faGllcV9BZ6ZIXJu1rnh3/9JglFt5MfzfmTu9LncP+J+njv1uRNm4h4mzOEk8sIL6PX9d2jz8vDX12OeOpW0t97EfPrpe5W9ZGQaZbV6/G75PrzTXknT1HPQRXlwVCuxL1mOc+3aI30JRwRHcy2qNtuCUw165YlzPzGMGkXSk0/gWrcOJImmDz9k18RTKPnDDTS89x4A7t27KfvTLdS98grFl16Kr7IS985dtHz3Pb7qarz19QTackX4GxoItLQgGo0kv/Qiyc/+m+wFv5Ly4gv0+vabHnpy/HBURxI2m41169axbt06AAoLC1m3bh0lJSXYbDbuvPNOli9fTlFREfPnz2fGjBlkZWVxeocf9amnnspzzz0XfH377bfz3//+lzfffJOtW7dyww03YLfbufLKY28F7dSpNyC1uSLXrVzcyWq9oGwBedtD3ibGCROOdPdOCBJ08oRPVNpZUFC4j9I9I2q1REyfDoDkctH81VeH3L99UVBrp9Ehe7QMTYvE6XV20gcMJwoJE+bwMjhucKfX3RkCG1wNXDs+k/OGJPH21cN58eLBWA1q8pNCHuWbKpo7ZRTOS9ZS2Nz5PrSwbCGTckMri79sr0Gbk4Nh1CiqfQrqdRHUp+eQlptOq0defAgnCtk3KoWKR8Y9glVr5dGxj/Lh9A+D4ZeD4waTE5mDSlSxo3HHPlrqnjc2v0Gru5VEQyLX9b+uS82u/QkNbtcqNKlNRGoiD7o/YY4f9kwY0hWiXk/k+ecjGgw0mRU4NAKSUsGMrBlHqpthjgFUogqFqGBO7pywLmCYMN0gKJUoo6MRjUaUcXFosrLQDeg6yaZereTqsRl46ibic6Th8Nl4McJE5KhQNFbTGy8eqa4fUVwN1ah88ljIqQGdUneUe3R4MU2eTPSNN6LJzsI4+TR81dXYf/2V6gcfovbllym64EJaf/iBpk8/I9DSgm7oULT9+mE69VSUcXGooqIQzWZEk4m4e+9FmZhA0hNPYBp/YiZxO6rJQlatWsUpp4QSONx+++0AXH755bz44ots2LCBN998k6amJhITE5kyZQoPPfQQGk0o9KagoIC6ulB2xjlz5lBbW8vf/vY3qqqqGDhwIN99991eCUSOBSbknMnC+L+SWOkhtsLBd5s/48x8WQ9kUdki5hS0hbKKIsZxY49iT49f8qJ7U1IqC3ouLd7MjQw8pPYs582m8dNP0eb0pum997HMmoWoVh+GnnZNRyPC0HQrm8sdJIQOhUODw4Q5zPTkEdiuEQjQ6GpEq1Lw+HkDO5XPTwp5gG0obWZDmawVmB6lp9FbHPRQa2dh2UJennQdFp2KXrEGmhyhLOHzek9kvX4QggC3RerIsmTh9ruJ1h2f2jRHmiFxQ/hu1nd7DXTTzelsb9wOwNqatVzW97KDan9r/VZsPhtOv5NJqZO6LNPRENjsbt7rvNvvptIu6ximmdLC+oAnCXsmDMmO7D4LsH32qXzWaxub6jcxzJBIvKF7qZswYcKEOZmJuvKKYAhwT1w3PpMPVg/Apv0SCZhX/D3nTzkX7XcfEvCKtPy8mLjmZhQREfts63jCW1fZLoeIWy2ecGMOQRCIufkmoq65msYPPkQwGJDsdlSpqeD3I/nkyJqAw4EyJgbjpElYL7oQUasl5uabgu0EnE5EnQ7L7FmIuhPLWNqRo+oROHHiRCRJ2uv/G2+8gU6n4/vvv6empgaPx0NRURGvvPLKXga9oqIi/vGPf3Q6dtNNN1FcXIzb7WbFihWMGDHiCF7V/qNSqIgcPhoAUYLV89/D4XVg89go2f4bcU1yOd2ggXK2mjAHzJDE3OD+upptlDY4Dqk9bW4uEWeeiWvdetw7d9LwxpuH2sUe6RhWODTNgsPnIKEx7BEYJszvRbQuulMijiRjUnB/T4/ArsiMNqBVyY/WtaWNeNq0SYemW9lSvyVYLl4vT+Z3Nu5k1tdnYIhdwuriJuauKcfl9SNJEoVt2YgTI3QIoo/fqn9jQ92GbrXmwuxNV6vdWZYsTCrZq3JNzZqDShji9rspaCoA5MzAWqW2y3IRmtAkoitDYGlLadA43K5dGObEp6vMwd2xtWEr3xZ9S2lrKcPih/3eXQsTJkyYEx6tSsGD00bgqpkcPPamwo65j/wsl3wSTQ9fAYeYUOxYw98QyqPg1p64EhOiTkfUlVeQu3oVCY88QspLL4E/gORwoB85kqxvvyF70UKir7oSUbv3+K3d+HciGwHhONMIPBHpNX5acF/asIX/bfwfyyuXM2CnD78ADRlRmM+cehR7eHyTHRnS8PKJVZzz/BIqmpw91Ng31ssulfX8gLqXXsK7R3Kaw8mqYtnYoFaKZMdrCUgB4hskGqM06AYPRpmS8ru9d5gwJysPjHqAh8Y8xOPjH6dvVN/g8f0xBCoVIn0S5PDg6hZ38Piw9Ei2NmwNvr64z8U8N+k5+sX0o9ZZi13/DYgO/AGJ7VWtNDq8tLjklcuMaAM2ry1YN5wx+NBQiAoGxMohQw2uBkpaSw64jV2Nu/BJ8ueTF5XXbTmdUhcM5+sqNLi4tTi431G7MMyJTcfQ4CpHVY9la+whQ2GSKamHkmHChAkTZn85tU8sQ6Om4m3tjd+VwI+lP7Bm9hmY+kQiqqH+h834P/wDeF1dN+BuBWfTEe3zoSI11Qb3PZqjGhh6xLDMPBdNZkYwbNw4YQKi4cTIlnyonBzfgGMY/ZAhwf3cMnh08xucknIKQ3dJaH2gLaxHPyy8AnywZFlChkBRU02iUsc5zy1hVFYUozKjuGB4ag+1u0abm0vkBXNo/Ohj9IMG0TzvS6KvveZwdhuAwlo7BrWS3HgTVoMaP24ESSK1FjQ+N35jPQqNZt8NhQkT5oCYkjGly+MdDYGN7sYuywBEx24jWbEdr1dLY10OCn8UQ9OtfLxMNgQqBAUX5F6AVqnlhfUvAODHhahsJeDRs6miGV8glOU8I9qA3WsPvjaqw4bAQ2Vw7GAWly8GYE31mgPOwrqlIeTd2cfap9tygiBg0VioddZ2bQhs6WAIDGeCPWmINexbI7Cr8x09CcOECRMmzMEjCAL/mN6fs16ZiCr1FQD+4V7MR+YYAp5GQEHd58uIs02HC98HQwdZluYyeG8O6KMg61RY/hIkDIDK9fIWQvvdbXsqc6j1uyljrdTRnurSpzu55pD7GzZ+MhH2CDzKqOLjUSUmApBVLoHbzfLdv5JXIrsiK+Lj0PTuXjsmTM9EaCKCeloGYx1js6Kpsbn5Yl0FT/+046BCwgCi/vAHRL0e+5IlNPzvfwTc7n1XOkDmriljS2UL26pamdY/AYfXQUwTaGQnFNTZWT3WDxMmzOGlo0Zgg7Nrj0CAWtWXNGu/xWH6DEm3kWvHZZAcqeoylHRkwshgPUEph/xuKm+hsC4kY5C+h0egQRVeyTxUOmpBrq058OyAW+tD3p19oro3BEIoPLjFvXdId0lLyBsxbAg8eeho0JtXMI83N3cvM1LtCEUdhA2BYcKECXP46B1n4r/nzQF7fwCc/lau7dUPv1L2lWra7KZl2QZWPXcpxdvWyJUq1sLXd0D1JihcQM2Kj6C1gu3F5cFtx/3utgd77lDKVNtDph9f2CvupCdsCDwGsJx/PupBA1FJAi+ZbuCPvnGo/fI504SJJ5yQ55FmfPJ48qLyMGk1aLV2NEr5a1/d4mZzxcFpbaliYzFOlDM5+5ubaf3pp8PWXwCfP8DHq0sBUIgCp/WJw+FzkFIXMlxqssKGwDBhjiQmlQmlKA8Oe/IIrHOGEliZdArMOhU1jhoyIjLIicyhf3T/4PkYXUxwX1TJ67SbK5oprAsZ/jKjDdg84dDgw0l+dH7wszxUQ2CuNbeHkqGEIS6/C5evc4hRUUtRcD/VfOAe6mGOT6xaK4+Oe5QpaVPw+D28teUtnlr1VJdlO3oEdgwpDhMmTJgwh86EnBguztwnOqwAADs9SURBVL6RgCcas5hMZeIv/DzibNYmZRHwCZQtsdJr41oiPziL8p9fgdenwo7vWOXPpliKY4tmAJWSlRZ0wW3H/e62B3vuUMq4pFDmcaU5bAg82QmHBh8DaPv2pfaZZ1AACT9vwqkOCYobJ0w4eh07QdAqtEGR/lG5fqzaPvz1i80A/LKtplOWzwPBMns2LfO+BKDpk0+IOOusw9NhYMGO2qC+2KTcWGLNWipqHCSH7AtoeoUNgWHCHEkEQcCqsVLjrOnWI7DB1dApKcRFoyK5Zlgm62vXs7NpJwBD44cGz0frQ6EmURFuqpphW2UrSZaQQHF6tIHdjg6GwHBo8CGjVWrJs+ZR56wjUhtJnbNuv7MxewNedjTuAOQMxPvy0OyYMKTJ3US8MpT1td0j0Kq1YlKbDvQywhyniILItMxplLWW8UPxD9Q4atjWsK3Lsu0egWa1udukNGHChAkT5uAQBIG7J49m9/d9WFa1CFEFy8YPZGJ1JUi7QAN1m8z4bFpak3dgDGiIwIFPUHKO+wFyVekUamaRn2hmU3kL+YmyTnT7fnfbnsocav3uypyv+5kz+RQAhTFsCDzZCRsCjwEMo0ehTEzAV1GJbcEC4o1GAoCgVmMYeWxmPD6e6GXpFdzf1bSLU3Lzoc0Q+PP2Gm4+9eBCr/XDhqFKS8VbXIJj+QrcxcVo0g5PaNe89RXB/TlD5YQgDp+DlNoOHoHh0OAwYY44kdpI2RDobkCSpL08trfVd57M17lk631H46BZbQ7ud/QIjDS5qAI8/gDbq2TvQKUokBypY2NzB43AsEfgYWFY/DBe3fQqFfYK1tes59S0U/er3u6m3XgCHqBnfcB22j0CQf4exBtkQ6Dda6fWKQt3h8OCT06u7389r216DafP2WXSEEmSgh6BcYZwWHCYMGHC/F6clj6RZVWLABg/sI7rLv0fNU8/TctPP+ErLILtPtTqDSwZMIYat4dNfe/k2gQrN0zoddxE723790raZ5JC2BB40hMODT4GEBQKLOfODL4O2GyYpkwh+o83IOr1R7FnJwYdE4bsbt5NcqSe3nHyRHpdaRMNds9BtSsIApEXXoh+2DCUMTE0f/bZYemv3e1j4Y5aBiZbGJoWycQc2VDg9DpJrpdv35IooM7IOCzvFyZMmP2nPWGIL+DrpNvXTsckEgB1DtkQ2OIJyRB09BDraAjU6ULGvtJGWSMwxapHpRBp9bQGz4U1Ag8PA2IGBPfX1KzZ73oFTQVkW7IZFDOIgbED91m+4+fd0SAc1gcMIwgCCYYEAKrsVXvpFje6G/EGvEA4LDhMmDBhfk/GJY0L7i8qW4QgisTdcQfRV10FCgW6wYPRbCgl/tsC3lJcRm5yNH+cmHXcGAEBvLbQGERhCi8qn+yEPQKPESwzz6Xu+ecRNBoktxvnhg0kPPLI0e7WCcGeHoEAp+TGUlhnJz8xgs0VzYzLjumueo+Yp06l5vEnwO+n+dPPiLnpJgTlof2sluyqo9HhpdHRxMUjUlEqZHu9w2MjpS002B1vRQxnDA4T5ojTKWGIq2GvcM6O2nFA0OOrO4/ATuGoihZUCgGzVkV92wJFRrRs9OuUNTjsEXhY6GjEOxCdwO2N24Nh3tf2v3af5fcMDW7nl9JfSDAkYPfaw4bAk5gEQwK7m3fj9Dlpdjdj0VqC58IZg8OECRPmyJBgTCA7MpudjTvZVLeJemc9UbooIs87D3VqKmU33QyAJTqel399Em1NHjvv34I2Lw/Xls5bYK9jB1LmUOt3VwaNiE8EjwoU5oOTxgpz4hD2CDxGUCUlkfHpXLJ++RnT6aeT/uEH4dj9w0SEJiLodVPQVIAkSfRLjMDrl1hb2sSK3d1n/9wXctKQiQD4amqwLVp0yP39ZXto4D8pN+QB4CurCGYM9qXF71ktTJgwR4B2j0CARtfeCUO2NsiGQAF5hbjdENgxY2xHw5BepQ96+LmlJp46f0DQCAiQHiWf6+h9GNYIPDxEaiPJjMgEZAOuw+vYRw2Z9uzP0HmhqTs6hga3GwJbPC18uP1DKu2VROmiOC/7vP3veJgTivZQcYBKe2Wnc2FDYJgwYcIcOcYnjQdAQuLsz8/mwWUPsq1hG4YRI0j/4H3MU6dinDARX3U1fput221P5/anzKHW766ML0KPMgBfDxMI9E4/un/sMEedsCHwGEKbl4fSaiX538+gigsP+A4n7ZO1JncT9a568hJDHjmFdbKnTZ2zjjHvj2H6Z9P5409/3O+2LbNnBfcbP/r4kPopSRK/bJMNBxqlyOheIW+h/2/vzsObrNL+gX+fJM3WNOma7gste0F2EARklRcUUXFDX0Bn5uegOC4Mg6KjuIvbDI6i4zCKjIOio4i+iqgDMsgIIpQim1C60IXupUnTpmvO74+Ypw1t2pQWS5rv57pykT7Lec4T7qbN3fucI+Xkyc8dSXFdug4RnZ+U4BSMiRyDQaGDUFTtPqeXtd6KvCrn96lO5Vzso6q+CrWNtW5Dg1tWBALNw4PL7GUYGhuMxFA9IoLUuG96P8wc7PxZUF3PisALYYR5BACgUTTiSNkRr85xJQL1Kr08rLM9LRO/rjj466G/oqLW+UeofsH9YNLyL/P+qmUMnZsIbPkew6HBREQX1szEmbix/42YnTQb1nortpzagkVfLMKuvF3QpKQg9k8vQRkcDFVkJJQGg8d/29vnzTFdPd/TMQ26AJQHATUaCXoVpx/zdxwaTH6hb3Bf7C3cC8A50fsI82goFRKaHEJOBO4u2A1rvRXWeisKbAVtLgTQFsOkSVCZzWi0WGBPS0PFxncReust59XPY4VWFFlrAQDjU8KgUyvlfYrSsyg3KhBidUCRzGFkRD3BoDbgh+IfAEBO+rmctpxGsikZuVW5CNOFoabKWWFWZi9zHxqscU8EhuvCkWPNQU1jDcwmCZ/cfRks9gYkhjVXhVc1NM8RyERg9xkZORIfZXwEwDk8eGz02HaPtzfaUWArAOBMCnvzM8KtIrC2EpY6C2z1NmiUGkiQ8PvRvz//GyCf521FIBOBREQXVmp4KlLDU7Hh6AbsyNuBuqY6qCQVXtj/AvJsebh10K0Iu/02hN1+W0939bxsPL4Rq/etBgBcFsBEoL9jRSD5hXPnCQxQKhAf4qzYySmvhhACu/J3ycc0OBrcPri3R1KpELvmz9APHw6HxYLiJ5+E7bs9nepfWu5ZZJba8MK2E/K2lsOCAUBzMg9hVgccEqDpk9yp9omoeyQZk+Tnp62n3fadqjyFLEsWGh2NMOuav3/L7GWw1De/n5jU7tVfLRcMKbWXIlivdksCAu5zBAaqOW1Ed3FVBALezROYZcmC+HnNPW+GBQPu/9+VdZXYc2YPPj71MRqbGnFlnysRY4jpZK+pN2lZEXhulTGHBhMR/fIWpy7G7pt3Y1bSLPQJ7oMcaw5W71uNg8Xezyd8MWo5BYqeiUC/x0Qg+YWWKwe7hnW5JuGvqW/CGUs19pxxT965qj68oRs+HLqhQ5zPR45E/l13OSdl9cJnh85gwd/24ldv/4DYn5OTyeGBmDrAPRGoLXTOR6YSgLHvAK/7RkTdJyEoQX5+biKwZTVPrCFWfl5qL3WbI7BVRaC+eQqAMntZm9e11beYI5AVgd0mzhCHUeZRGBU5Cg2Ohlartp6r5fyALX+utKfl4g+WOou8QnETmjAzaWbnO029SntDg5kIJCLqGVqVFs9Pfh6XxVwGABgWPgwrvl3h8fc0X1DT2JwIdM1PTf6LQ4PJLyQHOyvo1Aq1/It1UnggcMI5H99XmXvdJuMHgDxbHlLDU71qX1IoYF6+HA67HWc3vgsAKHrqaSRu/KfHoWNCCLy2MxNfHytGXaMDp8trEGW0IcqoxS3jEhAf6v6XGkOxc2hghQEYEtLxvFRE1P30AXqYdWaU2EuQW5Xrtq/lh/gEY3PCsLSmVK4I1Kv0CFAEuJ13bkVgW1wVgWqFGmqlums3QTJJkqBVafHfM/8F4Hz9zXozcq25CFAEwN5kh1FtlFd3dq08D0BeaKQjLSsCLfUWFJU4q74UkgLDIoZ1162Qj4oMbE7wnZsILK4pBuD8vm851yQREV14CkmBe0begwJbAbZmbwUA/P3HvyMlJAXV9dV45/g7GBw6GMcqjrn9C6DVts4c09XzPR2jUWrke+McgcSKQPILRrURl0ZfiibRhO+LvkeDo0GuCASA/57Z1eqcgirvKwJdIh94AOqkJACAPS0Nlq1bPR776aEzeOHLE0jPq8TYPqG4flQc3vn1OOx9aDp+M8n9A2aTxQK9rQEAUBgqsSKIqAe5knwVtRVui4C0HNbn+uMD4Kzyc1UEtvVh3pVkAoCyGg8VgT//oYIrBne/lkN8XRV/q75bhSs+ugLztszDu8fflfdnVWbJz72tCAxQBsi/cFfUVuDk2ZMAgP4h/fn/SVAr1fJ7QJHNfWiwKxFo1pu9mo+SiIi6393D75aff5jxIZ7Y8wQ2HN2AkpoS2Bpsrf5ta1tnjunq+Z6OcVWW3zH0DqSGeVfsQr0XE4HkN0K1oWgSTbA32nGi4oRbIjDHegqjzKMQb4iXt3VmaLCLpFYj8qGVkIKCoBs9GqUvvgRHdXWr4wotdnxxuBD9zM4PgZP7heP5+UOhVrX9LVl/unkIYnm4GkqFss3jiOjCSzQ2L9aTa22uCnQlAgMDAt2GEJfUlMgVgW0lAiP0HVcEuhKBHMrR/dqaOiLbmi1va1kF6HoeGBDotshDR1wLhpTby+EQDgDu8xOSf3MNDy61l6KhyflHv6q6KiQaEzE6cjTGRY/rye4REfm1eGM8xkU534frmuoAAI2iEWa9GYYAQ6t/29rWmWO6en5Hxxg1Rn6WJA4NJv8x0jxSLutOK07D1OjrAQBSQDmKGw+juAQYGj4UeTbnSqDnkwgEAMPkyTBMmICqL78EAJS98TeYl93vdsy+7ApsO+r8S//Vl0Tj7mn92m2zZSLQGslEAFFPapkIzLHmYEj4EAgh5GF90YHRbit8FtcUo9HRCMBZnXyulkOD25p7RgiB6nrnHxRYDdz9WlZvnqo8hUJbIcrt5fK2Q6WHIISAtc4qV3ammLxbMdjFpDHhTPUZtykoRppHdkPvqTeICozC4bLDEBAorilGXFAcsqxZOFJ2BID7ew4REf3yrut3Hb4v+l7++umJT2Ny3OQe7BFR17AikPzGiEj31SFjgnVQqxRQGX6St0+NnyoP4cqvyj/va5mX3Q8pwDkPWMX69W6JPADYn3NWfn796Hh0pDareThaTVTwefeLiLqu5fx/rorAs3Vn5b8SRwVGIVgTDJXC+be2lhP+dzQ0uLSmdUVgXVMdGoUzkcihpN0vxeQ+NNi1mIdLRW0FTltPY3vedlQ1VCEmMAbX9L2mU9f4y7S/YHTkaLdtw83Dz7fL1Mu0tWBIy4VpvF2hmoiILozpidPxxIQnsOnKTbhr2F1MApLPYyKQ/Ebf4L4ICggCAKSVpEEhAYmheqgMJ+RjJsdNRmyQc7XPM9Vn0ORoOq9rqRMTEXrbbVCEhkA7ZAiKn3vebf8PORUAAIUEjEgI7rC9muzmDwT1MeHtHElEF1qSMUl+7lo5uOUk/9GB0ZAkSU7wtazya6si0Kg2YlzUOIw0j4RCav1juWUVGYcGdz+D2iAP882szERacVqrYw6WHMRHGR8BcP5sGBQ2qFPXCAwIlCsIB4UOwqXRl3ZqaDH1bqlhqRgbNRapYak4UeH8nYSJQCKii4dGqcG1/a5Fangq7hx+Z093h6jLmAgkv6GQFHIFhqvCIyFMBaXeWW0XrjWjf0h/xBniAACNjkaP83V5I+y3d0BlNMF+8CBsO3bA9u1uAIDF3oATP68APDjGiCBtQHvNAADqTucAABwApFh+eCTqSXFBcZDgTOq4EoEtJ/l3Vfe4hvy2XFDEqGmdCJQkCdZ6K9JK0vDdme9Q01Djtt9W35wI5NDgC8OVaKlqqMIPxT8AgPx/DAA783bix9IfATgX+ejsJNtB6iC8MeMNrBq/Cu9f9T7WXbGuezpOvUKiMRH7ivbhaPlReehZy0SgtwvTEBEREXmDiUDyKyMjm+dkSitOg9mcC0nhHHLXL2gsJElCrCFWPiavKu+8r6U0GBC+9C756+JnnoGjvh5puWchhHPb6MTQDtsRQsCR6xymXGYCggwdn0NEF45GqUGMIQYAkG3JhsPhcKsIdFV6jYkaIx/nYlK3HhoMAIPDBgMABIS8qqxLdUPzgkNMBF4YfU3NiZYcSw4AYEDoAAQonH+ocSUHAec8QeezgmuAMgDX97+eq79SK4PCBiFMGwYA+L7we9Q11ckL0wSpg9zmESUiIiLqKiYCya+MNI9E3+C+GBw6GB9lfIRj1Z+j0R4LR30YDE1DADirfVzOd8EQF+NVV0E3YgRUkZFQBBlwduNG7P95WDAAjEnqOKnXVFEBqdoOADgTKrU5xxgR/bImxEzA6MjRqGuqw4PfPoh8W/Ocoq5EoCHAgDO2M27nefr+HRTaPNT0eMVxt30thwZzjsALo+XQywBFAEaYR2Bi7ERcFnsZpsRPQbIpGQNCB8AQYMBVyVf1YE+pN1JICkyMnQgAsDfa8W3+tyiucS4o1je4L5PHRERE1K24ajD5lZGRIxGiDcEPRc3VHSod0GSPR2WFc+Ve19BgoGsLhgDOIX+Rj/wRp2+5FY3FxajPzEL24uaKw9FJIR22UXu8eTGTohAgWhPcpT4RUdctH70cV318FZpEE3YX7EZ8UPOiP66hwW3NI9fWHIHnHnu8/JxEYD3nCLzQWiYC6x31UClUuGfEPXIC5rX01wAAvxryK2hV2h7pI/Vuk+Mm45PMTwAAX2R/IW/n/IBERETU3VgRSH5n0eBFrbbVl0/C8TPOefsSghIwOGwwIvWRXU4EAoBu8GCYrr4aAOCorsboT99CUogOE/uFI9LY8QdK+9GjaFKr8FMs8GMfCcFMBBL1OH2AHg9f+jD0Kj2CtcE4VnEMgHNeuUh9JABgYOjAVud5qgjsH9IfSkkJoP2KQNeCR9S9+oX0w5opa7DkkiUw681YMWaFWxVWYEAgAgMCmQSkC2Z8zHioJOff5/cW7pW3t1zVmoiIiKg7MBFIfufyuMsxIXoCNAoNtEot9I5+aKwaikJLLcpsdYgJisHx8uMorilGjjWnW64Zcd+9UAQFQYqLx/DC47jqm3eghcOrc6t37YKyvhEDC4DcCKnNxQaI6Jc3PWE6Hhz7oNtcouG6cAQoA+TnZr3Z7RxPiUCtSos+pj4AgFNnT6G+qV7e57ZqsJoVgReCTqXD9MTpWDpiKbbM29Iqibs4dTEWpy7uod6RPwhSB2FU1Cj0C+7nNi8oKwKJiIiouzERSH5HkiQ8NuExfHXDV/j3Df/GlNB7gJ9Xhzx6xuq2EECuNRfCtbJHF6hCQxH/93VoaGiErqke03P344YdG9BUVdXueU2VlbAfPAgAyA8DSkJYEUh0Mbmm7zUYYR4hfx2kdq/YGxw62O1rT0ODgeZ5AhtFIzIqM+TtXDX4l3Xu/yHRL+UvU/8Ch3CgSTTJ27hiMBEREXU3JgLJL0UbohGqDYVJY8KlCc2/ZB8psABwDg8GgKqGKlTUVrTZRmfphw3DqatuQa1ChdPGaCQc+A9yFixAfb7nBUlsu/8LOJyVgwdTnMlKJgKJLh6SJGHl2JUYEzkGT0x4Ag+Ne8htv2s1YJf2FvvxNE9gy+ogzhFI1HvpA/S4e8Td0Cq1WHLJEjw2/jGE68J7ultERETUy/RoInDXrl2YO3cuYmJiIEkStmzZIu9raGjAAw88gKFDhyIwMBAxMTFYtGgRzpw547lBAI899hgkSXJ7DBzYep4mIpchMc0fzI+dsQIAEowJ8rbcqtxuu9Z3SWPw0GW/RVRNOQBAGRyCnJtugv3QoTaPt/3nP/LzNCYCiS5Kg8IG4a3/eQvX9rsW46LHtdrnIkGCXqX33E7oIASrgzEwdCAyKzPl7W5zBLJajahXm5E4A1/M/wJLRyzF/P7zuWIwERERdbseTQRWV1dj2LBhWLt2bat9NTU1SEtLwyOPPIK0tDRs3rwZJ06cwNU/L7rQntTUVBQWFsqP3bt3X4juUy+RHGGANsD5rXDkjLMiMMmYJO8/bT3dbdc6WWLD8bA+uH/yPdBNmQL7gQNoKi9H0ZNPwvLFF27HOurq5ERgrUaBn+IlqBQq6FS6busPEV1YruG+AKBUKNv9UD80YiiaRBN+qvgJX5/+Wp6WwG2OQFYEEvV6rAIkIiKiC0nVkxefPXs2Zs+e3eY+k8mEr7/+2m3bq6++irFjxyI3NxcJCQltngcAKpUKUVFR3dpX6r2UCglXDo1GVmk1iqy1sNgb3CoCuysRKITAqWLnnICqhHjE3zEP+ffci/rcXNTn5ePM/cvQUHAGYb/+FSRJwtn33oPDZoN+wgT8n+4wmpR2hGuCWR1A5EPMejNu6H8DTGqTPPeoJxqlBpeYL8F/C/6L4ppinDx7EgNCB3COQCIiIiIi6jY+NUegxWKBJEkIDg5u97iMjAzExMQgOTkZt956K3Jz2x/aWVdXB6vV6vYg/xKoUeFgXiUKLbU4dsZ6QSoCCyrtqK53TgDezxwEZXAwEv6+DkEzZ8BhsQABAbBs2YLCh/+IhsJClL26FnA4ULNnD/YnNgLgsGAiXyNJEh4d/yjuHXUvbhhwQ4fHT46dLD/flb8LAGCpsyDWEAuzzsxEIBERERERdYnPJAJra2vxwAMPYMGCBTAaPa+6OG7cOLz99tvYtm0bXn/9dWRnZ2PSpEmoamd11meffRYmk0l+xMfHX4hboItYy3kCj56xIMYQA5XkLJjtrkRgRnFzVU+/SOeHeUmtRuRDDyH83nuhS01F/alTsGzejLw774TD5jzecN01OB7ZAKD9FUeJyPdNipskP9+Vvwu51lz8WPYjCmwFGGYehgBlQA/2joiIiIiIfJ1PJAIbGhpw4403QgiB119/vd1jZ8+ejRtuuAGXXHIJZs2aha1bt6KyshIffPCBx3NWrlwJi8UiP/Ly8rr7FugilxrbnGA7UmCBSqFCXFAcACCvKg8O4ejyNTJKmpPR/c3NE/5LkoSIO5cgdPEiSGo1ghfcjMBp02CYOhXqpCQolyyUj2VFIFHvFh8Ujz6mPgCAQ6WH8O7xd+V9Q8OH9lS3iIiIiIiol7joE4GuJODp06fx9ddft1sN2Jbg4GD0798fp06d8niMRqOB0Wh0e5B/6WcOglrpWjDEfeVge6MdJTUlXb6G1d6IaJMWANA/svXKn8bZs5H0r38h6uGHoQoyQj92LJK3fo6qwOZv02BtcJf7QUQXt8mxkyFBQrAmGB+cdP4RSyWpMDdlbg/3jIiIiIiIfN1FnQh0JQEzMjLw73//G2FhYZ1uw2azITMzE9HR0Regh9RbqFUKDIhyJucyS22oqW9EojFR3p9rbX+eSW8czDuLQkstACA2RNvmMdoB/SGpVAi7/TaE3X4bJIUCljqLvN+kMbV5HhH1HrcNuQ2/GfobnK07iwaHc1qAKfFTuJIoERERERF1WY+uGmyz2dwq9bKzs5Geno7Q0FBER0fj+uuvR1paGj777DM0NTWhqKgIABAaGgq1Wg0AmD59Oq699lrcfffdAIDly5dj7ty5SExMxJkzZ7Bq1SoolUosWLDgl79B8ilDYo04XGCBEMDxQisGhAzA6MjRqHfUI8+Wh7EY26X2S6x1AACNSoEQvdrr8ypqKzA0fCh0Kh0SgxI7PoGIfFq4LhyXRFwCrVKLuKA4RAVGYX7/+T3dLSIiIiIi6gV6NBG4f/9+TJ06Vf562bJlAIDFixfjsccew6effgoAGD58uNt533zzDaZMmQIAyMzMRFlZmbwvPz8fCxYsQHl5OSIiIjBx4kTs3bsXERERF/ZmyOelxpgAOOeHPFJgxeDkGOwv3u/cF5ba5fZLqpyJQLNRA0mSvD4v35aPw2WHAcCrVUeJyPdNiZ+Cf875J6ICo1gJTERERERE3aZHE4FTpkyBEMLj/vb2ueTk5Lh9vWnTpq52i/zUkNjmD9tHCiy4emRf+evMyswutV3b0ASL3TnEzxzU9rBgTwpsBfLzOENcl/pBRL5jQOiAnu4CERERERH1Mj2aCCS6mAyMCsKoxBAoJQklVXUI0YYgVBuKitoKnKr0vNiMN0p/rgYEAHOQplPn5lfly89jDbFd6gcRERERERER+S8mAol+pg1Qor7RgcMFzsU5LDUNSAlOQUVRBSpqK3C29ixCtCHn1XZJFxKBrorAwIBABGuCz+v6REREREREREQX9arBRL+00UnNib4DuRVIMaXIX3dleHBpVa383Gz0fmhwk6MJhbZCAM5qwM7MLUhERERERERE1BITgUQtjEkKlZ//kHMWfYO7Z57AlhWBEZ2oCCyuKUajaATAYcFERERERERE1DVMBBK1MDqxuSJwf04FUoKbKwK7Mk9gifX8hga7LRQSxIVCiIiIiIiIiOj8MRFI1ILZqEVimB4AcCjPgjhDH3lfpqUrFYEthgZ3YtVgLhRCRERERERERN2FiUCic4xOdA4Prm9yIL9MQpg2DED3DQ02G8+zItDAikAiIiIiIiIiOn9MBBKdY0yLBUO+zSiV5wmsqK1ASU3JebXpGhqsUkgI1au9Pi/f1lwRyKHBRERERERERNQVTAQSnWNS/3BMGRABo1aFL48WY2r8VAwMHQilpER6Sfp5temqCAw3aKBQeL/yb0FVc0VgjCHmvK5NRERERERERAQwEUjUSmywHhZ7A6y1jfipqAqiIRw/VfyEJtGEXfm7Ot1eY5MD5dXORGBnhgUDzUODw7Rh0Kl0nb42EREREREREZELE4FEbbh5TLz8/HBmuJyE+7bgWziEo1NtlVfXQwjn886sGFzbWItSeykADgsmIiIiIiIioq5jIpCoDVddEoNAtRIA8Fl6KUaZxwJwzhN4rPxYp9pyzQ8IABGdWDG4uKYYsYZY9A/pj8Fhgzt1TSIiIiIiIiKiczERSNSGQI0Kc4fFwKRTIVCjwsmc5oq8zg4PLqmqlZ93piKwtKYUBbYCnDx7EiqFqlPXJCIiIiIiIiI6FxOBRB6s+J+BmDk4CiVVdcg63TxU+N+n/w3hGuvrhWJri0RgJ+YILLOXyc8jdBFen0dERERERERE1BYmAok8CA1U49ZxCQg3qDEqtg/qyicAtYnIqMzAf/L/43U7PxVWISlMj8n9wjEgMsjr81zzAwJAuC68U30nIiIiIiIiIjoXE4FE7RiREIKPl05AdX0jHPY+gPY0AGD1vudQ11TXwdlOhwosyCmvwa6MMiRHGLy+dstEYISeFYFERERERERE1DVMBBJ1ID4kEO//djz6GsajsToZAFBgy8eO3B0dnmuvb8LRAgsAoK/ZgNBAtdfXLavh0GAiIiIiIiIi6j5MBBJ5wagNwB/npKKu+Go4GgwIFH3x0cmPOjwvPa8SjQ7nfIKjE0M6dU0ODSYiIiIiIiKi7sSlSIm8NCElDDH6PqhoDEZ1wCl8X3QKljoLTBqT23El1lq8+s0pTB9oxl92ZMjbRyeFdup6rsVC1Ao1jGpj12+AiIiIiIiIiPwaE4FEXlIoJNw0Oh6vHkqCUpcPAPjVpg9QUJCMGYPMuO2yPuhrNmD1tp+wOa0A/9hz2u38MUnnVxEYoY+AJEndcxNERERERERE5Lc4NJioE64fHYc+hiHy1+WNJ1FkrcUH+/Nx3Wv/xTt7crA5raDVeREGDRJC9V5fp76pHpY659yCHBZMRERERERERN2BiUCiTog26fDPhTfJX9erMqFRKVDf5ECjQ2D3qTIofi7eiwvRyscNjTN1qqrPNSwYAMx6c9c7TkRERERERER+j0ODiTopXBeOhKAE5FblolaRg+8emowH/nUcN4+Jx+ECC748WoxJ/cKxcvZA5JTXYGLfMFTVNXXqGlwohIiIiIiIiIi6GxOBROdhhHkEcqty0eBoQK7tJNYtGgVJkpBTXo0ooxaX94/A4BgTBsc4FxIx6jrXfllNc0VghC6iO7tORERERERERH6KQ4OJzsPIyJEAgEBVIPYW7pWH/f5mUjL2PjQdv5mU3KX2WRFIRERERERERN2NiUCi8zAxZiKGRwxHTWMNvsj+AkKIbm2/ZSIwQs+KQCIiIiIiIiLqOiYCic6DOdAMlUIFAYFsSzbSS9O7tf1ye7n8nEODiYiIiIiIiKg7MBFIdJ6u63ed/Pyjkx91a9scGkxERERERERE3a1HE4G7du3C3LlzERMTA0mSsGXLFrf9Qgg8+uijiI6Ohk6nw4wZM5CRkdFhu2vXrkVSUhK0Wi3GjRuHffv2XaA7IH82I3EGggKCAABfnf4KljpLt7VdWuNMBKokFUK0Id3WLhERERERERH5rx5NBFZXV2PYsGFYu3Ztm/uff/55/OUvf8Ff//pXfP/99wgMDMSsWbNQW1vrsc33338fy5Ytw6pVq5CWloZhw4Zh1qxZKCkpuVC3QX5Kp9JhTvIcpASnIM4Qhw1HN3Rb2yGaEIyIGIGx0WOhkFi4S0RERERERERdJ4nuXuXgPEmShI8//hjXXHMNAGc1YExMDH7/+99j+fLlAACLxYLIyEi8/fbbuPnmm9tsZ9y4cRgzZgxeffVVAIDD4UB8fDx+97vf4cEHH2zznLq6OtTV1clfW61WxMfHw2KxwGg0duNdUm9TVlOGOR/Pgb3RDo1Sg0+v+RQxhpgutVndUI1L370UADDSPBIbZndfgpGIiIiIiIiIOs9qtcJkMvl8ruiiLTXKzs5GUVERZsyYIW8zmUwYN24c9uzZ0+Y59fX1OHDggNs5CoUCM2bM8HgOADz77LMwmUzyIz4+vvtuhHq1cH04ru9/PQCgrqkOL+5/scttnraelp8nGhO73B4REREREREREXARJwKLiooAAJGRkW7bIyMj5X3nKisrQ1NTU6fOAYCVK1fCYrHIj7y8vC72nvzJncPuRIgmBHFBcahtrMWps6e61F6uNVd+zkQgEREREREREXWXizYR+EvSaDQwGo1uDyJvBamDsGjwIuRX5ePbgm/xUUbXVhDOsebIz5kIJCIiIiIiIqLuctEmAqOiogAAxcXFbtuLi4vlfecKDw+HUqns1DlE3eGGATdArVADAP4v6/9Q31Tf6pgyexkcwtFhWy0rAhOMCd3XSSIiIiIiIiLyaxdtIrBPnz6IiorC9u3b5W1WqxXff/89xo8f3+Y5arUao0aNcjvH4XBg+/btHs8h6g4mjQkzk2YCACx1FuzI3eG2/1DpIcz/dD6e3vs0lm5fiqPlRz221XKOwIQgJgKJiIiIiIiIqHv0aCLQZrMhPT0d6enpAJwLhKSnpyM3NxeSJOG+++7DU089hU8//RSHDx/GokWLEBMTI68sDADTp0+XVwgGgGXLlmHdunXYsGEDjh8/jjvvvBPV1dW4/fbbf+G7I38zv998+XnL4cHbcrbh+X3Po6K2Ah+c/AC78ndh9fer4WnBbtfQ4KjAKGhV2gvaZyIiIiIiIiLyH6qevPj+/fsxdepU+etly5YBABYvXoy3334bK1asQHV1Ne644w5UVlZi4sSJ2LZtG7Ta5uRIZmYmysrK5K9vuukmlJaW4tFHH0VRURGGDx+Obdu2tVpAhKi7jY4cjdlJs5Fny8Pewr3YlbcLWZYsvHTgJehVesQZ4lBmL0NtUy3SS9PxYcaHuKH/DW5tVNZWwlpvBcD5AYmIiIiIiIioe0nCU1mSH7NarTCZTLBYLFw4hDrl86zP8eC3DwIADAEGhGpCUVpbCnujHQsGLMCE2An43Y7fId4Qj/Lacjx52ZO4IukK+fz0knQs/GIhAODG/jfikfGP9Mh9EBEREREREVGz3pIrumjnCCTyRXP6zMEI8wgAgK3BhlxbLpJNybhnxD1YOW4lpsRPwWPjH4Ol3oKaxho8+t9HMe2DaVj9/Wp8k/sNcquaFwphRSARERERERERdScmAom6kSRJWDl2JQaEDMDspNnQKDW4fcjt+H+X/D9IkgQAmJsyF1Pip0Cj1GBW0iyU2kux+dRm3PvNvfgi+wu5LSYCiYiIiIiIiKg79egcgUS90aCwQfjX3H9BQCDHkoPk4GS3/WqlGk9d9hR+NeRX2F2wG3qVHjWNNVApVLDWWaGUlBAQTAQSERERERERUbdiIpDoApAkCRKkVknAlvtTglOQEpyChYMXYm36WiQaE5FflY8fy37Eby/5LRKMCb9wr4mIiIiIiIioN+PQYKIeppAU+N2I3+HqlKsRGBAIs96MIHUQFBK/PYmIiIiIiIio+3DV4Db0lpVgiIiIiIiIiIio63pLroglR0RERERERERERH6AiUAiIiIiIiIiIiI/wEQgERERERERERGRH2AikIiIiIiIiIiIyA8wEUhEREREREREROQHmAgkIiIiIiIiIiLyA0wEEhERERERERER+QEmAomIiIiIiIiIiPwAE4FERERERERERER+gIlAIiIiIiIiIiIiP8BEIBERERERERERkR9Q9XQHLkZCCACA1Wrt4Z4QEREREREREVFPc+WIXDkjX8VEYBvKy8sBAPHx8T3cEyIiIiIiIiIiuliUl5fDZDL1dDfOGxOBbQgNDQUA5Obm+vR/Lp0/q9WK+Ph45OXlwWg09nR3qAcwBghgHBBjgBgDxBggxgAxBsjJYrEgISFBzhn5KiYC26BQOKdONJlM/Cb3c0ajkTHg5xgDBDAOiDFAjAFiDBBjgBgD5OTKGfkq3+49EREREREREREReYWJQCIiIiIiIiIiIj/ARGAbNBoNVq1aBY1G09NdoR7CGCDGAAGMA2IMEGOAGAPEGCDGADn1ljiQhK+ve0xEREREREREREQdYkUgERERERERERGRH2AikIiIiIiIiIiIyA8wEUhEREREREREROQHmAgkIiIiIiIiIiLyA0wEEhERERERERER+YEeTQQ+++yzGDNmDIKCgmA2m3HNNdfgxIkTbsfU1tZi6dKlCAsLg8FgwPz581FcXCzvP3ToEBYsWID4+HjodDoMGjQIL7/8slsbmzdvxsyZMxEREQGj0Yjx48fjyy+/7LB/Qgg8+uijiI6Ohk6nw4wZM5CRkeF2TFpaGmbOnIng4GCEhYXhjjvugM1m67DtH3/8EZMmTYJWq0V8fDyef/55t/1Hjx7F/PnzkZSUBEmSsGbNmg7b9EWMAc8xsG7dOkyaNAkhISEICQnBjBkzsG/fvg7b9TWMAc8xsHnzZowePRrBwcEIDAzE8OHD8c4773TYri9iHHiOg5Y2bdoESZJwzTXXdNiur2EMeI6Bt99+G5IkuT20Wm2H7foaxkD77wOVlZVYunQpoqOjodFo0L9/f2zdurXDtn0JY8BzDEyZMqXV+4AkSbjyyis7bNuXMAbafx9Ys2YNBgwYAJ1Oh/j4eNx///2ora3tsG1fwhjwHAMNDQ144oknkJKSAq1Wi2HDhmHbtm0dtuuL/DUOamtrcdttt2Ho0KFQqVQef+ffuXMnRo4cCY1Gg759++Ltt9/usM/n3kCPmTVrlli/fr04cuSISE9PF3PmzBEJCQnCZrPJxyxZskTEx8eL7du3i/3794tLL71UTJgwQd7/5ptvinvuuUfs3LlTZGZminfeeUfodDrxyiuvyMfce++94rnnnhP79u0TJ0+eFCtXrhQBAQEiLS2t3f6tXr1amEwmsWXLFnHo0CFx9dVXiz59+gi73S6EEKKgoECEhISIJUuWiJ9++kns27dPTJgwQcyfP7/ddi0Wi4iMjBS33nqrOHLkiHjvvfeETqcTb7zxhnzMvn37xPLly8V7770noqKixJ///OfOvLQ+gzHgOQZuueUWsXbtWnHw4EFx/PhxcdtttwmTySTy8/M79Rpf7BgDnmPgm2++EZs3bxbHjh0Tp06dEmvWrBFKpVJs27atU6+xL2AceI4Dl+zsbBEbGysmTZok5s2b583L6lMYA55jYP369cJoNIrCwkL5UVRU1KnX1xcwBjzHQF1dnRg9erSYM2eO2L17t8jOzhY7d+4U6enpnXqNL3aMAc8xUF5e7vYecOTIEaFUKsX69es78xJf9BgDnmNg48aNQqPRiI0bN4rs7Gzx5ZdfiujoaHH//fd36jW+2DEGPMfAihUrRExMjPj8889FZmameO2114RWq+2wz77IX+PAZrOJJUuWiL/97W9i1qxZbf7On5WVJfR6vVi2bJk4duyYeOWVVzr9GbFHE4HnKikpEQDEf/7zHyGEEJWVlSIgIED861//ko85fvy4ACD27NnjsZ277rpLTJ06td1rDR48WDz++OMe9zscDhEVFSVeeOEFeVtlZaXQaDTivffeE0II8cYbbwiz2SyamprkY3788UcBQGRkZHhs+7XXXhMhISGirq5O3vbAAw+IAQMGtHl8YmJir00Enosx0HYMCCFEY2OjCAoKEhs2bGj3vnwdY8BzDAghxIgRI8Qf//jHdo/pDRgH7nHQ2NgoJkyYIP7+97+LxYsX98pE4LkYA80xsH79emEymdq9h96IMdAcA6+//rpITk4W9fX17d5Hb8MY8Pw7wZ///GcRFBTk9qG4N2IMNMfA0qVLxbRp09zOW7ZsmbjsssvavS9fxxhojoHo6Gjx6quvup133XXXiVtvvbXd++oN/CUOWvL0O/+KFStEamqq27abbrpJzJo1y6t2hRDiopoj0GKxAABCQ0MBAAcOHEBDQwNmzJghHzNw4EAkJCRgz5497bbjaqMtDocDVVVV7R6TnZ2NoqIit2ubTCaMGzdOvnZdXR3UajUUiuaXUafTAQB2797tse09e/Zg8uTJUKvV8rZZs2bhxIkTOHv2rMfz/AFjwHMM1NTUoKGhod0+9waMgbZjQAiB7du348SJE5g8ebLHdnsLxoF7HDzxxBMwm8349a9/7bGt3oYx4B4DNpsNiYmJiI+Px7x583D06FGPbfYWjIHmGPj0008xfvx4LF26FJGRkRgyZAieeeYZNDU1eWy3N2AMeP698M0338TNN9+MwMBAj+32BoyB5hiYMGECDhw4IE8VlJWVha1bt2LOnDke2+0NGAPNMVBXV9dqahCdTtduu72Fv8SBN/bs2eN2bcAZK+3d97kumkSgw+HAfffdh8suuwxDhgwBABQVFUGtViM4ONjt2MjISBQVFbXZznfffYf3338fd9xxh8drvfjii7DZbLjxxhs9HuNqPzIy0uO1p02bhqKiIrzwwguor6/H2bNn8eCDDwIACgsL2227rXZbXtcfMQbaj4EHHngAMTExrb7pexPGQOsYsFgsMBgMUKvVuPLKK/HKK69g5syZHtvtDRgH7nGwe/duvPnmm1i3bp3HdnobxoB7DAwYMABvvfUWPvnkE/zzn/+Ew+HAhAkTkJ+f77FdX8cYcI+BrKwsfPjhh2hqasLWrVvxyCOP4KWXXsJTTz3lsV1fxxjw/Hvhvn37cOTIEfzmN7/x2GZvwBhwj4FbbrkFTzzxBCZOnIiAgACkpKRgypQpeOihhzy26+sYA+4xMGvWLPzpT39CRkYGHA4Hvv76a2zevLnddnsDf4oDb3iKFavVCrvd7lUbF00icOnSpThy5Ag2bdp03m0cOXIE8+bNw6pVq3DFFVe0ecy7776Lxx9/HB988AHMZjMAYOPGjTAYDPLj22+/9ep6qamp2LBhA1566SXo9XpERUWhT58+iIyMlDO/qampcruzZ88+73vzB4wBz1avXo1Nmzbh448/7pUTxLswBloLCgpCeno6fvjhBzz99NNYtmwZdu7c2ak2fA3joFlVVRUWLlyIdevWITw83KtzegPGgLvx48dj0aJFGD58OC6//HJs3rwZEREReOONN7xuw9cwBtw5HA6YzWb87W9/w6hRo3DTTTfh4Ycfxl//+lev2/A1jAHP3nzzTQwdOhRjx449r/N9BWPA3c6dO/HMM8/gtddeQ1paGjZv3ozPP/8cTz75pNdt+BrGgLuXX34Z/fr1w8CBA6FWq3H33Xfj9ttvd6s6640YBxeA14OIL6ClS5eKuLg4kZWV5bZ9+/btAoA4e/as2/aEhATxpz/9yW3b0aNHhdlsFg899JDH67gm3Pzss8/ctlutVpGRkSE/ampqRGZmpgAgDh486Hbs5MmTxT333NOq7aKiIlFVVSVsNptQKBTigw8+EEIIkZOTI7frWuRh4cKFrcZ679ixQwAQFRUVrdr2hzkCGQOeY+CFF14QJpNJ/PDDDx7vqzdgDLT/PuDy61//WlxxxRUe9/s6xoF7HBw8eFAAEEqlUn5IkiQkSRJKpVKcOnXK4z36KsaAd+8F119/vbj55ps97vdljIHWMTB58mQxffp0t2O2bt0qALjNJ9VbMAY8vw/YbDZhNBrFmjVrPN5Xb8AYaB0DEydOFMuXL3c7xrX4Qct5yHoLxoDn9wG73S7y8/OFw+EQK1asEIMHD/Z4f77O3+KgJU9zBE6aNEnce++9btveeustYTQaPd7fuXo0EehwOMTSpUtFTEyMOHnyZKv9rgkgP/zwQ3nbTz/91GoCyCNHjgiz2Sz+8Ic/eLzWu+++K7RardiyZYvXfYuKihIvvviivM1isbhNANmWN998U+j1+lYB2ZJrItCWEz6vXLnSLxcLYQy0HwPPPfecMBqN7U546usYA969D7jcfvvt4vLLL/eq/76EcdB2HNjtdnH48GG3x7x588S0adPE4cOHe1UCgDHg/XtBY2OjGDBgQK9bKZIx4DkGVq5cKRITE90+7K9Zs0ZER0d71X9fwRjo+H1g/fr1QqPRiLKyMq/67WsYA55jYOTIkWLFihWt7kGn04nGxkav7sEXMAa8/32gvr5epKSkiJUrV3rVf1/ir3HQUnuLhQwZMsRt24IFCzq1WEiPJgLvvPNOYTKZxM6dO0VhYaH8qKmpkY9ZsmSJSEhIEDt27BD79+8X48ePF+PHj5f3Hz58WERERIj//d//dWujpKREPmbjxo1CpVKJtWvXuh1TWVnZbv9Wr14tgoODxSeffCJ+/PFHMW/ePLcloYUQ4pVXXhEHDhwQJ06cEK+++qrQ6XTi5ZdfbrfdyspKERkZKRYuXCiOHDkiNm3aJPR6vdvS4HV1deLgwYPi4MGDIjo6WixfvlwcPHjQ6xVmfAVjwHMMrF69WqjVavHhhx+69bmqqsrr19cXMAY8x8AzzzwjvvrqK5GZmSmOHTsmXnzxRaFSqcS6deu8fn19BePAcxycq7euGswY8BwDjz/+uPjyyy9FZmamOHDggLj55puFVqsVR48e9fr19QWMAc8xkJubK4KCgsTdd98tTpw4IT777DNhNpvFU0895fXr6wsYAx3/LJg4caK46aabOnwtfRVjwHMMrFq1SgQFBYn33ntPZGVlia+++kqkpKSIG2+80evX1xcwBjzHwN69e8VHH30kMjMzxa5du8S0adNEnz59vE4s+RJ/jQMhnBWMBw8eFHPnzhVTpkyR80IuWVlZQq/Xiz/84Q/i+PHjYu3atUKpVIpt27Z589IKIXo4EQigzcf69evlY+x2u7jrrrtESEiI0Ov14tprrxWFhYXy/lWrVrXZRmJionzM5Zdf3uYxixcvbrd/DodDPPLIIyIyMlJoNBoxffp0ceLECbdjFi5cKEJDQ4VarRaXXHKJ+Mc//uHVvR86dEhMnDhRaDQaERsbK1avXu22Pzs7u80+97ZKIMaA5xhITExss8+rVq3yqn1fwRjwHAMPP/yw6Nu3r9BqtSIkJESMHz9ebNq0yau2fQ3jwHMcnKu3JgIZA55j4L777hMJCQlCrVaLyMhIMWfOHJGWluZV276EMdD++8B3330nxo0bJzQajUhOThZPP/10r6oCEoIx0FEMuKpdvvrqK6/a9EWMAc8x0NDQIB577DGRkpIitFqtiI+PF3fddVevSwIxBjzHwM6dO8WgQYOERqMRYWFhYuHChaKgoMCrtn2NP8eBpzxAS998840YPny4UKvVIjk52e118YYkhBAgIiIiIiIiIiKiXq13Ly9DREREREREREREAJgIJCIiIiIiIiIi8gtMBBIREREREREREfkBJgKJiIiIiIiIiIj8ABOBREREREREREREfoCJQCIiIiIiIiIiIj/ARCAREREREREREZEfYCKQiIiIiIiIiIjIDzARSERERERERERE5AeYCCQiIiIiIiIiIvIDTAQSERERERERERH5gf8PpTr2+lF/OzYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#1. Coarsen resolution and apply quality control with non-defaults as demonstration\n", + "dataset.coarsen_time_resolution(freq='20T')\n", + "\n", + "ax1 = dataset.make_plot()\n", + "\n", + "#translate axes\n", + "ax1.set_title('Temperature for all stations')\n", + "ax1.set_ylabel('T2m in °C')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2f6438a0-aaad-462d-ada1-f9d3f5d38927", + "metadata": {}, + "source": [ + "## Timeseries with quality control labels" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "cf5ac722-8f34-4d71-ae59-38b3520c8764", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "buddy radius for the TITAN buddy check updated: 50000--> 10000.0\n", + "buddy num min for the TITAN buddy check updated: 2--> 3\n", + "buddy threshold for the TITAN buddy check updated: 1.5--> 2.2\n", + "buddy min std for the TITAN buddy check updated: 1.0--> 1.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAH4CAYAAAARn5CtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUZdbA8d9z70wKCQk1CSX03otKL1JF7AW7oKKsvbvqWnbVlbW89hU7VqwrFkCQDtKU3nvvNQmpM3Pv8/4xmZuZzCQEDATJ+e6HdebeZ+48kzKZe+55zlFaa40QQgghhBBCCCGEEOKMZpT1BIQQQgghhBBCCCGEECefBAKFEEIIIYQQQgghhCgHJBAohBBCCCGEEEIIIUQ5IIFAIYQQQgghhBBCCCHKAQkECiGEEEIIIYQQQghRDkggUAghhBBCCCGEEEKIckACgUIIIYQQQgghhBBClAMSCBRCCCGEEEIIIYQQohyQQKAQQgghhBBCCCGEEOWABAKFEEIIIUREL730Eg0aNMA0Tdq1a1fW0wHgn//8J0qpkG316tVj2LBhZTOhEtq6dStKKT7++OOynooQQgghyjEJBAohhBDipFBKlejfjBkzynqqZebtt98+bQNDv/76K4888gjdunVj9OjRPP/882U9pZNu9erV/POf/2Tr1q0nfIwxY8bw2muvldqchBBCCCFKk6usJyCEEEKIM9Nnn30Wcv/TTz9l8uTJYdubN29+Kqd1Wnn77bepVq3aaZnNNm3aNAzD4MMPPyQqKqqsp3NKrF69mn/961/07t2bevXqndAxxowZw8qVK7nvvvtCttetW5ecnBzcbvefn6gQQgghxAmSQKAQQgghTorrr78+5P78+fOZPHly2PYzhdaa3NxcYmNjz4h57N+/n9jY2FILAp4uX5+yopQiJiamrKchhBBCiHJOlgYLIYQQoszYts1rr71Gy5YtiYmJITk5mREjRnDkyJGQcfXq1eOCCy5gxowZnHXWWcTGxtK6dWtnWfH3339P69atiYmJoWPHjixZsiTk8cOGDSM+Pp7NmzczcOBA4uLiqFmzJs888wxa6z81p0mTJjlzevfddwEYPXo0ffr0ISkpiejoaFq0aMGoUaPCHr9q1SpmzpzpLJPu3bs3ELkOHsDHH3+MUipk6Wpx80hLS+O+++4jNTWV6OhoGjVqxAsvvIBt28V+X5RSjB49mqysLGdugSXMPp+PZ599loYNGxIdHU29evV4/PHHycvLK/HXJ5LZs2dz5ZVXUqdOHaKjo0lNTeX+++8nJyen2Lkej6+++oqOHTtSsWJFEhISaN26Na+//jrg/9peeeWVAJx77rlhS9d//PFHBg8eTM2aNYmOjqZhw4Y8++yzWJblHL93796MHz+ebdu2OY8PZBYWVSNw2rRp9OjRg7i4OCpVqsTFF1/MmjVrQsYEfh42btzIsGHDqFSpEomJidx0001kZ2eHjJ08eTLdu3enUqVKxMfH07RpUx5//PFS+xoKIYQQ4q9NMgKFEEIIUWZGjBjBxx9/zE033cQ999zDli1beOutt1iyZAlz5swJWUa5ceNGrr32WkaMGMH111/Pyy+/zIUXXsg777zD448/zh133AHAyJEjGTJkCOvWrcMwCq55WpbFeeedR+fOnXnxxReZOHEiTz/9ND6fj2eeeeaE5rRu3TquueYaRowYwa233krTpk0BGDVqFC1btuSiiy7C5XLx888/c8cdd2DbNnfeeScAr732GnfffTfx8fH84x//ACA5OfmEvo6R5pGdnU2vXr3YtWsXI0aMoE6dOsydO5fHHnuMPXv2FFvH7rPPPuO9997j999/54MPPgCga9euAAwfPpxPPvmEK664ggcffJAFCxYwcuRI1qxZw9ixY485r6J8++23ZGdnc/vtt1O1alV+//133nzzTXbu3Mm33357Ql+XYJMnT+aaa66hb9++vPDCCwCsWbOGOXPmcO+999KzZ0/uuece3njjDR5//HFnyXrgvx9//DHx8fE88MADxMfHM23aNJ566ikyMjJ46aWXAPjHP/5Beno6O3fu5NVXXwUgPj6+yDlNmTKFQYMG0aBBA/75z3+Sk5PDm2++Sbdu3Vi8eHHY8uQhQ4ZQv359Ro4cyeLFi/nggw9ISkpyXs+qVau44IILaNOmDc888wzR0dFs3LiROXPm/OmvnxBCCCHOEFoIIYQQ4hS48847dfBHj9mzZ2tAf/HFFyHjJk6cGLa9bt26GtBz5851tk2aNEkDOjY2Vm/bts3Z/u6772pAT58+3dk2dOhQDei7777b2Wbbth48eLCOiorSBw4cOOE5TZw4Mey1Zmdnh20bOHCgbtCgQci2li1b6l69eoWNffrpp3Wkj2mjR4/WgN6yZcsx5/Hss8/quLg4vX79+pDtjz76qDZNU2/fvj3s+MGGDh2q4+LiQrYtXbpUA3r48OEh2x966CEN6GnTph1zXkWJ9DUbOXKkVkqFfH8jfW3q1q2rhw4dWuzx7733Xp2QkKB9Pl+RY7799tuwn53i5jdixAhdoUIFnZub62wbPHiwrlu3btjYLVu2aECPHj3a2dauXTudlJSkDx065GxbtmyZNgxD33jjjc62wGu++eabQ4556aWX6qpVqzr3X331VQ04P89CCCGEEIXJ0mAhhBBClIlvv/2WxMRE+vfvz8GDB51/HTt2JD4+nunTp4eMb9GiBV26dHHud+rUCYA+ffpQp06dsO2bN28Oe8677rrLua2U4q677sLj8TBlypQTmlP9+vUZOHBg2PME18FLT0/n4MGD9OrVi82bN5Oenl7ir1FJRZrHt99+S48ePahcuXLIa+nXrx+WZTFr1qzjfp4JEyYA8MADD4Rsf/DBBwEYP378MedVlOCvWVZWFgcPHqRr165orcOWep+ISpUqkZWVxeTJk0/o8cHzO3r0KAcPHqRHjx5kZ2ezdu3a4z7enj17WLp0KcOGDaNKlSrO9jZt2tC/f3/nax3sb3/7W8j9Hj16cOjQITIyMgD/awT/MuZjLf8WQgghRPkkS4OFEEIIUSY2bNhAeno6SUlJEffv378/5H5wsA8gMTERgNTU1IjbC9f0MwyDBg0ahGxr0qQJgFNz73jnVL9+/Yjj5syZw9NPP828efPCarilp6c7cywtkeaxYcMGli9fTvXq1SM+pvBrKYlt27ZhGAaNGjUK2Z6SkkKlSpXYtm3bMedVlO3bt/PUU0/x008/hX3vSiN4escdd/DNN98waNAgatWqxYABAxgyZAjnnXdeiR6/atUqnnjiCaZNm+YE3v7M/AJfq0jLpZs3b86kSZPIysoiLi7O2V74d6By5cqA/2c9ISGBq666ig8++IDhw4fz6KOP0rdvXy677DKuuOKKkGXyQgghhCi/JBAohBBCiDJh2zZJSUl88cUXEfcXDmCZphlxXFHbdaEmICdjTpE64G7atIm+ffvSrFkzXnnlFVJTU4mKimLChAm8+uqrJcrUitQoBAhpTHGsedi2Tf/+/XnkkUciPiYQBD0RRc2vJPOKxLIs+vfvz+HDh/n73/9Os2bNiIuLY9euXQwbNqxUstuSkpJYunQpkyZN4pdffuGXX35h9OjR3HjjjXzyySfFPjYtLY1evXqRkJDAM888Q8OGDYmJiWHx4sX8/e9/P2XZd8f6WY+NjWXWrFlMnz6d8ePHM3HiRL7++mv69OnDr7/+WuTjhRBCCFF+SCBQCCGEEGWiYcOGTJkyhW7dupU4YPRn2LbN5s2bQwJg69evB3CaMpTGnH7++Wfy8vL46aefQjK4Ci8rhqIDaoFMr7S0NGe5JxCWcVechg0bkpmZSb9+/Ur8mGOpW7cutm2zYcMGp4kGwL59+0hLS6Nu3bondNwVK1awfv16PvnkE2688UZn+4ku4y1KVFQUF154IRdeeCG2bXPHHXfw7rvv8uSTT9KoUaMivx8zZszg0KFDfP/99/Ts2dPZvmXLlrCxJQ2SBr5W69atC9u3du1aqlWrFpINWFKGYdC3b1/69u3LK6+8wvPPP88//vEPpk+fXqo/C0IIIYT4a5I1AkIIIYQoE0OGDMGyLJ599tmwfT6fj7S0tFJ/zrfeesu5rbXmrbfewu1207dv31KbUyDrKjgjMT09ndGjR4eNjYuLi3jMhg0bAoTU8cvKyjpm5lqwIUOGMG/ePCZNmhS2Ly0tDZ/PV+JjBZx//vkAYR2HX3nlFQAGDx583MeEyF8zrTWvv/76CR0vkkOHDoXcNwyDNm3aAJCXlwfgBN4Kf08izc/j8fD222+HPU9cXFyJlgrXqFGDdu3a8cknn4Q838qVK/n111+dr/XxOHz4cNi2du3aAQWvUQghhBDlm2QECiGEEKJM9OrVixEjRjBy5EiWLl3KgAEDcLvdbNiwgW+//ZbXX3+dK664otSeLyYmhokTJzJ06FA6derEL7/8wvjx43n88cedJb+lMacBAwY4mWcjRowgMzOT999/n6SkJPbs2RMytmPHjowaNYrnnnuORo0akZSURJ8+fRgwYAB16tThlltu4eGHH8Y0TT766COqV6/O9u3bS/R6H374YX766ScuuOAChg0bRseOHcnKymLFihV89913bN26lWrVqh3X17Bt27YMHTqU9957z1ku+/vvv/PJJ59wySWXcO655x7X8QKaNWtGw4YNeeihh9i1axcJCQn873//C6sV+GcMHz6cw4cP06dPH2rXrs22bdt48803adeunZPd2K5dO0zT5IUXXiA9PZ3o6Gj69OlD165dqVy5MkOHDuWee+5BKcVnn30Wcfl5x44d+frrr3nggQc4++yziY+P58ILL4w4p5deeolBgwbRpUsXbrnlFnJycnjzzTdJTEzkn//853G/xmeeeYZZs2YxePBg6taty/79+3n77bepXbs23bt3P+7jCSGEEOIMVGb9ioUQQghRrtx555060keP9957T3fs2FHHxsbqihUr6tatW+tHHnlE79692xlTt25dPXjw4LDHAvrOO+8M2bZlyxYN6JdeesnZNnToUB0XF6c3bdqkBwwYoCtUqKCTk5P1008/rS3LKtU5aa31Tz/9pNu0aaNjYmJ0vXr19AsvvKA/+ugjDegtW7Y44/bu3asHDx6sK1asqAHdq1cvZ9+iRYt0p06ddFRUlK5Tp45+5ZVX9OjRo8OOUdw8jh49qh977DHdqFEjHRUVpatVq6a7du2qX375Ze3xeCI+pvDXrDCv16v/9a9/6fr162u3261TU1P1Y489pnNzc0PGFTevSFavXq379eun4+PjdbVq1fStt96qly1bpgE9evRoZ9zTTz8d9nNUt25dPXTo0GKP/9133+kBAwbopKQk52s6YsQIvWfPnpBx77//vm7QoIE2TVMDevr06VprrefMmaM7d+6sY2Njdc2aNfUjjzyiJ02aFDJGa60zMzP1tddeqytVqqQBXbduXa11wc9l8GvRWuspU6bobt266djYWJ2QkKAvvPBCvXr16pAxgdd84MCBkO2Ffx6mTp2qL774Yl2zZk0dFRWla9asqa+55hq9fv36Yr82QgghhCg/lNYnUElbCCGEEOIvZNiwYXz33XdkZmaW9VSEEEIIIYQoM1IjUAghhBBCCCGEEEKIckACgUIIIYQQQgghhBBClAMSCBRCCCGEEEIIIYQQohyQGoFCCCGEEEIIIYQQQpQDkhEohBBCCCGEEEIIIUQ5IIFAIYQQQgghhBBCCCHKAVdZT+B0ZNs2u3fvpmLFiiilyno6QgghhBBCCCGEEKIMaa05evQoNWvWxDD+unl1EgiMYPfu3aSmppb1NIQQQgghhBBCCCHEaWTHjh3Url27rKdxwiQQGEHFihUB/zc3ISGhjGcjhBBCCCGEEEIIIcpSRkYGqampTszor6pMA4GjRo1i1KhRbN26FYCWLVvy1FNPMWjQIAByc3N58MEH+eqrr8jLy2PgwIG8/fbbJCcnF3lMrTVPP/0077//PmlpaXTr1o1Ro0bRuHHjEs8rsBw4ISFBAoFCCCGEEEIIIYQQAuAvX0KuTBc1165dm//85z8sWrSIhQsX0qdPHy6++GJWrVoFwP3338/PP//Mt99+y8yZM9m9ezeXXXZZscd88cUXeeONN3jnnXdYsGABcXFxDBw4kNzc3FPxkoQQQgghhBBCCCGEOC0prbUu60kEq1KlCi+99BJXXHEF1atXZ8yYMVxxxRUArF27lubNmzNv3jw6d+4c9litNTVr1uTBBx/koYceAiA9PZ3k5GQ+/vhjrr766hLNISMjg8TERNLT0yUjUAghhBBCCCGEEKKcO1NiRadNmxPLsvjqq6/IysqiS5cuLFq0CK/XS79+/ZwxzZo1o06dOsybNy/iMbZs2cLevXtDHpOYmEinTp2KfAxAXl4eGRkZIf+EEEIIIYQQQgghhDiTlHkgcMWKFcTHxxMdHc3f/vY3xo4dS4sWLdi7dy9RUVFUqlQpZHxycjJ79+6NeKzA9sI1BIt7DMDIkSNJTEx0/knHYCGEEEIIIYQQQghxpinzQGDTpk1ZunQpCxYs4Pbbb2fo0KGsXr36lM7hscceIz093fm3Y8eOU/r8QgghhBBCCCGEEEKcbGXaNRggKiqKRo0aAdCxY0f++OMPXn/9da666io8Hg9paWkhWYH79u0jJSUl4rEC2/ft20eNGjVCHtOuXbsi5xAdHU10dPSffzFCCCGEEEIIIYQQQpymyjwjsDDbtsnLy6Njx4643W6mTp3q7Fu3bh3bt2+nS5cuER9bv359UlJSQh6TkZHBggULinyMEEIIIYQQQgghhBDlQZlmBD722GMMGjSIOnXqcPToUcaMGcOMGTOYNGkSiYmJ3HLLLTzwwANUqVKFhIQE7r77brp06RLSMbhZs2aMHDmSSy+9FKUU9913H8899xyNGzemfv36PPnkk9SsWZNLLrmk7F6oEEIIIYQQQgghhBBlrEwDgfv37+fGG29kz549JCYm0qZNGyZNmkT//v0BePXVVzEMg8svv5y8vDwGDhzI22+/HXKMdevWkZ6e7tx/5JFHyMrK4rbbbiMtLY3u3bszceJEYmJiTulrE0IIIYQQQgghhBDidKK01rqsJ3G6ycjIIDExkfT0dBISEsp6OkIIIYQQQgghhBCiDJ0psaLTrkagEEIIIYQQQgghhBCi9JV512AhhBBCCPHXdESnM9GaBSiqqcr0N7uV9ZSEEEIIIUQxJBAoTgrfojfRnqPo/cvQVh5ojXLFoJLaovcvQyW1RUVVxNXx7rKeqhBCCCFO0GxrITf5HgMgmapsM2eW8YyEEEIIIURxJBAoTgrf4rcgczcoA7QNgFYGbJ7g37Z5AsTXlECgEEII8Re2kW3O7X0comZuN240L+U/7ofKcFZCCCGEEKIoUiNQCCGEEEKckFX2xpD7h0lnnr2kjGYjhBBCCCGORQKBQgghhBDihKzSG8K2rdGbymAmQgghhBCiJCQQKIQQQgghjpulrYhBv6Nkkac9ZTAjIYQQQghxLFIjUAhxwmyfZvIDW9gw/jB1eyYyaFRDXDFyfUEIIc5Eb/u+4KjOYrFezaVmfzqqluQRHvDTaNbrLbRWTctglkIIIYQQojgSCBRCnLClH+3jjzf3AJC+dT+VG8XQ/R+pZTwrIYQQpS1Pe3jW9zZHSAdgvr2Eka6iG4Ks0htpjQQChRBCCCFON5K6I4Q4YUd3e1Bm/h3lvy+EEOLM84M9xQkCgr9D8KvWx0WOX2mtPwWzEkIIIYQQx0sCgUKIE9b6hupEJ/gjga5og/bDk8t4RkIIIU6G933fOLejiaIZDVmh1xU5/it7HL/Zi07F1IQQQgghxHGQQKAQ4oRVaRjLHes7cu2vLbljY0dS2seX9ZSEEKe5PfoAWmtW2RuwtV3W0xEl8Ie1nFXan+HXVNVngut9DnGk2MfsZB+jfGNOxfSEEEIIIcRxkBqB4qRwdbgL7TmK3r8MbeWB1ihXDCqpLXr/MlRSW1RUxbKepigFFaq5adC/UllPQwjxF2Brm/Z5F5FDHnl4GO9+n75ml7KeliiG1prHfK+QxlH6q25cZ15EN1dHrtcX86o1utjH/mRPZZ8+SLKqdopmK4QQQgghjkUCgeKkcHW8u6ynIIQQ4jTzh15BGked+x9Y30gg8DT3pT2O3/RCABbqlVSzK7HWuwm3NsPGRhMV0kXYi49PrR942DX8lM1XCCGEEEIUT5YGCyGOS5bOxtIWgCzrE0Icl/HWjJD7P9vT2asPls1kxDFprVlgLXPuW1h8aY/nP9Z7zNR/hIyNws0XrpfDjjHPWozW+qTPVQghhBBClIwEAoUQx2W49x9UzGtHXG5bnve9U9bTEUL8hYy3Z4Tc9+HjI993ZTMZcUyr9UY+tX+gFsl0oCUZZDr7duq9IWNrkkw9o3bYMSboWSwvpqmIEEIIIYQ4tWRpsDgpPOnp/HDDNjZNOkqts2O4/MskYiu7UO44tDcL5Y4DpaRO4F9Ats7hXu9zWFjEUYENehs2GrA4THpZT08I8Rexxd7JKr0BgHY0Zws7aaEa8ZH1HX9zXUMVlVjGMxSFbde7ySGXXeTSRNWHoMS+fYRmcrY0GlFLRe4cP86eTluj2cmcqhBCCCGEKCEJBIqTYuGIx1n/8zWAYsfcLOYMe4meF34C2gZl+P8bX5OYWyVL4HS3Vm/mM/tHABRQgQrOvsM6LWSspS12s59UVeMUzlAI8Vew0F5BBWLIJpdLXf05ojN4zfoYgKd8r/GW++mynaAIs13vcW7vCLoN4MMKud/TOJtKJBBHLFnkhOz7xprAP1y3n7yJijLziW8sF5l9yCCLOtRAKVXWUxJCCCHEMcjSYHHCbCu85o+2NVprvJ4olMrfr8DriTnFsxOlZaW9wbmtgSyynfuBk0StNVd77qNGXjcGem4+1VMUQvwFTLBnYqNpSCq9jU7c7bqB+PwLCx9a37HMXlvGMxSFbde7ndub2V7s2MFGb5RS1FIpABgUBITW6S0ssVefnEmKMjPdWsAI35PUyutB07wBbNLF/4wIIYQQ4vQggUBx3Lw5Fl+ev4rn3XN5v/1SMvf6OwQu+WAvL8TP56WE+cTGHyWxir9+UGxcOh16/FCGMxZ/xmq9och9gZNEpRQH9BEyyGSz3sEuve9UTU8I8RexWm8klzy2spt2qjm1VDKPmrcRRywXGOey1F5T1lMUhWywtzq3FZEzvWKJpgqJNDLqAjjLg21CLxbe6H3EaTQl/vo82st9vucAsPE3DpttLyzLKQkhhBCihCQQKI7b8o/3s2liGmjYvyKLWc/sYN7Luxh/2yZ8OTaeTJvJX9xAx97fMezvI7j1H8OoXH3PMY8rTk+r9MYi9+1mP17tBaCHcZazfY696KTPSwjx1+HTPtbqzQA0VnWJVlEA3GReThY5/GxP43Prx7Kcoohgs97h3LaI3CU+hzwSiHfu18IfCDQKfcTcoLcyyZp9EmYpysL71jd48v/+B/wmf/uFEEKIvwQJBIrj5ssruMqvNWyZksbUh7eGFBHXtsnU/93Dyt/7447ynPpJilKzKn9pcKRsEBubXXo/AN2Njs52yQoQQgTbpLeTh/9vQUvV2Nle1ahMNSoDoUEncXrYRcmyu3sbnZzbz7jvZVv0DB4xhoeNe856u9TmJsrOdr2HJ32vsZ09dKcjUbgB+dsvhBBC/FVIIFAct7bDkkhq7a/rpBQc2ZAbYZQ/aLRl9dmncGaitGjtj+oe1unsxh/oq0olZ38FCmo+bse/PLiz0Q4TE5CsACFEqODM4hZGo5B9DVQq4M8wztV5p3Reomh52sMRMko0tpd5jnO7pkoiWVUjVsU4AaKAxXo1a6xNpTpPceo97P0P2eRgYdHabEoXoz3g/zywLaiupBBCCCFOTxIIFMctppKLW5e0o9kVVUO2KwPc8QozWqEMC7BJbbS8bCYpTtgRnc6F3hF85vuB532jnO0NSHVuBzJ4oKBOYLyqQAfVAoA1ehMH9OFTNGMhxOlupb3eud0qKCMQoJ6qDYBGs03vOqXzEkXbqfdG3F6XmmHbfreXOxeQAv7uvo1D0b+TGLRsGOBs7+U84nmRTbY0lvgr2m3vJxv/BeBkqvK06y66q4IVAVIaRAghhDj9SSBQnBBlKNyxoT8+dc9N5OYF7Rg2pw1te86g5wUfce4l75fRDMWJusf7LFPsudzme5K3rM+d7ZeY/VgUNZatUdN5yHWLsz3QORhClwfPtRefmgkLIU57q4MyAlsWCgQGMgIBtuidp2xOoniRMruaUI/LjYFh20dZYxjqfYSGuX253HOX899meefRSbULGevDxxv2p7zk++BkTV2cRGPsn5lsz6ESFRluDqGSSqB7UI1gqfUphBBCnP4kEChOWPcnUomv4S/4Xrd3Alf93JzqLSpQo2M8/a79gnP6fIfp8pXxLMXx+MGajIlJPBXC9nUy29HSaEyKUZ2zjTbO9u1BJ4u9VWe6qY50Um2ZJbWChBD5AkuDY4mhfn4GYEDwfakTePrYHiEQuJ/D9De7RRw/1p7MLvaRoTPZxT722gfZxT5W6fVO2YhgX9rjsHXkBiTi9BWoG5zGUS42+wLQyWjDQNWds1Qrptnzudv7jHSIFkIIIU5jZRoIHDlyJGeffTYVK1YkKSmJSy65hHXr1jn7t27dilIq4r9vv/22yOMOGzYsbPx55513Kl5SuVK1SSx3bz2LBw934vpprXDHhn/QF38tv9pz+MoeTybZ3G3eELKvhWro3K6jCpaGBZ8sdjXb84dezgK9jB+tKWFLxYQQ5U+OzmWT9i8Dba4aYKrQvxUNDMkIPB1FCgReZ15IA6NOxPFe/Bf+9uj9JFONtPz6grvYTxNVL2x8Hh7m20tLbb7i1Ahk95qYNFUNAKigYnnUPYKFeiXgry882ZpTZnMUQgghRPFcZfnkM2fO5M477+Tss8/G5/Px+OOPM2DAAFavXk1cXBypqans2bMn5DHvvfceL730EoMGDSr22Oeddx6jR4927kdHR5+U11DeGaYitnL4j1HURV+B5cFO3wKW17/RdGMk1sdO34KRWB/MqFM8W3Esq/Ov9AM8Yd5BsqrGdcaF5JBHZZXo7KtCInHEkkVOyNLgiiqOXsY5TLbnsJO9LNfraKuandLXIIQ4vazVm7HxZ361KLQsGCQj8HQV/N4eMNwcQk2qF/u4jWznLvN6rjQH0ctzHQBJVKWb0ZGP7O+cnwWAN3yf0tXsULoTFyeNT/tYqzcD0FjVJVoVfI7rYrTnXdezPOb7P/5nT2KOvYgN5mTcyl3U4YQQQghRRso0EDhx4sSQ+x9//DFJSUksWrSInj17YpomKSkpIWPGjh3LkCFDiI8PLT5dWHR0dNhjxYnTWuPDV+IPdEayv4OcUbNT+L4I20TZ01o7y/fqqlokGPE8aNwccaxSijqqJmv0JnboPdjaxlD+BOMLjHOZbPszAcbZ02lrSCBQiPJssb2KDqoFiVSkqxEe9KlJEtFEkYdHMgJPI4GO8AEXG31pbvgzw+OpQCbZRT52kb2KF12PkEQV9nOY3/VynnDdwTh7Ggc4goV/2eiv+reT9wJEqdukt5OHBwiv9Qkw1HUpE+yZ/GhPYS8HGW/P4BKz/6mephBCCCGO4bSqEZieng5AlSpVIu5ftGgRS5cu5ZZbbom4P9iMGTNISkqiadOm3H777Rw6dKjIsXl5eWRkZIT8K++0rVnw6i7GXreOZd/s4WbvY9zmeZJPfN/zgzW5rKcnToLt7OEoWQC0VI2OOb6OqkksMdRTtcgg09l+vtnLuT3BmlHq8xR/DZvs7cywFrDG2sQGe2tZT0eUod/sRSzWq5muF9DcaBC231AG9VQtwL80WEoKnB6y7JyQ+/e4hjq3KxLn3HYHXVOuRTIAy/RaNJrzzd4A5JBLJllMifqEKAouKHrxsdi38mRMX5wEq4Ka/rQwIn9OGG5e6dx+3/rmpM9JCCGEEMfvtAkE2rbNfffdR7du3WjVqlXEMR9++CHNmzena9euxR7rvPPO49NPP2Xq1Km88MILzJw5k0GDBmFZkQsXjxw5ksTEROdfampqxHHlye+v72byA1tZ/dVBfr5qM/OmbeBLPY4Rvqe4z/tv0vXR4zreVnuXE0D0au/JmLL4k4KXBUe60l/YGPf/cTj6D5ZF/0wiFdml9wGQqmo4y4EX6VXMtqRpSHn0ku8DzvPeQnvvxTzk+09ZT0eUod/sRQDEEE1HFfnve2B5cA657OXgKZubiExrzWIKAnSxxNAtKJtzZtSYkH0BHY2WAGSTwzq9hf6qoLHIT9Y0Ghl1ud8c5mzz4uMd+6uT8RLESbDSXu/cblXE54S+Rhfn93mqPS9i92khhBBClK3TJhB45513snLlSr76KvIHwpycHMaMGVOibMCrr76aiy66iNatW3PJJZcwbtw4/vjjD2bMmBFx/GOPPUZ6errzb8cOqVG06/dMlAHaBhT0XNwLM//HZS8Hecb3VrGPtzb/grV+LN65z7F91u2MndmT5XNu5rFVPRj7W1+s9WOxNv9yCl6JKKmVOigQaBw7EBinKqCUAuAbawJN8wbSKe8KbvI8yi3mFVxnXEg0UVzhvYvZ0kG43JlrL3Zub5UTwXJrm97NDvy15joZbYkqorxEA1VwAU7qBJa9w6QTnJfZVNUP2R/8PQrU/KtGZc4x2jrbZ9sLec36GIDapDDRnkWuzuNR87aQYwVKSYjT3+qgjMCiLhgayuAa4wLaqKb0Uucwx1p0qqYnhBBCiBIq0xqBAXfddRfjxo1j1qxZ1K5dO+KY7777juzsbG688cbjPn6DBg2oVq0aGzdupG/fvmH7o6OjpZlIIU0vrsLqrw6CAsOleOT8q7jC3Z6rvPejUKSqGsU+3jv1PsjcDcogSdvcDlgKTL0US4FX3wjxNTEbFN/0RZw6q0IyAv1LflZbG8lRuRzSaQwwu0d8XIbO5FHfy/jwsUyvZa3eTCejLUvtNeThIVbHMmN2HV5Zn0mOF6JM8FpgKAXKn3niMsBj+fd5LHAZYGvwD1HYNpiGxmNBtAu8lsI0NHb+maqhFJbWuA3I8wXGgGmArRWgMRRYNrhM8Pgg2p0/Rins/KWIhlJYtsadP8btAp8FpqHQaLQNhgE+G2Ldip6NXNzbKwrDUCf1e/NXs8neznq2Ovc36K1k6xwqqNiym5Q4qRbZK1EoZlq/85b1Oe2M5jRTDfjDLsgq62GcVeTj66tUYogmhWqst7eEZJ+JU2+bvSvkfpNCgcDVQReOsvAvIa6jatBBtXS2v+/7mkr5TaZ25B5FTx5O14O7SCGZKPu/5KpcsA12GV76kU6saeKzoVKswZ09ouje8LT4iCqCBJYGxxIT0uSnsAFmd5633gGgka7LtVx4SuYnhBBCiJIp009ZWmvuvvtuxo4dy4wZM6hfv36RYz/88EMuuugiqlcvvltdJDt37uTQoUPUqFF88EoUaHl1dWKrutmzKJOG51UipV08jUjmE16gvdHimIFA8deSoTOZaf8OgAsXTZW/jldX71XkkgfAdmMmSapq2GO/sH5iDwec+3l4eNj3Al58ALRZdjfPjo0GIi/N/ysbv8pHXBTc1k0uJAQbb88IuW9js0yvpYtqXzYTEifdc763+cWeRRRuPHiJtWP4hVkhHWK7q6IDgZ1UGxSKrexikV7JTVx+KqYtirBabwq5XzgjMLhWnM7PHayjatLeaO5sX8kG0P5swO3/uwNW9GYlBivxAYHMQf+FmlloAn8jlLIYv9LLuicrUiPxtFm4Uu7l6Fw26e0ANFcNMJUJ+DsJa3RIM7kWQXWGVwUtJxZCCCHE6aFMP2HdeeedfP7554wZM4aKFSuyd+9e9u7dS05OaIHqjRs3MmvWLIYPHx7xOM2aNWPs2LEAZGZm8vDDDzN//ny2bt3K1KlTufjii2nUqBEDBw486a/pTNKgfyW6PVqblHYFHZovMvuecBDQOH1Woot8mTqbHrnX0D7vYieY11jVJUq50Vrjye8OCLDK9p/4+bSPHJ0L+Os9vu77hM6qHfFUcMYGgoAAu3cnYp6h33rTgOW77GMPLGfG2dPDti22V5XBTMSpYGmLufYSwN84oiZJJKuq6KAgoBsX5xitizxGS6Ox874RqCkoys56e3PI/doqJeR+hs6kk2pLCwoCPnVUTSqrROpSK2Tsf11PE7W7JWDiD/yR/9/g2wW0hlwfbDwo762nk8X2KhpQm57qbAYZPbnP829a511AzbzujLb+FzI2QcVTh5qAP2gsDYCEEEKI00uZnp6PGjWK9PR0evfuTY0aNZx/X3/9dci4jz76iNq1azNgwICIx1m3bp3Tcdg0TZYvX85FF11EkyZNuOWWW+jYsSOzZ8+W5b9lrPDiSWkaUvbW6E38wQp24W/0EUcFZ1nwETKwg6pE/WEv57BOp4PnEnrkXcP9nn/zlO8NtrKL+XopHShYEhYc9M1sORHO0HMAW8MlbWX5WrB0+ygmBlWpTG0KggeLJBB4RtmnD/KS9wPGWdN5xvcW6fgbSA0wurM5ZhpToz/lZuMKAKJw01o1KXZpeJyqQMf8ZaVr9Wb260Mn/0WIIq3RoYHA5ELZ4HPsRSzQy9jJXmdbnfyLhG1VU6cz8CCjJwNdPTi3Q0b+qOA/BjrovypkX2plRfvaZim8ElFa5uolbGQ7s/Qf1FQp/GrPZoPeSgaZfGb9GDa+ZX5X4aNksSPo50QIIYQQZa/MlwaXxPPPP8/zzz9fouPExsYyadKkPz03cfLlkEfFsp5EORdcF7Czasf0qM/w4A/QbrV3hoz9wPqGT60f2Mg2AFbaG0KyAK92XcAs3x+AfyloHWqwnT3srTuVSQ88w/LNMZgG+CyNUir/91aB0igUptL4bH89PsvOHwOgwVD+eoAuU+GztH9M4PH5v/5KAVo7Y5ShsAOFBp1agv5lbC5DOfMI1AdU+GsWGgpsrTGVwmdr/8Odtxh/ONswwLY1Xeq7OLtu+Q0EWtpylocFzNWLmW4vAOAO41ret7/Bi48lenVZTFGcJJ9YY3nKeh2s0MB/d6Ojc/s59/2cZ/dksOpNmjp2p/nuRkcWWMsAf7OZS8z+pT5vUTJbCjVsqa6qOLdzdC672Q9AAvFkkAn4MwIBRkf9hwrEMt1eQGOjLgCfD2rGo7V+58ODvwHQksasYgMo7X9/Nm1irAp0N9sz2NWTIe2jiY+W2qunk+BM3bNUS7ZQUEfyD72C5fZa2hjNnG0tVWN+YRYAq+0N1DGlpIwQQghxuii/Z7CizAUvOxVlY1VQwfcnXXeilCKaKABm2n+EjN2e3/kzWCbZAJiYXGr24z7fc04g8VyjM5/Y/iX73pqruDu160l5DaLs3Oh9hFn277iJ4inXHQxzXR5ystjDPJt5eilL9GrW6s1k6mziVYVijij+Cmxt86H1XcH94DqAQQ1BKqtELjT7AFCFxGMet7vRkf+zPgL8QQcJBJad/YRmZFYPygjcqgsCQFHK7VxoCQQC4/J/x/uYnZ1xiUZFHmrTmJmel0njKLGsxiA0S7i5asY0/TnRRk9ud79Vqq9H/Dn+5f/+TvBJVCGbXKc2ZMAH1re8YTzp3G9pNHZKA6/UGziPnqdsvkIIIYQo3hlauUv8FXjwkqvzynoa5VpwILCV0Thk3wJ7aYmP093oSJo+6gQBgZCOgou1LAs902itmWEv4ABH2M0+Fudn/AUHArsZHehgtKQWyTSjAU3zBnKd50EydXZZTVuUgin2XLbpXWHbK1GRVqpxhEeUTBejvT8zF6kTWNYyyAq5X53Kzu3NQdmCti4IAgcCgUVpaNRhtPs/HCaNxawKKRdSlUqszP97FEcFHvf935+YvShty/U6jub/THQ3zgrJ8HbjojYppOujISVfWoY0DCn4rCGEEEKIsicZgeKUU/m1gDT+5SQ9iukkKU6u1fkNQKpRmSRCa0CtoOSd/s5XvZhQqFPsy9aHaE8MbG3D5OgM2tpeKkYrMvM0sVEKr8+fTeAyIdcLFaMhI4/8MTYxbgOf5f85iXIpcjyaitGKjDxNxWjI8miiTIWtwbIhxq3I8mgSSjImRpGRq4mLUuR4NS7Tv+jXa0Fs0JijuZpYtyLP0hj4m4Pk+aBCFGR5oHVNk5rltKvlUr2GQ6Q595fb68jS2SzKD/o2VfVJUlV51fU4/3U/Te+861ijN/E/exI32ZfTz5QM0b+q76yJzu1G1HXKBbRUTcKWihflsJ3Gw74Xqa9q85r1McOMy0k1UmhNE5azzv/zZR+hqlH52AcTpS44Yz+OWGJVDACv+z7hed87zr7AEuF4KlCZhGMet6PRklhiyCEXheE0lDlEGg+Zt/CdNZHvbP/P10VmX7oaHUrtNYkTF5LpbZzFQnulc7+76sh0vYCv7QncpW/gbOVvCtRUNcDExMJidVCXaSGEEEKUPQkEijI1215ID0MCgWXhoD7CXg4C/iU8ShXkZ3i0N2T5VzADg4aksiH/5D+BeC4y+3Kn75/OGBOTo7mg3xwNh+owE81MzrwssFg3zLgnnvap5a+o/fhCgd/leh1z7SX48ju/BpaIRil/04D6KpX52l//7Td7kQQC/6KO6izG2pPpqPwBnXuMG5moZ1FX1aKN0bRExzii0+nguZS9HHACBaPsL7Bsm86qHd3pyBq9iRn271xuDDzJr0gUZms7pFHUINWTT30/8Lr1CSaG0xgGoB61aGs053yzV8jfkKK4lIu2qhnz9dKQJeXg/zxwn2sY9/n+DcC93ueYF/UNLiUfVcvab/ZC53Z3oyPvW98A/mzA3kYnplv+urCz7T84O787eLSKorGqy1q9mbV6Mz7tk++lEEIIcZoon6ksIqI13x3kg45L+eqC1aRv/3NLdpU7DqIqgjLx/5gZ/ttRFVHKRYZbkeVWIR8uxakVvFQneAkPwCK9EitQ3KeQYcZlTkFwA4ULk6nWXLbZu506YBYWbDgHDtU5SbM/PeR44YN55XN5+3hrRsj9bHL4yZrq3A9uGgH+xhEBsuzzr2uKPZejZLFIr6KV0YSL3H15O+pf/N19G4PMXiU6xove90kjHcB5n7Hyg0IVqcBvehGHSGOCPfPkvAhRrD36QMj9NHWUP/RyVukNLNfrcOd3BAbIJpfdeh//8L7C5Z67qJd7Ljd6HmayNafI43c0WkbcvkAvo5NqSzuaE0M0rVVTWVJ6GsjTHvboAzRXDalOFepSi7X5XaVTqcEL1nvO2NmFPtO1U81pTF2aqQas0OtO6byFEEIIUTS5NCcASNuay/dXrUPboMwsfrxhPTfObH3Cx4setpjZ9kK6qQ4oVEimgNaaVnn92MU+4u3lcpW4jAQv1WmpmoTs+9b6pcjH3em6jmaqAWvzNrOKDRwmnYesF8glz6nvBUDigSKPcSbZdtg+9qAzzEF9hOX5J3U1SXKWB06yf3PGFA4E1lLJNFCpbNY7+EMvJ1fnEaOiT92kRakYZ013bg82eh/XY7N0NtvtPbxqf+xsa0szaqokftH+7qKT9VwnS3CiPUv+PpxCWTqbCsQyzZoXsr2BSmVR/lJQhaKeqskGvQ03Lnayl516LwA17CT2coBv7F9IJ5P+ZreIz9PBaEkR15n41v6Foa5Lud/3PGPsn0lVNWhrNi+9FymO21h7Mr/r5QA8YNzEHL3YyebMIptscp2xv9mLQrrJn2t04it7PGiYas+nfRFBYCGEEEKcWpIRKAA4ustDoOa3tiBtS27xDziGufZi+nuGkZLXlRp53cjRBcdTStHf7EZb1YwUVZ0teuefei5xYoIbhbQ0CjICD+ojfGmNw0XoctfrjQu53byWlkZjTGXyH/eDzr5c/FlxUUGZIqrOKtwXvkF0lBc49pKxv6rochijWGSvpBF1aaOahizt385u2qim3G/eRKqqEfa4QHAwDw8L9cqw/eL0Zml/cA6gInH0NM4+rsff5H2U3t7rnfuVSeCLqP9jVNQznEUrZ3tw3bjAcnJx8t3ieZykvM6MsJ4M2V6HmqzQ/pqxjanLdu3vIO8OupZcjcokq6oY+R8rp9vzi2wK1EFFDgbFEMX71jd0D6obHPx3SpSND3zfOrcHuXox2fqNBOJwYXKAIyFjj5IV8j0L7iIefBFBCCGEEGVLAoGCHXMzmHjXJlyxBcGac+4rvvtfcXzax73e5wDIIJM0MpzsoYBqVGaZXstGva3IWnTi5JhjL2a8NYON9jaiiSKBeFrkLw1eZK/kiry7OUIGvvyUDTcuEqnIS+5HedX9uHOc36yC5Z2BTECdX1fKQJFIPI/2rMLl7aJO1UsrEy7jzA1yFmWD3so6NrNcrwsr5r9cr6OF0Yg51mIe9/4fb3k/Z469GCDkBF/KApy+0nQGz3nf5gXfe7zq/djZPl8vcxrE9De6Ea1K/rudq/OYbM8NqS93j3kjjYy6pKhqTIj6gFj8GaLB9ekmFFqCLv6cn6ypvOX7nJs8j7LZ3u5s92kf0/UCjpIV8vUHMJXpdIRvphqQl99IJJAJ1ljVY0f0LL6P/i/DzSsB8OBlqj034hyaqHrEERu2PRcPR8ligV7q7JdAYNlaa2/iN+1/r26mGtCBFnxh/0wGWfiwwuo8Qmjph4ZGHZqrhoB/6fcBffjUTFwIIYQQxZJAYDmnbc03F61h3/JsfDkaV4xi6JzWdH6g1gkfc469mM16R8i2xfaqkPt1VUGgcZvefcLPJY7fm75Pudx7FzP07+Th4W7zBhJUPACveEczn6Uh47346KM6U1klOtv260O8ZH/o3A8EAAMnizYaN27+7rqNrnXP3OWfCjin3pmdEphz2MvKMQfYMTfD2RbICAL/yWFNkpz7XVR7rjcu4i3rM16xRvOQ9R/+7X0bCF0uPM9aevInL07Ib9YinrPe5mnfGzxpvUq2zgFgnDXNGTPY7H1cx5xhLyAnaAnhdcZFPOb+m3M/wYjnUmNA2OOmWHPRWodtFyfmPu+/ecj3H760x/GBVZDpNV8vCwnSBkvXBdtrGSlh+4ebVzrlP4KXi48r1FAowFQm7VSLIuf4kfWdc3Fqi95JVhGZheLk+zkoi2+4eSX/s38N+zmpTpWQ+2/5Pg/JBg38TGg0v1izTt5khRBCCFFiZ/YZrDgmy6vJOewjkADgy9VUa17hTx3zSd9rPDc3nYQ8H/UOpRNjaSrxOHnudzGqt8I+sJJ+VavxjPsIT3WtzHYJBJ5SgXpO4K/vFggCAizQSyM+5kKzT8j9T60fImYCBDvIEX60p3BLl/PYdlgzfrUH28b/s6aU/z/k38//AdTK+b/wDpTBwQCl0Dp/TODxyv+4ggM7g4Mer0BFCioEP1aFPVfwZHX+U5lK0aeJi7t7nrkZj7lpPt5vt5SMHf4MoEGjGtDxbzVCfmfrqJq84X6SozqLb+wJPOu6D4D59lJnzMH85WP1VW0GG73ZqLcxTy/Bq724VcFycnF6mKMLMnp8WEy3FzDA6MaX1jhqkUxboxnnGT2P65jj7IKAQkNVh2HmZWFjrjMvYoz9s3O/JsksZx0L9DI6q3bH/0JECI/2so9Dzv3PrR/5p+seopSb8cUs29wV9DcjnoLPB9WpQrKqxnXGRc62XsY5xBFLFjn8Ys3EZ/pwGeEfNe8yryfbl8MSVgNQm2QOcIQ8PCzWq/3Bo/y34TV6E2epE69ZLE6M1pp3rC9pQCrVVGWuMy/iIs/tYeP6GV340h4PgInJZnYwIG8YY6JeoZ5Rm8Fmb162/BcOx1vTudF1yal8GUIIIYSIQAKB5Zwr2uCsO1NY+Jb/g36boUnEVj6+H4tl9lrG+H7GVjbROorf9XJGb9xPrSwLS4GpAQ6h1RGsfYtBGdTYZ3N5nCmBwDKwS+8DoAbV2RxTkOGjtWYP4Q0+3Lh51fcxm/R2lFI8bv4tJJOkOB9Y33Jl1CD+fWEM/74wpnRegDhlts1Id4KAAIvf2xcSCDQwqK2SqW/UBuAaLvCPs1eF/Cyt01ucAvJxVGCd3gLAUr2Ws+UE/7RTuKvzOHs6Xrzs5SAAZ9OaqqpSiY+ntWZc0BLfTJ1Ft0JLygE6G21xYTplCXbjf6/6wPctnaPaHd+LEGE26K0h3eD3c5if7Wlcbg5kfBEdmhOIZ2X+8lwDA1tr2tOCJazmAIdJoRrVjMrO+BgVzQCjO+vtLeQpD1/Z47neuDjsuJ3NdqzzbXbuW2hnyXE71RxLF1xoWmlv4CxD3idOtaV6Dbvyfwcbq3r8Ya3giE4nhWrOe4GJSZ+gQGDg5ytKRdHdcw1fRr1KV9WeWiSTrKqxWK9mi73T+ZshhBBCiLIhS4PLMY/2kqNzGfhGA26a34ahc1pz4ehGx34gcFRnAbDK3sBn3rG8bn/Cm9ZnvBy0XLSwohZ3BS8zFCeXVxeczNdSySH75tlLsCJk+cUQxQrW8W9rFP/2jeIne5pT56cWyWHjAVKoDsBqeyNHdHppvgRxClVuFOMkVCoTqudnCwd+Z2tQPWJGX+Gi8Hl4nHIBPYKWB0udwNOHpf0n8D/4JrNY+7O0ArU/f7Fm8r7vG2fsLfl14Epqvl7mZIUCDDbPxVDhHz/iVIWIjSS+syfK+0gpiFRv77++zxmcdysb8oPziVQM2Z9KivO4pqo+8/QSJ4sP8jsAF/KUeScb2c5GvZ2nfK87nxeC1VDVud+8ybmfG7RsfKlew6KgZkLBHe7FqTM+aGn3ANWNB6yRbGSb8xkCoKtqTx0VWlP6XNWZ+XopBznCz75p+LD4p+tuFutV7GAPD/pGnqqXIIQQQogiSCCwHJthLyA5rwt9PUNZetYiUrsmhC/HjMDWNvXzziUxtwMdPZfylZ5Q5FhVTLdYM//HTzICT509HHTq+RUOBH5u/eTcTqKqc/soBSdxGs2LvvewsemqOnCzeUXE59nPIepSk43RU0JqC4q/lqRWcVz6ZRPq9EygzY1JDHyrAVk62wnqFD4BDJgQIbsokFUU3EWycOaZKDv9PMOonHsWV/vud7J6UvF3ft7LQabqeYB/eXdfo8txHfsra1xIJlpwHTlLW6y2/YEeW9sMNS+jIXVCHp9LHl8EvT+JE7PKLgioXW4M5I+o/3Gu0RkPXjRwLp3C6r95lQ8PXrqpDtxnDmOhXhGyv2OEwG1zs5HzM7Kb/Tzn/W/E+dxvDnNuHyEj5PPCAQqaSkjDkLIxPiiLdxf72ai3heyvQAw3m1eQRWgNx0vN/pyj2lCFSnxu/8gr1mguMfs7tWQn2DNDji2EEEKIU0+WBpdjs+2FePAyVy/mDq4t8ePW6E1kBn3wC870CIgU/tPokO2BQOBu9kutsFMkuNZTbRVa9H2aPc+53YomTMN/vyF12ERBd8kleg0azVK9mnZ2s4jPY2Ozxd5Ns9e3sGtreHH5M4XLgCgXRJlg5SdTGgb4LHCb4LX8+7wWuEywtb/8oKHAZ/v3eayC/7pM/36toUaiwSfXx9KxTtm+Tbe8qjotr6ru3F9rF5wM1o0QCNxvHyKJqrRTzTmqM9mEPxNwld7ApfSnmWpANSpzkCPMsRdjaztidpg4tdbpzSHNPAD6ml2Yay+mqk5kGetw4eIW88rj+n5l6my+sH5yLkDEEs25RifA34TiCs/dzNdLaUgdPPi4TPV33m9cmFjYdFbtWGyvLvI5RMkEZ9Y957qf+kZtptnzSVDxVNdVmM1CYokmhzxn3Ib84M8ivYrbuMppCBUQKSMQ4P9cjzHNM5+mqj4/6+ncYF9CK6NJyJh4I444KjiBJAMjJGAcSww55LLKlkDgqbZT72VJfmZwKjXI1Fm0UI1Yozc5v8s55LJHH2C47x8hj92qd/Ku61nae/1LwpfYq6joiuMF98Pc4H2YnupsvrB+4nyjV4kuPgshhBCi9MnZVzkWnI3TLWi5XmFaa970fcYrvo/Yqw/yoz014rhIH+eKzwg0AX/QaJfeX7JJiz8luFFILZWMV3sZY/3MFt8OpxYQwEa2Ore3sINPXC9QlUpAQYfgbHJ5W48p+snmDDmjg4DgD+ZleyAtB47m+f+l50BW/rYsDxzJgcz8+xm5+WNyC/YF/zc9aMzGAzbDPs8p65cYQmvN73ZBRlCkjMCFegW/6t9YqtfQQxVk/wVO5pVSTvfgNDIk2+c0sF8f4jDhS28fN//GsuifOdfsQhY53GFcy53mdSU65hZ7Jzl2Lg95/xNy4aiv0ZUKKhZLW3xgfcPvejlefKxlM5vZzqig9xQfFhrNPL2EMfbPIe9f4vit1OsBiCPWCeLf6xrKJ+4XucwcgA+LHPJwU3BRLvA3/GHXcCeoH+DCRSsVGtwLqG/U5lnXvSzTa9msd3CP97mI3Z9rqIKLDIU/LQSCggc4QprOQJwalrZ4wPs8Rv4pwg728JU9notUHxqQ6oxrRF2m6LkhwVuAZdYamhr1qUgcAIvsVQBcYZxHJ9WWWfoPvrd/ZYFedopekRBCCCEKk0BgOZWjc50lPo1U3ZAP48G01rxtfcHDvhd43PcKDfP68LHv+8hjgaj8E4jAx30Vsj/0JCAQCATYjiwPPhUCjUIAaqkU3rI+52bvY7TyXYAXn7NvO/4acFG4ud24jivNQfRX3SMeM5rwTE4FkFk5bLsoOVvDkZyiKmueem/5PqOVZzC3+Z5wtkUKBAbqywGca3YmGn9X5UX2Krzan03UPejCw2ypE1jmgpeMNqE+P7vf5TP3S6Qa/qXBCSqeWiRTyUggVh276c9OvZfmnvOo7unMx3bB34suqj13mNex3F7L29YY/uF7NeTvAEAWRQe/J8hywhOWpbPZoncC0FI1Dsnq/NQ3lnetr5z7Z6lWzu3KJJBCdR40bw6r6dlKNSZGRRf5nLeaV9FQ+Zd5z9WL+cz6IWzMRUYf6uQvQU8gPuS/HrzEEEMSVdijwxtZiZPjUd/L/GRPwxX0u9lI1eUQ6WwOCgZvZw/z7SUkUdUJGgLMZiFefLQ3WgCwi33s0wdRSjHcNcQZ94GvZE3HhBBCCFH6JBBYTv1uL3cCP92LyQb80h7HJ76xTq0oC9sJ2sUSE3YSV3jZUHGCP2RKncBTIzgQGIWb53xvA4Rc0Q/O4owmipfdf8dQBoPNXqSSQm1SnICvgcEC9/9oo5qGPE8PzqJhr1mY7jzEiVHAM+efPp2WD+l0NuntIdsiLQ1enJ/9AXCW0ZrmqiHgD/Zf7LmdmzyP0kw1pBWN6azaMjVoSbooG6vyM8UA7nMNpb/ZjSvNQc62e11D2RQzlXtdQ8Me+7U1gSGee7nB8zAvet8HYKw1GQBf0MUFgM16B+OsafTx3MijvpcAyC4m8FfYuKDmBeL4rNGbnNuH9BHO9wx3snS/sQvq/DajAakqhXNUG/9Y0tjLAZ7x/pf59tKQYxa1LDggRkXzmusfKBTdVUee970T1vQllhjnwlMgKzX45yaXXPZwIKRWrTh5frMXobUmgfiQ78Ot5hDqG7VCLujm4SGbXM5VnWmpChrNefAxJO+ekL8FA/NuJiW3K1/7xlMpvyGNNAESQgghyo7UCCynftMFy4ILBwLTdAZaa67y3sdKvd75cN5NdWCOXuyMa6Oask5vIY0TW7ITkhEonYNPieBA4H77kPM9MFDY+R/wgz/odzHaOzV8rjDP43JzIPd5n2eM/RMevJxv9KKZ2YBb9RDu9j0LQAzR3Oy6kmEV/o795HlctPZp7qsyiB1pUKeyYle6plo8HM3114xMiFHsz4QaCbAzDVIrKXZnaKpUgDyfxmf7x+w7CrUqKXYe0aRWVuzJ0FSOhVyfxuuDKhUUe45CncoG24/Y1EyAA1mQEA0WmmyPomoF2JMBdSoZbE/zjzmYDbEuMJQm06NIiodd6VC7ksHONJuUBDicZRPrNnAZkJYLKQmw8wi0qWXisaBSDGR5NIYBUaYiMw8qxcKRbKhcwb8sOCHaP1eAaLfiaG7+mByoHOsfEx8FXltj25AQa5Ba+fS5VjPY7MVI652QbbVI5qjOoqKKc7YFTv4SqUgtkmms6rJUrwFgmp4P2v+ek6s8rNQbUFqx2d5BAyMVUTZWBdWOK1zH7Vje8H7KIvwdXqcwh/tcw/jYKipr3OZtu5hyAkUwMbCwmWEvCPt5EyWz2d6BQqHRbGIHm+wdvO/7hlfdj7NIFwRsnjLvZIT1VFjg7Wt7vFM7MHCc9qrFMZ+3v9mNm6zL+Mj+HwBP+97gDfeTzv7uxlkErkMFaodWIJbsoHqVNRbWZd30LKp1TqNB/0on+iUQJTDBmsFb9ucANKYuG/DXiOxhnMUIT8H3zY0bL14qkcBLUY/wsPdFVgRdUJjEbyHH3coucsljip7LLeaVfGh9ixs371pf0VjV42zVmrl6CecanUhW1U7BKxVCCCHKNwkEllPB9QG7B9XxAjgn7wr2sD9kqWgdaoYEAcFfPDz4inEU7hJlBGr82U6mkozAUy04EPiqNRoTg5oksRt/jUYTg2pUZh+HAEJO9JRSvOz7kPds/xKyR8xbucA8F4CrzQvIw0Nn1Y69HKSN0Qx8YER5yGs3ge5RF5+qlwhA11Ia82fVq1qCMSd9FqWjg2pJDaqzh4Ileh28l3Cu0Ylfoj4EYJu9i70cBPwn9ZU8/osMbWmOjcUK/CeK4+0Z3GBezNO+N9BoPrK+4znj/lP8ikTA6qClwYEMzpJYbq91goDg7/z6tTUhpClFDNFcYwzGxOQD+1tn21uup/jM+pGZ+ncAapLM7vw6pSZmSJayhb8TjwcvU+25XGL2P4FXWb6t0hsxMfAFfV3H2D/TyzrH+VsfRyx1jVoctUKDgDFEM8Q8n1et0VSlEukcpac6h/5Gyd5FH3ffztd5E8gih/etbxhmXEoH07/8uJPRBhcufPiIJYY61GRf/nsI+IOAN/X+O9u0xTZ7FZd/25TmV0ig6GQJLu0QeK9PoRoH7SPMoeAzoA8ftUnhevNiklRVakYoL1OReI6SmX+v4ALj+aonB43DTLRn85LvAzx4sbCxsblGXcDo6P+cnBcnhBBCCMfpk24iTplsnUOGPkp31ZFuqgP1jFrOvqM6i+3sdk4Mmqh6mBhBH+b8S3lcuGhDaOZIP6MrXVUHehudWFG3Dr80qERGpRRIqMfRhGpsS4xhbsPaHK5UFaPxJVCv4GROAoGnRqDYfhJV2MZujpBBLAXLTy1sLjDOde53DFr6NdteyAprPTVJwsCgpkriHMO/fKyiiuMu1w2cZbbmAvNcUkmhOlUAf4ZYpCLx4vT2vu8bHvL+h+nWArzai6EMBpm9wsbt1Pt4xvsWN3sepZPnCmd7oM4XwGo2UIVKzrLzafY8hhjn48q/FvWpNRaPLnlZAVF6bG07DVvqqlrHlW33gRVe4+t53ygnq7galUmLWcSoqGeoZRQ0DnrGvJfrXRdTxyhYWn6e0YPGqh51qBHWfAAglRR6G51YbW8K2yeObbb1R0gQECCDTP7le9O539M4O+yCH8C1xoWkqGpUpwqHSMOHRRrp1DNql+i5a6sU/uG6nUTi6arac6/v31jaP5cKKpazlP/vzA72kEMOeXicxzac3BK0AluhTNgw7shxv3ZRMra2WZLfnbsalZ0mP21UU6703eOMMzHRaHaylw+sb7jccxcfWd+FHS87qElQbtD3NEpFUU1VIQ8PWeTgxYedH+z/Uo+TurFCCCHEKSCBwHJour2ARXoVv+lFNDHqh+wLzuToqtpzPr2wsDkStPw3mih8+FjMaioQC/iDg5+4XmBa9Kc867qPq3vZXDMwkc5X18J783yMmxZzzjW1OH+ASZ9rGuMe/Cnx/UYRTwUA9thSCPxk82mfc4W/KpWck/Xgk652qhlb2eXcD64B9b31K9/oCexmPw+bt/A31zVFPpdSynnsIdLYJoHev5xPrO95y/qcQd5b2JOfoTNI9Qwbt0vv5XXrE8bY40jjqLM9TxX8XHnxMZPfnZ+5XDzMsBdwsdEX8Nea/Nz68WS+HFGE7XqPc8LfSjUu8ePytIfNtr9xQAVinA6hOyko8zDEKKgzGNzo42JXPzzayx/2csD/N+VV9+OsiB7H2uhJJBOeSruDvcywF/CzPa3kL044VrExbJsbV8j7/d/Ma8IagoC/eci9rqFOBjjAcHNI2Lji3G3eQHPViDl6MX/oFXxk/c/Z190oWJUQaC4SsPusrRi2gTY12oKa58QjTo7Negfp+e/htUgiLv/z3RZ2coDDzrjgJnAHOUKGziQ96GJxQCCTt7Ddej/PuO6lMokR93/tnSAXD4UQQoiTTAKB5dD4oILrg43eIfsCxcMBLjcH8guzwh4fXBMwlRrcY9zI1+7XqGj4P6CfpVoxyPAHDHazn1d8o6lqVKZH/of9bXoXq/VGlFJcZgwgkYqsZbMUjT7J9nLQueoepyo42w9SkGFxh3G9kxGQTFVqkQz4u0ePs6YD/pPHB123HPP5OqiCIOKSoOVG4vS3W+9nofYv+WyjmlJH+ZsF9TO78q3rDTrR1hmbTW7ETq/7jtHl8y7fv7jbuIH+qht7Ocizvv+SocNPJsXJtVoXvOe3CCr4fyzz7aVM0XOpTmXqUZujZGFg0BT/0uJKJPCoOQKAPfoAf+R3qW+uGrJT7+VF3/us1ZupTQrPux4kWvm7SxvK4Hyzd9jzBS4ardTrydOesP2ieBlBgZoqVALgYtXP6fbqxkUvdQ5z7PCMwFpGMvvsg3xtjQegInEMMc8/rud3KzfPuO917j/le40Dtj+4FFynOCq/y3jA5v6r+f7T9/FcvZ/z3mpAx9tTECfH4qBakShFLh6qUIkNelvIuODM0pokkaDiqUZlZ1stklEoYonhfNXLCSgG7Nb7qaoq8Yb7CUabI53M8IAP9DcRM1OFEEIIUXokEFjO2Np2MjNiiKaP0Tlkf3BGYCUSWKe3FHu8GOWmlpHMALO7s00pxf+5HiOWaLqq9sy1F5Ojc7kgKOg4zvYHlRJVRdI5ikYzz17yJ1+dKE5wfUAj6Fffi48E4qlALF3N9k5zmA5GS6dRyEq9nh35mT69jHNIUMfOyuhgFNQXXGSvLGakON38YhVcABgctFQ8VsVwoauPU1MyktY0pY/qzCGKD+xb2MSqaCcAtIcDPOv775+cuSipZfZaHvSO5G3fGOKoQAfVwrlYUxKBhlMHOEI6GaRQnSjcTjf4NDK4zXqCSz13MMk3i8bUQ6E4qI9wgedW/m2NAvwXi7oa7UOOXfgCFUA00YD//WplUFMCcWz77IMhTaA8+Vng3+mJZJNDM9WA682L2cwODpEW9vhkVY3XfB+TQnU6qbZcZ15EfNDFpJLqaZzNNcYFNCCVWiqFJ6xXAX9TqvY0p7vqSE5Qk5CA1VcuZO9HizjrzhrO3yRR+oK7/ObhwcLiMGl0Ue1CmrsFRBOFQuHVvpCVBRYWGk0OuQwzLmOQEVpS4iPrOzJ1Nleag+hotnJqTaugXMN3vV+V9ssTQgghRBAJBJYzi/Uqp5h/X6MLFVToldqVQdkhW/XOYx7vZvNKbjIvZ5vezWvej2mY25fLPXfRzzOUhtRhrl7CTP0731gTqKaqOI+bYM0EQjMBghuYiNK33d5NTNDJdICFRQaZtKQRi+yVVCYBCG0UMq6YLNKiBC8rDsk0EKe98fmBevB3Cw7m0V52srfIx97rupGHXbeW6HnG2pN52fWoU6dyvd7KVnvXMR4lSsMCeyn/tb5gip5LFtkMMnqFXNA5luD3613s5wCHed31BEPMQUThBmCiPZtf7Fn8x3qPDWxFoznAYaf7LMAI82raG6HdZ/sYnZ1jBAR3sQ0OWIhjK1xz7RLlr88bCLsc1mn8n+tRvrLGk0jF/H0FQZkMncmb9udsZgfL9ToeN/92wnMZ6XqQNI6yUq/nE2ss8+wlJKqKRKtoftOL+EOvCKkvGhBp6akoXYuCfq/26YKGLfP0UuezQ7A4YtnFPtbpzSG/n8HB5E/1D3zmfonOtHO27ecQk605QGjH8qYUlKr5QU/moJZ6kEIIIcTJIl2Dy5lxQXWaIgV0VucvDU6iClPtecc8XnejI7/YsxjqfYRYYsghF5dt8sV3y0jKtqicZ+OyNYpheA1YFW1QOc/mSPROMuO60PXa8c6xJBB4cm1iO7nkkUQVsnR22P573UP51f6NI2TQiDr0y+8IGbwsGIi4bC+SmiSRQjX2cpDFvjXsz7NIjFFkeiDGBT7bf6LpNjQ5PoiPgow8qBgFWV6IdSt8Ntg2RJmabC9UjC4Yk+2FaJfC1mDZEO3SZHmCxkRDjlfhzk9k8FoQ69YczYOEaDiaB3FRkOtTuAxQCjw+TYUowsbk+RSmAYaCPJ+mghuOeqBKBYVpnFkZKll2NtPs+QDUoHrIEm/wL+0Pzi4qbLZeyCErrUTPNcn+jX+67+F+cxifWT8yyZ7NO9YY/mM8fMLzFyWzXm91blejcomyfAM82htWS64yCYzwPUk9auHBS0XinOBAoA6dGxfnq95sZgf/Mu9hoV7BPa4bw45fQcXSR3Vmop7tbPMGZRwtllIDx2WGvSDk/pd6XP4tRV1q8HnU/3GULN61viKdo5gYIfXd3rA+cbK27jeHkWSUoB16EVKM6jzhup0HfCMBeMz7f8yI/pwLzHOZ71sK+JuLBK9OAMjUWYUPJUqRrW2W6jUApFCdvUHd4d24yCL8M0NtlUKsjqGRquvUAY6nglNzFPylaHayl/ejnqO15wLAn214ve8hNppTnEZFAD3Ms1hrbQb8Fys/t37kPtewUn+tQgghhJBAYLlzlCx6qXPYpfdxnhFa+H+/PsT+/ILQtVQKS/UaeqtOrNLrOUD4ldkqJNJcNeRT6wcAcsilKpWooGJJyraolWVhKTA1gMbQONtqZVlkspPqqgrNVUPW6E0s1qvJ1NkntORIHFug/uN+Dod08ANw4eIC1Zv7recB2MZunva+yXbvLh52DWefPkhPdTZxqgJ1Vc3Ch45IKcWN5qVkZLr46Z3LqL0vE0OBrf1Bt0AtcAVowFRgaQrG5G8PHhPYF/hvsMC2wsc50TGRnqvwPBpWM5hyVxy1Kp05ydVj7cnUpSbJqipnGa0xVOhr23KMTOGfrKmoIpLNFSokiLhW+0/67nBdx8vWhwB8Zv3IP133EKPCM1BE6QkOBP4R/T01VPUSPc6jvXTLu9rJKq5EAjFEO4EDjaYWydxoXMpI+52Qx7ZTLfgq6lU02l8LkPAu1AHNVIOQQKCm4OdHMgKPz3x7Wch9NyYWFt1UB5bptcRTgUe9LzuNIoKDgFVIJFd7aK9acEAf5mHX8D89n9vMq3jP9zUuZZKg4vnDXsFgozdP4F8qnE0urWjCSgqWgGdGqEMqSs8aexONVV3iqUBlEvlRTwX8y38jdfEGmOr+xKkNPcRzDz/Z08gkGzcu5/2hJY2ZYS3gBtclROHGg787vIXFJ9b3IXWpz1e9eZ9vAP/P3Sz7D+5j2El6xUIIIUT5VqZnryNHjuTss8+mYsWKJCUlcckll7Bu3bqQMb1790YpFfLvb38rflmK1pqnnnqKGjVqEBsbS79+/diwYUOxjykvfrSmMFP/ThoZ1DSSQvattjc5t7fonWSTywy9wKkZF08FooMKeXczOmIoI+SkbEn0j/zLdU+J5pJNDlprZ3mwDx8LCp2wiNITWILjwgwpHA/QVbVjKWsLOgPuasbMH3qy5etbeOTLKLZ/dRszvunL7q9GcPPn2dz0eTbDPs/iljHZvDgllzxf5AyxZ9z3UmX+LezZ7w/uBgJqwQ0BAzet/BvOGMLH2IXGBAtsK3ycEx0T6bkKz2PrYZs3ZhYsczwTfGyNZR1bmKUXMsgMD9Rs1juKffwRMjgcoc4YEJZJmEMuG+xtVFOVudQYAPiXlY21J5/Y5EWJBQKBFYkjhWolftxseyErKPg73cfoTE/jbOf+k+472RQzlaej7gprEvCo6zaUUmHB5Uhamk3CttXB37Rmld5Irj6zfu9Opi1sD7n/ietFrjMu4je9iKNkcZHnb06Gp1noY2EM0UzRc1miVzPMvIxYFfOn5+NSLv7muoaVegO/2r8xzZ5HM9WABioVgO16d0gQECA7QkaaKD1z9WIW69XM0gtxqYIcgTw8zvtDcG3hisQ5QUAo6CJdhcSQ1SYrWc8E218Kpiahnznf833tZARG4eZR38tUyl+afph0Jtgz2aH3IIQQQojSV6aBwJkzZ3LnnXcyf/58Jk+ejNfrZcCAAWRlhS4BufXWW9mzZ4/z78UXXyz2uC+++CJvvPEG77zzDgsWLCAuLo6BAweSmxtehLo88WqvU+Q/0AU02Eq74OQu0BlYoZzsgJaqMUkULAk6R7XG1rbTEbY2KSSpqtRXtUs2H3zM0YvpHlSgvnAtI1E6PNrrnPinEv69v8W80ln+qzOqkffO6zD/YlhyHpmLesHSgbDoApYsrsPnC718sdDLmIU+Pvvdy5Pj8njkh6KzNUyDYhaS/sXlZzeeKdbYm/hN+38Hm6kGdFcdw8ZssreHbfsz/uF7BYBbXUOcbe94vyzV5xChcnUe27R/uW4TVS9iA4ai6nONDyoTAHCNcQFj7V8B//Lgy42BAGTpbLKDGj+4cXGu0anEc2wZoYNxNeXvTOrDxwppGFIie/QBsgo14GhpNOYt91PUy/9bvYM97GAvvVWnkGxAwOk0D9Df7FZq8+pvFBzrN3sRSikuyG9MZBeaA0CWlozAk2l2UGmWKF1wwdfAYCf+RmOB70sFYnnZ/HvI4/sZXemuOpJOJhPsmdSmoLvzTPt3tNY0UfVDHrOb/SEdidexmbT8rNSAX/LrSQshhBCidJVpIHDixIkMGzaMli1b0rZtWz7++GO2b9/OokWhteIqVKhASkqK8y8hIaHIY2qtee2113jiiSe4+OKLadOmDZ9++im7d+/mhx9+OMmv6PS2S+93PsjVibC8c5w9HVfQanEXJpVJwI2LYcZlXG9exC3mFZyvetFDnUVvozMb9FanHkzH/OYQ9fOv6pfESN87dFMd6KY60FW15w97+Z95iaII6/UWp8ZT1fyT6YDKJHKe2ZPx+Q1B1J5G4I0Bp0ugQWBhHoQHDDQwa1PkpUMAd/SIpmOq/1ju/Hcc0ygIoJn5/w3sc8aogmcrbkzgTcwV2GeG3g+etavQ44PHBEr9RRqjihjToobBA+eeOUtYP7S+dW4PN6+MGCCapueX6nP+ZE/l+fz3gV7qHHqrTqxgndPdXJS+TXq7k53ZWNVztvu0jy65V9It7yoa5PVhmb0WAEtbWNoix87lI/t/zng3Lm7zPYkLkwuMc7nFvNLJGFtgL3eeozYp3GBeEtacqjjNVIOwbW7czt+KNUEZ7KJos6zfcRdqvFJdVSFWxfCq6zFq5HcCNjDYqnfRhPp0CGoUFcger0BsSAOpP6uBSqUG/uXo8+wl+LSPwUZvOqm2NI8QBJaMwJNHa82c/EBgHLHsyQ/8QeSgrEJxidk/ZJuhDFoZTbCw8OClg9GCeOIAf3bfer2FWkZyyGPcuJz3iCSqRvh0EdqoTAghhBCl57SqEZie7l+CWqVKlZDtX3zxBZ9//jkpKSlceOGFPPnkk1SoELmO3JYtW9i7dy/9+vVztiUmJtKpUyfmzZvH1VdfHfaYvLw88vIKlhllZGSUxss57Wxnt3O7cCBwu97DLP0HdlDuVlPqMzN6DEv0ag7ow2TpbM4yWnGu2Zk19iailIuHvP9xxge6xMarChzEgEJ1ZfzLSkI/VK61N3NYp5PGUVbpDSgU+/RBklXJl6qJYwvuzFeJisQQTW5+5854YnnD9ym79D7cuEiqlcaO2AzIicMfDLQJDQaGG9zSHXE7QOUKijkPxJPj0cS4Ic/nD9ZZ+T8KpuFv5BHtglwvzhiXUbAENzAmytTk+VTIGI1/nNsAT9CYaBd4bX+wMHhMns/fWMRjKaJM/xgjP+holWCMzw6da6Rg2V+RT/s4oA8TRwUsLK4zLwobs0cfKFE38eOVqbNYptdyp+s6hnjvBeB+30h6G52OK3gkSia4PmBjo55ze65ewhLWOCm893qf5Qf3KG7yPUoT6rHJ3u68b4A/qzuTLLz48ODlOff9zr7gZiLPuu/jGvOC45pjBRVLJRKc7HSALLKdTMA2uhk3cslxHbM8mmjPxptflw38wdRAV95BZi9WG7+g0Yz0vctL1gcA1NYF2VyBrM5ORluiVNHv88dLKUV34yy+tX8hk2yW6bV0NdqzTm8J+Z4H5BSqaytKzxa9k135wb8uRvuQun2RvOd+lkSjYtj2wUZv3rH82dzZ5JIZ1En4Ae/IkPrC0USRF/Q9LaoT/Qx7gdSOFkIIIU6C0yYQaNs29913H926daNVq1bO9muvvZa6detSs2ZNli9fzt///nfWrVvH999/H/E4e/f6P0wkJ4deeUxOTnb2FTZy5Ej+9a9/ldIrOX1t18GBwNDloaN9/wsJAgI0NxoRryrQisa08AziSP6H846qFYv0yrDjB7qLvu77hAsjXEW2sZ0cs4Bd7GOE70kGG71ZZW1Ao/nFmsUw12Un8hJFEYI/2GeRHXIyX1/V5t/WKAAuUf3Iic9l553D0UsG0t8+l1ZGA7bb+2ho1MbWoUEvpaBJkskNZx/7BDE2yv/YmPyhZlA+cuB2bP6KpJgIh/OPUcWOiSk0JjpCzrN/n8ofGzrGVZIxZuhczxRr9Wa+ticAcKnRn8oqMWzMo96XyMov2m+gwt4zgrd1pT0HOMIGtkZ8vjrUYDv++k+vWKPZqLfxtft1ehnnMNP+nW16F5/6fuBv7mtK6yWKfBuCAoFNgjICxxfKwpyvl3Gz9zF+0bP4hVkRjxVHLJ1UWz52vxCy/TddkNm/3t5CQ29f2hnNWWqvcf57p3k9D7hvKnKeqSqFNF0QFDoSdHvlMYIVwh/cn2iHft+SqRpy8SJWxbDe2sJn+U2/AK42BzvNewICtXxLUw+jI9/avwD+5cEdXa0YYHTnm/z3oWCB5hOi9P0WtCy4q2rPNIrO+u6vunJZfj3XwnoaZztdgxfZoZ8Rp+p5ITVC+qouTND+Zb9u3HjxUptkZxlygAcv31oTuMl1xfG+LCGEEEIU47QJBN55552sXLmS3377LWT7bbfd5txu3bo1NWrUoG/fvmzatImGDRuWynM/9thjPPDAA879jIwMUlNLvrz1r2J7UNHlQEZgjs7Fhclo67uw8d/bk5hoXcTP1nQnCAhEDAICtDf8y4YydOZx1YRbolczRA1y7o+3ZzAMCQSWpkBBbsDpDB2wQW+ng2rBYr2adkZzPrHGoqrtIrb/F/wQfTdu5QbCg0LizLIoqOnP2UbrsP0zrN+dQCEQFgQE8rsF+zOBh7ku50nfa0U+X1ahLqBT7Lnk4eF11z/o5xlGU9WAF633udF1fEtKxbGtt7c6twN1u7TWjLP99f8MDJKpSgVimaRnU43KHIzQOR4gjaM85vob8VTAp3148WFhs8XeRQNS2c5uFtor2cU+GuhUdrGPmnYSu9jHv623Oc/sQQsjfCloYG7BtQAPcJgaVGcPB1itN6C1PmMyck+GeXppyN9ugCTlX3GRo3OJVTHMs5dwmfdOssmlr9GFisRFzMiPVC/0zwquD/ybvYh7GcoFZu+IgUCfBAJPmkBdWIBGRl1sK/xCbsC/XQ8W+TsXraIYYHTne/tXjpBBLDHkELk2dxOjPhOt2djYTsbqfg5jYIQsR06lBv+1vuAG85KQJiZCCCGE+HPKtEZgwF133cW4ceOYPn06tWsX32iiUyd/sfGNGzdG3J+S4l/Ssm9f6FXFffv2OfsKi46OJiEhIeTfmSg4IzCVGoz0vUsXzxD+5X3L6QwczEYzzPt3franRjyemZ/fZ2JSgySnkHuCiscoYglpMBU0xtQGSfhPUKbYc8nR5buxS2kLLA2OpwL79aGQfXvYz2K9mqbUI10fZQv+pZ9tVbP8IKAoDxbrgkBgB9UqZJ9He3na9zoxRE6DDHQTt7BQ+b/Z55k9SC9U+D1YGhkkUtB1MptcZtgLaGY0ZKDRgzl6EbvZz3fWpD/xqkQkwRmBjVQdwF9HdJP2N4JpRWNAsYntWNgRg4CB9/8qVGKw91Y65l1Kx7zLaJTXj1s8j7GD3WxmBz4sJus5VKcKCSqeWiSTpfxB4Cxy+MD6psh5tlPNQ+7n4aGRqgv4647t5eAJfw3Kg5994X+7q6uqTLXm0TzvPBbYy/jV+g0vPvLwoNF86n6Jfbrg65pIRaJwc47RptTn10w1oAqJVCERDx601gwwuuMKWzvgf28RJ0euzqM6VYgmCsu2nE9mqtDnuCjctDbCu3kHOz+/03xNkvAUs5w7i2zON3qFPIcHb1hNwh3sYaXewLvWV8fxioQQQghxLGUaCNRac9dddzF27FimTZtG/fr1j/mYpUuXAlCjRnjnU4D69euTkpLC1KkFH4AzMjJYsGABXbp0KZV5/1UFBwL36oM843uLtXoz39u/4gmqIRQsjaNhGWQBF9OXUa5/kRa1kBn7v2bf8iy0ralMIhWDTvCLEvxh/1Hr/zjP6AlADrlMt0q3IUF5lqmznbpuzWjAUbIijlvHVl61P3buB2o+ivJhib3aud3eCA3AvOIbzQK9jNwiTuzuMm5wbms0txlXU43KIUvQwV8cPsDCphqh9WADDWtGuApquRYXKBLHT2vNer0F8DfxiMuvvfVzUDfg5axjT36H+aLUw59Vfpg0sshhPVtZx2YOkcaPOjQAdYN5CTtiZvG/qLfYFDOVaVGfEou/qcgX1s9kF9ERtovRLmxbsiroXL/Sls7BxfnWnhi2rQqJjPA+yV4OMsRzD5lkc7kxkEuMfvRS59A87zy+ssY54zPI5DbjKqcJTGkylEEXoz2HSWeS/Rs72UsllUB3dVbY2EgZyOLP82gv39mTOMBhWtCIX/Qs5yutC33N61P7mBm4Fxv9WB89mcuMASEdqF90PUILClbxrLDWM9L1YIkzTV/1fYzHljqRQgghRGkp00DgnXfeyeeff86YMWOoWLEie/fuZe/eveTk+E8KNm3axLPPPsuiRYvYunUrP/30EzfeeCM9e/akTZuCq9PNmjVj7NixgL8A9X333cdzzz3HTz/9xIoVK7jxxhupWbMml1xySVm8zNNGYGlwBWIY6nuEjvlZP42Nek5GT7BqVOYKY2DItsokUo3KROGmlasJN7kuZ/Wnh/ms/nreb7uUf144jts8T/JU50Tu7lWFD1vEM6FZKp80i+fDFvHOtrt7VeGDLgUdCG1sOqm2dFcdaauaMdGefRK/EuVLFG4muT/iVdfjXGqG1vYpnLnpwiSVGjxmjuAio++pnKYoQ17tZZn2d4htpOqSqAoKwa+ztzDSerfYxzcP6vAahZsGRipb9a6wcYXfZ+pTK+T+D9YUtNacrVrTRjUF4He93OleK/68PfoA1ahMd9WRC4xzne1T7Dk0I7xTb1FKko1nYlKf2vzbdX/I9koqgSvN8wBI5yjfWuEBK4BzVBun82hAIIAIsFpHXhkgYIO9lWxyiSrUMXit3kRjVRcTk/ZGC6pRmUyy2aJ3Mtmewy72UT0oQK/RdDbbnbR5BneHXm37v5/DzMsiZgXmaQkElbbtereThddA1WayPbfIsV2M9sc8XkUVRx1Vg9oqJSTbz4XJ5fm/8wALWYEbNxVV6O93YqGLyLFE05LGVFYJfGB/ixBCCCFKR5kW3Bg1yt+goHfv3iHbR48ezbBhw4iKimLKlCm89tprZGVlkZqayuWXX84TTzwRMn7dunVOx2GARx55hKysLG677TbS0tLo3r07EydOJCam9K9o/1XY2maHEwiM5SBHWKhXcKs5hFddj5OS1zWkgxvA9+7/kkw1dun9rNTrqamSeNl8lAt9IwAYa/1KHLFkPlUXbP/JhntCFVKWpvJRh+2AP5jg71DrjzmnksLn7M3vPxu63CxJVWGhXkkueRzQh3lN/wNDnRar1//SopSbXuY59OIcPvP9ELIvkGXhwsSHxVfu12ilmlDPqBXhSOJMtVpvcn7/A01/5tiLWWtv4nHfq8Uu8QJYzUZqkcwu9hFNFHebN/COr2ApV+Dnq/BSszejnuZczw3s5QDgzxKcZy+lq9me4eaV3ON7jtY0Yaz1K22NZqX5ksutJXo1G9jGBr2NTkZbAA7ow8zSC8OW5RWncI3HSC40zuUL9/9hqvCgznBzCJ9aP1Cf2nxu/ci15gVhpQiijChygp4nhijiKegeGlz7VIRaYC+LuDR/m97NEtYQQzTfud7EZbi4wnO3cyGgOlWooio5jR2SqHJSLwq1MBoFyoqySm9gID0YbPbG9oVnAKZzlCSqhm0XJ26z3uHcjldxHNEFn6UTiCeDTOf+ZWbkJiGR3OcexjK9li9tf3bpd9ZEnnLd5XyvfVg87HuBozp0hUJVKpMe9Jw55LGKDaBhnD2dO7juuF6fEEIIISIr86XBkf4NGzYMgNTUVGbOnMmhQ4fIzc1lw4YNvPjii2E1/IIfA/6swGeeeYa9e/eSm5vLlClTaNKk+LomZ7r9HHZO9AMf7Fy4eNx1O/PspWSSHTLexKCt0Yypei7z9BKOksXlxgB6G+c4GQYr9Ho+9/1IZqUMbKPgBLJt5cb8x3zIOekPLA+MJZrrjIuKXHayRK+hj9EZgN3sZ4lejShd8/XSiNt9WFygenOBea4EAcuh4A6PHfKb/jzr+y93+v5FOhlhv6uFfWdNdBo+HCWLQZ7hPGe97ewPZHEVLkGwh/30CFoGeJg0p3HR1cYFtFANWcF6/mt9QaYOfY8SJyb0e+0P+k60Z5coCFiTJM6jZ8i2xtR1bidSMWTf+UbviEFAgLNVa+42b2Aru5itF/K2NSbiuBiindu5eNjLQedvSyCDTIRbqiNn0QaahzRTDXAZLnJ0LlPteQCkUI1t0TPoaBTUCL3RvJSok1grtqVq7NwOdIKuqOJIIbxhSYbODNsm/pwt+WVDAA7p0IuzwUHAaKLoq46vvM4ws6Dp2xK9mo99Y0P2j7OnMzuoUQnAZnaEZP2Cf3UKwCx7Iem66LqzQgghhCg5SbcqJ4LrAwZOxi80zqWGqs7P1rSQLAuApqo+0SqK3+xFzrZ+Zjfchpu7zYJ6YCtYz4wP/sfBpnvIrZ7F7Fd/4KGmN3Cfexj/NO8KWZY03BxCZSORuELPFTDT/oPzjd7O/fHWjD/zkkUExdXUutJ1/imciTidhDQKMVpy1M5kpv07EF4wPpLt7GG5vc65v1Pv4QhpgP8Esg7+mq55eOhIQe3J36xFdDbbhhzrG/sX0vVREox4OucvRTtKFl9b4Z1ExfELvsASyP6cUOi9tqjv+DXmBYyK/hfNaMBd5vVcbPTjadfd3GBczK3GEJ5w3cENxiX8zbiGm4zLOc/sUeQ8lFJcZRa85zzr+y+79L6wcYWXBu/Xh2mgUgF/JqutS57FWJ6st7dE3B4I6jdW9QCYbs93OrsOMnuxj0OMssbQnAb0UZ252bzipM6zmWqAkf9RNHipdy2Sw8ZKEKj0BWcEripmqX09amEakYP6RTkrKKDsw+IrPS5kf/BFheCl4MHB/xokOVmgPnz8av92XHMQQgghRGQSCCwnggOByfkfqoabQ8jVeYy2/xeWEdjF6ADgBAJjiHZqCt7vugkXJnHEArChzWp+XjyKhF3bePee++hhnIV9eD0Pp/fk3Z29GbA1m6u3uqm4dT53pp3FN7suotlhD42OhGYHrdIbnI5zUNA4QJSe4LptLkyn86eBwQCjW1lNS5QxC5smqj5RuGmnmvOk73UnYBBHrHOiXlgM0bjzg/37gmrGHSbdySHsqjpQ2yho7lTHqOncfs/6mrYROsN+md+sYLh5pbNdmob8eVprFtv+oG9lEqinapGnPUy254SOy/+vgQqp63i761pqqOosif6Rl92P8nXUa1zhOo/3o/7Nm1FPcbfrBt6Peo7Xov7BqKh/kaSKX8Z5ltGaW/IDTR1VK2ZbC8PGVFGJIff3sp9WNKYWKTRTDZxOxyLUNsJrdAZrkh8IHBf0d/YC41we877MUbJYw2bqGDVpYKSexFlCjIp2OkGv0ZuwtH/taIIR3nDsUNCyVVE6tgQFAr34ihw3xDz+C4VxqgKVSXCOXZVKIfuD/2YMMLpjYlKPWlSh4Hd+D/tJy89iBblALIQQQpQWCQSWE8GBwH0c4ibjcs41OvGDPSViF9kmqh7jrRlsx/+4TkZbopX/hLCaqszCqO/ZGjWDq4zBLIr+kS0x03nEfauzrNTzvwvxfHYOl477iG9+OcA7v2zkwfFT8H3Wma4/v8T8r/fw48+h2R9pZODCpGN+lsoyvZbddvGdK0XJ2drmQKG6jFZ+wZ4exllULnTCLcqP8dZ01ustVKcKMTqKb+1fnH1XG4MjLhvtTkd2Rc8mI3oxT7ru5H3Xc86+zPy6bgrFKPe/SAjK6jpf9XZu72Qv6/TmsKzDj33fY2ubDkZL5/1giV7NYmsV4sTtYh/7OAT4Mz+VUvxq/xZ2ISggiapOSYl2qjm1VQrAMTuHHo/HzNuJJoqZ+ndetj4In0OhYOJufYB2qjm72MtivcqpbSdC7dXFN3MZb8+gQW4fxlg/A/6gfoyO4mfb3z26Cok8V6jJy8nSUvnLCuThcQK7FQtlggIc4vApmU95EsgINFDsZG+R44Iv0h6PpkENiA6TTl/V2bl/hILAbgejJd1UB7ayi02EBvd3s99ZtTLZniPdg4UQQohSIIHAcmKttRkz6Nt9tTkYQxm87P3Q2RZNlFOb5T++d7nce5ezr7vqGHK8ZkZDKhpxfBL1AnVVTUrLe96vudQcQGfVjnqqVlimijhxa+3NIQEdX6BqN4R0DxXlS572sD//BDtV1eAre7xzgmZiUFMlRXzcM+57iVMVUErxD9ft3OC6hJGuB/ne/Ra3GkO4QJ3LfeZQ6hm1qKgKsnsSgzJ94qnAE75XaUK9kGMvZQ2jre8BGGFeQw91FilU5z3769J86eXOEjt8WfA3vl9IjlCPDXCChrcZV3Gva+hJmVMtI4lW+XXiVuoNHC6U9VV4iWgOuTQyCuoSBjIcRQGv9obUd4tI+wMs7WjOxaovj5t/40HrP8QTyzmqDc+67qOaqnxK5tvSKKgTGFieGvyeEbDXPnRK5lNeaK2dGoEq6POhInRJvgvT6eJ+vB5zj6BKfiagQvGgOdzZt5O9VKMyFxl96KO60NloV+RxuqoOdFbt/A2liqh1LIQQQoiSk0BgOfGHXo6VHwS6VPXjDetTeuZex0oKasb5sJxaQUeClmIAdDfOorTooE61EFqDbKw9mS5Ge+brpWzVu/hNL4p4DHH8JlgzndtGyId+xfnGiV3tF399wXXZaqtkPvX96HSTbklj3rA+i1gnsJ5RO2zb/a6bON/sTV2jJj3MsxjpfgggJCMwKmipaSbZHCEDn7LCGk3c53uO1NwezLMWs1ivYi8H+Mb6ReqE/QmL7NBakAf0YX7UU0KW6AULLOvbyV6uMS84afMK/vsy114csi9FhQcpU1R15/YiLYHAwrbqXREb/JhBddiSVVVqkUxVoxJdzQ6YymSt3uwEf4cZl4U9/mQJbhgS6ARdMUIt4bVsOmVzKg/2c8jp/h1YHeDCRAOZQStFmqmGRTb9OZaBZg/n84WNTbQR5Xz+8OLjIEeYYf9OW6MpHY2C+rFuXCHH8Sof8/VS0shggj0TIYQQQvw5EggsB7TWbGCbc7+Vasp4ewa/s8zZ5sLlfBAEOEe1cW6bGHQyCu7/6fnkn6AEggvBJyyr2MA43zSnLtVvdnjNKHFivrbHO7cTKci2SCCehkadspiSOA3soiAQmKKqM58lzv14VYG0IroGBzo5RnKva2hIBllwdo+tLSrk1xcNnBBm6KO8aD4ccgwvPg5whNH6eyejJJscp36gOH6Fm8J8Zv0Q1sk5WDqZXGL05yv3ayd1Xt2Ngozzwu/5lVRC2HgvPidTcIm9WhqGFLJeb3Vuaw3ktEFndcHW/uBKTZL4MfodNsVM5X9Rb3Gp0Z9PLH9HVwOD191PHHdjiD8jsDQYYFWgczDhGYHrdOQGKOLEBHcMDgheKRAwSPUM23Y8Cv9+V6dKyP6mqj4b9XaW2GucbcG1SQF2631OIHucPR2ti+9kL4QQQojiSSCwHNjB3pAPd3/oFSH7B9GTFqqhcz+OWD5zv0xn2vOy6++84nqcCir2T8+jcFZRHBVCMhQCRtlfOkvVtuid7NRF160RJbeFgqLgsRR8P5sHfe9F+ROcEXjEznDeKwwUG/Q2J2gXrDIJRCl32PaiBAeej6psauRndLlw0UjVpbJKZEVQdrJChdQIiw7qPv6B9Y2cBJ6gNPsorWlKN9WR2jqZD63vih1fkyRGu0ce1/f6RHTNb04FhHSqB6hUKFMU/A0EOuRnD2WQGdL5VMA6e7NzWx0Zjr17FHrvy1i7X0Nrg8ZGvZDxf/e9xFa9k+6qI3eY19LeaHFK59tQ1aGzakdr1YQj2r8aoaIKrxEYXOtY/HnBvzcJEQKv4H8vvsD8c6VDegRl/P5mL6Kpqh+y/w+9gis8d7MnqCZ0LnkhY9bpLZyNv2HdJr2d9RIUFkIIIf4UCQSWA6vsghPsisSxQBdkAg5Rg4hWUazQBWPa0Jy6Rk1mxHzGXa4bGOG6ulTmYYQtL9RMj/o0bFwuecQEXQ2eU2ipmCiZbFtz885smq3P4N69Rziqc519nqAP2Wer1mUxPXGaCA60/85y57YGDnCYbHKcYGBgOX/1Y3SDLSw4uydDZ1IDf91BDx426m2s11tZozfRUjWmFf5lgsFNjA6SRifaUItkaqgkVtrrju9FCnzaxyJWsoJ1ZJHNV/Z4YokOW4IX7HXXE8SqmJM+t6qqkrM8dIlew1Fd8L1PjJARuEcfCAlWyfLgUCvzl9cC2OmXF+zIbQOe+jRWBTUWJ1tzGGtPxoOX9XoLT7juOJVTBcBUJvs5xAq9nkV6JVrriM1CIgUHxYkLzggsrqbknw0MN1CppFKDVjTBwKAL7VD5/zNQGBjsYl9Ik5Dgi9cGiq6qA02NgsYjwd2uhRBCCHH8JBBYDgTXhaquqoR0avtG/8IPekrI0r82ZpNTMq8MMqmnatOE+mH7gpcyy/LgE/PCgTzGpHvZ7NWMOmRA5gBnXxoFddZarG7Fis/3s/rbA6z4Yj8rv9rP+p8PY1uSdVUeBGcEbtO7nNvB7wnZ5BBLtHNyVnhp17EkBC0NPkqmkxEIUDV/ifFiexW/uj7iSISlyGlkcKk5gF3sY7I9h7H2lON6fgG72O+Uf6hJEk/4XmWl3oAXX8i4Gvi/NzcYF3O+69TVDg0sH7SwmG8tdbYH6hQG26sPON2kQRqGFLZGB9XSc+0BLMAGvGAeokl+RpalLb6xCjqEP+9+MOJS7FOhTn7TsaNkkUZGxKBfceUIxPFbUYILKlWp9KczgpVSdDRaspL1TLJnc5VrMDkxK3jMGIGN5nzVi+/dbzE56mMaklrwuPyLxzaauXpxyN+FX63Zf2pOQgghRHkngcBy4A+7IMsnVkc7t6OClttVy6/BBaH1ek6G4A93j3tf4ULVO2xM8Ae+wkvFRMns9tlODqbCBl/1/NsFV9sbTmzFro6V+PGGDXw/ZD0/Xr+BH67ZwDcXreGH6yTrqjzYFZQR6MFLDFERs8R6qU7O7SR1fIHA4OyeDJ0VEghspPz1KY+QQYbK4hHXrWH1oQDOMlo5t8dLNshxC15WuZv97OFAxHH9VVdqkUwr49RcEAroY3Smk2pLElVDmkQlqvClwbv1/tCMQAkEhjigDzu3VcqTqNiFuKM3EJvyNH2jmjndWRfoZXxp/0wr1Zge6iyuMy4qoxlDHVXDub1d74mYEZihj9EJWZSYR3v5zV5EXISmLMGCA+5/RoegRiBL8HcvTzQqUotkephncZ7ZE6UU95nDnHGFy8ms0Ou43riYlqoRM/UfbLS3IYQQQogTI4HAcmCNLqgXFFzrL7gmTDdVUMy5pdGE3HQf31yyhleSFvBqyu/Of0c1W8yWqWl/aj6BD3cuTA5ymLNdbSL0JPWLJ5ZE4tkdVDtGlMytlaNw539hlXEU4icDkBBUc6vNF52L/Nqv/voQ3uzwwuHizBKcEQiQi4fqVCWZqiHdpW92FSwxrH6cgcDiMgKDby/WqxjhupofXP8NO4YHn3NSukyvZYfec1xzKO+CA4FK+wv0G4U+AlQghvei/82mmKkhzV5OhbONNizQy9jPoZCLP5EyAjfobSSpqrSlKR1US0wMfNoXNq48ytY57KQguK/cu1A1H8CqfTN5cTOZby+jjWoK+DvJ+7BYqTdwo+tSlCrqr8HJF8gIBP/PaqRmIZlkn8opndF+sqdykCNkHeNreonRv1Ser0OEDN57XUPD3mvOd/V2SlDYhDYBWqbX0lClskpvBOBD69tSmZsQQghRHkkg8Azn0z52BZ0UBHcTDIjCzX59xLlvaoPZz2xnw7jDZB/wkbXP6/z30PocvrtsLbbvxJeNBk41fFhMtGczz1qCm8hLTzLJYb5exkR71gk/X3l1TgUXaxpX5OtUUHWuQbn9AZ8EqwY6YzA6qwt5jSJnWCgD4mu4ccXKW8SZLlIznt3sYx+HnBOx9qpFSJZg0nHWCEwIzggkixoqyblfKSjQEzhBPNfVhW6qoIEE+Jc7Dg4qWj/BmnlccyjvtgcFTpewhnV6C7FEh4y5whh0qqflqKmSaJifHfqHXk6u9tcxjZQRuCW/yUEToz6L9Spm6t9ZpteeusmexrYGLe+PpJ/RhRjl/76Ps6cD/k7B5xk9TvrcilOHQoFAFZ6pJoHA0vO+9U2Jxl1s9i2V5wvOCFxsry5yXC2VTGrQz0IwG00jo56zmuVT6wfnfUIIIYQQx0fO8s9wG/U2rKCrqsEfpA/n1wpsphqwFv8V1pokMcg7nC/3Tgqr0wWAhryjFpbHDt8XJPqamUQPX0vUtbOJunYWUdfMIura2c62rFsWMPByfy2Yz+wfqUVysceTpYAnppbbIKbCUrTp/15rO4ZdO0eiDzyO3vsy625rxjn31qTmOXGkdMj/1zGOhudV5tpJLcs0Q0ScfB7tZR+HIu4LXpZ1t3kD+4OWGyYdZ43Aiiq4WchRpw4dEBJgXKwLThAHmN1DjvGLPZPBRm/nvrwnHJ9IHVezyHFux1OBy0op++dEBeoEevA63e0rRcgIzCSbI3Y63Qt1IxWhDSAiOT//d2ijvY21+asFOqm2x53lW9pCMwL3ROxim01u2DZx/NbbW5hp/37McS5MqhiVSuU5q6hE6qnagD+zr7gM3n5m1yL3LbNXc6nhr3d8iDTG2pNLZX5CCCFEeSOBwDPcdr0nZGlVoFi8ielk++zR+zlCBuBfwpdDLjP+Nh4dFTnYd869NXBXMIt9XhWfgqpYCyOpDUZye4yU9hhJbZxtVRNa0L3i+YA/IHmsk5Bp9nyydU6xY0RkE6wZBXfymuHzpTh393m60v+V+ty8oB3DF+X/W9iOq8e3IKm1dGg80+3WRS+5D1wIUCguNftzgIJA4PF2DQ4+qc8gi1RqcI5qyzmqDbnkOYHBxfYqtPY/b1fVIaQpye/2MlrRmEbU5SzVimydE9JdVhQvUiAwWCbZdDBLpx7YiYoU2ItWUcQS3rl4qj3fCRwGjy/vNudnS0aiUAwyewKhgfQLgjJty0pojcDdxEdoFtKA2qdySmesWfYf9FfdjlkfMJlqpfq8gdIO2eSwTm8pclw/o0uR+36xZzPcdSVxxNJDncU8a0mpzlEIIYQoLyQQeIZbqzc7Qb6YoAL8gYAgwAEKlgUHiozvPnsrgzcnM/S31ty6rC1D57bmloVtuXVpO/q/Et7l90QMdw1xbhu6+B/FHHJplNefyz130TC3L6/7PimVOZQHs3RQ12X3LsCLv4OkRaNoTxnNSpwOdrHvmGOSqEKsiglpQHC82UPxVHAyDI/qTOoYNVitN/C7Xs4Ue66zbCyTbGeJ51lGq5AO59nkMlsvpJ/RlYV6Jb/pRUy15x7XPMqz7ceoqViblONe8l3auqvgwF7B+1YlwpcH/2xPpblqSBUSAZhjL8LWxWeqlwdbigkEnqPakKz8wZ1ldsFS6sHGqesOXZTaKsV5j9iud4eUEwhoZzQ/1dM6I31tTWCynnPM+oClHSAOWR6si14e3FI1LnLfJr2NjnYLqlGZ2Xoho+3/SRMZIYQQ4gRIIPAMt90uOPmLtMQqmBsXh0gDoItqT4eUpqR2SyC5TTypXRKo0TGe5LZxpbZctJvqwECjB3WowQKWRRxzidHPuX2YNDJ0JrvYJx/8Sihb57CBgs56ynUAVeMhqDCP+IrT+W/NyLUZRfkQqT5gHWqQEpQJ0l75u7Pu0wedbce7NFgp5WQFZpCFS7noYrQHYA8H6KM6c45qg4XFz9Y0+H/2zjO8jSptw/eZkdxbnOL03nsvJEBoIRBKCH3pEJZl6fCxCwtLL8uyS+8dduklLAQIJaT3OL336tiJE/cmac75fkgaj5pjJ7EtO3Nfly6P5pwZnbGk0cx73vd5gHgRRy+Lg7kHgzeNz5igjzXXTbVmu9pERCl1WHOVIVr9ZgMCdBRtTJmIhXIFbuUGwusErpQb0ITGaF9W4CEKWK+21t1go5TgjED/r/UpYiR3Oa4DQCrJd3I6bWjJiWIoPUTnOh5lKDHCSWu82qG71D4SiA8xszlc4Mrm8FQoF4vVKgA0BOmk0ZS0kH7tac2t+pXH9LX9vyVQqQcbjk6ibdgsYPCaWa3Ttpq/A248/CrnHdNx2tjY2NjYHA/YgcBGzhaLOUikC6vudERDoyedSSaRVJKZ7Lj4qF7Xs+o9PJkv4/ppMq6pV3kfP00213kyX8ZY/T4DRE92sS9AjzA4zJhKMk1IIQYnySTShowAF1KbyCyUK0Oc90TCUrRWfyG+xfMMdoYX5bY5PthrCQQqTzPk7nfZse1j9u//E8qXpXuW74YrsDS45npiyb4MnyJfEN9a1vm98TtLfDenrxr/NfWjgoNT38nf6S46kuQraZsmZ2Mo29n6cORwkHK8ovqRygEHR0EgUAjBeO1Ehop+9BHdWCS9E0ThJrG2sAuP8tjlwUFsUbsCnvt/WTep7ZyuebXXdqi9FFPKXrJJEylRowXbzlcefIBDlFFunjP8FGPLgxwtS9UaKvBWAkgUh8gP0Ar1c5o+im5ax2P62oO13vSnByPFwAAZiGB0odMrKDht1aw9w3WdeW4A+MGeELKxsbGxsakxdiCwkWN1EAyeXQeIJYZfYz4gJ3YB5+mnUUQJf9b+wCVH6R7pWfQMntl/Q278Ern5W+9j45fmOs/sv+FZ9ExAdo//Qs96abhALme0GEwehbhw8zfnn9gaN507HNcc1fiOF6zldRB4MT1WDI+aG0Cb+mGnRTdOHfojuLqBisVTdBaUeMsFvzJ+okv5aSyR3kCdjnbY7OJw+IP3hfgDgZV6cHNYan7v8ynic+NHoFJTyo+BwadyKmdoowE4aOTz7UeZzH9mDwW7bffISFj1ASNlVQ0W9R8IBBipD2KpWs1itYppcg4AaWEyAj14WK+2BgQCM+WaOhtnNCKVDPhOW3nW+VeSfE68a9Vmc31vS9ZtfWM1DNmt9pkBfz8lys4IPFqCrwkAc5LASm2cD9JECs20JixUK1ikVjJPLYvYt3dQebB1sriMcjLV2oAJoarMR2xsbGxsbGxCsQOBjZwcvOV8GsKcBbYySPQiQ2tGskgkRSTRhgzStBScom5KRoeJflWWGeZwkGFaf/O5XQpYM+aqwAwZ68X0ifqwuh6OTZSx1bBkD8n4wEbpvcmSSrKXHPrRA4AbtIuPKIDs1/wqoQxDGQwVfYkjFiDA2RzgPs+/kEoySOsdsp93PV8xXvMaHpz6wCTWX+tmxt928t7QlZTl2TeD4TicUQgQ9n9dH4zXTjQnLKbKGQCkRgg8Z8q1DBA9OVMbQxrJfCd/N8uJj0ey2I+b0OM/RYzgAosjtDUQ2FeLrMdW1wQahuwLyfy3XYOPnuCsWf85WKnAc3ptSQVcpU80l9/xfBGxX3U+lyO0AYBXFmCOnQ1sY2NjY2NTI+xAYCPGUAb5FAHeEpBiQh0200WauXyH45o6z7bThMZZujfzSBG+TCRexJrLP1qcDm2qRilFsko0b6pjcBBP5f/Smkljc3yymk3mspb2MQhfiVjMJkia4c3+01LMCYI2ZNBFa39Er9VX68FoMZgTxCDyVRGxIoZhol9IvyQSOMAhLnDdQkfaBmQyd6ItQ7W+dBMd6C46MeJbb0BQSSjZ7yZ7ma0dGo7DBQI7iDY0E03qaDRV01ykM1IMBLxmV1vlLpqI8IHAZWotDuEghSTyKSKfQubL49dFdLvaE3b9Hfo1AcH7tXKLuVyVMUNd08GSEbhTZYWUBpfbgcCjwqM8LPB9P2JwkkEzyowY5J43UNtmI/e+hJIJOHHU2ufiAu0MU5NwivyVXJUXtl9/0ZNhoh8pJOHAQSrJZtDSTx/RlcH0oZ/ozr+Nd2tlvDY2NjY2No0VOxDYiMnhYEBwLdxsej/RvS6HFJZzNK8zXbjSZYDVcpMZMFilNkYsfbIJZB8H+EHNND8DLjyU+UqAkkiIqpIwm7onXxWaGcMAetxmRMeJiHaXI9regNBKmaSN4+uYV9gaN938e6QTBcWqhHlqGfPVcg76nMqtpb89RGcu186h2Fe6ukptJIdcWtHc7LOdPUyRv7JJbWdV7Pf0O6EtQgOhgyNeo1mvoKxGGwBy1MEq2weL6MgG9GN1K/1BziQ1jGswwHLpdR492yIx8aOcVatji2a2yVDHYAc64/QxAev8GYFOHHQTHepkbNXBWhp8QB0kWQQFApXtcn80bFW7zWCaC7f3/J9/OVT0BjQoHwQFF9BPdCdWxNTKGOJELFfp5wOQRDxvej4L26+P1pUlajWFFOPBQwFFOHEE9MmgOUWihNVqE7/J+bZWoI2NjY2NTQ2wA4GNmL0qx1wWCFyWkiGlQMlYBohe9TG0AE4RIxggeqKF2IR4masyA270fjKO3xu9mhApOwRgjBiCJuyv//HMWrUl4LmBgdDKEDG7EELyJ3E5jzhuP2av10I0NZf3+4xHbnZewXzn5/zqfJ+XnX9nol7pEn6AQ4x1XcnJYnjIvn6XiwCY8FZXTrivLf2uasFVM/qS3Do2pK8NbFehASI/zUiLuuzgCdrJ5vIPcmZYjUDwBotdys2Z2ono6IC3nDiSCUFjJ9w5v5NoF3Cudyk3m3wmYj1EpzqTAakOGTSjOenEEctOwmUE2oHAo2GZWksueeakq0CgVOD7f6d+I286H6/VcfxRu4zztNMooIR/G++xK4yjeYZoRltaBqxzBZW972Qvf3f82Xx+r+cZ2zzKxsbGxsammtiRgEbMHll5cWW9oFaeZqjd/0Vt/51/7hpEsVG/N01JWiIJxOPBewHn8N3QgXfcXUR7RqoB9KYrJ4qhLJAr6mmkDYttEW7+44jlZH1EHY/GJtpYJyt1wqzfOT+6ptFZtDtmr2cNBB5Q3kBgB9GawXofTtSHcZI2jBO0wWYfDx6KKKGr1oGhoh9NSDXb/G7oMUk6pzzZgfPe70abEeGDRTawW2ZHbMsln56iSx2O5vD0EJ0ZLPpwghhEjHKSqEKdjhOI4wwxmrYVJzK04gKG0heArWoXm9T2uh5yVFBIUch02jgtMBtws9qBB6+WZrAhQ33TVEvjAIcop4J8VUgX0YFBVGaruuxA4FGxx+cSL32arAqFSPsSHPsBSHAe5J70dPppPWp1HJ31drQRGXjwUEoZf3E/E7bf4CDd0mCd621qNxdrZzFM9KM9rTlJDAvQv7SxsbGxsbGJjB0IbMT4Z/0BEi3ueyr/CnB7db6Wl8Xwfn79X1xbM1L8AUGAIkr4XS5A1zSKKWWOWso38mcKla0FdjjClYmB1yFwYBRkgtrUL9aMQOt3DuB27Sr+7bz/mLpKN7eYAh2IUKraXKTTKygo5cLFUrWaPArMdf4bWpvqsZvQjBsrwTfc9Y0Qgh6iE/PVcn5V8yj1a1dacOEhV+VRSDFZ7Cdd8waKm5LGTLm4roccFcyQi0KUdscGZdSusQRK+mjRJQ+Rbgn2H6KACipYzjpzXXBGmE3NsFaJ+BGO/Yj2lyI6XMCTnZbQwlE3twUPO24lA+/kUJ4qYKMMDd4PPoxhyXa1ByEEF+nj2UUWH8hvWHqcO4fb2NjY2NhUFzsQ2IjZoLaZyzFWbRVV+bYLoJ4TAgE4URtaZfsmtZMJvvJgNx5+k/PrYFQNm6rKAaPJKdKmflhmrA27Pp00/uG895i/XgtRGQj0lwaHI7hMNYfQoOFB8u0SsGoileSQJYgaTCfRliYiNWJ7fdFXq9SvPahCx+/Bw3Ct0mxmtdxELzpzkHw+N36skzFGE0qpsKXBwdlday2ZwH2jQCPYSgLxpg5cviokmUDX4OAJC5uaES4QCCCEgXDs5yx9dJ2NJU2kcK9jMm3IYJZawltGqFbgENG3yn3sVFl4lIeOoo257kAVvy02NjY2NjY2ldiBwEZMYGloZWaPSPsEHN6MmoFxOtc1qR1R6JowUhsY0SwEvOVME7Sx5vOpxow6GFXDJpJGYBrJNLcEZWyOP5RSrGRD2LZH9NtqRT/S+pnzlwaHY0zQpMBmuYNYAs9RBpLddlZgtcglzywF1MOcY62GLdFEH4uZUbY6QDc6hvSZ7LiE07RRAOwhm0K8meIL1YqIbqSNlb3kUO4zg/ITg5P2olXAuhlyIcNFf87STqJ/LZeA1hQhBE3wOkTnqUJSgsxC/CXNNkfG3irOmRoaHSwBtbrgKn0i+30TPVPlzBBtz0FhMpVTSTZdhz142KNyqv3bYmNjY2NjY1NJvQYCn376aYYNG0ZycjItWrRg4sSJbNy40Ww/dOgQt912Gz169CA+Pp727dtz++23U1AQObsB4Nprr0UIEfAYP358bR9O1JGl9pvLBRSZy8KZg2h/GaM7/Y0FnRNJ1Y9d+Z8frUlXRHpPiEkGR4L3EZNsrhPpPdGaVN7opYgkBoqeEfe3We3gJG2YqXX4s5yDR9k3BVURKSOwr4iumz+buieb3BC9JT9/cJxbK6/Z3GoWUoWLbXBG4Aq1ng60Dum32SJ9AN7g5gK5nEy7NCyAfeqAuWz4AoJWDld+V1/0tmQt71J72cyOkD77OcSN+iUANCGFQkoArwbaNDm7TsYZLWyWO0PWOXEEBPVXyg0sUatZrFaxV+WEmDFEA2m+7NR8QjMCo6B4oUETKSMQoA0Z6CJUK7Y2SRXJZjXITrWXdUEGVs1Ek5DgpAs3B8k3n29Tu8mgmfl8vx0ItLGxsbGxqRb1GgicNWsWt9xyCwsXLuTXX3/F7XYzbtw4Skq8F/NZWVlkZWXxr3/9izVr1vDBBx8wbdo0brjhhsPue/z48ezbt898fPrpp7V9OFGHtRzMGggEEELS29H8mGqAWYm56Adir1lC3J/3EHdbjvfx5z3muthrlhBz0Q8B2wRnAlnZpHYQI5ym8PlB8pkvl9fK2BsDRaokYvnlQC1ywNXm+OBnY07Y9a1pQZIINWY4FrSwaARWdbPWRmTQU3Q2nxdTGmA04sdqCLFb7WOYaxKnuK7iMc+rx2jEjYPNckeV7YMPU35XX7SjJSm+QNDWCJMaB9QhJmhjecHxACAo8gUCAX4wZtbBKKOHzWEMUloQ+L15x/jCXJ6sX1xrv/9HQ7ovI7CIEhKIC2jz4DluHaGPFpdyh5VZ8DOgionY2uQc7RRzeaoMrfQYLAKzAssoD3i+Te4OzAi0S4NtbGxsbGyqRb0GAqdNm8a1115Lnz59GDBgAB988AG7du0iMzMTgL59+/L1119z7rnn0qVLF0499VSefPJJvv/+ezyeqrPBYmNjadmypflo0qRJXRxS1CCVpJRS87nyzaVbL/v7R1lA6CQxjN6EFy/frvbgUm4maWdwkhjGANGTT42pdTzChsOOoLJga9l1bxFdAvE2dc83np/Drm8lmtfaa8aLODOj93A3a00JPF8HlwYDrJWV2SOtaUGBz0DoFzmXHXLv0Q630bBYrqyyfZAWncZBQgjzXLWH8CWNB9RBnMLJGdpoMkRTEogzz3U/yplUqPo3wqorNgZlyAJ0Ex0BcCs3RarE/M1MJJ7L9HPqcHTVJ02kmMvhStmLLdc1NtUnOBsw+JzaU+tMfXC2RfLlR2NWSPvp2gl0pm3E7WfJRSSTaB5PJCMqGxsbGxsbm0CiSiPQX/Kbnh5Zv6ygoICUlBQcDkfEPgAzZ86kRYsW9OjRg5tvvpmDByNfHFRUVFBYWBjwaOjkqnzzhsgaBNLQzWDgCG1APYwsMiP1gaxjS9g2A4Ptajdn6GPIVGtYqTbwpfyJIlUStv/xzragDBppKQnsYxuFHNdUKBezWBK2bbQYEnb9scKfuXG4m7XOWjtzuRlNwgcCLe6nutC53nER4J30eN/4+lgMt1Gwhs1h18cRS1fRgVSRXMcjqj7Wc5WD0LLFHN/nqIvWntkxn3C5fq55rksikfc8X9XNQKOANXJTyLqRYhAPuV9kgvuPPO1+w3TdvVSfQIpICukfDaRRGQhUYRIW/TqQNjVjL4GBwGBpiO6iU10Ox6Sj1oa+ohtOHCgUB2TgJNFgrQ/bCJzYTCQeAIHgRzWLbWq36UpvawTa2NjY2NhUj6gJBEopufPOOxk9ejR9+4YvVcrNzeXxxx/nj3/8Y5X7Gj9+PB999BHTp0/nmWeeYdasWZx11lkYRnjHuaeffprU1FTz0a5du7D9GhI71R5TD0qz5AEaGCi8ekr9iS6tuGaiSZXZapvUDlJEkpnJUEwpnxk/ROx/PBPJKATsjMDjnSny14j6gBP102v1tf3lwXkU4lLuiP06icoMkFzyyCE3pE9wsPtafRK6L1j0vvE1ZbI8ZJvjke0y/LmgnIoqdVmjgb6iMhAYLhhszSxNEUm85HiQkWIg4JWPeMx4hRJ1fGSQbVDbQtYlEsc/jbeZLZcwQy3ChZsbtUv4P/3w8ir1RbrVwTpMGXCBLApZZ3N4qtIHBOimdaijkYRynnYaAsFitYrZKnCSaqDoRTNLhnhH2pgBbYWihDL+6Pq7aTJzgDzbUd7GxsbGxqYaRE0g8JZbbmHNmjV89tlnYdsLCwuZMGECvXv35pFHHqlyX5dddhnnnXce/fr1Y+LEiUydOpUlS5Ywc+bMsP3vv/9+CgoKzMfu3eH1iBoSS+Vac1mFkdhuRjqaVntvv+unG3B9M5Hyd/tQ/mZXyt/qSvm7fcx1rm8m4vop9GYk2CjAit8cwC8OD/Cu8aWtGRSG4CCJn/a0JjnIidHm+OIdz5dh1wuEGUSpLayGIblEdnXtLAInY4I1TsE73oMq33zeSjTnGu0CThOjKKeCV+XHRz/gRkB2mCCqn7p2Ca0p1kkLPUxGYHD2jy50btGvMJ/nUcjTnjdrb4BRQoVysT/M+/yt/I2+ojsagjYig9a0oKvWISDjNtqwZgS6RWhAp6rzhk1kqnIMHi760536yQgEb3WKP7g3V2YGtAkhOFUbaT6PEU7cQe7Rh0Q+u9gHeKsfrPrYNjY2NjY2NuGJikDgrbfeytSpU5kxYwZt24ZqgRQVFTF+/HiSk5OZMmUKTqezRvvv3LkzzZo1Y8uW8GWnsbGxpKSkBDwaOkvVanM5nFPkJH1crb6+3DMXuXM6FO2B0hwoyYGiPeY6uXM6cs/ckO2qCgRu8gUCB2q9GCr64sRBLDG2S2gYclUegsC6Kh2dvnZZ8HFNjjwY0QykKWm1OjkABJh+VFXCZc0IBMgOU0q8n4PMl8sC1t3quJIZahGFFPOU5w12qX1HOeKGzUGVHyKub6WjiKy9FQ301ryBwJY0D1saHM50poklo8yJg8VyFRvk1tobZBSwVe0Kme4TwAKWs0Zt4hLtbL6KeZltcb9zh+Oa+hhitbG+f64wGo926eeRUVVGYJbaT1Mtre4GE8RIbaApYTNXLg1pv1A701zOU4VmGbCf9WprwGSR/RmxsbGxsbE5PPUaCFRKceuttzJlyhR+//13OnUKnZEsLCxk3LhxxMTE8N133xEXFxdmT1WzZ88eDh48SKtWrY7FsBsEq9TGKtvP1U+psr2+qNI52OJ+eat+FYkksEit5G35RcRtjkcMZTBdLgjJBNXRuFqbWD+DsokK5qglTJOzw7ZZnXpri+YBzsGRdQKDMwKLKSGDUOfg4OyR3lpXbtIvA6CUMl50f3g0w23wLLNkhocj+P8cbTQX6bSjFdkcCDCJ8E9yhDOdSbNoHjrQma2WcIfnyUadOb4pjGOwg0od5XP1U+tyOEeF1SyknIqQdjsj8MiIJBEAMFSrX+fwVJFsuhavUZs5pAIz+s7UTzSXD5LPVfr5Ve6vKld6GxsbGxsbGy/1Ggi85ZZb+O9//8snn3xCcnIy2dnZZGdnU1ZWBlQGAUtKSnj33XcpLCw0+1j1/nr27MmUKVMAKC4u5t5772XhwoXs2LGD6dOnc/7559O1a1fOPPPMsONobCil2KJ2BqxLJN7UCowjloEiOp0iW4sWtKaF+dzqGmi9KThXP8UUhf/SmEaBsnWD/KxRm8OWUhpIRuqD6mFENtGC1Wk3mKqC8MeKFsISCCRyILAZTUgiMHOxJaGOxuGyRx523Ep7WjNKDOI/8lu2yl1HMeKGzVeen0LWWc+pwZmX0Ug74Z3A85cOQqUBVjjTGWtpqb/fLLmYL2To/6KxsN7YGpIBbs2gHCR61/WQjph0KjMCCykhwWcM4SdX2YHAIyH4mtDKYK1PHY4kPP5qEIVigVwe0BYnYkkl2Ww/lZG0sEwM9aJzwCTTgSp+W2xsbOqeLLWfB9zPcbnrLl72/Ke+h2NjY+OjXgOBr7/+OgUFBYwdO5ZWrVqZj88//xyAZcuWsWjRIlavXk3Xrl0D+lh1/DZu3Gg6Duu6zqpVqzjvvPPo3r07N9xwA0OGDGHOnDnExsbWy3HWNRvVtpBysBLKkL4MsZFiIA5RtetyfXKCNthctpY1L1NryfPNFCeKBP6gnwt4M38+NabW7SCjmHDBEYDzxKm0FM3qeDQ20cQ6Fd5BFgjQYaotmlsCgZHKt9zKzVOeN0LKv9JESsi65Wp9iHN4mkjhRv0SFqjlFFLMe8bx4xwbzGKLRIQfJ15pDR2ddqJlXQ+pxnTXOkZsC2c6Y80o6+HLcm1HK9bIzY02K3C2WhqSAe7/7WxCSoMI+Pqxvn/5qpAUAjVt82z9tyNiHwcitg0W0RMIhPDXMH7DEIViH7kBJnhtaBmQHWyXBtvYRBcu5ebfxntMkb8yRy45/AY2NjZ1Qr2XBod7XHvttQCMHTs2Yp+OHTsG7Me/TXx8PD///DP79+/H5XKxY8cO3nrrLTIyMur+AOuJOUHlcsGcoo+oo5EcGWNEVYYhlbPak/WLzeX3PF8hVagW4vFIcLmknxsdl9bxSGyijTVVBAL71IGbdHMOrxH4o5zF48arbCewlK2daBUiAi+RLJQrQvZxrWMSTl9p5IfGFCrCaI0dD4TLuvRnUrcXrXCKmunt1gfdRceQddIyQRRcHpxKkrkcg5MRYgC72cezxttVuqk3ZFaq9SHr/BmUg7U+CCFC2qOVJpaMzkMUkCySAtqDy0ZtDo9buSmiJGL7IK3+M0atE8DhrmGsMgbL1dqALMbg85xdGmxjE120Ey1NuYrG+jtsY9MQiQqzEJtjS6RAEHgvsk8Uw+pwNDVngN4zYptV9L2v1p0rtPMYK4azhs18aEypi+FFNUqpsO9/GzIYqw2vhxHZRAulqiyim3Qi8TTVmtT6GDIsZiH7w+i7AbxjhHc11tEx8EpCxFGZ3f2rMS+kb3ORzkTtDMCrKfaJ8d0Rj7khY73519FIJckMEDWULLFuYQKBCsVIMZD+ogfZMjDTySmcJPrKSfMpZLx+ktlW1W9jQ2WfOhASILeG/RpSWTAcPiOwMIzshU3VZKkDxBA+6J9OKk1FWt0OKAzNRTpni5MZIQZQRElIpq/fOAhgjdrEKFEpc7Kb7IDS+KpkJ2xsbOoeXeh0EK0B2KZ2N9rsfBubhoYdCGyUKPQwDosAhRQzJAr0YKqij4jsbDs3yCX0Kn0iM9ViJJIHPc9zUOXX8uiim01qe1gB/X5aDzRhf92PZzaobSHlg3461ZFpRGBpcOjN2ja5m19laGAPvAGA3r6sRb9eaFPSeEd+ETYY6M8Y7kJ7/uJ5lpnG4qMef0PDbdHVM5AUUGw+j3ajED/hMgIBFqoVrFIbyWJ/SJtfJ7BAFQWWHKrwsgkNmeVhDGGs3/Ih9WwEUVOsGYF5qjAkI7BARc5sswnPJrk9QGPTSncRatJXXyQKrwHcBrWNzWpHQNtoS8bgDrU34HOdR0GAtvR+aQcCbWyiDf81RwllYe9TbGxs6h47MtDIKFPlfC5/NDNngukiOhArYup4VDUjRSSRQlLYtuVqXcDzsfpwLtbOArxucv/x/K/WxxfNRCoLn6CNrduB2EQda2TksuAhdaQRlU6qaeCwXK6jTAVqmX5lTIu47S6VxdnayQHr8iiklHJucv+dzuWn8qKn0iX4JG0Y/3X8iz1kU0QJD3lewCWPnxLhgzIvJOzrF9yHugv+Hi2dRLuIE1sAe1VOyDp/Vlk+RQwT/cxsqMaYEZgZJhBo/X9FgxFETYgXcWbGbz4FIRmBRZZgtk31WM66iG3WQHl901ernAReGyRjcaKoNLM6QB6DtEDDu7YWvdOsMOcEGxub+sVahRCpOsXGxqZusQOBjYwdam+V7aPF4Crbo4WOEcrWdoTRlnjGeS+dacdg0ZtHjZeP66zA9XILXekQsv4c7ZR6GI1NNFGVUYhVn6k20YTGO44nGS76k8NBznBda5aAKaX4yPiW/qInQ0SfEJfgXWof5+iBn2OFoilpjBUjyGI/z3neNx3phBCcoY/mRDGUJBIooYyrPPfWyXFGA8vD6MZZS7MbSkZgjHBWWca8R2WHrPMHPMsoRyAYJvoD3puPcIHDhkymWhOyLoFYhog+jBFDaE+rehjV0eHPCsxThaRYgtcAxZTWx5AaNBvktrDrnTg4VYyq49FExloNEuxw30RLNTXGyignVSXTxOIwbZ08rsoYxcbGpn6wXnPYOoE2NtGBHQhsZBxuluU8/dQ6GYej77Xog29BazMa0WoYouVwtDajzXX64Ftw9L024vb9Rfew64sowSM9AetaixZM0MeyTK2jjHL+axy/WYFL1Gq2sDNgXSLxtNKaR9jC5nhhrdoSsa2fFv77VhsM1HqZ2R4dRVteNryBu/VqK1vYySq1gRSRHKJpeYBD9KErLUg3Az0KxYOOP9NC85Yc55DLIot5SKpIZorzVWKJZa3azK9yfkgWYmNltdwYss6qE9ZQNAIBuonQyQ0/4QJ7Taw6cxQGZD3Na0RZgUoplshQZ+gSyslUaymipEEZhfjxZ3TmUUiKCMwILFVl9TGkBk24CVQANx766pGlWOqa3hbDqnVhfq+sZePLWEdPnys4BLpJB2tm2tjY1D/Waw47EGhjEx3YgcBGxvbDBAJP0urGKMQx6n6cJ/+DmIt/JPay34m9fDoxF/9ornOe/A8co+6PuP0obVDAc6sQ9Ey1KKS/1UH4XeOr41KIVioZUk4D4cX2bY4/1lZRGmy9oaptemtdmen8L81owldyGo94XuKAOsRUOcPsc442lrEi1N08i/38Ub+MAothwBq1mSccd5nlhJkqsFTSqTk515dJWEoZM2Xo+aMxskGFZgFVWAT4G1IgsCods6oyAiFUJzCcnmRDZa/K4SD5Iev9rsptREYdj+jY4M/0KqWMBBUf0FbG8RHIP5ZkqVAdTYAkEmhhyRKubzqKNqbRzxq1KaTdWv47Wy5mvHai+XyVqpz4qMB13Ez42Ng0FKwZgdukXRpsYxMN1CgQWFhYiJQyZL1hGBQWFh6zQdkcOVVlBDYhhUSRUIejOXKGav0CnltNDn4wZob076F1NoOcm9R2ZssltTq+aGSnyqKE0GyJugr+2kQve1Q2BRTRjpYhbW1pSYKID7NV7dFP78FV+vmANyvlP8a3Ad/rs7WxDNf7hzhd7lRZnGvJao4jlkxjDQ7hYKDwuo1vV3vIU4EZIVaNzKlyJscD4bKACiiiL905XzudVJEcZqvoJNxkRgJxAOwlnEZg5bHlU8RIbSAXaOPoKjrwk5wd4kjaUFku15FE4G+6Zrmsa7CBQEtGp1M4AtrKOX50Po8VkTLkeooudTySqtGEZmYFbld7KFGBZeA9LBMCmXItE/XT6YF3ndUMJYE4spVdHmxjE010tDMCbWyijmoHAqdMmcLQoUMpLw+dZSsvL2fYsGF8//33x3RwNjUn3Mk1BicOdPOCqSHQQ3QiUkHTRrU97PrJ+sU4cXCCGMQsefw5hIYrpQFMMxWb45d5chkllLGb0OypIaovv/3fdl7tlsl3127GXRreaOhYc4Mli/cNz2csVqsAr05UJ60t3USHgJu7IfThIPkM0HoyTHgnCsqpYAXrKVGlAaYIy2SgOP6p2kgzY/AnYxZShU5oNTbClczu5yBr2ERpmAmDaKaH6ERbSxA7lSQza2yvygnJAE+zlBDmq0KSRSI6gi1qJ7nk8T/5W90MvJZZptaFaOZZzTWsGVQNCev7pwVdplbYgcAaUxJBV3F40IRrNNBbqywPXq+2BrRZJ4g3qm300DqHVI8AlFLO3jBu4jY2NvVHskikBV4Zl8NVr9nY2NQN1Q4Evv766/zlL38hISE0oywxMZG//vWvvPLKK8d0cDY1J1xGoAs3HoywF0zRSpyIJTmCc/DSMOLoAOeKU0kikflqOW8an+FRnrD9GivhSmkEMEyPvot9m7plrlwasW3ffz0s/HcWeVvKWf2f/Sx4tmrDoWNFV60Dp2ojAdhDtpn163cGdgonCVRmKmayli3Sq385Wb8kYF/r1VYGWQOBQeXBiSKBUzRvqfE+DrBWhn5XGhsHyAt4nmj5Xw6uI5foY0VPrTN7LEHsAorN7PYKXCHlsWlBGoEAk/VLzXVvG1/U4mjrjuDPOUBni1lUs+WtWfPJAYpzGlbwLF2kRmyTSMpVRR2OpmFTJsswCD/x0SeCFnN9YjUMCXa6t5rd7fZJArzqfDjg3ObnItetXOi6NcBJ3sbGpn7p5CsPzmK/Xb5vYxMFVDsQuGbNGsaOHRux/aSTTmL16lDRapu6QypZpWvwWfrJdTaW8rd7UP58MuUvpHr/Wpf9f9/uUeU+ggXi/Rd7hRSTr0JL0eO1OPNm/yD5LFQrj9HRNAyCXfYA0kmr+4HYRB1zIxgkJBCHMysepfkyqgQU7qm7oMHd+vU847iXO/VrADhTnMjl+jlmu1UcHirdIC/Wx9ORNub6lcYGhliCW8uDMgIBztVOZYjoS1PS+Fk1Hp24SBRTEvDcqps3RGtYgcDmIt3MJPATaykbD9YJDNYIBDhZG2aWGM+WS9gYwUm1oaCUYpkMnRRL9gVIe301hH0jmvDtFZt4s+9yirIaTvDMGsi1yoL4KaS4LofToMkk9Fzop68WPUYhfqyBwOAqh+5aR3O5hFLcyo0udK7SJ4bsJ58iClUxhcr+rNjYRAvW8uCq7ldtbGzqhmoHAvPy8vB4ImdYud1u8vLyIrbb1D5Z7K+ybKah3fwFi1hbS4SmGXPCbjNBH2su/xhGS7Axsy6MUUivKNMAsql7DqhDISVWfkopJ/vSzYg0b8aIHqMx6Ma60xU7XT+BOxzXkCGa0YYMTtVHBpSGZYhmAf33+UTvE0Q87UVrc/10tYAeopOZQRhsGAJwojaUTLWGXPKqzJBsDJSripAsIGtAZZDWu66HdNT0Dgpa6OjmcnAZtFVjLs+XESiE4Ab9ItJIZowYwqfGD7U42tpnD9khWZ8AC9RyAAZ+NNosmS7L9bDlx4ZzfdaB1gwWfRgi+uAm9LrTDu5UnxVhJkX8ROP1QW/Rlfa0ZpjoF2IMkygSzMkhDwZb1S4AJunjQvYTRywpIokUEb6yxMbGpu7pLbrSl+6MFAPZpbLqezg2Nsc9jsN38dKxY0eWLl1Kz549w7YvXbqUDh06hG1riIg+V/PRUkVifAWGghgdKjzgdIDHA0Jg3lY5NHAbEOsUuDwKXRMYUnmdboVCKXDo4DEETh3chkLTBNJQoHkdcZVSODWBW8Lwjjr9W+tVji8cVYmvJpLQYIxC/PQTPfiJ2ebzVjSnyJfl8pWcxmVMCNlmvHYSGhoSyVQ5k6e4p87GW5+4lTusS6htFGIzXy6L2BZPHGt7fkvpJjf7Motp3ieBlDaxdTg6L3c4ruEOxzUh69uJlgHlj/ssAvAX6mcy2+M1BVoiV6MLnYGiF/PVMnaqvRyUeTTVmpj9u4oOZNCUHA4yXy7HUAa6qPl5tiGwQ4b+FuT7nJZbkB6gt9dQ6CO6MpNKx2drYHNvNTICAa7UzuMp3mCuymSdsYW/Om4kXsTV4qhrj2UyNNgNlaYJB7tl03l6b/zx4PTudWsIdDSkiRTzez9A9Qppt7qG21RNuEoBgPa0jsogWUvRjEKK2aWyyDZyCfKLIpkkM7i/VK6hp9YlJFsYYKDoxdcxtlyRjU000VbLYI2xCZRX0uVMTjz8RjY2NrVGtQOBkyZN4oEHHuCMM84gIyMwYyQ7O5sHH3yQK6+88pgPsL5wnP4Sd38HUPcaBrqAX25N5MQu1X57gKrt2DuKNhHbopWhIlDbrpVowSa1A4DFclXYbZqKNEaJQcxTmWxS29lkbKe73nBMUo6UzWonHkJNHgaI8IF7m+OHSGXBAP2Ftzw/oamTLuOaROxXX3QNkgewOkFerI3nDp4AIAuvYcRYbTgFspBdah+r1CZOYYTZXwjBGG0oX8ufKaSY1WoTA0VokKExsD5oUiCJeIp9BiGDtT4IEcmKKXqxlgwCVKjK7Pc9QRmBgRqBlUGjpqIJZ4uT+Uz9wCEK+Eb+whX6ebU04tol2BDHj38ibOaj33GCMZSWa9rS/5oWdDgpsu5etNHd4hKdFcb0ocDOCKw2/qy5YPpYMq+jCSEE3UVHFqtV7GYfpaoswNW+q9aeXdKbSTRPZnIl59M8qHoEIMd2DbaxiTq6W5y//fdzNjY29Ue1S4Pvu+8+kpOT6datG3/+85958cUXefHFF7n55pvp3r07SUlJ3HfffbU51uMHAV8tdx++XxBVZQQOEg2vFKybFhgEEErzZlnidb+MVB50jj6WHnSir+jOs8Y7tT7OaGCn2ktvQi/su2uNPwhqUzU5Kpf+hNfjvEA7o45HUzN6icDPdA4HTROgdC3NzPwykCyUK2grWrJWbaGIEtaGMc8Zow0xlxtzefCWoAvsYotL8KAGZhTip09QaXCJ5Ziq0gi06sm+Z3zNasvn4h3Pl8d6mHVGOKMQAIevZLpHcnvue+Nsrp3bn8E3NqwM0E6irVn6vVvtC2kvsjUCq0049/CuokPIRGs00c0SCA4OZFqvZVeqjYBXS9YRlNeQG2QgZGNjU/9Ytd83yx31NxAbGxugBoHA5ORk5s2bx5VXXsnnn3/OXXfdxV133cXnn3/OlVdeydy5c0lOTj78jhoIfm2d+sCQ0Ltltd8aky1qZ8S2gVrDywwL1gfbQxYZVM78fm/8Hna7m7U/UEwpa9QmPpbfhzUOaGysU1tZR2UJkHK1Q+VfzJ7S1iil2DDlIAuf38ui5/ey/N0c3KWh2YM2jY8CVcSXchqr2Bi2/QJHqLZSNDFIC8zYUyhyOGg+72MJFN7teZqeorP5fK0KLYkLDARGzpRs6OyoQnunoWnF+ukdFBQuoDLAt5cqNAJVAUopfjPm84Dn36ylUkt1m9oVsXQymlFKsSGC2Ym/NLiNqDutz2ONUzjp5BOV365CKx3sjMDqs68iHZV/CaqicjJod95+WrzdjUUvZLHwub1s/SW69COtk8DBWUPDxQBz2T/5rQmN5gRmtBdRglvVfELdxsam9kgTKWYp/2Y7I9DGpt6pUe1pamoqr732Gq+++iq5ubkopWjevHmDLDM6HGrvfEaNHo2m6eiawiMFTt9fTfj0iZS3jEEp0DWF29fHkAJf4hrCp2MklcBh6eORAl345XsUGmAoQawDTunu4MYTYmo85vVyCy1oyn7LjbIfazp2Q6EJKWaZE3gzQEaIAfxPTQfgv8b/uMIRWtYVp8Vys+MPPOh5HonkDtcTzIj5D7rWOPXAgADRXeVqi9rzAahYJhx08dxH2eT/MzAwsPo/+7lqRt9G+d21qWShXBHWdRMgjWQ6WAw3opHg0mDwGob4gxzjtZOYb3jNEZardbxtfGH2WxcmwNNHdCONFPIpZK7MRCnVKL8DwYExgOY0JZ2UgOBpQyJZJJJIvJkJWEgJySRSRElI1lMyiV7tXRSz1BJSKgaFNZ3YzyHeMb7gee1vdXIMx4pd7GM3oZlyOpppEtNWNKwswGC6i45sUTsppZxYYgKM0AptjcBqMavYRfGel/DO+UtofTu6YxXXnvIXcjbE8yvbzb5nvdGFITdFx2emqvLBXlrlZE8eBZSpcuJFHM1FeoCGLMA+cmlPq1odq42NTc3oJjqxXx0im1wKVXFUapXa2Bwv1EyEzocQgubNmx/rsUQVxtcTmPpeASkpDeMEVarKWM82M2gWjLXUoqEghCCdVHJ9zogHOMT52ml8b8xAIlmoVuJRHhwi9GN8u341/zX+h0d5KBalfCCncIN2UV0fQp0R4L5VNgKUVwBfANmf5xIsh79rViHl+QbxTY7oFGDTQJhTRfnrWG1kHY7kyIgVMejoGBb9S+vN3qn6SD6XP5jZfwvkcjQEEsVitYoX3B9wp/Nas78mNMaLE9nGLkCwSm5kgN7wsqUPx34VOBkkEBzgIHkUBLgtNzSa0iSgJPgkMYxDFFCBC5dyEyO8zgKa0EglmXwKMSyfnlSSKafCDCopFJ8Y3/Ok464AHbJoJ5JRiBMHhu/Y2jSCQOCPzAIgntiAQGCBXRpcLT4uygd0vFcCClVyEun7c2i+IfQcsO7z3CgKBHY0lzfJ7QFtnURbM8gPXsOBwaIPzUU6wXNee9Q+2gs7EGhjE0101zoyz/BWZGxS26NapsDGprFT7frT3NxcbrrpJi677DLWrFlTm2OyOQJWqg0Rg4BOHA32YsjqbunBYKjezzzOMspZoFaE3S5GOHnF+TDb2cs6tYW/e54nV0VX+cuxZIfcW/kkxp8J5f0/xQ5MDPimCx2S28YQm9J4MyRtvMw0FkVsu1JrGCYJCUFh7H2q0jxgqNaPzNhvGS9OAmAHe5G+u0GFCqsvNlzvz2K1msVqFT+pWbU48vrjkMoPeO7PeWwjMhq0U3IrETgBqYRigVrOMrWW5SpQAsJqGOKnjHL+6/h3wLoCivjSmHbsB1uLZMrw12BxVDp+t6HhlgaDN2vET7D+W74sqOvhNEhKYlbhne+XgAMRs5nCtnm4UsorTwqA0KDV4MR6GmUoXUR7Uw86uHzQKZw0Jc18vkZ6NT+bh3EODqePaGNjU78EBPrt8mAbm3ql2oHAa6+9loyMDC644ALOPvvsetXQswmlKh28tqJlg735a6MF3sykqmTSqLzBe8vzGS7lZq7MxFCBundjtCFcpI0H4BAFPOZ5pfYHXA8opdhJZUagiF+JaPEQrRM38Pfmsdz1YTdG3NGaLmel0fnMNPpe0Zyrfu+Lpje+kkibSkpVGcvxnheUCnyv44nlTH1MfQyrxjQhMKCTFcYN8gRtkLmsWX7WrNljfs7WxprLPxgzj36AUUieRT8PMIOjDb1MroNoE/DcmukerPmYRqhmsQs32RwIKTl/x1JS3hCIZBQSaw0ENmCNQAjUiUsiAaclGHgQOxB4OMpVBT8m3Ido9hwkzkY0ex6Sf8KVUs7an6fR57JmdB6XStcJTTjh/raMfSJUhqG+iBdxtPOdqzarnSH3G379SIBFahUQqikNdiDQxiYasf5ub5aRte1tbGxqn2rXBS5btoxnnnmG3r17c9VVV3HgwAFatGhRm2OzqQGZEUqFAE4Vo+pwJF6c498BowJ5cCNIn2Cz5kRr2gN5cCNa0x6gx1a9E0Iv7paznpPFMFMn8Es5jQJ3Mb/J+YzXTuQD5zMBehP/cP4fP1TMoKfozA61l4Mqn6Yi7ZgdZzSQTyGlQQEPkTyd69O68aDT+96f8VzD04i0OToWy9V4pAOV8xiUjkbFbEa0uhfhOMhZ2sk4fWWU0U5rkcEuS2bfPvaH9PmL80Y+lt+xUW03M0kAOot2IX07am3oJ7qzWm1iiVpNtsqlZZibyIZM8PnAT0MuC4ZQiQurDt5cuZR7uN58Hkugzm48sYwUg8hS+5mkjWORXMEclYkTB4WqmBXGegbqgeY00YhSKuLEXxrJdBMdcOGmbQMPBFp14oooCdB4zFOF4TaxsfCq8TG60BCpXyNSvw5ou2LYGVzwSXgn+Wihu9aRXTKLAorYz0EyqDxHD6AHS1gNVDqPNhehGYHfGr9xp+PauhiujY1NNbFmBG5W2yN3tLGxqXWqHQicOHEi999/Px07dqR///52EDDK8GcIeJVgAukYlEVRF+jtTvT+7Xh6aFuYdZFoYXEJBlgqV3GaPor/eaab636RcwFYJFcyoOJcBmt9WCHXc75+GmdpJ3O5fo7XREDBNDmbK/SGURJZXXaFKX8EGKkNrNuB2EQVy9RaKD4TSscAAlxdUXnXIJo/x0OOW+p7eNWmg2jNQosEQLAgvJ/Bog8b1fYAPcGXjf9wnX4hFcIVEDQ6WxvLasNbUvajMZPrHY1LPzScMQY0/EBgsLmNUzloQTr7OcR8uRxDGWb2uzUgDKCjM0MtZJOxna1x05nouhmpJBW42Mh2TnVfxanGKD53vhDVGfTb1Z6QjE8/5VQwV3kzI1s38EBgBk1JIYlCiimnIqAtO8I5wKaSVz3/pZhS83kcseb/cbCIfufw7qIjvzEf8JYPWieFB2p9wPgKgAVqOS7lDlsavDCCdIyNjU3dIpUknyLSRSqdRFscOPDgsUuDbWzqmWqXBr/yyitcdtll9OjRg+nTpx9+A5s6o1iVskFtA0Aj9AbmRH1oXQ/pmBGcqbNSbWCM5j0e5XGSLtO5yDiXdrI1FxgTyJK5HKooZY+Ry6uuz/lj2aNM4DSUOwYp4bvyuUipKHcr3Ib3UeFRSKkocymklL6/3vX+PuXu0D6GpY/nMH1cHmsfafYpd3v7uHx9DN/YalJ6H2AU4qMdLWmNHaw/nvnJmAUqloCpARXDKDGQnlqXehtXTekV5HIbKQgwRKu8ufUHgQ5wiA6usZxccUVA33P0U8zl743fj9VQo4JyWRGxraFqxfoJdsLNFXnm70EBRaxRm822L2NeYpI2znzuLyfcSw4lqpQXnX+nj+hmZg6WUs5UOYN3jS9r+zCOikhlwQAVeLPvE4knWUSP5tuRIIQwM0eCS/x3kWXL01RBltpPVlDmtO673E8nNerd4iHIOdiX9eenh17Z5sbDcrWOFmEyAsErkWFjY1M/SCUZVXEJTSuGc7ZrMuDV+fT/Hm9WO5EqvL69jY1N7VPtjEBN0/jDH/5Qm2OxOUJWqg2mg1qwYYiO1iBmfyMRXBq8Xm2jp+hM3G83U/rb5eQKxRfKgUODtySg/ZF50gHCACXYi+B8oVBqBmhupkgnSVohHlmpla0AhwYeCU4N3LLyucD7kBH6GL5/txAgVWgfXQMpva+hVaOPLsBQ0CZVMPVPifRpdfjMlB1yT8i63WTTVosOB0Cbusel3CxSKyFpPRROAFd30PMRaZ8wQb+wvodXI7qJDiSRYGa3ZKnQ0mCAwZZAYFfRgQyaMldlIpHsJYcclWueT4aIPoxgALEihnlqGWvkJvpq3Wv/YOqALUTW3GnoGYHNgmQdsuR+xmhD+Eb+AnjLgwdoXhfo5iLddJwH6C26slp5s0C3qF0M0HqyMOYL7vQ8FRD8e8jzEhP1M2ghArPRowWrY3BPOrOBbebzQooAaCUaxyTQSG0QsTKGPSo7QAf3IPlsU7vpItrX4+iil3Cl48kkMVT0o6fWGSGiXx+4r+jOiWIobjwhhiE9RWd60YX1bAVgjrGUsfrwsPvJVXm0b0CO4DY2jQlNaBRSTBnlrFQb+EPF3Vygn8EQ0YdmNCGFRHJVfsRAvo2NTe1S7UCgTfSyRe4kmUSKKEGhUMUno8r7I+KX0NGdw8K39lGc40YIUFKhOzVaDkqk/zUtau2C0Ng9p1oagf4S4khkBN2MbVd72HzQRelvV3pX+JICPP74p/R9pFVlAM00SvC1eaQCREAJtX97twx8ripfImIf72uE72NY+shq9DF8fbILFQ9OLWfKjYfP6lgW5qI/haSwrpk2xwfL1FpcuBG6G9reAJ7m4DiEEG7GaEPqe3g1ormWHlDilkseLuUmJkjjcIDoiYaGRJJIPL/GfMD57ptN6YDlch3jda+7sCY0rnCcy+2eJwC4w/0kv8V80CBukA9HcPaMlYaQCVQV6UGBwJ1qD3/SLgO8moDr5baAdr9sQhop9NG6+Y3U2aS2M4CeOIWTyfrFvGt8aX52kojnK2Maf3YEZpFGA0opZsul5litQUDwZjUCtKJ5uM0bHOkilXlqWdi2OXIpXTQ7EBiOBXJ5yLpsDpCtDnCROLMeRlRz+mrdmKsyUaiQLOfmIt3McAT4Qc7kEsfZYfezQW2jPQ37vGdj05DpLjqyVe1CofhG/UK+LKIVzVmgvOepfApoEaa038bGpvaxA4GNgCVqFUWUkE4qB4uHoHIeBzyogssYf8MCZi/eHSgc6BMSLM/zMOKu2tEPdE+bDMVZIDTwp30LDUPJyr9JrdFv3FjlfqwC0QAGBhvlDmjg7peHQxEYIKyKzDClYg29BNDm6LA6qAohwel1T4zB2eAyhK0OkX6yyQ1xwE0UCfQUnVmntrBGbaZcVXClfp4ZCMxUaxnPSWb/q/ULeNH4iK1qF/NUJg97XuQx5521eix1wfIqSkeDS2sbGk1JC3i+l/30Fd0ZKQaQqdbyP/kbL6u/I4TAUAZ7VDbgPR9aBcqtukSDtN7cqV/DR8a3HKKAfRzg754XuFI/P8B4Khr4Uv7EUrUaHetElxNkDEIvMdc1lozA7kHmMFbmykyuZVLdDaYB8ZucH/BcIFAoEonnUn1CPY2qZqSJFPqLHqxUG1ipNpCvCgMmN/+sX8GfjUcAWKrWkK7CT3wulqsYp4+piyHb2NiEIfh3u0yVk6xVJjkUUYKNjU39UG2NQJvoZbvyloYeogBVNgQwAAfC8NBkUXKoe4jv+Y4ZBXU5zCMiuDQYYH/6am44xT9D7I2W6b5EHi0gocd/4D7zACED/1rwbxd+P4fvI46gj/+vCNOnSYLg0QlxoYMIw16yQ9Y19BJAm6NjtrE47Pq+oltIJl2004YMYqgcczqp7JR7w/adpI3jNDGKdqIlP8u5DBF9zbZlQc7qcSKWFxwPkEoyQ0Qf/mm8w4Pu5xu89tgiuSrs+pY0I04c3qk9mokXcQFuwAdVPprQSBdpuPFwgENs8rkQ7uMAHp9pSnvRukrNsYn6GRzC+3toICmhjM+MqbV8NNVDKYWhDApVMX91PwtgGuI4Sk5EbZ+G2vEL8sCdZmZ6a9E4MgKrDASqzIhtxzNKKdarrYHrfNdCl+oToi64XRX+7HWFCslyvNRxNg5fQNyNmzlG+M/DKrWhdgdpY2NTJbtV4D3KLpVFEgnm82JVGryJjY1NHVGvGYFPP/0033zzDRs2bCA+Pp4TTjiBZ555hh49eph9ysvLueeee/jss8+oqKjgzDPP5LXXXiMjI7IjnlKKhx9+mLfffpv8/HxGjx7N66+/Trdu3erisOqcbWo34HVFVPHLUIUTAQ9Kd+AcGYN7kStsRmCHsan1MNqakSQSiCeWMp/bXQxONqntvH7+xcw7+TI2aJvQ3PFsTv6OOFcTkmKg1A2xDoFUMLniQaaInxDuOM6KHcpPFZmomBImGhN4P/4JFOAxIM6pKK6AlDgoqoDEGCh3Cxy699/lMiDBqSiqgORYKHZBghMqPAJd8wb1KjyKxBhC+rgMgRBebcByd2ifeAd4fOXLDqEo80BKnMCpV69MsZRQMWw7EHj8YiiDuRHK6U7RRtXxaI4eTWh0FG3NAM8hCvhe/s4ytZZSVc5IbSCn6CMAb3bXE8ZrAPxHfstX+sukkkwBRSGBQIAz9NG8ph7hCs89AOxUe/nI+JZrHBfU0dEde4L1tPw0lnNCGinkkAtUZhKM0Ybwo5wFwGy5lB5a5wATpfaiFZ1FOzMzarPvs+RnpDaQ6/QLed/42lz3jvElN+qX1mu5uEu5ucvzFDoaaSQHaB4CGLl3gvIFRgsvhpT/Qez2RpMRWJUG4A61h91qH+3s7PcAdqssKnAFrEsgjlLKmaxfXE+jOjLGaEN51fgY8GaAnqWfbLYligRGiIHMU5noaLxrfBF2H7YrqY1N/ZIiEgPuQbPYTwKViQ5W6RebxsVKuYEMmlJAER1FW2JFDAfUIQqk10FaCWgaJPliU7fUa0bgrFmzuOWWW1i4cCG//vorbrebcePGUVJSmSZ811138f333/Pll18ya9YssrKymDSp6nKQf/7zn7z00ku88cYbLFq0iMTERM4880zKy8tr+5DqHI/ymDpIGhoiaToi4wFI/RrR8h5u+bEfJz3SjsE3t2TIn1sy+E8ZDL21Jee815URdzWMG8M2lnI2F26z1O+8xBFoMS5ILGC6NptmSRpxMRrpiRqJsYLkOMHNSeejxbgQiYUUOfNpnqihOT18F/c/NjjWkhQrSEsQxDk1miVpxDg0miZqxDk10hIESbGCxFhBkwRBrK9PrNPbJz7G2yc5ztsnPVEL2yc1XpASJ0iICd8nIVYjJc7XJ9a7rrpBwDwjPyThExq+FpjNkbNabQobHAY4Qxtdx6M5NnQOKg9+0/iMdz1f8pjxCue7/0SR8v5mnKmNoQ3eSaKf5Gz2kG2aiOzjQFijkUn6OP6t30c7WvKlnMadnifZESHjsCEQHCzy01jkAlpa5CLKqUApZToHQ2VZvP93EbxB0DgRSwfhlcLYpHaEZH4+7riTM7UxZlb2KrWRD4xvaukoDo9Uklc9H/Ou8SVvGZ+zSm7EjYd2VP4eKn+2ux/hPaZWjSQjMFEk0JbI5exzjKV1OJqGwdthXK/LqGCw6B1gqNQQGK0NNpetchd+LtfOQSAwkMxmSdh97FK2w7SNTX3ykvOhgOcKhdvy22UHAhsvZ7luoKPrFAa4zmOl9GZn/9PzFn3dE2jtGsNNrr8D2M7R9cgRBQKnT5/O3/72NyZPnsz1118f8KgJ06ZN49prr6VPnz4MGDCADz74gF27dpGZ6f3BLygo4N133+W5557j1FNPZciQIbz//vvMnz+fhQsXht2nUooXXniBBx98kPPPP5/+/fvz0UcfkZWVxbfffnskhxvV7FbZZpmQ/80USTPRmr1Eu8QdJDWJ46SH2nP2a10469UunP16V8a/1IWB12U0GGH8ZAINMzaobexXB5mgjzXXTTV+D7vtydowhoi+jBaDyaOQ/9NuIINmjBFDeMx4tTaHXScslKsCyib9NJbsH5uaM92YH/KdAegvejBc61cPIzp6Oot2Ac81NBJFAgqFC7epieUQDq5zeF2RJZL3PV8zWPQ2twvnpimE4BbnlZynnw5AGeXc7X6qtg6lVilXFWYZYDCN5ZzQVEsLeJ6vChkkepGA1xl0rlyKUoqdqjKY6z92f6lpMaVk+7IK/TQTTThPO9387+no3OF5gs+MH2rlOA7H/+R0/mN8S2faEUsMqSKZNmSQLtI4UQyll+iC1vxfIEoBSWraN4iYHUDj0QgE6K51DFnXSbRlkOhtukXbVPKDMQONwGs7haKL6FBPIzpyWoim9PCV9GeqtZQElRBeoo83z3eRdMZKKWcX+8K22djY1C6GMvjE8z1aULihnMrEHLs0uHGSrXJNyRXAlKzINCqrc35Ss+lbcTbvhpnAsqkbahwIfPTRRxk3bhzTp08nNzeXvLy8gMfRUFDg/cCkp3vdgzIzM3G73Zx++ulmn549e9K+fXsWLFgQdh/bt28nOzs7YJvU1FRGjBgRcZuKigoKCwsDHg0Ff1kwQAXugLYkcXjH2YZAiyDnYID5chnDRX+ak048ccxUi8PesAkhGK+dyDy1jHVqC4kiniSRwFyVyc9yDlvkzro4hFpjhViPK+h9h8Zz029Tc6YaM8PeFHUVHUgQ8fUwoqOnU1AgMI4YHtFvM5//YMw0l6/TL0RHJ4UkNqsdDBS9AGhFC9aqzRFf42HHrabb6hq1iTtcj+NRnmN4FLXPXpWDJyhLLAYnGlqjOSdYhcc1BJlyDU7hZKQ2AIC95LBD7SVL5Zh9/dmQAYYhMrA8GOA6fRLDRX/Aq8Pnws0WuZO1MvLnprZ4x/iCdWxhG7t5Sr+HgVov3nf+g9VqE3PUUnapfciExYhOZyE6n0qzppWlka1pRIFAi7ajnxx1kOVqHdPkHLJVbpitjl82sxMZZjKgr9YwpXFO9GX7tqcVvxuBCQApWrJZYlhVzt/yMLIQNjY2tY+GxpPG60gCM75KrIFA2yykUTIvKIvbf/29icprLwODLWoX7wQFAn8x5vK2+wsyjTWskOtrf7DHMTUOBL7xxht88MEHLFq0iG+//ZYpU6YEPI4UKSV33nkno0ePpm9fr8B7dnY2MTExpKWlBfTNyMggOzvUIMG/jb9Pdbd5+umnSU1NNR/t2rUL2y8a8RuFhGOIJROmIeMv9bMyRy5FFzrfOl+jr+hOESVMdv+NZzxvhaQYWzMHf1SzAnRyGvosxHq5Nez6xlIGaFMzclUeC1kRtu2GBqYPZSU4IzCPQnpqnU3B6WlyNobyBsDaiAwu1sZTShlfymkkEk8GzdjHfn6X4TPJAVJEEm85n+BK7Tx2sY835ee8YXxm7rchsJeckHX+iYIO1I5DfF3TVDQxlyWKBWoFQGB5sMpkgVzBQfJpR2t60QWAbpZA4Hq5LWTfmtD4h+Ne05FaQ+MJ4zVeMD6shSOJzFa5i+nSO3HZSbRlhNafBzzPM859nXlD5c/6EkKSIDTaWLIAW4Yx2WqohDMM8a/z4OHDeizfjjZKZRluwk9e9BENMxB4mTaBtrRkG7v5TIZO9vrL/asi0w4E2tjUC0KIsL9HharIXLZLgxsnwXIOa9VmilQJueSH9F2pNpAp1wBQqsq42f0wtxmPMdp9GY96Xq6L4R631DgQ6HK5OOGEE475QG655RbWrFnDZ599dsz3fTjuv/9+CgoKzMfu3bsPv1GUsF1FHqv1xqgh01aEagT5TzD9tB7mTPdw0Z+HPS9xqftO3KoyS26Q6G1mSMyQi7hQO9Msp/3I+JZyVUFDJdz7H0csLQjNorRp/EyTs8OWhrajFadoI+phRMeGTkEageDVeTtd8/4W5ZLHIrXSbDtRG2Zmxi1Wq83v+yK5EpcKzaD1c4Y+mhO1YTjQ6S968KjnZd4zvjqWh1KrbDZ2BDxvgTe7XiJpp0XWWmtIpBNocuV/38eK4ZwshjNE9OEXzxxWq00ANBWpJGregPFw0Z+J2un0El2YpmaH3f8J+iDa+iZS/EG3L42fyFMFYfvXBm8Zn5vLN2gXcZfnqZCMCofF660JqWapcyrJJIoEGgvdwgQC29IS4QuEvuv5ygzW58pDDK44n8EVE7nYdXtdDjMqmCpnRmzrLbrW3UCOIcO1Abh9kxn/k9NDMkCHiarlLuKJY4MKP2FqY2NT+7QKk6GeT2XlXbGyMwIbI3NloIbvOrmFFSpydt/bPsOnpzxvBExqz5JLGvR9erRT40Dg5MmT+eSTT47pIG699VamTp3KjBkzaNu28oavZcuWuFwu8vPzA/rn5OTQsmX4mxr/+pycwMyIqraJjY0lJSUl4NFQqCojMLicrqFinU1yoANeIfd8VUiMcPKa4xFedzzKQt8NoULylOdNcxshBGf73ObKqWCl2sAF2jjAa6rhd5tsiOxVoRlA7USrBqP/aHNssZbIWrlRvwRN1Ks31FHRMUzWxzq1hQn6KQB0owPzjEqn5LMt7pI/ypmM0YYAXv2/TLWmyte6xnEBrzgeZpXaSBElPOR5kQPq0LE4jFrHH/zys5/KcTeW0uBmloxAgDXSe8xDtX4sV+vIVGv5Uc0yA+L+9x6gj9aN+XIZ69VWfpPzI5aVTnYEZs+WU8EnxvfH8jAi8qXxE+8bX9OEFJw4KFIlZkmNdYLHGhwfLYawz2eE05iyASF8INCFm3HaGDQ0OorWrPH9f7LYzzq1lXVqCzPlojoeaf3zRQQ9y0Tiw55DGwIxwsnVutfF3YOHj4zAyqNTtJFVbl9GOb/K+VVOANnY2NQercOYV+WqfHPZzghsfBxSBebvsr9yZx8HIhp8OXFQJIv5l/tdPjSmkESCOdlXShmz5OK6GfhxSI3vDMvLy3nuuec4+eSTue2227j77rsDHjVBKcWtt97KlClT+P333+nUKVALZsiQITidTqZPn26u27hxI7t27WLUqFFh99mpUydatmwZsE1hYSGLFi2KuE1Dxq8RKAgN/LQVoSW1DRHrjY3/OBWKBXK5d50QXOe4kO+cb9CJtkyVM3naeIPZstJF7hztFHP5f8Zv3KRfSiuas0yt4zXPsQ1s1yVWh1Dlbo1ytacddlnw8Ui5rOBXOS9s22X6hDoezbElQcSb+n1+1qrNjBcn0paWbGYnH8vvzLZWormZKbJKbaSXJRsmnPtkMNc6JvEH7VzAW4Z8vft+KpTrWBxKrbJKbQi7Po0UUkRSHY+mdkgXaQHPs8nlgDpEjHBypjYGgBKLa7Y1EBgjnFyjTwK8QYU73U+QpfazS+0LKAGfpI0LyTx8x/NFrTvb7ZcHudn9MIUU05ymfON8BYdwUEo512gXMMKngwgEZCj21bqZx9yYjELAK3MRR2zAunxVyLnaKWgIZqul/ODLhLNOjJVQdtw5ES5Rq8Ou7y26NuiJoOv1i8xrv/c8X+OWlUG9gVqvw25fTsVhJ4BsbGxqh3C/STmWSTjbLKTxsUAuNydjrdI+c1R4d3c3Hr5Wv/B34wUOcIi+oju3alea7VPljNod8HFMja8MVq1axcCBA9E0jTVr1rB8+XLzsWLFihrt65ZbbuG///0vn3zyCcnJyWRnZ5OdnU1ZmfeCNjU1lRtuuIG7776bGTNmkJmZyXXXXceoUaMYObJyFrBnz56mPqEQgjvvvJMnnniC7777jtWrV3P11VfTunVrJk6cWNPDjWqUUmYgMJxzbJt6DATG3biRuLuKiLuzwPvXuuz/e+PGau0rwxIINJCMEUMYJHqzUK4M6He6fgJ3O64zn9/hfsIsER6rjeBUMZIRYgDT5BwGiJ6kimQA5qqlEbX2opmDKt/U/1J516B2fYna/SlZuX+o55HZ1Aez5ZIAIwU/icTTXmv42WDBGc5r5Waaa+m085VxblDb2Cp3me1nW7RBrQ511QkEAjztvIdOoi0niWH8Kudxput6cmR0GxNsi5Ah3pg0Q8N9xudLbzao9T33M9oSCITAoMK38jfGVFxG/4pzAspx40Qst+hXMk6MxomD1rRgG3v4oBb16JRSnO2eTH/RE4FgpD6Ak7ThpIgk2pBBb60r+aqynOqQRWfHeqEdHDBv6GhC4yb90oAJrqWs5jnP+2b5v98NfI+q1IGWSPZxoG4HW4+4lDsgA9hKnwZqFOKnk9aWq7WJnKqNIpsDvCkrJYS6ivYhLsnhqO5538bG5tjSKkxG4D72m8t2RmDjY7vcw0gxkGGiH0NEX3P9Khl63289e7fxlZGfqo3k745bzNjGj8YslKrKEsrmSKlxIHDGjBkRH7///nuN9vX6669TUFDA2LFjadWqlfn4/PPKC/Lnn3+ec845hwsvvJCTTjqJli1b8s03gRfjGzduNB2HAf7yl79w22238cc//pFhw4ZRXFzMtGnTiIuLq9H4gh3Koo1DFFBIMUCILlhT0ogXNTveaMUaCJRI5qpMlqt1YUt/rtcvYojoA3i1pF43PgW8N3ZttZYsUivJJY+v5M8BpiHvGF+E7Cva2aS8zktKaahD15vr1+UPJtdzfGVC2MAPaiY7yQpZ73fNbeh0Fu1oQToOdJqRborEn6NXZvv+YNHIOkcbC0An2rFF7STDV1Y5Xy6rlgFIhmjG9843WaxWAd5s5NGuy6LawexQGBFmaDxlwQBNgzICofIm/0ztRDTLZU0v0YXmIj2gbyetLWdoo02ZiSz2U04Fj3heDshSmOy4mPlqOW48ZLGfClz83fMCBy0lTceSlWoDa9Rm5qtlDBf9edPxOLEihjsc17A1bjp3OK5hs9oBeH/fKyxu8VY38NaNLCMQoIlIZTf7AFCeJnj238eWfbcgygYDsMxnBrEnSCpjlwo9HzZW1sktEdsaqlGIlRsdl/C7XEA5FTzqeYV9yhvkdQon7Tn8+c0OBNrY1A/hMgL9kzhgBwIbI0vVahaqFSxRqzlJG2auzyNUa7krHczlPeRwj349DzlvJUVL4hRtJEkk0F60Zp2K/Btnc+Q4Dt+l9qhOdDcuLo5XX32VV199tdr7EULw2GOP8dhjjx3V+P7peZuJjDuqfdQmVqMI60kV6jcb8FgTbHzRTXRgs9pJplpLiSoNEEbXhc7Ljr9zg+cB5qllrPCsZ5I+jraiJZP1S/jI+BbwBv6+i3mDBz0vUE4FXxg/8rh+JwlaPA2FTXKHb0mCVgrSW/rnEBCv2RqBxxNKqYj6gON85ZINncv1CUyRv+DB4CL9TF5wPgB4A34P8BzgLR+4nasB6Cu6c1rJBH47sIutsRsZ6R7HPrGMAk3yHhsYFd+TgnJFWjwUlEFyLJS5FZomcGhQ7oakuLY8V/IZ7zrfZ3HZLtwxifzR+JQHnDfRwZFBmRtS4gT5ZYrUOEFRhSIhBtwGSAmxDihxQWq8t09avKCoXBHnBI8BUkFcDBSXQ2oc5Jfj3U+5JC5GYEgwpCIhRlBUDqnxkF/m7VNcIYlxeL/nLo8iMVajorAXKq4IUZ6Eii0BVxxokjhnPxYqD0lxgoKyymNOioVyyzGXuSHZ3ycOCsohMQZchgIETp0aH7N3rL5jlt4+/mNO8b1GuGOOjxHe/0vQMedq6Uh3dzCcEFOKqEjm5/i9XGB4SI5NokPJOLZq20EYtJRjWZNoUFCuSI2DwnLv+3yd6+/cqSXxmfqWZRXbWBWbSX55Ck8kTuMPnstIjIEKTyrXeB7gZfEewh2Pii0htzyZ+xO/4TrP1SQ4weX72Y11QHFF6DHHOsBQvmN2+vt4jyclTlDiew+lgnfcq5FaZ0RFEmOTLmO+y2BAG52kWO97XKiKTUOQNFI46Av6JpFgTghC+OyLhs41+iQe97yKgUTlPArlAwGBUTYc0X4Sex05ZKvcEM3cXWofoxhUL2Oua36Wc8MaRUHDNQqxMlTrx7X6JD4wvqGIEp71vMNzzvsBaC7S2aH2Vrm9fwJIF3pdDNfGxsZHpCx1gUChbLOQRsgOS3WKVcdVhvmNiqcyacmBg8ccd5jPz9TG8IucywK1nBlyYYPPbo9GqhUInDRpEh988AEpKSlMmjSpyr7B2XoNmUy1hpVyAwO0nvU9lLBsl3voS3dSRRLz1LKAtsYUCIwRTmJwmmWwQ0RfNqudePCwSK7iVD1QLHqw3pcT5VDWG1spoYw7XU/yZcxLDBP9GCB6slJtYIlazS61j+u0SaxWm1ivtvKV/JmrtYn1cIRHhj87RAgg40HUgftBOXiopSRRa1LltjbHljxVQBOReviOtcQqtZE9ZIdtu0Q/q45HUzsM1fqZlxCfGN/zpOMuEkUC3UUnuoj2bFW7mCeXme/Fwh0GM179K8qjA4qFlgKEWwAswZOqaQH8BX8BwwrAm0scjRevr+PNDw+cCPgC+CIqx3skJADv+5a9x7oBxVjz+P5u9pwODA77Pvv1EicG7OdNFG8G/J/GAmN9nztvnw9QfFAr/8szgXEoBE+jeJoS2qYJFtyTREayZp7vwVsN4OcMbTQHVT6DRR/iiaMjoQ7bDZ1WojkjxSDmqUxwdQZfNicqFjytwJHPcrk2wGkQjq+MwIVyRci6rnSgrcigbyPICAR4wnEXc41Mmok0XjM+5jztNMbqw7lNv4p5MhMXHt6XX4fdtogSVqmNDBK963jUNjbHN+Emp9JJpZQyynHZGYGNkJXKWwIsEEwxfuEJx13sUlkBEix+tlEZNDTwUIGLDzzf8C/Pu7hwmxNcc2Umt3JV3RzAcUS1SoNTU1NNF9LU1NQqH42NaC4Z3aC2sYZNIUFAgLYivENyXeFZ8DTuWffh+vJsKj47lYpPT8P15dnmOves+/AseLra+7POGPQV3c3lYHtyP486bqc56SSTyGK1ij+5H8KF2ywH7i968G/Pu1zqmMBclclB8nnX+PIIj7Z+WGNxCBUJmWgdLkLrOJHrUtOr2MrmWPOW5zMGVpzHoiDNyrokkpCujkYnrXG4h6eKZDOoWUgxXxg/AV5TgIH0IpYYRomBLPPphb0y24U0/D9xR5sh2xAybG39lMaD9/O2N1/xeaZ3AmyTJRBoLa9pL1qzTe1imVrLPJVJs0Y6CXS53/Ao5cfKlc4dEOstF8pUa8NkBB4/gcD1YcqmtrCTzWonGVrjcJJuJppwl+NaFirvb+2dnidwKTeXOM7mxZi/86zzr2Zf6xnbiYMBoqdpMGdjY1N3hCsNPkQBui8XqcjOCGxUFCtviBe806fvGF/SV3Tjacc9nK+dFtrfMrGq8CY2LJVryGI/ueSZci9zZaatE1gLVCsj8P333w+7fDzwjfELzznuxylCzTjqG+uNQTD1nRHoWfMBFGeB0MDn3KeEBnvmeNftmQNJrXGMur9a+0smkQKKAGhnCXLOVeF1X5qIVD52/punjTeZIRfyoZyCy+3mIcctnKWdxE9yNqvURq5Vk+gnurNabWKRWskquYH+UZoBGky49z+R+JBSapvaY45cyt2ef/gcSJ/kFv0KrnScX6djUErxjfFL2LYMGscNoJ/J+sWmYcMXxo9M1E+ndcWYyhlDlclMuYjT9FG0SBJBbur+C4ijDeoF70cdg30eC8KN4Vgdc7RS38cV6bNwpJ+JwP0oYFnCXOA0ixREIIO1PnxtTDOf1/dvf21xlnYyACL9NYhbCUYqJM5CCG+g9LOCueza2wYZG49wJaKc5Swz4pkV40bXoMIjSIxVFJV7y9+LKxTxToHbUKDAqQvKPIqkWLx9Yv0l7QKP4T3DxDgEZW5FUqy3xD8pFkpdEKN7y/wNCXExgpIKRXJcYB+nNzEZj4J4p3ffKXGCwnJFUoyg1K28ffCW2SfE+PrECopcigSnwG3ACZ11nHrgZ0spxV6L+L6VwVqf2npL6oXr9Av50JjCYrWKDWobf3Y/zFvOJ9CERiLx6OgYGGhoGHivPSWSlWoD38rf+DNX1PMR2NgcXySLRJJICMn885/FSuyMwEaFVbYMYC2bmej+M/NjPueAqjS0slb6WVkm17JRbTOf+6/vc8ljo9pGT9GllkZ+fFKvGoENgQpczJSLOUMfXd9DCWGL2glU3nZYaVPPGYHHmlSRxB7fQZZTQUfRlh1qD4vlKiqUi1gRE7LNSfow9nGABXI5w0Q/PpVTmevK5Br9An5iNgB3ep7iJu1S7jH+AcA7xpe8pP09ZF/RiK5CE3o7ibZm9q5N7dNLdOEEbRCb5Q52qr1M9jzAVrWbBx0315kW0RT5K2vVZtqQEVIad6IYWidjqCuGiL6cqZ3IIVXAUrWGfFVEO1qxy2KSslZtBuChs+LYcUgyd0c5FaKcCuVB+W4MUQKnppOiUnBoXu06hyYwpELzfX8MqXDoXi0/hy7wSIWuCQplCSgNoSnKZAVoBgkyiWQ93ru9JkCBVApd829f+Rr+/SjlvYHXNK+GnO5rc2jegIImvIEgpRSa8GrNRRqrVIp8UYBHStAkSM37V3nbm4kmoAS68AYiqnvM/uORyhss0TSBYSh0HQxrH8s4NK2yzXs8vmO2HI+uBf4/rMfsH4euRT7mQ+RZjlUHzcAhY2mqp2AoZbqIyjD/O10TSKkQwhsm9h6z4JBRjFsrB6mToiUSq2JQeI+50CilXCsFqaFp4JSxVGhlOFWM15leU+b/XJdODM2NkBpKk8SpeJJI8P5ffMfhlgqn5ZgPqQIMVfm/UpobB048A6Yxr+9X3OVeRIEqpjdd2cBWEog3b6qGiD68pD4EQEOjZSML/vvJEE15Wr+H540P2J84z1yvo+HJbcWmV/8JZclYS+OXAGc0spvMk7ro/HxLIrpFBziHg7jD3FABDNIaVymsJjRedD7Ira7HKBLF/Fd+R4mrlLdiniRZJJJGMgfJDwgEOnFg4AqQjrCxsal9XMrNZPcDYbXhPHgA2yykobNfHaSFaGr+XSe3hu23Te1mt6qUMGpOesg9C8BMz2JWUekubNW+nSOX0lOzA4HHEjsQeBiKKeV74/eoCwQqpUzNoBicAQ6CAG1oXFkBTai8cNujchjNYFy46SBasVyuY6Q+MOx2l+pn040OXOS+DYDWojnPGe/RXXRkp8qii2hHskgigTha0pxsdSBiYDGaKFVlbGZnyPrOonGUgTYUmokm/OB8i0c8L/Nv4z3iiOUr+RPL3Wv5yPksKSLp8Ds5CopUCfe6nwEI+4M6UT+jVl+/rhFCMFobzEOeFwH4Uc5kiNaHXdIaCPSWyDVJEEy5MRFI5A3Pp9zpeRInOnHE4sTBMK0/a+QmBoietBEZ9NN6cJPjssOOQalkhBD8n/sfvGL8FwAHCSyM/b5es7Halp9DLnkh6+OJY2/skkY1QTDOdQez5ZKAdRoONsYuCHDQrQlTjWVc7L6d7qIj2SqXz2NeYYw2BICtMp8+rvPoTRecOLlQP5M3jc8YIHoyXS2gAhdppJBPoe/zFUMhRWgIrtAm8Yucy0CtF0vkarqJjnwd8zJpIgWANXITQ12TEEArWtJDdGK6WkA88ZRQxm68RgflVLARr1O8/8YplWQ6i3ZmSWxLmkVl9cKxoFzqrNt/KU3LLiAn6RVI/QwhII44ipePh/KEw++kWkRLhm94Zm81WLVXMqhd5UTTWrk5Yv8honFlBII3uPmQ8xYmuW8FIIsDnOy6gq+c3u+V19m78uYxhhjKcWFg8LOcy2X+MnMbG5taxYmDr+XPGEGGlgDluABw42kQ9102oXxu/MjN7of5P/0GnjXe4VnHX1mnwv8ebVd7Aq5RW1uSF+KJpYwKAKbye9jAMcAcmcmNXHqMj+L4ploagcc70+Sc+h5CCFnsN28G3GFOsO0aWUZgM1Gpe7dPHeBkfRhZ5LBArWC2WlLFljBY78Pc2M84TzuNlWojpZTjVt6ZqJ/kbF4zPmaiOINt7OY7+Tt3u5+iS/lpvOj5kFJVVqvHdaQcCHPDD9DJDgTWOU7h5Enn3bzoeJBBoheb1U6myTn80f0gW+WuWn3t141PyPKVhIkwN69naCfU6uvXBxO0sebyVDkzJONlp9obojnzJ8flvKg/SApJFFOKRNGLLmSxn1lqCe/IL7nX80y1tGr8AbV/Oe8zNUeLKeVa118pVNU1IDn25PukE4JpJ1o1qiAgQFPSQtb5zaOOlPHaibzrfIpNagcFFPEv9zvm+b+L1p6/6Tezjq2sZAOHyGdr3HS+iX2V/bELuVn/AzOd/+VG/RKWxkxhf9wCPne+wLOOv9BatGAvOayTW9jPQeapTD41ppqv+45Fm3Y/B5muFpBEIitiv6OH6ATAerWVzSp04meg1gsPBjkcBBpvWTDAI/vL+U++m7UVAnXwNigbAXjLyrSUQ6DCZWArqqedeaz61D6agObJgd/npXJ1xP6NLSPQz5n6iXznfIMztNEsUitZp7bwH+N/pJEMBF4XV/gCDgA/GDPreqg2NsctQghSOfyEuJ0V2LCQSvKo+2Uecb9EKWU8ZrxCGeU843mLJUb436NNxg5TOxAgSVRO3nWi8t41XBDQf38zX4Z6ItgcHXYgsBrsZh8FKvxNVn1h1QuS/nI3II5YThLDGl1GYIYlEHiAg4z2ZWqAV0D0cLQWLfjQ+Qzna6eTShIu3Hh8F4or1Hp6ap3Nvl/In9hLDs963uEy913H8CiOHQdV+ECgnRFYf9zkuIy/O26lCSmcKIbyrfyNMa7LmGNUBqrzVAHFqpQstR+PLxh9pKyTW3jM8yrd6Uhn2gWkzwM40EnSEo/qNaKR3qIrHYXXGXWOXEoPOoX0WRdGOP8m52Wco58CQAFFzFZLaEMGzfGaK7hwM13Or9FYHnPcySgGMUIMYI5ayskVV9R68DcS/jKbYNqLVnU8ktqnj+hGpzDuuJHMo6qDQzg4SzuJMWIIaaSwQW3jNvfjZvuV+nnEEQvAS8Z/mGEsBCBWxPC882/01DvzsvMhumjtAThfP51bHVeRIpJoQ0aAgdc7xpcopShRpXxifA94f7v9ejlnaCfQTrQyjbFcuAN+5/0MEX3YxwHzu1/fJmG1yQ530O2Bu/JzHTN0Goz+HNL2Qlo2MamHIG0fpGbTIs1D+yaCtql4/6b5/wraN/E+UtJKzP6kZaOn5pLepNT3fB9aWg7xqQW0byJokxa4n3aW/bRLC36NoD5p4cZR2aedbz9t06B9GrQL6tszQ+Ojq+JpmxZ46b5IhTeqaktLWojGqxl8mj6K5xz3+87j6UyTs3FbzoOJPpO5ClxmMOIXOddbzm9jY1MnpIrkw/axDUMaDsWqlOvc9/G08SZuPKSSRC/RhRicxIlYMlkbdjvrdXkyCTzhvJOXHQ9xu341F1iql3RLaMofAFQoOtOOZJFIviqspSM7PrFLg6ugJc3IIQ+F4i3jc+51TK7vIZlsiWAUUk4FW9UuErQjK4+KVlpR6TqVq/LoLNrRiuamBqBHeXCIqj/O8SKOD5z/4CL3bfwgZwa0bVDbcKDjwaCIEgSCXPKYKRdRpEpIFtEVUMmNEAjsJEJvjm3qjlP1kcwVn5ml6J1FO85238i/1H2coo1gkvtWutKeLeyik2jLf5zPmiWCNUEpxe3uJ/DgYSPb6Se6hySsNKdxukcLIZigncyrxsd48HDI4qDqZ63czAhtQMj6Jx13873xOwkkoCF4P+YfVCgX57pvAmCqMbNG5dTpIpW3Yh7nJNcfAG+p+Imuy/nE+Txj9eFHeIQ1Z58MbxTQlQ70FJ3DtjVkNKGxnT3mcycO+orupm7ukdJEpPKt8zXau05mB3spkiUYykAXOp21dtzrmMzjnlfpK7rxB/c9fMbznHyY9/kOxzXc4bgGgLEVV7JQrWCt2sxCtYIZxiI6i3bsVvvoJbqY5ld+g4feWle+lj8HHjvCnDEfrPVhj0VzpzFnBF6a6uT7Im+QxyHceBLmmjnQbr0c7dyX4NyXAGhLW3b4Ph/N6Mx1+oWM0AcwUhsYsl+3ctO94nyKOWCuU4CLeNqTyh68/1+Jg3mxv5Ehok+Dcb0Kr8k0pJEZhYSjm9aR+x03cavnMQ6oQwwQlWZv5RbJnBictCGD3qIra9RmBonGmSlpYxNtpHL4QKBtGNIw2C73cLH7NnR0NDSy2M9Ljge5SBvPKNclpmRZOLZROUneTrRmiNaXIVpfwGsQ8qTxOgDJJJFPIRoa3enABp8kyjZ2g4IclXtE90024TmijMAlS5bwz3/+k//7v//j7rvvDng0Jk7ShpnL//P8Vo8jCaUqx+DuWmiGTEPHeoOTRyFCCFO/qYgSVqmNkTYNQAjBy86HSMYb2PPPNsyWSwLcdkeLwcCRZQnVBQc4FHa9nRFY/3TR2jMr5mOu1M5jg9qOGw9PeF5jtOsytqidTFNz2KJ28pucz0/GbAwVWtp/OL6Rv7BKbQC87/khFRoMGyh6HfWxRCsTtFNotq4VfT8dztxdK80MQT9rI2iUNBfpPOv4K7kcIlOt5U73k4wSA0nCW6IwTdb8/eimdWRuzGdM1E5njlrKIQp4xPMib3k+O7KDOwKmGeHlK7awMyoDF0dLK5oHPE8kgeVqHV/Jn8N+F2pCopbAmdqJABwkn4WWbKt79Ot50nE3q9RG8ijgTc9nZKnwQdhw3Oi4xFx+zv0B/zTeZoVajweP15DFhz9I0Ud0DdlHM18GK8Bg0Ye9x0kgcH6pYQb+PMqJcHU32ySKIaKv+XyHJUi8gW381XiWj4xvw+73FznPlNoYLvqb60spw4HOSOGdUHDj4SPjW3JULje7H6ZQFvGbUf/XBlJJdqt9Ydsam2NwJLqIDuayNW+0Pz3M5UMUsJccflXzWChX1OXwbGyOa6qTEWiXBjcMfpKzWKM2s1Jt4FQxkv85X2ey4xIWyOUBk7PhyKMyk6+76BjQ1s3yPN/Xr6foTC8t9BooW+Ue+QHYhFDjQOBTTz3FiBEjeP/991m6dCnLly83HytWrKiFIdYf1lr2VWwkJ4o+fFUFArtZLooaC+2oLHkqV15B0TFapSNqdcqD/bQWLfirfiODRG8c6DQhlSKKTaFSgFai8kZzahRqynjFsAPR0GgvWtf9YGxCSBFJvOl8nD/pl9GEFC7SxlNECT3pTCfakkQC3UVHrvfcz69y3uF3aCFfFXK3+ymcOBglBvJX7Y9hjUKsWnqNjbbTu3LT8IeYeP0NtB54MkO2Dg5oXxumNNjP5fo53gxKvKUKb8svOEPzmkHlkndEN4ldtPa86Xyc8dqJdKMDq9RGbvc8wb8876JU7WuLfSsjT1Q1xixh6/kZIMU3seM1Azh6Td+z9ZPN5R+MGeZynIhlsn4xp4qRNCedmWoRd7qfqPZ+J2njmKSNo5voyPdqOuW+35wCiplPpfaNmRFI6EXwfg7RjQ7co19PJ9HWNAqBxh0I3BNcGuxpEdAeTi6jPa3Nyb6fjFlIFVpe/brxCakkMUYM4QH9T/xZv4KnHfcQTxwPO2/jPec/zL5ve75gTMXlvG98TXfXOM5x/5E5R1GOfizIYj9a0KV8a1owXPRnmOhXT6OqW1pZJjusEgkTLN9ja2l9pIkiGxubY091NALt0uDo5xdjLi96PqIlzWlFC553/o0z9NEopZinwmv3OXCE/D4B5jW3n2SRyEfOf3KtNgmAy7VzeMJxJ20IlTvJIXpiMY2BGpcGv/jii7z33ntce+21tTCc6GKGXGQuu3CzXK5jvH5SPY6okk1qe8S24Eh7Y6CdaGMu+2eOxgToBC7ldq6u9v5ucVzJvyrew42HvKDSwgTiOCQLSCKBYkrNLCFdhBMjrx8OqNCMwLa0JKaROkY2RHSh86Tzbm53XM1nxg+0kRlcoZ/LzY4r+Nb4lcmeBwB42/iiRueVxzyvmOYAGaJZxOzQL+RPPF3+Jrc7rjZLExsL6z46BMp7g+8siSHl2zZ0u7sD29mLB0+VLpq60HnR+SCjXZfRX/RgjlzK2dpYFsgVtBTNeMn4iNH6kIjbRyJVJPO18xWe9LzOU8YbNCGVWcZimpPONY4LjvhYq8MKtc5cduAglSQOkg80zizhViIwCOSwXMr8YMzgcv2co9r/eO0kNDQkkh/kTJ7iHrMtVSQzxfkq3V1ncoBD/CBnsVflVCsIFy/iOFEbyjeeX0LaBN6SVB2dya6/kSwS2SLDlzpvZidtRUuEEEGBwMarEfin9Fh+KPKGeVo5IDtxZkB7FvsZLHqjgDVqE248lFDKaWIUv6n57OMAy9RahlqCY1vlLn7zZfyvVZvJVGtZJFdwlfNh/hB7rplNe7p2AjtVFt1FR2bJxUClOc8d7idYFPNlvbk1b1O7TW1J8FY5ZLGfLLWfAVrjzQq3Yj0fWI1B+tIdsbs3xjd/gcJ0QICQvCdj+M5RiMdQODSBRyp0TaCUV3ZD08CQWNpAKtCEAAUyoA94JDh0gWEoNM37uyR923mC+0jl3Q9g+PoYEstfgVQKIbwhbEOqyu01gRAw+YQYHjwzttGZQNk0TlKrUcZplwZHP1vUTnayF4Dn9b/RTetIvirkHNcf2acOhN3Gei1q5URLIo+fS/Sz2acO0EZmMFDrxdn6WLaoXQTLI+eog0d9LDaV1DgjUNM0Ro8effiOjYBiStEsTpyZck09jqYSl3KzU2VFbO8u6r80WGs7Bq3DaZDcFhIyIDEDktua67QOp6G1HVPt/bXSKmd8C/E6c/YSXUgnFYAlcg2GrH5JX7yI40r9vLBtpZQznQUMEd6sjHwKmWrJCokGdsksVEVXVOG5KJdXnL6T1vgyfxoDGaIZdziuYWvcdO513kiSSOAyfYJp6POTnB2xtCuYPFnATN+NaALxPOv8K+9aXEetGMpgLzn16mRbW6R3j0P4AoGa1NjUZQOb2WlmgxzgENtl5DKFIVpfLtMmsEpt5Ec5C10JWovmrFDr+Z+czkxj8RGNSxc6Dzlv5Z+Ov1BKGb+qeTzgee6oy1UPR67FRdyDJ+DC63jICCyimCZ4bzZ+kfNwHaUZQDPRhJFiIAA71F42BwXkYrVYbtAvArxZiB8Y31R733/ULw1xPR4i+pjZbgYGK9UGPpc/hohu+2fWB4pe/FG/FCAgENiYzUJOS3KwrlsyUzsksKprCskOV0C7CzfL1DrO10/jAm0c4L1WsFZ2/GDMCtjmfeNrc7mAYh4zXiVTreVi1+2MqriE59zvs0lu5yPns6yK+Z6BohfFlHICg00tuj0qmw+MKbV12IdlsxE4Kew3joknjuEVF/Ki58P6GFadkkISCXh1sUt8Tt8AhaIE7eOnYV9nKEmHkiZQ3AxPaQrZhYrcEsgu8v7NKVLsL1YcKIGcIoLa4ECxt09OSB/f30L/ekVOkXc5O1yf4so+uZb9VP719tlv6ZNtGc++QsXj0yqYvunozMZsbOqKamUEYmcERjvb1G5zuY/eDYBHPC+zVK0JW5UE0JNQjWoHOl0jVC7675X8yQvhrl+jqTqzMVDjQOBdd93Fq6++WhtjiToc6AF6I/VdAuJnr8ohg6akEX6WpVsUZATGnPUuMZO+Je6GtcTdtIW4P24h7oa15rqYSd8Sc9a71d5fgog3S3xcvhlfTWhcrV9AX9GNbA6wjHVV7SKEyfrFVbY7ieE87TQEgmeMt45Iy622WF4aj9rzHurAfag9H9KxYuxxUwbUGHAIB9c5LgS8JUvve74+zBZe3pZfsFvto7voyM365aSopLC6HBoaaVoKbcggRRz+IqyhccJf2zLiztbkj8zm16e/ZN55lYH6JqSioR22RPRmxx/M5fflN0zWK/Xb7vA8jku6wm1WLW53XM25mtehOJc8bnM/VmslwvvUAYwwjrIATUihiUitldetT5rRxMwCjCWGclxmqUkhxcfkt/oy/WyGiL4IBD8GmUsBXOe40AzMveX5jBJZvYyGEsooxRus0NAQCDJVZcAvhSS6iPbm750VHY0LtDN40fmgmaHuNwsRiBDtxMZGxxiNcUlOUnUR0Q13sOjLbY6ruFO7BgeOgJKlH6T3PLFWbqZAFvGe8RXg/b9aS0f3kE0W+3nKeIOzXJNJIREhhOkAfb7jNF53PsooMQgnDu7zPBtg2lKXfC/DT1ImEt9oJ4KCEUKYkwPWgEIBRVDcBNDx5txav1O1L9lQm+QUNezx2xw/VMssxBLAt4lOtqvKe43Ooh0r5HreMj6vcpuztJND1rWjFZqoXvipE2ECgdgZgceSGgcC/+///o+NGzfSpUsXzj33XCZNmhTwaEx4CAz8LFGr62kkgeznIPs4YApqWoklhvaiVT2MqvaJJQbwikFXKO9NenfRkTVqMwpV46y9nloXxoihAe6qCcST4pu9mqOWsMln9rBMrYuYeVUf7CmuFEZH6Wwr6dooAz6Nmev0C4kjlhFiAOvUlmoFiubKTIooYZPawfX6RbwhPw3b7yrtfL6OeSVgZq0x4YjVOOO5TgyeG8PmO5fQTetotuVRgETytvFFlf/T4aI//YVXTH6xWsUg0ZsRYgAZNCOFJF40PjqqMT7j/AtJJNCX7nwnp3OD+2+mvumxZLGxImJbY8wGBO8kUEu8WeIVuCiihCGiD21pxUgxkKny97DbZZZ56L+5iHYbCnkvr+pA78nacDLVGsqpCPvb0k604iztJHrRhTIqONt9Y7Vmqj8zppp6tAJhZnAlkUA/0Z2vYl7ml9j3fYEsPSAgKJFcop8d4IjtzwjMoOlxIw1RpEpAeSdr/UY/AL1FV1YbG/iH502+lb9RRjkpJNKSZgwSvekk2tKy/ASGuC5ggOtcJIruohNtI1wzFVPCXnKY5ptUsGYrDNb60E/rzkHyKaGMv7qfrZNjD2aRWhV2fVOR1mgngsLRCm95sD/IDpCnCvjrGTH1NaRao3sLjXP6HB/fdZuGj9UsJNGXuRuMbRYS/fgDgbHE0JoW/GDM5HQxKqByMpjBWh/iiQ1ZV11aaqGTm3ZG4LGlxhqBt99+OzNmzOCUU06hadOmjV6jYiQDWIjXNbCEMrLkflprLQ6zVe2yv4r6+C6ifVRp2R1LEogzxdX3qGy6iPacrY/Frw39g5zBo9xeo31OiXmVaXI2V7nvBbwlV4O0XrxqfIxAcIE2jqeNNwCvM+dl+jlRcWHtdm4GzvA90xHO7XQWZ9XnkI5bClQRM+RCJupnHL6zhTYigxPEYH5XC0B5da36iR4R+3uUhwVyOeB1Te0s2vGNEao1BtBBaxN2fWPjIm08Bx353Ot5JqRtrdrMQrWCUWJQ2G2FEEzWL+Z2zxNoaNzieYRnHfdxvvtmlqjVrDW2cKljwhFPrLQRGfzsfI9J7ltx42G6nM8l7jt40/l4SGnr0fCtnB6xrTHqA/ppLVoEZGF1oA2llLJQrWCNsYnHHHeSLBIDtrlmTxlbXN7cr5uzyjgjyUE7Z/j50O6iE11FB7aoncxXyzmkCkgPyq583/EPLnTfynq1lWVqLe96vuIux7XEi7iI455tyVY0fJONY8UI/u28jz5aN7NtlDaI+XIFi1gBwKnaSP7muDlAG9et3OzDq83TmI1CrCilONN1Hdvwlin5byCHi378z/kmZ7qvY5XaCMBpYhTT1QIKKeF0MZpkEswJ1Gyf4PhQ1ZflrAe8WpNWswk/7xhfcI5+Ssj6Rx23M8X4lQMcYoVczyq5kf5a5HN4bRCsceznOcffOE0fVadjqU9aieYhSX4FFPHvM5P4vOctbK7Y79WVdbgQ7gRuT5jE+e6JpMYJiioUcU6vRp8hFbEOQYkLUuOhoAxS4gRF5ZI4p0Aq8EhFfIyguDywT3GFxKl7Q/cuQ5EUKygsh7R4yC+D5DgorVA4dIGmQYUbXx9l7ic5FsrdCqEJHBqUB/UpLIfBbXXiYxr3vZdN48GaEZhKCiWEZv/ZZiHRjVLKDAR2FG3wYPCC8QFFlIStXvDTQWtNdzqxkg3mumCjkKrwy39ZsQOBx5YaBwI//PBDvv76ayZMmFAb44k6rnCcx2LPKrNE+BnPW7wY82C9jml/GKMIP43RKMRPCkkc8l30bpY76KK1p6VoxnDRn8VqFWvUZnbIvXSsQRAkWSQy2nJjlaVyeEH7Gwvkcraq3cyVS7lSO5/lai0/qll8bHwXUFJYXxipXyBkLKq8PyJhISRNp5O4sb6HddzxlTGNe9xPc4A8FogvGKD1rNH25+qn8LtnAQBT5Uz6VXETuUptNMuexmhDOKjyWKk2hO3bmM8DVmKEk2v0C/jNmM8ctYRSix4YeF0+R8WEDwQCXKafw26VzafGVJapdTzoeZ4/iHN4S31OKWX81fVPPo19/ojHN0Tvy/P8jVvdj5ImUvhFzuU019WsiPnumGRvSSX5Rc6N2N6xkWYEQuiNf5bYzyR9HO8YX1JMKZ8ZU7nRcWnANocMZRaAKqDQUBDhbRBCcI42lheMD0034mATkhQtiWec9zLR9WdSRTKPGa/gwcNDzlvD7nOr3MVXchodactB8szv87+cfzWDgEop3jO+4jbP40gkY8RQCijkNcejIb9t2eSaGYXHSyBQCMGtjqu43n2/uS6ReC7Ux9NES2GsNoLVxiYUigVqOQnEUUo50+Rs7tauMzP+73VM5m3PF1zqOJvfPF7DkEjC5j/LuWw1dtFFbx+wvolI5SHHrbxjfMF6tZWnPK/zWcwLtXbswcwK0jK1ZpgO1nrX2TiigdYidII+X3kNXW5tM5q7PE8FtB3UOjAm5qIavEJ1Jtgb5yS8jc3RkGpJnrBmcFuxzUKim2xyTb3dTqIts+US8/pFVSGz0E604mR9OCuNynsV62Tm4dCEhhMHbssEnR0IPLbUuDQ4PT2dLl261MZYopIdai9DRGUZZjitoLrmQBX18dGgDwjg+moCFR8Oo/y1tpS/nOF9vNbWXFfx4TBcX9UsmGzNxthKpWjp2XqlBsGRvD+tRQtGM5hRYhDxIo5WWguKKKWAIuar5VynX8hatQXgsOWGdYFHeZDCg0h/H631XYi0zxGicWf/RCvb1G5yOIhEcof7caQKr9UWibP1sebyj8bMKvvOlZnm8hhtKE8bb0bse7wEAgFSRBJfOl8kicrsr1hiGC76U0ixKSMQadtz9VMpoRQNjVSRzC6RRQZN6UM3VrKBn42qtQYPxyR9HD863zE1cAaKXiE3pUfKTLk4bODCT2M+J7QMyqrcpnYH6DyGO1c/2iLWnLuelOygd2zVl0DW7+cPEaQnBmt9+Mb5ijlb/m/jPbbKXWH7/ii9ZhU72EMqyQwQvRglBtFX6w5AhXJxk+fv3OJ5lEHCG8hpSiq/Oz8KO8G1Sm6gv+jBGDEkYuZrY+Ry7RyGUamJ20t0MSUQ/un8C3/SLyeVZEaLIbTDm9GbSx4jHQPZH7eQrbHTudcxmczYKXxj/EJ/0YNedKHAZ0TWlDRiiaGzaEci8QwQPXnCeC3sWK7VL2C/OogLN9/LGWSp/bV89JVEMgLpJNo2Sm3QqmgpmoWs82d/XqKfHdK2zndNZ2NjU7ukWvTsEwifLW+bhUQ3VqOQzqIdP1TjXjuRBGKEk7MtOoEpJNX4ujQuqLR4P4eiSrO/oVPjQOAjjzzCww8/TGnp8RG936R2cKfjWvP5brKrdKOsCw5UlRGo1b9jMIDM24I6tAFcReAp9T5cReY6dWgDMq9mF2LNRKWW306111w+R6ss2Vksw+vlHI6T9OEsUMtZr7byH+NbztHGAt7SrZ3sNW+y1qktLFDLj+g1jhXhSsPTfKYAxdkuFvxrLys/yEF6bDHp2uZO/VrTpXub2sPNnofxqOq7+XUQreknvEGAJWo1+9SBiH2tBgijxWA+NaZG7BvJkauxEqPFmC6u4A0ELlarmCpnsMxixBCO4Vp/5jg/pQ0tmCZnM03O4Q/aeaxlM9vUbu7yPHXU2n4D9V7MjfmU5qTzjfyF94yv2CH3Hn7Dw3A43dJOjTgQGFxevV3tYaDWyzRNylV5LFVrAvrcmB7L5m7JZHZJ4tN23syEqi4oTxCDAtyI5xqZYfsN1ftxh3414M3Kusx9V4gT+H+N/zHFUsq/h2xWqvWmaVWOyuUC1y3MMbzf841qG4/ot/FpzPMka6FyFD8VuXk2183KcjdzVSatteMjIxC8WYF3Oa4zn29SO3jP8xWHZD7veL7kHu163Hj4Vc1j7GdcugABAABJREFUF1lmvx99rsH+kvGFcgU/qdlmtrW/LLg9rfFgsE3tpoQyVqj1fCqnMl8uIxincHKN7tXHNjD4sA4dhNeoTQHP/UHuIaL6GkyNhVYRMgLf9XzFU57XSQsyLNigtuIyjtwQysbGpnpYMwIjyYmVqOMjptBQ2W4JBHakLT9ESFzQLWGlvqIrAEO0vmb58HCtf7WNQvwkEyjxIpHkklejfdhEpsaBwJdeeomffvqJjIwM+vXrx+DBgwMejY1Najvni9NoRhNz3YOu59gkt9fbmCKVBrchg15hrLobC62pvNDLUpVW5X1EN87RTqEZTfha/nxELnlX6ueZy+8YXzJeO8l8/qMxk8mOSofhtz1f1Hj/x5I1anPIus6iLa4Sg3eHreT3v+7g++u2MO3WrfUwuuOLGOHkRceDXK9fSB4FfGhM4QH3c7iVu9r7mGAJZH/nCa/3JpVkni8jMJ1UDqhDZpl8MO1oRYIIL8jcmBmnjzGXC6k8B1gzKSPRVe/Ak867zeffyF84Ae/vmTcY+ORRj6+l1pxbHFcA3lIKv2PpkZKtcvlW/lZln85aIw4EEnjj75+x/rN+BYNFb/ZxIKyjXfsYjW3OGfRznUN6xTA+kZED6g7h4G3Hk5yjjaWQYsa7r+dzzw8cUgWslhvNfoYyuFefzFXa+bQXrVitNnJ6xTUs8hm5zJWZTHY/wPygSaQmpDBJH8dKYz1nuSbzu1qABw8tacZrzke4z3lT2IvmD/JcnL+rlPm5w1B730V3dWFcDXR3GgOjtIGmSHkhxfzZ8wjtXSdzq+dRflKzuUg/E4AyKsybkKkWh91yWc49nqfN5wNFL3N5A9tM/UYrN7keolCGXl9c57jQfI3XPZ9QFKbPsUZKyS4Cg80KbxCzJmLsjQWrY7buK9HdpfZyi+cRXjU+DilJLMfFHA7/22BjY3N0WDUC44kLCewAFKpiimQxCy3mZ1LJGk2s29Qe22RlIFCiAibYrEhLmXC87z4kWSQyRPSlBU1ZK0PvXw+H1WzGj10efOyocSBw4sSJ3HPPPfzf//0fF110Eeeff37Ao7GxTe0GAT1FZYDta35hnOs6/ux+pMqsnNriAOEDgXvJoYfWeAOB7URLcznbkhUnhKC9aEUued4sADmvxvvuorXnVG0k4H3PXbhMkdKf5VzOEafQihacIAaxRm3moMo/uoM5ClbJUF24feoAJy29nqI9LvzVqRu+sS3W64JT9BGM0YYC0IJ05qpM/mm8U+3tz9HH0psuDBX9eFV+HDaIOE8uI0M0Y4wYwnniNP7meS7i/rppx1c2oB9/ZmYw1QkEAlysncXJYjgdaE1n0Y7T9VE4cXCCGMz7xjfc5n4Ml/RmkBypPMA1+iQcPmnej4wpNQoYBzPNmE0PAo+5GU3MMgoHDtrSeLPEgjXBtqs9KKU4Tz+VrWo3CsVXxjTyVWHItgLBFrWTMsrZazEcCcdp+ihTe3KkGMg1nr/Sq2I857hu4lH3K7QrP4keFWfyoZzCfY6bcPmyylqIppzhvo73XV9zh/uJsPu+Uj+facYcTnFfjRMHGhoGkq+dr4QtZ/TzXZEbb9hHAxVDp/KJx1UpqEu5udJ9b4gykccXvHvI8wIXaePN9ckkMEoMQkNjlU+r6AX5IU7loKvowHD6s0KtMwNIZZSH3KzqaOwhm1PdV7Hd2B3Q1p5WnK2dzAliMEUUc7r72pCM0GONVXzdj/LdoLUXrWv1taMR6/mgk2jLTfpl9BHd6IRXJzWZ0Kza2XJJnY3PxuZ4xRrIkciwZcAz1CKGuy5irPtKxldcb/6uPm98UIcjtYmEX/oE4Dc5LyAmAtASrzSDQtGUNFJIYovcyV3up3yVeor9HCSb3BqX9TYlLWRdThWmqTY1o8ZmIQ8//HBtjCNq0dDYoLbxpuNx+rgrL8yzyeU94yt2qr0hAuK1TaRIeFtahrgkNiaswvcHg9KCJ2in8JrxCQBTjRlc6MsGqAmT9Uv4XS4kjlimGXM4UzuRT+VU4ohhuVrLJfpZvGh4NXk+Nr7jdsfVR3E0R84GFZqNqqOzsesGJiQZaGXem5k2I0JnUWxqhz/o55JMEle472a/OsRazxYu186pVkbWUK0fnbRKzY1XjY8D5AgAPjC+Yb3yZnj21rux3FgXcX+RAmKNnaYijaakhWjmzZfLMJRxWDd1IQQPOP7EOPf17FRZHJL5/Ox8j3Hu6737MZZzrvEnOmpt6a15dXJf8nzEQM2bSbRCrudG/RJG60M40RcYDqaVaM652ilMkb+i8J5HrnVceETH+7n8kXUEyivkkofT97PeQbRutA7yEFoaXE4F+zhAa9GCK/Rzec34hDLK+cT4nj/7MjH9WI019lqyy8MRL+L4zvkGT3ne4B/GWwAUUUwBRXxsfGdOzD3ueZWLYsczN+ZTHvQ8zwfGNwA8KJ833e6DMTB4zfiYUspYqTbwB+1cnnDeFdb4wMqweJ2pRW7AAHTOjD92LtQNgeeM95inQgP8rWjBPvajozPLWMwA0ZOVagNuDFPS4135FXeJ63jG8zZllONUDkZpgwJkRc7lVE52DONnzxx+xWskYiApo5yNajtD3RcyyTiD3+VCTtdOII8C3tKfYILnRsqoYLvaw6/GPK7WJ+IQNb7MrhbT5YKIbZ0asUlQJKyaoW1EBi86H+Rx96v0VF3or/dgjDaU7hVnBGyTKauWjbCxsTl6Ui1BeIlEQ0MSqKftws12vMGmmarSBOlpz5tcqk+gvWhVN4O1CYu1NPg3NT+k/SIxnlfUf3HiII5YDpJPIcW8bnxCC9JpKpqA8gYK8ykKG9yLRIZoFuIIn4OdEXisqHFG4PFGBS4WyOV00dubEW/wBgjBO6N4JKWoR0Okmeb+VTiONga6aR3N5eAsjxO1oaYb4M9yzhGlk5+rncJZ2kk4cfCm/JxTtJH0FJ05QB7fyd+5Xq+8YX/H+LLeTEN2qFCNyiYihfSmSSROz6L/1S0YeXcbzv9v93oY3fHLufop3Kx7HaXLqeA+97PV/oz8zfEns7Tscc+r7JGVwYlDqoCv5DQA0kjmO6PqctDjySgkmHBmSUWUsEptDO0chpP04Qz1mUOtVBtwCidvOB+lI23Yx35msZgP5Tfc7/k3y+U69pJDoSqmUBWzlxyeMF7nYtftlKnyiK9xl34dZ4jR5JDLY55XKVI1F8nOV4UBmpFW3HhII7nR64SF0wTzz1pbTUNe8HxImQx8P9pYssv3HCYjELwlwv/P3nnHR1G0cfw7s3uXBELovffeFZFelSaggIqKKM3yqtgVGzbE3sWGCnZRERVQUZAmoIAUpffeW/rd7c68f+zd5i6NUEQk9+XDJ8nubJkru7PPPM/v94jnFl41H6auqM7L5kM0FLW4yuhFAZzyl2RSedR6jRKiKK+aDzPMGEBJinGIo6SQhgeTGLwUIYGfjPfoJFoyzv6UeXoJF4omXCl78oZn9HGDgAD3loihcvFvIP5nRJn7uLlgo+Nucy5xqzGIy+RFNCbDpd3A4BPjeTqLC0nHxwvqfa41+nKTcZXrdgjwqf09Q/2j3GVtOY+P1bcR+5/GbO62nqGxUZfGOOOqUGlpAIsUUvlIfcsu9vGZmsp3aha32I/xvmcsZShBDF5uth7lp1wcvU+V38NK6DJzLpsE5UQhUdDN4gxp7SaIeMrKklxlXEJFyril5CHWZzOpGiVKlNOLR3gi7pO1qJLnbVNJY7j/oVOqnohy6oTGVmY2+WNVqcAdnut53XyEBOLZReTk6mq9ya2wAzikT0zfL7sxUTQj8PRxQoHAcePG0aVLFy6//HJmzozUsjp48CDVqp2bZamhTJ3hxhXE4KUgcW4JycmWop4strZJzsFmvb6oecbO49+gdtjNI/Nr4BUeVyPpMMdYqJef8P49wkNDUdsVDd+qd7JJO+6PU+3Z1BJVaSfPB5wB5L9VVpKaTZDhGfNeNsXO5M4WV3LJ+zXp/GwVYgv/M5kIUXLmIfNmylKSFqIRv+uVfK9m5Wm75rIBw4wBVKQMtURV7rOeddd9bH2LD6cktZGoTdHjzKSdLc7h/wZ9jM5cLNogEBG6rnktD4bIINI71udcY/ThQ8+zeDCJI5YKlMHEQKMpT2kSRDwJIp44YrGwOEoiX6ufctz/+bIhZjBTbzf7eSLwxgn3c4aa7xobZMdRkigoCuS4/lygGIXx4olYFtIJrCdr0FG2pJO4kN3so2vgenarDDfXUhRzB7THywgMZ5g5gD+8XzHCvIIF3i941HMbG2J+pjhFOF80ZIVawyRrOu18V7FE/R3xHgWw8OHnKIkMsEcyTy+hrqiOQHCJ7MQHnqeJE9k7KmbGj4/Gxf6kdZmptIg/RnVZKc99OBcoKArwsed5bjSvdJcZSLaL3fQ0Orjjgwn2ZDcbJaRTlUQKv/EnrUUzChLHLBZFCJwDbrbKh/Y3JAX3FdpnKCAY+uzZ2BQkDh9+pqhfeNV82M0SHW//c3rCK3KY3AgZh+VHQlmBe4LOzSPNwa6btBCCYpnunbvYFw0wRIlyBgiZ9RzTSVwgGx+3fRlKYGBQkbLM1X/QMzDiX5Vkys9ssrfjwUNzGlCNClQjcqKpq2xDeVmaZrK+O+FZn5pucsMqvYHioojbPnPVzlD/A/T13UxTXx/W2Fm17SuSNRs0qhF4+shzIPDVV1/lnnvuoU6dOsTExNCjRw/Gjs0QWrZtm23btv0jJ/lvM1MtJEWncq8xDIUmhTQCZAweptq/5rL16eVX9XuO6+rLczsQWFhmWNBnV2rVw+gAQAKFXGOFE2WI0d+9eH2ivqetcEr8trObVXqD6/BYmEIsOolg4+lgE9uzLMuPGQBnI4VEQV7yPMAfeiX7OMhdgafz7Ib2mDEShWaZXs3X6id+tn9jsfqLF+z38QQfOrfq3awhd7ft/BwI7CJb8ZOej0a7rmICwTRrdp73McDo5mYXT1dzmGzNoIXRmN9ivmCS5xWmed/hR+97TPQ+y6bYmXztfZ2vva8z3fuuu4/xuRgKCSF4wRzlavl9o2bwlvXZCfVzWtD9NDcqn+M6YUIIypDJOThM0HqK+Qab2I6FzQ69h96BG1mqHBdhKaRrPnUigUBwJozCfxYXRbjZuJrF+i9W6nU8Zb3JctawXK/hCE7mel/RJWIfqaQRwCJNp/OV+Rp3eobk6KaYHVv1LqaqX1mol1Fd5K8gYAgpJFXC7nt+AoyyXuAK0YNyQW3MNO2jIAUYYVzBMZIitl+i/6YATuDVwqY0xd3PU6Xgg0cccbQIe2jtLtqx0fsLl8qu+INjwKbUJ5V0pqs5vGN9zkWyNRVwMk5/VPPYprMXVT9V9pK9w3y1fFgWHCIkF6DRHFNJWdbXzmSmZ2O7khtRokT550gIOgcfI4nzZINc2xYhwdGSw2YHe9Bodql9rFG5j32j/DN8oL5mJ3tZyt+sZyubyRhnCQTPeu4BoJmsz/yYz/nS8yqLY76mdlCmaL3eShEynt8P6wyjwwP6MJ+q7/lRz2WN3sR76sssx68qs97T9kYDgaeNPAcC3377bd59911ef/11PvroI3799VdeeuklHnnkkX/y/P5VigY/uAEsfrEX4JEeLpfds7SbqmZxWB09I+f0np31SxKiftCq+1wmpH8VwMpSdnmxaEMTUZcUUvnE/v6k9l9Fluci6biPbtO7qE7GQ9ZU9St9ZBcailqkksYb1sf/SnlwKmkRf5sYVBDnrinAf4Utaid/qlX0kV1c45kd7OHmwKN5+pwUk4UZbd7q/n1v4Bku8Y9gHwepQSX6ii45OnWFiCUmX2upNJS1uVxGmixoNLP5nR/yEDwDJ9vofXMs3WU7DnGUq6w7edX6kPKUpqvRmtqyGq1ksyzbtRRNaBDMyl6kV/C19WOOx6gmK/KS+QADZDd2sJfbrTFMsX7O0/kdVEci3E/DCZevyA+GAQ1lrYiswHBB6xgZw5eeV6hFFRJEPH/r9fTyj2BXsOw+pBN4iKO5lnLnhtaaJJ3CDeaV7nmsJbLc0EASK2Lcv4uQwKeeF6krqjPZ+wY9zQ4nfNxwvZ6q+XgSKPO1bg8HGGk/ye5gadJGtvGY/RoNqe1O8IXw4ecAR4jBSzlKEUssBzhMJcrymfkS1UUldrKXBWqp+94u0ssRCD7zvsSb5mOUpzTLydBr3ctBftDzGGL2B4Lu4IFTcwfPDktbbiAyM/n589BE1CWegiSTmu29srWR9br9p8pZbzdKlCinh1BGYDKpNBJ1cm1bKVMGmESwk710CwwjOY8T61FOD34dYKL9DUCWeyhAS9E4YnxTQZThIqMNUkgaC0c/2wr+C3EwrDT4RzUPHSYA+LH9XZbxWLYZgVGNwNNGngOBW7ZsoVWrVu7frVq1YtasWbzzzjuMGjXqHzm5f5ujYTPIzwVdQEd7Mh7UDQzOowFp+OgUuJZNdtZMrdONT/uzXS4R+cIkIJRFA1l1AovLohSiIDY2G/RW1quT038ZKvtTl+pcKJqyQ2ToMU6zZxMjvFQQZQhgsZ/DZ1xjJqADBDKVBPaQHf4xQfIox+cVayJV0zvS0X8NnfzX8rX6iVfMhyhEQdqK8/hCTWdw4L6I767SKtt9XWP05kLRlC6yFb2MTu6Ndxu7maKz1wYsSVEKEkcr0ZS+sgtS5G/p12c89xBPHHWpHqEJdW3gXpLtvOnxXWy0ccvI2orzuNd6lmsCd+caMBJCMNy4gtaiOWUowQjrYb6zZubY/jrjMjdY10zU50brEWbaORsAAGxWO+jkH4QPn1vqGE5JUcz9PT8EAgsQ6wZEziNrlkEjWYefvRMoifO6NJF1aeO/kqM6kQphOoG79f4s22bHarWR7v5hDPDfSvn0NtTzdWdw4F5KiKJcJi/KYSvBAuUYVcQSw2bvTHobnVninUw9eXKTd5vDAoF5MSQ6V6koyrrXSInkbmMoDalNfTKqIyxsbrUfz1GcvDDxzDI/ZBu7sLGpJMrT3GxAZVEOG5vt7KGbbEdbcT5xxDLO/gSA681+XG9choUd8SAz3p7EdcZlVKYcbcV5fK9nnfby07/snDVP86NRSIhiojDJQUfS9XprlvXtxflZlv2po4YhUaL80ySEOQdXEuVcnf3sWMVGCgY1BQsQh0Ljw4+Fxe9qxT9+rlEy+Fb94kpdeDLpA5alFLcZg3Pctn7Y+CbcKfpwWGnwdHt2xDZHSeSrTNI6JWXGuFYiaC2ac1gf/dd0+s818vzEWKJECXbs2BGxrEGDBsyaNYsPPviAe++994QPPnfuXC655BLKlSuHEIIpU6ZErBdCZPv/ueeey3Gfjz76aJb2derkPvuQE+GDu9V6I/f7nudD+xvOFw0Bp6xgFRuxsDmiE+lr3cRs+4+cdnfK2NrmBz0323XlKEWM8P5jxz5RzAvuw2z3FLL2AGTNvs7/2gPcZWa7pzAvuO+E9xvS5wHYqLOWovcMlgdDhrbjidJdtiORZBbqZcxQv1EHJ8CapFPYrnbTJswRdN5JliCfLPuDF+RwMrtvRTmzJOpk9nCAvRwkHR/z1VL2cYgZng/4Tf8JOHoW4yznAXKH3kNb/0Cm27N5xZrIM4F33ACQFJIp3nF873kbLx6OkEgpimNj53j8AxwhhTQW6GUUEHH/fIfPcsqKkrSV57OGTaiwa7iNoqt1Pcd01pKxzHiEh/GeMbxkPsiCoNvoQX2En+x5uW43wriC5rI+ezlICmk8Y7/D09bb2Q5YhBCM8dzJ3cZQ/tSrOEoSt1tjcpzsSdGpvGF9QiLJWNhZSh0BvGTcA/JDIDDc/XcJfzMrGyfV0rIEP3jH00G04Ff1O3s4wOPW6xFZ1DvyYBgCTlb4r2oR36tfOcRRtrCT6WoOU+1fGWZenu02Hkw3O6mFbEQB6XxHT8XROTzzMT8HfrzCQ9lgOW9xivCk5w78IkAP2Z6qRL4uIakAEwMPphtArCEq09LKeO/ayOYA9JQd3GXVRUUW6D/ZzX6esd9li3Je/7vNYW5pdkzwu7db72efOkBjWZd5egmr9Uamq7xlI+eVz/S0HNfl54zA8Mnw7AKBjY26WZZ9ZE+hn/8Wqqd35ib/aCbbM/7JU4wSJV8SPnGZRnqW63M4BpJR8gau4RK3AkrbBnruldz3mYchn6Qy7JNUhn2aypBPUhn+aQrXfZzKDZ+lMOTjVG77Ko2l20/cMDJKVmbaC91szsxZ6Ic5Sjsj6+RKiHDfgoNh+o4hrUef9rseCyE5ngTiWWr/FbGfcL1vjeY3vZS/9HpW6LUn3qEoWchzILBNmzZMnjw5y/J69eoxc+ZMfvjhhxM+eEpKCo0bN+aNN7IXS9+zZ0/E//fffx8hBP369cu2fYj69etHbDd//sk5t5WiuCsinUo6r+iJPGmNo724wG1jYdGQ2hQW8WzQ2+gduIGq6R15OTDhtAubHuJoRHAynPry7HKINRsNwWx+K97u4/H2+sj53328u8xsfitmoyEnvN8iYbNK69maZX0v2dH9fWqmmYa84pEerjMuA5wgWzVZiTKUZC2b+Vh95z4oAMzPwbnznyJcAytEvXxQEn42kyDiKUcpGlOXipTlLfszbgk8Rn1Zk0meV6hIGX7TSxllv8Db1udc6b+dpXoVgwP3MdH6hsfs1+kVGOFqXhQWhRBCkCDiiSWG/RxyzUJClCf7UvDwz2Z+pnbYA+EVogceTFJJY5lezd2BZ/Lk9C6E4CZzIF95XqUERZmvl3KddT9HwvRNstvmMfM2rpA9aSOas1Sv4lHrNW4IPMwr1sRst3ncHElL0QSADXortwYezzZwONZ6mzfUxwQIuBpo4cQSQ3rQCdXAoFwm/bxzkXD3X4B9HMq2dChGeHnHO8Z1LnzL/pzwl3gXeQsETgu7p4RMKABuD4yhii7PJ54X2OadTdegcRVE6tm2Eafn+xmREZiPAz+QUR58gMOkqjQSRDwlZFG6GK2ybW9hE8ByHWZtrThKRnXBhcHvYo+wQOBCtYz/GVcDzvs5xnoTgFgRwxjjDqpSAR9+ChDLGr2JO62nXT1hgHdPs2nI7Fy0ovPz56FWmD5udhUhJURR4sKqSgDS8HFUJbKLfXygvubWwONRU4IoUU4zhUXG/TKRZN73jM2xrZ8AT6o3uc97g1sFpn+8ET39f6xcUoOPFwf4cHGAD/8I8PHiABP/sPh0SYAPfrf4eEmAd37z0/HVFLYfiSZJnArr1RYmqMmkkk4pimdZ309eHGECkpnwQODuMC3mkFnIXLXYNeHqJTrSVbYmjXTeVl+wP8wVOEZ4XXmO8JFxThI5UU6MPAcC77//fho1apTtuvr16zNr1qwT1gvs3r07Tz75JJdeemm268uUKRPx/9tvv6Vjx47HdSc2TTNiuxIlSuTaPidWxU7nOnmZ+3coCPexmuJ+KANYtJXnubPC3WV79nCAt+zP6OEfhqVP36xETi45AkFH0eK0HedspljYzEBoVj6cGrKyOyu8UC876QHd9WY/N3V9qVrl6hG8b31FY2q7D5Tz1JIzmp68TK/JsqzBOW4Sc7Yz0hzM5thZLPB+7roWrtWbec3+iF5GR+4xh2MFM/put55kvz5MAvGUEEUpJAqiUGh0Fg27jqJlFlMcLx4kgtpUjVgWIjxbNT8TnhXT3mhBhbDA2Ty1hHusZ/K8r+5Gey43emBjk46PT4+jPxonYvnAHMtF0nEvvlL2RCCYbM+gve9qbB2Z3SmF5FXPQxQlgQtFUz5UUxgSGEWaytAC/ctey8u2E0hMJo2esn2W48bgZY92DATKUzpfyAWUz0YbdavOel8AJ2A0yryBqlSgnqjBNJ0xiMyLYcg+fZA/9ErAGeDujVlIJ9mStuI8DnCYdoGrqCEqU1qWcPcnkcTipSoVGCh70dVondsh8kwoIzCWmAhdyPzIQNmbnrID8RTgI/Wt6xTbiNrZtu8inQBhAs4ETuYHmb/1BsARKA89yPyuV3KDcSWlKcEFojF/6/WuCUgfo4v7XUsNBuIX6mVst/e42Zq/qAVsVjsI6ABa61MuFd6oc5ahyc8ZotVFJTfTc0M2GYEALYh0LC1GYYrIBDfgcIijPGy9/E+eZpQo+Y5ws4ijOokWslFEhRc498uQYVM6PkYEHuYq4xJn5eZmOCGL45tqKQ3pFqzYlXMlTZTj857t6Nv6CXAwm2q0YeaALMvCqSTKuu/xVr3LXX44+Fy+SC2nlWjGeaIhPY0ONBX1HP1/ND/YkdWPoYm7cKadZLJPlEjyHAicMmUKV1xxRY7rGzRowOjRo0/LSWXHvn37mDZtGkOHDj1u2w0bNlCuXDmqVavG1VdfzfbtuWv3+Xw+EhMTI/6HaBUmLmzilPKUpRRVKO8uX6ZX87gxkm89b3KhaIIHk63sYoVeyzv2Fyfa1RzJySVHo6km84dzYBmR8dCzPQc3vl7BmfzqVOJXe9FJHaeCKEN32Q6AoiKB+jhZdzvZyyy9iJZBJ8Fd7PvHXAGzY7XO6poVPusS5d/DkAaveh5CIilAHIvUMqqnd+ZHe66bPaRxDEQukZ2Y7/2c5zwZ5fHh5WNaa+4KPJ3lGH4CvGI8RHejHTVFZSCjNLwS5fK1UUg44Vkxm/UOLjd6un9vZScT7W9YoP7M8/6GGxmlg+/ak44b/JdScq9nONM87/Km5zGW6r/5Xa9w/2emkazDV57XWBgsQ96md9M1MIQ9+gCr1AYuDdxCqaDO3V3GEFZlcx2oSWUO42Qr5oeyYCBC5y9EeLZcZkbKaykg4vhbr2dDmLREXgKBP9hz3cnAHrI9Qgi+NF/FwsaHHz8Bfla/sc7ejIWFFw/NRX1meT9iVsxHfOB9mgtl05PoZSRKKzcQWFVUyPeaoE2NukxTs0kmlcet1zmgDvNI4BUmqG8i2jWhLl+br/Od+RZTPOPYEPMzm2Nn8Y73SbeNRLJYr3RLRWO1U+5bg0osVn8xxOjH73oFy/Uad+JGCMFQo3/EsRKI5zH1mpvpW5ritPUPpL3/avr7b6WxvzffWTO5N/BsnrKTw9ml9mUxDAthYlIxm+9EfiFOxLrC8uv11myv002NehF/CwQXyTbUEJUoSBwSyQa1ld/tqBZZlCini4SIjMAkhBBZspfLUYq+Rhf37516D1/bjl6crB16ltOQQ2VcCCmgUAycV/Hk5TfyO+nax0f2FPdvlek1rydqcKHIfTwjhaSeqIEXT4S+f6hM+Ac1hwX6T5bov+hotMwk7RWZ7RdyhIeMoOAyvZqdeZR1iZIzeR5BPvbYYyQnn9iA5XQyceJEChUqxGWXXZZruwsuuIAJEybw448/8uabb7Jlyxbatm1LUlLOulBjx46lcOHC7v+KFTMuTg1ERsltKKtnGas5REZ52EK9jDssJwPkds91zPB+4K573HqDZfbpcSXLzSXnbAsG6eS96KRdqP0rUfuWofYuQ+1f6S7TSbvQySf+Ba4RDH5ApE5SOJcYnShDSTawlcnq5PVeRhk30EzUZ63ezC4yHhTftD6LyLyak0uZzulmc6bSYAODkqoyG312VDj1LKCprMc481GWx3xHI1GHXewjiRSqknFN8WDykHkzxUURzhMN3JT7X9QCkpRzjZ1sz2Aei91tQjc+gaCn0YGX7Yls0NuoSnn3uhQtC84gPCtmq95JL6Njlja3BB6PcC/LjbqyOq2DZZ1r9WZ+y6M2aCejJXEilpHmde6ynGYxWxvN+czzEueLhvyhV7JE/8Ulvhto6R/ATvaSShr3GcO5SQ5kif4ry/Y1ZRX39/wSEM4uIzCn+wKAV3p53rw/y/K8BAKnh2nOhj5PBWUBvvC+TF1RnVTSeMh6iUfsV1ivt1KQOIYZA2gm60cMYnNCa8371lek6jResSbyijUx24qCPRxwpQLycxloiBaykesUfoij9PQP51n7XZbqv902BSnAG97R9DQ7IKWkm9EOIZzMknl2xnV2qOxHfVGTRJ3MLvaxFMdIYgPbmKx+4lKjq9s2vCzpGqOPqxEYRyzlKM0BDjNZzeBt8wmGGZdziKP8qVczTc9ms97BFdbtvGp/yJPWuBPq7yt29hIDAJVFuVPSnjwXqBW8DiaSzD4OZVk/WPaN+PsQR7ndGsPfegNVRUWqiPLM00u43RqTJXs7SpQoJ0eRMI3Ao0Gd5szPrbVkFZ4176WlaEw8BdjBXlcLWXcZj+g/Btp9Qq12i7ijo5c7g//v7uzljo5e7u7s4Y6OXu7rGsOCO+MpWzh/T5KdChPsye7EcmbiiOV62c+9h+bG+bIhFjYb2EpMMBh4mKMk6mSWBzX+alOVYqIw54uG7oT3T2o+DwSeZ7H6i0VqOY3DnKb9YYaZU61oefCpkudvyb8dZHj//fe5+uqriY2NzbVd9+7dGTBgAI0aNeLiiy9m+vTpHD16lEmTctZoGTVqFMeOHXP/h5ui1BZVMcg6sDpE5APkfL2ED4MW2xfKpgw2LqWNaI6FRdfAdUy3Tl0sep/OOqgBJ7BQRZTPdt2/he+z9vjG18H/aVv8n7bD/1k7/J+2dZf5xtfB91nW8rbj0VzUd3/PKRPvfNGQQFDUdIaan6P4/vE4z2joPsAdIZGylKSdOJ/Z+neKqcJcLNvQSNTm61MINp4omR9Yy6T2pPr6NOptTKbnthQC0WDgv8515mVUEmVJEPGUp7TzU5Z2XdACWIwKPA84M2ahh/k00mnlv4IUncrt1hh3fwWJcx23LhCNWKbXuIFpb5hBUDQQmEG4K91mvYPmor5bQikQdBGtWK030tp/JavsDXna53BjAC1EIxqLuoy3vzyh8+km27rnk5uJ0aVGV14zH6EMJahIWboYrQgEs8uqiooMN69glv6d4hTJ4oAZHhTKLxmBZSiR5f6cW0YgQEfjAvqLbpwnMlyGjzerrLXmqE6itWjG+aKhaxgGUEoU523zCbcs9AfllLQcJYl2Mm+SHUorrg/cz83WowwPPMQatYlP7O+o7++JP1MZaXj/8nMZaDjPeO6hHKV4xryHHrI9TURdJNJ9+EwhNWISMZxJ9g/UEzW4SLbhMuNiEkQ8CSI+iyv3DPUbNaniZpzNUX+42XwlRFGGyH50Ea2IwetqSzcT9bndGoOFRTEK48GkhWhEbJipzxv2J/ylcnYBzsx39qxslzcWtekQpl+dXwnXCcyuPLiOrO4GbUPEU4AE4ilOYZK1c69dplczzvrUbaO1jhhLputI2Y4oUaLkTLhrcGIwuHe+bBjRpoVohFd4mOp5J4ursJAacd50qvb4jo097sbT4y2e7hPH033ieOqSOJ7pE8dTlxTgmT5xPNYjltql8/eEyKmQqtN40fqAulRDIChG4Yj1aaRHZO/lRlVRwa1aKoATvzmsj7JILXeXb2EHDdJ70sTfm7qiOgA+/LxoT+Ai/3Vc5L+eI2E6vj58NKM+zUR9vlDTT7W7+Z4TEhHKS/T3n2DevHmsW7eOL7448TLbIkWKUKtWLTZuzFpKFSImJoaYmJhs18WKGGqISqzTWYWHwylBEe63XiBBFHIf5q4L3EeyTiWBeO6yxrKajdxlDDnp13GXyj5rocnyZnz32kbSD1tIj6B0k4K0ebAiZsy5NxsSnvWyh/1orbO8nqYwuVi25VP1PcmkMlctPmltpufN+5npX4hAkEIac7WTPfCm+pQkUtjNfv7WG9ih91DxDGThZNZpSD48CH8w9vdLis3sFIuu8Z5stoxypglpVYU4rI/RyNeLIyQyW//Blb7bSSCelTrjIXAD2+juG8bhoJguwKWiKx/r7wDoaXTk3TC5gWIUphyl2M1+2kb1AV28wkMFyrCd3WzRO5FC0t1oz0T7G6pQ3nUbk1rQMzCC13kk26zBcPoaXbnLeppDHGWN3sjz+n5KiKK5bhOipChGS9GEBfpP1urNbFLbqZ6DnEMToy6/yc85rI8xQ82nPKXpa3ThCfN2Cog4JqjJ7OGAqwcYIk5k3MPyS0agIQzKUCIiYzu3jMAQz3nupZH/EvfvcP2a7NjFPvfa3022zVKOe75sSBNRl+V6jeus10W2oqrMPVD3l1rHIX2MP9XfbobZ1+onqlGRzTgBv+/VLPoZF2f0L0wbN5oR6FBWlGRtzE94hYdXrIkM0N150RjFF/Z0PrC/pgrl+V2t4CKjTcR2B/URpunZ+AmwVx/gQk9TOoqWjGQwtrZp57+KpdrJCkzHxw9qDr2Mjrxpf0oAi1/UAi4zLgLgFnMQjf29sbBII53uoh0/aCco/LfewO7Y31ih1lJJlGW93soMex5j7LeoRgW+tH+gocxe0zCcdJXONrL/fK/Q67hANjmFV/HcIMI5WG1174vjrE8oLUqwQ+3BJsNEoBTF+Nk7gSb+PszRi6ksyoN2NM2ett+miExggOzGjYFHSCGN1qIZr9gfIoBBRl9Gm7f8q+X5j05P54OFPnw2mBJs5ZRGhgoohRBopRGAwmljhbURwTZKaaQAW4MhQSkQAjQCoTVCCmylMcLb6JBim0CjkSK8jcCQOqyNczxDCKzw/Qjcd0MAOtg+/FwNETyWyDiW0Nm0ydQfEdwuc5/RwefZ4MFUpj6DQGuNzK7PbpvgOefU5+CLq8E915z6HKq6zK3PCo3Mpc+hcw71OcYUdK5l8v41kTp8/xZFSaAQBSlIATcjsKmMLNNvL53JzXhZkKuMS3jL/gxwHIdDmYHbcO7VNjZ/qJW0kNl7F0Q5eZ61xrOdjESbzJmB9UQNqsm8jT3qhWV9huTVDnGMeWFGm34sNrINNFkmadLw4cHEkylctYt9rm/CarWRejJqmnmynFAgsFatWscNYh0+nFVQ8lR57733aN68OY0bNz5+40wkJyezadMmBg0adNLHry9q5hoIrEgZvMLLJr2dEYGH2KS3c5cxhPGeMUi/wSa2sUyv5mHrZdqK87jAOPF+gDMDnZmYY7F0uugaVqUcdO8sG6YewfZpOj9T5aSOczYT/uATwGIPByhHqSztehkd+VQ5ov7T1OyTDgRWlRV4z3yKd9WkCKe+dWzhYtGG3Xo/CsUEazIPe/53UsfIK1prEokszy8iDRKBUAFLvPx3gvVRjk8xUZj3PWN50/qMH/Qcpuhfsm23jV3ug4oHk990hpZdHaoyWr0KONlQi/QKNJpLRdccM17yK1VlBbar3RwhkSP6GCONwSxWf/G3Xk9JitKKpuxgD3s5wLDAA9yvb2CkMTjHe1ysiGGQ0YeX7Yn4CfCRPYU7zOvzfD49jQ4ssJz3cqr6lZFycI5tS4sSlBYlqCurRwSTN6pt/KocrZxiFI4YoB0OczPOLxmB4OgEhmdKHy8jEKCsLMXD5v+413oWgKMkkqrSKCDjsm2/WmVMJFYgqwabEIJhxuXcYj3mLgvXlcyJ1+yP+NCeQgxefPipL2rwiHkL8RSkZ2A4AOPtLyMCgdGMwOzxCmcCLPz7ckwn8an9PevZyky1MEsg8GP7WzdwO8joS2xYMN0QBm94HuWxwGtuQO9p6x0eNG/mTZxMsW+tX9xAYHVZiduMQbxofxB0EI6jDCXYy0Gmqdk8FxjPPZ5hAFwgGtNE1GWmWsQivZxn7fFcZ/Q77sPVS/bEXNWxooHhSPmYDcFx+ya1nVHWC/jwU5wiWGGlZfs5zAPWi3gw8RNgm97FaONWvlI/skpv4KbAI9zJWJKCY6+DHGEP+wF4xn6HozqRMZ47iRdnPuDy9XI/T804XmZiXqpEcmujT7JNTu1PtWrlVPuTlzZ56XN2+/mnKnJOpj+aj5cEKFUojaf7ZH9fO5NUEuVIJZ0kUtyJt8ylwY1kXff3YcYANxAYPiKrRkV2s5+X7Ams01uY7H3jHz/3/MTP9m+8Zn+Ya5ueQR3+vFA/LEAXkjGysLKNZwBsIqung43iWzUzYll4Jch4exIvygfyfE5RIjmhaazHHnuMl156Kdf/J0JycjLLly9n+fLlAGzZsoXly5dHmHskJiby5ZdfMmzYsGz30blzZ15//XX377vvvps5c+awdetWFixYwKWXXophGAwcOPCEzi2c40WaD3KUC4QzK1FTVOYh6yUG+e9Ga81H3me5xOgEwHmiIb0DN7JD7znhc9iktrOKrCVsCTuK4UmKIWyCEzTsWfrv6Tn+k8QIb0TJzt/2+mzbdZGt3BmEafbsUyptv8y4iE6yJQD1hfNZqEll5uglbvr6B/bXp9UhOjt2sS+LYOvIMgep7pXECbinRAwt46Lp8GczFxltiBHeLMtLUtx1/z0QlvUZRyxb2ElncSHXGn35TE2jOEW4SLahrqjhmhc0Mer+axnbZyvhD8Vb9E7qyGquhMIBjlBHVKOlbIJAUEVU4H7reYYGHsj1WjHUyHBJe9eahK3yriHVTbSlmahPS9EkIrB0IrwZHBgDXEgTZHCInEB8xH2lcj4KBGbWCdymd+VJ2+tm4yqKU5hCFMDEYLL6Oce2i9Ry9/f31FcsU1l1f68wetBWnM8g2YfOohU9snF2DsfWtuuMp1GUoxTXGpfSx+hCR3kB1YWTMfqrWsRGlWFsEp7xGA385E5L2cQt2Z6qfo34biulIszcMht+ADSRdRlhZpjk/cV6ZqtFdBIXcoFozM/6N5KCpaQAD5g3UZPKtBHN+VbPZIDRnYbUojLleNh+mdGBV9zPZozwRpRXvR90aMwJrTU/279FuMQDEc6b0cAw1JIZGYGr1SaUUtwWeMLV1SxLhl5n6I65U+1xA8IAsXhpLR2jwF6yI0kkU5uqxBFLZcqRQEEEgjaiOW+rz+nov4ataie2tknVaaTqNJQOH5RnZb86hFK5tzkeczb+s2POKP99ft92duhcVhJlsYOBoFDJfoKIZ6jszyDZh+vkZREO7g1kLXqJjrQVzQmEBe4Pc5SiQQfiWWoRqTp746QoJ85X9o9cFvgfBgbNqJ9ju7yWBYMzqV0yqPsXbnL1p3bGUHHEUImyFKdIsI1zv25OfdcBXhF5nSxKYXazz33+/sT+Pvo5OAVOKCPwyiuvpFSprNlXJ8uSJUvo2DGjHOvOO+8EYPDgwUyYMAGAzz//HK11joG8TZs2cfBghonGzp07GThwIIcOHaJkyZK0adOGRYsWUbLk8cW6c6JBplmLIhQikWQKEEcKaQgcx08PHpbpNQDs5SCdA4P50vsqD5g3slPvdQd6H1hf84jnlhM6h9/Un3jxRAxWAA7V2odVKwVzfaS1dt0BJThXqSjKciyYWr5IL+ci2mRpkyDiaS9bsEgtJ44YflRz6W6cuCYhONke95rD8ekAY2xH2HsDzoNZGUpyiCOUEEX50P6WIWa/k+zV8dkQ9jAYoltsRW6uWSib1lHOFDv0HjaobfyuVvCu/QX1ZU1GGFe4EwDhKK1YEbxGhIinAAqbalRiHZupRHl2sgcLm6IUJpFkFurlvC4fYUhgFABL1d/uTdLEZLCRu4lSfiT8oXiz3kEz6rul/iYm3+lZDBOX85xxL3fbzwBwjCRq+LrQRNZlqVpFZVGOtz2PU0c6uiU1ZRU6yAtYqJaRRApDrFG843ky2+BuZurJGmzWOzhKIlvzUL6amY/sb5lgT6YUxTlKIoVlAko5gY3KlOcwx6hIWQ5w+IzIFJwtZHYODmCxk31UJvdgqClMmosGzNC/AfCh/Q3XmL2zbRvh6I1mZOBJZns/jigJLCQK8nPMB9ltni2L9V9u0L+7bM8X3lfcdVJIhhr9ecB6keqiEh3819BVtmawcRk79R4qUpZ9HHTKGKPkSFFRmNayGXPVYjbp7azXW6gtquHTfm6wHiZJJxNLDBfIxhEBpHC6G+1pEWjEH6xEo3lbfUFv2YlZaiEAX9jTGWY6EwTxogCPmyMZaDlj2W/sn7nVGMR99nMAzFQL+SuwngmeZ0gQ8Vxr9OVx63UCWHxof8Mj5i1uZmNmPlNTWUBWp/NkUt3fo4FhqEBp4ilAIQoyW/9ON/9QNrMDLx5KUowfvO9Ry38RaaS706pr2Byxj/fV1/wVM5VrjD4sVMv4Xa3EQNKEOqRLHy1pylDZnxushwHw4KGNfyA1RGVKUBQlFBLJB56nKSQKkpmZ9gL6Bv5HJ9kSE4Mf1FziKcBA2Yvasio3m1fnqa+DW3h5a37g+A2j5FsOJCk6v5bs1oE7ZdAayxZ4DU1ACaTQoAXgSC3ZGkypCdgCj6GxlAgrQ9agQWlnnT/YxlYioyQ9VKKsMtoUioGiTfpzpMlXrNdbXFmnN7yP5njul5pdGRqIzPQ6ShKd5IVMVjNIx8cstei4si5Rjs82vZttehdevCSSjImkYDDGAY5WeQHiEBChkZwX6skazFF/uJMxAFVFeTbpHaThYzt7uEFeydvqc3f9JWYnUuw01urNjmRA2P6OBCth4ilAIskoFJV9HegsL+RR81Z3vB4lb+Q5EPhPZJt06NDhuJlaI0aMYMSIETmu37p1a8Tfn3/+efYNT4Hw9OVQqQc4wqaz9CJSSXej2F5MQDBfO66SNwVG85B5Mw+aNzHR/gYbmwn2ZB4wb8QUeXv5tdY8Zr2WJQgIoLw21y1oxMEvNFa6DQhKNihA9Yvypl31X6S+qMHf2skEXJyNe2aIh8ybudp/F+vZygPWi06WYA6D7LzwoHkjs9RCFupl7rJ9HKQ4RVip1/GY9SqXGV0pIhJO+hi5sUpFZj/G4KUK0QfBf5vv7VncaY11/96t9rNGbaKjbEkcMWzWO4gTsUyxfyZFp7kZPZ1ES642e7NRbWOs/TaHgrqAZSnJ1qAO1G720V604GnzbkZbGYGCfrIb7wRvmr1lJ8qIczfwf7JkzggEqCLLM9F8hhftD1ikl/OcGs/Hnuf4Qr7Mr8ox4ZjGbEqqYuzlAHv1AUZaY/jR8557D3zNfJinrLf4TE3lCzWdbnY7rjB6HFcnSghBM1mPWWoReznIbr2fcuL4E2u2tnnSepNx9iekkEopijHR8wyPWq+5bSpQhp/UPBSKrqJ1RInjuU62zsFqJ5WN42dFtpRNmGE7gcDf9FL26ANZHH6VVqzWkRmcf+iV/Kb/pK04eV3OqXaG211PmfVB5nqjH71kR962PucN/Qmfqams11tdN9zB8rJ89T6fLL1kR+YqR99xqppNEZHAg4EX+VxNA+AK2YOHzJtz3ccL3vvp6R/hPnQcVhll+OPtSQw1+rvXh75GV7qoVvyiFrCTvYy136aTaMkOvZcl+m/QcHNgNI+bt1NNVqSP7MxX6if2c5iqvo70kO0ZYvbnQtnUPcZRlcgL1vvH7WuVaEYgUkgWe7+mvf9q/ASYi/PeXyYv4kZzICVlMbrIVnyvMkxXMo+tN+itxKY3oCTFaCrqkUa6Ww4cSk5pJurzg2c8o6wXWaz/IoXUDBf64GPN8MCDLFZ/0SRY8rhcraGCKM1i/RcKzU9qHsUpgkKRSDJvq8+RStLL6HRcnde/7Q34jzPZESXK+gOa9QfOjqxA1t6BKLqGI5VXcYijlCD759Rv7V8oJYrTRjSnCIU4GtQHDBEy3gMn0zsaCDx1vrR/4CHrJSSSrkEzvZSwDL4U0kjHzyPGzSfsTF9f1GAOkaXAG3RGYkslynG52YO3/Rnxm16yI+vVVtbqzTkWxoekskJmilPUL5SxS/KyfPCEzi+/859xDf43qSYqMlD2opmo7wqWAlkeDiSC/rI7fgJuts6v6ncu8l/PPHsxPYOlQrvZH5FhcDy26d0RYujhFKIglYuV5ryby9Lyzgq0vLP8OR0EBCLEYdeqzTm3E43cB+01ehOv2R+d0nGlkLzqeYgKlKEK5fFgUopiHAw6SO/jEA8EXjylY+TGchWZSVaaEkh57hnC/Nf4M6xM0BMs29rJXkYHXuEd+wua+PvQ2ncFd1vPMNp+lWIUZqDsxS3mNVxt9KaISHBLHQAWsgwZnI07TzTkI+9zHCGRVXojzUR9zhMNWKc2UYeqXCiaMiysXDVKBuEZgeHllJcYnehrdEEgaCbqMTBwJwWI42XPg67TcxmR4UY7R/3BJPWDu31NWYVeRkdi8NJA1GSk9SS/humH5kazMNfzP9Wq47Y/ppIYELiNsfZbVBUVkEi6GK1oI5uzSWdIaGih3PKJhrJWns7lXCHbQGAedAIByoVta6OYaE/O0uZn9ZsbKPBiUpaStBRNeNXKXUfneITGAAJBN6NtlvVFRWFqyapUFGXdz2IoCAjQPJPQepTsCdcz+tr6ida+K/lYfUdr0Yw4YrnE6BRhQpYdzUUD6pCRMTiPJW7G6XK9JuJ9EULwsvkgtUVVLpfdOUoiy/UaNrAVLx7OpyFfqZ9o47+S5WoNN5gDudboy3XyMg5xlM/UNC72D+FT6zt3n4/br7NV76QVGcHBzJSiWLbZZ/mRUqI4beX5xBLDZfIi4oiln3Ex7YJmBLmV7cfgjZDpmKP/4GiYYyU47pcv2xOYpH7kM++LXCAbUZhCXCRaU5ACFCSO/vJi6oua7GIfiTqZRJ3MLvbxu17pGD8giMFLpUzBPIXiA+vrXPtna5sugcF03j36ZF6eKFH+PfZVA2B9Drr746xPuCJwO739N3Ke/7KIezQ4utmppBEXdKD9wZ5z3DL8KMcnNDGpUNxoXMWu0MRHGDY2F2UzVjke9UXuY9Lmsj4tRWOulr252bia62U/6ouaNJc5lyfnxKf296To1OM3jOKS54zAU9Wy+C9jCAMDgz+D7nEVKMNeDlBDVKacLs2fOMsfNW8jBi/fq1luhNoO/rvXes7VHGlALX6059Hb6Jyn48/XS7JdLhA0EflPGyzchWg3+7G1ne0MhRSSVzwP0dp/JWUpxVT7VwYY3U+pbK6hrE0L2YjJagbgBP9k8F8cMXyjfqZoIIHHzZEnPGtyPMIfNiBDrzDKv0voumBissgziQsDl1OEQnyovsGvLGxs9nHIbXOYY1SXlegR1NkYaQ7mNuNauvivc7NNFYphxuU8bo4kRniZpt5hF/vYpffxjHGPW2pWnUp0kBec+U7/B6gmKhJPAcpQ0nUXA+dB/XbzOnzax2jbyaq73RrDUvlNhNPzdHs2lwVuoTqVGG9NortsR4KIB6CfcTG79D7XbOI9+0s6Gxce95yayfqus89StSrXmexNajv9Are4+ip/6fW8ZT7GtealpOhUdwLCi8fNUgfHWTo/ER4IjCWGSpRjfVCD6HiEZ9IWoRDf27P4n3GNG1DRWkdkYjUR9divD7FILydWx+DT/jyVhWdmrzpIeUqzn0PUEJUpJYrn2PZ2z3Ug4H7reXdZQeK40uh1wsfNj1SXlagjqpGkU/DiYX/wWrxd72GmZyLNjOM/bEghed07mhZ+R0dQo93vX1NRjyn2L5wnM8qlasjKLPN+y2v2R8xQ8znMMQSCGlRiDZsAKEFRnrTGMc7zKO94nuQVayJxKpY00ilGYR6yXmaFXsflsjtv2Z+jUCzl76wnF6RqtCzYpaAowMee51mlN1BbVGWj3k7dsHKxHkZ7sKA0xd17M0BLmrCI5RH7yqxPBRk6Vi/bExgoe/Kd5y026G1UEmXZG7zXlKAoXQPXU4KiHOQIh/RRRPCfQlGX6nznfZvysjTPWO8w2nrV3f879hc8mEvV0AvW+xzZWgW9qBcIC/QJqTxFifKvIIRC/9YPvagP14oSlBCJaARaKA6rRPzCxwFVGyXe4xhOufIxoUBLx3pZC3xCMxmTeIYiSCWJWJqKQ8ToWLc0WQYNoUM4y5zy5ZDbtSTMEkY79sxCaLR2SpzD3a6dfTi11QKN0s5+dLDcOuR27bQSSDQ2IodMq2Cb4DHCz1W4x83UhjB36JDZdfBcXfPrcGvu4LLMfQ5t71R3O6+nkJqAVvyl/wdaEiu8DKcgivHBF0hA2Htwg6iAFEkZx8p0rplOA4AU2qLUe2H7UYS/ugspTWuRgmYUEmeIfCHJJNMVpUPPuUEv8dD2WmAIGTRWDHVKcFQoGnGIUtLOvs+I7F8X97UNe58Rmdy7M/X5HzMHOrNE7x55ZJg5gI/93wKOMLuBwXy9NCJF+TN7KtVExYiLR4j9HOJ7NYvG1GEFa1mlNnCPGkZVefxSjvlqabbLNTpfBoNqhc3e29hs0TtzdExtJuvzoHEjz9vvs1vv477Ac3zqPbWsvWHG5W4gsDLl2MdB0vEDMRzhGK/YEzmkj/Ks5143cHCqBHSADZnclNrKky9Li3J6SNGprNVOVmp9UYP6Rk0+1S/yqP2aW74O0EG2oJVoRi1ZlZ16L3cZQyL2I4TgTc+jpONjmVrDMZK41RiEEAKtNdOC2UMmJtvY5W431Oh/3JLU/EpRUZj6oia/6xVsVbs4ppMoLDL0NO81RzBDLeA3vZRNejtT7F+40uzpru9hdOAmNZB37Els0tt5wnqD5zz3uetvNAbygvUe+zjEd2oWe/XB45ZoR2QE6pwzAnfoPTxtvc1avZm1bKaLbMVdxlA6Gk7Qd2NYNqCfgOtqX5witBQn50r/X6V8mEaghcV6tuBVJmO5K6LdVr9io9/mgjiTQoZzly4d9n4dI4mlehVPWuN4xnMPAF+pH5mrF7ttOssL2aH3slXtIh0fS/XftBLNTvicl+vV/BzUJrxC9Dhu+2uMPjxkveS67l0ue5y2e0t+4Cfv+5SiOE9a41hkL6eeqME077tZysBzo5Gsw2jjFp60x2GjSCGNYhRhmV7NOnsL95jDIq4vUkh3YmGCNZnP7KnM0U55VHGKsJkdrFdbKRJIYLx3DCPNwdxsXMW9gWeZq5ewSm/gDfsTZqmFbjDqfNHIlZ3JTNQoJBIhBA2CmSh1RaRmVGlRgq6yNT8r5zsYi5d0/KxkLQWIJZV0ClGQipR1A7fZodH0DtxEEQpxiKO0kI1YrtbQQV5ADF5W6rWAM/lfQhRlvz7EFbIHFUQZHjNvcyeLbzeuw9CSh+1X0GgOcYTSvgvpKTtwozmQVjLjGrPYXsmzKZ+i3/8U/LGcoOdjlCj/GlpL2Oc8s25HsN1RFAyuLRT8XzJsmcj0O4DGBkLiDMkInFqpvCQr/RPu2KfSJjfOpDs2gFNhkI4OTnOEZGsiQ3vLI96zvJ5HLFAnU/uM93Y3gt3Z7jd8u6whRjtLe2f5DjQ7cvw8nMn38L9B9A6SRy4QjWkYHFSsZiN1hZPenEIa1UQFPvI8RxfR2ikBIIW6orrr5hYq6ylIHGuDosQafVyXuBA5BQIB6suaOa47VylHKbd0w4PJquM4cP7PvIZCOBkek9UMvrR+yLX98eggW7iBx23spkQwYyeJFCSC80UjJqjJtPNdxWaVtxK147Fab8Ii0iGuvRHNBPu3WaHXug9pzYJp7D2NDlxj9EYiGWkMpqmox0ee53nEcwtXGj252xyabRZvLVmVRrIOg81Luc281m2zWm90zSUupAmf2Y62lRcPg4y+Z6CX/13OD2bpWFjMUPMj1gkheMXzINWoSCNRm/usZ/HrSK2okcZ17rXmDfsT5tgZOide4eFa41J3/9mVlWamsijnuqP9qVahtWa/PhTRZp86yE2B0XynZlGZctQR1XjFfMgNAkJkWY1AkBYcunWT7U57JvLZTjlK0lW0pqmoRyyOZt7fegNbVUbAfEZygHobkuixLZUmm5I4ZDnf2fBAYGj+/jX7I+baf7BH7eeewDMRx2ok69BGNnf/zu3enBvhGYtNjOOX+JYQRbnHGM49xjCulX25wbzypI6bXyktSiCEcEv/BxuXnlAQMMTN5tUUo7D79+GgrmsqaXxmT81xu2uM3ow0B1OSYrQUTTjEUTeo+7H6lu+DZVke4eEl74PcaAzExOQl8wEuEZ3oIdrTSjTD1CYm2X+/oxmBJ0b497irbEN30Q6JdLP9kkhhNRsxMj0mmWS8ByYGBYhlCzs5wGH2qAPsYh+fq6m8r5zxvUDQUNZyP3sNRC3uNYdzjGQCwftNjPAyxBxAY1GHOGKJJYYU0pikfuAi//V8an0PwGRrBp0Dg0lKjgF/AaKPcFH+ewjINl2GsOUi0+/ZbZ/bfqKcPP/U6xseXMvufT7e+eS2LvpZOBWid5E8IoRgmHE5JibVqcRyvZYE4ilNcVqIxtwZGMs49TGHOEo5SnGVvIQVMd9zjxzmWqYfIxkfftfy+kP7G3cgkBN79AE2holqZqbeWRoI9Pb7Hu+gP/D0+RJP7y8xe0/C0+dLd5l30B94+31/UvsWQlAOpxwsgOXOuuZEUVGYpzxOdkhdUZ0brEf41v7lpI4NGY6OHkyainoRZV39RTfWamcGubgoShv/lcy2/8hpV3lmqcpaEtSUuqe83yinRrjOWyjbK1R6utL7Pc947mGB9wtKimInfYxparb7+072EoOHwsTTV3Y9pf3mB3qE6YNNs2dnWd9A1qKxrMNKvY59waztcKrI8txnDgegnqjOlYE7mKcypBqGGP0RCOpQjcn2DBJ1cq7n4xiGOJ+TAxzmczWNRr5LeNf6glesiQzxj6KW/yJ+UQs4RhJ+AvzgGU91WSliP8vCdCmLUZjzRUNi8eZL0WxTmOxkL8v0ajcgCjA97Hsz7pA/VJHNjoDm+yRnUqUkRV0937I4gaG6ojoDAiPp6B9EAvFIBAkUpDCFqEu1iEzskw8EZgRya4kqedpmtOcWnvDczjveJ13zgSgnxkhzMJtiZ7rl/ydKYVGI5zz3Z7vuNetDV0t7rz5Ib/+N3Bd4jurpnenmH8rtgTGMN8cQCOpNlsIZN5SmONcF7uUne567r+Hm5Sz3fstw83IKy0K0N1ow0zuR9WxxA4iZqSajgcATIVw7MkWnUl/WJJlU4og04LGwiSOGSpTFg0l5SmEGi6kSKMRmdrhumFvZSRyx2Ch3UmKYMYDnPPfxtfd15sd8zndqJgP9d3Cp/yZ6B27isHZym4qJwszzfsqtxiDS8UWcwwjrYUqmX8DV1l3O+19sF6JyzkZ5UaL898gtkBMN8vz3ySmwG+XfJloafAJcbfQmgMXd1tMAdBWteMK8g8/tqRzgMAAH9CH6Gd24zbyWGOHlcc9IxvsmcSRMbLgsJdnFPvZxiOlqLn1y0QqcY+cuQn+2lgbLYkFx0BLZPLBkt+wEqSOrslU5WVJ/2CvgOGbA18jepJpp3Gc9Rzo+xgTepBylON9olPuGOTBE9ud7MYsFQU03AwMbm0V6BTM8H/Co/Ro/qLkoFM9Yb1NXVKO0PHln18xlhBIRNQo5C1gaFgjMLGxbQzpZo8fT8NyotvGhPYWBshdfqR950Lwpotz3B3uu+/uWoJvwINmHxz23n+rpn/O0lc0pTCGOkcRPah6WtrLoLg03ruAb9TMA4+0v6WdcHLH+DuN6PNrDw/bLKBT3B55niNGfoWZ/qsoKPGDcyBj7TdBwY+AR2ssWDDX6c4TEbAO1zUR9fsYpSRseeBALmzussXQXbflBz4vI/H3Z8yBlZVZn4V9SD6OtVhC3FCU1i/VfmBi0F+ef8mv2X6S+qMEavSmoF+MwVf3KzVwNQHmPdLVnAMp5nO+kR3goThEOcgSJ5EnjDh62X0ajXWOwMpRwNRiriArECC9lKckeDrBA/ZntZ+p4hDvm1cxjIDBE8j4/uxYmUapRQYpWiz2hbaOcOlfIHhQyC3Kj9TAHgjqBAJvYwTx7Me3MFtwfeI4Zaj4/8xsazS7tmL1NVj/zuedlRluv8UswQzmkUXd/4HnWqE2MNAcjhHDvH+FBy/DjZSZaGnxi1Bc1qSzKs03vYq5ewqfGiyQQz1f2j6xknduuKIXZ5Z3HRrbxkjWBD1SGkUcoIzREMqncIK+kAHF0M9siEBSmEPcFnqMMJXjafifCcBANdwaeYq5aTFVRkUneV3jcM5JKohyf2N+xUC9zA79JwfuCRiMktB/2MSWnPcGkRSeuURolypmmYVnBfRfFcn/6i+xkL4YQvCOfwvDYDE17HNtMpYxdnudj7iKYsI8WNrf7xnLMcwgRiEWbPrC8IG3qi5rE6TiWiBVgmzwTdyslrfLEesAX0BhSoLWTf2ZKCNiaWFOQbkOMGdmGYBu/gjgTUgOaGFPgtx1Tn5B2n9cAnw2xJqQFNF5DYNkaKZ3xhFIQ44G0ABTwOPvxmoJAcD9SgmVDnAdSA87P9IDGYwjsYJ8NCZZyzjHdCv4MaDxSYAf17AwDApYmziNJszQxBvgspz/gnKtHgt/WxHqEu5+I10WD14TVge08KV6CQAyYAbDNYKxOg5I09dSgj+5OHW95/vRt5kcxi5XWRpCKhqImF4sONPfWJN3KeF08hsBSTp8NCYHga5Ye/Pli2icslstBCWpTlVpGZdrRkoreYqRZOO+TpTCFIKAUUkh2iZ1ge3lQjEVYMVQ2S3GDGsRPYk4w2UaAtMD2gMdHrJXAGzEPIG2v02dAK/CY4A+9B35NjCHwq4z32VYQ63Fe+9BnwWsE30MR/CwE2xxOTGP4K2fqG/TPEQ0EngDxogB9jS58Yn3LIY6xSK/gTmssvURHClGQVNIpLorylv0Zq9VGPvY8TylZnNuN6xltZ3xaDnGU1jRjCzt5y/4s10DgTLWQCpQhmZQsFurlKU0RkZDDluc2PUUHfmI+Gs3fbDhueyEE1xp9WaCW8YOawyGO0jdwMyvlVIqLIid8/MKyEP2NbiywnEBgMQpTV1Rnnl7Cl+pH3veM5Wr/3SzRf7Feb2WINYpp3ndP+DghMjuMxoVpU0b59wgFaL14qB80sdmrD1KcwnjEcaLTwFq1iQ7+QRwlkfH2JA5zjPVqK+O8j1JIFGS92sJC7bgIKxRtRHPW6y0MMfufVGlbfsMjPFwkW/Ol+pEjJLJAL6NdpmBZB9mC6qISm/R2flWL2Ki2uQ/hECrb6sevehHr1BY26m38z3qUgxzmPnME1xh9eMF+n3R8TFYzmKxm8Lj1Om1kc77wZh0lXGZcRHVRiSXqL95RX5BAPG3leTSmLjvZx3a9mxuMgWzQW+kts94bXj/kY/nee50/vBs4Uv4GkNBQ1KaYLHJaX7//CvVkTVA/Abji/PPUElcX8olSMRywFCvTFYOLeuhaMGPoU1qU4KA+wl4OMMZ+EwOJgaS9bMFmvZM07WQZFiWBWOlk+bSRzflS/UgyqazQa2kuGpzQ+W5QW91zLSYK5944jCOb0xnffDm+ozbSI7hmVgMqtcmfY4B/CyEEPc0OXKYv5j37S2xUUDpccJv9JK+Ih/hcOfINscQQTwE8mCgU09SvmLbBeM+TPGGN4wX7PWLwkkQKG9nG/fbzbNW7eMZzTxYTmsPqqJtNCM49xx/2d7VoafAJIYSgp2zPOPtTLCx+0Qu41zOcerIGVwXu5HzRkJV6PRM8TyOlpBZVGWFewQz/fC4QjZmr/+BgMBDowSSAhUbzmvqIW4xruFA2ZZ8+SCvfFexiH+eJBhwjifqiBnv1ISwsBsqemJjsZj+79X7a+K5ksvcNhpkDqCkqc1XgTnrLTnympmIFFbFaiEas1htZ61nD3KpPwaJH/82XMUqUPGEpweVNvXzj38du9QsaaOW9g216NzowHQn0MvpzuSfyurc2UIzngrIr4VPqe1jMg8aN/Gk7VRwxZnOuMZ2JP0tbHOBIdIycBx4L/Ii052RZbmLQXDTgC+8Drvb1ZdRhiCrIgMBtmBj8rX9lLe/wied5rja65vmY5ewmTFfHKEVxvlEzmKbfZQ4FKEICP3sn5OCd4Mix+QMN+Fr9xBr9M2283elEEy71v8MxkiMqQvxAutmE4eYVJ/R6nAiJiekM/8f2fuaIphSdIBVEGaZ530UKQRIpLNB/UtIoxoHY3/nY4wziAAIEaO2/kpVqLUPN/m75EUA6Pjazg93sdx88s8PWNj+qeexkb+QsYpD8qA8YooasEnQAgr0cxKf9x90mTsQywfM0beV57GIfhzjKI9bJh/NHGFfQWNQhgXgqijLM10vQaF6yP2CfPsg3ntdJoCC72MdMtZBNavvxd5oNc+w/WK7XRCwrTc4uk1HODFprushWVKIcAFcF7qRqekcu8PXnksCNbslPThzUR/if/3FqCKfsM+QsuZFtdPBfw2Z7BzcHHgUynAtTdCrzvZ9xoWz6z3XsHONi2Y5CFKSNaJ7td1AKyTBjAHHE0kFcwNyw0t8QRUVhpnjGcZVxCcdIoiAF+FOtYqL1DVVlBe4zRwC4urCHOMpUNZvden+WfTWWdbjW7Et1WYnylOZ/xjVM8rzCQ96bWeD9goUxX/KI53985H0u22zS1w6FlY35a6J9ToZ1uOZVfqNBmJN8FVGeMpSkhWjEbOXIMhQzJZMqFWRtrUKMKhkb8bqWDko7BLBIIx0LGw8ePvG8yDzvp242f7ieYBt5HmUpSTNRjx/DSjrzQpJOYTfO5+JEswFXf3EQf6KTIaSVZvl7+05o+yinj1c8DzFAdnfHIRrNWr2ZRwKvcL5wKg2eM+9jR+xcFnm/JIkUDnKEL+xppJDGaM8tfOR53s34CmBhIJmtf+di//Wu+2yIn9WCiL9jyHhgrkZFynDyFQf5lZ6yIwWJo4moyzv2F2it6WV05O+Y6fzinciB2EVcbLR12zeV9VgQ8wXve8eyMOZLdwIgEMzWC2AhEdgoqqd35ib/aA4FszhX6nVIBBv1dhJJQqF4T33FW+pTd/8VRBna+a/iB3sO7Y0W/B7zFa97RrMyZhpJMctZE/Mjs7wf8r33bfZxCFVzERTeewZfsShRTo7/tXUmxhvJOtSjOvVEDearJcwPG29lN4YZYvRHIqlO5ETHURKpGiaHMF8tZb5ayqX+m7k58CgX+Ppxvf9+xlhv/kM9Ojf4KaziKJzuoj0/ed/PYoBXTVZktvdjaokq2NiUpgQz1G85xjGy40KjKU94bidWxFA76LeQTCo72ctqnbvmf4KIZ7XeiEYzMvAkjURtvvVmfY8lgnfsL0jXvmz2EiWcaEbgSVBMFuE18xEuCdwAwNjAW9QV1bjU6EpFUYanrLeYHnT5nGh9w/2eG2gsarM8TMuuGhXYwwEA3rO/ZKy8O8txFuu/3JLjSPckh/CHn7MNe+0kdCAVfWAl2vY7YVDDiyjZCH1gJaJkI4SnAEady09q/xfIRkGDb+ffer2FhqL2cbcTQvCa5xHm+haTRArT7TkskX9xntHwhM/BFCavmQ/TL3ALf+rV7gx9AIuP7Ck84bmDEeaVPGS9BMD79leMkXee8HGesd5Fhb332ipKifQrWKZtmsblL2OAswkhBC94RlGEBMbYb5Kok93v9D51kAcCL/Cz+o0msi61RVUsbMaYd7iZgg9bL/MbS0FDE1GXB8wbGWd9ymztyAGMDDzJfDI0yK6QPRnnGU1BUeDMd/Y/zAWyMUmkMF8vpYQqyvX0y9LmEtmZUbzAbP07AdtiiJm1jSlMHvPcRnGK8Lj9Ot+qmcxXS+lldORO43o6yZYUJYEbAo+wUC/DxmaCPZlRxg38ohbQUVzAr/p3uhqtAVxH0XCEEFSibK79KeFJZ0vAxJ0fN53PXH4OBNYPuxd68bCXA+zVB6hkl6OP0RmtnftEdg7bpbMJoKSQRgxeBIJU0px2YQPifvJiHuAF9ugDHFLHGKVvyLN794Ywo5Baskoee+hQuEoMOlT9rKFIlZhc20f5ZxnruZtpvtkkkqEN+jsrQEN/2Y0hhnMdKSWLM9DoxXj7S5JJ5XN7KsPNK+hjdOYn3qNnYARJpADCdaG/KfAIj5i30FQ6ZjLh7tWQMTkETrVK1D3+xGkvz6erbMMU9TNo+FL9wOVGDyqJnK/BoetARcoyzBjAUsvRbw6N/xSaw/oou9hHVV2B9KB+YCh7M6QnGAiTgPDipTLlgpPJ8IQ1jtVqE3ea10fcE0I/v7UcjWtRIIkyt9/FKzu+CZa6QcEYSPE5pY2WcsaNHkOQHtAU9AqS/RDvdcriTEOgtXbKHk1BegAKeiHFHyxbtDSmFCjlhLtjTUFqeBsvpPmdUkDQblldql9EtPEFMsrqLFtTIOw8UvwQ69H47WDZo3DK8OI8gpQAFPRklGo65XlgGgJfIPN+IvtsSoHPyr7PSmu0hhhTkBaA+BhI9jnlnGnBPodelxhDkGZF9jk94LRx+2xCaiCjz7Ee8FthfVaaONPpT7wXkn2aOK9ToigBGeqzV5CSqT8BWyNw+uy3su+zHXx/Qn0u4BU8Oj2dpTvy4qR7Zjjs3EbpIdvzJOOwtc0k9UPEhHmbMP3dEFVlBe43RvCU/VaWdWvVZhKIJ5FkflRz+SuwLkJ24zM1FVOZXC67U/ME77X5AVvbETIIIQoTz0TvM8SK7McXhURBJnqexef3852exfv2VxQmPts4Rk4EdIAx1jj2ctDNqAZYpTfQkw45bneTMZAP7W/4S69nrd7MzYFHGed5lNHmLdxvPe+2U2j+0ut52nqbRz235fm88iPRQOBJ0tVozVA1gCP6GJPVDLr4r+MX7wTOkw153TOaS303c5AjfKimoCxNT9mR5bYTCPTiYQu73A//h/YURpu3ZvnSTQ06yQHurHM49eTZqQ8IEJj3MCTvBiFxn1xCv4d+xpc76UBgARFHBcqwgz0ALFDLaCiPHwgEKCdKMdq4hSnqF/7Uq7jVeoL58rOTcttsYTSml+rEB/bX+Ak42YGU5Tn7Pa42enOt0ZfHrNfc9/kR85YsJT+5YSubeWEPANoqjt4xkUWqKC1J5pMKBehf+PglqFH+OUJugAkinhK6KOn4uMsciqUtdrGPiqosH/A1R0hkq97JJO+r/K5W8IHtaA158bBcr2Fo4AFKU4Kaogrni4bsVQfcYzSgJh94xkYf9k6CqqI8JiYWFpt19i7eNWQlqomKbNY7WKxXkq59OQ6CbvNcy2K9ki/VjxziKA8HXmac91EuEI0BmOB9hjq+i9Fo3rG+oDoVGGzdTzwFSCaV6Yynk9HypPtTv9TnLN5fHWmVJq7IV6R5nCz0VrLZSe/zv04VUZ44Ykkjnb0cjHg4sLTFdr2Hlv4BNJF1uVr2ZrB5qbtt5hlvcO632/Qu19gLIgOGJWRRWsvmzFDz2aZ38YtawEVGmzyda/iDSi1R9YT6Wf/KEhxal8a6yYeo0KoQre6L6sL9m5QRJXjSvJ03rE9Zx2Z3uUBwp3l9xPV6mHE54+0vAXjXnsQw43KEELQwGtNPXcwEezI2NkVIoIGoyQ9qLrP9fzDR8yw9ZDumh5kddeQC5pBhQlb/LJ4UPpsxhckgo48TCATuCTzDhaIpFWXukzEhLje686daxW96KauDJnEAP6q5lKKEq/8IuPegeOJIJT2oK61QKDrLCwkoi23sIoDFBr2VB+0XOUoij5sjIzKYLW25YweAngXPo2+j6BgwSiQPTU0/fqMzhCFh11HnGbahqEUlUZYteicz1UIA6lGDHkb7HAPw1xqX8pI9IaL0UyL4SE3hOfNepqrZfK9muffWgsQhkSSRgoXFbYEnme59N0uFhdb6uBre5zJ/6w1ZzKeKkMCj5q0UELnLT0khecP7KD/65uEnwEf2tzxq3pbn59upararvdxWnMcsvQiAVSr3jEBTmLzieYjnAuNZqv9movoGbWleNx7hU75jJesj2j9jv8tA0YvaZrU8nVd+JPpUeQq8aj7EAe1k7NUWVXnV+pBEnUw5UYpvvW9ymKMkkcIn9ndcKXu42/kJsJv9dBAtKUcp6orqfGfPzLL/UFahIPsLVX4f/J0nM3SZZmYqmzkeN5oDOUoiqaSzTK92B+gnwxPm7RSjMNWoQDo+VgU1C9+zv6KUKE4f0ZmylKKxrMNcdWIOwi+oDyJmjkltBaoo4OSHTjh6/JLoKP8sISfKr72vszN2HqtipnO/McINECqhSCQFiaQkxaie3pknA+MoENR5zBADd3SiPve8xEWyDXNZjImJRPCK9+FoEPAkMYVJZeGUb2/RO11nT4BUlca9gWd5PPC6W27vJ8Binbsj49Oee4inADWoxO96BYtVRvvKohzdZFsqU5400hluPQw4pQ8Ad1hj8B/HLT4ntNb8YkxBlr0PKl5HeiFHi6yuqJ6vHaQNYVBPVAec97izuBDA1YX8U68ikWTmqsVs17sjti2dTSAwtJ/QQBWyBgyHGQPc38fbk/J8rutVhmNwTVE5l5ZZEULQ/tFKjFjZlB5v1cCMjV4T/m1GmFfSXkbqjg6Q3Vx38BBNZF3OFw2pTiUKUZDFaqW7LvyzVEmUde8JdUQ1rgzcTiPfJRGfxdKiRESVQH6WiTlVehod6Ck7EE8BChBHj8BwV8PzeBQUBbje7MfOoBlMCZyxWTKpHOQwG9hKSZzrcsgESmKwzPsts70f4w263M1Q89nJHvwE0GiSSKEgcazSG3jD/jjimD/a8yKcjbsb7U6p/1HOTUZ2iDlr/Fm9Bgxp6QSIpJAMDbveAaxmI3Vl9Ry3ryLLc58Zqcam0KzTW9ih97JeO/fUMpREIPjWfIuKYUHFZFKo4etCP/8t9PPfQrX0TvT138RVgTsjxoP5jbl21ufRrrI1N5oD87R9SVGMvtLRBjzIEaaoX/J87HftL9zfbzWudZ3YV+n1OW3i0ko24xqzD4c4hgeTYzqJJ+03uc0zOEvbYhSmmzUUpc6e7NizjWhG4ClgCIOp3ne42D+ERXo5K/Ra2trnMdy8gr0cpJtsxzfqZxJJ5l7rOQoQS2rYjEZ5UYpf9G/s1vvRNlxuZgQLH/W/xppgrXzWomCQSOqI/B3h7i7bu26fK1XW9ObccGYVHqaz/1oAPrO/51KjK6XEiWvvlRBFmep5m+usUREP+B/aU3jcHMkAsztfBX5ij9pPOVGKrnnMHAnoAJ9bUyMXejIymiRQyxt9EDzbCAUWwks/F6nlrFIb2a33sYt9VKMiqaRRi6qsZ0vE9h9a37CKje7D4GfmS7QSUU3AU6GqqMAmvd3V6Qo9nK3Vm3nV/hBwhP1DzFdLaSvP43t7Ft1EWzayPWKgWl6U5hnzHm61nkBpxW2BJ5jvzcgqHm8+xaDA3e4sJ+C6F+/Qe7g+cD8TPE/nyVAmnD/0SldfDjIyxdtmU1KT36gna7LUXoVG08iozTeWc2+Ybs/GICPbO7O7d06BwM16B6XCtFgzt+sh21OOUuxmPwvUMtarrXkq9V0fXhqci0ag1prNPx0lea+fWn2Ko5Vm/XeHSagQQ9UuhfN1JsPZxqveh/k0/Xs32B/Sjc3MTcZVDLFGsUlv50X7A+LsWF40R7FPHaSJqMtyvYbNegefmi8yTc3mU/U9CsVmIjOZ7zSu53Nrmvt3fXH2Vof8F3jV8zBjrbecCWENdwSe4irjEmao+Txg3shY621e9IyiMIUYbb1KW3EeM/VCusv2dDBaMNf7CdPVHHapfbyhPolwL8+Q93F43BxJbemM3e81h/O49To2Ni1kY9YqJ6u0OhXZy0GmqznMU0u4zLiYcsJxj39XTWJX2D0gP2eCR8mZa8730ryiwc6jNjGG4zjrlG4LUv2a+BhBkk9TKMYpMfYaAqUdx9o4jyDFr0mIFSSlawp6HZdb03CeRwN2RptCMYJkn1OOnG5pJE4GYMiZNcUPDcoalC+S8axyrdGX0dar2MExbhvRnKvkJbn253Z5HR8wmW3silj+qfqeVJ1GA2oyy/MRG8RWmssGvCkfo73fMQ/ZpHdwmKOkKef5+zDH2K2c79C36hf6noDRxblEdvrGr3oeOqF9DDMHMMk/HYCP7ClcLrsD8LI9gbLCSXQqqONYzUYuFm34Sc+nEuVYplYDztj8YqMNtewqrNYbWae3ENCB446N+xkXU0DHMdQaxbdqJiZzmC8/i4izCASHgoZOj9iv8KS844T6ll+IBgJPkRjh5WXPg7T0OzMc79qTGCwv5frA/WwMKwH6Qc+lMuXYRkY2wkq9jtqiKmv1Zn7TS1mjNrkPmyv1WjROinNKUKMoRHUqUU/WIE7E/vMdPIvpLTsxIvh7aGC0Wm3Mc8l0a9mMG+QVrNTrWKiX80DgRcZ7x5zUuTQzGjCGO7gucJ+bkn6MJF6zP+I241r3ffzBnott2nkqQ56jFrOayDRpEbecUiXeo2Ty1bSMK8TjpfL3Z+C/QkvZhJayCa9YE90y4qK6MOvZQh2qUoAC/InjQPym+owYvJSmBF1kK7ob7aIP/adIuKPmFr3TzZ5bFfb9ssIyb+erJfxo12VA4DZiiSEdHyu837kPcACDjUt50/6Uv/UGlunVPGmNY7TnVgCKyyI84rmFVf4N3GAM5G+9nqvkJUy0p/C7Xs7X6idkQPChJ3tDkJzInLlckDgaiTpcLNrmsEX+ITwYUpTCwdI7m6lqNhVEGXdd08yBwBxMFrbonRGSHJkniUxhMsq8kW/Uz/yqFvGQ9SKTvK8e9zz/0s6klYFBtaBRUHbMfWwH8x5zAkBFqu5A2ZrE7U4GeMexlWl9f7Qs+GziNmMQT9lvA/C1msFV6hJ3LJKm09mt99PX6MId1lMcI8nNnvjeP4sU0njMuI0yqiQz9QKetMfxq+cjqqjyPGu9yzWiD6/pjwAoREH2i8jgUn1Z6wz29NyjvCjNXcZQFqrlFKYQv+gF/GI5VSY/+OdyjCRW+tfRWjTjHfUFr/ER6fh4w/6EN/VjDDL7UEdW5xVrIsVUYY6QSF2qs44tlKIYKaTyjHkvs9RChhsZcjh3yOv4TswkhTQ+UlOoSRU2sJVN7OBS2ZVv1M8kkcKowAtM9D7DL/ZvzFDz3e3rUYPiosiZfrmi/EeoW8agbpmzT0e8lCjOWPMuSlGcaepX7jdvOO44KFbGcI3RmzF2hjFEYQrRmQt5l0ns5SDj1Kf0MTrj036KU4S7jCHUEJX5yv6RmXphtvu9I/AUXWXrfKm9bQjDzTKSSF41H6KoKHxC+2grzmOwvJTf9Qp+UQv42P6OlXotr9kfYWCgUdQXNflLryeOGNLw0UjU5ihJdBGtuNzogRSS+qImq/VGAlhs1NupK3LOEA3R3WzHDXogY+23sLC4336ea0Vf3tKfA5GSai/a73O56M42dtNTdmCams0lZqcT6uu5SjQQeBoIlXws1n+xUq/jPvs51gT1QgykOzuYOaD3p17Fw8bNPGGPA5zyohfkKADXdCDzNgCb2E5DogO/IjKBYhTGRmFg0C/9f0xnLk+Zd3K7cV2eHrAf9NxMI58zE/Wx+pbrVT9an+QM6yVGJ97WT3CN5Qimmhg8Yb1BRVGWLrIV36qZHOAwf+iVXJiHDK+3rc+zXX6g8PvMLtmf6rL0SZ1nlH+PUJZgkk6hse8SjgBr2cKX5qvcbo1hF/vwE8BPgFaiGeM9Y6JBwNNAVZERNNmsd9ACx9VztdrgLrewKUMJ9nKQhWoZm5UThEnHcR0bb3/Jc/I+t314VvF5ogFP2+/gFV7uN0YghKClbMKymO8oFjawMoRkRmAeHkxSSecuaywveh7I9dy11gwJjKK9bAFauSZJJgYppPGHXkkrI5oxWpca1KEaxUVRUkmnnTiPIyQitGBJsNS7HKUoK0pGbJedRiA4n5PwLNHsXFkvN7ozxhqHRvOdmsWP9ly65VCqZ2ubB60XWas3c4FoTFGRgDeXWe8V72c4Ah/d4suyLhoIPLu43ujvBgK3sIPm/ksZLC9lhppPSVGM7Xo3H3teoLGoE2H8Ecoi/NqegU/4CGDxh17JBPUNd5jX00t24gr/bQgEBYijjqjGvrAy4Ri8VKQMUU6NqrICv3o+Yrj1IGjHDGQHe4ImLlBP1GCK+gUvHveeUF/U4EbrEZbov3jevI+R5mAaiFpcFbiDurI6PenAp+p7WoqmTFW/slyt4fLASJaqvx3ZGKMLPWUHN7jRWNbhsDpKI1GbeqIGc1lMZVGOkqIoZdNbuQ7mAKUoTmvZnIenpfPOfB9COJlaHsP5aRqglPOcb0iwMq2zbWe51qAAQzjZYKE2HsPZRgYTuZQK7idzGwUyOESxg+v8tlMOGmpjKwgNY5Ryju+eqwJTOsvBMc6wlI44RsB2jDBUsIxTZupPRhunv0pH9id0PlZ4n3UO/TmJPof648302gvhZNDZmfsc1sbpc9ZjZOlzjm2c909nOldbQ6/6Ht6+Mg6vefaNIW8znWqsK+mZ522uN/vxlP2WG+A5RhJ/hZldPG6/zrP2u3SWFzJH/cFHnue42GhLIsmstTbTRNYFYJZa5OoNCgST7B+4PhuDuHOdYyS5vxcglkuNi054H0IIehudmRj4BoCbrdEUJYHiFHGz8f4KlvumBa+bK4OToev0FvoFj1lf1uDL4Pfhb72euhw/EAhwrzmMT+3v0WhitJfzjUa8b32NjcLGRiJdY60LrAFoNDWozEa20cSuw2zPx8TK/J1QE60rPE2Eax68G8zaEAhGyCvc5Qc5ErGNgUFBCrgPG1/Y01lgL3Pa6iNum+yoFy0FAaCX0ZFjJHGYo0xnrvNAZs1ivz50/I1xZqYeMzMchW4NPMY6tTmXLXKnv9mN3rIz4AQWAlh8EviO6mGZH9PCRL9zwqf8/Kizt3WHnMvZovw3mGz/5D4A9pDtucTsRHeZEUCIwcur3oejQcDTRHhG4Aq1Fktb7NMHs0gK1BfOBEsaPrYGS1BCGq0f29+SpiMFuFvLZnzteZ2Veh0azRRrBpPtGe76YplmV7sb7ZnuGU8C8UxTs3nL/pw/1apcz32RXs5naio3Wo/wq/rDHQSHSsdby2YnPIt7LlJbVmUtTnb972o51xh9WK7XsIzV7ncts24bZL2WhrRqNusdEQGX0tnIRhQWhRjryXDKG299meUzAnBMJ3GV/06m2E4W2Cq9gXGex3LtT8kGBbIdoQkDSjbMf9kLZzsVZVnKUcr9W6P5VH3PbvazQq/lCIk8E3iHhXqZ26Y8pamDk2W8h330EB3cdZPs6exS+/ja/pH1bEWjSSGVQbIv21RGeVwlUTZ6nzhNJMh4PvO8xJPmHfzm/ZzHzNtY4P2C5837qCWqsJ9DXCq78q35FvcZI9iqd2FjM8n+gVq+i+jnv4UrAiM5RjJfq5/4S69jF/tII51Encwu9nFYHWMvB1mp1/GcNd4NTgAc0kc4QiK/6t+ZpH5gpnci87yfobSOCAIC7OcQ8Zva8czPPo6kweFUSPJl/DySCsfSITHd+T3zukQfHEmDo6E2aZFtDgfbHE1z/ofaZ2mTntEmtCw5U5tj6ZH7iTjX9IxzPZYOR9J0lmMk+ZzlbpvUrOeRFOpPWtb+JIf1x+1zTv05iT4fydTnI2F9PpJdn32Z+5xTf3Qe2sCxbM71WBp8uiTAewvPHR3xCqIM3TJVPyzTa2iNk7yhUKSSxvdqFokk87z1Hi9ZH3Cbca2r4/2193XWx8ygEAUB2M1+HrZezpcacvvCnpPfNh8/6ezikM4qOG7o+zlMJVGO2+V1Ee2KEbn/Fzz3u5mY4Z4HxzMMCSdOxHKvOYzt7OYnPY8f1BymeN50y85DQUCFdsfOG3GqNf/S6+kQGMRRnZj9zvMJ0UDgaWKA0Y2Hzf9xqzEIC4u+ogujjBu4xRwU0a4AGZFnLyaT1QyeM+/jMnkRBzlCt8AQfrLmuW64iuwvTg2ipSBApOtiXaoTRyzr2cIVgdvzvI9hxgCukX1oI85jtd5EW/9V/GKfmPlIOM977qev6OKaQcxiIRPtyW5A4Sv7J2xt57YLHrFfcU1CMgeDCxJHfD5MYz9XSNPp3G89jweTRqIOL5hOFvAI8wo+N1/iWfNenjLvdA0uopw64RmB79qTKOxrTmVfB/7UqyPadTBa8JPnfe41hqHRNBF16SHbA47xxGQ1g8z0kO152PwfRUlgB3u5zrov18mE1kYz7jSHAM71fYT/YVe7JjvGWxnlwFWy+Uz0kh1z3DY/UUGUdoN4W/ROLjE6UZBI57umsl6W7YqSEGHIFSoj3qJ3sk9HGjRkx5WyJ/1lNxqKWkzVv/KcNT5ivaUsevtv5Fs9Exub4hRhrHmXq/mVE70n1qLh1VmP2WhwKXq9G50IPBvpJC90fy9CAj1lR8pSkrqiOt1kW9oYzQlg4cVDERLYxT5uMAbSVpxHCum8p77kGtmb5qIBc/Qf9A/cyqP2axGZqecZDVirM64vNXPRmYxy4kghudscSilZnPvMETSRdbnFHOSafzWT9bnYbMNjntt4zryP4hRhgOzGHg6QqJNJJpUaVKaHbM+FsqkrBRLavpgsTDzO+C0dHxPsyW4AeYFexvk0BGCD3opEYgiDSqIsCcQTTwE6iBbuub6dNP3Mv0BR/jMIAYdTzy0zjGvMPhFyHj78/MaflKUUCcQDEEcMjajNb/pPRlkv8Io9MWIfxSjMC+Yo1yDuIEe4yxqb74xD1sT8wEzPh9xsXO2afpwsz5v3c43sw9Pm3ZSnNOM8jzLWcxc3GgP50HyOa42+fOR5NvjzOW40BnKJzCjNDQ8ELlBLT+jYg4y+ru73t2omdUQ17jCuoyy5j7EUmuV6DW18V7HB3npCxzyXiJYGnyYKigI8aN7kaoBdaDR1jQJqi6qsC7oaybDYaxo+/tAreUGM4it+BKC5aMBQK6NULLzGPZyoOLRDuNj6pUZXPlfT2KS3k6j/JlWnHdcCHRydhGc899DN7zycNxK16R24kbH6Lm4zrj3h2fZKoiy3e65jtv93UnEuNoc4RnlKU0WU53e9kn6BW/nQ8ywJIj7bfXjCvpoxeEkNKxGPZgP+t/la/eTO7l8s2lJVOkGqRrIOjWSdf/PUzlmqhmUEJgdLvQCOcCyinYlBe6MFy/UaylOagUYvWshG/OZfSkNRm2/tX7ja6B2xjRCCe8xhHNbHeMn+AICR1hh+8IzP8dpxqzGIj+wpKK3Yzm4uClzPJO+rWcpWD+tjfKWce0MREugkWzHf/jOiTWgmNr8TcofepLezWe+gEAW5wujJ+/ZXbpvmImtGoBSS80RDDukj2NjUFlXYqneSSho79V6nDdJ1BM2MEIIHzZs43++UFr1gv8/VRm+qy0porbncGklxUQSpJSmk8bnnJdoZLbLdF0DKfj9fXraWvUtTqNOvOC1uL8sfLzsTg60fqEDHMSfmNBzlzHGebMDH6lsA7jdHcLt5HeCUhafjY7z9JeUpTUvRhK/1TwD8rpdTWZRnnl4CQKpOZ0PQUGZZcKIilNHqxUN9UZMDOkMjsLGI3jPOBOHmXyGuNftyqdGV9+2vKK+cgF95XZrBRl/uNIdgCIP7PCOy7CskDVJBlKG6qMRsfgecoMY6MoK809Rsasmq3O65jts915GkU+juH+quT6kzE8r1g921/6FeR/kvIwWMneHj+Zk+VLAc2pROSXGMCemW8zMQLJlGR5Z3h7cJlUwLgmXZJvgt8Ib9tGxnvQwewxvcd6uqBpOGFKRw3KlnLl8k27gGPCGZFIkkkWS3TR/Zme/VrygUhShIqk6nenpnGonaeISHNXoT87yf8qOa607ufqamcYFqwpVG3kuV/+sIIWhtNKO1ceqGQ1VlBVdjf6gxgELCybh82fMgAJfjmIh0NloBMMDoHrF9FVGeC0VTAljM1Ut4PPA6D5k3I8Xx89W8wsNg41Ket99zqvDUd4z13M0o40ba+geyLsyQsRXNWIAzhg7FV3ayhzaBK/mYF+hqtD6Vl+E/STQQeJrJbrBwiezEOvs9IGNAF86H6humet5mYOBOpqpfj3uMGLwRpab5mfBA4Hq9lXbyfDbZ2x2dHfUXHXJ54AqnuCjCr96Pech6ibfszwD41V5EO3E+TY2sWSTHo6Vsws+eCbQJDMSHk5qfQEE26m1YWCxRf3GZ/3+843mSarJilu1X6LXu72mZdCJzEreP8u9gBxR/fXSA9KMWDQeVomDJ3N2uwjO8hpuX59IyyumikChISYplcXDMzHbtBFzCr+Naa6qKis6DuoZVagP1Zc0s2z5s3sxkNYNtehfb1C6+UT9zWQ6aK17hYYrnTa4J3M16vZW/9QbGW5O42xwaYQL1sz2fGLz48DPI6ONOKIWoI6pRXUbvBSFC7tDJpHKQIwwzBkQEArPLCASYF/Op+/vtgQzDqD3a0eotRbFcDZ7qyuqMNK7lBft9AAYG7mCy9w2Wqr+ZruYAUJly/OAdT7XjvF/zHt/BrkVJaBv+/uQAl3xQg5vWNgUhKF7r+BNbUf49wj9fq3RGeZMhHBmY0HUlXfv41beIwxzjG/Uzf3i/Yqr/V46SyGa9gxuNK3nWHp9l/w1FLWKEN+I60FI2+Uf7FCV3ComC2Y77j7fNL96JVBHlGWO9GaEFfjRMt2uaPYc7zOvdvwsSx+qg/rgXD35vOub/bmL2oQUUL2ByNA0KxzqlqwVjwG9ptIZYryApHYrEwZFUTdECgmPpUNADAaWxFcSFtQntJ8kHcR6NrSFgC+K9Tplq5jaxpvNI7bMECbHOuqJxgiNpmoTYoCutdAJEqQFBQgwcTXPOI7SfFL/GlGAYkOoTFA4/1zSIj8F1pfWYghQfWdpk1+eicU5WXKjPBTxgBftcwCtIzKHPSoM/rM9FCwiOpGoKx0KyH2KMjD4Xiol8XUJ99gT7nJZNnxNiIDXg9Nk0su9PoVhIC2gEEGMKkrNpEx8DflujVOT7fPXEVJbtUFg4Qb0QIbXZ0LJANsVJPvvE2/izaRNaNmejzQuzfDze89S12AqJgjQVdVmqV6HRtKYZv/EnKaTSgJqMMK7gO3um+51KJpUdeg+72IfQsFM72ruPWa/zgedpfvTNI5U0jpLIPYFn6C7bUVgUOuXzzM+EgoAnghSS1zwP08LfH4Dv1a+sD2zhbc8TeTJyGWL05/lgnGWOvZi7jCEkyHh+ivmAZwLv8KZyxni9zU7U1JWZaH/jBpLT8ZGOj2etd/nZ/o1P1Hc8bdzNffbzvO95Kkfd53OFaCDwDNDT6OB+QLPjU/t7HjNGMt4zhsa+S9hH7vp2dUQ1THF2v3WiQGkn1p5+BFTQjVOaEFvUWRZbFFHg1M0uqoqKrhjoRr2NW4xr+MD+GoD5egkdyFsgECBeFOBFcxSFdSHeVp8zR//Btda9rJTfn5QGT0OjNgNVLybYkwFYw2ZqUxUQFBOFma+X0tl/LatipnOERNK1j+qyEn+r9fysfqMspahHdWYS6XaVk7h9lH+HacM2svLDAyBgyRt7uHF1M8yY7Gex/lbrWaSXA04qfEvR5MydaD6nmqgYkUmTHdv17izLhBBca/RlmeVk54y3v+QlmdXgo4CI40VjFC/ZH7BIr+CuwFi6yFY5Zv1WkeV5wzOaPv6biCOGMfabKDSjPbe4bd61v8RPgMaiDtfKvlxv3e+uq0FlrpG9s9t1viVcC3Kz3sEFsjHPm/dxvmhEIsl5yqYOLyMPZe7mZbtR5o3s14f4Xa9gpV5HV991EU7UYz13HzcICOBLCnuiEuBPsileOyoF8V+gkajtulVn1v7064BrDhMrYhhk9OUVeyI+/Pyo5vGAeQMT7Sms0Gupo6ox3LicS2VXXrc/doPJIY3LkN60gUGzbLJco5z9hCaAE0Q85SiFRrsmgSEW6D85pI+62l1bgpnKkKERW8UszfmVYjgbqXr8JmeE03UeVbPKxJ7VnC2qd0JAsu/0ld22keex1Haur7eagzhmJ/G33sDfbOB3vZJfwp6ZNJpf1G+UoxS1RFX26cMECPC2/TlDjf48bd7NI9YrHCWRAxxmTGAcz3rvy+nQUf5B6ouaPGXeyTjrE3boPfyl1+ELBPjE84J77wy/j4ZTTVZkmBzAz2oBv+jfmKkW0tVoTRlRgpvMgbzpdwKBr1sf86v5EbvFPlbodRE6iXP1EuayBCFgmPUQQkBf//9Y751BRelIxqxSGyknS7FKb6CRzpoQ8F8kqhF4BmghGlGdjAcUM0zzrSoVKC9K87I9gSIigVuNaxEIjLC3xkPkh/6/YBQSc/VcYoevI/bW/cSOPOz8v3V/xrLh64i5OmczjDwfR3ipIsoDjqZKa9HcXTfe+pJp1uwT2p8Ukse8t9FQ1CINHxv0VuaoxcffMAeGG5EZX+vYwghxhZuS3Fo2o76vJ+19V9PGfyWzrEWMD5rN7GE/h8WxLPuMlgafXaz9Jngj0XB0s49D67I6fYeoKMrygnk/dUV1hhuXR0XezyAVwpw1Q0LRIULX5OwCgQBXGZe4mp+f2N+RorNmdgP0NDtQWBTCwmIPB3gi8Eau59RY1mGKZxw7cUpQX7Dfc7VKDumjLNTLSMdHKuloodmp97olqhvZRqvTUNJxLhEexNuidwJwizmIC4zGeS75aCrr0VlcSANquoLTpbIxCslMvCjA/eYN+IPBv1ayGWn4KEkxushWXJpHDZ6Wd5UnJsH5PBavHUeDa3LXuYly9hAnYukjOtFGNCdd+5hsz6Cnbzi9/Tdwkf96lM54NB9q9KcohWknzud3tYLhxhXs1vvQaL7RP/OoeRudjAsdt/AgTUU9/NpxlQenNK6kLHbG+xnl9DHSHMzm2FncFdSNBcewqDhF6El76vt60NDXk2VqNavDskxD+uFlKZlln1GiPNojlphc8kXyMvI8XW2KFxDc3Nabh5Z5o43MeM5boJfxiudhTEzaiPOYqRZQnsxJJoJxnkeZHjOe0eYtFCKejuICxlmfMMDohgzrxUfqO1aqtUQ58wghuN28jtc9o1Eo4oghUSdxU2A0AOvUZur4LuYa/11USm9Pd99Qbgw84m7f1WjNtqDJ33h7kru8lqxKJ9mS1qIZ+zlEC6s/P+sFpG6rgX7qW/QDc9APzEY/+Ct61FzUQzPRo+ahHpqJGjWXGvcZxNx5mJi7DtHswTjKLbuPrv7rqO7rfGZfoH+Iszut7BzBEAbdjfa8bn8MOJpxIbazG1srXrYncK3Rl/0cQqOxg20EgkBw0Bciu7K0/EwtUYXNegfJpGJiuDPyeznABHsyPc0OJ7zPEeYVzAs4mj3j7S/yXGKcmeayAU1FPVfrB+AjPYWx5t0cI4kdeg9f8ZO77nHrNZbj3IQKEMf+MLH6ENFA4NlFuRaF2DbbCdh6CxkUqZJ1dj6QZrPsnX34U2wGD72cm0td7QYZopwZComChC6954tGzNIZs8blKc02drulwZkpLAoxwOjGRPsbChDLb+pPLjLaZNv2efN+ZvoXko6PKepnallVGW5ejl8HSCaVJFKYr5a4WoNNjLqMVIN53n4PLx6usG7nGzmO39RS9zPSU7bntsCTEWVjJSjKBaLx6XhpzhkyZwSeDM1EfRboZaSRYeCSVzmG6rIS872f8ZOax2a1g4Mc4X45gps9V+c56F+6UUFu234+iTt8FK0Ri+GJztf+l6hv1GKy5UwAPGmNc4I3wevOBHsyQ0yn9KmWrEo1UYG5ejFoGMvdXGP04TX7I3z4+cT+jtvMa1kallnYXDZgRdhDalESzlzHovyj3GgM5APra1axEQuLQxxlF/s5SiJHdSLj7S9dI6NwVui12NrOVbogSv7j4roetj1WiAPJmgIesDVYCgp6g6XbwVLnInGhcmiC5dAQn02bZD94DUd3MC0AhWKytknxOxqEhoDUgFMifSQNqhSTFPCevknvVjJjAnS+WsKznntZF/MT71tfMd9ewq1yEBVkGUZZL6BQ7GAPo61X6Wa043/yal7jI2bqhRja4CH+xzOeexkecLTsjnCM2wJPMsv7YZ706aKcfi4y2jCTiXQLDGVO8P442L6Up+y32M1+vlLOM/N+fQhpSx40b6KiKEsP2Z6ylGQPB5iqZrNb73dN2a4WlzBGvYWfAP6gNnji17dCUjHcnLhQaMaSgAArJuxncH26iZr0EGJ0N5LC9Mb/y0Q/5WeI641+7u8K5brAhcxD/AQY6n+Aj+xvI7bLziwkahQSSbhz8Hf2zIgAywa2ntQ++8guES5E+7IJyOWVW4xBriNSBcqwlV1cbd1FY1GHBBFPWUpSR1SjrTiPRawgPaji0V9czB6yCQTyH6tPOMfpN6k2LW4rR6NrSzF4bkNiErLOr3xz5Xpm3LGFOQ9vZ0KrlaiAPuvL+881RntuZZVnOr94JvCi536+8rzGSu9U5no/pUrQsOUYSRzTSdluP1D2ooaozAGO8LH9XY7HqSor8Jx5H1fJXuxgL7daj/OV9SNL9d+U87Wmju8ihgceYrXKyO4YZd7AMDmAEqIoq/VGuvmGMtH6xl1fgDi3pDxEN9ku+vCXiewyAk+UeFGA/ka3iGUnIsdQQhTlaqM3CSKeClZZitiF85RRGI433qBE3QLRIOB/kEFGX3dcF57BBfCw9TLJOpX5aikpOpVeRoZr4g/2HIYZA9y/x9tforXmT+0EAmPwUk9UZ36Yo2J5ceryKlHODkxh8rpnNHWp7i7byDb398/tqaxQa7Jsd7FsG70PRMmWYgUltUsbVCxmUKW4QY2SBmULG9QtY1AmQVK3jPN3rVIGFYsaVC5mUDOHNjVLOusrFnXaZ9emRknnOBWLGdQu7SyrV8Y4rUFAcDTdQ89Uy/QaDqmjlBelXWfuCrIMI83BPGPcTRyOLuEKvZYH/S/iFR73edzGZqL9DdfI3lxEG4xgZcgivZxP7O9P6zlHOTEaGrV51LzV/XtE4CFmK8dUqSgJxAerehSKDyxHDswjPAw2LgOc9zakx75Z7eB/9uPsYA8xOJmpJgbCOpksVQGWl3gKUJjsZX/+a0RHmWeI+rImlSnn/u0PGkgEsChJMVqJpixmZRYXy3A8mLQQjSJstqNATZHhovi5mhqxbpPeEVGOk1e8wsO1si+NRG2ainp8YuX84H88ehud3JLDkAZMK9GUSwI30Et2ZEvsryz1fkML2QiAGqIyVShPVcrjwSCB+IiZ/2hG4NlFXDEPXV+syiXv16RUw+xFcjf9dAQ0aOWUDx/dkp5tuyj/HGVFSaoblWhjnEcdWZ1eRkdqySq0kI2oJDKuzTmVB7eWzdij92Nj85taitY5a94MMwa4wZ/Gog53WU/zleXMYmqcwcut/ifcfRQUBbjDvB4DA4EggXjm6D8AKEZhLG3TWV4Y4Trfy+hwKi/HOUm4O/RmdXIZgZBV0uFkrrldvurBsFKPk1q4JkveyD7TNMq5RyVRlm6ybcSyOqIadUQ1LpMXU9fXjW7+oXT0D4rQ95uqfqW2rEY7cT7niwaUpBg/W/OJxUs7cT59ZGc8wsPysOqCmmFmaVH++1xoNOV82dD9uwwliA0+uKaQxly1JMs2/eXFZ+z8okQ5W7jMuIguohVlKck79heAU2a/KXama9xzizmIeiIjsP6Cep/+gVsZYHRDBMuB37O+RKG43tPPTSIpThFGW69wWOf8PB7ln2eI0Z/moj6tRXMukZ1IIB4vHsZ7nmJFzHdu4HaCPRlLO5IsQ8z+lKUUrUQz3rW/YL86xF3WWNLxEcDifNGQ8pSmHjWg52tgWGFH1Mf5CUJoXr+0MA8YN1CQc0O7OZqScga5xujLGHsc4MzupgUzv6pQnm16NwrHHSr0kQuZYIQIYLFRb6OiKHuGz/zECfxyGzr9CPrQarTlBD2F6UUUr4c+tBpRvB4itiieLq+e8rFqhmUErtTrI8+DAFv0zpNyWR5q9ucFv+MCuV8d5nZ93UmlihcSBbnS6Mm79iRsbJqKeszXzqz+7dYYvvO8hSEMxnjupLlsQCfZkgTiaeu/Ch8BfASoRsUw4fpoRuDZSOIuH0vf3IungOT8W8sSUyjj8lr+wkLsmOe8fwVKeEg4S8W98yuVyLimbtd7aEjtLG08wkNL2YSZaiG72McWvTOiFDUcIQRPe+7BwHCdZD9Wkdne29nNTYHRvOZ5GI/wuGWlDwZe4n2V4XR7sWzLW+ozEkkmBi8BLEwMusi8ad7lJ8LdobeeZEYgEBwslmIX+wHyPPO7dvIhts87huVTLB+/HxVw7uY/3baZBleXJLZIdMiVHxhuXO4afAB8YD5NfVmTpwNvu87le/QBaouqVKQsO9jDHPUHiTqZy43u3GI9DsCbKp6/9QYA7pXDASIcg5uKumeqS1HOEGM8d/KtbybHSCINH+nBpAGAY8ExYDgh05EoUfIT1xh9GGO9iULxvD2ea8zeWZ6NhRBM8rxKTX8XV5JrnlpCB/81VKMim9iOFw8z1SJ6yQ6UoQR7OcghjgIw2nqF1zyPZD50lDOEIQy+9b5FcYrwpDWORJK5XV5Hz+AkeE/Znu/ULAwkn9jfM9i8lEqiLP2Mi1wptov9Q0jG0fQuRym+8Y6jkCiI0orODQaz4OGe4CsAhkUVyrHVOkirmFosSN9AzdhipKSb7IrZgrBiQdg0N+swNm4TaSqdI0HTrv860YzAM8hIY5CrNZTmmrjDUv7mGfMeaomqjDXuBjKCgI2oE7GPZrL+f8JgwN7yE2rDFPSRjZC4FRK3oo9sdJepDVOwt/x03P3khVqyivt7Oj56ig54wwxW/lbrs26UB6rJSnSRrQDYqncyUy08zhY5Mywsw+SQPuIKPP+sfuM7e6a77jLjIoqIBJJIidAVrBSWTRrNCDz7sP2Kia3/YsHTO5nz8Pb/s3ff4VEUbxzAv7PX0itJSCAh9N6b9E5AQEAUBaQooigoiIBiARQRVED8YUcFRBAREVEQUJAq0mvooUPoJT25u53fH5dsckkuBRLSvp/nycPd7uzs3DF3t/fezLxY9ugxSCkRf8sMa5KKR+ZVRrPxZdHoxUAM3lobBmdO5SlM0o4IPKdeyrBfSgkpJVoqjbRtaafoOTJFPxrNRH0AtmnHKTqJFriASMxXl+Mj67fayEBv4Yn/Gd7Ci7r+6Ce6Y7dhOZ7RPYYoxAAAEpEEVzjjUaUz3ETx+DUyr6UEZy/hKhJkYjalMyeEwHzjh9huWIoLps3oo8t+1E34T9exrM8x7Jwdib1fXNWCgAAgpe0vOynvGao17zIs0oPXWWmJr/Xv4YjxTywwfIj6uhowCgM8FXf4wxf+8MVPxtkIVcqgu64dANsPvX9Zt6Fb8n0A2CZT32NSvvxclFe0bc2U+g/mAdED4yd88Jb+BVRAMC4gEk4wwh2u+MswH81FA1RFebgkT3cE7EdBE5UU5USQNnI/FvF4x/xppuXKKAH43vARftDPgBtcEIt4RCMWETgPPfQ4jQv4yvojDMKAQbredsfOtS7Fj5Y/Mq03rdhEifgkiTtxEkkWFbdiVZgtKm7HSSSYVUQnSMQkSiSYbWXMyWWSzCruxNm2xyRKRCfYbt+Ok0gyp9ZzJ85Wf2oZW91aPRYVd+NtZWITJaISJBIdlIlLsv3djZdIshT+64xSwhtCCG3ad6CSmhzpVd1QtFWa4gKu4B3LHERL25p9Y/XPwiP5x9ujiMAFROJZ5XF8aphoWysctsSg/zO8hZluL+FDnyHo5FEDQzw7oKyXgI+rHmW9gaquAfDyiYPOJRbC4waE+20cc96HyOS1W4sL/jz9AHko7igrAjKsN6dC4lXLdCzRf4yf5OrkbbaRgDHpFqNMO5WEbALhhwHKIzglz2GHPAAfxQt1rFWxG4cBABvkf+iJjvdU97O6x/G3+i8AWxainGaeTK+uUg3tlYdggB7r1G0IFWXgIV1RS1TBWMsH6KBrbvfFfq51qdYHvOCBBJGoDRX1hy+klHjO8jZCRRk0ErUQpmuV2WnpAbl7IRF3z6UGHc7+cxdf19mP64fjIHSAtAJVevrgsWXVoOgLfyC/pKknquERpQPOyUvYKHfiRQwAADyb9CbOy8s4Jc/hOd0TmJs8BQUAtsrdGIReWdabcrHRLmkgEpAECyzQQcHf8l8oUFAGAVhr2YxKIgR9dQ8DsK0VNcvwhrYA/JZ008GiEYtqSoW8fQKKkVBRFjvkAQC2H3CqpZkalBut0gR9c+Lshrvaa92OANpPKwdn76wvt5JirfixSzgubI2GR4gJT22oCZ+KzrlsNRUGOqHDIH0vAEAFpAZqRukHY5R+sF1yhx6iPfYI27XKz+qf6KMPQyNRC7vlYe0HAH/4oLGoDVWqdsvHVFfurW9T4TZU9zimWr5Mvidw1PgnSik+8LC6wUO4IVqNRRwS4Acf7YstUUkzWf8SllvXooIohx3yAI6rp1E1k2ujlDV/16pbsDDNzAwLbNNC/1Q344KMxDO6x/CLdS0SkYSLuAJPuOM5y1uIlwl4xvBYhnpVqWLWBjPe/N221I+ELZmKKm0JU6wy9T4AbcZfyr7clBEi9cfE9OdI+TctrYwCWFX7c6RwMwG/DHVFuyqFPxSU8tmZVhOlDpytttlVl3ENUy2fY7phHEqLUpisfwkzLN/CRTjjjLyIuko1PJxuOZ3aSlXUVqpCSomRGAid0GGC4flMz/9Y0khcVK/iKCK0bS/rBmEG3sjbB1oACnRE4ObNm9GjRw8EBQVBCIEVK1bY7R8yZAiEEHZ/Xbp0ybyyND777DOEhobCyckJTZs2xc6dO/PpEeTei7oB2m0jUheqvIMovGidnCFZSEqGuRQNlBr528AiSAiBb43vY4Pxeyw2zMLX+ilor3tI279DPXDPdXdT2iIQfhAQuCKv45J69Z7rWq7/DIfVk7as0FKFFRL/yn24gEhM0y76ALM0Y6FlhXb/EaU9riYnDfGBJ0zCiMu4hoXWFZhi+QxfWBffc5sob3gGm+ARYoTQAUIBPEJMuHHUNhw9JTBw4rdbOLnqVgG2khypqlTANnUPDshjWKtuwQ15G3EyHj+ov2Gz3IXLuIYvrT/icvJUUcB+RGC8TMBu9RAOWY9jtmW+Xd21larYblyqXXRaoUJCorqogAuIxA4cxCTL/zKsOZgSKDihns3Q3lZK4zx65MVPyohAb3jgkLy30eD3olxbT7sgoFAAnbPA84fro/lrZR0fmOzQD9dxYZtt1Gj0pURse//epzZT4ZY2uUMrXUOcl5exUx7E7+o/uCyvZfjC0lXXBopQcF5Gwpr8A6EeOngJZg0ujlyEM55KziqfgEQsUVcBAH4xfopFhpna55CjpSmISgJv4YmRuoHYIffjpDyLb63Lsiz/teG9DOu3AqkJJ0KVMvjcMBkXYRt1fRfRMMOCeeovGGuerq1DJ6XEx5Z56HJ3NN74PQESqUt6pQTbUgJzaYNvKTet91Am7eVh+nNkNoFAK6NmPEeKmETgleXxGXcUEUIIzNRPgBNMEBDYqx7BYavtmu953ZM4aPoDfxsXYLVhLobpn8iynuwSLn1nmI7Sip82K+dhpQ1+tv6Zp4+noBRoIDA2NhZ169bFZ5995rBMly5dEBkZqf39+OOPWdb5008/YcyYMZg0aRL27t2LunXrIiwsDNeuXcvyuAelq66NtkhpEpK0DDaucMZRGYHY5LnsnnDHB7px8IGn3fENlFoPtsFFiE7o8KiuM4QQ6KWkjgCMkOfvuU6DMGCUbgj84Ysd8iAWqL9mf5ADTooJvxm/QE1UhoDQ/q8B4BPrAqy22tYUmmNZiONIXQdosO5RXJU3AaROCz6ppmaT44LhBU9nVDBkWx00G1cGrSYFo+aTmU/fLgKz+kskJ2HCU7qeAGzTb3+w/pbhfeNKugzep+UFnEwO0v2r7kPLpH5obO6D1y0z8K+6167seZmaLCIYgRigPIKeIvU96oy8iBfNkzKdynoyzZpggG192UaCnwOOtFeaIhiBuI0o/Kfuf2DnrdXPD48urYrGL5VGg+cD0GR0EJ7ZXhd+NVwQczUJidGWLI8XaRcIBiAUvlmUBOkzHS6w/oruSlu7Mt0V23ThQ+pxbZsXGAQsztJmkJ5rWQpVtX2jP6qmjkgJFdn/wEBUnA3TP6F9j15oXYF46TgRnxACE5ThKAWvDPu+sy5DgpqANrommKOfiPqorn1X3yUP4VPrDxhtnopI9RresszGBMtMbLTsgd2HdhF0+W7uk2kWJhWUYEzSv4RKohw2y10YbXkfUkrohA5uwgWlRSm00TW57/N4CDd8Y5iK1kpjfGeYhvqihpb8s6gr0EBg165d8d5776F3794Oy5hMJpQuXVr78/b2zrLOWbNmYdiwYXj66adRo0YNfPnll3BxccF3332X182/Jz7CEy3QQLufmLwQcPr55pVFOQzX98Nea7iWGccLHghG6QfX2CKsrlJdy7AZjVgkqknZHOHYo/rO2gLf31mWwZph7lfO1VKqYI3xW21R29LJawWaYMST5tH4OGke3rZ+opVvKuqipqiEONh+tdECgWmCA1UYCCwUPMqa0H5aKFpPDEGzsWUQUDd5LYrkqcDV+/qiUjefgmwiZWGoLnX09bfWZTiunnFY1hse8IcvPrcuApBxvcBR5ve0X48B4Ig8pd1+U/8CvjFMhYdwgynNWqbz1OUIS3oGkar9xcUJedbufhNRByZhBGWujlJNu0BbpW7KMrtzXqvxeCmE/a8iHv6yEjrNLA//Oi7447lTmF16F2aV2oljv950eGztgX4I7WD74c8r1Akt3+KX/JLiGf1jdlksa6AS2qAJOist0UTUQXvFNsPhZzV1BEJ5sH8UZ9WUiggTrdBSNEQikrANth+XFlpXwBdeeFTpjEd07Qu4lUQFy0d4ok9y5uzbiMJydV2GMmZpBgBEqOfxjHUCbiQnA0lhG5gRjy/VJQCAYfq++NAwHj7whCfcAdjW7f9W/RnVk7pipvVbGGGAsBoBFO0f7EyFf1Zwtl7Q9dMyPm+Vu7FY/T1fzlNKeGOt4Tv01HWEh3BDEPzz5TwPWqFPFrJx40b4+/ujatWqeOGFF3DzpuML6aSkJOzZswcdO6aOtFAUBR07dsT27Y4TPSQmJiIqKsruLz/10Gf88FYhYYQebsnpqBcbZsEIA9bKrVoHry9qFIlEIYWBTui0xCx66PGXuu2e6woRgQhTWgIALuIK1qlb76ttfooPVhvn4nXdc7iS/IU1FvFIghnvq19o/98CAt8ZpuFGmsxE/rBlDE4bHEibNZkKB2cfA4burovxMQ/h9YSH8FrsQ+jzUzUoOr5+C6sqSnm0UWy/HPrAE1ukfXBPpLngu4NoXMNNfG1disPqCWxNt46fL7xwUKaO3jmcZopqTaUyhBAYbRiCM6aN0CN1SsJdGY32SQOxT01NFHRSpo7+BWCXsIQy8hTuaJ38HJ2VF+2CsPklYs1trBxyEv9+eBFqmgW4rx2Kw/65tuUkrEkSf73iOLhscNbhqb9rYXzMQ3jxZAN4lXNyWJaKl3IiSLvGMAkTKiR1wCmcQ5jSEpuMi+AqXBAn47EqTSbiWkqVgmouPSD99N2xVe7BWVzCN5afcVSNwNfqUtzEHfyh/oOHlHoF3USiAves3jZ6thS88KPlD7vBGsfUCDRMehR/WbfhJ+sq3JJ3MxwvIRGNWLxumYHWif0RJWPQStcYW4w/oolSRysjYZuqDwBJMAPuN+HkF1mkQ4G96hiyL1TIOQkTZuvfBAB4wB0/WVfjjsyfOE5KDGaUfjAOOOVPwPFBK9Sx4C5duuDRRx9F+fLlERERgTfeeANdu3bF9u3bodNlnM9948YNWK1WBAQE2G0PCAjAsWPHHJ5n2rRpeOedd/K8/Y70UcLwJX7EGdivAZQEC0rBB4sNsxCiBOGoast2k6KpUveBtbE4aCxqY6VcDwss+F39B93RLvuDHBim64s/1c0AgG8sP6Orrs19tc0oDJikfwl+wgc/W9fgP7kfABCdPF3YA274Wj8FFZUQu9FGpZNHBKYNBKbNmkyFhxACRlfb+5TCBK9FQl+lK/aoh7FDHkCsmrp2yhz92+ijhKFxUh9cwlUYYUAikmCFFW8mfYydOAgAKAUfxCMeG+VOfG39CV8q7wIAjqipwagaaZJX+AhPDFR64Qf1N5hhwWVcQxRi8GTSaLyvfxWP6NrjtLxg18aWSsP8fAqKhW5KW2xQ/wMArFI3oqZSOd/OFbk3Bj8+fARCAaQKJMVY0fbdcgAAvSnNVwQB6EyZf2WQUuLOmUQ4eeng7FP0L8wp96bqx2AGXsdiy+94X9rWDH7VMh2R8jom6kdimXWt3XIilZVyBdVUekB6K50wFtNxA7exXF2LE+Yz2lqzr+qGoowIyKYGouKvmaiPEboB+M76C/6W/+Jb6894Tv8k1lg24w3rTJyQZzDQPA79lG54TAnDTnkQB2TmMYGd8iDes3yODw3jUUEJxmLDLDxjnoCOSnN8ZPkGF3EF7nBFW9EEd3TR+PhlX6zcbsKdOKkl5NArElYpoKQk+kiuWyYn71BVQKdIWFUBodiOESlrASI1wYdBJ2FRbT9BqzLN0kIS0OkAqxXQ6SSs1uR6kmf5KgJQAegVwGJNbY9WD2x1lfdVMLRZ8Zhd0lnXEi9aB2CJ+gfWqVsx2TIHsw1v5ln9O9QD0EHBNnUv/mf5HvWU6tibcCjP6i9IhToQ+OSTT2q3a9eujTp16qBixYrYuHEjOnTokGfnmTBhAsaMGaPdj4qKQnBw/i3CW1YpjXKiDM5IWyBQBx0eE12wXK5FRRGCBootM/AqdaN2TGWE8gtgLjXX1cdKy3oAwM77SBgCAGFKKzQWdWCCATvkAZyXkQhJnt57r4QQGKF/ClVFeTxlHosg+OMsLiMJSRim9EUvfScAwFH1FGqKyggS/lrfOJkcCHSDCwLh5+gURJQLnXUtMcJi+1HonLwEwDYS8CldTzgLJ5QTZXBJXkUiklAZ5RAgSmGj3KEt8dBRNMPPcg0AYK8aDgBIkmbEyDi0FA0RIHxhhYqvLUuwSt2ExkpttNc9hHnqLwAAZzghEUlwEiYMsLyKEeoAbYSwF9zRRWnNH4Ry4GGlLV7FdADA75YNGK8flm/nitwTA8jUpECXdkRr+3yruqD1O8HY+t5FOHnp0G1upQzHS1Xil77HceyXm1AMAo8uqYpqj/rmW3upcEoJVrsLN7jBBTGwvWfMsH6L7ep+JCB17atWojEeEvUKqKX0oJiEEQN1PfGxdT7MsGCfPIJOogXO4hLG658t6OYRFQpCCPTWdcZnyUu1TLT8D7cRhcmWOSiHILjBBSEiEJ7CHd7CE58ob6G6uat2jQfYkncmJV/HfWr9AYN0vVBLqQJ34Yqlhk8ghEC8TMAc60LUFdXQUtcIL+sGQZgEanUukIdN6bxiGIL5icsBAF9bf0I/pTua6rK/XlalCgusMAr7H2ETZRJMwojFlt8x3DIRvvDC47quuISrqCCD7ZIHFmWFfmpwWhUqVECpUqVw6lTmU31KlSoFnU6Hq1ftM7tevXoVpUs7XlvPZDLBw8PD7i+/PZcmg407XPC84UmsMX6HVca5KCVs6yD+btmglTmDi2is1M73dhUn3dIsuH0GF+9rrSid0KGLrhW2yj24gduYZ/klD1po01HXAluNS/Cb6UusNy7ARdMWTDWmBqZ3yUMIlyfxl7oNZUQAEmUSziZ/gFUWoZwuTpRHgkUgyokyAGxriwJAiAiCs7BN0/QXqWs8vqF/AVvlHi0ICABtdU1RXVQAAITLU4iXCdgrw3EUEdgq98AEExKQiFGWqVirbsFy6zp0VlpCn/ybnAkmjNANwPHkNUDT/mp9B9F4Rv8Y3ASHl2anvFIWtURluMAJR3EaM83f2r3/Xw+Pw2+DTmDVc6cQdSljgpacitwTgxO/39KyhQNAlR72QbzWE0MwIaEZXrnaBOVae2ao4/KuGBz7xbbkiWqW2PD62XtuDxV9rxiG4IbTTizSz8RueRgAcFPeQXiaKe675aF8HeVKhcfQ5KQhhuTPiIPyGDYZftA+k4jINlNigGLLtO0ND8yyzAMgcRaXMED3CDYYF2Ky4WWM0g+GoigZEjKlnamhg4LFltRpnynfsUYbhiDCaT2Wmz7DKP1gfvcqZIJFIN7QDwcAlEEA+ppHYbea9ai9GBmHfuZXMNw8EbPN81ExoQP6JI1ESEIblE1shSeSRmOG5VsAQCSuY7d6CGUQwDUCC8rFixdx8+ZNBAZmPhLLaDSiYcOGWL9+vbZNVVWsX78ezZo1e1DNzJEeSjt4wg2A7QveT5ZVaKE00CLS19Sb2IHUUWytlUbwFO4F0tZ7oav6GHS1BkH414MoVQPCtwaEfz1tm67WIOiqPpZ9RfehogiBLrmLJyBRG4F5r4boHtUStyywLrdLBnC/KinlECwCUV+pAS9hH4hOmRpshAGNRW2clhegwjYGnBmDifJWS2E/8jptMh6/NIHAqkp5PKrY/xTcSmmkjdq1woqD8rjd1P6WSkP4C180FbZfKY/IU7ghb6NV8pp253EJA5RHMF0/FuN0z8KYJpnICN0A1JWNsC/eigS1aGeqexB+0M9EU1EXMYjFW9bZWlDVkqBiYdtDOLz4OvZ/dxU/dT96T/Un3LFgYbvDiFh9G1ICHuVMePzXamg0IuOPjkIRDr80GFyVNOUAg1vGZU+o5OmjD8NfxvnopLRAD107bW0qAHhS161IXQ/SvauklMM64zwcMa5GO+Uh/G1cAB/Fq6CbRVToTDO8inmG6eiv64G7iEZb0RRv6l7Ax/o3MvyA+qJuAOqhunb/mDyNBqgBADDDglnqPESo5x9o++n+vawbhLd1IxCNGFzFDfRJGokKCe0xIukd7EoOCsbIOHxm+QGzzfNRIbE9flPXY7H6O9apW3EJV3FTvYNruIloxOI39W8cwSk0EDUxTOmLtcbvEOG0Hr8YPy02awQWaCAwJiYG+/fvx/79+wEAZ86cwf79+3H+/HnExMRg3Lhx+O+//3D27FmsX78ePXv2RKVKlRAWFqbV0aFDB3z66afa/TFjxmDu3LlYsGABjh49ihdeeAGxsbF4+umnH/TDy5JBGDBMSZ36/Kv6l93+NeoWlEJqhuTuyr2vb1cQDK2nwtDpM5j6b4Jp4A6YBu2Aqf8mbZuh02cwtJ6ar21QhKJl5QWAv63/3ld9ZUQAuim2tQEv4xpWp1m4O79ckle1NcIaizpwEiacSJsxmOsDEuWp9EswVBapa3H5ITUQeF3ewoeG8QhCAAYqPfGc8gQqiGA0FLW0MnvVcLtEIikBv266ttq21eomu1+nV8mNGK0fgimG0TDDAgMMKI+yaGzug4onotD0dAzqnorGdYuaVw+5WKqihKKFzvZ/+b5+DOoptov+mCtJiLthgbTapvNeOxR7T6PF755LRFK01TYlWAUSblpQtZdvrkcJ+NdyRdv3QmBwUeBZzoTumUwfppKpsVIbvxu/QinhrY0IA4Bnk0eJUcnQWmmMYCUIfxq/QWVe8xFlyl/4op+uOzyEG8ogAF10rfG2YQQUkTHUUVEJsXstWWBFQ6UWPJIH6ADAbMv8B9BqyktGYcBz+idQU1SBO1zRU+mIy7iGH9Tf0DFpMH6w/IZ2SU/hVct0rFE3IwoxqIBgeMANoaIsyiAAXsIdzjBBQOARpQN00KGfrjvmGCfCIIrfGs4FGgjcvXs36tevj/r16wOwBfHq16+PiRMnQqfT4eDBg3jkkUdQpUoVDB06FA0bNsSWLVtgMpm0OiIiInDjxg3t/hNPPIEZM2Zg4sSJqFevHvbv3481a9ZkSCBSGIwxPA0leRnRa7iJDdbUzMar1Y122WIfTjeMmXKmtlJVu71Gbr7v+obpbFO6KyIE31iXQpX5+2V8W7rRRIB9FlGOCCTKW63SZeWtkiYrd0Bysh4AuCpvoqwojROmtZhrnIr/Gd+GEEIbEQgAu6yH8a+6z3YsfFEpOaiY9oedVepG7f29HMrgspq67ogKCTPMOIOLWH2rNGKT327OmiV+vGvOmwdcTClCwVv6F7HZuBijdUO07R7BJpSu76rdr9Y798E7APCt5gyfKk7aSuDV+5bK+oAstHwzGK/FNsPI040Q2NAt+wOoRBmu64endD3hCmc0EDXQUKmV/UFERCXQKP1gRDitxyj94CzLfWAYBxc4AwAssGCB+ivCRGtt/wL1VyRJXmcVNX7CB38av8FfxvmoqITAJXntbROMCFdPask2d8gDKA0/DNL1wlbjj/jcOBkRTuuxwvQFbpl2Y7NxMRYbZmKzcRGe1z+Z9UmLsAJNFtK2bdssf4lfu3ZttnWcPXs2w7aRI0di5MiR99O0B8JHeKKRqI2d0pZx8i3zx9ikNIIVKtaqW7RyNUVlhCplCqqZRVob0RhrYAsAblJ34ra8C2+RcZ2mnOqgNMMzusfwnXUZItTzWGj9DYP1vfOquRmkn1YIwH5EIAOBRHmqogiBC5wRh3jtfoq0U4Ov4xYAQC/sP0ZriyrQQw8LLPhP7kMUYgAALZVGWsCpmqiA8qIszsiL2KTuRPukgfCHL87hEuapv+AjOR4GYcDJ5Nd6aZSCv84AJK9HKAF46bg+TU40UerY3Vd0AgM31sLhxdehd1JQq/+9JVvSmxQ8vb0Own+8AZOXDjWfZNImyh8mYcQXhnfwgX4cLsmr2R9ARERZChL++Eg/HuMsHyAOCUiCGQISJhiRiCQkwYyBSa/iJ9P/HNYhpcSBSyqEkEgwA24mgbvxEt7OwJ0EwN0EJJglhBAw6IC4JMDDSeBOvISXs0BUgoSrCUiy2LIKG/VAbBLg5SxwOy61jIsRSLLayjgZgJjE1DKezgIxiRJOBlu2YYsVcDbayng6A3fibGWjE1SYDAIqALNFwt9dh/K+RWqFuBwzCgPqieqop1THC7r+eNUyDd2VdtipHkQiklAFoVhmnIMqSvlMjxdCoLGw5WVIO8unOCrUWYNLgqd1fbDTYgsEHsAxfG5djOqiIuKT14Pxhy+eVLoVZBOLtLpKdSQn3UQs4tEqqT/+Ni5AaXFvozcUoaCPEobvrMsAAG9aZqGHrj187iO4mJWUQKAOOjRTbCNnr6k30UjUghtcUBnlsjqciHJJCIExuqdxRd6Aq3BGXVFN22cXCJQ3Mz3eSZhQU1TCAXkMZ5C6LmnaKcdCCIzWDUEc4vGndTM2y13aL9OJSMJRGYEQBOFacrCxsgjFG34mHE60Yk+8Fb08DOjvWfymKDwoJg89Gg6/v6zvAODsY0CjEfdfD1FOeAg3eAiOGCUiyguDdb3xmWURjsCWjOln+Sd6K2FYr25DDOLwm9yA15NmYKrhFehExvV7hy+Jx7wdRXPUoBDAN/2cMbCJsaCbkq+MwoA5hokAbGtBlkEAhuofdxgELGkYCCxgrZXG2m0rVEyxfIaeSkdt2zXcRBtdk4Jo2n1JnN8AMvYKYEkA1ORInKID9E62bXonCNfSMA3Zm6/tqJUus54RejRLfBzdlXZor2uG3rpOua6zg64ZHrOGYZm6FjVFZfxkXY0X9P3yqsma8+pl6KFDIPxRVgTATbhASomtcg9iEIdyogzcFNfsKyKiXHnL8GKm2/3TrBF4Td5yeHwQ/HEGF6GDgijEQkJFHdkIwy7F4UySiud9jHje0zbVYKn1TwDQRiACwB41HIlK6sVlFaU8fPQK1oQyCEBUHFgSVPzzxjlc3h2DGn1LofFIBpSJiB4kvdDjU+NEtE8aBMA222KD+i984Y27ybM5flR/x1FzBL43fGiXpOlqtFpkg4CAbXThlDUJxT4QmNYo/eBsp4yXNMVzTGgRUkEE26WgjkEcflHXaPf94YNGRXBYqjTHAknR0FZSh2q7nbItKdpWJp/5C19tgX8nmNBFtEYkrmOuuhTjzR/e0yLxADBF/wpKoxQ2yZ2YZvkiX9aRWKj+hoPyOK7hJp7R2TIsn5OXEYM4AEBNwUXliR4kP+Gr3U6ZGpyZc7iMKMTgNqJghRWvKkPx5ZUy+OGOGZvjrHjqYjwOJ9h+IGmnNM1w/F4ZbrcEQNqEJZR3zHFWnFl/B7dOxWdfmCgPbZ16ATs/uYwLW6Kw9qXTOLXa8fsJERHlj+ZKA3yrex8m2AJidxCNq7iZsvwvruIm1qpbUCexB9YnJ508qB7DQuvyAmpx3rkTf2/fgan4YCCwgAkhMFT3OJqLBlAgMFY31G6x0od1bTPNeEQ5111phyaiDkqjFFzhrL3ZX0AkDsnj91RneaWsNtXvGm5hpbo+z9oLABZpwXcW2/RjCYmOuuYAgCPypFamBgOBRA+UNzygTx5Ifz2LEYFXZGoCKw+4oZTijeNJasoqBZAAIpJsmT8ChX+G4/epR3BCPavd51qgeS8pxopvGh7Aoo7h+LzqXhz5+Ub2BxHlkVsn4qF9BRPAzeMMRhMRFYQn9d3wpPIwAMAHXohFHMqgtF2Zq7iB7ubnMM38JdolDcSbSZ8WRFPzlGvJGQxIDjDCVAg0UmrhX7kXKiQOyROIRGrWyLTZJeneuAgn7JQHcRaX0FLXCNP1Y7V9q9RN91zvUF1f7fZc69L7amN6a9WtuATbouBdldYIFrZpQ+HylFamllIlT89JRFkTQmjTgx0FAq/LW7iFO9r9obrHMEo/GEO9U6+4yuoF2rjaAoqBIjXJRCl4AwAOyuM4Lk9r29NmLqa8cXrdHdw8lhx8UYEdMy/l+NjrR+KwqNNhzG95EGc33s2nFlJxVnugP1IigSZ3Har08s36ACIiyhc6ocNXxvfQWjTSrt9CEAgXONmXgx6brTthgQVwvwHnSgcLoLV554VWpoJuAhUwrhFYCHRUmiMEQTiPy1irboE7bOu+OcGE9spDBdy6oq+GSF0nMFyeRDddO7xieR8AsMr6Dybon7+netsqTVBZhOKkPIvt6j6cUM/k2eKjK6x/abef1T2u3Q5XU0cEcmow0YPnJ3xwWV7DNdyElFLLBJxin3rE7v5leR0A8LyPCXWcdDiTpCLMTa9l/U07ItAHXriB20iCGYeTR//qoUeoYNb4vOYWlBqYFTrAvWzOL4iX9jyKO2cSIFXgp25HMPpKY5jcc385JVWJc5vuQqpAaDtPCIWZoEuKyt19MGxfPVw7FItybT3hkYv+R0REea+vrhs2W3YDANrqmuIv/Xy8bZ6NleoGnMI5CABXrrvC5XonxOuvo+tD11A51AizVcJiBdycBKITADcnICZBwskgkGRRoQgBRQBmqy2zcHSiLaNwVIIKZ6MCs0UFkjMLJ5oBVycgJkHAzQTEJKow6hRYpIQAYNQBCRbbaL6YRAFXExCXpMKgKLBKCSkBk0EgPknCPbk9riYgPlGFTicgJaBKoIq/DsNa8HOnpGMgsBDQCR2e0ffBZMscAEA0YtFb6YRmSn24COcCbl3RV1NJDZiFy1N4UQxAbVEFh+QJ7JaHESmv243KySkhBF7U9ccv1rU4LE/iW+syfKCMu+/23pFRWKauRV1RDZ5wR2elZZr224IDOug4SoioAPgJH0ACZlhwB1Hwhn3G8D0y3O5+2hHezVz0aOZiX18gUt97nIVJGyV0TtpGqFUQwdALflTntbIPuaPz7PLY9WkkfCo5IWxOhRwfe/dcom35WwDmOBXxNy33FAj8Y9gpHPjO1j9q9iuF3our5roOKroC6roioC4TfhERFQYP69oAFtvtVepGTBQj8b7xVdSwVsKL5sl4/uQn+N93tSGlbUKlbZXApIJq7n0yI8kKjGjNYGBJxqnBhcRg3aPQQQcfeAEADskTGJqcIILuT9q19FJG1IWJ1igFb7RTHsIB9dg91/24rit2yUO4gygstK5Agky87/auU7ciHgk4II+hjlJVS1lvlmYcT04gUEWEwiS4uAPRg+aXJnNwZtOD96rpAoHJIwIdSfsjhAoVQfBHWZSGOflqlOsD5p8mo4Iw4mRD9PuzJtwDc/5+2vCF1LWDKnT2gme53F9Im+OtWhAQAMJ/vIGEO5Zc10NERET3L0j4o6GoCQA4II/hvIwEADyl64lDplU4vaMhIItP6OR/m4pqEJPySvHpzUVcoPDDCdM6nDCtw3BdP2w2LoarcMn+QMqWh3BDCIIAAEfkKUgp0VRXBzdwG/+o/2GLuksre1dG56ruUsIbvZVOAIBbuItf1b+yOSJ7q6yp6xY+rLTVbp+IO4cKv9ZC6D/VUBOcFkxUEALSZA6+lknm4JRAoJKccy5SXstQJi1n4QQveAAAYmU83jO8gou4ou1nILDw6Ty7PJ7aUBNPrqqOJ/6onmF6eE5E7omB0V0HoQBCAUxeOhhceUlGRERUULrpUtfmb5rYB/2SXsGv1r9QTgQh1EfBPXzcF0o6AYT6FJMHQ/eM840KkTIiAAAw2/BmAbek+KmpVMJ59TKiEIMLuILaInUK1gl5FgAQoZ5HraRucIMLAoUfDpr+yFHdw/RPYEnSKgDAHPNCPKl0u6cvhoBt1N9adQsAwBPuaJWcmVi1SPzZ9jIe2z3cVvC1a8D0ezoFEd2HGqISGopauCKv46x6UcseDtiyBack+fGAG+4gGjGIQ7SMhbtwPAUwUPjhjoxCJK6jo2iOFmiIGMRigv55VFLK5ftjotwRQiC0ndc9H79j9mX89YptdLfeScC/ris6f1weOgMDgURERAXlcaULPPSuOK1exOfqIqxQ/8av6l+YLsdiUtdBuB0vsfOsBbYV+yRE8r+qBIQAZMq/sI22sq32YisDmXoTacoCKd8ZZfrmJBcV6bapdtukBBQhIAFt7WqZ5swZCVT2U/BpXy4/VtIxEEglQk1RGX9iMwAgXD2BMKUVTDAiEUk4kTzddpW6ERIS0YhFvEyAKlUoIvsvZs1FfVQXFSGlxFFEYLB5PL4yTIGzcMr22PT+VffhDqIAAJ2VljAIAwDgengcEnbrtHLKV34MBBIVAG/hiT3yMADgtLxgt88CC4bp+mKvGo54JOJO8gjjK/J6toHAozIC8UiAURjwp+kbRCMWvsIr3x4HFZw9X0Rqty0JEm3eDUHZZh4F2CIiIiKqrISishKKTywL4Ko6IxbxKIPSmG75Grt0hzC3/3twEfy8puKBgUDKF4YOswFLAtQb4YA1eQ0CnRFKqZpQb4RDKVUT0Oc+UHavaiqVgeTF3cPlKXQVbVBJlEO4PInT8gIs0oJV6katvAVWROI6yiAg27qFEPjT8C26mJ9BvEzAanUT5luXY7iuX45GBkopMcs6D+VEEH6w/qZt755meLpbkBGqyQokCUCR8K784J47IkqVdqruyeTRxCnKitKYY5gIAJhgnoEj1lMAgMvyGiojFI4EIjVzcKS8jupKRfgmrxdLxY9vFWfcjkiAtNqmBXuX5/s5ERFRYTFKPxgv6wZhlmUe5qm/4JK8gjXqZmxQ/0M3pS3+PGLBlSgVQggIAaiqhEEnYLYCRj2QaJHQKwIWVUIRtvF7qpQw6gWSLIBBB5itEoqwZfEFAEUAVtWW9ddWRsJsARQFUAFAAjoluYweSLQIWxmr7VjbiEBArwCW5DIJZsCgs7VDpBmYWNZLQadq+nuewUbFAwOBlC90Fbra/q3SO+O+TLblt5qZJAypIkIRLk/CDAsOqMewVd1jd8xpeUGbrp2d0kopTNGPxhDzawgU/njF8j48hTv663pkeVyCTMQb5pn4XF0MZzihv9IdANBJtEBnpYVWztXPgP+W/4qg6bWR6B2PF2YPzlG7iChvlRfB0EEHK6zasgKZCRRpgnvIecKQy/IaqqPifbeTCq/u31bCulfOIOp8IpqMDoJPZU7PISIiKkyEEHjV8AyqWyvgKfM4lBZ+eMz8EgasXYOF/7gXdPPu26SuJrwZxh8iSzIuSEMlQlVRAVURiqaiDqIRCwConGZkzzJ1DawpQwaTnVEv5uocPXTt8ZV+ijZKaIJ5Bu7IKIflI+V1dE56Gr+qf8EHnohHAq7jNsogAB11zeEtPLWyqlTxX/ut+GHdLOxbuhp+5d1y1TYiyhtGYUB5URYAcFKegyrVTMulDe5llzAkyC5omHVZKvpc/Y3ovagqBm+pg+p9ShV0c6iQir2WhIXtD2FmqR1YO+o0pJpx/SgiIspfD+vaYpJ+JCLkeQDAzzt12RxRNMzfwazBJR0DgVQimIQRrsIFO+RBrFI34pa8iypKqLb/X3VfhmPSr/+VE4/pu6Cn0gEAEIM4fGZZlGk5q7Riv3oEe+URROI6yotgLDF8jKXGTxDhtB6j9PYj/i7hKuIQD4BZRIkKWsprMA7xWnKQ9OxGBMrsRgTmvCwVrIg1t7Hr00jcvZCYq+NunYrHrjmXcW7T3XxqGRU3/7x5Huc3RyH+pgW7/heJ4ysyZiknIqL894zuMbjBBQBgDjhR5AMoOgHUCiweAU26d5waTPlCvboPsCZBvXsGsJptG3UGKJ7lod49A8WzvG3NwID6D6xNLZVG2Gs9AgmJ7eo+VBHltX375BGUhh9CEYT/cAAAcEbmbkRgio8Mr+Nm0h2ckGcx1foFuunaop5S3a7MPnkEj5pHogz8EYdEfG6YjLpKNYd1nlDParcZCCQqWFVEKFZjEwDbazNYF5ihTCByPiKwtEgdFZZdWSo4abP9bp50Hs8fqQ+3AGO2x906FY+5dffDHGcbPdrzh8qoPcA/m6OopIu/ZbZLIhl301xwjSEiKsHchSue1HXDN9afoT45EY3XfgH9rRAAKZl6AVUV0CkSFlVAr9gyCSenBYaUKesBCuiEhFUKKEJCJpdJSSasQMKqCuh1tnpsZWx1pGQlVoSEVVsvMLlMmizGUgKKImGx2tYitKoiOZOxbYFAIQSqBiiY2p3Tgks6BgIpXyStfBKIuWxbCT1l6lzK7ZR/3YLgNOz4A2tTS6Uh/mf9HgCwVd2N8fphqe2FGVdwHc1FA0CmBAJzPyIQAEJEIMJ0rbDVYltzcJT5PfxjXGiXgXirugcSEhdxFR/qxmUZBATskxJUThPAJKIHr1K6hCEd0CxDGfupwTeyrC99shAqnA4vTv2/ib9lwflNUajRN/upvRFr7mhBQABYOegkTv5+Cz2/rwKdsaiPK6C8cOTnG1jzYgSETqD7N5VQubsPHnq1DCLW3IElToVPFSfUeJzTyImICsqzur742boGA7zDMHyAM6ooXKaJijZegVKJ0VxpoN3equ6Bt/CEH3zsyvTSd9AyBd/riEAAGKUbjKrJAbvL8iqWqKvs9qdNTNJR1wLZOSHPaLcrK+XuuV1EdP/SLiuQPnNwChfhDC94AMh+3b+0QcPzauR9t4/yR2ADVwgFgLD9nuVX0yVHxwXUtS8nVeDITzexfx5HfxJgjrfit6dOIO6GBbHXzFj+5HGoVong5h54+VwjPLOrDp47WB9OXvztnoiooNRTquOs6R/MMryBKgoHZVDRx0AglRilhDdqJGcP3iuPIEbGoRJSg2p66NBZaYnQ5EQA13EL0TL2ns5lFAbM1r2FlqIRruImxpk/wE15B4At8ce25ECgL7xQTVTItr602UmrcEQgUYFK+xrMOnOwLcAXKa9DSscL/ZuEEd2UtigFb0TgXJZlKf9JKe3+D1Jud5wZiodeLYOqvXzQ97fqOQ4EhrTyRK/FVeAZagJsM3wgFCAp2pr1gVQiWJMkrEnJ/U0ClgQV0mq771LKgKBG7tCbeLlORFTQnAWn01LxwSsLKlFaKg0BAFZY8Z+6H1XT/KJTR1SFl/BABSVY23av04MBoJ2+KYKEP5Jgxk3cwduW2QCAI/IUbsOWTbiF0sBuyrAjKWsEesANAfC95zYR0f0LgC88YJsSclw947DcI0oHPK3rg9G6wRmykqenQsUN3MYdRN9ToiLKG6f/uoNZfjvxgct27Pj4Ev4YdgpT9f9iusu/+MhjByL3xOCR+ZVRubtP9pWlUaufH/qtrgFnH9uoLq/yTqgzmOsEEuDkqUeLN8pq99u8G8Ip40RERJSvOM+ASpSWSkN8bf0JBuixzLrGbvpvueSRgOVF6gX5aXkBdZD1+n1Z+cAwDn8mbkI0YrFfPYqd1gPYK4+kaU+jbOuIlwm4ANt0wSoiFCJ54VkiKhhCCFQRodgtD+MyrmKNdQu66FplKPeO4eUc19lA1MSf2AwA2CvDUREhedZeyp6UEuE/3sDq508hKVYFJPDXmLPafku8bYTWuY13sevTSLR8I9hBTY6Vqu6Cl841wt1zifCp5MRgD2naTS2H+s8FQCgCnsGmgm4OERERFXO8CqUSpaPSAk/r+kCBgkXqSmyX+7R9uuSXQwWRdkTgva8TCNimBk7RjUZjURt7ZThetryHLdZd2v6UEYpZiZDnbZmeAFQSXB+QqDD4Rj8VPZT2sMCKPuaROJHFyMCcaKjU1G7vU49kUZLyw/aPLmHFgBNIilHtMrVmIGxTN++V0VUHvxouDAJSBl7lnOAZbII1SeXyAERERJSvOCKQShQf4QkfeCIRSRn2HZenAQCVEIJmoh500OG2jLrvcz6rfxzfJv0MANgvj8ICC1qJhriDGNQRVbM9fqd6EPVEdXjBI0eBQyLKf6FKWahWW0BolG7QfS8cXT9NIHCPDL+vuij3Tv5xO8O2hi+Wxo0jcTi3Mcq2tp8EPMuZ0PCFwAffQCr2pJRYM/I09nxxBS6l9Hjijxoo08S9oJtFRERExRADgVTiTNAPx4/WP3A5OZOnDjpYYcURGYE4GY8KSgi2y/22fVJ33+fTCz0+MbyF9kmDoEDBYZwEJNBCNIReZP8S/Fv9F/vlUQDA28qI+24PEd0/J2HCUsMnWGT9Hf3QHXu/voLbpxJQs18plK7vluv6AoUfguCPy7iGfeoRqFLN0fqhlDdCWnngwtYopDzlA9bXQmgbT0gpEXUhCSZPBQm3rXAvY4TOwP8XynsXt0djz+dXAABxNyxY2vMousypgOqPlSrglhEREVFxw0AglThuwgWfGybjroyGEUZ8rS7BP+oOWGHFQXkcDyn1UAreuIHbOJmcpON+NVcaYKruFSxX/8IeeRgAoMIKKWWWa/4lyiSsU7cCsGUYfkjUzZP2ENH90wkdBul7YdOk89jy7gUIHbBzzmUMD28A7wq5zyzXQKmJy+o1RCEGp+UFLgXwALV5JwTOvnrcPBaPWgP8UK6NJwDbepCeIbY125w8DQXZRCrmVEua6cASiL1ixi+PH8cj36uoM5CJZYiIiCjv8GdtKpG66FrjCX039NZ3Qi+lk7Y9ZW2ulC/gl3EN0TI2T875kn4Q0ob8tsv9GGQehzg13uExm9VdiEGcrc1Ka+jE/Y9QJKK8dXqtbVqptALWBIlLO6LvqZ4GnB5cYBS9wENjyqDb15W0ICDRgxTS0gO1+vvZbRM64OyGuwXUIiIiIiquCjQQuHnzZvTo0QNBQUEQQmDFihXaPrPZjNdeew21a9eGq6srgoKCMGjQIFy+fDnLOidPngwhhN1ftWr3nvWV7o1p8G6YXrwE47PHYHz2OIzDjsP47DFtm+nFSzAN3l3QzQSQ7su3avvyXUUJ1badlGfz5DxGYUBDUctuW4S8gM7mp3FJXs30mFXqRu12N13bPGkHEeWt0I5eAGxf2nVGgaAmqVODpZQ4vPg6Vr8QgWO/3syynobC9l7kATccUI/mW3uJqPARikCvRVXw+ArbNavQ2X5cKNfGo4BbRkRERMVNgQYCY2NjUbduXXz22WcZ9sXFxWHv3r14++23sXfvXixfvhzHjx/HI488km29NWvWRGRkpPa3devW/Gg+ZUEY3SFMHlDcAqG4B0FxC4LiFqhtEyYPCGPhWAS7tqgCffIs+b3Jo3CqiNSF/0/Kc3l2riPylHa7OirguDyD3fIwnkgajZ3qQbuyqqpipXUDAMAIAzopLfKsHUSUd9q8E4Iun1VA45cCMXhbbfhUdNb2hf94AysGnMC+uVew7NFjOLX6lsN6moq6qCOqIgoxdj8CSFUi6lIirEn3nq2WiIqGqj190W9NDTQeGYhei6ugzmBOCyYiIqK8VaBrBHbt2hVdu3bNdJ+npyf++usvu22ffvopmjRpgvPnzyMkJMRhvXq9HqVLl87TtlLx5SRM6KG0w3V5G/GIR6yMQxURqu0/oZ4B8mBGrpQS4fIkAKAMArDQMAN9LC9BJ3W4Km+gU9IQfKl/B/30PQAAi9XfEY1odBTNESrKwF243n8jiCjPKTqBRi9mnkn2/JYobWSP0AHnt0aj0sM+mZb1UjzgChcAwHF5BqfUcwiJK4sf2h/G5V0xcA0wYODGWihVzSXfHgsRFbyKYd6oGOZd0M0gIiKiYqpIrRF49+5dCCHg5eWVZbmTJ08iKCgIFSpUwIABA3D+/PksyycmJiIqKsruj0oWL+GBrXI39shwHJDHUDltIDCPpgZfwQ3cgm2tnxpKJdTSVcFW44/oprTBBUQiCWb8z7oQb5k/xi31Dt6wzEQ04vC3/BdP6LvlSRuI6MGq0NlLCwJKFSjfMev157rr2mm3V6kbcWjRdVzeFQMAiLthxrZpF/O1vUREREREVLwVmazBCQkJeO2119CvXz94eDheL6Vp06aYP38+qlatisjISLzzzjto1aoVDh8+DHf3zKeiTps2De+8805+Nb1EsuyZA5kUDXntAKQ1EZASQu8E4V8X8toBCP+6EEZ36Bu+VNBNBQA0EDUxD78AAPaq4RimewIKFKhQ82yNwHD1pHa7pqgEAPATPvjKMAUuFmccV09jq9yDfdYjWKduwzXYphD2UjqildIoT9pARA9Wtd6+eOKP6riwLRrlO3qifHuvLMt3U9rgTcwCYAsEtjF2sduvMxap3++IiIiIiKiQKRKBQLPZjL59+0JKiS+++CLLsmmnGtepUwdNmzZFuXLlsHTpUgwdOjTTYyZMmIAxY8Zo96OiohAcHJw3jS+hLHs/BWIuA0KxDYMBIIUCnF5t23Z6NeAWVGgCgQ3TJAzZqx6BSW9EqCiD0/ICTsqzkFJCCJFFDdlLmRYMADVEZe22URjwqX4ivrAuxnbLfjyhPIxyCEIAfHBYnsRHhtfu67xEVLAqd/NB5W6ZTwdOr6qogIoiBBHyPLape1G2nxFVfvPBiZW3UKqaM1pN5GcTERERERHdu0I/tCAlCHju3Dn89ddfWY4GzIyXlxeqVKmCU6dOOSxjMpng4eFh90clS01RGYYMCUNCAQCxiMclZJ7VNzduy7soC9valbWUynb7hBB4UT8Afxvn43PDZHgpHuioa4FjprXwivTB6uGn8NugE7geHnff7SCiwksIgW5KWyhQ0HFHJ6x6+jS8ypsw5noTPH+4ATyDTQXdRCIiIiIiKsIKdSAwJQh48uRJ/P333/D19c11HTExMYiIiEBgYOYLuRMBgEkYUVtUAWBbpD9axtplDj6hnr3vc+yQB3ERVwAAoSiTaZlmSn04CRNG6QdjlH4wTMKIJd2PYt83V3F48XV83+YQLAnMHEpUnL2ifxpH7/yNZl374OLSBOyaE4nfnz6Z/YFERERERETZKNBAYExMDPbv34/9+/cDAM6cOYP9+/fj/PnzMJvNeOyxx7B7924sWrQIVqsVV65cwZUrV5CUlKTV0aFDB3z66afa/bFjx2LTpk04e/Ys/v33X/Tu3Rs6nQ79+vV70A+PipgGydODJST2y6OoJ6qjtWiMBqIGImTWCWdyIlJeAwC4wBneIuuEASmklLh2MBbSass6Gn/TgujIpOwPJKIiK1D4QZxygiVehVRtr/3IPbEF3SwiIiIiIioGCnSNwN27d6Ndu9QMiSnr9A0ePBiTJ0/GypUrAQD16tWzO+6ff/5B27ZtAQARERG4ceOGtu/ixYvo168fbt68CT8/P7Rs2RL//fcf/Pz88vfBUJFXX9QE8DMAYJ96BI2UWths2QUAaCiP3Xf9kfI6gOQv+Tlcb1AIgWqP+uLozzcBAAF1XeAZwqmBRMVd6Xqu8Ag2IupiEiCBmk/kfkQ8ERERERFRegUaCGzbti2klA73Z7UvxdmzZ+3uL1my5H6bRSVU2oQhe9RwDNL10u6Hq47XmMyJWBmHu4gGAATCP1fH9lpUBZUevg5LvIpaA/yg6O4vaQkRFX5GNx2G7q6LIz/dgIu/ATUeL1XQTSIiIiIiomKgSGQNJnoQaopK6Cia4y6icUxGwEt4oCxK4yKu4Ig8dV+Zg6/I1FGrgSJ3o1N1BgV1hwTc03mJqOhy9Tei8UtBBd0MIiIiIiIqRgp1shCiB8kgDEhEEnbJQzggj+GivIKaydl97yDqvjIHX8Y17XaQyN2IQCIiIiIiIiKivMBAIFEaLZVG2u1t6l7UFJW0+0fuY3pwSqIQIPcjAomIiIiIiIiI8gKnBlO+UPzrQrqXgbx7DrAmZ7nVGSE8y0HePQfhWQ7CufCtedVSaQhYbbe3qrvxkFJPu39YnkBntLynetNODS7NQCARERERERERFQAGAilfGHsuLegm3JOHlLrQQw8LLNiq7sFQ3ePavvtJGGI3IhAMBBIRERERERHRg8epwURpuAoXNBA1AABHZQR84AUl+WVyRN57IPCyvK7d5hqBRERERERERFQQGAgkSqel0lC7vU+Go6IIAWALDFql9Z7qjEyTLIRTg4mIiIiIiIioIDAQSJROS6UhSsEbDUQNbFD/Q0PURHVUQDVRAYfliXuqMzJ5RKA7XOEuXPOyuUREREREREREOcI1AilfJP3WFzL+RrbJQgrjWoIdRDOYYMReeQQnrGcxWf8SllhWARL4W92Oukr1XNeZskZgYC6nBV/eFY3bpxNQoZMXnH0MuT4vEREREREREVEKBgIpX6jXDgAxlwGhAFK1bRQKZNw17V/pFlSwjXTApJgQpmuF76zLEIM4RMlYbd8f1n/wqv6ZXNUXLWMRgzgAQGAupgXvn3cVfzxjW5fQvawRzx2sD2dvvmSJiIiIiIiI6N5wajBRJp5Nky14pboeVUV5AMAOeQDX5a1c1XUlTaKQ3GQM3vvlFe129MUknF1/J1fnJSIiIiIiIiJKi4FAokw0UGqioagJwJYkJCWAp0LFGnVLruq6LFMTheQmY7BvVWcIXep9rwpOuTovEREREREREVFaDAQSOfCG/gWMUJ6CGRZslDu17ass/+SqnkikGRGYi0Bg508qoPZTfijTzB2PfF8ZgQ3ccnVeIiIiIiIiIqK0uOAYkQPddG2xTd0DFSrKojQu4Src4Yod8gBOqxdQQQnOUT1lRWk8pfREJK6hmqiQ4/M7e+vxyPwq99p8IiIiIiIiIiI7DAQSZeF9w6sohyD8T10IKSWiEIMoxOBVyzQsN3wGIUS2dbRUGqKlseEDaC0RERERERERkWOcGkyUjecN/TBHPxE+8IIPPAEAf6qbsVrdVMAtIyIiIiIiIiLKOQYCiXKgve4hHDOtwf8Mb0MHHUbpBqO10rigm0VERERERERElGOcGkyUQx7CDX2UMDT/5zoCDlyCwBxYpbRND/bxgRg4EMLZuaCbSURERERERESUKQYCKV/oG4yETIqGvHYA0poISAmhd4Lwrwt57QCEf10Io3tBNzPX5PffI2DoUNvtlG0p/65YAd3q1ZApwUEAUtr25mQtQSIiIiIiIiKi/MRAIOULfcOXCroJ+UL+9pvjnevWwermBiQlAU2bQowbB/n880BUFMS770J59dUH11AiIiIiIiIionS4RiBRLohGjYCsRvclJACqCuzcCTlkCHDjBpCYCPnaa5Bnzz6oZhIRERERERERZcARgUS5IMaPBwwGyN27bSP/FAW4dg3Yvj1jYYsFkDL1fmLig2soEREREREREVE6HBFIlAtCr4cybhyU4cOBLVuA338HWrcGunVLLpA8WrB0aYj33gP0ybH2Z58FqlQpmEYTEREREREREQEQUqYdskQAEBUVBU9PT9y9exceHh4F3RwqhKzVqwOnTmkj/sTBgxBubpAeHhC3bwNlykAYjZB37gBxcRBBQQXbYCIiIiIiIiK6Z8UlVsSpwUT3wmKxuyusVoiQEAgA8PJK3e7lZXefiIiIiIiIiKigcGow0T1QPv4YcHKy3XnhBaBWrYJtEBERERERERFRNgo0ELh582b06NEDQUFBEEJgxYoVdvullJg4cSICAwPh7OyMjh074uTJk9nW+9lnnyE0NBROTk5o2rQpdu7cmU+PgEoq0b07lGvXIA4cgHB2hnzrLcgbN/KsfnXpUqgjR0IuX55ndRIRERERERFRyVaggcDY2FjUrVsXn332Wab7P/zwQ/zvf//Dl19+iR07dsDV1RVhYWFISEhwWOdPP/2EMWPGYNKkSdi7dy/q1q2LsLAwXLt2Lb8eBpVUBgNk796Qn3wCOWMG1O7d86Ra9eefIfv3h5w7F2rfvpC//54n9RIRERERERFRyVaggcCuXbvivffeQ+/evTPsk1Ji9uzZeOutt9CzZ0/UqVMH33//PS5fvpxh5GBas2bNwrBhw/D000+jRo0a+PLLL+Hi4oLvvvsuHx8JlUjXrwOnTwNWq+1v927IdGsH3pNt2wCdzlanTge5dev910lEREREREREJV6hXSPwzJkzuHLlCjp27Kht8/T0RNOmTbF9+/ZMj0lKSsKePXvsjlEUBR07dnR4DAAkJiYiKirK7o8oW/7+QI0agKIAQgABAZDTpkFmMWI1J0SHDloQEFYrRPv2edRgIiIiIiIiIirJCm0g8MqVKwCAgIAAu+0BAQHavvRu3LgBq9Waq2MAYNq0afD09NT+goOD77P1VBIInQ7Khg3ASy/ZgoE3bkBOmQL1lVfur94ePaD8/jvEmDFQVq+GCAvLoxYTERERERERUUlWaAOBD9KECRNw9+5d7e/ChQsF3SQqIkSpUlDatk2dHqyqwL//3n+9XbtCmTYNonPn+28kEREREREREREKcSCwdOnSAICrV6/abb969aq2L71SpUpBp9Pl6hgAMJlM8PDwsPsjyrEmTQAvL9uoQACiZ89Mi8l166D27w/1rbcg4+MfYAOJiIiIiIiIiApxILB8+fIoXbo01q9fr22LiorCjh070KxZs0yPMRqNaNiwod0xqqpi/fr1Do8hul8iIADKjh0Q77wDfPMN0Ls3ZHS0tl9KCfXPP6F27w65bBnkhx9CHTeuAFtMRERERERERCWRviBPHhMTg1OnTmn3z5w5g/3798PHxwchISEYPXo03nvvPVSuXBnly5fH22+/jaCgIPTq1Us7pkOHDujduzdGjhwJABgzZgwGDx6MRo0aoUmTJpg9ezZiY2Px9NNPP+iHRyWIqFgRGDwYskULyAsXIH18oGzeDFGtGtQRI4Cvv7Y/YNeugmkoEREREREREZVYBRoI3L17N9q1a6fdHzNmDABg8ODBmD9/PsaPH4/Y2Fg899xzuHPnDlq2bIk1a9bAyclJOyYiIgI3btzQ7j/xxBO4fv06Jk6ciCtXrqBevXpYs2ZNhgQiRHlNzpsHXLpku3P3LtQZM4C4OGDp0oyFY2KgfvQRxKuvQiiFdmAuERERERERERUjQkopC7oRhU1UVBQ8PT1x9+5drhdIOaZ+9hnk6NGAlIAQgJ8fcOOGLYFICqMRSEpKvT9+PET//hBJSUC9egwKEhERERERERVCxSVWxKgDUR4Rzz4L9O0LODvbAoHXrtkHAUuXBnr1AnS61G0ffghZrx7UJk2gDhgAxuWJiIiIiIiIKL8wEEiUR4TJBN2iRUC7drZRgWnVqAHl9Gkoo0bZgoSZ+flnqA0awNq8OawvvmiXcISIiIiIiIiI6H4xEEiUx4S/P5Bmiq946SUoW7ZAGI0QTZtC2b0baNjQrozm0CFg507gm2+gvvbaA2w1ERERERERERV3DAQS5THx/vu2UYEBARDjx0PMmgXh6Zm6v1YtKL/+CrRuDfj6At7eGStRVeDo0QfYaiIiIiIiIiIq7go0azBRcST8/aFbsybrMkFB0P39NwBAWq1QW7cGduywL/PMM/nWRiIiIiIiIiIqeRgIJCpgQqeD8vffkL//DpjNgKpCVKkC0bRpQTeNiIiIiIiIiIoRBgKJCgHh7AzRt29BN4OIiIiIiIiIijGuEUhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQC6Au6AYWRlBIAEBUVVcAtISIiIiIiIiKigpYSI0qJGRVVDARm4ubNmwCA4ODgAm4JEREREREREREVFjdv3oSnp2dBN+OeMRCYCR8fHwDA+fPni/R/Lt27qKgoBAcH48KFC/Dw8Cjo5lABYB8ggP2A2AeIfYDYB4h9gNgHyObu3bsICQnRYkZFFQOBmVAU29KJnp6efJGXcB4eHuwDJRz7AAHsB8Q+QOwDxD5A7APEPkA2KTGjoqpot56IiIiIiIiIiIhyhIFAIiIiIiIiIiKiEoCBwEyYTCZMmjQJJpOpoJtCBYR9gNgHCGA/IPYBYh8g9gFiHyD2AbIpLv1AyKKe95iIiIiIiIiIiIiyxRGBREREREREREREJQADgURERERERERERCUAA4FEREREREREREQlAAOBREREREREREREJUCBBgKnTZuGxo0bw93dHf7+/ujVqxeOHz9uVyYhIQEjRoyAr68v3Nzc0KdPH1y9elXbf+DAAfTr1w/BwcFwdnZG9erV8cknn9jVsXz5cnTq1Al+fn7w8PBAs2bNsHbt2mzbJ6XExIkTERgYCGdnZ3Ts2BEnT560K7N371506tQJXl5e8PX1xXPPPYeYmJhs6z548CBatWoFJycnBAcH48MPP7TbHx4ejj59+iA0NBRCCMyePTvbOosi9gHHfWDu3Llo1aoVvL294e3tjY4dO2Lnzp3Z1lvUsA847gPLly9Ho0aN4OXlBVdXV9SrVw8LFy7Mtt6iiP3AcT9Ia8mSJRBCoFevXtnWW9SwDzjuA/Pnz4cQwu7Pyckp23qLGvaBrN8H7ty5gxEjRiAwMBAmkwlVqlTB6tWrs627KGEfcNwH2rZtm+F9QAiBbt26ZVt3UcI+kPX7wOzZs1G1alU4OzsjODgYr7zyChISErKtuyhhH3DcB8xmM959911UrFgRTk5OqFu3LtasWZNtvUVRSe0HCQkJGDJkCGrXrg29Xu/wmn/jxo1o0KABTCYTKlWqhPnz52fb5vQPoMCEhYXJefPmycOHD8v9+/fLhx9+WIaEhMiYmBitzPDhw2VwcLBcv3693L17t3zooYdk8+bNtf3ffvutfPnll+XGjRtlRESEXLhwoXR2dpZz5szRyowaNUp+8MEHcufOnfLEiRNywoQJ0mAwyL1792bZvunTp0tPT0+5YsUKeeDAAfnII4/I8uXLy/j4eCmllJcuXZLe3t5y+PDh8tixY3Lnzp2yefPmsk+fPlnWe/fuXRkQECAHDBggDx8+LH/88Ufp7Owsv/rqK63Mzp075dixY+WPP/4oS5cuLT/++OPcPLVFBvuA4z7Qv39/+dlnn8l9+/bJo0ePyiFDhkhPT0958eLFXD3HhR37gOM+8M8//8jly5fLI0eOyFOnTsnZs2dLnU4n16xZk6vnuChgP3DcD1KcOXNGlilTRrZq1Ur27NkzJ09rkcI+4LgPzJs3T3p4eMjIyEjt78qVK7l6fosC9gHHfSAxMVE2atRIPvzww3Lr1q3yzJkzcuPGjXL//v25eo4LO/YBx33g5s2bdu8Bhw8fljqdTs6bNy83T3Ghxz7guA8sWrRImkwmuWjRInnmzBm5du1aGRgYKF955ZVcPceFHfuA4z4wfvx4GRQUJFetWiUjIiLk559/Lp2cnLJtc1FUUvtBTEyMHD58uPz6669lWFhYptf8p0+fli4uLnLMmDHyyJEjcs6cObn+jliggcD0rl27JgHITZs2SSmlvHPnjjQYDPLnn3/Wyhw9elQCkNu3b3dYz4svvijbtWuX5blq1Kgh33nnHYf7VVWVpUuXlh999JG27c6dO9JkMskff/xRSinlV199Jf39/aXVatXKHDx4UAKQJ0+edFj3559/Lr29vWViYqK27bXXXpNVq1bNtHy5cuWKbSAwPfaBzPuAlFJaLBbp7u4uFyxYkOXjKurYBxz3ASmlrF+/vnzrrbeyLFMcsB/Y9wOLxSKbN28uv/nmGzl48OBiGQhMj30gtQ/MmzdPenp6ZvkYiiP2gdQ+8MUXX8gKFSrIpKSkLB9HccM+4Pia4OOPP5bu7u52X4qLI/aB1D4wYsQI2b59e7vjxowZI1u0aJHl4yrq2AdS+0BgYKD89NNP7Y579NFH5YABA7J8XMVBSekHaTm65h8/frysWbOm3bYnnnhChoWF5aheKaUsVGsE3r17FwDg4+MDANizZw/MZjM6duyolalWrRpCQkKwffv2LOtJqSMzqqoiOjo6yzJnzpzBlStX7M7t6emJpk2baudOTEyE0WiEoqQ+jc7OzgCArVu3Oqx7+/btaN26NYxGo7YtLCwMx48fx+3btx0eVxKwDzjuA3FxcTCbzVm2uThgH8i8D0gpsX79ehw/fhytW7d2WG9xwX5g3w/effdd+Pv7Y+jQoQ7rKm7YB+z7QExMDMqVK4fg4GD07NkT4eHhDussLtgHUvvAypUr0axZM4wYMQIBAQGoVasW3n//fVitVof1FgfsA46vC7/99ls8+eSTcHV1dVhvccA+kNoHmjdvjj179mhLBZ0+fRqrV6/Gww8/7LDe4oB9ILUPJCYmZlgaxNnZOct6i4uS0g9yYvv27XbnBmx9JavHnV6hCQSqqorRo0ejRYsWqFWrFgDgypUrMBqN8PLysisbEBCAK1euZFrPv//+i59++gnPPfecw3PNmDEDMTEx6Nu3r8MyKfUHBAQ4PHf79u1x5coVfPTRR0hKSsLt27fx+uuvAwAiIyOzrDuzetOetyRiH8i6D7z22msICgrK8KIvTtgHMvaBu3fvws3NDUajEd26dcOcOXPQqVMnh/UWB+wH9v1g69at+PbbbzF37lyH9RQ37AP2faBq1ar47rvv8Ntvv+GHH36Aqqpo3rw5Ll686LDeoo59wL4PnD59GsuWLYPVasXq1avx9ttvY+bMmXjvvfcc1lvUsQ84vi7cuXMnDh8+jGeffdZhncUB+4B9H+jfvz/effddtGzZEgaDARUrVkTbtm3xxhtvOKy3qGMfsO8DYWFhmDVrFk6ePAlVVfHXX39h+fLlWdZbHJSkfpATjvpKVFQU4uPjc1RHoQkEjhgxAocPH8aSJUvuuY7Dhw+jZ8+emDRpEjp37pxpmcWLF+Odd97B0qVL4e/vDwBYtGgR3NzctL8tW7bk6Hw1a9bEggULMHPmTLi4uKB06dIoX748AgICtMhvzZo1tXq7du16z4+tJGAfcGz69OlYsmQJfv3112K5QHwK9oGM3N3dsX//fuzatQtTp07FmDFjsHHjxlzVUdSwH6SKjo7GwIEDMXfuXJQqVSpHxxQH7AP2mjVrhkGDBqFevXpo06YNli9fDj8/P3z11Vc5rqOoYR+wp6oq/P398fXXX6Nhw4Z44okn8Oabb+LLL7/McR1FDfuAY99++y1q166NJk2a3NPxRQX7gL2NGzfi/fffx+eff469e/di+fLlWLVqFaZMmZLjOooa9gF7n3zyCSpXroxq1arBaDRi5MiRePrpp+1GnRVH7Af5IMeTiPPRiBEjZNmyZeXp06fttq9fv14CkLdv37bbHhISImfNmmW3LTw8XPr7+8s33njD4XlSFtz8448/7LZHRUXJkydPan9xcXEyIiJCApD79u2zK9u6dWv58ssvZ6j7ypUrMjo6WsbExEhFUeTSpUullFKePXtWqzclycPAgQMzzPXesGGDBCBv3bqVoe6SsEYg+4DjPvDRRx9JT09PuWvXLoePqzhgH8j6fSDF0KFDZefOnR3uL+rYD+z7wb59+yQAqdPptD8hhBRCSJ1OJ0+dOuXwMRZV7AM5ey947LHH5JNPPulwf1HGPpCxD7Ru3Vp26NDBrszq1aslALv1pIoL9gHH7wMxMTHSw8NDzp492+HjKg7YBzL2gZYtW8qxY8falUlJfpB2HbLign3A8ftAfHy8vHjxolRVVY4fP17WqFHD4eMr6kpaP0jL0RqBrVq1kqNGjbLb9t1330kPDw+Hjy+9Ag0EqqoqR4wYIYOCguSJEycy7E9ZAHLZsmXatmPHjmVYAPLw4cPS399fjhs3zuG5Fi9eLJ2cnOSKFSty3LbSpUvLGTNmaNvu3r1rtwBkZr799lvp4uKSoUOmlbIQaNoFnydMmFAik4WwD2TdBz744APp4eGR5YKnRR37QM7eB1I8/fTTsk2bNjlqf1HCfpB5P4iPj5eHDh2y++vZs6ds3769PHToULEKALAP5Py9wGKxyKpVqxa7TJHsA477wIQJE2S5cuXsvuzPnj1bBgYG5qj9RQX7QPbvA/PmzZMmk0neuHEjR+0uatgHHPeBBg0ayPHjx2d4DM7OztJiseToMRQF7AM5vx5ISkqSFStWlBMmTMhR+4uSktoP0soqWUitWrXstvXr1y9XyUIKNBD4wgsvSE9PT7lx40YZGRmp/cXFxWllhg8fLkNCQuSGDRvk7t27ZbNmzWSzZs20/YcOHZJ+fn7yqaeesqvj2rVrWplFixZJvV4vP/vsM7syd+7cybJ906dPl15eXvK3336TBw8elD179rRLCS2llHPmzJF79uyRx48fl59++ql0dnaWn3zySZb13rlzRwYEBMiBAwfKw4cPyyVLlkgXFxe71OCJiYly3759ct++fTIwMFCOHTtW7tu3L8cZZooK9gHHfWD69OnSaDTKZcuW2bU5Ojo6x89vUcA+4LgPvP/++3LdunUyIiJCHjlyRM6YMUPq9Xo5d+7cHD+/RQX7geN+kF5xzRrMPuC4D7zzzjty7dq1MiIiQu7Zs0c++eST0snJSYaHh+f4+S0K2Acc94Hz589Ld3d3OXLkSHn8+HH5xx9/SH9/f/nee+/l+PktCtgHsv8saNmypXziiSeyfS6LKvYBx31g0qRJ0t3dXf7444/y9OnTct26dbJixYqyb9++OX5+iwL2Acd94L///pO//PKLjIiIkJs3b5bt27eX5cuXz3FgqSgpqf1AStsIxn379skePXrItm3banGhFKdPn5YuLi5y3Lhx8ujRo/Kzzz6TOp1OrlmzJidPrZSygAOBADL9mzdvnlYmPj5evvjii9Lb21u6uLjI3r17y8jISG3/pEmTMq2jXLlyWpk2bdpkWmbw4MFZtk9VVfn222/LgIAAaTKZZIcOHeTx48ftygwcOFD6+PhIo9Eo69SpI7///vscPfYDBw7Ili1bSpPJJMuUKSOnT59ut//MmTOZtrm4jQRiH3DcB8qVK5dpmydNmpSj+osK9gHHfeDNN9+UlSpVkk5OTtLb21s2a9ZMLlmyJEd1FzXsB477QXrFNRDIPuC4D4wePVqGhIRIo9EoAwIC5MMPPyz37t2bo7qLEvaBrN8H/v33X9m0aVNpMplkhQoV5NSpU4vVKCAp2Qey6wMpo13WrVuXozqLIvYBx33AbDbLyZMny4oVK0onJycZHBwsX3zxxWIXBGIfcNwHNm7cKKtXry5NJpP09fWVAwcOlJcuXcpR3UVNSe4HjuIAaf3zzz+yXr160mg0ygoVKtg9LzkhpJQSREREREREREREVKwV7/QyREREREREREREBICBQCIiIiIiIiIiohKBgUAiIiIiIiIiIqISgIFAIiIiIiIiIiKiEoCBQCIiIiIiIiIiohKAgUAiIiIiIiIiIqISgIFAIiIiIiIiIiKiEoCBQCIiIiIiIiIiohKAgUAiIiKiIqxt27YYPXp0iTs3EREREeUeA4FEREREJcTGjRshhMCdO3fy5Ljly5djypQpeddAIiIiIspX+oJuABEREREVTT4+PgXdBCIiIiLKBY4IJCIiIioiYmNjMWjQILi5uSEwMBAzZ860279w4UI0atQI7u7uKF26NPr3749r164BAM6ePYt27doBALy9vSGEwJAhQwAAqqpi2rRpKF++PJydnVG3bl0sW7Ys2+PSTw0ODQ3Fe++9p7WxXLlyWLlyJa5fv46ePXvCzc0NderUwe7du+3avXXrVrRq1QrOzs4IDg7Gyy+/jNjY2Lx++oiIiIhKPAYCiYiIiIqIcePGYdOmTfjtt9+wbt06bNy4EXv37tX2m81mTJkyBQcOHMCKFStw9uxZLWgXHByMX375BQBw/PhxREZG4pNPPgEATJs2Dd9//z2+/PJLhIeH45VXXsFTTz2FTZs2ZXlcZj7++GO0aNEC+/btQ7du3TBw4EAMGjQITz31FPbu3YuKFSti0KBBkFICACIiItClSxf06dMHBw8exE8//YStW7di5MiR+fEUEhEREZVoQqZchRERERFRoRUTEwNfX1/88MMPePzxxwEAt27dQtmyZfHcc89h9uzZGY7ZvXs3GjdujOjoaLi5uWHjxo1o164dbt++DS8vLwBAYmIifHx88Pfff6NZs2basc8++yzi4uKwePHiTI8DbCMC69Wrp507NDQUrVq1wsKFCwEAV65cQWBgIN5++228++67AID//vsPzZo1Q2RkJEqXLo1nn30WOp0OX331lVbv1q1b0aZNG8TGxsLJySkPn0UiIiKiko1rBBIREREVAREREUhKSkLTpk21bT4+Pqhatap2f8+ePZg8eTIOHDiA27dvQ1VVAMD58+dRo0aNTOs9deoU4uLi0KlTJ7vtSUlJqF+/fq7bWadOHe12QEAAAKB27doZtl27dg2lS5fGgQMHcPDgQSxatEgrI6WEqqo4c+YMqlevnus2EBEREVHmGAgkIiIiKgZiY2MRFhaGsLAwLFq0CH5+fjh//jzCwsKQlJTk8LiYmBgAwKpVq1CmTBm7fSaTKdftMBgM2m0hhMNtKUHKmJgYPP/883j55Zcz1BUSEpLr8xMRERGRYwwEEhERERUBFStWhMFgwI4dO7QA2e3bt3HixAm0adMGx44dw82bNzF9+nQEBwcDQIakHEajEQBgtVq1bTVq1IDJZML58+fRpk2bTM+d2XF5pUGDBjhy5AgqVaqU53UTERERkT0mCyEiIiIqAtzc3DB06FCMGzcOGzZswOHDhzFkyBAoiu1yLiQkBEajEXPmzMHp06excuVKTJkyxa6OcuXKQQiBP/74A9evX0dMTAzc3d0xduxYvPLKK1iwYAEiIiKwd+9ezJkzBwsWLHB4XF557bXX8O+//2LkyJHYv38/Tp48id9++43JQoiIiIjyAQOBREREREXERx99hFatWqFHjx7o2LEjWrZsiYYNGwIA/Pz8MH/+fPz888+oUaMGpk+fjhkzZtgdX6ZMGbzzzjt4/fXXERAQoAXbpkyZgrfffhvTpk1D9erV0aVLF6xatQrly5fP8ri8UKdOHWzatAknTpxAq1atUL9+fUycOBFBQUF5dg4iIiIismHWYCIiIiIiIiIiohKAIwKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAH1BN4CKPovFgqSkpIJuBhERERERERHlktFohF7P8FBJwf9pumdSSpw/fx43btwo6KYQERERERER0T0qVaoUQkJCIIQo6KZQPmMgkO5ZShCwTJkycHNzg6JwpjkRERERERFRUaGqKmJiYnDp0iUAQLly5Qq4RZTfGAike2KxWLQgYOnSpQu6OURERERERER0D9zc3AAAly5dQkxMDGrWrFnALaL8xCFcdE9S1gRMecMgIiIiIiIioqIp5bv9v//+i/Dw8AJuDeUnBgLpvnA6MBEREREREVHRlvLdXlVVbNu2DVartYBbRPmFURwiIiIiIiIiIoKLiwsSEhIQHx9f0E2hfMJAIFEaGzduhBACd+7cKeimEJV4oaGhmD17dpZlJk+ejHr16j2Q9jxoZ8+ehRAC+/fvB8D3pwepIJ/r9P/veSknr5chQ4agV69eeX7u3LThfuX3Y8iN+fPnw8vLS7tfnN+zCkrbtm0xevTogm5GoZf+dcHnjUqK9O/DRU1BXA+mZA1WVTXfzkEFi4FAIiIqUI4u0Hbt2oXnnntOuy+EwIoVK+zKjB07FuvXr8/nFua/nAQumjdvjsjISHh6ej6YRpUQmX0ZTv9cF/UvEfRg5OTHi+LynlWYLF++HFOmTMm3+gtTYDkncvpjQn4/b0SUe7wepAeFgUAiokLIbJVZ3s9vKQmBCpKfnx9cXFyyLOPm5gZfX98H1KKCZTQaUbp0ae1X2ntRGP5fs2M1q1nefxDy4rkmykxevGeZzeY8ak3+MEuZ5f285uPjA3d393w9R3F0v8+b1WrNs9FCeVlXUSbTvbbT3y8MisJ1RHFXUq4HKX8xEEj37QXzJLRJHFCgfy+YJ+W4vYmJiXj55Zfh7+8PJycntGzZErt27cq0bFxcHLp27YoWLVpwOh49MFJKrD1qQcuPY+A9/i5afhyDdUctkPn4Zapt27YYOXIkRo8ejVKlSiEsLAwAcPjwYXTt2hVubm4ICAjAwIEDcePGjQzHjRw5Ep6enihVqhTefvttu7YmJiZi7NixKFOmDFxdXdG0aVNs3LgRgG16w9NPP427d+9CCAEhBCZPngzAfnRNaGgoAKB3794QQmj300+zU1UV7777LsqWLQuTyYR69ephzZo12v6UkRLLly9Hu3bt4OLigrp162L79u1amXPnzqFHjx7w9vaGq6sratasidWrVzt87m7fvo1BgwbB29sbLi4u6Nq1K06ePKntz2wq4OzZs+0ew4IFC/Dbb79pz0HK85NWZlNBtm7dilatWsHZ2RnBwcF4+eWXERsbq+0PDQ3FlClTMGjQIHh4eNiNsCyMpJSIWHMH8x46gA/ctmPeQwcQseZOvvX9IUOGYNOmTfjkk0+05/7s2bN2z3VWfXThwoVo1KgR3N3dUbp0afTv3x/Xrl3T6k+pZ/369WjUqBFcXFzQvHlzHD9+PNu2HTt2DM2bN4eTkxNq1aqFTZs2afsyG6G4YsWKDF8Kpk+fjoCAALi7u2Po0KFISEiw22+1WjFmzBh4eXnB19cX48ePt3uuv//+e/j6+iIxMdHuuF69emHgwIEO237x4kX069cPPj4+cHV1RaNGjbBjxw67MgsXLkRoaCg8PT3x5JNPIjo6WtunqiqmTZuG8uXLw9nZGXXr1sWyZcvsjg8PD0f37t3h4eEBd3d3tGrVChEREZm2Z9euXfDz88MHH3zgsM2HDh1C+/bt4ezsDF9fXzz33HOIiYnR9mc2crRXr14YMmSItv/cuXN45ZVXtH6SmczeD7755htUr14dTk5OqFatGj7//HNtX8p71k8//YQ2bdrAyckJixYtcvg4CpqUEmujLWh5OgbeR++i5ekYrIvO/8+vtP83oaGheP/99/HMM8/A3d0dISEh+Prrr7OsY9myZahdu7b2/9+xY0fExsZm+f584cIF9O3bF15eXvDx8UHPnj1x9uxZrc6UkT3vvPMO/Pz84OHhgeHDh2f7BfyXX35BzZo1YTKZEBoaipkzZ9rtz2x0vJeXF+bPnw8AKF++PACgfv36EEKgbdu2OXresvqsBlLfd1auXIkaNWrAZDLh/Pnzmda9cuVKVK5cGU5OTmjXrh0WLFhg9/nlqK77/TwF7v15L2hSSmDtWlhbtIDV0xPWFi2AtWvz9bUTHR2NAQMGwNXVFYGBgfj4448zfT1ldh2RXT/9/PPPtT4QEBCAxx57TNvn6PWWnqqqKFu2LL744gu77fv27YOiKDh37hwAYNasWahduzZcXV0RHByMF1980e79O73MRt2NHj3a7rWSk8+h9Hg9SEUJA4F0346op7BDHijQvyPqqRy3d/z48fjll1+wYMEC7N27F5UqVUJYWBhu3bplV+7OnTvo1KkTVFXFX3/9xWlh9ECYrRKrwi3o820cdp6zIjYJ2HnOike/jcPqcEu+jgxcsGABjEYjtm3bhi+//BJ37txB+/btUb9+fezevRtr1qzB1atX0bdv3wzH6fV67Ny5E5988glmzZqFb775Rts/cuRIbN++HUuWLMHBgwfx+OOPo0uXLjh58iSaN2+O2bNnw8PDA5GRkYiMjMTYsWMztC0lWD9v3jxERkY6DN5/8sknmDlzJmbMmIGDBw8iLCwMjzzyiN2FGAC8+eabGDt2LPbv348qVaqgX79+sFgsAIARI0YgMTERmzdvxqFDh/DBBx/Azc3N4fM2ZMgQ7N69GytXrsT27dshpcTDDz+c41E7Y8eORd++fdGlSxftOWjevHm2x0VERKBLly7o06cPDh48iJ9++glbt27FyJEj7crNmDEDdevWxb59+/D222/nqE0FwWpWcfKP21ja8ygu7YiBOVbFpR0xWNrzKE7+cTtfRgZ+8sknaNasGYYNG6Y998HBwXZlsuqjZrMZU6ZMwYEDB7BixQqcPXtWCwyl9eabb2LmzJnYvXs39Ho9nnnmmWzbNm7cOLz66qvYt28fmjVrhh49euDmzZs5fmxLly7F5MmT8f7772P37t0IDAy0CzABwMyZMzF//nx899132Lp1K27duoVff/1V2//444/DarVi5cqV2rZr165h1apVDh9DTEwM2rRpg0uXLmHlypU4cOAAxo8fbzfaJyIiAitWrMAff/yBP/74A5s2bcL06dO1/dOmTcP333+PL7/8EuHh4XjllVfw1FNPacHQS5cuoXXr1jCZTNiwYQP27NmDZ555RnsNp7VhwwZ06tQJU6dOxWuvvZZpm2NjYxEWFgZvb2/s2rULP//8M/7+++8Mr6WsLF++HGXLlsW7776r9ZOcWLRoESZOnIipU6fi6NGjeP/99/H2229jwYIFduVef/11jBo1CkePHtV+qClszFJiVbQFfS7EYWe8FbEqsDPeikcvxGF1tCXfRwamNXPmTDRq1Aj79u3Diy++iBdeeMFhAD4yMhL9+vXDM888g6NHj2Ljxo149NFHIaV0+P5sNpsRFhYGd3d3bNmyBdu2bYObmxu6dOliF3Bav369VuePP/6I5cuX45133nHY7j179qBv37548skncejQIUyePBlvv/22FuTLiZ07dwIA/v77b0RGRmL58uU5Oi6rz+oUcXFx+OCDD/DNN98gPDwc/v7+Geo5c+YMHnvsMfTq1QsHDhzA888/jzfffDNDuczqut/P0xS5fd4LmjSbgVWroPbuDezYAcTGAjt22O6vWpVvIwPHjBmDbdu2YeXKlfjrr7+wZcsW7N27N0O59NcR2fXT3bt34+WXX8a7776L48ePY82aNWjdujWArF9v6SmKgn79+mHx4sV22xctWoQWLVqgXLlyWrn//e9/CA8Px4IFC7BhwwaMHz/+vp6b7D6HMsPrQSpSJNE9iI2Nlbt375axsbGydUJ/aYqvWaB/rRP656jdMTEx0mAwyEWLFmnbkpKSZFBQkPzwww/lP//8IwHIo0ePyjp16sg+ffrIxMTE/HoaiTLVYla0NIy6k+Gv5cfR+XbONm3ayPr169ttmzJliuzcubPdtgsXLkgA8vjx49px1atXl6qqamVee+01Wb16dSmllOfOnZM6nU5eunTJrp4OHTrICRMmSCmlnDdvnvT09MzQpnLlysmPP/5Yuw9A/vrrr3ZlJk2aJOvWravdDwoKklOnTrUr07hxY/niiy9KKaU8c+aMBCC/+eYbbX94eLj2updSytq1a8vJkydnaE9mTpw4IQHIbdu2adtu3LghnZ2d5dKlSzNto5RSfvzxx7JcuXLa/cGDB8uePXvalUlp6759+6SUUnt/un37tpRSyqFDh8rnnnvO7pgtW7ZIRVFkfHy8lNL2HPbq1StHj6Uw+K7pfjkFWzP8fffQgXw7Z5s2beSoUaPstqV/rh310fR27dolAcjo6Gi7ev7++2+tzKpVqyQA7f8ovZT/9+nTp2vbzGazLFu2rPzggw8ctufXX3+VaS/rmjVrpvX7FE2bNrXri4GBgfLDDz/McJ60ffGFF16QXbt21e7PnDlTVqhQwe41n9ZXX30l3d3d5c2bNzPdP2nSJOni4iKjoqK0bePGjZNNmzaVUkqZkJAgXVxc5L///mt33NChQ2W/fv2klFJOmDBBli9fXiYlJWV6jpTX0/Lly6Wbm5tcsmRJpuVSfP3119Lb21vGxMRo21atWiUVRZFXrlyRUmbeT3r27CkHDx6s3U//niVlxv+r9O8HFStWlIsXL7Y7ZsqUKbJZs2ZSytT+MHv27CwfQ2HRIiJaGg7fyfDXMiJ/P7/S/t+UK1dOPvXUU9p9VVWlv7+//OKLLzI9fs+ePRKAPHv2bKb7M3t/Xrhwoaxatard6yAxMVE6OzvLtWvXasf5+PjI2NhYrcwXX3wh3dzcpNVqzfRc/fv3l506dbLbNm7cOFmjRg3tfmafhZ6ennLevHlSyoyfHY4eR9rnLaef1QDk/v37M217itdee03WqlXLbtubb76Z4T01fV15+Xma2+e9MLA0by4tOl3GvxYt8uV8UVFR0mAwyJ9//lnbdufOHeni4pLh9ZT+OiK7fvrLL79IDw8Pu/f5FNm93tLbt2+fFELIc+fOSSmltFqtskyZMg5fz1JK+fPPP0tfX1/tfvr34cxe06NGjZJt2rSRUubscyi94nI9mPIdf+HChfKTTz6Rd+/ezfYYKpo4IpBKlIiICJjNZrRo0ULbZjAY0KRJExw9elTb1qlTJ1SqVAk//fQTjEZjQTSVSrDwSGuutueVhg0b2t0/cOAA/vnnH7i5uWl/1apVAwC7KXgPPfSQ3TS4Zs2a4eTJk7BarTh06BCsViuqVKliV8+mTZscTuO7V1FRUbh8+bLd6xsAWrRoYff6BoA6depotwMDAwFAm9L58ssv47333kOLFi0wadIkHDx40OE5jx49Cr1ej6ZNm2rbfH19UbVq1QznzGsHDhzA/Pnz7Z7XsLAwqKqKM2fOaOUaNWqUr+3IS9cOx2W6/bqD7QVtz5496NGjB0JCQuDu7o42bdoAQIbpcln1N0eaNWum3dbr9WjUqFGu+tTRo0ft+mX6Ou/evYvIyEi7MinnSWvYsGFYt24dLl26BMA2pW/IkCEOp77u378f9evXh4+Pj8O2hYaG2q1NFhgYqD0fp06dQlxcHDp16mTXt7///nvtPWP//v1o1aoVDAaDw3Ps2LEDjz/+OBYuXIgnnnjCYTnA9lzVrVsXrq6u2rYWLVpAVdUcTeO+V7GxsYiIiMDQoUPtHut7772X4f2xqLyOwxMdfH452J5f0r7mhBAoXbq0w9dc3bp10aFDB9SuXRuPP/445s6di9u3b2dZ/4EDB3Dq1Cm4u7tr/28+Pj5ISEiw+7+rW7eu3Vq3zZo1Q0xMDC5cuJBpvUePHs30MyzlMzW/5PSz2mg02j23mTl+/DgaN25st61JkyYZyqWvKy8/T3P7vBcKhw/nbvt9On36NMxms93/jaenJ6pWrZqhbPr3n+z6aadOnVCuXDlUqFABAwcOxKJFixAXZ/scz+3rrV69eqhevbo2KnDTpk24du0aHn/8ca3M33//jQ4dOqBMmTJwd3fHwIEDcfPmTe2cuZWTz6H0eD1IRY2+oBtAVBh169YNv/zyC44cOYLatWsXdHOohKkZqMPOcxkv+GsG6vL1vGm/BAO2KX49evTIdF2tlGBGdmJiYqDT6bBnzx7odPbtz2q6bX5LG0BICWikTF189tlnERYWhlWrVmHdunWYNm0aZs6ciZdeeumezqUoSoYpL3mx2H9MTAyef/55vPzyyxn2hYSEaLfT/78WZv61XHBpR8Z1ffxqZZ00piCkTCcNCwvDokWL4Ofnh/PnzyMsLCzDWlRZ9bd7kV99KjP169dH3bp18f3336Nz584IDw/HqlWrHJZ3dnbOts70ATwhhPZ8pKzrtGrVKpQpU8aunMlkyvE5KlasCF9fX3z33Xfo1q1blkHDnMiP5zzlsc6dOzdD0Db9+2VReR3XNOmwMz6Tzy9T/n5+pZdVH0tPp9Phr7/+wr///ot169Zhzpw5ePPNN7Fjxw5tvb30YmJi0LBhw0zXa/Tz87v/B5AFIUS+9MWcfFY7OzvnWRKle6nrQb73PXC1atmmBWe2vYDl9v3H3d0de/fuxcaNG7Fu3TpMnDgRkydPxq5du+Dl5ZXr19uAAQOwePFivP7661i8eDG6dOmiJV06e/YsunfvjhdeeAFTp06Fj48Ptm7diqFDhyIpKSnTpHPZ9aOcfA7dC14PUmHCQCDdtxpKJaCAE33VUCrlqFzFihW1NdBS1pUwm83YtWuX3cK406dPh5ubGzp06ICNGzeiRo0a+dFsogzMVokJnUx49Ns4pL1WEAJ4vaMJZquEQfdgMpk2aNAAv/zyC0JDQ6HXO/64SJ8E4L///kPlypWh0+lQv359WK1WXLt2Da1atcr0eKPRmKORDgaDIctyHh4eCAoKwrZt27SRWQCwbdu2TEcjZCU4OBjDhw/H8OHDMWHCBMydOzfTQGD16tVhsViwY8cObR2Xmzdv4vjx49r7hp+fH65cuQIppfalZ//+/Xb15PQ5SKtBgwY4cuQIKlXK2ftfYWc1q2jxZjCW9jwKpL1OFkCLN8rCalahM+T9RIacPPeZlTl27Bhu3ryJ6dOna+sK7t69O8/a9d9//2lrKlksFuzZs0db78fPzw/R0dGIjY3VLuzT96nq1atjx44dGDRokF2dKTw9PREYGIgdO3ZkOE+DBg3s6nr22Wcxe/ZsXLp0CR07dsywjmJaderUwTfffINbt25lOSrQkbSJA9K+jtOfY8GCBTCbzQ4DfKVKlcLy5cvRtm1b9O3bF0uXLnVYtnr16pg/f77d87lt2zYoiqKNjvHz87Nb989qteLw4cNo166dti23r+OAgAAEBQXh9OnTGDBgQI6PK6zMUmJCKRMevRCX/iWM10uZYJYShkKaiVsIgRYtWqBFixaYOHEiypUrh19//RVjxozJ9P+1QYMG+Omnn+Dv7w8PDw+H9R44cADx8fFa8Pq///6Dm5ubw9dQ9erVsW3bNrtt27ZtQ5UqVbQAXfq+ePLkSbuRTykzWXLTF3PyWZ1TVatWzZBgy9G6vmnl1ecpkPvnvaBJsxnKhAm2NQHTXfwpr78OaTZD3OePGelVqFABBoMBu3bt0oJFd+/exYkTJ7TPBEdy0k/1ej06duyIjh07YtKkSfDy8gZ0KNgAABY/SURBVMKGDRvw6KOPZvl6y0z//v3x1ltvYc+ePVi2bBm+/PJLbd+ePXugqipmzpwJRbFdIyxdujTL9vv5+eFwupGW+/fv1z4jcvI5lNlzwutBKkoYCKT79oWh8C6+m56rqyteeOEFjBs3Dj4+PggJCcGHH36IuLg4DB06FAcOHNDKzpgxA1arFe3bt8fGjRu1KZFE+cmgE3i4ph7Lh7pg+t+JCI+0omagDq93NOHhmvo8+yU+J0aMGIG5c+eiX79+GD9+PHx8fHDq1CksWbIE33zzjXaxd/78eYwZMwbPP/889u7dizlz5mjZ46pUqYIBAwZg0KBBmDlzJurXr4/r169j/fr1qFOnDrp164bQ0FDExMRg/fr12nSezH7BDQ0Nxfr169GiRQuYTCZ4e3tnKDNu3DhMmjQJFStWRL169TBv3jzs378/V1k2R48eja5du6JKlSq4ffs2/vnnH1SvXj3TspUrV0bPnj0xbNgwfPXVV3B3d8frr7+OMmXKoGfPngBsmRmvX7+ODz/8EI899hjWrFmDP//80+7LY2hoKNauXYvjx4/D19cXnp6e2bbztddew0MPPYSRI0fi2WefhaurK44cOYK//voLn376aY4fb2GhMyio3N0bfX+rjm3vX8T1w3Hwq+WCFm+UReXu3vnW90NDQ7Fjxw6cPXtWm96XWZn0fTQkJARGoxFz5szB8OHDcfjwYUyZMiXP2vXZZ5+hcuXKqF69Oj7++GPcvn1bS9DRtGlTuLi44I033sDLL7+MHTt2ZEgmMGrUKAwZMgSNGjVCixYtsGjRIoSHh6NChQp2ZaZPn47KlSujWrVqmDVrll0WwhT9+/fH2LFjMXfuXHz//fdZtrtfv354//330atXL0ybNg2BgYHYt28fgoKC7KYmO+Lu7o6xY8filVdegaqqaNmyJe7evYtt27bBw8MDgwcPxsiRIzFnzhw8+eSTmDBhAjw9PfHff/+hSZMmdtPa/P39sWHDBrRr1w79+vXDkiVLMv1RY8CAAZg0aRIGDx6MyZMn4/r163jppZcwcOBABAQEAADat2+PMWPGYNWqVahYsWKmz1VoaCg2b96MJ598EiaTCaVKlcr28b7zzjt4+eWX4enpiS5duiAxMRG7d+/G7du3HX4pLqwMQuBhdz2WB7tg+o1EhCdaUdOkw+ulTHjY/cF+fuXGjh07sH79enTu3Bn+/v7YsWMHrl+/rr3vZ/b+PGDAAHz00Ufo2bOnlqn+3LlzWL58OcaPH4+yZcsCAJKSkjB06FC89dZbOHv2LCZNmoSRI0dqAYv0Xn31VTRu3BhTpkzBE088ge3bt+PTTz+1S/TTvn17fPrpp2jWrBmsVitee+01uyC3v78/nJ2dsWbNGpQtWxZOTk7Zfqbk5LM6p55//nnMmjULr732GoYOHYr9+/dr709Z9YG8+jwFcv+8FzRhMEB26wbl11+hTp9umw5cqxaU118HunXLl9eOu7s7Bg8erH0n8vf3x6RJk6AoSrbny66f/vHHHzh9+jRat24Nb29vrF69GqqqomrVqtm+3jITGhqK5s2bY+jQobBarXjkkUe0fZUqVYLZbMacOXPQo0cPLeFdVtq3b4+PPvoI33//PZo1a4YffvgBhw8fRv369bXnJrvPofR4PUhFTkEtTkhFW9pkIUVNfHy8fOmll2SpUqWkyWSSLVq0kDt37pRSZlx8VUopX3rpJRkYGKglRyB6EJIsapb381pmC+FLaVv8uHfv3tLLy0s6OzvLatWqydGjR2sLpLdp00a++OKLcvjw4dLDw0N6e3vLN954w24B9aSkJDlx4kQZGhoqDQaDDAwMlL1795YHDx7UygwfPlz6+vpKAHLSpElSyowL769cuVJWqlRJ6vV6bWHl9AsvW61WOXnyZFmmTBlpMBhk3bp15Z9//qntz2wR9du3b0sA8p9//pFSSjly5EhZsWJFaTKZpJ+fnxw4cKC8ceOGw+fu1q1bcuDAgdLT01M6OzvLsLAweeLECbsyX3zxhQwODpaurq5y0KBBcurUqXaLQ1+7dk126tRJurm5aW3JbnFoKaXcuXOndpyrq6usU6eOXbKUzJIXFHaWJGuW9/Pa8ePH5UMPPSSdnZ0lAHnmzJlMn+vM+ujixYtlaGioNJlMslmzZnLlypXZ/p/t27dPO09mUv7fFy9eLJs0aSKNRqOsUaOG3LBhg125X3/9VVaqVEk6OzvL7t27y6+//lqmv6ybOnWqLFWqlHRzc5ODBw+W48ePt3u9mM1mOWrUKOnh4SG9vLzkmDFj5KBBgzIsVC6llAMHDpQ+Pj4yISEh2+f07Nmzsk+fPtLDw0O6uLjIRo0ayR07dkgpc7ZYuqqqcvbs2bJq1arSYDBIPz8/GRYWJjdt2qSVOXDggOzcubN0cXGR7u7uslWrVjIiIkJKmXGx9cuXL8sqVarIvn37SovFkmmbDx48KNu1ayednJykj4+PHDZsmJb0RUrb+9gLL7wgfXx8pL+/v5w2bVqGZCHbt2+XderUkSaTSfu/yC5ZiJRSLlq0SNarV08ajUbp7e0tW7duLZcvXy6ldJz4oTBLSpdIJv39vJZZspD073t169bVXrfpHTlyRIaFhUk/Pz9pMplklSpV5Jw5c7T9mb0/SyllZGSkHDRokHY9WaFCBTls2DBtcf2Ufjhx4kTp6+sr3dzc5LBhw7J9DS1btkzWqFFDGgwGGRISIj/66CO7/ZcuXZKdO3eWrq6usnLlynL16tV2yUKklHLu3LkyODhYKoqiJUDIKlmIlNl/Vuc0aZKUUv7222+yUqVK0mQyybZt28ovvvjCLkmSo7ry4vP0Xp/3wkBNlwAp/f28FhUVJfv37y9dXFxk6dKl5axZs2STJk3k66+/rpVxdB2RVT/dsmWLbNOmjfT29pbOzs6yTp068qeffpJSZv96c+Tzzz+XAOSgQYMy7Js1a5YMDAzU+sz333+fbcKviRMnyoCAAOnp6SlfeeUVOXLkSO21ImXOPofSKw7Xg0wWUnIIKTPJ1U2Ujbi4OBw9ehTVq1fPdOQOEZUMbdu2Rb169TB79uyCbgoR5aMOHTqgZs2a+N///lfQTSEqEoYMGYI7d+5gxYoVBd2UAjd16lR8+eWXDyRZB5/3excbG4syZcpg5syZGDp0aEE3hwpAynf8o0eP4tatWxgyZEiWyx9Q0cWpwURERESUqdu3b2Pjxo3YuHGj3fREIiJHPv/8czRu3Bi+vr7Ytm0bPvroI22NUyo89u3bh2PHjqFJkya4e/cu3n33XQDQprISUfHFQCARERERZap+/fq4ffs2PvjgA7v194iIHDl58iTee+893Lp1CyEhIXj11VcxYcKEgm4WZWLGjBk4fvw4jEYjGjZsiC1btuRofVMiKto4NZjuCacGExERERERERUPnBpcchTO1ElERERERERERESUpxgIJCIiIiIiIiIiKgEYCCQiIqL/t3f/QVHV/x7Hn4dFYnVJQBAs+WUiEkZkTMEWhImJmWVQU3NNxMIBUhjvJKk1QjlaOmXmjL8aG5t0vGql945jWGiGRpOGP8pmIGxUdLS1GoOZL2Agu3v/8LrfVsAfgJd0X4+/4Jz9fD6vc5Z/zpvz+XxERERERMQDqBAoIiIiIiIiIiLiAVQIFBERERERERER8QAqBIqIiIiIiIiIiHgAFQJFrqKiogLDMGhoaOhWP3V1dRiGwQ8//NAjua5XWloaM2fO7JWxRURERERERKT3efd2AJF/OqvVis1mo3///t3qJywsDJvNRlBQUA8l61hFRQWjRo2ivr4ef39/1/GtW7fSp0+fGzr21aSlpZGQkMD777/fqzlEREREREREPJEKgSJX4ePjQ2hoaLf7MZlMPdJPVwUGBvba2CIiIiIiIiLS+zQ1WDxKWloahYWFzJw5k4CAAEJCQlizZg1NTU1MnToVPz8/hg4dyo4dO1xtLp8afPLkSSZMmEBAQAD9+vUjLi6OsrIyAOrr65k0aRLBwcGYzWaio6P56KOPgPZTgy/1+9VXX5GYmEjfvn2xWq3U1ta6ZV6wYAEDBw7Ez8+P3Nxc5syZQ0JCQofXV1dXx6hRowAICAjAMAxycnJc1/73qcGRkZEsWLCA7OxsLBYLERERbNu2jT/++IOnnnoKi8VCfHw8Bw4ccBujsrKSlJQUzGYzYWFhFBUV0dTU5Dq/cuVKoqOj8fX1JSQkhGeeeQaAnJwc9uzZw7JlyzAMA8MwqKurw26389JLLxEVFYXZbCYmJoZly5a5jZmTk8PEiRN56623CAkJwd/fn/nz59PW1kZxcTGBgYEMHjzYda//fr83bdqE1WrF19eXESNGsGfPns7+PERERERERERuaSoEisf5+OOPCQoK4vvvv6ewsJCCggKeffZZrFYrhw4d4rHHHmPy5Mk0Nzd32H769Om0tLSwd+9efvrpJxYvXozFYgFg3rx5VFdXs2PHDmpqali1atVVpwK//vrrLFmyhAMHDuDt7c2LL77oOrdhwwYWLlzI4sWLOXjwIOHh4axatarTvsLCwtiyZQsAtbW12Gy2dkW1v1u6dCkPPfQQhw8fZvz48UyePJns7GxeeOEFDh06xF133UV2djZOpxOAY8eOkZGRQVZWFkeOHGHz5s1UVlYyY8YMAA4cOEBRURHz58+ntraWL774gtTUVACWLVtGcnIy06ZNw2azYbPZCAsLw+FwMHjwYD799FOqq6spKSnhtdde45NPPnHLunv3bn799Vf27t3Le++9R2lpKU888QQBAQHs37+f/Px88vLyOH36tFu74uJiXnnlFQ4fPkxycjITJkzg3LlzV/xORERERERERG5FhvPSE77IdWhubqampobY2Fj69u3rOu5sPIuz6az7h3398eofibPtL5znfm7Xl1dIAgCOP4/CBffim9E/HMM3EGfzHzj/dca9oY8Fr4Ch15U7LS0Nu93ON998A4Ddbqd///5kZmaybt06AM6ePcugQYP47rvvSEpKarfmXnx8PFlZWZSWlrbr/8knnyQoKIi1a9e2O1dXV0dUVBSHDx8mISHB1e+uXbsYPXo0AGVlZYwfP57z58/j6+tLUlISiYmJLF++3NXPww8/TGNjY6ebjnS2RuDl6/NFRkaSkpLC+vXr3a573rx5zJ8/H4B9+/aRnJyMzWYjNDSU3NxcTCYTH3zwgavfyspKHnnkEZqamigrK2Pq1KmcPn0aPz+/Du//tawROGPGDM6ePctnn30GXHwjsKKiguPHj+PldfH/F8OHD2fgwIHs3bsX+Pd3+eGHH/L888+77veiRYuYPXs2AG1tbURFRVFYWMirr756xQwiIiIiIiKe4tIzfk1NDX/++Sc5OTncfvvtvR1LbgCtESg9qu2ntdj3ve12zGv4c/iM+xBn4xla/yulXRvf//wXABfK83HaqtzO9clYgyn2eexH/5u2r19x7zdiND6Z/3PdGePj410/m0wmBgwYwD333OM6FhISAsDvv//eYfuioiIKCgooLy8nPT2drKwsV58FBQVkZWW53iycOHEiVqv1mvMMGjTINXZ4eDi1tbW8/PLLbp9/4IEH2L1793Vc8bWNfem6O7sXoaGh/Pjjjxw5coQNGza4PuN0OnE4HJw4cYIxY8YQERHBkCFDyMjIICMjg6efftqtWNyRFStWsHbtWk6dOsX58+dpbW1tN/05Li7OVQS8lG3EiBGu3y99l5d/b8nJya6fvb29SUxMpKam5mq3RkREREREROSWo0Kg9Cjve17ENORx94O+/gAYljvx+Y9vOm3b57HVHb4RCGAa9jRegx5wb+Bj6VLGy3fONQzD7ZhhGAA4HI4O2+fm5jJ27Fg+//xzysvLefvtt1myZAmFhYWMGzeOkydPUlZWxs6dOxk9ejTTp0/n3XffvaY8Vxu7p3U09pXyNDY2kpeXR1FRUbu+wsPD8fHx4dChQ1RUVFBeXk5JSQlvvPEGVVVVbm8n/t2mTZuYNWsWS5YsITk5GT8/P9555x3279/fadZL2To69v9170RERERERERuNioESo8yLKEYlo53xjW8fTH+bxpwR7wCh3Xeb99gjL7B3Y3XY8LCwsjPzyc/P5+5c+eyZs0aCgsLAQgODmbKlClMmTKFlJQUiouLr1gIvJKYmBiqqqrIzs52HauqqrpCi4u7HMPFqbI9beTIkVRXVzN0aOdTsr29vUlPTyc9PZ3S0lL8/f3ZvXs3mZmZ+Pj4tMv17bffYrVa3d58PHbsWI9l3rdvn2udwra2Ng4ePOha01BERERERETEk6gQKHKdZs6cybhx4xg2bBj19fV8/fXXxMbGAlBSUsL9999PXFwcLS0tbN++3XWuKwoLC5k2bRqJiYlYrVY2b97MkSNHGDJkSKdtIiIiMAyD7du38/jjj2M2m12bmXTX7NmzSUpKYsaMGeTm5tKvXz+qq6vZuXMny5cvZ/v27Rw/fpzU1FQCAgIoKyvD4XAQExMDXFyXcP/+/dTV1WGxWAgMDCQ6Opp169bx5ZdfEhUVxfr166mqqiIqKqpHMq9YsYLo6GhiY2NZunQp9fX1bhuyiIiIiIiIiHgK7Roscp3sdjvTp08nNjaWjIwMhg0bxsqVK4GLb+PNnTuX+Ph4UlNTMZlMbNq0qctjTZo0iblz5zJr1ixGjhzJiRMnyMnJwdfXt9M2d955J2+++SZz5swhJCSkR99+i4+PZ8+ePRw9epSUlBTuu+8+SkpKuOOOOwDw9/dn69atPProo8TGxrJ69Wo2btxIXFwcALNmzcJkMnH33XcTHBzMqVOnyMvLIzMzk+eee44HH3yQc+fOtVsXsTsWLVrEokWLuPfee6msrGTbtm1X3clZRERERERE5FakXYOlSzrbNVhuvDFjxhAaGura7Vc6dvkuzSIiIiIiItIx7RrsOTQ1WOQfrLm5mdWrVzN27FhMJhMbN25k165d7Ny5s7ejiYiIiIiIiMhNRoVAkX8wwzAoKytj4cKF/PXXX8TExLBlyxbS09N7O5qIiIiIiIiI3GRUCBT5BzObzezatau3Y9yUIiMj0coHIiIiIiIiIv+mzUJEREREREREREQ8gAqB0i0Oh6O3I4iIiIiIiIhIN+jZ3nOoEChd4uPjA0BjY2MvJxERERERERGR7rj0bN/a2trLSeRG0xqB0iXe3t4EBQVx5swZACwWC15eqiuLiIiIiIiI3CwcDgeNjY2cOXOGhoYG2traejuS3GAqBEqXhYeH43Q6XcVAEREREREREbn5NDQ08Ntvv2G32zGZTK5ZgHLrUSFQuswwDCIjI/nll1/4+eefGTBgALfddltvxxIRERERERGRa3ThwgUcDgetra3U19czfPhwPdvfwlQIlG5LTU2lpaWF6upq7HY7hmH0diQRERERERERuUZOpxMvLy+io6MZO3asnutvYYbT6XT2dgi5+bW2tmKz2WhqakJ/UiIiIiIiIiI3D8MwMJvNhIaGYjabezuO3EAqBIqIiIiIiIiIiHgAbfMqIiIiIiIiIiLiAVQIFBERERERERER8QAqBIqIiIiIiIiIiHgAFQJFREREREREREQ8gAqBIiIiIiIiIiIiHuB/AUAqEb/ntHEPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#update QC settings\n", + "dataset.update_qc_settings(obstype='temp', gapsize_in_records=None,\n", + " dupl_timestamp_keep=None,\n", + " persis_time_win_to_check=None,\n", + " persis_min_num_obs=None,\n", + " rep_max_valid_repetitions=None,\n", + " gross_value_min_value=10.7,\n", + " gross_value_max_value=None,\n", + " win_var_max_increase_per_sec=None,\n", + " win_var_max_decrease_per_sec=None,\n", + " win_var_time_win_to_check=None,\n", + " win_var_min_num_obs=None,\n", + " step_max_increase_per_sec=5./3600.,\n", + " step_max_decrease_per_sec=None)\n", + "\n", + "dataset.update_titan_qc_settings(obstype='temp', buddy_radius=10000,\n", + " buddy_num_min=3, buddy_threshold=2.2,\n", + " buddy_max_elev_diff=None,\n", + " buddy_elev_gradient=None,\n", + " buddy_min_std=1.0,\n", + " buddy_num_iterations=None,\n", + " buddy_debug=None)\n", + "\n", + "dataset.apply_quality_control()\n", + "dataset.apply_titan_buddy_check(use_constant_altitude=True)\n", + "\n", + "# Create the plot\n", + "ax2 = dataset.make_plot(colorby='label')\n", + "#translate axes\n", + "ax2.set_title('Temperature for all stations')\n", + "ax2.set_ylabel('T2m in °C')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "09b5489a-4207-41e1-94b8-cfe8e7564b7e", + "metadata": {}, + "source": [ + "## Fill gaps and plot timeseries of Vlinder28" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "552e81e9-0e6f-4917-9b43-634a31b079e9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAHjCAYAAAB4jmL1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5fXA8e97J/sKITs7AcIOCggIihviLtW61Fq1ta1VbKtWrdhWq7VSbbXa1q2t4r4ULf5wwwoCIrLLvoR9z0YgCdkzc9/fH5NM7pCQjZncmcn5PM88z83MnXtP9plzz3uO0lprhBBCCCGEEEIIIYQQIc2wOwAhhBBCCCGEEEIIIYT/SSJQCCGEEEIIIYQQQohOQBKBQgghhBBCCCGEEEJ0ApIIFEIIIYQQQgghhBCiE5BEoBBCCCGEEEIIIYQQnYAkAoUQQgghhBBCCCGE6AQkESiEEEIIIYQQQgghRCcgiUAhhBBCCCGEEEIIIToBSQQKIYQQQgghhBBCCNEJSCJQCCGEEEK0yZ///Gf69euHw+Fg1KhRdocDwDnnnMM555zj+Xjv3r0opXj11Vd9dg5/HFMIIYQQoiNJIlAIIYQQHUop1arbokWL7A7VNs8//3zAJpv+97//cf/99zNx4kRmzZrF448/bndIQW/VqlXceeedDB06lNjYWHr16sW1117L9u3bm9z/P//5D+PHj6dLly5069aNyZMn88knn3Rw1EIIIYQIRmF2ByCEEEKIzuWNN97w+vj111/niy++aHT/4MGDOzKsgPL888+TnJzMLbfcYncojXz55ZcYhsHLL79MRESE3eGcVO/evamsrCQ8PNzuUFr0xBNPsHTpUq655hpGjBhBXl4e//jHPzj99NNZvnw5w4YN8+z797//nV/84hdceuml/OlPf6KqqopXX32Vyy67jA8++ICrrrrKxs9ECCGEEIFOEoFCCCGE6FA33nij18fLly/niy++aHR/qNBaU1VVRXR0dEjEUVBQQHR0tM+SgP76+iiliIqK8ukxfa28vJzY2Fjuuece3n77ba+v6XXXXcfw4cP505/+xJtvvum5/+9//ztjx47lo48+QikFwI9+9CO6d+/Oa6+9JolAIYQQQjRLlgYLIYQQIuCYpskzzzzD0KFDiYqKIi0tjdtuu41jx4557denTx8uu+wyFi1axJgxY4iOjmb48OGeZcX//e9/GT58OFFRUYwePZq1a9d6Pf+WW24hLi6O3bt3M3XqVGJjY8nMzOTRRx9Fa31KMX3++eeemF566SUAZs2axXnnnUdqaiqRkZEMGTKEF154odHzN2/ezOLFiz3LpOt73/3+97/3JH+sXn31VZRS7N27t1VxFBcXc9ddd9GzZ08iIyPp378/TzzxBKZpNvt9UUoxa9YsysvLPbHVL2F2Op384Q9/ICsri8jISPr06cODDz5IdXV1q78+J7rzzjuJi4ujoqKi0WPf+973SE9Px+VyNfncpvr51X+/Dx06xLRp04iLiyMlJYV777230XGKi4u55ZZbSExMpEuXLtx8880UFxc3ea5t27bx3e9+l6SkJKKiohgzZgxz58712qf+e7R48WLuuOMOUlNT6dGjBwBnnnlmo8TqgAEDGDp0KFu3bvW6v7S0lNTUVK+fg4SEBOLi4mxPNgshhBAi8EkiUAghhBAB57bbbuO+++5j4sSJPPvss/zwhz/krbfeYurUqdTW1nrtu3PnTm644QYuv/xyZs6cybFjx7j88st56623uPvuu7nxxht55JFH2LVrF9dee22jZJfL5eKiiy4iLS2NJ598ktGjR/Pwww/z8MMPtzumnJwcvve97zFlyhSeffZZz0CNF154gd69e/Pggw/y1FNP0bNnT+644w6ee+45z3OfeeYZevTowaBBg3jjjTd44403+M1vftOur2NTcVRUVDB58mTefPNNbrrpJv72t78xceJEZsyYwT333NPs8d544w3OOussIiMjPbGdffbZAPz4xz/moYce4vTTT+evf/0rkydPZubMmVx//fWtiqsp1113HeXl5Y3631VUVPDRRx/x3e9+F4fD0aavicvlYurUqXTr1o2//OUvTJ48maeeeop//vOfnn201lx55ZW88cYb3HjjjTz22GMcPHiQm2++udHxNm/ezPjx49m6dSsPPPAATz31FLGxsUybNo05c+Y02v+OO+5gy5YtPPTQQzzwwAMnjVNrTX5+PsnJyV73n3POOcybN4+///3v7N27l23btjF9+nRKSkr45S9/2aavhRBCCCE6IS2EEEIIYaPp06dr60uSJUuWaEC/9dZbXvvNmzev0f29e/fWgP7mm288933++eca0NHR0Xrfvn2e+1966SUN6IULF3ruu/nmmzWgf/7zn3vuM01TX3rppToiIkIXFha2O6Z58+Y1+lwrKioa3Td16lTdr18/r/uGDh2qJ0+e3Gjfhx9+WDf18m3WrFka0Hv27Gkxjj/84Q86NjZWb9++3ev+Bx54QDscDr1///5Gx7e6+eabdWxsrNd969at04D+8Y9/7HX/vffeqwH95ZdfthhXU0zT1N27d9dXX3211/3/+c9/NKC/+uorz32TJ0/2+prt2bNHA3rWrFlesQP60Ucf9TreaaedpkePHu35+MMPP9SAfvLJJz33OZ1OfdZZZzU65vnnn6+HDx+uq6qqvOI+88wz9YABAzz31X+PJk2apJ1OZ4uf+xtvvKEB/fLLL3vdn5+fr88//3wNeG7JyclevwNCCCGEECcjFYFCCCGECCizZ88mMTGRKVOmcOTIEc9t9OjRxMXFsXDhQq/9hwwZwoQJEzwfjxs3DoDzzjuPXr16Nbp/9+7djc555513eraVUtx5553U1NQwf/78dsXUt29fpk6d2ug81qWbJSUlHDlyhMmTJ7N7925KSkpa/TVqrabimD17NmeddRZdu3b1+lwuuOACXC4XX331VZvP8+mnnwI0qij81a9+BdCoou9kX58TKaW45ppr+PTTTykrK/Pc/95779G9e3cmTZrU5lgBfvazn3l9fNZZZ3n9XHz66aeEhYVx++23e+5zOBz8/Oc/93re0aNH+fLLL7n22ms5fvy452tZVFTE1KlT2bFjB4cOHfJ6zk9+8pMWqxjrq/wmTJjQqAoxJiaG7Oxsbr75ZmbPns0rr7xCRkYGV111FTt37mzT10EIIYQQnY8MCxFCCCFEQNmxYwclJSWkpqY2+XhBQYHXx9ZkH0BiYiIAPXv2bPL+E3v6GYZBv379vO4bOHAggKfnXltj6tu3b5P7LV26lIcffphly5Y16ntXUlLiidFXmopjx44dbNiwgZSUlCafc+Ln0hr79u3DMAz69+/vdX96ejpdunRh3759LcZ1Mtdddx3PPPMMc+fO5YYbbqCsrIxPP/2U2267rcl+iS2Jiopq9Ll37drV6+di3759ZGRkEBcX57Vfdna218c7d+5Ea83vfvc7fve73zV5voKCArp37+75uKXPPS8vj0svvZTExETef//9RknDa665hrCwMD766CPPfVdeeSUDBgzgN7/5De+9916zxxdCCCFE5yaJQCGEEEIEFNM0SU1N5a233mry8ROTOCerrjrZ/fqEISD+iKmpoQ27du3i/PPPZ9CgQTz99NP07NmTiIgIPv30U/7617+2OKgDOGni62QDM5qKwzRNpkyZwv3339/kc+qToO3R2sRcW4ZajB8/nj59+vCf//yHG264gY8++ojKykquu+66dsXY1p6Czan/nt17770nrXA8MTna3OdeUlLCxRdfTHFxMUuWLCEzM9Pr8d27dzNv3jyvfoYASUlJTJo0iaVLl7bn0xBCCCFEJyKJQCGEEEIElKysLObPn8/EiRM7ZAqqaZrs3r3bKwG2fft2wD3h1lcxffTRR1RXVzN37lyvKsYTlxXDyRNqXbt2BdwTbbt06eK5/8SKu+ZkZWVRVlbGBRdc0OrntKR3796YpsmOHTsYPHiw5/78/HyKi4vp3bv3KR3/2muv5dlnn6W0tJT33nuPPn36MH78+FMN+6R69+7NggULKCsr86oKzMnJ8dqvvpI0PDz8lL+eVVVVXH755Wzfvp358+czZMiQRvvk5+cDTSd+a2trcTqdpxSDEEIIIUKf9AgUQgghREC59tprcblc/OEPf2j0mNPppLi42Ofn/Mc//uHZ1lrzj3/8g/DwcM4//3yfxVRfiWatSCwpKWHWrFmN9o2NjW3ymFlZWQBeffzKy8t57bXXWjx/vWuvvZZly5bx+eefN3qsuLi4XcmkSy65BHBPPLZ6+umnAbj00kvbfEyr6667jurqal577TXmzZvHtddee0rHa8kll1yC0+nkhRde8Nzncrn4+9//7rVfamoq55xzDi+99BK5ubmNjlNYWNiq87lcLq677jqWLVvG7NmzvXpeWvXv3x/DMHjvvfe8fo4OHjzIkiVLOO2001p1PiGEEEJ0XlIRKIQQQoiAMnnyZG677TZmzpzJunXruPDCCwkPD2fHjh3Mnj2bZ599lu9+97s+O19UVBTz5s3j5ptvZty4cXz22Wd88sknPPjgg54lv76I6cILLyQiIoLLL7+c2267jbKyMv71r3+RmpraKIk0evRoXnjhBR577DH69+9Pamoq5513HhdeeCG9evXi1ltv5b777sPhcPDKK6+QkpLC/v37W/X53nfffcydO5fLLruMW265hdGjR1NeXs7GjRt5//332bt3L8nJyW36Go4cOZKbb76Zf/7znxQXFzN58mRWrlzJa6+9xrRp0zj33HPbdLwTnX766fTv35/f/OY3VFdXt3tZcGtdfvnlTJw4kQceeIC9e/cyZMgQ/vvf/zY50OW5555j0qRJDB8+nJ/85Cf069eP/Px8li1bxsGDB1m/fn2L5/vVr37F3Llzufzyyzl69Chvvvmm1+M33ngj4F6C/qMf/Yh///vfnH/++Vx11VUcP36c559/nsrKSmbMmOGbL4AQQgghQpYkAoUQQggRcF588UVGjx7NSy+9xIMPPkhYWBh9+vThxhtvZOLEiT49l8PhYN68edx+++3cd999xMfH8/DDD/PQQw/5NKbs7Gzef/99fvvb33LvvfeSnp7O7bff7knuWD300EPs27ePJ598kuPHjzN58mTOO+88wsPDmTNnDnfccQe/+93vSE9P56677qJr16788Ic/bNXnGxMTw+LFi3n88ceZPXs2r7/+OgkJCQwcOJBHHnmk3QNL/v3vf9OvXz9effVV5syZQ3p6OjNmzODhhx9u1/FOdN111/HHP/6R/v37c/rpp/vkmCdjGAZz587lrrvu4s0330QpxRVXXMFTTz3VqOpuyJAhrF69mkceeYRXX32VoqIiUlNTOe200xr9DJ3MunXrAPfycesQkHr1iUCAF154gZEjR/Lyyy97En9jx47l9ddf5+yzz27nZyyEEEKIzkLp9nTMFkIIIYQIAbfccgvvv/8+ZWVldocihBBCCCGE30mPQCGEEEIIIYQQQgghOgFJBAohhBBCCCGEEEII0QlIIlAIIYQQQgghhBBCiE5AegQKIYQQQgghhBBCCNEJSEWgEEIIIYQQQgghhBCdgK2JwBdeeIERI0aQkJBAQkICEyZM4LPPPvM8XlVVxfTp0+nWrRtxcXFcffXV5OfnN3tMrTUPPfQQGRkZREdHc8EFF7Bjxw5/fypCCCGEEEIIIYQQQgQ0W5cGf/TRRzgcDgYMGIDWmtdee40///nPrF27lqFDh3L77bfzySef8Oqrr5KYmMidd96JYRgsXbr0pMd84oknmDlzJq+99hp9+/bld7/7HRs3bmTLli1ERUW1Ki7TNDl8+DDx8fEopXz16QohhBBCCCGEEEKIIKS15vjx42RmZmIYQbzAVgeYrl276n//+9+6uLhYh4eH69mzZ3se27p1qwb0smXLmnyuaZo6PT1d//nPf/bcV1xcrCMjI/U777zT6hgOHDigAbnJTW5yk5vc5CY3uclNbnKTm9zkJje5yc1zO3DgQPuTXgEgjADhcrmYPXs25eXlTJgwgTVr1lBbW8sFF1zg2WfQoEH06tWLZcuWMX78+EbH2LNnD3l5eV7PSUxMZNy4cSxbtozrr7++yXNXV1dTXV3t+VjXFUkeOHCAhIQEX32KQgghhBBCCCGEECIIlZaW0rNnT+Lj4+0O5ZTYngjcuHEjEyZMoKqqiri4OObMmcOQIUNYt24dERERdOnSxWv/tLQ08vLymjxW/f1paWmtfg7AzJkzeeSRRxrdX9+7UAghhBBCCCGEEEKIYG8hZ/ui5uzsbNatW8eKFSu4/fbbufnmm9myZUuHxjBjxgxKSko8twMHDnTo+YUQQgghhBBCCCGE8DfbKwIjIiLo378/AKNHj2bVqlU8++yzXHfdddTU1FBcXOxVFZifn096enqTx6q/Pz8/n4yMDK/njBo16qQxREZGEhkZeeqfjBBCCCGEEEIIIYQQAcr2isATmaZJdXU1o0ePJjw8nAULFngey8nJYf/+/UyYMKHJ5/bt25f09HSv55SWlrJixYqTPkcIIYQQQgghhBBCiM7A1orAGTNmcPHFF9OrVy+OHz/O22+/zaJFi/j8889JTEzk1ltv5Z577iEpKYmEhAR+/vOfM2HCBK9BIYMGDWLmzJl85zvfQSnFXXfdxWOPPcaAAQPo27cvv/vd78jMzGTatGn2faJCCCGEEEIIIYQQQtjM1kRgQUEBN910E7m5uSQmJjJixAg+//xzpkyZAsBf//pXDMPg6quvprq6mqlTp/L88897HSMnJ4eSkhLPx/fffz/l5eX89Kc/pbi4mEmTJjFv3jyioqI69HMTQgghhBBCCCGEECKQKK21tjuIQFNaWkpiYiIlJSUyNVgIIYQQQgghhBCikwuVXFHA9QgUQgghhBBCCCGEEEL4niQChRBCCCGEEEIIIYToBCQRKIQQQgghhBBCCCFEJyCJQCGEEEIIIYQQQgghOgFJBAohhBBCCCGEEEII0QmE2R2AEEIIIYQIbu84P+ID83MySee7jqmc7Rhrd0hCCCGEEKIJkggUQgghhBCn5FXXHBbrlQAcp1wSgUIIIYQQAUqWBgshhBBCiHYztcl6vc3zsbIxFiGEEEII0TxJBAohhBBCiHZbr7dRTKnn4wKKbIxGCCGEEEI0RxKBQgghhBCi3b4wl3p9nKsLbYpECCGEEEK0RBKBQgghhBCi3b5wnZgILLApEiGEEEII0RJJBAohhBBCiHapMCvYpQ8AEEkEAEcpoUpX2xmWEEIIIYQ4CUkECiGEEEKIdvmWreRSQB+605N0z/15+oiNUQkhhBBCiJORRKAQQgghhGiXjWYOGs1eDtFdNSQCc5HlwUIIIYQQgUgSgUIIIYQQol026BzPdrbR17MtA0OEEEIIIQKTJAKFEEIIIUSLvlvzc/pVnceo6itY6FoOuCsCARSKkWqQZ988SQQKIYQQQgQkSQQKIYQQQohmaa1ZYq7mMAVs07vZow/i1E426R0A9FM96aN6ePY/LJODhRBCCCECkiQChRBCCCFEs7bp3ZRw3PPxEY6xU++jCvd04BEqm0yV6nlclgYLIYQQQgQmSQQKIYQQQohmfWEu9fo4Vxd69QccbmSTrpIbHpdhIUIIIYQQAUkSgUIIIYQQolnzzW+8Ps7ThWwwGxKBI9UgupBAFJF1jx/p0PiEEEIIIUTrhNkdgBBCCCGECFxVupol5mqv+3J1ARVUeT4ebmSjlCJDpbBHHyRXegQKIYQQQgQkqQgUQgghhBCNVOsa1plb+U3t05iYhBNGJBEAHNaFaK3JIIWuJNCTdADSSQHgGKVU6qqTHlsIIYQQQthDEoFCCCGEEKKR3foA42uu4TnzLaqp4R7jh/RTPQF3D8D/6a/JpZBhyl0NCHgNDBlUPZU7an6PS7tsiV8IIYQQQjQmiUAhhBBCCNFIIUc923HEkGR0oYdyV/7V4vQ8NsDo7dm+zHEu9zpu5UI1kXyKeMV8n+/X/ooqXd1xgQshhBBCiJOSRKAQQgghhGikSBd7th8Iu41fht1MhkpptN8g1c+z/T3HZTwWfjdnGCM8960yN/K1ucavsQohhBBCiNaRRKAQQgghhGjkiD7m2U6mKwAZpDbaL1v1bXTfb8OnMzf8RRKJp4ZarqqdzlFd4r9ghRBCCCFEq0giUAghhBBCNFKEJRGo6hKBTVQEDmwiEQhwoWMSP3BcSSFHqaGWD1zz/BOoEEIIIYRoNUkECiGEEEKIRqwVgd1UF6BxIjCKSHqrzJMe4ybHNM/2W665Po1PCCGEEEK0nSQChRBCCCFEI00uDVbeS4MHqj4Y6uQvJ0cYgxiuBgKwXK9nh2uv7wMVQgghhBCtZmsicObMmYwdO5b4+HhSU1OZNm0aOTk5nsf37t2LUqrJ2+zZs0963FtuuaXR/hdddFFHfEpCCCGEECGhiGLPdre6pcHpJ1QENtUf8ETfd1wBQFcS+YnzN1ToSt8FKYQQQggh2sTWRODixYuZPn06y5cv54svvqC2tpYLL7yQ8vJyAHr27Elubq7X7ZFHHiEuLo6LL7642WNfdNFFXs975513OuJTEkIIIYQICUV1FYEOHHQhHoB0kr32yTb6NXreiW5wXM4fHfdQRjnL9Xp+VDsDrbXvAxZCCCGEEC0Ks/Pk8+Z5N41+9dVXSU1NZc2aNZx99tk4HA7S09O99pkzZw7XXnstcXFxzR47MjKy0XOFEEIIIUTrHNHFAHQj0bP8N0KFE0s05bir+lpTEZiqujHaGEaUK5JIIqigioecz/KH8Lv8FboQQgghhDiJgOoRWFJSAkBSUlKTj69Zs4Z169Zx6623tnisRYsWkZqaSnZ2NrfffjtFRUUn3be6uprS0lKvmxBCCCFEZ3akbmpw/bLgeuGEe7YH0KdVxzrHcQYfhr+AieZ/5tf83fUG+3Wuz2IVQgghhBCtEzCJQNM0ueuuu5g4cSLDhg1rcp+XX36ZwYMHc+aZZzZ7rIsuuojXX3+dBQsW8MQTT7B48WIuvvhiXC5Xk/vPnDmTxMREz61nz56n/PkIIYQQQgSrCl1JRV3VXze8E4Evhj3Knx2/5iHHnQxUfVp9zImO07nNcR0AVVTz+9q/+SxeIYQQQgjROkoHSJOW22+/nc8++4yvv/6aHj16NHq8srKSjIwMfve73/GrX/2qTcfevXs3WVlZzJ8/n/PPP7/R49XV1VRXV3s+Li0tpWfPnpSUlJCQkND2T0YIIYQQIogd0LkMqJ4CwDTjAt6NeMYnxz2mSxhcfRHV1HKTYxqPOe4m3oj1ybGFEEIIIfyptLSUxMTEoM8VBURF4J133snHH3/MwoULm0wCArz//vtUVFRw0003tfn4/fr1Izk5mZ07dzb5eGRkJAkJCV43IYQQQojOqqiuPyBA8glLg09FV5XI+caZVFLFS653WcsWnx1bCCGEEEK0zNZEoNaaO++8kzlz5vDll1/St+/JG06//PLLXHHFFaSkpLT5PAcPHqSoqIiMjIxTCVcIIYQQolM4UjcxGBovDT5VpxtDPdvWhKMQQgghhPA/WxOB06dP58033+Ttt98mPj6evLw88vLyqKys9Npv586dfPXVV/z4xz9u8jiDBg1izpw5AJSVlXHfffexfPly9u7dy4IFC7jyyivp378/U6dO9fvnJIQQQggR7OoHhYBvKwIButGl4Tz6qE+PLYQQQgghmmdrIvCFF16gpKSEc845h4yMDM/tvffe89rvlVdeoUePHlx44YVNHicnJ8czcdjhcLBhwwauuOIKBg4cyK233sro0aNZsmQJkZGRfv+chBBCCCGCXZG1IlB18emxrYnFIxT79NhCCCGEEKJ5YXaevLVzSh5//HEef/zxVh0nOjqazz///JRjE0I07a/OWRzSBfRVPRhtDGW8McrukIQQQvjYEWuPQB8vDbYmFq0JRyGEEEII4X+2JgKFEMHjuC5nlvMDHnH9nSpqALjZ+A7jI0bZG5gQQgifK/Lj0uAUkjzbRyQRKIQQQgjRoSQRKIRoVr4+wqXVP+UYJRwi3+uxheYKtNYopWyKTgghhD9Yh3h083WPQGtFoCwNFkIIIYToULb2CBRCBL6V5gY2sd0rCejAAcB+DrND77UpMiGEEP5SSMMQj2TLcA9fSCTe839ElgYLIYQQQnQsSQQKIZq1wlzv2R6rhvNV+Ft812iYwD3f/MaOsIQQQvhRfUVgFJHEEO3TYxvKoBuJABRKIlAIIYQQokPJ0mAhRLOsicB3w5+hu5FGtIrivZpPAfjCXModfB+AHHM3r7nmsE8fIkv14tHwu+wIWQghxClKV8kkEEu8ivNL+4duqisF+qgsDRZCCCGE6GCSCBRCnJRTO1mjNwPQkwy6G2kADFMDSSeZPI7wtbmGWrOWcCOc+a5lPO2aBUA8sfwubDrhKty2+IUQQrRdla5mgbkMgHGM9Ms5utVNIq6gkgpdSYzybdWhEEIIIYRomiwNFkKc1Ca9gwoqARhnjPDcr5Tiu8ZFjFbDiCKSNbiThbkUePY5TrksGxZCiCB0QOd6tnupDL+cI8UygESqAoUQQgghOo4kAoVfuLSLe2oeZ7FrBV+4ltodjminlZZlweOMUV6PZRt9WaM3UchRz/LhXXq/1z5vueb6PUYhhBC+tU8f9mz3Vt39cg6vycGWCcUiOHxlrmK1uZG/1PybPlXncF/tE2it7Q5LCCGEEK0gS4OFX7zpmsvz5ts8b74NwEFjCcmWq/8iOCy3JALPsFQEAowzGpaLrTQ3ALBbH/Da5yNzIcd0CV1Voh+jFEII4Uv7LYlAf1UE1i8NBijUR5vZUwSi39Q+zSq9EQOFiebvrjeYEfYzkpD/90IIIUSgk0Sg8LkKXckjzr973bfBzOE8x3ibIhKtNcf5Ba+Z/+WwLuAydS7rzK1MVKNxoBilBnvtO0T1J5ZoyqlkubkOrbUnERhHLP1UD3qqDDabO5jkGGPHpyOEEKIdOqIiMFmWBgetIl3Mar0JgAgiqKIagHx9hCS58CeEEEIEPFkaLHxukbmSSqq87tuoc2yKRrTF/5nzmWcuYYPO4d/mbLawk6V6DV1UApEqwmvfMBXGGGM4AIfIZ4PexnHKAeijMtmgc/jEXOR5syCEECI4eFcEZvrlHN5Lg4/55RzCP740l6FxLwMepgZ47s/XRXaFJIQQQog2kESg8LnHnS9goulJw3KiDaYkAoNBHkc82wU0vKD/vuOKJvc/QzUsF/7MtcSznaV6e7atlSVCCCEC374OWBqcbFkafER6BAYV6yCwkZbVAvmW1xBCCCGECFyyNFicsu3mHj52LUSjCSOMNXozGk13UnHgwIVLKgKDxHZzT6P7kkjkIuPsJvcfb4wCl3t7mfmt5/5hagD/x3wA9ulDPo9TCCGE/9RXBCbTlVgV45dzeC8NlorAYKG1Zr7LnQiMIpLxxkheNmcDUCAVgUIIIURQkESgOCVO7WS26zP+4HoegGgiPctFLnRMQpuwVe9iq95Fja4lQoXbGa5oRok+zmEKGt3/XeOiRsuC642tWxoMsN6S7B2hsokkgmpq2CuJQCGECBq1utbzv8Bf1YAA3ayJQKkIDBrb9G4OkQ/AWcYYuqt0z2P5WioChRBCiGAgiUDRLhOrr6dEHyeXQoaoLM/9lXUNowEuMCZyWBeyVe+iFic5ejfDVbYd4YpW2K73eraH0p8RxmBKOM4Pwqad9Dmpqhu3GdexWe9kqW6oCBxg9KG36s52vYd9+hBaa5RSfoxeCBGs5O9DYDmo8zExAf/1BwRIpotnuxCZGhws5ruWMpQBdFWJXGacS7pK9jyWj1QECiGEEMFAegSKNsvXR1ijN7GTfZRTwRq9udE+UUQyyRjNCKMh8bdBlgcHtG16t2f7prDvMCtiJv+N+IdX1V9TBhp9+Vqv8VSCAvRVPehd9waynEqOyLIvIUQT5roWcFXtdHLNAjaZ29li7iTfPMISczV5Ul1ki/0dMDEYIIZooogEpCIwmPxPL2UzO/har+ZsYyypqpvnMakIFEIIIYKDVASKVjmmS6imlnSVzEpzg9dj9ZUDEYRTQy0AE9QoolQkIywVgBvNHHB0XMyideqrcXLMhkTgINWv1c//ieM6nnO9xW59AHD3FIxWUZ5EILj7BKaoJN8FLYQIektcq7iu9i40mr415zFKDaZWO9nMDgB+67iD34bfYXOUnc9+cj3b/lwarJSiG104RL5MDQ4SlbqKJeZqALqTxiDVz9Mf2olTegQKIYQQQUISgaJFh3Q+V9T8jBpdw/mOM086/GGiOp0teicRRHCBMRGAEcYgRpJNlIpio7mjI8MWrbDL3M+1Nb9gnDGKD8zPPfcPVH1bfYwIFc6jjl9yk/N+slQvzyThPqqHZ5+9+hBjaL6yUAjReRzQudxV+0dGq6Gs1psAWKe3YlgWKsw2P+M3+nZZNtzBrP/j/VkRCDDZOIM9+iBVVFGta07aj1YEhqXmt1TVtYC5wHEmSikUijS6cYh8qQgUQgghgoQkAkWzSnUZLznfYbN2J/F2uPYRR+MJggYGb4Y/RTejC+CuMgNIV8k4lIMVej0AO8199Dd6d0zwokW/cz7DZnay2dzpuS+KyDZXgVztmMo4x0h6Wp7nXRF4uKmnCSE6kfqBUS863+ELcymb2QkaBtKH7ewFGirMAXL0HlbrTYxVchGhI+03G/5e+7MiEECjWabXAu72IfK9DmzzzaWe7QuMMz3bqaobh3Q+BRzF1CaGks5DQgghRCCT/9TipGp0LX9xvsxTrlkMUf0Jr8sbl1EBQA/SudX4Ln8Ku5c/Oe71JAEBrwqOax2XeLbfcn3UMcGLFi031/Ff83+N7u+neuJQbVvDrZTySgLCiRWBB9sXpBAiZPyw9gH6VJ3LXc4/8om5CICuJPB4+D0nfc5brrkdFJ2ot8XcxWCymKIm0pceLT/hFIw3Rnm2V5jr/Houcer+V5cIVCjOMyZ47k+r6xPowkURxXaEJoQQQog2kESgaGSluYFFrhUMqb6IZ1yv4sLFDr2XO4zve+03wRjFcxG/566wW/hF+E0nPd51jks9y73eNj/C1OZJ9xUdJ8fczQDVB4DTGQpAGA76+GgpmFQECiHqubSLBeY35FEI4Lmw9GDY7UwxJhFNlGffcMKIJIIkulBDrafCXPhfpa5iHVvZyi72c5h4I86v5zvDGOHZXnFC/2ERWP5R+yYHdR5xxDBGDaOb6uJ5TAaGCCGEEMFFEoGikWtqfsFFtbdykHzP8I87HN/nV+E/QtFQ6VffC64lGSrFs4Rknz7EUv2t74MWbfao8zl26L10IZ73Iv7Kx+H/5HjkOt4Kf8onx08hiRiiAdhfdYhdy3cw7+lPcFbLG3shOps1ejPFHAegJ+msCJ/NG+F/5qeO64hUEV5LQkeqwYxUgzhKMa+43qeYUrvC7nTW6i04cQIwzhjp9/MNVwM9SeAV5nq/n0+0zwLXMu51/YlSyhhGNq+GP+H1eBrJnu18GRgihBBCBDzpESi8lOoy8mm4mnu2Gss2vYtfh/2UJJXIVHUWBRQRQxQTjdGtPu61xsUcMHNJUUl86VrOWcYYf4QvWqlSV3GIfMA9GKSnkUlP3BV81sqcU6GUorfKxJhVyfgnMvi/IXPY9+0eqsqqOLz5ED97+04Mh1yLEKIz+MLSW2xG2M8Y4hjAEAZ47rvKmEqlWQUornZcyEZzOyu1u0IsVxfSVSV2dMid0kpLVd4Zyv+JwDAVxmg1jK/1avZzmFxdSIZK8ft5RevlmLu5qfY+JqhRLNPrOMsxmn6qp9c+adaKQKQiUAghhAh0kggUXnL0Hs/2BcaZfBzxT8p1BbHKPSDkw8jn23XcKxzn8zPnw2zVuzhsFvAwd/okXtE+ey1TIU98Qe9L5xsTKEg/RFiVE1X312bhC/MB+OrlhZzz0/P9dm4hROD4wmUZMuCY2Ojxn4Vfz8+43vPxb2v/6tnO1YUMob9/AxSAd1Xe+A6oCKw/z9eu1QCsNNdzpeOCDjmvaJ3fOP9KEcUs0+u4xbiKP4Tf1WifNNVQEVggFYFCCCFEwJNyHOElR+/2bE8x3G/W6pOApyJBxTGurrpgp97HHlOGR9hptz7g2fZnIvAv4Q/wwtkz6do9iZ5DezHlFxd5Hvv4T3MpOiCVA0KEoqO6xLNdrEtZpTcCkK36tmoSrbUqLJcC3wcomlRfERhPLINVVoec07oEeaX0CQwoS8zVfGwuBCCDFJ4Kf6DJ/VKRHoFCCCFEMJGKQOElx2yoCMxWfX167CmOM1nqXAPAfPMbfmJc69Pji9bzSgQa/ksEAsQmxfH71X/0fFxRUsHGz9aTmNGF2Q+8y21vTveaMi2CxwbXNlbrTRzTpUwxzmSEY5DdIYkAMNv1GbfXPszDjp9jKpP+qjdnqBHs1gc8/WJbkqFSPdu5utBfoQqLAzrX0zJijDG8zdPj2+sMYwQxRNFf9eagzuuQc4qWmdrk6dpZjFXDWaU38nDYz096YThdSY9AIYQQIphIRaDwYq0IHOjjRKD1DeB8S78o0fF26f2ebX9WBDblsgevJDIukgPr97H1y818++HqDj2/8J0HnU9zh/P3/Mb1NP8yZze77zzXV+w1DzW7jwheLu0CYGbti9xUez9lVHCf6wl+7fwzs12fsUyvJZ8jTFGTWnU8a0VgniQCfeZ91zyKdDHvuj6hRB/3esy6fLu1w8B8IU0lk6V6s0Hn8IH5P0p1WYedW5zc++Y8PtOLWaU3colxDj9wXHnSfa1Tgz8wP+dZ52uevwlCCCGECDySCBRe6nsERhFJb5Xp02OfpobQjS4ALDRXUKtrfXp80XrWisAs1atDzx2TEMMVv/2O5+PPnvqYsqPyxi84NUx/Pqzzm9zjBefbXFj9Q66uvZPJNTewydzeUcGJDvSj2ge5sOaHrDE3o/GeCv6/ugs/EYRzlqN1Q6bSsSwNlkTgKdNa86TzX9xYey+Tqq/nltpfM6XmFs/XVmvN684P6U0m1xgXcbHj7A6Nb1Ld8DEnThaZKzr03KKxal3D75zPej7+meP6ZitEu5DAo2G/5BImU00NLznf5Tu10zsiVCGEEEK0gyQChUetrmVXXYJogOrt82VBDuXgPGMC4O4/9LX5rU+PL1qvPhEYS7RXb5+OMuLiUYy4ZBR9x/ajrPA4c//w3w6PQZy6cl3l2bZWmVotcq3gK70KFyallLPN3C0XAUJMqS7j/8z5fGWuYoFeRiapXGtc7Hn8KMUAnGmc3uqes9aKwMNaegSeqiqqKdRHAdiDu0dvkS7m387/YGqTT8xFLGcd+zjMWr2VMWpYh8Y3xWvFwDcdem7R2Dq9lTjcv6vnGeM9PaNPRinF/WE/4WzHWBw42M0BvjCXcugkF4iEEEIIYS9JBAqP3foATpwADFL9/HKO641LGaB6c4h8/mt+7pdziOY5tZN9dVOD+6metvXnu/qx68jLyaWytJIV7y5j+9fbbIlDtF++amgKv0Pvo0pXN9qnPukAoIAbnfeyXsv3OpT81/U/qnB/7292fIfdUV/ySvhMEon32q+lZIJVlIokiUQA8pDhA6fqSee/+bvrDcIJ42pjKn3pQTkV/NH1Aq84Z3O/80nPvo+F3UWY6tgW0mcbZxBe17b6C2kdYrvnnG+xWe8gma780nFLq18n3BV+CzPCbgNAo3nX9Umrz7nd0qNaCCGEEP5layJw5syZjB07lvj4eFJTU5k2bRo5OTle+5xzzjkopbxuP/vZz5o9rtaahx56iIyMDKKjo7ngggvYsWOHPz+VkFC/LBh83x+w3tmOsRyqq+6Y7ZpHta7xy3nEyR3QedTWJXw7elmwVZeMLlz+m4Ylwus/WYdpmrbFI9pGa+21ZNOFiy16Z6N96qtPu9GFCtwVhDIZNLS85Zrr2f6+4woAwlQY5xrjvPZr7aCQeul1VYG5ugCtdQt7i+YUcQyAWpz8KuxHPB/+e4px9wi82zWTEl1GX9WDCeo0rjQu6PD44lQME4zTANijD7LLbLrCWHSMjdr9WryE441+j1tyg3G5Z/tN1/+16nf3deeHjKq5kh/VzOCh2mfl910IIYTwM1sTgYsXL2b69OksX76cL774gtraWi688ELKy8u99vvJT35Cbm6u5/bkk0+e5IhuTz75JH/729948cUXWbFiBbGxsUydOpWqqqpmn9fZrTW3erazDf8kAuNVLFca5wNQTCmfmov9ch5xcl4Tgzt4UMiJJtw4kb5j+pE+MINlb33NwQ0HWn6SCAillFGJ99/UDab3hZwCiiijAoD+qrfn/uXmev8HKDrE566vWabXAu5J89YlpeeqCZ7tOGIYrga26dj1y4OrqeEYpT6ItvMq0sWe7W6qK+c6xnORcRbgTg4WcYwU3Y03w/9iW5W4tWL0C5csD7ZLla5mu94LwGCVRYQKb9Pz+xk9OVOdDrgvMJ+sbYT1fH92/RsTk7fNj3jS9S/2ahksJYQQQvhTx679OMG8efO8Pn711VdJTU1lzZo1nH12Q6PqmJgY0tPTW3VMrTXPPPMMv/3tb7nySveEs9dff520tDQ+/PBDrr/+et99AiFmkWsFPUhntDGMsX6cGPh9xxW8Y34MuK8Wf8cxxW/nEo1ZE4F9bU4EGobBmO+OY/YD7wCQs2QbvUb1buFZIhDkNtG3rb6KpJ71Z224ymaDzqGSKlZqqQgMBfNd33B97V24MLnV+C5nOk73SiJdGjaZQ+QRRwzdVBcM1bZrjxmkerbzdCFJKtFnsXc2R+oqAgGS64Z2PR72K3BCH9WD913zeDriAbobaTZFCFPURD5XS8ijkPn6a36GvF6zwxa9Exfuib/DVXa7jnG541yOu8rQaBaZK+lvnPz/+q+cfyJWR+PA4TnvRp1DX3q069xCCCGEaFlA9QgsKSkBICkpyev+t956i+TkZIYNG8aMGTOoqKg46TH27NlDXl4eF1zQsLQlMTGRcePGsWzZsiafU11dTWlpqdets9ljHmQZazlIHlv1Lvqo7n4717nGODJJJY4YDuo89poHW36S8JmjupjeZBKGw/aKQIDsswd5trcv2drMniKQHG5ikuuJFYHWROBAow+nq6EA7NUHydfS9y0Y1ehaflU7k4dqn+VHtTNQKDSaXAq9lgQC9FDpPBr+S+4P/wm3hl3T5nOlq2TPtgwMOTVF2p0IjCbKM7BliNGfDyNe4K9hD7Imcg5jjOF2hsgII5scvYedej+LzJXUyFAhW1j/jo8w2pcIPMMYyUa9nU16B5t18615VpsbWcdWr2njG064qCSEEEII3wqYRKBpmtx1111MnDiRYcMalhbdcMMNvPnmmyxcuJAZM2bwxhtvcOONN570OHl5eQCkpXlf1U5LS/M8dqKZM2eSmJjoufXsaX9ypKPVV+gBfN9xuV+XBjmUg0fCfkEE4azX23jY+Xe/nUs0tlHnsI/DOHHRkwy7wyG5Twpdu7uT/7tX7qKmUvpGBoM8GhKBCcQBsFFv9+rttNv0XoY+3hjp+Vj6BAanf7ne4znXW/zF9W8KKOJa42J+4JjGO+F/9fn/jUzVUBGYS+PEs2i9I3WJwG511YBWSinSLElXuxjK4HzDvZy8jApWaGkhYAdrZXd7KwKtFxmtF4ROZO0j291SAbzRlESgEEII4U8BkwicPn06mzZt4t133/W6/6c//SlTp05l+PDhfP/73+f1119nzpw57Nq1y2fnnjFjBiUlJZ7bgQOdq0+Z1tqr2fv3HJc3s7dvXOE4H6Pux+898xPWmJv8fk7hdlDne7Z7GfYnApVSDKyrCnRWO9mzerfNEYnWsA4KOU0NYZIazWDVjwP6sOd+a2+ofqonZxgNLQdWSJ/AoFOsS3nc+SIAJpoUkhhsZPGv8MeIVBE+P1+G8l4aLNpHa80RigFIVl3tDaYFFzgaBsp84ZLpwXZY74OKwHSSiSEaoNkegYUc5TjuvuADVV9i654jFYFCCCGEfwVEIvDOO+/k448/ZuHChfTo0XxPkHHj3NPLdu7c2eTj9b0E8/Pzve7Pz88/aZ/ByMhIEhISvG6dwSpzI/fUPs7DtX/zXJGdbJxBL+X/5FCiiufBMPf0ZwODpa5v/X5O4XaoLhGYQhJRKtLmaNyyz7IsD/5qm42RiJOp0tVordlsupd5WXsEZqpUvtZrWKbXsdGyDGyPblj231f14AxLReCJE4ZFYKjS1Ti1k7muBY0md/7bOZsq3BW71xuXciDqK34ZdrPfYrEuDW6qJ6VonVLKcNZNiu+mutgbTAsusAwMmW9KIrCjaa09FYGZpLY7cayUop9yv57fpw/h0q4m97NWC/Y3ejOsbqDQHn2QUl3WrnMLIYQQomW2JgK11tx5553MmTOHL7/8kr59W55Uu27dOgAyMppOVvXt25f09HQWLFjgua+0tJQVK1YwYcKEJp/TGa0yNzK15kc873qbxXolGs3VxlQecNzWYTH82HEtA1UfupPGTNeLjd50Ct9zaReHcb+h7q7sawp/ogGT3FUHETERHNkvveMCjalNMqonklB9GqNrvsNOc59Xhdbout5/4F3J0bDkK41oFUWGSmGMGk5PMjxTKUXgqP8+d60ew7W1v/Sa6r5PH+YPrueIIoKz1VgeCf+l3+OxDgvJlYrAdqtfFgzQjcCuCExXyYyoW466Vm+lUB+1OaLOZT+5lHAcgOHtrAasV788uBYnB3TTrXmsicB+qifDjYbJ4pv09lM6vxBCCCFOztZE4PTp03nzzTd5++23iY+PJy8vj7y8PCorKwHYtWsXf/jDH1izZg179+5l7ty53HTTTZx99tmMGNGwxGzQoEHMmTMHcF+FvOuuu3jssceYO3cuGzdu5KabbiIzM5Np06bZ8WkGnBpdy7vOj+lbd7W2kKNkksoZxgjOdYzrsDgiVDi9VXcOkMsxSilEXvD7Wz5Fnql8gZQITEhJYOiU4Tirnaz/6FsqisvtDklY7NWHqKSK2rqqordcH3kNC5lkjPFs1/d2KtVlnt9p63RqFy4OkMsefRBTmx0Rvmil3fqA1/f5QedTOLV7+/e1f6OaGoooZowxjN4q0+/xZKgUepDGMAYSR4zfzxeqiuqWBQMkB3hFIMAUYyKpJDGE/rzmmmN3OJ3KJjOHMWo4venOSDWo5Sc0I0v18myfrE/giYnAEZaehBtNSQQKIYQQ/hJm58lfeOEFAM455xyv+2fNmsUtt9xCREQE8+fP55lnnqG8vJyePXty9dVX89vf/tZr/5ycHM/EYYD777+f8vJyfvrTn1JcXMykSZOYN28eUVFRfv+cgsFn5mKeM98C4HQ1hC8j3rBtiaj1zeR+fZhU1c2WODqLQ5b+gIGUCARI6ZfK5i82ArBj6XZGXnqazRGJehtP6Nf0tvkRhnYPhuhCAsOMAUQRSRXVnorAHeZez/5ZRkMiME11A+1OCBZRTAreU+KFfU7sy5Wj9zDD+RTjjdP4j/kpAEkkcn/YTzoknkgVQTHHOUi+JyEp2u6IpaouWQX+79udjht5w/Uhm9nBM85X+YnjWhJVvN1hdQrLzfWs1u7/w9ZK7/awDgzZpfdzHuPJ10e8BtPsMhv6B2apXl5LkaVPoBBCCOE/tiYCW1oK2rNnTxYvXtzsPk0dRynFo48+yqOPPnpK8YUq62CQR8J+aWufuF6WROA+fZgxDLctls7gkGV5Tg/VdM9Muww8axCLXnIv6c9Zsk0SgQFkwwkTHPfpQ0TiHg6RoVIIU2EMVf1ZozezS++nXFew0FxOLzIYagxgiqXvlzXZn6+PkBIEiYnOwvp97k4qXVQif3e9wfOut0miCwNUH65yTKGL6rg+uonEU0aF9As7BUd0sWc7uYmpwYEmw0hlsnEGs815HOEYf3G+zB/C77I7rE5hpW6Y5j7WMaKZPVvWz1IRuEcf4EvXcq6ovY2Bqi8DVG/ei3iWPZaKwL6qB07t4hw1jiqq2WsebOqwQgghhPCBgBgWIjrOEX2Mz8yvAMgghXONjlsK3JTeqrtne79l2qjwj4OWRGCgVQT2H98fI8z9J2n7EhkYEkhOrAiMJZrquqERGSoFgBGGexmZRrNJ7+C/5v/YTy6fmV8xRPX3PDeNhmqQfF3k79BFG1i/zz933MTmusEvLlwUcpQRKps7HN/v0JjiVSyAp2+ZaLsiLD0CA3xqcL1Hwn5JeN216v36MGW6wuaIQp9TO1ltuqsBe5BOpmVqd3t4VQSa+5nh/AtOXGzRO/nYXESNrvUsDc4klWgVRbwRSwFFLNfrWKxXUaErTykGIYQQQjRNEoGdzH9cn3r6P13vuJQwZWtRqNeE4v0618ZIOgevpcEEVkVgZGwUfUf3A6BwdwFHD0rPyECxoa5pewxRzHT8CoXyPJZOXSLQ0tvpc9cSvtVbAHf7gSGGJRForQhEBsMEkvqKwHhi+UXYTfw57Nd815jKY467ucG4nD+H34+hOvZlQyLuJaHlVMry4HYqslQEBvqwkHr9jJ5cZ1xCFxJ4z/yUReYKu0MKeVv0TspxJ97GWya8t1dPlU5YXTJ3hV7Pet1wgc+FizXmJgqa6CN7huGuRHTi9PwfEUIIIYRvSSKwE6nVtcxyfsAENYpE4vi+4wq7Q/KqCNynD9kYSedw0JII7BFgFYEAA89uaE6+/WupCgwEJfo4e7V7idZwlc1kxxlEEI5CMU6N9Lxps06Y/MRc5Nk+8e+MtT9UgVQEBoxjuoQDuC/GDFMDMZTBz8N+wBvhf+FXYT/i5fDHCVfhHR5XgorzbB9Hhgi1h3UQVzAMC6l3qeNciikFYIW53uZoQp/1a3yGDxKBYSqMPnWv8fI4wlg1wusi0kK93LNt7SM7TjWcW77vQgghhH9IIrATedn1PhvZzjK9jqnqLIYZA+0OiXSSicD95lKWBvtfIA8LARg4aRCRcZH0GtWHvBypEA0EG3XD5MbhxkBON4byVcTbvBP+NIsj3+JnYd9zP6Ya/p5s1jsBCCOMax2XeB0vFe8egSIwWL/PIyxJXaWU52aHRBoSgSXSJ7BdvCoCg2RpMDRUhoG7okz41wqzoT/gOB8kAgH60HCxd5XewN3GLZ6Pl7savqfWZcTjjVGe7ZWSCBRCCCH8QhKBnUSpLuOPzhc8H/88/CYbo2lgKIOedcuD9+nDLQ6QEaemvkdgN7oQrQJvinavUb0xHAb71+1l9Qcr5echAKwzG5Zm1S//7W/0Zppjitd+iSqeZ8N+y0fhL3GbcR3T1AXMCLut0TCQdCU9AgPRRsugkOGWZd52S7BMiy2VPoHtckQ39AgMhmEh9bqrNHrUtbBYY26SpeF+Vp9sjSCcUWqwT455T9iPeC7sYVLpxs3Gd5ge1tBjdIPeRgpJXKImc7Ya67k/W/X1tARYYa6X1wFCCCGEH0gisJPYZG5nkHL3X7vGuJixRuBM562fHHyccs8yIOF7pjY5TAEQmNWAAGERYfQ7w91P7nhhKbk5UiVqp3x9hGedr5GKO5lnXf7blNvCrmeKYyK9jEwmOE7jN2G3N9onVXoEBqSd5n561iVdRrTwfe5IXhWBSEVgexRRDLj7LdqxvPtU1PeqK6eSLXWVxsL3SszjdCGeOGI4TQ0hUkX45LjnOcZza9g1rIz8gBfDH6W7ke75f5JPEYUcZZFe6Rk2Be4LxPWvUfM4wn5kdYAQQgjha5II7CRedr3PEr0agFsc37E5Gm/WgSH7ZHmw3xRwFGfdoJhATQQCDDzL0ifwK+kTaKeba3/NAfIoooS3wv7CGDWsVc/7ZdjN/DLs5iYf60KCpx2A9AgMDFprPjYXcoA8+tKDkQROItCrIlCWBrdLUV1FYLcg6g9Yz9qrTvrF+c82drNKb6SMCoapAT4/frpK9rQXqL+gpHFX+k0zLiBOxXjtf4ayLAs31/k8HiGEEKKzk0RgJ2Htv+eLJtC+ZB0YIn0C/edQ3bJgCPREYEMSImeJJALt8rjzRWJ0FPHEkkEKQ40BPqkmUkp5+gRKj8DAsF3v8QwK6Wf0JNKItDmiBgnEerZLZGlwmzm1k6OUAJAcJBODrcZ5JQI3NLOnOBW79QHP9gCjj1/PNVIN8vq4qcF1o41hnKaGcK4aT65Z6Nd4hBBCiM4ozO4ARMeor7TrSgLxKraFvTuWtSJQEoH+k2Pu8Wz3UOk2RtK8jOxM4lMSOF5Yyq5lO3DVunCEO+wOq1NxaRcvO2dziHwcOJgf8SqDjCyfHT9dJXNQ53GEYlzahUPJ99dO881vPNtTjIk2RtKYVASemvokIARnReAoNZgIwqmhli16h93hhCxrItA6uMMfBqmG/yWJxHOOcUYT+/RjrXb3p+2qE/wajxBCCNEZSSKwE3BqJ4dwT4u1Vt8FCmtMsjTYfzabO4gkgpFqEOPVKLvDOSmlFAPPGsSa/66kuryafWv30u8M3yWhRMsWmSs9fzMuMs5ipOGbxvH1UlU30GBiUsgx0klu+UnCb74wl3q2LzDOtDGSxqw9AkulR2CbeU0MDsKKwEgVwVg1nIM6j6O6pOUniHbZZe73bPs7ETjVMYkPeYHjqhwFTV4I6qkyUCg0Wi4QCyGEEH4gicBO4DCFuHAB3tV3gaIXmWSSShJdZCqgH32pl1NNDSv1BoYY/e0Op1kDJg4kf0cuMYkx5G4/LInADvaWa65nu6llW6cqzTI5uEAf8ZokLDpWta7hK9PdPzaDFIb6oT/YqUhAKgJPxW59gEGqHwYGA4zedofTLiaafbiTQU7tJEzJS1dfs1YE9lU9/HquNJXMRWFnNbtPhAonk1QOkS+JQCGEEMIP5NVUJ7BPH/JsB2JFYHeVSj5FHKaAMC1LBP2hQBd5ltmMUoO9JrcGol6jenNwo/uNSXxqIhNvbP5Ng/Cd42YZH5rzAfdgj0uMyT4/R5qlAjBfBobY6hXXB1RQCcD5xpmehv6BIlFZpwZLj8C2WmVuZJveDUCW6mVzNO0To6KomytBBVUkWKpEhW/s1u6KwAxSiD1hcIddeqlMDul8CjhKha4kRkXbHZIQQggRMmRYSCdgvZraS2XaGEnTwlQY3XEPr5Arv/7xpbncsx1oS/+akpaVhuFw/3nK2y4/Ex3p//QCUklikhrNTY5pRCnfD45IsySi85CBIXb53LWEB51P0ZUEbja+wzWOi+wOqRFr0qdEKgLbbL5l2feZxuk2RtJ+sTQkgCqosjGS0HRcl1PAUQD6+nlZcFtYX68e0Lk2RiKEEEKEHkkEdgL7vBKBgbc0GBpe8B2lhOO63OZoQs8XLmsPsMAaBtCUsMhwUvqmApC/Iw/TZdocUefxlusj9nKIr/UarnJc6JdzeC8NlopAOxTqo2wzd1NJFccoxVAGUx2BV3mbaB0WIhWBbVKki1mjNwMwTA0gU6XaHFH7RFsSgeW6wsZIQtMey7LgLCNwqkatr1elf7QQQgjhW5II7ASsVXaBuDQYoLflyq9UBfqW1poFdVNBY4lmgjHK3oBaKT3b/SbAWe3kyN5Cm6PpHA7oXBaZKwD3MsJxaqRfzmNdmp6vpSLQDu+5PuHXrj/ThQQmqtE8E/Ybu0NqklQEtt+X5jJ03ZraYKgEP5lYy5LQSqkI9LldHTgxuC1kkJwQQgjhP5II7AQCfWkweMcliUDf2qsPMdoYxnA1kIlqNJEqwu6QWiVjUMPPRG6OLAvqCO+6PvEkDr7vuMJv/eK6k8Y4NZIz1AhKtFR52eGLuosDxZTyTNiDAft3IUKFE4V7ebpMDW6b+XXfYwiOSvCTiSHKs11e189S+M7ugE0EyutCIYQQwl9kWEgnUH8lNY4YupJgczRNkyUg/pOjd/OJuQiAi/0w+MFf6isCAfK2HWbkJaPsC6aT+Ni10LP9PeMyv52np0pno95OBZXkSUVgh3NPCl4FuIcDDDMG2hxR8xKJo4pqmRrcRgtd7ureaKKYZIy2OZr2i7H2CNRSEehrgZoIlNeFQgghhP9IRWCIM7XpabLcW3UPuImQ9axLQOTKr29Zv559jMBcGt6UjIGWikAZGOJ3R/QxinQxo9Rgpqgz6Wv08Nu5wlQYo9VQAPZzmFwtS7870lLzW88Sy0CcFHyihLo+gVIR2HqHdD4GBqepIVxunOeXoT8dJUY1VARWSEWgz+2qmxgMgTVZWlaKCCGEEP4jicAQl08RNdQCgTsoBGQJiD/tt0zbC9Sl4U1J6ZeKI9wBQJ4sDfa7XXo/O9nHOr2Vvob/q0LGGQ39B19yvsNi1wqerp3FSnOD38/d2S2wLBmd4gj8JaOJdX0CSynD1DI4qDW2mbvZy0HW6i1kqBS7wzklXhWBkgj0Ka01xbqUbnSlCwkkqUS7Q/KIVlGkkgTI1GAhhBDC1yQRGOL26UOe7UAdFALQQ6WjcFelyBIQ37L+DPQJ4J+BEznCHaRmpQFQsCsfV63L5ohCW0cvD7MmAp93vcXU2lt50PUU99b+Ca2138/fmX1huqeIKxTnGeNtjqZlCcqdCNRoypCpsa2xXe/xbA9UfW2M5NTFeE0NlkSgLy3X61int3KMEm4xrrI7nEbqL14epoAaXWtzNEIIIUTokB6BIS5PFzJJjUajGaT62R3OSUWqCDJI4TAFUhHoY9aKwB4q3cZI2m7AxGy6ZHYlfWAGVccriU2Ka/lJol06OhE41hjh2S6l3LO9Um/g/8z5THNM8XsMndFxXU6mSiWWGMIJI0Ul2R1SixKJ92yXcNxrkrBoWo4lETjICNz//a1hXRosU4N96y3XXABMTIY5BtgcTWO9VXdW601oNAd0bkAtXRZCCCGCmVQEhrgdeh9f6zUs1d+SrLraHU6z6pcu51NEpTQE95n6isB0koOuT9SAiQMpLSjh61cXs/3rHLvDCWm7zY5NBKar5JNWKT/qfI5d5v4mHxOnZpfezzxzCcv0Wr/2gfSleBXr2ZaBIa2zTe/2bGcHeUVgrNfSYHlt4CtVupr3XZ8D7q/xNCPwLr7IwBAhhBDCPyQRGOKs1XWBvDQYoJclPukH4xtVupo83FNZA/373xRtag5tOkhtVS25OfImwJ+sDeP7qo5JEI1hmGc7gnBuNa5hsnEGW/ROzqv5AXvMgx0SR2cSqBNCm3NiRaBo2XbTXRGYTNeAvwjYEu+lwbI03Fc+NRdTTCkA04wpxKkYmyNqrL/qzUDVlxSSyNUFdocjhBBChAxJBIY470ERgTssBOTKrz8c1Hme7UD//jclY1DDcBMZGOJfe+oSRBmkENtBbwhHGYOIJooIwjnXGMcj4b+gQBcB7jeAK8z1HRJHZxKMiUDrUuDjuryZPQW4qyYP406aBHt/QIAY1ZAIlKXBvrPF3MkYNQwDg+87rrA7nCYlqS5s13so5CiHyLc7HCGEECJkSI/AEFe/LDSKSFLpZnM0zbNODpZEoG/stQwKCaaJwfWS+6QQFhmGs9opiUA/KtMV5ONOwPXtwOTQ3WE/5N6wH1OLk2JKSVZdWRDxOkOrL2ap/pZVzo1c7biQcBXeYTGFOmvlZ7AkAhOVVAS2hbU/YLYRAolAGnoElsvUYJ/QWvNv13/I4whdiOdsNcbukJpknXidpwttjEQIIYQILVIRGMK01p6KwF4qE6WUzRE1b4Dqw2R1BmeoEfKCz0e8l4YHXyLQcBik9XcPOCncU4CzWqYG+sNuS3Ioy+i4ZuxhKgylFBEqnFTlvlCRpBI535gAQA21bNd7OyyeziDYKwJLpEdgi3Is/QEDeUhYa3n1CJT+wT6xTx/2tA0ZYwwnzAjMuoAMlerZzpXXhUHBVetiw2fr7A5DCCFECyQRGMKOcIyKuqvnwZAE6qN6sFivZKXewAa9ze5wQoL30vDA/xloSnq2O27TZZK/S5YG+UOgJYeGG9me7Q1ahsT4Uv0QliQS6aoSbY6mdawVgaVIIrAlOaalIjAElgZHW6YGV0hFoE+s1A1tF8apkTZG0rx0kj3b0iMwOMz94xxe/tFLPHTaA/ztO0/ZHY4QQoiTkERgCLNWgwVDEqiXyiAK91TbbZalTaL99lmWBgfjsBCAjOyG3oayPNg/Ai0ROEI1JAI3mpII9JVqXePpsxUI3+fW8q4IlKXBLcnxmhgcChWBDT1LJRHoGyvNDZ7tcUbgJgIjVQTd6AJAbl0Fowhc6z9Zy6KXFgBQklfC7pW7qK2SlRxCCBGIJBEYwvZ5JQIDf1CEoQwGqj6AOzFRq+XFw6kKpmExJ5PulQiU3pH+EHCJQGOQZ1sqAn1nrz6IRgPQT3XcEvBT1YU4RquhjFcjiUD6RbYkggjGqZEMVllB+3ffyqtHoJZEoC9YBzGNNYbbGEnL6vsE5uoCtNY2RyNOJjfnMG/+8jWyxg/w3KdNTd52uYArhBCBSBKBIcy7P1xwVIPVVy84cXolJ0T71P8MdKNLh02C9TXr5ODcbfKC0h/ql4sCZAVAgiiTVE8ViFQE+k4wDgoBiFdxrNGbWa7Xs0cftDucgObSLuaaC1ih16NQOJTD7pBOWSQRKNw9jmVq8Kmr0tWs01sB99LxQG8RUN8nsIZajlJiczSiKZWllbxy60vUlFeza/kOsiY0JAMPbZa/2UIIEYhsTQTOnDmTsWPHEh8fT2pqKtOmTSMnp+FN39GjR/n5z39OdnY20dHR9OrVi1/84heUlDT/QuCWW25BKeV1u+iii/z96QScYKsIBO8Jh9ssy5tE29XqWiIJ53Q1lAuMM+0Op92SenYjIjoCgNztUhHoa1prduuDjFSDuNK4gKQAeFOolPL0CcyniHwtS8J8IdAqP1srTsV6to9Lj8BmHaKAGtzV9MH0PW6OUsozMESmBp+6tXoLtTiBwF4WXC9dJgcHNNM0efe+t4jp4v473X1YD86/Y4rncUkECiFEYLJ1TNjixYuZPn06Y8eOxel08uCDD3LhhReyZcsWYmNjOXz4MIcPH+Yvf/kLQ4YMYd++ffzsZz/j8OHDvP/++80e+6KLLmLWrFmejyMjI/396QSc4KwIbEgE5kifwFNySBewk/2ggycR3BTDMLjyoaupqazG5XRRU1njSQyKU7dXH2Ifh9inIU0lt/yEDjJCZbOIFQBsMHOY4gic2IKVNRHYkdOhT5W1R+BxKmyMJPDtNi3f4wCo7vWVGKIoo4IKqQg8ZdvM3fRXvdml93NGAA8KqZdBQyLwsC5gKAOa2Vt0tAXPfcG6uWsAGHTOYK750/eIimuY9C2JQCGECEy2JgLnzZvn9fGrr75Kamoqa9as4eyzz2bYsGF88MEHnsezsrL44x//yI033ojT6SQs7OThR0ZGkp6e7rfYg0F9IjCcMK8XUoFskKWxuXXyoWg766CQYBgW05x9a/ew8j/LARg0eQg9R4TOG1y7rbBMjzzDGGFjJN6GG9ngcm9v1DlMYaK9AYWAXUFaERhLNAqFRnNcS0Vgc3YH6fLvlsSoGNBHqZQegafsK3MVO/U+IongdDXY7nBalFm3NBggVyoCA0rh3kI2/889eEYpxeQfn0dyb/f7jS6ZXSk+fIzDWw6itUYpZWeoQgghThBQPQLrl/wmJSU1u09CQkKzSUCARYsWkZqaSnZ2NrfffjtFRUUn3be6uprS0lKvWyioXxrcU2VgqID6Vp9Uf9Xb0wsoR5YGn5L9NPTT6x3kicB0mRzsNystTePHBVB1yDD6c5oawmTjDMq0VIH5QjU1TFKjOdcYTzrBU2GplCKubnLsccptjiawBevy75bUDwyRpcGnrn4AkwuTocZAm6NpWYZ1aTCSCAwkH//xQ/Zv2EfawHTOu2MKQ84f5nksc4h7JVJlaSVHDx61K0QhhBAnETDZIdM0ueuuu5g4cSLDhg1rcp8jR47whz/8gZ/+9KfNHuuiiy7i9ddfZ8GCBTzxxBMsXryYiy++GJfL1eT+M2fOJDEx0XPr2TP4XzwfMY9SWtdLKZiqwaJVlGcZc47eIxPiTsF+rx6RwfMz0JT0bMvAEOkT6FOBOj2yn9GLtXoLi82VfKPX2h1O0MvXR1hkruBrvYZqXRN01Rn1y4MlKdy8UE0E1vcIrKBKXhecgmpd42m7kq36EqkCv82GtUegVAQGjqMHilj/6VpcNS4qiyu4+L7LvB7vMbSHZ/uwLA8WQoiAY+vSYKvp06ezadMmvv766yYfLy0t5dJLL2XIkCH8/ve/b/ZY119/vWd7+PDhjBgxgqysLBYtWsT555/faP8ZM2Zwzz33eJ0r2JOBW/QuwnAwkL6cZ4yzO5w2GaT6slcf5Djl5FJIJqktP0k0EkpLgzOsicBtkgj0lUpdxfq66pDBKosuKsHmiBokqnjiieU45RzS+XaHE/RWmRs92+MCaAl4a8WpGNB4LnCJptUnAh04gro37ImiVRRo0GiqqCa6rkJQtM1WvQtn3aCQ4SrwqwGhYWowQK4usDESYbXk1cVo052Un3jz2YRHhns9nlmXCIxLjpOKQCGECEABURF455138vHHH7Nw4UJ69OjR6PHjx49z0UUXER8fz5w5cwgPD2/iKCfXr18/kpOT2blzZ5OPR0ZGkpCQ4HULdqv0Rpy42MJOUuhmdzhtkk0/epPJWDWcXeY+u8MJWvt16CwN7tq9K5Fx7jd+sjTYd77VWzxvCgOpP2C97ioNgIM6T6qATtFyc51nOxgmhZ7IUxFIBaY2bY4mMLkngLsTgb1UBuGqba+VAll9RSAgA0NOwQYzx7M90hhkYyStZ21jIFODA0NVeRXffrgaAEdEGGf+4KxG+6T1TyciOoKyI2XsX7e3gyMUQgjRElsTgVpr7rzzTubMmcOXX35J3759G+1TWlrKhRdeSEREBHPnziUqqu1XgQ8ePEhRUREZGaFzdbwlKyxv+sYbo2yLoz36G73Yx2FW6Y1sk8nB7Va/NDiBuICq9GoPpRTpA93Df44eKKK6XN4I+kKg9gesV58IrKSKY4RG71a7rNQbPNtnBGEiME7FAu6KMOkT17QjHPNUTIbSsmCAGEsiUL7/7bdRNyQCh6tsGyNpvQgVTjJdATgsicCAsPr9lZQfK6ffuP5M/MFZJKQ0fo2Z3DuFmsoawP26TQghRGCxNRE4ffp03nzzTd5++23i4+PJy8sjLy+Pykr3i7z6JGB5eTkvv/wypaWlnn2s/f4GDRrEnDlzACgrK+O+++5j+fLl7N27lwULFnDllVfSv39/pk6dasvn2dG01qw03W/6EoknWzVOsAayfqphIuweS78j0XqmNjlQVxEY7NWA9ax9AvO259kYSejYYx5kghrFeDWKsSpw+gPWq08EAhzS8j1vL6d2strcBEBPMrymcAaLBGI92zIwpGnW/oBZKrQmq8eohkSgTA5uvw2WROAIIzgSgdAwMCSPQqkOt5nWmq9eXkhtZQ27V+xk3HUTmtwvIiaCuOR4AIokESiEEAHH1kTgCy+8QElJCeeccw4ZGRme23vvvQfAt99+y4oVK9i4cSP9+/f32ufAgYYXvDk5OZ6Jww6Hgw0bNnDFFVcwcOBAbr31VkaPHs2SJUuIjIy05fPsaPv0YfI4Arib/wfLxOB61kqG3ZIIbJdcCqmtW/IZ7P0B62UMbKjozc2RPoG+sFCvYJlex1q9hcFGlt3hNNKddM+29Alsv816JxV1VVTB2B8QIM6aCNTSJ7ApoTooBBqmBoNUBLaX1pqNdUuD00kmVQVP25j6PoEKRYGWpJKdchZvJX+H+8Jc1vgB9Bh+8r813Xq5f8ZK80pwVte2eOyDmw7gqnVRU1mD6ZIWEEII4U9tGhZSWlpKXFwchuGdWHK5XJSXl7e5t15LV/XOOeecVl35s+4THR3N559/3qY4Qs1K3bDc7wwVfG/6eqp0wgjDiZNder/d4QSlUBoUUi9jkKUiUPoEnrJyXcFO7e7BOVT1J0wFzOwojx6qIRF4QCoC222FV3/AUbbFcSoSVJxnWyoCm9ZZEoHSI7B9DpHPUdwXzYcHUTUgwGlqCKvYwDFK2cdh0ix9A0XH+mrWIs/25B+f2+y+ST27se/bvWitOXroGKn9Tl6NXlZUxrPT/oJSBqbTxU9ev4Pss4Kjj6UQQgSjVpeKzZkzhzFjxlBV1fgFWFVVFWPHjuWjjz7yaXCifeqXBUPw9QcECFNh9FHdAfcbG1kG0nahNCikXnp2JspQpPRLBVN+Jk7VZr0TjfvrGKhvCnt4LQ2WisD2OqKPMUmNpo/qzmg11O5w2iWOGM92qZZEYFPyzSOcoUYwUg1iAH3sDsenrD0CK2RpcLtsN/dwthrLCJXNaWqI3eG0SZJK9PSJzZHe0bbJ35nH7hW7yBrfn16n9WHY1OaLDbr1bEjYHt1/pNl9P/vLR9SU11BdVkVtVS3rP1nrk5iFEEI0rdWJwBdeeIH777+fmJiYRo/Fxsby61//mn/84x8+DU60zwrLAICxRuD1/WqN+mqGcirJR5aBtFX9oBAInYrAxPRE7v3fDDKyM/lq1iIK9xTYHVJQ85oeqQLzqrtXj0AkEdhe881lfK3XsFcfCtikb0usFYFlUhHYpPn6G1bqDeToPWQZodsjsEKWBrfLBp3DV3oVG3QOA40+dofTJoNUP892jrnbxkg6tyWvLKKypIJdy3dy2uWn4whzNLt/Us+G5efNDQwpLSxl2dvfeN238bN1sjxYCCH8qNWJwE2bNnHOOeec9PGzzz6bjRs3+iImcQq01lTqak5XQ5hiTKSrSrQ7pHbx7hMoy4Pbap9XIjA0pmUrpdjwyTo2fLYOV62LT/401+6QgprX9MgATQ7JsBDfqB+6lEoS8Sq2hb0DU7ylR2D9ZFzRoFAf9SwNPk0NIUKF2xyRb8XK1OBTZq2ksybWgsFAy9A7qQi0R0VJBSveWw5ARHQE4793ZovPqe8RCFC0/+SJwA2frqX/hAF0651Mcl/3YJjSglL2rNp1ilELIYQ4mVYnAo8dO4bT6Tzp47W1tRw7dswnQYn2K+Qom9jOt3oLCmV3OO1mnXgoA0ParlAXkUISAL3rllmHgvPumEJcN3dl0Nq5a9j7rbwhaC9rReBwNdDGSE6uCwmeBIAsDW6fcl1BLoWA90T2YGNNYJbpChsjCUzWliDBOhCmOdHWHoFaegS2xzZLJZ01sRYMeqkMonAP/JNEoD2Wv/MNNRXVAJxx3XhiurR8USmpl2Vp8MGTJwJzvtpGzuKtFO07woQbJnrul+XBQgjhP61OBPbp04fVq1ef9PHVq1fTu3dvnwQl2m9/iFSCWSsCd5mSCGyLGl3Ll+ZyCjnKBE4jma52h+QzUXFRXHTvZYRHR5A1YQCfPvmR9JBsB1ObbNLbAehFJl1U2wY9dRSlFN3rBoYc1HnyvW6HPfqgZzuYB0hIRWDzrC1BgnUgTHNiLUuDK2VYSLtsr0ugZZLqtdQ+GDiUg4GqDwC79H5qdMsTaIXvaK3Z8uUm+k8YSGxSHGff2vyQkHpJ3builLsooaiZHoG529zvXcKjwplww0SMcAfp2ekcO3xM/u8LIYSftDoReNVVV/Gb3/yG/PzGVRl5eXn89re/5eqrr/ZpcKLtrEtCg7kSzHtpsCQC22KZuZYy3BUzfYzunhdhoeLM708ic1Amu5btIGfxVjbP32R3SEFnrz7kmbw6IkCXBderXx5cTiUlHLc5muDjNUnWCOZEoGVqsAwLaWSFbkgEnhGCFYHWqcGyNLjtjuhjFFEMQLYRXMuC62XXVTG6cEnLmA52YP1+dizJYeey7aRnZ5DWP71VzwuLDOeO//yCB5c8zJ3v393kPtUV1RzZ465aT8/OJDYpjiHnDSUvJ48Nn67j8NZDPvs8hBBCNGh1IvCBBx4gPj6eAQMGcMcdd/Dss8/y7LPPcvvttzNw4EDi4uJ44IEH/BmraIVQGRLRx5LE3COJwDaZbzY0XJ7imNjMnsHJEe7g/OkXej7+6LE5uJwuGyMKPs853/JsD1cBnghEJgefCmsiMCuolwY3DCo7LsNCvLi0i9Wmu0dzD9K9emuGihjL1GiZGtx223TDsuDsIFsWXE/6BNpn9QcrPNtjrz6jTc8dOGkQaf3TiYiOaPLxvO25nqq/zMHu9y3ZZzUMMNsiF3uFEMIvWp0IjI+PZ+nSpdx4442899573H333dx9992899573HjjjXz99dfEx8f7M1bRCqEyJCJaRXkSALvkym+bWBOB5xsTbIzEf0ZcMoo+Y9xVDVFxUaz570qbIwoeLznf5TnzTQwMfu/4OTc4LrM7pGb1UA2VB5IIbDvr389gXhqcIBWBJ7VF7/RUyY0zRtocjX/EKEuPQKkIbLMcsyFxFqyJwEGWSkZrYlP4l8vp4tv/WwOAIyKMkZed3uZjlOQV879nPmPV+yv4eOb/kbNkm+ex3K0N71syBrmLAIZcMMxzn6z6EEII/whry86JiYk8//zzPPfccxw5cgStNSkpKSG39DCY7Q+RpcEA2aoPUTqCFJVEqVlGghFcPW3sUKiPslZvAWCkGkSaSm7hGcFJKcW0h67m3XvfZO+3ezh2+CgjLzudyJhIu0MLaPt1LqWUkUAcpZRxnHIGGH3sDqtZ3UmjF5l0VYkU6WK7wwk6oVIRGGcZFnJcegR6Kf2mmKmZZ7ImY2vIJgKtU4MrpEdgm23X1kRgcC8NBu/EpvCv7UtyOF5YCsDQC4YRkxjTwjMaqyqr4pMn5tJndF/2rtnDntW7GTBxIIZhcHhLQx/bzCHu9y3JvVNIzUqjYFc+e9fspvxoGbFJ8h5ACCF8qdUVgVZKKVJSUkhNTZUkYICpTwRGEE46wZ0ESlXJ7OIAy/V68uqmXormLTCXebanGKG3LNiq79h+pPRLBaAkr4TF//zS5ogC3/9cX/M75zOUUsZlxrk8FtZ0z55Akmmksp/DrNdb2cPBlp8gvNQnAhOIoxtd7A3mFHhVBCJTg60yH43j8cE/5PPUJ7n14FV2h+MX1qnB5bI0uM28lgYbwVkROED1QeF+z7FdlgZ3mE3/20DWhAEk901hzFVtWxZcL6VfKlHxURza7P4fXrg7n18PuIfaqloOb2soYKhfGgwNVYHa1GxbvPUUPgMhhBBNaXUi8MiRI9x2221cf/31bNokZdqBSGvtWRrcQ6VjqHbleQNGqurm2S7kmI2RBI9d5j4mqdGMVkM522jfC7ZgcvmD0zAc7p/z1XNWUpwrPyfNsQ4UuDfs1qC4kGP9O5CvTz51UDRWq2vZr3MB97LgYPh+n0ws0Z4kwHEtFYH1avNqqPjKXa0T0TuKmN6xLTwjOMnU4FNT31MvnlgySbU5mvaJVlFcqs5hkhqNA4dMk+0A1RXVrJq9nF3LdlBeVMaQ84e26ziGYfDDf/2Un//3HrLG96ckr4SaimrytudyeIt7GEhccjzxyQme5wytSwR27ZHEkX1SDBBMaipqeO/+tyktLJXfUyECWKszRbfccgtpaWl85zvf4ZJLLpFf7ABUTKmniXqwLwsGSFFJnu1CXWRjJMHjK72ar/Ua1ujNjDba94ItmKQNSOfc2y9gwKRs8rfn8Z9fvyN/m5qx0nQnAsMJY5QabHM0rWNd3l4gfwfaZL/OxYV7kE4wLwsG90qEuLqBETIspEHpnKNQ9ycv4bvdgjrZ25wYy9Lgci0VoW1RblZ4kufZqm9Q/4zUKidf6zWs0Os5TIHd4YS8TZ9voLq8GoBRl51OeFTTAz9aY9DkwfQ+rQ/DLmyYar575S7Kj7p/Nq3VgAB9x2QRFR/FsYNHWffRt+0+r+hYrloXs376L755YwkPnTaD+7LuktflQgSoVicCv/32W6677jquvfZa8vLyKCyUqzOBpr7yA4J7UEi9ZLp6tgv1URsjCR7b6/rmpJBEN9XF3mA6yPm3TyEvx/2zv/mLjayavdzmiALTUV3iqQo5TQ0hSgVHP8VUGi4I5ElFYJtY+wP2VT1sjMQ36pcHl0kiyKP0g4bficSruzWzZ3CLNaP5tt8rfJv2b/5x4S/tDieobCCHIopJpgsXGGfaHc4pGWTpbyh9Av1vtWUQ2+g2Tgs+mfqBIAA7lm6j18je9J8wgAETs732C48Kp0uG+31Awa58XE6XT84v/Mc0Td779dscO+h+z6ZdJrWVNVQdlypuIQJRqxOB06ZNY8aMGfzyl79kxIgRpKYG59KCULZPH/Jsh0JFoCwNbpsSfZzcul6KA4N0KmB7xCbFcd2TNwDupSXL3/mG4sPy83Ki1eZGz/YZxohm9gwsUSqSLriXCxUgFYFtcVSXcJYaw3A1MOgrAgHilLsisFSGhQBQe7ia6m3ufnkRA6OIHNb2Jv7BwnAYUGaiqzS6wrQ7nKCyoq4S/AjF9Ajyi8TW1zY5MjnYr8qKyti2yD18rktmV7LG9/fJca2Vfwc3HWT/+n3sXLaDtP7pjfZNH+j+eXVWOynaL///A5nWmv/+bjYr3vmGwr0FXsNdjh85bmNkQoiTaXUi8B//+AfXX3892dnZLFiwwJ8xiXayTgwOhYpA76XBUhHYkhzrVMAgbQbeXsMvGsl5t0/BWV3LruU7effeN2UpwgmWm+s828E2WTSt7qKA9Ahsm+16D0v0ajbq7WSq4L9456kIpAJTSzKodM5RXEecRI6IoeuPQn94mxHjfslqSiKwTVaaGzzb44LoIlBTrK9tcmRgiF+t/2QtfUb3Iz07g9OnjcEwfNN3PCEtkZiu7l6mJXnFgLv1w4CJAxvtmzawITmYl3O40eMicMx7+hMO1w2DMZ0mfcc0/K7WT50WQgSWVv9VNwyDG264genTp5OYmOjPmEQ7eS8Nzmxmz+DgvTRYrgS2xPqi2Lp8prOY8oupRMa6l7tuXbiFlf+RJcJWK3XDm8EzgiwRmIo7EVhGhfQHa4NCGi6gWC+sBKs45X7zqNGUI5NjSz8oAg3VGyqIu7Bry08IcirWAYBZIUsE26K+IjCOGIYo31R12cVrabAkAv1q5ezl7F6xk7ycXEZfNdZnx1VKkTnI/R7FdLqT+j1G9CKmS+NBR/UVgQB523MbPS7sV1ZUxuwZ7zDvL5+wa8VOsiYM4HtP30if0Q2/q2VSEShEQArusbLCyzFdQkpdP61QWxpcgFQEtiTHbFgmk92JlgbXi+kSy3V/uREjzCBrwgA+/P37HD0oPzcANbqWIl1MPLGkk0wvgqtiON0yMCRfLgq0mrWSOjkEEoEJNLxR7OwDQ2oPVVOx1P3mKnJQNJFDolt4RvAzoqUisK0O6jwOkQ/AGGM4DuWwOaJTk6y60o0ugPdrHuFbR/YVsne1++ubMSiTHkN7+vT4GYO936MMPCu7yf28E4F5Po1BtE9tVS05S7bx+V8/5c8XPs6TU/7I0teX4Ah3/20ZPnUkZ1w7gfiUhgnQx49IRaAQgUgSgSFkmV5HIUfJJJXuOviXgcUSTTRRABzR0vOtJV5LgzthRSDA0POHcdYPz2HXsh1UFFfwzq/ekCXCwOfmEtbqLVRRza2Oa4JuCaH1okA+sjy4tQotfzdTCP6KsThrIlB37j6BpXMakryhPC3YyqirCNTlkghsrfpqQIBxKrgqwU+m/vXNYQoo7eR/B/xlzX9XebZHX+WbISFW9RWB9bLPGtTkfqn9UlGG+29bvlQE2s5V6+KrVxby/LXPkvPVVg5uPEBSz25oUzPlFxdxyX2Xc+5t5wPunt31pEegEIFJEoEholxXsEvvByBDpRBmhNkc0alTSnkqHKVHYMvqE4HRRIVEj8j2uvjey+iS6U56HFi/jy0LNtsckf3ecs0FoBZnUA0KqZdmqQgskIrAViusG64STyzRKsrmaE5dgrI0H+/kFYGlHzT8HiSE8LRgq/oegbpWo2slGdga1v6A44OsJcTJWPsEbpflwT6ntWb1B5Zpwd/x3bLgeplDGioClaHoOzaryf3CIsNJ6ZsCQP7OPEyX/N7b6YUb/s66T9YCUFk3CTghNYHz7pjCaZePZuo9l3j2jU+xJAILJREoRCAK/myRAGCT3oHGXfk03Gi6xD4Ypaiu7NeHOcIxXNoV9Mta/KVG13oSwQNVHwzVeXP80QnRXPfn7/N/j35A+dFyZj/wDtnfPEJYROf8c3dUl/CJuQiAdJI535hgb0DtUN8jEGRgSFvUX0BJVsFfDQjuHmf1SnXnTQTWVtWyoedWUs/uRkJFHFFDQndasJWKbvi/ZlaYOBI77/+51jimS/iP61PPx2OD8CJQU6x9Arfp3YxhuI3RhJ4dS7cTFhFGzxG9iIqPIqmH79tKZAzK5Pw7L6S2spawyDAioiNOum/6wEwKdhVQW1XL0QNFJPdJ8Xk8omVHDxSx4+scwP06+/zpUxg4aRAJliXAVvHdGhKB0iNQiMDUOd8Zh6ANZo5ne4QKpURgEmh3c/ijNPRAFN526/24cDdQH9gJ+wOeaMh5Q1nyyiLyctxLSVa9v4IJN0y0OSp7vO/6jFqcAFzvuJQwFXx/9qVHYNs5tZOjlADeidRgZq0ILOvEFYElecV8+cWXAJx2xWiG4vule4HIiD0xEWhjMAHuuC7ngppbyKWQkQxietiNIXNBwNoDOcfcA3J92Ke+fOELDm89BMCPX/2ZX84RGRvFFb/5Tqv2TR+YzobPIDwqnGOHj0ki0CbWKtHzbp/CmO80/3/Ha2mwTA0WIiC16x3hggULWLBgAQUFBZimd5n2K6+84pPARNts1A2JwNCqCGx4A1uoj4bE5Et/2Gnu4zQ1hAJdxOBO2h/wRFPvvpgtCzYB8MWzn3HGNeM9zYw7k0J9lOFqIBv1dr7vuMLucNpFegS23RGKPduh8ncziUSy6EUk4VToKrvDsdWIS0ZRkldMxgm9tkKZEdPw99ssl8nBzfnG9S0DVR826x0cpoBxIVINCO6LnV2IJ5M06R/tYwc3HWDrl+52Kkk9uzHk/GE2RwRn3nQWg88fRm1VLTGJnaP6OdBorVn1/grPx2OubvniU0R0BNc+cQOxSbF09UNVqRDi1LU5EfjII4/w6KOPMmbMGDIyMjpFg+pgYK0IHK4G2hiJb1kb3BfoowyxMZZAtlZvZa3eAsBg1XSvlc6mz+h+DJo8mJwl20hIS2Tt3NWMuXqc3WF1uJdc71LAUVJICtqLBNIjsO0KLV+nUEkExqhoduFugVBE500AJPdJ4daXb7M7jA6XdHs6CdOSUNEGYeknX0oo4NeuP7NN78bA4IuIWWQboXOBsA/dceBgCzs5ahajtZb3Ij6y8IX5nu3z7piCI8z+i6dlhcd59oq/ADDhholc/9SNNkfU+exfv5+CXe7p4/0nDCCpZ+tWGUy86Sx/hiWEOEVtTgS++OKLvPrqq/zgBz/wRzyiHUxtsklvB6C36k4X1XS/hmBkfQNb3/heNBaqFaGnauqvLiVvRx57Vu2mrKiM064cExAvbDvKcV1OAe4+cQNUH3uDOQWplpYAsjS4dQosA5aSQ2BiMLgrAusdQ5YadTYx4+Nb3klQqavYrvcCMEwNYJARWhcHDcNglDGYBeYy8jjCfnLpTeepjPWXwj0FbFmwiazxAzh+pJRx1wVGP+FulqXAhXsLbYyk81o1ezkJqQmk9Etj/PfOtDscIYSPtLnTck1NDWeeKX8EAskefZAyKoDQ6g8I3olAWQJychvqEsGxRNNP9bQ5msDRb2wWKf1SASjcXcDa/1tjc0Qda7c+4NnOMnrZGMmpCVfhdKMLAPlyQaBVjlgq5qxLq4OZ9SLXMV1iYyRCBK4teicm7rY9I9Qgm6Pxj3GqYQLySnM9AGW6AtM02WMepEbX2hVa0PryhflUlFSwa/kOxn53XLMDPDpSTGIMsUnu/rBHJBHY4Zw1Tr79cDWlBaXsX7eXYVNDY/q4EKIdicAf//jHvP322/6IRbSTVzVYCC0LBu8m99YKF9GgRB9nrz4IwDA1sFNPDG7KRXdf4tn+/JlPcbk6T28payIw2BPE9cmsfH0ErbXN0QS+UFwabK0IPCqJQCGa5DU8LkRXCIwzGpIRK+oSgeNqvktMzQgG11zEN+a3doUWlEryS1jx3jIAIuOimHTLZJsj8pbS110VWHz4GC/f+k/+ctFM/nTeHyjaLz2D/W3rws2UHy0DYNjUEUQnRLf6uWVHjrNv7V42/W+DTA4WIgC1eWlwVVUV//znP5k/fz4jRowgPDzc6/Gnn37aZ8GJ1sk3jzBJjaaAowxVA+wOx6esU+5kaXDTNtZVAwIMN0IrEewL/c8cSNb4/rhqXJQfK2f9x2s5/coxdofVIUIpEZimktmqd1FJFWVUEE+s3SEFtFBcGtxVNSQCizvx0uB/XPMMxw4dpUtGV6bP/iWG0Tku/jgLaqnZVYVZ7iJycDTh3SPtDikgeV8cDs1E4FjL8JOV5gYASnWZ5751eivn0Pl6ArfX8reX4qpxAjDp5rMDbihHt94p7F2zB4DN8zd6Yj2wYT/deiU391Rxila/3zAteOw149v03K9mLeLzpz8F4LY3pwfE8BkhRIM2JwI3bNjAqFGjANi0aZPXY9Ks1x6r9Ca+1u4lj9lGX5uj8S1ZGtyyjdar/yH6ov9UTb3nUp6/9lkAPv/rp4y6/PRO8eZ5l97v2c4K8kSgtTo4Xx8hXkkisDmFNCQCU0OkIrALDT3iOvPS4MLdBRQfPkZVaWWn+DtWr3TuUXKn7wYg86Usut6SanNEgWmD2XBxMFQrApNUIgNVX7brPazVW6g0qyihoeKoPjkoWlZRUsGC578gNSuN2KRYJv/kPLtDaqS+IhDwJAEBDqzfz6jLTrcjpE6hvLicXSt2AhCXHM+gyYPb9Pz4lIZ2HmVFUhEoRKBpcyJw4cKF/ohDnIL9HPZs91Kh1TA5xTIkQJYGN22Dti4DCs1+QKdq4KRs+ozpx97Vu8nLyWXjZ+sZeelpdofld94VgcHbIxBgtDGMAzqXAorYqw/Sn952hxTQrBdOUkKkR2CYCiOBOEop42gnrQg0XSalBe4kaGJGF3uD6WBGbEPS0yzvPC0e2kJr7akI7E4a3VQXewPyo3HGSLa79lCLk6/0Kmpo6AtYv1xYtOzrVxdTXVZFQVkVZ06YRGJaYstP6mDJloEhVvs37OvgSDqX9R99S/mxMnqN6sOQ84e2edhefHLDxbvjhZIIFCLQ2HopeebMmYwdO5b4+HhSU1OZNm0aOTk5XvtUVVUxffp0unXrRlxcHFdffTX5+fnNHldrzUMPPURGRgbR0dFccMEF7Nixw5+fiq32aXcisCsJJKg4m6PxrSgVSTyxdCEeA6k4bUp9RaBCMSzEekT6ilLKq1fghs/Wdoo+c7tNdyKwCwkkqcB7cd8WccSwTK9ll97PTkulo2iatUdgct2glVBQvzy4oysCayprOvR8J3P8yHFMp3sQRGJ6F3uD6WBGjCURWGnaGEng2k+upzIu1FuFnKHcy4P70IPVpvcKpUPkc1Dn2RFWUKmprGHxv74EQBmK8+6YYnNETbNWBFodWL+vU7yWs8vK2SswnaZ7SMiFI1p+wgniulkSgdIjUIiA06pE4FVXXUVpaalnu7lbWyxevJjp06ezfPlyvvjiC2pra7nwwgspLy/37HP33Xfz0UcfMXv2bBYvXszhw4dbPM+TTz7J3/72N1588UVWrFhBbGwsU6dOpaqqqk3xBQOndnJIuxOjoVYNWC9dJVPMcTbp0E3mtpdLu9is3WX7/VRP4lRg9XUJJIPOHcLQKcNJ7Z/G6g9WsX99aF9JrtY1HCAXgH6qh83RnDpr24McvcfGSIJDQd3S4K4kEK7CW9g7eHTFvdToGKUd8gbQ1CblR8t47MyH+OSJuVRXVPv9nM0pyS32bHfJCI3ej61lxDRUo2ipCGySd6uQ0F4hMFINIpII9nKQpXXtcaxkeXDLFv1zgWd71OWnk9I3MJfbJ/duOhFYWVJJ0T4ZGOIPR/YWsmfVLgDSszPoMbzt7WXiU6wVgZ2zil+IQNaqpcGJiYme/n+Jib6rKpk3b57Xx6+++iqpqamsWbOGs88+m5KSEl5++WXefvttzjvP3bNi1qxZDB48mOXLlzN+fOOmpVprnnnmGX77299y5ZVXAvD666+TlpbGhx9+yPXXX++z+APBYQpx4u6X0TtEE4Hd6MIO9lFMKTW6logQelN7qsq2H+fXy25i55hDpGekgfROPymlFCMuHsU797wBwIp3vqH3qD72BuVH+/QhNO5ESVaQLwsGGKT6ebZz9G4bIwkO9UuDQ2VZcL2uKhE0OHF2yNCYq2qnU/FoHoPz0ln53+Ws/WgN33nkGoba1PS8JK/Ys92lk1UEKmtFYIVUBDblkM5nsjqDcipDtj9gvSFGf6pxV+ruMQ82enyFuZ6rHBd2dFhBI297Lp//9VNMl8mIS0Zx4S8vtjukk4rtFkdkXCTVZe4LMeFR4dRWuZeC71+/76RLh0X7rfpghWd77HfHtWsOQFxaHDVPxFGd5mRHqgx8FLDWtYV/uN5kjz7IKGMQT4c/aHdInVqrEoGzZs1qctvXSkrcS32Sktx94dasWUNtbS0XXHCBZ59BgwbRq1cvli1b1mQicM+ePeTl5Xk9JzExkXHjxrFs2bImE4HV1dVUVzdc5a+vfgwG+3Xo9gesl6K6UZfP4AjHyCQwr1jawbWoist/MRYYS9rM3nCP3REFtlGXn84Hv3mPmsoavv1wNdN+/10ioiPsDssvrP0B+wb5oBBwTxDvRheKKCbHlIrA5lTpakpxT9C09lkNBfUVgQBHKfF7ItCpXVR2q8EVZhIVF0Xellw+fWIuy99eytV/uJYumR1blVdsSQR2vh6BDRWBZrkkApuyWm9isXZP+Ryg+tgbjJ/FqRi6k8Yh8smloNHj6/U2G6IKDs5aJ2/+4lWc1e5Cgq7dk8gc3N3mqE5OKcXPP7iHv0ydCUBK/zQOb3Infw+s38fpV46xM7yQo7Vm72r36yylFGOuOqNdx4mJi+Wta+dTQy3D1UAe9WWQIigtNFfwljkXgE2u7TwZdj9hqs0jK4SPBMy4OdM0ueuuu5g4cSLDhrmvtOfl5REREUGXLl289k1LSyMvr+neH/X3p6Wltfo5M2fOJDEx0XPr2TN43jTv04c826GbCGx4I1soA0O8VCxtSFrHnBXfzJ4CICouilFXjAagsrSSjfNCt6G4dWJwvxBIBAIMVO7lwYfI57gub2Hvzss6MThFhdby0a6WXpfF2v8X7WqVk1X37WP2Z98S0yUGR4SDsqIyNny6jk+e+MgzUbGjWJcGd7oegdHSI7Al9X1hIXT+7jdnkOGuFK+ioYfnWDWcLNWLnWZot/84FfP//jnKMIjpEkNqVhqXzbjS7pBaVJLf0Be239gsz/b+9dIz2NcObznEtkVb6NojibHXjGv3BS+lFKm4VyXka1nCLeAYDb/HpZSxwFxmYzQiYBKB06dPZ9OmTbz77rsdfu4ZM2ZQUlLiuR04cKDlJwWI/TrXsx2qS4OTafgHVKCltLye1pryr93Nd41Yg+hR/q2MCRXjrpsAQLde3dixNKeFvYNXgT7KUDWAVLqRZQT/0mBoeNMHsF36BJ7UEX2MESqbfqonPVWG3eH4lFdFYAcMDHFqdy+6kv6V/Gz2L/jBcz/EWeMkpmsMm/63gX/d9DyHtx1q4Si+U5zbMA06MSO4BwC1lXVYiPQIbNruugtAKSQRr0L/NUG26tvovggi2KX3c5C8DrlYEGwOrN/H53/9lP1r9+IId3DjP24JipURST2SOO/2CxgwKZtBZw9m2IUj6DG8J0X7CjFNuTDgS+s/XQvAsYNH6X16n1M6VrpKBuAIxbi0/N3u7OrnGtR70zXXpkgEBEgi8M477+Tjjz9m4cKF9OjR0NQ+PT2dmpoaiouLvfbPz88nPT29yWPV33/iZOHmnhMZGUlCQoLXLVh0horAVEtF4BGONbNn51K7txrnIfdV8Ohx8ajwgPh1DnhZ4/uTPXkwRfuLWP72Nxw9EJrJ5WV6LZv1DgooYrDKavkJQcD6pm+b9Ak8qVxdwAadw259gEQVWpXC1opA65Vlf3HV9eAFCFdhnHbZaH7z9e/pPqQHFcXlVJZWMueh9yk+3DH/mzp1j8BY6RHYnApdSS6FAGR1gmpAgGxL71hwT5e3fu7W9jkCaqtq+fTPH3kmj59541lB0ys5c3B3rnzoau6cfRfDLxqJ4TA4uPEAxw4do3B346Xhov3Wf+JOBCqlGH7RqFM6Vmpdn2ITk0J5D9fpHcR7deaH5nxyTHk9bxdbMwdaa+68807mzJnDl19+Sd++3lf2Ro8eTXh4OAsWNEy1ysnJYf/+/UyYMKHJY/bt25f09HSv55SWlrJixYqTPieYWV/k9FaB29/jVFib3cvS4AYVS497tmPOCp7ktd2UUvQfPwBw/w1aOXu5zRH5ntbaMz0ygxSSQ2R5qDURKH0CT+6wLvRspxNaTdStFYHHOqDax4m7gsHAwFDul0wxiTH85LXb6TmyN31G92XX8h28eONzVJZW+j2eS+67nBueuYlLH7iC6MTONSXea2pwtSQCT7RHNwzMCIW+sK1xYiKwu0qjl9FwUdy6akbAp0/OZevCLWSNH0CvUb258K7AHRDSkp4jG1Y6HJDlwT6TvzOPvBz3702fMX1JTDu1yvO0uopAgAJZHtzp1VcERhDOVcYUDBSX1/yM7fKa3ha2JgKnT5/Om2++ydtvv018fDx5eXnk5eVRWel+MZ2YmMitt97KPffcw8KFC1mzZg0//OEPmTBhgtegkEGDBjFnzhzA/Sb/rrvu4rHHHmPu3Lls3LiRm266iczMTKZNm2bHp+lX9S9y4ojxeoMUSqzN7mVpcIPyrxveBMdODK2qH38be03DBLQV7y4LuWUlB8njGO6fj+EhNDnS+qZPlgafXB4NicBMFVqJwKQOrgisrasIDMPhdX9kbBQ/feMOyorKcNW6yN16iA9//z7O6lq/xWK6TDIGZTLuuglc+MuL2zXFMZipSMWggrEMKRtHn8+H2h1OwLEOiOoM/QEBsg3vAoIeKp1eNCQCratmOrtdy3ew8MUFaFOz99s9fO+pHxAWEbxN+nuN7O3Z3r9e+kH6yobPGnpnj7h41Ckfr75HIEC+vIfr1LTWnkRgP3qyX+dSTQ2FHGWfPixLx23Qrv8Aq1atYuHChRQUFDR6A/3000+3+jgvvPACAOecc47X/bNmzeKWW24B4K9//SuGYXD11VdTXV3N1KlTef755732z8nJ8UwcBrj//vspLy/npz/9KcXFxUyaNIl58+YRFRXVhs8y8Jna9FQE9lbdQ/ZNgbXZvSwNblC7rxoMUA5F9BlxdocTVLp2TyJ78mC2LdrC0QNF7Fq2gwETQydhVl8NCDBChc7n1VtlEkkE1dSwwQzd/o6nKtdSEZihQmvKehcsicCO6BFYVxEY3sTLpYSUBG57607+etmTZGRnsPydb6ipquEH//ghhuH766yFewp4/KxHSEhLZOJNZ3HRPZf6/ByBTCmFIzF4Exf+Zh0QFSp9YVuSTjKxRFOOu4Cgu0rz6pctFYEN9qzeTVxyHMcLj3Ppry8nc0hwryLqOcJaESiJQF85vPUgvUb15vCWQz5JBKZbKgLzkYrAzqyIYqqoBqCnkcG/wv/I+OrvUk4ll9fexuaIT8lSneN/V6Bo8yuqxx9/nN/+9rdkZ2eTlpbmlXxqayJKa93iPlFRUTz33HM899xzrT6OUopHH32URx8N7UHl+RRRg7v6oFeINYS3kqXBjTnzayj/sgQVq4i/NAkj2tHyk4SXcddPIH9nHkk9klg7d01IJQI36IYkWShVBDqUg/ONCRTpYlbrTTzufJEZjttC9iJIe+Xqhn5JoZYITFKWpcF0xNLg+orApl8upfZL5Wdv3cnfr3JfBP12zmqcVU6u+/P3ievm2ws0BbvcV9JL80s8Pb6EqNcZKwKVUnQnje3sBdzVR728EoHSIxDg6MGjfPTHD1GGoueIXpx72wV2h3TKYpPi6NarG0X7izi48QAupwtHmLwWPhXHDh3l2zmrAeg1qjfJfU59RUGqkopA4WYdFNJdpZGukrnRcSV/cb0MuP+HZSGJwI7U5kvWzz77LK+88gpbt25l0aJFLFy40HP78ssv/RGjOAnrkodQ7Q8IkEwXz7YkAt3K6/oD6nJNRK9Im6MJTsOnjqS6vJpdy3ey8j/LO6S/V0fZaG73bIdSRSDAP8IfZqvehQsXLx59i51/yUG7Wr6o1Jnk1VUEGhikEBr9Iet5DQvpgIrAky0Ntup9Wh9ufvFWwqPCyZowgA2freOF7/2N5e9+06oLnq1VnwgESM1K89lxRWjojIlA8P6bEIaDHioNo+7tjSwNdtv5jfvioDY1Qy8cjuEIjeFyPeuWB9dU1pC/M6+FvUVLNs5rWBY8dMpwnxzTu0egJAI7s0O64Xe0O+7XMNb/VdaqdtEx2vyfwDAMJk6c6I9YRBvtN3MZQhbj1SiGqv52h+M3YSqMbnXJwAIkEQhQYekPGDMpNHtD+lt4VDijp40B3JP01v7fapsj8p36isBIIhigerewd3DJVKnMCLuNuOoY/u/GJ6n57TEO3rgdXSsVUvXqlwank4xDhVaFRFfL0uCjHdAj0KlPvjTYavjUkdzz2QMc3uwe2GA6Td65+w3e/Pmr5G33zfJESQTC0X/lk/fgPvLu22t3KAGn/k1UHDFevZVD3T2OH3KP40c86PgZ1xgXE67CycRdCS1Lg922f92wSmBgCK1+sPYJlIEhp279p+s82yMuGeWTY6ZZegTmybCQTuXEnn8nVgQC9LMsBa6/mPV35+v0qDqL7lWTuKPm9/4PtBNrcyLw7rvvbnaZrug4O9nHFnaxXK8jRYX2i776qadHpCIQsCQCFcRMkEEh7TXuuoZJ4iveW2ZjJL5TrivYqd39coaq/oSp0OupdXfYD1m57j0ilio0mtyso2wzZHgIuF945eO+6p4RYoNCAGKJ9iTlijtgarCrrkego5mKwHqZgzKZ8dXDTP7JeRzeeghHhIOdy3bw5AV/ZOPn60+5OrBwV8OS79Ss0Fry3VrFrxVQ9NRhiv6W69Nqy2BXq2s9Sa8s1atTtUu4MuwCHg+/h4fC72SoYwCAZ3nwEY5RrivsDM92Wmt2LHWvEgiPCqf36X1beEbwsE4O3v71NhsjCX5lR46za/kOAFL6pZKRndnCM1rHqyIQqQjsLAp0EZNrvs/bzo/YYu6kRtdywFIR2LOupVmW0VARWJ8I3Ghu5wjHKMLdBkj4T5vfId57771ceumlZGVlMWTIEMLDw70e/+9//+uz4ETzdpudZxlICt3IYQ9lVFChK4lR0XaHZBtXiZOqDe4XtlEjYnB0Cb1ET0fpMaIXmUO6c3jLIfau2cOhLYfoHuQNtDfpHWjcb5BDqT/gifpN7su+uYoxp13L8ZgKprgm8pHjJbvDsl0BRzFxV0emh2AiUClFEonkU8TRDlka7O7D29qEemJaIlc9eg2Dzx3KN28sYcNn64jpGsuSWYuprarl9CvHtDuW/LqKwITUBKLiO+f/QCO24fq1rjRRMaFV8dpe+3WuJ2kd6q8HW6O3yuQb/S3g/toMVlk2R2Sfwt0FFB92D9rLGtc/qCcFn6j3aX0Ye+04Nnyyjo2fraeiuJyYLrF2hxWUNs3fiDbdrx1HXDLKZxcT4oklikiqqCZfKgI7Ba0119XcxWq9iR85ZwCwOuK/TVYEdifNMwSwvqp9l6XNxU69D6d2hmRRQyBoc0XgL37xCxYuXMjAgQPp1q0biYmJXjfRcaz9YPqG+Au/VEvFY2Ennxxcsew4dXkeYibKsuBToZRi0i2TGTApm7hucSx7c4ndIZ2yzeZ2zlSnMUGdxjg10u5w/KrXeb2JiIkAYIMp1QBw4qCQ0EsEAnSpGxhyrCOWBjczNbg5g88dwg+e+yGTfjiZ6rIqchZvZc5Ds6koaV91UkVJBWVH3L1hO+uyYAAV3fCy1ayQdgD1DuhczlZjmaBGMTzE+sK2hwwMaeC1LPisQTZG4nuRsVFEREVQXV5NdXk1S2YttjukoLXh07VkDMoka3x/Rlzku9eOSilPVaD0COwcPjMXM8TIwmFJM+3XhzlE40SgoQz61M052KMP4jJdbLQMPKygks16ZwdF3vm0ORH42muv8cEHH/DZZ5/x6quvMmvWLK+b6Di76zLnaXQjXoX2FTDr0ufOvjxY+gP61mmXn86+b/dSVlTGineXUVFcbndIp2SpuZZv9FqW6bUMNQbYHY5fKaU8VY/5FMnVZhr6A0LoTQyuV98nsIwKanWtX89VnwhsbljIyURER3DN49cz5LxhAJQWlPLJE3PbFYf0B3QzYhu+D2a5JALr7dT7+UqvYpleR4oKrQFB7WFNBHb2gSEFu/Lp1sudiBkQQv0B6513xxTP8JPF//qS6opqmyMKPlXHK9m2eBu52w5TtL+IXqf18enx6/sEHuGY3/9nC/t9ZC7kZdf7uGj4H71PH+Zg3dLgeGJJVA1trbLq+gRWUc0qNlJKmdfxVprrEf7R5kRgUlISWVmdt8Q+UJTrCvJwv+kN9WpA8E4EdvbJwdV7qog5K56o02OJOTPO7nCCXkyXWMZdNx5wT55b9vZSmyM6NSv1BgAiCGeUGmxzNP5nnYq8wcxpZs/OwSsRSGhWBCZZJwfj3z6BrZka3JKrHruWiJhIeo3qzcZ569m3dm+bj1GwUxKBAEaMZWlwhauZPTsXa9VbbxXc7S18obdXRWDnHRhimiarP1hJ0f4jJPdNofuwHnaH5HPJvVM4ra7lQnLfFFbNXmFzRMFny4JNuGrc/+tGXDwSw/DtVGlrn8DOvqqrM2iqCnufecizNLi+GrCetZ3FQrPx7+9ySQT6TZt/03//+9/z8MMPU1HRuZvv2m2PPujZ7gz9YKwT8Ao6cSLQrHRRNvcYFUuOY5a6CM+ItDukkHD2j8/zbC99fQnOWqeN0bRfkS5mh94LwGlqCJEqwt6AOoC1D6J1OUFn1RmWBncnjX70ZCgDKNL+fVPh9CQC29+fJqlHElc+9B32r9tHSW4x793/Fi5n25JYhbsbEoEpkggEZGmwlfWNV6+6JuydWR/VnVSS6E9vlplr7Q7HNrlbD1N+1F1dkzEwE0dYaPbUnPKLqXTrlcy+b/fyv2c/w1kTnK/h7OI1LfjiUT4/fppqmBwsKzdCX/3Fl2ga3qNuN/fSX/UiS/UiW3kPLMqyTA5eYzYMB6m/AFtf4CB8r82JwL/97W989tlnpKWlMXz4cE4//XSvm+gY1v6AWUavZvYMDV4VgXTeRGDlqjJ0jbtBYMxZsizYV1L7pXL6tDFkTRhA1fEqNlheFAWTVWbDP8txRmj3B6wnFYHecgn9pcExKprdHGAzOzhCsV/P1d4egSeacMMkMusGER3adJClr7etH+kFP5/KvZ/P4Kbnf0QfHy/bCibW4SCSCGywzysR6Jtpn8Gsv9Gb84wJ7GQfS/W3fOlabndItrD2BxwwaaCNkfhXRnYmmYPdf19LcotZ9b5UBbZWbVUtWxZsBiC2ayz9xvX3+TlSaUgESp/A0GZq03Nhqg89ULiHzuxiPxv1dnbp/WQ2UxGYY+7xbA9R7p/FHXovRbrYz5F3Tm1+ZTtt2jQ/hCHaqn6yDnSSikDpEQhA+dfHPduxE+Ob2VO01YTvT+S5a54F3H1mTmW6p12s5fNnGCNsjKTjDFL9CCMMJ0426u12h2O7PK8egaFZEWitLvDnmwqXdnkmcDtOYWkwgCPcwbVP3MBz1z5Lr5G9+PSJuYy4aCRdMlvXz61wdyFduyfRc0ToX/hrjldFYLksDa5X/8YrhSRiVOecKH2iKY6JvGt+AsCDzqf4xngPQ/l2yWOg2/51wxCtUBsUcqILfjGVjZ+7XwPN/8fnjLtugqd3oDi53at2kdQzibycXIZdNNIvVaPplqXBeVIRGHL2mYe4pOYnxKpoMkihmhoAehuZlJplHCKfg5ZBIUOVd/9yax7jcN1+MUQzWY0lmijiiGGveZBuji7+/2Q6mTYnAh9++GF/xCHayKsiUIX+G4NUrInAYvsCsZnXoBCZGPz/7N13fFP1+sDxz/cknXTRli5oy957yhJkiKi4cC/0ureX697rivenXvW6994bt8hQkSV7r1IoGwq00J3kfH9/pE0T6ISmaZLn7auv12lyzsm39Ut68pzn+zwNqsPQTqR1bcmO1dvZvCibzYs20bpfW18Pq14W6MpAYLBkBIapUDqrNqzUG1irN1GiSwlXwbtkvqJGoAWLR0mFQOJeb8iby4wqsgHh2JYGV2jTvy1DLhrK72/MBODL+z/jijevqfU40zR59rQnsZXYyOzbmsk/3HnMY/FXHjUCiyUjEKBM29iBsySALAuudIFxKs+r91mq11CsS1mkVzJABccNMgCHzUHW3A0ARCVGk9IxsOdG675t6DCsE3k79tOseRRLv1/slzd0G9vKX5aza91OImIj6T7WO/8+ktxu3q2WDrAB52+9gixyQMMaslyPZ6g08lUB2/VuCqksKdfT8GxalKlaYmBgYlJIMQDdVQeSjRbMtzs/11zJufSjeyP8NMFFbpX4KfdAYDBkBMYTRyotiCScvQRnWrm2a4rnOTMCrS1DCWkTvMEOb1BKMeKqylqBs96Y4cPR1J9DO/jbXAFAGkm0IsXHI2o8PcqXBztwsEZn1bJ3YKuoEZhCYsBmv7gvM/JmdkFFfUCAEHXsgUCAk/51ClGJzmzu5T8uZWP5B/Wa5G0/gK3E2WkxukVw3wAKaR1O5PBoosbFYUlomP8n/m6b3uXKXJVGIZUMZXCH9Spa04oNbOZ5+we+HlKj2rp8C6WFzg66HYd1Qinl4xF537hbT2bvpr1sXpTNtP/9jNba10Nq8iqyRksOFdN+SIda9j46g1RvRhgDsWBhvjR+CDgL3MoS2dyumzJVyyNKVSgU3ZTn8vNQFcKC0C+4zXIFADcZl/ByyMPEU9kYTpYGe0e9PiW89NJLjBkzhnPPPZfp06d7PJebm0vbtv6VPePPssoDgTFEkUCcbwfTCJqrGHaylyJK2K/zfT0cnyhZWohZ6MyAiBwaHRQXdY2t3xkDSOqQQrvBHdj413r2b/OfZehrzWx6qc70VJ0YZvQLqvnRS3WmC+0Yrvqz2dxW+wEBqtQsI12lMkD1COiMUPdlRnu8eGPI/YL2WLoGu4uMa8aZD51NfEYCrXqk8/ndH2M6as5s25MlHYMrxE5MoM1v3cmc2oVmx8fWfkAQcO+KKxmBniYYJ7CfPExMZphzMXXwZJFuWbqF9J4ZhESE0mFop9oPCADth3Qgs7yG6o7V21k9fWXNBwS5g3vy2bXO+f6R0SuTyNhIr7xOikokVx/AgYN5eilZZk7tBwm/UV1wN0OlenRwB2ivMmmmjpxn3Y2OtFDxtCSZVkYK3YwOJKg41/P7vVwPOljVORD4v//9j9tvv53OnTsTFhbGySefzJQpU1zPOxwOtmzZ4pVBCk82bWNr+YVfO5URFB/4rcpKHM5MiH1B+mZQvKgAS1IIAM1kWbBXhISH0Pe0fmTN3cChvYeY/c7vvh5Snc3TS5mtF7Fcr6OP0dXXw2lUnYw2rCGLP/VClgVx5+C1bOJvvYK/9QpCCfH1cLwmqZE6EHouDW64ukl9z+xPdGI021ZsZde6nSz+ZmGN++/ZVNkJOqltYDaAEUdvi97u2pZGIZ5CVAgjjYEA5HKAJXq1j0fUeFb8vIyty3Owl9noOCw4AoFKKcbefJLr+5mvTa9hb+HZTMZ7c0QpxUWWCa7vP3RM9dpricZVqsuqfV/NUGlH/E3qpaqfZ7dYJ5EVPp1brJMAiHcLBB4I0iQgb6tzIPDVV1/l9ddf54UXXuD9999n5syZPPPMMzzwwAPeHJ+owi6dS3c6MkD1oJ8KnvXy8cp5939/kKYHF0zLw7HHhrVVqHQM9qKhk47HEupccjbngz8pLSzx8YjqJhjrA1ZwL4/g3kgp2Cx3C4L2MgK3MHwizTHKL1+82SzEPRB4rF2D3RmGwSl3ne76/qenvsdhq77xhWQEiprkuHUMlqXBRxprDHVt/2bO8eFIGo+txEb2384yGc1Tm5OQmVjLEYGj24k9yOjdmraD2rNz9Q62LpMkleq4BwK93UzmfMuprr/bH5rfBVV2biBbqtdQhq3K5zJVyyMyAnsYdQ84eywNDtIkIG+rcyAwOzubIUOGuL4fMmQIM2bM4LXXXuPuu+/2yuBE1fayn2Ws4W+9giBIBnSpWAKdxyEcOri6BWpTU/SXsz6gLnQQ1kW6AnpLTIsY+p05AIDi/GLmfewfHxwqUvOtWOmjgisjsLVqhcL5ZpjtVj812KwwKy/qe9Rw19XfWZSFFji77XqzRqDN7eK2IZqFuOs0vDMdhnZEGYqYpBj+/nJ+tfvu2egWCGwvgUCAWY4FvGP/ytfDaBJykKXBNRltVH52mebwj7/nx2rzok3YS52lDToESX3ACoZhcNyFQ9g0fyMF+w4x58O/fD2kJklrzYY/nfUBrWFW2vT3bnmvNJXEaGMwAKm0YKOWAG0gcK8P6H7DNIxQkog/IhDYsx7Xpu4ZgcFaFszb6hwITExMZOtWzw9Y3bt3Z8aMGbz99tvccccdDT44UTX3gpkJ5R+GgkHFG4JGk8ch3w6mkZWuLcax33lRFzkkBmUEz0WdL4y8ahTRidG0Hdie31+fQVlRma+HVKMDOp+1ehMAvVVnIlS4j0fUuMJUqKs5yqYgDgS6ZwQe3pUt0FR0Dt7DPq8VhLe73XCyNODS4Aqn3n0GcWnN2bQgi5+e/N7VEORwFRmBEbERRCVEN/g4/ImpTc4ru4WTbP9gsn0KO/Se2g8KcLI0uGZtjXTaqQzAWULjoC7w8Yi8z2PJZ5DUB3TX78wBhEY6G+ot+mqB36zsaEz7tuQSmxJHdGI0bQa0IzQi1OuvOUoNxoqFeXopM8x5Xn894X3zzaWu7fZkurZbqmQMZZB+2M2p+mQEuvdAkGYh3lHnQOCwYcP46qsj77527dqV6dOn89NPPzXowET1cjng2m6hgigQ6JYiHGzLg4tmH3RtRw6TZcHe1rJbKzoM78ymBRvZl7OPWa837TozC83KgtgDjZ4+HInvtDWcy4P3kx+UtUS01q6MwBQSPeroBaKKn8+GnQMcrGXvo+Pw0tLgCq37tSG1szNwk7fjAHM++POIfcqKyziw3dm0KKldclBl9lTFUAYtlTMrsohiHrW/6OMR+V5Fs5A4YohVwR0ors4YNYS+qhsnqEGsMNf7ejhe57HkM0jqA7oLjwp3rewoLSyttQ5rMFo/ex3ZCzdxKPcQXU5onFUkAyw9XCU31unsRnlN4T02bWOd3sww1Y/jVG+P+n8Vn9kjVDjDVD96qc70UB1pSd1XNYSqEKJwNhaRZiHeUedA4F133UXPnlV/wOzWrRszZsyQeoGNZJ+uDAQmBFMgUAVvrQDPQKBc6DeGcbeOx7A43yJ/e/4XDu71TrChIcxzuyM3yOjts3H4UkXGBwRnVuAO9rjeF+tzx9VfJePWOdhLy4M9ugarhs8IBDjlztNc27Pf/YPSwlKP5/dmuzcKkWXBAPdYryOGKAD+cPzNXtN/urs3NId2sE3vAmRZcE36Gt1YrFcxTf/FEr3K18PxqpKCEnKWbAYguX0KsSlxPh2Prwy9ZBgAMUmxbJy7wcejaXrWz17r2m53XIdGec1Oqo1ru2IVi/Bfv5lzWKHXMVsvoqVKJs2ovEZxb1j3W9i7zA/7gr/Dvqr3zcz48qxAWRrsHXUOBH7zzTecd9551T7fvXt3HnzwwQYZlKjZXvdAoFvabKDzrBWQ57NxNDatNYXl9QFVpEFEn2Y+HlFwSOmYyuCLhqIMRavu6fz2/C++HlK1FujKGh0DVZBmBLo1DAnGQKB7fcD61GDxV8luGY+7vNQwxO4eCPRCRiBAq+7pDDj7ONoN7kDejgP8+fYs13NbFmfz0S3vub6XRiFOiao511suoqtqzx728Zb5ha+H5DN79H4SaU4n2tDXCJ7mcfXV2aisfxbomUibF2XTun9bmreKp8PQjr4ejs+k98qk94S+HNp7kIVfLmDbiuC7LqiOaZpsKM8aDY8OJ71nRi1HNIxEmrsyxdabgf3vMBi4d3++yDKBKy3n8or1ET4M+S//s97fIK+RUP7Zfz/5XisDE8zqHAh8+OGHKSgI/Loa/mCf29LgxCDKCPSoFUDw3BmwbSnFvs1Zoy5yUDQqpM7/bMUxOulfp5DSMZWs+Rv5482Z7Fq3s/aDGpmpTUxt0lalk0ILWgdp18hgDwS61wcMioxA5ZYRiHcyAr3VNfhwY246kU3zN1JWVMb0F39l3Z9refmC53n10pfYtcGZ7XXZq1cy8LzBXhuDv5lkOZPVeiOHKAyaBhBV2U0uu9jLOrIxCO5l4zXpqFq7tteagZ2JtP7PtWyav5ED2/bTPogDgQAdh3V2BQ/mfDjbx6NpOnau3UHBPudn+vaDO2Cxeifj/XBKKTopZ1B+O7s5pAsb5XVFwzug8/nOnAlAC+IZawylrZHOZdazmGg5ke6Whnnvaa6c5bAcOMgPsv4AjaHOEQWJwjYdHs1CgigQ6L40OJgyAovmHSJ8QBSRw6KJGhtb+wGiwcQkxdL3jP6As3Pzt482vS6V63U20/VcNumtDFG9g7aGmHsgMEvn+HAkvhFsGYHuNRB3eykj0GNpsBeahVRI6ZhK/4kDASjKK+Klc5/jwPb9FO4rILNPJvHpCUTERhKXGue1MfibNkYrjwYQwfqBco/b3HdfLi88NVexJON8z1gf4BmBG+dU1kBsP7hxlnw2Vf3O7O9qGrLwywWUFpXWckRw2ODeTGZY50Z97U5G5fLgdbI82G996fiFUpxJKudZTiZEhdRyxNFxTwKS5cENr16pRcH6AbOpyXVbGpwYTEuDg7R7UOHvByn5u4Ci2YeI6Bfl6+EEnZFXjyYuzRlwL9hfwPo/19ZyROOaZy5zbfe1BO/SMI+MQHObD0fiG7t1LkNVX05QgzyyXwKVe9Bjt5dqBDbG0uAKJ/3rFAyrQbPmztIPoZGhxKcnMOj8wdz318N0HtHFq6/vj8YaQwHn/6ffzQU+Ho1v7HKb+8kB3iDoWHUqXx68m30B21CqpKCErcudN8JSOqYSnRjczeXCoyPoV34zt7SghCXfStMQOKyZzPDGvXHoXicw0JfpB7LPHT8xSPWij+rKhcYEr72OR1mwIOsP0BjqFQjs2LEj8fHxNX4J76soCB9JBJEqwreDaUQJbm8GB4JoaXDRn84mFSpEETFQAoGNLTQilNPuP5O0Li3JWbKZrx/6AtNh+npYLh71AYO0YzBAjIqiBc6/QdlBtjQ4Vx/gD72Qv/RiiinBqrwbtGoK3IMeu/FWjcDGWRoMkJjZglun3s6dM+8npVMqQy4Zzr2zH2LQeUOwhDTOsi1/M8YY4tqeZv51zOcztcmb9i/YY+7jLfsXfrESZo/b3HdfLi+OFAwBiOy/N7muT9oFeTZgheMuHkp6zwwy+rRm3kfBW0aggsPuwF5mo1WPDOLT40ntlNaor99ZudXrlDqBfinLzOF3/Tfz9TJKKaOP4b2u0/GSEehV9bqyffjhh4mNlaWJvparnR3ygqlRCBzeLCQ43gzsu8so21ACQHi/ZhiR8oHQF/qc1o+ZL/8GwI7V21nw+TyOO39ILUc1jvnlGYEWLPRT3Xw8Gt9qq9LZq/eznd0U6xIiVLivh9QoFrhlhQZL12iPGoHeahaiKwOBFi8uDa6Q2ac1AHfNvF9WYNTBCGMgVqzYsTdIIPAz8ydusD/ETTyCiUmSSuBUywkNMFLvcc+GTZKMwBp5BALNbI4LwPfKjXNlWfDhMnu3xjRNtpdnSm5ftY2W3Vr5eFS+k7N0C+t+d65s6XNGv0b/W9NRydJgf/eR4zvX9kWW07w6hxLcyoLtk4zABlevQOD5559PUlKSt8Yi6sDUpqtRRjA1CoHDm4Xk+WwcjaloTmVh1Mihwb3Ew5cMw+D0ByfywsRnAJj9zh/0GNfLtYzPVw7qAlbrjQD0UB1ppiJ9Oh5fG2z0RpuanXovP5l/cJblRF8PqVHMN4MvKzSeWCxYcOBopKXBjXcTRoKAdROtmjHc6M9+M48CipjtWMgwS/+jOleJLuUB23MAmDgzqu61/5eTjOFNOsPWvT5mitQIrFEn90ykAA1AbJy7wbUtgUAnpRRDLh7G53d9AsCcD/7knCkX+HhUvuNe3qZTI9cHBGitWhJGKKWUBWxmbiDTWvOh6QwEGhhcYDnVq6/nmQSU59XXCkZ1XhosF6ZNQz6HcJQvV3JfKhsMmhHhWp4VLG8GheXLggGaDZNAoC91GNKRwRcPpf3QjmxdtoUPb3kX0/TtEuG/zRVonMvXgiUAVJOJlpNYqFeylZ1Msb+Cwy2jK5DN1+4Zgb18OJLGYyjDVfzfaxmBboHAkCYcDApmd1quYjnryNI53Gd/Bq01a80sPnH8UK/zTDP/IocdAMQSDTiXj850zG/wMTek3UhGYF1V1AiEwFwaXFJYQsmhYpRSJLVLJiZJVnBV6HfmQEIjQgFpGrLhL/f6gI0fCLQoCx1UJuBs7GbTNtdzhbqo0ccj6ucVx8ds1s463KOM40hT3k0Qi8ctIzBIPvs3JukaXAtTN51aYOD5jyCR4MoIVEq5sgKD5c2g6K/yjEAFkUOifTsYwUmTT2XnGueHxVXTVvi83ox7fcBgCQDVpJ/qRh/lbKqwQq/nA8dUH4/I+xzawUJzBQAtSaaVSvHxiBrP8cYABqqeNFexXgn6utcI9HazEHF0hhn9XDWn5ullPGl/g5FlF3OZ7U76lp7hyvKrzWuOT+mvupNOKk8ad9JGtaKv6spT5pveHP4xqwiCRxJBFMGdEV6bViQTibOudiAGArcsymbXup2ERYXR8+Tevh5OkxIRE0Gf8qYhzdPimfPenz4ekW+UFZeRvdCZDZuQkUBChm+yiEcZx3Gc6k1r1Yo/HQtpXzKGViXD6VZ6StDGG/zBZ44fud3+f0QRyeXGRK61eD+z1rNZSHCUBWtMdQ4EmqYZdMuCe5acSo+yU3nN/omvh+Kyl/2u7WBbGgyVbwjB8GZgL7FjhpmoMEVYj0gscfJB1NfiUuO45PnLAGjTvy3F+b69e7nSXE/z8rtlg5QEAg1lMCXkNgDiiGaH3u3jEXnfar2RApzzMNiCwfkcYoFeziq9gb0caPDz23y0NFjUnVVZedw6GYAWxDPfXEYpzgyT1Xojf5mLaj1HqS7jd3MBC/VKwlUYl4aeQQghLNarmW0uIl8fqvUcvlKxLD5JJcjKnVoYyqCTakMYoWhtUmgGVvZRxbLgkkMlpHZu3AYQ/mD09WNJ75nBznU7+PW5nyjcX+DrITW67L+zsJc6/651GNa43YLdNaMZ8/RSNujN/KkXso1d5HKAXez1uMEtmo4deg/b9R4ACijCqiyNUkM3QZqFeFW9ugYHm53sJUvncLP9MX5y/O7r4QCemXAJwRgILH9DKKaEYl3i28F42b6tubyw4VXeiHyfpT1W+Xo4olyXUd1o0TaJ7IWb+OE/vss426P38a05nQPkM0GNop3K8NlYmpLjjQH0VJ3I4xAPO17goA7si333+oDBFghMdVuSskvvbfDzN2bXYHH0TjKO50XrQ6wK+5HeRhfOM04mnDAAVuoNtWaYLNGrKSsPHlbcUBljDAbAgYNZZtNcHlymba6boinIsuC6ONUYiUaTxVbm6qW+Hk6D2jjHvVFIRx+OpGlKbp9CcgdnxnxRXhE/PfW9j0fU+Nb/6bYs2Af1ASt0dlumv1Sv8XjuwyBYyeGPPnf8xN32p7Bi4URjGM9a722U1413axayP0j6AzQmnwYC//jjDyZMmEBaWhpKKb755huP55VSVX49+eST1Z7zoYceOmL/zp2P7s2uWfkyi16qM7+asynVZUd1noaUqyuzHhKDrGswBFf3oMIDhQA4lInRKsTHoxHuYlo46zU6bA7spbZa9vaOzxw/umqYdTLaSDaIm15GF9d2jt7hw5F430a9heGqP71Vl6DLCk2lhWt7Z/md6obk2SxEAoFNlVKKK6xnE6OiiFFRdDHacYIxCHBmjW6p5T1ggUcw3Vlrdawx1PXYb6ZvS0BUZw+VtTGlPmDddDTauIK+vzVAp+mmoqy4jC1LtwCQ2KYFcalxvh1QEzXh3jMJjXTeJNixejvbV2/z8Yga1871O2h3XAdSOqb6NCPQvYP3BnOLx3OfO35qEp+3hadp5e+XJZTyf9bbsajGWSURSzRGebgqWPoDNCafBgILCwvp1asXL774YpXP79y50+PrrbfeQinFxIkTazxvt27dPI6bPXv2UY1vc/hMBqs+LNNrednxMVk656jO05Dcg1+JKt53A/ER91oBBwI8RbjwQGUmk6+70wpPYVHhru2SAt8Unf7Q8Z1r+yLLaT4ZQ1OVQaprO9ADgT+Zv/OnXsgqvYHebgHQYJCiKgOBO7yQEWjTlYFAiywN9gu3WCdxi3USPVTlh9wVel0NR8B888hmO8ONAa4s0GnmnCZZt8q9SU6yko7BdTHKGIzCedOsqQZ4j8aWxdk4ypzvV9ItuHpxqXGcctdpJLVPJmv+Rr5+4PMm+W/bG/J25rHq1xVkzduANczquqHtCx1Va9f2Ljz/dh+kgIfs/2vkEYmaFOsSZpeX2WhFikcHdm8zlEFznHN1XxCUBWtsPg0Ejh8/nscee4wzzzyzyudTUlI8vr799ltOOOEE2rateQJarVaP4xITj/4Caayl8q5wUyguvM8tIzDYugaDZ62AfQEfCCx0bTeLl0BgUxIWFebaLikobvTXX2VuYIleDTgbZHQx2jX6GJqyDFVZH6m2bCB/tl/nu/4u9VZdCFdhtRwRWNy71R3+YaIhyNJg/9XTqAwELq9jILAZEXRTziBKlIpkiNEXgM16W5O4EXy4ivqAAEmyNLhOElQc/VV3wLlsfGN5NpK/dyutqA8I0P44WRZck6GXDMdhc763b/hrPct+WOLjETWO1b+tcG13G9vDhyOBSBVBBs7rtEKc19AtiOeflssIIYRnHO/wtP0tXw5RuJltLqIEZ9LDGMuQRl+B5OoPIBmBDc5vagTu3r2bH374gSuuuKLWfTds2EBaWhpt27bloosuIien5gu40tJSDh486PFVwT19ea3edPQ/QANxL4gebF2DAZoHUa2AIvdAYPMoH45EHC48KsK1XeqDjMDvzZn0U92xYJFswCpkqpau7UDOCKzoFgzBVx8QIFV5d2mww71rcCMtgxENo6d7RqBZfSBwu97NNnYB0N/o4bHcaYwxhAjC6au61anpSGPb7ZYRmCIZgXU22hji2h5ZdjGP2F5gUNk5ZJv+u0w0a15lILCdZATWKCQ8hDMeLF9ZpmDhFwsoKw78pair3AKB3cf29OFInDoZzs/XGmdGZnejI7EqmhJKCSeMXH2AReZKXw5RlJvulj3tXjajsbQlnbakk04aJWZg9wdobH4TCHz33XeJjo7mrLPOqnG/QYMG8c477/Dzzz/z8ssvk52dzfDhwzl0qPqub1OmTCE2Ntb1lZ6e7nrOPRC4zvR9IDDYMwLjcasRGOB3Bgr3VwYCI+MifTgScTjPjMDG/aPk0A5esX/MIr2SRJpzjjG+UV/fH2SoyqXBgZwROM9c6toeaPj+wr6xuTcL2emNpcFU1v+UGoH+pZ3KIAJnCYeaMgLnO9yWBR9WY3OsGoodO4v1KqaaM7wz0GOwm8qMQFkaXHfuK31yOcDjjlfYqLdwrf0BH47q6NlKbGxbuZWW3VvRY3wv4lsFX9mg+upxUi8GnHsciZktWPHLMma+/Juvh+RVZcVlrPtjLQAxSTG06pleyxHe1/mw5aWdVBvusl7DDZaLsOPgGcfbvOL4xEejE+4+cfwAgIHBCcZxjf76kSqcTWxlNRvY6fZ3Txw7vwkEvvXWW1x00UWEh4fXuN/48eM555xz6NmzJ+PGjePHH38kLy+Pzz77rNpj7r77bvLz811fW7dudT3XXmW6ilSubxJLg/Nc2+5BsWCRoVI5wTiOQaoXefpg7Qf4saI8yQhsqsKjK9+HShs5EDjDnMfO8mWQA4wetDDkov9wrVSK6307kDMCF2j3Jge9fTcQH0ki3vX/2dtdg61SI9CvWJSF7uXLfDfprdV2D//enEkv1ZkxxhBGHfYBp6fRyVWb6HdzAWXaN42hquNeI1CahdTdQNWD043RjDOGAxBPHLFEE0YoT9nf9PHo6m/Lks0U5xezfeU2ImLkpnFdKKUYc/2J7N/q/Dc07fmfObB9v49H5T0b/lqHrcT5/tVtTA8Mw/cf/zu6JdpAZWDwMes/iSy/ifO141e/X7bvzy4pu51/2abQUbVhhBrIPywTPbr4NpZgKffjC75/J6iDP//8k3Xr1nHllVfW+9i4uDg6duzIxo0bq90nLCyMmJgYj68K4SqM1uXLzNbpbExt1v8HaEAVzUKaE0OICr5OskkqgZnmPObrZU2iZqM3udcIjJRmIU1KeDP3ZiGNGwj80DHVtS3LgqsWqkJcHWUD9aLB1CZ/ly8NTiHRo0FKsLAoC8nltdG8kREoNQL9W4/yOoERhLPEXHXE80W6mO/MGSzTa5lvLjsiq9ZQBqOMwQAUUMQ8vdTrY64P9xqByUhGYF2FqBA+DX2Ob0JeYkboe0wLfYd8DvGrOZtvHNN8Pbx62zh3vWu7wxBZFlxXKZ1SGXbZCAAcdgczX53u4xF5z8Y562l3XAdSO6fR1cf1ASt0NjwzAisCgxEqnImWcYDzffdbM3D/vzRlB3UBn5s/8aLjQ7L1Nk62jOCFkAd9MpZMt0BgIN/c9wW/CAS++eab9OvXj1696l8DqaCggKysLFJTj/5DUsVdikKK2c7uoz7PsdJas0PvJo5o+qhuPhuHL7VRlensm/TWGvb0f9IspOly7xrcmBmBh3Sh66KoOTGcbIxotNf2NxV3EPeynyLd+A1dvG2dziYfZ8mLQUavRi/e3FRU1AncRS4O7ahl7/qxUdk1WDIC/c8YNYSOqjXFlDC3iiDed+ZMDuH8O3uW5UQiVcQR+7gvI53m+MtrYz0auzy6BktGYH0ppRhi9KWb0d6VPbpIryLXrQSPP3BvFNJusDQKqY/xt51Ch6GdiEuJ4/fXZ7B+9lpfD6nBaa1Z9M1CsuZtYG/2Hjod39nXQwI8S29BZc1A8LzJ7X7zWzSelbryBsOJlmHcYp3ks7F4ZgRu99k4ApFPA4EFBQUsXbqUpUuXApCdnc3SpUs9mnscPHiQzz//vNpswNGjR/PCCy+4vr/tttv4/fff2bx5M3PmzOHMM8/EYrFwwQUXHPU4PesE+i4LLZ9DFFFCHofQKjja3R8uSkW6MkA2NcEufg2p88iu9D2zP11Hdyc0ItTXwxFuohKiiG8VT2rnNMKaNV6n1lfsH9NZtSWdVM6xjCdMybyoTqDfQdTrbEzadBo9CjswqDT4GoVUSCkPBJqYHs20GoJduwcCJSPQ3/QxurJebwZgmmPOEc/XJbt6jFtjCfeC6U1BC9Wc/qoHfVSXKoOYou4qCuBrNDPNeT4eTd3ZS21sXuisX968ZTwJ6RIQro/IuGb0O2sA+7c5lwV/cfen2MvstRzlX7av3Eb+zjwAOgztRFhk412z1qQF8bQkmSQSSKEFaVTW/B2q+tKalnSjAyW6lG16lw9HGpxWmJWBQPfmW77gcT3PTh+OJPD49Mp24cKFnHDCCa7vJ0+eDMCkSZN45513APjkk0/QWlcbyMvKyiI3t3J5xLZt27jgggvYt28fLVq0YNiwYcybN48WLVpUeXxddHIraLpOb2IMQ2rY23u268psxFYqxSdjaAraqgx2633sIpdCXUQzFZg1UcbeNM7XQxDV6Dm+Nz3H927U19yv8/mv4y0OcJAoIrnNUnsH9WCW4REI3Eln2vlwNA0veUYst9x7Orp4AhlfdoJTfT0i3/BsGLKnQbunetYIlECgv2ljtKKdyiBL5zBfL+OgLiBGOevtznEsdgX2MkhjmOpX5TmSVSK9VGeW6bUs1qvJMnNoZ2Q02s9Qk1nmfA5wkLbK94X//d1oYwjPON4BYJr5F+dY/KMJ15alW1y139pLt+CjMuj8wcz76C82L8rm0P5DzP1wNsMvH+nrYTWYldMqawl3P7FpLAsGZ0ZuVnjVy36VUlxmOYuHHM+Dhk8dP/Iv6z8aeYTBbZmuzI7tYfg20zgjwG/s+5JPMwJHjhyJ1vqIr4ogIMDVV19NUVERsbFVF6fcvHkzDz30kOv7Tz75hB07dlBaWsq2bdv45JNPaNfu2D4Auqcr+7IunfsdkZYk+2wcvuZ+0Zutt/lwJEI0nv/YX+MAzgY5ZxhjyTDSajkiuAV6ceGEG1LpcmAgnXb0p9no4GscVaFiaTA4A4ENye6+NFjJ0mB/VJHpZcfO7+YCAP5yLOIs242A4hLjDP5l/QeGqv5y+GrLeZxsjKAZEbzm+LQxhl0rm7a5/h4kIQ2jjtUwox/hODOlpjvmovWRq258XSO8Klluy4LbD5FlwUfDMAzOmXIB7Qa3x1HmYOqjXwdU45BV01a4truNaTqBwNq4B+M/cHxb5b9J4T0rzHWu7R4+zgiMVdHEEg0E5vW8L/lFjUBfq8gIjKYZm0zf1aXb5pYR2FIFcSDQqAwEZgX48mAhAA7ofHbrXEIJIZwwHgq5yddDavIyg6CmiFIKa0IIRkTwBqlScc8IzK1hz/qTrsH+ryIQCPCbOYfvHDO4yfYIJiYOHOSwg6st59V8DsswpptzKaSYlx0fkW36/gZkbnnjOIAWUh/wmIWrMIYb/VEo4ohmjc5yPWdqk7tsT3KN7X6+sf/G946ZPhypp1VjthJ5ZxJRI+PJHNym9gNElVr1SCetc0tKC0ooKy7j6we/8PWQGkT+7nxylm4BoGW3VjRv6T83DdoZGQxWfQBYo7NYqtf4eETBw6EdrNTOmwxtVTrRyvd16iuu6bfpXQ1eDzqYSSCwDuJVLBcYp1JIMTP0PI8luo1pu1tGYKtgDgQ2oYYhWmuPph4NeV65+yUq/Gz+ySfmD1gwuNQ4I6hLA9RV5mFLg0VgSnVbCrwT72UEhhDSoOcWjeN4Y4BrWff3jpmcZ7uV1WSRTiqnGCP5MuSFWhvtZKhUbrJcAkAZNh6yPe/1cddmr1ujkETV3IcjCRynGaOJIpJVbGSa6WwMY9M27rI/xbOOd3nf/Jbz7bdyq+3fFOvGaxJWk087TOOZa7/k2be/JykzqfYDRLVOvvM0ohKcpQN2rt3B2t9X+3hEx27trNW0HdiO9F6Z9DjJ/2oJX2w53bUtTUMaT5bOoRjne5yv6wNWqFjlY8fOTvb6eDSBQwKBddRGtcIs/+8Txw8+GYN7x+JgDgS0U5X1eXwVCMzRO3l02/Pcecld/Ofcx3HYGvbuxPZV2/hX65u5v/dd/PTU9w16bnHsSgtLePMfr/Liec/xzcNfev31fisvdF9MKWdZpHZkXaSrVEaogQxRfdjXwE0kRNPhWSOwYS8OpWuw/4tWzTjDGM2FxgSGqr5ElC//7GF05OOQZ4iqY43h261XkkhzBqmezNGLWGSu9Oawa7VHVy5dbCFLgxvEMKOfq4v0b+YcCnURZ9tu5nXHZ3R2qxW+jV284PjAV8P0sKM8MSGVFlikfMExiYyN5IyHJtJ2UDv2btrDF/d8ir3U5uthHZMVPy1j04Isti7bQpdR3Xw9nHqbaDmRZBIZpvqxQW+WBIlGsly7LQs2mkYgMDPAy/34igQC68i9o5yvahV41AgM4kCge0agr5YGb9bbWHH9XEqnHyR/5X5+/d9PDXr+orxCHGV2Du7Ox14aWB3MAoFhsbD8p6Ws/2Ota9mFt2itXUXtmxHBEKOPV18vUESocPI4yBy9hOnmXPa4ZdD4O8dBOznnrGXnP7PJ/6Jhl8P6G49AoNnQGYGyNDgQfBD6NG+FTqGD0ZpCijlNjeatkCmEqrpnecaqaB603sR8vZyt7OIu21M+/VCa63ZzI0lJILAhdFZtXfW3/zD/5m37V/xuLqCYEvL0IZ623IVR/rHpNfunLHT4NhhcqsvYgzMgHMzlghpS/4mDQDuvu/Zu2sNvL/zq6yEdNVuJjXV/OJfTRiVGk9E708cjqr84FUNvowuz9SJ+MWezSm+o/SBRo28e/oLvp3zL31/O51DuQY/nPnX8yKeOH3nLXpng0NQyAkEahjQkCQTW0eG1CuaaSxp9DBVLkiMIpzkxjf76TUUCccTgTN/f5KNmIXbtYM59mzAtzg8Ccz+YzZ/v/N5gHwzclxs3i/d9bQbhyRpmxRLiDAyUFnh3idBKvZ5dOIM9I4yB9frwGuzc64NNN+f6cCQNy7a1jENTD7D/pV0U/Jzn6+H4VAuaM0INpL3K8MiabwieS4Ola7C/i1FRtCSZoZa+NTYHqc4ky5m0V84P03/qhfxoOv/mF+qihh5qrfa6ZwRKjcAGoZRijGUIAKWUcZvjCTJJI4Yo3g99khtCLuYOy1VMNMaxlZ2Ms13OdIfv/q64Z0BLILBhKKU454kLMCzO94c/357FL//9EXuZ/92Q3/DXOsqKywDoNqY7huGfH/lPdLuOq1iyL47OvpxcZr46nWn/+5kPbnyHLYs3u5570/4Fk2x3cKXtHleW+ZlqLIObSPKBBAK9wz/fFXzkIstpGBi0JZ2r7fc1+DKk2lQEAluq5Fpr2gQypZRreXCO3kGZbvzUfTt2cnsWsOjmHMLOiCV/Vz5f3P0J3z78JSWHio/5/IX7KwOBkXESCGxqlFKERYUDUOLlQKD7hc8YY4hXXyvQjHFvFFC+vDoQ2LaWuratrUJ9OBLfsygLe9jHRp3DGp2FXTfcBzabdl8aLIFAf3eLdRJZ4dO5xTrpqI4PVSE8Zr0VgFYkc63tfs6y3cCQsvMavQ6pe4ZzIlIjsKG43zwCWEc2z1vvZ7jRH4D7rNe5fvdJJHCZ7U4+dfzY6OMEz3JBaUrqAzaUtC4tOe2+MznugiEU7Ctg2vM/8+rFL7Jl6WZfD61eVrp3Cx7b04cjOTaHN3wSR2/6i7+CW77KvhxnksEcczF/mYuIphk27GxnNy1J5jhL7yZTg1aWBnuHBALr4XzLKfzbOplNbGWjzuGWskc5pBu+UURVDuoCV+0SufNXuTzYxPTJnYGK2lGLb84hJMMZEErr0pJZr8/g/8Y+ztYVx7Zkucg9I7C5BAKbovBmzlpTXg8EOioDgYd/SBE1G2z0JpIIAKabcwKmvoxtW5lrO6RlmA9H0jR0Us5umWXYGvQC0X1psEWWBgvgdGMM34a8zKWWM9nLAX4y/2CdzuYG20ON+v6yl8qMQFka3HBGGYM9vh+q+nGu5WTX91Zl5bvQV7nImEAxpexlP1fY7uZ1+2eNPVRXfUCQzwUN7YRrxxDXsjmGxSCjVybr/1zLa5e8xHf//tqVZdeUmabJqvJAoCXUSucRnX08oqPXQbUmnVQAZpuLKNLHnmwRjPJ2HmDeJ54ZzLmbc9Fac7ftaT4yv0OjucZyPtNC3z6mm2be4J4RuMn0TVmwQCSBwHqIUpGcaowkgzSSSWQ9m7nd/p9GeW33+oCtCN76gBUGG70ZqQbRW3VhpV7f6K/vvmSs+e3pXP761dhKbWhTExJm5X9nPM2s12cc9QcD96XBkRIIbJLCop0BJm8uDc7VB1insxmu+nOSMdy1LE3UTZgKZYQxAIBd5LLCrQCyP7Nvr8wIDAnyjECATm6F/NfpTQ12XodbIDBESUagcGaDj7MMJ1ZFk0wi8cQSTywlupQH7f9rtHHI0mDviFexXG6czWnGaFoQzxMhtx2xAidchfFayGOcYhkJQH/Vg5vsj3Cf7ZlGDQZv1+4ZgRIIbGjj/3Uqk3+6k9Ii59/bxMxEfnvhV978xyvkbmnaXUvX/r4Gw2LQ7rgO9Dq5N2HNwn09pKOmlGKsxXkTvJQyZpuLfDwi/zTzlem0aNOC1K6VAbV9Obl8Zf7KfL0McDbZe9p6V5NcdZhAHFcZ5zJY9eZvvaLRV2UGKgkE1lMHozVTQ1+hiGLW6k286/ialab3A1Hb5c6fh1YqhVl6Pkv1Ghb6oHuf7bDaUb1P7cN1H99Eh6GdKD5UQllRGbPfnsVrl7xI3s68ep+/8ECBa1syApum8ChnJpatxIbD3rBdoyt87viJHezhT72Qrqp9k/zj3NRVLKcOJ4xV5kYfj6ZheGQEpksgsJPRxrW9tgEDgZ5dgyUQKCrdYp3ElvBZTA99j4MU8KdeyIeOqTi0d/4WHC5XVzYLSSC2UV4zWLwc+hCfhT7HprDpDDB6VLmPRVl4wfoA/7Hezjy9FIAF5nK+d8z02K9Ul/Gu/Wuesb1Nu5LRTCy7kXYlozml9Cpet396TOPcoSubI8nnAu9I75HB5B/u5KxHz2Hriq0AFB8s4dkJT7Enq2Fr0jYUrTW/PvMT+7fuI2veBvqdOcDXQzpmFddxIViZby7z8Wj8T0HuIf567w92rdvJ3qw9WEOd1zO5W/ay0FzhWvHwuHUy1iZ601MpRaSKYK5eSiHFPGJ/wddDCggSCDwKnY223Gm9GgCNZrJtitfvAnpkBMoffAYavVzbC/TyRn/9wwOBAAkZiVz70Y30O6M/oc3CcNhNVk9fxbvXvsHCLxfUa44U5VUWH5dmIU1TeFTlHVZvZQV+6Jjq2nbvXC7qboDRk1akoAichiG2rW6BwFayNLhiaTDAOp3dYOe1ewQCZWmwOFIXox0nGccDzppts8wFjfK6e3DWqYsnlhBpIOUVtf1elVLcYp3Ec5Z7aUky8/UyrrDf45Gt+arjE66x389TjjfZzm4O6gK2s5vpei432R/lDfvnRz0+j4xApEagt1hCLIy4chR3/nYv7Y5rz5bF2Rzae5APbn6HfVv31X6CRrZxznqy/84CILlDCl1Hd/fxiI7dCWoQA1QPrFj4yvTfTs6+MvO16dhKnPX0h14ynISMRACyzW0843iH5sRwvBrg+lvWVN1uvdLVLPQdx1fMcsz38Yj8nwQCj9INlotIJ5XWtGS5Xsc1tvsbtEj54dyLArdUsjQ4TSW5akYsNFd69XdfFfci8u7dJK2hVk5/YCJXvXsd9jI7oc3CyN2Sy/s3vs2X9356RKv26ngsDZZmIU1SmFsgsKSgtIY9a/a3uYKxpZfxhO1VXrF/7Hp8rZnFQu3Mdu2tutDN6HD0gw1inVVbtrGLYkrZorf7ejgNwrbNOd+MKAMjVgJUHkuDzYYMBLotDZaMQFEN95s07jdvvKki2NRC6gP63DUhF3CiMYxSyjhIAY/bXwHggM5nSvn2PvJoQTwxKooonNd0rUjhS/OXo17q6Lk0WAKB3pbcIYUr3rqWtK4tSchMZN+WXF48+5mjWvXjTfM+rmyoceKt410dkP1ZcyMWA4NiSlmjs9jayM2Z/FlhXiGrZ6wCnEHtUdeNJaG1MxC4vavz70guBxhhGdjkVx0lqubcYb0KKxa6q45Mst3BCjMwSv74iv+/O/hIhArn25CXCFWh5HGQ98xvmO6Y57XX88wIlEAgwCDD2QWriGJW6cZd8ueeKVJVEfmOQztx18z7GXrxMA7uzicyLpLF3yzkiZGPsvaPNTWfu8xObrZzyUd4dDgWq3zQb4o8A4FHV7xYa82dZU/yp17IQ47necD+HA7tcD5uf8q1n2QDHr0YFUVzYgDIwf8vHrXWrqXB1pZhTf7CrTFEqUha4syUX6c3NViGvnsgUDICRXVONkYQV/4e8705k1Lt3WYCxbqEApyrBlog9QGbggdCbqRZeWOqdx1fM83+F9fbHuIAzpu/FxmnsTX8D74MfYHc8PncYrmUHexhpjmPu21PHdV7VkUgMJHmhCvJDG8MzZo347pPbiIqIZqCfQXsy9nHV/d9xsG9dbvJ720b525g4ZcLSOmURtfR3el7en9fD6nBVCwPBpjuCIzVHY1h9lu/s2PVNjL7tGbEVaOIS2tOYqYzELinzyHXfgOVf3SWvsFyEXdZrmGFXsdu9vGA7TmPMgmifiQQeAy6WjrwkPUmrFjoq7pxof2fbDK3euW1TG3SX/VgsOpDColeeQ1/4748eL65tFFf2z0QWN3ykWbNm3HGQ2dz+etX0apHOoUHCjGsFj648R1+/L/vME3ziGNKCkt4fdLLFOwroN2g9kz893le+xnEsek0vDPHX3ECJ946nmZHmbX5vTmTOSx2fX+QAhaZK7nR/gi/mH/SmbacY5zEuZbxDTXsoFTRbWy73u2RPbzH3EfLkmG0LRnF2NLLfDS6+nHst6OLne8d0iikUkWdwAMc9OioeizcM7+lRqCoTpgK5WzLOPqr7mSqNOaYS7z6enuprA/YQjX36muJuklVLbjNeiUTjFFoTM6wX8fX5jR6qy70Vd14KOQmj/0ft/6LLqodAH/rFXxh/lyv1zO1yU6cxfKlPmDjimkRyz/euJqEzETaDmrPsh+X8NJ5/6Ngf0HtB3vZL8/+CMCudTvoc1q/gMgGrFDRMATgN/MvH47Ef5QWljDrjRkAbF2ew9BLhwO4lgbv7uMMYCsUAw3/CARGqHCus17IAHrQkmSW6NVcb3vQ18PyW4HzDuEjZ1lO5GbLpSzWqyikmI/M7wD43jGT7x0zedb2Dm1LRnFV2b3s0UdfS2K5XsdCvYIFerksBSk3yCMQ2Lh1AquqEVid3qf25dKX/kH3E3sSFhnGob0H+e3FX/js9o8ocastV7CvgJfPe56Cfc6LiZxlW2jVPd07P4A4Zv3OHMDEx87llDtPIzYlrt7H27SND+1TiT+s0Pt/7W9zQOcDsJZNnGs5mWQlwf9jkVkeCLRjZweVncbWkc0+8tjBHpbqmjN1mwr79jIih0UTMTCKsO6Rvh5Ok9HZbXlwQzUMsdfjfV4Et0FGbxbqlazQ61miV3n1tfa6XUvK9WDTcbf1GsIJo5hSKvL7Vuj1TLH+i3SV6rGvRVl43DoZgObEsMhcWa+swD3sd70/ybLgxheXGseNn9/C/vIagbs37OS5055i9fTGb15YIfvvLNb/sRaAxNYt6HeW/zcJcddfdSeWaMBZ77mxGjP5s7/e+5Oi8lJT/c4cQGJmCwASMhOxhznY1835XGfVllgV7bNx1leCiuPr0BfRaHaRy8/mn8zw4qrMQCaBwAZwvfUiFM7lWR86plJoFnGL7THOtt3EU4432cEe3je/5RPHD0f9Grt1LgBJxGMo+d8GzrppoTiz8SpanzeW+i4Zi06M4cp3rnXejVGQ3iOTuR/9xTOn/h+5W3LZt3Ufr1z0ApsXbWLX+h1k9m3NdR/fRFqXlt78MYQPve34km/0b5RSxllqrOvx7/QMvjJ/JZ1U3rZOYYJllA9HGRgqMgIBcvQO17Z7PblCijH1kVm6TY1ZaGLbVkbJkkIs0bJctYI36gQ6yt/nFUr+7ooa9VSdXNvLvVyzyL0ZRQskENiUvBHyb843TuED61NMNMbxechzjLAMrHLfE41hnKAGcYhCnnW8S5bOqfPr7NDudcMlI9AX4tMTueHzW0nISKDD0E7sydrNVw9+zhv/eMUnTUTmfjyH1E7Oa52xt5wUcGWFrMrKKOM4wJn5v8Bc4eMRNW17s/cw54PZNIuPQinFmJvGuZ7rMrIr5665AtPqvPngnljjLxKNeB4L+afr+3vsT3u9cWsgklvcDaCVSuEEYxAzzHlk623c4fg/V3OPaJqRW76M40PHVG62Xlrv85vaZE/5UifJDKoUpkIZoQZxiENE0Yx88xCxRuPc0ahPRmAFpRQnXDuGtK6tePuq1wBoFh/Fkyc+jsVqISYpBmtYCJFxkZz/1MUSBAxgB3UBj9pfApwBqFtDLmeFbQMb9GYcOINR4yzDuMA6wZfDDBjugcAtejvD6AfAercOsyYmu9lHKi0afXz1ETk4mo7r+qJNjbbJRU+Fjqo1/VQ3Iolw1eU6VhXv81IfUNSms2qLFSt27KzQ6736WnvcA4GSEdikhKlQ3gn9DwBncWKN+yqlGG0Zwky7s/PlNPMv2huZdXodz0YhEgj0laS2Sdwx/T5ev9R5PWexWljx0zIK9xfS+fgujLp+LCHh3u/qvWXJZuaXNwnpPLIrAyYO8vpr+sJ4YwQ79V4KKeJlx0cMtvT29ZCapKL8Il6/9GX2btpDs/hmnPXYuaR0rMxKtoaFsNi+moqPsv5SH/Bw5xun8BzvUUoZsUQz05zPKMtxvh6WX5Fb3A3EvZj/246vADAw+Cr0RQaoHgAs02uPqrvNPvJcmQkSCPSUZrRgnl7Gb3oOm/BOfcaqHE0gsEKn4zsz+cc76T6uJ5vmbaTkYDGF+wvYuXYHnUd05tbvbpcgoJ/QWlNWVEZZcf2Kw3/rmE5eebDiHOMkBho9GakqL9wiCOM+6w0NOtZglukWCNxgbkFrTbEuYY3p2WRou1tTpqZOGQojTP6EV2hrZLBIr+JPvZBFDZQpULH0LgTvf5AT/i1MhdJZOetUrtPZlOij7yRfm1wkEBgoxhrudc/m1LCnJ/fi+BWNkoRvhEeFc+OX/+Ty166k6EAhIeEh7M3ew49PfscLZz/Dj09+x97Ne2s/0TH45ZkfXdu9TumDJSQwb16dZzmZTTqHFXo9n5s/cWXZPWw2t/Oc/V0et73CP22PU6SPrnlfoHDYHXx5zyeUFjn/BkUnxjDg7CMDw4vN1a7t44zejTW8BmUog5usF7OWLH7XC3jP8bWvh+R35FNEAzndGMPtliu5xjgfE5NT1Ehut1xJF6OdR5DwI8d39T63e23BJCUd4ty1VZU19DbpRgwEaptr+2g+JCa1S+ai5ybReWQXkton0+uUPqT3yuSCpy8hIV3+H/uD1dNXMjn9Rm5vdwszX/mtzsc5tIMH7M+SQgt6qI48bL0FgH9YJ/Kq9VHutVzHI9ZbSZGgf4Nxzwh8xfERzUv7k1g6kGV6rcd+7lkWwr+0JMnVwT1HN0x36IoSEJIRKOqiR/nyYDt21ugsr73OXskIDBg9VEeSyzs//24uoMzt2rIm28xdZJBGH9WV1kpuHPuaUoreE/px7+yHOPHWkyjcV0Dzls3JWbqF31+fwRMjH+XFc59j7kd/edQGbwjbV29j1TTnza+4tOYMPDdwM6LCVCi3WC8DQKP5wJzKBNs1bDV38objM152fMTJZVdSrBv2d+xPvnnoSxZ+9TelhaW0HdiOq967joiYiCP2eztkCgtCv+AF64N0Kr+J5Y/OsYynOTEAfGtO55Au9PGI/IsEAhtIlIrk0ZBbaWuk05JkjrcM4OGQmwHnJLViIYM09ur99V7Dvqu8PiDgumAQTu1Uhmu7PvVVjpV7jUDLUX5IjIyN5Or3b+CmryZz6Uv/4MYvbiUq0X+KtQa7kIhQTIdzGW9pYd2zP2aY89jJXrayk9aqFW0NZzC7j9GVSdYzuT/kBm6yXuKVMQcr90BgHocooRQHlSUXKmzzo4xA4cmqrKThLJq/RW9vkHPK0mBRH72Mzq5tb9YJtGGng2pNMokkaQkE+jNDGYwyBgNQQBFz69hxejPbyGEHS/RqaRbShIRHR3DiLSdz+2/3cNwFQ9Fak9a1JfZSG2XFZXzyrw94/8a3+f2NGZhmw9QkXvbDEjoM60R8RgKjrhuDNTSwq37dYLmIdFJdNeK36O1s1TvZRx4AoYTQrfRkzi27hbfsX/hwpI1v3kezWfGzs2Z+WVEpp9x1uqtByOGsykpPozNXWs/Bovz3GidMhXKu5WQAiinhK8evPh6Rf5FAYAO7xTqJrPDp3GKd5HosQcVxvBpADjv4wJzKFrdi9XWxh8qMQFka7MlXGYEe3STV0f/RNSwGMS1isIZaCY8Kb4ihiUbi/v+rpKAEx0E7B7/bz7YrNrLxkw0MLT2PV7I/IP/zXMq2VQYKP3RMdW1fZJEagI0hnliiqL3Drj9kBG69YB1bL1zPnkca7/3OX2SWZ8bsJ58CXXTM56u44SMdg0Vd9HBrGLJCey8QuEpvZIPezG5ySTGadk1TUbuxlsrlwT84ZtXpGPes58M7EgvfS+vckpP+dQoPL3qc3hP6kdwhBVuJs4TMgW37+er+z3n76tcpyD10TK+jtebvz+ezYfY68nYcoH8VS0ADTbgK48PQp9kQNo37rNczNeRVPg17jj9CP+ImyyUMUr3YwR6mmtO51/5fDuh8Xw+5UayfvZZP7/yYkkPFtOzWinOeuID2gzv4eliNwn3l5QeOb304Ev8jV7eN5Dijt6u19QK9jNbUPZV/t3tGoCwN9uCzpcHHUCNQBIawqHBMQ7P64p3kdvuT7mltCO0UTunKYua33MCiM1ZxyY8nsW3yBiKHR2PbXArnhfPN3b+B1RmcGm+M8PWPERSUUmSoNFbrjTXut62JBwK1qTn0/QF0mSasWwRJD6TXflAQyVCpUJ5wn6N30FW1P6bz2XVFRqC8x4va9TTcOgd7MRBYccOiGRHEIqsI/N0YYwij1HEcopCPze+5X99AtGpW4zE55QkFKSQSrsIaY5jiKMSmxDHiihM4/h8jyVm6mRkv/8ay751Zn3nb8/i/sf/mkhcup8PQTrWcqWq7N+xif3mH4vaDO9AsruZ5EygGGs7mFvdZr3c91svoTC+jM8/Z3yXCDKeYEg5wkP/YX+OJkNt9NVSvKDlUzPbV29m9YRdblmxmz8ZdbF2eg2k3KT5YTIehnRh84dDaTxQgBqgeDFPOJoCb9Ta26B0etcFF9SQjsJG4F+Kcby6r17HuNQKTkYxAd3EqhgTiANhkOgOBW/QONpvbsWt7g2SFVMV9abAsGwtO4VFhGKZi5aQdfHn2H5BkULqyGEtzKxv1FgC6L2gNgCPPgW1rGctWryQs37mc4RzLeMJUqK+GH3TcLwqMav70NfWMQEeuHV3mjHSFtJIPf4fLdKuV1RDLgysyv4+2/IMILi1UvKvreJaZwz4zjxXmOrbqnfxYx0yv2mitXU2NWqoUlFINcl7hO0kqgRYqgb/1Cvayn6ftb9W4f4kuZSfO5hOZUh/QLyilyOzThstfu4prP76JLqO7kbN0M/m78vnhP1P56envXaVm6mP1jFWu7a6jujfkkP3WLdZJLA/7jnCc10hLzbXsMffVcpR/cNgc/PCfqfz45Hf874ynmf/JHOZ99BeFBwqxldhoP6QjXUd35/QHzvL1UBuVUooxliHM1ovYyi4+Pop+DMFKAoGNZIDRw7W9wFxer2N3SUZgjSqyArezmxJdyl22J+lcNo7o0j7cY3vaK69p49iahQj/F5UQzQMLHuPi9DNBwdbLDhB/XQqtPurAY/fdy86wv+h8RTcS7kwjJC2UkIxQuv6YwawLXuLzkP9xneUCX/8IQcU9c6Y9GVU+t42mXSPQ5rbEPKSlBJEPl+G2RK4hGoa4lgYfQ/kHEVyutpxHOqlsZzeP2l5kQNlEOpaeyMW22zxu6h6tfA5RiLMrZisl3WIDxQPWG1yrS55zvFvjTSn3WrYZsizY73Qe0YUL/3sJHYd3ou3AdmT/vYmfn/qBhV8uqHcwcPX0la7trqMlEFghXaVyg+Ui2qtMZun5vGd+4+shHbN9W/fx2qUv8euzP7F2prPjryXE+Z7RLL4ZCZmJnPXIOVz26hUYluAL71zotjz4Q8d39e7HsFPvxaErk3yaemJAQ5Gr20bSXMXSSbVhnc5mqV5DiS6tczr/btwDgZIReLi2KoO/9Qo0mvVmNtPNuYCzo9R2vPMPWZYGC8NikJCewI3mpVzGRLrf39EjO6M5sXA8zi/AtJuUrizGLHDQxRLjm0EHsc6qHckkUkgRo43B7DL3EkooBgZJKp58fYgdejemNjFU07yIsm0tc21b0yUj8HDuTWEaJiNQugaL+ulgtGarwxmE/lz/BDivRYoo4XH7Kzwbcu8xnd89CNRSpRzTuUTT0c7I4BrL+bzh+Jx+qjtP2F/l+ZAHqtx3s9t7W4Ysf/NLMUmxXPfxzUx/6Vc2/Z1FWpeWfH73J5imyXHnD6nTOUoOFbNpvrPcSUJGAknt5caAuyss5/C0w5ld+6FjKv+y/MNvM6iX/7SUj/75HgnpzhjA3s176XFSL7qP68mEe04npXMqEdG118EOZBkqlRHGQH43F7BBb+ZvvYKByrmE/Brb/XRSbTC15mXHR/RSnYlWzdhPPl+HvMgancVpZddyhmUsmaTxpOMN8jnEM9Z7uMp6no9/Mu+SCEYjGmj0Yp0jGxt2FutVDFF963RcxV3kUEKIQwIIh3OvE/i5+RMHKXB9761OwjYtgUDh1MZoVaf9DKtBRO/gqN/SFN0VcjV3hVwNOGu/PcmdWMszvc4su56VegM27Oxlf5MtweCREdhKMgIP19ptmVxOFU25tNb1+iBQ2TVY3uNF3ZxijCSWaPI55OpiaaAw0bzt+JJvHb8xzOjPv0MmH1U2l3uWQkvkg38guctyDT+bfzBbL+QvxyKusZxPd6PjEfu5v7dJHSz/ZVgMxt50EuFR4Xxxz6cA/DDlW3qf2rdOzQM3zFlP6/5tyd+ZR+eRXf02yOUtbY10hqp+/KUXsUZnsUSvpq/q5uth1Yu91Ma3j37N5sXZFOcXsy1/Kz3G92LszSeR2bu1r4fX5FxknMbv5gIA3rB/zsDQnvxlLuZdx9eA82/mdnbj0A7Xast77c+wwFzGTvbysuMjhtPf9bf7dvv/8W/7K9xsuYSzreMDMgO7aaY9BKhBqpdruz7LgyuahSSRIG/0VWhrVAYCf3D87vFcls7Bpm2HH3LM3GsESv0oIfyLVVldQUCAlm5L7Nwzbpoa2/bKjECpEXikVm4ZUlUtDd741QaufvN2Rq28kHt3PVXr+eyuQKC8x4u6iVDhTLSM83jsRGMYkyxnco3lfHayl8/Nnzih9GLWmFn1Pr97Q6OWsjQ4oCQazfmH5WzAmUV6j/2/Ve7n/t4mGYH+b/jlI+k5vjcAB/ccZPqLv9TpuFW/riBr7gZyN++VZcHVuMgywbX9oWOqD0dSf2tnreblC57njzdnkrNkM20Htaf3qX256NlJEgSsxpmWsZyohtFHdeVT8weyHdu4y/ak6/njjF60JNkjgeg5x7us0OtprzIYqHoy0hhIFJFYsXK2Oold7OUpx5tMLLvBY+lwoJBAYCMaVN7lKI5o1unsOh3j0A5yyyPTUh+wau3cOwezlRCsriKxNuxk620N/pp296XBUj9KCL/mvsSuKdcFsUuNwBqFqVBXs4aqlgaXzSzivYt+Yk775cw2Ftd6PleNQMkIFPVwcXmtIoUzG/BV66O8GvIoKSS6gsommg16c73rGG13u1GRLkuDA871lovIwBncK9M2ljhWH7HPFlkaHHBOf+AsQiNDaXdcB+a8P5t9W2uuJ6q1ZvUMZ33AkPAQOgw5MnNUwETLOMIIJZIIlpprmFh2I+1KRnOf7RmmOf7y9fCqtH31Nl6b9BLvXvcmG+duoN3gDljDrPQ7oz+XvXYlETERvh5ikxWtmtHD6MgSvZpSyjjVdg179X4Auqr2vBfyJFnh05kR9j5nGScCoFAUUERv1ZWfQt/g3tDryQ1fwPLQ7+hmdCAEK/vJZ4Vez4cB2IREAoGNqKtqzyDVkzwO8Y1jWp0iy3s5gImzeKzUB6xaW1VZ+L+EUgarPkw0Ku/I1zXoWh+eNQKlWYgQ/sx9iV1TDgTatrllBKZLILAqFUvldrOPEl0ZONVaY/3OTvLWeABWx2Rh6uoLs5vadP3tlYxAUR+DVR+mhrzCztA5/BDyBsmG89ptcsg/2BQ2g5Yks5tczrXdQg71a2rj3tBIMgIDT7gK407rVaSQyCw9n1fMj4/YRzICA09i6xaMvHo0WfM2ULCvgO8e+7rG/Xes3k7+rnwA2g/pSGikXA9UJVZF823IK2wJm8VIYxD55iG2s5unHG9yre2BGq8BGlvezjw++ud7fHDjO6z6dQWpnZ3/tiNiIpj8450Mu2yErAqsg9utV5JAHABZbGEz25lkOZPnQx7Aoiqv5R613sqHIU/zjvU/XGycztshU2imKusstjXS+WfIZXwf8prrsfvtz7DbrOzbEAgkENiILMriyjw5wEEW6VW1HAF7tDQKqU0yCZysRtBJtQGc/3hHG8e5nvdGINA9I1A+JArh37oZ7RmrhtJXdWWhWdmF7z7bM1xcdhuDS8/lLdsXHF96ETeUPeSzO8kVgUBLvBUjUt53qpLu9sF4q9sH5tKVRdh32ei0wplBfohCj6L7h/Ms/yAZgaLulFKcaBlGnBHDCZZBHs8lqQQutpzuCjIvMWu/DnTnUSNQMgID0gWWU12dob9y/EqRLvZ4vqJGYAJxRKngbhAQSEZdN5aohCgAlkxdRFZ5I5CqrJ5R+b4hy4JrNtIykGjVjBgVRawRTRjOoOl2djOrvJ6cr2ityVmymQ9veZc3r3iV+Z/MxXQ4rz3yd+cz6eV/cMVb19Cya91qkQuIUzHcbb2GeGJJpQUGBoNVH4Yann0Z2hkZTLSM4zzrybwR+m9CVNVJPSMsAznZGEEn2uDA5FTb1ezQexrjR2kUEghsZKONym5Qv5lzat1/t65MD09ClgZXRSnFV2Evsij0a94I+TcvWx+mq9HB9fxac1ODv6Z0DRYicHRR7fhLL2axXs0P5ixKdCk2beNpx1t8Yf7MEr2aZxxvs0Av403zC15zfNroY9SmJqR1GJFDo4k8XppGVce9eP5as/ImUMGveQB0WFl5Qb1Cr6v2PFL+QXhLX6Ora3uxeeTSz5pUBAIjCKe5NI8LSJEqwlVn8hCFTDVnuJ6zaRvbcc4BaRQSWCJiIjjlztNQhqLdoPb8+H/fYZpVZ6ytmV55w7LraP9qgOErt1gn8WXoC7wVMsX1mK/qBpYWlbLg83k8NW4Kb175Ggs+m8ferN2ER0eQvzufs6ecz10z7qfvGQMwDAnV1NfVlvNZE/Yzf4V9ytchL3KZ9axjOt8bIY+TrBLJ5QAr9HrusT1Nr5IJtR/oB3w6u/744w8mTJhAWloaSim++eYbj+cvu+wylFIeXyeddFKt533xxRdp3bo14eHhDBo0iAULfBvxdzfWMtS1XZeskt1UZgSmSEZgjazKysWW01FK0UFluh5f7/WlwfIhUQh/FqkiOMMYA0AeB/nR/J0cvRNNZf2uDWxxbVfcUW5M5kEHusSkbHMpOOpXVyyYDDX6Mkz1I4Yoluu1rscLfnMuo+q4srKm7HKz+kCgTbK+hZf0NSo/uC+uw8oQdxWBwJYqWZaJBbCLyutMgmewYrve48omlWXBgee4C4fSaUQXsuZvZOOc9Sz8Yv4R+xTmFeKwOwiNDCWpXTKJmS18MFL/VdHZHeAbcxoFuqhRXtdhc7D2jzV8PPl9/jPqMT68+V1KC0rJ23GAVj3SQcGp95zO/XMeYfhlIwgJl7JTRytUhRCroklTSYyzDD/m88WrWF4MeZAM0njEegvtVAY7CIysQJ8GAgsLC+nVqxcvvvhitfucdNJJ7Ny50/X18cdH1stw9+mnnzJ58mQefPBBFi9eTK9evRg3bhx79jSN/2EZKtW1hHWBXk6+PlTj/pv1dtqRQRpJpKmkxhhiQGimIknH2eZ7nc6ud0Hu2ti0BAKFCCQXW053bX/omMomvbXafXM50BhD8mCJs9L2jx502tSP9M87Nfrr+4vOqh2z9SIOUsAMcx4ARbqYjR23o1pZ6Lq/rWvfmjMCK5cGSyBQNKRWpNACZ63KJebqOl+f5OtDHKLQeQ5ZFhzQhqq+ZKqWJBBHqS5jh+n8DDPDnEcrUmhJMm2ULBcMNIbFYMwNJ7q+n/rvbyjYd9Bjn/V/rGXzomzsZXb6nNG/sYfo98JVGGdbTiKUEHqrLvxxDMuD83fnU5B7CFtJmet9XGuNw+agrKiUgv0FrJm1ih+emMr9ve7k12d/Yt7Hc4hLjQMgukU06b0yOeGa0Tyy+AmGXzaCZvFRDfFjigbWwWjNgrAvuN1yJTEqijQCIybj0wjG+PHjGT9+fI37hIWFkZJS9wue//73v1x11VVcfvnlALzyyiv88MMPvPXWW9x1111VHlNaWkppaWVR8YMHD1a5X0MZYwxhnSMbBw5mOuZxhnVstfvON5eRRQ5hhNLHkPTv+uhstGWruZN8DrGLXFc3yYbg8PiQKIFAIfzdCGMALUlmO7v5xZzNcUbvavfdpxs/EOhOMoGq18ZoRXuVyUa9hfl6GQd1AXPNJZz+n3/CE3Df/mtpRgSFFLNcr6/2PHZpCCW8RClFH6Mrv5qz2UceOewkk9qzuzzqAyKNQgKZoQyuMc7nPscz/KH/5lPzB25Sl/C84z22sYtkErjaON/XwxRe0GFoJ3qc1IsVPy8jLDKMF8/9H1e9cx3x6c7yUKvLlwWbdpN2A9v5cqh+60xjLO85vuYvvZhMR0tOtow8qvO8evELbF+1DTQkd0hhb/Ye2g5ox8a5G8jo3ZqcpZsBiE9PoPBAIXnbndeORfnFDDp/MMMuPZ6MPq0b5ocSXhennOU4brFO4vLwM4kl1scjOnZNfuH5rFmzSEpKolOnTlx33XXs21d9S/WysjIWLVrEmDFjXI8ZhsGYMWOYO3dutcdNmTKF2NhY11d6enq1+zaEk9VIhqv+9FPd+NacXu1+xbqEP82FACTSnHTkDnB9DFK9GK76c5zqxQZzc4Oe24YNAAsW+VAuRACwKAvnWMbTT3VnsOrNXMcS13PtyOBENcy1JHifzvPRKEVdjCmvxWvHzu/mgsp6vAq6pXSiu+oIwGa9jYO6oMpzyNJg4U19ldvy4Do2DPFsFCKBwEB3umW0axnwB46pvOv4mjU6C4DWqhWtjZa+HJ7wojMfPpvRN4wld/Nedqzezmd3fcyGv9ZhmqarUUhoZBjtBrX38Uj90/HGAELLb/BNN+fUe9XYPHMpx5WeQ/ahrRjNnNcH1jArpt10nUsZzs+Gye2T2b91H2ldWpLRO5N/vHE1k7+/gwufuVSCgMLnmnQq00knncRZZ51FmzZtyMrK4p577mH8+PHMnTsXi+XIC/Pc3FwcDgfJyZ4XSMnJyaxdu/aI/SvcfffdTJ482fX9wYMHvRoMHGbpxwr7evI4yBq9iUO6kGjV7Ij9/jIXU4IzU3GMZYgEnOopWSXwp3YGUtfqLI5nQIOdu+JDoiwLFiJwjDOG86zjHQCPDJ2fw94kXaUyoPQsVuj15HIArfVRvSc7DjlQVjgUXkQhxVLywQvGGkN5xeEsIzLN/Is/zL8B542bE4xBTDfmMN+xjOjiZmyy5dA7uusR57BrWRosvKev0ZWKhQWLzVWcaal+ZUiF5WbldWwrCQQGvHZGBsep3szTS1mlN/CE/TXXc1NC/iWfCQJYQkYi/ScOYtkPS4mIjWTNjFWs+30No64fS0Gus6RUp+GdsYZJtvrRCFUhjDAG8qP5O7vZxwq9jp6qc52P36n3slSvIWpYewYc7Erq3kTi0uJQStG8VTxtB7YjsU0SEdHh9J7Qj4jYCLqM6kZYZJgXfyoh6q9JRzHOP78y7b1Hjx707NmTdu3aMWvWLEaPHt1grxMWFkZYWOP94wxToZxjOYnXHZ9RRDHfmL9xiVt9qgq/mZXNRMYaQ494XtSsk1FZC2qtbtjOwRX1o+QDohCBo7/RHQMDE5Nd5Y2awgh1LcNLVPGgoQwbBRQRzZE3cGqz7POlXN/mUVYM2MQF+0/mjYwn6nTczsnZlCwvJKRVGKnPtMHSvEn/+fap440BWLFix873jlnsKO+yOUD1IE7FcPPvF3Ddv8bDegcp/42H6448h5R/EN7Ux+gKGvrldKHlrgQYUfsx8/QyDAyGqj4cbzTcjU3RdF1kOY159qUAbGUnx6v+jDAGMsTo69uBCa9L69KSf/10Jx//6wO2LttCQutEZrw0zfW8dAs+NmONofxo/g7Ab+Ycehp1DwTu187mY7Mf28iF1ov5h/Vsr4xRCG9r8kuD3bVt25bExEQ2btxY5fOJiYlYLBZ2797t8fju3bvrVWewMVTXEczdtPLlTArFCcZxjTKuQFLRlAWcDUMakmQEChF4olUzuinnUptSygBoo1phKOefykTiXPvmHmWdwJh5YazpvQWH1WRm87/rvCSleFEBRX8eIv/jXFSkX/3pbnTRqhlDjb70oCO5VJYTGWNxLhluFZUKax1gQunywirPUVH+AZwd6YVoSK1IYengd3mt52RGnt+51veBXH2An8w/MDHZqHPooFo3zkCFT51tGUc4YSTjrA9nw8FN1kt9PCrRWCLjmnH5a1dx4q3jKSsqw3SYrue6jJJA4LGoKCEClZ+36yqPyl4C8cr/68SJ4OVXnya2bdvGvn37SE1NrfL50NBQ+vXrx/TplXX3TNNk+vTpDB48uLGGWSeDVC/aqQwAfjcXsNbM8nh+u7mbVXoDAP1VdxJUXGMP0e8lkUBznIU915kSCBRC1G6Q0cvj+7aqskxEgmru2j7qzsEL7PSZ0wGA7SG7WVfHbGXbNmdg0pIUghHmV3+6feIL6/8oUEWUudX6q8isD+seCeWr6kpWFFV5vHQNFt6klCIiIxIAx347ti2lNe7/ueMnVwObCyynYlEyJ4NBcxXL5rCZrA+bxn3W6/kx9HVilHQVDSaGxeCUO0/jrEfOoVnzZlz+xlVc/PxlNG8Z7+uh+bX2KpNM5ayzOdtcSK5Z92u6A+UZgQBxAdAwQgQvn36aKCgoYOnSpSxduhSA7Oxsli5dSk5ODgUFBdx+++3MmzePzZs3M336dE4//XTat2/PuHHjXOcYPXo0L7zwguv7yZMn8/rrr/Puu++yZs0arrvuOgoLC11dhJsKpRQ3GZdwohpGHNE863jX4/np5lzaks4w1Y8zjdprx4gjKaVcWYHb2EWBrvoD39Gw64pAoNTnECKQDFQ1BALdMgKPpnOwWeigdF0xx82ovJNflzvR2q6x73AGAkNahdb7dYNRtBHFvdbrsGDhH8ZErrGcT7/yBg2WKAuhbcMBKFlZhHYcmY3lHgiUGz7CG8L7VpYWKFlSdWZqhQ9Kv3Vtu68oEYEvTsUQpkK5z3o9ESrc18MRPtL71L48+Pdj9D6lLwPOHuTr4fg9pRQ3GBcxzhiGFStvOj6v87EHPDICY7wxPCEahU8DgQsXLqRPnz706dMHcAbx+vTpwwMPPIDFYmH58uWcdtppdOzYkSuuuIJ+/frx559/etTzy8rKIjc31/X9eeedx1NPPcUDDzxA7969Wbp0KT///PMRDUSagnOs45mvl3GAg7zr+JqV5nrXc9PMv9jEVmbrRQyy9PbdIP2ce53A9Q24PLjizrxFMkWECCjHHZYRWJG5DZB4jBmBJSuKwITB0ysDgb/VIRBo31lGefNIQlpKILCuLraczvLQ73gp9GGeC7nPY4lveE9nNpYuNinbWHLEsXbpGiy8LKJvZWZX8aKqu1cXryhk7VlLCJ2vUCh6qy50Mzo01hCFEE1IWDMJBDekEy1DmWbOoZgSnnK8yR69r/aDOCwjUJYGCz/m09vcI0eOrLEuyi+//FLrOTZv3nzEYzfeeCM33njjsQytUSSoOO6wXsW99v+i0dxj+y9Tw17B1CYzzLkAxBDFQNXDxyP1X4fXCexLw9TUcC0NltpRQgSUDqo14YRSUlEjkFau59wDgft0Xr3PXbLUmfXTbk0aqYWJ7GyWyx/m35ToUsJV9Q2rKpYFA4S0kq5z9dHOyKjy8bCezeDr/QCUrCgkrFOEx/M2j0CgvM+LhhfhlhFYvNgzI7BsSwl7Ht5K/me5WFNCeWH8LZgvNKPsCikLIIQQDaGz0Y5/WCbyhuNzDlHI47ZXeDb03lqP88gIlKXBwo/JFYWP3WC5iFak0Ed1JYscfnPMYYlezT7yABhpDCREyfLTo9VJuXUONhuuc7DUCBQiMCmlON4YSEfa0E118AgkJeCWEXgUS4OLywOBCsWEolFMMEbRX3Uns3QkE8quoVSXVXmcbXtl/TBZGtwwwntEurZLlh9ZNkKWBgtvs7YMxZLkvL4rWVKI1hr7fhu7H8hhY/ellG0oARuEpIYSkhlGZmJL+hndfTxqIYQIHPdZbyCKSAapXvxozmJ9HWrKV2QEWrHSjIha9hai6ZKrWx8LV2E8EXIbF9tuA+Ae+9MeNQEripuLo9NZeWtpsPNDoiwZEyLwTA19pcrHE92aNlXcrKmK1hql1BGPu+qAGfBswr0YoRZ6l5xGPoeYZv7FLnLJJO2I42xb3TIC0yUjsCGE93Srz1ZF52C7rgwESgkI4Q1KKSL6NqPg5zyKCotZ/8oazIcKCO8eiS7T2HaUYUkKIXpiPPHXpmAJl3kohBANKUUlco/1Ou6xPw3AffZn+Cz0fzUeU5ERGE9Mldd6QvgLyQhsAs4yTqSP6grAcr2Oj83vXc+NdmtvLuovU6URWt7QY10DBgIrMwIlW1OIYOHRNVjvr3a/02zXElfSj8SSgXzk+A4As9SkdJUz8yysUwRGpPNDfXO3+jK7de6RJwNs2yozAq2SEdggQjJCMeKc/w+qzgiUGoHC+yL6NmNV32zOXHQfj6W/ipnnoGj+IULahhF3fiIdlveixa0tJQgohBBeco3lPFJpAcBUcwazzUU17l+RESj1AYW/k0BgE2AogylWZ0ZgB1pjaIMYominMmhrpNdytKiJVVnpSGtakUI0zbCZtmM+p9ba9SFRlowJETzcuwbn1lAjcKO5hRJKKaCIA9p557hkVRHW1BAiBkURNb4yoHiiZZhru7pC1VIjsOEppQjrHoE1NQRrcgi2XM9l2e6BQCnPIbwlvE8U6TuSKI4r5fMx0zl0hp24C1vQ+tduJP87E0tzmXtCCOFNzVQkD1idvQW60YHZjoXV7mvXdg7ibO4Uj3QMFv5NAoFNxEjLQL4MeYHFYV8z0TKOG42LmRn6vq+HFRA6G23Zxi7m62VsYccxn88uReSFCErhKowonLXl9lXTNdjUJjvY4/q+4oKxdGkhtpwyiucXYE2p/HCfRIJre1c1GYEqXBE5PIbIYdGEpElgoKFE9I3GvtNGyeJCSlcUezznXiNQMgKFt0SPj+O4jaO4s/k1nGQMJ/qDFFq+1p5QKQEghBCN5lLLGXRQmaxiA487XqFQH7lSACCPQ67tOCWBQOHfJBDYhJxiGUmICiFGRRFrRJOkEmo/SNSqvWrt2m6I5cEeHxCVfEAUIpgkqnig+q7B2XobpVRml1Vk+VU0CgGI6FNZny5FJVbuS9UZgUa4gVnowJHvQIXIn+2GEt61ssj34XUCbbI0WDQCFWKgQgz+abmMb0JfpltIB18PSQghgo5FWTjeGAhAGTb+NKvOCszTlR2Dm0vHYOHn5BNFE3SLdRK3WCf5ehgBo7Ph1jlYH3vnYPcPiLI0WIjgkli+PHg/+TjcGkpUWK7XeXxfUfevxC0QGN6rMhDofsOnuhqBLV9tT7u5PWm/sNdRj1scyb1hSOkKz7v/dnmfF43IUHI5LoQQvjTWrS7/b+acKvfZT75ru7lkBAo/J1ceIuB1Um1c2+skECiEOAYVDUNMTI8lIhWWm4cHAveh7drVkCK0bRiW2Mr3jWT3jMBqagQK7wjrGuG6Cjo8I9BzabC8zwshhBCBbKQxCEv5CoBp5l9V7iMZgSKQSCBQBLyObkuD15sNsTRYagQKEaw8G4Yc2Tl4uV7r8f1ucildX4wuNgFncwB3ScS7tqurESi8w4iwENbRuTy4dE0x2ma6nrPpyvd5iywNFkIIIQJanIphgOoBOEtJ5eidR+wjGYEikEggUAS8ZiqSdFIBWKuz0VpXu29Nz1WQjEAhgleiquz4m0veEc9XZAQqFODM8itZ4rYs2K0+IDgbkMSVd56rrkag8J6wns7mL7pMU7qusmGIe0agvM8LIYQQgW+sZahre2DpWdxQ9hCLzJWuxzwyApVkBAr/JoFAERQ6Gc7lwXkcrPbD9m6dS4vSQXQsGcu40n9Uey73TBHJCBQiuHRWbRmu+tNDdWSHudvjuQM6n6047yBXdBc+SAGHllTeQY7o7RkIhMo6gVXVCNz3/E42dF/C5pNWU7ywoMF+DuHkXiewYvk2gMM981uaQgkhhBAB7zRjFP+y/IOLjNPI4xDvmd9wYtnlTLM7lwp7ZAQiGYHCv0kgUASFzqqyYUh1nYOnm3MpoIgcdjJPL632XFJEXojgFaOi+FMvZIVez2a2ezy3dccOWpe1BKCFqlzyW7C08g5yeBWBwGScgcACiijUnk0ryjYWU7ahhMKZ+Wh77RnLon7CyzMCwbNOoE1KQAghhBBBpYfRiX+HTKan0YlwwrBhx46D+x3P8qnjR8kIFAFFAoEiKHg0DDGrbhgyzVFZGLaUMo83e3ceReQlU0SIoNJWpbu2s3SOx3Mpb0bxZYuHmN37JQbvruzw+/rN37H+jt2UXKCwtgg54pzJHp2DPTOWbdvKXNshrUKPefzCU0VG4Na2e3iw30v8nb8cbTMPaxYi7/NCCCFEsLjFOomdYX9xhhpDd9WRpXoNk2x3sEZnufaRjEDh7yQQKIJCR4/OwUdmBJraZIY51+OxHL2jynPZsLm2QzjyQ70QInC5BwI36a0ezxVMywMgIjuEds0yXI+/dOLnXHDvfTzx2kdVntOjc/BhpQts28sDgRawpkogsKFZU0KIGhvL/Ic28O6EH9n87AbWtlzI/h/3uvaRzG8hhBAiuESocD4MfZreRhcABqgeLDFXu56XjEDh7yQQKIJCZ6NyafCaKjICV+j17D7sA/iWagOBsjRYiGAVp2JcnYM3mZWBQPt+m6uGX1jXCFJik444tpfRucpzugcCD68TaNtWCjiDgMqijmns4khKKTK/78pfZ64CoPNPrTDzHRSuq6zHKEuDhRBCiOBjURZesD7ACcYg/tYryOWA67nmSCBQ+De5uhVBIYkETjVOYIPezCq9Hq01SlV+qJ5m/nXEMdVlBMqSMSGCW1uVzj6dx3Z2U6JLCVdhFM48CKbz+aixcaS4Bfcq9FFdqzxfEpVLg/e4LQ02S0wce503HmRZsHd9FvIc08vmEtepOaW2Ik59YRBDVvQg5Z02dHKrMSuEEEKI4KGU4iHrzcwsu8j1WDMiCFWyKkz4NwkEiqCglKIMm2tZcLbedkStr/Yqg41uNb8kI1AIUZW2KoO/9Qo0ms16G51VOwp+y3M9HzUmztUJ2F3F8pLDuQcNd7llBFZkAwKEtAprgJGL6sSpGCaGjYN3wSxzkDq3DWaxSbTR3NdDE0IIIYQPDVQ96aBas0FvBiCaIxu/CeFvZGmwCBqDjMri/fP1Mtd2oS7iQ8dUNuocutHe9Xi1NQK1dJMUIpgdXidQa01heX1AFa6IHB7tsdwXIIl40jhyuTDgETTcTWUg0C6NQnzCCLXQbEQs0SdJEFAIIYQIdkopLrJMcH2v0T4cjRANQwKBImgMVD1d2wvM5a7tP8y/KStvAHKc0RtL+XLf6pcGS0agEMGsreEZCFxnbuLZV75k4+S9qMsiMCIsHst9AXobXT3KEbjzaBbitjTYs2OwZAQKIYQQQvjC+capZJLGeON4brJe6uvhCHHMJIohgsZAoycKhUYz31zqety9PuCJlmH8av7FVnZWuzTYPRBoVfJPSIhg41lWYCswh7eGTeWtYVP5j/V2utCLMBVKMyIopBiA3qrqZcHgzBassMPc7dr2WBqcLhmBQgghhBC+0NpoybrwX309DCEajEQxRNCIVdF0Vm1Zo7NYrtdTpIuJVBH8Zs4FwIKFkcYgMlQaW/VO9pFHgS4iSkV6nEdqBAoR3NqpDNf2Jr2VTbqye/AYY4hrO5wwVyCwj1F1oxCAEBXCOGM4C80VbGKbq5nRDyfP4WDCAdK2tSChR1tivPCzCCGEEEIIIYKLRDFEUBlk9GKNIws7dhbr1aSTyvryBiKDVC9iVTSZKo2/9CLAuTy4q2rvcQ4JBAoR3JJJcGX7bTRz2IEziy+NJI/3i66qPav1Roooodth7yOHc+BgH3kAbGc3rUjh286z+KnjHwBsDpvllZ9FCCGEEEIIEVykRqAIKu51An9x/Mnnjp9c34+xODN5MlSa67Gq6gTacbi2reX1BIUQwUMpRRvVCoBsciimBIDRliEedQCnhb3D9vDZHAhfSEejTY3n7Kk6ubZXmOsA2KZ3Ac4bDu7Lh4UQQgghhBDiaEkgUASVkcYgLjBOpS3pfOz4nrftX9KGVpxlnMgE4wQAMt0CgVXVCbSVNxYBCCHE+4MWQjQ5/7JewTnGeEy3znFj3ZYF11dPo7Nre7n2DASmqWQMJX+uhRBCCCGEEMdO1jWKoNLWSGc3uWxiq8fjKboF3VVHoDIjMIYojw6eFWzarVmI/BMSIiidYozkbttTACicWYCjjMFHfb7DMwILdREHOAhAK1KOYaRCCCGEEEIIUUlSDETQmWK97YjH/hNyu2tJX1uVThzRHKSANTrriH3tUiNQiKAXo6KYHvoeQ1RfloVM5Y/Qj0hUzY/6fB1Va8JwdgZerte7sgEBWikJBAohhBBCCCEahkQxRNDpZXTmQjWB3/QcDBRDjX4MNCprB7ZSyRyiCMCjG2gFjxqBSmoEChGs2hkZTA9916Mu4NGyKitdVXuW6NVs1FvI0jmu59IlECiEEEIIIYRoIBIIFEHp6dC7iCQCA+UK+lUIUSFkqFSy9TaydA5aa48P+tI1WAhRoSGCgBV6GB1Z4liNickCc4Xr8ZYqucFeQwghhBBCCBHcZGmwCErNVSxhKpQQFUK8ij3i+XYqA4BDFJLLAY/nJBAohPAGjzqB5Q1DQJYGCyGEEEIIIRqOTwOBf/zxBxMmTCAtLQ2lFN98843rOZvNxp133kmPHj1o1qwZaWlpXHrppezYcWQXV3cPPfQQSimPr86dO9d4jBCHa6vSXduHLw92rxEozUKEEA2lp9GZEKx0IJMtervrcQkECiGEEEIIIRqKTwOBhYWF9OrVixdffPGI54qKili8eDH3338/ixcv5quvvmLdunWcdtpptZ63W7du7Ny50/U1e/ZsbwxfBLCaAoGSESiE8Ib+dCeWaDawxeN9RwKBQgghhBBCiIbi0yjG+PHjGT9+fJXPxcbGMm3aNI/HXnjhBQYOHEhOTg4ZGRnVntdqtZKSIh+cxNGrWBoMeBTtB7BpyQgUQjS8SCOCTqotuXoRRZQAEEYoiRx9N2IhhBBCCCGEcOdXNQLz8/NRShEXF1fjfhs2bCAtLY22bdty0UUXkZOTU+P+paWlHDx40ONLBDePjECz+qXBIUoCgUKIhjPWMsTj+5YquUEbkgghhBBCCCGCm98EAktKSrjzzju54IILiImJqXa/QYMG8c477/Dzzz/z8ssvk52dzfDhwzl06FC1x0yZMoXY2FjXV3p6erX7iuDQRrVybR9ZI9Dh2rZiabQxCSEC31hjqMf3sixYCCGEEEII0ZD8IhBos9k499xz0Vrz8ssv17jv+PHjOeecc+jZsyfjxo3jxx9/JC8vj88++6zaY+6++27y8/NdX1u3bq12XxEcIlUEaSQBsOnwpcHYXNshhDTquIQQga236kIs0a7vW5Lsw9EIIYQQQgghAk2TDwRWBAG3bNnCtGnTaswGrEpcXBwdO3Zk48aN1e4TFhZGTEyMx5cQbcqXB+9hP4d0oetxaRYihPAWi7LQU3VyfW8gy4KFEEIIIYQQDadJBwIrgoAbNmzgt99+IyEhod7nKCgoICsri9TUVC+MUASytkblEvFst+XBsjRYCOFNV1nO5VxjPLdaJnGl5VxfD0cIIYQQQggRQHyazlRQUOCRqZednc3SpUuJj48nNTWVs88+m8WLF/P999/jcDjYtWsXAPHx8YSGhgIwevRozjzzTG688UYAbrvtNiZMmEBmZiY7duzgwQcfxGKxcMEFFzT+Dyj8WkXDkATi2GRuo6fRGfDsGiwZgUKIhnau9WTO5WRfD0MIIYQQQggRgHwaxVi4cCEnnHCC6/vJkycDMGnSJB566CGmTp0KQO/evT2OmzlzJiNHjgQgKyuL3Nxc13Pbtm3jggsuYN++fbRo0YJhw4Yxb948WrRo4d0fRgScbqo90TRjH3msJ9v1uPvSYKsEAoUQQgghhBBCCOEnfBrFGDlyJFrrap+v6bkKmzdv9vj+k08+OdZhCQE4OwcfwlkbcK25yfW43b1GoJJmIUIIIYQQQgghhPAPTbpGoBC+1F5losoL9a/XlRmBdo+MQKkRKIQQQgghhBBCCP8ggUAhqhGhwslULQFYp7NdGarSNVgIIYQQQgghhBD+SAKBQtSgs2oDwCEK2cEeQAKBQgghhBBCCCGE8E8SCBSiBp1UW9d2RZ1AOw7XY9IsRAghhBBCCCGEEP5CAoFC1KBjeUYgVNYJtGnJCBRCCCGEEEIIIYT/kUCgEDXobFRmBK4rDwTasbkek0CgEEIIIYQQQggh/IUEAoWoQSe3jMC12rk0uKJGoIGBoeSfkBBCCCGEEEIIIfyDRDGEqEGiak4izQFYb1ZkBDprBFqx+GxcQgghhBBCCCGEEPUlgUAhalFRJ3AHe8gzD7oyAmVZsBBCCCGEEEIIIfyJRDKEqMXJluMJdVjJ0ltZoJe7BQJDfDwyIYQQQgghhBBCiLqTQKAQtchQaczSCwD43VyAvTwQKEuDhRBCCCGEEEII4U9kabAQtRhlDEahAJhm/oVNy9JgIYQQQgghhBBC+B8JBApRi0TVnL6qKwDL9TpKKQPAKoFAIYQQQgghhBBC+BEJBApRB6ONIa7tYkoACFESCBRCCCGEEEIIIYT/kECgEHUw1jLUtS0ZgUIIIYQQQgghhPBHEggUog4GqV5EEUkyidhxAFIjUAghhBBCCCGEEP5FAoFC1EGoCuFh6y0cIB+NBiQQKIQQQgghhBBCCP8igUAh6ugkY7grCAhgYvpwNEIIIYQQQgghhBD1I4FAIeqonZHB1cZ5ru9LsflwNEIIIYQQQgghhBD1I2sbhaiHu63XUmAv4mrr+aSqFr4ejhBCCCGEEEIIIUSdSSBQiHpINJrzauijvh6GEEIIIYQQQgghRL3J0mAhhBBCCCGEEEIIIYKABAKFEEIIIYQQQgghhAgCEggUQgghhBBCCCGEECIISCBQCCGEEEIIIYQQQoggIIFAIYQQQgghhBBCCCGCgAQChRBCCCGEEEIIIYQIAhIIFEIIIYQQQgghhBAiCEggUAghhBBCCCGEEEKIICCBQCGEEEIIIYQQQgghgoBPA4F//PEHEyZMIC0tDaUU33zzjcfzWmseeOABUlNTiYiIYMyYMWzYsKHW87744ou0bt2a8PBwBg0axIIFC7z0EwghhBBCCCGEEEII4R98GggsLCykV69evPjii1U+/3//93/873//45VXXmH+/Pk0a9aMcePGUVJSUu05P/30UyZPnsyDDz7I4sWL6dWrF+PGjWPPnj3e+jGEEEIIIYQQQgghhGjylNZa+3oQAEopvv76a8444wzAmQ2YlpbGv/71L2677TYA8vPzSU5O5p133uH888+v8jyDBg1iwIABvPDCCwCYpkl6ejo33XQTd911V53GcvDgQWJjY8nPzycmJubYfzghhBBCCCGEEEII4bcCJVZk9fUAqpOdnc2uXbsYM2aM67HY2FgGDRrE3LlzqwwElpWVMvTQRQAAODFJREFUsWjRIu6++27XY4ZhMGbMGObOnVvta5WWllJaWur6Pj8/H3D+TxZCCCGEEEIIIYQQwa0iRtRE8umOWpMNBO7atQuA5ORkj8eTk5Ndzx0uNzcXh8NR5TFr166t9rWmTJnCww8/fMTj6enp9R22EEIIIYQQQgghhAhQ+/btIzY21tfDOGpNNhDYmO6++24mT57s+j4vL4/MzExycnL8+n+uOHoHDx4kPT2drVu3+nXKrzh6MgcEyDwQMgeEzAEhc0DIHBAyB4RTfn4+GRkZxMfH+3oox6TJBgJTUlIA2L17N6mpqa7Hd+/eTe/evas8JjExEYvFwu7duz0e3717t+t8VQkLCyMsLOyIx2NjY+UfeZCLiYmRORDkZA4IkHkgZA4ImQNC5oCQOSBkDggnw/Bp391j1mRH36ZNG1JSUpg+fbrrsYMHDzJ//nwGDx5c5TGhoaH069fP4xjTNJk+fXq1xwghhBBCCCGEEEIIEQx8mhFYUFDAxo0bXd9nZ2ezdOlS4uPjycjI4NZbb+Wxxx6jQ4cOtGnThvvvv5+0tDRXZ2GA0aNHc+aZZ3LjjTcCMHnyZCZNmkT//v0ZOHAgzz77LIWFhVx++eWN/eMJIYQQQgghhBBCCNFk+DQQuHDhQk444QTX9xV1+iZNmsQ777zDHXfcQWFhIVdffTV5eXkMGzaMn3/+mfDwcNcxWVlZ5Obmur4/77zz2Lt3Lw888AC7du2id+/e/Pzzz0c0EKlJWFgYDz74YJXLhUVwkDkgZA4IkHkgZA4ImQNC5oCQOSBkDginQJkHSvt732MhhBBCCCGEEEIIIUStmmyNQCGEEEIIIYQQQgghRMORQKAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEfBoInDJlCgMGDCA6OpqkpCTOOOMM1q1b57FPSUkJN9xwAwkJCURFRTFx4kR2797ten7ZsmVccMEFpKenExERQZcuXXjuuec8zvHVV18xduxYWrRoQUxMDIMHD+aXX36pdXxaax544AFSU1OJiIhgzJgxbNiwwWOfxYsXM3bsWOLi4khISODqq6+moKCg1nMvX76c4cOHEx4eTnp6Ov/3f//n8fyqVauYOHEirVu3RinFs88+W+s5/ZHMgernwOuvv87w4cNp3rw5zZs3Z8yYMSxYsKDW8/obmQPVz4GvvvqK/v37ExcXR7Nmzejduzfvv/9+ref1RzIPqp8H7j755BOUUpxxxhm1ntffyByofg688847KKU8vsLDw2s9r7+ROVDz+0BeXh433HADqamphIWF0bFjR3788cdaz+1PZA5UPwdGjhx5xPuAUopTTjml1nP7E5kDNb8PPPvss3Tq1ImIiAjS09P55z//SUlJSa3n9icyB6qfAzabjUceeYR27doRHh5Or169+Pnnn2s9rz8K1nlQUlLCZZddRo8ePbBardVe88+aNYu+ffsSFhZG+/bteeedd2od8+E/gM+MGzdOv/3223rlypV66dKl+uSTT9YZGRm6oKDAtc+1116r09PT9fTp0/XChQv1cccdp4cMGeJ6/s0339Q333yznjVrls7KytLvv/++joiI0M8//7xrn1tuuUX/5z//0QsWLNDr16/Xd999tw4JCdGLFy+ucXxPPPGEjo2N1d98841etmyZPu2003SbNm10cXGx1lrr7du36+bNm+trr71Wr127Vi9YsEAPGTJET5w4scbz5ufn6+TkZH3RRRfplStX6o8//lhHREToV1991bXPggUL9G233aY//vhjnZKSop955pn6/Gr9hsyB6ufAhRdeqF988UW9ZMkSvWbNGn3ZZZfp2NhYvW3btnr9jps6mQPVz4GZM2fqr776Sq9evVpv3LhRP/vss9piseiff/65Xr9jfyDzoPp5UCE7O1u3bNlSDx8+XJ9++ul1+bX6FZkD1c+Bt99+W8fExOidO3e6vnbt2lWv368/kDlQ/RwoLS3V/fv31yeffLKePXu2zs7O1rNmzdJLly6t1++4qZM5UP0c2Ldvn8d7wMqVK7XFYtFvv/12fX7FTZ7MgernwIcffqjDwsL0hx9+qLOzs/Uvv/yiU1NT9T//+c96/Y6bOpkD1c+BO+64Q6elpekffvhBZ2Vl6ZdeekmHh4fXOmZ/FKzzoKCgQF977bX6tdde0+PGjavymn/Tpk06MjJST548Wa9evVo///zz9f6M6NNA4OH27NmjAf37779rrbXOy8vTISEh+vPPP3fts2bNGg3ouXPnVnue66+/Xp9wwgk1vlbXrl31ww8/XO3zpmnqlJQU/eSTT7oey8vL02FhYfrjjz/WWmv96quv6qSkJO1wOFz7LF++XAN6w4YN1Z77pZde0s2bN9elpaWux+68807dqVOnKvfPzMwM2EDg4WQOVD0HtNbabrfr6Oho/e6779b4c/k7mQPVzwGtte7Tp4++7777atwnEMg88JwHdrtdDxkyRL/xxht60qRJARkIPJzMgco58Pbbb+vY2Ngaf4ZAJHOgcg68/PLLum3btrqsrKzGnyPQyByo/prgmWee0dHR0R4figORzIHKOXDDDTfoUaNGeRw3efJkPXTo0Bp/Ln8nc6ByDqSmpuoXXnjB47izzjpLX3TRRTX+XIEgWOaBu+qu+e+44w7drVs3j8fOO+88PW7cuDqdV2utm1SNwPz8fADi4+MBWLRoETabjTFjxrj26dy5MxkZGcydO7fG81ScoyqmaXLo0KEa98nOzmbXrl0erx0bG8ugQYNcr11aWkpoaCiGUflrjIiIAGD27NnVnnvu3Lkcf/zxhIaGuh4bN24c69at48CBA9UeFwxkDlQ/B4qKirDZbDWOORDIHKh6DmitmT59OuvWreP444+v9ryBQuaB5zx45JFHSEpK4oorrqj2XIFG5oDnHCgoKCAzM5P09HROP/10Vq1aVe05A4XMgco5MHXqVAYPHswNN9xAcnIy3bt35/HHH8fhcFR73kAgc6D668I333yT888/n2bNmlV73kAgc6ByDgwZMoRFixa5SgVt2rSJH3/8kZNPPrna8wYCmQOVc6C0tPSI0iARERE1njdQBMs8qIu5c+d6vDY450pNP/fhmkwg0DRNbr31VoYOHUr37t0B2LVrF6GhocTFxXnsm5yczK5du6o8z5w5c/j000+5+uqrq32tp556ioKCAs4999xq96k4f3JycrWvPWrUKHbt2sWTTz5JWVkZBw4c4K677gJg586dNZ67qvO6v24wkjlQ8xy48847SUtLO+IffSCROXDkHMjPzycqKorQ0FBOOeUUnn/+ecaOHVvteQOBzAPPeTB79mzefPNNXn/99WrPE2hkDnjOgU6dOvHWW2/x7bff8sEHH2CaJkOGDGHbtm3VntffyRzwnAObNm3iiy++wOFw8OOPP3L//ffz9NNP89hjj1V7Xn8nc6D668IFCxawcuVKrrzyymrPGQhkDnjOgQsvvJBHHnmEYcOGERISQrt27Rg5ciT33HNPtef1dzIHPOfAuHHj+O9//8uGDRswTZNp06bx1Vdf1XjeQBBM86AuqpsrBw8epLi4uE7naDKBwBtuuIGVK1fyySefHPU5Vq5cyemnn86DDz7IiSeeWOU+H330EQ8//DCfffYZSUlJAHz44YdERUW5vv788886vV63bt149913efrpp4mMjCQlJYU2bdqQnJzsivx269bNdd7x48cf9c8WDGQOVO+JJ57gk08+4euvvw7IAvEVZA4cKTo6mqVLl/L333/z73//m8mTJzNr1qx6ncPfyDyodOjQIS655BJef/11EhMT63RMIJA54Gnw4MFceuml9O7dmxEjRvDVV1/RokULXn311Tqfw9/IHPBkmiZJSUm89tpr9OvXj/POO497772XV155pc7n8DcyB6r35ptv0qNHDwYOHHhUx/sLmQOeZs2axeOPP85LL73E4sWL+eqrr/jhhx949NFH63wOfyNzwNNzzz1Hhw4d6Ny5M6Ghodx4441cfvnlHllngUjmgRfUeRGxF91www26VatWetOmTR6PT58+XQP6wIEDHo9nZGTo//73vx6PrVq1SiclJel77rmn2tepKLj5/fffezx+8OBBvWHDBtdXUVGRzsrK0oBesmSJx77HH3+8vvnmm484965du/ShQ4d0QUGBNgxDf/bZZ1prrTdv3uw6b0WTh0suueSItd4zZszQgN6/f/8R5w6GGoEyB6qfA08++aSOjY3Vf//9d7U/VyCQOVDz+0CFK664Qp944onVPu/vZB54zoMlS5ZoQFssFteXUkorpbTFYtEbN26s9mf0VzIH6vZecPbZZ+vzzz+/2uf9mcyBI+fA8ccfr0ePHu2xz48//qgBj3pSgULmQPXvAwUFBTomJkY/++yz1f5cgUDmwJFzYNiwYfq2227z2Kei+YF7HbJAIXOg+veB4uJivW3bNm2apr7jjjt0165dq/35/F2wzQN31dUIHD58uL7llls8Hnvrrbd0TExMtT/f4XwaCDRNU99www06LS1Nr1+//ojnKwpAfvHFF67H1q5de0QByJUrV+qkpCR9++23V/taH330kQ4PD9fffPNNnceWkpKin3rqKddj+fn5HgUgq/Lmm2/qyMjIIyaku4pCoO4Fn+++++6gbBYic6DmOfCf//xHx8TE1Fjw1N/JHKjb+0CFyy+/XI8YMaJO4/cnMg+qngfFxcV6xYoVHl+nn366HjVqlF6xYkVABQBkDtT9vcBut+tOnToFXKdImQPVz4G7775bZ2ZmenzYf/bZZ3Vqamqdxu8vZA7U/j7w9ttv67CwMJ2bm1uncfsbmQPVz4G+ffvqO+6444ifISIiQtvt9jr9DP5A5kDdrwfKysp0u3bt9N13312n8fuTYJ0H7mpqFtK9e3ePxy644IJ6NQvxaSDwuuuu07GxsXrWrFl6586drq+ioiLXPtdee63OyMjQM2bM0AsXLtSDBw/WgwcPdj2/YsUK3aJFC33xxRd7nGPPnj2ufT788ENttVr1iy++6LFPXl5ejeN74okndFxcnP7222/18uXL9emnn+7RElprrZ9//nm9aNEivW7dOv3CCy/oiIgI/dxzz9V43ry8PJ2cnKwvueQSvXLlSv3JJ5/oyMhIj9bgpaWlesmSJXrJkiU6NTVV33bbbXrJkiV17jDjL2QOVD8HnnjiCR0aGqq/+OILjzEfOnSozr9ffyBzoPo58Pjjj+tff/1VZ2Vl6dWrV+unnnpKW61W/frrr9f59+svZB5UPw8OF6hdg2UOVD8HHn74Yf3LL7/orKwsvWjRIn3++efr8PBwvWrVqjr/fv2BzIHq50BOTo6Ojo7WN954o163bp3+/vvvdVJSkn7sscfq/Pv1BzIHav9bMGzYMH3eeefV+rv0VzIHqp8DDz74oI6OjtYff/yx3rRpk/711191u3bt9Lnnnlvn368/kDlQ/RyYN2+e/vLLL3VWVpb+448/9KhRo3SbNm3qHFjyJ8E6D7R2ZjAuWbJET5gwQY8cOdIVF6qwadMmHRkZqW+//Xa9Zs0a/eKLL2qLxaJ//vnnuvxqtdY+DgQCVX69/fbbrn2Ki4v19ddfr5s3b64jIyP1mWeeqXfu3Ol6/sEHH6zyHJmZma59RowYUeU+kyZNqnF8pmnq+++/XycnJ+uwsDA9evRovW7dOo99LrnkEh0fH69DQ0N1z5499XvvvVenn33ZsmV62LBhOiwsTLds2VI/8cQTHs9nZ2dXOeZAywSSOVD9HMjMzKxyzA8++GCdzu8vZA5UPwfuvfde3b59ex0eHq6bN2+uBw8erD/55JM6ndvfyDyofh4cLlADgTIHqp8Dt956q87IyNChoaE6OTlZn3zyyXrx4sV1Orc/kTlQ8/vAnDlz9KBBg3RYWJhu27at/ve//x1QWUBayxyobQ5UZLv8+uuvdTqnP5I5UP0csNls+qGHHtLt2rXT4eHhOj09XV9//fUBFwSSOVD9HJg1a5bu0qWLDgsL0wkJCfqSSy7R27dvr9O5/U0wz4Pq4gDuZs6cqXv37q1DQ0N127ZtPX4vdaG01hohhBBCCCGEEEIIIURAC+z2MkIIIYQQQgghhBBCCEACgUIIIYQQQgghhBBCBAUJBAohhBBCCCGEEEIIEQQkECiEEEIIIYQQQgghRBCQQKAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEJBAohBBCCCGEEEIIIUQQkECgEEIIIYQfGzlyJLfeemvQvbYQQgghhKg/CQQKIYQQQgSJWbNmoZQiLy+vQY776quvePTRRxtugEIIIYQQwqusvh6AEEIIIYTwT/Hx8b4eghBCCCGEqAfJCBRCCCGE8BOFhYVceumlREVFkZqaytNPP+3x/Pvvv0///v2Jjo4mJSWFCy+8kD179gCwefNmTjjhBACaN2+OUorLLrsMANM0mTJlCm3atCEiIoJevXrxxRdf1Hrc4UuDW7duzWOPPeYaY2ZmJlOnTmXv3r2cfvrpREVF0bNnTxYuXOgx7tmzZzN8+HAiIiJIT0/n5ptvprCwsKF/fUIIIYQQQU8CgUIIIYQQfuL222/n999/59tvv+XXX39l1qxZLF682PW8zWbj0UcfZdmyZXzzzTds3rzZFbRLT0/nyy+/BGDdunXs3LmT5557DoApU6bw3nvv8corr7Bq1Sr++c9/cvHFF/P777/XeFxVnnnmGYYOHcqSJUs45ZRTuOSSS7j00ku5+OKLWbx4Me3atePSSy9Faw1AVlYWJ510EhMnTmT58uV8+umnzJ49mxtvvNEbv0IhhBBCiKCmdMVVmBBCCCGEaLIKCgpISEjggw8+4JxzzgFg//79tGrViquvvppnn332iGMWLlzIgAEDOHToEFFRUcyaNYsTTjiBAwcOEBcXB0BpaSnx8fH89ttvDB482HXslVdeSVFRER999FGVx4EzI7B3796u127dujXDhw/n/fffB2DXrl2kpqZy//3388gjjwAwb948Bg8ezM6dO0lJSeHKK6/EYrHw6quvus47e/ZsRowYQWFhIeHh4Q34WxRCCCGECG5SI1AIIYQQwg9kZWVRVlbGoEGDXI/Fx8fTqVMn1/eLFi3ioYceYtmyZRw4cADTNAHIycmha9euVZ5348aNFBUVMXbsWI/Hy8rK6NOnT73H2bNnT9d2cnIyAD169DjisT179pCSksKyZctYvnw5H374oWsfrTWmaZKdnU2XLl3qPQYhhBBCCFE1CQQKIYQQQgSAwsJCxo0bx7hx4/jwww9p0aIFOTk5jBs3jrKysmqPKygoAOCHH36gZcuWHs+FhYXVexwhISGubaVUtY9VBCkLCgq45ppruPnmm484V0ZGRr1fXwghhBBCVE8CgUIIIYQQfqBdu3aEhIQwf/58V4DswIEDrF+/nhEjRrB27Vr27dvHE088QXp6OsARTTlCQ0MBcDgcrse6du1KWFgYOTk5jBgxosrXruq4htK3b19Wr15N+/btG/zcQgghhBDCkzQLEUIIIYTwA1FRUVxxxRXcfvvtzJgxg5UrV3LZZZdhGM7LuYyMDEJDQ3n++efZtGkTU6dO5dFHH/U4R2ZmJkopvv/+e/bu3UtBQQHR0dHcdttt/POf/+Tdd98lKyuLxYsX8/zzz/Puu+9We1xDufPOO5kzZw433ngjS5cuZcOGDXz77bfSLEQIIYQQwgskECiEEEII4SeefPJJhg8fzoQJExgzZgzDhg2jX79+ALRo0YJ33nmHzz//nK5du/LEE0/w1FNPeRzfsmVLHn74Ye666y6Sk5NdwbZHH32U+++/nylTptClSxdOOukkfvjhB9q0aVPjcQ2hZ8+e/P7776xfv57hw4fTp08fHnjgAdLS0hrsNYQQQgghhJN0DRZCCCGEEEIIIYQQIghIRqAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEJBAohBBCCCGEEEIIIUQQkECgEEIIIYQQQgghhBBBQAKBQgghhBBCCCGEEEIEAQkECiGEEEIIIYQQQggRBCQQKIQQQgghhBBCCCFEEJBAoBBCCCGEEEIIIYQQQUACgUIIIYQQQgghhBBCBAEJBAohhBBCCCGEEEIIEQQkECiEEEKI/2/v7uNqPv8/gL9O6f6UJClRadIyd7mdtbGZlMYwFtZXtZ8ZQka511fullhZ9jU8NqYZwhrLF9nMMtqQm4VuaYjWl6/lLpXqdP3+8Ojz9emc7iyOnNfz8TiPR5/P9TnXeV+fz+nqnHfXdX2IiIiIiEgHMBFIRERERERERESkA5gIJCIiIiIiIiIi0gFMBBIREREREREREekAJgKJiIiIiIiIiIh0ABOBREREREREREREOoCJQCIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIBTAQSERERERERERHpACYCiYiIiIiIiIiIdAATgURERERERERERDqAiUAiIiIiIiIiIiIdwEQgERERERERERGRDmAikIiIiIiIiIiISAcwEUhERERERERERKQDmAgkIiIiIiIiIiLSAUwEEhERERERERER6QAmAomIiIiIiIiIiHQAE4FEREREREREREQ6gIlAIiIiIiIiIiIiHcBEIBERERERERERkQ5gIpCIiIiIiIiIiEgHMBFIRERERERERESkA5gIJCIiIiIiIiIi0gFMBBIREREREREREekAJgKJiIiIiIiIiIh0ABOBREREREREREREOoCJQCIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIBTbQdABHR4yovL0dpaam2wyAiIiIi+tsMDQ3RpAm/ohPRk8VehogaHSEEcnNzcfPmTW2HQkRERETUYKytreHg4ACFQqHtUIjoOcVEIBE1OpVJQHt7eyiVSujpcZUDIiIiImq8KioqUFhYiLy8PKhUKjg7O2s7JCJ6TimEEELbQRAR1VV5eTlSU1Nhb28PW1tbbYdDRERERNRg/vOf/yAvLw937txB3759OVWYiBoch9EQUaNSuSagUqnUciRERERERA2r8jNueno6kpKSwHE7RNTQmAgkokaJ04GJiIiI6HlT+RlXqVQiMzMT9+/f13JERPS84TdpIiIiIiIiomeIkZERSktLUVxcrO1QiOg5w0QgEdEzICkpCQqFArdv39Z2KI2CEAIffvghrKysoFAo8Pvvv+P111/HRx99JB3j5OSETz/9VNpWKBTYvXv333rdwMBADBs27G/VUZvw8HB07dr1ib5GpZ9++glubm5QqVRP5fUe1+XLl6XrXFdV3w+aVH2PaENd4nwWpKeno3Xr1hyZUg32SQ2jofqkhji3wLPRR1T1JGN6FttbX4/z9+JJ1vOo0tJSODk54eTJkw1WJxHR4+DKo0RE1OgkJiZi06ZNSEpKgrOzM6ytrfHdd9/BwMBA26E1KrNmzcKCBQugr6+v7VC0IiUlBWZmZtoO45nw+uuv4/Dhw7J9EyZMwLp16wAAHTp0wMsvv4zo6GiEhYVpI8RnGvukhtFQfVJ+fj6aNWv2t+PRtT6ivu1NSkrCG2+8gVu3bsHS0vLJBfaEBQYG4vbt27LkcZs2bZCfnw9ra+sGex1DQ0OEhoZi9uzZ+OmnnxqsXiKi+mIikIgarUllC5FecVGrMXTQa4e1Bou0GoMuysnJgZ2dHV555RVpn5WVlRYjanyOHj2KnJwcjBgxQtuhaE2LFi20HcITpVKpoFAo6rym6vjx47F48WJp29TUVFb+/vvvY/z48Zg7dy7vYlkF+6S/ryH7JFtb2waI6PnvI6rSVnuFEFCpVM9Uv6Kvr99g76NH+fn5ISQkBGlpaXjppZcavH4iorrg1GAiarTSKy7iuEjV6qM+icgHDx4gODgYNjY2MDY2xquvvoqUlBSNxxYVFWHQoEHw8PDgdOEqAgMDMXXqVOTm5kKhUMDJyQlA/adYXr16Fb6+vrC0tISVlRWGDh2Ky5cvS+UqlQozZsyApaUlmjdvjlmzZtV45767d+/CxMQE+/fvl+3ftWsXzM3NUVRUBACYPXs22rdvD1NTUzg7OyMsLAxlZWXV1qupXcOGDUNgYKC0/eDBA4SGhsLe3h5mZmbo3bs3kpKSamx/XFwcPD09YWxsLNu/dOlS2NjYwNzcHB988AHmzJkjmxaYkpICT09PWFtbo2nTpujXrx9Onz4tq0OhUGDt2rUYNGgQTExM4OzsjG+//bbGeB514sQJuLu7w9jYGD169MCZM2fUjjl//jwGDRoEpVKJli1bYuzYsbh586bsmPLyckyZMgVNmzaFtbU1wsLCZNew6jS46OhodOrUCWZmZmjTpg2CgoJQWFgolV+5cgVDhgxBs2bNYGZmhpdeegn79u2rc0z379+Hv78/lEol7OzsEBUVVedzAtR+nTdt2gRLS0skJCSgQ4cOMDIyQm5ubp2uGfAw8Wdrays9LCwsZOWenp4oKChQGzmo69gnPbk+qXJa8saNG+Hg4AClUomgoCCoVCqsWLECtra2sLGxwbJly2R1PTo1uLS0FFOmTIGdnR2MjY3h6OiIiIgIAA8TUOHh4XBwcICRkRFatWqF4OBgqR5N07m//PJLDB8+HKampnBxcUFCQoLstRMSEuDi4gJjY2O88cYbiI2NrdfSH/Hx8XjppZdgZGQEJycnjf3EvXv3MGbMGJiZmcHe3h5r1qyRymprU03q097Lly/jjTfeAAA0a9YMCoVCeg9UVFQgIiICbdu2hYmJCbp06SL7G1C5HMr+/fvRvXt3GBkZ4ejRo9L1Xr9+Pdq0aQNTU1P4+vrizp070nMrKiqwePFitG7dGkZGRujatSsSExOrbZNKpcK4ceOkWFxdXRETEyOVh4eHIzY2Ft9//z0UCgUUCgWSkpI0Tg0+fPgwevXqBSMjI9jZ2WHOnDkoLy+Xyl9//XUEBwdj1qxZsLKygq2tLcLDw2XxNGvWDB4eHoiLi6vTNSEiehKYCCQiekpmzZqF+Ph4xMbG4vTp02jXrh28vLxQUFAgO+727dvw9PRERUUFfvzxR61Mt7lz/Q6uns2VPf7KfZjQKCspUyu7ejZXeu71i/9RK7t/6+G6YoU376mV3bl+R2MM1YmJiZG+BOTn51ebTK1JWVkZvLy8YG5ujiNHjiA5ORlKpRLe3t4oLS0FAERFRWHTpk3YuHEjjh49ioKCAuzatavaOi0sLDB48GBs3bpVtn/Lli0YNmyYNLrK3NwcmzZtQnp6OmJiYvDFF19g1apV9W7Do6ZMmYLffvsNcXFxOHv2LN599114e3vjwoUL1T7nyJEj6NGjh1qsy5YtQ2RkJE6dOgUHBwesXbtWdsy9e/cQEBCAo0eP4tixY3BxcYGPjw/u3bsnOy4sLAwjRoxAamoq/Pz8MHr0aGRkZNTalsLCQgwePBgdOnTAqVOnEB4ejtDQUNkxt2/fRv/+/eHu7o6TJ08iMTER169fh6+vr+y42NhYNGnSBCdOnEBMTAyio6Px5ZdfVvvaenp6WL16NdLS0hAbG4tDhw5h1qxZUvnkyZPx4MED/PLLLzh37hwiIyOhVCrrHNPMmTNx+PBhfP/99/jhhx+QlJSkMSFXnbpc56KiIkRGRuLLL79EWloabGxs6nzNtmzZAmtra3Ts2BFz586VEkWVDA0N0bVrVxw5cqTOMTeUsvxSFJ8plD1KL5UAACpKKtTKis/8L4H7IKtYray84GGiq/y/ZWplDy7Ub2F+9knqGqpPAh6Otty/fz8SExOxbds2bNiwAW+99RauXbuGw4cPIzIyEgsWLMDx48c11rt69WokJCRgx44dyMrKwpYtW6RkbXx8PFatWoX169fjwoUL2L17Nzp16lRj2xYtWgRfX1+cPXsWPj4+8PPzk/6OX7p0CSNHjsSwYcOQmpqKCRMmYP78+XU8a8CpU6fg6+uL0aNH49y5cwgPD0dYWBg2bdokO27lypXo0qULzpw5gzlz5mDatGn48ccfH7tNj9PeNm3aID4+HgCQlZWF/Px8KcEWERGBr7/+GuvWrUNaWhqmT5+Of/zjH2r/RJgzZw6WL1+OjIwMdO7cGQBw8eJF7NixA3v27EFiYiLOnDmDoKAg6TkxMTGIiorCJ598grNnz8LLywtvv/12te+tiooKtG7dGjt37kR6ejr++c9/Yt68edixYwcAIDQ0FL6+vvD29kZ+fj7y8/NlI3sr5eXlwcfHBz179kRqairWrl2LDRs2YOnSpbLjYmNjYWZmhuPHj2PFihVYvHixdG0q9erVSyv9KBGRRBARNSL3798XJ0+eFPfv3xd9S94TRsUvafXRt+S9OsVdWFgoDAwMxJYtW6R9paWlolWrVmLFihXi559/FgBERkaG6Ny5sxgxYoR48ODBkzqNtdq3co8Itp0oe8QGbRRCCHHjj+tqZcG2E6XnRr8VqVZ2YucxIYQQv2z8Wa1s38o99Y5v1apVwtHRUbavX79+Ytq0adK2o6OjWLVqlbQNQOzatUsIIcTmzZuFq6urqKiokMofPHggTExMxIEDB4QQQtjZ2YkVK1ZI5WVlZaJ169Zi6NCh1ca1a9cuoVQqxf3794UQQty5c0cYGxuL/fv3V/uclStXiu7du0vbCxcuFF26dKm2XUIIMXToUBEQECCEEOLKlStCX19f5OXlyY558803xdy5c6t93aZNm4qvv/5atq93795i8uTJsn0eHh6yeKpSqVTC3Nxc7Nnzv+sIQEycOFF2XO/evcWkSZOqrafS+vXrRfPmzUVxcbG0b+3atQKAOHPmjBBCiCVLloiBAwfKnnf16lUBQGRlZQkhHp43Nzc32TWePXu2cHNzk7arvkeq2rlzp2jevLm03alTJxEeHq7x2NpiunfvnjA0NBQ7duyQyv/66y9hYmKidn01qct1/uqrrwQA8fvvv9dYl6Zrtn79epGYmCjOnj0rvvnmG2Fvby+GDx+u9tzhw4eLwMDAWuNtaNcX54rzhr/KHlcDsoUQQpRcKFIrO2/4q/TcnNfOqpXd2nJDCCHEzc/z1cou+aTVOz72SU+mT1q4cKEwNTUVd+/elfZ5eXkJJycnoVKppH2urq4iIiJC2n703E6dOlX0799fdm4rRUVFifbt24vS0lKNMWm6ZgsWLJC2CwsLBQDpfM6ePVt07NhRVsf8+fMFAHHr1q1q217pvffeE56enrJ9M2fOFB06dJDF5O3tLTtm1KhRYtCgQXVqU03q297Kzy6Ptq2kpESYmpqKX3/93++gEEKMGzdOjBkzRva83bt3y45ZuHCh0NfXF9euXZP27d+/X+jp6Yn8/HwhhBCtWrUSy5Ytkz2vZ8+eIigoSAghxKVLl2R/LzSZPHmyGDFihLQdEBCg9ntUtZ558+ap/Y6uWbNGKJVK6b3Yr18/8eqrr6rFNnv2bNm+mJgY4eTkVG18lZ91t27dKqKiosSNGzeqPZaI6HE8OwsxEBE9x3JyclBWVgYPDw9pn4GBAXr16oWMjAz07NkTwMOpd7169cL27du1egOHV8a+ho4DO8v2mVo+HD1iadcMoQfmVvvc9z71R2lRqWyfVZvmAAD3Id3h1N1ZVmbRsmlDhFwvqampuHjxIszNzWX7S0pKkJOTgzt37iA/Px+9e/eWypo0aYIePXrUOBXPx8cHBgYGSEhIwOjRoxEfHw8LCwsMGDBAOmb79u1YvXo1cnJyUFhYiPLycrUpmPVx7tw5qFQqtG/fXrb/wYMHaN68ebXPKy4uVpsWnJWVJRt5ATwcuXDo0CFp+/r161iwYAGSkpJw48YNqFQqFBUVITc3V/a8Pn36qG3X5e6LlSNDHo2tal2pqan4+eefpdF4j8rJyZHOxcsvvwyFQiGrJyoqCiqVSuPv18GDBxEREYHMzEzcvXsX5eXlKCkpQVFREUxNTREcHIxJkybhhx9+wIABAzBixAhpFEttMRUXF6O0tFT2nrKysoKrq2ut5wSo+3U2NDSUYqpUl2v24YcfSj936tQJdnZ2ePPNN5GTk4MXXnhBKjMxMVEbKfg0NPugJcwHy2/+oG/58GOsQWsjOB+rfsST/RftUFEkvwutgaMRAKDpyOYwfVl+zfSUT7/vZZ+kuU8CHk5XffS8tGzZEvr6+rK1L1u2bIkbN25orDcwMBCenp5wdXWFt7c3Bg8ejIEDBwIA3n33XXz66adwdnaGt7c3fHx8MGTIkBrXqnv098vMzAwWFhbSa2dlZUl/zyv16tWr2rqqysjIwNChQ2X7PDw88Omnn8r6LU39a+WU3sdpU01qaq8mFy9eRFFRETw9PWX7S0tL4e7uLtunaQSog4MD7O3tpe0+ffqgoqICWVlZMDU1xZ9//in7LAU8PEepqanVxrRmzRps3LgRubm5Ul9c3zthZ2RkoE+fPrK/KR4eHigsLMS1a9fg4OAAAGr9r52dndr50lY/SkRUiYlAImq0Oui1AyqegRga0FtvvYX4+Hikp6f/rak8f1fTlk3RtJoEnYGxAdp0dqj2uS3bVb+4ttLaHEpr82rLn5bCwkJ0794dW7ZsUSv7O4ulGxoaYuTIkdi6dStGjx6NrVu3YtSoUdIXsN9++w1+fn5YtGgRvLy80LRpU8TFxdW4Vpyenp7aF/1H1+8qLCyEvr4+Tp06pZbc0pSUqmRtbY1bt27Vu40BAQH466+/EBMTA0dHRxgZGaFPnz7S9MWnobCwEEOGDEFkZKRamZ2d3WPVefnyZQwePBiTJk3CsmXLYGVlhaNHj2LcuHEoLS2FqakpPvjgA3h5eWHv3r344YcfEBERgaioKEydOrXWmC5e/Hs3NqrrdTYxMZF9UQUe75pVJpwuXrwoSwQWFBTItp8WAztDGNgZaizTM9aDiXv173UjV5Nqy5q0MECTFtq/sy/7pOr7pKp3XlYoFBr3VVRo/kDQrVs3XLp0Cfv378fBgwfh6+uLAQMG4Ntvv0WbNm2QlZWFgwcP4scff0RQUBBWrlyJw4cPV3vH5/q8tjY8TptqUt/2Vq6runfvXllCDwCMjIxk20/jjsxxcXEIDQ1FVFQU+vTpA3Nzc6xcubLaqeR/V13OV0FBgc7diIaIni1MBBJRo9WY7tb7wgsvwNDQEMnJyXB0dATw8ItTSkqKbNH15cuXQ6lU4s0330RSUhI6dOigpYifb926dcP27dthY2NT7cgXOzs7HD9+HH379gXw8MYTp06dQrdu3Wqs28/PD56enkhLS8OhQ4dk6wf9+uuvcHR0lK0ZdeXKlRrra9GiBfLz86VtlUqF8+fPS4u0u7u7Q6VS4caNG3jttddqbvgj3N3dkZ6eLtvn6uqKlJQU+Pv7S/uqrneWnJyMzz//HD4+PgAe3uCg6k06AODYsWOyeo4dO6Y2GkQTNzc3bN68GSUlJdLooGPHjsmO6datG+Lj4+Hk5FTjKJeqX/Qq18fTNBrw1KlTqKioQFRUlDTSqHINqUe1adMGEydOxMSJEzF37lx88cUXmDp1aq0xvfDCCzAwMMDx48elkSO3bt1CdnY2+vXrV8tZefzrDNT9mj2qcvRm1cTq+fPnMXLkyHq9PtWOfZLmPqmhWFhYYNSoURg1ahRGjhwJb29vFBQUwMrKCiYmJhgyZAiGDBmCyZMn48UXX8S5c+dqPa+auLq6ym4gBKj3oTVxc3NDcnKybF9ycjLat28v67eq9onHjh2Dm5ubtN2QbaqJoeHD5LxK9b8Rt4/eqKgufVtVubm5+PPPP9GqVSsAD9ump6cHV1dXWFhYoFWrVkhOTpbVnZycXO3Iy+TkZLzyyiuy0e45OTlq7Xi0DZq4ubkhPj4eQgjpny3JyckwNzdH69at69XG8+fP1+nvIRHRk8KbhRARPQVmZmaYNGkSZs6cicTERKSnp2P8+PEoKirCuHHjZMd+8skn8PPzQ//+/ZGZmamliJ9vfn5+sLa2xtChQ3HkyBFcunQJSUlJCA4OxrVr1wAA06ZNw/Lly7F7925kZmYiKCioTnd97Nu3L2xtbeHn54e2bdvKpvK5uLggNzcXcXFxyMnJwerVq2tc7B8A+vfvj71792Lv3r3IzMzEpEmTZHG0b98efn5+8Pf3x3fffYdLly7hxIkTiIiIwN69e6ut18vLC0ePHpXtmzp1KjZs2IDY2FhcuHABS5cuxdmzZ2UjzFxcXLB582ZkZGTg+PHj8PPzg4mJ+oirnTt3YuPGjcjOzsbChQtx4sQJTJkypbbTh/feew8KhQLjx49Heno69u3bh08++UR2zOTJk1FQUIAxY8YgJSUFOTk5OHDgAN5//33Zl7nc3FzMmDEDWVlZ2LZtGz777DNMmzZN4+u2a9cOZWVl+Oyzz/DHH39g8+bNWLduneyYjz76CAcOHMClS5dw+vRp/Pzzz9KX79piUiqVGDduHGbOnIlDhw7h/PnzCAwMlE1vrMnjXmeg9muWk5ODJUuW4NSpU7h8+TISEhLg7++Pvn37yqa5Xb58GXl5ebJppdQw2Cdp7pMaQnR0NLZt24bMzExkZ2dj586dsLW1haWlJTZt2oQNGzbg/Pnz+OOPP/DNN9/AxMRE+oddfU2YMAGZmZmYPXs2srOzsWPHDulGH1VH6moSEhKCn376CUuWLEF2djZiY2Pxr3/9S+2GScnJyVixYgWys7OxZs0a7Ny5U+rbGrpNNXF0dIRCocC///1v/Pe//0VhYSHMzc0RGhqK6dOnIzY2Fjk5OTh9+jQ+++wzxMbG1lqnsbExAgICkJqaiiNHjiA4OBi+vr6wtX0422DmzJmIjIzE9u3bkZWVhTlz5uD333+vtm93cXHByZMnceDAAWRnZyMsLEwtOevk5ISzZ88iKysLN2/e1HjX7KCgIFy9ehVTp05FZmYmvv/+eyxcuBAzZsyocz9e6ciRI9L0dCIibWAikIjoKVm+fDlGjBiBsWPHolu3brh48SIOHDiAZs2aqR27atUq+Pr6on///sjOztZCtM83U1NT/PLLL3BwcMA777wDNzc3jBs3DiUlJdJonJCQEIwdOxYBAQHSdKLhw4fXWrdCocCYMWOku+U+6u2338b06dMxZcoUdO3aFb/++ivCwsJqrO///u//EBAQAH9/f/Tr1w/Ozs7SyJtKX331Ffz9/RESEgJXV1cMGzYMKSkp0sgzTfz8/JCWloasrCzZvrlz5yI0NFSaThcYGChbt2vDhg24desWunXrhrFjxyI4OBg2NjZq9S9atAhxcXHo3Lkzvv76a2zbtq1OI1yVSiX27NmDc+fOwd3dHfPnz1ebbls5IkSlUmHgwIHo1KkTPvroI1haWsq+kPn7+6O4uBi9evXC5MmTMW3aNNlaeI/q0qULoqOjERkZiY4dO2LLli2IiIiQHaNSqTB58mS4ubnB29sb7du3x+eff17nmFauXInXXnsNQ4YMwYABA/Dqq6+ie/futZ6TSo9znYHar5mhoSEOHjyIgQMH4sUXX0RISAhGjBiBPXv2yOrZtm0bBg4c+EQSCrqOfZLmPqkhmJubY8WKFejRowd69uyJy5cvY9++fdDT04OlpSW++OILeHh4oHPnzjh48CD27NlT41qGNWnbti2+/fZbfPfdd+jcuTPWrl0rjbasOi1Wk27dumHHjh2Ii4tDx44d8c9//hOLFy9GYGCg7LiQkBCcPHkS7u7uWLp0KaKjo+Hl5QUADd6mmtjb22PRokWYM2cOWrZsKf2zZ8mSJQgLC0NERITUX+7duxdt27attc527drhnXfegY+PDwYOHIjOnTtL/SwABAcHY8aMGQgJCUGnTp2QmJiIhIQEuLi4aKxvwoQJeOeddzBq1Cj07t0bf/31l9pauOPHj4erqyt69OiBFi1aqI3KrGzrvn37cOLECXTp0gUTJ07EuHHjsGDBgvqcMvz222+4c+cOR1YTkVYpRE0rDBMRPWOKioqQkZEBNzc3mJqaajscokZt5syZuHv3LtavX1/tMZ6enrC1tcXmzZvrXK9CocCuXbswbNiwBoiSngWlpaVwcXHB1q1b1RbqJ2oodemTGptly5Zh3bp1uHr1qrZDeeaFh4dj9+7ddbqxVGM1atQodOnSBfPmzav2mMrPutnZ2cjPz8fYsWO5piARNSiOCCQiItJR8+fPh6Ojo7SQeVFREaKjo5GWlobMzEwsXLgQBw8eREBAgJYjJW3Lzc3FvHnzmASkJ6pqn9QYff7550hJSZGWGFi5ciX7UALw8B8qnTp1wvTp07UdChHpOCYCiYiIdJSlpSXmzZsnTV1VKBTYt28f+vbti+7du2PPnj2Ij49v0DXhPv74YyiVSo2PQYMGNdjrNDZHjhyp9rzUdKfVp6Vdu3aYMGGCtsOg51zVPqkxunDhAoYOHYoOHTpgyZIlCAkJQXh4OABg0KBB1f6Of/zxx080rme9j9EFhoaGWLBggcZ1dYmIniZODSaiRoVTg4kat4KCAhQUFGgsMzExgb29/VOO6NlQXFyMvLy8asvbtWv3FKMhoichLy8PxcXFGsusrKxgZWX1xF6bfUzjwanBRPSkNdF2AERERKQ7nvSX3cbKxMSEX8SJnnPa/EcH+xgiIqrUeMfdE5FOa8zrBxERERERaVL5GZcT94joSWEikIgaFUNDQwBAYWGhliMhIiIiImpYlZ9xS0tLtRwJET2vODWYiBqVJk2awNraWlrnRqlUNupFxYmIiIiIKioqUFhYiLy8PNy+fZuzX4joiWEikIgaHQcHB6hUqhoXvSYiIiIiamxu376N69evo7y8HPr6+jAwMNB2SET0nGEikIgaHYVCAWdnZyQkJODKlSto0aIFPyQRERERUaNWVlaGiooKlJWV4ebNm2jbti3Mzc21HRYRPWcUgquQElEjVVRUhMTERFy4cAEVFRVQKBTaDomIiIiI6LEJIaBQKODg4IDBgwfDwsJC2yER0XOGiUAiatRKSkqQn5+P4uJi3l2NiIiIiBo9ExMT2NjYQKlUajsUInoOMRFIRERERERERESkA3irTSIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIB/w/V0Y5TgQ+80gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 1. Update gaps and missing from outliers\n", + "dataset.update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=6)\n", + "\n", + "# 2. update settings\n", + "dataset.update_gap_and_missing_fill_settings(gap_interpolation_method=None,\n", + " gap_interpolation_max_consec_fill=None,\n", + " gap_debias_prefered_leading_period_hours=24,\n", + " gap_debias_prefered_trailing_period_hours=4,\n", + " gap_debias_minimum_leading_period_hours=24,\n", + " gap_debias_minimum_trailing_period_hours=4,\n", + " automatic_max_interpolation_duration_str=None,\n", + " missing_obs_interpolation_method=None)\n", + "\n", + "# 3. Get modeldata\n", + "\n", + "era5 = dataset.get_modeldata(modelname='ERA5_hourly',\n", + " modeldata=None, obstype='temp',\n", + " stations=None, startdt=None, enddt=None)\n", + "\n", + "if not os.path.exists(os.path.join(folder, 'era.pkl')):\n", + " era5.save_modeldata(outputfolder=folder, filename='era.pkl')\n", + "\n", + "\n", + "dummy_mod = metobs_toolkit.Modeldata('ERA5_hourly')\n", + "era5 = dummy_mod.import_modeldata(folder_path=folder,\n", + " filename='era.pkl')\n", + "\n", + "# 4. convert units of model\n", + "era5.convert_units_to_tlk('temp')\n", + "\n", + "# 5. fill missing obs\n", + "dataset.fill_missing_obs_linear()\n", + "\n", + "# 6. fill gaps\n", + "dataset.fill_gaps_era5(era5)\n", + "\n", + "# 7. Make plot (of single station for clearity)\n", + "ax3 = dataset.get_station('vlinder28').make_plot(colorby='label')\n", + "\n", + "#translate axes\n", + "ax3.set_title('Temperature for vlinder28')\n", + "ax3.set_ylabel('T2m in °C')\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "8d33fc6f-c278-4cd6-ab09-eb958eb00e6f", + "metadata": {}, + "source": [ + "## Diurnal Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6d2ff2be-c838-44de-a0dc-6ec3fc27440d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7sAAAi6CAYAAADsGGcrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZwcdZ3/8XddXX1M5so5SYBw34pccsl9eSKIKJegKCDqyiorrOxPcXXVXRfFXZBdlXvlUEQWYfHkFiJXkDMhkINM7mQyRx9VXdfvj540EzJnMklPZ17Px2Me9Mx8u/rTVdU9od/1/XyNJEkSAQAAAAAAAAAAAABQR8xaFwAAAAAAAAAAAAAAwEgRdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAADj0FVXXSXDMGQYhq666qpalwMAGIduvvnm6t+i888/v98xjzzySHXM0UcfvVXr21axT0du1qxZ1X22aNGiWpcDAACAPgi7AQAAUJeOPvroTQ5r+wa9fMgLAAAAAAAA1CfCbgAAAADANqvvhTGPPPJIrctBneC8AQAAAID6QNgNAAAAAAAAAAAAAKg7dq0LAAAAAAAAAPpz9NFHK0mSWpcBAAAAYIxiZjcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAADAMs2fP1he/+EXtvffeamlpUTqd1syZM3XyySfr2muvVaFQGHIb559/vgzDkGEYuvnmm4ccf/PNN1fHn3/++cMeE0WR7rzzTp1yyinaaaedlMlkZBiG7r333mE91zlz5lS32dLSIs/zhnW/np4eNTQ0VO/74osvDut+A1m8eLGuv/56nXnmmdpnn33U1NQkx3E0ceJE7bvvvvr85z+v2bNnD7qNH/7wh9V6TjrppGE/9pNPPlm9X2trq3zfH3BsoVDQ9ddfrw9/+MPaYYcdlM1mNWHCBO266676zGc+o4ceemjIx9uc41gqlXTvvffq7/7u73TEEUdo6tSpSqVSamho0KxZs3TqqafqhhtuULlcHvbzl6R169bpO9/5jg488EC1tLSooaFBu+++uz772c/qmWeeqY5bX7dhGMPa7tq1a3X11VfrhBNO0Hbbbad0Oq3m5mbttdde+sIXvqBnn312RHUOZH1Njz76aPVnxxxzzAb1Duf1uKWObxzHuv322/X+979f2223nVzX1dSpU/Wxj31MTz311EbbKJfLuu2223TcccdV99v222+v8847T6+99tqQNRx99NHVGh555BFJ0pIlS/RP//RPeve7363W1lblcjntscce+vu//3u98cYbQ27znf785z/r4osv1t57763W1la5rqvp06frpJNO0rXXXqtSqTTkNvo7n/72t7/py1/+svbZZx+1trbKMAx99KMf3ei+zz33nL73ve/pQx/6kHbaaSc1NDQolUpp6tSpOuyww3TllVfqrbfeGtbjb8p5M9LXQn/HZDhjli9fru9+97s6+OCDNW3aNFmWpebm5n7vHwSBbrvtNp1xxhnaaaedNGHCBOVyOe24444688wz9Zvf/GaLtQh//vnn9bnPfa76/jV58mQdfPDB+rd/+zd1dHQMezuPPPJIdR8cffTRmzzmnYZzvDblfJw1a1b1PosWLZIktbe36//9v/+nd7/73Wpubq6+1r70pS9p8eLFw6q3q6tLd9xxhy666CK9973v1aRJk5RKpdTY2Kidd95ZZ555pn75y18qjuNhbW9LeuKJJ/TlL39Z73nPezRlyhQ5jqPGxkbtu+++Ou+883THHXds8H5QLpc1efLk6n7r7z1wIEcddVT1fv/xH/8x6NgXX3xRV1xxhd773vdq2rRp1b+Vu+++uz7xiU/ohhtuUFdX1yY/775q+doDAAAYdxIAAACgDh111FGJpERS8s1vfnNE9/3mN79Zve9RRx016Nh8Pp984hOfqI4f6KutrS35v//7v0G3dd5551XH33TTTUPWedNNN1XHn3feecMas3Tp0uSII47ot8bf/OY3/e6D/vbfAQccUP39//zP/wxZa5Ikyc9+9rPqfQ466KBh3Wcgl112WWIYxpD7XVLyyU9+MikUCv1uZ9myZYllWYmkxLKsZPny5cN6/M9//vPV7V944YUDjvvlL3+ZTJs2bcgaP/ShDyWdnZ0DbmdTj+Ps2bOThoaGYe2nWbNmJc8///ywnv9DDz2UTJ06dcBtmaaZXHXVVUmSJBv8fCjXXntt0tTUNGidhmEkn/nMZxLf94dV60CGs0+Gej1uqeO7evXq5Nhjjx10H9x4443V+8+fPz/Zc889BxyfSqU2OC/60/c98+GHH07+93//d9Bjkclkkv/+7/8e1r5+6623kqOPPnrI/TR9+vTkscceG3Rb7zyfvvnNb1Zfw32/TjnllA3ud9BBBw3rWDuOk/zrv/7rsB5/pOfNSF4LSbLxMRnOmHvvvTdpaWnZqJampqaN7vvwww8nO++885DP45BDDkna29uHVfNwXXnllf0et/VfM2fOTJ566qlh/Z17+OGHq2MG+ps9nDHvNJzjtSnn4w477FD9+cKFC5Pf/OY3Q77W7r///kFr/fWvf524rjus8/Ld7353smDBgkG3tyn7aziWLFmSnHDCCcOq873vfe8G9/3qV79a/d1nP/vZYT3e66+/Xr2P67rJ2rVr+x23bt265BOf+MSw/l0xderUfrfxzuM6mFq+9gAAAMYjWwAAAAD6VSwWdeyxx+rpp5+u/mz69Ol63/vep4aGBr3xxht64oknFEWRli9fro985CO64447dPrpp9ekXt/39ZGPfETPPfecbNvWYYcdpp133lm+7+v5558f0bYuvPBCXXTRRZKkG264QWefffaQ97nhhhuqtz/72c+OrPh3WLJkiZIkkWEY2n333bX77rtr4sSJchxHa9eu1Zw5c/Tmm29Kku688051d3fr/vvv32iGXltbm4499lj98Y9/rM6UvvTSSwd97CAI9Mtf/rL6/bnnntvvuB/96Ef66le/Wp2Z1djYqEMPPVQzZ85UFEV65ZVX9OyzzypJEt1///06+uij9Ze//EXZbHbQxx/JcVy3bp3y+bwkacqUKdp77701c+ZM5XI5FYtFvfHGG3r66acVhqEWLVqko446Ss8//7x22WWXAR9/9uzZ+tCHPqRisSipMrPxoIMO0t57761yuaynn35a8+fP11VXXaVJkyYN+lz6uvTSS/XjH/+4+v2kSZN06KGHatq0afI8T3PmzNHLL7+sJEl04403atmyZXrggQdkmpvWkOwLX/iCJOk3v/mNli1bJkn66Ec/qhkzZmw0ds8999zoZ1vq+IZhqNNOO02PP/640um0jjrqKG2//fbq6OjQn//8Z3V2dipJEn32s5/Vrrvuqt12203HHnuslixZosbGRh155JFqa2vTypUr9ac//UnFYlHlcllnnXWWXnnlFe24445D7ptnn31WV155pcrlsiZOnKijjz5aLS0tWrRokR599FEFQaBSqaSLLrpIlmXpggsuGHBbr732mo477jgtX75cUuV82X///bXXXnspk8lo6dKleuyxx9TT06Nly5bphBNO0IMPPqhjjjlmyDp/8IMf6Fvf+pYkaeedd9bBBx+sbDarRYsWyXGcDcaun7Htuq723ntv7bLLLmpqalKSJFq+fLn++te/as2aNQqCQJdffrkk6Wtf+9pGj7m5582W9OSTT+qqq65SEASaOHGijjzySE2aNEmrVq3SnDlzNhj7q1/9SmeffbaCIJAkZTIZHXLIIZo1a5ZM09Trr7+up556SmEYavbs2Tr00EP1zDPPaOrUqZtd59e//nV973vfq36fzWZ17LHHqq2tTStWrNBDDz2k9vZ2feADHxjy/XgsGcn5uN6f/vQnXXzxxYqiSNtvv70OPfRQNTY2auHChXrkkUcUhqFKpZLOOOMMvfzyywO+fletWlXtMDJz5kzttddemjZtmrLZrPL5vF577TU9//zzSpJEf/vb33TkkUfqhRde0MSJE7fMzujHK6+8ohNOOKH6XiBV/i4ddthhmjx5sjzP05tvvqk5c+aoVCpt1DXmwgsv1NVXXy1Juuuuu3TNNdcol8sN+pg33nhj9fZpp52m1tbWjcYsW7ZMxx57rObNm1f9WXNzsw4//HC1tbUpCAK99dZbeu6559Td3T3sbjYDqeVrDwAAYNyqWcwOAAAAbIatMbO77+xey7KSa665JomiaIMxr7/++gazoBsbGwec8bOlZ3bbtl19Tv3V4Hle9fZQM7t7enqqM4YNw0jefPPNQWt95ZVXqtvL5XJJd3f3kM9vMP/2b/+W3HTTTcnq1asHHPPYY48lu+yyS/Vxb7vttn7H3XLLLdUxBxxwwJCPfd9991XH77jjjkkcxxuN+dOf/pSYpplIlVm13//+9/udXT5nzpxkr732qm7v85//fL+PuanHcfbs2cnXv/715KWXXhrw+axcuTI599xzq9s/7rjjBhxbKpWSXXfddYPn//TTT2807q677kqy2exGMw0HcsMNN2zwGvnZz36WlMvljcY99NBDyYwZM6pjB5uBO1zDmT37Tlvy+K7fZ6ecckqycuXKDcZ1dHQk73vf+6pjjznmmOSjH/1oIim5+OKLN3pdLVmyZIMZ35/+9KeHtR9SqVQiKbnssss2OJ/Wb7NvDdlsNnnjjTf63WY+n9/g8d///vf3O7arq2uD99O2trYBZ8L3PZ9s206ampr6nbX+zro///nPJw888EBSLBb73W4YhslNN92U5HK5RKrM8B5s9uumnDfDeS2M9DH6jrFtOzEMI/n2t7+90eun7/54+eWXk0wmU33/vuyyy5J169ZttO0333xzgw4S73//+4dV92AeffTRDWbPnn766UlHR8cGYzo7O5NPfvKTG5yLg/2dGyszu4d7PvadAey6bpLL5ZLbbrtto78lL7/88gbvd4O9fu+7777ke9/7XjJ//vwBxyxYsCA56aSTqtu74IILBhw72jO7u7q6NvjbMWnSpOT222/v9+9nPp9PfvGLX/T7fPue7327W/QnDMOkra2tOv7Pf/7zRmOCIEgOP/zw6phMJpNce+21/f798X0/ue+++5KPfvSj/T7ecGZ21/K1BwAAMJ4RdgMAAKAu9f1A9KCDDkq+8IUvDPurb7vbgT7kfeONN6phl6Tk2muvHbCWjo6OZNasWUN+YL2lw25Jyb777jtg2NPXUGF3kiTJ5z73ueqYK6+8ctDtfeUrXxnWB/ajbeHChUk6nU4kJQcffHC/Y3p6epJsNlutb+7cuYNus2/b+n/6p3/a6PdRFG3wof4999wz6PaWL19ebQnuOE6yZMmSjcZs6nEcife///3V7b/66qv9jrn++uuHFXImSZLcc889G9Q8UGDU3d2dNDc3V4Ot2bNnD1rnq6++Wj2mEydOHLBF/XCNNLTcGsf36KOPTsIw7Hd7ixYt2qhN8kCv/yRJkieeeKI6bsKECUkQBP2O67sf1ofnA+np6Un22GOP6thzzz2333H//M//XB1z6qmnbnQx0Dv1fQ/8/ve/3++YvjWappk8+uijg25zpO68887q9r/2ta8NOG4sht2Sku985ztDbrdvi/wf/vCHg47N5/MbXLAx1OtzKIcddlh1W8cdd9yA53kURcmJJ544rPN8rITdwz0f+4aihmEkDz744IBj77///urYhoaGAV+/w1Uul5N3vetdiaQknU5vdKHBeqMddl955ZXV7TU1NQ35d3Ygv/jFL6rbOfzwwwcd2/fCtJ133rnfYL3v8iqO4wy5jMJghhN21/K1BwAAMJ4RdgMAAKAuvTMA2NSvgT7kvfzyy6tj9ttvv34/RO3rrrvuqo53XbffWYtbI+weat3w9YYTdj/99NPVMTNmzBgwtCiXy8nkyZOrY//yl78Mq4bRsj7ENQwj6erq6nfMWWedVa2vvwB7ve7u7uqsLKn/YPzee++t/n6gGWDv9L3vfa96n6uvvnqj32/qcRyJvufof/zHf/Q75sADD6yO+frXvz7kNo855pghA6Nrrrmm+vtLL710WLVedNFF1fv8+te/HtZ9BjLS0HJrHN85c+YMur2+M6td191oBvg7bbfddtXxA83y77sfJkyYMOga40myYZCUTqc3Gl8ul5MpU6YMu8YkSZKlS5dWZ/3uu+++/Y7pu5/OOOOMIbc5UmEYVrtW7L///gOOG4th9/Tp04cMQ1944YXq+Pe85z1D/u1KkiS54447qvf50pe+NKza+/Pqq69usA9eeeWVQcfPmzdvg1ngYz3sHu752DcU/fCHPzzo2DiOk2nTplXHv/jii8N6jMH867/+a3V79913X79jRjPs9jyvekGTpOT666/frG21trYO+jd4vVNOOaU67l/+5V/6HdP3op3LL798k+tKkqHD7lq+9gAAAMY71uwGAAAA+vHQQw9Vb59//vkbrQX9TqeeeqpaW1vV0dEh3/f11FNP6eSTT97SZW6gpaVFJ5544qht76CDDtJ+++2nF154QUuXLtXvf/97feADH9ho3H333afVq1dLkvbaay8ddthho1aDVFmL9+mnn9brr7+uzs5OlUql6jrKkrRw4UJJqq5V+r73vW+jbZxzzjm6/fbbJUm33367vv3tb/f7WPfcc49KpZIk6cADD9Tuu+++0Zj/+7//q94+66yzhvUcjj322OrtJ554Ql/5ylcGHLupx7FYLGr27Nl66aWXtHr1avX09CiKourvly5dWr39wgsvbHT/np6eDdYEP+ecc4Z8zHPOOUcPP/zwoGM2dX/993//t6TK/jrttNOGdb/RsKWP784776z99ttv0O3tu+++evzxxyVJ73vf+zRlypRBx++zzz5asmSJpMrrYZ999hl0/Ec+8hE1NTUNOuYDH/iAJk+erNWrV8vzvI3e05599lmtWrVKknTccccNWaMkTZ8+XXvssYdee+01vfzyy+rq6hq0jk9+8pNDbrM/L774oubMmaNFixapu7u7utbxeuvfz1966SXFcbzJ68Jvbaeffrpse/CPcfqev2eeeeaQf7ukjc/fTdX3veCAAw7QXnvtNej43XbbTYcccoieeuqpTX7MrWlTzsePf/zjg/7eMAy9+93v1ooVKyRJixYt0r777jvofTo7OzV79my98sorWrt2rfL5vOI4rv5+7ty51dsvvPCCPvzhD4+47pGYPXu2Ojs7JUkTJkzQeeedt8nbcl1Xn/rUp3TNNddIkm644Qb927/920bjVq5cqQceeECSZFmWzj///I3GLF68eIN98cUvfnGT6xqOWr72AAAAxjvCbgAAANS9b37zm7rqqquGPf6qq67St771rQF/nyTJBmHgcMJbx3F08MEH63e/+50k6fnnn9/qYfd+++0ny7JGdZsXXnihLrnkEkmVD537C7tvuOGG6u0LLrhg1B77qaee0hVXXKHHH398g3B7MGvWrOn35yeccIKmTJmiVatWacGCBXryySf7Pa7/8z//U7197rnnDljXer/+9a/16KOPDllXV1dX9fb6UHIgIz2OHR0d+sY3vqFbb71VPT09w7pPf/vpxRdfrAYmjY2N2mOPPYbcznvf+94hx/TdXz/96U91yy23DHmf9vb26u2h9tdo29LHd6ggWqpc8LDe3nvvPeT41tbW6u3u7u4hxx966KFDjrEsSwcddFA1wJkzZ84G72l991N7e/uwg6T1oViSJGpvbx807D7ggAOGtc31brnlFn33u9/V66+/PqzxQRCoq6trg/09lg1nf/Q9Lg8//LAWL1485H36vr9uzuttzpw51dvDOcfWj6uXsHuk56OkIYNrSZo4cWL19mCv3/b2dl1xxRW6++67N7qAYyAD/U0cTbNnz67ePuSQQ5TJZDZrexdeeGE17L711lv13e9+d6OLPG655RaFYSipcmHO9OnTB61r11131cyZMzerrqHU8rUHAAAw3hF2AwAAAO/Q1dWlIAiq3++www7Dut+sWbOqt7fGB8zvNHny5FHf5tlnn61/+Id/UKFQ0G9/+1utXr16g8dpb2/X73//e0lSKpXSpz71qVF53BtvvFGf/exnhx1yrzdQ2Gvbtj75yU/qP/7jPyRJv/jFLzYKu5cvX16d0b9+fH+WLVtWvX3XXXeNqD5JWrdu3aC/H8lxXLx4sY488ki99dZbI6qhv/20fna+JM2cOXNYs9KGCg/y+fwGj/Xzn/98BFVWDLW/RtuWPr5DzaiWtEGwM9Lxfd+7BrL99tsPOead4/qeH9KG++nFF1/Uiy++OKxt9jVar4UkSXTBBRfopptuGnENPT09dRN2D2d/9D0uDz744IgfY3Neb33PkU05x8a6TfkbO5zXr+M41dsDvX7nzJmj4447bsTHZ7gXQG2OlStXVm/vtNNOm729PffcU0cccYSeeOIJrVy5Uvfff78++tGPbjDmxhtvrN7+7Gc/u1XqGkotX3sAAADjXX306gIAAAC2onw+v8H3uVxuWPfrO25rfMD8Tps7m6o/jY2N+sQnPiGp8iH8rbfeusHvb7755ups4FNOOUWTJk3a7Md89dVXddFFF1WD7r333ls//vGP9fTTT2vlypXVNubrv/q2TO3byvWd+s7U/uUvf7lRqHDHHXdU73/iiScO2Ja57yzeTbF+NtpARnIczzrrrGrQPWHCBP393/+9fve732nBggXK5/OKoqi6n/q2GO5vP/U977PZ7LAev6GhYdDfb+6+kobeX6NtSx/f4VxEsDnjh2O4x3ew97StcWyH+1r42c9+tkHQffLJJ+uWW27RSy+9pHXr1sn3/Q3eM/pewDTYe8ZYM5z9sbnHpe/SByO1Ke8hw/37OhZsyt/Y0Xj9+r6vj33sY9UwdPLkyfqnf/onPfzww1qyZIkKhYLiOK6e331fC1vj/O773jDU34ThuvDCC6u3+3aPkSrtvufNmydJamtr0wc/+MGtVtdgavnaAwAAGO+Y2Q0AAAC8wzs/FC0UCsP6QL5QKFRvT5gwYbPrGCshzOc+97nqLKobbrhBX/3qVyVpow/VB5pdNVLXXHNNNQQ76aSTdN999ymVSg04frgXFhx44IHaY489NHfuXK1Zs0a///3v9aEPfaj6+1/84hfV24OtV53L5aofaj///PN6z3veM6zHH21PPvmknnzySUmVc3b27NmDrpE71H7qe94Xi8Vh1dD3nO/PO183HR0dY34W7Vg5vlvSphzfd76n9T22f/d3f6cf//jHo1PcJvj3f//36u1vfetb+sY3vjHo+FpcjNSfLfEe3/e43HPPPTr11FNH/TEGsiXeQ7aUsfL3dTh+/etfa+HChZKkGTNm6JlnnlFbW9uA47f2+d33veGdFwtuqtNPP11f/vKXtW7dOj344INatmxZtVV53/D7/PPPH3DZjy1R12Bq+doDAAAY75jZDQAAALxDU1PTBm1Fh9sietGiRdXb/c1w7rvN4cxWHY2Zk6PhkEMO0bve9S5J0muvvVZdl/Lhhx/WggULJFVavR9//PGj8nh//vOfq7e/853vDBp0SxrWupjrnX322dXbfdfnfu211/T8889LqnxA/s6WqX1NnTq1envFihXDfuzR1nc/nXfeeYMG3dLQ+6nvObt06dJh1dB3be3+NDc3y3Xd6ve13F/DNVaO75Y03Pe0vmvIvvM9bazspyVLlmj+/PmSKufbP/7jPw46vru7e4u1C+7bTr5W7/G1PC5923xvyjm2Oer17+tw9H2vv/TSSwcNuqWR/U0cDX3PufWh/ObKZDLVi86iKNItt9wiqRLk/+pXv5JUmTV/wQUXbNW6BjNW3hMBAADGI8JuAAAA4B0Mw9B+++1X/X797NnBhGGoZ555pvr9/vvvv9GYxsbG6u21a9cOuc2XXnppyDFby+c+97nq7fWzqvrOrvr0pz8t0xyd/73ou+7lvvvuO+jYrq6uEa0VfPbZZ1fbyt53333VGXB9Z3Wfdtppg7arfe9731u9/Ze//GXYjz3aRrKfJOmxxx4b9Pfvete7qsewq6tLc+fOHXKbTz/99JBjDj744OrtWuyvkbYRHivHd0uaPXv2kGOiKBr0Pa3vfnryySeryw5sbX1fB3vssccGoWd/nnjiiWHVuintp0fyHl8ul/X666+P+DGGUsvzt28XhOGcY5KqF09trnr++zqU0X6vH22HHHJI9fZTTz2lUqk0Ktvt28p8fXeZO++8s9oN4KijjtLOO+88rLpef/31IS/O2lzj4W8HAADAWEXYDQAAAPTj2GOPrd6+5ZZbhgxH7r333uoH7Ol0WoceeuhGY2bNmlW9/cILLwy6Pc/z9Nvf/nb4BW9h55xzTjUAvuuuu9Te3q577rlHkmSapj7zmc+M2mP1Dc2HaoX785//fKO1twez44476rDDDpMklUol3XPPPUqSRLfffnt1zGAtzCVt0Pr8xhtvlOd5w3780TSS/bRs2TL97//+76BjGhsbNwir+l4AMJC+s+MH0nd/XX/99Vs9FE2n09XbwzlXxsrx3ZLuu+8+dXd3Dzrmd7/7nVatWiWp//e0ww8/XM3NzZIqM/xr9X41kteBVDkHh2Ok5400svf4++67b4ucW33P33vuuUcrV64c9ccYyDHHHFO9/eyzzw55wcwbb7wxamH3DjvsUL1A4Y033hiybfUvf/nLUXncrWEk5/hzzz23wUUqW8MhhxxSXZ6ip6dHt95666hsd5999qm+77zxxht69NFHN7jIbqilU3bYYQftueee1e+vu+66UalrILV87QEAAIx3hN0AAABAPz73uc9VP2B+/vnn9dOf/nTAsZ2dnfra175W/f7MM89UU1PTRuP6zvq5//77tWbNmgG3+Y1vfGPQ329tzc3NOuOMMyRV1r48/fTTq0HNiSeeqO22227UHmunnXaq3r7vvvsGHDd//nx961vfGvH2zz333OrtX/ziF3ryySc3WA+174UO/fnYxz6mXXbZRZK0fPlyXXLJJcMOcPP5/KitUTvc/RRFkS688EKVy+Uht9n3ooVrrrlm0Nav99133wbtdQdy0UUXVUPR559/fkTHbM2aNYqiaNjj+zNx4sTq7eG0Zx8rx3dL6u7u1te//vUBf18oFDZ4Tzv99NM3ek9zXVeXXnpp9ftLLrlk2O3vJY1aELTjjjtWQ86XX365urRCf+666y7df//9w9ruSM8bacP3+JtvvnnAcd3d3briiiuGtc2ROvjgg3X00UdLqlzQc+655w7rtS9VZptvTov3Pffcs3oxkSR9+ctfHnBt7DiO9Xd/93ejdvFLY2Oj9thjD0mVTiuDXawzZ84c/exnPxuVx90ahvteXywWN5gNvbW4rqtLLrmk+v3ll1+uefPmjcq2+z6fyy+/XH/9618lSS0tLfrYxz425P2/8pWvVG9fffXVevzxx0elrv7U8rUHAAAw3hF2AwAAAP3YeeedddFFF1W//+IXv6jrrrtuow/u33jjDZ144onVULCxsVHf+MY3+t3mQQcdVG25mc/ndeaZZ2704WaxWNQ//MM/6Ac/+MEGax2PBX1bma//wFkaenbVSH34wx+u3v7KV76i3//+9xuN+fOf/6yjjz5aPT09yuVyI9r+GWecUV0H/KGHHtK///u/V3935plnDtmO3bIsXX/99bIsS5J000036YMf/KBee+21Ae/zwgsv6PLLL9d22203amuHfvCDH6yGfI888oguu+yyjdrHrlixQh/72Mf0wAMPDGs/ffrTn64Gvfl8Xscff7yee+65jcbdfffdOuuss4Z1jjY1NelHP/pR9ftvfetbOu+88wZc0zdJEv3lL3/RJZdcou23336zW+Lus88+G9Q9VLg2Vo7vlpRKpXTdddfpiiuu2CiMWbp0qT74wQ/q1VdflVRZO/eb3/xmv9v56le/qr333rt6vwMPPFC/+tWvBgw416xZo5/+9Kfaf//99YMf/GBUnsukSZOq7YrjONbpp5++UdAWx7Guu+46nXvuubIsa4NZ2wMZ6XkjSWeddVb19p133qlrr712ozFz587VscceqzfffHOLvcf/53/+pxoaGiRJf/zjH3XkkUdu8J79Tq+//rq+/e1va9asWZvdfvlf/uVfqu9Lf/jDH3TWWWeps7NzgzHd3d0699xz9eCDD1bfi0dD3/1/xRVX6IknnthozIMPPqgTTzxxk9rU10rfv4m33HKLrr766o0uAlr/b5Hnn39+xH8TR8PXvva16r9vurq6dMQRR+jOO+/s93VTLBZ1xx13DKsjzBlnnFG90KbvOXz22WcP63V8/vnnVy/ACIJAJ598sn7yk5/0262hXC7rt7/9rU499dQhtzuQWr72AAAAxjO71gUAAAAAY9W///u/69lnn9UzzzyjMAz1xS9+Ud///vd1xBFHqKGhQW+++aYee+yx6ofOtm3rhhtu2KCVbV+GYeh73/tedYb0n/70J+2444467rjjNGnSJK1YsUKPPfaYOjs7NX36dH3hC1/QlVdeubWe7pAOP/xw7b333nrllVeqP5syZYo+8pGPjOrjXHrppfr5z3+u1atXq6OjQyeffLL2339/7bXXXjIMQ88//3y1hpNOOklTpkzRbbfdNuztt7S06AMf+IDuvfdeRVGke++9t/q7vrO+B3P88cfr+uuv1+c//3lFUaQHH3xQv/vd77TXXnvpXe96lxobG1UsFrV8+XL97W9/0+rVq0e0D4Zjjz320LnnnlttGXv11Vfr9ttv10EHHaQpU6Zo0aJFeuyxx1QulzVhwgT94Ac/0MUXXzzoNjOZjG6++WadcMIJKpVKWrBggQ466CC9973v1V577aVyuaynn366utbwtddeqy9+8YuSBl/j+Pzzz9eCBQv07W9/W5J066236he/+IX2228/7bHHHmpoaFA+n1d7e7teeOEFdXV1jcYuklRZg/3rX/+6kiTRAw88oHe961067LDDNGHChOqYT37ykzrwwAOr34+F47slfec739GVV16pf/3Xf9UNN9ygo48+Wi0tLVq8eLEeeeSRDQLwa665pnoBxDs1NDTovvvu0/HHH6+FCxdqxYoVOuOMM6oB9LRp05QkiTo6OvTqq69q/vz51SB8qA4KI/Htb39bJ554ouI41pw5c7Tvvvvq8MMP10477aR8Pq/HH39cy5cvl1QJY3/6059q8eLFg25zU86bI444Qh/84Af1wAMPSJK+9KUv6brrrtMhhxwiwzA0b948zZ49W3Ec6/zzz9fChQv16KOPjtp+WG+fffbRHXfcoU984hMqFov661//qkMOOUQ777yz9t9/f7W2tsrzPK1atUovvvjiiGbkD+Xoo4/WZZddVr2YYf1s+mOPPVbTpk3TypUr9dBDDymfz6ulpUVf/vKXddVVV43KY3/pS1/S9ddfr2XLlqmzs1NHHnmkDj/8cO2xxx7yPG+D1uo333yzzj///FF53C3txBNP1JFHHqnHHntMSZLosssu03XXXaf9999fTU1Nmj9/vp588klFUaQZM2boy1/+8gadGbaGxsZG3XPPPTrhhBO0atUqrVmzRmeeeaYuvfRSHXbYYZo8ebI8z9Obb76p559/XqVSSe9+97uH3G42m9XZZ5+tn/zkJxv8fLgX2dm2rbvuukvHHnus5s+fr2KxWP231eGHH662tjaFYajFixfrueeeU3d3d7+deYarlq89AACAcS0BAAAA6tBRRx2VSEokJd/85jdHdN9vfvOb1fseddRRg47t6elJzjjjjOr4gb7a2tqS//u//xvW43/rW98adFu777578vLLLyc33XRT9WfnnXdev9sazpih9sFI9t8111yzQa2XXXbZsO87Ek8++WQyadKkQffTRz/60aSzszM577zzqj+76aabhrX9u+++e6Pt7bvvviOu86GHHkp23XXXIc+P9V977713snTp0o22s6nHsVAoJCeeeOKgjzlz5szkiSeeSB5++OFhn/d//OMfk8mTJw+4TdM0k6uuuiopl8vVnzU1NQ1Z71133ZVMnz592Pvr4IMPTjzPG/b+GMg//uM/Dvo4A503tTq+I319Duc10Pc98+GHH07uvffepLGxccDnkk6nk5/85CdDPnaSJMnatWuTj3/844lhGMPaT83NzcnNN9/c77b6jhuJ66+/PrFte9Bz9hvf+EYSx3Gyww47VH++cOHCAbe5KefN2rVrkwMPPHDQ+11wwQWJ53kbHZP+DGfMQF544YXkgAMOGPb5O2vWrGTOnDkjeoyBXHHFFYlpmgM+1vTp05Mnn3xyWK+Nkbx3Pffcc4P+7UilUsl1112XJMnwzrVNOR+He36tN5zX74oVK5L9999/0OO31157Ja+88sqo79ORWLRoUXLkkUcO63w7/PDDh7XNF154YYP7HXjggSOua+3atcmpp546rLpmzJjR7zZGclxr+doDAAAYj5jZDQAAAAyioaFBd911ly699FLddttteuSRR7Rs2TKVSiVNmjRJ++yzjz70oQ/pM5/5zLBbh37jG9/QCSecoP/8z//U448/rlWrVqmxsVG77LKLPvnJT+qCCy5QQ0ODnnnmmS387EbutNNO22Cd3tFuYb7eoYceqldeeUXXXHONfvvb31bX4W1ra9MBBxygc845Z4PWriP1oQ99SM3NzRu01z3nnHNGvJ1jjjlGr732mu6991498MADmj17tlasWKHu7m5ls1lNnTpVe+yxhw477DC9//3v13777bfJNfcnm83qwQcf1O23365bbrlFc+bMUXd3tyZNmqSddtpJH/vYx3T++eerpaVFjzzyyLC3e/zxx2vu3Lm69tprde+992rBggUKgkAzZszQkUceqYsuukgHHXTQBusur1+XezBnnHGGTjnlFN155536/e9/r2eeeUarV69WPp9XLpfTjBkztOeee+p973ufPvCBD2i33XbbhL2yse9+97s64ogjdNNNN+m5557TypUrVSwWh7xfrY/vlnTKKafoxRdf1H/913/pgQce0FtvvaVyuazttttOJ598sr74xS9q1113Hda2Wltb9ctf/lIvv/yy7rjjDj3yyCNauHCh1q5dK9M01dzcrF122UX777+/jj/+eJ1wwgnDakE8EhdffLEOP/xw/ehHP9LDDz+sZcuWKZPJaMaMGTr22GP1mc98Ru95z3tGtM1NOW9aW1v15JNP6uc//7nuuOMOvfLKK8rn82pra9NBBx2kCy+8UCeccMLmPNVhe/e7361nn31Wf/jDH3TvvffqL3/5S3XWs+u6mjx5snbffXe9973v1UknnaRDDz101Np7f+9739Ppp5+un/zkJ3rooYe0fPlyNTQ0aNasWTrttNN04YUXatKkSaO2tvN6+++/v+bOnasf/vCH+u1vf6uFCxcqjmPNnDlTJ5xwgi655BLttddeo/qYW8PUqVOr59Wdd96pl19+WcViUVOmTNHuu++uT3ziEzr77LOVzWb19NNP16zOHXbYQY8++qj+/Oc/61e/+lW1q0J3d7dyuZx22GEHHXDAAfrgBz847K4w7373u7XTTjtV/x2wKf/uaG1t1T333KNnnnlGt99+ux555BG1t7dr3bp1ymQymjlzpvbbbz+dfPLJOv3000e8/f5qrtVrDwAAYDwykmQYC08BAAAAgCrrha5v/XrEEUfo8ccfr21BqKk//vGPOvHEEyVJJ598sh588MEaV4SBHH300dWW2Q8//LCOPvro2hYEAMOwaNEi7bTTTkqSRLlcTsuWLVNjY2OtywIAAMAYYta6AAAAAAD144Ybbqje/tznPlfDSjAW3HXXXdXbBx10UA0rAQBsi2688Uatn6dzxhlnEHQDAABgI4TdAAAAAIZlzpw51Zncra2tOuOMM2pcEWrpr3/9q2699dbq92eddVYNqwEAbGs8z9PPfvaz6vcXX3xxDasBAADAWEXYDQAAAGBInufpS1/6UvX7iy++eNTX3MXY8NZbb+njH/+4nnjiCfW36lUURfqf//kfnXTSSQqCQJL0kY98RHvsscfWLhUAsA37p3/6J61YsUKSdNhhh+nggw+ucUUAAAAYi+xaFwAAAABgbLr22mv1xhtvqLOzU3/+85/V3t4uSZo0aZK++tWv1rg6bClxHOvuu+/W3XffrSlTpuiAAw5QW1ubLMvSypUr9dRTT2n16tXV8W1tbfqv//qvGlYMANgW/O53v9Pvfvc7lUolPf3003rhhRckSYZh6Hvf+15tiwMAAMCYRdgNAAAAoF933323Hn300Q1+ZlmWbrjhBrW2ttaoKmxNq1at0oMPPjjg7w888EDdfffdamtr24pVAQC2RbNnz9aPf/zjjX5+2WWX6cgjj6xBRQAAAKgHhN0AAAAAhtTS0qLDDjtM//iP/6jDDz+81uVgC5o1a5b++te/6re//a1mz56t9vZ2rVmzRp2dnWpoaNDUqVN16KGH6rTTTtOHP/zhWpcLANgGZbNZ7bvvvrrkkkv0qU99qtblAAAAYAwzkv4WYQMAAAAAAAAAAAAAYAwza10AAAAAAAAAAAAAAAAjRdgNAAAAAAAAAAAAAKg7hN0AAAAAAAAAAAAAgLpD2A0AAAAAAAAAAAAAqDuE3QAAAAAAAAAAAACAukPYDQAAAAAAAAAAAACoO3atC8Dm8TxPL730kiRp8uTJsm0OKQAAAAAAAAAAAICxJQxDrV69WpK07777Kp1Ob/Y2SUbr3EsvvaSDDz641mUAAAAAAAAAAAAAwLA8/fTTOuiggzZ7O7QxBwAAAAAAAAAAAADUHWZ217nJkydXbz/99NNqa2urYTUAAAAAAAAAAAAAsLHly5dXO1b3zTg3B2F3neu7RndbW5tmzpxZw2oAAAAAAAAAAAAAYHB9M87NQRtzAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdsWtdAAAAAAAAADZfksTy/RWSJMeZKMtya1wRAAAAAGxZhN0AAAAAAAB1Lgi6lM+/pjDMV35gGLKtCUqlJiqVmijbbpJhGLUtEgAAAABGGWE3AAAAAABAnYrjUMXimyp57YrCokreEiVxINuZINuaoCBYp2JpkUzDlpOaqJRTCb9NM1Xr0gEAAABgsxF2AwAAAAAA1CG/vEaF/DxFUVGet1zlYK1MMy0nNVFh2KMg6JRkyDQzcpxGBUG3fHulJMmxm5RKTZTjTJRtT2DWNwAAAIC6RNgNAAAAAABQR+LYV74wX76/UmHQLc9bqjgJ5brTlEpN7g2u2xTHgcKwR2HYo3J5tfxkhQzZsp0JCuxGlctrZZi2TCNVbXfuOK0yTafWTxEAAAAAhoWwGwAAAAAAoE543jIVCvMVRZ48f6mCoFOWNUENmZ1kmu4GY03TUSrVqlSqVUkSK4qKveF3t4JgnSRDlpmthN9hlzx/uQwZsu1GpVKTetf6nlCbJwoAAAAAw0DYDQAAAAAAMMZFUUn5/FyVgw4F5Q553nLJSJROb69UqmXI+xuGKdtukG03qDLru1yd9e37q+T7K2QYjmx7gmy7UeVyhwzTkmm6vet8T5LjtMg0+SgJAAAAwNjB/6EAAAAAAACMUUmSqFR6S8Xigspsbq9dYdQj225WOj19k1uOm+bbrcsrs74LfWZ9d0gyZFs52XajgqBLnr9Mhkw5TlNv8D1Rtp0b3ScLAAAAACNE2A0AAAAAADAGhWGPenpeUxh2q1xeU2kzbtjKZHaU4zSO2uNUZn1P6G1ZPl1x7FeDb89fLvnLZBqp3uC7U+XyWskwZZnpartzx2mRYVijVhMAAAAADAdhNwAAAAAAwBiSJJGKxYUqld5SGBVVKrUrjotKpSbJdadt8VDZNF2lUq5SqUm9s77zCoJuBWG3ysEaVWZ9N/SG390qee29s75bemeLT5JlZbZojQAAAAAgEXYDAAAAAACMGeVyh/L5uYqignx/pfzyapmmq2x2l5q0Da/M+m6UbVdmkkeRpzDsVhj2yPOXSf5SmaYr25qgIOhSuby6MuvbyvZZ67tZhmFu9doBAAAAbPsIuwEAAAAAAGosjgMVCm/I85cpCvMqee2K47Jcd6pSqcljJiy2rLQsKy3XnaIkiRSG+co632FX76xvU449QZY1QYHdpZK3RIZhKeW0Vtf6tiy31k8DAAAAwDaCsBsAAAAAAKCGfH+V8vl5iqKiPH+FgmCtLCunXG6WLCtd6/IGZBiWHKdJjtMkSYqiUnXWd+Avlfx2mWZajt2oMOiS76+SjEoL9PXtzm27SYZh1PiZAAAAAKhXhN0AAAAAAAA1EEW+CoV58surFQRd8rylSpJI6fQMOc7EuguBLSsjy8rIdacqScLqrO9y0CG/vEqGLNn2+rW+16lYWizTsOU4rb3h90SZJrO+AQAAAAwfYTcAAAAAAMBWlCSJPG+ZCsX5ikJPvr9UQdgl225UOj1DppmqdYmbzTBsOU6zHKdZSZIojksKwx6FYbdK3hJJkmlm5diVtb59f2Vl1rfd2LvW90TZdmPdBf4AAAAAti7CbgAAAAAAgK0kDAvK519TEHYpKHfI85ZJhqFMZgc5TnOty9siDMOQZWVlWVm57lTFcdBn1vca+eWVMmTLdibIticoKHeoWFoo03CUSk2Uk5qolDNRpunU+qkAAAAAGGMIuwEAAAAAALawJIlVKi1WsbhIUVRSyVuiKCrIcVqVTrfJMMbPRzSm6SiValEq1aIkSRRFxd61vrsVBOskGbLMrGxngoKwW5a/QoZ6Z31X1/qeUOunAQAAAGAMGD//JwUAAAAAAFADQdClfP41hWFefnmVfH+lDMNRNrvTuA9tDcOQbedk2zlJbb2zvrsVhj3y/VXy/RUyDEe2XZn1XS53yDAXyDTdartzx2lh1jcAAAAwThF2AwAAAAAAbAFxHKpYXFCZxR0WVfKWKI59pVKT5LrTZBhmrUsccyqzvishdpLEiqJCda3vIOiQVGmJbtuNCoJOef6yyqxvp0kpZ1LvWt8NtX4aAAAAALYSwm4AAAAAAIBRVi6vUT4/T1FUlOctVzlYK9NMK5fbRZaVrXV5dcEwzOqMbmm64tjvDb575Psr5fvLZRop2XajrKBLgd2hQtGUZaaVSk3qXeu7RYZh1fqpAAAAANhCCLsBAAAAAABGSRyXlS+8Lt9fqTDokee1K04Cue40pVKTZRhGrUusW6bpKpVylUpN6p31nVcY9igIulUO1qgkQ7bV0Dvru0um1y5DphynWalUZdY3FxoAAAAA2xbCbgAAAAAAgFHgectVKMxXFJXk+csUBOtkWQ1qyOwk03RrXd42pTLru1G23ah0eobi2FcQVNb69vxlkp9UZ30HQZfK5TWSYcoyM73B9yQ5TgsXHwAAAAB1jrAbAAAAAABgM0RRSfn8XJWDDgXBOnmlZZKRKJ2eqVRqYq3LGxdM05XrTpbrTlaSRArD3lnfYZfKwRpJRqUlulUJv0veEllmWq47Tel0GzO+AQAAgDpF2A0AAAAAALAJkiSR5y1RofCmosiT57UrjHpk281Kp6fLNJ1alzguGYYlx2mS4zRJqlyMsH6tb89fKvmJLDMnx2lRGOZVLC2SYzcpnZ6uVGoyxw0AAACoI4TdAAAAAAAAIxSGPerJz1UYdKlcXivPXy7DsJTJzKqGrBgbLCsjy8rIdacoScLedb7XyfOXyvOXynGaFNotCoJOGYallDtZabdNjtNKm3MAAABgjCPsBgAAAAAAGKYkiVUsLlSptFhhVJRXWqooLshxJiqdbpNhWLUuEYMwDFuO0yLHaVEcBwqCdb1fC2UYjlJOi8KoKN9fKdN0lXanyXXbZNu5WpcOAAAAoB+E3QAAAAAAAMMQBOvU0/Oaoqgg318lv7xKpplSNrsLYWgdMk1HrjtFrjtFUVRUEKxTOVjbe1yzSjktisKCiqXFcuwmuW6bXHcKbc4BAACAMYSwGwAAAAAAYBBxHKhQfFOet1RRWFDJW6I4LiuVqgSlhmHWukRsJsvKyrKyct02hWF3b5vzZfL8ZXLsRgVOq4KgU4XC60qlJimdbpPjTKTNOQAAAFBjhN0AAAAAAAAD8P3VyhfmKQqL8v0VKgdrZFlZ5XK7ybLStS4Po8wwTDlOsxynubfNeaeCoENBaaE82XKcZoVRoTL720jJTU9T2m2TbTfUunQAAABgXCLsBgAAAAAAeIco8lUozJNfXq0g6JbntStJIqXTM5jRO05U2pxPlutOVhSVqut7l4M1Ms2MUk6roqioUukt2dYEpdNtct2pMs1UrUsHAAAAxg3CbgAAAAAAgF5Jksj3l6tQmK8oKsnzlioIu2TbE5ROzyTIHKcsKyPLysh1pykMezZqc247LQrDLhUKbyiVmijXbVMqNZEW9wAAAMAWRtgNAAAAAAAgKYqK6sm/VmldXe6Q5y2TDEOZzPZynJZal4cxoNLmvEmO06Q4DhWGnSqXOxSUFr2jzflqmYYj152mdLpNtj2h1qUDAAAA2yTCbgAAAAAAMK4lSaxSabGKxUW9s7nbFUZ5OU6LXHe6TJOPT7Ax07SVSk1SKjWpnzbn6bfbnHtLZFsNfdqcu7UuHQAAANhm8H9rAAAAAABg3AqCbuXzrykMe+SXV8n3V8owHGWzOzEbF8P2dpvztj5tzpfL85fLtifIcVoUht29bc4n0eYcAAAAGCWE3QAAAAAAYNxJkkiFwpu9s7iLKpWWKI693iByGiEkNolhGHKcRjlOo5IkrLTED9apVFosT1Zv6N23zflUpdPTubACAAAA2ESE3QAAAAAAYFwpl9cqn5+rKCrK81eoXF4j03SVy+0iy8rWujxsIwyjb5tzb6M2547TrDAsquS1y7Zyct02ue40WRZtzgEAAIDhIuwGAAAAAADjQhyXVSjMl+evUBj0yPPaFSeBXHeaUqlJzObGFmNZaVlWJcyOorzK5Q75/kr5/krZVoOcVKvCsEfF4ptynFal021KpSZzTgIAAABDIOwGAAAAAADbPM9foUL+dUVRSZ6/XEHQIctqUENmJ5kmM2mxdRiGIdueINue0NvmvGuDNue206xUmFc5WCvTsOW60+S60+Q4TbUuHQAAABiTCLsBAAAAAMA2K4o85fNzVQ7WKgg65ZWWSkaidHqmHKdVhmHUukSMU5U25xOVSk1UHPsqlzt6W52vlWmkemd7l1Ty2mVZWaXdNrluG23OAQAAgD4IuwEAAAAAwDYnSRJ5XrsKhTcURb58f6mCsEu23aR0eoZM06l1iUCVabpKp99ucx4E6+T7q/q0OW9RFOZVLC6Q47TITbfJTU2WYVi1Lh0AAACoKcJuAAAAAACwTQnDvPL5uQrCLpX9NfL85TIMS5nMLNpBY0zr2+Y8nY4UBJ0Kgk6VSm+pJFNOtc15h/KGJTc1Vel0mxynudalAwAAADVB2A0AAAAAALYJSRKrWFykUmmxwqgor9SuKC7IcSYqnZ4mw+BjENQPw7De0eZ8XW+b845qm/MoLMnzl8kyM70zw9tkWelalw4AAABsNfxfHgAAAAAAqHtB0Kme/GuKwrz88mr5/kqZZkrZ7M6y7YZalwdslkqb82ly3amKokKfNucrZFk5pZxWRVFBheICpZwWuW6bXHcKbc4BAACwzSPsBgAAAAAAdSuOQxWLb6rktSsKCyp57YpjX6nUZLnuVBmGWesSgVFTaXPeINtuUDo9XUHQrSDoUMlbopK3VI7TrCjMqxysU74wT25qitLpNtl2swzDqHX5AAAAwKgj7AYAAAAAAHXJ91crX5inKCzK91eoHKyVZWWUy+0qy8rUujxgi6q0OW9RKtWiOC73tjhfp8L6NudOS2+b8+WyzLTS6ely3Wm8NgAAALBNIewGAAAAAAB1JY595fOvyy+vUhh0y/OWKk5CuW6bUqlJzGDFuGOaKbnuVLnuVIVhQUHQUWnnX14py8wplWpVGFbanDtOs9Jum1KpKTJNPhoEAABAfeNftAAAAAAAoG543jIVCvMVRZ48f6mCoFOWNUENmZ1kmm6tywNqzrZzsu2c0ukZCsMulcvrVPKWSGqX4zQpDHoUlNfJMObJdafIddvkOC1cJAIAAIC6RNgNAAAAAADGvDgO1NPzksrBOgXlDnnecsmQMpnt5TgttS4PGHMMw5TjtMhxWhTHgYKgo7fV+YLeNufNiqKSPH+FLDMt152mdLpNlpWtdekAAADAsBF2AwAAAACAMS1JEvXkX5Xvr1ap9JbCqEeO0yLXnU4bZmAYTNN5R5vzdSoHa+WXV8kyc3KcFoVhXsXSIjl2k9Lp6bQ5BwAAQF3gX6wAAAAAAGBMK5UWq1xeo1LpLUVxSdnsjrLtxlqXBdSl9W3Ok2S6wrBbQdAhz18qz18qx25U6LQqCDplmvOVy+0q122jxTkAAADGLMJuAAAAAAAwZgXBOhWLC+T7KxVGPcpmd5JtT6h1WUDdq7Q5b5bjNPe2OV9X+SotlGE4SrvTFCehPG+ZGhr2kG031LpkAAAAYCOE3QAAAAAAYEyKIl/d3S8rCLrl+yvlutMIuoEtoNLmfIpcd4qiqFhZMsBbonLQoXR6psKwR5nM9spmZ8kwrFqXCwAAAFQRdgMAAAAAgDGnsk73ywrDgkqlt2RZDUqlptS6LGCbZ1lZZbM7KAxb5XlLVSi8Ljc1RUkSyvdXqKFhD6VSE2tdJgAAACCJsBsAAAAAAIxBxeKbCsrrVCotlgxDmcz2rBsMbEW2PUG53G7y/VXyy6sUBOuUTs9UFHty3alqyO0q03RrXSYAAADGOcJuAAAAAAAwpvj+ahVLi+X5yxXFRWWzO8s0+QgD2NoMw1Q6PU2O0yzPW6piaYGcsFlJHCgor1U2u7PS6RlciAIAAICa4f8UAQAAAADAmBFFJeXzryoIulQur5brTpdt52pdFjCuWVZaudzOKpc75PvLlQ/myXXbFFdbm+8u255Q6zIBAAAwDhF2AwAAAACAMSFJYnV3v6QwLMgrLZFtN8l1J9e6LAC9UqlW2XajfH+5PL+90to8M0Nh2K10ZjvlsjvJMKxalwkAAIBxhLAbAAAAAACMCfnC6wrDLhVLi2SYtjKZ7WpdEoB3MHtfm47TIs9rV6EwX25qspIkUtlfpVzD7nJTk2pdJgAAAMYJwm4AAAAAAFBznrdcnrdUJW+p4risXG4XZogCY5htNyiX203l8mr5/koFQafS6RmKYk9uarJyud1lWW6tywQAAMA2jrAbAAAAAADUVBjmlc/PVVDuUBB0KJ3eTpaVqXVZAIZgGKZcd6ocp1ml0lIVSwvlBE2Ko0DloEO57E5Kp7eTYRi1LhUAAADbKMJuAAAAAABQM3EcqrvnJYVRQSWvXY7TqlSqtdZlARgB03SVy+2kIFgnz1umoDBXabdNSRzK81aooWEPOU5jrcsEAADANoiwGwAAAAAA1Ey+MFdh0KNScZFM01U6PaPWJQHYRI7TItueIM9bIc9fqnKwTpnMTEVdeaXTM5TN7izT5ONIAAAAjB7+dQkAAAAAAGqiVGqX76+U5y1RnIRqyO0mwzBrXRaAzWAYtjKZmXKcFnleuwqF+Uo5ExXHofzyajXkdpPrTql1mQAAANhGEHYDAAAAAICtLgi6VSjMV9lfrSDsUiYzS6bp1rosAKPEtnPK5XZVubxGvr9SYdgtNz1dcewr5U9SQ243WVam1mUCAACgzhF2AwAAAACArSqOy+rpeUlh2CPPX65UarIcp6nWZQEYZYZhynWnyHGa5HnLVCotUhg0KY7KCsodymZ3VCazPR0dAAAAsMkIuwEAAAAAwFaTJIl6el5VGOZVLC2WZWXlutNqXRaALcg0XWWzOyoIOuV5yxQU5intTlOSRPL9lWpo2IMLXgAAALBJCLsBAAAAAMBWUyotUrm8RqXSW5ISZTI7MKsTGCccp1m2PUG+v0Kev0zloEOZ9HYKo7zS6RnKZXeWaTq1LhMAAAB1hLAbAAAAAABsFeVyh4rFhfLLqxRGPcpmdyLYAsYZw7CUTs+Q47SoVGpXofiGUs5EJXGksr9auYZdlabbAwAAAIaJsBsAAAAAAGxxUeSrp+cVBUG3fH+lXHeabHtCrcsCUCOWlVUut6vK5TXy/RUKwi6l09MV95Tle8vV0LC7LCtb6zIBAAAwxhF2AwAAAACALSpJYvX0vKQwLKhUeku23aBUakqtywJQY4ZhyHUny3Ga5XlLVSotVlDuUJwuKwg6lc3OYqkDAAAADIqwGwAAAAAAbFGF4psKgnUqlRZLhqF0ensZhlHrsgCMEabpKJudpSDolue1K1+YK9edqiQJ5fkrNKFhDzlOS63LBAAAwBhE2A0AAAAAALYY31+tUukted5yRXFR2ezOMk0+jgCwMcdplG3vLt9fKd9fqSDoVCY9U51RUWm3TbncLjLNVK3LBAAAwBgybnsAPfvss/rnf/5nnXjiiZo5c6Zc11VDQ4N22203ffrTn9YTTzwx7G0tWrRIl19+uQ444AA1NzfLcRy1trbqsMMO0z//8z9r1apVW/CZAAAAAAAwNkVRUT35VxQEnSoHa5ROT5dt52pdFoAxzDAspdPTlcvtKsMwVSi+oVJpiUqlJVq3brY8b1mtSwQAAMAYYiRJktS6iK3tyCOP1OOPPz7kuE996lP62c9+plRq4CtGb7vtNl100UUqlUoDjmltbdWdd96pE044YZPqHUx7e7u22247SdKSJUs0c+bMUX8MAAAAAABGKkkidXY+q3J5rfKF12Xbjcpmd6h1WQDqSJIkCoK18v0VUmIonW6Tk2qV4zSrIbcHF88AAADUmS2Ra47LvmHLllWuAJ0+fbo+/vGP633ve5+23357RVGkp556SldffbWWLl2qW2+9VUEQ6Pbbb+93O3/5y190/vnnK45jmaap8847T6eccoqmT5+ut956S7fccot++9vfqqOjQ6eccopefvll7bTTTlvzqQIAAAAAUBP5/OsKw24VS4tkmo4yGS7OBjAyhmEolZok226S5y1TyVuiIFindHqmwqBbmcwOymZnyTDGbfNKAACAcW9czuz+0Ic+pE996lP62Mc+JsuyNvr9mjVrdPjhh+v111+XJD366KM68sgj+93OAw88IEm67rrrdMkll2w05qtf/ap++MMfSpK+8IUv6Nprrx3Np8LMbgAAAADAmON5y9STf02l0hIFQadyuV1lWelalwWgzoVhj0qldiVJINedKjc1WZaVU0PD7kqlJta6PAAAAAxhS+Sa4/Kyx/vvv19nnHFGv0G3JE2aNElXX3119fu7776733FPPvmkJGnixIn9Bt2S9I1vfKN6+6mnntrUkgEAAAAAqAth2KN8fp6CcoeCoEPp9EyCbgCjwrYn9Abbk+X7K5UvvK5yebW6ul9Qd8/LimO/1iUCAABgKxuXYfdwHHPMMdXbb775Zr9jyuWyJGnHHXcccDtNTU2aNGnSBuMBAAAAANgWxXGo7u6XFEYFlbx2Oc5EpVIttS4LwDbEMEyl023K5XaTYdgqFN9UqfSWvNJSrVs3W6XSUo3DRpYAAADjFmH3AHz/7StBB5oBvvvuu0uSFi5cOOB2uru7tWbNmg3GAwAAAACwLcrnX1MY5lUqLpJpppVOT691SQC2UZaVVja7c2X97rBb+fw8+f4q5Qtz1dX1nMKwp9YlAgAAYCuwa13AWPXoo49Wb++55579jrn44ot14YUXau3atfqv//ovXXzxxRuN+fa3v73B+JFqb28f9PfLly8f8TYBAAAAABhtpdIS+eVV8rwlShQpl91JhsE19gC2HMMwlEpNlG03yfeXqeQtUbncoXSmEoBnMtsrm91RhtH/RBYAAADUP8LufsRxrO9///vV788444x+x33mM5/RE088oVtvvVVf+MIX9Nxzz+kjH/mI2tra9NZbb+m2227TvffeK0m68sordfzxx4+4lvWLtAMAAAAAMFYFQZcKhfkq+6sVhF3KZGbJNN1alwVgnDBNW5nM9nKcFnneUhUKr8tNTVaSRPL9lb3rfE+qdZkAAADYAgi7+/GjH/1ITz/9tCTptNNO0wEHHNDvOMuydMstt+jDH/6wvvvd7+rnP/+5fv7zn28w5phjjtHXv/71TQq6AQAAAAAY6+K4rO6elxSGeXn+cqVSU+Q4TbUuC8A4ZNsTlMvtpnJ5tXx/pYKgU+n0TEWxJzc1Wbnc7rIsLsQBAADYlhB2v8Ojjz6qK664QpI0ZcoUXX/99YOOf+2113TrrbfqpZde6vf3Tz31lG644QbtueeemjFjxojrWbJkyaC/X758uQ4++OARbxcAAAAAgM2VJIl6el5RFBZULC2WZeXkutNqXRaAccwwTLnuVDlOs0qldhVLC+SEzUriQOWgQ7nedb4Nw6h1qQAAABgFhN19vPLKKzr11FMVhqHS6bR+9atfacqUKQOOf/zxx/XhD39YXV1d2mGHHfSd73xHJ5xwglpbW7Vy5Urdd999+n//7//pzjvv1GOPPaY//OEP2nvvvUdU08yZMzf3aQEAAAAAsEWUSotULq9VqfSWpESZzPYESADGBNN0lcvtrHJ5nXx/mfLBPLlum5Ikkuev0ISGPWTbE2pdJgAAADaTkSRJUusixoKFCxfqiCOO0LJly2RZln7961/rlFNOGXC87/vaeeedtXTpUk2bNk1z5szRtGkbX73+yiuv6MADD5TneTrggAP07LPPjmrd7e3t1XW9lyxZQjgOAAAAANgqyuW16up+Qb63Qn55lbLZHQmOAIxJSRLK85YrCDpkmTmlMzNkW1ml0zOVze4k02Q+EAAAwNawJXJNc7O3sA1YtmyZjj/+eC1btkyGYejGG28cNOiWpN/97ndaunSpJOlLX/pSv0G3JO29994655xzJEnPPfec/va3v41u8QAAAAAAbGVR5Kun5xWFQbf88kq57lSCbgBjlmHYymS2Uza7ixJFKhTmq+QtVam0WOs6Z8v3V9e6RAAAAGyicR92r1mzRieccIIWLFggSfrP//xPfepTnxryfq+99lr19v777z/o2AMOOKB6e+7cuZtYKQAAAAAAtZcksXp6XlIYFlQqLZFtT1AqNfASYAAwVth2TrncrnLdqSqX1yifnyffX63unhfV3f2iosirdYkAAAAYoXHdo6erq0snnXSSXn31VUnS97//fX3hC18Y1n1t++1dF4bhoGODIOj3fgAAAAAA1JtC4Q0FwbrKOt2GwTrdAOqKYZhy3alynGZ53lKVSgsVBk2Ko0Dl8lplszvxvgYAAFBHxu3M7mKxqA9+8IN6/vnnJUlXXnmlLr/88mHff8cdd6zefvzxxwcd++ijj/Z7PwAAAAAA6onvr1LJWyLPW64oLiqbnSXD4KJuAPXHNN3eYHsHhVFB+cJc+f5KFQrz1dn5tIKgq9YlAgAAYBjGZdhdLpd16qmn6i9/+Ysk6ctf/rK+853vjGgbxx13nLLZrCTp+uuv10svvdTvuAcffFC/+c1vJEkzZszQfvvtt+mFAwAAAABQI1FUVE/+VQVBp8rBGqXT02VZ2VqXBQCbxXGa1dCwuxynRZ6/TPnCfPnl1erselb5/DzFcTD0RgAAAFAz4/Ly6zPPPFN/+MMfJEnHHnusLrjgAr388ssDjk+lUtptt902+Flzc7OuuOIKfeMb31BPT48OO+wwfelLX9IJJ5yglpYWrVy5Uv/7v/+rn/3sZ4rjWFKlTbppjsvrCwAAAAAAdSxJInV3v6QoLPau092sVGpSrcsCgFFhGLYymZmVwNtrV6EwXylnopI4ku+vUkPDbnLdqbUuEwAAAP0wkiRJal3E1jbSNXd22GEHLVq0aKOfJ0mir3zlK/rxj3+swXaj4zj67ne/q8suu2ykpQ6pvb1d2223nSRpyZIlmjlz5qg/BgAAAABgfOvpeU2e1658Yb6kRLncrjIMq9ZlAcCoS5JE5fIa+f4KGYaldHq6HKdZKWeiGhp2l2Vlal0iAABA3doSuea4nNk9WgzD0I9+9COdc845+vnPf64nnnhCixcvVrFYVENDg3bZZRcdddRRuuiiizaaGQ4AAAAAQD3wvGXy/GUqee2K4zJBN4BtmmEYct3Jcpwmed4ylUqLFQTrFLtlBcE6ZbOzlMnsIMOgeyMAAMBYMC7D7tGezH7AAQfogAMOGNVtAgAAAABQa2HYo3x+noJyh4JgnTKZ7WVZ6VqXBQBbnGmmlM3OUhB0yfOWKl+YK9edpiSJ5Psr1dCwhxynudZlAgAAjHvjMuwGAAAAAACDi+NA3d0vKYwKKnntcpyJcpyWWpcFAFuV4zTJthvk+yvl+ysqF/6kZyqMCsqkZyqX223ESyYCAABg9BB2AwAAAACAjeTzrykMe1QqLpJpppVOT691SQBQE33X7va8pSoU31TKmShJsu0JvD8CAADUEIvLAAAAAACADZRKb8kvr5bntStRpGyW9WkBwLKyymZ3keu2qRysUVDuUKEwX3FcrnVpAAAA4xb/pwoAAAAAAKqCoFOFwhvy/VUKwi6l09vLNN1alwUAY4JhGHLdybLtZnneckWRp0LhjVqXBQAAMG4RdgMAAAAAAElSHJfV3fOywjAv31+hVGqKHKex1mUBwJiTTk+XjESev1yev1xBsK7WJQEAAIxLhN0AAAAAAEBJkqin5xVFYV7F0mJZVk6uO63WZQHAmGSajly3TUHQoSgsqCc/V0kS17osAACAcYewGwAAAAAAqFhcqHJ5rUqltyQlymS2l2EYtS4LAMYsx2mVZWVV8toVhXmVSotrXRIAAMC4Q9gNAAAAAMA4Vy6vVbG0UL6/QmFUUCazg0zTqXVZADCmGYahdHqm4tiXX16tYnGRoqhY67IAAADGFcJuAAAAAADGsSjy1NPzisKgW355lVx3mmy7odZlAUBdsKyMUqlJ8v2ViiJP+fy8WpcEAAAwrhB2AwAAAAAwTiVJrJ6elxWGBZVKb8m2G5VKTa51WQBQV1x3qgzDlucvVTnokO+vrHVJAAAA4wZhNwAAAAAA41Sh8IaCYJ2KpcWSYSmT2Y51ugFghAzDUjo9Q2HYrSDoVD7/uuI4qHVZAAAA4wJhNwAAAAAA45Dvr1TJWyLPW644Limb3UGGYde6LACoS47TJNtukuctUxSVVCwuqHVJAAAA4wJhNwAAAAAA40wYFtSTf01BsE7lYI3S6RmyrGytywKAupZOT1eSRPL9FSp57QqC7lqXBAAAsM0j7AYAAAAAYBxJkkg9PS/1rtPdLttuVio1sdZlAUDdM82UXHeqysFaRVFJ+fxcJUlS67IAAAC2aYTdAAAAAACMI/n8XIVhj0qlxTLNlDKZmbUuCQC2GanUJJmmq1KpXWHYLc9bUuuSAAAAtmmE3QAAAAAAjBOet0xeb3vdOC4rk9lBhmHVuiwA2GYYhql0eqbiuKhyea0KxQWKIr/WZQEAAGyzCLsBAAAAABgHwrBH+fw8lf21CoJ1ymRmyrLStS4LALY5tp2T40yU769QHHkqFObVuiQAAIBtFmE3AAAAAADbuDgO1N39ksKoIM9fKseZKMdpqXVZALDNSqenSYYhz18mv7xafnlNrUsCAADYJhF2AwAAAACwjcvnX6us011cJMvKKJ2eXuuSAGCbZhi2XHe6gqBTYdCjQn6ekiSqdVkAAADbHMJuAAAAAAC2YcXiYvnl1Sp5S5Qo6l2nm48DAGBLS6VaZFkN8rx2RVFRxeLCWpcEAACwzeH/bgEAAAAA2EYFQaeKxTfl+ysVht3KZLaXaaZqXRYAjBvp9AzFSSDfX6lS6S2FYb7WJQEAAGxTCLsBAAAAANgGxbGv7p6XFYY98v2VSqWmyLYba10WUFtRKAUlKSzXuhKME5aVVio1RX55tcKopHx+rpIkqXVZAAAA2wy71gUAAAAAAIDRlSSJenpeURTmVSwulmXl5LrTal0WsHUlcSXcjnwpKlcC7iR8+/emLaVykp2VLD4iw5bjulMUhp3yvHZZVlq+v1zp9PRalwUAALBN4F/yAAAAAABsY4rFBSqXO1QsLZYMQ5nM9jIMo9ZlAVtWFEpxb6gd+VIcSElS+YrD3q9AiiPJMCU7LUWBZHRVbqdylf+ypj1GmWGYSqdnqFhcoKDcoUJhvlKpSSwrAQAAMAoIuwEAAAAA2IaUy2tULC2S769QFBWVze4s03RqXRYwupK4ElRHvcF2WJaSqPd3UW/w3SfcThLJMCqzua1U5Xd+T+VntlvZVuhVgm4nWwm+LYJIjB7bniDbbpbnLZdtN6pQeEMTJuxV67IAAADqHmE3AAAAAADbiCjy1NPzioKgW355lVy3Tbadq3VZwOYbctZ20Gf2dly5j2n1tipPV/5r2FLfBgdJJAW+FHlS4FXG225lW+W8ZDmSk6uE36ZVk6eNbUs6PV2Fwjx5/nIZpq10uk2O01LrsgAAAOoaYTcAAAAAANuAJInV3fOSwrAor/SWbLtJrjul1mUBI9d31nbYu972RrO2e8PtqHcNbsOQTEey0pJjV9bgHqoduWFJqayUZCvbCz0pKEnlomSnJMuthOtep2Rnetucu7Q5xyYzTUeu2ybPa1fKaVVPfq5amt8rg3MKAABgkxF2AwAAAACwDSgU5isMOlUsLZIMS5nMzFqXBAxPFFZma0flt7+kfmZtB1KcVH5nWZVw2x5g1vZIGKrM4racymNGfiX47tvmPA6lsNTb5jzX2+ac5QEwco7TqiDoUMlrl2VlVCotVja7Y63LAgAAqFuE3QAAAAAA1DnPX6GS166St0xx7CmX20WGwf/yYwxK4sps6b4tyZPetuMbzNoOpKh3Nnd11nZm+LO2N5VhVAJ0O11Z6zv0KjUGXiVgt9KV4LvcU1nTu9rmnJm5GB7DMJROz1ShMF9+ebUMw5brTpVlZWtdGgAAQF3i/3wBAAAAAKhjYVhQvuc1BcE6BcFapdMzCU0wdmwwa9uvtCeXemdt911nu79Z25nKfw1r02dt9yNOJHM42zOtygzuJNdbvycFxcqX1dsyPSxLfmelVidbCcmNUSwW2yTLyiiVmiTfXynHblE+P09NTe+pdVkAAAB1ibAbAAAAAIA6lSSRenpeUhgVVCotkeO0KJWaWOuyMF7FcSUU7m/Wdhy9HWpHQeV76e1Z2+uDbdMelbA4TqQgihRGiYIoURDFCuJYYZgoShLZpqGWXEoN7jA+GjNUWcPbTvXOTPcrz83vrqTmVroS6gfFt9cBdxoqM9CBAbjuVAVBpzx/qUwrJd9fKdedWuuyAAAA6g7/6gYAAAAAoE7l83MVhj0qlRbLNF2l06zTja1k/Xra1Rnb5Y1nbUehlISVnyd9Zm1bTm/rb3uzZm3HiRT2hthBWAm0wzhWECWK1s8SlxTHicK4EnJHcawwTpSxLYVxoh4v1KRcSo49zDbkhik5mcpXHFaC79CTglIl3LZ725z7vW3OUw29QT5tzrEhw7CUTs9QqbRIQdCpfP51OU6rTJO14AEAAEaCsBsAAAAAgDpUKi3tXat7ieI4UC63q4wttY4xEMd9Qu3erySWElXW2h5o1rblVILhTZy1nVQD7URhFKscVcLsMKqE1m+XVwmzw/jtQDuOpTCOFcdvb88yK2smrysHcp1IE9KOvCBSU8ZRczY1vPbm65m2lLIr63ZHvbO9ywVJhUrQbbuVGe6m0dviPCs56RE9f2zbHKdJQdAkz1sm25qgYnGBGhp2r3VZAAAAdYWwGwAAAACAOhOGPSoUXlfZX6Mg6FQms4MsixANo+Sds7bDciXIrv6uN9ROordnbRtGZfZy31nbpjXshwvjuLfleNz7tX6mdtJnXGXGdtQ7UzuMY0WxFPX+dz3TkGzLlGUacm1blmnIMgxZpiGzN832g0g9Xqi1eV8511KSJCr4oVobUsqlRvhxmaFKsG27fdqce5LnV/aBlarsz3Khsl+cbCUgp805JKXT05XPz5Pvr5BhWnLdNjlOY63LAgAAqBv8qxoAAAAAgDoSx4G6u19UGObl+cuUSk2S4zTXuizUs0FnbYe9s7bDzZu1nag6O3uDMLt31nZ1WJIoSqSoN+heH2z3F2hblinLkFKpSqBtvyPQHozrWEpZpgrlSAU/lFeONSFtV1qcO6EmNqTkWJvQKaFvm/Mo6L1YoG+b896f+92VludOtjKWrgzjlmmm5LpT5fsr5KRalc/PVXPzQTJGYe16AACA8YCwGwAAAACAOpEkiXryryoM8yqVFsuyMnLdtlqXhXqyfmZ2WJbicmUWchz2/i6urLMdB28H3NVZ233W2rZ619reaNtSGPfOzo7XtxtPFESRgmjoQHv92trrbRBoO70ztE1D9jAD7aEYpqGGtK20Y6nHC7SuGCjtRIrSjkpBpOaMo6aRtjbvy3J691mucgFB6FfW8jaMyizwKKgE4d76gLxBslOb/bxQf1KpSQqCdSqV2mWZaXneEmUy29e6LAAAgLpA2A0AAAAAQJ0olRarXF6jkrdEiSJlMzuzTjcGF0cbtyN/56ztaH243Ttr2zTfbrdt2hvN2g6jRGEUVQPtoE/78fUSJZUW41GscH2r8SRRFFXW1k56M23DkGzTlGVKKceUZZqjGmgPh20Zasml5AWRerygt7W5rSRJlPdDTWpwlUkNryV7v9aH27Zbaf0e+pWvwKtcRGC7leOyvs15KldZ35s25+OGYZhKp2eqWHxD5fJaFYoLlEpNlWW5tS4NAABgzONfzQAAAAAA1IEgWKdicYF8f6XCsFvZ7I4yTWaB4h2ioHfN6N6Ae9iztlOSY1dnbUfrZ2gHsYIo2KDt+Pq514kSxbEURm+vnR0OEGivD7Bd2+wNtw3Z1tYLtIcjvb61uR8q74cqlaNqa/NsytbEXEq2tZn1GlblIgI727v2uV9pcV4uVmZ1W70zvo2uSsvzVLbS7pyLWrZ5tp2T40yU76+QbTepUJinxsZ31bosAACAMY+wGwAAAACAMS6OfXV3v6wg6Jbvr1QqNVW23VjrsjCWRKHkd1aC0yTpDbPD3oC7/1nbkWEpiK3KDO1gfcvxsoI4rgbVAwbave3HBwu0TVOyLVOmobpZf9g0DU3IOMqkbHX3bW0eJyqVQzVnU2rKOIMuTz4shvppc+710+a81LsOeLYy49viApdtWTo9TfmwS76/VKblyC+vkZuaVOuyAAAAxjTCbgAAAAAAxrAkSdTd87LCsKBS6S1ZVk6uO7XWZWGsiGPJ75aCfCXUDkqVmd29s7Yjw1QoS6HhqhybCkOj2nI8TmJJgSRVw+soTirBdpJU249vEGgbhizLkGuZspxK+/H162rXS6A9HLZlqDWXUimIlO/T2jxWorwfaGJuM1ub99W3zXnc2+Y88vq0OU9Xjm05/3Y47mQrv8M2xTBsue50ed5bcoIeFfLzlGppkWFwrAEAAAZC2A0AAAAAwBhWLC5QUF6nUmmxZBjKZLbfpkJFbKIkrqzx7HdXAtKgqDjwVAoieUqpnFgKIlPR23dQHIcKq6F2XLmdVNbVjt8ZaJuGXMuQ6TiyTfWupb1tBdrDkXEsuX1bmwexGtO2gshTLmWrdTRam/dlWpXW5Ulvm/PQk4Ji5Vivb3MeliW/qxKCO7neNufj67hsy1KpFgVBhzyvXbadU7G4ULncLrUuCwAAYMwi7AYAAAAAYIzyy2tULC2S5y9XFBeVze4s03RqXRZqLShJXmelRXnkS0FefhBrXdlUMc4oiNfP1A76DbQlyTYrgbZjGkrb4zvQHkq1tbljq9sP1FEoK50yFceJikGo1mxKE9Kj0Nq8r75tzpOkcpzXtzk3DclKV9qcB6XKOuCpbCX4tnh/2Bak0zNUKLwu318pw7DkutNk2w21LgsAAGBMIuwGAAAAAGAMiqKS8j2vKAi6VC6vlutOl23nal0Waiks94bcfmWN56CgOArVWTbVFaZVjqRuL1AYVVJty5Rs0+wNtO3egJtAe1PZtqEWy5EXxOrxAq0JfDW4juLEV7cXalJDSmlnC7SbNozK7G073dvm3Ou9yKEkWXZv+/OgEoRbqT5tzs3RrwVbhWWllUpNkV9eJdtpUT4/V01NB/C6BQAA6AdhNwAAAAAAY0ySxL3rdBfllZbItpvkupNrXRZqJQorbauDYm/L8oIUllWKTa3xK2tx5/1QxXKklG2qNefIMQ0ZJsHYaDMMQ5mUJdeu7PNuL1ApNDXBTRREsRrcSmtza0vte9OSUjkpyVUueIg8qVyUVOydCZ7ubXPeKdmZSuhNm/O65LpTFIad8rx2WVZavr9c6fT0WpcFAAAw5hB2AwAAAAAwxhQK8xUGnSqWFskwbWUyM2tdEmohjqVyt1TOV9flVuApkqm15ZQKkSUviNTj+UoSqSntKJ0ymf25FZimocaMo4xjqdsP1VEoK5uyKq3Ny6Fasik1pp1KO/ItwVBlDW87VVm/PfQrwbffXZnRbbmViySComTYfdqc81FgvTAMU+n0DBWLCxSUO1QozFcqNUmmmap1aQAAAGMK/8IFAAAAAGAM8fwVKnntKnnLFMeecrldZRj87/u4kiRSuVCZzR1HUliqtKyW1BO7WusbCmOp2yvLD2KlHVONaUcmM7m3Osc21Wo5KpVj5f1AXhCpIe0oSnz19LY2d7dEa/O+DFNyMpWvOKy0OQ+9Pm3O071tzrsrIXgqVxlr0OZ8rLPtCbLtZnnectl2owqFNzRhwl61LgsAAGBM4f+WAQAAAAAYI8Iwr3zPawrKHQqCtUqnZ8qyMrUuC1tTUJK8rko4GfqVluVJorKR0hrPkhfFKvmVYNUwpJass+XDVAzKMAxlXUtpx1SPH6q7FKgUmGpMJyp3bYXW5n2ZtpRqkJyGyrreoV+5cEKFynredlD5ubc+IM9V1vzGmJVOT1ehME+ev1yGaSudbpPjtNS6LAAAgDGDsBsAAAAAgDEgjkN197ykMCqo5LXLcVqVSk2sdVnYWqJyJeQOPSkKKiF3FCq2UuqKHHV6scI4VncpUDmMlU1ZanBtZnOPIaZpqKm3tXmPV2ltnnHebm3emktpgrsFW5v3ZagSYttub5tzrxJ8e12Vdb8tt3JBRbnQG5DnJDtLm/MxyDQduW6bPK9dKadVPfm5aml+rwxm5gMAAEgi7AYAAAAAYEzIF+YqDHpUKi2WabpKp2fUuiRsDVHYuy53oXdd7oIUliXLVsmaoLXFSOUoUsEPVShHskxDrbmUUjZB11iVsk215hwVy7EKfiA/jNTgOoqTsnr8UBNzKbn2VpyNb5iSk618Rb0zu8NSZT1vy6m0OY8Cyeiq3HaytDkfYxynVUHQoZLXLsvKqFRarGx2x1qXBQAAMCYQdgMAAAAAUGOev0K+v1Ket0RxHKihYTdm7W3rkljye6RyT2/IXZQCTzItRU6DOnxDeT9UOazM5o6SRDnXVi5lyTCYzT3WGYahnGsp45jq9gJ1lQKVgkiNaVt+EKsx7ag558ja2sfScipfTq7STSD0K+ehYVRmgUdBZRa4Z1bGuBMqM8FRU4ZhKJ2eqUJhvvzyahmGLdedKsvK1ro0AACAmiPsBgAAAACghuI4VKHwhoKgU0HYpUxmB5kma+hus5KkEmx7XVIcVoLFoFj5XSqnfGSroydQEMXK+6GK5Ugp21RzOiXbIuSuN6ZpqDmbkh9E6vFDrS2Ule1tbV7wQ7U2OGpwna1f2Ppw23alJKqE3qFfveBCtvt2p4FUg5SaIJlcgFNLlpVRKjVJvr9Sjt2ifH6empreU+uyAAAAao6wGwAAAACAGiqVFiuOSvK95bLtRjlOc61LwpYSeJLf2Tt71q+E3Eks2a5CM6M1hUCloCwviNTjBUoSqSntKJ0ymc1d51zHUso2VSxHyvuhvDBSQ9pR1JOo2ws1KefWrjW9YVVal9vZyjreoScFpcqXk62E3uW85DZJqSztzWvIdacqCDrl+UtlWin5/kq57tRalwUAAFBThN0AAAAAANRIFJVUKr0lv7xacRIom96p1iVhS4iCykzusFS5HRQqa3XbKcmeoO5yoo5uT2GcqNsL5Aex0o6pxrQj0yTk3lZUWpvbSjuWerxAXcVAJTtSY8aRH5TUlHHUnHVk1urCBkNvtzlP4t7W+sVK+O1kpTiutN1PN1W+x1ZnGJbS6RkqlRYpCDqVz78ux2mVadagOwAAAMAYQdgNAAAAAECNFArzFUWefH+lUqnJtC/f1sSR5HdXZsUmkVQuVmZ0W7aUbpKfmFrbU5YXRir5sfJ+IMOQWrKOXId1krdVVt/W5l6otXlfuZSlJEmU90O15lJqcGv8kZ1hVtqX25nKxRl+j2QWK+t4x6Fk9VRmejvp2tY5DjlOk4KgSZ63TLY1QcXiAjU07F7rsgAAAGqGsBsAAAAAgBool9fKL6+W7y+TYdhy3Sm1LgmjJYkrAbff07vuce/sWMOQ3AmKrZQ6i4G6Sr2zuUuBymGsbMpSg2szm3ucWN/avFCOVPBDeUGsCWlbUZwo74WamEvJqVVr8/VMS3IbJTuonMd+txQ6lZndUVmy05WZ3laqtnWOM+n0dOXz8+T7K2SYlly3TY7TWOuyAAAAaoKwGwAAAACArSxJ4sqs7jCvIOxSOr29DIOZvHUvSSqBoNddWfs48nrX5ZbkZCQ7o1IQa213SeUoVsEPVShHskxDrblU7dZsRs0YhqGGPq3N1xUDuU6kMO2oFES9rc1Tqvn1D5YjWU1SWJbCQqUtv52qXMwRepUZ325jpWsBtjjTTMl1p8r3V8hJtSqfn6vm5oNk1KoFPgAAQA3xL1AAAAAAALYyz1uqMMyr5C2VZWXlOM21LgmbK/Qlr7My2zUsV1o/J7Fku5KTVZQY6siXlfdDlcNY3aVAUZIo59rKpSxCqnHONg21vLO1uVtpbV7wQ7U2pJRLjYGP8exUZRZ35FfO8dK6SivzJJLCouQ0SO6EyoxwbFGp1CQFwTqVSu2yzLQ8b4kyme1rXRYAAMBWNwb+lQwAAAAAwPgRx2UViwtULncojj3lcrsSdNazKJT8TikoVdYyLhekKKgEgm6jZFrK+6E68mUFUay8H6pYjpSyTTWnU7Itjj3e5jqWUpapQjlUwY/klSutzcM4UcYJNbHBlVPrc8ZQ5SIOy5XCUm+bfr/S0jyOKyG4O6Gy5rdBt4ItxTBMpdMzVSy+oXJ5rQrFBUqlpsqy3FqXBgAAsFURdgMAAAAAsBUVigsURV6l/azTKsvK1rokbIo4rqxfHOR7Q+5SpZ2zZfWuYewojBKt6fJUCiJ5QaQeL1CSSE1pR+mUuUUuckh6/0uEXr8M01BD2lHasautzdNOpKi3tXlLxlFTNqWaXyNjqLc9f7pysUdYqrTut7OV9uZ+vvJacLKqfbHbJtvOyXEmyvOXy7abVCjMU2Pju2pdFgAAwFZF2A0AAAAAwFYShj3yvKXy/ZVKFMt1p9W6JIxUEldmb/vdlUAvKFZCbsOQ3AbJSkuSukuBOgplhXGibi+QH8RKO6Ya047MUVyAOZGhyHAUGSlFZkqR4UiSrLgsK1n/FRB+1yHbMtSSS1UvlKi0NreVJInyfmWWdyY1BtqFG4aUylbamQfFt18TTrbS3tzvltLNlWAcoy6dnqYw7JLvL5VpOfLLa+SmJtW6LAAAgK2GsBsAAAAAgK0kn5+nKCqpHKyV606TaTq1LgkjERQlr6vSujzyetfllmRnKkGeYcgPI63Nl+WFkUp+rLwfyDCklqwj19n8YDKW0SfYTinuDbdjGYoNR7FhyUikyErJTEIZSiQlspKgTwAe9P4c9SC9vrW5HyrvhyoFkSakHQXdnrIpWxNzY6QdvmFWWpfbmcprw+/pXcc7V+l+YKUqobdNm+3RZBi20unpKpXekhP0qJCfp1RLiwxjDFwIAQAAsBUQdgMAAAAAsBV4/goFYZd8b7lMM6UUM+/qR1iWvHVSVK58lQuVWd1OurdFs6k4kToLZXWVgsps7lKgchgrm7LU4NqbPJs7lvmOcNvu/fn6cNtWZNhKVAm2TEVKDEOJ0r3fhzKT3i/DldkbcptJUAm+ewNwk/B7TDNNQxMyjjIpW91eoHWFstKOqShOVCqHas6m1JRxxka3cNOqrFdvB70XiHRLllN5rUTlShje2+ofo8NxWlQud8jz2mXbORWLC5XL7VLrsgAAALYKwm4AAAAAALawJIlUKLyhIOhSGPUok9lRhmHWuiwMJQolv6sS2MVhb3vmciWky0yQzMrHKqVypLV5X+UoVsEPVShHskxDrbmUUvbIjnMsq9qOPDRSSnrD7UimYsPu/XKUqLJdU5GsJJSZlGRVZ3JXQvK+40MjXR1fDb+TlExzffgdviP8jkdlF2J02VblvCqVI+X99a3NHcXylfcDTcyNkdbmUuV1YjVVXjNhodIVwXYrrc3DkpTKSalGyeLjydGQycxUPj9Pvr9ShmHJdafJthtqXRYAAMAWx78mAQAAAADYworFxYqjknxvmWx7ghynsdYlYTBxLJW7pXK+N+QuSYEnWetnrKYkSVGcqKNQVt4PVQ5jdZcCRUminGsrl7JkDGOabVQNtytfSW/r4UhWn7DaViJTRmWF7t5W5GGfNuUbMxXLTMpSUpb09tre67cXGpVW0oZimUlQDb8tsxJyG0lUXfPbjssyFW32bsXoyaQsufb61uaBSoGpxrStIPLU4NpqyY6R1uZS5fVipaTIr7Q3L3X2ht5x5QISp6HyujK5AGhzmKarVGqK/PIq2U6L8vm5amo6YFjvQwAAAPWMsBsAAAAAgC0oikoqlRbLL69WnATKuDvWuiQMJEkqLcr9rkqb8qBUmYEqSW6DZKWl3two74fqyJcVRLHyfqhiOVLKNvX/2fuT5cbybM/v/f67vTcA0ruMzMiIk7ekUzo6ZXZlJpPsmq5MkxrWE2gsU72KXkIDTeoFalDzmpWGmt/KjHPyNJXReIQ3JIDd/Ps7+MPpTXi0ThIEfX3SmPQgSGCRAAgCv73WejT8cMhYgYJ9HW7rjnoYIF6UofBqLLmBQ7itydjqr7qxf21spajYd8LvV8F3VrZ1kaMO4feh85sOXTPKgKrlKvw2JaD59bWI6/FqtPngDDufeDEGhk5TSmUMiSfrjgeD405cUYoWcJuu3afiDMm3kealtBC8P287v2Xqxa/W978jpQuW5S8YM+D91wzD58cuSwghhBDiRknYLYQQQgghhBBC3KBx/IKcPd4/pes+wZjh2CWJ94kzLBdtdPmrDtRawb7ay90Sw5Qrz/aeOWaWmNktkVrh4eAYOv1WF2ULsds48hZuO7gKty2F12EzqBZu14Qrh3D7BgNlRcXUiKkRd1Wrvaor6RUVBRRMPYw+x6HrQGs+L5gSsYcAXNd4JzLVj5GzmsfGsYTCzkeeRc9Z7yjVs10Sn5x1DO6OjDZXqt2f7OqwFmCGPLePlQx+3/Z5v3GfEz+fUpph+Cum6c/E8IJx/IKu+wStu2OXJoQQQghxYyTsFkIIIYQQQgghbkgIL/DhO3z46rBD9XfHLkm8K4c2Vjl7yBHiHnJuXajdmkOyCxW2S+TFGEilsl0iPhYGp3kwOLRuA8VfB9tt7zaH4eOtc9tStCNjeDvcXjA1oshHC4wVYGrC1PTq270K44uyJD1QWQEVQ0aXSDaJVPtDzfWw7ztedYBLVHl7lFKsekPvNHuf2C6ROWnO+0rMhbPe8mTTYfQduVaUaju73dAONPEj6KWF3DWD3x1C79WxKz051p5j7SOW5WusfcA4/h3n5//vY5clhBBCCHFjJOwWQgghhBBCCCFuQK2VcfwTOY3EeMEw/AGl5Gn4nZHTYS/3eBhZPkIKYBwMZ+39gU+Z5/vAkjKzL+x9RCl4tO6w3UB8T7idX3Vu6/YeuBoR3tVwGEl+vHD7pyjAcAi/awu/62GPeFaWpPtD+A2ahC4JY7o39ogfOsdLxFR/CPPfv19cXB+tFQ/eGW2+7gylVKaQeHyXRptDO5ikOzt0eo8t5E4zuA2U2MaeD4/awSfiZxuGzxnHP7L4r1HaMgyf4dzjY5clhBBCCHEj5Fm2EEIIIYQQQghxA5blS1LaMy9fYswa554cuyQBbT9w2LW3ktso5biANm1n8BuhWqlwMQUu50gqlcs546ulX53R9yui6YhAQVGUO3RBm7fCbVMTto6HMeDlSN/0h1OAIqNr2yHe4mx9+J4dWXck2oh+TUK/Gn2uIppN+/irru9yGH0u4feN6azmiXHMoR2csaTMee8oNbBbEp+cd/T2jow2h8P97wHY2ELv5RJs1zq9c2hh+PDwrYNQxA/T2tH3n7Esf6FzT9jt/zOPH/3PKNmHLoQQQoh7SMJuIYQQQgghhBDimpUSmKa/J8aXlDKzXv/NW7ucxRHU2oLt5RJKat2jcW6ndZsWpr1xFc0h890+MlfLPq0Zi0UPjpWzGGOI6vW+7UoLDTUt4LXVn3y4/VNa+F3QNUANAJSr8Psw+lz1h8/NmJraz6T2aN1+Lrqmd8Lv+/vzOgalFOveMDjNbklczpE5Zs4HS7gonA+Wx5sOc5d+NxkH5lGbspDGtmLA9m20eZrbfbV7AEZe0vwpzj0hxhfMy18wZsU8/xPr9V8fuywhhBBCiGsnfxkKIYQQQgghhBDXbJr+gZwXluVrnHuMtZtjl/RxizP4y7aTO/kWetcCdmg7gQ/djrlq5up4NsMuagKGOSYyGjf0ONuRtCPSPl9fhbgz5mp898dLvxN+X41zP3R/vw6/C7rGQ/d3j9G5fbzmq33fpgQM+Wjfy32iteLh2rFK5mrv/NodRpv7zOON47y/Q6PNoXV1mw7y0u6vV6F3af/dnbXQW0un8g9RSjEMf2Acv8CH71DK0vefYsz62KUJIYQQQlwrCbuFEEIIIYQQQohrlNKOZfkS759SKfT9Z8cu6eOVIywXkJb27zi2Xd22A/eApDoCjlgdAccYYbckYlHMWeOLQXeOzlmMgkrGHvZtawm3f5KiYmuEGoGZirrq+s7KklRHRV3tMm/d8B26ZpQBVctb4bcm3ak89tR0VvObTccUCuNhtPnZ4Mi1svOJ32zu2GhzRTsgxfSvJzEk3w5QKQXC2Eafd5urA1bE24xZ0XWf4P1TnH3Mfv9HHj78H49dlhBCCCHEtZKwWwghhBBCCCGEuEb78U+kPBPic/r+92gtO2ZvXcmtkzuMbfxxGKkpkMyKMHxC1GsCjoqmVghVc7FUfDEEVvhSqVQGV+l1wtQFXSRo/VCKiqkRUyMOqNDCbw5jz/WKigLq67HndO3AAgNQMKXt/W4HHUS5Tn4hpRSb3rBymu0SuZwis808WDl8XHgwOB5t3N0aba5U291thxZ4x7mF327TQm+/h+FB+5y7VPcd0fefEuMFy/IXtOnw/il9/+mxyxJCCCGEuDYSdgshhBBCCCGEENfE+2+J8QK/fIXWHV33ybFL+rjUAmEPfkfNmZgiMVeCekDsH1J1RwVSNSQsGcOYFFMoVAoxBnKc6XRm42oL/KR5+8YowNSEIUE9hN+8sfNbD6/DbzK6RLJJ6DoQqO3jNV7t/DY1SPj9M2mteLTu8DGz84nne3812nz0iSdnjrP+jh2oo3Tr4nYDhKmF3HpuIXdNEHbQP2yd3+KKUoZh+Cvm+R+J8YL9/k8490QOxBJCCCHEvSFhtxBCCCGEEEIIcQ1qzYzjF8S4JeUdq9V/jZLRurejVmqYiMtMKBBzR8gFGCi2J5sVCXcVcAPkUljCQk0BFSM+eLSCB87irOZuLTD+OCjAkDD1dfhdMa/HnuueSgsyNen16HPVow9HJegasW+F33K0wo/pnaGzmilk9j6xpMz54Mi7yn7J/O7BgL5rdwVloD9voXaYwO9ed3rn2MaeD4/augIBgHMPifEhy/IV1pwzTX/m7OxfHbssIYQQQohrIWG3EEIIIYQQQghxDeb5n8l5wi9fYsw5zj08dkn3WqkQqyHERPQLsWjIPSV7UnUkM5DMmnJ46UNRsSQsEe9nYoioWpl9JuVC7zSDM2gZg3xnKECR0TVjqwegoK86v4vqSGoAQJOvwu+kurfC77bzu73XlGN9O3dWG21uGZxht0QupkjvMmVwfLfzfHre381jP7Rt48tzhDjCctkCbreGfNjt3T8CIy9/AgzD5+z3f8T7b1Da0Pef4dyDY5clhBBCCPHB5K89IYQQQgghhBDiA+W8ME3/iA/fUWpkM/z1sUu6l0LR+GoJxZAyEEdyiuSqSbmQakdRZ+A6FGBJ9Mytn1sVfCrs5kgqhSVmllQwWnE2OJy5i2meeJemoGuAGoB3w29LUj0AioKuEV0TpvZo3UJuVdPVvm9TIhrZxf6KeWO0+eUcuVwiSsOLSfFkc4e7pI0D8wiShzjBfNH2e9fc9nt3Z9A/AG2OXelRad3R95/i/Te47gn7/X/m0aP/CSUH+AghhBDixEnYLYQQQgghhBBCfKBx/IKcPd5/S9d9gjHDsUu6d+Zi2aaBXAopBnJKJCwlaygZrQrWaqwqWPZo9Xp8da6VyzmxxEzMlTkkcq0MzjBYLWHPCXs3/K6oq7HnRVmi6om8Cr8Pnd+1R5NRpn1FC8TjG+/jRx2A987wELiYI/s5oVA4ozgf7viOZ9u3EeZ5OYTe/hB619b53Z23N/3xrpfouk+I8SXz/BeMHliW/8Jq9S+OXZYQQgghxAeRsFsIIYQQQgghhPgAMb7Eh2/x4WuU0vT9745d0r2Tq2KXenyIzAmoGp0LtuyxZKzRaO1A5e997Rwz+yVddXP7WLBG86C3mDu3jFh8KEXF1IipEXgVfhuKcofO7xUVBdTD6POMqun1vw/n04LxiLl6Hz+q/d+9M5wV2C0RazTP9gFn2qj/O03RAm7Ttz3ecYa0tJHmpUDYty7vbgPq4wu9ldIMwx+Ypr8jhOeM05/puk8xpj92aUIIIYQQv5qE3UIIIYQQQgghxK9Ua2W//xM5jcT4kmH4A0rJU+3rVCtc5oEUZuZocWVilV+ia22BlungPZ3ZqVR2cyTkQkiFOSZqhXVn6aySbu6PRAu/E6YmACpQsBRlqIfu76q69wTgGU16KwBXNV91fr/qBL/PO8A3vSGXwnaJaK34duv57NGAMycQEivVdnfboXV5X4Xem7dDb7d+7++P+8zaDc79hsV/jbUPGcc/8uDBf3/ssoQQQgghfjV5Bi6EEEIIIYQQQvxKy/IVKe+Zl6/QeoVzT45d0r0zFUcMkSmCyp51eoGyrgXd7+vMrDDFxG5po8rnkImp4Kxm3Rn0RxZsibcpwHAIv6sHWgBeMYe93+YQhL8KwGkjz2tC1/JGAN66vFXNb40/N4cu8fvifLDkUrmcAuas5+l24bNHK8yp3I+Ubju77aqF3n4HejqE3umN0Ht17Epv1TD8npQu8f5LtHH48Iy+++TYZQkhhBBC/CoSdgshhBBCCCGEEL9CKZFp+ntieEEpE+v130i38DVLVbGPmiUs5GI5Sy9Rtm+7ed8j5sJ2jsRSCLEyx4RScNZbnD2BblRxFApQh47uV5PKXwfg5tD9bUhvBOCvd4Dn12H41Zjz0kLvEq9CcE0+yT3gSikerhwvpsDFGNCbju+2nt8/GDipb0gb6M9bqB0m8FtItoXeObQO8OFhmxTxEVDKMgyfM8//jIs7xv0f6R4/Rqk7PqZeCCGEEOI9JOwWQgghhBBCCCF+hWn6MzkvLMvXWPsIazfHLuleqRUuY0deRpbS0+dLrFXvDbpLhdFHppDJpTKFTMqF3rUdw9LNLX6ptwPwALwKwPVV+F0wJD28E4C3Tu+kMlrlN8ac13c6wNsY9FO4ZWqteLTqeDF6LuaIUvB89Pzm7AT3PGsLwwPIEeIIyyXYDko+jDlfQ/8QzP1/ydS5x4TwgmX5C9ZumKZ/YLP5m2OXJYQQQgjxi93/v9yEEEIIIYQQQohrltKeZfkSH55SKQzD58cu6d4ZsyXOI2N16Dwz4MF8/4ACnwq7OZJKYYmZJRWMVpwNDmdOIUoUtyolGMc23nq9gV/Q8d8C8IKu4aoDHKCgW/itDAVL0j0VfXWqoRzGoL/aBf6qy/vNAPx1EH4Xb7XWKB6tO15Ogd2SUErhjObByh27tF/HONCPIPs23nx+CW6Amtt/d2dtvLm+353Oq9Uf2O//iPdPUcrQ97/H2rNjlyWEEEII8YtI2C2EEEIIIYQQQvxC4/gncl4I4Rl9/ylan2jgc0fFqhmXyFI0JWXO6h7lVm+NTc61sl8SS8zEXJlD29E9OMNgtYyUF983zbDdQc7ttjROsF7B5uwXhd7v0hSoBVPj1ccq6ir8bqPQHUkNV6fqQ9e4Ouz4bnvAD+dX0+v934cucPVmun4kndU8GByXc8ToVq0zmlV3ooGwok2KMD2kuYXcybeR5rW+Dr27c9D3cw2C1j1d9zt8+BbrHrPf/2cePvz/yO9PIYQQQpwUCbuFEEIIIYQQQohfwPvvCPEly/IlSjm67rfHLuleqRUu50KKEZ8dfdlju7514h7MMbNf0lU3t48FazQPensVwglxpRS42IL34D1qngGofQ+1tBB8s4bNBsz1hJqKiqkJQ3pjD3gLwNsucHsYh/5qD3g97P7Ohz3g6a0AXNX8vRHor0ek355VZ0i5sPcJqxVPdwufP1zRfcDBAkenaLu87QBxbsH3q5HmJUPYt9Hm3fqt30P3Rd//jpQuWJa/YMyA91/LtBIhhBBCnBQJu4UQQgghhBBCiJ+p1sI4/okUt6S8Y7X6r1H3MPw4pn2oJO+Zco/JgcECqnWOplLZzZGQCyEV5pioFdadpbNKuhHF9y0etpeQMowTKkZq14HWqKWF31eh9zjDZnWtofebXgXgkKB64NUe8FfhdxuFnq4CcA4BeELX8kYA3tJzVcsb4fehE5x87XW/62yw5FqvOryfbhc+f7Q6/QNNlGqBthtaV3ec3gi9C4QdDA/bf98jSmmG4a+Ypj8TwwvG8Qu67hO07o5dmhBCCCHEzyJhtxBCCCGEEEII8TPN8z+R88SyfIkxZzj38Ngl3SshVaYlMFdLKZlzE1DGHU4rvJwDuVTmkImp4Kxm3Rm0hNziXbW2keXTDDHAOLf+6c0Guhbi1b4Hv6AWT/Ue+sPO5nGGs0PofcPjq9se8NbN/boD/FUA3t6qsm8F4G1veDp0gL8ahf5qzHlpoXd5HYK/3hF+TTUrxcPB8WKOXEyRJ5vW4f3ZgxX34q6odBtfblct8PY70BO4DZQEZtc6vd3w0+d1Iqw9x9pHLMvXWPuAcfyC8/P/7thlCSGEEEL8LBJ2CyGEEEIIIYQQP0POnmn6R3x4RqmRzfDXxy7pXim5sB0DsShCUgzKYw5Bdy6tizSmyugjSsFZb3GnPDpZ3JwQ4HILMcI0o0IA56jr9dvhtdawWlP7AZYFtcxUv7wdem/W7e0Wdzb/cACuD6PPDQVD0sM7AXhG10RSGa3yG2POK7qm741B/5BcWmnF45Xj+eh5Obf75LO957fn/Qec6x2jDfTnbcR5GMFvIbnW2Z1DG3s+PARzPzqgh+FzxvGPLP5rlLb0/Wd03ZNjlyWEEEII8ZMk7BZCCCGEEEIIIX6GcfqCUjzeP6XrfoMx96er7+hqZT8tpKKYo8GoTG8VqNagezEHYilMIWK0ZtNLN7d4j1phP7a3lGAcUaW2kLv/kRBWa1ivqcObobeHoW87m8fpKKH3m1oAXtA1XAXgAAV9FX4XZUm6p6KvTjWUwxj0wz7wqy7vNwPwdBWC/5J7ldaKR6uOF1Pgco4opXBG82jtruvbvhu0baF2CpBGWC7Bdu22kT2sf9f++8Rp7ej7z1iWv9C5J+zHP/LY/c+yqkMIIYQQd56E3UIIIYQQQgghxE+I8QLvn7L4b1BK0/efHruke8UvI3OyzAkKinObr/Zvb5dITIXRZxRKgm7xfinBxWXr6l48alnAWur5unXo/hxvht7zgppn6vJG6D1NsD5u6P0uTYFaMMQ3usBVG4HOqz3gjqReHZxT0YeucXXY8d32gB/O7yr4TpiyYH5iB7izmocrx8UU2fvYPmYUm/4evuRou9bFnT3EEZYL6B/A9B1sPgVz+t+zc0+I8QXz8heMWTHP/8R6LVNMhBBCCHG3nf5fYUIIIYQQQgghxA2qtbLf/4mcJmJ8wTD8AaXk6fR1KX5i6xUxJ0JdsbIZc0jeppBYYmaKmVwK572ToFu8rdYWQm/3bZ/yOKNSog6rFlL/mtuL1rBZU1fvCb3zq9B7A2frX3f+N0xRW1hNejsAx7QucGUO49Bf7QGvh93f+bAHPKFrQZlz+rylK9OPXt7gDOdDZbckjNZ8t/NYo+jtzzzI4JQowPZg+jbWPGxBP4LpGWx+d2cOgvi1lFIMwx8Yxy/w4TuUsvT9pxizPnZpQgghhBA/SJ6dCyGEEEIIIYQQP8L7r0l5x7J8hdYDzskO02uTArslkrJmKn0LyHTbMxxSYbckfCyEWFj3FmvuXrAojigV2F6CD+AX1LSAVtTzc7DX8JLXVejdvx16r16F3iNsNq3T+w6G3m9S1EP4nd7ZA96C73IIwdNVAA6uzGAgq44hX6LenJ/+jk1vSbmynSNGKZ5uPZ8/XN3f+6yi7fNeLmDZwqBhfg7rT+78beGnGLOi6z7B+6c4+5j9/o88fPg/HrssIYQQQogfJGG3EEIIIYQQQgjxA0qJjOPfEcMLchlZr/+bq/Ha4gPlxDJuWfLAnDVox1qHdlKpXM6RmCtTTPRO09vT7pgU12xZ4HILqYXOKiZq38NqgOveMawNbDavO72nmTr7dlk5wzjC2aaNOD+h3w9tD3jr5n43AM+6I+oVpZrDWHTLkF7+6FjzBytLniqXc8Donm+2C58/Gu7vNAal2hjz5QLCDlDt36vHRy7sw/X9p8R4wbL8BW06vH8q6zuEEEIIcWfJM0UhhBBCCCGEEOIHTNM/kPPC4r/B2kdYe3bsku6HWsjTC7ZlIKREVCtWpqBVpVa4mAOxFKYQcVqzcvdwHLL4dUppu7lfXsLiYbtFpUI9OzuEzT/+UpdGYbR9/aYM+tUbGo1Co67+9/YXH0Lvhw/AWdQ0weUO5kPw/t13LfiuP9wBfdcpQJNxZaYve4pyeHNOVD2T+4So+h/+WqV4tHIoFBdzxMfMd7vAjzSEnz5tWuCdI8Q9hD343bGr+mBKGYbhr0h5R4wX7Pd/opR47LKEEEIIId5LOruFEEIIIYQQQoj3SGlkWf5CCN9Sa2YYPjt2SffHfMEudaQYmHiAtYpOtSBlu0RiKow+o1CseyPd9KLxAS4vISWYZlQI1K6jrlY/uitZK4PWGoW5arxWh13VvySHrfXwFaaCW7Wu7uAhJGoK0HdQZ+roYbOiDgNo/f5LOYGbtKmRPm8J5gxvzunKxGIfk/NIX3bv/Ra0Vjxad7wYPZdLRGl4MSmebLpbr//WGAfdWQu51eHAHG3bbeSEOfeQGB+yLF9hzTnT9GfOzv7VscsSQgghhPgeCbuFEEIIIYQQQoj3GMc/kfOCD9/R95+i9T0Oa26T3zGHhE+OmRXK9ayZAJhCYomZKWZyKZz37v6OQBY/X62w28M4QYqwn1BU6mYD3ffvlxqF0hqlDPrQ6a1QoFrn9g8G4/Xwf290Zr8ZU1dV3/6osmA7WNUWxOdEXRI4B1Ogzqnt9+7674Xb7wvZayv0jct740T1+nN+MKK/gbuKptDnLVFvCHpzGGsORTuGdIGmfO9rrFE8XDku5sh+TigUzijOB3f9Bd4VtoeSIIwt8J5fgP5dC8JP2DB8zn7/R7z/BqUNff8Zzj04dllCCCGEEG+RsFsIIYQQQgghhHiH998R4gsW/xVKWbrut8cu6X6IM3nesktrfFYkd8YGj1aVkAq7JeFjIcTCurdYI0H3Ry/GNrY8RlgW1OLB2hZ0vxFaazTKGPRb3dsapdrboZGbWgu1pEOgffWJV/9+8/9fefUx9eaI9HdvmrZrI9ZjhpIh0l51WxL4Qu1dC8FRr6Nq9Z7Qur4Os98Nv3/4wq++9Psf+xnh+Q/G52/8eLoyolUi6hXVWGreU+xvWOULTP3+eOveGc5Lm9RgjObZPuC0Zuju8UoCt4Ga2/5urWF8Bme/a6POT5TWHX3/Kd5/g+uesN//Zx49+p9k2oYQQggh7hQJu4UQQgghhBBCiDfUWhjHL0hxR0pbVqv/6u2QS/w6OVKnF2zzQEqZ2X6C0wWnErlULudIzJUpJnqn6a38zD9qtcJ+gv3+MLZ8QuXcRpb3PUpptNIo/W73tkKjXwfhtVJrppZK/V4Xcn3r3Tv/fE9N7/vgm5u9FVgFVaNigiW3HeKda12/3rfaD6G3qj8UGL6ZUP90Ka/D8/d8waFb/aon/ReG58nUq5Nt9aicCWaDNw/oyp5JPaHPO7oyfe/r170hl8JuiRiteLpb+PzRCmfu6X1bAd05+EvwWxgUTM9g89uf3CV/l3XdJ8T4knn+C0YPLMt/YbX6F8cuSwghhBDiioTdQgghhBBCCCHEG+b5n8l5ZPFfYswZzj06dkmnrxSYnjEXS0iZ2T5CGceKHbXCxRyIpTCFiNWalTvdTkhxDVKCiy3EALNHLTNYi3r4CG3dYTz5Vb81Sh32uiv1Rvd2hlp+4VbuX+PNS3g13hxqZyFrVAgwearWbeR6ju3fwwr694+4Vm+cnfr+R19/pL55ijr89/uC658Oz989qQJVFWxWFA1FtWIMiSFvCXqD1w9wZQKjyMox5MvvXfrZYEmlcjkFzFnP0+3CZ49WmPvaGawU9A9guWg7vNEwv4T1b45d2a+mlGYY/sA0/R0hPGec/kzXfYox/bFLE0IIIYQAJOwWQgghhBBCCCGu5OyZpn8ghOeUEths/qtjl3T6aoX5OSkVdtHi1UAyZ2yY0IrW0Z0Ko88oFJveyIjcj9k0w+UOSkKNMxpQZw9RwxqlXk0c121E+VX39uuA+/vd20dkNHU1QCqoGGBZqFqjujbyvHoN/fdD7zc7td+/Pfz16e/5qvd61fT9vgHt734OtL3nVI2iokpFo666vBWVruxJekXU69d7vJVllS7Q5Nfnqdr+7hdT4GIM6E3Hd1vPpw8G7u3dXOlD4H3ZRporBYuF4eGxK/vVrN3g3G9Y/NdY+5Bx/CMPHvz3xy5LCCGEEAKQsFsIIYQQQgghhLgyTX9HKR7vn+LcE4xZHbuk07dcUsPCNjlyVczdYzoCTiWmkFhiZoqZXArnvbvq2BUfmVzg8hLtIyplVCyYbk3te5S1oHQLYLU+tB0Xyq11b38gq6l2gJRRh93jVRtU5yAfQu9h1cad35BXTd/1+x992xtt5boqdG3j1rM+dHmb1uWtAFdmlEpEvcEbS5f3jO43rNIltvqrs9Ra8Wjd8WLvuZgjSsHz0fPJ2T3uDNb2MNJ8C2p842Ob49b1AYbh96R0ifdfoo3Dh2f03SfHLksIIYQQQsJuIYQQQgghhBACIMZLFv8Ni/8GFPT9749d0ukLI4QdY6qEopncJ2hgxUJIhd2S8LEQYmHdW6yRoPujU0H7gNqN6AoqVlSu0K9Q/dD2cSve6N5O1HqHurd/CWuo1vxw6L3cfOj9SxRVqVRM1diiW8idK0opsm5d3rZGdN4SzBmLeUBXRmb7mC7v6cr+Kju3h8D75RTYLQmlFJ3RPFjdje/1RtgO6qb9HtQWlpftvT3NkF8pyzB8zjz/My7uGPd/pHv8GKVk7YQQQgghjkvCbiGEEEIIIYQQH71aK/vxT+Q8E+NLhuFztJanzB8kBVheElNmzCu8e0RWHWeMlFrb+PJcmWKid5re6mNXLG5LpXUNl4oaZ1QIqFQhZbRxsDoDo6FUas3UcgLd27/Em6F3eDP07g6ht4FhuBOhd1WQVMG80eWNLqisyAaqqmgK/WGPd9Bn1LJQDYc93hfow3XXWc2DwXE5R4xuMbgzmlV3j8NSt4KaIezbePPpGWw+BXOajy/OPSaEFyzLX7B2wzT9A5vN3xy7LCGEEEJ85E7zLyshhBBCCCGEEOIaef81KW1Z5i/Ruse53xy7pNOWE0zPqCmwjT3Jrlj0GT0eQ+bFHIilMIWI1ZqVu8dhlzjsilboAurV3uiU0dOMKhWVgKLAdlRrqKpQc+an9lCfvLdC7wDL/Ebone9U6J1VRVPR73R5l0OXt1LQl5GoEkmvKFgqiqI+YZUvMDUCsOoMuRT2PmG14ulu4bOHA729x78D3BmUAmEL+tEh8P5dG8l/glarP7Df/xHvn6KUoe9/j7Vnxy5LCCGEEB+x0/yrSgghhBBCCCGEuCalRMbx74nxJbmMDMPnKNkb/evVAvNzKIExVqIemMxjNIUBz85HYiqMPqNQbHojP+/76NC9bbLCZoXNoCuYAmaO2MmjMygfqSlQNGQLhXwYU37Pg+43WUNdr6jDCgWoZYZpRvmAGkfY7iDGY1dJUZB067JvnfkaXcHm18vAXfV0eU9B480Dku6Y7BOCXl2dz6a39Fa36Q6p8O3Wk8s9vr4V0J+3zu5lCzm035H1NL9nrXv6/lN8+I6UZ/b7/0w90e9FCCGEEPeDhN1CCCGEEEIIIT5q0/yPlLKwLF9j7UOsPT92SadtvoDkCX5hVA9Y3GMKhg0Tc0zMITPFTC6FdWfREnTfD7W96aKwSeGywmSwhaudzzaBnhbwnrLMlHFLSZ7SWaqMsX9/6D0vLfTej7Dd34nQO+tKURUN2DcCb11a6G1IDHmLouD1OVENePOQxTygAkopHg4OYzQvp4BPhae75VSz359HKegetIOB/BbiDMvFsav61brut2jdsSx/IaZLvP/62CUJIYQQ4iMmY8yFEEIIIYQQQny0UhpZ5v+C90+pNTEMnx27pNPmdxBHatiz5THRneMZGPDknNgtCR8LIRbWvcUaCbpPWgWNQr05nhyudjurNz6xxkCdZ2pOsHhUKdSuA+dAbgZvs4ZqV2+PNzcW5RzkRDUW1j3Y4403L6q2fd1FY6pGUVGlolEkU1Gq0ucdUa+Iek2phkrb471KF2idebxyPB89F3NEK3i29/z2vD/a93TjtIH+wSHsHlsArm3r+j4xSmmG4a+Ypj8TwwvG8Qu67hO07o5dmhBCCCE+QhJ2CyGEEEIIIYT4aI3jF+Ts8eE7uu53aH2Pg5ab9qpTMU7s8kDqzpjZYMjYuvByjsRcmWKid5peOnlPz6Hzto2wfp1Rq8NO7jcD7sohEK2ZOk6olCDEFt5qRV2twMht4Eddhd7pR0LvAexxXt6rQNal3R4OBzgUVbBZUXS7/rsyo1Um6jXeGLo8MrrfsEoXWB14tOp4MQUu54hSCqcVjzb3ODA1DrqzdmCQOuwp1xbc6se/7g6y9hxrHx2mojxgHL/g/Py/O3ZZQgghhPgISdgthBBCCCGEEOKj5MMzQnyO91+hlKXvf3fskk5XjjC/gBQIITN3v2fW5xQMZ+y5nAOxFKYQsVqzcubYFYuf6xBk6/d0b1PVW/vxKm28dXn1SSHCNKFKad3cOVGdg66Xbu5fwtoWbOd3Qu+ua6G3tbBagT3O/epVl7d5p8tbocimYgnonAlmw2LO6cvEbJ/Q5T2d3fNo5Xg5RfZLPHy7mrP+Hr9kaXsoGcLYAu/5Bejfgjm9kH8YPmcc/8jiv0ZpS99/Rtc9OXZZQgghhPjI3OO/HIUQQgghhBBCiPertTDu/0SKO2K6ZLX6FyglXaa/SikwPYMcKWHPpfucaNYEOlYsTN4TU2H0GYVi0xuU7Om+2+phFPmhe1vxE93bVOqbV2mtMM0tmE0JvEehqMPxAtmTp/h+6D1Pr0PvdNzQuwLpnS5vdEFlRTGAyvR5R9BrvD7DlZlqDmPNueB8qOyWhDGa73YeZxT9fb6tuDXUBGEHWsP4HM5+10adnxCtHX3/GcvyFzr3hP34Rx67/1keT4UQQghxqyTsFkIIIYQQQgjx0Znn/0LOE4v/CmM2OPf42CWdplphft46u/2WnXlMsudMrLAkUpyYQ2aKmVwK571DS9B999RXgfbb48l/uHu7hdzvlSLs59bN7T0qRap11F66ua/Fm6F3Sqh4CL2tQ7nSQm9n4UgHFrTbRUVXjS2aoioqV5RSZF3pykhSmaQHSrWAYlSfsOIlqcxs54hRiqeXns8frbDmnt5oFNCdg79sO7wH1Q4a2vwWTiwodu4JMb5gXv6CMSvm+Z9Yr//62GUJIYQQ4iNyWn89CSGEEEIIIYQQH6gUzzT/AyE8p5SFYfj82CWdruUS4gJ+y1I7FvcJCwMVjcsj+yXhYyHEwrqz9ze4OkWH7m2TFfbwZgqYqjClBZX6EHS30eSFpAtZ1/cH3ZXWzb0bUfEwvjwn6jDAIEH3tVOAs9TVmtoPqJJR89TGxS8BtdvBfg8p33ppRbUu70o97HfX6Ao2K3QFVxe6sqcow2IekHTH5H7Dan2OM5qLORBy4ZvtQqk/cFDFfaAU9A/av/0Okof5ZTuI6IQopRiGP1CKx4fvmKZ/JOfp2GUJIYQQ4iMiYbcQQgghhBBCiI/KOP49JXu8/wbnfoMx62OXdJrC2Ebwxj2lFHb950Q6Ah19ndjOgZgrU0z0TtNbeQniqFrDLboobFK4rDCZq4DbvhFwQwu4s24B91t7uN8nZdhtUYtv3dzLjNKaul6DlaGCN+rd0Du/EXr7N0LvfPuhdzswoqABWzTmEHibrDAl0ecdioLX50TV4+0jhrPfoFC8nCI+Zr7bhXbbva+UboF3yYffp1Pr9j4xxqzouk/w/ik5L+z3fzx2SUIIIYT4iMgzDiGEEEIIIYQQH40Ytyz+axb/DSjo+98fu6TTlAIsL1snYlzY9n9FUh0TKwyJaR6JpTCFiNWalTutPbT3RgXNYfd2/enx5PWnQu33mVu4TS7gF1Sp1K4H56Sb+za9Cr3tYbx5CDC1EfKqFIiJ6lzb6W1u78CTNvK+YIpCV92C68Mu72QKfd4R9ZqoN9RqcRb6h4758imXS0RpeDEpnmy6W6v51mnbRpqHXTuICEA76DbHresX6vtPifGCZfkL2nQs/hsGeYwVQgghxC2QsFsIIYQQQgghxEeh1so4/omcZ2J8wTB8jtbytPgXywmm71rgHfbM7hHePGCqq3ay3xJTYfQZhWLTG5Ts6b49FXThqkO77eIGhUJVdZU/V1r3dgu5f8XllAL7NqqcEFu4qjV1PYCWLv6jeSv0jqgQ3wm9I7Vzbaf3LYbeWVf0YXS+LpqsCjYrigZVJ7RORL2mGEPHHvfgM5bdt+znhELhjOJ8cLdW762zHdR1C7u1bQcTaQu2P3ZlP5tShmH4K+b5H4nxgnH/BZ37DVrf4+tNCCGEEHeCPKsXQgghhBBCCPFR8P5rYrpkmb9E6x7nnhy7pNNTC8zPoUQIW7Lu2dlP8dWRcKi4w4fEHDO5FM57h5ag+1bUWilLQIVEqWCNRWuDVgZlNEopKvXQafuBc6G9R01LG728eFQp1K6Tbu67RAHOUa2DGA971N8IvUNs19kw3FroXVSbHqCLxlSNoqJKRaOAgK6ZYDZ484BOjbiz37MdX2C85xmhTYno7vGUCLeCmiHs23jz6RlsPgVzOi/fOveQGB+yLF9hzTnT9GfOzv7VscsSQgghxD13On8tCSGEEEIIIYQQv1IpiXH8e2K8IJeR9fpfopR0n/5i82F0ud8Cmm33GQnDzIDKnmWZ8bHgY2HdW6yR5PM25BhJ04ytGlLFat0CaF2JRAqFokBrizYGZQ1K61+eS5cK04iKqQWoPoBW1GEAe49DyFOmgM61Eebvht61QAgt9F7dTkd+BbIurcO7tmkDWR+6vE1B5R1Bb/D6HNfN2Fp44Sd03PPtbuHzRyvcLXak3zp31qYm+C3oR22KxubTk5qWMAyfs9//Ee+/QWlD33+Gcw+OXZYQQggh7jEJu4UQQgghhBBC3Hvz/I+UsuCXr7H2IdaeH7uk0+O3EKe2V7YUpuH3BDUw1xW1VsK8I+bKFBO90/T2dMKZU1VKIc4T2QdcNZQUcdqSUiLlSOvfVmijQBuqzpSkIbSYW5sWerf3BqV/JP4OEaapdQUvHpVT6xrue+nmPgXvC73HRLUWVeuth96vRuibqrFFU1RF5YpSQN2T9EDUK8xgyAWeZcfvyp6nlwufPV5h7uvECAX05+AvYNnC8OjQ4f1J6/Y+AVp39P2neP8NrnvCfv//49Gj/6+ssxBCCCHEjZGwWwghhBBCCCHEvZbzxDz/F7z/llIj6+FfHruk0xNnWC4hTJACqX/MTj3EV0fEEueXpJKZQmyjhp10+d6kWivJB+I8UUrGZii50LsebS2FgqmGWkp7q4UaI+Xw9UorlNaUpFuH96tw833d35UWcocAKYEPKKAOK+nmPkXvDb2no4TeVUFSb3d5owsuKzQeTSLoM8z6CXm64LtkqGrk263n9w8G7m12qhT0D2C+OEzRAJYLWJ3O6o2u+4QYX7LMX2LMihif03WfHLssIYQQQtxTEnYLIYQQQgghhLjX9uMX5Lzgw7d03W/Ruj92SaclR5hfQAoQJ2q3Zmt+Q66amRUxTJQUGH1Godj0Rjr4blBOiThN5BQpKaFiQWnH0K/QxhJrAkAphTIGTAukKxVKfR2A50Kp+XCuP9D9nTM6BHQFFRM6Z7RzVOnmPn3fC71D6/R2b4TefQ+r1Y1f122HfEW/0+WtS0bpLcGeYdePCdOW51lT9IIdF357do9/lyvTAm+/hTi2AFy71vV9ApTS9P3vmed/JOeZZflKwm4hhBBC3BgJu4UQQgghhBBC3FshPCOEZ3j/FUpZ+v53xy7ptJTSRujm0MaX257J/oZQHRMrQooUv2eOmVwK571DS9B9I0qtLeT2vo0v9wumKIZ+jet6jLKkGn/w6xUKDh3dr9Raf7j7O2dUztRaKekQilvbmn1TRCuF1hql9P3tsP0YvC/0jonaWVSFmjKcbeDHRtxfg6KgqIIprcubQ5d3lyuKLdqsqauHBD9ykaGmDjdPPFrd4+kCxkF3Bn73eoS5tuBWx63rZ7L2AUpZYnhBMGtK8XKwmRBCCCFuhITdQgghhBBCCCHupVpL6+pOe2K6ZLX6Fyh1j4OR61YrzM9b0O13oDXJPWTPBk+Hz4Y0vyTFgo+FdW+xRlLPm5BCIEwjNRdyCKQQsMawXp9jjcUqS6r5Kqj+ud7b/Z0ydV6oOVFTIpUMKJS1KFrwrVShKAWoNvr8KvhWKG1uOhcVN+Hd0DsEaiqo1UDd7uB8c3U7uUlZV3RtXd66aLIqdFlh6ozWidqtmYNBp5n/wgOUmXnY/dJb/gmxPZTcVkgo034n69+B6Y5d2U9SSuHcE2J4zjB8xrJ8w3r9Xx27LCGEEELcQxJ2CyGEEEIIIYS4l5blL+Q0Mi9fYswG5x4fu6TTslxCXFrQXQu1f8SlekiuhrH2eD9Sc2SKid5penuz+30/RiVlwjyRY6CkTPILtVZs17EZztBKY5Wh1EL5xVH396kQIcQ2xjodzs/1VKNbF3itlJKptZ2ktQKlqCiK1rTENLXub6Wl+/sUvQq9jUEtC3WaUcMA2z11s4bO3XgJr7u8NaZqymEE/1Ai2mSqWzHmM0yZ+adlw/9Lex7bcON1HU23hpoh7EEbGJ/B5ndg7v7Lul33hBC+JaZLFv+VhN1CCCGEuBF3/68iIYQQQgghhBDiFyrFM05/JoTnlLKw2fy3xy7ptISxjS2PeygJ+geM6pxYLSMrZh9QaWQKEas1Kycd89ep1kpaFuI8U0oheU9JCW0tru/pTYdSGqssFUjknzzPH1UKeN8C7hwhJUBD14EyKHgjrK5X+78LLQBPpUDOKNW6OUvR0v196oymrleoeYF5pg49ahypeYDVcCslZF3QVV29tS7vwiM18oKBbd1wXjxfTop61vNI7dGq3kptt647A3/ZdngPD1uH9+a3r8eb31Fa9xhzRgwvcO4xMV7g3KNjlyWEEEKIe0bCbiGEEEIIIYQQ9844/pmSPd5/g3NPMGZ97JJOR/KwvIS0tM7u/oyoV4ysWejZR9Bhx+gzCsWmNyhp2702OUb8NFFzuhpZrpTCrVZoa7DKYpTBHkbyx5o+7AJjguBb4B1je28sWEtr832XOuz/hqtDHExtO7+l+/t+UYq6WoH3rcu761BALQXW6/ffPK5ZUZWqKvrQ5d1uSZXfsPCiWvZloGrLN9NCXj/iMVus+sCDP+4ipaB/AMtFC7zRML+A1W+463cc556wLP9MyZ5l+UrCbiGEEEJcOwm7hRBCCCGEEELcKyntWPxXeP+USqXvf3/skk5HTjA9gxRad7cbqGbgknNSNWyTpfiRGAO5FM57h77jQcupKKUQp4kUPDVnovfUUrCuQ3cOpRQGg1MWqzQaTarxAy6wHrq5c+vej4fQ3HVtVPIvolDKSPf3faSAoacGjQqeWiqqQs0Zzs64jSup8naXt6oKdOETEi/inkmdgdqgl4W6esyDumVQ93CsudLQP2yBd9jR7jSXMDw6cmE/zrmHeG+I8QXer9hs/hat5SVpIYQQQlwf+ctCCCGEEEIIIcS9st//kZxnQnxO33+G1je/Y/ZeqKWNxi0Rwha0A3fGng2pWrZ5YAkBwoSPhXVvsUbSyA9VayV5T5wmSi1k78kxoayhW69Ruo0pViictmgUGkOq+ddv6U6pBd2lHrq5cwu4neN62nV/rPsbai0/0v2tAI10f98xnaNqjfILdS6o1UDd7uBsA/Z21hgU1Q6iMFVji6aoymNd2S6X+P6cC7VpHejDQ2KdOGO8f7cXbaA7P6yZGNvdVTvoNseu7AcppbH2ESG+pO9/j/dPWa3+6thlCSGEEOIekbBbCCGEEEIIIcS9sfhviOmSZfkSrTu67jfHLul0zC/bCPNXI3L7MwKOiTVj7dmFigp7ppjonaa3d3tX7CnIKRHGkZITOSZy8ADY1YC29ip2VkCvOzQKqwylFsqvibprhRAgpBZwx0NnuHNw452Wb3Z/G364+xvp/r6rrKHqtse7TjOq72G3o2420N3OQUVVQVIFc+jydijObWVadiTWvOxWEBPVronK8rBuMfdtj7ftoK7b9A1t29oJZcDdzi71X6PrnhDjc+Jh8oqE3UIIIYS4ThJ2CyGEEEIIIYS4F0pJjOPfEeMFOY+s13+NUhLI/ix+C3Fq3YKlwPCIgmHLObEaXgaNSiNL8FitWbnb6eS8r0qtbWS5X6ilEv1CTRnjLKbvv7cD3SmHQmGVpQKJX7GTOGdYXu3mTm10udaHbu5j3E+k+/skaU1dr1HzDMtC7XvUOFLzAKvbC1uzqmgqump6DBiYlwkoXLAGZTk3kNVjHtYtnfrA3fZ3jVtBzeB3bbz5/Bz0p2Du5ku9xqzRekWKL0juASntsPb82GUJIYQQ4p64m38BCSGEEEIIIYQQv9A8/xMlz/jla6x9gLUPjl3SaYgzLJcQpraru38A2rCvG2I1PAsdJUXCMgGw6c33wljx88VwGFmeCyUEUggoo3HrFdp8/yACqyxGGaxqp8X6C0O7ehhVHg7jykMCKlh3B4Oxa+7+RqGMdH9fOwV1tQLv21jz2qGAWjKsN9czCf9nKAqKKpii6LWBCn5Z6Gphyxl1dcYZEy/VI87rnrVabqew2+LO2sErfgvqEUzfwebTdhDLHdR1T1iWrxhKZFm+4uzsXx27JCGEEELcE3ftWY0QQgghhBBCCPGL5Twxz/+MD99RamQ9/Mtjl3QacoT5RRtfHifo1mA7fO2YWXGRHD5VyrIll8J579ASdP8qOWXiPJJjpKRE8p5aK7bv0F333nzQYHDKYpVGo0k1/rILLaV1c+cMObVd3WjoutYNeuddQ/d3ku7vG6GAoacGjQqBmguqQs2HPd63GLhmXdEVeqOhQvCBdd0y1zPqZsO6elCKWB0P2N2f614B/Tn4i0Pg/RCmZ7D55E7ev517xLJ8RYgvMH7FZvPfyvQVIYQQQlwLCbuFEEIIIYQQQpy8cfw7cl7w/ild91u07o9d0t1XcgtGcoCwB9uDW1OqYssZU9JcBgthT4iJdW+x5r6kRLen1kqcZ9KyUEoheU9JCW0tru9RP9B2rFA4bdEoNIZU8y/b0h0j+NAC7xCB0jq5reXWWm9vxHV1f2uss3LwxofqHFXr1uE9z6hVT93u4OwM7O2tOyiqUhU4qyFCipmOHZnMvN6QMW0FwGGPt1W/YhXAXaRUm8axXLbAGwXLBayeHLuy71HK4twjYnhB33+KD98y9L8/dllCCCGEuAck7BZCCCGEEEIIcdJCeI4P3+H9Vyhl6fvfHbuku68WmJ63oNvvQBvozgDYcYYvhmfBUXMg+JHeaXorHXi/VA4BP03Uksk+kGJAKYVbrdA/EgQqoNcOjcIqQ6mF8nOj7lLAe0jljW5uBa5r1/O988u6v5VWbQy/1oRQsMZgjL0/3b7HYA1Vr1DLQp0WVN/Dbkddb6B3t1ZGBaquaKcgQo0Vw4SiEIZzstFs6swL9YiHdUevwq3VdqOUge68hd1hbAG4dq3r+45x7gkxviSnPX75SsJuIYQQQlwLCbuFEEIIIYQQQpysWgv78U/ktCemS4bhX6DUfQz0rtlyCWlpQTe1dQYqxVJ75jrwnbekAnG+wGrNysnP9JcopRDHkRQDJWfS4qm1YF2H7t8/svxNTjkUGqts60blZ3ahptSC7lJaZ3cpoC24U+/m/qV+ovu7FGIpGK1JtVJKxlqHvqO7jk+C1tTVGjUvsCzUvkdNI7UMsBputRSlQTnIsaKjAjyuZvLwgJ09Y10nLtRDNnVkw3Q/DnQwrh2w5HevR8hrC2513LreYe0ZWvdtlLk9I+cZY+5WjUIIIYQ4PRJ2CyGEEEIIIYQ4WcvyF3IamZcvMWaNc4+OXdLdF8Y2tjyOUNIh6Dbkw/jyFx58saRli6Ky6W3rhBU/qdZK8p44TZRSyMGTY0JZQ9dvfnBk+ZusshhlsIeDNmJNP+eCIQQIqY2nj4fd3ve2m/uXeqf7W7eAO5dCKRVjdDsuwOgWesvN/ddRUFcDeN/GmleHAmrOsNnc6vEWWiuyAZ8Lq6zJPjPoLaFsmOyapD0ViMrxsG7Rqt5ecTfF9lAzhKl1e8/PQf8OTHfsyt7i3BO8/4ah/5xl+YrN5r85dklCCCGEOHFyyKoQQgghhBBCiJNUSmCa/oEQXlDKwjD8lYSyPyV5WF62ru64QLdpHYHAlnP2AXa5J4aFkhY2nZOdxj9TTolluyVMIykEwjRScsauBrrV6mcF3QaNUxarNBpN/jlBdykwL20vd4oQQ+vs7HsJun+QQmuLtW18eUqZnCMlZ2LwpPR67Ln4hRQw9NSuR4UE84IKEXa7dlu9Rc4qlIEpZ2op+DmzSiN9nPGpZ2TNUjue85hY70k/kFu30DvsIQUYn7V1BneIc48BiPGCxX9NlTubEEIIIT6QhN1CCCGEEEIIIU7SOP2ZnBe8/wbnnmDM+tgl3W05wfSsBSB+38bb2jZeeK4DY3I8Dx0xV/KyY91ZrJGg+6eUWvHjyLK9JIdAmCaS9xhnces1xv68EE2hcIc93RpDqvmnt3THBPN8GF8e2nVsXevo/qjGlv86Co0xDmtM68pPkZwzKUVi9JRbDmfvlc5RhwFVMswTKkXY7iD9zJH811WG1Sij2OdMprDMGRc967QnBc2unOGr4wWPmOvtjlu/Md15G2EetlBC6/Cud+e2rLXD2geE+IJSPCE+P3ZJQgghhDhxEnYLIYQQQgghhDg5Ke1Yli/x/imVQt///tgl3W21wPwMSmwBiOnAbQDIVXNZN3y3KEK1xOWSwSl6Ky8Z/JToPcvFBXGZyd4TpgkAt15h++FnTxpQQH8Iuq0ylFooPxZ11wrLAotvQXcI7eNdB+aedKjeIqUN1jqU1uScyTmRSyGESEpRurx/LWuoq1U77GJaUDGhdjvw8dZKUEBvNEopxpQJFJaQsSmxyXtUKuzzGb52bDlnW89O//pWQH8OaPDbNtFjesFd+sace0IpMznP+OWrY5cjhBBCiBMnz4CEEEIIIYQQQpyc/f6P5DwT4nP6/vdo7Y5d0t02vzx0dG8B3YIQ1bKPi3rO8ymzcEYMIx2ZlZPx1z8mp0ScJnKKlJRI3lOp2KFHO/eLe6qdcig0VlkqkPiR7teSYfZtJHSM7b+1AeeQbu4PoTDaolWhlEyKCW00JEMpBaMtxsr94hfTmrpao5YFloXa96hppJYeVqtbKUEpGJxmjpklFaoDHRU9sK4jCwNjWZGspaq2x/tRvcSou9MN/YspDf0DWC4g7AAFyyWsHh25sMbac5RyxPCCYNaU4tG6P3ZZQgghhDhRcpi2EEIIIYQQQoiTsvhviOkSv3yN1h1d98mxS7rb/Bbi1AKPUloAcug4nlnxwivGusLHjE4Tm97I7vMfUGslTBN+uyWFQJxn4rygjKFbbTC/Iui2ymKUwaoWpMYf29MdI0wL5NzGlpfSQm4ZW35tlNIYYzHGUEu5Gm0eUyKESLlD3bEnQ0EdBqq1KL+A96jFw34Pt/TjVAp6a8i14nNhIRNqQZXKKsys8kRIll3e4KvjOY/x9cQPotKm/b7PEeLYHgPCeOyqAFBK4dxjYnxJrZll+frYJQkhhBDihEnYLYQQQgghhBDiZNSaGce/I8ZLUt7R95+jlDy1/UFxbt18YWqd3d15C0CAVA3fhoFttMxZU8OWs86iJeh+rxQC8+UlcZ5J3hOmkVoqbr3CDQNK//Kfm0HjlMUojUaTfyjoLhXmBZZwGFvu28e7ru3mFddMoV+NNleKlDI5R0rJhBBIKd2lidCnQQFDT+16VEwwL6iQYHc4COcWGA2906Rcibkwp0xS7YrsUmAT95QMu3hGqB0XPGJf16d9XRsH3aY9FqQF5hcQl2NXBUDXPaGSifGCRUaZCyGEEOIDyCsCQgghhBBCCCFOxjT9E+Ww49Pac5x7cOyS7q4cWrCRfOvs7tZgO6CNL3+WNlwshbkO5DBx5sAaCbrfVXJh2e3w+x05BMI0kmLAug63WaPNrxttrVC4w55ugyHV/P4t3TnDPLWQOwZIsQXcfddGFYsbpDDGYa2hVogpUnImpUSMnnJLIe290jnqMKBKu12rGGG7g/Qjo/uvkdWK3ih8quRSmUKiaECDKZmzsEeXxC6umVPPvm644AGlnvDvRjuAG8DvD48LzyH/yASJW6J1jzFnhPiCXGZivDh2SUIIIYQ4UfKsSAghhBBCCCHESch5Zp7/CR++o9RI339+7JLurpJhet6CjbAH24NbX528qyu+m2FWa3yMrNRCb+UlgjfVWonLzHJ5QfKeNC/EeQat6dYbTN/96sHhCugPQbdVhlIL5X1Rdwitozu9Oba8k/3ct0wpg7UWozW5tLA750IIkRjjaXf+HoM11NWq3YLnGRUTardrt/Fb4KzGGoWPhVxhDImqAQuKyjqO9GlhLh37tGapPS94TKwnvLPdnYHpwO/aWPPpu/Y4cWRd94ScR0r2LMuXxy5HCCGEECdKnskKIYQQQgghhDgJ4/gFOXu8f0rXfYIxw7FLuptqeR10+10bW96dXZ0ciuHLybHUjjlBVybW7oRDnBuQY2TZbgnTRDp0c5eScauBbrX6VSPL3+SUQ6GxylKBxDuhU6kwz+Bj6+SOhxCw667G0IvbptDaYq1FKQ6Bd9vnHYInpyyh9y+hNXW1RmmDWmaIETVN7XZ/C3qjUUqxxHzo8M5tsbdrAxOGvLD2E6lotnGDz44XPGau/a3Ud+0U0J+D1uC37fFhet4eL47I2ocoZYjxBd5/SynxqPUIIYQQ4jRJ2C2EEEIIIYQQ4s4L4QU+fIcPX6GUoe8/PXZJd9dy2Xaz+i1QoX/QQhza+PK/LCuWrNiXDp1nzruKkj3dAJRa8eOeZbclB38Iuz3WOdx6jbYfvh/bYjHKYJVBAfHdPd3p1djyDNG38eVGxpbfFQqNMRZrDLVWUmqBd0yJGAPlyOHhSVFQh4HqHMp7WDxq8bDfc9NHDigFg2v3pyWWtsPbJ0ChjAIDjshZ2KFKZZc3+NixrQ/Y1rPTPLBBqfZ4QG2PD2mB5eLIJWmsfUSIL6k14/23R61HCCGEEKdJniUJIYQQQgghhLjTaq2M45/IaSTGC/r+M5SS7tb38vs2tjyObURtd/5WQPrU9+yiYldWlJw4NwktQfdhZLlnubggLgtpWQjTDAq69RrT99dyQIBB47TFKI1Gk94Nut8aW+5bh7frwMrY8rtFobTBWofSmpxz6/IumeAjKaXTDEOPQQF9T+0HVEowL6iQYLdrY/tv8qIVDLYdtOBTIeSCj23KgtKty1uryibusSmyryv2cWAqK17yiFxP8GVVZVrgXXJ7rAjj4cCo4+m631BrJKatjDIXQgghxK/y4YckCyGEEEIIIYQQN2hZ/kJKe+blS4xZ49zjY5d0N8UFlpeQ5vbv/hyMuzp5HzXf+o6x9MSiOFMLzkiAmlMiThM5RUpKJO8BsEOPdu7aImaFwmmHBgyGVPPrLd2ltHA75dbJnVMbN+wc0qdwlymMtmhV2i7vmNBGQ6qUkjHGYowcmPOzOEtVCuU9dZ5Qw0Dd7uBsA9cwUeGHaA2908yxEA/3SKMVzmgUqr1ymivrPGFLZHZrStJs9Ewyj3nElk6d2OhtbdtqC79r4ferj7n1UcoxZoXWK1J8SXIPSWmHtedHqUUIIYQQp0meMQkhhBBCCCGEuLNKCUzTn4nxJaXM9P3nMnL7fXKC+TnkCH4EtwL7erdsKpV/ngd80cylY2BhZT/u1tM2snzEb7dtL/c8E+cFbQxutcZca9ANvXZoFFZZSi2UV1F3Sm1PcUptN3dOLdxzHfKyzWlQSmMPwXYt5bDPOxNjIoRI+bjvaj+fNdTV0O5384yKCbXbtwNBbpDRit5qfK7EUhl9IufXV5oyLfTuahtrnrNmmzf46HhZHxKq+5Fzv6NsD90a4gTJw/wCUjhaOV33hJi2lBxZlq+OVocQQgghTpM8axJCCCGEEEIIcWdN0z+Q88KyfI1zj7F2c+yS7p5SYH4GJbZxtKYD9/rnVCv80+jwRbMvA5bMxpxYJ+I1SyGwXF6QloXkPWEcoVTceoUdhjbC+Bo55VBorLJUIJHbFeM9zIeObh9ejy03Mrb89Ci0NlhrUQpSaqPNS8mE4GW0+c+lNXW1RmmDWmYIETXNMM03erHOKJxRhFjIBUafKG9cYUq1seZGF87TFpMy+7rBe8NFeUCqJ9jB79Yt9A77FnRPz9rBNscoxT0CFDG9wPtvqDUfpQ4hhBBCnCYJu4UQQgghhBBC3Ekp7ViWL/H+KZVC33927JLunlphOXTkLdu2n7s/fysnfTpW9nlgm3uq0pyb+aPd011SZtnt8PsdOUTCNJJiwHYdbrNG38DIaYvFKINVBgXEmg4HKCwQIqTYOrq1hr4HfYKhmXiDxhiHPeyCjilScialRIyecsN7qO8FBXUYqJ1DBQ+LRy0e9ntu8oiBzmqMVviUSbUy+kx9M/BGoYxCWViXEZsCk9oQguGiPiTXE/y92p23EeZhCyUcDpy6/duoUhbnHhLDC0pN+PDdrdcghBBCiNMlYbcQQgghhBBCiDtpP/6JlGdCfE7ff4rWJzgq9qb5LcQZwg5qgf4BvBFkXy6J79KGMWkSPWc6YNXH115aayXOM8v2kuQ9cV6I84zSmm69wfTdjfRRGzROW4zSaDSpprfHlvt3x5afYFgm3kspg7UOrXXb550SORdCiKQYpcv7pyig66n9gEoJlgUVEux2NxbGKqC37aXSJWZSLowh8+5VpZRCOViXCZUyI2tCtFzUh6d3vSraAVLodsBUCm2k+RG+EeeeUGogpz1eRpkLIYQQ4heQsFsIIYQQQgghxJ3j/VNivMAvX6F1R9d9cuyS7p44tbA7jC2g6M7f6gr2MfPlPDBnzcyKwRR6dbydrMeSY2TebgnzRAqeMI3UknGrAbdaXfvI8lcUCqcdGjAYUk2UZTmMLU8QDtdF92psubh/FEbbN0abJ3JJpNxGm+eUTy8cvW3OUocBVQrMEyom2O7aRIQboBQMzkAFnwsxF5b4/ZHaihZ4b8pILYp9XROi45IHp3edKt0OlKqlHTgVZ1gub70Ma8/QuifE54T4kpynW69BCCGEEKdJwm4hhBBCCCGEEHdKrZlx/Dti3JLyjr7/DKXk6etb8qH7LvkWTHQbsN3rk0vlL3uY68BYepw1bNT8UfUNl1Lw+z3LbksJnjBNpBCwrsOt12hrb+yyFdBrh0ZhlaXkSBlHiKmNLI/xMLa8AyVjy+87hcYYizWGWgrpMNo8pkSMgVJltPmPsoa6GlCAmmdUTKjd2Hbe3wCtoHeanCshFXzM+B8IvLWtbPKeXDRjXTGnnj2bG6nrRmnTAu8cIe5b6O33t16Gc0+I8ZJaEsvy9a1fvhBCCCFO0809sxNCCCGEEEIIIX6Fef5ncp7wy5cYc45zD49d0t1SMozPWygR9mB7cKurk2uFr3eBHY/ZRwXdwEbNaD6OQK3W2kaVTxOlFrL35JhQ1tCt1yh98wdOOOVQaKyy1JRI89hGL4cIVLAOjLwk83FRKG2wWpNz6+7WtVAxFF+x1mCMfXMLgXiT1tTVGuU9apmpXY8Cai6wWl37BgCjFZ3V+FTQqgIZrTXOvH1BSimMKazzyMSGmR6twJjMWi3XW9RNM64dOOX3LfxeaO/feHy5ac49xvtviPGCxX/Nev0vUXKnEEIIIcRPkGdWQgghhBBCCCHujJwXpukf8eE7So1shr8+dkl3Sy0wPYcSwO9aENGdvfUpL0bPZT5jHyHbDWcm4+rNjPy9a3JKhHGk5ESOiRxa56ddDWhrb6Wz3WIxymAxqBCJfmpjy1MCVBtbLpMKPmIKYxxaZ3IupJTQWkOqlJIxxmKMdPu/l4La96AVKnhqKagKNWc423DdRwo4o6hVEVJBK83sI2Zw6HdWHyitcDUx5JlZrdGpgDrD6BNcHWGHdkCVH9vUifkF6N/d2qoFrR3WPiDEF3T9J4T4nF7WmAghhBDiJ8izKyGEEEIIIYQQd8Y4fkHOHu+/pes+wZjh2CXdLcsFpKXt6qa2sbNvBDy7JfLcW3bZEvSawVn6ev/3npZa8ePIsr0kx0iYZ9KyoI3BrdeYWwq6DRqnLaaADoEUJmoIbb+wNoex5fJSjAClDNZajDaU0kLvnDMxJkKIlFPb+3xbFNB11H5ApQSHsebsdm16wjVzVmOMwsdCqrD3mfqepdzKKHoV6NPCzAofLJf1AbGe4IEL7rAWw+/aBJHpWQvAb+vi3RNKmcl5xi9f3drlCiGEEOJ0yTMsIYQQQgghhBB3Qowv8eFbfPgapTR9/7tjl3S3+D2EEeLYgofu/K3g1KfMt/vEZT1jLo6uH1gxobjfqVkMnuXygrgsZB8I4wi14tYr7DDc2ghchcJph44JEzM5BsrsWwDnXHv7qLami5+m0LqF3kpBSpmcI6VkQvCklHhPrioAnKUOA6pWmKe2x3u7g3i9UywU0BuNUoolZnIpjCG//7eqgaEu2BQY1ZoQDRf1Ibme2Muvivb4onU7sCqHFnjf0m55a89RyhHDC0J4Rik3s5tdCCGEEPfHif21JYQQQgghhBDiPqq1st//iZxGYnxJ3/8epWTz1pW4wPIS0tz+3Z29NVY2l8rTrWfHA6YEuj9jUAlzj8eX55RZdlvCfk8OgTiNpBiwfYdbr9G3PAq6x6HngM1QYiDPYzuh60DLbVn8MIXGGIe1pu2cT5GSMyklYvSUG+hYvhesoa5WKEDNM8SI2o/grzccVQoG115C9bEQc2EO6fufh0I5WJcJkzJjXROj5YKHlHpiB7oo1SaHUFvgnTzMF7d00QrnHhPjS2rNLMvXt3K5QgghhDhdEnYLIYQQQgghhDi6ZfmSlPfMy1dovcK5J8cu6e7ICebnrbvOj+BWYPurk2uFp7uFfRnYJQ3unMEoXLmf48trrYRpwm8vST4Q54U4Lyht6NYbTNfdev90VzRqnnFoaoykZQJjZWy5+EXaaHOH0pqcMyknci6EEEkxSpf3+2hFXa3BWNSyQIioaYZx4jqHWigFgzXkWvGpEFJhid8f7a1QKAvrMlIz7Fnjk+WS89O7/pRpgXfJEPZtqojf3spFd90TKpkYL1hklLkQQgghfoIcWiyEEEIIIYQQ4qhKiUzT3xPDC0qZWK//5tZGT995pcD8DEps+1NN1/apvuHF6JkCvCxriu7o+p6u7O/l+PIcAn6aqCWTfSDF0LoAVyu0Pc5uXOszJmecMpASKcxtZLk+wV294g5QGG3Rulx1d2ujAUOuBast5ki39TtLQe170AoVPLUUVIVaCpxtWlJ9DbRuHd5zLETVuu2NVjjz9gEtSim0qWzynr06Z6wrtIKdOeMB+2up5dZo2yaJ+F0Lv199zK1v9mJ1jzFnhPgC1z0hxpc49/hGL1MIIYQQp0sOLxZCCCGEEEIIcVTT9Gdy9izL11j7CGs3P/1FH4NaYX4BKcCybR3C/flba593S+RySbwoZ6SqcMMDXA2Y+v0Ru6cuhcCy35FjIIxTG1nuOtxmc5ygu1TMOONSxVZQpZJyoHYSdIsP10abW4wx1FLaaPOUiSkRQqCcXJvwDVNA11H7AZUSzDMqRtjuIF/fGHijFb1V+FTJpTL5RMzfvy6UVhhd2KQ9qVrG1DOXFWNdXVstt8b20K0hTodx5ofHpRvWdU/IeaRkL93dQgghhPhREnYLIYQQQgghhDialPYsy5f48JRKYRg+P3ZJd4ffQpwh7KCWNk72jQ5FnzLP9oFtHpiyxQ0Psbrey/HlpVbCNFJSIk4zaEW3XmP62x9ZDkBMqO1IVw06ZzSaXAvFGOSlFnF9FFofRpsrRcqZnCOlZEIIpJRObzT2TXOWOqxQtcI0o2JC7XYQ4/VdhNFYo1hiIZXK6CPxPYG6MgqrM6s04emZomNfz1hqd2213Bq3Bje0ceYpwPRdW7Fxg6x9iFKGGF/g/beUcn3XoRBCCCHuF3kGJoQQQgghhBDiaMbxT+S8EMIz+v53aO2OXdLdEKdD2D1CjtCdv9UtnEvl6dYzZ822rHH9Gm07XJ6OE/7esDiNbaSz92hr6VYrlD7CSxoV1LygdiO9tuiYsKajaEVWwL386YvjUxjjsNZQK8SUKDmRUiJGTynX17l8L1hNXa9QSqHmGWJE7Ufw/touorcacwi8Y6mMPhHS93d4Y6CrkSHOzKzw0XJZHxDrCW6WdGdthHnYttUa87O2auOGKKVx7jEhvKDWjPdPb+yyhBBCCHHaJOwWQgghhBBCCHEU3n9LiC9Zli9RytF1vz12SXdDDocxsb51drs12NedgLXC092CT4UXeYM2DtOf4eqC4f6NL88xkLwnH4Iq2/fHKaRU1H4P80yHQaWE7VZUa0nlPSGXENdMKYO1FqM1uRRSSuScCSESYqRIl/drSlFX7f6plgVCRE0zjBNcw89J0QJvaxQ+FmKuTCGzxPzO5ylwMFRPlwJjXRGj4YKH5HpiL8sq2ioNdFutkQ6PVTc4XsC5J1QSMW1llLkQQgghftCJ/VUlhBBCCCGEEOI+qDUzjl+Q4paUdwzD5yglT1EpGcbnrZs77NuuVPf2jtcXo2cJmRdxoGiHGx6gKdgyH6nom1NqxY8TJWdyTJi+R+kjdE+HiNpuIURsrGjADRuwjpRvfnetEK8ptLZYa1EKUjqMNs+ZGDwpZRlt/ooChp7a9ajgYfEoH2C35zqODHgVeHdG4VMh5sISfyDwtrAqEyZnRtbEZHjJQ0o9sWkQSreVGrW0FRtxhuXyxi7OmBXGrInxBSnvSGl3Y5clhBBCiNMlryQIIYQQQgghhLh18/zP5DyxLF9izBnOPTx2ScdXC0zPoIQ2wlybNr78Dbslsl0Sl17h9YZ+aOPNuzzeywHacZqoOZOWBWUNxt7y6N8KaprbCOQYMSFi3YBdbVC2I5UowaI4CoVuo82NodZKSpGcMylFGW3+rs5RhwGVEswzKkXY7uA9e7Z/1dlbTW8VPlV8aoH3FNJbDeRKKZSBdR4hV/ZlTcyWSx6c3u8QbVrgnSPEfQu9/f7GLs65J6S0o+Qo3d1CCCGEeC8Ju4UQQgghhBBC3KqcPdP0j/jwjFIjw/BXxy7pblgu2uhyv23/3T94awW0T5ln+8AYMjv1gL7rqXaNLQua+zdGO6dE8gs5BGqtuH645QIKareHZQEfUCHgVmfo1YA2HaVECRTF0SltsNahtCbnTM6JXAohRFKSgzGuWEtdrVC1wjSjUkJtdxDitZy9M5reamJugbdPhdm/E3hrhdaVdRrJRbPPK3zt2HF2LTXcKuOg20BcDt3dL9v7G9AOhlPE9ALvv6HW+/d4J4QQQogPI2G3EEIIIYQQQohbNU5fUIrH+6d03W8w5pZDzLsojO0tjm2Uef+gjYs9yKXydOsJqXCRV7iuQ/XnaBK2Lkcs/GbUWgnjSM2FFAK26253fLkPLQiLEeYZUqLbPEb3PdZ0lJpJWQIXcVcozGG0OUCKiVwSKWVi9OQkt1UAjKauV63Lep4hRdQ4wuyv5eydUQxOk14F3rkwvht4G4VRhU3ck6pljANzXTHW1Q+e751lh7ZmI4yv93fn6zl44E1KWZx7RAwvKDXhw3fXfhlCCCGEOG0SdgshhBBCCCGEuDUxXuD9Uxb/DUpp+v7TY5d0fKW87uqOC3RnoF+P664Vnu4WQiq89KC6B9j+jIq+t+PL07JQciL6BWU0uutu54JrRY0Tapxax+fUOhW7h49RrsPqnlohpesPdIT4UEppjLEYY6ilXI02jykRQqRImzcoRV2tqNailgVCRC0zjBNcw4/H6hZ451zxsRDTIfB+82dvwZJZxQlfO6bYs69nLLX/8AJum9uA7doo8xwOqziu/+AK555QaiDFHcvy5bWfvxBCCCFOm4TdQgghhBBCCCFuRa2V/f5P5DQR4wv6/vcodcs7mO8if9HCgbhvoYF9O/B4MXqWkLmYE6l7zND3ZL3ClRnN/RujnVMizjPZB2opuGG4nUA/5za23Pv2FjxYiz1/iDYdzjoAUr6eLlAhboZCvxptrhQpZXKOlJIJIZBSktHmChh6atejgofFo3yA3R7Kh/9wjFYMzlBKZTkE3nufrwJvhQIHXY0McWGmx0fHJeeEemKPiQroztseb/9G4F2v97HJ2g1a98T0ghgvyHm61vMXQgghxGmTsFsIIYQQQgghxK1Ylq9IeceyfIXWA849OXZJxxeX1+PLK62r+w27JbJdErslsehzVv1AsmeYGjH1/oWutVbiNFFKIcWAdR1K38JLF0tAbfetm3ueIWUYesxqjTUD1hiUMqQiO5DFqVAY47DWUCvEFCk5k1IiRi/75gE6Rx0GVEowz6gUYbuDa1hRYDQMzlBrZY6FlAu7JV911ysUWBjqQpcCEwMxGS54SK4n9nKtUm31BhX8tk0pmV9e+8U494QYL6klsSxfX/v5CyGEEOJ0ndhfT0IIIYQQQgghTlEpkWn6e2J4QS4jw/BXKHUfB3D/ArXA8rLtOI0LdJu39nT7lHm2D0whs0+OfvWA6jaAwpXpfo4v956cYhtfrjS6v+Hx5aWi9iNqmiCEFnSjYL1CuQ7nBrTWaO0oJUpAKE6OUgZrLUZrcmlhd86FECIxysEbWEtdrVC1wjSjUnp94MsH0hqGzgCVOWZSKeyXRD50jyulwMAqT+icGcualC0veUipJ/YbXukWeJcMYQ9xguXyWi/CucdAW4eyLF+9PRpeCCGEEB81CbuFEEIIIYQQQty4afoHcl5Y/DdY+whrz376i+47v2tBd9iDsWCGq5NyqTzdekIqbJeM3TzBdh1J9bgy3cvx5SUX4jSRY6SmjB36mw30U0Ztdy3k9kt77xysVqA0nRvQWmG1o9RMuoZuTyGOQ6G1xVqLUhwC77bPOwRPTvnjDr2Npq5XKKVQ8wwposYR5g+fnqEVrJwBYImZVCrjm4G3VigNm9RGqO/yilgtFzw4vetE2zbSPPk2scRv2/vrOnvtsPYBIT6n1EAIz67tvIUQQghx2iTsFkIIIYQQQghxo3KeWJa/EMK31JoZhs+OXdLx5QhhB2luHd7dGa+S3Vrh6W4hpMLlHFDDY/quI+gNpkZsDcet/YaEaWzjy73HdBZtzI1dlpoX1G4HKcI0Qy4wDNC1TvLO9SgMVvdUIKUP7/IU4tgUGmMs1rTx2im1wDumRIyBcs17lk+KUtTVimotamkHv6hlhnFqKyY+7KxZOYNCsYRMLJX9Ekn5EHgbhVKwiXtqVezjmlA7tpxfwzd2y2zXppTEuYXey0tI1/eY1XVPKGUh5xnvZZS5EEIIIRoJu4UQQgghhBBC3Kh5/gulBHz4jr7/HVrf8Gjqu67Wts+0pBYI2KF1xB28GANLyFzOkWxWDOszomnjy7tyfV1yd0n0nhwDyXuUUpiuv5kLKhW128N86OSelzZ+d7WCQ7hubYfWDmcdKEj5/u1GFx8zhdIGax1Ka3LOrcu7ZIKPpJROr6P4uihg6KldjwoBFo/yAXat6/qDzlrB4DRaKfyhw3vvIzEfDjCwoKmsw0iqhjGuWOrAvq4//Pu6bW4FbmhTS1KA6Tu4phUQxpyjlCOE54TwjCy/n4UQQgiBhN1CCCGEEEIIIW5QrRXvnxLjBQBd95vjFnQXxAmyB79vQat7HWbslsh2ieyWRCjQn31C0T1ZdYc93fcvhSq1EqeJkhIlJWw/3Mw+95QOY8sjLEt77xyshpZEAUZbrOmxxqCUIWXZaSzuK9Vu79a26QUxkUsipUSMnvwxj+3vHHUYUCnBPKNShO0O0of9TJSC3mm0USyxkEtl9ImYMwoFFiyZdZzwOKbUM7Jhrjd08M9NcmftIK6wb9NL0nwtZ6uUwrnHpHhBrRnvv7qW8xVCCCHEaZOwWwghhBBCCCHEjbnarRlfYu0DlLI//UX3WcmwXLTxrjkexpe3oNWnzLN9YA6ZKWT6zW/RxhL1ClvDvR1fHseRUjLJe7SzaHvN48vrYWz5dt/Gls9z6zJcvR5bDqC0xrkBrTVaW0qJlGvqRhTirlJKY43FGEMt5bDPOxNjIoSP+GAPa6mrFapWmGZUjG0qRPiwlQZKQW819hB4x1IZfcbH3A7yseBqZBVnltrjk2PLOaG6a/rGbomiHchVcnusi9cTdkMbZV7JxHjBssgocyGEEEJI2C2EEEIIIYQQ4gb55Wtynillxrknxy7n+JaLw/jyPdgeTAswcqk83XpCKmyXSLc6x/Yrot4A4Mp0xKJvTgqBFDzZt1G09rrHl5eK2r8zttxoWK9AvxmqKzo3oLXCakephfQxd7aKj4xCa4O1FqUgpTbavJRMjOHjDbyNpq5XKKXaHu8UUePYfo98AAV0h8Dbx0LMhTlmlleBt4G+eFwKTGUgZssFD0j1mg8EumnagdaQA+Tl2kaZa91jzBkhvCCXmRhfXsv5CiGEEOJ0SdgthBBCCCGEEOJGlBIJ4RkxvkQpi7Vnxy7puOLcRpiHCSrQba5OejEGYipczgFrHXb9mKg6snJ093h8eZhGSsrkmDB9j9LXOL48RNR22zox5xlibJ3c/UCLm15zrkdhMLpvI53Th3VvCnGaNMY4rDXUWsk5UUohRv/xBt5KUVcrqrUt8A6hvR9HPuTXsqJ1ePdG4VMlpsISM3PIoBVoWOUJkxNjXpOq5YKHlHoDKx5uigJM19Z21Hpto8yhdXfnMlKyZ1lklLkQQgjxsZOwWwghhBBCCCHEjfD+W2rNxPAS5x6j1Ef8FLSW1tWdI6SlBd2Hn4dPmb1P7H2i1LanuypL1Gts9Zh6P4PXOE2UXEh+QVmDsdc04r6CmmbUfoTYdu5SK6xWbUf3O6ztMNrhrGtdrdlfTx1CnCil2v2x1krKiVLqRx54A0NP7XpUCLB4lI+w20H5sB+Ks5reanyu+FRYUmYOCYxCKVinEUphF1eEarjg4WldD6ZvHd3XPMrc2ocoZYjxBd5/Syn383FSCCGEED/PR/xKgxBCCCGEEEKIm+T916S0o5Jw7tGxyzkuv20v9od9G11uh/bxCs/3gXQYY9uvH1FNTzQbNPXeji/PMZH8QgmeWiuuH67pjEvbq7ss4EN7b8xhbPn3XwLR2mJNhzUGpQwpf8Q7ioV4g0K3A1BqJaXXgfcHZrunrXPUYYXK7SAalRJsd5A/bDy3M4readIh8PapMPkEpuXsm7inVsUYN4TquOT8dH5PXY0y99c6ylwpjXOPCeEFtWa8f3ot5yuEEEKI0yRhtxBCCCGEEEKIa5fzREyXxPgCrQeMWR+7pOPJAfyujTCvBbrX49x3PuJTYbsklHHo4SFR9WQsLo+c0MDan63Wip9Gas6kELFddz3jy31AbXdtXPnc9uu2seU9744thxaWtD3dBq0tpUTKNQUxQtwHV4E3XAXe6WMPvK2hrlaoWmE6BN67HaT8QWfrtGJwmnwIvEMujCGDAU1lE0YSmjGvWOrAyIk8pipad3cO1z7K3LknVBIxbWWUuRBCCPGRk7BbCCGEEEIIIcS1W5avqaW9CO3c42OXczy1wvwSSm7jy90KtAEg18rLMTLHjE+FbvMJRRmiXmHrgiEdufibEeeZmhNx8Shr0F33YWdYK2qcUOPUgu5pBn54bPkrXTegtcJqR6mFlD8srBLiPlJo7FXg3Q4IaYH3R5x4a01dr1FKoZYZFVObKBE/bJS2eTPwDoWYCmPMVAOGzDpMhGKZc8/Ihrle00SMm2a6GxllbswKY9bE+IKUd6S0u7bzFkIIIcRp+WjD7v/n//l/+D/+j/+Df/Nv/g1/+MMf6Pues7Mz/vZv/5Z/+2//Lf/3//1//+Lz/I//8T/yv//v/zt/8zd/w2az4eHDh/zt3/4t/+v/+r/yf/6f/yf7/f4GvhMhhBBCCCGEuFtqrXj/DTFeAnzcYXcYW0db2LVRrvZ1N97FFIm5sF8ibvUA7V6NLy+4cn2BwF2SUyItC9kHai24vv+w7vWcW8jk/es3a1rQ/Z6x5a84N6AwGN1TaSGeEOKHqBZ4K0VKiVwKKQZK/YgnISioq3bwklraJAm1HyF8eOC9coZSK0tsgfc+ZKoGVyNDWlhKj8+OLWf4+sMH9NwZNzTKHFp3d0o7So7S3S2EEEJ8xOyxCziGf/2v/zX/6T/9p+99PITAF198wRdffMG/+3f/jv/tf/vf+L/+r/+L7ieOMn/58iX/9t/+W/7Df/gP3zttu93yxRdf8O///b/nf/lf/hf+h//hf7iub0MIIYQQQggh7qQYX5LLQowvsfYMrU/gxfibkBP4y9bRnRMMD6+maYdU2M6RKSQSlvXqMUkNVAx93t3b8eVhHA+doQHrOtSPBNI/yQfUNLd9uX6GQhtZbn/8pQ5rO4x2OOtQCmLyv74GIT4aCmssOSdySmAtNURc59DqI+2lUVCHAbxHLQu1H1DjSK2rw/qEX0drGDrDEjNzzKyAfYUzZ+iz//+z999Blp33fef/fp7nhBs6TU9ABkGAOQBgFgUSDGKyGEFKpKlASSZFey3Z1np3LalU9tbPpS1JVauld2WbZVmWKTGIoigKDJLMZAYRpBgFMIAgCYIgB5ie2PGGc86Tfn+cOz1zpyd093S8/X1VsdC8595zn+6eTvdzvp+HoDRdmmgdWVCTTMc5ErWDmymWq8xLCIMq86y9IadO0ymK4gjWzVKWTdrtR6GU2ZBzCyGEEGL32JNh95Ej9ZV+V199NT/90z/Nc5/7XK6//nq893zhC1/g93//93n44Yf50z/9U6y1vOc977nguRYWFnjxi1/MV7/6VQDuuOMOfuqnfoqbbroJYwyHDx/mM5/5DH/5l3+5Je+bEEIIIYQQQmy3sjxK8CU+dGnmj9ju5Wyfch6Cq6e70waYM6H/qW6FC5FO5UnHriTqBKsbpLFEs4NDi8vgypLgHbboo7RG5+usLw8R1evVE5TWQlXV6VCrAerilwlonZCYjMQYlDI4X7GX25iFWBuFOTvwNgm2sqRpir6cC1d2MwXkdUOEKgtirNsqYojQXH/NuFbQSM8E3o0UOlWknSY0XJ+gNB3bZDwNzA0Cb6N28Dczk9UV5sGC7W1Y2K2UIU2nsNUseX4FZXmcRuOqDTm3EEIIIXYPFePe+7PuFa94BW9605t43etehzErr/Y7efIkt912G9/97ncB+MxnPsPtt99+3nO96U1v4p3vfCd5nvO+972PV73qVee9X4wR7/3yPkcb5aGHHuK6664D4PDhw1x77bUben4hhBBCCCGEWIsYPadOfZaiOEJlTzI29gTUXpz6s33onYRyqX5xv7FvOYjtlo7jSyVzvYpStWmOT1MlE4Ai94sjOdUdnKdYXMBVFa4sSVtN9Hn+Hr8k5+uq4ODrynLn6325V7Hvt1KaPGuhtSExKSE42adbiHWJeO+IMWJMgtKabC8H3qdVFlWVxCyDLCPmObSal3XKGKGwgUgkTwyphvaglaKTjoNWjKddclUxzfylrvfZPhEoZuvQOxuD8WsuutXEWjjXpde7n1bzRpqt65iafNqGnFcIIYQQm2Mzcs09+VvoRz7yEV7/+tefN+gGOHDgAL//+7+//P/f//73n/d+n/vc53jnO98JwG//9m9fMOgGUEpteNAthBBCCCGEEDtNWR4nEgYV5pN7M+gOAfrz9V7droS0vRx0hwiz3YrSegqnyVpTeN0kYsh8dySDboCqP6gvr0qSLF1n0O1QS0vgLPT64AI0GqsKugGyrIHWikSnhBgk6BZi3eoJb6UUzjti8FTWEjZwL+ZdKUuJWY6qKihKVFlCt1cHveukFDRSjUJRWo8N0HGWEKBtu8QIXd+iiikLTOzcpoqzq8wjdZX5BkmSNlrnWDeLtfN439uwcwshhBBid9iDrzqszgte8ILlt7///e+f9z7/8T/+RwAmJyf51V/91S1ZlxBCCCGEEELsZGU5g3cdQqxI0+ntXs72KBfrae6qW0+xJWf2bl3oVVgfWCwcqjmNTlKsbpCMcH25LUu8tbiyRCmFXmU4PSRGVKcH3kO/AKXriclVhuZp2kBhMLquG3bOrn0NQoiz1IG3Vgrn/XLg7ff6RSRZWu/d7dwg8K6g29mQwFtrRWE9LkS63hKCp227+KDp+SZFzOmwMfXgm8Jk9RVfp6vMN1CaTmPtAjE4iuLIhp5bCCGEEDufhN0XUJbl8tvnmwCvqooPfvCDALz4xS+m0aj34fHec/jwYR588EGKotiaxQohhBBCCCHEDuB9QWXnqOwcWuckyQ5+0X2z+AqqpfqF/BggP/MxsD4y37f0Ko81bfJGE2vaaAJJ2Lgpt50khIDt9QjOEZwjaTRQ6+jZVf3iTHW5MfVeuKs8T5JkGJ2SDKp/vS8v/SAhxCqcFXi7OvC21uHdHg+804TYOB14F6jKwVKHyxm7VgryVGOMorCBKkT6zhGtpWl7VCGhHxr0aNGL698rfFOZtK4u9yW4om5B2SBpug8Aa+cpihli3OMtA0IIIcQeI73aF/CZz3xm+e3HP/7xK47fc889y2H2k5/8ZBYXF/l3/+7f8Sd/8ifMz88DkGUZt99+O7/1W7/F85///HWt46GHHrro8ZmZmXWdVwghhBBCCCE2WlnOQAxYO0+eH9ru5Wy9GKE/B8HVe3ZnLVBnLp6e7Vb4EOlUkLSniKZJICH3SyNbX267XYL3uLLEpMm668spSigtBKCVX/Ihp2mdkJiMRBu0MjhfEXZqza8Qu1IdeIPHOU9iwLr6iEnW8fU+KhJTB95lQez3Uc0mcakDY2Og1/cdXwF5oqkIlDZAooFAoyppakWfFloHUGOYGMhVtaHv0oYwOfgC4lhdZZ5tzEVxWqckyQSVPUWWH6CqTpHnBzfk3EIIIYTY+STsPo8QAr/7u7+7/P9f//rXr7jPvffeO3T/pz/96Xzve98buk9VVXziE5/gk5/8JL/zO7/Dr//6r695Lac3aRdCCCGEEEKIna4oj2LtPBBI06ltXs02qDrgqvq/xkDSWj7Urzy9yrFYWlw+TTtLKXWDJBYY3DYuevO4qsLZCl/Vk9QmX31IvSxGVLdXT3U7W+/PvcqJbqU0WdpAa4M2CSE42VNYiE2h6lZEBc57DBJ4A3XgrZqooiD2e3XgvbgEE2P1hPM6nA68FYHSBUgiKkJWFGRNQ8820GlgXk0wHedI1Q6bsk/y+mKw01XmGxR2A2TZNL3eD/CuR1EekbBbCCGE2EOkxvw83va2t/GlL30JgNe+9rU87WlPW3Gf2dnZ5bd/7/d+j+9973u87GUv40tf+hJFUXD8+HHe/va3Mzk5SYyR3/iN31iuPRdCCCGEEEKIUWPtAt73sHYeY8bQeh3B5m7mHZQL4Pv12+kYp8e1Y4RT3ZLKBXqhSZ63cMkYmkA6qvXlMVL1ugTn8daR5Pn668v9oL5cG0jTVT82yxpopUh0SowB50fzogIhdgaF0QnaaLz3hOCxzuHcHv+6M5rYbKAi0OujvIPFpfr72mXIEk2eKEoX6QVP5SOq1yUNFT3XwkXDPJP4uMNe+tXJOVXmGxfGGzOOUimVncVWp2TLCiGEEGIPkcnuc3zmM5/hN37jNwA4dOgQb3/72897v263u/x2URS8+MUv5iMf+cjy/t4HDx7kn/2zf8aTnvQknve85xFC4Dd/8zd51atetaY/8A8fPnzR4zMzMzzzmc9c9fmEEEIIIYQQYjOU5VGCtzjfodG4druXs/WK+bq+vOpB2qj3Jh1YKiyVDyxUEdWYQqcN7KjXl/d6g/ryAp0k6GQdLz84X9eXV2uvL0/TBgqDMTkRsM6u/fmFEGtmdILC4b0HIqez7mQ93wNGhdbEVhPV7xP7BarRgKUOcWwMLmPyPTUaiJQu0IuOFgbTW0K1JuioNuOmw7yaZF+cR6sdtH/DUJV5sWHT3Uop0nSaqjpBbFxNWR6h1XrkhpxbCCGEEDvbHv5Nc6Vvfetb3HHHHTjnaDQa/MVf/AWHDp1/n7lGozH0/3/v935vOeg+23Oe8xxe+9rX8v73v59vf/vbfOMb3+Dmm29e9ZquvXYPvkgkhBBCCCGE2FViDJTlUaybBRRpOrndS9patlfvPVp164rt9MwL9z5EZnsVvTJQ6EnaaYbVrZGuL/fW4soCX5ZEIum66stBdbv11J9dW325STKMTkmSFKXAOZnuE2IraV3v4e29J+JAAm9Qithsofp9KPrEvIFaWiK225CtvrHiXKlRaKUpbKCHp41B95Zw7Sm6tFCmy4KaYCourPZb6Obb1CrzfVTVMaydpyiO0GzesK5WESGEEELsLjusy2b7/OAHP+AlL3kJc3NzGGN473vfy+23337B+4+Pjy+/ffDgQZ7ylKdc8L4vfelLl9/+8pe/vDELFkIIIYQQQogdoqpOEqLD2jmSZAKl9tAerSFAf67eq9tVddB91gvrs90K7yOLPiPLG4RstOvLY4yU3S7RD+rLsxyl11Nf3l9XfbnWCanJSLRBK4PzlrCDBhqF2Cu0NhhjCD7gg8M5j3OOuJe/HhXEZhO0QRUFOFdf1FNeXvOE0YpGqnEh0nWe6CO6u4Dzil5oUcaMJcY26J3YADqpv69vQpW51jnGjFNVs/hQYO3chp1bCCGEEDuXhN3AkSNHeNGLXsSRI0dQSvHHf/zHvPrVr77oY6677rrlty81fX32fU+cOHF5ixVCCCGEEEKIHaYoZ/CuRwglWTa93cvZWuX8YPq4A0lWT6ydPmQ9ndKxWEVcOkGStfAkpL43svXlVb9HDB5blKjEoNewx/ayc+vLG6ubDFdKkaUNtDZokxCCI4Sw9ucXQmwIrQ3JUODt8M5K4N1oEJOkDrytRfW69YU9l6EOvA0+RnregQ+o3hKV0/Rp0KdJNzY36J3YACarw+5IHXhvoCybxocu3hcU5ZENPbcQQgghdqY93B9UO3nyJC9+8Yt54IEHAPiDP/gD3vSmN13ycU984hOX3673Ibqws4/v6comIYQQQgghxMgJocRWp7B2DqVSjNlB02ObzZV1dbntQozDVawRTnUrKh/oqAmyNMeZFkksR7e+3Dl8UeLLihgDWd5ee6gfQfV666ovz9ImWikSnRJjwPnR/DiLy6OXeiSzC/iJMfzU2Kr/fYn1UdqQAC54TqfcEZa3GdiTFJDnRAWqLImxvimGCM3GpR59QUZDIzUUzlN4RwOwvQ59NY5K6ycx0dNQ1Ua9J+u3XGVebXiV+emGGWtnqcoWoW3Rev1V8UIIIYTY+fZ08rqwsMBLX/pS7r33XgB+93d/l1/5lV9Z1WMf8YhHcP311/OjH/2IBx98kBjjBfeA+f73v7/89jXXXHP5CxdCCCGEEEKIHaIsjxGjx9o50mz/3tkbMw7qy70FW9Qv1J9V375UWkoXmLcZKs3R+RgQSENv+9a8iWKMVN0uIXhcVZFk2frqywfVvmutL0/TBkoZjMmJgHWXVwssRkyMZD94mLG77qH5rQdQg9DVjzWprr0Ce80hquuuoLr2EGF840I3UVPakChw3sPgIpQYIU0l8I5Ko6qSSBgE3gHarXWfVp8OvCsPzpETqXpduq02Jg0sqAlMnCdV23wx0HKVeXWmylxvzBYoSmnSdBpbzdHIr6Qsj9JsXnfpBwohhBBi19qzYXev1+PlL385X/va1wD4rd/6LX791399Ted43etex9ve9jYWFxf55Cc/yYte9KLz3u8DH/jA8tvPec5z1r9oIYQQQgghhNhhiuIo1i0S8aTpvu1eztapOoOguwMmgeRMPayPkbmupWuh0OM0shZBpeRhaWTry11RELzDFgXKaHSereMkHvrFoL48Qmt19eUmyTA6XZ4Ude7y6oDFCLGO1t3fZeyuu8lmTq44bDp9mvc9SPO+B5dvc5Nj2GsPUV1bh9/2mkOE9g6qf96llDIkZjjwtnaPB94AWUqEOvAOgwlvIrTarPcHhlbQzAyF9WjnyehT9BWLNJlMPfNqkuk4h1HbvM2DycAXEMfqKe9845ph0nSaqjqBdYsUxREJu4UQQogRtyfD7qqquOOOO7jrrrsA+Ff/6l/x27/922s+z6/92q/x9re/naIo+Nf/+l/zuc99jomJiaH7vOtd7+LTn/40AC9/+cuH9u8WQgghhBBCiN3MuSWcX8LZeYxpYcz661d3Fe+gXATXgxCgMTkUSsz3LJUPLIQx0jQlpu26vjyOZq22dx7b7+OrihgCWbO5ZfXlWiekJiPRBq0MzleEvbwfsABAL3YY+8I3aH/xG5ju2vYDThY6JAsdmt96YPk2Nz0xCL+vqIPwaw4SV7mXvDjjdODtvcdL4H1GlhK1QhUlsR9REWLowNjYugNvpeoJ79IGcIGUHiWaBZrsS/vMqUmm4zxabeM3zHOrzDcw7DamgTEtbDVLmk7h3BJJMr5h5xdCCCHEzrInw+43vvGNfOxjHwPghS98IW9+85v55je/ecH7Z1nGYx7zmBW3X3/99fz7f//v+Tf/5t/wjW98g2c+85n8+q//OjfffDOLi4t84AMf4O1vfzsAExMTvO1tb9ucd0gIIYQQQgghtkFRHiUGh3WLNBpXb/dytk5/FoKrX6RPGnUd60DlAot9y6LLcDqn0ZhAEUe6vtz2uoQQ6vryNEOZtVfRrqe+XClFljbQ2qBNQgiOELZ5UlFsq+yHM4x9/h6aX78ftYH/FpLZRZLZRVpf/x4AUYE7sK+e/L7uCqprrsBefYCYyb7Al1JvN6Dw3p0VeEfSNNvbgXeSEBsKVRTEfh9Fk7jUgfH2uveVVwryVFPZQOIiGV0KpZmjwfSg0nwqLmzfx/3sKnNfbmiVOdTT3UXxMMFb+sXDjI89bsPOLYQQQoidRcUY99w1z2vdQ+4Rj3gEDz744AWP/+Zv/ia/93u/x4U+lIcOHeLOO+/k2c9+9pqedzUeeuih5Wnxw4cPc+211274cwghhBBCCCHEuWKMzM5+jqJ4mKKcYWzsCWi9B66nrrp12F0u1oF3Y99QEDGzULBYBo75KZK8jc7GycPSyE5126Kg6nWp+n0IkbTdWvsgovOoxSWoqnrMs9VaVbiTZy2MNiQmJxJkn+69ynma37if8bvuJjt87OJ33T9J58dvofu0x6O7fbKHjpM9dIzsoWOkD59AV+v/NxS1wl6xf2j/b3vlAUg2LrwbJZGAdw6lFMYkaK1I03xvB95Qfz8sC6LS0GwQE1NPeGu97lPGCM4FdFDExFDl4zQbMJ0WtFSfCdXZwHdgjapuXWXe2A/NfRs63R2jZ2npXvL8EI3G1eyffi5KydejEEIIsd02I9fcA69EbL7f+Z3f4VWvehVvf/vb+bu/+ztmZmZoNBo85jGP4VWvehX/4l/8CyYnJ7d7mUIIIYQQQgixYaw9RYgVlZ0jSSb2RtAdPBTz4EpwFeQTQ6Fst3QU1jMXxlE6QWejXV8eQsD2enjriM6TtrauvjxNG4MJ0bpKWoLuvUd3erT//puM/f03MEvdi963eNR1dG67heJxNyyHhr6Z0z8wRf/WQZNfCCQn5pYD8PSh42RHTqCcX9V6VIhkMyfJZk7S/sq9AESjsVcdOLP/97VXYA9Ng1l/cDkqFBqTJHjncN6RkGBtKYF3Yoi6ieoPJrybDeJiBybWH3grBUmiCTaC8ySqQ49xIENloGNgTG1T+8gmVpkrZUjTKWw1S55fQVkep9G4asPOL4QQQoidYw+8GrHSZgyzP/vZz96UyW0hhBBCCCGE2ImKYgbv+4TQJ8+v2O7lbI1yYRDKduoX6JNs+VCIMNut6PiMMqRk7XEUkIb+9q13k1XdQX15WWDSBL1F9eUmSTE6JUnqfX6dq9azfLFLpQ8fZ+yue2jd/R2Uv3BVeUgTek95HJ3bbsFduf/SJ9Yad8V+3BX76T3t8fVt3pMemyV96BjZ4eNkDx8jnTm16op05cMgPD8+tC579cEz+39fewh3YB/ovZfwDgXezpEkdeCdpPle/HCcoTWx2UQVfWKvQDUaxMWlesJ7nU0BSoFOFdFBtA6tluiqcYgG8jYmepqq3OB3ZBW2oMrc2lmcXaIoHpawWwghhBhRezLsFkIIIYQQQgixfiFYquok1s6hVEKSjG/3kjafLeq6VduFCGTtocMLvYrSw0IYQ6dNlMnJwhKK0dw5zFYl3lb4sqxriPN87SdxHooCKltfLdC69Dm0TkhNTqINWhmcrwh7b3e2vccHmvc+wNhdd5P/4MhF7+omx+qq8mc+kdhqXN7zGoO9+iD26oP0njm4zTrSoyfrEPvwMbKHj5Mcm0Wt8t+hto78hzPkP5xZvi3kKdU1p/f/PkR17RX46Yl179W8m5wJvP1y4O0k8Aat6sC7XxCLPipvwFKHON6CZH17wysFKgVlFVSWGHt0aUEsIB/H4MnUNjSRmBxcH9Kxesp7A6e7k6SN1jnWniJJx3GuS5K0L/1AIYQQQuwqEnYLIYQQQgghhFiTsjxOjB5r50nTKZQa8UreGKCYA2/r0Dsfg7PeZ+sj833LfJzAK02Wj412fXmM2G6P4BzeOdJmA7XWUO50fbkPq64vV0qTpQ20NmiTEIIjrHLCVuxOqlfQ/tK3GPvC10nmly563/KRV9P58VvoP/Gmza0JTxPsdVdir7uS7qDgT1WW9OETg/2/j5M+dIz05PyqT6lLS+OBh2k88PDybb7VGN7/+5pD+MmxkQzAFZokUbjlCW8zCLwz9Ai+v6umzgTeFAWx0UAtdYntNmTrC7yhHqZOvSbYAq80HZVD7KEak0wzT6JWV92/YZKsrjDfhCpzgDTdT1nO0AiOspwhSR61oecXQgghxPaTsFsIIYQQQgghxJqU5QzOLRGjJU33bfdyNl+5VAfdVQdMCmZ4WnS2W1HQoOcTTD6O1pD60a0vt70uIXhcWaLTBJ2s/aWFM/XlRb0P7aXqy5UiyxporUh0SowB50fzYgIBybFTdVX51+5D2wt/nqPR9G59LJ3bbsFec2gLV3jOOrKU6pFXUz3y6uXbVL8ke/h4vff3IARP5hZXfU7TKzDf+xGN7/1o+TY/3qK69tCgAr0OwcNYa0Pfl+2j6qluXwfeJknAVhJ4K4jNBqos61rzRgPV7RJjE9bTqAFEVTeFN9CEqodVmqWsCf0eqjnJfubQagsbMza9ynwfZTmDtXMUxQyt1o2jf5GeEEIIscdI2C2EEEIIIYQQYtW872HdAtbNoXUDY0YlaLkAb6FaqqtVY4B8As7KXfqVp1MF5n2LaHJMlpOF7sjWl/uqwpUlvqz3dk2yjagvb178/kqRZ02MMiQ6JwLW2bU/r9jZQqTxnQcZ+9zdNO4/fNG7+vEWnR+7me6znkQY35nfg2Izp3zUdZSPum75Nt3pkT58fHn/7+zwccxSd9XnNEs9mt9+kOa3H1y+zU2N15Pfg/C7uvYKYnN9Iej2UyQmwfu6NYIkIdqKNE3RezmcVBAHwbYqCmKWo6h/JLHOz3VQoI2ijaZTdrFqnKW0Cb0OqjXBfha2tkRgucq8veFV5lonJMkElZ0lyw9SVafI84Mbdn4hhBBCbD8Ju4UQQgghhBBCrFpRHCUGh7UL5PmV272czRUj9GfBu/pF+KQ5NG0WI5zqlnSYoAyapDVOGitMHM0gNsRI2esRvMdbR9JsoNa6qe6a68vroFsrQ2LqUMf5cv3vhNhxVFHS/sq3Gfv8PSSnFi563+raK1h6zi30n/xoSDZu8nOrhLEW5WNvoHzsDcu36cXOmf2/BxXoples+pzJ/FJd8f7N7y/fZvdPDu3/ba85SMyzjXxXNpHCnB14mwQbbR14670deNPIiRWoqiQS68CbAM1LXDB0AUFFjFaMAUvFEhUTLCVt6HXQrTGmVWcj34OLW64yt5tSZZ5l++n1HsC7HkV5RMJuIYQQYsRI2C2EEEIIIYQQYlVijIMK87qKd+QrzG2vrlWtOvUe3elwoLBUWLohZ8mnqGyMVEMaRrm+vEf0HlcUqMTUNcNrdKa+vFxFffmZoDsdBN3Wl8TRHJrfc5KT87Q/fw/tr9yLLi98gUjUmv6TH0XntluoHnHVFq5wa4SJMYonjFE84cb6hhgxc0tD+39nDx1Hl9Wqz5meWiA9tUDr7u/Wp1TgDk4P7f9dXX0Q0p36suBZgbd3QEJlLdleD7wBspyIrgPvMAi8Q4RWa6h1ZLW8jhg04yqwWC5RMkEnaTLT7aNbTabMFv1MO7fK3NcXOmwUY8ZQKqWyp0iqNt6XGLNbGxCEEEIIca6d+lutEEIIIYQQQogdxrl5fCioqlmSZAytL7HP8m4WPBTz4Mq6yrwxOTSB7EPkZM+xGKexpORpgyyOcH25c7iywFcVMUayvHHpB604ydn15ZeeRjx3oluC7hEQI/n3DjN21900vvMgF9sW2LcbdJ/1ZDo/9mTC5MZOee5oSuGnJ+hPT9C/+dH1bSGSnJpfDr6zh46RPnziovuZD50yQnp8lvT4LO2vfhuoLyKwV04P7f9tr9wPZqdMzJ8JvJ13JBgqiwTeAFlKVApVlsSi/vzGGKA9ts7AO5AEzYSJLFQdijiGSgMPdUG3PRNm9RdaXJazq8xdH8z4hp1aKUWaTlNVJ4iNayjLI7Raj9yw8wshhBBie0nYLYQQQgghhBBiVYpihuBLfOjSzK/f7uVsrmIeggPbgSQHMxzsz3YremqCXgW6OUamLCaMZn15jJGq262nuquKJM/WV1/ePau+PE3rye4LyNImShmSJENRV5dL0L17qcrS+tp9jN11N+nxuYvet7rqAJ3bbqF362N38OTxFtMKd3Af7uA++k95XH2bDyQn5ur688H+3+nMCZQPqzqlCoHsyEmyIyfhS98CICYGe9UBqmuvoLruCvqPfySxtY4LWzZMHXjjHc57EuprZdIkweyYUH6bpAlR1dsAxBhRNIihA+PtS2wNcX5eBQyaSROIvkePJiSBH3Uij2g7xpPV/bu6LCuqzDcu7AbIsmmq6hjWzlMUR2g2b0Bt6cbkQgghhNgs8leDEEIIIYQQQohLitFTVsexdg7QJMnkdi9p89h+/UJ71YMIZO2hw6X1zFUJnZAQkjZNo0hDb3vWugVsvyB4hy1LVKLR2dr3/h2uL1f1Xt0XkKUNtE5IkxSFwoWKIEH3rmTmFhn7wtdpf+lb6P6F91qPSlE84UaWnnML1SOvWVdYt+cYjbtyP+7K/fSe8YT6NudJj56qJ79PT4AfO4Va5ReQcr4Ozw8fgy9AaOYsvPTZdJ/1pItenLK5Vgbe1gIRzC7ct31DJQmxoVBlQez3Uc0mcakDY2P199k1iAoCAR01U8oxFywdl4P2/LDb5IZWl7HNLnPRSd0s4KvB/za2ylzrDGPGqapZ0mwaa+fIsukNO78QQgghto+E3UIIIYQQQgghLqksjxOjx9o50nQKpUa0RjaGeqrbV+CKerLs7Pc1womuo6v20Q8JSaNBHnujXV9e9PFlRQyBrNVae0vuGurL07SB1mkddCuN8xVBku7dJUayHxxh7K67aX7rAdRFRvJDM6f7jCfSefbN+OmJLVzkiEoM9tpD2GsPnbnNOrIjJ5bD7+yhYyQn5i5aIX+a7pfsu/PTtL9yL3OveQH2uis2b+0XdTrw9jjnSQycbnCXwNsQVRNVFMR+rw68O0uDwHttP6eDAojoqJlQBTG06NBC0eHBbotHtrq0s02+EEVvXpU51NPd/f4P8b6gKI9I2C2EEEKMCAm7hRBCCCGEEEJcUlkexbsOIVY00hF+cbhcrPforrpgsrrC/CxLpWUxjtG1QNqmoSwmjm59ue31CCHgbEWSZqi1TndGUN0++HjJ+vI0bWCWg24jQfduYx2tu7/L2OfvrquxL3bXg/vqqvKnPZ6Ybfa46B6XJlSPuIrqEVfRHdykyor04eP1/t+Hj5E9fJzk1MIFT5E9dJxD/+nP6T7zSSy87Me3qdpc1dXlCpz3GCTwXmY0sdlA9QcT3o0GcbED42Ng1hp4x3qP96iZVD0ibRZDk0iXH/SaPCJ2GM838eXkJK+bVfzmVJknyQRKJVg7S1W2CO0KrdfeViKEEEKInUXCbiGEEEIIIYQQF+V9QWVnqewcSmUkSfvSD9qNfAXlUv0CewyQD0+a+hg53jN0Y0almzSMIYvdC5xs93NliXcWWxYopdH55dSXFxetL0/THKNTkqGgewv2iBWXTS92GPvCN2h/8ZuYbv+i9+0/7gY6t91C+ejrpap8G8U8o7rxWqobr12+TfWKOvx++Bj5A0dofPeHQ49REca++E2a37yfhX/0HHpPe/yaq7Ivn8LoBHB474E68I5EkmSPv8SpNbHVRPX7xH5RB95LgwnvNV4M4HXEBFUH3vRAt1kKLfBdDveaXBN7TDY26SIVbTa1ylwpTZruw1ZzNPIrKctjNJvXbdj5hRBCCLE99vhvgkIIIYQQQgghLqUsj0IMWDtPnh+69AN2oxihPwfB1/XlabN+0f0ss11PR03Qcwad5TRV76IVzbtZ8AHb6+ErS3SetNVcf325rS5aX14H3RlJkqAl6N41sh8dravKv34/6iKfr5CldJ/+BLq33YI7MLV1CxRrElsNysdcT/mY61l6AeT3H2bqzk+Tnpgbup/pFky//xO0v/wt5l/zfOzVB7d8rUYnqLMCbzeY8N7zgbdSxGYL1e9D0Ye8AUsd4lirbtVYA68DSdCkUTER+kTTYsk1iRFmep4YSqZamxV4D6rM4+ZUmafpNFV1AusWKYojEnYLIYQQI2CP/xYohBBCCCGEEOJSinIG6xaAQJpObfdyNkfVqafIqqW6ZjtpDR92gRO2Sd8pnGkxpt3I1pcDVL1uXV9elZgsRZs11gSfXV9eXbi+PE2yOug2CVolEnTvdM7T/Mb9jN91N9nhYxe/6/5JOj9+C92nPZ7YzC96X7HzlI+6jmO/9jOMf+4fGP/El9CnO8MH8h/OcOj/ey+dH7+FxRc/a8s/x1ongB8E3lEC79MUxGa9h7cqCmIjR3W6xHYb1rhlgFcBEzVpjEzEPgtJi471RAKqcIRY9pv3igABAABJREFUMd3ehArwTa4yN6aBMS1sNUuaTmHtImk6cekHCiGEEGLH2uO/AQohhBBCCCGEuBhrF/G+h63mMGYMrUcwtPKu3qvbFfXbjUnOHWOe6SlKldMnJ0s0jdjZnrVuAVuWeFvhyhKlFOYC1eMXs5r68iTJMCavg24tQfdOpjs92n//Tcb+/huYpYtX9xePuo7Oc26leOwjLrg/u9glEsPS859O75bHMvmRz9L65veHDqsYGb/rblpf/y7zL38u/Vsfs6X19HrQvuG9J+Lg9B7eJtnbLfkKYqMBZVkH3nkD1e0SYxPy1f8MjwoCAR01WfCMm5KlrE2vDBBBF4v4UHJwLF/xM/OybHKVOdTT3UXxMMFXFOURCbuFEEKIXU7CbiGEEEIIIYQQF1SWMwRvcb5Do3HNdi9ncxTzECxUXUgbYIan3xZLz2KcoGs1mJw2fRQjWl8e6vry4BzBOdJmE7XW1Mh7KEqw9oL15SZJSUxOYgxaJ3hvJejegdIjJxj73N207vkuyvkL3i+kCb2nPI7Obbfgrty/hSsUW8HvG2f2519O774HmfrQZ0hOLQwdN0s99r/3oxRf/hbzr34e7oqt+zegtUEBzns4HXjHiEnSPR94k+dEQJUFMeYoIIYIzcaqTxMUQERHRcNXRKPpNMbp9RcIcQzKBWIsOTieb+zH2+RgN7PKfIqiOIJ1c5Rlk7H2o1FqjQ0mQgghhNgxJOwWQgghhBBCCHFeMQbK8ijWzQJqNCvMbb9+Ib3q1ROJaXvocIgwUzQonaLULVrak+AucLLdz/Z6hOBxZYlOE3SyzvryEKCqzltfbkxKahok2qB1SggWHy4cpIot5gPNex9g7K67yX9w5KJ3dZNjdVX5M59IbK0+QBO7U/G4Gzh607WMf+arTHzqKysugGh8/yGu+A9/Rue5T2HxJ55BzDeh4vo8lDYkgAseogUSIpBI4A2NnFgpVFUSiXXgHSO0Vl6EdCFBRVQEHRW57xOVptecpOzPcTJOoMp5Qiw4NNFAb9TH2+T1z+VNqjJXytQV5tUseXaIsjxGo3H1hj6HEEIIIbaOhN1CCCGEEEIIIc6rqk4SosPaOZJkYvSmnkKA/hy4ClxZv5h+TjJyoqcoYk4nNjBa01KjW1/uqgpXlfiyBCBZQ93tacv15cX568uNSUiTBkYbtEkJwQ0mMsV2U72C9pe+xdgXvk4yv3TR+5aPvJrObbfSf8KNYKSqfE9JE5Ze9Cx6T3ksUx/6LM37Hhw6rEJg/DNfpXn3d1h45e30n3TTllSbK21I1GDC29cXJEUg3euBN0CWERkE3uHswLu16vpxryMmKJKoyX2XkIyjmpNU/TmO+wkoFwiLfa6YaGA24gO+XGVegs82rcrc2lmc61AURyTsFkIIIXYxCbuFEEIIIYQQQpxXWR7Fux4hlKNZYV4uQHBgu2AySIbD3dLDcdui5w1eZUzqYnTry2Ok6nUJzuOtI2k2Nry+3Og66NZaY5aD7tGdkt8tkmOnGLvrHlpfuw9tL/z5iEbTu/WxdG67BXvNoS1codiJ/P4pTv3iK2nc+wBTH/rsigskkoUO+9/1NxSPuZ75Vz8fd2Bq09eklCExw4G3jZCmEniTpUSlUGVJLEDFur2F9tgaAu9AEjRJ0DRdh5iOQ2sftjvLcT/GoXKJmfmCqyYbmI0Y8V6uMo+bUmWeJG20bmDtKZJ0HOe6JEn70g8UQgghxI4jYbcQQgghhBBCiBVCqKiqk1g7h1Ipxoxt95I2lqug6tT1qDFAY2LFXR7uN3Bo+jTJlCVTdhsWujVsr0fwAVcW6MRgkrW/XKB6F64vNzohTRtobUgk6N5+IdL4zoOMfe5uGvcfvuhd/XiLzo/dTPfHnkQYa23RAsWuoBTFE2/i2KOvZ/x/fpnxz34N5cPQXRrf/RFX/D/vYun5T2fxBU+HdHNfijwdeHvv8acDbyuBNwBpUgfeRUGMEUWDGDow3l719L1XARM1JiiatkPIxtGtKar+HCdsk4P0mZnvc8Vkk9Rc5gd8k6vMoZ7uLssZGsFRlEcYSx694c8hhBBCiM0nYbcQQgghhBBCiBXK8igxeqydJ82m1z7lu5PFCMXsYKq7D1kLzqlon68MHZ+y5HNQMKaLbVrs5vPW4sqCUJXEGEnzdey9XBRgz19frlcE3UGC7m2iipL2V77N2OfvITm1cNH7VtddwdJtt9J/8qNgrXu3iz0lZimLL/txek99HFMf/MyKCyiUD0x88ku0/uE+5l/1PIrHP3JT16OUwRiF9+6swDuSppkE3okhNhqosiD2+6hmk7jUgbExVrPhdlQQCOioSWKkabv0sjHy5iS2rzhZOvZjmVnoc+VEgyy5jG0OtqTKfB9lOYO1c5TFUdqtm1BKtmYQQgghdhsJu4UQQgghhBBCrFAUR7FuiYgjTfdt93I2VtUBZ+v/GgPJ8LSqD4ojZYMiGCwZbfpc7oDaThVjpOz1iN7jKkvSyFFrrZ/1HtU/u778TFiutSE7O+iOAedHd0J+p0pOztP+/D20v3Ivurzwxz9qTf/mR9H58VuoHnHVFq5QjAJ3aJqTb3kNza9/j6mP/B1msTt0PJld5MA7Pkz/CTcy/8rb8dMrGzU2ilIaY5KzAu8EaysJvKEOvFWznvDu9waB9xKMjw01clxIUAARHRVZ8MSqRy9r0WgGCuBU/xT7G74OvCcb5JdzscwmV5lrnZAkk1R2liw/SFWdJM9lmwYhhBBit5GwWwghhBBCCCHEEOc6OL+Es3MY08KYdUz67lTe1Xt1u379dnNqxX6lR6sGVdB0Y5MES8uM7hSy7feJ3mGLEpUYdJqu+Rwr68vrYENrTZY20VqfCbqdBN1bJkby7x1m7K67aXznQdRFtpv37QbdZz2Zzo89mTA5YlsWiK2lFP1bHkPxuBuY+PgXGbvrblQY/sfXvPcB8u/9iKUXPoOl258C69g2YXVL0Zgkwbt624SEBGtL0jSXwNtoYrOB6hfEXh/VbBAXB4G3uXQ4HVRERQaBd0WwmiJt0WwECgUne8eZbgZmFgquGG/QzNYZeG9BlXmWTdPrPYB3XYriiITdQgghxC4kYbcQQgghhBBCiCFFOUMMDusWaTSu3u7lbKxiblBf3oO0AXr4z+KuTzlVJfRCgxAiE6NcX+4crijwZUWMgSxvnZv7X1pRnlNfXoflddDdGgTdGVGC7i2jKkvra/cxdtc9pMdnL3rf6qoDdG67ld6tj9n0vZTF3hLzjIVXPJfu0x7Pvjs/Tf7gkaHj2jomP/oFWl/9NvOveT7lo6/flHUozgq8nSNJ6sA7SfPVtHaPNq2JrSaq3yf2C1SjAUsd4tjYqrYu8DpigsJETR4KotOUSZsmgSIeYK5/nKkYObZUcN2+FmY9H/AtqDI3ZgylUio7S5KM4X0xWhf5CSGEEHuA/CUjhBBCCCGEEGJZjJGyOIq18wAkydS2rmdD2R64AqouKAVpe+hwiIqZooENCf2Q0lBd0hHdqjjGSNXt1vtn24okzVCrqK8d4gOqX5xTX65QyxPdikRnxBixEnRvPu8Z/59fYfyuu9H98oJ3i0rRf+KNdG67heqR1yAjrmIzuasOcOKfvY7W1+5j8m8+h+n0h46nJ+c5+Ed30rv50cy/4rmb0ixwJvD2y4G3k8C7phSx2UL1+1D0iXkDtbREbLeXL166GK8DSdCYoMnpEdQYNhmrJ7w5wHz/OIdSTa9yjDfW3hwCbHqVuVKKLNtPWR4n5FdTljO0Wpu7r7wQQgghNpaE3UIIIYQQQgghlll7ihCrwYTTBFqPyJ+NIUB/DlwJroJ8YkXId8o16TpFlyYqVLRTz4qO8xHhyoLgHbboo7RG59maz6F6vRX15UqpM9XlOicSsa7ahPdADHGe/e/5W5rfeuCCdwnNnO4znkjn2Tdv6l7JQqygFL2nPZ7+E25k8qNfoP33X19Rq9/6+vdo3Pcgiy9+Fp3bbllVlfaaloAmScAtB95mEHhn6L1+wYeC2Kz38FZFQWzkqG6XGNuQryLwVgET68C76bp09Tg2GSfLAl03TeWW6FWB8fUOSy9XmVebVmWepvsoy6M4t0BRHKHZvAG11/9dCCGEELvIiLxqIYQQQgghhBBiIxTlUbzvE0KfPL9iu5ezccp5CB5sF5Ks/t/Zh0PGiSKhoIH1kTFVjmwAEpzH9vr4yhJ9IG01L6O+vDxTX64UWdbELAfdSNC9FZxj/7v+lua3f3Dew/bQvrqq/KmPI65iUlOIzRKbOfOveT7dpz+BfXd+iuzwsaHjurJM/fXnaH/lXuZe8wKqG6/Z4BVokkThfF1pbpIEBs0Wo/r9ftUUxEYDyrIOvPMc1esSaUKeX/ShUUEgoKOGCM2qQy8bx6fjRGPpEmlUPWJc517py1Xm1eB/G19lrnVGkoxTVbOk2TTWzpJl+zf0OYQQQgixeSTsFkIIIYQQQggBQAiWqjyBtXMolZAkGz89tS1cWVeX225dg5qtrC8/apuUUdMLKWno0kgjozrVXfUG9eVVSZKl6LVOUPp4Vn25r+vLlSbPmhhlloNu5y5cpS02iHXsf9ff0LzvwRWH+o+7gc5tt1I++jqpKhc7ir32EMf/+etpf/lbTPyPz2N6xdDx9Ngsh/7LX9J96uNY+MnnEMZbG/jsisQkeO/wzkGSEG1FmqZotcatHEaNAvKcqECVJTHWN8UQB9tUXFhQABEdFSmRpu3Qy8bQ2Th9p3FUFNbTzNY5sb/JVeYAaTpNv/9DvO9TFEck7BZCCCF2EQm7hRBCCCGEEEIAUFUniNFj7TxpOoUahRf+46C+3FuwRR10q+EX2xdim8Uy0o1Noitpazey9aW2LPHO4soCpRT6EhN756N63UF9uR3UlyfkWROtDImpz+d8SbzEecRlso4Df/rXNL77w6GbQ5Zy8pdeSXXjtdu0MCFWQSu6z3oS/SfdxOTf3kX7y/euuEv7a/fRvPcBFl76bLo/9mTQG/UzSWHODrxNgo22Drw37Dl2qeXAW6OqkkgYBN4B2he/6CCoiIrUgXfwNGyBSxvYskNlMnpVdXlh9yZXmSfJBEol2GqWyrQJoULrtW/xIYQQQoitt8d/gxNCCCGEEEIIcVpRHMG5DjFa0nTfdi9nY1SdQdDdqWtPk+bQ4TKmnCzr+vLKR/LYJ01GM+gOIWB7PYJzBOdJGo3LrC8HsmxF0G19PREoNpF1HPiTD68MuvOUk29+tQTdYtcI7SZzP/Uijv/zn6a6+sCK47qo2PfBz3DoD/6c7IczG/jMdeCtlMJ7V39/tJYQwgY+xy6WpcQsR1UWihJVVdDtcqmrmLyORMBETRIsGRpMSj9k9Cq//vVoU/8MP7vKfIMppUnTfVg7T4yOsjy64c8hhBBCiM0hYbcQQgghhBBCCLzvYd0C1s2idQNjNrI2dpt4B+UiuF49iZyNDTWTh6g45dt0rKIXUpTt0s5GM+gGsN0uwXtcWWLS5PLry/PGUNCtkKB7K6jKcuAdH6bxvcNDt9dB92uobrh6m1YmxPpVj7iK47/6j5l71fMI+cpp2uzICQ79579g6v2fRHf7G/SsZwJv5x0heCoJvM/IUmKjgXIO+gWqtNDprCLwrj9+aQAdA5lpUGKwAUp3GYG3yeqgO8b65/omSNNpIg7rFimKI5vyHEIIIYTYeBJ2CyGEEEIIIYSgKI4Sg8fahdGZ6u7PQnD1Pp9JA/TwTl4d2swXkUK18K6ibRx6ROvLXVXhbIUv6320zQbUl2d5e7C3e4YCnK8k6N5kqrLsf8eHadx/TtDdyDj5ljuoHnHVNq1MiA1gNN3bbuHo//HzdJ/y2PPeZezL3+KK//udtL/4TQgb8Q2nDry1UjjviYPA2/vLCGVHSZLUgbf30O+jrIOlDpf6Zu9VXX+eeo8xOcFDFTP61WVcSGDy+nl9Vf9c3wTGNDCmja1mcb6LtYub8jxCCCGE2FgSdgshhBBCCCHEHhdjpCxncG4BYDTC7qoLvqz/qxSkw5PqVUyZtRm92KB0kdR1yZPR/BM5xEjV6xJcvT9tkudr35O8qOr68rIEBVl7Aq0T0iStpyJDRZCke1OpsuLAH3+QxvcfGro9NHNO/PIdVNdfuU0rE2JjhfE2c//4pRz/p6/FHppecdz0CvZ94H9y8D+/j/Th4xvwjCsDb2udBN6nJaYOvGOoA29nYWmpvvjpAqKq9/BOg0VrjY4JJSk9exn148tV5uWmVZlD/TuQ8x2CryiKhzflOYQQQgixsUbzL3khhBBCCCGEEKvm3Dw+FFTVLMaMoXW63Uu6PMFDMQ+uBFdBOlYH3qcPR8V8HGehrPfsjlWHVqrWHgDvErZ3pr5cJwk6SS79oLP5iOr36/py70nHptA6HQTdGuctYUMmLMWF1EH3h8h/MFyrezrottdesU0rE2LzVDdey7FfeyPzP/kcQrby51J++BiH/uDPmfrgp1H98jKf7azA250VeF9O7fYoSQyx2UTFOAi8HSx2Lhp4BxUx0WEAk+T0Q0ppA/5yfl6YDLzd5CrzKUBh3RxldYwQNidUF0IIIcTGkbBbCCGEEEIIIfa4ojhK8BU+dMmyEZjqLhfqwNt2IMkhGd7/tUObhTLQp4mtKjIs6YhOdXtb4coSX5ZEIsll1penrXFMmg+CbjMIumV/282kipIDf3Qn+YPDQbdvNTjx1tdirzm0TSvbTQKoWUjuQ2V/h8o/BuaB7V6UWA1j6DzvqRz7336O3pMfteKwipGxz3+dK//vP6X11W9fsl774gaBt9E47wnBY50E3su0JjYbKIBeMQi8l+CiH59IEjzKZIRg8CT0qssIj5PNrzJXypCmU9hqlhgcVbUR7QFCCCGE2ExrvJxbCCGEEEIIIcQoidFTVsewdhbQJMnkdi/p8tiiri63XYhA1h46XMWUpZCz4AxViGCXaDXM9qx1k8UYKbs9gvd460gaOUqvcXq9PFNfnmZNTKNFshx0VxJ0bzLVLznw3+4kP3xs6HbfbnDyl1+LverANq1sJ6tAnwRzHKVPgDkO+gRKDQdsKvs60T6GWP4ExPYFziV2Cj81zuzP/STd7/6QqQ9+hvTk/NBx0+kz/b6P0/7yt5h7zQtwV+5f5zMpjK5/JpyuMbeu/nGSJKP5s2JNtK4nvPsFseij8gYsdYjjLUhWTt9HFUmCRZkGOmr6MaNXVYw31vn86uwq87yuMjcb//J2mk5j7SzOdSiKIzQaV2/4cwghhBBi40jYLYQQQgghhBB7WFmdIEaPtXOk6RRK7eIJ5xigmKsrTm0B+Ric9f7ECIuMs1BApXJCsUgjAbPWAHiXqHo9ove4okQlBp2usZ4+RFSvri9PdYpptUmSFC1B95ZQ/ZKDf3Qn2UPnBt1NTrz1tZcR5o2KCKoD+jiYE6jBf1FzrHZHApV+F8zhOvB2jwVG83vBKCkf8wiO/a8/w/hn/4GJT34Jdc5Ucf6DI1zx/76Hzm23svjiZxHz7AJnuhiF0QmKM/t2OwcQSda6DcQoUmo58KYo6v28l7rEdhvOqZsPCkxwaKOIJqUMCX3bI8Z81V+nK5gcbO9MlbmZuPz36RxJ0kbrBtaeIknHca5LkshFMUIIIcROJb+hCSGEEEIIIcQeVhYzeNchxIpGOr3dy7k85WIddFcdMCmY4dGxJcboOcVSbGCrCh0LGmsNgHcJ7xy+LPFVRYyBLG+vOcZT3bq+PIka02iTpDlaJRJ0bwHVK+qg++Hh+lw/1uLEW+/AXbHXgm4Pehb0cZQ5UQfc+gRKX36NsdJ9VPMjRPsdYvkimfLeDZKEpRc+g96tj2HqQ5+l+e0fDB1WITL+d/9A657vMv+K59K/+dGsJ1nVOgH8IPCOg8AbCbwBFHWleVmiioLYyFHdLjE24dztMpQniYGgc7yvCFFRWE8zW+ekfJLVDS6+qkPvfOPDbqinu8tyhkZwFOURxpJHb8rzCCGEEOLyyW9nQgghhBBCCLFHeV9S2VkqO4dS2e6eWjodctt+PeGdTwwNaVYxpRebnCo1LihiuUgrS9DrHi3buWKMVN0uwXtcVZHk2brryxMfSbIGSd5A6wQve3RvOt3tc+CP7iQ7cmLodj/eroPuQ7v8opRLKuoJ7aFg+xRKXf6+yTG0IRwEfWxFUK7S70FymFj8BLjHIVPeO5+fnuTUL76Sxr0PMPWhz5LMLQ4dN4td9r/nf1B86VvMv+b5uIP71vwc+qxK84gDCbzPUBAHwbYqCmKWo6h/BNM8E3gHFTHRoZIUZRUlGb3qMsLuLasy30dZzmDtHGUxQ7t10+5uvxFCCCFGmPxmJoQQQgghhBB7VFnOQAxYO0+WHdzu5axfjNCfrV/wdn1ImqDN0OFFxlmyUJLhyg6phjwZzRetXVEQvMOWBcpodLbGGt8QUf0+JiqSJCNptNAmxXuLD5cfOIoL090+B/7rX5HNnBy63U+06+rydYR1O1cEtXCmgnywv7bSi5d+6KXOHBWEaQiHiOEg+EN1yH16alt1If9EHXCfRakC1fxror2PWL4Y4thlr0VsvuIJN3LsUdcx/qmvMP6Zr6L88AU5jfsPc8Xb3s3S7U9l6YXPIGZra/TQQ3t4DwLvGDFJuv4q7lGhgEZOrEBVJZFYB94EaDaX76ZDhUrGUMpQuZRe1WU/66mYH9iCKnOtE5JkksrOkuUHqaqT5PmhDX8eIYQQQlw+CbuFEEIIIYQQYo8qyhmsWwACWbaLQ7TTdaZVp96jO20OHe7QpgyaOZvhnSXaHs3GqNaXe2y/jy8rYghkrda66ssNhlQpTJqjk4wQJOjebLrTq4Puo6eGbncTbU7+09fhDkxtz8I2hAN9cmWwrarLPnOMGfiD5wTb+4GLfI3HNrF4NdF9B5V/4jxT3t+H5CFi8UJwT0CmvHe+mKUsvvTZ9J72eKbu/DSN7/1o6LjygYlPfYXW3d9h/pW3UzzhxjVVm2ttUIALHrBAQgQSCbxrWU5E14F3GATeIUK7BYDGooFoUmxoYEOHygWy9V50tkVV5lk2Ta/3AN51KYojEnYLIYQQO5SE3UIIIYQQQgixB1m7iPc9bDWHMW20zi/9oJ0oeCgXwJV1lXljcijAqGJCjxazlcGjccUsjVSTmNFLJ2KM2F6XEALOViRphtJrDBLKCuMhRWOMweQNQnA4L0H3ZtJLPQ7+4QdIj88O3e4mxzjxT1+L3z+1PQtbD9Wtw+yhGvJZlIqXfeoYJlYG23GSdYfR7rFEfx3kn0Sl3xl+N1SJav4t0X2HWLwY4vhlr19sPndgipNvfjXNb9zP5Ic/S7LYHTqezC1x4E//mv7jbmD+Vc/D759c9bmVNiSK+vthdMu3p+loXjy1ZllKVApVlsQCVKx/LtFuExWY4AgmJ7oCHw29yq8/7F5RZW7BbPznwZgxlEqp7CwmaeN9gTGNDX8eIYQQQlweCbuFEEIIIYQQYg8qyxmCtzjfodG4ZruXs37FPARXT3Un+dCL3XV9+QQ9B12fEcolVAw0RjSYcGWJd7auL1cana+9vjwpK1KdokPENNqE4HHeXfqxYt30UncQdM8N3e72jXPira/FT68+jNtaAfQc6MG0tjk+eLt76YdeQowawgEIB4mnK8j9IWATQqbYIhavJLrHDqa8e0OHVfIAtN9BLJ4P7knIlPcuoBT9mx9N8dhHMPHJLzH2d3ejwnC1efO+B2ncf5jFFzydpec9DdLVvUSqlCExg8DbO0ChtceYde4/PWrShKhAFSUxDia8YwfGxtCqAtMiorC+Qc/2mbpYA8OlDFWZ9zcl7FZKkWX7KcvjNPKrKcsZWq1HbvjzCCGEEOLySNgthBBCCCGEEHtMjIGyPIp19RRpmu7UMO0SbL9+obsahGtZe+hwhzYuGmarnOgtturRThP0CHbOBh+wvR7eWqLzpK3mmiM50y9JTY62niRvEqIE3ZtNL3Y4+Id/RXrinKB7eoITv/xa/PTmVPOuXXXWntonBsH2SZS6/H8fMTTrMHs52D5U77fNFoeH7jFEfy3kn0Kl3x46VE95f3Qw5f0SiDvl8yIuJuYZCz/5HLpPfTz7Pvhp8gceHjqunGfy41+k9bX7mH/18ygfe8OqzrsceDuP1gHvJewekiTEhkKVBbHfR9Ek9nrotkLTBpNhQ0Zpu/gQMXqdP5O3qMo8TfdRlkdxboGiOEKzeQNqBH+PEEIIIXYzCbuFEEIIIYQQYo+pqlOE6LB2niSZRKld+KdhDNCfr1/kdiXk4/V+3QN1fXmTOZviosIXiyRakyWj+QJ1dbq+vCwxWYJeY/CiS0dGgvaeJM0JCgm6N5le6NQT3Sfnh2530xOceOvr8Pu2ozY7gurU1eNnB9tq/rL3JY4RiPvAHySGQ8t15MQxdsy0dGwRi5cPprw/vmJKXSUP1lPe5fPBPpkds25xUe7K/Zx462tp3v0dpj7yOUxneHo/PbXAwT/+EL0n3cTCK2/HT136a08pjdKBEDxKaUII6LVuGzHKEkOkiSr6xLKsv39og2p7tE5xISUGRd96xvJ1/g6yRVXmWmckyThVNUuaTWPtLFm2f8OfRwghhBDrtwtf0RBCCCGEEEIIcTnKcgbveoRQ0Ghcvd3LWZ9iEYKtp7pMVleYD9T15eNU0bDkEoLt4r1jLE9HchrLViXeVriyRCmFyda2/7oKkHvQARKTEbSSoHuTmfklDv7hB0hOLQzdbvdPcvKtr11V2Hb5POjZwd7ax89Mbqviss8cY7JcPb68t3Y4AKyxWn+7uEcR3TXQ+BQqvXfokFIVqvExYnJ6ynuXNmPsNUrRf8rjKB73SCY+/veMff7rqDi8j3zrm9+n8d0fsfgTz6TznFshudhFQwqjNM57tAk478kk7B6WaGIjRxUFsVIoQGc9fNIm2g7OZ/TKywi7YbjK3PbAbM7XY5pO0+//EO/7FMURCbuFEEKIHUbCbiGEEEIIIYTYQ0KoqKqTWDuHUinGjG33ktbOV1AtDV7gDiuqS+v68oTZKiMGiy07pIkmHcGp7hAjttsjOEdwjrTZXFOgr1DkVUBHRaI1kYg7Z29bsbHM3GIddM8uDt1uD0xx4q2vJUxuxtdkcWZP7dPBtj6JUpf/uY5hbGWwHaeA3R78NYnFTxLtY1GNj6N0Z+ioSn44mPJ+HthbkCnv3SE2cxZe9Tx6T3s8U3d+mvxHR4eO68oy9bd30f7qvcy/5vmUN113wXMprVHBE0JAEQhJHMltMi5LkhCzHFWVRK0xnQX8ZAutEiw5/WqRGPP1N0cMVZn3obE5YXeSTKBUgq1mqUybECq03iUX7wghhBB7gITdQgghhBBCCLGHlOUxYvRYO0+a7dt9k84xQn8Ogqtf2M5aoM9M39lBfXknpBQOfLFEjNDKRnM/VdvtEoLHlSU6TdAXnUQcplDkXmOiJ1GG6D1WRyS02zxmdqEOuueWhm63B/fVQfdE+wKPXK0IamFQQX4czIl6clsvXfqhlzpzVBD2n7W3dr3PNvFy17zD+ZuI3Wug8WlU+s2hQ0pZVOMTxOS7gynvqe1Zo1gze80hTvwvP03rK/cy+bd3YXrDjQbp8TkO/uFf0bv1scy//DkX+NpUaG3wwWN0JDiHTje+RnvXy1JiCKiiRKOgKtE6pfI5BEVhPc31/oxWpq4u9yWEzasyV0qTpvuw1RyNxlWU5VGazes3/HmEEEIIsT4SdgshhBBCCCHEHlIUM1i3RMSRptPbvZy1qzrgqvq/xkDSWj4UIywwjouGeZugQ4/CWZqpGclpO19VuKrElyUAyRrqyxWKnBRTlSQqITqLxQOjeVHATmBODYLu+XOC7kPTnHjrHYTxywmNIyTfRWV3oczs5S0UiDEbVI+fHWwfYO++jNQgFi8j2scMpryHP4cq+RG0/4RY3g72VuSCkV1CK3rPfCLFE29k4n98gfaXv4kabjandfd3aHz7Byy+5MfoPPtmMMONBVprQvD1RUdKYSKXvb/9SMpzCAFVlmjbIyZNAooQUnqXE3ZDvZXJFlWZV9UJrFukKI5I2C2EEELsIHv1rxQhhBBCCCGE2HOc6+D8Es7OoXUTYxrbvaS18Q7KRfBF/XZjcihT6tLCxYQ5nxO8wxZdjFLkyW6vU14pxEjZ6xG8x1tH0myg9OoSFoUi1xm6X5HolGhLrLcgE4mbxpycr4PuheEqbHvlfk788h2EsdYFHrmakx9G5Z9FmZl1PTyGiTPBdjgE/uBgH2pJ7FbwNxK7vwj5p1HZN4YO1VPenxzs5f0ymfLeRUK7yfzrXkj3mU9g3199iuzhE0PHdVkx9eHP0vrKvcy/5gVUN1x11lGF0poQAlpHvHckibzcuoKC2Gyiej10dxE32SLtV1TNlH7Zg/ZlVIIn+ZZUmRvTwJg2tpolTaewdoE03ZznEkIIIcTayG9fQgghhBBCCLFHFOUMMTisW6TRuHq7l7N2xTwEW7+onTaGqkptTOjSok9OrwJVdnAuMJYnu6+qfRXsIOh2RYFKDGaV4UoddKco60kx9UR3VUIue49uluTEHAf+8AMki92h26urDnDyLa9Zf9CtT6Gyz6LS76/q7jGaejrbD0LtcLAOttllF71su5xYvpToHotqfPQ8U94PDfbyfi7YpyIXDewe9rorOf6rb6D9xW8y+dEvoPvl0PFs5iSH3v4XdJ/+BBb+0Y8vf+0abbAhEELAe48xiUx3n4+C2GyQFH2sq1A6oSpKmgasD6RmnRemKb0lVeZQT3cXxUMEX1EURyTsFkIIIXYICbuFEEIIIYQQYg+IMVKWx7B2HoAkmdrW9ayZ7YPr10G3UpCeqXxeUV/uOxS2IjWadASnur11uLIgVCUxRrJ8dWHlctAdFGmAGDyu7A0muiWZ2QzJ8VkO/uFfYZbOCbqvPsDJt9xBaDfXflLVQWWfh/QbqHM7lwdiaEI4t4Z8Gqmp30D+hsGU92dR2T1Dh5RyqManBnt5vwzivu1Zo1g7rek++2b6T34Uk39zF+2vfnvFXdpfuZfmt77Pwst+nO4znwhao5UaTHdrgveYRL7WzktrVJahqoJoEqhAxZLeeMpk6zJ+Xm9ZlfkURfEw1s5Slg3a7Uejtby8LoQQQmw3+WkshBBCCCGEEHuAtbOEUFLZOZJkYne9OBsC9OfqvbpdBfn40Kaop+vLO7GBtZZQdfEx0s530fu4SjFGyl6X6D2usiR5tqr6cgVkOkWhSV1AhYjtd4lag5ZQZjMkx07VQXenN3R7dc1BTrzlDmJrrRPVJSr7MmRfQSl33nvEMFXvG+0ejVzAsBVyYvlionvMYMp7ceioSh4e7OX9nMGU9+hdfDOqwliLude/mO4znsDUnZ8mO3pq6Ljul+z7q0/R+ofvcOrnf5I41sBZRwwBHxw6GpnuvpDEYPB4MrIItmPpL3SZbE1dxjnPrjLvbVqVuVKaNN2HtXPk+RVU1fHd2ZQjhBBCjBj5LVsIIYQQQggh9oCinMH7PiH0SNNdNmVYLkBwYLv19FaSLx86XV9ekNOpFMZ1qGwgTzRmlXtY7ya23yd6hy1LVKLR2erqxzOdodGkAZQPddBNlH26N0ly9BQH//ADK4Puaw+tI+j2kP4Dqv1HqPzvzxt0x9AkFD9B7P4SuMcgQfcW848gdn+RWN264pBSDt34NKr1XtCnVj5W7GjVI6/h+L/8x8y/4rmEbOX3y/zBIxz6T+8jPbGA1ooQAyFACH4bVrt7GB0IRqOiooopfuYUrqrWf8KhKnNXV5lvkiybJsQK55YoiiOb9jxCCCGEWD0Ju4UQQgghhBBixIVgqcoTODuPUglJMr7dS1o9V0HVGdSTBsiH68sXB/XlHZ+C7VJWFUpBIx29aWXvHK4o8GVFDIE0b6wq0szUIOjGoKzDVj1icFJfvkmSmZMc/MO/xHT6Q7eX112xxqA7QvIdVPsd6MYnUbq/8h4xIZY/Ruy+BexTkJry7ZQRyxcReq8nhpVTpcocQbX+FNIvAWHrlyfWzxg6z30KR/+Pn6d3y2NWHE5mFzn0n95H88GjhBCJsd67W1yYDhaMxmcNIhk6QOcHD4O/jK8Nk9Uh9+kq801iTAutG1g7i3ULONfZtOcSQgghxOpI2C2EEEIIIYQQI66qThCjp7JzpOkUSu2SPwVjgGJ2MNXdh7QF6kyY16WFjQk9mhRlRXR9rAs00gQ9Yv2xMUaqbpcQAs5WJGmG0pf+PGYqxShNquqg21Ul0dq6ulzqyzdceuREPdHdLYZuL6+/kpNvfg2xmV/gkecwD6Fa70E3P4zScysOx6iI1c3E7luI1XOAVZ5XbD5/PbH7C8TqqcRztlRXyqMbn0W13gP65PasT6xbmBhj9mdexolfvgM3NXzRmO6XHPxvH2Ts698jBE8IkRDkooYLUYDxFS5vEpMM17NUnYrqyFGIl3z4+SV5HXSfrjLfRFm2H+sWicHJdLcQQgixA+ySVziEEEIIIYQQQqxXURzBuQ4x2t1VYV51wdl6stsYSJrLh2w0y/XlXQvGdyisJzGaPBm9P3VdWRK8w5YFSml0fun68jroNiTKoHzEVX2CHdTESn35hksfPs6B//pXmN45QfcNV3HyLasMuvUpVONOdOu9KDNz3rtEexOx9wvE8iUQxzZi6WLDZcTyhcT+PyaGqRVHlTmKar0Tsi8iU967T/mo6zj+K6+nuubQ0O3KBw6+75NMfPIrxOhxTqa7L8b4imASYp5j0zH8Uh+/2MEeX+eFICuqzC+jFv0S0nQKgMrOUpZHiVG+joUQQojtNHqvAAghhBBCCCGEWOZ9H+sWsG4WrXOMaW33klbHu3qvbteH4CEbX27cruvLJ/DR0IsZvupircOHQGsE68uDD9heD19ZovMkjfyS5eNnB906Kly/S3C2/lhKffmGSx86xsHzBd2PvJqT/+TVxEtdnKA6qPxjqNY7UOn9571L9FcSem8gFndAOLBRSxebyV87mPJ+2vmnvPO/Q7XeDfrE9qxPrFuYaHPin72O/uMfueLYvk9+mX1/8UmCtYRzP/FimQkVEPFJRjVxAO2hmFvCzc7h5xfXedKtqTKvt4SZxNpZQrRUlXwNCyGEENtJwm4hhBBCCCGEGGFFMUMMHmsXSNPp7V7O6hVzg/ryXl1NqpPlQ6fry7s0qaxF+z6FdeSJxpjRC3Gr3qC+vCpJshRtLh7oDwXdaFzZIwQH1kl9+SZIDx/l4H/9K3S/HLq9uPGaVQTdFSr7HKr9R6js6yi1MhiLYYrQfyWx97Pgr9vg1YvNlxLLFxB7bySGlc0ayhwbTHl/AZBJ4N0kZimn3vRylm67ZcWxsa/ex4E//iBxSfZzvhAdAzo4vEkJWQvXbuP6jtDpUc0cx3f7az/pUJX5Oh6/Blk2TQgl3nWlylwIIYTYZhJ2CyGEEEIIIcSIijFSljM4twCweyrMqy64ov6vUpC2lw+5s+rLK6+hXKK0dUDUGMGpbluWeFvhyhKlFDq7+IRwqpLhoNuWhMrWQTdIffkGy344w8H/eie6GK7LLW66llO/9CpidqGPt4f0H1Dt/4rK/x6l3Ip7xNAkFC8kdn8J3GORafxdLlxD7L6JWD2DGIc/l0oFdH7XYMr7+DYtUKyL1iy86nnMv/J2zvm00rj/Iab/4/vg1ML2rG0XML4iDC5ms61pYmsMN7tA6BfYh48QK7u2E25hlbkxYyiVUdlZKjuL98WlHySEEEKITSFhtxBCCCGEEEKMKOcW8KGgsrMYM4bWuyDoDAGKeXAluArSsTrwph7WWmAcHw0lOVXZwXtHaQPNNEGr0QoDQ6jry4NzBOdI8gbqIu9jopLB/wZBd7CEsl+/4B88pAkSmG6c7MEZDvy3O9HlOUH3o6/j1C++8gJBd4Tku6j2O9CNT6L0ysnDGBNi+WPE7lvAPhUYvYs49q6UWD6P2PsZol/ZtKHMcVTrXZB9Hpny3l06z7mVUz//ckKaDN2eHptl39veRfKjo9u0sp3N+Aq0xmmDS9uERguabfypOWJRUR0+An6NXwtJvkVV5oosm8baOWLwMt0thBBCbCMJu4UQQgghhBBiRBXFDMFXeN8ly3bJVHc5XweztgtJVv9voEcTG1O6NLGuri/vW48xmiwZvRDXdrsE73FliU4TdHLh0DMhIVUJidJ10B0doSggxLPqy5MLPl6sTfaDI4Oge3jqsHjM9Zz8hQsE3eYhVOs96OaHUHpuxeEYFbF6MrH7FmL1HCDfpNWLbReuIvbeRCyfdYEp78/Xobc+tk0LFOtRPPEmTvzT1+HHmkO3m6Uek3/wXrJv3r9NK9u5dKhDaa8TrGmC0oTJfWAM9uQcoSioHj4Ka9n63Ax+b9iCKvPT28M4t0BZzhBlj3YhhBBiW0jYLYQQQgghhBAjKEZPWR3DujlAkyST272kS3NlXV1uu/VEVjZ25lA0dGhTkuHQuGKRygW8DzRTc9GJ593IVRXOVviq3gc6yS8cfCYkpDrBKI3G4KInOAvOgx2EsakE3Rsle+AhDvzxB9Hn1Ov2H3cDJ9/0ipUfa30K1bgT3Xovysyc95zR3UTs/QKxfCnEsfPeR4yahFg9l9j7WaI/sOKoMidQrXehss8BK2vuxc5kr7uC47/yBuyh4QvMVGUZ/6M7aXz2a9u0sp1JMagyT1KCAm+auGhIDk5D8NiTc/ilLvbYiTWcVNcXd21BlbnWKUkyRlmdwocCa2c37bmEEEIIcWESdgshhBBCCCHECCqrE8TosdUsaTqFUjv8z78YoD9bV4/aAtJW/YI1w/XlBQ181YPgKKwjTTSpGa2gO8RI1esSnMdbR5LnFwzzTwfddcw9CLqDh7KsJ+SX68t3+Od/l8i/f5gDf/yhlUH342/g1M//5HDQrTqo/OOo1jtQ6fknOqO/ktB7A7F/B4SVgafYA8KVxN7P1dX1K6a8Y72ne+tdoKUGe7fw0xMc/+evp7jp2qHbVYyM/eUnaX/gf9ZbdghgUGVuUjyRKmnjQ0SZnOTANLGq8POLuLl53Owa9j5P8norlBg2tcocIE33E0IP7/sUxcOb+lxCCCGEOD/5a1cIIYQQQgghRlBZzOBdlxAr0nQXVJiXS3XQXXXAJJCcqYE9XV/eo0kIDl92KawnRGhlo7efse31CD7gygKdGHRy/qlsg1kOuhNl8NETCIOgO9ZT3VJfvmHy7/2I/f/9w2g7PGXbf8KNnPq5l8Py56lCZXeh2n+Eyu5BqZW1tjFMEfqvJPZ+Fvx1W7B6sbMlxOo5dejtD644qsxJVOvdqOzvkCnv3SE2c07+k1fTeepjVxxrfuarjP/xB6HcvInj3STxdYOJ1ylV0kArgw0alWeYfZP4The/1MEeO4HvrDK4NhkoNbiAbnOrzJNkHKUSbDVLVZ0iBPm8CiGEEFtNwm4hhBBCCCGEGDHel1g7R2VnUSrDmPZ2L+nivINqCVy/nsLKxupuU4bryz0GVywSYqR0dX25HrH6cm8trizwZUEkkuSN897PoMl0gkaRKEOIHk8A56S+fBPk3/0hB96xMujuPekmTv3sP4LEAB7Su+uQO/8CSq0MJWNoEooXEru/BO6xLP9DFwIgXDGY8n42MQ6/ZFdPeX8R1fpT0Oevwxc7TGKY++kXMfcTz1hxKP/G/Uz+wZ+jFjvbsLCdRRHRwRGTHKsMQWdYD6Ax7RZmYgw/t0ToF9gjM8TVXCSgNOh0S6rMldKk6T6snSdGR1lKC4MQQgix1STsFkIIIYQQQogRU5YzdYW5nSdN9+38/az7s/WL0bYPSWN5EjlGWDyrvjy6PtE7+pXHKEWejNaftDFGyl6P6Af15VmO0is/dwZNqtPlie4QA45QT3NLffmGy7/zIAf+5CMo54du7z35Ucz+zMsg0ZB8F9V+B7rxCZReOXkYY1LXVHffAvapwOg1EoiNYojVbYMp70Mrjiozi2q9B5V/BrArHy52FKUNiz/xdE7+9E8QzfD34/TwUabe9m7M0ZPbtLqdw/iKmKSEEKiSJi4A1L8LmMlxdDPHn5ojFBXV4Zn6oq5LSbItrDKfJuKwbpGiOLKpzyWEEEKIleSvXiGEEEIIIYQYMWV5FOsWgECW7fAK86pbT15V3XoSK20tH+rRpBrUl4PHFh2sC9jBVPeOD/HXyPbrMN8WJSox6DRdcR89CLrN8kR3xDF40V/qyzdc49s/OH/QffOjmX3jyyA7imr9Gbr5IZSeW/H4GBWxejKx+2Zi9Rwg36KVi10vHCL2fpZQ3nb+Ke/sy6jWO0FLsLbTaa1ZuuXRnPgnryI0h78HmNlFJv/De0i/+8NtWt3OYHwJShOMplQ5Shl8GFwUpBTJ/n2QGNyJWUJRUD48U18Rd9GTbl2VuTENjGljq1mc72LtGvYXF0IIIcRlk7BbCCGEEEIIIUaItYv1C63VHMa00XoHh2vBQzEPrqynr9J2/cI0K+vLKZcIIdC3njTRpCM21e2dwxUFvqyIMZDmjRUF1xpNthx0J8NBt9SXb7jGvQ+w/51/jfJh6PberY9l9meegWp/CN36M5Q5f9gY3Y3E3i8Qy5dCHN+KJYuRY6B6NrH380R/xYqjZ6a8P4VMee9cSmmUUvQfeRXH/5efxu+fHDqu+yUTb38/+Ze+uU0r3H46OIiRmDQodYJCY0Pg9HQ3WpEemIYYsCdnCZ0e9ujxi590C6vMoZ7udn6J4CuZ7hZCCCG22Gi9OiCEEEIIIYQQe1xZzhC8xfkOabrDp7qLhUF9eQeSvK4cZWV9uYkFZVVROI+PkWY6ehXQtt8jhICrKpI0W1Ffrs4Nujkr6Jb68g3X+Ob32f+uv1kRdC/ddhNzv6BQ43+CSu8/72Ojv5LQez2x/1oIB7ZiuWLUhYODKe/nEuPw9z+lQGVfRbX/BMxD27RAcXEKrTUhRNwV+zj5q2/APuKq4XuEwPi7/5bW33zu0hPLI0hxuso8x0WoTBPnFYqzLtxKDMmBaaK1+Ll53PwibnZlo8aQLa0ynwI01s5SlkcJwW3q8wkhhBDiDPnrVwghhBBCCCFGRIyBsjyGdfWLv2k6eYlHbCPbB9utX3yOQNZePtSniSWlRwNNwBVdfIyUNtBINOY8+1jvZr6q8NbiyhKlFTrPho4rFPm5QXc8q1Zb6ss3VPMb97P/3X87FHSHPHLqLftY/Jn7UfnXUWplGBXDJKH/CmLvZ8Ffv5VLFnuChupZgynvK1ccVXoe1XwvKv+fwOZOsIq101rXjdrBY1sN5n7lDZQ3P3rF/Vof/QJj7/6buq1jj0l8STQJKEWhE8AQ0Jz98rXKM5J9U/huH7/YwR47iV/qXviky1Xm1aZXmSulSdN9VHaWGD1VdYnJcyGEEEJsGAm7hRBCCCGEEGJEVNUpQrRYO0eSTKLUDg09Y6jry70FW9RBt6r/PHXRsESbMmZ4EozvUjlPv/IoBfmITXXHGKn6faL3BOdI8nyovrwOujP0hYJuqS/fUM17vsv0e/4WFeqgO+pI97meY/9XpHzqMZRaWRUdQ5NQvJDY/SfgHgcrCuiF2EDhALH3M4Ty9gtMeX9tMOV9eJsWKM5PobUhhABEglEs/dKr6b3g6Svu2fjyvUy+/f2oXrH1y9xGZlAzHtOcQmVorbHurCrzAd1uYibH8fOLhF6BPXKUUJTnP+npKnM3qDJ3m3shSJZNE6PFuSWpMhdCCCG2kITdQgghhBBCCDEiynIG7/uEUJBlO7jCvFysg+6qAyYF0wBO15eP4aOmT4OUin6/wPqIdYFGmqDVaAWJrqoI3mHLEpVodHLmRf1zg+4Iw0H3ufXlidSXX47m3d9h+s8+igqRSKR/S+D4v7UsvNETWyunLGNMiOWziN23gH0qMFoXYoidTEP1TGLvTUR/1YqjSi+gW3+Oyj+BTHnvHFprFBCCx3lPVIrea15A56deRDznZ1t6/2Em3/Zu9Mn5bVnrdlDEeu/uJMcqg4sKFzXqPN9bzcQYutXEz84RihL70BGi8+c5K3WVubdbUmVuTAutG1g7i3ULONfZ1OcTQgghRE3+ChZCCCGEEEKIERBCRVWdwlazKJVizPh2L+n8vIVyqa4TjQGyseVB2D4NLBl9mmgCoergYqBvPYnR5Mlo/QkbY6z36naO6ANJli8fOx10q0HQDWDjOYHrufXlRqa616v1tfuYfu/HUDFS3Rg4+b855v6pw1+x8r4xKmL1JGL3zcTquUC+8k5CbIWwn9h7I6F4PjGu/PpX2d2o9jvA/Gjr1ybOQ6G0rqe7Y8T7+nt68dynsPjLdxCzdOjeyfFZpt72bpIH986EsPEVIcmICvoqq7/f1jt6D99RKZLpKUhT3MlThH5J9dDM+fc738Iqc4As2491i8RgZbpbCCGE2CKj9UqBEEIIIYQQQuxRZXmMGB3WzpOmU6idOAEdI/Rn6ylk14ekWYe0gI+aJcYoY4ojIY89eqWjtBEfAq0Rqy8HcEVBDAFXlugkQZv6fTy9R7dCkV4o6Jb68g3T+uq32fe+j+EPBmbfajn5vzvsTecJTIDobqynacuXQdyhF5SIPUaDfTqx+yaiu2bFUaUX0a33ofKPI1Pe289oTQRCCITgl7NZ+8SbmP+Xb8RPtIfurzs9Jv/jn5Pd/Z2tX+w2ML4EpVAmpadTlNK4AIrz/IzTinT/PkBhT80Ruj3skWMr73d2lXnc/CrzNJ0CoLJzlOUMMYZNfT4hhBBCSNgthBBCCCGEECOhKI9i3RIRR5pOb/dyzq/q1pNVVad+8TltAafry8cH9eVNMiqKsiTESGEdeaIxZgeG95chhIDt9/GVJcZIktfTwQoGQbe+cNAt9eUbpvXlbzHx0Y+x8AbH8X9rKW69QMjtryD0Xk/svxbCwS1epRCrEKeJ/X9c7x9/3inve1Dt/w7mwa1fmziLRis1CLsjwZ+p3vbXXcHCv/453FUHhh6hrGP8HR+i8akvn39yeYTo4CBGYtKg0hk+BFxQoAzLNTBnSwzJgWmitbjZedziEu7k7Hnut3VV5kolJMkk1s4SoqOqTmzq8wkhhBBC/hoWQgghhBBCiF3PuQ7OLeLsHFo3MYM9sHcU76BcqCervF1RX14N6ssVEeN7FNbTt3UI0BjBqW7b7xNiwNsKkyYorVBAprOLB90A1dn15Vrqy9ep9ZW7SXsf48T/aendHs675XYMk4T+K4i9nwN//dYvUog1UWCfSuz+AtFdu/KoXkK33o/KPwqUW788AYA2hhgjMQZ8cEP5ddg3wcKv/QzV424YeoyKMHbnp2m//xPgR3dSWAGJL4lpXT1ekBCiHnyMzv+7gMpSkul9hF4fv7CEPXEKv3jOXtlbXmU+TQgl3nWlylwIIYTYAhJ2CyGEEEIIIcQuV5ZHicFh3SJZtkOnussFCK6e6k4bYOq9SX3UdM6qL2/RZ6mwWB+pbKCZJuidWMl+GYLz+LIkDKa6TVpPdWc6Q18q6HYO7Fn15Um68j7iEjz5Q39D9dRPsPQKTzzPtSExNAnFC4jdXwL3OM47USjEThX3EftvIBQ/QYwrv0eo7BuDvbx/sPVrEyg0Wp+e7oYQ/NDx2MhZfOtrKZ5984rHNj93NxN/9FdQjm4lvfEVUScobeiq078rKBQX/nmnWw3M1AR+YYnQ7WOPHCMUZ13QscVV5saMoVRGZWep7Czeb37ALoQQQuxlEnYLIYQQQgghxC4WY6wrzO08AEkyta3rOS/br2tDq279/wf15VDXl7vl+nKLtQU+RPrWY4wmS0YvZLT9HiEEnK1I0gylFZlKB0F3Pbnmzhd0n6++XMmf9asXIfkeRv0X7OPvJUye5x4xIZbPInbfAvZpcL59YoXYFRTYpwymvK9beVQvoVt/iWr8D6DY+uXtcVprQhhMd3u/8g7G0HnDS+i+4vYVh7J7H2Dq//sz9EJn5eNGgPGDIDrJsSYnBE+Iup7MvshL2WZiDN1u4mbnCUVJdfgI0Z71s3RLq8wVWTaNtXPE4CmKmU19PiGEEGKvk7+KhRBCCCGEEGIXs3aWEEoqO0eSTKD1DgznysX6BWZXDurL6z9F+3G4vjyjR6d0lC7gfaCZGtSITXV753C2wlclSil0lpKpFKMMiTIoNC46zrsrq9SXr59+GNX6M3Tzg8Sx84QcEWL1RGL3zcTquUC+5UsUYlPEKWL/9YTiReef8k6/OZjy/v7Wr20PU0qjtKqD3BAJ4TzV5ErRf/GzWPyFVxKT4Qrv5KHjTP4/78IcGb39oBUR7S0hzfEmpQwRHxSDkvOLPjbZN4XKMtzJU8SipHpoBk5/bE0+XGW+yfufp2ndtGPtPEV5hDji+60LIYQQ20nCbiGEEEIIIYTYxYpyBu8LQuiRplPbvZyVbH/wwnIPjKlfbKauL186p768Vzp8iBTWkSaa1IxW0A1gez1iCHjrMFlGelbQrdG4aM8fdEt9+fqoWVTjg+j2n6HM+fdNNUf3EXq/QCz/EcTxLV6gEFtBgb2V2P1FonvEyqO6g279FarxN4DULW8NhVGD6W4Czp1nunugeurjWPiV1xPazaHbzfwSk//hPaT3jV4dvQkVwWRopeipdDAFr1HqEhd5aUV6YAqUwp6YJfT6VDPHIVIH3WdXmXu7qe+D1ilJMk41uCjR2lOb+nxCCCHEXiZhtxBCCCGEEELsUiE4qvIEzs6hlCFJJrZ7ScNihGKhDru9haS9vPXxmfryBhkWQkW/8hTWEyO0MnPxc+9CrqrwzuLKEqU1Wdog1QlG6UHQ7TjPbF/9cZT68rVRXVT+cVT7v6PS7533LukPFY3PPRnbfjOEg1u8QCG2QZwk9n+KULyEGLMVh1V672DK+/6tX9sepLRGKQZ7dwfCRSZ/3Y3XMv9rP4s/MDV0uy4rJv7LX5J//p5NXu3WMq6qw2mTUZkmITp8OP1z7xKBtzEkB6aJ3uNOzeEXl7AnB0Fzkg+qzP2mV5lDPd0dQg/v+xTF+S+4EkIIIcTlk7+OhRBCCCGEEGKXqqrjxOgHFeZTqJ0WgNoeBDuY6k7q/TI5t74cGvRZLCw+RkoXaKQGPWL15TFGqn6f4DzBefJGk0wnaDQGg4uecP6ZbqgqqS9ftQqyz6Paf4TK7kGplR9TcxKm/tiQ3vNcere8dBvWKMR2UmBvHkx537DyqO6iW3eiGn+NTHlvNoXWZlBhHgnOXfTe4dA+5v/Xn8U+8urhs4TI+J9/jNaHP1v/rBgBOjpUDMQ0xyUNKu9wAUCjLhV2AypLSfbvIxQFfn4Rd3IWv7AEJjuryry36VXmSTKOUgm2mqWqThJCuanPJ4QQQuxVO+yVECGEEEIIIYQQq1WUMzjXIUZLlk1v93KGxVDv1e0q8A7SNnC6vrw9VF9eOo/zkV7pMUqRJ6P3p6orS6J3uKokSRPytIFGkyiDj55w/pnuur68cmAHIYjUl19AgPQeVPu/ofPPo9TKelrVgYm/MBz69ynVwdvpvOCZ27BOIXaIOEHsv47QfykxrtyjXqXfRrX/BPTRbVjc3qG1RgEheFwIl8xe41iLhV95A+VTHrfiWOsTX2T8Tz9y5ufFLqYA4ytikoNWFKS44InoQbPJpX9P0M0cMzmBX+wQuj2qI8cIRXlWlbmvQ+/NfD+UJk2nsXaOGD1FIV9PQgghxGYYvVcQhBBCCCGEEGIP8L6PtfNYN4vWOca0tntJw6peHXK7bj1JZeqQtq4vN8v15QZLp3BYF3A+0EwNasSmukOM2H6/ntoLkXZjHIMiUYYQA/5CQfdQfbmT+vLzipDcj2q9A934OEp3V96lgrGPaq74P1PGPmVYeOlz6Tz/aVu/VCF2HAXuyYMp7xtXHtUdVOu9kHxnG9a2VyiU1vV0d4x4v4qgOk1YetMr6L3oWSsO5f9wH5P/6X2ozuZXdG824yuCNmhlKJMmIXh8PP0zcHVbnZiJMfRYCze7QCxLqsMzxKjr30+iB7v57QVZNk3EY90CRSlV5kIIIcRmkL+ShRBCCCGEEGIXKsujxOCxdoE03aFT3b4E7yFtAtCP+aC+vLFcX94tHT4E+taTJpp0FKe6+31iCLiyotVoo7UhUQmBiMNf+IHL9eWuDrnN6O1jfln0EVTzvejmnSgzu/J4gOYXNFf8/1ImPpig+4r5V95O5/anbv1ahdjJ4jixfweh/49WTHkr5dDND0P293ChrRbEZTHaEKn37vber65ZWyt6r7ydpTe8hKiHLxBLf/AwU297N/r43Kasd6uYwdR1TBvYpIELFh8C1JeLrfo8ydQkKs9wJ2brwHvmVH0x2RZVmdcXJI5hq1m872Ht/KY+nxBCCLEXjd6rCEIIIYQQQgixBxTFEZxbACJpum+7lzOs6tbTyLZX79Nt0kF9+digvjylRZ8QA73KUziPj5FmOnphbggBVxT4ytIwOWmSkaiECLh4kaB7qL48QppSF7sK1Cyq8UF0+z2o5OHz3iX/puLg7yTse2eCmas/bnOvfh6d59y6hQsVYjdR4J5I7P4S0V234qjOP4dq/A2w+yuydx6FVvV0d4yR4C/ys+Ec5Y/fwuJbX0fIs6Hbzcl5pv7Du0keeGijF7tlFBHtLSHJiDqligbnPGDqfbdXOd2NVqT794HR2BOzhH5JdXwBXLElVeYAaTqN8x2CrygKme4WQgghNpqE3UIIIYQQQgixy1g7jw8FlZ3FmHG03kH7OIezprqDh7SuV19kDBc1fRqkWFLlWOo7fIwUNtBINEaPXphr+3Won0RNkmakpg4kbLxIYLSivtxIfTmA6qLyT6Da70Cl3zvvXfRsm/3/b8L+/5ySPnzmYzb3mufT/fFbtmqlQuxecYzY/yli9eQVh1T6bVTrfaDOs12AuCzaaGKMxBDwwa1p2Ng+/pEs/Ks34qfGh8/Z7TP5n95H9rX7Nni1W8f4imBylFKUpoHzjhAB1JqmuzGa5MA0eI87NYvvVthjJwdV5ptf+Z6mk4DG2lOU5TFCkItGhBBCiI0kfy0LIYQQQgghxC5TFDMEX+F9d+dNddvOWVPdOeiEImZU5PRpooAmfUoXqHygX3m0gsYITnV75/BlSeLBKE2eNoBLBN1wnvryNbygP6r0UVTrHajsbpRaucd5DBM0vvAorvi3Ffl3hl/qmHvtC+k+++atWqkQI8AQy5cQiuevCF2VOYJqvRv0ie1Z2ohSaLRWhBgIAUJY/XQ3gL/mEAv/+udw1xwaPq/zTPzJh2l+/IubXte9GRJfggKVZFjTIESPG1SZowxraTxRaYLZv49QlPilHm5uEX/qVL1v9yZ/bJTSpOk+KjtHjJ6qOr6pzyeEEELsNRJ2CyGEEEIIIcQuEqOnrI5h3RygB9NCO0QIUC4NqkHD8lR3lxY2GhwpTfooYKlvsS5gXaCRJig1mlPdJmqUhzxvopXGXSrodr6uL3dSX75MdVDNO1G6v+JQjA1C8XzG3/cYpt/5I1Q887GKCmZf9xN0n/WkrVytECNCgX06sX8HMQ63hyi9iGq9B8z3t2lto0lrTQiRGAPer33yN0yOsfAv30j1hBtXHGt/5LOM/fnHYA0V6TuBjh4VAzHNcUkDF8E6h1p+SXttF8rpZo6ZmsQvdQl9S3VkBt/pbEmVeZZNE6PFuiX6xfm34BBCCCHE+kjYLYQQQgghhBC7SFmdIEaPrWZJ0ynUTqq3rhbrqW53eqrbUA326C7J0QQy5ehWDhcCfedJjCZPdtD7sEG8tSgb0D6QmpTEJLjouOjsWIxQFvXH0Et9ec0Ogu7O0K0xGmL5DOLSm5n8yy4Tn/368HEFcz/1InrPfOJWLlaI0eNvIvZ+hhgmhm5Wqv7aJP0KXPw7m1glpUw93R38YLp7ZYvFpcRGxuJb7qB/260rjjW+8HUm/vADqKLcgNVuHeMrvMnRWlOqrK4yp96zW7H2bVzMeBszPoZb6BF6PexDDxN78xu+7hXPa1po3cDZWZxbxLmlTX9OIYQQYq/Y6381CyGEEEIIIcSuUhZH8a5LiNXOqjAPHqoOuH6de6RNoJ7qdlHjSGhQ4kOkWzpKF/Eh0hrB+vIYI75XkKDQUZEmGS56wqUCIakvP0dENT6KMkeHb3XXELtvJha3M/XBv2f8rnuGjyvF3OtfTO/pT9jKxQoxusJBYu9nif7qoZuViujGp1H5x4HdNTG8Uy1PdxNwbp0fU6Pp/vSL6L76+cRzikGy+x5k8j+8Bz23ePmL3SLGV0RtQBtK0yRQT74rNCjFel7eNlPjqGYLP7dI7HWpvv/9+mfvJsuy/Vi3SAyWopjZ9OcTQggh9goJu4UQQgghhBBil/C+xNpZKjuLUinGtLd7SWeUS3WNue3XU93KYGNCRUYxmOpOsXRKR4iRwjryRGPM6FV0h8qSRAUukpoMr7l00D1UXx6kvhwg+yIqvW/ophgmif3XgB9n6s5PMfaFbwwfV4rZN7yE3lMfv4ULFWIPiG1i7/VEu/JrS2VfRzXfD6zcakCsjVIapRT/f/b+M7qy/LzvfL///w4nIBZQoas6B3YzZ4pZogJJMYnBlGRKtCjbM54Zz3jG41njF/fFXXfdN3fdO8GTPOOxPfZQFqlASswKpCRSYk5i7CY7d4WujHzS3v/w3Bf7AIVTAKoAFDKez1pY3bX3CX8AJ+Ds336eJ4ZAjJG42VnSxtD9hVex8Nu/gmSDJ06lF64y9i8+QnLu0hasePsliy3Gsxo+axAjlKF/UhgG2MSJYcaQHT0CaYa7fIXY7VA+8+S2z+7OsnEASjdNUVxAZOPV+0oppZRaScNupZRSSimllNoniuIiIgHv5siyib0z5zp4cC1wnerfy2Z1B7F4MmoUuBDpuUDXVdVq9QNY1Y0IpuchComxRAuRmxzMjte3L0+1fXn6OLb2lYFNIjnSfS/EOuN//FcMf/PHg/utYfoDb6X7sod2cqVKHSIp0ns7sXjDij0mPYsZ+iiY6V1Y10FiqupuEUCI/taqjcuXPsTcf/HrxOHmwPZkrsX4//x7ZA8/dUu3vxMMgg2OkORIkuLE4rzv59IWYzbZBcVa0mPHIAbclWnC7BTu/PmtXPoKxqSk6RjOzRDFU5SXt/X+lFJKqcPikH96VkoppZRSSqn9oygu4PwcQiDP91AL86VZ3T1I62AsXhIKahTkGIQcx3zP4YJQukgjS7F7JazfKgKmG7AiJNGAEeJ6PnUXRb99udP25QD2Mqb+uYFNIiDdd4Kf4Mgf/SXD3354cL81TH/gl+m+5MGdXKlSh5CB8jXE7rsQGXytMnYGM/QRSE7v0toOBmstBggx4GMk3mKxsb/nFLP/9W/ij08MbDelY/Tf/DH1L3/v1u5gByShJCY1LIZu0kAAHzyGxZPmNve+afIaycQY0usSrl7GT00Rpqa2bN2ryfNJYiwIvk2hrcyVUkqpLaFht1JKKaWUUkrtA94v4EMbV86QJENYW9vtJVWCh7JdtS+HparuDg2CGEpyahR0nSdEoesCSWLJ04MXdKcexJXYaIkxEOw6vkfnqxbmzlX/zg95+3LTxjQ+gTGD1YxS/By4ezjysb9g6DuPDO6zlqnffBvdFz9nJ1eq1OHmH0I6fxeJg+M0jCmqlubZD3ZpYQdBVd0tMYIIMdz6LOl4dJy5f/obuAfuHLwnEYY//hc0P/lFbjlV30ZpKKq3xqyGT+tEEVxw/ZndBrPJsBtjsI0GyWiDsNAizExTPvssYWFhK5c/IE2HsbZG2R9LE4K2/1dKKaVulYbdSimllFJKKbUP9HrnicHhQ4ss20NV3cUcSL+qO2uAMQSxdKkvVXWnFLQKT+EjIUQaWbJ3WrBvBYE0GGJZkkhCDB5PxNibfOSOsarqDr6qjM8yDvfHdI9pfApjB0MGcS+E4uUc+cMvMPS3183wTixTH3wbvRc+sJMLVUoBxNuQzgeRcHxgszGCrX8BU/sruNkYB7UqaxMEiDESQtiSUdIy1GDuP3s/vVc+f8W+5he/w8i//xSU7tbvaBtYCRiJSJoTsgYuQhkCIMDi6I9Nvn/ajKSRkww3CVNXiJ0u7swZpNfbwu9gUJYdwbkZJAZ6Wt2tlFJK3bLD/ClaKaWUUkoppfYFkUhRXML5GQCybGyXV9QXympO92JVd9oAqqruKIaSGjklnWKxqtuTp5YsOVhBdxIMRMF4QaKn8AU2vUmVmQj0iirw9h5sUn0dWoKpfx6TDM5LFX870vslxj73VYa+9+jgvsQy9ffeQe8F9+/kQpVSy8lIVeHtVnZWMPnfYhqfAIqdX9e+15/dHQMiQtiC6m4A0pTWB99O562vXbGr9sPHGfvf/gCz0N6a+9piSSgJSQ1rDKWtIdJvZW4WD29v8j3UpmAgGW1gc0u4coXY7VE+c7p6f94GWVa1lHdull5xHtmKsxmUUkqpQ0zDbqWUUkoppZTa48pyiigO52ZI0zGM2SMznXvzVVW361Xty40hiqFDg4KqzXoiPbploHBVZVojP0CBrkASTfXBuvQg0Ct62DS9eVW3cxBCv4rO9Ku6D7Hs25jsuvbkcRTp/QrNbz/KyFe+P7gvTZj6rXfSe969O7hIpdTqcqT3K0jx6hV7TPo0pvlRMLM7v6x9zlqLCEiM/dB7i27YGDpvfwMLv/E25Lr3quz0Bcb/xUdILm3v3OrNSEKB2ASTpJRJHRHBLZ0EkNxSK3NsCsGTToyDBX/5MrHboTh9pjopbYtZm5GmI5RumhgLnNt7P2+llFJqP9GwWymllFJKKaX2uKK4QAhdYuyR53ukhbkvwXeh7IC1kNaBqqpbxFCQV1XdPU8Qoecj9TTBHqD25VYMVsB6gRApXQ9Bbl7V7QMUrl8xFiFLOdRzupMnMbW/GdgkkiHd95I/NceRT3xxcF9iufpb76D33Ht2cJFKqRszSPlGYvdtiAye1GSSKUzzI5A8u0tr258MFmsNIUZihBjClt5+8eoXMv+fvp/YqA1sT6bmGPufPkr6xNktvb9blQQHApLm+KxBEHAhIkQMSX9+92aru7Pq5D2EbHIMYsRdvkJsLeDOn7/p1TcjyyaIsUMIXXq97bkPpZRS6rDQsFsppZRSSiml9rAYS8pyCldOY0xKkozs9pIqxVw1Z9oXS1XdIlXYXZIDBhu6FD7QdQFroJ4dnI+gVgxJBCuW4DwuOLx3JFl243nkUaDoVT+74CFND3f7cnsF0/gsy39kIiC9d5BM1Zj8D5/DhMGqupn3/QLFQ/fs7DqVUuvjX4B0fxWJjYHNxnYxjT+E9OFdWtj+ZG2CiCASCHHrW2q7h+5m7p/+BmFidPB+Oz3G/vc/pPbtvfP7Mgg2OkJawyQZhVhCFCSGftBtqtB7M/qtzIkeCKQnjiNFQZiawk9P469c3cLvpJKmoxiT4sppyvIqIWi7f6WUUmqzDs6RBqWUUkoppZQ6gIriMiIe52bJsiM3DlJ3iuuB74FrV0Ftcq2qO4qlR06Go12UuCA4F6mn6d5Y+xawYkhC9V98wAeH9wXGGEx6kwPtRVEF3s6BsZDskZb0u8F0MI1PYIwb2CzlGzHtu5j88GdJ2t2BfQtvfBmdVz5/J1eplNqocAfS+U0kTA5sNiZgG3+Kyb8M6Izi9TCmqu6Oi9Xd29BSO9x2lNn/+jdxd942eN8hMvK7f0Ljz7/G1vVQvzVpKIg2xxgo0wbCYitzARIwm+yUstTK3AERk1rSo0cJCy3C3BzuwnnC/MKWfi/GGLJsot/K3NHtndnS21dKKaUOEw27lVJKKaWUUmoP6xUXcH4BwZNle6SFeTFXHRD2Zb+qm2VV3RmCRXwHH4SeCySJIU8PRtBtBGxYbGFucK4gREcMsZrVfaOD7M5XLcxdP9zNMg5v+/KAqX8aY+cHtop7HvRexZE//AL5hcFKut6DdzP39tfv5CKVUpsl40jnNxB/74pdpvZNTP3TQLnz69qHrLXEKIhEvN/aVuaLZHSYuX/y6xQvemDFvqE/+SrDH/2z6v1rlyWhrP7mSGv4tEGM/VbmEjBLh7lvsZV5jOAL7PAQyfg4YWaG2Ongzpwhdntb9r0A5PlRQCjdFL3es8TobnodpZRSSq2kYbdSSimllFJK7VHet/F+Hu9msLZBkjRufqXt5roQ+vO6kwSSatZnjxqRhIKcBE+3V+J8xIdII00ORlW3QBIMiVRht/cOHz3BOYy1N57VHWO/qttXLcyzrKrsPpQEU/sLTHpucGs4ifTeyuhffIvmj58c2OeOHWHqN365mg+vlNpiAhKr16bo+yczuWrUwi1VYNeQ7nuR8uUr9pjscUzzD8BsbbXsQWSMxRhDjKGq8Jatr+4GoJaz8A/eTffnXrFiV/1bP2b0X30c09nasHejrASMRCTLCWkdHwUfqhMBqlbmFkO2yRtfbGXuqr9zgGR8HNscIly5Sux1caefQdzWtZO3NiPLjlCWU0h09Ho6114ppZTaDP2UqJRSSimllFJ7VFFcQKLH+fm9UdUtMljVnV6r6m7TpJSUSEIs2wSJdF0gSyxZegA+egqkwWClmtMtCIXrEr1HopBkNwi6RaBXVIG381Xr98M8pzv7W0z+o4FNEkeQ7nto/PBpRv/yWwP7YqPG1G+/C2nUdnKVSu1zUn1JqELssCzEdiWURXUCTtGrvsqi2u5cVcEbYnXZoldtj4HNBd8WKX6B2HszIoMnPZnkEqb5EbAXt+IbPsAMSb+6G4SwnRXW1tJ+3y/Qet8vcN2vi/zxM4z9zx/FTs1t3/2vQxIKgq1hjaGwdQTwMSJINbO7H3pv2FIrcw/E6vliID16FLIMf/kysdulPHO6ej/fIrXacUQczs3S7Z6tgnullFJKbcgBOOKglFJKKaWUUgePiNArLuLcLABZNr6r6wGqau7gqlndSQppFT4W5ARSCmoYPL2yoHRCEKGRHYBQtx90GyARiwClK0AgOo9NLOZG4bVzEAKUDjD99uWHVPI0pvalgU0iKdJ9D9m5Nkf+8AuD+6xh6jfehj86vnNrVGpPE2CxCrsfYntXvc64cjDALnpQltV2vyzERqpgL7GQJtVrUpZDXoNavf9Vq77SFKJcu23vqirwjXIvQbrvR2TwpBVjW5jm70P66Jb8dA4qYy3GQIiBECJxm0do937uFSz8w/ci+eD7VXpxivF/8bukZ3bvBIUklIhNMGlKmdaJIvgQqxM7jKUqz77BCWg3cl0r82qbITt+HATc5cvEVgt3busqsK2tkaZjFMUlYiwoCj35QymllNooDbuVUkoppZRSag9ybpoYC0o3Q5qOYO0uB6Qi0JurWnsGD9nQ0q42TZwkBBJC0SZGoes9tdSSJPu8ffmyoDuN1UdoT8C7kuA9gmDTG/xufIDCge9XimUph3ZOt53CND6DMYMpjfTehp0bZvLDn8Ve1x527p1vpHjwrp1cpVK7ZI1W4q4Ed10VdrFYhd0PsUO4VmlqTTViIu0H2FneD66XhdhZrR9uL4bc/a9a/6teg0at2pZl/evk1RiBEPpV4P2xDBup9g53I+3fROL4wGZjPLbxGci/sbHbO1QM1ibEWJ2sEMPWtdJeS/miB5j7J3+XONIc2G4XOoz9r79P/qPHt30Nq0mCq54uSY2YNQlRcCECixXvtqrw3oxVWpkDkCakx48jpcNfvYqfncFfvnyL38k1tdpxopQ4P0en8wwi+jxQSimlNkLDbqWUUkoppZTag3rFBULoEWNnb7Qwd50q2HAdSLLqCyglw5NRUEPE48qCwgVEoL7fq7oFktiv6O4H3cFGgisREaJz2DTBrDVHOkoVTC1WX6bpIW5f3sU0PoEx5cDWWLwOevcz+TufI51rDexrveoFtF73kp1cpFLb4AYh9g1bifuqClsEMFXQnC4LsfPaKiF2fi3Ezpf9d7FKu1GDRh2GGjDchKEhGGpCo1Ftry0G3Gn1elWrQbPZD76X3dZidwrn+sG767c5X8+PY6IKvP2dK3bZ2lcw9T8Btj/I3Y+stVUOGwM+VO+z283fdRuz/+yD+NuODmw3pWPk//ok9S99d/sXcR2DkMSSkOaQpBQkRIEQBZGwrJX5Jqq7jamqu5damV97zzK1nPToUWKrTZiZxV28SJjbmpbuSdIkSYYpi6uE2KUsr27J7SqllFKHxSZ7uiillFJKKaWU2i4xesriCt7NYExCmo7u7oIkQm++aukZPNTHlna1aeLF4kkJvXmCCD0fqWcJ1uzvCuYkVjO6k1gFDMFGYowE54i+CmNscoOP1UXRb//rqtaqN7rsgRaqim47O7BV3ENQvIYjf/yX1K5riVvce4rZ97ypH1gotdf052Ev9pIW6X+xbPvi1/VM9WXpB2umv6m/3Zhr/7/K1TB22fVM/99U/14MxbeSMVXwnab91s4enK8qYIn91uj9IB8Lqa0qy29YX9NAuu+H2l9g8h8N3l32E7BzSPfdIENrXP+wMhhriTFirRCCJ023/30lTowx9199gJF//ynyx85cW43A8Cf+imRqlvZ7f37rH3s3kISSMh8mtRaXNBBp40IksQFMAmIwJMhmTpywKYRu//FeQpJf2zXUJDlyhDAzg8ky3NmzmDzHNhq3/D3VasfodJ4m+Bbd7mlqtWO3fJtKKaXUYXFYP2krpZRSSiml1J5VlpcRCf0W5uMYs8tNucrlVd35UlW3k5SSnB41Qgh436PrAtZAPd3fjcRsP+i2/aA7mogAviiRGIneY9Ns7apu56sQyLnq31nGYW1fbmpfxKRnBrZJOIH0fpnhL3+foe/+ZGCfPzLC1AffXlWxKrWj5FpwDdWJPkL/3wKxf5mbhdjWXAulF0/YsObaZZaz/esuhdWrhdi2/99dZu21luc+VBXq1kLsB+EhVGG491UXiyTpB6CrrT1BircgcRJT+9LAeS0mOQ/NjyDd90LUwG+5xFpcrE68ijEgku7IOUHSrDP/n7yf4T/8PPVv/nhgX+Nv/hY7Pc/Cb72jaoO/A5LFius0w2cNQtHGBaGeLT4/0yqNF8OGW+OvaGXe766weN/jY4grCVNTmCylfPoZas95AJPd2riZNB3F2jpFcZkkHca5mb3R2UcppZTaB/b30QellFJKKaWUOoB6xQW8byHidv9Ap0Qo5iAUVZva/NrszjZNglg8Gb5s4YPgXKSepph9XJFrxZDE6r+WKuiOBmKIxOD7Vd0Gu1ab9hirdsTRVz+zLKuCq8Mo+x4m//7AJolDSPc91H/6LGN/8tWBfTHPmPrQu4jDgzNildoa/Xbi62olXvZbiYd+pfZqrcRvMg97oJV4vrlW4jbZG0H39dIE6vWqzXm9fm3+d61e/XyiVD/Doqh+1hJXuRED7pVI972IDAaFxs5jmh+F5Mmd+X72DYs1ph92CzGss338VkgTWh/4ZdrveMOKXbUfP8HY//r7mPnWKlfcelYCJgYkrRHTOi5Iv405VSvzpffcrWhl7lZcJJ08ClmGv3wZ6fUonzldjR24RbXacXxYIIQunc7pW749pZRS6rA4pJ+2lVJKKaWUUmpvCqGLc7M4P4O1NdJ0l9u4lu0qHHIdSPN+61rwklBQoyDHhYD4gp4LJIklT/dgMLNORgw29INuMUQjxP63E8qiquoOgSRLMatVK4pAr6gOert+deNhndOdnMbU/mpgk0iKdN9DetEx8dE/w1w3dHb619+COzk4G1apjVsWajvXD7R7/fnSZb/1dgSkCraSfoidLZ+HXYdaY3Aedp5Vl8nzwVnY9X6I3bwuxG42roXYeX/udZpW92XtwWjTb0wVzDca1fde6wf1tVr1PSdJdcLA4kkFwbOi0jbcj3R+A4kj1920wzQ+Cdl3Vl7nELNJgoggEgnR78js7iXG0H3La1n4e+9AksH3tuzsJcb/x4+QXNiZedNJKPE2JzGGMq0B4GKk34IBSDCbbWpqU5BwrZX5iv2G7PhxMBZ3+TKx3aY8d25z97VMmo5hTEZZXqF0U3i/cMu3qZRSSh0GGnYrpZRSSiml1B5SFBeRGHBudverumOEYv5aVXd2LXivqrpNFXb32ngf8SHSSO3+reoWSAIkA0F3lSJE74khEJzDWINZq8W2c/1gxwGm3778EDIz1ZxuM5jCSO+tmNYRJj/8GWwxGCDMveU19F54/06uUu170g+1fVU9vCLU9tXrmDH9MHsxyK4NVmEvhtxL1dr9r8UQe6heVV8PDy0LsZdXYfdD7OQAhdibsdjmfGio+rll/ZMDFk8WsKb6PRW96vcTA0shdjyGdD6IhFMDN2mMYOtfwtS+AOxgFfMeZrBYu1jdDTHu/M+leOXzmfvHv0ps1ge2JzPzjP1PHyF7dPurkpNYIjaBNMUlTUIUnK9OYhEihqT/XNzECWcDrcwLVj3ZIk1Ijx1DnMNfvUKYm8VdvHRL35MxllrtOM7NEkNJt3vm5ldSSimllIbdSimllFJKKbWX9HoX8H4OkN0Pu8uFZVXdtaUK5SCWXr+qu3AeE7p0XSBLLNl+ndUtkIb+nG4x1aHyflC7OKs7hoDESJJmq1d1+wCFqwI2YlXdeCjndPcwjU9gTG9gqxSvgeIhJj/yp2RTcwP7Oi9+Dgu/8KqdXKTaV64Ltd2ytuOurLaF1ULtZVXZWVZVVtfyqu328lbiw/1W4itC7D3eSnwvS9PqZ9lsVicNLJ5QUKtV+1Zrcy5DSOfXEPe8FTdn8h9iGh8Hujv/vexB1lpi7Fd372Qr82X8A3cy909/kzA5Nri2Xsnov/o4tetme2+1JJTVS0NaI2QNQoz4ULUyR0I/6N5k2L3UytwBsmorcwBTy0mPHSO2O4SZWfzlS4TZ2c1/U0CWTWBMQlleoSguEULv5ldSSimlDrl9ehRCKaWUUkoppQ4e52YJsUvppkmSYazNd28xMUDZAt+rWnMvm9XdoUHsV3X7soPzQhChke/Tdt3Lgu5ELAIEe62KK5YOkUj0DpNYTLLK9xmlCt4WA7nFgOzQiZjGZzHJ9MBWcc9Bytcz9tkvU3/i7MC+8vbjzPzqLx3eali1jFQh1VKoXa4eamOqKuosu0movTgfu99WvNHoX+6AtRLfy2y/w0WzUVXIL1bCL1V7L2tzXhYQQXpvIxavX3FTJj2LGfoomOlV7uhwMSbBWEOMoZrdHW99XvRmhBMTzP6zD+LuOTm4vhgZ+eif0vzcV9iuPuuGqro7JDVMklKSVSenRaFqZS5AgjG30so8rt3KfPFizQbJxARhdpbYalOePUvsdDZ3n1TV3Vk2SemmiNFpdbdSSim1Dhp2K6WUUkoppdQe0etdIIaSENpk2cTuLqboV3X7flW3qYLbKIYODQpqdF3Ahh5d76mllmQ/Vj72g27D8qD7WmggAt4VRO+RKCTpGm3Ji6JfqejAWEg2eXB9nzO1L2HSZwa2STiG9N7G0DcfZuRrPxjYF0aaTP3WO5D8kLZ7P7T6oXZcHmr3q7XL5aE2y0LtfOX87Dy/Said9UPtffjadBDZpPq9NJtVm/O8/3tc/F0ZqtfQooT2K4jtdyAy+Fpq7Axm6COQbH+b7L0uMf3qbiLe716LdxluMvef/zrFSx5csa/5+a8z/NE/rd4ft0ESSmKSYRNLmdaJIvh+8C8SMEuHvjfxnryeVuaL6xgbxY6M4KeuIt0u5TOnkXLtgPxm8vwoYCjdFL3es8S4+dtSSimlDgMNu5VSSimllFJqDxAJFOUlnJ8BLFk2dtPrbJvgwbXAdatju9lgVbeIoRszQtmldB4RqGf7sIp5WdCdxurj8fKgGyCWVYgdnMcmCcau8jHa+aqFueu3Oc0yDmX78uyHmPxvBzZJbCLd95I/dYXxT35pcF+aMPX33kEYH9nBRaqdJf3KyDVC7cUZ9wgkdu1Qe/ks7Uataj+uofb+ZcyyNueN6veaZtUM9VqtOsEhRujeg8y9D4lD1129wDT+CLIfrHEHh4OxFmPoz+6OxG2qoF6XPGPht3+FzirjKOrfepj6V7+/LXebhH4InOSEbPncboD+aAMshk2cULXOVuaL0okJTF7DX76C9LqUzzzTf33bOGtT8nyCsriKiKfXe3ZTt6OUUkodFhp2K6WUUkoppdQeUJZXEQm4cposG8eYXfy4Vi7023Z2Ia1Xlcosr+rO6TjBhh49H6lnCXa/tQIWSGK/onuNoFui4J0j+CqMs+kqlWEx9lvv+qoSPkuXfl6HSnIWU/uLgU0iCdJ9N8kUTP7u5zDXtdmd+Tu/QHn3YOtbtV8thtqhCoQGQu1iZaidLs5vrldf2bKZztkqoXazUc3ZzvP+iIBD+Bw7qKytfq9DzSr8XmpDX68eC/E2ZPZXEX904GrGRGz9C5jaX1G1rD6MDNYm/RbmQvR+d5djDZ13v4nWr74Zue5vgqFP/zV2anbr71ICJgZCmiNZHRerIvIYBRAEwZAshd4bv4NsWSvz4iaXNWTHj4O1uEuXiZ0O5dmzm27jnudHEQJlOU23exaR3aveV0oppfY6/XSglFJKKaWUUntAr3eB4NtEKcmy8d1bSPDg2uD68yazxtKuLnWiWNohQ3yXnnNYA/V0/320tNKf0R0tBggmrmhQ6l2BRCF6h03TlVXdItArqnbLzlcteu0hbF9uZjH1T2PMdScL9N6M6R5j8sOfIWn3BvYt/NzL6bz8eTu5SrUlbhZql1WXA5EqxFwr1M5XqdQe7ofaDQ21D600qU5qaDar1vSLVf3ZJNL6daS4b8VVTP63mMYngJsEkQeUtdV7WIwBH+N2jcfekN4bXsrC3/+VgW2mdAx/9M+2pZ15EkqCzbHWUCZ1BMEtjkGQ0D8BzbC5Vub9oDw6CCU3amVeLcaSHj8O3uOvXCXMz+MuXtz4/QLW1kjTMcryCjGW9HoXNnU7Siml1GGgnxqUUkoppZRSapeFUODcNKWbwZiMJBnevcWU8/1Z3T1IG0tVyiJVC/OSjLaPiOviXKSepph9VtVtoyGJYPtBdzQRue5bkBiJzhP7bUtXreperFYtHWD67csPmwLT+ATGdge2SvkqKF/AxO9/nvzi1MC+7nPvYe6XX7eTi1SbslqoXQyG2lGq1uFp2g+1a1WonS8GlZmG2mrjjKm6ZDQa1WOmlkPWQMr3IsXPrLx4+jSm+VEwszu/1l1nsNZW1d0ihLDL1d195UsepPu6Fw9sy584uy3tzJNQIjaBJMFnDUKEMiyG0ovV0Laq8N4oY6qT2NbZyhzA5BnJsWPEbpcwPY2/coUwPb3x+wZqteNEKXF+lm73NLIXzmZQSiml9iD9NKGUUkoppZRSu6woLiIS8G6WLDuye+FxcFCuXtXdo04kYT6k4EtK50gSS57us6Bb+kG3GCwQjRBX+RZ8UVSBtw/YLFv5O/H9kNt7IFbBzKGb0x0xjc9hksEwW/x9SPFGRr/wDRqPPDWwzx0/wvQH3qrh5p5yXahd9iu1i9VC7WQw1K7VqsB6aaZ2rR9q16u21IutqTXUVpu11OZ8CBp1JP48sfc2RAaDS5NMYZofAXOGm1bfHjDWJgjV7O4Qwp6o7gbovPtNhCOjA9u2o515EksQiEmNmDUJIRKiLP0cRMKyVuabqe7eQCvzxas0GyQTE4S5eeLCAuWzzxJb7Q3fdZI0SJIRiuIKIfYoyksbvg2llFLqMNBPGUoppZRSSim1y4riAs7PIwTyfGIXFzJftfz0RRV09wNeEWjTpJCUTgm4Dj5EGqndV1XdRsCGxRbmph90r0wFYgjVl3dgDDa9rhosShUGhlC1fU/TqtXpIWNqX8akg2G2hEmk+w4a33+C0b/69sC+2Khx9UPvQuq1nVymWiL9UNtXXQlWhNq+emybNULtLF9WqV2r2kyvGWonS68fSm2ZNO0/zl6FhN9ApDGw29guZujjwA/AuyqgPBQM1lTV3SJCDHtjtrPUa7Q+8NaBbaZ0DP/en29pO3NDFXiHpIa1CYWpAm0XF3//of96ZDZX3b3RVuZ9yegIyegofnqa2OlSnj6NFOWG775WO0aMXbxboNs5s+HrK6WUUoeBht1KKaWUUkoptYu8X8CHNq6cJkmaWLtLQWAoq4pu1+2HXddChIKcQMKcSyGWFGVJlliy/TSrWyAJhuQmQbcAoSiQGIghkqQp5vqK7aKoDtQ7V7V5Tw7hnO70x5h8MMyW2EC67yU7N8vEx74wuM8apj74dsLR8R1c5GG1LNT2DtxiqN3rh9quqlBcHmrnq4Xa/WC7XoNmHYabS9W1VTW3htpql1gD6X2I+Y8ROTqwy5iIHfkLTO0rUPZnyUfPQa/2tolFRJAYCdHvmepu99A9K9uZP35my9uZJ6EkJhkmsfi0SRDB+cWwW/pfKZiEDXdhub6Vub95K/OldU1MYGp1wpXLSK9H+cwz1YlyG5CmIyRJk7K8jA8LlOXUza+klFJKHTL76MiEUkoppZRSSh08vd4FJDp8aJFlu1jV3ZurAjK3OKv72sHgNkMUYml7g5RdggiNfB9VMgukwWClquoWVg+6AaJ3VStY5zHWYK6v6na+auvs+ge7s4xD177cPoupXxdmi0V6v4Kdy5j88GcxfvBg/uy7fpbigTt3cpWHUwzLKrUdhAgYSJJ+gL1GqF3LoV6vguyhxVC70b9cWl1fQ2215xxBzD9EeGDFHtP8Lmbs82Bc9Xq9+LyIe6PqeasZLNYagkRihLiHvs+daGeehKq9uKQ5IWsQQsSH61qZm8XD4LfYyjysr5U5AAayY8fAJrhLl4idDuWZM2z0bIQ8P4YPLULo0u2e3uDilVJKqYNPw26llFJKKaWU2iUikaK4SOlmAMiysd1ZiC/A96rKbmsHq7olw5MyW2aY6Clcj1pqSew+Cb76QbcBErFV5bZd/SCzCISiJHqPxEiSZYNV3TFeqxKMoQoBzSH7WG3mMI1PYcxgkCLFL0HvJEd/57Ok84NzSVuvfiHt1w5W9qltILEK9axZGWovVmnX+pXaa4XaaVJdX6l9o47wAYRXr9hjsicwY5+Aelk9tqNUgXdR9Kt0D1abc2stEgWRQAh+t5ezROo1Wn93e9uZW4mYGAhJDcnq+MX3+6XbX/xdJ5hNhd2ba2Ve3aUlPXECQsBfuUJYWMBduLChu0/TMaytURaXKN0M3i9sbP1KKaXUAXfIPpUrpZRSSiml1N5RllNEcTg3Q5qOYcwutcPuzVUBri8gaw4UKndoUgRDx1t80UYE6tk+qepeFnSnsfr4G+za4UZ0rpp36j02sZjlc7hFoFdUlbLOVwe+7WFrX15iGp/E2M7AVilfAeWLOPJHf0l+9tLAvuK+25l9989pVfC2EygdVRlhf252rQaNGgw1rgu1Mw211QFjEX6ZyDuQ6zptmOQSZuj3oDZ17eQPa6oOHQPV3nuk7/ctMCbBWkOMi9XdeyfMd89do535176/ZfeRhJJgc5LEUiQ1osiyud2CEKuZ3caw4UPit9DKHMBkKcnx48RejzA1jb96lTC1/nbkxhjy/BjOzxNDQafzzMbWr5RSSh1wGnYrpZRSSiml1C4piguE0CXGHnl+ZHcW4bpVS07XqQLcpL60q5SUkpwZl4J4nOtRzxLsfgguBZLYr+juB93+BkG3CPiyqKq6RbBpNngB56o5m0uBYrbq7Rxcgqn/CSa5MrjV34MUP8fwX/8tQ997dGCfnxhl6oNvr1pgq+3l+gFMnlXdGer16v/TtPq3UofCKxE+iFAf2GpMC1P/fWg8VT0vsrwKvtNssNrbO5C90/57M6y1xFgFu97vre9l1Xbmn9q6duZpKBBrwSbErEGMLJvbTfW7NYbqjL4dbGW+ePVGnWRykjA/T5ifp3z2WUKrte7rZ9kRjEkoyiuU5RVC6Nz8SkoppdQhoZ94lFJKKaWUUmoXxOgoyylcOY0xKUkysjsLKearSiVfrlrV3fXQDSmu7JAYqKf742NkEqsZ3Um0GG5c0Q0QygIRITiHTRLM8oDQ90Nu74FYtXs+ZHO6Tf5VTPbEwDYJE0j3XdR/cpqxP/vqwL6YZ1z90LuIQw3UNguu31Y/g8RWLcq1alsdWvch/EOEiYGtxnhs+sfQ+DYM1auW/lm/A0Jeq07KCQHKxTbnnv1Y7W2MxRhDDKGq8Ja9U9293e3MbXQgQkhqxKxJGSNRIMryVuYCJJvrpHMrrcz7kpFhktFRwvQ0sdvFnT6NFOsLzo2x5PlRnJsmxpJu9+yG718ppZQ6qPbHUQqllFJKKaWUOmCK4hIiAedm+9U6uxBOuW51wNZ1qgP9SW1pl5eEQmrMlAkxBkLRpZ6mu7PODbL9oNv2g+5o4g0PSUuMBOeIvppxatNlB8GjQNGrQpDg+5Wyh6xSOf0JpvaNgU0idaT7XtKLLSZ+788wy37AYmD6A2/F3za5wws9hGKoTsJI+o/LWk0ruZXiaD/wvmfFHssXMfbTkNt+e/9+a/8su67Nuate+/ddm3OzVN0NQthj1d3b2c686uTiCEmOSVO8yRAE56/97kQiZulw+AYD71tsZb4omZjANpqEK1eQXo/y6Wf6J9PdXJ5PAoayvEqvd54YN15hrpRSSh1E+glIKaWUUkoppXZBr7iA8wsInizbhRbmItWs7uCqr3RooFi5TZO2jxSS4YsOaWLJ030QdIshiWDFYqmC7niTZfuyRGJ/VneaDVZ1F0W/za0DY6tQ8TCxFzD1PxvYJGKQ7q9gW3WOfvgz2GLwgP/8W19L7/n37eQqDyeJ1ePSJlU75lq/bflhJ0ImnmHpMSktTsks98pVnhsv8JJ4lp+JT/Mz8Wnuj5dJ93nLanUjzX5L85et2GP4IYbfAdrVc6ZRh2YT6ovB92Kb83SVNud7p1J6LdZajIEQAyHErSia3lLb2c48CSUxyTDG4NMGIYILy39nYWlmt9mFVuYAGEiPHoUkxV26TOx2KM+cWd9VTUqeT1KWU8To6HbPbW4NSiml1AGjn4KUUkoppZRSaod538b7ebybxto6SbILrZ5dp2rF6dpVgJvmS7uCWDpSY65MqgPlrsNQbe9XdRsxJKEKvK1ANHLToDvGSPSe2K/Qsumyqm3nqxbmrh/mZhmHqn25WcA0Pokxg4GgFL8I5e1MfORTpNPzA/s6L32IhTe9cidXeUjJ4Pz4NIE8v+m19jURUiI1PDVc/7+emvhr/9/fvp7KjjF63CGzPMkxnmUc2eOvb2ozEoR3IRzD8PmBV2/DWeDfIHwAOFFVc9t+hXcM/dd/DwnVrGcfr3X4MLbfDSVhb74nLFZ3R7BCDH6wY8kuW2xnPvZ/fGxp22I78/l//Gu3NIYhCQUwjKQ1Yt4ktOfx1iDSz7gRBMGQICaCWKr25us00Mo8oar438R6E0t6/Dj+wgX81auQJIRWi2R4+KZXzfNjlOVVnJum16vRaNyNtXvn96uUUkrtBn0nVEoppZRSSqkdVhQXkehxfp5a7eTOL0BiNavbl9WB+/rYwO42TdplpKCOL9vkiSXb67O6hWVBt+kH3TcvZwtFgcRIDIEky64F+jFCWUD01+Yhmz3+M9hSrgq6bXtgq5QvBfdSxj/zRepPDlaUlXecYPr9v7iYKKht0+80gFQBd5JUFan7lQjJUoi97Evcim3JFreSzgk8Ty5yJzM8xnGmzM2DJrXfGOC1CJPAH2Eol+2ZA/4dwt8BHrx2FZtArX8CSegH3zaApNX7QQhVlbf31fMvTdlrobe1CSFGYoyEEEiSdE+9NC+2M2987YdL2xbbmffesLIaf72sREwMhCTHpjUclhrgYiRP+u/hEsCk1cwNUlj2mLip5a3M01r1OEg3d6KRyVKSiQn8lSvgPHFmZl1ht7UZWXaEorxCnk9SFOdpNO7a1BqUUkqpg0LDbqWUUkoppZTaQSJStTB3swBk2fjOL8J1qxDXtyHJIcmWdkUxtKXGnLP4COK7NOp7/KOjQBoMiVRht7C+oDv6QAyB6B3GGMxiVbcI9Aqq/qe+Cj4OVdWUYOp/ikkuDW71dyHFzzP0jR8x/PUfDewLI0Nc/a13QHaYfk67xC+egJFDYqugey+lWMtYidSXVVznKyqxq33pLs9DHqbg5XKWqzLEY+YEbbOPTx5Qa3gQ4R8Av9cPuStV+P37CG8GXsNAaG1MFWSnaXUClPf994QUiFXnj+Cr94paxt6aFrlY3R2w1hKCJ91D1d1QtTPPf/IMycy1DiFDn/pryufdS5wc3/TtpqHAJXXqicUldYL0cH5Z2E2gOiRuqwrvjd6BzaqwO4aqlfkmw24A22yCtYRWC1PLyU6d6ncMuLE8P4Zz0zg3S6d7hnr9DsyhOiFPKaWUGrS3/spRSimllFJKqQPOuWliLHBuljQdwdrs5lfaShKrWd2+qKrT6oNVRB0atIqAo4Er2zRSQ3ILLUW3XT/otlLN6RaEYG9+6FoAXxRIDMQQSfIcsxhyOFf9bJa3iT5M8q9jsscGNkkcR7rvovbkBcY/9deD+9KEqx96B3FMq2K3XeyHa2laBSK1GtidDzisxCq4HqjEvq69OJ5sI+2Bt5gAJQkFGQXptS+TMiltTrCw4jpHaTMhT3FOjvCUOYozetjsYDmB8B8Bf4DhWmcKg2D4PMJVhLdT9S6/jrVVpXeeVyG3d/125rZ6ryjK6r3C3jyo3CnWWnyoqrtjDIjsreru7WpnnoQSlzXBJsSsQSi7+CDLWpmDSOi3Mg8gCVUAvk5Lrcw9hJJNtzIHsAY7NERst5Aj44T5eZIjR256tSSpk6ajFOUVsnyCorhEvb4LnYKUUkqpPUL/aldKKaWUUkqpHVQUFwmhR4htGrW7d34BZbs/j7RTVSNdV9U9H+rMO0sZBeN71Bt758D9Cv2g2wCJWATWFXQDROcQiQTnMNZiFyupfD/k9h6IVfXsHmtPu63SR7G1rw1sEqkh3feSTJVM/O6fYOJggDn9/l/C3XnbTq7ycJL+/HibVM/bPOu3T946RmTF/OvrK7FzPPlGgqFtUIXY6XUh9mCoXZKuOYf7WXOEI9LmQbnEKMXAPgvcxQwnZY6nOMpZJnSe94EyjPAh4NMYBjtUGP4WmEb4NaCx9k2kSfUVA3R7UDPV+4YrIc0g2RuHWw0Wa00/7E6qcR3p3npPd8+9h95rX0z961vXztxGByKEpIbJm/juFHkCIQppsvhcDmASEIMhRTbymraFrcwBkuFh3MICsdvDT8+sK+wGyPPjdDpP4Nw83e5parXbro1iUUoppQ6ZvfHXl1JKKaWUUkodAjF6iuIy3s1gTEKaju70AqpZ3aGoDtLXRgZ2d6kzX0ScaeJdh6HMYPfqgdNlQXcaq8rWYNdXRSoCviyI3iNRSGv9wD8KFL2qqnuxenYPVeltO3sJU//TgU0iBum+E9MZ5uiHP0bS6Q3sn3/TK+i+7KGdXOUhJVB6ljoNpP15wutkRFapxF45E3u3Q2yHXbUSu/r/xe0JsgXtemfMEN/kXk4xxwNymdp133tG5CG5zB3M8jjHucLwnm0XrzYqRXgvwlEsXxzYY3gG+LcIvwFM3vhmbAKNZvW+galanPsqaN0rc7ytTfDeIxIIEZLVqtZ3Wfs9byL7ydMks9e6LVTtzO8jTo5t+PYMkMSSkObkSYqzGSIBFyPpUotw6X+lYKQ/v3sDDc23sJW5qdcwWYa0W8RGHSlLzDpe39N0iCQZoiwuk2WjlG6KWn500+tQSiml9jMNu5VSSimllFJqh5Tl5eqAq5slTcd3fr6iay2r6q4NzKEWgVlfox0SelFIY5d6be8dFAdAIIn9iu4NBt0AsSxBIDqPTSxmMdAuiirwdovtaQ/RR2bTwjQ+iTF+YLMUbwJ3NxO//zmyS9MD+7rPu5f5t75uBxd5WElVMYpALa/al9dXzpRulfCT84HbbIe7h3rc2Sw5lpc0jSMn7GrsVoXY1yquV6vELkiJO/2aaAznGecSo9wjV7mb6RUTfIcoeamcY5omj3KClqnv7BrVNjHAzxKZxPBJDH7ZnmmqwPvXgHtvfDPWQL0OZVndZjD9wHtvdAYx5lp1tzEJMUbsLow+uBGp12h94K2M/R8fX9pWtTP/s023M09CSZmPYIwhZA2Cb+FCpJFd+7tGJGBMighUh8jd+u9gK1uZA3Z4mDg3RzIRCTMzpCdOrOt6eX6MbvcZgm/T7TyjYbdSSqlD6xB9cldKKaWUUkqp3dUrLuB9iygl9Wx9bSq3TIxQLEDo9Q/CNwfXJnVme5GCJrEsGErtnm2HmcRqRncSLYYq6F5vPZaI4F1J8B5BSBarsZyvWpi7/sHuLGO3Q4qd4zGNT2Hs4AxjKV8E7uWM/vnXaPzk6YF97sQE0x9466ZnqqoN8L56/mZ5NTe4XltRYTw9U/AAV3nvXfM7urSAua7qenkl9rXtYadD7A0KxvKkOc6zcoQH5DInWflznKDDa+RpzssYT5jjlDrP+4B4AcIR4PcwtJa2GnrA7/ZneL/ixjdhDNRqVQBa9P/tXHUCVZ5V7bJ3kbUW7wPWRrwP5Pneez665967RjvzH9B7w0s3fHtJKAGIaQ5ZE1/Ok8aEKLKsY83iSXIJBkE2EnavaGVeVv/dpGRoiDAzQ+x0CDOz6w6703QUa2uU5RWSdAjn5siyjVfDK6WUUvud/mWulFJKKaWUUjsghC7OzeL8DNbWSNOhnV1AOX9dVffy6ia46msUklAEQ0qPPNmbIabtB922H3RHs/6gG8CXJSJCdA6bJhhrqyCxLKoKrRiqoHuPh3NbRzD1P8ckFwa3+juQ4pdofO9RRr/03YF9oVnn6ofehdQ237ZVrVPw/Zb6WVXRXatXgXdfw3c50p3izWMLN7iRTdztUoi9+kzsxepsjz1Qrb17JuPH5nbOygQPyiXG6Q7sN8DtzHFCFniaSc4wsfPV6GobnEL4j6kC74tLWw0Rw2cRriC8hWqi+w1kafV8KHrViUCFq2Z5ZzLQSWWnGWMxJhJjwBhLlIjdg4/b1dqZNz/9Jcrn3bvhduZWIiYGQlIjyep46cfZXqhli69ZghAxJIgJIJZrAfg6JMtbmd9a2E2WYhoNwkKrqvJutbHDN/870RhDnh+n1ztLHnp0u6fJshdvfh1KKaXUPqVht1JKKaWUUkrtgKK4iMSqhXmttr6KnS0TA5Qt8N2q02bWGNjdlRpzPaEnNcSXDCWy8y3W18GKIYnVfy1V0B03kLNJjETniL5qV2vTrEr6ewWEWFV322RXQ4kdl38Lk/1kYJPEUaT3K2RnrzDx8b8c3Gct0x98O2ETc1TVBsVQtUO2SdVSv5ZXs7qBUelyW3mVu7MWbOC8GRcNl4qcy0XO5TJnzqeYNGWobhkfMpg0oSA7cCH2Rs2ZBt/mbm5jngfkMg0G2/unRJ4jV5bmeV9i5FD/vA6GUYS/D3wCw08H9hi+CUwj/B3gJoFmmoBtVO8rtX6Ft3OQ7OYcb0NiLT4EkiQSfMBme+89frV25rbYfDvzNBS4tE5mDS5tEGIPFyK15d+7BDBZf2Z3CpTrvwOz9a3Mw5Ur4DxhdmZdYTdAlo1TFBer6u6kjvftnT+hUimllNplh+gTvFJKKaWUUkrtnl7vAt7PAUK20y3Mi4Wqetl1q8qj61qqXilySrEUwZBLQZbuvYPgRgw29INuMUQjGwq6AXxRVIG399g0q9q0lyWEUFXfYfrtyw+J9Als7csDm0QypPte7Gzk6Ic/h/FhYP/su3+O4v47dnKVh1Tst9S31WMyTyHLGJEu98arnDAtWOOhernM+e78GI/ONzjfq4LtS0XOpaLGjEuRNcIYg3DvmOf5k44XTDruHfMke++lYOcYw0XGuMwIdzPNPXKV9Lo+Eg0cL5ZnmaXBo5xg3jTWuDG1P+T9Od1/heErA3sMjwP/DuEDwPiNb8ZaaNSrwBtTVf96X51ctUsjMoy1VaVzjEAkSffmFIqtbGeehBKXNRGbEvMmodvBW4PI8nNTIlVIbfvzuzcSdm9xK/Nmk2AtodXC1GpkJ0+xnhdhYyx5fpSiuEgtv41u9wwjI8/b9DqUUkqp/UjDbqWUUkoppZTaZs7NEmIX52ZIkmGs3cH2z8GDa1Xty2HFrO5OTJlzVXV3jJ6hLLLnZlULJAGSgaB7I83LIYZQfXkPGGyWVDO6y34IQX8m8l773reLvYKpf25gkwhI951QHOHo73ycZKE9sL/12hfRfs2LdnKVh5RU7Y8BalX78uEscl88xwkW1nyIXuzlfLt3nPr4EOlxy4NHIZ1NWZjKaF/NmXY3PgQkGJ6ay3hqLuOzT0EjjTx3wi2F38eaG2jve4BEY3maozzLGA/IFU4xt+JXME6XV8szXJBRHjfHKcwhOmnmwDEIv4hwFMNnMIRley4D/wbh14G7bnIzpgq8y7IqFja2P8e77M/x3ukzSQzWJoQYSKwQg8eme/Ow8Fa1M7fRgQghybFZA9ep6vJdjOTLQmSRfitzAtWhcr/WTa60la3MrcE2m8R2GzkyTliYJxkfX9dV83ySsrxM6a6QFDWazftIkltYi1JKKbXP7M2/apRSSimllFLqAOkVF4mhxIcW9fpNDpBvtcVZ3b4HaX3FAfbLvRwfE3oxoUGLZK+VegmkoT+nuz9zc6NBtwBhsao7BJIsw0Squaoh9GcipwNzzA8008Y0/hhj3MBmKX4W/H1MfPzPyc9dHtjXu/8OZt/1szu5ysPLOSBCnjOUBO6rz3Eba8/kvlJkfOzSKSZPNJmYuLY9s/DQhOehCc/7ntNloTQ8MpXx8FTGI1M5c8WNw7aut3zvco3vXa4Ck+PN0A++Sx6a8DTSjT0P97vSZDxiTnFWjvCgXGaCzorLnGSe47LAMzLJM2ZS53nvay9BOAL8AWbZ77r6/99BeBfwkpvfTJ5Xld5FUQXgpasC8Czb8fccay0xBmIM+GBIknRPdt+/YTvz//zX1j0ywFBVd4c0J0lTgs0J4nF+MOyGUHW8EYshRTYSdm9DK3PfaiG9HmF6et1htzEJWTZJWV6llh+n2zvD8NBzNr0OpZRSar/RsFsppZRSSimltpFIoCwu4fwMYMmy0Z278+ChbFfty2FlVbe3zLuETswgBhrpHqvqXhZ0J2Kr0NpuPGCL3hFjJDiHsdVcYroFRKmCRWOrmciHgsfUP42xg+GpuBeAexUjX/oOze8/NniNyTGmf/NtkBySkwF2U/AQA83ccF99htvSzprPyKky5d+cvoNWY4w33l3etCXxSC68+mTJq0+WiLQ530p4uB9+Pz6T4W4yF+ByJ+FyJ+FLZ+skRrhvzPP8o1XV992jfk+2RN4OC6bBd7mLYyzwoFymyeBJIwnC/VzldpnlCY5xgTGd571v3YXwHwG/h+HK0lZDwPBJhKsIv8BN3zfTtAq8e/3A2zlwZbU92ckuAAZjLTFGrBVC8KR7tLp7zXbmX91YO/MklJTpCMYYQtYg+Hl8kOtamQuCVNXdJoJYqvbm67DFrcxtvY7JMmKrTajXEecw6xyvkudHKcsrlG4K26vRbNyDtdplQiml1OGwN/+iUUoppZRSSqkDoiyvEsXjymmybAxjdjAwLOZA+lXdWWNF4HKhl+PFUEhGw3ZJ9lIg0w+6DcuD7o23Ua6qukuiD0iMpLUc40LVwtz1Q6pdmqG68wRT/wtM+uzg1nAK6b2Z+iNPM/rnXx/YF2sZVz/0TuKQziLedjHQiD3uHe5yMuuuGR7PupR/ffp2vjh7nA+8oMPJoQ3MmO0zBm4fCdw+EnjLPT3KAE/MZjx8tQq/n23d+HBREMPjsxmPz2Z86gkYyiLPW2x5ftQxUT/gLc+N4QqjXGWYu5jhXrlKdl04VsfzQrnAXczwKCeYNc01bkztbUcQ/gHwRxieGNhTzfWeQXgfcJMq/uvnePv+CI24s3O8E2txMRJjJMaAyN6s7oataWeexOr1MSY5Jm8SijkkgRCFNFn2jUsAk4IYqsPlG3hdHWhlXtxaK3MDdmiIOD9PMjFBmJ4mPXFiXVe1NiPLJiiLq9TyY/R6z9Js3rP5tSillFL7iIbdSimllFJKKbWNer0LBN8mSkk9u2Pn7ji4ak73YlV3OhhWtkpoh4xWzDFEmtaxZwJfgaQfdKexChA2E3QDxNIhIkTvMInFYKDsVS1HY6hChsPSajj7Dib78cAmiSNI992kF2aZ+L0/Z3mHeDEw/YFfxp+Y3OGFHj51Su7NZjk13Fsz5J53Cf/2zO18+OxJ3nSP4796ZYtkix66eQLPn6zC6l8FZnuGR6YzHr6a85OpjAV34ztqO8t3LtX4zqUq5Dk55JdmfT94xFE7oEefxFhOM8l5xrhfrnAHsyteRUfp8So5zSUZ4XFznK7Jd2Wt6lbUET4AfB7DNwf2GB6mCsR/8eY3s3yON1QB+I7P8bZYY/pht61Ge6R7s2vHVrQztxKx0ROSGmlWx2MQEVyMpAPdShbnddv+/O4NGGhlXs0Jv5UzCOzwMGF2ltjpEGZm1x12A9Rqx3BuCudm6XbP0mjchTksf+MopZQ61A7oxw2llFJKKaWU2n0xFjg3TelmMCYjSYZ37s57i1XdRdW+fPmBV4EL3ZwygJOcpu1h90ppl0ASDRZIbjHoFgHvCqL3iAhpmlVVdSGC89W8VHtIPhYnT2Fqfz2wSSRFuu/FtixHP/xZbDnYjnnul19P73n37uQqD52a8dybzXN72loz5G75hH935hT/9sztjNThv3xli7tGw7aua7wuvO5UyetOlUSBcwv9ludXc56YTQly49eLC+2UC+2UvzzTIDXCA0c8z58secGk446RcOBanjuT8lNzkrMywYNyiaO0V1zmBAsckxanZYKnzSRhJ7t8qC1gEX4Z4SiGP8Esi0MNX0G4E3hwfTe1y3O8bZLgnUckEqLHSrJnq7u3op15EkpcWic34LMGQXq4IDSu6/AtEvqtzANIQhWAr4MxYLNrrczDrbUyN1mKqdeJrRZxeIjYbmOHhtZ1XWtrpOkYRXGJLDtCUVykXj+16bUopZRS+8Uh+VSvlFJKKaWUUjuv17uISMC7WbJ8ErNTR5N9Cb4LZbc6CJvWB3bPlYEuNdqSYw00TMleqeq20p/RHS0GCCZurMJqmVAWSBSC89gkwfgAIVTBAqbfOvYQsFcxjc+uCDOk9w4oJ5n83U+SzswP7Gu//Lm0fu7lO7jIwyU3gXuyee5IF0jWeOp1guXDZ0/xr0/fzqxLees9PX7lgQ7ZDYr0ymwYl42Ql7Nkvrsla7UG7hoN3DUaeNu9PQoPj81kS/O+L7ZvfGjJi+Gn0xk/nc7448dhJI/9KvIq/B6rbfYZvve0TY3vmbuYlBYPyiWGr2uFbBHuZWppnvd5xpG9mjKqNbwS4QjwUcyy1vWGTyD8J8D4+m5mcY53twc1U83w3qE53gaLtVV1tzEJMQaSZO+efHGr7cyTUOKyJjFJMVkT3+2QWkMUrjvxJlRV2mIwpMh6w26AJK1C7q1oZU6/unvqKvhAmJldd9gNUKsdp91+HOfn6HSeoVY7uXN/fyqllFK7RMNupZRSSimllNomRXER5+cRAnk+sYN3PFcdcPU9qA0PVHVHgUvdnDIInpxhU+yZqm4bDUkEK1XQHU3kJgWka6pCbkf0ARCstVVVt/dAhCxnrwT828p0MI1PYMxg6BaLN4B7gPFPf5HaU4MzvIs7TzDzvl+4pTasanUZVch9Z9YiMauHvL1g+Q/nbuNfPXMHUy7neDPwz182zwPjftXLC1DUJlgYvYeifu11ptabYrh1jnr36kAV6q2qpfCiY44XHas6AUx1LY/0g++fTGV0/I1b5i6Ulm9eqPHNC1UYdMewX5r1/ZxxR7Z3M7d1mzLDfIMh7mCG++Qq+XWhWU7g+XKRO5nhMY4zbXaw64faAvcjvBnDny9tMfSAjyP8Nus+3GotNBpQ9IC8en/aoTne1lq8D1gbCWFvh91rtjP//T9j/h/fvJ25jVVr8ZDUSPImvi0IgvOR2sDZQ9L/SsBIf373Ol87t7iVedJsEqYtobWAqeVkp05Wj5f1XDdpkiTDFMUVsmycsrxCrXZ802tRSiml9gMNu5VSSimllFJqG3i/gA8tnJshSZpYe2tVPuvmelXI7dpVO9RksKp7thvoMkw7ZiSpoW7dGje0s6wsBt1VZXc0QryF4/zeVVXd0buqqrsoqqru4PsVdXv3wP7WCZj6pzF2bmCruOdC+WqGvv5Dhr85OMPbjw4x9VvvhEwPF2yllMDd2QJ3ZQuka4TcRTR89Nxt/B/P3MHlsnq9+Pk7e/yd57RXnXktQLdxnIXRe3D56Mrbq09S1CdJfI+h9rMMtZ4lieXKG7pFk43IG+8oeOMdBVHg9Hzab3me8dRcSrzJGSvnWinnWimfP90gs8KDR9xS+H1qKOzbcy7EGM4ywQXGuE+ucifTXB9VjVDwCjnLFRnmMXOcjtmh9wm1BV6NcAbDT5a2GJ4FPo/w9vXfjDVV4F0WgKn+7RwUArUMVjxqtoYxCcZGYgwYY4kxVieF7VGrtjN/bH3tzA1VdXdIMtIkISQ1QvS4cH3Y3W9lblJEPJAAq59ktPJOtraVOYnFNpvEVhsZHyfMz5OMj6/76rXaMTqdpwm+Rad7WsNupZRSB55+elVKKaWUUkqpbdDrXUCiw/sF6vXbd+6Oi7nqYKsvoTYyUBgWonClSOkF8LbOiHVbWvG5WUbAhsWg2/SD7s2vS2IkOk/0VZCfhFhVyjkHxlbtRg88wdT+EpOeG9wabkN6b6X2xDnGP/M3g/vShKkPvZM4uv52qerGUiJ3ZfPclS2QrfGYLqPhD8+f4F8+fScXiiocOVIL/PYL2zx/cuXJKIKlPXSShZG7CVnzpmsIaZ35sfuZH72XRvcKQ61z1IqZbakZtQbuHfPcO+Z5531dut7w6HTKw1dzHp7KuNK98UkmLhoensp5eCrnY4/BeC3y/Mmy3/bcMZLv/uvVRnmT8Jg5wTk5wnPkEsdprbjMMVpMSotzcoQnzTG8zvPeBwzCu4FLGKaXbf02wl3ACzd2c3mtOgmrx7U53sX2zvFOjMWHgE0i3gfyfO+G3XBr7cyTUFKmI2AtIW8Silm8NasUYC+2pk8wZMh6w27YllbmvtVCioIwM7OhsDtNR7G2TlFcJkmHcW6GLDtyS+tRSiml9rLD8AlfKaWUUkoppXaUSKxamLtZALLs5jMlt4TrVgdafReSBJLBA60zHUePI3QlJUsNNYqdWdeNCCTBkPSDbrnFoBvAF0UVeIeAxYAPVdAN294ads/IvofJfziwSeIw0n0PydU2k7/7J5g4+HOe/rU34+44sZOrPLASIndlC9ydza8ZcvsIH79wgv/t6Ts517vWgeG1p3r83Yc6NLPB60WT0B6+g4WRu4jJDUKUtdrnGku3eYJu8wSpazPUOsdQ+wJWNhDmbFAjFV563PHS49Xz73JnseV5zqPTKd2btDyfLSxfO1/na+frGIS7RsPSrO/7xz3p3s7mBnRMzg/MnRyRNg/JJUaue/21wF3McFLmeJJjnOOIzvPe82oIvwb8W8yyUNTwGYTbgKMbu7k0haa5Nse7dP053tm2nKRlrMXEUM3uJhJF9sxYk9VIvUbr776VsX+18XbmaSgoGSHaDJs18L1ZaoCLkTwZbGUuRAwJYgKIhWWz2W/IJNUJdVvUytzW65gsI7ZahFoNcQ6TrX+ee612nG73DCF06XROMzamYbdSSqmDS8NupZRSSimllNpipZsmiqN006TpGMbswEcvESjm16zqdj5ytczphkiwdZrWY2SXqyQF0lC1LbdiEIRwi0F39IEYwrKq7lAdeI6hCrrNPkrHNit5BlP74sAmkRTpvgfTyTj64U9gu4NB2/wvvIruSx7cyVUeSJbInVmLe7J5crN6QBIEPnnhOP/L03dyuttY2j6SR/7e81u87PhgNXewOa2RO2kN34HYtYOO1LUZWThNo3OJbuMY7eE7KGvjq17WZ0PMHXmI+bEHaHYuMtQ6R+4WVr3sVjrejBxvFrzpzgIf4Zm5fsvzqYxn5lLkBieiCIbT8ymn51P+9GmoJcJDRxzPP+p4wWTJiWbcFy3PZ8wQ3+BebmeW++UKtevmeWdEniuXluZ5X2X4lgIztd1OILwdw6eXthhK4A8R/iMg39jN2QQazf4cbwPOg+8Hp2nK1p6sZbA2IcRAYoXoPXYDYepucM9bo535135A7/UvXfN6BsFGj09qZHmdgCWI4ML1YTcgAUzWn9mdAusc/2AM2HTrWpkbsENDxIV5kokJwuws6bFj6756mo5jzAXK8gpJ0sD7BdJ0ZPPrUUoppfYwDbuVUkoppZRSaosVvfOE0CXGHrXayZ25U9+v6nbtqgLsugOsUx1HYY7QjSlZnpLL9gdbN9QPug2QiEWAYG8t6BYglAUSAzFE0hghxiossEl1EPqgM9OYxmcw1500IL1fBn+cid//LNnlmYF93Rfcx/ybX7OTqzxwLJE70hb35PPU1gi5o8BnLx3lf37qLp7sDLYff/nxgg8+vz3QptsnDRZG76I9dKqqGFxDVs4zMv8Mje7lpRhsqHORoc5FymyE9vDtdJonkVVaIYtNaA/fTnv4dvJijqHWOZqdS5j1VjLegtTCA0c8DxzxvPuBLm1n+Gk/+H54KmO6d+PWzUUw/PBqzg+v5sAQk/WwNOv7uROOoWwPtzw3hmc5wkVGuVemuItpkutGSgxR8jI5xxRNHuMELVNf48bU7ntZf37395e2GK4An0N4DxsOqK2Beh3KsrpuMFXgHSPk+cZv70Z3ZS0xBkIMYAzJrRUj74hV25l/6kuUz71xO/MklLi0QW4gZg1C7OC9INlqrcwFsP353esMu2FbWpmH2Vliu0OYntlQ2G2MoVY7Tq93nlp+G93uGUZGXnBL61FKKaX2qkPwSV8ppZRSSimldk6MjrKcwpXTGJOSpsPbf6ci0JurDrAGD7XRgd29MjDnM9peIG3QMA4r2x9mrWlZ0J3GqqIq2FtfT/SOGCPBOUwIGKFqA4vpty8/6HqY5icwZrBqW4rXgn8uY3/2FRo/fWZgX3nbJNO//pYqXFEbZhDuSFvcm81Ts2HNy/3l1SP8fx+/h8fag/PQm2nkA89r8+rbyqWwpcyGWRi5h27zxA1Tp1pvipH509SK6TWjr9wtkM/8lLHZx+kMnaI1fAc+W30me1kbo6yNMTf+HJrt8wy3niUN3Rt+/1tpKBNecVvJK24rEYFLHbs06/vR6Ywy3vgxOtVL+PKzCV9+tmp5fu+YXwq/7x31XF+8uRcEk/CEOc45Gec5coXbmF9xmUk6vEae5lkZ50lzjHInOoWoDRPeDlzAcGlpm+GH/fndr9j4DRoDtf4c76L/b+egKCDPbngCzAbvqB94R7BCCJ403duPsc22M09CicuaiE2RvEFot5EEQhTSZPA6Iv1W5gSqw+frHPewxa3MTZZi6nViu0UcHiJ2Othm8+ZX7MuyCYriUr+6u0azeT9JoifOKKWUOnj29l8vSimllFJKKbXPFMUlRALOzZLlRzA70TbbdaoDq64DSQbpsrapAlfbJR05QiEZWZaRSWv717QWgST2K7r7QbffgqBbpJrVHb1HfCAVqWZ1EyHb2kq4vSlUFd12sGpb3INI+Tqa3/0JI3/9t4PXGKoz9aF3IbUNttlVGIRTaYv7snnqNwi5vz8/yv/jkXt5pLWydewLJkt+6wVtJuoRAYraOAsj99Br3GDOrwiN7mVGFk6TlyuD0bVYCQy3zjLUOktRO0J7+A66jWOrtvWPSU5r9B5ao/dQ615luHWOeu/qjj6DjIHbhiK3DfX4xbt7uAhPzaY8PJXz8NWMMws3PpwlGJ6ay3hqLuOzT0EjjTx3wlXh96TjWHMXT/ZZRc/k/Mjczhk5wkNyiTF6A/sNcAez3CbzPM0kZ5ggHoaRDPtKhvCrwL/utzGvGP4U4RSwyS4vWVo9IYpedVJS4aqTuDLZsm4lVSvzWJ0sFgJJku756u7NtDO3sQqfQ1LD5E1CSxARXIykyfUnD4QquBaLIUXWHXZvcStz+tXdU1fBB8LMzIbCbmMsWTZJWV6mVjtBt3uG4WEdWaKUUurg0bBbKaWUUkoppbZQUVzE+QUET5Yd2f47lFjN6vZFVdVdH2zh2SodnZjT8QaTNsiNx8ra4dx2S2I1ozuJFsPWVHQDROdAqv9a7zGY6ueRplVl3AFnal/CpKcHtkk4gfTeRn76Ikf+6C8H91nL1AffQZgY7AKgbswgnEzb3JfN0bhByH22aPL//Ok9fPHKxIp9NRt5/0Mdfu6OAgx060dZGL1nzfnaAEhkqH2B4YXTZL5zC+uHejFDvZgh2LxqYT50OyFdvdKvaBylaBwl8V2GWs8y1D5PEjfQ0neLZBYemvA8NOF533NgoTQ80m93/shUzlxx4+C36y3fu1zje5er0Ol4M/Dmu7v83B3Fngr15kyTb3EPtzHPc+Qy9esCtpTIc+QKtzPL4xznMiN7v+f0oTKJ8G4MH1vaYgjAxxD+EbDJito0AduAXgG1foW3c5Bs1RxvgzVVdbe1lhgCSbr33zfb795YO3NDVd0dkpzMJoSkRhCPC0JjRfMXQRAgARNBLKx3vMMWtzJPmk3ClCG0W5jZnOzkSbDrP9klz49Sllco3RS2l9Ns3oO1epKbUkqpg0XDbqWUUkoppZTaIt63cX4O76axtk6SNLb/TstOFeq6DiR5VdndFwVm2o62jFNKQp5lZNLe/jWtwfaDbtsPuqOJbMVUXRHBl/2qbudIjKkq34ytDjofdNn3Mfn3BjZJHEK67yGZ7TH5O5/DhMGD9LPveRPlfbfv5Cr3OeG2pMP9+RxNu3aF31Vf58PnTvEvnzhJXCWAemC04O+/qM2xIeg0T7Iwejc+W3vUgYmeodY5RlpnSUKx5uU2I4klo/NPMzL/DL3GUVrDd1DUJ1e9bEgbzI8/wPzYfTQ6lxlunSMvZ3etX8JILrz6ZMmrT5aItDnfSpZmfT8+k+Fu0vL8cifhIz8Z5tlWygee295bXfyN4SJjXGaEe5jiHplaMc+7ieMl8iwzNHiME8ybHXivUev0fIRXY/jm0hbDDPAphF9j08G0tdCoV4E3pqoc9r5qa5Jlm7/dxZtPLN55JEZC9FhJ9vx5FNLYeDvzNBQU6ShiLZI38cUsqTVEWWWah4T+zG5DdQh9nSf6bHErcxKLHWoSW21kbIwwP08yPr7uq1ubkucTlMVVavkxer1naTbv3fx6lFJKqT3oEHzqV0oppZRSSqmdURQXkehxfp5abZMtSzdisao7FFUFUWOwVfJ819GNGW1vsVmTzEaSsM5WnFvMiiGJ1X8tVdB9kzxq3UJZIiKEosCKXAt2tyAA2POSM5jaXw1sEkmQ7nswRZ3J3/k4SWuwEnjhdS+h/eoX7uQq9zHhRNLhvnyO4RuE3NOhxrcWJvj//OQOTrdXVvGlRnjP3bP84gNCd/QOLo7cvWY1NYANJcMLZxhuncPK9j5nDUKje4VG9woubfarvU8hdpU598bSHbqN7tBtpK7FcOsczfaFXe0WYQzcPhK4fSTwlnt6lAGemM14+GoVfj/bWvvQ15fO1ikDfOgFeyzwBqKxPMUxnmWcB+QKp5hbcZkjdHm1PMN5GeMJc4zCrPI7UztOeDPwLIZzS9sMP0X4OvC6zd+wMVXgXboqdzW2P8e77M/x3nxre4PFWkOQiInJvqnuds+7l95rXkT9Gz9a2najduZJqALraHPIm4TuDILgfKSWXf/zW5zXbfvzu9dpO1qZDw3jW5eQoiDMzG4o7IbF6u4pynIaa8/SaNyF2bK570oppdTu07BbKaWUUkoppbaAiFQtzF0VSGTZ+Pbfadm+Nqs7zQfmd4YozHZL5uM43iTkeY0s7lJVt4AN/aBbDNHIlgXdEiPBOaIrMWVZVXXHUAXdB32mrZnBND6NMYNV29J7K4TbOPKxPyN/9srAvt4DdzL3zjfu5Cr3KeF40uW+fI4R69a81GzIebwc5w/OHeWTZ47gZeUD+65mwd9/3gKjd9/L5dG7iMna7WMT32Vk4TTN9nms7Pxc6cx3GJ99nNG5J+k2T9AavgOXr2wHDOCzYWaPPJe5sQdodi4y1DpH7lo7vOKV8gSeP1nN5/5VYLZneGQq5+GpjJ9MZSy4wdeFr52v46LhH7ywRboHXzIKk/GwOcVZOcKDcokjdFdc5hRznJB5nmGSZ5jUed67LkF4P/B/Ypb9vgx/gXAHcNet3Xye9ed3F1WwWjooy+p97xbGdlhr8T4gNhAiJOyPMLT9np8n++kzK9uZP+9e4sTg65dBsNHjk5w8qxFMQozgYqTGyueNEKug2wSQhCoAX4ck29JW5rbRwKQpsdUm1GqI85hs/Yf1ra2RpmOU5RXyfJJe7wKNxh23tCallFJqL9GwWymllFJKKaW2gHMzhNjDuRnSdAS7WlXkVorXVXXXBmcvz3ZKypjSCZak1iQ1ERvXDu220+Kc7mtB91Y0L6/4okRiJHa7VdDtQ3Ww3x70j7sFpvEJjOkNbJXi1eCfz8hffYvmDx8f2Ocmx5j6zbdBokHY2oSjSZf7szlGk7WfL3Mh50k3xk/bQ/z7J47y+MLKKm2L8J57O7z6xSfpTryS+Rs8JtOyxejCMzQ6lzBb0tz/1tj+jPCh9gXKfJTW0B10midWDdLEprSH76A9fAd5Mctw6yyNzuU98X0AjNeF191e8LrbC6LAty7m/N8/HiYsOzHh2xdruGD4Ry9ZYEVx5x4xbxp8h7s5zgLPkcs0GXx8Jgj3y1VuZ5YnOM4FRnWe964aQ3gf8JGl/iLVc+LjCP8JMHRrN5+mVWvzXj/wdg5cWW1PNvf3hzEJ1kZijBiTLM3w3uvWbGf+e3/O/D/+1RXPgySUuLSBMRDzBt61SaxZvdu4BDAZiMGQIusNu43d2lbmBuzQELG1QDJxhDA7S3rs6IZuolY7Trv9GM7P0u2epl6/HaOvEUoppQ6Ig/7pXymllFJKKaV2RFFcIIaCENs0andv/x2WC1XI7TpVxdCyEMr5yHzPMxdGEJOQ5XXS2Nmdht4CVsBIdcB8K4PuGCIxeGK3i4mCDQKYfvvygyxiGp/FJNMDW8U9gJRvoP7jJxn7/DcGr1HLmfrtdyHNtVtnH27CZNLj/myOsWTtuazzIeNJN8YV3+BvLo/wsWfGKeLKMOh5xw3v/5lJ7PE76NygyjYvZhmZf5p6b2rPNtzPy3kmykcYn3uMdvMU7eHb8dnqQV1ZG2e6No4dLxlqP8tQ61nS0Fv1srvBGnjNyZJGssC/+sHIQCX+96/k/MvvjfCfvXSB2l4taDWGy4xylWHuZIb75Copgx0A6nheKOe5k2ke5QRzprlLi1XwAPCzwN8sbTEsAH+E8EFYpZJ4Q66f4+37c7zj5ud4L1Z32yTifSDP937YDWu1Mz+9ajvzJBS4rEm0GTZr4ss2NcBHIUuu/5lFQIAEjICY/r9vYjtamQ8PE+bmiJ0OYWZ6w2F3kjRIkhGK4jJZdoSivES9dtstrUkppZTaKzTsVkoppZRSSqlbFKOnKC7j3DTGJKTp6M2vdEt3GKBsge9V1ULZYJgx3XGUktCRjLQ+RIKQyNoB3nZK+v3KqzndW1vpGcoCcZ5YlqQiQIQs56DP6Ta1v8akTw9sk3AM6b2d7MIUE3/w+cF9xjD9G7+MPz6xk8vcJ4QJW3B/Psv4DULuhZjxVDnG5dBgpkj58JMTPDzXWHG5O441eM+rJpk8eeyG91rvXmFk/hlq5co5zHuVjZ6R1hmGW2coahO0hu+g1zi2arViTHIWRu9lYeQe6r2rDLXO7alA/yXHHf/k5Qv8y++NUC6bqfDwVM7/8rej/JOXzVPfw0fMorGcZpLzjPGAXOF2Zlf8bMfo8TNymosywuPmOD2zdvt8tX2EnwPOYXhqaZvhaeCvEX7+1u9gaY53//XL3tocb2MsxkRiCBgsUSJ2n7TFX287cxs9iBCSHFNrEltCFKEMgSxZ+cQXCctmdieAX9+CtriVuckzTK1GbLWJQ0PEbhfbWPk+dCO12jE6nafwboFu57SG3UoppQ6M/fHXilJKKaWUUkrtYWV5GSHi3CxpOo7Z7gPDi1XdfmVVd7cMdErPrK9jrCVJ66Sxt2tV3UbAbkdVt/dE54mdNkYEE2K/reteLcncItmPMPl3BzZJbCDd92BbnskPfwZbDrY3nnv76+k9954dXOT+MG57vKJ+mVc0Lq8ZdLdiyg97k3yjexuXfJNvXBni//WDkyuC7vtvH+EfvuN+/uGvPHftoFsizfYFTlz8Okev/mBfBd3LGaBeTHN06ofcduErjMw9hQ3FGhc29BrHmDr2Mi6efB0LI3cTtnvEwzo9f9LxX718nloy+Lr02EzGv/juKB23V6L5tTmT8hN7km+Ye5laoy32bSzwOnmKB+JlEllnC2a1hSzC+xBGrtv+N8ATW3c3eQ6NGqRJ9f9QBeBxo79zg7WWGAUQgt8/j5nFdubLLbYzR649zw1VK/OQ5BhjiWkNHwUf1vobJfZP6kkwbOD1a6mVubvWyvwW2eFhYrcDIRBmZjZ8/TQdIUmalOVlfGhRllO3vCallFJqL9CwWymllFJKKaVuUVFcxLsFopRk2ZHtvbPgq6pu1606aS6v6haYbpf0vKEnNbLaMMYIiawRRG0zKwZD1cZ8K4NuoT+ru9cjhkASYlXNtkpF1oGSnMPUvjCwScQivfeAG2byd/+EdGZhYH/7Fc+j9caX7eAi974xW/Dy+mVe1bjMRLL6c6MTU37Um+Tr3ZNcCkMsuIR/9dhR/q8njtIJ1aEUY+AF947zj97zEB/85Qe447Y1OjrEwNDCWW678DUmph8mc+3t+tZ2XBoKxuaf4uT5rzBx9YfUetNrXjakTebGn8OFU29keuIFFPnYrk/1fnDC89+8cp5mOtgK/Km5jP/hO6MslHs/8AZomTp/a+7ke+YO2qys4E4Q7mWK18uT3C4zWxK6qY0YQng/suy0MwMY/hjYwpNe0hQaDUgSqOVV335XVkHrBlhrMQZCDIQQifvo4bLYzny5/LHT1L7+w4FtaSiINkWsJeZDhCiIsEbgLQgRg+2H3us8nG5Mv7rbA1JVd9+iZGgIMIR2mzAzCzHe7Cor5PkxfGgRQpdu9/Qtr0kppZTaCw74kQCllFJKKaWU2l4h9CjdDM7PYG2NNF29um7LlAvVwU3fhbQ+0KK0VTrKEJmLDZIkwaQ10ljs3qzuWAXesMVV3c4hZUkoC2yMGGM2PZ903zBzmPqnMGbwwLb03gL+FOOf/CtqT58f2FfcdRsz7/v5VdtMH0ajtuD+bI6j6dozpLsx4Sk3xgU/tBRMfX+6we88NcGCq7oGJInhpQ9M8LoXn2BidO22tCY6hhfOMtw6SxI3FjbtNwah2b1Ms3sZlw7RHr6d9tApxK5y2MlYOkMn6QydJCsXGGqdo9m5iN2lquN7x6rA+198d5SWu/Z6emYh5b//9ij/9SvnGa/tg7TPGK4ywhTD3MEM98sVsuvmedcIPF8uciczPMoJZsw2v1+pZe5C+CUM105YMnSBjyP8NlV77C1gbRV4Fz0gr2Z4b3iO92J1dwQrxOCx6f45hLxaO/OhT34R99x7ltqZJ6Hq5hFtTpI3iZ1pRAQfI2myyu9CApisP7M7BdY5Gsam4It+K/Oy+rvtViQWO9QktlrI6ChhYYFkbOzm11smTcewtkZZXCJJGni/QJpe33lAKaWU2l+0slsppZRSSimlbkFZXgWJODe3M1Xdrg2uU/07u9ZKOQpMtx09JxQ0SGtNDIZ016u6DbKVVd0CvttDuh3EB6wAWbrhuaT7S4lpfAJjuwNbpXwl+Bcy/LUfMPzthwf2+bFhpn7rHVWl3yE3bEteUrvCqxuX1gy6uzHhkWKCr3ZPcd4PIxg63vDvnpjgXz56jAWXUMssr3/xcf7pr72Ad77hrjWDbut7jM0+xsnzX2Fs/qkDH3RfL/Ntxmcf4+T5LzM+/QhZubDmZV0+wuzE87hw6o3MjD+E2+6ThdZw12jgn79qnrHaYDh8vp3y3317jOne/nl9EWM4ayb4inmAMxxhtbrPEQpeKWd4STxLc5feIw6n1yI8d2CL4dxAAL4lrKkC71oOaVaF3DFUc7xXfUSschO2mlEdYySEsK+aAaynnblBsMHhkxzSnGASgoC7USvz6pYwZgPvq9vRynxoGClKpCg31crcGEOeH8P5eWIo6HSeueU1KaWUUrtNP/UqpZRSSiml1C1wfpYQukDc/sqYcr4/q7sHaWMg4J3vOnyIzPo6aW4hrZNKgdmNRsHbWdVdFtDrEXyoqrrTtKqcOrAipvE5THJ1YKv4e5HiZ6k9doaxz3x58BpZytSH3kkcOdxVm0Om5P58jhNpd83LFDHhKTfKs/2Ae9FP5mr8309MMl2mDDVSXvOCY7zyeceo52tXX6bFAiMzT9J0U7vzvNtjrASG2+cZap+nzMdoD99Bp3li1RNTxKa0R+6kPXIneW+G4dZZGt0rO/pzPDkc+OevmuN/+M4o071rv+fLnYT/37dG+WevnOd4c+Mtg3eLNwmPmts4K0d4UC5zjNaKyxynxVFpcVYmeMocxZstqi5WazAI7wYuYZhZtvWbCHcBz9/au8vzqtK7R9Xho3RV4J1lYG/2u16s7g5YawnBk+6jk6cW25nXv/GjpW2L7cyL170EgCSWuLQJBiRv4l2L1BqiVOcLXE8kYEgQAtUhdX/zhSy1MneQxKqV+S1Wd9tGA5MkxFaLUK+B89VJfxuQZUcoiosU5RWSpE4IHZKkefMrKqWUUnvU/jk1VSmllFJKKaX2IO/m8KENWKy9xfaUNxIclKtXdYcozHZL2qXg0iZ5baiq6o5rt2veTpZlVd3IlsVVIoJvt4muRLwjsbbflvXgMvlXMOmTA9skTCLdd5JemWPyo3+Kua5SbObX3oy7/fhOLnNPaRrHi2pXeW3j4ppBdyGWR4txvtI9yTk/shR0F8Hw0aeO8D8+cgKpNXnH6+7gn/7aC3jDS25bM+jOOtNMnPkGJ57+K4aKnQ1o9wMD1Mo5JqYf5uT5LzM2+ziJ76x5+bJ+hOmjL+bCqTcwN3ofPlm7VfxWO96M/PNXzXOsMdhSfaqX8N99e4wL7f13GK1janzf3sl3zV0ssPJnaYG7meb18iR3yvSK1xO11eoIv4pc17bc8ClgauvvLk2hWb82x9sszvG+eVBrrUWkqu6OcX9Vd0PVzjyMD56EOPTJL2KnqznpSSjBGKLNkLxZze1G8GGtk1rC0sxus5H6MZuCxKoVelhn+/MbMWCHh4ntNsSIn5vd+E0YS54fxblpYizpdM/c+rqUUkqpXbT//kpXSimllFJKqT0ihB4h9oj9ihizna20i/nqQKkvqqB72Rzm2U5JCMJCyMnShJjWSaTcvarusD1V3b7TgaIkOoflEMzpTh/G1L41sEliA+m+F9OFyQ9/FtsdbEE8/4s/Q/fFz9nJVe4ZDeN4QT7F6xoXuC3trDqqvBTLY+U4X+mc4owfJS47LPLkQs7/+4e38Yg7zvvedA//xfufzyufd4w0Xf15XVu4xNHHv8jxp75Is30J06ivXg6oliTRMbJwmtsufI3JK9+j3r2yZlvfmNRYGLuPiyffwNXJF9OrTezIK9pkI/LPXzXHyaHBMHC2sPx33xrj7ML+rH6eNkN809zLI+Y2ylXmQ+cEniuXeI08xVFZ2JJ2y2otJxHePrDFUGL4GLANYw9sAo1mFXzneX+OtAPn4AbPKoPFWtMPuyGGsOZl96KbtTO30YMIIcmJeYMIxAhuzbBb+l9Jv0PFOv/mW2pl7quweytamQ8PIyEQu91NtTIHyPNJwFCWVyl6F4hRRxoopZTav/ZP/xmllFJKKaWU2mOcnwXA+zZZPrl9dxTKqqLbdauQO71W1e18ZL7naRWBkB6hmTdx2F2r6jb9qm4jVdQuW5T9iQ9Vy07vIAaSrLaONqz7mD2PqX9+YJOIRXrvgjDK5Ec/Q3Zl8AB354X3M/9Lr97JVe4JdeO5L5vjZNpeM2t2YjjtRjnjRgjXBRQuwmfOjvGTeIpf+tnbeM6do2vfmQiNhfOMXH6UfOEyJGk1E7d+wB+PW8wAjd4Ujd4UPqnTHr6d9tDtxCRf5cKGXvM4veZxUtdhqH2Oofb5KqjaJuN14b991Tz/4rujnF24duhswVn++2+P8k9fMc+9Y/sr+INqnvezHOESo9wjU9zNNPa6sHOYkpfJOa4yxGMcp222sWPJofYyhDMYfrC0xXAJ+JN+q/MtZg3U61CWgIFgqsC7jFUAvsaJY9YmeO8RCYQIySonSuxlN2tnnoaCkNTIbJuY1QmxwAeDCKueMCUSMCbt59UJ65qBvtTKvISktiWtzE2eYWo1YqtFbDaJ3R62sbHbNCYlzycpyyny/Djd7jmGhu6/pXUppZRSu0Uru5VSSimllFJqk7ybI4QegidNt3E+cq9f1e0WZ3VfOwI73XGEKLSkRp5n+KROKiV2PQdgt0ESwEh12FzM1q3Bzy9ACFVVt02qCrWDysxjGp/EmMEwTYpfhHAXY3/yVeqPnR7YV548ysyvv+VQVRbXjOe5+TSvb5zn9mz1oNuJ4clylK90budpN7Yi6D7TzvgP08/j5CtexYfe8eDaQbdEhmae4cSTf8nk2W+RL1ypZuGmKdSyg/143GZp6DE29yQnz3+ZiakfkRdrVyn6rMnc+IOcP/lGpieeT5nf4MSEWzSSC//NK+e5d2yw0rbjLf/jd0Z5fGb//s69SXjCHudr5j4uMbLqZY7S5rXyNM+NF8hk+04sOLwMwtsRjl+39fvA97bpLg3UatXJOWkKWV5VGRdF9TfGqle5rro77p+59Ytu1M48CSXRJoixkDVxsard9nGt6uvFn1OyiVbmsnWtzAE7PETsdiGEW6juPoYQcW6aXu8ccRtPIlJKKaW2k4bdSimllFJKKbVJzs0SQwcwJElze+7El+C7UHb64dq1qu5uGeiUnvmeQ7Jh0qyOkOxaVTf9kNtKVSsYtyh3jd0usSgIZVndfl7j4LYvL6ug2w7ONJby5eBeQvM7jzDy5cEgJAw1mPrQO5H8YM8vX5SbwEP5NG9onOfOrLVqyO3F8FQ5ylc6p3jKjeOvO/zhMXw1PsjUAz/PW372Qe48vvrJKiZ4hq8+zsnHv8CRCz8gK1tQOsBUQdFiW2B1ywxCs3OJ45e/y4mLX2eodRazVvBiEzpDp7h84me4dOJnaA+dIm7DGImhTPhnr5jnwSODgXcvWP6n747yyNT+fs51Tc4P7R1829zNPCurQg1wJ7O8Xp7kbpnCyP4LOve2vD+/e/A1xPAnwMXtu9ssraq80/4cb0z1urbG881aS4yCSMT7/ReG3qideeKr1t3B5sTaECJCFMHfoGW7EDEk/RMP11npbpPrWpnf+nMpGRoGgdBuE2ZnN9Ue3dqMLDtCUV4hxpKiOH/L61JKKaV2g4bdSimllFJKKbUJMTp8aOFDG2vrGLNNrT17s9XBUV9A1ryW8QpMt0tKH+nEGrW8RkjqJOKw7E573SSaLa/qlhgJ8y0kOGIMJFnen5V5EAmm/qeY5PLgVn83UryJ/JkLHPnjvxrcl1imfusdhCPbV+G6V2QEHsxneEPjPHetEXIHMTxTjvCVzimedOP464KIaBKeHXmAJ+9+K3e/8HkcO9JYeSOA9QWjl3/Cycc/z/jlR0h8D5BrM27zrDr5pF7b+m9Ukbk2R2Ye5eT5LzM+/RPSsrXmZV0+yszE87lw6o3Mjj+IS7f2xKN6Cv/ly+d5/uRgNWYZDf/r90b44ZX9HXgDzJom3zT38GNzkt4q1aoZkQflMq+Tpzgu8zrPe0sdRXjXwBaD78/v3sYT19IEGo1qFEMtr17PnKtam1/X2t4YizGGGAMxyr6s7nbPu5feq180sC1/7DT1r/8AGxwhySHJEJvio+DCDR7jEvpBt6lC7/VKMgiuev5sRXV3YrHNJrHVRrwjLKz9OnkjeX4MEYdzs3S6ZxA9qUUppdQ+dFCPECillFJKKaXUtvJ+DoDgW9vXwtx1q9mOrlNVBSXXKu9apaMMkVbhsbVRkjQnku5qVbcVMFJ9zNyqqm6ZmydGTyxLrE0wB7hdtMm/iskeH9gm8QjSfRfJTJvJ//BZTBg8CD3z3p+nvOfUTi5zV4zagtc1L3B3tkBiVoYQQeC0G+Er3VM87o7grgsgQpIxd/Qhzj7wVuTOFzA0tEZIXXQYv/BDbnv8C4xefQwbl1X0eg8xQJZBYqFRX32oq9oyVgLD7Wc5cekbHLv0HRrti2tWRIrNaI3cxaWTr+PKsZfRbRxDtqgDRC2B/+KlC7zk2GBA5aPhf//+CN+9eACq+43hghnnq+Z+nuQoYZWfXRPHS+RZXilnGJHuLizyoHohwqsGthimMXya64PnLWX7r2OLLc3TFIK/dlLPstUk/epuiIQbVD3vZe33rt7OPL98mZDUwEDMm4QoRAG/ZuAdqX4+CZiUdXea2Y5W5kNDSFEgZbnpVuZJUidNR/vV3QVFsY1dBZRSSqltomG3UkoppZRSSm2Cc3NIdEQpSZJtCruL+aoKyJcDVd1RYLrtKFygF/N+VXcDiydhd1qMJv102wJxlTByU7o9QlkgRUkEbN5vt3oQpT/F1L4xsEmkhnTeiykTJn/nMyStwXBp4Q0vpfOqF+zkKndF3XheWrtCvkq3gChwxg3z1e4pHiuPUMpgyO3TOrMnXsiFB97CwvHnkmSrV+F2FlqMnf0utz/5FwzPPI29fn5tDFUIlKbViSe1WhUUqR1hgFo5y+T0jzl5/iuMzj5B4tcOW4v6JFNHX8LFk69nfvRegr31MDpL4D99yQKvPFEMbA9i+D9/OMw3zh+AwBuIxvKUPcZXzf2cZ/WOEUfo8Gp5hhfE89TErXoZtTHCWxBuH9hm+Anwze29Y2OqwLuWQ5pVoXeMUAy22jbWYgyEGAkhsuZI6z1srXbm4x/5FCBEm0He7LdsF/wNKthFAmbpsPrutTK3jQYmSYitFmF+rjopaxPy/Dgx9nBunm73DKLdG5RSSu0z+slMKaWUUkoppTbBuRl8aANsT9jtutXBUNeBJIHkWiXqfNfhQ2Sh57GNUWyWEUjJdnNWt1SzumGLwm4fCK0WsXSEGLBptn2t4nebvYyp/9nAJhGDdH8FwhGO/OEXyM9fHdjfe/Au5t7+hp1c5a5IiLy0foWaHQwFosC5fsj9aDlBIYMV/y4fZvrUy7j4nDfTmry/atW7iguXF3CPfofnnP1LRhbOYVaropRYVTrapGpDW8uq0FvtiiSWjC48w20Xvsrkle9T615ds612SOvMj93PhVNvYGryRfRqR26pTja18B+/uMVrTw2+1gqGf/fjYf7m3MFpa1+YjIft7XzT3MMsK9v9G+AUc7xenuQ+uYLV1se3KEV4P3Ld7HTDF4Cz23/3eVaNZUgTyPsnbpRldaJPfyXWJv0W5kIM+292N6zezrz26DMM/803CElOzOtEqm4hN2xlTux39rAYNjDKYKtbmVuDHRoittoggp+d29TNpOkQSTJEWVzGhzalm7r1tSmllFI7SD+dKaWUUkoppdQGiUS8XyD4NsbkWLvFM1tFoJirDogGB7XRpYLmEIXZbkmnjDiT0ag18KaBJWB3qcLOisFQtTHfkqBbBGm1CK5EnEOsJckO6sfXiKl/HmMGgwMpfgHC3Yz85Tdp/uiJgX3u6DhTv/G2qpX2AWYQXly7yogdfFzPhBoPF5N0ZeVjomgcYWHyOfRGT97wth89M0dx7ml+ceQMteRGj1mB0gGmal++PAhSu8oAjd5VGr2r+KRBa/h2OkOniMkqvx9j6TZP0G2eIHVthlrnGGqfX1nBvw7WwG+/oE3NwpfOXQsmBcN/eGSYMhh+6e5dOvFoG8ybBt/mbk6wwHPkMg0Gn48Jwv1ylduZ5XGOc5FRbe+/aeMI78Pw0aUthgh8HOEfAdvURWZRmlYdK3pF9Tt0DlxZbU8yrLX9ud0BHwxJku7LX3X7vT9P9ugzJLMLS9uOfOxzXHj+czBDFrIGPvRIrUFkrYezIAiGBDERxFK1N78Jm4IvrrUyT+s3v87NbnJ4mDA/T+x0CTMzpEcnN3U7eX6MbvcZgm/T7TxDLT96y2tTSimldsrB/mSslFJKKaWUUtvA+3mEiA/t7ZnX7TpVyO3aVUVqei28me2UhCC0C0daHwObEkxGGnu70+BbwMYq8IYtCrs7XWJZIqUjADZNl7ULPWCyH2CSwfmYUr4E3Etp/OgJxv5isIVtrOdM/fa7kMbBqSBdnfBQPsPRdDA0bMWU7/eODQTdAvSGjnP57tdz5d6fXTPojlH4wRPTfPQzP+b2Z7/O28dP3zzoXpxdW8uqDgv1g/5z35/S0GV87glOnv8KR6Z+TF7MrnlZnw0xd+QhLpx6I3Oj9xE2cbKSNfAbz2vz5rtXtlL/g0eH+NxTKyuh9zVjuGRG+Zq5j8fNMfwqr8d1PC+S8/yMPMOYdHZhkQfFcxDeOLDFMI/hE6wrTL1Vq83x9r4KvanamccYQYSwT6u7pVGj9etvGdhmi5KJ3/0EEYPkDYJUYbYLN/iZi6/akmNYdz3ZYivz4Laslbmp5Zg8J7ZaxG4H6W3uZJs0HcXaOmV5BefncG72ltemlFJK7ZQDerRAKaWUUkoppbaPc7NIDMTY2/oW5hKrWd2+rGYEZ9du3/nIfM/TLjzRpOT1Jt7WsEQS2YJ2mJtwrarbbE3QXTqkKPG9HjEKpAnJGi2o9z3TxtS+PLBJwgRS/DzZ+asc+YPPD+4zhqnffBv+2JGdXOWuuDNtcWfWGthWiuX7veNLQZtg6IzezuX73sTVu19LObR6FZrzkW89fIX/5WOPcOWRh/kndz/Fc8eKVS87wPuqhW+WVQFQvaYVq3ucITLUucjxy9/h+MVvMtQ6h4mrV2+LTVkYu4+LJ1/P7NgDG57rbQz86oMd3nnfymD3k080+cTjjbW6q+9b0VieMUf5qrmfc4yv2hJ+jB4/I6d5UTxHfZfel/Y74U0I9wxsMzwJfHnVy2+5pTneWdV2e9kc76Q/7CHGSIhh3z7G3fPvW9HOvPHI4+TfeISYDyFSfcs3DLuXTj6wGLOBv1OSrJrbLVL9rbcF7MgwsduBEPEzM5u6DWMMeX4M5+cIoUe3e2ZL1qaUUkrthAN6xEAppZRSSimltk91ILADyNaH3a5bHQT17eqAaHKt6nC64whR6LhAPnQUTEIwNfLY2RNV3XKrYXeMmE4HX3T5/7P339FyZPd9L/rZu1L3yQcnIIcBMAiTAEzgDIOYxGCLskgFUpZ9JVvWk64t2ZeWfHXlZa/nde1lryVbV+nKz5atZ0lPtq8okQokRYkih5mTAzB5BhjkeHLqVFU7vD+qAZw6OfSJ2J+1sA7Orqrdu/tUdVfv7/5+f2iNlgLP82Btnt2KI6JvIER+otvGH0JOJHT9/heRad41N/ax9xAf2ruaQ1wTur0qh8P8ZL223HJ0WyEpd+xhousgOpz9+qvGiudeH+SZ1wfwdcxP7B/m2JbpTtwZMSpbbOL7maM7KmSCt2PDEKYThCNv0j76NpXm7ZRadqGC6eeLlT6ltn2UWnbTUr5Ky8RFfL2AxRBkmuDHD1YJPcufnsn3/Zfnm0iM4FOHKptujUQifN4Q27lsOzlk++hiuuC/jQl6bIlLdgvnRRdaeGsw0o2KxPLDwH9BcHvRj+CbWHYBB1ZnGGGYve/F9VjzJIU0rceZG6SRGK3x/I35ty1/4v0Eb57HG7v9Grf92VcZObQTK310Pa599ihzsFZnUeZosmn2BbjdJ0eZmwRYfpS519SMHh5Bl8uIkVGCbduWtDgrCDqI4xskyQCeV0CpFUowcjgcDoejwbhvag6Hw+FwOBwOh8OxCKy1qHQUrcsI4eN5y5+kvN25gdp4NgmqNQRNtzZVE00lUUzUUoT08MNmlCwgMHh2YcJMo5HcdnVngZ/LpFTBpAodJ2ghEJ5Eyo05iT4v3gVE8Gauyab3QLyDrv/+JfyxvKu5/PA9lN5zfBUHuDa0yIT7o8Fpc/Svx12M0Mx4191cv/vDjG4/NqvQPV5O+MozV/mNP3qNb7x4nXuax/jXx64vXOi2GlKVxc16QSb4bFAxxwHSKlpKl9l64ym6+1+gWOlnRjuq9Ci17uHG9ncz0nkEtYj39r95V42/fbg8rf3xi0X+5xvNmA3qfp2PkijwotjDSbGLMtOd8R6Wuxji3fYsO+3IzK+7YxZasPwIdtJiLwEI/hQYX71h+D4Ui/VFPyFIgdQaqxXWGrRRG/bPapsKlP72R3NtshbT+pkvY4Mi2mRlMtScF7Cui8oCsYZR5vgesljElEpYlaJLpfmPmQEhJGHYTZqOYHTq3N0Oh8Ph2DA4Z7fD4XA4HA6Hw+FwLAKtyxir0LrceFd3Us4cpWklq9N909VtYbickChDLTUUWruxUqJESLCWtbr1pFrdcpmz3dUaQivSaqXen8STm9XVrRCFx3Mt1hawtffR+WffJLp4Pbct3redkR98/6aP0I6E4kQ0gD8lIeDtpJ3L/jYG9rwTE8xeC3lwtMaTr/Tx8tsjaGNp9jV//+4RHuleTP1gm7kXEVl8ue9BuPiazo71hwAK8QiFeITUb2aibR+Vphncj0JSbtlFuXkHTZUbtI5fIFDzn0Pfu7dG6Fn+++vNOYHyW1cKJBr+3r1lvM1oORGCQVoZooVdjHDADhBMqS0dobnH3mA3I5xmK8PCOUUXxl4s34vg9ueFoAJ8DsvfA1ZpEY6UmeAd14AQIRQyTTBJgogKGKPrKSwbj5tx5oVnXrnVFr51kfCli6gjWzDWorQhmPX52fo/H4QFK1lQbXUvqAvd9SjzYPkLJ2VLC6q/H5uk6JERvNbWJfUThl0kST9JOoAXRzQ17cfzomWPz+FwOByOlWQz3mYviOeff55/82/+DR/5yEfYtWsXURTR0tLCoUOH+Mmf/Em++93vLrnvSqXC/v37EUIghGDfvn2NG7jD4XA4HA6Hw+FYU9J0DKxF6TKe1zT/AQvlZq1uHdfrBN/uu5SkJNpQihW+5yPDZrSIEIC/xq5u0QhXt9KIWg1dq2GMRkuJEAK5SWOjRfgMQo7m2mz8Xlq+c5rm51/PtauOVoZ+/GOZu24TIzEcjwYoyHx95WuqibdNN4O7H5tV6L42UOGPv3aO//Snb3Dy9DDaWO7vqPJ/Hru+BKG7HisfBZmTseAm+DcjgSqzZfg1tt14kqbS1ZmdlUJSad5B37Z3MrTlPtIZItCn8j27Yv7B/SXklAUbT10v8DuvtKAaYOBcr1ghuCy28F1xkEt0zij3tRLzkL3EcXOZpjX67Np4vAvLoVyL4DKCr63uMKTIBO8oBD9AhiHGaGwco9UCorvXMeVPvB/d3pJra/riE4ixKtrYeep216PMxc37lQWK/tLPhG6rs/u+BiCLRYTnYcol9NgYLPHvIoRHEHSRJEMYk1CtOXe3w+FwONY/m/vb8iy8973v5Tvf+c609iRJOHPmDGfOnOH3f//3+Ymf+Al+53d+hzCcHsU0F//qX/0rzp8/36jhOhwOh8PhcDgcjnWEUqNoXaXh9bqTUiZypxXwo2wiFDAWhsspcapJlKG5tQMrJKmMCGyMWH54+JLIXN2ZW9Isp1a3tVAuY5VGxzFWehjA9ySb0tUthiF8Ntdk9Q7CV9to/9IXc+0m8Bn6e9+PaWngoop1ieX+aIg2L821juiI15IehvY+ig6nvwZnr47zxEt9nL9+O641koYf3TfCe3rLizfCK5WJnkG9Tm0h2vRu+jsdX1XZMvIGbePnmGjdR7llB0ytLS0E1eZtVJu3Uaj00zZ+njCdmLXPx7YnBLLE77zcgra3z58X+iJSLfiHxyYINqYJdkEo4fGW2Fav591PD9PjlHso0WVLXLZbOCe6Ua6e9xwILJ8A/iuC0UmtT2HZDRxd3eHU63iLGghjMUohajWM9JDBxpxmvhln3v5f/uRWm4wTmv7yJLW/8y4CT6KNxZOzfR7cFMM9suV/6Sz7TWJylLn0s88escwFflIgm5sxpRJeZyd6bByva8uSugrDbpJkgCQdQtYimor7kNKlnDgcDodj/bI5l8nPw7Vr1wDYsWMHn/70p/nc5z7Hs88+y1NPPcWv/dqvsXPnTgD+4A/+gL//9//+ovo+efIkv/Ebv0GhUKB1iXExDofD4XA4HA6HY/2S1ut1g8DzZo9UXhTGQDwBulYX224Le+PVFKUNEzVFGHgQtaJElFWHNLXGPP4iEXWRW1iJBcxy9MBKFaENplbFCIERAikFYlOKHxZReBwhbruXrRWI64/S/f98GTGl8Onw3/4I6Y6e1R7kqnN3MEqvn6+nXTE+p2rdDG8/TtLUldt2baDMf/38m/yPL5/NCd2H2mr8n8eu8z1blyB0a5X98+uO7qiQCd6OOwJfx3SOvsX2a0/QMnERYfSM+9Waeunf9iiD3ceJw/ZZ+3toa8LPHZ/An1Le4eXBkN862Uq8sY2wC6IiIk7J3bwg9jDB9IQECexlmHfbs+y2w9Pe/xyTKWL5JHaKa1jweWB49Yfj+9BUQAY+xvewCHSlAunGPbGzOPP7cm3B2et4L5zH2vnc3RaLQeDVF0gt8P7FC7LSNTejzBuAbGnBKo2pVFGjI0vvRwYEwRaSeBBrUmq1qw0Zn8PhcDgcK8Ud+c3tyJEj/NEf/RGXLl3iN37jN/jhH/5hHnnkER577DF+/ud/nlOnTnHoUBYR9Id/+Id8+9vfXlC/Wmt++qd/Gq01/+Jf/Au2bFna6jmHw+FwOBwOh8OxPtE6RpvarXrdYrkunJsk41Nc3dlEqTaW0WpCJTFoayk0tWMRKBnh2WQNXd3iluBtxTJyeZMUkSRZDKrWWN/DWIuUm1HoBvw3EP6UONDkIbZ89mVkLT/RPfbhR6ndd3AVB7c27PRL7AvzLtnUSk7WehjZcohKx57cttFSwv/zlXNcH7wtjgcic3P/s3v66S7MLFLOidGg6u46z4coymp1O+44PJPQMXqGbde/S+v4eYSZWbyrFbsZ2PoIAz0PUos6Z3wnvr8n5X87MU44RfB+YzjkN19so6rujNSAYdHM0+IuXhfbiGcQAUM0R2wfj9lzdNuJTPhzzMAOLH8j1yKIEXwWFuIkbjTSQzQ3Z7HZvkRLianVoBazRrcmy6b8iQ9MizMvPv4yeqRMqud5UlbXhe5FiN0rEGUuohARhphyCVMuY+Ol9xtFPVgUaTpKtXoZO1O5B4fD4XA41gl3pNj9F3/xF3zqU5/C82a++eju7uZXf/VXb/3+uc99bkH9/uZv/iYvvPAChw8f5pd+6ZcaMlaHw+FwOBwOh8OxflBqtP6zgfW6jc4izFU1myCeVJd4pJKgtaUcpxQCHxO0oEQIa+jqxmZfJIXNvk4u2dVtDKLuBNNJjPF9tLF1V/dm/KpaQ0TfzLVY00p0chuFM5dz7ZX7DzLxve9YxbGtDVtklSNh3pVoLLxU62aoeSdjW+/NbUtSzWe+eo5y7bYAua855v997AYf2j7BrAmzc2IgTbP42MCH0M9+Ou5oPJPSPnaW7de/S9vYWYSZWUyMC1sY7H2Igd6HqBW2TNP4jnYpfv6hcYp+XiQ6Mxrw68+3Uk7vDMEbIbgqOnlCHOA8XZgZSlS0kHDCXuFBe5lmu0afb+ueh7Dcn2sR3EDwV2syGiEloqkZI7P3TxN4CKUQ1dqGXLRwM858MiJRBJ9/Dq3NPE/JkN3EeQjhs6AyLJOjzE2aJfs0ANnSgqlUQBvUyHLc3RG+304c92FMTBzfaMj4HA6Hw+FYCTbjDEJD+MAHPnDr/2fPnp13/4sXL/Kv/tW/AuC3f/u3F13n2+FwOBwOh8PhcKx/0nQUo2MsCt9vUL3ueCKLMU+rmau7Ht+dqCy6vFzPu42KrRgkShbxbIpkbRw2Xl3dliyzVnepAkZj4xqqHl9uschZFiVvdET0HYSs5BtL76Pj80/mmnRbMyOf/NCmrxXdLFIeKAxOE6jfSLbQ7/cwvPPhaa/Bn33rIn3DmaPbE5aP7x7ln9/fx/biUqNzLcR1ETMMMje3+y7vmIQ0irbx82y/9l3aRs8g9cxRw0nUyWDPg/T3PkK10J0TvQ92Kn7hoXGag/x79vnxgP/r+TbG4819rU9GC4+3ZS9PiP3cYObSf12Ueac9z1FzncBu3FjslUFg+X4s3VNaTwKn1mRE0vcgCNC+h5ISU4iw1iAqVZgz+nt9kt6zn8pjx3Nt3rl+xAvnSM3cz8dajbg11b52UeZeczNYMOUyZmRkWQsPoqgXYxNSNUalcgG7ARcxOBwOh+POwIndsxBPinmZzQE+mZ/92Z+lXC7z4z/+47z//e9fwZE5HA6Hw+FwOByOtSJNx+r1ummMs1srSEuZ0A25Wt0jlRRtLJVU0xT5KL8FLUIsck1d3cKCvOXqXuKkZ7WG0AqqMdrazBFmNFLKSRPFmwh5DYKXck02PUjrXw/jj5Vy7aMf+x5stLkF1wDNiUI/wZTz53zSxmW7hcE9j2K9ILfta89f482LYwB0RYp/cf8Nvn/XON5ydMI0BUwmdEuZ1ene5IsMHEtDWk3bxEW2Xf8u7SOnkbNEDqdRO0M9x+nf+iiVYu8t0Xtfu+Z/f3ic1jAvll2Z8PmV59sYrd1Z511NhLwid/Gc2MsYhWnbBbCLUd5tz7LXDiFcfPIkQiyfwpJ/jxR8Cehb9dEIIZC+n/maowgtBTQVsUIgqtUNWce7/In3ozrac23yy6dIBidmOeImpv4ZIhFT/j6zsgJR5vgeolBAl0uYNEWXy0vuyvOa8LwW4ngAbaokyUBjxuhwOBwOR4PZhLMIjeFb3/rWrf8fPXp0zn0/85nP8Jd/+Zd0dnbm4s8bwZUrV+b8d/369YY+nsPhcDgcDofD4ZgZYxRal1C6jJSFekzlMrlZq1tVwS9kcZZANdFUEsVELUUKCKMWrPDqtbpTJEuoS9wApBUIQNplCN1KI2o1SBKM1ijfQ9fdUt6mrNVtEIWv5jRUa33k9Ydp/faLuT1rB3ZRPXb3Ko9vdZEYjhcGKMr8OdynipxJOxja9Qg6zKcmvHJ2mO++lIk4kTT848MD7GleZo1anWbXXhBkUbLFAkvMQXfcQUhraC1dYvu1J+gYeRNPzbzwKA1bGe5+gL5t76TctA2LYFer5hcfGaMjygu3N8o+/+G5doaqd94U3aho4lmxj1fFDmpM/0wNMByy/bzLnqPXjm/IaOyVoQfL38q1CFS9fneDBNNFcDORxQIqDDG+D8Ui1vcRcfZ5v5EQxYDhH/+hfFussH/yLMbMdQ5aLBaBd0v0npepUebzuMcXitfSgq3FkCrM8NKjzKHu7jYVtCpRqV5syPgcDofD4Wg0rhDVDBhj+OVf/uVbv3/qU5+add+RkRH+6T/9pwD88i//Mj09PQ0dy+7duxvan8PhcDgcDofD4VgaSo1hsWhVwvNnjl9dFFpBUp7k6q7X6rYwXE5IlKGWGtqKAanfghYBBp/IzOcsWiEsSJMJ3rBEsdtaKJczwTtJUJ4EITE6rQvdm1BsDF5EeHknlI3fRcefvYCYFPFqpWT0B963yZ3FlnujYTq8vPAxpkNeibsY3X6MpDkfz3t1oMwXvnMJyAJ8/193D7FruUK30aAUeH7mqitEmeDgcCwQgaGldIXm0lUqzdsZb92HDqanfaigmZGu+xhv30/b+AW2cZ3/45ExfvX5NoZqt8+5garHf3iujX/28Di9TXeYi1kIrtNOH63sY4h9dghvSvXzJlKO2auMUOQ0WxkXxTUa7HrifiyXEDx/q0UwBHwRyw+zmp+nQkqk52FSlbm8oxCRKoQAm0hEEmOll5WK2CCk9+yj9K6HaHnyhVtt4mwfydNvU3jXHIvSrAbhgxVk0+4LEPq9AHSS3SPpGOTyz2/Z1ISQEl0qIaKQQO+AJZaJ8f1WpCwQx/14fgtpOkIQdC57jA6Hw+FwNJI7b9noAvj1X/91nn32WQB+6Id+iIceemjWfX/xF3+Rvr4+3vnOd/LTP/3TqzVEh8PhcDgcDofDscqk6SjWpBibNKZedzyeTYqqWiZ0113dpSQl0YZSrAh8SRAWMcJHyQIeCo+1iQS97eoWS3d1V6qZwJvEaCkxUqK1yvqVm/DrqRhHRE/kmqzuJnqpk+JbeXdU6d3HUNu6VnN0q86BYIxtfr5uedV4nIp7mOg8QLlzX27beDnhM4+fQ+nsfPvEnjGOb6kubxDWZPHlUoLvQ+RnPx2OJSCwNJevse3GU2wZehU/Lc24n/abGNlyDze2v5ti7w5+8dESW5vy6QbDNY//8Fw710obRxBsJEZIzokenhAHuEb7jPt0UuVRe4F7zTUiu8xFL5sAy0ex7Mi1CV4Dnl31sUjfx2IxSqHTFNvchC0WIQyw0kMkMWwgY76nE4Z/9AfQ7S25dvUXL2BG5ooFv3ldy8zhvRBWIspcCmRLC6ZcwhqDHhtbVndR1IvSE2hdpVJx7m6Hw+FwrD824WzC8vjWt77FP//n/xyA3t5e/vN//s+z7vvtb3+b3/3d38X3fX77t38bsQIr8C9fvjznv5uivMPhcDgcDofD4VhZUjWKulWvu2WevedBp5BOcnX7mYvHWBgup9RSTaIMLaFH4reihYfGX9Na3ZNd3XYpYneSIpIE4hhhLcrzsolxYzetq1tE30CIvCBjyx+k8wt5AVy3NjH+oXes5tBWne1+if3heK5NWcHJWg/jTdsY3XZfbluqDJ95/BylSra44x3dZf7mjvzxi8dCkgICgjBzGYbRMvt0ODLRu6lyg603nmbL4MsEycwJHNovMNp5hPiud/LpD7extz3v4h6LJb/yXBuXxu9MwRsgFgGvyR08I/YxwswO1x2M8W57lv12AHlH1/P2sfwIdkrdc8FXgCurOpLM3S0xWmGtxagUChHW8yGKsnhutXHqd3s6xRaLjP3dfFw8sSL+46exc0TqW6snRZkvYDFVLspcNSzKXLY0Y1OFqVZRI6PL6sv3OxAiIEn6SdIhlFqjlCGHw+FwOGbBid2TeO211/jBH/xBlFIUCgU++9nP0tvbO+O+cRzzMz/zM1hr+fSnP80DDzywImPatWvXnP+2b9++Io/rcDgcDofD4XA4bmOtQaXjaFVGiAApg+V1WBuru7pjCJpuRVePV1OUNpRqiiiQeGERIwKUKCLRyDVyskluu7qzipSLxBhEpQJKIVSKCnyMBaM1QgrEZnR1e2cRwZlck00eoO2r1/BH8qLt6Mfegy1sXtG1Q9a4JxzOtRkLL8fdjAZbGNr1yK1kg5v8+bcvcn0wWwyyrznm7+0fXn7Ce5oCFsIgc3ZHhXkPcTgWgwCaqv309j1D18ApgnhmN6XxIuLuQ/zkD97Pxx7pIQxun/+lVPKrz7dxbvTOThwYF0WeF3t5SeykwvTPXA/LATvIu+1ZttuxO7iedyeWT+RaBKZev7sy4xErhfR9rLFYozFJ/X6lqQiexPpBtuBtg/yZBBZpUsoP3Evt0fxiLH36OuqZt+c4Wtfv68TC3d1ekAndN6PMG4CIIkQQYEqlzOEdL712uhCCKOolTccwOnG1ux0Oh8Ox7tiEMwpL4/z583zkIx9hZGQEz/P4zGc+w3vf+95Z9/93/+7f8dZbb7F7927+9b/+16s4UofD4XA4HA6Hw7HaKDWBxaB0Bd9fpqtbJaCqkFSzyVA/E9y0sYxWEyqJQVtLaxSQyGY0HloE+Ka2Nt5nC1JPqtUtlzBTXalkgnccY/wATeZ8ylzdks3n6k4Qha/lWqwpIm48QOu3Xsi1x3ftoHr88GoOblVpEinHCoPIKX/it5JOBmwbQ7sfxXp5IetbL17n9fOjAHQEip87MkjoLVMh0WlWqzsIwJNQLDBtUA5HgxBAsTZIb/9zdPe/SBiPzLif9UIefmAXv/C37+V9J7ZRCDNhrKIkv/ZCG6eH72zBGyHoF208JfZzWvSiZpjGLKC4z17jHfYC7XZ1xd31w2Es7861CMYR/BmrqS4L6SGkwCiFMQajNfgeNgggCjIhN9048fO+jjEypPSJD2DamnLb4i+8OEecua3/80EsMLlG1l8f08Aoc0C2tGArVTAGNTLz+9BCCYItCOGRJAMkcT9ar1HakMPhcDgcM3CH3zVnXLt2jQ996ENcu3YNIQS/+7u/y8c//vE5j/n3//7fA/ChD32IL37xizPuUy6Xb/38zGc+A2TR6B/84AcbOHqHw+FwOBwOh8Ox0qTpKFiDMVXCcMvyOovHsslMVYOo5Zare6SSoLWlHKcUAw/hB2gZoWSEROPZpTtylsNNV7dYqqs7ThGpgloMCIzvZTU9tUFKgRCbL65XhE8jZN69beP3s+XzzyHU7Tq9VgpGP/5+lm9ZXp/4aI4XBghFPpL1YtrKZdXG0J6HUVF+8cjr50f45skbAATC8LNHBukI87WNF43RWXyu52dxsVGUObsdjhVGAIV4mEL/MHHUwXjbXcSFrmn7RaHP+x/czjvv6+W5NwZ46tUBKjXFb77Yxs8en+De7o0jEK4ERkgu0sU12jloB9jJ6DT5sJ0a77AXuWFbOSN6qYlwTca6Vlg+CFxBcNtxK3gby3eA2c08jUZ6PjpNkcagkwRZLGbu7jTFhj4iTbCBvyE+9zydQAiqtY3yJz9I63/7i9sb45T4j5+m8DMfnLGspbUaIfx64IAPzHMNS5klnJgUjJ9FmTfgc8praUGPjmLKZczoCGztXfJrL4QkDLuJ4z6iaCvV6kVaWjbvYj2Hw+FwbCzueLF7cHCQD3/4w5w7dw6A3/qt3+InfuIn5j0uSbKJpt/7vd/j937v9+Z9jB/7sR8D4H3ve58Tux0Oh8PhcDgcjg2GUmMoVQYsnte89I7SWiZyp+VMdPMyV3eiDBM1RTnO6lm2RD6xbMEg0SIiNJU18z5nru5MtDGLrdVtLFQrkCqEVpiogDIaYwzWWjx/E34llQMQPp9rsmo30StFim+cz7WX3vkA6fbu1RzdqiGwHCsM0izzNVoHVIHTSQdjW+8lbsmXDbs+WOHPv33p1u9/78Awd7Usc5GHNZmTUHrg192Fm/G8c6x7oniUnoGTxGE7E237qBV7pu8Terzn2DYevbeXF94c5IlX+viPJ1v5X49NcLz3zha8AVLh84bYzmXbySHbTxfTnbXbmKDHlrhkt3BedKE34YKqmZFYfhj4L4hJr4vgm1h2A3etyiiE74FSGKUQUmKNyX5GEcKCTRXECWyA0h3SaoQ1GC8kfuAI4bFXiV66cGv7zTjz4LG7Zzj65iIvj2yp4AKuXy8AndyOMpcz16xfFL6HKBTQpTKytRVdLuO1LD2hKAi6iOOsbreshTQ13YWUd9bCEofD4XCsT+7opcxjY2N89KMf5fXXXwfgl3/5l/m5n/u5NR6Vw+FwOBwOh8PhWG+k6SjaVBDCQ8plTNDGY1lNRpXUa3VnzSOVFG0slVTTHPkgfZQsoGQBgcGzjYu0XAyiLnILK7GAWaziXq0ijIUkwfoBWoA1FmN05uredF9JLSJ6HDHJyWytxJY+QOcXvp3bU7cUGf/wY6s9wFXCck84zBYvf96O64BX4m5KHfsodR3IbStVUj7z+DlSlb1237dzjEd7lhtJbCFJAZHFl/sehHfApPwGqYl7pxIlY3QPvkTvjWcoVvpn3CfwJY/d18unP3UvH3nnbv7w7S6eu3EHnLsLpCQKvCh2c1Lsosz018XDchdDvNueZacduYPqebdi+WHspOVxAovgT4CJVRmBQOD5PkZrrDGotL5gqVAvHRGECKUy5/IGwFMxSoaAoPZ9j2Ja8wL07HHmFovJanYLAQup3b1CUeZeSwu2VoNUYZYZZS6lTxhuIYkHsVZRq11t0CgdDofD4Vgem21mYcFUKhU+9rGP8eKLLwLwL//lv+SXfumXFny8tXbef3v37gVg7969t9q++c1vrsTTcTgcDofD4XA4HCuEUmWMTdGqjOc1zxhXuSDSaubYSSvgeeBlonk10VQSxUQtRQpoCjwSrxmDQIkQ38Rr6OoWtwRvKxY5MZ2kiCSBOBu/CQOU1hijsYDnbUK3XfAqwp8y8Zu8g9ZvXMAfzseaj33fe7DF9e9sWwr7gnF2BPnJ/5rxOBX3UG7qYXT7A7ltShk+8/g5xsuZ8+14Z4WP7x5b5ihu1oa1EAbZNbcBnITLoWgijiWH+J7kBI/F93M8OczR9C72q53sUD106XaaTRHfek4QXweE6QRdQy+z9cZTFMs3ZhRkfU/yyNEefvaT93Kj7R6eHWxfg5GuU4RgULTylNjPm2IryQxiYoTmHnuDx+x5ttjZ6itvNu7C8oFci6CM4HPcdhuvLMLP/hZGa0yqsMaCFNioAEGAlQIRr01plsXimQQrPYzwsJ2dVD52Ir9DPc7czrSgwuq60L1QsXtylHnjFgTIpiaQEl0qocfGQS+v3zDsxqJJkmGq1ctYu8xSIw6Hw+FwNIA7MrsrSRJ+8Ad/kCeeeAKAT3/60/zbf/tv13hUDofD4XA4HA6HYz2i1BhYi9Jlomjr0juKx0Gnmas7aq0ryDBUTkiUoZYa2osBVnqksogWBQTgr5GrG5utjhY2WyO9KFe3tVCpglIIlWKjAkZrsBZjDJ6UbLq116KCiL6Va7KmHdF3D23f+MNce7x3O5UTR1ZzdKvGVq/M3WFeqNZWZEK338bwrndkk/mT+OITl7g6kLm4dxYTfuruIeRyV3golbnjghA8mQndG6BG7FLp1h0cUnvw6oJKgE9gfVpt04z7KzSxSIhFQo36T3H7Z4pizVbZ3GEEaZmu4VdJx88x0baPStO2adeIJwUnDndjTBdvDA1wUJ0lUHeKeDs3Vggus4XrtLPfDrKb4WmfLq3EPGQvMWBbOC16qYjNvfAF3oPlMoIzt1oEl4CvYfnwij+6QCB9H6MU0vfRaYIfRVCIsHGMCEOo1UDpLHFjHePpBCxoL0QHRcTB7ajje/FP3a6NPnucuSFbWeQhhMXaBQj8KxFlLgWyuRlTLmM7O9DjY3idnUvvTkb4fjtJMkAYdlGrXadY3LX8cTocDofDsQzuSLH7x37sx/jKV74CwAc/+EF+6qd+ildffXXW/cMw5NChQ6s1PIfD4XA4HA6Hw7GOyCLMa4BZer3utFJ3dZfB82+5uktJSqoNpVgR+JJCIIllMxZJKiMCGyPWyILp1dVtyRJqdVeqCGOyupyej/E9VJygTeb+kXJ9T24vBRF9CyFquTZb+xBbvvgkQt12PVkhGP34+1i+mrv+aJcx90ZDuTZr4ZW4izGaGNz9KMbPRw5/96U+Xn47i1Vt8TU/d2SAgrfMc94o0Cqrze15EEWZY24TIqzgLr2Dnbp3/p0n4ePh2yLNdmYhxWDqQnhaF8BjYpHeFsVJnBjeYAJVYcvw67SNZaJ3uXnHNNFbSkFrTy83bA9N1X5ax88TpqU1GvH6QgmP02IrV2wHd9t+epn+uvRQosuWuGw7OSd6UJu2nrfA8oNk9bvHJrU+iWUPcHjFRyA9D6MURmm0SPHCKFtvVCyCNVjpIZIE6xXX9XuJIHN3Ky8ikFXwQ6ofPkbL2X7ERPXWfvEXXsQ7vAPZmb9PtFYj8Op3cj6g5n5AGYCK6yVvYggaIHaTRZmnExOYag01PLIssRsginopl0+TqlGq1YsUCjuXnnzkcDgcDkcDuCPF7j/90z+99f+vf/3rPPDAA3PsncWQX7hwYYVH5XA4HA6Hw+FwONYjaTqKVmVA4HlLmHS0FmpjmditFURtIMBYGC6n1FJNogydTQEISeo1oUSUubpNbd7uVwSb1euW5qarexHio1KT4sstNoowSgEWo009vnyTTYh6lxHBa7kmmx4mel1QfO1crr382H2kOxcnTG4ECkJxrDCAN+VPezrpoF83Mbz7IVShLbftrYtjfP2FawB4wvKPDg/SU1hmHKrVkCqQXuaQC4NM9N6EhDbgaLqPNtvS8L4lkqItUKQwY+S5xRLXhfCprvC47hRf9CIZBwC+rtE58iat4+eZaNnLRPNO5JSyD0IIqk1bqTZtpVAdoG38PGEyPkuPdxYVEfGS2M0WW+aQ7aOVfDqKBPYywg47xll6uEIndlOKdEUsnwR+FzEpvlzw51h+Blie2DkfQkqknwneXuBjVIoXBBAF2Niru7uzBBiC9f0e7emEJGzJaqFHzWiVoD7+MMH/+M7tneKU+LNPU/jpD04RfQ0IH6xE4GPnFbtvRpkrsPWEkgYsEBSFCBEE2HIJUyxgkyT7GywRzyviea3EcT9B0Emc9FGIti17nA6Hw+FwLJX1fTfhcDgcDofD4XA4HGuIMTHaVNG6hOc1IcQS3KFpJZu0TCuZ+FZ3to5XU5Q2lGqKKJBEgUcsm7AIlIzwbLKmrm7BElzdFqhUQOksvjyMsEKgjcEYjRAgN53DViOir+ZarA2x5e+h4wtfyO/ZXGDsI+9czcGtCj6GE4UBoil13a+kLVxSrYz13kOtNT8J3jdc5U+/deFWmeK/c9cwh9qWG9lvIVGAgCDI4nGXMZm/nukwLRxO9xESTNt2Qw4x4I1QsCGRDXM/QwJEAxabCAQFsj5ne5tKSGcUwm/+rsXq1A/eqPg6pnPsNK3jF3jJ7Kdz+3bCYLroVSv2UCv2EFWHaBs/T5SMrv5g1yHDopmnuYudjHLADhCRX0gTYDhi+9jNCKfpZZCWTVjqYCeWjyL4q1stghrwWSz/gJWeFpaej1Fx5vCWMhO7AZoKoDXWDzJ3t++v6zVwns7ix7UXYoIikhH0we34J/YhTl64tZ9+6zrq2bMEjx6cdLTFYjN3tzBgJfPWTveCLMLcFrKFko2IMgdkSwtmbAxvi0GPjOBvXUZpHiCKeqhUzqHSCaqVi07sdjgcDseackeK3dauzoSRc4M7HA6Hw+FwOBwbmzTN4j+VrhAES3BBWZPV6lZx5uoutAOgjWW0mlBJDNpaOqIQC6ReM0pEgFh7V7fNZp4XJXbXqghlIIkzJ1IQYLTGWosxFiEl63pGeymEzyG84VyTjd9D67fPEAyO5trH/sa7sU2FVRzcyiOw3B8N0iLTXPuQLvBm0km5fQ+l7nwd03I15TNfPUeSZhP+37ttgvduXW79YQtpkv2Mwiy+vLAJ6/Ja2KW3sk9vnyZaGwxv+5fpm3I+TkZYCAlnFMIjGxIRIKdVPF4aIQGhDWi1M5d/UChq9Wj0ySL4zZ+ubniGbxMeEm/y+PNX6Cvs5dF7eihE06fz4mIXA8UuwtpIJnrHw+7lE4KrdHKDNu6yQ+xh+Fag9E2aSThhrzBEM6fppSQ213s0PFKv3327fKPgOvBlLN+/oo8spERIiTUaYwxGG6QnwQ+wgZ+VO6koSNMshWOdIq1GGI32AnRQwBMSZQz+3zxBcLYPOz45zvwFvEPb83HmVtfd3YJsKn6e2t0rFWXe3IweGcFUKuiR0WWL3b7fiuc1kST9+EErSTJEGHY1ZKwOh8PhcCyWO1LsdjgcDofD4XA4HI6FkKajGJ1gbbq0et1JJRO50wp4YebWAUYqCVpbynFKMfDwPUEimzBIlCzg2RQ5n/NnhZC27uq2YpHx5RpRiyFNEMZmoq4AbTTWGqy1eJutVrcYRYRP55qs3orsP0Dr1/5nrj3evZXKw/es5uhWAcuRcIRuP78wo2QCXq51Uyt2MbL9WG6b1oY//vp5RkvZZP897VU+uW9k+UNRCoyBIMxiYAvRpnNp+tbjkNpLl2mftq1KzBvBecqyOsORt7GCWzHjM+8AIf50IZzb//dozHXs49NifVpmqRuu63XDZxLCayIhIb2jxPAP7SrxjUtv8xt/PMA7jnbz2H29NBWmT+slhU4GC52E8Sit4+cp1IbupJdpRrTweFv03qrnvY2Jaft0UeYxe56rtoOzoodEbJYpU1EXta8jGJrU+kK9fvfcpR2Xi/Q8dJoijUGrBOnVFxMUmyBVmeidJtggWNfXs6cTtJclhdioiK6VscUA+UPvQP/+t27vWJspzlyTTcHLSfW750BKEF7Do8wJfESxiJ4oZS7vUhnZsoR720mEYQ/V6kW0qlCtXnRit8PhcDjWjM1y5+ZwOBwOh8PhcDgcDSdNR9G6BIDvNy3u4Juubh1nE5XFVgASZZioKcpxVrexJfKxQCKb0SLEItfU1S3NElzdN+PLtckiScMIpMRYgzEWYwxSCkSDHKPrA4soPI4Qt+tvWiuwtQ/T+aUnkOmkdgGjn3g/yHU8k78E9vgT7ApKubbYSk7WeqgFzQztfse0CfovPXmZSzcyF3dvIeVnDg1Oq/O9aLTK/vlB5uiOCplYsIloNkWOpndRZLpbfUiOcdq/iBLLrHcOICBBkQjFBJXp2y34eHkxnLw7PGjQVJOHpMkWaJqlbrjBkswghN+OTE+xm6xu+Af2xATeGH/wkuLp1wZ4+Eg377q/l5am6a7YJOpgqOcEQTJO2/h5CtWB9awlrgo1EfKK2MUlW+Gw7aOd/GetAHYxyjY7znm6uMQWzFLKl6w7IiyfAn4HMalmtOAvsGwDelfskYXvQZpitEakChvW1yF5EhuGCEu2WCmJIVq/aRyeTlBBESM8TNSEqJXRBvTd2/Ef2Y967tytfWeKM7dW16PMNVgPmOf92vNXLMpcDwxAqtCjI8sWu32/HSkjkqQfz28iTccJgraGjNXhcDgcjsXgxG6Hw+FwOBwOh8PhmAFjFFqXULqMlAXEYl1eSfl2rW4/BJkdP1JJUcZSSTUtkY+UglQUsMKb5OpugGi1BCS3Xd12MfXCazFCa4jjTGSs1+U02gBZhLnnbTJXt38a4V/It6XHid5KaHrl7Vxz+ZH7SHctLy50vdHjVTgUjubatIWXaj1UiBja/SjGzwsXT73az8nTWcR20TP84yMDNPvLFCONBpVmorrnZ2KJv7nOta16CwfV7mnx4hbLRe86l72+1XNEClBolKhSZmYXuWdlFok+gxB+Myq9EUgEBSIKNppRDLdYElReABcJNRJqIqYq4nXtJJ2N9+yMCaTld19t4alX+3nujQEePNzFux/YSlvz9Br1adjGUPcx/LRE2/h5ipW+jfi0G8qYaOJZ9rGNce62/RQmCcAAPoa77QC7GOU0vfTTugmSInqxfD+CP7/VIkjJ6nf/NDD93GkEAoH0PYxSeEGASVO8m5HlxSIkKTYIs4VyQbBuFyp5JgGb1e32/CZ8IdDaoKSg6QceRr91fZ44c525ta1A4GPnu89bqSjzpia0lOhSCRFFBNt3gLf011wIQRj2UKtdJdIx1epFguD+hozV4XA4HI7F4MRuh8PhcDgcDofD4ZgBpcawWLQu43ktizvYTHF1R5mru5poKomiVEuRApqCLM4y8VrQIsDgEZkZ3JSrgQWpJ7m65QJFSGMQtSokKcIYbLEIAqwFrbM6nUKAXKcT2EsjRkTfyLVY04wtv5OOz/9Jrl03FRj/G+9czcGtOK0y4f5oaJr281rcxaiJGN71EGkhH7V95vI4X332KpCF6v7M3YNsL+YFpsVjslqvor7AIvQh2DzTHNIKDqhdbDPd07YlpLwVXGBUlmY4cm3RwlARNSrMnFAhrCAimF4vvP7/kBDZADlWkD1OZAOYoW54SVQ4619hXC63Xvzq8+j2hNCb4L++1IrS8Ozrg7zw5hDH7t7CB0/00tw8ve60CloY7rofv20/reMXaKrcQCxmUdNmQwhu0E4/rexjiH12aFrAdJGUY/YqIxQ5zVbGRWMEx7XjGJZLCF681SIYBL6I5YdYqdUf0vMxSmOUQgt5W+yWAluIENZi0xSRpNjC+nR3CzLBW3kRgawivAClUyJART7Rpx6j9v+ddF8wLc7c1v/5IGy9fvcc19+tKPMUbNC4KHMpkE1NmHIZ29mBnhjH6+hYVpdB0Ekc3yBOBvC8AlpX8LxFpiE5HA6Hw7FMNs+3QIfD4XA4HA6Hw+FoIGk6hjUKY2KiaJGu3GQim5hMK+BHmavbwlA5IVGGWmpoLwYIKUhFhBF+5upG4bFcAXBp3HR1i7qre8ESSKmSCd5Jgg2DWw4hozXWkondUrIhLZSzIKInEFNERht/kJYn3iAYyNefHv/oOzHNG10guU0kFMejAbwp8dBvJ+306WbGe45Qa9ue2zYwWuNPvnEeWz/kk3tHua9zuVH9FuI0+29Yjy8PV8aZuBYUbMjR9C5a7HTBYFyUeCO4QCLSNRjZ8rHC1t3Vc9UNny6GT64d7jWgJEKLbeJYeog+Ocx5/yqpWJv33qVyojfl505M8J9OtZIagTaWF98a4tTpIT5yrJ133b8VHU4X+VXQzEjXvYy3Z6J3c/naHS16GyE5Rw9X6eCgHWAHY9P26aTKo/YC12w7b4seYtGYdIK1wPI3gWsIbtxqE7xar9/9yIo8ppAS4UmM1kjfZD9vpr0UCtg4RoQhxDVQ/rpN5/B0QhK2YBHYQjO2NIK2llQZmo/unDfO3FqNEH79s9AH5nkP9wLQtfrqwcZGmatSCVuroYeHly12CyEJw27iuA8TbaVSvURry5GGjNXhcDgcjoXixG6Hw+FwOBwOh8PhmAGlRlE6c/x53iJqGhoDSQlUfYIyyMSqiTgl1YZSrAh8SSHIxJrM1e2j8YnM2rk0b7q6BYuo1R3HCK2gFmf1qIPbYqM2Gms11lo8sT4nrpeE7IPgZK7Jqn3IoR20Pf4/cu3Jzl7K77h3NUe3ongYjkcDFGQ+fvVa2sz5tI1K204meg7ntlVjxWe+eo44NQC8u6fEh7ZPLH8waQqYTOCWEgrRJogZztii2zik9s5Y+/qq189579qmq0WdQ2TO9UzMn8F1bSHAn1UIL9gAfxHTXVvNFrqSdi7617gmBzfUupz7ulM+/eA4v3WyjVjXUzksfPnUGG9fGORn3tNE3LkPFU5PJ9F+kdEtRxlvu4vWiYs0l68irVntp7BuiEXAa2IHl2wnh20fnTPE9O9gjK12nAu2iwuia4PW8/axfBL4rwjiW62Cv8ayA9i5Io8qpYdOU6wx6DS9LXYLoFgAa7Gply2c89fnAjFPZwt0tBdigiKSEbSxKG2xFqKPzxdnfvP68siWFc4jdksfFKAbG2UuCwVEEGBKZXShkLnqg+Ut4AjDLuK4nyQZRMqI5qa7kHJ9uvQdDofDsTnZiHdlDofD4XA4HA6Hw7GiWGtI0zG0LiNEgJSLcIwm4/U6wjdd3R7GZrW6a6kmUYaW0EMIgRIhRgQoUUCi8ezaODWFZZKrG8xCxB5jEJUapCnCaGwY3RKJjM3qdGeuboHYkILATBhE4SuISUKjtT629iE6vvQEMsn//UY/8f51W3908Vjuj4Zo8/LPcVhHvJ5sISl0MrzjRG6bMZY//tp5hsczQeVga42/u394+Zq0Vtk1FgRZrGuxsDleZwt71XbuVQemCd0azZv+ec75Vze30L0QBKRCUZIVBr1Rrvr9nA2u8HpwjpPhmzwVvcKT4Uu8ELzBa/5ZzvqXueL1MSBHmBBl0hnSM3w8DqjdnEgP02o2Vvzu4S2Kn39onKKfF6rfHg34/3y7SvPlZ+gafIkgGZ/xeOMXGOs8zI3t72aidS9mMy1OWgITosjzYi8viZ1UZqgv72E5wCDvtmfZbke5FVmxodiC5RO5FoFG8FmYQeRvBKLu1jZaYZTCTn7dogjryWzxktGg1mfKgrQaYTTaC9F+Ael5aJ0l4WhjEcWQ6JOP5g+qx5lnz9diMQi8+uKseT63bkaZ2xRs/XOvEQiQzc2YchmMRY+MzH/MfF0KnzDsIkmGMCalWr3SgIE6HA6Hw7FwNsG3QYfD4XA4HA6Hw+FoLEqVsBi0qizS1a3rru5qVoqx7sIZr6YobSjVFFEgiYJs0jeRzWg8tAjwzXJjnZeO1OKW4G3FAp19lQrYeny5H+RiR43WgMVYi9w0QjcQvITw+nJNNnmM6O0Jml46nWsvP3IPyZ5tqzm6FeVQOEqPnxdBysbn5Vo3qV9kcPej0+qJ/tVTV7hwPUsr2BIq/tHhQYLlng5Gg0rB8zPXWxQ1po7pGhNYn/vSg+zR08+ZiqhxKjjNgDe6+gPboGhhqMgaw94417xBzvvXeDO4wKnwNE+Hr3DWv4xiunDUYps4nh7m7nQPgd04YYgHOhT/7OFxWoL8+/fFcZ9ffb6NdHSQ3r5n6Ro4SRiPztiH8SLGOu7mxvZ3M952F0ZsnOffcISgX7TxpNjPadFLOsP0aQHFffY6D9lLeBvSEX8EyztzLYIxBH/OnLWkl4hAIP2sdjfWYtIpgnaxCL6H9XxEkqzEEBqCpxP0zQWQQRPaWqy1pCY7B/x7duE/vD93zM04cwCsrgvdggUFrnoBGFWPMo/n33+ByJYWrDGYSgU9vHyxGyAMe7AY0nSYWu0KxqzPRQsOh8Ph2JxsolkHh8PhcDgcDofD4WgMSo2CNWhTwfcXIXbH41mMeVoFvwDCQxvLaDWhkhi0tbRGmVNMCx8tI5S86eqepX7tSmOzL4bS1mttL8R1G6eItB5fjsgEx5vdWdBaY+oTv3IzOG4BRAkRfSfXZPUWqJ6g48+/lWs3xYixv/Gu1RzdirLLn2BvkI8eT6zkVK2HWIQM7X4UExRy2597fYDn3xwEIJSGnzsyQFuwTEHImiy+XErwfQh9CDa+INdqmjiRHKbTtk7bNiBHOBW8RUWu3WKYTYeAa94gz4ev0yeHZ9xlm+nioeQo23TXuhXdprK3TfO/PzxOW5i/zq6WfH7luXZGapJibYie/ufp7n+BqDbzczdeyHj7Aa7veE9d9N4k7+FLwArJRdHFE+IAl+mY8VTYQoUH7BXEBnR4W763Xqv7NoLTwBMr8ng3o8uN1ug0yb+eQYD1fYjC+n3U2iTdzIevY6yUGOFjomxBozaQ6tvPJvrEw4i2fOR4/IUXMCNlsihzC0jEQhaUSD/bXStQjbtPFIGPKBQwpRImiTOX9zKRMiAIOomTAYxJiONrDRipw+FwOBwL4869Y3U4HA6Hw+FwOByOWUjTUbSuAHbhzm6tIC1DWsl+r7u6RyoJWlvKcUox8PC9TE1OZAsGiRYhvqmtWZlYr65uL7hWt7FQrYBSCK2wUZSrcWu0xlowxtRd3RuoAO4ciOibCJGfaLbxh2h58nWC/rxoNPaRxzAtGysKeTa6vCqHw7zry1h4udZN2QaM7DhBWuzIbT93bYIvP307wvSnDg6xp3mZwoXVkCRAvTa87+UWWWxILOxQPTyQHiIiXyrBYDnrXeFN/wJ6oWkLjkWRCsXp4CIvBacpi+nRzQE+d6s9HE8P0WLWZw3hqexs1fziI2N0RnnX+o2Kx68818ZARSKAQjxCz8CL9PQ9R1QdnLEvK33G2w/Qt+1dVJq2bhTNf0VIhc+bcjtPibsYZPo9QTdljtrrGzDS3MPyw1jyn1eCrwMXGv5oQkqkJzE6izG3akq6QlMRpMT6ASJdn+5uaVKwFuUFqKCIJwTKmKx0S32888WZW1uPMgfmdXevVJQ5mbvb1KqgNHpktCF9hmEP1qak6SiV6iXshkw9cDgcDsdGxIndDofD4ZpjpkkAAQAASURBVHA4HA6HwzGFNB1D6TJCeEhZmP8AmFSruwZ+EYQkUYaJmqIcZ1GOLVE2qWnwULKAkgUEZk1d3cKCNDdd3QuYWa5WEcZCPD2+HEAbjbUGa+3mcXV7FxDBm7kmm96DHOmi7atP59qTHd2UH7t/NUe3YjSLhAeiQeSU9QqvJ1sYMQUmug9Rbd+Z2zY0VuOzXzt/a9L/47tHebBrmTVgjYYkJUsRCMHzIFrgdblOkVZyRO3jgN6FnLIgJCbh5eAM1/yBzbJWZF0zLsucDN7knHd1xmjzVtvM8fQwB9Nd+Hb9R+Zvazb8H+8Yp6eYfy6D1UzwvlG+/b4cJWP0DJ6it+9ZCpX+GfvTfoHhrvsZ6H2YJGxb0bGvd8qiwEmxm5NiNwn5c2EnYxywMy8cWN+01QXv2wgsgs8BE7MdtGSE52ONxRqDnure9jxsGGbv8wBp42K7G4UAPJOivQgrPAgitLFYLKm6LezOHWd+M8pcItYwytxragIh0aUJ9Nho5qhfbp9eAd9vr7u7Y+L4xvIH6nA4HA7HAtgkMw8Oh8PhcDgcDofD0Ri0rmBsglZlPK8JIRagNukUkumu7uFygjKWSqppjnxkXTVMvGYMAiVCfBOvqas7m25doNCdpFktzbg+5miKG9XazN1kNEIKxKaIv00RhcdzLdYWsPH7af/L7yLj/GT96Mc/kDmxNjih0JwoDOBPOS/OJW1cVy1UWrcz3ns0t60WK/7wq+eoJZnI9nBXmY/tHF/eQIyGNAE5SeguFJimwG8giibiRHqIHtM5bduomOBk+BYTcvmRso6FYwVc9ft5IXyDATm9fq1AsN308HBylK16y7p0nE6mu2j4xUfG2daUF7xHYo9fea6dqxN5oTZMxukeepneG09TrNyY0aGcRB30b30Hw1vuuV2z+E5ECAZFC6fEbvSUT+/9DLLTNqb+8eqyH8v7cy2CMoI/IYvdbhzCyxJfjFK3HN45igUQAhuEiEQ1RIBtNJ5OMF6ARWCiYpYybiDV+bFGH39oljjzEhabubuFZN7peRlMijJv4AIATyKbmjClMlZr9PgyP6/rhGEPxtRI03Gq1UvT/8YOh8PhcKwAG/8buMPhcDgcDofD4XA0kDQdBWvRurLwCPN4PItZVnEmdAtBNdFUU02pluIJQVNQr1WJJJVFlCggAN+ukXPppqvbZpP184rd1kKlmsWXqzRzX01ZCGC0BizG2nqE+cZHhM8g5GiuzcbvJTw3QvPJt3Lt5YeOkuzbvoqjWxkkhuPRAEU5JQpZNXE2bScptDOy88HcNmMsn/vGBYbGsvN5T3PC3z8wPPUUWRxa1YVurx5d7mdCyAYWurt1ByfSwzTZ6bHYl7wbvBK8TSrUGozMAZCIlDeDC7wSnKEiptdJDwg4pPbyQHo3zes82ryzYPjFR8bY2ZI/n8YTyf/1fBsXx6e71MO0RNfQq2zte5qoNjRjv5XmHdzY/i7GW/dh7+BpxTFR5BWxc9q6h6P2Bj228Y7olee9WA7kWgQXEXyjoY8iEEjfr5c8sZhkirtbSmyhkNXwFqKe6rG+8Oruau2FmCBbFKm1QRmbWycimqLZ48yNqgvdgvmjzEW9dnea3Ws2OMrcpik2jtEjjVmo4fvNeF4zSdyP0mWSdOb3EofD4XA4Gsmde1fqcDgcDofD4XA4HDOQpmNoU8OiFyZ26zRzdKf1qGa/CBaGygmJMtRSQ3PkI266umUzFomSEb6tIdbIIiht3dVtxQLjy2sIYyBOwPMhyE/OWptFmJu6C2tTRJjLIQifzTVZvQNq99Lx59/MtZtCyNjffPcqDm6lsNwbDdPu5aP1R3XIa/EWtFdgaPejWJn/+3/l2aucvZoJPO2B5ucODxB5yzi3dQoqzSb4gyATugvRtAUWGwVhBfvVTo6qu/CmxB8rFK/5Z7noX3ex5euEUVnixeBNznvX0DNEm7fbFk6kh9mvduLZ9fte1xZZfvGRcfa25QXvUir51efbODs6s8gWpGW6B07SNfAS3s3EkklY6TPecZAb2x+jWuxZ70b3FWNAtPKG2JZrE8D99irtdvrrtr4RWH4IS9uU1u8Cpxv6SNLLrhmrNUol08+fQoSVAsIQoVJQ68vdLa1BGI32QrQX4UmJqj+JdIoTffY485uvqZxUv3uuB/VXJMpcFgqIIMCUSuiJCezUaPklEoa9aFNGqzLVyoWG9OlwOBwOx1ys3ztyh8PhcDgcDofD4VgD0nQErcqAwPOa5j8gKYM1kNYgaAIhmIhTUm0oxYrAlxSC+sQugtRrQoko8/KYtXN1S7MIV7fSiDiux5dbbBRN28UYjTVgjEEKwcZX7Swiehwhbk9cWyuwtQ/T/PSrhDfyTqXxjzyGaV3A+bLOORCMsc3PizRV4/FSrQctfIZ2vwMd5B2tL741yDOvDQDgC8s/OjzAlmgZzjOVglL1RRUBhMGtaNuNSGgD7k8PslP3TttWEhVOhm8x7DUmPtbROKywXPH7eCF8g8Ep6Q6QOVR36l4eTu6hR3eu22jz5sDyCw+Nc7AjL2JVleTXX2jjzeGZBW8BFGsDbLvxFO2jZxBmeuKA9psY6j7GYM+DJEHLSgx/3XNVdHKO7lybh+W4vULTWiW3LJkmLJ+c5tgX/Bkw2rBHEVIiPYnRCixYNeXzQojsPT/wsdLLyqesMzydoOpx/jZqwlqLtnZalDnMHmeuh8frUeYC5hO8VyrKXIBsbsaUy1mq0ehoQ7r1/VakLJAkA6RqLEtNcjgcDodjBXFit8PhcDgcDofD4XDUMSZGmyralPG84vw1p63NHN06ySYr/QhjYaSSUks1iTK0hN6tut+Zq1ugZIRnk3Xh6rbzjcEClXImeKsUG4QzxkhrbbDWYK3dHK5u/w2Efznflj6MHGum/StP5ZqTbV2UHntgFQe3MuzwS+wP86JragUnaz3EeIxsP07StCW3/eKNEl968sqt33/iwBAHWpcqTNgstlyrzMntBxAFMMPiio1Cu2nhRHKYdjtdCLwhh3gpOE1NrD8hx3GbWKS8EZznVf8sVaaLTCEBR9Q+7k8P0mQKazDC+WkKLP/0wXGObsmfa7EW/N8vtvHqYDDrsQJL68RFtl1/kqbS1RnreceFLfRvfZSRziNoOXtfm5WzopurtOfaQjQn7GVCu9HKEuzC8uFci6CG4LNA456L9HyssVij0ekM74FhhPUkhGHmaFbr63X0dQxSYoSPCYsIQBuLUnbaJTJ7nPkT9TswgVh0lHkD/xYtLVhtMOUKergxUeZCCMKwh1SNoXWNavVSQ/p1OBwOh2M2NsEMhMPhcDgcDofD4XA0hjTNhD6lyguMME/AKlC1zHUjJOPVFKUNpZoiCiRRvVa3hVuubhD4Zno92FVhqqtbziN216oIZSCJ67WTpwsZxlqMMRijEUIgxAIiOdc1NUSUr1NqTSs2fiftf/UEsjYl4vvj7wdvY3+97pQ1jobDuTZj4eW4m7INmeg6SKVjd277yETMH3/tPMZk59BHd4zzzp6lRvdaSNOsFmkQZEJ3IcqEjo2IhV1qK/enBwnJXzMGw2n/ImeCSwsrIeBYF4x447wQvsEF7xqa6e7NDtvKifQId6kd6zLaPPLhn5yY4P7u/PtXagT/8WQrL/bNfa15JmHLyBv09j1LGM8giAlBuWUXN7a/i4mWPdgNn+6xCITgDbGdQfL3DU2knLCX8WzjaiyvDo9iuSfXIriG4CuNewhPghAYpbP63WaqQgwUiuB7WM/P3N3r6O1SmhSsRXkhyi8ipUDrbPmgnvpcmC3O/Fo9ztwH4TFvIo4MViTKXAQ+olDAlEuYuIapVhvSbxB0IERAkgwQJwMoVW5Ivw6Hw+FwzMT6u/t2OBwOh8PhcDgcjjUiTUcwOsHadGFid1rJHDZagR+hjWW0klBJNNpaWqPbIlcqmzBIlCzg2RQ5g1iyGkjyru45546VRtRiSBOEsdhCNONcrNEasJhN4uoW0XcQMj/Za2sfIrw4RPMLb+TayycOk+zfuZrDazhNIuVYYXCaYf/NpJNhXaTaso3x3rzwESeaz3z1HJVa5i67v6PKD+0ZXeIILCQJGANBmMWXF6JpdeE3Cr71uEft5y69o3613aZKzKngNH3e8CxHO9YzVlgu+328GL7BkBybtl0i2KW38lBylG7dsa7EOYDAg589PsGDvXmhTFvBf3m5hWeuz7+4JEwn6Ol/gS2Dr+Cp6aKYlQFjnYfo2/YY1UJXw8a+3rFC8LLYxTh5d38bNR6wVxEzOOLXLwLLD2DZMqX1OeCVBj2CQHp+JnRbi5nR3R1gPb/u7jbZgqh1giBbAKK9ECs8RFDAWIu1dlrd7pvMFGde+/wz2NFKvcd5UhFk/TNRK1CNTQSRLS2ZyK00ergxn09CSMKwu35vnVKtXmxIvw6Hw+FwzMTGn4VwOBwOh8PhcDgcjgaRxS2WAOYXu63NxG5VjzD3QkYqCdpYyrGiGHj4XiZ0WbIIcy1CLHLtXN2A1Aus1W2BSgW0QSQJNgxhBiHb2qxet6lP7m54sVteQ4Qv5ZpsehDSu+j482/m2k0UMPZ971nFwTWeAM2JwgCByE/OX0hbuapaSaNWhnc+lKuXba3lT791gf6R7DzeXkz46buni+ULw0CcZCdSEIDvZUK3vzGF7mZT5HhymC7TPm3bkBzjVPgWZdkY15xj7aiJhNeDc7zmn6U2Q7R5RMhRdRf3pQcomvUVw+9L+JkHSjy2PT9uYwX/7ZUWvnt1/vEKoKnax7YbT9E2dhZhpjuXVdDMUM8JBrqPk/pNjRr+ukYLyUmxm8oU0bKbMvfY6zNGwK9fIiyfwk6J1xZ8ERhoyCPIeiKK1Rql0pnXhjQVwZNYP0Ck6bpaQOLpBOMFGAQ2LGaubgupnnmQs8WZ1z77BNYKhPCZ090tBYiViTL3mpoAgS6Xsrrdswj2iyUMuxBCkqQDxHEfuoGOdIfD4XA4JrPBZyEcDofD4XA4HA6HozFYq9FqAqUrSBkh5Txim6qBNVmUpBeQaMtETVGOs8nHluj28UoWscKb5Opem0hTUa/VLWxWLdzOJU7WYoTWEGd1KWeKL4ebQjcYY5BCMG8M57pGIwpfzbVYG2DjD9L8zKuE1/IT/OMfehTTtoAEgHWKwHKsMEiTzE+Y96siZ5IOtBcyuPvRzFk3ia89f43Tl7LI/2Zf80+ODFD0l6BAWANxCtjMued7UCxsWKF7q97CsfQQRfJiocVywbvG6/45lNhoccaOuRiuR5tf8m5gZkjr6LRtPJgeYa/ajlxH0eaehJ+8r8T37MwvvLII/n+vtfD1SwurPS6soW38PFtvPElT+fqM+8TFbvq2PcZoxyGM2JjX9mJIhM9JsYeEfDmPHYxxwDZGJF49tmL5WK5FkNbrdy/fWSykRHoeRimwYGeqy+172WK7KKwvMmyso3k5eDobi/FCVFDEEwKlDcZYZkgyB2aJM3/zCvq58/Xf5nN3B5mzu8FR5ngS2dyEKZWxWqPHxxvSrRAeQdBFkgxhTEK15mp3OxwOh2NlWD932g6Hw+FwOBwOh8OxhqTpGBaL1mU8r2X+A1T1doS5FzFcTlDGUkk1zZGPlHlXtxIBBm9NXd2eBmEzOdqKOVw7xiBqVUhShDHYqDCrhq21wVqD3QwR5sGLCC8vRtj4XcgJn/a/firXnvZuofTuY6s5ugZjuSccotPLT5aP64BX4i4skqHd70CHeTH/pTPDPPFyPwCesPzDQ4P0FJYg4FqdRZdDJmJ4EorFrC78BkNawd3pbg6pvXhTpllSUl4NznLZ79vY60Acs2KE5aJ/nReDNxkR0wUiiWSP3sZDyVG6dPu6caZKAT9+T5nv3TM9aeAP32zmy+cXJngD+Dpmy/Br9PQ9RxBPj3dHSEqte7ix/V2UWnZt+nreFRFyUuxGT3me+xlil91oJQyOYzmeaxEMIPgSjTiZpe9hrcUajZ4tprxYACGwYYBI0nXjkJfWIIxGeyHaixCehzZZgZhUzX6PNXOc+dPYUroAd7efbV6JKPPmFmySYOM4c3c3iDDsBixJOkStdhVj1k8cvcPhcDg2Dxt8JsLhcDgcDofD4XA4GoNSY1ijMKa2gAhzA2kV0hiEoGok1VRTqqV4QtAU3BbslIgwwr/l6vZoXOzkoqiL3DfdhWYuraFUyQTvJMGGQSZEzoCxmaPbWI0QAiE28FdMMY6Insw1Wd0D6YO0ffkpZDUvCo9+4n3gbTxh9iZ3BePsCCq5tprxOBX3oJGMbD9G0pSvt3u5v8wXn7jtyvrb+0Y40r4EZ5nRkKSAyIRu6dWF7o13/hRsyLH0ENtM97Rt46LMi+FbjMqJNRiZY7WpyphXg7O87p8jnsH1WiDkHrWfe9V+Cnb+2tirgRDwo4crfN9dlWnb/uRMM194u7goXTFKxujtf47OodeQM7hOjRcy2nmEvq2PUos6lzP0dc+4KPKy2DnN73/E9tFjN9Z7guX7sGzNtQleBl5cdt9CegghMEpn9btnis+WEluIIAixQmSlL9YJvo5RMrueb0WZG0j17GL3bHHm6sULN3ud/QFXMMpcFosI38eUyujxcWzamL6lDAiCLSTxINak1GpXG9Kvw+FwOByT2XjfJB0Oh8PhcDgcDodjBUjTUZTOJvz9+eqLqnhShHnIUFmRKEMtNTRHPmJS8eLEa0ELH4OPb9fQ1W3ELcF7zlrdcYzQCmpxNqkazC7KGK0AizE3Xd0b160noq8jRN5tZGsfJrg8QPPzr+XaKw/cTXxg92oOr6Fs88ocDPPuS2UFp+IeYutT2rKfSufe3PaxUsIfPX4OXa9F+v6tE7x/W2nxD250FkMr60K3t3GF7i26jePJYVrs9PeLq14/LwdnSIRzsN1RCBjyxng+fIPLXh9mBufrFtPOQ8lR9qhtyDlrSawOQsAP3l3lEwenC95fPNfEl84XZzhqjv6A5sp1tl1/ktbx85kgNwUVtjDY+xCDXQ+gvMX1v5EYFK28Kbbl2gRwv71Ku53+eq9fAiyfxJK/HxD8FXBt2b0L38+Ebmtnd3cXClgpIAwQKs0U5XWApxOQEiN8TNiEEFnijTJ2zoUi/j278B7Yk2tLT50DPMRcYjesXJS5ANncjCmXwNqGurujqAeLIklGqFYvY+36+Ps5HA6HY/Ow8b5NOhwOh8PhcDgcDkeDsdaSqjGMLiNEgJTR3AeklcxNYzQV45FqQylWBL6kENz+mqVEiBEBShSQaDy7dq5uaSe7umeZgTUGUa1BmiKMxobRrPq1tTfrdWcTlhs6wtx7GxG8nWuyyQOgttH5599k8stlwoCxj71nlQfYONplzD3RUK7NWngl7mLChFRbehnbel9ue5JqPvP4OcrV7Pw93FbjR/eNLP7BjaoL3V62iOJmjW659oLforCwV23nXnWAYIooodG86Z/nnH8VO9eiEsemxgjDBf8aLwZvMCqmu3glkr16Ow8mR+nUbWswwul8bH+VTx0uT2v//NtNfOXCwiPNbyKtpn3sLNuuP0Wx0jfjPrWmXm5sfyej7QcxYuMmZczFVdHJWfLJDx6W4/YKTbaBQuWK04Xl47kWga7X754ehb8YZD0lxWiNVunMIrEQ2edFEGClRCTrw90tTRarrrwQ5dfrdtfHn87kUp9E8I4Dud/NxQHscCV7rnPV7l7JKPOWFqw2mEoFPdK4yH0pI3y/nSTpx5iYWu16w/p2OBwOhwOc2O1wOBwOh8PhcDgcaF3CWo1S5YVFmKtq5u4WgolEkmpDogwtYRbHeZNENqOFhxbB2tbqrmeWS+ZxdVcmxZf7QSZGzkImdIOxBikEG9fVnSAKX8u1WFPExu+l+bnXCa/057aNf+870B2tqznAhlEUiuOFAbwpf6q3kg4GdRNp2MLwzofrE+23+fNvX+TGUCZm9EQp//DQIP5iZxN0CmlaF7oD8H0oFKY91nonsD73pQfZo7dN21YRNU4FpxnwRld/YI51SVXGvBK8zZv+BWKmO1aLRNynDnA0vYtoHUSbf3hvjb97dHpiw2dPN/PNy/MsApsFX9foGnqF7v4XCJIZ4ruFpNS2jxvb30W5ecd6KWneUM6Jbq7SnmsL0TxoLxPajZT+cA+WfPy2YBTB51lO/W4hBNLzsEqBBaNneU3CCCslhGFd6J2eGrDaCMAzCdoPsUJCWMgc6tbOGWUO4N29DZry13360gXmdXffjDI39Shz3biFlCIMEFGEKZUxtRqmuryFDJOJol6MTUjVGNXqRew6qb3ucDgcjs2BE7sdDofD4XA4HA7HHU+ajoI1aFPB9+cRu1WtHh2ZoGVIJdXUEo0nIZykAGoRoGU0ydW9Ri4kC8JyKy53VrE7ThFpPb4cAdHcwobWBmsN9laE+cZERE8hptRUtvEHkGVL25fzNbzTnk5K7zm+iqNrHD6G44V+QpGffL+ctnBZtaK9gME9j2K9vJvsGy9c440LWeR5wTP84yMDtASLjB9VKSgFnp85usMgc+htMKG71TRxIjlMp52+2GFAjnAqeIuKXLtFLY51ioABb4QXwte54vVjZxAFu00HDyVH2a22ItY42vz9u2P+zpHpgvf/fKOFJ68uTfAGKMQj9PY9Q8fwG0g9/fPQeBEjW+6hf+s7iMP2GXrYwAjBG2I7A+TvL4qknLCX8WaIel+vWD6MZVeuTfAW8OTMBywQ6XtYa7FGY2arFS3Iyl74PtbzEUm8HI29YXgqwcgAg8AGxcx0bSxKzR1lLnwPf0qUuTp5FoFX/3ycS/AOsrSURkeZk7m7TbUCWqNHlpDiMgue14TntRDHA2hTJUkGGta3w+FwOBwbd0bC4XA4HA6Hw+FwOBpEmo6idRWweN489bqTSuZSNZqq8bBYakpT8Ke7ug0SLUJ8U1sz37O0AlH/OXt8uYVqBZRCaIWNZo8vv7m7MQZjDUIIhNigXy3lAATP55qs2g3qKG1feRqvkhcuR3/gfXO63dcrAssDhQFaZF5AGFQF3ko6sUiGdz2CDlty2189N8K3T/Xd6uNn7h5kR9NiHGQ2c3NrlTm5/QCiYN6FFOsOCzt0Nw+kh4im1Kw1WM56V3jTv4AWrgapY3a0MJz3r/Ji8CZjYrqY7CHZp3fwYHqEDrO26REf2BPzI4emR5r//mvNPHdj6Q50AbSUr7Lt+pO0TFzMklKmkIZtDGx9hKGu+1DeBnuvmAMrBC+LXYyRj4RvI+aYvYrYMC5XD8uPYMnfKwm+Blxccq9CeggpMEpl9btniwAPA6znZ+5uY7KFVGuMZ7LFG8YLUUETnhRoky1r0Wbuv6t/bG/ud3N1GDMwTubuXpsoc6+5GRDochk9Mpq9zg0iinoxpoJWJSrVpZ8vDofD4XBMZYPOSDgcDofD4XA4HA5H40jVGEqXAImUxdl3NAZ0DXQCUlJKBYmyaANRcFsE1XgoWUDJAgKzpq5uaRbg6q5WEcZCPH98OYDRCrBYY+qu7o3l0M2wiMJXEZNeE2s9bO3DBFcGaH7mldzelfsOEB/aM7WTDYDlSDhMl5d3fk2YgJfjbiyC0W33Ezf35LZfHSjz+W/fnoj+4T2j3N+5GNdyXeg2Kost9wIohJlAsYGQVnJY7eOA2o2ccp7HJLwcnOGaP7AxLwHHmlCRNV4OzvCWf5FkhmjzJlvg/vQgR9J9hHYOsWuF+ei+Gj9woJJrswj+2ystnOpf3rikVXSMnmHrjacpVGd2d1abtnFj27sYa9uP2agLqqZghOSk2E1liojZRZl77DXmtAGvK9qx/FDOVC2wCD4HTF/IsVCk52N0lhij0zni3ZuK4EmsH2S1u9f4ZZPWII1CexHaC5GehzEWay1qHqHYO7gV0ZpfAJGeWoC7e3KUOY2NMseTyOYmTKmE1Qo9MUP5gSXi+61IWSCO+1FqnDRtnHPc4XA4HHc2m+Nu0eFwOBwOh8PhcDiWiNZVjInRuoLnNefc2dNQ1czWrGO0CKmmhjjV+FLkIsxTrxmDQK0jV7edTehO0myyOI4RWIjmFiOtvVmv22Bh40aYB68gvGv5tuQR0J10/Pk3mPxymcBn7Pvfu7rjaxB7/Ql2BXmHZmwlp2o9aCSlzn2Ut9yV2z5RTvmjx8+jdPYivLOnxEd2LGay20KagNFZbLnnQyHKRO8NRNFEnEgP0Ws6p20bFROcDN9iQk53vzoc8yKg3xvm+fANrsmBGaPNe0wnDydH2al61yza/Pv3V/kb+/I1e7UV/JeXWnl1cPnXc6AqdA++RPfAi/jpDCKp9Jho30/ftndRadq61ppmQ0iFz4tiDwn5RWU7GOeg3UixzgeA9+VaBCUEfwoszQksvOw1MVqj03R27d/3sEGQ3a/Y+sKqNcbTCapeBsSGTZmr20Kq5z5rhZT4D+Td3enJc/VzXc7j7l7BKPPmFmycYOMkc3c3kCjqRekJtK5SqTh3t8PhcDgawwadlXA4HA6Hw+FwOByOxpCmowBoVZ6/XndayVw0xlDWWX3JWqopTHJ1GySpLKJEAQH4trETkAtmIa5ua6FSzeLLVYoNo3nrKBtjMAasNUgh2JCWVlFBRN/ONVnTgU0epemF14ku9+W2TXzwEXTn2sYKL4Uer8Ld4WiuTVvBqVoPNetTa+5mdNv9ue2pMnzm8XNMVDLxYH9LzI/vH15Eee0sIQBj60K3Vxe656g9ug7p1h2cSA/TZKcnPVzybvBK8DapWPv4XMfGRgvN2eAKJ4O3GBfTF054eOzXO3kwPUy7aZmhh5VFCPihuyt8cE9e8FZW8J9OtfLWcGOu60JtmK03nqFj5C2EmS5car/AcNf9DPQ+TBK2NeQx15KqCDkpdqOnfH7exRC77fAajWrxWN6LZX+uTXAewTeX1J8QAul52Ho0udHzuLuFwIZ+3d29tkshPJ2AkGjho4IinhAobdDGMk+SOf7xvNht+8bQ14cQ+HO7u72bUeYpqAaL3cUiwvMwpRJ6Yhxmq6O+BHy/AyFCkqSfJB1CqcY5xx0Oh8Nx5+LEbofD4XA4HA6Hw3FHc7Net0XPXa/baFC1zD0jJaUUEmUwlpzYnXjNWCRKRvh2DV3dTHJ1z+gbBKo1hDGZOOn5CxIktdZYDMbYDevqFtG3ECIfyW1rH0JUNO1/9USuPe3uYOK9J1ZzeA2hVSbcHw1NE6lfjbsYNxFp2MzQrkdgSjzwF75ziWuDWXRxZ6j42cMDBAv9M9v6uYTN4sp9DwqFrF73BkFYwX61k6PqLrwpzkuF4jX/LBf96xtyjYdj/VKWVV4KTnPav0TKdFGpyRZ5IL2bw+leAru615MQ8KOHK3zPzvx7ZmoEv3WyjbOjjRmPwNJSusy260/SPHF5RvEyiTro3/oOhrfcg5YbqyTCVMZFkZfFrmke6MO2j147viZjWjyyHmeeXwwm+A5wZmk9+j4Wi9Eak8whdkuJjSIIIqwQ9c+etUOaFKxF+xHKLyJv1e22pGpup7vc14Noz99/qlNn60L3HO5uMTnK3DQ2ylyAbGnBlMtgDGpstHFdC0EU9ZCmYxiduNrdDofD4WgIG3NmwuFwOBwOh8PhcDgaRKpG0aoCCDxvDmd3Ws3qQuoYJUJiZaimmsCX+F7dPY0glU0oEWWubrOGrm49j6tbaUQc34ovt1E0b7fG3nR2m2yOdSPWUfUuIYLXck02PQJ6H+1feRqvnBd0Rn/gvRtKrAWIhOJENIA35e9+JmmnXzdhpM/Q7kexXl4s+vapG7x6LqufGUrDzx0eoD1cYBytNZDUxYYwBE9CsTBv/ff1RGgD7k8PslP3TttWEhVOhm8x7G0UEcqx4RDQ5w3xfPg61+XgjEuUes0WHk7uYYfqWdU6xVLA/3JPmUe35z/TYi34zRdbuTjeuOvcMymdo2+xte9potrQjPtUmndwY/u7GG/dh93AU5uDooU3xPZcmwDus9fosJWZD1p3NGP5EeyUFUCCPwPGFt2bkBIhBVarW/cbs1IsZCdnECCUgnnqY68kgszdrb0AK2QmwpMNKZ1nXEKKae5udfICxppJ7u5ZrjEZZIsxjWl8lHlLC1ZrTLWKHmlsbe0g2IIQHkkyQBL3o3V1/oMcDofD4ZiDjXtH6HA4HA6Hw+FwOBzLxJgErStoU8LzinOLt2kFTBbPXFISYyyxMhQm1+qWzVgESkZ4tl4Dew0QdVe3sNkIppV7tUClnAneKsUGYTZhPA9GK8BijUFKj41nb1WI6PFci7UhNn4/wbUBmp9+Jbeteu9+4sP7VnF8y8fDcCIaIJI61341beZC2oZFMLTrYVSUd+K9cWGUb7xw/dbvP3lwiL0tC6yDanRd6BYQBVl0ebEIcuMI3e2mhRPJYdrt9KjoG3KIl4LT1MTaOgfnQ8UJw2+e4/rTLzFx6Tp2jWN9HUtDCc3bwWVOBaeZENMFTx+PA3oXJ9IjtJl5Sm80ECngJ+8t8WBvXlCrKslvvNDG1YnGXu9BWqZ74CRdA6fw0+mvg5U+4x0HubH9nVSKvRu2nvc10cHbojvX5mE5bi/TvFZlUBbNHiwfzrUIqgg+C+iZD5kD6fkYbbDGoOeqxy0ENipAEGClQKyxu9vTCUYGGCExYRNCgNYGpe28Kev+iX253+1QCXO5ry50i9nd3TejzI1qeJS5CANEFGFKJUy1iqnW5j9ooX0LSRh2k6RDGJNSrV5qWN8Oh8PhuDNxYrfD4XA4HA6Hw+G4Y0nTzHWkVWVuV7dWmWNGJeB5lBKIlcFaKNYjzC2CxMtc3SDWztUNeBqEzeY/rZjBUVSrIZSBJM4EyWCWSdRJWAvGaIzJnveGjDAPn0d4+XqoNv4eMM10fP6biEmz0db3GP3+9672CJeFwHJ/NEirlxcHhnXEG8kWQDC29V7ilq257TeGKvzZt27HiH7/rjEe7lqgy8poSNNsQj4Ks4n3YgE2yvlhYZfayv3pQcIpYoLBcNq/yJng0szpCOsAozSj5y5z4a+f4I0/+AJXvvU8Ay+9xfm/+g5v/+njjF246kTvDUpJVjgVvMXb/uUZo81bbJFj6SEOpXtWLdrck/DTD5S4vzsvKpZSya+90MaNcmOvewEUa4NsvfEU7aNnEGb666D9IsPdDzDY8yBJsPp1zRvBebq5QkeuLcBwwl4isgtcdLTmPIblSK5FcBXBVxbdk6gnghitMWk6t1BciLBSZokiWoFavLjeKDyTXRdGBii/iC8EaX3sap7C3XLXFkRX/vxVp85jsXV3t2RGd7cQIFcoyhyQLc2YahW0XgF3dxcgSNIharVrGLO+F5Q5HA6HY32zQb59OhwOh8PhcDgcDkfjSdUoRicYm8wtdqtqpvbqmMQGpMZSU5rIl8i6IzqVxXqt7gKeTZDTKnGuEnWRW9rs656Zar5WGlGrQZogjMUWogUZtK01GJP9zJ7zBnN1i1FE+HSuyeqtkB6j6cU3iS5cz20b/8DD6C1tqznCZXMoHKHHzzuvysbnpVo3FkG5Yw+lrgO57aVqymceP3erpuiDWyr8rV0LjJ41CtIkE7Zv1ujeQEK3Zz3uUXdxl95Rz0K4TZWYU8Fp+qYsjlgPWGOYuNLH5W8+y+v//Qtc+upTjF+4ip0SlVsdHOHiXz/BmT/5KmPnrzjReyMi4Lo3yAvhG9yQM0d6bzVdPJQcZbvuXpVoc1/CPzw2wZEteRF2PJH82vNtDFQaf/0LLK0TF9l2/UmaSldnrOcdF7bQv/VRRjqPoOX8C7jWFULwptjGAHmxs4jihL2Mb9dOwF04AsvHsXROaX0WeG3mQ2btSSB9D1MXrs2c7m6yJBHfx0oPkSSrGvE/GWkN0ii0F6G9EOH7WGsx1pLquf+GQgj84/tyberURaxO60L3HO5usXJR5l5zC1jQ5TJ6dHTGa2+pSOkThltI4kGsVdRqVxvWt8PhcDjuPDbGN1CHw+FwOBwOh8PhWAFUOoY2ZYB56nVXQCdgLSXlYYwlUYaCf9PVDYlsRosQi8Q3jYt6XCyeEbcE72luVAtUKqANIkmwYbhgYVJpjcVgjN2Arm6LKDyOELcdT9YKbO3DiGpK+18+kdtbbWlj4n0PrfYgl8Vuf4I9QSnXlljJyVoPCo+4qYuR7cdy25U2/NHj5xkrZULC7qaEf3BwaCGJ9pl7LE1vJwP4PhQK9cjV9U+zKXIiOUyX6Zi2bUiOcSp8i7JcPzVErbVUBka49tQp3vifX+L8l77FyFsXMMn8rs/a0CgXv/IkZz73FUbPXXai9wYkFYozwSVeCk5TEtPPywCfg2o3x9PDtJqmFR9P6MHPHR/nYEf+/BuJPX7thTaGayvzGeGZhC0jb9Db9yxhbQaXqRCUW3ZxY/u7mGjZM62O9HrGCsHLYiejFHLtrcQ8YK/kkkfWLwUsn8JOcSALvgBMLKon6fmAxSiFUfO8z0UB1vOyRVdGg2qsu3kxeDpBeWFWQiYoIshc3ame/+/nn8jX7bajFczFPsi5u2e4tlYwyhxPIpuaMKUyVqXoidL8xyyCMOzGokmSYarVy9gNsbDD4XA4HOuRjTZD4XA4HA6Hw+FwOBwNwVqNUhNoVUHKCClniYHVKhO6dQLSo5RaqmnmoIyC7CtVKotY4a0LV7e0k13dUyZXazFCa4jjTOReQHw51CPMtcEYgxDMXdt8PeKfRvgX8m3pCTDbaPvqM3ilfD3Y0R94HwSrEwvcCLq9KofDvPBjLLxU66ZqA1TQxNCuR+oT5bf5i+9e5kp/ttijNdD83JEBIm8BgopKs3+eD0GYvVbFjSN0b9VbOJYeokiUa7dYLnjXeN0/hxLrY8I9Hi/R98JrnP7jL/P2n36VwZdPoyqzi/BCSoLm4ozbasNjXPrqU5z+7F8z+valaU5wx/pnXJY5GbzJWe8KaoZayK22iWPpIQ6mu/FtY2toT6Xgwz85McHetrywOFj1+PXn2xiPV+79IEwn6Bl4gS2DL+Op6deDlQFjnYfo2/YY1ULXhqnnbYTklNhNmTDX3kWFe+21hrpqV45tWL4v1yJIEDyzqF6ElAgpsfXyKUbP837VVATfw/rBmrq7PZ2AEBjpo4ImpBRok9XsVvMI3nJbB3Jre65NnbyItWpud/e0KPPGRt/L5mZsHGOTpOFR5lJG+H47STKAMQm12rWG9u9wOByOO4cNNkPhcDgcDofD4XA4HI1BqXEsBqVL80SYV+oR5gk1G6CnRJhbIJXNKBFg8AjW2tVN9kVvmtBtDKJWhSRFGIONCgtOItdaARZrTN3VvTFEzYwYEX0912JNCzZ+N/71QVqeeim3rXp0H7Wjd63mAJdFi0i4PxqcpjO/FncxagoY6TO4+1GMnxd2n3i5j5feziK6fWH52cMDdEXzCbw2E7m1ypzcfgBR3dG9ARBWcDDdzSG1F2/KdEhKyqvBWS77fWt+eqtqjcFXz/D2n32Nt/7wL+l7/jXi0bldkc07etj53oc5+hM/wJG/8zF2f+BRoo7WGfeNR8a59LWnOf3ZrzBy5qITvTcaAq75Azwfvk6/nB6zLxBsN908nNzDNt21oqJfU2D5+YfG2dWSF7xvVDKHdylZuYtJAE3VfrbdeIq2sbMIM/39SwXNDPWcYLD7OKm/8o73RpAKn5NiN/EUd/R2xrnb9q/RqBbLCSz3TWl7EVicCCs9D6MN1hi0mqees+9jAx/CILtnmyv6fAWRJgVr0V6E8gv4UmCMxVqLmue9Nosyz7u71csXsSa7BwMfhMeM0/lycpR5Y2tfy2IR4XmYUgk9PtZw53wU9WJsQqpGqVYvufQRh8PhcCwJJ3Y7HA6Hw+FwOByOO5I0HcUahTHx3GJ3ko8wV8aSKkMhyCaitQgxwq+7ulPkDG67VcGCsCBtJi5ME7tLlUzwThJsGIC3sK+D1oIxGmsM1mZuq42EiJ5AyHKuzcYfABvS+flvIszt18n6HqN/672rPcQlEwrN8cIA/pS/9dmkjRu6GQsM73wIVcjXHj99aYyvPX/bPfW/7B/mYOt8k+N18UCrTOT2AogCCKN5jlsfRDbkWHqI7aZ72rZxUebF8C1G5eJidhuJTlNGzlzk/F9+m9f/+xe59sRJKv0z12i+SaGrg+2PPcCRv/v9HPhbH6Dr6H78KERISeehvRz65EfZ/b2PEXXMXHs+Hh3n8tef4a0//mtGTl9wovcGIxWKt4KLvBycoTxLtPndag/H0kM0m5nd/o2guS54b2vOC2BXSz6/8WIblXRlV48Ia2gbP8/WG0/SVL4+4z5xsZu+bY8x2nEII9Z/akdVhJwUu1FTVt7sY5jddvoCh/WHwPLeKS1V4JXF9VIvFWO0xqRqfmN7sQmkxAY+Il0bd7cgc3drL8QKiQ0KWEBbFhZlPkXsthM19Nl+rNX1VB2RRZpPRa5glLkUyOZmTKkM1qJGxxravecV8f1W4rgfbWrESV9D+3c4HA7HncHGmqVwOBwOh8PhcDgcjgaRpmNoXQEsvj+L2K3TLBZSx1jPp5waaqlCCoi82xHmGg+Dj28bPMG4CKQViPrPaUJ3HCO0gloMUmTR0wvEWoMxYKxBSoHYSF8j5Q0ITuaarLoL1CGKp04Tnc/HZU687yF0V8cqDnDpSAzHowGKMr+44rpq4lyaxaCO995DrXVbbnv/SJU/+eaFW6LBh7eP8+7e/GKA6dSFbqOzc8f3oRBl9VE3AJ26jRPJYVrtdGfnVa+fl4MzJGL1XYBWG8YvXuPS157m9T/4Ape//gwTl2/MGVUctDbTe+Iohz71UQ79yEfoOXaEsGVmx6qQks6Dezj0yY+w50PvJOqcWfROxia4/I1neeuPvszwW+ex88UFO9YVY7LEyeBNznlX0TMstmqzzZxID3Mg3bVi0eZtkeUXHpqgp5h//IvjPv/3yVZqq1BC2dcxW4Zfo6fvWYJ4BjFOSEqte7ix/V2UWnat+3reE6LIy2LXtKIoh20fvXZ8Tca0OHqwHMi1ZFHmC1egBQLpe5i6k9jM59b2JDYMIYyyR0nW5p7M0wlG+hgh0UERTwiUNmhjMfM8fdnbjtzZmWtTpy4Amtvubp9pU/o3o8z1CkWZt7RgtcZUqujRxkaZA4RhL8bUUOkE1crFhvfvcDgcjs3P+l/O6HA4HA6Hw+FwOBwNxlqLUmNoXUYIHylncaem5XqEeUqNCGOhlhqiwEPUI8yVjDAiQGCRdm1iM7EgzSyubmMQ1RqkKcJobKG4qJhmrTUWgzEW31/ZGrCNxSAKX0VMei2s9bG170XUEjq+9N3c3qqzlYn3P7Tag1wilvuiIdq9vBt7VIe8HncBgnL7bia6785tr9QUf/jVcyT1mvP3dVT5kb2j8z4WcZL9DELwvEzo9jfAdIKFvXo7e/S2aZs0mjP+ZQa8xk/azzkka6n0DTF65iKj566ga/OLMV4hpGP/bjru3kvT1i7EImujCynpOLCb9v27GD9/lb4XXqM2PF0MTMZLXPnmc/S/+Dq9J47Sefc+xAITIBxrixVw1e9nwBthv9pJj8mLZQLBDtNDd9LBef9aFn/eYK23s2D4hYfH+ZXn2hiu3f6sODsa8B9PtvG/PThOuAofIVEyTm//c1SatjHWcTfGy3++Gy9ktPMIpeZddIyephCvX6f0kGjhdbZzn73tWBfA/fYaL+AzKtZ3NLvlUQRnb/0u6MdyAVh4qRDp+RilMUqhhUSGwdynbrEISQpBmCXZBAGsciKNr2MSWjEyRPlNRHKY1FgsFqUNoT/3ePzj+0iu3v5sUi9fwv7QO8DTCOFjrSCb0p+SyCID0NUsylzFWQJLgxBRiAhDTKmEaSpiazVEA0uY+H4LntdEkvTjB60kyRBh2NWw/h0Oh8Ox+dkA304dDofD4XA4HA6Ho7FoXcJYhdLluSPM0+qt2ofjqSTVGqUtrVE2UalFCEi0DPBsumY+scmubjvV1V2ZFF/uB7AIwdpa0MZgjEEI6hGaG4TgFMLLR2Ha5DGwHbQ9/h28ibybefRvvTeLd98AHAzG2OrnY4srxuNUrQeDIC52MrL9WG67NpY//tp5Riey83lbMeWn7x5EznnSGohTwGZ1UD0PosKizqG1IrA+h9N9dNrpdasrosYb/nkqsrZq46mNjGcC99uXSCbmc9Jn8b3t+3bScXAPrbu2NUR0FkLQvn8XbXftZPzCNfpefI3a4Oi0/ZLxMle+9Tx9L9RF78P7kN76/5s7IBEpbwYXuGGGOKB20WTzYlRIwGG1l22ii7f9yw2/BrqLhl94aJxfea6dseT2OfvWSMB/PtXKz56YIFiFjxEBNFduUKwOMNG6j4m2PfVax7dRYQuDvQ9SqPTTMXYGX02Pgl8PXBcdRCjutgO32iSW4/Yyz7GPsljPpSQOYtmC4PaCAsEz2EWI3UJKhCcxWiN9g9UaMdf7kRTYQoSwFpumiCTFFlb3NRJYpFEoL8T3AoQXYHWCMZAuSOzeS/KlSak0lQR9+jr+0Z2AB3gIYbG2/vl8k1tR5mnD63YDyNYW9MgIaIMaGSHYvr2h/YdhD9XqRbSqUK1edGK3w+FwOBaFE7sdDofD4XA4HA7HHUeajoE1aF0himaZrFNJvfZhDS08Kqmllmg8ya2JSiULGCQGn8CWVvEZTGIuV3ecItJ6fDkCosVN+GqtwFqsMUiZ1YrcEIgSIso7t63eAskj+H1DtDzxUm5b7dBeavfsX80RLpkdfom7wnyEbWoFp2q9pHgov8jQ7neAzIsBf/nkZS7eyM7RJk/zjw8P0OTPkadqDST1yfIwzGq8FwvT+l2PtJomjqZ3ETE9Zn1AjnDGv4QWKx/VnZYrjL59iZEzl6gNjc5/gBC07tpKx8G9tN21Ay9YmcUXQgja79pJ274dTFy8Tt+Lr1EdmO5wT0sVrn7nBfpPvkHv8SN0HrnLid4bhFE5wYvBm+zSvezW2/CmRB632xYeTI9wzRvgone9odfD1ubbDu9SevtxXx0K+Z2XW/iZB0rMo/U1DGk17eNnaS5fZazjbqpNW6ftU2vq5Uaxm5aJS7SNn0fa6VHwa80FuiiQspvRW20BhgftJZ5lH7FYrwu1BJZ3IPjypLa3gBGgc5ZjpiOlh05TrDHoNJ3/fahQwMYJIgqhVgPlr/oiLU8npH4RC5iwiEgTtDEoLbA2Sx2fDbmlBbm3G3Nx8FabOnUR/+jOeu1uH2s1EJBzd9+KMlfgm0zw9hpXbsRrakYPj6DLZcTIKMG2bXM/kUXi++1IGZEk/Xh+E2k6ThDMXH7D4XA4HI6pOLHb4XA4HA6Hw+Fw3HGkahStq8xZrzutZIKfTqlSwGKpKU3B9xDiZoR5AS3CNY0wl0xydWNve3yMhWoFlEJotej4cgBjNNaYbGJ2lWNAl4OIvoEQeVeTjT8MVtLx+W8hzG1hx3qS0Y+/r6ETtivFFlnjaJiP3DUWXq71ULYBRngM7X4Hxs+7OZ95rZ8X3xoCMkfg/3pokK3FOYroWp3FwCIgqkfAFourHgW7aCzsMN3cpXYhp5zsBst57yrXvIEVXbOh44Sx81cYOXOJ8rX+BR3T1NtFx9176DiwG7/YuFjY+RBC0LZvB617tzNx+QZ9L7xGtX96pHNaqnD1uy/Sf/INeo4fYcuR/cgN4O6/07HCctnvo78ebd5tOnLbBYKdupce3ck5/yoDcqRh18aOFs3PPzTOrz7fRkXdft842R/xe6/CT91fmidVorH4ukbX0CvEpcuMdhwmDackPghJqW0flebttI+dpal8bX0t7RKCN9lGZBW93F5YV0Bxwl7mefaixHq9Jo9j+TqiLspmr+uzWD664B6E70GaYrRCKIm1du5yDoJscZY1WOnVk22Ky3kSi8bTMWnQhJE+yi/ii3GUgRBQxhJ4c59h/vF9JJPF7lcuY39Ek61ryGp2Z6L3VHf35Cjzxord+B6yWMSUSti2VnSphNc6PT1lqQghCMMearWrRDqmWr1IENzfsP4dDofDsblxYrfD4XA4HA6Hw+G440jTUZQuAxIpZ5gAtTYTu3UMQlBKJYnSaANRkE0oaxFi6xHmcq0izC1IPYuru1pFmKze8mLjywGMMRgDxhqkFAjWudB5E+88Ingr12TTe0HvpvjyaQpnr+S2Tbz3QVR3xyoOcGk0i5QHCgPTBKI3ky0MmwIWGNn5IGmxI7f97NVx/vqZq7d+/9F9I9zTMUedaKMhvSl0T6rRvc6Fbmkld6s99JrpbsGYhDeDC4zL+ePDl4JRmolL1xk5c5GJS9exZn6XbNTRSsfBPXQc3EvU3rIi41ooQgja9myndfc2Slf66HvhNSp9Q9P2S8tVrj1x8pbTe8vR/ciNULv9DicWCW8E5+nUbRxQuyiST/gICTii9rFNdHHWv9KwaPM9bZpPPzjBr73QRqxvv3E9eyMikJafuLe8qoI3QBSP0tv3DOXmHYy3H8RMEQKNFzGy5R5KLbvoGDlNlIyu7gDnQgheYScP2Ut0cDtyvZWYY/YKL7Ibuy5LjUTACeCZSW0ngQ/ADOkbMyEQSN/HKIXnW0yq8OYrOxKF2DhGhCHUqqAUrOL7lTRZMo72IpRfJPQkaaox1qK0JvDmHot/bA/JF56/rWPHKfrNa/j378ZaNbu7e1qUuaWRK7xkSwuqvx/SFD0y0lCxGyAIOonjG8TJAJ5XQOsKnre+a9M7HA6HY33gvpU4HA6Hw+FwOByOOwqtaxgTY+oTaDO6g1ScuVtVjBY+1dQSpxpfikkR5hEGgcEntCsjos2HqLu6hc2c5vbmU0lTRJJAHCOw2Gjxzh6tNWAwxuJvGBdniih8LddibQEbvw8RJ7T/xXdy21R7CxMffGQ1B7gkAjTHCwMEU+qxX0hauaoyoXS85wjVth257YOjNT739QvY+mHv7Z3gA9vmiNs3GtIkE7aDm0J3gVVXpBZJ0UTco+6iyU5fuDIqJngzuEAq5nCyLwFrDOXrA4ycucTY+SuYZP5kB7+pQMeBPXTcvYdid+fczsQ1QAhB6+5ttOzaSulqfyZ63xictp+q1Lj25Cn6T75Jz/HDdB09gAzc9NJ6Z8Qb50X5Brv0VnbrrcgpC5g6bCv/f/b+O0iSLL/vBD/vuYpIrSpLa9HVXaK7Wg9G9EhgFAjMAqSRgFEABI9Lcg4kYTy7g+3B+M8RRwNtl+QuyQFv13hLgiCOXCwwg9ECmBbTM9Pd092lu7t0lhYpIjNDufsT94dHZaZnZlVlVkVEZvW8j1lbW/w8XvjLyshwj/d93+/vULqXK95NLnrXMU2INt/Rp/jNQ1P867d6SMzs+/3VqwVCD/7a3krbQzUE0FW5Skf1BlM9Oyh3b4Z5InEa9nBr7dMUq9fpLZ3G13fZINRGjJAcZhPP2BE65wicA1TZb69xjA2rMqXE8izw2ozkKoixHAGWfv2VnodRCqM1Ok2QYXBvCbdYAK2xno+IE6znt60biyCLMtdeiBUC/AiRVtHGkmrLvXzmsrcDuWMYc3Y2IUQdvoB/YDOgyZb0PYQg7+4WouHuTsGPsv830d0ti0WE56HL5azFSZM3EQghCcMh4vgGJlpLtXaR7q69TXt9h8PhcLx/cd9GHA6Hw+FwOBwOx08VqSoBoFSFIBxc/EmqlondWlG1Bay11FNNR5h9hbKAErMR5p5NFn+dFuNpELZh4rktTFgLlczFJFSKjQrLXvy2FrQxaGMQIlt8fBgQ4WsIWcrVbPwC2A66/+JV/Kn8poTJz38Yey932AojsTxeGKVD5sXaG6rI6bQPgGrPBqbXPJI7XosVf/Tdc9STrP/snp46f237xJ3fClqBSrOe3EGQLV4XolUpnMxlSPexW23BZ+GGjIvedUa8a00TN6y11MdKTJweoXTmEqpau+cYGQb0bt9I366tdG1Y81C0AxCN3uFdG4epXL3FjbdOULl6a8HzVK3OtR8dyUTvxx9hcN/OlvUZdzQHIywX/evc9MbZqTYxYHpzxyWCzXotw41o81FZeuC/nz0Din9waJr/5a1ulJ19se9fKhBIyy/vqa7Ix4y0mr7J03RWLjPZt4d6cc2C59Q61lErrKF7eoTu6QtI27ze5vdLKnzeYjPP2gtEzPYXX8cUsfU5JRb2JV95BoA9wKmZiuB1LE+z1DeYkBLpSYxWSN/HKp3Fm9+NIMAGPsKEUK1mqSVtvOb7Oib2ezBCooIOZFzLIswtKG3x7xFlHjyxjXiu2H3yMjZWiMjP3N142Bnhe86GK+lnIncrosylQHZ2YsplvP5+9OQU3uBA814fCMNB4vgmSTKKlBGdHduRMrr3QIfD4XD8VOPEbofD4XA4HA6Hw/FTRZqW0LqORS3er9uaLMJcZRHm04kkUQpjodCIMDciwAoPI0OkVSsWYZ716paNOTXqtXrWkzpOwPPhPhyXWmuwFmtMQ5xb3YInAHIMwtdzJas2Qrof/9YE3a+8nTtW37WZ2oFd7ZzhfWB5LBqj38u7Cid1yPF4EBAkhT7GNzyZO26M5Y//4gLjU9m4oUjx3+8Zxb+TzqrTzJ0lG++Xh0DoFlawXW9gox5ecEyheM8fYdybasq54qkypTMXKZ2+SFy692sKKenesp6+3Vvo2bL+oY36FkLQtXGYro3DlK/e4uZbJyhfWdiHXNdjrr92lFtH3mPNwT0M7tt174hhx4pSFwkn/HMMml52qE0U5sVJR4Q8qrZTFlVuyRKj3gR1cf+buh4bTPnvH5/mS0e60XME7++MFIk8y1/ade+NI60iUDWGRo9QjwYo9e9BBfPaCkiP6d4dVDs30Dt5hmL1+opfEesi5G228LQdwWdWgN/KOHXrc1HcYSPfCmJ5DpETu0exnAWWfh0Wno9JEqwxmbt7KX24ix2QKqwfINIEGwRtu6XxdPY3Y2SI8otEUpAqg7UWZQy+d3ex3j+4hfhP3wDTcG0nGnXyMsGhbYAB4YOd6+5ukIsyj4FOmh1lrqemMNUaqjTRdLFbCJ8wHCRJxgjDYWq1y3R27mzqORwOh8Px/uPh/MblcDgcDofD4XA4HPeJSktoVQHE4n0AVZwJ3jpGCZ9YW2qpJvDljAsnFQUMAr2CEeaeEQtd3Uoj4nhOfPn9OWGMUVhrsBa8h8CJChYRfQ8xJ3bXWomNPwkW+r7yIkLPOeZJSr/wwqoWcwF2BJOs96u5Wt14HI7XYJBov8Do5mczN/YcvvXjy5y7Og1AJA1f3HuL7uAOjkSVZq5uzwc/gNCH+3zftIvQBuxNt9FrF/a6Losq7wTnH0iYg8y1XDp7idKZi4v2r16MzvVr6Nu9hd4dm/Hvo3XAaqZrwxq6NnyUyvVRbrx5gvLlGwueo+sx118/xq0j7zF0cA9D+3bhvc/+Hd5XCBjzJpmQ02zWa9mkhxdEm3fZDrp0B9v1BsqiyqgscUuWqMvlx3o/Ppzytw+U+V+PdmHnCG9fPddB6Fk+vb05vcLvl0I8ztrrr1Hp2sRkzw6sl9+wof0C44P7Cbs20Vc6RZg0ZzPN/TItChxhI4fspdxv7RF7k5iAG6Jnxea2ONuxrEEwmxKRubuXI3Znm++MUggpscYi7tVmw5PYMERYC1UFSdy2a5zAIo1CeSG+FyA9H6sStIVUWwr32BMkugp4u9ahT12bqanDIw2x22KtnuPuDphxd7c4ylxEISIMMZUypqOY9UZv8r9pGK4hSUZJ03Hq9YhicStSOhnD4XA4HHfGXSUcDofD4XA4HA7HTw3GpChdQZsKUhYQYhFXjaplvYu1pmICjLHEytAVzX59UrKAFkEjwvzevXqbjgVpQcx1dVugWskEb5Viw+i+ei0bYzAm+7+UAsFDIHb7JxH+pXwteQrMGgonzlA4nT9W/tAh1HBznUjNZp1XYWeYF1OUFbwdryGxHlZIRjc/iwnyzrafvDPKG+9kfZYFlt/YPcbGjsXeozaLdDU6c3J7AURB1oNzFdNrutibbiNkoUpwXY5x1r+EmdfbfKmYVDF54QqlMxeZvnx91k13FwqDffTt2kLfri2EXYtsnnmf0bluiB2fe4HK9VFuvnWS6UvXFzxHxwk33jjO6G3Re/9uJ3qvYowwjPjXuCmzaPN+u7hIelv43qY3UBY1RuUEo7JEbRnC9zPrElJT5v97vDtX/z9PdxJ68PEtKyt4Cyxd5UsUq9eZ6tlBpWvjgn7eSdTHzbXP0lG5Sm/pDJ5ZmTYmAOOii5NsYL+9mqvvt1dJ8JgQi6TXrBgCy7MIvj6nchrLGLA0J7pAIH0fo1KktZg0XdpnS7EISYINQkTScHe3aSOfp2NSvwML6KCITFKUNvhSYO2999z5h7blxG79zhVsLUEUQ0CD8DJ3NxabizIP5kSZx82NMqfh7i5NgDaoiQmCdeua+/oyIAj6iZNbjVjzqxSLW5p6DofD4XC8v3Bit8PhcDgcDofD4fipIVWTAGhVwQ96Fz7BGkhrsxHmqSRWCmuh2Igw18LPIszF7Qjz+xPWHgSvkVkuYVbYq9cRymSupdt9l+8DrTVgMcbeM2JzdVBDRC/mKtb0YJMPIJKUvq++kjumejqZ+sQzbZzf8umTdfZFeTextXAsHqJsQiwwvuEQabE/95zzV6f55o9mhf0vbJnkiYHF4oHnCN1BkLm6o+i+Iu/bhoVNei3b9HrEvDhWg+GMf4kb3vjyX1Ybpq/coHR6hMkLV7BK33NM0NVB364t9O/eSmFgkc+RnwI61w2x/bMfoXpzjBtvnmT64rUFz9FJyo2fnODW0VMM7d/N0IHd+IXVnRrw00xNxhwPzjJk+tiuNi6INp9Lly3SpYts0xuoiFrD8T2xJOH7ZzYkpLrMf34nn8zwR+92EkjLhzct3zXebDyT0l96j67yZUr9e4gLC8XYaucGasVheifP0FW+vAKzzLgmeolI2W1nHdMSy+P2Mj9hK2VRWLG5LeQglj9HMLupIXN3f2bJryA9iVFgtUapBBmF9w7olgJbKCAs2DSFJM1adbQBTyekQSdGBii/g0BOkRqbSdPaEN6xv0iGf2Az8R+/BrfTabRBHb9E8MxOcu5uocH6gMqeJ71MSTcpaI9sR2Tz0my8zk70xASmUsFMTMDatU1PywnDNaTpOGlaolq7SKGwCSEegg2YDofD4VgRVvE3WYfD4XA4HA6Hw+FoLiotYXSKsck9I8wTfFJjqStN6EtkwyWtbkeYi4DQrECEuQVh5/bqtqA1ol6HNEEYi+0o3NeaprWgjUEbjRA0+nWvbkT0CkLmBV1b/wQQ0v39H+GXpnPHJj//YewqdpkWRcrjhdEFpvz3kn5Gdebinh7aQ613U+74+FTM//EX52fMyM8NVfj0hsVidi0kSfbLDkLwvGzRfzX3lbawXW9k0yL9uevEnAzOU5FL7/lrraV6Yyzrw332Erp+b3HNK4T07dhM364tdKwbQqzyCPx20TE8yPbPfJjqrXFuvnWSqQtXFzzHJCk33zrJ6LGG6H1wjxO9VysCRr0So7JEn+1iSPczaHoXTVK4Tact0qmLbNXrZ4TvUVmiKu/s0n5hc0xqBP/1vbzz+A9OdhJ6lufWr5xbei6BqjB0623qhSEm+/aggvx9g5U+pf69CGvorCx877eLCwwSodjCxEwtwHDIXuJ1thGL+9v81nxC4Engh3Nqh4GPAUsT5YWUmeCtFdL3sUoj/CVszCsUsrjtMETEdazyYSnjHhBpFFiL9kKUXyCSEqs1xrAksVsUQ7xH1qNPXpmpqcMjDbEb8u7uAHtb7BYi6919O8pcpeA38d7H9xCFArpSRvZ0oysVvK6FrUUeBM8r4Pu9xMktgnCAOL5OobChqedwOBwOx/uHVfxt1uFwOBwOh8PhcDiaS5qW0A2B2vMWifdMq2AUmNkI80QZeqLZheLbEebAikSYS5v5WqVtCN0WqFRBmyyeM4zuO57TaA3WYo1pCN2rXNCTVxDh0VzJprtB78QfLdH90pu5Y/Wdm6gd3N3OGS4LH8Ohwi1Cke+vfTHt4pLKYn9r3euZGn40dzxONH/03XPU4syVvK0z5m/sGF/EZGUgTgGbObp9L3N0r3Khe5vesKjQPSYnOeWPoMS93dgA9YkpSmdGKJ25SDJ1740qwvfo2bqB/t1b6dq0FvlQJB2sDB1rBtj2cx+iNjrBjbdOMnX+yoLnmFRx8+13GD1+msF9u1hzcA9+cTW5Th0zCCiJMiVZ5oy9RK/tYkj3MWT6lix8V2cc3yWqor7gcvLJrXViLfjymVkB2SL4D8e7CGSZJ9euDsFbAMX6KIXrY5S7NzPVswM7r3fwRP9egrS8cn28heA91hJZxVpmN3gVUDxpL/EGW1GLtW1ZASzPAD+aScURJFgOA88v+TWk76PiBGs0Ok2QfvHegwRQLGT3OKmX3S8tZdwDIgBfx2gvwooKNigg0graGJReRpT5HLFbn7qGLdcRXQXAYjF3cHfPiTLXcXPFbsDr6kLdugWpwoxPNF3shszdXa2eIU2nqNZGiKL1brOZw+FwOBZlFX+jdTgcDofD4XA4HI7mYa1BqWm0qiBlhJTzFuyNyfp1344wTwT1NBPRoiATjzU+RvgYEeLZtP0R5hakyQRvaIjdtRihNcRxJnLfZ3w5gDYKaw3WgrfqXd0aUfhurmJtgI0/BtbS+2cvIfSsaGylpPSXXmh6zGazEFgeL9yiU6pc/ZYqcCrJ4sqTqIfxjU/mjltr+ePvX2C0lLko+wLFP9g7SujNe29ak0W3YrO+3J6EQiFzdq9WLGzV69ms184rW0a8a1zybtxzP0ZaqWUO7jMXqY1O3P3JAELQtXEt/bu30LNtI164WhyRDwfFoX62/ewHqY2VuPnWSSbPLYx3Nqni1uF3GTt+hsF9O1nz+CNO9F7NCJgUZSZlmbP28pKF7w5bZIsuskWvpyrqM47viqjN/N1+bkeNRMM3zs8K3sYK/j9Hu/gHT0xzYE37N5TdCYGle/oiHZXrTPXuzPp5zxyUjA0eZPjG6yvXw1sIjrOB0F6kn9mkiy5inrCXeYvNmFURAd0H7AXemalkUebPkjVnWQJSghAYpRFSY41FzI9DWYwwmnF3U6+BUm3Z7OXpBOUXMEKi/CKerKJNtldRGUvg3X3u/r5NxIEHjXtSjEUdu0TwgcbmPatAhGBl3t3d4ihz2dGBkBJdLiOikEBvaPo9he934nmdJPFNgqCHOL7m3N0Oh8PhWBQndjscDofD4XA4HI6fCpSawmJQurK4q1vVGjneCbEN0BZqShPNjTCXBSwCLXxCs/TY5GYx6+oWmdBtDKJegyRFGIMtFO97HdMYgzHZ/6UUiKUuOq8UwVsIbzRXsvEHwfZQOHmW4nsjuWPlDz6OWrew7+rqwPJoOM6Al4/TnjYBx+Kh7D3nRYxteW6Bo/C7r1/lzOXMTRgIwz/YO0pfOM/pbHVD6BYQhZlQUCzedwJAu9ii17FFr8vVLJb3/BFueXcWrnWcMHn+MqXTFylfvbmkc3UMD9C3eyu9OzYTdDjh9UEpDvax9VM/Q318khtvnWTy7KUFzzFKcevIe4yeOMPgY5noHXS03mnpeADmCd89tpMh08eQ7iO6S4/vDluY+XueL3z/4q4aiRF8b2T2d6+t4N8d6eY3D03x6KC64+uuBJ5J6J94B2EV5e6tM3XtFxgbOsCam2+1fyNcAyMkh9nMM/YCXcyK7v1U2WevcoyNq2LDl+U5RE7snsByGnhkSeMFAun7mDRFWotJE7xoCa0RBFAogjZYz8/c3Z7f8hAbT2e/Cy1D0qBIhyeppxpjLUobgnsIxCIK8B/biDpycaamDl+YFbtn3N0+VphZd3ero8ylQHR2YiplbH8fenISb2Cgea/fIIrWUa2eJU1LVKrnCMNhpHSShsPhcDjyuCuDw+FwOBwOh8Ph+KkgTUtYozGmThguInqmtUbco6asApSxpMrQ2TE3wjxqRJgLPNtm99Y8V7fFQrmaCd5Jgg19uEfvx7thtAYsxlj81ez2BRBTiOjVXMnqNZA+Cami76uv5I7p7g6mPvlsO2e4LDb5ZTYG+Vjt2EgO19egkVghGdv8LHpev9i3T43xo+OzYu7f3DXOtq5570ujIb0tdAeZ06tYWPVC92a1lq16fa5msZzyLy4qdButmb54jdLpi0xdvIrVZsFz5hP2dtO/ewt9u7YQ9XY3be6OWQoDvWz95AeoP7WPm2+dpHT2UrapaA5WaUaPnmLsxFkGH93Bmif2EnQ60XvVI2BKVJiSFc55V+5L+K4RM+qV+PVdE6S6zkuXZzeaKCP4N2/38I+fmmJX/+oSvAF6S2dIg27iwqy4l0T9lPr20F96b8XmpYTH22zhWXuBiNl/t3VME9sbnGLtKhC8t2BZi+DGTCVzdy9N7AaQUmIAqzVKpcgoWppmHQbY2M/c3bVqdn1scYKHwCJ1ivZCjA4Q0kOg0caSakORe99z+U9sy4nd+uwNzFQV2dO4L7iju7vFUebdXaTT05haDTVRaonY7ftdWe/u+jUCv4da7SKdnTuafh6Hw+FwPNw4sdvhcDgcDofD4XD8VJCqSbSuAnahs9sY0HXQMVYIyinUU4UUEHmZKGjwMCJAiwCJartzSzLr6rZYbBIjtII4ASkgWIKr6Q5YC8oYjNEIQaNf9+pFRH+BELOL+NaCrX8KkPS8+Dr+RL5vaulzH8IW7v/fp5V0iJQ9YSlX01ZwOF5D3fpYYGL94yQd+QXki9fLfP3VWbfsZzdO8txQNf/it4VuKSAIs3jRQiF7vIrZqIbZphfGlJ72L3LTG595bK2lcvUWE2dGmDx3GZPcO/LY7yjQt3Mzfbu3Uhzqd70/20Shv4ctn3ietU/t4+bbJ5k4fXGh6K01o8dPM/bOWQb2ZqJ32NVxh1d0rCrmCd/dtoMh08+Q7qNwF+G7SMRmvZbNrOVf7Yz5fn+F/3Ah4fh0tmknMYJ//VY3v/X0FNt79R1fZyUQWAbGjnFz7bPoOb2fK92bCZMpOqvXVmxudRHwFpt5xo7gM7vxZysTxASMsNIpJ6Lh7v6zOZVzWG4Cw0t7BSmRnodRKnN5qxTPX6JoXSyCUlg/QKQpNgha7+42CanfkUWXBx3INM0izC1oY/HucV32Ht0AkQ9x497HgjpykfDDe7ldsNg57m4P0C2PMhdRhAgCTLmMKRaxcYKImiuoAxQK6ymX3yNObiGET6GwAc9zKSwOh8PhmMWJ3Q6Hw+FwOBwOh+N9j7UWlZbQuoIQ/sIFMlUDY0HH1G2AQVBPDZHvzfSBTGUBC2gRELQ7wtyC1HN6daMRtTqkKUKrB4ovh4ar21qMMQ2hexULgP4ZRHAmX0sfB7MBb2yS7hffzB2Kt2+g9sTS3WLtRGDZF43hibzodzweZMpk4nx5cBfVvi2546Vywn/98/Nok417or/KL2yezL+4UQ2h28v6uPsNoXuVi7sb1Bp26I0L6qf9i9zwxrHWUh8rMXH6IpNnL5JW7v23KAOf3u2b6Nu9la4Na1b9Zo73M1FfN5s/9hzDTz7GzbffZeLUhUVEb8PYiTOMv3OO/r3bGX5iL2H3Iq0nHKsTAdOiyrSscn5G+O5rCN933nRUJOKzAxGfHYArdcW3b1X51q0qR6cT/tWbPfzfnpliU/fqErw9kzI4epSbw09nn7UNJgb2EqgKYTJ1l9GtpSwKHGETh+zFXFOSPfYmMT7XRe+KzS3jAJbvIZjdpJW5uz+/5FeQvoeKdZbak6qli92+hw1DhLVQqUKaQNh8gXYunkpIg06MDEiDIqGcIlUGS+bu9uQ9oswDH3//ZtSb52dq6vDIHLGbhrs7ACsa7m7d+ihzQHZ1YSYnwRhUaYJg7dqmvj6AlBFhOEQc3yQMBqhUz9DTvb/p53E4HA7Hw4sTux0Oh8PhcDgcDsf7Hq0rGKvQd+rXnVYz14uxlJUk1QalLd3R7BKxkoU5Eeb3dpA2E9FwdQub+clttYq4HV/uN4TMB0AbhbUGa8Fb1UJggoj+PFexpgMbfxiAvq++jFCzYoiVgtIvfHTVCrzbgin6vHzs+KW0i5s6c7PWutYyOfxY7niSav7oO2ep1jN318aOhL+9eyxv1tYpKDVH6PahEK3af4fbrNdD7NSbFtTP+Je4JkcZf+cco8dOE0/cW0ASUtK9ZR19u7bSs3U90nfLH6uJqLebzR99hrVPPsrNt99l/NT5bMPRHKwxjJ88y8S75+l/ZBvDhx51ovfDRk74vkrXHOG7eBfhe2PB59c39/Drm3u4Wld8Z7TKd9+N+PRjN1nfee8WBe0kTKfpn3iHicE5wpvwGBs8yPCN1/BMe+8X5jIuOjnBBg7Yq7n6PnuVGJ8JsZJ/Tz7wFDC37cgR4BPA0toYCOkhhMAojZAaO7NhbwkUC5Ak2DBAJGl2L9XC1BNpFcIatBeivAJFKUgAbSDVlsISdHr/ia05sdtcuIWZqCD7b/8ezRx3t53j7g5m2vS0JMq8qwtdKmEqFczEBAwPt+R+I4qGSdMJ6vF1hAxIC1sIgp6mn8fhcDgcDyfu257D4XA4HA6Hw+F435Omk2AtSleIonX5g0aDyiLMjRCUU0E9UXgSQv92hLnMRZhL2rvY7mmQNvNbmzRGpArqMVkf5geL5zbWYAwYY5BSIFi9YreIfoiQ07majT8KFCi8c57iO+dzx8ofOEi6fqh9E1wG3TJhR5B3Y1eMz6mkD4A06mZ849O5BWNrLX/y4gg3J+oAdPmaLz5yi4I3RyRUKWgFng9+AKH/wO+RdrBOD7JLbV5QP+td5qq8xdUfvMXYybP3fJ3O9Wvo27WF3h2b8FdpdL1jlrCni00vPM3wk49y8/C7TLx7Hmvyn6/WGMbfOcf4e+fp35OJ3lFP1wrN2HHfCCiLKmVZ5YJ3lS5bbAjf/XcVvjcUfP7Wph7+1qYebsRrmKpNUI0mmBKVVRNC0lm9Thr2UO6eTeHQfoGxwYOsufVW29uezOW66CVCscfenKlJ4HF7mZ+wlbJYuShoy9PAq4jGPZVAYXkL+OCSX0P4PiZNkcai0xR/qdc7KbGFCGHBpgqSJNsU1iIE4OkE7UUgKhi/iEwraG3QUmDtvfVhb896KIZQm90kpw6PEH5szqa4xdzdM1HmCnRCs6PM8T1EoYAuV5Dd3ehKBa+r+Z/RQvhE0Vrq9auE4RCVyin6+p5u+nkcDofD8XDixG6Hw+FwOBwOh8PxvidVE2hdY9F+3Wmt0bQ6pmoCLJa60hR8b6afr5qJMA8JTL29k2+I3MJKrDWYWhWhVCO+vPDA65VGacBijMX3Hswh3lLkLQjyEeVWbQH1KKSKvj97KXdMdxWZ+tTz7ZzhkpEY9kejOROZtXAiHsQg0V7I6ObnsF7+K/tf/OQa713MBHJPWP7eI6MMFW472S2kKlvM9n3wAoiClkezNoO1eoDdasuC+nnvCle8m1z94dt3FboLA7307d5K364trsfzQ0rY3cmmDz/F8KFHufX2O4wvInpjLBPvnmfivQv0797K8JOPEvV2r8yEHQ+GgLKoUZY1LnjX6LwtfJs+Ouydxde1kc9a1kC6hpiEUa/EqCytCuG7t3SaNOgiLgzM1JJCP5N9u+krnVrBmcEIAxRI2cLETC3AcMhe4g22URdLjP9uOj3AY8DxmYrgDSwfgCVuvJOeh0lTjNFoleKF0dJNxYVC1mM6DBBxjNUBeK3b8OfpBOUXMEKigiJ+vUJqLRGQGkN4j3ML38M/sBn1+uz1UB2+kBe7MZBzd0sQZl6UeZL9v5k/W1cX6tYtSBVmYqIlYjdAEAyQJKPE9at4XpE4vkEUNT823eFwOBwPH07sdjgcDofD4XA4HO97VDqJ1hVA4nnz4jHTSrYAaC0VJUmURRuIglnhV8kCZibCPB873Wo8IxC3Xd31GsJYiG/Hlz/YVzprQRuDMRohWMW9jC2i8F3EnN7W1nrY+icBQffLb+GP56OtJz/7IWxxdTp7d4WTdEmVq51Pe5g0ERbB2KZn0GF+U8bRM+P84OiNmce/un2cPT1x45HN+nMbncWWSx+iEMKVEjCWzvAdhO4L3lUueTe49qPDjB0/s+B40NVB364t9O/eSmFgpXvPOppF2NXBxg8/NeP0Hn/nHFbPE72tZeLUBSZOj9C3awvDTz5Koc9F2T60CKiIGhVZY8QuXfiOCNmoh9moh0lIGZUlRr0Sk6K8IsK3wDIwdoyba59D+7PzLndvIUim6axea/+kZiYneI+1RFaxltl0lAKKQ/Yib7ANJVZms5vlWURO7J7E8h7w6JLGCyGQnpe5s30fo9Ol9+4WIosztxabpllrmGLrnO6ezu4ftQxJ/QKhJ0lSjTaWVN1b7AbwD23Lid3m8jhmdBo5NLvxx1qFyLm742wD3EyUefPFbtnRAVKiy2VEFBFsMC3ZOCCEpFDYQLV6njSdpFI5QxiuQYjVev/qcDgcjnbhxG6Hw+FwOBwOh8PxvkbrOtrUG/26O/ILYroR6ahjNJKqEsSpwpciF2GuRYgSARLd3ghz24gvtxKUwiYxxDECi40e3LFrtMbazNWdCd2rJBN2PsExhJfvOUryLNgBvIkpur//k9yheOt6qof2tnGCS2dA1tka5KPYp3TIubQXC5TWHyTpzEevX75Z4as/uDjz+BPrpvjw2krjkYU0AWMgCMHzstjyYPV/3V+j+9mjtjQ60s8y4l3jonedaz8+yuix0/lBQrD5Y8/St2vLTPKC4/1H0NnBxg8+yfATj3LryLuMnTyH1Tr/JGspnR6hdOYifTs3M/zkYxT6nej9UDNP+O6wBXrTfoLaAFuLd77mhQRsMGvYYNasqPDtmZTB0SPcXPs0zBGPJ/r3EqRlwnT6LqNbjBAcZwOhvUg/tZlyFwlP2Eu8xRbMigiGm7BsQDB7jRe8hl2i2A0gfQ+lNdZoTKqWLnYDhBE2jhFhCPU6KA1+a4R/gUXqFO1FGF0Hz0ekGm0MSi8xynznWkRXhC3HMzV1+ALhJw/MeVbm7gYfZtzdLY4ylwLZ2YmpVLD9feipSbz+/ua9/hx8vwfP6yauXyXwu6nVRujo2N6SczkcDofj4cFte3I4HA6Hw+FwOBzva1JVAkCpTOzOoRoR5jqhZnystdRTTSGY/ao0G2Ee4Jn2u7oBpDWYehWURqgUG0b3XhFdAtporDVYa5Gr1dUtKojo5VzJmj5s8hwAfV99BZnOuqStEJR+8aPkMsJXCT6GfdFYrqat4Hg8iEVQHthBpX9b7vhUJeG/fu8cSmeu9sd6a/zlbaXG0czlj7GzQnfh4RC6h3Qfj6itC4Tui951RuQ1rr9+jNGj7+UHCcGWTzxP/+6tTuj+KSHoLLLhZw6x91c+y9DBRxCLiVDWUjpzkVP/7VuMfO9H1Mcn2z9RR/MRUJV1rkXXONFxkl87fol/c2GSU5W7X4dvC98H0908l+xnV7qZPtNFu9pmh+k0/ePv5ovSY2zoIFqubNqGEZLDYjNl8hsH+qmx317N7ofajsDy3LzKCHB96a8gPYQUGKWyTXzzWyDc/fRQKILvYz0fkcQtfa9kfbtDLKCCIp4UaJOdUpt7n1h4Ev/g1lxNvT2y4HnW6sbmzszdjRCzUebYLMq8yXhdXdg0xdTqqPGJew94AAqFDRibkiRjVGsjGBPfe5DD4XA43tes0tUMh8PhcDgcDofD4WgOWYR5HYvC9+f1EEyrmcPFWqZSSaIMxkJhjliYRZj7gMSzafsmbjNDjrQSkhSrFMQxeH5TxExjDcZYjDFIKRCr9OuhiF5CiHyf9Cy+3Cd6b4TiiXwv58rz+0k3rGnjDJfO3micgsy7U08nfVRsQL1zDZNr9+eOpcrw//vuOcq1TMxfW0j5v+wZxROANZnQjc36cvseFAoPHG3fDgZ1L4+obQuE7sveDUa8a9x48wS3Ds8Ti247undubuNMHauFoKPIhg88zqO/8jnWPLEXeYf3+eTZS5z6P77NyHd/SG2s1N5JOlpGd2j57/aP8d9ujfOXfnKdz75xlf/5Qon3yvcWvtebIQ6ku3l+RvjuRrRY0+2sXqNr+mKupv0i44MHsCucoKKEx9tiC/V5YZ9rmeYRe2OFBO99WPL3Z4LXlvUK0vMx2mCNRaXLvFcLA6znZ9dSY0C17l7P1zEI0DIg9Yv4UmKsxVqLWqJI7x/alntsrpfQ10vznqWZdXd7gMyizK1pRJk3XxwWhQgRBNhKGVMpY5PWbRD1vAJBMEAc38DomErlXMvO5XA4HI6Hg9W5muFwOBwOh8PhcDgcTSJNSxhdBUTe2T0nwlwhiY2glmoCX+J72WK0QaBFiBZhI8JcL36SFiBtJgXKVGHjehZfbi02ak6fRaOzhVBj7OrtdehdRAQncyWb7gW9DZSi789eyh3TnQUmf/YDbZzg0lnrVVjvV3O1MR1xSXWRhp2MbXpmgVv/yy+NcG0si5steoYv7r1Fp2+zxerbi8hhmPXFLBZaFr3aTAZ0D3vVNuQ8weeKd5Pz3lVuvHWCm2+dXDBu80efoX/31gV1x08XfrHA+ucOsvdXPsfwoUeRd9j4M3nuMqf/+Dtc+Par1EZb6zB0tIe+yPJbT00xWNCcqyr+3cgUv/DmdT7z+lX+8/UxpqnedXwwI3zv4rnkALtbLHz3lk4T1vPvvbgwwGTfrtaccBnURcDbYjPpvGXhLUywlfEVmJGH5el5tWNAZbEnL4rwsuuf0RqTpsvX7DuK4EmsHyCStGXubmk1whqMF6K8AkKKzNVtIdVLO6nctgbRm08qUofv7u6eEb1noszTlmxskF1dmEoVjEVPtPazN4rWYrHE8Q3i+BpKrWCbAIfD4XCsOKt0RcPhcDgcDofD4XA4HhxjUpQuo3QFKQuIOT00SSuNCPOUqvYxxhIrQ8G/Q4R5m13d0mT/kSSYNGnEl4dNiee2FrQ2GGOyZMtVGWGuENH3chVrI2z8MQC6X3mbYLSUOz756Q9iOwrtmuCSiYTi0Si/6JtawYl4EItkfONTWC8fb/viW9c4eaEEZCGvf3fPKOuKKnNkJQkgIAqy6PJiEeTqF7r7TTePqu3IeUsRV+UtznlXuPH2SW785MSCcZs++gz9e7a1aZaOhwG/GLHu2QOZ6P3kY8hw8XjoqQtXOP1/fpcL3/oB1VsrIeI5mslg0fBbT0/RF806YM/XFP+v9yr8zeNX+ZF3kvPeVcriXsK3z7qc8L2Fft2DsM1zXQssg2PH8FQ+maTcvZVqx7qmned+KYsCR8Qm5nuJ99ibrLMr0QrgKSyz1zGBBt5c8mghBNL3MCpLQjHLdWf7HjYMIAqzm6TlusOXgacTlJe1ozFBASEEWhu0sUvSn4UU+I9vydXU2xewCwbfdnd7CNEQu2UwG2WuWxBl3tmJNQZTraAnSk1//blIGRBFa0nSMZSuUamcbun5HA6Hw7G6WY0rGg6Hw+FwOBwOh8PRFJTKFmy1KuP7nfmDcyPMlSRWBmuhGMwutiqRRZhbZFv7dc+4uuMUq1JI4kzMDJrT79NojbVkYre87fpZZYRvILy8OGXjD4HtxCtN0/3nb+SOxZvXUn36sXbOcIlYHgvHCUReUng3HiC2PlNr9pAW+3PHTpyf4KW3Z/uV/pVtJfb11TOhO00zZ1YUZpH2xQKsys0KefpMN4+lOxYI3dfkKGf9y9w88g433ji+YNzGjzzNwCPb2zVNx0OGX4hY98x+9v7K51j71D68O4neI1c58yff4/w3X6F6c6zNs3Q0k+EOw289PUl3kP9MPTkW8q+OhVyQN3g7fI83whOc964wvSThe5D9aifPJfvZ00Th2zMJg2NHweZTYSb6HyUJuh/49R+UCdHJcbFhQX2fvcqAXbqrujl0AflWHoKfwDISdaTnAxajMnf3sikWQQhsGCCSpGWR7p5OsNLDCInyi/gCVONUagl9u2FhlLkdncZcWbihJ3N3e8y4uz2/pVHmBD6iWESXy5gkxpRb+z4KwyGECIjjayTpBHEy2tLzORwOh2P1svq/ETscDofD4XA4HA7HfZKmk1iTYmyC580Ru3XSiHGMSfFIjaCuNKEvkQ3ntEWgZYgWARLTvgjz265uZSBNsXEdYSy2EDVNk9ZGY63GWotcjRHmYgIR/jhXsnodpI8D0Pu1V5Cpmj0moPSLH22K673ZbPLLDPl5Z9911cF13UFc7Gd66JHcsdFSna+8PNvr9UPDZT6xbjp7v6ZJJmzf7tH9kAjdvaZrUaH7uhzjjH+JW0ff4/prxxaM2/jhpxh8dEe7pul4iPGjkLVP78tE72f240Xhos+bvniNM3/655z/xssu3vwhZn1n5vDu8POC95FbIf/bsS60gbpIuOzf5HBD+D7nXWFa3F14C/BZ2xC+n0/2syfdysADCt9hMkX/xLu5mpUeY0MH0bI5G9gehBuil1NiOFeTwOP2Ml22vvigFmF5NvdYMA28s+TxQsosFtwojMnSa5aFlFmrmCDECgFxazY5eg1HtZYRqV/E8yTWWswy+nbLzYOIgXyfc/X2wijzhe5uH4RseZS5rdVBKXSptZ+zQkgKhfUoNYVKp6mUT2HtMn/vDofD4XhfsPq/FTscDofD4XA4HA7HfZKqEkpni9s5sTutZs4WnVLRHsZYEmUo+nNd3RE0enZL20ZXNwJhQdYTrFKQxI348uZ8fTM269OdubrFKuzXbRGFP0eI2c0F1gps/VOAJDp9kY5jZ3IjKs/uJ920ts3zvDcdImVPWMrVYuPxTtyPkQHjG5/K9enWxvInL10gVdlC7a7uOr+6fRxhVObovu3u930oFBb0+F6N9JhO9qU78OYtP9yQ45z2LzJ6/BTXfnxkwbgNHzzE4GM72zVNx/sELwpZ++Rj7P2Vz7Hu2QN4hTuI3peuc+ZP/5ypkattnqGjWWzq1vzjp6YozhO837wR8R9PdDLXIFsXCVf8mxwOT/F6Q/ieuofw7eOz1gywT+3k+eQAj6RbGdC99yV8d1au0Tl9KVfTfpHxwf3YVZCsMsIAIwzkaj6GJ+1FCm28/4ENWDbnKoLXlvUK0vMx2mCNQaf3MfdiIds4FwQIlYJuvnAqsEidor0QIxtua8BYUEvs2y2EwD+0NVdTR0YWiTKf6+4GRAjSb22UeUcHSImeLqNLky35N5xLEPTheZ3U46toXaVev9zS8zkcDodjdbLaVjUcDofD4XA4HA6HoylYa1DpFFpVECJEznVQpbWZCPPpVFJPs4W4KMj369bCa0SYt6lftwWpQdZjMAZbr2Uid5PiyyGLMIfMQbQqXd3+ewj/Qr6WHgKzFpSm7ysv5Q7pjgJTP/eB9s1viQgs+6MxPJFfeD6RDKDwKK3djw7z0fovvX2Na6M1AAZCxd97ZBTfpKDSbDE8CCFoRJc/BEJ3t+lkX7oTj3w/8ZtyglP+CKMnTnP1h4cXjNvwM08wtH93m2bpeD/ihQHDhx7NRO/nDuIVogXPscYw8p0fMn3x2grM0NEMtvVqfvPQNKHMf87+6FqBP3ync1HTatwQvo+Ep3g9PM5Z7zJTonzX8/h4DJsB9qkdM8L3oO5FLkP47iudIoxL+bkUBpnsXQWbeoTglBjmOvlo9QjNk/YSgVV3GNh8LM/lp8Zl4MqSx4vGpkWjNSZVyzcuC4EtFCAIsFJmceYtwNMJ2guxgA468IRALaNvN4D/xLbcYztRwYwsFuN9e/Ngw93tBa2NMpcC2dGBqVSwRqOnp5p/jnkUChswpk6SjFOtnse0677d4XA4HKuGVbiy4XA4HA6Hw+FwOBwPjlLTWAxKV/P9ulUjwlzFxNZD2SzCPJoXYa5khCZEYJC0Z6FXIhDGIFOFTRLQChsWmhZfbi1orWeiPeWqi8COEdH3cxVrurJe3UDXq4cJbuUjMad+7gOYzmLbZrhUtgdT9Hr5RfJLaRdjukitez3V/rwj6+KNMj84cgOASBq+uPcmPSIGrTIntx9A1HB0PwR0mQ72pzvx5wndt+QE7/kXGHvnDFdffXvBuPUfeJyhA3vaNU3H+xwvCBh+Yi+P/srnWP/84/jFvOhtjeHCd15l+vL1FZqh40HZ1a/44qEp/HmC98uXC/y39zruKhzGIuWqf4sj4Wleawjfk0sUvh9rCN9b1LosJfoeCCyDo0eRKh8NXu7ZRrW4CpJJhOCE2MA4HblyJwlP2MvItkVD78XSk5/aMtzdAoH0PYzKBN776t0dRdjbLUO0AtX8Nja+jkGAliGpX0AKuG3qTpcaZb6+DzGc/7dShy8s+lxrFeL29VgW2hNlnqbYeh09vrCXeLPxvA6CoJ84vo7WMdXquZaf0+FwOByri9W2suFwOBwOh8PhcDgcTSFNS2ANxtQWiTDXoFPK2kM1IswLwSIR5jLEs2nbQkalBlmpgbHYuI4NffCb97XNaI21YIxpuLpXlztYRD9AyHy0rI0/DoTIyTI933s9dyzZOEzl2X1tnOHS6JEx24PJXK1ifE4lfWg/YmL947ljcaL505dGZtabf33XKJvDakPoDjIXVhRAuNCduhrpMkUOLCJ0j8pSJnS/e44rr7y1YNy65w6y5uAjC+oOx4MiA581jz/C3r/2Ofr3bMsds9pw4VuvUr5yY2Um53hgHh1U/P3HpxckaXzvYpEvn1naZqikIXwfvS18+5eYFGXsXZRsD4+tej171NYlCd6eSRgcO5q5aucwMfAYSdB1h1HtwwjJEbGJMvlrTR81DtgrLRFFF+JheXpe7QQwveRXkJ4PWIxSGHUfYrcAOorg+1jpIZJ4Sb/f5SCtRliD8UOUX0B63kzfbr3E2G8hBME8d7c6PIJdVCw3jUQYDyECkEFLo8xloYAIAky5gi6Xsfez6WCZRNF6LIYkuUm9fgWl7t6qwOFwOBzvL5zY7XA4HA6Hw+FwON6XKDXZWOiys2K3tZnYrRIsUE4l9VQhBUTeHSLM29SvUlgQcYzUFpIEMBA0V9zURmOtwVq7+lzd8joEeaevVdtBZXHWfd/4ATLJL5aWfvGjTetl3iwkhn3RGHLOPgJj4Xg8iEYyvuEQxs//Xr/148uUprP32UeGp3myZyqLFw3CRn/uKHOYPQR0miL70134+Ln6mJzkXf8CY++d58rLP1kwbt0z+xl+Ym+7pun4KUUGPpteeJq+3flkBas157/1A8pXb67QzBwPyoE1KX/nYBk5T/D+xvkOvn5ueekfiUi56o1yNDzN6+FxzviXKInpOwrfa80Ae9U2xBIE0SiZon/i3VzNSo+xoYNo2byWJfeLEh5vic3U532GD1Nmr73RJsH7Keyc8wsMgoXXjTshpERIiTVZko25n57RYYD1vOzaawyo5if8eDpByRAQ2KCAALSxpGbp/8b+E/M+y6br6HOLfY7ZrHf37U1oXrG1UeYCZGcnplIBY9ETE/ce84BIGRBFw8TJLbSOqVTPtPycDofD4Vg9rK5VAYfD4XA4HA6Hw+FoAtZa0rSENlWE8JCyIS6quOHqjqlbD4Ognhoi30PMRJiDkhGGIIswb1OvSqksshaDsZg0wYZRU43XxlqMsRijEVIgVlW/boMofDfXhtpaH1v/BCCIzl6m4/Cp3IjKM4+RbFnX3mkugd1hiS6Zf8+cT3uYMhGV/u3EXfm42pPnSxw+nUV8DkUpf3n9jWxhPQjB8zKhO8iLDquVDlPgQLqLYJ5IMi6meMc/z/jp81x+6Y0F49Y+vY/hJx9r1zQdP+UIKdn80Wfo27UlV7dKc+GbP6By7dYKzczxoDy1NuHX9pcR80TpL5/p4Hsj99cCIhGKa94ox8IzvHYX4XuN6Wev2o5YQh/vzspVOsuXczXtdzA+uL/ZBuL7IhYBb4nNpPOWjTczwTbG2jCDDuDAvNqbsIyWMtLzMNpgjUGn97lpsaMIvof1g6x3d5N/OZ6OsdLDCIkKikgh0MZiTLZJbinItb3IDf25mjo8codn61l3t4waUeZpa6PMjcFUq+jx1ovdAGG4BiF84vgqSTJKkrTj/epwOByO1cBqWt1wOBwOh8PhcDgcjqagdRVjU7Sq4HmdiNsqqrodYa4oK49UG5S2FII5ru5GhLlqZ4S5BVmpZovkaYKVAnzv3uOWgdEayCIy5aoSuoHgMMLLRwjb5ANg+0Br+r7yYu6YKUZMfvpn2je/JTIga2wJ8v1eJ3XI+bSXNOyitDYfuT5dTfnaqxeBrJ/rr229TsEzEAbZ779QyJzdDwFFEy0qdE+IKd4JzjF+5gKXXlwodA8/+Rhrn1p9UfSO9zdCSjZ/7Fl6d2zO1Y1SnP/mK1Suj67QzBwPyvPrE/76Ywvji//re528dOnB0lLSOcL3Cf8cmrxjeMj08Vi6A7kEwbtv4j3CuJSrxYVBJnt3PdAcm0VFFDgiNmHm3QXttrdYb0stP7/ludxjQYUsznxpiMY9lNEao9T9abm+jw38rI2ItdDkKG5Pp1mKuBeh/CKeBN2YqFpi325Y6O5WRy5iF3Wzz3F3CwFeR9YuBdsSd7cIfEShgCmXMUmcubxbjBCSKFpPqibRqkKlcgbbljQCh8PhcKw0q2yFw+FwOBwOh8PhcDgeHKUmwVqUrsyJMDeQ1kDFGKCsJPVE40kI/XkR5nhYvLZFmHu1BJlqhNJYoyBqbny5tVmEuWksnq6qCHNRRkQ/yJWsHoAk69nZ9cOjBDfGc8cnf/Z5TFdH26a4FHwM+6L8PLUVHI8HMUjGNz4FMr+B4Ssvj1CLNQCfWjfJnq5aFpnqeVAsNH3DQ6somoiD6W5C8hG8JTHNyeAc42dHuPT91xc4x9Y8sZe1Tzuh27EyCCnZ8vHn6Nm+MVc3qeL8N16metM5Ah9WPrwp5q/uXSis/eE7nfzwanNaQkx4U5wIzqLRufqA7WFfuhNp736dFVgGR48i54mM5Z5tVIvDTZnjgzIhOjkuNiyoP2avMWDLi4xoJmuxbMtVBK+xVHu1QCB9H9OIHzf3K1R3dICQ2NBHpElTHdACizQpygsx0gc/zO7XrCVdRvS6P69vN9UYffr6HZ49x93tFeZEmbfmfld2dWHqNVAaPVFqyTnmEwR9eF4HtfpVlC4Tx9facl6Hw+FwrCyraIXD4XA4HA6Hw+FwOJpDmk6gTR0ws2K3irNFPR1TMx4WqCtNwfdmnN8zEeYiyBYh2xFhrg2yWkcYC0ZjfK+p8eWQOZusAWMMUgiafoIHQETfR4j8IquNPwV4yKkKPd/9ce5YsmGIyvPz401Xnr3ROAWZFz1OJ31UbcDU8F7SYl/u2GsnbnL2yjQAG4oJv7juZiZuSwnF4gJhfLVSsCEH0l0LhO5JUeZEcI6J85e4+BevLRS6H3+Edc8emE1dcDhWAOFJtnzieXq25QU9kyrOff1lqrfG7zDSsdr5xJY6v7Q7L3hbBP/78S5+cr05gvekLHM8OIuaJ3j32W72pzvx7iF4eyZhcPRodm8yh4mBfaRBZ1Pm+KDcED28J/LtNyTwuL1Ct6219NwL3d3XgEtLHi+9hrtbKXSa3l8KuZTYKIIgysbHzRWFPZ1gZIgFzJy+3VovfbZysAu5ZTBXU4cv3OHZFotpuLt98KJGlHlzhfzbeI3NAro8jZ4sZW1aWowQgijagDFV0mScSuUsxrSnJZHD4XA4Vg4ndjscDofD4XA4HI73HWlaQqsyIPC8YqNYa7hXNBXlkSiLNhAFs6KiFiEg0TJoW4S5N11FGItQJusB2oLYam0M1hqstcjVJKJ65xHBe7mSTfeDzqKFe7/5KjLOu7FKv/CxTBBeRaz1Kqz3q7namC5wSXURdwwwPbg7d+zWRI3vvXEVAE9Yfn3bDQIJeH7Wn3uV/Xx3IrIhB5LdROSFoylR5kRwlokLlxj58x8tWEAfOrCHdc8ddEK3Y1UgPY8tn/wA3VvW5+omSTn/9Zepjban16yj+Xx6e52f35H/bLYI/rdjXRy5Gdxh1PKYkhWOBWdI5/WT7rVdHEh34du7X3OjZJK+iXnXQekxOvR45vZdBVwUA1xgIFfzMRyylyi0NAFnD5a+XCVzdy8NISXCk9mGP2uwWt970GIUCiAFBCFCqaYKtp5JQICRPtovImWjb7cFswzxeb67Wx27hFV3+HmtytzdwkPcjjK3rYkyx5PIjg5MuYLVGj011fxzLILvd+L7vdTj6xhTp1a70JbzOhwOh2PleDi+QTscDofD4XA4HA7HEtE6Rps6WlfwvA6EkJlrSmUR5hpBRUniVONLsSDC3CAx+O2JMK/HeKlGpNmCpAmav7BtrMUYgzEaIUT277EqSBGF7+Uq1haw8UcACM9fpfOtd3PHK089SrItL0itNJFQPBrlxbDUCk7EAxgZML7hqUZkaIbWhj95aQTVcG19bmOJrcVq5uoW2WL6w0BkAw4muyjME7qnRYXjwVkmRi5z8Xs/ApNfrB/cv4v1H3jcCd2OVYX0PLZ+6mfo3rwuV9dxwrmvvURtrLQyE3M8MD+/s8bPbcs7kLUV/P6Rbk6ONUfwLsvqooJ3t+3kQLqLwN792t5ZuUJn+Up+jn4HYwP778+N3AJOi2Gu05OrRWietJcIWpaCI7E8M6/2DjC59FeQHtYYrDHo5D6jzKXARgUIAqwUiPt9ncVe2mRCs5Yhyo/whMAYi8WSquWI3VvzoT31FP3u1Ts8e467WwaAB7a1UeY2TbFxjJ5o3+ahQmE91iri5Ba12iW0bm0SgcPhcDhWltWyyuFwOBwOh8PhcDgcTUGpUuP/c/p1q/pshLmWWYR5qikEs1+JsgjzAlqEjQjz5i1mLoq1yOkqKI0ErC9bki5utAYsxtpV1atbhK8hZH7B2tZfANsB2tD3lRdzx0whZPIzH2zjDJeC5bFwnEDkXV7vxgPE1qe07gA6zPcW//5b17g+li24bu2M+czwGCAyV3cYZO6xVU5oAw4kuymQ7y0/LaqZ0H3pCiPf/SF2nvtt8LGdbPiZQ07odqxKpO+x9Wd/hq5N+cjm24J3fXzpAptj9SAE/NLuKh/bXM/VlRX827e7OTXenE1mFVnjaHCahPy9Q5ft4OA9BG8B9E28Sxjn32NxcYip3p1Nmd8DIwTHxXrGyV/TOkl4wl5G2lbFUz+JndMmQ2ARvLHk0cJvRJlrhdEKe79R3YUIKyWEIagU7uSaXiYC8EyK9kKs8LK+3WTmcbUMB7ns7UBuz/d6V4dH7jxgxt3tZ727jWpEmTf/9ygLBUQQYMpl9PQ09n77py/3vDIiDNcQxzfQOqZSOdOW8zocDodjZVg9Kx0Oh8PhcDgcDofD0QTStITRMRaF7zfE7rSaLeQZTVl5JMpgLBTmOKm1CLHtjDCfmsazIovElB6mBSKntWCMxjQWTFeN2C3HIHw9V7JqI6j9AHT++BjhtdHc8amffR7TnV9kX2k2+WWG/LyAcl11cF13Uu3eQLVvS+7YyPUyPzx2EwBfWP72rlF8dKNXtwC/OS7DVhJanwPpLorzhO6yqHI8OMPE5SuMfOfVBUL3wKM72PChJ53Q7VjVSN9n289+kK4NedFI12POfe1F6hPtieB1NBch4K/urfDBjfnP68QI/ue3ezhXao7gXZV1jganick7ZDtskcfT3YT2zp/xAsvg2FHkvCjp6Z7tVIvDdxjVXqyQHBGbmJ73+d9HjQP2CqIFPZ+hADw+r/YWsDTBVCCQvo9RGqzFpPfpQhdAsQi+j5UeIklolu0+69sdZCJ32OjbbS1K22W10Q6e2Jp7rE5cwsZ3+nlvu7t9kGGWwmJta9zdAmRnJ6ZSyVzspVLzz3EHomgYITzi5DpxcpM0bd+5HQ6Hw9FeVslKh8PhcDgcDofD4XA0hzSdROsKAJ7X0bDH1EHFKKCmJbVUE3gS35sV3rIIc4HBR7Y6wjxJkLUEESdI6WN9j6atms4hE7rBGIMUgpZYx5eNRUTfRcxxQ1srsfEnAYGcrtL7nR/lRiTrBik/f7DN87w7HSJlT1jK1erG4524H+0XmNiQX5yvJ5o/fWlkZuH6v9tSYn1QY8bVHax+V3dgfQ6ku+mwhVy9ImqZo/vKVS58+1Wszgvd/Y9sZ+OHn3JCt+OhQAY+2z79ITrXr8nVVa0heJec4P0wIgX8jccqPLsuLybHWvCv3+rm4tTde2svlZqMORKepk7+PEVb4PFkN5G9c6sKT8cMjh5d4K6dGHiM9PbmvRVGCY+3xWZq5DcIDFNmr73OstTZJWJ5NvdYUAOOLXm89G67uzU6Te7/bisKsJ6XubuNBtWc+Hap00bf7gDtFfAafbstoM3SZ+sd3Jprm0KiUe9cufOA2+5uGSBE1Pooc20wlSp6vH1R5kJ4RNE60nQcrWuUK6fv393vcDgcjlWNE7sdDofD4XA4HA7H+wZjFFqXUbqClAWE8LNe3Q23SlV5GAuJMgsjzEU0E2HutTLC3FqYnEJagTA26wFJa+I/tTZYa7CrKcLcP4nwL+drydNgMmGp95uvIuv5xdbSL3wUvFUyfzIH3v5oDE/kF0xPJAOkeIxvOIT18oLGN354icly9nPt6anziXWT2WK572cqTLC6Xd1Bw9E9X+iuijrHgjNMXL3KhW//AKvz0a79e7ax6YWnndDteKiQgc+2z3yIjnVDubqq1jn31ZeIJ6dXaGaOB0EK+LX9ZQ4N54XoqpL8yzd7uFJujuAdi4Qj4WmqIu8kLxDxeLKboonuMBKiZJK+0qlczUqfsaHHMaI5DvQHJRYBb4stpPOWlTdRYjtjLTjjGiz5OHfBayx1k6CQEunJmRhz+yAR5B0F8D2sHzTN3S1to2+3F6L8AkLO9u1ejtgtuwt4u9flaurwhbuMyM4hRAjCz9zdLYoyF4GPKBQwlTImrmNq7eufHQQDSFmgXruCUlPE8fW2ndvhcDgc7WP1rBY4HA6Hw+FwOBwOxwOi1GS2OKjn9OtOa6BTMJpp7RE3IsyLweyithYBVngYGSJbHWFeLiOVQSYJMgixUmJb4eq2maPbWI0QAiFWw9e/GiJ6MVexpgebPA9AOHKNzjffyR2vHHqEZMfGdk1wSWwPpuj18oL8xbSLcV2kPLCDuCsfOXv83ATHzmZOpoJn+LWdY0ityFzdXiZ0r2Ix2Lce+9NddNpirl4VWWTvxLVrnP/WKwsEhL5dW5zQ7Xho8YKA7Z/5MB1rB3N1Va1x7qsvEk+VV2ZijgfCl/B3DpbZP5T/DC+nkn/5kx5uVJpzrUxEytHgNBWRF/UiQg6mu+kwhTuMhM7yZTrKeUeuCjoYH9zfgruF+6MiIg6Lzeh5d0y77C3W21LTz2d5LvdYcBO4sOTxwvOxxmKNQacP4F72A2zgQxhkonAT+k9nfbsTtAywQiIafbu1gVQvT3j250WZ63euYOt3+Xln3N0+ApltyFStc3ebWg2URo+Pt+QciyGEoFDYgDYV0rREpXoWa5vTc93hcDgcq4fVsNrhcDgcDofD4XA4HE0hTSexRmFMnPXrNiZzduuY1ECiJXWlCX2JlAsjzDV+a13daQrlKlJZBALCENsCBw2A0QqwGHPb1b3ygqOIXkHI/MK/rX8CCMEY+r7yYu6YiQImP/uh9k1wCfTImO3BZK5WMT6nkz7SqJvJ4cdyx6YqCV9/9dLM47+ydYKhKHloXN2+9TiQ7qJrntBdI+ZYcIbSjetc+OZCobt352Y2f+xZxGpJFHA47gMvzATv4vBArp5WMsE7ma6szMQcD0Qg4e89Ps0j/fnr/WQi+Z/e7GGs1pzPrVQojgVnKItqrh4ScDDdRacpLjpOAP0T7xHE+WtNvTjEVM+OpsytGZREB8fFhgUC/GP2GoO22ZtBdmHJ/x0KXl/yaOFl90FGKYzW2GU4phdQ7AApM3d32hx3t6dTjJf17bZBESGyDYvaLK9vt39gcz4JRxnU8ct3HoABLEJGgJf9LPP6xjcLr6MDEOhKGV2azO7R24Tvd+P7PcT1axhdo1a72LZzOxwOh6M9uG+dDofD4XA4HA6H432DUiXUTL/uzkaEOaBjqsafiTAv+vmoUiUKrY8wvx1fbiyeUsioSBaI3fzFPmtv9+vOXntVRJh7VxDh0VzJprtBZ9Gkna8dJ7xyK3d86pPPYXpWR59SAIlhfzSWa61tLByPB9HCZ3zjUyDz760vvzRCPcmE4AN9NT40XAGlAbnqXd2elexPd9JlO3L1OjHHwtNM3LjG+W+8jJnXt7R3xya2fPw5J3Q73hd4UciOz36E4lB/rp6Wq5z9qhO8H1ZCD754aIqdvflr/njd43/8SQ8T9eYK3tMi/z4JCLKNRKZj0XECw+DYUeQ84XG6dwe14ppFx6wEN0UP74m1uZoEDtrL9NhmRlWLBb274V1gaf2fBQLp+5nQbS3mQdzdnsSGIUSNOPrkwcVhr9ErW8uA1C/gCYE2LLtvt+iI8B5Zn6vdPcocrFUgfcBHWAEmbUmUOZ5EdnZgyhWsVujp9raDiKL1GJsSJ6NUqxfQLRL1HQ6Hw7EyuG+eDofD4XA4HA6H432BtYY0nUTrCkIESBlCUgGTgDFMp5J6mi3eRXP6decjzBWiVSGhlSqkKTLR4AUQhJgWxShmQjcYa5BCsPKubo2IvpurWBtg448DICs1er/9o9zxdO0A5Q8+3rYZLoXdYYlOmRd2z6c9TJmIyTV7SQu9uWM/On6T89cyd1unr/kbO8cQ6MzVHXir2tWdCd276Lb5zQZ1Eo6GZ5i4dZ3z33wFk+b/PXq2bWTLx593QrfjfYUXhWz/3EcoDPbl6ul0hXNfe4mkXF18oGNVU/DhN5+cZmtP/nPsVs3jf3qzm6m4OddOJTTHgjNMirzbOcDnQLqLHrP4pi5fxwyOHVsgPI4P7CP1V89GsEtigAvzXNc+lifsJYq2mZHYT2AJZx5ldzdvLHm0bDierdYolT7Y3V6xCEJggxCRqgd2KUurwVqMF6K9Ap4UGGux1qKW+dr+E9tyj/V717DVuwm7DXe3F4EVYGXrosw7u7BJgo1j9MTSNio0C88rEIaDJPFNjEmoVs+29fwOh8PhaC3u26fD4XA4HA6Hw+F4X6BUGYtBq2rm6tYqi2LUCbGRpHjUlSaaH2Eu5kaYt2ZxD6VguoyMUzwEolAEbEtc3QBaG6w12JkI8xUmeBPhjeZKNv4g2G4Aer75Q2QtvxBb+oUXMufzKmHAq7ElyAsVkzrkfNpLvWOI8uCu3LEb4zX+/CdXZx7/6vYJ+kIz6+qWHoThqnR1SyvZl+6kZ57QHZNkju7R65z7+suYJO+I7N66gS2ffL4RF+twvL/wCxE7Pv8ChYH8ppZkqsy5r71IWmmmi9XRLjoCyz96coqNXXnB+3rF51++2UMlbc5ntBaG48FZSiLvZvXx2J/upNd0LTouikv0lU7lalb6jA0dxIjVc408LYa5Rk+uFqE5ZC8RWHWHUcslAg7Nq70FLO3eTUiJ9GTW5sWCVQ8wLymwhQiCACsEInnwVCBPJ2gvez0bRJmr24LSy5Pl/X2bYG6CkbGoo3eP7bZWgwxoeOBbFmUui0WE72PKFfTUFDZt1ntjaYThWhAQxzeox9dQqr3ucofD4XC0DvcN1OFwOBwOh8PhcLwvUKoE1qBNNevXrWpZnreKqWiJNpZEGQpBfnE4lRFaBK2LMLcWSlNgNFJZCMNsoa9Vvbpt1ufRWIMQAiFW+GufmEJEP8yVrF4D6ZMABJeu0/mTE7nj1YO7iXdubtsU74WPZl84nqtpK7L4chkwsfFQTrRW2vAnL15ANxaonx2s8MxQNXN0z3V1+35bf46lkAndO+i1eeElJuVYcIaJsRucX0zo3rKerZ/6AHIVbVBwOJrNbcE76s+LeslkQ/CuOsH7YaQrtPzWU1Os7cinrVwuZ4J3tUmCtxGGE8FZxsVUru41BO9+3bPouM7yZToqV3M1FXQyPri/VVk0y0cITogNjJGPZe8k4Ql7GbGcxtN3wfJs7mcWxMCRJY+Xvo81Fms0On3Ae75CAStFtnFNpY3NbPePZxKMDLAIjF9ECIHWBrXMvt2iEOA9tjFXU4dH7jFKZ1Z5GWbZ6Ua3JspcgOzsxFTKYC26VGr+Oe6ClD5huJYkHUPrGuXKqXsPcjgcDsdDgRO7HQ6Hw+FwOBwOx/uCNC2hdRWwmbM7rYJOsdZQVh71VCMFRHNcpxofK3yMaGGEebUGaYqo1vGCABEVMkdRqyLMtQIsxpiGq3tlncMi/DFCzDp3rAVb/1lAgrH0f/lFxJx/dhMGTH7uQ+2f6F14NJqgIPO/r9NJH1UbMLH+IDrIL+7/xU+ucXOiDkBvoPiV7Y2oTq3IXN0+hNGqc3VLK9iX7qCv4bi/TULKseA04xM3OPe1l9Bx3kXXtWkdWz/1M07odvxU4BcL7Pj8R4n68n8ncWmac197CVWrr9DMHA9CT2T5raenGCrmP+tHpnz+l7e7iZtkQDXCcjI4x6gs5eoSyWNqO4O6d8EYAfRPvEuQ5EXyenENUz07mjOxJmCF4IjYxDRRrt5HjXVM3WHUchkA9uQqgtdhqfdvUiKEwCid9e9+kPhxARQLEPhY6SGSB0sH8nQmvmsvQPkFfJE5uwHUMvp2AwRPbM091mduYKbvvhnHWo2QQSOS3W9dlHlXF1YbTLWKnhi/94AmE4aDSBkS16+RpiXi+Gbb5+BwOByO5uPEbofD4XA4HA6Hw/G+IE1LKF1BCA9pfdAJ6Ji6kWg8aqkm8j3E3AhzWcAi0MJvjatbaZguQxzjISGMENJrWa9ua2/3684Wb1c8wlxUIMi7tkkfB7MegM43ThBezi8yTn3iWfQ8EWklWedVWOfn+/GOqgKXVBfVno3UevMO9PNXp/nR8dmf6W/uHKczMA1Xt4HAz76J+6tLGBZW8NgiQnd629Fdurm40L1xLdt+7meQq+zncThaSdCRCd5h7zzBe2KqIXi3JgLY0VoGCobfemqK/ih/jT5TCvg3h3tImnTptsLyrn+eWzLfs1gieVRtZ0j3LRgjrGFw9AhS5z+Dp3t3UCusac7EmoAWHm+LzdTIJ5dstKWmncPyXO6xYBRYWv9lgcjSdbTGWvvg7u4ownoyc3cbnbWtuU+k1QhrMDJAeVEWuX6ffbu9RzdCNOd3YC3qyN2jzKHRZkX4CER2H90CRBggoghTrmDqdUytvYkYQkiiaD1KT6PSKSqV09gWpS05HA6Ho304sdvhcDgcDofD4XA89GhdxdgUrSp4XgdCNyLMdUJVSVJtUNpSCPJfgZQsoEXWo7Al/bqnpkBrRK2OLHRAELbW1W0MxoC1BikEK+7qDt5CiNmf1VoPm3wgO1at0/OtfLx5uqaf8oeeaOcU70okFHujvOsotZKTyQDK72Bi/eO5Y7VY8eWXZ6NCPzI8zYH+hstT3XZ1e6vO1S2s4DG1nX6bj9BNURwLzjI+eYOzX30RXc8LeJ0bhtn2cx9ErsI4doej1QSdRXb+/AuEPfnI//r4JOe+/hKq7gTvh5E1HYbfenqKnjAvfr07HvD7R7pRTdLErIB3/QvckPlrjECwV21jWA8sGOPrmIGxYwvipccH95H6HQuev1LEIuCUWJur9VOlwzbrb2I7lrzAn7m7l8btFBKrNVqlD57pUyyC72E9P3N3P8ALSp2ivTC7R/Azh/z99O0WoY//2KZcTR2+cM9xVhiECBob9Gi4vJuP7OrC1KqgNXpi4t4DmkwQ9OJ5XdTjq2hdo1a71PY5OBwOh6O5OLHb4XA4HA6Hw+FwPPSkaSlzrejKnAjzBGMNZe1RT7II89CfG2HuYYSPFgEeLYgwr9UhTqBaRQYRRBFSeC11j2itsRiMsSvv6iaB8HC+lD4GjV7Qvd/+EV41H/db+oUXVpHj2bIvGicQ+ffFO3E/deszsfEQ1gtyx77+w0tMVTKX2FCk+MvbStmB270vAz/r1R2sHnFYWNirtjFg8tG5mdB9hrHJG5z76ksLhe71a9j+6Q8hV9HP4nC0m6Czgx0//1HC7s5cvT5WygTvuDXOSEdrWdeZOby7gvz1+thoyP96tAvdrMu4gFP+CNfk6Lyy4BG1lXV6cMGQQjxBb+l0rmalz9jQ4xixWq6fcIsuEvLz2WAnm/TqAsuz8yqngbGljRYC6XkYpcCCUQ/o7g4CrO9DFGbi8AO4xT2dYKSPQaD9ArLRt1svs283gH9oW+6xOX8LM1G5xygNQoKVCLyWubu9zk5AoCsV9ESpZaL63SgUNmBMTJKMUa2dxxj3ee1wOBwPMyu9+uFwOBwOh8PhcDgcD0yaltCmDhg8ItBpFmGuJRpJXWmKgYcQi0WYB3jNXuAyJnN1JwkiTZEdXYiG+NyqCHNjbzu7DUJkMY0rSnAMIfICqU2fzg5dvknna8dyx6oHdhHv3tK26d2LzX6ZQS8vxl9THdzQnZQHdxJ35l1lR8+Mc+JcCciW4X9t1xgFr7Eync5xdUdhG2a/NG4L3UOmL1dXaI4HZxmfvsm5r724oAdxx7ohtn3GCd0OB0DYlQneQVfeWVsfLXH+6wuj/x0PBxu7Nf/oqSmKfl6Ee+tmxH843sUyWyjfGQFn/Etc8Rb2Dd6ttrBBLYwo7ypfoqNyLVdTQSfjg/ubvW3vvrFCco38JqoNlBDLVWzvyEEshVxlWe5u38NaizUakzahIXtHEaTE+gEivX939+37UeOFKL+AJ0DdvpVYbpT5I+uhmL/nUEdH7vDsWaywCOE3EpJac8+KJ5GdHZhyGasVulxuzXnuNgWvSBAMEMc3MDqmWj3f9jk4HA6Ho3k4sdvhcDgcDofD4XA89KRpCa0qgMAztrFAl1JRHqmyaANRkHcYzY0wl83u1z01nS0QVmuIQici8Oe4uluzFG20AizWGKT0WNkIc40If5Kr2HQnmEEwlr4vf5+5hmkT+Ex+7sNtnuOd6RApu8NSrlY3Hu/GAyRRD5PDj+WOlcoJ3/jR5ZnHn1o/zZ6ehtBvNNBwdXsSVkvkt4VH1DaGTH+unAndZxibvsm5r76Imue+71g7yPbPfBgvyLvaHY6fZsLuzkUF79qtCc5/42V00uRrjKMtbO3R/MMnp4m8/HX79esR//lkZ1MF73PeFS55NxYc2qk3sUkNz386fRPvECRTuXq9uIbpnu1NmtSDc0X05R5HaIaYbtKrh8CT82qHgfrCpy6CkNkGSKN01r/7QZ3FnocNw2xDmwXS+4tsl9Zkfbu9AOVnfbuttRhr0cuNMvc9/P2bczX19r3FboQBBNiszUnzogzyyM4ubJxg4wQ93v4oc4AoWofFEMc3qNevoFT7RXeHw+FwNIe2fstOkoQjR45w7tw5rl+/TqVSIQgC+vr62LJlC/v27WPTpk33fiGHw+FwOBwOh8PhaGBMjDY1tC5n/bpVHXSCNoaKDqmnGl+KXIS5wcOIAC0CJApJExfy6nEWYV6tIbB4nV2Zy1oIrGmCe2gRrAVjNMYYrGXlI8z99xAyv6Bt0yxytOPNd4gu5Rf0pz/+DLq/u23TuxsCy/5oDG9efPmJeIBU+IxvfCqL+GxgreXLL40QJ5n7aUMx4Re3lG4fzVzd8nav7lUiEFt4RG1lzTyhW6M5EZxlrJw5utNKLXe8ODyQCd2r5edwOFYRUU8XOz7/Aue+mv/bqd4c5/w3Xmb7Zz/i/nYeQnb2Kf6vh6b412/1kJrZTWSvXCkQeJa/+kgV0Yy9ZQIueFcxGLbq9blD2/VGJJKL3vWZfWzSGgZHj3Jz7bMYb9a9O9W7kyCZpljPR6OvBBURUbJF+pj9e9hoS9wSPU15fcszwI9m2tAIEiyHgeeXNF76PjpNkcai0xQ/ih5sQsUCJAk2DBFJgvWD7Pq/TDydoGUIZH27RVrN0tGNpbjM1/IPbUW9cXbmsbk0hhmdRg7d/Z7LCoOwMotONzrbrNdkZLGI8DxMpYwuRNn9UpsTY6QMiKJh4vgGYThEpXKa3t5DbZ2Dw+FwOJpDy68g58+f54/+6I/45je/yeuvv45Sd1/cWb9+PZ/61Kf4whe+wGc/+1n81bLr3eFwOBwOh8PhcKxK0jTrAal0lcDrAqNAx9S0xCCop5qOcKGr2wJaBARmaS6gJWFtFl+epogkQXR3I6REIrHGYFvk6rbWYEz2fykFK+vqtojwjXxFbwC9EVGt0/vNV3PH0qE+pj+yehYWtweT9Hr52OGLaRfjpsjk2sdQhfwi/Q+P3WTkeuYE8oTl13eNEdxeEzYGMOCFq8fVbbNo3GEzkCtrDCeCc4xWbnL2qy+Slqu548WhfnZ89iN4qyiG3eFYbUS93ez4/Ec5+9Xv51IRqjfGuPDNV9j+2Y+4+P+HkEcGFH//iWn+7dvdKDt7ff2Li0V8Ab+8p3mC90X/OgbLdr0hd2irXo9EcsG7OnOJ93WdgbFjjK55krkTGB/cz/CN1wlU/nN8Jbgi+uizs2L3EBUimxKLZmz86AP2Au/MVASvN/p531ucFZ4HaYrRGq1SvDB6sN+jlNhCAWHBpikkKRSWL6B7OkH5haxvd1BE1msoY/CNwFqWNUdv1zrojKAy6zRXh0cIP7n/7gMFjSAigWhspGz6raUA2dWFKZfx+vtRkyX8oaEmn+TehOEakmSMOL6G9CKSZJQwbP88HA6Hw/FgtGy7/5e//GU+/vGPs2vXLn7nd36HV199lTRNs34od/nv6tWr/Kf/9J/4whe+wPr16/nt3/5tLl++fO8TOhwOh8PhcDgcjp9K0rSE0QnWpnhGgDWgEiraI1EGY6EwT1xI50SYe7aJ/VSnpkEpqFTB95FRBwKZLYDa1sRAAiilsRiMsSvv6vYuILxbuZJNngGg97s/xpvnFi79pY+sDhEY6JEx24N8LGzF+JxO+qh3rqE8uDN37NpYle+/Ods39XMbJ9nadTuueBW6ui3sUptZZwZzZY3hZHCWW9WGo3ue0F0Y6mP755zQ7XAshagvE7z9Yr6fcOX6KOe/9Upz+gM72s7+oZS/+/j0gtSP74wU+f0jXdSb+Gu97N/grLdwLXSzXssOvTHXDaUQT9BbOp17npU+Y0MHMcJjpblBD2rO8rMg693dLDJhexbBBHBmSWOFEEjPwyoFFoxuQruBQoSVAsIQoVJQy7/3kyabh/FCUr+AJ0E3ep0vt2+38CT+41tzNXX4whIGCiw6izE3mmYGIM1FdnVhtcbUauiJUmtOcg+EkBQK60nVJFqVqVTOYJvWW97hcDgc7aLpqyBf/vKXOXjwIL/0S7/Eiy++iLWWKIp4/vnn+c3f/E3+43/8j3zzm9/ktdde49SpUxw5coTvf//7/Mmf/An//J//c37pl36JTZs2Ya1lbGyM3/u932P37t188Ytf5ObNm82ersPhcDgcDofD4XjISdUkWmfOWl+LLMLcWqrap5ZqAk/ie7N2FIOcE2GumxdhniRQrUG1jrAW0dmNFBIpJBiDbdFKobFgjMEYgxDZot1KssDVbfpB7SK4eovOHx3LHavt20H8yLY2zu7OSAz7ozHkHOeSsXA8HkTJiPENefe5UoY/fXEE3WjaurUz5jMb5wjlt3t1+6ukV7eFnWoT603erWQwnAzOcauW9ehOpiq544WBXnZ87gX8+3CnORw/rRT6e9jx+Rfw5v3dVK7e4sK3f4C5R+qhY3XyxHDK3z5QnonNvs1bNyN+97VeblSad/296t/itH9xQX2jHmaX2pwTvLvKFylWruWep4Iuxgf2tShPZuloIblOPhFlo53MknCawlYsa3MVwWtLHi19D4vNBNdmbEQRIoszD3yslIhk+RsqpTUIozFegPZChPSwNhO80/vonx08kRe7zbUS5nppCSNt4/fkIYyhFW8mEQaIKMKUy5haFVNrYtrSMgiCfjyvg1r9KkqVqdevrMg8HA6Hw3H/NPXb9sc//nFeeuklrLUUCgU++9nP8qu/+qt87nOfIwyXtwP8zJkz/OEf/iF/9Ed/xKlTp/jSl77EH/7hH/IHf/AHfP7zn2/mtB0Oh8PhcDgcDsdDirUaraZRuoq0XrYArWKqWmIsJMrQGeW/9uQjzOPFX3j5E4HJKVApIomxHUW8IEQgQEqMbp2wkb22xRrTcHWvYIS5vI6Ytzhvk2fAQt9XXkTMWdy2vkfp8x9p9wzvyO6wRKfM/57Op71MmoiJjY9jgnynzO++cZVbpWxR1heWv71rjNm28BZSnTm6xSpwdVvYoTeywazJlQ2Gk/55btVucvarL5FMlXPHCwO97Pi8E7odjvvh9t/Pua+9iK7PCl7lKze58O0fsu3nPoj0V95561gez6xLSHWF//1EJ3bO9fZaxeefvdbLbxwoc3BNExzCwHVvDINlj9qS3U80WG+GkEpwyr8IIrvq90+8gwq6SMPZXsz1jmGmk230TF9oynzulyuij022NPO4SMoAFcbpasKrCyzPIfizOZVzWG4Ba+487PZzpYeQAqMVQntYYxAPmpATRtg4RoQR1GtZ4s8yN7x5JkXJkBCBDSJEqjDGovXyFWe5fQ2ip4idmk3WSQ+PEH267x4DPaxOEbaANSlQpBUWb9nViZ6YAK3RExPI4vp7D2oBUbSBavUMaTpBtXqOKFqLlKsglcfhcDgcS6KpW/5ffPFFBgYG+Gf/7J9x/fp1/viP/5gvfOELyxa6AXbt2sU//af/lHfffZeXX36ZT37yk0xOTvLWW281c8oOh8PhcDgcDofjISZNJ7FYtK7gWQlWg06ZVpJYZxHmxWBhv24jfEDi2eYsSFMuQ5rOiS8vIoVECA+sbZmr21owRmf9wC0rHmG+0NXdAeljdLz9LtGFvOts6mNPowfybq+VYtCrsSXIC72TOuR82kO1dxO13o25Y2cuT/H6ydmo9l/aWmJ9xxyhXM9xdfsr7Oq2sF1vYKMezpUNlnf8C9yMs+jyZHI6dzxqOFPnRzE7HI6lUxzsY8fnXljQAqB8+Toj3/0hRusVmpnjQfiZjTH/8MlpOvz8tb2mJP/m7W6+dq6IaZIL9qY3zrv+Bew8W+1aM8hetY3bqerSGgZHjyB13kk81buTWiHfuqLdTFFgmvymqY1zxO8H5wCWjlxlWe5uz8dogzUWlTbhvlAAhSL4HtbzM3f3Mt8Pnk6w0sMIifYLSCnQxmZpPst8LSEl/jx3tzo8cu+obiGy+2osGBDGtsTd7XV2gQVdqaBLpSa6/peH73fi+33U4+toXadau7Ai83A4HA7H/dHUlZDf+73f48KFC/z2b/82PT3NW7T40Ic+xLe//W1+/OMf88wzzzTtdR0Oh8PhcDgcDsfDjVKTWKMwupb161YJqbHEJqCeakJfImU+wlyLEC3CRoR5E4QGpaBchXqMMAbbUUR6PgKBkBJjWydmWGswBow1jZ9zBcVuUQL/VK5k06cQNU3v11/N1dVAD9MvPNXGyd0ZH82+cDxX01ZwPB4kDToorTuYO1atK77yysjM40d66nx83Vyh2IK67eqWEKxgn2sL2/R6Num188qWd/3z3ExucO5rLxKX5gndfd1O6HY4mkRxqJ/tn3sBb17Cw/TFa4x890dO8H5I2TeU8v98fpKNXflEEIvgK2c6mtrHe9Qr8Y5/HjNv49wa089etT3rqwz4us7A2PG8WCgE44P7Sf18OklbEYIroi9XGmaawDYr9cYH5t9THAFqizx3IcLLNkUarTFp2hytNQywng9hCMZkGyKXgdfYtGBkgPILeCITuy0WdR9R5v4T23KP7a0pzNWJew+UEmsSBF6jPUsL7jM9iSwWMeUKVqXo6fK9x7SIQmE91iqS5Cb12mW0rq7YXBwOh8OxPJp6hfon/+Sf0NnZ2cyXzPHss8/ymc98pmWv73A4HA6Hw+FwOB4u0rSE0lXQKb6IQMfU5kSYF/35ru5oJsK8aa7uWh2sQdTr2EIR4QVI4TVc3Zkg3Sq01lgMxthV4Op+EyHmxJTbAJLH6X7lbbxyfrGw9JdegGCFe1gDYHk0miCSebHpVNJHxQaMb3wK6+UFqq+9eolyNVugL3iGv7Uz3+d7oat75WKKt+p1bNbrcrVM6L7AjeQm5772EvHEVO542NvFjs9/lKBjBYURh+N9RseaTPCW8wXvkatc/N6PsfchXjlWnjUdht9+dpJn1i1sifJ2o4/39Sb18R7zJjm5iOA9ZPp4LN2BbAjehXic3skzuedYGTA29DhGrNz16Bq96DlR7BJYz2TTXt/yNHbOMrdAAUtLBxVCIH0Po7Jru1FNuj/sKIInsX6ASNNluaIFFmE02gvRXoSUEktDN7+Pzwu5ZRAxkF+zV2+P3OHZcwf6YNJsA4XWCCtb4u6WXV3YOMYmSRZpvkJIGRKGa4iTW2hdp1I5c+9BDofD4VgVrOxqiMPhcDgcDofD4XDcJ9Za0rSE0RWEMUghZyLM62m2EBgF+a88SmQR5haJZ5LFXnb51Ouzjp0oRHoeAtrg6gZtDMYYhAAhVtLVXYXgWL6WHkTEkq4fHsmVa49uo/7o9jZO7s6s86qs8/NC/KgqcFl1MT24m6QjH/16+NQY71wozTz+K1snGCrM/R3bzOl/29V9Hy29msVmtZYtOt/30mJ5zx/henqDc19/ifp4XmgIe7rY+fMfJeh0QrfD0Ww6hgfY/tmPIOdt9Jm6cIWLf/FjrHGC98NI5MPfOVDml3dXEPNUwGsVn999rZcjt5rT93fCm+JEcBY9L5VmwPawL92JtNl9QNf0CMXq9dxzVNDFxMBjrdApl4QSHjfpztU22lITI6t7gMdyFcEbLLXHtPR8wGJU5u5uCr6HDUOIwuznTJd33+npBN3oGW3CCAFoa1H30bdbCIH/+LZcTR25sLQoc8DaNEsQsIZWyAmyWER4HqZcRk9NZvdSK0QUDSOER5xcI05ukaYrJ747HA6HY+k4sdvhcDgcDofD4XA8lGhdxmJQqpz161YxsYbEBtSVJpoXYW4RaBk1P8JcaUhS8H2ElHjChxlXd+vEbq1V1g/cmIarW9xzTMsIDiPE7MKktRKbPEXnGyeRtbzjbfLTH2z37BYlEoq9UT6+PLWSk8kASaGPqeG9uWMT0zHf/PHlmccH+mp8aLiSf1GtANtwdXvgrYyLbpMaZpvesKB+yr/INXWD819/mfpYKXcs7O5kx89/lKCzY8E4h8PRHDrXDmaCt58XvCfPXebiX7zmBO+HFCHg57bX+UdPTdMZLOzj/W/f7uZrZ5vTx7skyxwPzqLm3cP02W72pzvxrEQA/eMnCZJ8i4pax1qmu7c9+CTuk/lR5l0k9C4xanwpWJ7NPRZMAu8taayQEiFl1hqnsZGwKRQLIAQ2DBBJuixx3zPpbN9urzjTt9sC+j7eTP6hfN9uO17BXBy790Dpga4DAkyL3N1SIDs7MeUKWIuebJ7rf7kI4RFF60jTElpVKJdP33tTgMPhcDhWnFUjdn/1q1/lr//1v85nPvMZ/v7f//u89dbSomYcDofD4XA4HA7HTydpOgHWoJNSFmGuYqpaohsR5oVgfoR51n9YiwDZtAjzOIswT1NsECBlJmBI4bVU6AYwRmONwdpskXblSBHB2/mS2guqk65X8vXao9tR6/Ju6ZXBsi8aIxD5xct34n5qRIxvfCpzZjcwxvKnL42QNBIDOn3N39g5dtvwNPOauV7dUXOcfMtlo1rDdr1xQf20f5Fr6jrnv/4StdG8Syno6mDHz3+UsMsJ3Q5Hq+lcN8S2z3wYMa/FweTZS1z6/utO8H6IeWww5X94bpJNi/XxPtvBl450U1MPvjFtSlY4HpwhJX+eXtvFgXQXvvWQ1jA4ehSh8/c7U707qRdW5jo8QQdV8tfGjbbUxDNswpLf6CV4bcmjpedhtMEag16mC/vOLyqxhQiCECsExEt/3dm+3WHWt1sKzEzf7uWLr3JDP2JN3l2vDl9YwkAfMJm721iwgpa4u7u6sFpjqjXUCkaZAwTBAFIWqNevofQ0cXxtRefjcDgcjnvTlhWR73//+wwPD7NlyxZKpdKC47/zO7/DL/7iL/Jf/st/4Tvf+Q7//t//e55//nn+4A/+oB3TczgcDofD4XA4HA8haVpC6xroGE9EWKOoaEk91UgBkZf/upOKAlp4jQjzJondcR3SxmJzGCKFn/XqBkwLe3VnrqPsHFIKxEruYw6OI2TemWWTZ+g4cgq/lHeVTb/wVDtndkc2+2UGvbzj/Jrq4IbuZHLtY6govxj86tEbXLox6+L+1e0T9IXzfr+3Xd1Bw9Ut2+/q3qDWsENvWlA/41/iir7O+W+8TO3WHYTu7s4F4xwOR2vo2rCG7Z9eKHiXzlzk8ks/cS7Ch5g1HYb/xx36eB++GfK7r/U0pY/3tKxybBHBu9t2ciDdRWB9fF1jcPxY3k0sBGOD+1HeCrSrEGKBu3sdU3hN2xwosDw3rzICXF/86fNHN/4ejdaYVDUvYb1QwEoBYYBQKSyx57bAIo1q9O0Os42UZMPVfWyKEULgP7EtV1OHR7D3comLhrhtkuy9ZE0Wad5kRBQiwhBTLmOqVWy93vRzLHkuQlAobECbCmk6QaVyFmNWLlrd4XA4HPemLSsi3/jGNxgdHeWZZ56hr68vd+zo0aP87u/+LtZarLX09fVhrUUpxd/9u3+XCxcutGOKDofD4XA4HA6H4yEjTSdRahq0QmpDrCG1AbVUE/keYkGEeYgWIQKDpAkLVkplQneagO/jeQFC3HZ1G5qf8TiL1hqLwRjbiDBfKQwi/EmuYtU20EN0v5RP64q3rifZvjBau910ipTdYSlXqxuPd+MBal3DVAZ25I5dvVXlxbdnF8qfHazwzFC+z/esq9sHVsbVvV4PsXMRofusd5nL+hrnv/Ey1Zv52Pags8iOz79A1NPVrmk6HI4GXRuH2fZzH0LMa3cwceoCl192gvfDzO0+3n95z8I+3tdv9/G++eDXiYqscTQ4TUJ+A1+X7ZgRvAv1cXomz+SOWxkwOvQ4RrR/U9ZVenNdtD0s65hq4hn2Yclf05bq7hYIpO9hVCa+N613txBZnHkQYKVEJEt3d0udohupQbf7dhtjUNrelxgfPDEvynyqhjl/cwkT8cAkWGsR1oCVDYd3c5HdXZhaFbRZcXe373fj+73E9esYU6dWu7ii83E4HA7H3WnLqsgPfvADhBB88pOfXHDsS1/6EtZa+vv7efPNNxkbG+P1119nYGCAOI75/d///XZM0eFwOBwOh8PhcDxEaF3F2ASdTODJCGFSKkqSmizasRDkv+ooEQECLUI8mzanu3V8O8JcYf0AKQOEkCBa26vbWtCNfpJCkJ1zpfBPI2S+r6JNnqXw3gjB9XwfyOmPrryrW2DZH43hzYsvPxEPEnsFJtYfytVTZfiTly5gGq6n3kDxK9sXWXydcXV7K+LqXqcH2aU2L6if865wyV7l/DdfoXoj//vwOwrs+PxHiXq7F4xzOBztoXvTWrb93AcXtKKYePc8V1550wneDzFCwM9uu3Mf739zuIevNqGPd1XWORqcJiYvoHbaIgfT3YQ2oHt6hGL1Ru64CruYGHi0hdvyFicRAaPzxOjmRpl7WObfbxwDKos9eQHS8wGLUQrdLLEbIIywUkIYZvcMamn3iZ5JZvt2+0U8KdCG++7bLdf1Idf35Wrp4ZElDMwEd0wMDVe5sM2///Q6OsGCrlTQE6Vl9ThvBYXCeoxNiZNb1GojaL1ybnOHw+Fw3J22rIpcu5b1tdi3b9+CY1/72tcQQvDFL36RQ4eyhYWnn36aL37xi1hr+d73vteOKTocDofD4XA4HI6HiDQtgbXoeALfBhijqGiPepJFmIf+PLFbzokwt03qw1iLM2e3tcioMOvqNgbbYlc31mKNaQgkzXfWLA2LCF/PV/Ra0JvpfunNXD0d7qe+d3s7J7coO4JJerz87/9i2sWYKTCx/glMUMgd+87rVxibnI2i/Zs7xxeIFjOubs9v9OoOWzX9RRnWA4sK3ee9q1yyV7nwzR9QvT6aO+YXG0J3nxO6HY6VpnvzOrYuIniPv3OOq6++7QTvh5yZPt7dCxNl/uxsB186/OB9vGsy5mh4mjr56PQOW+DxZDcFG9I/fhI/LefHdayj3J13+raD+VHmvdTpss0UEZ/GMrvpTKCBN+/89DkIKRGexGiNtQajm7R5UQDFIvg+1vMRSbykACCv0XNdyxDlFfClwDTSUe8nyhxYGGV+ZAR7r2j121HmNsVajbC0xt3te8hiEVMuY1WKLpfvPaaFSBkRhkPE8U2MialUz9x7kMPhcDhWhLaI3bdu3QJYEGF+9uxZrly5AsAXvvCF3LEPf/jDM89xOBwOh8PhcDgcjrmk6SRaVbG6hodHrEDhU1eaYuAhxNwIc1AywtCIMLdNiDDXBtI0+8/zkEGU9c0WoqWubgBjFNYarGVlI8y9Swgv7xSzyTOEF28QnbuSq09/5CmQKyXKZ/TImG1BPiq1bHxOJ31U+7ZQ71mfO3b60iQ/eWdWJP7I8DQH+hdZjFeN95PvgedBG38na3Q/e9QWxLwNDxe8q1y0V7jwrR9QuXYrd8wrROz4+Rco9Pe0bZ4Oh+Pu9GxZz5ZPfWDB5+TYiTNc++FhJ3g/5Nzu4/3sYn28b2V9vK89YB/vukg4Ep6mJvLXqQIRjye76dQ+Q6NHECbvVp7s3UU9Gnigcy+XMbqo4+dqzXV3dwH7cxXBT4Cl3Z9J2di4aEyT3d0B1vMzd7cxs/cPd+F2327jhWgvAK/Rt9uC0vf3ueDPizKnEqPPLKGvufTBqOw/2zp3t+zqwsYxpCl6haPMAaJoGCEk9fg6cXyDNG1m7L7D4XA4mkVbvoXfvimfnMzH273yyisA9Pb28sQTT+SODQ4OAlCtzu+F5nA4HA6Hw+FwOH7aSVUJHY+DFXgGKlqSaos2EAX5COnbEeZKBs2LMK/XAQtpiogKSCGQQkKLXd3GGIzJ/i+lyAT2FUKEb+QeW9MLag/dL+bdU7qnk+qhPe2c2gIkhv3RWE5HMjaLL0+CLkrrDuSeX6mlfOWV2d6MQ5HiL28rLfLKFrTORO42u7qHdB+PqK0LhO6L3jVGuMqF77xK+Wq+D6dXiNj58x+l0N/btnk6HI6l0bttI1s/+YGGg3KW0eOnufbjI07wfsiJPPiNu/Xx/nEvhx+wj3ciUo4Ep6mKWv7chBxMd9OTWAbGjuejoYVgbPAAyis+0LmXgxWCq+SvQ+uZRNr7cyoveg6ezT0WTAPvLGms8LP7SKM1Rqnm/u11FMGTWD/Iencvyd2doGT23jB+ESEEWhuUub++3XKoG7l5MFdTS4oyb9xfmwRMmt1/tMDdLYtFhJTochk9ObmkTQGtRAifKFpLmk6gdY1K5dSKzsfhcDgci9OWlZF169YB8M47+ZuKb3/72wB88IMfXDCmUsl6qfT397d4dg6Hw+FwOBwOh+NhwpgEravoZAwPD2MsVeVTTzW+FItHmONh8ZoXYR7HoBTCWmRUzBb8pMQ0caF2MbTWgMEYm4nrK4W8hfDP50o2eRr/1iSFk/l0rukPHQI/7+BqN3vCEp0yv1h6Lu1l0hQY3/gUVubn99UfXKJSy54vsPzarjEK3iIryjOubh8Cv22u7kHdy161bYHQfcm7wXmuMPKdVylfzrvuvShkx+dfoDDghG6HY7XSu30TWz7x/ELB++gprr9+zAneDzm3+3j/46em6JrXEqOuJf/2cA9/9oB9vFOhOBqcoTxP8A4JOJjuYqhapWcyf522XsDY0EFMG+8rrs6LMg8wDDPdxDNswJJv8SF4bUkjBQLp+5jGNd6kTRRbfQ8bBBAF2aaDJTjHpU6ze0zhofwITzDzHrmfvt0A/qG8u1sdu4S9Vx/x21HmGKxJZzZNNN3dLQWyqwtTLmctiyZX3kkdBANIGRLXr5KqSeL4xr0HORwOh6OttOUu5vnnn8day5e+9KUZp/a5c+f4yle+ghCCT33qUwvGnDqV7ZK6LZQ7HA6Hw+FwOBwOB2QR5hiNTqfwrEddgcKjnmoKQf4rThZhXsCIIIuCbEaEuTEQJxCnCD9A+gFCeFkfbVondlsL2hi0MQjBgv6u7WShq7sI6X66Xnor6+PYwBRCKs/ta/Ps8gx6NTYH+Z6PJR1yIe1hemg3SUc+vvWt90Z57+JsKtmn1k+zp2dh9CyYOa5uAcGDOfKWyoDuZa/avkDovuzd5ByXGPnuD5m+lI8j9cKAHZ9/geJgX1vm6HA47p++nZvZ/PHnFgjetw6/y403jjvB+33Ao4OK/+H5STYv0sf7q2c7+HeHu6mm9++WTYXiWHCaaVHJ1QMCDqS7WD95k2I1n/yRht1M9D/WwmyaPDURMkZHrrahqVHmYHku91hwGbiy+JPnIb2Gu1spdJo099+lowhCYkO/4e6++6t7Zk7fbr+ALyW60bc7vd++3QfnRZnXEvR71+498HaUudVgFbTK3d3VhVUaU62hSisfZS6EpFDYgNJl0nSSSuUMtsUbXB0Oh8OxPNqyOvIbv/EbABw9epT9+/fzy7/8yzz//PPU63WKxSK/8iu/smDMyy+/DMCePSsbd+dwOBwOh8PhcDhWF6kqYeJJjE7xrKSiJYk2GAuFIO/Q1Y0Icy1DPJs0KcK8IXymKTLqQCAQbXB1G60zQd2YhtC9Qj2wxRT47+ZKNj2EnErofCuf5lV+/gC2ELVzdjkCNPvC8VxNW8GJeJC40M/Umkdyx8an6nzrx7ML4RuKCb+4pbT4i992QLXR1d2ve3hUbUPO+91f8W5ylotc/PMfMX0xv1gtw4Dtn3+B4pBLTXM4Hhb6d21h80efXVC/+fY73Hzz5ArMyNFshoqG//sd+ngfuRXy/36t94H6eCuhORacYVLkN3sF+BxMd7Fl9Dx+mj9W61xHuXvLfZ9zuVyZ5+4epEqxWQk8AOzF0pOrCF5f0kghJcKTGK2x1mL10vp9LwkpsVEEQZRpxPHdf2aBReoU7QUYGSAaQvyD9O2W/Z3I7WtyNfX2hSUMvB1lrrA6RdwWuZvs7hZRiAhDTKWMqVSyHt4rjO/34HndxPWraF2lVltC9LvD4XA42kZbxO6Pf/zj/MN/+A+x1nLhwgX+9E//lNHRUQD+xb/4FwwNDf3/2fvzKDmy+74T/dx7IzKz9g17YQcavQC9N7rZ7I2kKFISZckWRT5JlrlYeqPxe/boaJ49Mz6eOZIl2daMz9h6so6s8TsaiTzDsSRStLWSTVJkd7NJ9t7oBehuoLEvhQJQe64Rce99f0TWElWFWjOr0Ojf5xwcIH8ZN+JWVqEy8v7u9/vNHF+tVqdU348//vhaTFEQBEEQBEEQhPcISTxWz+tOwIeUbUgltoRGE5hsEzDWBSwah8H4xa0il0S1BkmMBnQuX1d1g/cNXAidB+sSvHd4D3pdVd0vo9R0Y9/7AOJ7aP/eEZSdUTea4qP3rMMMp2bAbfkR8jr7fTkedVMktS9nhmWrc56vPnWWOEm/BqM8/3D/EOG8L7UDm0CwdqrubtfBHcke9KyP8Zf0VU5ynnPffo7xM5cyz+lcyN5PPE7rxqx6XRCEG5+eA7vYPk/De/Dlowy+Ig3vm4EFc7zLZtU53lY53gxPMqqy9uABhrujPey+8i7KZe+NxrpuoZpfm/eMq3QQYTK1xqq7DZ4HZtXehCXapWtt8M7hncNGDbqHnKRQAK0gzKGSJHUNWgDj0mY3gA0L6Hput11hbjdAcM/uzOPk2AV8tIgDklKgDODAR+nfqNTKvMG2ALq9HVcug3UkI+uv7gYoFLbhfEwUDVGunMW59W/CC4IgCClrtkLy7//9v+cv/uIv+Af/4B/w0Y9+lM985jN861vf4h/9o38059i/+Iu/oLOzk507d/J3/s7fWaspCoIgCIIgCIJwg+O9JYmGsfEY2itqicGiiRJ3HQvzPE7l6hbmDVio9D7N645jdJgHY1BaN73R7ZzDufRvrRVq7T7KzaIK4evZUnwIVTa0/+CNTLl0/+24jrY1nFuWLabMlqCcqV1LClxI2hnbfJAk35557pkjl7l4dfr4T/SPsav9Oj8zsQUUmLVRdXe7du6I985pdA/oa7yrz3HuO88xfjprzarDgD0/+hitm/qaOjdBEJpH76272f7E7GYdDL74JleOvDXPCOG9xpJyvN9deY63U46j4UmGVTb32GC4r9LPzmunsjbaSjHcd4jEFFZ2wWXNTTMwS3ndzxiqoVb99+OZdv1ROBQvL2mkCkw6wiY4mzQ2QkArfL4AYYjXCrWIutvYCJTGqYDEFDAKkvp0kpXmdt+9MxuXUEuwby3B5l2ZupU5eB/NUHebhcctE9PWBh5cqYQbGVnU7n0tMKZAGPZSqw3ibI1S6dR6T0kQBEGos6YrJD/+4z/OF77wBZ588kn+6I/+iI985CPzHvfpT3+aM2fOcPr0aXbt2jXvMYIgCIIgCIIgvP9IknF8XCZxZYzXFK2mNmVhnl1ksyoHaKwOMT5ujOn3pI1inKDyLSidqrpds5vd1gIe5zxarZ+qm9xrKDXdAPZe4aMHaHvhTfSMhVqvoPj4fesxQwDyKuG2fNa+PPKaY1EvlfYtlHr3ZJ67cKXEd49M51zvaqvxo/3ZxsAU3qWLvIGZUmU1ky7Xzh3xPsysj++X9RAn9FnOfed5xk5dyDyng7TR3bYl66ImCMJ7j97b9tL/2P1z6peff4Orr72zDjMSmsHtfQn/8wfG2Dlfjvep1eV4O+U5Fp5iSI9m6gbNB8Z72TyabXA6k2Now924NbjfuDTLyjxPQh/F+Q9eEa3AnbNqLwGLKJgBhUIHAS5JY2Rc3Gh1dx6vNeRyqVvMAupu7WLwYE1IEhQwRuO9x3lPssLcbt3Rgtm/OVOLjyzBmnuGlTl2Utms0qZ3I/vRgUEVCthSERfH2FJp8TFrQD6/GY+nVhukWrtEkizNKUAQBEFoLuu4SiIIgiAIgiAIgrA84ngUHxdxSRnvQqo+pBpbcoHG6OwicKILODSOAN2oDMhqDZIEowwqCNDK4Juc1e09JM7hnE3dI9fNwjxBha/MKh2AuJ2O7x7JlCsH95FsXK+MaM/B/BChyq64vlXrpazbGNl2b6YeJ5b/8vTZKdVcoDy/sH+I4Hovc5IwreoO04Z3k+h0bRyM985pdF/RwxzXZzj/9IuMnTyfeU4Fht0/+ihtW7NZnIIgvHfpu2Mf2x65d0594LnXuPbG8XWYkdAM+loc/8ODYzy0tfE53l553gpOc1Vn7aA1mieGCnSVsvU418Foz+2NdqaeQ1EVGCWrIu9vqJU5eB7KPFaUgKNLGqtN+no7a0niqLGvhwJa8un9hFKQXH/jpCJteFudw+kg3WxJ2h+PV5jbDRDckxWZ2WMX8dVFmvpTVuYWvMOT1NXdqvHq7vZ2fLUGcYIbvjGszLUOyec3E8VDWFulVDqx3lMSBEEQkGa3IAiCIAiCIAjvIeLaVWw0BjYmcgWsTy3MW4Ls4poHElXA1i3MG5LX7X3a7I5jTJBHBWG6rrcWqm7vcc7VG93Na64uSHgMpbOqGh8dpvWVdzAT2frEh+aqENeKHcEEfSbbKBhIWhm0rYxsuwcX5DPPff25iwyPTx//yV2jbG29juLLO3B2WtUdNC+ru8O1cjDeh5mVZ3pVj/C2OcOFZ15i9ERWgaWMYc+PPEr7tk1Nm5cgCOvDhkO3sO2D98ypX/r+Ea69Kc2Wm4W8gV84VOT/cWsJPWvT1mSO96srzPH2Ct4OzjCos84nBsVHLzvyUTVTL7dtpdi+c0XXWg6z1d0bKJJvxH3bFJvx7M5UFM+zFBmy0hptNM7WbbsXaEiviLB+L2mCNLt7ASZzuz1gwxaMUvXNkKvI7b5rZ3bTXmJJjl64/oBJlEnvhzzgm6fu1q2tKK2xxSJ2fAzixRX5a0EutwGlQmq1AaJ4hFp0bb2nJAiC8L4nWPyQ1XPu3LlVjd+5s/k3VoIgCIIgCIIg3Nh474nLl7G2jHKOsstTjVNVdX5WXrdVIV6lFua6YRbmEXiPdh7yIVobvHP4JuuerEvw3uE9mHVTdXtU+FK2kuyEZDMdz3wzU6/u7SfesWUtJzdFm4q5JTeWnY8zvF3rpdS9i2pHdl5vnx3llXeGph7f2lnlI1sWsKNcI1V3u2vlULyfYFaj+5oe4W1zmgvffYmR42cyzymj2f0jj9Den7UkFQTh5mHDnQfwzjPw3GuZ+qXvvYrSmr479q3TzIRGohR8dFeV7R0J/8drHRTj6ff+qtX83pFOfnxvmb+zr7L8tyEFx4OzuMSx1U1HXeQ8/NBAha/vCHF6+r1nrHs/YTxBodY8Ve1lOjnAIEH9fkoDWxnjDI2L4vA8hOLM1GPFAJ7zwOJrzsoEuCjCO4eNI3TQ0rB5oTXemDQfvBqD89e9tzA2Ig5b8SogCQoEapy43uWOnSNnln+PqFrzmFu3Yt+6NFVLjpwhvH/PAqNIrcwddStzjQ89CoWfVHerBm0K0Ard3o6bmMB3dhIPDhJu72/MuVeBUppCYSuVylmSeIJS8Ti5nl7UekYNCYIgvM9Zk2b3nj2LvEEugFKKZJGdbYIgCIIgCIIg3PxYW8THEyTxOM7nqPmQamLJBxo9r4W5whGQ8w3K+KtVwVmMCuqqboV3zf2s4pzDufRvrRVqvcy5gpMok1WC+egwhbdOEV7NLoCvl6pb4TmUv4aZpYQ7WuujkutgbMuhTL1UifnLZ6ctwAvG8bl9Q9dvHEypuutN7rA5qu4218KheN+cRveQHuUtc4YLz77MyNunM88prdn9sUfo2L4+mwwEQVg7Nt59K947Lj//RqZ+8bsvo7Si97a96zQzodHc1pvmeP/ekQ7OTWSXcP/qVCvnxgN+4c4ireEyN90peDc4j08829x05EVX7HjkconvbuuccaxmuO9ONg2+QGCr85xs9VhlGPSd9DO9Wa3fj3KGvrTz3xAO4OlGMTpVUbyAX1KzO3XVcUmC0hrvPKqRm93CsG5hrtJNdbn57y8yud2mQM5ofGyx3pPYlTW7AYJ7dmea3fadAXy5hmrNX3/QLCtzfAzkQIHyKlWaN+glMl1dqbJ7bAyMxvT1oVsKiw9sMmHYTRRdo1q7RBC0U61eoKVFBHuCIAjrxZqslHjvV/VHEARBEARBEAQhrlyBJMImReIZFuaFcG4+YLMszHXi0NqgwxysgarbWQt4nPPodVSLqNwLmcfeboRkFx1PvZypR1s3UDuQzX9cK/aGY3Sa7Pf6bNzBkGthuP9+vM42Cv78u+coV6c3K3x61wgbCgsokaZU3aZuO9p4VXerK3BnvJ9w1r70YT3GMXOai997meG3TmWeU1qz62MfpGPn1obPRxCEG5NN99zO5sOH5tQvPP0Sw++cWfsJCU2jr8XxPz44xgfmyfF+/VqOf/V8F5eKK8hJVnAyuMB5M5gpby/HHBouZ2rO5BjacBe+ifchF1VP5nErMT2Ur3P0StB4Ds+qHQPG5js4g0KhgwBnLd57XBw1cF5ALle3Mjcou3hud2JyqfreBCjAOU+ymtzuQ9shmPG9tY7kjfPXHzA1oZlW5jFe+fqmzAZndwcmbXhPjEOckFweaNy5V0mhsA3nqkTRMOXyaZxrpP2+IAiCsBzWRNn9h3/4h4seUyqVOH78OH/2Z3/GxYsXeeSRR/jFX/zFNZidIAiCIAiCIAjvBeLKJayt4G1M2bVQjS1aQd7MZ2FucDqH9gmqEQ3pOLWW1E5BEICu5zc2Ee/BOodzNhXQrJeFubmIMpcyJR8dJndmgPy5y5n6xBP3NaUJvBhdusaecDxTK7qAd6MuxjceIG7JLqK/+NZVTpyfPv7O7gqPblrAAcDbpqu6W12Bu+ZpdI+ocY6aU1z8wasMHTuZHaQVO3/4YTp3bWv4fARBuLHZfN8deOe48vKxTP3CUy+glKJnnTYeCY0nZ+AfHiqyqzPhy8dbcX76ffZK2fCvn+/iF+6c4N5Ny2y0KThjLuFw7LLTG6YODVcYyQdcbMtN1eJcJyM9t9MzfLRRgt0MYxQokqed6aZ+vx9lRLU18Cr34XkKRfo6pfeHL+H5oUVHaqNxCXhrSZIYnc837nUwGm80KgigVkubx9c5eWpl3pbmdgcFtIqwzuP8gg7oC6IKOczt/dgZDe7kyFnCh/YvPHCWlTnap8HwKt0g0FB1d2cnrlgkGRmGMMBOTGA6Ohpz8tXMy7QShj3UapcJw27K5VO0t9+63tMSBEF4X7Imze7PfvazSz723/7bf8uv/Mqv8B//43/kkUce4bd+67eaODNBEARBEARBEN4rxJUBkmScxHkS2qnECfnAzLGSTFRqYW4baWFeqaKdxwAqVwAPHteYc1+HKQWR8/VG99o3kQFU+GLmsXcdkNxKx1N/nakn3R1U7rplLacGgMZxKD+U6bE7D2/WNlBp6WNiQ3bRcXisyjeevzj1uC2wfGbf0MI9+sQCummq7oLP1RXd2Sb6qJrgaHCSS88dYejNE9lBSrHrow/TtXv9sysFQVgfNt9/EJznyqtvZernn3oBpRXd+8VS92ZhMsd7R0fC78/K8a5Zxe8d6eQTe8v8xHJzvBWcCy7j8Oyx2yZLfGCwyDe2dzGRm1boltu2EkbjdBSXoPpdLkpxkW5u9dNK801MEHhLohqlEi4AdwMvzai9DDwOLLyJTWmdNrxtgg4CfJKkzelGMWllXvOpk0w4/7mNi4hVG06nud2hniC2qdNQYh25YBVW5jOa3fbEZdxEFd2xgF34bCtzErwKUWi8d6A0NOpeWStMdzfJ1au4SpXk0gDmQPu6bLCcTT6/lTgeI4quoHVAobCdIGjkJg1BEARhKayfD951CMOQ3/3d3+VDH/oQ//bf/luefPLJ9Z6SIAiCIAiCIAjrjK2N4JIyNh4ndi1Yr0ispxDO/UgT6wJWhY2zMAeo1dAOUBplQpxfwO66QVhn8d7hvUevl6pbD6HCdzMlH91PcHmUlrfPZOrFx+9Nm8FrzIHcKK06q7I/FXcxRivD/fdnFkKdc3zlqTMZu8+f3ztMd26BxVhXV3WHpimq7sAbDsb7yM1aaB9TE7wZnOTSC69x7Y3j2UFKsfOHPkDXnu0NnYsgCO8tlFJsPnyIjXfPUhJ6z7lvP8/oqSY0JYV15dZ6jvfOjrnuMn99qpXffbWDcrz8BuCFYJCT5sLU45zzPDYwQeCy7jhj3bdQy3cv+/xLYYBO3IyNfQbP1iXYjC8Hz4OZx4oK8MaSxuogwDuPdxYbN9iuOsyBUnhtUMn1nYO0S8B7rM6RBAWMTvXpzkNsV95YDm7vh9yMBrv32DfOLT5wysrcg4up7wZNn/KaRqb96PY2VD6PHRnB1aokQ8ONO/kq0Dokn99ELbqKtTVK5XcXHyQIgiA0nBuu2T3JL/3SL+G95z/8h/+w3lMRBEEQBEEQBGGdiUsXwDvieIKqa6USpRbmsxUsliC1MFcNtDCPYpR1aAcqzKdRhE1udjvvcM7jnENrVc9AXHtU+FLmsfd5iO+i4+lsVrdtLVA6fHAtpwZAn6mwIyxmaqM2x5m4k9HNh7C5rLLmqVcuM3CtMvX4wb4SD/RVWBBbV3VrU8/VbJyKSHnFHfFeWn1WOTWmirwRnOTSi69x9bV3Zg1S7PzIQ3Tv29GweQiC8N5FKcWWh+5iw10Hsk94z7m/fY6x0xfmHyi8Z1kox/uNVeR4XwquciKYbnB2xZaHByeyBynNUN9dJCa/7PMvRqwCrpC1pu73o2kjtWFsxLMvU1E8z5K6slqjlMIlNnXfcQ10+AlMmokeBOl9x3WmowDjYqzJ4ZXBB2lut3WexK38dVL5gOBgdgNd/OqZxQfq+s+Zs1CP95nK7vaKRrcegr5efK2WWpoPDqYq+BuAXG4jSgXUapeIomtE0dB6T0kQBOF9xw3b7L7lltT+7qWXXlrkSEEQBEEQBEEQbmq8Jy5fwsZFImexuoNqYmkJDWpW4zHRBTwKq4IGqrqraAzKO1QYNr3RDamFOaQW5lqt08c2VYQwmwVLdA9mtEbrkazSuPTwXfhc43OsFyLEcjCXXUy0XvFmrY9yxzbKPdm82guDRZ59fdoetStM+Lk9IwtfZLaqu5GWpR4OJDvp8u2ZclGVORqeZODlN7h65O05w3Z8+EGxJhYEIYNSiq0fuJu+Q7OiJJzn3LeeY/zMpfWZmNA0JnO8f+bWElplm5yTOd6vDOauM/r6XDZDvBOcxde7rdtLMQeHy5ljnMkxtOGutDnbYC6q7szjDmp0Um3oNTwPZR4rrgBnFx2nUKggmIqZabi6Oxem9xv4qcbxfBgb4XRYz+1uQWuFdT4VV6+i4R3ck71vcqev4EYXiQOatDL3dStzn9BMdbfK59HtbdiREXwcE1+52riTrwKldGpnnoxhkxKl0rv4hm7SEARBEBbjhm12j42NZf4WBEEQBEEQBOF9SlIhiUex8Sg1q4ltDusgH85VLSV1C3NQGB815vrV1MJcqQC0wfnmZnV7D9Y6nHPpGuI6WZir8BWUmm7se2/w8X20f/dV1Aw1kwsDih+8a41n57k9P0xeZ78Xx6Nuiqadka13Z+pxbPmzp89mxGGf3TdMW7jI99ImpKruAHL5hqq6d9mtbHK9mVqNiKPhKS698gZXXjk2Z8z2Dz1Izy275tQFQRCUUmz74D303ZFVrXrnOPvN7zN+bmCdZiY0C6Xgh3ZV+e/vH6dj1vtZzSr+42sd/JcTLSy3/3nFDPNOcGaq4X3ncIVtpew9VZzrYqTntkb2MQEYppXKrFiPfj/a4Kvsx5N9/03V3Yuj63EtzlpsEjf2688FoDRemzS/+3pzcDEocDokMamVuXMejye2K5+RuW0bFGa89h6S15ZoZe5nWpk3Wd3d3YO3Djs2RjJ0DV+b63CwHoRhN8a0UqleIrFFajX5nSsIgrCW3LDN7i984QsAbN26dZ1nIgiCIAiCIAjCeuIqQyS2SBSXiFwLtcQTaDWPhbnBqQCrchgaZGEeJxgLylpUmK8v/DZXqTGpGHLO1RvdjWuwLp0Icq9lS/FBVMnQ9sLRTLn8wB249tY1nBtsMWU2B1n78WtJgfNJO8Pb7sUFWXvVv/7BBUYnphfqH980wZ09iyjFnAXnIAzqqu7G5ZFvtr3stFsytQTL0fAUF159jcGXjs4Zs/2JB+i9dXfD5iAIws2HUoptj95H7+17M3XvHGe/8T0mzl9ep5kJzeTW3oR/8YExdnXOVQP/zemV5XhfNaO8FZzG1VO0Hx4s0h5lG7Dltm2U2rfPf4KVotQcdfcWxjEN3Wio5mR3wzvAIm4vpP/HtDH4JAEPLmmgutuEeJW6yCibXPd2czq3OyQJCmhVz+12kKzCWl0FhuDObERKcmRxxft8VubNVHcTBpiuLtz4OMQx8cCN8XtNKUU+vw3nysTRMKXSSZy7MWzWBUEQ3g/ccM3uEydO8N/+t/8tX/jCF1BK8WM/9mPrPSVBEARBEARBENaLuoU5SUQ1qWBVG9XYUgjnfpTJWJi7Rqm6qyhtUF5BoNfEwtw6i/cO79fRwjx8HaWmlTLeg48eoP25N9DR9MKu14qJx+9d06kVVMJt+eFMLfKao1EfpZ691No3Z557+8wIr52YPn5DPuFTu0cXv1AyqepubFZ3t+tgf5K1Ifd43g5Pc/r1V7n84ptzxvQ/dj+9t+2dUxcEQZiNUor+x+6n59Y9mbq3jjNPfo+JC4PXGSm8l+lrcfwPh8d4eOvcjVyTOd4Xl5njPWTGOFZveOec5/HLEwSzZOKj3Qeo5bpXM/U5XKIr0xsNcGxmvKHXgHvwTNu8KzyKF5c0UgcG7z3eWVzcwGamAsIQjJm0+bnuYcZF9dxuDUFYz+12JNavKuI8uGd35rE7dw03VFxk3jOszJm0Mk9F3QrVFHW36ewEpUhGRrDjY9jiInNcI4KgjSDoolq7jHNVKpUz6z0lQRCE9w0NDBy7Pnv3Lv6h3DnH6OgoExMTU7VNmzbxL/7Fv2jm1ARBEARBEARBuJGJSyTxGC4uU0ksicvjPBTCuR9lZlqY6wbldetajLYuVfEohae5FubOO5xLVd1aK9S6NLstKvdytpTsh6iT9mePZMqVu27B9nat3dTwHMwPEc7KJ32r1ksp7GJ088FMvVyJ+Itnz089Vng+v3+IgllkJdjVsyfDXKrqnufnbSW0ugK3x3vQs9T67wbnOf7mS1x+/vU5Y/ofvW+OLbEgCMJCKKXY/sQD4D0jx89M1b21nHnyWfb86GO0b9u0fhMUmkLOwOcPldjVZfnTd1pxfvq95krZ8G+e7+Lzh4rcv3npGwJHzDhH1SnuiPfSFcEHBos8u7Vj+gClGdpwJ5sGXyCwjbGTrqmQa76djUw3MPv9KJdmKb5XRx64FzL25a8AHwIWzjpX2qC0wiUJShv8lBNPAwhDiCK81ummu+u4yhgbE+Xap3K7ja5hXSqgts4TmJVt0DO3bIHWPJSnv5fJkTPkfujQwgOVARdNW5mbgLTxrUF5lNfpPXSjzIqMRvf0YK9dw3d2kgwMYPbvb2jczEopFLZSLL5DLbqKUgGFQj/GtKz3tARBEG561mTl5MyZM4v+OXfuHOPj4+nOOO95+OGHeeqpp8TGXBAEQRAEQRDez9QmiJNRomScyBuqcUho9JxFPIfBqRCrQjQJuhFN6SRJs7qdBxNMZVc2E2cd4HHer1OjGwjeRumJTMlHD9L20jFMKWsdPvH4fWs5M3YGE/Sa7GL6pbiVQdvGcP/901aadb769DkqtWll1A9vneBA5xIW4+MEVF3VnV940XuphD7gYLyPgOwcz5tB3j5zhIEfvDZnzLZH7qXv4P6GXF8QhPcXkw3v7v2znCQSy+mvfZfSwNV1mpnQTJSCH9p5/Rzv319BjveonuDN8F0SLDtKEXcMlzPPO5NnqO8ufAOXmWdbmXdToc03NpvZ82Dmzk5RA+a+F8+HNgHOOrzz2LiBVuZhPTM7MChrr2v/bWy6YSGT2+3T3O5VWZkbTXB39nfG0qzM65sCp6zM04ln1d2NbUSb9nZULkcyPIKrVLAji9vQrwVa58nlNlKrDWJtjVLp3fWekiAIwvuCNVF2f/azn130GK01HR0d7NmzhyeeeIJ77rmn+RMTBEEQBEEQBOHGxTt8dYSkNkQpqmIpEFlFW/56FuZgVUjoFsliXiq1CI1GOwem+aru1LHS4uqLlLpRKqHlzQKVy9p4+qQfki10PPONTL16y07i/rVTBrapiP250Uyt4gzvRL2Mb7qNuKU789wLR69w8uJ0035bS8Tf3ZkdPy+ubsMZ5MBoCFb/sVl7zcF4L4VZarGreoQTtXe5+MxLc8ZsffhuNhy6ZdXXFgTh/YvSmh0ffhDvPWMnp10ufGI5/TffZc8nHqdty4Z1nKHQLG7tTfifHx7j9450cHY8+z72N6dbOTcR8It3FmkLl9b1Htcl3gzf5WC8jzuHK4zkAwbapt/T4nwXIz230jPyVkNamtdop4Yhz/SGtX4/ynG1eYFRy6UXOAAcn6ooXsDzAIs1ZpUxEMc4a7FJjMnlGyMqVuDDEJVY8HFqZT6Pult5m+Z2mxxJkCevVV3VDYn1EK58CsE9u0h+cGLqsbs0ghscQ29ewMlHMcvK3IKaR92tGhgHpMD09pJcvowrlogvD2K6utN7t3Umn99EHA9TiwbQJiSORwnD7vWeliAIwk3NmjS7//AP/3AtLiMIgiAIgiAIws1EVCJJivikSslGxK69bmE+d9EvnmFhbnxj8rqDWpKqarTG6bVQddvU/dG5elb3OlgxmtMocy1T8tFhWt54l2A4m5c58aH712xaCs+h/BCzXTmP1vootW5goi/bFB4Zq/DNFy9NPTbK8w/3DzFP1PssfKrq1pNZ3atYLZ5xyluTXXT4tkx5XBV5x5zh/HdexEZZVdiWh+5i4123rv7agiC871Fas/MjD3HOe8ZOXZiquyTh9N88w55PPEHb5r51nKHQLHoLjv/x8Bj/11ttfP9SIfPcm9dy/Kvnuvh/3zNBf8fSGpATuswb4bvcGe/ng4NFntzeRTE3fU9Wbu8nF43TXrq46rl7pbjku9nD0FRtK2Oc8BvTnOoG4XkIlWl2X8NzClg4PkQplUbcJAmEAc7GmKAB9wyQRqjEcfp1ugSYp9lNqu62JkyPMzmUquCsw2qF9yt39DZ7N6E6CviJ6c2jyZGz5D5+18ID57Uyn1Z3e6/TiBjVuHtq3VJAt7ZiR0fRba3EV68SbmnkhoiVoZQhn99CtXqBXG4jxdIJurseQN0ANuuCIAg3K+u/1UkQBEEQBEEQBGE+auPE0RBxXCN2jloSkgs0Rs+2MNczLMxtgyzMHdp6VLpCh1+DtSnrLN47vPfrpOpmrqrb9kKyl46nX8nUo/5N1PZtX7N57Q3H6DTZhvDZuIMh2hnedn9mRdc5x59+52yqbKrzif4xdrUvwWbUOcClC7QNUnXvtf1scN2ZWoUax8LTXD16nOLFwcxz3ft3sume21Z9XUEQhEnShvcH6Nzdn6m7OG14l68Mr9PMhGYTGvjcwRI/e1sJM6vJeLVi+DcvdPHy5aXHdZR0hdfDE+AiHrs8QTDLD32051ZquQUUwMtgdkZ3DpvJ8W4Me/BszFRUJsf7+ujA4PF4a3FRA63Mc/V7D2NQ8fU3IhgX43SIR5EEBYxSWD+d271SlNYE9+zK1OIjZ/B+kXNmrMxjpj3Y3dSNtPKNv781vb34JMGOj2OvXcU30lZ+FYRhL1oXqFYukiTj1GqX13tKgiAINzXS7BYEQRAEQRAE4cbDO4gmiKNrlOIqCZrI5miZx8px2sI8h3GNUXWbWozyqfikueblKc57nPM4Z1FarU9etx5ABeczJR8dJn/yIrmLVzL1iQ/dv3LJ0DLp0jX2hFlVedGFvBt1M7rlTmyuNfPct18e4PLQdLb4rrYaP9qfHT8/jVd1b7Ub6LdZq/eYhKPhSSZGhxh4/vXMc2FbC9seXdscdEEQ3h8oo9n50Q/QsWtbpu6imNN//TTlqzdG3q3QeJSCj0zmeOfmyfF+vYOvLiPHu6yrvB6eoCWq8NDgrOaz0gxvuBtr8qued1nlGCb7Ht/vR1d93iwKz4OzKidghqL8uiO1QWmFswnOOfwqsrKzJ1b4IEg33HmXepPPw2Rut9UhSVAg0DrN7fary+0GCO7ZnXnsr4zjBkYXmTdpw9vXM7u9nfW0Si3NG7yDVIUBpqMDNzqGj2OSgRujqayUolDYhnUl4niUUvkk3jfQxl0QBEHIIM1uQRAEQRAEQRBuPKIi3jni2jDFJCJONBCSn8eHOtEFXCMtzD3oKKmbiHuaIEKZg7MW8Djv6xbma88cVbdrg+R2Op7K5kknfV1UDi1s79koDI5D+aFMX915eLPWR7Gjn3L3zszxFwfH+f4b0435QHl+Yf8QwVJe0qms7saounttJ/uSrPrd4XgrPE3Jlzn3t8/jZy1gb//QgwT5pSvsBEEQloM2hl0//DAdO7dm6rbe8K4Mja7PxIQ14UBvwv/8gTF2dyZznvva6Vb+wysdlOKlNSIrusbruRNsKk1w+0gl85w1OYb77sY3II7l4ix1dx8lCg2Kq5nmLjxZm3fFC0saqU2As2mjO2mkojgXgjF4pdLc7vmu7S3KO5wJsaaA0nVVt4fYrs4qXO/agOrJxq8kR84sZWTaoJ+0Mq/jVZPV3d3dANjRUZLREVy53PBrrIQg6CAIOqlVB3C2QqVybr2nJAiCcNPS0MzuL37xi1P//sxnPjNvfSXMPJcgCIIgCIIgCO8DqmPYaJRaXKPmLJFLLcz1PBbmVuVIGmhhrq1HJQnKqlSl04jc5gXwPrUwd3UVzrpYmKtRCE5k5xXfR3hxmMKJrNp74vH7UvXzGnAgN0qrzi7Kn4y7GNWdjGy7O1NP4oQvP3WOmS6bn9w1ytbWuYv6c/EQ21TRrVav6m5zLdyW7E5VTDM4HpxjTBcZfP4o1VlNpQ13HqBj+/rnTAqCcHOTNrw/yJknn6V4YTpGwdYiTv3VU+z98Q/R0te9fhMUmkpvwfE/XC/He2h5Od5VFfF67gSHhvczkt/I5dbpzVq1fCcT3XfQOXp0VfO9QgcxmrB+f6eAbX6MU2rjwgOXRQ64D/j+jNoR4CPAwgp1ZQzEMc46VBzjc/nGGN+EOVAVMAEqifHXuS/RNq7ndit8kEfFFWwDcruVUgR37yJ+6thULXn1LLkfvWfh3GkdpLndk1bmpgCZe6FJdXdjs7sxGt3TjR0eRnd0EA8MkN+3NhszFyOf30qpdJxadA2lAvL5bZgGOB8IgiAIWRra7P7c5z6HUgqlVKZBPVlfCbPPJQiCIAiCIAjCTY6zEJeIo2uUY0fsY6Kkna7W+SzM83UL85DQ11Z/bQ+6lqQ24t7idAMX4q6Dsxbv0qxprRQ0QAm1XFTuJdSMRUfvcxDdTcfTT2WOs+0tlO6/fU3mtMFU2B5m7VFHbY4zcSfDO+/Fm6wC+i++d4Gx4rSK6NbOKh/ZMrG0i9lJVXcegtWpunM+5GC8D0P25/WsGeCqGaE0cJWrR97OPJfv6WTLg3eu+JqCIAjLQQeG3R9/hDNfe5bipWk3DFuNOPVXT7PvJz5EoacxucvCjcdkjvfuzoQ/eacNO8NWejLH+3MHizywZXEFdU3FvBGe4N5BxTPbN1MKp9/7xju2UoiK5MpnVzxXpzQDvoudTNvs9zPKKb+hoXEqnsPAD1D1nGlFhOdV4AMLjlNKoQODSxJMGOCSGBM2YJOkVngToIIEqjE4N+9GQ2MjoqAjze02BQJVIfFpiz5xntCs/DUK7s02u/1wEXd+CLNzw/UHZazM63+r9PXwyqG8xitf/7uxlt6mvQM3PoEdHkHlctjR0SnF93piTIFcro9abZBc2Eu5fJKOjjvWe1qCIAg3HQ3fju/r2SDXq6/kjyAIgiAIgiAI7yOiCXCOqHqNok2IrQVVIG/msTBXBZwKAI1xq7eP1ChUHKG9ApukSt8mY53Fe4f3Hr0G15uDKkP4ZrYW34UZrtHyelbtXXzkHggbumd6XkIsd+SyeZmJV7xZ62Oidx+19mwO9junh3nj5PRCeME4PrdvCL2kNV4PSf17rXSqplohxmsOxfvIk13oHtRDnDOXsVHMue9krVGV1uz8oQ+g58mjFwRBaBY6CNj9I4/Sti2rkLXVGqf+8mmqI+PrNDNhLVAKPryzxn//wPw53v/H6x189UTrknK8I5XwtjnOA5evYWYNuNq7Hx1sus7IpTHbyrxAQh+lVZ1zLt3AbZlKamW++AugTQB4XGJxjbQyD0MwAaAgmb8xPHnva02a222Mxvs0Fme1ud26vxe1oSNTS44sYeOCmmllPp+7zqS6e1XTm4tWmN5eXKWCK1dILl9ONwncAORym1FKUa1dplobIEmWuBlTEARBWDINXaU4ffr0suqCIAiCIAiCIAhzqI2DrVGsjRJ5S2Q9BdOCmmNhrrA6j1W5uoX5KhUiHnTi0YkD53HOgmmuhbnzHle/VuqStfYW5ip8FaWmFyO91/jofjqeeRk1Y/Oxy4UUP7AW6mPP7flh8jq7QHk86mE818vYpqwaplKp8V+fvZCpfXrXCBsKS/x5qOelEwR1VffKms7Kw+3xHtp8S6Y+qiY4EZwHBZe+9yrxRHaBfvPhQ2IZLAjCuqDDtOF9+m++S/nytal6Uqly6q+eYt9PfJh8V8cCZxDe6xzoSXO8/+ORDs6MZ5eJv3a6hXPjhv/nXUXawoU7k7FKOOuPcddVw6ubp5W/XimubDzI5oExLCtz4CmqAuO+QCfVqVq/H2VIta/ofNfD8yCKt6YeK0bwnAAOLDhOaY3SGu8SnDOpU08j4l7yIVQreGNQSTKvlflUbrcOSUx+apOf85BYD6u4jVVKEdy7m/ibb0zVkiNnyf34fXPuybMDA2B+K/OZ6m68gQaru3VrC6qlJbUzbymQXLtGsGl1my0aMi8dkMttplYbIJfro1g6TnfX/es9LUEQhJuKhja7d+3atay6IAiCIAiCIAhCBpdAVMLWRilHMZGLSGyetnkszK0uTFmYB35xq83FUChUHKPRkNTwWjXdUdzVG63Oe8x6qLqJIDySLSW3oycMrS8dy5RLDx7Et2bzPZvB1qDE5qCSqV1NClywHQzvvH+O2v7L3zlHNZpeLL2zu8Kjm5aq+Jql6s6tUNXtYV+ygx7fmSmXVZW3wtN45Rk7dYGR42cyz7dt2cDGuxZeRBcEQWgmJgzZ86OPcfpvnqE8OO2okZSrnPzzb7P98cN07t62jjMUms1kjveX3mrje7NyvI/Wc7z/X/dMsH2RHO9EWYZrr7Nn9H5Od0/b4FcDQ9ByC7by5gKjF+ai6qbTX556vJEJcj4hUo1c2t6FZzOK6Sx7xfP4RZrdANoYbByjncPGETrfgPslrfFGo4IAalWuF8JtbIQ1OVAKFxQwcZnEOoJV5nYDBPfsyjS7/VgZd+YqZu8CDeQFrMxnHqR8Or9G32sHPT3EAwPYiQmUCTA9vag1cCVajFyujzgeolYdwJgWarUr5PPr34gXBEG4WVh72YAgCIIgCIIgCML1qE2A99Sq1yg6QxSXUSpPLpj70SVWBZwyeDTGrb7ZbSzoOFU4uyRaVW7zUvA+tTB3dYvFhqiAlkv4JkpnG8s+eoD2778+9VoAeK0pPnZv06dTUAm35kYytchrjkV9jG28nbiQzZB98c1BTg9M53q3BZbP7Bta+sKuTZhWdRswK9twsN1uYqvLZlhGxLwZniRRlrhU4cJ3X8o8r8OAHR95CLUe33dBeB/jcXhVwauVqUxvRkwuZM+PPU7rpt5MPanUOPPks5z/zgvY2urfZ4Ubl9DAZw+W+Lnbihg1y4q8Yvg3z3fx4uXFN4RZ5UjGX6G3Us3Ux9r6yPmVy4wv04md0RXVwFbGVny++VF4HppVOQVcXXxk3RXGWYuLExqWyhnmpu9Hk/kswUHbGKcDHIokKKAV2Pr141XaeJst3egt3ZlacuTM4gMXsDJPM7sVqZ154zd6qnwO3d6OGx3FxzHJ4ODig9YApTT5/FYSO0ESj1MqncD7G8NmXRAE4WZAPlULgiAIgiAIgnDjUBsDW2WiOkoMRDYhH7ShZnUvPQqrc1iVQ6WG5qu7rk9tqJW16WKidytufC4V5yzekdpdqvqi35riULmXMxWf7EFVu2n7weuZevneW7Hdzbay9RzMDxHOWmR/q9bLeMtmin37M/WxsRJPvjSQqf383mG6c0tdOPRpBuakqju/skX4DbabPbY/U7M4joWnqKkI7z0Xnn4RW802irY9ch+5jrYVXVMQhJXhifF6FEcJp8bxqtG5v+9dJhveLRt75jw3cvwMx7/8JOPnBuYZKdwsTOZ4/38eGKdz1ntp5BT/6fUO/uz44jneXllyxXcztWstIZv89hXPLVGGQbLuKf1+lMZ1lSe5E09rpqJ4ftFRCoUODK7ekG5YdncY1nvCAeq6ud3p/YUzORKTze22dvXN1ODerGNr8to5/GLnnVTcT1qZZwK6J/+dqrsbnt0NBN3d6abSsVGS4SFcpbL4oDUgDLswpp1q7RLWVqhUzq/3lARBEG4a1qTZPTY2xq//+q/z67/+6wwMLH5jPDAwMHV8qSQfPARBEARBEAThfYGNIa5AVGE8KlOzEc5DPmydc2ii8oDCqhzGR6tuExunII5RaFxcw5ug6b1nax3eO7z366PqDo6jdFYV5aMHaXvxKKacVWRNPH5f06ezM5ig12SVlpfiNi77Tkb67834cHrn+L//9hzWTq+QPthX4oG+ZSxmTqq6w7qqewU28h2ujVuT7CKwx/NOcIYJXQZg+NhJJs5fzhzTtWc7PQck7ksQ1opUzV3E6VHwCu270b4Np8p4VVx0/PsFk8+x5xNP0LFz65zn4lKFM1/7LueffhEbNaiRJ9yQ3FLP8d7TNff7/PUzLfx/X+mgFC98k2SqgwQ225yttG2h4FcYF0JqZT6TNiK6aXQTMwBmZym/Bku4jjZpg9clCbZRze7A4JVON2BaO29jWHuHchZnQpIgh1YKBVjniRfbmbCUKdyzO/PYF6vYk4uopSetzF39XsuvrbqbwGC6urATExAnJEvoR6wVhcI2nKsRRUOUK6dxDXCnEgRBENao2f2lL32JX/u1X+NLX/oSW7fOvWGezZYtW/jSl77Ev/yX/5I//uM/XoMZCoIgCIIgCIKw7tQmwDui2jhFm1BLSmiVJz9Pzl6iC9gpC/NVLijWVd0mduAcJHHTLcydTxXdzlmUUii11s1uj8q9mK3YLRBtpf2ZVzP1yu27Sbb0NXU2bSpif240e11neCfqYWTrXdhZGx6+/dJFroxMN+S7woSf25O1P1+YSVV3AKxM1V3wOQ7Ge9KM9xmcNpcYMukmguroOJeeey3zfNBaoP/x++e4FQiC0Bw8UV3NXUX7dpTvRvkWlG9F+3acqqQq72bIC9+DBPkcu3/kUbY/cRidm/u7ceTt0xz/8pNMXLgxrIGF5tBTcPyzw+M82l+d89yxeo73hYnrNykVnkLlSqZ2rj3PzmTLiuc0Sgslss3yfj+64vNdD88D+Bnv7YoEeGXRcUprlNE4a/He4ewqXYcmyYXpxjz8da3MjYuxOgcobJBHK4V1HudYVIm/GHpDB3r7rIiDV88sPlBpoG5lbmfPe3pSzVJ3m85OlAlIRoaxxSJ2fKLxF1kBxrQQhr3UaoM4W6NcPr3eUxIEQbgpWJMVla997Wsopfj0pz+9pOOVUvzMz/wM3nv+8i//ssmzEwRBEARBEAThhqA2BkmV8coYMSFRXCYXtMw5zAOJzuNILcw18y/8LRXtVd3C3OHiKFUQN9vCvK4qdlOq7jVufJrzKJNtVPjoMK2vvUswml0MnHhitsKpsSg8d+aHMDNeAu/haK2P8c4dVLp2ZI6/PDjGs29cy9Q+u2+YtnAZVp1Tqm6zIlV34A0H432EZBtBl/RVLpp0cd9bx/lvP4+fZTu644nDBIX8sq4nCMLySdXcEzg9Bl6jfTfKtWBcD8ZuQdtelG9Buw68ivBqQhredZRS9N62hwOf+jjt2zfPeT4uljn9109z4bsvN07BKtxwhBo+c0eJv3/7ynK8C+VLmccjhYCC2UCLW+F7oFJz1N2bGSfwDWoqT9EJ3JG9NC8Ci99naG3wzuGda9z/jVwISuF1Xd09D8ZGOG1wSpMEBYxW2LrFe7LK3G6Yq+5O3jg/5/5mDlNW5gm42VbmdXU39XvgZqi7tcJ0d+NKZVylSnLpUrqp9QYgn9+Cx1GrDVKtXiRJxGFEEARhtaxJs/vIkSMAfPCDH1zymIcffjgzVhAEQRAEQRCEmxgbQVKFuMxYVKaaWDwJhXBupvGkhXmiQ4yPV9cm9qAd6NiC9/goarqFufdpXrerL7ith4W5yr2QnZPrhng/7U9nM7xrO7cQ7d7W1LnsC8foMNkF4XNJB1d1DyNb787UbRzzn7+TzTd8fNMEd/bMVZ5dn7qq2wT1rO7lWaoqr7gj3kurL2Tqw3qMk8GFqZ+dwVeOUbmaVZv3Hdw/rz2wIAiNZVrNXUP79tS23LVh7Fa060zzdX072vahKKQNbyK8KLwz5Npb2fNjj9P/2P3oeVxWho+d5PiXv0Hx0pV5Rgs3A0rBh3bU+KcL5Hh/5To53vnaCMZmLZrPtxfYaVf+PniJrkzL2eDZwviKz3c9PA9mHivGgHcWHaeCtGnrrMUlCb4RmeJBgFcKggBlk/mtzOsuR06HU81u78F6T9yI3O57ZkWvVCLs8UWswaeszC3zWZmntclDm6Pu1u1tqEIBOzKMi2okw8ONv8gK0Dokn99EFA9hbZVS6cR6T0kQBOE9z5qsqly5kt70LsXCfJItW1Jbm8FBsUUSBEEQBEEQhJue2njdwrzMRBJRjUsYrQjMXGV3ogtYDB6D8avLudM+zTXUicO7BOWSVOnbRNJGNzjv0KqeV7iW6Cuo4Eym5KMHKLxzntzloUx94kP3Z7KyG02XrrE7zC5SF13Iiaibkf578SarnP7zZy8wXppujG/IJ3xq9+jyLjppARpMqrqX8bHYw4FkJ12+PTtnVebt4MzUt7I0OMSVV9/KHJPv7mDrQ3ctb66CICyLuWruHpRrRbsetNuEmuXGoH0b2m5E+Tzad+CJ8WoMvwQF5/sFpRR9d+zjwKc+Ttu2TXOejydKnPrLp7j4vVdw8eqcVoQbl/0L5Hg/eZ0cbwW0lC9namc7cmx0PbS67IaxpRKrgKt0ZGrNsDKH7Xiym/0Uzy86SqHQQYBLEvC+cf8nwjC9Z/F+XnX3ZG63NSHW5FF6Orc7savvIuueNvTujZlacuTs4gMXtDKfoe72Cnxz2hRBbw++FuEmJkgGB69rBb/W5HIbUSqgVhsgioeJomuLDxIEQRCuy5o0uwuF9AamXC4veczksabJ9oGCIAiCIAiCINwAVMchrlCsRtSISWyFnMmhVFZJllqYF3AqROHRc1Qiy2BS1e2BJMHHNUClit8mYq3De4d3fp1U3S9lHnvXAvFBOmapuuONPVRv39u0eRgch/JDmV668/BmrY/xvv3U2rKLqifPXOONU6NTjxWez+8fomCWs4hbXyQ2Jl2AzS1P1b3LbmWTy+ZW1og4Gp7CqrQ5ZuOY899+Pl3YnUQrdnzkoXmVkYIgNAZPDa9HZqm5W1PLcteRKgfnQfsWtNuI8gW078ST1BXe0vCeSa6jjb0//gTbHr1vSr06k6E33+X4V75BaeDqOsxOWAsmc7wfu06O928+18X5WTneLeWsiGk8FzCaM+xahbp7tpV5J1U6fGXF55sfheehWZWzwOX5D5+BNtPqbhtHjREshyFojdd6gdzuqJ7bDTYooHWa2+09uAYozGeru5M3L+AXa+bPsTKf/Xt1prpbN0XdrfJ5dHsbdmQUH8fEV24MJwqlNIXCVuJkDJsUKZZONMYJQBAE4X3KmqysTCq6X3rppUWOnGby2EmFtyAIgiAIgiAINylJDWwNkgojtSpV63FUyYetcw61dQtzq3MYH61KE62Zqeq26YKdMU0VWjsPzjmcdyilUGqNm91qDIKs4tjH95E7N0T+1MVMfeKJ+0A378U4kBuhVWcXSU/GXQyFGxjblM3KrFWqfPm72ezPH946wYHO2vIuOqXqDiAMlqXq3mx72Wmzn08TLEfDU0RqWuk28IPXiMaz2Yub7z9I68Zsk1wQhMbgcTg1jtPj4M2iau75SBvem+oK7656w1sU3rNRSrHh4H4O/PTHaduyYc7z0XiRk3/xHS59/0iqbBVuOkINnzlY4ufnyfG+VjH81vNdvDAwvZEsF41hkmwj+mxHng2um3Y3171nKQzRRoXs5rF+P7aicy3MQTxZJ5clqbu1RhmNsxbvPf46OdvLIgyBSStzO29T2NgYP5nbbQoYpXDO4/HESQOa3Xfvyrr91GLsW5euPwDmsTKf+1pk1N1NalUE3T1477Fj4yRDQ/jaMu8fm0QY9mBMK5XqRWxSolq9uPggQRAEYV7WZGXlsccew3vP7/3e7xHHc+1uZhPHMb/3e7+HUopHH310DWYoCIIgCIIgCMK6URsD76hVS5RcTDWKCU2M0XMXQWNdwKJxGIxf/LPFdfGgbWpjTmLrFuYWHzRXeetsAnicc3VV99pamKvcK6gZi9PeBxDdMyer23a2Ub731qbNY4OpsD0sZWqjNsfppJvh/vvrtpeTc/T88bfPUYumF0i3tUT83Z2jy7yqm6HqVvWF46XR7drZn+zM1Dyet4MzlPT0Iv74mUsMv3Uqc1zr5j423XPbMucqCMJS8CpVc3sitJup5t66oJp7PrTPY+zmesO7O7VE16PS8J6HfFc7e3/iw2z74D3zqryvvXGc41/5JqXBoXlGCzcDT9RzvLvmyfH+/73RwZffacW6SSvzrLr7XHsODytXdyvFJbozpS2MoX2j/68aPPfPqr0BlOY7OIM2Ad45vHPYaBX3q5Mo8LkgdR/ybl4r88l89ExuN+AcJG71r43ubMHs25ypJUfOLGHuC1uZZ9TdvjnqbsIA09mJHR+DOCYeWCRvfA3J57fhXJU4HqFcPoVzDfh5EQRBeB+yJs3uz3/+8wCcOHGCn/u5n1vQzrxcLvOzP/uzHD9+PDNWEARBEARBEISblNqkhXlC1UdEtkJOa5TK5jmmFuZ5nMrVLcxXvhik6i0Q5RU+ifFJzKRipll4P5nXnS44rr2FeRXC17Ol+E6Cq1Vajp7MlCcevadpr0WI5Y58tgGSeMWbtT7GNh0kKXRmnnvtrQHOXJ5eWDbK8w/3DxEu9+VL6gvDy1R1t7oCt8d70LOaZu8G5xkx03njSaXKhWdezByjg4AdH34ItQ529YJwMzOl5lYz1Nw+VXMbtxnFyn5/KXIYO0Ph7X294d0AZeZNhlKKDXce4MAnP0br5r45z0djE5z8828z8NxruERev5uRNMd7lL3z5Hh/42ya412MFK2zcrtLoWGoENDruuhwbSu69iXVnemJhjg2M7Gicy3MA/gZy+cKC7yy6Chl0g2NLklwNmmMPXWYA6PxSs/bNFb4em53DmtyqcIcsM6RWE8jpjDHyvzYRXxtkftxFQBqASvztVF3m85OlDYkIyPY8XFssbj4oDUgCNoIgm6q1QGsrVKunFnvKQmCILwnWZNP3B/84Af5mZ/5Gbz3fPWrX+X222/nN3/zN3n66ac5fvw4x48f5+mnn+Y3fuM3uP322/kv/+W/oJTip3/6p3niiSfWYoqCIAiCIAiCIKwHcQVsjI9LjEaKclxCUSMMApTK5ilblQM0VocYH6/OwtyC8qCcwydJ2ghttoW5czgH3ju0Uqy1qpvcEdQMu23vFT56gPZnXmGmE6nL5yg9dKhJk/Dcnh8mr7ILncejHkZat1Hs25epF8cm+Kvns9mKn+gfY1f7cjc6uHRhOFieqjv0AQfjvQSzGmcXzCCXzXTD3nvPhadfIqlkbTG3fvAe8l1ZC1RBEFbH/Grutik192rJNry7ZzS8xZZ7PvLdHez7iQ+z9QN31Rt8M/Ceq6+9w4mvfpPyleH1maDQVLoLnn96nRzvt4bTHO/B4QpBnFVDn21P7/F2JytTd1dVyBDZRnm/H13RuRamHcjeEylehEU2wCgUOgimrMzdEpxOFyWs34sEBnWdDSTGRlid3uPYurrb1oXT1jXAyvzOHdmIm9iSHL2w8CAFaLOglfmaqLuNRnd344olfK1GcukSDdkB0AAKha14LFF0hWrlAtZeXygoCIIgzE9zPfpm8H/+n/8n165d41vf+hYXLlzgV3/1V+c9bnKn2w//8A/zhS98Ya2mJwiCIAiCIAjCelAbB2+pVsqUPVTjiJypzWthnugCDo0jIPSrUGP4dNev9hriGt47lLX4XG7RoavBWpuqEZ0nmMf2tbkkqHCWEim5FT0W0PZyNsO7+PCd+EK+KbPYGpTYHGSzO68mBc67boa33Zupe2f5wrcuZBZnd7XV+NH+cZZNbAGV2n/mlqbq1l5xMN5LgexrcU2PcNpkMyqH3z7N+NlsrXPXNnpv27P8uQqCMC8eh1dFvKqhfA7t21E+RLtutG/sphJFiLGbseYKmm4cY3g9hnZdK1aN38wordl492107NzG+e+8QOVqtrFdGxnn3f/6t2y65zY23X8H2qz1e6DQTCZzvHd3Jfzfb7Vh/XQzdKhq+PcvdfLPNw+S9O2dqp9rz3PvtTLdvoMu186YXv593UXVzQY/3UTvoUyrr1FWjb2H8TyEYtoZRzGB5y1mN8Fno43GJeCtJYkjdC63um2OSuHDIG10xzFYB7M2mBgXkYQtaW53UMDoEnHi8HiscwSr/L+n2guYA1uxb0/f8yRHzhLet8j9jjJAUrcyjyGYu+nQq3STgPdMW583GNPejpuYIBkeRuXz2OERTF9vw6+zXLTOkcttpBZdJQz7KJXepbPzrvWeliAIwnuKNfNSKxQKPPnkk/z2b/82/f396c7Yef7s2LGD3/md3+HrX/86hUJh8RMLgiAIgiAIgvDexPu6hXmZiZql6iKixBEG8fwW5qqAbYCFuXHpUqMCXFyDJM3RnlLMNAHnJ5XdDqVAqTW2tQ6PoXRWJeKjw7R/7wjKTi8meqMpPnJPU6ZQUAm35UYytchrjkZ9jGy9BxdmNzh89+ULXBudVooFyvML+4cIlvvSeZdaZwYmVSMFS9jU4OHWZDcdPqsaG1cl3gnOZkT5tbEJBr5/JHNc0JJn+xMPoNQaq/cF4SbFqxpuSs3dgfZdaNeOsVsa3uieRBHUM7wLaN+N8honCu8FKfR0sv/vfoQtD945N77Be668+hbvfvVbVK6NzH8C4T3N49tr/NPDc3O8J2LNKydGM7VqoLnSkt537Uq2rkjJe5UOIrLN221+bPknWpRteHZkKornFx2ltE4b3jZJhcuNsPMPQwgMXql5rcyNTe+Pnc6RmOncbusgto1RMc+2MrdvX8KXa9c5uo4yTFuZJ8zfyHZ1G/MmqrsVmJ4efLWGK5aIBwfnzT9fD/L5TShlqEUD1KKrxLH8nhQEQVgOa7odVSnFf/ff/Xf8k3/yTzhy5Aivvvoq165dA2DDhg3cd9993H333bIgIAiCIAiCIAjvB+IyuARXKzMea4rxBErVyGnmNLutyuFVamGuV2Nh7lP7cu01OIe3SbrIpev21k3C2bSh7p1D6/qC35rhULlslrRPdqHK3bQ/90amXrrvdlznyvIzF8ZzMD9EoLIrl2/Vehnt3EWlqz9TH7oywndezyoDP7lrlK2tK2gyJQlTqu4wzNpvXoc9tp8NrjtTq1DjWHgKN+Nr8M5x/jsv4JLsvLY/cZigRTZvC8Jqma3mVr4D5QO060H7ZvyuyqIwGLsJZ67WWzNjOD1aV3gvLQ7h/YbSmk333k7nrrrKe1Zjuzo8xon/8i0233sHm+69fa71ufCeZn93muP9e0c6OD0+/X/k2ycd99w3TpzrnKqda8+zpZLQ5dvp8R2MqOVlbnuluOS72M30/cI2RjnpN6bN4AaSqrvPTz1WXMBzEei//iBAm4AkivDOYeMIHcx1LloWYQ6ogAlQSTLHlUjh0S6p53aHKG1QyuKcw7pUNb3alyY4tIOaeT7toANYR/LmBcIH911/0Ewrc+PTv+dx2cmquxXN6HjrlgK6tRU7OoJubSW+epVwy5aGX2e5KGXI57dQrV4gF26gWDxBd/dh6ZMIgiAskXXxXlJKce+993LvvfcufrAgCIIgCIIgCDcntXFwCeVqmZoqUIkmKJi4rnrOWlAmOo9D4QjI+dL851sC2qt0vc2DS6K0+T3PYmEj8R6cSxcavQe9BAvthhKcROlss8FHh2l//ii6Gk3XFBSfuK8pU9gVTNBrsqqfS3Ebl3Qfo1uyNo0ujvijv83mP97aWeUjW5a3CA7UVd0WgqCu6l68ObXVbmC73ZSpxSQcDU8Sq2xT+8qRtykPDmVqvbfvpXPXtuXPVRCEDF7VcGoijZ5wHSgKKNeCdj1raiWuMGi7CfRVnAYYx+mx+pyaE/lwM1Do7WL/3/0hrhx5i8FXjqUWJ5M4z+DLRxk7e5EdH3qQlr7udZun0Hi6C56fv6PEbzzXPVUbrhrGrl6jtX+62X2+Pcf9V0sYUnX3SDix7L2Al1Q3u/10szuPZQMTXKVzgVEr4TY8nSimo1QUL+D5ewsPMxqUwiXII7CLAAEAAElEQVQJSmu886glbLq7LlrhTYAKEqjG4NycprG2Mdakv5sSk8eoGOumc7sDs7rmqWrJYW7vx7453fxPjpxZuNkNWStzF4Oe757MgdegPMprvGqO6tr09hJfvIgdHwOjCXp7UU2OM1oKYdhLFF2jWh3ABG3UagMUCnJPKQiCsBRk+6QgCIIgCIIgCGuPdxBNQFymVLMUE09iq+SCCKUKGRXDbAtz46Prn3fBa4J2acMbwEVR3QLSpxbXTcJ7h3Pp31or1lbV7VG5F7IVuxFq/XQ8+2qmXjm4j2RjT8Nn0KYi9udGs9dyhrejHob778eb7GLnX3/vHMXydFO5YByf2ze0FEH2XJap6u61nexLtmdqDsdb4WkqOtusL18dZvDlo5larrOdrQ/fvYKJCoIwicfh1DhOjdezuXtRvhVt+zBu47pkZis02m1Eu1aU70L5EKcn8GoR6973OcpoNt9/kFv+3kcp9HbNeb56bZR3v/otBl85hneNz+cV1o+dnZZdndkNYt97azTzODKay63pPUCHb6PXzf0ZWYySyjNCVi3d70fnP3hVGDwPzKq9CSy8EU+h0CbAWYv3Hhev8B52Jvkwva9BwTzW6MZFeK1xypAEBQKtcPX40KRB/8/mWJmfuIwvVq9zdJ0lWZlPq7vxesrWvNGoMMB0dODGxiFJiC9fbsp1lotSikJhG9aViOMRSqWTOCfRGYIgCEtBmt2CIAiCIAiCIKw9cRmcxdZKjCUBxdo4WkGoI5hlYe5UiFcGp3Non6y4VTyt6lZ471A2SRcJtZ7XSrFRJIlNmzfOr72q21xEmYFMyUcP0vrqccx4ViFffOL+JkzAc3t+JNNj9h6O1voY6buVqLUvc/T5s4O8cjK7cPzpXSNsKKxA2TNb1R0urOpucy3cluxOF1hncCI4z5guZmouTjj/7eezSkWl2PGRhzCLXEcQhOvjVRWnh/HEaNeJ9p31bO6ta2JbvhBpw3tDveHdifI5nBrHq0UaPAItG3rY/1MfZdN9d8zxUPbOMfjim7z7X/+W6kgz8paF9eLR/uz/jefPga6MZmpnO6bdEXbblWV3X1TdmccbKJH38fJPtCj342dstlE4FC8vOkrXrfq9tSRJvHpj7jAEBT5IrcxnM5nbbXVIEhTQk7ndHpJG5XbfsR1yMzaKOk/y+rmFB820MqduZT4vs7K7m4Tp7galsCOj2NFRXGnlzlGNJAg6CIIuatXLOFelUjm73lMSBEF4T9DQ7bBf/OIXG3m6KT7zmc805byCIAiCIAiCIKwTtXGwMeVqhUi1UomvUggdKDsnrztWBRwKuxoL89mq7qSWWpjbBB82z7bQeXDO4ZxDKeoW7WvHnKxu1wHRLXQ8/Z8z9drefqKdjc8r3BqU6ZllX3426WAwt5nxTbdl6kmlzP/1dFZZc2d3hUc3rfB7niSABmPqC8PX3yaR8yEH430Ysgr/s2aAK2Z4zvEDz79ObTTblN907+20be6bc6wgCIvjsfVs7gjl8yjfvqbZ3EtlsuENQ3VLc3BqAo1H+VVm8d7kaGPYcvgQnbvTLO/ayHjm+crVEU585ZtsPnyIjXcdQK315jCh4Ty0NeLL73gil77/Wq+4cHGIbfu7p4652JYjURB4aPMtbHDdXDOjy7rOIJ3cxiBBXSmsSLO7T7OxQV/JJK3AncBMZ5yXgEdZaIldaY02BmcTdBDgkwQVrGJJXmu8MajApFbms4K4Z+Z2OxuCNijlsNaR6Mbkdqt8QHDHdpIj043Y5MhZwg8eWGTgpJW5W8DKfPLrUHiv02NV47O7MRrd3Y0dHkJ3dhAPDJDfv7/x11kBhcJWisV3qEVXUSqgUOjHmMLiAwVBEN7HNLTZ/bnPfS5jN9gIlFLS7BYEQRAEQRCEmwnvoJZamBdrjmISYF2RfJAqUWZnoCa6gFVh3cJ8ZUodzQxVNx4fxShr0wXCJlqYu7pNuneurupeQwtzPYQKTmZKPnqAwltnCa9mM7wnmqDqDnDckstep+IMJ+JehvfeDzMb/97zp985RxRPW1q2BZbP7Bta2YKst3VVd7ioqtt4zaF4H3myxwzqYc6ZubaWE+cGGDr6bqbWsrGXzffdsYKJCoLgVQWnSuAV2nWiyKNcaz2bu3m/n1eKQqFdHwqN0wpPEaeK9YZ363pP74andWMvt3zyhxl86ShXX3snfR+u453j8vOvM376Its/fJhCd6Nzl4W1pCXwHN5S43uXppt0T74+wef3TXdbE6241JpjZym1995lt3JNjy7rdskpzWXfyXZGp2r9fozTbFh9V3cWnodQM5rdihKeo8DCESY6MCQ1i3cWG8fo1TS7Ib2vSSygIE4gl72HMTYiDtLXPTEFAhUzKepOnCdcZW43QHDP7kyz254axI2V0V0L/B6csjK3oCatzOdubPHKparuZmd3d3TgxsdJhodRuRx2dDRVfK8zWufJ5TZQq10hF/ZSKr9LZ8eh9Z6WIAjCDU3Dt0n6egZII/8IgiAIgiAIgnATEZXAO+JaifEkpFirEegagamByqHUdHPDqiC1MFeTFuYr+3yg7QxVNy61fUySplqYew/OWbxzeM+aW5ircJaq2xcgvpOOp1/J1KMtfVRvzWYvNoJ9uVHyKpvH+HbUw8jmQyT5jkz9rbcvcGKgkqn9/N5hunMrzJZMLEtRdSsPt8V7aJulyBxVE5wIzs1ZbE+qNc4/nX1dVWDY8ZEHUUZUiIKwHDwWp0ZxqljP5u6pZ3NvwLgNN2Sje5K04d2Ldh0o3472rThVwqsbwwb3Rkcbw9aH7mL/T36EfHfHnOfLV4Y48ZVvcvX1dyTL+z3OY9uz7i7nRjxJMbsR7mzHtMNOqy+wyfUu+zqzrcxbiOmlGf8fN+PZnakonmcx/3WlDUopXGLT/O7V/lzncqmVuTHp5s1ZGBuBms7tNkY3PLfb3LYNCjOa7B6S1xplZT5jQBOzu1FgenvxlSquXCYZGIAb5HdOPr8JpTTV2mVqtUHieHzxQYIgCO9jGqrsPn36dCNPJwiCIAiCIAjCzUhtHGxEuVIlUq2UolE6cgrvqiidbTomqoBHYVVIzq1s0VL5dG1N+bRV7uM47WFaiw8b+pEog/cO58B5h9aKJuw1vj6qCOGxbC26h9zpa+TPZjO8i0/c33DlU4eO2BFkc66vJi2cb9lNqXdvpl4dH+crP7iWqT3YV+KBvmzze8m4uqo7XETV7WFfsoNen1UOllWVt8LT+FmWmd57Lj7zMkk5m0G67QN3i/pQEJbJe03NfT206wEUTqe/4Z0qowF1A1mv38i0bu7jlk/+MJdfPMq119/JPOetZeAHrzF2+iI7PnSYfNfcprhw47O3K2FrW8JAafp+663TI9x513RD+1Jrjkgrci59392ZbOGqHl5Wf3OcAuPk6WS6ud7vRxlW7av/ImaRqrvPTD1WDOC5AOxYcJwKAlwco73HxjFBPr/g8QtiNF7r1Mq8FqW99hmvl3YxeLAmRxIUaKk/N5XbfX3DmyWjQkNwaAfJS6emasmRM+Qev22BUSzZynxS3e2brO7WrS2olhbs8Ai6pYXk6lWCzZubcq3loFRAPr+ZavUSudwGSqXjdHc/sN7TEgRBuGFp6MrOrl2NVwMIgiAIgiAIgnAT4SxEqYX5ROyYiA3elcgHCohR9GQOn7QwB1ZuYW7VVMPbKQdxBIlFeYfXzWt2J9bicTjnCZpolT4fKnwFNUNV7b3Bx/fS8fTfZufY3UH57lsafHXPbbnhTP/cesVRu5mRnfdmD3WWL37rHG5GX7krTPi5PVnV17Kw9axuberKp/lXy7fbTWx1GzK1iJij4UmSeRZUR46fZez0hUytY8cWeu/Yt/K5CsL7jDSbewKv4hnZ3GGqkn6PZl5r1w3oesNb1y3NHfj2eoCGsBA6CNj28N107enn/HdeIBrPbpQqX77G8a98g60P3UXfwf0Nj08UmotS8Pj2Gn/yzvT91jdeL3LnnW4qzsRpxcW2kD0TqZV5C3k2uz4um6FlXegi3XT6wanSJiYIfUKsGn2vdwBPN2qGbbriefwizW5tDC6OcdZikxiTy69ur2EuBGuhVkvdimZs4FSkDW+rQ5wO8DrA1HO7bYNyuwGCe3Zlmt3u7DXccBHdu8AmgyVamc8YUFd3Nym7Gwh6e4kvXcJOTKBMgOntQzVxQ+xSCcNeougateoljGmhVhskn1//RrwgCMKNiPisCYIgCIIgCIKwdkRF8J64WqKYhBQjSy4oY3SqxFFqutlhCXAqwKocxscrszD31FV29QVV71FxkjZElYagiRbm1uGcQylQai0/etUgdyRbig8RDFRpeetMplx87N7U6ruB9Acluk2UqZ2KOxnY8gAuLGTqL7x6loGR7CaGz+4bpi1coYWks6n9ZGhSVfd1MjE32G722P5MzeI4Fp6iqqI5x0fjRS59L2v/bgo5tj9xWBovgrAEPD5Vc+sRPBbtOtG+E+06MHbre7bRPYl2nakq3begXTtO1dKm/gqjN96PtG3ZwIGf/hgbDs3dgOUTy6Xvvcqpv3pqTjNcuPH5wNYawYwmZbHmmBjObmo72ZF9v96RbEEt07r6Ml3YGRtMNLCVseVPeFE0nsOzaseAhW2mlVJoY/BJUnfwXtkmzinCdEOf19exMncx1qQW8UlQQCtI6t+GuFFW5ge2QmsuU5uZ4z0vy7AyT9Xd9e+pb969tMqF6PZ23OgoPo5JBi837VrLQSlNobCNxBaJ4zFKpXfx/sawWRcEQbjRkGa3IAiCIAiCIAhrR20ckhrFao0aeSpxTEtYw1MBFaBmqG8SPWlhHqxY1W1cukCW2sv6VPkCkFh8E9XW1iaAxztXz+pew4Zo+DpqRsPWe/DRA3Q8k23W2tYCpQcPNvbSWPbnRjO1sgs41naIaufWTH3i2jW+diS7CP34pgnu7MnahC+LKVV3ALn8vLKlDtfKrclcV7LjwVkmdHlO3TvH+e+8gIuTTH37Yw8Qtr23G3SCsBakau6xVPHs8zOyuTdiXB/qJlma0q4DbftQpA1vryJpeC8THQZse+Re9v6dD5HrmGsFX7p0leNf/gZDx97Fe3ld3yu05zz3bc5uJHvxndHM46stBWp6+j27QI4trm9Z10mUYZCs3X2/H01vhBrOvfgZXuAKj+LFRUfpwOC9xzs7575i2QQGr+ob++oN9Jmkud0Kp4Kp3G7vPc57rG3Ma6KMJrhrZ6aWHDmz+EBtADdtZb74ldKmd7Oyu4GgpwfvwY6OkgwP4yorjNNpMEHQiTEd1KqXsLZMpbLIZgJBEIT3KWv+iWJsbIw/+IM/4Bd/8Rf58R//cT7ykY9w9mz2l/SlS5c4duwYp06dus5ZBEEQBEEQBEF4z+EsxCVIykzUHOOJwboKhVDhfRVFVvWb6Hzdwlxh/Fy17aL41O1QT6q6lU8tzK1DeQemefaEzlm8c6lNpF7Lj10WlXs5W0puwYwEtL6azUMtPXwXPteA0MYZ7M+NkVNZxclrfjsjW+7KHhjX+INvXsqUNuQTPrV7dOUXn1J1B/Ws7rnf34LPcTDei571UfiUucg1M/+1r77+DqXL2UzxngO76dq7feVzFYT3AXPV3F0o34FxnTeFmns+tG9D2w0oX0C7DjwRXo3jESXecmjftolbPvUx+uaJiXBJwsXvvsLpv36GaKK0DrMTVsKj/dmNbM+dKOJnKnqV4p2ObAN2Z7IFvczm5iXVnXncTkQXzWhatgB3z6q9DCzcuFXaoLTCJQnOpveKqyIMITCkAd3Z5vl0bndIYvIYVY/0cRC7xm0ACO7ZnXnsLo7gri6scocZVuZu0sp8fqbV3QrlzZymfsMwGtPdjZ0YhzgmvjTQpAstn0JhG87HRNEQ5cpZnKstPkgQBOF9xpo2u3/3d3+XnTt38t/8N/8Nf/iHf8jf/M3f8PTTT1MqZW9On3rqKQ4dOsShQ4cYHh5eyykKgiAIgiAIgtAsoglwjlqlSNnlKEUJLWEFrQAfZSzMHQanQqwK0SQrsjDXPk1L1b7e6PagohkW5g22757EOYdz4LxDa7W2qsXgLZTOWrz66EHanz2CmrGg6gND8YN3zR69Kjp1jf4ge+3BpIUzGx+Yk43+t8+dZaw8vcit8Hx+/xAFs4oVzGRWVvcsAm84GO8jJNvgH9DXuGiuzHvKyrURBl88mqmFHW1se+TeeY8XBCHFk8xQcxfqau4WtN2Idr03jZp7PrRvRbuNKJ9H+048sTS8V4AJQ/ofu589n3iCsL11zvPFi4Mc//KTDL99SlTe7wFu7U3Y2DL9vh8njsHLWSvz07OszHOEbLUbl3WdEVopz3qf7/ejy5vsEvE8mHmsqABvLDpOmwBnHd55bLxKK/NcCFrjtYYkawc+ndudw+kApwO0UiTO4ZynUf1us28TqmPWhtXF1N3LsDKHVNCt0Ok/fPOcmUxHByoISYZHcKUidnyxpv3aYEyBMOylVhvE2RqlkggEBUEQZrNmny5+9Vd/lV/+5V9mYmKCXC7H/ffff91jf+ZnfoYtW7ZQq9X4sz/7s7WaoiAIgiAIgiAIzaQ2DrZGsRJRJU8lcrSGVbyvAh6lphfKYl3AA1aFGLcyVbd2TCmCUlV3nD6RJHhjmuYsbq3Fky4k6jVVdXtULmuh6ZPtqGIPbc+/mamXDt+Bm6d5sJpr354bzriGJ17xangr1Y6sffnV85d49nh2w/MPb53gQOcqVCrOplaY11F1K6+4I95Dq88uxg6rcd4Nzs/7s+ASy7lvPz9HdbXzww9iGqyIF4SbhVTNXcbp0Rlq7vabWs09H9q3oN2mesO7a6r5Lw3v5dOxfTMHPvVxem/fO+c5FydcePolznztu0TFuTEUwo2DVvDY9qy6+9m3slEm5XwnA0H2/mCH3YRZTlazUlycpe7ewjjGL9xMXRkb8WTdBxTPs5j0WNU3WzprsXG8Opf1IEwjW4IAZeexMncR1oR40txuo8HWL5g0KLdbaU1wdzYeJn717OKbUJZlZe7qX5tCed08O3OtMD09uHIZV6mQXBpIpfA3APn8ZjyeWm2Qau0SSTKx3lMSBEG4oViTlZeXX36Z3/zN3wTg53/+57l8+TIvvPDC9SelNZ/61Kfw3vPNb35zLaYoCIIgCIIgCEIzcQlEJXxUZiLyjMfpR5F8WAGqpB9NphuIiS7MsDBfvupFM6nqVtN5qXEMzqUK56A5Fubeg3UO5xxKgVJr2Ow2p1FmKDuf6DDtz72BjqZfQ68UE4/d19BLbw+KdJrs9+lk3M3VTVmLTx/X+MPvZFXU21oi/u7O0dVNIK6r9bWB/CxVt4dbkp10+WyOZ1FVeDs8fd1ND5dfeJ3aSFbRs/Ge22jbujyVmSC8X5hWc5fqau7e942aez60L8xoeHfXs8tHpeG9AkwuZPvjD7Dnxx4nbJu7YWLi/OVU5f3OGVF538A8vK2GVtPfn7fPT2CTGdbbSnGsM9uUDgnZtkx19yW6M//LDJ4tNEeh63ko81hxBVg4U1kphTYGX//anV2FuluBD8M0msd7sNnXz9h4KrfbBgW01ulh3hPbxv0uCu7JNrv94Bju8ugio5ZuZQ4z7cxpqp25bmtFFQrYkRFcVCMZujFcZ7UOyec3E8VDWFulVDqx3lMSBEG4oViTTxq/+7u/i/eehx9+mC9+8Yt0dXUtOubhhx8G4I03Frd/EQRBEARBEAThBqc2Dt5RKRepkKdYS2gJI7RyOF9FqQKqLgt26BkW5ha93MaAB21nqLp1amFOHKcWj0o1zcLcWgve452rq7qbpDyZB5XLbij2tg+qO2n/3pFMvXLXLdi+xT+TLZUQy/7caKZWdAHH2u8kKXRm6s+8colKPL06aZTnH+4fIlzNJ1NngfoGBqPnbGTYabew2fVmajUijoYnsWr+n62JC4NceyO7iFjY0M3mBw6uYqKCcHOSVXM7tOuuq7k73ldq7vnQPo+xm1A+V294e3xd9S4sn44dWzjwqY/Tc+vuOc+5KObCUy9w5snvEZeakdEsrJbuvOeujdONXWs9p85nrcxH2noZ0qOZWr/dhFmGdXWkAq7Rnj1Hk6zMYT+e7D1Gqu5eGB0YPB5nLS5apZV5GIKZtDKfL7fbY01IbApTud3WeaxtXLdY79qI6s46BiVHFm76z7UyTxY+nrWzMw96e/C1CDc+QXJlcM7rul7kchtQKqRWGyCKR6hF19Z7SoIgCDcMa9LsfuaZZ1BK8Y//8T9e8pjdu3cDcPHixSbNShAEQRAEQRCENaM2DkmNUi2i4vNUY0dbLkoVWPVm9yTJlIV5bkUW5pOqblVXdXsAG6P8pIV50LQetHMJ3jm8T20d1ww9gAouZEo+eoC2l9/GFLOL/hNPNFbVfUtulFBlF0zfjLcwtun2TK04NsHTR0cztU/0j7GrfTWLvD5VdevJrO6svfgm28sum7VRT7AcDU8Rqfmvm9QiLjyV3TigjGbnRx5CN2mThCC8V0nV3KM4VZ6Vzb3pfanmng9FDmM3T1uae4/XY9LwXiEmn2PHhx5k9488StBamPP8xNlLHP/yk4ycWIKNsrDmPN6ftTJ//p2slXmc7+JEfjRTCwnYvkx192wr8y6qtPvq/AevCjUnuxveAUbmO3h6lDYorfA2wdUdgVZMWL/3CQzK2oziWQHGxViTw2uDMyFaK2w9s7tRud1Kqznq7uTVJTgtLMvKHNbKzlzl8+j2duzoKD6Oia9cWXzQGqCUplDYSpKMk8QTlIrH8V7cQgRBEGCNmt0DAwMA3HrrrUseUyikN6y12ipy2wRBEARBEARBWH9sDHEFF5eYiGA8TrMbC0EFTwS4Oc1uN2VhvoJmtwXt0wU+P9mEjRLwDuUsBM1pWKaLleC8Q2u1pk2eOVndrh2iW+l45pVMvXrLDuL+TQ27bpeu0R9m8zUHklbObbgbb7J24l/+7kAml3JXW40f7V+lreikqtvMVXV3uXZuSXZkDvd43g7OUNLXV/1d/O7Lc1SBWx+6i0JP49TwgvBeJ1Vzl+pqbj8rm3sL2s9tQr6fUYQzGt7deE9d4X1jqAXfi3Tu2saBT32c7lt2zXnO1iLOf/t5zn7j+ySVZjQ4hZVycENMT356o8epSxNEs5TNQ21dXNXZZvE2u4lgGUreIdqpknV6aZ66+x480/c8Co/ixQWOT9EmwFmHdw4br9bKPAAdpE3jWVbm2sY4nUtzu00BoxTOpdtBk4Zame/OPPZDRdyFxSzADaDrVub1e7pFWCs786CnB+89dmyM5No1fPXG+F0Sht0Y00a1dglry1SrFxYfJAiC8D5gTVZfcrn0DX90dHTJYwYHBwHo7u5uwowEQRAEQRAEQVgz6hbm5XKRqipQrFracgFQAl8lbUunjRGHxqocySoszFNVt8YDblLwEUUQ2/Rapjl53dami3TO+bqF+RqhRiA4nin56D5a3jxLMJRVTE08cX/jLovn9lx2ETPxijfVLko9uzP1E2eGOTc43RQPlOcX9g8RrOpl8un3dB5Vd4vLc0e8Bz3rI+/J4AIj5voN9pETZxk7eT5Ta+/fTN+hW1YzUUG4qZhWc1fQvmWGmnsz2vWImvs6KIJ6w7tQb3ir+mYBaXivlKCQZ+dHHmLXxx4haMnPeX78zEXe+dMnGZ31e11YP7SCR/qnhU3ew9FT2cZ2uXUL58zlSW8eAAIM2+3mJV/HK8UlspvUtjKGbooKNg/cO6v2CrDwhk1Vd4tx1uLimFUZEYQ5CAxe1RvHMzAuSqOxdUASFDBapffIjobmduvtvai+rH18cuTMwoMU6X3cMqzMYY3szAOD6ezEjo9DnBAPXG7OdVZAobAN56pE0TDl8mncklTxgiAINzdr8glk586dAJw4cWKRI6f59re/DSxPDS4IgiAIgiAIwg1IbRySKqVKTNmFRImjNWfx1PC+Cio/ldc9bWEersjC3DiFmlJ11xfwEjtlYU7QHAtz78E6h3UOpVKbwbVC5V5CzfiavM9BdBcdT72cOS7q30ht/w4axY5ggg6TXVx7N+ri6qa7YcbXb63lr5+/lDnuk7tG2dq6ygbPdbK6Qx9wKN5HMEvRdcEMMmCun20YFctcfDarhDf5HDs+fHjq51MQ3s/MVXN3o3zbDDX33GajkCVteG9C1xXeypv66ymNitXQtaefA5/6Ebr2zX2Ps9Ua5771A85+8wckFXGPvBF4tL+GmtHIPvLuaOb5JNfOWN5wZY66eyOhX/qGxdlW5iGOTUwse75LwfNgRmCsqAGvLThGKYUODC5Jm9NuNeruyQ1/xqDm5HYnaW63zpEEebSu53Z7T9LA3G6lFMG9uzO15MhZ/GJe6cu2Moe1sjM3XV0obUhGR7AT49hisSnXWS7GtBKGPdRql7G2Rrl8ar2nJAiCsO6syQrMD/3QD+G95/d///eXdPzFixf5T//pP6GU4mMf+1iTZycIgiAIgiAIQtOwESRVbK3ERKKZiNK+ZCFMF5z9PHndTgWAxvhlLvr5un25Tz/mTKm64wi8RzmLb1LmsrMWvMc7V8/qXqPmqCpBeDRbi+8mf/IquYvZfMGJJ+6HBjVt8yphX26WatyFnCjcQq09m6v57GtXGCtOfy9v7azykS2rXWyeVHUbUAbqbmLaK+6I91Ig23S7pkc5bS7Nd6L0bN5z/jsv4GZZqfY/eh9hW+sq5yoI731SNfeIqLkbgMLUX7cCynehfIDTY/VYD2GlBC15dn30YXb+8MOYwtyNF2OnznP8y19n7LRY/q43fS2Og33T77fnBkuUytmNCOWWLZwLBjLqboNmxzLU3VWVY4i2TK15Vua9wIFMRfECi3lsaxMAHpckJHFt5Y7cSuGDIN3451z6Z2oeM3K7lcHp3FRut4eGNrznWJmPlnFnry4yavlW5rBGduZaoXt6cMUSvloluXSJ1UnwG0c+vxWPI4quUK1eJElKiw8SBEG4iVmTTyP/+B//Y8Iw5LXXXuM3fuM3Fjz2nXfe4Ud+5EcYGxujtbWVX/qlX1qLKQqCIAiCIAiC0AyqY1MW5pEqUKxZ2vIBnhLex0Ay1ex2KKzKYVWubmFuFz73LEy9u60Bp2YsREVxqupGZTKdG4l1Cd47vGdNLcxV+CpKTSt4vNf46L45qu6kt5PKof0Nu+4tuVEClV3sOxb1MbLlUKZWKkd8743ppntOOz67bwi92p67naHqDnSaw+7h1mQ3nT67sD2uSrwTnFlw/8G1N45TupTdHNC9fyfd+3eucqKC8N5mWs09AqgZau4ujN0sau4VotBotwntWmY0vMfxSpTHq6V77w5u/fTH6dzTP+e5pFLj7De+z7m/fY6kKq/1evLo9uzr/9rJ0czjcttmKipiUA9l6lvtBnI+ZKnMVnf3UqbFN2djiefBzGPFNWBhxa3SGm00LknqLt6rVHcbk25sTGZZmdsIp8O0uV23Mp/M7baLKa+Xgdnajd6ctY9PXj278KAVWpkDeOWn7MxVk+zMTVsbKp8nGR7BVavY4ZHFB60BWofk85uoRVextkap/O56T0kQBGFdWZNVmH379vGv/tW/wnvPr/3ar/GBD3yA/+1/+9+mnv/yl7/Mv/7X/5pPfOITHDp0iGPHjqGU4rd/+7fZuHHjAmcWBEEQBEEQBOGGpjYOcYViLWHChsTW054P8L6YWpgDqp7XnbEwX4GqW/lU2Qszmt3WopxLF/2MaYrg2jlXF9E4tFZrqHCMIHckW0puJ7xYpXDiXKY88fh9qaS+AfToKluDcqZ2KW7jYvcd2Fw2q/Hrz18iTqYVOj+xY4yNheVtYphL3ZJem9QuPUxV3XvsNja47syRVWocC09lNz/Mojo8xuXn38jUwvZW+h+9b5XzFIT3NlNqbipo34ry3Sjfgkm2pE1vUXOvirThvRHtWusN7xCnJqTh3QCClgK7fviD7PyhD2DyuTnPj757juNffpLxs9d3/BCay90bIzpy0/cHb87K7bZBK3Guk3PBZdwMpa9GszNZurr7Cu1EZJugzVN378WzIVNRPL/oKB0EeO9xiZ3jMLMswhAUeBPMtTK3cT23OyQxBYxKjeStg9g1Nsc8uHdX5nHy+ln8YtfQAcu3Mgfw6WcAFHid/mk0CoLeXnythiuWiAcH65su159cbiNKBdRql4iia0TR0OKDBEEQblLW7JPJP/2n/5T/9X/9XwmCgBdeeIF//s//+VTu2a//+q/zv/wv/wtf//rXsdaitebf/bt/xy/8wi+s1fQEQRAEQRAEQWg0SRVsRFwrUow1E5EnNIp8AN5X8FRA5VAqXYRMVGph7tHLzuvWXqXCEK/mqro9KJvggyZamONxzqPXMKub8E2UqmZKPjpMx9NZVbdta6H0wB0NuaTCc1t+OFOLveKY3cz4hlsz9fODxczi9Y7WiI9ubUBWZv31nqnq3mo3sH2WtWlMwpvhSWJ1fYWQs5Zzf/vcnEXYHR96cN4GiSC8H5ij5vZZNbdC/m80irTh3Yd2bSjfifI5nBrHz/rdLiwfpRTd+3dy4NMfp3PXtjnPJ+UqZ77+LOe/8wK2Jhbya02g4YPbpjd2DFyrMDKe/bkvt26mpmIuz1J3b3YbyPul/R7ySjNAVmm8jVFUU6yoFZ6HZlVOAAs3IJU2KK1xNkk3UCYrbKRqncb1BKZuCT79NWpfz+02aW63qud2O+ew1jfUmXuOlflEFXvyyvwHT88w/eOSZVmZQ2pnzpSduW6Knbkq5NFtbdiRYXwUEV9dzJp9bVBKk89vJU7GsEmJUukE3t8YjXhBEIS1Zk234f6zf/bPOHLkCJ///OfZsGED3vvMn87OTn72Z3+WV199lV/+5V9ey6kJgiAIgiAIgtBoauPgLeVymUgVKNUS2vMG70uAx7valIW5R2F1DqtCNG55FuYetJtH1Q1pXvekuqUJFubeg3UO5yxKUc/rXgscKvdSdi7JXsy1kJbXTmTqxUfuhrAxX/vOcIJ2nW0evxt1M7TpEN5kr/G156ZzURWef7BvGLNqZf0sVXcuR4/tZF+yPXOUw/FWeJqKXlghOfjim1SHs9njG+46QHv/ptVOVBDek3hivM6qubWouZvKdMO7HeU70L5QV3hX1ntqNwVhawu7Pv4IOz78ICY31/565PgZjn/5SSbODazD7N7fPNafbW6/MdvKvGUzHjgfXMZm1N2KncmWJV/noso2u/NYNlBc9nyXxl34umPRJGl298LoIMA7h3cWG69i80WYAxMAavr+l8nc7girQ7zSeJ3DaIV11BXejesQ642d6O29mVpy5MzCgxTpvZ1z6c31stTda2Rn3tODtw47NkZy9Sr+BtkkE4bdGNNKpXqBJJmgWHxnvackCIKwLqz5p5Tbb7+dP/iDP2BwcJAzZ87wwgsv8IMf/IDjx48zNDTEl770JQ4dOrT4iQRBEARBEARBuLGZsjCPGU9CrIO2fFi3MLdANG1hrvJQz+zWy8xS1Eyruv1MOYdzKOtmNEcb72HurE3X5JyvN7qb4JM+H8E7KD2eKfnoMB3ffTWjVnK5kOLDdzXkknmVsC/MNobHbY5TwXbK3dls61ePDzFwbbpR85EtE+xpb8CioE2YVnUb2lQ7tye76z8B05wIzjOmF17ILl66wtXXsguChd4utjx45+rnKQjvMTwOr4o4PQq+ruZ2bRjXjRY1d9NRKLTrxbiOesO7BaeKeFVefLCwKEopeg7s5sCnP07HjrlN0rhU4fTXvsuFp1/ErsZGWlgWm9scB3qmX+83ZlmZu6BAlO8mUgkD5lp2rOulxeWXdJ2SKjBKS6bWPCvzHDA7BuUIsPDmO2U0SilckqT3liu1Fs9NWpkb1Jzc7hhnQjyKJCgQaIWrC9CSRluZ3z3byvwc3i5mZW5IFd12WbndKc23M1dhgOnsxI2PQ5wQX77c8GusBKUUhcJ2nIuoVM9TrQ1QqVxYfKAgCMJNxrpuyd25cycPPPAADz30EPv370evmQoCXnrpJX7913+dj33sY2zfvp18Pk97ezsHDhzg85//PM8+++yi5yiXy3z1q1/lH/2jf8Thw4fp6ekhDEP6+vp4+OGH+bVf+zUu3yBvfIIgCIIgCIKwpsQVsDFxpUTJBkzEjnygyQUa50vTed1qOq/bKlO3MF/GQrMHbWeouvWMZndt0sLc4pug6oZU1e29w/u1tDD3qNyL2Yrdih7rpfXFY5l66cGD+Naswmil3JobwcxQzXsPx6IeRrfcmdlIEMWWb780nYPak0v4uzuzTfKV4dPs9bqqO5dr5WC8FzMri/OsGeCKGb7OOVJsLeL8d7JKK6U1Oz7yENo0RxEkCDcqqZp7FEcV7dum1dx2C9p1iZp7jZhseGvXifLtaN+KUyW8Kq331G4awrZWdv/oY2x/4gH0PCrv4bdPpyrvC4PrMLv3J49tn1Z3XxutMjicdTQot6abEy6YQewM1x+FYqddjrq7O/N4A0XyvjkbGzyH8TM24Ski0ob39VEodBDgrMM7RxKtcIOg0Xij002BzmYsvY1Nz2l1QBwU0Lqe2+0hsY31/g7uyTa7KUfY44u5J0xamU82u5fXgM/Ymbvm2Jmbri5QCjs6gh0bxRVvjN/PxrTQ0rKdOB4lql2lVDpOHI+u97QEQRDWlPflJ5bHH3+cw4cP86u/+qt885vf5OLFi0RRRKlU4sSJE/zRH/0Rjz32GJ/97GeJrnNz8frrr7N582Y++clP8vu///u89NJLjI6OkiQJw8PDPPfcc/zLf/kvufXWW/mTP/mTNf4KBUEQBEEQBGGdqY2DSyhWStTIU4ksbXlTbwyX8FRBBShVV5joPJYcCodm6WoOVdf0Kp8u2GXWteJohhK48Q1M59OsQ+cdSilUE5Tj82LOoUw2+9BHh2n/wRvoePq181pTfOzehlyyz1TYHGQXoC8mbQy27yVq7cvUnzlymWJleh4/t2eEgmnAiuPk9zIMMEGOg/YA+Vlq00E9zDmz+Ibji997lbiYVUxuefAQLX3dq5+nILxHmF/N3VpXc28RNfc6oV13usnAt6F9G06V8apZlsvvP5RS9N62lwM//THat2+e83xcLHP6r5/m4ndfxsai8m4292+KaA2mm5pvnsyquystm/AoYpVw0WRzkje6Hlrd0jb0DdJJMmMZXAFbacRGvPnoBm7LVFIr84XvhVT9XtXZBJck+JVai4e5enSPz1iZa2/Be5zJYU1h6t7VWkfiGpvbrXvb0bs2ZGrJkbMLD5qyMq836ZdpZQ51O3OfOi0pbxrf8DYa3d2NnSjiaxHxwAANfeFWQRj2kMttpFobIEkmGB9/A2sXdhQQBEG4mWhKs/u5557jp37qp/ipn/opvvKVryxr7Je//OWpsS+//HIzpselS6nKYNu2bfzyL/8yX/nKV6bs1P/dv/t39Pf3A/DFL36Rz33uc/OeY3x8nGIx/bDxyCOP8G/+zb/hm9/8Jq+88gpPPvkkv/RLv4TWmvHxcf7+3//7fO1rX2vK1yIIgiAIgiAINxzeQ22sbmGeMFa3MG/PB3hfARzeV+damOscxsfLMgI3FpRP18e8mqEAcQ5l7bQSuAkuUq7efPXO1V2q1qbZrXJZRbJ33ajyLtq+/3qmXr7nALa7Y/XXw3NbLrv4HHnN8biPsc0HM/Xh8RrPvTm9GH1fb5l7ehuROzup6g5AaW4zt9Lus5akY2qCE8G5Rb8NoyfPM3oiu+Datm0jG+66tQHzFIT3Bp5oHjV36ww19xpt3hHmRbsutOtB+Va0b8epCl5NZKM6hFWR62hjz489Tv9j96PDue4vQ8dOcuLL36B46co8o4VGERp4eNt0Q+7N07OszE2OWiHNf75orpDMUnfvsluXdB2rNJfpzNT6/WjTGpWeBzOPFcPAiQXHpOruEJdYvPcrz+4OJ63MA1SS3UBqbIQ1IV4prMlhVLp5Exqb2w0Q3Ls78zh54zw+tvMfPIk21FPEV2BlDpPd7Sk78ya0PkxHByqXIxkexlXK2LFmbZpYPvn8Voxpo1w+S5KUmJh4A+8ba1EvCIJwo9KUZvcv//Iv8+d//uecP3+en/zJn1zW2J/8yZ/k/Pnz/Pmf/zm/8iu/0ozpcdttt/Enf/InnDt3jt/+7d/mk5/8JIcPH+YDH/gAv/Irv8KRI0c4cOAAAP/5P/9nnnnmmTnn0Frz6U9/mqNHj/Lss8/yP/1P/xMf/ehHuffee/nYxz7G7//+7/PVr361vkPO8k/+yT/B3yA7vQRBEARBEAShqcRlcJZapUjZhRQjSyHUBEanqm7vwdfmtzBfTl53vcmt67l8bmZvJp60ME+aZmHuXJqp6D0ovUaNIX0FFWQbtT46TNuLb2HK1Ux94on7G3LJ3eE4rTq74Phu1M3whluxYbbh/I0XLk4tlrYYx8/uyS5ar5hkUtVt2B/sp9d3ZZ4uqyrHwtN4tfBnrrhU4eJ3s5uqdS5kx4ceXDtlviCsI9Nq7jHweoaau0eyuW8wtOtA216Ub0G7DpyqScO7wSil6LtjHwc+9XHatm2a83w0UeLUXz7Fxe+9gotX0ngTlsKj/dPN7tGJiAtXstbQ5dZUgZ8oy8VZzjYbXDdtLnsvcj1mW5m3EtNDef6DV80uPFnnAMXzi47Sk+ruxGLjeGW9+MDglQZjwM6yMncRTtddlUyBwGhsPbc7bnRu9107sxsQazH27UvXPR4AtTorc1gDO3MFpqcHX63iSiWSgQFYLI98jVBK0dKyC5SiXDlDHI9QLB1f72kJgiCsCQ1vdj///PO8+GKaH/c7v/M7hOHcDJyFyOVy/M7v/A7ee773ve81Rd39V3/1V3z605/GXCeLbcOGDfzv//v/PvV4PnX6Bz/4Qf7kT/6EO+6447rX+cmf/El+6qd+CoCTJ0/y6quvrnLmgiAIgiAIgvAeYNLCvFyuW5g7OvJpw9n7Yj2v26NUAQ8kOo8jTC3M/dIXk029u60AN7vJWYtT22vfJAtz53AOnHdordYs03ZOVrdrhepttD+T/axRuW03yZasvfhKKKiEPeF4pjZqc5xlAxN9t2Tqpy5O8M7ZaXXL39s5SnduEQXPkvDpYq0J6Dc72KqyGZ0xMUfDkyRq4Wt57zn/1AvYWnZDRf8j95HraGvAPAXhxiar5m5H+S60a8PYrWlOtKi5bzi0b0fbPhQFtOtIv4dqXBreDSbX0cbeH3+CbY/cO2UlPZOhN9/l+Fe+QWng6jyjhdWyvcOyp2vasvrNU/NZmaf3WRfNFeJZcTdLVXePU2CCfKbW70dXMOOloPA8NKtyClj4Z0gphQ4MLklfD7dSK/1cCGHdytxOv17GpuezJiQJCpj6r/1m5HbrrlbM3mzDPzlyZgkDV2dlDs23M9etLaiWFuzIKC6KSK7dOL8btA5obd2NcxUq1YtUqxepVhfZZCAIgnAT0PAVmT/90z8F4NFHH+Xhhx9e0TkefvhhnnjiCQD++I//uGFzWw4f/vCHp/598uTJdT+PIAiCIAiCILwn8A5q4/ioRLFmGY3SJndrvq5U8SWgSvpRJLdyC3Of2pdrN6nqnrGK5TzKJnXba90cC3NnAY9zHq3WptGNGoPg7UzJx/fS8vppgtGJTL1Rqu7bciOYGa+t9/B21Jval+vphoBznq8/f2Hq8b72Gk9sblDGbN2Cc0O4mb1mT+Yph+NoeIqqWtwRYOjouxQvDGZqXXt30H3LzsbMUxBuUFI198Q8au5etNuEYnkiBWFt0b4NbTegfB7tO/DEeDWGX4HiUbg+Sik2HLqFAz/9cdq2bJjzfDRe5ORffIdLPziCS0Tl3Wgem6HuPnp6JOOO6XVAtSXdwGeV48IsdXef66LDtS5+EaXmqLs3M0G4jI2Wy+NOPNl5LUndbdJ7Z5ckJHFtZX3aXABK4bVJ74cnz+0tyjucDklMHpRC13O7bYNzuwGCe3dlHifHLuBri7zeq7Yyhzl25r7x9+pBby8+SbDjEyRXr+JXujGhCRjTSqGwgzgeJqoNUSy+QxzfOHbrgiAIzaDhv+l/8IMfoJRatn35bH7iJ34C7z3f//73GzSz5VGrTd9kXU8BvpbnEQRBEARBEIT3BHEZvKNSLlIlRymytOQ0Ruu6ojvG+SpKFVBKpRbmGBxmWRbm2qcaRM08qu7JjENrm2Jh7j1Y63DOoRSoJjTT50PlXkZlGs8B1O6m4+lXMsfVdm4h2rNt1dfbYMpsDLJ52+eTdq4VtlDp2p6pv/z2Na6OpDbqRnn+wb5hGuPsnqq6O8IeDgRzM7XfCc4yoRe3IK2OjDPwXDbTPGhtof+x+8S+XLip8dTwegRHLVUJ++66mnsL2nWImvs9gvataLcR5Qto34knqSu8peHdaPJd7ez9iQ+z9eF7UPOs4117/Tgn/uyblAaH1mF2Ny+Ht9TIm/Qep1hOODOQ3TBXbp12dblkrhKRbSzuSpam7r5MJ27G7z2NZwvjC4xYDQFw36za60BlnmOnUVqjjUk3VXimVN7Lop7LTRCkG0Bn3CprG2NNDpTCmjxGQVJ/Pml0bvedO8ncEEaW5NiF6w+AhliZwyw7c6+n/t0oVC7EdHTgxkbxcUwyOLj4oDUkl+shl9tAtXaRJJlgfOINnKstPlAQBOE9SsNXZSbVy3feeeeqznPo0KHM+daap59+eurft99++7qd58KFCwv+GRgYWPHcBEEQBEEQBKHhVMfBxpQqFSo+RyV2tOdT1aCbyuuuZi3MVYjCL93C3IN2acMb5mt2x5CkyhVM45vdzlm8p97sTi0Sm08Fwmyzlvgu8sevkBu4lilPfOh+WGUDV+O4LZe1Ea15zbtRN6Obs5/1KrWE77wy/bnkY9vG6W9tkLolSSioFu7I34lR2abDaXORa2Z00VM4azn/7efxNmtzvuPDhwkK+euMEoT3Nh6HU+M4PQ7eoH0PyrWiXY+oud+jaN+Sfu98Hu276g1vUXg3A6UUG+86wIGf/hitm+dGgtRGJzj5599m4PnXcUkj4jqEQgAPbpluxM22Mq8WNuDq9wFOOc6bbGOxx3fS5doXvU6sAq7Qkan1+1EaLmmu4zmMn3GfqIiBxWMudWDw3qfZ3bV4+epuBYRhGuXj63EwdYyNcDrAoUhMHmN0ei3vSRqc263aC5hbsvEzyZGziw9sgJU5zLYzb3x+t+nuTvdljo6RDA/jKgtvZFhr8vmtGNNKuXKWJC4yPv4G3st7hiAINycNb3aPjo4CsHHjxlWdZ3L85PnWEuccv/VbvzX1+NOf/vSKzvPaa6/x13/910Da/F9Js3vHjh0L/nnwwQdXNDdBEARBEARBaDjeQTSBi0oUI8dobNAK2sJ0cdL7Ip4IcChVwKocoLE6XJaF+ZSq26u5jW7vUXGSWl8rDabxqmtrHd47vPfoxsiXFyd3BKWmNwN4r/DR/XQ89XLmsP8/e/8dJFl2nfeiv7X3OenKd3dVezMG413PYDDwZkASvAIpXoJG5BVFI/KBCpERDEXohq4ML0ldUtK9oZAJUU+gKIkhKuJdvgeJj9ILkgBBgBgYAjOYGYzrcT3T077alk1/zt7r/XGyq+pUl6/Mqu7p/YvI6cmVZ5/c5TJP7m9/30pGR2jee/umn+62eIayyS/gH28PMzN8hKQ8nKt/9flxGq3s2NFiwg/s75ZDyhM54f7KIxSkkHtk3Fy5LsZ0OS499yqNK/lF850PvIeBA3uWGREI3NyoZG5upb3AzV3p9OYObu6bGaNFrNvdEbyHURxqpoLg3SOKwwPc8Vc/wd73P4Qsvp5Q5fILr3Pi//cX+CTEmneDjxxozv3/ayencH5hlLmlWZ5fax63V2iRTwQ6nO5dk5i5OMp8gBaDNJc+eNMMAvflKsIzrOZWFmMRa/Auza45N7KpIo7BGNSYuZYwANZn3zdvC3N9uwXwHpIu9+0GiB45krvvXjuHNlZJc8pFmW9mA6WisjDOvMupq9ZghodxszNoOyE5f2OZ0kQM5XIWJd9onCJJJqnVjm/zrAKBQKA3dH3lp1LJepHMzGxugWN2Nus5Vy6XNz2n9fIv/+W/5JlnngHgM5/5DI89tv5+d61Wi1/4hV/AdXbO/dZv/VZX5xgIBAKBQCAQCNxwtKugnnptlhZFqi1PpWCRjiCsvgraJFtSK5KaEh6DJ1p7hPkiV7cuFrvbncU859Co+22EfMfR7dUjIh1nd69JkHiRCyi9h/h0g9KJc7ny7EcfZbP54RVJOBLnP89NuiLn/BDTY/kNvJcmGzz72ryz/G/cMUHBdmehVFLPveWHqZi+XH1CZngrOrMmQ33twhUuvZDvc14cHmTvE5tLIgsEbjQURaWFl0m8LOfm7n7SRWDrEQpYNzYveKt2BO/gMO4FYgyjD9/De37keymP7rju8fqlCS4+d2wbZvbu48ig48BAdh3XaDnePpe/FqlXds/9v4pyJsq7u4e0n2HNu7aXYoIK9UXpFvt1aoOzXh3lidx9YRp4Y9Vxxkao96h3uGTtrX7miGPgWpS5m9sIYNRnfbttTBrN9+1Ovcf3om/3gwfzm0+dJ33lzMqDclHmjo1GmWdcizMXRKXrceZ2YACJYtzkBL5WxU3fWL2xjYkplw/jfJ1mc5xG8yzN5o0lygcCgUA36PrKzDVH9ltvvbWp81wbv1mH+Hp56qmn+N/+t/8NgLGxMf7dv/t3GzrPL//yL/Pss88C8DM/8zP84A/+4IbOc+bMmRVv10T5QCAQCAQCgUBg22nNgGtTazSp+5h26ukvZuKKapL1jtUmSBHEZP26pdCJMF+ba8Mw7+pW9HoDT9LubYS5SwFFve+4urfAIRm/iizqS63tx69zdbuBPuqPXt/Xen0odxcmc3q5V3i9NcLMrrvxUSl39BefPsc149X7d9W4d6hLvQDV8574LoajkVy5Jg1ej99Z07fdtRPO/MXT+WhSIxx88glMD3q5BwLbgeJRaWR9uWUGEIwfXNCbO7i5340sL3gHh3GvKI0Mcef//CR73vcgYvLLqZdffpPmZK/6Pt86iMBH9s9fRxy7Lsp8J97Mv39fMFdpkr/uOLIWd7cI5xe5u/cwg+1ZvPMBlH35KfD0qqPEGkQEn6Z45/DrjRgX0DjKXNLqr4syd6YAzPftdp3rpaTbUeblAvae/Ne/lVHmcC3O/JrgbbsbZ24EOzKCrzfwjQbp+IXMJn8DEUV9lEr7aSdXSNoTVKuvk6az2z2tQCAQ6CpdF7uPHj2KqvKnf/qnmzrPtfjvo0ePdmNaa+LYsWP88A//MGmaUiqV+PznP8/Y2Ni6z/NP/+k/5T/8h/8AwOOPP86//bf/dsNzOnDgwIq3vXv3bvjcgUAgEAgEAoFA1/AO2lVcq0YtUabbBmugXLgWYV7r/NucizDXToS5WWuEuYJxK/TqVrIIc38twrwHzm7vOhHmXLfY3Rs8UvhOrqLpYaJLBcrH3s7VZz/8CGxSxB2zDXZF+SjPM+kAk/EI1Z135OpvnJrmxLlsoaw/cvz4kfyi9GY4JAfZHecXRlu0eSV+GydrW0A8/60XaM/UcrU9732AyujIMiMCgZsHxaFSw5sJvNRAo8zBrcOI9mPcTmxwc7+rEeJ8pLkK3kwHwbuHiDGMHb2XO/7nJ/PXAF45/83n0R71fb6VeGJvi9hk38fXT02TpAve88XQKM+v06oop6MLufED2scOP7jq85xnKKd3Rnh206sNC7KEu/sUcGHpw+eOEUwU4Z1Hvce1N+LuLkBkUTHgFkSZuzbeWLwY0qiEsSZr7a1K4rov1EaPHM7dd2+Oo9VVouO7FmUO83HmJnN2dznO3PRVkFIJNzGJb7dIr0509fzdoFDYSRzvoNE8S5pWmZl5Ce838DsVCAQCNyhdX5351Kc+BcAf/dEfcezYxmJ8XnnlFf7oj/4IEZk7X6955513+L7v+z4mJyex1vIHf/AHfPSjH133eX7nd36Hf/AP/gEA99xzD3/yJ39CX1/fKqMCgUAgEAgEAoGbnHYVVKnVZmlLiWrb01eMEOkI01pFNQVShFInwlw6EeZrW8CSjjdRVFCWSCFMEkAhdai1XTdde/V4n8WYGyPZglmvid5CzFSupO330f/U8yzU+n2xQO2JBzb1VBbP3YVFLipvebs9xPTu+zuRkhnOef7smfkI9R87PMVA3J3F0THZxeHCbbmaw3EsPkFb1va7Mv3OOSZffydXq+zZxejDm3W+BwLbi5LiZQZvJvE0MFrqiNyDGN+PcaNEbi9GwzrErYAQdQTvUmejg8EHh3fPqYzuYNdDd+Vq1XOXmD5xdptm9O6hL1Ye250JcO3Ec/xMPhK6XtmTu3/RTNCQvGh62K3u7m5JzBX6c7VeRpnD/eii51uTu7vTksenKT5NUb/ODRWFzoYna5EFfb9NRzz2JibJ9e1WXC/6dt9/AOIFArNX0pe3MsqcbLxC5u42XY8zj3bsQNtt3Mws6aWLkNx4r8Ol0n6sLdNonCJNq8zOvhI26QQCgXcNXV+d+Ymf+AnGxsbw3vOjP/qjXL16dV3jr1y5wo/8yI/gvWd0dJSf+Imf6PYUr+P8+fN8z/d8D+fPn0dE+E//6T/xQz/0Q+s+z//9f//f/O2//bcBOHz4MF/60pfYtWtXt6cbCAQCgUAgEAjceLRmIG1Ra7aY9TGJ07kIcwDVKqqN7I6USKU4F2G+1n7dxoFothinS7l7kwScR7zftMN5KbzzgOK9YrakV7cihXzbInVjmKmd9D3/Wq5ee/+DaLm4qWe7LZ6mZPI9X99sD1Pr201zIJ8o9fSxy0zMZNGh9ww2+cBo3kG9UYZkiPdEeQFBUV6LTlIzjTWdI6k3OPu1Z3M1E0cc+sT7tsiNHwh0H6WFlym8mURJMFrB6A7E92P8ADbdg/VjGC1v91QDW4xgsW4MoyVEhxC1HcF7s07IwErsfvQ+4r7839v4t17AJeH7vlk+sn9evH5lUZR5qzjSid/uIHDK5h3S/Vphlx9e9XnOLYoyH6ZBn3apHct1WJTHFtVeBupLHTxH5u6O8c6hquvv3S2SRZlHUSfKPLt+NuoR73A2xtkCiMGI4LziFdarqa86jWJMdN+BXC194eTqA7sYZQ7Z5wfpiNzdjjOXYgHT34+fmkLbCcmli6sP2mJEDOXyERRPvXGSdnuCWn1zrWgDgUDgRqHrn/QrlQq/8Ru/gary5ptv8sgjj/Df//t/X9PYP/qjP+Lo0aMcP34cEeEf/+N/TKVS6fYUc1y5coXv/d7v5cSJEwD8m3/zb/jpn/7pdZ/nf/yP/8FP//RP471n7969fPnLX+bAgQOrDwwEAoFAIBAIBG52fArtKkmrSj2B6ZYQW6EUX4sw96g2UJogMd6UULF4U8BouvYIc8Bo9hHGLx6kIEmSRTSKdD3CXBXctX6JskUR5vYssmgBV9uP0//Nl3LuHLUmizDfBH2ScDjO9+676opccH1M7c47xquNhK+9kM0rEuWnbp9AumCOKVPm3uie6zYSvB2dZdKuLVpUVTn71LO4Zn6xet8Hj1IY7F9mVCBwY6IoKk28TODNDKAYPzAncls/jHX7sH4XQmHV8wXevQgW48YwvtwRvKNOpHmvhLuAiSP2fvCRXC2pNbj03KvbM6F3Ee8ZSdlTya5zjp+ZodVesBFPhHpld+74y2aSmuQ3xB12e1YVMq/QT4v89WJv3d3vRRcsxQsOeG7VUWbO3e1wScK6jbhxDNaiIvm+3X6+b3dqi1iTid2Kkm5FlPnbF/EzK4v93Y0yz+hlnHk0MpJtSpieJr16FW2uEtW+DRgTUy4fwbk6zeZ5Go3TtFo3njAfCAQC66UnzZt+8Rd/keeff57f/d3f5fz583zmM5/hyJEjfP/3fz+PPfYYY2Nj9PX1UavVuHjxIs8//zx/+qd/yqlTp+aiMz772c/y2c9+thfTm2N6eppPfepTvPpqdiH6z/7ZP+OXfumX1n2eL3/5y/z4j/84aZqyc+dOvvSlL3HHHXesPjAQCAQCgUAgEHg3kIswL1JLHIM5V3cNUNQ3ESmTdCLMHREFXZsj2HbUbWGJXt0AaZIp0mmK2qj7EebeodqJMBeh60+wBNf16vaDSPUI/d96KlevPXovfnAzkcXKPcUJzIIvySu83tpBbeQ20lK+9+VXnj1PK8kWQX/gwDS7y5uPaYyJuT++n1jiXP2svcS4vbLm80y8doLZ0+O52uCR/YzcfWTTcwwEtgrFgzRRaaB4RGOM788EbbUYHUR839a0UgjcNAgG40eBK3gjwDTezGIURDeX/BFYmqHbDtB/YDfVs/NC0eWX32Tk7tsojazeNzqwNCLw4QNN/uubfaROef3UNA+/Z8fc443KbgaqCyKwBU7Zce5Lb58rVbTMqB/hss07wxeiIpzXYW5jPpV0L9Mc19Gsx3XX6QceAF5aMPXvoHwQWF50FRFMZPFpgo0sPmljC+vY4BQXQBpgIyRN0EJ2rWVdQhqV5/p2F5IGbQfeQ+I8hai73wN77z4oxtDqiNYK6YunKXzknuUHLYwyFwekbF7O8KAGJIszV/Ww1GeLjRBZ7OAgbmYaOzBAMj5O4bbbVh+3xURRH6XSPprNc9iowuzsq1hbIYoGtntqgUAgsGF6InYDfO5zn2PPnj381m/9Ft57Tp48yec+97kVx6gqxhj+0T/6R/zar/1ar6YGQL1e59Of/jTPP/88AP/wH/5D/t7f+3vrPs9f/uVf8kM/9EO0Wi2Ghob44he/yP3339/t6QYCgUAgEAgEAjcuzWlwTWrNNjPpAM55+orzomUWYe6ANiLDpFJaEGG+BpeGZmtQ867uJRak2gn4LMJc17MAuEac8x2HumK77BpfEnMFiU7kStp+L/1Pv4ZpzkdYqkD1Y49u6qn22Do7bN79dyoZZNZUmB7LL0Cev1LnheMTAOwrt/nUvrU5rlfCYLgvupeylHL1KzLFO/bcMqOupzU1y/lvvZCrReUSBz762Fzv+EDgRkZxIA28NLM0Cy0iWkaIEC0gfgDRCrIFm20CNyeZ4L0LuIo3ALN4mcEwgGhpldGB9SIi7PvQUY5//s9Q33HCeuX8N57nth/4WHjv2QQf2Nvi/3u8glPhlROTObG7XRwmtSUiN++avWqmqUqdfp1PCD3s9nDFTK7Ymvm8DHObzovdBRxjVLlIbzYrKE8gObF7FuU1MhF8eYyN8KnDO0eatDGFwtrfCYygNkKiFJrZ9TLGYF12PelNTBoVKZlsK6dTJe1B326JI6IHDpA+985cLX3h1MpiN4CJwLfBxJA2Idp8Uk8WZ25QUUQtStq1fax2aAhfrZJOTkIc4WZnsQM3nohcKOzCuTqNxhmMKTEz8zLDw49jTLz64EAgELgB6dk2YBHhN37jN3jmmWf4zGc+gzEGVV32ZozhR37kR3jmmWf49V//9Z5eELbbbX74h3+Yb37zmwD8yq/8Cr/5m7+57vO88MILfPrTn6ZWq9HX18cf//Ef89hji/uvBAKBQCAQCAQC72JcAkmddqNGIxWmE6EYmZwbxGsN7fRA9GZgUYT56otpRjNpx+gyQjdk/bpTBwjY7u7pvebo9uoRyfrd9ZrrXN1agsZ9DHzju7l68747SEdHNvw8Fs9dhalcreEtJ5JBZkbvQW1+48AXv312Lj7zb9w+QTdMP3dHdzFo8ovKs1R5Iz655oVH9Z7Tf/E0muZ7jh/4+ONE5SDwBG5slAQvM3gzgaeJ0XIWVa4DWWy52411ezDaF4TuwKpkgvdOjO9DdADRIl5m0UUxz4HuUBoeZNdDd+Vq1fOXmD5xdptm9O5gsKg8MpaJsSfOzVBv5lNkFkeZX3N3L6SsJcb8DlaiLgUmyLfQ7G2U+T6Ug7mK8PSqo8QYjLX4NAUFv97e8IW4c30snetlELTTt7uAs0XAYOaizMF1u3E310eZ+5OX8ZOrpDyZiMzd3c4c3jd6nLkRzMgIvlbDN5qk58dZf/b81lAqHcCYEo36SdJ0ltnZY3Opu4FAIHCz0TNn9zUeffRR/ut//a9MT0/zjW98gxdffJGrV68yOzvLwMAAO3fu5OGHH+bDH/4wQ0NDvZ4OAD/5kz/Jn/3ZnwHw5JNP8vM///O88soryx5fKBS46678hevbb7/Npz71KaampgD4zd/8TYaGhlY8z9jYGGNjY5v/AgKBQCAQCAQCgRuF9iyop1ar0qJIo+0YKi90dSuqNZQGSIQzA+uLMFcwPhO8YbkIc4d0IsyJuh9h7pwji2H3GGPoeYS5zEL0Wr7WfoTKd09gZ/Lfs9lNurrvKExTNHmB+I32CK3iELWRfOziKycmOX0xe/6P7Z7lzsE2m+U2e4RdZleu1tQmxwonlt/YsASXnn+NxqWJXG3HfXcweGjvpucYCPQCRUHaKA1Ukk48eT9oCVHBaH/m5CY4rALr55rgLRi8EZQqXqoYFNHK6icIrIvdj97H1FunSarz/YfP/+ULDBzcgy2Ev+GN8pH9LZ67WMQrvHZyisfumb9eaFT2MDh7Knf8hJlhRmoM6nxrl0PpXi6ZSXSFa4pzMswOnf/Z7aRGSds0pftJQXDN3T0fwy6cRTkH7F9xnIki0lYLn6Y4MZg4XvsVaSGGRgONIiRNF0SZt3GdjY1pVMK6GknqO327FWu6e81r79oL5QI05q8h0xdOUfjEfcsPEsDG4FpZlHnahIJl8x6+3sWZ274+/MwMbnISUy7hJiawO3d25dzdRMRQqRyhVjtOo3EaEUu9foK+vtCeNRAI3Hz0XOy+xtDQEJ/+9Kf59Kc/vVVPuSx/+Id/OPf/X/nKV3jooYdWPP7w4cOcPHkyV/v617/OpUuX5u7/nb/zd1Z93l/7tV/j13/919c110AgEAgEAoFA4IamNQNpi2qrxbQbwnlH/8J+3TQAh2oToURiijiJ1xxhPu/qluUXKpM2aOZO0bj7i8rep50I88xZ02uk8Dwifu6+aoS2jjLwtT/MHde6bR/twxsXc/ulzcFoNle7kpa45MpMHXgwa5rZIUk9X3omixQfih2fOTS14ee9xh6zhwP2QK6WasoxeZNkkQC/EvWLV7n4/Ku5WmGon33vf3jTcwwEuk3Wj7vV6cftOv24B4ECohajA4jvR1bo3xoIrAVBEL8DELwBg+Cl1hG8+1YdH1g7Jo7Y94FHOPWlv5yrpfUGl55/lb3hvWjD3LszYWfJcbVpefntyZzYnRQGSKIKcTovUiNwKhrnweTOuVKJAnv8TsbtlWWf5xIDJBhi5q+99us0b8tod7+gOe5BGUCYvwYTnkH54RVHiTGINXjnMJFHU4dEa3yvMAa1FrEW0iRzGotgfUIad/p22yIFqdMmSzpPvafY5VBYiSzRQ4dIn35rrpa+cHJlsRvAWPA2S5QS24k133xyT8/izAWiHTtIxsfx1SrJhYvYoaFsU+4NhjEFyuVD1Ovv0GpdABGiaJBisVe//4FAINAber9SEwgEAoFAIBAIBN6duDYkDZqNWZrOMtNWSrEhsvMfM9RXszg8bXUizCO8rDHCfC2uboBWAklKtrLU3UUkrx7vsxhzYySLO+wpLYhfzJeS+ym9dpH40mSuPPvx927ieZR7ipMsNOw4hdfbIzQH9tLqyy9wffOli8zUss0JP3HbBJVoc86XERnhTpt3jXj1vOZfo15Ilxl1PT5JOf0XT+fjIUU49OQTmPjGW1AM3LooHpVaFlUuNdAI44cxOoxoP9btxLp9GD8UhO5AVzF+BOMHEe3DaAUvdVTWkKwSWBeDt+2n/0A+Wvvyy2/SnJzephnd/BiBDx/I2uCcvlhltpbfJFmv7LluzJTMMi35jXwH0z1z15JL4cUwTj5tdB9TPYyetiiPL6q9AsysPtJGqPeod7hknQk7cTx/nZxm11rzfbsLpFEJc61vt/ekTnvyLbguyvzsBP7K7DJHL8AWAJ/FmKft7P+7gIrOxZlLF+PMpVTE9PfhJifRJCG5fLlr5+42UTRAsbiHVvsSSTLFbPUYaRreJwKBwM3FLSl2r9Q7fKnbYlc3wM/+7M+u+zzB1R0IBAKBQCAQeFfRmskizKtVWhRotD0DxbzAqHP9uhVnhlEEJ9HaXN0scHVnob/XkzpEPTgH1nY9Ydw7Dyje65b06iZ+EZH5xUtV0PZ7Gfjqc7nDkj07ad59ePHoNbM3qjFiW7nayWSQOkWmdj+Qq09X23zzpYsAPDTS4LEdm+v72id93BPdjUj+h3XcHWcqbuQc5atx/tsv0p6u5mq7H72PytiNFxUZuDVRUlRmO/24GxgtdUTuQYzvx7jRTj/u/i3YTBO4VTF+GOOHO4J3f0fwri73zhrYACLCvg8dzSfAeOX8N74beuBugg/uayFkouuxd/Kb/hqV3df/BgucjPK9u4vE7HW7Fh+Z45wM5+6XSNlFL8W+x9AFgauCR/jKqqPEWsQIPk3xzuH9OgTfQgwCaiNkQd9u49NO3+4CisEawXl61rfb3rEb6c+7stMXTq4+UARMDD4F9VmceVdQ0CwNAzXZrUvY4RHUedz0NOmVK2hr8y2AekWxOEYUDdNonCFNq8zMvoT3a9+AGggEAttNVz9J/Yt/8S9oNDa38LESzz77LF/4whd6dv5AIBAIBAKBQCCwDlozaNKg2kqYSrJ+f5Vi3hHhtQo0AENqBnASA4LV1Rd7jFuDqztJsgUql6JddnWrgvOdhUSh06+7l6RI4flFpbsovNOgeCq/cDv7sUfXJQovJMJzV2EqV6t7y8lkkNkdt+MK+XjbP//OeVKnFI3nf7ltYqNPC0CBAvdH9xFJ/md1Oj3FJS6vy5k/c+o8E6++natVxnYw9ui9G59gINAllDZepvFmEk8bo2WM7kC0H+MHsekerN+N0XJnW08g0FuMH8T4EUTLGN+PlyYqs0Hw7iKl4UF2PXRXrlY9f4npt88sMyKwGjtKngd3ZRskXzmRF7vTuI8kHrhuzIypMSl5l/QBtxuzgohZlRLT5AXYfTq1wVmvhQqQj7gXXgTOrTrS2AjvPOo9bj3iqbWoGIhstkm086dvXIIzWRsgF5WwRvCabTNN1yOmrxGxhujhQ7la+t1Tyxy9iM488Ul20+6IsSoeOp85RA3delmUOMIODuJnZiBJScbHVx+0jZTLBzGmQKN+kjSZoVp9NWzWCQQCNw1dXa35u3/373L77bfzz//5P6dW697ut29961v8lb/yV3jiiSd45plnunbeQCAQCAQCgUAgsEHSFqQtGvUqbY2YbSvlgsEuEIQzR3eC1xYqfaiJcRJjWD3CXDQzaYtmRy6bPpm0O1GMki3edRHvHeqzeG0jQtdt44uJXkNM3qWs7cevc3WnQ/3UH84vpq+HOwtTFCS/ePlGewdJVGZ21925+ukL1bnF5R86OM3O4tp7aS/GYrk/uo+iFHP1S8kFTvkzUCiuWcBPG03OPvVsriaR5eCTT2xJX/VAYCkURaWFl0m8mUZxmXtbdyC+H+uHsOk+rN+FUNju6QZuQYwfwLidCJngrdIOgneX2f3ofcT9lVzt/LdexLVXT7QJLM1HDmQO3nOX60zO5FNp6pXdSw3h1CJ3d4GYfW7lHsSL3d2jzFLokpi6FMrH0UXvBcIXWE1pzfp0X3N3p+h6BOnitShznY8y923UmKxvd0fszlzdkLrevDZEjxzJ3fcXpnDjU6sPFJZwd3dnjr2KM7dDQyCCm5zAzUzjqzduPLiIoVI5guJoNM/Qal+m0Ti53dMKBAKBNdHVVYCPfOQjXLx4kb/39/4eu3fv5q//9b/OH//xH+Pc+hdETpw4wW/+5m9y33338eEPf5gvfOELDA4O8thjj3VzyoFAIBAIBAKBQGAjXIswr1VpUKCRePqLce6QzNUNaANnd2YLZxJj/Rpc3V7mBG+VZRbxnEeczxbrjN2w03k5nPNZn12vW+DqVqSQF281PUA0XqD82ju5evUjR7PI9g0wYNociPKC+qW0zBVXZnr0XtTmndVfePosAIf7Wjy5dw39FFfgnuhu+k1/rjadTvKmezNrzLnGHtuqytmvPUfayMdX7vvAIxSHrnd4BQK9JuvHXUfNBF5mAMnc2x0nt/UjWLc/c9USeskHthejfRi3C9ESxg+gtFGZQbvU//ZWx8QR+z7wSK6W1htcfO7V7ZnQu4AHdyUMFbPfz8Xu7kZlz5JS56ypc9Xk+6UfcGPYFdzdFxjELdjYaIC99LLnej/KR3MV4Szw8oqjBMHEEd451CsuWcdGirgAIqixSGe93rpsvDMFUlvCiCCStfJxvjd9u82RUWQovylkTVHmACYCDLg2qIM1fK5YGz2KM7cGMzyMq9bQVitzd9/AbmljipTLh0jTGVrNC9TqJ2i3r2z3tAKBQGBVuvop66mnnuLzn/88//v//r/zxhtv8Ad/8Af8wR/8AX19fTz66KM8/vjjHD16lLGxMUZGRhgZGaHRaDAxMcHk5CRvvvkm3/nOd3jmmWc4ffo0kC1kFItFfumXfol/+A//ISMjI92cciAQCAQCgUAgENgIrRl8u06tlTCVVDDi6YvzAqxqFdU24EntEE4KZBHmqyzKKRjtxAgCfjkNu93uRJg7tNBdl6Rq5uj23iNC7/t12xOIvZqfQ/t9DDyVjzX35SK1992/wSdR7i3kY8idCm+0R2iXhqmP5HuAf/fNq4xfaSAof+P2Cewm9hLcYe9gh9mRq9V9nVcbL6FFC+v4+U2+8Q4zJ/MxnwOH9rLj3ts3PsFAYAMoDqSBl2b2WqQFjFYQIkRjxA8iWg69uAM3HEYr4Efx5jIGyTZpyAzoYPh97QKDt+2n/8BuqmcvztWuvPImO+45QmlkaBtndnNiDXxoX5M/eafCKycm+cgje+Yec1GJdmGIYvt6UfqUHWenn/9+x0Tsd2Ocji4s+TxOLBd0kP0LBO79OsUpdnR9Q+U8T6A8hzAv4gt/jnIPrJAAYqzFJwnepbhEsIXi2qYYWVQEiaLOdXQRkYV9u2O8GKwITuf7dkebuQhcAjFC9Mhhkqdem6ulL5yi8P0PI6t9IQJEhczV7VKglfUj78Jrl4rPPn+IIt6gxncl2MkODOBnZ0knJpFiETc1hb2BNY4oGqRY3EOrdQFjK8zOHmN4+HGsraw+OBAIBLaJrm8p/rEf+zF+9Ed/lM9//vP863/9r/nWt75FtVrla1/7Gl//+tfXdI5rvSD27NnDz/3cz/G3/tbf4uDBg92eaiAQCAQCgUAgENgIaRNcm1ptljYFZlpQKVjE5FeD1NdQbeKJ8dI3F2FuVnGP2Y66bVihVzdk/bpdCui6ej2vBe8cqKLed1zdvY0wl8J3cvfV7cJc3UXlhT/J1asfeAgtbkzY3x/VGLJ598uJZJCGRkzteTBXb7UdX372PADfs3eWw/0bj18dNaPss3tztUTbHKs/TxqzLld3a6bK+b98IVezpSIHPvb46oujgUCXUNLMyS0tUMFoGbSEYBFfQnQgqwUCNzBGy+DHOoL3EF6mQaZBh4LgvUlEhP0fepQ3P//F+Yhpr5z7xne5/Qc+Ft6vNsCH97f4k3cqXJpscmmywdjI/GtsvbJnSbG7ZhpcMZPs8vOi4n43xnl7mVSWTiE9J8Ps1/lz9dFmmAZT9Erki1A+hfAHcxVhFvgmyieWHSUimMji0xQbRfikjV3rxsE4znp2tzW7jo4irGuT2KxneWpLRMbRTB2qWd/uaIOJQiuxWOzWK7P4cxPYAztXHywmc3j7NPvXtcB2531XRRE1HeHbdja2bfKkAnZkhPTiRXytRjJ+ATs4lO3kuEEpFMZwrkGjcQpriszMvMTQ0HsxJiTUBAKBG5OevKKKCD/+4z/ON7/5TV577TV+4zd+g49//OOUSiVUdcXbbbfdxs/8zM/wh3/4h5w5c4bf+q3fCkJ3IBAIBAKBQCBwI9GaAXXU6zXqGtNOPf3F/MKHaorSRLVBaoezXnUSY/3qrm5RMJ0m3cuK3d5n8YupyyLMTXcXjp1PUfWo0vse0OY8Ep3NlbT9Xga+8WIW036tFlmqH3p4Q08R47izMJWr1XzEqWSQxuB+2pW86/prL1yg1kjZWUz5qwc3HuFpMNxmj+RqXj3H6i/RpJX97NYo3qv3nPmLZ/BJvn/mgY+9l7hS2vAcA4G1kvXjnsKbSZQEo9f6cfd1+nHvwfqxIHQHbhqMljB+DNEiRodRHCpTIdK8CxSHBxh9+O5crXb+EtNvn9mmGd3cjFY89+7INuwduy7KfAxdRo08ZS/ketJHWA64sWWfZ5oy1UWO6v06tcFZr5W7UBan0/wlsPLzmk7rGe8cadJeezJ2IQZjUGOy62jAuASMwYsljYpzGqxTSHrUt9sc3InszLe3Sb97ah0niAEPPskizVl/G9Wlyb7euTjzLsknplLGVCq4ySk0aZNcudyV8/YKEaFcPogxMfXGSZJkhmr1tdUHBgKBwDbR8604d999N7/6q7/Kr/7qr5KmKd/97nc5e/Ysly9fZmJiglKpxOjoKKOjozz44IPs3bt39ZMGAoFAIBAIBAKB7UEVmjO4Vp16O2Wq3Yc1nnLh+gjz7N8mzu7DSUwWYb5yXz2jgnT+XdXVrSBp2vUI8yy+HLz3GCM9d7hd5+r2/cjMbfQ9nU/Gqr33Pnz/xpxFdxamKCzqff56awQnEdO787HoEzMtnj6WLcD99dsmKNmNL3IesAcoSjFXezN5g1k/mfWNtGbNrvzLL7xO/UK+Z+DIPbcxdGT/hucXCKyGoiBNVBooDtEI4weAIqIWo/2IH0DovustENgKjBYRN4azlzAMZw5vMwV+KPxeb5Kxo/cyefwUSbU+Vzv/rRcZOLQXW4i3cWY3Jx850OK1iQKvnJjiE4/tm6t7W6RVHKHUmrhuTN00uWwmGfPzm/r2uVHO2cskkl53PCKcZ5i79NJcaTczvKG7SaVXfw+C8ingc8ic0JoCf47yo8uPMqYTZ55iogifJth4Db9XUZzFskcRkiSoFuc2ozpTII1KiAgignMeZyTb/NnlQAKRTpT5l4/N1dIXT1H4gaNrSz8QyQRvn2Tu7rQJUV9X5tazOPOREZLz53EzM4i1RDt2IGv5mW0TIpZy+Qi12nGazTOIsdTrp6hUDq8+OBAIBLaYLc2diKKIxx9/nMcff3wrnzYQCAQCgUAgEAh0i7QBPqFWnSGRIrNtpa8YXbco5bWGaopH8WagE2HuVo4wVzB+Da5ugNbCCPPuLj565wHFq2JNjxf6ZQKi47mSth9j4OlXMe15F7yKMPvRRzf0FEOmxYG4lqtdSCtM+DKzo3fi4rwL9c+ePofzynt31nhwpLmh5wQoUuSAyQvRk36Sy63zYEzm6l7jYn/98iQXnjuWqxUG+9j3gUc2PL9AYCUUP9+PG9/px92PUACNMDqA+L4Q9xx4VyAUsG53R/AewjMNZjoI3pvExBH7PvAIp770l3O1tN7g4nOvsu8DG0tquZV5ZKxNf+yZmGlx/nKdfaPzGwDrld1Lit0Ap+0FRv1I5tQFLJYDbjfvROeWPP48Q9zJpblXd4uyh2nOsmPJ47vDGPBeYH4DpHAM5XFgeWHRRBGpa+HTFCcGE8era7ICGsdI6rK+3c4hkcW4JOvZ7WK8WCJxpApFIPVK3OW+3QDRI0dyYrdO1vCnrmCPjK7tBCYG7zLBW6QjfHdHPO5FnLkU4qx/99Q02t9PeuEC8Q2eaGttiXL5EI3GSUzrIoIQRf0UCmuImw8EAoEtJHwqCwQCgUAgEAgEAmunNQM+pdaoU3UxidPrIswhc3arNkhNPxB3IsxXcXUz7+peGDl5HV4Rl3YizE126xKq4L3Dd3psmh5HmEvhuZxTRrUA9fvo/8aLueMaD96J2zm0gWdQ7inkF39TFd5sD5PGZWZ3vif32NvnZnjj9DRl6/mJI/mY0PVyxB7GLnBBqSonkuOABxut2dXt05QzX3ka/ILfCREOfuKJ4IwLdJ2sH3cVbybwNDBawPgRjA5h/ADG7cK6vRg/EITuwLsKIca63fOR5gpqpjKBJ7BhBm/bT/+BPbnalVfepDmx8RYhtyqxgQ/sawHwyjqizBumxUWTvxba53ZR0KWvIRKJuMxArtb7KHNQPo6Sb8sifAFW2CgqxiDW4F2n/U66hFt9KeIYrEHFdDaPgvWZ2A1kUebWoJpt/kx9b1obmL3DyO789W36wsm1n0DIril9CurAZRvUusOiOHPtznu+HR4GwE1NkU5O4huNrpy3l8TxEIXCblqtiyTJDLOzx3Duxp93IBC4tQifzAKBQCAQCAQCgcDaUIXWDEmrRqPtmWxbYisUI7PoMI9qHaWFs0OoKQIGqyv061YwboGr26wUYd7O1p9cikbdFTu970SYq8eI0JXMwuWQGsSv5GvtR+h77gR2QeQpwOzHH9vQUxyMqgza/Pf9RHuIlkZMj92fuas7eK988enM5fSjhycZKmx8sXBABhiz+Z6Y436cent23a7u8adfojU1k6uNPXIPfXt2bXh+gcBilAQvM3gziaeJ0XLWj1sHMH4Q43Zj/W6MVubcgYHAuw0h6gjepY7gLaiZDoL3JhAR9n/oKLJw85xXzn3zeXTNTZYD1/jI/kzsPvZOXuxWE9MsLe80PR1dwC8QQQ2Gg+nuZY8/J8O5+4O0GNBei3sVlI/nKsIF4IUVR9koQr2i3uGSFa61F3ItOjuymcMbsK4NYvASkdoS14zcvod9u0WE+JG8cz194RS6HnHdRCAW0oTsIn6N34M1oOKh89lE1Mz9/6awBjMyjJudRdsJyfnzmz/nFlAs7iaK+mk0TpGmNWZmXkY1vDcEAoEbhyB2BwKBQCAQCAQCgbWR1ME7qtVZ2lKgmnj6i/a6CHPVGlkMeAtvBnFS6ESYL78gcs3VLR1X94pLakmSRS6qgu1uvKrzDsWjXnvv6o6/i8j890TVoq1H6P/a87njmnceJNk/tnj4qhRw3FGYytWqPuZ0OkCrsoPGUD5i/NnXr3B5ssmdA00+PJaPPV8vd9jbc/cTTTmVvAP4zM29Rlf37JkLXH3lrVytvGuE3Y/dv8yIQGDtKIpKCy9TeDOFkmK0H6M7Ed+P9YPYdC/W78JocfUTBgLvAjLBe6zj8B5CVTuCd2+cnbcCxeEBRh++O1ernb/M9NtntmlGNy97+x13DifM1BJOXajmHqtX9iwzClrS5oK5mqvt8TspamHJ46/SR2NR98+tcHfDe1HyEd7CV4DWsiPEWMQIPk3xznXa8ayCgMZR5opWD6nH+AQUnI3n+nZbEVLn8V7p1d6MaJHYrbNN3IlLyxy9DDYGfObwTlt0z909H2cO0hG8N39O2z+ARDFuYgJfq+GmpjZ/0h4jIpTLhxATUW+8Q5pOU62+vt3TCgQCgTmC2B0IBAKBQCAQCATWRifCvN6oM5vGOAd9xevduao1VB2pFFApZBHmK7m6uebqznzUulKvblUkSSFNQUwmmnaJLMLc471HBER6+XGpDYUX8qXkXsovXyS+mo82nf3Yxlzd7ylMES/6Xr7eGsEjTO1+MFdvtFK++vw4VpS/cfsEZhPGlTEzyoDJx3+edqdIk2bm6BYLhaUXlxeSNluc+ep3cjWxloNPPoF08eceuPVQPCoN1EziJUsNMH4Qqzs6Ivcw1u3H+B0IISo/cOshWKwb7fSq7wjeEgTvzTB29F7i/kqudv5bL+Da3XOh3ipcc3cvjjJvlkfxK1y7nYkuXufuPpQuI5CLcH6Ru3sPMxjt9d+ARflUfirUEL624ihjI7zzqPe49sptg+aICxDZLMrcp1krIZ/gTAFvIrxYrIDrqNxJr6LMx4Yw+0ZytfSFU+s7iZjM4e2Tjnjf7OIMF8eZd2GjrRHsyAi+0cDXG6QXLmSu9BsckYhy+Qjet2k0z9BsXaDRCJt2AoHAjUFYIQgEAoFAIBAIBAKrox5aM7SbVZqJMplYipGhEF3/kcJrFdUWqelDpYJiVu7X3RG5RQ0K+JWE1nanF6FzaNxdV7d3DlRR7ztxoz2MKo5fRiS/EKft9zLw1HO5WnvfKK33HFz36YdNk31x3p09nlaY9CXqw4dIysO5x/7iuXEaLcf/tG+GfZU19ntcAoPhiD2Sq9W1znh6ljlXd2QgWvlnp6qc+/pzpPV8ZOje9z9EaWRww/ML3NpkInct68ctNdCo0497GNF+jNvR6cc9FPpxB2555iPNOw5vHCozQfDeICaO2PfBR3K1tN7k4nPHtmdCNzGP7WlRjjyvvjOF9/Ob+tRYmqXRZce1JWHcXsnVdvsdlPzSyR3nGc6ZeGM8u5lZ8tjucgfKXYtq3wauLnUwABJZ4Jq7O11bDPi1KHNrkfRa3+42zsYokEYljDXZZlBV0rU4xjdIdPRI7n764ml0vc9nOl+PTzqi98avZxczH2cuiEpX4sxNXwUplzN3d7tNenX5n++NhLUlyuWDJMkU7dZlarXjJMnk6gMDgUCgx4RPb4FAIBAIBAKBQGB12jVQT3V2hkQKNBJPX/F6wVJVM2c3LZzpw5syBr9ihLn1gsy5uldZ2ErakDpEfebg6CLOu06/cXocYe6QwrO5iiZ3UHyrQeFsPrZx9uOPgaxvQU1Q7inmF50SFd5sj+BNxPTYvbnHLk02ePb1K+wuJfyVA3lX+Xo5YA9QlPyi8Yn0HdS5zHUjZn5xdQWmjp9m+sTZXK3/wG523n/npuYXuDVR0k4/7gk8DYyWOiL3IMb3Y9wokduL0f4gcgcCC8gE7wUOb9KO4B16TW+EwSP76T+QdxJfefk4zYnNvffeahQtPLGnTb2ZcuL8bO6xemX5PtwAZ+xF3IJrUkE47JZ2dzcl5ip9udrWRJmD8n3ogvcjwSN8adnjBcHEEd451CvpWnp3G0FtlG1A9B68x7oERLK+3VHWt1sA55W0R3274fooc+ot3PEL6zuJSCZ4+zTbpOuadCVzvEMWZ35N8LZdOXU0MoImCW5mhvTiJUi6J9D3kjgeplAYo9kaJ0lmmJl5BeeWj9oPBAKBrSB8igsEAoFAIBAIBAKr05oBl1BrNph2BZyH/uL1YrPSABxtEehEmBtd2dVtlE4vvFVc3QqSJNkilpiu9uv2qniveO8xRnoreEVvIia/OKvJ4wx8Ne/qTncM0nhg/eLuwWiWAZNf5Hy7PUxbLTO77sJHpdxjX/z2OVThb9w+QbyJL7tIkQMm3wd80k8yqVfBu+znZVi1V3d7tsa5b+b7lttigYMff991/eEDgZVQ2p1+3JMoCUYrGN2Rubj9ADbdg/VjGC1v91QDgRsWodDp4V3A6GBH8J4NgvcGEBH2f/hoJz2mgyrnvvk82quGyO9SPnIgS8e5Psp8F16Wv85IJOX8Inf3qB+h4ktLHn9uUZT5CA0quhWi3k7giVxFeAN4e9kRpnNd7F2KT5K1/U4V46xvtwikrtO3W/E2JrVZ324jgvOKV/A9+jU1O/oxh3blaukLJzdwoggw4JLs2tN3s02AokL2GUGlK3HmUixgBgbwU9NokpBcvNiFeW4NxeIerO2n0ThNmlaZmX0J7XnMfyAQCCxPELsDgUAgEAgEAoHAyqiH9izN+iztVJhsCaXYEC3RN1l9DVXt9Ou+FmG+/EKT7ajbBvAr9eoGuOZSSR1qbVdTxr1zgOJVe9yrW5HCM/mK20d0pkDpzdO5+uxHH113T/KipNxRyDvEZlzM2bSfpNBHdecducdePzXFifOzfGi0yt1Dm1u8PWIPY2V+4U9VOeHeAddxUFm7qqtbvefMXzyDX9TDdP9HHyPuC4JkYHUURaWJlwm8mQYU4wcykftaP+50H9bvQli9d3wgEMgEb+PHOpHmAyjtIHhvkOLQAKMP352r1c5fZurt0Pd2PRwadBweTHn91HQ+XlsMjcryUeYAZ+1F0kXu7kPLuLsvM0CbvKi5de7uj6Lk+7wLX4RlWgmICCaK8GmKql53LbUkcQwCaiMkzfp2W5+Q2gLeWJyJsEbm+nb3Nso87+5OXz6DpssnQy2JAFEM6rLNsWmT5b5fG8N3HN2SbdTtQpx5NDyMquKmp0gnruIb3ew33jtEhHL5EIih3jhJmkxRrb6x3dMKBAK3MEHsDgQCgUAgEAgEAivTroIq1doMLSnQSJSBJVzdAKpVvLZxpowzfQgewzKRfAqiYDoLRWsSu51HvF/VHbweVMF7h+/0N+xphLk9hdjL+edvP87gU9/N1Vxfmdp771v36e8qTBEt+j6+3t6BIkzvfiBzxF97Duf5s6fP0R85fvTw1LqfayEDMsCYHcvVxv04da1D6sFkvSRX+7ldeflNauP578/wew4zfPv6+5YHbi2yftx11EzgZRYwGD+E0RFE+7B+B9btw/hhhO62QAgEbgWMFjF+V0fw7kelDVLd7mndlIwdvZe4Py9ijn/rBdxaxMnAHB/Z36TVdhw/k++jXS8vLVxfIxXHOZtvGzPqR+jz12+qUxHOM5Sr7WUa2RInfgnlk7mKcBl4dunDmXd3q3OkaZtVp2lMtoE0sh0ntGJcgjeFrG+3LWKNoApOlaSXYvfDh/MbWZsJ7vXz6z+R2Mzh7dLORX53nfgqvhNnTnfizCOLHRrCzc5CkpKOb+Br3iaMiahUDuN9k0bzHM3WeRqNc9s9rUAgcIsSxO5AIBAIBAKBQCCwMs1pNG1Ra7SYSjJnbmWJft0AXqukJutn50wFq8myBmyjgnT+XVXovhZh7tIsarGLEeaqHu+zf41kc+8VUvhO/rn9CObSGOWX3szVqx98GOL1CXI7TJM9UT1XO5f0Me2LNPtGaQ7kF3+/fewyk7Nt/tqRSfrjzS1e3mFvz91PNOWUO52lAuCzn5c1sMJGgsbVKS4880quFvdX2P+ho5uaW+DdjeJQqXb6cddB404/7mGM9mPczo7IPRD6cQcCm8RoORO8KWF8H16aqNS2e1o3HSaO2PfBR3K1tN7k4nPHtmdCNynv29umYJRji6LMW6URnFk5SeacvUSyaDPmYbd36WMXRZkXcYwyu+Sx3ecRlPz1m/AXQH3Jo8UYjLX4JAUFn67R3W0jQCBNsb4NAt5kfbuNWdC3u1c55oAZqmBuy2+cTF84tcGTxYDPYszTBFinQ3wVuh1nbgcHERuRTk7gqlXczFb9fm0eayuUSgdJkgnarSvUam+SJNOrDwwEAoEuEz7pBQKBQCAQCAQCgeXxDpIa9dosqQrTLaFcMNglREvVNpCQiMWbCmCxy/XrVjB+Ha7uNOshSJqiNuqqHu2cQ/F4r711dZuLSJRftNP24wx8/QVkweKhjyOqH3xoXacWlLuLE7laoobj7WEUYWrPg7nHqo2Er71wgfuGGjyxa+kF07UyZkYZMAO52ml3mpS0E2EumcgdLb8Y6FPHma88jfq86H7wE+/DFkPUdOB6lBQvMx2Ru5mJcDqC0cEsttyNYd0ejPYhPdzAEgjcahitYNxOhDJG+/FSD4L3Bhg8sp+Bg3kR88rLx2lOBJForZQj5fE9Ld48M0M7WSBmiqFR2b3iWCees4vc3Tv9EAO+ct2xdSkySd71vVVR5mBQvj9XEZoIX11+RBShKD5Nce326sbjQqETZW4R5zA+c0Q7UyCNSgiCMVnf7iwNqXeCd3z0SO5+euwM2lomIWolRDLB2yfZxsu029HgXY4zN4IdHsbX6vhGk/T8eVa35d84FAojFAqjNFvnSdNZZmZfxrmt6G0fCAQC82y52D09Pc1//I//kV/4hV/gB37gB3jyySc5dSq/4HP+/HleffVVTpw4sdXTCwQCgUAgEAgEAgvpRJjXa7M0tEAjVfqLS7tlvFazyEOxeNOfRZjr0gtUhnlX95p6frYT8L2JMHfe471HhJ72677e1V3BTN1G33fyTq7a+x5AK6V1nftwPEO/yX+v32oPkWCp7riNtJgXo7/8nfNomvLXb59ENrE+ZzAcsUdytbrWGffjgGZit7HZouMKP7cL33n5ugX+0Yfvpn/f2DIjArcqSgsvU3gziZJk7m3difg+rB/CpnuxfhSj6/sbCgQCa8doH8aPIFrGaKUjeDe2e1o3FSLCvg8dRRZuslPl3DeeR28ikWu7+ciBFknqeeN0/hqivorYDXDeXqZN3vl8OF2bu3snNYq6VbHzh1EWt7Z5Fri01MGIMYg1eJf17tZ0FbHYGtR2NiU6h2jWt9vZAiqdvt0ieK8oSuJ69/tpHzwEZsGFaduRvrbBWGwTAyYTvH0KXf55dTvO3PT3IcUibnIC326RXp1YfdANRLG4B2v7qNdPkiZVZmdfRrV3sfeBQCCwmC0Vu3/7t3+bQ4cO8dnPfpbf+73f40/+5E946qmnqNXyO0C/+tWv8sADD/DAAw8wMXFzvbAHAoFAIBAIBALvKloz+KRJrdliKo0wAn3x0g5d1SopBlCc9C0fYa5g3AJXt1nD6lCSQNpxCXcxwtw7B6qo950F5x45QGUKojdyJU0epe8vX8Uk84uQagzVj6wvtrskKbfH+X6V067A2bQfZwvMjN6de+z85TovHJ/gBw9OM1bagFtmAQftAYpSzNVOpO9kGxi8BzSLL18hwrx67hJXFsW4l3YOs/vxBzY1t8C7D5U63swAivGDGN3REbmHsW4/xu9AWDm6NhAIdAfjBzB+GNE+jJbxUg2C9zopDg0w+kj+Pbo2fpmpt05v04xuPm4fStnbl/LK2/ko83ZxhNQWlxmV4cVz1l7M1UZ0kEHfd92xFxkkWbCMLsB+pjY87/WifC/K/KZBQRG+yHIKq40i1CvqHa69TMrSQuK4sykxS1Gyro03cbaJNSplfbvJLu1S3zsB0wyUsHfmEw/SF05u7GRC1rvbp6AO0hbQ3bl3O8482rkDbbXxs7OkFy/CahsVbiBEDOXyIRCh0ThFkkxSqx3f7mkFAoFbiC0Tu3/t136NX/mVX2F2dpZCocBjjz227LE/8RM/wZ49e2i1Wvy3//bftmqKgUAgEAgEAoFAYCGdCPNaLROxp5qGSsEiZmlBWH2Vthi8xCDFZSPMpePqFs0WzlaVutMUuRZhHnU5wtw7VD2q9DTCXArPIQui2lVjpHY//X/5Yu64+iN34UYGFg9fkbsKk9jcueH19gggzIzeg9p8DPgXnj7LgUqb7927uX6ARYrsN/tztQk/yaR2FpydA0zm7I6WFiBdq82Zrz6Tq4kxHHryCUwXNzUEbn5UmnipZRHKOoJoH9bv6PTjHkIIvy+BwFZj/CDGDyLaj9FSR/AO0bXrYeyRe4n789HZ499+EdfeKtfwzY0IfPRAi7fPzdJYFHe9WpQ5wLi9QmuRu/tIuu+6i1MvhgsM5mr7dGoLo6aHgQ/kKsIJ4M2lDkZMdr3u0xTvfba5cyXiAoigphNl7pJO3+6Y1C7s2+1Jnfb0y44eOZy77147hzbXINgvhYkAk7VD8i5zeXeV7saZS7GI6e/DTU2hSZvk0uWuzHKrMCamUjmC83UazfM0mmdpNs9v97QCgcAtwpaI3c899xy/+Zu/CcBP/dRPceHCBZ555plljzfG8GM/9mOoKl/60pe2YoqBQCAQCAQCgUBgMZ0I81pthoYv0HZKf3HpKGrVFE+T1FyLMGfZCHPrQDRbNFNZg8OinfXrFu9W7Pu8Xrwq3msWYW4kc2b0hAbEL+dLyUNUnjmBred7CM5+9NF1nXmnbbA7yjvpzqb9zPgiSXGA2siR3GMvvz3J2YtV/sbtE0Sb/HKP2MNYmf95qCrvuHeu3cvsP7azOrrMz+3cN54nqeZ7hu954kFKO4Y2N7nAuwqVFl5mMVrKXKR+EOv2YvxAD/9uA4HAWjB+GOP7QfsRLeJlFiUI3mvFxBH7PphPdEnrTS4+d2yZEYHFvH9vC1HPayencvV6Zc/SAxbgRTkTXcjVhrSfYb1+4+HiKPMyKTvYun71yodR8vMS/gxYpmWQjfDOo96v7u6OLHqt5UyazvfttlnfbhCsEZxm2q7rYd/u6MGD2fXjNVJP+srZjZ1MgKgA+Mzh3RN3d3fjzKPhEdR53PQM6dUraOvmej21tkKptJ8kuUrSnqBafYMkmVl9YCAQCGySLflU+Nu//duoKh/4wAf4/d//fYaGVl+4+MAHst1qL7/88ipHBgKBQCAQCAQCgZ7QmsG1mzRabaYSizVQLiwXYV7DSQHVBGf6sNpeNsI8E8KzjyJ+LQaIdgJJShZh3r1+3ZnLRfGqmB726qbwAiILospV0MZRBr7+fO6wxj1HSPfuWvNpDco9hUWxnWp4qz2EAlN7HmRhQ+4k9fz5d87x8T1Vbh/YoEOmw4AMMGbz/bTH/Th17QjXcxHmNrst0Rh86q3T10W19u8bY9eDd21qboF3F0qCl1lEC6D9GN+fRSf3quVAIBBYN+JHML4f0QFEY7yZRQnO5LUyeGQfAwfzwuyVl4/TnJheZkRgIf0F5dHdbV45MZWrJ4VBkqi86vgL5ipN8tdFh9O914mWs1Jmhnw0+n7NP2dvKaB8T64iTABLG8okskDH3e0culr8eKEAsQUUcSnWt3EmRsXgTYwx8327XQ+jzKVSxN6d752+4ShzADGdOPNs82wmeHcXFZ2LM5fNxpnHEXZoCD8zA0lCMj7enUluIYXCTuJ4J43mWdI069/t/eY+ewQCgcBqbInY/bWvfQ0R4Zd/+ZfXPObIkSMAnDt3rkezCgQCgUAgEAgEAssyF2E+i8Mw1Tb0FSNkCdESwGuVRGI8gkoJq0svctuOui1kbppVSR2iPutZZ23XIsxVwXuH7yzW9S7CPEHivKhNei/lFy8STeZjxGc/tj5X95F4horJu3mOt4dJsTQH9tDqG8099s2XLmKSBj98cGpdz7MUd9jbc/cTTTnlFgjX1yLMxUB8/QaFdrXOua8/l6uZQsyBT7xv2d+xwK2HkuLNNKIRooMY34f4ke2eViAQWIQgGL8j+xvVQUQjvJlGl3GcBvKICPs+dBRZeC2iyrlvPI9uWUz2zc2H9zc5OT5LtZ6//myswd2topxe5O4e1D52+MHrjl3s7h5jlniZJKPe8CDKgVxFeAqoXnekIJg46gjdSpqssgGlEIEY1FhIHdYleHt9327nIXG9/b2Mjh7J3XdvjKP1TYjUptNOxyfg2yznht842tnQK6Amu20COzgIIqSTk7iZGVz1+p/vjU6ptA9rK9QbJ0nTWWZmXw6vZ4FAoKdsidg93tmBdPfdd695TKlUAqB1k0V1BAKBQCAQCAQC7wo6Eeb1epW6j0kc9C3j6gbwWiMRgzclBItZSuzWLL7c+Guu7jUseCTzEeYadc/VrerxPvvXiNDVRuALiY8hJh8zrq33MvBUXuhtHdxN+7Z8/+uVKEvKkTgfCTjlCpxP+1AxTO1+IPfYdLXNN1+6yE8emaQcbW6hacyMMmDyMZqn3WnSuYVDzTZLRCb7xLno56aqnP3qM9f1I93/4UcpLOpbGrh1URxqpkFNR+guYfyO4OgOBG5Q5gXvckfwtngzFQTvNVIcGmD0kfy6aW388nUJKIGluXtHyq6S49V3pnL1emX3mlKlL5mrNBbF7x9217u7LzCEW/A+ZIC9bKUDX1C+f1GljfCVJY82Nrt29y7FJ8nKYqON56LMxaXYNHPiuk7fbiuCCHjvcb7HfbvvO5BvgeOV9KVN/C2ILHJ3N1cfs05U/FzP7qx/9yZOZg1mZARfraGtFun4+Bb2h+8OIoZy+TCg1BunSNqT1GrHt3tagUDgXcyWiN2FQgGAqampNY+5ePEiAMPDwz2YUSAQCAQCgUAgEFiR1gw+adFotZhOI6yBUrxchLknJcGLw5kKkbol5SijmUxlWKPQDZC0M1c3cp1ouhmccyge77WHrm6PFJ7NVTQ9QvH1BoXxK7n67Mffu2TU99IodxcmsAu+h6rwWnsHIMzuuANX6MuN+NJ3zvHAYI1HdzbYDAbDEXskV6trnXG/IGLRuexfa5f8mV195TjVc5dytaE7DjLynsObmlvg3YPiUTONKhgdwmgR40dDf+5A4AZHMBi/qyN4DyFqs79l3HZP7aZg7JF7iRdt+hr/9ovXbQ4LXI8R+MiBJi+fyLd3SeN+krh/1fEqcCrKx0X3a4WdPt+KMxXLRfKO7/06tcVC5H6UhxfVvgtcH3ctIpgowqcpqopfqXe3AHGcXb+pImkbVPG2QBoVUcCK4Hzv+3ZLKcbel98Emr5wanMnNTFgMme3d5nw3WW6GWdu+/uRQoF0YhLfaOAmJ1cfdINhTEy5fATn6jSb52k0z9BsXVh9YCAQCGyALfmkeOjQIQCOH1/77p2vfCXbkbYeN3ggEAgEAoFAIBDoAp0I83p9Fo9hpm2pxMtHmKvWSU0Rrw4vZYwusZCmYHwmeMMaxW7nEechdV2PMHfe471HJHMe9IToOGKm8s/dft91ru5k1zDN+25b82lHbYPRKO9IOZP2U/UFXFRkdle+5/XpC1XePjXBT962+UWyg/YARcn3qzyRvoMutK84B8YA10eYNyemGX/6pVwt7iuz/yOPbXpugXcHikdlJktd0CFECxgXhO5A4GYhE7xHMVpCdAhVCYL3GjFxxL4PHc3V0nqTi88e26YZ3Vx8YF+L85erTFXz16GNyu41jb9sJqlLflPgUu7uxVHm/bQZYnObCdeL8kmUeO5+llH0BZayE19zd6tzpGmysi4fx2ANagySpljXxtmsb7czMZERvCqqStrDvt0A8eIo87cu4s5c3fgJBbBxR+h2HXd3t7+GLsaZC9gdO9BmE1+tkVy4OL+h9CYiivoolfbRTq6QtCeozr5Gms6uPjAQCATWyZZ8WvzkJz+JqvK5z31uTcefO3eOf//v/z0iwvd93/f1eHaBQCAQCAQCgUAgR1IDVRr1Kk0t0EqVSnGlCPMqiRTwEiFil+zXPefqVlm7q7vdzhaMnEPt5twRufk6B6qo953+mL2IRVak8J18xe0mOlmg9PbZXH32Y492xOHVMXjuLuRF65Y3vN0eBmB67D7UzgvMqsoXvn2W//ngFDuKm1sgK1Jkv8m7bCb8JJO6YD7qs5u1mc3KzP/cvHOc/srTqMsvLB74+PuIioVNzS3w7kBRVGZR0jmh27oxhO6lOgQCgd4jmGyTihYxOoSqdgTv3opj7wYGD+9j4GC+z/SVV47TuDq1PRO6iRguKg+NJhxb5O6uV/asLVFa4JTNu077tMyoH8nVpihTI3/dsl+nNjDjzTCA8pFcRTgNvHrdkWIMxlp8kmadZlbq3R13BPTIIq7Tt9vEKEIalTDX+nYrpD3u223v3QfFBe//qjR+9yv4i5uIjTcWxIJLsutVv4LTfYPk4sz95uLMTbmEqVRwU5No0ia5fGX1QTcghcIu4ngHjeZZUldjZuYlfA+c9YFA4NZmS8TuX/7lXyaOY1588UX+j//j/1jx2DfeeIPv//7vZ3p6mkqlwi/+4i9uxRQDgUAgEAgEAoHANVozkLaoN1tMpzFGoLxMhDlAQguPw5ki1uv10vEiV7euOcI86USY63UO4c3gvEPVZxHJvYowt2eRRQum2n6cwaeez89loEL96D1rPu1t8Qxlkxet32yPkGJol4apDx/KPfbCmxOUWlN8Yk91nV/A9Ryxh7Ey/3ugqrzj3skf5BzQEbkX/cwuPnuM5qLF+l0PvoeBA2tzXAXe/ajMopJgdGCB0B2vPjAwh0dppZ5W6vOJC4HAFiNY7GLBW4LgvRoiwr4PHe1sxuugyvlvfnflfssBAD66v8kri8RuF5VpFwaXGZHnipmiusjdfcjtyQuWIte5u/cwg9Wtdt1+ACU/D+FLwBKbTqMIRfFpikvay787CGgcZ/2t1WPb2ffCmTgTu0UQEZzzpD3u2y1xRPz+9+SLtRaN3/kyfmIT17W2APgsxjxt0313dyfOXLMNtaJ2U4K33bEDTR1uehp35TK6UhT9DUyptB9ryzTqJ0nTKrOzr4TXtEAg0FW2ROy+4447+K3f+i1UlV//9V/n/e9/P//X//V/zT3++c9/nn/yT/4Jn/70p3nggQd49dVXERH+1b/6V4yOjm7FFAOBQCAQCAQCgQBkLod2lUajRuqF6bZQig3GLBdhriTiUFI8RaIlFowM865uXav84j3iXCcS266jn/Uqp1XFe80izI30LBpZCs/k7qsfwl4Yo/zKW7l69cOPrFnIr0jCkXgmV5twRS64CgpM7nkw91ir7fiL587x07dPsMyPb80MyABjdixXG/fj1LWeP9D5jks932O9Nn6Zyy+8nju0ODLInvc9tLmJBd41qNRQaWF8fyaO+V0IwfG/HlLvabQdzntS76l3/j8Q2C6EKNu0ck3wxmVtCoLgvSLFoQFGH8lvhKuNX2bqrdPbNKObh/t3JbSqVa5M5du9NCp7lhmxCIFT9nyuVNESu/2OXG2codxvsUXZQ/4arfdEKN+bqwjTwLeuOzJzdxu8y3p3a5ouf9q4AJFFxWBcC1GPtzHOllAgEkg7F/NpD/t2AxT+p0ew78n/7HS6TuNzf46fqS8zahVEsv7dPs0+96TN1cesm+z7MhdnvonPGxJH2IEB/PQMmiSkFy52aY5bi4ihXD6M4mk0TtFuX6VeP7Hd0woEAu8itqzp1d/9u3+X//P//D+JoohnnnmGv//3//5cz79//I//Mb/6q7/KF77wBZxzGGP4F//iX/DzP//zWzW9QCAQCAQCgUAgANCugir12gwtKdBMlb7CSmJsk1RiUszyEeZunb26AdpJFmGepmjUPVe3dw5QvCqmV726zWUkyjuetf1eBr72Agu/fF+MqT7xIGtDuac4mROtvcLrrRFAaAweIKnkF2K/9sIFPjgyyYG+zccE3mFvz91PNOWUW7To7h3QiTCPzFw0u2snnP6LvPgvxnDoyScwUffi6QM3LyoNvNQx2odQwvidGC1v97RuKlqpp5l4rAjlgqVcsFiBRpK5vAOB7WJe8C5gdBgl7QjewdG3EmOP3EM80JerjX/7RVzr5nR1bhVG4EP7W9e5u+vl3Wv+jZswM8xKLVc7lO5BdP4irC0RlxnIHbP1UeYA96IczlWEb8ASwruJItQr6h1uJXfwtet+a5HUYVzS6dstOFvAWoNqdi3d677dEltKP/cxzOFdubperdL8na+g9dbGTmw6qTE+yW5LfH7ZLN2MM7fDwwC4ySnSqUl8fYNC/zZjTIFy+TCpq9FsjVNvnKTVurTd0woEAu8StkzsBvhf/9f/lRdeeIGf+7mfY9euXdlOsgW3wcFBfvInf5Lvfve7/Mqv/MpWTi0QCAQCgUAgEAgAtGbBtWm02sy4Aqqs2K870SYegxOLQZFFKznS6dUtmj2ia3UYtxNwnQjzLgmiquC9w3cW5noVYS6FZ/PP68uYydvoe+61XL32/gfRcnFN5xyzDXbavPPkdDJATQt4sUyO3Zd7bGKmxVtvjfODBzbR1/Dac5tRBkx+Qfe0O03KIleQ92QR5gai+ejpS8+/SjKbXzTe/fj9lHfle2AGbk1UWnipYrSMaAXjRzDat/rAAJClVTSSlNR7irGhFFuKRigapRwL5Ri8T2m2E/y1DSnL3pRNrcYHAssgxAsE78EgeK8BE0fs++AjuVpab3LxuWPbM6GbiA/vb3HsxESu5qMireIarzsETkbjuVKJInv8zlzt/KIo8yGa9GsvXMIrISjfz8ImQkKC8OXrjzQWMYJPU7z3nQ2gS51Sso2mUQTeY5PmfN9uW8J2nspvQd9uACnGlH/hE5i9w7m6vzBF43e/gjY3IFQLi9zdLXrx/te1OHNrMCPDuOos2m6TjI+vPuYGJYr6KRb30m5fJkmmmK2+Sppuvt1SIBAIdM8isUbuvfde/uN//I8AnD59mkuXLuGcY+fOndx+++2965kXCAQCgUAgEAgEVkY9tGdpN6u0UphpCcVYsCtco7dp43F4iSku4e4wDkSzNSUva3R/eEVcCqnLhNMufUZQ9Xif/WtE4Pru4ptHZiHKi9okj9D/jVeRdH5RUa1h9sOPrOmUFs/dhbxDqektJ5IhAGZ3vQct5F2wX3z6LP/LkasU7eYW7gyGI/ZIrlbXOuN+8SKbZpHzthM5b7MNCu1qnSuvHM8d2bdnF6MP3b2peQXeHShtvMwiWkS0H+MHMX5g9YEBABLvaaceI1CODZF4ypFDrAVVCqmjrY5CBInzaAoYITKyrle/+VcRWfCyKYseX8sZF2+HYsnzLT+Phccsca4Vnnfp/w9sJUIB40fx5hKGAbzMZu+ZOsD6fiNvHQYP72Pg0F5mT8+/51555S1G7r6N8s7h7ZvYDc7OsmdPVGX8ap29Oytz9UZlN6XW5Aoj55mSWaalypD2z9UOpru5aK7OpRRdoY8mEaUFm//26xRvyBoj07vGHuAo8PxcRXgJ5XHgQO5IYyNckmC8x7XbmPIyKSqFGJIUFcG2m1AewtkCaVSi1J7BipA6T2QE1a51G1oWqRQpffaTNP7tn6FXZufq/vRVmr/3FKVf+AQSr3NzrIkysdu1QQz4Npi1bUJdO0oWZi6omuxD0QbbONj+AfzMLOnEBFIo4Kam5hzfNxvF4ijO1Wk0TmNMkZmZlxgefhxj4tUHBwKBwDJsibL85JNP8uSTT/J7v/d7ufqhQ4d473vfyxNPPMGdd94ZhO5AIBAIBAKBQGA7mYswr5JIgUbq6SusvHDUFo/vCMdWF0kPmn3gyBwN4Ne6EJa0s7Uhl6JR9xY9MgeLx3vtoav7OWSBqK8aQfV++r/9cu64+qP34Af7Fw9fktvjaUom7755oz2Cw5DGZWZ23Jl77O1zMwzXx7l/ePPuooP2AEXJL/ydSN+53o3nO65Qa7NbJ2/94rPHULdgUc8IBz7+OBI++93yKCnezCAaITqA+D6MH97uad0UKEozcbSSTGjoi6AkKZUI2qU+auVBapURkr4RCuUBiMqYuIy3Reo+ouoiEimQmuKCW6Fzi3GLbn7uFuElwovFY+ZuOpfrsdqL/LWjFLk2Wjs3n3ZuSe5mF9wi315waxGv+dZccGvM3ay22ajoENgYRosYv6vTw7sflTZIcPQth4iw74NHEbvgPVOV8994Hl18zRXI8ZEDLY4tijKvlXav4XWqg8CpRe7uIgX2uAVx2iKcZzh3zF6mMbr1ryvKkyj56zXhCyy2EktkgY672zl0uRjyuJDtDbIRNmlmfbtNRGqLKNll3jVTd9LjKPNrmMEy5V/8JDJUydXdWxdo/pev568314IAUSHb7OvSjru7+1/L9XHmG9wZYAS7YwfaaOLrDdILFzrX3zcn5fJBjCnSqJ8kTWeZrb4aXtcCgcCm2JIVhq9//es89dRTHDlyZCueLhAIBAKBQCAQCGyEToR5vdlixsc4D5UV+nWnmqKipGIy0WLR2o3tqNuGdfTqhk6EuUNU5xzCm0UVUu/x3iMC0pN+3U2IX8qXkgfo+/YJTGO+p6AKzH700TWdsU/aHIpnc7WrrsQllzlxJkfvz1ycHbxXnvrOaf7akbU5l1aiSJH9Zn+uNuEnmdQlzu0cYDJnTJz9zjQnp5l882TusJ333E5xKDh3b3UUhzfTiFpEBzG+gvE7Vh8YwHlPve1w6umLPX0moWQ9UblIvW8YF5WoOE8FcIUS9b4hosEhCsVM8I4KZdoaM5VYGj4ilZhUYpwUOrciqRRJKZJSmLs54vxNYvwSt/nzrHbrPM+1myl1buXcLcndSp1bcdXbWoR8QYl8C7O4JUOgpxgtZ4I3JYzvw0sTDYL3shSH+hl9+J5crXbhClPHT2/TjG4OHhptc/JMPsqcKKZZWvt7zbSpMin5a7CDbjdG568hz8lQTk6O8YyRH7M19KF8LFcRzgEvLaoJJo46QreSJsv07jaC2ihrJeQ9NmnhbAFEcLaY69vttiDKfG5aO/op/+InoS8v7LtjZ2n9v7+F+nXORcy8w1sV3AZ7gK9CPs584/27TaWMlMu4iQl8q0V65UpX57mViBgqlSMojkbjNO3WZRqNk9s9rUAgcBOzJTHmY2NjXLhwgeGbNFojEAgEAoFAIBB419OJME9bdZqJMtO2xNZTiJYXhVvSQhEcQqxtcntpNUvqM3Ou7jWu6qgiaQppmsWX2+6I0t450EwMzlzFPchbLLyIyPyioaqgjaP0f/2Pcoc177uddGwti63KPcXJ3CYCr/B6awQQWpWdtIbzYvSzr13hyeELDMabd3ocsYexMi+kqyrvuHeWnCfeZb0dDXMbFC4883K2cNjBRBFjj923xPjArYTiUTMNKogOYXwJ43eGGOM10HaexDkK4inZbINRXCiSlvpJbEQMlNVgozICxAotY2gVykihTLmdUK+1KBilmaZMJ0rkhUohum6z0obQpe9cf+qFj+l1teWPXfKJlq5r9p8lvyzNnOVeLIbMNY4oXkJ86lZhtAJuJ95exSh4qWIQRPu2e2o3JGNH72Hy+CmS2dpcbfzpFxk8vBdbLGzjzG5cIgMPDM1y5mKVg7vnk3Rq5T2Um1fXfJ5T0XlGkvnWKwVi9rldnI0uAdCUAhPax07mfzb7dYoLMtSFr2K9vA/lOYT5r0/4c5R7gfnfE2MtPknwLkUSQQuKLJVDHsfZ9TiCaTdIC2U8QhqVKKbNrEWRz5zdZbqzOXUtmN1DlD/7JI1/9+ewoF93+tw7SDGm8JnHl/56lj1hDL4BPgEH2AJ0/etZFGcOIMv0TF+FaGSEZHwcNzuL2Ag7sgOJt7xTbVcwpki5fJh6/R1arQsggo0GKBZ2rT44EAgEFrElzu6HH34YgDfffHMrni4QCAQCgUAgEAisl06EeaM+S9sUqSeOyioR5ok4UhHAEy3SKYxm0lW2iL1OVzeAc2jUvYUb5x2qHlXF9MTVnSLx84tKd1F5/iLRTC1Xnv3YY2s64x5bZ4fNO0xOJoPUNUaBS6MP5h6rN1POHD/Jh0bzz7cRBmSAMTuWq437cepav/5g11msszYTvEWoXbjCzMnzucN2PXQXcWWZ3pCBWwLFozKd/R3qUBZl7MeQrVmauGnxKM0kAdeizySUrcdEMXHfIK2+IdJCiYqJqZiYkgg7khYjSYuKc5S8pz9NsaokhZjSYB+lUkQ5jugrRjhVZpsJ7W4482ThTeZuet3NzN282M4tWua20DV+7ZZ3iadzt4VO8cwtnix1s2Xapi+LaJcCzsQYTbHamwjbwNIY7cP4EUTLGK3gpY5KY7undUNiooh9H3wkV0vrTS4+d2x7JnST8JH9TV5ZFGVeL4/i13EdOGvqTJjpXO2A243NubuHc4/voE5Zl3FM9xSL8n25ilBF+Hq+JoKJInyaZu7s9jJzLcYgoNYStbLrP28LpLaUnUOkk5qUbcbcSuyBnZR//hOwqE938pdv0v7TF9d3MpGO4J10oqA23wZoKebjzAVR2XCcuRQLmP5+/NQUmiSkFy92d6JbTBQNUCzuodW+RJJMMzv7Cs4t8XkjEAgEVmFLPlH+wi/8AqrK5z73ua14ukAgEAgEAoFAILBerkWYN5pUXUzqoG+FCHOH4GjjEIwmmIWhUQrGZ4I3rFPsTtqQOkR9FivYBXzH0e29Q0R6E2EevYaYvMisrfcy8FReAG/dto/24b2rnw7PXYX8Am3DW95JBgGoDh9G+vKuoa999zx/7eAl1mNmWY477O25+4mmnHLLRKZ6l7nwMWAjVJXxp/OxmbZUZPThu5ceH7glUBSVGRTXEboLWDcahO5VcD7FtZsUtE0pAhMVsMU+bN8gjfIgJirRr0IBGEwThtKEzl8j/S5lpN2m7B0Vl9LnHBhB+suUB8sUYsNgMSayQr2VUmun3DLtMgVSySLPPRGpKWbtW30LYWNuu8D6MX4A44cR7cNoGS/VIHgvw+DhfQwcyl8/XHnlLRpXp7ZnQjcBu/s8zYkr+AVKrLERzdL6XKOnbL53d0zEfje/IfAS/bQXOYH369T6J9wV3oNyx6Lat4D8NaXppPB450jTZOnXfmNQayCKMC5BvMPbmDQqoAjWgOsMTLehd7S9fYzSz37suhSo5Muv0P7KOjeCmBgwmeDt0+zfHpDFmV8TvO2G48yj4eEsdX16inTiKr5xc79uFotjRNEQjcZp0rTGzMxLeB9ajAQCgfWxJZ8qP/OZz/BTP/VTPPXUU/zNv/k3qdU27zQIBAKBQCAQCAQCXUI9tKv4dp1aqswmBmugGC//cSERUE1wYrGa5uIC513dgq5H6FaQJAWXZj30uhZhngJZX0FjevERSJHCd/KV9CClYw3iS/l+kWt1dd9RmKJo8guHb7RH8Bi8ibi6Kx8Hfmmywe7ZE+wpb35haMyMMmDyfbVPu9OkS/a19VmGpbFgBCLL7Klx6hfyPQR3P3ovthAigm9VMqF7FiXF6OACofvmjN3cCkRTfNJAkxZWwMRFsGUKlQpuYJh2aZAShj7vKXnPjnaL0hJiQ4QylCYMJQlF7+h3CSWXtR0oDvVjywUqhYhKMSJxmcs72cL+q9uNl4i2qaBYUimgYol8G6O9EToC12P8IMYPItqP0VJH8O5N39ybGRFh3wePIguvjVQ5943n0Vtml8r6eXx0lpPj+Z7wU8U96zpH1TS4YqZytf1ujEgzwVjFME5+A+I+ppBt+bkIyqdyTRyyhkNfyh9lTCfOPM260STLvObFhSy1B7DtBqkpAEJqCxhjMsFVlcRtTypGdM8+Sn/9Qyze6dn+4++SfOv42k8kgL3Wu9uBa9KbpA9FhWyjnwroBuPSI4sdGsLNzkKSko6Prz7mBqdcPogxBRqNkyTJDNXqq9s9pUAgcJOxJZ8sf//3f59PfvKTvPTSS/zn//yf+e///b/zgz/4gzz00EOMjIxg7cov7D/90z+9FdMMBAKBQCAQCARuTdo1UE+jXiWhSD1VKnG0Yr+7NglOYlRT7MLFoE25ujsLbalDI9uVttqq4L3De5/NrRdit30bsXlRW9vvY+CpZ3O1ZPcOmncfWfV0/abNwSi/MHs5LXHZZRHgl0buISrke3Q+8/wpfn5fPmZzIxgMR2x+jnWtM+6XWURzDpAswjyOUO8Zfybv6o4H+thx32KXUeCWQmqotDF+oBNdPooQ+swuhSEFn5KmDodB4iLGRNjIEvX304qzzqj9Posm70tTyt6t+nJZVE8hadMwFokiCs7TNBbpK5IUYrTWZNAI9XZKrZVSjA2lyHYlKeJGR0VomwoRLfCCSorxCYLiJGKLfCK3NMYPA4oziqB4mcUAosVtntmNRXGon9GH7+HS8/MiUP3CFaaOn2bkrsPbOLMbl8fG2vznU1e5ff/8Jr60sgs/bTG69hSHU3acnX4I6bzaRlj2uzFORdn10TkZ5rDOXwsWceyiymUGljxfbxkFHgeemasIr6GcBI7M1UwU4V0Ln6Y4EUwhvv69JI6h2URtRNRqkJb68WJIoxIll/Xtdl5x27hJKnr4MMVmQuv/8+1cvfXfnoZSTHz0yNpOZKIsrShNILKZu9v04jXIgxoQQdSg6mE9n5c62MFBfLVKOjEBcYSbmcEODvZgvluDiKVSOUKtdpxm8wxiLPX6SSqVI9s9tUAgcJOwJWL3z/7sz+YWyiYnJ/kv/+W/rGmsiASxOxAIBAKBQCAQ6CWtmSzCvNmkoX20Es/w4PIuXI/gSHBYjFZzEeaGBa5udH3pfEkCziPqUdudxSXVrJegqseYa81ku8t1rm63i/jtAsWTeYF49mOPZe7nFVHuLUzkBCan8EZ7ByC0437ao7flpJfXT03xZN9JVjDir5mD9gBFyX/vT6TvLP+TTH0nwlwgipg8forW5EzukD2PPzAXlxm49VCp46WB0X6EIsbvwgQBaxGKwWF8ivOelhc8BQqFCDGWuNQHlQqJEYreU/KOSJXBNCFah3NQgIp3lNqOqo0QoKCeZhRhhiq0Gm36jNBOHI3EkThPpRARrfq69S5AIKWIN4bYgzeGSBMi38aZGCW8hvUa8cNYFGcAZjLBWyVsjFnE2NF7mDx+imR2PjVz/NsvMnh4L7YYvleLiS0Mty7h3CFsxxVvrKFWGmOgsXY3bN00uWwmGfM75mr73Sjn7WUSSalJkSktM8x8nPR+neKybIfYDcrHgZeRBfMRvoDyWa5t4Mnc3Qbv0k4P7wQbLbr+jywqBrEW025kLnATk0YlpCUYIzivWcsgVcw27ZCKn7gTbSa0/8dz80WF1v/rm0gxIrrvwNpOZOOsZ7dPIW1BoRNv3mVUfCZ0iyJqUdL1f0Qxgh0eJr18Gd9okp4fx/b3d67Lb06MKVIqHaLReAfTynqRR9EAhcLObZ5ZIBC4GdiyVz9Vnbstvr/aLRAIBAKBQCAQCPSIToS5JnXqiWc6sRiBcrz8wn4iFk8DJ4LVJsL8wphxG3R1K0g7WRBh3h1hwTsHKN73KMLcnEeic7mSth9ncFGv7nSon/rDd616un1RjWHbztVOJkM0NNtQcGbHQ7mvI3WeybeOc9fg5iNfixTZb/bnahN+kkmdXHqAOsBnPytr8F65+Gy+R2Jp5zDDdx7a9NwCNycqDbzUMFpBtIxxOzBa3u5p3UB4jCZEvon4hKYTqi5GTZG4UIK4j+LgCK6/Dy9CxaWUvKPiHCNJe11C90IMMOhSRpI2Je/pcwn93lEpFzADFaJygYFShCBUWynNxG+4r+jNhpeYtikviDU3IdZ8ixAE8SMY34foIKIR3syghO/9QkwUsf+DR3O1tNG87v03MM/7d9d469xsrnY5Xl+UOcBpeyG3+c9iOeB2z90/J8O543dRpbhtrx1llE/kKsJF4Lu5moki1CvqHb69zFwLMcQRRh2StHG2gLPFrG+3CN5n21uTdHvfKAofu5f4ex/MF73S/M9fJ33rwtpOIqbj8E6yz0hps/sT7dCNOHPT34eUSrjJCXy7lbm8b3LieJBicQ+t1kXSZIbZ2Vdw7ubuSR4IBLaGLXF2v/POO1vxNIFAIBAIBAKBQGC9dCLMm40aTS1STxylgum4oJcZIkKqHi9KrClisgUa0cyUICoo2drNmkkSQCFNUdu9CHPnPd47RECk+2K3xK/kn9MPYM+NUX71y7l69SNHs0jEFYhwvKcwlavVfcTJJIsknCqNUdw5mnv8u69d5K+MdqdP3xF7GCvzc1RV3nErfJZzHpDMQRJHXD32Fkm1njtk7/seXDEOP/DuRaWFlypGS4j2YfwwRvu3e1o3CB6rKUYdCqRENFLBA1GhgNgiUTEmqpRIrKGwwM09kCYUumQKiFUZTtq0jKFqY2L1FK2l1l+i0bJUbEK7ldBMM5d3X9Fum2tvK1ExWay5NoEQa76VCILxOwCPNwDTeDON8cPI1ixh3hQMHtnHwKG9zJ6ef/+/cuwtRu65jfLO4e2b2A3KgQHH189f4e5D8321o4ERXDXG+rWL0Q3T4qKZYI+fd5nudbs4Zy/SlpSLDHI3F4k67X0E2Ms0J9nVta9lfTyG8izCpbmK8BWU+4FSdt9YxAg+za7nvXPXp/EUYmi1UGOxSQNXzt7L06iI9Q3aDryH1HuK2/z6WPjUQ9BMSL7++nwxdTT/01cp/63vwR5aw8/CxFmcuU+yXuCagvTi9ac7cebRjhGS8+P42VnSixexA4PITZ7yUCiM4VydRuM0xhSZmXmJ4eH3IhJSVgKBwPJsyZXi4cOhb0wgEAgEAoFAIHBD0poFl1BvNmlSoZl4dvUtv0DigZQUJxHG1zALol2NlznB24tf9hxLkiTgPeI9WuhOxLF3rtOzW5FrUdtdxUN0PFfR5BEGv/Zi/qhykdr77l/1bHcWpiks+r693h7BIyjCxdGH6VvwWLWecHD6NfpGNi98DcgAY3YsVxv349S1vswIzfp1GwsiuNRz6buv5Y7o2zdK/8H1O6cCNz9KgpfZrN+u9mP8AMbfvH0ku8cCkVsMTmKa3tB2Hi8xhWIZMYZKpYAvFXAKFeeI1VNyjn6Xdl1GEKDkPQXfot6JNo8RioWYqrXYOKLSaNNsJ8w0U8qxpRjdAmKvQColvCYh1nyLEQzG7wIu440yL3gPBcF7Afs+dJQ3z11EXee6QZVz33ieO/7qJ8ImsyU4yAWS9DbizuuXMYYr0W52t8+u6zynowuMtXdgOteUFsPBdA9vx2dxYriggxxgau74/TrFSXbCtvxMDMqnEOZbiQp14CmUT80fZSNckmC8x7XbmPKiBJYoQkWQKCJqN0grQ1nfbluiZBpZ325VUqeobtOX2kFEKPzVx9Bmm/Q7J+YfaKU0fvcrlH/p+7B7hlc7SUfwbmcub9eEqI9etELqRpy5FIuY/n7c5CSmVKZ96iTFO+4Ee/O+V4sI5fJBarW3qDdOYkzMbPU1Bgce2O6pBQKBG5ib91UvEAgEAoFAIBAIbA710J6FpE69rcykEapQKa4UYR6h2sRJjPE1RDoR5gpGQTT7iOHXs1CjZGJ36rIFpi5FmDvvUfWoKqYHrm7sGcTkY/XM1QNUvvt6rlb9wEPoKg6LQdPiQFTN1S6mZa66bMHxZOVO+gYqucdff/UUjw3nYzk3yh329tz9RFNOudPLD/Ae0GwhzVouvfQGrpWPX9/7xENhwf0WREnxZhrRCNGBLJLYD2/3tLYVQ4rVFrFvAUpqYhIpUEsNVWdxUR/FUoU4tlSGyrhSAavKgEsoes9QmjDYA6E7P0fodykj7TYl7+jTlJ0WBsox9Jco9ZeJI6HRdlRbKf5WjzUP0do9JRO8RzvJEEOggpppFLfdU7thKA72M/rIPbla/cIVpo6f2qYZ3di8d6zBW2emc7WJwt51n6clbS6aq7naHr+TombXw4ujzCskjLDcxsGt4HaUexbVngGuzN2TKNu46NM02yjql9iwGscQWWzaBO/n+3Yz37dbAXcDvDmIEYo/9n7sgwfzD9TbNH/ny/ira7h2Np0UD9eed3n3iG7EmUc7doCxJJcu4et12mfXt4njRkQkolw+gvdtGo3TtFoXaTRW+GwSCARueYLYHQgEAoFAIBAI3Kp0IsyTVo26j2m0HaXYYFfobZ2IxZGgeKxvIGQiru2o24Z19uoGcAmi1yLMo64YJ7yC9x6vDhHpTYR59GbuvrrdDHztHcTNLxJqZKl+6OFVzqTcU5jMOWGcCm+2RwBoSwG/L9/ve/xKjQ+Z17vinhkzowyYgVzttDtNSrr8IOcAky2stROuvJJ3uA/dfoDK2M6lxwbetSgONdOIWkQHMb6M8TuQHrihbgYMKZG2OjG5QmqKOCnS9hGTbUtVixQLZUqFiHIppjBYwVtL2Tn6XErRe3YkLYpLCQ89IkIZThOGkoSidwyrY7RgiEsF7EAfpb4iqVdmmwmJ235RYyvIYs3LeIlwUsCZGONTrLaBrfvZ3GoIBuNGES1idAhVOoJ3+J5fY+yReygM9OVq499+8brNZwEoRZBMXsrV+ocHScz604RORxfwC34PTcfdDTBDiVny59yvU+ufcBdRvjeXRiF4hD9bcF+wUTQndKfJEr8/cZy1rRHBJK1O3+4CHsGa+b7dN4LYDSDWUPqpD2Pvym9o0JkGjd/5Mn56lQ0IAkRxtjHYp53e3b167fHZxl+yOPP19YHqYA3R2BiapqRXruCmp0gvXVp93A2OtSXK5YMk6TSt1iVqtbdot2/+vuSBQKA3BLE7EAgEAoFAIBC4VWl3IswbTdpSpJE4KoXlHQUeSEVIRRFtYvCABc1azJnO4sy6xe52CuoR71bta71WvEsBRb1iVhDvN/EM10WY07iDvqdfzpVq770P3593ZC/mQFRlyOYXFk8kgzQ1i2t9tf8hioV8dGvzndcZLW3e4WYwHLFHcrW61hn3K/UB18zZHRkwcPGF19F0wVxE2PP4g5ueW+DmQvGZEKVkQrcWMX5X5la6pdBM5PZNrE9QhMQUM5GUiFkfM5HEqIkZKBWIY0Olv4z2lTAI/WlKUT0Dacpwmmzbd6+onh1Jm/40paye3dYzHBtMqUB5qA8TWWqtlFqS0qUW4jc2IiSmRGoKeCJSU0RQIt9GgvjaMwSLzQneispUELw7mChi3weP5mppo8WFZ49t04xubO4tXqDZnr9eERFO6vrd3W1JGLdXcrU9ficlLYDIde7u3cwS6wobCHvODuD9uYpwHHhr/n7n+ts7h09SdPELexwDAlGEbTdxJnOyu6iEFem4uiHZws1ZqyGRpfSzH8McGc3V9WqV5r//MlprrXIC24kxT8n6Iq1y/CbI4syzz1GitiN+rw8pxESjo/haHTc5RXLhAm6mOwlQ20kcD1MojNFqXSBJZpidfQXnmts9rUAgcAOyJc1ubr/99tUPWgYR4e233+7ibAKBQCAQCAQCgQDqs37dSZ1a2zGbWpx3VArLf0RIxaIkODEYVwWJEZGsVzeZ2L1uoRug3YbEAQK2Ox9RvM/cKar0Ruy2ZxGTd4VUnk4xrfmYQxVh9qNHF4/MEeO4s5CP1az5iFNJ1t/4AiPs2L8v9/jbp67w4Up34gkP2gMUJe9AOpG+g660yuYdWYS5pVmtM/HGydzDO+65jeLwwJJDA+9OFI/KNKoeo8OZMOXGbjGh22PUYTqChpcILxYweLG0NWI2Aa9KuZD1vY7jiLi/hBqh5B1F74m9MpAmRBtZ6e4yAlS8o9h21KIIMZZKDFfFoIMVbDulVWvi0oRKISKy734Hv5MYbyyxb5KKYEmIfAtnIjzxdk/vXYkQYd0Yzl7EMISXKZBp0KFb7DVmaQaP7GPg0F5mT89vUrt67C123HMb5Z3D2zexG5AjAwl/cW6Su27bNVdr9u2B6sl1n+uMvcgetwvb+R0UhEPpXt6MTzHOEO/hErbzOm5Q9jDDGXZ05evYCMpHgBcQanM14YsotwE2iyOPInyaYqII124TFRdcHwpoIUKcwyYNEu307Y5KlNMGIlmiknOy7X27FyLFiPIvfILG//NL+POTc3V/YZrG736Z8t/6HqS0QqshE4NvZDHmqUChAHRnY+5iVBTBoOoRLCrr39RqKmXsyAhuchIpFknOnMbceSdSXH+CwY1EsbgH5xo0GqcxpsjM7MsMDz3Wk+SuQCBw87IlYvfJkyfXfKyI5HaPhR5vgUAgEAgEAoFAD0jqoB7XrlN1BeqJJ7ZCIVotwryBIkSuiphi1qvbb8LVnbq5CHOiLkWYe4/34NVjjNCVky7iugjzdJTBL+ZrjQfvxK2y0PyewhSx5F0wr7d2oAhe4dzow+w28/NPUs/hyZexK7cAXxNFiuw3+3O1CT/JpE4uM6KD82QhYYYLL7zBQlunRJbdj92/+ckFbhoURWUWxc0J3daNIT1aDL7x8FhNMepQwJsYjwUEZyIcMU0HjcRhBAZKEZERipUiUiogChWXEqlScSkV52640HcLDKYpZXHMRjF7YmEmVaYKEaWoj6TRYraZUIoNpcjeMCJHr7gWax5rCxBUUqxPEFGcdPq8BrrKvOB9CcNwR/Ce6Qje7/JfuDWw70NHefPcRfRaGxVVzn3jee74q58I66oLEIFK/QIwL3aPjPQzNV1m2DbWda5EUs7byxx0u+dqY36Es/4iddPkkg6wl5m5x/brFGcY2UYVuIjySYT/MVcRrqB8h2uub2PtXN9ulyTYQjE/3bgA7QTTbIF3eFMgtSUArAiuk8btvN5Qm5+kXKD02U/S+LdfRC/PO539mQka/+mrlP8fTyLxMhKJSEfwTjKXd9qEqG/pYzeNgkpHGzHZ9bWs3ylvh4bQdht3+TImjmi/c5Lie+4Ee/Nel4kIlcohqtXj1BsnMSaiWn2dgYH7tntqgUDgBmJLxO6f+ZmfWfWYWq3Gm2++yUsvvYSIcPToUR58METfBQKBQCAQCAQCPaE1k0WYNxu0TYV6O6V/BVe3kjm7U3VAgqGNMIBh3tW9oht4OZI2qCLeoXF3XHHeZc5j75WoJws710eYxyeHsdVTudrsxx5b8SxDpsX+uJarXUgrTPhs4fBFPcLusaHc4+dPnOZDhRm6wRF7BCvz3x9V5R33ziqjfObsjmJqVyeZOXk+9+jog3cR95W7Mr/AzUEmdCcYHUQ0ziKHt2apYZtZIHKLweVE7hhHjEeoJylJqhRioRxFWCsUBsoQWWLvKXtHpJmbO77B88BjVUaSNk1jMTaiLMqEKtJXIi3GNGstklZKX8FizY0jdPQEERJKWEmIPHhjiHybiDapFAiCd/cRsteXTPAewst0R/AevOUF7+JgP2OP3MvF5+bjy+sXrjB1/BQjdx3ZvondgDxQvsT5ZkKlNH/N+Tb7eWxBpPdaOWsvstftIups7hKEQ24Pr5uTnJNh9ur89doALQZpMsN2XiM9gvIdhPkUAOEplIeACmJMJngnadbDO0mwhQXX5h1BWKzBtlu4YgFnY7wYIuNppR5VJfW+R9ffG8cMlCj/4vfQ+O0volPzyUz+7Us0f//rlH72Y4hd5nXbxNm1r08y8VsTkN4keWRx5gZEETVZy4b1vrwJRDt3kly4QHLxEvE+S/vMGQqHD984lvsNIBJRqRyhVnuLRvMsiCGKBimXD2z31AKBwA3ClnwC/b3f+701H3vs2DF+/ud/npdffpl/8A/+AZ/5zGd6OLNAIBAIBAKBQOAW5FqEedqg1laqaUTqHJXi8h8PErEdwdtjfY1s5SXGuAWubrORCPMkc3V3+gBuFlVw3uO9QwSkJxHm5xGTF6kH/vhq7n7zzoMkB8aWPYWg3FuYyNVSFd5sDwMwk0bEt92Te3y21uLR9rGuaCgDMsCYzfcwHPfj1LW+zIgOLotUVNNxdS/AFguMPnz35icXuGlQqaHSwvgBRAsYP4rQhdiBGxhDiqjDqM8iXE2MdkLHr4nciJA6pZ4keIVKMaJghbgUY8sljEDZOSL1lJ2j36U3jVQnQNk7it5RtxFxwTKbeKZFMINlWs2EmWabSmQoWtOLYI0bByHb1GAssW+QmiJWE2Lf6mx+uBU2fWwtQvY6480lDIN4mQGZBR245QXv0UfuZvLNk7Rn569Pxr/9Iv9/9v48yLLsru9FP7+19nDOyTmrMmvqrqlHdbekbklIIAkDkkA8G+MLhnffc2DwxRh4l2fCgYfAjnAQjrB9w3bE9Qv7+YLNIGPsZy7XvgKuzSwJoUZogJZ6VKunmueqrBzPsPda6/f+2Kcyc9fQVTkPtT4RFd3nd846Z+XJk/vsvb7r+/0NHzmIzXf3cXklDKaBq5eucfjI/sVaMjqJzr6xYh3Qiee8vcxhv9T3eyKMcSZc4roobVJaLLW3OaTTzMpWit2C8p0In1hW6QKfQfkLQNUHPvgewTmcgMnSpb8sETRNEOcxrovLq82ZzuYkoUo38QrOK9uxq4MZG6D5433Be36p/7Z/5Ry9//x58r/ywdtfNwiVqzsUYGzl7k6rNiUbwXrEmWMNyeQk7vx53JWrYAzl5cuk+/bdfew2xtomzeYDdDqnsabFAkKSDJKmo1s9tUgksg3YdltNn3zySf7gD/6AgwcP8oM/+IO8+uqrWz2lSCQSiUQikUhkd9GPMA/FAnPO0ik91kB+1whzj6IYPweSYjEIIH1X94qlbu+REMD5KlpvPSLMvUcVQtD+gtVGRJjXRV5ZGKb59fla7W6u7geSeYZsWau9WYzQ00oc+bPkCUaHbuqvd+ZVmsatctZ1HrLHa7dLdZzyp+8+0AUwlrnzV1m4VBf4J9/zjrigfh+h0iZIG6ODCA1M2IvRxlZPa8MwOBLtYUMJCM7keMkJpJQmozADeMkAoVsG5guHIAw3UrLEkA+1sAMNMlEGfUkeAqNlydAOErqXY4BB7xh3BXsS2JfBgHe08gQ71GRBDLM9R9jmbvX1oIo1bxEkwUuGNyk2lFgtgJVH0EbeHqM5JuytNtjoECoFyPzdB+5yTJJw8EPP1Gqu0+Pin758hxH3L5PuQu32ntEWb7SHV/VcZ+0VSurnZkf8fhDhnIzW6vuZxepWHxMOozx1U+3PgEsAfXe3IXgHCsHVz1VJU0gsJpRV6w6xuKSBkSp+2/uAC8p2PfSbiWEaP/pRaNTVePeVk/T+zy/XWqvWB/ZbVLiSqldSefvHrQsKWiUFoKb6twokTbATE4ROB399GnfpEn5mZp3nuvmk6RhZNkG3dx7n5pidfRHve3cfGIlEdj3bTuwGGBwc5Kd+6qdot9v8i3/xL7Z6OpFIJBKJRCKRyO6iNwfB0e316EmDhSLQypI79nW8EWHu8QgB0Q5I1nd1V3KyrrRXN1SubgXxDk3WJ+7Qh4BqFaNoZCMud/SWCPPmn9YfURycoPfIg3d8hkw8D2XTtdpcSDnjhgB4tT3MkUcO1+6/dnWGx8PJVc96OZNmgiEzVKud9qdx3EVI1wAEVAwXn69vSk4HW+x54uF1mV9k+6PSJcgCRluINjFhDKOtrZ7WBqCVyB262FCiCKXJK0GThNLkfZEzBYGgMF84us6TJ6bqz51b8tEBTGppeU/TO5ohMFb2yLZc9Fg7iSqjrmRv8OxvJIzhaWmg0cxwrZxpp/T8NlU91hMRSmng+o5uZ3JEA0kUvDcEo81+kkSOCQME6aJR8Gb4yEGGjhys1a69/Aada9NbM6FtyvH0GvPtolY7bw/e4dFvjxfPOXu5VtsTRhkMLS4wUtsImhDYx/q0olkLysfQZckTgiL8LvRna5IEDYp6TyhuFrurTY1WA3iPNykuqTa6Jf3vQaj6dm9X7KFxmj/ybZDVrz3cn7xO8d+/evtBAiQZVTsfB67HRh7bVQL0k7MkGFa+o7jCtJrY0VH89DRhYYHyzFm0213HmW4NeX4Aawdot0/h3AJzcy+iu+CcKhKJrI1tKXYDvO997wPgU5/61BbPJBKJRCKRSCQS2UVoqPp1l20WCk8npBQuMJDdWWwu+32dnThM6CB4jGZ9V7fpOztWMZfyRoQ56xJhHhRCCAQNSN9hsu7Y84ipL6gP/GGndnvuW977tj3xHsmuk960OeDV3hiKUHjh7NhTZGm9l/YD155fF/enwXDUHq3V2trmQrhw+wHL8R4Qps9cpDs9V7tr3/uewqzThoXI9kbpEWQe0RzRAUwYxoShuw/cUQSMlqShiwklQeyiyB0kpTQNStskSLIYHlF6Za5b4lUZyBIaqSVp5WSDLVJh0c097EqGXbl9F2NWSa6BPa5gfypMZpZBXzJoDaaVM2+qqPPt6vRbNwS8ZJSmQcDgTIZiSEMPc7fNRJEVY7SJ8XsQmhgdJEgHlYW7D9zlHPrg08jyfsmqnHv2uTs7Vu9DjEB36kqtNrZvL/Pl6s60ztsrlNRF4SPuAD1JucpgrX5Ip1f1GuvLCPChWkU4AVTJRWIsYgzeueq82i+L0TaC2gRJDLbs4SUhmKpvt7UGr4qqUobtLTzaY5M0/tq3wE19usvPvEzxqZduP0hMP868rPomuY11E2u/bzcIonbVgrcdHcEMDuCvXiN0uxQnTy1df+1QRIRms+pB3u6cpCyvM7/w2lZPKxKJbDHb9vrqxknYpUuXtngmkUgkEolEIpHILqIfYa5Fm5kyoV2Gqn9semehsnJ1Cx6P0Woh2YYMWXR1r2JBKwTE+0pANfZtxeF7fkrvAEVDwGxYhHl9IcVM5aSXll7HjQ/TeeedHc5jpsvBpN4X+3zZYjpUrpg/nD/E4w/Ve2nPXjjPHn99rVMH4EH7ALnU49HfcifuLYTeB4LCxRfq70FjfISxm5zokd2JUhLMHKIpokOYMIgJo1s9rXUkYLWoxEl1lWPNNAiS4k1GYZqVkCnLN6NAp/Qs9BzWCMN5SppZ8pEB0mZGI3gGvKPRd3M3trkAsBYEGPCe/VpyqJEwIoFh72imliLPmFah2MZuv/UiiF10/Fex5smyWPPd//NvJkYHMH68SpjQFkHaqLTvPnAXkw0PMvn047Va++JVpl8/tUUz2p4c0XO12+PDDZ6f27Oq5/ISOHOTu3tchxkOA7dEmY/SYUC3PnJZ+RBKPbpd+D3ob8wx1qIhoCHgi7oLnjwFm2B9ie87xF3SwPZPhxf7dm9zkscO0viBD99yDVL81lcpP38H4dT0489DUf3b0I1M1Xu4GGe+Bhkn2bMXkgR3+TKh06E4c4advgPNmIRW6yghdOh0z9HtnqPbPb/V04pEIlvIthW7f/d3fxeAkZGRLZ5JJBKJRCKRSCSyi+hHmPd6XbrktAtHIzOIuXOEeSkGJyBaINoG7ffr7veQW5Wru9ePMHcOXQdXN0AIvlqYUzB3+HnWhsJNYnfzS3Xhav6D777FJXIDQXk8r4vWpQqvF2MAnG2nDD/0WO3+onQ8OvviWicOQE7OIXOoVpsK17mu9yCkBw8Erp04R7lQd7Lvf/87+/3RI7sZxRHMDKIW0WFMaCFhbKuntU4sidyCLoncJH2Ru4WTHL2pNUJQZb7n6LlAM7MM5Am2kZEPD5Baw6B3NDQw6BwjruR+yT6wwGhwHEmUvZllMDiGUSS1zNmUOZaibncttVjztB9r7kl0Y6Nv70eMDmLCWJU0oS2CLKDSufvAXczE04+RDQ/Uahe+8Dy+V9xhxP3HKLMsLNTjnGcb+1et/12wVyhu4+6+qoP0qJ/nbg93d4rysVpFuA58ofr/xCIiBOcIvjq/Xhpate4weFCt+nbbBiKC6fft9tu4b/dykncdJv+/f+Mt9d7/+SXKPztx6wCRSvAOru/u3thI8PWKM8cIyeQkhIC7cgU/N0e5CwyG1rZoNB6gLKcoeteYn/86Zbn1rQIikcjWsC1XJH71V3+V/+V/+V8QET784Q9v9XQikUgkEolEIpHdgSoUc1WEeRnoaUq3DAykdxabnVhAcHisFkgosVT9+gwQVtOrG6oI874Tm3WIvw4hEAIEDX2hewMudcwFxNTju1tfXvr5VYT204/ecfjhZI5BU18IfbMYpcASFJ51j/DAZD3uMrv4OmlYHwfQUXsUK/V49BPurXsb7AO+9Fx+5c1aeWD/XoYOH1iX+UW2L4pHzSyoQXQEExqYsKdyG+1gDA6rvcW/MWdSnOR4EpzJ6JkWTjL0NskThVdmuw5FGWwkZJklHWqRD+Y0CAz6kiwExsqCVvA7/J1aHakqB8VzOBeGjDLiHU1RCpMwYyzFbn9XFmPN836seR5jzTcIE4YwYbgveDcJMo/K1rtntwqTJBz84DO1muv0uPind4hnvg8RwM7Vxb4jD4xzcnZ156RBlNPJxVptVIcYYYjz1I1cB5hBtkV/4adQHqxVhM8B8wiCSZJFodstd3cbg1qLwSOh3rfbCrj+qfF2jzK/Qfr+h8j+0vvqRYXer34e9/LZWweYBDB9d7evYs03kPWKM5c0wU5MELpd/NR13OXL+Onp9ZzqlpBl46TpHrq9czg3x+zcC4R1unaKRCI7i/WxUNyFH/7hH77rY0IIXL9+neeee47z58+jqiRJwk//9E9vwgwjkUgkEolEIpH7gHKhWpQpO8y6hHZZuS5a+Z0X9op+hLnisKELWmIYxPRdBqsSu0NAvAPXjzBfB1dwCB5QQlASuzH+SUm/XrttpjKSC0s/f+/hBwhDAzcPAyAXx/Fsplab9SlnXCVuf+7qCO9635Ha/d2FNg/Nvb4eU2dIhpi09Xj0C+ECbe7F/aYQPFdeP4Pv1Rf09n/gXRvTGz2ybVACKjOoKkZHMZpjwgSyPffO3xMGh1GPaKgcaX0RUpFFJ+6ddFhVaJeO0ilpKrSSBLKEbLBBKkLLOxJVWt7T8m63y7l3RYAhlIEULotw1QUyVeYxzBlLhtIKAbuL472DJJTG9l3dBqXEhhKRgJeUjWi5cT9StVRQggEhEGQWwzCi+d2G7kqGjxxk+MhBZk8txfpee/lNxh87RnPvbknlWBsP6nmusHTuNTyQ8dzCBMdGLr7NqDtz0VzjAfbR6G8Khcrd/VoyxTGuLdYyPJPMc+mmGPHNR1C+E+Hnl1UK4FMofwlJLJQlwTvEGTToUhJUmiLOY7zDiyWYhCAWa5Wy9ARVfFB2SqRJ9uceh25B8bsvLBWD0v0Pf0TjRz5C8sj+pboANgXfA/GVuzuzbJynUKnCzAVVA6KsNiHENBvY8TH8tSkkyyjPnkXyHNNsruuMN5tG4yAhdGl3TjFoMmbnXmJk+BlEdu65aiQSWTmbInb/+3//7+95AeRGr+7h4WF+4Rd+gfe97313GRGJRCKRSCQSiUTuiX6EeVl2WQj9CPPUYO8gNgcqZ7czBrSLaLtyemiGUVmbq1tBvEPT7O6Pvwuq4H0ghIAIGxSpfWuEeeuLHlm2itd+5vGbBy3yaDZNctP79WoxDgjTheXS6GM8NFB/L/ZdeRFZJwHoIXu8drtUxyl/+t4Gh0DZ6XLltXq/z+GjhxjYv3dd5hfZniiKyixKwOgoohnG71ShWzF4THAIuihygyFg8CYlkLyt7uiC0i4cQaGVJ6RWMK2crJGRa6DRF7qHXUm6E/JbNxED7E9gRALnSkg00PaBjrE4mzAggdTtXge8ilDSwEpBEkDFYENBguIkZZsGL+44TBgDFDXV31+QOYwKwtrPNXYiBz/4NHNnL6HeVwVVzv3xV3jou78tblQDcrdAZ36B5uCyjYoj++i6izRWsWKuopxJLvKIO7xYG9ZBGrqXKbnAOEv95A/pNJdkq8VugIMoTyN8dVntq8A3IBzEJCnBlZhE8WVBkvc3j2QZdLuY4HD9vy+XNEjDPAKEAKVXmunm/jRrIf32d6KdgvKPXl0qukD3l/6Q5o9/DHtk2TmvsRAs+BLEVi5v09iwuamEyt0tigRTHeNWeR1mh4fRXoG/dg3JUspTp8gffhjWqa3UViBiaDaPsLDwOu32KUQsCwtvMDh458StSCSy+9iUo9jhw4fvehJljGFoaIhjx47xLd/yLfzAD/wAe/fGhZNIJBKJRCKRSGRdWBZh3i4CJRndssPI26xClZKggBODdfOVq1sTbP8yYtVid9GPMNf1ijD3qNIXu6uYv3XHXLwlwrz53NLraGLpPHn85lEAjJsO+5N2rXa2HGAmVAuGv3FpP9/y0X21+930VQbbq3MW3cykmWTIDNVqp/1p3L3G6HrP5VdPLS2WA4iw//3vXJf5RbYnldA9h+IwOoJohvWTyOYsI6wjAaMeqw6lctkGqRxYQSxe0v7tt0Gh5wOd0mNFGG5YSBLSgQZpYmgGT6qBpvcMeBdly7ehaQ0PGbhSBK54SINjwQlzqSVLM1reY3Zr7LuAJ0ONIQk91ORYdaSht7TZIrJmJIxhCAQDMEMws5gwgrCDVLd1IhseZPKZx7n0py8v1toXr3L9tVOMP3Z06ya2jRjuXqQcfGjx9mNHRvny8w2++dDqejFf6ru7mywlChzxBziXnKmJ3XtYoKEFXdn6jRjKR4FX+q7uG2fRv4PyP2ESS3AlwXm8lNgsRwSwBjUG6x2lQsDikgZZuYARwYVAEgTVqs31TkBEyL77vWi3xH1pWduewtH5+U/T/InvwB4YXarbDFynijF3Um0A2MAzgBtx5jeEb8Wv+pIn2bOHsixxly8j1lKcPk127NjO+WXdBmNSms0jtNtv0u1eADEkyRCNRmy3FIncL2zKmfTJkyc342UikUgkEolEIpHInSjbSxHmpaVTBnyAVnbnS4LCWLwYVKu+toQCQ4pRQVfrOA6KuBsR5mZdIsy9D6gGVBVrN2aRSdK6q9tMJSTnlhaEOu84hjZujUoVlMfz67VaoYY3ilEAnp9qsv+Rh0iSpXmHoBy6+sK6iD0Gw1Fbj0dva5sL4cI9PoPSm5nj2olzter4Y0dpjG0HR1Jkw5B5VApMGKoc3WFyh4lFAatVXLlCX0y0gOBNgidF7yHeMii0C4fzSp4aGomFRkbeyslFafoSqzDkSvJt0YN1+yMCk7lh2HnOdQKpTWj3Sjom4POERmLJXIkJu9MdvxhrHnogMdZ8vREEE8a5EWleCd4zmDC6AzfrrJ2Jdz/O9ddOUswuLNYufOF5Ro4exOZbL7RuNXuKi1xkSeweaKa8WU7wzZxZ1fOpwOnkIo+5pXOvIW1xVh+klIuky+KnD+kMb8rE7Z5mkxlE+WaETy1WhDMoLyPyVF/wdtg0IZQlNuufC2QpxncRAh6Ls0t9u8t+ukkZAtkGnZtvBCJC/v0fgF6Je35ZAlKnoPtv/4Dm//vjmL1DNx4MJoXgqj7ergtJawNnd1OcOVQx6qvBCOnEBOWFC5RXroC1lBcukh7c2cJwkgzQaByi2z2LtU3m518lSQZJkqG7D45EIjuenfNtE4lEIpFIJBKJRFZPbxaCw5U9Zn1Gu/CkVsiS218SuH60rxODCR1EPUYdpt/7Mpg1RJgDeI+uQ1xe6Du6gwZEZIN6s90mwvxLAVkmSLSfeey2I4+kswyYuoP6jWKUEkvXC3+4cJgnj9d7ZzaunSAt6i7y1fKgfYBc6iL8W+7EvW9W8J6LL79VufD7iLXse9+T6zK/yPZEZYEgXUwYQMgxYS9Gd4ooErBakIYeguJNijNNAgneZBSmhZP8noTu0itz3RIflIE8Ic8TzHCT5kDOgFY9uRshMF72otC9ChqJ5dhAyn4tGZLAMAHaHdqFo51klGm6azt5qwilaVSbMCTFmQxRT6IFq+3FGllCMJiwBxMaiA4jaglmBr3XRJNdhEksBz/4TK3muz0ufvmlLZrR9iLxHcqF2Vpt7769nJ1bffLQZTNFW+rO8MP+IBd0pFY7yHTt/Gpr+UaU+vmo8PtAibEJoARXXUcszjjNqnPv4PFYgrF4sRhrqhZDqpR+5x3PxBjyv/Ih7OMHa3Wd69L5t39AmFmW1mT6wn8oq39abujcVEK1owJBVPr/v0rSBDsxgXZ7+Kkp3NUr+Onp9ZrqlpFle0jTcTrdszi/wOzsC4RQbPW0IpHIJrApYvfp06c5ffo03t/7bqMQwuK4SCQSiUQikUgksgYWI8w7tEtPISnt0jGQ3XkhrzSWgODFYHUe6S/eWM1QWL0AURbgPKKhckGskeAdoGgIGFMt/qw75hJiZmql5nPLnNjNnO5jR24eRUMcx9P6AuqMzzjnqt6Qv3FmhA+973Dtfl8W7L32KutBTs4hc6hWmwrXua7X7zDiVtpXppg5d7lW2/vOR0gHNtK5EtlKVDoEaWO0hdDE+D0YbW71tO6KoUqgSEMPAGdSnOR4EpxJ6ZkWTjL0HiI6VaFTehZ6DmuEwUaKaWZkwwMMpAlD3pFrYMg5RlwZXQRrwBiYGMg4lhvGXMGYNWRlQbHQpR2UXp7jErs7RW8BJxmlyVGqHvKKkIYe5j4UZdebSvCe6AveI6CCmpkq+vc+Y/jIQYaP1IW7a6+8SefqvZ8P7Gb29OppN48fHeXZC2vovyxwytafc0CbtPWhWq2BYy8LbA8SlO+oVYRZ4I8RYzDWEJwDheD6gm5iUREsniAW1apvtxX6fbsV73fm0VsSS+OH/hzmWN15r1MLdP7tp9D5/mYGYcndrQFcjzVcJd0TVZz5DcHbrunlTLOBHR/Hz8wS5hcozpwhdDrrNtetotE4hLVNOu2TODfP3NzL6LbZWBKJRDaKTbkmO3r0KMePH+frX//6PY85ceLE4rhIJBKJRCKRSCSyBhYjzNvMuZReP0W8ld9ebFagEIsTgyiYMI8JJaKCIalcBatBFSld1a9bDNzBVb4SQvBoCFVPwHWIRL8dktwcYW5Jzi5zdT/1MNzGpf5Ydh27rK+5KnytGAeEk/MZ14ePsn9PXTQev/I1TFgfV8hRexS7rBexqnLCvXXP4zV4Lr74Rq1ms5SJpx9fl/lFth8qPYLMY7SJ6AAmjGF0YKun9bYYHIn2sKEEBGdyvGQEUkqTUZgBvGT33IcyqDLfc/RcoJlZWo0UGWjQGmwwKIEBX5KHwFhR0Az3n2i2UTQzy+HhnAl1jAfPkCi60KHT7tEzliLP8Bt0jN9qgiQUplWlD0iGlwQbSqwWbLRostupBO9JjOYYHUGVvuC989yma+XgB59G7LJNjqqce/a5KAABA51LtfehkVmumkmKNRzir5ppFqQuGk6Gw8zctHnsoE6v/kXWncdQjtUqwh8DM5gkQVUJ3hOKZeepaYoVjyKEvtgtIhgRfNAqgWmHfsQkS2j+9W/DHKo73vXSDJ2f/zTa6buFTQIYcAWohw13ESsq1fENFdDVpxAA2OEhzNAQ7tpVtNulPHkSyp294UrE0GweRQl0Oqcoimu022/efWAkEtnRbNqVwmpPnuJJVyQSiUQikUgkskaKOQgO73vMlJZO4bAG8juIzaXc6GtrMNpD1IMWWHIQIazWPH1j4cR5NFnbwgz048sDBK1c3bIhlzcKN/Xrbn1ZaxHmndtEmO+1HSaT+iLnWTfIXMjwCr96eoJve2/dZUVnlsHpU+sy6yEZYtLW3SgXwgXa3LtbY/7CZeav1F1fE8+8gyT2+NyVKAVB5hDNER3EhCFM2K49DkMlcocuNpQoQtkXuT0Jpckr8VDSFYU9FF6Z7TqUKrY8aaTYoRaDjZShUEWWD3jHqCtIogi57lgj7BvKOdRMGOt1GTeQOkcx26ZXeooso8hSwj1uXNhJVLHmzRhrvgEIBuMnEc0xOoqqojJ93wne2fAgk8/UN6u1L13j+msnt2ZC2wgbCkxnulZ7+Mg4z11ew/nObdzdLW0wo/VzxgnmyHS7CIuC8nF02Ren4BD+ADEWMZW7O4RAcP2dAFmKwYOA12V9u00ldiuK24FR5jeQZkbjb3wUmRiu1cPZKTq/9Ido4arzjCQDQrWh1/XY+ON26O+FEkTN2uLMgWR8HEkz3OXLhG6X3unTEHbu7w3AmJRm8wjOL9DtnqfdOUWvd2mrpxWJRDaQbbst9obIbXbpzt1IJBKJRCKRSGRTUK36dZcdukWgkJz5wjOQJcgdBINSLB4hIFg/h/WgWmI0I8gaBJ7lEeZ2HSLMQwCUEBSzIb26AXMFMdO1UmNZhLkbHqB3rB4Vbgg8lk3VaoUa3ihGAfjUhSEeeuwwA8209pi9l19E1klAe8jWE7JKdZzy994iSlW58NW6yJ8ONNn71MPrMr/I9kJxBDOLaILoEBJaSBjd6mndFqNlFfMcSoLYRZE7SEppGpS2SZBkRSK3KiyUjnbPkSbCYJ4irZzGYJNhC0N9N/doWTDg/UY0S4gsYzBPeGCsyTieCV8yiBIWuhRzbRxCkeeUyS7cbnDbWHNirPk6IFisn0Q0qxzeBFTuP4f3xLsfJxserNUufOEFfC/2sx3pXqzdfuzwCH9yYW0tW66ZGeakXasN+4dwy5y4BjjADNuHfcB7axXhJeB05e4OAQ0BX/Y/M0mKiGAJBElQsXiTYE11RhsCO7Jv93LMUIPmj38UGasn3YS3LtP95T9Cna8Sq0zS79ut4HsbPi+V0I8zZ81x5hghnZwEhfLyFcL8HOWFC3cft81JkkEajYMU5VXK8jpzc6/g3PxWTysSiWwQ21ZJvtA/oA4Nbded5JFIJBKJRCKRyA7gRoS5azPnEsoApVNad+jXHRCcWJwxGFWMzgIFVWe4xurFbgUpXNXTTgzYtTm7VcF7XwnespER5vVWTGbKkJ5Z5up++jEwdenraDpLy9SzL18rRnEYrnYtn5uZ5P1P1l3X+ewFGgtX12XOk2aSIVO/jjrtT+NWIJZMnzhLd6a+GLTvfU9ibhPXHtnZKB41M4haRIcxoYkJ47X0gu2C1QKjDm9SnGkQJMWbjMK0KE2DICs/rrigzPXK6riYJzQaGQw1GWrlDBNoBE/Le8bKgjQmz20aqTUcGGky2UoZ9yV71WGdo5hZwHd7uCShaOR4u/v6eddjzfNlsebr0+LifkVI+oJ33+GNR2X2vhK8TWI5+MGnazXf7XHxyy9tzYS2Ec3OZXSZkzVNDGZ4LxcX1nB+KXAqOV8rNciZDk/Uaod0ujqx3SYo34ZS71ku/A5iBREhuJLgqzZCCGhaubu9TVHvcbaBMdWeM6+K26F9u5djRgdo/thHkaH6++JfPU/vP3++ei9MStXUvARfABvf6mQ948xJLMm+SbTXw09dx127hp+auvu4bU6W7SVNx+h0zuD8ArOzLxA2PGo+EolsBZsqdt/JObKcsix59dVX+Sf/5J8A8Nhjt0YCRiKRSCQSiUQikXukH2Gursd0mdAuHEagmd5+QaSQSjhwYrDaQ0KBagejCZg1LKKUJaBVhLm1K3Jd3o4QPKqVu9tIJcWvP7dGmDf/jJoI2H760fr9UnI0na3VrvucC24AVfhPJ8b5tm94ELtMINcQGLu0PgvNBsNRe6RWa2ubC+He3RnBBy69+Hqtlo8NM/bo0fWYYmQboYSqf60KoiOY0MCEvRvUEmBtGC0x6vEmr0TAvsjtJEdXGWvdc4H5nkMQhhoJ0sxJB5uMZnaZm7tk0LttKP3fHww3Uw6NNhg2wqSvfhdlp6CcmQfnKbOUMs92XbT5zbHm3qSIVv3pY6z56hFSrJ9Y5vB2qMyhu27LxJ0ZPnKQ4aP1NirXXnmTztXrdxhxf2BDSd6rC3tPPTTGs+cadxhxb1yXOWakvnkwC4+iuvQ9O0DB6ArazGw8LZRvqVWECwjPY5KE4Ct3tyv6gmGaYnFgDCFI1bcbwSxGmYPfqY27l2Emhmn86EehWY+3d189Re+/fqk6iph0yd3tupswq/WNM5c8x+7Zg5+dJczNUZw7R2i37z5wm9NoPIAxDTrtkzg3x+zci6jG79JIZLexIVew1traP6hi8J566qlb7rv5X6PR4Mknn+T3f//3ERG+7/u+byOmGIlEIpFIJBKJ7H5UoTcHZYeeU7pktHueZmYRc4cIc5PgxQCC8bOYAGgPuxZXN1Ritw9ICLAO7mDvA6oBVd241kfmKmLqi7/NZRHm5eQY5cHlDm3l8ew6dtlbGxRe7Y0Bwp9ea9Ed3Mejh0dqzzk89SZJuT4LSQ/aB8glr9XecidWtJA/9cYpioX6ouv+979zw9zzka1hMcZXFaMjldsxTGxPoRuH7Tu6FUNpcpxkqxa5VWG+5+gUnjwxtJoZOtBkcCBjVJSmdzRDYKzskcXF0C0nTSwHR5uMtzJGJbC37GGKks5cB13ooEDRyCnTdHdJlstizQPJYqx5EmPN14SQVcc6zTA6jFLed4L3wQ8+gyxP2FHl3LPPLbaUvF8ZaNf7+T58aIjnrrZwa/kaEDiV1DccZuS0Q71/+iHdbpsNvgFlb60ifApJqmNP8I7gHBoU0hQTHBghiMXZ6jzUGiEs9u3eHZ8te3CM5t/4Nsjq1zLuC29Q/LfnUEkAUwnewVX/3WDWNc4csEOD2OFh3NQU2u1SnDyFljv7O0fE0GodRQm02ycpiynm579+94GRSGRHsSFXsapa+3en+t3+ff/3fz9/62/9rY2YYiQSiUQikUgksvtxnWqhxbWZ8wleoesCrez2YrPDEBBKsVgNSJhD6VaLJtJc/TyUvtjtQGRdIsxDCAQNiFQLGBvBLRHm14X01HJX92PVz9NnwnbYm9RdHGfcEPOaseCEXzs1zsc/UO/vLWWXoat19/hqyck5ZOrPPxWuc30FC6i+dFx66Y1arbV/L8NHDt5hRGQnomg/vtf3he6scjuyxgjMDcDgsKGsHK4klfAnq98wU3pltlviQxVbnrRyzGCD0TxhODjyEBh2JcOu3Iay//2LCIwNZBwYaTKYWiYJDHa79NoFxWwbW5R4a+g1clyyu6LN67HmGaEfa25irPmqMTc292iG0SFUClTmtnpam0Y2NMDkM3WxtX3pGtdfO7k1E9omNDuXq9Y/faw1PHBwnOevZG8z6u7MmHmmb/58hXegy2Kn9zFHohsfe33vWJSP1yrCAoZnMUlKcB5VrXp3C5AmWPV4m6EBvEmxstS324Xds3HMHpmg8T99C9j6WUL5h1+j/PRLYJPq+ks9+C6bkcaxPM58XQTvsTEky3GXL1eC9+lT1S9yB2NMRrN5FB/adLrn6PbO0+mc3uppRSKRdWRDGq79zM/8TO32P/pH/wgR4cd//MeZnJy84zgRodFocODAAT74wQ/y0EMPbcT0IpFIJBKJRCKR+4PebF/sLpguM9pFtUjRym4v4RTGEhCCCFnoIFqi2sWQgFhWvXLiS0RvRJgna04c994DiobQd3VvUHxtcnOEudwUYb7UcskQeCyri8q9YHmzqFzc//XUGI89so+9o/U4zNHLr1RumHXgqD2KXdazWFU54d5a0XNc+dpb+F69j92B97/znlpSRXYGldA9h+IwOrxM6N6O/dhDJXRL0ne2ZqsWulWh6zy9MpBYoZGnaDOjmScMouTBkYXAkCu3oeQfuUEjtRwabXG93UM6JQ1XMF1A2wcaeYpppLg0xVtLUjrsDl+cv8GNWPOEHgQBEUwoMQScpGxyl8JdgdEGhAmCvYIJSjBzKPOIDm711DaFiXc/zvXXTlHMLkVsX/jCCwwfPUSSr03c3akY9TS71+i0ltaunzo+xue+fIH37ltbj99TyQVGy6HF25YcFx4ltV/r31Ye5DonbnJTby0PozyCsLy1zRcwyTME1yI4j5cSm+VImmELT2Ez1M3hkgZZKKq+3SHgvKBa2yO6o0kePUDjr34z3f/wR1WMU5/it5+HRkb2jUfBlZDYyt1t8js/2boQQA0ipnqfAcWv/hLJCOnEBOWFC5RXLpNaQ3n+AukDh+4+dhuTJAM0mw/S6ZzGmOo4Z2yLPNtOf3eRSGS1bJrYDfATP/ETPPHEExvxkpFIJBKJRCKRSGQ5NyLMXYcyKAs+pV0U5InB3iaOWoFSLE4MovQjzJWgPSxDa4swLxyEgASPZunqn6dPCK4fYc7GRWubq4it925sfmXptXqH9+P3LMWRH09naZq6I+e1YhSP4bXZnD+bHeVvfsf+2v1p5zqtmTPrMt0hGWLSTtRqF8IF2ivoAVl2elx9tS6ODx0+wMCBiTuMiOxIZAGVAhMGK1djmEDYjsJGIAk9gtjFnsVeVnf8CKos9DxelTyzpI0U8ozh1DCoAYsy4BzN4GNv7h2AMbBnMKeVWa7MF2QuMNPu0C4cifc085QyrXp5e+9JSofZDfHMAo6cYCxpgGAMiZbV30k/+SCyMow2we8h2GsYVYLMYxBEB7Z6ahuOSSwHP/QMJ3/7c4s13+1x6csvcejD79nCmW0tzfbFmth99MAgn2w3udZZYE9z9ZtnZs0CU2aG8bB07liGJ0nM64hUmx4P6xSnGe+3E9oeKN8BvIn03cmCx8gfYJLvITiHTRNCWWKzFNuZB5ujQXC2Qc4c1gi+31baByWxu+dbNnnng+T/4zfR+8+fr9WLT34ZyS3p0wf7m457kG38pqQqztwgIks94WUNaQGJJZmcoLxwEX9tqtpk1Wxg9+xZnwlvEWk6hvc9er2LGNNgbu4l7Mh7SZKhuw+ORCLbmk359vzEJz7BL/3SL/HAAw9sxstFIpFIJBKJRCKRGxHmZZs5Z1GEbukZyG/vWSzFAoI3ph9hvrAswrxx2zH3TFGA84BU0X5rIGgghCrG3BjZuP7CN7m6zXUhPbnM1f3Mkqu7JSVH0tna46d8zkXfogzwH98a59ves59GXv/ZRy++uG7C2kP2eO12qY5TfmXRfJdffp3gli2KCRz4wLvWY3qRbYJKmyAdjA4gNDBhL0Y32m20GgKJFqhYvKRVD9BVCvKFV+a6DkUZyFPsQIOk1WBPahhWT6aBsaKgFYXuHUczSzg02mSwkTLaSBhXj07PMz/bwXR6pEWBGqHIM8ok2TXR5jdizRXb711vY6z5GjA6gPHjiDYxOkCQNirtrZ7WpjB8+ADDR+tOzWuvvEnn6nbrH715NLtXkWWJO8YITxwb49lza/+uPGXrvbsNGX5Z7+4MzwNst/d+L/D+WkV4FWPPAEpwDlf2UBGwAsbgTIYzKQokRgj9dqW7Kcr8Bun7jpN9zzfcUu/92hdxr1yqXN0awHVvM3r9UQlVpjmCqIGwtuskyXPs3r34uTn87BzF+fOE+YX1mewWkuf7SJJROp1TODfP7OwLhNDb6mlFIpE1sili9w/90A/xQz/0QwwPD2/Gy0UikUgkEolEIpHe3GKE+YxL6RQeH6CV3l5sLiTBixAQrHaQcCPCPIW1OEyc70eYO0jWHmEefACUEBSzgc6Xm/t1N78iiFaTVyN03vlI/x7l8XwKs+znCgqv9sYB4XfODROaw7znsXo8XnPmDHlnfRY0J80kQ6buRjjtT+O493j03twC116vi+NjDx+hMT5yhxGRnYZKlyALGG1Voo4fx2hrq6d1G5RES0AqoZuEUhorPnaoQrt0tHuOxAqtVgMdbDDYTNlrAk31DHjHWFmwe2TQ+w9rhH3DOZNDDVqZZW8zpdHp0pmao2gXpJ0C6xw+TSgaOd6aXfHbVhEK0+onHmR4k2LUYbXHZvSH3W0YHcSEMURbGG0RZAGVe09G2ckc/ODTiF22EVKVc88+h+6GNIRVIBpodq7Uak8eH+OPz+XL06pXxbzpcNVM12pleAeqS6klR/QaRrfX37DyLSj18wVjfg9jITgHCsGVSJZicfg0Q71WxyVT9e32Cs7vzs9U9uHHyP5v764Xg9L9T3+Ce70veIcSdH3aFt2NyuF9Q/C2oGu7XrKDA9jhYfz1KbTToTh9Gi139uYqEaHZfBBrm3TaJ3FujtnZF9Ft9rcXiURWxvbJRYlEIpFIJBKJRCLrg2rVr9t1cKrMlAntwpMlQprcegkQELwYnBiMKibMIRpACyxNwloE6rIA1SrC3K6tE64q+OAJIYBsZIT5NcReq5Uazy2LMH/4QcJQteg3YTvssXUnwKlyiAVNudhJ+K1zI3z8A4cwy9RwCY6RS6+sz1QxHLVHarW2trkQLtxhxO259MJr1Rt8Y47GsO/971yXOUa2HpUeQeYw2kB0ABNGMNu0L63VElRxkqIYSpOvWOj2QZnrlRROaeQJ6WATM5AznhnG1JOFwGhZMOCjm3u3MNhIODTWZDC3jLVSRiz4qVk6MwtIUZJ1e0gIlFlGmWeE3dA4VsBJTmmyfk/7HAGS0ENYQ3TtfYoJQ5gwUh0jtUmQeVQ2x425lWRDA0y+5x21WvvSNa5//eTWTGgb0GxfrN0+vG+QkDZ4+eraW/GcshfQZVtuhBQXlt7/HM8hptf8OutLA+XbahXhMjZ5EVWtenf3SjRNsaEkJE1wHp80MCKIgPcBH5Tduoci/ehTpN9a/zvCB7q/8gX8iUvL3N2b8wYsCd4gwfTd3qvHjo0heQN3+Qra7VKcPAU73KkvYmg2j6IoC+2TlOV15ue/ttXTikQia2BLGvpcv36d559/nqtXr9LpdO66W/AHf/AHN2lmkUgkEolEIpHILsB1+xHmHRZ8gorQLh2D2Z1c3RYFnBiyECAsoNpDFJA1xjb2SigdIJWzew2E4NFQRZkbqRwLG8LNEebTkJ24fYT50Zviy7vBcqIcQRV+5a1xHj48yrGDddf10NXXSdYpzvBB+wD5Tb+jt9yJ2kLq3WhPzTB96nyttueJ42SD29H1G1kpSkmQOUQz0EFMGMSE7enYt1og6nEm7wvdTVihKNlzgU7pMSIMtFJCI6eRGkYNpBpo+srRHXf+7z5Sa9g/3GSuWzK10CNPDDOdgu6Vgmx4gKyhBOso05SikWOdIyndjt/wECSlMJY0dHEiWEqSUOAlIayyz/39SnVsDAQDQqg2CSHItmz3sH5MvOsxrn/9JMXs/GLtwhdfYPjYIZJ8dS0kdjKN7hTGFwS79LM/eWyMPzq3wDsn1uZobZsuV800E2FssebC4yTm64hUmyeP6jXOMopuo97d8B6UP0W4tFgR84eIeYzgDSaxaFAMHhKDN5ZS8qpvtwhBd2ff7huICNl3vQftlrgvvLF0R+HofOLzNH/8W7AP7odQgNmc44mKImr6wrdF8VQXd6vACOnEBOWFC5SXL5NaQ3n+POkOb1lrTEqrdZSFhTfpdM+AGKxt0Wod2+qpRSKRVbCpYvcf/uEf8jM/8zM8++yz9zxGRKLYHYlEIpFIJBKJrITeLKgH12OmbNArA85DK7/19F+B0iR4qXb9i7b7EeYdDNk6RJgH8B6sXbM27X1ACWhQbLI2l/jbITeJ3c2vmEV3REgTOk8+BMCI6TFqi9pjXy9G8Rj++MoAby40+YnvrPfCtEWbwWtvrss8c3IOmfrzT4XrXNeVxaNf/OqrtdsmTZh85ok1zy+y9SiOYGYQTRAdxoQBZNkC+3bCaIlRjzMZ9IVuXYHQrQoLhcN5JUsNabMBuWU0NQxpwAYYciV5jKjc1YjAcDOlkRouz/WwIswXjvb0PD5LaIwOkAXFJxaXJgRjSIsSs8PthiqGwrRItAcIKg4TSgTFS0IMdrx3TBgDFDXVZ6JKxRCE3Sv6msRy6EPPcOK3P7dY890el770Ioe++b1bOLOtQVCancssDC4JeU89NMYvvHSJ6Z4wmq/teHHKXmBvGEX6J8ZCggvvILVfBaCB4yAznGM7fV8blO9E+OXFitAhST9P2ftWNHh8WZAmFkHwNsdr6PftNnSdX+zbnawx6Wm7IiLkf/n90C1xXz21dEe3pPsLn6P5//oYZv84ZCmbc0xWVKgE76pRFYpb/fWYNSQTE5QXL+KvXgURpNEk2btnXWe92Vjbotl8kE7nFMY0+rUB8nxyi2cWiURWyqad7f7sz/4sH/vYx3j22WdR1RX9i0QikUgkEolEIiugNwdlBw9Ml7bfsxby20SYezEEhNJYLAEJ85VATYGhscYI8xIUxDt0ja5uVQghEEJApIqe2xBkCrH1Xo2Nryy9Vvcdx9C+y+lwOld7XCdYLvkWs6Xh/zg5yjc9NcnYUN29MXL5ZYyuT7zsUXsUK0sLhqrKCffWip5j7uJV5i9erdUmn3qYpNVYlzlGtg7Fo2YG1PSF7gYmjC8urm8nDA6rDm9SFEtp8hU52pxXZrslLijNZoodbJE2UyYSw7AGGiEwXvai0H0fkSWWgyMtRgcyhhoJY80UKR0Ll2fQ+Q6Jc2S9arNSkWf4jWqLsZkIOHNzrLmShCLGmq8QCWPV5iAdQjQhmFmUnd2j9m4MHT7A8NH6BrprX3uL9pWVbaDbLTTbl2q3D+xpMTbc4PPn1u7K7Zgel81UrebCY6g2F28f02vItlsTP4pSj+oW82XEXCM4R/CeYA0mlPisAU7xNsP2D69eodylfbtvIMaQ/z8/iH3HwVpd53t0fv4zhOvzEHp3GL0R9AVvbmxqtmtKUpc8I9mzBz+/gJ+dpTx/Dj8/f/eB25w0HSXP99PrXaQsp5mbexnn5u4+MBKJbCs25Wz+a1/7Gj/5kz+JqvLOd76TX//1X+e///f/DlS7nt58802+/OUv87M/+7O85z3vAeDDH/4wL7/8Mm+9tbLFmkgkEolEIpFI5L6m7EAooWzT9gkBw0LhaaUJchuXZCGWgBAQEg1IWEC1i6ggskbBsyzAuer/1+jEDt4DioaAMYYNizBPb4own4HszVsjzBvi2GfbtceeKYdQhF87OYbJc7753ftq92cLV2nO1uPCV8uQDDFpJ2q1C+ECbTr3/ByqeourO2nm7H3qkXWZY2TrUAJqZlAFoyMYzTFholrs3GYYHDaUeJMQSChNTpB73Byj0C0D84XDGKE12ISBBkO5ZcIoDQLDrmTEldvwJ98gFCRU/+53jIHxgYwDI01aecL4QE4zNbRnOxRX5zClJ+sVmBAo84wySTapm+rGUsWaN1EsTjJUDEkoMLq7xdr1RBBMGMeEFqIjfcF7pnJF7mIOfvBpZPn5mirnn33uvjQi5b3rGF8XJZ86Psaz5xqEdXg7TicXCbXe3ZbSL7nom5TsZ2btL7TOKN+OsvQZEZQk/QzBezQEfPAYHCFtoBqqTTciGJFd37f7BpJYGj/45zDH685gnW7T+bd/QLg+C5u6ASlU5wZIfwPk2gRvMziAHRnBT00ROl3KU6fRorj7wG1Onu8jTcfodE7j3Dwzs8/j/WZuTIhEImtlU673/vW//td479m7dy+f+9zn+O7v/m4OHz68eP+xY8d473vfy4/92I/x5S9/mb/7d/8uzz77LH/zb/5Njhw5shlTjEQikUgkEolEdgfLIsxnXUrhA6VXWtmtYrMCpVicMYiChHblwtYuhnxFEcK34APiQyV2m2TFfXdvfTqHakC1ck1sFDdHmDe+uizCvJnTfbS6PjmcztV+JKfCOTfIS9MNvnh1gI++7yBZWl8wHr300rpJ9A/Z47XbpTpO+dMreo6Z0xfoTNUXUve961FMI7q6dzJKQGUW1YDREUQzjJ/clkI3hEroloRAijPZPQvdQWGu5+g6T55asuEWppGyNxXGJJCHwHhR0Ai7XPXVqgWn8ULihNQZEt//5ySK3kAjtRwabTLcTBlupIy2UlzpWLg8jSlKsqIkKUt8mlBm2a4QvKtY8yZeErxkeJNi1GG1AOKH4l4QDCbswYQGosOI2l0veGdDA0w+U3futi9f4/rXT2zRjLYOAVo3ubufOj7GlY7l61Nr7wralYJLpp6sE/QwPiw5go/pNbafMjwGfFOtYsxbGPNW5e52DiMBrMXbFNfvoGoFXP9HceuxW2CbI1lC869/K+aB8Vpdr8zR/XefQuc2dyODSqic3X3BG13bJmQ7NoY0mvgrV9Bul+LUKfA7/7ul0XgAa5u0Oydx5Tyzcy+g65TIFYlENp5Nudr97Gc/i4jwkz/5kwwNDb3tY0WEf/bP/hkf+chH+MxnPsMv/dIvbcYUI5FIJBKJRCKR3UE/wlyB6cLSKRxGoJneuqhRikURnBgS9YjOIwSgxNBA16LMFjcizD26Vle3BkKoYsyNkY0T7WQasZdrpeayCPP2Ox+BpIp7P5TUI/vOuwEWvOU/vTXOoYkWTz9S7183MH2KrLs+C1uTZpIhU7+uOu1P41awAK8hcPH5r9dq+dAA448cAbP9Yq4j94aiqMyhuL7QnWP9JMJ27I8ZSEKPIJYgKd6keEnvaWTplbluSUBptnJkqEkzS9ifwADKoHOMugK7K2TL29B3b1svpE5InMGG6vfvbKBMAs5Wi86LovcufSvuFWOEiaGcfcMNBrKEvYM5VqB7fZ60W5A4T9broUYoGjlhjRu0tgUiONOIseZroBK8J/qC9wioVKkZu/j9m3j3Y2TDg7XahS++iOvtfOfmSmm2L9Zu7x1tsH9Pk8+dW59NgSeTC5Q3xeOX/n1oX4gcoGA/s+vyWuuJ8s0o9c9Ikn2G4It+S9IqM8pnTbxWiRnWGlSV0O/bfT8gjYzm3/gIsm+kVg/nr9P5d3+A9u49jWk9uCF4gyBqKtF7tQikExNgDOWVy4SFNuW5c+s2161CxNBsHgWg3TmBK6eZm3vlvky3iER2Ipsidp89exZgMaIcqEUoluWtUUo/+qM/iqryH//jf9z4CUYikUgkEolEIruBZRHmHU0pVVjoeZqZRW4jYBYmwYugSNVH2t+IMAdkjT0JywK8AxTW2K87+ABUC2Qb1qsbIK2Lv2YOstdvjTA/lMyTLFOOVOF0Ocx/OzvM1V7Cd37jA7XnEV8yfLkeF75aDIajtp5+1dY2F8KFFT3PtTdOU8zXY9j3P/0Y0u9HHtmZqMyhUmJ0CNEM6ycQ7k1A3lwCiRaoWLykBLE47v7ZU4VO6VjoOWxiaAwPIM2M8dQwYQK5BsbKglbw27Az+RpRMIGae1sUvLkhcCs+AW8Vl4T+f3VJ9HYG62VN0aW7gYE84dBYkywxDLdSXFB6820a7Q7WB9JeAUEp8gxnt+MmkZVzx1jzXd6Der2oBO/Jqh2EjqC7XPA21nLoQ8/Uar7b49KXXtyiGW0dWTGLdXVB8qnjY3zlUsZcsfZvGSeet5Kb29sM4sJTi7e2p7s7Q/lYrSIyhbXPEZzHa0BCiU+bEALeZNj+2xXC7u/bvRwZbND8sY8i4wO1ejh5he7P/w7qNvc4rBIWE6sk2LUJ3taQTEygpcNdu4qbvo67cvXu47Y5xqS0WscIoUenc5pecZl2+/5Lt4hEdiKbInZ3u10ADh5cimIZGFg6yF+/fv2WMQ8//DAAr7zyygbPLhKJRCKRSCQS2SUUc4sR5nMuxYdAzwVa2a1is0fwGLxYjCpGO5jglyLM1+LuDQHxHpwHY9fkFFaFEDyh7wIxWxRh7kYGKY4eRFAOp3O1x132TV6bb/J754d550NjPDBZX9Aavvp17Dr1fHvQPkB+00aEt9wJdAUKli8dl196o1ZrjY8wfHg/7BJx535EZQGVHiYMIppjwl7kHgTkzUdJtASkErpJKKXBvajTHefoOSVvZSRDLdLUsj8RhkRpec9YWZBsO1FglSxzb98QuK0XFPA33NuJLoraZRroZp4iq+pFWj0mWMVZxduAURaf534Wva0RJodzcmsYbCS0i0DZczTaHRLnyIoC6z0uSynTdFe8VTdizcOyWHMbYqz5vSKYqh2ENvqCt/YF79353g0dPsDw0UO12rVX3qR9ZWqLZrQ1VFHmdXf3k8fHcCp88cIaN4X2uWymmJb6eaUP7yBo5QYepMckc7cbusW8C6X+GbHp5wluBlQRdYS0SslwahERrAguBMJ90Ld7OWakRfPHPoYM1RMB/NfP0/3l30c32emuopWzG5BgWEuUl+QZyd69hPkF/MwM5YXz+Lnt+HldGdY2aTaPULoZet0LtDsn6PYu3n1gJBLZUjZF7B4fr/pTLCwsLNYmJiYW3d2vvfbaLWOuXq12Ak1PT2/8BCORSCQSiUQikd1Ab7Zyd4swVVjaRbV40spuPe0vTRXwW0WYB9AF6EeYizTXtrhf3ogwd+haXd2hH2GuASNV9N6GINOIrfdmbD639L51nn4MjDBhOzRN3c11shjmV94axyaWj33Dwdp9SW+ewWtvrcsUc3IOmfrC4lS4znW9dfPw23H11RO4bl183//MY4hde2/1yNag0iFIG6MDCI2qz6w2t3pat8VqCRpwkqIYSpPf0591twz0SiUbbGKaOcOJsD9RGgRGy4JB73a+m7vv3rbL3NtGIchy97YuureL1NPLAmVaOblrb4BULu9e2r/fKKVVvAmYUIne5j4WvfPEMj6Q00otjcww2y1RH2h0uqRlSVo60qLEJ5Yiz3ZNrHlpGrh+rHlpckQDSYiC970g2CotQ7O+4B1Q2b2C98EPPo3c1Ibm/LPP3Xdxvs2b+naPDmY8MDnAH53N10ewFXgjOUOofY4Mpf+Gxec/ple3obtbUD5er0iPJP0cwXtC6KEi+LSB6yfMWAHf/znK+yTK/AZm7xCNH/sYNOubEP1XT9D7z5/Z5L8rXSZ4C6J2TecCZqCFHR3FX79O6HQoT59Gd0HbgzQdJs8P0CsuUxZTzM99jbLc3F7rkUhkZWyK2P34448D8Prrry/WWq0WjzzyCAC/+Zu/ecuYT37yk0AlikcikUgkEolEIpG74LrgS3AdeprS87BQOBqJwd7khlagkAQvBhSsOvDzqHb6fV3X6FbplVWEuSqssV+3Dx4loEE31NVN8nrt5i0R5k8/CsCRtN47ccZn/Pr5cU7M53z43fsYHqgvYo1ceglZJzXpqD2KlaX3U1U54VYmpLtujytfq48Z2r+HwX0TkK5tY0Jka1DpEWQeo01EW5gwhtGBuw/cAqwWiHqcyftCd/OeNlgUXumUnmSoicks40YZs9AMlZs723YiwD2iIArmJve2AN4Eyr7AHWwlcpdJoNcXuF2ihGqd+u25IXpnYTHevEwq0dsGSJ1gqk4R9x3DzZTBRspwnmIFptsFKOS9grzbxfqqjzdAkWf4jfwO2kT88lhzk6NiSEMPg9vqqW17hATrJ6v0DB1F8ajM7krBOxsaYPKZd9Rq7ctTXP/6/RXnm5bzJOV8rfbO42NcWEh4c2Z9zps6psdZe7lWU53E63EAhumxl/nbDd1iHkR5Z61i7AuoP18JDsERsiZeElQVYw2qleDt/O77m7kb9sAozR/9COT1z437wqsUn/zjLRC8q9QKVBBN1nQeYEdHMc0W/soVtNujOHUSdsHvOM8nSdNxOt2zODfH7OwLeN/d6mlFIpE7sCln6h/+8IdRVT73uc/V6t/7vd+LqvKv/tW/4hOf+AQLCwtcvnyZf/7P/zm/8Au/gIjwkY98ZDOmGIlEIpFIJBKJ7Gx6s1WEedll1lWLSr3S08pvXYhzYlCE0lgsAbSDCWFZhPka5hEU8a4fYW6qf6ukijAPhBAQYUP7dctN/bobzxskVCpSuW+c8sBeRkyPUVt3KrzSGeGTZ8YYHcz44FOTtfvy+Us05uuOoNUyJENM2vpG4AvhAm06dxhxey6//AbB1QWN/e9+rLoyXKMLP7L5KAVB5hDNER3EhGFMGNrqad0WoyVGPd5k0Be69R6EbueVhdJhhhqkqWUMZdgKI65k2LnNWdRYT5bFk6dOql7aAZQl9/aNeHKfBIok0M0CRRrwia7++CzgkiXRO9wQvUWrqHR/f4reewdy8sQw2srwCrPdqn9q4jzNhTbWebJegQmBMs9wSbIr3qLbx5qXMdb8HhDSusMbt2sF74l3P0Y2PFirXfjii7ekw+xmqijz+rncE8dHEYFnz65PlDnAGXuRDvX31flnUK1eY3u6u0H5GNp3bgOIKDb5A4J3EApcVqXMeLVYqd7PEBR3H/XtXo49vJfGD38rJPUv8/Izz1P+zp9u8mwCynLBew0Ob4Fk714wlvLyZUK7TXH27HpOdstoNA5h7QDt9kmcm2d29nlCiJvDIpHtyKZcF37Xd30XAL/+67++2L8b4G//7b/N+Pg4ZVnyIz/yIwwPD3PgwAH+/t//+3jvaTQa/PRP//RmTDESiUQikUgkEtnZ9Oag7III087SKTw+QCu91VldSkJACAhJCBDmAQ/qEFlj9HHZF4PXI8Lce1BFQ0DMvVgYV4nMILbeh63xlaVLpfbTj4HILb26O8HyiycO0PWGj73/IMnyhSsNjF58ed1m/JA9XrtdquOUP72i5yjm21x7/VStNnp4P809o9HVvQNRHMHMIpogOoQJg5gwutXTui0Gh1WHNymKpey7Se9GUGW+9EizSSNJGAme0dQw6grynRSBqmA8i+7txBtE6UeL34gnZzGevLcYT165utf10LdM9PY2EBIoraKA9YbEC7KD3tq1YgxMDuek1jDcSOmWgU5RtaowqjQX+3iX2LLEpQlllu0KwRsRSlmKNXc3Ys2j4H1XhAwTJne94G2s5dCHnqnVfLfHpS+/tEUz2hqaN/XtHmymHD0wxJcv5nTc+hyggyhvpmduquY4/zQAo3QZZ+GWcVvPMMqHahVjz6D6CqjDG4s3FkeKiGBE8EEJCmFXHEhXTvLwfhp/9ZvB1D87xW99ieIPn9/k2YRqEx4CatYmeFtDMjmJOoe7eg0/M427fPnu47Y5IoZm8whiLO3OCcpyhvn5V+67lg6RyE5gU8TuD3zgA3ziE5/gn/2zf8b160v95Pbs2cPv/u7vcvToUVS19m9ycpJPfvKTvOMd73ibZ45EIpFIJBKJRCJVhHkBro2TlIWiijDPEiFNbo0wL8XiTCW2GByEdhVhDqw5wrwswXlEFezaBFQffNUTU9nUCHOZh/zr9Qjzhjj22XbtcW/0hvmjK4Mc2T/Ik8fGavcNTp0gLeri+GqZNJMMmbpb97Q/jVth5OzFF15Dl60sihH2P/UwlR0jit07iUronkHUIjqCCS0kjN194BZgcNhQ4k2y2Cc4yN0/b6owV3i0ldPIDIPBMZZbRsuCZLsvMC5zby/Gk4eqoYG3gTIJy9zbSpkGupmn6MeT6wbu7VmcokCZKr3UV33Ak0p4B0i8IXHSb2ux+8kSy97BnEZqaGaGuZ5bdB0K0Oj2yHoFqatizdUIRSPfJX28l2LNAwZnMpQYa34vGM0wYd+uF7yHDh9g+NihWu3aK2/SvjK1RTPafFLXIS3qbWyeOj5KEYQvXsjuMGrlXDdzXDHXazWvDxFClexzXK+t22utLx9EGalVEvsZjHYrYTtvVn27VbGmEruV+zPK/AbJUw+S/z8+eMt3ffFfn6X8wtc2dS4qoXJ29wVvdPUtqCRLSfbuJSws4KenKS9exM+uz/XQVmJMQrN5FNWSTvc0vd5l2u03t3pakUjkJjZtReOHfuiHblt/73vfy6uvvsqnP/1pXn75ZZxzPPLII3z84x+n1Wpt1vQikUgkEolEIpGdS28WNEDZZU4HUJR26Rm+TYR5KRalijJPgodQRZgH7WJprC3CXBUpHTgHYsCu/smCKiEoIQSMkSpib4OQ9LXa7eYLSxHmvSMH8OMjPJRer7UWdir8ypkDlGr4zm+sLwIb12P4Sj0WfbUYDEftkVqtrW0uhAsrep7O9VmmT56r1fYcf4BseKD6PZm19VaPbB5KQM1sP3JyBBMamLCnWqTcdoRK6JaEQIoz6T0J3SjMlx7XyGkllpZz7GkmjLuCbftJVTAKJgii/d+FVDHhaqremEjl3gum/69f20rUQGkCPkDiDM6ABMWGKmI9SCXKb/U8N5rBRkLXpaDgfMFMp2B8IF887qdliQmeXqMBvYIyTSnyjKR0JN5v7eTXgSrWvEWqPcCgUmJDiUjAS8ImeWV2HEYzCJMEcxnDCEFmQGZBhzf0vGWzOfhNTzN35iLqlj7r5599jof+h48iu2HTxz3Qal9kJhtevP2Oo6P81ufP8rmzDb71wfWLdX8rOctYMUyy7Nuu9N9AJr/DmLQZ1TbTst3Wy1OUb0f4L4sVMTOIexbMd1GmTdIkRXsBaw2Fr1zdpQ9kye75O1kp6XuPQadH75P1+PLe/+8zSCMjefqhTZuLSkDUgICoqVzLq4x5MQMt7OgofnoayXLKM6cxDz+M5OsX+78VWNug2TxCu32Cbvc8iGBti0bj4FZPLRKJ9NkW3yhpmvLxj3+cn/qpn+Lv/b2/x/d8z/dEoTsSiUQikUgkErlXenNQdkCE62VCrwx4D83sVlGpMAleBEVINIAuUEWYe0Qaa5tH0XeBeY8ma5OkgveAElQ3tFc3MovY87VS47llEebPPIYlcCiZrz3mTDHIb50f4V0PjbN/T/3aZfjKq5hQrsv0HrQPkEt9cegtdwJdYcbgxa++Wrtt0oTJx49WIvcaf1eRzUMJqMygqhgdQTTHhIltKqoEktAjiCVIijcpXu7NAbcQPEWe0UwMTVcy0bCM+3J7Cd39dWCz3L3tK9HHm7AUT77Mvd1b5t4Om+DeXgnBQJFWPcK9VZyteogbWPrZdrnTe7yVk6WGkWa/f3enfhy3PtBYjDUvsN7jspQyTXfHW7MYa572N6fkCNp3eZfs+g/AKjGa7/pI82xogH3P1JM325enuP71E1s0o82neVPf7mae8NChIU7PJZyaXb9vp0Icp5L6eakyig+PA3Bcr67ba60vT6AcrlWM/RMMU5Q2RcXi1GAqPRUfFHe/5pgvI/3w42Tf+c56UZXuv/893NdW1q5orVSCd3ViIsFWETCrxI6OYpot/NUraLdLcfIU7IKNYUkyRKNxkKK8SllMMT//dcpyequnFYlE+mzKFfFHPvIRPvKRj/CJT3xiM14uEolEIpFIJBK5f1gWYe5Nylwv0O45Egv5TW4Jj+AxeLEYhzpb7AABAABJREFUVQSP+CrC3CCsPcK86EeYhzVFmKtCCJ7Q78m7qRHm7aUIczVC550PcyiZJ1mW56sK/8eFfcw7yzc+NVl/uu4sA9frfbFXS07OIVN3jU+F61zX63cYcXvmL11l7sKVWm3i0SMkzQYxwnznoGhfQPF9oTvD+m0sdGuBisVLShCL496E7k6AbpKTW0PLlUzklr3BbQ+hW8H048lTJyTeYEP1u3F9cftGPLlLAkVS9d4u0kpAXsO68eYgEKxSpIEyDQSjlFbxNmDC7he9jYF9Qw1SK4w0U7ou0C7qi/NGlUanS1qWpKUjLUp8YinybBfFmmeUplHFmkuONykmOBLtIex8sWIjuB8E773vfoxsZLBWu/DFF3Dd9XM1b2cS3yPr1c+/nnqoah/y7Nk1bha9ifPmKnNSb53jwlMEHWAPCwxrZ11fb30QlO+sfT2IlKTht6trD5viSRAEcyPKXCFEwZvsY+8i/ZZH60Uf6P78b+PfWlmS01pR0crhzRoFb4Fk716wCeWly4ROm+LMmeoiaoeTZXtJ0z10umdxbpbZ2Rfwfjv+TUYi9x+bclX8uc99js9+9rMcPXp0M14uEolEIpFIJBK5f7gRYe56LIQUVVgoPK0suSVasjTLIszVo6GDaEC1i6w5whykLCHciDBfvTSlGgih+q+Rjc35laQeYd543iB9d2b30SPoYJPDab3X3CXf5H8/s5ejBwbZv6dZu2/k8ivIOilBR+1RrCy9j6rKCffWip5DVbnw1XqketLImXj4gep3lJhK4Ylsayqhew7FLRO6J5HN60y2ApRES0D68eWWUhr39GfcU6FtEzJRBlzJeGaZxG+pnC8KxrPMvW0QBW90yb2dsChw99JK4HapEizbyr19z0j18/Syqr+4N1r9nOaG6C2YKnxj15Emhr1DOXliaGWW+Z6jdHXBUoC8V5B3e1hf9fEGKPIMv0uOp0EshRnou7wTnMlRDEkosFrALhJx14vdLngbazn0offUar5bcPHLL23RjDaf1k3u7scOj5Amhi9ezOitZ4t7gTeS0zel+CQ4/w2obmd39wHgmVrFmucxnKVMU1ySg/NYEUK/b3fpd+EXyUoRIfvzT5N84Fi9Xjo6P/ff8Gev3H7chqDLBG9B1K7+u94akslJ8B535Sp+dpby8uX1nOyW0WgcwtpB2u2TODfP7OzzhHVK9YpEIqtnU87CJycrt8Po6OhmvFwkEolEIpFIJHL/cCPCXJXrZULhA6VXWmldbFagkAQnBpQqwjwsACWiHpG1urr7F/jOo9auSeDx3qMEQtCNdXXLHJLU+1g3v7IswvzpR5mwHZqm7mT73asTXOslfODJiVo96c3TmK8vhK6WIRli0taf/0K4QJuVOQdmz1ykc226Vtv3xHFMkvQjzNO1TjWyGcgCKgVGhyohJUwgbM/fndUSNOAkRbGU5t6E7kKEeWtJUQaDZzQ1HDRh84Xufjz5onvbGWyotrB4W4m/7qZ48u6yeHLdZvHka0LAJ5Xo7frx5pXoXfX0Tp1gArtO9B7ME0aaKUONhNQIM53ytma0xDma7TbWebJegQmBMs9wSbI73pK+y7swraoVgWT1aHON0eY3Uxe8h3ed4D304H6Gj92UOPPKm7SvTG3RjDaXZvtStcG0T5ZaHn1wmI4z/Oml9e1HPG86nLd1kTPoQYI+yATzDGl3XV9vvVA+gt6U5JLxSUqTUqYNtHRYU32nhgAu7I6/jbUiNiP/S8+QPF2PgqdT0P03/xfh8vQmzqZKohEMqCCarPpQL2mCnZggtNv469O4S5fwMzPrO90tQERotQ4jJqHdOUFZzjA393LV6zwSiWwZm3Ld+O53vxuA11577S6PjEQikUgkEolEIvfMsghztRlzXaVdOIxAM6uL3U4MiuCMxRKAgIQFNHT7McjrIHb7gISwplhsVfAhEEJAhI3t131zhHkH8lcrlSqkCd0njnMkna09ZsZn/MJb+xgbynjs8EjtvsGpt9ZN43rIHq/dLtVxyq+sd5+GwIXn667ubKjF+JH9latbiP26dwAqCwTpYHQAIceEvRhd30X19cJqgahfdIGWpgn3EO1cGsO8WKz3DAbPsIUHE908zbgfT37DvZ3ccG/LUjy5T/p9rJNA0Xdvl/148l0jbt8JAdcXvb0NhL7oHUSx3pB4QXaZXjHWymmkluFWhgIznfK2i/0mKM3FPt4ltixxaUKZ7ZI+3oCKUJoGpckJ2KVoc62izQ3raWnd+SwJ3vmuFLwPftPTyE3nDueefe6+EHlsKMm79SjzJ4/3o8zPrf/38il7gR51t2jp34tqwrFt6+4eRPmWWsVyGpJX8GLw2GV9uwPO625Itl47ApJk5N//Huw7Dtbu0vkOnf/vbxCm5u4weCMI1ea/RcF79Q5v02pix8bw09OEdpvyzFm0uz03a6wEkYRW6xiqjk7nNEVxlYWF1+8+MBKJbBibInb/yI/8CKrKz/3cz23Gy0UikUgkEolEIvcHvbnFCPO25rigtHueVmZvjTCXhIAQEJIQ0NBGVFG6CPn6RJh7Vwlba4gwD96DKhoCYjbWInlLhPkLBnH9CPMnjzPcVEZtUXvM52fGOdPOef8TE7X3WHxJa3plYvSdmDSTDJmhWu20P41boaAw9dZZirmFWm3/Ox9FTP93ZO09CZGRrUOlQ5A2RluINjF+D0abdx+4BRgtMerxJoO+0K338PlyxjIvFvGeYZRBCTyYyMbqx8vc20vx5NUrehsobVjWe7tyb/eWubfDbnJvrwSBMlV6fZHfJ1DagAKJNyRu94jexsDEUE5mDSPNlMIHForb96sWoNHtkfUKUlfFmgdjKPJ8d/Tx7hMkoTCtW6LNbShjtPlN7GbBOxsaYN97nqjVOpenmHr1xBbNaHNpdS7Wbj/y4DB5ZnljOuX8/PpuIPQSeCs5e/MMcOFd7GOOAd2u/dI/gDJeq6Tyu5TiKSVDfMAawWuln/rYt7vCJIhNaPyVD2Af2le7S6/P0/k3v0mYbd9h8PqjckPwFlCzJsHbjo5gBgfwV64Sul2Kk6fA7fyNUsbkNJtHcX6ebvc8ne4ZOp1zdx8YiUQ2hE0Ru7/3e7+XH/iBH+Czn/0sP/zDP8zCwsLdB0UikUgkEolEIpG3pze7GGE+4xJcCHTLQDOrO6sVKMVSmsqtaAlImKeKMA+INNY2D1dWlmznUJusLcI8eFQDqmxwhPkC2PoCYvO55RHmj93Sq7sTLP/mrYNkqeGZR/fU7huYPoXR2wshK8FgOGqP1GptbXMhXFjR8wTnuPRiXcxvjo8wcnAvYKq+6ul27PccuYFKjyDzGG0iOoAJoxgd2Opp3RaDw6rDmxvR5Tl6D6kMzlrmjUGLkmECLfUcyQ12I/70++7txXhybzCh6od+w729JHAHiqTu3tbdo1muGTVUGwBST7A3XO+ViLcoeu8C7SK1hsmhjKzfv3uhcBTuzmJlWpY0Oh2sD2S9AlQp8gy3hg1g245l0eZ+WbQ5Mdr8Fnaz4L33XY+SjQzWahe/9AKuu13F1/Wj2b5SizJPrOHxI1XSz+c2wN191UwzJfWUIR8eJejYNnZ3W5TvqFWMzEDzOXppA8oSa5b6dvsYZV4hQJIhqdD4oQ9jHqxfa+jlabr/22+i7c1zRVeCtywK3ujqv8+SPXshSXCXLxM6HYozZ9gNtv4kGaTROERRXqXoXWVh4esUxf3R2iES2W5syurGf/gP/4GPfvSjvPDCC/zyL/8yv/Ebv8Ff/It/kXe9612MjY1h73Li/4M/+IObMc1IJBKJRCKRSGTn4Hr9CPMOJDkzs4F24RGBVlZXigqxlXNCDEnwVBHmncUI85t7662YooRQRZhrtvrnCqqEoIQQMEb68eobRPJazdQsHci/1nd2thrw2EH22Xr/7RcWRnlpusUHntxDvjwmXpXBqfVxND1oHyC/qX/6W+4EukLx4OrXT+I69UXnA08/hmg/Zt6wprj5yMailASZQzQHHcCEIUwY3upp3RaDw4YSLwmBpIo6lrt/tlyS0BZD6BYMoTSd53DLkJj1U5VFQYJgFKSvVqtUPaeD6OL2/3CjZnRtKRf3GWqgyEI/At6gBiRU/bwTZwimel93sgu+mSWMtarvtdIrM52SPYM5d/qYWh9otDv0GjmiiksTXJaizpCU5U5+K2qoCE4aBHUkoUDFoOIwoUp4CKY6HtzvGM0hTBLMZQzDBJkFmQUd3thznA3GWMuhD72HE7/1R4s13y24+OWXeOCb37uFM9t4jDoanat0W5OLtaeOj/H861N84XzO9z7SJl3PX63Am+kZRop3YBc/M4bSv5999vd4S3u0ZTu2NnkU5TjCW4sVk3yBInuE0PaYXPqu7urYmqdbN9NthZjK4Z15mj/yETo/+/uEi9OLd4dz1+j83H+n+RPfjWzSm6YSEK2y50VN1bJgNTEuRkgmJ3Hnz+OuXAFrKC9dIt2/f/0nvclk2R5C6NHtnceYnLm5Fxkd/QasbW311CKR+4pNOfP8a3/tr9Ui/q5fv86v/Mqv3NNYEYlidyQSiUQikUgkcjO92X6EeZeuHaLnKrG7kRjsTY7o0iR4ERQh0YCGhcUIc0Nj7XlPZQnOAwJ29ZcYwXtACapYs7FOuFsizF9cijDvvOsRDjfaNTHcqfC/nTiICLz/iYna2ObcBZJy7bGCOTmHzKFabSpc57pev8OI2+N6BZdfebNWGzwwweDEWOXCtzYK3dsYxRHMDKIJokOYMICE0a2e1h0IfaHbEiSt4o3vQegu04SuGNxCjwFRBoLjcNOSr7WHvFYCt1HBBKhUViUIBBsIUpUU7QuxEHa4GLsdCAaKNGCCkHpBBYxWorfZBaL3aCuj6zxB4dpCj5l2yVgrvePPY1RpdLoUeYZQ9fUus5RghKwokV3gZLtBFW2eYClJAgRjMFptgBEJeEnYpFDJbcudBe8RNrhhw4Yy9OB+Ro49wMyJpZScqVfeZPzxY7Qmxt9m5M6n1b5UE7uPHxyi1UiY7zq+ejnjG/YXbzN65XSl4Iy9yFG/1MtZdQ8hPMxRucwrcvBtRm8VgvJx4OeQ/oZNEYe2nqWYfpqGKiIQQsAHQTV21lnEpBAc0jQ0fvQjdP7N76PXltKmwomLdH/ht2n86F9A0s1JDrkheKsoEixq+idcK0TSBDsxgbt8GX+9ur4xjQZ2dHSdZ7z55PkBQujR6ZxCTMrMzFcZHf0GjIk7OSKRzWLTzjhVdfHfzbfv9i8SiUQikUgkEoncRG9uMcJ8ukxQVbqlp5XXhSaP4DE4sRhVDIqEBdD1ijD31cK9c2iy+ghzVQjBE/pRhpsdYd74ytLrdZ9+hEPJfO3+N7tD/NHlYR59cITx4bqDZnDqLdaDo/YoVpYWrVSVE27lz3355TcIZb0P3oGnHwPvq0a0mCh2b1MUj5oZRC2iw5jQxITxbSqIBJLQI4glSIY3CV7ePtlBqYTunljcQo8mgSHvOJCZW9ov3DP9ePIbvbcTX7Vr8GYpnryK2e7Hk6c34smVYHeuALvtEAi26uddpgFvlNIq3lTO79QZjJcdmXAtApNDDbLEMNpIKUNgvnj7XqMC5L2CvNvD+qqPN0Avz/Ab+f22FQh4SfvR5hlBMkpTfU+moYfVkvu9n/ftI81nVpzast048E3vRm7apHTu2ed2/Vpuo3sFCUuta4wRnjg2CsDnzm6My/qsvUxb6vHVLryb/dqjoesrrq8fk8D7ahXJXqfdmq6izEXwIfbtvgWRvuBdYoabNH/8O5CRehsb/+oZur/8e6jfvGOrilYOb0CCZbX9XUyriR0fw0/PEOYXKM+eJXQ66znVLUFEaDYPIyal0z6Bc3PMzb2I6v39/ReJbCabssJx4sT6RPpFIpFIJBKJRCIR+hHmvcUI89mFQKfwhACtrL7oWJiEQBVhngWH4qsIc+1HmMsad5sXVV9SCR5NV/9cqoEQqv8a6dsvN4rkDWSZG0G60Hilej03NsTEQ0MkMrNsbvCLpw+iCB94su7qTjvTZO1ra57SsAwxaevPfSFcoM3KFn+KhTbXXjtVq40eOUhzdAiKHiQpGKnc3ZFthRJQM1P1q9cRjDYwYe82jboNJFpFF3tJCWJxvP0CvwIuTSmNoZzvkgbPiHr2psJwcwXHjmXubVmMJ7+Te7tybgcTe25vGgLeVk7uxAvWC8FU7mYbBBsEb3Xx97RTsEaYHMq5EAKDIWGu60itIU/e/u8zcQ7T9nQbDaTv8C7zDC0d1rmd9BbclSraPCdogg0FLIs2T9QRTHpfR5vf3uE9s6Md3tnQAPve8wQXv/TiYq1zeYqpV0+w5x3Ht3BmG4vRQKNzhc7AUvzyU8fH+NOvXeVrUxmX24bJ1voKXCrKG8kZ3lU+sqya4f17OCav8DU5sK6vt14o3wa8hCw7n3VjX8Gf/SaSgRF6zqOquBBI4rnpEiaF4CvBe7xJ83/+87T/1f8FC0sbHvzzb9H7z58h/ysfQdaxBcydqc6lKod3QNSiuFV9l9vhYbRX4K9dQ7KU8tQp8ocf3vGbcUUsrdZRFhbeoN05iYhhfuE1hgYf3+qpRSL3BZtyBDly5MhmvEwkEolEIpFIJHJ/sCzCvEiGaPc884UjTwypXVp4V6AUixeLKLdEmIs01y42FCWUDpA1LVB471ECISjJWqOM74IkX6/dzl8ySNmPMH/3ozyc113d58sWv35unH3jTY4dHKrdNzj11rosUR+39UXhUktO+dMrfp5LL7yOhqUFVjHCvnc/Vi2YIWAspDt7IWm3ojJfbfbQUUQzjJ/YpkK3kmgJSCV0Yyml8bbHEgXKLMUbSzHXxvrAuHpGExgfuHcXnGjl4O43jsSjqO0L2bKsH7fZeWLqrkPA9R31iReSG6K3B+sFI+y431MjtYy1clR7FC4w2ykZH8ixd/kzNUFp3ujjDZRJwKVVrHla7J4+3jcIYgmmiaEkDRCMXYw2N+JxknK/RpvvRsF777seZerrJylmlmKWL37pBUaOHSJpbMde0utDq32xJnYf2T/I8EDK7ELJH5/L+Z5H1t+pOmPmuWSusS/sWawFPcr+cIK3pKS31g2sG0IT5VsRfnuplF5lvnmSId5Zubq16tvd2I7T3yqEqjWUL8BYzEST5v/8F+j869+Ebrn4MPfFV5FGRvaXP1xrIbtxKCpSbZjWgJCsWvBO9uyhLEvc5SuItRSnT5MdO7bj8+yNyWk2j9Juv0mnew7EkNgBms0Ht3pqkciu5/48u4xEIpFIJBKJRHYyxVKE+axLUJRO6Wll9dN7JwZFcMZgCQj0I8x7VYT5XZyYd8V5REMVj23tmiLMfQiEEBABkY2MMG+DPVMrNZ9ber3Ge4/QNL52//9+YT9FMLe4uo3r0po9t+YpTZpJhkxdRD/tT+N4+5jcm+lMz3L9RD2effzhI+SDLXChH2G+tk0JkY1BpYdKD6MDiGZYP4mwPR1OVkvQgJMUxVKaexe6y7k24jx7gmNQlInBxj2vaVZCt0EFyn48eUgUb5UyCfT68eQuqRzdO1Q32n30Re9eFvA2EBIobRXebL0h8YLsoITP0VbKQJYw0kwxAjOdgntJbBag0e2R9gpS58l6BcEYijwn7PCF/dsiECSlZ1p4kxIkpTQ5ivSjzQvu12jz3RZpbqzl0IeeqdV8t6i5vXcjje41JJS12pPHxgD44/MNNipd+kRy/pbzQ+/fx9FwfWNecF14H0r9HLq39zWCayMieB/wQe/pWHpfYRIQC66EELAPjNH80b8AN/XpLj/7AsVvfWkTJ1ZlzwsGVBC1q2tRYoR0YgJCoLxyBT8/T3nh4rrPditIkgEajQcpyyl6vcssLLxOUVzd6mlFIrueKHZHIpFIJBKJRCI7Cdfr/+uAzZjpKb0y4D20bup5W0pCQAgINngUh4Quqr1KSDNrtFCUZRVh7vv9uldJ8B5U0RAQs8Eq1c0R5j3IX65er9i/h8OH6z/HdZ/xSycmaTUS3nl8rHbf4NTJSuxfAwbDUVtPwmprmwth5Ys9F79ad6ybxLLvqYdBPRCqDQnW9EXvyHZBCajMI5oiNDFhFNmmUb9WC0Q9zuQohtI039aBUwndGcEY/FyHUHrGQ0lLlMnh/J4/iktCd+UUDlYpkkA3CxRZwCeKxo/1tkYFylTppR7f76Ne2ur4mXhD4qpY+p3A3qGcLDEMN1NcUOZ7974xKStLGp0OxleCNyhFnuF3a3xvP9q8ME0CCV4yvEkRDSShh1nhpq7dwm4TvIce3M/I8QdqtamvvUX7ytQWzWjjEZRm+3Kt9lT/PHGmZ3jx6sbYlEtxvJWcr9WUIfaHg2S6Xf+eDMrH66Wkx0LrRRIB1//Yu9i3+1ZsCgQIDlwP+8gBGj/8nbecy5e/86cUn/7qpk1L5YbgLaAGVit4pwl2YgLt9vBTU7irV/DT0+s93S0hy8bIskl6vYsU5Qyzcy/h3PzdB0YikVWz6ZeDr7/+Ov/wH/5DPvaxj/HUU0/x0EMP8cYbb9Qe89JLL/Fbv/VbfPazn93s6UUikUgkEolEItubYm4xwtwnDeZ7joWeI7GQLesdGqgizEtjEAWLQlioRGXtgjTWPpeyANePx15LhHnwqIaqV/EGC7GSvFa7nb9kMP0Ic33Pw4zaonb/71yZYN4lvO/xPSTLe7MGz8D1k2uez4P2AXKpO+zfcidWvOC9cHmKufP1RdeJdzxURYj6QBVhbmKE+Takii9XRIeQ0MDo4FZP6bYYLTHq8SaDvtCtdxG6izwjGCEsdPFlyZgvaAH7hvNay4W342ah21ulSAPBanRv70DUQJkGitQTrPajzvuitzNYJ6tbMN9ErBEmh3PyxDCYJ7QLT7e8941P1gea7Q6Jc2S9Aut91cs7Tbb7j75qVKpjRmkyPAnO5ARJsKEk0R5yH7q8K8F7YtcI3ge+6WnkpjY05z73HLqL7bqt9qXa7YMTLcaHq3O6Pzq7DufZd+CSucaczNVqITzB8dC9w4jtwEMoj9UqvZG3UDuLqhL6fbsjNyGmcniHcvH6L3nqKPlf/egt50DFJ/+Y8k9e2bSpVYK3IAhyQ/BeBabZwI6P42dmCfMLlGfPEjrr3wZgK8jz/STJMJ3OKZybZ3b2eUIo7j4wEomsik0Tu0MI/J2/83d44okn+Kf/9J/y6U9/mldeeYWTJ09SFPU/8tOnT/Nd3/VdfPu3fzvnzq09FjASiUQikUgkEtk19GYXI8znXIoqtAtPK0tqvdpKqRbNvRgS9fUIcxRhjYtwPiA+gHNrijAPqoSgVYS5kQ3uUdwBe6pWaX5laeIT79tff3Sw/H/eOIQxwvveUY9fbM2ew/remmaTk3PIHKrVpsJ1ruvKoihVlQtf/VqtljQy9j5+DNBlMfNS9f+LbBuUfnw5A4gmmDC+1VO6LQaHVYc3N6LLc/Rt2g3cELoRgYUuRbdkuCgYMPRFwntbEJVwq9BdJiGK3LuAYKDIAkUS8Lb6/TobMEDqDNZvb9E7TyzjAzmtzNLIDLPdEr8CV6JRpdHpkpYlaelIihKfJBR59rabSHY0/WjzwrTwJqtFmyf3abS50cauEbyzwRb73vNErda5MsXUq29t0Yw2nrx3HXPTueCTx0cBeOlqylR3g85pBV5LzqK1vxfLpH+UNGxXdzco344ub9EiSnvgTwEICs7vvM/9pnAjiSuUfdHbkb7vUfL/8VtveWjvVz+Lv3Bt06Z2Q/BmUfBe3WfeDg9hhoZw164SOl3Kkyeh3L6f5XtFRGg2D2NMTqd9EufmmJ19AV1jMlgkErk9myZ2/9iP/Rj/8l/+S7z3HDx4kO/7vu+742P//J//8xw7dgzvPf/lv/yXzZpiJBKJRCKRSCSyvfHFLRHmhQ+UXmnd1L+tMBbf79mdaEDVge+i2u1HmK9R9CyKKr7Oe3QN8avBe6BydJiN7NUNt0SYU0D+cvWa5bEDHJyoCwx/PDPOpW7Gk8dGGWrV4ygHp9a+eHvUHsXK0nunqpxwK3/e2bOXaF+drtUmn3oEmyYQAqBVfLm1YHapiLIDUQJq+vHl2sTo9owvNzhsKPGSEEgo+47MO6EiFHkOIki7S69bMtDrMpgIewbyW9ot3AkJVbx1FLp3N6Hv1C/7bv3SKt4GTNj+ovdwM2WwkTKcp1iB6Xa5op6zAuS9grzbI/GerNcDgV6e4XdzuwkRnGT9aPMULxnOZAhKeh9Gm+8mwXvvux4lHx2q1S5+8UVcd22bA7crbxdlrgifP5ffbti60DZdLpl6yxvVfTwWNu41184evHyoVnGti4T8Ii727b4zIpXgHdyiuxuU9ENPkv2lb6o/NgSK//LspiYqqAREq5MzCaYvfq+cZHwcSTPclcuEbpfe6dP965idjYih1TqGorTbpyjL68zPv7rV04pEdiWbcvb8qU99il/8xV8E4B/8g3/AyZMn+bVf+7W3HfP93//9qCqf/vSnN2OKkUgkEolEIpHI9qc3u7jIoUmT2W5Ju3BYA81sSTT1CAGDE4NRxaCg/R5h2kPWJcK8BO8AXXU0tiqE4An9hYwNjzBP6xHmjZcF06sWZFrvPVxrPexU+F9ffxCAb3xqsjYuW7hK1p1Z01yGZYhJW3eLXwgXaLOy2D4NgYvP1xdMssEW4w8drm54DxgQGyPMtxuysCy+PEfCdowvD32h2xIkxZn0bYXuIFI5ulFsp0e3U9DodBjNLCPNlOHmvfUwjUL3fYaAt0ovDZRJwBulTBRvbojegqn2RW079g5kZIlhtJXhVZnrlSt+jsQ5mu0O1nmyboEJSplnuGT3xppDP9rcNqoNNFicZHhJMIvR5n6rp7hp3F7wnt1xgrexloMfeqZW872Ci196cYtmtPG02nXBeXKsyeRYdZ797LmcjWxD/WZyBU+7Vhvzj5JvY31Q+XMo9Q0RveE/w/WdruUuEDc3BJMAptr4rB76UdjZx95D+q3vrj3Uv3YW//zmJiqoaOXsRpBgVyd4GyGdnISglJevEObnKC9evPu4HYAxKa3WUXxo0+meodu7QLt9cqunFYnsOjZF7P53/+7fAZVj+x//43+MvQfnx/vf/34AXn755Q2dWyQSiUQikUgksmPozVW7+VVZCBk+wELP00xtLcK8MAmBpQhzAPFVhHmlFqxR7A4B8b7q12368dirQDUQQvVfI1UE3sbRvSXCvPGV6nJIjeHB9+6p3ffiwgivzLZ4cN8AB/e2avcNrYOr+7g9Xrtdaskpf3rFz3P9xFl6swu12v53PYaxBtDKEZGY6spvDQ78yPqiFATp1uLLZdspuYEk9AhiCZLhTYKX7M6PFqHMM1Al7ZV02j3S+Q5jeUIrSxgfuDe3WRS672MEfKL0soDrx5tXordig1Sidz+sYrtg+v27U2sYbqR0irCi/t2LzxOW9fEuCmxZ4tKEMku304+7IQRJKMzAYrS5W4w2L+6raPNbBe9yRwreQw/sZ+T4A7Xa1Nfeon1laotmtLFkxQzW1Xtl33B3X+tavnbt3jZ5rYYggRPJzeeODZ7wezfsNdeKUUuR/IVaTdNZyuZrBFW8vz/+3leMAElabXr2rkr66h8bs+/6ADJa3zDZ++Qfo8VmpmRoXfBWu7rv6sSSTE6ivR5+6jru6lX81O44dljbotk8TFlO0+tdYqH9Jr3ela2eViSyq9gUsftP/uRPEBH++l//6/c85oEHqhOji7tkB08kEolEIpFIJLImfFEJ3WW7ijAvFBcCvTLQypeclgqUYvFiEWUpwjz0+hHmydojzMuyijB3Dk1W/1zeeyAQgm64q7uKMF+2gFZC48XqNeXxg+RDSyKeKvyrt6rrkQ88WXdf22KBxtyFNU1l0kwyZOqultP+NG6F0a3BeS698Hqt1hwbZuTIgf4D+lZIayFJVr0pIbK+3D6+fOMWw1dHINECFYOXlCAWx53F6kVHtyppr6Dd7mLm2oy1UvLUMDmU39PHLwrdEQAE3A3R2/bjzRMliGK9IfGCbCM9JE8sewYzGqmh2e/fvZreswLk3R5pUZA6T9YrCMZQ5Dlhtx+/hX60eYsgt4s2L9lWuxw2iN0ieB/4pqeRpL7B7vwff2VTo5U3CwGaN7m7b4jdAJ/bwChzgAu2QyH189LB8CAjfh1SnDYAAYK8j8DBWr0cepFSu5QbaYXf6Ui/DVVw/Xisqj2A5CnZ//DB2kN1ao7yU1/Z5AkqKiBUUeaiyaoO29LIsXv24GdnCXNzFOfOEdrtuw/cAaTpKHm+n17vImU5zdzcSzg3t9XTikR2DZsidl++XPUvOXr06D2PSdPqYt+5+6tXTyQSiUQikUgkcluWRZiTNpnplLQLjwg006XTetfv0+2MwWqoNKJwI8K8uz4R5r1lEebJ6tzCquBDIISASNXPbCO5JcL8laUI873fUF9wO9kb4DOXRxkZTHnHkdHafYNTb61JdzMYjtojtVpb21wIK9/ke/W1k5Sdupto/9OPL7n8vQcxgAEbI8y3DdJGNSA6uE3jy5VES0AqoRtLKY07Cs6VGJchQcl6Bb12AbMLjDUS8sSwb7iBuYde8VHojtyCgEureHNvFZ9AaQNK9VlJ3PYRvYcaKUM3+ncbYaZTrKr3rABZUdLodDC+ErxBKfIMfx+kc6gIpbkRbZ7gJMebFBMcid4f/bx3g+CdDbbY954narX2pWtMv37qDiN2Nq32pdrtseGcQxNVKtBXL2fM9jb2i+y15DxQb6HwuH8A2aYfGaOeIv2+etGWtFsvEAIbGv2+4zEpECCU4Erot3tI3vMw5uH69Uzx+39GmJrd5AmGakP0ouC9Ooe3HRrEDA3hpqbQbpfi5Cm03B3H/zzfR5KM0umcxvkFZmdfIPQ3LkQikbWxKWL3wMAAAFeu3Hs0w9mzZwEYHx/fkDlFIpFIJBKJRCI7imUR5h1yChdoF45marDLXNGFJP2e3bIUYR4WQCtRVN7GnXlPBEW860eYm+rfap7Ge1AlBEVMFXm3cfRujTB/rh9hniXseVe9J/cvnq4Wi97/jomaSCfeMTC98qjx5TxoHyCX+u/gLXdixYvYrldw5eU3arXB/XsZOnDDiR6qCHNrq6u+VW5KiKwvSkmQDobWto0vt1qCBpykKJbS3Fno9sZQZCkmKFlRUHZK3PQ8I42UPLXs68c7340odEfeDjVQpoFe6glW8YnibKVyL4re20Ac2TOQk6WG0WaKV5jtrrx/9w2s78ea9wVv6z1lllKmu7uP9w2qaPMWzqSV6G1yFIMN5X0RbV4J3nt3tOC9912Pkg3XN3Nd+OIL+GL1fxfblbScIynrLWVuuLu9Cn9yfmPd3deNoWvqmzozHeLQNo0zt6HA20cI/h21etl6HWencbFv950RqQTvUC5tggZEhPwvf3M9xan0FL/++U2fosoNwVuqL3Bd3TVIMj6OZDnu8uVK8D59qrq22QU0mw9ibZN2+wRlOcfs7Ito/7o9Eomsnk0Ru48fr/rRvfLKK/c85rd/+7cBePLJJzdkTpFIJBKJRCKRyI5hMcK8U0WY95QQqr6gzWzJsRsAJxZnDKKKQVEtqpi7foS5rjnCvKh26HuHJquPXvbh/8/en8dYktz3vegnIjIyz1Jbdy29z3RPz8aZITlchhxRpqyVV5auLOnKFgwY9h96kJ4t4AkwKFrwHxZgQDLMJ1096T75PstXNIgHGL5PlrVZtmzoajPF4T4bhzOcnul9uqt6qb3Okhnb+yNPLdl7Vdc5VdUdH6DQfeLkEnUqTy7xjd/36wghEEJA9rmqm+Q0QmwYQNhgYV5//2HkBhv46ybj31+YRCeSDz1VzfFuLlxA+q1XFWRkHJFHKm1zfo75ML/pbV178zTuhgqHg88/vf7C9X5fpUDvNovsh5NAIMjlnq3j7rQvV6FABLcmLBlZv639vVMSk6ZI79FFge8a8vllhmsJtUQyMZyR3cMkiyh0R+6VIKFIPYV2OBWwG0VvK1FO7KjTtZRwYLic4DFa13SNp11sffBahkCt3UEbgzaWpDC4JKHIUsLD8P0Q4G6yNs/Wrc3Dg21tLkN9g+A9vOcEb6kUhz/xfKXNtrtcffnex4b3CqWVebW6+9kT+9Yun1+4VNuS08Nm+LZaQlC9n3zUHSILu+s+A0D40h3Kyh8ibBRCRWC58XUKF0W/OyI1IEvB21sI5QQSdXQC/TeqOop95TT21HsD72IpeAvK/G4JfguCtxToyUlAYK5dxa+sYC7fX5TUbkEISb1+HIB25yzGzLO88tbOdioSeQAYiNj9qU99ihAC//pf/2v8PczAefPNN/n85z+PEIIf+qEfGkAPI5FIJBKJRCKRXUy+3Ju93wFdZ6lj6BqP99BM1wcPjCgrvpyQJD0Lc+HbQCCEHLbDwrww4Bwi9LKgt4AP4H3Ae4cQov8W5snbldfZWwLZLUcgJz9WFZ//48wBApIPPrGf+gYRnBBozp+5r34cV8dRYv0zCyFw1p7d9HaKVofrb5+rtI0+cojG/tH1ButBKkCUed2RnWfNvnwYGTKEH777OgNEBoMMDidT6And4bZCt8LoFOUdujCQF3Tml6mnkmaq2N/MGMruftxFoTuyFbyEQnuKpMzzLo8djwygd1j01onqTfSQNFLFSm4xbuuVaALI8oKsm/eqvHMQkGcZbovOKnuNqrW5Wrc2D5bEP9jW5uuCd21PCt7Djxxi+NjBStv1b75DvvjgZdQ2bsjtHm5qHjlQVrZfaSveme/vvdiyrNFS32TjyU+ScNIcuf1KO4QApDf49CAUL1TeM+k0bXlxZzq2VxCU8UTeQnC96u7yOpP+8MehUXUSKH73C4T7uA5tlSA8YqPgHbZwzUoUydQkIS9ws3PYuVnc7Ny293UnkFLTaJzA+5xO5wJ5foV2e/PPhZFIZJ2B3Bn/3M/9HM1mk9OnT/OP/tE/umMO95/+6Z/yqU99im63y/79+/npn/7pQXQxEolEIpFIJBLZveRLaxbmhajRLhwrhSVLJMkGi+BCKlwvs3vVwhzXglDmgAnuU+wOAWEtWFuWsN2DPfGt8L28bx8Csu+D9Tkk5yot9VfKfYpmRvPpybX2tlf8v98tLcw//sxkZZ3ayhV0UbWo3AwjYpgpVd3mtJ+mTWfT27ryzVOEjZOIheDgB59afx080LMwV1u3mo9sHwGLF20k9dK+3O0u+3KJRQWLk6vW5RnhNpNQrFKYVKOcRRcGWRjacyukSjCalbnFY427V5KtCt0+Ct2RrSDAqzLP22iPkwGjAk56pC9Fb7lDovdQljBa1wxnCYkULLbNfVd1JtZSb3dQzpF2C6QPmCzFJg+HrTncxtpcPPjW5ntZ8BZCcOgTz/fiakqC91x+6dWd61Sf0LaNLqoi/vtP7lv7/xcubcOE07vwrlIoWY24GQ/72O9G+r7vzSK9wasM714EW6+8t9z4Bi48uJNYtgWZgFBlbrfvZXgDolkj+59frCzqp+cwf/3GTvRyg+ANwku2Yksisgw1Po5bXsYtLVNcvoRf2foz2W5CqTr1+iMYu0jenabVPkOeX7n7ipFI5JYMZNTjwIED/Jt/828A+NznPsfJkyf52Z/92bX3f+M3foOf+Zmf4dlnn+UHf/AHuXz5MlJKPv/5zzM0NHS7zUYikUgkEolEIg8+FQtzzVIRCAQ6haOxoaq7zOmWWCFRISChtDAPOSF0S7tkeZ+5zUVv4Mk5whYzoEMA713p+BTov9idnKlamFuovV7uc/TDhxEbBPv/fn2Stkt4/OgIE2PVQcmhudP31Y3H1GOV1yYYzrvN5393F5eZP1u1Ixx//BGy4eZ6g3OAKEXuWNW94wQCQSz17MsbyDCKIN3pbq0hsShvcCLBk5TVk+LWx41NFDbVKGPXbJXbc8soAWP1lHqmGG/ePZt0o9DtotAduR8EOBXIU49NfO9YKkVv5UFbgfQMXPTe18iopYrRRkoAFjvmvvsgvafe6pBYR1oUKGOwOsGkeg/IntvEBmtz17M2NzKDB9zafC9bmtfGRhh/7olK2/KFaZbOX96hHvWP+g3V3e87PobsXde+cSWlZfp7kVsUDZbkKaBbaT9pjyG3UlXbR5QzBAQhHUZ0quKsU8vMygfP7n7bURrwZYW3zVmd8JN85zPII9UopuK/fJWwsvkJtttBEKGs7EYgvNqS4K2Gh1AjI7j5OUKnQ3HhAsGY7e/sDqD1KFl2iLy4WtqZL7+JMUs73a1IZE8ysCvd3//7f5//8B/+AyMjI1y8eJHf+q3fQvQs0X77t3+bz33uc7z11luEEBgaGuI//sf/yA//8A8PqnuRSCQSiUQikcjuZM3CvAu6wWLPwtx5KmJ3IRM8qxbmpbgr/Eq57nZZmJscrEMEX1YUbIEQSvv1EDxSltZ2/UQkpyqvs28LZKfc5+gLR9fabRD8P08dA+Djz1YrsJPuElnr+pb7MCWnGJZVy+oL7gJ2C9arM6+9XRnHl4li6rnHNywRSrFbqjJreYuTEiLbiGgTWLUvT3eZfbnvCd0KL3RZMXkbodskCVZrlDFoa0nygvZCixBgrJGSJZKp4dpdjQSi0B3pCwJssi56+1XRWwSUE2g3WNFbSpgczkh7+d259bTuI797FQFk3S66KNDWofMCLyVFluFvEzvwIBKEwMoaRtYIKNxDYG1eCt6Te1LwPvCRZ0jq1fvQy196Ff+AZTM3bsjtbtQSHjtSVlUbL/jK9N0ng90vZ+UoWr1caauR8og7eJs1dgYRei5PWR0fPoDojFbeX8xew27B/eihQsjyecybcjax7Tl5SUn2d76rumwnJ//jr+xAJwFCVfAOakvXYrVvHyLNsFevEbpdivPny6r2B4Asm0Lr/XQ6F7F2maXl13Eu3+luRSJ7joFO6/rJn/xJ3n33Xf7Fv/gXfOQjH0EpRQhh7efZZ5/ln/2zf8a7777Lj//4jw+ya5FIJBKJRCKRyO6kWC4HL4LHqRoruaWdWxIFmS6FzAAYoXBCIQKo0Hvw32hhfr9idwBhbFk9IOTW87qdAwLeD8LCvICkmn1Wf7ncZ7K/Qf3E/rX2ryzuY7qbMTFW4/GjVbvH4bnTW9bhJJLj6tFKWzu0mfYzt1nj9rSuzbH0XnUgdeLpE+iNA8i+p+YoGS3MdwEV+3ISpBtHDPYx/A54Ep/jhcKLFCcTnLi54jwARic4nZAYsyawdZfbGOcZq2uyRHFgpIaSd/6mRKE70nc2iN5OeXwCRgU8oJwkcQIxoLFxrSRTwylpImlmilZhMfb+dy6AtDDUOt3S1jwvgECRpbgtXpv3Kl6onrV52rM2r+GF6lmbr1c6PijsVcFbpZqDH/9Apa1YXOH6N9/ZoR71h8R1SfOFSttzj22wMn8vu+9Ig7sxT4MlcQUpqveZR90UDd9/K/V7ZS23W2aEJCOdf77yfhCG6/obO9K3PYXsxcb4ovzpTfRRjx8m+XDVUcG+9C3cxWsD7uAqgSAo74GD6LkdbXITUqCnpkBKzNWr+FYLc/nBcYio1Y6gVIN2+xzWLLO09BohPFgTgiKRfjPwp+zx8XH++T//53z1q1+l2+1y9epVpqenyfOcb37zm/zyL/8yU1NTg+5WJBKJRCKRSCSy+3CmtC837Z6FeTlxv104Gul69aUVioDASokKHgGEkCOCIZAjRFoK1PfDqlWc6VmYb0GcCgGc93jvEALE/fbpbiRnEGJDdZfbYGH+0aNrTlMhwGffeQS4Oatb2pzGYtU2fDMcU0fJRLWS54w9u+mB6RAC069+u9KmspTJ91Xt0UsLc1lWdid3z02O9I/SvnwZgirty/3ILrIv9yShIAiJExovFJabK84CYLXGJQlJYUr75DzHrHTpFp6RmibTkqmRDJ3c+fsche7IIAkCjA7k2uGSgEsCRvUsXp0ksQIxAH2wniaMNVKGsgStBAsdg9+m/SrnqLc7JD3BWzmHSTVGPzw53kDP2lyTywZOarzQPWtzgfY5KhgeJNF7rwre+558lMbU/krb1ZffxLQerOrd+g3V3U8/OkqiygvdeysJ55b6HC8jBGflBIn6GrAulAkET9hju8rlXzmDV5qQKLw6jpyvVp8vqVN0xewO9W6PIEQpeHtbPtCYLqt/9/THvgM2PC8SIP/dLxD6PePitpQRVuuC9xYqvJUkmZwkGIObncXOzWGvPxjHiBCSev04CEm7cxZjFlhe/tYO/r0ikb3Hjk4pl1IyMTHBgQMH0DoOxEQikUgkEolEIhVusDBf6hgK6zAu0NxoYS5UL7NbrFuYuxZh1cKc7bAwN+B8aWGutjZQ553rZXYHhCyt7PrJLS3M2zdbmL/dHuL1xSHqmeKDT1QHYpvz58rfeQtkZByRRyptc36O+TC/6W0tX7pK+1p1vQPPPY6qPEeFsrJbyfJJL1qY7yyiQxAOGUYQIUX4kbuvMxACSTCAKIVuFEbUbvo6BsCkGpcodGFInCPr5rh2wUpuaWaKmpZMDNeo6Tsfa1HojuwUQYLRnkI7vArYJGBXRW8rB1Llva+RUk8Vo/Vysst25HevIkOg1u6gjUEbS1IYXJJgsnQrsah7GyGwIqOQdTylU4WTGvEAWpvvRcFbCMHh7/xwpc0by8xXX9+hHvWHRvsKG8u3s1TxxLH16/8X3uu/lfksTZaFQd2Qez0Shjjox2+z1uCRvujldtdwukE6+zS4DfcTAq7pL+/q43pXIBNAlk5g3kLRAt9F7muSfuojlUX9mWnsN3bOUSGIVcFblBfosPlnFZGlJOPjuOUV3NIS5vIl3MpKH3o7eKRMaDRO4H1Bp3uBPL9Ku31mp7sViewZdot/WiQSiUQikUgkErmRYmnNwtyrGktdQ6uwKMmauOQpK7utlIgQkL0BIeHXLcwR9zmwFkAUBtz9WZg77wnBE0JA9ruqmwKS6uBA7ZVyn9mREbJD6wOP/9vZMqv7w09NVKtTg2do/tyWe3BcHUeJ9c8qhMBZe/YOa9ya4APTr1WrunWzzv7HH6ku6EuLeJRaz+yO7Ahr9uWhZ1/ud499uQoGgscKTUBh5O2Fbq8UulcxmnW7hG7BUtdQSyVDWcL+ZsZQdufJL1HojuwGvIQi9RSJw6mAVQEvAomTfa/wFqKX351Ixuoa4zwrxfYJrwLI8oK0m/eqvHOCgCLLcA9hlEUQEiPrmIq1eYLyhuQBsja/teC9vKuFwcbUfvY9dbzSNn/qPK2Z6zvToT6gfEGWVycnbrQy/+pMRrff8y6E4KyYIJHfQrBceeu4PYwOfa4uv0dEcAgCLqnh0jpSDKOuH68s01FXWFGbv3d+qBBA0nMOsh1wBZgcTAv9Pc8iJqqTLYs/eImQF4PvZ49S8BaU+d2yvEBvEjnURI2O4ubm8J0u5vwFQrFzv9N2olSNRuNRrF2mm0/T7pyj253e6W5FInuCgd/1Ouf4vd/7PX72Z3+WT37ykzz77LM8++yzfPKTn+Qf/+N/zH/6T/8Jax+c2ZaRSCQSiUQikciWWLMw74DStKzEeWgXnrpWaxbcRpR2pU5Ikp6FOb4LwRDoIkR2/3bh1gABrCWorVmY+wDee3xwCCEGYGF+9mYL89d6FuYvHFtrniky/uvMfqSAF943UdlEfekSyna3tPsRMcyUqlqiT/tp2mzernP+3Hvki9WKhYMfeAp546QD5wFZTkjQu2Mg82Fk3b5c9uzLh5Fhd9iXq1AggsPKjEApCN04KaIUulO8UqU1svdknS6isCx0DFoKRjPNcE0z1rizQ1sUuiO7Da+g0H7teAwikFjRd2vfREqmhjNSLWlmCa3cUWxDfvdGtLXU250yx7tbIHzAZCk2UbtY/uwTAvwtrM3DmrV5wYMget8seBe7XvA++LEPINPqtePyS688UFa9jXY1L/uJY6OkurwHzZ3gazP9r+6+xhArQvfszNfRJJywh/u+/3thPbdbE3SKz+qkc49CUXWkupZ8Df8AOTP0BSEhqfUszU3pCuYNgoLsR1+oLBoWWxT/fWfz0IPwiDXBW5X3zJtE7duHqNVx164R8i7F+fO9Z6G9T5KMkGWHKIprmGKOlZVvY8zCTncrEtn1DFTs/qM/+iNOnDjB3/27f5ff+q3f4qWXXuKtt97irbfe4qWXXuLf/tt/y0/+5E9y/Phx/uAP/mCQXYtEIpFIJBKJRHYXaxbmndLCvGuw3pMbT2NDJWUhFU5IwgYLc/yqhXkBt8jh3TSFAe8R3kOyVQtzCwSCD8gBVJrdaGGenhKolgABIx9Ztxb//MXDgOB9x8cYHaoKksOzW7eNe0xVs7RNMJx3Fza9He8cV16v/i61sRHGjt84UBnKyu5k1cI8it07xpp9+TAiaIQf3ekeASCDQQaHkyn0hO5wK6E7S/FSkOY50jtqnQ7KOhbaBVLAWCOlninGm3c+t0ShO7JrEWASj5dlhTcCEtd/wbumFfsaGc1UkSWSxY7Z9nF56T31VofEOnRRoIzBao1J9S6WP/vIba3N/QNjbb7XBG/dqHHgI89U2jrX5pl/+8Gp3q13rpb38D10Inn60fV7gUFYmSMEZ8QESs4gxbnKWwf8OKN+qP99uAekM3iZEFSC002kzBAzT1SWsbLFfPLGDvVwDyEApSHpTWS0ObgC9fQB1FPV5wbzF6/iry3sSDdXWRe8QXjJprM3BOjJSZASc/UqvtXGXLrUh57uDFk2idbjdLrvYe0SS0uv49zmJ01HIg8TAxO7f+M3foMf//Ef59KlS2uz9Y4fP86LL77Iiy++yPHjx4HS2u/y5cv8xE/8BL/+678+qO5FIpFIJBKJRCK7iw0W5iR1FjuGdu4QAuq96hCLxCOxQqKCR1LeTwvXgtCrSN4GC3OMAevKgZMtWph77wjeEwIDELvNTRbm9ZfLfTZOjqP3NQBYcQn/x7ly8Ofjz01Vlk/bs6TdhS3tfUpOMSyHK20X3AXsFgbVZ0+dx7Sr1eWHnn9qrbJ/Ddeb6KCSKHTvIOv25TUEetfYl0ssKlicXLUuzwg3uCsEoMhSvBCkRYF0nlq7i7KehY7BhVLoThPJ1HCNO32No9Ad2fWIssI7yICRAREGI3iP1jWNNGG0rhECFjsF213QKoCs2yUtCrR16LzAS7n2/X4YWbc2z3AkWJnhRYLsWZsL3E538b7Ya4L3+LOPk41V75Omv/JN3A5aK28n0ltq3dlK27MbrMzPLmneW97a/fRmuMowK6Ro9TJQ/Wwft8fWhMadRPoCEPi0tDInUeilKUJrX2W5ueR1DK2d6eReQwhQGcgUvEO4nOxHnge54e9tPfnvfXHHurhKEKG0MkcgvNq84K0kyeQkwVjs7HXswjz22oMTi1CrHUapJu32eaxtsbT0Gt7v/UlakUi/GMhT91e+8hU+/elPE0JgeHiYz372s1y5coXTp0/z0ksv8dJLL3H69GmuXLnCZz/7WUZHRwkh8JnPfIavfOUrg+hiJBKJRCKRSCSye7jBwrztBIX1tI2lriWqpzIZqfCINQtzABG6gIXtsjA3BhFWLcyTrVmYe4/34INHytKyrq8kZxHCbOjAuoX5yEfXLcx/f2YKFwRHJhscm2pWNjE0t7WqbonkuHq00tYObab9zG3WuD2uMFz91ruVtuaBcYYOTd68sHVlTjciWpjvEKV9+Uo5UBeaSD+EDAOo3roLAofyBicSPEmZYyuqx0iZ75tCT+hWzlPvdFHes5QbjPOM1TVaSQ6OZCh5++9wFLojewYBRVIK3laVgrfy/T1QN+Z3j9Y11gdW8u0fuBZAWhhqnW5pa94TEYssxamdn4CzIwjwIqGQDZxM8UL3Ih0EiS/2vLX5XhK8pVIc/sSHKm2um3PlG2/uUI+2n0b7SuX1ySMj1LN1gfsLlwZT3X1WTCBEl0S+Vu1fqHHUTd1mxcFR5nZ7vNS4+hAhSUiERMw8XZl8FITluv76znV0ryHoTYCtgVTIiRr6Ox+vLOLeOIf91vmd6d8aoSp4B7XpSWciS0kmJvArLdziEmb6Mm5l5e4r7gGEkDQajyKkot05gzGLLK9864GKfYhEtpOB3OH+2q/9Gt57RkdHeemll/jMZz7DxMTETctNTEzwmc98hpdeeonR0VG89/zar/3aILoYiUQikUgkEonsHooNFuZJnaWOwXtP13jqaSlSBcAIhRWyHKBfFbt9mxA8IRju28I8AO0OWIvw7j4szB0Q8D4g+53VzW0szFcEKMHIh8pKbhMEv/JOKXx//NmqeKxMm/rS9Jb2fUwdJbuhmv6MPbulwearb57GFabSduiDT99c1R084EHJ8kf2v1oocgtElyBMz748Qfixne4R4El8gReqJ+yU2bWVJYSgSLNynkReCt21dgfpPe3C0Sk8wzVNTUsOjtbQye2Pryh0R/YaQYLpVXg7FZBeIPusdyopmBzOyBLJUJbQLhxd05+dKueotzskPcFbOY9JU4xOdqEEOiCEwIqUQjbwQuNEipUpgoD2ORJz923sUvaS4D187CAjj1atla9/6x2684s71KPtpda5Vt4791CyjMxZ5cuXM4oBGApcYYQ2GiXfRYhqtfkj7iC1kN5mzcEgWLUy14RE45MaQimS7hAsHqssu5ycZkXutDi7xxACVApJjfT7nkEMVZ9R8t/7AsHutLNFIAhKJ6SwNcFbNhuosTHc/By+08GcP094QJwihEhoNE4QgqXTuUCRX6PVemenuxWJ7EoGInZ/4QtfQAjBL/zCL/DMM8/cdfn3ve99/MIv/AIhBP7H//gfA+hhJBKJRCKRSCSyi8g3WJjrBosdS8eU1dHNtBSajFAEBE6WFuaC0sKcnoW5ABC1++tHt1PmdOdFrzpg8yJqCOC8x/vSgl0MxML8dKWl/kq5z6FnDqCa5aDeX8yOs2Q1ww3NMyeqVolDc2cRWxgYzsg4Io9U2ub8HPNhftPbMu0u12/Irxw9dpDGxNjNCzsHiFLk3sLfKHL/BBxetHr25SnS798F9uXrQneZU1vm1VaWEAKTpUBA5wblXCl0h0BuPctdSzNT1LVkfCijpqPQHXnw8BJMEvASnPQoJxF9FrxrWrG/mdFIFTUtWeoanO+PIClDoNbuoI1BG0NSGFySYLJ0046xDxJBCIysYWSGR2F750np7Z62Nt9Lgveh73i+el/oA5dfevWBqFqUwVHrVu2Un9tgZd62kpev9F9oDmvV3QGtvspG9wKJ5HFzrO/xDXdD+g253WkDEkUCcP0JcNWJtjPp/6AQD8aEiIEiJGJomPSHPlhpDlcXMX/xNdjx852HsCp4yy0J3mpsDFGr465dI3RzivPnwO1dt46NSJlRrz+KdSt0u5fpdC/S7V7e6W5FIruOgTx9z8+Xgzvf8z3fc8/rrC67sLDQjy5FIpFIJBKJRCK7k1ULc1tamBdB0TGOVmHJtCTp2Y8aoSiN/wRJKAcohF+1MO+AyG6uAN5UPxyim4PJESEQsq0NyHnnCAG8D70BzX5bmJ+/2cL81fIzG32hrBAJAT576hEAXnjfRMWSWXhLc35rVSMn1HGUWBcDQwictWfvsMbtufLNU4SNAzRCcPCDT916Yedh9bONed07QhDLN9iX13e4R54kFAQhcELjhcLe4PSwJnSH0Kv4dNQ7XWQIGOdZ7Bhquqw8HWukDNf0bfYVhe7I3sepgFUer8CLQOJK15R+MlLXDNU0IzWNErDQNtue372KALK8IO3mvSrvnCAERZbh+z4JbXdTWps3sTLF82BYm+8VwTsbHWLyhnublfeusHT+wRBxGu1qhM3xQ0MMNdbv075w6T4npd4j04zSIUGKeZSsuh/tCyNM7LATjfQGEHilcbUhSDQSEDZFXn+6sqwXhsvpn+OJucWbRkDywhPIY+OV5uK/v4a/fg18l5083wWxKniL0nYlbHICrwA9OQlSYa5exbc7FO+915/O7gBJMkytdoTCXKfIr7Oy8m2M2fyE6kjkQWYgd7SHDh3akXUjkUgkEolEIpE9x6qFuSktzBc7hkCgUzgavapuD1ihsFIiQ0D2Bi9FaBGCIwQL3OcAWqsDziMKQ0jTnpi6eZz3PVv1HbIwf1eglgUySxh67gAAr62McLrdIFGCjzxdjVdqLFzsDbptjhExzKSq2qFP+2nadDa9re7iCnNnqoMz+08eIxsZunlh7ygtzBUkcst/p8jWCaKzwb5c7wL78kASyoFjJzQehRG1ivDspSgzun1P6PaeeruDCAEfStEtkYKRWinG7W/efrJLFLojDwo2CTjpcarMEE2s6HvF40QzLfO7GxoXAst5fy20tbXU2p0yx7ubI3ygSFNsonaZDDpgBLibrM2zdWvzYNjx8tdNslcE78kPPY1uVieITb/0Kn7HrZXvn1pnFuHXRVkhBM9ucBM6Na+ZafX/vi0IwTlR3u8m8nWgXXn/pD2KCjt3/yiDQ4RebnetSZASoSQqBMLiMdTK0cryhZzniv7irjuW9wJCCrL/5YVqY24p/vgbYHIwLQg7F+VQCt6CMr9bltYrm0FJkqkpgrXY69dxiwvYq1f70tedIE3HSdMJuvlljFliael1nGvffcVI5CFhIFey7//+7wfgr/7qr+55nb/8y78E4Hu/93v70aVIJBKJRCKRSGR3ki+DW7Uwr7PUNXSNx3lo6rIapBBl1qYVGy3M/ZqFOQDiPvK68xzhLOR5KZ7q21d03gkfwHuPDx4hxP1Vmt8TFpJ3Ky31l8tHnuEPHkL28s7/115W9wce30+jVq2EHpo7s6U9P6Yeq7w2wXDeXdjStmZef5uN5X1CKQ68/4lbL+w8pYW5hGRrf6fI1lm1Lxch2zX25SoYCB4rNAGFkVWh20lJkaYIH0iLYs26vDyPwHyrQAgYa6TUU8VE8/bnkih0Rx40SjvzgFWhrIJz/RW8pRRMjWSkSjFc03QK37f87lWU99RbZY63LgqUNVitMal+6KWjm63NM5zUyFBam8s9Vk26FwRvpTUHP/6BSlux3OLa62/vUI+2D4Gn3qkKbR84OVZ5/dcDqu6+zCg5CUJYtPpG5b0UzXF7+DZrDobSyjzt5XZnkCRI75FCIq48gzIjleWXk9Msqr1/jOwE6pEJkhdOVtrsN87hzlwCb8C0wbbZqSrvIDxiTfBWZZX3JhCpJpmYwLdauIUFzMwMbmm5P53dAbLsMEkyRKdzHmNXWFx6Db+FidqRyIPIQJ7CP/3pT1Ov1/lX/+pfcerUqbsuf+rUKT772c/SbDb5zGc+M4AeRiKRSCQSiUQiuwBvywEGU1qYW5GwklvauUUrQap7FuYywYnStnrVwlz6LmXeWhdxPxbmPiA6XTAG4R0hzbYsXHlngUDwHjkIC3N1HiGKDR2A2mvlZzby0bIq5GK3xhfmxgD4+LPVSuxs5Qq6WNn0bqfkFMNyuNJ2wV3AbmFQvHV9nqWLVdvLyaePo+u3GgwNZWW3UiBEzOveAVbty0UYQvjmjtuXq1AgguvZ8EqMrJfHRg8nJSbVyJ7QnThHrdMtv5kBFjsGFwL7GilZIjkwUrutWUAUuiMPJAIK7fEyYGRAhP4L3lmiGG+m1LWklvY3v3sVAWSdLmlRoK1D5wVeSoosxfd9Ytrup7Q2b2ClxpOsnVOVN3vO2nwvCN5jjz9C42DVaefqK29RrOz9isVG+0rl9eHJIcaG191SXrqcYQdwOHkhOSdK+2opLiLFpcr7h/wEQ37n7mGkL/BSlfEr9WFQChko4yR8QmP2YwhfndR5TX+Zjri2Mx3e46Q//DzcEE+T/9GrhKILrih/ihXwOTvharEueIPwslftfe/IZgM1NoZbWMC3O5iLFwh53o+uDhwhBPX6Iwip6bTPYs0Sy8tvEPqVgxKJ7CEGInY/9dRT/O7v/i4AL774Ir/+67/O3NzcTcvNz8/zG7/xG3ziE58A4Hd+53d46qnb5NJFIpFIJBKJRCIPGvlyWVrZszBf7lpCgPYGC3OLxCPWqrrXbuj9Rgvz+xis6nTKkuyiICT6vgRU7x3Be0Ioq9f6jdDVCo/0jEAtCtRwRvOpUtj+388eBQQnDg8zta/6OQ3Pbr6qWyI5rh6ttLVDm2k/c5s1bk8IgZlXv11pU6lm8n0nb72C90Aoxe5VwTsyMILo9uzLhxBBI/2+u6/UR2QwyOBwMoWe0B02Ct1KYtIU6T26KEisJVsVuoHl3FI4z1hdo5XkwEhWybPfSBS6Iw80Aoz2hF6FtwigfH8P7uG6ZrimGck0SgoW2kXf8rtXEUBaGLJOt7Q1z8vJYkWW4lSMxHiQrM1vErzF7hK8hRAc+c4PVdqCdcx85fUd6tH2kXXnkK6otD23wcp8uZC8du32USHbyXuMUaB68yO/DhsmZQoEj9tHduyQXsvtlr3cbqWQSiC8R0qB7dQYWarabwfhmU7/HEd3Zzq9h5HDddJPvb/S5t+bx75yqZxIa7vgDJhuz9p88K4WQYTSynytwntz12E1NoasN3DXrxG6OcW58+D2fjwCgBAJjcZxAp525xxFcZ1W6+4FppHIg05y90Xun1Ur8snJSd555x0+/elP8/M///OcOHGCqakphBBcuXKFs2fPrs1Cefzxx/mVX/kVfuVXfuWW2xRC8Gd/9meD6H4kEolEIpFIJDIY8iVw3XUL8wVDYR3GhTWxu5AKj8AJSbaaAxg8+BaEDiC2bmFuDaIoShtzIGRbt0L33uM9+OB7Qne/B84dJKcrLbWehfnIh48glGTRJvzO5TK3+8UbqrqTfJmstflMt2PqKNkNn/cZe3ZLA8jLl6/RulqdFDz13OOo9Db25M4BEoQEPZBHu0iP0r58pWdfniH9vh21L5dYVLA4uWpdnhHEen+sUthUo6wlMRZtbZnX23u/XTjahWO4lpDpsqI7vc1Elyh0Rx4GQq/COzWlcXXiJAHwqn9K0HgzI7eOsbpmtlWw1DWM1vsfT5E4h2x3yOs1RB56luYpvne+eNi/2kEIjKiVVua+IAiJFBbpywlGXib4wQyv3hcy1MFP4uU1pAcvl4FlCMOIXfBXrk/sY//7HmPurfWJhwvvXmD8mZM0D03eYc3djSBQ71ylNbSeO/3hJ8f469fXK76/8F7GRw4Ut1p9W/FCcp79PBGuIUWLRL6B9c+vvT8cGhz2E1xW1/velxuRwfdyu1Ns1iQIgUgSRG4ga+C8QbUO0NBP0W6uT261ssV0+lccKX5gx2Nk9hr6O5/CfPldwtWltbbiT14j+cDx8lHSF6XrWJKCcSBTSDIGVDsJhPI4CJKAR6AI2Hu/3xSQTExgpqcxV66glaS4eJH00UcfiAnCUmbU68dpt0/T6V4CIVGqSb1+9O4rRyIPKAO5G/vLv/zLio1iCIEQAqdPn+b06dO3XOfdd9/l3XffvcmCQQhBCGEAeX+RSCQSiUQikcgA2WhhLhO81Cx127QKi5JQ04oAGKGwQpaVZqH0PRS+A3gIqxbmW9h/ANodsA5hDSGr3Zd45Z0DAt4HEjUAe211HiGq9nT1V8vBmNEXyof+f//eIVwQ7B/JePKR0cqyQ3NnNv3rZmQckUcqbXN+jvkwv8ktQfCBmdeqVd26UWf8iUdvt0ZZeZEk5ZjTID7jyBpBrGywL28gQ2PH+iJwKG9wohRcjEzxYv1R3yYKq0uhWxtLYgxpXqwd74X1rOSWRqpopIrxZkY9vVeh22OSEIXuyANJkGWGd2oFLniUlyACvk/j/FLCgeGMSwtdRuqaxbZBq3Vnl34iQ6DW7lBkKQIQwWO1xkuJsg7l3EP/NS+tzRMUhsRTfjbBorwBSRS8t4GDL7yfxdMXccV6/uylL77CE//L9yNul6mxB2i0Zypi977RBpNjNa4tlBXJb85qrnckE/X++5lfZB/HmUXjUfLbOH+cwNja+4/aw1yXixRi8BnApZW5BilxtSaJtYjc9OKQEnJjaCw9g03nKPS6fXlbXWI2eZUJ++GB93kvIxJF9mMfpftv/3ytLazkFH/6OtmPfhRkArYoq7xlUj4regNJrRS+B4InCIlAEsKq4O3u/b5TSZIDB7CXL2OvXwcpMTMz6IMHHwjBO0ma1GpH6XYvomSNFgKl6qTp+E53LRLZEQZyJ/Zd3/VdUZyORCKRSCQSiUTuxKqFue2AHmIltzgP7cJT1wohBIVQgMBJifJ+7Tlf+BbBOwIOIYbvtJfb0+0irIciB6lKEXWLhADOe7z3CMFABiiFrlq36dMCtSDQE01qj+6j8IJ/c64Upj/+TLVCSLiCxsLFTe/zuDqOEusiRAiBs/bsFnoPC+cv0V1YrrQd/MCTyNuJ2Ks2fKr3t4rPWwMjiJwgCqQfQYRkh+3LPYkv8ELhhS7zZcV6JahNEqxOUMaUubyFIS3Wq8esCyx0DKmSDNcSxhqakdtUkkahO/Iw4lXABI9GIoJHubLCLPTpsqYTxcRwxtWlLiZVrOQWrQR6ALbiAsjyAuk81DKk99hEY1ONDQnSe5R1yA33Hw8dAhwaL5NedrckYKLgvU0k9YwDLzzH5S++stbWnV1g7ttnGH/m8R3s2f2R5gso28UltbW25x8f40+/XkbeBARfvJTxo493+t4XJxQX2M/JcB0hPFp9jcL9wNr7CYrH7BG+rc/1vS83Ir3B6IwAuNowSWcFKcAah2pk4AOFcYwsvMj8+P+Fk+uf15x+lZqfZMgfG3i/9zLJU4dRzx7Ffeu9tTbz12+jP/448uBYKWx7W4rcvgNSAwFkAUkdGMRkWw9B9gogZek+tgnBW+gENTmJvXIFN19OSPYrK+ijR5H1ncup3y7SdD/e53TzaaTMWF5+g9HRj5IkzZ3uWiQycAZW2R2JRCKRSCQSiUTuwKqFue9ZmC9ZrPfkxjM2UtpkG6FwCDyCNGy0MG8T6JRWb1uxMPce0e2CMQgfCI37rOr2jhDoid1l1lp/cZC8W2mpv9Kr6v7oUYQQ/NcrkyzZhCxVPP/k/sqyzfnzyLC5DLdhMcyUqorm036aNpsfqPTOMfN6VayvjQ4zdvzIbdagFLulBOR9TUyIbI6Ax4vlG+zLd6qqfl3odiLFyQQn1ittjE5wyUahuyDdUC3nAyy0CxIpGK1rmlnCvsatzx9R6I48zLgkIIIHJREukDiBEf07/oeyhLyuIYBxnqWOYX9zi64tW0Bbi2x7ilqG9KWNrFMSpxQmSxEhIJ0rhe9+B4vvUoIQWJERgiDpFeMqbwhSEHbsmnDv7GbBe/yZk8y+eZp8ft1aeearbzD62DGS2tbjdXYSAdQ7V1gZXnfr2Sh2A3zxUsaPnOwgB/DxX2A/jzCHxiPlNZQ/jQsn196f9Pu44uaYV0t32Mr2o7zBIPAyLXO7EQidIIwlkKGSBG8tvkgYWXyR+bG/BLF+DppJ/4pH8x9Fhy1O/H1IyX70I7Tfvgy2dzLzgfwPvk7t//59ZfGiSsqJ0N6U1ubBgUrBr5QW57L/1uZBeESQCAFhdbaZuPdnN9moo8b342bn8N0uyfg4vtMhmZhAHziw5x2ysuwg3ue0O+cRUrO09BpjYx9FDqwCPxLZHexdD5hIJBKJRCKRSORB4QYLc1TKUsfQzh1SQF2XOd1WKKyUyBBQvUxo4TqEVQtzalsbomy3IXhEURBS3RNRt45znhA8IYReXnefURcQoltpqvXE7pGPHsUH+F9PPwLAh58cJ9UbBjSCZ2hu89XYJ9VjldcmGM67C5veDsDsOxcwrapIfvD5pxC3++yCL3+UAin2/ADNXqK0L2eDfflOVU14klCUIpTQeKGwlCJAYF3oTnpCd5pXhe7QE7qDgNFGSk0rJodqtxTTotAdiYBNyuPfqkAQkDgBfdR59zUyaqlitJHiAix2BmsprLyn3u5Qb3fQRYE2liwvSPMcaR1eKYpaRp6l2ET186PY1ZQTjUpHDS8UiS+A/ltRbwcy1JF+AhEypB8miIIglgk7/NcUUnLkOz9UaXN5wZWvf2uHerQ9NNpXqq+bdQ6Nr1eVzueKb12/tbPKdmOF4iLrrjSJehWoRgGdtEeRYbAXehE8Iji80jhdIyQJIkkghF48kkDrBGMMSb6fkdbzlfW9KLic/jkeO9B+73Xk+DD6u5+ptLl3ZnBvrFd7I0QpcKts3YnMGTAFmFYphPeZIDwEAZQ53pu1WFEjI+hDh8AHzOXLuPl57NVr5KdO4ZYGO7FjuxFCUK8fQ8qUTvsc1i6ztPxNQtgb16NIZLuIYnckEolEIpFIJLLTVCzM67QLS+E8bWOpaYmUpYV5AKyQJBseXKVvgbc9C/MtVLwUBmEsdItyIEPf3wxw36vo9sEjhOhVdvcXkdxgYX5WkMwLasdGyQ4O87XFUS52SiHvY89MVJatL02T2M1VY0/JKYZltWrkgruA3cLgmisMV7/1TqWtObWf4cNTt1/JlwN+SAU6VnUPitK+PEeGoR22Lw8kwQA9oRuFEaUbQwCs1rgkQReGxDrSbo42ZuPqLHUM1gfGGposkUyNZLec4xKF7kikhwCTeLwsBW8R+it4SwmTwxm657yQW0+72JwDybb0w3uyvKDeapN1uujCoK0tzyt5gQgBqzV5rUaRapySD53wbVl31igF75y9I3g3NgjeQ7tG8B46coDRx45W2mbfPE1ndmFnOrQN6GIJZdqVtk+8b6zy+qXLg6tcvyD243oXcyFyEvVK5f06GcfcwYH1ZxXpDU6mgCiru5MEAXjj8J7yuUJK8sJQa52kUTxaWT+Xs1zVXx54v/c66fc+hxhtVNryP/o6wdzwbCNVL7NblwK37fb+bYNt0e9zX1nh3Ttuvdq04C1qGfrQIdTYPtziEubyZeziEsW5cxTnzhPM4LPqtwshFI3GCQKedvscpphjZeXtne5WJDJQotgdiUQikUgkEonsNMUyuLxnYd5gqWNw3tM1nkaalJWaMsH1LMHVquW29/jQItAFIWGzYncIZVW3tQhnCVl23yKWdxYIBO97Vd07Z2E+8tFyoPRX3ymrup96ZJSx4epnNDR3elN7k0iOq+rAWju0mfYzt1njzlx76wwurw6sHHz+6dI28HZY36u+F9HCfECU9uUriJAiqO2ofbkKBoLHCk1AYeS60G1SjUsUuihQzpF1u2hbHahcyS2584zWNZlSHBjJbpkHHIXuSOQGBBTaE0TA9ARv5fv3hdCqnIiSJZJmVuZ3G7szIqoAEueodXMaKy2yvJxEkxaGrNMlsYaAwKQpeS3D6AQ/CGeX3YAAS9aLlNCEPVfhvSp413aV4H3oxQ8iNjrXhMDll14h7FHrfMHN1d1PHa9Omnv1WkrLDOZ7Y0RSqe5W4gxCXK0sc9RNUfeDtY5X3hCEKp1r6qWVuUoSgrE478ldQKsE7z3WOpqLH0L70co2lpJTLKpTt95B5JaILCH9kQ9X2sJcC/OXb91iYUDpMrNbCLA5uKKs9C5WoM8TfoIIZWU3ILzsVXtvAilQY6PoI0cgSbBXrmCvXcPNz5G/fQp7/Xr5jLwHkTKlXj+O82063ffo5pfpdLbmPBaJ7EUGPjLivefNN9/kzJkzLC8v49zdZ6b+w3/4DwfQs0gkEolEIpFIZAfwFopWaWPeszBf7CzTMR7voZkpHBKPwEiFCn5txqr0bQKBEDogss1rUJ0uwgfIC0g0JPcv3nnvCN4TQmlF2XfUewhZrcyuvSxBwMhHjnKm3eBriyMAvPhctVpad+ZJO/Ob2t0xdZTshkkFZ+zZLQ0Km06Xa9+uWqiPHD1Ac+IOFcPBAb5nJSjv23I+cm+U9uWhZ19e3zH7chUKRHBYmRGQGFkONK4K3V4pdF6gvC8FqBuetzuFo1U4hmsJNb0qpN38vY9CdyRyG3qCd2oklvJ7EgCv+jMw3kgTxhql44pxnoWOYXwoG0iu7+0QgDYWbSxeCKxOsEGTCIfv5Xv7pIxSEN6jnEM5tzFa98FDgKGGpoxUURiSUGBFyl6oM5KhAX4Cr673MrxX2OkM73S4yeTzT3H1G2+utbUuX2PxzHuMnTy2I326XxqdGZZHT6y91lnG8YMNzs2UFd/WC74+k/I3j+W328S2cl6McyzMowiluZP6Grn9W4jeMSuRPGGP8bp+d2DXf+kMaPBS49IGKIlIE1S7i3Wla5QRgiRJMMaiVMbY0ie4PvqnBLE+ue+q/hKZH6cWxgfT8QeA5PlHMS+dwp9Zn/RQ/NkbJB99DLnvFve9QkCSlc+yzoLvlhXfIYA0ZQW46If0VMaJiCB7ld6KgN30MSp0gj54AL/Sws3NYS5dQo3tI3iHm19AHz2CrNfvvqFdRpI0qdeP0elcQMrymVWqBlk6cZc1I5G9z8DE7na7zS/90i/x27/928zOzt7zekKIKHZHIpFIJBKJRB5cipUNFuZNCuvpGEc7t2RaoqSkLcvMbo8gCxvEK9/uZaR5hKhtbr/WIfIcihwRAiG9P/ty6NmXe/ChrOoWAxjgFUnVnk2fFyRzgsaTE+ixOv/bG0cBwcHxOo8eHKosOzx7ZlPjIhkZR+SRStucn2c+bE4wX+XqG+8QNoqRAg5+8Kk7r+R8uaCU0cJ8QKzZl/shRNA7Zl8uMcjgsLIUT4ysE9aE7hSvRJmn6wO1TgflqlU1hfUs55ZGKmmkivFmRiO9+RiKQnckcmeCLC3NU6twwaO8BBHwfbrk7Wuk5NbhQsrcSs5ix7CvrnfFd1KGQFoYdGHwSmK1xoYErMNLgUuSsk1rpCuFb+ncbuj69rMqeIdOabwSCpJgsEKzZwRvt7sE76kPPs382+cwK+v239Nffo2RRw4h9+A9kDYtkmIFm67fj37XM6NrYjfAly5nAxO7C5FwKYzxCOV9rBSLKPltvF/Pbx4Nw0z5/VxVcwPpk6CX2y1TnEoJaYZwDqUE3jmMBClUeR8sHHlRUJdDTHS+g2uNL6xtJwjHdPpnPJL/KIrBVqfvVYQQZD/2UTr/rz9Zr2w2juKPX6b2Dz55+xVlUoravuj9WEhSMA5kWgri234ODARRPmuG4BEkWxK8AeRQE1mvY+fnsbOziNYKyfgEvtMmmZhEHzhQTjDeQ2i9D+dy8nwGKWssL7+BGv0ISTJ895UjkT3MQL6pKysr/M2/+Tf57Gc/y/Xr1wkhbOonEolEIpFIJBJ5YMmXKhbmix1DCIGOcTTSMqfbCIWVsrRMXc3r9o5QsTDfpFjdboPzCGNKoXsbysS8d0DA+4AcQFY3eEiqede1l9ctzOeM5j9fmQTg489OVpaTpkt96dKm9nZcPYoS61WwIQTOurN3WOP25EsrzL57sdK2/7Fj1EbvNAgRwDlQqqymUHtvoHevEfAEsYIIGkEd6ccQgzdIQ2JR3uLkqnV5RhBlRWmRpXgpSPMC6Ty19s1Ct/OBxY5BK8lwTTNa14zU9U37iUJ3JHJveNXL8FbghEc5ieiTa6sQZX53piSjdY1xntYO5HffCQEo58l6NudpNycxFt2zOdeFWXOgKG3ONV4+gPneAoys4VE9kRuSUE5K3AvI0EC6iV5cx85bmkudcOg7PlhpMyttrr727R3pz3bQaFdjbx49up+NyTWnFzUzrcEJa+fEeOXo1PKbWKrZ4o/ZwyRhcNEtyhc4qSlzu5uAAKXQvWegwpXPGqJnZ26sQ64cYtS8r7IdI1eYSf/Hjlvy7yXUkf0k3/FEpc2+eh53+spt1ughKF2nkt7ka9vtWZsXG6zNt/vv4AlQTq4OAhHU1nehJMnEOPrQIfABM30ZNz+PvXqV/NTbuKWl7ez4QMiyAyTJGJ3OeaxdYWnpdbwfzESaSGSnGMjV85d+6Zf4xje+QQiBF198kX/37/4d3/jGNzh9+jRnz56948+ZM2cG0cVIJBKJRCKRSGTwrFqY286ahflS19A1DuehqROMUAQEVkhUWK+GUr5TTgwNXQSbtDDPc4RzkOe9CuGbRa/NEgI45/Heg9g5C/P6yxKRSEaeP8y/u3AYFwTNesL7H6tW4w7Nn0VsYkRkWAwzpao26NN+mnZo32aNOzPz+qlKHpxQkgPvf/LOK3kPhLK6QKltmaAQuQuiRQgBEYYRvoYMQ3dfZ7u7gEN5gxMJngQjU7xI1oRuhCAtekJ3p4vyVVElBFhoF0ghGKtrGmnC/ubNVU7rQrePQnckcg84FbCqFLy9CCRObP9Yfo9EylLw1pJmlrCSW4odyu++GwLQ1lLvdKm32qRFQWIMWVGQdnOUtXgpKLKUIsuwSYIXD9CJRgiMrBFWBe8QUMHQt4Njm9ltgvfoiaM0D1fvv669+jbFcmtH+nO/3JjbLXXKs8eqFtFfujy4SuRcaC4ztvZaCEemvlZZRqM5YQ8PrE/SreZ2S1zWLO93lQLvSLs55AXGOpwXCCkxhcF7T3Pp/dRc9VhpqYvMJa8NrO8PAtkPfhDq1UnU+e9/jeDu4ZojZCl4yxS8K59xnSnFb9sC7F03sTk8BEr3iSDvT/AGRC1DHzqEGh3DLS5hLl/GLi1RnDtHce48wZjt63qfEUJQrx9DqTrt9lmMWWZp6ZuEsDvvHSKR7WAgU9J/93d/FyEEP/RDP8Qf/uEfImOuXCQSiUQikUgksm5hbtqgm1jvWelaWoVDK0GqJSsiwQlBQJBsfDj1LUQweDxCbCJPzAdEpwvGILwj1OrbImZ57wihtDKXQjAIhewmC/MLgmRW0PzAAWytxv/34iEAPvr0BGqj/Zx3NOfPbWpfJ9VjldcmWM67C1vqd3t2gcUL05W2iadOoBt3saJ3DpAgVLQwHwCBAi+6yDCECAnS79+BXngSX+CFwguNlRovNEEIijQFwVpGd63dQd7gjBYCzLcLfID9QymZlkwNZ9yoK1WFbqLQHYncI1YFRO97J5wgcQKr+vPdqaeKfY2MEHKM9Szugvzuu7Fqc54WBidlme+dbLA5VwqblNc06T3S9vK9d7rj94sQGFlH+zZWpiQ+R2Fwm3Xh2SF2k6W5EILDn3ied/7Tn65NEgzOMf2l13j0U58YaF+2g8R10PkiJhtda/sbz4zxxoV18f7L0xk/+nhnYN/tc2Kcw2FhrSJOy0us+Bnq4eDaMgf9BFf8HEuy/5MMpC8FRS81TtUgy8AHkBJhLYmxuLbB984dSChMgZQZE+1PMj30X3Ciu7a92eRlan6Spj9yu11GNiCaGdnf+iD5761PevDTC9gvv4P+zrvELUGvyjsBqcq4LV9AcGXlt2+V/6rtszYvc7slQkAIvW2K+3A/kQI1NopsNrGzs9iZK8ihJjiHX1khOXiQZHw/N91M70KEkNTrx2m13qHdOYeUipWVtxgefnanuxaJ9IWBqM6XLpX2gD/3cz8Xhe5IJBKJRCKRSGSVjRbmSZ3lriUAnaK0MHcInJA4oZAhoHpT1YX3+NCGnoW5EJuozO50yv0VBSHRkGyPLaFznhA8IYQB3fPfwsL8lXK/oy8c5T9NT7FkE5QSfPR9E5XlGovvoVxxz3uakpMMy6q9+AV3AbuF6oQQAjOvVu03VaqZfObk3dbsHSeyfIpTg7OTfBgJeILs2ZeHOjLshH35utDtRIqTCU6keFFWRELoCd3ulkI3wFLXYH1grKHJEsmBkRryhtHzKHRHIveB6NmZy1AK39DXCu/RuqaRKkbrGiFK14a9kv6nvCfLCxqtNlm3izYWbSxZN0cXBQSwG2zO3R63OQ9CYGSDgMTKDBEcKtz7vcdOs5sqvOvjY4zfcJ+0ePY9Vi7dxVp5l3JjdffUwf2oDdfmua7i7bnB3XN0RMoMo5W2IfUVHFXB8HF7DDGAP78gIIPtid2aUK9DswG1GmS1UnjMMlwIkBfQyTHtLqabYzqKA/l3QxAbN8h0+pcYsdL/zj8gJC8+gTw0VmnL/+Q1QmsTNthC9KzNs3KiylqVd1E6m/ntq5IOwvf+5gIRJIT7fxYVOkEfPICanCR0uphLl3ALC5jLl8hPn8Z3OnffyC5ASk2jcRzvu3Q6F+jmM7TbW4vhikR2OwNRnqemSguRiYmJuywZiUQikUgkEok8JHi3wcJcQZKx2Dbk1mFcoJGqnoU5WFGt6ha+BSEQehbm94wxiKKAvCgrc7LtsUlcrej2wSNEOYu876hLCFm1EK+/LJG1hMYzB/n/nDsKwHOP7WPohmzi4bnT97wbieS4Ol5pa4c203761ivchZWZ66xcma20TT5zkiS9y4SFXh46Sq1ndkf6h2gTgu/Zl2cIP2j7ck8SCoIQOKHxQmHJ8EJgshR61ZLKOWrt7i2F7lbu6BrPaF2TJYoDIxlaVb+bUeiORLYBAYX2BBkwMiACqD4J3mV+dw2dSEZrGusDrXy7bWH7iwAS66h1uqXwnRdoY0mLgqybk/Rszk2WUtQyjN67NuehV+ENEhcF7/viwEefRdWqlfGXvvgKwe89S95G58oNUTYJLz5RtTJ/6fJd3H62mbNivPJX1aLFsqpOKm2GOkdusAnvF9KZ9dxuVYMsheEhGBuBRh3dqBFqdfKsrPwOPpC32tilZcL1OuP5hyrb8yJnOv1zPPdR8fsQIZQk+/EXqo2dgvy/bcESXqietbkuBW7b7f3b7lmbb8/fpKzwLq8VwqvqhIf7QA010UeOIBplpbeZnsEtLJK/8w5mehruxd59h1GqQb1+DGMXybsztNpnyPOrO92tSGTbGYjY/bGPfQyAt99++y5LRiKRSCQSiUQiDwnFcs/CvAO6gQ+BpdzQLixKQqYVhUxwQkIQqLA+ECDcCiIUBDzcq4V5ANodsA5hDaFngbwdOFcKscH7XlX3ICzMT1VeJxcFyTXB8AcP88WVCS52ykHCjz87WVkua11D58v3vJ+j6iiZqE4KOGPPbmmgN4TA9A1V3bpRY+LJ43df2fkyBw8Jyf1nrEduT8DgRQdJc82+fLC2rav5rj2hG4URtbWMW0IgzQuUc9RvU9HdNZ6V3DJUS8gSycRwRnaDi0MUuiORbURAkZSCt1UBGUD5/nyZlBRM9fK7h7KEVuHId2l+990QIaCNod7uUGt30EVBYixZXpDmOdI5nFIUtYw8S7FK7blq7yAkhawTkDiZIoPrneP3BrtF8E5qGQdfeH+lLZ9fYvbNe5/AuFtQLifNFyptLzw1Vnn98pWU7gDnsbRFxhVGKm37xWusiOrE0kfcIbLQfzt+6TfkdqsN9+FSlhXeoyMkYyP4WoZRGtkYwqcpRghMnlOfOUKjU80Z78rrXNNf6XvfHxTUyQMkzz9aabNfegd3aW7zGxOA0pDUy1lbLgdXlJXeRQt8Dtz/dSyIUFZ2s72CN0qSTIyTHDwIzmGmL+PmF7BXr5K/cwq3dO/PljuF1mNk2UHy4grGzLO8/C2s3f39jkQ2w0DE7n/yT/4JAL/5m79J2Cv+SpFIJBKJRCKRSD/Jl8qHfO8gqbOSW7yHduGpa4WXioDASIXCr924S+/wdAl0CZuxMO92Ec5DkYNMtjXz2XvbszAHMRAL8wA3iN31noX5yEeP8r+dOQbAoweHODTeqCw3NHvvg6IZGUdlNd9v3s8zH+a30mkWzl+mO79UaTvw/ieRd7WS9+VxolT5BLdN1vORmynty5cRQUOo9ezLBzu5QAWDCB4rNAGFkTW8khRZivDrQnet3bmlLm2sZ6lrqKWSZqoYb2YMZdXvexS6I5HtJ0gwvQpvpwLSC2SfNOiaVuxvZjRSRU1LljoG5/f2eFvF5rzTRRdm3eY8LxAh9GzOaxTp3rI5D0JiZEZA4aRGBouMgvem2f/0CWrjY5W2K197A9vp3nqFXUyjPVN5PTq+n0yvX4QLL/jGle1xYLpXzojxyutUOFrqm5W/s0Jy0h7tW1TDKhtzu21y689B6gQ9PEQxNIxpNqDWwEpJqNcwWcrU8sdITLVifjH5Nkvq3f52/gEi/Z8/DHrDc0cI5H/w9a3rO0KUtuYqLeOZVq3NTRdMC+77vBg2CN4CEdS2HquyXkMfPowaGcUtLmIuXcYuLlKcO0tx/gLB7O7zepYdQOt9dDoXsXaFxaXXcG4T1vSRyC5nIGL3Jz7xCT772c/y0ksv8ff+3t9jYWFhELuNRCKRSCQSiUR2J96BaZf2bVKBSlnqGKzz5MbTzBIKofAIPHeyML9Hi0PvEd0umALhA6G2fRUZPni8L23MpRSIQTxiqEsI2ao01V+WqOGM9448wjcWy3ztG6u6VbFCbeXe8x2Pq0dRYn2AJ4TAGbe1jDPvPFdeqzpdZaND7Dtx9O4ru15Vv1KgY1V3X1mzLx9C+trA7ctVKBDBYWVGQGJkvaxqTDXSB9KiJ3R3urfUpZ0PLHQMWklGM81wTTPaqB4zUeiORPqHl2CSgJfgpEc5ieiT4D1S1zQzzUhNIwUsdsyeye++E2XuuaPWzWmstMjyHG0taWHIOl0Sa0p78Czt5XvvDZtzLxKMzPAkOKlRwSLZOxb0u0HwFlJy5Dur9tSuMMx87Y2B9WG7qHeuwob7e6Tie5+p3nN86fJgxe6WqHGF4UrbIXGOGXmt0jbuRxn31Yzv7WZjbreXKeE2zxeJFOhEUghFGB7GDg1hlII0wyYNDtvvLwXPDVzRX6RrrzwQ58t+I/c1Sb/vuUqbP3MV++r5+9xwssHavOhZm9v15+P7qvIOBEH5TBoEIiTbOzlDCtS+MfSRI5Ak2Jkr2GvXcHOz5KdO4WZn2c0HV612FKUatNtnsWaFpeXXCSHa+0ceDLavnOMu/PzP/zwnT57kp3/6pzl27Bg/8AM/wJNPPkmj0bjrur/4i784gB5GIpFIJBKJRCIDolipWJgjBIsdQ7twSFFWbK0IhZWyzP7cOBjmWhByAgFxrxbmrXYpeBeGkOrSAnCb8M4DAe8DiRpMxfFNFuaXBMlVwch3H+GXzj8KCMaGU55+tDoQNzR39p71vGExzJSq5hJO+2naoX2bNe7M3LvnKVqdStvBDz6NkPfQI+vLSREISAb2CPfQsWZfHnbGvlxikcFhZQo9odsmCqNTpHfowpBYR9a9tdAdAiy0C6SAsbqmnpVV3RuJQnck0n+cCojgSYJEhEDiJFb4bXNT3cjkUEphHaMNzVzLsJwbRmoPzqQoAWhj0cbihcBqjQ2BxDq8EDil8InCJQnCe5RzKOt27SmtFLwD2gMSlDcgwQ9uePa+kKEBbhyvZpEevFwBliEMD+x62Tw0ydjjj7Dw7oW1trm3zjD+zEnqE/sG0oftQHlD1p0jr0+stX3g8X38yWvrtsJvz2uutSWTjcHFFJwV4xwI631IcRj1JoXfR7rB6eakPcqCXMb1azYPvdzuJEMbsEmGtp1bLpcmEh88XeOoZTW63Q46S1BZRj0d44D9LmbUX6wtH4RjuvaXHLn6PSRpE5FliG10vHrQ0N/9DOarpwlzK2ttxX9+meSZo4jsPj63VWtzqcD2BG+ZlDe03pYV4DJlazepHoJECFlOYkURcNt6vyt0gj54ALfSws/NYS5dQu3bR3AOOT+PPnIEWb/HZ/UBIoSkXn+UVusd2p0zSKlYXn6T4eHnEHtg4lgkcicGdia/evUqv//7v8/i4iLee/7wD//wnteNYnckEolEIpFI5IEiXwKbr1mYtwuLcYFWYalpiVMJAYEVksSvD9oqb/F0ehbmCinu4XY+NwhrIS9K6zi9fVXdIYDzDu89iB20MH+53K9//gR/cr4cNPzYM5OVB3bhDM2FC9wrj6nHKq9NsJx3977+RpyxXHmjapnYmNzHyJGp26yxgeABX9r9KbmtExUi6wRCz748gVDfAftyj/IGJ5OedXmGTTRGa5R3JIUhsaWd7+2FboMPsL+ZkiWSqeFa5XCJQnckMjisCoheZZdwkFjRl++blIKpkYzpBc9wTbPUMaTKU9MP3rVChtLdQhcFXimMTpAhEKwlSIlLVCmGa410DuUc0vldd4rzQmMlJB4QYQ8K3k1w7KjgffDjH2Dx3CWCXa9GvPTFVzj5t79nT4k1jfZMReyuje5jf/Mic631qtAvT2f8yMlbi7z9YFnUuRaGmGRd2HyUq3xbXeQpt35vnJHyiDvE2eRS3/oifYGlThAKp2q3FbsBskTRKRyF9aQ6pdXO0VrTDTA++R3kywvMm1fWlje6xbWJV5m6/gKik4NSyFpaCt/qwTt/3g9CK7K//RG6n/+rtbaw2Kb48zfI/tbz27ADWVZ5ewvelM/HUgMBpCnf28L5MQiPCBIhBCFIBGy74A2ghpqoeh07N4e9PotYaaEnxsnbbZLJSfTUgfIZbhchpabROEGr9S6dzgUQEtU+S7P52N1XjkR2MQP5ps3OzvJd3/Vd/Pt//+9xzhFC2NRPJBKJRCKRSCTywOBdmUlmO2sW5osdg/OervE004RCJjghCDdYmONaCE9pYS7uwcI8BOi0wVqEs4Qs29YHfO8dwZdW5lIIBqKaycsIuVJpqr0i0ZNNPu+ewwVBqiUferKaO9hcuID092YXOiknGZFVG8cL7gJ2i3aj1946g8uLStuhDz59bwOyzgGiFLljVnf/WLMvH0aGDOGH777OtuFJfIEXCo/GSk2RZJhUo5zt5daa2wrdAEu5wXjPWF2TJYoDIzXUBteAKHRHIgNGgEk8XgasKr9riRN9ybnNkjK/u64ltVSy1N37+d13QkAZ57Bqc97NSYxBr9qcF4aAwKSrNucav8vyvZ0oz/VeaJxIUN4g2Ds2sjI0kW58xyzN06EGBz70vkpbe+Z6pdp7L1DvXCufC1YRkv/p/dX7jy9dzgbuiHxWTFReZ1hSeZZ5sVRpP+Imafr+Va6u3rd7meDUnS3dhRBkWuEDWBROCJZX2jhn6ay0ODTyP1FPDlfWaWXvsTz5HmpsGKkTfKeLm1vALizju3nUJDagnjuKevJQpc38xZv468u3WWOTCECtWpurdWtzZ6FogeuwFWvzIHxpZY6AICH06VlKSZLJCZKDB8E5isuXcfML2KtXyd85hVveps9pG1GqTr3+KMYuknenaXfO0s1ndrpbkch9MRCx+1/+y3/JqVOnCCHwd/7O3+HP//zPmZ2dxbmyCuRuP5FIJBKJRCKRyAPDmoV5G5J6z8Lc0jGeEKCWJTgkTihkCFSGZ32LQF7mkN2L2N3uIHyAvCAketvFUuc8AU/wATmgimOhb7AwvyzQM4LmR47xf06XgzDPP7GfWrrhdw2Bobkz97R9ieSEOl5pa4c20356S/01nZzr367ue+TIAZpT++9h7VCK3VKVVfnRwrwvBCxetJHUS/tyN1j7chUsCIETGi8UeVLHphrVs+5NjCHLi9v2qJU7uoVnpKbJtGRqJEMn69/HKHRHIjuEgEJ7ggwYGRChf4L3SF0zXNOMZBolBAvtYjdHhm4bAtDWUu90qbfaZeW3NWRFQdrNUdbipaDIUooswya7J9/biRTXE7y9UCS+4P5yagfLTgveEx94inSkWWmb/vLrOGMGsv/tQAZHvXu90vb4o9XJmtc6incXBnv/tyjqzFL9bI8zy+nkIn7DMSoQPG6P9eWcVm4/IL3BybTM7hZ3ftZQUpAmCus9JCm5sXTaHfJOjisCx4Z/AnVDBNT19Ot0hxaRw03U/jHU8BBCgF9u4+YWcEsrhOLhOJ/eCSEE2Y99FDbGLzlP/kff2O4dlW5WSVYeV7YDzpQ258VKWfm9SVYFbxCIIHui9/Z2exVZr6EPH0aNjOIWFzGXLmMXlyjOnqW4cIFgtjZxul9oPUKWHSIvrmKKOVaW38KYxZ3uViSyZQYyIvVHf/RHCCH4B//gH/A7v/M7fPd3fzf79u3bU9YykUgkEolEIpHItrDRwlw3yG2ZMdfOLZmWuESXz/ZCkoT1ag/lLJ4ugS6QIO5m52YdoiggzxEEyLbPvhx6cWq9yalClPlf/edmC/PaK+UzxV8d+xBLtvxMPv5s1R68tjxDYu4ta/uoOkomqtUjZ+3ZLQ/eXv3WO3i7sWoHDn7wqXtb2Zd56CgZLcz7RCAQxFLPvryBDKMItve7cidkMIjgsEITkLR1syd0G7S16KIgu8EVYCNd41nJLc1MUdOSieEaNb0+0SMK3ZHIDiOgSErBu7Q2B+X78wUcb2ZkWjLW0LgAS929I/ptB6XNuaHR6lBrd3rCtyXLC9I8R3qH1YqillGkKU6pHa/2tqQ4meBE2hO8c/a64I1YGYjgLRPFoe94vtJm2x2uvvxW3/e9nTTa1UpK2Rzl5Hj1fu9Ll+9c1dwPzoqq6F7Hsl9c4aK6UmkfCU0O+uqy24n0Bq/KWBmn7j7RVytBIiXGg9AZK60u1hraK8toMcLR4R+7YY3AZfVncKBOMjZait6jw6j9Y8hGneAcbnEFN7eAX2ntOrFykMgDo+i/UX2Gcd96D/vty9u/M6F6Vd66FLhtt7Q5t22wLdikE0ZpaV5ee4VXiKB6AngfkAK1bwx9+DAohZ2ZwV27hpudJT/1Nm52jt00eyLLptB6P53ue1i7zNLS6zjX3eluRSJbYiCjJZculfkdP/VTPzWI3UUikUgkEolEIruTW1iYL3UMIQQ6xtFIFYVIsKKccV6xMPcbLczvMugVgHYbnEdYQ9BpOVN+W38VBwSC972q7kFYmM8gZNUGrv6ypPbIGP965VkAnjw2wv6R6uczNHf6njafknJUHqm0zft55sL8lrqbL7eYfadqqbnvxFFqY/doke0cIMtjJRlkfvRDhGj3BsCGkSEdqH25wKGCxUsNSDppE5fq0o7XOtK8IC1uL1YZ61nqGmqpZChL2N/MGMrWJ8HcKHTbKHRHIjtCkGB0aWnuVEB6geyDniklTA1naCUZqWm6xtMp9o419naivCfLCxorbbJuju45ZWSdHN07r5pUr9mcu52yORdgyfBC4YQm7PkK7yZe5AMTvEcePczQ0QOVtuuvnyJfXLnNGruPWuc6YmO1qhB87/tHKst8/UpKPuCv8rxoMk+1Cvp4mOU9OUNbVIWwE/YwOvSn+lx6Q0CW35G7WJmvkmmJFGAoJ4ouLrVw1tJptRlOTzLV+JuV5V1o8V77D5HDdfTBSfTUJMnYEKrZJNk3ito/iqyl+MLgFpawc4v4dofg9s73dLtIP/UBxFB10kH+B18n2D4coAJQunRCkxJcDq4oK72LFvgumzlXBhHKDO+epbnwCXjVP2eCVKMPHURNTODbHcyly7jFRYpL75GfOYPv7B5BuVY7glJN2u1zWLvC4tIrUfCO7EkGInZPTJRZH8PDg8w9i0QikUgkEolEdhlrFuadDRbmho5xOA9ZlhIQWKlQ+DVNSgTAr8Cahfld8vGKHOEc5HkplOrtF0qdt4RQWq+LgVmYv115ncxAMi2YefpJLnbKgZcbq7p1d5GsPXtP2z+hjqPEelVsCIEz7uyW+3vl9VOVmftCSg68/8l7XDuUld1KloM9Ma972yntyzvIUEeQ9AbrB1U971FrOd0JuaphdIqylsQ60jxH38GK1fnAQsegpWA0K+2Lxxrr3/NbCd02Ct2RyI7hJdgk4CU46VFOIvqgk6SJYmI4o6YljVSynFvMQyjIrCKAxFpqPZvzLC9IjCHt2ZwnPZtzk6UUtQyzEzbnAoyo4UXSE7wlSdirgnd9oIK3EILDn/hQxVo5eM/0l17t6363E0Gg3r5aaTtyZLx0ZerRsZJXrw7OdWaVMzdkdzcwHBCLnE4uVtoTEh6z1cmi24X0Bgh4qe+psnuVVZcbp1KscyyvdMjbHWxhmKz/DYb045Xl2/Y9Zlp/BoDINGpslOTwAZKJ/ajhIWSzido39tDne4t6SvpDz1fawrUlzBffvvUK27LTnrW5yspnI9spRW+Tl5PIw726mASC8IRVO/Pev/0WvdXwEProUUS9jr12HTM9g19YIH/nFGZmBnbBNVoISb3+KEIq2u3TmGKBhcWvY+3uyxqPRO7EQJ7kP/nJTwLwxhtvDGJ3kUgkEolEIpHI7mTNwtyCrmO9p5Vb2oVDKwE6xSPwCBK//uArvcGT4+lQWpjfQfj0HtHuQmEQ3hHSbNsFLh883pc25lKKAQmEt7Iwlwgh+Dej3wnA1L4ajx2pTrAdmj19T7/+sBhmSlWF8mk/TTvcm/35jbTnFlk4X7X1G3/qOGnzLhMVVlmzMFflT4yA2lZK+/LlXm5fA+lHBmhfHkiCASFxQmNlQp41ECGQGIsuDPoONpkhwEK7QAoYa6TUM8V4c73aKQrdDw/eOUyek7dbdJaXWJmfY+n6VRZmplmZnyP4nR9AjazjVMAqj1fghSdxspzMts0MZQmjdc1wpkmk6DnIbP9+9hoyBLQxNNrrNueJ2WBz7hwuKW3O8yzFDtLmfFXwpqzwBlFeJ6LgfVdq+0aYeO6JStvS+cssX5ju6363kxutzENthBceqd7rv7QDVuZzNFmkKjAfD9dZEMtclXOV9im/nzE/tO19EID0Fi9TvEwwSePe1hOCmi6nDnul6bS7dIuC9vIyBDg6/KNoOVpZZ7b7VRbzNzdso8xgTsb3oY8cQI+PIYeGHvp87+SFk8hj+yttxX//Jn6p098dy1tZmxsw7dLe/J7Pl37N1rwieoekfC7oB0qSTE6QHDwIzlFcvoybX8BeuUL+zju45Z0XlaVMaDROgBC0Wu9gzAKLiy9jzNYcziKRnWAgYvenP/1ptNb86q/+Kt1utECIRCKRSCQSiTyE3GRhnrHctaXjeGGppwojFEaWg99q4wO7ayE9hJAjxF2qGtodCB5hCkKiIdn+W37vSiHWhzCgrG5AXkHIpUpT/WVJeOwgf2UOA/DxZyerq9icxtKle9r8Y+pE5bUNlvPuwm2Wvjszr3672hedMPXMyXvfwKqFuZCg+2MN+VAjOgThkGEEEVKEH7n7OtuECgaCxwqNR9FJhwgCdGFQzqGL22d0E2ChY3ChFLrTRDI1XFuLc49C994nhIAzhqLbpbuyQntxgeXZ6yxevcL89CWuX7zA1XNnmDn9DlfOnub6xfPMXb7EwpUZWvPz5K023jlW5maZvXQRe6fjKTJwbBJwsvx+BhFIrOhLNdm+RkamFaP1FBdgsfNw5XffjTWb81abrNNdm2SUdXN0XiBCwKaavFajSAdkcy7AyFLwtqJ06oiC971x4MPPkNSrYvDlL73ai9zZ/WT5PNLllbbvfN9Y5fVbs5r57qDcZ3oIcVN19xAFB1jmTHIJQ3Vi3kl7bC0XeTtJXBenUpzKyLP9OHlv98VKCtJE4kSCF5Kl5RaFMXTbbRJZ55GRv3PTBOJLy/+Zrr1+07aElMhmAz01jj40RTI2ghxq9PK9R5H1G/O92w9svreQguzHX6g25obiv746gJ3TszavlbMR7Kq1eVE6qPmce72oBuE3WJtLCKLM8/b9y/OW9Rr68GHUyChucRFz6TJ2cZHi7FmKCxd2/JiRMqPROIlUKa3WuxTFPIuLr5LnV3a0X5HIvTKQq+SHP/xhfvu3f5tTp07xqU99ilOnTt19pUgkEolEIpFI5EHiVhbmbUPXOKyDrFYjAE5IkuCqFuZhhUC3fCC/k4V5YRDGQF4AArLtrwIJAbx3+F7FoByUhXlStcdTVyG5JPjzox8CBI1awgdOVqsMmvNnEeHug8STcpIRWRU7z7sLWLY24LA8c52VmepA2dQzJ0mye60cDuXkiESWT2xJFLu3k9K+vI0MtdK+3O8fmH25xCKDw8kUkHR1E58odGGQ3pN18zvq0ku5wTjPWF2jleTgSIbq2bfKKHTvarxz2KKg6LTpLC/RWphn6fo1Fq5MM3f5Pa5dOMeVs6eZOf0OV8+fZfa9C8zPXGbx2lXaS0uYbpcQIElT6sMjDI9Psu/gYcaPPMLkoyc4+NgTHHjsJJOPHmf/kaOMH32E4D2z712gu7J38msfBkwS8CpgVSAISNz2C97r+d2C0bomt572Q5rffScEkDhHrZvTWGmR5TnaWtLCkHW6JNYQxAabc91nm3MhMLJGWBW8QygnSO1MoviWuJ3g3U9UlnLwY++vtOULy8y+8W5f97tdCKDRropJ+w5MUFPr97ABwZenB29lfp0hlqg+T5wI1zEYziVVB6NGqHHMVTPUtwPlcpTrYvQQTiZ0a5OEe7y50UqSqLK62znP4nKHTquNs5Z6cohDQz9YWd5juLj8H3E+v80WQSQJamQYfWiql+89jBrq5XvvG+nlexcb8r27D1y+t3p0kuSjj1Xa7NdO4y7cPFGgLwhZ2prLtHxmst0yy9t2y8nl9/wMt2ptzuDyvKVA7RtDHz4MSmFnZnDXr+NmZ8lPvY2bnWMn7QGk1DQaj5EkTdqdsxTFdZaW36DT2fok8EhkUAxk1OSnfuqnAHjmmWf467/+a5555hk+8IEP8OSTT9Jo3Nl+RAjB5z73uUF0MxKJRCKRSCQS6R/FcsXC3IfAUm7oFBYlgVTjhCAgSDYItNIVeAoCXUDfXpQLlFXd1iGsIWS1vohc3vcszINHCsFglLQAujphtv6yRCSK3xr+DgA+8tQ4ycYq9uAZmjt31y1LJCfU8UpbO3SY9luzvwwh3FTVndQzJp46cZs1bsFqJZJSUejeZqr25U2kH0aGQVmDepQ3OJEQUGVOd6pR1pZVht0ceYfBrXbh6BSekbqmpiUHR2voXpa79KCi0D1wQgh45/DO4q3DOYu3Fu8crvevdxZn7U15nkIIVJIgVYJKEpJ6ilQKmWiUUsjee1Kpm1IMVKJRWpPoFKVX/69RvdeEwLXzZ1GJZvHqDPMzl2mO7WN4fAIRIxF2HgFF4kmDxAbQTpA4gVXb+53ViWRyOOPKUpdmqljJLVoKdB8cXx4EBKCNRZsyx9smGhsCiXV4KXBS4ROFSxKE9yjnUNZt/2lWCIyso30bK1MSn6MwODF4oXOryNAEB17NIgN4sYIMWV/jQvY9dYLZN0/TubZuuXvlG99i7IlH0I17jJDZQertGVaGH1l77XST735S89/eWp+k8qXLGT94vDvYZBshOMsEHwzrTknD5EyywowUHBDjjITm2nvH3AGuynm68vZi8VbQZoVCJhTpCCKfp1vbT707e0/rZomiGwLOKYpuzorWJEvLDI+Nsb/2IdrmPRby19aWz90sl1b+C8eGf/yu10yRaVQ2ihwZIeQ5vt3Bt7uIRgOMIeQFvtOBVhtSjcxSRJY+ENfi9Iefx37zIuTrziH573+N+v/jBxFyAL+fAFRSOqZ5A76AYMt878Kt53zf04RWTxDrgvdqxTdBEKQH/LbfU4tUow8exK2s4Ofm8O0Oav8+gnPIhXnSI0cQtXvPqd/WvglFvX6cbvcSne5FfC8X3fmcZuPxB+L4jTyYDGTk5POf//zal0AIgfee1157jddee+2O64UQotgdiUQikUgkEtn7eFdWdm+wMF/JLd5D23hqqcYLhRMKGQIbzTKFbyF9wIYcIe+QhdftIryHIi8f/Ptkfe28I+AJPqCSO2SHbyfyKkIuVppqr0guPfoYy0kDKQUvvK9qYd5YvIRydx9oOyqPkImq2HnWnt2y5ebihWk6c9W+Hnj/k8jNfFbOlWV5RAvzbWfVvtyPIoJG+NG7r7MtBJJQ4IXCC42Vmjyrr+V0J8aQ3MFuNbee5a6lmSnqWjI+lFHTtxG6E7/totnDRvAe51xPuLY3CNer4nbZduOZQkrVE7EVKtGktXpPxE56IrYuX6vq4KsQcoNwnW4QsDUq0SRpuiZy38sg49H3PcfVc2eQStKan2dp9hqm22Xs4CFUnESz8wgwuid4U1Z3Ky9wanuruZpZwlijtMQ2zrPQMUwMZYMVy/Yg0gfSokAXBV4pjE6QSSBYS5ASmyis1thEo5wjMWZbT7lBCIxs9ATvrCd4F3tP8PYeL0HQJYg2IvSv/0IIDn/nhzn9B3+21uaNZear3+TYd3+sb/vdLtJiCWXbuA2Z1B9+fB//7a31StnpVsK5JcWJ0cG6NFxlmBVShliPxXgsXOeaGOLd5CIfMk+VFbGUk0gft0d5Q5/e1vsQAehiiSLbh9EjCKDQBam5e9axEKXg3QkpLu/QabfROiHNOtSaDQ4P/SBde4WuW89OXyreZLZ7lIn6vR07QgpEvYas1wj7PKHTxa20CalGhAbkBp/n+OU2tNoIrZG1DLTes+djOdIg/YH3U/zxy2tt/sIs9utn0B/bRHTT/SJEKWzLBGxRVndLXU4Ed6aX831v554gygnnIkgQgoAvbc2FJOB6lmvb2XdQw0Ooeh07P4e9dh2xsoIenyjt9idL9wAG5KRW6ZqQ1OvHEEKT5zMEbyEEvM8ZHnpmcFFmkcgmGMgTziOPPBJnfEQikUgkEolEHl5M62YL847BOk9uPPWhBh6wQpL6dds16QU+rCDICQLk7SzMnUd0u2AKhA+ERn8GE0sLc4/3HiEY2EOuSKpV3eoa6IuC//M7XgTgmeNjDDd1ZZmhudN33W5KylF1tNI27+eZC3Nb6mfwnpnXqnbr2UiT/Y8dvc0at9xI+ZNokKKcHBHZFqr25RrpxwdmX17mdIOTCR5FN20SpCDtFijvSfPb5yob51nsGGpaMpQljDVShmvl8R6F7s2xXnHdE6+t7VVju7V/vbNrMQ2rCCGQMkFqhZIJOqshG8maqF0K2b0q7BuqmaRKbhatdYrSSVXE3mYBWirFwZNPsHBlBhDoWo35mWlmL55n9MAhsru47EX6TxBQaE9qVgXvcqqb32bBe18jI7ceF1LmVnIWOoZ9dR3PE/eAgLKC2zkCOTZJsDpBek/A4HqiNyGg7fZmrYZehXfqOziZofag4C38EIhlBA28XCIEg0DffcUt0jwwzr4njzN/6txa2/zb5xh/5iSNqfG+7Xc7EECjNcPy6Lo1dLZ/ksnGFa611+8FX7pc48Roa8CdK6u73x/WbctH6DJOi1kpuKSucdRNrb23L4ww6fdxTc3famtbRgaPLpYp0hGsb0AWkL4guYfJrVIKMq3o+AxTdGitdEikRGflNfiRkZ/g3YXP4UN3bZ2Z1v9FPTlEUx/bVD+FlIhmA9lsEKwtq71bHUQtJThfVnvnOW5xGaRcr/begxNc9SefwnzlHcK19UkHxX99heT9xxD1AZ+rhCyFbW/LKm/vygngNoDsid7c23NVKXqLnugNIXhESED48r3tFr0TRTI5iW8O4ebmKC5fQo2MlhOGFhZIjh5BDd1h0nsfqdUOIqWm271E6MVqBF8wPPx+pOzf+TwS2QoDOYueO3duELuJRCKRSCQSiUR2J/kSuGLNwjyEwFLH0CpcbzJ6ihEKEahYmAufE4LB0eGOFuatNniPKAwhTfs2+9s7ByEQvEdIyaAszIWuCsj1VyQuy/iriWcBePG5alV32rpO2q1WV9+KE+o4SqwPeoQQOOPObrmns+9eoFhpV9oOfvDp3md1jzgH9ETuPTjotVsp7ctXSnUpNJF+aGD25as53VZmBCRd3cAlCl0UyODJOt3bfpN8gIW2IZGCkZpmqKbZ3ywHD6PQXbJqJe6sXavE3mgjvlHcvtFKXErVq7IuhWud1m4QsFftxG8cHBVl5XWiUWm18npNvE7L9zf1/e8DYwcOUmsOMXPmHZROWbwyzfzl9xjaP05z3/5YmLDDBFlmeKdW4IJHeQki4LfxsBECJoYyjO0yWtcs9O4/mlmcTLUZBKCtRVuLFwKrE0zPlttqjfQe5bc3lzcISbEmeKckvgAMTuwNgUEgkH4ErywE1avu7q+jysGPvZ/Fs+/hzfrkg0tffIXHf+z7dv35rtG+UhG7fVLj+5/O+A8vr/8uX51O+cmnWugBX1pmGOExrtO8obp7libn1TSTboxsg039Y/YI83IJK7a3Cl35gsS2MbqOCIZubZxG+woy3H0/iRRkSULXaoo8Z6WTkC4uM7J/H6nax9HhH+XC0v9vwxqei8u/x+Nj/zeSO7lr3YHVfG81MkzIDb7dxrc7yEatdIrIC3xeQKcLiUJmWSl8q71RNSsSRfZjL9D9P/58rS0sdyn+9Jtkf/sjO9AhqtbmroDgejO2HSRpr8r7Xj7fQBABkD3ROxCCRITS5hzhtv2eWzbqyNph3OIibnER32qhxsfxRU4ytg996NCOPB+m6ThCJHQ6F/CtM4Tg8f5lRkaeR6lBxUFFIncnjp5EIpFIJBKJRCL9JPjSwty0yxnnKqNtHMYF2oUlzTQIiZUSFXzlmVn4lVJcDgVCjtx6+3mBcBbyoqwE1v0bAHXeEYInBFCDEnDkNZALlabaK5IvH3kOozRHp5ocmWxW3h+eO3PXzQ6LYabUVKVt2s/QDu3brHFnnLFcfePdSltjfIyRowc2uSHfm6wgYl73diK6BGF69uUJwo8NZrerOd1SE5AUqr6e0+3unNMdAsy3CoSAsUZKPVVMNMsBpVWh2wmPT3oZ3Q+B0G2LgvbSArYo1quxb2H/LtW6UF2Kz40y//oGAVvecB6TUt1gG56gbhCxk1QjVbLrRZON1IaGOPbMc1w5cxqpFCtzsyzPzWLyLqNTB28h5kcGiVcBEzwaiQge5WQZF7KNl1mtyvzumSVP0/Xyu5UgjfndW0KGQFqYXnFfipcKm2pkN9/203AQEiMztM9xUqO8KR0A9orgHRoQFpE08HKZECyij8PRulln6sPPMPOV19faOlfnmD91nv1PHe/bfrcDbVvoYhmTDq+1PX1iP7x8de1120pev5bykQO3d4TpC0JwjnGeDdNrTWN02EebedHkdPIez9h1oT5F86g9xGn93rZ3JbFtvEww6TAyd3Rr49Q7V+/pu5dqiQsppt1GdjssJoqs1qbWbDCSPsFk/W9wrfPXa8tbv8zF5d/n+Mjfv29Hq7V879EHK987efow6pkjuDfXc93NF76N/vjjyAODigu6gVVrc6FKK3Pf6VmbB5AWdIN7E7zh1nneAShtzrc9z1sK1L4xZLOJnZ3FzsyghofAedzyEvrQIdT+/du4w3tD61GEeIxO5xyt9mka9RMsLn6dkZEPkiQ7U3UeidxIHD2JRCKRSCQSiUT6SbGybmGuG2sW5s57usYzNNrEI/AI9AYLc+UFPrR6OYcgxS1mTYcAnQ4Yi3CWUKv3TezyIeB9wHuPlGJg9s83WZjPgj4v+OPvfAGAF5+tVnWrok1teZq78Zg6UXltg+WCO7/lfl7/9llst2qjePD5pzc3QOUd4MvBmUTuSD7bg0jA4UWrZ1+eIv3+AR2/HuV7Od0kGJmSZ7VqTre9TSVSoDxPhMB4MyVLJAdGakj5cArdJs9pzc/RXVlGKEVaq5PW06qFeJKUgrZSN+VfKnWzaL2WiZ2mZYW21g+06KsSzaEnnmJ++jJCQFqrsXBlhusXzzN28DBprbbTXXyocUlABA9KIlwgcQIjtvd7XU8V+xoZIUDhAosdw/hQhnyAzx39RhuDUxINFLUMk6bootj207EXCUaC9oAE5Q0Igd8Dw7oCiQwjOGEhtHvV3beZwLlNTLz/Cea+fZZicd1aeeYrrzN64ggq3d2TBOrtmYrYHYaneHr/Zb49t/63/tLlbPBiNzDNKI9xnTpmre2xcJ1viCazcpFZuci4Xxc3D/kJrvo5luXWJpLeDgGkxTJ5to9CD0Pw5NkYtXzhntavaYXPauR5B9XNmVtY5mCWIRPFVOO7aNtLtMy601PLnOdK+y842Py+7en/A5jvnf3oR2m/PV1O2gXwgfwPvk7tZ753Z8V6qUrB25vej4MkKyehb0rw3mhtLso87+ARoX953iLV6IMHcSsr+Lk5fLuD2r+f4BxyfoH0yGHEgO/dkqRJo3GSdvssrfa7NBonWFz8BiMjH0TrsYH2JRK5FTt2V+S9Z25ujna7zZEjR1AP8ENlJBKJRCKRSOQhJl+uWJgDLHUsbePxAZJMY6REBFCsPyQL391gYZ7eWpxrdxA+QFEQEg1J/+6py+rJgA8BNbAc6UCiv81GObD2imS5Psw3J04y0tS87/hYZY2huTN3HWSelJOM3FApf8FdwLC1vE3bzbn2VrWafPjwJEMHNpkP6ctBFKQsM7sj20IQyzfYl9cHsl8VLAiBExovFHnauOec7uXcUjjPWF2jleTASIaS4tZCd7LNuYG7CJN3WZmbo9taQSnN8MQUjZHRcqBYyIpduNpQeb0uZpfV2TttJb5bEEKw//ARakNDXD3zLipNWZi5zNyliwxPTNIcHdvpLj7U2CQgevcBiRMkTmz7RJbRuqZrLCHA9VbOYtuwrxHzu++HrJvjm2U0RZFluCQh2eb8blgVvENV8JbsDcHbNxFiCUkdL1f6Xt0tleLwJ57n3J98Ya3Ndrpc+cabHP6OD/Ztv9tBo32FpbEn1l4Hpfnu9zX49hfX7xneuK5ZygUj2WCv/6FX3f2+MLPWtp82o6HNomhwOrnIWDGE6uUiCwSP22O8ot/e9nOMIJAWS+TZKFYPle7VrkDbuwvrQghqmaZlDXmni0oS5uYXGZ/YjxCSY8M/zumF38b4pbV1rne+RCM5wkj29Pb+Hg9IvrecGEZ/9/swf/attTZ3ahr3rfdInttc5vm2IwClS+HbFmBzSATYNiSbE7zXrc3FBmtzNuR5b7O1uQA1PISq17Hzc9hr1xAry+jxCbrtFsnkFHpqcqATpJWq0Ww+XgrerXdp1I+zuPgKw8PPkmVTd99AJNJHBvrE55zjc5/7HJ/85CdpNBocOHCAxx57jLffrmbw/fEf/zH/9J/+U375l395kN2LRCKRSCQSiUS2l+ChWK5YmOfW0zWOTm5JaxlCSJyQJMFVno2DbyGCJwSDELeYtW0doiggz8vB8Sy9eZnt+jUCeO/wvSzKG61/+4a8jrvBwrz+suRPD38YLyQfe2YSuaEkTXhLc+HO1dkSyQl1vNLWCR0u+7tXg9+Oq996F3/DwPbBD252MCyUed1K9az34mTg7SCITmlfHoYRQQ/MvlwGgwgOK0r78m6ymtNt75rT3S4c7cIxVEvIdFnRnSbqoRK6i06HucuXuH7xArbIGZ06yOSjxxkZn2D86DEe/cCHeezDL/DoB57n6NPPcvDxJ5l85Dj7Dx9hZGKK5tg+as0hkjSNQvctaIyMcuSZ52iO7WP8yCM0RkZZunaVhZnptfN8ZAcQYBKPlwGrAiKUojfb+DUXAiaHa+hEMlbTGO9ZybdfmH2YEEDW6SJ9QBmD1QmuT+cdLzRWpngSnEhQ3iC3OFFvkKxWd0MNgiSI7a30vRUjjxxi+JFDlbbrb5yiO790mzV2B4nrkubzlbZjR8dJ5fqJwAXBV2d2Jif3EqN0b5io8Fi4DkAuDBfUTOW9odDgsKu6MG0XMli0aWFVDacy8mw/Tt6bCKykoF6rYQN02x2WW13arfK4TGSDY8M/cdNE4/dW/jO5m9v232OV1XxvfagUMJPRYdRQg2TfKGrfCLKW4osCt7CEnV/Et7sEt3uu2en3PYcYqU4ozf/oGwSzvbntW0bIsqqbALZbPnfZNrCVzzAQhCf0RG+BgCARPgGvtvW6DUCiSCYnSQ4cAOsoLl/Czc9jr8yQn3oHt7KyzTu8M1Jqms2TKNWk3TlLYWZZWv4mnc7FgfYjErmRgT31Xb16lU9+8pP8zM/8DF/84hcpioIQAuEW+WTHjx/nV3/1V/nFX/xFXn311UF1MRKJRCKRSCQS2V4qFuZ1EIKljiGEQMc4klqKE4KAIAnrD9rKQwgrhJ6FubjRwjwA7XYpeFtD0Cn99LULweN9+a8UgkGVgNX0m5XXag70OcFfHvswOpF8+Klq5XRj4QLS33nQ96g8QnbD53nGniVscVSiWGkz+05VYN934gj1fZu06PQeCKXIrRTRV/b+WbUvFyEbqH25xKKCxUsNSPJKTre7Y053YUvhqZEqGlox3syopw+P0J23W8xeusjspYt4axk7cIiJR04wPD7BxCPHeeT9z7Pv0BESHZ0P7hedZhx58n2MHTzEyOQUYwcOkrdazL53AVsM3h430kNAoT1BBExP8FZ+e68HSgqmhjNSLRnKElqFI7e7RzDZiyjv0XmBtg7pPDbV2651rOKExkqNF3pN8BbsEjHpDgjfRASFpEEQOWEAIv3hTzxfnfDkA9NfevWWY9G7iUb7SuW1aUzy0cPVz+ulyzsjdgchOSeq998TtBgJHQAuqau0RKfy/nF3iDT057qduC7KdTF6CCcTurUJwj0+p2itSGs1CmMxecH1uUVcb/JqQx/hYPNTleV9yLmw9Lv40P9rpMg0at8oyaEDJBP7USPDyGYTtW8MNTqMUAm+08HNLWAXl/HdYsePa5Fp0h/5cKUtzK5g/uqtHerRLRBiXfB29yt4Q5nn7SH0Kr2RpfgdEghy20Vv2aijDx9GDY/gFhYxl6dxS4sUZ85gLl4EM7jJT0IoGo3jaD1Gp3OBIr/GSusUrda7A+tDJHIjAxG7nXP8yI/8CF/+8pcRQvCTP/mT/OZv/uZtl3/uuef4+Mc/DsDv//7vD6KLkUgkEolEIpHI9lOxMG8AsNgp6BiHDZI01VihkCEgb7AwF8Hh6XJLC/M8RzgHRVFasvVZ+HHOEfB4HwZX1Q2I5J3K69orkveGpnh39AgfeHwf9axavTE0V7US//+z9+dBkmZ3eT/6Oee8S+6171W9T8+u0QjtAmEwSP4JgyTAXNnhC9iY8L0mMBABtiNwQIQDHBBeIEI4/I/AhnsdQtcCJLMZ+xqQrnbNaCQhjWbrtbqqu7q2rMrt3c459483a3mrq/fKrOqe9xORUZUn3+Xk9ub7nud8n2cvHh6zajbTtm7qrNl7r9JY/tZ5rNn13knJxBvO3v2GtAZkWnVwxKwJH1SsaHYHnyoIU+6TfblBmhjdzemOpE/k+3eU062Npd6J8ZSkWnAYLLnUiu6O0C0fTqHbWkvQbLIyf5m1xQWsMQxNTjN67DjVkVHGj5/k+FPPMDgx+VBnah8GQkpG544zcfIM5YEhRuaOISyszF+i0zja1Y8PNVuCd7fCWxqB1AcreBdcxXDJp+QpfEey2YnR5uE5rhwGbhyjtMaN0zzj2PN6KHh76K7gbYTCMRH3Ltb0h7S6uwq2f9Xd/kCV0T3nZI35azQu37ubTz8otpdSd6guVire9Wg1s8x8w2G+cTi/iQsMEpLd98ludbcV8JqTre5UKE4n2fPvg8SNmwiribwaWroEheE7XrdYSONOOp0OSaJZWqmzpRkPF76NAf+pzPKhvs5C88/6JiwLKZDFAs7IEO7MBO7IILJSRtXKqOFBVDW1cDeNFnqtjmkHfenXzXCePYE8ka3kj/7P32DqrUPq0T5sVXhbCzrsCt4d7ucYakU6SU1YkV63W4EwKs30tgc8gVkK1PAQ7tQUCEF89Rp6ZZVkZZXglVfQa71zH9iLEJJi8RieN04QLhJ0Fmh3LtFofBNrj/ZvUs7DSV9Gqn73d3+XL3/5y7iuy5/+6Z/y+7//+/yzf/bPbrnOD/zAD2Ct5TOf+Uw/upiTk5OTk5OTk5NzsOxjYZ4YQytMLYql7yLljoV5BtMCq1MLc7nHwtwYRCeAKEYYg/X9nhZaWwvaGIwxCJFe1PYDXy4R7rUwf0Hy17PPghC87clsJlihcQ03uvVAygl1AiV2BuestZzXtxbIb4WOYtYvXMm0jTxyDK9cusstWTAaHJleoeWC3n1jRYAVEdJWENZFmqF+7BXHxlgh04o76RB5RayUuFF8y5xua6HejlBSMFB0KfsOQyU/K3Srh0vottbSaWyyMn+J9WuLCCEZnp5ldO441ZExxk+c5tiTb6A2Np5bkfeYyvAIs48/RWlgkOG5YxTKVepL19hYXjr0SrHXK1amluZWgpYGZQTygMeNB0rpsWag6CIFbHRi8rf73tmxMze4UYRREu307vc8wUNLBy28ruAdcuQFb1PdU93d+4r08Wcfxyllz6UXP/dVjD661fDKxPhBVrAamhhl0M/2+bCqu42QXNpT3T1Ok4pNhdZN2eKqXMk8PmoGGdZ36Xp0hwjAjTZBSGK3RuKUiNzqbdfbolROJ0N2Wh3CIKK+mV5PCCGYqbwPX2XF243wG6wFXzmw/t8pQkpkuYQ7MYo7NY4zWENWSqiBKmp4AFnwMa02to/VvTf0UQj8D74le20aaaI/eeHQ+rQv24K36QreyX0L3jvW5rYv1ubC93CnplAjI5hWi3hhAb2xQXTlCuG589gwPNgd3oJCYYpCYYYoXqHTvkgQLLK5+TXMbRzXcnIOmr5cMX70ox9FCME//af/lPe+9713tM6zzz4LcEOed05OTk5OTk5OTs4DQdS60cI8iLFAK0rwfB8tVJrJudvCXIPZbWHOHrG73QZrEFGEdR1QvT2lN1qDtVhjuoJTf+y1q/43M/flOrgXBH81+yZOz1QZG8y+Lrer6q6KChMqK5BfM9do23uvLFo7N4/ZXaUrBKOPnbr7DW0NuCoFjtNTS/rXAxaDEc2ufbmPNEN9sS9XNgZr0MLFoAhVsZvTHSOtvWlOt7VQ78QYC4MlD9+VjFUKKPtwCt3WWtqbG6xcvkh96RrKcRmZmWNkdpbqyCgTpx5h7smnqY6M5iJ3H3ELBWYee4La6DiDk5MMjE3Q2dxk9co8ulupmtNfjOpmeKuu4K0l4oC1zNGKj+dIaiWXxFiaYf5e3w8C8INd+d2Oi+nVcUxAgo8RCi087ANQ4Z1Wd1e61d0C+lDdrTyXqbc9k2mLNpusfP2Vnu/7fii1s9nXYWGE7ziWFbu/eNXnsBIIrjBIdJPqboCLziIx2ePJ6WQWedBVrl2kNbhRA608ElUk9AdI1J1NBpBSUiyWSJKEIAip1zcJwlSkk8LjWO3vIfdEIF1r/QXteOHAn8edsjffW1XLiFIJlMJ0Dre6W80O47z9kUxb8sJF9Pnrh9Sjm7AteGswW4J3wP2r0tk8b7ZyvXshegvSz8HMDKJYIFleJrm2hKnXCV55hXhpqRuV1Xs8b5Ri8QRxskmrfZ4wvM7Gxlcwpn+ie05OX64cv/71rwNptfadMj6eDkStrq72pE85OTk5OTk5OTk5PSXc3LEwd9KKgY12QhBrYhSe55BIibImI4BJGyCswdAB/HRW+BZRjIgTCKNUEPV6X9GhrcFai7Ug+1TVrTCE6lymrfhVycuDx7haGb2hqtsJNvFby7fc5imVFaETm3BJX7rJ0rfHGsPKKxczbQNzk3jle7DKNhpkmvOGyi3M7xcrGrvsy0tIe7eV9nePJEFajZYeIIm2c7r1bXO6m2FCrA2DRRdfSSZqBRwePqHbGkOrvs7ypQtsXF/C8XxG544zPD1DbXScqTOPMvfE01SGhhH5hI9DQUrFxMnTjB0/SXlwiJHZYxitWZm/RNg6QhakryO0siTKYCQYYXG0ONCBciUF4zUfX0kqBYd2ZAjioyuWPggonVZ2O4lGGEPcw/xuBMSi0BW8XayQOPaIC96mirASSRHTp+ruwUeOUZrIViJf/8q3iFu9F9vvlWJnOT0/3EJI3vzIQGaZRiT55mpvo4xuhhaKyyJrFz5Bg7JNha1EaM47i5nHC/gc01M965MyEU7SJnZLaOkRFEYw4s7cFVzfxfNcwk5AHCcsr9XRXZHQV8PMVr4/s7zFMN/4AxJz+J+hNN97EKkUqlTARhH2kJ0L/L/zDBS9TFv4R1/G9kl4vWO2BG+jwUSg426F90EctdM8b2H3iN5bed4HiaNwxsZwJiawSUK0uIBeXye5do3wlVfRzebB7u8muO4ApdJpjAlotc8RRWvU68+RJPk5ZE5/6MtoVb1eB2BkZOTWC+5Cdw/KKrfwy8nJycnJycnJedCwBqJmWtUtJDgFjLU0gphOlCBcF6UkBpGxMBcWrGmC1RiSrIW5BdodSBJEEmN9r+dF1taCMQZrtyzM+yNAjbtXaImNTFvhK5K/nn0TowM+j8xlbRAra+dv+VKMyVFqMrvOZT1PzL1bq20uLBG3Opm20UdP3sOWTDrjXimQAnpoefp6wIqwa19eRlinT/blBmVitHCwqG5Ot9fN6Y67Od37f9Y6URprUCk4+K5MRSchHyqh2xhDc32N5UsX2FxZxiuUGDt2gqGpaWqjY0yffZyZx56gNDB42F3N6VIbHWfmsScoVmuMzh3DLRRZu7pAY3UltzU/BBJl0d2bFRy44O07iuGyT8lVFDzJZpDnd98vbrST322hP4I3qeANAsfGHFXBW6C62d3F9HMsOrdd5773KQTT73o202aShKtf/Jue7/tekVZTDLJW4M7QBCcHstXSnz8kK3OAeYaId0kLAjixq7r7ulyjLhqZdWb0OCWzx7XqAHGSNtLExF4VI12Cwsgdf/cKpSJSCjrtgCgIWam3tqMdav5jjBbfkVk+NpvMN/7oSGQTCymQ1RL4PgiJPeTqblEp4P2drKOCWVwn+cJrh9SjWyAUKD+doL4teB9EhXfKTp63zOZ5m4PP85alIu70NKpaQ9c3iBevojc3iM6fJ75yBW5yPXKQOE6ZUukM1mra7deI4nU2Np4njjduv3JOzn3SF7F7eDid6TU/P3/H67z66qsAjI2N3WbJnJycnJycnJycnCNG1EoF77i9bWHeDBOMhWZkcX2fRCqEtchdF9LS2K6FeTrwJ9g1gBV0EMakVd3KSe2ue4y1Jo2TNrZvFuYCi+++lGmTdVDnJZ+eeYa3PZm9PpBJRGkjm5udeRzJSZUVoTu2w6JZvMkad8bKSxcz94vDA5RGB+9+Q1oDAqQCN6/qvh9S+/JG17680LUv7/XkAYNjI4xQGOGSSJfIK6Q53XGMvEVOd5wYGmFCyZOU3K7YpNRDI3QbrWmsrrB88TzNtVX8coWx4ycZnJykNjbOzKNPMn32cYrV3mR45twffqnM7ONPUR0eZXh6hurIKM31NdYXF9B9GCzN2YXo2plLS6IsgoMXvGtFl0rBpea7KAH1dpTnd98HqZ15iDIGN4oxSvU0vxsBsUwF70Sklb5HWvDOVHcH2D70szQ2zPBj2fPB+quXaF1buckah89eK/PIH+Q7TmS/mF+77tGKD8cNJRGKebKTCqfYpGi75z0CXnPmMbveX4ngTDJ34PnFWwjAixpgIXKrJMon8gbvbF0hKJWKoBM6QUS70WSjvWPBPFH6LkrOscw6rfgC19ufPsBncO/IShkpBbJYwIQR9pAnLbnveAQ5OZhpC//8q9j2EbS1lnsF7wj0QU4Y6GOetxSo4SHcqSkQgvjqNfTKKsnyCsHLr6DX1w9wZ/ujVIFy+REQknbrHHFcZ2PjK4ThrZ3YcnLul76I3U8++SQAX/7yl+94nY997GMIIXjLW97Sq27l5OTk5OTk5OTk9Iawkc4K321h3omJtSFE4rsSLSTOXgtzEyCsxRCA2GVhrjUiCCEOEdamVd19wBgNWKy1yD5VdY+pDmvycqat8FXJ10fP0qkN8cwjWcvEcv0i0t7cqm9WzuDvydk7n1zA3seoQnttg9byWqZt9LGT91b5npiuhbnoywSGhxkrmmDZZV9e7vk+lU3AghYORigiVUA7Dk4UI42lcJOcbm3SnG5XCaq+y0DRZcB3HwqhWycJmyvLXL94nlZ9nWJ1gLFjJxkYn2BwfJLZx59m6syjFCqVw+5qzm1QjsPkmbOMzByjMjTCyPQscRSyeuUyUaf31Zg5uxAQuQYrLbG0CAvqgAXv0bKP70gGSx7awmae331fSGu3BW8VJ2l+dy/PpYQglgXsluBtLcrG9ExVvA/S6u5KX6u7ASbf+jTSy9p+L372haNnrdyl0FlBmF3fQyF44uQwjth5TxMr+NLV/lwX7MdlMUyy60xHkM3u7siQKyqb1TxgK0yY7Pn8QSKweNEmRjokbpnIqxI7dxYzpFwX33fRYUAQxmxuNmh387uFkMzVfhBHZs9fljufoRG9euDP424RUiIrJUQxve6xwSFXdyuJ98E3ZxvbEdH//NrhdOh2SAXK2yN4H/SxKRW92WttbrrW5gd4uBa+hzs1hRoZQbdaxAsL6I0Novl5wnPnsWFvJx1I6VIun0aqYmppHq/RaPwNnc7hZd3nPPz0Rez+wAc+gLWW3/qt32L9DmaPfPzjH+eP//iPAfihH/qhXncvJycnJycnJycn5+CwBqJGWtXdtTC31rLRjmlHGuu6OI6DReDssr0TFqxtgk0wxEixa1Cm1QFjEFGM9byuONp7jDEYY0CkAzz9YMK9QlPUM23FFyR/Nfcsb3p0BHd3ZZQ1lNcu3HRbHh6zajbTVjd11uzaTda4M1Zfzu7TKfoMzN1DBqHVQNfCXMm+va8PI6l9eYi0lb7Zl0tipNUk0sMiCWUhzenWGkdrvJvkdFsLG50IKWCw6FH0FSMlH0dLjHhwhW4dx2wsL7F86QKdzU3Kg0OMnzhFbWycwckpjj35DBOnzuCXep+hnnOwDE5OMf3o4xQHBhmdPY5yPNYW5mmt39+xNOcuERA5qeCdKIu0oMzBiadSwnjNx1WSWsEliAyd6HBzXx90lNbd/O6km9/t9VZ6FoJYFrFIEukhrOkK3kcPYWq7qrs7fanudooFJt/8ZKats7LO2ss3P5c8TASWYjsrFCfVCZ4ZzzrGHKaVeSwcrtxQ3b1BYdfnbl5do0NWWDuZzODY3rkdSJvgxi0SVUQrn9AfwYg7m1TqFQq4ShIFIUE7oN7oECfp59OVFeaqP8ReSWW+8Uki3fuK2dshK2WEkEjfw3SCQ48ecc5M4jyTrYaPP/cqevHwX6t9kQ7IruCtu4K3OfjJOKm1eTfPm67obVQ3z/sAJ0UJULUq3swMolggWV4mWVrC1OsEr7xCsrSUxmn1CCEcSqWTOM4Anc5lwnCZZuslWq3zPdtnzuubvoym/ORP/iTHjh1jc3OT97znPbz44ov7Lnf9+nV+8Rd/kX/wD/4BQgieeuopfuRHfqQfXczJycnJycnJyck5GLYtzDvgFEAI2pEmMZZmbHA9h0Qq1B4Lc6XB2BbQoWuAmT4QhgidQBCmI9Guu99eDxxjDcakVuZpVXfvK7sHZEigsgOOcgPseZfPTz/N254YzTxW3FzESW5etXBCnUCJnYE0ay3n9P1dXMedgPqlq5m2kUeOI9U9XFppQ2phLnML8/sgtS9vIqzXN/tygUaZBC1dQBLJIvFWTncU48QJ7k2snjeDmMRYBkouniMZrxRwtcAKi1ag5YMldCdRRH3pGsuXLhA0mlSGhhk7foLa6DiDk9Mce/oZxk+cwi30LqMzp/cUK1VmH3+KyvAwwzOzlAeH2VxdYf3qIkbngmi/sBLiboW3VhZpBPIAx6k9RzFa8Sm4kqInaYQJYXI0q14fFDL53SLN7+4lVghiWeoK3j7CapTdP07jMBE4h1LdPfLEGfyhbHzGtS99g+QmkSOHzV4r89ir8e0ns+ecFzZdrrYOb8LkJTGC3nWdIIETdnX7vhGWc2422tTF4WQy09N+OTpA6ZDYraClQ6c4ir2D6xkhJV6hgDIJQRjTaTapt0NM1xa87M4xWf7bmXWMDbi8+QeYQ55cIhwHVSoiikUwYIPDtwz3/u6bwN09WdkSfuLLhy7E3xS1W/COIYnA9KZKPmttvpXn7Rx8nrejcMbGcCYmsHFCvLiIrteJl5YIX3kV02wd3L72IISkWDyG540ShAsEwSLtzgUajRePRN59zsNFX34Jfd/nk5/8JLVajeeff56nn36aJ554Yvvxf/gP/yFnz55lenqaX/u1XyNJEoaHh/mDP/iDe7MCzMnJycnJycnJyTksti3MY3DTCsaNIEYbQ8cqPKXQQqL2WG8L20FYi7YBiEI6FGMsdAKIE4TRWM/vh+YMgNEGsBhr+1bVfcxtcF1k87cLX5N8aeJJjp+ZpFbJVq5U1m4uXFdEhQk1nmm7Zq7Rtu376uPqq5czdpdCSkbOHLvFGjfDpnndSoEQ6cBKzj2R2pfbrn15sQ/25QZl4jSnG4dEemm1Xiane//BxVaoCWLDQNHFU4rxqo9vJQhIlMVIS/yACN1xGFK/dpXlyxcJ222qI2OMnThJbXSc4elZjj39RsaOncD1Dq/iLOdgcVyXqUceY2hqmuroKEOT00SdDqtXLhP32A4zZwcjIXYsRqaTY5SWiAMcL64UHGrFNL/bdyQbnTiv8L4PtvK75a787kT1dkKW7VZ4g0QfZcHb1BBIJIW+VXcLJZl+57OZNh2EXH/umz3f973gh+tInT2+zs6MUvOyr9XnFw9vQlkkHBYYzLRNU8ffJfyuywbLMlvNO2lGGDC9jTRx4wbCaiKvhpYuQeHO7NOV6+L6LsQhnTCi3Wyx0YnZ0mdHCm+l5j2RWSfQ17ja/IuDfgp3jayWEUoitqu7D7k/wxW87846Kphz10m+dvkmaxwBtgXvuCt4h2B6dZ6zlefNnjxvdeB53rJUxJ2eRlar6PV6Kno3NgnPnyO+cgVuMlH3fhFCUChM4/vTRNEync5lgmCBzc2vY0xv9pnz+qRv076eeeYZvvzlL/OOd7wDay0vvfTS9mNf+9rXeO211zDGYK3lrW99K1/84hc5c+ZMv7qXk5OTk5OTk5OTc//sY2EOsNlJaEUGrRwcz0FYMhbm0giMbaQW5iJBiu6AVaeDMBaiEOu44PR2cHQ36bm5AQuyD/baBZFQU9dpiOxAWPErkr+efRPveGos0+611/A7N7fAO61OZe4nNuGSvr9BFaM1a69dyrQNnpzBKdyDmGfSyQRImQreMp/key/s2JeX+2ZfrmwMQqCFixaKyPHTnO64m9MdhPvOSQkTQzNMKPsK35GMVn1KMj0exNJipSVyTd8mtNwrUdBh/eoCK/OXiIKAgbEJxo+fpDo6xsjMHMeefiMjs8dw+uRCkdNfhBCMzMwxefospYFBRuaOIYRk9cpl2psbh9291w1aWRJlMDKtmnS0RBzggPhwyadSdBkouhRdxWaQ0ApzwfteyeR3JwmJ6/Q2vxuwInUdsUi09JBWHzlLc4GDMOVd1d39yRiuzk5QO5GtKl755msEa0fvGCaAUnsp0xaUJ3jbVFZ4+/yihzlEUfOiGMHsOoFRWI7viQ0671whIXscOZPMIg6ygnUPAnCjTayQxG6VxCkRuXcmsLt+AVcKTBTRarbpdEKa2/ndgpnK9+Grkcw66+FXWQteOOincVcIz0UWCsiSn7pIHQHXAve7nkAMZSejRn/8PDY8wkLnDYJ30EPBG8DsyfOWqfhtDzjPWwrU8BDu1BQgiBevoldXSZZXCF55FV2vH9CObsT3xygWjxPHddrti4ThdTY2X8D09HXNeT3RV4+TM2fO8NnPfpZPf/rT/PzP/zx/62/9LR5//HHOnj3LO9/5Tn7qp36Kv/iLv+ALX/gCp06duv0Gc3JycnJycnJyco4S+1iYh4kmiDXNxOI5CqMclDUZPUsaizVt7G4L8yRBRFFqYw7g96860lgwxmKMQcr+WJgfcxss76nqlg0IL5VYeOrbmJ3IDkzdqqp7TI5Sk1mLyst6npj7G+StX7pKEmQHjEYfPXFvG9MakCBVbmF+j1gMVjQR1kVQ7NqX9/a1lDZGWEMiXOyWfbnrIrXGSbo53ftk32lj2ejEFFxJxXcYLvvUHBdpBInqCt3O0Ra6w3abtYUrrF6ZR0cxg+OTjB0/SXVklJG5Yxx/+o0MT8+inPzz/HqgPDjE7ONPUh4YZGT2GMVqjY3rS9SXrmXcL3J6R6JSK3OtLFZYnEQc2GC4lDBW8RksuVQLDtWCQzNM2AziA60yez3haI3bjbkQ1vY+v5tU8I6lj0WhpYu0CfKICd7S1BAoJH7fqrsBpt/xDGJ3BI21LH7uhSNprVzcY2WeuGXeeSo7oaweKl5aO7xJZqFwWWAg0zbLOq7dETMjkXDJWcwsU7JFZnTWiemgkdbgRQ208klUkdAfREvvtusJKXELPo7V6ETT2GzQCmKCOBXslfSZq/49JNnX/Wrzf9JJru63yb4hqxWE4yA8F93pT0TArRCug/8D35Zps/U20V8dTUeFbZQD0u0K3kkfBO+tPG+7k+dte5PnLXwPd2oKNTKMbraIFxbQ9TrR5cuE5873zNrcdQcplU6hTZtW+zWicJV6/Xm0vj/3tZwcoMcjATfh27/92/n2b//2w9h1Tk5OTk5OTk5OTu+IdlmYF9IBn9TyztKxEs9VGASezc5iF7aFwKJtB2Qxrc5qtyHRiCTG+oW+imBWa8BirUXK3leTKwwzTpMX9lqYf1Xy2clnePPTk9nl4w7Fzexg2RYSyQl1ItPWsR0Wzf7L3ynWWlZezuaJVyZGKA7WbrLGLbeWVnY7Kp1+3GM704cW0Uo/o7aKMIU0+7OHSBKU3ZvT7SKsTTNZk/1zuq2FejtCSUGt4FL2XYYKLkoLtDRpBq+T/j2KBK0mrfU1oiDA9XwGJ6cpVioo12Nocorq6FhfjhM5Rw/XLzDz6BOsXLmMkAKvUGRjeYkkDBmcnMLxbi8m5NwHIj12CCtJAFcLHJ1OoDmIcwYhYLjs40jJSjNECsFmEGNMzEDRJU8dvHvcKEI7CjeKiXyPxHVx496Kz0Y4xBJcA0hQJnUnMYczJHwDAhdhSlipQYTpzRZ7vl+vVmHsmce4/pUXt9uaC9fZvLDAwKnZnu//bvCiTVTSRjul7bbK2Dhz1evMN3bex88t+jwxcniTGS6KEWZsfbuybqu6+zWxI2YvyhXGxQhVu/NcjulJVtQ6gehdBbIyEU7SJnZLCJvQKY5Sai8h7a0dK6TrouIEdEQUSdqtFlIKHClwlKTgjDJT/bvMN/5oex2L5vLmxzk9+E9wZO8/y/v2u+AhPA9ZKqDrDWwUI7zDddxRT8+hHplEv7ozeSP+q2/ivuU0cqS35/D3heq+bmbr8xmkiprs5UT0dBIbdKu8hcVaUsFbGKzQBzM2IEDVaqhSmWRtjWR5GdlsooYjTKuJqlZxJieRxYP9HDtOhVLpDO32edrt1yiWTlKvP0et9kZc916urXNyUo7o5XROTk5OTk5OTk7OA4Y1aV530slYmG90YlqRJpEOjpcKY3JXLY8yAmNbYGOM0EjhQxAgEgNRmFb+9rlSUnfjhawF0Qd77RmnSSyabIqs3WHhBcnnH3sHT54azLSX1y4gblIPNSNnKIhsbuGF5AL2PuunWstrBOubmbaRR0/e28ZMOpkApXYyu3PuCkuEEQGSLfvyO8tgvHfSnG4tHAwOsfSJPTeT0+0H+1R6WKh3YoyFwaKH70rGyz6OlhhhMApilf49Slhr6TQarFy+xPrVRUAwPDXD6LHj1EZGGTt+kuNPPcPA+GQudL/OEVIyduwE4ydPUxocZHT2GNZaVq9cJmg2Drt7Dz8CItdgpSWWNo1J0QdX4Q1QK7qM1wqUPMlg0SXShvV2dOg5sA8iAvA7QZrfHcdop/f53bAleHsYHLR0USYmnSJxNNiq7hbWw4r2fZ+z3Snjb3wMt5wVcRY//1VMj3Jr7xUBlFrZ6u52cYJ3TmfPO15Y8ugkh3dOGQiPq3uqu+dYx9ktKAt4zbmceY8VktPxXM9dI5ykjTQJsVfFSJegMHLbXQoEbqGAFCCThHazTRTF1NsJpusbP+A/yUjhrZn1YrPBlcYnD9UpQFXLCDeNwdKd/kQE3AohBN4H3pyNbkoM4R8/f3idulOU263wjnZVePfDHn4rz1vsyfN2DjbP21E442M44+PYJCFeWCRZXkavrRG++irRxUvY4GA/Q0oVKJfPgJC0W+eI4zobG88TRSsHup+c1xd9EbullDiOw4svvnj7hbucO3due72cnJycnJycnJycI0/c7lqYt7ctzGNtaIeappYoKUApnBsszA3WtLB0sEjQLiIIII4RxmJ9v79V3RaMNRhrECId5OklAssxt8F19liYN6FxeZDqu96cyQwXJqFcv7jvtjw85lS2Gqdu6qzuyQy8F1Zezu7Tq5SoTd+j7aI26YQIJDh5rvHdYjFY2bUvt0WkHeyxfbnFsTFGKIxw0dIlVt4d5XQ3woRYGwaKLp4jmagW8IzACotWoKVBO0dHMbLW0t7cYOXyJepLV5FKMTI9y8jsHNWRUcZPnmbuyTdQGx1HyHzufM4O1eFRZh97kmIttTX3S2XWr11lc+X6kbQFfqgQEDmp4J2oVPBW5mB/uyu+w0StSMFVDJVdtLGstUL0YYYEP6BIa/HDEKX7l98NYIRLsiV4C+dICd4CD2GKCFtKRdA+ZXdL12Hq7c9k2uJmm+WvvdyX/d8Ne3O7jVPgTSeLKLHzHYyM4Llrh+uocVGMZvQ3B8OxPefhTdnhqswKWsO2xqgZ7GnfBGmVPBYit0qifCJv4PbrSYnyfJRNwBo265vEWrMZJNuTfibLf5uSk70Gacavsdz5TA+eyZ0hikWE46BKRYhi7BGYxKEmB3Hf9WimTf/NPMnLh2v7fkcoF6SzS/DupG5ufaE/ed6yXMKdmUGNjmLDiGhhAb2ygl5dJXjlFeLL89gDzICX0qNcPo1UBVrtc0TxOpubXycI7s+RLef1S9+uTu/14qZXF0XPPfcc/+bf/Bve8573MDs7i+/7VCoVzp49yz/6R/+Iz3zm7n6M/vzP/5wPfvCD29uanZ3lgx/8IH/+53/ek/7n5OTk5OTk5OQcMcIGmCS1MXdTa77NIMZgaVmB67pYRLa6AcC2EVagbYAQBUQnFc1FFGE9B1R/BSVjNFiwxnbFrN4OwI6pDkWpuS7mM+2Fr0k+dfwtvPWJ0Ux7aeMKSu8/sHBCHUeJnQopay3n9M2zve+UqNlm80q2omb07Il7rHo3aWW36lqYO3lV7F0j2lhrELaCMD7C9Nb6UNkYrOlWdUtikVZ1b+d0h/vndAexoR1pKr5DwZVMVH2KKBBp1q6RlviICN3WWlobdVYuX2Tj+hKO6zEye4zhmVmqo2NMnj7L7BNPUx0eReROBDk3wSuWmH38SWqjYwxOTlEbHaO9scHawhX0ERhkf5ixEmLXYGSa4S2NQB5w9HHRU0wNFii6DsPl1L51rRUR6zyj/W5xEo0T787vdvtSy6yFSyLddOJWV/AW3NrGuV8IO4DA6VZ3d/pW3T1weo7y1Fim7fpXXyJq9Cav9l5xkxZulHXLEAMTPDWaPSf+/GIvrZVvT1t4XCNrQ3yMtRuufy46i4Rk+34qmUH1ONNFYPGiTYx0SJwykVcjdm5v0aw8F6EkThJjtKax2SRMNK0o/W0TQjFX/UGUKGfWu97+FI3oXE+ey+0QIq3uxvNAKUynt1nTd4r33jdAOfs5DT/5HPZB+C1R3h7Bu91HwftWed7q4PK8BahqBXd6GjU8jGl3iBYX0KtrJCsrBC+/RHxlAXtAERxCOJRKJ3GcATqdS4ThCo3mt2i3L9x+5ZycPRz5qdi9uJB+97vfzVve8hZ++Zd/mf/9v/83CwsLRFFEq9Xi1Vdf5b/+1//Kd3zHd/BjP/ZjRNGtZ6sYY/gn/+Sf8L73vY9PfOIT29taWFjgE5/4BO973/v4yZ/8Scw+gx85OTk5OTk5OTkPCdZAuJlWdQsJTnoBv9lJaCeQIHE8F2Vt5gRcGYExTSDECo2MFSJOIIjSEQq3/wNW1pi0ctZaZB9ErePuJgGtGy3MvyKZ/9vfh+9nK58rq/uL1xVRYUJNZNqumWu0bfu++7jyysXMjHnpOAydvsc8R90d7FMK3NzF6m6xxBjR6dqXu0gz3FP3AUmCtBotfSySWBbSnG525XTHN4p4cWLYDGKKnqTkKYbLPmXlICzE0mKlJXJNX10b9sMYQ2t9jeVLF9hcvo7rFxibO87Q9DS10XGmHnmM2cefojw4lIvcOXeEVIqJU2cYnTtBZWiE4ek5dJywMn+JsH20xKOHDSMhdixGpq4RSkvEAQ9F+Y5iaqBAwZUMl32UFKy3Y6IkH/O6W7wwQhmDG8VYKUjc/ji9aOGhu4K3EQrHRMDhv3/SeghT6FZ3675VdwshmH7Xs5lIGZtorn7h633Z/91QbO9jZT6THbd+te6y3D7c4f4LIjtR1cUwy3qmTQvDeSfr6uTjcVxP9bx/0ia4cYvEKaKVT+gPY8Stz8kFAqdQAAyOSYg6HdqdkFaYEHaPf66qMVf9IHtP7q40PkGkN3r0bG6NKBWRSiKLBWwYHglBWRQ9/Pe9MdNmlzaIP3v0HBX2Re4SvE23wtv2T/DesTa3vbU2lwJVq+HOzqIGBjHNJvHCAnptnWT5OsFLLxEvLsI+10F3ixCSYvEYnjdKEF4hDK7Sap+n0XwpdwfKuSuOrNi9spLamZTL5dssefcsLqZWCNPT0/zMz/wMH//4x/nSl77E5z//ef7jf/yPzMzMAPB7v/d7/PiP//gtt/WLv/iL/PZv/zYAzz77LB/96Ef50pe+xEc/+lGeffZZAD7ykY/wr//1vz7w55GTk5OTk5OTk3NEuMHCXKKtpRHENHWaey0ceUNVgzQabBtLAAhox5AkCJ1gfa/vQtiWhbk1NrUwF729XBiQIYMqusHCXLRgaXGCx972SKbdb16/oapli1PqVOZ+YhMu6cv33UcdJ6ydy1adD5+eRd3roHRi0hx2RN+z2B90UvvyBsK6YAtd+/JeigM7Od0WSdLN6TZS4kY3z+k23ZxuVwpqvkut6DLoeUgjSFRX6HYOV+g2WtNcW2X50gUaa6t4xRJjx06m1bhjE0w/+gQzjz5OqXZ7e8+cnP0YGJ9guvsZGj12DNfzWVtcoLm2mg9c9hCjLIkyGAVGGBwtEQf8crtKMj1YpOgphkoenpLUOzFBfPgiyoPEdn63NbhRgnYUug/53QAJHlo6aOF1Be+QoyB4H1Z1d3FkkJHHs+eRG+fnaS5e78v+75S9VuZWuZydq1J2s+/dYVd3t4TPEtVM23G7hrTZfq7IOmtiM9M2rccom9tXWt8vjg5QOiR2K2jp0imOYm9zYialQrk+JDGOsLQ2m+nkxna8HelQ8U4wUfquzHradphv/AHG9t/hREiJrJQRBQ+ExB6B7G4A562nkbPDmbboL76OaRyN/t0SwY7grbuCd9xvwRv25nmzlevdC9F7cAB3dhZZq6EbDeIrXdH7+vW00vvaNbhPBx8hBIXCNL4/RRhdp9OZJ+hcYbPxdexeZ7ycnJvQV7H7TmeCt1otPvzhDwNw+vTpA+/HY489xsc+9jEuX77Mb/7mb/JDP/RDvOUtb+Htb387P/dzP8dXv/pVzp49C8BHP/pRPv3pT++7nVdeeYV//+//PQBvfvOb+exnP8uHPvQh3vKWt/ChD32Iz3zmM7z5zW8G4N/9u3/Ha6+9duDPJScnJycnJycn5wiQsTBPB2iaQYK20DQS13URVqD2DPJg2mBB2wBCmVqOhlGa43wIQqi1BmPSv+m5e2/VuGNuKlzvFbsLX5N86Ts+yNBgKdNeWdvfBnBMjjIgs5aJl/U8Mfc/6LB+4Qpmz4z1kbMn7m1j1gAmrepWsit659wxu+zLZc/tyw2OjbZzupN9crr9fXK6rYV6O0IIGCx5FH3FaMFHGYGWJrUadtK/h4FOEhqryyxfukBzfY1ipcrosRMMTkwyMD7B7ONPMfXIoxQr1dtvLCfnNhTKFWafeJLK0AhD07NUhkZorK2yfnUBo/OBy16ROBYtDVqBFRYnEQc36N1FScFkrUjFdxgsufiuZKMT047y9/VukNbiBxFKa1SiifuU342ABB8tFFp42CNS4S2tn8aT2HK3uvvgsmFvx8RbnkL52bzrxc++gD1CTp2ODvDCbIV0WJ7krZPZ1+nzV33MIc8pOr+nuttDM7enuhsB59x5zK7PnUDwSDJ34Mes/XDjBlhD5NXQ0iUoDN92HeWnduYiiZBoGo0WiTHU2/F2fvdo8R1UvWwudSdZ5Frrf/fiadwWWSkjZVrdbcIQe9gfDlIR3v/AW7KNQUz0Zy8cTofulozgHYLdErwPI7IlzfMWdo/ovZXnfVAoiRoaxJudRVar6I0N4itXSNbXSa4tEbz8MsnS0o6L2T3i++MUi8eI43Xa7QuEwRIbGy9gTP9+D3IeXHoygnbq1Kl929/znvfg3qYCIgxDrl+/jjHpANv3f//3H3j//uRP/uSWj4+OjvIf/sN/2N73xz/+cd797nffsNxv/uZvknRnrXz4wx+mWMzOPCuVSnz4wx/mHe94B0mS8Bu/8Rv8p//0nw7oWeTk5OTk5OTk5BwJrIGo0bUwF2llN7DRiekYQWKg6LkoazLCmDICY5tAhLUxMvQgDhHWYj1v3131mjR6x2KMxelxdVFBJEyoNgFtNuRq5rHiCxL1/8hWRThhk0LzxgobieSEOpFp69gOi2bxvvtorWXl5YuZttrMBH71Ht2ntAYESJlndd8l2/bltoywDtKM9NS+XNkEEOiuzWsivBtyutU+A+CbQUxiLMNlF8+RTFQKuEZiRFppGXcrLvuNThJa62u0NzcQCEoDg5QGh1COQ2V4hKHJKbxi6fYbysm5S5TjMnnmLPVriwgh8IpF6teusjJ/icHJKbxC7yv4Xo/EjkVgSQBHCxydOksc5GFTShivFVhppg4XSiQ0ggRtLFXfOfSYhgcFJ0nQscQCRqa/NV4Y9f7lE5BQQBAALooYx0YkwuMwjUCFrSEIEdbFihZYr6e/91s4BZ+JtzzF4me+st0WrG2w+q3zjD55puf7v1NK7SUif2j7flAc4x2zr/BX84XttpWO4tV1h0eHD0N4S2mKAsu2whjN7bbjdpV5hjC7nKMCEXFZXeOEnt5uq9oyU2aUq2qlp30UgBdtEPpDxG4VAURuiBc3b7GOwPF94k4Hx2jisEOj41EreTSCmFrRRQjBbOX7OVe/TmR2BP614HmKzgxDhTf09Hnd0GclkeUSRhvodLBBgCgd/m+vOjmG820nSZ7fyWZOvnwO/Y5HUMdGb7HmEWFL8AZIwlRli9vgluA2tvi9wArDltCN6E5etwqESB87KJsXJVHDQ6haDb2xgV6vYzY2kYMD2CQhWV3DGRvDGRlOTxTuAdcdQgiHdvsirfZ5wFCvP8fAwLModfif3ZyjS0/OXi5evJi5QTpQtLCwcMNje29Xr15Fa421lre97W38i3/xL3rRxdvyXd+1M7h27tyNFSTWWj75yU8CaaX429/+9n238/a3v51HH01nc33yk5/M7bpycnJycnJych424jYYnc7mdoqpRZy1bHZiGhqQEkfdaGGujAbbwdgOhAkykYgoToVueTgjxMbo7QoWcY8Xp3fKMbeBELC818K8Da/ZtzJ1fCzTXlk7v+9Q54ycoSAKmbYLyYUDsb5sLC4TNbIZs6OPnrjHrVnQJr3oF7mF+d1gsV37cgdssef25dLGCKtJhItFEgmf2Pdum9PdCjVBbKgVXTylGK/6+EZihUWrNENXO/29HkyiiI3r11i+dIFOo0F5cJixEyepjY0zNDnFsafewMTJ07nQndNThBAMTc0w9cijqa353HGU47K2cIVWff32G8i5ewREjsFIS6Iswqai90FXSwoBY1WfoZJHxXeoFhw6sWYj2KlyzLk9XhghjcGNY6yUJG6fzhEExKKAwUELFxA4NuYwK7ylLSKMdyjV3SOPn6IwnI3vWPryN0j2iSw5LIrtpa5TUIqVivHxIabK2fOSw7Yyhxuru300M9RvWO6Kuk57T0b7iWQa1/b+eyCtwYsaaOWTqCKhP4iWt550LJWDdD1MHOFLQdxq0Y40nVjTidL3QckCx2o/jNhTZ7jY/DOCZGm/zfYUWS2nlua+h+mER0af8L7vWfB3vUYWwk88dySqz++ILcFbqFTwtjodG+CwJpr0Kc8bwFGokWHcmRlEsYheW08zvdfXiK8uErz0Mnp1Fe7RHcNxqpTLZ7A2ptV6jTiuU68/R5LsH2mWkwM9quz+sR/7scz93/3d30UIwQ/8wA8wODh40/VSb/4CU1NTvPOd7+S7v/u779j6/KAJw50TGbVPVcuFCxe2s7+/8zu/85bb+s7v/E5efvnlbbH/5MmTB9vZnJycnJycnJycw2PbwjwCP7X+bUeayFjaWuK4LhKQu64uhQVrWmDBJE1ErCAMUyH0XrOg7xNj02tRYw1S9tbCXGGYcdKqiSWbzcMufF1y6QN/n5Fd1wFCx5TqN+Zve3jMqdlMW93UWbVrB9LPlZcvZO4XBquUJ0bubWNmy8Lc61qYH17V1ANH175c2sGuxWnvLLYFGmUTtHQBSSwLJG6a0+2FIdLun9MdJYZmmFD2FQVHMlrxKXerOhJlMdIS91HojsOQ1voaQbOBUIrq8CjF2gDKdaiNjjM4MYVzSA4SOa9fSrUBZh9/iqXzryGVorG6wubKMnEQUBufQObHxYNFQOwavEiSqFTsVkag1cEfi4bKHkoKVlshSgo2OjH1Tsxg0eWQhvUeKARQCAI6pRJOFJN4LtIYlO6D6Cwglj6usSTCxbExjo1JRPo7eBik2d1RWt1NG0F/hFshJdPvepbzf/zX2206jFj68jeY+Y5v60sfbocyMX6wRljcEZI75UneOf0yf/DqzjD/c0s+f/+xVkZH7DebosiqLTPCzsTRE3aVKwxid1V3W2F5zZnnDfEj220OilPJLC+7F3veT2UinKRN7JaQJqZTHKXUvnZDxvhuHN8jThJ0FOL6BYJWgCNLbJLgKImrJAVngunK+1ho/o/t9SwJlzc/zunBn0DJwk23f9AIx0GWClitoRNhgxBR7N/+b4YcKOF9z9NEf7pjX24urZB85QLum/d3Dj5yCED5qZ15EoLjQ9QGrwwclpOXxYodwXvrf6zAyu416QH9NgvXwRkbxQ4MoDfqJCuriI1N1OAgNomRyys4E+OowUHu9oRAqSLl8hna7fO0Wq9RKp2kvvE8terTeN49XpPnPNT05Cfvv/yX/5K5/7u/+7sA/Oqv/ipPPPFEL3Z54HzqU5/a/v/xxx+/4fEXX3xx+//HHnvsltva/fi3vvWtXOzOycnJycnJyXlYsHZ/C/MgJkASaYtfdG60MLddC3MTYOMAGZcQJsEWiodm+2m1BizWWmSPs6RnnCaOsIR0brAwd16sMfiBpzJt5fWLSHtj/tcJdRwldvpqreW8vnDDcvdCsNGgeS1rnzj66Il7n4yrU2s5pEoz2XPuCEuCEW2kLaX25Xq4h3amBmW6Od04xNIjUQ7a3ZXT3bkxp1sbS70T4zuSiu8wVPIYcF2EgVhZrLRE7sENKt2KOAxorq0RtJoo5VIdHadUG0A5DrXxCQYnJlH55y/nEHE8j+mzj7G2eAUhBW6xyObSNVbnLzM4OYXrH3414sOEFRC5Bi+WXUvzrl12DwTvWtFFScFyI0QC652YtVbEUNk7LMOaBwppLF4QQsHHaEnsuggTIftRgSkEsSzgmQ6JAMdEKGK08DiME1Npi1jrIihh5AaWEGH7c2yoTI8zcHqOjXM7kzFXv3We4SdOUxwZ7EsfbkepfS0jdgeFEd42o/nDVy22+36FWvDCdY+3Tx9uzu15McqI3RG7CyRMs8ECQ5nlNmSTJbnKhNkRsMbNEEtmlbrsfSWnk7Qx0iXya/hhnaAwSrFz/aaffoHAKfjE7Q5KJygb0A4dlPTZaCcMl12kFAwV3kAnWWAteH573cisc6X5xxyr/nBfi/xUtYJpdxDd6m5RKByJyUjuux8j/uJr2JWd9zn6k6/gPDWLKDwgEzP3Fbxbhyx4b1mb07U2F1gMwqjUiQ59cNbmgPBcnLExbG0AXa+TLC8jNjdQg4OYKEReX94Rve8CKb2u4H2RVvs1isUTbG5+jUrlcQqFqQPrf87DQV+m6P3yL/8yv/RLv8T4+Hg/dnffGGP4tV/7te37P/IjP3LDMleu7Ngtzs7O3vD4bubm5rb/n5+fv8WSN3LlypVb3q5evXpX28vJycnJycnJyTlAMhbmBehWKWx0YhpaYaXCdW60MJdagw0wcQO0QIYa67iHmuOsjcFag7UgejgqLbAcc9PBjOtcyYyhig586/EfRe2277SWyvqNAnZFVJhQE5m2a2aJlm3dsOy9sDerW/keg8dn7nFrNv2cKJU+3zyv+46wWKzY7NqXl5B2AEHvBr0cG4OQaOGiRWrpmnguUptuTnd0Q063tVBvRyghGCi6lH2HYd9HmjQf10pL5PRe6I46HdYWr7Ayf5kkChkYn2Ts+AlqI6OMzM5x7Ok3MjIzlwvdOUcCISUjs8eYPH2Wcm2AkbnjCCFYvXKZTmPzsLv30GFlmuFtZRqnoIxA9qhguOw7TA4UKHgOI2UPi2WtGaIfFEvaQ8ZNEpwkwY1ihLXEnnvQzvM3RwhiWcSiSKSHsAZl437t/cbumPQ3X1gHS6ev+556+zOI3edq1rL42ReOjPVzsbOcnlduISTu0DhPjGTfr88dASvzuiixRjYq5YRdRezzWl5wFon32D+fieeQtveKbJrfvQkWIrdKonwib+CW60jlID2XJApxJNigQytMiLVmo7MT5TBZ/l6KznRm3Ub0Miudz/fo2eyP8FxkwUcWfdAaosOdCLGFcBT+B96cabONgOh/f+OQenSPbAneiK6luUkFb26csN1vstbmaYW3ME4qfB/w90v4Hs7EOO70FEhFsnSdePEqSX2d6PJlwldfRW/e3QQWIRxKpVM4To1O5yJRtEqj+SLt9sUD7XvOg09fzEx++Zd/uR+7OTB+4zd+gy996UsA/OAP/iDf9m03WtU0Gjtfykqlcsvtlcvl7f+bzeZd9WW3UJ6Tk5OTk5OTk3PECDd3WZinlQhhomnFEGiDdF0cbGaGqbBgbRMRJxjdQgQitRc7xGo2a1P7cmMtQoj0IrhHjKkORZle9C+Zy5npt/7fOMTvfU9m/nuxcRUnvnGQ85TKuiUlNuGSvnQgfUzCiPUL2SzxkTPHkPcqUhsD2FTsVuquLdxet4g2VhikGURar6f25cpGYA2J9LFIYuETd22+3Sjq5nTvGfS3UO/EaAsjZQ/flUyUfBwr0NJ0Bab0b68I2y2aa2tEQQfX8xmcmKJQqeJ4HoMTU9TGxnru1JCTc6+UB4eYffwprp1/FekoNpevU1+6RtTpUBsbP7RYu4cRoyyxNbjIVMTUEktvjk8FVzE14LO0GTJU9qm3ItZaEYNFF9fJrepvhxeE6JLEjWMi3ydxHdy4P/mvtit4u6ZNIn0cE6KIuhXe/UXYImxXd29ibdTTCW+78Solxt/4GEvPfXO7rXV1mY1z8wyeOdaXPtwKaTXFYIVOaWfSZ7s0yTuml/nm6s5r9NKay1ogGS4cXgY7wAUxyrDdiSMqETPJBlcZzCwXi4SLziKPJDuvcRGfOT3BJedaz/spsHjxJqE3SOKU0zhmE+EmN59s4Xg+UazRYYBfKBJFIW0pEBJaYUKl4CCFw1z1hzhX/wja7mxrqf1XFJ1pKt6Jnj+3LWS1iglC8Fx0u4PjH43KaefxGdTjM+hvLWy3xf+/l3Dfdho5futJB0cKQToBPgnSm1PYZWl+2L9/qbU5yG6lt8VaibCpzTlCH+jkXOH7uJMTmE6AXl8nubaEKBRwhgYxnQ6yXMaZmEDdRlfb3p6QFIvHCYIFOsE8pjsZy5iQcvlsfs6YAxzyt2xjY4Pf+73f4/d+7/cOsxsZPvWpT/Gv/tW/AmB8fJz//J//877LBUGw/b93m6wzf9fAZafT39mIOTk5OTk5OTk5PWLbwryTtTDvxERCEmqL6zo4e/LeHCMwpoGNGlgdI2OJ9bxDsy8HMEaDBWtsT6u6AY67adVeSMCGylqYt8PvQA1kBzQqq+du2MaoHGVAZpeb1/PEHEwF0tq5eezunEwhGHnk+L1vUGtAppX/7iGGJz5ApPblHaQtInCQeqRnkzAkCdLqXTndRbTrYJTEjVIL2f1yupthQqwNg0UXz5FMVgq4VmGEwSiIVfr3oLHWEjSbrMxfZm1xAYtlaHKa0WPHqY6MMn78JMefeobBiclc6M458riFAjOPPcHAWGqzPzA+QaexyeqVyyR7J5jk3BfasSTSoFWaketoQa/Khj1HMTlQoOhKhssejhKsd2LC5HBFtweBNL87RBqLE8dox0H3Mc9+S/AGiZY+wup0QlifEQikqSHw0+pu0e7r/seeeRS3Ws60Xf3C1zB9mnhwO0rtrPgb+YO8YUpQdHa+YxbB549AdfcaJeoUM20n7SrsU919Ta6yIbKFYrN6gqLpz/OQJsGNmyROEa08Qn8YI25+7i6EwC36mERjkgRXR8SJJogMrSghjNMJvp4aYLb6gT1rW+Ybf0Ss++doIgsewnVRxQIkGnuEfmf9938bqF3HOm0IP/n8kXFUuGMEqY35doW3hrgFHJXfP5Pam1uRit5d8Tt10pIHfl4giwXc6SmciQkwhvjqNZKlJfTaOtH580Tnz2Pad3Z8F0JQLM7i+5OE4TU6nXk6nXkajb/B7hN5lvP641DF7itXrvDjP/7j/ON//I8PsxvbfPOb3+SDH/wgSZJQKBT47//9v9/Uer1QKGz/H93G9iMMdwZGisXiLZa8kfn5+VvetirQc3JycnJycnJy+sy2hXk7Y2Fe78Q0tUQLhasEao/YLUwCwSbGdiBMkMI7dAHUGJNWeFmL7OGs6AEZMqjSc+flvRbmASy+9f+eWd7t1PE6a5k2ieSkOpFp69gOC2bxQPpojWH1lYuZtsFjU7ilwv4r3H6L6efEkenVl5OL3bcjtS9vdAdcSt3B7l5VnhiUidHCweIQS59EKRLXQW3ndAc3zEUJYkMr0lR8B9+VjFd8iiissGiVWgVr52BHi6y1dBqbrMxfYv3aIlJKhqdnGZ09RnVkjPETpzn25BvSitg+CiM5OfeLlIrxE6cYO36K8sAQI7PH0mPx/CWC1t254+XcmsSxaGXTmAVBTwVvV0mmB4qUfMVQ0cN3JBudmE6UD0jfDmkMXhjiJBqpdWpn3seqNSskkSxikWjpIa0+FEtzYUtgHYQtYUWMPaBJjXeCdBym3/FMpi1udbj+1W/1rQ+3otBZQZhdr4cQJNUJ3jyRHaP+/KK/n6bcX4TgghjJNJWJmGAfkVfAa848dteBSSI5k8z17Fi1F0cHKB0Su1WMdOkUR7ez0PdDKgfpuiRhgLAWJwkIYkOcGDY6Mbo7gbbqnWa89J2ZdbVtMd/4w74KdapWQXhpfJZuB7dfoU/IsRruux/PtOmXFjPV3g8MQnQFb1LB2xw1wbtrbS4Mwopd1uaqK3of/O+NLBVxp6fTXO84IV5cJLm+TLK2Tvjaa0QXL2I6d/Z59P0JCoU54nidduciYbjExsYLGHN0Jm/kHA5H4gr4KMzQuXDhAu95z3tYX19HKcXv//7v8+53v/umy1erOxZ6t7Mmb7V2cgNvZ3m+l9nZ2Vvepqam7mp7OTk5OTk5OTk5B0TU2LEwd9Msulgb6hGEiUE6Dh7Zgm1pBDbZQMQxRreR2sUWDtc+ztqu2G0sQqQWYb1iK6sb4Fqyx3L88lnMmUcyTZW1czcMLc3IaQoiKzxfSC5mBsXuh435a8R7Bn5GHz15k6XvAN0dvFIqF7rvFNHBCo20NYT1EKbWox1ZHBtjhMIIFy3TrO6tnG73JjndsTZsBjFFT1LyFCMln6py0gIOZTHSEh+g0G2tpb25wcrli9SXrqEcl5GZYwzPzFIdGWXi1CPMPfk01ZHRXOTOeaCpjY4x89iTlGoDjMwewyuUWL+6SGN1+UiMGz0UiDRewchU8Ba2t4K3lIKJapFK0WWg6FJ0FZtBQivMBe/b4cZJGqERxQj6nN9NKnjH0sei0NJF2gTZZ8F7d3U3VvW9urt2YobKTLYIavlrLxNtHv4kHIGl2L6eaWuXJnnndNaJZqmtOL9x+OefK1TYJHv+frPq7rYMuKKyz23QVhk3Qz3t427cuAnWEHo1tHQJCsO3XN7xfUCShAHKaBwT0440ibGsdxKsSZ/nWPHbqbhnMuu2kytca/2fXj2VGxDFIsJRqGIRohibHA23AgDve55C1LKFguEnnsMmD+Bvxr6Cd5ujJHjD3jxvsSfP+4B3JkBWyrgzM6jRUWwUES8uoJeX0atrhK++QnT5Mja80VFrL543TKl0kiRp0mqdJ4pWqW88h9ZHZwJHTv/Jr4SBxcVFvud7vofFxUWEEPzO7/wO73//+2+5zuzs7Pb/V65cucWSaXX2FnkGd05OTk5OTk7OQ4C1aV73HgvzzSAmEoqOsTiOwtkzS19ZMM1lsCE2DhGyBIcsTllrsDb9m2Zd9aZyqCASJlQ6SBkRsOFmLczrw/+3zH0ZB5Q2s9XaHh5zKns+XTd1Vm12W/fDyssXMvdLo4OURgfvfYNad9/j3ML8Tkjty9tIW0jty81wz+zLlY3BGrRwMChivD053Rpnj72jsVBvx7hSUPNdqgWXId9DWIilxUpL5JoD+RpZY2jV11m+dIGN60u4foHRueMMT89QGx1j6syjzD3xNJWh4TynLuehwS+VmHnsSaojYwxNT1MbGaO5vs7a4hX0ERqQf6ARELkGKyxxV/BWppeCN4xVfAaKLtWCQ7Xg0AwTNoO4b5WaDyp+ECKtwY1ijJQkfZ40Z0TqeGJw0NJF2QRJf7+HaXW3QtoSVkTYPu5fCMH0O59Nz/W7WG1Y/PzX+taHW7HXyjz2ahwb9RgvZa8/joKVOUJwfk91d5WQMRr7Ln5ZXSMgW6V+KpnBt/2ZJCyweNFmOunDrZI4JSL35gVsQgicgo9JEnQco+IQMDTDhCTRbATJ9nKz1ffj7oljWg2+xEb4zX22fPAIAbJSAd8DpTCd2wuL/UIUXLy/+2ymza42iT91NBwV7pobBO/kSAreaZ63wbJlbS7ASoRxoEeit6pWcKenUcMjmCAkWriCXl1Fr6wSvPwy8ZUr2Nu4KTtOlXL5NMaGtFqvEkd16hvPkST7H1dyHn5e92L3ysoK3/u938v58+cB+PCHP8yP/uiP3na9J554Yvv/l1566ZbL7n788ccfv8WSOTk5OTk5OTk5DwRbFuZJ1sJ8vZPQMQItFJ4SqD1XhqLVQJgArVtgFMK9u4ibXmCMASzGWGSPq7q3xgqXWciIgSYZYuPp784sX1m/gNhjAX9cHUeJnQxiay3ndVacvh/aK3XaK/VM231VdVuT3pQCKSDPT74lWfvyMtJUkbY3A7Q7Od0+Fkki/X1yurP25dZCvR0hBAyUPIq+YrxYQBqRWgJLS+Tcv9BtjKG5vsb1SxfYXFnGK5QYO3aCwckpaqPjTJ99nJnHnqA0MHh/O8rJOaIox2Hy9COMzB6nPDTMyMwcSRSzOn+JqNPfys6Hli3Bu1vhLY1Amt5NmhECRio+I2WfkqcYKLoEsaHeiQ/fYvkIIwC/syu/2+1vfjdsCd7ejuBt4r4K3gKJtDU4pOruwvAAo09mK3E3Ly7QuHLtJmv0Dz9cR+qsUNkpT/KOqWzbl695xEegMHaZKg2y53Wn7Mq+1d1GGM4585k2F5en4tM4tj/n09JqvKiBVj6JKhD6g2h5c7FdOVt25iHWGLwkAgvt2BAmmnaYfm8cWeRY7YcRZJ/HQuNPCJKVnj6nLWS5iFQSWfSxYYjVR0d8dd50Enl8NNMW/X+/gdl4QH//HxjBG7byvIXdEb138rx7cI4gBapWTSu9h4YxrXYqeq+tkSwvp6L3wgI2vvlvjlIlyuUzIEQqeMd16hvPE0VrN10n5+HldS12b2xs8N73vpcXX3wRgF/7tV/jp37qp+5o3ZMnTzI9PQ3Apz71qVsu++lPfxqAmZkZTpw4ce8dzsnJycnJycnJORpsWZgnOxbm2lrWQksQa4RyKIjsBaxKDLZ1HYzBmA7CLfeqiPquMEangregZxbICsOMs2P5eC26mHm8E3wga/FtNOX17DIVUWFSTWTarpklWrbFQbG3qtstFRiYm7z3DRpN6tem8qruO2HbvryKsC7CDNx+nXuim9Mt3a7QXbijnO7NICYxloGSi+dIJssFHCvQ0mBlag1s7+MrZK2lubbK8sXzNNdWKZQrjB0/yeDkJANjE8w8+iTTZx+jWO2VrXtOztFicGKS6Ucfp1gbYHTuOI7ns7Zwheb6Wm5rfgDsPm5paVBGIHs89j5QchmvFih5ksGiS6QN6+0oF7xvgcrkd5u+25kDGOGSbAnewum/4G3KCOsgbRErwr5WdwNMvPlJVCEr0i5+9quHLhAKoNReyrR1ShO8bY+VeTuRfG35cGOTgH2zu2uEjLL/ufya2mRF1jNtJVvgyfgUshfC2z4oE+EkHWK3jBFpfre5xeTg1M4ckijEJjG+0ESJIYg1jTAhStLPTNGZYqrydzLrGmLmG/8dbXpfaS2kRFbKiIIPQmKDo2P9LITA/+BbstfJUUL0J185tD7dN/tZmidHVfDeyvPesjbfyvPukbU5pKL3QC0VvWsD6EaT+MoCem2d5Poy4csvEV+9Cjdx+JHSp1Q6g1QerdZrxFGdzc2vEYSHPykpp7+8bsXudrvN933f9/GVr6QHyl/8xV/kX/7Lf3nH6wshtq3OX3rpJb7whS/su9wXvvCF7cru97///bm9XE5OTk5OTk7Og85NLMwbQUwoHDpG4CiJs6cqWdUbGFpYHWAlSHEEqrqtxZjUwlz20MJ8xmniiPTKOCKk7u3Yjltc6nMfyCxf2riC0nusC1W2wjqxCZf0ntzv+yBuB9QvX820jZw9cX8TABLTtTAXeV73bcjal7tIM9Ij+3KDY6I0pxuHRLpoobZzup1E4+6T092ONEFsqBVcfKWYrPp4VmGEwSiIVfr3XrHWsrF0jeb6GsXqAGPHTjIwPsHg+CSzjz/N5JmzFCo3t8/MyXlYKVaqzD3xFJWhYYamZykPDdNYXaF+bRGjj0Cp4gOOUd0Mb9UVvLVE9HjsvVJwmKgVKbiKoZKLNpa1Vog2ueJ9M3byuyMEEHte3wVvLVwS6WKEuy14C/rzHdyp7i6AlX2v7la+x+Rbn860hfVNVr75Wl/7sR/FPVbmiVtmoFbm0aFsDMvnjoKVObBEjRZZ4f3kTaq7AV51LtMSnUxbzVZ4LDnRtxgEJ2khTULk1zDSISiM3HTXQggc38fEMTpOMGEH34EgNsSJYaMdbx/rhgvPMuS/MbN+qFdZaP5pXyZ0yUoZKdPqbhOE27niRwE1N4LztqyjQvKVi+gL12+yxgPAtuBtIQnSqKsjLHjvWJuzK8+7h9bmAEqihgbxZmeR1Sp6c5N44QrJ2hrJ0hLBSy8TLy2lr90epHQolU7jOBXanQtE0QqNxjdptw9uvCDn6HOoYrfneRw7dozjx4/3db9RFPHBD36Qz372swD8zM/8DL/yK79y19v52Z/9WZRKRzR++qd/mk4n++Pb6XT46Z/+aQAcx+Fnf/Zn76/jOTk5OTk5OTk5h0/S2dfCfLWjiYwlEZKCstkT7U6A6DQRSYiWHZD+DdZ1h0EqFFiMtYgeWZgLLMfcndysZbuQuQppe9+Nrgxn1qmsnc/cH5WjDOzJtpvX88RkB/Luh9VXL2UG2oSSDJ+eu8Uat8FooGth7shDz2Y/yqT25c3UHs+WkabSM/tyZRMQAi1cjFAku3O64xhHa9w9Od1RkmYuln1FwZWMVnzKOFhh0V2BSDv3PuJjrWVzeYlOs8HAxBS1sXEGJ6c49uQzTJw6g18q3ddzzsl50FGOy9QjjzI8PUN1ZJThqRmiTsDqlcvE4dGpRntQ0cqSKIORYITF0bLnIlLRU0wNFih6DsPl9Bi81opI9NERW27F1vTAfv6yp/ndFjeKMEqiD2ESnRYeuit4G6FwTES/hJq0ulshKR1Kdffwoycojg5l2pae/yZJ53CPQV60iUqy4n+7PMk79lR3f3PVZSM8AgVY+1R3D9JhmP0nMCRC8w33HOGe/O4RM8iZZK4vgrcgfZ2xELk1ElUg8m7uPqRcF+k4qZ25Nqg4xJGCdqxJjGFjV3zDVOW9FFTWRWozepHV4Es9fEYpQklkqYQopBO3bXB0srsB/P/rjVBwM23hH30Za46qOHwH7Ba89Zbg3eHoCt6wZW3OtrW53GVt3qNfQSVRw0N4MzPIcgVd3yC+skBSXye5do3gpZdJlpdhj7uGEJJi8QSuO0QnmCcMl2i1X6PZfCV3BHqdcKgjLo888ggXL17czsvuF3//7/99/tf/+l8AfPd3fzc/8RM/wTe+8Y2b3l555ZV9t3P27Fl+4Rd+AYDnnnuOd73rXXzsYx/jueee42Mf+xjvete7eO655wD4hV/4BR555JH+PMGcnJycnJycnJzeEW7uWJg7aXW2tZbV0BIkBqSiIHZfTFnU2gbGNhHWYFSC5GhUVxhjsNaABSF7MwA2pjoU5c7s66vBzrm/BZr+j2SW91vLeOHm9n2J5KQ6kVmmYzssmMUD66NJNKuvXc60DZ2cxfHvw/LRGFILcwmOe9vFX9eIACvirn25gzCDPdmNtDHCahKR2pfHYk9OtzH4QZjxN9DGstGJ8ZSk4jsMFj0GHRcEJMpipCW+D6EboLGyTHtzk8HxSYqVKpOnH2H8xCnc7uBjTk5OWi03PD3L1JlHKdUGGJk7hpCS1SvztDfqh929B55EWXT3ZoXF1aLnIpLvKKZqhbTCu+yjpGCtHW3b/N4Ju0VniUAhcLo3N/UJweve/O6tgKQgFMXurSQUZaEoC4dK91bt3mrCpSZcBvbcttqr3b9OH3Jp0vzuAGksKo5JDiG/GyDBQ0sHLbyu4B3SD6Emre6ugj2c6m4hJdPvejbTZqKYa1/6m772Yy8CKLWyVubt4gRvmgjx5M6X2FjBF68ejeuPawzQIXtufNLePKs6EjHfcM8R75ngMGVGmdMTN1nrYBFYvHgTI10Sp0Tk1UjUzV26UjtzSxKG6CjC71pmtEJNlGiaQTqxUgqXY7UfQorsOd+11v+hFV/eu9kDR9bKqaW572E6wZESBEWlgPd3nsm0mYV1ki8evqPCfSFkKnhbCzoEnTwAgvdua3Oxy9pcda3Ne/Qb6CjUyDDezAyiVEKvrRNfuYJeXye+epXg5ZdJVla7190pQgiKxTl8f5IwvEbQWaDTuUyj8Y103CPnoeZ16aX3h3/4h9v//+Vf/iVveMMbbrn88ePHuXjx4r6P/eqv/irXr1/nd37nd3jhhRf40Ic+dMMyP/ETP3FPleM5OTk5OTk5OTlHDGshbOxYmLvpIEcz1HSspGMsriNwdl+s1jdwEoPWm1g/ASkQ+vAHm6wFY7aqukWPLKPhuLsjXMeEbBTXtu+H3hsIB89mlq+sZifCzshpCnsGgC4kF7EHOApfv7SADrMVI6OPnriPLdp0pr5S6edEHX4V/1HFojGi1bUv95BmuCefRUmCsglauoAklgWMUiTOrpzuIEDsGuSzFurtCClgoOhS9hxGCz7CQqwsVloi19yX+39jdZnWRp2BsQmKtQEmTp6mPDh0+xVzcl6nlAYGmXniKZbOv4ZSDpury2wsXycKOgyMTdxf9MTrGZHamQubJjG7WuBoQaLsrY9x+/wUi33aM5uwOy0FoZirllhrRZSFohUmJLHFExLPkdvrie5/9zucbvd0Lb2/SxDcc3ZhMTvr2F3d3/5r8btCeWgNQY9tvdP87gjwsLIbwbFnklbPEZBYH4QFPBQRjolIpEeva6qEqSJEAylKGNHEWt1Xp6Ty5CiDjxyn/uqOLe7aSxcYfuI0pbHhW6zZW0rtazQGduJ+jFNAlIf4tomQz1/dOYf+3KLP9x4POOyETSsEFxjhCbtjwT5Mm0Hbpi72d7Npy4AX3fM8HZ9B7vqcndDTRCJmSa3tu95BIk2CG7eI3TLSJgSFYUrtJaS90WVASInj+yRBgHEc4k6LcmWAZqTpRAYhNI4SFD0HTw0xV30/lzY/tmsLhvnGH3Jm8J/gyN7F2AjHQZYKWJ1AJ8KGUZrjfURw33mW5AuvYq5tbLeFf/Y1nGeOI0pHp593zZbgnQSwndEedOPRjvJ5TDohDrpV3sJirURYkbYL3ZtUNNfBGR3BDgyg6+skq6uIzU3U4CA2idEryzjj46ihIbYOcL4/gRAOQbCAtTGpm11ErfoGpMwnoj+sHOVvzwOBlJLf/u3f5k//9E95//vfz/T0NJ7nMT09zfvf/37+7M/+jI985CPI/IIrJycnJycnJ+fBJ+l0q7qzFubLgcZYS4SkIOzONV6SINc3IO4gpEG7CeD0TFi+G7ayTq0xyB5VdQ/IkEG1IyIvm6yFeaP89zLLq6hFobkz8OXiMqeyVuJ1s8GqXeWgsNay8vLFTFtlcpTCQPXeN2oMYEHJVOju0ev7MGBFY499eS+y7A3SxNs53bH0MEISey7CdHO6owi12wrPwkYnRlsYLHn4jmSyXEDZVPyx0hI59yd0N9dWaa6vUxsZozQwwNjxk1SGR26/Yk7O6xzX85k5+ziDk1MMjI0zODFJ0GyycuUySRTdfgM5+yMgcg1WWmJpERYcLXCSnZsbb91kektuvDmJxNHZm9q+CZQRKAvKpnqpIwSjZZ+S51AtOLhKsBEktOOEBEuCJUIToumg6dj01raa1vYtoWkTGtu3mE0bs7HntmljGrtuTRvTssn2rW2z229b0/27e3/pvpo2oWMNLZsQoPGFpCKcnp/hOXGM0unvFhxOfjcCElHACIUWLlZIHNt7S/O0urvSre4W0OfqboCpt70BucdCfvGzLxxqRaybtHCjRqatU5q4wcp8oekw3zgaEzAXGSDYU4N3q+pugE3Z4mXn0g0TXh9JjjGkawfex/1wdAelQ2K3ipEuneIo9iYng8p1EY4iCVI7cx12KHqKMDGEiWEzSIi7555V7xHGit+eWT8xTeYbf9TzalRVqSCUQvgeph3cLD79UBBK4r3/zdnGdkj0P79+OB06SLYEb6PBRKDjVPzu/xH9HrC3tjbv0VMQroMzNoY7PY1wXZLlZeKFRZL1daIrVwhffgVdr29Hk3neCMXiCeKkQat1nihcYWPjebQ+Wpb9OQdH3yu7jTG8+OKLnD9/nkajgd4nUH4vP/qjP3qgfejFCcj73vc+3ve+9x34dnNycnJycnJyco4QYWPHwry4U8GxElo6GhCCouzaVwOsrqKMwCQbUHQxsonUvRDz7h5jUwtza+lZXvfurG6AS80LMJj+n6hJOuXvyDxeWTufGS46oU6gxM6gnLWW8/pgI5BaS6sE9Ww/Rx89eZOl7xCtAQlCgfu6NNO6I6zopPblpoawbo/syy2OjbFCooXbtV51ib10Rr+3LRpkc7qbYUKkDYNFF1dJpioFHCvR0mBlWgF5PzF1rfo6jbVVqsMjlIeGGJ07QW107H6eaE7O6wohJaNzxymUKyxfuoDrF1i/usjqlcvUxiYoVu9jwtLrGQGRY/C6Fd7S7HEn3S613qprzpK5v1f/uc3koFrNJWoahBVoq7najil6iqqvsEJguxKX3a6wtrsqtXf/n33M2uzje5ffb/27oYQCHBIsJeFQFS5tmxD3aLR/y87clEu4UUTk+2jHwUn6m2GNgJgCrg1AgGMjHBuTiNRBpWe73a7uLmJEB2lLfa3udstFxr/tca59cce+vL20Sv3VywydPd63fuyl2L5G7O0c99rFCc4Ov8xwQbMW7Lw+n1v0OVbr/ySBvVghucgIj9kdC/ZRWtRsh01x82ulFVXnPFc4nexMhhUIHk9O8HXxGk3Z++fmxk1COUjo1fBDTVAYphjsPxHX9QtE7RZJFCKEwPc8fFfSiTRKCDbaCcNlFykF46V3004WaMUXttdvxZdYav8Vk+W/3bPnI3wX4fvIYoKuhxBFcD9RTgeMc3YK9YZj6K/v2LrHn3sF5x1nUFMPuBuSUN0K7z3iq1OkNyXSB4vt2vOnVd4Caw3Cps5mFrN9rnDQCN/DmRjHhiHJep3k+jLCTyu9TRQiCwWcyUlUrYbr1pDyNO32BVrt1ygVT1Hf+DIDtTfiOL1zTcg5HPo28tJut/mVX/kVPvKRj7C6eueVGEKIAxe7c3JycnJycnJycu4aa9O87mSPhXmk6WhB24AjwN3yBmy3EM0WMjDoYoz1BFiDsIc/eJBamKditxDpOfdBUxAJE2pnwCkmolVd275sb1R+ML3A7yJ0TLm+M4hREWUmVTaHb8ks0bKtA+3n3qpur1qmOn0/oqNNK7sdlY715hbm+7JlXy6sj8DvmX25sjFYg5Y+BkWCj3YURim8MM3pLuyxgA1iQyvSVAsOviuZrBYoCAcjDEZBrNK/90p7o87myjKVoWEqwyOMzB5nYLw/mZM5OQ8bleERvFKJpXOvIh2HzetL1JeuEgcdqqNjPfl9e9ixEmLX4MYSKwUZo++9Ud6Z+13ZeM9Lvsu1fFtYzt7f2VbVd2htJLSNpqFjLjValEPFaMU/su9l22oiaxiQLsbGFIVDSThEGDq2N7bmAvCDgKBYTPO7HRdpDNL0OY9UQCx9XGNJhItj454L3gKFtFW01UAHRAdsfwWL0afPsvatC0Sbze22q1/8GrUT0yjvcOxxS+0lNgcf2b5vlUtUHOHtUy3+7MKONfgXr/r88Nk2zuGbTLHAICdZwd9l/3/KrvBVMXeLtWBRreBZL5PXrVA8FZ/ia+6rdGRvqzYFFi/aJPQHid0qAojcEC9u3rjstp15iHEcolaLYm0ArS2tKEEK2OikLkJCSOaqH+Rc/SPEZicGaqXzeUrODDX/sZ49J1WtYMMQPBfdCXCOkNgN4H//m2i/uABJ97NiLdEfPUfh//k9R/a34Y4RCpSf5nfvNHYF7weDVPTea20u0/ZeWZsDwvdxJycwnQBdr5MsLSEKhVT0DgJkqZSK3pUK5fIZWq3zqeBdOsnGxvPUam/AdR/wCRM5Gfry09ZsNvnO7/xOfv3Xf52VlRWstXd1y8nJycnJycnJyTl0kiCt6o476QVptxp6qWMwWGIrKcjuIKM1sLyKjGOwIaLgokUAuEfCwnyrojvN65b04gr0mNvIZALOhwsIlZ7bG1GkWf67meXL9ctIs1OVdEqdyjye2ISL+hIHSdhosbmwlGkbffTE/Q2aaE1qYa7AcTj0YMQjihXNrvVdBWHKPbEvlyRIq9HdHNFEFjBKkDhuN6fb3JDTHWvDZhBT8CQlTzFS8qkqByssWoGWBu3c+zVqe3ODjeXrlAeGqI6MMjQ1y+DE5AE825yc1y9eocjM409SGx1ncHKK2ug47c0N1hbm0XF8+w3k3ICREHqGwNMEviHcunmGaPfNNcTbN0vsWhIne9OORav0ZpTFqHT7RnbdTrduAhAwOVhgbrjEQNFlvOrTijRLjRBzhMcHEyxrJqJjDW2b0LEaD0lVOMgejfIrbXCjCCfRCGOIPfdwzG+FIJYFLCoVua1NJ5r1sDfCVBFWIiliRJBWEPYRqRTT73xjpi1pB1x/4Vt97cduHB3ghfVMW7s0eYOVeTOWfGPlaOTVGiG5JLLxLWM0qdjgtuteVIssyWxOt4vLk/FpXNv72j5pNV7UQCufRBUI/cHu+eY+y7ouQm3ZmWviToeyr8BCO9aEWtMK02sgR5aYq/7QDdeLV5r/g1AfXIzTDX0s+gjXRRULECfYI/bbKYcruN/9RKZNn1vKVHs/0EgFykvHGkzUtTXvHHav7pLU2txuid7dv8L01tocQBYLuFOTOBMTYC3JtWsk15bQ6+tE588TnjsPnYRy+QxSurRarxFF62xsfJUwXLr9DnIeGPoy0vYrv/IrPP/881hrefvb387v/M7v8Pzzz3Pu3DkuXHR+Y7oAAQAASURBVLhwy9v58wdrU5iTk5OTk5OTk5NzT4SbYHVqM+amFRLWwmpk6ejUXrMku1dx63VEHCPbMcZPwFUYQqTxD/EJ7GC6mdLW2J7kdSsMM062uuHVzR2hulX+v7Bql8WstVTWds77R8UIA3Igs/68vkLMwQ68rL5yMXNfug5DJ2fvb6NGg0yzy1C5hfl+WBFgRYS0FYR1kaYXM+oNysRo4WBRxNLHCEHseTfN6TYW6u0YRwoGfJeq7zLspQOXibIYaYnvQ+juNBpsXl+iVBugNjbG4MQ0w9Mz9/1Mc3JyQErFxMnTjB0/SWVomOGZOXSsWZm/RNg6WEeQ1w1d8fkwGKl4nBgpUym4TNYKhLHhaj1Am6MreFtg08ZsmpgQQ8MmgKAqHLweDb+6UTeKoytMHa7gXUwFb+khrOkK3j3aHaqb3V1MX3jRf1GoemyK6lx2strK118h3GjcZI3eU2pfy9wPimOMVwSnB7LvxecWj8b1CMAVhoj22NCfuk12NwACXnUusS42M81FfJ6MT6PuJ2vmDlEmwkk6xG4ZI7byu2/cr0DgFgpYa4ijiCQMsEZT8hSJtoSRoRUlhEl6TlpyZ5gsvzezDWMjLm9+HGOj3j2fagXhueAodPv2Ew76jfddTyKGypm28H88j436HOHQK6SzI3jrqHt70ARvAIMVaSRJOmlDIIzq5nn39qRCloq401M44+PpxJLFqyTXr6PX1wjPnSO5tEBBTOE4ZdqdC0TxKpuNb9DpzPe0Xzn9oy9i98c//nGEEHzf930fn/nMZ/jxH/9xnn32WU6ePMnx48dve8vJycnJycnJyck5dMJGWtW928I8sXRiS8cKFBZXSogiRL0OzRZSKmxFYAix1h4JC3MAY3QqeIve5HXPOE2cXRldoY1QI8sAWASNyg9nli80r+HEqeW5QHDSyWZmd2zAglk40D7qOGbt3JVM2/DpOdR9ZWyb1MJcdi3MndzCfC8WgxHNXfblQz1wOzA4NsIIhREuiXTRwtkWAdx9crqthXo7ApFaSRY8xUSxgLAQS4uVlsg19yz8BK0mG0tXKVRq1MYmGBibYGT21jadOTk5d09tdJyZx56gVBtg9Ngx3EKRtasLNFZXcufAB4yBksvpsQpl32F6sIDGcnWjQ6z7bNV9lwQY1kxEZA0NGxNhKApFWagDnzsggEIQoozBjWKMUuhDOvew24K3JJE+wmpUD4U5YWq7qrs7fa/uFkIw9c43IuTOOYw1hsXPfbWv/dhNsb2Uuktt9UcqguIo75zJVnd/fdmjGR0N5yEtJJfEcKZtnAZle3srcivgW+4FGiKb0121JR6PTyJ6LKwBOEkLaRIiv4aRDp3iyL4TToSUKM/HRBFGa6JmC0cJCq6kExvixLDZjtDdKILhwpsY8J/KbCPUyyw0/6xnv2WiWEA4ClUsQhRjk6MlIgvPwf/+N2XabL1N9JffPKQe9QDpgNwjeJujN/HgTkirvG1a3Y1IHb2MgzCqp1XeALJcwp2eRo2NYaOYeHGRZHkZvbZG9Np51HWFY0p0OpcJw+s0W6/QbL2anyc+BPRF7F5YSAem/vk//+dIefi2jTk5OTk5OTk5OTl3RdwBE0PczliYL4cGDUQGiiKtlmZ5BeIEGYRQdhEStOggcNMLvUPGWIMxqZW5FAdftiWwHHOzVS1/vbyK6FbEBoW3k7hZka+yulPVPSNnKIhC5vELyYXdiaEHwvq5K5jdgzgCRs+euL+N6m6OnFLgHg2LyKNG1r68hLSl2690lyibgAUtHIxQaLydnO5oy748m9O9GcYkxjJYdPEcyVSlgEKQqK7Q7dy70B22W9SvXcUvVxiYmKQ2OsbIXD6pOyenV/ilMrOPP0V1eJTh6RmqwyM019dYv7qA0b3JUM7pDWVf8chEV/AeKAKCq/WAMD7a76PGsmYj2lbTsZq21SgkVeFy0JK3sBY/CJHGoOKExHExPXDtuRO2BG+Q6B4L3gLn0Ku7C4M1Rp56JNPWuHyVzctX+94XAGVi/CBr7d0uTfLmiQhH7pxHayv40rWjVd0d75IoBHDyTqq7AS0M33TP0SErjg/ZGo8kx3ouqgnAixpgIXJrJKpA5A3su6zyXISS25XdSadDwVV4jqQdaWJjqbcTrE0nU8xUvg9fjWe2sRF+g7XgK715LlIgKxXwPVAS0+lt9vm9oN5wDHVmItMW/9U3Mas35qU/sKjdgnecusqZo/de3Bk3WpuzZW1uemttjgBVKaei9/AINgiJFq6gV1Yxa6uIy23kmiFozhN0Fui0L9FofhNrj/aEupxb0xfleXw8PTCPjo72Y3c5OTk5OTk5OTk5B0vGwjyt6jYWVkNLYATWWApKQKOJCALYbKD8EqZkQIIhOjoW5joV5Xfyug+WMdWhKLOD0M3o1e3/G9W/l3nMDTbw2+mAlovLMZUVwjfMBqv2YDPqrLGs7LEwr81O4lXuU3hNulXdiDSvOyeDFSFWhEhbRlinJ/blkng7p9siiYWPkVs53QnSGApBiNw1c78daYLIUCu4+I5iquLjWYWWBishdtK/90LU6bB+dRGvWGJwYorq8Ahjx0/eXy58Tk7ObVGOw+SZswzPzFEZHmV4epY4DFmZv0TUeRBtQV+/FFzFmfEK1UJa4e06gqubAe3oaAveAE2bUO/amjdtjMFSEQ6FAx6OTd1KIpwkSfO7Xe9w7MwBKyRRt8JbSw9pNbJHlubC1BBIJIVDqe4GmPi2J3CK2Umai5974dAm1txgZV4Ywfcdnh3PTjo4SlbmiVBcJlvdPckmpTucKBGLhG+4526IO5oww5zQ0wfWz5shMHjxJka6JE6JyKuRqOI+ywmcQgFrDEkYEQcBJtGUXIkQ0Ao1caLZDNLnIYXLsdoPI0X2vbrW+gva8cE6Xm0hy0WkEshiARuG2CPmpCGEwPvAm2H3hJ7EEP7x84fXqV6wLXjHXcE7eIAFb8hYm2/neffH2hwpULUq7swMangY024TLSygV9dQ6yAWAtpXX6HdOE8YXGVz86sYc7RcDXLunL6I3W9961sBePnll/uxu5ycnJycnJycnJyDJWNhngqiDdMVyYxAWY2HgdU16HQQYYSoDWBViCE4YhbmJp2xbOlJXvdxN5ud98KGz8DUEgCRc4Kg8JbM45W189s1TifUCZTYsd+01nJOn+eg2Vy8TtTMWh6OPnri/jZqNWDSqm4lu7ndOVuk9uWNrn15oWtffrBWqwKNMglauqnQLYtpldl2TnfSzeneGYCOEkMzTCh7ioIrGav4lISLEQajIFbp33shCgLWry7gFYoMTU5TGRpm/MSpXOjOyekjQ5PTTJ99LLU1nz2OclzWFuZp1dcPu2s5d4HnSE6PVagVXaZqBYqu4nojoBH0Lhf6oIgwrJmQ0BqaNiFE4wtFRTgHWuO9O7/bijS/+7CwQhJLH4tCSzd1XOmBEC1wEKa8q7q7/3a/ynOZfNsbMm3RRpOVv3n1Jmv0lmJnGcwuoV1IOsVx3jGVFcoubTosNo9O3M5lMUyyp7r7xB1WdwMEMuQb7nk02UkGc3qCad374jtpEty4ReKU0MojKAxjxI0TX6VUSNdHxyHGGKJWEwSUfQdrLe3YEMSadpiKbb4aZrby/ZltWAyXGx8nMa0Dfx5CSmSlgij4IAQ2OHoW2mpqCPedZzNt+m/mSV45HEeFnvHQCd5da3OxZW0u+2ptnoretVT0HhjENJvEVxaQ6wnuhk/74jfZnP8yQesqGxvPo/WD/Vq/XunLCMzP/dzPAfBbv/Vbufd9Tk5OTk5OTk7Og8VNLMxXAkOCIDKWgrSItXVEHMNmE1Gpgm8RwqIJENY7Ehbm1oIxFmNMV+g+2MuBARkyqLJVGJ9euo5w02uAvVXdMgkpbaS52RVRZkJmrfqWzBIte/ADOasvX8jcLwzVKI8N32TpO0QbQKQid17VfQOpfTm77MvLB7wHgzJxmtONQyK9dLDdc7Fi/5xubSwbnRhPSSoFh6Gix6DjYoVFK9DSoJ17u36Nw5D1xSs4ns/g1DTlwSEmTp3JZHvm5OT0h2K1xuwTT1MeGmZ4Zo7y4BCbK8vUr13Nx6geIBwlODVaYbDsM1HzqRYcVpoR9fbRF7wNsG5jmjYhsIaWTRAIqsLloCRvAdt25lv53Yk6PDHTCIdYehgcjJBdwfvgkaaGQCHxD626e+jscUrj2fPI6195kbjVfxcJaTXFICsSt0uTPDESM+BlX5ujVt09T9bxZ4oNCndhg9+Ubb7lXLwh+uhUMsuoHjyIbt4SR3dQOiR2qxjpdvO7b/x+O76LkJIk6GC0JglClBSUPEWUGILY0AgT4iR9v2r+Y4wW35HZRmIazDc+0RPLZVkpI4REFnxMEB7J30nvvW+AUvbzG33iuSNXiX7fKAek2xW8k4dC8N6xNmdXnveWtXkfRG8lUYMDuLOzyFoNvdnALqzh1otEa0vUX/4U7fmXqa9+gSQ5+HGInN7Slyvtd77znfz6r/86n/vc5/jQhz5EvV7vx25zcnJycnJycnJy7p99LMxjC/XQEFqJMYZiFCI2G6mNORZVG8TIDkiLIUQelapurQGbVpr3oLp0b1b3lY7PuPt1ALQcoF16b+bx8vpFRHeQ5pTKVrwmNuGivnTgfeysb9Jcytqijz56v7bSNs3rliqt/s/F7gyWOLUvp4ywCmkGD3wfyiYgBFq4aKHQwiVRaU63u09Ot7VQb0dIAQNFl7LnMOqng2aJshhpie9R6E6iiLXFKyjXZWhqhlJtkInTudCdk3OYOK7L9NnHGJqapjo6xtDkNJ1mg+bawcZk5PQWKeH4SImxaoGRss9Q2WO9HbHSDNMD+xGnbTXrJtq2NddYysKhKA5GlJbd/G5lDCpJSFwHc4huIgYXi8AKhdxywDlgBC7ClMCWSGfV9b8SVQjB9LvelGkzccK1L329732BG63MI38Q6/q8bU919xeu+hwlbfCSGEbvEoclcOIuo4zW1SavOpczbQLBo8lxauagJ1reiBs3wRpCr4aWHqF/Y2SPQOD4fmpnHkXEnTYm0biOpOBKgliTaEu9HaNNelybKH0XZfd4Zjut+ALX258+8OcglESVS4hC6phgj2B2tyj5+O97Y6bNLG0Qf/aVw+lQL1FuV/COdgnedz4J5OiSWpuzbW0uU/HbOtxzftTdoCRqaBBvdhZZrkA9wFmw6MYmm9dfoPnil1l59c+Igvw88UGib6MwP//zP8/p06f5yZ/8Sebm5vje7/1ezp49S6l0+1y8X/qlX+pDD3NycnJycnJycnL2IdplYe6kYndTC1qRITQSmST462sQxYh2B1urIR2XRIVYgu6s5aMhdmtjsNZiLQee110QCRMqaw3+e/PDvPV0ainXLH8/Vu6agW8NlfWLAIyKEQbkQGbdeX3lhuy9g2BvVrdT8Bg8PnV/GzVpDjpKpjbmPbCHf1CxWKxodAcuCkg7iDjgy1BpY4TVJNLHIklEASMEieug4gTVFbq3c7otbHRitIWRsofvSKZKaYJqLC1WWiLXcC/FdttCt3IYnp6lWKsxdeYsUh4dq9CcnNcrQghGZuYolCtcO/cq1eERmmur+KUyXvHGfNWco4kQMDNUxFXpeYwjBSvNEG0s41X/yEdFxFjWTERNuFgSPCEponCEoGWT+5aDHa0xUYwFjJTEnocXhofjLyQgkS7CWKTQKJugxcGfE0tTw8o2wnpY0QFb7LujUml8mKFHT7D+8sXttvVXLjH8xBnKEyN97Uuhs4IwMVZ2reyFoFOa4J3TC/yvSzvHuo1Q8q01l6dGj4Y7QiwcrtghjrO23TbDBhfsKKG4c1v+JbWGZ91MXrdE8mR8iq+5r9KWvZsQIbB40SahP0jsVhGA0iHungpRqRyk66GjEOk4RO0WfrVKwZVoY2lFCdJ32OjEDJU8hJDMVT/Ia/WPkJjm9naWO5+h5M5Q9R450Ocha2VEq40seJhOgCgWOGqHVudtp4k//wpmYSeWJPqLr+E8ewJZLRxiz3qA6n7+t0XuDjgiFcEfcKxI3dGEFal1vjUIm04gt8KA6PFENiVRI8OogQGSeh1WN4jaqzQrbYyOWFq+ztCxb6d87Ol84vIDQN/E7uvXr/NHf/RHbGxsYIzhk5/85B2vm4vdOTk5OTk5OTk5h0ISpBlZWxbmUmEtrEUQW0GsLeXGRte+fBNcB1WpYmWEEBAfNQtzazDWIAQHPhh8zG1kBkGaiWKlfg7hgkXRrPxgZvnSxgIqCRAITjonM48FNmDBLBxo/wCSIKR+Ibvd4TPHkfdr86k1INPKbjev6s4gAqwwSDOItB7CVA5085IkHTyXLiCJZaGbVeohjO3mdMc4u3K6m1FCpA2DRRdXSaYrBRSSRJlU6HbuTejWccza4hWEkAxNz1Ks1Jg68+j9f75ycnIOlPLgEMPTM1hrCdttNq5fY2TuODIfxHygGK/5uEoyv95CScH1zZCrGwGTtUI3quXoYoENG1O0iqp00FhKwqEqXDpWE92n5O1GEVpJ3Cgm8j1iz8WLDkfQTKu7I4xQKBOjheGgjUYFHsIUETLBiDpCBGmOd5+ZfOsb2LiwgNn1Wi9+9iuc+eD39HUShsBSbF+nXZnZbmuXJpmpXuZ4LeHS5s656ucW/SMjdkNa3T1n15FdL2OJ5bhd5RUxeVfbmVdL+NZjyuzkdTs4PBWf5qveK0Sid89ZWo0XNYi8GomJCQpDyHaM2lON6/gecZKQBAFSSpIgxC0WKHmKRpjQCjVCQDNIqBYdHFlhrvpDXNj4f7HbJWG+8UnODP4EnrqxivxeEY6DLBWwOoFOhA3DNMf7CCGkxP/gW+j81v/aaQxioj//KoUfefvhdaxXKBewuwTvNjilh0LwTq3NLanoLUFYrJUIK9J2oe/p2uyucBTO6AhqYABZXyPYWKTZ/ibFwhxryV8SXrlI7dRbcKamjvykutczfTmTX11d5d3vfjf/7b/9N7TW3WqSO7/l5OTk5OTk5OTkHAr7WJiHVtCINCECHYQUmpvQaiHiBDtQQ0k3tTAXBkuEtEdjYMAYk1rRGdudlXxwF2kKw4zTzLT9fxYneNvQlwFol/4W2hnLPF5ZOw/AjJyhILKz7y8kF27I2zsIVl+7jDU7g0NCSkYeOXafW7VgNDgyvbrKhc1tLAYjWkjrI3AQZviAJ36Y7sC5g8Ehlv5Ncrp3BheD2NAKNRXfwXclU9UCvnDQ0mAlxI65J+c8nSSsLV4BRFrRXakwdfZRVG5pn5NzJBmcnKZYqTIwMYlJNJvLS4fdpZx7YKjscnKkTNl3mBzwSYxlcaNDoh+MscQOmtWurXnDxkQYikJREuq+fi0z+d3xIed3C9DSxeBgEV078x7sxg6k5xrd6u5enEfeDrdUYOLbnsi0dZbXWX/5Qt/7Umpnj2mxVyN2SrxjOmtJ/dXrHu346Ag3oXBZIOv2NEsd724z3wW85syzKuuZZh+Pp+LTOLa33wdlIpykQ+yWMcIlKIxg98gwAoFT8LFao6OIuNPBaIOUgornoK2lExvacUIQp9+bsjvHZPlvZ7ZjbMDlzT/A2IMV8FWlglAK4buYdnAkkyLUyXGcN53ItCVfeg09/5BaT0sPpJMK3iaBpAMH/L4fLvbW1uZ9+AwK18EdG6c88gSOrNFuXqR97RUaa3/D+kt/TfuLXyReWso1yyNKX8Tuf/tv/y2vvPIK1lp++Id/mL/8y79kdXUVrTXGmNvecnJycnJycnJycg6FcBPiIGthbgTNUBMa8NZW8IxGNFvYcglcDyElVoWYI2Zhbk2alWitRR7wbOQZp4mzy2JMW/h/Xxlm9EQ60Nao/L3M8l57FS+o4+Iyp2Yzj22YDVbuMp/vTjDasPpqNgN88PgUbvE+be50d/BNOWlWdz7TexsrmumghC0jTeWAJ35YHBtjhMQIFy0djHBumdMda8NmEFPwJCVPMVryqUgXIwxGQazSv3eL0Zq1xSsYYxmemaVQqTD1yGMo52GotMjJeTgRQvz/2fuz6LqSxDwT/SJiT2fCPHMmM8kcaq5SqQbJGmzJqrJkS3JbtiW53Uv3+q7u6762dPXg5Se/+Mn2stXt69XuvtK1ZlmSy2pLskpyaWhVVWZWlaoqMytnZpLJESQ4gADOtKeIuA/7gMQGyCQBHAAHYHxr5WIi9tkDgANg7/jj/3+mTpwkCCOGJqfoNpt0m829vizHFmhUfJ6YqlMPfWaHi7/p88td0nx/zCfqXqx512q6VtOxGh9JXXhsR/K+29+t976/W1P8PTTSQ9mcnejuLtJjIoStYtF70t0NMP7sE4QjjdLY9a+9gk52t2M3TBaRuixsd6ozfHwmQa25Z8+M4OsLg/GsssoFMVF6hygsR+3iA1//QAS86V1gRZQX5NZshWeyE0Vs8g7i5W2kyUnDIbRaFbzLSOUhA588TbBGk3aKuHOlBBVfkWSGJDesdDOyXsH6ePRxhoLyoopYX2e+9Yd9vX4R+oggQFaiIsUqG8ye6OAHPwLBmsWlFpLf+QusOYBipOCe4K17gnd20ATvItrcCoOwAoEsxG+jinjzHf65XUUGAbWx01TGjpOFbTpL52nOv8jyjW/Qfe1V4tdf35XrcGyOXRG7f/d3fxchBH/v7/09fuu3fovv/u7vZnR01Fn+HQ6Hw+FwOByDy2qEeX4vwtxYWM6gawV5u0PUaiKaTUBAvYaSHkYmCCHIRRdhwwEIMF8TYW4siP72dQssR/2yQPBHN8b5oP0KhJAEz5CGz5a212+fA+C4OoYn7k1OWGs5r8/37drWsnz5Gnm3POk3fubEA169CXJTxJcjwHfi5iqWFCsSpK0hrIcwww/faRMom4E1aOFjkOSE93q684093cbCUifDk4Lh0Gco9BkLAqywaAVaGrS3+Umxu0K31owfOkxUrTN7+im8YLAmjh0Ox0b8MGLi6HEqQ0NU6g1Wbi6g8026Bx0DQTVQPDlVpx56zI5U8KTg2nJMN9sZF/FO0LQ5y6ZwdzdtjkVQFx7hNqZuPa3xsgwvyxHWFsknfbzmR0YIculjUFhAcnDd3VIp5j714dJY3k1Y+ObuCiOCje7ubnWaemB5/2RZGHthfjBSqFaJhc+1de7uIyzib9bdDRhhec0/T2fd4odh2+Cp/NiOOkUFEKRNsJD6DTIvIg023g97QQhI8iTGZBlZXDyvhL4k9CRxqsmNZbmTY4xFCMGh+l8jVOUu+KXkZRbjF/v6OaihOsL3wPfRnb1ZQPIw5HCV4K+8rzRmLt4i/+buJyrsCiXBOwF7MAVv6Ine2MLdjQArEcYDo3bF5Q0QBtNUR0/BVEjiL9O+eZblxW+Q3bi+Oxfg2BS7InZfvVr04v3UT/3UbpzO4XA4HA6Hw+HYPqsR5ll8N8K8YwWtJC/0zZu3CXSGiBPsUAOkREkPq2KsyLE2Qw6Kq9sajCn+LVzd/ZPgJ1WXiixPWv78pUN8euJrADQbP1baptIOleZ1aqLGtJwubVswN2jZdt+ubRVrLbfeLE941CbHqI5tU4DtueVRCpQE1/cKgMViZQthfQQVpB1G0L+4SEmOtBotg+KjtT3d1uJleTG53+vpthaWOikIGK4GRIFiKircf7myGGnJtiJ0G8Oda1fRWc7Y3GHCWp2500/hB4M1aexwOB5MY3yC+ug4Q5NTICTLC9ddNOU+JfAlT043GIp8ZoYjQl+ysBLTTvbPAoYEw22TkFhDy2YkGCKhqAlvy3duQZKijMFPM6wU5Hu0MM/gAwIjPKTJ2QmlQtoQYUKErfXc3XvjRG0cmWHo2Fxp7NarbxPfWdnV66h0ymJM7tfI/AafmiuLlu8s+Sy0B+se9l0xUXqHeFt1dwO50Lzqv0NCWQycMKOcyg/vsOBt8LMmRgbkXrXo8VblVCkhBH4lxOQanWVknc7dpNuKL5GieP7MtGY5zrEWlAw50vhbSMo/z9dan2clfbtv1y8rEcL3UdUIshybDebvU/+7nkaM10tj6e9/ExsfPAEYKAve+VrBezC/P9vD9kTv1Wjz4l9hdi/a3GeIKDiEmKyQ1Ztkdok2F3b+xI5Nsyt/ySYmJgBoNBoPeaXD4XA4HA6HwzEgJM0NEeZtI2lmhmylhey0CVotCAOoRAgkQiiQgxdhXkyYWIyxyD66ugGO+eWJuxeXG7y55DF68ha5mqRT+a7S9vqddxFYTqmTpaSn3OZc0Bf6em2rdG4t0V1cLo1NPHV8+wfWGpCFs9u5uu8hulgMwtYRNkCY+sP3eWTu9XRbVK+nu5i8twL8NEMZQ7AmLrSZZOTGMhL5hJ5krhahBGTSYqUl9c2m139YY1i6Nk+epIzOHSKq1gqhO9pmLL7D4dh1Jo4ex48qjEzPkHQ7dJbu7PUlObaIpwSnJuuMVANmGiG1UHGjmbDS3T+ChwHu2JS21cRW07YahaAhfLYieQsg7MZIa/DTHO0p9B70d1shepUjxbl3zt091HN3+1jR3hN3N8DsJz+EWLsI0ljmn39xVxfTBOkKKu+Uxjq1Gd4/kVH3y1HyL1wbrIV6XRFwjaHS2BHuEG7RvZqIjNf8c+Tr3ndzZpLDemrL1/koKJPhZ21yr4qWAXE0jlmTbAW9OHPfJ08SrDGk7WLxr5CCali4WDuZJslz2mkhaEbeBIcaP1g6jsVweeU/0UzP9e/6GzVE4IOnMJ1u347bT4SnCH/4Y6Ux24xJ//iVPbqiXWBV8BZqjeDdOaCCN8C6aHNWo829XYk296gRMYOWOalsktN6+E6OXWdXxO7v/M7vBODVV1/djdM5HA6Hw+FwOBzbI4+LHqw1EeaZhXYOnW6OXV4hajWR1mCHiomYIsK8C1KQMzgR5gDGaGzPISD66D4elgkjquya+YVLc/yQ/6cQQqv+o7BmMkeYnNqdi4yLcYZl2VV9WV8hY2cmo2+9VXZ1+7UKQ4dmtnlUC8aAJ4unKm/3J44HEYvGiA7SRgg8pB4rYuf6gsGzKUYojPCLSNReT7f2FH7W6+nuxnfP2Ek13dQwFPmEvmSuHuGjyFVP6Pa2IHRby53r10jjbiF01+rMnn6aIKr06fN0OBy7ifI8po6fJKxWqY+M0ly8TZYkD9/RMZBICScmaozVQybrESNVn9vtlMV2WkR97BPaNufO3VjzDI2lJjyiLSSlFP3dKUprVJ6T7VF/t6ZIZDHCQ+6QICNtBWGCPXd3h8N1Jj94pjTWurLAysX5XbsGAVTb5SjzTmUaJeHbZ8u/416YDxm0iuML69zdPoYP2csou7XO97bs8rp/HrOuM/6EPsSUHt3GlT4cT3dROiELGhjp062MY9fdgHphseBgNc487/0dUlJQDRRZbkkyQzvJSfLicxgOn2U8+vbScSyaSyu/TSvtT4y3qFQQnkJVKtg0w+rBFFPV04dQT5UTFbIvvom5ubuJCruKoJirEArytJdK1wEG83vUDzZGmwuE8RC7EG2uiJDWPfMPMrsidv/sz/4svu/zr/7VvyKOB7PfweFwOBwOh8PhuEuyAtYUq6T9e67uVpKRN1vYVosg6WLr9bsip1yNMCcDcqQdDIeE6Wmyxhqk7G+E+fqu7ivdkM/fmOATU1/HiJBW7a+XtleXLqNMzkmv3JUd25ir5mrfrmstabvL8uVyjOPE6eMIuc2vg9aALSLMPa9IAHBgRbtYXW+rSFNH0L90A2VzsKBF4QzTBOWebl3u6U5zQyvJqQaKyJdM1SpUhIeWBish84p/N/X5WcvS9Wuk3Q6jsz2h+8kzhNVq3z5Ph8Ox+1SHhhmZnqU+NoHnBywtXLu7SMyx/xACjo5XmR6OGK0GjNcDVuKMm61kX8XUZ71Y89ga2janiyYUkrrwNj2h6+X5nvd3WyHQQmGEQliL3CFBpuju9gt3N52H77BDTH74KfxaeSHctedfwuS71yVfXRdlbryIJBzlk3NlsXsxVpy9U3Yb7zVtEXJ9nbt7iIT32atbXriyLFuc9S5uGH8yP8aI2dlEWj9rgTUkQQMtA5KwLLALIfCiCJPn6Cwj7XTu/h3yPUklkHRTQ5YbVjopurc6Yab2VxgJP1A6liXn4spv0s42fq6bRUiBrNeLNDMlMZ3BXAwmhCD8Gx8tqqVW0Ybkv3x97y5qN7greMuew1tD2oEdSs8YDDZGm9/r896daHPHYLIrYvdHPvIRfv7nf56zZ8/y/d///Zw9e3Y3TutwOBwOh8PhcGyNpNnrvbLgVbC2ELtXFluYJMW/dQvleVCrASCFLCK5ZYom7j14DUaste2JstZaRB8jzCORM63KE4i/eHmWWt5i+NQiner3Y1R5gqq+eJ5D8hCRKEc9v5u/u2Mxk7ffvliaEJOeYuzUke0fONdFfDkS/MGaHNwrLAlWJEhbK/q6zUjfji3JEFaTywCLJBNhr6fbv29PtzaW5W6GrySNyGOs4jPs+RhhMQoyZTCbXJhvrWV54TpJp83I9CxRvc7Mk2eIav2MaXc4HHvF2NxhwlqNkekZdJbRvH1rry/JsU1mhyMOj1UYrvhMNkLaqWahmWD2keBtgWWb0bQ5qTW0bI7oxZr7m5zWDZIUaQx+lmGlJN+D+xctVt3dCml3RoyRtlLch9gqVuRYsTfinPJ9Zj7xwdJY2mxz61tv7do1+HkbPy0vTu1Wpzna0ByqlxcbPD8/GAt11/KmmKG9buHkFC2esDe3fMybaonz6kppTCJ4JjtB3excSo/AEqQrWKHI/TqZXyPzaqXXKG9NnLk2pJ17z1qhJwk8SSfVZMay1MmwthB5D9V/kOHwfaVjWXIuLv9H2tmlbV+7rFWQSiCjCJumWD2Yi8Hk1DD+dz5VGtNvzJO/fuUBexwQVgVvxBrBu83BFryhFG1+t89796LNHYPHrtzV/NRP/RQAzzzzDF/+8pd55pln+MAHPsDp06epPmQFvBCCX/iFX9iNy3Q4HA6Hw+FwOMoR5l4RYR4bQZpmtJdasNJEZSlifOKuSVpK/26EuaaLtMHARJhrY7DWFpMh23Uzr+Go3yyZmVu54jevzvAj6vcwFVhp/Fjp9VFzgWqacMQ/XBpfNsvcsrf7dl1rMblm8Z3yBM/oicOoYJsLEawGDKjC4VCI3o83FouV7WJymQhpRnp9attHoFEmR0sfkGSyAqs93VIQxGmpp9taWOqkSAEjFZ9a4DERRlhh0cqipUF7mxM6rLWs3Fyg22oyMjNHpTHEzKnTVOo76wJyOBy7h5CS6ROnuPLGazTGJ1i5dZOwViOs1h6+s2NgmaiHeFJyabGNEoKFlYTryzHTQxGqj/dFO03XajJrGJY+xmZUhKIqFCmC7iOKxgKIujHdWhUvzcgDH2kMaheFKytkr7fbwzcJQmjsFqLZH4YwwwiVIayHpYtgb4TckVNHuP3aO3Su31s8s/DiG4ycPk5Q351UmErnOllw736lU5lmRLzFJ+cS/tPZe9LANxdCfvypNtEAreHMheIljvBx+y7+mvjxE9ymbQOuiZEtHfeqd5OAoNTXrVA8m53i5eAs8Q7F30urCbIWqd9AmJw4GkV2MpS5dz4vDEnznDxNEFKg0xQVBAghqPiSpjF0Eo0UsBJnDFd8hJAcrv91sIbl9PW7xzJkXFz5jxwf+nGq657BNoOQElmrY7SBbhcbx4jaYKYaBd/3PvJvnMc276ULJ//lG6jTs4iDXDslAC8q5jLypPj/tA1BDXbgd+wgYYWBVZe3AGtNIXgLgxW6n8F2jgFnV/58/eIv/mLhdKEQr40xvPzyy7z88svvuV/hPnFit8PhcDgcDodjF0ma9yLMw6JXum0Ey/M3MYC4dQtZqyDCe5NmSnpo1cKSYdFIOxgT49YW8eXGGoQQfRMfPQyHvFZp7Lfmp2lqj2+bfpE4/DZy/3hpe33xHMfVMbw1Hd7WWs7r8325pvtx590r6LTcAz5+5vj9X7wZ8uKBGulc3XcRHaw1SDuEMGEffwYMyvR6uvHIZIAVEr3a052mSLump9vCcjdDWxivBQSeZLYSIQRkymKkJduk0A3QvHWTzsoKI1MzVOoNpk8+QXVo+OE7OhyOfUVQqTJ++AjWGpJ2m+WF60wcPY5UB3ui+KAzUvXxVZ3zN9vMjsD1lYRry12mhyJ8tSuhl30hx7JoUhrCwwIBlopQeELQsRr9CCk50lqCOIEoxGpJ5vsIk96tANkNtPCRVvfc3Tla7IDYbStgfQRVjFzB2rSv1SqPfB1CcOjTH+btz33h7pjNNde/+i2O/uVP7Mo1VDsLrIw8ee/8yieOxvn22dt87mz1bnd0ogXfXAj51KHBiqnuiICXOcxH7KXSk8wz9hpdApbE1kTXd9VVAuszZe7FiQf4vC87xcv+22RiZ2L2lU7wpEfm15AmJ47GqXYWED0xXwiBF4bkcYxWHkmnTcXzizhxKaiHHs04p5MahND4UlANvULwbvwNbNOwkr5593zGplxY+Q1ODP0EFX/uQZf1UGSjhmi2kFGIiRNEtXJX7xkkRBQQ/OBHSH7j+btj9laT7ItvEnzvs3t4ZbuAoFisnyc9wTssOrz9GrsU8LyHWKywgOyJ3hZrJcKKYtyJ3o8Fu/IuP3r0aOm/Y8eObRi733+rr3M4HA6Hw+FwOHaNZOVehLlfxVhotWJWmjG21UYkMWroXjy3XJ2gkyk5MWKAIsyN0WDBGttXV/ec18IT9yZFtYX/cHmO8fQOtdNLNBt/q/R6L2ky1ukwLadL4wvmBi3b7tt1rcVay62zF0pjjblJoqHtRk5bMLro6hai6Ot+zLFojOgiqSDwkGsmDbeLshkIiRZ+r6vbxwhB9oCe7laak2rDSMXHV5LDtQglBJm0WGlJfbPpiY7m7Zu0l5cYnpymMjTM9IlT1Eb69zk6HI7BYnhqhurQCMPTs1gLyzcW9vqSHH2gFno8OV2nHvrMDRdRxdeWYpJd7E/uBxZYsTkrJiPB0LQ5IKgLj/ARp3n9PC/qP9JsT/q7iwVsEiM8pDVA/53lAoE0QwjCwt0t9q67uzIxytjTJ0tjS+9con1t61Hcm8HTMUGyVBrrVGcYCS3PTpQXhQ5ilDnAHVHjTTFTGpPAB+0VKnaLLmwBZ72LLIlyzHvFRjybnUTanZNNvKyNNDlpOISWxeKDtT+DyveRnncvzrx773lJSUE1UKS5IckMzSQny1eFcsXhxo/QCJ4snc/YhHdXfp1uXu5w3wxCSVStgoii4vmyO1iLItbifeQE8thEaSz9wiuY5b37PbBrCFGI3FAI3kZD1mYnfs8OJkW0OXejzQvxu4g2P+iCv2NXvsMXLlzg3Xff3fJ/DofD4XA4HA7HrpAnvQjz7t0I85aG5NoNuhrE8hK2XscL7gmcUnrYXoS5oYuw4cAsGrbGYClizGWfVt4LLEf98qTQH90Y53I34kfFF0gbR4grnyxtr98+xyl1srT6X1vNBX2hL9d0P1rXb5Esl93nE2dObP/AvQ50PFX8N4COht3GilbRi2arSNPom3NK2QxhDbnwsUhyEWK5T093T6iIM0M70dRDj9CXzNUjAumRq57Q7W1e6G4t3qZ15w5D45NUh4eZPHaC+th4Xz4/h8MxuEweP0kQhgxPTRO3W3RWlvf6khx9IPIVT0zVaUQecyMVfE9wbTmmm+4vwRsgxrBoUlJraNqMFEMkFDXhPdKfuiBJ9rS/W8vib7sRCmV3xkErbBWs1+vuzrBkD99ph5j5tvdvqNG5+tyLWLM7AlS1UxY548okRig+NVcWLN+643O7O5iC0FUxykXGSmMBmg/Zy3hb7H+3wvK6f56W6JbGG7bG0/lxdmoViACCtAkW0qBB5kWkwVDpNV4YAoY8SdBJWkqrCjxJ6Eu6mSbXlqVuhjHFxUqhONL4m9T9U6XjGRtzYfnXiPMbW75uOVRHKImMAkwcs4uBEJtCSEH4wx8r3/enOel/fXHPrmlXeewF7yLa3Apb9HkjC/HbKIRRrs/7ADOYf70cDofD4XA4HI69IFnpRZjH4BWun5Ubd2jFOaYbY5OsiDBfs4uSPkYlvQjzHGF3PyLxflgL2prC1S1AiP7c+k+qLhVZnlD6+UuHAPjo7Ms06/9daZvQKUdWOozIcuTzZX2ZbAcnHW+9VV40Gw7Vqc9MPODVmyDXRXw5ErzBcPDvJVYkWJEibR1hPYTpT7S3JEfaHFPq6eZuT7efZqWe7lxbVuKMKJBUA8VkJaKmfLQ0WAmZZza9mL+9dIfm4m0aY+PURkeZOHKcoYnJvnx+DodjsPF8n8njJ4nqdSqNIVZu3iBPd6bD1bG7BJ7k1GSdoYrPzFBExVcsNGNayc4IrjuJxrJoUzpW07WattUoBA3h8zDJWwBRnCCNxcsytOeh5e5NExs8LKIXZa7ZaXc3VmHFzqQJPQpeJWT6295XGotvL7H45u6YvCqdheIZp4eVirgywYcmU6pe+Wv/wrXBdHcDnBVT3KSc0lQn5f32KmKLyqsWhtf8d4gp/44fM8M8mR/dQcHb4GdNjAzIvSppMEyuonvbpcQLI0yWYXRO2mljzb2LqfgSTwjaaU6uDcvd7K74LIXH0aG/Rc0vL/TVtsu7y79KnG8tVUB4HrISISoRaINNBtfdrY5O4H1bWfDPv/Eu+t2ti/37ivsK3h0eJ8G7iDY3WGzh7kaAlYXgbdSO/Ww79g4ndjscDofD4XA4HKskzVKEedJJaN9aphXniCQmjyJ8716voBQeYHoR5l0ECjkgEebWGqwp/i0c1f1ZwXzMXyl9/OJyg28uNzjcXkA9Y2nXPlPaXr9zkVPqWGkstjFXzXxfrud+JCstmvPlSZyJM8e33yu3GrWpPJCicHY/xlgMVrQQ1kcQIs1In3rhDcpkRWw5HpkMsUKs6enOSz3dxsJSJ8WTgqHQZzj0GQ0CjLAYBbkymE1+qzrLS6zcukl9dIz62Djjh48xPDX98B0dDseBoTYySmN8kqHJKZTnsbRwHTuoNjbHpvCU4OREndFayPRQSD30uNlMWOrsnfN3O7RszpIp3N0tm6Gx1IRH9JC/ydIYgiTByzVS6yLOfLcSawTk0seisELusLtbIe+6u/duUcP4M6cIR8vu3et/8Qp5vPOCoTIZYbxYGutUZ/AVfGymLPK+MB8OrGMXIXhFzNGkLMhP0Oa03XrlRCpyXvXfIVv3/pgx4xzTMw/Ya/sok+HnbXKvipYBcTSOWdNhr3wf4SnyboLRmqx7z4EuhKAaFq/tJJpE69KiHSk8jg39GDW//BymbYcLy79Kkt/e2jU36gilEIFfLAYf1PcKEHz2wxCVn82T3/7q4xFnDvcRvPPHUPCGVdH7gdHmA/wedmwOJ3Y7HA6Hw+FwOBzQizBPShHmdy4vYPKcOCk6DfE8/DXd10p6GBWXIswHBWMMYDHGIvvk6h6WCSOqPCH2C5fmAMGPyi/QmvxBrKzc22gNTyx1qIiotM+7+gJmBx+yb711ofSxCnxGTxze/oG1BkTh7PYHY1HDniK6WGsRto4wEdLW+nBQi2ezos9T+GjpY4S3rqdbE8Yp0lpsT+i2wHA1oBoopqIIKyxaWbQ05N7mZjA6K8ss37xBbXiUxvgEo7OHGZneuYlOh8MxuEwcPUZYqTI8PUuWxLQWtyYOOAYPKeHYeJXJRsREPWS0FnCnk3K7lTDQ6s0DSDEsmoTYGto2J0YTCkX9IbHmfpaj8hw/zRDsbn+3oTjXzrq7JdIOwV13996JXEJKDn36w6UxHacsfP21XTn/hijzaBwt/Q1R5jc6inPLuxtrvxm0ULwkDpNQXsl4lDsctosP2OvhdGXCa/559Lr34VE9y4zeuQobL++iTEoWNDDSJ44msGt+av0wwmLI04Q8idHZvUU5UgpqgUduLd3U0ElzWvFawdvn2NDfpuodKZ0zt23eXflVEr35r5cIA0QQIKuVIvEqG9zUE9mICP7qB0pjZmGZ7r/+A/S5rS+O2FfcT/DOH0fB+z2iza2LNj8oOLHb4XA4HA6Hw+GADRHm6a1Fmt2MZjPGWkEuJZ4SJXewkh5WJRhSLHpgIswBjNF3ewBFn2Ip13d1X+mGfP7GBFjLhw6/RrP+N0vbayvXecKWRcJls8wtc6sv13M/dJpx590rpbGxJ44it+3CtoXYrXo93d7gTgLuBpYcI7pIKgjrIc1oX46rbAbW9FzdkpzgAT3dxUReM8nIjWWk4hN6ktlqBSkhVxYjLdkmhe5us8nKjQWqQ8MMTU4yMj3H2NyhvnxuDodj/yGlYurEKYKoQn10nPadRdJu9+E7OvYFQsCh0QpzIxVGKj4TjZBmkrPQTPali98ASzajZXMSa2jZHNGLNfffQ/IO415/d5phdrO/W4CWwd1Ic7XF3uWHnsbUinsVWynqV/bQ3V0/NM3wyfICzNuvn6N7e2nHz13p3iyijFcRkm5lipPDOVPV8tf+hfnBWcB7P2IR8LI4jF73vj5jFxizrS0ftynbvOldwK5b8vFEfoQx3Z+qnvvhp02whiRokKuAJBy5u62IMw8xaS/OvN0pxZl7SlDxFUlm6KSadprTLEWaBxwb+jtUvPL7LjdNLiz/Kqm+s+nrVUN1hO+B76E7gxtlDuB/+gxypvy9s62Y7r//Y9I/f31f/q7fNHcFb9tb4K8fW8H7wdHmnos2PwDsqNj95S9/mZ/+6Z/mh37oh/jhH/5h/uk//ae8+OKLj7Tv22+/zcmTJzl16tTDX+xwOBwOh8PhcGyXNRHmVoSsXLpGHqe0jUAGCm0snrp3+6yEj0GDTNF3I8wHQwA11mIMGGuQsj8R5pHImVZlN8wvXp5FW8GZlYu0P/YxtFcWtk8vxXii/DU5r3e2m3Dx3GVMvnYiTzD+5LEH7/CoGA3YQuxWqogxf4yxolWsgLdVpB1CsH2ne9HTrdEyxCLJZdTr6fawUuJn5Z7uTqrppoahyCf0JYdqEb4QZNJipSX1zabe+nG7xfLCNaL6EEOT0wxPTjN++MjDd3Q4HAeaqFZnbO4Q9bFx/KjC8o3rvfQUx0Fhaijk6HiVochjqhERZ4ZrKzFmn4ogHatZNGkp1rwqPCri/gv/BKuC9+73d+ve/YORHtLm7Ky7OwIr99TdDTD7iQ8i1JrvhbXMP//Sjotu0moqcXnBaac6gxBscHf/xfWAdGfWHvSNZVHldTFbGpPAB+xVqnbrAuyiWuYd73JpTCB4Kj9Ow/QjxWgjAkuQrmCFIvfrZH6dzLt3Lun7CKXI4wSr81KcOUDoS6pBT/BONO0sZyW+J3grGXJ86O9Q8eZK+2VmhXeXf5VUL2/ueqMI4fuoSgRZhs32bgHJwxBKEv0P34UYK3e9Yyzp736T5Fe+jE32Z4XFplgreOv4MRe8YWO0efGvMC7afD+zI3cuWZbxkz/5k3zXd30X//bf/lv+4A/+gN/7vd/jX/yLf8HHPvYxfuzHfoxbt97bzZGmKRcuXODChQs7cYkOh8PhcDgcDsc91kaYq4DkyjXaWpKstMjCqBDALRsizK1KQIAhRpjBcUAY3YswtxbRpwjzo36TtTWOrVzxm1cLcfu/j75Ac/JvlV4fdm9zOl3XS6gXaG3DbfEwrDHcOnuhNDZ8ZIagVrn/DptB6yLzVLgIcysSrMiQto6wHsIMPXynh9Lr6ZZ+T+he7emWaM/DSzOksXd7urPc0EpyqoEi8iXTtYhIeuSqJ3R7mxO6k06bpevXCGt1hqdnGJqYZPxIHxZJOByOA8HIzByVeoPh6RlMrlm5eWOvL8nRZ8ZqAScnatQjj5mhkFxb5pe65Hp/znjnWBZNSrcXa961mgBJQ3j3nQxW9+3v3oUL7XV3GxQWenHmO3AaU0NYhaS65+7uoFFj8kNnSmPt+Rssn7/ygD36x/oo8zQcIVchn5hNEGvUnW4ueenG4CRWPYjrYpjzlCPGfQwftpfxt9EDf13d5pIqf60Ukmezk1R26JlPWk2QtchVhFYhcTSKlsUzh0DgRRHWGrI0LeLM8/LnF/qSWqhItaGTGLppznJ3reAdcXzo7xKp8uLkzCzz7vKvkOmVR75WIUA1aogwAE9hOoOdeCInh6j+zGdQT89t2Ja/fJHu//KHmBubE/z3JUIWgrddK3h3eXwF79Voc3Mv2pzVaHPPRZvvQ3ZE7P4H/+Af8Ou//utYa+/73+c+9zk+8IEP8Nxzz+3E6R0Oh8PhcDgcjs3Ri44jj9EJJNdv0e4kxF6ICULyJMGTAnVX7BZIqdZFmA+Q2G0M1hqwIPrgQPYwHPLKIvVvzk/T1B7SGqZPW5Lwg6XtTy3lyDXquLaai/ritq/lvVi5ukDWLk+2TJw5vv0DWwPG3HN0bzsSff9iMVjRQtgAQYg0o72Jge1g8Exa9HTjFZPed3u6fZTWeFoXrjNr0cay1M3wlaQReYxFAUNegJYGKyHzin8flbTb5c61eYJKlZHpWRpj40weO1GqLHA4HI83QgimTpwkCCMak1N0myt0m82H7+jYVzQqPk9M1alHPrPDEQDzy13SfH8KARZYsRkrJifB0LQ59GLNg/v87S73d0PmB7tibivc3WKNu7v/Zy3c3Q2wg+HunvrgU/j1amns2gsvYXbYIRt1byHMGherEHSr04xXDE+Nld2tgx5lvso5MckCjdJYlYwP2quIbbjlL6prXJe3S2M+Hu/LniDYoTQvpRM83SX16xix2t9d/KxKKVFBiElTjNZk7faGNIDAk9QCRaYN7dQQZzlLnXSN4F3h+PCPE6mp0n6ZWeLd5V8lM4/+d01UKgilUJUIm2ZYPdhRAKIaEv3U9+B///s3bDMLy3R+7g/JX7m0B1e2y5QE7wR0/tgL3sB9os2Fizbfh/Rd7H7uuef45V/+ZYQQnD59mt/7vd+j1Wpx+/ZtPve5z/Hxj38cay3Xr1/n+7//+/n93//9fl+Cw+FwOBwOh8OxOZIVyLpYY0gu3aCtIW92SIaGUSZHa4u/NsJcer0I86wXYe4hGQwB1NpC7C5c3aIPQiTMeS08ce8pT1v4D5eKlfF/PX6NxY/9jdLrvWyFM+3yJNBlfZmUdNvX8l7ceutC6ePK2DDViT50SWsNCJAKdqvHclARHay1CFtHmArSVh++z0NQNgch0MLHCIVe39OdZkVXd55jLSx1MqSAkYpPPVBMhBFGWIyCXBnMJn4U0zjmzrWrBFGF0Zk56qNjTB0/6YRuh8OxAT+MmDh6nOrQEJV6g5WbCxucdY79TzVQPDFVox56zI5UUFJwfTkmzgZbyHkvYnqx5tbQtBkphopQVIXaEIKyurDMT1NML11lxxECLX0MxbkkO+Xubqxzd+/d91T6HrOfLC8Uzdpdbrz4xo6eV2CpdMrJFJ1q4fT95Loo89du+yzF++B+SAheFXMsE5WGR+nwtL0GWxW8BbzjXWJRlh2/EQHPZk+gNrOychN4WRtpctKggZY+cTR2V2tTgY9QkjyJMVqTdzc6qv2e4J1rQzvRJJnmTie92/PtySrHh3+CUE2W9kvNIheWf5XcPFoKl5ACWa9DGIKSmE68rc97NxBSEP7VDxL9374bKuuSC5KM+Be/SPJfX8Qe9KqSu4K3BrMqeMc4VXe1z/s+0ebGRZvvB/r+W/kXfuEXADh06BDPP/88f+2v/TWq1Sqjo6P8yI/8CC+88AL/8l/+SzzPo9vt8qM/+qP82q/9Wr8vw+FwOBwOh8PheDR0WsSY512y2y10J2alFZNXq6RBBEmMseCrcoQ5KgFhexHmgxPzZ3qr6q0xfXF1CyxH/fIq/z+6Mc6VuJhQ+kzjRdrDf7m0/eRKqyT9xzbmqpnf9rW8F93FZdo3FktjE2f64c61hditVK/r7PEVuy05RnSRVIrJYrP9hQTSZgiryUURX56JcENPt+xFq2JhuZuhrWWkGhB6kplKFaRFK4uWhtx79FmILEm4M38FLwgZmZ2jNjLK9MknELvUU+pwOPYfjfEJ6qPjDE1OgZAsL1zf8Z5dx+4T+oonpus0wsLhHfiS6ysx7WT/Lm7QWBZtStdqulbTsRofSUP4rJW8BRB2Y6SxqCwj93env/uuu1t4SLMzX+fC3V3vubsF7LG7e/jEYeqHyg7bmy+/RbK8s6kR1c5C6eMsGCLzqnxkKiVU936fWQRfvbY/3N1GSF4Wh4kp36cfYpljLD5gr4djBbzhXWBFtEvjdVvhmewkYgdijgUQZE0QgsxvkHkV0mCot60XZ24MeZKSxTEm37how/ck9dBDG0trVfDuZpi7gneNE8M/QajKEfCJvs27y79Gbh7tZ0PWK0glkFGETVOs3h8isffMYao//Rnk7MiGbdmfvkb8f/wptjX44v22WBW8jQaTgs56Dm93TwNros3vit69aHMxGAYHx/3ZEWe3EIKf/dmfZWxsbMP21W1f+MIXGB0dJc9z/v7f//v8+3//7/t9KQ6Hw+FwOBwOx8NJVsAaTKdJOr9IvNIm05CPj2PyDJ3mSMHdCHOBRAoPq2IMCRaDHKQIc2uKqGlLKUZ8q0yqLhVZnkT5+UuHADgVtUg++mEQ9zqshUl433LZWfGuvoDZ4Wi09a5urxIyfHR2+wc2Rf85SvVizB9fIdSKFlgFtoq0wwi2J/xLcpTNMdIHJJmMCnfXup7uKC56utupJtWG4YqPrySHahWUgFxZjLRkmxC68zRlcf4KyvcZnT1EdWiE6VNO6HY4HA9n4uhx/KjCyPQMSbdDZ3lpry/JsQP4SnJqssZI1WemEVILFTeaCSvd7OE7DzBNm7NsCnd302YYoC48wjVTxEV/d4qfa6Q25IG/4/KHFQItPYxQCCxyhzq1C3e3RFLB7LG7WwjB3Kc/XFTk9LDGMP/8Szt63jBZROqyi7tTnSH04KPT5fHn58MtG6N3m0T4vCQOo9flFTxpbzBpt76AwAjD6/55uqIsfo7YBqfzYzuiDQpr8NMmWgXkXpU0GCZXxfOVlArph+gswRhD2m7dd9GVpwT10MNYu8bhvVbwrnN86CcJZFm/SfRNLiz/Grl5eA+3kBJZqyMqxbOwjfePQCwnGlT+0Q/gffTEhm367et0fu7z6Eu39uDKdhGhQIVg8jWCt3N4r1L0ea9Gm8si2lwFSOW7L9GA0vcn+fn5wrHxyU9+8j1f913f9V188YtfZG5uDmMM//Af/kP+1b/6V/2+HIfD4XA4HA6H471JViCPSS5ew+SCZiuBeo2uH+GlCZk2GyPMRY5VOZoYgYcYsAhzawxCgBDbv90/5q+UPn5xucE3l4tevJ9Mv8Wdp36otH2qdZ7Q3Hv6WzYr3DI7O1GQdROWLpad4+NPHkOqPjzuaA3IYvX7YxxhbkWMFRnS1hHWR5jGw3d6TwzSZHd7ujMZYIW829Mtez3dQZwgjSXODK0kpxZ6hJ7kUL1CICWZslhpSX3DhizWB3BX6FYeY3OHqQwNMfvEaaQcjJ9jh8Mx2CjPY+r4ScJqldrwKM3bt8iS5OE7OvYdSgmOj9cZq4dM1iOGKz632ymL7Z2tZdlpEgy3TUJiLS2bkaCJhKImvLt/Sr0sQ2mNnxafaxbsfH934e6WGKGQdoeizFG97u5KIVaIhwt6O0k0OszE+54sjTUvXWPl4s4lIgk2uru71Wks8Kl1UebzbY+LK/vn/qgpKrwi5kpjAnifvUrdbl2IzUTOq/45UsqLXabMKCf0oS0f971QJsPL2+RetRdnPo7puUq90EdISR53izjz+P5/g5QS1CMPg6WZ5KS5ZrGdoXvPar5qcGL4J/HlSGm/WC9wYeXX0ebhXzNZryKEREYhJk72VdqJCDzCv/spgh/5ttKiEwB7p033//PfyL7y9h5d3S4h1wveqevwLrEabU6xUEqpYl7A7p/fi48TfRe7s6z4pa/Uw7/hzz77LF/60pc4ceIE1lr+yT/5J/yzf/bP+n1JDofD4XA4HA7H/ckTyBPymwvkd9pkNxfpVmro8XFyrRFJuiHCXEoPZLHi2dAdqAhzawtHt+31dT+y+vcAhmXCiCpP6P7CpTlAMBlmzB7xMF45yvrZpbIgfF6f39Y1PAqL71wsdasJKRl/4uj2D2xNEe3mqeLJ6TGNMLcYjGgjbIggQJrRbXbBWzybgZBo4fecXH6pp9tPM7w8x89zcm1ZiTMiv+ggnKpGVJVHvip0e48udOssY3H+CkJIRucOU6kPMfvEmWLiwuFwOB6R6tAwI9OzNMYn8PyApYVr+2qC3/HoSAlHx6tMD0WM1QLGawHL3Yybzf0l6qzHAHdsStvmxNbQtjkKQUP4eIh7cea72N9dLHpTaOEhrNlhd7fqubtj7B6LOtMffRavUk5Fmn/+pbvVRDtBpXO99HHu18j8Bk+O5oxH5fM+Pz84CVaPwk0xxNui3EftYfmQvUxgt/6eikXKa/458nVpAIf1FIfyyQfstT28vIsyKVkwhJEecTRRiG4IvDAs4szTlKzbuW+cORTpZPWw+NltJjmZ1txpZ+jes5OvhnqC93Bpvzi/xoWV30Cb917MJTyFqlUQUQQWbHd/Lf4SQhB8xxkq/8/vRwxVyhu1IfntrxL/1lew2d6lQOw4UoEKyg7vrAN7mHwxeBTR5qB6Ueb9rzBwbJ++i92Tk8Uv90uXLj3S60+cOMGXvvQlnn76aay1/PN//s/52Z/92X5flsPhcDgcDofDsZHubWyekpx7F50Y2nGOGBsl9UNskpBrjRTg9RzCQkikUL0I8xiLHawI817ktjEW2Yc45iPrurqvdEM+f2MCgM+O32Txo+Wu7lr3VabTe1F4C3qBlm1t+zreC6M1t9++WBobOT6HF/Xh+6I1IIr4ct9/6MsPLKIN1iJsDWGqSFt5+D7vgbIZWEMufAyKnOJ7taGnO06wFpa7KZ4UDEU+w2HAaBCgpcFKyLzi30dB5zmL81cAUTi663VmT59BPaaLGBwOx/YYmztMWKsxMj2DzjKat2/u9SU5dpDZkYjDoxWGKj6TjZB2mrPQTDD7WPAGaFvNHZOSYmnaDI2lJjwioe7b3212uO4jFwG74+6uD4y7WwU+s5/4QGksXWlx61tnd+ycQbqCysu9zJ3aDFLAJ9e5u//ieki+z0yeFxhnnrJ4WyHnQ/Yy0m79k2nJLm/472LW5Ryc1IeZ1CNbPu6DEICfNsEakmCIXAUkYbHQWCoP6QfoNMEaQ9ppP3ABjpKCxhrBO9WaxVZG1uvYDtQIJ4Z/Ek+Wk5u6+VUurvwG2r53moVs1BFKIsMAE8f7Jvp+LerEJJWf+Szy5NSGbflX36H77/4Ic6d9nz0PCNK7J3jncfFv2oaHLHZ4/NiHb+7HiL7foTzzzDMAfOlLX3rkfebm5vjiF7/Ihz/8Yay1/NzP/Rw//dM/3e9LczgcDofD4XA47qFTiJdJ3z2H7iZkt1ZIx8Yx9TqJlag0JdMWT4m763aV9DEiwypNTheBPzAR5gDG6ELw7kOEeSA006o8CfbLV2bRVtDwNJ8Qd0hGnyhtP7Z8b8GrtpoLuixC7wTLF6+Rx+UJmIkzG7vXNo8txG4pQYjH2NWdY0SMpIawHtKMbOt4khxpNVoWk9m5jECAlr2e7my1pzsBC0udDGNhuBpQ9RXTUYQRFqMgVwbziD9+RmsW569gjGXs0GGiep3ZJ59CeY/xIgaHw7EthJRMnziFH1VojE3QXloi6RzgiXAHE42Q4xM1hioe00MRSWa4thTfFYz2KxmW2ya56/DuogmR1IWHbwx+muLlGqEN2Q73d1shMdxzd4sdchbe6+6OMKK75+7ukSePUZ0eL40tfPN10lbnAXtsDwFU2+Uo806liDJfL3a3Msm3bg5OktUjIQSvixnuUF6gOUzMs/Ya21Fjl2STt72Nzzin82MMm/qWj/sgBJYgXcEKRe7Xyfw6mVcDwAsDhJBkcYzJ8wfGmQPInuAtEbSSnMwYltrpGsF7lBPDfw9Plj+HTn6Fi8v/EfMegrfwPWQlQlQj0Aab7M+qBzlUofI//hX8v/TUhm3m8iKdf/0H5Gev7cGV7RLSA6/3M5N373V45x1crLljP9B3sfs7vuM7sNby27/925uK8xkfH+fP/uzP+NSnPoW1lj/90z/t96U5HA6Hw+FwOBz36NxCr6yQXryEXilc3PnMDJkXkOca8ozc2A193agErMGQIAcowtxYizFFlLnsQ4T5Ia9Vqi6LteQ3r04D8L2zTdqnzpRe72WXebJ9+O7Hl/UVUnZ2osNay8233i2N1abHqYwObf/gPZc8niqc3TvsZBpELBYrmgjrgY2QdhjBdkR/gzIZWnhYFJkMsUIUPd1Br6c7X+3pNrSSjMwYRio+kSeZq1ZAWrSyaGnIvUd73rwrdGvN+KHDRNU6s6efwgsG5+fX4XDsT4JKlfHDR6iNjhJWqiwvXN/R6GHH3jNS9Tk1WaceesyOhFgsV5e6LHWybQloe40Flm1G0+ak1tCyOaIXa15NNZ7WBL3qyp0WvLX02Hl3t9dzd1cHwt0thGDu0x8pjdlcc+0rL+/YOavrosyNF5GEo0xVDU+MlLupX9hnUeZQLJx4WRymQ3lh4wwrnOTWto59Q93hXVXuVZdInslOUjPbS0C6H9Jq/KxFriK0ComjUbT0izjzKMRqje7FmWfd+IGajJSCWqgKwTvOSbXlTjsl61n3QzXGiaGfxBO10n6d/BIXV34LY7P7HRYA1agjlEIEPqbb3be/DoWShH/jY4Q/+R0QrFtV20mI/48/Jf2TV/d1jcV7IgR4USF8r3Z46wyyNmyjBsDh2A36PmPz2c9+FoD5+Xn+83/+z5vad2hoiC984Qt83/d938H9heFwOBwOh8Ph2Ht0ilm5RfeVb2G6MdlSh3x2DnyfxPMh7pJrW0TH9RRfKRQCiVUxWiSARQxShLnWgMVYu21Xt8By2CvHj/+f1ydZzn0CafjusTbNJz5a2j7e/FOq9hAAsY25aq5u6xoehc7NO8R3Vkpj/XF104swl0Unl/94uroRMVbkCFtH2ACxLbeKxbMpRiiM8NHSxwhvQ0+36vV0d1NNJzU0Ip/QlxyqVvCkIFcWIy3ZowrdxnDn2lV0lvcih+vMnX4KPxicn12Hw7G/GZqcptIYZnhqpqheuLHw8J0c+5pa6PHEdJ1G5HN4pMJwxWepmzK/vP9d3l2rWTQpKYamzcgw1IRiJCkqRvw0wyiF9nYu2cjgYRFrxO6d+ZoKM4RgcNzd1clRxp4+WRpbPneZ1tUbO3I+P28XEdlr6FaLha2fWufufuWWTzPdfx21mfB4SRwhWyeBnLK3mLbL2zr2FbXAvCzXV3gons1OEdr+L6j0dIKnu6R+HSP8Xn+3KOLMA588SciTQvBOWi2sebDgXQ8VSgjaSU6aGxY7Kcmq4O1NcHz4J1GiWtqvnV3g0spvYx4geIowQAQBslqBXEP2YGF8P+B/+DiVf/wZxEQ52h1rSf/gJeJf+iI23p8O9ociKCLNVQBG34s1z1ZjzZ1u5xhM+i52f/SjH+U7vuM7OHnyJL/0S7+06f0rlQq///u/z4/8yI/0+9IcDofD4XA4HA4AbOsG8etvYVaWSBdWkJWIdHqWTHnkBkSSkBlTRJiLntgtPazIsFKj70aYD47b1xiDtQYsCLm9yahJ1SWSZSfNr1yZBeA7p9qIYBzWCOrCtDixcu9h/4K+gNmFCcP1ru6gXmVobmPP2uYxxYO9p4onpscwwtxiMKKNsCECH2lGt/V+L3q6LVp4vZ7uYhJwfU93GCdkuaGZ5FQDRcWXzFYqhEqSKYuVltQ3jxRcYI1h6do8eZIyOneIqForhO4o2vLn4XA4HOsRQjB1/CRBFDE8NU3cbtFZ2Z6I4hh8Kr7izPQQU0MRY7WA2aEIYw+GyzvHctukdK2m0/svtJLxJMdb7e/2fMw27zcfiIBcBlgURkjUDrkJBR7C1NZ0d8c7cp7NMPPx96PCslA6//yL2B1aRFFZ5+4uoswFH51O8eW997C2gq9d258LBdsi5BVxaIM896y9xpDdhqNfwDnvCjflndJwiM/7slN4tv8LQrysjTSaNGigpU8cjWMBLwyRQYhOE7JuF52mxCvLmPz+yQii5/BWUtBONVluWOqkJFnx+sib5PjwT6BE2aXeys5zaeU/PVDwVkM1hO+B76G7e//ztF3UzAjVn/4M6tnDG7bpVy7T+bnPY64v7f6F7RbSK1zeQhSCt84gc7HmjsFlR2bnvvjFL/L222/zu7/7u1va3/d9Pve5z2GMQbv4J4fD4XA4HA5HP9Epyasvk9++QXr1Jngh4ugRcuWReAEmzRBGk2uLV4ow97GlCPPBmfCxFoyxGGsQUmxbhD/il10eX19q8FqzjsTylw91WD7zwdL2evv3mdYfB2DZrHDTbC8a8FFIWx1WrpQn6CZOH9+20A/0XN2iiC/3H89OZytaxcIJW0eYKtJuXSBe29NtkeQyfGBPtzGw1M3wlaQReUxEAfXAJ18Vur1HFLqt5c71a6RxtxC6a3VmTz9NEPU/WtLhcDi8IGDy+Emiep1KY4iVmzfI0wPq+HLcRUqYG63wxFSDoerBc3k3bc6yyXou7xylLSOZoZIbhDFkfrBj/r5Vd7fdYXe3NEMIFJIQIzp77u72opCZb3tfaSxeXOb26+/syPmqnXIShVWFgFr1LR+eKv8Oe34fRpmvclvUeUtMl8YUlg/Zy0TvEc39UAS85V1kWZQTsao24pnsJNL2d0GIAIJsBYQg8xtkXoU0GEIg8MMAv1LBaE3W7qCzjHhlmewBPd6rgrevJO1Uk+aGpW5GnBVCdsWb5vjwjyNF+Rmglb3D5eZ/xt6nYkBEFYTnoSoRpBk22/+x16ISEP0P30XwmQ9teAaxN5t0/pc/JHtpY4f7gUEIUCFIH0wGOilE77QF2/nZcTh2gMGxojgcA4JJErKFGxj3YOpwOBwOx4EkffNlsoUbZFeuYowgODJLt1IreoOlh41jcmOxFoK7EeYeAlFEmFOsUhc7EE+3VVYjzK2xvb7urVMXKWOqPCnyy5fnAPjYeIdafQwTrom1s5rJla9QtcWK9/P6/LbO/6jcOnuhlKAmPY/RUxtX3W8eC7npdXSLx9TVnWFFgqSGsAppRrdxtHJPd97r6bbre7qTBKELV4kUMFLxqQce42GElgYrIfMs9hGeYK21LF2/RtrtMDrbE7qfPENYrT58Z4fD4dgitZFRGuOTDE1OoTyP5RvXXUXfY0ItPLgu7wTDoklJrKFlM0SaUDXQyDWIoopkRxCQS78QvXfU3e0jTLXo7oaBcHePPX2SaHykNHb966+Rdfp/bZ6OCZKl0linOgNsjDK/1PS40ty5+Pqd5jKjXGakNBai+ZC9jLJbX+RgheV1/zztdb3vw7bOmfx43xOfhTX4aROtAnKvShoMk6tiIYL0PIJqFSRk3Q46S8k6bZL2/WPNhRBUA0mgJJ1Uk+SG5W5OJ1kVvGc5PvTjSFFe6NBMz3K5+TtFqljpeKCG6hAE4CnMAXB3Q7EwIPgr7yP6B98L1XWLPtKc5Fe+RPK739ixBIY9RwDKBy8s/p7lcdHfnXVAd3Eub8eg4MRuh2MN1lq63/wm8Wuv0X7uObovv0y2sIB1CQMOh8PhcBwI8oVrJG+/QbYwj252CA4fRUQRXT8i9fxiEiCJSbXBkwLZE7uV9DCyF2EuBi/CXBuDtYVAv92+7iN+2ZlwM/H5/I1xAL5ntklz4lRpe6X7ZWbTJwBY0Au0bHn/nUBnOYvnLpfGxk4dRvXDhW0MYApXtyd7ovfjg8ViRRNhPbAR0o4g2PrEpmczjJD37+lmTU93lrPSzdDWMlINiLwivtxIi1GQK4NRD58ttNayvHCdpNNmZHqWqF5n5skzRLXt9I07HA7HozFx5Bhhpcrw1CxpHNNavL3Xl+TYJQ6yy1tjuWNTOlYTW43tdvENNDKDVYpc7YwAavCxsOPd3avubmEDrOhi97iPVkjJoe/4SGnMpBnXv/atHTlfdV2UeVyZxAjF0+MZI2F5PvSFfezuRgjeEjPcplYabpDwPnt1W4tScqF51T9HQtk4NWFGeCI/0nfBW5kML2+Te9VenPkERhQ/h0JK/GoV6fvkcUIWx+g4IWmu3DfWXAhBJZAEnqSTaOKsqBNq9wTvqj/H8aG/ixTlhd4r6Ztcaf6fGwXvSgXpKVQlwibpgZpT987MUf2ZzyAPj23Ylv35G3T/9z/GNLcRjT/oCFUI3lJB3nN452khenNwvs+O/cvjNXPjcDwMrTHdmOzqFbLLV0gvXSJ+7XXazz1H/Oab5HfuuJXZDofD4XDsU3SrTfziV9DLy+TXb+DNTKOGG8RegEGQyACbFg6GXFv8UoS5ByrGWoMhHbwIc1v0dQvB3Y7xreBhmPXapbFfvzpDZiVzlZS5mVGykfHS9kbrt5kwn0ZbzQW9OxFud969glkXizd++nh/Dq41IIuH+McxwlzEWGEQtoG0AcJsXSSWNgNr0MLHIEs93UZK/DRD2qKnu51o4twwXPEJlORQrYKQoJVFS0PuPZrQvXJzgW6ryfD0LJXGEDOnTlOpN7b8OTgcDsdmkEoxdfwUQaVCfXSc9p1F0vgAT3w7NnCQXd4tm7NkMnKrMd02whhquQU/wGwzWei+CIqFcigs9ATvnThNgDAVhK0WQvcAuLtrMxOMPHmsNHbnrQt0Fvq/gKbSWYA1gqWVirgygRTwidmyePuVayH7eN0GVgi+JQ7RpizcTtHiSXtjW8dORcar/jkyys8os2aCI3r6AXttHS/vokxKFgxhpEccTdzV1ItY8wgvijB5RtrpkGcZ8coKOtmYZFo4vBUVX9JNNXGmaSU5rXhV8D7MsaG/g6D8bLScvs7V1u+VBG8hBbJegzAEKQ+Mu3sVOVan8j//VbyPn9qwzZy7Qfdf/wH64s09uLJdQghQAcigiDXPYzA5pG0wLiXXsbc4sdvhuA9WG/LFRZJz54nfeov06jzphQt0X3yJzle+QnL+XUyns9eX6XA4HA6H4xGxaUr88jfRS7fILl9GNWr4M0U0d8ePyKVCS1lEmGuDseCrnqtb9FwlMkH34ukGKcLcWgO9zm6xGr29RWa9Fkrcm4TNTSF2A/yl6RadxpHS6/30LCPd21TsES7rK6Ts/AOutZZbb10ojTUOTRE2avffYXNHB6N7jm4Kd/djhMVgRBtpQwQewowhtvh+EmiUzTHSByS5jO7b0x12E9Lc0Epy6qEi9CRztQq+lOTKYqQlewShG6B56yadlRVGpmao1BtMn3yC6tDwlq7f4XA4tkpUrzM6e4j62DheFLG8cB1j9rE65Ng0JZd3pXB5D0UHw+WdYlg0CXmeYZIY8pTAWkQYPXznLaDxAYGRfi/KfGe+dsIOF/c+A+LuBpj99g8g/XKdztXnvtl3E44yGWG8WBp7UJT5Sip5/fb+XgyaC8WL4gjpuuSi4ywyZ5e2deyOjHndP49Z9z49rueY1hvdwNtBAH7aBGtI/SFyFZCE5eoh5fv41VpROdBpo7OUpN0ibXfu+z6KAkUlkHRTQzfVtNOcZjfHWqj5Rzk29LcRlN+TS8krXG3919LxZL2KVAK56u4+YH8Dha+I/vYnCf/Wt4Mqy2t2pUv3332B7Lm3DrZhTnng9X7v53HP5d2FvIOLNXfsFU7sdjgegKzXCU6eRFar5LduEb/5Fsm5c2RXrpKce4f2V75K5xvfIL1yFZtle325DofD4XA4HoA1hu6rr6FvXiW9dAWhLP6RwyAEWkgSFZAoH2EMOk3JtEUKUGsizK3MQGoMqxHmO+Be2SLG9Pq67Xb7uu2GCPM/ujnOQhLiC8PHDivisUOl7Y3mbzNhPkViE66aq9s496PTvHaTtFl2n0+eOdGfg+ueE0N5RVf3TriUBhgrWkXMoq0hTR1pt5pgUPR0G6EweGQy6PV0s6Gnm1yz3M2IfEkt9JipVqh6ikxZrLSkvnmk9RvN2zdpLy8xPDlNZWiY6ROnqI1sp2vc4XA4ts7o7ByVeoOR6VlMrlm5uT3HoGN/UgsVZ2YOnsvbAEs2I0k6mDzHpAkIgQxCVL/vkYUou7t3KCq3SLOJeu5uPRDubr9WYfqjz5TGujfvsPjmu30/14Yo82gcLX1m65rjQ2Wn8vP7Ocq8R1cEfEsc2iDJPW2vMWrb993nUVmRbd7yLm5YMPFkfpRRPbStY69HYAnSFYxU5H6dzK+TedXSa+RqrLnnk8cxWRKTJzFJs4m5z8KbyFdUAkWcGTqppp1lNOMMa6EeHOfY0I9tqDhaSl5mvv35u+KukBJZqyEqxXvFdpMN5zkI+J94ksr//P2IkfLXHG1I/vNfkPzHF7Dr0sgOFEIWgrdUhatbp4XonbWBA/x5OwYWJ3Y7HA9CCFS9TnDkCNHTTxMcPQpSks7PE7/xBunFi6SXrxCffYvWc8/RfeVV8ps3D9xqNYfD4XA49jvJ2bPkt2+QXjgHeUJwaAoRFC7grhdigdTzEWmMsJBpsybCXCClApVgrcaQDVSEOYAxpnCMie31dY+pmJosP5T+8uXC/f7R8S566nhpm9SL1Dp/woT5FBf0hQ0Ohp3i1roJvmi4QW16/AGv3iS5KR7WEY9dhLklxYoEaWsI6yHM1h3RhfOKIr5cKEwvHSHzg54Lpejp9tKcpU6KkoKhyGc0DBgOfPJVodt7NKG7tXib1p07DI1PUh0eZvLYCepjfXpPOBwOxxYQQjB14iRBGNGYnKLbXCFuNff6shx7wKrL+8npg+fy7lpNp9PEGI1NYjKlkJ5PsI370ftx190tPGRvkedOMIju7vH3PUk4Uq5juf61V8jvE0W9HSrdm0W60SpC0q1MAfCpubLw/9KNgHa2/xeE3hE13hCzpTEJfMBepWK39/W9pZY4710pjQkET+fHqZvqA/baGtJq/KxFriK0CknCMbQsu68FAj+K8KIQk2WknTY6TYlXltHpRgNX5EuqoSLNDZ3E0MlyVrqrgvdJjt5H8L4Tf5Nr7T+6K3jLeg0hJDIKMXF8YF3O6ugE1Z/5LOqJmQ3b8q+fp/u//hHm9gH++y9YE2uu18Sad8AczEUOjsHFid0OxyMgpESNjBCeOEH01FP40zPYJCG9cIHk9TfIrhT93t1XXqX93PPEb51Fr6zs9WU7HA6Hw/HYk165QjZ/jfzds5hOl2B6GFFp3HXsdvyITPlYBLYbo40tR5hLrzC6qsGMMDfWYEwRZV64urc+8XTUK7u632xV+epS4T74zkMp3aHDpe2N1u9QMZPkepSb5taWz7sZ4uUmrevlc008dXxbPeV3MRowRXS5ksXs9GOCxWJlC2F9BBWkHd4wgfWoSHKk1WgZYBFkolgcknseRkn8NEVaQ9BNWOpmGAsj1YCar5iMIrQ0WAmZZ7GP8C1oL92huXibxtg4tdFRJo4cZ2hickvX7nA4HP3EDyPGjxyjOjREVKuzfGMBnTun0+PKQXV5a2vodFvkWmPylI4nkUJSEapvSUhWCLT0MEIBdgfd3SHChAhb67m7916okUox9+kPl8Z0nLDwF6/29zxWU4nL99irUebfNpPira05soK/uD44z0PbYV6McIFyvHiA5kP2Mt42O+Ln1S0uq4XSmELxvuwkUZ8XT3s6QemYzK+j7/Z3b/z5U36AX61iLaSdDjrLSFpNsk53gxgdepJaoMh0IXh3s5ylnuDdCE5xpPE3WS8tLcZf53r7j7HWIjyFqlUQUQT24Lq7AUQ9Ivp/fC/+9zy7YZuZv0Pn33ye/I3dSUHbM+4bax5D3sbFmjt2i8dnBsfh6BPC9/EmJwlPnyZ88knUyAh6aZnk7beJz54lm79KeuECna9/g/ZXvkp64QIm3vv4I4fD4XA4HjfyxUWSt98mX7hGfusGwdQQshKBVwEgk4pcKhLPR5mcPMvJtEEK8HrObiU9kBlWaDRxTwwcHCdDET1nMdZuy9UdiZwJ1S2N/crlWUAwU8mYPjqLVWscAjal3vovTJhPcV73P0rxQazv6lahz8ixQ/d/8WbRGpCFs/sxc3UjulgMwtYRNkCY+hYPVMSXa+Fh7/Z0i6Kn2y/3dLeT4udtpOJTUZLZagUrLUZBrgxGPXzSv728xMqtm9RHx6iPjTN++BjDU9NbvHaHw+HoP0MTk9RGxorfTUKyfOP6gXW3OR7OPZd3/UC5vEWeE6cd0jTGWMOKX0SOV4TE69N9syYAZOHutju3aETYoZ6728eKzkC4uxuHZxg6Ub7fvf36Obq3l/p6nvVR5mk4Qq5C6oHlA5Nlp/MLByDKfJW3xRQ3Kd/71kn5gL2K2Obv6wtqngVZ7kP38Xlfdgrfeg/Ya2v4Wavo7w6G0NLf0N+9ipSKoFpFKkXe7ZInCVncJWm1sKb8+fprBO92qkmyIpXJGstQeJojjR9l/WLr2/FXWej8aVGx1agjlESGQc/d3ddPeaAQShL+4IeJ/v5fgnDd97abEv/Cn5H+t29t+BofKIToxZr7vVjzpBC90xZYVwHr2Hmc2O1wbANZqeDPzRE+/TTBiRPIKCK7vkD85huk754nm79K/M452s+/QOfFF8muXcO6ldwOh8PhcOw4pt0mfu019MoK2eV38caGUVUP/ErJ1W2EIJMeIkkxFjJt8VQhZwskUnhYlWBtjiXdRofxzmCMxloDtuhj2yqHvWapnnolV/zO9SK68C9Nt2mPHi+9vtb5E5S5g8ieomXLjvCdIk9S7rxbjgMcf+IY0tuaA7mMBWPAk8UTUl+OuT+waIzoIG2EwEPqsS0u6LB4NrsbW57LIsLcAnngI7Xp9XSnpHFGJ9XUI4/IlxyqVVBKoJVFS0PuPXwSqLOyzMrNG9SGR2mMTzA6e5iR6Y3xgQ6Hw7HXTB47gR9VGJmeIel06Cwv7fUlOfaYWugdOJe3TBJynZPEHXIBTU+SYwmEJOxDrLkVAi0URiiEtcgd6oOVtoIwwRp3d3/jwrfK3Cc/hFBr7k+tZf7L3+zr4pmoewth1ghSQtCtFosIPzVXduWeX/a53j4gsoIQvCIO0aT8nDdOmzN24QE7Peqx4W3vIndEOf2zQsiz2SnUo8QYPfqpCNIVrJBkfoPMr5F5tfu/Vgi8SoQKQ3SWknU76CSlu7KEXtcx7XuSeuChtaUda5JMc6ebYYxlOHyKI40fYb3gfav7Ajc6f47wPWQUIaoRaIPtc/z+IOJ94CjVf/wZxPS6SigL6R99i/j/939hOwfX5V7EmvugwuL5Ok/A5pB1wHTZqRoKhwOc2O1w9AUhBKrRIDh6lOiZZ/APHcYaS3rpMsnrr5NdvkR6+TLdN96g/dxzdF97jXxx0a3odjgcDodjB7BZRveVV9DNFtmFd1EVhTdaAcRdV7el6OtOVc/BGycYa8mNJVjj6rZYrIrJ6QJiwCLMi+dHYwxSbj3CXGI45LdLY/9pfpqOVnjC8tEnhjF+pbS90fxtQjPDfL4zMZL3Y/HcZexax5MQjD95rD8H173+R6XA86Afsej7BCvaYAXYKtLUEWztPa5sDtaghYdBogmKnu6gOJ6fpqhcQzehmeRUA0nVV8xUKgRKkiuLkZbsEYTubrPJyo0FKo0hhiYnGZmeY2yuTw5/h8Ph6DPK85g6fpKwWqU2PErz9i2y5ABPdDseiYPm8haA6nYx1pCkXWIl6EpBYg0Kgd+HKWgtVt3dCrnNiOn3ouju9gt3N50dO89mCBo1pj78VGmsff0WS+cu9+0cAkulc6M0thpl/uxERsMvvycPkrtbC8lL4gjJuhqfI9zhiF18wF6PhhXwhv8uTVF+LzVslaezEwjbv+cOaTVB1kKrEK1C4mgULe+fWCUQeEGAX6lgtCHtdDBZRtJcIeuWE0o9T1ALPbS1tJKe4N1ZFbyf4XD9r284/s3ul7nR+RJqqI5QChH4mG53w+sOInJ6mOo/+gHUB45u2KbfuErn5z6Pnr+zB1e2i0hVuLyFKARvnUGWulhzx47ixG6Ho88IpfDGxghPnSJ86inU1BS60yU9/y7JG2+QXr1KevES3Zdepv388yTvvINu7Y4jyuFwOByOg461tnB0N5ukFy8iRIY/M4nQScnVnSgfIySJ8gl0RprnZLpoNvN6Dml5N8LcYERcxDsPUIS57Qm0dpsR5jNeh0CUHzh/5cosAB8Z75BNnSxtC+OXCLK3CfJnydidODJrDLfPXiiNjRydxa9G/TlBrosHciT4/Y0UHGQsCVYkSFsrIvrNyJaOU/R05xjpFx/JCAToUk+3xevGLHUzfCVohD5TUUg98MiUxUpL6puHrtmI2y2WF64R1YcYnppheHKa8cNHtnTdDofDsVtUh4YZnpqhMT6B5wcsLVxzi98dwD2X9+R9XN7L3f3l8hbWouIYoTVZntH0BJmADIMvBHKb99FWFEK3Fh7CGsSOdXdXivsiW8WKHDsA3d0Akx88g98oO3WvvfAyOuvf/Xi1U3YyZ8EQmVfFk/Dts+WvwwvzIQcpkTkWPi+LI+h179MzdoHxbSZZaWF4zT9Hl/LXcNQO8WR+tK9mV9Xr7079OkY8uL97Fak8gmoVoQRZp0ueFk7vpFmONfeUoB56GArBO801i50MbSwj0fs5VP+hDce+0flzbum/QAQBslqBXGPTxyPOWkQ+0X//nQQ/+JENC6nt7Rbd//UPyb6xe3Vge4IQhcNb+mAy0DHovIg1N4/H+8Cxuzix2+HYQWQQ4E9NEZ05Q/jEE6ihYfTtRZKzZ0nefpvs6lWS8+fpfO0vaH/ta6SXL2PSgx/p4nA4HA7HTpG8/TbZ4iLpxYuQJfgzYwibsNbVDdD1o6JHWCpkmqCNJTOmiDAXIIREClVEmJsMS4YcIFc3gDYGay3WgpBbnTy0HPGapZEv3h7h3U7xtfruUx5ZZaS0vdH6LQCa2e45aZcvXyfrlB0GE2dO9OfgVgOmcHWrXmf3Y4DFYmW710MfIc0IYkuPhwZpevHleGQyLKJGpST3PVSvpzvoxqx0UqSAkUrAcOgzGobkq0K393ChO+m0Wbp+jbBWZ3h6hqGJScaP9Mnd73A4HDvM+KEjhLUaI9Mz6CyjefvmXl+SY0CQEg7dx+V9p7P/XN4yz5FphszSwgXqK1Jr0UAktit3gxYeu+LuNsMIAoT1sAyGG1V6HnOf+lBpLO90ufHNN/p2jjBZROqyILvq7v7kuijzO4nizcX7u4b3K8uiwutitjQmgPfbq9Ts9hY9ZCLnVf/chsXC02aM43r2AXttDT9rIa3u9Xd7xNHYe75eSIlfqSCDAJ0kZN0ueZoQr6xg1iR5qZ7gbbE0k5ws19xpF4L3aPRB5up/bcOxFzp/xlLlDYTvge+h17nGDzJCCILveYbof/zLiPq6JIRMk/z6cyS/8xfYXUxL23VWY829qFjUkceF0J13IO/iXN6OfuLEbodjl5DVKv6hQ0W/97FjCN8nu3ad+I03SC9cILtylfjs2SLm/OWXyRYWeo4th8PhcDgcj0I2P0925Sr51auYdgd/ZhTpyeKBao2r2yCIvYBEBQhr0UmKtZZcW/y7Eeb+vQhzETNoEebWgrEGY00hzm9x6nBYpgyp8oTLL10uJlumo4zRo+XoNZXPU+k+h9QjGDO5tYvfArfeulD6uDoxQnVipD8Hzw0gipnmx8jVjehgrUHYOsKESHv/Tr+HoWwOQqKFj5YeRnilnm4/1/hJSqeTkBvLcNWn6immKhFaGayEzLM8rLIw7Xa5c22eoFJlZHqWxtg4k8dOIB6jyHmHw7G/EVIyfeIUflShMTZBe2mJpNN++I6Ox4aD4vKWSYzQBpUmZAK6nkdiNRaIxPYWFZpeXYoRXk/s3hmhRNgK3HV3Z1gGw5gydGyO+uGZ0titb50lXlp5wB6bQ7DR3d2tTmOBo0Oaw41yn/NBijJf5boY5hwTpTEfw4fsZXy7va74WCa86p9Hr0slOKJnmNUTD9hr8wjAX9PfnXvVB/Z339tH4IchXqWC0Zqs00HnGfHKMvma6g0lC8EboJnkpFqz2E7JtWEs+jCztc9sOPZC+ucsBW+iKhGkGTbb3tdxv+E9MUPlZz6LPLrxe5x9+S26/9sfY5YHozJhxxCyELylAp3e+y/rwA6ldDgeP5zY7XCso8s1muG7JN4dbD9zZHoIKVHDwwTHjxM9/TT+3CFsnpNeukTyxhtkV66QXrpE/NrrtJ97jvjNN8nv3HERZw6Hw+FwvAf5nTvEb71Ffvs2+e1F/NkpVEDv4ans6o79AIMgvRthbshM4ZAOVCGcSemByrAYjOgibDhQEebGaLBgjUVIyVb7uo/4ZVf3lW7In90qVv7/5eOauFF2GTSan0Ng0PrJLZ9zs3RuL9G5Ve4065urGwtGF65uIYq+7scAi8aILpIKAg9pRrd0HEmGtJpc+FgkOWG5pzvLUFqjOwnd1NCIfCKlmK1GIMEoyJXBqPe+z03jmDvXrhJEFUZn5qiPjjF1/KQTuh0Ox74jqFQZO3SE2ugoYaXK8o0FjFvk7ljDQXB5C0DFXTAWmWV0PcgExNYggHAb9TsAWhb3HUbIYtHdDiAQSDOEICzc3WIwhCghBHOf/lDv/r/AGsP8cy/1bd6w0rle+jj3a2R+A4BPrXN3f3MhID6AuuV5McF1GqWxKhkftFcQdns/gy3Z4Q3vwoY551P5YSb0yLaOvRZpDUHaRKuQXEXv2d+9FuUVseYIyDptdJaRttsk7fbdWHMlBY3QQwCtJCfThjvtjEwbxisfZbb2/RuOe0M9z1L1PCiFeYzc3avIkRqVf/h9eJ98csM2c+Em3X/zB+jzN/bgynYRAagAZAAmv+fyTttgBqMuwrG/cWK3w7EGaw0xN8hki9i/SYtzmB1cvSk8D298nPCJJwhPn0aNjaObLZJz54nfeov06jzphQt0X3yJzle+QnL+PKYzGDfYDofD4XAMCqbbJX71NXSzRTZ/FW9iAq/mFSLmuq5ugI4XkSsPIwRempBrQ6YNnhQIIZBCIZFYFWPIsOQDF2FujcFSxJjLLQp+AZppVb6v+JUrsxgESliePTNb+roJ06Te/r3i/NnprV/8Jrn1VrnLzK9GDB+ZecCrN0mv9xxPFf89JuKpFS2wAmwVaRoItvL+NiiT9ybNJNn9erqNwevEtOKMyJdUfclMpYLnSbSyaGnIHyJ0Z0nCnfkreEHIyOwctZFRpk8+UZrkdTgcjv3E8NQ0lUbR4W2NZfnGwsN3cjx27HeXtzAGlcQInYOxtDyJwZJYg0LgbWPRpMHDItZEme+Uu7sK1lvj7h6MjtloZIiJ95cFs9aV66xcnO/L8YN0BZWXnxE6teLe+9tnEqS4995LjeAbCwfP3Y0QvCbmWCYqDY/S5Rl7fds/f3fUCm97l8qnRHAmP8aQ2Vra0v1QJsXTXTK/hhH+Q/u7716LlPjVKtL3yeOYLI7RcUzSvBdrLnsOb4mgFeek2nCnnZLlhvHKx5mp/pUNx70ZPE9r5Ao2TR/LNFPhKaL/7tsJ//Yni2fPNdhmTPd/+wLpF984+IY35d0zI+Qx6Kz4N+/gYs0d28HNEDgca7AYwJKrFol/m4wlVniLlMUdP7eMIvyZGcIzZwhOnkRWq+S3bhG/+RbJuXNkV66SnDtH+ytfpfONb5BeuYrNBuNG2+FwOByOvcLmOd1vvYJptcguXUTWG3jTE4Wj+z6u7lxIUuWTKB9lDFmabYgwl9IDLFYlaLoMaoS5NfZuv/hWOOS3WFv1HWvJb85PA/CJmZRs7Ejp9fXW7yJtF6sbYPokNj+ErBOzdPFaaWz8yWP9EzpzXViokOAdrM7BB2FFghUp0tYR1kOY4a0cBc+md3u6cxlghcRISe7d6+kOez3dQsBQ5DMeRNQCRa4sRloyz75nQECepizOX0F5PqOzh6gOjTB9ygndDodjfyOEYOr4SYIoYmhqmrjdorOyvNeX5RhA1ru8D41UaOwjl7fIMoS1yDzHKEnb5mgsOZZASLbc4C0glz4WD7tL7m6sworBqR2Y+sgzeNWyEHvt+Zcw+fa/FgKotsuLcDqVIsp8KLS8b7w8F/n8AYwyBzBC8pI4TEw5+WmOZY5ze9vHX1CLXFDlBQoSyTPZSaomesBem8fL2kijSYPGI/V3r1LEmkd4UYTJM9JuB51lxCsr6LR4D0gpqIUKKQTtJCfTljudlCQ3TFQ/wXT1ezYc90b1qzRrl7GPobt7Ff/jp6j8v/4qYmzdwgZjSf/LN0h+7TlscgAjE9YiRC/W3AOzGmvec3nv0O90x8HHzRI4HA9Ay4QO82Qs0+YSbS5g2PlftkIIVL1OcOQI0dNPExw9ClKSzs8X/d6XLpFevkJ89i1azz1H95VXyW/exJrBfshxOBwOh6PfWGuJX38dvbJMcuECKI/g6FFE2nygq7vrR1gEmfLwdUI31aS6HGGupI9VGdYajIh7EeaDg7UGY4p/ixjnzV+dwHLYa5XGfm9hgqWsEHy/8/3jWLlmtbnNabT+U/H/+vSWzrkVbr99seScEEoy9sTR99hjE1gDmGJluRQbVtcfRCwGK1oI6yMIkWYEsYVHQmULR5kWHkYoNH4vvtxHGIOXa/w0Je5mRU935DPkeYxWfDJlsdKS+ubRhG7lMXboMJWhIWafOI2UB//75HA4Dj5eEDBx7ASVep1KY4jmrZvk6WB0AjsGj1WX99RQxPg+cnkLQKRZ4e62ltRTJNaQWoNhe3HmpnfvsTvuboW86+4eDBFGBT6zn/hgaSxttrn58lt9OX51XZS58SKSsKi9WR9lfvaOz83OwZQYUuHzojhCvu6m9Ql7k0nbfMBej85ltcA1eas05uPxvuwUge3PQlwB+NkKCEnmD5F7VVK//sj7K9/Hr1bBQtppo7OUpNUk7XSKlDEpqIcKJQvBO80NS52UJNdMVj/NVPUvbbigm6PfYEWee6znstXhMao//VnUmdkN2/IXL9D9X/8Qc3NlD65sF1mNNVdhMX+Tx4XQna3Gmg/m3zbH4HIw/xI5HH1AGh9FRMxNEm6QsEiTt8jY/s3MoyKkRI2MEJ44QfTUU/jTM9g4Jr1wgeT1e/3e3Vdepf3c88RvnUWvHPA/hA6Hw+Fw9EjPnye7dYvs8mXIc4LjxxHCPNDVDdD1Q1KviD4kSTDWkuQG3xNIKZDCQyCKCHOb9iLMB8utYEyRRGOMRW5xknBSdYlkOTruly7PATBby6nMlAXlWucLeLqYiLHZmS2dc7MYrbn9Tjneb/TEYbywTy57rQFR2Kb8x8PVjehirUXYOsJESLv5mERJjrQaLYOip1uEWFEI3XCvp5tOQjvNqYUeVV8xWYmwXk/o9t5b6NZZxuL8FYSQjM4dplIfYvaJM0jlhG6Hw3FwqI+O0RifZGhiCqkUyzeuH/zoUseW2a8ub5kViziE1ljPo4Mmt5bEFvehkdji33YBWgZ3I82l3ZlIZIFE2iG46+4enGrBkSeOUpuZKI3dePFN0ub2Heh+3sZPy/Of3WqRAPWBqZSqV36/feXaYD0v9ZOWiHhVHCrJbgJ4v71Kw27TnSzgHe8yt+VSaTgk4H3ZKTzbn3tfaQ1+2kSrgFxFJOEIWj76M5WUqog193qx5klCHsckzSbGGETP4e0pSTvVZLlhqZMRZ5rJyncyWfl0+YACbox9naZ5uy+f335F1EKi//v34H/f+zdsM9eX6Pzc58lfvbwHV7bLSFW4vIW4F2uexZC3cbHmjs3gxG6H44FIIqaImCSnS5crZKzQ4hwdrvYiz3cP4ft4k5OEp08TPvkkamQEvbRM8vbbxGfPks1fJb1wgc7Xv0H7K18lvXABEz++kTAOh8PhONhk16+TXrxEfu0autnCP3oUGYaQrKxxdVdLru5UeeRCkSgfX+fEcU5mLNpYwp6IpqQHwmJVjBYdQCL6tKq+Xxij766C32qc8xG/PHn1zaUGrzaLFf6f/UAD45cnrBrN3wTAmgaYjavPd4KlC/PopOxymzhzvE9Ht4XYrXo93Z738F32OZYcI7pIKgjrIc3oFo5ikCZDCw+LIpchVgi0pzBK4acZyhjCbsJyN8NXgkagmIoqKF9gJOSexb7H21bnOYvzVwDB2NxhKvU6s6fPoB6D75HD4Xj8mDhyjLBaZXhqljSOad/Z+Qo1x/5mv7m8hbXILENmOQiBVYoOORpIrEEC/hanpzXFPbqRXi/KfIfc3aZW3DvZSlEHMyDubiEEc9/xkdLzjtWaay+83JfjV9a5u4soc4Ev4eOz5Xv0F+bDQXvr9ZWbosHbYqo0prB8yF4mtNusmBTwpneBFVFO3arZCs9kJxC2P4layqR4+dr+7vFH6u++e5lC4EcRXhRispS000GnGfHKMjrLEEJQDSR+T/BOcsNytxC8p6rfzUTlk+sOCNfrz9OUF/ry+e1XhJSEP/BBop/6bojWzTvEGfF/+HOSz7908F3wQhQOb+mDyYr5HJ1D2io+djgeASd2OxwPwaNOhUMIArpcJ2GRhBs0OUvO3qzolJUK/twc4dNPE5w4gYwisusLxG++QfruebL5q8TvnKP9/At0XnyR7No1bB96exwOh8PhGAT08jLxm2+iF2+T37yFPzuLajSKh6CSq7vcddbxIowQ5NJDpgmZNqS5Rknw7kaYe70Ic4sRCdIGAxVhbiwYU3R2S7m1CPOaSBlT5fjBX75SCNhKWI4dLfdxR92vEWTnig/y3Ykwt9Zy6613S2P1mQmi4UZ/TmA0YAuxWylK5eUHFCtaYAXYKtIOIdj8Ig5lMxASIzy09DHCw0hB7vm9nm5DGBc93QBDlYDRIKAWKrSyaGnQ6sEzoUZrFuevYIxl7NBhonqd2SefQj0mfeoOh+PxQyrF1PFTBJUK9dFxWou3SePuXl+WY8B5T5f3yuC5vGWaAvauu9sAHZtjsKQYfCFQW7m/7HV3GxQWkOy0uzsCKwfK3V0ZH2H8mVOlseV3r9C8svCAPR6daqd8DKsKgRQ2Rpnf7CreXjrYCxMvMsZVhktjETkftFeQdns/c0ZYXvPP0xFl09KwbXAmP9a3NGcvbyNN3uvvXhW8N4fyA/xKBWssaaeNyTKSZpOs18FdDSSBJ+kkmiQzrMQ53VQzXf1exqOPlw8mLNeC/4uWvHSfMz1eeM8epvozn0XOjGzYlv3xq8T/3z/DtpONOx4kBKB88MJi4VYeg8kh74Du4lzejofhxG6H4xGQeERMEzJOzgod5klZpsnbxCxg96hDQgiBajQIjh4leuYZ/EOHi5uNS5dJ3nid7PIl0suX6b7xBu3nnqP72mvki4suGs3hcDgc+xYTx3RfeRXTbJLOz6PGxvAmevF97+HqtkDshySej7CWrBtjrCXLLVGvq1kJH+5GmCdYNGLAIsytLkRaay1iixHmR/yya+BW6vMHC8XX8DNnAnR9pLS90fyN4twWbPrhLZ1zs7Rv3CZeKrvPJ86c6N8Jcl3MFIvHI8LcigQrMqStI6yHMEObPoa0GcIacuEX8eUEvZ7uoNTTnXQzktwwVPEZUh6jUUDe6+nOvEcQurVm/NBhomqd2dNP4QV9iq13OByOASWq1xmdPUR9bBwvilheuN6rLHE43pv7urzN4Lm8hTEIrRF5DlJipSTH0rVFpLmm6O/eytLDwt0tMMJDmpyd6ngt3N0KSXWg3N0A0x97FhWVn1nmn/smRm9P/Pd0TJAslcY61WJR7PGhnJla+WvwwvxgPTf1HSF4Q8xyh3JN1jAxz9r5bf+85ULzqv8OCWUX66QZ5aQ+1Je3tgCCtAlCkPkNcq9C5m9+MbFUHkGtilCSrNMlT1Kyboek1QIL1UAR+ZJOqokzTTPJaSeamdr3MRZ9bN1FGa4Ff0pbXtn+J7jPkRMNKv/oB/A+fHzDNn32Gp1/8wfoK7d3/8J2G6EKwVuqnsM7hTztmRp2ZlGT42DgxG6H4xERCHyGqDCHAGKukXGHLtdo8Q6avV1dJZTCGxsjPHWK8KmnUJNT6E6X9Py7JG+8QXr1KtmlS3Rfepn288+TvPMOutV6+IEdDofD4RgQrNbEr7yCabdIL15CVqr4c0XP9MNc3bEXYBCkKsDTGUmuSXODEOCr4pb4boS5jNGiixjACHNtDNYarAWxBTeyh2HWK/f4/cbVGdJervQnjtZL2/z0HaLk68UH+ZNgR7Z03Zvl1psXSh8HjRqNucn+HNya4r9VR7d3sHugLQYrWggbIAiRZhSxycdAgUHZHCN9QJLJCHo93ZZ7Pd2im9JKcqqBouYpJish+Dy0p9sYw51rV9FZztjcYcJanbnTT+EHB3zS1OFwOHqMzs4R1euMTM1ick3z1o29viTHPmG/uLxlmiKKeCJsr5okwZD2+rstW+zvFgItPUxv3511dzfADp6724tCZj7+vtJYstTk9qvvbPvY1XVR5nFlEiMUQmx0d3/9ekBywHUoKwQvi8N01iUkzdDklL217eMnIuM1/1wv6P8eh/QUh/XUA/baHIK1/d1VknB4U/3dd48jBH6lggpCdJqQdbvoNC1izXNNJVBUAkk3NcSppp0Wgvds7a8yGpUXUFthmA/+hLa82pfPcT8jQo/wJz5N8MMf25A+Zu+06f7bPyL72rk9urpdRAhQAcig5+7uubzTNpgD7nB3bBkndjscm0QSEDGHzzBJT+wuXN5nSRiM1VUyCPCnpojOnCF84gnU0DD69iLxW2dJ3n6bbH6e5Px5Ol/7C9pf+xrp5cuYNH34gR0Oh8Ph2COstcSvv0G+vExy4QJISXDs2L3O6vdwdQN0/YhcKrSQ2G6MtZDkBl/J3ksFUiq4G2Ee98TBwcHaQhQ01iKE2LRgCTDrtfHEPVuAtvDrVwqHxvcMNcmOHC+9fqj5H+9+DWz6bVu99E2RNNusXC3HJk6cOY4QffpuaA2IYqW4f7DjFgEQnSIJwNYRpoK01U0ewKBMihEKg0cmA6yQ5OpeT7c0hqCbsNJNUVIwFHpMRiF+IB/a0217QneepIzOHSKq1gqhO4ruv4PD4XAcQIQQTB8/RRBFNCYn6aysELeaD9/R4ejxXi7vlQFweYs8RxiLzHOsUtjefV3R322JrUFQOLw3iyYA5Bp3984gTGOdu3twlN2xMyeoTI6Wxha+8RpZe3u1CJXOQrFItIeVirhSJEJ9+2yKWGM3jrXkpRsHP5EnEx4viSNk657FTnKLGbu87eO3ZZfX/fOYdZHNJ/QhpvToA/baHMpkeHmHzK+gZUC3MoHdwrOlQOCFAX61gtGarN1BZynJyjJZHBP5ikqg6GaGTk/wbsY5s9XPMuK9v3QsKzTzwR/Tkdf68jnuZ4QQBN/5FJX/6fsQjXXPRLkh+c0XiH/7K9h8cH4H7RjKu2dkyLugs0L4zju4WHPHepzY7XBsAYEgYJQKs1hyulwlZYkOl2nxLmZd5MxeIqtV/EOHin7vY8cQvk82f434zTdJL1wgu3KV+OzZIub85ZfJFhZ6EakOh8PhcAwO6YUL5Ddvkl2+jE0zguPHET1XSMnVLeQGV7cWglgFpMpHWEMSF33dxkLorXF1IzCqi7ExFjNwEebGFH+frbFbcnWD5Yhfnjj/bzfHuZaESKP5zPHy5JTKb1Dt/Emxp54DM7el694st89eLH0sfY/RE4f7dHRbiN1KFQsivIMtdltyjOgiqRSTs2bzE2TKFpPGWviF4C18jBDkvo/KcpQxhHFCO07RFkYqPiO+Tz30ez3d9oE93dZa7ly/RhbHhdBdqzN7+mmCqHLf1zscDsdBxo8ixo8cozo0TFSrs3xjAZ0PTlSyY/B5kMt7cQBc3gIQWYrQOdh77m6AttUYLIk1KAT+JpebWiHQonB3i17Zyk5QuLvrPXe3gAFydwspOfTpj5TGTJZz7avf2tZxlckI48XS2GqU+VhkeHq8PP/5/EGPMu/RFiHfEoc2SG3P2GsM2+2/L5Zli7PexQ3jT+bHGDGbjx2/H17eQZqcLGhgpLel/u5VpPIIqlWQ4q7DO+sUseahElQDRZIZOommk+U0k5y5oR9iyDxZOo4VmqvBF+jK6w840+OFOjlF5f/9WeSJjQln+Vfeofvv/hvmTvs+ex4wVud4pAcmLWLNdQZZG6y7T3Lcw4ndDsc2UERUOIRHjYRbxCyQcocmZ8nY/mq+fiKkRA0PExw/TvT00/izc9g8J710ieSNN8iuXCG9dIn4tddpP/cc8Ztvkt+54/q9HQ6Hw7HnZAs3SN+9QLZwHb28QnDkCHKt63Otq9urbHB1x16IhaKvO0kxxpJkBl8JVE80vhdhnpCLGIEauAhzY0wRSW0tcgsu5zGZUJPlh8FfvjwLwI8vvkj7ox8vbWu0PofoTRbadF232g6hs4zFc5dLY2OnjqD65cA2BrCF2K1UMSt8gLGiBVaBrSLtMILNfR0lOdJqtAywCDIRruvpzvHTjDzO6KaGRuTTUB5j1RDtrfZ0339i3VrL0vVrpN0Oo7M9ofvJM4TVzTrPHQ6H4+AwNDFJbWSM4alpEJLlG9fdM7lj0wyqy1tmGVgQWmOVd1dYM1g6tnB451h8Idlsg7cWRdWKEQppd87AUbi7JZIKZsDc3dXpcUbPHC+NLb19kfb17cVrb4gyj8bRsnhO+uS6KPM3bvssxgf7/nqVRVHnLTFdGlNYPmivENntm6BuqiXOq3KPtUTwdHaCmtn+wtC7/d0WMq9B5kVk/tDWjyclfrWC9H3yJCGLY/IkIV5ZwReWWqhItaGTGLppzkqsmav+II38ROk4VuRcCf4bXeHqPADkUJXK//R9+N95ZsM2c+k23Z/7A/K3H4PFAYIi1lwFxdzPaqx5thpr7u6VHE7sdji2jUASMkHEFJqYLlfIWKbFu3S4PFA3vqsIz8MbHyd84gnC06dRY+PoZovk3Hnit94ivTpPeuEC3RdfovOVr5CcP4/pDM6KVYfD4XA8Puhmk+TNN9BLS+QLN/BnZ1FDax7CH+LqBuj4EZnysAjybofcWHJj77q6BRIpPFApxmrsAEeYW1P0jIstRDyud3WfbVV54c4wR5oLfOLZyZLwK0yHeut3i3ObYcif2N4n8IjcOX8Fs9bFJmDi9PH+nUBrQBbvlQMeYW5FjBUZ0tYR1kds2gViUCZDC6/wSMkIhCh6usW9nm4ZpzTjjMiXNHzFeCVEPKSn21rL8sJ1kk6bkelZonqdmSfPENXqG1/scDgcjxmTx47jRxVGpmdIOh06y0t7fUmOfciqy/uJqcFxeQtrkXmGzHIQYNW9e7Gs5+xObRHevNk4cysKoVsLD2HNDrq7Va+7u1JoK2J7MeH9ZubjH0AG5QW7V7/8TazZ+ve70r1ZiEurCEm3UvRHf3gqJVJrYs4RfPXawY8yX+WKGOMS5eSkEM2H7GVUHxZdXPVuckWVRV8PxfuyU0R2+19ngcHPev3dXpUkHCJXW3fnCwR+GOFFESbPyDoddJ4Rr6wgdUYtUGTa0E4NcZbTFD4z9nupp0dLx7Ei52r4R8Ri+z3oBwGhJOEPfxvhT3wafFXaZlsJ8f/+J6R/9trjsThOro01j12suaOEE7sdjj7hUaPCYSQhXRZIuEXCLZqcJWdwI0VkFOHPzBCeOUNw8iSyWiW/dYv4zbdIzp0ju3KV5Nw52l/5Kp1vfIP0ylVsNjgx7Q6Hw+E4uJgkofutb6FbLdIrl1Gjo3iT6yK8HuLqzqQikx6pChB5jk5zklwjBXhqbYQ5GBVjbTqQEebWGqwtRMKiu3pzUnwkciZVeTLul6/MIq3lH5/9r9z+vh8obau3fw9pW8W504+yG48N1lhuvXWhNDZ0aJqg3ienrzXFe8VTxadzgCPMLQYj2ggbIgiQZnSTHe8Wz2Z3Y8tzWUSYr+/pDns93VLAcOQzHoZEoXrPnm5rLSs3F+i2mgxPz1JpDDFz6jSVen8iGR0Oh2O/ozyfqeMnCatVasOjNG/fIkuSh+/ocNyHejRYLm+ZpoBF5BrreSUvXhdNZi1JTySMhLrvMR7EWne32HF3t+q5u4v6o0HBr0ZMf/TZ0lh8e4nFN89v+ZjSaipxWXRcjTIPFXxsJi1te34+3OuK+F3lrJjmFrXSWIOE99v5vvx8vauuckPeKY0F+DybncK323+eWe3vzr2ivzuOxjFbWFhdOqbvE1RrICDrtNFZStpuY5OYWqDItaGdaJJM01YVZvLvptqdLR3DiIwr4R8Si9vbupaDhP+RE1T+0Q8gxtctELaW9PdfJP7lL2Hjx2DOXoherLlfmB90UojeaQv6kKrg2L84sdvh6CMSRcQ0IePktOhwlZQVmrxDl+sDdQO8HiEEql4nOHKE6OmnCY4eBSlJ5+eJ33iD9NIl0stXiM++Reu55+i+8ir5nTsPP7DD4XA4HFvAGkP86quYVpv0wgVkVME/dKj8okdwdXe9ECsEmVKYOMZaS6Ytoa/uysVSeoW7RCbkdHqOjcESQk0vftsYi9zC5MNhr1VaB9DMFb9zbfL/z96ff8mZ5ed94Ofe+24RkfueSKwFFICu7q6l9+qFaopbi2RrZImyZNkzmrF15OMZaWTJlvk30LKk4YxGPtKRfaxt3JRIiVaL7Ca7STbZ7EL1wqrqWrEU9lyRe0ZGxLvde+eHNwBk5ALkEpnIBO7nHBxkvHtsme+93+/zPPzZ639Mz2dfwoRrXjub01n9t8WPNoLsY3u8+u1RnbxHutrqJDNw8cwWW+8CrQFR2Jf7h8uivu2IGliLsBWEKSPtzqwOpc3BmiL/EokmaOZ0e6j8YU53I8nJjaUr8unxfDoj77E53dW5WeorK/QMjVDq6GT4uXOUu7rb8awdDofjqaHc1U330Aid/QN4ns/yjLMzd+yerVTe87WDV3kLYxC5RuocpNgQKdMgRwOJNUjA38HUtREKg8QID2kNYp/m4IqxQsehVXcPfPQcYW+rHfX0D94lj3ffNLPeyjwNex4ogNdbmU/XPG6tHK6x1H5iheAdMcYqrUrrQVY5b9tgxS3gqnebJdHq0lW2ES9kzyE36y7dIUV+d9bM7/b3lN99n8LWvIz0fPI4btqax+halYov0caymmiSIKCWSYbrP0Gp0WoLb0TKePhNErGwxVmePdSxXsp/++dRL4xtWKffvkP9V7+BmTlc0ar7ggCUD14IxhbqbpsXc0OmgVN5P5u4YrfDsQ/4dFFiDIGkwRQpi8RMs8qHaOInfXmPRUiJ6ukhPHOG6OJF/OERTByT3rpF8v4HZBMTpHfvFDbnP/wh2cw9N/B2OBwOR1tJLl8mX1wivX0LhCQ4dQqxPl85WW7mNW2u6rZAw49IlI+1kDcaJNqChVAV20ohkUKBl2CMxsgUYQ6Xqhsors0UltAbXofHILGM+asty35jaoiulSX+z9e+zfSf/Qst68r1P8DTM8WD9CXgYKwI567cbHkc9XZRGexr09FtUeyWqtkJ/vROwFlyjIiRVBDWQ5qeHe0v0CibY2ShjsplhBWQBT7CWrwsx8sybJKxmuRUQo8u36evFGI8HpnTXZ2fpba8RPfgMKWubobPnKXS07vptg6Hw/Gs0z92grBSoXtklDxLqc7PPulLchxx1qu8j3U/GZW3zFIwBozBrrsnM0DN5hgsKQZfCNQOHI209LEPsrv3x8oc1mZ3RxjROFTiFqEkY1/4RMsynaRM//DdXR8zaswhzBrFpBA0ykVh8vmenMFSq5L+tcnDN57aT3KheEucIKXVjeAUC4zZvQuFrLC8799gdV1jRZetcDE/vee44rX53anfSa4i0mD3+d0Pjyvwo4e25mm9hs4ystUVImEw1lJLDFkU0SBgcO6zlNL1Be+kWfB2gqv7iFJA9H/7MsFXXtpg+GbvrVD/1W+Qv33niVzbgSNUUfAWspgX0hlkaVH0PoTRso79xRW7HY59QuITMUpANymLNJhsqryvknB0MkeE7+MNDhKdP0/4/POonh704hLJ1WukN2+QTk0Rv/ce9ddfJx0fx+b7N5hwOBwOx7NBevs22fQM2fg4Jk6KQvd6Ja5JIWsUgxi5uao7VT5aSBLlY5IUayxJpgk82bQCB0+GIARGNtAkgEEcUHF3uxhrMaawMpe7sDAf9moEonUC7l/dGeZvvflvWf3il8h6W4uNXdWvAWCtwmav7Onat0tjaYXVmVaLuoELZx68T3umqYzHk4Wye4cNA0cFi8WKKsJ6YCOk7Uawk8J+kdNdKKM8Mlk4I+S+jxUCP81QxuDHKUuNjMCTdAce/VGIDB6d011bWmR1cZGu/kHK3d0MnjpDR19/2567w+FwPG0IKRk6fZYgKtHZN0BtaYmkfngj0hxHg8Og8hZ5jjAGmedYpbDr7vc0lobV5NaiKfK7t3tHaPCwiGaxW7Nf6j6B11R3lw+lurtjbIju5060LFt4/zr12d0VDAWWUr1VpXzfylwI+Nw6dfcPpgKyw1P/PxAaIuDH4viGT9xFO02v3fvvbi0M7/kfEtNqG99vunk+P9mGgrfFz6oY6ZN7ZdKge0/53WtRvo9fLr4rab2OzjJ0o0ZoM4y1rKiAHEhlyODMZyjpkZb9tYgZD79JKp4BxfI2EVIQ/MzHif7an4bSuvmLJCf+539E8vU3sAfo3PHEEAJUCDIo3P/yGEwOaa2YN3I8MzydszwOx14wCuGVkNJvw42CIKCXEsewGBqMk7JEnXFWuYHhaOVIyFIJ/9gxwosXCU6exGY56Y2bJNeukU1NE1+9Su3SJZIbNzCp+2PicDgcjp2Tz82RXL9BNjODXloiOHECWdrEgvl+VvcWqm6Auh+hpURLhY5jcm0wFkKvuAWWQiGlhxRFx7gWjebE1eFS/RqtAYuxFrELC/MTXquq+7vzPZx//21enLvO1F/4Sy3rwvhPCLKrxYP8I2DX5YHtE+uzur0ooOfU6OYb7watAVl0fvuH6/1tKyLGihxhOxA2QJidvX/K5iAEWviFhbnwyJVCewo/u5/THRfqL6C75NMbBESRwqitc7qTeo3q3CyV7l4qvb0MnDhN18BgO56xw+FwPNWE5TJ9Yyeo9PYSlsos35tp3hc4HHvjSaq8BSCzDKE1WLtB3Q2QYEitIbEayw7yuwXkMsCisEIW9zb7hDBdCA6nuhtg9NWXEF7r6zb5vTd27cxYrs+0PM6CLjKvDMCro63F7noueXv2cDUQHwRLosz7onUMI4GX7Dhlu/d50lTkvOt/SEbr53rE9HNqXYF4NyiT4ec1cq+MbtqZm+1+9x6DlKqwNVeKvNEgTxJMEuNndbCWuheQBwFJCsOLX6SkWxXeWjS4G36DVKy05XqeFryLxyj/7Z9Hjm10y8q+8z7xP/09TPXwu8zuGQEo76EIIo8LlXfeKP4dst/Pjv3BFbsdjjVYaxFWFhPmUjVVMXtXFClCShzDo4OEeWJmSFlkhSukLO39wg+YBzbn588TPPcceB7pnTskly+TTU2R3LhB7bXXiC9fxtRc57nD4XA4toderRG//z56eYl8ZgZveBjVvUmW7zZU3QZB7AWFqjs32CQhyQ2eFCjZVHWrQtVtvQRjM6xIEObwTcoYY7DWgC06uHdCl0zoVq0TK795ucx/9d5vsfTJz9A4cap1+6aqG8Cmn9z9Re+APE5YujnRsqzv3Cmkas/ECpiiMcJTxejnKbUwtxiMqCFsiMBHml7EDoZ7khxpNbko7D9zsS6nWxvCJCFOcpLc0FXy6VE+XSUf84ic7jxNWZqeIihX6BwYpGf4GN1Dw5tcgcPhcDg2o3tomFJnkeFtjWX53szjd3I4tsGTVHmLNC3ubfMcq7xNtSZ1NNpaYmsQFArv7VCouzkQdbcwlTXZ3YeroBR0lBl+5SMty+oz8yxdu72r44XJAlKvK2o31d2DZcP53lZBz2sTz5aV+X2mRA83aXUv8jG8bO/i2b03KzVkwnv+DfS6z/VJPcqoHtjz8VXeQJq0rfnd9xFC4JdKqDBEZylpvY7Ncvy0Th74NHKL9gMayynDjZ8m0kMt+2tRZzz4Btm6/PJnHdnfQelv/hzep5/bsE5/OEPjH/42+vbRcZndE6I5PyRVMW+km/+yGuDcaJ92XLHb4VhL86+3EBKpArACYTyEUW1QeUtCBogYRpNQZ4KMZWrcosYd7BHNkVAdHYRnzhA+/zyy0kE2NV0UvScnSW/fofb9H9B4+2300tKTvlSHw+FwHGJsmhK/8zZ6dZXs7jiqpwd/eIuC2DZU3bEXYBGkKiBPGhhjybQl9O+ruj2kUHjSR4ta08LcIuzhmpSxFoxpqrql2FHxEuCE1zoRcLce8MrvfZtynjD15//TlnV+dpMo/n5x3vw0mINR3s5/eAdrHk7WCCnof/5k+06gNSAK+/L1dvhPEVasFpPGtgNhyki7sQlkawr7ct3M6c5khBViQ043Sc5qklMOFN2eT18pwD4ip9tozeLUBEp59AyP0tHTS9/Y8bY9Z4fD4XgWEEIwdPo5/Ciia2iYuLZKfcVZuTrax3qV9+gBqLwLdXeKzIu5sM3U3QA1NAZLYg0Kgb8dQ3MBWgZF0VtIVBsKjFshTRcChSTEiPqhU3cPvHSBoKvV6Wfq9bfR6c6dJgUb1d2N8vCD6dLPr7Myf3feZyVpUyTREeNDMcg9Wl/3Cikv2nFEG75PVVnjsncLu26y+lx+grPZccQehFsb87tD0mCTBvQ94AUBfqmENZa0XsfkGZ5OyJWkoTyMNjRWMkYaP0NkWgv4uaxxN/gGmVjd4ujPJsL3CP/Sq4R/4TOgWucM7HKdxv/3d8kuXd21s8ORQgAqaNqa52tszetgksfu7ji6uGK3w7ElAmElAgFWIowHVu656O1RpswYipCYeyTMkjLHClfJObp/qGWpRHDiBNHFi6jePvL5BeIrl8nG75KOT1B/403qf/InZPfuPRt/WB0Oh8OxbawxNN59D12tkt66hQhD/ONbFMS2oeoGaPgRmfLILZh6TJIbpAC/OfDzvLDIg5aa3NYxIikszGmXmrg93LcqteZ+Xvf28dGMePWWZd/91iKfvHeV2tnnWXmxNY+7s/o1RPNGx6af3sNVbx+jDfPr1CU9p47hl3ZSqH0UFnLTzOgWT7Gqu3AmkFQQViHNRhu7R+3t2Yc53bn0sUIWOd2yNad7uZGipKA39OmLArxQwBY53dZalqanMNrQc2yMqKODoTNn25fD7nA4HM8QXhAweOoMpY4OSp1dVOdmybOjFYvmONysVXl3H5DKW2YZYBFaY73N1d0GS93maCw5Fl9ItpPgrSkaHAt1d87+qbt9hCkX2d1w6NTdUimOff7llmV5I2bmT97b1fFK9enWY/kVMr8TgE8OJwTy4btorOD704erkfjAEIJ3xRhVWp9/P3Uu2um2NJAsqGU+9O5uWH7MDPJi9jyh3X2Tr8ASpCtr8ru7yFW7xmcFUnkE5RJCCbJ6A51mKF+S5zmxlOhGTCMRDNd/ltC0KuVzuVoovHFuomsRQuB//jyl/8fPILrLrSu1Ifn1H5D82uvY7BlROCuvEEfAGlvzGPIaztb86cQVux2OrbAaK0yh7rbFBKkwCmHVnq3NBYqIYUIGyKlTZ5KMZap8SIPJQ9cJuhOE7+OPjhJdvIg/PIKurpJcvUp66ybpxCTxu+9R//73SccnsC5rzOFwOBxAcvUq+eIC6e07YCzB6dMIucVt6jZU3VpIEuWTKo88y5E6J9OG0FNFk6/0kUiU9EnFEoYcK9LDaWFuCwtza9lxXveYv8pa1/PaYsL573wXgMk/9xdbtpV6nkrtWwBYPQi6jcrqR7B8d4q80dpd3X/hTPtOYAxgClW3J5tF76cLi8WKajN+J0LaHsQOmjaUzcCaZka3QhOg7+d0pznSFjndq0mGttBb8un2fcqRh1GQbZHTvTJ7jzRu0DsySlgqM3LufBut6R0Oh+PZo6O3j87+QboGhhBSsTwz5RrJHW2nI/I4P9x5ICpvYQwiz5F59iBOcDMyCivz1Bo027QzF5BLH4PCQtPOfH+4r+4WNsCKxga17ZOm69QxOk+25kjPvXuNeHHn2cdBuoLKW5tp65XCyjzy4BPDrfFJr00+o8VuijHpm+IEybr78uMscYLFtpxjWs1zW01tWN5lK7ySXqTXdO762NLm+Nn9/O6grfnd9xFS4pdKyCBAJwl5XhS8UwlJkpLHKY1EMVz/OULT17JvJquMh98gp77F0Z9d1KlBSn/751FnNzrl5T+8TuMf/S5m4egK7naEEE1bc3+NrXkG6SpY1zT4tPH0zfY4HG3i/q2pFQYr7DqVt4I2WJv7dFLiGAJFg2lSFoiZoco1NIerG3SnCKXwBgcJL1zAP3ECm2akN26QfHiNbHKK+OoVaq9dIrlxE5umjz+gw+FwOJ5K0vFxsskp8okJTL1eFLq3sprepqq77odYIJU+utEg1RZrIfQeZnVLobAyJ2cZI4oBsrSl/XiKu6awMC+K3UKwI0WswHLceziAtdby7r98n0oWkwwOsfClL7ds31n9DQTFYM+mn2KDTHcfsNYyd/lmy7LKYB/lvjba5GkNyGLy9Gm1MBcxVhiE7UTaAGE6Hr9Pk/s53VoGxSMRYqQge5DTrQnjhDTVNFJDZ+TT7QV0lwOMt3VOd21pkfrKMl2DQ4SVDobPPo8fPLuTnQ6Hw9EuBk6cIiiV6BkeJY1jaosLT/qSHE8hSokDU3nLNL1/04vxt3bgidFk1pI2i9bRNopuhbpbYKTXVHfvTxFaECBMCWHLRaH7kKm7AY59/uXWZmJjmfzemztumBFAudZqZV4vPbQyf3Wdlfl41eNu9dltdkyEz1viBHrd2OqCnaHftqfYeMeb5op3e0OGt4/HR7OznMxHdv3R93QD9SC/22trfvd9BAI/DPFLJYzWZNagpCQV0KiukhtLnCiG6j9LYHpa9s3kSrPg3WjzVR19ZGdE9F//FP6XP7JhnRlfoP4Pf5v88uQTuLIngACUDyp8KJyweTGvZGL262+D4+BxxW6HY1vYdSpvWRS/rbdnlbfEJ2KEgB4yVpoq7xWqXCVm9tB1hO4UISVeby/h+fMEZ86AVKR37pBcuUI2PUVy4warr71GfOUKpu668RwOh+NZIl9YILl2jXx2lnxhkeDECWS5vPUO8fJjVd0ADS8iVT6Jscg0Jc41vicQQuDJAIFAKo9MLKDJMTJBmXLR1HaIuK/oNtY2Vd3bv74B1aAkHypYqm9M0HW1sAuf/uqfx65R2ArToKP2m8U5TQfkF9ty/Y+jPrdEY6E1c3Tgwuk2nsEWnxdPFqOep1BVbDEYUUPaEIGHMH07+BwbpMnQwsOiyGSI2SSnW6Q51Tgj8iW9vkdv5IO/dU53Uq9RnZul0t1Luau7abu7e1WJw+FwOB4ilWL4zDmCUomO3n5WF+ZJYzfJ79gf7qu8B7vCfVN5C60RxiDzHKTEPqK5s05hZ55YgwT8xym8hUBLH0NRRJfsn7pb2O7iXuyQqrvD7k4GX7rQsmx1YoaVmxM7PlZ5nZW58SKSsIjQudiX0Ru2vs7PsrobYEWUeE8ca1kmgBftBBXbnsaIe2qBt/wrNNY1WggEp/QoH8vO4tndjYX8tArWkPpdzfzunjZc8Uak5xGUy+B7pCZH+AqTZ6yuVMm0IUl8hus/R2BaG6NTuewK3lsglCT86ieJ/i9fgnBdM1E9Jf5nv0/67Xew5nD9vto3pCoEE0IUc0o6gyxxtuZPEa7Y7XDsgELlbRBWIJBF8dt4hdJ7D38XBIKAHiJGAUuDCVKWaDDBKjcwPB22Gqqzk/C55wiffx5ZKpNNTpFc/oBsaor09m1qr3+fxjvvopeXH38wh8PhcBxpTK1G/N576JUVsukpvKEhVE/PI3ZIi3ylx6i6U+mRS0Xq+eRxis5zjIHQU4BAqQApFVYk5KxiZB2BRBwyVTcUqm6wWGORcmeF+BN+9cHPeTVh/NfeKX6uVLj3Z77asm2l9lsoU2xvs1fggHLL5660qrr9Somu4xut1naNbmaRKa/I6n4Ks6KtWC3uQW0FaTqQdvuTicrmICRGeGjpYYTXzOmWD3K6gzhluZEhBfRFAT1hSBDJLXO68zRlaXqKoFyhc2CQnuFjdPYPtPdJOxwOxzNO1NFB7+gxOvr68aKI5Znp5j2Dw9F+lBIc7y1zdhOV99RKsmeVt6BQdwutwVist7W62wI1qzFYUgx+YR7+yOM/UHcLD2n2T91duOtETXW3PpTq7qFXPoJfaR3zTF56C7PD/F4/rxUF0DU0ysU9vBQb1d3fnwzJn/FfUTOii+ui9Z7Yw/CKHce37clPrsuYN/0rzMmlDet6bRevpBfpNI9oLN+CIr+7ipGK3K+QBp3kan/GzkJK/HIZWS6RW4uRINKY1VqdNMtJkoDB2s/hm66W/VK5xET4O2iSLY78bOO9dIry3/oziMHW1w0L6Td+TPy//SG28Yy4rgpRKLylDyYDHRfzBulq8dhxpHHFbodjF1hhsPAgy7uwNvfAyj3dNytCSozh0UnCPA2myVhihSukbcpzOQzIUong5EmiCxdQPb3ks3PEly+TjY+Tjd+l/idvUH/jDfLZWZdB5nA4HE8hNstovPMOurpKducOqrMLb/gxRc7tqrr9Qp0aoyCJSbXBk6L4p5qqbumRiHk0GVYkSFM+ZJruAmN0MXktdpbXXREZ/erhQH/m199G1IvH9372F9DRmkYBq+mq/pviR+tD+lJ7Lv4xpLUGy3dbVSED509tndW+G3LTzH4UT6WFuSUtPr+2grAewmzf/l2SIawmFz4WSU6IVhLtKbw0Q1pL2IippTm5sXRHPt2eTyVSRU632pjTbbRmcWoCpTx6hkfp6Omlb+x4m5+1w+FwOAB6R8eIOjroGRrF5Jrq3L0nfUmOp5zOTVTe2pi2qLxFliGsReoc63mPnFbTWBpWk1v7IL/7UffxVohmU58C7DOt7pa+x+irL7csy1br3Hvr8o6PVVqn7i6szIt3Yn2xu5pJ3pt7+u7Fd8oNBpiitdhYIuMlO46w7ekG0MLwgXeTG2piw+cvIuDF7HlG9cCO564f5HerEloFxFFf2/O77yMQ+B2d+GGIlRKjM4TJWK3XaSQpWRoyWPtZ/HV55IlcYDz8pit4b4Ec7qb8334F9fETG9bp98ap/7++gZ5aOvgLexLctzX3ouK7kMdFoTuvg27gVN5HF1fsdjh2zTqVNwJhFMKqPVmbCwQh/ZQYwZBSZ4KMZWrcpsZtDO3p+DsMiCDAP3aM6CMfwR8aRq+sEF+5Snr7FtnEBI133qX+/e+TTUxgXae6w+FwPBVYax8outPbtxF+gH/ixKPzqLep6rZAwwtJPZ8ky5FpQpZbQk8ikHjSR0oPIxpoGhhVa05IHT5rPWMNxhRW5lIIdmJhfnyNqrv640lW/qSwJzSex/R/8hdbti03/hBPTxUPso8Dm7+27Wb+2u2WSVHpKXrPnmzfCYwGTGFdrmTxuXmKsFisXEVYH0EJabsR21bkG5TJMdIHJJmMmjndPkprvGZOd55paommEnr0BAHdpQDrs2lOt7WWpekpjDb0HCsKMENnzu4oZ97hcDgc20cIwfDps/hRSOfgIPWVFeLV9uS/OhxbsV8qb0Gz4J3nYHmkuhsgwZBaQ2I1lsfnd2sCQGKEamZ37w/ShggTImylqe4+fEW37ueOUzk21LJs9seXSVZ29vujXG/N7bbKJ476ARipGJ7rblVIPutW5gAIwftilKV1461eGrxgp9sSC1CcBya8e7ztXyNd5xQqkZzLT3AhP41c37n6GDwdo3RC5ndipE8cDexrO4eslPFLRZO7TRKENdQbDWqNmCyJGKj9LJ7paNknkfNNhfczolLeISIKiP7qTxD8wisbxAN2rkrj//0NsjdubrH3U4hozi1JBTot/uVpMe+0j41Rjv3j6Zr1cTieAIXK2xYZ3g9U3gr2aG2uKFFmDEVEzD0SZkmYp8oVMqqPP8ARQiiFNzREePEi/vHjmDghuX6D5PqHZFNTNK5cofbaJdJbt7Cpu2FxOByOo0xy7RrZwgLpnTugNf7p04jHZSlvU9WdeAFGSBrSxyQJWW4QAnwl8VQACKSSpHIOIxIs2eFVdevCwvxhXvf2UBiOeTUAdD1l6td+/GDd/Je+TNrb17J9Z/XXALBWYNNP7P3Ct4HJNQsf3mlZ1nvmOF7QRsWH1oAsBq5Poaob0cBiELYDYQPEuomerTF4NsUIhcEjl8V35kFOd5rhZTkqy1luZASepD/w6Q4DRLgmp3vdl2Zl7h5p3KB3ZJQwKjFy7jzyKcxIdzgcjsOEH0UMnDhFuaubqNzB8uwMOn96muMdh5f9UHnL5lyP0Pqx6m6AOhptLbE1CAqF91ZYIYp7H+EVCvJ9FJEI29VspvWxon7o1N1CCMa+0FrostowdemtHR3H0zFBstSyrF4eefDzenX327MBtewwjroOFiMkPxYnaNDa0HGMZU4z39ZzrcgabwSXWRIb55CHTC+vZOcpmZ01IfjZajO/u5NcBQ+y2veFIEAoRRCVEMZgdY6whjhJWK3VyeISg6s/i2cqLbvFco6J4HefmkjQdiOEIPjTHyX6638aKuve/1ST/OvvEf/b17H1w9essy8IQAUgAzB5U+WdQ1oD84y8Bk8RrtjtcLQFixWmyPC2EpBF8dt6e1R5KyKGiBgkp06DcTJWWOU6dSawT5mthpASr6+P8Px5gtOnAUF6+w7JlatkU1PEH16ndukS8dWrmEbjSV+uw+FwOHZINjFBNj5BPjGBqdUJTp1CBsGjd9qmqhug7oVoKWloUGlKkht8JVFSoqSPkj6aVXKbNLO6A6R9zPmfEMYYrDVg2VFe96hXwxPFpNrMb7yLXikGaBaY+qW/0rJtGL9FmL5fPMjPg+1px6U/lsVbE+i0dfKh/8LpNp7BgjHgyWK04z1dRVeLxog60kYIPKTuKxout4GyhWJKi8LOUwuf3PeKnO4sQxpDkCQsN4r3p68U0BX4lB6R011bXqK+vEzX4BBhpYPhc+fxA6fecTgcjoOga2CISncv3cPDgGD53rSLAnMcCO1WeQtrkXmOzLNmpurj799qFPndiTUoBP4j7odysVbdvX+KPWlLCBOsUXcfPsFG1NfNwEfPtSxbuTVJ9c7Ujo5TXmdlHpcGH1hbf3okxZMPfxflVvCDqcM57jpoUuHxljhBvu7z+rydZciutPVcmch5x/+Qu2pmw7qyLfFKdoEB3bPt4xX53SvN/O4OMr+DzNuf/G6EgDAE38f3PDwLYMDkpHlOtVYjiUP6az+DMq3XEKt7ruD9GLzzo5T/9s8jT/RvWJe//iH1//HrZG/cfHbuKZRXCCsA8gborJiHyus4W/Ojgyt2OxxtxAqDFfahtbkVRZb3HlXeHh2UGEPg02CahAUS7lHlKpqnr+grhEB1dRGePUt47hyyVCKbnCS5fJl0cor01i1qr79O493CBtfhcDgch598cZH46lXy+Xny+QX8sTFkpfL4Hbep6jYIEi8gUT5ZptFJirEQehJPhiAEUkEqFrAiwZIjTbnNz7I9WAvGWIwxzUL3dm/ZLSeaFuar78+w/P2H6unllz9J/eSplq07q197uGf6qb1e9vau0FrmrrRao3WODhJ1bVeZvA20BmwxSep5W35mjipW1IpmSltGmg4E25s4lORIq9EywCLJxP2cbq/I6TaWKI5ppJokN3SXipzujpKP8TbP6U7qNaqz96h091Lu6mbg5GlKHZ2bX4DD4XA49oXB02fwoxI9wyMk9Tr15aUnfUmOZ4h2qrxFmhbba415jJU5gMFSszkaS47FF5KtErytkM1GPw9hDWLfs7v9Qt1Nfd/OsxeGP/VRvFJrc+LEa29i9PZfl1J9BtZkTVupiEsDAFR8y0uDrYX+S87K/AGrIuIdMbZhqvhjdpJO2+Z5XgG3vEne866Tr3M1UCg+kp/huXwMsU2xlrQaP1slVxFahSRhH0Y8/vu6K8JiHI/noYwh8Lwi4kvnZHnOaq1BshrSX/1ZlG0teDfUDBPBt5+qONB2I3srlP7Gz+J97tyGdbYaFyrvf/r7mLmny2F2S4Ro2pp7hehCp0XRO6vBPkZgONqHK3Y7HG3HNq3Naaq8C7W3MB5Yueuit8QjYoSQPnJWqDNJxgpVrhEzc+iskdqFLJcJTp4kvHAB1dNDPjtLcvkK2fg42d271H/0J9TfeJN8bu7Z6TZzOByOI4ZpNIjffQ9dXSWbnMAbGMDr69vGjttXdTf8EINgFYVME9Lc4CuBrzyk9FDCIxNVNFmh6rYh0u7ToHyPmGax1lq7o8zjXpnQIXN0I2Pqf3+rZd3EX/zPWx572R1K8WsA2HwMzOheL3tbrE7PkSy3ZgIOXDzT3pPkurAvR4J/ON/j3WJJsCJB2grCegjTs809DcpkaOFhkeQyxEhJ5vvIZk53ECeYzLCa5JQDRZ8f0FPyYYuc7jxNWZqeIihX6BwYpGd4lK6BwbY/Z4fD4XA8GuX5DJ1+jrBcptLdS3V+jixx1puOg2Otyrvrgcrb27HKW2qN0AaZa5ASKx8/bZ1TWJmn1qB5tJ25Fh4Hpu62PsKWsSLHHsLsbhUGjHzmxZZl6fIqc+9c3f4xTEYYL7QsW2tl/oV1VuY3V3ymVp8ux6W9MCc6uSZa89MVlpftOKFtvyJ5Qa3wZnCFVbGxAWNMD/Fi9jyB3V78k6eTZn53B0b6NEr92P0IB5MCwgCabnBCG4IgQCkJJifLMupxTLzq07vy0yjbOl/QUFNMBr/nCt6PQHiK6C9+jvA//RwEG7+f+uoU9b/3ddJvvYPNn4Ec6/u25ipoii6atubZfVtzV3s4zLhit8OxbxisMA9V3giEUQirdm1tLhD4dFPiGAANJklZoMEUq3yI5vDdQLcLGQT4x44RXbyIGhpCL68QX71Cevs22eQEjbffof6DH5JNTmKNsxdxOByOw4LNcxpvv4NZXSW7cxvZ0Yk3us3C6jZV3VAUu3PlEWsgSciNLVTdqugGF01Vt2lmHatDquoG0MZgrcVadpTXfV/Vfe8/vE+++FARUDv9HNUXX2rZtqv6NURzoGazT7fhqrfHelV32NVBx8hA+05gNWAKVbdqZnY/JVgsVtaKyVMipOlp3mM+Hs9mGCExwkdLHy28Bzndfprh5TlelrPcSFFSMBgFdIU+KhSb5nQbrVmcmkAqj57hESo9PfSNndinZ+5wOByOx1Hu6qZ7aITO/gE8z2d5xtmZOw6ezsjjwgOVd8hIU+U9tRSjzfY+jzJLEUaDsdhtqLsBYjSZtSTNAnYkNr//M8LDIDHCaxa792/uSJhuBAHCethD6sjYe+E05aHWBuR7f/IBWW37avQNVuZRP1oWBdMX+jO6g9bX+DWn7m7hNn1M0N2yLCLnZTuOtO3/fMYi5cf+VablxnzwLlvhE+kFesz2XJru53cnQRdaBiRhT5uvtkkUPVB3kxVNAL7vE/g+EkuaZTTSlLjq0738U0jb+hmrqwmmgt/H7KObw9OA/9lzlP/uV1EvjG1cmRvSb/6Y+t//LfT1jZb4TyXSK8QWQhQFb51BFoPOcQXvw4srdjsc+0yh8raFuhsBViKM2pO1uSSgxDF8ukhYpMEUKctUuUrCwuMPcIQRnoc/NER48SL+2HFMHJN8eJ3k+nWyqUniy1eoXbpEevs2NnPZLA6Hw/EksdYSv/8+emWZ5NYtUB7ByZPbUyvvQNWdC0kqferCw2QZWZoWTeCejxQKT/pkYgljc4xsIG2I4HAWQa0FYw3GGoRg28ruSOQMqQa1q7Msfbe1oPzBX/lrLY+lXqRc/53ifKYX8rPtufjHkKysUp2cbVk2cOH0jtTrjyU3gCg+M/72lAlHBlHHWoOwHQgTIu32rN+lzcAatPAxSHKCjTndcUI1ydAWBkoBHZ5PqaSwm+R0W2tZmpnCaEPv6BhRpYPhM+fa+z46HA6HY8f0j50gLJfpHhklz1Kq83NP+pIczyDrs7yP9ZRAwGJ9e9nVIsse5HdbpbatFq2TP8jvlkCwRcOolj4WiREStY+2tMKW4IG6O8Ny+LK7hRAc++InWpaZPGfq9be3fYxSY7ZoTn5wUEmjVKiVlYTPjraKcl6fCtlm38OzgRB8IEZZoLURu4uYj9nJHcUAbBcjLNf8O1z1bqPXNXz4+HwsO8uJfPixc9b387utkGvyu/ehofz+uM73i9cjywGBUh5h4KOALEmJk5xkJaBr8ctI2xrzVFPjTAV/gHUF70ci+zqI/ssvE/3Vn0B0b3wv7b0VGv/4W8Rfu4RdjZ/AFR4wQoAKQfpgMtAJYIrCt3FuAYcRV+x2OA6EwtocK5rW5rIofltvTyrvgD5KjGLJaTBByjJ17rDKrafeokVIidfXR3j+PMGpIoM0vXWb+MoV8qkp4g8/pHbpEsm1a5j4GfgD7HA4HIeQ9MYNsrk5srt3Ic8JTp9GqG0WmVtU3eVHqrrrfoRFsGolKk3ItCX0FZ4XFQU4qclYwog6YA9tVjeAMQYsWGMRsnCG2Q5j3io2zZn6/73ZsnxlaJTss59pWda5+u+Qtphws+knt32OvTJ39VbLYxX49J7ZpHN819jiM6NUs/v/cDY07AaLxogGkhICD2l6t7WfQKNsjpE+IMll9DCnO7uf052QZIZGauiKfLo8n66Kh1Wb53SvzN0jbTToHRklLJUYOXceud3vtcPhcDj2DSElQ2fOEUQlOvsGqC0tktQPZ16w4+mnM/J4frgDX0l6yj7VOCfZhgWuAESaIXQOdvvqbgvUrMZgSTF4CNQm97gGD4vAPrAy3x91t0AgTReCsFB3b2IdfRgoD/bRd/G5lmVLH95hdV2D6lZIqynFrY01a63MX11nZb6USD6Yf8oaUveIFYK3xRh1Wl+XYaqctdt7H3bDjFrgx/5VGutcQgWC0/oYH82fw7OPvsffLL9by32IkSqFRdFb3Vd3F5V4IRVRGOJ5ijxLidOMbLVMZf4nkOss2WvqDlPBH2L30dHhaUAIgffiScr/w1fxv3Rx03mY/IfXqf3K18l+cP3pd5ERgPLBC5vKhLyYc8gOp2PHs44rdjscB4gVBivsQ2tzK4os7z2ovBURJcbwKJMwS8w9UhaocoWMlfY+gUOIEALV3U149izhuXPIKCIdnyD54DLZ5CTJrVvULl2i8d576Gr1SV+uw+FwPDNk09Okt++QT02hq6v4J08iw23a1m1QdW+9nwUafkSiPFJt0I0YLJT9AIlESZ9ULKLJMTJGmtK2rZ+fBNYUk27WWuQ2lbICy3F/ldn/+AHZXOtE2nf+6t9ByIfHESahY/XfN89Vguyjbbv2R6HTjMUb4y3L+s6eQG5zAnN7JymyzvFU8e8pUhpbsVo0SNoy0nQiCB6/UzOn2wiFwSOTQZHTHTRzunNNkCTYXFONMyJf0h8EdEU++AKtNuZ015aXqC8v0zUwRFjpYPjcefxwa9cFh8PhcBwsYblM39gJKr29hKUyy/emMdop2RxPBl9JRroiuiKPwJPM17anbpZZsZ3QGuupbU+XaSx1q8mtRWMJhdxY7haQS78oeu+7ursM1luj7j6c7oMjn/kYKmgtDE5+741tRwSutzJPwx5yVYzfjndqTna2vsbOynwjmfB4U5wgWzdOfY55Ruzyvp23Jhu8GVxhXi5tWNdnunklvUjHYxrFi/zumMzvQEuPOBpof3638sD3IPDBmua4r4kQhEFA4HvoPKcRJ+haB9HsFwqR2RpW1S2mgu889QKxdiAin/DPfYrS3/oK8njfxg3qCcmvXaLxP38LM7N/n9FDg1Br5qUszsr8cHJ4Z/ocjqcW27Q2p6nyFmtU3nJXvysFkpBBIobQNGgwTsYKq9ygzvgz07Umy2WCU6cIL1xAdXeTzdwrit4TE2R371L/4Y+ov/km+cLTbfXucDgcTxq9vEx8+TJ6YZ58dg7/2DFU5/ayv4AdqbpT5aOFpIpCZDlppgk8ie9FSKGwMiNnBSPrgEDa0t6f4D7xwMLcWBDbz+seVnXym3MsfOd6y/J3j12k/9XWrO5K/bdRpjkYzV4CDkZZsXD9LiZvnZToP3+6vSfJddEcgQTv6VGMWJFgRYq0HQjrIUz343eCYvJWCLTw0UKhhV/kdFPkdKs8x0tzlhsZUsBQKaQz8AhKctOc7qRepzp7j0p3D+XubgZOnqbUsYPvtcPhcDgOhO6hYUqdXXQPjWCNZWX23pO+JMczTH9HSOgp+ioBSWZYTR5fZBLWIrMMmRX3MnYHDjIphtQaElvMu22W323wsYA5QHU3VmFFbV/Os1e8UsTwpz/WsixeWGb+/etb7NFK1JhDmDWFfCFolIcfPFyv7n7rXkAjf3qaUttFXYS8LY5v+DR+1E7RbffPGUALzfveTW6qCey6SemIgJey5xnVA4+cr/azVYTVpEEXWvok4fZcqHZEFIJUhYtXsr5xRuD7AVEYYIyhHifYejfR7Oc3LXiPB98kxylzt4M60U/pb32F4M99CsKNY2xz/R71v/9bJN94C5s95U0EQnBQrniO3eGK3Q7HE8NghVmn8lYIq3Ztbe5RocQYkoAG0yTMkzBLlSvkHE7LpP1AhiH+2BjRRz6CGhxELy0TX7lCeucO2eQkjbd+TO0HPyCbnt52p6rD4XA4toeJYxrvvIupVkknJ1F9fXj9/Ts4wPZV3QANL0QLQd0ISGKMhUoYFZNLyiOVC2hyrEhQpoQ4xIMTaw3GFP/LHQykjrPE1L9+o2UCIpUe3/4rfxPlr5ngs4bO6r9pnkths1faePVbY43dYGHefWKEoNLGxgNrAFN0/Sv51FiYWwxWrCKsjyBEmp5tORNIcqTV5KLIpcxFSO57GCnx0yKnO4wTamlObix9UUCH8imXvU0L3XmasjQ9SVAq0zkwRM/wKF0Dg/v4zB0Oh8OxW4QQDJ0+ix9FdA0N01it0qg+/a5vjsOJlDDWW6LkK8qBYrGWbsv2VqYpYJvq7p05AdXRaGuJrUEA4foGUlFkd9+3NC8K3vtDoe5WyAfq7sNZDOp/4SxRX2tD5cwP3yVvPD4WUGAp1VubatZamX92NEGJh+95agQ/mt6OS9Gzx4KocEWMtCyTWF6240R2H3PfBYx793jH/5B0nQOBRHIuP8H5/BRyfb7Rw93x0ypWSDK/k8yvkHmV9l6j7xdjPP++unvjd0kpj3IpLBou4gRT6yGae7WYa19DrO5xN/yPpOIZUCS3ASElwZcuUv7lr6JePLlxA23Ivv0u9f/pt8ivTh38BTocTVyx2+F4whQqb1uouxFgJcKoXVubSzwiRgjpJ6dKnUlSVqhyjQbTG7r0nmaE5+EPDxNevIh/bAzTaJBc+5Dk+nWyySni9z+gdukS6Z072Oxw2kk5HA7HUcJqTfzOO5jaKuntO8hSGf/YsZ0dZAeq7sLCPGQVD60teSPGl5LAC5FSYUWMtjWMrCGQiEOs6oZmXjcWYyxym6ruLpmQ/e47pDOrLcv/5Ue/wsufPtuyrNT4Ln7etBLPXgDb5gmILViZmCGrtXbOD1w43d6TaA2IZoPEPuTEPSlEA2stwnYgTITc1ntW2JcXeXmSTEZopVpyusM4IcsNtUTTEXr0BAGdZQ+aOd1mzcfPaM3i1CRSefSMjFLp6aFv7MR+PWOHw+FwtAEvCBg8dYZSRwelzi5WZu+RuzGv4wnRVfLpKnn0V0K0tSw3tqHuNgahNSLPQUqs3NkUdo0ivzu2BoXAX9dEqpvuRkZ6TSvz/VJ3S6Ttggfq7sMpRBFSMvbFT7Qs02nG9A/e2db+5fpMy+Ms6CLzCvvrzsDy8YHW3z/OynxrxkUvd2hVRgdoXrHjqH1szABYlqu8EVxmWaxuWDds+ng5O0/JbP7eSasJslW0CtEqJI560bLNblthWDQ3CwlbqIiFUJTDACkVSZKiV7oJZ18tYkTXkMkqd8KvU5fTmx7HsRHZXab0V3+C6L/6MqJ347jUzlWJ/8nvEf+rP8ZUnXLecfC4YrfDcSgorM2xomltLtdYm+9OgebTRYljCAQNpkhZJGaaVT5Ekzz+AE8RQkq8/n7C8+cJTp0Ca0lv3SK+epV8aor42jVqly6RfPghJnm2XhuHw+FoF9Za4vc/IF9eJrl1C6QkOHUKsZOJKZ3sSNUdeyEWQdUqZJqQa0ul1FR1S49EzKNJCwtoUz7Emu4CY/QDx5Htvm6jU7eZ//a1lmVXe45z5af+LFG5dXKhq/prD3622af2eLXbZ+7KzZbHpb5uygPttLazRbFbNXO6n5JityXHiAaSEsJ6SLOd18zi2fs53X6RSblJTrfUhuVGRuBJBsOQjtBDhhtzuq21LM1MYbSmd3SMqNLB8JlziKcoD93hcDieVjp6++jsH6RrYAghFcsz09tS1Doc+8GxnhK+J+gu+Sw1UnK9PXW3MAaM3bG622Cp2RyDJcPiC0lLgrcQTXV3kQku2Ud1t6kU93K2VMTTHFJ1d2V0kJ5zrarNhcs3qd97fBRgmCwgdet82lp193or8w+XfO7VXVliK66KYeZoLSZ2kPBxO1FkX+0jmch5x7/GuJrZsK5iS7ycXWBA92y6r9IJnm6Q+h0YsQ/53YEPUhT/67xokt8EISSlKEB5PkmWk690Ec18Calbm9+NSBkPvsmK+rB91/gM4L1wnPLf/Sr+T75QvB/ryN+8Rf1Xvk526SrWuPsOx8Hh/qo4HIcIKwxW2HXW5t4eVN4BEaMEdJOy2Cx6L1PlCgnz7X8ChxwhBKq7m/DcOcKzZ5FBQDo+QXL5MtnUFMnNm9Ree434/ffRqxu7GB0Oh8OxNemtW+Szs2R372LTjOD0acROi47JyrZV3QB1PyRBklrQjRhPCiIvREoPLWpoYoyqI/AQ9nCrB4yFYi7PIOX2LMz9PCX72mvFzvePIyX/8JW/xE99olVRHyTvEqSFMsPmz4HZgbX8HmgsLFNbN0E2cOFMe4ulRgO2KHYrtemA+yhixWrR9GjLSNuF2Ea+urIZWIMWHgZFTkDmB01rwSKn28+KnG6AoXJIxVeEZbWpfXl1bpakXqdnZJSwVGLk3HnkDnIzHQ6Hw/FkGThxiqBUomd4hDRuUFt8fNHK4dgPIl8x0BHSXfKRQrBYf7zQQOQ5wlhknmOVwu7w/jHHEltNZg2ajXbmhbpbYISHNDm7mnjbBg/V3RFYeWjV3QCjn3sRuW4MN/G9Nx7bKCPYqO5ulIcfvKIvDqZ0+K3q+UtO3b0lVgjeEWOs0mr3PkiN8/beFnu18/xw05vkfe8G+bpGEA/FR/IzPJePITb5WHhZDfkgv9sjjvrad2FCQBQVzc1CQPooxxJBFHj4fkCuLelqiWDyS6isZ91mhungj5jz3nim3FD3igg9wl/8BKW/8/PIUwMbN2ikJL/+Axr/6HfQU4sHf4GOZxJX7HY4Dh22aW1OU+Ut1qi85Y7vvQWCgF5KjGLRNBgnZZk6d1nlBoZn08pMVioEp08Tnj+P7Owim54pit6Tk6R371L/wQ9pvPUW+aL7g+xwOByPI5u5R3rzFtnMNHp5heDECWQU7ewgO1R1ayFJVMCKVQijydOUSlhuZnVLMrmAETGWDGkqh17VbXVRsLXWIrZpYT76R6+TTrZmcP67j/wk9sLzdPe2dq13Vb/24DWw6UGqum+1PPZKId0nR9t7klwXnxkhiwy3pwArEqzIkLYDYT2E6XrsPvdzugu7QEkumzndSuKnKdIWOd31VJPkhr5SkdNdKXuwSaG7vrxEbXmJ7sHhQtF97jx+uMPvtcPhcDieKFIphs6cJSiV6ejtZ3VhnjR+fAavw7EfDHdFBJ6irxKwmmji7NFqagGILEXoHOzO1d0AMYbMWpKm/XMkHjbtWSHQ0sM0l+2/ulshKR9qdbdfKTP0yRdaljXuLbC47p5+M0r1Vjvo3K+Q+Z0AeBI+PdLa4HBpMsSJPrcmF4o3xQlSWhtNT7HAmD2Yucp5tcyb/hVWxUZL6jE9xMez5wls6/iraLJdeZDfnXtlUr+jfRcVBsXYz7+v7n5UBIEg9BV+EKAtZA2FvPs5VH1kw5YL/ltM+3+E2cffA08jarSX0t/4OcJf+iyUgg3rze05Gv/gt0m+/gY2OZy/9xxPD67Y7XAcWgxWmHUqb4WwalfW5oqIEsfw6CBhjpgZUhZZ4Qopy/tw/UcDGUUEx48TXbyI6h9ALywSX75MeucO6eQkjTffov7DH5LNzDywlnU4HA7HQ3S1SnL5A/TSEvnMPfzRUVTX4wtzG9ihqrvhhVgsNRQ6TpBIoiBASZ+cVXKbYGQDQYC0h78Aqo3BWoO1ILahTPam5zDf/nHLsnioj39+9mf4mZeHW7fNJyg1vguA1cOgDyZvOWskLN2ebFnW//wppGrjEMSa4t99Rbd39FXHFoMVqwgbIAiRpre4F3wkBmkytFBYPDIZkiuF9tfkdDcStLasJjmVQNHrB3SWFMIT5OtyupN6nZXZe1S6eyh3dzNw8hSljs59fd4Oh8Ph2B9KHZ30jh6jo68fL4pYnpnCuLGt4wngKcFIVxGfEnqShVr6WEtmmWVgQWiNVd6udJd1CjvzxBokEKxpLNUEgCzU3Xb/CjGFursT7OFXdw98/HmC7tb7vqnvv41O0kfuF6QrqLz1edUrD4uKn19nZT4fK64tPh3xQ/tFLAJ+LI5j1rVuX7TT9NnawVyDTPixf4UZudEhtNt28Ep6gR7TWsyW1hCkVbQKyVVEEva0L79biCK72/eLn/PHibgEgZIEfoCViiwDM/4ycvnMhi2r3nXGg9955uI/94qQAv/V5yn/8lfxXjm9cQNjyb7zPvW/93Xy98cP/Poczw6u2O1wHHIKlbct1N0IsBJh1K6szQWSkAEihtEk1JkgY4UaN6lzF/sMd68J38cfGSH8yEfwR49h6nWSq9dIblwnnZoifu996q+/Tnr3LjZ3nWgOh8MBYJKExttvo1dXScfvonp78QYHd36gHaq6ARp+yIqRGEDXG1TCCCkkUkEm57EixpIjTXnn13PAWFvYlxtrEUI8vrCpDUO//i1Ym3UoBf/s03+enr4OxsZamw06q7+GoJjULlTdB6NzX/jwdkujmJCS/nU5gHtGa0CAVOA/JZNlol4o/G0HwpSQ9vGfYWVzEBIjfLT00MIjD3ykNs2c7rSZ053iScFwFFEJPbxIYpQlX5PTnacpS9OTBKUynQNDdA+N0DUwtJ/P2OFwOBz7TO/IMaJKhZ6hUXSeU53bfxtch2Mz+jtCSoGivxKQ5IbV9DHqbmuReYbMchDsSt1tgZrVGCypNXgIVPN+2AqBFgojVHGufVRcC9O5Tt19OOfgpFKMfeGVlmU6Tpj50XuP3E8A5VqrlXm99NDK/FSXZrTS+vo6K/PHsyTKvC9alcgSeNGOU7YHU5Q1wnLVu8M17w6G1mapAJ+PZec4kQ+3zFMrk+LlDTK/ghF+e/O7w6AodHseZPk2cswFvpKEvk8QBAgk+dQFuPfChrn1WE1zK/g61XyRTNv9jkh/qpCdJaL/4otEf/2nEAMbG6XtYo34f/kOjX/+R5jlw9vw4zi6uGK3w3EkKKzNsaJpbS7XWJvv/EbBo0yJMRQhMTMkzJEwywpXyXm2s6qFlHgDA4QXLhCcPAnGkt64SXztKtn0NPHVq9QuXSK5fh2TuE4/h8Px7GKNIX73XcxqjfTWLWRUwh8b293BdqjqzqQikx5V62GyDGkEURCihEcmqmibY2QdYUOkPfwFUGM0WLDGbkvV3fHHbyLvzrYs0196gd/yL/DTL7WquqVeplL7BgDWdEJ+vn0X/giM1sxfu9OyrOf0MbyonRNatih2K/VwsuOIY8kxooGkVEyGmt7H7iPJEFaTCx+LJCMkCwoLOT9NUbnGzzKqSYa2MFwOKXmKUllhhSVdY19utGZxahKpPHpGRql099B/vM0NCg6Hw+E4cISUDJ85hx+FdA0OUV9ZIV59tsf+jieDEHCsp0ToKzoixUItxTxO3Z2mgEXkGuvtTt2tsdStJseisYSiKSgBtLiv7lZIu49W5kik7WiquwUcYnV354kRuk4fa1k2996HxAuPdoYsr7MyN15EEhb3s0LAF9apu380E+KcjR/PlOjhJv0ty3wML9txvH38zLYgYFrN82P/KvE65bNAcFof44X8OTz70GnLy2tIo0mDzmZ+d//6o+4OKYuCt+8Ddhvq7uZuQuArj1IUUYkC1NJpmPhEIShbg1YrTFd+m0U9yXIjYzXOSTJNrl3lezt4F0Yp//e/iP8zH4dNXN3023eo/8rXSb972bmoOtqKK3Y7HEcIKwxW2HXW5t6uVN4SRcQwIQPkrFJnkoxlqlynwRSWZ/uPjRAC1dNDeO4cwXPPITyf9M7dZq73FMnNm9QuXSK+fBm9ejDWQQ6Hw3GYSC5fJl9cIr19C4QkOHUKIXdxa7kLVXfdj4iNJZUKE8eUwxJKSoSCVCxgRB2LRR0BVTeAMaawrrYW+ZhCvze7SPfvvt6yLBju4F+e/1kqJZ/zz7UWRztW/z3SFtmcNv0EcDA238u3p8jj1kmQgQsbreL2hDGALYrdShWfnyOOFatgFdgy0nYjeFwB36BMjmnmdGcyQrfkdFvCOCbODI3U0BsVOd0dFQ8UZP7DQre1lqWZKYzW9I6OFTndz51DPOYz6XA4HI6jgR9FDJw4Rbmrm6jcwfLsDNq5ljmeAJ2RR3fJp7ccYi0s1R9dqBLGIHKNzLOiYrrLe74UQ2KLfxaImnbmVhSFbi08hDWIfc3u7kJYiaSEOcTqboBjr76MWFuospaJ772BfURzgp/X8NNqy7JG+WEz7mePJYg1E5iJFrxxb2POr2MjH4pBZmhVy1ZIecmOIw5QfrwqG7wZXGFebmx86DfdvJJeoMOUgGKYEWQrICSZ30XuldqX3x1GzfkDH7KMnU6MS+kRRSFhNoYa/xzkrfMQViYsdX2LqrpBnBvqmWY1yVluZNTSnFQbp/p+BMJXhF95ifJ/9wvIs5u4hCUZ6W/+iMavfhN9d6NFvsOxG47+jJDD8cxhm9bmNFXeYo3Ke+dfaZ9OSowhUDSYJmWBmGmqfIgmbvvVH0VURwfhmTOE588jOzrJpqdJPviAbGKS9PYd6j/4AY233yZfXHzSl+pwOBwHQnr7Ntn0DNn4OCZOikK3v8sMrh2qui1FXnfVSKyxyEQT+R6e9MnkIsZmGNlA2ghxQIXdvXDfwtwaixAgxCP+lhtL769/G5GvmRQT0PmXP81vzo/wEx8balWG25TO1X/XPE8A2Yv79CxasdYye+Vmy7LKcD+l3l1kuT8KrQEJQj4VFuZWxFiRIW0HwvoI87iMbItnU4xQGDxyGZArj9z3UA9yumOMsazEGaVA0h8EVCKF9AW5Mi053dW5WZJ6nZ6RUcJSiZFz55Hq8H+HHA6Hw7F9ugaGqHT30j08DAiW7808dh+HYz8Y6ykReILuksdKnJHpRwsuZNbM9zYG6+0++7eBRltLbIsU5LB5761F0ThYqLsPIru7VAxsRGPfzrVXgq4OBl+62LKsNjnL8vW7j9yvtE7dXViZF2OUntDy0f7W5gZnZb5NhOBdcYwVWl+vPupctNPbsPJuH7nQvO/d4KaaxK4rMkeEvJSdZ0T3gwVhDX5aRauAXJWa+d1taHBQslB2+37x3LPdfG8FnvIJ7SD++BcgWTf+EoZGz/eohm9TS3IamSbJDXFmqCea5UZGNS6W587yfFPkcDel/+ZnCP/Sq1De+F034ws0fvWbJL/5I2y8PYW+w7EVrtjtcBxZDFaYdSpvVeR571jl7RMxQkAPKUvUmWqqvK+SMLvhxuVZRUYRwYkTRBcvovr60QsLxFcuk929Qzo+TuPNt6j/6EdkM/ce2enqcDgcR5l8bo7k+g2ymRn00hLBiRPIUml3B9uFqjtRPjmCmvDRSUrkh3hKgdRkdhnTnDCSZpfXdMBYa7Cm+L9Q0G5d7K9cepvw1lTLsr4vn+Xf+S9gpM+nPjLQun3td1Cm2YiVfRw4mImk+uwi8eJKy7KBC6fbexJriiYJTxUjmiNuYW4xGFFD2BBBgDS9j81uVzYDa9HCwwhFjt+S0+0/yOnOUAJGohJRoAjKakNOd315idryEl0DQ4Wi++zz+GG030/b4XA4HE+AwdNn8MOInuERknqN2pJr2nYcPIEvGewI6S75KClYqKWP3F7kOcIYZJ5jlcTuwXmmRpHfHVuDQuAjms2DEiM8pDWwj26HD7O7SxgRH2pnxaGXL+J3tLplTb3+Y3S2dVGqXG9torHKb7GvfnWdlfnlBZ+F2JUotoMRkrfECZJ17k/HWeIkCwd7MQLGvRne8T8kpfXzIJE8n5/kfH4SaUUzv7tO5peb+d397cnvjsJiHkF5u1J3P3gqQhLIbsKpLyFqgxvWZ11vk/f+EIshyw2NVFNLc+L7xe+0UH2vNDJqSU6SGYybFn6AEAL/M2ep/PJX8T59duMG1pJ99zL1//Hr5G/fcXPqjl3j/pI4HEecQuVtC3U3AqzclbW5QBDQQ4ljgKHBRLPwPUGNGxhcd9V9hO/jj44SXryIPzKKrtVJrl4jvXmDdHKK+L33qL/+Oun4OFYfXksqh8Ph2Cl6tUb8/vvo5SXymRm84WFUd/fuD7hDVTdAw4+o5qClRKY5oVJ40icVC2gyjIyRpvTYQuFhwTStuI2xyEeoutXCMt3f+F7LMn+gTP8vfIR/NT7KZy70I/1WFW5X9dcAsFZg00+2/dq3Ym6dqjvoKNN1bHiLrXeJ1oAo7Mt36ypwmBA1sBZhKwhTRtpHN2tIcqTVaBlgkaQiJAubOd1ZhqeLnO5ampMby1AppKQUlU1yupN6nZXZe5S7e6j09DBw8hSlzjar8B0Oh8NxaFCez9CZs4TlMpXuHqrzc2RJ8vgdHY42M9QZEXiK3nJAPdU0sq3nTwRFdrfQGozF7qHR0WCp2RyDJcPgC4lEoKWPbaq71b6qu1Uzu/vwq7ul73Hs1ZdblmW1Bvfe+GDLfTwdEyRLLcvq5ZEHP788lFLyHhb4LcKpu3dAInzeEsfR64rF5+09Bmx1i732j2W5ypvBFZbF6oZ1w6afl7ILRCbEy+tIk5OGXWh5v+C9RzwPfAWBXzRD72kOVuDJiGjuVeTyqQ1r09J1kr7vEEWayFf4QmAtxJkufn+lmiTXheo7KwrfK42MRqrJnOobANEREf3lVyn9338GMbxxHsku14n/+R8R/6/fwSxs/Dw5HI/jaMwCOhyOx1BYm2PFJtbmO+uUU4SUOIZHJwnzxEyTssQKV0hZ2perP6oIpfAGBgjPnyc4eRKb5aQ3bpBcu0Y2NU189Sq1S6+T3r3rit4Oh+PIY9OU+J230aurZHfHUT09+MN7KGDuQtVtEDRUwCoSnRtCJIHvYWVGThUj6wjEYwuFhwljdFHwFmydeW4tvb/+e8h11myjf+UV/qA6xEQS8adebH0vosb38PPbxYP8AtiDKV6mq3WWx1utC/vPn261V98ztpjIkKpokDjyqu4cI2IkFYT1kKbnMXsYlMnQwsOiyGWI9v2HOd3GEDZistxQSzTdoU+n71OueAhPtOR052nK0vQkQalM18AQ3UMjdA1skqnmcDgcjqeKclc33YPDdPYP4nk+yzPTTknlOHCUEox2R3SEHpEvmV9NHmnFLLLC1UboHKu8PRXKciyx1WS2SM0OhcTgYZsqb2k1+6/ulkgijGgcanV315kxOo63jjXm3r5Ksrx1YbW8zso8Lg1iRNGYGyj41HCrkv/SZOiKgTtgRZR4VxxrWSaAl+w4p+z8gVqaA6Qi4x3/GuPq3oZ1HbbEK9kFBnQ3QTPPPfM7yb0Smf+42KZtEEXFuFApSPYu1JLCI1p+BX/+oxtEZFkwzVLX7yC8VQJfUQoUlUARegohINOWRqapJ/qB6ruRaWrNrO/VuFCD5/rZ/rCrs8OU/87PE/yZlwqntnXo9yeo/72vk/7Be9jHRFw4HGtxxW6H4ynCCoMV91Xe963Nd6PyloT0EzGCJqXOBBnL1LhFjTsY9q/D9SgipET19BRF7zNnwPNI79whuXKFfHqK+No1V/R2OBxHGmsMjXffQ1erpLduIcIQ//jxvR10F6ru2A+ItSFVATLT+EriqYBUzqPJsCJBmnLhdHIEMNZimhbm8hEW5pUfvEd0fbxlWc8XT1M5P8i/uDvKR0/34Jdb1c1d1a89+Nmmn2r7tW/F3LXbLfcc0vPoO7vHz8p6mmp4PFlMamzVJHAEsFisqDYbFCOk7Ubw6OK9ZzOMkBjho6VPrgJyb01OdxyDheVGRuhJBsOQUuThB6053UZrFqcmkUrRMzJKpbuH/uMnD+BZOxwOh+Mw0Hf8BGG5TPfIKHmWUp2fe9KX5HgG6a0ElAOPvo6A3FhWkq3nmwQgswyZF/Mqe1F3A8QYMmtJbHG8SCpy6WNRWCH3Wd3tNdXd5UOv7hZCcOzzr8Ca5lVrDJOvvbXlPqX6TKG0vb+9VMSlh5FLnx9rdZOYqStuLB/tBtaD5p7o4kPRarktKRTer9i7BPv4+d0MK+CmN8EH3k1yWuc+PRQv5M/xXD5CkNzP7y6ThN17z+/2/aJg6vtgNei9P2+BJKhdIJz9LA8GT020t8xC1zdI1WyxrRB4ShD5inKoKPkKX0mshTQ31FNNLdUkmSZuFr9Xk5zlemF5nmrzTDZ6CE8R/PTHKf/dX0SdH924QapJ/+ObNP7hb6Nvzx78BTqOJEd3ZsjhcGyBbVqbs4nKe2dfeY8SZcZQRMTcI2GWhDmqXCXD2YlshursJDxzhvD555GlMun4xMOi932l9507rujtcDiOFMnVq+SLC6S374CF4PTprVXI22EXqm6AuhdRzSU5giCHyPOxIkbbelPV7SHs0ckZNrppYW4tYgsLc7VUpfu3vtuyzOstMfR/+ii36hF/vNDDV14ZaVkfpB8QJm8BYPMTYFrX7xc6y1n48E7Lst7njqPabTOuNSBBKPCP+KSYiLEiR9gOhA0QpuORm0ubgTVo4WOQZARkgY8wzZzuNEU1c7oBRsslQl8SlVpzuq21LM1MY7Smd/Q4YbmDoTNnm7nxDofD4XgWkFIxdOYcQVSis2+A2tIiSb3+pC/L8YwhBIz1RoRK0RF6LNUyzCMqPzJNAYvQGuvtTd0NUKewM0+sQQKeCLFwQOruLgRr1d2Hd54o6u1i4GPnW5ZV70yxcnty0+2VyQjj1gzptVbmZ7tzhsqtz/c1Z2W+Y27SzyQb7aAHqPE5e4M+e/Bzt3Nqibf8K9Q2aeA4rod5OTlNOU3I/BJaBjRKA9i9lqjCsMjtFhKy9hX5vXiM6N6fAt362bQqYan7d2l4rfFdAoGSgsCTlAJFOVBEvsITkN+3PE+KyIZEG+LcUE80y42MapzTaKq+n6XitxzoJPrrf5rwv/gionPjXI6ZWqLx//kd4l//PraRbnIEh+MhrtjtcDy1GKwwCCvWqLwVYscqb0XEECGD5NRpMEHGCqt8SJUPSZh1ed6bIEslgpMnW4veV68+VHq/dskVvR0Ox5EgHR8nm5win5jA1OsEp04h9lq83IWqOxeSuvBoSA+hwcPgeT6JnEeLFCvSpqr76GCMxloDls1tvq2l59//AXKdHdvof/YyquTzv909xonhDiq9rbbtnStfe/A6HKSqe/HmOGbd5MLAhdNtPospPjueKkYyR9jC3GIwooawIQIfaXofmTUv0CibY6QPSDIZkYXFd9HPMpTW+GlGPS0s84bLzZzuigLZmtNdnZ8lqdfoGRklKJUYPXcedYRfS4fD4XDsjrBcpu/YcSq9vYSlMsv3ikYoh+MgqYQevZWA3kqABRbrW88xCWsReY7Ms2IMoTZa4O4EC9SsxmBJrcETAiHDB5bmyu7f90HgIUylqe4WWFHF7j3FeN8Y/uQLeOXWYtTka29h8s1fow1W5lE/Whb3rkLAq8da1d0/mg54RGy7YzOE4H0xyg025l+HaD5p7/K8mUEccPW0IRPe8q8yIxc2rOu2HXymcYr+1CMLOjHS23t+d+AXzgOBXyi7TfuaVFTaS2n6JxHpOst1Yah2/TEr/tsYu/n5hBB4UhD6hd15OVD4XjHey3JDI9XU0vyB5XmcFqrvlUah+k4y88jmn6cFIQT+K6cp//Kfxfv8+Y2GdxbyS9eo/8p/IHvjpotdcWyJK3Y7HE85hcr7vrW5ACub1uZyR0Vvnw5KjCHwaDDdVHnfo844y7xHlWvE3EOTPP5gzxAPit7nz69Tek+7orfD4Tj05AsLJNeukc/Oki8sEpw4gSyX93bQFlW32raqu+FH1FJN5vl4uaHkBxhRR9sYI2tFsdDu0QLtALEWjLmv6habFjnLb16hdPlWy7Luz56k44VhGlryG5NDfPWTrZZfKp+i3PjD4hy6D/Rz+/Yc1mKtZe5K67V2jg0RdlbaeyKtgebEZrsV4weMFatFo4PtQJgy8pGuBEVOtxEKg0cmA3LfwyiFn2YoY4jihFwbVpOcrsCj0/MplyTSky053fWVZWpLS3QNDBGWK4ycfR4/OjqOCA6Hw+FoL93DI5Q6u+geGsEay8rsxsxVh2O/Ge2O8JWkp+xTjTOyR+S0yjQtbqa1wbShWU9jqducHEuOxZMhAoGRHtLm7Ke6W5oehPWRtgsrchCH111BBT6jn32xZVm6ssrs21c23b7UmC2aVO8jJI3S0IOHr462zh/Wc8lbs0dnPHdYsEJwXQ7xJ+Ik8SZxSKdZ4NP2FiV7sKpYIwxXvdtc8+5g1n2HAnw+0RjldNxF6nWSeRGZ37X7kwkBUVg0QgsBWXufq9RlSjNfRjaGWlcIiLt+zHL0Grl+vBBMCkGgJKWm5XnkK3whsE3Vdy3VNFJNkmvizFDPclYaRfG7kT79lueiFBD9hc9Q+ps/hxzt2bDeVmOSf/094n/6+5i56sFfoOPQ44rdDsczQWFtjhVrrM1V09p8+xo4iUfECCF9aBIazFDjLgmzxMzSYIIVPmCFq8TMuML3GmQUPSx6lyukE5sUvW/fxuYuD93hcBwOTK1G/N576JUVsukpvKEhVE/P3g/cououbUvVDVBTATUrAQ8vy/E9RSYXMCLGkiPNHovwB8x91ZQ1ZlNVt6zW6PkPf9iyTHWFDP+FjwHwG1NDBB0VBkZaba87q/8G0bRAtNmn2CoHvN1Up2ZJq7WWZQMXzrT5LBZy08zoFkdc1d3MmKeCsAppeh65/f3MSC18tFDNnG6/mdNtipxuY1lpZPhSMBxFRKEiiFRLTnfaqLNyb4Zydw+Vnh4GT52m1LmHiSWHw+FwHHmEEAydPosfRXQNDtFYrdKorjzpy3I8YwSeZKgzpDvy8KRgvrZ1sUpqjTAGqXOQEtuGGJa0aWWe2qIs56kSBoWFpp35/iBQSDPQbNwtY0QdKw7vXFrP86cojwy0LLv35gcbxgFQvG6leK5l2Vor8/6S4UJva4HwkrMy3zWLosLr4gyzbIxF6ibmc/YmI3b5YC9KwLSa58f+VeJ1c8QCwfNJLy/Gx0B1kIRd5GoP738YFuNE34c8b8mMbwfC+kSzn8dbPb1hXdZxk+XO3ydJV7etOhYUqu/AV5SCQvkdeaqo1WtLo2l5fl/13cgeWp6vxoUa/Gm1PFenBin97Z8n+MVPQLDRvUNfnaL+975O+u13sFs4SzieTVyx2+F4hrDCYMV9lfd9a3MPdmBtLhD4dFHmOGXG8OlEkxAzQ43bJM1s74eF78s0mEYT7++TOyI8suj94YdFprcrejscjieMzTIa77yDrq6S3bmD6uzCGx7e+4EfqLprO1J1p9JjVQsyP0JoS9kP0HKV3CYY2UAQIO3RUvkaa7AUndlykwm6nt/8DrLROiEw+pdfRpULtcO/uDvKL74y0tIsIEyVjtpvAWBNCbIX9vEZtLJe1R11d9Ix3N/ekxgDmELV7clm0fvoYbFYUW02HUZI24PYRIVxH0mOtBotAyyCTIRkQbAhp7uaZGhb5HT7nqRU8VpyuvM0ZXFqkqBUpmtgiO6hEboGhrY8r8PhcDieHbwgYPDkaUqdnZQ6uliZvUeeubgyx8Ey1BkR+Iq+SkAj1dTTrYsYMk0RWoOxWK8944AGmtxaYmswwiOQAUbcV3fvX0VJ2rCIs7FlhA0wonpo87uFEIx94ZWWZTbXTL3+4023X29lnoY9LQXNz6+zMn9v3mc5OUrBVIeLTHi8JY5zWQxj1jU9exg+bid5wUwi21wIfhyrssGbwRUW5MZi+1Be4lPxaUp0EUf9GLHLMZ4QRcHb95vq7vb/DRNIgoVX8Bc/tmGdLt1jpf/3qGfz5LuY0xVC4ClB1FR9l3yFryTWQpob6mmh/E4yTdy0QF9ref60qb6FkgQ/+QLlv/tV1AtjGzfIDek3fkz9H/w2+vrMwV+g41ByNGeIHA7HHrBNa3PWqLxlc8J1Z78SJAEBvc3C93F8ejBkxNyjxh1iZkiYo8EkK1xmhQ9oMEXO4bVlOii2KnpnrujtcDieMNbaB4ru9PZthB/gnziBaINi4qGqO92RqrvuhdQyjfZCvCwjUJJM3Fd1a6Rus1X2PlNYmJtC1S1ArBvQl96+Rvnd6y3Luj45RueLhWX5D5c6GdfdnD7T27JN5+r/gbSN4hzZK/CIAmo7iZerrE7Ntizrv3C6PZ+ZtWgNyKJR4ihbmIsYKwzCdiJtgDAb1RcPKezLtfCwSHIZkYVFnuXanO44MzRSw1CpmdPdoRBrcrqN1ixOTSKVomdklHJXN/3HTx7UM3Y4HA7HEaCjr5+OvgG6BocQUrE8M+1yMR0HipRwrKdEOfAoBYqFWrLlZ1BkGcJapM6xnmpbKbpOjqYoeCN8lCyiXuQ+F5+l6USYEsJ2NvO7Vw5tfndpoJf+F862LFu+Mc7qxMaCU9SYQ5g1RUchaJQfNlF/YjghVA+fp7GC7085dfeeEIK7oo8fiNPU2GgLP8Yyn7M36bAHK0rKheY97wa31OSGz3bZ+LySnGXIDBNHA7v/5IdBMcfgeZDl7Ef1VyAIqucJZz+zYR7dBivUBn+fupkmTmKM2d35BQIlBYEnKTWzviNf4QnIm5bn9VTTyDSJNsT5Q9X3SpzTeIpU37Kvg+i//DLR//UnEN0b3fzszDKNf/wt4q9dwq46od2zjit2OxzPLKY50SrWqLwVYgcq77VIfAJ6KDHWLHz3YtHEzFJvFr5j5mgwRZWrLPMBDSbJqR3aG/iDYH3RO5ucXFf0vkR665YrejscjgMjuXaNbH6e9PYd0Br/9GmE2mgdtWN2qeq2wLIISL0IrKBsJVqtoG2GlXWEDZG04foOEGuLrmvbzOteazUuaw16/o/vtGyvOgKGf+lhPt7/emeMr7w4DGvtz21GR/XXm8f3IHt5H59BK+tV3Sr06T29Sff1nrBFo4QnixFMOz6TTwCLwYga0oYIPITpQ2xpNW/xbDOnW/jk0if1ggc53YV9eYIxlpU4oyNQdPs+pbLC8x/mdFtrWZqZxmhN7+gYYbmD4efOtb8ZweFwOBxHnsGTpwlKJXqGR0jjBrXFhSd9SY5njJ6yTyX06K8E5MZSjTefCxE0C955DhZsm+JtDFC3OQZLgkQJDyECpNn/ORlp+pv53d2FsltstAY/LAx/+mOosLWQOvG9N7HrstYFllL9XsuytVbmkVcUvNfy2mT4VBTpnjRVEfF9cYYJujesq5DyWXuLE3ZhXwrCWyLgrjfDu/51MlqV1wrB+fwEz5nnyfzeLQ7wGKQsCt6+TxGBtX8OJV7jONHMl0Cvm9fwEuLhPyLx7xLHdfIs23PjmBCF5XnoF3bn5UAReBIBZE2Vdy0trM3T3BCvUX2vJjlJZjBH+EslhMD7+EnK/8NX8b90cVPRRP7D69R+5etkP7juGvWeYVyx2+F4xilU3vetzQVY2bQ2l7t2aSoK392UOEaZEwT0YTEkzFHjDg2mm1bnU1S5xgrvU2eCjNVntvD9oOj9/PMPi96XL5NNzxBfv+6K3g6H40DIJibIxifIJycx9TrBqVPIYGM3+K5IVsDkO1Z1x17Aaq7Jgwoiy/E9SMUiRjSwWJQptef6DhBjDGAxxiLXWXF3f/2PUKuNlmXDv/QiXmcxiJ5Lff5goZ+PX2y1CK/Uv4Vn5osH2UfBHkyGeZ6kLN4cb1nWf+4k0mtzMVo3//4pr+jUP6KFWitWi/srW0GaDqTduulD2SJrTgsPgySTIbnvo7Ic1Sx0C2NZbmR4AkaiEkEgidbldFfnZ0nqNXpGRglKZUbPnUcd4bxzh8PhcOwfUimGzpwlKJXp6O2jujDP7O1b1BYX0G4s6jggxnpL+ErSGXks1jP0FupImRa53kLnWM9r22xSjqVhNSmWHFAqQlBEy+wnAonSgwjrIakU451Dmt/tRSEjn/l4y7JkcYW59z7csG253qr4zoIuMu/hWGW9lfnEqsed6tFsbD1saCF5Xx7jHXGMfF0ZSGK5aGd4yY7j24P9/b4kq7wRXGFlk4aOEdPPC+KTKNWzu4OHEQjZVHdn7GcEgUr7KU1/GZF1tq6QmmTgdeLyVZI0JUni5hxAe5BC4CvZankuBbap+q6lmkaqSXJNnBnqWc5Koyh+19Oja3kuIp/wz32K0n/7FeSJvo0b1BOSX7tE43/+FmbmgPPpHYcCV+x2OBzctzbHijXW5qppbb63yWSJh08XJUYpc5KQ4o9Rwjw17tJgioR5YqZY5cNm4fsuGVUsB5shcxhoKXp3dK4pek+7orfD4dhX8sVF4qtXyefnyecX8MfGkJU22YM/UHXXd6TqBqjKkMT6GCEpG4HxlzA2w8gG0pYQR0zVDWCMLga76yzMo/dvUHnzSsu2lY+P0vXJhyrpf3F3lM9fHAK/9Xl3Vr8GFI35Nv3kPl59KwvX77YqOISg//nT7T9RborPDuLIWphbUqxIkLaCsB7CbFRZ3KfI6c4x0gckmYzW5HTn+GmGp4sO/tzYIqdbCSoVDyMf5nTXV5apLS3RNTBIWK4wcvZ5/Cg6oGfscDgcjqNIqaOT3tFjdPYP0HfsOH4YFkXvWzdYnJokrq061ZRjXykHRW53b7loul2sp5tuJ6xFZjkyz4tGyDY6/yQYMmupI7EIPFlC2v3P0RYESNuLsCWEDZv53Ydz/qfv4hlKA60K3Jk/eY+s3molHCYLSN1a0F6r7j7fm9Mftb62lyadlXk7mRbdvC7OsMzGccAQq3zO3qTXHqyTQCoy3vavMaHubVjXYct8RH6eTnls5wdWEgIf/KAYHGf7+/2RukJp+k8h48HWFQLy/ndpdL9Bnqc04gZplrb97+dDy3NFKSiU35GvithyYwvL86RpeZ6bovjdtDyvxoUa/KhZnqvj/ZT+n18h+HOfgnDj3IC5fo/63/8tkm+8hd3n999xuHDFbofD8QArDFbcV3nftzb3YJfW5uuRqGbhe4QKJwnpRyBJWWgWviebGd8zrHKdZd6nxh0ylp+5wreMIoITJwp7845OssmpzYve2f5Z8jgcjmcH02gQv/seurpKNjmBNzCA17dJp+xu2aWq2wjBklXYsIw1EIqM3K5gRB0AeRRV3dZiTGFlLtdYmItGQu+//4PWjUsBo3/pxQd207kV/O8TI3zx48Mtm0WN1wmym8WD/CzYNr53j8Aaw/zVWy3Lek6O4pfbXEw1GjDFBKaShT3dEcNisXIVYX0EJaTtfkSjhkGapn05HpkMScMAK9bmdKekuaGWaAaigJKnKHd4CAVp0748bdRZmb1HuaubSk8vgydPU+rsOtDn7XA4HI6jSd+x4wydOUv30Ag9I6MMnX6OzoEhdJaxODXJ7O2bVOdnydPNi5AOx14Z7YnwlKS34lONc9J88zkhmaVFQUtrTJuda+rkaCGK/G7p4wtv39XdcD+/u4ywHWBlM7/78M2JCSk59oVXWpaZNGP6+2+3bsdGdXejPPxgmlEK+Nw6dff3p0K2eMsdu6QhAn4oTnOLjWPFiJxP2jucNbOIA6x6WmG54U3wgXcTTWvDg4fHWfUpRuVHYMvYpy0Iw2LMqPZf3Q0gbEB07wt4qyc3rDPdt2gMXCLXMVmaEscNtN6/xpn7lueRr6gEXqH6VsX4Oc0N9bRQfifN4ndjjeV5LSl+1x6FwreQkuBLFyn/8ldRL2583dGG7NvvUv+ffov86tTBX6DjiXD0ZoocDsc+Y5vW5qxRecumyrt9vzIECp9OIoYpc4KIQQSKlEXq3KXOBClzxMywyk2WeY8at0mfscK3DMNHF71ff53k5k1X9HY4HLvG5jmNt9/BrK6S3bmN7OjEGx1t3wn2oOquqYAkFyQqINIW6y2iyTAyQZryI7KODy9Ga8BirG1Rdff81ndRK63d9P1//uP4PQ8L+r8728eJsSFEubV7uaup6gaw2af358I3YXl8ZoNyY+DCmfafSGtAFp+fI6rqRjSwGITtQNgAYTq23FTZHIRECx8tPVIv3JDTjYXlRkbZV/QGAVGkCIKHOd15lrE4PUUQlegaHKZ7cJiuwaEDfMIOh8PhOOp09g0wduEjnPzoS/SNnaBrcIiBk6cYOHGKqNJBfXmF2Tu3mB+/S31lGdtGi1aHw1eSka6IrsjDV5L52hbqbq0RWhfqbimxbWyKtEDNajLhk9ocKQIO6k5Umj6EDZG2C4sponAOIZWRAXrPn2pZtnj1FrXpuZZlpfp0y+Pcr5D5D62fXx1tLXavZpJ3547off8hxgrBNTnMG+IE6brGWwE8xxyftLeJ7MHOMc6pJd70r1AXjQ3rhtXznFOv4rEDtb/vFU5ovgfWNMeT+4tAEix8En/phQ3rbGWWZOSPSc0KWmviOCZN26/y3oxC9S0p+UXWd+QrPAF50/K8ft/yXBeq71qasxJn5PoIVLwB2V2m9Fd/guiv/SSib6MzoZ2rEv+T3yP+V3+MqW78fDmeLlyx2+FwbIHBCoOwYo3KWyHapPJei0Dh0dEsfJ8kYhCJT8oydcapM9G0Op+hxk2WeZcat0hZwrL/NyyHgS2L3lNTJDduuKK3w+HYFdZa4vffR68sk9y6BcojOHnygZK4LexS1Q2wiI/xyxgkgY3JqWFkHYFE2qOn6oYir9taAxaELF6L8OodKj98v2U7feE4g5873rLsn90e4yuvjLQs89OrhMmfAGD1COgxDoq5yzdbHpf7eygP9LT5LBaMAU8WI5d2Z4EfABaNEXWkjRB4CNO3ZaOGJENaTS58LJJUROS+h8of5nRLW+R0C2C0VMLzJaWS9yCn2xjD4tQEUkp6RkYpd3XTf+LUpudzOBwOh+Nx+FFE/9gJTn38ZUbOnqdneJSuwWGGTj9Hz/AIQgiW781w79YNlu9Nk8ZuMtnRHgY6QkJP0d8RFDm0yeaqapllCGPAWGyb1d0aSw1DZgWptXh4yAMQYBT53f0I6yNtBSsS7CaFwMPAyGdfRPqtr/vk995saYAJ0hVUXm/Zpl55OK4ZrhjO9rTOZ73mrMz3jXnRwSXxHPNsLA720uBz9gaDduVAr6khE970r3JPLmxY1yEHuOD9KSpiBw5mUVQou6WC9GDmSgWCYOUi4dynNwrGohWy498jYY5cZ2TZ/qu8N1xfU/Ud+oXdeTlQhJ4sLM9zQyPT1FNDri2rSZHtfVTwPjJG+e9+Ff8nP1rYRawjf/MW9V/5Otmlq1hzNAr5jp3jit0Oh+ORFCrv+9bmAqxsWpvLfXGBEchm4XuoqfgeQhKQsUydCeqMP7A6r3GLZd5jlZukLGAOaY5RO9lQ9J6aflj0vu6K3g6HY2ekN26Qzc2R3b0LeU5w+jSijVl3e1F1Z1KxakNSL8C3AuQc+n7msSkfQU134bBojMVYg5BFM5lIUnr/3e+1bGcCn8G//EpL08H1eomlaAS/t7XI31X92oPXwqafYscWb7ukPr9EfW6xZdnAxf1SddvCwtzzdtQscViwogZWgC0jTQfSBltsaVAmRzdzulMZkYU+wlq8LMfLipzuelpYzh2rFDndHR0Kq4qcbmstS9NTmFzTOzpGWO5g+Llz7W1gcTgcDscziRCCSk8vI2ef59SLrzBw4hRdA8P0jR1n8NQZyt29JLUG8+N3mb1zi9rSYtPRxuHYHVLCaE/pgSJxsb65ElJkWZHfnedYpbBtvu9JsTSEIMNggFAcTPOlICgU3pSQNsKI2qHM7/bLJYY/9dGWZY25RRbWNMYKoFxrtTKvl4ZbphU/v87K/O3ZgGrq7mH3i1R4vCFOcE0Mbmjf8DG8bCe4aKaQ9uAKnkYYrni3+dC7i1k36eyLiHPq8wzKs9s7mO8/zO82GvTBfXe8+gmie18EvW7c58XoE5fIwinSNCXPc+I4JkniA1F5r0cKgackka8oh4qSr5DwIMf7ftb3UbA1BxCBR/iLr1D6Oz+PPDWwcYNGSvLrP6Dxj34HPbW4cb3jyOOK3Q6HYxsU1uZYscbaXD20Nt+nP3pF4btCxGBT8T2MIiKjSoNJ6twlblqd17jDCu+zyg0S5p/6wndL0buza/Oi9w1X9HY4HFuTTU+T3r5DPjWFrq7inzyJDNvcPR8v71rVvUSAxSeTHp6pYUUDo2qFMtYezS7/+xbm1thmXjd0f/M1vMVqy3aNX3iV4cHWSbR/cmuM/+STx1qWqXyGcv33AbCmC/Lz+3fx65i70qrq9ksR3SdGtth6D+S6aJRAFjZ0RwxLUjRo2ArCegjTs+WWnk0f5HTnMiALQqwQ+GmGMoYgScm0YTXJ6QsDSkpRKiukEg9yuqvzsyT1Gj0jowSlMqPnzqParHByOBwOh8PzfXpGRjn5sRcZu/BRekeO0T04xODpM/QdO44fhFTn57h38zqLU5MktdoTmch3HH16yj6dJY++SkBuLMuNjXM9AhBpitA5WItV7b/3WUWQY0kwSGsPrOAtbQVpOsB2IKzCysOZ3z3w0ecJe7palk3/8B3y+GEBu7zOytx4EUnY++Dxp4ZTfPnw94S2gh9MH81x35FBCG6JAX4oTtPYxKT/BEt8xt6iYpNNdt6va4IpNcfb/lVi0TqnKYRkTH2U0+rTSLbxPb+v7hYSsoOdJ1bJAKWZLyOydep5qTGjP8J03ybLMvK8KHo34gb5E5zDFQiUFESBxJOCOC9yve+7ahylP+FqtJfS3/g5wl/6LJQ2Npqb23M0/sFvk3z9DewWjiGOo4krdjscjm1jhcGK+yrvNdbm1oN9sDdfi0DgUSZkgDInKTGCokTOKg2mqHOnWfi+R527LPMeVa6TMIfh6S34yjAkOH6c8MIFZNe6oveNG9QuXXJFb4fDsQG9vEx8+TJ6YZ58dg7/2DFUZ+fjd9zRSZLi3y5U3RZYFmVS30NIibQzaJFiyY6sqhtAG4O1FmuLgXpwc4KO195u2SZ+boyBL55sWVbTiu/Vj9Mx0prz3Ln6bxHNOA+bfpKDurXP6jHLd6ZalvWfP4VoY0YiUHTgYwpVt2pmdh8hLBYrawjrI4iQpqe4f9oEZTOwFi08jFAkKkJ7Cj9r5nQ3YrCw0siIlGQgCghCSRSpBznd9ZVlaktLdA0MEpYrDD93Dj+KDvhZOxwOh+NZI+roYOj0c5x66RWGTj9H9+AwPSOjDJ1+js6BQXSWsTA1weztm1Tn58jTzbOXHY6tONZTIvAkXZHPUiNFb2JBK7OsiAnSGut57Z+eEoIVBDmQ2gwP8A5K4W16kDZA2E6sPZz53UJJjn3hlZZlOk6Z+dF7Dx77eQ0/XdfkWx5+8HPZt7w81Pr74ZKzMj8QVkSJ18UZpunasK6ThM/am4zZRQ6y4lmVdd7wLzOnNtr398hRLng/QbTJ9bYQ+IWlte8Xym5zsI0iMu+gNPNlZNzfukKAHnwXhi6jjSZNE3SWkaQpcRxjnqDNtqCwOY88SW4scWbItKF6hHK8oYiM8199nvIvfxXvE6c3bmAs2Xfep/73vk7+/viBX59jf3DFbofDsUPsOmtz+UDxXdib72/RG5rdZpSahe8TlBhFUXlQ+K5xh4RZEu5RZ7xZ+L5GzCyGp3NgLYNgi6L3tCt6OxyOFkwc03jnXUy1Sjo5ierrw+vvf/yOO2UPqu6G8MnwyVSEtDWsiDGyhsB/hAX04cZaMNYUFuYCZJbT+2+/3bKN8T2Wf+lPMxbUWpb/xuQQf/YTx1teQ2FqdKz+x+axQ8g+vv9Posn8tdstOVdCSfrOnXzEHrtEG0AUHpb+RqXBoUfUsdYgbAfChEjbselmkhxpNVoGRU63jMiDZk63NoRJkdO9kmQYC6PlElIJKhX/QU532qizMnuPclc3lZ5eBk+eptzVfcBP2OFwOBzPMlIqugYGGbv4Aic/+hJ9x07QNTDEwMlTDJw4RVjpoL68zOydW8xP3KVRXWnJ9HU4tqLkKwY6QnrKPlIIFmob53UKG/MMmeUgwLYzmqlJJnwaNicXAm0SfCGRBzC1LpBIPYCwAdJ2Htr87s7jw3SfOd6ybP796zTmlx48Lq1TdxdW5g/HOOutzG+veEysHq2G16NKLhTviGO8J0bR69rLFZYX7DQftxN49uDiKbTIec+7xvVwGbtusjkUHZz3vkivOLH1AYSAKCwcwoSA7ODnhIUJie59EVXbeJ159w3ssbdAGrI8J8tSdJ7TiOtkWfZEHVHu25sba6lnhkxbakcsxxtAdpaI/vMvEv3XP4UY2CjwsIs14v/lOzT++R9hlutP4Aod7cQVux2O9eR1yJKmmsixNZsUvZHrit77r70rCt8RIf0PCt8eHWgaNJheU/iepcE4y7xPlavEzKA5QBueA2JD0Xt6s6L3DVf0djieUazWxO+8g6mtkt6+gyyV8Y8de/yOOyWPd63qBlikgpYS7XkIfQ9EgiVHmnL7r/WAsNaABWssQkq6vvUD/Pnllm1Wfu5VhoZ9fGHX7Af/YvoUIydbC5cdq/8BaZtF8fRF4GCaAIzWzH94p2VZ75njeGG7z2+LezGliokJ72hNclk0RjSQlBB4SNO7xZYGaTK08LAoMhmShkFrTneuiTNDnBpGyyU8KenoVNDM6c6zjMXpKYKoRNfgMN2Dw3QNDh3o83U4HA6HYy1+FNF//ASnXnyFkbPn6RkaoXtwmKHTz9EzPIJAsDQzzb1bN1i+N0Max0/6kh2HnOGuCF9JeisBq0lOkm2cs5NpCtimunsfGiWFIBY+sTXkaKzJCOTBxMUI/GZ+d4i0pWZ+9+Gb1xl99SXE2vt2a5n44zceFO3K9dbcbqt84uhh4/UL/RndYWsxzam7DxAhmBQ9fF+cocrG132EKp+zN+m2B1cUlGjuqEneKM+RrYuslMLjlPcKx9WLWzpoEYYPm6fzHA4wg/w+AkU4/yn85Ysb1unyFHrsdbxIY60hzRJ0npOmSVPl/eTqE0oKymtyvDNz9HK87+OdH6X83/8i/s98vHCNW4d++w71X/k66Xcvu0a8I4wrdjsca7EGTEYxG52DPnydkoePtUXv+5neD4ve4oCK3rC28N3XLHyP4dOJJqHRzPVOmCVmlgaTrPABK1xpFr6frsH1o4veNx8WvZ2FnMPxzGCtJX7/A/LlZZJbt0BKglP7YD0NkKzsWtWtrWRVRWReiKWGMjWMrCNsiLRHUN3b5EFet7UVTSOBAAEAAElEQVREd2fo+O6bLeuTkyOsfuFFTvit1n4/Wu7i1Y+cwqwdkNmcztVfL360Ept9Yr8v/wFLtybRSevfjoHzp9t/oubrhaeKfzv4DB0GrFgt7n9sGWk6EVs0IyibgZAY4aGlTxqUsLI1p1sby0qc0RP6VDxFqSzxPEnqF04Bi1MTSCnpGRml3NVN/4lTB/xsHQ6Hw+HYHCEElZ5eRs6d59SLrzBw4hRdA8P0jR1n8NQZyt29JLU68+N3mL1zi9rSYvOeyeFoxVOC0e6IzlAReJL5WrrBUlkYg9AakecgBXYfxjm5CEisJsWiTYzFEsqDGaPI5n0ltnJo87uDzgpDL7cW9OrTcyw1m2U9HRMkS63ryyMPfpYCPjfaKkx5fSrkiIlJjzw1EfIDcZo7bGzYLZHxKXub03buwGzNPR2zJJd5vXOGFbGx0D4gT/O890UCNmmOFwLCoOkUJuAJiX8EgmD5BYL5T26YJzfhEsnoH+FVEqRU5PdV3jqn0YhJ0/SJqbyFWJPjnR3dHG8A4SvCr7xE+b/7BdTZ4Y0bJBnpb/6Ixq9+E313/uAv0LFnXLHb4VjL/d/S1oCxoFPIG+y7L/dTgV2T6X2/6C3gCRS976MICOilzHHKjOHThSYl5h41bhNzj4Q5GkywwmVWuEyDaTRPT5PD/aJ3tKHoPVUUvV9/3RW9HY5nhPTmLfLZWbK7d7FpRnD6NMLbByXCHlXdy6KCQZJ5PsLMg0ywmCOt6oamhbkxoDV9v/4HiDUjQ6ski7/00/R4GZ2ydfD9j2+f5PnzrTbz5frv4+l7xYP8Itg2561vgbWWuSs3W5Z1jAwQ9ezD+XNddOBz9CzMC2vJFGk7ENZDmM3txKXNENaQCx+LJFGlIqc7zZH2YU73ciMjlILBKEQFknLJI/OLRsPlmSlMrukdHSMsdzD83DnEEWsMcDgcDsezgef79IyMcvJjL3Lswgv0jhyja3CQwdNn6Bsdww9CqvNz3Lt1g8WpSZJa7YlauDoOH/0dIZHv0V8JSHLDarq5uluYYk7P7sdYRwhyGVK3Go1B6wYCgS8OSOFtupEmRNgurLVYUd1g7/ykGXzpIkFXpWXZ1Os/RqfFOKe8zso8Lg1i1uSfv7rOynw5kXywcLTGA08DRkiuyBHeEsfJ1pWQJPC8neUT9g6hPZjisZ+tEouMH3TMMCFnN6wvix7Oez9Bl9ikiBmGRdHb94pit843bnNA+LVTRPe+CKb1M229Bo3hP0R0LBD4ARZIsxStM7IsJY4b6CfUDHY/xzs84jne95HD3UT/zU8T/mefh8rG+SozvkDjV79J8ps/wsaHz0HDsTWu2O1wbIXVRbHbFbx3yP2it3lQ9BYbit7ywF9O+aDwPUaZ4/j0YMmbhe87xMwQM9dUfF/5/7P3p0GSnIl5Jvh8n19xR95X3agC0A2g0ei7m002m6J4iBQlUkMdoxlpd3RwKI6t2dqare2flWz+jsZs98eaSdSs7a6NRsNbGlEcUS1e3c1u9gmgge7GjbpQd1VWHnG6+3ftD488orIKlVWVkRlZ+B4zGCrcwz08MjM83L/3e9+XFm/Q5yqax6OvQ+wQvW9sE73PedHb43nMUTdukl+4gLpxHbPeIj52DFkqjebFHsHVDQEtUcKECXnQIzBdnOwhXYLkcMVYb6cQuoso88mvvEx0c2VofeunPoOen+JY1BlafiuPaSw+hYmG33uj/Vub/3b5J0d34HfQvXmbdG3YeT7z9Mm9fyFnAQtBWESMjaBzcVQ4LE50EC4qYibtxF0j9QSGwGmsjABJFlRQmz3dhiQterq7mcZYV/R0S2hUw82e7vbtZdJul4mFReJyhcUzTxGMYlDX4/F4PJ49plyrM3fyCU4+/3HmTp6iObfAxMIicyefoD41g1GKlWtXuHXxPO3by2hfw+WhuK04MlGiFAXUkoCVbo69092tNcI6pNa4IMCNYBKgFgkOQd9pcAplFYEICMTor1kFEmlnEC4a9HfnMGb93TIMWPzcC0PLdC/l5suvA1Du3RiKknYyIC3PbD4+UjOcaAyLkd/wUeYHxi1R55viCVbv4pqepsdn3XlmXOcuW+4tAkect7Ay4K3KGm+GFzB39IeHIuaJ8DMsyDviwqUs3N1xXNxjpimYg/teCbJZyte/iNB3/EylJp39Brp+kTiKCYMQbQx5nmO0IU1T8iw7sIlg0UaPtx30eNvD2eMNhWM9+uQTVP9vf43w06d3PsE51NfepPfP/wD9/ff85LtDghe7PZ57ISgG621efAHqPoxZPNC4syF6s0P0DhAuPBDRG0ASETNBmSUqHCNmEocl4xY93iPl+kD4vk6bt1nndXpcQdMZuxmzD8p20TtoNgei91tbovc3v0l29qwXvT2exwjTbpO9+QZmbQ194ybR4iJBozGaF3tEV3dqS/SDiCwUWNcmoHAqHHpXt7GAI7xyi+ZXXx5alx+Zpf2Fj5MIzVwwPMHqX19a5BPPDncvJ+mLxOodAJw+Dnb/upmX37ow9DiuV6kvjeD1jQFEMShx2MRb0cc5h3A1hC0hXfUuT7IEVmFFgCUkl/Fde7pzbenmhvlyiUhKqrUQQtCBo9dap7u2SmN6lqRSZf6JM0SjmsDi8Xg8Hs+IkEFAY2aOIx96hmPPPs/U0lEas3PMHD/B9NHjJJUqvfV1bl08z8qVy/TbLd+l+QGnXo5olCMmqwnWOdb7w4KVAKTKEUaDG4272w3c3UoEZCbFkWMwRCIsxr1GjCBE2ulBf3dl0N89XmM4jRNL1I8tDC1b/sE7pKstAqtI0uHJv9ujzAF+5A539/duxvSUTy86KDIR8aI4zlkxs2NUNMbwMXeJp+wNxIj7sKUzRKqDDkpcj3u8Er9JehehfSF4itPB5wi3946Xy4XYXUoGgnd2YJHmAFLXKV//CWQ2NbxCOPLp75E3X0MGAXEUI0Th8tZaobQiTftofTDu9EAKyvGgxzs/3D3eAKKaUPrbn6P8az+FmN+ZyObWe6T/85+T/n+/gl0Z/aQOz6PhxW6P554ICGIveO8BG6K3Y7voLQ5c9AaQhEQ0KbM4EL6ncDgylunyHn2uk7FMynXavEuL1+lxGcX4RUU9CCKOiY4cubvoff68F709nscE0+nS//73MZ0O+eVLBJOThLOzo3vBR3J1h6zJGCFC+kFKZDpY2Ufa8l2dsYcJaw1OKWb+3ZcRdlt8uSziywkCjoQd5LYfl7KCN6PnMJXheLNG+ze3ts8/NfJj3yBrd2ldvjG0bOapkyOIzHaF2B0MeroPkdjt0FjRR1JGuBBpd3bcAQSuGJgwIsKKgDyu4KQc6um2g/jyRhxRj0LisiSOi57uPO3TunWTcr1BdXKSmWMnqDTuHpXu8Xg8Hs9hIS6VmT56nBMfeYGF008xMb9Ac26B2ZOnmJhbwDlYu3GdmxfOsX7rBipLD/qQPQfEkYkScSholiPW+wp1h6tQKAUOhDa4IBzJyM2GuzsXYE2KsgqHJd63/u4y0jbAVRAuwsn2WPV3CyFY+pGPIbb1pjtrufqN7+Gc2xllXprGbPvZfXohIxBbvzltBS/eiEd/4J57IwTnxCwvihOk7LxHO8EKn3YXqbjRjiOGJiMwGSqq0Q0Mr0RvsGqv7HheXc7yVPgFqmJq8/ipVbcE7zCCPAN1cOOewiaUbv4YQffIjnWq+TbZ9HdAOqIoJgxDrDXkeYbWiizLSNMUa/d/bFoKQSmSBIMe7/wQ93hvEJyep/J/+Tniv/IChDtTOszrV+j9j3+A+9pl3CF0sn9QODyjRx7PQSBDQBQutc3L434xgH/IB94PBjuo7ZYIJ4pKb2cRLgAhi0gQYdiHibB3RRIiaRDRwGIw9NB0ybhNxm0CSoRUMfTJWEYQEtMkYoKQ6qEUYzZE73BuDn3zJurGTfTybcKZaaxSqMuXiY4eJT52DBH7GwuP5zChl5dJX3+9ELrPX0CWykRHdt5E7d0LPpqr25HQlgl56NCiT+zWQAikK4/mePcJ68BaqH31ZZJrt4fWtX/ik6ilWQSOo+HwLOEv357m8x9ZGhqci/KzlNLvAODMNJiTIz76LW6/fXHosYxCJp84uvcvZA3gCrE7CBiaATDmONEBJ8BVkK6BYOdgp0QjnUHLYoA0DSuYMCDMFdI5kn6KGAjdoRDMlxNEBLVKhAoNWitWr18lSso0Z+dpzM7TnLtLL53H4/F4PIcUISXViUmqE5PoPKe9skx7+RblRgOdK/rtdXqtFr31daI4odxoUK43kIeo9sTzaCRRwEw1wRhHO9OsdnPmGlsJN8I5pFYgBCYMcWGI2GMXpBUSI2MElsz0iGVCZgWJjIllRG5H7xgVtokkw0qHZRVEC1xzX9zluyGZqDPz/FPceuXNzWWdyzdoXbhK/YmQVWuK+0YAIemX56h1C9GyFjuen8353s2te8pvXE34wtFhx7dn/1kTFb7FKZ5x15hj+B62Qcpn3HneZIFrYnSTcSPVJpOTZHED3CpvBec4qlc4Ip9FiK2x2ViUORP8CFft69yy54qFtSr0JFCMS5PnxZD/AY15CheQ3P40Sr+Gar49tM5Ur5CGfUq3PktAiUAGKK1QSiOlBReRWkMcxQRhOIKJ6O9z3EJQigJyY1HaYpSFENqpopaEyEN0H7+BCAPiv/wc4QsnyP7tdzBvXxt+Qm7gP1/AvrqM+Vu+WmEcOXzKjMczYiySPKzgNi4ONwbsrSkG8Y0G3cM7vB+FDae3Gzi95VbUuQ3BBgdekS4JiKhTZoEqx0mYQSDJWaHLJfpcJWeZPjfocJZ1XqfLeyjWx2o27W4RUVQ4vT/0IYKJCdSNm1ud3htO73ffxXqnt8dzKMjfe4/+93+AXlkhf/csIoqIT5wYmlm/5zySqzuibYvv227UJ7B9hOgR2PLYDNY8LM4Ywhu3mfizF4eWq4VpWn+pcGbPBT0SOfzd8e/bz+ImhmOp6+3f3vxpFF3d+/OzMUqxcvbS0LKp08cIohHMm9WmiC8XEqL9ccbsBU5kOKGQroZwIcLerSqgiC83IsQhyYMyKo4IjCHc1tPdU0WE+VKljJDQqEWY0KKFZfXaFaSUTC4uUmlOMHPsxL6/V4/H4/F49oswjplcWOL4cx9l6elnmFxcojE7x9zJJ5haPEIQRbRvL3PzwjnWrl8j63V9r+YHhLlGiTgMmKrEdPPCVbgdmeeAQxiDC0fj7lYDd7cVIUq3sFiUU0gE4b70d4s7+rs1iN79N9xH5j7+YaLq8OTlq998BVRGOV0eWn6/KPOzaxFv3Pa+vXFAiZBXxVHeEPOYO+5JQyzPuas8a68S3NGpvVcIIM5bOCHRUQ0V17gmb/CO+QtyN9xhL4TkSPAcJ4NPIjd8n5UylEsQJ4XIrfLC5X1ACATx+nPEtz/GwCW2iU1W6C98BRu2QAiiKCaKQpyz5CpDa02W52RZij2Amo84kCR39Hi308PZ472BnKlT+pW/RPJf/yiifpeqsOsd+v+v/8SN/+Gf7//Bed4X/w3h8dzBWnmeXlRC2JxAlCjpDkIEEJZAZ2BSoAT0IKzg54w8Cg4nHAzizREMBHAHThTrhAVxsDerYiB8R9Rx2E3Hd84ajlUk8abjO2dl8PwGEU0iGofK8S2iiGhpiXB2Fn3r1sDpvUw4M1M4va9cITpyhOj4caR3ens8Y4ezluztt1FXr6Fv3kBdv0EwMUF09Ohohe5HdHUjEloiJhc5mdQkZg2BRBxyVzeA0Zrp3/0TxLabPScEK7/8lzfjsY5FwzPiz/YqfPyZJ4aWBWaZau9Piu1tFfSHR3zkW6yeu4zd7oYRRYT5nuNs8V8YFY7uu8SHjSMOhxNdhIuK7kQ7eZfvfkfoBj3dIkLJiCwpFT3duSq6urVGGUsn08yVEuJAUqkGyFCQScP6jWtYbZg+emyzp3s/Z+97PB6Px3OQlGt1yrU6M8dO0Fm9TWv5Fkm1ijWGfqtFv7XOytUrBGFIud6g3GgSHqKJc54HIwwEC80SylhaqeJ2J+fIRGlzwq2wFqENUihMWComU+6xEGRFgBERQjgC10PZLlLWUIP+buscdsRmCEGAtNPY4CbSlbGih3QhgvFwHQZRxOJnP8p7f/qtzWWq3eXWK2/R+LFF+pWthKI8mUAHCaEpRMfnZhT1yNJWW9fV/9P36/zfP7vOdPnwCmmPDUJwmSnWqPARd4XaHb3xS6wz4Xp8nyO0xd7f12/0d6uojrSKLJmi3b/OW/qrnAw+QV0O17dNyCVKosFF/SJ9WoXYLYAegCjEbucgSTioyNGoewppKqQz3wa5df/twh79ha8WDu9sFilD4jhAaY3WGmsNuIi+tURRRBRG+3qfGEqBjAMyZUlzQxIFuMxgI0cSBg/mgxgThBBEHztJ+KElsj98Bf3Nt4eNeQ7CmekDOz7P3Tk8CozHsw9Y5zAyJIvqZFGDdjLJanmRNKzghCwG750bDOqbYlD/ELp4xw+3zek9EL6Rm05vYYMdM9sOCoEkpEaJeSocp8QckgjFOj0u0+PKoOP7Bl0u0OINUm5g2dvIrFGzIXoXTu/JTad3fvUa2YUL9LzT2+MZO1ye03/lVfIrV1CX3kNdv0E4P0907NhohW54RFd3TKYhTSp0wzagCdw60lYOuae7uGSofO1lkkvDXdedL3wcdawY2KnJnMlgeBb5b956knCuOrSs1v49BEUcolMfY7/mrDrnWH7rwtCyxpF54lpl71/MGEAUEyZG4RofFSLFYRGuhrAJ0u382UinwVmMCLFIsmjQ060U0lriLMM5aPUVtTCkmUSEiaCUBKjI0l5ZJu12mZhfIC5XWDzzNMEh6jP3eDwej2evkEFAY2aOox96lmPPfISppaM0ZmaZOXGS6SPHSSpVemtr3Lp4npUrl+m3W97t/ZgyVY0pxwHT1ZjcWNrZ8LiLzPPigtxabDiaiQ9KlnFCYAnBZGRWYZzBYInl/lyrSVdC2gmEqyJchJVtHKNx1D4MzdPHqC4OC483X3kTees9xPa4dyGGxO9Qws+cGnbpdpTkX7xSJx+ft/eBpyNKfFuc4go7Y8srKD7tLnDc3WYUZc5Ff3eKimoYGZKWZtAozppvct28teP5JVHjqfALLMlnC5d3qQTVSpEoliSgNaTbq0z3nyCdp3zjiwh9xwQBqUjnvo6qbtSLCaIwIo4inINM5RitUXlOmvYxZn8/JDt6vLWhrwy9/PD2eAOIckzpv/g05f/TzyKXJjeXy8VJpv7+3z/AI/PcDS92ezx3wYmQLJ6gE0+ShhXayTSr5QWysDpwqw0Eb6u94L2nDERvsV30FjCGojdsCN9VSswNhO95AmIULXpcGQjfK/S5SovX6XEFw+HqF7pT9NY3t4ne588Xovc773jR2+M5YEynS++ll9DLt8jPnUevrRMfP040Pz/6Gb2P6OoWIqFFgpJ9ehJC1pEECDceboRHQdxYpvmlbw4tUzMTrP/UZzYfHwvbQ+s7JmDy5PO4bb83YXvUO78PgHMh5B8d4VEP0756k7wzHIc48/SpEbySK8TuICgmS4xoQHKvcVis6CJdgiBEuMkdzxEYAqexMoKB0G2isOjpto5SmiKAVqYQFD3dLoB6NUaFlm57ne7aKo3pWZJqjfknzhCV7hKn5vF4PB7PB4y4XGH66HFOPP8xFk4/xcTCAs25BWZPPUFzbgHnYO3GdW6eP8v6rRuoLD3oQ/bsIULA0ckySRhQKwWsdhV2m6oijEZYi9QaAjl0fb1XbKT2aBkhsGiXotAoq3A4Erk/17TC1hG2jHCNQVJiC3fQ/YADhBAsff5jQxOinTFc+4uXKfduDj33zijznzqR8tHZ4fGm99oh/8vrtUMtoD1uWCF5XS7xfXEEdYfcJIGn3U1ecJeI3N4bgSLVQThDHjcwMiJLivux6/Ytzupvod3w348QkrngNB8O/xKT4igk8ZbgXSoV9aUHLHhL1aB0/SeQ2cTwCuHIp18ib76++fkWMiCOY8IgQBtNrnKMNqRpSp7n+zrZa6PHOw4kuXGkypJrSzsbPjcfRoITM5T/z38FfvYkJAHJ3/wswqfHjB1e7PZ47oF0GukMvbhBJ54gCyq0SjOslRfI48FsNZ0NBO8uXvDeSzZEb7speosdorc88F7v7QgEIRUSZjeFb0lIxjI9LpGxQsoNWrxJhwtoOvff6RhxV9H7rbc2nd7db3zDi94ezwGhb9+m//JL6NVVsnffxWUZyenTBBMT+3MA213dUeXBXN0iwTjoRwld1rAhBLaFtNVD7+rGOhq//UcIvTWj2glY/eW/vOlaDrEshsNC8h/ePkr96HDfc637vyPd4HtDPQfsX7z76rnLQ49Lkw2qc1N7/0LWAq4Qu4OgiDE/DIhecT3iqghbQbo7Kz6Knm4rAiwhWVAij2PkoKc7TjOkLQYCstyyWC6DFDTrITaypHmf1q2blOsNqpOTzBw7QaWx0zXh8Xg8Hs8HGSEl1YlJFs88zYmPvMDM0eM0Z+eYPnqU2eOnqDQnSDtdli+9x/J7F+murWL32fXmGQ3VJGSiEjNZSXDAam/LKSwo3N3CGLAON6JUHCUSnJBYAkKbk9kMiyW3xUTGSIze4V30d08P+rsbhbNbdEf+urulPD3B9LOnh5a1LlxBXHxjaJmKG6hwKyVJCvgHz3VYqAx/Xr91LeHP3vOTP8eNG6LBt8Up1tj5u5mly+fceSbd3v5dCiAa9HerqI6KqqiwSElru5u8rb9Kz67u2C4SJU6EH+dM8HlKyTTUqhAO3N7GQD/lQAVvW6J08wsEvaUd61TzTbLpF7clOAiCICKOYgSQqxxtFEodjMs7DiWl7T3extHua5QZo4H8h0AEEvGjR5H/1x8lODl7/w08+44Xuz2eeyCcoapaVPN1wNFNmnTjBv2wynplnvXaUbSMB4K3GQje/mZpr9kQvdkhegcIF46d6A1bwncRdX6UgAqKNXq8R8YtMm7R5l3avDPo/R6zN/A+3Ev0VteuD4ve2eFysHs8h5X80iX63/8+emWV/OxZRBCSPPkksjKCiOm7caerO7hT6Hs/BEIk9FRIL07pByBln9A6pDv8M2STv3iF+NyVoWWdz32U/NTWzepS2CEQW98B1sH1ic9itsfOO0O9/bvFPx24/BOjPfBt6FzRujLstph+8sRo0gKMBiQIeWgizB0GK1IkZYSTSDux4zmB0yAERkRoEZIlZYRzRLki1JpIa4x1tFLFTCmmFErKFUkQSVKbs3r9KlFSpjk7T2N2nubc/M4D8Xg8Ho/Hs0kYx0wuHuH4cx9l6akPM7GwSGN2jrmTTzC5sEQQRrRvL3PzwjnWrl8j63V9zPkhZ2miRBwKmpWIdqpQZsuMIpQC5xBG48JwJKMvRkZYQoyMEVhwlr7NsDhypwlEQCCCEbzyMAKJtLOF4E0VK/o4MT5jM/OffI6gNJzedfNLX0Ka4WO8091diRy/9rEWpWDYZPQ7b1d4a+Vw3Dd8kOiLmBfFSc6zs884QfMJ9x5n7E3EHp53pbPEeRsTJJggIS1NYgapCjl93jF/wXXzFtbtHLevyWmeDn+cpeQFZG2iuBctJeAs9PojiV/fLcKFJMufIWw9uWOdqV4infs6Tm59foSQRFFMGIZYY8jzHK01aZqSZem+fteFUlCOAwSQ5gZlHd1Mk6rDr52I8uEfr3pc8WK3x3MfQquo5etU8haOgG4yQS+q049qrNaP0yrNFDOkrIG8hxe8R8OG6O3YLnqLsRa9ASQRCTNUOEbEBJoePS6TcoOM5W293rfGqlPpfuwQvW/dGha9N+LNvejt8YwEZy3pm2+SvfMu+uZN8osXkLU68enT+xullK2DUQ/p6i7hHHTCkB4r6DAgtB0Cu09C/QiRt9ep/oevDi3Tkw1aP/u5bUscx6LhlI/vdSaZPjk8KFDpf4XQXB/s5Em4S0z2qFh/7xrObhsslJLm8cW9fyFnC2d3GBR3J4eki9qJbmHXdxWkayDu6FGXFClBWkQ4JGl8R093WvR0r/cV1SBgMokhFlTLIVmgWbt+FSEkk4uLVJpNZo4eP6B36vF4PB7P4aRcbzB/6jQnPvIx5k6cojk3z+TSErMnnqA+NYPKMlauXuHWxfN0Vm5jlLr/Tj1jRxxKZuslJkohoRSsdLcS5wQglUJqA46Rubu1TLBC4pCELsdiSV2OdRaDJhJhMY41YqSLkW4S4coIl2BFG8feR0c/DGESs/iZjwwty1ZbO9zd/cr8juG9xarlH35k+N7JOsG/erXO7b6XN8YNJwTvyjleEsfIGJ7oIYBT3OaT7iIlt3fpkIHNCU2fPKphRdHf7QafOYflun2LN/WXWbfXd2y7GW1e/mkmmx/eijTHQb9f3K8eEAJBsvYR4pUXdox729Jt+vNfwYadoS2CICSKYoQQKFU4vLXW9NM+eh+/56QQlO/o8U6VpZsd7h5vz/jivw08nl0S2Zxqvko5b2NkRCeZoB/X6ZemWKkeoR3UCqky9w7v0XKn6C2HRW8bjKXoLQiImaDCMRJmsWj6XN/W632Z9UGvt+XwRIFvit5PP00wOVWI3m++ibp2bVP0Tt9+24veHs8e4vKc/iuvkl+5grp8CXXtOuHsHNHx4wi5j5d2OgWTg+4/hKtbIkRErgM6SZ8+4EJNrDTSHQ6h8544R+23/zMyH76JXP3ln8QlWz+jmSClIocHnl4KP08eDQ8G1Fu/ubXr/JMjOOB7s3Z+2JlePzJHGI9gMoUxgCjiyw9J75VD4USGdBWECxC2ccczivhyM+jpTqMKJooI1UZPd4YAupkGB/PlElbCZC0iDyxrN69jlGJqcYmkUmX+iSf39/Pt8Xg8Hs9jRBCGNGbnOPrh5zj2zEeYWjpCY2aW2RMnmT5ynLhcobu6ys2L51m5epl+u+3d3oeM+XqJKAqYqsb0ckM/3xqXk3kOOIQxI3N3F5MbA7SMkM4gnEU7TY5CWYPDEu9Tf7e0dYStIFwNnMSJ9tgkCk4+fYry7HAl0tqf/dHQYx1VUVF9x7YvzCn+6hPDFVBtJfmXr9bJ/TDsWLIianxLPMEy1R3rJujzWXeeOdfas9cLVRe52d8dkpaG/9Zyepw33+Gc/jbZXeLUI1HiRPwpzkz/FUrJDJTKFIJ3OqjdOjiizhMkt34E7PB4iYu69Oe/gkmWh5ZvuLyjMMQ5S55nGKXI8pw0TbF2f84JQgiSSG7r8TaDHm996Hu8PeOHHzHxeB4AAcQ2o5atUFJdlIzplKZIkwn6cYPVZIZOVMfmfRiTmZOPLxuitxsWvQe93uMregsialQ4QpkFJAEZt+hxiZzbpNxgnTfocgFN7/47HBNEFBEtLhai99Q0+tbypuidX7zoRW+PZ4+w3S69l19GL98iP3cevbpGfPw40cLCaKKl349HcHULUQIEHaAj26gIQnIi8yCC+XiSfPuHxG9dHFrW+fSzZGeODS07FraHHt9UMfUTR4f3lX6PRL0FgDNLYI+M4IjvTt7p0b21MrRs8uQoXt8VYrcMir+hQ+TqFi4ESkjXLK5DttYSuq2e7jyIyeOk6OnWhjjLkNaSa0svNyyUS8hAUK+F2MjRWr9F2u0wsbBIXKmycOYpgkPyc/F4PB6PZ9yJyxVmjp3gxPMfY/6JJ5mYX2BifpHZU0/QnFvAWcfajWvcPH+W1q2bKH8PeyiQEpaaZSpxSCmW3O5mmxMWhHNIrZFaFdebwQgixYVAyQQrwoG7u5j4mtkcgyGzxeP9E7ynEC7e1t/duf9G+4AQgiM/+rGhZerCu7j2cKdyrzocZb7BL5zu8/zMsEHkYivk37xR9U7RMSUXId8Tx3hbzHGnXBxh+ai7woftNeQeuKc3+rsZ9HfrsEIe1XY8r+Vu8Kb+8vtEm8/w9OTPs9T8DLIymNSc9g9c8A7TBUo3voDQd3SiBznp3NfRlUs7tpFBSBwlCCFRWqNUjtGaftpDKbUvE7sEYrPH21hHX1m0sY9Fj7dnvPBit8fzEAggMSn1bJVE98nDMu3KPP2oRk+WWanM03XhXb8wPXuN2yl6I+8QvfdZANolAWVKLFDhCAEV8s1e72VSlmnz9qDXe31sZuHeDy96ezyjQ6+sFEL3yirZ2bO4LCM5fZpgYuIADmbD1f0wXd0BiBBtQ9ajdTKbY+OAWBsEo++yGyVyvUP13395aJluVFn/uR8dWlYWiukgHVr25/qzpHd0PzXav7X57/12da9eGHZ1B3FEfWlu71/IWsBBKIuBx0PgXnYiwwmFcFWEixB22KkQOAXOYkSIEQFZXEVQ9HQHWhMpjR3El08lMeUwIC5J4kTS7q3TWV2lMT1LUq0x/8QZ4lL5gN6px+PxeDyPL0JKapNTLD75NCc+8gIzR4/TmJll+ugxZo+fpNKYoN9ps3zpIsuXLtJdX8MaP8YzzkxWI6pJyHQ1RltHO90yoYg8L7p3jcWOKspcxDgkRoZIpxGDcZyiv9uinEIiCPepvzswM0V/t6tiRYoT6f033Acqc9NMPn1qaFn60jeGHvfKO6PMAaSAf/iRDnOV4c/iN6+W+PKl0l228IwFQnBRTPNdcZIeOyd8HGWNz7jz1Nyj/41KZ4kG/d06KJElE5v93dsZjja/cZdDlsxVPsyHZ/8Gk5PPAGIgeB/s90CgJijd+Alk3hxeISzZzHfJG2/sHEMWonB5RxHOWTKVYbQmzzPStI/dp/cUSkEpLs5//W093tlj0OPtGQ/GfzTJ4xljBI5E96hlK8QmJY8bdMozpCKmG9VYjZr0g/iQyJSHne2id+Hw3i56izEWvSUxCTOUOUZEE013W6/3bbqcp8WbZIeo1/t9Re+NePO3vOjt8eyW/PJl+q++il5ZIT/7LkJIkjNnkJUD6rfedHWrh3R1S/pa0YpS8rDocorUeJ6jd41zVH/nj5D94fPayi99EVdOhpYdizpDP7LcSszi00PPCdUFSuk3i13bJugzIznsu+GcY+0Osbt5fBEZjODWwRhAggggGn/3ssMNXN0RghhpJ4Zc3Rs93UbGgCSNq9hAEuVFT3eSZuCg1VeUZMBUKcZGUK+EdHWX9Vs3KNcbVCcnmTl2nEqjee+D8Xg8Ho/HsyeEcczk4hGOP/dRFp/8EBMLSzRm55g7eZrJhSWCIKJ16yY3L5xj7fo1sl7Px5yPKUsTZeIgoJaErPXUZlSvNAZhLdJokBInRnBdKwRaJhgR4RAEtnAgOxypzbDOopwhFCFyH4bki2vVSQQb/d2dsenvXvzMR5Db6pGyV78ztN6GJbJk8q7bViLHf/dCmyQY/gz+zlsV3l4Z//uJDzItUeZb4hTXuLMCCmrkfNpd4Khb5VFt+oHNCXUfFVWxIhrq776TItr82/eONpdlTkx8gTNHfpFSNFVEmpuD/RxJU6Z048cJ+jsTENTEG+RTL+F2+OhByoA4TghkgN5weRtDv5+S5/m+fK8Fgx5vKQWZMuTG0vc93p49wovdHs8eIHGUdJdatkroLFlUpxM1SIOEtiyxkkyRBmUveu8LA9FbbBe9BRwK0TsgZnLQ6z2NRdHnGj2ukrNCjyus8wZ9rmJR99/hGLApen/oQ1ui91tvoa5eJb9YiN7Z+fO4A44C8njGFWct6Vtvk739DvrWLfILF5DVGvHp04j4gCK/H8nVHYIIsC5iNbhF5iwmCYiMIzjkX5Lxy2+S/PDs0LL2C0+RPTPsWpBYlsLhGMFvq4/Qaw47ERrt3950g7j8E+znZXt/ZZ2sNXyjP3lqFBHmtpgZHwbF2zsMUd0ixWERroawCdJtn3BikVZhRIgjIA3L6G093cmgp7unDMY4FsolrIDJekQmclZvXCVKyjRn52nMzNGcu3t8o8fj8Xg8ntEghKDSaDJ/6jQnnv8Ys8dP0pybZ3JpibmTp6lNTaOyjJWrl1l+7wKdldsYPR7ioaegmhS93VPVwniy2tuKvJZ5jjAGrMONzN2dAAIjI4Jt7m6DJXMK4wwGSyz357pXuhrS1hCuXvR3y9ZdRbD9JiyXWPjks5uP7a1r6GvDEcz9yvw9t1+qGf7Bc8P3VMYJfv37dVZSL3eMM0YE/FAs8UOxiL5DgA5wfNhd53l3hfAR01JD3UVaTR7XB/3d0+/7/PtGm8cLPH3kb7I083lkZg9c8BYuJLn1OcL26R3rdO090rmv40R+ty0Jw4g4Ks6RucoxRqFUTpr2MfuQYCKEoBRJokCSa1v0eJuNHu+Rv7znMcaf/T2ePURiKesOVdUisIZ+UKETN8kIaEc1VkszZEFy/x159oAN0dtuit5ih+gtx7jXu06Fo5RYQCBJuUmP98i5TZ/rrPM6XS4eml5vEYbDovfybbK33kJfv052/jy9F1/EdMajQ8rjGRecUvRffZX88iXU5cuoq9cIZ2aJTpxAjKJnbrfsgau7Z3p0whQlU5wsEasxPBk/AKLdpfZv/3RomamVWf35z9/R5QyLYY9IDL/f61PDvXXSrFDt/hEAzpVAPTeCo743q+eHXd1xrUJl5u7OikfCGGDQmxjtT3/ho+CwWNFFugRBiHDDP5PAaRASK0JUEJEl5aGe7sBalClmrc+VkkFPd4ALHMs3roCQTC4uUmk2mTl24oDepcfj8Xg8HoAgDGnOzXP0w89x9MMfYWpxicbMHLMnTjJ95BhRqUxndYXl9y74Xu8xY6FZIgwkk5WIdqbJdSHuCqU2+7tdGNzT6fkoOCFQsoQVEY5Bvc2A3CkUGmUVDkeyT/3dwk4gN/q7ncWNSX/39LNnKE1tpRjl3x92dxdR5vf+HX18PufnTg2PibVzya+/UsOnIo85QnBNTPBtcYoWO8fJ52nzWXeOCffwY54CiFV70N/dQIflu/Z3b2dX0eaN5/nwsb/LZHjs4AVvBMnqR4lXnt8xvm1Ly/QXvoINdrrVoajyiKOYMAjRxpDnOVob0jQlz7KRu7zv7PFO840eb4X2Pd6eh8SL3R7PCAiwVEyfWr6O1Dm9qEonKJOJmFY8yVoyTS4PyJH3AWRD9GaH6B0gXDi2ojdASJkyC5Q5QkCZnFV6XCLjNim3Br3e76IOSa/3naK3unGT/J130cvL9L77Xe/y9ngG2F6P3ksvFW7uc+fRq6tEx44RLS4iHkBc3nN0/xFc3REICUS07BW6YYiOQwJiQnO3GceHh9q//VNktz+07PYv/BiudmfXsuNY2B5a8q4+QXd6+Ka73vm3CAY/k/yjwP5dMzhrWbt4dWjZxMkjI/i7c6DtoKNbHBJXd7+4XnAVhK0g3dbvRaIRzqBFhEWSxjUEDPV0u0F8+UQUUYtDwgTiRLJ8+ypGKaYWl0gqVeafeBJxCLrLPR6Px+P5oJBUKswcP8nJ5z/G/KkzNOcWmJhfYO7kEwRhxOq1K97hPUbEoWS+UaJRCgmlYGXg7hYMBG+jwTlcOJoJxEV3t8CKCGmHU/nSQX93blVhdBCjvwYWSORmf3cNJzKc6N9/w1Efl5QsfX5r0m/+g+8OrXdBdF837l8/0+e5meF7yfOtiP/1zaqPRD4E9ETCd8RJLrJzYnUZzSfdRU65Ww8day42+7tjdFAe9Hff/976vtHmYYUTcz/FmcmfocT7C+j7QdQ5Q7L8WbDD5zQXdegvfAUT377HloIgCImjGCFAqRytFUor+mkfrUafKrrR423Z6vHuZJpM+bFhz4PjR1E8nlEhIACquk21vwzW0A1LdMMy/bDMejLFejKJ3ocLW0/Bhujt2C56i0MhegfEJMwOer0baNqDXu+bZCzT4Txt3iTj9lhEUt2PDdE7OX0a5xzZu++irt/wLm+PB9Crq/Reegmzukp29hwuy0ieeIJwcgTO2gclaz2iqzug5zp0whwl+riwRqxH4anYP+JX3yb53ltDy3ofOU332SeQd/x8JmRGPRi+YXyj9nnctucJm1Lr/HsAnJM4Nez6HjXta8uYbHjAaPLkCCLMrQVs4eoO5UD0Hl8cBiv6SMoIFyDtxLa1lsAqrAgBST+uDXq6c6Qb9HQDrUwRiYCpUoIOoFmLWW3fIu12aM4vEFeqLJx5iuAwCP8ej8fj8XwAEVJSm5pm6akPcfwjL1CuN5hcPAJOsHr1CtZP3B4bZmsJSRQwXUvo54ZeXlh9ZT4Qvo3BheFIhoCckBgZYwbO7e3uboC+zbA4cqcJREAgRp/aJYiQdgpBCenKWNEdi/7u2tIczdPHALBrK6iL7w6t71Xev9ZHCvhHH+kwWx62cv/FlRJfveyTNQ8DTkjelgt8TxwlZ/izIIAzbplPuPdI3MMJr0V/dw8VVbAiol+eI4sbu0p2uG+0efkIT8/9IkuVjyPFwSaVhf0lSje+gNDD9WgEGen819CVy/fcVghJFMWEYYi1hjzPMEqR5Tlpmo78uy0QgsqOHm/je7w9D8x4jyp5PIcdAYiQEEstXaaSruKspRtW6IU1+kGZ1dIMrXgCvQ8Xt54N7hS95bDobYOxFb2He72nsOT0uUafa2Ss0OMS67xOn2uHotdbViokZ84Qzsyib3qXt8eTX75C/5VX0CsrZGfPghDEZ84gq9WDPrRHdHXHA2E8Yt1cohsF6EAgRY1Ip6M64pEjun1qv/vHQ8tspcTKL/wYQhQ3jds5Fg1P5Fkzk6zdEQ9e7f5HAtsqHugPg9vfmeKrF4YjzCvTEySNEfz9GQPI4m/pMESYiy44Aa6CdA0EW4J04DRuEF+ehQk6jrd6uvtFT3eqLEo55sslrHRM1UM6eYv22gqN6VlKtTrzT5whLt2ZBuDxeDwej2ccieKEhTNPk1SrTC0tYbRm7frVkUe/enaHlLA4UaYcBVTigJVuEcsrnEMqhVQahMCNqB5KidLA3R0S3OHutlhSl2OdxaCJRFiYMUaMdFWkrYGrIlwwNv3di5/9KGLgss9f/fbQurQ8i73PeGk1cvx3L7RJguHP3m+9WeWdVT+J9LCwLOp8S5xihcqOdVP0+Kw7z4xr32XL+xPqXtHfnTRRYYUsbtKtLpJHtfsO/+4q2rz+HB+e/utMlk491PHtFYGapHTji4i8MbxCWLKZ75A33nqfVNANl3eCEBKlNUrlGK3pp31ylY/0+22rx1sM9Xh3fI+35wHwYrfHM2oGgjcyINI9quky5XQVIxydqEk/rNIPK6yWZmlHTYzwH8v9Y0P0dsOi96DXe5xFb4EkokGZI5SYBxj0el8mZ4WUa7R4gy7vYTj4eKr3Q0hJtLBAcuYMeJe35wOKc4707bfJ3n67iC6/cAFZqZKcPo2Mx6T24pFc3QkQ0ner9G2XNDTYsEHogh3RfoeJ6v/2ZWR7uEds9a99AVMrD2K/t35GsTDMBcPPfbnyRXSw7XvfWert39l6mH9yJMd9L4xStC5fH1o2cWoErm4cWDNwdFO4u8cYh8KJDOkqCBcg7NbggUQjncGICCsCsriKNHbQ050TWIuxjlaqmCslhIGgWgnR5Kzcuka53qA6OcnMseNUGs33OQqPx+PxeDzjRhhFLD75NHGlysTCInm/T+vWTjHEczBMVCJqpZCpaoy2jvV+4WSWSgEOBu7uUWCFxIgYI2IEboe7WztNjkJZg8MS72t/d4LY7O9+OPFwL4lrFeY//gwA+Q9fwpktB62TAWl55r77OFI3/DfPDo8dGSf49VfrrKZ+nPWwkImIl8Rx3hWzO6ZhxBg+5i7ztL2OdA82SUMAcd4iMCkqqpKVptBhhTSZpFdZRIWV+w7/3jfaPKhwovljnJn8aUrBxAMd314iTYXyjR8n6M/tWKcmXiOf+t77T3IRgiiKiaKoSOJUGUZrVJ6Tpn2M2elw3yuKHu9gqMdb+R5vzwPgz/Yez34gAFkI3sJqYt2j1r9FSbfQMqQTNUnD8kD0nqMT1bGHOtT1sOF2it7IO0Tv8fx9CAQhFcosUmYJSULGbbpcImOZjJu0eIsOZ1G0Dvpw3xdZLhPfy+V9zru8PY8vTinSV18lv3wZdeUy6uo1wplZohMnEOMiAj6Kq1skA2E8YN1dphcJDAYhJwl1emi/7aLXzlH67mtDy9JnTtF/4Smsdcg7YrmPhh3ktjeb2xI3pxeHnlPu/zmRKfqynT4JdnYkx34v1i9dx5lt51ohmDi+tPcvZAaRiUFYdHUfZA/9LnCiWyS/UEK65uA6AcAhrcaKAIukV6qBgCjPCbQhUgrnYL2vmAhDanEIMZRix62bl4iSEs3ZeRozczTn3j+i0ePxeDwez3gSl8osnHmKUrVGc3aeXqtFZ+Ve/aie/ebIRJk4lNRLEet9hbEOYQzCGKTWICVuRHU6SpZwQmAJCezOyPDM5hgM2WDyb7IPgvdwf3cdJ3Kc6N1/wxEz8/xTxM0artdBnX1jaN39osw3+MRCzl85NWz2aOWSX3+1hq//PUQIwXkxw4viBH12TkY5ziqfcheouOzBdosjUl2SbAVpFHlUJ0smUVGFtDRNrzKPDkr33c99o83jBZ6e/qss1T55YNHmwkUkt36EsL3Taa5rF0hnv4ET7286kDIgjmPCIEAbTZ7nGG1I05Q8y0bq8g6loBQNeryVQfseb88u8WK3x7OfDARvrEZYTZK3qWXLJKZPLhPacZN+UKYX1lgpz9ENa1703le2i96Fw3u76C3GWPQGCEgoMUuFY0TUUbTpcpmMm6Qs0+EcrTHv9b63y/ucd3l7Hktsr0fvpZdRt26RnzuHXlklOnqUaHFx4AweEx7a1S0Gru6Ivlihr7p0E4GVdaSICA9phLnoZ9R+54+GltlSzNrf+Amsc3BHhLnAcTQcPn99P/kC/Wh4MkOj/Zub/95vVzfA2vnhCPP60ixhaQTJAtoW10OIsY8wdyLDCYVwFYSLEHYr0l06DTiMCMmiBBNEg55uR5IWf9vdTBMiip5uaZmshtxcvgxCMrm4RKXZZObYiQN6dx6Px+PxePaCcq3O3MknKDca1Kemaa/cpt8e78nmHxTKccBUNWayEiEErPSKzm6Z5whrwboRursDjIjQMkJgCdxOwbvo77bkNi9cjfsieIdIO40g2dbffbBpWzIIWPqRjwGQf/87Q+vS0vRm//n9+MUzPZ6ZzoeWnVuP+M03xqAWzPNArIsK3xJPcIP6jnUNMj7rzrPk1njQUmfpLLFqk2SrCGfIowZZ3ESFVfrlWXrlOYx8/3vgrWjzr9w72rz6DB+e/utMHFC0uUASr75AvPrcjtRSW75Jf/6r2OB+E10EQRARRzFCQK5ytFYoreinfbTaeU7bKwI56PEWYjPSvK8M3dz3eHvujRe7PZ79ZlPwNoXobRSJblHL14lNRh6U6MRN0qBEN6qxWpqlt4s4Fc9eMhC9xXbRW8AhEb0lITFTm73ehpw+V+/S6319bHu9N13es3PomzfJ3vUub8/jh15dpffSS5jVFbJ3z+LSjPjUKcKpqYM+tGEe1dWNwAlJ214mC3OUDCGYJrAKeZeZ0IeByn/4CsHacORf5xd/Al2v4ZxF3hFhPhf0SOTWe7Uu4OLUE0Pbx9kPSPLXAXBmFsz+CqB5r0/nxrALafLU0b1/IWsAW0SXh7IoVBxTHG7g6o6KwUA7sc3VXQxYWlnEl+dxlUDpQU93kVhQdI1Z5kolXOCYqMesrt9AqZypxSWSSpX5J84gxvhn4PF4PB6PZ3fUpqaZPnKc2tQ05XqD9RvXyXoH75j1wGKzTBRIJioRnVSTaYPQuujv1hoXBLgRTTTWsoQTEkuwo7sbiuvNQvB25E4hEURi9D3T0pWRtjHo747Gor+7cXyR+okl8te/h1PbBGsh6Zd3RjLfDSngV57vMFsevs/82pUSf3452cvD9ewDWgR8XxzhdbGAucMMFuB41l3jOXeV4CHGFaQzJHmLOF8HBHncJI8aqLBCrzJPvzSDvc9nMae7GW2e27tHm588wGhzgSBqP0Wy/JkitXQbLm6RLnwZE6/cfz9CEkUxYRhirSHPM4xWZHlGmqbYEY3RbvZ4y2093tr3eHvujR9Z8XgOAhkW/w0Eb4xG2oyS6VPL1whtThZUBqJ3mU7UYKU0SxqUvei9r2yI3nZT9BY7RG95SHq9ixuDlBs7er17XMIwfu5KISXR/DzJmTMIx06Xd/vgu6U8nodFXblC/5VX0KurZGfPghDEZ84Q1GoHfWg7eWhXt0SIGIhIuUlP9ejFgC1BWCE0DxY7Ni5Eb1+k/I3vDy3LnzpB75MfBhzWuSFXN8CxaNjVfTb6NK3SsDthp6t7fydVrV24OvRYRiGNpd0NKj0QxgCymDgRjrerG5HisAhXQ9gE6Sqbq0KnCrcOYRFf7hyh1kS5IrAWO4gvn0kSolBSKoXk6Tqd7jrN+QXicoWFM08RjPvPwOPxeDwez66ZWFikMTtPc26BuFJl7fpVVHY4r3kfJ8JAsNAo0SiFxKHkdjdHACLPEUaDG52724gQS4iRMQJ7165hi6XvUoyzKKcJREAgRl9nJWwTaUsIV8c5cKKFO+ABrqXPvYAwivzN4futXmV+1/uoRo5fe6FNLIffy2+8UeXs2ugnEnj2GCG4Iib5tjhJh50T7xdp8Vl3nobr32Xj+xNYRZKvEectrAzIkknyqI6KqnSrC6TJJPY+n8eWu8Eb5itcz9+4T7T5Jw4k2jzsH6F088fADE/4cEFGOvc1dPnKPbbcjiAIQuIoQQiJUhqlcozW9NM+ucpHEm0uEMSR7/H27A4vdns8d5Bri7EOa91oYzFksEPwxuRIHGXdo5qvE1hNP6zQiRtkQZl23GS1NEMW+NmI+82G6M0O0TsoejzHWvQWhFS39XrHQ73eKTdp8SYdzqEYPwH5ni7vF1/0Lm/PocM5R/bOO6RvvY1evk1+/jyiXCE5fRoZjyAu+lF5BFe32HR1OzruGrlokwU1kFNIOJwR5llO7bf+89AiF0d0/s7PYJ3DOQsOxLZy7prImQy2BjmdE7zdfHZoH6G6RLn/F8V6WwP9oRG+ibuzdmH4Brd5fBEZ7vUgmwNrB45uYM/3v3c4LFZ0kS5BECLc5OY6iUY4ixEheZhgZEykFNJaojwHB62+oh6E1JMQGzlimXF77QaN6VlKtTrzT5whLpUP8B16PB6Px+MZBTPHTlCdmGBifpEgjFi9dgWjRxf16tkd07WEJCoizTNVOAOlUsW1uzG4IBzZkI6WCVZILJLQ3n3yg3GW1OUYZ9FoIhEiRzxsLxBFnLmLB/3dGg64vztp1pj96NM7oszzZBL9AGOhR+uG/+NzwxOOjRP8y1frrGXjm9TouTddUeLb4hSXmdixroLiU+4CJ9ztB4413yCwOUm2SqQ6WBmRJpOoqEYe1elWF8niJu59JqQ7DNfFO7yZ/jGt7PKO9UW0+bMHFm0e5FOUr38Rkd8RCy8N2cy3UfV3djfZRQiiKCaKomJ8S2UYrVF5Tpr2MWY06X336vHOtR8T9mzhxW6PZxvOOpQp3DjOOVJliu7NUbFd8HZ6IHoXF74BloruUlMtpLX0wiqdqEEWlGjFk6wm0+T36RDx7D0bordju+gtDoXoDRu93nNUOEZIDUWbHpfIuEXGMh3O0uItMlYOPMJqO97l7XkccEqRfv/7ZJcuoa5cQV25Qjg9Q3zyJCIYU9HvoV3dAYgIiOnL6/RVnzQyWFeFuEZgMsQ4nyzvQfU/fp3g9vrQsu5f+wJmqom1A1e3FNuirne6um8Ez3KzNixy1tu/gxicc536GLC/fw/91RbpHbHskyeP7P0LGQO4QYR5+AB/TweA6Bff566CsBWk27jmsgRWFS4dEZAlFQI9iC9PMwTQUwZhYbqcoIWlmcCt21cp1xtUJyeZPnqcSnPi4N6bx+PxeDyekSGEYP6JM5TrdSYXj4ATrF69MrKYV8/ukBKOTJQpRwGVOGClm4O1SK2QShfNdcFoXL9aRDiCTXe3uIu7G0A7TeZytDUYDLGMijGnEVL0d08hiAf93T0cB5tGMPfCh+HqWWx/m/AuBL1k9oH286mFnJ85Oez2Xc8kv/5qHa+PHU6skLwhF3lVHEHdIWtJ4Cl3k4+5S8Tu4SYYCSA0KUm2Qqh7mKBEVppChVWyuEG3ukQe1d9X9M7DnHPmO5xb/zK53jlWORxt3nyo43xYpKlSvvHjyPSOz5KAfPIH5JOv7HosWMqAOI4JgwBtNLnKMdqQpil5lo3E5b3Z403R462MpZcb+r7H2zPAi90ezzY2hG3nHMaBto5+XvRBjOykKQMItgveZiB4Fy8YOENVd6iqNuDohnW6UZ00LLOeTLGeTKKkj8Dcf+4UveWw6G2DsRa9JSHJoNc7ZhJDSo8r9LlOzm16vEeLN0i5gWV8ZqF7l7fnsGJ7PXovvYy6eRN1/jx6ZYXo6FGipSXEuAp+j+TqLgESKxR9d4uMNbKgjnN1XBASmsPn6g7PXab05y8NLVOnj5J+/mPYwexlZzf6ugfbYFkMt7q7nIPXGp8c2oc0a1R7/2mwPoL8o6N6C/dk9fzwzPOoUqY6N4LueG2KvyUkROMbIegwWNFHUka4AGknNtcFTuOExIiQtFQFx1B8uTKWfmaYLSU46ahXJKurVwmSmObsPPXpWSbmFw7uzXk8Ho/H4xk5UgYsnHmapFplamkJozVr16+OZPDfs3sa5YhGOWS6mmCdY72vkXkOOIQ2uHBE7m4hULKEFQEOSeh2dndvkDuFQqOsxmGJ92G8r+jvbhaTPF2ElW0co3Fn7up4opDFTz+Hev3loeUtOXmPLe7NL53p8eGpfGjZ2bWI33qz+kjH6DlYbooG3xJPsMbOpKwZunzWnWPKde6y5e4QQKT7JOkKgU7RYXkgeldIkwm61UVUWL33+SIKaSWrvLH6B1xvv/I+0ea/sO/R5sLFlG5+nrBzYsc6XT9PNvtNnLj3OeqOvREEEXEUI4Bc5WitUFqRpn202vvxZCEEpVgSSkGmLZkypIMeb/8V6/Fit8fzPuS6iMXIjaWvDMaO6KwpAgiiOwTv4oJ7g9BpaqpNRXdwCLphnV5Yox9UWEumacUT6H3o9PHcyYbo7YZF70GvdyF6j6mQxUavd5MyRykxC1j63KDHFTJW6HOVFq/T4zLmgGf3brDD5f3OO97l7Rlr9OoqvZdexqyukr17FtvrE586RTg1AjFxL3loV3cIIkAQ0ZfX6OseKuihxCwiriKcIzD5/XczTuSK2m9+CbHtMsBFIe2/8zMgBcZZnCsmxm3v614KOwTbNmqLk1xuDPey1zr/G9INzq/qI0BplO9kB8461i4O93VPnBzBJAxrAFu4uoNBZ/eY4kS3+O52FaSrIyiEeYlGOoMRESpMUDIZii93g/jyqTgmiSRRIkjbyygsk4tLlBtNZo+fPNg35/F4PB6PZ18Io4jFJ58mrlSZWFgk7/dp3bpx0If1gWdpokwUCprliLV+jlEGYQzSaJCisICPgMLdLTEyQjr9vilXqc3QGDKrAEeyD4K3sA2kLSNcA5zAifaB9nc3Tx1FXnlneOHkPKutBzumQMKvPN9hujQsNn71comvXfYVkYeZVES8KE5wjukdf6kJhk+4S5yxNxGPoIAKHJHuUspWkSZHRTWyZBIdVkhLU/Qqi6jwHtVUQYirV7ie/oA3l/89rd57O/d/QNHmAkm88nGitWd3rDPlG/QX/xRdurb7/QlJFMWEYYi1hjzP0FqR5Rlpmu55solAkEQBpTBAb+vxbqW+x/uDjhe7PZ73IRQCbSxq0OOdqhG6vIXcJnirHQ7vDSKrqKoWZd3FyIBO1KAfVumHFVZLs7SjJkb4j/b+43aK3shN0VtsiN5j+p1b9HrXKLNEmUUkIRnLg17v26TcoMUbdDiP4uFnR+4lmy7vufktl/etDZf3Oe/y9owF6upV+q++il5dJTv7LgDxmTMEtdp9tjxg9sDVrUVK5lbou1Uy2QRbxkUJoU5HHMa391S+9A3Cm6tDy3o/93ns3BTOFY5u5yxCsE0kdjsizH9Y/xx2u4jsMuqdf1f80wlc/vFRvo270rmxjO4PT2aaPDWKCHMLDAYQo/FNpHEonMiQroJwAcI2N9dIp7EiwGzEl5vh+PJWqqjIkEYSoaUjyDt08w6Ti0vE5QoLp88gRjSA6vF4PB6PZ/yIS2UWzjxFqVqjOTtPr9Wis3L7oA/rA00pCpipJTTLEVIKVntZ4e62FqzFhSNKHxICLUsYERbubvv+k39Tm2KxA8FbjNzhvdXfHSFd48D7u4UQLJxsYNvDFVLto5+gs/xgBoda7Pi1F9rEcnhA7jfeqHJubXzTpjz3xwnBWTnHS+I4GTt/l6e4zafcBcru0SbbC2eJVYckW0U6Qx7VSZMJVFgmLc3QK8/fvVM+kNCok4s+51p/xrkbXyJXrR1PO4hoc4Egbj1NsvzpopJzGy7skc19k3TmW9hgt+cBQRCExFGCEBKlNErlGK3pp31yle95ukkYbPR4u6LH2/ge7w86frTF43kfwlASh4XzKNcGre3A5a1H4/LeFLwtWFX8/y6CtwBim1PL1ynrHlqGdKImaVgZiN5zdKI69tDJCY8D20XvwuFdlD8NRO9D0etdosQ8FY4SUkWxfkev97u0eJuc1QPv9d7Z5b3h8j5P77ve5e05OJxzZO++S/rmW5hby+TnzyHKFZIzZ5DJIZhBnj6sqzsCIRHE9OQVUtNDix45C4iwBDI4dBHm4cVrlP/su0PL1IlF+l8s4sg3HN3WuYGru/hZTQcpFbkV25W5Oc41h938te6XCOxa8UA/CW5iVG/jnqxduDL0uDzZoNSs7/GruGISXxAUjplw3F3dAVBCuuZm/7p0GpxDi5A0qeCcIFSaUBXx5amyYGC6lJALQ1WmrPdu05xfIClXWDzzFEE4viK/x+PxeDye0VCu1Zk7+QTlRoPa5DTtldv02zvFDs/+Md8oEYcBU5WYTmbI+hnCWqQ2uCDAjahmSosYkBgZ3tfd7YDeQPBWViERRGK0wqwgQNoZBBHSVYr+bnFwCX/lySbBuVeGlsnmFLfKp+jdXnugfR1vGP7+s8MTkbUT/MtXa6xnfuz0sLMqqnxTnOIWO00FTVI+484z79bvsuWDIZ0hzlsk+RrCOfK4SRY3UWGFfnmOfmkWc+fEFCmhXoMoosUN3rjyO1xffXFsos3D3lFKN34MzE6Dg6lcpb/4x+T1t3c//isEURQTRVExLqYyjNaoPCdN+xiztxUJRY93sNnjrY0b9HgbH2v+AcSL3R7PfZAColASSol2jkxbjIVUGVI9ghPnhuDtLNj8noI3bIjeGbV8ncT0yWVMO27SD8r0whor5Tm6Yc2L3gfCQPQWdlP0FoitXm97GHq9IxKmqXCMiEk0fXpcJh30ene5OOj1vnngvd53dXkve5e352BwWpP+4Adk772HunqF/MoVwukZ4pMnEcH4inyb6H7x/fPQru6AXLbRtOi6FYwrYWQTF1cQ1hDYgz1fPBDaDOLLt07WLpB0/suf3Yw4LCK5HM46pNz6vj0WDk+2eaP6eVQwfOldb//21n7zT43gDbw/VmvWL10fWjZx6ujev5AxFOXWQSF4j2lPvRMZTiikqyJchLAbXX6WwGmsjNBhgg7izfjyOMuxDnqpZjqJIXCUQ02rc5vq9BSlWp35J84QlysH+t48Ho/H4/EcHLWpaaaOHKM+PU253mD9xnWy3sG5Zj/ohIFgoZlQS0KSULLazZF5jjDF5MZRubudECiZYESEAwL7/r24DkffZhgsudMEIiAccX2hdAnSTiJcBeFirDjY/u7FiQx39fzQsuhDL3DluiVbf7DUwc8s5vzUif7QsrUs4NdfreONoIcfJUJeEUd5S8zvkGUjLM+7qzxjryLdo/+ypdUk+Tpx3gIhyJIJ8qiBiqr0Kgv0S9PY7ZNTpIRaDcIQV464vv4Sb176LVrppR37Ho42P/nIx7obgnya8vWfQKbTO1dKg5r8If2FP8Mky7vep5QBcRwTBAHaaHKVY7QhTVPyLNtTl/f2Hu9Um0GPt6Hre7w/cHix2+PZBYLiYjgOAySQaYPSFq0d/Vyj91pI2xS8XREje49I8+3Hl5iUer5ObDLyoEQnbpIGZbpRjdXSLL2wMs666mPNhujtEHeJOI8OQcR5QEyTCscoMYvD0Of6tl7vK4Ne7ysH2ut9d5f39S2Xd8vPnveMHtvv03vpZdSNG6jz59G3V4iOHCFaGkEH8qh4aFd3PHhuRE9cJTVdDCk5i0ghsWERYX6YqPzxtwivDd/Q9X7mRzCLM5uPrTWF4C22+rrLQjMTbL1X7Rq8PbE4tJ9y/2tEuri5dfoI2OH1+8H6pRtYvW3wSsDEiREchzaDyQHjG2HucDjRLURuEqSd2HR1h05hRYAWEWlSQRo7FF/e6SuaYUQpDnBCoXorhLUytckppo8ep9KcOND35vF4PB6P5+CZXFiiMTtPc26BuFxh7fpVVHZw988fdKarCeU4YLoak2lLp9MDB0JrXBCObHhGiwQQWBkhnbqvNcViSV2GdRblNKEIkSOuLpS2jrAVhKsP+rtbB9bfLaVkwVzE9btDy0s/+Utc+PbbqO6DTRr5L57s8aGp4UkG765F/M5b1Xts4TlUCMF7YorviJN02Tlp/wjrfGYPYs03CGxOnK0RqTZWhkW0eVRDRTW61QXSZBK78XmVYuDwDqFcIncdzl39A86t/Am52Tlxo4g2/8K+RZtLU6V08wvEtz8BZmcaoYtbpPN/Tjb1Ik7udlxHEAYRcRQjgFzlaKNQWpGmfbTaOyPEVo+3HOrxbvse7w8UXuz2eB6ADZd3HEiMc2TGoB1kypKqPXZ5C7nlpjMbHd4p76eIChwl06eWrxHanCwo04knSIMynajBSmmWNCiPq6b6AcAe6ojzrV7vI5RZ2Oz1LiLOVwa93m/S4QL6AHu9h13et7Zc3i+95F3enpFi1tbovfgSZmWF7N2z2F6f+NQpwum7zI4dVzZc3ephXN0JEJLLNSxdeqzibEweTENcAsGhijAPrtyk/EffGlqmj8zR/8uf3nxsncXaIspcCsFGhPnRsD00R+Bc6UfoRsMujHrrtzb/7dQn9/4N7II7I8zrC7NE5dLevogzgIUgLDrLxjXdQKQ4LMLVEDZBusKJLdEIZ4v48riMc3JHfHnkAmqlkNRqwryFjqA5O099epaJ+YUDfmMej8fj8XjGhZljJ6hOTDCxsEQQRqxeu4LRhyj16DFCCFiaKJNEAbVSwFpXgcqRg4mgo3R3axljRHGfFbj3d3cDaGfIXI5xBoMhFhFyxAmO0k4hXIx0zcLZLQ5ujCdCM73+5tAyEUUkf/W/4tyXvonu737SSCDhV55vM10adqt/+VKJv7hyCOrGPLuiLcp8W5zkKjtF4hoZn3HnmXJ78zctgNBkJNkKkephgpgsmUSFVfKoRq+yRBY3cMXs+MLhHcdQKkEQ0lp7mzdu/B7XO9/fRbT5qKsMBFH3BJVrP0XYPnXX8Wlde4/e4h+jaud2PQlGCEkUxYRhiDWGPM/QWpHlGWmaYvewKjYM5GaPd08ZlHF0M01u/FjwBwEvdns8D4ig6IMoXN6CXBtybdFm4PLey5OnEIXDGwaCt72v4A0gcZR1j2q+TmAV/bBCJ26QBWXacZPV0gxZsMeD2Z4H4PBHnAeUN3u9Ayoo1ujx3qDX+xZt3qXNO+SsHcgM4CGXN8K7vD0jR127Ru+VV9Crq2RnzwIQnzlDUNvZGTXWbLi6jYKountXt0gGzw3oi6vkroOyGVrP4IIQG5WRRu1JZNi+YCz13/gSYtvkGCcF7b/7s0NirTVFhPlWXzdILEeiLeeBdSXemDg5tPs4e50k/36xXzsJ+vTo3ss9UP2U9vVbQ8smTh7Z+xcyFhCFs3tEg4aPisNiRRfhYgQhYrM73RJYhRFhEV8eJjviy3VuacQhCkOsW2QuY2JhiXKjyezxkwf4rjwej8fj8YwbQgjmnzhDuVZncvEIOMHq1SuDWhzPflMvhUxUIiYrCc5Be60LOIQxuHCU7u4SDrAiQt4nynyD3ClyFMpqLJZYxiOVuwWSwMwgXIikihUpThzcxOWKWqWyNhxnHs4fIfiRn+X8H/45Jt/dzxGgHjv+yQttIjn8G/43b1Q5vz6mE3M9D4wRAa/JJX4gltB3SGARlo+7Sxx3t9kr51ohevdJ0lUC3UeHZbLSNCqskMVNutVF8qiGEwKqlYHgnRTR5mmP62vf5c3b/4FWdnnnvjejzX9xX6LNhY1JVj9G6cYXkfldXOWBIp96hXT+K5hodbd7JQhC4ihBCIlSGqVyjNb00x5K5XsWbX5nj7eyjl5m6O+1UdEzdnix2+N5SKSAOJTEYYB1jkwPXN7akuZ7ePK8m+CtU9jRQLKTAEtFd6mpFtJaemGVTtQgC0q04glWk2lyuXvXnmfvuXvEuTg0EedFr/fMoNd7Ak1v0Ot9g4xlulwY9HrfOpCeJ1kuE58+7V3enpHhnCM7e5b0jTcxy8vkF84jSiWSM2eQySGbGa7udHXvNm5aDFzdEam8jaFHx60ibIksmETKEBtEhyrCvPxn3yW8fGNoWf8vfwZzdH5ombUW5yy4ImIPYCHsEYmtc8vV+NOslIZ/lo32b24OTrn8ExzEJfnaxatD3y0yDGgem7/3Bg+FK/q6N3q6x1TsRvSL2EpXRdgK0hWf3cBpnJBoGZEl5R3x5f1UUw9CZATSpmjXo7m0SFKpsHD6DEL6Wy2Px+PxeDzDSBmw8OTTJNUqU0tLGK1Zu351T/tLPbtnqVkmDgXNckirl2FzhdSquHaVoxE+rZAYmWBkBLhdubsBMpuj0ORW4QaC9ygRxAOHdxnhEqzo4Di4JILJ9jnCdH1oWenTP46eO8WFL30d+wApCScahr/3zLCzV1vBv3ylTis7JPVjnl1xXTT5tjhFm+HxGQE87W7yrNubHu+t/Toi3aOUrhCYFBVVyUpT6LBCmkzSqyyioiquVi3E7qRUVH3lGXl6m3Nrf8b5tS+/b7T56X2KNg/yKUrX/xLxykfB7ryXt8kq6cKXySZfxYldTjgRgiiKiaII5yyZyjBak+c5adrHmL0ZOx7q8VaDHm/le7wfd/wIjMfziAQCkjBAii2Xt7KFy1tpuzcn0DsFb7d7wRsgcIaq7lBVbQSOblinG9VJwzLryRRryRRKjmeH5geH7RHn8hBGnAfETFDhGAmzWPRmr3fOCn0us87r9LmKZW+6cXZ9bN7l7RkRTmvSH/6Q7OJF1LWr5JevEE5OEZ88iRjXqOb3I3sEVzcCB6TiGooO2iicaqDjahFh7hyhORydhMGN21S+9BdDy/T8NL2f+dzQMuvAWoe1Fik3Iswdx8L25nOci3it+fTw/vVVyv2vFettGdSzI3kf92Pt/HCEefPYAnKvxWhrAFeI3UFQzBQcMxwGK/pIyggXIO0EUMSXS2fQIiSLy1gXDMWXZ8pSIiSKJUpYhGkT1atESYmF008RhP66yuPxeDwez90Jo4jFJ58mrlSZWFgk7/dp3bpx/w09e04cSWZrJZrliEAK1tY6hdPTWmw0uomaSiQ4BE6EBLt0dwOkNsNgyQbbJCMey5Outq2/W+JkC7fLsci9RuCYXn0N7LCoXf2lv0e/Z7j4x9/EPoBQ9rmlnJ883h9atpoF/Kvv19HeF/FY0RMx3xUnuUF9x7olWnzSXSTZ5aST3SJwRKpLkq0gjSKP6kW8eVQhLU3Tq8yj61NQTiBOBoJ3DnnGenaJN5Z//57R5vX9jjbvnKZ89acIusfu9gR0/Sz9pT9CVy7tOt1TyoA4TgiCAG00ucox2pCmKXmW7ckEsI0e72Sjx1v5Hu/HHS92ezx7gNju8gZyXURkZKbo8rZ7oXgPCd55cfGtU3gAt2zoNFXVpqI7OATdsE4vrJEGZdaSaVrxBFocQoHmseI+EeduvCPOBYKIGpXNXu+AlFv0uETObfpcZ5036HIBTW9fj23T5T2/ULi83/Eub8/DY9OU3ssvo27cQF24gF6+TXTkCNGRI4fTzXmnqzvcrUtAIkRM4eq+hSWl79YQtkJfNBAyQIdlQpMN5PAxx1pqv/ElhN76bnUCOn/3Z3e4kp0phFznHGIwMaApcxrB1k3ySvA8V6vDtSGN9u8gNr671UeB/RdF0/U2/dXhiT4jiTDXpogvF7K4eR9DnOgOElTKSFdHEAIO6TRWBKiwdNf4cqkhDgRaWsoiRbmM2uQ09ekZkkrloN+Wx+PxeDyeMSculVk4/SSlao3m7Dy9VovOyu2DPqwPJHP1hDgKmKrG9LoZea6RWoOUReTwCLAiwIgILWIEjsDt3pXctykWS25zBIJ41IL3Zn93A+cs7iD7u3WPybW3hpbJcpXq3/pHtC/f4NKXv/NAYzu//FSPpyeHRc63VyN+721/Pf+4YYTk++II74qZHeuapHzGnafp9n6cUjpLrNok2SrCGfKoQRY3UWGVfnmW3tQJTK1RCN5xDEpBnuHQXO++Mog2v7JjvxvR5h/ap2hzacuUbn+K0o0fRaiddX0uyMhmvks693XsNgPA+yMIg4g4KmoZcpWjjUJpRZr20Q+Q1vB+RBs93tbRU4VJ0fd4P54cwtFYj2d0rP8v/4bab36J+OK1h+rsCAQkgSQQAmUsSlu0dfTzwvH9yJr3puAtBoK3BZ3BXWZ5vR+RVVRVi4ruYmRAJ2rQC6v0wwqrpVnacRMj/OnhoLlrxLm7S8T5mFL0ei9Q4QgBFfLNXu9lUpZp8zZt3iHjNnaforCElERzc4XLW3iXt+fhMOvr9F58CbOyQvbuWWy3R3zyJOH09EEf2sOTtYrvlQ1X9y4RA1e3FZZU3ESJFrkxoBqoqIqIYpwMDk2EeenPv0d04erQsvTHP4k+ubTjucZanHM4x+YEh2PRdle35LXG80PbSNOi2v3DwfoApz62129hV6ze4eoOywm1+Z03/Y+Es8V/G47ucPwm0zk0TmRIKggXImwRBSedBudQMiKPSwjjhuLLTWaJhcRFEEeQ9m9TbU4SRhGTizv/Vjwej8fj8XjuRrneYPbkKcqNBrXJadort+m3/T3pfhMEgsVmiWocUooka6sdhNZgHW6ENTxKlnFCYHkwd7fD0bcZFkfuFBJBNEJ351Z/d4R0NZzIcKJ//w1HRKV7jXL3+tCy6MQZyl/8edbPXuLK11/etSs0lPArz7eZKg2Pq/7pe2W+cdXXPj52CMF5Mcsr4uiOHu8EwyfdRY643XZQPxjSGZK8RZyvA4I8bpJHDVRYoTd1gv7McUypWojeSkGaAY7ctDm39qf3jDaP9zvaPJujfO0nidaeAbtTO7ClW/QX/4S8+RpO7G6sVwhJFMWEYYg1hjzP0FqRZRlpmmLtoxsnAikoxwESSHPf4/24MqbFeR7P/uOMofVbv0Pp5k0WvvUDsqNzqM89T/bJZ3Cl3feuCgFRKAkcKGPJtSGUhZ9NW0cSSoJHifEUAoJ4S5QIIjAZBAk8gCtbAJHNCfMcJROysERHNolthkOSBWVKuktFdZCHwY33WGMHmrYYxJuDE66IOHcSROEGBwtjqH1LYhJmiJhE00LRQtEmpExEA00XuExEjYgJIprIEX89bbi89fIy+sYNzHqL+NhRei91iY8fJz516nC6cz0jR12/Tvrmm9h2m/ziexAExKdPI0ul+288rmy6uvsP6OoOQERATCqv4EjpuxZC18htgIsruKiEcBb5AIM3B4VcXqX6v//50DIzM0H35390x3OdA+ss1lmEKFItYgzzwdZM8I54mvP14YkDte6/R7rBwJB6BtzuJxbsFc451u4Q9CdOLCH2OmLcGGDQdTjCCMhHwYkOuABcCemaxaQyLIHTaBmRx2UsIZHKN+PLjXaESAhBBIKANkoIqpOT1GdmiZJDfC7weDwej8ez79SnZtB5UfVltGL95g1kEPqkmH1mshKz3M6ZqsVcW0vp5zVKkcZGEU6pkQy1WBFgidDSEtk+kc1QcnfjjxZL36VUKKEwRCLE4jAPaIbZLYIIaaewwW2kU1jRRbpokIq0vwhgcvUN8qSBCbc+J6Uv/jzq3FusvPE2QRyx+NmP7mp/jcTxTz7a5n/4bhNtt37T/+b1Gkdq65xojOZn6jk4bok63+EkL7hLVNgaq5DAM+46dZfxlpgfSbJDYBVBvoaRcdHnnUwSmAxXleioQtRaJu7cQva6kFL0eiNYzy7Ryq4yX/0Ic9VnkXdoABvR5rd6b3C9+yr2AdIiHhRBQNz6EGH3GPnUq5jy9Tue4FDNt9DVS8QrHyVMF3e31yAkkAFKK5TSSGnBRfStIY4iwjDaTNV7GKQQlCJJposk3lgKHA5jHNUk3HWTn2d88SP5Hs+Azte+hrl5c/Nxcvkmtd/9E6b+6b+k9ptfInxAt7ccRJuHUqCtQ2mLsY5U7YHLW1AI3kJudXibB3d4b+wqthm1fJ3E9MllTDtu0A/L9MIaK+U5umENO44q6geOwx1xLgmImaTCcRKmsSj6XKfLe2TcIuUmPS6xzmt0OEfGykgd3ztd3u8WLu8LF7zL27MD5xzZuXOkr7+BuX2b7Px5RKlEcubM4Ra64RFc3SVAYkROxjK5XEdbhzA1srCClAIdlAh1Ov7fINZR+60/Qqjhc077v/zZwrp759OtBQfOusHEGMGRqLNZSe2c4M36J7DbBWSXU2//u62H6pOjeCf3pXtzBdUbdmJMnjq6x6/iCrE7CIpJemPYX104UhTSVREuQtjibz90CisC8rBMHiaEShXRc1kODqQWIMGFUKk4+p01Ks0JgihicsG7uj0ej8fj8Tw4kwtLNGbmaM4tEJfKrF2/isqygz6sDxRCwJHJMkkQUEtCWus9nFLFNf8I3d15UMaJAC1LSKcJXb7rbY2z9F2OcQaNJhIhcoRD/dJVkbYGroZwwYH2d0tnmLr9w2I8dICQktrf/IeIcpVbr77Fze+9sev9nWwa/usPd4eWKSv4F6/UaedjfzfreQi6IuHb4hTL7BwDOcYqn3DvEY1QMA5sTpKtEqkOVkakySSqMkHenKc7/QTZ1JEikj9N2RjodZjdR5snJ0d27BtIUyW59TmSW59F6PKO9S7skc19k3Tmm9hglxHxQhBFMVEU4ZwlUxlGa/I8J037GPNok0+EEJSigDiUqDt6vM0eOMg9B4sXuz2eAWu/+3t3XS5yRelbP2Di//FvmPgf/zWlr38P0d/dTYcAwqDo8oZBl7e25MbSVxr9KCdRAchoTwTvjd0lJqWerxObjFyW6MRN0qBMN6qxWpqlF1bGVUf9wPH+EefhWEecF73edSocpcwSETUMffpc3xZzfpMe79HidTqcI2cF9wD99A/C3bu8bxVd3mfP+i5vD84Y0h/+kOzCBdS1a+SXLhNMTBKfPIkIxi+a+YEYcnWHD+DqDkEECCL68hqWlJwu5HWMAR3XIExAiEMRYV765qvE77w3tKz/oy+gzxy76/OdNUARYy6FQOA4Gm5FiuWc4O3mcIRYtftHBLboYXT6FNiDib1fvTB8U1yaqFOebOzti1gLuELs3ogxHyMcDie6hchNgrQTCCQSjXC2iC+PEqRmKL5c5INhhgjiRGLzNYSQVCcmac4uEMY+6tDj8Xg8Hs/DMXP8JNWJCSYWlgjCiNVrVzB71Ffq2R3VJGCyGjNZjTFpRjc1CGNwYTiysTArAnJZwYoALePC9el2n4qlnSZzOdoaDIZYRoUpYkQIO4F0McLVD7y/O8lbNNbPDi2TzUmqv/R/AOD6d37A7dfe3fX+Pn8k4yeODU8KXkkD/tWrdXy17+OJFgGviGNcYGrHukl6fMadp+5GN54hgNCkJNkKke5hghJZbRZVnyarTtNdeIo8aeL62ZABb1fR5hNf4PTkT4082lwgCPtLlK/9FFHrqbuORZvKNfqLf0xef3vXE2SkDIjjhEAGaK1RKsdoQ5qm5Hm266qCexEHkuSOHu9O6nu8Dzte7PZ4Biz8s3/GxD/5bzFT9x7wDa8M3N7/7MHc3nIQbR4GEuMcmbZoC5kypPoRuiE2BG8Z7IngXezSUTJ9avkaoc3JgjKdeII0KNOJGqyUZkmDshe9x4YN0dsVQreTFJaz7aK3HFu3d0BCzBQVjlFmiYAahh59rtHjPdKB8N3lvYHj+zw5q3sufG+6vJ98csvlfe1a4fL+zncx6+t7+nqew4NNU3ovvYS6cQN14SJ6eZloaYn46NHHI+p+yNW9+6jEDVe3En0Uq+RyHaNB2CoZAYQJOiwjrUaOKEpvr5ArLSq//9WhZWayQe8Xfvyuz9+MMLcORDF7ejboU5Jmc/071U+TB8N/H/X2b2/tI//UHr+L3WG1Yf29a0PLJk4e2fsXMhqQxYS8cYwwFykOi3A1hE2QrgIUcftahEV8uQgJtS7iy40lMALrwIQWEQiqNUe/1aI2OUUYRUwsLBz0u/J4PB6Px3OIEUIwf+oM5VqdycUj4ASr164UiUKefWOxWSIKJBOlgG6vj83zQZ3g6CY5axmTywpGRBgREdr8ge6hcqdQaJTVOCyxHF2qkkAizSzCxUhXP/D+7nr7Ikl6e2hZ/MwLJJ/5IgBXvv4yq+9c3PX+/tbTPZ6cGJ5s8NZqxO+942sFHlecELwj5/mBWMLcMVGkjOZT7gLzbrRjggIIdZ8kXSHQKTqpkU0eQVWapJOLdCePo1zhdN7OenaJN5Z/n+ud72Pvcs6ox4s8Pf0LLNU+gRSjvS8XLiRee47y9Z9EpjM7nyANavKH9Bf+FJMs73avhGFEPJhUnqscbRRKKdK0j37ECWHhPXq8U9/jfWh5DEZpPZ69IZqfY+If/Des/tN/zM1f+2W6H30Sdw8n0rDb+3/eldtbUJxE47A4iW64vLV29HONftgbGAGIcJvgbQaC96Od8CWOsu5RzdcJrKIfVujETbKgTDtuslqaQY3wAtrzoGxEnLs7Is7loYg4h0L4TpiizFHKLBJQRdO5i/B9cSB8XyBnbU9js2SpRHzmTOHyvrVcuLxvL9N7+WXv8v4AYtbX6b34EmZ1lezsWUy3S3zyJOHMXS7cDyMP7eoepIoQ0ZNXMfRR9HB5HWsEeVQjCAJMGI+/q9s5ar/zR8hsOC6w83d+Gle6+8/DOYu1xf+lEIDgWNTeXK/dAm80h/9GSv1vEusLxfZmDszdHeOjpnX1JvaOqPaJk3scve1s4ewOg+JOY4Sxjw+Dw2JFF+FiBCHCTQAQOA1CkkdldBgTKr0ZXx46iVWODEMYSqqNgGx9FRGEVJoTNOcXCcYwqt3j8Xg8Hs/hQgYBC08+TVKpMrW0hFGatevXHtnB5tk9cSiZqyc0SyEyy+n0czAWO+JrWi0TlCyjZYwlJLQpwu1+/CG1GRpDZhXgSEYqeIdIO1UkJLkyVnRx7N6NvrfHAlO3X0Oa4fu5ys/+TYL5YlLvpS9/h9aFq7vaXyjhVz/aZiIZFg7/5GKZb13zKU6PM9dFk++KE6R39NAHOJ53Vzljbz5QvenDIHBEukspW0WiUfUZstoCujZNWpujV5pHhcNx4WMXba4alG7+GPHtT4BJdqx3cZt0/s/Jpl7Eyd2NFwkhiaKYMAyxxpDnGVorsiwjTdPCiPCwxzvo8Q6kGFTPGvrK0Mu1F7wPIV7s9njuRErSZ05x61d+kdX//lfp/vyP3sftfWvL7f0bXyK8cPV9v/w2XN7xhsvbGLSDTNmHnzk0JHhrsKZw6j1A9NG9CLBUdJeaaiGtoRdW6UQNsqDEejJFLv3F3njh7htxzhhHnEMRgRNQImF64PjeLnxfpcelQdT5DbpcYJ0f0t1D4VsIseXyltK7vD+gqBs36H3ve5jVFbJ33gVjSU6fJqjXD/rQ9o5HcnUHKNnG0CKXazgTgq2QG4st1TFR0WM+7mJ36asvE79xfmhZ+pmPoD506p7b2EFEt7UOKSRVkTMVbE14e6/8aTrxsPOj0f7NzX8Xru6DOQevnr889Lg2P01c2dmt9UgYAwzcL9EYCsCiDw6EqyJsBekSBAbpDEpGqCgBLTbjy0MEKOhbS5wEiAQqkaXfaVOfmi5c3fPe1e3xeDwej2dvCKOIxaeeJq5UmVhYJO/3aN26cdCH9YFirl4ijgImE0maKnSag5S4ESd7KZFgRIIKEhwBkU0RD+BYSG2KxQ4EbzFSh7d0FaStg6seeH93YHMmV14bWiaiiNrf/scQxeAcF//kG3Su3NzV/hqJ49de6BCK4Z/9v36txnutQ15j5nlf2qLMt8UpVtl5j3yK23zMXSLch+Q64Syx6pDk68hYklcnSCeWUEmdNJ6kV1tEh6WhbR4k2jzZh2jzqHuCytWfImyfuqvxStfeo7f0x6jaOdyuznOCIAiJowQhJEptRJtr+mkPpfKHnhg21ONtih7vXFvamcJ6xftQ4cVuj+d9sM0a/Z/+HKv/9B+z/qu/TPb8fdze3/4BE//P/7Vwe3/t3m5vAQRSkIQBEkGuDbm2aDNweT9MP8R2wdtuCN5qTwRvgMAZqrpDVbUBRy+soWREK5n0gvfYcveIc3FIIs7hbsL3AgFlFO2B8H2ZjGX6m8L3a3S5SM76I99oyVJpq8v71jLZ2+9subzffde7vB9TnHNk586TvvY6ZmWF7Px5RJKQnDmDLJXuv4PDwkO7uuMixo+QnriKFj0MWeHqtpAHCTKM0GFCYPIHGpzZb8J3L1H9/S8PLTONKt1f/OL7bmet2fz8Cyk5Fm3dSFo3yevNYad0lL9Fkn0PAGfroJ/ag6N/cHSa0b56a2jZxKm9jjB3hdgtg+LvZOxc3QYr+kjKCBcg7QTgCJzCiIAsrgzFl4fGEhlJX2uIQUvH7FRCZ+U2YRRRbjSZWDyCHGGspcfj8Xg8ng8ecanMwuknKVVrNGbn6bVadFZu339Dz54gJSxNlKnEIbHRdHopWIsb9bWtEGSyjBUROigBgsiku54m64DeQPBWViERRCOMLha2ibQlhGvgnMOJ1i5Fq72nnN6m1h6OKw/mlqj83N8CwBnLhf/8dXo3d/c5OtXU/FfPdIeWKSv4F6/Uaefjax7xPDq5CHlJnOAyEzvWzdDl0+4CFff+6a57hXSGWHdIXA8hBXlzjqw6jRIx/doC/doCJhgey9lNtPmH9i3aPCZZ/RilG19E5hM7nyAV+dQrpPNfwUSru9ypIIpioijEOUuuMozW5HlOmvYx5uEnI+zo8TaOdl+jzPiOa3mG8WK3x7MbpER9+BTtf/iLrPz3v0r3538MM3XvWVDhlVvUfu/+bm8hioikOAywzpFpU3R5a0uamwefkSQoRIsRCd4AodNUVZvAanphHSVjWskUmdwZTeIZFw5/xDlsCN9lEmaocHwgfJd2CN+F4/v8QPh+D/UIwveQyzsItlzeFy96l/djiDOG9IevkV+4gLp+jfy9SwQTk8SnTiHGTLR7ZB7a1Z0AIZlcw9AlF2sIm+BMCWUsJqmBlFgZjbWrW662aPz//gPijrirzt/5GVzl3pMarCsSuq2zSCkIcSyGW4Mg18JPsVwedlA02r+5OUDl8o8DByOMrr13behaRASS5rE9diQPXO+EsnB2j1mvvRPdItnElZGuXkQwOg3OkUVldBARKLMZX14ipK8MqTAEgaDZjHAqI+12qE1NE8YxjdnZg35bHo/H4/F4HkPK9QazJ09RaTSoTU7TXrlNv9066MP6wDBRiagmIZMRGGPJ+jkuCHCjTmgSgkxWsQQoWQIckdl9J7bD0bcZBkvuNIEICMVo7j8EEmmnES5CugZOaBC9kbzWbmiuvUuUD39GSp/6AtGznwDAKs35P/wa6cruxnF+9EjGF48N39PeTgP+39+v8TAeJc/hwQnBG3KRN8TCjtHEKjmfdheYce27bjsKJJaEHnHWgjghq86SB1VUVKXXOEq/OoeVW2NW4xZtHuRTlK7/BPHKR8HuHFuzySrpwpfJJl/Bifwue9iJlCFxnCBlgNYDl7cxpGlKnmcP7fLe6PEWbPV4dzNNqkbv6Pc8OuM1AuXxHAJcs0b/pz/74G7vf35vt3cgKFzeQpCbwuWtrKOfF73eD3x+HhK89Z4L3gKo6A6hVfTCGrmMaCeTZMFj5Hp8LDn8Eecb3Cl8lzaF7xY9rtDjChm3SblBh/Os8/pA+H64aK0Nl3e03eW9fGvL5f0IMwc944HNMvovv4y6cYP84gX0zVtES0vER48ixkywe2Qe1tUtkoGrW9IXV9Gig0VBXszk1xZcUsOEZXCOwOzPbOcHRmnq/5/fR3aGB2J6P/M51LOn33fT4rPucM4hhGQx7G7G21lX4/WJk0PPD/R1Kr2vFNu6GNTze/UuHpi188M3uY2jCwR7HTNuDCBBBBCN1wQRh8aJDEkF4UKEbQKWwGl0EKOiEsJsxZeXkKjc0jKKcimEkmOyFtG5fZsoTijVGkwtHkFK7+r2eDwej8czGupTM0wdOUZ9eppyvcH6zRtkvYMTEz9oHJksEweSkjN0u0Uv7Mjd3RRCWxbUsGJD8LZEdvf3VhZL6jKssyinCUWIFKO5py36u6cRxIP+7h6O3YlVe38sjqnbP0RYPbS8+ot/DzkxDYDJcs79x6+Sre+Meb4bf/vpLmcmhsdT31iJ+Xfv7H7CuOfwcllM8pI4QX7HhPUIywvuMifd8sh7vDeRkiCWxNkakeliw5g0mUDFVVTSoNs8RlqZxm6b3DJ20ead05Sv/jRB99jdnoCun6O/9Mfoynu7jjYPw4g4Lsa08jxHG4VSijTto7W+z/Z3RwpB+Y4e71RZupk+sPQKz+54zEZvPZ59RIoHc3tfHbi9/+m/oPYb/2mH23vI5Q3kupg9lJmiy9vYBzyZbgreZpvgvXcXnAIo6w6hzemFNTIZ04onSL3gfUg4/BHnGwgE4ZDwPU9AjGKdHpcHwvcyKTfpcI51XqfHJRTtB7pIEUIQbnd5nz275fL+7ove5X2IMa0WvRdfRK+skJ19F9PpEp88STgzc9CHNhqy9YdwdYuBqzsilbex9MnFOoGtoHWIsg4dVwikRAclwgeI29tXnKP2u39MdOn60OL8mSfo/ezn77u5sRbnikloQsKxaGs295p8gcvV4YkD9fbvIhhMhlEfAQ4mBSVrdendXhtaNnlyryPMbXHNEQbFHcaYpSE40QEXgCshXROB3IwvT+PCPRNoQ6gUiXEEVrKmcpJE0peGpakyWa9H1u9Rm5omShLq04/pOcLj8Xg8Hs/YMLmwRGNmjubcAnGpzNr1q6hsTCeVPmZU4oCpasxE4MBB2s9wYbAvwyRWSLKghhMBWpaQThPa3Y/paWfIXI5xBoMhFhFyRHdo0pWRtgmugnARVrYPrL870j0mVt8aPr5yherf+kebqVO6l3L+P34V1b2/Yz6U8KsfbTORDL+fP7pY5tvXfKXjB4E1UeHb4hQthse7BfCku8VH3BWk26e/dykQ5RIhiiRfI8rbGEKy8hQqqZOXJuhNHCMrTw6lUIxTtLm0JUq3P0Xpxo8iVG3HehdkZDMvks59HRvuzj0vhCSKYsIwxBpDnmdorciyjDQtJio9KJs93oEkN24gelu0wddajjFe7PZ49oAht/c/2XB73/3jJZSm9O0fbnN7v4zobcXiBAKSQBIIgTIWpS3abp1UH2jCmAyL/zYFb124+faIQvDuEtuMflgllwnteII0KO/Za3hGzW4izg+H6A0bwneFhNlN4VsSDYTvS/S4Qj7o+O5wlnVee2Dh27u8Hy/UjZv0Xn4Zs7pK9s67YCzJ6dMEjcZBH9poUH2w6uFc3RSxeKm4jhJtHAZUHYtDGYtL6tggwklJqMdzAK70F69Q+vYPh5aZmQnaf+/n4R4pLRs4V8SXW+cQQjAtc6pSD9aVeL3x9MD5XiBsm1r3DwbrBS7/xB6/m92zemHY1R0kMfXFPRZqjQFEEV++147xR8SJDCcU0lURLkLYKhKNdLaIL5chgbZIZ0mynDIh62mOkQ4dOOYmSkSBpLOyTJQklGo1po48hqkPHo/H4/F4xpKZ4yepTkwwsbBEEEasXruCeUjHmufBWJwoEUlBLbD0uhnagQv2J9nHiqCINBcBWsYEThE8QGpj7hQ5CmU1Fksso5FNSBa2gbRlhGuA40D7uyu9a5S714aWRcdPU/6Jv7r5OG93Ofcfv4pO73/f2kwcv/rRNoEYfj//+rUal9o+5emDQCoivitOcI2d40QLtPm0u0BpDw1m74sQUCohwpDQKZLuMkFvDR2UyCozqLhGVpqkO3GcPGlufgofJNp8uvwkYsT1a0E2R/naTxKtPVOMO9+BLd2iv/gn5M3XioqE+yIIgpA4ShBCotQg2lxr+mkPpfKHijaPQ0kpCjDW0VfFeFBuHdp3GYwlfoTG49lLpEB9aMPt/d/S/as/hpm+n9v7Twfd3ltubyEgCiXJYMZorg3aWHJj6Sv9YC5vGQwL3lYXjr49QgAl3RsI3hXyIKEdN+mHPtLncPF+EefBoYo432BD+C4xR4VjlJhDEpGzNhC+rw4J3y1ep8dlFJ373pTd1eV91bu8DxvZ+fOkr72GWVklO3cOkSQkZ84gS49xQsVDubolQsRATCpvYUlRokXkaigjMRYMAS6poMMywhoCu3fVGXtFePYy1X/7Z0PLXBzR+ke/9L493RtYa4qBG+sQUnAs2ooB6/AM5xrDE71qnT9AuoFbQD8N7mAmUDjnWLtD7J44sbTHQq0DbQduCTFWrm6Hw4luIXKTIO0EApBWoWRUxJdbuRlfXhMh3VzTMoo4kcQlyWQ1Iu12yNOU+vQscalMbXL6oN+ax+PxeDyeDwhCCOZPnaFcqzO5eATnYPXaFax3l42cKJAsNErUsYQC+v1sX6LMNzAyIpdVjIgwIiK0OfIuzsx7kdkchSa3CocjlqNxIwvEtv7u+oH2dwtgcvVNAj38+qUv/hzhqac3H2erLc7/4Z9j8vvfu56e0PzdD3eHluVW8C9eqdPJD884mefhsULyQ7HE22Jux4hhnYzPuAtMuu5dt91zhIBSAmGIiEIi1aO0doUg66LiOll1Fh3VSCvT9JrHUXFt85h3E21+rPE5npn9G/9/9v47Sq7svu9FP3vvkyp2dQS6G3Fy5AwnUhRFiqRGskSKpERbtq5lkQrXkqmr+96TvZ5ky9ZbDtf2vcuXspZk2dcSJVJ0oCxTYiYlkmIYksOZ4ZATMQmDDDTQuSuetPd+f5xCdxe6ATSATgDOZ60Gqk+dOqG6wtn7+/t+f+wo3Y0SG5dOJ1B49dsoTDyC6uxcZQVL0vcyndEvkQYTK+9fdaMC1/VwXQdrDXESodOUOI4Jww76MgxKjhQEXib+G2MxBlpxbnTajuRid07OBmH7ynQeeQNz/7Tr9r7nlrW5vf/PDy+6vWU32tyRktRY4tSgDZfu8l5V8F4/113m8G7j65COKhIpn6Zbpe2U1m0fOZvJORHnXL0R52cRSBxKXeF7T1f4dhaF7w6nulHnp2lysCt8nyS9iPDd4/KeXubyfip3eW9nrNZ0nn+B+PARkjOniY8dQ/XV8PbvR2wjkW7dWXR1ty/D1S0wQhOKSWKxgMUi0yrGQKINxi8jhCBVPo4OL7rJzUbON6j+8ScR50wINv7uj6LX6HA2xmAxWGspSs2wyoRsax1errwOvdwZblMqzf+59Gv8wJWfxGXSnp4jPqc/ef/+dY4wNwYwmavbkYsRgdsCEWIxCFtGGA9piyibYoUk9EsY5GJ8edkIjLZMRRFBoAiVYXyggLWW5swMfqGIXywyML4bIfJJrZycnJycnJzNQyrFzptvxS+WGBgbR8cJ86cnLsuplnNpDJV9AgkVVxB3YhLDeef3NoJUeiSyQCo9DA6uCRGXEJscmgiNIeoWJPtyY1KYBApphrr9u4tZ/26xNYlf0moGZ56HZc+TEJLyT/0iorgUndyZmuPIF76BWUNSwpt3Rbx5V+9Yd7qj+IPnylxGSnLO1YgQHBWDfE/sJjlHVvPQ3GePsdvObk4fbyGgEIDrgOtlUd6tGfz6BFLHxEGVqDRI4pUISyO0q+OkywwPF4s2d2WB0fLruXP4vYxXHsJTKyPH1wupS/hT34c/9QZEujIt1jptopHHCIcew6i1FdFI6eB5PlIq0rTr8taaMAyJ40t3eatuH2/IEv82K7k+59LYRjNROTnXKGfd3j//bmb/+Rrc3hPTS27v//p53MMncSR4jkLQ7eWdLrm807VeUUkFqit42zT7X0esp2IZ6A6+DglVkUgFtNxKLnhf1dhlovd5Is6vMtEbVhO+hxEoYuZocZwOE0TMEHKaRo/wvXqF5oV7eT+Jnp/f3BPMuSAmiuh873skp08THz1KemYSd3QUb/fuazyS2C5zdaeX4OpWCOECHh15GktIIpp4tkqcgrYWbSy2UEErLzP1pttM7E5TKn/8SWSjd1DU/qGHie+99TwP6uVshLk1WfrKbre9mFge21t4pa/3u67Y/hKOnsoem+4Gs0qV8iYxd7jX1e1XSxQGzn8dclloDcjsWmMbRZhbDEa0EdZD4CBsPwKNtJrILaClg0ot0lpKUYqLZLIToRyIlGGsVsBVkrDZIIkjygND+MUSpVr/Vp9aTk5OTk5OznWI47qM3nwLfrFEbXSMuNOmPnVmqw/rmkdKGKsVKJgUT1jaUbJpUeZnSWSAlj6J8jGoTPC+hMmYjgkxGGITIxC4GyR4S9tNUrJFhPUwZ9tfbQFeXKdv4bXe46v0UflbP9+zrDUxxdEvPoZdQyzx37mtxY19vU7wAzMef/5qnm55PTEjyjwh9tGk10AggdvsGe6wE5dUkHJFBAF4TjYOVw4yifCa0/jtGYQxxEEt6+ntlemUd9KujKHV2TZ1WbT5y+eJNgeQwmG4eBu3D76HfX1vpuhsTMKZQOB0xihMPIK7cMuqyaK6OEFn9IvElZexrOX5FTiOi+dmf6c4jkl1QpJkLu/0EtuBCCF6WtflbD+u5VndnJxth60ud3v/rYu7vZ94ntq//2/U/s8PU3z0u3hxjKMk2lqi1JAaiBJNmOi1FY2J1QTvmPUWvAPdIVQFQqdAy63Qcjeu+itnM1iKOKdH9BaZ6H0VRpyfJRO+ywTsWCZ8S2JmaXHsHOH7VRY4QIdTpKysJFx0ee8cXebynqb93e8Rvfpq7vLeBuhGg/Z3vkM6M0v82mvoRgNv716c4eGtPrSNJwkvy9UthA9ItIiImSGSCwgEylRItCVNDcbxwPFInAJSJ8htVuJa+vhf4x7pjbyKb9tH+x1vWvM2bLdy11qDEjDutrrLJa+WXk/k9H6XVxsfW3rsFrq6jTYsHOs999q+8XV2JdvsesKR2chikyf+LojoZO1hbAlhikib9TpMpUPsFhBGII2lEEaUhGIujOkYDb6gXHToL7mZq3t2Br9YwisEDIzv3uqzysnJycnJybmO8QpFdt54M0GpTHV4B+16nebszFYf1jVPX9Gl6kLFU+gooWMldpNFj0gU0MIlVQEgcPXaBW+LpWMiDJbYJigErtiYVDNpqghTQNgKWLGl/bvLjaP4Ye/7w7n5Lgo/8EjPssaxCY5/9QnsRVoDuBJ++Z4GfV7ven95pMCTpzcmIj5ne9IWPk+IfUyxcs57nAUesMfw7Ca1d/N98F1w3KylmE6RcQe/M4vXmQMBcWGAuFAj8cq0q+N0yjvQKit6ibrR5gfnvkg9OrXqLoSQ1IJ93DL4Dm7q/2Gq3q4NORVhHbyFuyhMvB0ZrpLCJzVJ/wt0dn4Z7U+tbZtS4roejuNgtM5E7zQhiiLCMMTk0QzXDNdwVmdOzjZGCpLb9pHctg9RbxI8/gLBY8+gZlbv8+tMTFP++JcpfeprRK+/jfb3vY5w907iVKOEwFUSY1I8N4s8vyBCgRJZv1ZpyQqhYlAeWSD5lePrELCEqrj4KWMRlJPGumw/Z+uw4uwFfSZ6I+g6v23m8j4rimPX6+W0aZwVvh3KWDQpHTQtYmaJmEXh41BC0yFkEomPRx8uNRyyKl4hBM7wMLJSITlxgui113CGhrHWkM7MENx2G6pW29oTvU5JJieJXnwR3WwSHzkCQuLfeCOysDIi6drjHFe3v9be0Q4IB4FLRx7B0CGljW9rxKnFWpulixQqWCExysWLttfnvP+tZyh865meZXqwj8bPvvOSorazfogWYyy7/BCv+1mY2n28VOt1SQfhE3hJ5iCwegD0DVd2EldA49Tkih50/fvWOcJcd6uhlZMNrLdJpbNFY0QHaQsIq5CmhrQp1lo6QRmLQKUWJ0moGkGYamaiGCcQGAXj/dlnQ6dRJ00SajvHCMpVitV1dsXn5OTk5OTk5FwihUqV4X37sYdfQycJjdkZlOtSqKz1Oj/nchivFajPRhSEIoxTfFfh6EtzBl4RQhDLEkI3QQW4uoOrQ2K1tjGtwRDaiAI+CRpXOBgs+hJ6gK8VaQaxIkbShxHzCNECu/lGGAEMzLzAmZ0PY9RS7+HCIz9JcuRV0uNHFpfNHzyG9FzG33TfBYuDa4Hll+9t8O+erKKXmT4+/HyZ0dICuyq50eF6QQvF0+ziRjvFDfQWVdTo8LA9wjPsoi42Yd7J6xZbRAAC0gSsRQGqHaMdP+vnXRxEpSFWSlK3iBs38TqzSKNpxhM04wkCp5+R4h30B/sRYuW8SdnbSdnbSZjOM9k6wFx4aI1O67Uj0yrB5A+QFo8T9z8HqrclgvUahDsexWntwZu7C2GCi2xRoJSDkpIkTUmSFCkNWJeO0XhdMTxvV3Z1kzu7c3K2mMzt/fCS2/vei7u9B37nvzHyf/8Jfd96GtvuEGlNaiFKzNpc3kKCcrMemybZkEhzX0cU0jaRDAidIh2nRMOtXm2J1znnZWXEOYsR585VG3F+FoHCXXR878ZnEBBEzHSjzk8TMU2H0zR4hTov0mECTdbDd1WX99RU7vLeIuIjRwiff6Hr6D6EcL3rSOjmsnt1CxEAkkS0SZgnlgtIFMqUiRNDYrL6fBOUSZUPFhy9NT3ZVsM5cory//xyzzLrOtR/4T3Y0qX97Y3RmeAtLHu8s65uOObfT8PrdTJX6stc3ckDbGXlz9yR3iiy0vAAXnmdI/ZSk8WXI7ZXhLloZYkjtoC0FQQSZVNir4iRDioFaS21WIMVTLRDhAOpYxnvxpefdXUXyhVc32dgfGOq13NycnJycnJyLpXKwBAD47upDA5SqFRZmDxD1F5bL9Ocy6PgKkY8QclXkKR07OZPeVghiFUJgyKRAWBwzdrHYKnVdGyMthpNiisc5AbIAwKJ0sMI6yApYURny/p3KxMzMHugd6FU1H72f0OcMycwe+A1Tj/x3EW3eVMt5adv6211FxvB7z9doZXkYtl1hRC8Jkd4Royjzxn7B6Q8YI8yauc351g8DwI/K0J33Wy+P0kAi0oj/PY0blTHKI+wOEziV4n9Plp9e4gKA9iusB2mcxyrf5MD03/OZOsFtIlX3V3g1NjT90buGHovI8W7UGJ90w0EAre9h+KpR3Aa+1f9wE1Lx2iPfZGkfGhtCRIic3m7roO1hjiJ0GlKHEeEYQedz9de1eTO7pyc7UKP27tF8PjzF3V7V//8r6l8+ut07rmVxhvuJt43huMojElxlcRR8vwGq7OCt07AxIAHRKB81mti3jMRpJaOU8I63XAlISjHC1eb6TfnvFisyC4mFgVvYbEWhFWAzO4XmUh0NZIJ3xVcKl3Hd5uUFhHTRMzgEKAokdIh5AyKAJcanqj1urwPHcIZGsKa3OW9WVhjCF98kfTMJMmZM6RnzqD6+3HHx6/x/tzLsAai+mW4ut3sewKXtjyKpkNKh8AMkXZF7kRb8IogFdopoHR0SX3jNhJRb1L5o08izhmoNH76b6DHRy5pW8ZaTDfCvN9Jqaqku3wXL/b39qty49cIoicBsKYAyR1XcBZXRhonNE5O9iyr7V9nV7fRgMnSYRx5SW75jcSSYkWEtGWEdRCmrxtfrojcIsIIhLFUwhgPyekwJMEifKgVXfpLmWjfXphHpynlgSGKfTUK5coWn1lOTk5OTk5OzhL9O8dIowhrLCZNmT99ioHx3bi+f/EH51wWO6sBU7MxRSVpa0iExFtnR+PFMEISqTKBbpLKAo7p4BhI5dr+7qlNiYQA44GUeNIlMvG6R40LPKTtx1gQJBjRQFqF2AI5IghnKNeP0qzuXVxmClVGfvFXmfwP/64nvnzq6ZdQnsvI62+/4DbfvCviaN3h0ZNLjtKpjuIPny3zq/c1kPnE53XFpKjyBB732hMUWEpXU1jushNUbMSrYmTj2x+4TjatHwIISGJIANfN+mInHVTSQbslUq+UzeWkLSyCxK/ghQu44QICS2LanGo+xenWswwWbmG4eBueKq3cpSowVrmPHaW7mQ0PMtU6QGxaK9a7XIT18Odej9PaS9z/NMaf711BJsQDT5OWjuLN3otK+i+6TSkdPE+RpilpmmKMxnFcwjDEdV1c181d3lchudidk7MNsdUSnUcepvP2h3BfPUrwrWfwnj2IWKV3jEhSit95geJ3XiDZOUjzDa8jefAubDlAG4vvyvN/OC8XvPVGCd4xIqUreHfPzxNU4vlc8L7GWIo4lwgrrqmI87MsF74NGk1rUfiOmUFR6ArfbUJOZ8J3UMO9cRw13SQ5fRpdb+DtGqfd7uDt3oV3ww2I7dTj9hrBxDHhc8+Rzs2TnDiBnp/H3bkTZ+TShM6rmqQN4TyY9DJ7dStiWUfTIJZzSDwUBTqJzgRva7GFCkY4GKnw4+aGns6aSTXVP/4UaqH3eNpvfYD4/gtPWKyG0d0Ic2vZ62VuGWvhtHsfU4VeJ3Ol8d8XP95s8nq28lJ74dhEz6SNkJK+PaPruxOtAZk5u53t5OpuglVgA6TtQ2EQ1tAJsghykVi8NKVsBI0koR6naN8QOM5ifLkxhubcLIVKFcdzGRjLe3Xn5OTk5OTkbD+G9uwjjWOstcyePM7cxEkGd+1BOfmU70bgKMFYQXAsEUSppq0kLnbTRREjFJEq4esmWvo4JsJaiRZruyaPTYKUEgxI6S4K3uuNNBUsEUIaLPNYUQdbQ2xB2GzfwkGioJ/EWyoAT3bcxOjf+Tuc+u//neUxmaefeA7luwzecdN5tycE/PTtLU40FYcXlp7352c8PnGwwE/e3NmYE8nZtjRFwOPs43X2JAP0Jm3sZZayDXmOcRKxwZ/PjgMBEEaAl7m747gbdS4QgJO0UEmb1CuTemW0U8SJmxihSPwKfmsKJw0BMDZhqv0C0+0XqQX7GCneScFdKSgr6TJcvJ2hwq3MR0eZbL1AJ51dt9NS8QDBmbeSlg8R114A2dtGwvhzhDu/gtO8AW/+DoS92PyXwHFclFSkOiGOY5SjAIvW6WKf75yrh+1hv8jJyVkdKUhu3Ufj597N7D//ZVo//mb04Pl7RbqnZ+j/xFcY+v/9PsWPfg772gnaUUqcmvNHm58VvLGZ4L0BkeauiSmkTVLp0XHKhCqg7vVvE/9fzvpjrumI87NIFC5VCoxSZA8eA1gMEVO0OUbIGSKmCTlFQ7xMe3gWe0sfxtFEhw6RTJwiOnqM9pNPoufnt/p0ril0s0nnO98hnZ4hPvQaul7H27v3+hG6TQLtKejMZBHmZwVvb2UF7up4XVe3Q0ecIhUtNDG+qaE1aGNJtEFKhfaKpG6AsAa1AZMjl0PpE1/BPdQb3x3fvIf2j7/lsrZnjMZag4dmp5NNWFg7wkt9O3vWU+kUpfaXu/c7kNx7WftbL+YP9z4H1fERHG89BWmbtUNxZDaicLZH0Y4VEVYkSFvKYhNNEWkSIreAkS4yzarrB2JDYi1nOhGx1DiuXIwvB2jPz2GNoTwwSLl/EL+4zvHvOTk5OTk5OTnrgBCCHTfcRKFcoX90HGthbuJk1oInZ0MYKXkEQElaNILQbk01vxYOsSyihYOWHo6JUXbtPcRDE5GiiUwWc+zLjSlelWYAYX2krWIxWWHqFiCwDMw8hzC9z1F025sY++G3rlj/5KPfZe7gsQtu05XwD+5pUvV632+fP1zkqdPrG+mcc3WQCIfvij0cY6UYPEibh+wRyjbc+ANxHAiCbJzuulkxRxSzfDJWYHHjBkFrCplGJH6VqDRE4hbpVMaICoPYZW4li2EuPMTLs5/mtbkv0YgmVt21EJL+YD+3Dr6TG/sfoeKNrdtpCQRu80YKp34Y1VqlIF1AWjlEZ+yLpMVja0qsEFIuCttGa+I4Jk1ToigiDEOMuconsK8j8tKEnJyrBFst0fmhh+m87azb+1m8Z19d1e0tU73k9h4dInzjPUQP3olbLaJWy9ERMosg1Un2A0AIKmC9LLiuSSBt0nHKdJwyAHWvn2o8d7WafHMuylojzvVV6/Q+i0QhqeJSxZB2Hd9tQqYQCBQFHMpovwg3CFiIEWdew2vMEozvy13e60g6NUV44AC62SI+chgQ11F/bgNRM4stNykkLUjjzM3tVrt9lS9O5up2iOQsmg6RWEDZAEVAK027sd4WUSxlUVfKx0mjbfE29h9/nsKj3+tZpvurNN7/46AuvcbTWjCm6+r2w8Uounl5D8fLvZMXleb/RNCdOEnuBLt14mjcbNOa6q2gXvcIc60BC0plA+ltEPFlsVjRQlgXgY80NZTVWdSjV0QYizCC/ihFAKc7HUKjccqyJ77caE1rfo5itYbjegyM5b26c3JycnJycrYvUil23nQLJ186wMDYOLMnjjN/eoL+0bE8hnUDEALGi5LX2hYXS1sLAmG25LlOpYfAgAGEwTERRsrF3rsXIzQhRVkgMgm+9PCkS2ySiz/wEsj6dw+i1Zmsf7dsYukg7OaP0d20Q23uJeYG71pcZqWDeehvMNqcZ+Kb3+1Z//hXHke5DtW95xfr+gPDL93T4IPfqaKXFT788QtldpYXGC/nPYCvN6wQvCx20rABt9vTyGWCa5GEB+0RXmCMSbHWNnOXiaNABtAJsw+uOM4Eb99luQdWWIMX1TFJO+vjXRjASdpYIPWKBM1JlI56Nt2IT9GIT1FwBhgp3kkt2ItY5XOn4o1S8UbppHNMtQ4wFx7GrkPrB2kCgpkH0c19RANPY91Gz/1WRURD30GGR/Fn70GmF3uuBUo5KClJ0pQkSZBSg3XpGI2Xu7yvCnJnd07O1cai2/tdS27vodp5V3cnpql8/MvU/tnv4/zxp9GvHMOuVpEkRNfhTbePtwEdwjr2HnJNQjFpkEqHtlshUj4L/gBmW0gkORuJFWfd3pnTO4us6t6+RpzeZ5E4uPR1Hd+78ejHogmZpMVRQjFJWkvQ+z2a5ePMnn6U5uTzdI4ezF3eV0h89Cid554nnZ0lfu01hOvh33TT9SF0pyE0z2Qu7qQF4VwmePvV7GeNQjfCByGwSDpiglTUsSR4toa1WZ/uNM2+F7RfRqvMBe6mWx/R5hw7Tfl//FXPMus61H/hPdjy5QnP5mzPb6PZ42U9p4yt8WLf3p5eW8K0KTc/le3Tgo3vv6z9rRdzR3pd3cpzqYyuc7JBqruvK5n1BdsOiBCLRtgywngoGyCtphNUEIBMoJgYfG2ZS2Kascb4Ft9Ri/HlAK35Oay1lPoHqAwO4QbB+feZk5OTk5OTk7MNcDyP0ZtvwS+WqI2OEXfa1Kcmt/qwrln6fUnZlRQlCEfRSrbOSZ/IgFT6pNLHoHBNJxPA14AF2ibEYEhMgkTgbkDEssDLHN4UkDbAiBaWtbvQ15NS+zTFVq8jNfZreN//I+y4/87elY3l6Bcfo3nqwu+lW/pT/vatvT2KIy34/acrtJN8zvN65ZSo8R2xl+gcv6mD5R57khvMFOePYl0npIJCkBX/ex5gIUrArmKeMyleZxY3apC6RaLSIKlToF0dIyoMrDpt20lnOVp/lAPTf8Fk6wD6PMUyBaefPX3fz+1DP8lI8U7UGlsuXAwVDVOYeDvu/B1gVkqdJpiiM/pl4r7nsWINnzkic3m7roO1hjiJ0GlKHEeEYQe70X+vnCviuhW7Jycn+cxnPsNv/dZv8aM/+qMMDQ0hhEAIwfvf//5L2taRI0f49V//de6//35qtRqu6zIwMMAb3/hG/sW/+BdMTuYXlzkbw1m399xv/iILH/gpotffij2Pc00kKcGTL1D+4H/F+5d/iPzyk9A6R5xYTfBO11fwdmxKMWmihaLtVoilT93vzwXv64blEedd0dsKhFGZ23uL4r82iiXhe4wiu3Dpx5IQMknHm0CPKvSwpNk+yMypLzM38ziz3/0rOq+8gNV59e9ascYQHjhA9NohkjNniI8eQ1armVPe3T59hDcEq7O48vbUUmR50ganAEH/mnt0Z4hlru5pDCGxqOPYIgqPKNVYLImxKMdFOwGpCpAmRdqtfb2KZpvKhz6BSHuPo/m3fxi9e8dlb9dYg8Uw7EQUZPZd2LJ3c6jaK36WW59G2m4cX3oj2IHL3ueVYq1l/hyxu7Z3FHkZzvbzYjRgMle3kmsvpthALAYj2gjrI3AQtoayCZEboLvx5S7QF6e0jWamHdMUCQXP6Ykv12lKa36OUq0fx3XpH1tnR3xOTk5OTk5OzgbhFYrsvPFmglKZ6vAO2vUFmnPr1y81ZwkBjBUkrtV4ShAi0VsYdRuLAlq4pCoAJK4OEWt0FFgsoYnQGGKbooTCEet/fS9tCWnKYMsIq7Cyvi4Oz8uhNvcSTtLbU7lR2Uf1jW9i6O6be5ZbrTnyhW/Qnrzwe+kHd0d8/1hvPPVkW/GHz5XJU5CvXxZEgcfFPuZZWUB9I9PcY0+gNno+RSooFLKxu9+dI4rjVQXvrJ93G781jbCWqDhI4peJghrt6q7M8LAKiWlxqvkdDkx/nFON75Lo9qrrearIWOV+7hj6m4yV78eVa223d34EEq9+G4WJR1CdnausYEn6XqEz+iXSwurR6+cipYPn+UipSNOUJInRWpMYgzYGu8pzl7P1bBMbxuazY8flT3wu56Mf/Si/9Eu/RKfTKxrOzc3x2GOP8dhjj/E7v/M7fOxjH+ORRx5Zl33m5KxACpJb95LcuhfRaBE88TzBt55FTc+vurozMY3zZ1/CfuKr6PtuQ//A6zE3jmdi91nB+2ykuXIzwdvJLpjXg0zwbtB2K7TcCiSw4A/QF832RLvkXMucjTjv9vQWFmslwoprJtr8XCQuHn1AH4aElBapaJFWYygYmO+QTL9IXJqiY07gTX2H8k0PUBi6CaX8rT78Tcdau1Thep7bFiBNCV96iXRujuT4CfT8PM7OnbjXfH9uC3ErE7etzm6nEUgHglr2/6Ui/LNbJhRnSEQ2+XDW1R2nBq2z+02hgkGgHR8v3pqea4toQ+WPP4Wa742t6rz5PqIH7zzPgy5OFmFusMawt5AN1Iwt8WrlJtLlLUFsSqXxZ0u/Jg9c9j7Xg87sAlG911VQ27feEeYGECBl1v9rOyA6YC3ClhCmiGMUBk3oFZHGIIykFqWkWKbDiDkdU626PfHlAK25WYSQlGr9VIeGcb3r7/M3JycnJycn5+qlUKkyvG8/9vBr6CShMTONchwKlQ2Oy70OqShLLXDRsSX2XJrtNn3FLerTLASRLCF0E1SAq0NcHRKrtaWcaQyhjSgQkJDiCgeDxayzoCNMDSkiDBUM8yCaCLv5r01pNQMzzzG548GstSOAEMwN3cXI9zfQccLcy0cW1zdJyuHPfZ0b3/VWgoG+VbcpBPzd21ucaDocrS+Nx5+b9vjUawXec9PWp6HlbA2RcHmKvdxmTzPOQs99IzR5yB7haXbTERv4+SFlJnh3QvDJ3N1xDJ4LqxS3SKvx2rOkXonUK6OVjxfWaVfH8TpzeOH8qtO22sZMtp9nqn2A/uAGRkp3EDi1Fesp6TJSupPh4u3MhUeYar9AJ527slPUJfyp70MXJoj7n8E6ve8567SJhh8jbY/izd2D1BdLABQ4jouSikQnxHGM5xis1dgoushjc7aC61bsXs6ePXu47bbb+Ku/+quLr7yMb37zm7z//e/HGIOUkve97328+93vZmxsjGPHjvGRj3yET3/608zOzvLud7+b559/nhtuuGGDziInJ8NWSnTe/jCdtz6E++oxgseeyXp761WqtZIU5/HncR5/HjM2RPqme9EP3wWlwjLBO14mePvA+lR3OlZTShq0uoJ3KWmw4A92Be+8Our6IRO9M5e36N7ORHCLBnFtFj9kwncNj1omfLst0qEWaWeepH4INXUav2+M+IUZnIGn8INRCs44ShZYzHs/K/qeFX4XxeDuP6uJw8vXsbZ3W6utaznvOr37W2V7K7ZzsXXO2d4lYNOE+MgRTBjh7d2L6lt98HnNYGLozGWfz0kIaSt73rxy9jl9Wb3iJEJ4gEdHncbQIRF1XFtG4hAbg7GQaIOUYnGwA6zo3bTZlD71VbyDx3uWJTfuovWeH7yi7VprsBaKImbIiQGIzR28UusdEBXbX8HRZwAw6U7QW9vfee5wr6vbKxcpDvWv4x5s5uxWCqTI+oBtMRaNER2kLSCsQpkqyqa0ClUEApFARVuUNkzHMTNhjFeQK+LLdZLQri9Q7h9AuS610dzVnZOTk5OTk3P1URkYIu1OxOs0YWHyDMpx8AqX19onZ3UkMOJL6nFCwXVpSEWcGjxni4JUhSBSJQLdIJEBrmnj6pBEra0lT2o1ETE+HlIIPOES2xizjqYUgUTqIaw6jaSMkY0t69/tJQ36Fg6yULtlcZlRPvODdzL+5hgdJ9SXja10FHPos1/jxne/Db9aXnWbroIP3NvgX327j0a89Dr47KEieyqa+3bEG3dCOdsaIyQHGKVBwC32TI+drEzMw/YwzzHOjFj9tbUunBW8wxB8kfXvjpMsAm2VtDYBuHELlUYkQR9RcRAnbmIRaK+E35pE6dVjyy2G2fAgs+FBqt44I6U7KXsrXddCSAYKNzBQuIFGdIrJ9gs04rW5r1dDIHA6Y6hwhKT6Ekn11RVzy7o4QSeYxK3fhlu/udtq8wLblBJPemits6lMYxEiT+Pcjly3Yvdv/dZv8eCDD/Lggw+yY8cOjhw5wv79+y9pG//m3/wbjMlEud/93d/lAx/4wOJ9Dz74IO9973v5h//wH/LBD36QTqfDBz/4QX7v935vXc8jJ+e8rHB7v0DwrWfO6/aWp6bx/seXsH+xzO19wziY5Q7vCJS/asXX5aCsppTUabsVml6FctxkPsgc3iqPA7musCJzCQqbpQtYa7Je3sJgr0GX93IWhW9RwxSHSdw6Uf0UrYVXUEkJLx0h5hQtnsWzffh2GGXPOg3PisVLt1cVu5f+gxXi9TnLeq4BV3NWL1/lXJH6Svd57u1zt3P2l97tmE4HEPg33nht9+e2BqI6xI1MbIwboNNM4HZL2cDlchE+IDAiJWKKWNYB8LpV9nFi0MaircXxixjpkLoBSsfILfy89r9zgMJXn+pZpvvK1N//rkyMvQKyazzLHjdzdVvrc6h0O51zJq+qjY8t/ZI8wFZ+YFljmD96qmdZbd844rIKIM6D1oDNRG6lLrO4Yn2xopW1wbAFpK2gLESuTyo9VKIJhEMpimiYhJl2TEemDHtBT3w5QHNuBiElxVo/fSM7cbaLaz0nJycnJycn5xLpHx0njWOssZg0ZW7iFAPju3H9PLVmPSkJzUDBJYksUeDTaLYZLLlbdo1shSRSFXzdIJUFHNPBNRGJXNvfPbZJNnYwIKTAky6Ridc1g1HgIs0gRk0jbYoRLaR1EGz+tXe5cYzQHyAqDC0uCwvDtKp72fN2y5EvfIPmiTOL96XtkMOf/Ro3vuttuKXV5x4GAsMvv67BB5+qope16vuj58uMlhYYLeci2XWLEBxngCY+r7Mn8Vh6LbgYXm+P8yojHGVg4z5DpIAg6AreHiQxJOcXvKHby7s9Q+qVSb0yxvGx4QK6ugu/M4sbLlxwFqQen6Qen6TgDDJSupOavwchVs5fVfwxKv4YnWSWyfYB5sLDXJYjBhDWwVu4C6e1h2jgaUwwfc5JaZLaC6SlY/iz96Ki4YttEaWc3J63zRE276oO0CN2v+997+PDH/7wRR8zMDDA3Nwcg4ODTE9Pr7rOwsICtVoNgPvuu4+nnnpq1fUulxMnTrB7924Ajh8/zq5dW+smutrpNBb4zrc+TluBEVBOt/qI1hljcQ8eI/jW+d3ePauPdt3eD90GBS8TvIVcV8EbQCNpexUASkkD1yT0RTO54H3dIrOiO2GxmQUZKw3ZaGuLD22zsJA0ZogbE6SqjcXipEXctISwCjcp4Uf9SLsFQszyC+6zt4VY+tOc5/4V9632uNUeu9p90CPeCc/DGR6+tvtzJx0I58CkWU/utJN9DnslOE/PpLWjELIE+LTUMUJO05YTeLaKZ/vQxtIIU8JEoy1QHSLy++gUBvGjOs4WObvViTPU/v1/QyRLX9ZWKRb+Xz9Nunf0ircfxxE2TfjB8mkcYYn13Xxm/E0s+Eu1on74FDum/t8ApLqKbP8i69Xy43KonzzDka99p2fZre/8QfzqlffBWiSKslN0fSgGV1xUcKVYUoycQ9oywpRw9QjSGhrFfqS2uKlDf5SQpAmTnZCj7TY7agEDRY/9w0vPSxrHTB87QmVomMrgMHvuugflXLd1wTk5OTk5OTnXANZaTh98hebcLLMnj2OMZnDXnvwaZ51ZkB6H6wlN6bAw16DiSAre1l4jS6sJdANlExwToaVLegkRyYH0cXHwpQsIIrP+jmQj59CyjhXzICzC1C7qsNwItPQ4s/NhzPL2cdYwcuZJnPYchz77NdpnZnoe4/dXufFdb8UJzl9E8OVjAR97qXcctqOo+ScPL1B0cznmeqdgY+6xJ6iwcj7lFFVeFKOYVQThdcPaTPBOdSZ2Gw2ud17B+yxGOsRBDSsVbtxAxW2cNCRoTSLN2oQUT5UZLt7OQOEmlDj/PF6sW0y1X2Sm8yrGru4gXwsWS1o8Ttz/HKjV569Uazf+3N0Ic+EkDCPPgHFQYoiH3/d/XfYx5WyMrplf3VwBcZx90V/IEd7X18fQ0BDT09OL6+fkbBlSkNyyl+SWJbe3/61ncM7n9p6Yxjvb2/v1t6C//27MzXuBdXZ4YyjFDVreUqT5vD9ILZpF2bzi8frDYAXLos0NwmTuQYu5ZqPNexDgVgdxizV0HJKIBqlokIgEhwLGFAhJ8Snjm2GUWHYxtgbBWJxvvQs8dl2doTlrxyRZX+40hDSGpJX16HaL4BTWpdpXCB+QaBESM0cs5xFIXJsVIcWpxlqLNhbHUYRumdQpgLVbFmEuWh2qH/pkj9AN0PypR9ZF6DbWYgyMOy0cYbHW4URwd4/QDb2ubpncz1YK3QBzR3pd3cXB2voK3VYDJiuwUHLLhW4AK5pgFdggc3UbTTuoIBCoVFDWFqtTGknKiVaHvrKL7yh2DfQ6MZqzM0jlUqzWqO3YmU8C5+Tk5OTk5Fz1CCHYccNN6JdfpH90nOkTx5ibOMnA+G7klaRC5fRQsCnDJYewYykUfZqNDoErt3QMbYQilkU80wJpcUyMlQJ9AWFpOaGJkFISmQRfevjSJTKXLzathjB9SCKMrGKYA9EAm7Uh2kyUiRmYeYHpkfuWHZxkdvAuRtIn2P+jP8Brn/4q4cz84t3RXJ3Dn3uUG975FpS3+nP6tt0hRxcUj00szdecaSs+9FyZX3l9A5lPsVzXdITHk+zjTnuKHTR67hujTtnGPM0uojW+Zy8Zcdbh3Z3TSchc3o4L6vxjYWlS/PY0qVch8SpoFUA0T9vZhdeew40u7PIGiHWTk40nOd18lqHiLQwVbsNVK5MSPFVivPIAO0uvY7rzCtPtF0lMZ5UtXuRUEbjtPTidncS1F0jLh1eYqXTpOO3Cabz5O3CaN2z651DO+pBf2VwBt956KwCHDx8+7zr1en3R9X12/Zyc7UDW2/sh5n/zF5n/wE/RufdWrFr9I0EkKc4TB/B/+0/x/8WHUF9+AurzcAVVVeciMZTiOlhLy62SSpd5f5B0HR3kOVcXVpieft5YiTAOGHW5KTZXH45CFUsEhZ2Ughvx/B1oPyYsTJEUWsSFJs3ScTrFaWxRIYtFZKGw9BMESz++j/Q8pOchPA/huks/jpP9KLX0I+XSTy50bwHdyPLmGYhb2e2onqVrBP2Z2L0ufxcHRBYZ15ETaDqktPFsHwKJtRCnluRsEohXxApBqnwcHW3N5b82VD78adTsQs/izvffQ/SGu9dlF0Znou4er9Xd5Y28VKv0rOMmhwnCxwFItQ/J+uz7ctFJQv3E6Z5ltf3r3HNaZy0nkBLcrReDrYiwIkHaEsI6ODogcTxS5eEkmoJQeFFM22hONjsIF0qesyK+PIkiOs0G5cEBHM+jb2RlL7GcnJycnJycnKsRqRQ7b7oFv1hiYGwcHScsnJkgD/pcPzxrKDmSsrQEvgdS0oy23riRSo9EFtHCRQsXx1xaC6qOCTEYYhNnYpFcX9FNIJFmCGFdpK1gRQzi0oWs9SCIZinXj/QsS90S87VbUb7H/h97M15fby/lztQsR/7ym5h09b+1EPAzd7TYU+kt0H522uMzr13D7ddy1owWkmfFOAfFygjtKiEP28PUbHvjDkAIKATgOF1XtwNpt53phR4GuHEDvz2btU4oDpG4JaLiIJ3KKEauba5A24gzrec4MP1xjtUfI0wXVl1PSY8dpbu4Y+i97Kl+P4FTu8QT7R639fDnXk9w5geR0SrbkAnxwDOEO76C9uYuax85W0sudl8Bv/zLvwzAzMwM/+k//adV1/mX//Jfrlj/Ujhx4sQFfyYmJi7v4HNyziIF6a17af3cu5j65/+A+Xf+AMlQ7fyrn57B+7MvE/zG7+H86Rdgbpb1Uh4lllLSQFhDy62SSJcFf5BUbP2Ees5WYTPRG4GwErr/C+uAvb6+wgQSjxpFduNSI6VBm+NETBMxRZ2XaHEMvUoEUs5VRhpCczJzdCft7H+Tgl+BoO+isVKXghABIIlFi4QFYjmPxMWxmRs4Tg0GS2IsjhQkfhktXaxUOGm4bsdxKRQ/+yjeK0d7liX7x2j95NvXbR/GGPplh7LSWCuZdO7mTLE39q/S+Bji7Pdf+jrgSuPkr4yFY6exy9uTCEFtz9g67sFm/brP9um+QLX3ZmCxWNFCWBeBj6OrCCyhX0JpjWc9CmFMxyZMtUPmdMxg2aev4NJf6p2oa85O47guhUoftZ1jyG3gWM/JycnJycnJWS8cz2P05kzwro2OEbZa1Kcmt/qwrikCkzJUcFASiqWATpKizdYXFCTSJ5UBqfQwODimg1ij4G2xdEyEwRLbBIXAXWdDisBBmkEEPtIWMaKFZX0d5Gulb+E13KhXbGuXx2gXd+AWA254x1twy8We+1unJjn2pcd6x2HL8BR84N4GZbf3/k8fKvL05DXchi1n7QjBYTHE02IX6TlSnY/mfnuUcbvBwmshAM8Bt+vqTtPM5X2R+X5pEvz2NCrpkPhVokI/qVeiXd1F4lcu+NjlWAyznVd5aeaTHJr/a5rxmVXXE0IyULiR2wbfxQ21t1P2Lq9IXcUDBGfeijd7D5iV8xrGnyfc8RWi/qezIpycq4ZcQboCfv7nf55vfOMb/Mmf/Am/8iu/wlNPPcW73vUuRkdHOXbsGB/96Ef5xCc+AcBv/uZv8kM/9EOXvI+zufU5OZuBrBRJfugNTP/gg6iDxyh/+zkKz63e21skKe6XnsD5+vdI33o/6Y/8AFSrV34MWIpJg7Zboe1WKCYN5oNBauEMjr3WmqjnrJ2laHOEwFqDsN1oc6Gvn17eLIneLlUS6iQskNLAoYIlJWYOj34CdqA4f/+onG2I1UsCt04gbmbLnMI6OrmX42ZOcVw68ggpbTQhgRnKWghYiFKNNlk7J+k5pE6B1AkQ1iDXOcZuLXjfe4nil5/oWaarJeo/925w1mfixVowxrLba2bbt3t5qX+gZx2pZyi1vgiAsRKZ3LdiO5vN/JGTPb9Xx0ZwgnUU4I0GbCZ2K8WW5+6JEItG2irCeDjWpeOXAImvIUgNSZrQTDTHWh0Gq96q8eVxp0PYalHbMYrr+fQNj2zN+eTk5OTk5OTkbCBeociOG27i9MFX6BvZycLkaZTrUj7nOjfn8vCtxlMuVSWwgUvYkjTChFpxawtiAWIRIIQBBa42uCYkUQXsGiZSDIbQRhTwSdC4wsEAeh1bDkpbAFNFS4sgwco6mP5N798tsAzOPM+ZnQ9jlzlT5/pvx4vqeBXY/44389onv4IOl0wG9aOnOP7VJ9j9todXTcUbLBh+6Z4Gv/1UFWOX7v/Qc2X+yRsWGC2t3W2fc+0yJSo8wT7utccpLiv4kMAd9jQVG/Ky2IndqORF31+ac5Iy6+MdRZkAfgHDhQDcqIFMI5Kgj6gwhBs1sEKSuiX81hTyEj4v6tEJ6tEJiu4QI8U76fP3rPq+qvrjVP1x2skMk+0XmA+PcilmPIHAbd6Iao8T9z+HLh1fcWJp5RBp8ST+3N2o9u482vwq4Pqyxa0zSik+8pGP8Gd/9mfcc889/OEf/iHvete7ePDBB3nve9/LJz7xCd761rfyxS9+kX/1r/7VVh9uTs6aEAJcV2Fv28/s33snE//s71N/11tIh/tXXz9OcP/y2wT/+HdwPv4FaLau+BiWHN6allshkS7zwSDJOkcm5Vx9ZC7v6zzavMtKp3czd3pftVhImtCY6EaWNyBcAAQENfBKGyB0n+3VrYjlApomsZxH4eGQVaunxmIsJKlBCYHxyljIIszTcNMv89WpKSr/7Qs9y6ySNH7+3dhzIuWuBKM1gUgYcSKshbq4m2Plc13dH0d0B6Cd8Hawa69a3gjidofmmZmeZeseYZ7qbNArZDbg3UIsBiPaCOsjcHBMmUQ5JMrHizUuChF1iI3htXqTwJerxpcDNGancT2fQqVC/9gYIu9fmZOTk5OTk3ONUqz2MbxvP8VqlXL/II2ZaTqN+lYf1jWBAHybMuhLlJSUygFRaojTbSBkCkEkixhcUlUABK5ee0pXajWhjdFWo0lxhYNcZ0lBmD6kCRC2irVgRR27BZM8ju7QP/dizzIrHWYG78IiCGpVbnjHm5Hn9OmeP3iMU9/47nnbA9w2kPK3bumNow615PefrtBJcwEtJ6MlfB4X+5mmtOK+3cxzvz2Gu5FGMM+Dgp8ZCXwvK3BP4iza/CLvR6Vj/NY0Mg2JgypxoUbilWn37SLxLn2+pp1Mc2Tha7w48wmm2y9jznPeRXeQfX1v5o6hn2C4eDvyEtNhpQkIZh4kOPMDiGSVeR0VEQ19h3DkUYyTf19ud/LZnCvkxRdf5E/+5E947rnnVr3/scce40Mf+hAnT55c9f6Lcfz48Qv+PPHEExffSE7OZaAE+EoiKiXqb76fyV//OeZ+5W8Tvf427CoTwSKKcT//TYLf+G2cT34J2lfWZ0d0BW9lNW2n3I00HyCWW18Vm7PVZNHm2NWiza+/QcLaRe+tiZzOuQgmhtYkdOYg6UA4CzoGr9yNLN+oEB6v6+p26IhTpKKJIcYzS4VNcarR1qKtxXUksVtGq6zad7MjzEU7pPqhTyDiXjd56yffTrrOoq42hnGniRBg7Dgv9430VE8L06Hc+sTi7wVz/7ru/3KYP3Kq53fpOlTH19GhbDVYs+ToXicX/WUjOmAtwpaQxkdah8gv42iNj4cbRsTWcLzVIrLmvPHlUbtF3OlQHhjE9QMqgyt7peXk5OTk5OTkXEtUBoYYGNtFZXCQQqXKwuQZ4s4G9oS9jgiMRkmoeRLX9/CczN3NduiPLgSRKmFQJDIADJ5e+7xdYlMiYhKj0Rg86a6ry1EgzunfnYLYmtdlsX2GYqt3fJX4fdT7bgSgMNTP/r/xJsQ5Y6KZA69x5snnz7vdt+8JeXi014xwuuXwR8+V2QaJ9znbhFQovid2c4SVqRv9tHnYHqZiN7C3veNAodDt4+1n/+sUojibE7gAApulIHTmMNIlKg6SuiXC0gid8g7MZbRBiHWDE43HeWHq40w0nyY1q89FearMeOVB7hh6L6Pl1+PIwqrrnQ8VDVOYeDvu/J2ZoeocTDBNZ/TLJNUjWcJozrYkF7uvgEcffZTv+77v49Of/jTj4+N89KMf5fTp08RxzPHjx/kP/+E/UCwW+djHPsZDDz3ECy+8cMn72LVr1wV/RkdHN+DMcnIyhADXkXiOwgpBa/84c3/vHcz+5i8QPnzXqtEpIoxwP/01gt/4IM5nvgKdyxdEBFBMGiibLgredb8/F7xzgK7LW5x1ectM/L5OXd6wFtH75Vz03lYYiOaheaYrci9kseXSg6Af3GBD3NxnyVzdDpGcQdMhEgsoW1iMvjcWEm1JU5MdhuOilUviBEidXFIM1RVjDJU/+Qxqer5ncfiGuwm//5513ZW1gNXsclpYC23u4mBfbzuAUuuzKNMAYL69H8zWxl5ba5k/3FtU2bdndB37TluIU0Bm8WXuVvfq1hjRQVJAoHB0mdAvYpEEqUKlhiSNmY8TTnciBsurx5cDNGZmcIOAoFymf2x81Xi0nJycnJycnJxrjf7RcSqDw/QN78ALCsxNnCKN876kV4rC4hlNzQXXUZRLPtpaOvE2cHcDVggiVcYIRSILgME1a0+Ci01CQkpiEmxX8F5PBKrbv9tD2gJGtLFblFRXm3sZJ+lNrmxU9xH6mQBZGh1m3yNvXJEKNfm9F5l8+qVVtykE/L07muyu9DpUn57y+NyhSxPmcq5xhOBVuYPnxBj6nKKSAikP2qPstAvnefA6IGUmePsuOG7m+AaIYzAXd5Yvurx1TBz0dV3ela7Le6VrfS1oG3Gm9SwvTH2c4/VvE6Wru6wd6bOjdDd3DP0ku6vfh6/61rwPgcSr30ph4odQnVX6gQtLWj1JNPokaXBq5f05W04udl8mURTx0z/90ywsLLBz506+/e1v8zM/8zPs2LED13XZtWsXH/jAB/j6179OEAScOnWK973vfVt92Dk5l4UU4DkSR0pSY+nUqtR/+keZ+ye/QPTgHauL3u0Q9xN/nYnen/s6hJd3gZoJ3k2USWk7FWLpUfcHiGTeizgHzrq8Lazi8pa56J2L3tuTpAONMxDWs9jycC6rkA2q4FeygcVGIjJ3tkXSEadJRANLim9ri6tEqcZaS2osrpQkbhkjJEZ5OHpzJxyKn/8W3ouHe5Yle0dp/s0fWveCAGsNO1QLTxqsHeZgZZx0+d/DaqqN/7F0bGbre3WH83XChUbPsv596+h2T1PAgOdmr82tjjAXreyz3RZQpohRPokKKMYaJRQ2bBMbw6GFJiVfnTe+PGw2SaKQ6sAQXqFIuX9wa04oJycnJycnJ2cLGN67n1Ktn9rOMZTjMnvqBDrdwHjc64TAaiSWmq+QnkfgKJpxit0m1l0jJJEqY4UilQHSpjh27YUOoYnQaCKTJW756yx4SxsgTQ1hSwjrYmQDy+a7KKXVDMw8v8LJOjt4J7p7zpU9o+x+28MrxqSnH3+WmQOvrbpdX8EH7m1Qdnu3+6nXCjwzlbduzOnltOjjSbGXDr0F5wrL3fYUN5nJjU2O8DwoBqCcbqx5t5d3EnOxCVeBxQsX8Drzy1zeRcLSDjqlEay4vHkvi2am8wovznySw/NfpRVPrbqeFIrBws3cPvRu9tfeRsndseZ9SF0imHoj/tQbEOnKQhTrRITDj3HgwP/3ss4hZ+PIxe7L5Atf+MJiNPmv/uqvsnPnKtUewJ133snP/MzPAPDUU0/xzDPPbNox5uSsJwJwlMBzFJJMCIkG+qj/3Xew8Bs/R3L/7asmSItWB/fPv5iJ3n/5jSz25DL2XUybOCam45S7gnc/kQqu9LRyrhkMVhiEFctc3gph1XUZbQ5rFb2P5qL3ZmJSaE9BZxrSNoTzkHbALWa9udVmpFaIRVd3KKcwhCSijmNLSLLBtbUQJ4akOyHjKEHslbIIc8umRph7z7xC8a8e61lmykUaP//uDXEYG63Z7WTCcWTu5OVa7/dMsfM1HD0BwHw4gmP3rfsxXCpz57i63WKB0sjKyLPLwugsssxxutXd/oYmDlwMS4oVEZIS0kqkLhJ6JTxjcYSH6IRoLIeaTYzgvPHl1loas9P4hSJescjA2K7c1Z2Tk5OTk5NzXSGEYMcNN1EoV+gfHcdamJs4iTHbw4V8teJag7KWsrQUfJdyMRvjNaLtU0hghCKWRYxQpNJDmQRlk4s/sEvHRBgMkYkRiPV3eJsKwhQQtgpWYEVjS/p3e0mDvvmDPcuM8pkduHPxaGo37mbXm1e2tTr56FPMHzy26naHCoa//7oGYtk5WQQfeq7M6VYu1eT00hAFHhf7mWOl6LqfGV5vj+NsZPKeVFA8G2vuZcXvxmTz++bi+1U66rq8E+KgRhz0kfgVWn27SN3iFRyYZSE6xqtzn+fV2c+zEB7Dnkf47/N3cfPAj3DzwI9R8/fCGlswOJ0xChOP4C7csurccl/f1psfcnrJP0EvkxdffHHx9n33XfiFff/9S196L720epRJTs7Vgjwbba4k2loirYlGBln42XdS//WfI73v1lUfJ5pt3D/7S4J//NuoL34L4rVfSEP2NVRIWzgmpu2UMsHbqxGqPOonZ4nM5X022lyAlQijrttoc7iY6D2di96bgoGoDs3TmZM7qmeubiG7keXFzRMQRZaKYbGE4gyJqGcRdHYp2inRBoMl0RYlBdopZJX/ToAyUc+gfCNRp2co/9fP9SyzUlL/uXdhapUN2WeZDn0qwdg+jpT20TmnD1ul8aeLt3X0AGsdJG0U1ljmj/bGZ9X2ja2TcGuzqm0ps0puz80GuluIFU2wCmyAo0tZBJpQFFKBTVKMTjgThsyHKQMlD0/JVePLw2aDNI4pDw7hl8qUav2r7C0nJycnJycn59pGKsXOm27BL5YYGBtHxwkLZybOKxjkrI3ApDgYKr5CuB5lzyFMNanePs9rKj1iWUQLFy1cHBOvuVWVxdLuCt6xSZAIXLF+hchZ/+7Bbv/uKpYUROviD9wAys1jBJ3pnmVRYYhmec/i7wO33cDo961sr3XsK49TP7p61PHtgyl/85benuSdVPL7T1cIt09dRM42IREOT4m9HKe24r4hWjxkj1CyG5jAJwQUAgi6Pbz9rlEjiUEnrM3lPY8XLmCUT1QcInVLdMo7CUvDl+3yPksrmeLwwld5aeaTTLdfwZzns6zkDrGv9hZuH3wPQ4XbkFz8c0tYB2/hLgoTb0eGQ4vLZTTA2NhPXdFx56w/udh9mTjO0pshvUjMT5IsiXrLH5eTc7UiACUFvqOQCGKtiVNDtHOI+fe9i8Zv/BzpPbes/th6E+9PP5+J3n/97Wwi/RL2W0hbeCai45SIpU/D68sF75xzyKLNsaIbbS6XRZtfv869XPTeInQEzcnMxZ103dwmzeLKg75NFg8lQniAR0dNYruubtdWei7yo9SgTeZ+dZUk9koY4WCks2mubtGJqHzoL5BR73dE6yfeSnrT7g3Zp7GGcdUEINF38FJ/73eLHz6NHx8AoBmX6Zerf89tJs0z06Sd3kFt//51ijA/+/3suuCopT5dW4QVEVYkSFtCGYURVRLHp5QYDBIbdmjplBONDiVfUfYddvUXV8SXW2tpzs4QFMt4QcDA2K4tOqOcnJycnJycnK3H8TxGb84E79roGGGrRX16cqsP66rGtxphoYChWPQIfIUSgmZ0aaaPjSaVPokskEoPg4NrQoRdm7PfYrqR5obYpiihcMT6jW0FEmmGM8GbEkZ0sGLz+3cLoH/2BeQ5rbwWajcRu0sF2MOvu5WR++7ofbCxHP3iYzRPrR6z/MjekAd39m53ouXwR8+X2Sap9znbCCsEL8lRDoidnPsuLRHzkD3CkG2s+th1w3WyXt5nY82Vk7U9S2JYcVQrUWmI315yeSdBldiv0qruInWufG4/0nVONL7NgemPc7r5DKlZ/TPDdyrsqj7EHcPvZWfpXhx58eRYmVYJJn8Ad/ZmSD38udcjrlCkz1l/8r/IZbJ///7F248++ugF1/3a17626uNycq52RLeXt+coDBCnmlQbwtEhFn7h3bR+4/3ou29a/bELDbz/9ln8f/LvUV99otsTdA37BIK03RW8i8QqE7w7zpVEn+Rci1hhsMKeE23uZE7v63jgcH7Re6obb/5SLnqvB1ZDZxZak12ReyFzdSs/c3M7/uYfk/ABgRYJEVPEsg4IPFtdXCXVFm0siTYoIZBSkjhFUscHa1H60ltRXDLGUv4vn8WZnOtZHD54J+EPvH7Ddqt0wg6nhbVFJoKbmPd7CxSXu7qnGw/CGqqAN5pzI8wL/VWCvnVwvZs0iyRzu/Hl/ha8XpdhsVjRQlgXgYe0JWK/hG8k0jrYTkhqLYebLbhAfDlAp75AmiRUBgcpVPooVvtW2WNOTk5OTk5OzvWDVyiy44abCEpl+kZ20F5YoDk3u9WHddUigMCmuBjKnoPyXSqBS5QaomTz+09fiEQGaOmTKB+DygTvNU6YaAyhjTDWkNgURzjIdRR/pPWQth9hCwjrY0RjSwRvZRIGZl7o7Y0sJLODd2OWCfw7HriTwbtu7nms1ZojX3iU9tTK95MQ8L47muwq986Hfm/S5/OHc1NPzuqcFP08JfYS0Vtc4mC4155gn53e2D7eUmYub98Dx82izY1dc6y5sAYvnMcNF0idoOvyLtKpjBIWh7DrkJ6XmpDTrWc4MPVxTtQfJ0pXLwJwpM/O8uu4Y+i97Kq8AV9VV11v8dgROO0RglMPo5LaFR9nzvqTi92Xydvf/naKxUxc+4//8T/y3HPPrbre5z//ef7iL/4CgPHxce69997NOsScy2Bq5guk8q+B+lYfylWFEuA7EkdKUmOJUkNqoDM6TP3v/yThr/8s+s7VCz3kXB3vv3w6E72//h1I1/DFCBTSNr4O6agikQpoulXaTmmdzyzn6sd2o805J9rcAStz0btH9G7R5sSynt656H3ZJM1uZHkz+wkXsuWFGvjlLep5LBHCBTxCeTrr1U0T11azYpAuUaoxNhO8XSVJ3CJWCBIV4KThpoR2F/7qMfznX+tZlu7aQfOnHtnQ526nXEAJSM3tvFjrLaBykuMUwm8CEGuXHc6dG3Yca8WkKfUTp3uW1favh0vZQJJmqQPSAc/PBrRbiQixaIQto4xD6gwghIufWJI0BZ0yEXZoRfqC8eXWGJpzsxTKFRzfZ2A8d3Xn5OTk5OTk5AAUq30M791PsdpHuX+Qxsw0nUY+N3a5BCZFAC6aUqmA60h8R9KM0o0Voi6DSBQwwiVVASBw9doF79RqIhujrUaj8YSLXMdRozQVhCkibAVhPYyoY0Vr03t4B9EslcaRnmWpW2S+f6mVoxCCsTfeS/8t+3rWM0nK4c99nXBuYcV2fQc+cG+Dktvriv3kwQLPTa1vL/Sca4d5UeRxsZ86vY5kAdxsp7jbnkSuMaXhshAiS34r+FkKnN+dM0hiSC8eaw7gpCFBaxphUuJCP4mfubzbfbtInYs7rdeCIWW68zIvznyCw/Nfo5VMr7qeFIqh4i3cPvQe9ve9lZI7csHtilxS3bZsvSVli/jGN77BwYMHF3+fnl56sR88eJAPf/jDPeu///3v7/m9VqvxG7/xG/zWb/0WjUaDN77xjfzqr/4qjzzyCP39/Zw5c4ZPfvKT/MEf/AHGZB8u//bf/lvkVk8W5pwXay0nJ/4Iow6i7LcR3I4RDyLseCaQ5VwQAThKIKUi1YY41SghcJWkNbYD9x/8FN7Rk7iffhT10tEVj5ezC3h/8knM575O+uM/iH7DPaAuHIEU6A4AoSosVn5ZBKW0ue7nl3O1Y7BiSfC2wmQObyGwGBDba7C5mZwVvV2qJNRJWCCliUMZS0rMHB79BOxAsT4XnNcsJoHOXBZdnoSQtrJrfK8ETrBFIneGEAEgSUWHmDliuYBA4tolF7C1kGhLkppuuwoI3TJaeiAlTrzxhQ/u869R+vw3e5aZUoH6L7w76xm9QRhrGVdNrPWZdm7ldKk3srvS+NjihM+hufu4xd/698LC8TOY5QViQlDbO3aFW7Ur48vdrR0uWAxGtBHW77am6Ec7BUqJIUGiwhZzacxkM7pgfDlAe2EenaaUB4Yo9fUTlMqbf0I5OTk5OTk5OduUyuAQaZw5Z3WSsDB5BuU4eIU8Se9SkYBnNEYKAs8lCjwqxjLTimjFhpK/me2sLoIQRLJEoBskMsA1HVwdEq+xZWBsE4QQYEBIgSddIhOvmxwtzQAAVgos7WxsQAq2sqmiU3XhEKE/QOIvJUO1S2ME4SzFdlaELIRg11seQMcJ9SNLKVw6jDn0ma9z07vfilftHYMMFw1//3VN/v1TlZ65zT94rsw/fcMCI8UNFC1zrloi4fIke7nDTjB6jmlvJw1K9ghPs4tQbGA7MsfJiuSjCBCg00zs1iabv7lI0oOwBr8zR+oWSPwK2vFwwwVMZQwvXMDrzK658ObCWBaioyxERym5I4yU7qTPX709Xl+wm75gN614isn2CyxEx7munVJXGcLabVZOtkm8//3v5yMf+cia11/tabLW8mu/9mv8zu/8zqr3n8V1Xf71v/7X/KN/9I8u61gvxIkTJ9i9O3tzHj9+nF27cofK5TI7+02+9/TPrlguzBjSPIi0tyPYRhej2xxtINHZJLyjJEoKlBB4jsA9eAzn04+iXj1x3sebkQHSH38r+uHXXdRRFqmAUBXwTUiQdiimLUrJBvcpybmKEYhM+V6sBrbCgNDkdS2ZsHRW9AaLQxmPGgInF73Pi4GoDlEji22Km6CTLKrcLW29KxYHIYsIfOrqEBGTdORpfDuAa5cG2mGi6SSadqRxpcDxPOqVcSKvipYOxXBjowzl5Cy1//ujyHApKt0KQf0Df4vklr0buu+aqXO3e4ZE3803h97A4erSa1zqecYm3ou0McYKJqb/PqPBOkSFXyGHvvIEzYml/m+V0WH2v/WhK9uoTrK2Iq6XCd2FIsit/WC0ooWhg7T9KFMg8fbgWw+VGHQYEaURh+stwsQw3l9goOixf3hl0osxhqmjhxfjOXfdfjd+MZ+4zcnJycnJyck5l8kjh6hPTTI3cZIkChnctQfH20DB5BolRbDg+HSEQ2Qsc9N16mFKJ0kZKvnILb7OPhdpDb5uIG2KazpY4ZDItbczKkgfBwdfuoAgMuvbAsvIBkbOYYkwooEQEmGqiE308qWqwJmdD2Pl0j6FSdlx+nGcriEHwGjNkc9/g+bJMz2P96plbnzXW3FLKwsJvnA44OOv9o5jxkop//jhBYLr1q6Yc1GsZS+z3GwnV0xpxiieFePMiU1IQk2SbpS5gbjr7nacrK/3GjBCkQRVjPJwkjZO1ECZhKA5idLr377AV32MlO6gP7gBKc6v90Rpncn2AWY7r2HRGHkGjIMSQzz8vv9r3Y/remIjdM2tnn29qhFC8Nu//ds8+eST/PIv/zJ33XUXlUoFpRR9fX3cf//9/Nqv/RrPP//8hgjdOevL8ROrFz9YeQrtfJLE+T20/AaW9iYf2dWJkuA7CiUEiTYkqSE1ljAxhDfsJvr//C9E//vfQt84vurj5eQs3oc+jv9bv4t64tnsy/I8+Dok0G0iGRA6BdpOiaZ74T4bOdczZ6PNRdclmP0vbDfa/Donjze/RJIONM9AWIe4DeEcWANBFfzKNhC6xaKrO5ZNUurEcg6Ji2OXBjzWkrWg0FkBiONIYreERZAqHyfd2L+3CGOqf/iJHqEboPXut2y40A0wJhewVtEQt3G00juhU2l+HGmz43pl9s5tIXQnnZDm6ameZbX9q3+frhlrMqFbdauzfX/rhW40RnSQFFBWYNQwUni4SUKcakyaMBlGF40vB2jPz2GNodw/SLl/MBe6c3JycnJycnLOw/CefZRq/dR2jqKUw9zESXSaXvyBOT04WBxrcK1BOYpS0aPsKwQiizPfZhghiVQZKxSpLCBtinMJgnXHRGgMkcmSojLRe/2QpoLUwwhbQNoa1oKR81g2r4+3ozv0z73Ys8xKh5mhu3p6DUul2Psjb6Q4MtizblxvcvhzXycNVx7zj+wLeWBH7/JTLYcPv1Debsn3OdsJITgqBvme2E1yjtTnobnPHmO3nd349gmuC8UgS2n1vWxOIU2yaPM1OKOl1XidOdyoQeoWiUqDpE6BdnWMqDCw7t7qSC9wvP4YB6b/nDOt50jN6p8jvlNld/UN3Dn8XnaW7sERa0u8yNkarltn97VC7uxeP1qtQxw5/J85feYTIJLzr2gdpL0LqR9EcuEeDjkZxkKqDcZalBA4SiIFeI7EQSMPHMb93LeQhyfOv42xEZJ3vRVz3x3nFY9i6dNxingmopC2CdIO5WQhN+vmXBBhJYjM0ZwtMNjc5b1I7vQ+DyaFaD4Tu3UMcQusBqcIbmFLI8szBAgfsRhZ5bGgXiUWU4RiisAM47B0kR5rQzvSdGKNEBC4inp5jNgtE/kVCp2Zjev5ZC2VP/ok/rOv9iwO77ud5s++Y8Ofy8DGPOgcJdW38J3+N/Ni/9LzIkzE2MTfRJl5AL534ue5p29gQ49nLUy9dIiJ7y5NskhHccdPPoJ0LjeBxmZV2JANTD03E7u3GCPqWGKU7UfYPoy3m0JqiFKLaneYSSOOz3UIPMlIJWDvYIn+0spJNaM1U0cPU6j0UR0eYc+dr8MNrsPPrZycnJycnJycNWK05uTLB2jXF5g5cRzlKAbHdyO2vJj36iISkqbyaEkXayzT03VacUq9kzBQ8lZtvbPVKJPgmybKJjgmJpUeWqxNuBYIijJAIfGlh8aSmAvMsV4GlgStprEiwoo6ViRIW0LYzStmne2/g3a5t4VUuX6E2sLBnmVpFHPoU18hnO3t110YGeCGd7wFdU6rriiFf/NEHyebvW7Yn7y5xY/uzw0HORemaGPusccps7JI5SR9vCh2Yi8SLX7FWAtxDHGaJR8ub5Mm1zZfkbm8+zDKxUlaOFETpWOC1iRKr29ixFmkcBgIbmKkdAeeOn+7M2MTZjoHmO4c5vU/88825FiuF3Jnd07OBlIq3cANe/8xbvqraPN2rD2PM1ikGPk0qfsHJOq/YsQri1HIOasjBbiOxFESbS2R1qRdF2GoJfrOG4l+7e8Q/YOfwOzdufo2Tk3i/6c/xf8Xv4/83oFVK9IykbtFIn06TomOU6Dh9eV/nZwLkrm87WI/b6xEGAeMzNuycK7Tuz93emOzuPLmaYia2e2wnvUiCvrBK26x0N0VuWWlK3S7CArEcgFNi1gsoPB7hG6AODFoY9HW4ihJqjyMdEicAKmTjRO6gcKXHl8hdKfjwzR/+kc25bkcZQ5rBR17BwervQJvqf35RaH70Pxebi0PrrKFzWfu8Mme3/t277wCoZvM0U23r5aUsA1iKi0pVkRISkij0O4IrhVorVFRQt0kTLUiEDBY9ukruKsK3QDNuVmwUB4YoDo0nAvdOTk5OTk5OTkXQSrF6E23EhTLDIyNo+OE+TMTF2zjmLMSzxqktbhGY5Wkr+hRcLP5sUa4/dzdAFq6xLKEFi5auDgmRtm1HavF0jERBktsExQC9wIRwZeDwEXpHUhTQtg+pC1iRKtbKLs5r8/a/Es4SatnWbO6j9DvLYx2fI/973jzij7dnclZjv7lNzGp7lnuO/CBexsUnd7x91+8WuT56fV1yudce7SFxxNiH5OsFGvHWeABewzPrm/xyQqEyArnC37WGs33MmEgiTOn95pd3rO4UZPULREVB0jdIu3qOFGhf0Pe5camTHde4sD0X3Bk/uu0k5nVj024DBfv4baBd5O8dH7TXs7WkIvdOTnnYG2AsQ+T8Cs46XsRZvf515VHSJ0/I3H+I1o+uanROVcbAnCkwHMUEkGcauLUkBhLO7HEwkXfdSPRP/ppol/+CcyuHatuR544g/8f/jv+v/yPyGdeXiF6eybuCt4eHadEqAo0vFquWeZchCzaHLs82lx1o8232qG7PchE777rW/TWUTeyfA6SNoTzYJIsrjzoW3OV6oaxKHL7nBW5hXAxRLTFMVLRxBDjmVrPw1JtSY0l0QYpBI4UxG4JI2RWSbuBEebui4cpfvbRnmWmGFD/+fdkwusGI61hp2pg7F4OVQdIljsrrKHS+B+Lvx6dfyOB2vpvk3C+QThX71lW238FFbBGg06zflpSZoPSLU8mACuaYBXCeKTOCI4IUHFEmkI7iViIkjXFl+s0pb0wT7HWj3Jc+kevMO49JycnJycnJ+c6wfE8Rm++Bb9QpDY6RthqUZ+e3OrDuqoQQGA1LgYsBEUfV0kqvkOiDWGiL7qNrSCVHokskEoPIxwcEyHWWABtMIQ2wlhDYjVKOKh1F7wl0gyhTB/ClpCmgiXGinksG/+cSmsYmHk+awW1jNnBO9Gyt3DYLRa44Z1vWdGnu3lqkmNffgx7TtvGkaLhf31dE7FsJtMi+INny0y2cykn58JooXhG7OIQQyvuq9HhYXuEqu2s8sh1xnGgUMj+d73sf51mru81fJYIwEla+O0ZBIKoOEjilYmCfjrVcbTaqAJ9y3x0hFdmP8vB2b+iHp1Y/fiEQJS2Pg0vp5f8EzInZxkWS5rEaGuxVoC5DVf/LE7y80hz9/n7+Yo5tPorEud3SeUXscxt7oFfRZyNL/cclVV6pprUWGJt6WiBFg7mrv1Ev/53iX7pJzDjw6tv59gE/u/+F/z/4/9BPv9qj+jtmphC2iSVHh2nTKgC6t7GVH7lXFtYYbDirMtbZuK3ccCo3OXd5boUva2Bziy0JiHtQLiQxZYrP3NzO1t8gSt8hDgrcjuLIrdFY22HSJzBkBCLeRxbRNF7vLHWGGvRxuKobEiduCVSFYC1OHpjCrnk9ByVj3wasey9ZYWg8b53YoZqG7LPc9nJLApLrO/g5Vqv27fQ+QZuehyAyfYg+/w9m3JMF2PuSK+r2yn4lEcu13Fus1gxKbNe3d7ao8U2EkvUjSMsggyQziBOmhJbgQk7tE3KTDOm5CvKvsOu/uJ5IyCbczMIISnV+qkOj+BsA9d6Tk5OTk5OTs7VglcosuPGmwlKZfpGdtBeWKA1N7vVh3VV4ZsUAXhWk0rFQMnHcySB23V3b1O3fCIDtPRJpI9B4ZqwR4C9EKnVhDZGW40mxRUOcp1lCIFAmhpSDy718cZg5TyWDXavAl7SoG++N6HMKJ/ZgTtWPEtepcT+d7wFFfSOxetHTnH8q0+uSEy4ayjhPTe1e5a1U8nvP11hG7Z7z9luCMFrcphnxDjpOT0aA1IetEcZtfMbfxxSZoK374HjZqK3JRO8zdpeyNKkeO0ZnLhF6pWJiwMkXZd3HGxsmmszOc2h+b/mpelPMds5iLFLhTSJbqPGahu495zLIRe7c3KWYY0hK6izWGtJkwhjQTKKo9+Fm/5vSP0mOF8fGBFh1BMkzu+TqD/DiKN5xPl5UAJ8pVBCkGpDkhq0gVBDaBVWCMzd+4n+8fuIfvE9mNGVFWkA8shJ/H//J3j/9g+QB15bHCS4JqGQNEmlS8cpEymfup8L3jlrwXajzVnm8pZdl3cebX6WtYneR65+0TtpQXMC4mb205knK8nvA7+8xQ5Yb0nkFpmT2wqIxRwdjtGUr7GgXqEjJ0lEE4vGs309W7AWktSS6qyy1pWC1ClghSR1ApSO1zyhcUlEMdU//ASy0yukt9/5AyS37V///a2Ca1P2qnmMHeNYeYSW2yvyVhsfW7z91Ok3sbe89a4Lay3z54jdtX3jCHmZr8Pl/bMctU3iyy1WthDWRVoP64zhaNBpgo1SGjZleo3x5WmS0FlYoNTfj+O69I+OrbpeTk5OTk5OTk7O+SlW+xjeu59itY9y/wD1mWk6jcZWH9ZVgwR8o3GtBgFu4FL0HMq+i8XSijeuZdSVEokCWrhZITQCV69d8E5sSkRMYjQagyfdrHXcOiNtCaV3IKyPtP1gFUYuYMXGu1fLzeMEnameZVFhiGZlZaF00F9l/4+9GXlOgtn8q0c59c3vrRC8f3R/yH0jvePlk02Hjxwob9f6iJxtxqSo8qTYR5ve15zEcped4BZzGrEZLybPgyBYFmsus7mIJGYtk6wCcOMmfnsGiyAqDpF6JcLCIJ3KGEZubCpgqOc5Vv8WL07/Oafbj6NNxHTnZcR5Cu5ztg5nqw8gJ2c7IY7XuVXdwjE7xZxtYEwmeDuujxQgqOCYt2DN92PECxj1BFasEuEkwIpXSOUrCDuC1A8h7Z2I/C3Xg+j28lYWUm2IUo0jBFZJjJB4ChQac++NRK+/GfXdl3E+8w3kmZVVxOq146gPfhh9817Sd78dc9t+XJsgkgZtt0zbrUACC/4A1WgOmSuWORfFYEVX8BYCaw3Cquw2hh476nXMWdHbpUJCg4R5Upo4lLGkxMzjUSNgJ4qrqE+uSaAzl0WXp1EmelsLXgmcYMtFboSLFjFaNDEiRYuQlBaWbLBgMWhijEgwIkbTxrVl5DmDnDg1GCyJsThSIIQgdsto6WClwo03YBLLWir//S9xJqZ7Fkf33kLn7Q+t//7Ow14xhSMsob6Dl2q9kXJe9Dxe/BwAraRI2d4Bm+AOuBityVmSdm8BSf++y4zlNmkWYe52+3T72ySCS4RYNNKW0e4Ajigj4hapVrSSFq0opRVphiv+BePLAZqz0wjlUOyr0bdjJ8rJ+9zl5OTk5OTk5FwOlcEh0jgT3nSSsjB5GuU4eIXzX4vlLBGYlEgqHGOIhaK/5NKJU4qeQytOCFyJutwC1o1ECGJZQugmqABXd3B1SKzW9nePTYKUEgxI6eJJl8jE63+YeCi9EyOnMVIgaGJEE4kGW9oQkT3bL/TPHuDMzjdg1NJ4aqHvJvxoHi/ubT9VHO5n/994E4c++3WsXiqmnnnhIMp32fng3UvbFvBzdzU5/bjiVGtpPvnJ0z57Kyk/sv8qNxbkbApNEfAE+7jbnmSQ3rSAvcxRthHPMU4iNlizcBTIIkQRILL5iCSFKAbPgTW0OpAmxW/PkHplEq+CVgFE87ScXfjtWdxoYYPe6RmJ6XCq9XVON7+DEgNsjk0j51LIyw9ycrpYYxGnW4yoER4wd/JGcw9jjKGMs+jwPovAQdl7cNJfxEl/BmFuOW8hkhWTaOcz3Yjzr2HJq1/PRXZFb1dJtLVEWpNaiDRERmVPrdXo+28l+mf/K/HPvQsz3L/qttSrR/H/3R/h/bs/Qr56FMemFJMmWijaboVY+tT9AcyGfv3lXEtkLu+z0eYCrEQYlUebn8OFnd7TV5HT20A0n/XmTtoQLUDUAOlkkeVuYdOFbkNKIlqEokFb1Wm4J5h3XqWpTtBRZ2iLk3TESSJxhlBO0pInackThHKSWMxjSHBsGc/WerZrLUSpRpvstuNkhUaJG6CdAGEN0qy/wFv4ypP433upZ1m6c4jG//Kjm/bclm3IqGqizQiT/hizQe/Artr42OK3xKMn3sj9g9sjK27ucG+/qKBWodBfvYwtmWxgKVX22vb8TPDeYiwGK9oI6yNEEamGsz7dSMKwQ2LMmuPLkygibDQo9w/guB59Izs3+WxycnJycnJycq4t+kfHqQwO0zeyAy8oMDdxkjRef+HyWsTB4lqDazVWCJSjqBZcSp5CCEEz2vrC2vNhhSBWJQyKRAaAwTVrb3UVmgiNJuqOLf0NcmEKFNIMo0wFYStIW8aIECsWMsPCBqFM0u3fvXziWDIzcBdmFQGvNDrM3h9+YzYZuozJ777I1DO94+TAgQ/c26Dg9B7/x18tcmAmL+TNWRuJcPie2MNRBlbcN0ibh+wRynYT5uqkgEIAgd9to9ZNlotj0AmX5vKexQqZubzdElFxkE5lFCM33mhobIyx22OOKKeX3Gaak9PFTDUQydLFQ4kCN3o3st/uZ9bOciY9Q1O1e+aCBQJh9yL1XixzaPkdjHwGxCoXfaKNUd/AyG8h7Z1I/SCS0U04s6sDAThSoIQi0YY41SghcJREW4krLa7RCAz6odvRD9yOevJFnM98HTk9v2J76qXDqJf+EH3Hjch3vw1x035aboWWW4GkwYI/QF80mzu8c9aIXdbLW3RvW0Bg0bnLexkrnd4LV4/TO+1AOJ9dZCcdSNtZdalfBWfj450zP3aMFtHSDxFGgMDFCjBorNBoEWOIMHSw3defQCGti0MJaV0UHgLnvFXsqbEYC0lqUFKghCByi1gEiQpw0866lwW5Lx+h+Kmv9ywzBZ/6L7wni7PaFCw3yEmsVaT6YV4c6XUlOOlJCp1HAUiNYqH1AMHQ1g9kTKpZOH66Z1ntslzddmV8ubtNhgSig7UWx5Qx/jBOqjBphzgyxFavOb4coDk7g3RcitU+ajtHUc42OcecnJycnJycnKuY4T37SOMYaw2zJ44zN3GSgfHd+bXWGghMSqIk0hpiqagVPZpRSsV3WOgkFFyD52x9AepqGCGJVJlAN0llAcd0cAykcm3pUB0TUZQBkYkJpIcnXeINKKwWSIQZAFyMACkURtRBzoOpbljiZhDNUWkcoVFd8npqt8h8/20MzL6wYv3qnlH2vO0NHPvSYz3LJ779LNJzGbz9xsVlO0qGX7y7ye99r4LtjtAtgv/8bJnffHiB4eL2jcHP2T5YIXhF7KBhfe6wp3vmw4skPGiP8AJjTIrLKaa/RFwHlIQwygwPaZr9GNudm7j456A0CX57mtSvkPgVtOPjRZK24+O3Z3Cj3Gx4PZJfieTkdNEnVkZjA0ghGRJDDDFEZEOmzAwzYppY9FavCvpxzCNY82aMfBYtnwQxt3KDwmDEcxj5HMLsRpkHEfZWRB60AGTfcZ4j0ZZF0duRAoskReErjdIJSIV++E70Q3egvv1CJnrPLqzYnjrwGurAazh33Yx8zyM0brmdlluhlDRY8Ae7gnd+YZizNqwwZD28xbJocweEwYqs/1ZOxoVEb7PdRG+TZg7upA06hrgFVoNT3DAnt0GjRYQh6hG3bXfAYdEYDEaAkQmaFLBZmwws0kqkdXHpWyZsXzz2aTlRqtHWoq0lcLLHxm4ZrXwQAidd38peObNA5SOf6ekJZQU0/t47MCOrp3VsBEM06JMRib6XebfGqVKvyF5p/Cmi+73w7YkHeGBwe3w/10+ewSS9ontt32X0oNYpGAOul1VWb5P4covGiA7SBhivD2kriKhNbCSdNL6k+PI4DAlbTfpGduJ4Hn0jOzbxTHJycnJycnJyrl2ElOy88WZOvnyA2tg4MyeOMzdxisHxXYhtkBS0nXGtQVqLZwyhckAKBooe2ljCRFPvJAyWPcSWtsw6P0YoIlXC10209HFMBFaSios7jC2WtokoSp/YJHjSxRUOyQa5I6WpgPAwchqJwlLHyPlsjGE3ZvxTXThE5PcT+7XFZe3SKH44Q6l9esX6tRt3o+OEk1//Ts/yk19/CuW61G5a6vv9uuGEd93U4ZMHi4vLWonk95+p8BsPLeBf2lRAznXMhKjRwudeewKfpfefg+Uee5JDNuI1MbTxqXtSZi7vOAbEUh/vKO62Wrv4i1oAbtRApiFJ0EdUGMKNG9iiJHVL+O0ppNEX3U7OtUMudufkdHHv2kXn0EnCw6cpiuKq6/giYBfjjNsxFuwC02KaeeYXXXUAAh9lHkSaB7DiIFo+gZVHVt2elcdJ5XGwVZR5AGnuRZD3OwJQAqSSaGNJjSG1BldJrFa4wuCiEcKAdNFvvAv9hrtR33wO93NfQ8zVV27v+VcpPv8q3j23UX/vj9Pct4tS0mQ+yBzeyuaCd85asd33vERYmd22EmEFVhrA5KL3Mra36G0hbkK4kInbcSvrz63czM29hovri+/BYki7YnaI7orbRiSLa2hSDEm3v3aCQYOQZPkhCkUBlwrCOkgjkRdwa68VYy2ptiSpQQiBkqClg1YeqfKRJkXadRwUxAnVD30C2er0LG7/6JtI7rzxPA9afySGG+Q0xgyizW0cHOid6JB6gVLr84u/P3vmTXzfTdsjmnHu8Mme38s7BvGKl3jNYE1WMa2c7PXt+yvi87YKK1pgQYoaRvYjwgSNpBWGGGPXHF8OWa9ux/UoVKr0j44j1+G9nJOTk5OTk5OTkyGVYvSmWzn50gEGxsaZPXGc+TMT1HaObVuhdjsgyNzdWgmEtSRCUik4NKMUHbjMtmKaoaZS2L7T9Vo4xLKIZ1ogLY6JsVKg19Dv12IITURBBsQ2xRMuFku6nuPOZUjrI/QOjJrCIIEGRtSRFMEW172Pt8AyMPM8Z3a+AbssSnm+/za8eAE37ax4zODtN2DihIlvP9Oz/NhXHkd6LtU9S4mgP7a/w7G64nuTS2PYEw2HP3mhzC/e3dzsbms5VzF1UeBx9vE6e5Iava/LG5hmwLZ4lRHmz6OPrBuiW3yvVNbLW4pM8E7ibM7CcVjLBKvSCbI1Q+JXiP0qyvGxQqKdAL89jRs3N/Y8crYN2/fbMydnkxG+gx2r8NQrnyMIaozbHewwA6hV+qsIBDVq1GyNhIRpO82UmCJaFl+eRZzfjNQ3Y/QkRj2JEc+DWKVqUdTR6q/R8lGkeV3m9mZwI0/3qkAIcJRASkW6LNrcKklqLZ4wKBsjZDZpr9/8OvSb7kV9/buZ6L2w8svMeeYlBp55ifD+19H6iR+F0WrX4T2TC945l4jBChA2EyWtMFkvbyGyflB5tHkPy0XvlAbxVoveOoLOfPZ/GkHSypZ7ZXAvb/8Wg16MIQ+XubVN936NWSZsa5FgRNexTTYYV7aAIzyk8VEUkcLNHm+X1lsPotRgrUUbi6uyeP7YLWEQWfzTeg4GrKX8sb/EOTnZewx330TnkTes337WwC4xh4cl1g+jkRyp9Ird5dankd1eVc9N38ZtlQpCbP3AKA0jGhNTPctq+3dd4lYsxAkgs0Gjd3bwuPVYUqyIULaCdvtRqYvQCc0wxVp7SfHlcadN1G5T2zmG6/lUh4Y38UxycnJycnJycq4PHM9j9OZbOPnSAWo7R5mdOEl9epK+4TxR50IEVtPBxbOGSCg8qxkqe0Spoew51KOEwJW42zTOHCCVXpaEZUAIg2MijJRYcfFj1hhCG1PAJyXFEQ4Gi9mg+TiBg9Q7QM5ipcDSwog2Ag22vO4pm44O6Z99kdmhuxeXWekwO3g3I2eeRKwyph++51Z0HDP53ReXFhrL0b/6Fje8482URrPxjBTw83c1+dePKyZaS+O4J0777K2m/PC+Tei5nHPNEAmX77CH2+1pxulNSq3R4UF7lGlb4qAYpiE22JjnOJmzO4oAmbUWTFPQBjy3awa5MAKLF9XRZ13exUHcqIEtjZB6JfzW9PoaOnK2JdtjhisnZ5uxIJosiCZHooOMyGF2yp2UZXnVdV1cRhll1I5St3WmxBRzzPW4vSUjSP0OLG/FyO+h5XdgtclzkWDUUxj1FMLc2I04v2Hdqw2vNuTZaHMDidZEqcZREiMVjtb4NkFYAzKLk9Zvux/9A/ejvvok7ue/jmi0VmwzeOpZgqeeJXzoXtJ3vpn50UFq0Swq/+LLuUSWos0lCIu1Zx3fBvJo8xUIJC59OFsleluTRZbHzSy+PG5msc6OnwndayyHXs2trUVCJkjbZaJ22nVrJxiRfb4Imz0Lynq4tpSJ3JQQQpElBjiLRRPWxqynyA1gLcSJITHZdl2VDbkTt4x2sud8PSPMg699l+CpF3uWpSMDNH/mxzbVVeyTsEvMkpq7sdQ4WfKIz3EHl1qfWbz918feyi/sX/n9sRXMH53I/nBdhJL07d55aRtJU8CA52cDSW+zeqRfHCuaCKuw7gjCFhBxQifVpFpfUnw5QGNmBtfzKZTL9I+N53GaOTk5OTk5OTkbhFcosuPGm5l49WX6RnawMHkGx3Ep9Q9s9aFtWwTgG42WEElFIiS+A/1FF2MNnVRSDxMGS97GxwhfAYkMFls/CW1xTYdEFbBrEI9TmxIhgCyy3RMusY0x6zzuPYtAoswQhjpGgrQORjRAzIPtu+R2YBej2DlD2BygXR5fXJZ4VRb6bqK28Oqqj9nxwF3oKGHmhYOLy6zWHP7CN7jhnT9IcThr+xU48IF7G/zrx/vopEvP9f98pcjuSsrtgxsTC59zbWKF5ACjNAi4xZ5Z8e4dosWQbXHGVnhNDNMSG9gCTUooFLJY87j7e5xmvztO5vReA0rHyNY0SVAlDvpQOjjH5b095nhyNoZc7M7JuQAazYQ5zYQ5TUmUGJU7GZbDOOeJ56lSpWqrpKTM2BmmxBQdsRQHIiiizPcjzRsw4iWMfAIrT626LStfI5WvgR3qRpzfjWD7TExvBUqCFJnLO9EGYwRWKYw2uFbjWJO5vAGUQv/w96Hf8gDOV57A+cKjiGZ7xTaDJ57GPvkM6UN3s/CON1MdUDi54J1zySyPNhdYYZcc3xgQeWrAuaxF9HapUWAHar3aOyQtCOfB6Kw/d9LJopyDviy6fBWyGPLMrZ2edWsTZT3ayWRtQ8JSDHkmbttFt7ZC4uLYItK4SFwEqlvEpLLPdSEAiWBJ5MaeFc7Xn0QbDJZEW5QUCCFIlI+RitTxUTpeteL8cnAOHqf0ya/0LDO+R+MX34MNNrdX9H4xhaCGNncCcKjau38//B5umkWFH2+MURG7KDpzm3qM52P+SG+Eed+unSj3Ei7jje4WdXQrpgv+tpk8s0RYkaDECFoGqDakxtCJNfYS48ujVos47DAwOo7rF6gMDm3imeTk5OTk5OTkXH8Uq32M7LuBySOvoZOE+sw00nEpVCpbfWjblsCkhFLhGEMiFJ41VAsuzUjTV4CZVkQz1pT97T1tH4tC1l5Qgac7uDrsCt4XH2fENkEImbnDpcCTLpGJN2gEnCFNFay72MfbiDpWziFNdd3nW2vzLxP7NVK3tLisWd2LH81SCGdWrC+EYOz7X4+OE+ZfPbq43MQJhz/3dW5811sJ+qsA7CwZfuGuJr/3dHVxPYvgPz9b4Z++YYHBQj7/lHMJCMFxBmjic4edoEiyYpUdNBixDSZsH4fEEB2xgfqE54GjoBOB3+3jnSZgTNbLew2fLwKLFy6gVUgSVLsu7zq2tIPUbRK0pzPTXM41x/b+1szJ2Ua0bIuD+jUO6UMM2AFGnVFqqrbqug4OO9jBDruDpm0yJaaYZRbTFbwECmXvROk7MeYkRj6BES+uHnssptHqC2j5VaR5Pcrcj6BvA890eyMEuI5E2UywORttbnDQVuOaBOXY7Lm0Gjyf9G+8ifQHH8T562/jfOGbiHZvPxJhLe7jz2KfeI7Ww6+j8CP34g2t7uTPybkwy6LNhcBag7DdaPPc5b0qFxO9k/UQvU2SidxpuBRZbg14JXCCRdHPoBfF7LMx5EbEi8K1QXdF7XiZuL3cre0grYtjC0h7VtheTZhTCM5GMYnubZHtZwOc3OcSpgZtwFqL62RV7IlXxgiFkS5+VF+X/ci5OtU//hTC9J5P8+/9GHrH5rbq6KPNkGgTpz8CSNpKcrrYW+BQan128fZfHnkbb9mxPSp+o3qT9sx8z7LavvHVV14Vmw0QpcyqoT13XfrRrwcWixUtHBugvQFIHKQxNKIUYS1TlxBfbq2lMTuNFxTwSyUGxnflPSNzcnJycnJycjaByuAQSZS19dNJysLkaZTj4BU2OPr2KkVhcY1BS01buqRC4mIYrnicmteUPIdWnOI78oKFnluOEESyRKCbJCrA1SGuDonV2v7ukYmQEjDgSxdPekQm3tBDlraA0DvRagqJxFLHyAWkLSPs+r1epTUMzDzH5I4HYVl7zLmBO/FOfxu1ynkKIdj9gw9ikoT6kSVjlA4jDn/2a9z47rfhVTLx/J6RhB+/sc2nX1vqqdxMJL/z3Qq/+voGw8VcyMu5NOZEiW9xI+PMcYOdwac3JUAAYyyw0y5w0tY4LIaIxPnH51eEVFAsdGPNRZbKmKQQxeA6a57PUDpa5vKuodIQKwTaDQha0zjJSlNcztVNLnbn5FwiBsu0mOZ0dJqiKDLujbND7sA9zwd8mTJlW2YPe5i1s0yJKVq0FkUvaceR+iewvB0tn8LI74JYJT5WhBj1GEZ+G2lvQ5qHEHb8uo04X4w215bUGLQ2GKUw1uAkKa7SCOVk/XiFgsAj/bG3kL71YZwvPYbzV99CdHqfZ2Et6tvPED3xHOlDtxH8yH3Ioeu3sCDn8lk92lx0o81NLnqvwmqid0IT94pEbwNRI/sxKSRNSBOs42LcAvr/z95/R0mW5fd94Od37zNh0psyWba7urqrfU/3TE8PBuMwBjMABgAJikZLUhQgckXsSjqrc7Q6K0q7Wh1S1O6eI+2KuyS1IgSREElwSZEAxgEDjMf09EzPTLtqV23KdPn0Jswz9/72jxdpojKrKstkVmT1+/SpzswbLyLei8x48e79/r7fn81xMr0SRV70z4aiu3a+KmxL1uXWFjWdGPIqkYYYDRGCTZyPryVyZ8X+bjG5U7xXMuexIlgjKEIW1MiDCqhiXXLrT5Tl9P/W72OuSNRo/vxHSB89euuPf0Mo95pJnH8QpYhUPDkQo2uEUPENaq1vAzDbHuTcwiPce2hqm/dzY2avcHUHlYj+vTfgWM46ldlhWFRI91B8OdJGxOOCPXgvhKmlkaWo44bjy5PGElmSMLrvAHG1Tn1oeJsOoqSkpKSkpKSkZGRiH3maoF7xF3JmL5xjdP9Bgl669uwhKpqTYTDqycQQqicKDIPVCO+Vdu5ZaOWM1sOeSWTaEBES20fFLZKZCqFvdhzem2tJ1vIJdWNIfEZsImITkvj1ztLbusuEWLcHb6bwRhAaeFlCyBDtv23rrFG2xNDcW8wNH1sZ8zZiZvRhxiZf2PBZxBgOfvojnPra91g6f3llPGu0ePfL3+HIr3yKsFbMi37p3hZnFgJemlx9j11oBPzt5wb5648t8cjY1r6OJXcfKsJZRjjPEAeY5bBOE9GdfmqAA8wxofO8p8OcklGyqyTg3hIiUKlAkENCp6d3BtnaWPMbcHkHCVk8QFIbI0wWaPUFhOkicXO6dHnfRZRid0nJTSEEQUAzb/JW8hanglOM2zH22L0MXsV1bbGMM864jtOkySSTTDONW3YFMkDgP4X6n8XLK3j7PCobLLSL4uV1vHkd8Xsx/mmMPnjbe8zsBAQIrGBMEW2e5g4ngrcWl6+6vEUAbYGNoVoh/+KnyD/9DMEfP0vwxz9A2t3CjniPf+41mj96g+CZY0Q//xRmZGDDfSgpuTq6EmcuFEK3aNGTWXEbJzmU3D7RO29Bew51Cc7N4dw8zmS4eoALfBEVTiFre/IVt7ZbcWsrKCtu7VArK25tc8PnW9OJK18WuQMQs60i9zJJ7vCqOK9Ull3dYRUVIbcxgUtufWqvSt+//GPC9y52DacP3Uvz8x+91Ue/YfbIAjUqpP7RYveAd/u7I8zrzT/BaPFZ8I0zH+ej4+2eWFNSVeZOdovdQ4cmNt+H2udFhHkYFpPDeHuj46+F4lFpYWSY3FQIWgGpS0lTbji+XFVZnJ4mrtaIqtXS1V1SUlJSUlJScgcYP3iYPE1R9cycfY/ZC+cY2XcAG5TLz1cSqceqEntPywY4BIsyWA1pJDkDVWW2kdJIPfW4t9f7tCN4x26RzFQJfYvQJ2Rmc3OPpm9TMxVSnxKbiNCEZFsueBuMH0eYxxvBqMVLA2QedOAqCW03Tn3pLO3KKO3q+MpYUhllqf8Q/YunN7yPCSyHfv6jnPzKd2henlkZTxeWOPmV73LvL3+KII4wAr/+yBJ/94eDXGyu/o00c8N//9N+fvW+Jl+4pzfmtSU7Cy+G04xyjiEO6gyHmCG4Yt3Kohxmhv06x2lGOM0ITrbgXLXciq2dQCyQ58U/54vUuk2+V23exriULC5c3kHeKtbBgiqV5iRB1rr+g5T0PD2chVJS0usUgjdAlmdcdpc5nr/Ci7zMec6TcvXonRo1DukhntAnuNffS7/2r6TWCiFWnyTI/wZB/pcQf+Sqj6PmAi74fbLg/40zf4rSG5Gr282yyzsKLB4lyT2pWlJvSNMM75Iistgl4DoRwbUq+a98mvZ/8x+T/cLH0XiDamPvyZ99jeZ/9U9p/4vv4GeXtv3YSnY+Kn6N6G1ABfEBeLvVadU7mmXRu8Z+YobJadLkLAlTJEyxwJsscQrH6gWpIyHVGVrtN1hqv8S8vsacf5FFeZdmvEirktEOFmjLLC0zRcNcoGEv0rJTpLKEF4/VmNgPUnXj1P0ENb+bio4QaT8BlRsUug1CjEgFpHB1i0SdiPusE1m+fUK3V8ickuW+6BjeOZQ07MOZEDWWIN8gWeQGqXz/RSo/PN415saGWPwrv1icsLcRi+Mg02TuGej87iYrAUtR9++x3vgqAO084tlzH+GZ8d74PG1OzZI2uiddm48w90XUl7FgAojiYpLYK0gLK4Y8HMVkHnVCkhZ/m1M3EF8O0FpcIM9S+sfGqdT7qQ0ObcshlJSUlJSUlJSUrCLGsOfIUSp9/QxN7MN7ZfbCedSXrrmNqPgci0dUSTsikTEw1h8TGUMtDGikGc73/sKBF0Ni+1Cx5CbGaE6gm4skV5SWT/AoqWZFHtpWiGZXIAjGD2HcKKJVjA6hONTMohv0Lb6554DhmdcwV8yz5wePkEZXN9XYKOTwFz5GZaTbUNWemefUV7+H66R31ULlP3xygb317shpRfg3b9f5By/10e6+qaRk0+RiedeM86dyhFOM4DawRgR4jugUP6vvcEinMVvhkjamiDWPo6KQP4xAtYg19+769+8g6onac4TteZytkNTGyMMarb69tGtjaBnDuePpoRWvkpKdyKrgnec53nsa+QLvyTlekpc4ISeYZXYl+vZKDIZRRjmmx3hUH2WP7iHQoPPIgtF7Cd1fJMz+fYx7CvQqi72yhLPfIQv+Hrn9Mp7LG293l2MFYmuxIuTOkzhICUhyJUsT1OWFy821i37eAH018j/72UL0/vzPotEGr7Hz5H96nOZ/9Tsk/+q7+PneEEFKdhJaiN50+nl3Is5FA1BTit7X4Oqi9+SK6L3ACeZ4hYXsBRqtF2i507T9ORJ3gSRYoBk3acQzNIPLtO0sTtrF42qdihuh5nZT93up+jFiHSLUOpboFuLL1orcwTqRW7dZ5F4mzR2qSu6V0AqC4MWSBxXyoIJ4h73FCvrgnbPU/9dvdo1pFLLw7/0ZtLa5KLvbyUGZwepRVFdjv98d6HYYhNlJovQ1AL577md4aAhqQW+8KWevcHXHA3WqI5tpr6Hr48vD3nHUKA5jEnI7jnrFJBHtLMU7sxJfPlKPNhVfrqoszUxTqfcRxjEj+/Zv01GUlJSUlJSUlJRcibGWvfc9QFyrMzKxD5emzF26gGpvXF/3ErE6jELkHbmYlRliJTQMVkP64mJ9a76VFcJOj+PFkpoaXgJyE2F9htXNzS89nrYmePVk6rASYLdB8AYwWse6PYjGGB0CNXgzj27UYvImsD5jZObV7t+hGKZHH8Ff4xiDSsw9v/BxooG+rvHm5WlO/9H38Xmxrjle8/xnH57nyV3r25G9cDnm7/xwkAuNUgIquXkyCXjL7Ob7coSzDG24mhXhuF8v81F9h/06i2zFOSuKOtHmtkitM6aINc8ybmRhNcjbxM0pxOek1eHC7R0P0BzcX7T3K9mxlGe6kpJbpiN4i6wI3nmW4IF5medt8zYvyUuclbO0ufqFUoUKB/QAT+gT3OfvY1AH17i9Rwn85wnz/xDrPg16lYVucXjzEnn4P5LZf4qXEytRve8XRCDsuLwBktyTOEOmhiTLyLOkqPpyScdV2XmR++vkf+7naf/d/5jssz+DhhuI3rkn+84rNP+vv0Pyr/8Uv9Bcv01JyTXxnThzWePytkW8uZYVhNdivejdWhW9/QWS9kna7jRN3qOhJ2mZSdIoxQcBVipEfoCqG6Pu9hZubT9CpAMEVDG3ratLb4rc0Cl6zTx5xxUQdCKh07CGIuS2QnCLvbrN3CIDv/37yBXOjcX/zRdwN9Jj+jZRJWUvObl/bGUsE+FMX3eSR73xFQSYaQ/ypXc+z8d39UaKh3eO+TMXusaGDu/bXDy3y8H7Tny59FR8OYCRNs5UcVInyJTEOfLU4jvx5bVoc/HlAM2FeVye0z86RrV/kGp/2XakpKSkpKSkpOROEkRRIXhXawztnSBpNkuH9wYIRe/uEA8oyZq+t0O1iDAwDFRCMudppTvjtctNRGpqOAlxEhL4FKObc17m6mhrilOHIyeUALNN0oUQYd0ejK8hOoRohJdFVJauamC6ESrJLP0LJ7vGXFBjdvjYNR89rFe595c+QVjvLgBeOneZM994buU9VQng3398iT97tIFc8YgXGwH/9XODvHD52mlZJSXXI5GQ181enpUjnGdgw7/dCjkP6kV+Rt9hr87f/kKdwEK1VsSbhxEEYbHOn6RFqusmEfXErVnCZIE8rJDUx8jCGq3+Cdq10dLlvUMpxe6SktuCENgNBO/O+TyTjAtygVfkFd6UN5lmGn8VwUMQhhnmfr2fx/VxJvwEkUad2ypY/wxh/psE+a8h/sBV90jNKfLgX5IF/xBnfoRyayLGTsN0RO/QGpwqLQepWjKvpGmCrvT4SIA1F96DfeR/4Qu0/u7/gdZnP4Zu5ITLHNm3XqL5X/4Oye89iy6WfT1KbozC5b3azxs1iLdltPmVqBYXrT4vWhDkCZKlhFlELR0mTiLydJp2dopM5yBrEaSGih+hxiFqHKCquzpu7T4s8W3rvdVNt8hND4ncy2S+SBbInGKNYDqCaRr14WwEwq1FmOc5/b/9+5jF7iKg5mc+TPrEA7ew5zfPvUyS+w/DmmKG030hbm2Ut+bUG18H4H9+9d9mMAw40r+5uL2tZvH8JC7tdkIMbybCXH3x+WaDIsI8jrc9Pv5aCA5MhrOjGJeRpiEuVUBW4svH+jcXX67e05iZpto3QBBFjO6/+nVRSUlJSUlJSUnJ9hHXauw+cpRKvY/hvftIW4Xg7UvBu4uKzzEKsXfkxqzEBBsDY30xYWCohpbFHRJnDpCbmNxUyE2EJyDwbWSTIlSmOQkZmXc4PJEJbyFx7cYQLMaPY30/Rgcw2oeXNirzt8VINLBwkiiZ6xpr1ffSrO295v2i/jr3/OInsJXuou2FU+c4+53nV1ITROAL97T5j55cpB5272/bGf7+iwP8m7eq7JA/o5IepiURr5p9/EDu4TJ9G25TI+MRPc9H9F3GdeH2it5GoFqBSlSI3lHnvZEmReH/DRBkLeLGNOIdaXWELO4njQdpDu7HBb1lGii5PqXYXVJy27i24N3ZhAVZ4F3zLi/JS5yRM7S4ulAaEbGPfTymj3G/v59hHV5xhBo9Ruj+KkH26xj/KOhVom9kFmf/mCz478nN11Fmb+9h9zACBEaIA4tBSJ3SdoZcDUmekWUJ6nPIE7giWkmG+tG/8Dnm/m//GY1Pfwy1G7y+WU72jRdo/Jf/hOQPfoA2bk/EUcn7hSLaHJVOtLlZE23eO8LUbUG1cJmuEa3J2pC1IG1AsgjJArTnoDULzRloTkFrGtqzxXiyAOli598SkrYIM0s9GaKejFBv9VHJh4iC3QTBCGZbJsUGiNaJ3CKCat4TIvcyy65ur7ri6s5NiDchWVDBuGzTFfcbUf9fv0l4qtuFnB47TPMXf/aW9vtmGabBABOo7u4af2Og+1xebT2L9bN8+72P8ur0g3xqzxKbMU5vB7OnuiPM67tGiPpq17mXQpoBpjPpC4qvPYSYFmkwhPcW2orPPM4HNxxfDtCYn8N7T9/oKPWhEeJafRuOoKSkpKSkpKSkZDPUBgbZe/QBqn39jEzsJ2u3mT1/Fu9uft5xt2GAqs8I8RhVErM6X6lGloFKQH8lwIiw2L49faS3g1QqOInIbIxiCH17neP4qvf1KRk5mc/QjuC9XQgG40cwfrjo4+0HUHLUzKHcWvNrQRmZPo5c0TpsbvgBsuDa87zK8AD3/MLHMVcYcmZPnOb8sy90tQl4eCzjb314ngP96/f3qydr/L2f9tPIemTSW7KjaUiFl8wBfiiHmWbjuXgfKU/oOZ7WU4zo0u0VvcMQapVizSOOwASQZ0W0+Q04iYw6otYsYbJIHtZI6mPkQZVm/wRJdaT0JO0gSrG7pOS2sgnBu0MuOZfkEsflOK/L60wyiWPjC35BGGSQ+/Q+HtfH2e/3U9Gih4RhL4H7ZcL8f49xHwO9ykKvpHj7PFnw98nsv8TLqdsSxbMTEIGoE23ugVYOiTfk3pMkCS7Piw9D12atMCVAPBCS/JVfZfL/8X8h+cSH0Y3iVNOc7I9/WojeX/kh2ixF75LNo+JR0SuizYPC6d1rb9GbEq2nO6L1zIaiNWkDsiakTUhbxWPlLcg7j5s1IWlAstR5/M6/NfcVl0MQQ1QvnKxbzqrILRKyscjdOws4uVOcV3LnMSIEHZdvFvXhxeBtROBu/rwVP/sS1Wdf6hpzo4Ms/tVfKiwJ24yg3CsNcv+BrvHLYc5itXsRod74CpPNUf7liV+hP3R8dLyxnbt6VfI0Y/Hc5a6xoc24uvMc8BCFxWsfRde9y3YSiCe3gqMPm7XJXUyeBTcVX+6dozE7Q3VgkCAMGZnYxOtTUlJSUlJSUlKyrVT7B9h79BiVvn5G9h8gTzNmzpWC91oq6rCqxN7hxJCtKdoerscrceZJ7mlnO+R1EyExNbyE5LYKCKFrb7ocve0THI6kIwzH2yh4Axjfj3G7EK1gdKhYCjFzqNxaambg2gzPvN41piZgZvSR68Ym18ZHOPz5n0WuMONMH3+bSz9+tWtsvOb5T5+e55m96/f3+HTE33lukLOL29MTveTuZ0Gq/NQc5MdykDk2LlofpM1T+h5P6RkG9Ta2BTW2cHlHYSF+h1Gxbpl02phuEgGCrEncmEK8J6mNksX9JJUhmgP7i0TEkp6nt6weJSV3BYXgnbucPM8JgoA8SwjCaCU29orNWWKJJVniPX2PEUYY13HqV6mICgnZy1726l4WdZFJmWSGGZA+Av9x1P8MXl7D2x+hcmnD51M5QW5OILoL457G6MPI++B0YAWMNThfOBxzNcRGIc9wLicMoyJayYYgxYW0AJW8SXu4zuxv/BVqv/gpan/wdYJnX2BdFUM7I/vDH5N952WiTz1B+MnHkGoZeVKyGRQVZdndraJFtLkKajwrRRi3q/hWtVNN6Tvfd76y/L1f872u3raR+r5clbly/yu3X/Ozv3JsA0Q6ByrF9yKFaLfR+MrPy/fbaoRC2A4631tELKCo5vSSwL2WxDm8FoJ3FBQCogJpWCe3MSgE+c1N2oNT5+n7V9/oGtMoZOE3fhWtX9+ZuxXsZY7AP4mne0Hkxb5uQd+4aeLWj/h7r/5N2q7CL+ybJbK9UWEyf+ZCV09DMYahg9eOt8O7IrIrCIr3TDXepvfF5rAYnFkitcPYPCdPQ3yiKIapRvuG4ssBGnOzqCp9QyP0jYwRVa/nei8pKSkpKSkpKbkTVPr6mLj/QS6ceJ3RffuZPn+W6bPvMbJvP7bHUojuBALUfYa3glVPYgICX0je1sBoPSZ3baqhYbGdE1mD6aE2RVdFhMTU1qBcJwABAABJREFUqbhFMlMh9E1C1yK1m5sntnxCzVRIfErFREQmJPXb5243WkHcHrydBAzKIl4WMNQRvfm5R611mWTpLI2+/StjWTTA/NB9DM29dc379k3s4tBnP8Kpr3+/a03y8k9fw8Yh44+tthCLLfz6I0scHsz5l2/WcGsSBCdblr/7w0H+6sNLfHhvb7TxKtn5zEqd56kxxhL36ST9G7RUHaHJ03qaSa3zjuxiUSq3/sQiRfs2awuR2whkHYe3XU6729w5s3B5z+DCOlnch7MxUXue5sA+ovYcQXK57Obdw5RXFCUlW8JGgnd6dcG7gxPHJJNMyiQ1rTGmY4wySnCVt2o//fRrPwc5yLROMymTtKSF1ccw+aOovFf065YTIOsX8FUu44Iv4/SbGP8BrH8Kof+2vQq9iAgE1mAM5M7TdhCKEFmPTxOCIMQqiHFgY+gEIVddE0Fp7tmP/42/ROULH6fyB38MP3ptvWjXSkm/+iPSb79E9LmnCD/+KLJR7+/3EZ5OgYHTzldP7j0oxIGlGltCY7atF1Pv4lGhiDUXQfGFw5tCUEU6eQyyRphms6I1a7Z/v4vWN8rOFLkBUufJ8+I9B6y4uvOgiorBBVWsSzYdKbcWWVii/3/6feQKV8biX/p53L5dt77zN0FIzgEG8dotDJ9zF5gdPNQ11tf4Gt84/bOcmD1K1Xo+uXtpO3f1msyePNv188C+XdjoWgKwFpM5Y4rJXBRuU8rB5jAIYlKSoIL4CJ8sQjpM7iMaaRFfPt4fbzq+3DtHc36O+uAQQRSVru6SkpKSkpKSkh4nrtWYOPYQ50+8wei+g8ycO8vMufcYnthPEG6va7cXidQTqCf2jqYNycQQdfpc1+Mi/UhVSZZSFtsZg7Wd4TJUERLbR+wWyUyV0LcIfUJmrm8MUZSmT6iZmNRnhCYkNhGpz7YtqVIIMG43mBnUGJQGXhoIOaJ9RTrfTTA4d4IkHiIPV/sdL/UfIm7PUG1PX/O+A4cmOPipD3PmG891jV/4wUv43DH2yNGVuaMIfPpgmwN9Of/w5X4W09X9Tb3wj17p59RCiz93tMl1grVKSjaHCFP0M0Ufu1nkiE5SZ31BxTgNxvUkF7Wfd2ScptwGs9hy4X+SAFKYAfIcXCf9Tjb3R164vBsYl5BVBklqowTZEoqQxYeJFy9je6NjYckVvL/Vl5KSLaVb8LZBAJsQvJdpSpMzcoazepZhhhnXcfqvIkQHBOxmN7t1Nw1tMCmTTDON5yDGHUSZw5kf482LsFHkjjTx9vt48wOMPoTxH8LoxC0ef29jOtHmzkPmHHluiDou77zj8rZXuLwrrgUobVtFJ/ajf/0vUv38aYKvfIf8J2+t1w+bCenvPVs4vX/haYKnH0DuQKTvdqJ4cg+59x1hu/jqOxWnCjgtfnYdkTT3SjtzWGuohoZqZDHv8y4bRS9viqSBzj+lcHivjBVbgiqKg87tLPddvm2iNax0PRGzw0XrG2XnitxelWbiiuISr2ROCYwgnd9LGtbxEuCNJc5uQuTNHQO//QfY+e77Nj/1QdInH7wdh3BTHGYJ7z/RNZZqm9fqF/DBI13jzakf8q/f/ssA/NyeRapBb7i606UmzcnZrrGhe64j5mYdh0MYQmB7Kr5cACuGtklxMoxNFvGuD5dbvHLD8eUAS7PToFAfHqF/bJwwvg3V4CUlJSUlJSUlJVtKVKmy74EHOX/iDUb272f2fCF4j0zsJ+ih69c7Rd1l5IEh8J5ELKH6FTvAaF9MK3MMVAPmmhmVzBGHvVPcei28GBLbR8UtkpsKoW8TeCE31/+dK562T6iYGO+VuCN4Z5rjdHvm44LB+jE883gDRgO8LILMgw4g3PjvwahndPoVLu1+GmT1/rMjDxNdfA7rr+22HrrvIC7NOPe9n3SNX3r+OJMvvcnIA/cw9sh9RAOFmH7/SM5/8cw8/+ClPk7OdxeX/MnpKu8tBPyNxxYZiHtjTlxyFyDCJQa4TD97medenaS6Qd/7PSyyWxc5r4O8K+O05RaLn4yBahXSFFIp1jGzvPg5DIq+3pt9KJ8TNafJozp51Ie3MUGyhB+oIs3tS5ko2Tyl2F1SsqWsCt4u70SL3oDgDeDFM8000zJNRSuM6zijjBKy8cm/Tp261jnAAWZ0hkmZpAEE/jOo/xjevIwzPwaZ2WB3PV6O481xxO/H+qcRfeCmKxV3AtaAEUvuPImHXCE2SpYmOBsSKojxYCNAqHR6DLVttVjBP3CI6r/3a9Q+d5r0a8+Tv/D2uufQ2SWSf/pNsm++SPTFZ7CPHF4RnHYqSiGgubWitgfXcY8qoFoI2rnXos2zV7zqSld0I8WG7cwTGiEKDLkzLCU5cWCoRgGRfT+5vTtCtc+LOGJ1qK4KyMIaMRkDeNQr4NYI4Frc3nF5qzrAFbeJp1u0pnB+vi9E6xvlSpHbdL6n50VuVUhyRzvzeFWS3OO8YjvvMQCPkIVV8rCCqMe6G48tq//etwjfPdc1lh49SPOLn7jKPbaeuiaM8CCe7kWTE/mbLI0Mdo1F7Zf5Rz/5NJmPiIzn03sXt3NXr8nsqe7X1UYh/Xuv4ZRfPmeEnT7dcW+1zwgkwEmTNKhjMofPDbQDHOFNxZe7PKc5P099aAQbhAzvubuL80pKSkpKSkpK7ibCuMK+BwqHt+w7yOy591Yc3mGPXcduNwFF325vIDcRiVgqHUF3Oc7ceSUOHAvtnLHA7Ji1JS+WxNSJ/RK5iQh8iqrgNiFsOTxN36ZqYhIPobGEEmAQMl0vnm0Vxg+ChngzjcHiZR41sxg/iFxljfZahFmDobm3mBs+tjLmbcTM6MOMTb5w3ZWw0YeO4NKMiz98uWvcpxlTr5xg6vhbDByaYOzR+6nvHWO44vlPPrTA775R57tnu4uF35wN+dvPDfI3n1jknsHeXe8o2XmoCOcZ4gID7GeOe3SK+Io1NQH2Mc9eneesDnNSxkjlFmXLKCpizdvtYp0kyzppeL5YO9nkWrMAYdrA5glpZZCktpuwNUdS2xnFRu83SrG7pGTLuXXBe5m2tHlP3uOsnmWIIcZ1nAEGNhQDLZZxxhnXcZo0mer85/yHMP6DqLyNM8+j5uSGz6XmLLk5CzqA9R/E+CcQ7kz/1a1GBMLAYBUy52k5JRJPSEricoIwItBOrLlYYtemcHjXIOi89gcPU//1EcJzT5F+9Xncy++uex5/YYb2//ermHv3Ev/KR7D3Xqf/ag+gFH1+806fc+c8mQfXiSCHwk/sOsK384Wj1Ps1ojZgjRBYwRiDFcGYooRCKV7zNPc0UofBEQaG3CtJ5rFWqISWWmgxm4yb2Vksi9sdsWrZYe07Tu3lsZX/AxiQoCNCB4UIu+alWX3ldU00daeyAN+J+/Jr/pWsslbkhsLJvTNEboDMKa00x2nh5M5yDwKV0K7ElwNkYb2IX7IxQZ7ccDlJ/MPjVL/3QteYGxlg8a99kTuXfaYclRjv93eNTvmLTFe+R7v6t7rG3zl9ipMLRaz5x3Yt0R/2xntBVZk92S12Dx3ai7na66q+qFI2tqhQjuJiItcjBGIBTyswiAZotogkw6Q+vqn4coClmWlEDPWhYQZ37S5dQCUlJSUlJSUlO4wgiph44EEuvPUGsv9AV6R5VHl/J/ZUfU5iLJF3pGKJ1K1M9/sqlqUkwHllppGy2M4ZqO6cCHhnQlJqRL6JiBaCtzF4ub5oVESat4lNBB6cKJEEGAk7sebbg9Ea4gKcncJgUBbwZh6jdURvfM20vnSWdjxCu7Za3JxURlnsP8TA4unr3n/XE8fwec7ln7y2/kZVFk6dY+HUOSpjQ4w/ej+DRw7wVx5qcHgg55+9Xidf08d7NrH83380yL/9YIOP7d8gFbSk5BZQMbzHCOcY4iAzHNZpwivWJA1wkFn26RxndIRTMkq+ifPDVbEWajVod2LNfV6snyQpREFXqsL1MD4nbk6T9FVQG6Out9cH36+UYndJybZw+wRvABVllllmZZZII8Z1nDHGiNh4wbdGjYN6kP3sZ1ZnmZRJFvUoRo/i3WW8fR4vx0E2qIiUBZz9Js58D+MfxfoPIYzd8D7vBFaizZ2SesidEosnzxJyFxKHIMaCjYhdgii0ghoaSCcIWujbB9W//gXcqUukf/AD3Fvn1j2Pf/cCrf/uX2Mfu4f4i89g9oxs/8FegVK4sJ3r7q3tvF9Jt/YU7my3/G8DUdsYwYoQhQZrVkXtqyFAZA2RNYULtSN8J7knWHF7K412ThQaaqElCuwOdnt3BOxlgZvlogFHYX9fjiMHMIV4ZQyrarZcUXy4HGG+7PYWkLD79elElhe/qWUBfM1UcE1E+vtbAA+RlapyW0SRiewIkdsrtNKczBXvzXZe9G4PjRBuUO2fRnWcjUAMQd6+oecKzlyk7//39a4xDQMWfv1X0b7aLR/LzbJLE0L9UNeY04QT/lkaQ7uKApFlfJt//sMiFtyK8rmJ3nF1t2bmSRcbXWNDh/dfZeui9QawGl8e9s6lfdGQwtA0TZytYJpL4Kq4LMKp3FR8eZ6mtBbm6R8dJwhDhvb0ftFYSUlJSUlJSUnJeoIwZOL+B7nw9puMALMXzjN7/izDeyeIqnduXnGnsShVn6MGMjEkElBd414e64toZ46+SsBCK6MS2pUEr51AbuKVonxxSujbpKaKbtLckPgUJ44KMW31nVjzmFQzvG7PWoYQYd0evJnCG0Fo4GUJQw7ad0PrVQKMzL7GpWgAF6wWeiwMHiFOZonThes+xp4PPkL/vt1MvnyChVPr1yAB2lNzvPetH3HhuZcZffgIH3noCPufdvyDF/uYTVYFv1yFf/JaH6cWAv7isQbhzvnTKtkheDGcYoyzDHNIpznIDMEV5SoW5R6m2a+znGaUM4zgbtYAJQLVSifKnCLpMs2KWPMgALuc6LiJh4Krt4As6Ql6Z0WspOSupxC83W0SvJdJJeWcnOOcnmOQQcZ1nCGGNry4MhhGGWVUR2nT7ni9QzK3C+VTePMCzvwEZIOFf8nw9qd4+1PE34v1H0T03pvqTdPLCHQcyEW0ecsLoRYu73aSY4OQUB1iYyKfQK60gzraOZuqCP3pHPbwbir/wa/gXj9D+vs/wJ+fXvdc7uWTNF85RfDMMaIvPI0Z7tuWY/TqybySrxG2NxS1tRDOlr/vtN3uErXDULDLbu1b1J+NCNXAUglsx9ntaKWONo7QFm7vNPOIyamGlmpoCXrIwbgxWkST61r3Nmvc2251DNPphd2pLryh80IRZ77ylMBq5HnRo6Z4r8rq89NxgYsiLEegs3L7ah9wXfP1buQaIvc29QC7WVQhzT3tzK1EludeOwUnFrvBm9KZAGdjcltBvMPeQOybLDXp/63fQ/Lu12XpL3wOd2D3LR/PzWLwHOIQ0O0COZG/jqt9iUbf3+seP3WZVlacOz4y3mAk7p3f85Wu7qivRm1saOONXV4UyYRRUa3VQ7GPBrBiyUjJwhhJU/BgWjGpVJhauvH4cui4um1AbXCIwd17scHOcbKUlJSUlJSUlJR0Y4OAiaPHuPD2CRBh7sJ5Zs6fY3jvBHGtfqd3745R9TltCYi8I7EBzgm2Mx8PrDBSD/GqtDPHQitjtC/aMXHmAJmpYDpF9mFH8M5sFd2k4JSro6FtaiYm8RmhCYgkxOG2LdZcMBg/jjCHN4JRi5cGIq7Tx3vza1XG54zMHGdy/KnVdSAxzIw+yu6Lz2E2sS5R3ztOfe84ycIS08ffZuaNd/HZ+tcib7W59ONXufzT1xk6epD/4wP389tnD3Jitnte9d2zFc4uWv79x5cYrrxfDRElW0kulndkF+/pCId1igPMYa5Ydwzx3KeTHGSGk4xxliH8zYreYVAkEbaT4n2W58U/vxxr3uvryyWboRS7S0q2FcFugeDdeWjmmWde5gk1ZIwxxnSMChtHQFWosF/3s499zOkckzLJvKth/DN4eQNvnkfNxhWBat4lN++CVjB6FOMf6Ajfd8+i84rLWyFz4PLC5e1JabuQKFSsDYlQJFdaQR+t5TNqNER/OoeIEDx0CHvsIPlPTpB++YfozBWFBKrkP3id/McnCD/xGNFnn0Rqtye2y9Pt0i7Ebc9ysatCl0PbXSFqC2AFjDHEdlnUBpGt9VULFI7UOMADae4Kt3fiCaRwezuvNJOcMDDUIkvcU25vDz5bdXAvq8+aF5HDfo17WiyYqCNy3+4LqzUObnXdMejLfcBl+fvlu2gRcy6e1aD51duKGPS1DvCdLICHCMtx8GtFbtcRuXv72HKntDJXtBhwSpoXf1OVwGItV30/LEeYOxsTZUubf0Ln6f/tP8DOdZ/DWh9/kuRDD9/0cdwO7iUCPdg1tqgXmY6+RFbZRx4e6rrtT18r3OyC8vMT16+U3y7Ue+ZOn+8aGzq8b+OFK3XFxMwGRYR5HHPLFUe3ESsBHk8rFFQ9JkswaZXU1286vjxLElpLiwyO7y5c3bv3bPFRlJSUlJSUlJSUbDXGWvYevZ9L77yNIMxePM/shfMM7d5LpW97DAG9hgA1n+FtSKZK21jqflW4HKiGNBKHq4TMNFKW2o7+6s5a4k+kSiwesRC6FqFrk9nKpgVvxdPwLSomLpZgRAnFYiQk8dkW732BIIgf7vTxnsEQ4GUBzCz4wWK9YZPEyRz9CydZHLx3ZcwFVWZHHmRk+vimV7vigT4mfuYJdn/wYWbfPMnU8bdJF9bP+9V7Zt88xeybp/gze3fx5ugj/P7S0S6H/bvzRR/v/+3ji9w/vH290UveX6QScEL2cEZHuUenmGBunewc4XhAL3GIad5ljPMMoTejoxjTcXmngKz28k7SQvA2d5eh7/3IzvokLCm5K9hCwbtDJhkXOv/108+4jjPMMGaDKiVBGGaYYR0mJWVKp5iUKqk+jPfn8OZHeHkDZINKPmnj5RW8eQU0RPQIxj+A0fuQq4jsOw0rxeQrd56WCqFzBCYlSQ3GeuIwJ7TFa1MI3sXvUKNhBtLZQlI0QvihBwieuI/s+8dJ//DH0LgiOjhzZH/yAtn3XyP63JOEH38MiTZ3ilYKp7ZbEbYL8cv71V7PK4K2Ks4V7m63RsuzAlYMUVA4tq0RzBaL2pvBUIh3cWBxvnCutjNHO3ME1hD7oi+xmIxKGFC7I25vXwhPy85tdR2d1K/5eW00uQEJO+7tbd7V5f3tsJq+szYG3XRPytYI4Oti0Lsi0ndKDHpQFObsUJFbFVpZTpoX7+c087hOZHm0QWT5laRhndzGIGDd5vtw1f/g20Rvv9c1lh3ZT+NXP3kzh3HbqKoyrMe6xpSE4/47SOUnLNX/067bpufbvHepiAl/arTJnmrvTNoXL0zikrRrbPiefRtsqZDmgCmuIaKg+NojBJ3I+LY4nBVsawl8iG/XybFML7VuOL4cCld3EIZU+wcY2jOBseVEtKSkpKSkpKTkbsAYy54jR7l08h0QYf7SBeYunmdw9x6q/QN3evfuCLE62hoQe0fLBmRiCNfEdI/1RSS5py8KWEgyKqEh3EFx5oiQmjrilsBWVgTv1N5Y3+u2T3DiiInw6ohMRMVEpD7Hb9PahNG+Yr5j1vbxnsNoP6KbT98aWDhJUhkmjYdXxlq1PTTb09QbF25on2wUMvbo/Yw+fB8LZy4w9cpbNM5f3nDb5oXLHLjwTX6z9iN+UH2MV/oeJDNFm8yF1PDf/niAf+uBJj93oH1jAYQlJTdAW0Jel72c1hGO6BR7WG9MqJDzkF7kMNO8wzgXGbjBVEyK7aO4ELaTpCN4p8U/u7y2Uv6h71R6Z2WspOR9xdYL3p2nYZFFFmURq5YxxhjXcapsfPEYETHBBHt1Lwu6wKQMM+f342UeZ36CNy+AtK7yXBkqb+DMGzg1iN7TEb7vR9jZ8VMiEAYGq5A7wTlHKA5BafmAKPSE6kCVVthPKyyqjxfiYerpIlbzQvQOLdEnHyf88IOk33yB7JsvdgSLNbQS0t//Adl3XiH6xacJnn4A6Yi3ymof7awjajsPzvnO7eBV8Vps5z047/G6Kt8ZoYgft4ZKR9C25s6L2tdDgMAIQWTxWLLck+aOxcRjl134HlpJTmALt3clNDcUHXVjrOm77TsC6Uo0uV8dQ4oLKOm4L3t2ZrCZGPRuARwU3UgAhx7tA76zRW4oIstbaRFZnnYiy40I1atEll9JbmO8CciDCtalmE32NIt//BrVb/+ka8wN9rHw134Z7rDgeD974YrPtJPuVVzlK6hUadZ+ruu2F07MrHz/hX294+qG9RHmtdEh4v4NPj/zHPCdCZqBKNqeHdwEQaesLlVHGgdItgjOYJuGlvQxtZTcVHx52m7TbiwxtGsPQRwzsGvX1h5ISUlJSUlJSUnJtiLGsPve+5BT73YGhLlLF1HvqQ0O3dF9uxMsu7udFaz3JGIJ1K+s3YSBYagW4tXTyg0L7YzRetTDaw7rURFSWyd2i2SmQuhbhD4hMzfWninTHKeeqolJfEpoQiITkmtOvk2tyYzGiNuNt1N4DLCIlwUMNdDappIIBWVk+jiX9jyDmtV50tzQMaJknjBv3vB+iTEMHt7H4OF9tKbnmHrlBHNvnUH9+rUA01zio81neXr2eY73PcjLA4+yEA7gVPjdN+qcmg/4yw8tEZc1xyVbSFNiXpF9nNRR7tNJxlmfTFAj41E9vyJ6T9J34+e+IFgVvBFwWbHW4jxE4Rakb5ZsB6XYXVJyx9gmwbuDE8elzn916ozrOCOMYDfouS0IgwwyqINkZEzrNJO6i5b/Wbwcx5sXUXN+g2dZfgCPyjs48w5Ov4boAYweK+LO2blVuaYjejsvpM4TuJxAUlINyHMlCnNqOJrhIM2wHzIhrcQISuhTApcVX6tC/IsfJvzZR0j/8Mfkz77KSnZ4B51bIvmn3yT5kxdwn/8g2bGDuDXbeKXTU7sQvH3Hue3X7OuyqL3cX9uYrZN+txMDxIEhDjp9vHNPknnamSc0hihUMudZbEMlDKhGlvCW3d5+NZbcd4QmhUL09qsi9/Iems5FE2YHFwRuFIN+jT7g0HGB91of8J0vcjuvNFNXpDd4JcmL9IAwMIRWNh3hn4Z1vBi8DYmTzQm99uwl+n73j7rG1FoWf+NX0YE7W8i0RytEeqBrLNGLnA9+DzELNKpfQE1t5TbvlZfemgbg0aEWB+vbE2+3GVyWsXDuUtfY0Eaubu+KXt1B0IngintmQcsgGLHk6kiiEE+TME2R3JK5vTQyd1Px5QBLM1OEYUSlf4CRvfswZbxYSUlJSUlJScldh4iw6/C9GGOQTku1+cnLqCr1oeHrP8BdRqSeUD0VHA0TkokhWlOwPNiJMx+swnQjYSl19MU7a6nfiyGxfVTcIrmpEvoWgRdyc2MFvR5P07eIV2LNbSfW3JBuW6x5gHG7wMygRlCaeGki5KD9mzJjBC5hZOY1psceXxlTY5kZfZRdl57vrLPcHNXRIQ588mn2PP0YM6+/w/Sr75C32uu2C33GBxZe5omFl3m3dg8vDjzG+cpenrsQc27J8ptPLDJW7QVDQ8ndzJJUeFEOMKhN7tNJRlhf7NFPwhN6ljkqvM0uZuUG16iMFLHmaQYpxTpumkGaFmsudmedT0tKsbuk5A6zvYJ35ylp0KAhDc7oGUYZZVzHqV/FfR0Ssoc97NE9LOoik7KHWf8UTubw5gRe3kTlNMhVBCNRVM7gOIOzX0f83jXC9+jWHOMWsuwwtmLJnOC8I9RC/GynAYFbpOo9rXiYxWgIqzlWc1IfEZi844CFwOfYsX7MX/oc8vHH0K88By+9u/4JL81i//Ef4w/uovXpp0gOjHeL2lCI2UaIrCnix+8SUXszdLm9nSfNPUtJvtpz3UMrzbHWUA0t1chsGOe/Hu3Ej691b7PGve1Wx1aiyYNONHlvCE9bw9X6gK/GoN9aH/BlEfx2sPNFblVo546kE1We5h7nlcAIcXj9yPKux0LIwhp5UAXVTUWYS6PFwG/9PpJ1J1As/fnPkh/ae8PHczsxKuzXI1eMprzsv4FUXgagUf+FrlvfOrvAUqs4ll5zdc+fuYi6NX/7IgwdmrhiKy36SRlTTLqi3ukpJRTx5R5PagyZcQTJEqoR0qqQEt10fHnSbJI0mwzvmSCMY/pHx7b2YEpKSkpKSkpKSu4YIsL4oXtWWtaIMSxMTaLe0zey89aQbpWay8gCQ7DG3b18FS0C4/0R5+cc9SigkeZUAktgd9aahBdLYvqI/RK5iQh8iqrgZHMpUMsoRay5F09MiOIJJSQ2EZnP8NuwBiAYrB/Ds4g3YNTiZRHMHPiBTfXxrrYmqS+dpdG3f2Usi/qZH7qPobkTt7yPYa3C7qceZvyJY8y/8x6Tr5ygPTW3wbHAkeZJjjRPMhmN8eLAo5zQo/zt5wb5G48t8dBo7xSPl9y9zEuNn3CQEZrcp5cZZH2BxhBtPqhnmNYa78gu5uXG2iEQhRAYaCUQS7HukmeFuSkM2cEupvcdpdhdUnLHuQOCdwcvnkkmmZRJqlplXMcZZZTgKqeGfvrp135y8o7bezct+WCnWvEtvHkDlZMgV48JUnMBxwWc/Rai44h/oCN87960O7EXkGUxVQ2Zc9i8cHnnGoBfpJInaKUfJxGZiUhMXPTIdjniMvAGckF8CHuOwK8fJnznNP1f/jbxu+fWPV945jLDv/01kgcO0PrMk7BnpBC2t//QexIDxNYQ247b23nSrHB8B0aIQkPuPI0E4sBSjQu3d/ffnAefrTq4l/O8NS96bvs1cdxiwUQdkbv8LayNQd9sH/Cti0G/isiNB83YCSI3QOo87dThtOhLnzkFESqhJdhEZPmVZEEVFUNuYwKXXP9s6zz9//OXsDPzXcOtjz5B8syjN/z8t5v72YNQ6xq75F8gqXwNAbLgAEnlia7bXzxRuLqP9rc5OrD5fuXbweyp7vP+wMQugvgKN0PWWUwIQwhsb8WXS4CiZOpJohjjpiG3hK2EJoeYatxcfDl0XN1xTKWvj5GJ/SutPUpKSkpKSkpKSu5eRvcfRDqFnSLC4sw0qp7+0fE7vGfbS4ASe1csIZmIVCyVNdHcUWAYqEZ4r7Rzz0I7Y6QW7rgifGcCUmpEXhGjBD4FIzi5ceki1QynjoqJ8arEJiQyUSfufJtizX0/aIA30xgsngXUzGF8P8L1Y9qH5k6QxEPknTaJAEv9B4nbM1TbU7dnH61l+P7DDB09ROPCFFPHT7Bw6vzaRZ0VxtMpPjv1LT468xyvDDzM//Cjh/j8McvnD5d9vEu2ARFmqPMjDjPOEkd0kn7Wr+mM0mRUT3FZ+3hHxlmSyuafw1ioVQtXN1KsC2d5EXMe9o7RoOTalGJ3SUlPcOcE72Va0uKMnOE9fY8RRhjTMQauEjkeELCb3ezW3SzpEpMyyYz24fVxlAQv76DmDby8DXL1Sj+VSdRO4u2fgg51enwfQ3TfjhG+rRQXiM4JiToCl2PVk3sw2QzLkc8qFkyIMyG5ichNFQ2rRZ8clxUi+D1HmPubB6mfOMnIV79FfEWkLUD85ntEJ86SP3kf2c99AB3qW7fN+53ACIGxaFi4vZPc00gcRhxRRwxvZw5rhWqgVC2YZbevwkpkubpC5AZW3dthx719Bw9wx7CZPuBrYtCXBXA8iL1ODPpGAvhakbsjru9AkdsrNNOc3C1HlntQJbSdyPKb/ExIozrOhKixBOnidbevfeV7RCdOd41l90zQ+LM/d5V7bB+D2ke/7u8a81zkreD3EFP0c7rS1d1oZZx4r3Bz/0KPubrTRovGpemusXUR5ssJE2FYnIviG+tjt5UEWARINScJangWidIm4gLSdDdLnXPwzcSXtxtLpO02IxP7iSrV96Wbp6SkpKSkpKTk/crIxD5Mp9BRxLAwPYn3noGxXTc9L9qJ1HxGaiyxdyRiidR1GR+GqiHNJGegosw2Uxqpp74DGyvnJirWATwgSuATvDHoTRgMHJ6mb1PpxJqHxhJKgBFDtk2x5kariNuNs1MYDMoi3ixgtI5o7Zr3FfWMTr/CpV1Pd4lssyMPEV18DuvT27afIkLfxDh9E+OkC0tMvfo2M2+cxKfrX6eab/HhuR/zwbmf8ubMUX7n/DH+/IdjKqXCVLIdiDBJP5P0sYcFjugkNdb/ne5iiXFd4qIO8K6M05RNGgVEirUWayGhWHtJM8jSIl0vKP/Qe53yN1RS0jPcecEbQEWZZpppmaaiFcZ0jDHGCNnYhdVHH33ax0EOMq3TXJbLtHgI3EMoGSon8eZNvJwAWR81soLM4e0P8fwQtA/j7+8I3wc7gljvIgJBYPBqyJ1DXY6RBFWLR1C/HP7cQhRCIETwNsTbGIIIH1VAaghC+4MjXHziUfqef4HBP/gTgpm57udTJfzJWwQvvUv2kYfIPvFY0be1pAsBImuIrFmJgM5zh88TIuNXWrHkQGCU2ChWll3GUkwopNN7+300kd5abrUP+EYx6A6wO17kVoXkisjy3CvWCHFob+lzwIshD6rkQQVRj7nO5D564Q1q3/hR15gbqLPw7/5K4Si+gxg1HNFDV4zmvOq/gsSvA6BYGvXPd23x8tuzeK8crKc8PHSNz6I7wNzp810/mzBgYN+u1QH1RUWxsWACiOJi0tUDGAxGDLnm5CYksxlhNgOuimllNGXopuPLVZWl6WmiSo24VmNk34H31aJmSUlJSUlJSUkJDO3Zuxppbg3zly+hXhnctft9c21ogIrP8QZSMSQmoOpXW00ZUyQoZXOeWhjQSDMqYdHmbqeRmQqmU9guTgl9m8xW0ZtwHChKy7eJTAg+woknkhBjIlKfbstKgRBi3W68mcYbQWjipYGQI9p/TaNPmDUYmjvB3MiDK2PeRsyMPsLY5E+3xIMRDfQx8ZEn2P3Uw8yeOMXUK2+RLiyt287ieWjpTTj+Jn96ci9HP3iEg/fvKVO4SrYHES4yyCUGmGCOe3WKCt3t9wTYywK7dYHzOsS7Mkay2dYIQVCcWNsJRAJ5Di4vEj/rN+AWL9l2SrG7pKSnWC94a5YSbrPgvUxb2pyVs5zTcwwxxLiOM8DAhhdjFssudrFLd626vZnBcz/G3Y/iUDmDlzfx5k2Q9RdLK8gS3v4Uz09BKxi9v4g613sK52aPYgTCwOKdIfc54lwh4UkhcBffS7GhCJAWsdmp4LPC/e1siDcheRCy+NEPs/D0Bxn4zrMMfeVPsEvNrueT3BF97xWCH58g+eQTuA8fQ8LeLgzYfhSDJyCnah1Yj3OKcw6fORweMeCN0BILRgiDkCgIMDtwYrgzubU+4Cvb7FCRGyB3SjPLcV7JXBFbjnDTkeVXkoV1FMhtTJi3rjkptucn6f9nf9g1ptaw+Ou/gg7e+SSJQ7oXe0V8+QLPMR//ycpxtStP42x3X+cX3iqc01/YN99TtSuqyuzJs11jQwdXF/RAi15RsBpfHvbG5XvRp9vicTigFURYfxnJBZss0NZjtxRf3l5aIksTRvcdIK7VqQ8Nb9mxlJSUlJSUlJSU9C4D47sQY7h86l1EhLlLF0GVwd173jeCd9XntKVwd7dtQI4QrJnzVkLDQDVEVUlyx3xrZ8aZAyRSJRaPWAhdi9C1yWzlpgRvgNRnePFUiGlrSmxCYhOTaobXG2mZdnMIBuPHEObxRjp9vJdA5kAHrmnwqTfO0a6M0q6tFkMnlREW+w8zsHhqy/bZRiFjjxxl9KEjLJ65yNQrJ1g6f3nDbXc1LjD/nQu8/HwfE4/fx8ixe7BR767dltw9qAjnGOYCg+xnlnt0mojuVgUG2M8ce3WeszrMSRkl20x7BGNWY81Fip+zbCctNb4v6Y3VspKSkjWsF7yzOyh4Q+H2nmWWWZkl0ogxHWOccSI2jgG50u09KZM0pYnoPRi9B/U/j8o5vLzREb7nrv7k0sbLy3jzMmiI0fuKPt9636b63Gw3AlgrGBMu+4MRKdzYy6KerPhZVy+qjQKaEfp2ZwvBY/A2Ivn4k1x45nH6vvEDBv74u5ikO67ItBKqX/sh7tnXaHz+o2RPPoAlx7oEsw0X7r2G4DDqMZqvVgSrIjhEPaF4CAonbeYNbTW4XDBiCKyQq9LO85Ve36ExO3F+eBdwY33AFQVN2UlXntqJLM+c4jqR5apa/O0F5rYt3KRhHWdjECHIr+5qlmabgd/6PeSKuLLGr32a/MpY7TtAn/Yxyt4rRi/xqvnXiGmtjCxdEWF+9nKDydk2uysZT4606CXacwsk893FX10R5svVw2FUFEr1Uny5BCieXD3toIZIgyCdg7yKz4ZYTEMaSXJT8eWqytLMFHGtTlStMrLvwNYdSElJSUlJSUlJSc/TPzpWCN4n30HEMHfpAnrxPEO7974v3KQC1HyOWiFVJTEB1mdd8u9wLaKZ5gxUQmaaKa3MU412oCFChNTUEbcEtkLo2oSuTWo3P5+4klwdDW1RNRUSnxGagEhCHI5M8+s/wC0iCOKHQKNOH+8AL/OdPt4DVzX2CDAy+xqXogFcsOooXRi8lziZJU7nt3a/jWHg8AQDhydoTc8x9cpbzL51upijXrltc4kLP3iRSz8+zsgD9zD6yFHiHiiYL7n78WI4wyjnGOIgMxzSGcIrWh9alEPMsE9nOaMjnJZRctnE+TGKipS9pN1pb7lFB1FyWyjF7pKSnqT3BO9lUkk5L+c5r+dX3N6DDF7X7d3QBpflcuH2Fo/ofozuR/2nUS7hzZuoeROVyas/uWR4eR3M6zi1hXjuH8Do/QjX7nez3Yh0f/6pLEc1r5fiBF3pV7z8symk7kLocE0Q8J95hJln7qf6Rz+k9v0XkCsuLu38IgP/4g/Jv/08jS9+nNYjRxEU61KMy7EuRby76z6Xi9fLId5hyFdeZVG/Inwvoxi8BKgYFIOxEKM4D5nzpLknBawRwk5/b8ERhYbYmtLtfce5Wh/w5dt2BqqQ5p525vBaiNy5V6wUkeW3M26uELojclvB+LzoT78R3tP/T76MnZrrGm4/8yjtn3n8tu3PzSIqHNFDV3zW5Lwt/wofvrsy4swQrerPdt33xRPLru4Feu0tPHvyXNfPYa1KfXyk+EFdEZdlO+0U4pheOYCgMynM1JFKQGqVOJtEfZWwvcSCv4/ppfSm4ssBWosL5FnG0J4JKn0D1AYGt+pQSkpKSkpKSkpKdgh9wyMYY7j4zluIMcxeOMfshfMM7Z1Y6e19NxOro60BsXe0bEAuhnDNeocxMNYXc8G1qYaWpSQnCnZmnLmKkNg6FbdIZiqEvkno2uQ2vmmHt6I0fYu408e7iDUPMBKSbFsf7xriApydxDCMsoA3850+3huL+cbnjEwfZ3LXU6tOfTHMjD7C7os/xGyDWA9QHR3iwCc/xN4PP8qZl95l6tV3qOTri8l9ljN1/C2mjr/FwOEJxh69n/re8fdNCkPJncOJ5STjnGWYQzrDQWawV6wVBij3Ms0BneUUo5xhBC/X+fwILJgaJEmxJmMM8P4zl+0ESrG7pKRnuZrgHWKudxLent1jjjnmZG5Tbu86de7Re9a7vRGEPRi/B/wnUKY7Pb7fQM2Fazy/Q+VtnHkbp19F9CBGHyjizhnYooPeGhRhrXV4nRi+xhVu+mKSX/s4+ccfpfrVZ4leOLHu8YJL0wz+o39Dcu8BFn/l02T37sX4nJwaoopxaUcAz7AuQ4SitzhXREX3MIWI7Tru7Y5jfsW9rWtc84IXi2LQK6OwV7YQAgOBsah2YqS9kmcOI0JgpRAkxXf6J5du795i54jcUESWtzLXiSwvCiwAKoHBWrlmz64bJQ1rNKujZLaKCyKiZPGq29a+9n2i1092jWWH9rL05z7TE9F3+3SC6IqipkS+z6Xwu11jjeovwppIqiz3HH93lpEo58NjjW3Z182iXpk71d2ve/ieic4igEKaA6boFxUFxdcewGIwCLnmeKAdVgjdJMalmLYn8QeZarqbji8vXN3TVPv6CeOYkX37t+5gSkpKSkpKSkpKdhS1wSH2Hn2Ai2+fQCb2M3v+HLPnzzK8d9+aVkB3J4W7O8NZIfCeRCyB+q4ZZDWy9MdBEWfeSFlsZwzVNl6n63VUDInto+KWyEyV0LcJXRNnItxme+9uQOITnDgqRCTqiUxIxUSkPsdvg4AlRFi3B2+mOn28l/CyhMGB1jdcE4jTOQYW3mVh8MjKmAuqzI48yMj0K9u6khdUK9z7zEPsffIB/vB7k/SfeY1d6dSG2y6cOs/CqfNURocYe/QoQ0cOYoK7+31acufJJOBt2cUZHeYenWY/s1yppIR4juokB5nhJGOcZaizbnwVjEC1UkSzGoF4Z55X73Z6Y9WspKTkKmwkeGe9I3h3WOv2HmSQXbpr027vSZlkmmm8dOKmGcX6n8HyM6ibx5sThfAt74FcRdQSReU0jtM4+3XET2D0WEf4HtnKQ98WNnKF+13jZH/tVwh+7gL1P/gu4Vtn1t0vfvc94v/uf6b12IPM/ZnP4feMYnyGsSHGxxhVVATrMqxLCFyCcQnWO/wacbhwQS+L4XcGwWPUIeoKFzew7N426roi4VUMjvCq4vY1n0eEKBDCjts7d54s92QUbu/AGtyy2zsQQmsJ7J0XAkt6H1VoZzlJrjhV0szjOpHl8W2MLF8mDao0q2PktkIa9xFkRa+zjYheOkHt6891jfm+Gou//is90R+6pjX2sKd7UKZ42fwrkGRlSIGl+q91bfbayTmSzPNnDi8Q9M7HJgBLl6bI20nX2NDhToR5ngMeohisLaKzegCDYMWSq8OjNG0V0QSTT0EeQ+aYS0doJOlNxZcDNOfncHlO38gYtYEhqn39W3Q0JSUlJSUlJSUlO5Fq/wB7jx7jwttvMryvELxnzp1lZN/+u17wjtQTqsfjaJiQVAzxFe3rRvpiWrljsBIy20xpZ45KuDNfFy+Wtu0jdktktob1CYFPMeLIzc27vHPNaaqnauJOrHlIZEKc5mRXS0O7jQgW48cR5oo+3gR4GojknT7e6yev/QsnaccjpJXhlbFWbTfN9jT1xvl122811cjyqz+3h2+cPsS/fnmBx+Zf5t7mqY4hpZv29Bxnv/08F3/4MiMPHWH0oSOEtZuPpS8p2QyphLwpezitI9yrU0wwv+6MEeM4ppc4xDTvMs4FBjvr8FfBSGFEeB+kiexE7vwKZklJyXXYGYI3AALzzDMv84XbmzHG9dpu77rWOcCBVbc3zRV9UhjE+g9h+RBKAy8nirhzOQly9WpLNedxnMfZbyK6q+jx7R9A2HVbXZO9QH5wL/P/uz9P+OYp6l/6LsHZy+u2qb78OpVX3qD1zOPM/fJnSUeLAgDxOdZneGPx1pJrBUWKftcuIcgzrG8TuPaaoOiin/hyDDgiW+QK70S5a94Rs5fd2x7Bd77q6pZiUWxXYcCtsM7t7ZXcKe3MISKEVnAqJLlijRBZ0+mxfMtPXXIXkjpPKykiy9NOZLmIUL3NkeXLZEGVZm2M3MYkcT9B3iLOljbc1l6cpu+ffrVrTI1h4d/9ZfzQnRcZRYV79fAVk33HOfNPSIP3urZNzOfJ4/GusRdOTNMXOH52V2+5umF9hHl1ZJDKYD94V7SwWJ5AVaKecNdDEV/uO/+1sTgbEmdnER8QthdZ8A8x3chuOr7ce09jdoZq/wBBFJau7pKSkpKSkpKSkg2p9PUxcf+DXDjxOmbffqbPn2X67HuM7NuP7ZFEpK2i5jKywBB6TyoBoaZdsyVrYLQek7s21dCw2M6JdnBbtkLwHiDSFgp4DQl8cssub4+n4VtUOrHmXiyhWEQM6TbEmgsG8SOdPt4zGLF4WQAzB34AuUK2EWBk5jiXdj+D2tVjnht6gCiZI8ybW77PVyICnzmccGCgzv/w8uf408YSjy0c5+HF14k1Xbd93kq4/JPXmHzhDYbuO8jYo0epjg1v8MglJbePtkS8JhOc1lGO6CS7WZ96WCXnYb3AYaZ5h3Eu0d8z6zAlm+fu/vQvKblr2EGCd4dUUs53/htkkHEdZ4ih67u9aTBJt9sbQKhj9QNY9wGUNl7e7gjf74Bc/SJU5TJqL+Pt90CHOz2+jyE6cfcI3yJkx+5h7v7DRC+8Qf0r38NOz3dvokrtBy9Sff4Vmp94iqXPfQzX348zEWlQRAMb9VifFjHnNsQFGUIfaNH327qk8zXF+rwQlvXK+HW5aVf4cn/tIpq887vXTj/ujsi98lxicAQ35d6+UUSEyAqRZSV6+kq3d+497UwIAiEu3d4lHbxXmqkj90rulSR3oBAGhvA2R5Yvk9kKjVrh6E7iAYK8TZRuLHRLK6H/t/4NJuk+hzb+zKfI7ztw2/ftZtjLXqrUu8Yy86ecsj/oGlPfR6P+F7rGZhYSTl9c4lcPLBLb3oq7d1nO/HsXu8aGD+8DFLKsELltAFFY9OvuAUIJUCBXR66eJO4j9LMYbWLantSPMNmoAP6m4ssBmnOzeO/pGxmlb3iUuFa//p1KSkpKSkpKSkrel8S1GhPHHuL8iTcY3XeQmXNnmTn3HsMT+wnCm4+57nUClNg7vIFMIlKxVK5wI9fjovhUVUmWUhaTjMFqb6RF3QwqQiI1LCGRb6LWYH1auLxxt9TLu+0TnHgqhKh6QhMSm4jMZ/htaJtmtA98iDdTGGynj/ccRvsRjbu2DVzCyOxrTI89vjKmxjIz+ii7Lj3ftW62nTwwkvOfPzPPP3yxj++HP8OPhj/Ig0tv8vj8Kwzl8+u2V++ZPXGK2ROnqO8dZ+zRowwcmkBKt2zJFtKQmJdlP/3a4j6dZIz1pog6KY/pORaIeYddTFEvRe8dRCl2l5TsGHae4A10ub1DDRlnnDEdIybecPO1bu8ZnWFSJmnQ6NIzhQpWH8G6R1AyVN7t9Pk+0RVpu35fZvH2OTzPgfatEb4PbhgRtOMwQvrUg6SP30/l2Zeo/dEPMEvdlZ2SO+rf+BHVZ1+i9ZkP0/r4k2gU4U2AsyHehGRRtfggV8X4vIiJclnR55tiAmVcRuDaBHmbwCWId50Pf8EgoKbQwbvE8PWucADxDkPeFU2+LHyv3tfgJVi97x3CGsF23N55l9sbQiM4NWS5YowQl27v9y2q0M4dSeaLfu+5x/kisjwKDWaL/igyG9Ooj68I3TZPiNLFjaf8Xun7X75CcHm2a7j9oYdpf+wDW7J/N0pVq+zVvVeMTnPc/rN1RU4u+QWa+w91jb341jRV6/nUnqv3Kr9TLJy9iLo1C1IiDB6aKIRugDCEoHfiy4PizE6mOYqnFVQw6jD5RSQDkzmm0v00EnfT8eXeORpzs9QGBgnCiOGJfVtzMCUlJSUlJSUlJXcNUaXKvgce5PyJNxjZv5/Z84XgPTKxn6BHrqW3gprPSI0l9o7EWEJ1XFkiO9oX08oc/ZWA+VZGJfTEvdbb6QZxJqQta13ewW1xeWea4dVRMTHeK5EJiUxErjn5NsSaG40RtxtvJ/EYYBEvCxhqoLWuQvlqa5L64ns0+lcL1LOon7mhowzPvbnl+3o1Riqe/+TpBf7563W+d67CywOP8nL/IxxuneaJ+Zc50D634f0aFyZpXJgk6q8z+sh9jDxwD7bsh1yyhSxKlRfkIEPa5D69zDCtddsMkPABfY85qrzNOLNSFuLvBEqxu6RkR3GF4G0DMs0Iox4XvDtkkt2Q23ucccZ1fMXtPcMMTrovMoUQ0Qcw7gEUh8ppvLyBNydArhFbK0t4+xM8PwGtYvQoxh9D9J51UUE7jsDS/viTJE8/QvVbz1P95vNI2i0MmVZC/UvfpfLdn9L8wkdJnn4E24lpUkDFrojfua2ShX0AiPcYnxXVsy5duY9R1xG+WwR50f9bdDVmvNC8Ow5vlS5X+LK4LaprqlClE01utsW9faMsR5mHHbd37jyZU1LnsEYIrcF5TysrtouDIq66FL7vfjKntNIcp1okADgFESqhJdjC2LjcxjRqu8hNvCJ0x+nCVd851a//gPj4O92PsX83S3/+s71Rtapwjx7GdBW3eC4Gv0XTXOreNH2MVv1nuqLcVJWX3prhk7sXqQW95eoGmD3V3VOtf88YYWwLsTsMC2d3vHFR2HZjALOmT3cLwQcV4vRMce5vt2lwkKklQy0yNxVfDtCYm0VVqQ+P0j86RlQpe7iVlJSUlJSUlJRcnzCusO+BwuEtEwdWBO/hif2EPXJNfbsxQMXneAMphtQEVH3etc1ynLnzRZH+QitjrC9CemG+dwusurwjIt/AW0PQcXlbcjJbuSmXt8PT9G0qJgJftLULJMBsW6x5gHG7wcygRjrtHJsIDrSvy6QzNP8WaTxEFq22Hmv0H6DSnqbantryfb0aoYG/+nCDw4M5//z1OjnCqdphTtUOM5pO84GFlznWOIH49Q70dLHBhR+8xKUfv8rwA/cw9sh9xIN3vrVayd3LnNT4MYcYpcF9OskA7XXbDNHig3qGKa3zjozTplyn6GV2uKJTUvJ+ZI3g7XIgIEt3juANrHN7L/f2vhW3d/GwFtF7MXov6j+PyrmO8P0myPrYnNU7tvDyMt68DBph9L6O8H0EuUq/8Z2AViKaX/gorY8+Qe3rP6Dy/ZfWXVDa+SX6f/ePqH7reZq/9HHSR+9DRBB1mNxB54NekRXx25mQJOyHCFAwPsP6DBNmGJdhOu5s61IC1yLMCwe41Qw6zvCNkqCKaPKwJ8Xta7Hs9o5UcR4y51fd3tJxezvFCESBIQosO7RVVsk18AqtNCdzy5HlHlQ7RRFmSxcUchsVQreNSOJBrEuvKXSHx9+h/rXvd+9/vcrCb/xKEZvdA+xhD3X6usYS813eNT/sGlM/gCafpLnnYNf4O+cWaTUTPnOs91zdWavN0sXJrrGhwxOQ5UVkuQkgigvBuwewEqz06c68J6sMEuQLGJ3HtBJyalxaHAO46fhyl+c05mapDw4ThGHp6i4pKSkpKSkpKbkhgihi4oEHufDWG4g50BVpHlUqd3r3toSqz0mkcHe3bUCOEFyx2NJXsSwlAc4rM42UxXbOQLU35ny3ijMBrY7LG8BpQOgTItckv0mXt6K0fEIkHnyEF08kRax56jN0i2PNBYP1Y3gW8AaMBnhZBJkDHUQ6/n1Rz8j0cS7vfhpd0/ZqZvRhxi//hCjbuJXZdvHx/Qn7+hz/8KU+5pJi/6ajUf5k7FP86fAzfFFeYv/l18lb68VFn+VMH3+L6eNvMXBogrFH76c+Mb7jizRKehQRpuljmjq7WOSITtLH+n7zYzQY0wYXsn5OmFGyUvTuSUqxu6RkR3IXCN4dMsm40PnvRtzeTZpc5vKGbm/ohGnrAYweQP1nUC4WUefmTZBrVDlKipfX8OY10I547o9h9CiyQz/IdKBO4899htYnnqL+1T8l/ukb67YJLs0w8Fu/R3Z4gsYvf4L8yP6u2wUlcCm44gNfYUX49jYgC6ogRe9v8Q7rM6zLML6O6UQ+Ge+wrk3o2tisTeATBEWxhdN7BwncGyEiBBYCa3Gq5Lkn80qaOqx03N7qaGee0ApRUDh9y+v1nY0qJJ3IcqdKmntyr1gjRKHFbvEvODfhGqF7COtT4mT+qu8mc3mG/t/5cvcxiLD4176IHxnc0n3dLBWtsE+vFDtneMP+DnrF+V7bnycPh0jq413jL5yY5md3NxiI7kzPsmsxd+p8V8GPCSyDe0aKH5bjy8PeuEQPsJ34codTTxJWMaoE2QXEp9hcmcz2spQI4/3RTcWXAzRmZxAx1IeHGRgbJ4zuTgdOSUlJSUlJSUnJ1hGEIRP3P8iFt99kBJi9cJ7Z82cZ3jtBVK3d6d277QiF4O2tkKonMQHWZ+vmgmN9Ee3M0VcJWGhlVEJLtMPjzFcQIZUaucTErkG6zuUd31QrvFQzPJ6YCK9KvNzHW3PcdsSa+wHQEG+mMVi8LKBmFuMHVkw5Yd5gcO4EcyMPrtxPTcjU+JOMX/4xYd682sNvC0eGcv6LZ+b5H17u58TsauFB21b5lzzDfUef4C8PvEbzjRO0pmY3fIyF0+dZOH2eysggY4/ez9B9BzHBlYH9JSW3AREuM8Bl+tnLPEd0iirrEx326iJ73CIXGYDmNNRG78DOllwNUdXey3Ys2TRnz57lwIGiR8d7773H/v37r3OPkmvRmJ/h2W//C5Jqscgct/Lr3ONOoziXo6pYG2CM2ZGC95Vsxu29jMMxw9Xd3huhTHV6fL+Bmoub2ykVRA9j9AGMvx9h50bp2PcuUv/Sd4nePH3VbdKHj9D4pY/hJsavus2VeLEd8bsQwVeqS9VjXY7xRey58Z3+3KoELqGSzBVC+l2Isur2dr4I0gqMEAQGK4XQHQWGuHR770hypzQzh/NFXHmWexCIg62NLF/GmZCl+m5yG9GOhzE+o5LMXfU0KO2Uwf/2fyG4NN01vvSrn6T9qQ9t+f5uCoVjeoz+rnOsciH4b3jXXuHqTp9Ek59jfvwYi+MPrIw32zn/r999hf/q8XOMxlu/EHGjnPja92jPLqz8PHx4ggNPHYMwKoTuao1eOCEYhEACcs1xeFpAFg8SJxcxeomwsUjb7+Kd6SPEQcDugQqHRus37urOMibPnKJveIT+sXEOPvIEQXh3uE1KSkpKSkpKSkq2H+8cF94+QXNhjrkL50nbLYb3ThDX7r6eqwrM25hELC0bUPE5oa4v+F1oZUwtpcw2U7xXRuo7P858HapE2ibwbUQ9oU8QPM5E5DfZy1sQqibGYgmNxRLg1JHp9qwXKxnOTqKSorKASobRPkSrndthZvRRWrXdXfczeZtdl39C4Nb3It5ucg//6kSNb5xZXxQ9GHn+xmML7EsuMvXKW8yfOlc4Cq6CrcSMPnSE0YePENZ2piGpZGcgquxjlnt1mpirvN/HH4bH//L27thdxFbomr1hGykpKblJ7h6H91rWur0HGGCX7tq023uSSaaZ3tDtvYwwhvVjWD6KuvlV4Vveu7pYLorKSRwnceYPEd3fEb4fQBi+TUe+PbgDe1j4zT9P+MYp6l/6LsHZS+u2iV59h/C1d0g+9AjNL3wUPzJw3cc16jDOgVsTfb5G/M7COllnMmU6zm+Xh+RBhThdpNKeQ7Y4Emq7EYTAFL2evHZ6e3sl67i9Ayt4rySZJzBCFBpCY0q3d4+jCs0sJ8sV5ws3t1MlNEIUbG1k+TLOBIXQbSLa8dB1hW5U6funX10ndLeffJD2Jz+45fu7WXax6wqhG1rm25w0z3eNqR9Gk4+hQGPwQNdtr7wzw1MjSz0pdLfnFruEboCh/bvABkWEeRz3hNANYMV2wsuVzDuyyhBB3sT6aUy6gPcDXG7sRtXcdHw5wNLsNGIMtaFhBsf3lEJ3SUlJSUlJSUnJLWGsZe/R+7n0ztsIwuzF88xeOM/Q7r1U+vqu/wA7CAFqPsNZIfCeRCyB+nXzwv5KSCNxuErITCNlKXH0V+4yWUCEVKrkEq26vDXF+hRDTmbiTtu8zaMoTd8m7vTxdqJEEmAk7MSaby1CiHV78GYKbwShgZclhAzRfgRheOZVnIlIK6trkz6oMLmrcHgHLtnivbw2gYG/eKzJ4YGc33mtj9Sv/nXOp4b/9ieD/IUHAj752XGypQZTx99i5o2T+HS9q9a1Ey7/9DUmX3yDofsOMPrI/dTGd9aabMnOQEU4ywjnGeIAsxzWaSJW15gUkCOfuXM7WLIhd9mnWknJ+5G7U/AGQGCBBRZkYVNu7xo1Dukh9rP/mr29u59iEOufxvI0yhJeTuDNm6icArlK/K2AylkcZ3H2G4juLkRvfwxhbENRvhfJjh1m7v5DRC++Sf3L38VOd/c1F4XKj44T//R1Wh/7AK3PPoPWN185KSiBT8GvjT4PVuLP86BCFtYI8xaKkAVVqq1pwjt8Ib5VGCmiy8M1bu8096QUfb9Da8i9Ijii0BBbg+kR0aukQBXSvOjJ7juR5ZlXrAjV0GK36fflTMBSbTfORLQrQxifU7lGdDlA9U9+SPzyW11j+b5xlv7Sz9Mr1RWRRuzX7kpOZZYTwT9G15yPVQVtfQEISerj+Kg7kvDFE9P85oFuQblXmD11ruvnoBLTt2sUggCioPjaAwRSJHPk6nDqSMIKohCml0CXsKlh1g0w1+y7pfjyPE1pLSzQPzpOEEYM7dl7uw+lpKSkpKSkpKTkfYgxlj1HjnLp5DsAzF++yNzF8wzu3kO1//rF/DuJSD2hejyOhglJxRJfEbUtUsSZJ7mjLwpYSDIqgSG8W+LM1+DF0rL9hJoUArXp9PL2rWItSqIbfszEpzjxVIhI1BOZkNjERdz5Bk7624lgMH4cYR5vpNPHe2mlj7dRGJt6kanxJ0nj1dZkLqh2Is1/gvV3Pk3xmYmUib55/v6L/Uy3V6PInQr/7I0+Ti4E/OUHYeIjT7D7gw8z++Yppo6/RTq/vv+4es/sidPMnjhNfe84Y48eZeDQBGLuvr/nkjuLF8NpRjnHEAd1hkPMEOC5yAB7+/bc6d0ruYLeWFErKSm5Ra4ieIch5i75oL/S7T2u4wwzfNvc3gBCH1afxLonUVp4ebsjfL8DcvWIIpVLOHsJ7HdBRzo9vh9AdG/vC99GSJ88RvrYUSo/eInaH/4As9Td10dyR+1bP6by3Cu0Pv1hWp94EqIbd94JYH2O9TkhLRTIgypp2EdeiYjSRXx9N1G6RKU9i7nLXN7LrHV7q2oRf+2VPHOYZbe3Kol4rBHiwBBY0ytmz/ctuVNamcN5JXdK4hwond+PbNt73YkthG4b0aoMYtR1hO6rv1/C109S+8r3usZ8rcLCb/zqTb2XtwSFe/QeLN39t86F/x+WZK572/Rp8BMALA4e6rrp/FSTCWbYW+u9NiSqytwVYvfQgd1IHIG1EN34ostWYIrlFHLNUJQUxQc1onQWTIOguUibPVxcGKcWBfTFAfuHa4T2xq83lmamMTakNjjE0O492B4R+0tKSkpKSkpKSnY+Ygy7772vEMBEQIS5SxdRVWoDg9d/gB1EzWVkgSH0jlQsobp1narDwDBUi/Ca0MoNC+2M0XrUM8XPtxURMqngJCRyTdQarGZYnxLhbsrlnWtOQz01E5P4jNAERBLi2PpYc0EQP7Smj3eAl3kws+AHCsF78gUmdz1FFq0mpeVhvePw/gnWr3dKbzcHBxz/+TPz/I+v9PHadPf89wfnK5xbDPjNJxYZrYaMPXKU0YfvY/HMBaZeeYulc+tTKQEaFyZpXJgk7K8z9sh9jDxwDzbujbl1yd1DLpZ3ZZy37TBH8ykuMEJZqt97lCtKJSVrCKaO82A0zVsM02CnfTBuIHhnd5fgDWzo9h7TMSpUNtx8rdt7VmeZlEmWWLpub2+hitVHse7RYqlf3u3Enb8Fcg3nsczg7bN4ngUdwPiHMP5hhN29LXwHlvbHniT50CNUvvU81W89j0m6L4RNK6H+5e9S+d5PaX7+Z0g+/CjchLixjABh3sK6lCTqJ6kM4fI2vuPyrrVnCPM7319oKxERokBW3N6582S5J6NwewfW4LwCruj3baUYNwZr5K6ck/YaqtDOHUlWRJWnna+BEeJweyLLl/FiadQ7Qnc8hFF/3fh/MzVL/z/+ErJmExVh8d/5Jfzo0Nbv9CYZY4wBuh0WDfsNTstPusbUjaHpRwBwNqQ1sLdrEefFE9P8wr7ulIpeoXF5mqzZ7hobvncfGAOV3llkClbiyyHzGXnUj/E5Np/CujnUDTDVGiB3dfYM3nx8eZYktJYWGdy1myAMGdxVVkWXlJSUlJSUlJTcXkSEXYfvxXTahRljmL98CfWe+tDdE38coMTe4Q1kYknFUtH1ho/BahFnPliF6UbCUuroi+9eecCLpW37Oi5vwZuA0Ldv2uWteBq+RcXE4MGLEorFSEiyDWKy0TriQpydxDCEsoA38xjtw2iFscmfMrnrKfJwNa4/D/uYGv8A45d/itmmXuPXoi9S/qMnF/m9t6t87WR3StuZxYC//dwgf/2xJR4azRARBg5NMHBogtb0HNPH32L2rdOoW++mzxYbXPjBS1z68asMP3CYsUeOEg/2r9uupORWSCXgdbuL2N9FWstdxN37aVZScqOoJ7zwQ/aHDfbT4JLWeM/0MetjrquM9gzvE8G7w0Zu7yGGMOvqVwu397IwfiNubwAhQvQYxh1Dcaicwps38HICpHmNOy7g7XN4+xzoGHZF+B65lcPeUrQS0frCR2n/7BPUvv4cle+/iFxxEWnnl+j/F1+n+q0f0/ylj5E+dvSWRJrCmTpHHlRWXN5xtkTDWMKsSbU9g9niWKg7zTq3d8c93M5cMSGXQuTOvGAFpBPpbIxgDYQd8dtIKYDfTlLnaaUO77UoQvCKbHNk+TJebNGj2xY9ugW9vtA9Pc/A//h7mFZ3gU7zlz5Gduyerd7lTRNpxEE92DXmmOWE/cesVelVDdr+BZYvX5f693d9tuW5J5u8wKGjd75ifSNmT3a7uiuDfVRHRwp3vbFXudf2EogtUjc68eWZsXgbE7cugTQxaZsFP8JsY4zRvpuPLwdYmpkiCEOq/YMM7d2Hsb3xGpSUlJSUlJSUlNxdiAjjh+5Zud4UMSxMTaLe0zcyeof37vZR8xmpscQ+JzEBoXrsFfNFERjvjzg366hHAY00pxJYAnsXLySsc3nLLbu82z7BiScmxK/EmkdkPsNvcUqhEK3p422ARbwsYsgxvs745Z9yedcHceGqkJxFA0yNP8HY5AuYDYogthsj8GePtjg84PifjveRuNW/v6XM8P/8ST+/drTJ5w63V9a4qqND7P/Eh9jz9KNMv/4u06++TX5FMTmAz3Kmj7/N9PG36T80wfijR6lP7NpWo0JJScmdoRS7S0qWmT6Bac+s/LhbmuyuNllwIaezAS65GrojRO/3l+ANdLm9Aw1Wentfz+19gAMrvb034/YunsoiegTjjqB8AZWzeHkDb94EuUaPWJnC2e/i7HcRP4HRhzH+QYTerDLU/jqNX/s0rU88Re2rf0rlJ6+v2ya4PMPA//T7ZIf30vjiJ8jvO3DTz1e4vNtYl5JG/STxAHme4MWQBxWq7VmirHELR7RzEBEiK0QWnNfinxZiq1K8ViKF6G2NQQyk4lkO0i4c4YI1hqB0f98UXpVm4si9knslyYvI8tAawmD7IstX9kcMS/VdK0I3KJXk2kJ39MKb9P2LP1ondCdP3E/r009v7Q7fCAqH9NC6+PKz4X9P84pzqqYfAb9r5efp/nu6MlhePz3PZ3bN0Iv43DH/3sWusaF79kFgeii+3HTHl2uGi0YI8jaWGUw6S+5HmVwapBLWbym+PG23aDcaDO3eQxBFDI7vuv6dSkpKSkpKSkpKSm6B0f0HkU6RqRhhcWYaVU//6Pgd3rPbgwGqPsebgBQlMZaaX+/kjQLDYC1CVWnnnoV2xkgt7Jmkqa1iI5d3sNzLW0Jyc2PzskwznDqqJibxSmRCIhORa06+xYKyYDt9vOfwRjqtGBsIOcYPMN5xeLtgtTA5jYeYHnucsakXkR4xlDy5O2VPvejjfam5uiagCP/qrTonFwL+2sNLVNYoWEG1wu4nH2L88QeYf/csUy+foDU1u+HjL54+z+Lp81RGBhl79ChD9x3CBGWRdUnJ3UopdpeULHPm2Q2HB2zGo3aao36OM3k/57I+8g2cw73F+1Dw7pBLzsXOf9dzexvMitu7RYtJJplialNubwDBIHoQowdR/1lULuDlTbx5A+Tqgoua8zjO48wfI3oY4x8uenxzc+64rcSPDbH0V3+J1s99iPqXvkv0xql124SnLjD0936X9KF7aXzx47iJm58oGvVUknlyG5NE/bTsCHG6iFYNaVij1prpiSrU7cIaWXEQK4pXUA/Oe7xCnrsVAdyYQgA3xmDdGve30BV9XsafXx1VSHJHO/NF3/Tc47wWvdNDg7kDL5wXQ6O2m9zGHaEbKsnc1dMO0oy+f/1NKj94ed1N+Z4xFv/tL/TUIsYoowwx1DW2aL7OWXmha0zd7qJXd4ckHiTq7y4WunT2Ip8fu0abiTvIwrlL+Kx7oWn43v0Qx3doj9ZTxJe7lfhyZyuoBATZeVSbmNQymVRpp7vYN3Lz8eUAi9NThFFMtX+AkYl9RR/FkpKSkpKSkpKSki1mZGLfyrqYiGFhehLvPQNjd4fzs+Jz2mKJvaNtA3KEYIMi6aFqSDPJGagos82URuqpx+8DEfBaLm934y5vj6fpW8SdWPNALIFYjBjSLY41FwziR4AQb8CoxcsCmDms84xPFg5vb1fnnEllhKnRxxibeumaxfPbyUSf4z/78Dy/fbyPFye7Cw5+cinmwpLlN59YZHe9ew3EWMvw0UMM3XeQ5qVppl45wfzJc8XCzhW0Z+Y5+50fc+GHrzD++AOMPXK0FL1LSu5CRHWDM0DJjuHs2bMcOFC4Kd977z32799/h/doB5MskL79LeT8jwjl6hVuuQrn8zqnswHa2uv1IopzOaqKtQHGmPeF4H0lm3F7L+PxzHBjbu8rURTlMt68hjevgmyif6waRO/rCN9HEW5OQNhqwjdPUfvSdwnfu7Th7SqQfOhhml/4KH5k8JaeSxGSqB8XxBiXEqeLWO+oJLNE6dKOyFnYalQLAdx5xWvhAF/+VF91fxfx5saw4v42K+7vQgTf5kTuniRzSivNCxe9K5z0iBAHhUP+TuARGvXdZEGlELpFqLRnryp02/OT9P/jLxFcnF53mxsbYv5v/lv4saGt3ekbINCAR/VRgjW1l45ZXoz+A9qytDKmatHmXwE/tjJ2YugD1CZWo8/nllL8S9/iseH1MWa9wMlvP8/i+csrP/ftHuXeX/wEhL1xHRFKsR+Z5uSak6ojq4wSuiWC/Ay2PU2rPcTp+UMM18YZrIYc29t/U67upNlg5vw5hvdM0D86xoGHHi3F7pKSkpKSkpKSkm1lYfIyk2dO0lyYZ/7yJar9Awzu2n1XCN6JWJZsSMMEgFDz2YbrJ+3Mc36uxVI7p5nljNbjbW/XdUdRJdSU0LcQ9QQ+weBwEpCbGy9KjiQklhAjhlCKNb3UF6lZW42XNt5MoZKhsoCKw2id3I4xuespvO0WkSvNy4xOv9IzgjeAV/jqySp/8HZ1XbJqNfD8xqNLPD5+7QKCdLHB1PG3mXnjXXx69W3D/jp7n36UwSMH7or3fMn20Q7AeE/sDZ/5ub96p3dnR7MVumYpdu9wSrH79tKYn+G5b/9zdlVb3Cvz1GV93M8yqnDZVTmdDTDve8eZtZ5S8F5BoZ9+dumuq7q919KixaTcmNt7/VMqKufwchxvXr92j++VO0UYvb/o7633IPRYtaFXopfepP7l72Gn5jbcRK2l/bEP0PzcM2j91hzruY1Io34UQ5QuEboW1iXUWtPYDSK53u/4ZQHcFe5vr7rq/hYpnN62ELiXncoiEBghMEX8+fvJ/e0VWmlO5pYjy30x6TVCGJg7NvFRhKX6LrKgShIPoSJU2nMbJxuoUvn+i9R/79tItv490X7qQRp//rNopbc+q474I4ww0jV2Mvw/c950u9J9+xOQfWj1Zwwnj3yBOF4Vin/6ylm+aH7Sk3+3eTvhtX/zja4K8/0ffYKRR+6/g3u1isVgxZBrjsPT9ikuqKNBlaj9NsbPYxqeU0t78P4wuwcqHBqt37Sre+q9MyAwtv8gu+45Qv/I2PXvVFJSUlJSUlJSUnKbWZye4vKpd2ktzjN36SLVvn4Gd+/Z8eKXAvM2JhFDy4ZUfE54lYLp6aWU+WbKdCNFRN4XceZXYtQT+SZGsxWXNwi5qeBvsJe3FUNFYgyG2IQIhkxz3DYkFCo53k7hJQFZwksboxXSYA9Tuz6Imu75W7VxkZGZ4z1nJHllMuQfvdJHM1//2n/x3ia/dKR1XcOGyzJm3zzF1PG3SecXr7pdddcIE888Tn3v3dHKoGTrKcXu28dW6Jq9YScpKekhPIbTDHJaB9ifLHIoXGTYro9FFYHdQYvdQYs5F3E6G+Cyq3JTVuAt5f0bab4OgUUWWZTFTbm9q1Q5qAfZz35mdZbLcvmG3d6CILofo/tR/zlUTuLNq3h5EyS9yp3Sjjh+HLSK8Q9i9GFED2x7r+ANMUL6gWOkjx2l8uzL1P7oWcxit4gvzlH99o+Jn3uZ1mc+TOsTT0F0c8JI4FJsa4Y06iON+8hdTJwustgXUWnPE6cLvfCq9AzLgnbQ6UWmKN6DU8V7JVfIsmKiJQJWBGOEfMX9XUyC7bL4bYuvdyLCeytRhTT3tDOHUyXNPblXrAhRZLF38HhXhG5bIYkHryl0S6NF3+/+EfHLb61/nChk6d/6DMmHHu65BYthHV4ndM+br60TujXfB9lTXWNv24PU4u5L2H3Nk0h3qnnPMHf6QpfQLdYweN/hO7dDaxDAisXh8Cipz1ExuLBOmE4iJsE2M2ayIVrJxC3Hl7eXlsiSNiMT+4mqNfqGR2/vAZWUlJSUlJSUlJRskv7RMcQYLp98BxHD3KUL6MXzDO3eu6OThwSo+wxnIwLvScQSqN9w3WS4FtFMcwYqITPNlFbmqUY9ZrjYYrwY2qZOoCmRb+FtQOASQt/CS0B2Ay5vp56mtjt9vCE0llACDEKmW2vWEAKM24WYoo+30QAvDcL8LGOTwtT4B1GzOo9u1fcwq47h2dd7ak3t0fGMv/VM0cf73FL3vP9L79Y4vRDwG48uUQuv7t+0YcjYI0cZffg+Ft+7yNQrJ1g6uz6hsnV5hnf+4FsMHN7H3g8/RjzUo4sKJSUlm6IUu0tKroow6WpMuhoDJuFQuMgu29ywemzIpgzZKZo+4EzWz/m8juupvt6l4H0la3t799PPuI4zzPBVe3uPMsqojt5Ub+9lih7fRzDuCEqGyts48yoqb8PVHktaePtTPD8FHcD4hwrHN7vvvPDdcW+3n36Y6rd/TPUbP8Ik3TFBpp1S//L3qHz3pzS/8FGSDz8KNxF7KyhxukiQt4te3pURwmwJrQhZWOu4vLe2H9JORRCsAYuwHBKgqjgF7z1OIcs9Re3yGve3MaQGbN5xf8OK8G1NEe3dY/rppsmd0swczntyVwjdAJXAEtg7e1CK0KiNk9sKSWUQL5Zqe3ZDoTt45yz9/+TL2Ln1lcr5/l0s/DtfxO8aWXfbnSbQgEN6qGssZ5q3gt/pGlMN0PYX4Irz8vzgIWprfj57YZ6n+2a2aG9vndlTZ7t+Hjw0ga1EV9l6ewkkQFGcejJ1eDwuHMT4FOsvYdI2Lq9wubGXwVqV0Br2Dd9cWoeqsjgzRVytEddqjEzs3/GumZKSkpKSkpKSkp1N3/AIxhguvvMWYgyzF84xe+E8Q3sndvR6Waie0Hu8cTRMSCqWeIM5pTEw1hdzwbWphpalJCcKzPsrzhxAhFxivISEfrmXd471CZFz5CbGy+aKABSl6dvEJgIPTjyRhBgJO7HmW3gYy328NcKbGQwhXuYJ8tOMTinTY0+jZvU4mn37EPUMzb15p1cYu9hV8/yfnp7nH7/Wx/MXu4sNXp6K+Ds/HOQ3H19kX/+112VFhIGDexk4uJfm5RkuPPcSjQuT67ZbOHWOhTPnGX3oCLuffJig2lupeCUlJZujjDHf4ZQx5reXxvwMz377X5BUizqQuNVddVeRnIPhIvuCJQK5+lsnU+Fs1s97eR9JT/X1LiLNvSrB+z3SfANutLf3LLNMyiSLLN6SoV9p4+VNvHkVlVNwjb+t1TuNYv3DHeG7N8QsWWxQ+/pzVL7/IuI2jsjKd43Q/KWPkT529KadpgqkYR95WMX4nDhZxGhOnMxTSeZ76gJ9p7Ds/lZVnO8I4Z3Lg+Ue31bAGIMVVgQqYwohPexEnxvpbQFcFZpZTpYXx5nmHteJLI/uYGT5yv4BjVoRXd6uDOIloNKew15ZAe491T9+jtrXnkU2uIxrfeIpGr/8cQh66fNnlXv9vYzS7eh9O/xbXDKvdo359mcge6J7u2SA+IlPdv2uLr/6Ck/Ku1u2v7dCsrDIm1/+btfY4S98jIH/P3t/HiVXdt93gp9771tiz8h9xVbYCkBtFFkLi6RFSaRES5Q0smVbliXLnnPcdo/7j3a7+8yZmT5n+q+Z4/bS7dPdtsft9tK2bGuhF4mSqIWiREm1sKrI2oBCAVWFPRfkFhn7W+6980cEkAjkggSQCWQC95MnDxAR9728LzMiXrz7/X2/v/3jD2lGq9yIL09siunGlxvpk4b9hPFlpFnBr7WYbo5Sae9nXznLaDnLeN/m58eNaNWqVOZmGZzcT3FoiKknT23zETkcDofD4XA4HPdGq1Zl9qNztBt1lqev4YUB/eOTSLV3Xc4aQcULaQtFIhR5E29oy5mvRlTbCQuNGF8KyrndUZz7sPBMRGDaCDSejpGkmG4v77sRUjyhyIgQgbgZax7bBLNBrPx2YonRav6WPt4JcXCQxaEX4bZ49kL1In0rH+269TRr4fcuZ/jVczmM7Z1dqCy/cKrO82MbpGauuz9L9dI0M6+9u2G8uQx8Rj51gqGnjiK9vfv6d+wMLsZ8+3Ax5g7HQ6ZtPc7F/XwS9zHp1dnv18jItVVkvrAcCqoc8KvMpjkupSXqZjd8UOw4vNEpqU7xnMO7h/t1ey+ySLpJn/eNEGRQ9lmUfhZLHSM/wIjTWHltk40W0erbaPVthBlH2lNIcxLBw4vcscU8jT/7Q7S+/9PkfvOPybz1wZox3vUlSv/8P5McGKfxE99PemTfXf8cAYRJHU+3iYISrWw/ftLEQtflvYSn17YecGzMDfc3CLw17m+LtpZEW6y+EX/eEb+V7ESgx8J0Ivvp3NdxgO8e97e1kGhDK9aYWyLLpRBkfbUrqtY7QvdwR+gOu0J3tFbolpUahX/9GwQfXVmzD5PPUvvZP03y1OEHNOu7p8/2rRG6l+TX1wjdNj0AybNrtv8kPMzJW55UUZzyFBd3ZK7bwfInva5uLxtSnBp9SLNZRdKJL09tJ7486joMtF9E6TrSVJDtlLbJstgYZ6gY4PuK0eK9Cd3WWupLi2RyBYJshoEJV5zpcDgcDofD4dg9ZIslxo8+ycxHH9I/OcXy9DWWpq8yMDG1ZwVvhSVjNEZCIhSxUGQ26B09UAhppZpSxqfSjGknmoy/N497O+g4uW91eSuUifDv0uWdWk3DtsnJkMgk+NIjED4a/QBizQOUHsPIRYwUCBoE8UUGFmFpsFfwrpcOIq2mVL2wo3O6W4SALx9os6+Y8k/fKVJLVuccacE/fbfIpWqLnzrS3FKIpBCCvoOTlPaNs/jBx8y9dQbd7l0/NHHC7Ovvsnj6I8ZefIby4X0P3RjhcDi2hnN273Gcs3t7uZOz+3YEllHV5IBfo6Q2ryRb1CGXkxILOsPD7+vtHN5bxbMegwwybIfJsnl063a6vQEsyxh5puv4Xhuzs84GCHuwE3Vun0TcYb47jbo6R/7Xv01w9uKGY+ITh2j+6OdJ94/d08/oCNx5Ei+HsJowrqJMShjXyLQriB0NiHr8MLbb/9sYTNf9bbmD+1vc6P/dcX+rByyAp9rSSjTaWFJjiVINFnxP4qsbEv3DxQLN7BCxn6MdljHSIxOtrInmD97/iMK//Qay0Vqzj/jofuo//2OYvsIDmvXdo6ziKfsUAavFXwkLfC/4r0hE++Z91gbYxl8BW+rZ/mrDZ/nJH6K/uBoptnzlKk/X3trxud8LVqd8+Ot/SNxcPbahp44y8blPPcRZdfCFB1gSq0lMSkqKVhm0XyBMziPTFK/R4pOVI6S2zERflv0DOQYK91a411ypsDJ/naF9BygNDTNx7MT2HpDD4XA4HA6Hw7ENRM0mM+c+oN1ssDR9FSkVA5NTqF2amnUnDFDxMkRIIumRMwlqg3WSRqSZq7aptmKi1DKYD5C7oDD8YeOZTi/vtS7vAHsX6wkZGeLjoYTE77aTih5AOz6LxcoVjKxiiTCiRjt3gOX+l9YkLvZVzlGsXd7xOd0LS23JP3q7yKXq2tfiiYGYv/ZMnWJwd2uAOoq5/vZZFt47h90goTI7PMD4S89SmBi+p3k7Hi2cs3v72Ald04ndexwndm8vdyt2r2LplxH7/RrDqrWpkFM3HpeTEjNpHvNQRZZewVtISeAE742x3NHtfSstWiyIBSpUaNO+b+HbcB0jT2PkaRArW5hvtz+4eQppjyLw728C94F/7hK5X/s2/pXZDcfEJ5+g+ZWXSQ/cW7SvEYooLGGkh5+28OMGyqRkW4v4un3nHTjuCWstxoK29qYD/Manihvu744ILpCSm8KykgJPiZsi+E5cP1sL7VQTJZ2o8jg1aGPxpCDcBZHlN+gI3YPEfr7j6JZBx9F960VvkpL/tT8k++3vrt1eCpp/+nO0vvRip+HaLuagOcgwqxeIFss5///OgjzXM860vgLpU2u2/9rSE7z4+ad77uv76A8pxpUdme/9YWlcm+PjP+wV4o/8mS+RG364rSc8FFII4m58eWTiTuFQZgjfLOIlc6impt4qcXHlABN9Gcr5gGOjxXsqVLHGMH/5IkEmS3lsnMnjp8gUdm9RhsPhcDgcDofj8SZut5g+d5ao0WDp2lWEhP6JKTz/4a2r3A8t4dFQHg3pI7HkzMZrnXPViHo7YaEeE3iCvuxuSKl8+AhrCEwLZWOk1Xim4wbWMkCLrRdC+MIjFAESQSADBBCbznXZTmNEEyMXsSLBiCrN/H5W+l9aM668fJZC/eo6e3j4JBp+8WyeP7m2NnFsMKP5L5+rcaC0eR/v9YhrDWa/8x6VjzYW+ksHJxl/8RnC8sNL1HQ8fJzYvX24GHOHY9ciWDYZlqMMOZGw368x4TVQ6/ReLsiUk+ESR4IKV5IiV5ICCQ8jGmhtpHmcJE7w3ggBNWrURG1Lbu8sWfbZfexjH23arNgVKqJCjRp2Kz25b0MygjQjWPNFrLiGEacx8gyI5gbzNVhxHi3Po62PtMc7Mef2CcQDfr4lxw6w8rd/juDtc+S//m3UQmXNmODMJwRnPuk4vb/yMunBibv6GdJqMu1lUi9L7OdJMwFBXMfkRwiSBpnWEtK5vLedm3HmCLg9/lwbtIUkNcR03d9CdJzeSpLozm3QCAGeFHhSoLoO8PvRouNbIsuT1JBoC0KQ8RXeLqpMt0CrK3RHQWldoVvNLVH8V7+Od+36mu11f4naL3yV9NDkA5z1vVGypR6hG2BR/doaodsmhyFd28v5essjO9Z7nK1ancldKXQDScLy5d4Cn7BcJDvU/5Am1EEikEKSWo3FEnefa8bLI0hR6Twi9RCp5mptknyoCH3FRDl7z6/JZnUFnaYUBobI9/U7odvhcDgcDofDsasJMlkmj59g+txZBqamWJ6+ytK1KwxMTOEFe0/8zdiUtlVkjKalPFIE3gbrI4OFgHaiKWY8VloJGd8Qem6N0ApJpPJ4xsc3LaxSeDrCMxFS6C27vBOboq0hK0MiE+NLn0D6pDYl3SBifruQNofQPlotIJHkG9NY8QbV8vM94yr9TyKMJt+c2dH53Au+gl842eBQKeXfnc2jb+njvdhW/J3v9PFzJxq8PHl3rQ2DYp79P/QSQ88cY+bVd2jMrE3XrF68RvXyNIMnDjP66VN42XCdPTkcjoeJE7sdjm2maX3OxgN8HPcx5dfZ59cIxdoKvUAYDgcrHPSrzKR5LiVFmvZBV4k6wfteSEXKXPdrK27vTPdr1I6i0VRtlYqosMIKibi7yCKBQNgppJ3Cmi9jxcWO41ucBbFBlL5IMOJ9jHwfbBZpTiDtKYTd9+AinIUg/tRx4meOkHn1XXLfeAVZWyvUBx9cIPjgAvHxAx3R+4mtV3UJwE9bKB0TBUWiTB86bWMQJF6GbGuJIF0b/+zYXoQQeAKQHfXb0ok+N9Z2osQtJMmN3t8dwVtJQdIVzkX3/bLj+u4I454UXWF8c4y1NCNNejOy3IC1+Erie7sjsvxWWpkBoq7QrVVIGN8SXW4t4evvU/jaNxHx2veJ6Nlj1H/mR7C5e+uh/CCRVnLQHuy5L2KOj9Uv9txnTQYb/TDrRWH83vV+Pvtsuee+gdrFXfYX7WJSTJKwcm2u5+7+owceeqKAEgrT/UpNR/C2SLSXxdfXEEahoibz7QNo6zGQCyllfYqZe7tkMMZQX14iWyzhBT79rle3w+FwOBwOh2MP4IcZJo+fZPrcWcTEvpuCd//EFH64t0QuAeRMilECaQ2R9FAmWfdaypOCwXyINpZ2oqm2EoYKwUO/jtktpDJAC5/AtLAKpPXwTISvm12X953XdQ2GpmkRyhBMJ6nQFwop5M1i5J1C4KP0KEYuYaWkWJ/Biu9R6+tttbU8cBJhDbnW3AZ7engIAd+/L2KqqPkn7xSpRKtrsYkR/IvTBS5WPf788QZ3W6eRGx7giR//ItVL08y89i7xSq13gLEsnv6I5fOXGPnUCYaeOor0Ht/e9g7HbsOJ3Q7HDpGguJD0cSkpMeY1OODXKMi1H1qUsEz5dab8OvNphktJiWUT8uD6ejvB+565xe2trGKIoTv29lYo+umn33bcfQ3boEKFFbFCg8Zd/dkFEmGfQOonsHwFKz5Gy/ex4iMQG1SEihZGfRfDd8EWkeYU0pxCMPpghEClaH/+U7SfP0X2T94m+803kPV1RO8PLxF8eIn42H6aX/kc6eGtCyTSarJRhURliIMCaSYgTOrYnCJJmmTbS0i78xFRjg4CgZId97d/u/vbrLq/b/b+vuH+lpJYgkptdz+3xp93BPAb19vWQpRq2onB2I7IrY1FSUHoqy0J5Q+aVqafOCgQByW0FxJGVTzdKVgR7Yj8L/0ume9+sGY763s0fuoHaL/87Jr+WruVKTtFyOqCkMXyif8/kt5WoGOjL4PNr9l+OVLUS1P4t1ypGmMo167s3KTvFWsgSaldX0bHvfGA5aMHHtKkOnidDAYSq9FWk9KZn/YLSBp46Qoi9knTAnONMqWMj+8JJsr3XlDRrCxjjaE4MEShf5Awl9umo3E4HA6Hw+FwOHYWLwiYOH6CmfNnEXIfS9dWBe8gs/uLjm8lsBqv6+5uKp9ESIIN1kUKGUU9Umjjs9SIqbVTStm9GeG+E1ghiFQOz3g3Xd7KRHgm7rq8wzu6vC3QNhFGGEJ8rDX40ieUAYlJMDuYTCiQKDOEoYqRUKrOYPGo993SMkwIlgZPIRY02fbCjs3lfjhcTvnvX6rwT94p8lGl9/n5rSsZrtQUf/3ZGuXw7n6XQgj6Dk5S2jfO4gcfM/fWGXS71ylu4oTZ199l8fRHjL3wNOUj+11BiMOxC3A9u/c4rmf39nLvPbu3gmVQtTng1xhUm/cQrmqfS0mJOZ3bUgzOds1vtYe3QkjlBO97wUKBAoN2kDJlArYecZWQ3BS+V1jBrJMIsLUptDHiQ4w8gxUXYCux6XYQdVP4foD9ZKOY7J+8Q/ab31lX9L5BfHR/x+l9ZN9d7d4ISRwU0SpApRFBUu/08m4vEySN+529Y5uwdHp/W9Nxf9/oAw5dAVze6P8tu+7vzvuilB0BXOtOv/BEd2LLERB6uyuy/FZaYZkoLBEFRVIv0xW6OxdP3qUZiv/q11GLK2u2S8eGqP3CV9ETw2se260UbIET9kTPfXPqa3zk/eue+0xyHNo/vu4+fvlimQPPf4bJ4VUhXFWmGZ9+Y/snfF9YSGIwlouvv0/16moVfH58mMM/8QMPbWYSgSc8Upuib/bpthjhkWZKBOllZAJBvcrl6klqic9Uf5aRUshU/70J1EZr5i9dIFvsozQ8wv5Tz+DvsUVBh8PhcDgcDodDpykz58/SqlVZnpkmjSP6xycIsnurkDNBUvUCWsJDC0F+A3c3QKotV5dbNOKUaiuhPxcQuDjzNQhrCWwLZSKkNd1e3mbLLm8AhSQjQySSQPpIZDfufGdjzQGMaGHkIkYkVPsOUC892TvAGobm3yYTLe34XO6V1MAvf5jjW1fWGo/6QsPfeLbGkfK9r+/rKOb622dZeO8cVq+/Tpsd7mf8peco7KG1Gse94Xp2bx+uZ7fDsacRLOosizpLQcQc8GuMeQ3W02JKKuFptchRU+FyWuRaUiDdICJ7O+e36vDWeECc4ATvu0VAnTp1UeeSvUSWLGXKlG2ZPPlN3dM+PsMMM2yHMRhqtsaKWKFChUhsvd+MIIOyz6L0s1jqGPkBRpzGymubbLSIVt9Gq28jzDjSnur0+KZ4N0d/94QBrR98ntbnnyPzyjvkvvkdZHWtCB2cv0xw/jLJkX00v/IyyZF9W3K1SmvIRCukKiQKirTUAGFcx2YlsZ8n21pEPYALCMfmCDpiNkrgrXF/rwrZVt+IP+/2CpcCKUXX2d2NLJcC35O7tqq2FfYRhaVO6sCtQrexZL/1Brmv/xHCrL2Aar38LI2f+gEI9k5FvbSSQ/ZQz31tZrig/n3PfdbkoP2ldfdRTyRn4iFeHu51fJerl7Z3stuBTsEYUgO16d4eXw/d1X0zvtySmBTbdQrooICyK6gkRrahGU9RiTwGCz6+koyVNk4quRONylKnAGxggOLgkBO6HQ6Hw+FwOBx7EuV5TBw7wcxH50AIKjPTLE1fo398gjC3Nplqt+JjCIzBSE1D+sRCEW6wHuIpwUDex9hOnHmtnTCYD/ZMutiDwgpBJHIofALTxCq56vJGk6o7u7w1hqZpk+nGmntS4QsPKSTJDseaS5tF6DGEWqC0cgUrfBrFw6sDhGRx6FmGFr5HGFV2dC73iifhZ080OdiX8m/OFEjM6u97JZL8vTdK/MyTDb5/Krqnp68KA8ZffIbBk4eZfeN9KufXrkW05pf55Ne/RengBOMvPktY3uG1VIfDsS5O7HY4HgJ1G3A6HuSjpI8pr84+v46/jos3IzXHggpP+CtcSwtcToq07U6+bJ3gva0IaHW/ZsQMnvXoo4+yLVOihLfJW7BE0kcffbaP/eynZVussEJFVKhTx27FrQ0ICijzPIrnsbrS6e8tT2PF/IbbWDmDZgYtfw9hD3Sizu2TiE3i2e+bwKf9xc/QfvlZMq++S/b3XketI3r7H12h73/9JZLDUzR/5GWSY/u3dLHl6QjV6vbyDoskOiQUklSFZKMKQVzbnb1/H2NWe3+v/mWM7bq+tcFYiNPVcC8lBIGvULvUzQ3QDkpEYR+xnyfxsgRRDU9HiGqD4i/+JsHZi2u2MdmQ+s/8CPFzxx/8hO+TCTtBhlWB02L42P87aNF7wW7aP7zh+8s3Z4ucOnJbdXTcIlO/vu3zvS+shjQF5bFyeRp7S8GCUJLyEw8veccTCguk3fhyTWdBy6gQqzRetAQ6i4ybTDcH8RWUMh6jpQyeurfXk05TGpUK+XI/yvPpn5jcxiNyOBwOh8PhcDgeLFIpxo8eY+7jjxAIlmenWZ6Zpjw6TqZQeNjT2zI5kxBLSWA0sVD4Vm9orSlmfBqRRme6ceaRpphxUsJ6aOnTFiUC28ICxvp31cvbYmmZNoH0wQQYYQiEj5QBsYl3MNQcBB5SjyBkhXLlAlZ4NAurxdpWKhaGnmNo/ruEcXUHZ3J/vDwRM1lY4R+/XWSxvdpHW1vBL35Q4MKKx8+daNxsr3e3BMU8+3/wRYaePsrMq+/QmFm7rlq9OE318gyDJw4z+umTeFlX8O1wPEjcGcrheIhE1uPjpMyFpMREt693Tq6NVvGE5YBfY79X47rOcikpsWLCdfa4HTjBe6dIRcoiiyyKRYQVFChQtmX66Nu0zzdAtvs1ZsdISanaKhVRYYUVUrG1OB5BGWU+hzKfw3D9pvCNWBuX3N0AKy6h5SW0/QbCHu4K30cRdxHPflcEPu3v/3Sv6L1SXzPM//gqff/ol0kOTXac3scP3FH0FlgycZVUB8RBkVZmkCCpgxDEfo5caxFltrN1gWO7udHP25OdqxOL5YamKCUPpu/8PdIOirQz5Y7Q7ecI4jq+buOfvUDx3/wmsrY2xj85NEHtL38VM9D3EGZ8f+RtnjHGeu6bVb9KRV7suc9EJxH6yLr7aGvBH8yV+Bt/qr/n/uLKlV32l7YQp4AEz2P50nTPo6UDE6hwh94z74DsfqU2wWJJbOc9zgLaz+DpJWSqUFGDSvwEzcQyWgoJPcVQ4d4/Z9SXFxFCki/3UxoewQ926jOLw+FwOBwOh8PxYJBSMXb4KHMXPgZg5fosldlp+kbHyBZLD3l2W0NhyRiNlRALRSQU2Q3c3ULAUCEgSjX5wKMWJWQ8ie/izNdl1eUdEJgGRkk8E+OZGEVKojJ3dHnHJsEIQ4aQto0JpU8owx2PNRdIhBkAG9C/dB4rfFr5idVjkx4Lw59i+PpbnXW0XcqBkua/f2mFf/pugQ+Weq/BX5nOcK3u8VdP1Zks3vvvMjc8wBM//kVql2aYef0dokqtd4CxLJ7+iOXzlxj51JMMPXUM6d2jwu5wOO4KJ3Y7HLsAg+RqWuRqWmBYtTjg1+hXa2OrhYBRr8Wo16KiAy4lJa7rLGz7sr8TvHcaKyw1atREjStcIbQhZcr02T6KFJGbxNZ7eAwwwIAdwGJp2AYVUaFChRatLT0dJCNIM4I1X8SKaxhxGiM/ALFBH2thsOI8Wp5HWx9pj3X6e9snEOzAhzbfo/2nvo/2Z58h89p7HdH79g+QgH/hGn3/+FdIDk50RO8nD95R9PZ0jGotEQf5bpR0SBjVqBUCMu0Vwri6y4Q0x0YIBGoPvCVFQZF2pp/Yy60K3VGd3G/8MblvfmfNeCug9eWXaH7lc+yJA7wNYQWH7KGe4oOWuMJF9Us946wuYuMf2PD19oezBfZNlslne6vg85XL2z3l+yNNAQNBSNRs07ze28/sYUaYr8aXQ2KSm/HlxsuCjPDbdUTqY+N+ZpshmUCSCzzGy1nu9XSfJgmtapXCwCDK9ymPTdx5I4fD4XA4HA6HYw8gpGT0iSMIKTtrD0JQmZvFWkuutDeKlLMmIRKK0KREykNrg9rAO+x7knIuwNiIdiqpujjzO6KlR1uU8G2rc9t6+CYi0E3SLbi8U6tp2BZZGRIZ8KXXiTVH3Cxe3imkLSB0wMDiORaFop0bvfmYlT4Lw9/H8PW38NMN1g53AYXA8l9/usZ/PJ/jGxd7jUWXqh7/w6tlDpZSXp5o88J4TN6/e9+8EILSwQmK+8ZYPPsJc2+eRrd71/FNnDD7+nssnv6YsReepnxk/65tt+dwPCo4sdvh2FUI5nWOeZ2jJCMO+DVGVXPdz5BlFVNWCzSNx+WkyHSaZ+PwoXubixO8HxyRiJhjjjkxh7SrEeZlyvhs/EFY0HGIF2yBKaaIianYChVRoUYNs048/u3bCzuFtFNY82WsuNhxfIuzIOINNkq64vhpsFmkeRJpn0LYfdvvrPU92l/4FO3PPk3mtffJ/u5r64veF6fp+ye/SnJgvCN6nzi06cWXwBLGdbw06vTyzg7gxw1sRpD4ebKtBbwd7o3keDyI/AKtTD+xlyUJ8vhxg3B2huL/+XX8SzNrxutSnvrP/xjJsYfb4/l+GLfjPWkVFs1H3t/BiN7qad36EnKDVIvEwO/OlPjRHxjsuT9oLOAlu+jC2uhOr27PAympXJnteVhlAor7xjbYeGfxhIfF3hJf3jkfWCTG9/DSRUgzqKjF9fgAqbEMl3zyoUc5d++94etLiwgpyfWV6RsZw/P3Tp95h8PhcDgcDofjTgghGDn4BFLKjt4tJSvX57DGkC/333kHDxlJR/A2yiexlkgqcpuk3PVlfRpRSl8WFhsRjdiQD51TdTOsEMQiRypCQt0gvkuXt8XSNG1CGYABLQyB8JDCJ9rhtSpBgKdHGZr/iPkRRZQduvmYUQHzI9/HyPU38dLWjs7jfpAC/uyxJgdLKf/idIFI9/6uL1Y9LlYL/PKHlmdHYl6eiDg1mNy110AoydCpI/Qf2c/1t8+y8N55rO5d90jqTa78/ussvHeO8ZeepTAxcr+H53A4NsCJ3Q7HLqVqQt6LQs6LlP1+jUmvjrdOn+acTHkyXOZwUOFqUuRKWiDatr7eTvB+GBhhWGaZZbEMFvLkbwrfefKbbhsQMMIII3YEg+mJO483Eq+7CCTCPoHUT2D5ClZ8jJanseI8iA0ifkQLo76H4Xtgi52Yc3MSwdj2Ct+eR/vzz9F+6WnC77xP7ndfQy2t7RXkX5qh7//3NZL9Yx3R++QTm4reyiRk20skfp4kyKO7Lm9dGCeMqmSiFcSOdkdyPMrEfp5WdoDEy5IEBfykSeE7b1H4pd9Btte+HuOTT1D7S38aW8g9hNluD1mbZZzxnvum1b+nKq/23KfbzyDsoQ338yfXCxg/w5HJ3jjA3eXqtpAknQx95WN9j+WPrvSMKD+xD6ke/EKQ7OaDpDbFYont6oKIDkKEiPDbMaSCJJ5goQn5UBEqxUR587Yam5HGMe1aleLQMJ4fUB4dv/NGDofD4XA4HA7HHkMIwfCBQzc/60shqS7MY42hMDB4h60fPhmraVuP0GhayiNF4G2w9iEEDBdDri23yAUejTgh9CSeci7VO2GEoqWKBLYN9Lq8tQxI7+DyjkyMFoYMAZE1BNInI8NO3Dmbm1vuB4FCmSGG5y8wPyKJMgOrx6RC5rsOb0+3d2wO28Gnx2LGCiv8o7eLXG+uvS5PreCtuZC35kJKgeGl8YiXJ6K7jjlXYcD4i88wePIws2+8T+X8pTVjWvPLfPLrf0DpwARjLz1Dprw3Wh84HHsJJ3Y7HLuctvU4F/fzSdzHpFdnv18jI9eedH1hORRUOeBXmU1zXEpL1M129Ah1gvdDRUCDBg3RYJppfOvTRx9lW6ZECbVJhLhEUqZM2ZYBaNomK6xQERXq1DeNOxf4CPskUj+JpY0R5zDyNFZcgHWKLjob1TDqNYx6DewgypzqRJ0zsP74e8FTRC8/S/TCU4RvnCb3O6+hltb2HPcvz9L3T/8Dyb4xWl/5LPGpwxuK3gIIkgZKR51e3tl+/KSJBZJuL29Pr20r4HBsRuznaGYHSVSWOCgQ1Cv0//tfJ/P6e2vGWqVo/MT30/7+79vTcXA34stvbcPQEBe4pL7WM87qPkz0BdQG5xBt4RvTJZ49PoCUq78PoROy1el1t3koJF0B2ffBk7RW6sQrvckTDyPCXHAjvrzj5Y5vqfw3QmF9QRBVsWTwW5YrURGLoT8XUs4F9+XSqC0uIJVPrlSmPDaO8tylhsPhcDgcDofj0WVwaj9Cdj4/CymoLS1iraE4OPyQZ7Y5AsiZBKMEyhoi6aFMsuEyUeBJ+nIB1lqixFBtJwzk/D19/frAEIJYZElF0OPyViZGkpLIECs2Xl9NbUrTmm6seYIvfQLpo21KsqN9vAWe7mN47irXxyRxWL75mPayzA93HN7KbG6sedhMFjT/rxdX+MbFDK9cy7ASr/+7rsaS37mU5XcuZTlQSnl5IuKFsYhCsHUDTFDMs/8HX2To6aPMvPYOjen5tT/n0jTVyzMMnjzM6KdP4mUz93xsDoejF7cC5XDsEVIkl9ISl9Mio6rJAb9KSa2NrpECJvwmE36TRR1yOSmxoDPcX1/v9QVvX3koz0UXPUgSkbDAAgtiAWEFRYqUbZk++siw+QekXPdr3I6TkPS4vvVGzm1AkEHZZ1D6GSx1jPwAI05j5bWNf5hYRKtvo9W3EWYcaU8hzQkE21S56Cmizz5D9MIpwjfOkPudV1GL64jeV2bx//f/SDo1SvMrnyV+6siGF2PKpGTayyR+jsTLk6qQMK5Rz48SxDWy7YpzeTu2ROxlaWaHSFWGOCyQuXCBwf/jl/DmltaM1cP9VH/hx9H7RtfZ095ijLGe9AlDykf+/4i9pZ2CtYKk8cN4cuP3qzcWcixGHs8d6y2UyVWvIXfwYv6uMGknwtz3O87uMGT5rQ96hgSlArnRB+/qWI0vN6Q27an416GH1BEqBhGlNPQklUjTl/UJPMFE371faCdRm3aj3okuDwL6Rvb+c9rhcDgcDofD4bgTAxOTN80gQkiqi/MYYygNjezqHr2hNbStITSapvJJhCSwG7uFy1mfZpRSylqWmzHN2JBzceZb5obL27cdM8VNl7dpoaVPKjY2LBkMDdMiI0MwnX35QiGE7Clu3gk8k2F0dobZcUUSFG/er/0c8yMdh7fa5W0Ac77lzxxt8ZOHW5xZ9PmT6ZB3rgekdv3X56Wqx6Wqxy9/mOPZ4W7M+VCCt0XPV254gCe++kVql2aYef0dotvbMVrL4umPWD53kZFPnWDo6aNIVyjucNw37lXkcOwxLIJZnWdW5+iXEfv9GsOqta5+N6giBtU8deNxOSkxk+Yx9yx63yZ4W0gsaGPwfB+5ez+/P7JYYalSpSqqYCFDhjJl+mwfRYqbxoj7+AwyyKAdxGKp2RorYoUKFdq0N6yNEBRQ5nkUz2N1pdPfW57Biusbz1POoJlBy99D2AOdqHP7JGKDXr13hVJELz1N9PxJwjc/6IjeC5U1w7yrc5T+2X8inRym+SMvEz99lPWetB2Xd/NmL+92poyftrAIUi9Htr2In+7umCbHwyXxsjRzw6QqJAoK9P3eH9D3td9GpGtF2vYLp2j82S9hM9uRwvFwydgME3ai576r6l9TF719yU30fQg7uWHRibHwW9dK7B/NM3ib8JrbLRHm1kCSglQgPQhCrIXKx70R5v1HDzzwxS2FRACJTbEYErvae88ogZUCr9XCWg/ZyjHX8pDSUM76DBdCAv/eE1tqi4t4fkC2WKJ/fAIp3cKXw+FwOBwOh+PxoDw2jrgheKsbPbwtfSOju1rwzumU1JN4xhALhW83XjWUEoaKIXHFkPU96nFC6EuUWxDcOkKQiAxa+AS6iVUSzyZIExOg7+jybpsILQwhPtYafOkTyoDEJJgdNGcooxidmWV2XJEGq23XUr/AwvCnGL7+XaTduO/7bkFJeHo44enhhEYieGM24JVrIReq68fJayv47vWQ714PKd4Scz61hZhzIQSlgxMU942xdPYTZt88jW73pkaaJGX2O++xeOZjxp5/mvLR/bv6/cLh2O04sdvh2LMIlk2G5ShDTiTs92tMeA3UOhHTBZlyMlxa7eudFEg2ib/e7GfeKnhLawCPJDZ4zuX9cBHQps0ss8yKWZRV9NF3s9e3t8nbvUBQokTJltjHPtq0WbGduPMaNewGseWCMsp8DmU+h+F6V/g+DWKtw/rGHK24hJaX0PYbCHu4K3wfRXCfYp9SRC8+RfSZk4RvnenEm88vrxnmXZun9M//M+nEMM0f+SzxM8fWFb2l1WSiCqmXJfbzpJmAIK5jciMESYNMe7n7/Hc4VklUhkZuiFSFJIli5H//F2TfObtmnAl9Gn/uy0TPn3oIs9wBLGviy+viPFfVr/UO04Po1ot4m5wr3l3OMt0K+InP9DqivahG0Fr7mn7wWEhvjS9X4HvULk2vuXAtH93/QGcmACUU2mosluiW6nqLRYchno5QWiBbHjXbRz3WDBVDfE8xXLx3V3fcahE1G5RHx/GDkNLQyDYckcPhcDgcDofDsXfoGxlFKsX1i58ghKAyNwvW0jc6tmsFLB9DYDRGQkMGxEIRbpKmlfElfVkfrCVONdVWQr+LM79rjFC0VaHj8jYgpIdv2ltyeSc2wVhNRoYYYwmkTyADUpuS7mASmmcsY7MzzI5Pkvqr145JUGJ++DmG57+3e5LYtkDet3xxX8QX90VM1xWvTIe8NhOyEq1fbFCLJb97KcvvXsqyv9iNOR+PKN4h5lwoyeCpI5SPHmD+7bPMv3sOq3t/T0m9yZVvvc7Ce+cY/+yzFCbc9bTDcS84sdvheARoWp+z8QAfx31M+XX2+TVCsVaIC4XhcLDCQb/KTJrnUlKkadevXtsYgVI+Umq01qRpgpLKubx3GVpollhiSSyBhQKFm8J3jtym22a6X6N2FI3uiTtPxPrRRJIRpBnBmi9ixTWMOI2RH4BorP9DhMGK82h5Hm19pD2KNCcR9jDifk5NShK98BTRp08SfvcDsr/zGt71tdHR3vQ8pX/xa6TjQx3R+9nja0RvAfhpC6UjoqBElOlDpxEGQeJlyLaWCdLmvc/V8UiRqJBGfphUZeDSAuP/7N/iLVfXjts3Su0Xfhwz3P8QZrkzjDJKgcLN24aY8/7f7S2UsZKk8WWkDNgoOsJa+M1rJQJfcupQueexfOXSfTXj2DZ0CsaAH3TeM8IQgOXzl3qG5UYHCfuK6+1hx+jEl3c6dSemI3jfwPgAAr8dY1MPm5SYbQoCT1AMFWOlEE/d+2+4triAH4Rki0X6JyZvulocDofD4XA4HI7HieLgEEJKrl/4GCEklbkZ7Ow05dHxXfsZOWdSYqkIjO66uzWbzbQ/F9CMU4oZn+VmTCsxZANnfrlr1ri8BcomqC24vDWGpmmTkQEY8ITCEx5KSBKrMTtkzvC0ZmxmmpmJKbS3KsgnYZmF4WcYmn9nTxpDJgqanz7W5KeONPlgyeeV6ZDvXQ9IzfrXyJdrHpc/9PiVczme6cacP3WHmHMV+Iy98DQDJ55g9o33qdy2hgDQWljmk1//A0oHJhh78Rky/dvUCtLheExwYrfDsSmW++t1/WBJUFxI+riUlBjzGhzwaxTkWnFSCcuUX2fKrzOfZriUlFg2IXdzrEIoPE92BO9bXN7xDZe3Uq6wc7cgoE6duqhzjWsENqCPPsq2TIlSjxvzdhSKfvrptx1hrmEbVKiwIlZo0FjzlBEIhJ1C2ims+TJWXOw4vsWHIKJ1fgIgEow4g5FnwGaQ9nhX+D6I2PQSaxOUJHr+FNGnTxB+9yzZ33l13X7J3swCpX/566Rjr3RE7+eOd7K5bkFaQzaqkKgMcVAgzQ4QxnVsTpEkLbLtpT1VverYflIV0siNkFqfzG+/Rt/Xv4mwa6t7mz/wGZpf/VMdN/AjQmhDJu1kz32X1b+keVtrAx29AHoEucmxn62GXKiHfOpYP4F/yzhryFWubuu87wmrIU1BeZ0I8zAEKdBRTPXidM/Q8tEDD3RqHgoBxFZjMKSsRshZkWD8Al4Sg5V4zZAFnSVKNWN9GUJfMVgI7/lnR80GcbvFwPgkfpilODi0DUfkcDgcDofD4XDsTQr9A0gpmf34PEJKlmeusTwzTXl84mZv792EwpIxKVZCLCSR8MhuEkktJQwVQhLdJusr6lFK4Lk483ul1+UtMNLDu9HLW/ikcn2Xt8XSMhGBMECAweAJj0D4ICzaGlKbbnu4uadTxmauMTs+hfZWDVRxOMji0CkG599H7mCk+k6iJDw1lPDUUCfm/M3ZgFemQz5Z2Tjm/HvXQ753PaToG14cj3h5MmLfJjHnQTHP/h98kaGnjzHz2ts0pufXjKlemqZ6eYbBE08w+plTeNl7T2FzOB4nhLXrrMY69gxXr15l3759AFy5coWpqamHPKO9TaNW4ZXf/3dE2U4dSFipdxa0PQWb9EzZvVgGVZsDfo1BtXmf4ar2uZSUmNM57F0K/NZqtDaARUrV/RZdl7f7sLubkVZSpEjZlilTJriLOPGE5KbwvcIKZp00gRtYUqz4CC1PY8V5EFsQh20eaU4g7UmEndq0B/kdMYbg7Q/J/fareLOLGw5LRwdp/fBLRN/35BrRG8AISRwU0CpEpRFBUkeZlEx7mTDZwMXueKRJVUAjN4qutin9698gc/7CmjGmkKP2l/40ycknHsIMdxALx+1xSqxWG1fFGd7z/589hTBWjxBX/xxKBpv2cf4HZ0b4YCXD//WrR9k3uuoUz1RnGLr6nR05hK1jIYo7/w0DCPybru6ls59w9Q/fvDlSSMmJn/9xvMy9C8h3gwQ84ZNajUYTmfgWV7clDQGZJdOoQlzAtHJ8XPPxlWS0lOHQUJ6+3N2mvKyycOUSQkgGp/YxeugIhYHBO2/kcDgcDofD4XA84jSrK8x+fI6o0WB5+hpeGNA/PolUu6/42QAVlSESkkh55HSCuoNgOV+NqLYTFhoxvhSUc/fZns6BtJpAN5GkN13eIO/Yy9sTilAEN80snlQoFAKBxZBag95mk0bs+8yO78OoXi9l2JpmcOH9TY01e42ZhuTV6QyvTodUNog5v5WpYsrnJiJeGIsohRu/jqy11C7PMPPaO0SV2rpjpO8x8qkTDD19FOk53+rDpu2BNIbQSL70g3/5YU9nT7MTuqYTu/c4TuzeXpr1Kn/yR79E5AmQgrDSAK0B2xG9leoKYHtPwC2ImAN+jTGvsWnMeNsoLqdFriUF0rv6YGLRRmO0QUqBVAohJJ5SKOU5l/dewEKWLGXKlG2ZPPktC8wGQ40aK2KFChWijVzcgKWNEecw8jRWXIANeoL3blRCmpNIcwrB6L0L38YSvHOO3G+/gjezsOGwdGSgK3qf6JR23v64ComDAhZBGNfxdBsvbZNtLaKcy/uxIZU+jfwo6v2LFP/tb6KarTVj4mP7qf3cj2H7CuvsYW8zbIc5aA/evK1p83bwN2mLWwpKrCSp/yw2HcDzfDY6f35SC/j/vj/GUF/I3/zpkz2PDV5+nWx9dgeO4C5Ik06EeRCC50E2c7Mv3ce//gc0pled7KWDExz8kc8/sKn5wsNiSa0mMWmvq1tFpGGZoN1GJgK/muFaXGSppZksZ+nPBxwZuffnZrteY3l2hsGJKQqDQ0ydeGrX9iN0OBwOh8PhcDgeNO16nZmPPqTdqLM8fQ3lewxMTO1KwbslFA3l05Q+AkvObOzuBtAGrlWaNCJNpRnTl/XJ+LvvuPYc1uLbGN+0ENbgmQiJRguPVG5eUK2Q+NLvJn8JpBB4wkMiAIG2mtT2try6H2I/6ArevX/3TPMyA4vvI+/CULMXMBY+WFyNOU82iDm/gRKWp4cSXp5s8/QmMefWGJbOfsLsG6fR7fXXU/1CjrHnn6Z8dL+75n6IOLF7+3Bit2MNTuzeXpr1Kn/ynf9EWxiwhkw96jQRNRoSTafWUXac3kqxF0XvUKRMeXX2+XX8TZy4qRVcSwtcToq07dYrx6w1aN354KSkQkp5i8v70anqexzwrNcTd+7dReeLFi1WWKEiKtSp9/buvQVLAyPPYsRprLyytZ3bQaQ5iTKnENyjg9BYgnfPdZze60QG3UAP99P84ZeIPn1yjehtEZ1Ycy+D1AlhXEUaTTaqEMS1Pfju4LgbtPSpB4Nkf+2PyP3Rd9c8bqWg+aNfoPVDL6zpB/8oENiAp+xTKFYvaj/2/jdm1e/2jDPtL5A0P4VSalNX9/92doi3l3N86fkJPvfM6M37Zdpm/NzvIB5mDJrRkMQdkdvzIZfpFMABcb3J2V/8es/w/V/+LOUn9j2QqXkopBDENkVbQ2zj1QdFQpIJkCZD2FqB5iBJEvLJiiCfUQzmQ46PFe+5v561loXLl1Cex8DkFONHjpPrK2/PgTkcDofD4XA4HI8IUbPJzLkPaDcbLE1fRUrFwOQUape5NC1QUSGxULSUR0Yn+He4DmtEmrlqm2orJkotg/kA+Qhe/z4MpDUEpom0SY/LO5Uh5g7rq4JO+lcgvFW3t1Aosf1u7ygImR2fwt52vZ9tfEL/8vtIm7vvn7EbaSaCN+c6MecfV+6clFa4EXM+0Yk5X0+v1nHC/NtnmX/3HFav/7fJDvUz/tlnKUyM3O8hOO4BJ3ZvH07sdqzBid3by02xWxoQgkxCx82VJB2d2+iO09toQHQEb7U3I84lholuX++c3Lha01qY0zkuJ0VWzFYjWS3GaLQxSNF1eSPxPOfy3qsIKyhQoM/2UaZMluyWt01JqVKlIiqssEIq1n++WaoYeaYrfG/NxSnsKNKc6vT4pm/Lc7qJsQTvne+I3teubzhMD5Vp/vBniT6zVvROZUAcFrFIgqSOn7ZQOiLXWkKZ5O7n5Nj1aOnRqvnk/8/fwF+nWEIP9FH7ha+SHpx4CLN7AFg4Zo/Rd8trriLe4XTw/+4ZJvU4Ue2nsVbieR4bFYhda/r8D++MIwX8rZ95isItkdqFhfOUr5/ZkcPYGhaiqFOw4IcQ+hCsVqdff/sDZl9/7+ZtGfic/Pmf2LQ3+XYh6VTppzZFY9bElxu/ReoPk2k2IMnj1eByVKQeafYNZBkqhOwfvPeFh1atSmVulsGp/ZQGh5l88uSdN3I4HA6Hw+FwOB5D4naL6XNniRoNlq5dRUjon5jC8++9ndBOEAlJXQU0pYdBkDfJHQv556oR9XbCQj0m8AR92UfLzftQsRbPxgSmhcDg6Y7L2wiP5A4u7xtIJMFtbm8lOrduuL211Zj7KDBvhxnmxqawt7UDzNXP01d5D2kLiEco1vx2ZhuSV6dDXp0OWY7uvBYwVUj57ETES+Prx5zH9SZzb7zH8rlLG+6jeGCC8RefIdNf2nCMY/txYvf24cRuxxqc2L29rBG79S0f6dK0I3qnBjCQ6nUizvdiXI9lWLU44NfoVxtHTwNUdMClpMR1nWUrrnaLwWiNMRal5Govb89HrtMP2bF3CG140/VdpLjlXjwWS4MGFVGhQoUWrXWfSpYljDyNlmdAbBw3fivCTCHtSaQ5geAuY3mtJXj/I3LfeAXv6iai92BfR/R+/mQ33eHGfAWxnyf1s0iTEEY1pE3JtFcI46pzeT9CaKFI3psn/x++hUjWFm5EnzpO/c//MDaXeQizezAM2SEO2UM3b6c0eDv4m0SicvM+YT3Sxs+TxkU8pRCbnB//j/ODvLaQ59j+En/xy4d7Hhv96Jv4cX3bj2HLJDEY0+nT7XmQXS30sdZy7ld+m2i5evO+gScPMfX9zz+Qqd0aXx6bBM1q5beVDdJMGS/x8dstZLNALclxuarpzwX05wOeHCsSbJSjdgc6ru6LeH5I/8QEE8dOkC26i2yHw+FwOBwOh2MjkqjN9Lmz3Ujzq1hrGZiYwgt2lzi8ogIioWgqn9CkBHbjVEiA1FiuLrVoxikrrYRyLiC8x+sMx/pIa/BNs+PwvunyFl2X99bXon3h4QvvZkKbEgpPSATyvt3erUyWudHJbvvPVfK1s5Sq7yJNCXEXiZF7EWPh7FIn5vy7c3eOOZc3Ys4nIp4ZjtfEnDfnl5l57Z2etmk9CMHgiScY/cwpvOyjuwa1m3Bi9/axE7rmo/0O43BsJ57X+TYa4qTj5va8juCdaujGyey9iHPBvM4xr3OUZMQBv8aoaq7rvi6rmLJaoGk8LidFrqV5zCYip0CilEAI0+nnbSxKKYxJnMt7jxOJiOtc57q4jrSSEiXKtkwffQSb9OQRdBziBVtgiinatLnGNZZY6nnJCAZQ5gtI83ks1zuOb3kaxMqG+7byKpqraPm7CHuw0+PbHkdsxYUuBPHTR4mfOkJw+mOy33gF/8rcmmFqcYXiv/sGud9+leaXXyR64SnwFAJLmNTxdEQUFGllB/DjBjYjSPw82fYino7X+cGOvYSONPzG2xS+9+Gax6zvUf+zP0T00tM8ym9svvXZZ3sjui94/7RH6AYg+lOYtIQQIDYpbppvK76z0HEXf+pYb1uCoLn4cIVuk3bO+b7fuWAPeyvn24uVHqEboHz04AOZmtdd0Ei7Vfi3Ct2IBOMpsFm8uIJNBjGpZr4FnhT0ZTxGiuE9C90AzeoKaZLQPzZBttjnhG6Hw+FwOBwOh+MO+GGGyeMnmT53FjGxj6Xpqyxdu0L/xBR+uNUkxZ0nrxNST+IZQywUvjWbrnB6UjBYCDA1SzvRVFsJQ4XA9RXeRoyQRKqAZyIC08IoD0/H+KaN6fby3oqbMbEpiU2RSHzp4VuLtjfc3gpfKHzh3ZPbO9tuMXJ9huujEz1rIo3ikwirKdbeQ9oiwu6e5/p2IwWcHEw4OZjQfFLwVjfm/KMNYs6NFbwzH/DOfEDBNzw/FvG5yYj93Zjz3HA/T3z1+6ldnmHmtXeJKr3rD1jL4pmPWT5/iZHnnmTomWPIXdYeweF4kDhn9x7HObu3l02d3bdj7J0jzj0FezCmJSNS9vs1Jr063ga9lgEiK7mUlLiaFNB3OM5bXd5SyW4/b+fyfuSwkCNH2ZYpUyZPfkub1alzWVymIRqb7NpixTRGnMbIM7DJ2NWNFMI+0Yk6t0cRmwjxvdtZ/DOfkPvGK/iXN45U1wMlWl96kfaLT3df750+V4mfJ/FzSKMJoirKpoRRlUy08nB7DzvuGXt1Gfkrr6GWqmseS8eHqP2VH0ePDT2EmT1ALByxR+in/+ZdS/I7fOD/f3qGhXqSZuPPk6Yaz1OITSrN/80n/fzhXJF81uO/+Zmnevq79U9/j3zl8vYfx1awBuK4I3L7AWRC8HsvGqdffZuFd8/dvO0Xcjz5sz+244s6q/HlCRq7Jr7cqippOI4fGVQk8RqSxbTAdDVlpBRSzgWcGCvdXnC/ZawxzF++SJDJUR4bY/LJU2Tyd5mm4XA4HA6Hw+FwPKakScLM+bO06zWWrl1Fpwn9E1MEmd3jzKxJn7ZUNFRAYDThFty+syttau2UpUZM6ElK2d0V0f6o0OvyTlEm4l5c3jfwum5vb123t0VbTXoXbu9GrsD8yPgaE0Bx5X0K9fc6PbxtDrFnTGL3z1xD8upMJ+Z8qX3nv9FkIeXliYgXxyP6ujHn1hiWzl5g7s33SVvrJ7P6+SxjLzxN+egBV2yyQzhn9/bhYswda3Bi9/ZyV2L3DaztOLuTBLTpLJDrRyPi3MMw6dXZ79fIyI0/2MRWcjkpciUpkm4qeluMMZhuQYBSEiEUnpIoz3+UzZCPLb71b8adlyjdjEraiEUWuSquEovNXdAWgxWXMfI0RpwF0b7zZKyPtEeR5hTCPrG1+CRr8T+40BG9L81sOEyXi7S+/CLtl57uJD4AWnjEYREjPfykiZ80UCYl11rE05u3DHDsIoyFP/4Q9c33EGZtfFvr88/R+MkvQvDoX8gP2AEO29WY8YQq3wv+Jomo3bxPWh/d+CukacetrdTGvborseT/8d1JUit4+ekRvvzC5M3HhEkZP/fbSLM2Kn7nsd34cttxc3se3BYJZo3hg1/8Omlz9b1n5FMnGHvh6R2fXSB8DKYbXx6jueV5KRukfhYYINNcwUb92Ag+qXkICRN9WfYP5Bgo3HtUYmN5idrSIkP7D9I3NMLYkWP3f1AOh8PhcDgcDsdjhE5TZs6fpVWrsjRzDR3HDE7t3zWR5hpBxQuJhCIWiryJ72jlSbXl6nKLRpxSbSX054L7SpNybI5nbvTy1ng6RpLeVS/v2xFIAtkRvSUSiUBJhUICAk03tZPNY+0B6oUiC0NjawTvvuX3yDVPI6yHsKVHuo/3ehgLHy55vDKd4btzAfEWYs5PDSZ8biLimZEYX4KOE+bfPsv8u+ewev21+sxQmYmXnqMwObITh/FY48Tu7cPFmDscuxEhOm4vvxtpHicdJ5jngU47Pb5vRJz7N0TvvaHqpkgupSUup0VGVZMDfpWSStaMC4ThSLDCAb/KlaTI5aRIsq6oKW727dZak6YaqSygMNaglIdSe68owLExiUhYYIEFsYCwgiLFm3HnGdZWLQ8ySL/tZ87OMSNm0GL9D24C2Ykq1wexfAUrPulEnYsPQax9jnY2SjDiTMcVbjNIexxpTiLswY0/YAtBcvIJVk4cwj97sSN6X5xeM0xVahR+5ffI/u7rtL70Au2XnkH5kGkvk3g5Ej9PqkLCuEY9P0oQ18m2l53Le7dTayG/9jry47WR9iaXof4zP0L87OMh9HnWY7/d33Pfx94/7hG6ATLJF6iZAsZ0XN2bne9+b6ZEajuPP3dbhHm2Ov2QhG46525jOo5uKdbElwPUr13vEboBykcP7PjUPKFu9unuxJffstAgEqxMsbKfIGpgdD9+FDGb9hHrmIlChmyg6M/f+wKa0Zr68hLZYgnP9xmYdEWWDofD4XA4HA7H3aI8j4ljJ5j56BwgWLp2heWZawxO7UfugnUxhSVrUqyEREgi4ZG1m1+feUowkPcxthNnXmsnDOaDR7rN18MklQFGePimiVUCaVUn5lwbEpXB3uXas8UQmZiIG25vhWcsCatubyX9Lbm9C/UaVkgWh0Z77l/pfxphLdnmGZDLYPoe+T7etyIFnBhMOTFY52dPdGPOr4Wc3yTm/L2FgPcWAnKe4cXxmM9OtDn4/NMMnDzM3Bvvs3zu4prt2gsVPvn6H1DcP874S8+S6XdtxxyPB4/Pu4nD8SBQCrKqs0ieppAIUHQjztOO+5t0z0WcWwSzOs+sztEvIw76VYa8tU5aX1ieCKrs92tcTQpcSkrE64reEqUkUmi00aTGdHt5gzYG37m8H0mssFSpUhVVsFCmzD67b43oLZGMM86QHeIa15hnftP6EIFC2KNIfRRLghHnMfIMVnwEG4jliDZGvIOR74DNI80JpD2JsFPrRykJQXLiECtPHsT/8FJH9L5wbc0wValR+NVvdkXvF2l/9hkCmjd7ebczZby0hUWQeFly7UX8dAuudMcDR5yfQX7tdURjrQs/eWKS2s9/FTPw+Fww7Lf78Vm9AJuXf8yierVnTNFMsRJ9CmNSpBSbxpc3EskfzHair6dGcgyXe98H8pVL2zj7u8DqzvlbeZ3itDDsXJHexvL53vllh/t3/AJSdr9Sm2CxJPbWwh4LsoH2hpAGVKwgsbRFjqVmQiFUhL5ispy9r/Nro7KMtZZC/yCFgSGCbO6+j8vhcDgcDofD4XgckUoxfuQY1z48Q3l8gsWrl1memWZgcmpXRBBnTEpbeARGEykPrQXqDgX7xYxPI9LojM9SI6YWaYoZJz/sFKu9vGMC0ySREt+08XWrK3jf27pzalNSmyKIu729PbSVCMCTHp5QeMLrJI5t4PYu1lYwQrA82OsurvQ/jbCQbX2IkRWkzSNs9p7muZfJepbPT0Z8fjLielPy6nQn5nxxg5jzZir51pUM37qSYTyf8rmJDC++/CJDTx9l5tV3qE9fX7NN7fIMtSuzDJx4grHPnMLL7p5WCQ7HTuDONg7HTiAlBAH4/mrEuVSdiPO0G3Gu0859noJ76KnycBAsmwzLUYZSEnHIrzLitdaM8oTlYFBjn1/nalrgUlIksmvfboRUeFKiddpxeUsDeMTG4CkP5e2V34vjrhFQocIKK4wwwoSdwLvtlOTjc9AeZIQRrnClI5Lfcbc+yp5E6ZNY2hjxYVf4vgAb9Z8XDYx6E8ObYEud/t7mJILRtcK3ECRPHmTl+AH8c5fJ/fYr+B9fXbNLtVKn8LVvkv3d12j90Iu0X36GjNWkXpbYz6MzIUFSoyFH8JMG2fYy0t45CsrxAEg18vfeQ/7Jh2seskLQ+uGXaP7Iy6D2RrHSdlC2ZQZZdV7HLPOJ9497xng2IG7/aaw1GGPxvM0/Yv7+bIHIdH6Hn7rN1e1FdYLm0jbN/m6wEKdAN50l8G62JbgVnSSsXOh93ffvsKtb0HF1m66XOzZJ7zKTbGGkj6FENqpjdD8qarKQZDA2oT8X0pf1KdzHQpPRmuZKhXxfGeX7DExM3nkjh8PhcDgcDofDsSEdwfs4V8+epn9skqXpK6xcn6M8Ovawp4YEsibBKJ/EWiKpyN0hfUsIGCoERKkmH3jUooSMJ/FdnPmO0nF5K0JdJ1FZfN0RvFOZuac+3jewWGKTEJPcFLitsSQIlJB4QhFs4vbuq1awQlIZGFq9UwiWB55GLBqy7QsYUUeSgi08Vn28b2UkZ/jJIy1+/HCLc8ser1wLeWsu3DDmfKbh8avnPb52PsepoQIvf2aEw+1LzH/nXaLKbWun1rJ05mMq5y8x8tyTDD19DOk7SdDxaOKe2Q7HTnJrxPlN0VuCvRFxriHWIGRH9N5DEedVE/JONEwhiTnkVxlVzTVuMSUsB/wa+7wa19ICF5MS7TWit0ApHyl1N9o8QUlFYjsub8/31zPVOR4RrLDMMccCC0zYCUYYQd5WeZojx3F7nIqtcEVcob2V/tyAIIOyz6L0s1gaGHkWI05j5ZVNNqpi1KsY9SrYQaQ5iTKnEAzeNk6QHD/AyrH9+B9d6Ti9P1q7X1VtUPiPv0/um6/T/MEXaH/uWVQYEQdForAPnUYYBKmXJdtaIkibWzo2xw6xWEP9yquIa8trHtJ9RWp/+cdIj+x7CBN7eCirOGBXhVyL5bz3v5KKRs+4Qf0FZnQJrW+4ujdezGhrwTdniwD4nuTUof6ex3OVyw/nTJimgIEg7CSwbNAvr3phGpvechEvBH2H9687drvwhNeNLzekNr2tcj7BihZaHsDXCSLOIeM2TZmn0kooZXx8TzBevr8q7vryEljI9w9QGhrGD11VuMPhcDgcDofDcb94QcDY4aNMn/uAvpFRKnOzeEFAoX/gYU+NjNVE1iM0mpbySJD4d+jZ7HuSci7A2Ih2Kqm6OPMHghGKtioS6gZWCXwd4Zs2qQzQYv2Y7Lsh7YrZEQJfePh4aGu6bm/V6/a2GtM1dJRXlrBSsFK+ZV1NCJYGn2FwwZJpX8WIBkKkYEuIdRNCHw+kgCcHUp4cSPnZEw3emgt5ZTrk3PL6fz+L4P2FgPcXAnLeKV546jCfaZ9Bn36XtNWbUmiSlNk33mfxzMeMvfA05aMHdkWChMOxnTix2+F4UHhdF7cxkCbdiHOvc/vWiHNPde7fI6J33QS8Fw3xiUg4GKwwvo7oLQXs8+tMenVm0jwXkhIt23uiFkLheV2Xt9Zdl6tHEndc3lIp97n4EUYLzRVxhev2OvvsPvrpXzOmTJk+28e8neeauEYqtt7PV5BHmU+j+DRWV7v9vU9j5ewmGy1i1B9h1B8h7Ogtju++W8YIkqP7WTm6H68regfnL6/Zlaw2KPynb5H75uu0fvAF5OeeJcmViIMCaXaAMK5jc0MkSYtsewm5Se8jx84g3rmI/LW3EPHa51X01BHqP/sVbP7xi9bab/cTsCr6Xpe/T0W91TNmyOxnIXoWawzWWtQdXN1/NFegkXYuYE8eLBMGt1zMWkt+ZZOClJ3iRrsRz+sUpWU2XoxZPn+x53ZxahQ/t3PCr6ITF5fYFIsh6emVZ0E1MLIPQQa/3cTYLCKNmW+DFIJyzmeoEJLx733RQKdpx9VdHkB5Pv3jztXtcDgcDofD4XBsF5l8gZGDh5n75DxpnFBbXMDzfTKF4kOdlwByJkErgbKGSCo8Y+64YtmX9WlEKaWsZakR04gN+fDxFTEfFFZI2qpAaJqgwDMCz8QIYUhluD0/A0tsE2J7u9tbI2+4vYUPYtXtXV5exApJte+WtT4hWRp8lsF5QxjPY8QKVlaQpohg/cLzx4mMB5+bjPjcZMR8N+b8lTvEnP/BtRx/wGeYOniSH4q+S9+lM1jdu76YNFpc+dZ3mH/vHBMvPUthcnTd/TkcexEndjscDxopO64xP+i4yOJbI87T7rfujPO8jut7D9CwPqe7ovchv8q411jjyJYCJv0GE16DWZ3jQtxHo0f0XuvyllJhLUijuy5vp3g/ykQi4iPxEUVbZJ/dR558z+MCwQgjDNpBpplmjjnsRvHkGyAoocxLKF7C6iWMPI2WZ0AsbLiNFXNoNYdWv48wU0h7EmlOICjcHJMe2Uf1v/oLeB9fJfeNPyE4t47oXWuS/89/QPab36H1g5+h+YVPExUGiMISaRpjhCT1MmTaS4RJY832jh0gSpC/8V3k9y6uech6ivpP/gDRF557LKvQ+2wfQ6zGjUXM84n3z3rGBDaDSn6IxAi00R1X9yZ9wRIDvzO9umDz3LFet0KmPod64H3s7WryivIh8LtJK2tJGi3q13p7YZWPHdyxmQlACYVGY7FEt8cGyhYWi1Ej+EmEMQW8douKLVJvxwwWAnwlGS3dnxjfXFlGCEm+3E/fyCjeBq53h8PhcDgcDofDcW8U+gdIJqYA0ElMZW6WQd9/6IlKgTV41hAaTVP5JEIS3KENmxAwXAyJlw25wKMRJ4SexFOP33X1A0cIIpnDt51rWmslykT42pKo7X0uref2vuHo9qVCCkXYdXsPLi9ihKBeKt/c3krJ4vBzDF1/myCRWKoYudLt453b1rnuZYZzhp840uKrh1ucX/Z4ZboTcx7p9V9PV9s5/hWfpzDxLF9pvs7Y4vk1BSrthQqffP0PKe4fZ/ylZ8j09627L4djL+HEbofjYSFEp6e373cE7iTtCtv2lojzqLv43nWa7QG3d8v6nIkH+STp46BfZdKrrxG9hYBxr8mYanJdZ/kk6aNuglse77q8TUf0ttYAiji2eEqhlPc46k6PFTVR4wxnGGSQKTvV4ywFUCj22X2MMMJVrrLE0j29PAQDKPMFpPk8lusdx7c8DWJlw22svIrmKlr+LsIeRJqTSHscQcf1mx6eovo3/wLeJ1c7Tu8PL63Zh6w3yf/at8l+8w1aP/A89S++SFQapKUGCOI6NjtI4ufJtpdQd+iJ5bgPppdRv/wqYrG25qFkdJjqL/w4dnJwnQ0ffaSVt8WXG877/wtGtHrG7TcvcT4ZwGzR1f3qfJ5K0hkzUAo5ON7rVMhX1haJ7CxdoRs652NPbhhfDlD5+DLY1QIb6Xv0HZjYsdndiC/X1pAYjb0tvhzRwsgxpAWvLbGpJbUBiy2NrwSljMdoKXNfi0rGGJorK+RKfSjPo290/P4PzOFwOBwOh8PhcKyhf3ySuN3GGks6fYXlmWkGp/bf8Tprp8nrhNSTeMYQCYVv7+zuDjxJXy7AWkuUGKrthIGc/1gWkj9whCARGSySwDSxUuKZFoFukagMdpvXl291eyskvvSxxiLQSCHwhEcofCaXV5iWitotiQVWKhZGnmNk7l28VCBodmLNSRG2sGkx/eOGFHB8IOX4QMpffLLBd68HvHItw4cbxJzXvSK/WvoSQ+Gz/KnlV5hsTa8ZU7s8Q+3KLANPHmL0M0/taGqdw7HTOLHb4dgNeF7n25jOont6I+JcQ6LBxIDsLMLvkYjztvU4Gw9wISlxwK8x5dVRtzlwhYBRr8Wo12I+zfJJUqJqbsTqCJT0kEKjtSFJU5RUpNZibrq83QeeRxoBiyyyzDJjdowxxlC39e4JCTlsDzPKKJe5TEPcmxtaIBCMIs0o1nwRK6Yx4jRGnoGN9iksVlxAywto+w2EfaITdW6PIghIn5ii+n/783gXrnVE77MX1+xCNlrkv/5tst96g9YXP8PKD32BuFgm1RlCUSVVIZmoQpA0utH+jm3BWsRr55G//Q5Cr/291j/3GRo/9f0o//F9j9ln9xGyGnM2K7/Biny3Z8y4PchC8izWgjEaKeWmF6LawjeulW7efu5or6tbphGZ2iatBXYCnXbOtX7QKSoLN492Wz7XW7zSd2gK6e/Mx2nvlvhygyFlbXy5JYNRfQTtBGMzeFGD+bREK44ZLWUIPcVQ4f7i6lrVFay15Pr6KQwM4vn33+/N4XA4HA6Hw+FwrM/IgUOkUUT/2CSLVy6zPHONwcl9CPnwrk89LKHRGAmpDIiEIrOF9mvlrE8jSihlPJZbMc3YkHNx5g+MVAYYoQh1HStz+KaNr1skMoPdoTVVjUGbqNPLW/gEeJhuwbgnFeOLiyAktfxqkqOVivmRZxiZO4On55DWw4gayAqYEsJJWGvIePDyRMzLEzELrU7M+avTIfOtta+vhXCY/zD6ExxoXeZzS68ymCz3DrCWpQ8+ofLRZYafe5Lhp4/t2DqHw7GTuGetw7GbuLHQHgQdp3eSgPTA6o7T+0bEuVKd7z0g9kbW41zcz4W4I3rv82t468ROD3sthr0WC2mGC0mJiulUkq3n8rYoTJTgec7l/ThghGFaTDNv55myUz2xyjcoUOCkPcmiXeSquEos4nv+eQKBsJNIO4k1X8KKyxh5GiPOgtggXllorDiPlufR1kfao0hzCmGfID00SfW//HN4F6c7ovcHF9ZsLhst8r/xR2S/9QbNH3iB5S//IK3cIEFSxwpBO9OPNAleGuHpNl4aub7e90qjjfwP30Gem1nzkMmELP7cn8E8ewhlkocwud1B0RYZYeTm7RYzXPT+Zc+Y0GYp6y8wnfoYo7GAUpufk95azDEfdYRSIeDZ28Tu3MoVBHfXluC+MN3zqvI6seVh2E1RWZ/20grtxUrPfeWjB9YffJ9IQApFajUGS3z781G2AINWoyhtUZECnRCRY6mZkAkUuUAxXs5udkh3xFpLc6VCJl9A+R7l0bH7OSyHw+FwOBwOh8NxB4SUjB05ytUPTtM/McHS1StU5mYpj40jHuICWNakRFIRGk0kFIHVd/TcSgnDxQzTukXW96jHCaEvUbdHQDp2DCMUkSoS6jqJyuLpNoFpkcoQLXZOGrJAYhOSddzeQ/PTaDFJM7caVW6U4vrICUZnPZSZRqIwVDt9vG0RYben5/ijyFDW8OOHW3z1iRbnK52Y8zdnb4s5F4JLuQNczu7jZO0sL1a+Q173JveZJGXujfdZfP88w88+yeDJw070duwp3LPV4diNCNHpGRrciDhPQCjAdMRurTtuNNkVvTfoLbqbSFB8lJS5lBTZ3xW9/XVE7yGvzZDXZkmHXIj7WDIhqy5vgzaaNE1RUpKmXZe35yMfYoWr48GQiIQL4gJzdo59dh8lSmvGDDJIv+1n1s4yI2Yw4v7c0ALZiSrXB7F8BSs+6USdiw9BbCCGigQjznRc4TaDtMeR5iTJwYNU/8ZP412aIffbrxKc/njNprLZpvAb3yb3+69T/6GXqXz5i8SZQZRJUDohVTHSdvqES5PipW0nft8F4pM55K++hqitLVqIDkyy8Nd+Dq9PPdZCt7SSg/bgzdsWzXn/H2JuKyA5bl7gXDKC7aZt3MnVbS385i2u7sOTJUr53rjwBxthblb7dHsehH7n301YPt/r6vZyWQoTwzsyO9Xta2YwpKbTr3uVFEQbY/uwMovfNBgRoNpNlnSG1MSMlHzyoUc5d38u7Ha9TpoklMcmyBb7CLKub5rD4XA4HA6Hw7HTKM9n/Mgxrp09Q9/oGMuz09SXFigO7sz1x5bmhCVrUqyEWEgi4ZG1d267lvElfVkfrCVONdVWQr+LM3+gGCFpqyKBaWAVeCbCMxFCGlKxcRuv7eKG2xvAFz4+HkPXr3F9dIJ2dtXhbTyP62NHGZtRCDuDRGKpY0QVSQ5sDrEH0k4fFkLAsf6UY/0pf/F4J+b81emQs0v+zeh6KySnSyc5VzjC9628zadW3sG/7XWctiJmXnuH62+fZeS54wyePOJEb8eewD1LHY7dzs2Ic93t653ecvvWiPOu8L3LT/oJio+TMpeSEvv8Gvv9GsE6guSAihjIXqeiAy4kfSzoDEJIPCUwpiN6G2NRSmGMc3k/TjRFkw/5kDJl9tl9ZOjtJyORTDDBsB3mGteYZ35bXhYChbBHkfoolgQjzmPkGaz4CMQGQrNoY8Q7GPkO2DzSnMAcPEnyX/wU3pU5ct94lfD9j9ZsJlsRpa9/i8I3X6H16adIhgZJB/pJ+/tIykUo5pCBIFUZZPdD6ar4HeGlbSd+34o2yG+dRnz7DOvU2FD74c+z9H/5UTK6/lgL3QCTdrLnNTWtfp2aPHvbmMPUzUmaWmBMiqUTR7YZ71YyXGuuXkR/6livq9tvLeNHa3un7wwW4ht9uoPO+XOTPt3QcThXbhO7+4/u35EoQQ/VjS/XG8SX17HWw/hDeIlApBIZt2jKPJVqQj5UBEoxUc7e91yaK8uE2Rx+GFIec726HQ6Hw+FwOByOB0WQzTF6+Cgz5z+kNDhMdXEe5QfkSn0PbU5Zk9IWisBoIuWRaoG3hXSu/lxAM04pZnyWmzGtxJANdr9x51HCCkEk8wS24+a1VuKZGCEsiXxwrukbbm+JpDx3ieWxg0SZ1aJq7XlcHzvE1KyPMbNoKbE0MaKJIAFbcn28t0DowWcnYj47EbPYkrw6E/LKtdWY80QGvN7/Au8XT/LS8hucqJ9ds3Sq2xEzr73L9bc/ZPjZ4wydcqK3Y3fjnp0Ox15BKghVZ2E+TVYjzk3X6Z0m3TjWvRFxniK5kPRxOSky5dU54FcJ5VrRu6xiPqXmqWqfT5I+5nUWKRVCCozuuLylkuBc3o8XAipUWGGFEUaYsBN4t53SfHwO2oOMMMIVrlAV1W388T7KnkTpk1jaGPFhV/i+wLpqKoBoYNSbGN4EW0IfOEXy1z6Ld/Wz5L/xKuF764ve+T9+a93d6VwWXS6h+/swfQVMXx5bypP05YjKRSiWUBnhxO9KA/UrryIuL655yBRyLP7VP0fz6VOE8cpjL3QXbIFRRm/eborLXFL/pmdM1ubZZ76PN9M8WIsxpvueu3FFibXwm1dXF2RyGY/j+3sXaB6oqztNwZpun24BYeaOmzSm50kavRFfOxFhLhFIIUltit0kvtyIYQQBfqQxViFSwVK7ExXXnwvpzwfk77MXXtxqEbfb9I9NEGRzD3VRzeFwOBwOh8PheBzJlfoY2ncAsKRJTHX+Op7vP7TEJQHkTIpVgsRaIqnwzJ3d3VLCUD4k0W2yvqIepYSeRLo48weLEMQih0ERmCZWSjzTJtCGRGVuun8fBAaD0RG56fPoiaOktwjeie9zbWyS/bMegVkmkgtgPYyoglwG0+f6eN8Fg1nDV59o8WOHWnzcjTl/YzagrSUNr8A3h3+Ad0pP89nl1znYWrs2o9sRs6+/y/w7HdF78NRhlH9/KXIOx07g3hUcjr2GFB0HWhCsRpynezfiXCO5lJa4khaY9Boc9Ktk5FpRrqQSnlML1IzPhbjEnM51ndwdl7e91eWtJMrzncv7McAKyxxzLLDApJ1kmGHkbRWeOXIct8ep2ApXxBXaG/XdvkcEGZR9FqWfxdLAyLMYcRorr2yyURWjXsWoV0kPDhL/FyfxZ05S+PoHhO+e39LPVc0WqtmC6bkNx1hPdYTwchFdykMpiyiGiIKPKIZQykIxC3fotbxXEaevIP/TG4j2WhE7fvIgi3/1LxAPDBJGK3j63vu8PwoIKzhoD96MBDOknPP+IVbcsnBh4YR9gYtmnDgFbTrv1eoO55lz1ZBP6quV4k8f7u/t7200uZWr23cwm2G650jP65wjw0znvHoHls9f7LmdGegjO1je9ukpobrh5ZbUpOvGl1uTxQQlgkhircWLmlQpUW1HlLM+gScY77uzgH8nGpVlPD8gUyjQN+J6dTscDofD4XA4HA+DvpFRknYLa0EnCcsz0wxO7ce7QzrVThFaTdt6hEbTUh6JkPj2zi3ksqGiGHpYa4kaMdV2Qjn3cI7hcSeVnZaRgWmSyCy+aePrNokKsQ/YNS2toTjzEdWJo+hwNZ0s9gMuj44wNafJ2IBUzmMISGwFIytIm0fY+08ze5wQAo70pxzpT/kLTzb43vWAV651Ys4XwiF+fezHGI3meGH5TSd6O/YkTux2OPYyt0acR0nHze15Xaf33oo4N0iupEWupgUmvAaH/BWy64jeRZnwTGaRhlnhQlJiNs2vdXmjMNaglN8rqDgeWbTQXBaXuW6vM2Wn6Kd/zZgyZfpsH/N2nmviGqm4c/Xx3SLIo8ynUXwaq6vd/t6nsXJ2k40WMeqPiKYg/uujqOXnKPxWhdyfXLz/+aQatbiCWlzZcIwVQD4DfVlsMQelLLaU7Qjhpdzq/8M99AE2SZG/9TbyjbV90a2UNL/6BSo/8gOkQY4wqj72Qjd04suzrF4oXlVfoyF7f3/7OYaw+5lLQsBgjOkK3ZufW27t1Q3wmeO9Eea56jRyC26A+8be6NOtQPmdojHvzgVhJk1Z+aRXjO8/tv2ubk905pJajbaalFvPgZ34cqzCqCGkyeAlEToVpCbDYjNFSkFf1me4EBJ493fuS+OYdqNO38goyg8oDgze1/4cDofD4XA4HA7HvTO47wBJFGGNZvHqla7gvQ+pHrzBpePuTtBKoIwhEgrPmi2tOA4UQlqJppTxqDQT2okm4+9uk86jSioDjFCEuk6isvi6ja9bpDKDEQ/2byKNpjTzESsTRzHBauF2HIRcHRljbOYqnhlBeosEeBhbIxUNLBps3vXxvgdCBS+Nx7w0HrPUlrw6HfJbF7LMhaM3Re/nl9/iUOvSmm17Re9jDJ464kRvx67Aid0Ox6OAVJBVYOxqxLnaIOLcU7CLe5tYBNfSAtNpnjGvwSG/Sl6uFUHyMuWpcIkn/BUuJn1Mk0OLTpR5akzX5Q3GSDzn8n5saIs2H4mPKNoi++1+cvRGewkEI4wwYAeYYYY55rAbxY7fJ4ISyryE4iWsXsTIM2h5BsTChttYMUc6MEflL0H1p0cJzpfInM7gzUXISh25UkO2ou2dpwXqbai3ESxvPLeMD8WuEN6X6/m/LWahLwu5kIf+YptbQf3yK4jra2PrzUCR6l/5SZpHj5J62a7Qvb2/z71IzuYYY9W5Wxcfc0X98m1jShwyT/O2HkJrizYaAXdsG3GxHnBmZVVEHx/KMtTf+7rMPZAI8xt9ugX4frdP99YuxqoXpzFJ73mofGT/ts5OIpCsxpcn9rbzXje+3Jp+jF8kaBk0HipqsmxKNKI2w8UQ31OMFLfB1b2yjFSKbKFE3/DIjvQmdzgcDofD4XA4HFtDCMHIocOkcUT/+CSLVy9TmZ2hf2IS8RCuwQNr8K0hg6YhfRIhCbbg7lYSBgshadWS9TW1dkqoJMLFmT8UjFC0VZFQN7BK4OsI37RJZYAWD1a8lDqlNP0R1cmjGH81GS4OM8yMjTM6exWVDIBcQSiLb32MrIGtYU3hgTvSHyUGMoYfe6LF8YGEf/hWkbaWzIWjfH3sRxmJrvOD9e8wXF2bXtkRvd/riN7PHO+I3ltcZ3E4dgIndjscjxI3Is59v+PsvuFgs6Ybb753Is4tgpm0wEyaZ0w1ORRUKci1UcQ5qTkZLnHIX+FiUmI6zZNoTZpqpDSAh7EGT3qoLTj4HI8GNVHjNKcZYohJO0lAbzSWh8c+u49hhrnKVZZZ3tHgA8EgynwBaT6P5XrH8S1Pg9jYcW3COdpPzdE+JZH2KZT+IoJhiGLUDeF7pY6s3PLvjftrjQ1bh9/zMbQTaCeI+Y17n1slO7HofdmuAN51hhez2L6Oa5xCZktu2rvGWsSbHyN/821EujYVInnuMNW/+GNExQESL0sQ1ZzQTSe+/JA9dEt8ecI5738GoXvGnLIvMG8HWEkVoLfs6v6t21zdLzzZ6+pWcYOwuXEByLaRJIDtnCOlhEx4x01usHy+t5K5MDmKn9/eHnneLfHlyQbx5Zgs2i+jdIBKmqANiciy2IgJPUkh9BjrC1Hq/t7MjNa0qlXy5QGkpygNj955I4fD4XA4HA6Hw7GjKM9j7Mgxrn1wmv6xcZZmrlGdv07fyMP5vJ7TCYkn8W9xd29FbsyHivyNOPN6TC1KKGVdnPnDwgpJWxUITRMUeEbgmRghTDfu/MGhdLIqeHurz4kkk2duZIL+uYsEpoi0PkYuISmBrCFUFWVKWOuhuXPRhWN9jpRT/pvP1Pif3irSSjuv5uvhCP8+/CqfHp/my83v0Lgys2Y73Y6Z/c57zL/rRG/Hw8WJ3Q7Ho4gQ4Hud75ui942I8xRSsxpx7t8QvXdrFaVgVueZbeUYUS0O+SuU1FrROys1J8LlrtO7xNU4S2wsaZqglCIxoI3B8/2ttGd1PAoIWGCBJZYYs2OMMYaiV2TNkOGIPUKNGle4QkM0dnhKAsEo0oxizRexYhojTmPkGdjoZwuDEe9i5LsIcwSV+Sx2dB9idGD98QBaI6uNW4TwrgheqaNWajfvX08Uvq/j0wYqDag0NnxHuRmbfktcui3mOs7wUhZbyt19bHorRv7nN5Cn1/Z9tr4i+snPUf/8C8RBgcTPEcR1fL29vdv3KuOM9yQgXFb/jtZt/eYPcIKcHeJ93Y/RBq3TLbm6Z5oe311a3benBE8/0dtiIF+5vPNnH512kk58v3MuzG49gSBttald6W1DsN0R5p5QWFbjy/Wa+PJGJ76cIsgSfjNCCx8VN6mkWaI0YqwvQ8ZXDObvfzGiuVIBIF8uUxocRnnucsHhcDgcDofD4dgN+GGG0SPHmDl3ltLwKCvXZ/GCgHx5bSu3ncbDEhqNkZDIgFgoMnZrawyDhYBWrClmPFZaCaFvCO+zFZPjPhCCSObwbWfNzFqJMhG+sSTy/pPD7gaVxpSmO5Hm1ltdF0pyRZZH9lOcvYBE4ttBLBWwJRBVjFzCs0UCW+gUkttOMbnj7jjUl/K3P1PlH7xZopmuvibfiieoDP0Yf/1Tl6i8c5rapek1294UvW/29Hait+PB4lavHI5HHa8bXW5MJ8o8EaDoRpynXbfbXog4F1zXOa7rLEOqzSF/hbJa22c3lIbjYYVDQZVLSZGL7QzJLS7vJDZ4yrm8HyeMMEyLaRbsApN2kiGG1owpUuSkPcmiXeSquEosdr6Hs0Ag7CTSTmLNl7DiMkaexoizHRfnOlj5Ean8CGEmUeYlhD2GWO81qxSmv4TpL6197ObOLKLR6hHDxUoDsdJArXSEclVZQTVb23TEHXpi06c3iU0Pvd6e4bf833Zvkwvh6iLql19FrDTX7mOsTOsvfYnm/kPEfn5V6E6395j2KlmbZdyO37xdFWe5pv5jz5iCLXPInuCCHaCVgsVgjEWpLbi6p3uff88+0dfbx8lacpW1UVjbiu228pAKpAdheFepJpWPr4BdvUAWnqJ0cHLbpie7X6lNuvHltxVzyRagwfRhgjIqEaANXhzREnmWmzG5QJH1FRPlzH13EbDW0lypkC2WkMqjb3Tszhs5HA6Hw+FwOByOB0a2UGT44CHshY/RcUx1YR7l+2TyhQc+l5xJiKUi1JpIKgKrt7Sq6EnBYCHA1CztRFNtJQwVgocSye7oIgSJyGCRBKaJlRLPtAh0i0RlsA/QJKWSiNLMR1QnjmLVqnyV5Puojx6gMHeR2ACmhPJWUKKIpEUkqkhifPrwhIfFYq0hdW7vu+JASfO3P1Plf3qrRD1ZfUV/XPH5x+YA//UPDTBaWeT6W2eorid6R7eI3s8cY/Cpo070djwQnNjtcDwuSLlxxHl6W8S5p0DsVjFYsKCzLOgMA7LNE0GVfrU2ijgQhqPBCgf9KpeTAp+0sqSpRUqFtTdc3h7SfZB+bIhFzAVxgTk7x367nyLFNWMGGaTf9jNrZ5kRMxjxYD4QCyTCHkTqg1i+ghWf3CJ8r62MtvIaqfwa2AGUeRFpnkZwlx8chcAWcuhCDj05svZnAEZ6mARErQUrTbyVKmppBW95GW+5gre80nGMVxsIu70VsyJKYb5659h0Y9f92ealo7R+7GVapRFiL0vi5/DjhhO6b2DhkD2E7C5FaNqc9/4ht+bfCys5ZV+gbTNc0yWMSTFaI4S4o6t7oa14fT7fc9+fOlXuuR025vF29O9hIU7ppJj4EHQTT+6C2yPM+w5ObutF2mp8OSQmua3ufDW+3Kg8whbx4zrGKnSqWY4gNZbRUkAx61HK3v+8WrUqWmvy5X7y5X788MFW8TscDofD4XA4HI47UxwYIml3iuTTOGZlbhY1uQ8/fLCx0xLImBQjIUYSSY+sSbe0bTHj0YhStPFZasTU2um2XNM47o9UBhihCHUdK3P4po2vWyQygxUPziDlxe1OpPnEUaxaXaOOC/3UraVw/RICiU770bKKsClKCJAtYrGANH14wkcISYBybu+7ZH9X8P4Hb5ao3SJ4X6j6/IO3SvytT8PBr3ye5vzS5qL3G+8z/+45hp45xpATvR07jBO7HY7HjY0izu2NiHMNsQbRjT2Xkt0ZcS5YMlmW2lnKXdF7UK11w/rCcjioccCvcznO80k7R2o7Lu/4hstbqft2wzn2Dk3R5Cxn6aefKTtFhl4xRyKZYIJh2+nnvcDCA30JCBTCHkXqo1jqaPkmRr61vttbLKHVb6HlH6LM80jzaQTZbZoHKJOiFFD2seU+tBwkkT5aBWjpd95PLMikjV9ZJlhcQi0vo1bqqEoVtVxFVarIlTpUWzsTm34bNhtgfuoFomeO0coOknhZkqCAnzQJ0rXu78eVMcbIsypGX1L/mrbs7b30hD1FgTLvm2GSVN90dXtbcHX/znQJc8uY4ZJHafD2CPNLt2+2vdzo0x0GnfSS4O76wLUrVVrXl3ruKx/dvghzv1tpnlrdiTDvqTZfjS+3NouWQwRJ0omTi1rUKbLSiihmfAJPMtG3Pa/7RmWZMJfHCwLKo+N33sDhcDgcDofD4XA8FPrHJ0nabYwxLF29wvLMNQan9j/wNkRZk9IWitBo2sojReBtUVAcKoS0E0Mh41FtJWR8ReDizB86RigiVSTUdRKVxdNtAtMilSFaPLjnlxe3KM58THXicE9CW1wcoGEM+YUrnVUHU8LagFQtgc4iVAMlFrGUEDaDRCCFvOn21lY70XsLTBU1/+3zVf7+myWq8err8lLV4++/WeJvfbpKcXigK3ovc/27p6leXF/0nnvjfRac6O3YYZzY7XA8zvREnCfdiHOvc1unkMSA6IxRHrtT9IaKyfDddoY+GXHIX2HYWysKesLyRFjnQNDgcpzjkyhHKgJSazFGd3t5787jc+wAApZZpkKFEUaYsBN4t50SfXwO2UOMMsoVrlAVGzuMd26aBTzzRax5GSPfQcvXQaysM7CJVn+Ilq8gzXMo8wKC8jbPpSt+mxQ/bXWc38LDKB+tfKLhMaKRjjgmdYIyCUrHSJMgAGE0fnUFb3kJb6nSdYS3oNrsCOErLai1EK17j5C3B4fRP/0S8dAQzewgicoS3xC6k53tx76XyNgMk3Y1irsi3mXG+42eMSU7yH6Os2hzLJosxiQdV7cUiDu4uqux5I+v97q6v/psb5KC0DHZWm8v7G1FJ90+3UGnaCuz9T7dN6jc5ur2shmKU6PbMj2FRACpTbGYzePLVR/SBqikitGS1AQstzpuif6cT38uIBvcfxpL1GyQxjF9QyOE+QKZwoOPQXQ4HA6Hw+FwOBxbQwjB8MFDJFGb/vFJFq5eZnlmmsHJqTtes23rPICcSbFKEFtDJD1Udx3gTnhKMJD3MbYTZ15rJwzmg7u+dnNsP0ZI2qpIYBpYBZ6J8EyEkIZU3F0h+f3gRw1KM59QHT/cNWR1iPqGENaQW7zWea7ZDKQj4C1htSSVDbRYQpFHUURaC2g8ofCEh7GGlO01ZDyKTBQ0/+3zK/z9N/tYiVZ//1dqHcH7b3+mSjGw5Ib7Ofgjn6e1sMzcW2eoXry2Zl89ovfTRzuid/jgnkuORx8ndjscjm7EedgRBdIU4lsjztPut74l4nx3VlmumJC3oxGKScwhf4VRb208rhKWQ2GD/UGDK3GOi3GBmAATd9yKSnnuM/VjhBWWOeZYZJEJO8EII4jbLsly5Dhuj1OxFa6IK7Q36Ke9kwiCm85tIz7AqFexYm6dgQlGvYGRbyLtSaR+CcnO9NwVgLIpKl0Vv61QHde38juOaj8HrIrfyUAGVR5EHLIIa1A6wkvbeDpC6bjzm4/Tjuh9Qwhfad2MURe1FlRbUGv3RJdbKTBfPIX9/hPEQZ5mdohUZYjDAl7SckL3rVg4aA/ejC9PaXLe/196hkirOGVfACv5RA+TpgnWdl3d3p1d3b83UySxq+cJT1oOHBztqZvOrVxF2B1qE2B057ylvM55Kwx7Loq3grWW5fOXe+4rH9m3LYtGAlBC0fFyW+I1MX/d+HKbxRJg1CBh1MbgIdstqrZILWrTnwvwlGS8vD1R443KMn4QEuRyztXtcDgcDofD4XDsAaRUjB05zrUPTjMwMcni1cusXJ+jb3Tsgfa/Dq2mbT1CY2gpj1RI/C1e7xUzPvVIU8p04szrkaaQcZLFbsAKQSTzBLazvmqtxDMxQlgS+eAi8/12neLcBWpjh3rWpNvlkY7gvXQjpc6DdBjkMiCwok0qG6RECF3C74r0EoMSigCf1OpuYzHHRoznDf/dZ1b4e2+WqESrhfbX6h5/742O4F0KOys+2aF+Dv7I5+4ser95utfp7URvxzbgzhwOh2MVITp9TX2/IxQkafdDhL0l4jztiAZq90ac10zAu9Ew+TjmUFBlTDXXCNhKwMGwyf6gydUky8W4RGSDjsvb8+/Yj9bxaJGKlMviMtftdfbZfZTXcUWXKdNn+7hurzMtpknF1vpQbScCibKnkOlJrLiIlq9i5YV1BlqMOI2RpxHmEMq8hLCH1gj52zs3EFYj09Za8Vt2xG9uiN8mQekEqTMoL4eg03db6TZeEOFl26jB+OZs14RLaQONdkcIb0bYkRL0F0i8LM3cMKkKicIiXtoiTOo7dsx7kRFGevrVX/D+ObGY7xlzxD5NjiJXbZmGUZ1e3UYjpUDcodipmQq+Ndfr4v7RJ31s0BuznV/eqQhzs9qew/Mg9Dv/3iXN2QWSWm+RxHZFmK9GpxmSNRfWq/HlmCxaDeNpi0xirLYkIsdSI8GTgr6Mx2gpg6/u/3yVRBFRs0l5dAwvCMmX+++8kcPhcDgcDofD4XjoeL7P2JFjXPvwNH2j41Rmp1G+T3Fw6IHNoePuTtBK4BlDJBSeNVtagRAChgoBcarJBx71OCH05bZc5zi2ASGIRQ6DIjBNrJR4pk2gDYnKYB/QunDQrFKYu0h99FCP87/VPwbGkKvcMIQIMANAHaQA7YGqYdUysS6ibIgvPYy1XZe3wiK7qWuOjRjNG/67bqT5UntV8J5uePzdrsO7HK7+BrckeseJE70d24oTux0Ox/p4XufbdIWD9EbEuYZEg4kB2en9Le8/PnUnaNiA96MhPhEJB/0q414DedtnMClgf9Biym8xk2S5kJZoxeB5zuX9ONIWbc6L85RsiX12HzlyPY8LBKOMMmgHmWGGOeaw4sF/HBYIhD2E1IcwehajXsOIM7DOXKy8QCovIOxox+ltTyDY+ddsj/jNVsXvEOUlt4jfN5zf7VXnN4CSUMpBKXfzYiTxMjRyQ12hu4SXtgliJ3TfSmADpuzUzdtL8k2uq9/rGVO2w0xxlNgqLpkBtE6xVm/Z1f2t2SJtvbooIbB83/GBnotGv1UhiHaiLYDt9ummU7Tl3X2f7hss3xZhHpZLZIfuXwC+EV+edOPLU3tb0YxsczO+nAzIAl5URwsfGbWoGUUzThgphfi+YriwPdX0jcoySvlkCiXKD9gF4nA4HA6Hw+FwOO6PMJdj9NARZj8+hx4YpLa0iBcEZIulBzaHwBp8azBoGtInFpJwi+7uwJOUcwHGRrRTSbXl4sx3G6kMAUFgmiQyi2/a+LpNokIsD6YwIWyswPVL1EcO9AregxMIa8iu3FLIbwpgfVDLoCXIGqgq2uQwJrzF5a1RwsMXPsZqUufy3pCRXEfw/ntvlFi8RfCebXj83Tf6+NufqTKQ6f393RS9FyvMvXWa6oWNRe/5d88x/PQxhp52orfj3nAlUg6HY3Ok7ETA5nKdfz2/86/fPekkced7p+Jot4Gm9TkTD/InrQmuJgXMOtqkFDAZtPhcdo6ngv8/e/8ZZVmWnueBz977mOtNeJOmTJbp6qo2ZboLDTTQQDeaIETQE5qZpUWtkcjhUBBJUQR/zQ/9mjVrlkhRohMoiFwSNaORASgSJOHRRKOB7q6u6urq7vImqypdmAxz/b3H7L3nx7lhbriMyIyIjMzcT66oqHv8NXHuOfv9vvddJqd7JEmEMWf3eTlOjpZo8YZ4gw/FhyQku+Z7eJy353naPk3d1vdoPT49JDN4+k/jp7+A1C9kF/N7YMUS2vtXJN4/RsvvYLn9bOzbQQDSavy0Ty5uUeyvkO+vEcQdhDGkXo4oV6VXmKCfqxEFJQZhhX6uTqc4Q7N8nk5hikFQIVXhyEueqJBuYZJU5YjCCiqNCOL2GfSduItYeNg+jBoWOiS0eN/7RyOLKOvxlP0cAsHHdjyrazJgjBl2dR9cJBFpwe8ujHZ1vzgTY2ujVvrFxqg9+LGRptkB+/7Wd9dtYLSmefnayLT6YxfuWACWZPblqTUYLJHZeW7RIPpg84CHUTN4OgFt8KIBkSyy1onJ+ZJi4DFbzR3VnX1PdJoy6LQp1mooz6M8PnnnG3U4HA6Hw+FwOBynSrFWZ/zcRUpj4+TLFZrLS8T93fF+J0lBJ0gsvjHEwjuSbFjN+4SeopL30NbSjd143FkjlQEDVcYIj0Rl7m2+7iPt6WVfh511ijd3jyn0Js4xqIyPTrRhluNtc2Cq2WPZw6omMR0GJkJjSGxKajVSSHzhDUvUHXsxkc8E78n86Hu+3FOZCN7fe5AiP17joa/+KI/9+a9SffjcnsuYOGHpu2/w1v/8b1l85XV0dLrjlo57H9fZ7XA4DocQEPjZz/ZcbzO0O4+jrPPb8ziL1uYAA+vxVjzG5aTCQ36Lea+L2tEJKwTM+gNm/QFLaY4Pkxp9mUMp3xWUPmgIWGGFNdaYtbPMMLOZc7xBjhyX7CXatLnKVbri7mVDC6p45qtY80WM/C5avgJ7HY9oodXvoOU3kOY5lHkeQen0D5hM/N7o/AYwQqGVj5YBqZfDio3O7xSlY1KTQ3l5BBas3cz6joIyqQw3he4wbp3Rs9DdY4IJKmxV9V/2fplErI8s85j9DHmKdGzIgqmgTbytq/vWl4x/uFykk44K4l95ujzq/mE0heY1jh2js7gNzwOlIMwdOad7g/bHC7tuqo7DwlwJD4vBYEiNxo6UbFhQnU37ckMdIT28fgttJSaVtBJLrA1zpRz5QFEvHE+lc6/ZQCDIV6pUJqaQ6my6tTgcDofD4XA4HI6DqU3PEPd7WGPRScL64g3Gz13A8/cuij9uPCyh0RgJiQiIhSJ3SCFUCJgsh8TrhkLg0Y0Tcr5E7bRodNxVjFAMVJlQd7FK4OsI3wxIZYAWp/M5y7XXsELSmzw/Mr07cR5hDGFn+1iHBD0JsrGxNsg+yA6WAQOTx7MFPKkw1gytzb3svv0URfx7ifGh4P13Xqmw3NsaP7jZV/yXL1f4xRdaTOT3LlbJj9e4+NUv0F9tsPzqm7saDSATvZe/+yYrP3yPiWceY/KZx12nt+NQuM5uh8NxdDwPCnnIhcNM1OFvrSGKQCfc1VbXWxBZj3fiMf6wP8dHcRlt975wnvYGvJhf5Bm1SF63XJf3A4oRhuvyOj8UP2SV1T2XKVPmKfsUj5hHCOzdvQAT5FHmx/DT/xSV/nGwY/ssOMCoPyLx/iGp/HXsPs/tNMk6vwfk4haF/mrW+R21EUZnnd9hZdj5XScOSgzCKv2wSqoCorCK0k7o3ovABlywFzYfr8hvsqK+MbLMuJ1hjocB+MBMYrTBGIvW5lBZ3amB37oxapH3TK1PODU/Mi3fXkDu6mi+Q+xGTrcCNSzK8m5fsN1pYV6cnSQoF+/oED3U0L48y+hO2c++vITFR3vjeEmEsQJv0CcSBdZ7CaWcIvQV87X8sRRgWWPoNRvkK1WU51Gdmr7zjTocDofD4XA4HI67xuSFhyhUq9Rn55BSsr5w/VTHswomQQGhSUmE4ihyYeBJqoWAUqBQQtLsJ2DP7vjig4oVkoEqoUVAokK08PFMjGeiUzuGfGuFwuoOS2wh6ExdJCrWdq9gapnobQuZxbmughUg26Rqlcj00FaTWk1qUwSCQPi7ml4cGfWc4W+/0GSmODq2sTrIBO/l3sGvW368xsWf/kLW6f3I/p3ey999M+v0fvl1Utfp7bgF7q/V4dhG3O/x8W9/k7jRvtuHcm/ge0N782Bobx5kYkOaQhRnnXZnmNgq3kvqfKM3x+W4QrqP6D3hDXghXOJpeY2ibmHdhfYDSSxiLsvLvCnepM3e54hxxnnGPsO8mUfau/sVK/BQ9ln89K/gpX8OYeb3WVBj1PdIvF8iUb+CESfQdXubSKvx9W7xW5p0U/zuFyaIcjWUiQkjJ3TvwsJFe3HTvjymwQfeL40s4tmAT9gXEAhumhJNm0ebFGsM1tpDdfp+e6XIejza/f2zj1mSfG1k2vFbmNvMaQRxxzndAOkgon1lYWTanXZ1S0AKSWoNFkt8K/tyZlBoVBKBsSQ2pDnQGGupF0KqeZ9S7njMmXqtJsYYCrUaxfoY3h28dg6Hw+FwOBwOh+PuI6Rk+pHHCAtF6rPzmFTTWFw4tbEsCeRMio9BYInk0e5dankf35NUch6pMfSdnfnZRAgiWSCReVIZkMoAaVN8Mzi1Q8g3lsmvjd6/IwSd6YeIC3vk1dsA9ET2YwtgKqArYMGqBrFcIzL9TWtzg8YbWpu7sabd1ELL336+xdwOwXttKHgvdm89Lnpo0fvVN3nbid6OW+DEbodjiLWWP/if/hnND6/x8f/+u7Te/siJmodBiExYKOQzwdv3IQizs0sSZ/bmZ1z0TlB8kNT4Rm+eD+IqyT4i5biKeDZY4lPiKhXT5ix3rztOjq7o8rZ4m/fF+wzYfREvkcwxxzP2GSbsxF3/mAgk0j6Jp/9DvPQvIsxj+y2Ile+Qev8jifrnGPHuDpvlu8+G+B3G7aH4vUoQtQniNmHUdDcfezDOODVqAFgsH3j/LalojSzzhP0sIXm0FXxoJ9A6zbq6N7K6b3G5aCz8xvXRG8nHygMm5mdHpqmkR9i9eedPajtJChgIPJDitnO6N2hevobd1vUglKS2zw3XYVFDC7QD7cvJ7MutKWP9HF4SoVHIQczAhjT6MdW8j68Ec7XcHR3P5p6tzbq6S2U836c2PXvrlRwOh8PhcDgcDseZR3kes5eeIMgXqM3MEvW6tFeO+V7sAPImRdnM0lwLSXqEu3UpMztz35PkfY92nKDN2RqbcAwRgkTmiGURLQJSmUdYTaD7WfzcKZBfXyTXWNp1XO3ph4nz5b1XsmHW5a3HgHyW523KgMaoNSJWSWxEajPRG8AXPp6T0nZRCS2/+EKLc6VRwbsRKf7OK1UWDiF4w5bo/fhf+GNUHzm/5zKjovcPSQen5yTguDdwf6EOx5A3/+BrvPfSNwGwqWbxay9z9WsvoeNjtlu9X5ES8jko5rKObz8EP8iEviTOfuzZrsZMkVxOqnyjN8d7cY14H9G7piI+7S/yKXGFOh3uuprpOH0ErIt1Xhevc1Vc3W1JDAQEPGwf5pP2k5TtPhfYp4hAIO15fP3z+MlfQZpPZ/nAe2DlVVLvfyfx/glavIbd4/mdBaQ1+HqAnw6c0L2DvM1z0VzkIfvQ5rSb8vdZUy+NLDdpzzFNZnF+3dYZWB+tNcZkXciH6ep+dS3P8mA0m+tnz3Xo1kZF4kLj6vG+TybNfjw/cxXJ5zLB+w7YaWFeuTh3R9lQG/blqdWZJdp+9uW6BPgYbwJlNDJNkGlCLAqs9ROkEFTzPhOlkNA/nkztqNshTRIKtTr5cpWwUDiW7TocDofD4XA4HI67j5/LMfNo1uFdnZym22zQbTZOZd+CTPD2MUhriKR3pJGznK+o5n3KoUIJQavvxmbPMqkMGKgyWngkMruv9HUfcQrjwAIorN4gbO4o5pCS9szDJLkDIslsHtJpMPWs01vXsmgxkZLKVQasoUlJbEpqNXLY5S3dCNQI5cDyt55vcb48Ot7RjCR/5+Uq1zuHH8PIjVW5+NM/konejx4ker/lRG/HLpzY7XCQZVa+9lv/Ztf0xvtXeO9Xf5ve8t3Psr1nkAryechv5HkPLc6Nybq807Od5w2gkXyUVPhGb453ohqR2ftLuSpjnlYLfFZcYQLX6f0gYoVlUSzyQ/FDlljasxO6QIEn7ZM8Zh4jZ4+nI/NOEUzg6T+Bn/4CUv9IVtW654KraO/fknj/CC2/id2jk91xdhBWMGbHeNI8ydP2aaaY2syXiljhsvfLI8v7NuRJ+ywCQWQ9rto6WqdYazEmu5G7VVe3tfDr16oj0y4UYx4+X8OqUZH4WC3Mrcm6uqUC5WUd3fLOROCo1aG3uDIy7U4szCViaF+edXNvVIRvsWFfngM8rBkHpVBJD42CWNPTks4gpVbw8ZVkunJ855Buo0GQKxDkctRmXFe3w+FwOBwOh8Nxv5EvV5i8mGV4F6t12jeXiXrdU9l3aPWwu9tghCAVR5Mh6oUAz5OUcz6xNvTjs+0a+aBjhCJSZYzwSFQeiyQwfdSu++DjRwDFlWuErR3j91LRnn2UNLxFYbcpDEXvaiaA6xqYAlZERGKZhAaahNimWCye8PDE8RSh3y+UhoL3xcro+92KJX/35QrX2kd7vXJjVS5+5Raid5Juid7fcaK3w4ndDgeQ5dn8/H/x/+Kpn/ipXfPiVpf3/9XXWH7tbWdrfhQ8L7M2D8Os0zsMM0FCa4gi0ClnXRw2SK6kFf6wP8dbUZ3+PqJ3ScZ8Qi3yrLzCpGhx1p+X4/hJRcoVeYXXxes0aOy5TI0aT9unuWAu4Nnjydu9UwRlPPNT+OlfQ+mvwH4d6KKDVv+OxPsHpPJ3sbT2Xs5xVwhswLyZ59P20zxqH6XM6Ptosbzv/0O06I1M/4R9noBMPP3QjqOtJN3s6galbn2Z+Hojx9XeqKj9s/NNevULI9PC7k28ZHT/t88eOd3+nf9NNXZ0datcQPn8zG1vTwk1NC+3JCY9wL68AKaE9ksok4A2qDgiFkXWewm+yvLqZio5PHU8FeTxoE886FOs1QhyeQqV6q1XcjgcDofD4XA4HPcclYkpatNzlCcmCQpFGosLJNHJi0ICKJoED4NnDJFQRxotkxImiyGBJ8n7ik6UOjvzM44RkoEqkwqfROXQwsMzEZ49+YxlARRvXiFor49Mt1LRmn2UNDhE4bgpQTqTZXlvit55UtEnEsuktElsQmoTBIJA+JsNBg4o+pb//LkWD1dHnRjaieTvvlLhSuvoBQKbovfP30L0/p4TvR1O7HY4NvHDHD/xF/8SF376R5DBqB0rxrL40g/48Nf/gKTbvzsHeC8iBAQ+5AvZb9/POr2lzDq8o/jM53kDGATX0jJ/1J/jjWiMntlbVCmKmCflEs/Lj5kWzVPLp3GcHQZiwHvyPd4R79Bjt7AnEEwzzTP2GabtNMKeDesjQYgyn8dPfwGV/kmEndxnwRijXiLx/hGp+jUMy6d7oI4tLFRshUvmEp+yn2KOOXz8PRddlL9FQ742Mm3GXmSSeQCaNsdNW0brFDa6uqXkMJeJv74jq3s6l/CpKUtUnBqZXlw/xq7uZOgQEvigFOTuLKcbsvzqnRbmtUfOH8rGfS82qrw37Ms1O77rxHb7cg/DGEKAF/exVqETQSeBfqwZLwWEnmK8dOfPc4Pu+jqe75Mrlai6rG6Hw+FwOBwOh+O+Zmz+HKVandr0LMrzaSzewOiTH4/zrcG3htBqrBDER+yGzYeKcuhRznlIIWj0YteIdMaxQhDJIlqGpDIklQHKJPjmdAosSssf4Xcbo8ekPFpzl9D+Ye6pRZbfvSl6Z/bm1oYkok0sbpKIHrFNMGi8obX52Rjdu/sUfMvffK7No7VRwbszFLw/vg3BGyBX3xK9a5cu7LnMdtF74aUfkPad6P2g4cRuh2MHtUfOc/Hnv0JuZnzXvM61Jd79ld+mdWXhLhzZPYwUWWd3IZ9ZmvsBBEF2BkpiSCKwZ1/0tghupCW+2Z/lh4NxOvuI3nmR8Lhc5vPyMs/IazwibjItmpQYIDnbueWO46ElWrwh3uBD8SEJu7OlPDwu2As8bZ+mbutnxgxAoFD2Gbz0L+Ol/z7C7GPhLAxG/pDU/2US9b9gxEd7Wrg7jh9lFdN2mqft0zxhn6BOHbHPbVVMzEd8n8vePx2ZHto8j9vPbj6+bCYxVgy7urNzsTqEJfi7rZD326PV0X98vkW/fiErdhoidEK+fePQz/FAdJoVSfkeKJkJ3eLObyv7y2vEzc7ItNrjD93WtuTwnx5anO1pXy632ZfrOiYI8HSEMQIVDYhkkbVuRD5Q5H3FbC2PPKar9jRJiLodirUxlOdTHtt9veNwOBwOh8PhcDjuH4QQTD3yKPlSmdrsHMYY1hdunIpwXNAJEotvNLFQRx4VGy+F5HxFreBjLDT7SZan5Ti7CEEkCySygBY+icwhbEqg+yfeGCSA8tJH+L1RR0KrfJpzl9BesPeKu5CZ2J3OZB3fpgi6jrEeCQ1SsUJCl3h4v+8LHw9nbQ6Q9yz/2bMtHtshePfSTPC+3Lh9Z75cvcqFL7/I4z//MweK3jdfe5u3/39O9H7QOBs+qg7HGcMvFzn/p79E8ztvsfzqmyPz9CDio9/4BhPPPM7M55+57a6vBxIpIZ+DVEMcg1CZaJGk2WO5YUV7tutwLIJFXWSxX2BK9XnEb1JWuwVNXxhq9KmJLTcAa2GAT5eArg2zHwIG+ODqAO8vBKywwhprzNpZZpjZZW+UI8cle4k2ba5whZ44LpvnO0MgEPYSUl/CmBsY+W2MeBvE7psSKz8glR8gzAzS/AjSPnnLnGfH0cnbPFN2inHGUQfcQBlSboq3WZY/oCs+RMv3QYyenz5hX8Anu8FbNBU65DBpMuzqNsOu7lufj35jR1f3WJDyuYkuK7XRG45C8xrCHkOhj9GZK4jyQG7kdB/PZ21nV3dQKVGYGrutbXmb9uWQmGQf+3K5aV9uVBGJQSYR1ggSE9COUlJjmar4FEOPWmHvrv3boddYR0hFrlymOjWNOC4V3eFwOBwOh8PhcJxZpFTMXHqca2+/QX1mnrUbV2kuL1I7YacnD0toNEZCIhSxUOSO0PAiJUyXc1xv9qnmfRr9mE6kKeWcrHHWSWSIRRCYHonM45sBvh6QqBB7guNGwlrKi5cz+/L8Vsyb9QKa849TXryMHx12/E2CqWWCt2wDAkuOVPbRooEve1hbQtl81uWNh7Ya84A3hOQ8+BvPtvgH36vwzvrWeEY/lfy975b5G8+1uVS7/Tz3XL3ChS+/yNSzT7H86ps0Pri6qwhmQ/Reff19xp++xOSnnsDLH59jnuPs4b4VHI59EFIy88LTlOanuPq1l3bZl6/88F26Cze58OUXCWv75Nw69sZT4OWHIneUXbnqNBPBozibrzzOvvgrWNYFlnWeSdXnYb9JdQ/Re2QNAXkS8iRMiO7mdG0FvQ0BfPN3SOqqAu95jDBcF9e5aW9yzp5jnN1dlGXKfNJ+khW7wjVxjUQc/Dk6TaSdQ+o/i2UdLV/CyO+D2H1BauUiWv4faFtDmc8jzacR+9hqOw6HsII6dabs1K4cbgBDTFd8TFdcpi3fpyneJRLX93x/Npi3jzBOlkOdWsFHdhxjLak26GFXtzxEV/eVrs/rjfzItK/OtdClCXRQHJlebByHhbkd2pdL8DwIvOz3cWxZm+zGaBv1xy4ibqNj3BMKi91mX75D5BcRmX15BfCwpowNfbykh7EeKurTF2UavT6l0CNQirlafq9d3RZGa3qt5rCr26MyOXXrlRwOh8PhcDgcDsd9gRcEzDz6GDfefYvq1DSNpUU8P6B0wm5PBZMQS0VoUiLp4VvDURK8PU8wVQ5ZbA4oBz6tKMFTgpzvxszOOqkMMEIR6g6JyuPrAb7uk8oc5oi29kdBWEtl4TKtuUukua0xCuv5tOYfo3jzGrn26hG26IGpgy2BbIFRWDSx7KHEOkZ00baILwp4wsNgSO8BF9OTJPTgrz3b4h+/VubN1a2O+oGW/NffrfDXn23xeP32BW84pOid7hS9H8fLHyLD3XHP4cRuh+MWlOameOzPf5VrX3+Z1kejNqz9lXXe+9XfYe7HnqX++O0NjD/Q+F4mbCcJJCITuNN0+DO0qZWKe0H0vqkL3NR5xlWfh70WdS8+0haUsJSJKItRa5XIKro2zIRwQro2oEdwohWQjpMhFjGXxWWW7BLn7fk9xcsJJqjbOot2kUWxiBFnx/ZeUMczP4M1P46Rr6DlKyD6eyzYQKvfQss/QJrnUeY5BMXdyzn2JbABk3aSSSY3c7hT+vTEh3TkZbriAzriMj1xFY7wGcnZIpfspzcfX7VjJHjoNMvANsYM7ctvfc7dmdVd9jQ/NtWlW3t8ZLo3aOEPGoc+xr3ZELqBcJjTHRzWeuzWtK8togej597aY/tY+B/Ahn15arNu7tjuLFrRIHub9uXoOsbPoUyKTBJIDRF5Gr0EC9SLAfViQDE8vgGAXqsJQKFaozw+ifJcQYrD4XA4HA6Hw/EgkSuWmHroUZYuv0caJ7TXVvGCgFzp5Bp5JJA3KUZ6xFgiqSiYo4lc+UAxXgqwxCRG0xokKCnwlRsfO+sYoRioMqHuYpXA1xG+GZDKAC1O7p5UWEN54YMsrzssbJsh6U5dIA0LFFeuHc1a3fqgx0HEIJtgFJoUI3so0cDSR9kSnsgRCJ/U6qHv24NJqOA//Uybf/xamde3Cd6RFvw3363w155t8eTYnQnesE30fu4pll99i8b7Vw4WvT/5KJOffsKJ3vcZTux2OA6Blwu5+NUfZfXND1j41mtYvfUlZdKUa7//HTrXFpn/4nOowA0cHwkhMtHC8zIxQ4hMyEjTobixXfQ+6whWdYFVXSCMY8oipiQTyjKhJBOKUh85WjYUmlD0GGPLXsdY6Fufrh0K4IT0CIm4F7rhHV3R5W3epk6d8/Y8IaMWOgrFPPNM2kmuc50VVs7U2yoooMyPI82PYOT30fIlEI09Fuxj1Dcw8ltI82mU+TyC+qkf7z2DhQoVpuwUJTy64kOW5XfoiA/oisv0xY09beQPi7I+T9sX8Ybied/6XLc1jDXoYVe3gKGF+cEs9j1eXS2MTPvybBvfV/QqcyPTi42P7/zju5nTHWROIMeU073B+rujFuaF6XHCaulI2xBs2Jdnvdyx2Sl077QvL2PJgZKouIvBQ8YDIqtoDfrU8j6+EsxWj+/Gy1pLr9kgVyqjPEVtaubYtu1wOBwOh8PhcDjuHUr1MZK5cwDoJKaxtMiY5xPkTk74yZmUgVCERjNQHikC74hWz5W8T5QYsJa0l9DsJYwVA6Q8Q4Mmjj2xQjJQJULTAwWeEXgmRghDKk/OWloaTeXG+3SmHyIpjBbtR9UJdJijvPghUh9RcLUB6MnMvU02scYjJcaoAVauoW2ITxlPZA1LqU0fWGNzX8F/8tk2v/RamR+sbAnesRH8g1cr/MJn2zw1fjwOl7lahQs/9Xmmn32KpVff3F/0/v47rLzxPhOfvORE7/sIJ3Y7HIdECMHEJy9RnJngyu99m2i9NTK/8f4VekurXPjyixSmT9b+575Eyix/1fcgSkDIrTzvZJjn7XnZ9HuAyAZENmBlW/GeRFOUKSURU5IxZZlSkgmhPFqFnxRQFAlFEmDLCj21go4J6BLQMQE9Mkt0I/zj1IUcx4GAddZp0GCaaWbtLN6Or+SAgIftw8www7pdpymadOicGeFb4KPM80jzLFa8g5bfwsqFPRZMMeq7GPkq0j6JNC8i7dzu5R5QpO1TFF0CuU4srvCBvEwklu98w7aGsDNIO80URR4X4abQDXDZTGQ3XEkCGIw2KHW4ru7fvF7Bblsurww/OdOmV7kwWphkDYXmtTt7HkZnxU9qWPR0jDndADqKaX18fWRa/Ta6uj3hDe3LDalNd1du77Avx5TRQYCyKWiNijUDUWS9EyOloJr3mSzlCLzje66DThudppTqYxSrdfwTHMhyOBwOh8PhcDgcZ5v67DzxYIA1lvTGVRqLNxg/dwF1THFROxFAwaQYJYitIZIeyiRHHuIYL4UkxlK1sNaLafQTxgr+sRZEO04IIYhkAd9m4wbWCpSJ8Y0lkSd3fyqNprzwAb2xOQb16ZF5aa5E49yTlBc/xI+6+2zhAGwIegpkH2QLowMSEaNkjBWrSBviU8EXPsYaUh5Ma3Nfwl/9TJt/8oMyry3vELy/V+YXPtPm6Ynji3QMa+Vbit421U70vs9wYrfDcUTy4zUe+zNf4ca3XmPtrcsj8+J2l/d/7WvMvPA0k59+0tma3w5SQX7Y2R0n2WOTbuV7q42c1nvvtTUo2kbRJmT7tU2ApiQTSnJDBE8oygR1xKfoCUtNRdSI2B713TeKjvXpmoDO0Aa9ZwMQEiEEQkh3T3CXsMKyyCIrrDBv55lkErHjs50f/puzc6SktGyLhmjQpEl6QDbzaSGQCPsJhH4Sa64MRe8P9ljQYsRbGPkWwlxEmRcR9tFdz/d+xWKBFlYsYsQiUtzEiiVi0WBwZxsGxpF2BrH5M40gy3kOSXhCfjySh7Zu86xRxBiDMQatM9eJw3R1r0aKb6+M2tJ/aaZNwbMs1UdF4nx7EaWPFukwiskcPuQwpzv0jy2ne4P1dz8acWsRUlJ99PyRtqGQCCCxKRZDYnf+Xe5hXy697GlFfYxV6MTSN5ZurJkshwSeYqp8vNXt3fV1wkIRLwiozswe67YdDofD4XA4HA7HvcfUxYdJo4j6zDyrV6+wfuM6Y+fOH+re8HYIrEZZj5zR9JRPIiSBPWIDiISpcsgNY6jlfNb7Ma1BSiXvnDbvCYQgETksksD0sFLhmT6B7pOo3Ehh/bHuFiiu3cCLe3QmL44U0Wc53pcorlwjbK3e3hGYfPYju1jZJtUBQsT4MiYSKyibxxclfDy01ZgHsM/bk/BXPtXml39Q4tXlrfGO1Aj+0ffK/NXPtPnU5PEJ3rBN9H4uy/Ref+9g0Xv8qUtMfcaJ3vcqTux2OG4D6Xuc+/HnKZ2b5vrXX0HH207ExrL40g/pXFvm/E9+Dr+Yv3sHei/jDUXtJIWYTPTWwyxvrbOsb3Vvit47iVGsGcWa2foiFVjyIh3aoMebYnhBHr0CMC81eTSTaktSMxa6xqdtfTomoGN8etYnwh/aP4mhEO7E8NMgFSkfi48387xr1PZczsNjjDHG7BgAXdulQYOmaNKle1f/HAQCYS8i9UWMXsaob2PEG3tmSlv5Man8GGEnkfpFpP0kgnshquBwZML2OkYsYrf9bM84v63EJisQTG4TtTeE7f3yqy0PixXUNvtza+GymQQEaZqJs8ZYvEN2df/OjQrabi3nC8NXZtskYZkkP2pTX2h8vHP1I2CzgifI7Mu9483pBtBJwvL33hqZVr4wg5c7vMgsACUU2mosluhA+/I8mBLWBtjAx9Mx1khkFDGQJdbaA0JPUgo9pqsh6qgVTwcQ9bokccTYxCRhoUj+BPP4HA6Hw+FwOBwOx72BkJKZS49x7a03qM/NsXbtKs2lRWozsyfSwCOAoknQKsAzhlgofGuOPJThKcFUOcei6VO2Pq1+gq8k+eD+GVe430llgBGKUHewsoBvBvi6TyJz2BN09Qw7DVQc0Z55GONvu/cXku7kMMf75hFzvLdjill02VD0jrWPJxMQfbTo49siSpSQQGofvC5vT8Jf/lSHf/Y6vLy4TfC2gn/8Wpn/+6fbfGbqeAVvgLBa5vxPfp6pZ7NM7/X3Pt5T9F75wTusvvk+4089yuSnn8QvONH7XsKJ3Q7HHVB75DyFyTGufO0leosrI/M615d491d+m/M/+TkqF1wH1W3je5nIkSQQD/O8k6GtbWruoTzvo2ER9KxPT/ss661sXIUZCt/JZhd4SSb4ewiKByEFlFVCmQS25YEnVtA2GwJ4QEf7dIyPFpIsAkkOix+dGH5Ytl872c3/WrZfN9vhQl2b5XlXqXJRXKQgRnORd1Ic/pu38yQkI13fWty9i2bJFFL/SSxfQsvvYOT3QOzu8LXiJtr712j7+yjzOaT5LIKTy2o6CSwGy+qIqJ0J23fS0QxYhbBTW6I2M9njQ166FYh4VN6ktk1gB1iwVXqEm13dRuvs7/gQlfvtRPKN5dGu7h+b7lLxDY3ahZHpMumT69w81LHuSZqCNcOcbgHh8d9grPzwPdJ+NDJt8lNPHGkbmX15ltSdGD0sdNjGiH25D6aCUT5CWGQSY60gMQGdRBOlhtlqjpyvGC8ec1d3o4EfhISFArVpd03icDgcDofD4XA4MpTnM/vYE1x/+01qM7OsLVyns7ZCeXzyRPbnW0NgDEZqutInForwNkS/nC8ZL4WYdkSqLe0owZMC/xijoBwnixGKSJUJdYdE5fH0gMD0SWWIFicnW3lxn+q1d/bO8a5MoIM8pcUPUfp2RVcBpjQUvTukdBBkonciumjRw6OETwFjLfr22iHuWTwJ//HTHaSAlxa2xj60FfzS98v85U91eG76DsfU9iETvT/H1LOfuIXo/S6rb34wFL2fwC+4ZsZ7ASd2Oxx3SFAu8ujPfYml776ZdYhtO0HqQcRHv/ENJp55nJnPP4NU958oeyoIkXX0eR5EMSDBKkiTLM9bDC1u70PReycaSdOENM12IcQSCr0pgpdlTElkVujyiCK0LyxjKmZMjV5U9IyirX06NhO/OyagZ302O0EFZ1YMP4rYPDJtVxWn3Vxt9DrIjq44nG/ZNfnQrAz/VUSFuqwzJsYoydKB6/j4jDPOuB3HYrOu76Hw3aN3V7q+BRU88xWs+TGMfBUtXwbR2WPBNlr9Hlr+IdI8izIvIDh7nacWjeXmDmF7Ce7QTl7aHKE9h7VTJHZsKG5P3Fa3u4fmolhlVjR3/d0lVvKxHQfIurrt0bq6f3ehTGy2Bg6UsPyxuVZWnFMdtf4uNq/eQSW0zpw8PC8rcApzHPlkdgvSfsTN778zMq18YZbi7OEHdLyhfXlsNQZDyq3tyy0CfA+VZvblcjAgFSXWu30KgSLnK+ZruWM9ZyZRRNTrUpuawfNDivWx49u4w+FwOBwOh8PhuOcJcnmmH7nEwnvvUBmfpLV6E+UHFCrVE9lfwSTEUuIbPezu1tyORF3OecSpASypMVl+dzFAHfP9o+PkMEIyUGUC08Uq8EyEZyKENKTieN3dtnNwjneR5rknKC99iD+4jRzvrb2AqWQOb7JNQhdJgKcSYtoo2cWzJTybH7rFPTgoCf/R0x2UsHzzxlZzg7aC/+4HJf7SMx1emDkZwRtuX/Sm4kTvs4wTux2OY0BIycwLT1Oan+Lq114i6Y520q388F06C8tc+PKL5GqVfbbiuCVSQj6XCSHRUOQ2OrM6T+JM7Pa8bPoDhSCyHpH2WNX5bVMtBZFsdn+Xhnbo+duwQi9ITUFqprelC2sLHePT1t6wG9yna31i4w1zmLfdXBwghsPG9YQ9vNgM25Y9frF51/bYKYZvPd69ix1Hbvc+iN3PYfcxrw7/CQGBCBlX44yrceqyjndAlatAUKJEyZY4xzliYpq2SVM0adE69a5vQQ5lvoA0n8OI19HqJRAreywYYdS3MPIlpH0GpV9EMHGqx7qBJcGKZaxY2BK2ubmnLftRULZIyT5C0TxK3l5kYKusA+nwPbn9kh3LjGjxkFjZ1+nhsp0kRaF1JnIboxHycF3dvVTw7xZHCxA+P9FlPNT0y7MYb7QTudC4cptPYyOnW4Hyh4VOx1/ItPzaW5h4tEp75nPPHHp9CUihSIf25fEh7MuxAcYPkFYjkgShLTEFmv0UbS1jxYBy3qN8zFlzveY6UnnkSmWq0zMnYkfocDgcDofD4XA47m0KlSoT5y8CljSJaS0v4fk+Qf5gx7nbQWHJGY2RkAhFLBS527R0HisGxNpgLax1Y5r9hLGCj7MgvHewQhDJIqHNxtOtlXgmRghLIk/O/W8zxzvq0Zm6MNJEZT2f1txjwxzvlTvsH5FgqmBKGNkmpocnAgQRsWjhyR7KlrAmeKC6vKWA//CTXZSAb1zfEryNFfzyD0po2+HF2ZMTvGG76P0Uy997k/V3DxC93/iA6tOPMvGZxwlzx39edNw5Tux2OI6R0twUj/35r3Lt66/Q+uj6yLzBSoP3fvV3mP/RZ6k/8ZAbbL4TpIJ8PrO5jeJMBNdDa/M4yrK8vfsjz/tOsAi6NqCrA9h2z+BhNoXv8jYR3BNHU4aVgKpKqKoE2CrwiIwcCuBDEXxohZ4iEUKjjdgthu9x9KOP7o7YfGjE9meT/d/+f+Jic/lsGbFz7q6XxlpISFjUCyykCwBURTUTv73xW3Z9BwRMMsmkncRaS4sWDZt1ffdlH4Tcdjwnh8BD2c8g009jxXto+W2svLrHggYjvo+R30eYx1DmRxD23PBzc/xYBlixtNmpnQnbK3DEv4md+LZKyTxK0T5K0T5MyTxKyBQdOiyLZa6xjj2GwoMKfR6VNymJaM/5A+tx2UyySglrQetkq6vbO1xX99eXyvT1ligusPzMfAuA7g4L86C7gh/fTvXzRk63AN8f5nQfr/ALEHd6rL7x/si02qUL5Mdrh96GEh5m+C/d1748BV1lw77ciiyKQ8U9LB7EMYmVNPsR5ZxP4EnmasdbJazTlH67TWlsHOX7VCZOxorQ4XA4HA6Hw+Fw3PtUp6ZJBv3svjFJWF+4wfi5C3jB8XfY5k1CJBWhSYmUh68N6jYGZISAqXKOG7pHteCz3k1oDRIq+ZPrCnacAEIQiQI+CkwPKyWeGRBoQ6JymUvaCRF2G6jrA9ozj+zI8RZ0J89nOd4rVxH7jC8eHgWmBqZEqlpoC77MkYo+QjRQysczJYz1MA9In7cU8B88lQnev39tS/C2CP7ZD0sY0+UL83uPdR0nYbXE+S99jqnPPsXy995i/d2PdoveWtP4/rs0X88yvTuf/ROUnHPemcKJ3Q7HMePlQi5+9QusvfkBN771GlZvVWTZVHPt6y/Tub7E/I89iwrdhdcdsWFxu9HZrVQmeGud/WzMf8BF752kSBomR8Nsz8C15ITOLNC3dYIXRXpkATSUhlDGTLBVfWctdIdW6JtCuPbo242ihLMtNm/fgWCvBU72M7b7uVi6dOjYNh/HHxEQMCbHGBt2fSuxfyesEIIqVaoisyOLbMSaXmfdrtGiicYiZVaMkGU5Z8UJxymECwTCPo7Uj2PMdbT8Fla8s+fLaOV7pPI9hJlHmRcR9nHEbRmcDbdHb8SG3IhFEOt38GwyAjtByTxC0T662bkdUN8U6DWaVVZZFm/Q35Gjfdv7JOVhscKUbO85X1vBNVvnmq1jhq+Z0RpjwBiNlAJxwGdlg1gLfmdhtKv7s2N9ZvMp2ssxKI1afhVvt6s7SQCbdXNLCbmTqeBe/u4bI9/NSMH0808fen0PhQASq9H2IPvyPJl9eQ0Qw67uFLRBJikRedZ72XmyXvAZKwbk/ePtYu81GwgEhUqVysSUi1NxOBwOh8PhcDgcBzJ+/iJJFGGNZvXaVdYXrjN+7sKx30tIIK9TjPKIrSWSioK5vYgwJWG6kuNGY0Alb2n0EpTUFEN3/3OvkcgQiyAwPRKZxzcDfD0gUSH2DsaCboUXDw7I8R4nDXKU7yjHe2RvoMewIiG2LTwh8aRFiy5GNpAEKFNE2wfDuVQK+L98oouUlq9d2WoAsAj+hzeKaAtfPHfygjdsiN4vZPbm33uL9Xc+2kP0Nqz88D1+75/+t/ypX/x/nMpxOQ6HE7sdjhNACMH4Jy9RmJngyu99m2i9NTK/8f4VekurXPjyixSmx+/SUd4nCJF1/nneML9bZN2ASZpleqca/Acjz/vOEAysx0B73NzWaCqxFLd1f5dElgkeyqPZ6ggBJaUpKc3stumpFXSMt9n93TEeHeMTIxlVPu+u2Hz22BCjs/9N0CxxkyV9E6EF1W1Z3wV5sLVOKEJm1QyzzGCsoWmbrJk11s06/W229Rv281IIEEMBXN55Jru080j957GsouVLGPkD2KPb2crrpPJXwY6hzOeR5hkE+3f9Zp22nRFR24pFEK191zkswo5RMA9Rt5+gah6jaB/BZ++Iij59lsUyq7cKXN8AAQAASURBVKwem328wDAvGlwQa6h9us9XbInLZoJo22tkLWiTYq3e1tV9a/7oZpF2Mrrsz843AehWz49UYwidkm/dOOpTyjK6jc46uqWEfHgiVgOD9RZr73w0Mm38yUcIqwe7I2wgEUghSW2KxZLYvezLu2zZlxfBhhipEFIg4wiLRMeSGOhEKWOFAE9JZqq5PfZ4+1hj6LWa5CtVpPKoTk3feiWHw+FwOBwOh8PxQCOEYPqRS6RvR9Rn51m9doXG4gL1ufljd6nM2ZSBVeSMpq88UgTebXa0Bp5kshyy1LIUQ0snSvCVIPAeDMHwfiKVAUYoQt0hUXl8PcDXfVKZwxyiYP922cjx7o/N0q/PjMzTx5bjvQ3rgx4nFRHatvBlGWk1WvSQsoG0AZjCZvPC/YwQ8H96oocS8Dsfjwre//zNEsbCT5w/HcEbIKyUOP8TLzD12U9sdXqb0XPT5//Mz5/a8TgOhxO7HY4TJD9e47E/8xVufOs11t66PDIvbnd5/9e+xszzTzP5mSedrfmdIgWEYSaURDEgwQ6tzZOh1bnnwQleFN2PGARtE9A2oy4EPnqz+3srEzzZV3jbD09YaiqhpkYFo9hKumZDAN/6Se8g0fhBwWJp2CYN3eRDPiJHjjFZpy7r1EQNeUCmvRSSusiWBeibPmtmlVWzRjNtYLHozaz1bQKnGOqSQiK3CeGbovghTm+CcTzzs1jz42j5CkZ+F8RgjwXX0Oo30PIPUOZ5pHkOyAHNEVE7E7bv8AbECgQTCDuDMNMU7SPMmE8xwfyBluoWyzrrLItl2rSPtRajTpdH5U3yYu9q4q4NuGwmabC7yGGjq1sbc+iu7tTAb14fFfI/We1zsZRggd4OC/N86zryqFlrVmfFSVKB9LJz+QkVKC298vpIVa7wFFPPPnXo9ZVQQ/NyS2LSfezLk2325ZmDgvU9lElAg4hiUllgrR3hSUEl5zFdyeGr472B7bVbGK0p1GqUxsZPxHrQ4XA4HA6Hw+Fw3H9IpZi59DjX33qD+swsawvXad1cPvYCWgEUTIpRAmkNkczum273FroYKuqF7L4n1SbL7y4GKOnGXO81jFAMVJlQd7FK4OsI3wxIZYAWxx93toEACmsLqKh/wjne27AhVk8SmwFKdfBlFaNjhOwjVQNpQ6zJYe/zMVEh4C88ngnev/nRaMTb/+etTPD+yQunJ3jDlug9PRS914aid/nCLDOPPnaqx+K4NU7sdjhOGOl7nPvx5ymfm+Ha119Gx9sECmNZ/M4P6Vxf4vxPfh6/eLxZnQ8kUkI+l3V0x3EmbhuddXrHcXaR4nvwAFTFnSQJinWjWN9hhV4Q6aYIvpEJnr8NK/RAGAIVUVejFzGRUXTsqADeNT7avZ/7MmDADbPADbOARFIVVcZknTE5Rk4c3Emal3nm5TnmOYe2moZusKpXWU1XGdAfitlsE7U1ZlMI33rTs65wiRx6x2/Zo+/uCheU8MyXsOYLGPl9tPz23t3YootWX0fLbwJqb2H8KFiJYDITtu0Mws4i7BSezTHOOFN2ijwHn6MTEpZZ5qa4SbKPGH275Ih5RN5kXPT2nJ9aycd2jAVb2zPLantXtzUW5R3uEvA7K0XW4tFl//gwqzvOj5GGox3RxcbHh9rutiODOAVkVqwUeMNz9PHTW16jefnayLTJZx4/9HevNywOSK1GW41mp6i/YV+eY7t9uVY+QoCKIowVpMannxp6sWa6EhL4isnS8Vq2W2vpNdbJl8p4vk9tevbWKzkcDofD4XA4HA7HED/MMX3pcRbefZvK5DTN5UW8IKBYqx/rfkKrN7u7e8onEZLAHs1NcDu1gk+sDdZa1roJjV7MWDFwTUb3IFZIBqpEaHqgwDMCz8QIYUjlycSebXB6Od7bsDl0mkPLPr4UKAI0EUoNECpCmBBtc4j7WPQWAv7sYz2ksPz6h6NNHP/z2yW0FXzl4h2O/90GQaXEuZ94geoLT7H2yptMPfnoqR+D49Y4sdvhOCWqj5wjP1nnytdeore4MjKvc32Zd3/ltzn/pReoXJy7S0d4n+Ep8PJZZ3cUZWqbTjMRPBrme3sbedGO40HQsz497bOsty5IJGaz83t7Jnggjn7zEkpNiGZcjV7Y9I0ait9B9ttmIvheot+DjMGwbtdZ1+t8oC+TJz/s+h6jKioHdn0roRj3xhn3suiFnumxZtZY1Ss0dDMT/rZd4wuxYbMuMCYTwvVQFB/pCpfDDO8NEXyzKzxA6heQ5lmMeAujvo0VS7sPTCTAEYVl6yHs9DZheyYTurfdMORtnik7xTjjqFvcSLRpsyyWWWcde0R3g1shMVwQa8yLdfYqRrcWFm2Fj+04yQGXdVlXt0Xrja7uWxeIGAu/cWO0q/vRcsTjlawIpbujq9uL2gT9I+afb+R0h0F2Xj7B7uPF7/xw5LEKAyY//cSh1pUIJJLUJkP78p1Zctvtywub9uUWwFeoNMKgEIMYTYG1zoCcLykEHrPV/LAg5PiIul3SJKE6PUu+XCEsHBxn4HA4HA6Hw+FwOBw7yZfKTD70MPbDD9BxTGvlJsr3yRUPFwN1WAo6JfUknjHEQuFbc9ujOULAZCkkSQ21Aqx1Y5r9hFreP5GoLMcJIwSRLODbbFzGWoEyMb6xJPJ4o8B2spnjPXWRpFgdmXf8Od7bMHkSkyeVPQIl0DpEigghB0gijAnB5hH3aeOPEPCnL/VREv71B6NjGf/rO0W0gT/28OkL3gB+pcjsl54jNPfna3+v48Ruh+MUCcpFHv25L7H06pssv/rWiJWqHkR89Jt/yMTTjzHz4qeQ6v6t0jpVPC8TUJIEEgHKywRwnYLenuftLnhPCoOkZUJaZnvVpSUQhpLY6gIvDkVw7zbEwrzU5KVmclvGtLHQs97QDj3Y7ATvW8+J4EP69Llu+lw3N1AoaqJKXY4xJuuE4uAq2YIsUJAFznnDrm/bYM2ssaZXiWyExWKtBWsx1mw/3Q1tz4fp62YogO9hj45gKPA+gZBPIOTHWO8lUB8d/knaYFTUtjMIxve8KRBWUKfOlJ2iTPnAzWo0q6yyLJbpi/7hj+fwB86kaPOwWCHcJ+u7ZXN8YCbpcPAN3kZXtzFZdfthu7pfW8uz2B+1B/vZ+SZCgJEe/er8yLxi48rR/rJ0MszpDrKCpNzJ5HQDtK8t0bk+Wiwx+ZknUeHhxHVPeEP7ckhMcgT78gBpDaQpIjUk5GhHKbE2zJVzFAKPWuH4Ldi6jXWCXJ4gl3Nd3Q6Hw+FwOBwOh+O2KY9NkAyysZY0jmksLjB+7gJ+eHydtT6GwGiMFHSlTywU4VHjsbYhJcxUclxr9KnmfRr9mE6sKYVOCrknEYJE5LBIAtPDSoVn+gS6T6JyJzrGJ42mvHh5/xzv809QXvwIf9A59n1bUyAyeTw5wFMSYQOkiFFygL3PRW8h4E8+2kcJ+Jfvjwrev/JekdQK/r1HTmIsznEv487wDscpI6Rk5vmnKc1Nc/Vr3ybpjp6YV15/j87CTS585UVytco+W3EcCSGybkHPz/K7hcg6v5N02FW4XfR2nA6C2CrWrGJthxV6TugRK/SSyITwo0YsSQElkVKSKdNs/Z1pC71h9/f2bvCBfbCLHjSaVbvGql4DDQVRYExkwndFVA60/FJCMS7GGZfj4D1G13RZt+usmXVatjUUBm3221qsZfP/MwF228bERqc3WVf40B4dIxCcg/g8yCVE8ArCexu2F0fYPJhpMNOI4W9sbfPYLWIoUZrhT0ZAwLSYZoopAnGw+NmzfZbsIius7GFjvQ+7Xrqh0L/PS1oi4pJaoSr3rlSNreKyGWfJlofb2ngNdm9QAFqnGJO91nJoH38rrIVf35HVfa4Q80wtO6Z+ZQ4rt11GWkOhcfWW293E6KzwSA3PvWHIsbc3bxyatSx+5wcj07xCnomnLx1qfU8oLHabfflOV4q97cutEKAUMuljrYJYkyJZ70WUcorQU8zXc8eu78eDAfGgT31mDj/Mk69Ub72Sw+FwOBwOh8PhcOzD2Nw5ksEAYwxr166yvnCd8XMXDl1IfRgKJiWWisDoYXf3nQXWeZ5guhKy2BxQCnzaUYIvBaHvxv7uVVIZYIQi1B2sLOCbAb7uk8gc9hDudbfLVo53j87UxdEcb+XTmrtEYfU6uebNExhVFKQmjzY5AhWB7CFsiJQRQvbRNsLaHNjcfSl6/3uP9FHC8qvvFUem/8v3CxgLP/eoE7wdWzix2+G4S5TmJnnsz3+Va19/hdZH10fmDVYbvPerv8P8jz5L/YmHXK7McSFFJqj4fmZljtzK806Ged6el/kqO+4SgoH1GGiPFZ3fNtWS35EHXpQJxdvIA1cCyiqhvMP6OrViMwN8UwS3PrGVPIgieM/26Nke18w1FIq6qG12fd9KEC7KIkWKnFPnSG067PpeZ92sE4t4j/dsbyHcDrvC2dUVPgbpVxHiCwi1lP3N6inYFH+3o/d9+2qixpyaZVxMHHietdayale5oW/QtM09ljiez4eP5lLQZN7r7Pm5NhauJGUuJ9VhTv3hrbKMMVgsSh3u0u/NZo6Pu6OV+n98vrV5XDstzHOdJZSODns0WaGRlNk5N/SGsRInQ+vD6/RvjtqrTz//FPIQ+5TDf1v25Xu85nvYlwNYL0DYFFKDShIGFGj2E4y11AshtYJP8QQ6C3qNdTzfJyyWqM3MuGsIh8PhcDgcDofDccdMPvQwSTSgPjvPyrUrrC/cYHz+HOKYipYVlpxJsRJiIYmEIn8H3d0A+UAxVgywxKRG0xwkjEmJp9w90r2KEYpIlQl1h0Tl8fSAwPRJZYgWJyt1hd0m6tq7tGcexgTbGneEoDdxDh3mKd485hzvIRZBpHMokyNQAzQCKUI8McDIPsYOsDY/FL3vr8/3zzw8QEn4394ZFbx/7YMC2sKferTvEgocgBO7HY67ipcLufjVL7D21gfc+Ob3sXrrIs6mmmtff5n2tUXOffG5Q1utOg6BlJDPZV2FcZKJ3CbNRO84yjoNXZ73mcLumwduKQy7v7cL4Xl59BsiT1hqKqam4pHpsZXbBPAtITy9Dysm90OjWbGrrOhV0FASRerDru+yKB8opnnCY0JMMCEnAOiYDms2E75btjVcasPKfK9u5+wmYcMS3QJ2KIAbU8Smj4wc6a1QKGa8Gc755yjK4oHLRibiRnqDG+kNIntYIZedTuyHWvx80OPxXBt/Hxv/m2nI24MKXeORPc+jfcattUgpD13pu7OreyqX8Px4D4AkKBEXxkfmF9evHPZIho4aZIVHnoLg+Ozvdu3NGBZfHs3qDqplxp54+JbrCrKubjPs5c7sy3cuNCCzL6+w3b7cSAlKIOMYEKSph7bQ7CdU8z6BJ5itHn++WJokDDptyhNTeL5PeWzi2PfhcDgcDofD4XA4HjykVMxceoLrb73B2Nw8q9eu0Fxeojp9fAW2eZMSCY/QaCLlobVB7b4LOxLVgk+cGrCWtJfQ6MWMFwPEUe0DHWcGIyQDVSYwXawCz0R4JkJIQ3qL5ow7xUsGVK+/u3eOd3mcNMhTXryMSo85x3uIttBPcwSygJBdrBQokUeKHlr0MKIPtphF+t1H49o/fXGAFPC/vD06jvdvLxfQRvBnH+s5wdvhxG6H424jhGD8qUsUZyb5+He/RbTeGpnf/OAqveU1Lnz5RYrT4/tsxXFbeENRO0khJhO9dQqpzvK8PZUJ3/fRxcH9hkFkHdgEI9qfwmxmgG/+iITwNkTwQBgCFVFXo2LnwKisE9yOCuHmARDBO7ZLx3a5aq7i4VGXdcZEnbqs44uD84dLskSJEhfUeRKb0jDrm+J3smen8obl91AMB2C77diGRfrBFESBOTnHtJxGiYNty5qmyQ19nRWzkm1ZgceOdQ7Y4VFuxesq4hNhg7JK95zfM4q3BlVu6pBtL8AeOzx4r0JK1CGjGt5vB7zbGhVif2autRklsLOrW6YDcp3RPOx9SVMwZiun+xhz3vZi/d2PiBrtkWkzLzx9qO4DT3hD+3JDatN97Mv7Q/tyf9O+HADfR5oUtEVECakostaJkEJQzfuMF8MTsc/rNdcRUpGvVKhMTh9bl4XD4XA4HA6Hw+FweL7PzKXHufHOm9SmZ1lfvIHyfcrjx1NkK4G8STDKJ7GWSCoKZu975aMwXgpJjKVqYa0b0+gn1Av+/tlijjOPFYJIFgltZmNtrcQzMUJYEnmy4wybOd71GfpjsyPzdFigee7kcrw3iI0hNUVCWUTLDkIKfFFAiy5atLEooICwJ/tanCZfvjBACcv/963SyPTf/CiPtvAXHneC94OOE7sdjjNCbqzKY3/2Kyx86/usvvnByLyk3eWDf/U1Zl54mslPP+EGr48b3xtmeCcQi0zgTtJMlEmNy/O+B9FIWiakZUYv6nz0bhFcJvhip4h1a3JSk5OaCUZzlXtG0R3mgG/8dK2PvU+LJlJSbpqb3OQmaCiLMmOyTl3UKcvygev6wmNSTTLJJABt0x4K32u07WFvCgTsU68qEIzLcebkLFV5cG6xtppls8wNs0DP9oYbkPu/awe8nYd5p0OR8njQYMbr7XM8gstJhStJBYNAneJp/zeuj75WtSDlxckuMHRZqJ0fmV9oXN1MQz8Qo7OCIs8DpSDMnVhON4BJU5ZeeWNkWn6iTvWRc7dcV5G996lNsRgSu8cAi+oCYrd9ufJAgIxjrLUkJiDSmk6UMl4O8JVkunL8Xd1Ga/qtFoVqDaU8qlNTx74Ph8PhcDgcDofD8WATFgpMPfwoix+8S3l8gvbqCl4QkC9Xbr3yIchZzcBm3d195ZEi8O6wu1tKmCqH3DCGWt5nvR/THqSU8wcX6zvOOEIQiQI+CkwPKyWeGRBoQ6JyJzoOJ4DC+iIq7t+FHO8Mg6FvwLdVAltGiyZSKRQFtGiT0sbSR9gigvvjs/6l8xFKwP/0ZnHk/f2dj/MYC//+E07wfpBxYrfDcYaQnsf8F5+jdG6aa19/BR1ts1O2lsXv/JDOtSXO/9Tn8Yv5/TfkODpCQBBkIkyU2c5iVSZ4J3GWCew50fteJ0HRMIqG2S40WUIxFMHFlgBelAnePpbSB1GQmoLsM0l/c5qx0LMeHROMWKL37P3nHNC2bdq6zcdcwccf6fr2bpGfVJZlypS5qC6Q2CTL+bZrrJsGKYev5g4ImFEzzMqZW+aL92yPBb3AkllGH9Ea/HaQWC76LR72W6h9Pl+LaYF34xqRPf3LtKtdnx+sj36/fHW2jT/UpAelKYw3KtQWG4ewMLcbOd0KlA/B0ML8BFl94wOSbn9k2sznn7mlxZ4AlFBoNAZLvFcnwYh9uQcmG9ixgPE8vDTGWglxjBEha90BvpJUQo+ZSu5EMuL6rSbWWgrVOuXxCZR3f9zMOhwOh8PhcDgcjrNFsVZn/NxFANI4prm8hPJ8gvydj1UKoGASjBIoa4ikhzLJHY+ceEowVc6xaPqUrU+rn+ApST5w43z3OokMsQgC0yOReXwzwNcDEhViT9h9Mcvxfof2zCN75ninYYHSzSsnkuO9QWITUi0I5TjYBGQLJX0kMSkttGwgbDAUve99OfCL5zLB+394Y1Tw/r0rebQV/J+f7OJSCh5M7v1Pt8NxH1J9+Bz5iTpXv/YS3cWVkXmdG8u8+yu/xfkvfY7Kxbm7dIT3MRt53kZnoreQ2f8nQ9Fbqkz0Fq67/v5BEFmPSHussf3GzJITejMHfMMKvSiTI180SQElkVKSo6KZtmTit/VHusEHVnE/iOAJCctmmWWWQUNFVIZd32OUbpGX7QufaTXFNFNYa2nbNmtmnTW7Rtd291ynKqrMqVnGxfiBgqa1llW7yoJeoGGbd/QcD49lUvV5PFinsI+dflv7vB3XdxRjnC6/sSOru+Rpvji91WXfrV0cmR/01vDjW3XhW4gTQGzL6T7ZHC0dxSx/762RaaW5KUrz07dcd8O+XFtDYjXmlvbldRjeQFvPQwoLaYpIDYkJ6SWaQaKZqeYIPcV46fhtxKy1dJsNcqUyylNUp2eOfR8Oh8PhcDgcDofDsUFteoZk0Mcai05S1hdvMH7uAp5/50W3oTUMrCE0mp7ySYQksEd35NtJzpeMF0OMjUi1oR0leFLge26M714nlQFGKELdIVF5fD3A131SmcPcIsruTvGSiOr1d+hMPbQrxzsuj9EMcpQXP0Sl8T5buHMsloGJ8IQitJNo00eqNoEIMHZAQhsj1xE2RNjCPS96f2E+QgrLP3u9NCJ4//7VHNrAf/CUE7wfRO7tT7XDcQKcXJ3V0QjKRR75uS+x/OpbLL36JmyrANODmI9+8w8Zf/oxZl/8FFK5KsRjRyrI57PO7ijORHCts8dxlFmde/dfV65jO4KB9RhojxW9faqlINKhHfqWEF4Q6ZGtcpSAikqokABbdtapFZvCd9OE3EzzJDszo+9BWrZFS7f4iI8JCLKub1mnJmoHdn0LIaiIChVZ4SEuEts46/o2a7RsO7MqV7MUROHA/cc2ZtEssqAXiTm5m4ydFETCE8E6E95gz/mJlbwfV7melu6q3f1y3+OV1dHX8MuzbXIq+/7RKmRQHhWLi42Pb73hNAVMJnBLceI53QA3f/DOqDsKh+vq9ob25YlNMWRZ3btQw2KLnfblZDEYMh1gkdjYoJGsdfvkA0XeV8zW8ifi3D7otNFpSqlWp1CtEeSc+4vD4XA4HA6Hw+E4WSbOXySJBlhrWL12hfWF64yfu4A8hpuegk5IPYlnDLFQ+NYcy91yOe8RawPWkhpLo58wVgxQThm75zFCEakyge5ilcDXEb4ZkMoALU7W+Uwac+sc76UP8fsnl+MNkFpNavsEMiBIp9Cij/QkATm07ZEORW9pc2ALiHt4rPHFuRgpOvzT10sYu/X3+43rOYyFv/hJJ3g/aDix2+HYxkqsuTn1HPnmO3i6gRHdYaWTl1lao/ZJhj0ZhJRMP/9JSvNTXPnaSySd0WzX1dffo7twkwtffpFc/XiycRw72MiWTVOI463/1zr72ZjvRO8HBouga3262mdZbwmDEkthxAo9E8Lz+3TxHoQnLDUVU1Mx5+hiAljTORZ1gZtpgfSEbZhOg5iYJbPEkllCIDa7vsfk2C1F60AEzKhpZtStu3QBmqbJgllgxaxiT7GkSWF4JGhywWvveYFtLVxLS3wQV89EMcNv3qiMiO2hNPzkTHvzca96bsTVQpiUfOvGwRs16TCn2x8WEeU46buNpDdg5QfvjUyrPDxPYWr8wPUkIIUitRv25cnuhfaxLwewvo9AQ2KQqSYiR3uQkhrLdCWglPOoFU7mBrvbWCfMF/DCkNr07K1XcDgcDofD4XA4HI47REjJ9COPcf3tN6jPzrN67SqNxQXqs3O3LDS+FT6WwGiMhK4MiIUitMcTPTZWDIhTgwVWuzHNfsJYwceF/d77GCEZqBKh6YECzwg8EyOEJZUn6zC3kePtRX060xexIzneHq3Zk8/x3iA2MSmSnMxBkkfKHp5SKPIktoOmCzLaJnrfm+OMn5uNUaLDL/+whN4meP/RjRzaCv6vT3ec4P0A4cRuh2OItZZXWxFxWCee/Dy5/iK55mtI28XaAXaYrWo2RW8PUGC9E6+CKs5O8tif+2mu/cErtD68PjJvsNrgvX/xO8z/6GepP/HwHV9MOvZADK13lQdpnD32VGZtniaQavBdnveDjkHQMQEdArZHPyvMSA54ScaUREIoD2/BJQVMeAMmvAEmWGNV51hMi9zUefQ9ekG6HYulaZs0dZMP9UeEhJnduRyjJqqo27Cc0lazbJZZMIv72p6fHJZZr8tjfmPf93ldh7wT12mbk73ZOizrkeKbN0et5b8006HoZd99FujWRy3M860byL3yrDewJjtPSpWdP8PwVM6Ty997E5NuOy4hmHnhmVuup4SHxWQd3UbvURhhdtiX19iwLzdCgpLIuI8VApNIDNDoJZRCD19J5mon020d9XokUcTY3DnCQpF82RW/ORwOh8PhcDgcjtNBeR6zl57g2ttvUJuZZe3GNdorN6lMTt3xtgsmJZaKwGhiofCsPpYRWCFgqpLjRqNHreCz3k1oDRIq+bNxf+64Q4QgkgV8m31arBUoE+MbQyJPPjYu6DWpXnuH1l3M8QYwGHpmgC98QlNEmAJS9QmkwlAksW0MfZADpM2Dzd+TovdzMzFStvkn3y+PCN7fXgjRFv7jpzuoe+9pOW4DJ3Y7HEPeb/dZT4aihBAMCrPcyE1Sa39Mpf0xghTQWJFi0VgRYTFYa7NOuKEIvtUF7h3rF4SXC7n4019g7a3L3Pjma1i9pabZVHPt66/QvrbEuS8+hwrdxdmJIAUEYdahGMWAzMScNBnmecthnrcTvR1baCRNE9I0o9bNPnqbAL7VDe6Lgy92pYBJb8CkN0BbWNV5FtMCK/eJ8A0QEbFgFlkwiwgEVVFlTI4xJuvkxcGCYc/2WNALLJllNMdT9X0UKjLiiWCdmtrbJn1gFO/FNRZ1gbPkCPHbC6M3BZ6w/PRsa/NxnK+ThuWRdYqNKwdscY+cbv/kLzvjVoe1Ny+PTKs/fvGW7iceCgHEw4zulMPYl2+7afU9hEmxGmScEIkC690YC9SLAfViQCE4me+GXnMdPwgJCwWX1e1wOBwOh8PhcDhOHT+XY+bRx1h47x2qk9M0by6hgoBitXZH21VY8ibFSkiFZCB9CiY5ljtpJWG6kuNGY0Alb2n0EjypKYRuTO++QAgSkcMiCUwPKxWe6RPo/ma+90mikojqtXfoTF8kKdZG5p1WjvcGiU1IbUooA3xdRJg8SnWHznZFNJ1toncBbO5UnW2Pg89OJfzVz7T5pdfKpNvGtl5eDDEW/tIzHbz7Y8jUcQBO7HY4yLq632v2dk+XHuvVR2kX5qmuf0R+sIQUKSBQAsCQtXAORXCRAn0MFqzFIreJ4AqsD8jbFsGFEIw/9SjFmQmu/N63Gaw1R+Y3P7hKb3mNCz/1eYozE7e1D8chkDKz4k11Zm0uJBiddTDGcda56HtwnwiPjpMhQbFuFOtme1WpJRSZCF4SCVUVMaEGqH0EcCVgyusz5fXRVnBT51lKC6zoHOY++fxZLA3boKEbXNaQI8eYHKMu69REFSkk1lpW7SoLeoGGbd56oyeAj+axoMGc193T+cxY+Dip8GFSOXNFCZ1E8gdLpZFpPzbVoRpsdaX3ahdG5ntRh6C3uv9GkwSwWU63UpA7+ZxugMVX3sCareMWUjL93CcPXEcikEKS2qybe2/78giIQZfZZV+uFEiBjBKwllgHJMbQHiTUCgG+ksxWT6Z6PI1jBt0u1akZPD+kVD/Yqt3hcDgcDofD4XA4ToJ8ucLEhYew1pDGMe2by3i+T1go3nrlg7ZrUmKhyJmUnvKP1c488CST5ZCllqUYWjpxgqcEgVPF7hs2hO1Qd7CygGeyHG8jFKkMR6LcjhtpDeXFDw/M8S4tfUTQb++zhePDYhmYiFSkhATYtIwSRQLVReOT2ghDFyO6ILoIGyAIwQb3jPD96cmEX/hsm3/0WpnUbB3zd5cywfv/9ikneN/vOLHb4SATkf/Y/Djfv9ng+43OLpvV1M+xOvUkQe8ctbUFwqSPERpEgiXBihghdHbyFwKFznI7RYoVG93gMZb+HiL40fPAc2NVLv2ZL7Pwre+z+uYHI/OSdpcPfu3fMfP8J5n8zJMI6c7iJ4anwMtnGd5RlIngWg8fD/O9PY+z1L3pOOsIIusRaY9V8pBmNuiTqs+012NC9ffNmlHCMuP1mPF6pNuE71Wdx9xHn8EBA26YG9wwN5BIQkISkr07cU8BgeW81+aRoLlvV/7NNMc7cZ2+PZm85jvl9xbLxGbru0Ji+ercVle3EYpeZX5knULzyv6fKp1mBUC+n5XL58JTyT7rrzZovPfxyLTxT14iKO8/uCIAT3hD83JDatJ97Mt7YEMgGLEvt4D1PKROwApsrLEiYL07QElBNecxWQpPbLCk21hDKo98qUx1esZFmTgcDofD4XA4HI67RmVikmQwwFpIk5jG4gJj8+fxw9svfhZAScc0vXCbnblB7bpvuz2KoaJWCABLqk2W310MUC7o977BCEWkyvimhxUCaTWeiQl0Dy19UnFyDqlbOd49OlMPZcXyQ6zyaM8+SmH1Brnm8qmM3KVWk9o+gfQJrI9Iy/iyjJJNUpuJ3lZEGLLfCLFN+PbPvM350xMJf+2zbf7h98ok2wTv7y2H/NL3BX/l0238s/0UHHeAE7sdjiFKCp6q5Ljyg+/QrE5japO7BufjQonl/CXC1gqFtQWUliiRQyIRAqRIkUJjSTAkWJEgRCYzCUCKrBNciBQjNZAAUTZYbgErsRsCOPLAPHDpecx/8TlK56a59vVX0NE22xNrWXz5ddrXl7nwU5/DLxZO4BVzbOJ5mbCdJNmPUpngrdNM/PY9kO5067g9NJJFXWRRF/EwTHo9plWPcTXYV/j2hGXW6zHr9Uis4GaaZ0kXWdW5E61aPW0Mhj79u7b/MTngiXCdktyjExjoGo934zor+mSymo+DgRZ8bWHUnvxzEz0mc1uV8v3KHFZtE+qtpdC4uvcGjc6iHdTwvBeGWSHQKbD48usjj6XvMfXZJw9cZ0Pozm74NOle1vdyw768mFmYb7Mvt8pDCBBJitCWxAQMUk031kyWQwJPMVU+ma52nab0221KY+Moz6MyMXki+3E4HA6Hw+FwOByOwzI2f45k0Mcaw9r1qzQWbzB+7gJS3b5ttLfLztw7NjtzgHrBJ0kN1sJaN6bRixkrBq6Y+D7CCEmkSngmxjd9jFIom6BMTECKlgFanNzYbdBrUb3+Du2ZR9C7crznt+V4m/03cozEJiFFk5MBGIW0dQJRxRMtEjoYUoxNQURYYoxo3TPC91PjCX/92Rb/4NUK8TbB+/s3A/7xa2X+k0+38V1awX2JU18cjh1IneLfuIxZW8LOPUyaH7V2RQii6iRxqU5+fZFc82bWxb1ZUCgR5JAij0QhhEZikDLFkoKIh7/t5ldC1hWeIoQZWqEPYFtvmTUKu00Az7rAs7WrD58jPznG1d/7Nt3FlZFD7d5Y5t1f+W3O/8TnqDw0dxIvl2MDITK7Xs/P8ruFyDq/kzQTwMVQ9HZ53o47IEWykJZYSEt4GKaGwvfYAcK3Lyxzfo85PxO+l9MCS7rA2n0mfJ8mOZHyeLDOtLe30J5aweWkypWkfOZf468vlujp0RuUn5lvjTzu7rAwz3WW8dLBHluzQ/tymRUBBd7Q3eLk6S6u0P74xsi0yU8/gZff3z7cH97IplajrSGx+9iXi+325dXNWRbAU8g0xiIxkcYiWOtGhJ6kFHrMVHModTKfgV6zAUChUqUyOXVHg0cOh8PhcDgcDofDcRwIIZh65FHSOKY2O8fqtSusL9xgbP7cHYnHO+3MI6HIHZOduRAwWQ5JtKFWCFjrxjT7CbW8fyouZY7TI5UBqfDxbQRGYJSHp2M8E6FISGSIFScj4qokonLtHTpTF0lKtZF5cbk+zPG+fCo53pA1kPTMAF94hAQYK/DlGDk7jhUDNB1Suvek8P3kWMrfeLbF3/9ehUhv/Q2/vhLwD18r8wufaRO4IZT7jrP1KXQ4zhBy0KVy4z1KSx8i9/iSscqjN3GO5vknifOjXXEWuzlwHhvDwEAv9eilOQZJjSSdRKeT6LSOMWWsLmFMCW3yGF0GXQddQ5gKwhSQwkNJjZIDlGojVQMhGwjRBtEjKCse/rkvMvX8U7suwvQg5qPf+kOu/9GrmPR4LgIdByBF1slYyGcijx9kP5YszzuJybLeHY47I0VyIy3xvWiKP+jN82Y0xqoOM5eIffCFZd7v8mzuJj9euM4nglXG5ABxTPZf9zsSwyN+gy/kF/YVum8kBb7Zn+XjpHLmhe7EwO8sVEamfabeY76wJfqmfpG4ODGyTKExahWesSF0A6GfOVwEJ2cFNrJna1l46Qcj01QuZOKZx/ddxxMKASQ2xWJI7F43k/vblwPg+9nfTmqQSUpKQCfWRKlhvBiQDxRjxZN5Dawx9FpNCpUqUnlUpqZPZD8Oh8PhcDgcDofDcVSkVMxcepywUKQ+M08SDWguL97RNjfszBWWUKckUpEe4z23lDBdCfGVpJr3ibWhE7tx1PsSIUhkjoGqkIqARIUkMnPkC0wfz0QnNpojraG89CH51RvsHMDTYZ7muSd26QwnTWJTuqZPQkpiUiKTkBoPacfJmYvk7Tw5O4Fvq3i2jjR1pM0DGiNaGLmGES2siLBnaMz78bGU/+y5Fjk1ekxvrgb8g+9ViO5OGqLjBHGd3Q7HAQgg7DQIuk36tWn6telddqw6yNOeu4TfbVJcvY5KogO3aTAYy7AlTIIJgGCbFbpBkiKkRpCASLOuYAAsAoMQGtAgNEJk4qmUMPe5OSrnSnz8uz8g6Yx23a2+/j7dGze58JUfIVcfFTccJ4CUkM9v5XfvzPP2VGbze8bFMMe9QYLielrieloiQDM1zO6uyWjfIuRAGM75Xc75XSIrs47vtMC6CXGfy51YplSfx4N18nLvm92W9nk7HqNpTsay+iT4o+USzWS0lPVnd3V1nx95LNOIfHuPQYrNnO4gO9+dUk43QPvqIr0dzibTz34CFeydke5l37ikNsvnjkyyd7nHQfblQmKVRMURFoFOJBZY78YUQ0XoK+aquRN7CfrtFkZrCrU6pfoYfnDvfO4cDofD4XA4HA7H/Y8XBMw8+hg33n2L6tQ0jaVFPD+gNDZ++9vEUtAJVvkk1jCQHsVjtDP3Pcl0OWSxNaAU+LSjBF8KQud5fF+yYW2uTEJg+hglN63NpdZo6aPF3uMKd4IACo0lvLi/f4732g1yjdPJ8YascW9gIiJifOHhoTBDMV4KDyXqeMOOb0OPlA6GBG03XGyjM9nxfamW8jefa/Nfv1qmn24dy9trPn//exX+2mdb5JxCet/g3kqH4xAIaymsLxK2V+mNzROX67uWSYpVGoUyueZN8uuLSHO0SiaDAQs680UF4wEhAoEUIIXOLNFFCiSZ4C029mEz4RtNaSbHEz//o1z9/R/SvLw8so/BWpP3/8XvMPejn6L+xCMIZ6l98uyX552mkJphnrd7HxzHR4ziWlrmWlomFClTqs+M16Wm9rdBCoXhvN/hvN8hMoolnWcxLdI0AQ+68F0UMU+E64yrvQuZYit5P65xPS1yL71W2sJv3hgtfPpEtc/D5a3PiQV6OyzMC81ru50AzLCQRw3PZ6eY022tZXFHV7dfKjD21KN7Li+RSKFIrcZgiU2yLTRkGwfYl2c7UQhrsMYiYo0WOZq9BG0t9UJAJe9Rzh//TTFkz7nbWCdXLOH5PrWZ2RPZj8PhcDgcDofD4XDcCbliiamHHmXp8nukcUJ7bRUvCMiVbr9zNWc1sVXkjaZ7zHbmAPkwc+iyxKRG0xwkjEmJd0LxVI67j5Y+feFtszb3USbCMzGK9MSszbdyvB9GB/mtGULQGx/meC+fXo43ZKJ3bBNimyAQeMLDQ+JZBQgkHkrWCGwdRIyhOxS+06HwHe0Qvv2h8B3cNeH7kVrKf/5ci7/33Qq9bYL3u+s+/82rFf76s23ynnO8vB9wYrfDcQRUmlBe/oikdZPuxDl0WBhdQEgGtWmi8hiF1QXC9uodSx+ZJTpoK8nsU30gj0AghlngUhiESBDCIEiQfoELX/kJ1t76gBvffA2rt74UTaq59vXv0bl2nXNf+iRekAOrAAVWYVFn3nr3nmMzz9vLrMwRQ9E7yWzNpcyyvk8oE8bx4BJZj6tpmatD4XtaZR3f1YOEb6m5IDtc8DsMjGJJF1hMC7QeMOHbw/Bo0OCc19kzD91YuJaW+CCukd6DqTAvrxRYjUYvA//4jq7uQWkK7edHphV3WZibrJBHDnO6Q//UcroBGu9fYbDWHJk288LTe+ZXSzL7coPGYEhM9ns3B9uXW6lASmQ8yNzbUx9tLc1+QjnnE3iS2Vp+j+0eD1GvS5okVKdmyZUqhIXiie3L4XA4HA6Hw+FwOO6EUn2MZO4cADqJaSwtMub5BLncLdbcm8zOPKHpSUKdEikPTxu8Y4xnqxZ8otSAtaS9hGY/ZqwQIPYaHHDcHwhBInJoEeDbARbQ1sczUdb1LTxSGRz7mLlKIqrX3qUzdZF4Z453qU7TP90c7+1YLIlNSGz2d6eEhycUnlFDXUKiRI1AjIGIMuFbdDB2p/DdvuvC90NVzd96vsV/9d0K3WRr3+83fP7r75b5G8+2KfhO8L7XcWK3w3Eb+IMu1WvvEJXH6I3NYb3R7i2rfLpTFxhUJyiuXMcfdI79GCw2MzU3G/vesjAVaJQ0VB//FLmpOa597RtE66NiQOODZbpLbS585TMUZ8tDoZzhTyZ8Yz1AgvWwSJfqe6dICbkcBBoGcSZuGw1JCnGUdUV6ztrccTJE1uNKWuFKWiEnUqa9HjOqS0Ul+66Tk5qLss1Fv03fKJbSAou6SNv43L+fU8u81+VS0CAQe1fPrumQd6I6HXs6mdTHjbHw69dHu7ofLkU8WRntXt/Z1e331/Gj9rYpFuLh58cPsniGU8rpBjBas/TK6yPTwnqF2qULey7vCQ+DIbWG1Kak7BPQdJB9OWB9D6lTrBEQa6zwWe9mr1294DNWDMifoM1dt7GOn8sR5HPUpmdObD8Oh8PhcDgcDofDcRzUZ+eJBwOssaQ3rtJYuM74uQso//bcsNQ2O/N0aGdeMMmxymcTpZBEW6p5WOvGNAcJtbx/anFdjruDEZJIFJAiJNC9LL7MpigT4+seWgbHbm0urKG09CH9aJr+2OzIZ2wjx7u09BFBv33AVk4WC9k4is3GUTyhsq5vaxFWwIbwva3jW4su2qYYm2BFjGVwV4XvC5Wh4P1Khc42wfty0+e/+m6Fv/lci6ITvO9p7r1WJIfjjCCAXHuN2pU3ya0vwR6WIjos0Jp/jPb0Q2jv9AQAiyI1PonJIyvnOfcnfp7qk5/ctVzS6fPBv/o2S6/cQCc1tK5gdAFtPIw1GNHHyg6oBkKtIVULJXsoESFFet9KXSeOVFDIQz7MxKFw2PWtNURRln3rSgscJ8jAenycVHhpMMsf9WZ5L67S1gdfrOel5qGgzYv5RX40v8Alv0FJxtxPn9WqjPh8bomnwrU9he6+UXx/MMF3B1P3rNAN8IP1PAv90eP/2fnWyD27VgH98qg9drFxZXRDaZp99/k+SAHh7VXm3y5rb39I3OqOTJv53DOIPSzUfeENb8402moSu4/QvWlfXgTULvtyqzyEAJGmCG1IdECiDZ0opV7w8ZRkpnpyr0MSDYj7fYq1MfwwT6FaO7F9ORwOh8PhcDgcDsdxMXXxYfLlCvWZeUCyvnADc8QIyO3krMa3hpxJsQgicbw9fVLCdCUk9CS1vE+sDe3B8dmlO842RigGqkQsC6QiIFEFjPDxTEyg+8hjtM6HrRzv8uJlhB4dr9jI8e7Xps/MCFxqNQMT0TE9+nZAQkpiE2KTEmuJNTU8fY6cnSNvJwmo4tlxlBlD2iJgMaKNkWsY0cSKPnZP573j5XxZ84vPtygHo/v6uOVlInjs1I57GSd2Oxx3iLSG4toNalfewu829lwmLtVpnP8EvbHZE8n4uBXS85j6kR9n9qd+BhmGozOtZenl1/ng3/wh/ZZAmyLGFLC2DKaO0TW0LqNNHm0U2qZo2cPKFkKtI2UXKeLdGa6OW+N5UCgMxW4/+y1lZm8exVnXt8NxwvSsz0dJlW8Phe8P4iodc7DwXZApDwctfiS/yBfyCzzqNyiK07dUOi4CoflksMrn8ktU9rB41xY+iCt8sz/Lsi5wL3e12z26uufzMZ+q90em9arnRqMVjKbQvDbyGJ1m5zGlMqH7FC3dTJKy/N03R6YVpsepXJzbtawnFAJIbIrFENv93AxuYV8OCE8h0gRrBTq2IARr3RhPCio5j+lKDl+d3Pd8d30d5fnkiiVq0zMI11XgcDgcDofD4XA47gGElMxceoywUKA+N4dOEppLi1h7++OJJR2jLORMSiolyTGPuXpKMFXJEfqScs6nl6T0YzdW98AgBKkMGagKiQxJZUAsC1gEvhngm+jYx8ODXovqtXdQ8egYTZbjPUdn+qG7oi0cxIbw3TV9eqZPTJLZnw+Fb2MqW8I3kwTU8O0YyoxvE747Q+G7ceLC93xZ87efb1HdIXhfaXv83VcqtJ3gfc9ytv4yHI57GJXGVBY/pHzj/d1fSABS0q/PsH7hE0Sl+l2RhksXH+bCn/p58jO7xYD+wiKX/8W/Ye3yOnEywSCu009KRGmBVBfQuoAxeawtga5hdBVtchirsbI9FL7bSBE5w/OjsJHnXchngrcfbNkAJ3H2s4drgMNxEvSsz+Wkyrf6s3yzN8PluELXHFwdXZQpjwQtvlBY5EfyCzzsNymI/a3RzxICy0WvxY/mbzDnd/dcZinN883+HJeTGuY+uGx6uxXyYWe06Oln5lsjOrVlt4V5vn0DaYbVxXYjp1uB8rNzlndytt17sfLDd0n7g5FpM5/71C7x10MhEaQ2xWKJzAGfTdnLfpsimDzYHbnbngIsItWIRKNtQD/R9GLNWDEg8BWTpXDXZo8LnSQMOm2KtRqe51EaHz+xfTkcDofD4XA4HA7HcaM8n9nHniAsFKnNzDLodmivrtz29iRQNDE+Bs8YBkIdu0SW8yXjxZC8r8j7inaUkKRunO5BwgpBLAsMVAUtAxKVI5E5hDUEuodnj7f5Q6Ux1WvvEnTWd82LS3Wa5x4/VQfZo6AxRCama/p0TZ+ImMSmm8K31hU8PUfOzJFnYg/hG4zoYuTqiQrfsyXNL77QpBaOFq9c63j8nZcrtCIneN+L3Pujtg7HGSPot6lefZvizau7bEcArBfQmX6I1vzjJGHh1I/PL5aY/2M/x9hnX9iVM2OiiIXf+02Wv/0NTGrBhlhTJNUVknSMOJnMRPC0SJzm0DqHtWWMrqN1HmMtRnZBrSNlCykGyFOwILkvkBLyuezH8yEMM2tgY7I87zThfrKLdpx9ujbgg6TGN/uzfKs/w4dxhd4thO+STLgUNPnRwgIv5hZ4yG+SP6PC97jq8yP5BR4PG3hi999Wx3h8tz/JD6JJBvZ47dDuJr9+bdSWeyJMeWGiNzItyVVJcqPLbVmYb+R0i+wc5SkIjjev6lakg4jl778zMq18fobS3OTINIlECplZl2OJTYLd7zwq4szC3GzYl9dGZlshsJ6HSGMsgjTNxP3VTkQukBQCj9lqnj0c1I+NbrOBkIp8pUplahopT7fAwOFwOBwOh8PhcDjulCCXZ/qRS4TFEpXxSbqNdXqt5m1vL7SGwGhCm8UtDuTx37+X8x7VvE8l5+FLSaOfYIwbo3vQ2LI2L6KFT6zyaOkjTUKge6j94tJugyzH+yMKqzcyi75t6CDL8Y4LlX3WPhsYDLFJtoRvuyF8ayIj0bq8TfieJKRGYMfwzBjSlrJtnKDwPVM0/O0XWozlRgXvG12Pv/NKhYYTvO857p/RW4fjGLDW7vz+uC0EkGutEHTW6ddnGFQndwnLaa5I69wTBO01iqvXkXsI4yeFkJLxzzxPYXaexa//Lmm3MzK/+dbr9BcXmPnSVwhrYzvW9sB4GPIYA4lIkCJCSYmSOdAWTYwQKcg+kh7SKrABWB+Ndw8bAJ8CngIvD0kKMVnnZJpmdsFag+9l09yr6Dg1BB0T8L4JeD+pUpEx06rHtNcjL/e37yqrhLJq8ljQpKUDFnWBpbRw14XjvEh4PGgw5e3hwAEkVnA5rnI1LWPvs7+zy+2At1ujedI/M99C7Xia3drFkccq7hJ2h9X2ybDwJhjGLuROrpN5P26+9jYmHi2imPncMyOPJZl9uUFjsCQmxex7U6RBdjP7chsMhe4dqrXnIazJPO1jiyHIKvq1ZbISUgg86sWTE/2NMfRbTQqVGkp5VCanT2xfDofD4XA4HA6Hw3GSFCpVJs5fBCxpEtNaXsLzfYL87TUFFU1CKiQ5o+krj1hIgmN2SawXAuI0u6tc68Y0+gljBX/XeK/j/ieVAVr4eDYCIxAyy/L2TIQkJVUB9hh6TAWQbyyhol5mX662xtOs8mjPPEJ+bYF8Y+nMj14ZDLHNYuUEAl94eCiMVYBE2hJSVPBIsbKHtl0MCdqmGDHAEmFEF0QHYX0EIdgQcYev81TB8IvPt/i7r1RYHWw1FCx0Pf7Oy1X+1vMt6jnXyHev4Dq7HY5t/NabN/l734PLzeP5ipBGU1y9TvXq2/i91p7LxOUx1i88Ra82jT3lC6T89CwX/tTPU7r4yO7jWl/l6q/9Ks133jw4P8f6GFMiSccZxDXitDDM/C5idQ2tSxjrYeUAVAulGkjZQ4jE9SkfhD/M8w78rHsyDDNhKXF53o67iaBlQt5L6vxhf47v9Kf5OCkzMAd3mFZUzONBgy8WbvBCbpELXotQnF6BD4DE8Kjf4Av5hX2F7utJkW/25riSVu47oRvgN3ZkdVf9lC9MjhY7WSHpVedHphUbV7JXQ6fZucf3hm4U4anf2CfdHiuvvz8yrfroefIT9c3HAvCEj8GQWkNiUzT7nTMNqHa2lilm1uVm1L7cSglKIpIUYSFNFcZa1nsJpZwiVIr5em7vzR8T/VYTay2Fao3S2Dief7rd9A6Hw+FwOBwOh8NxnFSnpqlOTlOZnCbIF1hfuEEa354ddGZnnuAN7cwj4R27z6SUZPndnqRa8NHG0hqc7riG4+xghSCROQaqQioDEhWSyDwCS6D7eOb4rM2DfjvL8Y5253j3x+foTD985nK8D8JiiW1CzwzomB4DGxPbhNSkxEag0xLKzBKYOXJMENo6gR3HN+Mn0vE9Wcg6vCfzo+NGSz3Ff/lyhbXBvfPaPui4d8rhGJJqw9///ct81IL//q2Af/aWz8d769NHxksGlBc+oLzwATIe7F5AKvrjczTOf4KoWDtVEViFITM/+VWmvvATCDXacWl1yvI3v87i7/82OooOsTUPY4rEaZ1BPEaUFtCmgLV5rK6jdRljfAwxQrZRah0puwgR728t+yAjRCZyb8/z9nfkeTubeMddQ9A0Ie/Gdb7Rn+Pl/hRXkhKROfjSoqZinggb/HjhBs/nljjvtQnESRZvWKZVlx/NL/BIMJpNvUFTB7zUn+bNeJyY+9Ma+nrP57X10Sr5n55r4+94u/rlWazalv1kLYXmVbA6i1OQCqQ3LMA5/ddq6btvYvW2z4sUzLzw9MgynvCw2My+3GrSfa3E7FDotqDLgA+6tnOJrKvbaDAWE1usUDT7CdZCvRBSK/gUw5NzLLDW0m2skyuWUb5HbWb2xPblcDgcDofD4XA4HKfF+PmLFKs1ajOzSOWxvnAdo29vfCCwhtBocjZFYBlI79hHGpWE6UqOUCnKOY9+oulHrhnlQcYISbTD2jyVAdJuWJsfT7SfSmOq1/fL8a5lOd7+6Tvv3SkWS2IT+iaiY3r0bUREQjwUvtO0iNSz+GaWkAlCO0bAUPg2xyd8j+cNv/hCi6nC6N/zzX4meK/0nYx6L+DeJYdjyP/xvetcXtnKLX2/Kfm7r8J//zrc6Byw4iERQNBrUbv6NoWV64g9Lt6MH9KZeZjW3CXSIL97IyeEEILqE09x/k/+OYL6Ttty6Hx0mSv/6n+jv7R4hK1KrCmQpFUG8TiDtIDWBawpgKmhdQVjclg0QnaGHd8dpIiONX/jvmAzzzsEz4MwyMRvY7Iub+3yvB13G0HD5HgnHuMP+vO80p/ialIitgdfZtRVxJPhOj+ev85zuSXOeW38fTtwj05JxjyfW+ZTuVVye1iuR1byRjTGdwbTtMy9d1NwFHZ2dReU5iemd3+57bQwD7s38ZIexCkgM6eJwMu6u0+ZqNFm7e0PR6aNPfkIYbW8+dgT2XElNh3aZO13Y7khdBvQFSCAdIJdl8ZKgRSQpAhjSbRPqi3NfkIl7xF4gtnqyXZ1DzptdJpSrNcpVGsEudO7PnA4HA6Hw+FwOByOk0IIwfQjl8gVS9Tn5jHa0FhcONhh8gCKJkFZS85otJAkJ9DtGniSyXJIzlcUQ492nBCnbhzzQSeVAX1VJpF5tAhIVAEjFJ6JCXQ/i0W7Q7ZyvK/vneM9//iZz/E+CAukNmWwKXwPiEmHOd+SJC0i9Ay+HgrfbAjfEwcI34cfYxzLGf72801mdgjeK0PB+2bPSalnHfcOORxD/sWr1/ec/oMV+H+/Av/8Lbi5t/PtkRBY8s1lalffJGyt7PpyAkjzZZrnnqAzcR4jT09QCGtjnP8Tf47qJ57eNS/tdrj2G/+Stde+izVH/YKWWJMn0RUGyTiDpDQUvvNYU0HrKsbkM5FbdofCdwshBnCMwtc9j+dlXd5hmAlNYZgJMWnqrM0dZwjBusnxdjzGH/Tm+W5/kmtJ8UDhWwgYUxGfCNf5icJ1ns0tMe91blv49tE8GazxYm6RutrtSmEsfJyU+WZvjhtpCe5Dy/Lt3BwoXl4Z7er+8myHnBr9/kn9PFFpcmRasXFlK6c79LNzThBwN1h8+fWR70zhKaaffWrzsYdCAtqmmS2WOUDoll0g3dbRPQ47uvqzrm6FSNOs+TsWCCFY78VIIajmfSaKIaF/sh3u3cY6Yb6AH4ZUp2ZOdF8Oh8PhcDgcDofDcZpIpZi59DhhLk99do540Kd1c+m2tiWAks7szH2jiYSHPoH7/WKoqBUCSqEiUJJmP0Eb14TywLPd2lzkSGVILLNi9cD08U2EuMNmpSzHe5nywgcIPepit5Hj3atP3xctUanVI8J3Qkpikz2E7/EdwnfWEGHoYuTakYTvWs7yiy80mS2OvrZrg0zwXu46OfUs494dh2PI//gffY7/4mcfp7LHGL4FXlmC/+d34H99FxqHcfS+BVKnlG5epXrtHbx+e/cCQhBVJ2hc+AT96uSp5cdKz2PqxS8y+1M/gwx3dDpay+r3vsP13/rXJN3bbXcXWBuS6PJQ+C6T6mImdpsKWtcwpgBIhOwjVRMpmwjRB1wWDkJkOd75bXneQZidzZMYkgiOoVrQ4TgOLII1k+eteJw/6M3z6mCS60mRxO5/PhMCxlXEU+EaP164zmfDZea8DodL3LKc89p8obDAeb+zZ5z0qs7x7f4s78Z10gfkMui3blQw275DQmn4qZnd3zvd2oWRx0LH5BtXhjndfuYykTv9nG6A3s01mpevjkybePox/GJ24yiRSCEz63IskUn2j8eQPRAx6BKbQrfdIwPbG4rYqYbUoq1HlGo6UUq9GOAryVTlZLu6436PJIoo1scI80UKleqJ7s/hcDgcDofD4XA4Ths/zDF96XHCQpHK5DS9VotuY7dd86G2hSFnUkKrkSdkZw5QL/gUAp9q3kcKaPTi2+5Id9xfZNbmBSJVRotg09pc2BT/mKzND8zxHpujPf0w5h7K8b4VG8J31/TpmT4xyQ7he3pL+BZ1Qibw7X7Cd+9A4bv6/2fvT4Mky87zzvN/zrmL7+6xb7lU1pKVtRdQC4gCRFIkQYgiBYpLazU1KU3Lmt0UezSaHlEy2WisORqj0eYDp8coQd2j1pAjmkxik2xSTWohAQokQRCoQgG1oFCVteYaERmr7+53OefMh+uRGR4RmZGRseR2fmlhHuF+3a97pMd19/vc931Dy3//fJO50nAOsR4p/sevVrnSvjfHH94Ljr4HpePcoQJP8ldfOEa59S5fPJ/ypXlFLx3eoW8s/Mk8vLwIf2YWvu8ElPZZ4ObFPSrz7xMXa3TH5jD+8A1a5dEdP0a/Mk5x9TJB94AGie+idPIU4fgEV/7oi/QW54cu6y3Oc+G3f42xZ1+g+ujjCHXrG3lrA1IdkOoiQiR4IkEqH4TGYhEiRpIiZB9BD6zEWh9rAywe4h6vyLwuKa5VeEcxCJkFUkkKcZTN1PU97vWKVefuYRGs6jyrOs/b8ShjqseU12VS9fDEzh8IpYBxr8+41+exYI1VneOKLrKU5tFbguqa7HMmWKesdv7Q0DOKs/EIyzrP/fR3UY8lf7JUGjrvO6falPzhgwcs0K0Oh92F+kVEEoPysvncYZgF3rfB4stvDv2sAp+JZ88AIBF4QqHRGCyJSa8/DkP2QPTBlIAQ9CjYHV7IBVjPQ6bZ8ylNsse92okJPEk5VMxUc3jqcJ9Lnfo6vh8QFgpUp11Vt+M4juM4juM496Z8qczEA6ewH32AjmOaK8so3ydXLO1+5S0KJiURipxJ6SqfWChCe7DdEIWAyXLIZa2pFQLWOjGNXkIt79+WA8SdO48WHlqV8GxMYPoY5aNMjGdiFCmJDLH7CKQ35ni3J04Ql0eGLktKNZpBjvLih6jkAKr27iAagzYxEVnhgyc9fKuQVoIpIkUZJVI82UOLHpYYbVOM7WNEhKELsoOwHoIQbIjY0umvElr+z883+cVXK1xsXYtQm5HkF1+u8X95/mjyGWdvXNjtOFsECv7MrOaFSc3LyyH/+RJEW94PJQb+4BL8yQL82WPwZ49Dfh9/TQIIO3WCboNedZLeyFQWLGxighytmYfwu00KK5fwjuCFyi+WmPvsX2D9jW+y+torQ+1jTRSx/LUvs/7W64x9/EXKpx5G7DMEsdYnsT6YAgKNJ2OU9DEyxeoCQqRIEoSMEURYJBgfgw/WQ9wnVZpDpIJ8ftDKPMqCKJ1mlYiRzioTlQu9nTuLRbCiC6zoAm9jGFN9pr0uE6qHukHwPeH1mfD66ABWdZ4raYGmCXgwaDDjdXe8nraCj5IK55My5j7cRvz+fIV0UyW9Jyyfmdle1R0VJ9DBcKvz4vIH2TbF8yD0stPboH35Cu1Lw23sJj52Bi8MEGRzug0GbQ2JSdHXO0JX9EF0wRTAhmBGwO5cmW09lc3USg0kFotHJ0qJEsN0NUfoKUaLhzvnPY1j+p0O1clplB9Qqo0e6vocx3Ecx3Ecx3Fup/LoOEm/D0CaxNQXFxg7dgJ/a+fJXWTtzGMaXkhgNLFQeNagDrjGW0qYruS4XO9Tyfs0ejGd2FAMXeWnMyAEqQjRIiCwPSygrZfN8jY9jPBIZXDLHV2FNZSWztGPunTHZocOtNBBjsbco5SWzh1Z8dxRMxhiExMzCL6FwsfbFHyXUELjyT5adLHEGJuibYQR/RsG3+XgWuB9vnltf1grlvw/X6nwiRdbPDpdvk2P3NnJ/bfX13FuUs6DP38K/m+fgO85Bv4Ofy2Rhv94Hn7uq/DFCxDv8yBBYS2F+hVqF94maK3tuExSqNA4/hidsTmMPPw3T0JKRp99jmM/8MN4OxxNmbZbXPmjL3Lht/9X2hfOHVjLHosiMXn6aZV+PEKaljG6gLEFjK5hTAVhQoRMUbKNVHWEaIGIrl/Rdy/zPCgUIAzA869VYLp53s4dziBZ1gXejMb5UneO1/vjXEnz6Bu0OlcCJr0eT+VW+VRh4bpB92Ja4Cu9GT5Kqvdl0L3Y8/jDK8Pb7Zcm2oyE27cHW1uY+711gt561r7cU9m4hNvAWsvClqpur5Bj/IlHsu+Fh8Vm7cutJr3euAsRZ3O6bT77MlUw+Z3XKQUoD5GkCGtJEom1lvVuTCFQ5H3FTC1/6EXunfo6UinypTK1yel9H1DmOI7jOI7jOI5zpxudPUZpZIzq1DSeH7C+cBmd7n2soYclb1ICq5GYQ2tn7nuSqXJIzpMUA592lBAlbh+cM8wKQSQL9FUFLQISlSORIcJqAt3F20drcwHkG9eb461ozTxEd2T6npjjfSMGQ2wTOqZH2/SIbExiU1IjSdICpBNIPY3POIEYIWSMwE6gTAWQGLqDVufrV1udF33L33uuyanK8P9PK5H87G+84UYX3GHcXjPH2UUpgL/4MPxfPwGfms2qC7fqpPDbH8L//Wvw5ctZIdh+KJ1QXjpP5dJZvH5n+wJC0K9NUj/xOP3K+JG8WOWnZjjxw3+J0qmHd7w8rq+x8MX/wKV//1vb2p7vl0WSmpAordCPR0nSCmYw59voKlZXESaPkBYpO4Pguwmid8MZHPccISAIoJDPwm8/yH4WDOZ5x26et3NHM0iWdIE3ogn+sDvHm/0xltI8Zo8buZbx+Xpvkjejcfr2/mxi81Y9x8+/OU1krr3VE1g+O7e9qttIn155Zui84sqH1+Z07/Eo+oPUPHeZ3tLwwV9Tzz2B9D18kf3fJja9+qFmRyIG2R5UcxfAlAdtzK9DeQhjsMZiYgFC0eqnpMYyWgwo5TxqhR1mfB8gozW9VpNitYbyPMrjE4e6PsdxHMdxHMdxnDvFxAOnyJfKjMzMYS2sL8xjzd73Z+VNim8NeaMxQhCJwykayoeKkWJAMVTkfUmjn5BqF4I52xmh6KsSsSwO5nkX0MJHmphA95D7aLd/bY739oKQ3ugMrelTmPvkIHo72EfUNX3apkvfxsQ2RRtBmhYg2Qi+sxnfOcYIrwbfaij4zgcd/o/P1Xmoem2f03hO80//+scRbmTBHeX+eHY7zgGohfCXT8M/ehGen9q5KXQjhl97D/4fL2dzvfca0GzlR10ql9+ldOU8It2+E98qj87EcRrHzpDk9z7DZq9UGDLz3Z/h2A/8MLnJnWeH9pcWufQffpvLv/+7RKsrB34fLILU+ERpiX4yRpJW0KaIMUWMrmB1DWGKCCmRso9UjU3B996PBL0rSQn5XPbl+VlFpu+DMdk87zSBe/54Pudup5Es6iKvRxP8YfcY34rGWE5zN9yuJlbwTjTC13rTrJud21Pf66yFLyyU+R/fnqCrh9/mvTjeZTK3fTvYrc4Nj84wmnzrMigFYe62zem2xrD48reGzgsqJUYfPYWHQgCpTbFYYnO9o6DTQdAdZAG3KYKpXH+dUoKSkKQIA4lWGGupdxNKoYevJLO1nSvCD1K3UQegUK1RHp9A3aYW8o7jOI7jOI7jOEdNSsX0w48SFoqMzs6RxhH1Kwt7rvDO2pknSCyhTkmkIj2kMX+1gk8p9KjkfJSUNHoxdr87hp17kxCkMqCvKqQyRyoDElnAIvFNH9/0Ebe433ZjjvdOHWOTYo3G3KNo//YVNNwOFktiE3qmT9v06NmIiIR0EHybZBz0NN5Q8D2JslU2gu9cuMp/9/wFHhqJGclp/vsXmswdwb4hZ2/cnjPH2aOJPPyXj8H3HYd/fw7e2CHPXe3Dr74DX7gAP3gKnh4fGpmxJwII22sEnTq9kSl61cltwYMO8zRnHyFo1ymsXkal8a2t7Cblp2c59uf/Ip1L51l99WvE69tfQLuXLnDh0gVKDz7M2MdeJKhUD/x+WCA1PqnxERRRUqNkjBQRWI3AIkQCIkGIPpYe1kqs9cEGCA63Mu+28xR4eUhSsuEl6to8b62z6m+lcPO8nTtdimQhLbKQFvEwTHpdplSXUdVHiizgvZyWeD+uknD/zsZKDPzrj0b58tL2g5+OF2L+6gPrO16vUzs59HO+OZ/NMgsGLcxvk/V3zxPVh+dKTb/wJJ7ykEKS2gSDJTIxdscPghpUC6yXhdw2B6Z23fVZAN/Lto/WYmIQQrDWibHASDFgtBhQCA73d2Ktpduok69UkcqjOjl1qOtzHMdxHMdxHMe503i+z/TDp5k/+21GpmepX1lk5cI5SmPjFCrVm66oVFgKOgHlk9qsnXnRJIeyJ2y8FJJoQy0Pa52YRj+hlvdvfaewc0+zQhCLPKkI8E0PKwRyY5637qKFTyqDPd+usJbS0vnBHO+5oeefCXI0jj1K6cp5gm7jIB/OXSEbg5eS2uzAGU94eELhGYUxBaCAFAZP9VH0shnfaFLbJ+/1+akXGvT6kvH7s77mjufCbse5RbMl+K+ehPNN+J2P4OwOGcJiF/6Xt+BEGX7oFDw6so/Q2xoKawuEzVW6Y7PEpZFty8SlGnGxQq6+RGH9CuIQW1YLISgdf4Di3AlaH73P6jdeJm1vb4/b/vB92h99SPX0GUaffR6vUDyU+5MF34rU5IE8njQokSBlH0RK9mKlESICmQARxgqsDcD6gI+4V0Nf38sCqySBWGQBd5JmFd6pzi4/gvnvjnMQUiTzaYn5tISPpqJiOsa/b9uVb2gmks+fHef91vZ33M+NdvmbD68Squ2BcBxWSPK1ofOKjYuDOd17/1B1UEyqufLqW0Pn5cZrjDx0AiUUqdUYIDHJDYLuJiCztuU2B3rsxiv1BgeSJRqrQVuPRBta/YRaIcBXkunq4X+i6bWaaK0pVkcojYzih+5TlOM4juM4juM495+wUGDqoUe48uH7+LkczZVlmstL9JoNKhNTBLmb+6yUs5rEKnJG01E+faHI76Nd9PVICVOVHPP1HrW8z3ovphVpyrn7e3+Fc2NGKCJVwjMxvulhlELZBGViAp2iZYAWe3sOZXO8l/HiHq2pU1h17fpWKlozD5JfWyC/vniv7g2/KcPBt8rCb6sw6abgW/ZRsosloSBDCvnIjQm9Q7ktrePs08kK/PQz8O56Fnqfa25f5kIL/tkb8HAtC70f3EeRs0pjylfOkTRW6IwfQ4dbWmYISX9kmqg8RmFtnrC1dqgvWkJKKg+dpvzAQzTefZu117+O7vWGF7KGxtlv03z/XWqPP8XIUx9DHfIM2NRIUkLQIZ4AJaPB3NZssydFihQJyIgs+CYLvvHB+oh7bcrDxjxvz4MoJguAdBZ6J3EWdvsebrqFczdJUKxq1zboQsfnn74zwVq8/W3dXzhW54eONZHXeSHo1k4M/aySLmFvGfKFw7irN2312++TtIfnTM28+DS+9DGDf4lJySLvrUxW0Y0AXclmde8WdAuwnodMU8CSJtm2cK0To6SglvOYKIcE3uFuI621dNbXyRVKeIFPdWrnkSGO4ziO4ziO4zj3g0KlyvEnnmbt8kWkUhQqNZrLV1i9dIFCpUp5bBypblzAIYCiTkg9SahTIpUd2Owfwog/TwkmKyGLjT5l49PsJ/hKkPNdkYlzY6kMSIWPbyMwAqM8PB3jmQhFQiJDrNjbPgm/16Z66Syt6VPocHg/T290hjQsUFo6hzQuvE2tJh0cBKOEvBp8S10AnQXfiBiBRNrbVxziXJ8Lux3ngJwegf9TDd5azULv+c72Zd6vw//rm/DEWBZ6z+1jzLbfb1O99A5RZYzu6AxWDbfktp5PZ/Ik/co4xZXL+NEOd+gACaWoPfYklYcfpf7tN1h/8zVMMtxO3eqU9Te/SePsW4w89XFqjz+J9A6/lXhqIdUhEKIEKJmAiEBECJFHCD0IvmOgMwi+PSAYtDu/hwLgjXneaZqF3lJmLXs3fvYUKA/X2txx7g6vrub5l++PEZvh7VQgDX/r4VWeG+td55pghaRbPT50XqFxEZHPcd10/AjoOGHpm28PnVecnWDk+BwWQ2o12mpSdprXZgdBt82CbvxB0L3L41EKkbUIwaZgraSfaLqxZqIc4nuKydLhz7WKu13SJKY6OUWuWCZX3McbBcdxHMdxHMdxnHuA5/tMPvAg5fEJVi6cw8/l6DbqtNdW6XfalMfGyZcrN2xtvtHO3CofbQyR9FAmOZQ9fjlfMVYMMTYi0YZmP0EJgX/IB0879wAhSEQOvdHaXAmk9fFMRGB6aOGhZbinwzQ25ni3J04Ql0eHLkuKVRpzj1Je/Agv6R/sY7mLaWvQNiYCFBJPZsF3miqkLQ4Kxpw7jftfcZwDJAQ8OQ6Pj8E3l7KZ3ss75AxvrWZfH5+AP38KJm+xgE4AueYqQbtOb2SafnViW590nSvSPHaaoLVGYXUepZNbW9lNkr7P6DPPUX30Cdbf/Cb1t9/E6uHWQCaOWX31q9S//Qajzz5P9fQZxBG10dYWtM7alitRxhMJSiZY0QORQ5K1P7cyBroYulijuBZ83yNHYnpe9pUkEMdZa/M0HXxp8H3X2txx7mDGwu9cqvK/X9reKmQ0SPnpM8ucKN54e98rTWO84aNRi93F2/63v/zGWXR/+GCpY5/4GEIIEpuirSG2Oz22jaDbDILuANJxdutYYeHq9lBYSBIF1rLWiQk9SSn0mK7mUOrwDwDo1Nfxw5Agn6c2PXPo63Mcx3Ecx3Ecx7lb5Etljp15gsbyEutKkSuVaa0s01i6MmhtPnnDMVA5q4mNwsiUjgiIpEfe7HQQ9f6V8x6R1mAtumup9xLGigHyNh5Y7tw9jJBEqogyAYHpYZS82tpcao2WPlrcfAHZ7nO8T1NaOk/Yuf/meO9GY9AmC767SYonJFK5WPVO5P5XHOcQSAHPTcGzE/C1RfiP56EebV/uG8vw2jK8OA1/7gEYvcWxnNJoiquXyTVX6IzNkRS3hx9xeZS4WCNfv0K+fgVhD75Vz2Yql2P8hU9Sffwp1l77Os333oEt69S9Lst/+kfUv/UaYx9/kdKph294FOZB09airQfGQ4kinkgRMsaIHtgQid0UfPc3Bd8+2BBxL2xCfT+r5E7i7I3ORuidxCBkdqSacKG349xJIi34l++P8Y217UdKPVzu8988ukLF370FVWdkuIV52F3BE4d7QNRu0l6flTfeHTqv+sAc5alxEptisSTXC7plB0i3VHTvvv2SSqAtCG3QiQAE7TglSg2z1Rz5QDFaPPwWVUkUEfW61KZm8MMchWrt0NfpOI7jOI7jOI5zNxFSUpuapjQyyuqlCyhPUehVaS4vsXrxAoVqjdLo2HVbm5dMTCpy5ExKX3kkQuIf0vzd0UJIkloMsNqJqfcSRgv+tkIlx7keLX16wsO3MZgeRvkoE+GZGEW6p9bmV+d4Rz1a0w8Md4mVivb0g+i1RfLrC67f53UYo0mFxt4rxXD3mHsgqXGcO5eS8NIsvDAFf7IAv3ce2lv20Rvgq4vwyhX49Cx85iRUbnGfukoiKosfEhcqdMbmMMGW9FxKeqMz2Tzv1csEnfqhv3j5xRJTn/puRp58ltVvvEz73AfblklaTRb/8AuEb77G2HMvUpg7caShN2y0J5FgcihRQAmTzfMWPbABEvBEihURVsQY+lgrwWYV3+AhNv02jZAIaxGHMP/nwEkBYZgF29Eg5N6Y5x0P5pz7rrW549wJViPFP31ngovd7S8Un55s89dPrXEzndFSL0dUnBw6r9BdOKi7ecuWvvE2Jhk+sv7Yi8+Q2hSDJTIxdqftquyCiEGXuBp0292PclYmIglLZGOZPNLUAllVdzFUhL5itpo7kn0RnfoayvPJlcpUJ6eP/HXQcRzHcRzHcRznbuEFAVMPPky5OcHKhfP4uTzd+nrW2rzdojw+Qb5c2XY9CRRNjFUBqTH0hUJZcyjtzKWEyUqOy/UutYJPvZPQ7KdU8oc/0tG5hwhBIkJS4RPYPhbQ1sczcVb1LTxSGWBvcr9tNhr1LK3pB3eY4z1NUihRWJk/9JGojnPQXNjtOEfAV/Ddx+CT0/Cly/AHF6A33NkbbeEPL8OfLmTLfs9xKNzie5+g28TvNulXJ+iNTGO3tNYwfkB7+hRer01x5RJefP2ZrgclqNaY+bPfT39lmdVXv0Z3/uK2ZaK1FeZ//9+Tn5ph7LnvID81fej3aydZ8A2YEEUeJQ0MWp1b4SEoghJo3yP1AhKVI1UltCqhVYHUK2ClD9agdB8v7aPSHp7u46W97Pu0hzTxnRUfSwX5/JZ53oO25pF287wd5zZ7vxnwz85O0EqHjyAVWP7yA+t8z3T7pkPZbmW4bZUwCfn+8kHe3T2LWx1Wvz18QNTY6QfxRyoYNIlJrhN090D0wRSBEPTo4CCkG5PWIJTEyAAV94hNDili6t0EYy2jhZBK3qd8BDsidJrSb7Uoj03geR7l8fFDX6fjOI7jOI7jOM7drlCpcvzxJ6kvLSKVzFqbry5Tv7JIt7HR2jwcuk5oDbHRGAla+PSlR+GQ2pkrCdOVHPP1PuWcpdFL8KUkH7rKUGdvrJBEooAUIYHuYpVE2RRlYnzdRcvgplubqzS57hzvNFfKRqK21ymsLaCSHdrVOs4dyIXdjnOEQg8+ezKr4P7iRfjDS5Bs6ZQTG/i9C/DH8/C9x+G7jsGtvP/ZaE0Sttbpjk4TVca3tclJ8yUaxx4lbK1RWJtH6sN5Y7dZbnyCuc/+EN2Fy6y++lX6y0vbluldWeDSv//fKB4/ydjHP0E4Onbo92szCxjlY/yAyAswXoD2AqyfnRrPx97MTFsh0V4B7V1nKLvVQ0H4Rgi+8b00ye2JlT0va2eeJJCIQZvzjXneJqvydvO8HedIfXmpyK9+OIq2w1uFgjL816dXeLzWv+nbskbTGXlg+Ha6V5CH1LrtZl35+ltYc+0+CCmZfv4JDIbEaDQ73D/RB9EFUwCbA1PLTm+CZ/pEQRVrIBE5RJKijaXei6nkfHxPMFu7xfkie9RtrCOkIl+pUp6YRLptrOM4juM4juM4zk0RUjIyPUtpdIzVixdQvke+u9Ha/DyFWo3S6DhSXqvfLpqEVEhyRtNTHrGQBIf0mTjwJBPlkCtNS6otrThBKUFwM23ZHGcLIxR9VcKzMb7pY5SHMnH2RUoqA8xNjKS80RxvgLg0QlysETZXKKwvHklu4Dj74cJux7kNij587kH47rks2P6T+ayye7NeCr/zURaIf//JrB26fwvvgaRJKa1cyuZ5jx8jzZeHFxCCqDJGXKqRX18kV18+ktbbhZk58j/4o3QunGP11a8RN9a3LdO5eJ7OxfOUHzrN2MdewN+h/dCtsAiMl4XZehBmGy9A+xvf+1kr78MmFKlfJPWL7HSMnDDpoDK8N6gI7+PpjcrwPtIe4psMISAIsuA7jgEBVkGaZPO8pcouO4rfk+Pcx7SFXz9f4wsL27d/07mEnz6zzHR+L9sCSxTW0GFp6NxiZ36f93R/+msN1t89N3Te+BMPo8p5UpuSssNjFHE2p9vmsy9TzULvm+CbCCMliZ9HxAnaBngmZr0bI4WgVvAZKwXk/MMPnY0xdBsNCpUayvOoTt6eriaO4ziO4ziO4zh3Mz8ImX7oEbrNBisXzhHk8nQaG63N25THxq+2Ns/amScYJfCNIRIeno0PpZ05QDFU1AoBYEmNodFLGC0GKOm6Jzq3QAhSEaJFgG97WEBYH89EWQB+k63NN8/xbk+ewPjhlgUEUXWCuDxKbv0K+cYSwt4FIzud+5ILux3nNqqE8OOPwJ89Bv/xPLy8yLaYuZXAb7wPf3ARfuCBbP63uoV3Xl7cpzL/PnGxSndsbtuLl5WK7tgc/co4xZXL+N3GoVcVCyEonTxF8fhJWh+8y+o3XyHttLct1/rgXVofvU/10ScYfebjePkbhxlWyCzE9rPgenOgbfwAo/xtR6vdiaz0SGWJ1C/teLkwyVAIfvX7tIfSvYOp0pQScjnw9Q7zvKOs6ttzrc0d5zB0UsH//O44327kt132ZK3H335khYK3lw8ZFpKE7vSDQ+d6SRs/bu7z3u7P4itvDv0sfY+Jj51BW02y04E9IgbZBhtmAbcpg9l5W7mVtBppU/phDSykNkAmMXFqaEcpo8UAT0mmK9t/74eh12xgraVQrVEaHcPz3fw2x3Ecx3Ecx3GcW5W1Nn+K9cUFpFJZa/OVrLV5r9mkMjGJFwQE1pAzGishFT69QTvzw9rDNVLwiVODtbDWial3Y0aLAeIu2Efp3JmsEMSiQCpCAtPDCoG0Opvnrbto6ZOK3ce8+f02tQtv06+O7zgS1UpFb2yWfnWcwtoCYWvN7Ql27jj3bdi9tLTEyy+/zMsvv8wrr7zCK6+8wurqKgA/8RM/wS//8i/v+Ta/8IUv8Ku/+qt8+ctfZmFhAc/zmJqa4umnn+Z7v/d7+Rt/429QKt3cjljn/jKWh79+Br7vOPzuOXhth7Gp6xH867PwhQvwg6fgmQnY68F/Agg7DYJuk351ku7I1LZ21MYPac08iN9tUli9jBfffGvcWyWkpPLIGUoPPkLjnbdYf/1VdLRlvcbQePtNmu+9zcizL1B6+jlEvrSpGntQpe37WHVEQYG1yDQefCWoJEalCYFO8HUflCH1BKkfkHp5tApJvTypl4ebaCez6+qlTxL4JMHOFe9Sx4MW6b1r7dLT3tVq8T1V8CsFhfy1kHvzPG+tr7U+d291HOdALPQ8fumdCZb627dn3z/T5MdO1vf8GoBOMUh6tWNDZxfb87f1L7ezuELz3HBl+fjTp1H5gMjEO1wjHVR0+1nAbYpgbq7zh8DimQiNR+LnMVplR0AnCWvdGE8KKqHHVCWHpw7/t2KtpVNfJ1cso3yP2pSr6nYcx3Ecx3Ecx9kvISWjs3OUx8ZYuXgez/eJul2ay1dYuXieYq1GaWSMAgnxlnbm4SG1MxcCJsohidbUCgFrnZhmL6GavzuKcpw719XW5ibGNz2MUng2QZqYgHQwz/vGUaDADkairtGrTdGvTmT7fzexXkBn8iT96iSFtXn8btPtCXbuGPdt2D01NXVgt7W+vs7f/Jt/k9/+7d/edlmz2eS9997jN37jN/jkJz/Js88+e2Drde49U0X4W0/AxRb87kfw7bXtyyz14P/7bZgrwQ+dgsdH9/5+SFhLvn6FsLVKd3SWqLJ9JnZSqNDIl7O5HGsLSKNv8VHdPKkUtSeepvzYUzQuXqCzuoooV5G1satfqjYKuTzb678PgTHINEZtBNrJpu8HAff1fvUpWeyrkHgiQYo6UiZZNaJIMTIgGQT02stCcO0VSVURrQoH0h7cqACjAhKq2y+0FqWjq8H31rnhSkc7h+G+B95gnncsBrO906y9eardPG/HOQDfWs/xP783Tk8Pbwc8YfkbD67x0mRn7zdqNKQp3YlHsHLT2z9rKHQX9nmPb521lsWXh6u6VS5k/OnTRCbZYSukQbWysQqmdG1O903yBuF5HJQwwsNokGlMP9b0Ys1UJSTwFROlcJdbOhj9dhudphRHRihUagS7dC5xHMdxHMdxHMdxbp4f5ph5+FE69XVWLp4nyOVpr6/Rqa/Ra7WojE9QKkmaniAwmlh4eDZBHdKIRyVhqpJjvt6nkvepd2O82FAM3b40Z/9SGZAKH99GYARCeXg6xjMRioREhdhdmvVLoymuzZNrLtMbnSEqbQ8fdJinNfMQXq9FceUyXtw7zIflODflvg27Nztx4gRnzpzh937v9/Z83UajwWc+8xleffVVAH7kR36EH//xH+ehhx5CKcXFixf5wz/8Q37jN37joO+2cw87Xoafeho+qGdzuz9obF/mchv+pzfhwQr80IPwcG3v65E6pbR8YTDPe440t6XzwMZcjtII+bUFcs2VfR+tZSGblz1Ujb3pey/Ijhp75OMU97mu3Qijkcm18FoNAu2N74XeX+siC2hM9o31wHhAHjAIGaOSGE+0EUIjhQAMiARDilYK4xVJvRJGVdCqROqVSFVWIb7vIz6FQHs5tJcjDms73HmD0tEOs8KzUFwKgfC8rLU5m1qbu3nejnPLrIXfXyjz6+dr2+YqVXzNf/voMg+Vd6p03o3JDlCRku7oqaFLcr0VlEn2ca/3p31xkc7CcDuTyY+dQXtgt+1cMKCaZNucchZ069GbXpeyKdKmJDJH6udIjY8kRkYxq52IXCApBB6ztfzWg5cPTae+Tpgv4IchVVfV7TiO4ziO4ziOcyiKtRHylQr1QWvzfKVCc3mJ9cUFwkIDf2oOG+ZJhaQvPQrm+gUu+xV4kslyyGKzTyn0aUcJnhKEntuP5hwAIUhELpvnbbpYJZCDed6B7qGFTyp3b22u0oTS0gVy9WW6Y7Mkhe0d9dJ8mcbxMwStNQprC6j0VvZZOc7BuG/D7n/8j/8xL7zwAi+88AJTU1OcO3eOU6dO7X7FLX7mZ36GV199lTAM+bVf+zU+97nPDV3+/PPP8yM/8iP84i/+IloffmWsc295qAb/3bPwzjr87x/CpR3KmT9swv/7NTgzkoXeJ8p7X48Xdalcfo+4VMvmeXvDL3hWeXQnjhNVxqisnCfs1LPzpUKjsJtCTSvEUHBtvGCo1bjxjq41j9DJpmrsJAuxN4Xbwujb1GpFYk2OlNzgZwMyAiKEFEgUQku8pI8v28BFIAVhAYGwPkbV0KqC9stolSf1cqSDU612f8OyKyHRXh7tXWdmrTXXgvCki4raeFEbFbXwuk1kHCGUcvO8HecmJQZ+9cNRvrK8fdzJiWLMTz+6zGh4K+8jDERZmJ2UxogLw+FwsTO/05WOhLWWhS1V3X6pQOXMSQxb28bZrKIbAboCNhgE3Te3fRFYlInQwiOVPqnKI1KN0IZ2LyLRlolKSDH0qBWOZhRG3OuRRH1GZ+YI8gUKlR26cDiO4ziO4ziO4zgHQkrF6OwxyqPjLF84h+f79NttmivLROfex04fJyzX6PkBsVCE9vD25RdCxWgxAGJSo2n2EkaLAWrP88ocZ2dGSCJVQpmEwPQwSqJsgjIxgU7R0keL3fd/eHGPysIHxPky3bE5dLh9X3FcHiUu1cg1lsmvXzmSDrGOs9V9G3b/D//D/7Dv2/jyl7/Mv/pX/wqAf/JP/sm2oHszIQSed9/+up19EAIeG83C7NdXsvbmV7rbl3tnHd55FZ4Zt/zgKZgpWAR20Ip6UCNo7dXW1OLq/Jlrl+caHUrNBdqjx2iPzG1rR63DAutzjxG218g3lzHKQ/sh2s+hvRDth9uC8sNijcG2Guj6Kubq1xpKp1SOn6A4Ooo8pJZDB0+CyQN5rBlUgw/Cb2wEKAQghEWIBCFS0Et45gpeIhHWQ+CDDZF4WOFhvDz6agCeJ1U5Ei9HqnKYg5hpLiSpXyT1i0T57W3whUlRUQcv7qDSLl4yCMWTLl7cRd7GSlLHudM0Ysnnz07wQXt76+wXxjr8xENrhGqv2zMLOmtdDoDv06mdHFpC6ohcf/UW7/X+NT64SH+1PnTexHOPZU0whthBRbfJgm580OOwS+utzTwTARItQ9KghEahdIKII9a7CaWcIlSK2Vpu19s6KJ36Op4fEBaL1KZmjmy9juM4juM4juM49zM/l2P29Bna62tZa/NCgc76Gs2leTpRhFcbJc4VUdbgHeK+xVrBJ04NWMtqN6HejRktBgg3v9s5QFr69IR3tbW5UR7KxHgmRpGSyHCokO16gl4L/9I7ROVReqMz2zMAIenXpojKY+TXr5BrLiPs3bJv3rkXuPR1H37pl34JgGq1yt/5O3/nNt8b516yEVBjGQTWWTD9/Ljl46Pw8hXB75z3WIu2v/l5fUXwxorlE5Oav3AyYTy30QhWsHFrIDBCZueJq/E3G/F4bn0Fv92kMzZHXBrZto6oNJrN6zhM1uxYja2SmGRpnrU//SN68xd3vGr3G18hPzPH+HOfIDcxdbj381BcC7+z/3qNlRGWeBCCD8IrNEIkIFKk6CNEC5BIAmQa4CU+Hh4CMYiEJFKAEV42I3xQCZ6o3NDp0DzfW2SlR5qvkuZ3rlQUOsGLO/j9BoXmZcLOys4zwh3nHne+7fNPz06wHm//u/uLx+v8+bnm3pth2EHbcmuyg5Z8Hysl3drxocWKnfnb9ndntWHxlW8NnReOlCk8PLt1SVBtrgXdAaRj7CXoVjZBWk0i82gksV9EpBostFo9jLWMFEJqBZ9ieDRvjdM4pt9pU52cQvkBpZFDfk11HMdxHMdxHMdxhpRGRilUqqwvzCOlIl+uslxv0F5dxlQSbKFMWRxuV8jxUkiiDbU8rHViGr2EWv7oumI694mh1uZ9rBRo6+ObKKv6Fh6pDLaN1Nt2M0CutUbYXqdfnaBXm8aq4WI5qzy643P0q+MU1hYI2uuu56dzJFzYfYviOOa3f/u3AfjMZz5DLpdVAmmtmZ+fR2vN9PT01fOd+0u2AbfZAFaGA2sxOH9jmWtHONkbhg7ZJRIJfHJK8PyE4U+uSP7DBY9mLLYsK/jqks8ryx6fnBF89iRUtxcMsjn8tkisAITM7okR5JaXUM020dgEJjzg57LR19qLX201fm1mttTXn43jVyrkv/8H6c5fYvXVrxGtLm9bprdwmYu/85sUT5xi/LlPENS2h/Z3DwWmABSuht8bld9WRmA1WXOYFEQKIgHRQwiyoNsGCAIkQVYFbg0yjpE0CMiWEUIgNp4L0iNVeZJNAfhGZbhWOeyWiv9bYZVPkq+R5Gt0R04i04h8c55C8zJBd9W9CXLuC6+sFPjlD0aJzXBwG0rD/+GRVT422tvjLdqsklungAQ/yMJuT9GvHcOo4ReCQmdhfw9gH9bOfkjcHJ7NMfr8GcRQyzYLsgMkg6DbAz3GXt6+Zu3LY7TwsxZefgUrBCpNsXFMo5tQzvn4SjBdPcKq7sZ6NieuVKE6OYU4qiHhjuM4juM4juM4zlVSKcaOHac8Ps7KhXOowGc51jTbHTqpwQYelVzu0LJnKWGqkuNyvUc171PvxbQjTSnnYhvn4GWtzQtIGxLoLnZTa3Nfp2gZ3FRrc2Et+foSYXOV3sg0/eo4bKkON35Ie+oBVG2S4upl/N4O81kd5wC5reYtev311+n3+wA89dRTNJtN/vE//sf8yq/8CvV6HYAgCPjO7/xO/tE/+kd893d/9y2t59KlSze8fGHh9u2ovh9sDqazsHqjBfjOrcHB3DCk2wisuXptgRGDgFGITefLa9XY4joRuIJPHYMXZuCPLgu+cMHSTYcX0Vbw5Xn42iJ86pjPdz0QUvTl1Qrum3qnlmiCxUV0qURSGwF1c0Gn0CkqjVFJH5X08ZI+Ko2QSYLQ6eA4gFt/pyiEoDh3nMLsMdrnP2T11a+RNBvblutc+IjOxXNUHn6U0Wefxy/dwlDzO87W8DsdhN+Dyu/BTCFLihUJRiQgIrKFJcL6CBsgrY8QPlJIhN0IuwGdInWfXCzIbwrCBdnzU0uf1MuTqPBaVfggCE+93LY3NzfDeCGd0VN0Rk8hkx6F5jz55mWCnjv6z7n3GAv/7mKV3728vfPBWJjydx5d5lhxj63+jYYkBQx4Higv+9QcBuB5dMpzQ4sH0Tp+usNMjCNgkpSlV98eOi83OULx5PTwgrIHIgZdImtdPgZ2b2MYfN0HJKkMSGVIGuSy9u5YWo0OACMFn7FSQM7f/4E8N8NoTa/ZpFgbRXqKyvjkkazXcRzHcRzHcRzH2VmQyzN7+jFaayuISxeRuTytXp9OnKI7K5TLZfxwx0qiffOUYKoSslDvUw59mv0ET4kj+4zq3H+MUPRVCc/GBKaPUf6m1uYJVii08DDixs9BaTTF1cvkGst0x2Z37BCrwwLN2UfwOw0Ka/N4cf+wHpZzn3Nh9y369re/ffV7YwzPP/8877333tAycRzzhS98gS9+8Yv8/M//PD/7sz+75/UcP35894WcQyEwBHo4CBhuB37tezMI96zwBsvJa8uIzctfz7UA2g6WRwjMlmA8u1xe+x7AE7z0IHzsuOGPL0R8+UKfWA/femLgSxcS/vRywneezPHpEzlC7+YjRAF47Taq0yGt1tCFPFZIhNbINEVsfOnsVCUxysTZkWE2ZaOCXZIijUGQDoJTiRHq6tetEEJQfuAhSidO0Xz/LGvffIW02xleyFqa771D64N3qZ55kpFnPo6Xy9/S+u5MHtmQ2+KW8DsahN8b89mzqm8rEqxsY7CAzMIj62UhOD4SOagKl0ghEHb4uSJ1gqf7BGKjFnzwnCX7G0lVcDUI35gTnqoQ7eXRXn7XgyyMn6c99hDtsYdQcYdC8zL5xmX8qOmCb+eu19eCf/n+GN9cK2y77HS5z089ukLZNztc83pMFnIbnYXbXpidBj74WeszLQP6ufGhaxU78/t8JLdu9a0PSLrDVetjLzw2PJdM9kD0wBSBEPQo2L3tWFA2QWCIZR6LIpYFkBIZx+gkpdWNGCkEeEoyVTm6qu5uow5AsVajMjaB8tzbccdxHMdxHMdxnDtBeXScYnUE/9IlRL2BNNDtKpprq4RhjkKlivQOPoTO+YqxUoBtxyTa0OwnKCnwlesC5hwSIUhFiBYBge1hAW19FAnSaHybhdJmEHobcf0J9iqNKV85R1Jfojs2S5rfXmyWFKs0ChXC1hr5tQWU3mORh+Pswu1du0Vra2tXv/+FX/gF+v0+f+7P/Tl+7ud+jqeffppms8lv/MZv8A/+wT+g0WjwD/7BP+DMmTP88A//8G28186uBkGzFhJrJbFUZMHz1Tru611xSyA9qM4WG8H35sBaXg20ry27f3lf8v0P5XnpeMiXzvX56qWIdEteEmn4/Q/7fOVixHc/kOM7joX4ag+ht7X49XX8+voNl7OIrIKOEKxF2RRFgjIJQhkgRFqDtCnSapTNXtyyF085ePHc2+9FSEn19GOUH3yExjvfYu2Nb2CiaPh+GUP922/QePdtRp58hpEnn0H6wZ7Wc3fYEn5vVHaLQfX35vBbJkACsovFZgcgDMLvLARXg2euzFqiD6q8pTAYey3kBq7OBVe6h9J98jSvVYsD1hpskpLgkagcsV+kU50jKY5d95HooEhr/DSt8dN4UYt88zKFxmX82LW+ce4+K33FL52d4HJ3+3bnO6da/NUH1vFu+nOszSqU00FLD98H6YEnIRwE3gOd4szQQSbCpOS7S/t4JLfORAlL3xyu6i4cm6AwuymMF30Q3ayDhc2BqWWneyCweIP25VZIIlXE+D4Yi9CaVqODkoJqzmOyHB7ZDgRrLd1GnXy5glQe1anp3a/kOI7jOI7jOI7jHBmpFMdPnEBVWywuLmI9Hxt4pOtrNJavkCtXyBVLB97avJL3iVMD1pJ2LfVuwlgxQEpX+uEcHisEkSggRYhvIqyVoDYXrmk8mxVVGRRGquvuu/ejLpX590kKFbpjs+hgS7GZEESVMaLSCPnGErn6FaTZS8GH41yfC7tvUadzrXK03+/zmc98ht/5nd9BDVo8T0xM8FM/9VM8+eSTfNd3fRfGGP7hP/yHfO5znxuuXNrFxYsXb3j5wsICL7744q09CGc7IYllgRQ7qFANr7X8vnrKpipkkTUuP6zBLbegFEh+6HSBT5/I8Qcf9fj6fIzZcthVJ7H87ns9/vhCn+89lef52QB1WG+chEALH40PEqQ1KJsgbYKyiuGqb42yMR7x1apvLbxBNfvNkZ7HyJPPUjn9GPVvvc76W69j0+H+7jZNWHvt6zTe/hYjz3yc6pknkTfZnv2uZP1B699S9vPm8NvEcLVFfwoyZSP8ZlD5ba2PHYTf2g5+T4PnlMjqv68G4VIY9OaW6Gz0Pxi0Qw88AmMJkxbETUbbl4mET7s4RXfkGEn++rPV07BMa+IMrYkz+P0G+cZlCs3LeMntacXsOHvxbjPk82fHaafD2xqJ5a+cWue7p9o3/1JiDSRJdirVIOgWEITgD7+1s0C3ODt0Xr57BWm3tAA5AgJYef0sOo6Hzh974bFNC8XZ9sfmsy9THYxt2Btf97FX25fn0EJhlYdIU5JU0273mCiF+J5ionQ4reh20ms10VpTrI1SrI3gh0dXUe44juM4juM4juPcHCEEU5Uy1g/wGw1W6orQD9DNBr1Wk7jbpVCtHnhr89FiSKwtNWC1E1PvJYwW/Dtq37NzbzJCEakC2DzKpngkyEHhmsBmRWtGZ+3ON/bdSy/b38K1ffcCCLpN/G6TqDxGd3QG620ZSSdlNuu7MkZ+bZFcc3XXvriOsxsXdt+iXG545+Qv/MIvXA26N/v0pz/Nj/7oj/Lrv/7rvP3227z55ps8/fTTN72eY8eO7fu+OnuTyoBIZHF3JPe+g/1OUctJfvSxIt95MscXPuzz+mK87SWjGVn+t3e6/NH5Pp95KM/TUz7ykN88ZZXbIRAirM1anZNuevEEYfWg6jtF2QRL1iJ+L1XfKggZ+/iLVB97krXXv0Hj7Fuw5UgxHfVZefkr1N96g7GPvUD5odMIeR+0B7ph+B2RxWMb4fdG5XfMRvh99frWw6LQDEKzjauxEYKLa63QB+3QxaBTAoFEpBqhITQpYWeekeY5+jKgUz5Gb+Q4aa5y3YeQ5KokuSrNqccJumtZxXdzHpW6uS/OneePrhT51x+NoreMBCgozU89usJj1eg619zKZpXcOgUk+EEWdntqUM29fdsYB1VSvzh03u1qYW66MVfePDt0XunBWXLjtewHkYBsgw2ygNuUwZT2vB5va/tykcMqBQJkmrLe7BIoSSlUTFVD1B46nOxXp75OrlDCC3xqUzNHtl7HcRzHcRzHcRxnbzwpGAl8TKUKYY5WvYEvICjk6TUatNZWCXN58pXKgRXRSAmTlZD5uqGW91nvxjT7KZW8v/uVHecgbC5cExZJVrjmmRih9GDffYoyGmlislI2iZEKzbWiNQHkWquE7XV6tUl6tclsH9YmVvl0J47Tr05QWFsg6NTdCEvnlrmw+xaVy9fmDkxMTPCxj33sust+9rOf5dd//dcBeOWVV/YUdjvOfo0XFH/lySLfdTLk9z7o8/bK9nkYqz3Dv/lWh//8UdYK/fEJf08dCG6VFYJUBKQEg6rvrKW5MilSZPdTWINED1qmxHD1yLHhF9Dr8fIFJr/j04w88TSr33yF1gfvblsm7bS58uX/zPq3XmPs4y9SPHHqSB7/HeOmw+9kU+X3RvitNrU897KfAYtFYwGzLQS/Wg2uQHkexoA0Fk+FFIwl1zxHuv4esVekVz1Gt3YCHQ6HdZvFhVHiwiiNqScJuqvZjO/mPErH172O4xyF1MCvnR/hPy9un1U0k0/4O2eWmcylO1xzB0Zns7kx4HmgvOxTcBhkP19HZ0tVt5d0COLGXh7GgfCEx4VXv4FNN1WUC8HYc2cGP6SDoNvPAm5TBHP9A16uR1iDMjFaXmtfjhBYzwOtiVJNv9NnqhgQ+orRwtFVdUfdDmkcUx2fJFcskyvtPch3HMdxHMdxHMdxjk7RV3S1xhCgazVEqYhdX8XzfaJul16rSbK8RK5cJiwcTGtzTwqmKjkW6j0qOZ9GL8FXknxwD3eldO5MQmSty4UikblN++4TjEq5Nqo0QZpsjKlFDGZ8+xghEdZQWF8k11yhOzJNVBnf1qnABDna06fw+h0Kq5fx+52d74/j3IALu2/R8ePHr36/W/X15mWXl5cP7T45zo3MlD1+4tkSFxop/+n9Hh+sbw9YrnQM/+qNDscris8+nOfh0aM9ajB7IVQkkhtUfacoq4deQO3gekao61Z9++UK09/5vYw89Syrr75M5+K5bcvE9XUW/uA/EY5PMv78d1CYmTvcB3yn2hZ+x4PwO75B+L1Rmbo5/PaB4YMR7OCfGYTgiU3x8PA8hUEgAWU8Ah3gpTHh2rtUVt4hDqv0KsfojhzH+FvmvWwQgrg4Tlwcpz79FGFnmULjMvnWAtLcZKDoOAekk0j++bvjvNPc3qb6qVqPv/3ICnnvZlo0mSzkNjoLt73BPO7Az9qX3+CTtBEevcLU0HnFzvyRHyXroYjrTVbe/mDo/MqjJwhqJUCDaoFVWdC9Maf7FvgmytqXi4BE5rPXBSFASmQU0er0yUnI+4qZap6jbObRqa/jhyFBoeBmdTuO4ziO4ziO49wlRkOfWBtKvkfTQnlmDtNp0Vpdwc/l6LVadJtN4m6PQqWKFwb7XmfoScZLOZZafRJtaUUJnhT43n3QkdK5Y13bd5+7GnJ7NkHaQTW3NSibDkLx3qZurQo0lFYukW8s0xmdJSnVtt1+mivSnDuN365TXJtHJTfbCdFxXNh9y5544omr32t947mXmy/3blB95ThH4UTV428/V+b9tYT/9H6Pi83tz9+LTc2/+Eabh0Y8PvtwnhPVo3/eDlV9b2qZokyCEVlwKaxBkQXfns3OuzovBLVj1Xc4Msbs9/0AvSuLrL76VXpXFrYtE60scfk//jsKs8cZe+4T5MYnDvfB3ulskH1tuBp+b8z83hJ+b1SGA1n47W+q/N7+f5KSok2KwsOTCiNBSoUKivjaYNIYmbQIV96muvwWUX6UXuUYvdoxjHedqkwhiUpTRKUp1o0m11mi0LhMrrV4W2YVO/eX+a7HL70zwXK0/YChz842+dET9Z06jm9hQeusbTkM5nJ74MlBy/Ibf8DVMmBl4mNYuWn7bQ2FzvZt3mFSSKSQXHrlDbDXwn2hJGMfPw0YUE1AZG3LbQh69JbWlXX/MCSygMEjEdn2wXoeGEu/nxB3+kwXfYqhR61wdAd0JVFE1O1Sm5rGD3MUayNHtm7HcRzHcRzHcRzn1ikhGAl9dD8hpyTtRDNSrpIrlWitrCClJCwU6DbqNNdWCPN58uX9tzYv5RSx9gGLNiab310MULvvUHCcQ7cxqjTdPKrUxlibNTYX1iJJUYP99h4RRnioOMG78iFxo0R3bI40t72bZ1KqUS9WCZsrFNYXkdoVMTm7c8nrLTp58iQnTpzgwoULnDt3Dmvtddsef/DBtUqmubn7tFLUueM8POrz0Ase315O+L0PelzpmG3LfLCe8s9eafHYuM/3P5RjpnybNhlbWqZsHCWmbIq1CSgfAdmc76F5IdeqvrUYvu/5qWnmfuCH6V6+yOqrXyNaW9m22u78RbrzFyk98BBjH3+BoOrCCWBT+D1ozbwRfIsITMLV8Fskm742Zml7W9qeZ4FdNiF8S+htDVJKVJjDD3OYNEXHEbm4Tm6pTu3Km0SFMbqVY/Rqc1h1nSNnpaJfnqFfnkGYlFzrCoXmZXLtKwi7/XnvOPvxxnqO/8974/T1cBjtCctPPLTKd0x0d78RayBJslOpBkG3gCAEf/ftcOIVWZn4GNobrirP9VdR5uja+0sESihayyvUP7gwdFntiQfxirlrQbeuZtsVPZb9vEdZ+/KEVAZYIYlVIWtfDljlIZKEdj+hIDSh8pmtba+4P0yd+hpK+eRKFaqTU/fXqAzHcRzHcRzHcZy7XMFTFH2DxZIYSztJqfge1clpCpUqzeWla63Nm02S/hK5coWwUNxXa/ORQkCcGqyFtU5MvZswVrxxlzfHOWpDRWvW4g26tSqToJWPwF7db78xptTv9Al7dfqlcTpjcxh/S0GTEETVCaLyKPn6Evn6ktuP69yQC7v34cd+7Mf4xV/8RZrNJl/84hf5vu/7vh2X+83f/M2r33/6058+qrvnOLsSQvDEZMBjEz5vXEn4/Q96rPa2v2i8vZLwzkrCM9MB3/dgjvHC7Z0RY4UcegHdXPUtB/NCNrdN2Th6zCLR0hu0O5cIISgeO0Fh7jjtj95n9RuvkLS2z7Jtn/uA9vkPqTxyhtFnn8cvujmrQ2yYfWU/DFd+i5sJvwMwAaCGQ2/h4YlB6I3E8zyk52OsJk0ThE7JRWvkrqxhl96gnx+nWz1OvzKLVTu/vFnp0avO0avOIXRCvrVAvnmZXHsZwc20lHacnVkL/2m+zG9eqG0bp1D1U3760RVOlXcLmm1Wya1TQIIfZGG3pwbV3Lt/mO2HI6yOP42Vw1XLUsfU6u/u8VHdOkE2p9tgmH/59eH7EniMPPPQIOg2oCuAD3qcnbo/3AzfRBgUWvgkMpe1yAKsUiCg143QUcxkIaRWyCq7j4pOU/rtNuXRcZTnUb7fu4U4juM4juM4juPchUYCj0gbyr6iHqf0tSHvKfxcnrHjJ+g2GrTWBq3Nmw26zQZxt0uhWsULbq21uRAwUc6R6C61QsBaJ6bRS6gW9t8q3XEOxZZurcpqFDFq05jSq8G3iSk35yk2r9AZmaE9OodVW7rwSUVvdIZ+ZZzC2gJha/XIx/M5dwcXdu/D3/27f5fPf/7z9Pt9/t7f+3t8+ctfplKpDC3zq7/6q3zpS18C4Ad/8AeH5nc7zp1CCsGz0wFPTfp8fT7mix/1aEbDwZ8FXluMeeNKzPOzAd9zKk8tdwfMidlS9b0xL0TZ5FrblKtHjxmUifEG52ZzRrLwu/zgI5QeeJDmu++w+trX0b0t1ZfW0nz3bVofvEv1sScZferjqNzRVgbeHcQew+84C75VF/DAhGCDbOauTdFWo4S6GnorJEpIAj+H8TRpaCDVCJ2S76+Q765gFl+jX5yiW52jX57JwsIdWOXTrZ2gWzuBTGPyrXnyjcuE3RX3psnZk8TA/++DMb66sr310slixE8/usJIuEv7fKOz2dwY8DxQXtaqPAyyn29CtzDN2ujjsGWEg5d0GV/5Jl7au9mHtG+e8LAY6pcXaF1cHLps5JmHUYWs5XgWdAeQjnGrQbdnsttKZQGDf7V9OWQtzG2q6cYpBQy+UkxXj3bb3W2sIxDkK1UqE5PI62yTHMdxHMdxHMdxnDuXFILR0GPJWPJK0kk1vpR4UgCCQrVGWCrRXh20Ns+X6DbrNFcHrc0rVeQuI8l2oiRMVXLM1/tU8h71boIXaYqh+2zp3OGEQAsPjQeSwSzvBM/ECKWBcHBeSmn9EsXGAq2R43RGZreN77OeT2fyBP3aBIXVefxu0+2/dYbct2H3l7/8Zd5///2rP6+sXGth/P777/PLv/zLQ8v/5E/+5LbbOHHiBD/3cz/H3//7f58333yTF198kZ/92Z/l6aefptls8pu/+Zt8/vOfB6BSqfCLv/iLh/JYHOegKCn4xLGQj88EfPVSxH8+16ebDIfexsLLl2NenY95fMLnhbmQh0c95B3SPmfzvBDsxtFjyeDosY0XUZOF31ajbFZhbFAYqaideZzyw6epf/tbrL/5DUw8XIlptab+rddpnn2bkaeepfb400j/6Oa+3n12C78HM7835nzLLtAdtDkPsDYgtRZtNZ5QWKHQm0NvFNqT6I3K11QjdUqhu0ihvYiRil5xim71GFF5alsIuMF4AZ2RB+iMPIBM+hSa8+Sblwh667fljdNyX/HtRp7FnkfF1zw/1mUi52aN34nqseKfnR3no/b2+fEvjnf4iQfXCNSNugaYLOQ2Onsj7w3mcQd+1r78JratFmiVH6BZe3jbZUFUZ2zldZRJ9vCo9scfjI2ITcrC194YukzlQ2pPTWV/87oMeIPW5bf2ljTr4rG9fTlkbbSQkl67g001I6FkrBSQ849uh4Axhm6jQaFaRXke1YmpI1u34ziO4ziO4ziOc7BySlHe1M68labUfO/qqCqlstbm+UqV5vIVVOATdTv0Wy2S/hXylSpBvrDnLuSBJ5koh1xpWkqhpR0leEoQendAIZLj3CQjhgvWlM0qvrPufNk++9La5Sz0HjtBrzK5bb+YDvK0Zh7C67Uors7jRTcxLtC5Lwhr7X3Zt/Unf/In+ZVf+ZWbXv5Gv6Z/+A//Ib/wC79w3WUmJyf5rd/6LT75yU/u+X7u5tKlS1erxS9evMixY8cOfB33k34U81t//HXq3S7WWkaK26v07if91PLlC33++Hyf6AY5Wy0neX424PnZ8M6o9r6OzVXfyqaARViLJGudItAIwCKzF95Ys/rW69TfehOr0x1vU+XzjD79HNVHH0cod0Tl3uks4JY9YFD1vRGCi4QsLB/MCLc+AoknFEooBAIlJAoJCLTVaDa14dc6awedaDAWrXx6pWl61WNExYmbChFV3CXfvEyheRm/3zi04LudSN5phrxdz/HtRp6VaHvw92ilz0uTHZ4b7RLeMDx1jspH7YB/9s449WT4/0tg+ZETDf7cbPMGTzObPUfTwbbF90B64MlBy/Kb25ZaBPWRR+mUtr/+57tLjK5960hnGnkopBAkNqV+7hLn/9NXhi6f+PQZak+OgyllB8HosU0Hw+xdoLtYJInKEcsCqbx2W8b30UKyvtqgpFNGfHhspoyvju51qlNfp7myzMTJU4xMzzL5wINHtm7HcRzHcRzHcRzn4BlrWezF9FJNI04peIqCt9M+QUunXqe9toJOU3qtBlGvh+/75Ks1vFsonql3k0Er85g4tYwWA9RNjDxznDvZzvvsDcb36YwfJyqOXPe6QWudwto8Kt1tdOD+tfoRUkA5l+OHPvvnD31997LDyDXv28rug/TzP//zfO5zn+Pzn/88f/zHf8zCwgK5XI7Tp0/zuc99jp/5mZ+hWq3e7rvpOHuW8wTf92CeTx4L+aPzfb5yMSLZITOp9w1f+LDPFz/sc3rM44W5kMfG/Tvuzdb2qu90U9V39sA2V33nfMPcs08x/uijLL/xOvV3z8KW0Ej3eix/7cusv/U6Yx9/kfKphxG30JLo/qXAlLMvkYDoZeG3zQFmUO09qAJHYm1AYkJS62eV3ig0Jgu9hUShroXeSmVfAWA0KtWUWpcoNS6ivZBueYZeZY64OH7de6eDAu3xR2iPP4IXtbPgu3EZP27t61EnBt5vbYTbOS50gm1znrc628xxtpnjX8sRnh/r8tJkh0fK0Z6PBnYOxteWC/zKB6MkdvjvPZSGv/3IKs+M3qBluDWQJNmpVFkFtxQQhFnofZOMUKyNPUU/v/05XGpdoFp/90g7EygkUkhSm6CNYeFrbw5d7lfyVB8bAVMYBN2j+wq6fRMBllSFaOGTimszyyxglUev3UMCFWmYLOePNOi21tJt1MmXyni+T3Vy+sjW7TiO4ziO4ziO4xwOKQRjoZ+1M/ck3VQTSIG3bX+goFgbIVcq0VpdQSpJmC/SbTZorSwTFArky5U9tTavFXyi1GCtZa2bUO/GjBaDq5XljnM32rzPXlg7CL0TVJpQWjxHmFuhOzZLmttemBiXR4hLVXKNFfLri0jjOmPer+7byu57havsPliusvvGmpHhDz7q8/X5iHSXQsFSIPj4TMALsyETxTu/4nljPoiyCfI6Vd9xq8XSa6/T+OjD695OMDLK2HOfoHjspHujuR8iGgTfPcCQVYBvhN4GUGADhAnxRHi10tsTEjmY+6utGa703mA0pIMvbUj9PL3yDN3KMZLC9Y8U3MzvN64G316ye7scY+FS1+ftRo5v13O83wqJzf5Dt4kw4aXJDp+c6DC220xo50AYC791scp/uLz9ILaJMOGnz6wwV7hey3CbVXLrFJCDam4FG23493CAkJYBKxPPkgSVLauwVOvvUm5fvPkHdQAkAk94pFZj0Cy/8wELf/iNoWWmv/c05YdPgsmDGYTet7o+q/FNn1RmQXdfVTCbxhQYpUiUT321QVVaRoXmzHQZpY5uu9xvt1hfXGD8+Ekq45PMnj5zZOt2HMdxHMdxHMdxDlc9TmjGKetxChZqgXfDfYFRr0NzeZk0jog6bfqtFkhBvlwhLNz852NjYKHRoxtr1joxvhLU8jc3Bs1x7iqDYjWPBGESklKV7ugMxt+5cELolHz9CrnGMuIQYk9X2X1wDiPXdGH3Xc6F3QfLhd03p5sYXluMeeVyzEJ794DtgZrHC7MBT00FBEcYNNyqq0eQkSJNgsAgAGE10qZEq8ssffMbtC9fvu5t5CanGX32eQozswh554f9dzTRB9EF2Ser10wHwXdMFnx7CBOiKA5mBd9k6A3ZJ4Q0vRp8J0GRXnmWbvUYaa6y83W28HvrFBqXyTcv46X9q+evRYpvD8Ltdxo5WunengdlX/NgKeK9ZkhX3/i6AsuZasRLE20+Ntpzbc4PSS8V/C/vj/H6+vYPoY9W+vzU6RVK/vWeazqbzY0BzwPlZa3KwyD7eQ8Sr8jKxLNoL79tHaNrb1HoLe3p9vZLAL7wMRhSq4mSiA9+7fdI29eq24OxIid+7BMIWwJTzdqY72d9uotFkaiQWBZJZTC0jA5DWr0Y3YuYIuZ4Lcd46daryG/F6qULgGTs2DFmHjlDoeK6/DiO4ziO4ziO49wrrLVc6cX0tGY9TslJRcnfZd+PNbQbddprq5gkoddqEvV7+H5Avlq96dbmaWq53OjRizX1XkzB9yjlXBNf5x5mLRKDIiEpVeiPTGLVzs95mUQU1uYJ2vUD7Xjowu6D49qYO45zRyj4kpeO5/jksZDLLc0rlyNeW4yvO9f7XD3lXD3l353t8rGZkBdmA+Yqd+7mxwpBKgJSApAbVd8JyqRIkaAmjjH7mVn6Vy6z/PWX6S1vD5b6S4vM/97vIDyP/NQMhZk58jPHCEfHXJvzvbK57MvYrNJb9MD4ZMF3DDLGyi4pHTQBni1gbX4w3ztrby6RmJ1CbykhCAatzg1+GuPXP6C8+h5JWKZXmaNbmUOH1w/mkvwIjfwIjeknSRrrnLuwwlfebXGuvre3U4E0nK5EPFbt83i1z2whQYqs5fkb63n+ZKnEt+q5HdudWwRvN3K83ciRU4YXxrq8NNHmoXLsDuw9IMt9xS+9M8F8L9h22XdPtfjLD6zj7finbbKQ2+js+eYN5nEHfta+fI//QVFYY2X8Gawc/gAsdczYyuuEcWNPt3cQPOFhB0G3tpq1tz8YCroBxl98eBB0l/YVdAN4V9uXB1n78i1BtxWCxArifkLNE+SsYLRwtEF33O8R9/uMTM8S5Asu6HYcx3Ecx3Ecx7nHCCEYDX2u9C0FpeikmlAJ/Bvt9xOSUm2UfKlMc2UZ6SmCqEC3kbU2D4tFcqUKcpfOb54nmCyHLDb6lAOfZpTgKUFut7Ddce5WQmBQGBR0YvLdi6TVCnFlBMTw35zxQ9pTp/CqbUqrF/F6Xaxw++Pvda6y+y7nKrsPlqvsvnWxtrxxJebr8zHn6umuy8+WFS/MBjw7HZD3754Xm61V31hN99J5Vl/9GtH62q7Xl0FAfnp2EH7PEdRGXbvzW2Ky2d6iN6jwttmpiECkCASKHB55sCG+UEgklqzS21yv0vvqzZtBtXeKTQ1Jrkq3MkevMocOdm8tZYzlo4UWb324ztvnGvTj7UeCCCwnizGP17Jw+8FyxG5/CvVY8tXlIl9ZLrHQ2/1o38lcwksTWZvzUdfm/Ja90wj55++O09lSna+E5a88sM53T7d3uJYFrbPOATBoWe6BJwcty/e+3esWplgbfWLbm3iVdBlf+SZ+eoM54Yck66YAiU3R1tCPupz7t19A9+Ory+Rnqsz94HcibDFrX74PyqZ4JiKRuUH78vK2DyzG82gkFtHrMSYND1YDaoWbOzr+oKwvzJPGMRMnH2Di5INUxieOdP2O4ziO4ziO4zjO0WjGKfU4oR6nmEE7c3mT+/qy1uZLpFFMv9um32oipKJQKRPkd9//1OwlrLRjmr2YXmLI+4py7sbt1B3nXmKUR1qrokvl6y4TdtYpL5/DSyK08DDi1g4KcZXdB8e1MXe2cWH3wXJh98FY6mi+Ph/x6nxMJ7nxJsaT8NRkwAtzAadqd9mbsY32KTZBphGdj95h9Rsvk7ZbN30TKpcnPzOXhd/Ts/iV6t31O7gjpFnwLXvZ99hB6B0hhEGhUOQQNocncqi9hN6QBd9aY5OUy23FeaZIa7NMz45TzO8eoGlteP9yFnyvLq7wSKnLY9U+ZyoRxeu1vN6FtXCuHfCV5SIvrxTp6hsHpwLLY9U+L012+NhIj8C1Ob9pX1os8W/OjaDt8N9lydP81OkVHq1G269kDSRJdipVVsEtBQRhFnrvkQVa5ZM0a49suyyIGoytvIYy15sTfng8oZAIEptiMEQmZuUbZ1l79ezQcsc+9ynyk3Ogx/a1PoHF170bti+3QN8Labd71HzLuI45PbW/SvK9SpOElfMfUZmYojw2zsmnnnUdPRzHcRzHcRzHce5R1lqW+jHdVFOPUwIpKe/ls781tOvrtNfW0GlCr9kgjvr4QUihWkXtMvpspRXR7Kf0Ek27nx1wX8l5hK7K27mPmCAgGRnB5PI7L2At+eYyldVzqDTGCA8jJEb43OxeUhd2HxwXdjvbuLD7YLmw+2ClxvL2csIr8xHvraa7vnCMFyQvzIZ8fCagHN59wYCwJgu93/kmrXffJF5b3fNteIXitfB7Zg7/BkelOTsQyWC+dw/Q2ZeMESJGAUp4CBviUUAR7Bp61/uCt9d8vr0a8PaaTyO69rwUAk7NlHnywRHOPFAlH97EBxmjybcXyTcuk29fQdhbC7s3Swy8tlbgK8tF3rpOm/PN8srwwniHlyY6PFhybc6vJzXwb86N8IdXtv8NzuVjfvrMMhO5rdXyNqvk1ikgB9XcCjw1qObe+y/bIqiPPEqntP31PdddYnTtW8gDeB7tlYdECklqUzSWyMQkvT7n/+0XMcm17h7FE1PMfv+fAT0O+5yU5JsIYTWJKpCKkEhtP8rdSEndSLx+j5qEMzWP4s38bR6g5vISvVaLyQceZOzYcUZm5o50/Y7jOI7jOI7jOM7RSoxhsRfTSzWtRFP1PQK1t32bOolpriwTddskUUS3UcdoTa5YIiyVr9va3Fpo9RPWOgmpMbT6Cf3EEHqScs5H3cK+CMe5G1nA5PIkIyPYYPsYQgCModBYpLR6Cc/Eg+tJtPQwwrvhflUXdh8cF3Y727iw+2C5sPvwrPc0X5+P+fp8RCO68WZHCnhs3OeFuZDTYzff+ueOYi221yZeOEc8f57ewgWSRn3PN+OXK0Pht3cTLYycARFtCr4tkCJkjBIpUmSNzj1bQJEDPLQ1dFPDu+s+3171eXvVZ75zcyGZkoKH5so89VCNR0/W8L3dj54VOiXfWiDfvEyuvYS46eMIr289Unx1pcifLBW50t+96nw6n/DSRJvvGO8y4tqcX9VKJP/Tu+Ocbea2XfbMSJf/6pFVclur443OZnNjwPNAeVmr8jDIfr4FRijWxp6kn9/eArvUukC1/u4+4+NbI5F4QpFajUETmwSNYflPv0X9Wx8OLXvix76PsPIQsL8DmJRN8ExMIvNo4dFXFewOrw0d6dOLE0akZZKEB8euc0TvITFas3TuQ4q1USoTE5x86mO7HoXvOI7jOI7jOI7j3P3aScpalNJMEhIDI3toZ75Z1GnTXFkijRP6nRb9dmvQ2rxCkL/+Z9xUW1bbMZ04JUo1zX6KtZZy4JMPJK7awblfWEAXSyS12nX3yQmdUlhfpFBfQBmNIEWQBd9GemihsFv2Zbmw++C4sNvZxoXdB8uF3YfPWMv7aymvXI54aznB7LIFqoaC52ZDnp8NGM3f3e13TLtBPP8R0fx5+gsX9tTufENQGyE/c+xq23MVhodwT+81FmQ/C75FRFYrm+KpFGNSzjdznF2t8PZqgQ/qwbZ21bs5UU55bDTm8VrEw8UunoB+cYpedZZeaTqr7N2F0DH55gKF5mXCzsq+g29r4cN2wFeWiryyWqR3E23On6j1eWmiw7Oj3V1nh9/LLnd9fumdCVai7W+G//xcgx8+3thSoG2ykNvoLNz2/Ow08LP25bf4YVLLgJWJZ0mCyrbLquvvUmpfuE1BN3jCx2BIrSYxKSkpSbvL+X/7B1hzrcq8/PAJpv/MD7DfoDtrX97FCI9UhkSyhJbbD+bQFhrCw08SqsrwREWRO+K2be21Vdrra0w+8CC16VkmTjxwpOt3HMdxHMdxHMdxbp+lXkwn1dTjBF9KKrcwygzAWkNnfY32+vpwa/MwpFC5cWvzTqRZ7UQkqaEdaXpJiicllZyPp1zg7dw/rBCk5QpptZrtq9uBTCIKq/OEnTrSapRJh4NvodDCwwrpwu4DdBi5pis1cRznSEkhOD3mc3rMpx0bvrEQ88rliOXuzm14G5HlDz7q858/6vPwqMcLcyGPT/h4d2ELHlmqkjv9LLnTz1IF0ub6IPw+RzR/Ad3r7nobcX2duL5O4+03AQjHxq9Vfk/NIP3rtGi5rwkweSCPtYalfp+z65qz6x7vrYX0dwmCtxrNaR4fS3h8LOHMaEI52BxM58BaCukqhcUrGAS94jS9yhz90iSInddlVUB35CTdkZPItE++OU+hcZmgt3ZLgaYQ8FA55qFyzF9+oM431/J8ZbnI242d25xbBN+q5/lWPU9BGV4c7/DSZIcHivdXm/PX1vL8i/fGiMzw/5MvDD/x8BqfGN/8N2pB66xtOQzmcnvgyUHL8lsPeBOvwMrEx9DeliO2rWZ09S0KvaVbvu398oR3NehObRZ0A6y9enYo6EYKxp79JPsNugE8HQESLcPB185dC7pWYK2l6MGYx5EH3dZaus0GuVIZqRS1yekjXb/jOI7jOI7jOI5ze42GPrExlHyPZpwSSUO4x3bmAEJISqPj5MsVGstLKE8R9/p0mw2ay0vkiiVypTJih/2jxVCR8wusdyOEEOQ8SbOfstaNKPgepVC5Km/nviCsxW828NotkmoNXS5ve+4bP6Q9fYpu1KOwskDYbwAh0hqkTZA2RdlksD9Vst8Rfc7hcWG34zi3TSmQfOfJHH/mRMj5huaVyxFvXIlJdsi9LfDeWsp7aykFX/DxmYAXZkOmSndvtbdXGcGrjFA483GstaT1VeL5j4jnz9FfuIiJ+rveRrS6QrS6Qv1br4MQ5CYmyU9n4Xduchrp2ufSiuHddTi7DmfXJevR3lrB5z3DmdGEx0azgHuyYG78mUCIrEWO5yGtpRgvU1xYQCPpl2boVuaIihPX/WBhvByd0QfpjD6ISnoU6hcpr76HNOmOy+8mUJZPTHT5xESXtUjxp8tFvrJcZOk6bc67WvKlK2W+dKXMTD7mUxMdPjHRoRYc/Vzoo2It/PvLFX77YnXbwQC1IOWnH13hgVK86QoGkiQ7lWoQdAsIwmxO9z5EYY2VsWewavj/R+qYsZXXCePGvm5/P3zhZQMBrEZbTWKz52S03qL53sWhZatnHsMvj+57ncomSDSJzGOQxGLnlm2pscRCkbcGTwpmi0e/7eu1mug0pTQySrE6gp/b3gbfcRzHcRzHcRzHuXd5UjAS+ph+QqgE7STFkz7qFsNl5QeMzh6j327RWlnGC0Oidpt+p0Xc75GvVAl2+OypJIyXQkqhx3IrwleCTmzoxAlRqinnfALvPm7r59xXhDEE62uYVpOkNoLZoZuvCfO05x6k1+0Qri0RxB2Uzf5GhDUoOxhd6NyxXBvzu5xrY36wXBvz26+fWl5fjHllPuJSc/cZwieqihdmQ56eCgi9e+fIKmstydoS0eVzxPPniBYvYJNkT7chpCI/OUV+Zo78zDFyExOIm2ipfbeLNXzQGITba3C5s7frK2F5sJbw+FiPx8ZbPFjtIaXEGB9sgGD3Wdg7stcqgTUevdIs3eoccWFs9/uU9KgtvEG+vXhr697hrrzfCvnKcpFXVgrbKpm3koM255+abPP0SO+eanMea8GvfDDKy6vbt/enShH/7aPLm4J+m1Vy6xSQWbAtFXhqUM29v21QNz/F2tgT2zoAqLTL+PJr+Onu3R8OiycUEkFsUyyGyMRXm+3P//6f0jm3fHVZ4Xk88ON/HS+/twNLthJYAt1FC59UBkSqjBY7h9iN2GCCgBFSJkPBycLRP0lXLpxHeh6js3PMPvo4+VL5yO+D4ziO4ziO4ziOc/ut9GPaqWY9SvCEpBrs/4Bsaw3ttVU69XV0mtJt1kmiiCAMyVdqKG/nfX7GQKOX0OjFJNrS7CfEqSHvK8qht2N1uOPcy3QQko6MYK5XpGAtqt0mqK/jpX2UTVA2YbWv8YShmgv53Gf/3NHe6XuMm9ntbOPC7oPlwu47y3wr5ZXLMd9cjOmnN95UBQqenc6qvY9VFOIea8djjSZZXhy0PD9PfOUSVu+t0ld4HoWp6UH4fZxwdAyxj1bLdwpj4VIL3lnPKrg/aGSze/dipgiPjmRfD9ci8n6Ep+LBkbcpUiQgIywmmzNvQ7AhYj8NUtIUtCbFp1eepVuZI8mP3PAq+eZlaotvotLo1te7RaQF31zL8ydLJd5p7l6JWvQ0L453+dREmxPF5K7ufLUeKf7p2XHOd8Jtl33HeIf/8qHVa8G+0dlsbkxWua+8rFV5GGQ/74MF2uWTNGqPbLvMjxqMr7yGMns72OUgeSikEKQ2RWMHQXf2R9ZfXuTib708tPzoM88x9vEX973eQPcAiFWeVOaI5c5V3UlqaKAoBooymsdLkvCIj+uJuh3W5i8zOnuMysQkx848cbR3wHEcx3Ecx3Ecx7ljaGtZ7Eb0tKERp5R9RU4dzAfVNIloLi8R97pXW5tbo/HDHNJTSKmQKjsVKvteCIhTw0o7pp9oeomm3c/2K5Zz3pGPAXOc280CJl8gGRnB+tcpbDIGr9nEazYQxtDotAmkoVQo8V9835850vt7r3Fht7ONC7sPlgu770yJtnxrKeaV+ZgP13cPeKdLihdmAz42E1C4l0pQN7E6JV66TDR/Pqv+XprPWirvgQwCClMzFGazym+/NnrXHCSw0ttoS54F3N09dviuBHBmEG6fHoHq9qwTACkifJUgRYQQIIUGEWNEH2M11koEuUHwvY8PBqkGnZKKkG55jm5lljRX3XFRoWNqi9+i0LiAOOA5Masbbc6XiixHu1ewzxViXpro8B3jHSp3WZvzD1sB/+zsBI1k+P9NYPmxE3W+f7Y1CPJNFnIbnYXbnp+dBn7WvnyffzMWQX3kNJ3S8W2X5XrLjK6+idzj3/ZBkkg8oQZBtyE2CWbQtsnS5/LvfpXefPPa8mGOB378r6GC6/xR3SRlEzwTE8s8Rvj01Pa5ShvWeimykKcqNFN5ycng6N/ars1fwqSa8RMnmTr1MKXR3Ts2OI7jOI7jOI7jOPeuXqpZ7ie0k5S+NoyEt97OfMfbbzdprSyTJglRu02axBitsVpjGP5cLKW8Gn73Ukuzb9BC0E0MfQ2h71HOByhX5e3cZyygS2WSWg2ud0CK1vj1Oq0riygpqRXz/KXveeko7+Y9x4XdzjYu7D5YLuy+8610NV+fj/n6fEQ7vvHmy5PwxITPC3MhD454yLskyL0VJomJFy8RLZwnmj9HsrKY9areA5XLUZyeyeZ9zxzDq9TumPC7k2yeuw2ru48zHxIqeLh2rXp7urC3jFICgdJI0QcZDT6cJBjRR9seRliE9RFsVHzv4yCLQfAdqwKNiceJSlM7Lha0lhi5+HX8pJOFr1IOHtT+/8/MoM35nywVeXX15tqcPzXS46WJDk+P9LjTxz59dbnAr3wwRmqHf1d5Zfjbj6zw1EgfuNZ2Hhi0LPeywVe5MPt975MRkrWxp+jnJ7ZdVmxdpFY/e8CHM+yNBDzhY9CkNgu6NYPxEiKmc/ki87/71tB1xl94iZEnn9nXegWGQPeuti/vqwpG7PyBI0oNTSOoFEOKJuHRsk9B7D4C4yAlUcTKxfPUpqYpj01w4sln7phtp+M4juM4juM4jnP7rEUJrSRlPUqRAqq+d6CfF60xtNZW6DYabJ4nbIzF6hRjDEZrTKoxJvuy2pCkCc1uTD8xJNrSS1Isgnzokwt8hJTZKESprn4vNvY9Oc49yApBWqmSVirXfZ6bKMIsL1Gxmr/swu59cWG3s40Luw+WC7vvHtpY3llJeGU+5uxKwm4bstG85IXZgOdmQyrhvf/GzER9osULWeX3/DnSteXdr7SFXyhQnJkhPz1HfvYYXqmCPaLoLTHwUeNauH2xxa7/x5tJ4GTlWrj9QCXLKPdLCUkgFFJGILpImSIAS0RCFyNigEHwnRvM+L7135k1mm5uisb44xgVbF/AaCqL36a89DbCGkBkc6OFvBaA7/P/rK8F31gt8JXlImdvos15ydN8YrzDS5MdThRvX+vtnRgLv3mhxn+ar2y7bCJM+Jkzy8wU0qxLQpJkp1JlFdxSQBBmofcB0DJgZfwZknB7BX+1/i6l1oXbGnQLwBc+BkNqNYlNSe0g+BcJVjS5+BtvEK20rl7HKxQ5+WN/DbnPtu6b25cnMk8irz9DabUT45dLlJRlJq847qVH/nurX1kk6naZfOBBxo+fpDY1fcT3wHEcx3Ecx3Ecx7kTGWtZ7MX0Uk09Til5ivx1ZmvvizXoNEVrjU4TTJpmP6fp4PsEozWb965ZA+1+xGqrRxKndPox/ShFCUPBlygMWDNcSyPEpiB8EIIP9kFJpbLzhdh3FzzHuV2sUiTVGrpUuu7zWEZ9fuChY0zmd9hX69wUF3Y727iw+2C5sPvu1OgbXl2I+Pp8zFrvxu1+BXBm3OeFuYBHx/z7pj2P7nWIFy5cnfmdNtb2fBtBuTyo/J4lPzOLzJex4mAOHDAWFjrwzloWbn/QyALvvZjMw5nRrC35IzXIH0wmuSNPKALhIzEI2cu+hMGQktLF0MeKFBAIGyBsDvBvOfjW0qdRO023OLPj5X6/Qe3yNwi7q9kv0xiufYCRWVB7ANXfy33Fny6X+MpykdVo91/wsULMpyY7fGK8Q9m/vW3Ou6ngX7w3zpv17XOfH6v2+a8fWaHoDyq5dQrIQTW3Ak9ls7kP6AjmxCuwMvEs2isMX2ANo6vfotBbOpD17Icvsv/fxKZoq4ntxoELGlST1vurLH7h20PXmfzUd1M9/di+1uvZGGkSEplHi4C+uv6Hi16saWlLtVaiYlIerHiUjni2uU5Tls9/RHl0nPL4BCefehZ5QHPYHMdxHMdxHMdxnLtfXxuWevHVdua1wMe7Lfsj7abwO8Xo7DSJE5YaHeqtHlGS0OwlaGMo+B7FQCEw2EFFuDUGjMYMTq0xYPWWQByE2KgEV0NV4ULJa5e5QNy5gxnfJ6mNYAqFHS9/sJTnu2ZGjvhe3Ttc2O1s48Lug+XC7rubsZYP11NeuRzxraUEvcvWrRwInpsNeX42YLxwf4UTut0ctDzPKr91u7n7lbYIazWK09MUp7Pqb5ErYIW8qepvY6EeXZu5fXYd2nvMqEr+tcrtR0dgZPei4wO3EXorFIgEKfsgu1g0qY0xoochAqERSIQNweYQ3FoS38+Nsj7yGNrbHthiLaX1D6lceRtpdXaIrjWgN8LvjbB5/9XfxsK7zZCvLGdtzuNd2pwrYXmq1uNTkx2erB19m/OlnscvnZ1gobd9Dvn3TLf4L06u46Gz2dwY8DxQXva7CYPs5wMSBVVWxp/FquH7InTC+MrrhHH9wNZ1qzyhEAgSm2Ix9E08uCQLum0K53/tGyTNztXr+NUaJ//iX84+sN4iYQ2B6ZHKYBB0l6/bvhxrWW7H5MoFioHiWEEyJVK8PfWA2L/W6grdep2JB04xOnucsWPbZ687juM4juM4juM497f1Te3MAWrBwbYzPwjdKOXCepdeFFNv92m0eyhrqOUkoQSrU6zW2andUtBgBoH44BRjMIPTjYB8awwlpMyqwtXmQHxL2/Q77Hfk3H90mCMZGcGG4bUzreXHT01RPqDuj/ejw8g13f+G4zj3DCkED4/6PDzq04kN31yMeeVyxJXOzhWlrdjypXN9vnSuz4MjHi/OhTwx4eOre/+NlCpVKDzyFIVHnsJai27Vrwbf0fx5TK+z621E9TpRvc7aO+8AkBsbozQ9TWF6Gjk2y7oNWY0Ua5GkHsF6H9Y3ne52MMJWvoSHqln19qMjMFPMMtvbKbWa1Oos9CYAXUaYMp5MUaKHpo22CdqmIPpZ8C17CNQg+A73FHzn+mtMLf4pzepDtEsnht/0C0F79CF6lVlqy2+R71wBbUCZQZH3IPS2JkurtR5UMMNeq7+lgDPViDPViL92ap2vrxb4ylKR91o7H3GgreC19QKvrRcoe5pPTHT41ESHY0fQ5vztRsg/PztOVw+HpkpY/tqpNb5zqpWF3EZnj90bzOMO/Kx9+QF+sOrmJ1kbewK2BLgq7TK+/Bp+2j2wdd0qD4VEkNoUiyW6WiltQLUAQfNsfSjoBhj/+Cf2FXQD+CbCINHCJ5G56wfdQCc2WCnIhT5FaSh5Am+vG5V9ssbQbdTJV6pI5VGdnDrS9TuO4ziO4ziO4zh3h2rg0deGsq+oxyldbSgeRjvzfSiEHo9OlVlqRSjlUS4WWGlHrCSasuczWvVRg8/91hpsmgyqvROs1hidYlONNYNQ3OjhFQyCb2sHFeFaX/s5ibN54lsDcSGy1uhqIwBXIK6F4Vk79Xt/P65z+6ioj1xcQBcKRNUaMgjw2k3K/tztvmvOFi7sdhznnlQMJJ8+keNTx0MuNjWvXI54/UpMrHde/sP1lA/XU/Ke4GMzAS/MBsyU749NpBACrzKCVxmheOZZrLWk9ZVB+H2eaOE8Nurvejv91VX6q6vw1ltoJFfCSS7l57iUm2MxnELLvf0+BXC8fK1y+1QF/Dvrc8BVWejdwxOKkACrPaSo4IsavohIRZvUtEAUwSZY0cfQA9lFWG8w3ztEsHtYKK2hVn+PQmeR9dHHSYLy0OXay7M68zz5ziK1+lmUjrPQ2+hrpxvHf2yt/r4abN589XdOWT492eHTkx2Weh5fWS7yp8tF1uKd/79bqeILCxW+sFDhRDHmpYk2L453D7zNubXwB4slfu3cCGbLfS95mv/m0WVOF7swOKo6m8vtZcPdc+GBtSyH7FiDdvkEjdrpbZf5cYPx5ddRV6unbx+JRApJalM0ltgkWCxgB0G3xUQlVl99eeh64fgkxZOn9rVuz8SAIZUFDB6JCK+7rDGWbpySL+VRAsZyinDrh+gj0G01McZQqNUojY7hBW5Wk+M4juM4juM4jrOdFILR0GfJWAqeoptqAinwD3Dfw0EQQjBVyVHL+1yqd/GVpNVPWO3EdOOU0WJAOecjhET4IfgAO3QfZBCIb1SCD06NSSHNgnHM4HT4Sju2SrdGY9MEY/pYs+VA90EgfrVV+lB1+LXzHedWCcDrdmmtrOCPjlJIb/8+PGe7+yPJcRznviWE4ETV40TV44dOF3jjSswr8xEXGjsHI73U8pWLEV+5GHGsonhhNuSZ6YCcd38cJWitpZNY6mqE+kSVevlJGidS0rUlcmsXqTUuMtldILA3rshVGGajRWajRV7kVVKhWAinuZSb41J+jqVwYseqzbEcnBmBR0ezudvF7V2n72hbQ29jLVL4+GICnwlS2yKhiZFBFiLaCCsiDB2QbYT1B8F3sGvwHSQtJq+8TKt8gmblwWy29Ca94jRRbpRq/T0K3QUEmy43ZjgAP6Dq78l8yl880eBzxxucbYb8yVKJb6zmSezOj+VCJ+BCZ5T/9fwIz4z0eGmyzZO1PvttrpAa+NcfjfLHS6Vtlx0rxPz06SXGVS9bUKpB0C0gCLM53QfIAvXao3TK29tb53rLjK6+idza/us2kAg8odBoDJbEpBgGs99VCzCgKzTeOo/uDh/8Mv7cJ/bVfk1Yg7IJqQywQhKrwg0r6juDAxTy+YCSB6EnCY/4g4a1lm59nXypjOf71KZmjnT9juM4juM4juM4zt0lVJJK4A26qBlaiWYkEHdcO3OA0Fc8NFFitROzUId8qFhrxyy3I9pRyngpxFc33m8lhER4Erzr79yzdmMe+HAoPvy9HhyIf/VKYK8zR1xrTBJnl2+dIy4V0g9QuSJC3aHVNM6dzVrM+jqiuPMBHs7t5cJux3HuG6EneGEu5IW5kMV2Vu39zcWYbrJz69tLTc2lZpffebfL01MBL86FnKiqO/JN6M2KUksjMtT7w1+NjdPIkO6Yu41AOAKTTyOtZjJa5lj/Msd6l5mJFvHsjasqPas53r/M8f5lqEMsPOZzsywVZwkmZ5ibm+D0mGL8HnmvcC309gjxB6G3wBdlfKpoE5HQQos2lhwWA0RYIoxoZUel2gBBOAi+d37OCSyV1nkKvSXWRx4jyo0OXW5UwPrYE3SL04ysvYOne9kFV49qHbwNsPZAq7+lgMeqEY9VI7qnRNbmfLnEB62dq3W1FXxjrcA31gpUfM13jHd4abLDXGHvbc5bieTzZ8d3bKn+sdEuf+uBRXIkYCX4QRZ2eyqbzX3AR/oaIVkbfZJ+YXLbZcX2RWrr7yKOeMb0TgTgCQ+DQVtDYlI0GrAg24AGXUZHlrXX3hu6bn72GIXZ/c3VydqXq0H78vwN25drY+mlmlIhj5SSsRBCo/c4dX7/ok6HNEmoTs2QL1cIC4UjvgeO4ziO4ziO4zjO3abiK3paU/EV63FKJ9WU7ti5v4KxYkgl7zO/3sMTklKYstKJubzepVYMqOb8/R38LiRCSVA3CsRt1hJd66wyfKNl+tZQ3G4NxO21IH0QiOuoh+73kEEOL19EeHfq795xnL0SdusgBOeuchiD3O9n/Sjmt/7469S7Xay1jBSLt/suOYcsNZa3lhJemY94fy3ddfnJouSF2ZCPzQSUgjurBY42lma0EVrbHQPtXnrwm3xlUqajK1fD76loCcXeKlVVGFKcniE3e4L87DH8cuWuPqhgK094hMIftIkW+MJDIDEYEtNDyzZGdEBoLBpEhKEPQgMCafNgc8PV2VtYoFucoV49jd3hQ4IwmkrzQ0qtCzcXsG6t/jbXqf42g+pfYLfq78VNbc7r12lzvtnJYsSnJju8ONaleBNtzi92fP7p2QlWo+23/UNz6/yFyRWkMOB5oLzsPoZB9vMB09JnZfxZkrC67bJq/T1KrfNHHtBejy+yx5/YFG018UbnBtkGEYMuAwErXzvH+huvD133+A/9GLmJ7WH+zfJMhLQpiSygZUBfFm9Y1d3oxiTGMjJaoZLzmAqhmkZ4R3zQwOqliwCMHTvOzMOPUqjWjnT9juM4juM4juM4zt0pMYbFXkw31bQTTS3w7rh25jtp9hIu1XtEiWa9G9PsJQSeYrwUEN4B88ezYDvFaA0mxaSbKsNNik0SrDXofg/d72KNRgZZpbf03VgyZ3frnQ5KSmrFPH/pe1663XfnrnYYuaY7dMVxnPuaJwXPTAc8Mx2w2tW8uhDz9fmIZrRzcLLUMfzuez3+4/s9Hp/weWEu5OFRD3nIwexGe/HG5vB6S4V2K7JHGvf4Emo5SS2Xo5o7RTn3ECInib2USnMef+UiycJ5kpWFXW9LRxHN8+donj8HgFcqU5iZIz8zR2H2GF7+7q6aTG1KatMdKr09QlnEkCfWNYyIQHQwoosSBaxNYWi+d7Cpzfnwc04Axc4Cud4q9ZHT9ArTQ5dbqWjUHqFbmGJk7W2CpHXjO31g1d+D0FtKpvOWHz3R4C8eb/B2I8efLBX55lqB1O7893O+E3L+o5BfOzfCM6NdPjXR4fHrtDn/xmqef/n+GJEZ/oAYSMNPPrDEC7VGdl+8wTzuwM/alx/C327iFViZeBbtbXneWsPo6lsUelcOfJ23anPQbTCbgu4uiAhMFnSnrTz1b781dN3SAw/uK+iW1qBseq19ubxx+/IkNfRTQ6UYojzFiC/wrD7yoDvu94j7PUamZwlyeRd0O47jOI7jOI7jODfNl5Ja4GEtRDprZ14LxKHvW9yvSt7n0VCx2IyQQlAMPVbbMfP1HpW8z0ghuK2PYWNGt7xOkbg1mrTTJFFNVC6PjiNMr0PSXEd6PipfRAY7dyR0nP8/e3/2JEl63nt+33fzJfZcaq9uNLrRTZAECJDgIXnmjOZoTLK5kclMJtlcyEzXMpPpr9OFLsY0uhoND5dDEBtJoDcARFV1LbnG5uHu76ILj1qylq4tMysz6/m0lVV1Lu4ekZER4f68z+8RZ58Uu4UQYm2rZ/gfPin533234Is9zz/crvn1Tkt8Th0lJPjl/ZZf3m+ZFJq/vJ7xl9dzJsWbrcRsQnomUvzpgvbz48VPhlYwyjWTQjPO1bqorRmv/54UmtK+aK5QDpc/he99CkCsK+pv/kB953fUd36P33/w0v37+YzpF79m+sWvAcgmm/Su36C8dpPy6nVMdj5XXD6/6K1xylDonIijjQWKCUnVJLUgKYtWfUgrkloR1RSlDKRi3e199DFnYsPW7q+oFnc52Pg+wR6N826zEfev/AcGs39nNP361edFK9XFfb/27O/11zwx+1trxZ8OPX86XrIMmn/cHfC/3u/z2/nzTyp8UvzTbp9/2u0zdp6/ubTkP12ac63nSQn+37dH/L/+MHnm+zYyz//z49t8p1ev53JbMBqK/Ngjyx+qszG72z8imqOPURVbtnd+Tl4fnMh+34TFoOgK3YlE83CRglqBqiD2IWUQN9j72T+S/BPpF0qx9Rd/9Xb7j6tH8eWNLonq238ms9pjjSYvMvq5welIHr59hMJJWB4cYJ0j7w8YX7n68m8QQgghhBBCCCGeMLCGpY8MneFgHWc+PLNx5o8ZrbkxKdnoOf6wvyS3msOq5WDZsmwC2/2MMjubt0NpgxtuYAdj/GKGnx8S84LY1IRqQTs7QBuLLvuYLD+R5gghxMk5m888QgjxDhmt+P624/vbjlkd+advGv7xds1u9fyi4MEq8j9/veL/+/WKz7Ys/+FGzve3HVZ3b4pCTMya9NwZ2Q8L2i+aG35S+k49KlyP88cF7Id/BpnC6ON5U6fzkvKjzyg/+gyAUC2o7/z+UfE7TPdfuo3mYI/mYI+Df/0lKEWxfZne9ZuU129SXLqCNu8+Lul1PCx6O2XJcMQUHxW9c50RiPhoSKkkEUh6TlRzFCUptSRVEVk+7vZOPdRTL+nlaof87n/hcPw9FoObR9+kK8189BFV7zIbe7+mqPfe7IYcQ/d3D8V/3mz4z1v7fFPn/O3OkP/yoM9h+/y3KIet5X+6M+J/ujPiu4Oavo386uDZYe+f9Cv+Hx/fZpwDLu9WcGQ5nODJ47K8zN7Wn8JTM6eNr9h+8M84vzyxfb8ug0YrjU8tkUQdGxKp6+bWC0i9bkFFnNAcNBz+5t+OfP/o0++TjTfeeP8u1kDCm5ygHF5/++rp2kfaEJn0MnRmGdtumUeeTrfY7duW1XzGcPsy1jmGm9unun8hhBBCCCGEEOefUoqt3NLGSN8aZm0g05HcnP04c4BeZvns8pD7s67Le5BZHixqvpmuGOSWzX6GPaPR7Epp3GCM7Q/XRe5DdJaT2ga/WuDnhwRtMGUPk5dS9BbinJBitxBCfIthrvnfflTwn7+T89sDzz/ebvjl/ea5XdYJ+M2u5ze7nr5TbPc0B6vI9J3Fi+vnFrTHhSZ7Xg70KTFln94nf0Lvkz8BwM8OqG//rit+3/4dcfWSgmBKrB7cY/XgHvz8n1DGUl659qjzO9/aPjfzvtvkaV9a9IYUxyhGJFWR1IykHYkIVERWJL2PSm4dcZ4/ijjXKbBx8Bt6y7vsb/4x3g2O7D/YHjuX/4Le4g7jgy8wj+LH39Bbdn9fswv+L1cX/J+uaP513udvd0f8bL//wpjzF3WC/zebh/zfPnyAyw1o0x1Tnp1YN3cC5oMPOZx8+sxJkGumbD/4GSY2J7LvN6FRGGXwKRCBNrbrQnezLnQXEEuII4h99v75f+5+TmvKGDZ//Jdvvv8U0MnjdU7C0OqXjClIifmqJbcal2cMi4wMTx7Dqc89Xx7uo7ShHI0YXbqCOqMn70IIIYQQQgghzja7jjOPCZoYmfuA02c/zvwhpRRXRgWTnuPWfoU1mlndsrdouL1fsdnPGBYvyBQ/A5TS2N4QUw4I9ZJ2eoByGcm3+GpJWM4Iy8W66N3rmiiEEGeWFLuFeJEYCKslJivlxUyglOLjDcfHG47/Y1vy87sN/3C74Zv587sKF21icXj8HYcKGL0gVvxhQbvnXhQvfjbZ4QT7/R/T//6PSSnh9+7T3v6K5s5vWX5zh+S/vQCbgmd55w8s7/wBAJ3n63nfN+ldu4Ebjc/8/fG46O3IsE8VvXMisStMph6kHim2JD0jKoNWPUhN1+2tZqAW6EcR513ROW8OuXL375mNPmI6+i48FRe97F9nVWwzOfgN5fLe8RYQ36D724TED4cLfjicsbip+Yf9EX+7O+Z3y+JFewFAkfgfbzzgf399hrKu22+egT25tzsJOJx8xnz44TOfK6oHbO7+Cn3K3cffRgFWWeL6vzZ61iVv0PN1bHkf4gDikHp3h9nXXxzZxviPf4DrD567/ZfvP2FjTcQSlH2l+PKqjfiYGPUcrsgYGNAJ8ui/9fuOWwyBajqlN55grGV8+c3nlQshhBBCCCGEEANnqUIkJst+0zJvA6MzGgP+Irk1fHJpwN6i5s4B9DLD7rzhwbxmXnu2BznuDHesK6WwRR9b9Al1RTs7QFlHCgNCtSBUc3y1wBQ9bNE7sUYKIcTbOV/PnEKcMKU1Sht0VhCahrA8JCznmKKHkRczsdZzmv/4QcHf3My5PQv84+2an91tqI+hntVz6plY8ScL2sNjjBc/i5RSuK0ruK0rDH74N1z2c9r7t6m++QPVnT9QPXhAit8+YzrWNfPffc38d18DYPuDLvL82g16125iey/pIn2H2tTSpvaZordVhkw5UBBSwCdFipvdbG+9WEec56TkQa2IVOuI8xyVChQZisRo+lvK5T32N/+YJj8aQR1Nxt7WDyl615js/xobVidzI1+z+7vvIv99Mee/vzLl9sLxt7sj/m5vxNQ/FdtuAv/3j+/yg60WtIPMdXO6T3ChQ1Savc0fsOo9W/Tsz28x2f8N6lRzHV7OKktaL54IKeDxQAAzh2TXRe4exDEAOz/9+yPfr13G5g//4s33v+5w7+LLM7zOvv0bUmJee0qnscYyKB0uRWyK2FO+b5fTQ1JK9MYbDDe3MfbsrlAXQgghhBBCCHE+bGSOOkQGzjJtPKsQKc5wcfhFNvs5w9LxzX6FUZph7tlZNNzeXzLpZYxKd+a71k1eYvKS2NS08wOUMRAHhNWSsFpSrxbd1xT97nNCiDNDit1CPEEpRbF1leneLlpbssJ1sSWrJX61xOSFvJiJR5RS3BxZbo4s/4fPevzyXsM/3mn43cHzuw3tk/HiLyhov8t48bMmKk3jRthrBRtXrrP54/+Arhes7t1m/s1d5nfvUe/tvHQ7fjFn+sWvmX7xawCyyQa9azcpr9+gvHodk337rOB34XlFbwCrDEYZcmXWBctIiEM0Q6JakdScpC2aHlATqUj6EIVBpRJSjvNLLt3/Jxb9GxxOPiXpo28FVuU29/K/YXT4FYP5H04nJvoVu79vTOB/HE/5P390wK/2Sv52Z8jXi5xrRcP/9bt7XOsnMBaK/MQXJwXt2N3+MU0+fuZzo4MvGM5+f+oR2y/jVHf/tikQiTSppSt0TyFpiMN1hHm3EKK6e4flrX8/so2NH/4YU3x7h/2LmOTRydPqgoimeVl8ObBoIolEP88oypzcKEyM5PF0u+VTSiwPDygGQ4w1TK5cO9X9CyGEEEIIIYS4mKxWbOaOnVVLbhSL1uO0w5zxwvDzOK35cKvPpN9ya78id4aDZcP+smFRB7aHGbk9+9fVdZaTb17B+bbr9NYGU/QIddV1e68qdFZgyz7qBNMEhRCvTn4ThXiKznL0aAvaBhsrlLaksk+ol4Rq+ejFzJQ9tHR1ibXMKH5yPecn13PuLwJf7bXEdHR2dv+cxYufFV5neOVwqcblkH/wKf0bH3KNQFN7Zvd3WNy5RXXnNu3s8KXbaw72aQ72Ofi3X4JSFNuXu67v6zcpLl9Fn6HFLA+L3gaN066LeU8BrRRGWZwyOGUJKRBSSUwFKXqSnhPVAqNKUmpIakVUi3XEeQ6pZLC4TbnaYX/yR890JidtOdz4I5a9q2zs/xtZOz/dG/6S7m8TIj+63PKjS3vwsLtXK8hycCf/1qa1JTvbf05wTxVrU2Rz71/oLe+d+DG8LqsMii4yP5FoYgtEMDNAdfO5Uw5hE+iKuzv/dLSr25Qlkz/5szfavyJhYk1QlqgMrS5JL3k+jDGxbDylsxit6PUzshTRQH7K0fCr+YzgPYPJBv3xBu4NC/5CCCGEEEIIIcTTetbQs4GEZS92cebjcxZn/qRR4fijK4Z70xqtFf3CsjNruHNQMSodG73szHd5A2jryDcuEUcb+PkharEueq8qwmpJc7iLzjJM0Ue7lyTXCSFO1Pl9xhTipFlH3h8SRy1+Pl2/mHWzO8Kqoj3cQ7sMU/TQZ7AzVLw7l/uGy/2zUzC9EJSiVQVBObKwJBmFSR6Xw+YH1xh/50OCcrTzGcs7t6i+uc3ym1uEqvr27abE6sE9Vg/usf+Ln6KMpbxylfL6TXrXbpJvbqHOwPiCQCTEGui6cx2WmBItYJTBKo1RGYlESAYfLYoRSVXrbu+MlMI64nwFeoVKDh1LtnZ/zmp5mf2N7xPN0eeyNh9z/8pfMZz9ntHhb1F8e4T8ifq27m/o5nKfws+qzsbsbv+IaI6exKjYsrXzC4p6/8SP4XVZDBqFT55Ioo4N6VGhO0EYAw7CFqz70Rd/+D2r+3ePbGfzR3+Jdm+2yMvGGtAEnRN0/vL4cmBRdykZg9zQ7+dYo7GhIY/h1LvmF/v75L0+Ns8ZX5WubiGEEEIIIYQQx2sz7+LMh85y2HgqHyjPQRf0ixituT4pmfQcf9hfkhnNYdVysGy7Lu9BRu+cFPS1sWTjLdxwgl9Mac0UU5SEpiZWC9rpPto6TNmXOoEQ78j5eDYR4h3Sxj3xYjbDLw4fze4Iq2UXZWJsN9c7L050PqwQ77uoDCszwKaGLK6IxmJijY0NBo8aDHCf/THjz/6YlBLNwR7LO7epvrlFdfcOsW2/dfspeJZ3brG8c4tduqSH3rUblNe7ed9uNH7n3flt8rTJo9E4bbEpEpJGozDaYJXBKksk4pMlxj4pNutub4tWPUj1utt7ilKaYrXkyje7TCefsRjcPLpDpZmNvktVXmay/+uzU8x9Xvf3CavKS+xu/gD00X0aX7H94Gc4vzi1Y3kZjUYrhUYDCZ8ikUQb2ycK3RHCCMjAbwPdYoEUI7tPdXXbwZDxZ3/8RsdiUotOgVaXXXy5Kl/6PSEmKh8YZA6jNWWvwMZ1V3d8/qiIk1Ivl7RNzeb2JfJen3IwPNX9CyGEEEIIIYS4+LTq4swfrFpKo1n4QKY1Rp/va829zPLZ5SEPZjVaKQaZ5cGi5u50xSC3bPYz7BloNHkVShvccAM7GHd1gvkhMS+6OkG1oJ0doI1Fl/1ubKLUCYQ4NVLsFuIVdS9mE+xgRKjmtLNDdF6QfIOvFvjFlFDNMUW/K3qfkxdpIc4dpfAq77q846obNZwcNtZkYUnQDq8ylFLkG1vkG1ts/OmfkWJktXOf6k7X9b26f5cUv71TOTY1899/zfz3XwNg+4NHkee9azewvf5p3OLnHxuROjbUdBHVTlls7Lq9tdI4ZciUI6lETAYfMxQTkl4Q1QxFQUoeVEWkAlUxPjigXN7iYOOHeHf0tnnXZ+fyT+jPbzM++AKdTrfg+K7NBh9wOPnsmRMV10zZfvAzTGze0ZE91hW4u4UPkIikR93cAG0MBALoORAgDAEHfosnFw3MfvslzcHekW1v/cVfod4g4r+LL28IyhFVN6f7ZfHlAPNVi1aKXqYZ9jKU0bjgsSliH0bXn5LFwT4uy8l7PZnVLYQQQgghhBDixJTWMHBxPX4sMfOesbPvvPHibSmluDwqGPcct/YrrNHM65bdRcPt/YqNfsaoOD/jQpXSuMEY2x+ui9yH6CwntQ1+tcDPDwnaYMoeJi+l6C3EKZBitxCvSSmN7Y0w5ZBQL/GzQ5TNSCEQqgWhmuGrOSbvYcoSpc9v3IwQZ1lSmtr0MNGRxYpoNCa1mNiQEfA6J6rHi06U1pSXr1Jevsrmj39C9C3VvbtUd26x/OYW9e7OS/fpF3NmX/6G2Ze/ASCbbFBe6wrf5bXr3arNd8CngE8BRfNEzHlXyHfaoJUhV5ZExCeHjwOSWq0jzi2aPlATqXDtb7l07xbz0Z8xG34P1NGFO4vBDapym8n+byir+6ceJ33aEnA4+Yz58MNnPldUO2zu/hJ9yvOjH1I8LnCrIwXu8KjA3f3MIyEFEgn0AlT7uNAdtnny7WAKgd2f/sOR/WQbWww//vSNjtGFFaDxOsPrnKBffvLa+sjKR8alwxpN2cuJKWGI5PF072vfNNTLBZPLV7Eup7+xear7F0IIIYQQQgjxfplkllWIDJ3p4sxDpHeO48yflFvDJ5cG7C9rbh8oysywO2/Ymdcsas/2IMeZ89NA1tUJhphyQKiXtNMDlMtIvsVXS8JyRlgu1kXvHpzzLn0hzjIpdgvxhpRS2KKPLfqEpsLPpl3XWxwQVsvuT71AZwW26KOs/LoJcRKCdlTK4lINURG1xcYaFyuisnidkZ5TktXW0b/xAf0bH3TbWa1Y3r29Ln7fpp0evnTfzcE+zcE+h//2S1CKYvtSV/y+fpPi0hX0Kf/eJxJNamlSi1EapxwpJhQBrRRGWdy6CzwkR4g9QmzXEedzjCpJqSGpisHsp+TVVxxO/po2P1rgiyZnb/vPKKoHTPZ/jQ31qd7O05KUZm/zB1S9y898rj+/zWT/16hT7jJ+UYE7PF3gjpHAusD9kF6CqiEOgayb0Z2OFp8Pf/Ov+PnsyMe2f/LXb7SK3KQWRaTRJQlD+wrx5QCz2mONpnCacc8RtCFPAZ0gP+WFBYuDPbSxFIMh4ytXz/1qeiGEEEIIIYQQZ5tWiq3ccS8mSqNZruPM7QUqlG70coaF485+hVGaYe7ZWTTc3l8y6WWMSoc+R+ffR+oEddWNPbWOFAbr5rg5vlpgih626EkirBAnQKpvQhwDk5WYrRLnG9r5IUobTNknrCrCaklT76KzDFP00S5714crxMWjFK0q1tHmFUkpTPKY2ODCkqAzgvr2jlJTFAw/+oThR58A0M5nLL95XPwO1fLbjyElVg/us3pwn/1f/BRlDMWVa/Su3aR3/Qb55jbqFN/MhhQJqUYBVjkyLDF1MedGGazSGJWRcISU4+OIqCqSnpHISCmQtyu2Hvx/WA4+YTb6EemprtxVeYl7+Qbjwy/pz29dqC7voB272z+iySfPfG508CXD2e9O7fa+uMDteRjEH4mE5xW4H21kBaqC2IeUQdyAdDSJILYtez//pyMfKy5fpXfz2a72lx9zwq7jy7sUhv4rxZfXPtKGyEYvwxlNXuS0CmwM5Cmc6mMseE81mzHY3MJYy2j70inuXQghhBBCCCHE+yo3mpEz8DDOvPVMsvMfZ/4kqzUfbvXZ6Lfc2q/IneGgathfNszXXd6FO38d7SYvMXlJbGra+cEzzXH1atF9TdF/o3FxQojnk2K3EMdI24x8cok43MAvuk5vU5SEpiZWC9rpPtpYdNnv4o4v0BsUIc6CqAwrM8DGpuvsNhYTa2xsMHhanZPUqxWc3WDI+NPvM/70+6SUaA72qb65xfLObaq7d4jtt89oTiFQ3blFdecWu/8EOsspr11/VPx2o8mpnKQkoE0tbWrRaJy2uJQISa27vQ1WGayyBHJCGOLViqRmJGUwqsdwdpeyusvB5M+pyxtHt68tBxvfZ9m7ysbev+H84sRv00nztmRn+8/xrnf0Eymysfev9Jd3T/wYNF2BW60L3Gn932sVuNdfhWq6+PJUQiogTiA+22V98C+/IKyqIx/b/su/eaPHqQsr0qP48oKoXuEELiXmq5bcajKr2eznBGOwMaKBPJ7unPjl4QEKRW80ZnTpMlpOQoUQQgghhBBCnJJxZqnWceYHrWcZIv0LEmf+pGHh+KOrlruHK7RW9HPLzqzhzmHFuHBs9LNz1eX9kM5y8s0rXXPcbN0cV/QI9ZJQLQmrCp1LIqwQx0V+i4Q4AdpYstEmbjjBL2b4+SExL0htg68W+PkhYf0CZ/JS5nUIccz8upM7SxUJCMnhYk0WK4JyeP16CQtKKfKNTfKNTSZ/8mekGFnt3Kf65jbLO7dY3b9LivFbtxGbmsXvf8vi978FwPb6lNe7ed+96zexvf6b3txXFonUsaGmwa5ne9unu721w2EJqcTHlqjnRDXD+cDWzi+perc4nPyIaIoj227yCfeu/jXD6e8YTX976vHex6XORuxu/5hojj5GVGzZ2vkFRb1/YvvuCtwGpdQTBe5ISHFd4E6ElIjpRQXuBMoDofv74b9hXeTudRHm8dnHWlhV7P/qZ0c+1rv5Hcor1177dtin4ssbVbz8m4CqjfiYGPUchTMUuWWpFHkM2BSxp/iYSjGynB5SjkZoYxldvnJq+xZCCCGEEEIIIdQTceY9Y9Zx5gp3ASOwtVJcn5RM+o5be0syo5lWnv1lw6LxbA1y+tn5LGVpm5FvXCKONvDzQ9TCYIrnJMKWfbSVRFgh3tT5fIYQ4pxQSuMGY2x/RKgWXXSJy0i+xa+WhGpGqOZd0VvmdQhxrJJS1KqHVjl5WNAYjUktJjZkweN1/mrdps+htKa8fJXy8lU2f/QTom+p7t19VPyudx+8dBt+uWD25W+YffkbALLxBuX1G/Su3aS8eh2T5y/ZwtvxyeOTR6Fx2uCSJSTdxZ7rx93ekRwfx3iWKDWjv5xRrP6Ww8knLPvfObpRpZmNP6bqXWZj79/Im5fPPT9LqvISu5s/AH30cWH8iu2df8a1x9+1rlHriHIFzylwJ7ridlfgjk8UuBPgQT2nsI2GZLq48mS7f2O6InccPfc49n7xz8+kFWz/5K9f+/aoFDGxIejsUXz5K6WYpMS89pRO47Rms+9olEalhCWSx9Od1V3NpsQQ6E02GGxs4rKT/X0UQgghhBBCCCGelhnNKLMkEk2MzNrARqYuVJz5k3rO8tmVIQ9mNUat6OeGnXnNvemKfm7Z6mfYc3r9XBtLNt7CDieExZTWHB5NhD3cR7sMU/TQcg1CiNcmxW4hToFSCtsbYHsDQl3Rzg5Q1kEc4KtuXoeXeR1CnIioDJUZ4lINURGNxYYGF1dEZfE6I73lJGBtHf0bH9C/8QEAoV5RfXOH5Te3WN65RTt9edG3OdynOdzn8N9+BUqRb12id/0G/Zvfobh89cROZBKRJkYa2kcF7hQTLQGtNFYZMpWRkRHSkNav0HrG5u5X9BYP2N/4Y4I72ins3YAHV/4D/fkfGB98iU6nW6h8E/PBBxxMPnumMOuaGdsP/hkTvz22/nU8LnB3J2iJRKAraCceF7i7gvfDDu4nitoqdP9PAtS6oO3WMeUWePgaotYfz7r53On5HdbtfM7hr3915GPDjz8l39x67dvmYt3FlytHq8tXXlCyaLpCfj/P6GeW3BnmynRzuhPkp/gYSimxONin6A+wzjG5+vrd7UIIIYQQQgghxHEYOUMVAkNn2G88Cx8YuItc1lFcGhaMy4w/7C+xWjOvW/YWDbf3Kzb6GcP8/M4v19qghxvYwfhIImxs6q5ZbnYgY1CFeAMX+VlRiDPJ5CUmL4ltTTs/RGlLKvuEuiKsFt28jizHlD2JLhHiuChFqwqCynBxSTIKnSw21riwJKxjz4+LyQsGH33M4KOPga6YWH1zi+W68ztUy2/fQErUO/epd+6z/4t/xg6GDD/+lNH3PiMbbxzbcT7Np4BPgRqFW8ecx9QFaFttMMpQqD6JkjZ69HJGXv+U6fgDZsMP4al56IvBB1TFJTb2f0O5enm3+7uQgMPJp8yH33nmc3m1w9buL4+lWK9RaKXRPFHgToHI0QK3T4FI2xW19ZMd2w8L22Zd3M67QvYzhW0HZE/8++X2fvaPpPDEbVSarb/4q9e+jTY1QKTVPSKWVr3aSuQYE8vGUzqL1YqNvqNVGhTYGLqC92sfzZurFwt82zK+fI1iMCI/hREDQgghhBBCCCHE8zyMM78bE31rmLeBzESyc9rh/Koyq/nk0oD9ZcPtg4oyM+zNG3bmNYu6izbPzPm9Dx4nwg7XRe5DdJZ3Y1BX6zGo5okxqFL0FuJbSbFbiHdEu5x84zJx1OLnU9TCYoreuuhdddEl1nXzOlwmL2hCHIOoNLUZYGODixXJGExssLHB4Gl1TlLH/0bZDQa4T7/P6NPvk1KiPTxgeecWy29uUd29Q2y+vWvYz2fs/+Kn7P/ip+Tblxl98hmD736CLXvHfqzQFV6b1NKkFoPGaUeKCU9AK4VRlkw5MrYIYYLbm9Ob/4K9rY9p86Mx2dEW7F76EcXyLhv7nx9rh/TbSmj2tv6UqvfsPObe/DYb+79+q9njD+PJHxe4Hxaz46P/D6kl0BBVC7rlSGEbsy5u5+uO7Ydv2x52c2fAw87tN1us0RzsM11H6T80/qM/wQ2fH3f+Il18edslJShNY3qv/Lq1qD0Ag9wwLC2Z1SyUwcaIBvLoX+tY3tbicJ+sKMnKgsmVq6e6byGEEEIIIYQQ4mlOayaZJSVoQmTeBiaZWo9Eu9g2ehnDwnJnv8IozaAI7Mxr7uwvGfcyxqU71/eDUhrbG2LKAWHVFb0fjUGtloTljLBcYMp+V/TW5/e2CnGSpNgtxDumjSMbb+GGky66ZHG47vxuHkWXKGPXq7gKKXoLcQz8upPbpaoLiE4WF2uyWBGUxeuTm42jlCKbbJBNNpj8yQ9JMVLvPlgXv2+zun/3aJftU+qd+zzYuc+Df/hf6d34kNEnn9H/8CO0PZmX9EAkxBrgiW7vRAsYZbBKUzAkbxP9b+6yNzrkcHKd9NTc61XvKneLTcYHn9Nf3D3VTt3nCdqxu/0jmnzyzOdGh18xnP72jY7xaIE7EUmPCtyJQFItkaYrcNOCiuvvfLJj+2EU+cMjsBCfLmwfzz24+9N/gPS4oK+sZfNHP3nt7bhYEzEE5Wh18crx5SEmKh8YZA6jNZNeRkARlSKPAZsi9i0WHLyuZrWiqSomV6/j8pLeeHJq+xZCCCGEEEIIIV5kYA2VjwRnOWhaFj4wvNBx5o9Zrflwq89Gv+XWfkVhNftVw2HVsKg924Ocwp3vsaBKKWw5wJZHx6CmMCBUC0I1w1dzTNHDFj244J39Qryu9+PZUIhzQGmDG06wgxGhmtPOpl10iW/w1RK/mBLWL2jdKi55QRPibSSlaFQPr3KysCQZjUktJjZkIayjzU/+ZVJpTXHpCsWlK2z+6CdE71ndv8vyzi0W//47msP9F9yAxPLW71ne+j3aZQw++pjhJ59RXr1+YnOL2uRpk0ejcdpiUyQkjUZhdDfb++osMqluc29zg6ocHj1knXGw+QOW/StM9n+Faz3qHZS9vSnZufRj/FOzxkmRjb1/o7/85rW293D+tkbxuMDdEFQDeOKjAncgEQG9jhkvnujYfrKw/XQU+ck8368e3Gf++6+PfGzyJ3+G7b1eYoCNXXy51z0i7pXjywHmqxatFL1MMy4dVisqpVEpYYnk8XTnvS8P9rHOUfQHTK5cPbczwIQQQgghhBBCXCxKKTZzRxMjfWuZtZ5MR/JzHOX9uoaF44+uWu5NVyit6OeWnVnDncOKUeHY7Gfnusv7oUdjUJuadn6AMgbigLBaElZL6tWy+5qi131OCCHFbiHOmi66ZIQph4R6iZ8domxGCmG9imuOrxbygibEMYnKsDIDXGogVkRjsaHBxhqtPF7npFMsyGpr6V2/Se/6TbZ+8tfUuzvMvvqc2W+/IFTV829D2zD94tdMv/g1tj9g+PGnDL/3Gflk80SOMRKpY0MNWGVwymLjw25vTe4NH97f47C/4v7GBtEcfbvR5Je4f+W/Yzj9F4az36FSjuJ0nsuabMTO9o+JJjvycRU9Wzs/p6hfsLjgKWZd4FYoEoFAjach0oDyJBWIKXah5MkADmLR/f3o8WTWBe3siY7t0ztJ3fmnvzvy/zrP2fjhj19rGypFTHqz+PLWR1Y+dkVu0xW7E+CV6eZ0J8iPYV76qwpty2o+Y7h9CWstg62tU9u3EEIIIYQQQgjxMlYrJpkjppYmKube4/T5jvF+XVopro1LJj3Hrb2KzGhmK8/eomHZdLO8+9nFKHvpLCffvILzTRdvrs16DOqSUHWFb50X2KKPOqHERyHOC/kNEOKMUkphiz626BOaFX5++MwqLnlBE+KYKEWr8i7aPC5JRqGTw8aaLCwJOsOrN5uJ/HaHpSi2L1FsX2L7P/xHlnduMfvqc+a//y0pPH+OsV/M2f/lP7P/y38m39pm+MlnDD/+9MTme/sU8CmgaB7FnIfURXMPF55+VfFgY5PpYPDUjTPMxn9GVX7I+ODvyZspKhUosufs5XhUxTZ7Wz98JmLd+BXbO/+Maxcv/F5F18Hddfp6UBUeT6SmK2kDSRFRhKhJ0dG9zXpYvNaPC9oPi9unWNh+2vLOLapvbh/52OYP/wKTvV6Ev4urR/HljS6JrzHzflZ7rNEUTjPpObSGRmlQYGPoCt6vdTRvZ3G4j9KGcjRmdPkqWstiMiGEEEIIIYQQZ8vAGaoQiMmy37TM28DoghR3X0fpLJ9eGfBg1nD3sKKXGXbmDfemK/qZZWuQYS9IMqq2GfnGJeJogp9PUQuDKfqEVUVYLWnqXXSWY8oe2p7cdTUhzrL371lQiHPIZAVms8D5tosu0QZTPvWC5jJM0Udn8oImxJuKSlObATY2uFgRjcbGBh0bMjytzkmvUcw7Tkpr+jc/pH/zQ2LbMP/d10y/+vyZguWT6t0d6t0ddv7xv9C7fpPhJ58x+M530fb4C/eJRJNamtRilcEqS4oJFQPbO98wWAy5v7WNf2phjs8m7F76H+jNv2A4+zkmzVGphJSjjrEYPB/c5GDyR890HbtmxvbOzzChfu6t0kSUCutu7ZaAJ6VETKCwJCwx5V2B+1FpVj1R0Hbredtnp3CaUnqmq9v2+oz/+AevtR0XayDhTbdQ5HVm3dc+0obIRi/DGc0g7x6TrTLYGNFAHp+/oOMkxBCoplN64wnGWMaXL5/avoUQQgghhBBCiNexmTmaEBk4y7TxrEKkeI/izB9TXBrmTHqOP+wtsVqzaFp25w239is2+xnD3F6YEWXaOLLxFnY4ISymtOYQU5SEpiZWC9rDfakRiPeWFLuFOEe0deSTS8ThBn4xQ5kppujmd4TVgna2jzYWXfa77rwL8kIuxGnzOuu6vNMKAPWwyztWRGXX0ebvjnYZo0+/z+jT79Mu5sy+/oLZl5/THOw9/xtSYnn7Dyxv/4H71jH46GNGD+d7n8Aq18fd3mCVI8OSLadcr2YcblzicDQ++vykFMvhZ9TlB4wPfkpe/wHUAp1ySCXqLd6uJOBw/D3mo4+e+Vy+2mVr5xfoFEgkIKBUiybCwwI3EEmkaLr52ikjYohREYjd4+BhtzbZet722X57Nf/919Q7D458bPPP/xL9GgkhOgV0ehjzr2n1ayQHpMR81ZJbTWY1m/0crcGjiEqRx4BNEXuKv2XV9JCUEr3RhOHWNuYEFoQIIYQQQgghhBDHwWjFRu4Iq5bCaOZtF2du3tNrwc5oPr40YH/ZcPugonCG/XnLzrxmXnu2BznZBVoMoLVBDzewgzF+McPPD4l50dUIKqkRiPfT2b4aK4R4Lm0s2WgDN3z8gqbzgtQ2+NUCPz8kaI0p+pi8BC0vaEK8rqQUjSrxKiMLXbS5SS0mNrgQCNoR3kG0+dNcf8DmD/+cjR/8mGZ/l+mXnzP7+gtCtXzu1yffMvvyN8y+/A22138833vj+OcTJ6BNLW1q0Wictkz27tGbH7J76SrNU5HZwZbsbf8nysUdxoc/J6Yp6BUqORQlpAz1GsHWCc3e1p9Q9a4+87ne/BaTg5+haEkqoFREKdbbN6RoSCkjpS6KPCa6GdxJk5IDHkaSv/vHwOtIMbL703848jE3GjP63vdfeRsKsLEmYgnK0ujea8WXV23Ex8So5yicoZ93Xe+t0qiUsESKeHqzulNKLA4PKAZDjLOMrzz7eBFCCCGEEEIIIc6SnjX0beyS9mJk1npGzr5X87ufttHLGBWW2wcVRmn6hWVnXnNnf8m4lzEuL9Z8c6U0bjDG9oeEak47O0Rn+dEagTHrGkEhRW9xoUmxW4hz7PEL2mjd2X2IchnJe/xqQahm+GqOKXrYogcXZE6JEKcpKsPKDLCpIYsroum6vG1sMHhaUzwRX/3uKKXIN7e59FfbbP/l37D85vZ6vvfXJP+C+d7LBfu/+hn7v/oZ2eYWo4fzvXv9Yz++SKSODTUNtm64dHvJYrzN4WSL9NRzU9W/Tl1cYnTwG3rL34FaEdUUpTSkYt3t/e3PZ1FbdrZ/RJNvPPO5wfSXjGb/glYKjUWRo5IhJkNK5lE/cYyGkLo/6RwWtp9n+uVvaA8Pjnxs6yd//Vod/vZRfHm2ji9/jWislJjXntJpnNZs9rv7NAFeGfIYUAmydHrF7mo2JXjPYLJBbzwhK8pT27cQQgghhBBCCPGmNnLLKgRGzjJtPQeNZ+gM7j2+Bmy05sPNPpv9llt7FYXV7FcNh1XDbOUZl45hcbEWBSilsb0RphyuawQH6xpBi6+WhOWUUM2lMU5caFLsFuICUEphywG2HBDqqit6WwtxQKiWhNWSerXoZn8X/e5zQohXpxRedXOJs7giadAPo83DkqAdXp2dWThKa/o3PqB/4wNi+98x//ffMvvyc5bf3IL0/GjoZm+Xnb3/ws5//Tt6124y/N5nDD78Ltodf4HXJ49PHrt/h+3FPtPtG9Tl0QJ7NI6DrR+w6t9gsvevmDADVRGpQFeolKFSieLo8SUC3jp2t3+Cd8OjO06Rzf2fMVreBbaArrAdUyQlh0ruUXH76AzuiyF6z94//+ORj+Vblxh85+NX3oZJHp08rS6IGJrXiS8HFk236ryfZ/QzS+Eed3WjwBLI1xH4pyHFyHxvl3IwxOY5k6vXT2nPQgghhBBCCCHE29FKsV1k7KwatHJMW89h4+lbQ2nNuz68d2qQOz67ark3XaG0YpA7DpYNe4uag2XTFb1Li3mNpLqz7kiNYFXRzvdR1pHCgFBJY5y42KTiJcQFY/ISk5fEtqadT1HaYso+oa4IqwWhXqGzHFP00O7sFOeEOA+S0tSmh4mum99tNDa16NiQEfA6f60459OgnWP0yWeMPvkMv1ww+/oLpl99TrO3+/xvSInlnT+wvPMH7lvL4DsfM/zkM3rXbhz7fO9EJDUL+nc+Jx9tM9u8TjJHT8ZWxQb3rv5HJod/oD//Co0HaiIVSR+gkkGRk2hJytO4Dfa3/huiKY5sR0XPld1/paynpNQnxsdR5DEZfEr49PwO+Ivi8Ne/wi8XRz629ZO/Rr3iamZFwsSGiCUqQ6tL0ms83mNMLBtP6SxWKzb6jxcqtMpgY0QDeTy9n8Pi8IAYAoOtbfrjDcrB8OXfJIQQQgghhBBCnBG50Vwpc3brBqMs8zYw94E2JQbWXKgO5telleLauGTSc3xzsCIzGt+LHKxaDqqGg6plVFhGpcNesMKvKUpMURKbmnZ+gDJm3Ri3WDfGLbs6QtHrPifEOSfFbiEuKO1y8o1LxNEGfn6IWlhM0SM0K2K1pJ3uo61DFz1MlsvMDiFeQ9COSllcqiEqlLbYWONiRVQWr7Mz2RVse302fvBjNn7wY+q9XWZfdfO9ny6APpS8777mq88xZY/hx58y+t5n5Jvbx3pcCnDTHSaLAxbbN2kGR6PHk9bsb3yHZe8ql/Z+i/F3CZSk1JBURWSFwlDnH7G/+ZckffTtjfENV+5/iWsSMV0BNIGw7jAPQDzW23MWhaZm7xc/PfKx8toNetdvvvI2bGwA8CYnqPz14suBRd0VsQe5YVhaMtudSHoUUSnyGLApYnl++sBxiyGw2N+jNxpjXcbmjVe/L4QQQgghhBBCiLPCasXlIuOg8YDCmci89Rw0idF6wfn7rHSWjy8NqFrPg2mNtZpJzzGtWqaVZ1q1DArHuHQ4c7GK3jrLyTev4HzTpcFqs26MWz5KhNV5gZU0WHHOyaNXiAtOG0s23sINJ/jFDL+YEvNuVVeoFvj5IcEYTNHrZnZI0VuIV6MUrSrW0eYVSSlM8pjY4MKSoLt5xmdVvrlFvvkf2frJX1PdvcP0q8+Z/+5rkm+f+/WhWnLwLz/n4F9+TraxyfCTzxh9/Cm2Pzi2Y9LBM7z3O5rZHotLHxDt0WJqnefcuvpHbEyvsnl4h8g+gYwILPofsL/x2TPPYa6puXL3NjpoPA6f2nWB+/1y8KufE+v6yMe2X6Or26R2HV9eEtE0+vXmWoeYqHxgkDmM1kx6j3+2rTKolLBEinh6P5v5/i4kGGxuMdzaJitfL5JdCCGEEEIIIYQ4K5RSbOSO3Gj26harLNMmcNC0DJyluGBF3DdROsuHW5arPnJ/tsJpzbh0zFZdwXu2aunnlnGZkduLdX9pm60b4yb4+RS1MJiiT1hVhNWSpt59nAZrndQIxLkjxW4h3hNKG9xwgh2MCNWCdn6IznKSb/BVRVjOCMsFplwXvS9YdIsQJyUqw8oMsLHpOruNxcQaGxsMnlbnrxX1fNqU1vSu36R3/SbxP/5vWPz775h++TnLO3948Xzv/T12/+vfsftf/47y2g1Gn3zG4KOPj200QracYv/936i2rrMabR99g60U++MJs16fq3s79FYzHmxssj96ttu8qBZM7v07TWwI6eJ3b7+Ir5bs/8vPj3ys/53vUly68krf/zC+PChLVJpG90ivedIzX7Vopehl3Ynkw1XlCfBKk8eASpCd0kKE0LYsDw/pTzYx1rH5Gh3uQgghhBBCCCHEWdWzBqcVu6sWnSvmbWDWetqoGVjzyoveL7LMam5u9LgyKtiZ1zhTMy4cs9pzWLXcPljSc4ZxL6N0FyviWxtHNt7CDtdFb3OIKUpCUxOrBe10H6U1Ji/ReSkR5+LckGK3EO8ZpTS2N8T2hvjVEj8/QNmMFAbdTO9qjq8WMrNDiNfk153cWapIQEgOF2uyWBGUe+3I53dBW8fw408Zfvwpvloy+/oLZl99Tr2788Lvqb65TfXNbe7/l/+F/nc+YvTJZ/Suf/DW8711ivR3bpHN9lhc/pCQHe0k9s5x68o1XLNJm+XPfH8x3aP34N9pTykS+yzb+/k/kfwTc7CVYvsv/vqVv9+GGtAEna//vF5iQesjKx+7Irfpit2PPqc0KLAE8uRPLfx/treD0pr+xgbjy1ex2dn//RRCCCGEEEIIIV6F05rLZRdrrlA43c3x9utYc/Oex5o/5Izm2rjk8jBnZ95g5zXDwrKoPYeV55vDisIZxqWjn12sUprWhmy0gRuOuzTY+SExL0i+IaxWhNUSXy26Mah52Y1BleY4cYZdrN9QIcRrsUUPW/SITU07P0AbSyoHhNXy0R+dFdiyh7JnN45ZiLMiKUWtehiVkYUljdGY1GJiQxY8XudEdT4WkNiyx8af/oiNP/0R9cHeenb3F/jF/Llfn4Jn/vWXzL/+ElOWDL/7KcNPPiPf2n6rVcOuXjL+w2+oNq5QbVyBp7rkn1foLve+ody/ewanpp++djbl8Df/euRjo+/9Edlk4wXfcZRJLZrwOL5cvV58OcCs9lijKVw3E+vJc6NWGWyMaCA/pQjztq6pZjPGl65gXcbk6rVT2a8QQgghhBBCCHFatFJs5o5Ma/YbsEoxbR/HmucSa/6I0Zoro4JLw5y9RcP9Wc0gdyyaLt783nRFZrprGv3MXqjueKU0bjDG9oeEaolfztG2IqVhNwa1qQjLKX4J2hWYvOiSHS/QfSAuBil2CyHQWU6+eYUYWtrZIcoYTPnEzI7DPbTLMEUfLd1vQrxUUJbKDHGphqiI2q5jzldEZfE6I52jUmw+2ST/yd+w9RfdfO/Zer53bJvnfn2oKg7+9Rcc/OsvyCYbDD/5jOHHn+IGwzfavyLR279LNt9ncelDfPmCOeEp0X/w7xSzvTfaz0WQUiLWNe18hl/MOfzNv0B8HOGujGHzx3/5SttSJGxsCMp18eWm/9rx5bWPtCGy0ctwRjPIHy+c8iiiUuQxYFPEnlIX/mx3B+sc5WjMxrUbGCtvh4UQQgghhBBCXEwDZ8i0YqduMVoxaz3T1lNGQ9/qC1W4fVtaKbYHOVv9jIOq4d60pp9ZVm3goOqK4M60jEvHILfoC3TfdWmwA2xvQAyesJzjqzm6LSBGQr0i1hXt7AClNTorMXmBkmsq4oyQR6IQ4hFtHPlkmzjaICymtGaKKcpuFddqQTvbRxuLLvtddMkFekEX4tgpRasKgspwcUlSCp0sNta4sCSsY8/PE6UUvWs36F27waW/6eZ7z77+nMWtP8ALZmI3B/vs/tPfs/tPf0959TrDTz5j8NEnmDdYOGPbmtGdL6hHWyw3b5CeHLMQA8O7vyWrZm96886FFAJ+uXhUzPbzOe1i9vjvxfxoZPlTxt//wSsvOnBhRULjdYbXBUG95tvGlJivWnKryaxms58/09WtUsISKU6pq7teLqmXCyZXr+OynPGly6eyXyGEEEIIIYQQ4l3JjOZqmbFXtygUlQ4sfMC3kaGzGLnGe4RSio1ezkYvY1p57s1WFM5Qh8DhsmV3XnOwbBgVjmFpMepidclrY9HDCW446RJhqxlquSCVPZJv14XvJWG16L427wrfEnMu3iUpdgshnqG1QQ83sIMxYTmnnR+i84LUNvjVAj8/JGiNKXqYvJQXMiG+RVSa2gzWnd0VyRhMbLCxweBpdU46h2+KtbUMP/4ew4+/h19VzL/+kulXn1Pv3H/h91R371DdvcODv/tf6H/4XYaffEr/xgco/erR7goopru4xZTl1nXa3hjTVPR3bmGb6hhu2buTUiI2DX4+e1TA9ov5o8J2u5gTlos33r52js0/+/NX+lqTWhSRRpckDI0qXnt/VRvxMTHqOQpn6OePf84J8EqTx4BKkKXTKXbPdndwRUE5GLB54+Zbz5YXQgghhBBCCCHOA60U20XGrPWoR7HmnoOmZWgtmcSaP4diVDpGpWNet9yf1uTG4HuRg6rloGo4qFpGhWVUOuwFvMags5w8y0mjTUJdERZztF2SegNi23Qfq2b4aoZ2OTorpElOvBNS7BZCvJBSGtsfYXrDdWf3IcplJO8JqwWhWnRxJq7AFGU3r0MI8Vx+3cntUkUCQrK4WJPFiqAcXp/f3x9blEz+5IdM/uSHNAf7TL/6nNnXX+Dnz++yTiEw/+2XzH/7JaYoGHz3U0affEa+femV47NMaBne/z0Jzk0gfIoBv1yui9nzI393Re05ybcntv/NH/8lpnj5zG1FfBRfnpSmNv3XP0lJiXntKZ3Gac1m/2iKQas0KLAE8uRP5WdYzWa09Yqt6zfJyh6Dza1T2KsQQgghhBBCCHF2DJ0l05rdh7Hmjeew9fSToTQSa/4ig9wxuOSoWs/9aY21mknfMa1aplU323tQOMalw13AhQNKaWzRxxZ9YgxdzPlyhs7yxzHnTdU1ySn1qNtb2fOVainOLyl2CyFeSimFLQfYckCouxctZe3ReR3TfZSxGIktEeKFklI0qodXOVlYkozGpBYTG7Lg19Hm5/ulOZtssP2Tv2brL/6K1b1vmH71OfPffUVsXjDfe7Xi8N9+yeG//RI3njB6ON97OHql/Z2lU7DQ1Edixbtu7PW/5zN8tYR0OnOpUQrb62P7A9xgSO/GBww/+eyVvtWF+lF8eatLonr1zvuHFk0kkejnGf3MUrij22iVwcaIhlOJME8pMd/bIe/1yXo9tm58ICfwQgghhBBCCCHeS7nRXFnHmmtg6SNLH2hjYujMhZpFfdxKZ/nOluWqDzyY1TitGZeO2aoreM9WLf3cMi4zcnsxr49rbdCDMW4wJrY1fjlHV3Ni6JG8JzYrQr0krJaP6gU6z18r2VGI13W+r6gLIU5dV8wucaHFz6eo5byb19E2+NXD2JI5JssxRU9WbwnxHFEZVmaASw3EimgsNjTYWKOVx+ucdKbKuK9PKUV59Trl1etc+uv/lsWt3zP78nMWt/79hfO928MDdn/6D+z+9B8or1x7PN87z0/56J+VYuy6shezx/OyH0aMrwvbsX1+Qf8kKOtwgwG2P+z+Hgy7wnZ//e9e/40ium1qgNgVubG06vXv+xgTy8ZTOovVio2nuro9iqgUeQzYFDGc/AKA5fQQ37ZMrl6nGIzojScnvk8hhBBCCCGEEOKsMkqxnTumWqPwON3Fmu83iZEzOGlk+la5Ndzc6HFlVHRFb1MzKhzz2nNYtdw+WNLLDOMyo3QXt8irXU42fiLmfDkjVA5T9om+IaxWXb1gOUNnGTorJeZcnAgpdgsh3og2jmy8hRttEKolfjFFuQzisHthW1WEeg9tLLroYbICtLyICfGIUrQq76LN45JkFDo5bKzJwvJR7PlFoK1l+NEnDD/6hLCqmP32K2Zffc7qwb0Xfk917xuqe9/w4O//f/Q/+A7DTz6jf+NDlDmZE4TYNrTzJ6LF1x3Zjzqzl4vT68qGR13ZdjB8XMDuDx4VuHWWHXtnskoRE1u8zkjK0JjeG518LGoPwCA3DEtL9tRK5lYZVEpY4ql0dccYWeztUg5HuDxn6+YHJ75PIYQQQgghhBDirFNKMc4suVHsrlq0csxaz2Hj6VtDaS9ukfa4OKO5Pim5MsrZmTc8mNcMC9sVvZeebw4rCmcYl45+dnHLcUopbNHDFj1SDN340+Uc7fKuXtCsiPUKPz/EK4XJC3RWyFhUcWwu7m+XEOJUKKWxvQG2NyC2Ne1i1sWTFD1i2xDqrhDul7NHXeHKylOPEA9FpanNABsbXKyIRmNjg40NBk+rc5K6OKtpTVEy+eMfMPnjH9AcHjD7+nNmX31BO5s+9+tTCMx/9zXz332NzguG3/0ew08+pbh05ZWLvSlGQrV8ak72fN2l3f39opj1k6CsxfWH2MHgUcz4kcJ2r39iRf1v42JNRBOUo9XFG8WXh5iofGCQOYzWTHpHT1oi4JUmjx6VIEsnX+xeHuwTY2SwuUV/sknRH5z4PoUQQgghhBBCiPOiMIYrpWa3bjDKsmgD83Ws+UBizV+J0Zoro4JLw5y9RcP9Wc0wdyyartP73nRFbgzjnqWf2Qs9Wk1pg+2PsP0R0bddV/dyTix6pBCIdUWoV4RVhTKmiznPindyLUxcHFJxEkIcG+1y8klOGm8SlnPaxRSd5RBD1+m96mZ1aJehc4ksEeJJDzu5XVoBEB52eceKoBxeX7yVjtl4wtaf/xWbP/4PrO7fZfbV58x++xWxqZ/79bFecfjrX3H461/hRmOGn3zG6JPPMEX5OFL8ib8f/3vxwuj0k2DK3qMObDsYdIXt/uDRv3Wen7mTGhu7+HKve28cXw4wX7Vopehl3cwq+1Sih1caFFgiefInHtYfvGdxsE9/PMG6jK0b0tUthBBCCCGEEEI8zWrF5SLjsPWAwprIvPUcNInRekyZeDmtFNuDnK1+xkHVcG9a088sVRs4rLoiuDMt49IxyO2FX0igrSMbbZKGG8RmhV/OCdZieoNuLGpdPdEFnqGzQhJixRuRYrcQ4tgppR+t3grNCr+YobTtZnU0NWG1xM8PCUqji3W3t6zcEoKkFI0q8SojC120uUktJjZkIdCa4tzP8n4epRTllWuUV66x/df/Lctbv2f65ecsbv0e4gvme08P2fvnf2Tvn//xdI/V2HXRevDcmHHbH6DP2fOZShGTHsaX6zeOL299ZOVjV+Q2XbH7ma9RBhsjGk4lwnyxvwco+hubjC5dxhXFie9TCCGEEEIIIYQ4j5RSTDJHrjW7dYtVlmkbOGhaBs5QnLPrHe+SUoqNXs5GL+Owark/qymdoQ6Bw2XL7rzmYNkwKhzD0mIuUKrj8yilHqW+psnWusA968aipkRoamJdPUqI1VnedXxbJ81y4pVIsVsIcaLMejVWGm/il3P8YorOC5L3hLoirpaEavH4Bcxl8gIm3ntRGVZmgEsNxIqoDS7WuFDhdf5G8dLnhTaGwXc+ZvCdjwn16vF87/t3T2X/piyx/YcF7K47+8kubZMXZ64r+2118eVmHV9evvHja1Z7rNEUTjPpOfRT52keRVSKPAZsihhOdga6bxqW00MGm1sY59i4duNE9yeEEEIIIYQQQlwEpTVc1YqdusUoxbwNzNp1rLk1F+66yMlSjMuMcZkxr1vuTWtyY2h7kcOq5aBqOKhaRqVlVDjs0xdTLqBuLOoQ2xsSQ0tYdoXvmBddQmy9ItQr2nofpXWXECvNcuIlpNgthDgVShvcYNzN6qhX+OUUbR2pN1gXvSva2QFKG8y62/uZSokQ7xOlaFVOUJY8zGmNxoYaF1cXNtb8aSYvmHz/T5l8/09pZ1OmX33O7MvPaWeHb7Q9Zcyj7utn5mQ/7Mq279dbIxtrIOJNj6gcrXqzx1XtI22IbPQynNEM8ud3dauUsMRT6eqe7+2itKE/3mBy5RrWPXtMQgghhBBCCCGEeJbVmitFxn7TxZo7HZl5j1/HmhuJmX5tg9wxuORYtp4H0xpnumaBadUyrTzTZcugcIxLhzPvx3VxbRx6OMENJ4Smwi/nKLvAlH2Sbwj16nGznHXo/GHM+ftx/4hX935d0RVCvHNKqa6YXZTE4AnLGX4xIxY9km/wq4pQzfHVHO0KTLHu9hbiPdV1eY/I4pJkwCR94WPNn8cNR2z9+C/Z/NFPWD2493i+d7169DUmLx7FiT8zM3swwBSlrD5+gk4Rk3wXX46m0W8WX05KzFctudVkVrPZz58554h087rz6FEJsnSyxe62XlHNZ4wvX8E6x+TKtRPdnxBCCCGEEEIIcdEopdjMHbnR7NUtVlumTWC/aRk6S/6eFGSPW89ZvrNluToO3F8Xvcc9x2zlOaxaZquWfm6Z9DKy9+g+NlmJyUrSeKsbg7qYo21F6g270ahN1dUSlrOubpAXkhIrHpFitxDindHGoocb2MGEUC/x8ynKZhCH67iSina6jzL20UwPZNWgeA8lpahNHxst2XsWa/40pRTl5auUl69y6a/+E830AKX1uitbOndfh42rR/HljS6JbzgfqmojPiZGPUfhDP382cejVxoUWCJ58ie+RGO2u4NzGeVwzMb1G+dujroQQgghhBBCCHFW9K0h04qdVYvOFbPWM209ZdT0Jdb8jeXW8MFmj6vjggezGqdrRoVjXnsOqpZb+0t6mWFcZpTu/bmuoZTGlgNsOVg3y60b49oCYuy6vet1Sqx6GHNeoN6ztEZxlPz0hRDvnFIKW/SxRZ/oW/xiilrOMWWP1Db41ZJQzfDVHJMXmLwnL17ivdQVtt/fWPOnKWPIN7be9WGcSy7WQMKbfP34yd9sQykxrz2l0zit2ew/f8FBqww2RjSceIR5vVxQL5dsXL2Oy3NG25dPdH9CCCGEEEIIIcRF57TmSpmxV7coFJUOLHzAt4mhsxgpeL8xZzTXJyVXRjkP5jU784ZhYZnXnsOl55vDisIZJqWjl71f18S7Zrku5jw2NW01Qy0XpLJH8u268L0krBbd164L3xJz/v55v34zhBBnnraObLyFG20QqgV+MUO5bL1qa0lYVYRV1c3oKHoYl0u3t3ivSKy5eFs6BXTyeJ2TMLS698bbWjSRRKKfZ/QzS/GclcYeRVSKPAZsihjS2xz+t0opMdvdIStKisGAzRs3UXKCI4QQQgghhBBCvDWtFNtFxrz17DdglWLWBg7qLtb8fYrcPglGa66OSi4PC3bnDQ/mK4a5Y9G0HFaeu9MVuTGMe5Z+Zt+7jnqd5eRZThptEuqKsJij7ZLUGxDbpvtYNcNXM7TL0VmByXKJOX9PSLFbCHEmKaWxvSG2NyS2Ne1i2sWZF/31i9cSPz/EK9VFnBc9lMTUiveExJqLN6VI2FgTsQRl3yq+PMbEsvGUzmK1YuNburpVSljiiXd1r+Yz2rpm68YH5GWfgXT+CyGEEEIIIYQQx2rgLJnW7NQtVnex5oetp5cMPaPfuyLscdNKcWmYsz3I2F823J9p+pmjagMHVcP9WY0zLePSMcgt+j27v5XSj1NiY+hizpczdJY/jjlvKvz8kKDUEzHnMv7wIpNitxDizNMuJ59cIo23CMs57WKKznJSCMS6IqyWhNUS7bLuxUtWbIn3xONY84XEmotXYmMDsI4vz97qcbKoPQCD3DAsLZl9tmhuCNtMAADcEElEQVQe6eZ159GjEmTp5IrdKSXme7sUvQFZWbJ58wM5wRZCCCGEEEIIIU5AZjRXy4zddaz5UgWWPuBjZOjevwLsSVBKsdnP2exnHFYt96c1pTPUIXC4bNmd1xwsG0alY1S49/I+19qgB2PcYExsa/xyjq4WxNAjeU9sVl3H92rZNdLlJTrPUVoahS4aKXYLIc4NpTS2P8L2R4Smwi9mBGMxZZ/Q1MRV1+0dtO5euIpSXrjEhdfFmg8l1ly8lEkenTytLohomreILw8xUfnAIHMYrZn0nl8090qDAkskT/5EH43LwwN827Jx7QblcExvND7BvQkhhBBCCCGEEO83rRSXioxp053vO62Ytp79xjNyBidjxY6JYlxmjMuMed1yb1qTG0PbixwuWw6WDYfLlmFpGRUO+57e79rlZOMnYs6rOWG5wJR9om8Iq1UXc76cobMMnZUyIvUCkWK3EOJcMlmJyUriOBAWM/xiSswLkvfr2d5LfLVAZzkm76Gdk25vcWG9ONZ8ideFxJoLFAkTa4KyRGVodUl6i+fE+apFK0Uv04xLh33BiUGrDDZGNJxohHmMkfn+HuVwhM0ytm5+cGL7EkIIIYQQQgghxGOjzJIbzc6qwSjHtPUcNp6eNZQSa36sBrljcMmxbDz3Zyuc0UyiY1q1TCvPdNkyLByj0uHe0xnqSils0cMWPdI4EFYL/GKOdjnEIaFZEevV4xGpWY7OS7STlMzzTIrdQohzTWuDHk6wg3H3IrWYoq0j9YaEuiKuKtrZPsoYTN7D5AW8p6vbxMUnsebiRWysAU3QOUHnb/V4aH1k5WNX5DZdsft5PIqoFHkM2BQxpDfe58ss9vdIMTLc3GawsUXe65/YvoQQQgghhBBCCHFUbjRXy5zdukUrWPjAwgfamBg6815GbJ+kXmb5aGtAPQrrGd6acW9d9F55pquWQe4Y9xzZe1r0BlDaYHsjbG9E9G3X1b2cE4ve4xGp9YpQr7r6QVag8xJlpHHovJFitxDiQlBKYYoSU5TE0HartZaz7oXLN/hV1cWUVDN0VmCKEm2l+CcuHok1F08zqUWnQKvLLr5clW+1vVntsUZTOM2k5164fqhVBp0SlniiXd3BexYH+/QnG9gsY/PGzRPblxBCCCGEEEIIIZ7PaMWlwjFtNaBwOjJrPQdNV/CWWPPjlzvDB5s9ro4LHsxqnNbruHPPQdUy22/pZ5Zx6Sjc+13A1daRjTZJww1is8Iv5wRrMb0BqW0ezfb21QLtsq6GkBUSc35OSLFbCHHhaOPIRhuk4bh7gVpMUTbrYkrqFWG1pK1XaGPRRReHLi9a4iKRWHPxkE0NJrYE5Yiqm9P9NvHltY+0IbLRy3BGM8if39Ud6eZ159GjEmTp5Ird871dlNL0JxuMti/h8uLE9iWEEEIIIYQQQogXU0oxziyZVuzV7ZFY8741lFauSZ0EZzTXJyWXRzk785qdWc0wt4+K3ncOK0pnmJSOMnu/y4JKKUxeYvKSNNkiVAv8coZyGaREaGpiXeEX0/V87xyTv13jiDh57/ejWghxoSmlseUAWw66mJLFFLWcYcoeqW3wqyVhOcMv55i8wOQ9lJWnRXFxSKz5+8ukFhNbIBG0w6sMr3OCfn5x+pWkxHzVkltNZjWb/fyFXd1eaVBgieTJn1iegG8aqukhw61LWJexcf3GCe1JCCGEEEIIIYQQr6q0hitas1s3GGWZt4G5D7QpMbASa35SrNZcHZVcGuTsLVoezFcMC8eiaTlYer6ZrsitYVJaepl97+epK6WxvSG2NySGlrDsCt8xLyCGRxHnbb0PWSnjUc8wqeoIId4L2jqy8RZutEGoFrSL9WqtGAirah1TUqGtQxc9TJbDe/5iLy6Gx7HmlcSavwd0CtjYoIgEZQk6I6FpdUGr8rfadtVGfEyMel30VT9/8WrsRhlsjGg40Qjz2e4O2jh64wmTq9cw9i2K+UIIIYQQQgghhDg2VisuFxkHjQcUzkTm61jzkbNYSdo8MUZrLg1ztgcZe8uGB1NNP3NUbeCgarg3q3GmZVw6BrmVxQd0abF6OMENJ4Rm1XV72wWm7JN8w9InSOldH6Z4ASl2CyHeK0dWazU17WKKMhZT9olNTagr/PyQoBQ672GKEmUkXkecb12seQ8bjcSaX1AqRWxs0AQihlaXJKUJKutmdau3XHmaEvPaUzqN05rN/ouLyh5FUgoXAy5FDCdzItCsKlaLOZPLV7FZxvjK1RPZjxBCCCGEEEIIId6MUoqN3JEbzV7dYpVl2gQOmpaBsxRGOmVPklKKrX7OVj/jsGq5N11ROsPKBw6rlt15zcGyYVQ6RoWToveaWc/rTuOt9ZjUOWpVo1JES6PFmSTFbiHEe0tnOXl2iTTexC/n3QyOvCCFQFwtCfWSsFqgXYbOS+n2FueexJpfPIrUFbmTX3dwd4XtiKMx5bEtZFg0kUSin2f0M0vhXrzdVhl0Sl2EefTHsv/nme3u4LKcYjhi8/pNtJZFG0IIIYQQQgghxFnUswanFburFp0r5m1g1nraqBlY897HaZ88xbjMGJcZs1XL/VlNYQ1NLzJdthwsGw6XLRv9jFEhxdyHnhyTqqYLTGrJR8N3fVjiOaTYLYR47yltcIMxbjAmNBV+MSMYi+kNCE1NXC27bm+tMXmJLkqUFFXEOSWx5heHTS06NoDC64yg3KOC93EuXogxsWw85TpibONburoj3bzuPHpUgizFYzuOJ60Wc5qqYvPaDbKiYLi1fSL7EUIIIYQQQgghxPFwWnO57GLNFQqnuznevkmMMouRgvepGBaOYeFYNp570xWZ0Uyi42DRsjOvUeuvEU/RBmWs1AXOKCl2CyHEE0xWYrKSOPKE5Ry/mBLzguTbbrb3aomvFugsxxQ9tJNuWHH+SKz5+WZSi4ktkIjKPTWXOzv2BIpF3XVnD3LDsLBk9sURY15pUHRd3cmfyNKJlBKz3R3yskfe77N54wOUltgzIYQQQgghhBDirNNKsZk7Mq3Zb8AqxbQNHNRdrHkuseanppdZvrs9oG4D96Yr7Prayu68xmpNmcn1QXF+SLFbCCGeQxuLHk6wgzGhrgiLKco6iANCvSLWFe10H2UMJu9h8gKk2CLOGYk1P19UirhYo4hEZfE6I6HwuqBVBekEVkCHmKh8YJA5jNZM+t/+uGiUwcaIBooYjv14AKrZFN80jG9eJe/1GWxsnsh+hBBCCCGEEEIIcTIGzpBpxU7dYrRi1nqmraeMhr7VEmt+inJn+HCrj9ZLEok2Re7PVlyblGSy+ECcE1LsFkKIb6GUwhY9bNHDhRa/mKGXM2LZI7UNvq4I1QxfzdBZ0XV7W4l5EeeHxJqffd1c7hqdAhFDq0uS0gSVPZrRfVLmqxatFL1MMy4dVr/48eBRJKVwMeBSxJCO/XhSSsz3dikHQ7KiYOvmh8e+DyGEEEIIIYQQQpy8zGiulhl7dYtCUenAog34FBk6iTU/bTc3ShofiSnxzUHNvemK6+MCIw1e4hyQYrcQQrwibRzZaJM0nHRx5ospymUQh13396qirfe6rvCih8kK+JbCkBBnhcSan02KhIkNJvlHMeVRGSKWxvRO/OfS+sjKx67Ibbpi97d+vTLolLoI8+hP5JiWB/sE7xlsbtMbTyiHoxPZjxBCCCGEEEIIIU6eVortImPWelT9MNbcc9C0DJ0lk0LrKVJ8Z6tH+yBydQx3DiruTWuujgu0LDwQZ5wUu4UQ4jUppbHlAFsOiL6hXUxRS4spekTfEFZLwnKKX84weYHJyy4CXYgz7sWx5hav83d9eO8Vm1p0bADwOiMoty54l3jljn0u9/PMao81msJpJj33rZMaIt287jx6VIIsxWM/nhgC8/09euMJNnNsXv/g2PchhBBCCCGEEEKI0/ewsL37MNa88Rw2nr41lEZizU+L0ZqPtwd8cX/G5VHB3cMVD2Y1l4e5/AzEmSbFbiGEeAvaZuTjbdJok1DNaecztMshBsKqetTxrY1F56XM9hZn3qNY81SReDLWPEqs+SkwyWNiAySicoT1XO5WF7QqP5UiN0DtI22IbPQynNEM8m9fsOOVBgWWSJH8iTxKFgd7kGCwscVw6xJ5r3cCexFCCCGEEEIIIcS7kBvNlXWsuQaWPrL0gTYmhs5Id/EpcUbz3e0+X96fc2mYcX9as79UbPalEUacXVLsFkKIY6CUxvZG2N6I2NRdt7exmLJPbJuu6P3kbO+8RLvsXR+2EM+VlKJWPSzPxpoHnROUvH04bipFXKxRRCIWrzOSUnid06qSdJondCkxX7XkVpNZzWY/f+kanUYZbIxoII/h2A8ptC2LgwP6k02sc2xcv3Hs+xBCCCGEEEIIIcS7ZZRiO3dMtUbhcbqLNd9vEiNncNJEdCpKZ/nOVp/f7izY7MPuosYazaiQ9FJxNsnVaiGEOGY6y8mzS6TJ1uNu7yyHGLuid72irfdRxnRF77xAaZmJLM6e58Wa21ijVJBY82OiSNjYoJMnrmPKk9IE5Wh1+U7mpVdtxMfEqOconKGff/sxeBRJKVwMuBQxpGM/pvn+Lkpr+pMNxpev4DJ5/AkhhBBCCCGEEBeRUopxZsmNYnfVopVj1j4Ra27lOuppGBWOG5MSEvgY2Z3XWK3oZVJWFGePPCqFEOKEHOn2bmv8ct7N9i77pLbB1xWhWuCXc3SWP+72lkgecYZIrPnJUICJDSa161nc3cKCiKXVJUG/o7doKTGvPaXTOK3Z7L98xW6rDDolLJE8+mM/pLauqaZThtuXsFnG5Or1Y9+HEEIIIYQQQgghzpbCGK6Umt26wSjLvA3M17HmA4k1PxXbg5zGRxKJNiTuz2qujTW5lQ57cbZIsVsIIU6BdjnZOMeNNgjVEr+coVzWdXs3K2Jd0c4OUFqvZ3uXKCOrFMXZILHmx8ukdj2XG7zOCMqtC94lXrl3uuBl0XQnMP08o59ZCvftz0ORbl53Hj0qJbIUj/2Y5nu7GOfojSZMrl7DWHm8CSGEEEIIIYQQ7wOrFZeLjMPWAwpnIvPWc9AkRs5itRS8T9r1SUETAinBN4cr7k0rrk9KrETKizNErhYKIcQp6rq9B9jegBha/GKGXs6JRY/kPaGuiKsloVqgXdYVvl0O8sZNnAHPxJpHiTV/HSZ5TGyBSFSOoDMSilYXtCp/56kOMSaWjadcnyxuvFJXtwYFlkiRwrH3+TdVxWoxZ3LlKjbPGV++csx7EEIIIYQQQgghxFmmlGKSOTKt2atbrLJMm8BB0zJwhkIahk6Y4sPNPq2fc2WUc+dwxb1pzbVxId314syQYrcQQrwj2jiy0SZpuNHN8l7M0NaRegNiUxPqCj8/xCuFedjtLR2N4h2TWPPXp1LExRpFJGLxuiApRdA5rSqI6myshF3UXQT5IDcMC0v2kkiqRBdhbmNEA3kMx35Ms90HuCynHI7YvH4DreUEVgghhBBCCCGEeB/1rCHTip26xSjFvA3M2nWsuTUoKbyeGK0UH13q8+W9OVdHBXcOKu7PVlwZFnK/izNBqiZCCPGOKaWwRQ9b9IjBE5Zz/HKGzgtSCMS66orhqyXaWHRRYrICJCpGvCOPY80tWVwStcXFlcSaP0WRsLFBJ/8opjwqTVBu/e+zU7gNMVH5wCBzGK2Z9LOXfw+KpBQuBlyKGNKxHtNqPqdZrdi8fpOsKBluXTrW7QshhBBCCCGEEOJ8sVpzpcjYb9ax5joy8x6/jjU3ko55YpzWfLzd54v7M64Mc+5OV+wuGrYHkvYo3j25Gi2EEGeINhY9nOCGE0JT4RczgrWYsk9sG0K9JCxn+OUcneWYvES7lxelhDgJXmdEZcjDgsaUOIk1f8TGBpNaEhq/XgCQMDS6JOiXx4OftvmqRStFL9OMS/dKM69aZdApYYnk0R/r8aSUmO3ukJc98l6PzRsfyEphIYQQQgghhBBCoJRiM3fkZh1rrrtY8/2mZegsuZEGoZOSO8NH232+frBga5CzM69xpruWJMS7JMVuIYQ4o0xWYrKSNA6EakG7mKKzHGLsOr3rFW29jzIGk/cwuXR7i9MXlaEyQ/JUARJrblK7nsud8DojKLfu6i7wKnvnc7mfp/WRlY9dkfsVT1Ai4JUmjx6VElmKx3pM1WyKbxsmV69R9If0JxvHun0hhBBCCCGEEEKcb/2HsearFp0rZq1n2nrKqOlLrPmJGeSOmxslKYGPkd1FjTWKfiblRvHuyKNPCCHOOKUNtj/C9kfEtqZdzlDLrts7tQ2+rgjVrIs+f7LbW97QidMiseboFLCxQREJyhJ09kSROyed4d/HWe2xRlM4zaTnXmnNTKs0KLBEihSOdUlDipH53i7lYIjLczZvfnCMWxdCCCGEEEIIIcRF4bTmSpmxV7coFJUOLHzAt4mhs5gzfD3mPNvs5zSha3zwIfFgusJOSnJ7dkb2iffLxb/6LIQQF4h2Ofk4J402CdUSv5yiXAZxSKhXxLqinR2gtEbnJSYvUUbeZIjT8T7GmqsUcbFGEYlYWl2QlCLonFYVRHW20xZqH2lDZKOX4YxmkL+8qzvRRZjbGNFAHsOxHtPiYJ8YAoOtbfrjDcrB8Fi3L4QQQgghhBBCiItDK8V2kTFvPfsNWKWYtYGDuos1zyTW/ERcHZU0bSSlxN2YuDddcW1c4uT+Fu+AFLuFEOIcUkpjewNsb0D0bdfVvZwRyx7Jt4S6Iq6WhGqBdllX+M5y6fYWJ+7ZWHODifWFizVXJGxs0MmvO7hLotJE5Wh0SVTnYJFJSsxXLbnVZFaz2c9fqas7oEhK4WLApYghHdshxRBYHOzTG02wLpOubiGEEEIIIYQQQrySgbNkWrNTt1jdxZoftp5eMvSMlljzE/DBZo82RiI5dw5WXcF7UmDOePOHuHik2C2EEOecto5stEkabhDqJWExR9uM1BsSmpq4WuLnh3ilMA+7va08/YsT9EysublQseY2NZjYklD49e1JmC6yXGfv+vBeWdVGfEyMeo7CGfr5qxXoW2XQKWGJ5NEf6zHN93chwWBzk+HWNllRHuv2hRBCCCGEEEIIcXFlRnO1zNhdx5ovVWDpAz5Ghs6ipeB9rJRSfLTV54v7c66OCm4fVNyf1lwZFXJfi1N1vq82CyGEeEQphS362KJPDJ6wnOOXM2JekEIg1lVXDF8t0caiix4mK0DLGw9xMp6ONbfnPNbcpBYTWyARdIZX7om53Nn5Sk5IiXntKZ3Gac1m/+Xx5QAR8EqTR49KiSzFYzsk37YsDw8ZbGxinGPz+s1j27YQQgghhBBCCCHeD1opLhUZ08ajAKcV09Zz0HjGmczxPm5Ga767/bjgfXdasTtvuDQ8f9f+xPklxW4hhLiAtLHo4QQ7GBObFX45IxiLKfvEtumK3stpF3+e5Zi8RLvz05Eqzo+nY83TOYw11ylgY4MiEpQl6OyJIndOOocnSYsmkkj084x+Zincq3Z1a1BgiRQpHOtPb763g9Ka3mSD8eWr2Eyek4QQQgghhBBCCPFmRlk3r3t31aCV47DxHDaeSSYd3sctt4aPt/p8+WDO9iDn/qzGGcWkJ9d2xOmQYrcQQlxg6ono8jQOhGpBu5iisxxiJNQVYVXR1iuUseuvLXilwb1CvKpzGmuuUuzmchOIGFpdkpQmqJxWF8RzOn8oxsSy8ZTOYrVi4xW7uhNdhLmNEQ3kMRzbMbV1TTWbMb50BesyJleuHdu2hRBCCCGEEEII8X4qjOZKmXN/1TDODAfrgvdYCt7HrpdbPtzq8fudJT4m9hYN1igG+atddxLibZzNq8tCCCGOndIG2x9h+yNiU9MuZ12Bu+yT2gZfV4Rqhq9maJdj8h7aufMVzSzOtBfFmmsVaM9QrLkidUXu5Ncd3CVRaSKOxpRE9Wpd0GfVou7mbA9yw7CwZPbVivYBRVIKFwMuRQzp2I5ptruDdRnlaMzGtRsYK29RhRBCCCGEEEII8fasVlwuHPeqxCSzHDSeaesZO4uS657HalJmNONu5F3rIzuzGqM15SsmCgrxpuRKohBCvId0lpNnOWm8SagW+MUM5TKIQ0K9ItYV7WwfpXUXcZ6XKCNvSsTbO+ux5jY1mNiSUHidEZQjYbrIcn3+o5dCTFQ+MMgcRmsm/Ve/Ta026JSwRPLoj+2Y6uWSerlgcvU6LssZX7p8bNsWQgghhBBCCCGEsFpzucy4XzWMnGXaeqZtYOSMFLyP2eVRQRMiKSV8TNyfrrg+KXHmfCYkivNBit1CCPEeU0pje0Nsb0j0DX4xQ1dzYtkj+ZawqgirJb5aoF2GzktMlku3t3g7ZzDW3KQWE1sgEZQ7Mpe7VdmFeczPVy1aKXqZZlw6rH612xUBjyaPHpUSWYrHdkyz3R1cUVAOBmzeuImSMQpCCCGEEEIIIYQ4Zk5rLhUZ91cNIyyHrWfWwlAK3sfu5kZJ7SORxDcHNXenK66PC4xc8xEnRB5ZQgghANA2IxtvUVz5gHzrCm4wxg3GZBuXsIMxpISfH9LsP8AvZiR/fJ2d4v3kdcbKDInKruPBLTbWuFif2jHoFMlChY0NSRla08PrbiZ3ZUZdvPoFOeFpfWTlI4PcYk1X7H7l71UaFFgiRQrH1n9fzWa09YrR5jZZ2WOwuXVMWxZCCCGEEEIIIYQ4KjNdwTszmpGzNCky94GUjm9UmwBQfLTVo59bro5zUkrcm9VEuZ/FCZHObiGEEEcopbFFH1v0icETlnP8YkrMC1IIxLrr9g6rJdq6dbd3Aa/YISrEk95VrLkirudyByKGVpckpQkqezSj+6KZ1R5rNIXTTHqOV11Mm4BWGWyMaCCP4ViOJ6XEfG+HvNcn6/XYuvGBrKQWQgghhBBCCCHEicqN5lLueFC3DLHMGo8CBk7KZcfJaM3H2wO+uD/j8qjg7uGKB/Oay4Ncrv+IYye/vUIIIV5IG4seTrCDMbFZ4ZczgrGYsk9sakJTEZZT/HKGyXJ0UaLt+Z9rLE7ZKcaaKxImNpjkH8WUR2WIWBrTI6qLOZu+9pE2RDZ6Gc5oBvmrd3UHFEkpXPS4FDEczyrc5fQQ37ZsXL1OORzRG0+OZbtCCCGEEEIIIYQQ36awhi1gd9WSnGHWBpQK9O3FvC70rjij+Wi7z1f35lwaZtyf1uxrxWY/f9eHJi4YKXYLIYR4KaUUJi8xeUkch67bezlDtwXEQKgrwmpFqFcoY9dfW/DKraNC0MWaR2XIwpJkFDbW2FijVejixN+STS06No/2FZRbF7xLvL7AizRSYr5qya0ms5rNfv5av5qtNuiUsCTyeDzjC2KMLPZ2KYcjbJ6zeeODY9muEEIIIYQQQgghxKvoWUPKYbfuUu3mbTe2rScF72PVc5bvbPX57e6CzT7sLmqs0YyKV2/EEOJlpNgthBDitWht0Ot53rGpaRdTlHGYok/yLX5VEaoZvpqhXYHJS7RzF2busThZURlWZnCsseYmeUxsgERUjqAzEopWF7Tq4szkfpGqjfiYGPUchTP081c/aYuAR5NHj0qJLMVjOablwT4xRgabWww2tij6g2PZrhBCCCGEEEIIIcSr6jtDJEENKcHCdwXvUgrex2pUOm5MSkjQxsjuvMZpRZlJiVIcD3kkCSGEeGM6y8mzS6TJFqFa4BczlMsgDgn1ilhXtLN9lDaYvEAXJUrLm0XxEscUa65SxMUaRSRi8TojKYXXOa0qSRe8yA2QYmJee0qncVqz2X+9VbOtMqDAEilSOJYJ6sF7Fgf79McTrMvYvH7zGLYqhBBCCCGEEEII8fqGzhLXE9tiSsx9QClFYSSx8jhtD3IaH0kkfEjcm9VcG2tyK/ezeHtS7BZCCPHWlNLY3hDbGxJ90xW9l3NS2SP5pos4Xy3x1QKdZeisxGQXv6NWvJ0u1tyShcVrxZorEjY26OSJGFpdkpQmKEeryws7l/tpKSX2li0A/dzRzyyFe/XbnoBWaWyMaCCP4ViOa7G/Byj6G5uMLl3GFcWxbFcIIYQQQgghhBDiTYwzS2Jd8cYzbz0KSy4F72N1fVJQ+0BK8M3hinvTFdcnBVZGYYq3JMVuIYQQx0rbjGy8hRttdAXuxRxll5CGhGZFXFX4+SFBaXReYsuezPYWLxSVfuVYc0XCxAaT/HoWd0FUhoil1SVBvz9ve1JK7C9bYkps9jNyp9kavN5c8oAiKYWLHpci5tFJ35vzTcPy8IDB1jbGOTau3XjrbQohhBBCCCGEEEK8rUnm1h3eiUhiti54Z1LwPkaK72z18WHOlVHOncOKe9Oaa+MCLU1R4i28P1d9hRBCnCqlNLYcYMsBMbSE5Ry/mBHzkuQ9sa4I9ZK6XmLLPibvgZY3NeI5vjXWPCMoh0ntei531xEelFsXvEu8er9mxj8sdIeYmPQdudVcHRVY83r3QasNOiUsiSL6Yzm2+d4uylj64w0mV65h3evFqgshhBBCCCGEEEKclI3MElO32H+KZ9p6xsripFHn2Gil+OhSny/uzbkyKvjmYMX92YorwwL1Hl2/E8dLit1CCCFOnDYOPdzADibEeoVfTgnWYco+YbUkVHPCaonpDSXeXLzQ82PNGwwtkIjKEXRGQtHqgla9h4+llDis1oXunqOwhqvjguw15x9FwKPJo0enhEvxrQ+tWa2o5jPGl69gnWNy5dpbb1MIIYQQQgghhBDiuCil2ModiW6822HyTBvPOHNYadI5Nk5rPt7u8+X9GVeGOXenK/YWDVuDF48tFOLbSLFbCCHEqVFKYYoSU5TE4GlnByhtMEVJu5jj54dEYzH9Idq9XuSyeD88L9Zcx4DXGUkpgs5pVEFS7+GK25Q4qFrakJiUjvwNC90ArTKgwBLJU+A4Tufmuzs4l1EOx2xcv4E278fsdCGEEEIIIYQQQpwfSim2c8eDBGRw0HgOW8/YWSl4H6PCGT7a7vPVgwVbg5ydeY01mnEpKYDi9UmxWwghxDuhjSWfbBMHI9rDPdCG5Ev8Yk473UdnGbYcoqy8VImnPBVrHowlKEerS6J6TwuoTxS6x6Ujd12hO3+DQncCWqWxMaKBPIa3Prx6uaCulmxcvY7Lc0bbl996m0IIIYQQQgghhBAnQSnFduF4sEqMM8th3RW8J5nFvG8pgidokDs+2Cj5QwIfI7uLGmsU/UyuB4vXI48YIYQQ75S2GfnWVWxd0Rzuomy2jjqf0xzuYooSWw5AZuOIpzycza1IxPexk/uhlDhctTQhMikzCme4Os4p3JvdJwFFUgoXPS5FDOktDy8x29khK0qKwYDNGzdR8vsshBBCCCGEEEKIM0wrxaUi437VkDLLYeM5bLqCt5aC97HZ7OfUvhuf50PiwXSFnZTk9j1taBFvRK40CiGEOBNMXlJcukG+cQnbG5BNtrC9IbFeUR/sEKoFxLcruomLJyn13he6p6uW2kfGpaNwmiujnMK9+QlBqw06JSyJIvq3PsTVfEbb1Ay3LpGXfQYbW2+9TSGEEEIIIYQQQoiT9rDgnRvNODMkEoeNJya5Rnmcro1LNnqOS4OczBnuTVf4EN/1YYlz5D2+OiyEEOKsUUphe0OKKzfJxlvYXp9sso3NS0I1pzncIdQrkDeUQqwL3Z7VutBdOsPlYUGZvXmhOwIejYsBnRIuvd2JRUqJ+d4uRW9AVhZs3vwAJaufhRBCCCGEEEIIcU4YrbhcZOTGMMkskcS0lYL3cftgs8egsFwZ5SiluDtdEd7yupR4f0ixWwghxJmjlMYNJxRXPsAOxtj+6P/P3p3HWXbXdf5/f79nv3utvXe6s7MEQQyEJbIJw64QWVQIAQREAUE2B/hlUIFBMQOIIwohBGSGMLIORB6CCgFCMiEQkUXFbKS3dHftVXc92++Pe6tSnd67qrr6Vr2eedSjTp177jnfW8vpk/O+n89XXnVYxvWVzE0rnp5QFndWe5jAqpptJWolqSqhp9B1NFIOVQiW1uIpNo5kJE+ZgjzVUmPpxvSUkjhWeXhYUbmqQqW6xD0CAAAAAACcXq41Ggk9+daq6rlK81yzcaKcwHvZGGO0Y7iogudqQyVUkuU6MNPmTQU4IYTdALACcuXKjvJxtP9wOOu4CgZGFI5ullsoyytX5VcHJGMUz0wqnp1SnqarPUzgtJttJWrEqcphr6K7Eqq4xKA7lxQbKzfLZCQF2dL+trI01dzkhKJyRa7va2jrtiXtDwAAAAAAYLV41mok9OU7VhXPVZznmolTAu9l5FqrnSNFRb6jDZVQ7STVxBwFTzg+d7UHAABrTa5csdEpxNf5UasozVF2dtTtT3L9sZ+z+i2HrRcoHN6otNVUZ2ZcxvWVtVtKGnPqTI3JCQtyo6JkeQ8X1r65dqJGJ1GlF3QPl4MlB92SlMooN0Z+lsjLMzlLfBNOfWpSeZapPDis0sCQgkJxyWMEAAAAAABYLb7TDbwPtDqqytV0nGg2kcquw7RtyyRwHe0cKuiOg3UNlwIdmG3LdYxqBX+1h4YzGGE3ACyj+aBbkry8GyCfSFx0/22O95zcHL7dye7jRJmj7OlkA/ijPXYi6+YDdyeMFAZblDZnFc9MyvqB0lZDabOudrspNyrJCSOJi0usUfV2qno7USXwFPmORkqByuHyXM7F1pHNcznKFWbJkvaVJonqU5Mq1gbk+r4Gt2xdljECAAAAAACspsCxGgk9HWzFKsvVbCfRnKSyR9y2XIqBp+1DBf18rKE4zTTR6Mh1jEqBt9pDwxmKvz4AWCa5ciXqhsxeLjkycvLFj99v+yPksSccWJ9kkn3/NukrEcCrV82+MgH8oqp3I6lYllMoKW/MyTRm5ZZrStsNJZ2WklZDThjJeove7Zcvev58a6F80YgWtRsiJseZqtFONdeOVQo8RYGj4ZKvcrQ8l3KZpERWQZbI5rm8PFvS/uYmxmWMVbE2oMrIqLwgXJZxAgAAAAAArLbQcTQcSGOtWLnnajZOZJSq5C298x66apGvTrV7fypJc43NtuVYq4jvMY6AsBsAlkkqKTPdoNvKyO99PqpTSH6PF1of/WtzAttoIbA+1j6Ptm6pr+doTz96eG7kF8rKwoKS+qxya2XDSGmrqaTTkskS2bAg63hHfF3HGdh9R1u0bI4UkC9e11tvDtvHoY/f9wqAE9Nsp5ptxyoGroqBo8Gir0q0fO9mjY0jGclTpiBPl/S7mXQ6as5Mqzw0ItfzNbBp87KNEwAAAAAA4EwQuY4GQ2m8FSuXo7k4lTVSwSWMXS6jlVDtJFOe50qyXAdmWtpci+Q5TGWJQxF2A8AySJUrNZJ7okH3Kbr//NnLfoTTEMAfus4c8vUhwfb9XtxRQ2/ryi8PKAsL6kxPKHUS5VmuZG5W2dSk5AdyC2UZZ/5C0xzyKTem+4VZtHLh+MdYb80h67Vo++UJ1nvrslwmiQnG17FmJ9VMO1bRd1UKXA0WfdUKyxd055JiY+VmmYykIEuXtL/Z8TFZ11OhWlNt4yY5Li2mAAAAAADA2lN0HeVBrol2t76lnnQLCCIC72WzdSBSJ82UKdfeqZbunWlpczWUYwm8cR/CbgBYoqwXdDu91uXzLczXixUL4E8gMT6kMtwNFA1tUtyYVXvsXrlepDRtKJ4cUzxxUE6hLK9Ukaxz35zeiz7n9/v6iOtPyqGh+uH7uu/xY653HeWOI9turaPfKsxrxalmWrEKvqtS6KpWWN6gW5JSGeXGyM8SeXkmZwkTDnRaTbXqc6qNbpTr+6pu2LiMIwUAAAAAADizlDxX2UJzx1xzSSpjuq3OsXTGGO0YKug/D2TaVAm1d7qp/bNtbayEsqd0zxZrEWE3ACxBrlxJr/jXUTfwdokkT5vFQfv8UlCoyN9WVjw9rvb4vfJcX/HctJKJMbUnx+SVa3KLFZmTvBhaiP/uF4jnRwjI71tvDgm75z/niyvGDwnDF3296JWlYaAsCGTbbX671pF2L+iOPEfl0FUt8jRYXP4q6dg6snkuR7nCLFnSvmbHxuT5gcJyRYObt8pa/scOAAAAAACsbRXfVda7e5gr0VycysgooN32snCs1TkjJf1s/6xGK6HunW5pbK6tkVJw0vd4sTYRdgPAKcqVaz4Wcueruld1RJhnjJFfG5ZXGVB74oCMtXILZcWzk0pmJpTUZ+RVBuVGxRPf5/zCwlzd+aHrl9FCsG6t0qggp91WGhB4ryftJNN0K1boWlUiV5XI1WDJX/bjZJISWQVZIpvn8vLslPfVqs+p02pqcNMW+WGo8tDw8g0UAAAAAADgDFbzvd7twlyZcs3GiYxc+QTey8JzrHaOFHXH/jmNlH0dmGnLdYwGC8FqDw1nAP7KAOAUzAfd2f3m6b5/S2+sLmMdhcObVDr7gfIHhuXXhhWMbJF1PXUmDqh1cK/STmu1h3mY+dnATZbJaTa6n9ttyRhlQbCEJtPoB50k03Sz0wu6PZUDT0PFlblwj40jGclTpiBPT/kMlue5ZsfHFEQFBcWiBrdsk2HuJAAAAAAAsI7UfFdFz1XFc+U7RjNxojg79cICHKrguTprqKhi4Gmg6GuqEWumFa/2sHAGoLIbAE5Bqm7Q7RF09wXreipsOkvpwIhaB/fKer6ydlOd6Qm1D+6TExXlVQZk3TOvNt9kmZxGQ2mBCu/1oJNkmmp25DvdoLsUeBouB6c2bfxx5JJiY+VmmYykIEtPeV/N2RklnY6qWzcqKJZUGhhctnECAAAAAAD0A2OMBn1Xea8j5HSeaLqTqOa7cikKWBaVyNOWWiTlUpLlGp9ry7NGkU/cuZ7x1wUAJylVrtR05+eeD7otsWNfcMKCitvOVWHLTnnlAYUjm+UPjCjrtNQ6sFud6QnlSwj8Vsp84H1IhbdPhfdaEy8KumuRp2LgaWSFgm5JSmWUGyM/T+VlmZxT/I3Ks0xzE+OKSmX5YaihLduWeaQAAAAAAAD9wRijocBT6Diq+K5cazQdJ0oy7uQtl+FSoJFyoKGir8h3tH+2rU5KBf16RtgNACchWxR0uzLyenN1o794paqKO85XtHGbvHJN0Ybu57Q+o9b+3YrnphfegXmmOCTw7nQka5X7PoH3GtENumN5i4Pu0soF3ZIUW0c2z+UoV5gnp7yfxvSUsjRVaXBYhWpNUbmyjKMEAAAAAADoL8YYDYeeQseq6ruy6gbe6Rl2v7Gfba6FqkaeRsuBPMfq3umWElrGr1uE3QBwgnLlSkx3LmVH9wXe6E/GWPm1YZV3XqhgaIP8yqDCDdvkhEUlMxNqHditpFlf7WEeYj7wVprKdtrKrUPgvQbEaTfodq3RQOSpELgaKQdaye5WmaREVl6Wyua5vPzU/mcgS1PNTU4oqlTl+h5V3QAAAAAAAJKsMRoJfQW9wNtImu4QeC8fo7OGiioFnjZUAsnk2j/TVsb3d10i7AaAE5Ar13zdo9ur5j7zZnfGqTCOq3Bks0o7HyB/YFj+wLCCkS2yrqfOxAG1xvYp7bRXe5gLTJbJbTZl0ozAew1Is1xTjViONaoVPEW+q9FyuKJBtyTFxpGM5ClTkKen/Lad+tSElEulgSGVh0bkR4VlHScAAAAAAEC/un/gLXUDbwLZ5WGN0Y6RoiLf1YZKqDjNdHC2fcZ17MTKI+wGgBOQSspMN+ien6fbUNW9pljPV2HTWSqddb78yoCCoY0KhjdIWar2wb1qTxxQlpx6q+flZNJUTrPRC7w7BN59Ks1yTdQ7cqzRQC/o3lBZ+aA7lxQbKzfLZCQFpzhPfRrHqk9NqVAbkOt5Gti8ZVnHCQAAAAAA0O+cQwJvR7lyAu9l5Fmrs4eLijxHo+VAjU6iiUZntYeF04ywGwCOI+3N0+0RdK8LTlhQcft5KmzZKa88oHBki/yBYWWdploHdqkzM6H8DJj/xS4E3qls3FHuOMo9Au9+MR90W9MNukPP1cbTEHRLUiqj3Bj5eSovy+Sc4m/N3OS4jLUq1gZUHd0gzw+WeaQAAAAAAAD9z7VGo6En31pVPVeZcs3ECRXIyyT0HO0YKqoQuBoqBZpuxppuxqs9LJxG7moPAADOZFlvnm5nUdBtCbrXBa9UlVssqzM1rvb4vXKjouLZaSVz00rrs3LLA3KLZRmzer8PNk2lZlNpIZLtdJT5viRPJuZi7kyWZrkm6x1ZIw0UPYWeo43V0xN0S1LHOrJ5Lke5wvzUuhXE7baaMzMqD4/I9X3VNm5e5lECAAAAAACsHa61Go18HWh2VJGrmTjRTJyq4jmren9xrSiHnrYORNqdS0maaaLelusYFX1i0PWAnzIAHMXioNuVWZirG+uHMVbBwIj8yoDaEwdkrCO3WFE8M6FkZlxJfUZ+dVBOuHrzFNs06QbeUSTbiZX5njJJlsD7jJRluaYaHRkj1Qq+QtfRxmok5zQF3ZmkVFZBlsjmubz81LoUzE2MyfE8FSo11TZukuNySQkAAAAAAHAsnrUaCX0daHUD7+k40WwslQm8l8VQMVAn6d7rirNcB2dacmuRAtdZ5ZFhpdHGHACOIO8F3ZLkqBt4ewTd65ZxXIUjm1XaeaH82pD8gREFI1tkHUft8f1qje1T1mmv2vhskshpNmXSRLYTK3ddZZ63auPBkWVZrslGR7l6QbdntbEWnragW5Ji40hG8pQpyNNTOqt1mk216nWVBoflBoGqoxuWfZwAAAAAAABrke90A2/fsSp7rjpZprkkpaX5MtlUDTVQ8DRSCuR7jvbPtJSkqz8lJVYWYTcA3E+uXPONfb1eNTexISTJeoEKm3eouP08+ZUBBcObFAxtkNJUrYN71Z48qCw9tbbQSx7bkQJvl9/cM0XeC7ozSQO9oHtTNZJrT9+baHJJsbFys0xGUpid2u/q7PhBeUGgqFzW4OYtspZ3xwIAAAAAAJyowLEaDjyFjlXZd9VOM9WTdLWHtUYYbRssqBy6Gq0EMsbo3pmW0lPsboj+QNgNAPeTSsqM5C6ap9tQ1Y1F3Kio4vbzVNi8Q165pnB0i/zakLJ2Q639u9WZmVCenf4LKJskclqt+wJvz1VGe+lVl+e5JpuxslwaLPgK5oNu5/SeV1IZ5cbIz1N5WXZKF4GtuTl1Wi2Vh0bkh5HKQyPLPk4AAAAAAIC1LnIdDQWeQmtV8hw1CbyXjTFGO4aLKnquNlRCJVmuAzNtZVTPr1ncAQeARVLlSgm6cYK8ck1uqaLO1Lja4/fKLZQUz04rmZtSWp+TVxmQUyid1jl35ufqTsNQJpZyrzeHd7I6FefrXZ7nmmzESrNcA0WvG3RXwtMedEtSxzqyeS5HucL85H8f8jzX7PiYgqigoFDQ4JZtzCcFAAAAAABwigquoyyQ8raU5VI96U45V2CO6SVzrdXOkaL+88CcNlRC7Z9pamKuo+FysNpDwwog7AaAnqw3T7fTa13u9wJv4FiMsQoGRuRXBtQe3y9jHbnFsjozE+pMjcnMTcuvDsoJC6dtTPOBt8JQmQi8V82ioLtW9BS6jjZWQnnu6W+sk0lKZRVkiWyeyzuF1k3N2RklcUe1jZsUFssq1gaWf6AAAAAAAADrSMlzlKtbcZwrVz1JZY0UOgTeSxW4jnYOFXTHwbqGSoEOzrblOka1gr/aQ8MyI+wGAN0XdFtJrozcXuANnCjjuApHt8irDas9tk/GcZWV2oqnJ9Qe3y8bRPKrg7Le6bmYsnGsvFd1mxnTDbxzya7SnOLrTp5rqtkLuiNPgeNoYzWUvwpBtyTFxpGM5ClTkKcnfXbLs0xzE+OKSmV5QaDBrdtWZJwAAAAAAADrTdlzlfU6bOd5otk4lWQUOsxEvFTFwNO2wYLuGW8oTjNNNDpyHaNS4K320LCMCLsBrHt5L+iW1Au5OTni1Dl+oMLmHUqac2od2CvrBUpbDXWmJ9Q6sEduoSS3MiDrHP+3rBmnipNMxcCVY0/+zRdOp7OwnEnKfU9ZJ5dNmf9nRfWC7jjtBd2eo0211Qu6c0mxsXKzTEZSmJ38Gx7qU5PK0lSloWEVqwOKSuVlHycAAAAAAMB6VfVd5fl8hXeiuTiRkauAwHvJBgq+Okm3y2GS5hqbbcuxVpFH9fxaQZ4DYF3LlStRNwzyem3LPebpxjJwo5JKZ52veGZSrbF9coJIcX1GyeyUkmZdXqkqt1SVsUe+YJ1uxpqod2SMNNmIVY08VSJX9iTnSHY6HWm+wltS7vvKOx0ZAu+V0Qu6O2mmWuQr8LoV3cEqBd2SlMooN0Z+lsjPMp3sSLI0VX1qUoVKTa7nU9UNAAAAAACwAmpBdyrC7l3rXLNxImNc+Ue5f4gTt6ESqpNkyvNc92a5Dsy0tLkWyePNBGsCYTeAdS2VlJlu0O3IKCDoxjLzKgNyy1V1JsdkJlx5hZLiuWklc1NKGrPyygNyCiWZRSH2RL2j6WasWsFTNfI01Yg11exopreuHLqHbH88Tru9sJzJKPN9WQLv5Zfnmm7dF3SHnqON1UCht7oXzR3ryOaZHOUK8pOv6p6bHJdyqTQ4qPLQsPwwWoFRAgAAAAAAYMB3lfUqvKfzRDOdRFXflUfgvWRbByJ10kyZcu2daunemZY2V0M5fG/7HmE3gHUrVa7UdFuXWxn5BN1YIcZYBYOj8qqDao/fK+O4cotldWYm1Zkak63PyKsMyglCjdU7mm0lGir6qkSeylG3hXkl8jTV6Gii0dFMK1at4KvkOwtV28dzaODtdwPvdkcmI/BeFnmumVaidpKpGnkKPasNlUDhKrdD6hirVFZBlsjmubw8O6nnJ3GsxvS0SgODcjxPg5u3rtBIAQAAAAAAYIzRUOApV7cb6XRnPvD25J7CNIe4jzFGO4YK+s8DmTZVQu2Zbmr/bFsbK+FJd9PEmYWwG8C6lPWCbqdX0T3fwhxYSdZxFY1ulV8bVvvgPhnHU1ZsKZ6eUGtsn2YyV+2gopFaSaXA1daBSMPlQO041b0zbbnWqBp5mmx0dHC2rWnHaqDoq+CfWKBq2+1FLc19ZYEv227LZCcXgOJwM61ErSRVNfIUeY5Gy6GiE/y5rIRMUtu6SoyVl2XylCnM0pM+y81NjMlYR4XagKqjG+X6/koMFwAAAAAAAD0LgXcuyZemOomm40Q1r1sUg1PnWKtzRkr62f5ZbSiHunemqbG5tkZKwUl10sSZhdp8AOtOrlyJkYwkR93KbpegG6eR44cqbNmp4rZz5VUG5A9v0rRfVbvdVrU1pqA5pW21QMPlQJIUeI7OGiro/I1lDZZ8jZZDba6Fso7R/pmW9k431YqPX6FtJNlWSzaOZeOOTJIqCwLltOpZktlmN+iuhJ5C19FIOVQhWL2gO5FRw3pKZBWlicI8UZSlCk+yhXncbqs5O6vy4JBcz1dtw6YVGjEAAAAAAAAWs8ZoOPQUOFZV35WVNB0nSnstznHqPMdq53BRBd/RSDnQXDvRZLOz2sPCEnB3G8C6kitX3Mu13V5VNy0usFrcQknB1nO13xtWHFS0YcdOVYdHNOynSsb2aG5iXPmiquuC7+ickZLOGS1poBBoUyXUxmoo5dK+6Zb2z7QUp8eu0j4s8E4JvJdirpWoEScqh72K7kqo4ioF3bmktnHUdDxZ5SpmHXl5pnLaUTGLT/otPbPjY3I9X1GlqoFNW+S4nC0BAAAAAABOF2uMRkNfobWq+N37MtOdZGFOb5y6gu9q+1BBRd/TYNHXVCPWTCte7WHhFHHXEsC6kStXom4g5DFPN84AcZrpzoMNxVFFZz9kg8LWlLbYukKbaW5iQnOTE2rMTKs8NKyoXFl4Xjl0Vd5Y0lQj1r7ppiLP0Vw70VSjo92TTZVCVwORL9c58u/2fOA939I89X1lfiDboaX5yai3U9U7iSq9oHu4HKxa0J1JalpXmbEKslRensrPM5XSzim9s7HdaKjdqKu2cbM8P1B1ZHS5hwwAAAAAAIDjsMZoJPS1v9VR1Xe6Lc07Sbfam7bbS1KNfG2udd84kKS5xufa8qxR5BOd9ht+YgDWjVRSZgi6cWZoJ6nuPFhXplznjpZUCT097IEXKnKkyX17ZB1XhWpNs+MHNbX/XjVmplUZHpUXBAv7qBU8VSNPE/WO7p1pqeQ7mmknmmrEqrcbKoeeBiJP9ghz+RhJttmUokiSlPoBgfdJqLdTzbVjlQNPke9ouOSrHK7OZVVsrFrGlVGuKI3lKleh1778VM5weZ5rdnxMXhgqKpU0uGWrDJX/AAAAAAAAq8Kx3Qrv/c22ar6rqU6imThRxSPwXqqRcqBOmnUL5bJM+2fb2lyz8h3uhfUTwm4A60KqXKnpti6fD7otQTdWSStOdcfBOVljdN5oWdXI08O211TovWtwZPsOVUc3aHz3PXJ9T+1GQzMHD2h8188VVasqDw7LOt0KYmOkoZKvgYKvsbm2nJmWyoGr6Vai6UasuVaiauSpEh1+8TsfeOdRJEdSGvQC73ZLhnZIR9XsBd2lwFUh6Abdlcg77ePIJbWMq8RauVmmME/k5LnKaUeuTv3n15qbU9xuaWjzVvlRQaXBoeUbNAAAAAAAAE6aa41GI18Hmh1VPFczcaLZOFXFc2QIvJdkSy1UJ0mV57n2Tbd173RLm2uhXIo/+gZhN4A1L+sF3U5vjm6v9xlYDfV2orvG6vJdq50jRdUiXw/bXlPoHdr+2g8jbTr3AjWmpzS26+fyw0iN6SnNTYyrNTen8uCQokp14WLWWmm0Emiw6OvgbEuO01EldDXZiDXV7GimFatW8FQO3EMugI0kp9lUGhXkqN0NvIOQwPsomp1UM+1YxcBVMXA1WFydoDuVUdO6yo1RmCbylCnI0lOam3uxPM81NzGmoFCUXyhoaMs2/ocJAAAAAADgDOBZq5HQ14FWRxW5mo4TzcZSmcB7iYy2DxYUp5k2VKS9003tn2lrUzWkcr5P8LYEAGtarlyJ6QV66lZ2uwTdWCWzrVh3HJxT6FmdM1LUUDHQw88aOCzoXqxQrWnbAy/S0LbtKg0NafisnQqioqYPHtD47nvUaTUP2d51jDbVIl24sayRcqDhkq+tAwVFvtVEvaM9U03NtRNpUZDdDbwbMmkqp92W8kxZECjnYu4QzU6qmVasgu+qFLgaKPiqFU5v0J1LahurhvVklKuYxvKVqZTGKi0x6Jakxsy0kjhWpTdPfKFaW4ZRAwAAAAAAYDn4Tjfw9h2riueqk2ea61Ul49Q51mrncEmR72pDJVScZjo42+b72icIuwGsWblyxb3kx+1Vc9POAqtlqtHRXWN1lUJPZ4+UNFwO9Yvba/Ld4/9TbKzVwMbN2v6gX1B1ZFS1jRs1tGW7lEvju3dpav8+pUlyyHN812rbYEEXbixruBRopBRqSy2S51gdnG1rz1RLzU563zEkOY3FgbcIvBdpxfNBt6Ny6KpW8DVQPL1BdyapaV11rCs/T1XIEvl5qmrSVpCnx33+cfefZapPjCsqV+QGgQa3bFv6oAEAAAAAALCsAsdqJPAUOFZlz1U7zVRPln5vaL3zHKudwwVFnqPRcqBGJ9FEo7Paw8IJIPcBsCblypWoWwXpLZqn21DVjVUwPtfW7qmmagVP2wcLGi2HumhLVdae3O+j6/vacPa5qsyOamzXz+WFoZoz05odH1O7frdKg0MqVGuHtC0KPEc7hguqtwPtm27Kc6zacaqJRkf3zrQUeo4GC54Cz1kIvNNCQU57vqV5INtur+uW5u1e0B15jsqhp2rkafA0B92JjFq2e9kWpYlcZYqyRFGWLNtZrTE1qSzLVBocUmlgSGGxtEx7BgAAAAAAwHIKXUdDksZbsXLP0WycyihV8RgdJHF8kedqx1BRd47VNVQKNDbXZu7uPkDYDWBNSiVlhqAbq2//TEv7plsaLvvaWitoUy3UAzdVljSPTlSuaOsDHqyZg/s1sXePwlJJsxPjmhk7qMb0tCojIwoKxUOeUwwcnTta0mwz1t7plgLPUTNONVHvaO90SwXf0WDRl+fY++bwJvBWO8k03YoVulaVyFUlcjVU8k/b8bttyx3F1pGbZQryRG6eq5TF8vJs2Y6TJonqU5MqVmtyPV+Dm7cu274BAAAAAACw/AquozyQxrtNGjUXpzKmux6nrhx62joQaXcuxWmmiXpbju/Id8gXzlSE3QDWnFS5UtNtXT4fdFuCbqyCvVNNHZhta0M10KZKpLOGCjpvQ3lZ9m2MUXV0o0qDQxrfvUvWcVSoVDVz8GA3AC+WVB4ekesdWoFcjjydH3qabsbaN9VU5FnNtVNNNbrzeZcCV7XIl9M8QoV3qy2j9RN4d5JM082OAteqEnkqB56GisFpO37aq+bOjFGQJvKVyc8yFbPOss9DU5+ckGRUHBhUZWRUXhgu8xEAAAAAAACw3Iqeo0y51JbyXKonqYykiMB7SYaKgTpJ1u0gm+VqZctXdILlR9gNYE3JekG305uj2+t9Bk6nPM+1e6qp8bmOttQijZQDnTNa0s7h4vGffJIc19PojrNVGem1Ng8CNWdnNDM2prF77lZpYFDF2oDMonY7xki1gqdK6Gmi0db+mbZKvqOZdqKpRqy5dkOV0FM1y6VS8X4V3q118RfVSTJNNTvyHatq6KkUeBouBzpdU5h3jFXbuLLKVUhjOcpVTGOFyzA39/0lnY4a01MqDQ3L8TwNbNqy7McAAAAAAADAyih7ruYbMmZ5rrkklTFGoUP77aXYVA27gXcu3Vtvr/ZwcAyE3QDWjFy5EqPuvMPqBt7uuojlcCbJ8lz3TDQ03Yy1fbCgwaKvCzaWtW2wsKLHDYslbbnggZodH9PEnl0KCiXVJyc0Nzmh5uyMykMjCkuHzsFsrTRcCjRYCHRwri1npqVS4GqmGWu6mWiulajSSlQcqi4KvMM1H3jHi4LuWuSpGHoaOU1BdyapbV0lxspb3LY87chdoar6uYlxGcdVsTqg2oZNh3UDAAAAAAAAwJmt4rvdCm9JUqK5OJGRq4DAewmMtg8WFKeZOiZXs52s9oBwFITdANaEXLnm/6lx56u6V3VEWI+yLNdd43XVO4l2DBVUK/h60OaqNlZPT0toY4wqwyMq1gY0uW+PrOMoqlQ1M3ZAk/fuVVAoqDI8Ktc/dM5pa6UNlUBDRV8HZlpyHaNK5GmyEWuq0dZMe0y1kQGFkrJw0Rzep+VVnV5xmmmqGcvrBd2FwNNI6fQE3UmvbXkuoyhN5CpTmKUqZPGKfa87rZaac7Oqjm6U63mqbdi0QkcCAAAAAADASqr5nrJcknJlyjXbC7x9Au9TZozRjuGi6vtn5coo8PhenokIu4GjMUaJcjmSzJqMdNaO+aA7M5K3aJ5ufm44nZIs010H62olmXYOl1SLPF20tarh0umb43me47oa3naWKsMjGtv1c7m+p9bcnGbHD2rsnrtVqA2oNDgkaw+9OHMdo80DkYbLge6dbsmxRtXQ02SzrYkDkwpqZZWSTF4xWpOBd5LmmmrEcq3RQOQpClyNlgPZFb6GzSV1jKOOdeTkmcIslpNLpawjP1/Z+YDmxsfkeb6ickUDm7fIOsznBAAAAAAA0K8G/Ptams8o0UycqGpceSt9g2sNc63VloFIrXaq0aJ//CfgtCPsBhaxxsiRpDRXLik13ZayTp7LivD0TJWKoBurK04z3XmwrjjLdPZIUdXI00O31VQrrO7Fjx8VtPn8B2huckLju+5RUCiqPtVtbd6anVF5eERhqSxzv7Jl37XaPlTQaKUberuOUTVNNVlvaDqTvDhRsVKSu4YC7zTLNdnoyLFGtYKnyHe1oRyueNCdSWpaV5mxCtJUnlL5eaZS2tFK/y9Iu1FXu9nQwMbN8sNQleHRFT4iAAAAAAAAVpIxRoPBfS3Np/JEM51EVd+VS+B9yhzTvWcYeBSKnIkIu4H78XJJcSY53dA0lZQYyeaSo1x2TcQ6a0eqXKnpzs89H3TzM8Lp1E5S3Xmwrky5zh0tqRJ6etj2msrhmdNIvzQwqEK1qql798k6jsJyRXPjY5raf6/86SlVRkblBYe3Wg89p9ump51q33RTvpOolcaaSa2mJ2cVlAuKXE9esnJttk+HNMs1Ue/IWqOB+aC7svJBd2ysWsaVUa5CGstRrkKaKMyTFf9+5nmu2bEx+WGksFTS4OatMvwPDwAAAAAAQN8zxmg48HQwl6q+NNVJNB0nqnqeXNvPd/GAIyPsBu7HqFvOnSeZ3NzIGMnmuRIjJeou09r8zJAtCrpdGXm9ubqB06UVp7rj4JysMTpvtKxq1A26C/6Z98+rtY4GN29VeWhY47vuket5ihpVzR48oLFd96hQqao8NHzENtbFwNG5oyXNNGPtm24pSBLV/UBzjZZmg1CesSrkaV9eLC8E3cZosOAp9FY+6M4ltYyrxFq5WaYwT+TkucppR27vXbcrrTU3q7jT1tCW7QqioooDg6fluAAAAAAAAFh5xhgNh54OtnLVfFdT7W7gXfNdOab/7uEBx3Lm3Y0HziC+jNI8V2yMTJ4r1X2tzd2cKu/VlKv7BgQjydF9gTdwutTbie4aq8t3rXaOFFWLfD1se03hGd7KxgtCbTz3fDVmpjV2z8/lRwU1pic1NzGh1tysSkPDKlSqh7U2l6RK5KkceppqxNo721YQhmpmsVrW01SayW/HKgWubJ+E3mmWa7LekTXSQNFT6DnaWA3lrGDQncqoaV3lxihME3nKFGSpitnpq47P81xzE+MKCyX5UajBrduO+PMGAAAAAABA/7LGaCT0daDZUdV3uxXevZbmBN5YSwi7geNwZLqV3bqvyjs1Umy6c3lT5X365cqV9JbdXjX3mdMwGuvBbCvWXWN1FXxHO4eLGigGeui2mny3f9pAFypVbXvggzV9YL8mHUdRuaKZsYOaOXhAzelpVUZG5UfRYc8zvWC4Gnk62Ii1N3EUKlUr9NWQ0Vi9qYLnqhg4Z3SAmmW5phodGSPVCr5C19HGarRiQXcuqWOsOsaVVaZCmshRrmIaK8jTlTnoUTSmp5TEsQY2bVFUrqpQqZ7W4wMAAAAAAOD0WAi8W/OBd7wwh7c9g+/dASeDsBs4AaYXpjq9Km+bd+eKTnpV3k6ey4rQ+3RJJWWmO7/6/DzdfO9xukw1OrpnoqFS6GnHUEFDpUC/sLUqdyXLgVeIsVa1jZtUGhzS+J5dso6jQrWmmYP7Nb5nl6JSWeXhETnu4ZcL1kobSp6qmdGexGqilcorBWq5Vs3ZhppxqoLvqujbbkJ+BsmyXJONjnJJAwVfoWe1sbZyFd2ZpJZ1lRorP0vl56m8PFOpN0/36ZSlqeYmJxSVK3J9X0Nbt5/W4wMAAAAAAOD0cux9gXdtvsI7TlT1CLyxNhB2AyehG6x225nLdCu+U0mJkWwuOaK1+UpLe/N0E3RjNYzPtbV7qqlawdP2wYJGy6Eu2lLtm7bdR+P6vjbsPEeVkVGN3XO3/DBUY2Zas+Njav38LpUGh1SsDRyxUju0ubYHucpBoPFWqpleeNycbajeidXoGJUCV5F3ZoTeeZZrshErkzTYG+umarRi840nMmrZ7uVWlCZylSnKEkVZsipnrvrUpPIsU3lwWKWBIQWFwiqMAgAAAAAAAKeTa41GQk8HmrmqnqvpONFML/A+k7szAieCsBs4SUZGrnpV3otamydGStRdprX5ysh61fTOoqCbNxfgdNk/09K+6ZaGy7621graVAv1wE2VNXUxGJXK2vqAB2t27KDG9+xSWCxpbmJCs+Njas5MqzI8qqBYPOx5Xp6pZmI5RV/lzGjcdeTIKGq31WjHmmndF3oHqzineZ7nmmzGyvJcg0VfgWe1qRLJdZb/Z5hLahtHsXXkZpmCPJGb5yplsbw8W/bjnYg0SVSfmlSxNiDX9zW4ZeuqjAMAAAAAAACnn2etRiNf+5sdVTQfeKeqeGf2dITA8RB2A6fIyMiXlPZam5telXfaa23u5lR5L6eFoFuSK7MwVzdwOuydaurAbFsbqoE2VSKdNVTQeRvKqz2sFWGMUWVkVMWBAU3s3SPruCpUuvN5T+zbo7BYUnl4RK7nHfI8P89UTjuS42tDYDUbRGrWHbm2qUKQaa6VaKoZy+ukKgXuaZ/fPM+7Fd1plmug6PWC7lCuu/znkbRXzZ0ZoyBN5CuTn2UqZh2tZrP7uYlxGWNVrA2qMjIqLwhXcTQAAAAAAAA43TxrNRL6OtjqqNoLvGcTqewSeKN/EXYDS+So2848WVTlnRopNt3qb6q8ly7vBd1St6rbySWP7ylOgzzPtXuqqfG5jrbUIo2UA50zWtLO4cOrm9cax/U0sn2HKsPd1uZuEKg5O6vZsTGN3XO3irUBlQYGZex98a2fZyqlHc05vkqSvEqoLHRUn23KtVZxkmm2nWiy0VHgWhUDV97pmOs8zzXVC7prRU+B62hjJZS3AoF7x1i1jSurXIXenNzFNFaYp8t+rJORdDpqzkyrPNR9o8LAps2rOh4AAAAAAACsjsCxGu4F3mW5mu0kmpNU9ogM0Z/4zQWWgZGRp15rc2Nk8/vmls56660IvU9FrlxJb9nrVXN7x3wGsDyyPNc9Ew1NN2NtHyxosOjrgo1lbRtcX3McB4WCtlz4QM1OjGl89y4FxaLqkxOqT02qOTuj8tCIovJ9Ve5BnklprDnHk9JEbd/T4IBV2upoqtGR51q1k1RzrUQT9Y5Cz6oUeHJWat7zPNdUM1aS5apFngLH0aZquOyV5ZmktnWVGCtvcdvytCNX+bIe61TMjo/Jup4K1ZpqGzfJcTmTAgAAAAAArFehYzUceBprxZLnaiZOlCtRwXHkrtR9OmCFEHYDy8jKKMilRLlkuhXfqaTESDaXHNHa/GSlkjLTDbrn5+nmTQNYaVmW667xuuqdRDuGCqoVfD1oc1Ubq+u37XN5cFjF6oAm9+2V47iKKlXNHjyoqf37uhXDwyPygkCSFOSp8lTSfODtuPJDX5t9R3PtRFO9yu5mnGmunWi83lbkOioGruxyXkz3gu447QXdnqNNteUPupNe2/JcRlGayFWmMEtVyOIz4mzVaTXVqs+pNrpRbhCoumHjag8JAAAAAAAAqyxyHQ2F0lgrVlmu6kmiyTSTZ41Cx1FgDa3N0RcIu4GjqLcT7ZpoaKjkq+Cf3J+KK9Ot8l7U2jwxUqLuMq3NT8x8dbxL0I3TKMky3XWwrlaSaedwSbXI00VbqxouBas9tFVnHUdDW7epPDys8V33yPU8tet1zYwd0Piun6tQq6k0MCTrON223fcLvCWpHEpF39VcO9ZkI1bkWjU6meqdRM2krYLvqugvwxxBvaC7k2aqRb4Cz9HGaqhgGYPuXFLHOOpYR06eKcxiOblUyjry82zZjnOqsixT3Gpqdnxcnh8oqlQ0uGmLrHVWe2gAAAAAAAA4AxRcR0OBNNmJFTqe2lmuVpJqNk5UN0ahYxU6Vg6hN85g6zbsPnDggG655Rbdcsst+t73vqfvfe97Gh8flyS95CUv0bXXXnvK+240Gnrwgx+su+66S5J01lln6e67716GUWOlOdYo8Kw21SIFntVEPdZ4vaOC72io6KtW8E+41a6RkS8p7bU2N70q7/nW5m5OlfexZL2g2+m1Lvd7gTewkuI0050H64qzTGePFFWNPD10W021gr/aQzuj+GGkTeddoPrUpMZ2/Vx+VFB9elL1iQm1ZmdVGhpWVK4o1KLAO0vVto6U5QpspkrkqRR4mmrGsjZW5FvVO6mavY+i76rgW+lULqTzXDOtbtBdjXyFnqMNlUCht3xBdyapaT1lxihIU3lKF+YsPw2zkB95TGmqTqupTrP7kbRbytV9k0JtwyZ5Qajy8MgqjQ4AAAAAAABnoqLnKHKt6kmquThVYK3SPFMzydRKUzWTVL61Cl0r367WnS/g6NZt2L1hw4YV2/eVV165EHSjvxhj9EtnDeru8boi39GGSqaZZqLxeke7p5raM9XUQME/qWpvR9125smiKu/USLHpzuVNlffhcnUr4Y0kR93KbofvEVZYO0l158G6MuU6d7SkSujpYdtrKofMbXw0xdqAokpFU/feK+s6ikoVzY4f1PSB/WpMT6syMqowDHstzaU8kzrWlckS+Xkma6XBoqdK5Gq6EcuxsSLPUb2daK4Tq94xKgWuIu8kQu8810wrUSvJVI08RZ7VhnKgyF++aubYWLWMK6NchTSWo1yFNFGYJ6f1TJUmieJF4XbcaUuSHMeTH4UqVKvyw0iu78sYq+HtO2g9BQAAAAAAgMNYY1T2XJU9V60001ycyDWZisrVSjO1kkzTnURur9o7cKws95lwhli3Yfdi27dv14UXXqivfe1rS97Xbbfdpg984AMKw1Ce52l2dnYZRojTKfIdPWBTReeNlrR/tq09k01VI0+dNNNEvX1K1d5GRp664XZsjGx+X4vurLfeitBb6gbdce/b4ObdlvCcqLDSWnGqOw7OyRqj80bLqkbdoPtkpzBYj6x1NLh5y0Jrc8dzVWjWNHPwgMZ336NCpaLS4HA3rLaSMqltXakXeEuSa42GSr6qoaeJRkeONSpmrurtWDOtWI2OUSn0TqgFeTfoTlUJPUWeo5FyqChYnqA7l9QyrhJr5WaZwjyRk+cqpx25ypflGMeSJok6zcZ9ldtxR5LkuJ78KFKhNiA/iuR63Tdo+GGksFxRVCorLFcW1gMAAAAAAABH021d7ivJ8l61d6LIcRRnmZppqnrS/ehu58g9wW64wEpZt3fxr7zySl188cW6+OKLtWHDBt19993auXPnkvaZpqle8YpXKE1T/bf/9t/0sY99jLC7j7mO1ZZapC21SDOtWHsmmwvV3rOtRONzJ1/tbWUU5FKiXDLdiu9UUmIkm0uO1ndr81y5EnUDJa/Xttxjnm6ssHo70V1jdfmu1c6RomqRr4dtryn0mNf4ZHh+oI3nnKfGzLTGd/1cXhipMT2luYlxtebmVBocUjgwvFDhff/AW5Jc12i0EqiWeJqox3KsURRkqrcSTTU68hyrcuDKO0roPdtK1IzTXkV3N+guLlPQncqoaV3lxihME3nKFGSpilm8YmeoJI7VaTYWqreTOJYkuZ4vP4pUGhyUHxbkeN1/e4KoqLBc7raQL5XkuITbAAAAAAAAODWuNar6riqeo0av2tuzVqmbq512g+9mmsm3RqHjyLeGroJYFes27P6jP/qjZd/nBz/4QX3/+9/XBRdcoLe+9a362Mc+tuzHwOqohJ4qm7xDqr0r4eHV3pHnaLh0/GpvV6Zb5b2otXlipETd5fXa2jyVlJlu0D0/T/d6/D7g9JltxbprrK6C72jncFEDxUAP3VaTfwIVxDiyQqWq6AEP1vTBA5p0HEXlsmbHxzQzdlDuzLT8jVsVFkpSZtTutTT3FgXekuS7VhurgVqxq4l6LM9adZJMc+1EE42OAteqFHhynfvOD3OtRI1OosoyB925pI5x1DGOrDIV0kSOchXTWEGeLnn/iyWdTm/O7W71dpokkrpvJAgKRZWigvwwkuN2/5UIikVFpW6wHZbKctx1e1kHAAAAAACAFWKMUdF1VHQdddJMc73K7oJr1c5yNZNUM3Eia4wixyqkxTlOM+6KLpOf//znuvLKKyVJf/3Xfy3f91d5RFgJy1ntbWTkS0p7rc1Nr8p7vrW5m6+vKu/5tu7uooru9fT6cfpNNTq6Z6KhUuhpx1BBQ6VAv7C1Ktch6F4qY61qGzaqNDikiT27ZB1HhWq3tXnjnjtlBkflD44o9wK1jCvp8MBbkkLP0eaao3o71WS9I9+1aiep5lqJxuttRZ5VMfDUijPVO4kqgdd701GgUrj0oDuT1LKuUmPlZ6n8PJWXZyr15uleijzPF8LtuNkNuNO0G557QaCoVJYXRvKjSNZxZIxVUFhUuV0syTp0HwAAAAAAAMDp4ztWg45VzXdVT1LNxqkCa5VkmVpppkaaqpGk8h2ryLHyLPdasfIIu5fJ7/7u76per+vFL36xHv/4x6/2cHAanEy191DJV63gyT3Cid1Rt515sqjKOzVS3Ft2tfarm7Ne0O30KrrnK7uBlTI+19buqaZqBU/bBwsaLYe6aEtVlvlllpXreRrdcbYqw6Ma23W3vCBQc2ZGM+MH1Wg25AyOyC3X1LKulMfyjhIgFwNHBT/SXCvRZLNb2d2Mu5XerXpbeS6VA09R0O2uUY6WfnkTq1t5LklRmshVpihLFGXJKZ2duuF2e2G+7U6rqSxNZYyRF4SKKlX5YSQvjGQdK2OtwmJJYamiqFxWUCzKWsJtAAAAAAAArD5rjMqeq5LrqJ1mmk1SeUmmonK10kzNJNNUmsg1RpFrFVhLi3OsGMLuZXDdddfp7//+7zUwMKCrrrpqWfe9e/fuYz6+b9++ZT0eTt79q733Th1e7b1nqqm9vWrvwaKvYnDon56RkSd1W5sbI5t3A+DESHFvvdXaDL3z3us0khx1K7vdNfg6cebYP9PSvumWhsu+ttYK2lQL9cBNFS62VlBYKmnLhQ/S7PhBTezepaBY0tzkuCYnx5Q0G3IGhtUKIpkslnuUwNsYqRy5KgauZluxJhuxIteq0cmUSyoEjoaKvirR0uapziW1jaPYOnKzTEGeyM1zlbL4iNXnR91PnitutxbC7bjVVJZlvXA7UqFSkx9F8sJQ1lpZ6ygslbuV26WKgkJBhne+AgAAAAAA4AxmjFHoOgpdR0nWbXHuxqkix1Gcdef1notT1ZUqcKwixznmFLDAqSDsXqLJyUm9/vWvlyS9973v1cjIyLLuf9u2bcu6P6ysSuipstHTuSOHV3tPNjoan+scs9rbyijIpUS5kkWtzRMj2VxytLZam+fKFfdejtur5uakhJW0d6qpA7NtbagG2lSJdNZQQedtKK/2sNYFY4wqw6Mq1gY1uXe3rOMo6rR1YGZOjbH9ykpVZeWKisqOGnhLkrVSteCpFHqabsayNlae5xoo+qoWlhZ0pzJqWVeZMQrSRL4y+VmmYtbR8WLnPM8Vt+6r2u40m8rzXNZYeWGoYm1AflSQF4Qy1sg6rqJSWWG5W7ntRwXecAEAAAAAAIC+5Vqrmm9V9Vw1kkyzSSLPWqVut8V5K83UTDP5tjuvt28N98OwLMiVlujNb36z9u/fr0c96lF6xStesdrDwRlicbX3bCvWnqmm9k07Gi0Hh1V71wq+hu5X7e3KdKu8F7U2T4yUqLvsqP+rvHPlStStopyfn9vP+/914cyU57l2TzU1PtfRllqkkXKgc0ZL2jlcXO2hrTuO62p4+w6Vh0c1tuvncn1fE+1EU3NzasUdJcWyyp4r/zjpsmOlwaKnWuQpy3O5ztLOHR1j1TaurHIV0m6FeSGNFebpEbfPs2wh1O60mopbrW64bR15Yajy4LC8KOqG20ZyXK8713ap25rcjyIu5gEAAAAAALDmGGNU9BwVvW6L87kklZukKrq5WmmuZppqJk7kGKPQ6QbflvtkWALC7iX41re+pWuuuUau6+qv//qvV+Sm9a5du475+L59+/SIRzxi2Y+L5VMOPV240dN5o2XdO9PS3qlDq70n5jqaOEK1t5GRLynttTY3ea5M3SrvTJKb93eVdyopMwTdWHlZnuueiYamm7G2DxY0WPR1wcaytg0WVnto61pQKGjLBQ/Q3MS4nN33yAsjTdcbmq3PacL1VPUdRWF43P1YqyWdCzNJbesqMVbe4rblaeeQCvMsTRW3Wuq0Gr225C3lkqx15EeRykPD8qOCXD/ohtuer6hU7gbc5bL8MDrlMQIAAAAAAAD9KHCsAseq5ruqx6nmklShYxVn3UrvRpqqkXRbnIeOlce0fjgFhN2nqN1u65WvfKXyPNfv//7v6yEPeciKHGfr1q0rsl+cfo41p1Tt7ch0K7tlunNb57lSI8W9im9X/RcSp+q+BndR0N3PwT3OXFmW667xuuqdRDuGCqoVfD1oc1Ubq8cPUXF6lAaHVKjVVN67V2ZsXH6aaarV1mQ7VqfRULFclustrT350SS9tuW5jKI0katMYZaqkMXK01StZnMh3E7a7W647bgKokjRSFV+GMoNAkmS6we9yu2yonJZXsDvGAAAAAAAACBJjjGq+K7KnqNWr9rbSzIVlauVzLc5T+Rao8hxFNDiHCeBsPsUvfvd79Z//Md/aNu2bfqjP/qj1R4O+sziau/9My3t6VV7x1mmifqh1d6DRV8DRU+etd3W5sbI5lKmbmvzWJKT57Lqj9A76wXdTm+Obq/3GVhuSZbproN1tZJMO4dLqkWeLtpa1XApWO2h4X6sdTS8dZsqQ8O6Y/duOa6j2URqNhtKJsYVhqGickV2md7ZmUvqGEcd68jJM4VZLJOm8uamlTRmNdZsKul0JHXbj/thpEK1Jj8syPW7wbsXRIrKZYXlsqJSRa7vL8vYAAAAAAAAgLXKGKPIdRS5juIs01ycyjWpCq5VJ8vVTFLNxonqRgqto9C1cgi9cRyE3afoT//0TyVJv/Irv6Ivf/nLR9ymXq8vfL7uuuskSaOjo3riE594egaJM55jjTbXIm1eVO0deo42lEPNtmKN1zvaO93UvulDq71T3dfaPFW3tbnNJUdndmvzvBfQG0mOuoG3ewaPF/0rTjPdebCuOMt09khR1cjTQ7fVVCsQSJ7J/CjSBeeeq93jE3IOHJDjumoHgdoTY4pbBxSVyvILRS3l+jaT1LSekiyT06grb86p2ajLmZ1SnGdyPU9eGKlUG5QXRQtV5X5UUFQqK+xVb69UtTkAAAAAAACwHnjWaiCwqvquGkmquTiVb63SPFMzydTKUjXb3XXdFudUe+PICLtPUadX8fXxj39cH//4x4+57djYmH7jN35DkvS4xz2OsBtHdKRq7/Ixqr1rRVfWWpleO/PFVd6Ozrwq71y5kt6yO1/VvaojwlrVTlLdebCuTLnOHS2pEnp62PaayiG/cf3AGqOtQ4Pyo6LGJyZ0YHpa6cYtMtNjqs9Mq91oqFCtnnQldZokaiWpGrmUxXNymnWlaaJiGqvgWgWjG+RHBTlu9wwaFAq9luTdcNtxuWQCAAAAAAAAlps1RiXPVclz1U4zzcaJXJupmOdqp93gezpO5BijqDcHuCX0xiLcuQXOMPev9t471VLkNY9Q7S3VCr5qRV9+6MjkuTJ1q7wzSW5+5lR5zwfdmZG8RfN0n2mBPPpfK051x8E5WWN03mhZ1agbdBd8/rnrJ9YYjRYCGTuksFTWvePjalujUthUa2ZSM+Nj3XmzyxVZxzniPpI4VtrpKOl01Ol01HF9pa4nP89UMlJYLqvmGvnWyBiroFBcmG87LJWPul8AAAAAAAAAKyNwrALHV5rlmktSzcWJQqfb8ryZpqqnqepJqsCxihxHriVjAGH3Kcvz/Ljb7NixQz//+c911lln6e677175QWHNKYeeLtjo6dzR0jGrvUPPaqAcqFh05ckoNVLcq/h2tfqhciqCbqy8ejvRXWN1+a7VzpGiapGvh22vKfQILfuRNUYjoa9c0paNGzQ2M6f6zJSKvquk2VBzZkZx64DCcllBoaQ0iZV02kraHSVxR1mWdffjB8qrgwo8TwUj+VYK81wDUaBiL9gOSyVZy+8JAAAAAAAAcCZwrFHVd1XxHDXT7tzenrXK8lyttBt8t9JMnjUKHUcBLc7XNcJuoA+cSLX3/qmmNCXVyoFKBU+BZw9pbW61OgFzqlyp6bYunw+6z5SKc6wds61Yd43VVfAd7RguarAY6KHbavJdu9pDwxLMB94Hmx0NlUtyg0Ct+pz86Ql5Yajm7KwaMzNqzswol2QkuZ6vICrICQJlfqTYceUbqeJ7KkSRRiolDZbLMpbfDQAAAAAAAOBMZoxRwXVUcLvV3bNxKjdJVXCt2lmuVpJqNk5UN0ah053b2yH0XnfWbdj9ne98R7fffvvC12NjYwvLt99+u6699tpDtr/iiitO08iAY7t/tffeRdXek/WOxuc6mpzrKIoclSNfUegosUY2lxyd3tbmWS/odubn6O59BpbTVKOjeyYaKoWedgwVNFQK9Atbq3Idwsy1wOkF3gdaHcn3JJWVFwqy01Oy1iooFBS3WvJ8X44XyFgpt46SsCDXDzUQBqpEkULP0VDgySXkBgAAAAAAAPqOZ60GA6ua76qepJqLUwXWKs2783q30lTNJJVvrSLXyuM+4LqxbsPuq6++Wp/4xCeO+NiNN96oG2+88ZB1hN040yyu9p5rJ9oz2dQ+r6nRRdXe4zMtOXWjYuApKrjyXCsnz+Vo5au8c+VKTLfS0lE38HYJurHMxufa2j3VVK3gaftgQaPlUBdtqcoyV8ua4tj7Au+q72q6I+W1IQ1UK6pPTCgNO3KDQH5UkIJQLeN0q7k9V561qviOqp5LKyMAAAAAAACgz1ljVPZclT1XrTTTXJzINZmK6rY4byWZpjqJ3F61d+BYWe4LrmnrNuwG1pJS4OqCjWWdO1rSgdmW9kwumtu70dFUJ9FsO1bgOSpEriLfkaeVq7LOlSvpLbvzVd0rciSsZ/tnWto33dJw2dfWWkGbaqEeuKlCoLlGudZodCHwdjTVSdQwnmqbtsgaozzPNZd05+oJnO4Fr2uMhkJfIVX+AAAAAAAAwJrTbV3uK8nyXrV3osjptjxvpqnqSfeju50jlyKpNcnkeZ6v9iBw6nbv3q1t27ZJknbt2qWtW7eu8ohwplio9p5uKk4zTbcTTXcSNZJE1rGKAleR66jo2mWv8k567cvn25YH+erMF461a+9UUwdm29pQDbSpEumsoYLO21Be7WHhNEiyTAdasdppqqlOIiujkudoLk6VKlfJdRQ6jgqu1WDg8a5NAAAAAAAAYJ3I81yNXrV3O82V5rlaabdAJssl3xqFjiPfmpMqmppsx/KsUdl3ta0YruArWPtWItekshtYo45U7T3R6KiZZ5ppJ5prJWraVDOOUcFxVAocuWbp1Y/poqDbysgn6MYyyvNcu6eaGp/raEst0kg50DmjJe0cLq720HCauNZqJPR0oJmr5rua6iQLbYkGfFeutRrwXZU8LnEAAAAAAACA9cQYo6LrqOg66qSZ5pJUbmJUdHO1s1zNJNVMnMgao8ixCmlxviZwJxhY4xxrtKkaaVO1O7f33qmm7plqqBX5qsep5jqJZuNEs51YoXVUClxFnnNKx8p683Q7i4JuS9CNZZLlue6ZaGi6GWv7YEGDRV8XbCxr22BhtYeG08yzVqORrwPNjqqeq3aaqeg58q3VUOjJs7QtBwAAAAAAANYz37EadKxqvqt6kmo2ThVYqyTL1EozNdJUjSSV71hFjuWeYh8j7AbWkVLg6vwNZZ0zUtK9M03dNdnQZMtRnGeai1M14lT76y25uVE59FQKHTknWO29OOh2ZRZamAPLIcty3TVeV72TaMdQQbWCrwdtrmpjlZYx69XiwNu1VmXPUc13mbMdAAAAAAAAwAJrjMqeq5LrqJ1mmk1SuUmmonK10kzNJNNU2u0cGblWgbXcY+wzhN3AOuRYoy21grbUCppodnTHRF0H5tqq+K4aaaZmJ9FUq6PJeq5C4Koceses9s57QbeR5Oi+wBtYDkmW6a6DdbWSTDuHS6pFni7aWtVwKVjtoWGVedZqcyFQJsnhAhQAAAAAAADAURhjFLqOQtdRkvVanMepIsdRJ8vUSlPNxanqShU4VpHjyLHcc+wHhN3AOjcY+RrY7Gmmk+ie6aYOzLY041rFkadWO9FcI9HcdFO+Y7vV3oEjZ1E7j1y5kt6y26vm9lbnpWANitNMdx6sK84ynT1SVDXy9NBtNdUK/moPDWcIY4xObeIFAAAAAAAAAOuRa61qvlXVc9VIMs0miXxrlbrdFuetNFMzzeTb7rzeOLMRdgOQMUbVwNMDhl1trISaasbaP9fSQWtUDD3FcaZ6M9Zko63JurrV3oGrwHOUGSkzkrdonm5DVTeWQTtJdefBujLlOne0pEro6WHbayqHvJ0CAAAAAAAAALA0xhgVPUdFr9vifC5J5Sapim6uVpqrmaaaibvlfh65xxmLsBvAAtcajYS+iq6jYuBqSzXVgXpHY422PM9qIPNVbyWabSWaa7dkHCPfc+TkuTxrFWZGieco9Kxcy7udcOpacao7Ds7JGqPzRsuqRt2gu+DzzxYAAAAAAAAAYHkFjlXgWNV8V/U41VySKnSs4qxb6Y0zF6kBgMMUXEehYzXdSeRaq5Gir4lWrMlmLMcxqkaeWmmmdpYpSzPFHWluNtZ4nCrPu/vwHKPA7Qbf859Dz5FHyw8cR72d6K6xunzXaudIUbXI18O21xQeY954AAAAAAAAAACWyjFGFd9V2XPUSjPNxqk8m0nK5Rqqu89EhN0Ajsgao4HAU9F1NNGJ5VqrSuBqLvZUb6dqdBJlmZQlmWwgeWWjPM/VSlK1k0zNOFUnzjTXTjXR6CjrvfHJtUaB2w2+A88qdLuffcfK8A/FujfbinXXWF0F39GO4aIGi4Eeuq0m3+VNEgAAAAAAAACA08MYo8h1FLmO4ixTO80UOhRknYkIuwEck+9YbQh9zSWppjuSb618J1El8lTzXRVdRyXHUaOTqt5OVO8k3c/tVJ2km3DnytVJMrXiVK3e52acaqoZK826peDWqBuAzwfhvc++a2UJwdeFqUZH90w0VAo97RgqaKgU6Be2VuXSDQAAAAAAAAAAsEo8a+UxdesZi7AbwHEZY1T2XEWOo6lO3Aufc/mO1WDgyRqj0HM0WPQPeV4nydToJKr3gvC5dqJGO1UrTu/bJu2G3+249zlJNdNKFkJwY9QNvnsV4KHndJddK2sJwdeK8bm2dk81VSt42j5Y0Gg51EVbqvyMAQAAAAAAAADAURF2AzhhrjUaDn210lRxlqvoOsesuvZdK9/1VSscuj5JM9U73Vbo81Xg9Xai5qI5v+MsWxSAd9ui1xsdxUm+sJ/AtQut0OerwQPPyuUdVn1l/0xL+6ZbGi772loraFMt1AM3VWhrDwAAAAAAAAAAjomwG8BJCx1H4RKmpnAdq2pkVY28Q9ZnWa5G3GuHPh+Cd5KF+cElKZkPwZNM7V5b9OlmrINz7YWg3HPMfRXgi+YF92iHfcbZO9XUgdm2NlQDbapEOmuooPM2lFd7WAAAAAAAAAAAoA8QdgM4Y1hrVApclYJDT015nqsZpwtt0OfaSXeO8E6iNO0m3Fmeq5Wkh1SDz7RjxY1sISh3rTmkEjz0rAK3Oy84li7Lc6VZrizLlfaW5z+yXN3lRevjNFOjk2pLLdJIOdA5oyXtHC6u9ssAAAAAAAAAAAB9grAbwBnPGKOC76rgu9L9in5bC5Xg3fC73u7OER4n3YQ7z3O10/uqwFtxqmacaqoZL8wL7lhzhHnBrXzXrptW2nl+XxCdZYcH09ni8Poo67P86Pt3rJG1kmOsXNt9Y0PgWY2UAw0UfF2wsaxtg4Wj7wAAAAAAAAAAAOB+CLsB9LVuhbajodKh6ztJ1gu+Dw3C23EvBFeuOOlWjLfnK8KTVNOt+0Jwa6RgUSv0+UrwwLPHnKt8NSwOnpNF1dVZ7+tjB9ZaeM1H0g2pjaw1coyR4xi51sh3rBzb/fq+xyXHWjm9YNvabtBtdOTvV+BZnb+hrA2VcKW+NQAAAAAAAAAAYI0i7AawJvmule/6Gij6h6yP00yN+1WB19uJmp10YZtOmqm9MCd4qlacaryeKO61TDdG8p1uBXjg2kNaojv25EPwY7X/7gbWOnZVdZ4vzFd+f8Z0w2bHmF51dXc5cIwc2w2jXWNlrelWXPdCa7e3rWvMMavbHcfIs1ZuLwB3Hdv7bOTa+5a9XjA+v61j71sHAAAAAAAAAABwKgi7AawrnmNVLVhVC94h69MsV+N+VeD1dqpGJ1kIkpMs61WAz88L3m2H3pltL+zHd+xCK3TfsYtagx89rD5e+++FDyNZa+W5RqG1hwXYzqLKa2t6gfWxgupeEL04eD5WcO3db1vXHjsIBwAAAAAAAAAAWEmE3QCgbvBbDj2Vw0ND8CzrtjpfaIfe7gbhjU660Po7y+fbofeqweNMM81YSZbL9qqlFyqlj9r+ez7U7rYBt+bY7b9tbzuvF4S7zqFhtGt7ldXOoirr+RC7V3FtqaoGAAAAAAAAAAB9jLAbAI7BWqNi4KoYuFL5vvV5nqsVZ4dUgc8vJ+kxSrV7FgfQXq+luLu4wtpZVFm9KLim/TcAAAAAAAAAAEAXYTcAnAJjjCLfUeQ7Gi4FhzzWilM1Oqk6SbYQXC+uuHZo/w0AAAAAAAAAALBkhN0AsMxCz1HoOas9DAAAAAAAAAAAgDXNrvYAAAAAAAAAAAAAAAA4WYTdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvuOu9gCwNEmSLCzv27dvFUcCAAAAAAAAAAAAAEe2OMtcnHEuBWF3nzt48ODC8iMe8YhVHAkAAAAAAAAAAAAAHN/Bgwe1Y8eOJe+HNuYAAAAAAAAAAAAAgL5j8jzPV3sQOHWtVks/+tGPJEkjIyNyXYr1l2Lfvn0LFfK33HKLNm3atMojAgAcDedsAOgfnLMBoD9wvgaA/sE5G0A/SpJkoWv1RRddpDAMl7xPktE+F4ahLr744tUexpq0adMmbd26dbWHAQA4AZyzAaB/cM4GgP7A+RoA+gfnbAD9ZDlaly9GG3MAAAAAAAAAAAAAQN8h7AYAAAAAAAAAAAAA9B3CbgAAAAAAAAAAAABA3yHsBgAAAAAAAAAAAAD0HcJuAAAAAAAAAAAAAEDfIewGAAAAAAAAAAAAAPQdwm4AAAAAAAAAAAAAQN8xeZ7nqz0IAAAAAAAAAAAAAABOBpXdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A2cpB07dsgYoyuuuGK1hwIAOA5jjIwxeuc737naQwEALNE3v/nNhfP6N7/5zdUeDgDgKK699tqF8/Xdd9+92sMBABwD19gA1gLCbqw5P//5z/XGN75RF154oYrFogYHB3XxxRfrfe97nxqNxmoPDwCg+0Lo4308/vGPX+2hAsCaduDAAX3lK1/RlVdeqac97WkaHh5eOAefyps7v/rVr+o5z3mOtm7dqiAItHXrVj3nOc/RV7/61eUfPACsI8txvl4cQh/v49prr13R1wMAa9mtt96qP/7jP9ZTnvKUheviUqmk888/Xy996Uv1ne9856T2xzU2ABybu9oDAJbTl7/8Zb3oRS/SzMzMwrpGo6Fbb71Vt956q66++mpdf/31Ovfcc1dxlAAAAMCZYcOGDcuynyzL9MpXvlIf+9jHDlm/Z88e7dmzR1/84hf127/92/qbv/kbWct7rgHgZC3X+RoAsLJ++Zd/Wd/+9rcPW9/pdPSf//mf+s///E9de+21uvzyy/XRj35Uvu8fdV9cYwPAiSHsxppx22236QUveIGazaZKpZL+63/9r3rCE56gZrOp6667Th/96Ef1s5/9TM94xjN06623qlwur/aQAWDde/WrX63f/d3fPerjxWLxNI4GANa37du368ILL9TXvva1k37u29/+9oWbcA972MP0lre8Reecc47uuOMO/dmf/Zluu+02XX311RoZGdF73vOe5R46AKwrSzlfz/uHf/gHbd68+aiPb9269ZT3DQDr2d69eyVJmzdv1vOe9zxdeuml2r59u9I01U033aSrrrpKe/bs0Sc/+UnFcaz//b//91H3xTU2AJwYwm6sGb//+7+vZrMp13X1ta99TY961KMWHnviE5+o8847T295y1v0s5/9TFdddRXztwLAGWB0dFQPfvCDV3sYALBuXXnllbr44ot18cUXa8OGDbr77ru1c+fOk9rHz372M/35n/+5JOmXfumX9K1vfUtRFEmSLr74Yj372c/W4x73ON1666163/vep5e97GV0WgKAk7Qc5+vFzj//fO3YsWP5BggAkCRdeOGFes973qPLLrtMjuMc8tgll1yiF7/4xXrMYx6jn/3sZ/r0pz+t3/md39Ev//IvH7YfrrEB4MTR2wJrwi233LLQHublL3/5IUH3vDe+8Y16wAMeIEn64Ac/qDiOT+sYAQAAgDPNH/3RH+mZz3zmktrjfuADH1CSJJKkD33oQws34eYVCgV96EMfkiQlSaL3v//9pz5gAFinluN8DQBYeV/5ylf0/Oc//7Cge97w8LCuuuqqha8/+9nPHnE7rrEB4MQRdmNN+OIXv7iw/NKXvvSI21hrdfnll0uSpqam9I1vfGNZjv0f//EfesUrXqEdO3YoCAJt2LBBz3nOc3TzzTcvy/4BAMvne9/7nn7jN35DW7duVRAE2rJli1784hfr3/7t31Z7aADQl/I815e+9CVJ3SqWSy655IjbXXLJJbrgggskSV/60peU5/myHP///J//oyc96UkaGRlRFEW64IIL9Ja3vEUTExPLsn8AwNJlWaaPfOQjevSjH62BgQEVi0U95CEP0bvf/W41Go3VHh4AnHZPeMITFpbvuOOOwx7nGhsATg5hN9aE73znO5K6c7s+/OEPP+p2j3vc4xaWb7zxxiUf9wtf+IJ+8Rd/UVdffbV+/vOfq9Pp6MCBA/riF7+oxz72sfrMZz6z5GMAAJbHX/3VX+nRj360rrvuOu3Zs0edTkd79+7Vpz71qYWWYACAk3PXXXctzEu4+Fr7SOYf37Nnj+6+++4lHTfLMr34xS/WC17wAv3zP/+zxsbG1Gq19LOf/Uzve9/79MhHPlL33nvvko4BAFi6RqOhpzzlKXrVq16lm266SVNTU2o0GvrRj36kd7zjHXrCE56ger2+2sMEgNOq3W4vLB+pApxrbAA4OYTdWBPmK/LOPfdcue7Rp6K/8MILD3vOqfrRj36k3/zN39SGDRv0l3/5l7r55pt100036Z3vfKfCMFSapnrlK1+pgwcPLuk4ALCW/d3f/Z0e+MAHqlAoqFwu67zzztNLXvKSZeu+Me8f/uEf9NrXvlYPetCDdM011+h73/uevvWtb+kNb3iDrLVqNBp68YtfrE6ns6zHBYC17qc//enC8uJr7SNZzmvx/+//+//0qU99Sr/2a7+mz3/+8/r+97+vv//7v9cznvEMSdLtt9+uN7zhDUs6BgCsZS996Uu1efNm+b6v4eFhXXLJJXrHO96hPXv2LOtxXvGKV+gb3/iGXvKSl+j666/X97//fX3hC19YmH7ulltu0bve9a5lPSYAnOluuOGGheX5aTcX4xobAE7O0VNBoE+0Wi2NjY1JkrZu3XrMbefbZdXrde3atWtJx/3BD36ghz/84frnf/5nVSqVhfWXXHKJzj33XL3oRS/SzMyMPvWpT3ERAABHsfh/4KTu/zjdfvvt+uQnP6lf+7Vf07XXXqtqtbrk49x88816+tOfri984QvyfX9h/aWXXqqhoSG94x3v0D333KPrr79ez3nOc5Z8PABYL3bv3r2wfLxr8W3bti0sL/Va/Lvf/a7e9a536e1vf/sh65/61KfqqU99qr72ta/ps5/9rP7iL/5CIyMjSzoWAKxF3/zmNxeWx8fHNT4+rv/3//6frrrqKn3gAx/Qq171qmU5zne/+1397d/+rV70ohctrPvFX/xFPe1pT9Mv/dIv6cc//rE++tGP6k/+5E+OWbwAAGtFlmV673vfu/D185///MO24RobAE4Old3oe7OzswvLpVLpuNsXi0VJ0tzc3JKPfc011xwSdM/7zd/8TW3evFmS9O1vf3vJxwGAtaZQKOiFL3yhPvrRj+rb3/62brvtNn3ta1/T29/+dg0NDUmSvvjFL+pXf/VXFcfxko8XhqE+/vGPHxJ0z3vd6163sJ5zNgCcnJO5Fp+/DpeWfi3+8Ic/XG9729sOW2+M0R/8wR9IkpIk0U033bSk4wDAWnP22WfrTW96kz73uc/plltu0S233KLrrrtOz3ve82SMUavV0u/8zu/oIx/5yLIc77nPfe4hQfe8IAj0mte8RlI3bL//m2ABYK16//vfr1tuuUVS9xx5pCk5ucYGgJPDWybR91qt1sLykUKM+wuCQJLUbDaXdNyLLrpID3nIQ474mDFGD3vYw7R3717deeedSzoOAKxFe/bsUa1WO2z9k5/8ZL32ta/V0572NN1222264YYb9OEPf1ive93rlnS8Jz/5yRodHT3iY/Pt03/yk59wzgaAk3Qy1+Lz1+HS0q/Ff/M3f1PGmCM+tviGIed1ALjPc57zHL3kJS857Px58cUX6wUveIG+8pWv6LnPfa7iONYb3vAGPfvZz9bGjRuXdMzf+q3fOupj9z9fH+0eCwCsFTfccIP+8A//UJI0OjqqD3/4w0fcjmtsADg5VHaj74VhuLB8InOtttttSVIURUs67vHmSxkcHJR06DvxAABdRwq6523YsEGf/exn5XmeJOlDH/rQko/HORsAVsbJXIvPX4dLK3stPn9OlzivA8Bi1Wr1qCGGJD3zmc/UlVdeKUlqNBr62Mc+tuRjcr4GgK6f/OQnes5znqMkSRSGof7u7/7uqG/K5xobAE4OYTf6XrlcXlg+kVYt9Xpd0om1PD+WQqFwzMet7f55pWm6pOMAwHp09tln68lPfrKk7jzee/fuXdL+OGcDwMo4mWvx+etwaWWvxefP6RLndQA4Wa985SsXAvEbbrhhyfvjfA0A0l133aWnPOUpmpyclOM4uu666/TLv/zLR92ea2wAODmE3eh7YRguzO+6e/fuY247OTm5cAGwbdu2FR8bAODUPfCBD1xY3rNnzyqOBABwNFu3bl1YPt61+K5duxaWuRYHgDPT6Ojowj0WrsEBYOn27t2rX/mVX9HevXtljNE111yjX/3VXz3mc7jGBoCTQ9iNNWE+ELn99tuVJMlRt/v3f//3heUHPOABKz4uAMCpO1aLRQDAmWHxG5MWX2sfCdfiANAfuA4HgOUxNjamJz/5yQtzXH/oQx/S5ZdfftzncY0NACeHsBtrwmMf+1hJ3bYt3//+94+63eIWXI95zGNWfFwAgFP305/+dGF58+bNqzgSAMDR7Ny5c+Ecfbx2t9/61rckSVu2bNGOHTtWemgAgFNw8OBBjY2NSeIaHACWYnp6Wv/lv/yXhXsb733ve/V7v/d7J/RcrrEB4OQQdmNN+LVf+7WF5Y9//ONH3CbLMn3yk5+UJNVqNT3hCU84HUMDAJyCu+66S1//+tclSeecc462bNmyyiMCAByJMWahDeO///u/6+abbz7idjfffPNC1cmv/uqvUjUIAGeoj3zkI8rzXJL0uMc9bpVHAwD9qdFo6BnPeIZ+8IMfSJLe/va3661vfesJP59rbAA4OYTdWBMe8YhH6NJLL5UkfexjH9NNN9102DZXXXWV/u3f/k2S9Pu///vyPO+0jhEA0PXlL3/5mFNO7N+/X5dddpk6nY4k6Xd/93dP19AAAKfg9a9/vRzHkSS99rWvVbPZPOTxZrOp1772tZIk13X1+te//nQPEQDWvbvvvlu33XbbMbf5yle+oj/+4z+WJEVRpJe+9KWnY2gAsKZ0Oh095znP0Y033iipex/6Xe9610nvh2tsADhx7moPAFguH/zgB/WYxzxGzWZTT3nKU/S2t71NT3jCE9RsNnXdddfpIx/5iCTp/PPP1xvf+MZVHi0ArF+vfe1rFcexLrvsMj3qUY/Sjh07FEWRxsbG9M1vflN/8zd/s9A68bGPfewJt/kCAJy873znO7r99tsXvp4//0rS7bffrmuvvfaQ7a+44orD9nH++efrzW9+s9773vfq1ltv1WMe8xi99a1v1TnnnKM77rhDf/qnf7oQsLz5zW/WeeedtyKvBQDWsqWer++++2494QlP0KMe9Sg961nP0i/8wi9odHRUknTnnXfqs5/9rD772c8uVHX/+Z//Od2VAOAU/MZv/Ia+9rWvSZKe+MQn6uUvf7l+/OMfH3V73/d1/vnnH7aea2wAOHGE3VgzHvawh+kzn/mMXvSiF2lmZkZve9vbDtvm/PPP1/XXX69yubwKIwQAzNu7d68+9KEP6UMf+tBRt7nssst09dVXKwiC0zgyAFhfrr76an3iE5844mM33njjQkXKvCOF3ZL07ne/WwcOHNA111yj2267TS984QsP2+blL3/5KVW1AACW73x90003HbEb3rxCoaD3v//9euUrX3nKYwWA9ezzn//8wvI///M/6yEPecgxtz/rrLN09913H/ExrrEB4MQQdmNNedaznqV//dd/1Qc/+EFdf/312r17t3zf17nnnqvnPe95es1rXqNCobDawwSAde0Tn/iEbrjhBt1000268847NTY2ppmZGZVKJW3btk2PfvSj9ZKXvESPetSjVnuoAIATZK3Vxz72MV122WX6yEc+ou9973saGxvT8PCwLr74Yr3qVa/S0572tNUeJgCsWw9/+MP1qU99SjfddJNuvfVW7du3T2NjY0qSRAMDA3rQgx6kJz3pSfrt3/7thYpvAMDq4hobAE6Myef7EwEAAAAAAAAAAAAA0Cfsag8AAAAAAAAAAAAAAICTRdgNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAADACbj88stljNFrXvOaJe3nne98p4wxMsYs08iA/vC+971Pxhg9/vGPX+2hAAAAAFgjCLsBAAAAoM9885vfXAhL3/nOd57Qc6644oqF59x9990rOr616JZbbtGnPvUp+b6vP/zDP1zt4WANu/baaxf+Vq+99toTes6R/r4XrzvVjyOdX8bGxvShD31Iz3rWs3T22WerUqkoCAJt3LhRj3/84/X2t79dP/7xj484zle/+tUaGhrSDTfcoM9//vOn+B0CAAAAgPsQdgMAAAAAcBzveMc7lOe5Xvayl2nr1q2HPb44oOTNBFiLsizTu971Lp199tl63etep6985Su66667NDs7q06no/379+uGG27Qe97zHl100UV6ylOeop/+9KeH7KNUKukP/uAPJElXXnmlsixbjZcCAAAAYA1xV3sAAAAAAACcyW655RZ9/etflyS98Y1vXPL+3vnOd55wRT5wqt797nfrTW960xEf+6u/+it9+MMfliRdc801uvjii4+43ejoqCSp2WzqBS94gb785S9Lknzf1wte8AI9+clP1o4dO1QoFLR//37deuut+sIXvqB/+Zd/0de//nV95CMf0Qc+8IFD9vl7v/d7+pM/+RP95Cc/0Re/+EU997nPXaZXDAAAAGA9IuwGAAAAAOAYPvjBD0qSHvnIR+rcc89d5dEAJ2bLli3asmXLER+bD7ElaefOnXrwgx98zH29+tWvXgi6H/nIR+q6667Tjh07Dtvu6U9/uq688kp95Stf0etf//oj7qtarerpT3+6Pv/5z+sv/uIvCLsBAAAALAltzAEAAAAAOIrp6Wl97nOfkyT91m/91iqPBjj9vvCFL+gTn/iEJOkhD3mI/umf/umIQfdiz3zmM3XrrbfqiU984hEfn/9buuGGG3THHXcs63gBAAAArC+E3QAAAACABXNzc3rve9+rRz3qURocHFQQBNq6dat+/dd/XV/5yleO+dwdO3bIGKMrrrjimNtdccUVMsYcMTC7++67F+a+vvbaayVJn//85/X0pz9dmzdvluu6evzjH3/Ic372s5/pta99rR784AerXC7L931t3rxZD33oQ/Wyl71Mn/nMZ9Rut0/iu3CfL33pSwvPveyyyw57/Jvf/KaMMXrpS1+6sG7nzp0Lr2H+45vf/ObC4+985zsX1h/J/b+PP/jBD/Rbv/Vb2rZtm6Io0rnnnqs/+IM/0NjY2CHP++53v6vnPe952r59u8Iw1DnnnKO3vvWtmp2dPe7rTNNUn/jEJ/TMZz5TmzdvVhAEGhoa0mMf+1j9j//xP9RsNo/4vPmf5Yl+LP4+LPajH/1Ir3zlK3XeeeepUCioXC7rQQ96kN7whjcccw70I/2+fP3rX9eznvUsbdy4UUEQaOfOnXr1q1+t3bt3H/f7IEnf+MY39JKXvERnn322CoWCKpWKLrroIr35zW/W3r17T2gfa8l73vOeheWPf/zjKhaLJ/S8Wq2mZz/72Ud87BnPeIbCMJQkffrTn176IAEAAACsW7QxBwAAAABIkm677TY985nPPCzQ27Nnjz73uc/pc5/7nJ773Ofqf/2v/7UQVK2kPM91+eWX62//9m+Pus3f/d3f6UUvepE6nc4h6/ft26d9+/bphz/8oT7+8Y/rRz/60XFbNR/JN77xDUnStm3btHnz5pN+/lL97d/+rX77t3/7kNd3xx136P3vf7+uv/563XDDDdq4caP+/M//XG95y1uU5/nCdnfeeaf+7M/+TP/4j/+oG264QaVS6YjHuOeee/TsZz9bP/zhDw9ZPzExoRtvvFE33nijPvzhD+v666/X+eefv+yv8b//9/+ud7zjHcqy7JD1P/3pT/XTn/5UH/7wh/WRj3xEl19++XH39V//63/Ve9/73kPW3X333frrv/5rfe5zn9MNN9ygBzzgAUd8bqvV0ktf+lJdd911hz324x//WD/+8Y/14Q9/WJ/+9Kf1rGc964j7ePzjH68bbrhBknTXXXcdtwL6TPejH/1It956qyTp0ksv1S/+4i8uy36DINBDH/pQ3XzzzfrqV7+qd7zjHcuyXwAAAADrD2E3AAAAAEB79uzRk570JE1OTi5UFb/whS/U0NCQfvrTn+qqq67SD3/4Q33+85/XFVdcccRAcLl94AMf0L/+67/q0ksv1atf/Wqdf/75mpqaWqj03b9/v1760peq0+lodHRUr3nNa3TJJZdoeHhYzWZTt99+u2644QZ98YtfPOUxfPvb35YkXXzxxUd8/OKLL9aPfvQjfelLX1oI7P7hH/7hsGB8586dJ33sH/7wh/r0pz+tc889V29605t00UUXaXZ2Vtdcc40+9alP6Wc/+5ne9KY36bnPfa7e/OY365JLLtFrX/taXXDBBRobG9Nf/MVf6O///u/1gx/8QO9617sOC4ElaXx8XI997GO1a9cuBUGgV7ziFXrc4x6nHTt2aG5uTl/72tf0wQ9+ULfffrue9rSn6Qc/+IGq1erC89/97nfrTW9601FfQ7PZ1GWXXaZdu3bJ8zxt2rTpkMf/6q/+Sm9729skSSMjI3rrW9+qxzzmMUrTVP/4j/+o973vfarX67riiis0PDyspz/96Uc91kc/+lF997vf1eMe9zi96lWvWvh9+eQnP6lPfvKTOnjwoF72spfppptuOuy5eZ7r13/913X99ddLkp71rGfp+c9/vs4++2xZa3XLLbfoqquu0j333KNf//Vf14033qhf+qVfOvYPcA2YD+6lbjX2cnrEIx6hm2++WbfccotardZpeQMNAAAAgLWHsBsAAAAA+tiBAwf04x//+LjbTU1NHfPx17/+9ZqcnJTUDQ1f/vKXLzz28Ic/XM9//vP1tKc9Td/4xjf0mc98Ri95yUv0tKc9bUljP55//dd/1eWXX65rr732iC2/r7/+etXrdUnSP/3TPx1Wuf3oRz9al19+uf7yL//ylI5/4MCBhfmEH/awhx1xm2KxqAc/+MEL1a+SdP755y9LRe+//Mu/6NGPfrS+/vWvq1AoLKx/whOeoFarpc9+9rO67rrr9NWvflWXXXaZPvOZz8hxnIXtfuVXfkWPfexjdfPNN+vqq6/Wu971LrnuobcBXve612nXrl0666yz9I1vfOOwUP7xj3+8nve85+nSSy9dqBR/97vfvfD4li1btGXLliOOP89zvfCFL9SuXbskSf/zf/5PXXDBBQuPHzx4UG9+85slSZs3b9bNN9+sbdu2LTz+mMc8Rs9+9rN16aWXql6v65WvfKXuuusueZ53xON997vf1Ste8Qr9zd/8zSG/L0960pPk+76uvvpq3XzzzbrtttsO+3leffXVuv766+V5nv7v//2/eupTn3rI45dccole/OIX69JLL9VPfvITvf71r9d3vvOdI45jLVlc7f/whz98Wfc9v78kSfTDH/5Qj3zkI5d1/wAAAADWB+bsBgAAAIA+9uEPf1gXXXTRcT++9KUvHXUfe/fu1Re+8AVJ0lOf+tRDgu55QRDommuuWQhLTzVAPhn/f3t3HqZ1Xe+P/3mz78KAiIjmFrjkjmmaS2aSJgIetw4nRVHTSjMt/bmlHTVtOYKZelTSOikes8gN0NRESKVvCqIeFwwlBWVJVPZ15vcH19yBMMM2MHzg8bguruvDfLbXPQ4v576fn/f73bZt2/zyl7+scW3rKVOmJEnatWtX6xTlzZs3T/Pmzdf4/suu8dyxY8c1Pn9dlUqlDBo0aLmgu9q3vvWtJEvX2p4/f37uuOOO5YLuJGnYsGHOPvvsJEtHcL/22mvL7Z84cWLuv//+JEv/e9Y0+nyfffbJt7/97SQpr4u9Ov7zP/8zv/vd75IsDdXPOuus5fbffffdmTt3bpLkxhtvXC7oXvbel156aZKlsw/UNkp/6623zs0337zSn5dlR59Xj9avVlVVlZ/85CflOj8ddFdr165dfvaznyVJnn322bz11ls11rKp+PDDD8vbdf1vYNnrvf3223V6bQAAYPMh7AYAANjMjRgxIkuWLEmSlQbd1bbffvt85StfWeGc9aVnz55p3bp1jfurp8T+6KOPag3z19b06dPL2+3atavz66/KnnvuWeP60nvttVd5+ytf+UoqKipWedynA8WhQ4dmyZIladGixSpH6R966KFJlj4Y8e67766y9gceeCA/+tGPkiRHHXVUbrzxxhWOefLJJ5Msfajh+OOPr/FaZ5555grnrMwJJ5yQpk2brnRft27dymuWf/r78Nprr5VH8J9wwgk1Xj/51/chyUqnQx8xYkSqqqpSVVVV+PW6k2TWrFnl7ZYtW9bptZf9ma1+cAUAAGBNCbsBAAAK7KqrriqHa7X9Oe2002q8xrLToK9qKuHq/XPnzl3vozH33HPPWvcfd9xxadu2bZKkT58+OeKIIzJgwIC8+OKLdRLEz5gxo7xdH2F3165da9xX/brX5Lhlg8sk5anX586dm0aNGqVUKtX459hjjy2ft6pgcsyYMenXr1+qqqrSrVu3FaZXr1b9c7fvvvvWODV5kmy11Vbl4Li2Kft32WWXWuuq/m9Y0/chSb7whS/U+n2oDsyTzSOgXfZhk+olA+rKsv+m6vraAADA5kPYDQAAsJlbNtRd1VTFnTp1Wul568OqAub27dvn4YcfzjbbbJOqqqo8/fTTufDCC9O9e/dUVFTk+OOPz6OPPrrW92/WrFl5e968eWt9nbW1sunLqzVo0GCNj/v0AwDTpk1bq7qqpx5fmQ8++CC9evXK3Llz07Zt2zz88MPLBe7Lqv75WZ3psat/7mr7mavt+5D863uxIb4P62LZadirqqpW65xlj6tp2v+10b59+/L21KlT6+y6yfL/pmp72AEAAKA2jeq7AAAAADYedRmUrauVjQb+tEMOOSR///vf84c//CHDhg3LyJEjM2nSpMycOTN//OMf88c//jE9evTIkCFDVhmGftqWW25Z3l7fwX59qA59O3TokKeffnq1z6tpbe/58+end+/emTRpUho2bJjf/e53tY46r1bfP3PLht+PPPLIak8/vr7WcV92ffnVfchi2ZHRdTnd+LLT4I8ZM6a8jEFdWPbfVE0PRAAAAKyKsBsAAGAzt+zauVOnTs22225b47HLTt386XWiq0fOVlZW1nq/up6yuFmzZunbt2/69u2bJHnnnXcydOjQ3HzzzRk/fnwef/zxXH755RkwYMAaXXfZsPujjz6q05o3BtWjdmfNmpVdd911tR4uqM0ZZ5yR//f//l+SZMCAAasMRisqKvLBBx+s1ojh6p+7mtYmXxfLjl5u27ZtPve5z9X5PdbE2qxlXX1cqVSq0+D4sMMOK28PHTo0l1xySZ1de9l/U9ttt12dXRcAANi8mMYcAABgM7dsuPfXv/611mOrw8wWLVpkxx13XG5f9fq+qwqGx48fvzZlrrYddtgh3/nOd/K3v/0tXbp0SZL87ne/W+Pr7LjjjuXR4Kuqub5HJ6+NffbZJ0myYMGC5datXhvXXXdd7rvvviTJ2WefnfPOO2+V51T/3I0ZMyaLFy+u8bhp06blH//4x3Ln1KXq70OSPPvss3V+/TW17Fr1L7744iqPX7RoUV555ZUkyW677ZZGjepuXMMee+yR7t27J0lGjRqVMWPG1Nm1l/03tfvuu9fZdQEAgM2LsBsAAGAzd/jhh5dH9d511101Hvfuu+/miSeeWOGcatXTW48ZM6bGtYb/7//+Ly+//HJdlL1Kbdq0yf77758k+ec//7nG5zdu3DgHHnhgkuRvf/tbrccuu773ggUL1vhe9aFnz57lkH7gwIFrfZ0//vGPufLKK5Ms/bn45S9/uVrnHXnkkUmSjz/+OEOGDKnxuF/96lfln6fqc+rSvvvuW34o4o477sj8+fPr/B5romPHjuVQ/6mnnlrlmuKPPPJIZs6cmST58pe/XOf1XHbZZeXt008/fbVnZvj444/zyCOP1Li/+t/U1ltvbWQ3AACw1oTdAAAAm7nOnTunT58+SZLhw4fnN7/5zQrHLFy4MGeccUYWLVqUJPnOd76zwjHVUx6///775VG+y5o1a1b69+9fZ3U//vjj+eCDD2rc/8knn5RHote0zvSqHHLIIUmSl19+udYQe+utty5vT5gwYa3utaF169YtJ554YpLkf//3f3PjjTfWevw777yzwn/Xl156Kd/4xjdSVVWVHXfcMb///e/TuHHj1br/6aefXh45f9FFF2Xy5MkrHDNu3Lj8+Mc/TpJss8026d2792pde000aNCgHOi+/fbbOfXUU2v9bz1z5swaA/3DDz88pVIppVIpEydOXOuaqkfGL1iwIP3798/ChQtXetykSZNy4YUXJlm6xv23v/3ttb5nTfr06ZNTTz01ydJ/B1/+8pfLI+1rMnz48Oy///556qmnajym+t9mXa4DDgAAbH6s2Q0AAEAGDBiQp556Kh999FHOOOOM/OUvf8nJJ5+cdu3a5Y033sjPf/7zvPTSS0mSk046KUcfffQK1/iP//iPXH311Zk5c2b69++fv//97+nRo0dKpVJefPHF3HjjjZk0aVL22WefjB07dp1rvu+++9KzZ8985StfyVFHHZXPfe5zqaioyKxZs/Lqq6/ml7/8ZTlAPeecc9bqHr169cqPfvSjLFy4MKNGjapxZPE+++yTZs2aZf78+bnyyivTuHHjfOYznymvY77NNtukefPma/dC16PbbrstL7zwQt5+++1cdNFFeeihh3Lqqadm9913T9OmTfPhhx9m3Lhxeeyxx/LnP/85ffr0yde//vXy+ccdd1zmzJmThg0b5sc//nE++OCDWh9A2GGHHdKyZcskS9dE/9nPfpZvf/vbmTRpUvbbb7/8f//f/5eDDjooixcvzpNPPpmf/exnmT17dkqlUu64447VDtLX1DnnnJMnnngif/zjH/PAAw9kzJgx+eY3v5nPf/7z2WKLLTJz5sy88cYbGTFiRB5++OE0a9ZspQ981JX+/fvnvvvuy4gRI/Loo49mr732yjnnnJP99tsvrVq1yj//+c8888wzufXWWzNjxowkyVVXXZWuXbuul3puu+22fPTRR3nkkUfy17/+Nd26dctJJ52UHj16ZPvtt0/z5s0zderUjBkzJn/84x9XOf36W2+9lffeey9Jyg/aAAAArA1hNwAAAOnSpUueeuqpHHvssXn//fczaNCgDBo0aIXjjj/++JWO/E6WhpeDBg3K17/+9cyfPz9XXXVVrrrqqvL+5s2b57e//W0effTROgm7k6XrFQ8bNizDhg2r8Zhzzjkn559//lpdf5999sl+++2XF198MYMHD64x7G7dunXOP//8/PSnP82YMWNy1FFHLbf/6aefzuGHH75WNaxPFRUVefbZZ3PSSSdl1KhRGTlyZEaOHFnj8W3atFnu79WB5ZIlS3LKKaes8n6f/j5861vfyscff5wrr7wyU6dOzfe+970VzmnatGnuuOOOHHPMMav5qtZcqVTK/fffn+9+97v57//+70yYMCEXX3xxjcd37NhxvdWSLB2lXf3gwUMPPZQ33ngjF1xwQY3HXnXVVbniiivWWz0tWrTIgw8+mOuuuy4/+9nPMmvWrPz2t7/Nb3/72xrP+drXvpZvfetbK903ePDgJEt//tbnf1cAAGDTZxpzAAAAkiwNdt98881cf/31OeCAA9K2bds0adIknTt3zvHHH5+HH344f/jDH5Zbn/rTTjzxxDz33HPp06dPttxyyzRp0iTbbrttTjvttPztb3/LCSecUGf1DhgwIPfcc0/OOOOMdO/ePdtss02aNGmS5s2bp2vXrjnttNMyatSo3HbbbeUR1mvj7LPPTpIMGTKk1umtb7jhhtx555055JBDUlFRscKa5hurTp06ZeTIkXn00UfTt2/f7LjjjmnRokUaN26cLbfcMgcddFAuuuiiPPPMM7Wu6b62LrvssowdOzZnnXVWdtpppzRv3jwtW7bMrrvumu9+97t54403ytNor0+NGzfOrbfemnHjxuW8887LHnvskS222CINGzbMFltskb333jv9+/fP73//+7z++uvrvZ42bdrkwQcfzIgRI9K/f//ssssuadOmTRo1apSKiop07949P/jBDzJ+/PhceeWV5fXX15cGDRrkyiuvzNtvv51f/OIXOfbYY7P99tunVatWadKkSbbaaqscdthhufzyy/Paa6/l0UcfrXGkeXXY3b9//zRp0mS91g0AAGzaSlVVVVX1XQQAAABsrGbPnp0dd9wx06dPzz333JO+ffvWd0lQWH/5y19yyCGHpEmTJnnrrbey3Xbb1XdJAABAgRnZDQAAALVo1apVrrzyyiTJj3/841RWVtZzRVBc11xzTZLkjDPOEHQDAADrzMhuAAAAWIVFixZll112ydtvv537778/J510Un2XBIXz17/+NQceeGBat26d8ePHp1OnTvVdEgAAUHCN6rsAAAAA2Ng1btw4v/71r/PUU09l8eLF9V0OFNKHH36Yq666Kvvuu6+gGwAAqBNGdgMAAAAAAABQONbsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCaVTfBQCw8Zs/f35mzpyZmTNnZsGCBVmyZEl9lwQAAAAA1KGGDRumadOmadOmTdq0aZNmzZrVd0kAq1Sqqqqqqu8iANg4VVVV5YMPPsgHH3xQ36UAAAAAABtQ586d06lTp5RKpfouBaBGwm4AajRx4sR8+OGHy32tQYMGadiwYT1VBAAAAACsD0uWLEllZeVyX2vfvn223377+ikIYDWYxhyAlZo3b95yQfdWW22VioqKNG/e3NOcAAAAALCJqaqqyrx58zJjxoxMnTo1SfLhhx9mq622SvPmzeu5OoCVa1DfBQCwcZo+fXp5e5tttkmXLl3SokULQTcAAAAAbIJKpVJatGiRLl26ZJtttil/fdnPCQE2NsJuAFZq9uzZ5e0OHTrUYyUAAAAAwIa07OeB77//fsaNG5ePPvooVsYFNjbCbgBWavHixUmSRo0apVEjq14AAAAAwOZi2c8EKysr8/LLL2f48OEZM2aMwBvYqEgvAKiVacsBAAAAYPNT/bngkiVL8vrrr6d9+/blffvtt199lQWwHGE3AAAAAAAAK9W4ceN07Ngx06ZNK3/ts5/9bNq0aVOPVQEsZRpzAAAAAAAAatSxY8dsueWWmTFjRiorK/Puu+/Wd0kASYTdAAAAAAAArEK7du1SWVmZWbNm5f3336/vcgCSCLsBAAAAAABYhSZNmqRRo0ZZuHBhFixYUN/lACQRdgMAAAAAALAaSqVSqqqqsmTJkvouBSCJsBsANhmlUimlUilXX331CvtGjBhR3j9ixIgNXtunbb/99imVSunXr199lwKbBf0BqIn+ANRGjwBqoj8AsLEQdgMALGP48OHp06dPunTpkqZNm6ZLly7p06dPhg8fvspzFyxYkNGjR+fmm2/ON77xjXTr1i0NGjQov8kHim1d+kO/fv3KvWBVfyZOnLj+XwywzubOnZshQ4bk3HPPzf7775927dqlcePGad++fb7whS/k6quvzpQpU1Z5ncMPP3y1+wNQHHXRI66++urV7g+1BY/AxqWufoeo9thjj+WUU07JjjvumBYtWqRZs2bZdttt06tXr9x///2prKxcj68GoP41qu8CAAA2BpWVlTn77LPzq1/9armvT548OZMnT86DDz6YM888M7fffnsaNFj584LnnHNOfv3rX2+AaoENqS76A7Bpefnll3PwwQdn9uzZK+ybMWNGRo8endGjR2fAgAG54447cvLJJ9dDlUB9qc8e0a1btzq7FlD36rI/LFiwIH379s0f/vCHFfZNmjQpkyZNysMPP5xbbrklDz/8cNq2bVuXLwVgoyHsBoDNwOGHH56qqqr6LmOjdvnll5eDrH322ScXX3xxdtppp0yYMCE//elPM3bs2AwaNChbbrllfvzjH6/0Gst+j1u3bp199903b7755ho9kQ0bmv6wanXRH6p17tw5jz/+eK3HbLPNNnVWO6wL/aFmM2fOLH9IffDBB+fYY49N9+7d0759+0yfPj1DhgzJnXfemZkzZ6Zv375p06ZNjj766Fqv2b1799x9990bonyoE3pEzeqqR3zrW9/KCSecUOu9lixZkkMPPTQzZ85MmzZt0rt37/XxkmCN6A81q8vfIc4///xy0N2xY8dcfPHF2XfffdO4ceO88sor+clPfpJ//OMfGTVqVE455ZQ89thjG+x1AmxIwm4AYLM3fvz4/PznP0+y9IPmkSNHpnnz5kmS/fffP8cdd1wOO+ywvPDCC/nZz36WM844IzvvvPMK1zn66KNz+OGHZ//998+uu+6aBg0a5PDDDxd2Q4HVVX+o1rhx43zuc5/bILUD60+DBg1y0kkn5aqrrspuu+22wv6jjjoqRx99dPr06ZMlS5bkvPPOy1tvvVXrVOQtW7bUH2ATUVc9omPHjunYsWOt9xo+fHhmzpyZJDnxxBPLv6cAG6e66g9Tp07NoEGDkiTt2rXLiy++mC5dupT3f/GLX0zfvn2z1157ZeLEiXn88cfzwgsvpHv37uv3BQLUA3PsAQCbvYEDB2bx4sVJkptvvnmFD4hatGiRm2++OUmyePHiDBgwYKXXOfnkk9OvX7/svvvupjKGTURd9Qdg03LQQQfl/vvvX+mH1NV69eqV448/PkkyYcKEjB07dkOVB9SzDdkj/ud//qe8feqpp67VNYANp676w1//+tfyWtynn376ckF3tTZt2uR73/te+e/PP//8upYPsFHyKSwA1LO5c+emdevWKZVK6du37yqPf/7551MqlVIqlXLrrbeu1j1GjBhRPmfEiBEr7O/Xr19KpVK23377JMnHH3+cH/7wh9l9993TsmXLtG3bNoceemjuvffe1brf8OHDc8wxx2TLLbdMixYt0rVr11x44YWZPHnyap1fbcyYMTnnnHPSrVu3tGrVKi1btky3bt1y7rnnZvz48TWe9+tf/7r8eidOnJgFCxZk4MCBOfDAA9OhQ4eUSqVcffXVSZZOPf7QQw8lSXbZZZcceOCBK73mgQceWF7/7qGHHjIlGxuE/lAz/YHNnf5Qsw3RH1bXl770pfL2hAkT1uhcWBd6RM02pR4xc+bM8u8qO+ywQw455JA1vgabH/2hZkXqDwsXLixv77jjjjVeZ6eddlrpOQCbEtOYA0A9a9GiRXr37p177rknDz30UObMmZOWLVvWeHz1m71GjRrlpJNOqvN63nzzzXz1q1/NxIkTl/v6qFGjMmrUqDz//PP55S9/WeP5F1544QojG996660MGDAg99xzT4YNG7bKGiorK/P9738/AwcOXCE0Gj9+fMaPH59Bgwbllltuydlnn13rtf75z3+mT58+eemll1a6/5133sn777+fJDnssMNqvdZhhx2WN998M5MnT87EiROzww47rPK1wLrQH1akP8BS+sOKNmR/WF0LFiwobzds2HCdrgVrQo9Y0abYIx544IHMmzcvSfKNb3yj1qUSoJr+sKIi9ofqh22T5O23367xOssG5cueA7ApEXYDsNYqK6vy0dzN66nQdi2apEGDuv8AoW/fvrnnnnsyZ86cPPTQQ/n3f//3lR63ePHiPPDAA0mSHj16pEOHDnVax9y5c9OzZ898+OGHueKKK3LkkUemVatWGTt2bH70ox9l0qRJueWWW9KzZ8/06NFjhfMHDhxYfpPZuXPnXHrppfn85z+f+fPnZ+jQoRk4cGBOPPHEzJ07t9Y6zjvvvPIT44ceemj69euXHXfcMS1atMi4ceMycODA/N///V+++c1vplOnTjnuuONqvFb//v3zyiuv5NRTT83JJ5+cTp065d13303Tpk2TJK+99lr52F122aXWupbd//rrrwuzalFVWZklH39c32VsUA3btk1pPUxfrz8sr+j94cMPP8xhhx2WV199NbNnz05FRUX23HPP9OzZM2eccUZatGhR6302FVVVVcnCJfVdxobTpOF6CSD0h+VtyP6wup555pny9q677lrrsW+88UYOOOCAvPnmm5k/f346dOiQ/fbbL//2b/+Wr3/962ncuPEa3buoqqoqs2jRR/VdxgbVuHG7lEp+h9Ajau8RK7O5TWFeVVWVBUsq67uMDappwwZ+h9AfVtof9thjjxx00EF57rnn8utf/zoXXXRROnfuvNwxs2bNysCBA5MsHf191FFHrVENAEUh7AZgrX00d2H2u/bJ+i5jg3rxiiPTvtWavUFZHUceeWQ6duyYadOmZfDgwTW+0XzyySczbdq0JFmt6cbW1PTp07Nw4cI8//zz2X333ctf32+//XL44Ydnjz32yPz583Prrbeu8EZz2rRpufzyy5Mkn/nMZzJ69Oh06tSpvP/QQw9Njx490qNHj/L6tyvzxBNPlN9kDho0KP37919u//7775//+I//yNe+9rX8+c9/zvnnn59jjjkmjRqt/Neal19+eYXr7LvvvuXtSZMmlbdXtsbVsrbddtvy9nvvvVfrsZu7JR9/nLcOOri+y9igPvvcs2lUUVHn19Uf/mVT6A+zZ8/OyJEjy3+fMmVKpkyZkj/96U+54YYb8rvf/S4HHXRQrffaJCxckgV/fr2+q9hgmh6xa9K07t9+6w//sqH7w+oYN25chg4dmmTpB9KrCrKmTp2aqVOnlv8+efLkTJ48OQ8//HB+8pOf5Pe///1ahWFFs2jRRxn1l8/Xdxkb1CFf/H9p0qR9nV9Xj/iXTaFHfNrEiRMzatSoJMnBBx+83FTFm6oFSypz3ztTV33gJuTrO2yVZo3qfmYQ/eFfitwf7r777nz1q1/NO++8k3333TcXX3xx9t133zRq1CivvvpqfvrTn+add95Jhw4dcu+996ZJkyZrVAdAUVizGwA2Ao0aNcrJJ5+cJPnTn/6UDz/8cKXHVU8f1qpVq/Tq1Wu91HLNNdcs9yaz2s4775zevXsnSf7yl7+ssP83v/lN+Wnp//qv/1ruTWa1I444ImeddVat97/hhhuSJP/2b/+2wpvMas2aNStPY/aPf/wjTz/9dI3XO+KII2q8TrL0SedqrVq1qrW2Zad2mz17dq3HQl3RH/6lyP2hVCrlwAMPzHXXXZfhw4dnzJgxee6553L77bfn859fGupMnjw5Rx11VMaOHVvrvaCa/vAvG7o/rMqCBQty5plnZsmSpTMYXHfddTUe26BBg3z5y1/Of/3Xf+XJJ5/M2LFjM3LkyAwcOLD84fZrr72WL33pS3n33XfXuiY2P3rEvxS5R9Tkt7/9bXm65dNOO22ta2HzpD/8S5H7Q9euXfO3v/0t11xzTebMmZOLLrooX/rSl3LIIYfk3HPPzaRJk/L9738/Y8eOzYEHHrjWNQFs7ITdALCRqH5KetGiRfnd7363wv558+blwQcfTJL07t17vUx1WyqVanyiO1n6dHWSzJgxIx9/aorqJ59cOsq/Xbt2tb4JPuOMM2rcN3PmzIwYMSJJcsIJJ9Ra66677lqeQu3555+v8bhVPX0+f/788vaqnnJedtqx6rXxYEPQH4rfHwYMGJDnn38+l112Wb761a9mn332yRe+8IWcffbZGT16dC677LIkyZw5c3LmmWeusFYg1ER/qJ/+sCrf+c538sILLyRZGkL17NmzxmOHDBmSJ598MhdeeGG+/OUvZ++9984hhxyS7373uxk3blw5xJo6dWouuOCCdaqLzY8eUfweUZN77rknydIQbn2so8ymT3/YNPrDI488knvvvXelD9xW/7cdPHiw9xfAJk3YDQAbiQMOOKA89Vz109PLevjhh8tvXtbH9GFJ0qFDh7RvX/MUihXLTNG87IjHJHnllVeSJPvss0+N03klyd57711jaDR27NhUVi5dg+3rX/96SqVSrX/++c9/Jlk6DXBN9txzzxr3JUs/HKq2cGHta9AvWLCgvN28efNaj4W6pD8Uvz+0bdu2xnNLpVKuu+66fPnLX06S8qhvWB36Q/30h9pcf/31GTRoUJKlU5/ecssttR5fW39o3LhxBg0alG7duiVJ/vjHP2by5MlrXRubHz2i+D1iZUaPHp3x48cnSXr16pUttthireth86U/FL8/XHTRRTn99NPzxhtvpHfv3nn22Wcze/bszJs3L2PGjMnpp5+ed999N5dccklOOOGE8mhxgE2NNbsBWGvtWjTJi1ccWd9lbFDtWqzf9Y369u2b//zP/8xzzz2XiRMnZvvtty/vq37z2bFjxxx55Pr5vq/qSe0GDf71nNyn3yTNmDEjydL6atOoUaNUVFSs9M1h9Vpga6p66rKVadeuXa3ntm7dury9qqnJ58yZU95e1ZTGm7uGbdvms889W99lbFANawkr6oL+sOn3h29+85t56qmnkiTPPPNMDj54E173vknDpetYby6a1P1am8vSHzZ8f6jJ7bffXp6pYZdddsmwYcOWW+ZgbTRq1Cj9+/fPxRdfnGRpf6htFFzRNW7cLod88f/VdxkbVOPGa/fztrr0iE2vR/zP//xPefvUU09dq1qKqGnDBvn6DlvVdxkbVNOG63esmv5Q3P4wdOjQ3HjjjUmSfv365e67715u/z777JO77rorXbp0yTXXXJMhQ4bk1ltvzXnnnbdW9QFszITdAKy1Bg1Kad+q6aoPZLVVv9GsqqrKfffdl0svvTTJ0jdxjz/+eJLk5JNPrvWp5fpWKpXW+txl37zefvvtOeigg1brvNreTDZsWHvA0KVLl/L2pEmTaj32vffeK29vu+22q1Xb5qrUoEEaLfMUPutOf9j0+8Nuu+1W3t7UR26WSqWk6cb7s1o0+sOG7w8rc9999+Vb3/pWkuQzn/lMnnjiifJ0p+tq8+oPDdKkSc2j/FhzesSm1SMWLlyY+++/P0my1VZbpUePHmt8jaIqlUpp1mj9PkC2udEfitsfqkeAl0qlXHvttTUed9lll2XAgAGZPXt27rrrLmE3sEnaeP8vBQCboa5du6Z79+554YUXMnjw4PIbzd///vflKXTX1/Rh66pdu3aZMmVKpk6dWutxixcvLj+B/WnLTl/WokWLfO5zn6vTGldm2Q+P33jjjVqPXXb/rrtuRiMS2SjoD5t+f1iXD+rYvOkPG74/fNrDDz+cU089NZWVldl6663z1FNPLffAzLrSH1gXesSm1SMeffTR8mvt27fvWgVrUE1/KG5/eP3115MsHdm+zTbb1Hhcs2bNsvvuu+evf/3rKt/TABSVNbsBYCNT/Uby1Vdfzcsvv5zkX9OH7bTTTjnggAPqrbba7LHHHkmSl156KYsXL67xuHHjxtW49u3ee+9d/jD32Wc3zBTYO+ywQzp37pxk6bSgtRk5cmSSZJtttlluejfYUPSHTbs/vPbaa+Xt6vvC6tIfNmx/WNZTTz2Vk046KYsXL0779u3zxBNPlNdArSv6A+tKj9h0esTmOoU564/+UMz+UD3avrbXXm3RokXLnQOwqRF2A8BG5pRTTik/nX/vvfdm0qRJGTVqVJKN94nqJOU1vGbMmJFHHnmkxuPuuuuuGvdtueWWOfDAA5MkgwcPzvTp0+u2yJUolUrp1atXkqUjM0ePHr3S40aPHl1+CrpXr15GWFEv9IdNuz/cfvvt5e3DDjtsra7B5kt/2LD9odpzzz2XXr16ZcGCBdliiy3y+OOPZ/fdd6/TeyxevHi513/ooYfW6fXZPOgRm0aP+PDDDzNs2LAkyV577ZW99tqrrkplM6Y/FLM/7LDDDkmW9oXqUd4rM2PGjLz66qvLnQOwqRF2A8BGplOnTjniiCOSLF23afDgwamqqkqycb/RPO2009K8efMkyYUXXrjSqcSeeeaZ3HHHHbVe54orrkiSzJw5MyeccEI+/vjjGo9dsGBBbrnllsyfP3/tC09ywQUXlN/cn3feeZk3b95y++fNm1de16pRo0a54IIL1ul+sLb0h2L2h9GjR+eDDz6o8R5VVVW54oor8uSTTyZZ+uH1wQcfvE51s/nRHzZ8f3jppZfyta99LXPmzEnLli0zdOjQ7Lfffmt0jaeffrrWWhctWpQzzzyz/CF2z549s+22265L2Wym9Ihi9ohPu++++8ojNI3qpq7oD8XsDz179ixvX3DBBSsdvV5ZWZnzzz+/vO/YY49dp7oBNlbmrQCAjVDfvn3zxBNP5L333sv111+fJOnevXu6du1az5XVbKuttso111yT73//+5k4cWL222+/XHrppfn85z+f+fPnZ9iwYRkwYEC22WabzJ07t8Ynpo855ph897vfzU033ZSRI0dm1113zTnnnJMvfvGLad++febMmZO///3vGTVqVIYMGZKPPvoop5122jrV3rVr1/zgBz/IDTfckBdeeCEHH3xwLrnkkuy0006ZMGFCfvKTn2Ts2LFJkh/84Af57Gc/u9LrTJkyJY899tgKX6v261//erl9X/ziF7PzzjuvU+1sfvSH4vWHxx57LDfccEO++tWv5itf+Up22223tG3bNgsWLMjLL7+cu+66K3/961+TLF0r8M477zR7BGtFf9hw/WHChAnp0aNH+QPxa6+9NltssUV55NTKdOzYMR07dlzua7/5zW9y3HHH5bjjjsvhhx+ebt26pU2bNpk9e3ZefPHF3HHHHeUpzDt27JibbrpprWsGPaJ4PeLTqqcwb9So0UYdQlI8+kPx+kO/fv0ycODAvP766/nTn/6U7t2757zzzstee+2Vhg0b5rXXXsttt92W559/vvz9uvDCC9e6boCNmbAbADZCxx9/fM4999zMmzev/AaoCB9mXHTRRXn33Xfzi1/8IpMnT853vvOd5fZ36NAhDzzwQE488cRarzNgwIBUVFTkmmuuyZQpU3L11VfXeGzLli3Loy7XxXXXXZdp06blrrvuytixY3PKKaescEz//v1z7bXX1niNN954I6effnqN+z+97+677xZ2s8b0h2L2hwULFuShhx7KQw89VOMx2223XQYPHpz9999/nWtm86Q/bLj+MGrUqEybNq389+9973urPOeqq65aaU2zZ8/O4MGDM3jw4BrP3WOPPfK///u/ph9lnegRxewR1d5444387W9/S5IcddRR2Wqrrda6Pvg0/aF4/aFJkyYZPnx4evXqlXHjxuWVV17J2WefvdLzd9hhhwwZMiQdOnRY67oBNmamMQeAjVDr1q2Xm5KqYcOGKw1XNkY33XRThg4dmh49eqSioiLNmjXLzjvvnPPPPz9jx45drRCnVCrlhz/8YcaPH5+LL7443bt3T0VFRRo2bJjWrVtnt912S9++ffOb3/wmH3zwQXnqsnXRoEGD/OpXv8rQoUPTq1evdO7cOU2aNEnnzp3Tq1evDBs2LIMGDUqDBn59on7pD8XrD6effnpuvfXWfOMb38hee+2VrbfeOk2aNEmLFi2y3XbbpXfv3vnVr36VN9980/TlrBP9YcP3h3V1ySWXZMCAATnppJPyuc99LltttVUaN26cVq1aZaeddsrJJ5+cBx54IGPHjs1uu+1W3+VScHpE8XrEsn7729+Wt01hTl3TH4rZHz7zmc/kb3/7W/7nf/4nxx13XLp06ZKmTZumSZMm6dSpU4466qjceuuteeWVV7L33nvXd7kA602pqnoBDgBYxssvv5xFixalcePG2XPPPeu7HAAAAABgA6r+fHDRokV5++23kyydaaKioiLbb799evfuXb8FAsTIbgAAAAAAAAAKSNgNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAbCJKpVJKpVKuvvrqFfaNGDGivH/EiBEbvLZP23777VMqldKvX7/6LgU2C/oDAAAAAJsiYTcAwDKGDx+ePn36pEuXLmnatGm6dOmSPn36ZPjw4as8d+rUqRk0aFD+/d//PbvttltatWqVJk2aZOutt85Xv/rV3HHHHZk3b94GeBVAXZk7d26GDBmSc889N/vvv3/atWuXxo0bp3379vnCF76Qq6++OlOmTFnr6w8fPrz8sEFNDyQAAAAAsHKN6rsAAICNQWVlZc4+++z86le/Wu7rkydPzuTJk/Pggw/mzDPPzO23354GDVZ8XvDOO+/MueeemyVLlqywb8qUKZkyZUoef/zx/PznP8/vf//77LnnnuvttQB14+WXX87BBx+c2bNnr7BvxowZGT16dEaPHp0BAwbkjjvuyMknn7xG158zZ07OPffcuioXAAAAYLMj7AaAzcDhhx+eqqqq+i5jo3b55ZeXg+599tknF198cXbaaadMmDAhP/3pTzN27NgMGjQoW265ZX784x+vcP7UqVOzZMmSNGnSJMcee2yOOuqo7LrrrmndunUmTJiQO++8M3/605/y1ltv5cgjj8yYMWPSpUuXDf0yYQX6Q81mzpxZDroPPvjgHHvssenevXvat2+f6dOnZ8iQIbnzzjszc+bM9O3bN23atMnRRx+92te/8sor849//CMdO3bMtGnT1tfLAAAAANhkCbsBgM3e+PHj8/Of/zxJ0r1794wcOTLNmzdPkuy///457rjjcthhh+WFF17Iz372s5xxxhnZeeedl7tGy5Ytc8kll+Siiy7Klltuudy+ffbZJyeccEIuuuii3HjjjZk+fXp++MMf5q677towLxBYKw0aNMhJJ52Uq666KrvtttsK+4866qgcffTR6dOnT5YsWZLzzjsvb731Vkql0iqv/eKLL+YXv/hFmjZtmuuuuy5nnXXW+ngJAAAAAJs0a3YDAJu9gQMHZvHixUmSm2++uRx0V2vRokVuvvnmJMnixYszYMCAFa7xve99LzfccMMKQfeyrr/++my99dZJkiFDhqSysrKuXgKwHhx00EG5//77Vxp0V+vVq1eOP/74JMmECRMyduzYVV53yZIlOeuss7JkyZJcdtllKzw8AwAAAMDqEXYDQD2bO3duWrdunVKplL59+67y+Oeffz6lUimlUim33nrrat1jxIgR5XNGjBixwv5+/fqlVCpl++23T5J8/PHH+eEPf5jdd989LVu2TNu2bXPooYfm3nvvXa37DR8+PMccc0y23HLLtGjRIl27ds2FF16YyZMnr9b51caMGZNzzjkn3bp1S6tWrdKyZct069Yt5557bsaPH1/jeb/+9a/Lr3fixIlZsGBBBg4cmAMPPDAdOnRIqVTK1VdfnSSpqqrKQw89lCTZZZddcuCBB670mgceeGC6deuWJHnooYfWatrnJk2a5OCDD06SfPLJJ/nwww/X+BpsXvSHmm2I/rC6vvSlL5W3J0yYsMrjBwwYkLFjx6Zr16655JJL1uheAAAAAPyLacwBoJ61aNEivXv3zj333JOHHnooc+bMScuWLWs8vjpQatSoUU466aQ6r+fNN9/MV7/61UycOHG5r48aNSqjRo3K888/n1/+8pc1nn/hhReuMPL5rbfeyoABA3LPPfdk2LBhq6yhsrIy3//+9zNw4MAVQuXx48dn/PjxGTRoUG655ZacffbZtV7rn//8Z/r06ZOXXnpppfvfeeedvP/++0mSww47rNZrHXbYYXnzzTczefLkTJw4MTvssMMqX8unLViwoLzdsGHDNT6fzYv+sKIN2R9W15r8u544cWKuuuqqJMltt92Wpk2brtO9AQAAADZnwm4A1l5VZbJobn1XsWE1bpGU6n5ilL59++aee+7JnDlz8tBDD+Xf//3fV3rc4sWL88ADDyRJevTokQ4dOtRpHXPnzk3Pnj3z4Ycf5oorrsiRRx6ZVq1aZezYsfnRj36USZMm5ZZbbknPnj3To0ePFc4fOHBgOcjq3LlzLr300nz+85/P/PnzM3To0AwcODAnnnhi5s6t/efmvPPOK49KPfTQQ9OvX7/suOOOadGiRcaNG5eBAwfm//7v//LNb34znTp1ynHHHVfjtfr3759XXnklp556ak4++eR06tQp7777bjlgeu2118rH7rLLLrXWtez+119/fY3D7kWLFuX5559Pkmy11VapqKhYo/OLpKqyMvNmz6rvMjao5q1ap9RAf9iU+sPqeuaZZ8rbu+66a63HnnvuuZk7d2769u2bI444Yo3uAwAAAMDyhN0ArL1Fc5OR19V3FRvWoZcnTVrV+WWPPPLIdOzYMdOmTcvgwYNrDLOefPLJTJs2LUlWa0rjNTV9+vQsXLgwzz//fHbffffy1/fbb78cfvjh2WOPPTJ//vzceuutK4RZ06ZNy+WXX54k+cxnPpPRo0enU6dO5f2HHnpoevTokR49epTXx16ZJ554ohxkDRo0KP37919u//7775//+I//yNe+9rX8+c9/zvnnn59jjjkmjRqt/Neal19+eYXr7LvvvuXtSZMmlbe7dOlSY11Jsu2225a333vvvVqPXZk77rgj//znP5MkJ5544hqfXyTzZs/KbWfV/c/oxuzcO+9NizZb1Pl19Yd/2dD9YXWMGzcuQ4cOTZLssccetYbdgwcPzmOPPZa2bdvmxhtvXKP7AAAAALAia3YDwEagUaNGOfnkk5Mkf/rTn2pcy7l6iuJWrVqlV69e66WWa665Zrkgq9rOO++c3r17J0n+8pe/rLD/N7/5TXlE5n/9138tF2RVO+KII3LWWWfVev8bbrghSfJv//ZvKwRZ1Zo1a1aeKvkf//hHnn766Rqvd8QRR9R4nSSZNetfo49btar9QYZlp4+ePXt2rcd+2ttvv10O+1q1apVLL710jc5n86U//MuG7g+rsmDBgpx55plZsmRJkuS662p+AGzGjBn53ve+lyS5/vrr07Fjx7W+LwAAAABLCbsBYCNRPRJz0aJF+d3vfrfC/nnz5uXBBx9MkvTu3TstWrSo8xpKpVKNo0aTpSM4k6Whzccff7zcvieffDJJ0q5du1qDtjPOOKPGfTNnzsyIESOSJCeccEKtte66667laZqrpwZfmVWNcJ0/f355u0mTJrUeu+zUxvPmzav12GXNnTs3xx9/fD755JMkyc0335zOnTuv9vmgP9RPf1iV73znO3nhhReSJKeddlp69uxZ47Hf//73M23atBxwwAGrXEscAAAAgNUj7AaAjcQBBxyQnXbaKcm/Rmgu6+GHHy6PJl4fUxQnSYcOHdK+ffsa9y+7xvSyI6KT5JVXXkmS7LPPPjVOGZwke++9d42h8tixY1NZWZkk+frXv55SqVTrn+opwadMmVLj/fbcc88a9yVLR4FWW7hwYa3HLliwoLzdvHnzWo+ttnjx4px44okZN25ckqXr9fbr12+1zoVq+kP99IfaXH/99Rk0aFCSpdOn33LLLTUeO2LEiNx9991p2LBh/vu//zsN1sPa7gAAAACbI2t2A7D2GrdYuob15qRx3Y+WXFbfvn3zn//5n3nuuecyceLEbL/99uV91QFXx44dc+SRR66X+69qNOiyAU31tL3VZsyYkSSrnJq3UaNGqaioWGkAVb3e8Jqqnh55Zdq1a1frua1bty5vr2pq8jlz5pS3VzXleZJUVVWlX79+GTZsWJLkpJNOKk+vvKlr3qp1zr1zxVB2U9a8VetVH7QO9IcN3x9qcvvtt+eyyy5Lkuyyyy4ZNmzYcsscLGvBggX55je/mSQ5//zzs/fee6/VPQEAAABYkbAbgLVXapA0WXXgx+qrDrOqqqpy3333ldd1njFjRh5//PEkycknn1zryMj6ViqV1vrcZQOy22+/PQcddNBqnVdbYNWwYcNaz+3SpUt5e9KkSbUe+95775W3t91221XW9e1vf7scQh599NG55557NpsRnaUGDdKizRb1XcYmRX/Y8P1hZe67775861vfSpJ85jOfyRNPPFGeMn1lhgwZkvHjx6dx48bZbbfd8r//+78rHPPaa6+Vt1999dXyMQcccEB22GGHNa4RAAAAYHOx8X4SBgCboa5du6Z79+554YUXMnjw4HKY9fvf/748xfb6mqJ4XbVr1y5TpkzJ1KlTaz1u8eLF5VGen7bsFMktWrTI5z73uTqtcWV222238vYbb7xR67HL7t91111rPfaSSy7JbbfdliQ59NBD84c//CGNGzdeh0rZ3OkPG74/fNrDDz+cU089NZWVldl6663z1FNPLffAzMpUL3+waNGinHXWWau8xx/+8If84Q9/SJLcfffdwm4AAACAWmweQ4sAoECqw6pXX301L7/8cpJ/TVG800475YADDqi32mqzxx57JEleeumlLF68uMbjxo0bV+Pa2HvvvXd55Oezzz5b90WuxA477JDOnTsnSZ555plajx05cmSSZJtttlluCulPu/baa/PTn/40ydK1fB999NHVXuMbaqM/bNj+sKynnnoqJ510UhYvXpz27dvniSeeKK+jDgAAAED9EHYDwEbmlFNOKU+te++992bSpEkZNWpUko131GaS8jrBM2bMyCOPPFLjcXfddVeN+7bccssceOCBSZLBgwdn+vTpdVvkSpRKpfTq1SvJ0pHbo0ePXulxo0ePLo/s7tWrV43TMd9000258sorkywN+B577LHl1gWHdaE/bNj+UO25555Lr169smDBgmyxxRZ5/PHHs/vuu6/Wuf369UtVVVWtf55++uny8VdddVX56/369VtPrwgAAABg0yDsBoCNTKdOnXLEEUckWbo27ODBg1NVVZVk4w6zTjvttPLo5QsvvHCl0xU/88wzueOOO2q9zhVXXJEkmTlzZk444YR8/PHHNR67YMGC3HLLLZk/f/7aF57kggsuKAeI5513XubNm7fc/nnz5uW8885LkjRq1CgXXHDBSq9z991353vf+16SpVNOP/HEE6moqFin2mBZ+sOG7w8vvfRSvva1r2XOnDlp2bJlhg4dmv3222+drgkAAABA3bBmNwBshPr27Zsnnngi7733Xq6//vokSffu3dO1a9d6rqxmW221Va655pp8//vfz8SJE7Pffvvl0ksvzec///nMnz8/w4YNy4ABA7LNNttk7ty5NY7KPOaYY/Ld7343N910U0aOHJldd90155xzTr74xS+mffv2mTNnTv7+979n1KhRGTJkSD766KOcdtpp61R7165d84Mf/CA33HBDXnjhhRx88MG55JJLstNOO2XChAn5yU9+krFjxyZJfvCDH+Szn/3sCtd48MEHc9ZZZ6Wqqipt2rTJTTfdlOnTp9c6+nSHHXZIy5Yt16l2Nj/6w4brDxMmTEiPHj3Kofq1116bLbbYIq+++mqN53Ts2DEdO3Zc63sCAAAAsPqE3QCwETr++ONz7rnnZt68eeWQZWMetVntoosuyrvvvptf/OIXmTx5cr7zne8st79Dhw554IEHcuKJJ9Z6nQEDBqSioiLXXHNNpkyZkquvvrrGY1u2bFkelb0urrvuukybNi133XVXxo4dm1NOOWWFY/r3759rr712pec/+OCDWbJkSZKlo06PPvroVd7z6aefzuGHH75OdbP50R82XH8YNWpUpk2bVv579cwNtbnqqqtqrQkAAACAumMacwDYCLVu3To9e/Ys/71hw4YrDV83RjfddFOGDh2aHj16pKKiIs2aNcvOO++c888/P2PHjs3++++/ymuUSqX88Ic/zPjx43PxxRene/fuqaioSMOGDdO6devstttu6du3b37zm9/kgw8+KE+PvC4aNGiQX/3qVxk6dGh69eqVzp07p0mTJuncuXN69eqVYcOGZdCgQWnQwK9P1C/9YcP3BwAAAAA2TqWq6kX+AGAZL7/8chYtWpTGjRtnzz33rO9yAAAAAIANqPrzwUWLFuXtt99OkrzxxhupqKjI9ttvn969e9dvgQAxshsAAAAAAACAAhJ2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgNQq6qqqvouAQAAAADYwHwuCBSBsBuAlWrYsGGSZMmSJX6xBQAAAIDNSFVVVZYsWZIkqaysrOdqAGom7AZgpZo1a5Zk6S+2s2bNqudqAAAAAIANZdasWeUBMAsXLqznagBqJuwGYKXatWtX3p42bZrR3QAAAACwGaiqqsq0adPKfzcQBtiYCbsBWKktttgipVIpSfLJJ59kwoQJmTlzptAbAAAAADZBVVVVmTlzZiZMmJBPPvkkydIpzGfPnl3PlQHUrFF9FwDAxqlhw4bZcccd8/bbb6eqqiqffPJJPvnkk5RKpTRs2LAchAMAAAAAxVa9RveyA12qqqry/vvvG/wCbNSE3QDUqG3btssF3snSX3IXL15cz5UBAAAAAOtLZWVl3n///cyZM2e5r1dVVZUHwwBsDITdANSqbdu22WuvvfLJJ59k/PjxWbx4caqqqtKoUSOjuwEAAABgE1FZWZmFCxdm1qxZmT179gojuhcuXJjFixenSZMmadq0aT1VCbA8YTcAq9SwYcNUVFSkbdu2efHFF/P666+noqIinTp1qu/SAAAAAIAN4KOPPkqDBg3SunXrdO7cub7LAUiSNKjvAgAoju222y6lUint27fP9OnTM3Xq1CxatKi+ywIAAAAA1pNFixZl2rRpmT59eioqKtKgQYNst9129V0WQBIjuwFYAy1atMjuu++eZOn6PNOnT8+0adPSpEmTNGjg+SkAAAAA2JRUVlaWB7u0b98+W2+9dbp165Y2bdrUc2UASwm7AVgje+65Z3m9ni233DKzZs3KggULUllZWc+VAQAAAAB1qUGDBmnSpEnatGmThg0bplu3btl3333ruyyAslJVdWIBAGvg448/zrvvvpvJkydn3rx5WbJkSX2XBAAAAADUoYYNG6Z58+bp3Llztttuu7Rt2zalUqm+ywIoE3YDAAAAAAAAUDgWWAUAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOP8/NmgZTq4pxfsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Get Meta data\n", + "dataset.get_landcover(buffers=[50, 150, 500], aggregate=True)\n", + "# Create analysis from the dataset\n", + "ana = dataset.get_analysis(add_gapfilled_values=True)\n", + "\n", + "# Make diurnal cycle analysis with plot\n", + "ax4 = ana.get_diurnal_statistics(colorby='name',\n", + " obstype='temp',\n", + " stations=None, startdt=None, enddt=None,\n", + " plot=True,\n", + " title='Hourly average temperature diurnal cycle',\n", + " y_label=None, legend=True,\n", + " errorbands=True, _return_all_stats=False)\n", + "\n", + "fig = plt.gcf()\n", + "fig.set_dpi(200)\n", + "fig.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d84febac-3bd7-4e06-b787-136641b613dc", + "metadata": {}, + "source": [ + "## Interactive spatial" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "3211be17-f66f-4e1d-9fa2-b56c2b54c871", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset.make_gee_plot(gee_map='worldcover')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/.doctrees/nbsphinx/paper_paper_figures_11_1.png b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_11_1.png new file mode 100644 index 00000000..41e483d1 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_11_1.png differ diff --git a/docs/_build/.doctrees/nbsphinx/paper_paper_figures_13_0.png b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_13_0.png new file mode 100644 index 00000000..14286fd1 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_13_0.png differ diff --git a/docs/_build/.doctrees/nbsphinx/paper_paper_figures_7_0.png b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_7_0.png new file mode 100644 index 00000000..bcfed3a1 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_7_0.png differ diff --git a/docs/_build/.doctrees/nbsphinx/paper_paper_figures_9_1.png b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_9_1.png new file mode 100644 index 00000000..f3a395a1 Binary files /dev/null and b/docs/_build/.doctrees/nbsphinx/paper_paper_figures_9_1.png differ diff --git a/docs/_build/.doctrees/paper/index.doctree b/docs/_build/.doctrees/paper/index.doctree new file mode 100644 index 00000000..5fa4e9f6 Binary files /dev/null and b/docs/_build/.doctrees/paper/index.doctree differ diff --git a/docs/_build/.doctrees/paper/paper.doctree b/docs/_build/.doctrees/paper/paper.doctree new file mode 100644 index 00000000..389f47dc Binary files /dev/null and b/docs/_build/.doctrees/paper/paper.doctree differ diff --git a/docs/_build/.doctrees/paper/paper_figures.doctree b/docs/_build/.doctrees/paper/paper_figures.doctree new file mode 100644 index 00000000..b5f2d2bb Binary files /dev/null and b/docs/_build/.doctrees/paper/paper_figures.doctree differ diff --git a/docs/_build/.doctrees/readme_link.doctree b/docs/_build/.doctrees/readme_link.doctree new file mode 100644 index 00000000..fc39f167 Binary files /dev/null and b/docs/_build/.doctrees/readme_link.doctree differ diff --git a/docs/_build/.doctrees/special_topics.doctree b/docs/_build/.doctrees/special_topics.doctree new file mode 100644 index 00000000..500d8d50 Binary files /dev/null and b/docs/_build/.doctrees/special_topics.doctree differ diff --git a/docs/_build/.doctrees/template_mapping.doctree b/docs/_build/.doctrees/template_mapping.doctree new file mode 100644 index 00000000..7449a0cf Binary files /dev/null and b/docs/_build/.doctrees/template_mapping.doctree differ diff --git a/docs/_build/.doctrees/testfile.doctree b/docs/_build/.doctrees/testfile.doctree new file mode 100644 index 00000000..212ddf5e Binary files /dev/null and b/docs/_build/.doctrees/testfile.doctree differ diff --git a/docs/_build/MetObs_documentation.html b/docs/_build/MetObs_documentation.html new file mode 100644 index 00000000..c022dfea --- /dev/null +++ b/docs/_build/MetObs_documentation.html @@ -0,0 +1,154 @@ + + + + + + + MetObs toolkit Documentation for Users — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

MetObs toolkit Documentation for Users

+

Here you can find the documentation on the classes, functions, and methods in +the MetObs toolkit to be used by a user.

+ + + + + + + + + + + + + + + + + + +

metobs_toolkit.dataset_settings_updater

Extension of the Dataset class (methods for updating settings).

metobs_toolkit.dataset

This module contains the Dataset class and all its methods.

metobs_toolkit.station

This module contains the Station class that inherits all methods of the Dataset class.

metobs_toolkit.analysis

This module contains the Analysis class and all its methods.

metobs_toolkit.modeldata

This module contains the Modeldata class and all its methods.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/MetObs_documentation_full.html b/docs/_build/MetObs_documentation_full.html new file mode 100644 index 00000000..b30b47e6 --- /dev/null +++ b/docs/_build/MetObs_documentation_full.html @@ -0,0 +1,139 @@ + + + + + + + MetObs toolkit Documentation for developers — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

MetObs toolkit Documentation for developers

+

Here you can find the documentation on all classes, functions, and methods in +the MetObs toolkit

+

Please report Bugs and request on the Github issues .

+ + + + + + +

metobs_toolkit

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.analysis.Analysis.html b/docs/_build/_autosummary/metobs_toolkit.analysis.Analysis.html new file mode 100644 index 00000000..af9d3c0e --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.analysis.Analysis.html @@ -0,0 +1,544 @@ + + + + + + + metobs_toolkit.analysis.Analysis — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.analysis.Analysis

+
+
+class metobs_toolkit.analysis.Analysis(obsdf, metadf, settings, data_template)[source]
+

Bases: object

+

The Analysis class contains methods for analysing observations.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

aggregate_df

Aggregate observations to a (list of) categories.

apply_filter

Filter an Analysis by a user definde string expression.

get_aggregated_cycle_statistics

Create an average cycle for an aggregated categorie.

get_anual_statistics

Create an anual cycle for aggregated groups.

get_diurnal_statistics

Create an average diurnal cycle for the observations.

get_diurnal_statistics_with_reference

Create an average diurnal cycle for the observation differences of a reference station.

get_lc_correlation_matrices

Compute pearson correlation coeficients.

plot_correlation_heatmap

Make a heatmap plot af a correaltion matrix.

plot_correlation_variation

Create correlation scatter plot.

subset_period

Subset the observations of the Analysis to a specific period.

+
+
+aggregate_df(df=None, agg=['lcz', 'hour'], method='mean')[source]
+

Aggregate observations to a (list of) categories.

+

The output will be a dataframe that is aggregated to one, or more +categories. A commen example is aggregating to LCZ’s.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame or None) – The observations to aggregate. If None, the df attribute of the +Analysis instance is used. The default is None.

  • +
  • agg (list, optional) – The list of columnnames to aggregate to. If ‘lcz’ is included, the +lcz information is extracted from the Analysis.metadf. The default +is [‘lcz’, ‘datetime’].

  • +
  • method (str, optional) – list of functions and/or function names, e.g. [np.sum, ‘mean’]. The +default is ‘mean’.

  • +
+
+
Returns:
+

A dataframe with the agg columns as an index. The values are the +aggregated values.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+

Note

+

Present columns that ar non-numeric and are not in the agg list, are +not present in the return, since these values cannot be aggregated.

+
+
+ +
+
+apply_filter(expression)[source]
+

Filter an Analysis by a user definde string expression.

+

This can be used to filter the observation to specific meteorological +conditions (i.e. low windspeeds, high humidity, cold temperatures, …)

+

The filter expression contains only columns present in the Analysis.df +and/or the Analysis.metadf.

+

A New Analysis object is returned.

+
+
Parameters:
+

expression (str) – A filter expression using columnnames present in either df or metadf. +The following timestamp derivatives can be used as well: [minute, hour, +month, year, day_of_year, week_of_year, season]. The quarry_str may +contain number and expressions like <, >, ==, >=, *, +, …. Multiple filters +can be combine to one expression by using & (AND) and | (OR).

+
+
Returns:
+

filtered_analysis – The filtered Analysis.

+
+
Return type:
+

metobs_toolkit.Analysis

+
+
+
+

Note

+

All timestamp derivative values are numeric except for ‘season’, +possible values are [‘winter’, ‘spring’, ‘summer’, ‘autumn’].

+
+
+

Note

+

Make shure to use ” of ‘ to indicate string values in the expression if +needed.

+
+
+ +
+
+get_aggregated_cycle_statistics(obstype='temp', aggregation=['lcz', 'datetime'], aggregation_method='mean', horizontal_axis='hour', stations=None, startdt=None, enddt=None, plot=True, title=None, y_label=None, legend=True, errorbands=False, verbose=False, _obsdf=None, _show_zero_line=False)[source]
+

Create an average cycle for an aggregated categorie.

+

A commen example is to aggregate to the LCZ’s, so to get the diurnal +cycle per LCZ rather than per station.

+

(In the plot, each aggregated category different from datetime, is represed by a line.)

+
+
Parameters:
+
    +
  • obstype (str, optional) – Element of the metobs_toolkit.observation_types The default is ‘temp’.

  • +
  • aggregation (list, optional) – List of variables to aggregate to. These variables should either a +categorical observation type, a categorical column in the metadf or +a time aggregation. All possible time aggreagetions are: [‘minute’, +‘hour’, ‘month’, ‘year’, ‘day_of_year’, +‘week_of_year’, ‘season’]. The default is [‘lcz’, ‘datetime’].

  • +
  • aggregation_method (str, optional) – Which (numpy) function is used to aggregate the observations. The default is ‘mean’.

  • +
  • horizontal_axis (str, optional) – Which aggregated value will be represented on the horizontal axis +of the plot. The default is ‘hour’.

  • +
  • stations (list, optional) – List of station names to use. If None, all present stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – The start datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – The end datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • plot (bool, optional) – If True, a diurnal plot is made. The default is True.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
  • errorbands (bool, optional) – If True, the std is representd in the plot by colored bands. The default is False.

  • +
  • verbose (True, optional) – If True, an additional dataframe with aggregation information is returned . The default is False.

  • +
+
+
Returns:
+

df – The dataframe containing the aggregated values.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+get_anual_statistics(groupby=['name'], obstype='temp', agg_method='mean', stations=None, startdt=None, enddt=None, plot=True, errorbands=False, title=None, y_label=None, legend=True, _return_all_stats=False)[source]
+

Create an anual cycle for aggregated groups.

+
+
(In the plot, unique combination of groupby categories is presented

as a line.)

+
+
+
+
Parameters:
+
    +
  • groupby (list string, optional) – Variables to aggregate to. These can be columns in the metadf, or +time aggregations (‘hour’, ‘year’, ‘week_of_year’, …]. ‘name’ will +aggregate to the stationnames. The default is [‘name’].

  • +
  • obstype (str, optional) – Element of the metobs_toolkit.observation_types The default is ‘temp’.

  • +
  • agg_method (str, optional) – Function names to use for aggregation, e.g. [np.sum, ‘mean’]. The +default is ‘mean’.

  • +
  • stations (list, optional) – List of station names to use. If None, all present stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – The start datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – The end datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • plot (bool, optional) – If True, an anual plot is made. The default is True.

  • +
  • errorbands (bool, optional) – If True, the std is representd in the plot by colored bands. The default is False.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
+
+
Returns:
+

df – The dataframe containing the aggregated values.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+get_diurnal_statistics(colorby='name', obstype='temp', stations=None, startdt=None, enddt=None, plot=True, title=None, y_label=None, legend=True, errorbands=False, _return_all_stats=False)[source]
+

Create an average diurnal cycle for the observations.

+

(In the plot, each station is represed by a line.)

+
+
Parameters:
+
    +
  • colorby ('name' or 'lcz', optional) – If ‘name’ the plotted lines will be colored per station, if ‘lcz’ the colors represent the stations lcz. The default is ‘name’.

  • +
  • obstype (str, optional) – Element of the metobs_toolkit.observation_types The default is ‘temp’.

  • +
  • stations (list, optional) – List of station names to use. If None, all present stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – The start datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – The end datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • plot (bool, optional) – If True, an diurnal plot is made. The default is True.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
  • errorbands (bool, optional) – If True, the std is representd in the plot by colored bands. The default is False.

  • +
+
+
Returns:
+

df – The dataframe containing the aggregated values.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+get_diurnal_statistics_with_reference(refstation, colorby='name', obstype='temp', tollerance='30T', stations=None, startdt=None, enddt=None, plot=True, title=None, y_label=None, legend=True, errorbands=False, show_zero_horizontal=True, _return_all_stats=False)[source]
+

Create an average diurnal cycle for the observation differences of a reference station.

+

All observational values are converted to differences with the closest +(in time) reference observation. No reference observation is found when +the time difference is larger than the tollerance.

+

(In the plot, each station is represed by a line.)

+
+
Parameters:
+
    +
  • refstation (str,) – Name of the station to use as a reference.

  • +
  • colorby ('name' or 'lcz', optional) – If ‘name’ the plotted lines will be colored per station, if ‘lcz’ the colors represent the stations lcz. The default is ‘name’.

  • +
  • obstype (str, optional) – Element of the metobs_toolkit.observation_types The default is ‘temp’.

  • +
  • tollerance (Timedelta or str, optional) – The tollerance string or object representing the maximum translation in time to find a reference +observation for each observation. Ex: ‘5T’ is 5 minutes, ‘1H’, is one hour. The default is ‘30T’.

  • +
  • stations (list, optional) – List of station names to use. If None, all present stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – The start datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – The end datetime of the observations to use. If None, all timestamps will be used. The default is None.

  • +
  • plot (bool, optional) – If True, a diurnal plot is made. The default is True.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
  • errorbands (bool, optional) – If True, the std is representd in the plot by colored bands. The upper bound represents +1 x std, the lower bound -1 x std. The default is False.

  • +
  • show_zero_horizontal (bool, optional) – If True a horizontal line is drawn in the plot at zero. The default is True.

  • +
+
+
Returns:
+

df – The dataframe containing the aggregated values.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+get_lc_correlation_matrices(obstype=['temp'], groupby_labels=['hour'])[source]
+

Compute pearson correlation coeficients.

+

A method to compute the Pearson correlation between an obervation type +and present landcover fractions in the metadf.

+

The correlations are computed per group as defined by unique combinations +of the groupby_labels.

+

A dictionary is returnd where each key represents a unique combination of +the groupby_labels. The value is a dictionary with the following keys +and values:

+
    +
  • cor matrix: the Pearson correlation matrix

  • +
  • significance matrix: the significance (p-)values of the correlations.

  • +
  • combined matrix: A human readable combination of the correlations and their p values. Indicate by *, ** or *** representing p-values < 0.05, 0.01 and 0.001 respectively.

  • +
+

This dictionary is also stored as a lc_cor_dict attribute.

+
+
Parameters:
+
    +
  • obstype (str, or list optional) – The observation type(s) to compute the correlations on. The default is [‘temp’].

  • +
  • groupby_labels (list, optional) – List of variables to form one group, resulting in one correlation. +These variables should either a categorical observation type, a categorical column in the metadf or +a time aggregation. All possible time aggreagetions are: [‘minute’, +‘hour’, ‘month’, ‘year’, ‘day_of_year’, +‘week_of_year’, ‘season’]. The default is [‘hour’].

  • +
+
+
Returns:
+

cor_dict – A nested dictionary with unique combinations of groupby values.

+
+
Return type:
+

dict

+
+
+
+ +
+
+plot_correlation_heatmap(groupby_value=None, title=None, _return_ax=False)[source]
+

Make a heatmap plot af a correaltion matrix.

+

To specify which correlation matrix to plot, specify the group value +using the groupby_value argument.

+

All possible groupby_values are the keys of the lc_cor_dict attribute.

+
+
Parameters:
+
    +
  • groupby_value (str, num, None, optional) – A groupby value to indicate which correlation matrix to visualise. +If None is given, the first groupby value that is present is +chosen.The default is None.

  • +
  • title (str, optional) – Title of the figure. If None, a default title is constructed.The +default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

To list all possible groupby_values, one can use +` print(Analysis_instance.lc_cor_dict.keys())`

+
+
+ +
+
+plot_correlation_variation(title=None)[source]
+

Create correlation scatter plot.

+

Make a scatter plot of the correlations to visualise differences between +multiple group values.

+

Group values are represented by the horizontal axes, and correlations +on the vertical axe.

+

All correlations, that are not constant, are plotted as scatters with +unique colors.

+

The scatter marker indicates the p-value of the correlations.

+
+
Parameters:
+

title (str, optional) – Title of the figure. If None, a default title is constructed. The +default is None.

+
+
Return type:
+

None.

+
+
+
+

Note

+

If to many possible group values exist, one can use the apply_filter() +method to reduce the group values.

+
+
+ +
+
+subset_period(startdt, enddt)[source]
+

Subset the observations of the Analysis to a specific period.

+

The same timezone is assumed as the data.

+
+
Parameters:
+
    +
  • startdt (datetime.datetime) – The start datetime to filter the observations to.

  • +
  • enddt (datetime.datetime) – The end datetime to filter the observations to.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.analysis.filter_data.html b/docs/_build/_autosummary/metobs_toolkit.analysis.filter_data.html new file mode 100644 index 00000000..7d466b78 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.analysis.filter_data.html @@ -0,0 +1,189 @@ + + + + + + + metobs_toolkit.analysis.filter_data — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.analysis.filter_data

+
+
+metobs_toolkit.analysis.filter_data(df, metadf, quarry_str)[source]
+

Filter a dataframe by a user definde string expression.

+

This can be used to filter the observation to specific meteorological +conditions (i.e. low windspeeds, high humidity, cold temperatures, …)

+

The filter expression contains only columns present in the df and/or the +metadf.

+

The filtered df and metadf are returned

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The dataframe containing all the observations to be filterd.

  • +
  • metadf (pandas.DataFrame) – The dataframe containig all the metadata per station.

  • +
  • quarry_str (str) – A filter expression using columnnames present in either df or metadf. +The following timestamp derivatives can be used as well: [minute, hour, +month, year, day_of_year, week_of_year, season]. The quarry_str may +contain number and expressions like <, >, ==, >=, *, +, …. Multiple filters +can be combine to one expression by using & (AND) and | (OR).

  • +
+
+
Returns:
+

    +
  • filter_df (pandas.DataFrame) – The filtered df.

  • +
  • filter_metadf (pandas.DataFrame) – The filtered metadf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.analysis.get_seasons.html b/docs/_build/_autosummary/metobs_toolkit.analysis.get_seasons.html new file mode 100644 index 00000000..a22e7ec7 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.analysis.get_seasons.html @@ -0,0 +1,185 @@ + + + + + + + metobs_toolkit.analysis.get_seasons — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.analysis.get_seasons

+
+
+metobs_toolkit.analysis.get_seasons(datetimeseries, start_day_spring='01/03', start_day_summer='01/06', start_day_autumn='01/09', start_day_winter='01/12')[source]
+

Convert a datetimeseries to a season label (i.g. categorical).

+
+
Parameters:
+
    +
  • datetimeseries (datetime.datetime) – The timeseries that you want to split up in seasons.

  • +
  • start_day_spring (str , optional) – Start date for spring, default is ‘01/03’ and if changed the input +should have the same format as the default value.

  • +
  • start_day_summer (str , optional) – Start date for summer, default is ‘01/06’ and if changed the input +should have the same format as the default value.

  • +
  • start_day_autumn (str , optional) – Start date for autumn, default is ‘01/09’ and if changed the input +should have the same format as the default value.

  • +
  • start_day_winter (str , optional) – Start date for winter, default is ‘01/12’ and if changed the input +should have the same format as the default value.

  • +
+
+
Returns:
+

output – A obtained dataframe that has where a label for the seasons has been added.

+
+
Return type:
+

dataframe

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.analysis.html b/docs/_build/_autosummary/metobs_toolkit.analysis.html new file mode 100644 index 00000000..a4adeef8 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.analysis.html @@ -0,0 +1,178 @@ + + + + + + + metobs_toolkit.analysis — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.analysis

+

This module contains the Analysis class and all its methods.

+

A Analysis holds a set of ‘good’ observations and the methods will analyse it.

+

Functions

+ + + + + + + + + +

filter_data

Filter a dataframe by a user definde string expression.

get_seasons

Convert a datetimeseries to a season label (i.g.

+

Classes

+ + + + + + +

Analysis

The Analysis class contains methods for analysing observations.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.check_template_compatibility.html b/docs/_build/_autosummary/metobs_toolkit.data_import.check_template_compatibility.html new file mode 100644 index 00000000..6074388a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.check_template_compatibility.html @@ -0,0 +1,183 @@ + + + + + + + metobs_toolkit.data_import.check_template_compatibility — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.check_template_compatibility

+
+
+metobs_toolkit.data_import.check_template_compatibility(template, df_columns, filetype)[source]
+

Log template compatiblity with dataframe columns.

+
+
Parameters:
+
    +
  • template (dict) – Template dictionary.

  • +
  • df_columns (pd.index) – Dataframe columns to map.

  • +
  • filetype (str) – ‘data’, ‘metadata’ or other description of the dataframe.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.compress_dict.html b/docs/_build/_autosummary/metobs_toolkit.data_import.compress_dict.html new file mode 100644 index 00000000..e183d724 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.compress_dict.html @@ -0,0 +1,188 @@ + + + + + + + metobs_toolkit.data_import.compress_dict — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.compress_dict

+
+
+metobs_toolkit.data_import.compress_dict(nested_dict, valuesname)[source]
+

Unnest dictionary info for valuename.

+

This function unnests a nested dictionary for a specific valuename that is a key in the nested dict.

+
+
Parameters:
+
    +
  • nested_dict (dict) – Nested dictionary

  • +
  • valuesname (str) – Nested dict Key-name of nested dict.

  • +
+
+
Returns:
+

returndict – A dictionarry where the keys are kept that have the valuesname as a nesteddict key, +and values are the values of the values of the valuesname. +{[key-nested_dict-if-exists]: nested_dict[key-nested_dict-if-exists][valuesname]}

+
+
Return type:
+

DICT

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.extract_options_from_template.html b/docs/_build/_autosummary/metobs_toolkit.data_import.extract_options_from_template.html new file mode 100644 index 00000000..d3e7e2ea --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.extract_options_from_template.html @@ -0,0 +1,187 @@ + + + + + + + metobs_toolkit.data_import.extract_options_from_template — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.extract_options_from_template

+
+
+metobs_toolkit.data_import.extract_options_from_template(templ, known_obstypes)[source]
+

Filter out options settings from the template dataframe.

+
+
Parameters:
+
    +
  • templ (pandas.DataFrame()) – Template in a dataframe structure

  • +
  • known_obstypes (list) – A list of known observation types. These consist of the default +obstypes and the ones added by the user.

  • +
+
+
Returns:
+

    +
  • new_templ (pandas.DataFrame()) – The template dataframe with optioncolumns removed.

  • +
  • opt_kwargs (dict) – Options and settings present in the template dataframe.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.html b/docs/_build/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.html new file mode 100644 index 00000000..23b4fb02 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.html @@ -0,0 +1,171 @@ + + + + + + + metobs_toolkit.data_import.find_compatible_templatefor — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.find_compatible_templatefor

+
+
+metobs_toolkit.data_import.find_compatible_templatefor(df_columns, template_list)[source]
+

Test if template is compatible with dataaframe columns.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.html b/docs/_build/_autosummary/metobs_toolkit.data_import.html new file mode 100644 index 00000000..fcd2d79f --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.html @@ -0,0 +1,198 @@ + + + + + + + metobs_toolkit.data_import — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import

+

Created on Thu Sep 22 16:24:06 2022

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

check_template_compatibility

Log template compatiblity with dataframe columns.

compress_dict

Unnest dictionary info for valuename.

extract_options_from_template

Filter out options settings from the template dataframe.

find_compatible_templatefor

Test if template is compatible with dataaframe columns.

import_data_from_csv

Import data as a dataframe.

import_metadata_from_csv

Import metadata as a dataframe.

read_csv_template

Import a template from a csv file.

template_to_package_space

Invert template dictionary.

wide_to_long

Convert a wide dataframe to a long format.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.import_data_from_csv.html b/docs/_build/_autosummary/metobs_toolkit.data_import.import_data_from_csv.html new file mode 100644 index 00000000..108b76d6 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.import_data_from_csv.html @@ -0,0 +1,193 @@ + + + + + + + metobs_toolkit.data_import.import_data_from_csv — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.import_data_from_csv

+
+
+metobs_toolkit.data_import.import_data_from_csv(input_file, template, long_format, obstype, obstype_units, obstype_description, known_obstypes, kwargs_data_read)[source]
+

Import data as a dataframe.

+
+
Parameters:
+
    +
  • input_file (str) – Path to the data (csv) file.

  • +
  • template (dict) – template dictionary.

  • +
  • long_format (bool) – If True, a long format is assumed else wide.

  • +
  • obstype (str) – If format is wide, this is the observationtype.

  • +
  • obstype_units (str) – If format is wide, this is the observation unit.

  • +
  • obstype_description (str) – If format is wide, this is the observation description.

  • +
  • known_obstypes (list) – A list of known observation types. These consist of the default +obstypes and the ones added by the user.

  • +
  • kwargs_data_read (dict) – Kwargs passed to the pd.read_csv() function.

  • +
+
+
Returns:
+

    +
  • df (pandas.DataFrame()) – A long dataframe containing the observations.

  • +
  • invtemplate (dict) – Template in toolkit space.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.html b/docs/_build/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.html new file mode 100644 index 00000000..a56923e2 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.html @@ -0,0 +1,187 @@ + + + + + + + metobs_toolkit.data_import.import_metadata_from_csv — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.import_metadata_from_csv

+
+
+metobs_toolkit.data_import.import_metadata_from_csv(input_file, template, kwargs_metadata_read)[source]
+

Import metadata as a dataframe.

+
+
Parameters:
+
    +
  • input_file (str) – Path to the metadata (csv) file.

  • +
  • template (dict) – Template dictionary.

  • +
  • kwargs_metadata_read (dict) – Extra user-specific kwargs to pass to the pd.read_csv() function.

  • +
+
+
Returns:
+

df – The metadata in a pandas dataframe with columnnames in the toolkit +standards.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.read_csv_template.html b/docs/_build/_autosummary/metobs_toolkit.data_import.read_csv_template.html new file mode 100644 index 00000000..e1f7f362 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.read_csv_template.html @@ -0,0 +1,191 @@ + + + + + + + metobs_toolkit.data_import.read_csv_template — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.read_csv_template

+
+
+metobs_toolkit.data_import.read_csv_template(file, known_obstypes, data_long_format=True)[source]
+

Import a template from a csv file.

+

Format options will be stored in a seperate dictionary. (Because these +do not relate to any of the data columns.)

+
+
Parameters:
+
    +
  • file (str) – Path to the csv template file.

  • +
  • known_obstypes (list) – A list of known observation types. These consist of the default +obstypes and the ones added by the user.

  • +
  • data_long_format (bool, optional) – If True, this format structure has priority over the format structure +in the template file. The default is True.

  • +
+
+
Returns:
+

    +
  • template (dict) – The template related to the data/metadata columns.

  • +
  • opt_kwargs (dict) – Options and settings present in the template.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.template_to_package_space.html b/docs/_build/_autosummary/metobs_toolkit.data_import.template_to_package_space.html new file mode 100644 index 00000000..771c7c2e --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.template_to_package_space.html @@ -0,0 +1,171 @@ + + + + + + + metobs_toolkit.data_import.template_to_package_space — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.template_to_package_space

+
+
+metobs_toolkit.data_import.template_to_package_space(specific_template)[source]
+

Invert template dictionary.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.data_import.wide_to_long.html b/docs/_build/_autosummary/metobs_toolkit.data_import.wide_to_long.html new file mode 100644 index 00000000..581e9eeb --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.data_import.wide_to_long.html @@ -0,0 +1,189 @@ + + + + + + + metobs_toolkit.data_import.wide_to_long — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.data_import.wide_to_long

+
+
+metobs_toolkit.data_import.wide_to_long(df, template, obstype)[source]
+

Convert a wide dataframe to a long format.

+

Convert a wide dataframe that represents obstype-observations to a long +dataframe (=standard toolkit structure).

+
+
Parameters:
+
    +
  • df (pandas.DataFrame()) – Wide dataframe.

  • +
  • template (dict) – The dictionary to update the ‘name’ key on.

  • +
  • obstype (str) – A MetObs obstype.

  • +
+
+
Returns:
+

    +
  • longdf (pandas.DataFrame) – Long dataframe.

  • +
  • template (dict) – Updateted template dictionary.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.dataset.Dataset.html b/docs/_build/_autosummary/metobs_toolkit.dataset.Dataset.html new file mode 100644 index 00000000..ee7eed41 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.dataset.Dataset.html @@ -0,0 +1,1308 @@ + + + + + + + metobs_toolkit.dataset.Dataset — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.dataset.Dataset

+
+
+class metobs_toolkit.dataset.Dataset[source]
+

Bases: object

+

Objects holding observations and methods on observations.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_new_observationtype

Add a new observation type to the known observation types.

add_new_unit

Add a new unit to a known observation type.

apply_buddy_check

Apply the buddy check on the observations.

apply_quality_control

Apply quality control methods to the dataset.

apply_titan_buddy_check

Apply the TITAN buddy check on the observations.

apply_titan_sct_resistant_check

Apply the TITAN spatial consistency test (resistant).

coarsen_time_resolution

Resample the observations to coarser timeresolution.

combine_all_to_obsspace

Make one dataframe with all observations and their labels.

fill_gaps_automatic

Fill the gaps by using linear interpolation or debiased modeldata.

fill_gaps_era5

Fill the gaps using a Modeldata object.

fill_gaps_linear

Fill the gaps using linear interpolation.

fill_missing_obs_linear

Interpolate missing observations.

get_altitude

Extract Altitudes for all stations.

get_analysis

Create an Analysis instance from the Dataframe.

get_gaps_df

List all gaps into an overview dataframe.

get_gaps_info

Print out detailed information of the gaps.

get_info

Alias of show().

get_landcover

Extract landcover for all stations.

get_lcz

Extract local climate zones for all stations.

get_missing_obs_info

Print out detailed information of the missing observations.

get_modeldata

Make Modeldata for the Dataset.

get_qc_stats

Get quality control statistics.

get_station

Filter out one station of the Dataset.

import_data_from_file

Read observations from a csv file.

import_dataset

Import a Dataset instance from a (pickle) file.

make_gee_plot

Make an interactive plot of a google earth dataset.

make_geo_plot

Make geospatial plot.

make_interactive_plot

Make interactive geospatial plot with time evolution.

make_plot

This function creates a timeseries plot for the dataset.

save_dataset

Save a Dataset instance to a (pickle) file.

show

Show detailed information of the Dataset.

show_settings

Show detailed information of the stored Settings.

sync_observations

Simplify and syncronize the observation timestamps.

update_gaps_and_missing_from_outliers

Interpret the outliers as missing observations.

update_outliersdf

Update the outliersdf attribute.

write_to_csv

Write Dataset to a csv file.

+
+
+__add__(other, gapsize=None)[source]
+

Addition of two Datasets.

+
+ +
+
+add_new_observationtype(Obstype)[source]
+

Add a new observation type to the known observation types.

+

The observation can only be added if it is not already present in the +knonw observation types. If that is the case that you probably need to +use use the Dataset.add_new_unit() method.

+
+
Parameters:
+

Obstype (metobs_toolkit.obstype.Obstype) – The new Obstype to add.

+
+
Return type:
+

None.

+
+
+
+ +
+
+add_new_unit(obstype, new_unit, conversion_expression=[])[source]
+

Add a new unit to a known observation type.

+
+
Parameters:
+
    +
  • obstype (str) – The observation type to add the new unit to.

  • +
  • new_unit (str) – The new unit name.

  • +
  • conversion_expression (list or str, optional) –

    The conversion expression to the standard unit of the observation +type. The expression is a (list of) strings with simple algebraic +operations, where x represent the value in the new unit, and the +result is the value in the standard unit. Two examples for +temperature (with a standard unit in Celcius):

    +
    +

    [“x - 273.15”] #if the new_unit is Kelvin +[“x-32.0”, “x/1.8”] #if the new unit is Farenheit

    +
    +

    The default is [].

    +

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_buddy_check(obstype='temp', use_constant_altitude=False, haversine_approx=True, metric_epsg='31370')[source]
+

Apply the buddy check on the observations.

+

The buddy check compares an observation against its neighbours (i.e. +buddies). The check looks for buddies in a neighbourhood specified by +a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the +average of the neighbours normalized by the standard deviation in the +circle is greater than a predefined threshold.

+

This check is based on the buddy check from titanlib. Documentation on +the titanlib buddy check can be found +here.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • use_constant_altitude (bool, optional) – Use a constant altitude for all stations. The default is False.

  • +
  • haversine_approx (bool, optional) – Use the haversine approximation (earth is a sphere) to calculate +distances between stations. The default is True.

  • +
  • metric_epsg (str, optional) – EPSG code for the metric CRS to calculate distances in. Only used when +haversine approximation is set to False. Thus becoming a better +distance approximation but not global applicable The default is ‘31370’ +(which is suitable for Belgium).

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_quality_control(obstype='temp', gross_value=True, persistance=True, repetitions=True, step=True, window_variation=True)[source]
+

Apply quality control methods to the dataset.

+

The default settings are used, and can be changed in the +settings_files/qc_settings.py

+

The checks are performed in a sequence: gross_vallue –> +persistance –> …, Outliers by a previous check are ignored in the +following checks!

+

The dataset is updated inline.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • gross_value (Bool, optional) – If True the gross_value check is applied if False not. The default +is True.

  • +
  • persistance (Bool, optional) – If True the persistance check is applied if False not. The default +is True.. The default is True.

  • +
  • repetition (Bool, optional) – If True the repetations check is applied if False not. The default +is True.

  • +
  • step (Bool, optional) – If True the step check is applied if False not. The default is True.

  • +
  • window_variation (Bool, optional) – If True the window_variation check is applied if False not. The +default is True.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_titan_buddy_check(obstype='temp', use_constant_altitude=False)[source]
+

Apply the TITAN buddy check on the observations.

+

The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for +buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the average of the neighbours +normalized by the standard deviation in the circle is greater than a predefined threshold.

+

See the titanlib documentation on the buddy check +for futher details.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • use_constant_altitude (bool, optional) – Use a constant altitude for all stations. The default is False.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

To update the check settings, use the update_titan_qc_settings method +of the Dataset class.

+
+
+

Warning

+

To use this method, you must install titanlib. Windows users must have +a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation.

+
+
+ +
+
+apply_titan_sct_resistant_check(obstype='temp')[source]
+

Apply the TITAN spatial consistency test (resistant).

+

The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the +nearby area. If the deviation is large, the observation is removed. The SCT uses optimal interpolation +(OI) to compute an expected value for each observation. The background for the OI is computed from +a general vertical profile of observations in the area.

+

See the titanlib documentation on the sct check +for futher details.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+

obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

+
+
Return type:
+

None.

+
+
+
+

Note

+

To update the check settings, use the update_titan_qc_settings method +of the Dataset class.

+
+
+

Warning

+

To use this method, you must install titanlib. Windows users must have +a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation.

+
+
+

Warning

+

This method is a python wrapper on titanlib c++ scripts, and it is prone +to segmentation faults. The perfomance of this check is thus not +guaranteed!

+
+
+ +
+
+coarsen_time_resolution(origin=None, origin_tz=None, freq=None, method=None, limit=None)[source]
+

Resample the observations to coarser timeresolution.

+

The assumed dataset resolution (stored in the metadf attribute) will be +updated.

+
+
Parameters:
+
    +
  • origin (datetime.datetime, optional) – Define the origin (first timestamp) for the obervations. The origin +is timezone naive, and is assumed to have the same timezone as the +obervations. If None, the earliest occuring timestamp is used as +origin. The default is None.

  • +
  • origin_tz (str, optional) – Timezone string of the input observations. Element of +pytz.all_timezones. If None, the timezone from the settings is +used. The default is None.

  • +
  • freq (DateOffset, Timedelta or str, optional) – The offset string or object representing target conversion. +Ex: ‘15T’ is 15 minuts, ‘1H’, is one hour. If None, the target time +resolution of the dataset.settings is used. The default is None.

  • +
  • method ('nearest' or 'bfill', optional) – Method to apply for the resampling. If None, the resample method of +the dataset.settings is used. The default is None.

  • +
  • limit (int, optional) – Limit of how many values to fill with one original observations. If +None, the target limit of the dataset.settings is used. The default +is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+combine_all_to_obsspace(repr_outl_as_nan=False, overwrite_outliers_by_gaps_and_missing=True)[source]
+

Make one dataframe with all observations and their labels.

+

Combine all observations, outliers, missing observations and gaps into +one Dataframe. All observation types are combined an a label is added +in a serperate column.

+

When gaps and missing records are updated from outliers one has to choice +to represent these records as outliers or gaps. There can not be duplicates +in the return dataframe.

+

By default the observation values of the outliers are saved, one can +choice to use these values or NaN’s. +following checks!

+
+
Parameters:
+
    +
  • repr_outl_as_nan (bool, optional) – If True, Nan’s are use for the values of the outliers. The +default is False.

  • +
  • overwrite_outliers_by_gaps_and_missing (Bool, optional) –

    +
    If True, records that are labeld as gap/missing and outlier are

    labeled as gaps/missing. This has only effect when the gaps/missing +observations are updated from the outliers. The default is True.

    +
    +
    +
    +
    returns:
    +

    combdf – A dataframe containing a continious time resolution of records, where each +record is labeld.

    +
    +
    rtype:
    +

    pandas.DataFrame()

    +
    +
    +

  • +
+
+
+
+ +
+
+fill_gaps_automatic(modeldata, obstype='temp', max_interpolate_duration_str=None, overwrite_fill=False)[source]
+

Fill the gaps by using linear interpolation or debiased modeldata.

+

The method that is applied to perform the gapfill will be determined by +the duration of the gap.

+

When the duration of a gap is smaller or equal than +max_interpolation_duration, the linear interpolation method is applied +else the debiased modeldata method.

+
+
Parameters:
+
    +
  • modeldata (metobs_toolkit.Modeldata) – The modeldata to use for the gapfill. This model data should the required +timeseries to fill all gaps present in the dataset.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • max_interpolate_duration_str (Timedelta or str, optional) – Maximum duration to apply interpolation for gapfill when using the +automatic gapfill method. Gaps with longer durations will be filled +using debiased modeldata. The default is None.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

comb_df

+
+
gapfilldfpandas.DataFrame

A dataframe containing all the filled records.

+
+
+

+
+
Return type:
+

TYPE

+
+
+
+ +
+
+fill_gaps_era5(modeldata, method='debias', obstype='temp', overwrite_fill=False)[source]
+

Fill the gaps using a Modeldata object.

+
+
Parameters:
+
    +
  • modeldata (metobs_toolkit.Modeldata) – The modeldata to use for the gapfill. This model data should the required +timeseries to fill all gaps present in the dataset.

  • +
  • method ('debias', optional) – Specify which method to use. The default is ‘debias’.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

Gapfilldf – A dataframe containing all gap filled values and the use method.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+fill_gaps_linear(obstype='temp', overwrite_fill=False)[source]
+

Fill the gaps using linear interpolation.

+

The gapsfilldf attribute of the Datasetinstance will be updated if +the gaps are not filled yet or if overwrite_fill is set to True.

+
+
Parameters:
+
    +
  • obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

gapfilldf – A dataframe containing all the filled records.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+fill_missing_obs_linear(obstype='temp')[source]
+

Interpolate missing observations.

+

Fill in the missing observation rectords using interpolation. The +missing_fill_df attribute of the Dataset will be updated.

+
+
Parameters:
+

obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_altitude()[source]
+

Extract Altitudes for all stations.

+

Function to extract the Altitude from the SRTM Digital Elevation Data +global map on the Google engine for all stations.

+

A ‘altitude’ column will be added to the metadf, and series is returned.

+
+
Returns:
+

altitude_series – A series with the stationnames as index and the altitudes as values.

+
+
Return type:
+

pandas.Series()

+
+
+
+ +
+
+get_analysis(add_gapfilled_values=False)[source]
+

Create an Analysis instance from the Dataframe.

+
+
Parameters:
+

add_gapfilled_values (bool, optional) – If True, all filled values (from gapfill and missing observation fill), +are added to the analysis records aswell. The default is False.

+
+
Returns:
+

The Analysis instance of the Dataset.

+
+
Return type:
+

metobs_toolkit.Analysis

+
+
+
+ +
+
+get_gaps_df()[source]
+

List all gaps into an overview dataframe.

+
+
Returns:
+

A DataFrame with stationnames as index, and the start, end and duretion +of the gaps as columns.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_gaps_info()[source]
+

Print out detailed information of the gaps.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_info(show_all_settings=False, max_disp_n_gaps=5)[source]
+

Alias of show().

+

A function to print out a detailed overview information about the Dataset.

+
+
Parameters:
+
    +
  • show_all_settings (bool, optional) – If True all the settings are printed out. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to display detailed information of.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+get_landcover(buffers=[100], aggregate=True, overwrite=True, gee_map='worldcover')[source]
+

Extract landcover for all stations.

+

Extract the landcover fractions in a buffer with a specific radius for +all stations. If an aggregation scheme is define, one can choose to +aggregate the landcoverclasses.

+

The landcover fractions will be added to the Dataset.metadf if overwrite +is True. Presented as seperate columns where each column represent the +landcovertype and corresponding buffer.

+
+
Parameters:
+
    +
  • buffers (num, optional) – The list of buffer radia in dataset units (meters for ESA worldcover) . The default is 100.

  • +
  • aggregate (bool, optional) – If True, the classes will be aggregated with the corresponding +aggregation scheme. The default is True.

  • +
  • overwrite (bool, optional) – If True, the Datset.metadf will be updated with the generated +landcoverfractions. The default is True.

  • +
  • gee_map (str, optional) – The name of the dataset to use. This name should be present in the +settings.gee[‘gee_dataset_info’]. If aggregat is True, an aggregation +scheme should included as well. The default is ‘worldcover’

  • +
+
+
Returns:
+

frac_df – A Dataframe with index: name, buffer_radius and the columns are the +fractions.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_lcz()[source]
+

Extract local climate zones for all stations.

+

Function to extract the Local CLimate zones (LCZ) from the +wudapt global LCZ map on the Google engine for all stations.

+

A ‘LCZ’ column will be added to the metadf, and series is returned.

+
+
Returns:
+

lcz_series – A series with the stationnames as index and the LCZ as values.

+
+
Return type:
+

pandas.Series()

+
+
+
+ +
+
+get_missing_obs_info()[source]
+

Print out detailed information of the missing observations.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_modeldata(modelname='ERA5_hourly', modeldata=None, obstype='temp', stations=None, startdt=None, enddt=None)[source]
+

Make Modeldata for the Dataset.

+

Make a metobs_toolkit.Modeldata object with modeldata at the locations +of the stations present in the dataset.

+
+
Parameters:
+
    +
  • modelname (str, optional) – Which dataset to download timeseries from. This is only used when +no modeldata is provided. The default is ‘ERA5_hourly’.

  • +
  • modeldata (metobs_toolkit.Modeldata, optional) – Use the modelname attribute and the gee information stored in the +modeldata instance to extract timeseries.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • stations (string or list of strings, optional) – Stationnames to subset the modeldata to. If None, all stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – Start datetime of the model timeseries. If None, the start datetime of the dataset is used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – End datetime of the model timeseries. If None, the last datetime of the dataset is used. The default is None.

  • +
+
+
Returns:
+

Modl – The extracted modeldata for period and a set of stations.

+
+
Return type:
+

metobs_toolkit.Modeldata

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+

Note

+

When extracting large amounts of data, the timeseries data will be +writen to a file and saved on your google drive. In this case, you need +to provide the Modeldata with the data using the .set_model_from_csv() +method.

+
+
+

Note

+

Only 2mT extraction of ERA5 is implemented for all Modeldata instances. +To extract other variables, one must create a Modeldata instance in +advance, add or update a gee_dataset and give this Modeldata instance +to this method.

+
+
+ +
+
+get_qc_stats(obstype='temp', stationname=None, make_plot=True)[source]
+

Get quality control statistics.

+

Compute frequency statistics on the qc labels for an observationtype. +The output is a dataframe containing the frequency statistics presented +as percentages.

+

These frequencies can also be presented as a collection of piecharts +per check.

+

With stationnames you can subset the data to one ore multiple stations.

+
+
Parameters:
+
    +
  • obstype (str, optional) – Observation type to analyse the QC labels on. The default is +‘temp’.

  • +
  • stationname (str, optional) – Stationname to subset the quality labels on. If None, all +stations are used. The default is None.

  • +
  • make_plot (Bool, optional) – If True, a plot with piecharts is generated. The default is True.

  • +
+
+
Returns:
+

dataset_qc_stats – A table containing the label frequencies per check presented +as percentages.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_station(stationname)[source]
+

Filter out one station of the Dataset.

+

Extract a metobs_toolkit.Station object from the dataset by name.

+
+
Parameters:
+

stationname (string) – The name of the station.

+
+
Returns:
+

The station object.

+
+
Return type:
+

metobs_toolkit.Station

+
+
+
+ +
+
+import_data_from_file(long_format=True, obstype=None, obstype_unit=None, obstype_description=None, freq_estimation_method=None, freq_estimation_simplify=None, freq_estimation_simplify_error=None, kwargs_data_read={}, kwargs_metadata_read={})[source]
+

Read observations from a csv file.

+

The paths are defined in the Settings.input_file. The input file +columns should have a template that is stored in +Settings.template_list.

+

If the metadata is stored in a seperate file, and the +Settings.input_metadata_file is correct, than this metadata is also +imported (if a suitable template is in the Settings.template_list.)

+

The dataset is by default assumed to be in long-format (each column represent an observation type, one column indicates the stationname). +Wide-format can be used if

+
    +
  • the ‘wide’ option is present in the template (this is done automatically if the themplate was made using the metobs_toolkit.build_template_prompt())

  • +
  • ‘long_format’ is set to False and if the observation type is specified (obstype, obstype_unit and obstype_description)

  • +
+

An estimation of the observational frequency is made per station. This is used +to find missing observations and gaps.

+
+
The Dataset attributes are set and the following checks are executed:
    +
  • Duplicate check

  • +
  • Invalid input check

  • +
  • Find missing observations

  • +
  • Find gaps

  • +
+
+
+
+
Parameters:
+
    +
  • long_format (bool, optional) – True if the inputdata has a long-format, False if it has a wide-format. The default is True.

  • +
  • obstype (str, optional) – If the dataformat is wide, specify which observation type the +observations represent. The obstype should be an element of +metobs_toolkit.observation_types. The default is None.

  • +
  • obstype_unit (str, optional) – If the dataformat is wide, specify the unit of the obstype. The +default is None.

  • +
  • obstype_description (str, optional) – If the dataformat is wide, specify the description of the obstype. +The default is None.

  • +
  • freq_estimation_method ('highest' or 'median', optional) – Select wich method to use for the frequency estimation. If +‘highest’, the highest apearing frequency is used. If ‘median’, the +median of the apearing frequencies is used. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_method’] is used. +The default is None.

  • +
  • freq_estimation_simplify (bool, optional) – If True, the likely frequency is converted to round hours, or round minutes. +The “freq_estimation_simplify_error’ is used as a constrain. If the constrain is not met, +the simplification is not performed. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_simplify’] is used. +The default is None.

  • +
  • freq_estimation_simplify_error (Timedelta or str, optional) – The tollerance string or object representing the maximum translation in time to form a simplified frequency estimation. +Ex: ‘5T’ is 5 minuts, ‘1H’, is one hour. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_simplify_error’] is +used. The default is None.

  • +
  • kwargs_data_read (dict, optional) – Keyword arguments collected in a dictionary to pass to the +pandas.read_csv() function on the data file. The default is {}.

  • +
  • kwargs_metadata_read (dict, optional) – Keyword arguments collected in a dictionary to pass to the +pandas.read_csv() function on the metadata file. The default is {}.

  • +
+
+
+
+

Note

+

If options are present in the template, these will have priority over the arguments of this function.

+
+
+
Return type:
+

None.

+
+
+
+ +
+
+import_dataset(folder_path=None, filename='saved_dataset.pkl')[source]
+

Import a Dataset instance from a (pickle) file.

+
+
Parameters:
+
    +
  • folder_path (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_dataset.pkl’.

  • +
+
+
Returns:
+

The Dataset instance.

+
+
Return type:
+

metobs_toolkit.Dataset

+
+
+
+ +
+
+make_gee_plot(gee_map, show_stations=True, save=False, outputfile=None)[source]
+

Make an interactive plot of a google earth dataset.

+

The location of the stations can be plotted on top of it.

+
+
Parameters:
+
    +
  • gee_map (str, optional) – The name of the dataset to use. This name should be present in the +settings.gee[‘gee_dataset_info’]. If aggregat is True, an aggregation +scheme should included as well. The default is ‘worldcover’

  • +
  • show_stations (bool, optional) – If True, the stations will be plotted as markers. The default is True.

  • +
  • save (bool, optional) – If True, the map will be saved as an html file in the output_folder +as defined in the settings if the outputfile is not set. The +default is False.

  • +
  • outputfile (str, optional) – Specify the path of the html file if save is True. If None, and save +is true, the html file will be saved in the output_folder. The +default is None.

  • +
+
+
Returns:
+

Map – The folium Map instance.

+
+
Return type:
+

geemap.foliumap.Map

+
+
+
+

Warning

+

To display the interactive map a graphical backend is required, which +is often missing on (free) cloud platforms. Therefore it is better to +set save=True, and open the .html in your browser

+
+
+ +
+
+make_geo_plot(variable='temp', title=None, timeinstance=None, legend=True, vmin=None, vmax=None, legend_title=None, boundbox=[])[source]
+

Make geospatial plot.

+

This functions creates a geospatial plot for a field +(observations or attributes) of all stations.

+

If the field is timedepending, than the timeinstance is used to plot +the field status at that datetime.

+

If the field is categorical than the leged will have categorical +values, else a colorbar is used.

+

All styling attributes are extracted from the Settings.

+
+
Parameters:
+
    +
  • variable (string, optional) – Fieldname to visualise. This can be an observation type or station +or ‘lcz’. The default is ‘temp’.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • timeinstance (datetime.datetime, optional) – Datetime moment of the geospatial plot. If None, the first occuring (not Nan) record is used. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
  • vmin (numeric, optional) – The value corresponding with the minimum color. If None, the minimum of the presented observations is used. The default is None.

  • +
  • vmax (numeric, optional) – The value corresponding with the maximum color. If None, the maximum of the presented observations is used. The default is None.

  • +
  • legend_title (string, optional) – Title of the legend, if None a default title is generated. The default is None.

  • +
  • boundbox ([lon-west, lat-south, lon-east, lat-north], optional) – The boundbox to indicate the domain to plot. The elemenst are numeric. +If the list is empty, a boundbox is created automatically. The default +is [].

  • +
+
+
Returns:
+

axis – The geoaxes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.geoaxes

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+make_interactive_plot(obstype='temp', save=True, outputfile=None, starttime=None, endtime=None, vmin=None, vmax=None, mpl_cmap_name='viridis', radius=13, fill_alpha=0.6, max_fps=4, outlier_col='red', ok_col='black', gap_col='orange', fill_col='yellow')[source]
+

Make interactive geospatial plot with time evolution.

+

This function uses the folium package to make an interactive geospatial +plot to illustrate the time evolution.

+
+
Parameters:
+
    +
  • obstype (str or metobs_toolkit.Obstype, optional) – The observation type to plot. The default is ‘temp’.

  • +
  • save (bool, optional) – If true, the figure will be saved as an html-file. The default is True.

  • +
  • outputfile (str, optional) – The path of the output html-file. The figure will be saved here, if +save is True. If outputfile is not given, and save is True, than +the figure will be saved in the default outputfolder (if given). +The default is None.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will +use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will +use the end datetime of the dataset, defaults to None.

  • +
  • vmin (numeric, optional) – The value corresponding with the minimum color. If None, the +minimum of the presented observations is used. The default is None.

  • +
  • vmax (numeric, optional) – The value corresponding with the maximum color. If None, the +maximum of the presented observations is used. The default is None.

  • +
  • mpl_cmap_name (str, optional) – The name of the matplotlib colormap to use. The default is ‘viridis’.

  • +
  • radius (int, optional) – The radius (in pixels) of the scatters. The default is 13.

  • +
  • fill_alpha (float ([0;1]), optional) – The alpha of the fill color for the scatters. The default is 0.6.

  • +
  • max_fps (int (>0), optional) – The maximum allowd frames per second for the time evolution. The +default is 4.

  • +
  • outlier_col (str, optional) – The edge color of the scatters to identify an outliers. The default is ‘red’.

  • +
  • ok_col (str, optional) – The edge color of the scatters to identify an ok observation. The default is ‘black’.

  • +
  • gap_col (str, optional) – The edge color of the scatters to identify an missing/gap +observation. The default is ‘orange’.

  • +
  • fill_col (str, optional) – The edge color of the scatters to identify a fillded observation. +The default is ‘yellow’.

  • +
+
+
Returns:
+

m – The interactive folium map.

+
+
Return type:
+

folium.folium.map

+
+
+
+

Note

+

The figure will only appear when this is runned in notebooks. If you do +not run this in a notebook, make shure to save the html file, and open it +with a browser.

+
+
+ +
+
+make_plot(stationnames=None, obstype='temp', colorby='name', starttime=None, endtime=None, title=None, y_label=None, legend=True, show_outliers=True, show_filled=True, _ax=None)[source]
+

This function creates a timeseries plot for the dataset. The variable observation type +is plotted for all stationnames from a starttime to an endtime.

+

All styling attributes are extracted from the Settings.

+
+
Parameters:
+
    +
  • stationnames (list, optional) – A list with stationnames to include in the timeseries. If None is given, all the stations are used, defaults to None.

  • +
  • obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

  • +
  • colorby ('label' or 'name', optional) – Indicate how colors should be assigned to the lines. ‘label’ will color the lines by their quality control label. ‘name’ will color by each station, defaults to ‘name’.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will use the end datetime of the dataset, defaults to None.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – If True, a legend is added to the plot. The default is True.

  • +
  • show_outliers (bool, optional) – If true the observations labeld as outliers will be included in +the plot. This is only true when colorby == ‘name’. The default +is True.

  • +
  • show_filled (bool, optional) – If true the filled values for gaps and missing observations will +be included in the plot. This is only true when colorby == ‘name’. +The default is True.

  • +
+
+
Returns:
+

axis – The timeseries axes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+save_dataset(outputfolder=None, filename='saved_dataset.pkl')[source]
+

Save a Dataset instance to a (pickle) file.

+
+
Parameters:
+
    +
  • outputfolder (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_dataset.pkl’.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+show(show_all_settings=False, max_disp_n_gaps=5)[source]
+

Show detailed information of the Dataset.

+

A function to print out a detailed overview information about the Dataset.

+
+
Parameters:
+
    +
  • show_all_settings (bool, optional) – If True all the settings are printed out. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to display detailed information of.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+show_settings()[source]
+

Show detailed information of the stored Settings.

+

A function that prints out all the settings, structured per thematic.

+
+
Return type:
+

None.

+
+
+
+ +
+
+sync_observations(tollerance, verbose=True, _force_resolution_minutes=None, _drop_target_nan_dt=False)[source]
+

Simplify and syncronize the observation timestamps.

+

To simplify the resolution (per station), a tollerance is use to shift timestamps. The tollerance indicates the +maximum translation in time that can be applied to an observation.

+

The sycronisation tries to group stations that have an equal simplified resolution, and syncronize them. The origin +of the sycronized timestamps will be set to round hours, round 10-minutes or round-5 minutes if possible given the tollerance.

+

The observations present in the input file are used.

+

After syncronization, the IO outliers, missing observations and gaps are recomputed.

+
+
Parameters:
+
    +
  • tollerance (Timedelta or str) – The tollerance string or object representing the maximum translation in time. +Ex: ‘5T’ is 5 minuts, ‘1H’, is one hour.

  • +
  • verbose (bool, optional) – If True, a dataframe illustrating the mapping from original datetimes to simplified and syncronized is returned. The default is True.

  • +
  • _drop_target_nan_dt (bool, optional) – If record has no target datetime, the datetimes will be listed as Nat. To remove them, +set this to True. Default is False.

  • +
  • _force_resolution_minutes (bool, optional) – force the resolution estimate to this frequency in minutes. If None, the frequency is estimated. The default is None.

  • +
+
+
+
+

Note

+

Keep in mind that this method will overwrite the df, outliersdf, missing timestamps and gaps.

+
+
+

Note

+

Because the used observations are from the input file, previously coarsend timeresolutions are ignored.

+
+
+
Returns:
+

A dataframe containing the original observations with original timestamps and the corresponding target timestamps.

+
+
Return type:
+

pandas.DataFrame (if verbose is True)

+
+
+
+ +
+
+update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=None)[source]
+

Interpret the outliers as missing observations.

+

If there is a sequence +of these outliers for a station, larger than n_gapsize than this will +be interpreted as a gap.

+

The outliers are not removed.

+
+
Parameters:
+
    +
  • obstype (str, optional) – Use the outliers on this observation type to update the gaps and +missing timestamps. The default is ‘temp’.

  • +
  • n_gapsize (int, optional) – The minimum number of consecutive missing observations to define +as a gap. If None, n_gapsize is taken from the settings defenition +of gaps. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

Gaps and missing observations resulting from an outlier on a specific +obstype, are assumed to be gaps/missing observation for all obstypes.

+
+
+

Note

+

Be aware that n_gapsize is used for the current resolution of the Dataset, +this is different from the gap check applied on the inported data, if +the dataset is coarsend.

+
+
+ +
+
+update_outliersdf(add_to_outliersdf)[source]
+

Update the outliersdf attribute.

+
+ +
+
+write_to_csv(obstype=None, filename=None, include_outliers=True, include_fill_values=True, add_final_labels=True, use_tlk_obsnames=True, overwrite_outliers_by_gaps_and_missing=True, seperate_metadata_file=True)[source]
+

Write Dataset to a csv file.

+

Write the dataset to a file where the observations, metadata and +(if available) the quality labels per observation type are merged +together.

+

A final qualty control label for each +quality-controlled-observation type can be added in the outputfile.

+

The file will be writen to the outputfolder specified in the settings.

+
+
Parameters:
+
    +
  • obstype (string, optional) – Specify an observation type to subset all observations to. If None, +all available observation types are writen to file. The default is +None.

  • +
  • filename (string, optional) – The name of the output csv file. If none, a standard-filename +is generated based on the period of data. The default is None.

  • +
  • include_outliers (bool, optional) – If True, the outliers will be present in the csv file. The default is True.

  • +
  • include_fill_values (bool, optional) – If True, the filled gap and missing observation values will be +present in the csv file. The default is True.

  • +
  • add_final_labels (bool, optional) – If True, a column is added containing the final label of an observation. The default is True.

  • +
  • use_tlk_obsnames (bool, optional) – If True, the standard naming of the metobs_toolkit is used, else +the original names for obstypes is used. The default is True.

  • +
  • overwrite_outliers_by_gaps_and_missing (bool, optional) – If the gaps and missing observations are updated using outliers, +interpret these records as gaps/missing outliers if True. Else these +will be interpreted as outliers. The default is True.

  • +
  • seperate_metadata_file (bool, optional) – If true, the metadat is writen to a seperate file, else the metadata +is merged to the observation in one file. The default is True.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.dataset.html b/docs/_build/_autosummary/metobs_toolkit.dataset.html new file mode 100644 index 00000000..e7cf6384 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.dataset.html @@ -0,0 +1,166 @@ + + + + + + + metobs_toolkit.dataset — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html b/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html new file mode 100644 index 00000000..e372a0b8 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html @@ -0,0 +1,1510 @@ + + + + + + + metobs_toolkit.dataset_settings_updater.Dataset — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.dataset_settings_updater.Dataset

+
+
+class metobs_toolkit.dataset_settings_updater.Dataset[source]
+

Bases: Dataset

+

Extension on the metobs_toolkit.Dataset class with updaters.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_new_observationtype

Add a new observation type to the known observation types.

add_new_unit

Add a new unit to a known observation type.

apply_buddy_check

Apply the buddy check on the observations.

apply_quality_control

Apply quality control methods to the dataset.

apply_titan_buddy_check

Apply the TITAN buddy check on the observations.

apply_titan_sct_resistant_check

Apply the TITAN spatial consistency test (resistant).

coarsen_time_resolution

Resample the observations to coarser timeresolution.

combine_all_to_obsspace

Make one dataframe with all observations and their labels.

fill_gaps_automatic

Fill the gaps by using linear interpolation or debiased modeldata.

fill_gaps_era5

Fill the gaps using a Modeldata object.

fill_gaps_linear

Fill the gaps using linear interpolation.

fill_missing_obs_linear

Interpolate missing observations.

get_altitude

Extract Altitudes for all stations.

get_analysis

Create an Analysis instance from the Dataframe.

get_gaps_df

List all gaps into an overview dataframe.

get_gaps_info

Print out detailed information of the gaps.

get_info

Alias of show().

get_landcover

Extract landcover for all stations.

get_lcz

Extract local climate zones for all stations.

get_missing_obs_info

Print out detailed information of the missing observations.

get_modeldata

Make Modeldata for the Dataset.

get_qc_stats

Get quality control statistics.

get_station

Filter out one station of the Dataset.

import_data_from_file

Read observations from a csv file.

import_dataset

Import a Dataset instance from a (pickle) file.

make_gee_plot

Make an interactive plot of a google earth dataset.

make_geo_plot

Make geospatial plot.

make_interactive_plot

Make interactive geospatial plot with time evolution.

make_plot

This function creates a timeseries plot for the dataset.

save_dataset

Save a Dataset instance to a (pickle) file.

show

Show detailed information of the Dataset.

show_settings

Show detailed information of the stored Settings.

sync_observations

Simplify and syncronize the observation timestamps.

update_default_name

Update the default name (the name of the station).

update_gap_and_missing_fill_settings

Update fill settings for gaps and missing observations.

update_gaps_and_missing_from_outliers

Interpret the outliers as missing observations.

update_outliersdf

Update the outliersdf attribute.

update_qc_settings

Update the QC settings for the specified observation type.

update_settings

Update the most common input-output (IO) settings.

update_timezone

Change the timezone of the input data.

update_titan_qc_settings

Update the TITAN QC settings for the specified observation type.

write_to_csv

Write Dataset to a csv file.

+
+
+__add__(other, gapsize=None)[source]
+

Addition of two Datasets.

+
+ +
+
+add_new_observationtype(Obstype)[source]
+

Add a new observation type to the known observation types.

+

The observation can only be added if it is not already present in the +knonw observation types. If that is the case that you probably need to +use use the Dataset.add_new_unit() method.

+
+
Parameters:
+

Obstype (metobs_toolkit.obstype.Obstype) – The new Obstype to add.

+
+
Return type:
+

None.

+
+
+
+ +
+
+add_new_unit(obstype, new_unit, conversion_expression=[])[source]
+

Add a new unit to a known observation type.

+
+
Parameters:
+
    +
  • obstype (str) – The observation type to add the new unit to.

  • +
  • new_unit (str) – The new unit name.

  • +
  • conversion_expression (list or str, optional) –

    The conversion expression to the standard unit of the observation +type. The expression is a (list of) strings with simple algebraic +operations, where x represent the value in the new unit, and the +result is the value in the standard unit. Two examples for +temperature (with a standard unit in Celcius):

    +
    +

    [“x - 273.15”] #if the new_unit is Kelvin +[“x-32.0”, “x/1.8”] #if the new unit is Farenheit

    +
    +

    The default is [].

    +

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_buddy_check(obstype='temp', use_constant_altitude=False, haversine_approx=True, metric_epsg='31370')[source]
+

Apply the buddy check on the observations.

+

The buddy check compares an observation against its neighbours (i.e. +buddies). The check looks for buddies in a neighbourhood specified by +a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the +average of the neighbours normalized by the standard deviation in the +circle is greater than a predefined threshold.

+

This check is based on the buddy check from titanlib. Documentation on +the titanlib buddy check can be found +here.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • use_constant_altitude (bool, optional) – Use a constant altitude for all stations. The default is False.

  • +
  • haversine_approx (bool, optional) – Use the haversine approximation (earth is a sphere) to calculate +distances between stations. The default is True.

  • +
  • metric_epsg (str, optional) – EPSG code for the metric CRS to calculate distances in. Only used when +haversine approximation is set to False. Thus becoming a better +distance approximation but not global applicable The default is ‘31370’ +(which is suitable for Belgium).

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_quality_control(obstype='temp', gross_value=True, persistance=True, repetitions=True, step=True, window_variation=True)[source]
+

Apply quality control methods to the dataset.

+

The default settings are used, and can be changed in the +settings_files/qc_settings.py

+

The checks are performed in a sequence: gross_vallue –> +persistance –> …, Outliers by a previous check are ignored in the +following checks!

+

The dataset is updated inline.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • gross_value (Bool, optional) – If True the gross_value check is applied if False not. The default +is True.

  • +
  • persistance (Bool, optional) – If True the persistance check is applied if False not. The default +is True.. The default is True.

  • +
  • repetition (Bool, optional) – If True the repetations check is applied if False not. The default +is True.

  • +
  • step (Bool, optional) – If True the step check is applied if False not. The default is True.

  • +
  • window_variation (Bool, optional) – If True the window_variation check is applied if False not. The +default is True.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_titan_buddy_check(obstype='temp', use_constant_altitude=False)[source]
+

Apply the TITAN buddy check on the observations.

+

The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for +buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the average of the neighbours +normalized by the standard deviation in the circle is greater than a predefined threshold.

+

See the titanlib documentation on the buddy check +for futher details.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • use_constant_altitude (bool, optional) – Use a constant altitude for all stations. The default is False.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

To update the check settings, use the update_titan_qc_settings method +of the Dataset class.

+
+
+

Warning

+

To use this method, you must install titanlib. Windows users must have +a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation.

+
+
+ +
+
+apply_titan_sct_resistant_check(obstype='temp')[source]
+

Apply the TITAN spatial consistency test (resistant).

+

The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the +nearby area. If the deviation is large, the observation is removed. The SCT uses optimal interpolation +(OI) to compute an expected value for each observation. The background for the OI is computed from +a general vertical profile of observations in the area.

+

See the titanlib documentation on the sct check +for futher details.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+

obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

+
+
Return type:
+

None.

+
+
+
+

Note

+

To update the check settings, use the update_titan_qc_settings method +of the Dataset class.

+
+
+

Warning

+

To use this method, you must install titanlib. Windows users must have +a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation.

+
+
+

Warning

+

This method is a python wrapper on titanlib c++ scripts, and it is prone +to segmentation faults. The perfomance of this check is thus not +guaranteed!

+
+
+ +
+
+coarsen_time_resolution(origin=None, origin_tz=None, freq=None, method=None, limit=None)[source]
+

Resample the observations to coarser timeresolution.

+

The assumed dataset resolution (stored in the metadf attribute) will be +updated.

+
+
Parameters:
+
    +
  • origin (datetime.datetime, optional) – Define the origin (first timestamp) for the obervations. The origin +is timezone naive, and is assumed to have the same timezone as the +obervations. If None, the earliest occuring timestamp is used as +origin. The default is None.

  • +
  • origin_tz (str, optional) – Timezone string of the input observations. Element of +pytz.all_timezones. If None, the timezone from the settings is +used. The default is None.

  • +
  • freq (DateOffset, Timedelta or str, optional) – The offset string or object representing target conversion. +Ex: ‘15T’ is 15 minuts, ‘1H’, is one hour. If None, the target time +resolution of the dataset.settings is used. The default is None.

  • +
  • method ('nearest' or 'bfill', optional) – Method to apply for the resampling. If None, the resample method of +the dataset.settings is used. The default is None.

  • +
  • limit (int, optional) – Limit of how many values to fill with one original observations. If +None, the target limit of the dataset.settings is used. The default +is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+combine_all_to_obsspace(repr_outl_as_nan=False, overwrite_outliers_by_gaps_and_missing=True)[source]
+

Make one dataframe with all observations and their labels.

+

Combine all observations, outliers, missing observations and gaps into +one Dataframe. All observation types are combined an a label is added +in a serperate column.

+

When gaps and missing records are updated from outliers one has to choice +to represent these records as outliers or gaps. There can not be duplicates +in the return dataframe.

+

By default the observation values of the outliers are saved, one can +choice to use these values or NaN’s. +following checks!

+
+
Parameters:
+
    +
  • repr_outl_as_nan (bool, optional) – If True, Nan’s are use for the values of the outliers. The +default is False.

  • +
  • overwrite_outliers_by_gaps_and_missing (Bool, optional) –

    +
    If True, records that are labeld as gap/missing and outlier are

    labeled as gaps/missing. This has only effect when the gaps/missing +observations are updated from the outliers. The default is True.

    +
    +
    +
    +
    returns:
    +

    combdf – A dataframe containing a continious time resolution of records, where each +record is labeld.

    +
    +
    rtype:
    +

    pandas.DataFrame()

    +
    +
    +

  • +
+
+
+
+ +
+
+fill_gaps_automatic(modeldata, obstype='temp', max_interpolate_duration_str=None, overwrite_fill=False)[source]
+

Fill the gaps by using linear interpolation or debiased modeldata.

+

The method that is applied to perform the gapfill will be determined by +the duration of the gap.

+

When the duration of a gap is smaller or equal than +max_interpolation_duration, the linear interpolation method is applied +else the debiased modeldata method.

+
+
Parameters:
+
    +
  • modeldata (metobs_toolkit.Modeldata) – The modeldata to use for the gapfill. This model data should the required +timeseries to fill all gaps present in the dataset.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • max_interpolate_duration_str (Timedelta or str, optional) – Maximum duration to apply interpolation for gapfill when using the +automatic gapfill method. Gaps with longer durations will be filled +using debiased modeldata. The default is None.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

comb_df

+
+
gapfilldfpandas.DataFrame

A dataframe containing all the filled records.

+
+
+

+
+
Return type:
+

TYPE

+
+
+
+ +
+
+fill_gaps_era5(modeldata, method='debias', obstype='temp', overwrite_fill=False)[source]
+

Fill the gaps using a Modeldata object.

+
+
Parameters:
+
    +
  • modeldata (metobs_toolkit.Modeldata) – The modeldata to use for the gapfill. This model data should the required +timeseries to fill all gaps present in the dataset.

  • +
  • method ('debias', optional) – Specify which method to use. The default is ‘debias’.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

Gapfilldf – A dataframe containing all gap filled values and the use method.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+fill_gaps_linear(obstype='temp', overwrite_fill=False)[source]
+

Fill the gaps using linear interpolation.

+

The gapsfilldf attribute of the Datasetinstance will be updated if +the gaps are not filled yet or if overwrite_fill is set to True.

+
+
Parameters:
+
    +
  • obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

gapfilldf – A dataframe containing all the filled records.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+fill_missing_obs_linear(obstype='temp')[source]
+

Interpolate missing observations.

+

Fill in the missing observation rectords using interpolation. The +missing_fill_df attribute of the Dataset will be updated.

+
+
Parameters:
+

obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_altitude()[source]
+

Extract Altitudes for all stations.

+

Function to extract the Altitude from the SRTM Digital Elevation Data +global map on the Google engine for all stations.

+

A ‘altitude’ column will be added to the metadf, and series is returned.

+
+
Returns:
+

altitude_series – A series with the stationnames as index and the altitudes as values.

+
+
Return type:
+

pandas.Series()

+
+
+
+ +
+
+get_analysis(add_gapfilled_values=False)[source]
+

Create an Analysis instance from the Dataframe.

+
+
Parameters:
+

add_gapfilled_values (bool, optional) – If True, all filled values (from gapfill and missing observation fill), +are added to the analysis records aswell. The default is False.

+
+
Returns:
+

The Analysis instance of the Dataset.

+
+
Return type:
+

metobs_toolkit.Analysis

+
+
+
+ +
+
+get_gaps_df()[source]
+

List all gaps into an overview dataframe.

+
+
Returns:
+

A DataFrame with stationnames as index, and the start, end and duretion +of the gaps as columns.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_gaps_info()[source]
+

Print out detailed information of the gaps.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_info(show_all_settings=False, max_disp_n_gaps=5)[source]
+

Alias of show().

+

A function to print out a detailed overview information about the Dataset.

+
+
Parameters:
+
    +
  • show_all_settings (bool, optional) – If True all the settings are printed out. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to display detailed information of.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+get_landcover(buffers=[100], aggregate=True, overwrite=True, gee_map='worldcover')[source]
+

Extract landcover for all stations.

+

Extract the landcover fractions in a buffer with a specific radius for +all stations. If an aggregation scheme is define, one can choose to +aggregate the landcoverclasses.

+

The landcover fractions will be added to the Dataset.metadf if overwrite +is True. Presented as seperate columns where each column represent the +landcovertype and corresponding buffer.

+
+
Parameters:
+
    +
  • buffers (num, optional) – The list of buffer radia in dataset units (meters for ESA worldcover) . The default is 100.

  • +
  • aggregate (bool, optional) – If True, the classes will be aggregated with the corresponding +aggregation scheme. The default is True.

  • +
  • overwrite (bool, optional) – If True, the Datset.metadf will be updated with the generated +landcoverfractions. The default is True.

  • +
  • gee_map (str, optional) – The name of the dataset to use. This name should be present in the +settings.gee[‘gee_dataset_info’]. If aggregat is True, an aggregation +scheme should included as well. The default is ‘worldcover’

  • +
+
+
Returns:
+

frac_df – A Dataframe with index: name, buffer_radius and the columns are the +fractions.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_lcz()[source]
+

Extract local climate zones for all stations.

+

Function to extract the Local CLimate zones (LCZ) from the +wudapt global LCZ map on the Google engine for all stations.

+

A ‘LCZ’ column will be added to the metadf, and series is returned.

+
+
Returns:
+

lcz_series – A series with the stationnames as index and the LCZ as values.

+
+
Return type:
+

pandas.Series()

+
+
+
+ +
+
+get_missing_obs_info()[source]
+

Print out detailed information of the missing observations.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_modeldata(modelname='ERA5_hourly', modeldata=None, obstype='temp', stations=None, startdt=None, enddt=None)[source]
+

Make Modeldata for the Dataset.

+

Make a metobs_toolkit.Modeldata object with modeldata at the locations +of the stations present in the dataset.

+
+
Parameters:
+
    +
  • modelname (str, optional) – Which dataset to download timeseries from. This is only used when +no modeldata is provided. The default is ‘ERA5_hourly’.

  • +
  • modeldata (metobs_toolkit.Modeldata, optional) – Use the modelname attribute and the gee information stored in the +modeldata instance to extract timeseries.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • stations (string or list of strings, optional) – Stationnames to subset the modeldata to. If None, all stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – Start datetime of the model timeseries. If None, the start datetime of the dataset is used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – End datetime of the model timeseries. If None, the last datetime of the dataset is used. The default is None.

  • +
+
+
Returns:
+

Modl – The extracted modeldata for period and a set of stations.

+
+
Return type:
+

metobs_toolkit.Modeldata

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+

Note

+

When extracting large amounts of data, the timeseries data will be +writen to a file and saved on your google drive. In this case, you need +to provide the Modeldata with the data using the .set_model_from_csv() +method.

+
+
+

Note

+

Only 2mT extraction of ERA5 is implemented for all Modeldata instances. +To extract other variables, one must create a Modeldata instance in +advance, add or update a gee_dataset and give this Modeldata instance +to this method.

+
+
+ +
+
+get_qc_stats(obstype='temp', stationname=None, make_plot=True)[source]
+

Get quality control statistics.

+

Compute frequency statistics on the qc labels for an observationtype. +The output is a dataframe containing the frequency statistics presented +as percentages.

+

These frequencies can also be presented as a collection of piecharts +per check.

+

With stationnames you can subset the data to one ore multiple stations.

+
+
Parameters:
+
    +
  • obstype (str, optional) – Observation type to analyse the QC labels on. The default is +‘temp’.

  • +
  • stationname (str, optional) – Stationname to subset the quality labels on. If None, all +stations are used. The default is None.

  • +
  • make_plot (Bool, optional) – If True, a plot with piecharts is generated. The default is True.

  • +
+
+
Returns:
+

dataset_qc_stats – A table containing the label frequencies per check presented +as percentages.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_station(stationname)[source]
+

Filter out one station of the Dataset.

+

Extract a metobs_toolkit.Station object from the dataset by name.

+
+
Parameters:
+

stationname (string) – The name of the station.

+
+
Returns:
+

The station object.

+
+
Return type:
+

metobs_toolkit.Station

+
+
+
+ +
+
+import_data_from_file(long_format=True, obstype=None, obstype_unit=None, obstype_description=None, freq_estimation_method=None, freq_estimation_simplify=None, freq_estimation_simplify_error=None, kwargs_data_read={}, kwargs_metadata_read={})[source]
+

Read observations from a csv file.

+

The paths are defined in the Settings.input_file. The input file +columns should have a template that is stored in +Settings.template_list.

+

If the metadata is stored in a seperate file, and the +Settings.input_metadata_file is correct, than this metadata is also +imported (if a suitable template is in the Settings.template_list.)

+

The dataset is by default assumed to be in long-format (each column represent an observation type, one column indicates the stationname). +Wide-format can be used if

+
    +
  • the ‘wide’ option is present in the template (this is done automatically if the themplate was made using the metobs_toolkit.build_template_prompt())

  • +
  • ‘long_format’ is set to False and if the observation type is specified (obstype, obstype_unit and obstype_description)

  • +
+

An estimation of the observational frequency is made per station. This is used +to find missing observations and gaps.

+
+
The Dataset attributes are set and the following checks are executed:
    +
  • Duplicate check

  • +
  • Invalid input check

  • +
  • Find missing observations

  • +
  • Find gaps

  • +
+
+
+
+
Parameters:
+
    +
  • long_format (bool, optional) – True if the inputdata has a long-format, False if it has a wide-format. The default is True.

  • +
  • obstype (str, optional) – If the dataformat is wide, specify which observation type the +observations represent. The obstype should be an element of +metobs_toolkit.observation_types. The default is None.

  • +
  • obstype_unit (str, optional) – If the dataformat is wide, specify the unit of the obstype. The +default is None.

  • +
  • obstype_description (str, optional) – If the dataformat is wide, specify the description of the obstype. +The default is None.

  • +
  • freq_estimation_method ('highest' or 'median', optional) – Select wich method to use for the frequency estimation. If +‘highest’, the highest apearing frequency is used. If ‘median’, the +median of the apearing frequencies is used. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_method’] is used. +The default is None.

  • +
  • freq_estimation_simplify (bool, optional) – If True, the likely frequency is converted to round hours, or round minutes. +The “freq_estimation_simplify_error’ is used as a constrain. If the constrain is not met, +the simplification is not performed. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_simplify’] is used. +The default is None.

  • +
  • freq_estimation_simplify_error (Timedelta or str, optional) – The tollerance string or object representing the maximum translation in time to form a simplified frequency estimation. +Ex: ‘5T’ is 5 minuts, ‘1H’, is one hour. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_simplify_error’] is +used. The default is None.

  • +
  • kwargs_data_read (dict, optional) – Keyword arguments collected in a dictionary to pass to the +pandas.read_csv() function on the data file. The default is {}.

  • +
  • kwargs_metadata_read (dict, optional) – Keyword arguments collected in a dictionary to pass to the +pandas.read_csv() function on the metadata file. The default is {}.

  • +
+
+
+
+

Note

+

If options are present in the template, these will have priority over the arguments of this function.

+
+
+
Return type:
+

None.

+
+
+
+ +
+
+import_dataset(folder_path=None, filename='saved_dataset.pkl')[source]
+

Import a Dataset instance from a (pickle) file.

+
+
Parameters:
+
    +
  • folder_path (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_dataset.pkl’.

  • +
+
+
Returns:
+

The Dataset instance.

+
+
Return type:
+

metobs_toolkit.Dataset

+
+
+
+ +
+
+make_gee_plot(gee_map, show_stations=True, save=False, outputfile=None)[source]
+

Make an interactive plot of a google earth dataset.

+

The location of the stations can be plotted on top of it.

+
+
Parameters:
+
    +
  • gee_map (str, optional) – The name of the dataset to use. This name should be present in the +settings.gee[‘gee_dataset_info’]. If aggregat is True, an aggregation +scheme should included as well. The default is ‘worldcover’

  • +
  • show_stations (bool, optional) – If True, the stations will be plotted as markers. The default is True.

  • +
  • save (bool, optional) – If True, the map will be saved as an html file in the output_folder +as defined in the settings if the outputfile is not set. The +default is False.

  • +
  • outputfile (str, optional) – Specify the path of the html file if save is True. If None, and save +is true, the html file will be saved in the output_folder. The +default is None.

  • +
+
+
Returns:
+

Map – The folium Map instance.

+
+
Return type:
+

geemap.foliumap.Map

+
+
+
+

Warning

+

To display the interactive map a graphical backend is required, which +is often missing on (free) cloud platforms. Therefore it is better to +set save=True, and open the .html in your browser

+
+
+ +
+
+make_geo_plot(variable='temp', title=None, timeinstance=None, legend=True, vmin=None, vmax=None, legend_title=None, boundbox=[])[source]
+

Make geospatial plot.

+

This functions creates a geospatial plot for a field +(observations or attributes) of all stations.

+

If the field is timedepending, than the timeinstance is used to plot +the field status at that datetime.

+

If the field is categorical than the leged will have categorical +values, else a colorbar is used.

+

All styling attributes are extracted from the Settings.

+
+
Parameters:
+
    +
  • variable (string, optional) – Fieldname to visualise. This can be an observation type or station +or ‘lcz’. The default is ‘temp’.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • timeinstance (datetime.datetime, optional) – Datetime moment of the geospatial plot. If None, the first occuring (not Nan) record is used. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
  • vmin (numeric, optional) – The value corresponding with the minimum color. If None, the minimum of the presented observations is used. The default is None.

  • +
  • vmax (numeric, optional) – The value corresponding with the maximum color. If None, the maximum of the presented observations is used. The default is None.

  • +
  • legend_title (string, optional) – Title of the legend, if None a default title is generated. The default is None.

  • +
  • boundbox ([lon-west, lat-south, lon-east, lat-north], optional) – The boundbox to indicate the domain to plot. The elemenst are numeric. +If the list is empty, a boundbox is created automatically. The default +is [].

  • +
+
+
Returns:
+

axis – The geoaxes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.geoaxes

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+make_interactive_plot(obstype='temp', save=True, outputfile=None, starttime=None, endtime=None, vmin=None, vmax=None, mpl_cmap_name='viridis', radius=13, fill_alpha=0.6, max_fps=4, outlier_col='red', ok_col='black', gap_col='orange', fill_col='yellow')[source]
+

Make interactive geospatial plot with time evolution.

+

This function uses the folium package to make an interactive geospatial +plot to illustrate the time evolution.

+
+
Parameters:
+
    +
  • obstype (str or metobs_toolkit.Obstype, optional) – The observation type to plot. The default is ‘temp’.

  • +
  • save (bool, optional) – If true, the figure will be saved as an html-file. The default is True.

  • +
  • outputfile (str, optional) – The path of the output html-file. The figure will be saved here, if +save is True. If outputfile is not given, and save is True, than +the figure will be saved in the default outputfolder (if given). +The default is None.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will +use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will +use the end datetime of the dataset, defaults to None.

  • +
  • vmin (numeric, optional) – The value corresponding with the minimum color. If None, the +minimum of the presented observations is used. The default is None.

  • +
  • vmax (numeric, optional) – The value corresponding with the maximum color. If None, the +maximum of the presented observations is used. The default is None.

  • +
  • mpl_cmap_name (str, optional) – The name of the matplotlib colormap to use. The default is ‘viridis’.

  • +
  • radius (int, optional) – The radius (in pixels) of the scatters. The default is 13.

  • +
  • fill_alpha (float ([0;1]), optional) – The alpha of the fill color for the scatters. The default is 0.6.

  • +
  • max_fps (int (>0), optional) – The maximum allowd frames per second for the time evolution. The +default is 4.

  • +
  • outlier_col (str, optional) – The edge color of the scatters to identify an outliers. The default is ‘red’.

  • +
  • ok_col (str, optional) – The edge color of the scatters to identify an ok observation. The default is ‘black’.

  • +
  • gap_col (str, optional) – The edge color of the scatters to identify an missing/gap +observation. The default is ‘orange’.

  • +
  • fill_col (str, optional) – The edge color of the scatters to identify a fillded observation. +The default is ‘yellow’.

  • +
+
+
Returns:
+

m – The interactive folium map.

+
+
Return type:
+

folium.folium.map

+
+
+
+

Note

+

The figure will only appear when this is runned in notebooks. If you do +not run this in a notebook, make shure to save the html file, and open it +with a browser.

+
+
+ +
+
+make_plot(stationnames=None, obstype='temp', colorby='name', starttime=None, endtime=None, title=None, y_label=None, legend=True, show_outliers=True, show_filled=True, _ax=None)[source]
+

This function creates a timeseries plot for the dataset. The variable observation type +is plotted for all stationnames from a starttime to an endtime.

+

All styling attributes are extracted from the Settings.

+
+
Parameters:
+
    +
  • stationnames (list, optional) – A list with stationnames to include in the timeseries. If None is given, all the stations are used, defaults to None.

  • +
  • obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

  • +
  • colorby ('label' or 'name', optional) – Indicate how colors should be assigned to the lines. ‘label’ will color the lines by their quality control label. ‘name’ will color by each station, defaults to ‘name’.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will use the end datetime of the dataset, defaults to None.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – If True, a legend is added to the plot. The default is True.

  • +
  • show_outliers (bool, optional) – If true the observations labeld as outliers will be included in +the plot. This is only true when colorby == ‘name’. The default +is True.

  • +
  • show_filled (bool, optional) – If true the filled values for gaps and missing observations will +be included in the plot. This is only true when colorby == ‘name’. +The default is True.

  • +
+
+
Returns:
+

axis – The timeseries axes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+save_dataset(outputfolder=None, filename='saved_dataset.pkl')[source]
+

Save a Dataset instance to a (pickle) file.

+
+
Parameters:
+
    +
  • outputfolder (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_dataset.pkl’.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+show(show_all_settings=False, max_disp_n_gaps=5)[source]
+

Show detailed information of the Dataset.

+

A function to print out a detailed overview information about the Dataset.

+
+
Parameters:
+
    +
  • show_all_settings (bool, optional) – If True all the settings are printed out. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to display detailed information of.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+show_settings()[source]
+

Show detailed information of the stored Settings.

+

A function that prints out all the settings, structured per thematic.

+
+
Return type:
+

None.

+
+
+
+ +
+
+sync_observations(tollerance, verbose=True, _force_resolution_minutes=None, _drop_target_nan_dt=False)[source]
+

Simplify and syncronize the observation timestamps.

+

To simplify the resolution (per station), a tollerance is use to shift timestamps. The tollerance indicates the +maximum translation in time that can be applied to an observation.

+

The sycronisation tries to group stations that have an equal simplified resolution, and syncronize them. The origin +of the sycronized timestamps will be set to round hours, round 10-minutes or round-5 minutes if possible given the tollerance.

+

The observations present in the input file are used.

+

After syncronization, the IO outliers, missing observations and gaps are recomputed.

+
+
Parameters:
+
    +
  • tollerance (Timedelta or str) – The tollerance string or object representing the maximum translation in time. +Ex: ‘5T’ is 5 minuts, ‘1H’, is one hour.

  • +
  • verbose (bool, optional) – If True, a dataframe illustrating the mapping from original datetimes to simplified and syncronized is returned. The default is True.

  • +
  • _drop_target_nan_dt (bool, optional) – If record has no target datetime, the datetimes will be listed as Nat. To remove them, +set this to True. Default is False.

  • +
  • _force_resolution_minutes (bool, optional) – force the resolution estimate to this frequency in minutes. If None, the frequency is estimated. The default is None.

  • +
+
+
+
+

Note

+

Keep in mind that this method will overwrite the df, outliersdf, missing timestamps and gaps.

+
+
+

Note

+

Because the used observations are from the input file, previously coarsend timeresolutions are ignored.

+
+
+
Returns:
+

A dataframe containing the original observations with original timestamps and the corresponding target timestamps.

+
+
Return type:
+

pandas.DataFrame (if verbose is True)

+
+
+
+ +
+
+update_default_name(default_name)[source]
+

Update the default name (the name of the station).

+

This name will be used when no names are found in the observational dataset.

+

(All observations are assumed to come from one station.)

+
+
Parameters:
+

default_name (string) – Default name to use when no names are present in the data.

+
+
Return type:
+

None.

+
+
+
+ +
+
+update_gap_and_missing_fill_settings(gap_interpolation_method=None, gap_interpolation_max_consec_fill=None, gap_debias_prefered_leading_period_hours=None, gap_debias_prefered_trailing_period_hours=None, gap_debias_minimum_leading_period_hours=None, gap_debias_minimum_trailing_period_hours=None, automatic_max_interpolation_duration_str=None, missing_obs_interpolation_method=None)[source]
+

Update fill settings for gaps and missing observations.

+

If None, the current setting is not updated.

+
+
Parameters:
+
    +
  • gap_interpolation_method (str, optional) – The interpolation method to pass to numpy.interpolate. The default is None.

  • +
  • gap_interpolation_max_consec_fill (int, optional) – Maximum number of lacking observations to interpolate. This is +passed to the limit argument of Numpy.interpolate. The default is +None.

  • +
  • gap_debias_prefered_leading_period_hours (int, optional) – The preferd size of the leading period for calculating hourly +biasses wrt the model. The default is None.

  • +
  • gap_debias_prefered_trailing_period_hours (int, optional) – The preferd size of the trailing period for calculating hourly +biasses wrt the model. The default is None.

  • +
  • gap_debias_minimum_leading_period_hours (int, optional) – The minimum size of the leading period for calculating hourly +biasses wrt the model. The default is None.

  • +
  • gap_debias_minimum_trailing_period_hours (int, optional) – The minimum size of the trailing period for calculating hourly +biasses wrt the model. The default is None.

  • +
  • automatic_max_interpolation_duration_str (Timedelta or str, optional) – Maximum duration to apply interpolation for gapfill when using the +automatic gapfill method. Gaps with longer durations will be filled +using debiased modeldata. The default is None.

  • +
  • missing_obs_interpolation_method (str, optional) – The interpolation method to pass to numpy.interpolate. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=None)[source]
+

Interpret the outliers as missing observations.

+

If there is a sequence +of these outliers for a station, larger than n_gapsize than this will +be interpreted as a gap.

+

The outliers are not removed.

+
+
Parameters:
+
    +
  • obstype (str, optional) – Use the outliers on this observation type to update the gaps and +missing timestamps. The default is ‘temp’.

  • +
  • n_gapsize (int, optional) – The minimum number of consecutive missing observations to define +as a gap. If None, n_gapsize is taken from the settings defenition +of gaps. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

Gaps and missing observations resulting from an outlier on a specific +obstype, are assumed to be gaps/missing observation for all obstypes.

+
+
+

Note

+

Be aware that n_gapsize is used for the current resolution of the Dataset, +this is different from the gap check applied on the inported data, if +the dataset is coarsend.

+
+
+ +
+
+update_outliersdf(add_to_outliersdf)[source]
+

Update the outliersdf attribute.

+
+ +
+
+update_qc_settings(obstype='temp', gapsize_in_records=None, dupl_timestamp_keep=None, persis_time_win_to_check=None, persis_min_num_obs=None, rep_max_valid_repetitions=None, gross_value_min_value=None, gross_value_max_value=None, win_var_max_increase_per_sec=None, win_var_max_decrease_per_sec=None, win_var_time_win_to_check=None, win_var_min_num_obs=None, step_max_increase_per_sec=None, step_max_decrease_per_sec=None, buddy_radius=None, buddy_min_sample_size=None, buddy_max_elev_diff=None, buddy_min_std=None, buddy_threshold=None, buddy_elev_gradient=None)[source]
+

Update the QC settings for the specified observation type.

+

If a argument value is None, the default settings will not be updated.

+
+
Parameters:
+
    +
  • obstype (str, optional) – The observation type to update the quality control settings for. +The default is ‘temp’.

  • +
  • gapsize_in_records (int (> 0), optional) – A gap is defined as a sequence of missing observations with a length +greater or equal to this number, on the input frequencies. The default is None.

  • +
  • dupl_timestamp_keep (bool, optional) – Setting that determines to keep, or remove duplicated timestamps. The default is None.

  • +
  • persis_time_win_to_check (automatic_max_interpolation_duration_str) – Time window for persistance check. The default is None.

  • +
  • persis_min_num_obs (int (> 0), optional) – Minimal window members for persistance check. The default is None.

  • +
  • rep_max_valid_repetitions (int (> 0), optional) – Maximal valid repetitions for repetitions check. The default is None.

  • +
  • gross_value_min_value (numeric, optional) – Minimal value for gross value check. The default is None.

  • +
  • gross_value_max_value (numeric, optional) – Maximal value for gross value check. The default is None.

  • +
  • win_var_max_increase_per_sec (numeric (> 0), optional) – Maximal increase per second for window variation check. The default is None.

  • +
  • win_var_max_decrease_per_sec (numeric (> 0), optional) – Maximal decrease per second for window variation check. The default is None.

  • +
  • win_var_time_win_to_check (Timedelta or str, optional) – Time window for window variation check. The default is None.

  • +
  • win_var_min_num_obs (int (> 0), optional) – Minimal window members for window variation check. The default is None.

  • +
  • step_max_increase_per_sec (numeric, optional) – Maximal increase per second for step check. The default is None.

  • +
  • step_max_decrease_per_sec (numeric (< 0), optional) – Maximal decrease per second for step check. The default is None.

  • +
  • buddy_radius (numeric (> 0), optional) – The radius to define neighbours in meters. The default is None.

  • +
  • buddy_min_sample_size (int (> 2), optional) – The minimum sample size to calculate statistics on. The default is +None.

  • +
  • buddy_max_elev_diff (numeric (> 0), optional) – The maximum altitude difference allowed for buddies. The default is +None.

  • +
  • buddy_min_std (numeric (> 0), optional) – The minimum standard deviation for sample statistics. This should +represent the accuracty of the observations. The default is None.

  • +
  • buddy_threshold (numeric (> 0), optional) – The threshold (std units) for flaggging observations as buddy +outliers. The default is None.

  • +
  • buddy_elev_gradient (numeric, optional) – Describes how the obstype changes with altitude (in meters). The +default is -0.0065. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

The gap defenition is independend of the observation type, and is thus set for +all the observation types.

+
+
+ +
+
+update_settings(output_folder=None, input_data_file=None, input_metadata_file=None, template_file=None)[source]
+

Update the most common input-output (IO) settings.

+

(This should be applied before importing the observations.)

+

When an update value is None, the specific setting will not be updated.

+
+
Parameters:
+
    +
  • output_folder (string, optional) – A directory to store the output to. The default is None.

  • +
  • input_data_file (string, optional) – Path to the input data file with observations. The default is None.

  • +
  • input_metadata_file (string, optional) – Path to the input metadata file. The default is None.

  • +
  • template_file (string, optional) – Path to the mapper-template csv file to be used on the observations +and metadata. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+update_timezone(timezonestr)[source]
+

Change the timezone of the input data.

+

By default UTC is assumed. +A valid timezonestring is an element of the pytz.all_timezones.

+
+
Parameters:
+

timezonestr (string) – Timezone string of the input observations. Element of pytz.all_timezones.

+
+
Return type:
+

None.

+
+
+
+ +
+
+update_titan_qc_settings(obstype='temp', buddy_radius=None, buddy_num_min=None, buddy_threshold=None, buddy_max_elev_diff=None, buddy_elev_gradient=None, buddy_min_std=None, buddy_num_iterations=None, buddy_debug=None, sct_num_min_outer=None, sct_num_max_outer=None, sct_inner_radius=None, sct_outer_radius=None, sct_num_iterations=None, sct_num_min_prof=None, sct_min_elev_diff=None, sct_min_horizontal_scale=None, sct_max_horizontal_scale=None, sct_kth_closest_obs_horizontal_scale=None, sct_vertical_scale=None, sct_mina_deviation=None, sct_maxa_deviation=None, sct_minv_deviation=None, sct_maxv_deviation=None, sct_eps2=None, sct_tpos=None, sct_tneg=None, sct_basic=None, sct_debug=None)[source]
+

Update the TITAN QC settings for the specified observation type.

+

If a argument value is None, the default settings will not be updated.

+

For a detailed explanation of the settings, we refer to the +[TITAN documetation](https://github.com/metno/titanlib/wiki)

+
+
Parameters:
+
    +
  • for. (The observation type to update the quality control settings) –

  • +
  • 'temp'. (The default is) –

  • +
  • buddy_radius (int (> 0), optional) – Search radius in m. The default is None.

  • +
  • buddy_num_min (int (> 0), optional) – The minimum number of buddies a station can have. The default is +None.

  • +
  • buddy_threshold (num (> 0), optional) – The variance threshold for flagging a station. The default is None.

  • +
  • buddy_max_elev_diff (num, optional) – The maximum difference in elevation for a buddy (if negative will not check for heigh difference). The default is None.

  • +
  • buddy_elev_gradient (num, optional) – Linear elevation temperature gradient with height. The default is None.

  • +
  • buddy_min_std (num (> 0), optional) – If the standard deviation of values in a neighborhood are less than min_std, min_std will be used instead. The default is None.

  • +
  • buddy_num_iterations (int (> 0), optional) – The number of iterations to perform. The default is None.

  • +
  • buddy_debug (bool, optional) – If True, print out debug information. The default is None.

  • +
  • sct_num_min_outer (int (> 0), optional) – Minimal points in outer circle. The default is None.

  • +
  • sct_num_max_outer (int (> 0), optional) – Maximal points in outer circle. The default is None.

  • +
  • sct_inner_radius (num (> 0), optional) – Radius of inner circle. The default is None.

  • +
  • sct_outer_radius (num (> 0), optional) – Radius of outer circle. The default is None.

  • +
  • sct_num_iterations (int (> 0), optional) – Number of iterations. The default is None.

  • +
  • sct_num_min_prof (int (> 0), optional) – Minimum number of observations to compute vertical profile. The default is None.

  • +
  • sct_min_elev_diff (num (> 0), optional) – Minimum elevation difference to compute vertical profile. The default is None.

  • +
  • sct_min_horizontal_scale (num (> 0), optional) – Minimum horizontal decorrelation length. The default is None.

  • +
  • sct_max_horizontal_scale (num (> 0), optional) – Maximum horizontal decorrelation length. The default is None.

  • +
  • sct_kth_closest_obs_horizontal_scale (int (> 0), optional) – Number of closest observations to consider. The default is None.

  • +
  • sct_vertical_scale (num (> 0), optional) – Vertical decorrelation length. The default is None.

  • +
  • sct_mina_deviation (num (> 0), optional) – Minimum admissible value deviation. The default is None.

  • +
  • sct_maxa_deviation (num (> 0), optional) – Maximum admissible value deviation. The default is None.

  • +
  • sct_minv_deviation (num (> 0), optional) – Minimum valid value deviation. The default is None.

  • +
  • sct_maxv_deviation (num (> 0), optional) – Maximum valid value deviation. The default is None.

  • +
  • sct_eps2 (num (> 0), optional) – Ratio of observation error variance to background variance. The default is None.

  • +
  • sct_tpos (num (> 0), optional) – Positive deviation allowed. The default is None.

  • +
  • sct_tneg (num (> 0), optional) – Positive deviation allowed. The default is None.

  • +
  • sct_basic (bool, optional) – Basic mode. The default is None.

  • +
  • sct_debug (bool, optional) – If True, print out debug information. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+write_to_csv(obstype=None, filename=None, include_outliers=True, include_fill_values=True, add_final_labels=True, use_tlk_obsnames=True, overwrite_outliers_by_gaps_and_missing=True, seperate_metadata_file=True)[source]
+

Write Dataset to a csv file.

+

Write the dataset to a file where the observations, metadata and +(if available) the quality labels per observation type are merged +together.

+

A final qualty control label for each +quality-controlled-observation type can be added in the outputfile.

+

The file will be writen to the outputfolder specified in the settings.

+
+
Parameters:
+
    +
  • obstype (string, optional) – Specify an observation type to subset all observations to. If None, +all available observation types are writen to file. The default is +None.

  • +
  • filename (string, optional) – The name of the output csv file. If none, a standard-filename +is generated based on the period of data. The default is None.

  • +
  • include_outliers (bool, optional) – If True, the outliers will be present in the csv file. The default is True.

  • +
  • include_fill_values (bool, optional) – If True, the filled gap and missing observation values will be +present in the csv file. The default is True.

  • +
  • add_final_labels (bool, optional) – If True, a column is added containing the final label of an observation. The default is True.

  • +
  • use_tlk_obsnames (bool, optional) – If True, the standard naming of the metobs_toolkit is used, else +the original names for obstypes is used. The default is True.

  • +
  • overwrite_outliers_by_gaps_and_missing (bool, optional) – If the gaps and missing observations are updated using outliers, +interpret these records as gaps/missing outliers if True. Else these +will be interpreted as outliers. The default is True.

  • +
  • seperate_metadata_file (bool, optional) – If true, the metadat is writen to a seperate file, else the metadata +is merged to the observation in one file. The default is True.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.html b/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.html new file mode 100644 index 00000000..46675dc9 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.html @@ -0,0 +1,174 @@ + + + + + + + metobs_toolkit.dataset_settings_updater — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.dataset_settings_updater

+

Extension of the Dataset class (methods for updating settings). +@author: thoverga

+

Functions

+ + + + + + +

is_timedelta

Test if string can be timedelta representation.

+

Classes

+ + + + + + +

Dataset

Extension on the metobs_toolkit.Dataset class with updaters.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.html b/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.html new file mode 100644 index 00000000..1acc73a7 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.html @@ -0,0 +1,171 @@ + + + + + + + metobs_toolkit.dataset_settings_updater.is_timedelta — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.dataset_settings_updater.is_timedelta

+
+
+metobs_toolkit.dataset_settings_updater.is_timedelta(timedeltastr)[source]
+

Test if string can be timedelta representation.

+
+
Parameters:
+

timedeltastr (str) – Representation of timedelta.

+
+
Return type:
+

bool

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.concat_save.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.concat_save.html new file mode 100644 index 00000000..c687c7f9 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.concat_save.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.concat_save — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.df_helpers.concat_save

+
+
+metobs_toolkit.df_helpers.concat_save(df_list, **kwargs)[source]
+

Concat dataframes row-wise without triggering the Futurwarning of concating empyt df’s.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.html new file mode 100644 index 00000000..ce18d90d --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.conv_applied_qc_to_df — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.conv_applied_qc_to_df

+
+
+metobs_toolkit.df_helpers.conv_applied_qc_to_df(obstypes, ordered_checknames)[source]
+

Construct dataframe with applied QC info.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.html new file mode 100644 index 00000000..7a5f17dd --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.conv_tz_multiidxdf — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.conv_tz_multiidxdf

+
+
+metobs_toolkit.df_helpers.conv_tz_multiidxdf(df, timezone)[source]
+

Convert datetime index to other timezone.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.html new file mode 100644 index 00000000..c869101d --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.html @@ -0,0 +1,197 @@ + + + + + + + metobs_toolkit.df_helpers.datetime_subsetting — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.datetime_subsetting

+
+
+metobs_toolkit.df_helpers.datetime_subsetting(df, starttime, endtime)[source]
+

Subset dataaframe by timeperiod.

+

Wrapper function for subsetting a dataframe with a ‘datetime’ column or index with a start- and +endtime.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame with datetimeindex) – The dataframe to apply the subsetting to.

  • +
  • starttime (datetime.Datetime) – Starttime for the subsetting period (included).

  • +
  • endtime (datetime.Datetime) – Endtime for the subsetting period (included).

  • +
+
+
Returns:
+

Subset of the df.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.html new file mode 100644 index 00000000..39345f31 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.html @@ -0,0 +1,197 @@ + + + + + + + metobs_toolkit.df_helpers.fmt_datetime_argument — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.fmt_datetime_argument

+
+
+metobs_toolkit.df_helpers.fmt_datetime_argument(dt, target_tz_str)[source]
+

Convert naive datetime to tz-aware.

+

Helper function to format the datetime, a user enters as argument, to the +correct timezone.

+

If the datetime is timezone unaware, the toolkit ASSUMES the dt is in the +same timezone as target_tz_str (the timezone of the dataset).

+

if dt is None, None is returned +:param dt: A datetime to convert to the timezone of tz_str_data. +:type dt: datetime.datetime +:param target_tz_str: a pytz timezone string, to convert/assign the dt to. +:type target_tz_str: str

+
+
Returns:
+

dt – Timezone-Aware datetime in tzone=tz_str_data.

+
+
Return type:
+

datetime.datetime

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.html new file mode 100644 index 00000000..0ab2f003 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.html @@ -0,0 +1,192 @@ + + + + + + + metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx

+
+
+metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx(outliersdf)[source]
+

Convert outliersdf to multiindex dataframe if needed.

+

This is applied when the obstype level in the index is not relevant.

+
+
Parameters:
+

ouliersdf (Dataset.outliersdf) – The outliers dataframe to format to name - datetime index.

+
+
Returns:
+

The outliersdfdataframe where the ‘obstype’ level is dropped, if it was present.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.html new file mode 100644 index 00000000..57bfa262 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.html @@ -0,0 +1,202 @@ + + + + + + + metobs_toolkit.df_helpers.get_freqency_series — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.get_freqency_series

+
+
+metobs_toolkit.df_helpers.get_freqency_series(df, method='highest', simplify=True, max_simplify_error='2T')[source]
+

Get the most likely frequencies of all stations.

+

Find the most likely observation frequency for all stations individually +based on the df. If an observation has less than two observations, assign +the most commum frequency to it an raise a warning.

+
+
Parameters:
+
    +
  • df (Metobs_toolkit.df) – Dataframe containing the observations.

  • +
  • method ('highest' or 'median', optional) – Select wich method to use. If ‘highest’, the highest apearing frequency is used. +If ‘median’, the median of the apearing frequencies is used. The default is ‘highest’.

  • +
  • simplify (bool, optional) – If True, the likely frequency is converted to round hours, or round minutes. +The “max_simplify_error’ is used as a constrain. If the constrain is not met, +the simplification is not performed.The default is True.

  • +
  • max_simplify_error (Timedelta or str, optional) – The maximum deviation from the found frequency when simplifying. The default is ‘2T’.

  • +
+
+
Returns:
+

freq_series – A pandas series with ‘name’ as index and likely frequencies as values.

+
+
Return type:
+

pandas.Series

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.html new file mode 100644 index 00000000..9804f685 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.html @@ -0,0 +1,199 @@ + + + + + + + metobs_toolkit.df_helpers.get_likely_frequency — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.get_likely_frequency

+
+
+metobs_toolkit.df_helpers.get_likely_frequency(timestamps, method='highest', simplify=True, max_simplify_error='2T')[source]
+

Find the most likely observation frequency of a datetimeindex.

+
+
Parameters:
+
    +
  • timestamps (pandas.Datetimeindex()) – Datetimeindex of the dataset.df.

  • +
  • method ('highest' or 'median', optional) – Select wich method to use. If ‘highest’, the highest apearing frequency is used. +If ‘median’, the median of the apearing frequencies is used. The default is ‘highest’.

  • +
  • simplify (Boolean, optional) – If True, the likely frequency is converted to round hours, or round minutes. +The “max_simplify_error’ is used as a constrain. If the constrain is not met, +the simplification is not performed.The default is True.

  • +
  • max_simplify_error (datetimestring, optional) – The maximum deviation from the found frequency when simplifying. The default is ‘2T’.

  • +
+
+
Returns:
+

assume_freq – The assumed (and simplified) frequency of the datetimeindex.

+
+
Return type:
+

datetime.timedelta

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.html new file mode 100644 index 00000000..27b6ecc0 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.html @@ -0,0 +1,235 @@ + + + + + + + metobs_toolkit.df_helpers — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers

+

A collection of functions on dataframe that are often used.

+

Created on Thu Mar 2 16:00:59 2023

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

concat_save

Concat dataframes row-wise without triggering the Futurwarning of concating empyt df's.

conv_applied_qc_to_df

Construct dataframe with applied QC info.

conv_tz_multiidxdf

Convert datetime index to other timezone.

datetime_subsetting

Subset dataaframe by timeperiod.

fmt_datetime_argument

Convert naive datetime to tz-aware.

format_outliersdf_to_doubleidx

Convert outliersdf to multiindex dataframe if needed.

get_freqency_series

Get the most likely frequencies of all stations.

get_likely_frequency

Find the most likely observation frequency of a datetimeindex.

init_multiindex

Construct a name-datetime pandas multiindex.

init_multiindexdf

Construct a name-datetime pandas multiindexdataframe.

init_triple_multiindex

Construct a name-datetime-obstype pandas multiindex.

init_triple_multiindexdf

Construct a name-datetime-obstype pandas multiindexdataframe.

metadf_to_gdf

Make geopandas dataframe.

multiindexdf_datetime_subsetting

Multiindex equivalent of datetime_subsetting.

remove_outliers_from_obs

Remove outlier records from observation records.

subset_stations

Subset stations by name from a dataframe.

value_labeled_doubleidxdf_to_triple_idxdf

Convert double to triple index based on obstype column.

xs_save

Similar as pandas xs, but returns an empty df when key is not found.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_multiindex.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_multiindex.html new file mode 100644 index 00000000..1ffd309a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_multiindex.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.init_multiindex — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.init_multiindex

+
+
+metobs_toolkit.df_helpers.init_multiindex()[source]
+

Construct a name-datetime pandas multiindex.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.html new file mode 100644 index 00000000..6884996a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.init_multiindexdf — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.init_multiindexdf

+
+
+metobs_toolkit.df_helpers.init_multiindexdf()[source]
+

Construct a name-datetime pandas multiindexdataframe.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.html new file mode 100644 index 00000000..9e1858a5 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.init_triple_multiindex — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.init_triple_multiindex

+
+
+metobs_toolkit.df_helpers.init_triple_multiindex()[source]
+

Construct a name-datetime-obstype pandas multiindex.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.html new file mode 100644 index 00000000..8591bdb1 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.init_triple_multiindexdf — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.init_triple_multiindexdf

+
+
+metobs_toolkit.df_helpers.init_triple_multiindexdf()[source]
+

Construct a name-datetime-obstype pandas multiindexdataframe.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.html new file mode 100644 index 00000000..de425a9f --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.html @@ -0,0 +1,197 @@ + + + + + + + metobs_toolkit.df_helpers.metadf_to_gdf — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.metadf_to_gdf

+
+
+metobs_toolkit.df_helpers.metadf_to_gdf(df, crs=4326)[source]
+

Make geopandas dataframe.

+

Function to convert a dataframe with ‘lat’ en ‘lon’ columnst to a geopandas +dataframe with a geometry column containing points.

+

Special care for stations with missing coordinates.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – Dataframe with a ‘lat’ en ‘lon’ column.

  • +
  • crs (Integer, optional) – The epsg number of the coordinates. The default is 4326.

  • +
+
+
Returns:
+

geodf – The geodataframe equivalent of the df.

+
+
Return type:
+

geopandas.GeaDataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.html new file mode 100644 index 00000000..de763783 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting

+
+
+metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting(df, starttime, endtime)[source]
+

Multiindex equivalent of datetime_subsetting.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.html new file mode 100644 index 00000000..e63727b3 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.remove_outliers_from_obs — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.remove_outliers_from_obs

+
+
+metobs_toolkit.df_helpers.remove_outliers_from_obs(obsdf, outliersdf)[source]
+

Remove outlier records from observation records.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.subset_stations.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.subset_stations.html new file mode 100644 index 00000000..b064d59a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.subset_stations.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.subset_stations — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.subset_stations

+
+
+metobs_toolkit.df_helpers.subset_stations(df, stationslist)[source]
+

Subset stations by name from a dataframe.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.html new file mode 100644 index 00000000..2eac8eac --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.html @@ -0,0 +1,206 @@ + + + + + + + metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf

+
+
+metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf(df, known_obstypes, value_col_name='value', label_col_name='label')[source]
+

Convert double to triple index based on obstype column.

+

This function converts a double index dataframe with an ‘obstype’ column, +and a ‘obstype_final_label’ column to a triple index dataframe where the +obstype values are added to the index.

+
+
Parameters:
+
    +
  • df (pd.DataFrame) – Dataframe with [‘name’, ‘datetime’] as index and two columns: [obstype, obstype_final_label]. +Where obstype is an observation type.

  • +
  • known_obstypes (list) – A list of known observation types. These consist of the default +obstypes and the ones added by the user.

  • +
  • value_col_name (str, optional) – Name of the column for the values. The default is ‘value’.

  • +
  • label_col_name (str, optional) – Name of the column for the labels. The default is ‘label’.

  • +
+
+
Returns:
+

values

+
+
Dataframe with a [‘name’, ‘datetime’, obstype] index and two columnd:

[value_col_name, label_col_name]

+
+
+

+
+
Return type:
+

pd.DataFrame()

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.df_helpers.xs_save.html b/docs/_build/_autosummary/metobs_toolkit.df_helpers.xs_save.html new file mode 100644 index 00000000..ad0b3575 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.df_helpers.xs_save.html @@ -0,0 +1,180 @@ + + + + + + + metobs_toolkit.df_helpers.xs_save — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.df_helpers.xs_save

+
+
+metobs_toolkit.df_helpers.xs_save(df, key, level, drop_level=True)[source]
+

Similar as pandas xs, but returns an empty df when key is not found.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.Gap.html b/docs/_build/_autosummary/metobs_toolkit.gap.Gap.html new file mode 100644 index 00000000..9fdc94db --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.Gap.html @@ -0,0 +1,304 @@ + + + + + + + metobs_toolkit.gap.Gap — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.gap.Gap

+
+
+class metobs_toolkit.gap.Gap(name, startdt, enddt)[source]
+

Bases: object

+

Gap class holds all gap information and methods for gaps.

+

Methods

+ + + + + + + + + + + + + + + + + + +

apply_interpolate_gap

Fill a Gap using a linear interpolation gapfill method for an obstype.

get_info

Print detailed information of a gap.

to_df

Convert a Gap object to a dataframe (with one row).

update_gaps_indx_in_obs_space

Get the gap records in observation-space.

update_leading_trailing_obs

Update leading and trailing periods in the attributes.

+
+
+apply_interpolate_gap(obsdf, outliersdf, dataset_res, obstype='temp', method='time', max_consec_fill=100)[source]
+

Fill a Gap using a linear interpolation gapfill method for an obstype.

+

The filled datetimes (in dataset resolution) are returned in the form +af a multiindex pandas Series (name – datetime) as index.

+
+
Parameters:
+
    +
  • obsdf (Dataset.df) –

    +
    The Dataset.df attribute. (Needed to extract trailing/leading

    observations.)

    +
    +
    +

  • +
  • outliersdf (Dataset.outliersdf) –

    +
    The Dataset.outliersdf attribute.(Needed to extract trailing/leading

    observations.))

    +
    +
    +

  • +
  • resolutionseries (Datetime.timedelta) – Resolution of the station observations in the dataset.

  • +
  • obstype (String, optional) – The observational type to apply gapfilling on. The default is ‘temp’.

  • +
  • method (String, optional) – Method to pass to the Numpy.interpolate function. The default is ‘time’.

  • +
  • max_consec_fill (Integer, optional) – Value to pass to the limit argument of Numpy.interpolate. The default is 100.

  • +
+
+
Returns:
+

Multiindex Series with filled gap values in dataset space.

+
+
Return type:
+

Pandas.Series

+
+
+
+ +
+
+get_info()[source]
+

Print detailed information of a gap.

+
+ +
+
+to_df()[source]
+

Convert a Gap object to a dataframe (with one row).

+

The station name is the index and two colums (‘start_gap’, ‘end_gap’) +are constructed.

+
+
Returns:
+

Gap in dataframe format.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+ +
+
+update_gaps_indx_in_obs_space(obsdf, outliersdf, dataset_res)[source]
+

Get the gap records in observation-space.

+

Explode the gap, to the dataset resolution and format to a multiindex +with name – datetime.

+

In addition the last observation before the gap (leading), and first +observation (after) the gap are computed and stored in the df attribute. +(the outliers are used to look for leading and trailing observations.)

+
+
Parameters:
+
    +
  • obsdf (Dataset.df) –

    +
    The Dataset.df attribute. (Needed to extract trailing/leading

    observations.)

    +
    +
    +

  • +
  • outliersdf (Dataset.outliersdf) –

    +
    The Dataset.outliersdf attribute.(Needed to extract trailing/leading

    observations.))

    +
    +
    +

  • +
  • resolutionseries (Datetime.timedelta) – Resolution of the station observations in the dataset.

  • +
+
+
Return type:
+

None

+
+
+
+ +
+
+update_leading_trailing_obs(obsdf, outliersdf, obs_only=False)[source]
+

Update leading and trailing periods in the attributes.

+

Add the leading (last obs before gap) and trailing (first obs after gap) +as extra columns to the self.df.

+

One can specify to look for leading and trailing in the obsdf or in both +the obsdf and outliersdf.

+

The gap leading and trailing timestamps and value attributes are updated.

+

If no leading/trailing timestamp is found, it is set to the gaps startdt/enddt.

+
+
Parameters:
+
    +
  • obsdf (pandas.DataFrame) – Dataset.df

  • +
  • outliersdf (pandas.DataFrame) – Dataset.outliersdf

  • +
  • obs_only (bool, optional) – If True, only the obsdf will be used to search for leading and trailing.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.html b/docs/_build/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.html new file mode 100644 index 00000000..1bd9f035 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.html @@ -0,0 +1,187 @@ + + + + + + + metobs_toolkit.gap.apply_debias_era5_gapfill — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.apply_debias_era5_gapfill

+
+
+metobs_toolkit.gap.apply_debias_era5_gapfill(gapslist, dataset, eraModelData, debias_settings, obstype='temp', overwrite_fill=False)[source]
+

Fill all gaps using ERA5 debiaset modeldata.

+
+
Parameters:
+
    +
  • gapslist (list) – list of all gaps.

  • +
  • dataset (metobs_toolkit.Dataset) – Dataset to fill the gaps of.

  • +
  • eraModelData (metobs_toolkit.Modeldata) – Modeldata to use for gapfilling.

  • +
  • debias_settings (dict) – Debias settings.

  • +
  • obstype (str, optional) – MetObs observationtype to fill gaps for. The default is “temp”.

  • +
  • overwrite_fill (bool, optional) – If True, the filled values are overwritten. The default is False.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.html b/docs/_build/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.html new file mode 100644 index 00000000..ae4f87e2 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.html @@ -0,0 +1,190 @@ + + + + + + + metobs_toolkit.gap.apply_interpolate_gaps — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.apply_interpolate_gaps

+
+
+metobs_toolkit.gap.apply_interpolate_gaps(gapslist, obsdf, outliersdf, dataset_res, gapfill_settings, obstype='temp', method='time', max_consec_fill=100, overwrite_fill=False)[source]
+

Fill all gaps with interpolation and update attributes.

+
+
Parameters:
+
    +
  • gapslist (list) – list of all gaps.

  • +
  • obsdf (pandas.DataFrame) – Dataframe with the observations.

  • +
  • outliersdf (pandas.DataFrame) – Dataframe with the outliers (to find leading/trailing records).

  • +
  • dataset_res (pandas.Series) – Frequency for all stations in a series.

  • +
  • gapfill_settings (dict) – Gapfill settings.

  • +
  • obstype (str, optional) – MetObs observationtype to fill gaps for. The default is “temp”.

  • +
  • method (str, optional) – Numpy interpolation method. The default is “time”.

  • +
  • max_consec_fill (int, optional) – Maximum number of consecutive records to fill. The default is 100.

  • +
  • overwrite_fill (bool, optional) – If True, the filled values are overwritten. The default is False.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.gaps_to_df.html b/docs/_build/_autosummary/metobs_toolkit.gap.gaps_to_df.html new file mode 100644 index 00000000..9dda5474 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.gaps_to_df.html @@ -0,0 +1,184 @@ + + + + + + + metobs_toolkit.gap.gaps_to_df — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.gap.gaps_to_df

+
+
+metobs_toolkit.gap.gaps_to_df(gapslist)[source]
+

Combine all gaps into a dataframe as an overview.

+
+
Parameters:
+

gapslist (list) – List of gaps.

+
+
Returns:
+

A DataFrame with stationnames as index, and the start, end and duretion +of the gaps as columns.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.html b/docs/_build/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.html new file mode 100644 index 00000000..9ea65969 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.html @@ -0,0 +1,192 @@ + + + + + + + metobs_toolkit.gap.get_gaps_indx_in_obs_space — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.get_gaps_indx_in_obs_space

+
+
+metobs_toolkit.gap.get_gaps_indx_in_obs_space(gapslist, obsdf, outliersdf, resolutionseries)[source]
+

Get all gaps in obsspace.

+

Explode the gaps, to the dataset resolution and format to a multiindex +with name – datetime.

+

In addition the last observation before the gap (leading), and first +observation (after) the gap are computed and stored in the df attribute. +(the outliers are used to look for leading and trailing observations.)

+
+
Parameters:
+
    +
  • obsdf (pandas.DataFrame) – Dataframe containing all the observations.

  • +
  • outliersdf (pandas.DataFrame) – Dataframe containing all outliers

  • +
  • resolutionseries (pandas.Series) – The resolution of each station in a Series with the stationname as an index.

  • +
+
+
Returns:
+

expanded_gabsidx_obsspace – Multiindex with name and datetime of gaps in obsspace.

+
+
Return type:
+

pandas.index

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.get_station_gaps.html b/docs/_build/_autosummary/metobs_toolkit.gap.get_station_gaps.html new file mode 100644 index 00000000..47501158 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.get_station_gaps.html @@ -0,0 +1,185 @@ + + + + + + + metobs_toolkit.gap.get_station_gaps — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.get_station_gaps

+
+
+metobs_toolkit.gap.get_station_gaps(gapslist, name)[source]
+

Extract a Gap_collection specific to one station.

+

If no gaps are found for the station, an empty Gap_collection is +returned.

+
+
Parameters:
+

name (String) – Name of the station to extract a Gaps_collection from.

+
+
Returns:
+

A Gap collection specific of the specified station.

+
+
Return type:
+

Gap_collection

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.html b/docs/_build/_autosummary/metobs_toolkit.gap.html new file mode 100644 index 00000000..f656ada8 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.html @@ -0,0 +1,207 @@ + + + + + + + metobs_toolkit.gap — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.gap

+

This module contains the Gap class and all its methods.

+

A Gap contains all information and methods of a data-gap.

+

Functions

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

apply_debias_era5_gapfill

Fill all gaps using ERA5 debiaset modeldata.

apply_interpolate_gaps

Fill all gaps with interpolation and update attributes.

gaps_to_df

Combine all gaps into a dataframe as an overview.

get_gaps_indx_in_obs_space

Get all gaps in obsspace.

get_station_gaps

Extract a Gap_collection specific to one station.

make_gapfill_df

Create a dataframe with all filled values of all gaps.

missing_timestamp_and_gap_check

Find missing timestamps and gaps in the observations.

remove_gaps_from_obs

Remove station - datetime records that are in the gaps from the obsdf.

remove_gaps_from_outliers

Remove station - datetime records that are in the gaps from the outliersdf.

+

Classes

+ + + + + + +

Gap

Gap class holds all gap information and methods for gaps.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.make_gapfill_df.html b/docs/_build/_autosummary/metobs_toolkit.gap.make_gapfill_df.html new file mode 100644 index 00000000..54730bb4 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.make_gapfill_df.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.gap.make_gapfill_df — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.make_gapfill_df

+
+
+metobs_toolkit.gap.make_gapfill_df(gapslist)[source]
+

Create a dataframe with all filled values of all gaps.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.html b/docs/_build/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.html new file mode 100644 index 00000000..4ff274cd --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.html @@ -0,0 +1,191 @@ + + + + + + + metobs_toolkit.gap.missing_timestamp_and_gap_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.missing_timestamp_and_gap_check

+
+
+metobs_toolkit.gap.missing_timestamp_and_gap_check(df, gapsize_n)[source]
+

Find missing timestamps and gaps in the observations.

+

Looking for missing timestaps by assuming an observation frequency. The assumed frequency is the highest occuring frequency PER STATION. +If missing observations are detected, they can be catogirized as a missing timestamp or as gap.

+

A gap is define as a sequence of missing values with more than N repetitive missing values. N is define in the QC settings.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • gapsize_n (int) – The minimum number of consecutive missing observations to identify the +period as a gap.

  • +
+
+
Returns:
+

    +
  • missing_obs_collection (metobs_toolkit.missing_collection) – The collection of missing observations.

  • +
  • gap_list (metobs_toolkit.gaps) – The list with gaps.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.html b/docs/_build/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.html new file mode 100644 index 00000000..7b3f29bc --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.html @@ -0,0 +1,187 @@ + + + + + + + metobs_toolkit.gap.remove_gaps_from_obs — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.remove_gaps_from_obs

+
+
+metobs_toolkit.gap.remove_gaps_from_obs(gaplist, obsdf)[source]
+

Remove station - datetime records that are in the gaps from the obsdf.

+
+
(Usefull when filling timestamps to a df, and if you whant to remove the

gaps.)

+
+
+
+
Parameters:
+

obsdf (pandas.DataFrame()) – A MultiIndex dataframe with name – datetime as index.

+
+
Returns:
+

obsdf – The same dataframe with records inside gaps removed.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.html b/docs/_build/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.html new file mode 100644 index 00000000..d0230b3d --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.html @@ -0,0 +1,185 @@ + + + + + + + metobs_toolkit.gap.remove_gaps_from_outliers — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap.remove_gaps_from_outliers

+
+
+metobs_toolkit.gap.remove_gaps_from_outliers(gaplist, outldf)[source]
+

Remove station - datetime records that are in the gaps from the outliersdf.

+

This will ignore the observation types! So all outliers of any observation +type, that are in a gap period, are removed.

+
+
Parameters:
+

obsdf (pandas.DataFrame()) – A MultiIndex dataframe with name – datetime – as index.

+
+
Returns:
+

obsdf – The same dataframe with records inside gaps removed.

+
+
Return type:
+

pandas.DataFrame()

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.html b/docs/_build/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.html new file mode 100644 index 00000000..e3ae696d --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.gap_filling.create_leading_trailing_debias_periods — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap_filling.create_leading_trailing_debias_periods

+
+
+metobs_toolkit.gap_filling.create_leading_trailing_debias_periods(station, gap, debias_period_settings, obstype)[source]
+

Get the leading and trailing periods of a gap.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap_filling.get_sample_size.html b/docs/_build/_autosummary/metobs_toolkit.gap_filling.get_sample_size.html new file mode 100644 index 00000000..511a1cd0 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap_filling.get_sample_size.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.gap_filling.get_sample_size — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap_filling.get_sample_size

+
+
+metobs_toolkit.gap_filling.get_sample_size(sample_duration_hours, sta)[source]
+

Get the number of records for a sample duration.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.html b/docs/_build/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.html new file mode 100644 index 00000000..6a45db82 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.gap_filling.get_time_specific_biases — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap_filling.get_time_specific_biases

+
+
+metobs_toolkit.gap_filling.get_time_specific_biases(model, obs, obstype, period)[source]
+

Get hourly biases.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap_filling.html b/docs/_build/_autosummary/metobs_toolkit.gap_filling.html new file mode 100644 index 00000000..c3e4bc88 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap_filling.html @@ -0,0 +1,182 @@ + + + + + + + metobs_toolkit.gap_filling — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap_filling

+

Created on Tue Feb 28 17:05:26 2023

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + +

create_leading_trailing_debias_periods

Get the leading and trailing periods of a gap.

get_sample_size

Get the number of records for a sample duration.

get_time_specific_biases

Get hourly biases.

interpolate_gap

Interpolate a specific gap.

make_era_bias_correction

Make debias correction of the modeldata for a gap.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.html b/docs/_build/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.html new file mode 100644 index 00000000..63961d8e --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.gap_filling.interpolate_gap — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap_filling.interpolate_gap

+
+
+metobs_toolkit.gap_filling.interpolate_gap(gap, obsdf, outliersdf, dataset_res, obstype, method, max_consec_fill)[source]
+

Interpolate a specific gap.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.html b/docs/_build/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.html new file mode 100644 index 00000000..fe82d4e5 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.gap_filling.make_era_bias_correction — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.gap_filling.make_era_bias_correction

+
+
+metobs_toolkit.gap_filling.make_era_bias_correction(leading_model, trailing_model, gap_model, leading_obs, trailing_obs, obstype)[source]
+

Make debias correction of the modeldata for a gap.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.html b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.html new file mode 100644 index 00000000..b55c4f4f --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.geometry_functions.box_to_extent_list — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.geometry_functions.box_to_extent_list

+
+
+metobs_toolkit.geometry_functions.box_to_extent_list(bbox)[source]
+

Convert shapely box to a list of the bound coordinates.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.html b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.html new file mode 100644 index 00000000..53766d0b --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.geometry_functions.extent_list_to_box — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.geometry_functions.extent_list_to_box

+
+
+metobs_toolkit.geometry_functions.extent_list_to_box(extentlist)[source]
+

Convert list of coordinates to a shapely box.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.html b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.html new file mode 100644 index 00000000..01d583a9 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.html @@ -0,0 +1,171 @@ + + + + + + + metobs_toolkit.geometry_functions.find_extend_of_geodf — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.geometry_functions.find_extend_of_geodf

+
+
+metobs_toolkit.geometry_functions.find_extend_of_geodf(geodf, lat_size=1.0, lon_size=1.0)[source]
+

Construct a bounding box for the plot.

+

If the geodf contains more than one point, the bounding box is +defined as the spatial span of the points.

+

If the geodf contains only one point, a minimal span of lat_size, +lon_size is created with the point at the centroid.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.html b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.html new file mode 100644 index 00000000..970072ae --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.html @@ -0,0 +1,184 @@ + + + + + + + metobs_toolkit.geometry_functions.find_plot_extent — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.geometry_functions.find_plot_extent

+
+
+metobs_toolkit.geometry_functions.find_plot_extent(geodf, user_bounds, default_extentlist)[source]
+

Find the most suitable plot bounds for spatial plot.

+

If the user_bounds are valid, these are used. Else the bounds of the goedf +computed. If these bounds are not contained by the default (Belgium) bounds +than the geodf extend is used else the default. +:param geodf: The geometry dataframe containing all the stations to plot. +:type geodf: geopandas.geoDataFrame +:param user_bounds: List of bound coordinates. +:type user_bounds: list +:param default_extentlist: List of default bounds (Belgium). +:type default_extentlist: list

+
+
Returns:
+

A list of bounds for the spatial plot.

+
+
Return type:
+

list

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.html b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.html new file mode 100644 index 00000000..0304c2cb --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.geometry_functions.gpd_to_extent_box — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.geometry_functions.gpd_to_extent_box

+
+
+metobs_toolkit.geometry_functions.gpd_to_extent_box(geodf)[source]
+

Convert GeoDataFrame to a box with coordinates of the bounds.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.geometry_functions.html b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.html new file mode 100644 index 00000000..6f68b685 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.geometry_functions.html @@ -0,0 +1,182 @@ + + + + + + + metobs_toolkit.geometry_functions — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.geometry_functions

+

Created on Fri Oct 21 09:13:01 2022

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + +

box_to_extent_list

Convert shapely box to a list of the bound coordinates.

extent_list_to_box

Convert list of coordinates to a shapely box.

find_extend_of_geodf

Construct a bounding box for the plot.

find_plot_extent

Find the most suitable plot bounds for spatial plot.

gpd_to_extent_box

Convert GeoDataFrame to a box with coordinates of the bounds.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.html b/docs/_build/_autosummary/metobs_toolkit.html new file mode 100644 index 00000000..6dcac582 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.html @@ -0,0 +1,216 @@ + + + + + + + metobs_toolkit — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

metobs_toolkit.analysis

This module contains the Analysis class and all its methods.

metobs_toolkit.data_import

Created on Thu Sep 22 16:24:06 2022

metobs_toolkit.dataset

This module contains the Dataset class and all its methods.

metobs_toolkit.dataset_settings_updater

Extension of the Dataset class (methods for updating settings).

metobs_toolkit.df_helpers

A collection of functions on dataframe that are often used.

metobs_toolkit.gap

This module contains the Gap class and all its methods.

metobs_toolkit.gap_filling

Created on Tue Feb 28 17:05:26 2023

metobs_toolkit.geometry_functions

Created on Fri Oct 21 09:13:01 2022

metobs_toolkit.landcover_functions

Functions that are used for GEE interactions.

metobs_toolkit.missingobs

This module contains the Missingob_collection class and all its methods.

metobs_toolkit.modeldata

This module contains the Modeldata class and all its methods.

metobs_toolkit.obstype_modeldata

Class defenition of model observationtypes.

metobs_toolkit.obstypes

Class defenition for regular observation types.

metobs_toolkit.plotting_functions

Created on Fri Oct 21 11:26:52 2022

metobs_toolkit.printing

Printing Functions

metobs_toolkit.qc_checks

Created on Thu Oct 6 13:44:54 2022

metobs_toolkit.qc_statistics

Module for computing frequency statistics of outlier labels.

metobs_toolkit.settings

All needed setting are combined in a settings class.

metobs_toolkit.station

This module contains the Station class that inherits all methods of the Dataset class.

metobs_toolkit.writing_files

Module with functions for writing csv files.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.html new file mode 100644 index 00000000..78e2e6d7 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.connect_to_gee — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.connect_to_gee

+
+
+metobs_toolkit.landcover_functions.connect_to_gee()[source]
+

Authenticate to GEE if needed.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.html new file mode 100644 index 00000000..25801e9e --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.coordinates_available — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.coordinates_available

+
+
+metobs_toolkit.landcover_functions.coordinates_available(metadf, latcol='lat', loncol='lon')[source]
+

Test if all coordinates are available.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.html new file mode 100644 index 00000000..a72f6b18 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.coords_to_geometry — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.coords_to_geometry

+
+
+metobs_toolkit.landcover_functions.coords_to_geometry(lat=[], lon=[], proj='EPSG:4326')[source]
+

Convert coordinates to GEE geometries.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.html new file mode 100644 index 00000000..c4cf2442 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.html @@ -0,0 +1,191 @@ + + + + + + + metobs_toolkit.landcover_functions.extract_buffer_frequencies — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.extract_buffer_frequencies

+
+
+metobs_toolkit.landcover_functions.extract_buffer_frequencies(metadf, mapinfo, bufferradius)[source]
+

Extract buffer fractions from a GEE categorical dataset.

+

The pointlocations are defined in a dataframe by EPSG:4326 lat lon coordinates.

+

A dataframe with the extracted values is returned. +The values are mapped to human classes if the dataset value type is labeld as categorical.

+
+
Parameters:
+
    +
  • metadf (pd.DataFrame) – dataframe containing coordinates and a column “name”, representing the name for each location.

  • +
  • mapinfo (Dict) – The information about the GEE dataset.

  • +
  • latcolname (String, optional) – Columnname of latitude values. The default is ‘lat’.

  • +
  • loncolname (String, optional) – Columnname of longitude values. The default is ‘lon’.

  • +
+
+
Returns:
+

A dataframe with name as index, all columns from the metadf + extracted extracted values column.

+
+
Return type:
+

pd.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.html new file mode 100644 index 00000000..d232e869 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.html @@ -0,0 +1,192 @@ + + + + + + + metobs_toolkit.landcover_functions.extract_pointvalues — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.extract_pointvalues

+
+
+metobs_toolkit.landcover_functions.extract_pointvalues(metadf, mapinfo, output_column_name)[source]
+

Extract values for point locations from a GEE dataset.

+

The pointlocations are defined in a dataframe by EPSG:4326 lat lon coordinates.

+

A dataframe with the extracted values is returned. +The values are mapped to human classes if the dataset value type is labeld as categorical.

+
+
Parameters:
+
    +
  • metadf (pd.DataFrame) – dataframe containing coordinates and a column “name”, representing the name for each location.

  • +
  • mapinfo (Dict) – The information about the GEE dataset.

  • +
  • output_column_name (String) – Column name for the extracted values.

  • +
  • latcolname (String, optional) – Columnname of latitude values. The default is ‘lat’.

  • +
  • loncolname (String, optional) – Columnname of longitude values. The default is ‘lon’.

  • +
+
+
Returns:
+

A dataframe with name as index, all columns from the metadf + extracted extracted values column.

+
+
Return type:
+

pd.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.html new file mode 100644 index 00000000..d47fb62d --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.html @@ -0,0 +1,198 @@ + + + + + + + metobs_toolkit.landcover_functions.gee_extract_timeseries — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.gee_extract_timeseries

+
+
+metobs_toolkit.landcover_functions.gee_extract_timeseries(metadf, band_mapper, mapinfo, startdt, enddt, latcolname='lat', loncolname='lon')[source]
+

Extract timeseries data at the stations location from a GEE dataset.

+

Extract a timeseries, for a given obstype, for point locations from a GEE +dataset. The pointlocations are defined in a dataframe by EPSG:4326 lat lon +coordinates.

+

The startdate is included, the enddate is excluded.

+

A multi-index dataframe with the timeseries is returned

+
+
Parameters:
+
    +
  • metadf (pd.DataFrame) – dataframe containing coordinates and a column “name”, representing the name for each location.

  • +
  • band_mapper (dict) – the name of the band to extract data from as keys, the default name of +the corresponding obstype as values.

  • +
  • mapinfo (Dict) – The information about the GEE dataset.

  • +
  • startdt (datetime obj) – Start datetime for timeseries (included).

  • +
  • enddt (datetime obj) – End datetime for timeseries (excluded).

  • +
  • latcolname (String, optional) – Columnname of latitude values. The default is ‘lat’.

  • +
  • loncolname (String, optional) – Columnname of longitude values. The default is ‘lon’.

  • +
+
+
Returns:
+

A dataframe with name - datetime multiindex, all columns from the metadf + extracted timeseries +column with the same name as the obstypes.

+
+
Return type:
+

pd.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.html new file mode 100644 index 00000000..18a6aaa2 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.get_ee_obj — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.get_ee_obj

+
+
+metobs_toolkit.landcover_functions.get_ee_obj(mapinfo, band=None)[source]
+

Get an image from a GEE object.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.height_extractor.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.height_extractor.html new file mode 100644 index 00000000..b04add67 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.height_extractor.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.height_extractor — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.height_extractor

+
+
+metobs_toolkit.landcover_functions.height_extractor(metadf, mapinfo)[source]
+

Get altitude for all stations from GEE.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.html new file mode 100644 index 00000000..30a4a813 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.html @@ -0,0 +1,202 @@ + + + + + + + metobs_toolkit.landcover_functions — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions

+

Functions that are used for GEE interactions.

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

connect_to_gee

Authenticate to GEE if needed.

coordinates_available

Test if all coordinates are available.

coords_to_geometry

Convert coordinates to GEE geometries.

extract_buffer_frequencies

Extract buffer fractions from a GEE categorical dataset.

extract_pointvalues

Extract values for point locations from a GEE dataset.

gee_extract_timeseries

Extract timeseries data at the stations location from a GEE dataset.

get_ee_obj

Get an image from a GEE object.

height_extractor

Get altitude for all stations from GEE.

lc_fractions_extractor

Get landcover fractions for all buffers from GEE.

lcz_extractor

Extract LCZ for all stations in the metadf.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.html new file mode 100644 index 00000000..0e9242ae --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.lc_fractions_extractor — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.lc_fractions_extractor

+
+
+metobs_toolkit.landcover_functions.lc_fractions_extractor(metadf, mapinfo, buffer, agg)[source]
+

Get landcover fractions for all buffers from GEE.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.html b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.html new file mode 100644 index 00000000..e2362d34 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.html @@ -0,0 +1,172 @@ + + + + + + + metobs_toolkit.landcover_functions.lcz_extractor — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.landcover_functions.lcz_extractor

+
+
+metobs_toolkit.landcover_functions.lcz_extractor(metadf, mapinfo)[source]
+

Extract LCZ for all stations in the metadf.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.missingobs.Missingob_collection.html b/docs/_build/_autosummary/metobs_toolkit.missingobs.Missingob_collection.html new file mode 100644 index 00000000..5f2bba5b --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.missingobs.Missingob_collection.html @@ -0,0 +1,305 @@ + + + + + + + metobs_toolkit.missingobs.Missingob_collection — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.missingobs.Missingob_collection

+
+
+class metobs_toolkit.missingobs.Missingob_collection(missing_obs_series)[source]
+

Bases: object

+

Class object handling a set of missing observations.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + +

get_info

Print out detailed information on the missing observations.

get_missing_indx_in_obs_space

Find which missing timestamps are expected in the observation space.

get_station_missingobs

Get the missing observations of a specific station.

interpolate_missing

Fill the missing observations using an interpolation method.

remove_missing_from_obs

Drop the missing observation from an observational dataframe, if they are present.

remove_missing_from_outliers

Drop the missing observation from an outlier dataframe, if they are present.

+
+
+__add__(other)[source]
+

Append two collections of missing observations.

+
+ +
+
+get_info(max_disp_list=7)[source]
+

Print out detailed information on the missing observations.

+
+
Parameters:
+

max_disp_list (int, optional) – Max size of lists to print out. If listsize is larger, the length of +the list is printed. The default is 7.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_missing_indx_in_obs_space(obsdf, resolutionseries)[source]
+

Find which missing timestamps are expected in the observation space.

+

Because of time coarsening not all missing timestamps are expected in observation space.

+

This function handles each station seperatly because stations can have differnent resolution/timerange.

+
+
Parameters:
+
    +
  • obsdf (pandas.DataFrame()) – Dataset.df.

  • +
  • resolutionseries (pandas.Series() or Timedelta) – Dataset.metadf[‘dataset_resolution’].

  • +
+
+
Returns:
+

missing_obsspace – The multiindex (name - datetime) is returned with the missing timestamps that are expexted in the observation space.

+
+
Return type:
+

pandas.MultiIndex

+
+
+
+ +
+
+get_station_missingobs(name)[source]
+

Get the missing observations of a specific station.

+
+
Parameters:
+

name (str) – The name of the station to extract the missing observation from.

+
+
Returns:
+

A subset of the missing observations from a specific station.

+
+
Return type:
+

Metobs_toolkit.Missingob_collection

+
+
+
+ +
+
+interpolate_missing(obsdf, resolutionseries, obstype='temp', method='time')[source]
+

Fill the missing observations using an interpolation method.

+

The “fill_df” and “fill_technique” attributes will be updated.

+
+
Parameters:
+
    +
  • obsdf (Metobs_toolkit.Dataset.df) – The observations that can be used for the interpolation.

  • +
  • resolutionseries (pd.Series) – The dataset resolution series for all stations..

  • +
  • obstype (element of Metobs_toolkit.observational_types, optional) – Select which observation type you wish to interpolate. The default is ‘temp’.

  • +
  • method (valid input for pandas.DataFrame.interpolate method arg, optional) – Which interpolation method to use. The default is ‘time’.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+remove_missing_from_obs(obsdf)[source]
+

Drop the missing observation from an observational dataframe, if they are present.

+
+
Parameters:
+

obsdf (pandas.DataFrame) – Multiindex observational dataframe.

+
+
Returns:
+

obsdf – Multiindex observational dataframe without records linked to missing +observations.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+remove_missing_from_outliers(outldf)[source]
+

Drop the missing observation from an outlier dataframe, if they are present.

+

This will ignore the observation types! So all outliers of any +observation type, at an missing timestamp are removed.

+
+
Parameters:
+

obsdf (pandas.DataFrame) – Multiindex (name-datetime-obstype) observational dataframe.

+
+
Returns:
+

obsdf – Multiindex observational dataframe without records linked to missing +observations.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.missingobs.html b/docs/_build/_autosummary/metobs_toolkit.missingobs.html new file mode 100644 index 00000000..a1c4a0cc --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.missingobs.html @@ -0,0 +1,167 @@ + + + + + + + metobs_toolkit.missingobs — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.missingobs

+

This module contains the Missingob_collection class and all its methods.

+

A Missingob_collection holds all missing observations and methods on how to +fill them.

+

Classes

+ + + + + + +

Missingob_collection

Class object handling a set of missing observations.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.modeldata.Modeldata.html b/docs/_build/_autosummary/metobs_toolkit.modeldata.Modeldata.html new file mode 100644 index 00000000..59c5909d --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.modeldata.Modeldata.html @@ -0,0 +1,504 @@ + + + + + + + metobs_toolkit.modeldata.Modeldata — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.modeldata.Modeldata

+
+
+class metobs_toolkit.modeldata.Modeldata(modelname)[source]
+

Bases: object

+

Class holding data and methods for a modeldata-timeseries.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_gee_dataset

Add a new gee dataset to the available gee datasets.

add_obstype

Add a new Observation type for the current Modeldata.

convert_units_to_tlk

Convert the model data of one observation to the standard units.

exploid_2d_vector_field

Compute amplitude and direction of 2D vector field components.

get_ERA5_data

Extract timeseries of the ERA5_hourly dataset.

get_gee_dataset_data

Extract timeseries of a gee dataset.

get_info

Print out detailed information on the Modeldata.

import_modeldata

Import a modeldata instance from a (pickle) file.

interpolate_modeldata

Interpolate modeldata in time.

list_gee_datasets

Print out all the available gee datasets.

make_plot

Plot timeseries of the modeldata.

save_modeldata

Save a Modeldata instance to a (pickle) file.

set_model_from_csv

Import timeseries data that is stored in a csv file.

+
+
+add_gee_dataset(mapname, gee_location, obstype, bandname, units, scale, band_desc=None, time_res='1H', is_image=False, is_numeric=True, credentials='')[source]
+

Add a new gee dataset to the available gee datasets.

+
+
Parameters:
+
    +
  • mapname (str) – Mapname of choice for the GEE dataset to add.

  • +
  • gee_location (str) – Location of the gee dataset (like “ECMWF/ERA5_LAND/HOURLY” for ERA5).

  • +
  • obstype (str) – The observation type name the band corresponds to.

  • +
  • bandname (str) – Name of the dataset band as stored on the GEE.

  • +
  • units (str) – The units of the band.

  • +
  • scale (int) – The scale to represent the dataset in. (This is a GEE concept that +is similar to the resolution in meters).

  • +
  • band_desc (str or None, optional) – Add a descrition to of the band. The default is None.

  • +
  • time_res (timedelta string, optional) – Time reoslution of the dataset, if is_image == False. The default is ‘1H’.

  • +
  • is_image (bool, optional) – If True, the dataset is a ee.Image, else it is assumed to be an +ee.ImageCollection. The default is False.

  • +
  • is_numeric (bool, optional) – If True, the bandvalues are interpreted as numerical values rather +than categorical.. The default is True.

  • +
  • credentials (str, optional) – Extra credentials of the dataset. The default is ‘’.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

To list all available gee dataset, use the .list_gee_dataset() method.

+
+
+

Note

+

Currently no unit conversion is perfomed automatically other than K –> +Celcius. This will be implemented in the futur.

+
+
+ +
+
+add_obstype(Obstype, bandname, band_units, band_description=None)[source]
+

Add a new Observation type for the current Modeldata.

+
+
Parameters:
+
    +
  • Obstype (metobs_toolkit.obstype.Obstype) – The new Obstype to add.

  • +
  • bandname (str) – The name of the band that represents the obstype.

  • +
  • band_units (str) – The unit the band is in. This unit must be a knonw-unit in the +Obstype.

  • +
  • band_description (str, optional) – A detailed description of the band. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+convert_units_to_tlk(obstype)[source]
+

Convert the model data of one observation to the standard units.

+

The data attributes will be updated.

+
+
Parameters:
+

obstype (str) – Observation type to convert to standard units.

+
+
Return type:
+

None.

+
+
+
+ +
+
+exploid_2d_vector_field(obstype)[source]
+

Compute amplitude and direction of 2D vector field components.

+

The amplitude and directions are added to the data attribute, and their +equivalent observationtypes are added to the known ModelObstypes.

+

(The vector components are not saved.) +:param obstype: The name of the observationtype that is a ModelObstype_Vectorfield. +:type obstype: str

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_ERA5_data(metadf, startdt_utc, enddt_utc, obstypes='temp')[source]
+

Extract timeseries of the ERA5_hourly dataset.

+

The units are converted to the toolkit standard units.

+
+
(This method is a specific ERA5_hourly wrapper on the

get_gee_dataset_data() method)

+
+
+
+
Parameters:
+
    +
  • metadf (pandas.DataFrame) – A dataframe with a ‘name’ index and ‘lat’, ‘lon’ columns. +Timeseries are extracted for these locations.

  • +
  • startdt_utc (datetime.datetime) – Start datetime of the timeseries in UTC.

  • +
  • enddt_utc (datetime.datetime) – Last datetime of the timeseries in UTC.

  • +
  • obstypes (str or list of str, optional) – Toolkit observation type to extract data from. There should be a +bandname mapped to this obstype for the gee map. Multiple +observation types can be extracted if given as a list. The default is +‘temp’.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

When extracting large amounts of data, the timeseries data will be +writen to a file and saved on your google drive. In this case, you need +to provide the Modeldata with the data using the .set_model_from_csv() +method.

+
+
+ +
+
+get_gee_dataset_data(mapname, metadf, startdt_utc, enddt_utc, obstypes=['temp'])[source]
+

Extract timeseries of a gee dataset.

+

The extraction can only be done if the gee dataset bandname (and units) +corresponding to the obstype is known.

+

The units are converted to the toolkit standard units!!

+
+
Parameters:
+
    +
  • mapname (str) – Mapname of choice of the GEE dataset to extract data from.

  • +
  • metadf (pandas.DataFrame) – A dataframe with a ‘name’ index and ‘lat’, ‘lon’ columns. +Timeseries are extracted for these locations.

  • +
  • startdt_utc (datetime.datetime) – Start datetime of the timeseries in UTC.

  • +
  • enddt_utc (datetime.datetime) – Last datetime of the timeseries in UTC.

  • +
  • obstypes (str or list of strings, optional) – Toolkit observation type to extract data from. There should be a +bandname mapped to this obstype for the gee map. Multiple obstypes +can be given in a list. The default is ‘temp’.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

When extracting large amounts of data, the timeseries data will be +writen to a file and saved on your google drive. In this case, you need +to provide the Modeldata with the data using the .set_model_from_csv() +method.

+
+
+ +
+
+get_info()[source]
+

Print out detailed information on the Modeldata.

+
+ +
+
+import_modeldata(folder_path=None, filename='saved_modeldata.pkl')[source]
+

Import a modeldata instance from a (pickle) file.

+
+
Parameters:
+
    +
  • folder_path (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_modeldata.pkl’.

  • +
+
+
Returns:
+

The modeldata instance.

+
+
Return type:
+

metobs_toolkit.Modeldata

+
+
+
+ +
+
+interpolate_modeldata(to_multiidx)[source]
+

Interpolate modeldata in time.

+

Interpolate the modeldata timeseries, to a given name-datetime +multiindex.

+

The modeldata will be converted to the timezone of the multiindex.

+

If no interpolation can be done, Nan values are used.

+
+
Parameters:
+

to_multiidx (pandas.MultiIndex) – A name - datetime (tz-aware) multiindex to interpolate the +modeldata timeseries to.

+
+
Returns:
+

returndf – A dataframe with to_multiidx as an index. +The values are the interpolated values.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+list_gee_datasets()[source]
+

Print out all the available gee datasets.

+
+
Return type:
+

None.

+
+
+
+ +
+
+make_plot(obstype_model='temp', dataset=None, obstype_dataset=None, stationnames=None, starttime=None, endtime=None, title=None, show_outliers=True, show_filled=True, legend=True, _ax=None)[source]
+

Plot timeseries of the modeldata.

+

This function creates a timeseries plot for the Modeldata. When a +metobs_toolkit.Dataset is provided, it is plotted in the same figure.

+

The line colors represent the timesries for different locations.

+
+
Parameters:
+
    +
  • obstype_model (string, optional) – Fieldname of the Modeldata to visualise. The default is ‘temp’.

  • +
  • dataset (metobs_toolkit.Dataset, optional) – A Dataset instance with observations plotted in the same figure. +Observations are represented by solid line and modeldata by dashed +lines. The default is None.

  • +
  • obstype_dataset (string, optional) – Fieldname of the Dataset to visualise. Only relevent when a dataset +is provided. If None, obsype_dataset = obstype_model. The default +is None.

  • +
  • stationnames (list, optional) – A list with stationnames to include in the timeseries. If None is +given, all the stations are used, defaults to None.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will +use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will +use the end datetime of the dataset, defaults to None.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The +default is None.

  • +
  • show_outliers (bool, optional) – If true the observations labeld as outliers will be included in +the plot. Only relevent when a dataset is provided. The default +is True.

  • +
  • show_filled (bool, optional) – If true the filled values for gaps and missing observations will +be included in the plot. Only relevent when a dataset is provided. +The default is True.

  • +
  • legend (bool, optional) – If True, a legend is added to the plot. The default is True.

  • +
+
+
Returns:
+

axis – The timeseries axes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+ +
+
+save_modeldata(outputfolder=None, filename='saved_modeldata.pkl')[source]
+

Save a Modeldata instance to a (pickle) file.

+
+
Parameters:
+
    +
  • outputfolder (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_modeldata.pkl’.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+set_model_from_csv(csvpath)[source]
+

Import timeseries data that is stored in a csv file.

+

The name of the gee dataset the timeseries are coming from must be the +same as the .modelname attribute of the Modeldata.

+

The timeseries will be formatted and converted to standard toolkit +units.

+
+
Parameters:
+

csvpath (str) – Path of the csv file containing the modeldata timeseries.

+
+
Return type:
+

None.

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.modeldata.html b/docs/_build/_autosummary/metobs_toolkit.modeldata.html new file mode 100644 index 00000000..4f9f98c3 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.modeldata.html @@ -0,0 +1,165 @@ + + + + + + + metobs_toolkit.modeldata — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.html b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.html new file mode 100644 index 00000000..306b69dd --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.html @@ -0,0 +1,391 @@ + + + + + + + metobs_toolkit.obstype_modeldata.ModelObstype — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.obstype_modeldata.ModelObstype

+
+
+class metobs_toolkit.obstype_modeldata.ModelObstype(obstype, model_equivalent_dict={})[source]
+

Bases: Obstype

+

Extension of the Obstype class specific for the obstypes of Modeldata.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_new_band

Add a new representing dataset/bandname to the obstype.

add_unit

Add a new unit to an observation type.

convert_to_standard_units

Convert data from a knonw unit to the standard unit.

get_all_units

Return a list with all the known unit (in standard naming).

get_bandname

Return the representing bandname of the obstype from a given gee dataset.

get_bandname_mapper

Return the representing bandname with tlk standard name as a dict.

get_description

Return the descrition of the observation type.

get_info

Print out detailed information of the observation type.

get_mapped_datasets

Return all gee datasets with a representing band for this obstype.

get_modelunit

Return the units of the representing bandname of the obstype from a given gee dataset.

get_orig_name

Return the original name of the observation type.

get_plot_y_label

Return a string to represent the vertical axes of a plot.

get_standard_unit

Return the standard unit of the observation type.

has_mapped_band

Test is a gee dataset has a representing band.

set_description

Set the description of the observation type.

set_original_name

Set the original name of the observation type.

set_original_unit

Set the original unit of the observation type.

test_if_unit_is_known

Test is the unit is known.

+
+
+add_new_band(mapname, bandname, bandunit, band_desc=None)[source]
+

Add a new representing dataset/bandname to the obstype.

+
+
Parameters:
+
    +
  • mapname (str) – name of the known gee dataset.

  • +
  • bandname (str) – the name of the representing band.

  • +
  • bandunit (str) – the unit of the representing band.

  • +
  • band_desc (str, optional) – A detailed description of the band.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+add_unit(unit_name, conversion=['x'])
+

Add a new unit to an observation type.

+
+
Parameters:
+
    +
  • unit_name (str) – The name of the new unit.

  • +
  • conversion (list, optional) – The conversion description to the standard unit. The default is +[“x”].

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+convert_to_standard_units(input_data, input_unit)
+

Convert data from a knonw unit to the standard unit.

+

The data can be a collection of numeric values or a single numeric +value.

+
+
Parameters:
+
    +
  • input_data ((collection of) numeric) – The data to convert to the standard unit.

  • +
  • input_unit (str) – The known unit the inputdata is in.

  • +
+
+
Returns:
+

The data in standard units.

+
+
Return type:
+

data numeric/numpy.array

+
+
+
+ +
+
+get_all_units()
+

Return a list with all the known unit (in standard naming).

+
+ +
+
+get_bandname(mapname)[source]
+

Return the representing bandname of the obstype from a given gee dataset.

+
+ +
+
+get_bandname_mapper(mapname)[source]
+

Return the representing bandname with tlk standard name as a dict.

+
+ +
+
+get_description()
+

Return the descrition of the observation type.

+
+ +
+
+get_info()[source]
+

Print out detailed information of the observation type.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_mapped_datasets()[source]
+

Return all gee datasets with a representing band for this obstype.

+
+ +
+
+get_modelunit(mapname)[source]
+

Return the units of the representing bandname of the obstype from a given gee dataset.

+
+ +
+
+get_orig_name()
+

Return the original name of the observation type.

+
+ +
+
+get_plot_y_label(mapname)[source]
+

Return a string to represent the vertical axes of a plot.

+
+ +
+
+get_standard_unit()
+

Return the standard unit of the observation type.

+
+ +
+
+has_mapped_band(mapname)[source]
+

Test is a gee dataset has a representing band.

+
+ +
+
+set_description(desc)
+

Set the description of the observation type.

+
+ +
+
+set_original_name(columnname)
+

Set the original name of the observation type.

+
+ +
+
+set_original_unit(original_unit)
+

Set the original unit of the observation type.

+
+ +
+
+test_if_unit_is_known(unit_name)
+

Test is the unit is known.

+
+
Parameters:
+

unit_name (str) – The unit name to test.

+
+
Returns:
+

True if knonw, False else.

+
+
Return type:
+

bool

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.html b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.html new file mode 100644 index 00000000..111d77a0 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.html @@ -0,0 +1,390 @@ + + + + + + + metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield

+
+
+class metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield(obstype, u_comp_model_equivalent_dict={}, v_comp_model_equivalent_dict={})[source]
+

Bases: Obstype

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_new_band

Add a new representing dataset/bandname to the obstype.

add_unit

Add a new unit to an observation type.

convert_to_standard_units

Convert data from a known unit to the standard unit.

get_all_units

Return a list with all the known unit (in standard naming).

get_bandname_mapper

Return the representing bandname with tlk standard name as a dict.

get_description

Return the descrition of the observation type.

get_info

Print out detailed information of the observation type.

get_mapped_datasets

Return all gee datasets with a representing band for this obstype.

get_modelunit

Return the units of the representing bandname of the obstype from a given gee dataset.

get_orig_name

Return the original name of the observation type.

get_plot_y_label

Return a string to represent the vertical axes of a plot.

get_standard_unit

Return the standard unit of the observation type.

get_u_column

get_v_column

has_mapped_band

Test is a gee dataset has a representing band.

set_description

Set the description of the observation type.

set_original_name

Set the original name of the observation type.

set_original_unit

Set the original unit of the observation type.

test_if_unit_is_known

Test is the unit is known.

+
+
+add_new_band(mapname, bandname_u_comp, bandname_v_comp, bandunit, band_desc_u_comp=None, band_desc_v_comp=None)[source]
+

Add a new representing dataset/bandname to the obstype.

+
+
Parameters:
+
    +
  • mapname (str) – name of the known gee dataset.

  • +
  • bandname_u_comp (str) – the name of the representing the Eastwards component band.

  • +
  • bandname_v_comp (str) – the name of the representing the Northwards component band.

  • +
  • bandunit (str) – the unit of the representing bands.

  • +
  • band_desc_u_comp (str, optional) – A detailed description of the Eastwards component of the band.

  • +
  • band_desc_v_comp (str, optional) – A detailed description of the Northwards component of the band.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+add_unit(unit_name, conversion=['x'])
+

Add a new unit to an observation type.

+
+
Parameters:
+
    +
  • unit_name (str) – The name of the new unit.

  • +
  • conversion (list, optional) – The conversion description to the standard unit. The default is +[“x”].

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+convert_to_standard_units(input_df, input_unit)[source]
+

Convert data from a known unit to the standard unit.

+

The data c must be a pandas dataframe with both the u and v component +prensent as columns.

+
+
Parameters:
+
    +
  • input_data ((collection of) numeric) – The data to convert to the standard unit.

  • +
  • input_unit (str) – The known unit the inputdata is in.

  • +
+
+
Returns:
+

    +
  • data_u_component (numeric/numpy.array) – The u component of the data in standard units.

  • +
  • data_v_component – The v component of the data in standard units.

  • +
+

+
+
+
+ +
+
+get_all_units()
+

Return a list with all the known unit (in standard naming).

+
+ +
+
+get_bandname_mapper(mapname)[source]
+

Return the representing bandname with tlk standard name as a dict.

+
+ +
+
+get_description()
+

Return the descrition of the observation type.

+
+ +
+
+get_info()[source]
+

Print out detailed information of the observation type.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_mapped_datasets()[source]
+

Return all gee datasets with a representing band for this obstype.

+
+ +
+
+get_modelunit(mapname)[source]
+

Return the units of the representing bandname of the obstype from a given gee dataset.

+
+ +
+
+get_orig_name()
+

Return the original name of the observation type.

+
+ +
+
+get_plot_y_label(mapname)[source]
+

Return a string to represent the vertical axes of a plot.

+
+ +
+
+get_standard_unit()
+

Return the standard unit of the observation type.

+
+ +
+
+has_mapped_band(mapname)[source]
+

Test is a gee dataset has a representing band.

+
+ +
+
+set_description(desc)
+

Set the description of the observation type.

+
+ +
+
+set_original_name(columnname)
+

Set the original name of the observation type.

+
+ +
+
+set_original_unit(original_unit)
+

Set the original unit of the observation type.

+
+ +
+
+test_if_unit_is_known(unit_name)
+

Test is the unit is known.

+
+
Parameters:
+

unit_name (str) – The unit name to test.

+
+
Returns:
+

True if knonw, False else.

+
+
Return type:
+

bool

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.html b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.html new file mode 100644 index 00000000..f7f0d419 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.html @@ -0,0 +1,184 @@ + + + + + + + metobs_toolkit.obstype_modeldata.compute_amplitude — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.obstype_modeldata.compute_amplitude

+
+
+metobs_toolkit.obstype_modeldata.compute_amplitude(modelobs_vectorfield, df)[source]
+

Compute amplitude of 2D vectorfield components.

+

The amplitude column is added to the dataframe and a new ModelObstype, +representing the amplitude is returned. All attributes wrt the units are +inherited from the ModelObstype_vectorfield.

+
+
Parameters:
+
    +
  • modelobs_vectorfield (ModelObstype_Vectorfield) – The vectorfield observation type to compute the vector amplitudes for.

  • +
  • df (pandas.DataFrame) – The dataframe with the vector components present as columns.

  • +
+
+
Returns:
+

    +
  • data (pandas.DataFrame) – The df with an extra column representing the amplitudes.

  • +
  • amplitude_obstype (ModelObstype) – The (scalar) Modelobstype representation of the amplitudes.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.html b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.html new file mode 100644 index 00000000..ef7f90a4 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.html @@ -0,0 +1,184 @@ + + + + + + + metobs_toolkit.obstype_modeldata.compute_angle — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.obstype_modeldata.compute_angle

+
+
+metobs_toolkit.obstype_modeldata.compute_angle(modelobs_vectorfield, df)[source]
+

Compute vector direction of 2D vectorfield components.

+

The direction column is added to the dataframe and a new ModelObstype, +representing the angle is returned. The values represents the angles in +degrees, from north in clock-wise rotation.

+
+
Parameters:
+
    +
  • modelobs_vectorfield (ModelObstype_Vectorfield) – The vectorfield observation type to compute the vector directions for.

  • +
  • df (pandas.DataFrame) – The dataframe with the vector components present as columns.

  • +
+
+
Returns:
+

    +
  • data (pandas.DataFrame) – The df with an extra column representing the directions.

  • +
  • amplitude_obstype (ModelObstype) – The (scalar) Modelobstype representation of the angles.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.html b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.html new file mode 100644 index 00000000..9907e4dd --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstype_modeldata.html @@ -0,0 +1,183 @@ + + + + + + + metobs_toolkit.obstype_modeldata — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.obstype_modeldata

+

Class defenition of model observationtypes. These are regular observationtypes +witht extra attributes and methods for interacting with the google earht engine.

+

Functions

+ + + + + + + + + +

compute_amplitude

Compute amplitude of 2D vectorfield components.

compute_angle

Compute vector direction of 2D vectorfield components.

+

Classes

+ + + + + + + + + +

ModelObstype

Extension of the Obstype class specific for the obstypes of Modeldata.

ModelObstype_Vectorfield

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstypes.Obstype.html b/docs/_build/_autosummary/metobs_toolkit.obstypes.Obstype.html new file mode 100644 index 00000000..20ad618e --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstypes.Obstype.html @@ -0,0 +1,322 @@ + + + + + + + metobs_toolkit.obstypes.Obstype — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.obstypes.Obstype

+
+
+class metobs_toolkit.obstypes.Obstype(obsname, std_unit, description=None, unit_aliases={}, unit_conversions={})[source]
+

Bases: object

+

Object with all info and methods for a specific observation type.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_unit

Add a new unit to an observation type.

convert_to_standard_units

Convert data from a knonw unit to the standard unit.

get_all_units

Return a list with all the known unit (in standard naming).

get_description

Return the descrition of the observation type.

get_info

Print out detailed information of the observation type.

get_orig_name

Return the original name of the observation type.

get_plot_y_label

Return a string to represent the vertical axes of a plot.

get_standard_unit

Return the standard unit of the observation type.

set_description

Set the description of the observation type.

set_original_name

Set the original name of the observation type.

set_original_unit

Set the original unit of the observation type.

test_if_unit_is_known

Test is the unit is known.

+
+
+add_unit(unit_name, conversion=['x'])[source]
+

Add a new unit to an observation type.

+
+
Parameters:
+
    +
  • unit_name (str) – The name of the new unit.

  • +
  • conversion (list, optional) – The conversion description to the standard unit. The default is +[“x”].

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+convert_to_standard_units(input_data, input_unit)[source]
+

Convert data from a knonw unit to the standard unit.

+

The data can be a collection of numeric values or a single numeric +value.

+
+
Parameters:
+
    +
  • input_data ((collection of) numeric) – The data to convert to the standard unit.

  • +
  • input_unit (str) – The known unit the inputdata is in.

  • +
+
+
Returns:
+

The data in standard units.

+
+
Return type:
+

data numeric/numpy.array

+
+
+
+ +
+
+get_all_units()[source]
+

Return a list with all the known unit (in standard naming).

+
+ +
+
+get_description()[source]
+

Return the descrition of the observation type.

+
+ +
+
+get_info()[source]
+

Print out detailed information of the observation type.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_orig_name()[source]
+

Return the original name of the observation type.

+
+ +
+
+get_plot_y_label(mapname=None)[source]
+

Return a string to represent the vertical axes of a plot.

+
+ +
+
+get_standard_unit()[source]
+

Return the standard unit of the observation type.

+
+ +
+
+set_description(desc)[source]
+

Set the description of the observation type.

+
+ +
+
+set_original_name(columnname)[source]
+

Set the original name of the observation type.

+
+ +
+
+set_original_unit(original_unit)[source]
+

Set the original unit of the observation type.

+
+ +
+
+test_if_unit_is_known(unit_name)[source]
+

Test is the unit is known.

+
+
Parameters:
+

unit_name (str) – The unit name to test.

+
+
Returns:
+

True if knonw, False else.

+
+
Return type:
+

bool

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstypes.expression_calculator.html b/docs/_build/_autosummary/metobs_toolkit.obstypes.expression_calculator.html new file mode 100644 index 00000000..858c1dd4 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstypes.expression_calculator.html @@ -0,0 +1,164 @@ + + + + + + + metobs_toolkit.obstypes.expression_calculator — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.obstypes.html b/docs/_build/_autosummary/metobs_toolkit.obstypes.html new file mode 100644 index 00000000..ad71383f --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.obstypes.html @@ -0,0 +1,175 @@ + + + + + + + metobs_toolkit.obstypes — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.obstypes

+

Class defenition for regular observation types. The default observationtypes +are define here aswell.

+

Functions

+ + + + + + +

expression_calculator

Convert array by equation.

+

Classes

+ + + + + + +

Obstype

Object with all info and methods for a specific observation type.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.html new file mode 100644 index 00000000..5246f91c --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.html @@ -0,0 +1,174 @@ + + + + + + + metobs_toolkit.plotting_functions.add_stations_to_folium_map — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.add_stations_to_folium_map

+
+
+metobs_toolkit.plotting_functions.add_stations_to_folium_map(Map, metadf)[source]
+

Add stations as markers to the folium map.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.html new file mode 100644 index 00000000..d9031e99 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.html @@ -0,0 +1,193 @@ + + + + + + + metobs_toolkit.plotting_functions.correlation_scatter — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.correlation_scatter

+
+
+metobs_toolkit.plotting_functions.correlation_scatter(full_cor_dict, groupby_labels, obstypes, title, cor_scatter_settings)[source]
+

Plot the correlation variation as a scatterplot.

+

The statistical significance is indicate by the scattertype.

+
+
Parameters:
+
    +
  • full_cor_dict (dict) – A dictionary containing the ‘cor matrix’, and ‘significance matrix’ +keys and corresponding matrices.

  • +
  • groupby_labels (str or list) – The groupdefenition that is used for the xaxes label.

  • +
  • obstypes (str) – The observation type to plot the correlations of.

  • +
  • title (str) – The title of the figure.

  • +
  • cor_scatter_settings (dict) – The specific plot settings for the correlation scatter plot.

  • +
+
+
Returns:
+

ax – The axes of the plot.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.html new file mode 100644 index 00000000..3f842afd --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.html @@ -0,0 +1,196 @@ + + + + + + + metobs_toolkit.plotting_functions.cycle_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.cycle_plot

+
+
+metobs_toolkit.plotting_functions.cycle_plot(cycledf, errorbandsdf, title, plot_settings, aggregation, data_template, obstype, y_label, legend, show_zero_horizontal=False)[source]
+

Plot a cycle as a lineplot.

+
+
Parameters:
+
    +
  • cycledf (pandas.DataFrame) – The dataframe containing the cycle values.

  • +
  • errorbandsdf (pandas.dataframe) – The dataframe containing the std values.

  • +
  • title (str) – Title of the plot.

  • +
  • plot_settings (dict) – The cycle-specific settings.

  • +
  • aggregation (list) – A list of strings to indicate the group defenition.

  • +
  • data_template (dict) – The template of the dataset.

  • +
  • obstype (str) – The observation type to plot.

  • +
  • y_label (str) – The label for the vertical axes.

  • +
  • legend (bool) – If True, a legend is added to the figure.

  • +
  • show_zero_horizontal (bool, optional) – If True, a black horizontal line at y=0 is drawn. The default is False.

  • +
+
+
Returns:
+

ax – The axes of the plot.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.folium_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.folium_plot.html new file mode 100644 index 00000000..ee01473a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.folium_plot.html @@ -0,0 +1,174 @@ + + + + + + + metobs_toolkit.plotting_functions.folium_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.folium_plot

+
+
+metobs_toolkit.plotting_functions.folium_plot(mapinfo, band, vis_params, labelnames, layername, basemap='SATELLITE', legendname=None, legendpos='bottomleft')[source]
+

Make an interactive folium plot of an Image.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.html new file mode 100644 index 00000000..b70b1750 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.html @@ -0,0 +1,203 @@ + + + + + + + metobs_toolkit.plotting_functions.geospatial_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.geospatial_plot

+
+
+metobs_toolkit.plotting_functions.geospatial_plot(plotdf, variable, timeinstance, title, legend, legend_title, vmin, vmax, plotsettings, categorical_fields, static_fields, display_name_mapper, data_template, boundbox)[source]
+

Make geospatial plot of a variable (matplotlib).

+
+
Parameters:
+
    +
  • plotdf (geopandas.GeoDataFrame) – A geodataframe containing a geometry column and the column representing +the variable to plot.

  • +
  • variable (str) – Name of the variable to plot.

  • +
  • timeinstance (datetime.datetime) – The timeinstance to plot the variable for, if the variable is +timedependant.

  • +
  • title (str) – Title of the figure.

  • +
  • legend (bool) – If True the legend will be added to the figure.

  • +
  • vmin (numeric) – The variable value to use the minimum-color for..

  • +
  • vmax (numeric) – The variable value to use the maximum-color for.

  • +
  • plotsettings (dict) – The default plotting settings.

  • +
  • categorical_fields (list) – A list of variables that are interpreted to be categorical, so to use +a categorical coloring scheme.

  • +
  • static_fields (bool) – If True the variable is assumed to be time independant.

  • +
  • display_name_mapper (dict) – Must contain at least {varname: varname_str_rep}, where the +varname_str_rep is the string representation of the variable to plot.

  • +
  • data_template (dict) – The dataset template for string representations.

  • +
  • boundbox (shapely.box) – The boundbox to represent the spatial extend of the plot.

  • +
+
+
Returns:
+

ax – The plotted axes.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.html new file mode 100644 index 00000000..cbfc9133 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.html @@ -0,0 +1,189 @@ + + + + + + + metobs_toolkit.plotting_functions.heatmap_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.heatmap_plot

+
+
+metobs_toolkit.plotting_functions.heatmap_plot(cor_dict, title, heatmap_settings)[source]
+

Make a heatmap plot (i.g. matrix visualisation).

+
+
Parameters:
+
    +
  • cor_dict (dict) – A dictionary of the correlations to plot.

  • +
  • title (str) – The title of the figure.

  • +
  • heatmap_settings (dict) – The plot settings for heatmaps.

  • +
+
+
Returns:
+

ax – The axes of the plot.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.html new file mode 100644 index 00000000..64d73a32 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.html @@ -0,0 +1,210 @@ + + + + + + + metobs_toolkit.plotting_functions — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions

+

Created on Fri Oct 21 11:26:52 2022

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_stations_to_folium_map

Add stations as markers to the folium map.

correlation_scatter

Plot the correlation variation as a scatterplot.

cycle_plot

Plot a cycle as a lineplot.

folium_plot

Make an interactive folium plot of an Image.

geospatial_plot

Make geospatial plot of a variable (matplotlib).

heatmap_plot

Make a heatmap plot (i.g.

make_cat_colormapper

Create a dictionary {cat : color} for a list of categorical values.

make_folium_html_plot

map_obstype

Convert default obstype to the user-specific obstype.

model_timeseries_plot

Make a timeseries plot for modeldata.

qc_stats_pie

Make overview Pie-plots for the frequency statistics of labels.

timeseries_plot

Make a timeseries plot.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.html new file mode 100644 index 00000000..ebdefbe2 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.html @@ -0,0 +1,190 @@ + + + + + + + metobs_toolkit.plotting_functions.make_cat_colormapper — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.make_cat_colormapper

+
+
+metobs_toolkit.plotting_functions.make_cat_colormapper(catlist, cmapname)[source]
+

Create a dictionary {cat : color} for a list of categorical values.

+

If the colormap has more colors than the catlist, optimal color distance is +done. If a colormap has less colors than unique categories, the categories are grourped.

+
+
Parameters:
+
    +
  • catlist (list) – List of categorical values.

  • +
  • cmapname (str) – Matplotlib.colormaps name.

  • +
+
+
Returns:
+

colordict – {cat: color} where the color is a RGBalpha tuple.

+
+
Return type:
+

dict

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.html new file mode 100644 index 00000000..ddbbc2f0 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.html @@ -0,0 +1,173 @@ + + + + + + + metobs_toolkit.plotting_functions.make_folium_html_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.make_folium_html_plot

+
+
+metobs_toolkit.plotting_functions.make_folium_html_plot(gdf, variable_column, var_display_name, var_unit, label_column, label_col_map, vmin=None, vmax=None, radius=13, fill_alpha=0.6, mpl_cmap_name='viridis', max_fps=4, dt_disp_fmt='%Y-%m-%d %H:%M')[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.map_obstype.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.map_obstype.html new file mode 100644 index 00000000..01e819eb --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.map_obstype.html @@ -0,0 +1,174 @@ + + + + + + + metobs_toolkit.plotting_functions.map_obstype — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.map_obstype

+
+
+metobs_toolkit.plotting_functions.map_obstype(obstype, template)[source]
+

Convert default obstype to the user-specific obstype.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.html new file mode 100644 index 00000000..c3370bb8 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.html @@ -0,0 +1,201 @@ + + + + + + + metobs_toolkit.plotting_functions.model_timeseries_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.model_timeseries_plot

+
+
+metobs_toolkit.plotting_functions.model_timeseries_plot(df, obstype, title, ylabel, settings, show_primary_legend, add_second_legend=True, _ax=None, colorby_name_colordict=None)[source]
+

Make a timeseries plot for modeldata.

+

The timeseries are plotted as dashed lines.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The dataframe containing the timeseries.

  • +
  • obstype (str) – The observation type to plot. Must be a column in the df.

  • +
  • title (str) – Title of the figure.

  • +
  • ylabel (str) – The label for the vertical axes.

  • +
  • settings (dict, optional) – The default plotting settings.

  • +
  • show_primary_legend (bool) – If True, all stationnames with corresponding color are presented in a +legend.

  • +
  • add_second_legend (bool, optional) – If True, a small legend is added indicating the solid lines are +observations and the dashed lines are modeldata. The default is True.

  • +
  • _ax (matplotlib.pyplot.axes) – An axes to plot on. If None, a new axes will be made. The +default is None.

  • +
  • colorby_name_colorscheme (dict) – A colormapper for the station names. If None, a new colormapper will +be created. The default is None.

  • +
+
+
Returns:
+

    +
  • ax (matplotlib.pyplot.axes) – The plotted axes.

  • +
  • colormapper (dict) – The use colormap.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.html new file mode 100644 index 00000000..dd55d9b0 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.html @@ -0,0 +1,190 @@ + + + + + + + metobs_toolkit.plotting_functions.qc_stats_pie — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.qc_stats_pie

+
+
+metobs_toolkit.plotting_functions.qc_stats_pie(final_stats, outlier_stats, specific_stats, plot_settings, qc_check_info, title)[source]
+

Make overview Pie-plots for the frequency statistics of labels.

+
+
Parameters:
+
    +
  • final_stats (dict) – Dictionary containing occurence frequencies for all labels.

  • +
  • outlier_stats (dict) – Dictionary with frequency statistics of outlier-labels.

  • +
  • specific_stats (dict) – Dictionary containing the effectiviness of quality control checks +individually.

  • +
  • plot_settings (dict) – The specific plot settings for the pie plots.

  • +
  • qc_check_info (dict) – The qc info for all checks (includes the color scheme)..

  • +
  • title (str) – Title of the figure.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.html b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.html new file mode 100644 index 00000000..3f3ba790 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.html @@ -0,0 +1,200 @@ + + + + + + + metobs_toolkit.plotting_functions.timeseries_plot — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.plotting_functions.timeseries_plot

+
+
+metobs_toolkit.plotting_functions.timeseries_plot(mergedf, title, ylabel, colorby, show_legend, show_outliers, show_filled, settings, _ax=None, colorby_name_colordict=None)[source]
+

Make a timeseries plot.

+
+
Parameters:
+
    +
  • mergedf (pandas.DataFrame) – The dataframe containing the observations as a ‘value’-column and +labels to plot.

  • +
  • title (str) – Title of the figure.

  • +
  • ylabel (str) – The label for the vertical axes.

  • +
  • colorby ("label" or "name") – If “label”, the toolkit label is used for the colorscheme. If “name”, +the name of the station is used for the colorscheme.

  • +
  • show_legend (bool) – If True, the legend will be added under the plot.

  • +
  • show_filled (bool) – If True, the filled values will be plotted.

  • +
  • settings (dict, optional) – The default plotting settings.

  • +
  • _ax (matplotlib.pyplot.axes) – An axes to plot on. If None, a new axes will be made. The +default is None.

  • +
  • colorby_name_colorscheme (dict) – A colormapper for the station names. If None, a new colormapper will +be created. The default is None.

  • +
+
+
Returns:
+

    +
  • ax (matplotlib.pyplot.axes) – The plotted axes.

  • +
  • colormapper (dict) – The use colormap.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.printing.html b/docs/_build/_autosummary/metobs_toolkit.printing.html new file mode 100644 index 00000000..ed21fa71 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.printing.html @@ -0,0 +1,166 @@ + + + + + + + metobs_toolkit.printing — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.printing.print_dataset_info.html b/docs/_build/_autosummary/metobs_toolkit.printing.print_dataset_info.html new file mode 100644 index 00000000..58e61950 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.printing.print_dataset_info.html @@ -0,0 +1,177 @@ + + + + + + + metobs_toolkit.printing.print_dataset_info — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.printing.print_dataset_info

+
+
+metobs_toolkit.printing.print_dataset_info(dataset, show_all_settings=False, max_disp_n_gaps=5)[source]
+

Print out settings of a dataset.

+
+
Parameters:
+
    +
  • dataset (metobs_toolkit.Dataset) – The dataset to print the settings of.

  • +
  • show_all_settings (bool, optional) – If True all settings are printed else a selection of the settings is +printed. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to print detailed information of. The +default is 5.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.html new file mode 100644 index 00000000..32868a0c --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.html @@ -0,0 +1,192 @@ + + + + + + + metobs_toolkit.qc_checks.create_titanlib_points_dict — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.create_titanlib_points_dict

+
+
+metobs_toolkit.qc_checks.create_titanlib_points_dict(obsdf, metadf, obstype)[source]
+

Create a dictionary of titanlib-points.

+

Titanlib uses point as dataformats. This method converts the dataframes to +a dictionnary of points.

+
+
Parameters:
+
    +
  • obsdf (pandas.DataFrame) – Dataset.df

  • +
  • metadf (pandas.DataFrame) – Dataset.metadf.

  • +
  • obstype (str) – The observation type to pass to the points.

  • +
+
+
Returns:
+

points_dict – The collection of datapoints.

+
+
Return type:
+

dict

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.html new file mode 100644 index 00000000..0bad917c --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.html @@ -0,0 +1,192 @@ + + + + + + + metobs_toolkit.qc_checks.duplicate_timestamp_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.duplicate_timestamp_check

+
+
+metobs_toolkit.qc_checks.duplicate_timestamp_check(df, checks_info, checks_settings)[source]
+

Test for duplicate timestamps in the observations.

+

Looking for duplcate timestaps per station. Duplicated records are removed by the method specified in the qc_settings.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • checks_info (dict) – The specific info (outlier labels) for quality control.

  • +
  • checks_settings (dict) – The dictionary containing the settings for the quality control checks.

  • +
+
+
Returns:
+

    +
  • df (pandas.DataFrame()) – The observations dataframe updated for duplicate timestamps. Duplicated timestamps are removed.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.html new file mode 100644 index 00000000..dbd37b7f --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.html @@ -0,0 +1,193 @@ + + + + + + + metobs_toolkit.qc_checks.get_outliers_in_daterange — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.get_outliers_in_daterange

+
+
+metobs_toolkit.qc_checks.get_outliers_in_daterange(input_data, date, name, time_window, station_freq)[source]
+

Find all outliers in a window of a specific station.

+
+
Parameters:
+
    +
  • input_data (pandas.DataFrame) – Dataframe with a datetimeindex to get the intersection with a +datetimerange from.

  • +
  • date (datetime.datetime) – The center of the window.

  • +
  • name (str) – The stationname.

  • +
  • time_window (datetimestring) – Half the width of the window.

  • +
  • station_freq (pandas.Series) – The series containing the frequencies per station.

  • +
+
+
Returns:
+

intersection – A name-datetime multiindex for occuring outliers in the window.

+
+
Return type:
+

pandas.multiindex

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html new file mode 100644 index 00000000..db138207 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html @@ -0,0 +1,194 @@ + + + + + + + metobs_toolkit.qc_checks.gross_value_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.gross_value_check

+
+
+metobs_toolkit.qc_checks.gross_value_check(obsdf, obstype, checks_info, checks_settings)[source]
+

Filter out gross outliers from the observations.

+

Looking for values of an observation type that are not physical. These values are labeled and the physical limits are specified in the qc_settings.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • obstype (str) – The observation type to check for outliers.

  • +
  • checks_info (dict) – The specific info (outlier labels) for quality control.

  • +
  • checks_settings (dict) – The dictionary containing the settings for the quality control checks.

  • +
+
+
Returns:
+

    +
  • obsdf (pandas.DataFrame()) – The observations dataframe updated for gross values. These are +represented by Nan values.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.html new file mode 100644 index 00000000..20584ac0 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.html @@ -0,0 +1,214 @@ + + + + + + + metobs_toolkit.qc_checks — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.qc_checks

+

Created on Thu Oct 6 13:44:54 2022

+

@author: thoverga

+

Functions

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

create_titanlib_points_dict

Create a dictionary of titanlib-points.

duplicate_timestamp_check

Test for duplicate timestamps in the observations.

get_outliers_in_daterange

Find all outliers in a window of a specific station.

gross_value_check

Filter out gross outliers from the observations.

invalid_input_check

Test if values are numeric and not Nan.

make_outlier_df_for_check

Construct obsdf and outliersdf from a list of outlier timestamps.

persistance_check

Test observations to change over a specific period.

repetitions_check

Test if observation change after a number of records.

step_check

Test if observations do not produces spikes in timeseries.

titan_buddy_check

Apply the Titanlib buddy check.

titan_sct_resistant_check

Apply the Titanlib (robust) Spatial-Consistency-Test (SCT).

toolkit_buddy_check

Spatial buddy check.

window_variation_check

Test if the variation exeeds threshold in moving time windows.

+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.html new file mode 100644 index 00000000..0bc84023 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.html @@ -0,0 +1,190 @@ + + + + + + + metobs_toolkit.qc_checks.invalid_input_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.invalid_input_check

+
+
+metobs_toolkit.qc_checks.invalid_input_check(df, checks_info)[source]
+

Test if values are numeric and not Nan.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The observations to check the values for. Must contain a column ‘name’.

  • +
  • checks_info (dict) – Specific settings for the invalid check test.

  • +
+
+
Returns:
+

    +
  • df (pandas.DataFrame) – The observations with NaN values at the location of invalid input.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.html new file mode 100644 index 00000000..7176b773 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.html @@ -0,0 +1,201 @@ + + + + + + + metobs_toolkit.qc_checks.make_outlier_df_for_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.make_outlier_df_for_check

+
+
+metobs_toolkit.qc_checks.make_outlier_df_for_check(station_dt_list, obsdf, obstype, flag, stationname=None, datetimelist=None)[source]
+

Construct obsdf and outliersdf from a list of outlier timestamps.

+

Helper function to create an outlier dataframe for the given station(s) and +datetimes. This will be returned by a quality control check and later added +to the dastes.outlierdf.

+

Multiple commum inputstructures can be handles

+

A multiindex dataframe with the relevant observationtypes i.e. the +values_in_dict and a specific quality flag column (i.g. the labels) is +returned.

+
+
Parameters:
+
    +
  • station_dt_list (MultiIndex or list of tuples: (name, datetime)) – The stations with corresponding datetimes that are labeled as outliers.

  • +
  • obsdf (pandas.DataFrame) – The observations dataframe to update.

  • +
  • obstype (str) – The observation type of the outliers.

  • +
  • flag (String) – The label for the outliers.

  • +
  • stationname (String, optional) – It is possible to give the name of one station. The default is None.

  • +
  • datetimelist (DatetimeIndex or List, optional) – The outlier timestamps for the stationname. The default is None.

  • +
+
+
Returns:
+

    +
  • obsdf (pandas.DataFrame) – The updated observations dataframe.

  • +
  • outliersdf (pandas.DataFrame) – The updated outliers dataframe.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.persistance_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.persistance_check.html new file mode 100644 index 00000000..fbc0cbba --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.persistance_check.html @@ -0,0 +1,197 @@ + + + + + + + metobs_toolkit.qc_checks.persistance_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.persistance_check

+
+
+metobs_toolkit.qc_checks.persistance_check(station_frequencies, obsdf, obstype, checks_info, checks_settings)[source]
+

Test observations to change over a specific period.

+

Looking for values of an observation type that do not change during a timewindow. These are flagged as outliers.

+

In order to perform this check, at least N observations should be in that time window.

+
+
Parameters:
+
    +
  • station_frequencies (pandas.Series) – The frecuencies of all the stations. This is a column in the metadf +attribute of the Dataset.

  • +
  • obsdf (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • obstype (str) – The observation type to check for outliers.

  • +
  • checks_info (dict) – The specific info (outlier labels) for quality control.

  • +
  • checks_settings (dict) – The dictionary containing the settings for the quality control checks.

  • +
+
+
Returns:
+

    +
  • obsdf (pandas.DataFrame()) – The observations dataframe updated for persistance outliers. These are +represented by Nan values.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html new file mode 100644 index 00000000..33ee716a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html @@ -0,0 +1,195 @@ + + + + + + + metobs_toolkit.qc_checks.repetitions_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.repetitions_check

+
+
+metobs_toolkit.qc_checks.repetitions_check(obsdf, obstype, checks_info, checks_settings)[source]
+

Test if observation change after a number of records.

+

Looking for values of an observation type that are repeated at least with +the frequency specified in the qc_settings. These values are labeled.

+
+
Parameters:
+
    +
  • obsdf (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • obstype (str) – The observation type to check for outliers.

  • +
  • checks_info (dict) – The specific info (outlier labels) for quality control.

  • +
  • checks_settings (dict) – The dictionary containing the settings for the quality control checks.

  • +
+
+
Returns:
+

    +
  • obsdf (pandas.DataFrame()) – The observations dataframe updated for repetitions outliers. These are +represented by Nan values.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.step_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.step_check.html new file mode 100644 index 00000000..ba8e5f78 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.step_check.html @@ -0,0 +1,198 @@ + + + + + + + metobs_toolkit.qc_checks.step_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.qc_checks.step_check

+
+
+metobs_toolkit.qc_checks.step_check(obsdf, obstype, checks_info, checks_settings)[source]
+

Test if observations do not produces spikes in timeseries.

+

Looking for jumps of the values of an observation type that are larger than +the limit specified in the qc_settings. These values are removed from the +input series and combined in the outlier df.

+

The purpose of this check is to flag observations with a value that is too +much different compared to the previous (not flagged) recorded value.

+
+
Parameters:
+
    +
  • obsdf (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • obstype (str) – The observation type to check for outliers.

  • +
  • checks_info (dict) – The specific info (outlier labels) for quality control.

  • +
  • checks_settings (dict) – The dictionary containing the settings for the quality control checks.

  • +
+
+
Returns:
+

    +
  • obsdf (pandas.DataFrame()) – The observations dataframe updated for step outliers. These are +represented by Nan values.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.html new file mode 100644 index 00000000..4701cd67 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.html @@ -0,0 +1,198 @@ + + + + + + + metobs_toolkit.qc_checks.titan_buddy_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.titan_buddy_check

+
+
+metobs_toolkit.qc_checks.titan_buddy_check(obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler)[source]
+

Apply the Titanlib buddy check.

+

The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for +buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the average of the neighbours +normalized by the standard deviation in the circle is greater than a predefined threshold.

+
+
Parameters:
+
    +
  • obsdf (Pandas.DataFrame) – The dataframe containing the observations

  • +
  • metadf (Pandas.DataFrame) – The dataframe containing the metadata (e.g. latitude, longitude…)

  • +
  • obstype (String, optional) – The observation type that has to be checked. The default is ‘temp’

  • +
  • checks_info (Dictionary) – Dictionary with the names of the outlier flags for each check

  • +
  • checks_settings (Dictionary) – Dictionary with the settings for each check

  • +
  • titan_specific_labeler (Dictionary) – Dictionary that maps numeric flags to ‘ok’ or ‘outlier’ flags for each titan check

  • +
+
+
Returns:
+

    +
  • obsdf (Pandas.DataFrame) – The dataframe containing the unflagged-observations

  • +
  • outlier_df (Pandas.DataFrame) – The dataframe containing the flagged observations

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.html new file mode 100644 index 00000000..4cb4e181 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.html @@ -0,0 +1,198 @@ + + + + + + + metobs_toolkit.qc_checks.titan_sct_resistant_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.titan_sct_resistant_check

+
+
+metobs_toolkit.qc_checks.titan_sct_resistant_check(obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler)[source]
+

Apply the Titanlib (robust) Spatial-Consistency-Test (SCT).

+

The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the +nearby area. If the deviation is large, the observation is removed. The SCT uses optimal interpolation +(OI) to compute an expected value for each observation. The background for the OI is computed from +a general vertical profile of observations in the area.

+
+
Parameters:
+
    +
  • obsdf (Pandas.DataFrame) – The dataframe containing the observations

  • +
  • metadf (Pandas.DataFrame) – The dataframe containing the metadata (e.g. latitude, longitude…)

  • +
  • obstype (String, optional) – The observation type that has to be checked. The default is ‘temp’

  • +
  • checks_info (Dictionary) – Dictionary with the names of the outlier flags for each check

  • +
  • checks_settings (Dictionary) – Dictionary with the settings for each check

  • +
  • titan_specific_labeler (Dictionary) – Dictionary that maps numeric flags to ‘ok’ or ‘outlier’ flags for each titan check

  • +
+
+
Returns:
+

    +
  • obsdf (Pandas.DataFrame) – The dataframe containing the unflagged-observations

  • +
  • outlier_df (Pandas.DataFrame) – The dataframe containing the flagged observations

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.html new file mode 100644 index 00000000..38b19983 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.html @@ -0,0 +1,209 @@ + + + + + + + metobs_toolkit.qc_checks.toolkit_buddy_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.toolkit_buddy_check

+
+
+metobs_toolkit.qc_checks.toolkit_buddy_check(obsdf, metadf, obstype, buddy_radius, min_sample_size, max_alt_diff, min_std, std_threshold, outl_flag, haversine_approx=True, metric_epsg='31370', lapserate=-0.0065)[source]
+

Spatial buddy check.

+

The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for +buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the average of the neighbours +normalized by the standard deviation in the circle is greater than a predefined threshold.

+
+
Parameters:
+
    +
  • obsdf (Pandas.DataFrame) – The dataframe containing the observations

  • +
  • metadf (Pandas.DataFrame) – The dataframe containing the metadata (e.g. latitude, longitude…)

  • +
  • obstype (String, optional) – The observation type that has to be checked. The default is ‘temp’

  • +
  • buddy_radius (numeric) – The radius to define neighbours in meters.

  • +
  • min_sample_size (int) – The minimum sample size to calculate statistics on.

  • +
  • max_alt_diff (numeric) – The maximum altitude difference allowed for buddies.

  • +
  • min_std (numeric) – The minimum standard deviation for sample statistics. This should +represent the accuracty of the observations.

  • +
  • std_threshold (numeric) – The threshold (std units) for flaggging observations as outliers.

  • +
  • outl_flag (str) – Label to give to the outliers.

  • +
  • haversine_approx (bool, optional) – Use the haversine approximation (earth is a sphere) to calculate +distances between stations. The default is True.

  • +
  • metric_epsg (str, optional) – EPSG code for the metric CRS to calculate distances in. Only used when +haversine approximation is set to False. Thus becoming a better +distance approximation but not global applicable The default is ‘31370’ +(which is suitable for Belgium).

  • +
  • lapserate (numeric, optional) – Describes how the obstype changes with altitude (in meters). The default is -0.0065.

  • +
+
+
Returns:
+

    +
  • obsdf (Pandas.DataFrame) – The dataframe containing the unflagged-observations

  • +
  • outlier_df (Pandas.DataFrame) – The dataframe containing the flagged observations

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html b/docs/_build/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html new file mode 100644 index 00000000..11e8230b --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html @@ -0,0 +1,202 @@ + + + + + + + metobs_toolkit.qc_checks.window_variation_check — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_checks.window_variation_check

+
+
+metobs_toolkit.qc_checks.window_variation_check(station_frequencies, obsdf, obstype, checks_info, checks_settings)[source]
+

Test if the variation exeeds threshold in moving time windows.

+

Looking for jumps of the values of an observation type that are larger than +the limit specified in the qc_settings. These values are removed from the +input series and combined in the outlier df.

+

There is a increament threshold (that is if there is a max value difference +and the maximum value occured later than the minimum value occured.) +And vice versa is there a decreament threshold.

+

The check is only applied if there are at leas N observations in the time window.

+
+
Parameters:
+
    +
  • station_frequencies (pandas.Series) – The frecuencies of all the stations. This is a column in the metadf +attribute of the Dataset.

  • +
  • obsdf (pandas.DataFrame) – The observations dataframe of the dataset object (Dataset.df)

  • +
  • obstype (str) – The observation type to check for outliers.

  • +
  • checks_info (dict) – The specific info (outlier labels) for quality control.

  • +
  • checks_settings (dict) – The dictionary containing the settings for the quality control checks.

  • +
+
+
Returns:
+

    +
  • obsdf (pandas.DataFrame()) – The observations dataframe updated for window-variation-outliers. These are +represented by Nan values.

  • +
  • outl_df (pandas.DataFrame) – The updated outliersdf.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.html b/docs/_build/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.html new file mode 100644 index 00000000..74ff9276 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.html @@ -0,0 +1,183 @@ + + + + + + + metobs_toolkit.qc_statistics.get_freq_statistics — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.qc_statistics.get_freq_statistics

+
+
+metobs_toolkit.qc_statistics.get_freq_statistics(comb_df, obstype, checks_info, gaps_info, applied_qc_order)[source]
+

Compute frequency statistics of the outliers.

+
+
Parameters:
+
    +
  • comb_df (pandas.DataFrame) – The dataframe containing all obsarvations, outliers and there labels.

  • +
  • obstype (str) – The observation type to compute the frequencies of.

  • +
  • checks_info (dict) – The general quality control info dictionary.

  • +
  • gaps_info (dict) – The general gap info dictionary.

  • +
  • applied_qc_order (pandas.DataFrame) – The _applied_qc attribute of the Dataset.

  • +
+
+
Returns:
+

    +
  • agg_dict (dict) – Dictionary containing occurence frequencies for all labels.

  • +
  • outl_dict (dict) – Dictionary with frequency statistics of outlier-labels.

  • +
  • specific_counts (dict) – Dictionary containing the effectiviness of quality control checks +individually.

  • +
+

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.qc_statistics.html b/docs/_build/_autosummary/metobs_toolkit.qc_statistics.html new file mode 100644 index 00000000..6f876630 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.qc_statistics.html @@ -0,0 +1,166 @@ + + + + + + + metobs_toolkit.qc_statistics — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.settings.Settings.html b/docs/_build/_autosummary/metobs_toolkit.settings.Settings.html new file mode 100644 index 00000000..14cd02c5 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.settings.Settings.html @@ -0,0 +1,245 @@ + + + + + + + metobs_toolkit.settings.Settings — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+ +
+
+ +
+

metobs_toolkit.settings.Settings

+
+
+class metobs_toolkit.settings.Settings[source]
+

Bases: object

+

Class defenition to store all settings.

+

Methods

+ + + + + + + + + + + + + + + +

copy_template_csv_files

Copy the default template.

show

Print out an overview of the settings.

update_IO

Update some settings that are relevent before data is imported.

update_timezone

Change the timezone of the input data.

+
+
+copy_template_csv_files(target_folder)[source]
+

Copy the default template.

+

A function to copy the default template file to an other location. This +can be of use when creating a template file to start from the default.

+
+
Parameters:
+

target_folder (str) – Directory to copy the default template to (default_template.csv).

+
+
Return type:
+

None.

+
+
+
+ +
+
+show()[source]
+

Print out an overview of the settings.

+
+
Return type:
+

None.

+
+
+
+ +
+
+update_IO(output_folder=None, input_data_file=None, input_metadata_file=None, template_file=None)[source]
+

Update some settings that are relevent before data is imported.

+

When a argument is None, no update of that settings is performed. +The self object will be updated.

+
+
Parameters:
+
    +
  • output_folder (str, optional) – A directory to store the output to, defaults to None.

  • +
  • input_data_file (str, optional) – Path to the input data file, defaults to None.

  • +
  • input_metadata_file (str, optional) – Path to the input metadata file, defaults to None

  • +
  • template_file (str, optional) – Path to the mapper-template csv file to be used on the observations +and metadata. If not given, the default template is used. The +default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+update_timezone(timezonestr)[source]
+

Change the timezone of the input data.

+
+
Parameters:
+

timezonestr (str) – Timezone string of the input observations.

+
+
Return type:
+

None.

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.settings.html b/docs/_build/_autosummary/metobs_toolkit.settings.html new file mode 100644 index 00000000..b6b696d5 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.settings.html @@ -0,0 +1,166 @@ + + + + + + + metobs_toolkit.settings — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.station.Station.html b/docs/_build/_autosummary/metobs_toolkit.station.Station.html new file mode 100644 index 00000000..c2284016 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.station.Station.html @@ -0,0 +1,1317 @@ + + + + + + + metobs_toolkit.station.Station — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.station.Station

+
+
+class metobs_toolkit.station.Station(name, df, outliersdf, gaps, missing_obs, gapfilldf, missing_fill_df, metadf, obstypes, data_template, settings, _qc_checked_obstypes, _applied_qc)[source]
+

Bases: Dataset

+

A class holding all information of one station. Inherit all from Dataset.

+

Methods

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

add_new_observationtype

Add a new observation type to the known observation types.

add_new_unit

Add a new unit to a known observation type.

apply_buddy_check

Apply the buddy check on the observations.

apply_quality_control

Apply quality control methods to the dataset.

apply_titan_buddy_check

Apply the TITAN buddy check on the observations.

apply_titan_sct_resistant_check

Apply the TITAN spatial consistency test (resistant).

coarsen_time_resolution

Resample the observations to coarser timeresolution.

combine_all_to_obsspace

Make one dataframe with all observations and their labels.

fill_gaps_automatic

Fill the gaps by using linear interpolation or debiased modeldata.

fill_gaps_era5

Fill the gaps using a Modeldata object.

fill_gaps_linear

Fill the gaps using linear interpolation.

fill_missing_obs_linear

Interpolate missing observations.

get_altitude

Extract Altitudes for all stations.

get_analysis

Create an Analysis instance from the Dataframe.

get_gaps_df

List all gaps into an overview dataframe.

get_gaps_info

Print out detailed information of the gaps.

get_info

Alias of show().

get_landcover

Extract landcover for all stations.

get_lcz

Extract local climate zones for all stations.

get_missing_obs_info

Print out detailed information of the missing observations.

get_modeldata

Make Modeldata for the Dataset.

get_qc_stats

Get quality control statistics.

get_station

Filter out one station of the Dataset.

import_data_from_file

Read observations from a csv file.

import_dataset

Import a Dataset instance from a (pickle) file.

make_gee_plot

Make an interactive plot of a google earth dataset.

make_geo_plot

Make geospatial plot.

make_interactive_plot

Make interactive geospatial plot with time evolution.

make_plot

This function creates a timeseries plot for the dataset.

save_dataset

Save a Dataset instance to a (pickle) file.

setup_metadata_dtyes

Make sure the dtypes are not lost when subsetting.

show

Show detailed information of the Dataset.

show_settings

Show detailed information of the stored Settings.

sync_observations

Simplify and syncronize the observation timestamps.

update_gaps_and_missing_from_outliers

Interpret the outliers as missing observations.

update_outliersdf

Update the outliersdf attribute.

write_to_csv

Write Dataset to a csv file.

+
+
+__add__(other, gapsize=None)
+

Addition of two Datasets.

+
+ +
+
+add_new_observationtype(Obstype)
+

Add a new observation type to the known observation types.

+

The observation can only be added if it is not already present in the +knonw observation types. If that is the case that you probably need to +use use the Dataset.add_new_unit() method.

+
+
Parameters:
+

Obstype (metobs_toolkit.obstype.Obstype) – The new Obstype to add.

+
+
Return type:
+

None.

+
+
+
+ +
+
+add_new_unit(obstype, new_unit, conversion_expression=[])
+

Add a new unit to a known observation type.

+
+
Parameters:
+
    +
  • obstype (str) – The observation type to add the new unit to.

  • +
  • new_unit (str) – The new unit name.

  • +
  • conversion_expression (list or str, optional) –

    The conversion expression to the standard unit of the observation +type. The expression is a (list of) strings with simple algebraic +operations, where x represent the value in the new unit, and the +result is the value in the standard unit. Two examples for +temperature (with a standard unit in Celcius):

    +
    +

    [“x - 273.15”] #if the new_unit is Kelvin +[“x-32.0”, “x/1.8”] #if the new unit is Farenheit

    +
    +

    The default is [].

    +

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_buddy_check(obstype='temp', use_constant_altitude=False, haversine_approx=True, metric_epsg='31370')
+

Apply the buddy check on the observations.

+

The buddy check compares an observation against its neighbours (i.e. +buddies). The check looks for buddies in a neighbourhood specified by +a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the +average of the neighbours normalized by the standard deviation in the +circle is greater than a predefined threshold.

+

This check is based on the buddy check from titanlib. Documentation on +the titanlib buddy check can be found +here.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • use_constant_altitude (bool, optional) – Use a constant altitude for all stations. The default is False.

  • +
  • haversine_approx (bool, optional) – Use the haversine approximation (earth is a sphere) to calculate +distances between stations. The default is True.

  • +
  • metric_epsg (str, optional) – EPSG code for the metric CRS to calculate distances in. Only used when +haversine approximation is set to False. Thus becoming a better +distance approximation but not global applicable The default is ‘31370’ +(which is suitable for Belgium).

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_quality_control(obstype='temp', gross_value=True, persistance=True, repetitions=True, step=True, window_variation=True)
+

Apply quality control methods to the dataset.

+

The default settings are used, and can be changed in the +settings_files/qc_settings.py

+

The checks are performed in a sequence: gross_vallue –> +persistance –> …, Outliers by a previous check are ignored in the +following checks!

+

The dataset is updated inline.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • gross_value (Bool, optional) – If True the gross_value check is applied if False not. The default +is True.

  • +
  • persistance (Bool, optional) – If True the persistance check is applied if False not. The default +is True.. The default is True.

  • +
  • repetition (Bool, optional) – If True the repetations check is applied if False not. The default +is True.

  • +
  • step (Bool, optional) – If True the step check is applied if False not. The default is True.

  • +
  • window_variation (Bool, optional) – If True the window_variation check is applied if False not. The +default is True.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+apply_titan_buddy_check(obstype='temp', use_constant_altitude=False)
+

Apply the TITAN buddy check on the observations.

+

The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for +buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the +(absolute value of the) difference between the observations and the average of the neighbours +normalized by the standard deviation in the circle is greater than a predefined threshold.

+

See the titanlib documentation on the buddy check +for futher details.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+
    +
  • obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

  • +
  • use_constant_altitude (bool, optional) – Use a constant altitude for all stations. The default is False.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

To update the check settings, use the update_titan_qc_settings method +of the Dataset class.

+
+
+

Warning

+

To use this method, you must install titanlib. Windows users must have +a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation.

+
+
+ +
+
+apply_titan_sct_resistant_check(obstype='temp')
+

Apply the TITAN spatial consistency test (resistant).

+

The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the +nearby area. If the deviation is large, the observation is removed. The SCT uses optimal interpolation +(OI) to compute an expected value for each observation. The background for the OI is computed from +a general vertical profile of observations in the area.

+

See the titanlib documentation on the sct check +for futher details.

+

The observation and outliers attributes will be updated accordingly.

+
+
Parameters:
+

obstype (String, optional) – Name of the observationtype you want to apply the checks on. The +default is ‘temp’.

+
+
Return type:
+

None.

+
+
+
+

Note

+

To update the check settings, use the update_titan_qc_settings method +of the Dataset class.

+
+
+

Warning

+

To use this method, you must install titanlib. Windows users must have +a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation.

+
+
+

Warning

+

This method is a python wrapper on titanlib c++ scripts, and it is prone +to segmentation faults. The perfomance of this check is thus not +guaranteed!

+
+
+ +
+
+coarsen_time_resolution(origin=None, origin_tz=None, freq=None, method=None, limit=None)
+

Resample the observations to coarser timeresolution.

+

The assumed dataset resolution (stored in the metadf attribute) will be +updated.

+
+
Parameters:
+
    +
  • origin (datetime.datetime, optional) – Define the origin (first timestamp) for the obervations. The origin +is timezone naive, and is assumed to have the same timezone as the +obervations. If None, the earliest occuring timestamp is used as +origin. The default is None.

  • +
  • origin_tz (str, optional) – Timezone string of the input observations. Element of +pytz.all_timezones. If None, the timezone from the settings is +used. The default is None.

  • +
  • freq (DateOffset, Timedelta or str, optional) – The offset string or object representing target conversion. +Ex: ‘15T’ is 15 minuts, ‘1H’, is one hour. If None, the target time +resolution of the dataset.settings is used. The default is None.

  • +
  • method ('nearest' or 'bfill', optional) – Method to apply for the resampling. If None, the resample method of +the dataset.settings is used. The default is None.

  • +
  • limit (int, optional) – Limit of how many values to fill with one original observations. If +None, the target limit of the dataset.settings is used. The default +is None.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+combine_all_to_obsspace(repr_outl_as_nan=False, overwrite_outliers_by_gaps_and_missing=True)
+

Make one dataframe with all observations and their labels.

+

Combine all observations, outliers, missing observations and gaps into +one Dataframe. All observation types are combined an a label is added +in a serperate column.

+

When gaps and missing records are updated from outliers one has to choice +to represent these records as outliers or gaps. There can not be duplicates +in the return dataframe.

+

By default the observation values of the outliers are saved, one can +choice to use these values or NaN’s. +following checks!

+
+
Parameters:
+
    +
  • repr_outl_as_nan (bool, optional) – If True, Nan’s are use for the values of the outliers. The +default is False.

  • +
  • overwrite_outliers_by_gaps_and_missing (Bool, optional) –

    +
    If True, records that are labeld as gap/missing and outlier are

    labeled as gaps/missing. This has only effect when the gaps/missing +observations are updated from the outliers. The default is True.

    +
    +
    +
    +
    returns:
    +

    combdf – A dataframe containing a continious time resolution of records, where each +record is labeld.

    +
    +
    rtype:
    +

    pandas.DataFrame()

    +
    +
    +

  • +
+
+
+
+ +
+
+fill_gaps_automatic(modeldata, obstype='temp', max_interpolate_duration_str=None, overwrite_fill=False)
+

Fill the gaps by using linear interpolation or debiased modeldata.

+

The method that is applied to perform the gapfill will be determined by +the duration of the gap.

+

When the duration of a gap is smaller or equal than +max_interpolation_duration, the linear interpolation method is applied +else the debiased modeldata method.

+
+
Parameters:
+
    +
  • modeldata (metobs_toolkit.Modeldata) – The modeldata to use for the gapfill. This model data should the required +timeseries to fill all gaps present in the dataset.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • max_interpolate_duration_str (Timedelta or str, optional) – Maximum duration to apply interpolation for gapfill when using the +automatic gapfill method. Gaps with longer durations will be filled +using debiased modeldata. The default is None.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

comb_df

+
+
gapfilldfpandas.DataFrame

A dataframe containing all the filled records.

+
+
+

+
+
Return type:
+

TYPE

+
+
+
+ +
+
+fill_gaps_era5(modeldata, method='debias', obstype='temp', overwrite_fill=False)
+

Fill the gaps using a Modeldata object.

+
+
Parameters:
+
    +
  • modeldata (metobs_toolkit.Modeldata) – The modeldata to use for the gapfill. This model data should the required +timeseries to fill all gaps present in the dataset.

  • +
  • method ('debias', optional) – Specify which method to use. The default is ‘debias’.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

Gapfilldf – A dataframe containing all gap filled values and the use method.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+fill_gaps_linear(obstype='temp', overwrite_fill=False)
+

Fill the gaps using linear interpolation.

+

The gapsfilldf attribute of the Datasetinstance will be updated if +the gaps are not filled yet or if overwrite_fill is set to True.

+
+
Parameters:
+
    +
  • obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

  • +
  • overwrite_fill (bool, optional) – If a gap has already filled values, the interpolation of this gap +is skipped if overwrite_fill is False. If set to True, the gapfill +values and info will be overwitten. The default is False.

  • +
+
+
Returns:
+

gapfilldf – A dataframe containing all the filled records.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+fill_missing_obs_linear(obstype='temp')
+

Interpolate missing observations.

+

Fill in the missing observation rectords using interpolation. The +missing_fill_df attribute of the Dataset will be updated.

+
+
Parameters:
+

obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_altitude()
+

Extract Altitudes for all stations.

+

Function to extract the Altitude from the SRTM Digital Elevation Data +global map on the Google engine for all stations.

+

A ‘altitude’ column will be added to the metadf, and series is returned.

+
+
Returns:
+

altitude_series – A series with the stationnames as index and the altitudes as values.

+
+
Return type:
+

pandas.Series()

+
+
+
+ +
+
+get_analysis(add_gapfilled_values=False)
+

Create an Analysis instance from the Dataframe.

+
+
Parameters:
+

add_gapfilled_values (bool, optional) – If True, all filled values (from gapfill and missing observation fill), +are added to the analysis records aswell. The default is False.

+
+
Returns:
+

The Analysis instance of the Dataset.

+
+
Return type:
+

metobs_toolkit.Analysis

+
+
+
+ +
+
+get_gaps_df()
+

List all gaps into an overview dataframe.

+
+
Returns:
+

A DataFrame with stationnames as index, and the start, end and duretion +of the gaps as columns.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_gaps_info()
+

Print out detailed information of the gaps.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_info(show_all_settings=False, max_disp_n_gaps=5)
+

Alias of show().

+

A function to print out a detailed overview information about the Dataset.

+
+
Parameters:
+
    +
  • show_all_settings (bool, optional) – If True all the settings are printed out. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to display detailed information of.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+get_landcover(buffers=[100], aggregate=True, overwrite=True, gee_map='worldcover')
+

Extract landcover for all stations.

+

Extract the landcover fractions in a buffer with a specific radius for +all stations. If an aggregation scheme is define, one can choose to +aggregate the landcoverclasses.

+

The landcover fractions will be added to the Dataset.metadf if overwrite +is True. Presented as seperate columns where each column represent the +landcovertype and corresponding buffer.

+
+
Parameters:
+
    +
  • buffers (num, optional) – The list of buffer radia in dataset units (meters for ESA worldcover) . The default is 100.

  • +
  • aggregate (bool, optional) – If True, the classes will be aggregated with the corresponding +aggregation scheme. The default is True.

  • +
  • overwrite (bool, optional) – If True, the Datset.metadf will be updated with the generated +landcoverfractions. The default is True.

  • +
  • gee_map (str, optional) – The name of the dataset to use. This name should be present in the +settings.gee[‘gee_dataset_info’]. If aggregat is True, an aggregation +scheme should included as well. The default is ‘worldcover’

  • +
+
+
Returns:
+

frac_df – A Dataframe with index: name, buffer_radius and the columns are the +fractions.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_lcz()
+

Extract local climate zones for all stations.

+

Function to extract the Local CLimate zones (LCZ) from the +wudapt global LCZ map on the Google engine for all stations.

+

A ‘LCZ’ column will be added to the metadf, and series is returned.

+
+
Returns:
+

lcz_series – A series with the stationnames as index and the LCZ as values.

+
+
Return type:
+

pandas.Series()

+
+
+
+ +
+
+get_missing_obs_info()
+

Print out detailed information of the missing observations.

+
+
Return type:
+

None.

+
+
+
+ +
+
+get_modeldata(modelname='ERA5_hourly', modeldata=None, obstype='temp', stations=None, startdt=None, enddt=None)
+

Make Modeldata for the Dataset.

+

Make a metobs_toolkit.Modeldata object with modeldata at the locations +of the stations present in the dataset.

+
+
Parameters:
+
    +
  • modelname (str, optional) – Which dataset to download timeseries from. This is only used when +no modeldata is provided. The default is ‘ERA5_hourly’.

  • +
  • modeldata (metobs_toolkit.Modeldata, optional) – Use the modelname attribute and the gee information stored in the +modeldata instance to extract timeseries.

  • +
  • obstype (String, optional) – Name of the observationtype you want to apply gap filling on. The +modeldata must contain this observation type as well. The +default is ‘temp’.

  • +
  • stations (string or list of strings, optional) – Stationnames to subset the modeldata to. If None, all stations will be used. The default is None.

  • +
  • startdt (datetime.datetime, optional) – Start datetime of the model timeseries. If None, the start datetime of the dataset is used. The default is None.

  • +
  • enddt (datetime.datetime, optional) – End datetime of the model timeseries. If None, the last datetime of the dataset is used. The default is None.

  • +
+
+
Returns:
+

Modl – The extracted modeldata for period and a set of stations.

+
+
Return type:
+

metobs_toolkit.Modeldata

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+

Note

+

When extracting large amounts of data, the timeseries data will be +writen to a file and saved on your google drive. In this case, you need +to provide the Modeldata with the data using the .set_model_from_csv() +method.

+
+
+

Note

+

Only 2mT extraction of ERA5 is implemented for all Modeldata instances. +To extract other variables, one must create a Modeldata instance in +advance, add or update a gee_dataset and give this Modeldata instance +to this method.

+
+
+ +
+
+get_qc_stats(obstype='temp', stationname=None, make_plot=True)
+

Get quality control statistics.

+

Compute frequency statistics on the qc labels for an observationtype. +The output is a dataframe containing the frequency statistics presented +as percentages.

+

These frequencies can also be presented as a collection of piecharts +per check.

+

With stationnames you can subset the data to one ore multiple stations.

+
+
Parameters:
+
    +
  • obstype (str, optional) – Observation type to analyse the QC labels on. The default is +‘temp’.

  • +
  • stationname (str, optional) – Stationname to subset the quality labels on. If None, all +stations are used. The default is None.

  • +
  • make_plot (Bool, optional) – If True, a plot with piecharts is generated. The default is True.

  • +
+
+
Returns:
+

dataset_qc_stats – A table containing the label frequencies per check presented +as percentages.

+
+
Return type:
+

pandas.DataFrame

+
+
+
+ +
+
+get_station(stationname)
+

Filter out one station of the Dataset.

+

Extract a metobs_toolkit.Station object from the dataset by name.

+
+
Parameters:
+

stationname (string) – The name of the station.

+
+
Returns:
+

The station object.

+
+
Return type:
+

metobs_toolkit.Station

+
+
+
+ +
+
+import_data_from_file(long_format=True, obstype=None, obstype_unit=None, obstype_description=None, freq_estimation_method=None, freq_estimation_simplify=None, freq_estimation_simplify_error=None, kwargs_data_read={}, kwargs_metadata_read={})
+

Read observations from a csv file.

+

The paths are defined in the Settings.input_file. The input file +columns should have a template that is stored in +Settings.template_list.

+

If the metadata is stored in a seperate file, and the +Settings.input_metadata_file is correct, than this metadata is also +imported (if a suitable template is in the Settings.template_list.)

+

The dataset is by default assumed to be in long-format (each column represent an observation type, one column indicates the stationname). +Wide-format can be used if

+
    +
  • the ‘wide’ option is present in the template (this is done automatically if the themplate was made using the metobs_toolkit.build_template_prompt())

  • +
  • ‘long_format’ is set to False and if the observation type is specified (obstype, obstype_unit and obstype_description)

  • +
+

An estimation of the observational frequency is made per station. This is used +to find missing observations and gaps.

+
+
The Dataset attributes are set and the following checks are executed:
    +
  • Duplicate check

  • +
  • Invalid input check

  • +
  • Find missing observations

  • +
  • Find gaps

  • +
+
+
+
+
Parameters:
+
    +
  • long_format (bool, optional) – True if the inputdata has a long-format, False if it has a wide-format. The default is True.

  • +
  • obstype (str, optional) – If the dataformat is wide, specify which observation type the +observations represent. The obstype should be an element of +metobs_toolkit.observation_types. The default is None.

  • +
  • obstype_unit (str, optional) – If the dataformat is wide, specify the unit of the obstype. The +default is None.

  • +
  • obstype_description (str, optional) – If the dataformat is wide, specify the description of the obstype. +The default is None.

  • +
  • freq_estimation_method ('highest' or 'median', optional) – Select wich method to use for the frequency estimation. If +‘highest’, the highest apearing frequency is used. If ‘median’, the +median of the apearing frequencies is used. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_method’] is used. +The default is None.

  • +
  • freq_estimation_simplify (bool, optional) – If True, the likely frequency is converted to round hours, or round minutes. +The “freq_estimation_simplify_error’ is used as a constrain. If the constrain is not met, +the simplification is not performed. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_simplify’] is used. +The default is None.

  • +
  • freq_estimation_simplify_error (Timedelta or str, optional) – The tollerance string or object representing the maximum translation in time to form a simplified frequency estimation. +Ex: ‘5T’ is 5 minuts, ‘1H’, is one hour. If None, the method +stored in the +Dataset.settings.time_settings[‘freq_estimation_simplify_error’] is +used. The default is None.

  • +
  • kwargs_data_read (dict, optional) – Keyword arguments collected in a dictionary to pass to the +pandas.read_csv() function on the data file. The default is {}.

  • +
  • kwargs_metadata_read (dict, optional) – Keyword arguments collected in a dictionary to pass to the +pandas.read_csv() function on the metadata file. The default is {}.

  • +
+
+
+
+

Note

+

If options are present in the template, these will have priority over the arguments of this function.

+
+
+
Return type:
+

None.

+
+
+
+ +
+
+import_dataset(folder_path=None, filename='saved_dataset.pkl')
+

Import a Dataset instance from a (pickle) file.

+
+
Parameters:
+
    +
  • folder_path (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_dataset.pkl’.

  • +
+
+
Returns:
+

The Dataset instance.

+
+
Return type:
+

metobs_toolkit.Dataset

+
+
+
+ +
+
+make_gee_plot(gee_map, show_stations=True, save=False, outputfile=None)
+

Make an interactive plot of a google earth dataset.

+

The location of the stations can be plotted on top of it.

+
+
Parameters:
+
    +
  • gee_map (str, optional) – The name of the dataset to use. This name should be present in the +settings.gee[‘gee_dataset_info’]. If aggregat is True, an aggregation +scheme should included as well. The default is ‘worldcover’

  • +
  • show_stations (bool, optional) – If True, the stations will be plotted as markers. The default is True.

  • +
  • save (bool, optional) – If True, the map will be saved as an html file in the output_folder +as defined in the settings if the outputfile is not set. The +default is False.

  • +
  • outputfile (str, optional) – Specify the path of the html file if save is True. If None, and save +is true, the html file will be saved in the output_folder. The +default is None.

  • +
+
+
Returns:
+

Map – The folium Map instance.

+
+
Return type:
+

geemap.foliumap.Map

+
+
+
+

Warning

+

To display the interactive map a graphical backend is required, which +is often missing on (free) cloud platforms. Therefore it is better to +set save=True, and open the .html in your browser

+
+
+ +
+
+make_geo_plot(variable='temp', title=None, timeinstance=None, legend=True, vmin=None, vmax=None, legend_title=None, boundbox=[])
+

Make geospatial plot.

+

This functions creates a geospatial plot for a field +(observations or attributes) of all stations.

+

If the field is timedepending, than the timeinstance is used to plot +the field status at that datetime.

+

If the field is categorical than the leged will have categorical +values, else a colorbar is used.

+

All styling attributes are extracted from the Settings.

+
+
Parameters:
+
    +
  • variable (string, optional) – Fieldname to visualise. This can be an observation type or station +or ‘lcz’. The default is ‘temp’.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • timeinstance (datetime.datetime, optional) – Datetime moment of the geospatial plot. If None, the first occuring (not Nan) record is used. The default is None.

  • +
  • legend (bool, optional) – I True, a legend is added to the plot. The default is True.

  • +
  • vmin (numeric, optional) – The value corresponding with the minimum color. If None, the minimum of the presented observations is used. The default is None.

  • +
  • vmax (numeric, optional) – The value corresponding with the maximum color. If None, the maximum of the presented observations is used. The default is None.

  • +
  • legend_title (string, optional) – Title of the legend, if None a default title is generated. The default is None.

  • +
  • boundbox ([lon-west, lat-south, lon-east, lat-north], optional) – The boundbox to indicate the domain to plot. The elemenst are numeric. +If the list is empty, a boundbox is created automatically. The default +is [].

  • +
+
+
Returns:
+

axis – The geoaxes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.geoaxes

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+make_interactive_plot(obstype='temp', save=True, outputfile=None, starttime=None, endtime=None, vmin=None, vmax=None, mpl_cmap_name='viridis', radius=13, fill_alpha=0.6, max_fps=4, outlier_col='red', ok_col='black', gap_col='orange', fill_col='yellow')
+

Make interactive geospatial plot with time evolution.

+

This function uses the folium package to make an interactive geospatial +plot to illustrate the time evolution.

+
+
Parameters:
+
    +
  • obstype (str or metobs_toolkit.Obstype, optional) – The observation type to plot. The default is ‘temp’.

  • +
  • save (bool, optional) – If true, the figure will be saved as an html-file. The default is True.

  • +
  • outputfile (str, optional) – The path of the output html-file. The figure will be saved here, if +save is True. If outputfile is not given, and save is True, than +the figure will be saved in the default outputfolder (if given). +The default is None.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will +use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will +use the end datetime of the dataset, defaults to None.

  • +
  • vmin (numeric, optional) – The value corresponding with the minimum color. If None, the +minimum of the presented observations is used. The default is None.

  • +
  • vmax (numeric, optional) – The value corresponding with the maximum color. If None, the +maximum of the presented observations is used. The default is None.

  • +
  • mpl_cmap_name (str, optional) – The name of the matplotlib colormap to use. The default is ‘viridis’.

  • +
  • radius (int, optional) – The radius (in pixels) of the scatters. The default is 13.

  • +
  • fill_alpha (float ([0;1]), optional) – The alpha of the fill color for the scatters. The default is 0.6.

  • +
  • max_fps (int (>0), optional) – The maximum allowd frames per second for the time evolution. The +default is 4.

  • +
  • outlier_col (str, optional) – The edge color of the scatters to identify an outliers. The default is ‘red’.

  • +
  • ok_col (str, optional) – The edge color of the scatters to identify an ok observation. The default is ‘black’.

  • +
  • gap_col (str, optional) – The edge color of the scatters to identify an missing/gap +observation. The default is ‘orange’.

  • +
  • fill_col (str, optional) – The edge color of the scatters to identify a fillded observation. +The default is ‘yellow’.

  • +
+
+
Returns:
+

m – The interactive folium map.

+
+
Return type:
+

folium.folium.map

+
+
+
+

Note

+

The figure will only appear when this is runned in notebooks. If you do +not run this in a notebook, make shure to save the html file, and open it +with a browser.

+
+
+ +
+
+make_plot(stationnames=None, obstype='temp', colorby='name', starttime=None, endtime=None, title=None, y_label=None, legend=True, show_outliers=True, show_filled=True, _ax=None)
+

This function creates a timeseries plot for the dataset. The variable observation type +is plotted for all stationnames from a starttime to an endtime.

+

All styling attributes are extracted from the Settings.

+
+
Parameters:
+
    +
  • stationnames (list, optional) – A list with stationnames to include in the timeseries. If None is given, all the stations are used, defaults to None.

  • +
  • obstype (string, optional) – Fieldname to visualise. This can be an observation or station +attribute. The default is ‘temp’.

  • +
  • colorby ('label' or 'name', optional) – Indicate how colors should be assigned to the lines. ‘label’ will color the lines by their quality control label. ‘name’ will color by each station, defaults to ‘name’.

  • +
  • starttime (datetime.datetime, optional) – Specifiy the start datetime for the plot. If None is given it will use the start datetime of the dataset, defaults to None.

  • +
  • endtime (datetime.datetime, optional) – Specifiy the end datetime for the plot. If None is given it will use the end datetime of the dataset, defaults to None.

  • +
  • title (string, optional) – Title of the figure, if None a default title is generated. The default is None.

  • +
  • y_label (string, optional) – y-axes label of the figure, if None a default label is generated. The default is None.

  • +
  • legend (bool, optional) – If True, a legend is added to the plot. The default is True.

  • +
  • show_outliers (bool, optional) – If true the observations labeld as outliers will be included in +the plot. This is only true when colorby == ‘name’. The default +is True.

  • +
  • show_filled (bool, optional) – If true the filled values for gaps and missing observations will +be included in the plot. This is only true when colorby == ‘name’. +The default is True.

  • +
+
+
Returns:
+

axis – The timeseries axes of the plot is returned.

+
+
Return type:
+

matplotlib.pyplot.axes

+
+
+
+

Note

+

If a timezone unaware datetime is given as an argument, it is interpreted +as if it has the same timezone as the observations.

+
+
+ +
+
+save_dataset(outputfolder=None, filename='saved_dataset.pkl')
+

Save a Dataset instance to a (pickle) file.

+
+
Parameters:
+
    +
  • outputfolder (str or None, optional) – The path to the folder to save the file. If None, the outputfolder +from the Settings is used. The default is None.

  • +
  • filename (str, optional) – The name of the output file. The default is ‘saved_dataset.pkl’.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+setup_metadata_dtyes()[source]
+

Make sure the dtypes are not lost when subsetting.

+
+ +
+
+show(show_all_settings=False, max_disp_n_gaps=5)
+

Show detailed information of the Dataset.

+

A function to print out a detailed overview information about the Dataset.

+
+
Parameters:
+
    +
  • show_all_settings (bool, optional) – If True all the settings are printed out. The default is False.

  • +
  • max_disp_n_gaps (int, optional) – The maximum number of gaps to display detailed information of.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+
+show_settings()
+

Show detailed information of the stored Settings.

+

A function that prints out all the settings, structured per thematic.

+
+
Return type:
+

None.

+
+
+
+ +
+
+sync_observations(tollerance, verbose=True, _force_resolution_minutes=None, _drop_target_nan_dt=False)
+

Simplify and syncronize the observation timestamps.

+

To simplify the resolution (per station), a tollerance is use to shift timestamps. The tollerance indicates the +maximum translation in time that can be applied to an observation.

+

The sycronisation tries to group stations that have an equal simplified resolution, and syncronize them. The origin +of the sycronized timestamps will be set to round hours, round 10-minutes or round-5 minutes if possible given the tollerance.

+

The observations present in the input file are used.

+

After syncronization, the IO outliers, missing observations and gaps are recomputed.

+
+
Parameters:
+
    +
  • tollerance (Timedelta or str) – The tollerance string or object representing the maximum translation in time. +Ex: ‘5T’ is 5 minuts, ‘1H’, is one hour.

  • +
  • verbose (bool, optional) – If True, a dataframe illustrating the mapping from original datetimes to simplified and syncronized is returned. The default is True.

  • +
  • _drop_target_nan_dt (bool, optional) – If record has no target datetime, the datetimes will be listed as Nat. To remove them, +set this to True. Default is False.

  • +
  • _force_resolution_minutes (bool, optional) – force the resolution estimate to this frequency in minutes. If None, the frequency is estimated. The default is None.

  • +
+
+
+
+

Note

+

Keep in mind that this method will overwrite the df, outliersdf, missing timestamps and gaps.

+
+
+

Note

+

Because the used observations are from the input file, previously coarsend timeresolutions are ignored.

+
+
+
Returns:
+

A dataframe containing the original observations with original timestamps and the corresponding target timestamps.

+
+
Return type:
+

pandas.DataFrame (if verbose is True)

+
+
+
+ +
+
+update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=None)
+

Interpret the outliers as missing observations.

+

If there is a sequence +of these outliers for a station, larger than n_gapsize than this will +be interpreted as a gap.

+

The outliers are not removed.

+
+
Parameters:
+
    +
  • obstype (str, optional) – Use the outliers on this observation type to update the gaps and +missing timestamps. The default is ‘temp’.

  • +
  • n_gapsize (int, optional) – The minimum number of consecutive missing observations to define +as a gap. If None, n_gapsize is taken from the settings defenition +of gaps. The default is None.

  • +
+
+
Return type:
+

None.

+
+
+
+

Note

+

Gaps and missing observations resulting from an outlier on a specific +obstype, are assumed to be gaps/missing observation for all obstypes.

+
+
+

Note

+

Be aware that n_gapsize is used for the current resolution of the Dataset, +this is different from the gap check applied on the inported data, if +the dataset is coarsend.

+
+
+ +
+
+update_outliersdf(add_to_outliersdf)
+

Update the outliersdf attribute.

+
+ +
+
+write_to_csv(obstype=None, filename=None, include_outliers=True, include_fill_values=True, add_final_labels=True, use_tlk_obsnames=True, overwrite_outliers_by_gaps_and_missing=True, seperate_metadata_file=True)
+

Write Dataset to a csv file.

+

Write the dataset to a file where the observations, metadata and +(if available) the quality labels per observation type are merged +together.

+

A final qualty control label for each +quality-controlled-observation type can be added in the outputfile.

+

The file will be writen to the outputfolder specified in the settings.

+
+
Parameters:
+
    +
  • obstype (string, optional) – Specify an observation type to subset all observations to. If None, +all available observation types are writen to file. The default is +None.

  • +
  • filename (string, optional) – The name of the output csv file. If none, a standard-filename +is generated based on the period of data. The default is None.

  • +
  • include_outliers (bool, optional) – If True, the outliers will be present in the csv file. The default is True.

  • +
  • include_fill_values (bool, optional) – If True, the filled gap and missing observation values will be +present in the csv file. The default is True.

  • +
  • add_final_labels (bool, optional) – If True, a column is added containing the final label of an observation. The default is True.

  • +
  • use_tlk_obsnames (bool, optional) – If True, the standard naming of the metobs_toolkit is used, else +the original names for obstypes is used. The default is True.

  • +
  • overwrite_outliers_by_gaps_and_missing (bool, optional) – If the gaps and missing observations are updated using outliers, +interpret these records as gaps/missing outliers if True. Else these +will be interpreted as outliers. The default is True.

  • +
  • seperate_metadata_file (bool, optional) – If true, the metadat is writen to a seperate file, else the metadata +is merged to the observation in one file. The default is True.

  • +
+
+
Return type:
+

None.

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.station.html b/docs/_build/_autosummary/metobs_toolkit.station.html new file mode 100644 index 00000000..15168841 --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.station.html @@ -0,0 +1,166 @@ + + + + + + + metobs_toolkit.station — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.writing_files.html b/docs/_build/_autosummary/metobs_toolkit.writing_files.html new file mode 100644 index 00000000..0e8a3e9a --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.writing_files.html @@ -0,0 +1,166 @@ + + + + + + + metobs_toolkit.writing_files — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.html b/docs/_build/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.html new file mode 100644 index 00000000..f600a75e --- /dev/null +++ b/docs/_build/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.html @@ -0,0 +1,179 @@ + + + + + + + metobs_toolkit.writing_files.write_dataset_to_csv — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

metobs_toolkit.writing_files.write_dataset_to_csv

+
+
+metobs_toolkit.writing_files.write_dataset_to_csv(df, metadf, filename, outputfolder, location_info, seperate_metadata_file)[source]
+

Write a dataset to a csv files.

+

Write the dataset to a file where the observations, metadata and (if available) +the quality labels per observation type are merged together.

+

A final qualty controll label for each quality-controlled-observation type +can be added in the outputfile.

+

The file will be writen to the Settings.outputfolder.

+
+
Parameters:
+
    +
  • df (pandas.DataFrame) – The merged dataframe containing observations, gaps, outliers and missing timestamps.

  • +
  • metadf (pandas.DataFrame) – The Dataset.metadf attribute.

  • +
  • filename (string, optional) – The name of the output csv file. If none, a standard-filename is generated +based on the period of data. The default is None.

  • +
+
+
Return type:
+

None

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/_images/examples_analysis_example_7_0.png b/docs/_build/_images/examples_analysis_example_7_0.png new file mode 100644 index 00000000..e643afbb Binary files /dev/null and b/docs/_build/_images/examples_analysis_example_7_0.png differ diff --git a/docs/_build/_images/examples_doc_example_22_1.png b/docs/_build/_images/examples_doc_example_22_1.png new file mode 100644 index 00000000..035833c9 Binary files /dev/null and b/docs/_build/_images/examples_doc_example_22_1.png differ diff --git a/docs/_build/_images/examples_doc_example_24_1.png b/docs/_build/_images/examples_doc_example_24_1.png new file mode 100644 index 00000000..96fe2305 Binary files /dev/null and b/docs/_build/_images/examples_doc_example_24_1.png differ diff --git a/docs/_build/_images/examples_doc_example_26_1.png b/docs/_build/_images/examples_doc_example_26_1.png new file mode 100644 index 00000000..03ad8be0 Binary files /dev/null and b/docs/_build/_images/examples_doc_example_26_1.png differ diff --git a/docs/_build/_images/examples_filling_example_11_1.png b/docs/_build/_images/examples_filling_example_11_1.png new file mode 100644 index 00000000..9a8e9539 Binary files /dev/null and b/docs/_build/_images/examples_filling_example_11_1.png differ diff --git a/docs/_build/_images/examples_filling_example_13_1.png b/docs/_build/_images/examples_filling_example_13_1.png new file mode 100644 index 00000000..ebe7953b Binary files /dev/null and b/docs/_build/_images/examples_filling_example_13_1.png differ diff --git a/docs/_build/_images/examples_filling_example_15_1.png b/docs/_build/_images/examples_filling_example_15_1.png new file mode 100644 index 00000000..1c036bf7 Binary files /dev/null and b/docs/_build/_images/examples_filling_example_15_1.png differ diff --git a/docs/_build/_images/examples_filling_example_19_1.png b/docs/_build/_images/examples_filling_example_19_1.png new file mode 100644 index 00000000..18c39d8f Binary files /dev/null and b/docs/_build/_images/examples_filling_example_19_1.png differ diff --git a/docs/_build/_images/examples_filling_example_7_1.png b/docs/_build/_images/examples_filling_example_7_1.png new file mode 100644 index 00000000..53871adc Binary files /dev/null and b/docs/_build/_images/examples_filling_example_7_1.png differ diff --git a/docs/_build/_images/examples_gee_example_11_2.png b/docs/_build/_images/examples_gee_example_11_2.png new file mode 100644 index 00000000..c4e744a4 Binary files /dev/null and b/docs/_build/_images/examples_gee_example_11_2.png differ diff --git a/docs/_build/_images/examples_gee_example_17_2.png b/docs/_build/_images/examples_gee_example_17_2.png new file mode 100644 index 00000000..2a2fd4d3 Binary files /dev/null and b/docs/_build/_images/examples_gee_example_17_2.png differ diff --git a/docs/_build/_images/examples_qc_example_11_1.png b/docs/_build/_images/examples_qc_example_11_1.png new file mode 100644 index 00000000..cc7cd2af Binary files /dev/null and b/docs/_build/_images/examples_qc_example_11_1.png differ diff --git a/docs/_build/_images/examples_qc_example_13_0.png b/docs/_build/_images/examples_qc_example_13_0.png new file mode 100644 index 00000000..3f2b6767 Binary files /dev/null and b/docs/_build/_images/examples_qc_example_13_0.png differ diff --git a/docs/_build/_images/examples_qc_example_3_1.png b/docs/_build/_images/examples_qc_example_3_1.png new file mode 100644 index 00000000..03ad8be0 Binary files /dev/null and b/docs/_build/_images/examples_qc_example_3_1.png differ diff --git a/docs/_build/_images/examples_using_obstypes_16_1.png b/docs/_build/_images/examples_using_obstypes_16_1.png new file mode 100644 index 00000000..75222a56 Binary files /dev/null and b/docs/_build/_images/examples_using_obstypes_16_1.png differ diff --git a/docs/_build/_images/overview_fig.png b/docs/_build/_images/overview_fig.png new file mode 100644 index 00000000..6c77ce57 Binary files /dev/null and b/docs/_build/_images/overview_fig.png differ diff --git a/docs/_build/_images/paper_paper_figures_11_1.png b/docs/_build/_images/paper_paper_figures_11_1.png new file mode 100644 index 00000000..41e483d1 Binary files /dev/null and b/docs/_build/_images/paper_paper_figures_11_1.png differ diff --git a/docs/_build/_images/paper_paper_figures_13_0.png b/docs/_build/_images/paper_paper_figures_13_0.png new file mode 100644 index 00000000..14286fd1 Binary files /dev/null and b/docs/_build/_images/paper_paper_figures_13_0.png differ diff --git a/docs/_build/_images/paper_paper_figures_7_0.png b/docs/_build/_images/paper_paper_figures_7_0.png new file mode 100644 index 00000000..bcfed3a1 Binary files /dev/null and b/docs/_build/_images/paper_paper_figures_7_0.png differ diff --git a/docs/_build/_images/paper_paper_figures_9_1.png b/docs/_build/_images/paper_paper_figures_9_1.png new file mode 100644 index 00000000..f3a395a1 Binary files /dev/null and b/docs/_build/_images/paper_paper_figures_9_1.png differ diff --git a/docs/_build/_images/schematic_overview.png b/docs/_build/_images/schematic_overview.png new file mode 100644 index 00000000..8ab3ffee Binary files /dev/null and b/docs/_build/_images/schematic_overview.png differ diff --git a/docs/_build/_modules/index.html b/docs/_build/_modules/index.html new file mode 100644 index 00000000..ca6c10fe --- /dev/null +++ b/docs/_build/_modules/index.html @@ -0,0 +1,137 @@ + + + + + + Overview: module code — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_modules/metobs_toolkit/analysis.html b/docs/_build/_modules/metobs_toolkit/analysis.html new file mode 100644 index 00000000..9873b0a8 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/analysis.html @@ -0,0 +1,1426 @@ + + + + + + metobs_toolkit.analysis — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.analysis

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This module contains the Analysis class and all its methods.
+
+A Analysis holds a set of 'good' observations and the methods will analyse it.
+"""
+from datetime import datetime
+import pandas as pd
+import numpy as np
+import logging
+import copy
+from scipy.stats import pearsonr
+
+from metobs_toolkit.plotting_functions import (
+    cycle_plot,
+    heatmap_plot,
+    correlation_scatter,
+)
+
+from metobs_toolkit.df_helpers import (
+    datetime_subsetting,
+    subset_stations,
+    fmt_datetime_argument,
+)
+
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +class Analysis: + """The Analysis class contains methods for analysing observations.""" + + def __init__(self, obsdf, metadf, settings, data_template): + """Initialize an Analysis.""" + self.df = obsdf + self.metadf = metadf + self.settings = settings + self.data_template = data_template + + # analysis objects + self.lc_cor_dict = {} + self._lc_cor_obstype = None + self._lc_groupby_labels = None + + # add empty lcz column to metadf if it is not present + if "lcz" not in self.metadf.columns: + self.metadf["lcz"] = np.nan + + def __str__(self): + """Print a overview of the analysis.""" + if self.df.empty: + return "Empty Analysis instance." + add_info = "" + n_stations = self.df.index.get_level_values("name").unique().shape[0] + n_obs_tot = self.df.shape[0] + + startdt = self.df.index.get_level_values("datetime").min() + enddt = self.df.index.get_level_values("datetime").max() + + if (not self.metadf["lat"].isnull().all()) & ( + not self.metadf["lon"].isnull().all() + ): + add_info += " *Coordinates are available for all stations. \n" + + if not self.metadf["lcz"].isnull().all(): + add_info += " *LCZ's are available for all stations. \n" + + if bool(self.lc_cor_dict): + add_info += f" *landcover correlations are computed on group: {self._lc_groupby_labels} \n" + + return ( + f"Analysis instance containing: \n \ + *{n_stations} stations \n \ + *{self.df.columns.to_list()} observation types \n \ + *{n_obs_tot} observation records \n{add_info} \n \ + *records range: {startdt} --> {enddt} (total duration: {enddt - startdt})" + + add_info + ) + + def __repr__(self): + """Print a overview of the analysis.""" + return self.__str__() + + # ============================================================================= + # Setters + # ============================================================================= + +
+[docs] + def subset_period(self, startdt, enddt): + """Subset the observations of the Analysis to a specific period. + + The same timezone is assumed as the data. + + Parameters + ---------- + startdt : datetime.datetime + The start datetime to filter the observations to. + enddt : datetime.datetime + The end datetime to filter the observations to. + + Returns + ------- + None. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + """ + if not isinstance(startdt, type(datetime(2020, 1, 1))): + logger.info(f" {startdt} not a datetime type. Ignore subsetting!") + return + if not isinstance(enddt, type(datetime(2020, 1, 1))): + logger.info(f" {enddt} not a datetime type. Ignore subsetting!") + return + + startdt = fmt_datetime_argument( + startdt, self.settings.time_settings["timezone"] + ) + enddt = fmt_datetime_argument(enddt, self.settings.time_settings["timezone"]) + + self.df = datetime_subsetting(self.df, startdt, enddt)
+ + + # ============================================================================= + # Helpers + # ============================================================================= + +
+[docs] + def apply_filter(self, expression): + """Filter an Analysis by a user definde string expression. + + This can be used to filter the observation to specific meteorological + conditions (i.e. low windspeeds, high humidity, cold temperatures, ...) + + The filter expression contains only columns present in the Analysis.df + and/or the Analysis.metadf. + + A New Analysis object is returned. + + Parameters + ---------- + expression : str + A filter expression using columnnames present in either df or metadf. + The following timestamp derivatives can be used as well: [minute, hour, + month, year, day_of_year, week_of_year, season]. The quarry_str may + contain number and expressions like <, >, ==, >=, \*, +, .... Multiple filters + can be combine to one expression by using & (AND) and | (OR). + + Returns + ------- + filtered_analysis : metobs_toolkit.Analysis + The filtered Analysis. + + + Note + ------- + All timestamp derivative values are numeric except for 'season', + possible values are ['winter', 'spring', 'summer', 'autumn']. + + Note + ------ + Make shure to use \" of \' to indicate string values in the expression if + needed. + + """ + child_df, child_metadf = filter_data( + df=self.df, metadf=self.metadf, quarry_str=expression + ) + + return Analysis( + obsdf=child_df, + metadf=child_metadf, + settings=self.settings, + data_template=self.data_template, + )
+ + +
+[docs] + def aggregate_df(self, df=None, agg=["lcz", "hour"], method="mean"): + """Aggregate observations to a (list of) categories. + + The output will be a dataframe that is aggregated to one, or more + categories. A commen example is aggregating to LCZ's. + + + Parameters + ---------- + df : pandas.DataFrame or None + The observations to aggregate. If None, the df attribute of the + Analysis instance is used. The default is None. + agg : list, optional + The list of columnnames to aggregate to. If 'lcz' is included, the + lcz information is extracted from the Analysis.metadf. The default + is ['lcz', 'datetime']. + method : str, optional + list of functions and/or function names, e.g. [np.sum, 'mean']. The + default is 'mean'. + + Returns + ------- + pandas.DataFrame + A dataframe with the agg columns as an index. The values are the + aggregated values. + + Note + ------- + Present columns that ar non-numeric and are not in the agg list, are + not present in the return, since these values cannot be aggregated. + + """ + if df is None: + df = copy.deepcopy(self.df) + df = df.reset_index() + + time_agg_keys = [ + "minute", + "hour", + "month", + "year", + "day_of_year", + "week_of_year", + "season", + ] + + # scan trough the metadf for aggregation keys + for agg_key in agg: + if agg_key not in df.columns: + # look in metadf + if agg_key in self.metadf.columns: + df = pd.merge( + df, + self.metadf[[agg_key]], + how="left", + left_on="name", + right_index=True, + ) + + # Check if all agg keys are present or defined: + possible_agg_keys = time_agg_keys + possible_agg_keys.extend(list(df.columns)) + unmapped = [agg_key for agg_key in agg if agg_key not in possible_agg_keys] + assert len(unmapped) == 0, f"cannot aggregate to unknown labels: {unmapped}." + + # make time-derivate columns if required + df = _make_time_derivatives(df, agg) + + # check if not all values are Nan + for agg_name in agg: + assert ( + not df[agg_name].isnull().all() + ), f"Aggregation to {agg_name} not possible because no valid values found for {agg_name}." + + # remove datetime column if present, because no aggregation can be done on + # datetime and it gives a descrepation warning + if "datetime" in df.columns: + df = df.drop(columns=["datetime"]) + + # Remove name column if present and not in the aggregation scheme, + # this happens because name was in the index + if "name" not in agg: + df = df.drop(columns=["name"], errors="ignore") + + # Aggregate the df + agg_df = df.groupby(agg).agg(method, numeric_only=True) # descrepation warning + # sort index + agg_df = agg_df.reset_index() + agg_df = agg_df.set_index(agg) + return agg_df
+ + + # ============================================================================= + # Analyse method + # ============================================================================= +
+[docs] + def get_anual_statistics( + self, + groupby=["name"], + obstype="temp", + agg_method="mean", + stations=None, + startdt=None, + enddt=None, + plot=True, + errorbands=False, + title=None, + y_label=None, + legend=True, + _return_all_stats=False, + ): + """ + Create an anual cycle for aggregated groups. + + (In the plot, unique combination of groupby categories is presented + as a line.) + + Parameters + ---------- + groupby : list string, optional + Variables to aggregate to. These can be columns in the metadf, or + time aggregations ('hour', 'year', 'week_of_year', ...]. 'name' will + aggregate to the stationnames. The default is ['name']. + obstype : str, optional + Element of the metobs_toolkit.observation_types The default is 'temp'. + agg_method : str, optional + Function names to use for aggregation, e.g. [np.sum, 'mean']. The + default is 'mean'. + stations : list, optional + List of station names to use. If None, all present stations will be used. The default is None. + startdt : datetime.datetime, optional + The start datetime of the observations to use. If None, all timestamps will be used. The default is None. + enddt : datetime.datetime, optional + The end datetime of the observations to use. If None, all timestamps will be used. The default is None. + plot : bool, optional + If True, an anual plot is made. The default is True. + errorbands : bool, optional + If True, the std is representd in the plot by colored bands. The default is False. + title : string, optional + Title of the figure, if None a default title is generated. The default is None. + y_label : string, optional + y-axes label of the figure, if None a default label is generated. The default is None. + legend : bool, optional + I True, a legend is added to the plot. The default is True. + + Returns + ------- + df : pandas.DataFrame() + The dataframe containing the aggregated values. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + """ + # title + desc_dict = self.data_template[obstype].to_dict() + + if "description" not in desc_dict: + desc_dict["description"] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype + + if title is None: + title = f'Anual {desc_dict["description"]} cycle plot per {groupby}.' + else: + title = str(title) + + # ylabel + if y_label is None: + if "units" not in desc_dict: + y_label = f'{desc_dict["description"]} (units unknown)' + else: + y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' + else: + y_label = str(y_label) + + stats = self.get_aggregated_cycle_statistics( + obstype=obstype, + stations=stations, + aggregation=groupby, + aggregation_method=agg_method, + horizontal_axis="month", + startdt=startdt, + enddt=enddt, + plot=plot, + title=title, + y_label=y_label, + legend=legend, + errorbands=errorbands, + verbose=_return_all_stats, + ) + return stats
+ + +
+[docs] + def get_diurnal_statistics( + self, + colorby="name", + obstype="temp", + stations=None, + startdt=None, + enddt=None, + plot=True, + title=None, + y_label=None, + legend=True, + errorbands=False, + _return_all_stats=False, + ): + """ + Create an average diurnal cycle for the observations. + + (In the plot, each station is represed by a line.) + + + Parameters + ---------- + colorby : 'name' or 'lcz', optional + If 'name' the plotted lines will be colored per station, if 'lcz' the colors represent the stations lcz. The default is 'name'. + obstype : str, optional + Element of the metobs_toolkit.observation_types The default is 'temp'. + stations : list, optional + List of station names to use. If None, all present stations will be used. The default is None. + startdt : datetime.datetime, optional + The start datetime of the observations to use. If None, all timestamps will be used. The default is None. + enddt : datetime.datetime, optional + The end datetime of the observations to use. If None, all timestamps will be used. The default is None. + plot : bool, optional + If True, an diurnal plot is made. The default is True. + title : string, optional + Title of the figure, if None a default title is generated. The default is None. + y_label : string, optional + y-axes label of the figure, if None a default label is generated. The default is None. + legend : bool, optional + I True, a legend is added to the plot. The default is True. + errorbands : bool, optional + If True, the std is representd in the plot by colored bands. The default is False. + + Returns + ------- + df : pandas.DataFrame() + The dataframe containing the aggregated values. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + """ + # title + desc_dict = self.data_template[obstype].to_dict() + + if "description" not in desc_dict: + desc_dict["description"] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype + + if title is None: + if startdt is None: + if enddt is None: + title = f"Hourly average {obstype} diurnal cycle" + else: + title = f"Hourly average {obstype} diurnal cycle until {enddt}" + else: + if enddt is None: + title = f"Hourly average {obstype} diurnal cycle from {startdt}" + else: + title = f"Hourly average {obstype} diurnal cycle for period {startdt} - {enddt}" + + else: + title = str(title) + + # ylabel + if y_label is None: + if "units" not in desc_dict: + y_label = f'{desc_dict["description"]} (units unknown)' + else: + y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' + else: + y_label = str(y_label) + + stats = self.get_aggregated_cycle_statistics( + obstype=obstype, + stations=stations, + aggregation=[colorby], + aggregation_method="mean", + horizontal_axis="hour", + startdt=startdt, + enddt=enddt, + plot=plot, + title=title, + y_label=y_label, + legend=legend, + errorbands=errorbands, + verbose=_return_all_stats, + ) + return stats
+ + +
+[docs] + def get_diurnal_statistics_with_reference( + self, + refstation, + colorby="name", + obstype="temp", + tollerance="30T", + stations=None, + startdt=None, + enddt=None, + plot=True, + title=None, + y_label=None, + legend=True, + errorbands=False, + show_zero_horizontal=True, + _return_all_stats=False, + ): + """ + Create an average diurnal cycle for the observation differences of a reference station. + + All observational values are converted to differences with the closest + (in time) reference observation. No reference observation is found when + the time difference is larger than the tollerance. + + (In the plot, each station is represed by a line.) + + Parameters + ---------- + refstation : str, + Name of the station to use as a reference. + colorby : 'name' or 'lcz', optional + If 'name' the plotted lines will be colored per station, if 'lcz' the colors represent the stations lcz. The default is 'name'. + obstype : str, optional + Element of the metobs_toolkit.observation_types The default is 'temp'. + tollerance : Timedelta or str, optional + The tollerance string or object representing the maximum translation in time to find a reference + observation for each observation. Ex: '5T' is 5 minutes, '1H', is one hour. The default is '30T'. + stations : list, optional + List of station names to use. If None, all present stations will be used. The default is None. + startdt : datetime.datetime, optional + The start datetime of the observations to use. If None, all timestamps will be used. The default is None. + enddt : datetime.datetime, optional + The end datetime of the observations to use. If None, all timestamps will be used. The default is None. + plot : bool, optional + If True, a diurnal plot is made. The default is True. + title : string, optional + Title of the figure, if None a default title is generated. The default is None. + y_label : string, optional + y-axes label of the figure, if None a default label is generated. The default is None. + legend : bool, optional + I True, a legend is added to the plot. The default is True. + errorbands : bool, optional + If True, the std is representd in the plot by colored bands. The upper bound represents +1 x std, the lower bound -1 x std. The default is False. + show_zero_horizontal : bool, optional + If True a horizontal line is drawn in the plot at zero. The default is True. + + Returns + ------- + df : pandas.DataFrame() + The dataframe containing the aggregated values. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + """ + obsdf = self.df + obsdf = obsdf[obstype].reset_index() + + # extract refernce from observations + refdf = obsdf[obsdf["name"] == refstation] + obsdf = obsdf[obsdf["name"] != refstation] + + assert ( + not refdf.empty + ), f"Error: No reference observation found (after filtering) for {refstation}" + assert not obsdf.empty, "Error: No observation found (after filtering)" + + # Syncronize observations with the reference observations + refdf = refdf.rename( + columns={obstype: "ref_" + obstype, "datetime": "ref_datetime"} + ) + mergedf = pd.merge_asof( + left=obsdf.sort_values("datetime"), + right=refdf[["ref_datetime", "ref_" + obstype]].sort_values("ref_datetime"), + right_on="ref_datetime", + left_on="datetime", + direction="nearest", + tolerance=pd.Timedelta(tollerance), + ) + + # Get differnces + mergedf["temp"] = mergedf["temp"] - mergedf["ref_temp"] + + # Subset to relavent columns + mergedf = mergedf.reset_index() + mergedf = mergedf[["name", "datetime", obstype]] + mergedf = mergedf.set_index(["name", "datetime"]) + + # title + desc_dict = self.data_template[obstype].to_dict() + if "description" not in desc_dict: + desc_dict["description"] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype + + if title is None: + if startdt is None: + if enddt is None: + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference," + else: + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference, until {enddt}" + else: + if enddt is None: + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference, from {startdt}" + else: + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference, for period {startdt} - {enddt}" + + else: + title = str(title) + + # ylabel + if y_label is None: + if "units" not in desc_dict: + y_label = f'{desc_dict["description"]} (units unknown)' + else: + y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' + else: + y_label = str(y_label) + + stats = self.get_aggregated_cycle_statistics( + obstype=obstype, + stations=stations, + aggregation=[colorby], + aggregation_method="mean", + horizontal_axis="hour", + startdt=startdt, + enddt=enddt, + plot=plot, + title=title, + y_label=y_label, + legend=legend, + errorbands=errorbands, + verbose=_return_all_stats, + _obsdf=mergedf, + _show_zero_line=show_zero_horizontal, + ) + return stats
+ + +
+[docs] + def get_aggregated_cycle_statistics( + self, + obstype="temp", + aggregation=["lcz", "datetime"], + aggregation_method="mean", + horizontal_axis="hour", + stations=None, + startdt=None, + enddt=None, + plot=True, + title=None, + y_label=None, + legend=True, + errorbands=False, + verbose=False, + _obsdf=None, + _show_zero_line=False, + ): + """Create an average cycle for an aggregated categorie. + + A commen example is to aggregate to the LCZ's, so to get the diurnal + cycle per LCZ rather than per station. + + (In the plot, each aggregated category different from datetime, is represed by a line.) + + Parameters + ---------- + obstype : str, optional + Element of the metobs_toolkit.observation_types The default is 'temp'. + aggregation : list, optional + List of variables to aggregate to. These variables should either a + categorical observation type, a categorical column in the metadf or + a time aggregation. All possible time aggreagetions are: ['minute', + 'hour', 'month', 'year', 'day_of_year', + 'week_of_year', 'season']. The default is ['lcz', 'datetime']. + aggregation_method : str, optional + Which (numpy) function is used to aggregate the observations. The default is 'mean'. + horizontal_axis : str, optional + Which aggregated value will be represented on the horizontal axis + of the plot. The default is 'hour'. + stations : list, optional + List of station names to use. If None, all present stations will be used. The default is None. + startdt : datetime.datetime, optional + The start datetime of the observations to use. If None, all timestamps will be used. The default is None. + enddt : datetime.datetime, optional + The end datetime of the observations to use. If None, all timestamps will be used. The default is None. + plot : bool, optional + If True, a diurnal plot is made. The default is True. + title : string, optional + Title of the figure, if None a default title is generated. The default is None. + y_label : string, optional + y-axes label of the figure, if None a default label is generated. The default is None. + legend : bool, optional + I True, a legend is added to the plot. The default is True. + errorbands : bool, optional + If True, the std is representd in the plot by colored bands. The default is False. + verbose : True, optional + If True, an additional dataframe with aggregation information is returned . The default is False. + + Returns + ------- + df : pandas.DataFrame() + The dataframe containing the aggregated values. + + Note + ------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + """ + if _obsdf is None: + obsdf = self.df[[obstype]] + else: + obsdf = _obsdf + + assert not obsdf.empty, f"Error: No observations in the analysis.df: {self.df}" + # Filter stations + if stations is not None: + if isinstance(stations, str): + stations = [stations] + + obsdf = subset_stations(obsdf, stations) + assert ( + not obsdf.empty + ), f"Error: No more observations after subsetting to {stations}" + + # Filter datetimes + obsdf = datetime_subsetting(df=obsdf, starttime=startdt, endtime=enddt) + assert ( + not obsdf.empty + ), f"Error: No more observations after subsetting to {startdt} and {enddt}" + + startdt = obsdf.index.get_level_values("datetime").min() + enddt = obsdf.index.get_level_values("datetime").max() + + # add hour to aggregation (will be the x-axis) + if horizontal_axis not in aggregation: + aggregation.insert(0, horizontal_axis) + + # add other methods for errorbands and stats + methods = ["mean", "std", "median"] + methods.append(aggregation_method) + methods = list(set(methods)) + + # compute the aggregation statistics + aggdf = self.aggregate_df(df=obsdf, agg=aggregation, method=methods) + + # since only one observation type is in the stats, drop the column + # level with the obstye, this is not relevant + aggdf = aggdf.droplevel(0, axis="columns") + + # format dataframe for plotting + # Categories to string format + aggdf = aggdf.reset_index() + for idx_col in aggdf: + if idx_col == horizontal_axis: + continue # if numeric, let it be numeric! + aggdf[idx_col] = aggdf[idx_col].astype(str) + aggdf = aggdf.set_index(aggregation) + + # sorting cateigories (months and seisons) + + seasons = ["winter", "spring", "summer", "autumn"] + months = [ + "January", + "February", + "March", + "April", + "May", + "June", + "July", + "August", + "September", + "October", + "November", + "December", + ] + + season_order_dict = {} + months_order_dict = {} + for i, item in enumerate(seasons): + season_order_dict[item] = i + for i, item in enumerate(months): + months_order_dict[item] = i + + # Sort columns + aggdf = aggdf.reset_index() + sort_list = aggregation.copy() + if "season" in aggdf.columns: + aggdf["season_num"] = aggdf["season"].map(season_order_dict) + sort_list = ["season_num" if x == "season" else x for x in sort_list] + if "month" in aggdf.columns: + aggdf["month_num"] = aggdf["month"].map(months_order_dict) + sort_list = ["month_num" if x == "month" else x for x in sort_list] + # sort dataframe + aggdf = aggdf.sort_values(sort_list, axis=0) + # drop dummy num coluns (if they are present) + aggdf = aggdf.drop(columns=["season_num", "month_num"], errors="ignore") + # reset the index + aggdf = aggdf.set_index(aggregation) + + # unstack aggregation + aggregation.remove(horizontal_axis) # let horizontal axes be the index + all_stats = aggdf.unstack(aggregation) # return on verbose + + # Sort index if categorical + if all_stats.index.name == "season": + all_stats = all_stats.reindex(seasons) + if all_stats.index.name == "month": + all_stats = all_stats.reindex(months) + + # split in values and std + values_df = all_stats[aggregation_method] + std_df = all_stats["std"] + + # make shure all data is numeric + values_df = values_df.astype(float) + std_df = std_df.astype(float) + + # squize all column levels to one category for plotting + if len(aggregation) > 1: # more than one level for the columns + values_df.columns = [ + " ,".join(col).strip() for col in values_df.columns.values + ] + std_df.columns = [" ,".join(col).strip() for col in std_df.columns.values] + + if plot: + # description of the obstype + desc_dict = self.data_template[obstype].to_dict() + if "description" not in desc_dict: + desc_dict["description"] = obstype + + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype + + description = desc_dict["description"] + + # generate title + if title is None: + startdtstr = datetime.strftime( + startdt, format=self.settings.app["print_fmt_datetime"] + ) + enddtstr = datetime.strftime( + enddt, format=self.settings.app["print_fmt_datetime"] + ) + title = f"{aggregation_method} - {horizontal_axis } {obstype} cycle for period {startdtstr} - {enddtstr} grouped by {aggregation}" + + # ylabel + if y_label is None: + if "units" not in desc_dict: + y_label = f'{desc_dict["description"]} (units unknown)' + else: + y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' + else: + y_label = str(y_label) + + # generate errorbands df + if errorbands: + stddf = std_df + else: + stddf = None + + # Make plot + ax = cycle_plot( + cycledf=values_df, + errorbandsdf=stddf, + title=title, + plot_settings=self.settings.app["plot_settings"]["diurnal"], + aggregation=aggregation, + data_template=self.data_template, + obstype=obstype, + y_label=y_label, + legend=legend, + show_zero_horizontal=_show_zero_line, + ) + + ax.set_ylabel(y_label) + if horizontal_axis == "hour": + # extract timezone + tzstring = str(self.df.index.get_level_values("datetime").tz) + + ax.xaxis.set_major_formatter("{x:.0f} h") + ax.set_xlabel(f"Hours (timezone: {tzstring})") + + if verbose: + if plot: + return values_df, all_stats, ax + return values_df, all_stats + + return values_df
+ + + # ============================================================================= + # Correlations analysis + # ============================================================================= + +
+[docs] + def get_lc_correlation_matrices(self, obstype=["temp"], groupby_labels=["hour"]): + """Compute pearson correlation coeficients. + + A method to compute the Pearson correlation between an obervation type + and present landcover fractions in the metadf. + + The correlations are computed per group as defined by unique combinations + of the groupby_labels. + + A dictionary is returnd where each key represents a unique combination of + the groupby_labels. The value is a dictionary with the following keys + and values: + + * cor matrix: the Pearson correlation matrix + * significance matrix: the significance (p-)values of the correlations. + * combined matrix: A human readable combination of the correlations and their p values. Indicate by \*, \*\* or \*\*\* representing p-values < 0.05, 0.01 and 0.001 respectively. + + This dictionary is also stored as a lc_cor_dict attribute. + + Parameters + ---------- + obstype : str, or list optional + The observation type(s) to compute the correlations on. The default is ['temp']. + groupby_labels : list, optional + List of variables to form one group, resulting in one correlation. + These variables should either a categorical observation type, a categorical column in the metadf or + a time aggregation. All possible time aggreagetions are: ['minute', + 'hour', 'month', 'year', 'day_of_year', + 'week_of_year', 'season']. The default is ['hour']. + + Returns + ------- + cor_dict : dict + A nested dictionary with unique combinations of groupby values. + + """ + if not isinstance(obstype, list): + obstype = [obstype] + + # get data + df = self.df[obstype].reset_index() + df = _make_time_derivatives(df, groupby_labels) + + for group_lab in groupby_labels: + if group_lab in self.metadf.columns: + df = df.merge( + self.metadf[[group_lab]], + how="left", + left_on="name", + right_index=True, + ) + + for group_lab in groupby_labels: + assert ( + group_lab in df.columns + ), f'"{group_lab}" is found in the observations of possible groupby_labels.' + + # subset columns + relev_columns = [label for label in groupby_labels] # to avoid deep copy import + relev_columns.append("name") + relev_columns.extend(obstype) + df = df[relev_columns] + + # find landcover columnnames in the metadf + lc_columns = [ + col for col in self.metadf.columns if (("_" in col) & (col.endswith("m"))) + ] + + # get landcover data + lc_df = self.metadf[lc_columns] + + if lc_df.empty: + logger.warning( + "No landcover columns found in the metadf. Landcover correlations cannot be computed." + ) + return None + + # merge together + df = df.merge(lc_df, how="left", left_on="name", right_index=True) + + # remove name column if it is not explicit in the groupby labels + if "name" not in groupby_labels: + df = df.drop(columns=["name"]) + + # create return + cor_dict = {} + + # Iterate over all groups + + # avoid futur pandas warning for groupby labels of len==1 + if len(groupby_labels) == 1: + groups = df.groupby(groupby_labels[0]) + else: + groups = df.groupby(groupby_labels) + + for group_lab, groupdf in groups: + # No correlations can be computed when no variance is found + if groupdf.shape[0] <= 1: + logger.warning( + f"No variance found in correlationd group {group_lab}. Correlation thus not be computed for this group: {groupdf}." + ) + continue + # drop groupby labels + groupdf = groupdf.drop(columns=groupby_labels, errors="ignore") + + rho = groupdf.corr(method="pearson") + pval = groupdf.corr(method=lambda x, y: pearsonr(x, y)[1]) - np.eye( + *rho.shape + ) + # represent p values by stars + p_stars = pval.applymap( + lambda x: "".join(["*" for t in [0.05, 0.01, 0.001] if x <= t]) + ) + + # combined human readable df + comb_df = pd.DataFrame(index=rho.index) + for col in rho.columns: + comb_df[col] = ( + rho[col].apply(lambda x: f"{x:.02f}") + " " + p_stars[col] + ) + + cor_dict[group_lab] = { + "cor matrix": rho, + "significance matrix": pval, + "combined matrix": comb_df, + } + + # Update attribute + self.lc_cor_dict = cor_dict + self._lc_cor_obstype = obstype + self._lc_groupby_labels = groupby_labels + + return cor_dict
+ + +
+[docs] + def plot_correlation_heatmap( + self, groupby_value=None, title=None, _return_ax=False + ): + """Make a heatmap plot af a correaltion matrix. + + To specify which correlation matrix to plot, specify the group value + using the groupby_value argument. + + All possible groupby_values are the keys of the lc_cor_dict attribute. + + Parameters + ---------- + groupby_value : str, num, None, optional + A groupby value to indicate which correlation matrix to visualise. + If None is given, the first groupby value that is present is + chosen.The default is None. + title : str, optional + Title of the figure. If None, a default title is constructed.The + default is None. + + Returns + ------- + None. + + Note + ------ + To list all possible groupby_values, one can use + ` print(Analysis_instance.lc_cor_dict.keys())` + + """ + # check if there are correlation matrices + assert bool( + self.lc_cor_dict + ), "No correlation matrices found, use the metod get_lc_correlation_matrices first." + + if groupby_value is None: + groupby_value = list(self.lc_cor_dict.keys())[0] + logger.warning( + "No groupby_value is given, so the first groupby value (={groupby_value}) will be used!" + ) + logger.info( + f"The correlations are computed over {self._lc_groupby_labels} with the following unique values: {list(self.lc_cor_dict.keys())}" + ) + + # check if groupby value exists + assert ( + groupby_value in self.lc_cor_dict.keys() + ), f"{groupby_value} not found as a groupby value. These are all the possible values: {self.lc_cor_dict.keys()}" + + if title is None: + title = f"Correlation heatmap for group: {self._lc_groupby_labels} = {groupby_value}" + + ax = heatmap_plot( + cor_dict=self.lc_cor_dict[groupby_value], + title=title, + heatmap_settings=self.settings.app["plot_settings"]["correlation_heatmap"], + ) + + if _return_ax: + return ax
+ + +
+[docs] + def plot_correlation_variation(self, title=None): + """Create correlation scatter plot. + + Make a scatter plot of the correlations to visualise differences between + multiple group values. + + Group values are represented by the horizontal axes, and correlations + on the vertical axe. + + All correlations, that are not constant, are plotted as scatters with + unique colors. + + The scatter marker indicates the p-value of the correlations. + + Parameters + ---------- + title : str, optional + Title of the figure. If None, a default title is constructed. The + default is None. + + Returns + ------- + None. + + Note + ------ + If to many possible group values exist, one can use the apply_filter() + method to reduce the group values. + """ + # check if there are correlation matrices + assert bool( + self.lc_cor_dict + ), "No correlation matrices found, use the metod get_lc_correlation_matrices first." + + # check if correlation evolution information is available + if len(self.lc_cor_dict.keys()) <= 1: + logger.warning( + f"Only one correlation group is found: {self.lc_cor_dict.keys()}" + ) + logger.warning("The variance plot can not be made.") + return + + if title is None: + title = f"Correlation scatter for group: {self._lc_groupby_labels}" + + ax = correlation_scatter( + full_cor_dict=self.lc_cor_dict, + groupby_labels=self._lc_groupby_labels, + obstypes=self._lc_cor_obstype, + title=title, + cor_scatter_settings=self.settings.app["plot_settings"][ + "correlation_scatter" + ], + ) + return ax
+
+ + + +def _make_time_derivatives(df, required, get_all=False): + """Construct time derivated columns if required. + + datetime must be a column. + """ + if ("minute" in required) | (get_all): + df["minute"] = df["datetime"].dt.minute + if ("hour" in required) | (get_all): + df["hour"] = df["datetime"].dt.hour + if ("month" in required) | (get_all): + df["month"] = df["datetime"].dt.month_name() + if ("year" in required) | (get_all): + df["year"] = df["datetime"].dt.year + if ("day_of_year" in required) | (get_all): + df["day_of_year"] = df["datetime"].dt.day_of_year + if ("week_of_year" in required) | (get_all): + df["week_of_year"] = df["datetime"].dt.isocalendar()["week"] + if ("season" in required) | (get_all): + df["season"] = get_seasons(df["datetime"]) + + return df + + +
+[docs] +def get_seasons( + datetimeseries, + start_day_spring="01/03", + start_day_summer="01/06", + start_day_autumn="01/09", + start_day_winter="01/12", +): + """Convert a datetimeseries to a season label (i.g. categorical). + + Parameters + ---------- + datetimeseries : datetime.datetime + The timeseries that you want to split up in seasons. + start_day_spring : str , optional + Start date for spring, default is '01/03' and if changed the input + should have the same format as the default value. + start_day_summer : str , optional + Start date for summer, default is '01/06' and if changed the input + should have the same format as the default value. + start_day_autumn : str , optional + Start date for autumn, default is '01/09' and if changed the input + should have the same format as the default value. + start_day_winter : str , optional + Start date for winter, default is '01/12' and if changed the input + should have the same format as the default value. + + Returns + ------- + output : dataframe + A obtained dataframe that has where a label for the seasons has been added. + """ + spring_startday = datetime.strptime(start_day_spring, "%d/%m") + summer_startday = datetime.strptime(start_day_summer, "%d/%m") + autumn_startday = datetime.strptime(start_day_autumn, "%d/%m") + winter_startday = datetime.strptime(start_day_winter, "%d/%m") + + seasons = pd.Series( + index=["spring", "summer", "autumn", "winter"], + data=[spring_startday, summer_startday, autumn_startday, winter_startday], + name="startdt", + ).to_frame() + seasons["day_of_year"] = seasons["startdt"].dt.day_of_year - 1 + + bins = [0] + bins.extend(seasons["day_of_year"].to_list()) + bins.append(366) + + labels = ["winter", "spring", "summer", "autumn", "winter"] + + return pd.cut( + x=datetimeseries.dt.day_of_year, + bins=bins, + labels=labels, + ordered=False, + )
+ + + +
+[docs] +def filter_data(df, metadf, quarry_str): + """Filter a dataframe by a user definde string expression. + + This can be used to filter the observation to specific meteorological + conditions (i.e. low windspeeds, high humidity, cold temperatures, ...) + + The filter expression contains only columns present in the df and/or the + metadf. + + The filtered df and metadf are returned + + Parameters + ---------- + df : pandas.DataFrame + The dataframe containing all the observations to be filterd. + metadf : pandas.DataFrame + The dataframe containig all the metadata per station. + quarry_str : str + A filter expression using columnnames present in either df or metadf. + The following timestamp derivatives can be used as well: [minute, hour, + month, year, day_of_year, week_of_year, season]. The quarry_str may + contain number and expressions like <, >, ==, >=, \*, +, .... Multiple filters + can be combine to one expression by using & (AND) and | (OR). + + Returns + ------- + filter_df : pandas.DataFrame + The filtered df. + filter_metadf : pandas.DataFrame + The filtered metadf. + + """ + # save index order and names for reconstruction + df_init_idx = list(df.index.names) + metadf_init_idx = list(metadf.index.names) + + # easyer for sperationg them + df = df.reset_index() + metadf = metadf.reset_index() + + # save columns orders + df_init_cols = df.columns + metadf_init_cols = metadf.columns + + # create time derivative columns + df = _make_time_derivatives(df, required=" ", get_all=True) + + # merge together on name + mergedf = df.merge(metadf, how="left", on="name") + + # apply filter + filtered = mergedf.query(expr=quarry_str) + + # split to df and metadf + filter_df = filtered[df_init_cols] + filter_metadf = filtered[metadf_init_cols] + + # set indexes + filter_df = filter_df.set_index(df_init_idx) + filter_metadf = filter_metadf.set_index(metadf_init_idx) + + return filter_df, filter_metadf
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/data_import.html b/docs/_build/_modules/metobs_toolkit/data_import.html new file mode 100644 index 00000000..239703e7 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/data_import.html @@ -0,0 +1,663 @@ + + + + + + metobs_toolkit.data_import — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.data_import

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Sep 22 16:24:06 2022
+
+@author: thoverga
+"""
+import sys
+import warnings
+import logging
+import pandas as pd
+
+# import mysql.connector
+# from mysql.connector import errorcode
+from pytz import all_timezones
+
+logger = logging.getLogger(__name__)
+
+
+# =============================================================================
+# Helpers
+# =============================================================================
+
+
+def _remove_keys_from_dict(dictionary, keys):
+    for key in keys:
+        dictionary.pop(key, None)
+    return dictionary
+
+
+
+[docs] +def template_to_package_space(specific_template): + """Invert template dictionary.""" + returndict = { + val["varname"]: {"orig_name": key} for key, val in specific_template.items() + } + for key, item in returndict.items(): + orig_dict = dict(specific_template[item["orig_name"]]) + orig_dict.pop("varname") + returndict[key].update(orig_dict) + return returndict
+ + + +
+[docs] +def find_compatible_templatefor(df_columns, template_list): + """Test if template is compatible with dataaframe columns.""" + for templ in template_list: + found = all(keys in list(df_columns) for keys in templ.keys()) + if found: + logger.info("Compatible template found. ") + return templ + sys.exit("No compatible teplate found!")
+ + + +
+[docs] +def compress_dict(nested_dict, valuesname): + """Unnest dictionary info for valuename. + + This function unnests a nested dictionary for a specific valuename that is a key in the nested dict. + + Parameters + ---------- + nested_dict : dict + Nested dictionary + + valuesname : str + Nested dict Key-name of nested dict. + + Returns + ------- + returndict : DICT + A dictionarry where the keys are kept that have the valuesname as a nesteddict key, + and values are the values of the values of the valuesname. + {[key-nested_dict-if-exists]: nested_dict[key-nested_dict-if-exists][valuesname]} + """ + returndict = {} + for key, item in nested_dict.items(): + if valuesname in item: + returndict[key] = item[valuesname] + return returndict
+ + + +def _read_csv_to_df(filepath, kwargsdict): + assert not isinstance(filepath, type(None)), f"No filepath is specified: {filepath}" + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + if bool(kwargsdict): + df = pd.read_csv(filepath_or_buffer=filepath, **kwargsdict) + else: + common_seperators = [None, ";", ",", " ", "."] + for sep in common_seperators: + df = pd.read_csv(filepath, sep=sep) + assert not df.empty, f"{filepath} is empty!" + + if len(df.columns) > 1: + break + + assert ( + len(df.columns) > 1 + ), f"Only one column detected from import using these seperators: {common_seperators}. See if csv template is correct." + + return df + + +# ============================================================================= +# Template +# ============================================================================= + + +
+[docs] +def check_template_compatibility(template, df_columns, filetype): + """Log template compatiblity with dataframe columns. + + Parameters + ---------- + template : dict + Template dictionary. + df_columns : pd.index + Dataframe columns to map. + filetype : str + 'data', 'metadata' or other description of the dataframe. + + Returns + ------- + None. + + """ + # ignore datetime because this is already mapped + present_cols = [col for col in df_columns if col != "datetime"] + assumed_cols = [key for key in template.keys() if key != "datetime"] + + # in mapper but not in df + unmapped_assumed = [ + templ_var for templ_var in assumed_cols if templ_var not in present_cols + ] + + if len(unmapped_assumed) > 0: + logger.info( + f"The following columns are not present in the {filetype},\ + and cannot be mapped: {unmapped_assumed}" + ) + + # in df but not in mapper + unmapped_appearing = [col for col in present_cols if col not in assumed_cols] + if len(unmapped_appearing) > 0: + logger.info( + f"The following columns in the {filetype} cannot be mapped with the template: {unmapped_appearing}." + ) + + # check if at least one column is mapped + if len(list(set(present_cols) - set(assumed_cols))) == len(present_cols): + sys.exit( + f"Fatal: The given template: {assumed_cols} does not match with any of the {filetype} columns: {present_cols}." + )
+ + + +
+[docs] +def extract_options_from_template(templ, known_obstypes): + """Filter out options settings from the template dataframe. + + Parameters + ---------- + templ : pandas.DataFrame() + Template in a dataframe structure + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. + + Returns + ------- + new_templ : pandas.DataFrame() + The template dataframe with optioncolumns removed. + opt_kwargs : dict + Options and settings present in the template dataframe. + + """ + opt_kwargs = {} + if "options" in templ.columns: + if "options_values" in templ.columns: + opt = templ[["options", "options_values"]] + # drop nan columns + opt = opt[opt["options"].notna()] + # convert to dict + opt = opt.set_index("options")["options_values"].to_dict() + + # check options if valid + possible_options = { + "data_structure": ["long", "wide", "single_station"], + "stationname": "_any_", + "obstype": known_obstypes, + "obstype_unit": "_any_", + "obstype_description": "_any_", + "timezone": all_timezones, + } + for key, val in opt.items(): + key, val = str(key), str(val) + if key not in possible_options: + sys.exit( + f"{key} is not a known option in the template. These are the possible options: {list(possible_options.keys())}" + ) + + if possible_options[key] == "_any_": + pass # value can be any string + + else: + if val not in possible_options[key]: + sys.exit( + f"{val} is not a possible value for {key}. These values are possible for {key}: {possible_options[key]}" + ) + + # overload to kwargs: + + if key == "data_structure": + if val == "long": + opt_kwargs["long_format"] = True + elif val == "wide": + opt_kwargs["long_format"] = False + else: + # single station + opt_kwargs["long_format"] = True + if key == "stationname": + if not opt["data_structure"] == "single_station": + logger.warning( + f'{val} as {key} in the template options will be ignored because the datastructure is not "single_station" (but {opt["data_structure"]})' + ) + else: + opt_kwargs["single"] = val + if key == "obstype": + opt_kwargs["obstype"] = val + if key == "obstype_unit": + opt_kwargs["obstype_unit"] = val + if key == "obstype_description": + opt_kwargs["obstype_description"] = val + if key == "timezone": + opt_kwargs["timezone"] = val + + else: + sys.exit( + '"options" column found in the template, but no "options_values" found!' + ) + + # remove the options from the template + new_templ = templ.drop(columns=["options", "options_values"], errors="ignore") + return new_templ, opt_kwargs
+ + + +
+[docs] +def read_csv_template(file, known_obstypes, data_long_format=True): + """Import a template from a csv file. + + Format options will be stored in a seperate dictionary. (Because these + do not relate to any of the data columns.) + + Parameters + ---------- + file : str + Path to the csv template file. + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. + data_long_format : bool, optional + If True, this format structure has priority over the format structure + in the template file. The default is True. + + Returns + ------- + template : dict + The template related to the data/metadata columns. + opt_kwargs : dict + Options and settings present in the template. + + """ + templ = _read_csv_to_df(filepath=file, kwargsdict={}) + + # Extract structure options from template + templ, opt_kwargs = extract_options_from_template(templ, known_obstypes) + + # Drop emty rows + templ = templ.dropna(axis="index", how="all") + + if "long_format" in opt_kwargs.keys(): + data_long_format = opt_kwargs["long_format"] + + if data_long_format: + # Drop variables that are not present in templ + templ = templ[templ["template column name"].notna()] + + # templates have nested dict structure where the keys are the column names in the csv file, and the + # values contain the mapping information to the toolkit classes and names. + + # create dictionary from templframe + templ = templ.set_index("template column name") + + # create a dict from the dataframe, remove Nan value row wise + template = {} + for idx, row in templ.iterrows(): + template[idx] = row[~row.isnull()].to_dict() + + return template, opt_kwargs
+ + + +# ============================================================================= +# Metadata +# ============================================================================= + + +
+[docs] +def import_metadata_from_csv(input_file, template, kwargs_metadata_read): + """Import metadata as a dataframe. + + Parameters + ---------- + input_file : str + Path to the metadata (csv) file. + template : dict + Template dictionary. + kwargs_metadata_read : dict + Extra user-specific kwargs to pass to the pd.read_csv() function. + + Returns + ------- + df : pandas.DataFrame() + The metadata in a pandas dataframe with columnnames in the toolkit + standards. + + """ + assert not isinstance(input_file, type(None)), "Specify input file in the settings!" + + df = _read_csv_to_df(input_file, kwargs_metadata_read) + + # validate template + # template = read_csv_template(template_file) + check_template_compatibility(template, df.columns, filetype="metadata") + + # rename columns to toolkit attriute names + column_mapper = {val["orig_name"]: key for key, val in template.items()} + df = df.rename(columns=column_mapper) + + return df
+ + + +# ============================================================================= +# Data +# ============================================================================= + + +
+[docs] +def wide_to_long(df, template, obstype): + """Convert a wide dataframe to a long format. + + Convert a wide dataframe that represents obstype-observations to a long + dataframe (=standard toolkit structure). + + Parameters + ---------- + df : pandas.DataFrame() + Wide dataframe. + template : dict + The dictionary to update the 'name' key on. + obstype : str + A MetObs obstype. + + Returns + ------- + longdf : pandas.DataFrame + Long dataframe. + template : dict + Updateted template dictionary. + + """ + # the df is assumed to have one datetime column, and the others represent + # stations with their obstype values + + stationnames = df.columns.to_list() + stationnames.remove("datetime") + + longdf = pd.melt( + df, + id_vars=["datetime"], + value_vars=stationnames, + var_name="name", + value_name=obstype, + ) + + # # update template + # template[obstype] = template["_wide_dummy"] + # del template["_wide_dummy"] + + # add name to the template + template["name"] = {"varname": "name", "dtype": "object"} + + return longdf, template
+ + + +
+[docs] +def import_data_from_csv( + input_file, + template, + long_format, + obstype, + obstype_units, + obstype_description, + known_obstypes, + kwargs_data_read, +): + """Import data as a dataframe. + + Parameters + ---------- + input_file : str + Path to the data (csv) file. + template : dict + template dictionary. + long_format : bool + If True, a long format is assumed else wide. + obstype : str + If format is wide, this is the observationtype. + obstype_units : str + If format is wide, this is the observation unit. + obstype_description : str + If format is wide, this is the observation description. + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. + kwargs_data_read : dict + Kwargs passed to the pd.read_csv() function. + + Returns + ------- + df : pandas.DataFrame() + A long dataframe containing the observations. + invtemplate : dict + Template in toolkit space. + + """ + # 1. Read data into df + df = _read_csv_to_df(filepath=input_file, kwargsdict=kwargs_data_read) + + # 2. Read template + invtemplate = template_to_package_space(template) + + # 3. Make datetime column (needed for wide to long conversion) + if "datetime" in invtemplate.keys(): + + df = df.rename(columns={invtemplate["datetime"]["orig_name"]: "datetime"}) + df["datetime"] = pd.to_datetime( + df["datetime"], format=invtemplate["datetime"]["format"] + ) + + inv_temp_remove_keys = ["datetime"] + temp_remove_keys = [invtemplate["datetime"]["orig_name"]] + elif ("_date" in invtemplate.keys()) & ("_time" in invtemplate.keys()): + + datetime_fmt = ( + invtemplate["_date"]["format"] + " " + invtemplate["_time"]["format"] + ) + df["datetime"] = pd.to_datetime( + df[invtemplate["_date"]["orig_name"]] + + " " + + df[invtemplate["_time"]["orig_name"]], + format=datetime_fmt, + ) + df = df.drop( + columns=[ + invtemplate["_date"]["orig_name"], + invtemplate["_time"]["orig_name"], + ] + ) + + inv_temp_remove_keys = ["_time", "_date"] + temp_remove_keys = [ + invtemplate["_date"]["orig_name"], + invtemplate["_time"]["orig_name"], + ] + else: + sys.exit( + "Impossible to map the dataset to a datetime column, verify your template please." + ) + + # 3.b Remove the datetime keys from the template + + invtemplate = _remove_keys_from_dict(invtemplate, inv_temp_remove_keys) + template = _remove_keys_from_dict(template, temp_remove_keys) + + # 4. convert wide data to long if needed + if not long_format: + template[obstype] = {} + invtemplate[obstype] = {} + template[obstype]["varname"] = obstype + invtemplate[obstype]["orig_name"] = obstype # use default as orig name + if obstype_units is not None: + template[obstype]["units"] = obstype_units + invtemplate[obstype]["units"] = obstype_units + if obstype_description is not None: + template[obstype]["description"] = obstype_description + invtemplate[obstype]["description"] = obstype_description + + df, template = wide_to_long(df, template, obstype) + + # 5. check compatibility + check_template_compatibility(template, df.columns, filetype="data") + + # 6. map to default name space + df = df.rename(columns=compress_dict(template, "varname")) + + # 7. Keep only columns as defined in the template + cols_to_keep = list(invtemplate.keys()) + cols_to_keep.append("datetime") + cols_to_keep.append("name") + cols_to_keep = list(set(cols_to_keep)) + df = df.loc[:, df.columns.isin(cols_to_keep)] + + # 8. Set index + df = df.reset_index() + df = df.drop(columns=["index"], errors="ignore") + df = df.set_index("datetime") + + # 8. map to numeric dtypes + for col in df.columns: + if col in known_obstypes: + df[col] = pd.to_numeric(df[col], errors="coerce") + if col in ["lon", "lat"]: + df[col] = pd.to_numeric(df[col], errors="coerce") + + # add template to the return + return df, invtemplate
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/dataset.html b/docs/_build/_modules/metobs_toolkit/dataset.html new file mode 100644 index 00000000..b8db8044 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/dataset.html @@ -0,0 +1,3888 @@ + + + + + + metobs_toolkit.dataset — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.dataset

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This module contains the Dataset class and all its methods.
+
+A Dataset holds all observations and is at the center of the
+MetObs-toolkit.
+"""
+
+import os
+import sys
+import copy
+from datetime import timedelta
+import pytz
+import logging
+import pandas as pd
+import numpy as np
+import pickle
+
+from metobs_toolkit.settings import Settings
+from metobs_toolkit.data_import import (
+    import_data_from_csv,
+    import_metadata_from_csv,
+    read_csv_template,
+)
+
+from metobs_toolkit.printing import print_dataset_info
+from metobs_toolkit.landcover_functions import (
+    connect_to_gee,
+    lcz_extractor,
+    height_extractor,
+    lc_fractions_extractor,
+    _validate_metadf,
+)
+
+from metobs_toolkit.plotting_functions import (
+    geospatial_plot,
+    timeseries_plot,
+    qc_stats_pie,
+    folium_plot,
+    add_stations_to_folium_map,
+    make_folium_html_plot,
+)
+
+from metobs_toolkit.qc_checks import (
+    gross_value_check,
+    persistance_check,
+    repetitions_check,
+    duplicate_timestamp_check,
+    step_check,
+    window_variation_check,
+    invalid_input_check,
+    toolkit_buddy_check,
+    titan_buddy_check,
+    titan_sct_resistant_check,
+)
+
+
+from metobs_toolkit.qc_statistics import get_freq_statistics
+from metobs_toolkit.writing_files import write_dataset_to_csv
+
+from metobs_toolkit.missingobs import Missingob_collection
+
+from metobs_toolkit.gap import (
+    Gap,
+    remove_gaps_from_obs,
+    remove_gaps_from_outliers,
+    missing_timestamp_and_gap_check,
+    get_gaps_indx_in_obs_space,
+    get_station_gaps,
+    apply_interpolate_gaps,
+    make_gapfill_df,
+    apply_debias_era5_gapfill,
+    gaps_to_df,
+)
+
+
+from metobs_toolkit.df_helpers import (
+    multiindexdf_datetime_subsetting,
+    fmt_datetime_argument,
+    init_multiindex,
+    init_multiindexdf,
+    init_triple_multiindexdf,
+    metadf_to_gdf,
+    conv_applied_qc_to_df,
+    get_freqency_series,
+    value_labeled_doubleidxdf_to_triple_idxdf,
+    xs_save,
+    concat_save,
+)
+
+from metobs_toolkit.obstypes import tlk_obstypes
+from metobs_toolkit.obstypes import Obstype as Obstype_class
+
+
+from metobs_toolkit.analysis import Analysis
+from metobs_toolkit.modeldata import Modeldata
+
+
+logger = logging.getLogger(__name__)
+
+
+# =============================================================================
+# Dataset class
+# =============================================================================
+
+
+
+[docs] +class Dataset: + """Objects holding observations and methods on observations.""" + + def __init__(self): + """Construct all the necessary attributes for Dataset object.""" + logger.info("Initialise dataset") + + # Dataset with 'good' observations + self.df = pd.DataFrame() + + # Dataset with outlier observations + self.outliersdf = init_triple_multiindexdf() + + self.missing_obs = None # becomes a Missingob_collection after import + self.gaps = None # becomes a list of gaps + + self.gapfilldf = init_multiindexdf() + self.missing_fill_df = init_multiindexdf() + + # Dataset with metadata (static) + self.metadf = pd.DataFrame() + + # dictionary storing present observationtypes + self.obstypes = tlk_obstypes # init with all tlk obstypes + + # dataframe containing all information on the description and mapping + self.data_template = pd.DataFrame() + + self._istype = "Dataset" + self._freqs = pd.Series(dtype=object) + + self._applied_qc = pd.DataFrame(columns=["obstype", "checkname"]) + self._qc_checked_obstypes = [] # list with qc-checked obstypes + + self.settings = copy.deepcopy(Settings()) + + def __str__(self): + """Represent as text.""" + if self.df.empty: + if self._istype == "Dataset": + return "Empty instance of a Dataset." + else: + return "Empty instance of a Station." + add_info = "" + n_stations = self.df.index.get_level_values("name").unique().shape[0] + n_obs_tot = self.df.shape[0] + n_outl = self.outliersdf.shape[0] + startdt = self.df.index.get_level_values("datetime").min() + enddt = self.df.index.get_level_values("datetime").max() + + if (not self.metadf["lat"].isnull().all()) & ( + not self.metadf["lon"].isnull().all() + ): + add_info += " *Coordinates are available for all stations. \n" + + return ( + f"Dataset instance containing: \n \ + *{n_stations} stations \n \ + *{self.df.columns.to_list()} observation types \n \ + *{n_obs_tot} observation records \n \ + *{n_outl} records labeled as outliers \n \ + *{len(self.gaps)} gaps \n \ + *{self.missing_obs.series.shape[0]} missing observations \n \ + *records range: {startdt} --> {enddt} (total duration: {enddt - startdt}) \n \ + *time zone of the records: {self.settings.time_settings['timezone']} \n " + + add_info + ) + + def __repr__(self): + """Info representation.""" + return self.__str__() + +
+[docs] + def __add__(self, other, gapsize=None): + """Addition of two Datasets.""" + # important !!!!! + + # the toolkit makes a new dataframe, and assumes the df from self and other + # to be the input data. + # This means that missing obs, gaps, invalid and duplicated records are + # being looked for in the concatenation of both dataset, using their current + # resolution ! + + new = Dataset() + self_obstypes = self.df.columns.to_list().copy() + # ---- df ---- + + # check if observation of self are also in other + assert all([(obs in other.df.columns) for obs in self_obstypes]) + # subset obstype of other to self + other.df = other.df[self.df.columns.to_list()] + + # remove duplicate rows + common_indexes = self.df.index.intersection(other.df.index) + other.df = other.df.drop(common_indexes) + + # set new df + new.df = concat_save([self.df, other.df]) + new.df = new.df.sort_index() + + # ----- outliers df --------- + + other_outliers = other.outliersdf.reset_index() + other_outliers = other_outliers[other_outliers["obstype"].isin(self_obstypes)] + other_outliers = other_outliers.set_index(["name", "datetime", "obstype"]) + new.outliersdf = concat_save([self.outliersdf, other_outliers]) + new.outliersdf = new.outliersdf.sort_index() + + # ------- Gaps ------------- + # Gaps have to be recaluculated using a frequency assumtion from the + # combination of self.df and other.df, thus NOT the native frequency if + # their is a coarsening allied on either of them. + new.gaps = [] + + # ---------- missing --------- + # Missing observations have to be recaluculated using a frequency assumtion from the + # combination of self.df and other.df, thus NOT the native frequency if + # their is a coarsening allied on either of them. + new.missing_obs = None + + # ---------- metadf ----------- + # Use the metadf from self and add new rows if they are present in other + new.metadf = concat_save([self.metadf, other.metadf]) + new.metadf = new.metadf.drop_duplicates(keep="first") + new.metadf = new.metadf.sort_index() + + # ------- specific attributes ---------- + + # Template (units and descritpions) are taken from self + new.data_template = self.data_template + + # Inherit Settings from self + new.settings = copy.deepcopy(self.settings) + + # Applied qc: + # TODO: is this oke to do? + new._applied_qc = pd.DataFrame(columns=["obstype", "checkname"]) + new._qc_checked_obstypes = [] # list with qc-checked obstypes + + # set init_dataframe to empty + # NOTE: this is not necesarry but users will use this method when they + # have a datafile that is to big. So storing and overloading a copy of + # the very big datafile is invalid for these cases. + new.input_df = pd.DataFrame() + + # ----- Apply IO QC --------- + # Apply only checks that are relevant on records in between self and other + # OR + # that are dependand on the frequency (since the freq of the .df is used, + # which is not the naitive frequency if coarsening is applied on either. ) + + # missing and gap check + if gapsize is None: + gapsize = new.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"] + + # note gapsize is now defined on the frequency of self + new.missing_obs, new.gaps = missing_timestamp_and_gap_check( + df=new.df, + gapsize_n=self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"], + ) + + # duplicate check + new.df, dup_outl_df = duplicate_timestamp_check( + df=new.df, + checks_info=new.settings.qc["qc_checks_info"], + checks_settings=new.settings.qc["qc_check_settings"], + ) + + if not dup_outl_df.empty: + new.update_outliersdf(add_to_outliersdf=dup_outl_df) + + # update the order and which qc is applied on which obstype + checked_obstypes = list(self.obstypes.keys()) + + checknames = ["duplicated_timestamp"] # KEEP order + + new._applied_qc = concat_save( + [ + new._applied_qc, + conv_applied_qc_to_df( + obstypes=checked_obstypes, ordered_checknames=checknames + ), + ], + ignore_index=True, + ) + + return new
+ + +
+[docs] + def show(self, show_all_settings=False, max_disp_n_gaps=5): + """Show detailed information of the Dataset. + + A function to print out a detailed overview information about the Dataset. + + Parameters + ---------- + show_all_settings : bool, optional + If True all the settings are printed out. The default is False. + max_disp_n_gaps: int, optional + The maximum number of gaps to display detailed information of. + Returns + ------- + None. + + """ + logger.info("Show basic info of dataset.") + + print_dataset_info(self, show_all_settings)
+ + +
+[docs] + def get_info(self, show_all_settings=False, max_disp_n_gaps=5): + """Alias of show(). + + A function to print out a detailed overview information about the Dataset. + + Parameters + ---------- + show_all_settings : bool, optional + If True all the settings are printed out. The default is False. + max_disp_n_gaps: int, optional + The maximum number of gaps to display detailed information of. + + Returns + ------- + None. + + """ + self.show(show_all_settings, max_disp_n_gaps)
+ + +
+[docs] + def save_dataset(self, outputfolder=None, filename="saved_dataset.pkl"): + """Save a Dataset instance to a (pickle) file. + + Parameters + ---------- + outputfolder : str or None, optional + The path to the folder to save the file. If None, the outputfolder + from the Settings is used. The default is None. + filename : str, optional + The name of the output file. The default is 'saved_dataset.pkl'. + + Returns + ------- + None. + + """ + # check if outputfolder is known and exists + if outputfolder is None: + outputfolder = self.settings.IO["output_folder"] + assert ( + outputfolder is not None + ), "No outputfolder is given, and no outputfolder is found in the settings." + + assert os.path.isdir(outputfolder), f"{outputfolder} is not a directory!" + + # check file extension in the filename: + if filename[-4:] != ".pkl": + filename += ".pkl" + + full_path = os.path.join(outputfolder, filename) + + # check if file exists + assert not os.path.isfile(full_path), f"{full_path} is already a file!" + + with open(full_path, "wb") as outp: + pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL) + + print(f"Dataset saved in {full_path}") + logger.info(f"Dataset saved in {full_path}")
+ + +
+[docs] + def import_dataset(self, folder_path=None, filename="saved_dataset.pkl"): + """Import a Dataset instance from a (pickle) file. + + Parameters + ---------- + folder_path : str or None, optional + The path to the folder to save the file. If None, the outputfolder + from the Settings is used. The default is None. + filename : str, optional + The name of the output file. The default is 'saved_dataset.pkl'. + + Returns + ------- + metobs_toolkit.Dataset + The Dataset instance. + + """ + # check if folder_path is known and exists + if folder_path is None: + folder_path = self.settings.IO["output_folder"] + assert ( + folder_path is not None + ), "No folder_path is given, and no outputfolder is found in the settings." + + assert os.path.isdir(folder_path), f"{folder_path} is not a directory!" + + full_path = os.path.join(folder_path, filename) + + # check if file exists + assert os.path.isfile(full_path), f"{full_path} does not exist." + + with open(full_path, "rb") as inp: + dataset = pickle.load(inp) + + # convert metadf to a geodataframe (if coordinates are available) + dataset.metadf = metadf_to_gdf(dataset.metadf) + + return dataset
+ + +
+[docs] + def add_new_observationtype(self, Obstype): + """Add a new observation type to the known observation types. + + The observation can only be added if it is not already present in the + knonw observation types. If that is the case that you probably need to + use use the Dataset.add_new_unit() method. + + Parameters + ---------- + Obstype : metobs_toolkit.obstype.Obstype + The new Obstype to add. + Returns + ------- + None. + + """ + # Test if the obstype is of the correct class. + if not isinstance(Obstype, Obstype_class): + sys.exit( + f"{Obstype} is not an instance of metobs_toolkit.obstypes.Obstype." + ) + + # Test if the obsname is already in use + if Obstype.name in self.obstypes.keys(): + logger.warning( + f"{Obstype.name} is already a known observation type: {self.obstypes[Obstype.name]}" + ) + return + + # Update the known obstypes + logger.info(f"Adding {Obstype} to the list of knonw observation types.") + self.obstypes[Obstype.name] = Obstype
+ + +
+[docs] + def add_new_unit(self, obstype, new_unit, conversion_expression=[]): + """Add a new unit to a known observation type. + + Parameters + ---------- + obstype : str + The observation type to add the new unit to. + new_unit : str + The new unit name. + conversion_expression : list or str, optional + The conversion expression to the standard unit of the observation + type. The expression is a (list of) strings with simple algebraic + operations, where x represent the value in the new unit, and the + result is the value in the standard unit. Two examples for + temperature (with a standard unit in Celcius): + + ["x - 273.15"] #if the new_unit is Kelvin + ["x-32.0", "x/1.8"] #if the new unit is Farenheit + + The default is []. + + Returns + ------- + None. + + """ + # test if observation is present + if not obstype in self.obstypes.keys(): + logger.warning(f"{obstype} is not a known obstype! No unit can be added.") + return + + # check if the unit is already present + is_present = self.obstypes[obstype].test_if_unit_is_known(new_unit) + if is_present: + logger.info( + f"{new_unit} is already a known unit of {self.obstypes[obstype]}" + ) + return + + self.obstypes[obstype].add_unit( + unit_name=new_unit, conversion=conversion_expression + )
+ + +
+[docs] + def show_settings(self): + """Show detailed information of the stored Settings. + + A function that prints out all the settings, structured per thematic. + + Returns + ------- + None. + + """ + self.settings.show()
+ + +
+[docs] + def get_station(self, stationname): + """Filter out one station of the Dataset. + + Extract a metobs_toolkit.Station object from the dataset by name. + + Parameters + ---------- + stationname : string + The name of the station. + + Returns + ------- + metobs_toolkit.Station + The station object. + + """ + from metobs_toolkit.station import Station + + logger.info(f"Extract {stationname} from dataset.") + + # important: make shure all station attributes are of the same time as dataset. + # so that all methods can be inherited. + + try: + sta_df = self.df.xs(stationname, level="name", drop_level=False) + sta_metadf = self.metadf.loc[stationname].to_frame().transpose() + sta_metadf.index.name = "name" + except KeyError: + logger.warning(f"{stationname} not found in the dataset.") + return None + + try: + sta_outliers = self.outliersdf.xs( + stationname, level="name", drop_level=False + ) + except KeyError: + sta_outliers = init_triple_multiindexdf() + + sta_gaps = get_station_gaps(self.gaps, stationname) + sta_missingobs = self.missing_obs.get_station_missingobs(stationname) + + try: + sta_gapfill = self.gapfilldf.xs(stationname, level="name", drop_level=False) + except KeyError: + sta_gapfill = init_multiindexdf() + + try: + sta_missingfill = self.missing_fill_df.xs( + stationname, level="name", drop_level=False + ) + except KeyError: + sta_missingfill = init_multiindexdf() + + return Station( + name=stationname, + df=sta_df, + outliersdf=sta_outliers, + gaps=sta_gaps, + missing_obs=sta_missingobs, + gapfilldf=sta_gapfill, + missing_fill_df=sta_missingfill, + metadf=sta_metadf, + obstypes=self.obstypes, + data_template=self.data_template, + settings=self.settings, + _qc_checked_obstypes=self._qc_checked_obstypes, + _applied_qc=self._applied_qc, + )
+ + +
+[docs] + def make_plot( + self, + stationnames=None, + obstype="temp", + colorby="name", + starttime=None, + endtime=None, + title=None, + y_label=None, + legend=True, + show_outliers=True, + show_filled=True, + _ax=None, # needed for GUI, not recommended use + ): + """ + This function creates a timeseries plot for the dataset. The variable observation type + is plotted for all stationnames from a starttime to an endtime. + + All styling attributes are extracted from the Settings. + + Parameters + ---------- + + stationnames : list, optional + A list with stationnames to include in the timeseries. If None is given, all the stations are used, defaults to None. + obstype : string, optional + Fieldname to visualise. This can be an observation or station + attribute. The default is 'temp'. + colorby : 'label' or 'name', optional + Indicate how colors should be assigned to the lines. 'label' will color the lines by their quality control label. 'name' will color by each station, defaults to 'name'. + starttime : datetime.datetime, optional + Specifiy the start datetime for the plot. If None is given it will use the start datetime of the dataset, defaults to None. + endtime : datetime.datetime, optional + Specifiy the end datetime for the plot. If None is given it will use the end datetime of the dataset, defaults to None. + title : string, optional + Title of the figure, if None a default title is generated. The default is None. + y_label : string, optional + y-axes label of the figure, if None a default label is generated. The default is None. + legend : bool, optional + If True, a legend is added to the plot. The default is True. + show_outliers : bool, optional + If true the observations labeld as outliers will be included in + the plot. This is only true when colorby == 'name'. The default + is True. + show_filled : bool, optional + If true the filled values for gaps and missing observations will + be included in the plot. This is only true when colorby == 'name'. + The default is True. + + + Returns + ------- + axis : matplotlib.pyplot.axes + The timeseries axes of the plot is returned. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + """ + + if stationnames is None: + logger.info(f"Make {obstype}-timeseries plot for all stations") + else: + logger.info(f"Make {obstype}-timeseries plot for {stationnames}") + + # combine all dataframes + mergedf = self.combine_all_to_obsspace() + + # subset to obstype + mergedf = xs_save(mergedf, obstype, level="obstype") + + # Subset on stationnames + if stationnames is not None: + mergedf = mergedf[mergedf.index.get_level_values("name").isin(stationnames)] + + # Subset on start and endtime + starttime = fmt_datetime_argument( + starttime, self.settings.time_settings["timezone"] + ) + endtime = fmt_datetime_argument( + endtime, self.settings.time_settings["timezone"] + ) + + mergedf = multiindexdf_datetime_subsetting(mergedf, starttime, endtime) + + # Get plot styling attributes + if title is None: + if stationnames is None: + if self._istype == "Dataset": + title = ( + self.obstypes[obstype].get_orig_name() + " for all stations. " + ) + elif self._istype == "Station": + title = self.obstypes[obstype].get_orig_name() + " of " + self.name + + else: + title = ( + self.obstypes[obstype].get_orig_name() + + " for stations: " + + str(stationnames) + ) + # create y label + if y_label is None: + y_label = self.obstypes[obstype].get_plot_y_label() + # Make plot + ax, _colmap = timeseries_plot( + mergedf=mergedf, + title=title, + ylabel=y_label, + colorby=colorby, + show_legend=legend, + show_outliers=show_outliers, + show_filled=show_filled, + settings=self.settings, + _ax=_ax, + ) + + return ax
+ + +
+[docs] + def make_interactive_plot( + self, + obstype="temp", + save=True, + outputfile=None, + starttime=None, + endtime=None, + vmin=None, + vmax=None, + mpl_cmap_name="viridis", + radius=13, + fill_alpha=0.6, + max_fps=4, + outlier_col="red", + ok_col="black", + gap_col="orange", + fill_col="yellow", + ): + """Make interactive geospatial plot with time evolution. + + This function uses the folium package to make an interactive geospatial + plot to illustrate the time evolution. + + + + Parameters + ---------- + obstype : str or metobs_toolkit.Obstype, optional + The observation type to plot. The default is 'temp'. + save : bool, optional + If true, the figure will be saved as an html-file. The default is True. + outputfile : str, optional + The path of the output html-file. The figure will be saved here, if + save is True. If outputfile is not given, and save is True, than + the figure will be saved in the default outputfolder (if given). + The default is None. + starttime : datetime.datetime, optional + Specifiy the start datetime for the plot. If None is given it will + use the start datetime of the dataset, defaults to None. + endtime : datetime.datetime, optional + Specifiy the end datetime for the plot. If None is given it will + use the end datetime of the dataset, defaults to None. + vmin : numeric, optional + The value corresponding with the minimum color. If None, the + minimum of the presented observations is used. The default is None. + vmax : numeric, optional + The value corresponding with the maximum color. If None, the + maximum of the presented observations is used. The default is None. + mpl_cmap_name : str, optional + The name of the matplotlib colormap to use. The default is 'viridis'. + radius : int, optional + The radius (in pixels) of the scatters. The default is 13. + fill_alpha : float ([0;1]), optional + The alpha of the fill color for the scatters. The default is 0.6. + max_fps : int (>0), optional + The maximum allowd frames per second for the time evolution. The + default is 4. + outlier_col : str, optional + The edge color of the scatters to identify an outliers. The default is 'red'. + ok_col : str, optional + The edge color of the scatters to identify an ok observation. The default is 'black'. + gap_col : str, optional + The edge color of the scatters to identify an missing/gap + observation. The default is 'orange'. + fill_col : str, optional + The edge color of the scatters to identify a fillded observation. + The default is 'yellow'. + + Returns + ------- + m : folium.folium.map + The interactive folium map. + + Note + ------- + The figure will only appear when this is runned in notebooks. If you do + not run this in a notebook, make shure to save the html file, and open it + with a browser. + + """ + # Check if obstype is known + if isinstance(obstype, str): + if obstype not in self.obstypes.keys(): + logger.error( + f"{obstype} is not found in the knonw observation types: {list(self.obstypes.keys())}" + ) + return None + else: + obstype = self.obstypes[obstype] + + if save: + if outputfile is None: + if self.settings.IO["output_folder"] is None: + logger.error( + "No outputfile is given, and there is no default outputfolder specified." + ) + return None + else: + outputfile = os.path.join( + self.output_folder, "interactive_figure.html" + ) + else: + # Check if outputfile has .html extension + if not outputfile.endswith(".html"): + outputfile = outputfile + ".html" + logger.warning( + f"The .hmtl extension is added to the outputfile: {outputfile}" + ) + + # Check if the obstype is present in the data + if obstype.name not in self.df.columns: + logger.error(f"{obstype.name} is not found in your the Dataset.") + return None + + # Check if geospatial data is available + if self.metadf["lat"].isnull().any(): + _sta = self.metadf[self.metadf["lat"].isnull()]["lat"] + logger.error(f"Stations without coordinates detected: {_sta}") + return None + if self.metadf["lon"].isnull().any(): + _sta = self.metadf[self.metadf["lon"].isnull()]["lon"] + logger.error(f"Stations without coordinates detected: {_sta}") + return None + + # Construct dataframe + combdf = self.combine_all_to_obsspace() + combdf = xs_save(combdf, obstype.name, level="obstype") + # Merge geospatial info + combgdf = combdf.merge( + self.metadf, how="left", left_on="name", right_index=True + ) + + # Subset on start and endtime + starttime = fmt_datetime_argument( + starttime, self.settings.time_settings["timezone"] + ) + endtime = fmt_datetime_argument( + endtime, self.settings.time_settings["timezone"] + ) + combgdf = multiindexdf_datetime_subsetting(combgdf, starttime, endtime) + combgdf = combgdf.reset_index() + + # to gdf + combgdf = metadf_to_gdf(combgdf, crs=4326) + + # Make label color mapper + label_col_map = {} + # Ok label + label_col_map["ok"] = ok_col + # outlier labels + for val in self.settings.qc["qc_checks_info"].values(): + label_col_map[val["outlier_flag"]] = outlier_col + + # missing labels (gaps and missing values) + for val in self.settings.gap["gaps_info"].values(): + label_col_map[val["outlier_flag"]] = gap_col + + # fill labels + for val in self.settings.missing_obs["missing_obs_fill_info"]["label"].values(): + label_col_map[val] = fill_col + for val in self.settings.gap["gaps_fill_info"]["label"].values(): + label_col_map[val] = fill_col + + # make time estimation + est_seconds = combgdf.shape[0] / 2411.5 # normal laptop + logger.info( + f'The figure will take approximatly (laptop) {"{:.1f}".format(est_seconds)} seconds to make.' + ) + + # Making the figure + m = make_folium_html_plot( + gdf=combgdf, + variable_column="value", + var_display_name=obstype.name, + var_unit=obstype.get_standard_unit(), + label_column="label", + label_col_map=label_col_map, + vmin=vmin, + vmax=vmax, + radius=radius, + fill_alpha=fill_alpha, + mpl_cmap_name=mpl_cmap_name, + max_fps=int(max_fps), + ) + if save: + logger.info(f"Saving the htlm figure at {outputfile}") + m.save(outputfile) + return m
+ + +
+[docs] + def make_geo_plot( + self, + variable="temp", + title=None, + timeinstance=None, + legend=True, + vmin=None, + vmax=None, + legend_title=None, + boundbox=[], + ): + """Make geospatial plot. + + This functions creates a geospatial plot for a field + (observations or attributes) of all stations. + + If the field is timedepending, than the timeinstance is used to plot + the field status at that datetime. + + If the field is categorical than the leged will have categorical + values, else a colorbar is used. + + All styling attributes are extracted from the Settings. + + Parameters + ---------- + variable : string, optional + Fieldname to visualise. This can be an observation type or station + or 'lcz'. The default is 'temp'. + title : string, optional + Title of the figure, if None a default title is generated. The default is None. + timeinstance : datetime.datetime, optional + Datetime moment of the geospatial plot. If None, the first occuring (not Nan) record is used. The default is None. + legend : bool, optional + I True, a legend is added to the plot. The default is True. + vmin : numeric, optional + The value corresponding with the minimum color. If None, the minimum of the presented observations is used. The default is None. + vmax : numeric, optional + The value corresponding with the maximum color. If None, the maximum of the presented observations is used. The default is None. + legend_title : string, optional + Title of the legend, if None a default title is generated. The default is None. + boundbox : [lon-west, lat-south, lon-east, lat-north], optional + The boundbox to indicate the domain to plot. The elemenst are numeric. + If the list is empty, a boundbox is created automatically. The default + is []. + Returns + ------- + axis : matplotlib.pyplot.geoaxes + The geoaxes of the plot is returned. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + """ + # Load default plot settings + # default_settings=Settings.plot_settings['spatial_geo'] + + # get first (Not Nan) timeinstance of the dataset if not given + timeinstance = fmt_datetime_argument( + timeinstance, self.settings.time_settings["timezone"] + ) + if timeinstance is None: + timeinstance = self.df.dropna(subset=["temp"]).index[0][1] + + logger.info(f"Make {variable}-geo plot at {timeinstance}") + + # check coordinates if available + if self.metadf["lat"].isnull().any(): + _sta = self.metadf[self.metadf["lat"].isnull()]["lat"] + logger.error(f"Stations without coordinates detected: {_sta}") + return None + if self.metadf["lon"].isnull().any(): + _sta = self.metadf[self.metadf["lon"].isnull()]["lon"] + logger.error(f"Stations without coordinates detected: {_sta}") + return None + + if bool(boundbox): + if len(boundbox) != 4: + logger.warning( + f"The boundbox ({boundbox}) does not contain 4 elements! The default boundbox is used!" + ) + boundbox = [] + + # Check if LCZ if available + if variable == "lcz": + if self.metadf["lcz"].isnull().any(): + _sta = self.metadf[self.metadf["lcz"].isnull()]["lcz"] + logger.warning(f"Stations without lcz detected: {_sta}") + return None + title = f"Local climate zones at {timeinstance}." + legend_title = "" + + # subset to timeinstance + plotdf = xs_save(self.df, timeinstance, level="datetime") + + # merge metadata + plotdf = plotdf.merge( + self.metadf, how="left", left_index=True, right_index=True + ) + + # titles + if title is None: + try: + title = f"{self.obstypes[variable].get_orig_name()} at {timeinstance}." + except KeyError: + title = f"{variable} at {timeinstance}." + + if legend: + if legend_title is None: + legend_title = f"{self.obstypes[variable].get_standard_unit()}" + + axis = geospatial_plot( + plotdf=plotdf, + variable=variable, + timeinstance=timeinstance, + title=title, + legend=legend, + legend_title=legend_title, + vmin=vmin, + vmax=vmax, + plotsettings=self.settings.app["plot_settings"], + categorical_fields=self.settings.app["categorical_fields"], + static_fields=self.settings.app["static_fields"], + display_name_mapper=self.settings.app["display_name_mapper"], + data_template=self.data_template, + boundbox=boundbox, + ) + + return axis
+ + + # ============================================================================= + # Gap Filling + # ============================================================================= +
+[docs] + def get_modeldata( + self, + modelname="ERA5_hourly", + modeldata=None, + obstype="temp", + stations=None, + startdt=None, + enddt=None, + ): + """Make Modeldata for the Dataset. + + Make a metobs_toolkit.Modeldata object with modeldata at the locations + of the stations present in the dataset. + + Parameters + ---------- + modelname : str, optional + Which dataset to download timeseries from. This is only used when + no modeldata is provided. The default is 'ERA5_hourly'. + modeldata : metobs_toolkit.Modeldata, optional + Use the modelname attribute and the gee information stored in the + modeldata instance to extract timeseries. + obstype : String, optional + Name of the observationtype you want to apply gap filling on. The + modeldata must contain this observation type as well. The + default is 'temp'. + stations : string or list of strings, optional + Stationnames to subset the modeldata to. If None, all stations will be used. The default is None. + startdt : datetime.datetime, optional + Start datetime of the model timeseries. If None, the start datetime of the dataset is used. The default is None. + enddt : datetime.datetime, optional + End datetime of the model timeseries. If None, the last datetime of the dataset is used. The default is None. + + Returns + ------- + Modl : metobs_toolkit.Modeldata + The extracted modeldata for period and a set of stations. + + Note + -------- + If a timezone unaware datetime is given as an argument, it is interpreted + as if it has the same timezone as the observations. + + Note + ------ + When extracting large amounts of data, the timeseries data will be + writen to a file and saved on your google drive. In this case, you need + to provide the Modeldata with the data using the .set_model_from_csv() + method. + + Note + ------ + Only 2mT extraction of ERA5 is implemented for all Modeldata instances. + To extract other variables, one must create a Modeldata instance in + advance, add or update a gee_dataset and give this Modeldata instance + to this method. + + """ + if modeldata is None: + Modl = Modeldata(modelname) + + else: + Modl = modeldata + modelname = Modl.modelname + + # Filters + + if startdt is None: + startdt = self.df.index.get_level_values("datetime").min() + else: + startdt = fmt_datetime_argument( + startdt, self.settings.time_settings["timezone"] + ) + + if enddt is None: + enddt = self.df.index.get_level_values("datetime").max() + else: + enddt = fmt_datetime_argument( + enddt, self.settings.time_settings["timezone"] + ) + + # make shure bounds include required range + Model_time_res = Modl.mapinfo[Modl.modelname]["time_res"] + startdt = startdt.floor(Model_time_res) + enddt = enddt.ceil(Model_time_res) + + if stations is not None: + if isinstance(stations, str): + metadf = self.metadf.loc[[stations]] + if isinstance(stations, list): + metadf = self.metadf.iloc[self.metadf.index.isin(stations)] + else: + metadf = self.metadf + + # Convert to UTC + + startdt_utc = startdt.astimezone(pytz.utc) + enddt_utc = enddt.astimezone(pytz.utc) + + # fill modell with data + if modelname == "ERA5_hourly": + Modl.get_ERA5_data( + metadf=metadf, + startdt_utc=startdt_utc, + enddt_utc=enddt_utc, + obstypes=obstype, + ) + + else: + Modl.get_gee_dataset_data( + mapname=modelname, + metadf=metadf, + startdt_utc=startdt_utc, + enddt_utc=enddt_utc, + obstypes=obstype, + ) + + print( + f"(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is {modelname})" + ) + logger.info( + f"(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is {modelname})" + ) + return Modl
+ + +
+[docs] + def update_gaps_and_missing_from_outliers(self, obstype="temp", n_gapsize=None): + """Interpret the outliers as missing observations. + + If there is a sequence + of these outliers for a station, larger than n_gapsize than this will + be interpreted as a gap. + + The outliers are not removed. + + Parameters + ---------- + obstype : str, optional + Use the outliers on this observation type to update the gaps and + missing timestamps. The default is 'temp'. + n_gapsize : int, optional + The minimum number of consecutive missing observations to define + as a gap. If None, n_gapsize is taken from the settings defenition + of gaps. The default is None. + + Returns + ------- + None. + + Note + ------- + Gaps and missing observations resulting from an outlier on a specific + obstype, are assumed to be gaps/missing observation for all obstypes. + + Note + ------ + Be aware that n_gapsize is used for the current resolution of the Dataset, + this is different from the gap check applied on the inported data, if + the dataset is coarsend. + + """ + if n_gapsize is None: + n_gapsize = self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"] + if ( + not self.metadf["assumed_import_frequency"] + .eq(self.metadf["dataset_resolution"]) + .all() + ): + logger.info( + f"The defenition of the gapsize (n_gapsize = {n_gapsize}) \ + will have another effect on the update of the gaps and missing \ + timestamps because coarsening is applied and the defenition \ + of the gapsize is not changed." + ) + + # combine to one dataframe + mergedf = self.combine_all_to_obsspace() + mergedf = xs_save(mergedf, obstype, level="obstype") + + # ignore labels + possible_outlier_labels = [ + vals["outlier_flag"] for vals in self.settings.qc["qc_checks_info"].values() + ] + + # create groups when the final label changes + persistance_filter = ((mergedf["label"].shift() != mergedf["label"])).cumsum() + grouped = mergedf.groupby(["name", persistance_filter]) + + # locate new gaps by size of consecutive the same final label per station + group_sizes = grouped.size() + large_groups = group_sizes[group_sizes > n_gapsize] + + # find only groups with final label as an outlier + gaps = [] + # new_gapsdf = pd.DataFrame() + new_gaps_idx = init_multiindex() + for group_idx in large_groups.index: + groupdf = grouped.get_group(group_idx) + group_final_label = groupdf["label"].iloc[0] + if group_final_label not in possible_outlier_labels: + # no gap candidates + continue + else: + gap = Gap( + name=groupdf.index.get_level_values("name")[0], + startdt=groupdf.index.get_level_values("datetime").min(), + enddt=groupdf.index.get_level_values("datetime").max(), + ) + + gaps.append(gap) + new_gaps_idx = new_gaps_idx.union(groupdf.index, sort=False) + + # add all the outliers, that are not in the new gaps to the new missing obs + new_missing_obs = mergedf[mergedf["label"].isin(possible_outlier_labels)].index + new_missing_obs = new_missing_obs.drop(new_gaps_idx.to_numpy(), errors="ignore") + + # to series + missing_obs_series = ( + new_missing_obs.to_frame() + .reset_index(drop=True) + .set_index("name")["datetime"] + ) + # Create missing obs + new_missing_collection = Missingob_collection(missing_obs_series) + + # update self + self.gaps.extend(gaps) + self.missing_obs = self.missing_obs + new_missing_collection + + # remove outliers that are converted to gaps + self.outliersdf = remove_gaps_from_outliers( + gaplist=gaps, outldf=self.outliersdf + ) + + # remove outliers that are converted to missing obs + self.outliersdf = self.missing_obs.remove_missing_from_outliers(self.outliersdf)
+ + + # ============================================================================= + # Gap Filling + # ============================================================================= + +
+[docs] + def fill_gaps_automatic( + self, + modeldata, + obstype="temp", + max_interpolate_duration_str=None, + overwrite_fill=False, + ): + """Fill the gaps by using linear interpolation or debiased modeldata. + + The method that is applied to perform the gapfill will be determined by + the duration of the gap. + + When the duration of a gap is smaller or equal than + max_interpolation_duration, the linear interpolation method is applied + else the debiased modeldata method. + + + Parameters + ---------- + modeldata : metobs_toolkit.Modeldata + The modeldata to use for the gapfill. This model data should the required + timeseries to fill all gaps present in the dataset. + obstype : String, optional + Name of the observationtype you want to apply gap filling on. The + modeldata must contain this observation type as well. The + default is 'temp'. + max_interpolate_duration_str : Timedelta or str, optional + Maximum duration to apply interpolation for gapfill when using the + automatic gapfill method. Gaps with longer durations will be filled + using debiased modeldata. The default is None. + overwrite_fill: bool, optional + If a gap has already filled values, the interpolation of this gap + is skipped if overwrite_fill is False. If set to True, the gapfill + values and info will be overwitten. The default is False. + + Returns + ------- + comb_df : TYPE + gapfilldf : pandas.DataFrame + A dataframe containing all the filled records. + + """ + # ----------- Validate ---------------------------------------- + + # check if modeldata is available + if modeldata is None: + logger.warning( + "The dataset has no modeldate. Use the set_modeldata() function to add modeldata." + ) + return None + + # check if obstype is present in eramodel + assert ( + obstype in modeldata.df.columns + ), f"{obstype} is not present in the modeldate: {modeldata}" + + # check if all station are present in eramodeldata + # stations = self.gaps.to_df().index.unique().to_list() + stations = list(set([gap.name for gap in self.gaps])) + assert all( + [sta in modeldata.df.index.get_level_values("name") for sta in stations] + ), "Not all stations with gaps are in the modeldata!" + + if max_interpolate_duration_str is None: + max_interpolate_duration_str = self.settings.gap["gaps_fill_settings"][ + "automatic" + ]["max_interpolation_duration_str"] + + # ------------select the method to apply gapfill per gap ---------- + interpolate_gaps = [] + debias_gaps = [] + + for gap in self.gaps: + if gap.duration <= pd.to_timedelta(max_interpolate_duration_str): + interpolate_gaps.append(gap) + else: + debias_gaps.append(gap) + + # 1 ---------------Fill by interpolation --------------------- + + fill_settings_interp = self.settings.gap["gaps_fill_settings"]["linear"] + + apply_interpolate_gaps( + gapslist=interpolate_gaps, + obsdf=self.df, + outliersdf=self.outliersdf, + dataset_res=self.metadf["dataset_resolution"], + gapfill_settings=self.settings.gap["gaps_fill_info"], + obstype=obstype, + method=fill_settings_interp["method"], + max_consec_fill=fill_settings_interp["max_consec_fill"], + overwrite_fill=overwrite_fill, + ) + + filldf_interp = make_gapfill_df(interpolate_gaps) + + # 2 -------------- Fill by debias ----------------------------- + + fill_settings_debias = self.settings.gap["gaps_fill_settings"]["model_debias"] + + apply_debias_era5_gapfill( + gapslist=debias_gaps, + dataset=self, + eraModelData=modeldata, + obstype=obstype, + debias_settings=fill_settings_debias, + overwrite_fill=overwrite_fill, + ) + + # add label column + filldf_debias = make_gapfill_df(debias_gaps) + + # combine both fill df's + comb_df = concat_save([filldf_interp, filldf_debias]) + + # update attr + self.gapfilldf = comb_df + + return comb_df
+ + +
+[docs] + def fill_gaps_linear(self, obstype="temp", overwrite_fill=False): + """Fill the gaps using linear interpolation. + + The gapsfilldf attribute of the Datasetinstance will be updated if + the gaps are not filled yet or if overwrite_fill is set to True. + + Parameters + ---------- + obstype : string, optional + Fieldname to visualise. This can be an observation or station + attribute. The default is 'temp'. + overwrite_fill: bool, optional + If a gap has already filled values, the interpolation of this gap + is skipped if overwrite_fill is False. If set to True, the gapfill + values and info will be overwitten. The default is False. + + Returns + ------- + gapfilldf : pandas.DataFrame + A dataframe containing all the filled records. + + + """ + # TODO logging + fill_settings = self.settings.gap["gaps_fill_settings"]["linear"] + + # fill gaps + apply_interpolate_gaps( + gapslist=self.gaps, + obsdf=self.df, + outliersdf=self.outliersdf, + dataset_res=self.metadf["dataset_resolution"], + gapfill_settings=self.settings.gap["gaps_fill_info"], + obstype=obstype, + method=fill_settings["method"], + max_consec_fill=fill_settings["max_consec_fill"], + overwrite_fill=overwrite_fill, + ) + + # get gapfilldf + gapfilldf = make_gapfill_df(self.gaps) + + # update attr + self.gapfilldf = gapfilldf + + return gapfilldf
+ + +
+[docs] + def fill_missing_obs_linear(self, obstype="temp"): + """Interpolate missing observations. + + Fill in the missing observation rectords using interpolation. The + missing_fill_df attribute of the Dataset will be updated. + + Parameters + ---------- + obstype : string, optional + Fieldname to visualise. This can be an observation or station + attribute. The default is 'temp'. + + Returns + ------- + None. + + """ + # TODO logging + fill_settings = self.settings.missing_obs["missing_obs_fill_settings"]["linear"] + fill_info = self.settings.missing_obs["missing_obs_fill_info"] + + # fill missing obs + self.missing_obs.interpolate_missing( + obsdf=self.df, + resolutionseries=self.metadf["dataset_resolution"], + obstype=obstype, + method=fill_settings["method"], + ) + + missing_fill_df = self.missing_obs.fill_df + + missing_fill_df[obstype + "_" + fill_info["label_columnname"]] = fill_info[ + "label" + ]["linear"] + + # Update attribute + + self.missing_fill_df = missing_fill_df
+ + +
+[docs] + def get_gaps_df(self): + """ + List all gaps into an overview dataframe. + + Returns + ------- + pandas.DataFrame + A DataFrame with stationnames as index, and the start, end and duretion + of the gaps as columns. + + """ + return gaps_to_df(self.gaps)
+ + +
+[docs] + def get_gaps_info(self): + """Print out detailed information of the gaps. + + Returns + ------- + None. + + """ + if bool(self.gaps): + # there are gaps + for gap in self.gaps: + gap.get_info() + else: + # no gaps + print("There are no gaps.")
+ + +
+[docs] + def get_missing_obs_info(self): + """Print out detailed information of the missing observations. + + Returns + ------- + None. + + """ + # empty obs protector in the .get_info method. + self.missing_obs.get_info()
+ + +
+[docs] + def get_analysis(self, add_gapfilled_values=False): + """Create an Analysis instance from the Dataframe. + + Parameters + ---------- + add_gapfilled_values : bool, optional + If True, all filled values (from gapfill and missing observation fill), + are added to the analysis records aswell. The default is False. + + Returns + ------- + metobs_toolkit.Analysis + The Analysis instance of the Dataset. + + """ + # combine all to obsspace and include gapfill + if add_gapfilled_values: + mergedf = self.combine_all_to_obsspace() + + # gapsfilled labels + gapfill_settings = self.settings.gap["gaps_fill_info"] + gapfilllabels = [val for val in gapfill_settings["label"].values()] + + # missingfilled labels + missingfill_settings = self.settings.missing_obs["missing_obs_fill_info"] + missingfilllabels = [val for val in missingfill_settings["label"].values()] + + # get all labels + fill_labels = gapfilllabels.copy() + fill_labels.extend(missingfilllabels) + fill_labels.append("ok") + + df = mergedf[mergedf["label"].isin(fill_labels)] + df = df[["value"]] + df = df.unstack(level="obstype") + df = df.droplevel(level=0, axis=1) + else: + df = self.df + + return Analysis( + obsdf=df, + metadf=self.metadf, + settings=self.settings, + data_template=self.data_template, + )
+ + +
+[docs] + def fill_gaps_era5( + self, modeldata, method="debias", obstype="temp", overwrite_fill=False + ): + """Fill the gaps using a Modeldata object. + + Parameters + ---------- + modeldata : metobs_toolkit.Modeldata + The modeldata to use for the gapfill. This model data should the required + timeseries to fill all gaps present in the dataset. + method : 'debias', optional + Specify which method to use. The default is 'debias'. + obstype : String, optional + Name of the observationtype you want to apply gap filling on. The + modeldata must contain this observation type as well. The + default is 'temp'. + overwrite_fill: bool, optional + If a gap has already filled values, the interpolation of this gap + is skipped if overwrite_fill is False. If set to True, the gapfill + values and info will be overwitten. The default is False. + + Returns + ------- + Gapfilldf : pandas.DataFrame + A dataframe containing all gap filled values and the use method. + + """ + # check if modeldata is available + if modeldata is None: + logger.warning( + "The dataset has no modeldate. Use the set_modeldata() function to add modeldata." + ) + return None + # check if obstype is present in eramodel + assert ( + obstype in modeldata.df.columns + ), f"{obstype} is not present in the modeldate: {modeldata}" + # check if all station are present in eramodeldata + # stations = self.gaps.to_df().index.unique().to_list() + stations = list(set([gap.name for gap in self.gaps])) + assert all( + [sta in modeldata.df.index.get_level_values("name") for sta in stations] + ), "Not all stations with gaps are in the modeldata!" + + if method == "debias": + + fill_settings_debias = self.settings.gap["gaps_fill_settings"][ + "model_debias" + ] + + apply_debias_era5_gapfill( + gapslist=self.gaps, + dataset=self, + eraModelData=modeldata, + obstype=obstype, + debias_settings=fill_settings_debias, + overwrite_fill=overwrite_fill, + ) + + # get fill df + filldf = make_gapfill_df(self.gaps) + else: + sys.exit(f"{method} not implemented yet") + + # update attribute + self.gapfilldf = filldf + + return filldf
+ + +
+[docs] + def write_to_csv( + self, + obstype=None, + filename=None, + include_outliers=True, + include_fill_values=True, + add_final_labels=True, + use_tlk_obsnames=True, + overwrite_outliers_by_gaps_and_missing=True, + seperate_metadata_file=True, + ): + """Write Dataset to a csv file. + + Write the dataset to a file where the observations, metadata and + (if available) the quality labels per observation type are merged + together. + + A final qualty control label for each + quality-controlled-observation type can be added in the outputfile. + + The file will be writen to the outputfolder specified in the settings. + + Parameters + ---------- + obstype : string, optional + Specify an observation type to subset all observations to. If None, + all available observation types are writen to file. The default is + None. + filename : string, optional + The name of the output csv file. If none, a standard-filename + is generated based on the period of data. The default is None. + include_outliers : bool, optional + If True, the outliers will be present in the csv file. The default is True. + include_fill_values : bool, optional + If True, the filled gap and missing observation values will be + present in the csv file. The default is True. + add_final_labels : bool, optional + If True, a column is added containing the final label of an observation. The default is True. + use_tlk_obsnames : bool, optional + If True, the standard naming of the metobs_toolkit is used, else + the original names for obstypes is used. The default is True. + overwrite_outliers_by_gaps_and_missing : bool, optional + If the gaps and missing observations are updated using outliers, + interpret these records as gaps/missing outliers if True. Else these + will be interpreted as outliers. The default is True. + seperate_metadata_file : bool, optional + If true, the metadat is writen to a seperate file, else the metadata + is merged to the observation in one file. The default is True. + Returns + ------- + None. + + """ + logger.info("Writing the dataset to a csv file") + + assert ( + not self.settings.IO["output_folder"] is None + ), "Specify Settings.output_folder in order to export a csv." + + assert os.path.isdir( + self.settings.IO["output_folder"] + ), f'The outputfolder: \ + {self.settings.IO["output_folder"]} is not found. ' + + # combine all dataframes + mergedf = self.combine_all_to_obsspace( + overwrite_outliers_by_gaps_and_missing=overwrite_outliers_by_gaps_and_missing + ) # with outliers + # Unstack mergedf + # remove duplicates + mergedf = mergedf[~mergedf.index.duplicated(keep="first")] + + # drop outliers if required + if not include_outliers: + outlier_labels = [ + var["outlier_flag"] for var in self.settings.qc["qc_checks_info"] + ] + mergedf = mergedf[~mergedf["label"].isin(outlier_labels)] + + # drop fill values if required + if not include_fill_values: + fill_labels = [ + "gap fill", + "missing observation fill", + ] # toolkit representation labels + mergedf = mergedf[~mergedf["toolkit_representation"].isin(fill_labels)] + + if obstype is not None: + mergedf = xs_save(mergedf, obstype, level="obstype", drop_level=False) + + # Map obstypes columns + if not use_tlk_obsnames: + mapper = { + col: self.obstypes[col].get_orig_name() for col in self.obstypes.keys() + } + mergedf = mergedf.reset_index() + mergedf["new_names"] = mergedf["obstype"].map(mapper) + mergedf = mergedf.drop(columns=["obstype"]) + mergedf = mergedf.rename(columns={"new_names": "obstype"}) + mergedf = mergedf.set_index(["name", "datetime", "obstype"]) + + mergedf = mergedf.unstack("obstype") + + # to one level for the columns + mergedf.columns = [" : ".join(col).strip() for col in mergedf.columns.values] + + # columns to write + write_dataset_to_csv( + df=mergedf, + metadf=self.metadf, + filename=filename, + outputfolder=self.settings.IO["output_folder"], + location_info=self.settings.app["location_info"], + seperate_metadata_file=seperate_metadata_file, + )
+ + + # ============================================================================= + # Quality control + # ============================================================================= +
+[docs] + def apply_quality_control( + self, + obstype="temp", + gross_value=True, + persistance=True, + repetitions=True, + step=True, + window_variation=True, + ): + """Apply quality control methods to the dataset. + + The default settings are used, and can be changed in the + settings_files/qc_settings.py + + The checks are performed in a sequence: gross_vallue --> + persistance --> ..., Outliers by a previous check are ignored in the + following checks! + + The dataset is updated inline. + + Parameters + ---------- + obstype : String, optional + Name of the observationtype you want to apply the checks on. The + default is 'temp'. + gross_value : Bool, optional + If True the gross_value check is applied if False not. The default + is True. + persistance : Bool, optional + If True the persistance check is applied if False not. The default + is True.. The default is True. + repetition : Bool, optional + If True the repetations check is applied if False not. The default + is True. + step : Bool, optional + If True the step check is applied if False not. The default is True. + window_variation : Bool, optional + If True the window_variation check is applied if False not. The + default is True. + + Returns + --------- + None. + + """ + if repetitions: + apliable = _can_qc_be_applied(self, obstype, "repetitions") + if apliable: + logger.info("Applying repetitions check.") + + obsdf, outl_df = repetitions_check( + obsdf=self.df, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["qc_check_settings"], + ) + + # update the dataset and outliers + self.df = obsdf + if not outl_df.empty: + self.outliersdf = concat_save([self.outliersdf, outl_df]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames="repetitions" + ), + ], + ignore_index=True, + ) + + if gross_value: + apliable = _can_qc_be_applied(self, obstype, "gross_value") + + if apliable: + logger.info("Applying gross value check.") + + obsdf, outl_df = gross_value_check( + obsdf=self.df, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["qc_check_settings"], + ) + + # update the dataset and outliers + self.df = obsdf + if not outl_df.empty: + self.outliersdf = concat_save([self.outliersdf, outl_df]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames="gross_value" + ), + ], + ignore_index=True, + ) + + if persistance: + apliable = _can_qc_be_applied(self, obstype, "persistance") + + if apliable: + logger.info("Applying persistance check.") + obsdf, outl_df = persistance_check( + station_frequencies=self.metadf["dataset_resolution"], + obsdf=self.df, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["qc_check_settings"], + ) + + # update the dataset and outliers + self.df = obsdf + if not outl_df.empty: + self.outliersdf = concat_save([self.outliersdf, outl_df]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames="persistance" + ), + ], + ignore_index=True, + ) + + if step: + apliable = _can_qc_be_applied(self, obstype, "step") + + if apliable: + logger.info("Applying step-check.") + obsdf, outl_df = step_check( + obsdf=self.df, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["qc_check_settings"], + ) + + # update the dataset and outliers + self.df = obsdf + if not outl_df.empty: + self.outliersdf = concat_save([self.outliersdf, outl_df]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames="step" + ), + ], + ignore_index=True, + ) + + if window_variation: + apliable = _can_qc_be_applied(self, obstype, "window_variation") + if apliable: + logger.info("Applying window variation-check.") + obsdf, outl_df = window_variation_check( + station_frequencies=self.metadf["dataset_resolution"], + obsdf=self.df, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["qc_check_settings"], + ) + + # update the dataset and outliers + self.df = obsdf + if not outl_df.empty: + self.outliersdf = concat_save([self.outliersdf, outl_df]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames="window_variation" + ), + ], + ignore_index=True, + ) + + self._qc_checked_obstypes.append(obstype) + self._qc_checked_obstypes = list(set(self._qc_checked_obstypes)) + self.outliersdf = self.outliersdf.sort_index()
+ + +
+[docs] + def apply_buddy_check( + self, + obstype="temp", + use_constant_altitude=False, + haversine_approx=True, + metric_epsg="31370", + ): + """Apply the buddy check on the observations. + + The buddy check compares an observation against its neighbours (i.e. + buddies). The check looks for buddies in a neighbourhood specified by + a certain radius. The buddy check flags observations if the + (absolute value of the) difference between the observations and the + average of the neighbours normalized by the standard deviation in the + circle is greater than a predefined threshold. + + This check is based on the buddy check from titanlib. Documentation on + the titanlib buddy check can be found + `here <https://github.com/metno/titanlib/wiki/Buddy-check>`_. + + + The observation and outliers attributes will be updated accordingly. + + Parameters + ---------- + obstype : String, optional + Name of the observationtype you want to apply the checks on. The + default is 'temp'. + use_constant_altitude : bool, optional + Use a constant altitude for all stations. The default is False. + haversine_approx : bool, optional + Use the haversine approximation (earth is a sphere) to calculate + distances between stations. The default is True. + metric_epsg : str, optional + EPSG code for the metric CRS to calculate distances in. Only used when + haversine approximation is set to False. Thus becoming a better + distance approximation but not global applicable The default is '31370' + (which is suitable for Belgium). + + Returns + ------- + None. + + """ + + logger.info("Applying the toolkit buddy check") + + checkname = "buddy_check" + + # 1. coordinates are available? + if self.metadf["lat"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) + return + if self.metadf["lon"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) + return + + # set constant altitude if needed: + + # if altitude is already available, save it to restore it after this check + restore_altitude = False + if use_constant_altitude: + if "altitulde" in self.metadf.columns: + self.metadf["altitude_backup"] = self.metadf["altitude"] + restore_altitude = True + + self.metadf["altitude"] = 2.0 # absolut value does not matter + + # 2. altitude available? + if (not use_constant_altitude) & ("altitude" not in self.metadf.columns): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.' + ) + return + if (not use_constant_altitude) & (self.metadf["altitude"].isnull().any()): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)' + ) + return + + apliable = _can_qc_be_applied(self, obstype, checkname) + if apliable: + buddy_set = self.settings.qc["qc_check_settings"][checkname][obstype] + outl_flag = self.settings.qc["qc_checks_info"][checkname]["outlier_flag"] + obsdf, outliersdf = toolkit_buddy_check( + obsdf=self.df, + metadf=self.metadf, + obstype=obstype, + buddy_radius=buddy_set["radius"], + min_sample_size=buddy_set["num_min"], + max_alt_diff=buddy_set["max_elev_diff"], + min_std=buddy_set["min_std"], + std_threshold=buddy_set["threshold"], + metric_epsg=metric_epsg, + lapserate=buddy_set["elev_gradient"], + outl_flag=outl_flag, + haversine_approx=haversine_approx, + ) + + # update the dataset and outliers + self.df = obsdf + if not outliersdf.empty: + self.outliersdf = concat_save([self.outliersdf, outliersdf]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames=checkname + ), + ], + ignore_index=True, + ) + + else: + logger.warning( + f"The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!" + ) + + # Revert artificial data that has been added if needed + if restore_altitude: # altitude was overwritten, thus revert it + self.metadf["altitude"] = self.metadf["altitude_backup"] + self.metadf = self.metadf.drop(columns=["altitude_backup"]) + + elif use_constant_altitude: + # when no alitude was available apriori, remove the fake constant altitude column + self.metadf = self.metadf.drop(columns=["altitude"])
+ + +
+[docs] + def apply_titan_buddy_check(self, obstype="temp", use_constant_altitude=False): + """Apply the TITAN buddy check on the observations. + + The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for + buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the + (absolute value of the) difference between the observations and the average of the neighbours + normalized by the standard deviation in the circle is greater than a predefined threshold. + + See the `titanlib documentation on the buddy check <https://github.com/metno/titanlib/wiki/Buddy-check>`_ + for futher details. + + The observation and outliers attributes will be updated accordingly. + + Parameters + ---------- + obstype : String, optional + Name of the observationtype you want to apply the checks on. The + default is 'temp'. + use_constant_altitude : bool, optional + Use a constant altitude for all stations. The default is False. + + Returns + ------- + None. + + Note + ------- + To update the check settings, use the update_titan_qc_settings method + of the Dataset class. + + Warning + -------- + To use this method, you must install titanlib. Windows users must have + a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation. + + """ + logger.info("Applying the titan buddy check") + + try: + import titanlib + + # Add version restrictions?? + except ModuleNotFoundError: + logger.warning( + "Titanlib is not installed, install it manually if you want to use this functionallity." + ) + return + + checkname = "titan_buddy_check" + + # 1. coordinates are available? + if self.metadf["lat"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) + return + if self.metadf["lon"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) + return + + # set constant altitude if needed: + + # if altitude is already available, save it to restore it after this check + restore_altitude = False + if use_constant_altitude: + if "altitulde" in self.metadf.columns: + self.metadf["altitude_backup"] = self.metadf["altitude"] + restore_altitude = True + + self.metadf["altitude"] = 2.0 # absolut value does not matter + + # 2. altitude available? + if (not use_constant_altitude) & ("altitude" not in self.metadf.columns): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.' + ) + return + if (not use_constant_altitude) & (self.metadf["altitude"].isnull().any()): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)' + ) + return + + apliable = _can_qc_be_applied(self, obstype, checkname) + if apliable: + obsdf, outliersdf = titan_buddy_check( + obsdf=self.df, + metadf=self.metadf, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["titan_check_settings"][checkname][ + obstype + ], + titan_specific_labeler=self.settings.qc["titan_specific_labeler"][ + checkname + ], + ) + + # update the dataset and outliers + self.df = obsdf + if not outliersdf.empty: + self.outliersdf = concat_save([self.outliersdf, outliersdf]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames=checkname + ), + ], + ignore_index=True, + ) + + else: + logger.warning( + f"The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!" + ) + + # Revert artificial data that has been added if needed + if restore_altitude: # altitude was overwritten, thus revert it + self.metadf["altitude"] = self.metadf["altitude_backup"] + self.metadf = self.metadf.drop(columns=["altitude_backup"]) + + elif use_constant_altitude: + # when no alitude was available apriori, remove the fake constant altitude column + self.metadf = self.metadf.drop(columns=["altitude"])
+ + +
+[docs] + def apply_titan_sct_resistant_check(self, obstype="temp"): + """Apply the TITAN spatial consistency test (resistant). + + The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the + nearby area. If the deviation is large, the observation is removed. The SCT uses optimal interpolation + (OI) to compute an expected value for each observation. The background for the OI is computed from + a general vertical profile of observations in the area. + + See the `titanlib documentation on the sct check <https://github.com/metno/titanlib/wiki/Spatial-consistency-test-resistant>`_ + for futher details. + + The observation and outliers attributes will be updated accordingly. + + + Parameters + ---------- + obstype : String, optional + Name of the observationtype you want to apply the checks on. The + default is 'temp'. + + Returns + ------- + None. + + Note + ------- + To update the check settings, use the update_titan_qc_settings method + of the Dataset class. + + Warning + -------- + To use this method, you must install titanlib. Windows users must have + a c++ compiler installed. See the titanlib documentation: https://github.com/metno/titanlib/wiki/Installation. + + Warning + ------- + This method is a python wrapper on titanlib c++ scripts, and it is prone + to segmentation faults. The perfomance of this check is thus not + guaranteed! + + """ + logger.info("Applying the titan SCT check") + + try: + import titanlib + + # Add version restrictions?? + except ModuleNotFoundError: + logger.warning( + "Titanlib is not installed, install it manually if you want to use this functionallity." + ) + return + + checkname = "titan_sct_resistant_check" + # check if required metadata is available: + + # 1. coordinates are available? + if self.metadf["lat"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) + return + if self.metadf["lon"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) + return + + # 2. altitude available? + if "altitude" not in self.metadf.columns: + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.' + ) + return + if self.metadf["altitude"].isnull().any(): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)' + ) + return + + apliable = _can_qc_be_applied(self, obstype, checkname) + if apliable: + obsdf, outliersdf = titan_sct_resistant_check( + obsdf=self.df, + metadf=self.metadf, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["titan_check_settings"][checkname][ + obstype + ], + titan_specific_labeler=self.settings.qc["titan_specific_labeler"][ + checkname + ], + ) + + # update the dataset and outliers + self.df = obsdf + if not outliersdf.empty: + self.outliersdf = concat_save([self.outliersdf, outliersdf]) + + # add this check to the applied checks + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames=checkname + ), + ], + ignore_index=True, + ) + + else: + logger.warning( + f"The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!" + )
+ + +
+[docs] + def combine_all_to_obsspace( + self, repr_outl_as_nan=False, overwrite_outliers_by_gaps_and_missing=True + ): + """Make one dataframe with all observations and their labels. + + Combine all observations, outliers, missing observations and gaps into + one Dataframe. All observation types are combined an a label is added + in a serperate column. + + When gaps and missing records are updated from outliers one has to choice + to represent these records as outliers or gaps. There can not be duplicates + in the return dataframe. + + By default the observation values of the outliers are saved, one can + choice to use these values or NaN's. + following checks! + + Parameters + ---------- + repr_outl_as_nan : bool, optional + If True, Nan's are use for the values of the outliers. The + default is False. + overwrite_outliers_by_gaps_and_missing : Bool, optional + If True, records that are labeld as gap/missing and outlier are + labeled as gaps/missing. This has only effect when the gaps/missing + observations are updated from the outliers. The default is True. + + Returns + --------- + combdf : pandas.DataFrame() + A dataframe containing a continious time resolution of records, where each + record is labeld. + + """ + # TODO: label values from settings not hardcoding + + # TODO: use the repr_outl_as_nan argumenten here + # ============================================================================= + # Stack observations and outliers + # ============================================================================= + df = self.df + # better save than sorry + present_obstypes = list(self.obstypes.keys()) + df = df[present_obstypes] + + # to tripple index + df = ( + df.stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: "value"}) + .set_index(["name", "datetime", "obstype"]) + ) + + df["label"] = "ok" + df["toolkit_representation"] = "observation" + + # outliers + outliersdf = self.outliersdf.copy() + outliersdf["toolkit_representation"] = "outlier" + + # Careful! Some outliers exist on inport frequency (duplicated, invalid) + # So only use the outliers for which station-datetime-obstype are present in the + # dataset.df + outliersdf = outliersdf[outliersdf.index.isin(df.index)] + + # remove outliers from the observations + df = df[~df.index.isin(outliersdf.index)] + + # ============================================================================= + # Stack gaps + # ============================================================================= + # add gapfill and remove the filled records from gaps + gapsfilldf = self.gapfilldf.copy() + + # to triple index + gapsfilldf = value_labeled_doubleidxdf_to_triple_idxdf( + gapsfilldf, known_obstypes=list(self.obstypes.keys()) + ) + gapsfilldf["toolkit_representation"] = "gap fill" + + gapsidx = get_gaps_indx_in_obs_space( + gapslist=self.gaps, + obsdf=self.df, + outliersdf=self.outliersdf, + resolutionseries=self.metadf["dataset_resolution"], + ) + + gapsdf = pd.DataFrame(index=gapsidx, columns=present_obstypes) + gapsdf = ( + gapsdf.stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: "value"}) + .set_index(["name", "datetime", "obstype"]) + ) + + gapsdf["label"] = self.settings.gap["gaps_info"]["gap"]["outlier_flag"] + gapsdf["toolkit_representation"] = "gap" + + # Remove gaps from df + df = df[~df.index.isin(gapsdf.index)] + + if overwrite_outliers_by_gaps_and_missing: + outliersdf = outliersdf.drop(index=gapsdf.index, errors="ignore") + + # Remove gapfill values records from the gaps + gapsdf = gapsdf.drop(index=gapsfilldf.index) + + # ============================================================================= + # Stack missing + # ============================================================================= + missingfilldf = self.missing_fill_df.copy() + missingfilldf = value_labeled_doubleidxdf_to_triple_idxdf( + missingfilldf, known_obstypes=list(self.obstypes.keys()) + ) + missingfilldf["toolkit_representation"] = "missing observation fill" + + # add missing observations if they occure in observation space + missingidx = self.missing_obs.get_missing_indx_in_obs_space( + self.df, self.metadf["dataset_resolution"] + ) + + missingdf = pd.DataFrame(index=missingidx, columns=present_obstypes) + + missingdf = ( + missingdf.stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: "value"}) + .set_index(["name", "datetime", "obstype"]) + ) + + missingdf["label"] = self.settings.gap["gaps_info"]["missing_timestamp"][ + "outlier_flag" + ] + missingdf["toolkit_representation"] = "missing observation" + + # Remove missing from df + df = df[~df.index.isin(missingdf.index)] + + if overwrite_outliers_by_gaps_and_missing: + outliersdf = outliersdf.drop(index=missingdf.index, errors="ignore") + + # Remove missingfill values records from the missing + missingdf = missingdf.drop(index=missingfilldf.index) + + # ============================================================================= + # combine all + # ============================================================================= + + combdf = concat_save( + [df, outliersdf, gapsdf, gapsfilldf, missingdf, missingfilldf] + ).sort_index() + combdf.index.names = ["name", "datetime", "obstype"] + # To be shure? + combdf = combdf[~combdf.index.duplicated(keep="first")] + return combdf
+ + +
+[docs] + def get_qc_stats(self, obstype="temp", stationname=None, make_plot=True): + """Get quality control statistics. + + Compute frequency statistics on the qc labels for an observationtype. + The output is a dataframe containing the frequency statistics presented + as percentages. + + These frequencies can also be presented as a collection of piecharts + per check. + + With stationnames you can subset the data to one ore multiple stations. + + Parameters + ----------- + obstype : str, optional + Observation type to analyse the QC labels on. The default is + 'temp'. + stationname : str, optional + Stationname to subset the quality labels on. If None, all + stations are used. The default is None. + make_plot : Bool, optional + If True, a plot with piecharts is generated. The default is True. + + Returns + --------- + dataset_qc_stats : pandas.DataFrame + A table containing the label frequencies per check presented + as percentages. + """ + # cobmine all and get final label + comb_df = self.combine_all_to_obsspace() + + # subset to relevant columnt + comb_df = xs_save(comb_df, obstype, level="obstype")[["label"]] + + # subset to stationnames + if stationname is not None: + assert stationname in comb_df.index.get_level_values( + "name" + ), f" stationnames: {stationname} is not a list." + + comb_df = comb_df.loc[stationname] + + # compute freq statistics + final_freq, outl_freq, specific_freq = get_freq_statistics( + comb_df=comb_df, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + gaps_info=self.settings.gap["gaps_info"], + applied_qc_order=self._applied_qc, + ) + + if any([stat is None for stat in [final_freq, outl_freq, specific_freq]]): + return None + + # make title + orig_obstype = self.obstypes[obstype].get_orig_name() + + if stationname is None: + title = f"Label frequency statistics on all stations for {orig_obstype}." + else: + title = f"Label frequency statistics for {stationname} for {orig_obstype}." + + if make_plot: + # make pie plots + qc_stats_pie( + final_stats=final_freq, + outlier_stats=outl_freq, + specific_stats=specific_freq, + plot_settings=self.settings.app["plot_settings"], + qc_check_info=self.settings.qc["qc_checks_info"], + title=title, + ) + + return (final_freq, outl_freq, specific_freq)
+ + +
+[docs] + def update_outliersdf(self, add_to_outliersdf): + """Update the outliersdf attribute.""" + self.outliersdf = concat_save([self.outliersdf, add_to_outliersdf])
+ + +
+[docs] + def coarsen_time_resolution( + self, origin=None, origin_tz=None, freq=None, method=None, limit=None + ): + """Resample the observations to coarser timeresolution. + + The assumed dataset resolution (stored in the metadf attribute) will be + updated. + + Parameters + ---------- + origin : datetime.datetime, optional + Define the origin (first timestamp) for the obervations. The origin + is timezone naive, and is assumed to have the same timezone as the + obervations. If None, the earliest occuring timestamp is used as + origin. The default is None. + origin_tz : str, optional + Timezone string of the input observations. Element of + pytz.all_timezones. If None, the timezone from the settings is + used. The default is None. + freq : DateOffset, Timedelta or str, optional + The offset string or object representing target conversion. + Ex: '15T' is 15 minuts, '1H', is one hour. If None, the target time + resolution of the dataset.settings is used. The default is None. + method : 'nearest' or 'bfill', optional + Method to apply for the resampling. If None, the resample method of + the dataset.settings is used. The default is None. + limit : int, optional + Limit of how many values to fill with one original observations. If + None, the target limit of the dataset.settings is used. The default + is None. + + Returns + ------- + None. + + """ + if freq is None: + freq = self.settings.time_settings["target_time_res"] + if method is None: + method = self.settings.time_settings["resample_method"] + if limit is None: + limit = int(self.settings.time_settings["resample_limit"]) + if origin_tz is None: + origin_tz = self.settings.time_settings["timezone"] + + logger.info( + f"Coarsening the timeresolution to {freq} using \ + the {method}-method (with limit={limit})." + ) + + # test if coarsening the resolution is valid for the dataset + # 1. If resolution-dep-qc is applied --> coarsening is not valid and will result in a broken dataset + + if ( + self._applied_qc[ + ~self._applied_qc["checkname"].isin( + ["duplicated_timestamp", "invalid_input"] + ) + ].shape[0] + > 0 + ): + logger.warning( + "Coarsening time resolution is not possible because quality control checks that are resolution depening are already performed on the Dataset." + ) + logger.info( + "(Apply coarsening_time_resolution BEFORE applying quality control.)" + ) + return + + # TODO: implement buffer method + df = self.df.reset_index() + + if origin is None: + # find earlyest timestamp, if it is on the hour, use it else use the following hour + tstart = df["datetime"].min() + + if tstart.minute != 0 or tstart.second != 0 or tstart.microsecond != 0: + # Round up to nearest hour + tstart = tstart.ceil(freq=freq) + else: + origin_tz_aware = pytz.timezone(origin_tz).localize(origin) + tstart = origin_tz_aware.astimezone( + pytz.timezone(self.settings.time_settings["timezone"]) + ) + + # Coarsen timeresolution + + if method == "nearest": + df = ( + df.set_index("datetime") + .groupby("name") + .resample(freq, origin=tstart) + .nearest(limit=limit) + ) + + elif method == "bfill": + df = ( + df.set_index("datetime") + .groupby("name") + .resample(freq, origin=tstart) + .bfill(limit=limit) + ) + + else: + logger.warning(f"The coarsening method: {method}, is not implemented yet.") + df = df.set_index(["name", "datetime"]) + + if "name" in df.columns: + df = df.drop(columns=["name"]) + + # Update resolution info in metadf + self.metadf["dataset_resolution"] = pd.to_timedelta(freq) + # update df + self.df = df + + # Remove gaps and missing from the observatios + # most gaps and missing are already removed but when increasing timeres, + # some records should be removed as well. + self.df = remove_gaps_from_obs(gaplist=self.gaps, obsdf=self.df) + self.df = self.missing_obs.remove_missing_from_obs(obsdf=self.df)
+ + +
+[docs] + def sync_observations( + self, + tollerance, + verbose=True, + _force_resolution_minutes=None, + _drop_target_nan_dt=False, + ): + """Simplify and syncronize the observation timestamps. + + To simplify the resolution (per station), a tollerance is use to shift timestamps. The tollerance indicates the + maximum translation in time that can be applied to an observation. + + The sycronisation tries to group stations that have an equal simplified resolution, and syncronize them. The origin + of the sycronized timestamps will be set to round hours, round 10-minutes or round-5 minutes if possible given the tollerance. + + The observations present in the input file are used. + + After syncronization, the IO outliers, missing observations and gaps are recomputed. + + Parameters + ---------- + tollerance : Timedelta or str + The tollerance string or object representing the maximum translation in time. + Ex: '5T' is 5 minuts, '1H', is one hour. + verbose : bool, optional + If True, a dataframe illustrating the mapping from original datetimes to simplified and syncronized is returned. The default is True. + _drop_target_nan_dt : bool, optional + If record has no target datetime, the datetimes will be listed as Nat. To remove them, + set this to True. Default is False. + _force_resolution_minutes : bool, optional + force the resolution estimate to this frequency in minutes. If None, the frequency is estimated. The default is None. + Note + -------- + Keep in mind that this method will overwrite the df, outliersdf, missing timestamps and gaps. + + Note + -------- + Because the used observations are from the input file, previously coarsend timeresolutions are ignored. + + + Returns + ------- + pandas.DataFrame (if verbose is True) + A dataframe containing the original observations with original timestamps and the corresponding target timestamps. + + """ + # get columns pressent in metadf, because the input df can have columns + # that does not have to be mapped to the toolkit + + assert ( + not self.input_df.empty + ), "To syncronize a dataset, the (pure) input dataframe cannot be empty." + + init_meta_cols = self.metadf.columns.copy() + df = self.input_df + + self.df = init_multiindexdf() + self.outliersdf = init_triple_multiindexdf() + self.gapfilldf = init_multiindexdf() + self.missing_obs = None + self.gaps = None + + # find simplified resolution + if _force_resolution_minutes is None: + simplified_resolution = get_freqency_series( + df=df, method="median", simplify=True, max_simplify_error=tollerance + ) + else: + if isinstance(_force_resolution_minutes, list): + # TODO + print( + "foce resolution minutes as a list is not implemented yet, sorry." + ) + else: + stations = self.metadf.index + freq_series = pd.Series( + index=stations, + data=[timedelta(minutes=float(_force_resolution_minutes))] + * len(stations), + ) + simplified_resolution = freq_series + + logger.debug(f"Syncronizing to these resolutions: {simplified_resolution}") + + occuring_resolutions = simplified_resolution.unique() + + df = df.reset_index() + + def find_simple_origin(tstart, tollerance): + if tstart.minute == 0 and tstart.second == 0 and tstart.microsecond == 0: + return tstart # already a round hour + + # try converting to a round hour + tstart_round_hour = tstart.round("60min") + if abs(tstart - tstart_round_hour) <= pd.to_timedelta(tollerance): + return tstart_round_hour + + # try converting to a tenfold in minutes + tstart_round_tenfold = tstart.round("10min") + if abs(tstart - tstart_round_tenfold) <= pd.to_timedelta(tollerance): + return tstart_round_tenfold + + # try converting to a fivefold in minutes + tstart_round_fivefold = tstart.round("5min") + + if abs(tstart - tstart_round_fivefold) <= pd.to_timedelta(tollerance): + return tstart_round_fivefold + + # no suitable conversion found + return tstart + + merged_df = pd.DataFrame() + _total_verbose_df = pd.DataFrame() + for occur_res in occuring_resolutions: + group_stations = simplified_resolution[ + simplified_resolution == occur_res + ].index.to_list() + logger.info( + f" Grouping stations with simplified resolution of {pd.to_timedelta(occur_res)}: {group_stations}" + ) + groupdf = df[df["name"].isin(group_stations)] + + tstart = groupdf["datetime"].min() + tend = groupdf["datetime"].max() + + # find a good origin point + origin = find_simple_origin(tstart=tstart, tollerance=tollerance) + + # Create records index + target_records = pd.date_range( + start=origin, end=tend, freq=pd.Timedelta(occur_res) + ).to_series() + + target_records.name = "target_datetime" + # convert records to new target records, station per station + + for sta in group_stations: + stadf = groupdf[groupdf["name"] == sta] + # Drop all nan values! these will be added later from the outliersdf + stadf = stadf.set_index(["name", "datetime"]) + + # drop all records per statiotion for which there are no obsecvations + present_obs = list(self.obstypes.keys()) + + stadf = stadf.loc[stadf[present_obs].dropna(axis=0, how="all").index] + + stadf = stadf.reset_index() + + mergedstadf = pd.merge_asof( + left=stadf.sort_values("datetime"), + right=target_records.to_frame(), + right_on="target_datetime", + left_on="datetime", + direction="nearest", + tolerance=pd.Timedelta(tollerance), + ) + if _drop_target_nan_dt: + mergedstadf = mergedstadf.dropna(subset="target_datetime") + # possibility 1: record is mapped crrectly + correct_mapped = mergedstadf[~mergedstadf["target_datetime"].isnull()] + + # possibility2: records that ar not mapped to target + # not_mapped_records =mergedstadf[mergedstadf['target_datetime'].isnull()] + + # possibilyt 3 : no suitable candidates found for the target + # these will be cached by the missing and gap check + # no_record_candidates = target_records[~target_records.isin(mergedstadf['target_datetime'])].values + + merged_df = concat_save([merged_df, correct_mapped]) + + if verbose: + _total_verbose_df = concat_save([_total_verbose_df, mergedstadf]) + + # overwrite the df with the synced observations + merged_df = ( + merged_df.rename( + columns={"datetime": "original_datetime", "target_datetime": "datetime"} + ) + .set_index(["name", "datetime"]) + .drop(["original_datetime"], errors="ignore", axis=1) + .sort_index() + ) + # self.df = merged_df + + # Recompute the dataset attributes, apply qc, gap and missing searches, etc. + self._construct_dataset( + df=merged_df, + freq_estimation_method="highest", + freq_estimation_simplify=False, + freq_estimation_simplify_error=None, + fixed_freq_series=simplified_resolution, + update_full_metadf=False, + ) # Do not overwrite full metadf, only the frequencies + + self.metadf = self.metadf[ + [col for col in self.metadf.columns if col in init_meta_cols] + ] + + if verbose: + _total_verbose_df = _total_verbose_df.rename( + columns={"datetime": "original_datetime", "target_datetime": "datetime"} + ).set_index(["name", "datetime"]) + return _total_verbose_df
+ + +
+[docs] + def import_data_from_file( + self, + long_format=True, + obstype=None, + obstype_unit=None, + obstype_description=None, + freq_estimation_method=None, + freq_estimation_simplify=None, + freq_estimation_simplify_error=None, + kwargs_data_read={}, + kwargs_metadata_read={}, + ): + """Read observations from a csv file. + + The paths are defined in the Settings.input_file. The input file + columns should have a template that is stored in + Settings.template_list. + + If the metadata is stored in a seperate file, and the + Settings.input_metadata_file is correct, than this metadata is also + imported (if a suitable template is in the Settings.template_list.) + + The dataset is by default assumed to be in long-format (each column represent an observation type, one column indicates the stationname). + Wide-format can be used if + + - the 'wide' option is present in the template (this is done automatically if the themplate was made using the metobs_toolkit.build_template_prompt()) + + - 'long_format' is set to False and if the observation type is specified (obstype, obstype_unit and obstype_description) + + An estimation of the observational frequency is made per station. This is used + to find missing observations and gaps. + + + The Dataset attributes are set and the following checks are executed: + * Duplicate check + * Invalid input check + * Find missing observations + * Find gaps + + + Parameters + ---------- + long_format : bool, optional + True if the inputdata has a long-format, False if it has a wide-format. The default is True. + obstype : str, optional + If the dataformat is wide, specify which observation type the + observations represent. The obstype should be an element of + metobs_toolkit.observation_types. The default is None. + obstype_unit : str, optional + If the dataformat is wide, specify the unit of the obstype. The + default is None. + obstype_description : str, optional + If the dataformat is wide, specify the description of the obstype. + The default is None. + freq_estimation_method : 'highest' or 'median', optional + Select wich method to use for the frequency estimation. If + 'highest', the highest apearing frequency is used. If 'median', the + median of the apearing frequencies is used. If None, the method + stored in the + Dataset.settings.time_settings['freq_estimation_method'] is used. + The default is None. + freq_estimation_simplify : bool, optional + If True, the likely frequency is converted to round hours, or round minutes. + The "freq_estimation_simplify_error' is used as a constrain. If the constrain is not met, + the simplification is not performed. If None, the method + stored in the + Dataset.settings.time_settings['freq_estimation_simplify'] is used. + The default is None. + freq_estimation_simplify_error : Timedelta or str, optional + The tollerance string or object representing the maximum translation in time to form a simplified frequency estimation. + Ex: '5T' is 5 minuts, '1H', is one hour. If None, the method + stored in the + Dataset.settings.time_settings['freq_estimation_simplify_error'] is + used. The default is None. + kwargs_data_read : dict, optional + Keyword arguments collected in a dictionary to pass to the + pandas.read_csv() function on the data file. The default is {}. + kwargs_metadata_read : dict, optional + Keyword arguments collected in a dictionary to pass to the + pandas.read_csv() function on the metadata file. The default is {}. + + Note + -------- + If options are present in the template, these will have priority over the arguments of this function. + + Returns + ------- + None. + + """ + logger.info(f'Importing data from file: {self.settings.IO["input_data_file"]}') + + if freq_estimation_method is None: + + freq_estimation_method = self.settings.time_settings[ + "freq_estimation_method" + ] + if freq_estimation_simplify is None: + freq_estimation_simplify = self.settings.time_settings[ + "freq_estimation_simplify" + ] + if freq_estimation_simplify_error is None: + freq_estimation_simplify_error = self.settings.time_settings[ + "freq_estimation_simplify_error" + ] + + # check if obstype is valid + if obstype is not None: + assert obstype in list( + self.obstypes.keys() + ), f"{obstype} is not a known observation type. Use one of the default, or add a new to the defaults: {tlk_obstypes.keys()}." + + # Read template + template, options_kwargs = read_csv_template( + file=self.settings.templates["template_file"], + known_obstypes=list(self.obstypes.keys()), + data_long_format=long_format, + ) + + # update the kwargs using the option kwargs (i.g. arguments from in the template) + logger.debug(f"Options found in the template: {options_kwargs}") + if "long_format" in options_kwargs: + long_format = options_kwargs["long_format"] + logger.info(f"Set long_format = {long_format} from options in template.") + if "obstype" in options_kwargs: + obstype = options_kwargs["obstype"] + logger.info(f"Set obstype = {obstype} from options in template.") + if "obstype_unit" in options_kwargs: + obstype_unit = options_kwargs["obstype_unit"] + logger.info(f"Set obstype_unit = {obstype_unit} from options in template.") + if "obstype_description" in options_kwargs: + obstype_description = options_kwargs["obstype_description"] + logger.info( + f"Set obstype description = {obstype_description} from options in template." + ) + if "single" in options_kwargs: + self.update_default_name(options_kwargs["single"]) + logger.info( + f'Set single station name = {options_kwargs["single"]} from options in template.' + ) + if "timezone" in options_kwargs: + self.update_timezone(options_kwargs["timezone"]) + logger.info( + f'Set timezone = {options_kwargs["timezone"]} from options in template.' + ) + + # Read observations into pandas dataframe + df, template = import_data_from_csv( + input_file=self.settings.IO["input_data_file"], + template=template, + long_format=long_format, + obstype=obstype, # only relevant in wide format + obstype_units=obstype_unit, # only relevant in wide format + obstype_description=obstype_description, # only relevant in wide format + known_obstypes=list(self.obstypes.keys()), + kwargs_data_read=kwargs_data_read, + ) + + # Set timezone information + df.index = df.index.tz_localize( + tz=self.settings.time_settings["timezone"], + ambiguous="infer", + nonexistent="shift_forward", + ) + + # drop Nat datetimes if present + df = df.loc[pd.notnull(df.index)] + + logger.debug( + f'Data from {self.settings.IO["input_data_file"]} \ + imported to dataframe {df.head()}.' + ) + + if self.settings.IO["input_metadata_file"] is None: + logger.warning( + "No metadata file is defined,\ + no metadata attributes can be set!" + ) + + # if no metadata is given, and no stationname found, assume one station + # with default name + if "name" not in df.columns: + logger.warning( + f'No station names find in the observations! Assume the dataset is for ONE\ +station with the default name: {self.settings.app["default_name"]}.' + ) + df["name"] = str(self.settings.app["default_name"]) + + else: + logger.info( + f'Importing metadata from file: {self.settings.IO["input_metadata_file"]}' + ) + meta_df = import_metadata_from_csv( + input_file=self.settings.IO["input_metadata_file"], + template=template, + kwargs_metadata_read=kwargs_metadata_read, + ) + + # in dataset of one station, the name is most often not present! + if "name" not in df.columns: + logger.warning("No station names find in the observations!") + + # If there is ONE name in the metadf, than we use that name for + # the df, else we use the default name + if ("name" in meta_df.columns) & (meta_df.shape[0] == 1): + name = meta_df["name"].iloc[0] + df["name"] = name + logger.warning( + f"One stationname found in the metadata: {name}, this name is used for the data." + ) + else: + df["name"] = str(self.settings.app["default_name"]) + # for later merging, we add the name column with the default + # also in the metadf + meta_df["name"] = str(self.settings.app["default_name"]) + logger.warning( + f'Assume the dataset is for ONE station with the \ + default name: {self.settings.app["default_name"]}.' + ) + + # make shure name column in metadata and data have the same type for merging + df["name"] = df["name"].astype(str) + meta_df["name"] = meta_df["name"].astype(str) + + # merge additional metadata to observations + logger.debug(f"Head of data file, before merge: {df.head()}") + logger.debug(f"Head of metadata file, before merge: {meta_df.head()}") + + meta_cols = [ + colname for colname in meta_df.columns if not colname.startswith("_") + ] + additional_meta_cols = list(set(meta_cols).difference(df.columns)) + + if bool(additional_meta_cols): + logger.debug( + f"Merging metadata ({additional_meta_cols}) to dataset data by name." + ) + additional_meta_cols.append("name") # merging on name + # merge deletes datetime index somehow? so add it back. + df_index = df.index + df = df.merge( + right=meta_df[additional_meta_cols], how="left", on="name" + ) + df.index = df_index + + # update dataset object + self.data_template = pd.DataFrame().from_dict(template) + + # Remove stations whith only one observation (no freq estimation) + station_counts = df["name"].value_counts() + issue_station = station_counts[station_counts < 2].index.to_list() + logger.warning( + f"These stations will be removed because of only having one record: {issue_station}" + ) + df = df[~df["name"].isin(issue_station)] + + # convert dataframe to multiindex (datetime - name) + df = df.set_index(["name", df.index]) + + # Sort by name and then by datetime (to avoid negative freq) + df = df.sort_index(level=["name", "datetime"]) + + # dataframe with all data of input file + self.input_df = df.sort_index(level=["name", "datetime"]) + # Construct all attributes of the Dataset + self._construct_dataset( + df=df, + freq_estimation_method=freq_estimation_method, + freq_estimation_simplify=freq_estimation_simplify, + freq_estimation_simplify_error=freq_estimation_simplify_error, + )
+ + + def _construct_dataset( + self, + df, + freq_estimation_method, + freq_estimation_simplify, + freq_estimation_simplify_error, + fixed_freq_series=None, + update_full_metadf=True, + ): + """Construct the Dataset class from a IO dataframe. + + The df, metadf, outliersdf, gaps, missing timestamps and observationtypes attributes are set. + + + The observations are converted to the toolkit standard units if possible. + + Qc on IO is applied (duplicated check and invalid check) + gaps and missing + values are defined by assuming a frequency per station. + + Parameters + ---------- + df : pandas.dataframe + The dataframe containing the input observations and metadata. + freq_estimation_method : 'highest' or 'median' + Select wich method to use for the frequency estimation. If + 'highest', the highest apearing frequency is used. If 'median', the + median of the apearing frequencies is used. + freq_estimation_simplify : bool + If True, the likely frequency is converted to round hours, or round minutes. + The "freq_estimation_simplify_error' is used as a constrain. If the constrain is not met, + the simplification is not performed. + freq_estimation_simplify_error : Timedelta or str, optional + The tollerance string or object representing the maximum translation in time to form a simplified frequency estimation. + Ex: '5T' is 5 minuts, '1H', is one hour. + fixed_freq_series : pandas.series or None, optional + If you do not want the frequencies to be recalculated, one can pass the + frequency series to update the metadf["dataset_resolution"]. If None, the frequencies will be estimated. The default is None. + update_full_metadf : bool, optional + If True, the full Dataset.metadf will be updated. If False, only the frequency columns in the Dataset.metadf will be updated. The default is True. + + + Returns + ------- + None. + + """ + # Convert dataframe to dataset attributes + self._initiate_df_attribute(dataframe=df, update_metadf=update_full_metadf) + + # Check observation types and convert units if needed. + self._setup_of_obstypes_and_units() + + # Apply quality control on Import resolution + self._apply_qc_on_import() + + if fixed_freq_series is None: + freq_series = get_freqency_series( + df=self.df, + method=freq_estimation_method, + simplify=freq_estimation_simplify, + max_simplify_error=freq_estimation_simplify_error, + ) + + freq_series_import = freq_series + + else: + if "assumed_import_frequency" in self.metadf.columns: + freq_series_import = self.metadf[ + "assumed_import_frequency" + ] # No update + else: + freq_series_import = fixed_freq_series + freq_series = fixed_freq_series + + # add import frequencies to metadf (after import qc!) + self.metadf["assumed_import_frequency"] = freq_series_import + + self.metadf["dataset_resolution"] = freq_series + + # Remove gaps and missing from the observations AFTER timecoarsening + self.df = remove_gaps_from_obs(gaplist=self.gaps, obsdf=self.df) + self.df = self.missing_obs.remove_missing_from_obs(obsdf=self.df) + + def _initiate_df_attribute(self, dataframe, update_metadf=True): + """Initialize dataframe attributes.""" + logger.info(f"Updating dataset by dataframe with shape: {dataframe.shape}.") + + # Create dataframe with fixed order of observational columns + obs_col_order = [ + col for col in list(self.obstypes.keys()) if col in dataframe.columns + ] + + self.df = dataframe[obs_col_order].sort_index() + + if update_metadf: + # create metadataframe with fixed number and order of columns + metadf = dataframe.reindex(columns=self.settings.app["location_info"]) + metadf.index = metadf.index.droplevel("datetime") # drop datetimeindex + # drop dubplicates due to datetime + metadf = metadf[~metadf.index.duplicated(keep="first")] + + self.metadf = metadf_to_gdf(metadf) + + def _apply_qc_on_import(self): + # if the name is Nan, remove these records from df, and metadf (before) + # they end up in the gaps and missing obs + if np.nan in self.df.index.get_level_values("name"): + logger.warning( + f'Following observations are not linked to a station name and will be removed: {xs_save(self.df, np.nan, "name")}' + ) + self.df = self.df[~self.df.index.get_level_values("name").isna()] + if np.nan in self.metadf.index: + logger.warning( + f"Following station will be removed from the Dataset {self.metadf[self.metadf.index.isna()]}" + ) + self.metadf = self.metadf[~self.metadf.index.isna()] + + # find missing obs and gaps, and remove them from the df + self.missing_obs, self.gaps = missing_timestamp_and_gap_check( + df=self.df, + gapsize_n=self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"], + ) + + # Create gaps and missing obs objects + # self.gaps = gaps_list + # self.missing_obs = Missingob_collection(missing_obs) + + # Perform QC checks on original observation frequencies + self.df, dup_outl_df = duplicate_timestamp_check( + df=self.df, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["qc_check_settings"], + ) + if not dup_outl_df.empty: + self.update_outliersdf(add_to_outliersdf=dup_outl_df) + + self.df, nan_outl_df = invalid_input_check( + self.df, checks_info=self.settings.qc["qc_checks_info"] + ) + if not nan_outl_df.empty: + self.update_outliersdf(nan_outl_df) + + self.outliersdf = self.outliersdf.sort_index() + + # update the order and which qc is applied on which obstype + checked_obstypes = [ + obs for obs in self.df.columns if obs in self.obstypes.keys() + ] + + checknames = ["duplicated_timestamp", "invalid_input"] # KEEP order + + self._applied_qc = concat_save( + [ + self._applied_qc, + conv_applied_qc_to_df( + obstypes=checked_obstypes, ordered_checknames=checknames + ), + ], + ignore_index=True, + ) + + def _setup_of_obstypes_and_units(self): + """Function to setup all attributes related to observation types and + convert to standard units.""" + + # Check if all present observation types are known. + unknown_obs_cols = [ + obs_col + for obs_col in self.df.columns + if obs_col not in self.obstypes.keys() + ] + if len(unknown_obs_cols) > 0: + sys.exit(f"The following observation types are unknown: {unknown_obs_cols}") + + for obs_col in self.df.columns: + # Convert the units to the toolkit standards (if unit is known) + input_unit = self.data_template.loc["units", obs_col] + self.df[obs_col] = self.obstypes[obs_col].convert_to_standard_units( + input_data=self.df[obs_col], input_unit=input_unit + ) + + # Update the description of the obstype + description = self.data_template.loc["description", obs_col] + if pd.isna(description): + description = None + self.obstypes[obs_col].set_description(desc=description) + + # Update the original column name and original units + self.obstypes[obs_col].set_original_name( + self.data_template.loc["orig_name", obs_col] + ) + self.obstypes[obs_col].set_original_unit( + self.data_template.loc["units", obs_col] + ) + + # subset the obstypes attribute + self.obstypes = { + name: obj for name, obj in self.obstypes.items() if name in self.df.columns + } + + # ============================================================================= + # Physiography extractions + # ============================================================================= +
+[docs] + def get_lcz(self): + """Extract local climate zones for all stations. + + Function to extract the Local CLimate zones (LCZ) from the + wudapt global LCZ map on the Google engine for all stations. + + A 'LCZ' column will be added to the metadf, and series is returned. + + Returns + ------- + lcz_series : pandas.Series() + A series with the stationnames as index and the LCZ as values. + + """ + # connect to gee + connect_to_gee() + + # Extract LCZ for all stations + lcz_series = lcz_extractor( + metadf=self.metadf, + mapinfo=self.settings.gee["gee_dataset_info"]["global_lcz_map"], + ) + + # drop column if it was already present + if "lcz" in self.metadf: + self.metadf = self.metadf.drop(columns=["lcz"]) + + # update metadata + self.metadf = self.metadf.merge( + lcz_series.to_frame(), how="left", left_index=True, right_index=True + ) + return lcz_series
+ + +
+[docs] + def get_altitude(self): + """Extract Altitudes for all stations. + + Function to extract the Altitude from the SRTM Digital Elevation Data + global map on the Google engine for all stations. + + A 'altitude' column will be added to the metadf, and series is returned. + + Returns + ------- + altitude_series : pandas.Series() + A series with the stationnames as index and the altitudes as values. + + """ + # connect to gee + connect_to_gee() + + # Extract LCZ for all stations + altitude_series = height_extractor( + metadf=self.metadf, mapinfo=self.settings.gee["gee_dataset_info"]["DEM"] + ) + + # drop column if it was already present + if "altitude" in self.metadf: + self.metadf = self.metadf.drop(columns=["altitude"]) + + # update metadata + self.metadf = self.metadf.merge( + altitude_series.to_frame(), how="left", left_index=True, right_index=True + ) + return altitude_series
+ + +
+[docs] + def get_landcover( + self, buffers=[100], aggregate=True, overwrite=True, gee_map="worldcover" + ): + """Extract landcover for all stations. + + Extract the landcover fractions in a buffer with a specific radius for + all stations. If an aggregation scheme is define, one can choose to + aggregate the landcoverclasses. + + The landcover fractions will be added to the Dataset.metadf if overwrite + is True. Presented as seperate columns where each column represent the + landcovertype and corresponding buffer. + + + Parameters + ---------- + buffers : num, optional + The list of buffer radia in dataset units (meters for ESA worldcover) . The default is 100. + aggregate : bool, optional + If True, the classes will be aggregated with the corresponding + aggregation scheme. The default is True. + overwrite : bool, optional + If True, the Datset.metadf will be updated with the generated + landcoverfractions. The default is True. + gee_map : str, optional + The name of the dataset to use. This name should be present in the + settings.gee['gee_dataset_info']. If aggregat is True, an aggregation + scheme should included as well. The default is 'worldcover' + + Returns + ------- + frac_df : pandas.DataFrame + A Dataframe with index: name, buffer_radius and the columns are the + fractions. + + """ + # connect to gee + connect_to_gee() + + df_list = [] + for buffer in buffers: + + logger.info( + f"Extracting landcover from {gee_map} with buffer radius = {buffer}" + ) + # Extract landcover fractions for all stations + lc_frac_df, buffer = lc_fractions_extractor( + metadf=self.metadf, + mapinfo=self.settings.gee["gee_dataset_info"][gee_map], + buffer=buffer, + agg=aggregate, + ) + + # add buffer to the index + lc_frac_df["buffer_radius"] = buffer + lc_frac_df = lc_frac_df.reset_index().set_index(["name", "buffer_radius"]) + lc_frac_df = lc_frac_df.sort_index() + + # add to the list + df_list.append(lc_frac_df) + + # concat all df for different buffers to one + frac_df = concat_save(df_list) + frac_df = frac_df.sort_index() + + if overwrite: + + for buf in frac_df.index.get_level_values("buffer_radius").unique(): + buf_df = xs_save(frac_df, buf, level="buffer_radius") + buf_df.columns = [col + f"_{int(buf)}m" for col in buf_df.columns] + + # overwrite the columns or add them if they did not exist + self.metadf[buf_df.columns] = buf_df + + return frac_df
+ + +
+[docs] + def make_gee_plot(self, gee_map, show_stations=True, save=False, outputfile=None): + """Make an interactive plot of a google earth dataset. + + The location of the stations can be plotted on top of it. + + Parameters + ---------- + gee_map : str, optional + The name of the dataset to use. This name should be present in the + settings.gee['gee_dataset_info']. If aggregat is True, an aggregation + scheme should included as well. The default is 'worldcover' + show_stations : bool, optional + If True, the stations will be plotted as markers. The default is True. + save : bool, optional + If True, the map will be saved as an html file in the output_folder + as defined in the settings if the outputfile is not set. The + default is False. + outputfile : str, optional + Specify the path of the html file if save is True. If None, and save + is true, the html file will be saved in the output_folder. The + default is None. + + Returns + ------- + Map : geemap.foliumap.Map + The folium Map instance. + + + Warning + --------- + To display the interactive map a graphical backend is required, which + is often missing on (free) cloud platforms. Therefore it is better to + set save=True, and open the .html in your browser + + """ + # Connect to GEE + connect_to_gee() + + # get the mapinfo + mapinfo = self.settings.gee["gee_dataset_info"][gee_map] + + # Read in covers, numbers and labels + covernum = list(mapinfo["colorscheme"].keys()) + colors = list(mapinfo["colorscheme"].values()) + covername = [mapinfo["categorical_mapper"][covnum] for covnum in covernum] + + # create visparams + vis_params = { + "min": min(covernum), + "max": max(covernum), + "palette": colors, # hex colors! + } + + if "band_of_use" in mapinfo: + band = mapinfo["band_of_use"] + else: + band = None + + Map = folium_plot( + mapinfo=mapinfo, + band=band, + vis_params=vis_params, + labelnames=covername, + layername=gee_map, + legendname=f"{gee_map} covers", + # showmap = show, + ) + + if show_stations: + if not _validate_metadf(self.metadf): + logger.warning( + "Not enough coordinates information is provided to plot the stations." + ) + else: + Map = add_stations_to_folium_map(Map=Map, metadf=self.metadf) + + # Save if needed + if save: + if outputfile is None: + # Try to save in the output folder + if self.settings.IO["output_folder"] is None: + logger.warning( + "The outputfolder is not set up, use the update_settings to specify the output_folder." + ) + + else: + filename = f"gee_{gee_map}_figure.html" + filepath = os.path.join(self.settings.IO["output_folder"], filename) + else: + # outputfile is specified + # 1. check extension + if not outputfile.endswith(".html"): + outputfile = outputfile + ".html" + + filepath = outputfile + + print(f"Gee Map will be save at {filepath}") + logger.info(f"Gee Map will be save at {filepath}") + Map.save(filepath) + + return Map
+
+ + + +def _can_qc_be_applied(dataset, obstype, checkname): + """Test if a qc check can be applied.""" + # test if check is already applied on the obstype + applied_df = dataset._applied_qc + can_be_applied = ( + not applied_df[ + (applied_df["obstype"] == obstype) & (applied_df["checkname"] == checkname) + ].shape[0] + > 0 + ) + + if not can_be_applied: + logger.warning( + f"The {checkname} check can NOT be applied on {obstype} because it was already applied on this observation type!" + ) + return False + # test of all settings are present for the check on the obstype + if checkname not in [ + "duplicated_timestamp", + "titan_buddy_check", + "titan_sct_resistant_check", + ]: + # these checks are obstype depending, + required_keys = list( + dataset.settings.qc["qc_check_settings"][checkname]["temp"].keys() + ) # use temp to find all required settings + if obstype not in dataset.settings.qc["qc_check_settings"][checkname].keys(): + logger.warning( + f"The {checkname} check can NOT be applied on {obstype} because none of the required check settings are found. The following are missing: {required_keys}" + ) + return False + + if not all( + [ + req_key + in dataset.settings.qc["qc_check_settings"][checkname][obstype].keys() + for req_key in required_keys + ] + ): + # not all required settings are available + missing_settings = [ + req_key + for req_key in required_keys + if req_key + not in dataset.settings.qc["qc_check_settings"][checkname][ + obstype + ].keys() + ] + logger.warning( + f"The {checkname} check can NOT be applied on {obstype} because not all required check settings ar found. The following are missing: {missing_settings}" + ) + return False + + return True +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/dataset_settings_updater.html b/docs/_build/_modules/metobs_toolkit/dataset_settings_updater.html new file mode 100644 index 00000000..eca2c29d --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/dataset_settings_updater.html @@ -0,0 +1,933 @@ + + + + + + metobs_toolkit.dataset_settings_updater — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for metobs_toolkit.dataset_settings_updater

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+
+"""
+Extension of the Dataset class (methods for updating settings).
+@author: thoverga
+"""
+import logging
+import pandas as pd
+
+
+import metobs_toolkit.dataset as dataset
+
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +class Dataset(dataset.Dataset): + """Extension on the metobs_toolkit.Dataset class with updaters.""" + +
+[docs] + def update_settings( + self, + output_folder=None, + input_data_file=None, + input_metadata_file=None, + template_file=None, + ): + """Update the most common input-output (IO) settings. + + (This should be applied before importing the observations.) + + When an update value is None, the specific setting will not be updated. + + Parameters + ---------- + output_folder : string, optional + A directory to store the output to. The default is None. + input_data_file : string, optional + Path to the input data file with observations. The default is None. + input_metadata_file : string, optional + Path to the input metadata file. The default is None. + template_file : string, optional + Path to the mapper-template csv file to be used on the observations + and metadata. The default is None. + + Returns + ------- + None. + + """ + self.settings.update_IO( + output_folder=output_folder, + input_data_file=input_data_file, + input_metadata_file=input_metadata_file, + template_file=template_file, + )
+ + +
+[docs] + def update_timezone(self, timezonestr): + """Change the timezone of the input data. + + By default UTC is assumed. + A valid timezonestring is an element of the pytz.all_timezones. + + Parameters + ---------- + timezonestr : string + Timezone string of the input observations. Element of pytz.all_timezones. + + Returns + ------- + None. + + """ + self.settings.update_timezone(timezonestr)
+ + +
+[docs] + def update_default_name(self, default_name): + """Update the default name (the name of the station). + + This name will be used when no names are found in the observational dataset. + + (All observations are assumed to come from one station.) + + Parameters + ---------- + default_name : string + Default name to use when no names are present in the data. + + Returns + ------- + None. + + """ + self.settings.app["default_name"] = str(default_name)
+ + +
+[docs] + def update_gap_and_missing_fill_settings( + self, + gap_interpolation_method=None, + gap_interpolation_max_consec_fill=None, + gap_debias_prefered_leading_period_hours=None, + gap_debias_prefered_trailing_period_hours=None, + gap_debias_minimum_leading_period_hours=None, + gap_debias_minimum_trailing_period_hours=None, + automatic_max_interpolation_duration_str=None, + missing_obs_interpolation_method=None, + ): + """Update fill settings for gaps and missing observations. + + If None, the current setting is not updated. + + Parameters + ---------- + gap_interpolation_method : str, optional + The interpolation method to pass to numpy.interpolate. The default is None. + gap_interpolation_max_consec_fill : int, optional + Maximum number of lacking observations to interpolate. This is + passed to the limit argument of Numpy.interpolate. The default is + None. + gap_debias_prefered_leading_period_hours : int, optional + The preferd size of the leading period for calculating hourly + biasses wrt the model. The default is None. + gap_debias_prefered_trailing_period_hours : int, optional + The preferd size of the trailing period for calculating hourly + biasses wrt the model. The default is None. + gap_debias_minimum_leading_period_hours : int, optional + The minimum size of the leading period for calculating hourly + biasses wrt the model. The default is None. + gap_debias_minimum_trailing_period_hours : int, optional + The minimum size of the trailing period for calculating hourly + biasses wrt the model. The default is None. + automatic_max_interpolation_duration_str : Timedelta or str, optional + Maximum duration to apply interpolation for gapfill when using the + automatic gapfill method. Gaps with longer durations will be filled + using debiased modeldata. The default is None. + missing_obs_interpolation_method : str, optional + The interpolation method to pass to numpy.interpolate. The default is None. + + Returns + ------- + None. + + """ + # Gap linear interpolation + if gap_interpolation_method is not None: + logger.info( + f' The gap interpolation method is updated: \ + {self.settings.gap["gaps_fill_settings"]["linear"]["method"]} --> {str(gap_interpolation_method)}' + ) + self.settings.gap["gaps_fill_settings"]["linear"]["method"] = str( + gap_interpolation_method + ) + + if gap_interpolation_max_consec_fill is not None: + logger.info( + f' The gap max number of consecutive interpolations is updated: \ + {self.settings.gap["gaps_fill_settings"]["linear"]["max_consec_fill"]} --> {abs(int(gap_interpolation_max_consec_fill))}' + ) + self.settings.gap["gaps_fill_settings"]["linear"]["max_consec_fill"] = abs( + int(gap_interpolation_max_consec_fill) + ) + + # Gap debias fill + if gap_debias_prefered_leading_period_hours is not None: + logger.info( + f' The size of the prefered leading period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_leading_sample_duration_hours"]} --> {abs(int(gap_debias_prefered_leading_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "prefered_leading_sample_duration_hours" + ] = abs(int(gap_debias_prefered_leading_period_hours)) + + if gap_debias_prefered_trailing_period_hours is not None: + logger.info( + f' The size of the prefered trailing period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_trailing_sample_duration_hours"]} --> {abs(int(gap_debias_prefered_trailing_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "prefered_trailing_sample_duration_hours" + ] = abs(int(gap_debias_prefered_trailing_period_hours)) + + if gap_debias_minimum_leading_period_hours is not None: + logger.info( + f' The minimum size of the leading period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_leading_sample_duration_hours"]} --> {abs(int(gap_debias_minimum_leading_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "minimum_leading_sample_duration_hours" + ] = abs(int(gap_debias_minimum_leading_period_hours)) + + if gap_debias_minimum_trailing_period_hours is not None: + logger.info( + f' The minimum size of the trailing period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_trailing_sample_duration_hours"]} --> {abs(int(gap_debias_minimum_trailing_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "minimum_trailing_sample_duration_hours" + ] = abs(int(gap_debias_minimum_trailing_period_hours)) + + # Gapfill automatic + if automatic_max_interpolation_duration_str is not None: + if is_timedelta(str(automatic_max_interpolation_duration_str)): + logger.info( + f' The maximum interpolation duration for automatic gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["automatic"]["max_interpolation_duration_str"]} --> {str(automatic_max_interpolation_duration_str)}' + ) + self.settings.gap["gaps_fill_settings"]["automatic"][ + "max_interpolation_duration_str" + ] = str(automatic_max_interpolation_duration_str) + else: + logger.warning( + f" {str(automatic_max_interpolation_duration_str)} is not a valid timedelta string. No update on this setting." + ) + + # Missing obs interpolation + if missing_obs_interpolation_method is not None: + logger.info( + f' The missing observations interpolation method is updated: \ + {self.settings.missing_obs["missing_obs_fill_settings"]["linear"]["method"]} --> {str(missing_obs_interpolation_method)}' + ) + self.settings.missing_obs["missing_obs_fill_settings"]["linear"][ + "method" + ] = str(missing_obs_interpolation_method)
+ + +
+[docs] + def update_qc_settings( + self, + obstype="temp", + gapsize_in_records=None, + dupl_timestamp_keep=None, + persis_time_win_to_check=None, + persis_min_num_obs=None, + rep_max_valid_repetitions=None, + gross_value_min_value=None, + gross_value_max_value=None, + win_var_max_increase_per_sec=None, + win_var_max_decrease_per_sec=None, + win_var_time_win_to_check=None, + win_var_min_num_obs=None, + step_max_increase_per_sec=None, + step_max_decrease_per_sec=None, + buddy_radius=None, + buddy_min_sample_size=None, + buddy_max_elev_diff=None, + buddy_min_std=None, + buddy_threshold=None, + buddy_elev_gradient=None, + ): + """Update the QC settings for the specified observation type. + + If a argument value is None, the default settings will not be updated. + + Parameters + ---------- + obstype : str, optional + The observation type to update the quality control settings for. + The default is 'temp'. + gapsize_in_records : int (> 0), optional + A gap is defined as a sequence of missing observations with a length + greater or equal to this number, on the input frequencies. The default is None. + dupl_timestamp_keep : bool, optional + Setting that determines to keep, or remove duplicated timestamps. The default is None. + persis_time_win_to_check :automatic_max_interpolation_duration_str + Time window for persistance check. The default is None. + persis_min_num_obs : int (> 0), optional + Minimal window members for persistance check. The default is None. + rep_max_valid_repetitions : int (> 0), optional + Maximal valid repetitions for repetitions check. The default is None. + gross_value_min_value : numeric, optional + Minimal value for gross value check. The default is None. + gross_value_max_value : numeric, optional + Maximal value for gross value check. The default is None. + win_var_max_increase_per_sec : numeric (> 0), optional + Maximal increase per second for window variation check. The default is None. + win_var_max_decrease_per_sec : numeric (> 0), optional + Maximal decrease per second for window variation check. The default is None. + win_var_time_win_to_check : Timedelta or str, optional + Time window for window variation check. The default is None. + win_var_min_num_obs : int (> 0), optional + Minimal window members for window variation check. The default is None. + step_max_increase_per_sec : numeric, optional + Maximal increase per second for step check. The default is None. + step_max_decrease_per_sec : numeric (< 0), optional + Maximal decrease per second for step check. The default is None. + buddy_radius : numeric (> 0), optional + The radius to define neighbours in meters. The default is None. + buddy_min_sample_size : int (> 2), optional + The minimum sample size to calculate statistics on. The default is + None. + buddy_max_elev_diff : numeric (> 0), optional + The maximum altitude difference allowed for buddies. The default is + None. + buddy_min_std : numeric (> 0), optional + The minimum standard deviation for sample statistics. This should + represent the accuracty of the observations. The default is None. + buddy_threshold : numeric (> 0), optional + The threshold (std units) for flaggging observations as buddy + outliers. The default is None. + buddy_elev_gradient : numeric, optional + Describes how the obstype changes with altitude (in meters). The + default is -0.0065. The default is None. + + Returns + ------- + None. + + Note + ------- + The gap defenition is independend of the observation type, and is thus set for + all the observation types. + + """ + assert ( + obstype in self.obstypes.keys() + ), f"{obstype} is not a known observation type" + + def _updater(dictionary, obstype, argname, value): + """Update nested dictionaries.""" + if obstype not in dictionary.keys(): + dictionary[obstype] = {} + printstr = f"{obstype} : unexisting --> {value}" + elif argname not in dictionary[obstype]: + printstr = f"{obstype} : unexisting --> {value}" + else: + printstr = f"{obstype} : {dictionary[obstype][argname]} --> {value}" + + dictionary[obstype][argname] = value + return dictionary, printstr + + # Gap defenition + if gapsize_in_records is not None: + logger.info( + f' The defenition of a gap (=gapsize) is updated: \ + {self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"]} --> {abs(int(gapsize_in_records))}' + ) + self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"] = abs( + int(gapsize_in_records) + ) + + # Gross value check + if gross_value_max_value is not None: + self.settings.qc["qc_check_settings"]["gross_value"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["gross_value"], + obstype=obstype, + argname="max_value", + value=float(gross_value_max_value), + ) + logger.info(f"Maximal value for gross value check updated: {updatestr}") + + if gross_value_min_value is not None: + self.settings.qc["qc_check_settings"]["gross_value"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["gross_value"], + obstype=obstype, + argname="min_value", + value=float(gross_value_min_value), + ) + logger.info(f"Minimal value for gross value check updated: {updatestr}") + + # Duplicate check + if dupl_timestamp_keep is not None: + logger.info( + f'Setting to keep (True) are remove (False) duplicate timestamps updated: \ + {self.settings.qc["qc_check_settings"]["duplicated_timestamp"]["keep"]} --> {bool(dupl_timestamp_keep)}' + ) + self.settings.qc["qc_check_settings"]["duplicated_timestamp"][ + "keep" + ] = bool(dupl_timestamp_keep) + + # Persistance check + if persis_time_win_to_check is not None: + if is_timedelta(str(persis_time_win_to_check)): + ( + self.settings.qc["qc_check_settings"]["persistance"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["persistance"], + obstype=obstype, + argname="time_window_to_check", + value=str(persis_time_win_to_check), + ) + + logger.info( + f"Time window size for persistance check updated: {updatestr}" + ) + + else: + logger.warning( + f" {str(persis_time_win_to_check)} is not a valid timedelta string. No update on this setting." + ) + + if persis_min_num_obs is not None: + self.settings.qc["qc_check_settings"]["persistance"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["persistance"], + obstype=obstype, + argname="min_num_obs", + value=abs(int(persis_min_num_obs)), + ) + + logger.info( + f"Minimal window members for persistance check updated: {updatestr}" + ) + + # Repetitions check + if rep_max_valid_repetitions is not None: + self.settings.qc["qc_check_settings"]["repetitions"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["repetitions"], + obstype=obstype, + argname="max_valid_repetitions", + value=abs(int(rep_max_valid_repetitions)), + ) + logger.info( + f"Maximal valid repetitions for repetitions check updated: {updatestr}" + ) + + # Window variation check + if win_var_max_increase_per_sec is not None: + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], + obstype=obstype, + argname="max_increase_per_second", + value=abs(float(win_var_max_increase_per_sec)), + ) + + logger.info( + f"Maximal increase per second for window variation check updated: {updatestr}" + ) + + if win_var_max_decrease_per_sec is not None: + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], + obstype=obstype, + argname="max_decrease_per_second", + value=abs(float(win_var_max_decrease_per_sec)), + ) + logger.info( + f"Maximal decrease per second for window variation check updated: {updatestr}" + ) + + if win_var_time_win_to_check is not None: + if is_timedelta(str(win_var_time_win_to_check)): + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], + obstype=obstype, + argname="time_window_to_check", + value=str(win_var_time_win_to_check), + ) + logger.info( + f"Time window for window variation check updated: {updatestr}" + ) + else: + logger.warning( + f" {str(persis_time_win_to_check)} is not a valid timedelta string. No update on this setting." + ) + + if win_var_min_num_obs is not None: + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], + obstype=obstype, + argname="min_window_members", + value=abs(int(win_var_min_num_obs)), + ) + logger.info( + f"Minimal window members for window variation check updated: {updatestr}" + ) + + # Step check + if step_max_increase_per_sec is not None: + self.settings.qc["qc_check_settings"]["step"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["step"], + obstype=obstype, + argname="max_increase_per_second", + value=abs(float(step_max_increase_per_sec)), + ) + + logger.info( + f"Maximal increase per second for step check updated: {updatestr}" + ) + + if step_max_decrease_per_sec is not None: + self.settings.qc["qc_check_settings"]["step"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["step"], + obstype=obstype, + argname="max_decrease_per_second", + value=-1.0 * abs(float(step_max_decrease_per_sec)), + ) + + logger.info( + f"Maximal decrease per second for step check updated: {updatestr}" + ) + + # Buddy check + buddy_elev_gradient = None + if buddy_radius is not None: + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], + obstype=obstype, + argname="radius", + value=abs(float(buddy_radius)), + ) + logger.info(f"Buddy radius for buddy check updated: {updatestr}") + + if buddy_min_sample_size is not None: + value = abs(int(buddy_min_sample_size)) + if value >= 2: + ( + self.settings.qc["qc_check_settings"]["buddy_check"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], + obstype=obstype, + argname="num_min", + value=value, + ) + logger.info( + f"Minimum number of buddies for buddy check updated: {updatestr}" + ) + else: + logger.warning( + f"Minimum number of buddies must be >= 2, but {value} is given. Not updated." + ) + + if buddy_max_elev_diff is not None: + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], + obstype=obstype, + argname="max_elev_diff", + value=abs(float(buddy_max_elev_diff)), + ) + logger.info( + f"Max elevation differences for buddy check updated: {updatestr}" + ) + + if buddy_min_std is not None: + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], + obstype=obstype, + argname="min_std", + value=abs(float(buddy_min_std)), + ) + logger.info(f"Minimum std in sample for buddy check updated: {updatestr}") + + if buddy_threshold is not None: + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], + obstype=obstype, + argname="threshold", + value=abs(float(buddy_threshold)), + ) + logger.info( + f"Outlier threshold (in sigma) for buddy check updated: {updatestr}" + ) + + if buddy_elev_gradient is not None: + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], + obstype=obstype, + argname="elev_gradient", + value=float(buddy_max_elev_diff), + ) + logger.info(f"Elevation gradient for buddy check updated: {updatestr}")
+ + +
+[docs] + def update_titan_qc_settings( + self, + obstype="temp", + # buddy settings + buddy_radius=None, + buddy_num_min=None, + buddy_threshold=None, + buddy_max_elev_diff=None, + buddy_elev_gradient=None, + buddy_min_std=None, + buddy_num_iterations=None, + buddy_debug=None, + # sct settings + sct_num_min_outer=None, + sct_num_max_outer=None, + sct_inner_radius=None, + sct_outer_radius=None, + sct_num_iterations=None, + sct_num_min_prof=None, + sct_min_elev_diff=None, + sct_min_horizontal_scale=None, + sct_max_horizontal_scale=None, + sct_kth_closest_obs_horizontal_scale=None, + sct_vertical_scale=None, + sct_mina_deviation=None, # vec Minimum admissible value + sct_maxa_deviation=None, # vec Maximum admissible value + sct_minv_deviation=None, # vec Minimum valid value + sct_maxv_deviation=None, # vec Maximum valid value + sct_eps2=None, # Ratio of observation error variance to background variance + sct_tpos=None, # vec Positive deviation allowed + sct_tneg=None, # vec Negative deviation allowed + sct_basic=None, + sct_debug=None, + ): + """Update the TITAN QC settings for the specified observation type. + + If a argument value is None, the default settings will not be updated. + + For a detailed explanation of the settings, we refer to the + [TITAN documetation](https://github.com/metno/titanlib/wiki) + + Parameters + ---------- + The observation type to update the quality control settings for. + The default is 'temp'. + buddy_radius : int (> 0), optional + Search radius in m. The default is None. + buddy_num_min : int (> 0), optional + The minimum number of buddies a station can have. The default is + None. + buddy_threshold : num (> 0), optional + The variance threshold for flagging a station. The default is None. + buddy_max_elev_diff : num, optional + The maximum difference in elevation for a buddy (if negative will not check for heigh difference). The default is None. + buddy_elev_gradient : num, optional + Linear elevation temperature gradient with height. The default is None. + buddy_min_std : num (> 0), optional + If the standard deviation of values in a neighborhood are less than min_std, min_std will be used instead. The default is None. + buddy_num_iterations : int (> 0), optional + The number of iterations to perform. The default is None. + buddy_debug : bool, optional + If True, print out debug information. The default is None. + sct_num_min_outer : int (> 0), optional + Minimal points in outer circle. The default is None. + sct_num_max_outer : int (> 0), optional + Maximal points in outer circle. The default is None. + sct_inner_radius : num (> 0), optional + Radius of inner circle. The default is None. + sct_outer_radius : num (> 0), optional + Radius of outer circle. The default is None. + sct_num_iterations : int (> 0), optional + Number of iterations. The default is None. + sct_num_min_prof : int (> 0), optional + Minimum number of observations to compute vertical profile. The default is None. + sct_min_elev_diff : num (> 0), optional + Minimum elevation difference to compute vertical profile. The default is None. + sct_min_horizontal_scale : num (> 0), optional + Minimum horizontal decorrelation length. The default is None. + sct_max_horizontal_scale : num (> 0), optional + Maximum horizontal decorrelation length. The default is None. + sct_kth_closest_obs_horizontal_scale : int (> 0), optional + Number of closest observations to consider. The default is None. + sct_vertical_scale : num (> 0), optional + Vertical decorrelation length. The default is None. + sct_mina_deviation : num (> 0), optional + Minimum admissible value deviation. The default is None. + sct_maxa_deviation : num (> 0), optional + Maximum admissible value deviation. The default is None. + sct_minv_deviation : num (> 0), optional + Minimum valid value deviation. The default is None. + sct_maxv_deviation : num (> 0), optional + Maximum valid value deviation. The default is None. + sct_eps2 : num (> 0), optional + Ratio of observation error variance to background variance. The default is None. + sct_tpos : num (> 0), optional + Positive deviation allowed. The default is None. + sct_tneg : num (> 0), optional + Positive deviation allowed. The default is None. + sct_basic : bool, optional + Basic mode. The default is None. + sct_debug : bool, optional + If True, print out debug information. The default is None. + + Returns + ------- + None. + + """ + assert ( + obstype in self.obstypes.keys() + ), f"{obstype} is not a known observation type" + + # check buddy settings for updates + buddy_attrs = { + "buddy_radius": {"new_value": buddy_radius, "dtype": "numeric"}, + "buddy_num_min": {"new_value": buddy_num_min, "dtype": "int"}, + "buddy_threshold": {"new_value": buddy_threshold, "dtype": "numeric"}, + "buddy_max_elev_diff": { + "new_value": buddy_max_elev_diff, + "dtype": "numeric", + }, + "buddy_elev_gradient": { + "new_value": buddy_elev_gradient, + "dtype": "numeric", + }, + "buddy_min_std": {"new_value": buddy_min_std, "dtype": "numeric"}, + "buddy_num_iterations": {"new_value": buddy_num_iterations, "dtype": "int"}, + "buddy_debug": {"new_value": buddy_debug, "dtype": "bool"}, + } + + sct_attrs = { + "sct_num_min_outer": {"new_value": sct_num_min_outer, "dtype": "int"}, + "sct_num_max_outer": {"new_value": sct_num_max_outer, "dtype": "int"}, + "sct_inner_radius": {"new_value": sct_inner_radius, "dtype": "numeric"}, + "sct_outer_radius": {"new_value": sct_outer_radius, "dtype": "numeric"}, + "sct_num_iterations": {"new_value": sct_num_iterations, "dtype": "int"}, + "sct_num_min_prof": {"new_value": sct_num_min_prof, "dtype": "int"}, + "sct_min_elev_diff": {"new_value": sct_min_elev_diff, "dtype": "numeric"}, + "sct_min_horizontal_scale": { + "new_value": sct_min_horizontal_scale, + "dtype": "numeric", + }, + "sct_max_horizontal_scale": { + "new_value": sct_max_horizontal_scale, + "dtype": "numeric", + }, + "sct_kth_closest_obs_horizontal_scale": { + "new_value": sct_kth_closest_obs_horizontal_scale, + "dtype": "int", + }, + "sct_vertical_scale": {"new_value": sct_vertical_scale, "dtype": "numeric"}, + "sct_mina_deviation": {"new_value": sct_mina_deviation, "dtype": "numeric"}, + "sct_minv_deviation": {"new_value": sct_minv_deviation, "dtype": "numeric"}, + "sct_maxv_deviation": {"new_value": sct_maxv_deviation, "dtype": "numeric"}, + "sct_eps2": {"new_value": sct_eps2, "dtype": "numeric"}, + "sct_tpos": {"new_value": sct_tpos, "dtype": "numeric"}, + "sct_tneg": {"new_value": sct_tneg, "dtype": "numeric"}, + "sct_basic": {"new_value": sct_basic, "dtype": "bool"}, + "sct_debug": {"new_value": sct_debug, "dtype": "bool"}, + } + + def _iterate_attributes(obstype, attr_dict, attr_prefix, checkname): + + if obstype not in self.settings.qc["titan_check_settings"][checkname]: + self.settings.qc["titan_check_settings"][checkname][obstype] = {} + + for key, val in attr_dict.items(): + if not val["new_value"] is None: + settings_key = key.split(attr_prefix)[1] # remove 'buddy_' + if val["dtype"] == "numeric": + new_val = float(val["new_value"]) + elif val["dtype"] == "int": + new_val = int(val["new_value"]) + elif val["dtype"] == "bool": + new_val = bool(val["new_value"]) + else: # val['dtype'] == 'str': + new_val = str(val["new_value"]) + + try: + old_value = self.settings.qc["titan_check_settings"][checkname][ + obstype + ][settings_key] + print( + f'{key.replace("_", " ")} for the TITAN buddy check updated: {old_value}--> {new_val}' + ) + except KeyError: + print( + f'{key.replace("_", " ")} for the TITAN buddy check added: --> {new_val}' + ) + + self.settings.qc["titan_check_settings"][checkname][obstype][ + settings_key + ] = new_val + + _iterate_attributes(obstype, buddy_attrs, "buddy_", "titan_buddy_check") + _iterate_attributes(obstype, sct_attrs, "sct_", "titan_sct_resistant_check")
+
+ + + +# ============================================================================= +# dtype check functions +# ============================================================================= + + +
+[docs] +def is_timedelta(timedeltastr): + """Test if string can be timedelta representation. + + Parameters + ---------- + timedeltastr : str + Representation of timedelta. + + Returns + ------- + bool + + + """ + try: + pd.to_timedelta(timedeltastr) + return True + except ValueError: + return False
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/df_helpers.html b/docs/_build/_modules/metobs_toolkit/df_helpers.html new file mode 100644 index 00000000..72324ae0 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/df_helpers.html @@ -0,0 +1,706 @@ + + + + + + metobs_toolkit.df_helpers — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.df_helpers

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+A collection of functions on dataframe that are often used.
+
+Created on Thu Mar  2 16:00:59 2023
+
+@author: thoverga
+"""
+
+import sys
+import pandas as pd
+import numpy as np
+import geopandas as gpd
+import itertools
+import pytz
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +def fmt_datetime_argument(dt, target_tz_str): + """Convert naive datetime to tz-aware. + + Helper function to format the datetime, a user enters as argument, to the + correct timezone. + + If the datetime is timezone unaware, the toolkit ASSUMES the dt is in the + same timezone as target_tz_str (the timezone of the dataset). + + if dt is None, None is returned + Parameters + ---------- + dt : datetime.datetime + A datetime to convert to the timezone of tz_str_data. + target_tz_str : str + a pytz timezone string, to convert/assign the dt to. + + Returns + ------- + dt : datetime.datetime + Timezone-Aware datetime in tzone=tz_str_data. + + """ + if dt is None: + return None + + # check if datime is timezone aware + if dt.tzinfo is not None and dt.tzinfo.utcoffset(dt) is not None: + # timezone aware + dt = dt.astimezone(pytz.timezone(target_tz_str)) + + else: # timezon unaware + # assume timezone is the timezone of the data! + dt = pytz.timezone(target_tz_str).localize(dt) + return pd.to_datetime(dt)
+ + + +
+[docs] +def xs_save(df, key, level, drop_level=True): + """Similar as pandas xs, but returns an empty df when key is not found.""" + try: + return df.xs(key, level=level, drop_level=drop_level) + except KeyError: + # create empty df with same columns and index names + columns = df.columns + names = list(df.index.names) + if drop_level: + names.remove(level) + + levels = [[name] for name in names] + codes = [[] for name in names] + idx = pd.MultiIndex( + levels=levels, + codes=codes, + names=names, + ) + + return pd.DataFrame(index=idx, columns=columns)
+ + + +
+[docs] +def concat_save(df_list, **kwargs): + """Concat dataframes row-wise without triggering the Futurwarning of concating empyt df's.""" + + if all([isinstance(df, pd.DataFrame) for df in df_list]): + # This line will filter columns with all NAN values (so empty dfs + all NA entries are filtered out) + return pd.concat([df.dropna(axis=1, how="all") for df in df_list], **kwargs) + if all([isinstance(df, pd.Series) for df in df_list]): + # This line will filter out empty series + return pd.concat([ser for ser in df_list if not ser.empty], **kwargs) + sys.exit("Cannot concat Dataframes and Series together")
+ + + +
+[docs] +def init_multiindex(): + """Construct a name-datetime pandas multiindex.""" + return pd.MultiIndex( + levels=[["name"], ["datetime"]], codes=[[], []], names=["name", "datetime"] + )
+ + + +
+[docs] +def init_multiindexdf(): + """Construct a name-datetime pandas multiindexdataframe.""" + return pd.DataFrame(index=init_multiindex())
+ + + +
+[docs] +def init_triple_multiindex(): + """Construct a name-datetime-obstype pandas multiindex.""" + my_index = pd.MultiIndex( + levels=[["name"], ["datetime"], ["obstype"]], + codes=[[], [], []], + names=["name", "datetime", "obstype"], + ) + return my_index
+ + + +
+[docs] +def init_triple_multiindexdf(): + """Construct a name-datetime-obstype pandas multiindexdataframe.""" + return pd.DataFrame(index=init_triple_multiindex())
+ + + +
+[docs] +def format_outliersdf_to_doubleidx(outliersdf): + """Convert outliersdf to multiindex dataframe if needed. + + This is applied when the obstype level in the index is not relevant. + + + Parameters + ---------- + ouliersdf : Dataset.outliersdf + The outliers dataframe to format to name - datetime index. + + Returns + ------- + pandas.DataFrame + The outliersdfdataframe where the 'obstype' level is dropped, if it was present. + + """ + if "obstype" in outliersdf.index.names: + return outliersdf.droplevel("obstype") + else: + return outliersdf
+ + + +
+[docs] +def value_labeled_doubleidxdf_to_triple_idxdf( + df, known_obstypes, value_col_name="value", label_col_name="label" +): + """Convert double to triple index based on obstype column. + + This function converts a double index dataframe with an 'obstype' column, + and a 'obstype_final_label' column to a triple index dataframe where the + obstype values are added to the index. + + Parameters + ---------- + df : pd.DataFrame + Dataframe with ['name', 'datetime'] as index and two columns: [obstype, obstype_final_label]. + Where obstype is an observation type. + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. + value_col_name : str, optional + Name of the column for the values. The default is 'value'. + label_col_name : str, optional + Name of the column for the labels. The default is 'label'. + + Returns + ------- + values : pd.DataFrame() + Dataframe with a ['name', 'datetime', obstype] index and two columnd: + [value_col_name, label_col_name] + + """ + if df.empty: + return df + + present_obstypes = [col for col in df.columns if col in known_obstypes] + + # get all values in triple index form + values = ( + df[present_obstypes] + .stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: value_col_name}) + .set_index(["name", "datetime", "obstype"]) + ) + + # make a triple label dataframe + labelsdf = pd.DataFrame() + for obstype in present_obstypes: + subdf = df.loc[:, [obstype + "_final_label"]] + subdf["obstype"] = obstype + subdf = subdf.reset_index() + subdf = subdf.set_index(["name", "datetime", "obstype"]) + subdf = subdf.rename(columns={obstype + "_final_label": label_col_name}) + + labelsdf = concat_save([labelsdf, subdf]) + + values[label_col_name] = labelsdf[label_col_name] + + return values
+ + + +def _find_closes_occuring_date(refdt, series_of_dt, where="before"): + if where == "before": + diff = refdt - (series_of_dt[series_of_dt < refdt]) + elif where == "after": + diff = (series_of_dt[series_of_dt > refdt]) - refdt + + if diff.empty: + # no occurences before of after + + return np.nan + else: + return min(diff).total_seconds() + + +
+[docs] +def remove_outliers_from_obs(obsdf, outliersdf): + """Remove outlier records from observation records.""" + # TODO this function can only be used with care!!! + # because all timestamps will be removed that have an oulier in one specific obstype !!!! + return obsdf.loc[~obsdf.index.isin(outliersdf.index)]
+ + + +
+[docs] +def conv_tz_multiidxdf(df, timezone): + """Convert datetime index to other timezone.""" + df.index = df.index.set_levels(df.index.levels[1].tz_convert(timezone), level=1) + return df
+ + + +
+[docs] +def metadf_to_gdf(df, crs=4326): + """Make geopandas dataframe. + + Function to convert a dataframe with 'lat' en 'lon' columnst to a geopandas + dataframe with a geometry column containing points. + + Special care for stations with missing coordinates. + + Parameters + ---------- + df : pandas.DataFrame + Dataframe with a 'lat' en 'lon' column. + crs : Integer, optional + The epsg number of the coordinates. The default is 4326. + + Returns + ------- + geodf : geopandas.GeaDataFrame + The geodataframe equivalent of the df. + + """ + # only conver to points if coordinates are present + coordsdf = df[(~df["lat"].isnull()) & (~df["lon"].isnull())] + missing_coords_df = df[(df["lat"].isnull()) | (df["lon"].isnull())] + + geodf = gpd.GeoDataFrame( + coordsdf, geometry=gpd.points_from_xy(coordsdf.lon, coordsdf.lat) + ) + geodf = geodf.set_crs(epsg=crs) + metadata_columns = geodf.columns + geodf = concat_save([geodf, missing_coords_df]) + + # Because empyt and Nan columns are skipped in the concat save, add them + # again if needed + for col in metadata_columns: + if col not in geodf: + geodf[col] = np.nan + + geodf = geodf.sort_index() + return geodf
+ + + +
+[docs] +def multiindexdf_datetime_subsetting(df, starttime, endtime): + """Multiindex equivalent of datetime_subsetting.""" + dt_df = df.reset_index().set_index("datetime") + subset_dt_df = datetime_subsetting(dt_df, starttime, endtime) + + # back to multiindex name-datetime + subset_dt_df = subset_dt_df.reset_index() + idx = pd.MultiIndex.from_frame(subset_dt_df[["name", "datetime"]]) + returndf = subset_dt_df.set_index(idx).drop( + columns=["name", "datetime"], errors="ignore" + ) + + if returndf.empty: + logger.warning( + f"No observations left after subsetting datetime {starttime} -- {endtime} " + ) + + return returndf
+ + + +# ============================================================================= +# filters +# ============================================================================= +
+[docs] +def subset_stations(df, stationslist): + """Subset stations by name from a dataframe.""" + df = df.loc[df.index.get_level_values("name").isin(stationslist)] + + present_stations = df.index.get_level_values("name") + not_present_stations = list(set(stationslist) - set(present_stations)) + if len(not_present_stations) != 0: + logger.warning( + f"The stations: {not_present_stations} not found in the dataframe." + ) + + return df
+ + + +
+[docs] +def datetime_subsetting(df, starttime, endtime): + """Subset dataaframe by timeperiod. + + Wrapper function for subsetting a dataframe with a 'datetime' column or index with a start- and + endtime. + + Parameters + ---------- + df : pandas.DataFrame with datetimeindex + The dataframe to apply the subsetting to. + starttime : datetime.Datetime + Starttime for the subsetting period (included). + endtime : datetime.Datetime + Endtime for the subsetting period (included). + + Returns + ------- + pandas.DataFrame + Subset of the df. + + """ + idx_names = list(df.index.names) + df = df.reset_index() + df = df.set_index("datetime") + + if isinstance(starttime, type(None)): + starttime = df.index.min() # will select from the beginning of the df + else: + if starttime.tzinfo is None: + # set timezone when unaware + starttime = starttime.replace(tzinfo=df.index.tzinfo) + + if isinstance(endtime, type(None)): + endtime = df.index.max() + else: + if endtime.tzinfo is None: + # set timezone when unaware + endtime = endtime.replace(tzinfo=df.index.tzinfo) + + subset = df[(df.index >= starttime) & (df.index <= endtime)] + subset = subset.reset_index() + subset = subset.set_index(idx_names) + subset = subset.sort_index() + return subset
+ + + +
+[docs] +def conv_applied_qc_to_df(obstypes, ordered_checknames): + """Construct dataframe with applied QC info.""" + if isinstance(obstypes, str): + obstypes = [obstypes] + if isinstance(ordered_checknames, str): + ordered_checknames = [ordered_checknames] + + obslist = list( + itertools.chain.from_iterable( + itertools.repeat(item, len(ordered_checknames)) for item in obstypes + ) + ) + + checknamelist = list( + itertools.chain.from_iterable( + itertools.repeat(ordered_checknames, len(obstypes)) + ) + ) + + df = pd.DataFrame({"obstype": obslist, "checkname": checknamelist}) + return df
+ + + +# ============================================================================= +# Records frequencies +# ============================================================================= +
+[docs] +def get_likely_frequency( + timestamps, method="highest", simplify=True, max_simplify_error="2T" +): + """Find the most likely observation frequency of a datetimeindex. + + Parameters + ---------- + timestamps : pandas.Datetimeindex() + Datetimeindex of the dataset.df. + method : 'highest' or 'median', optional + Select wich method to use. If 'highest', the highest apearing frequency is used. + If 'median', the median of the apearing frequencies is used. The default is 'highest'. + simplify : Boolean, optional + If True, the likely frequency is converted to round hours, or round minutes. + The "max_simplify_error' is used as a constrain. If the constrain is not met, + the simplification is not performed.The default is True. + max_simplify_error : datetimestring, optional + The maximum deviation from the found frequency when simplifying. The default is '2T'. + + Returns + ------- + assume_freq : datetime.timedelta + The assumed (and simplified) frequency of the datetimeindex. + + """ + assert method in [ + "highest", + "median", + ], f"The method for frequency estimation ({method}) is not known. Use one of [highest, median]" + + try: + pd.to_timedelta(max_simplify_error) + except ValueError: + sys.exit( + f'{max_simplify_error} is not valid timeindication. Example: "5T" indicates 5 minutes.' + ) + + freqs_blacklist = [pd.Timedelta(0), np.nan] # avoid a zero frequency + + freqs = timestamps.to_series().diff() + freqs = freqs[~freqs.isin(freqs_blacklist)] + + if method == "highest": + assume_freq = freqs.min() # highest frequency + + elif method == "median": + assume_freq = freqs.median() + + if simplify: + simplify_freq = None + + # try simplyfy to round hours + trail_hour = assume_freq.ceil("H") + lead_hour = assume_freq.floor("H") + + if (abs(lead_hour - assume_freq) <= abs(trail_hour - assume_freq)) & ( + lead_hour.total_seconds() != 0.0 + ): # avoid assume freq of 0 seconds + best_candidate = lead_hour + else: + best_candidate = trail_hour + + if abs(assume_freq - best_candidate) < pd.to_timedelta(max_simplify_error): + simplify_freq = best_candidate + + # try simplyfy to round minutes + if simplify_freq is None: + trail_min = assume_freq.ceil("T") + lead_min = assume_freq.floor("T") + + if (abs(lead_min - assume_freq) <= abs(trail_min - assume_freq)) & ( + lead_min.total_seconds() != 0.0 + ): # avoid assume freq of 0 seconds + best_candidate = lead_min + else: + best_candidate = trail_min + + if abs(assume_freq - best_candidate) < pd.to_timedelta(max_simplify_error): + simplify_freq = best_candidate + + if simplify_freq is None: + assume_freq = assume_freq + else: + assume_freq = simplify_freq + + if assume_freq == pd.to_timedelta(0): # highly likely due to a duplicated record + # select the second highest frequency + assume_freq = abs( + timestamps.to_series().diff().value_counts().index + ).sort_values(ascending=True)[1] + + return assume_freq
+ + + +
+[docs] +def get_freqency_series(df, method="highest", simplify=True, max_simplify_error="2T"): + """Get the most likely frequencies of all stations. + + Find the most likely observation frequency for all stations individually + based on the df. If an observation has less than two observations, assign + the most commum frequency to it an raise a warning. + + Parameters + ---------- + df : Metobs_toolkit.df + Dataframe containing the observations. + method : 'highest' or 'median', optional + Select wich method to use. If 'highest', the highest apearing frequency is used. + If 'median', the median of the apearing frequencies is used. The default is 'highest'. + simplify : bool, optional + If True, the likely frequency is converted to round hours, or round minutes. + The "max_simplify_error' is used as a constrain. If the constrain is not met, + the simplification is not performed.The default is True. + max_simplify_error : Timedelta or str, optional + The maximum deviation from the found frequency when simplifying. The default is '2T'. + + Returns + ------- + freq_series : pandas.Series + A pandas series with 'name' as index and likely frequencies as values. + + """ + problematic_stations = [] + freqs = {} + for station in df.index.get_level_values(level="name").unique(): + subdf = xs_save(df, station, level="name") + # remove rows with all obstype nans + subdf = subdf.dropna(axis=0, how="all") + + # Check if all observations have at least two observations + if subdf.shape[0] < 2: + problematic_stations.append(station) + logger.warning( + f"Stations {station} have to few observations to make a frequency estimate." + ) + continue + + freqs[station] = get_likely_frequency( + timestamps=subdf.index, + method=method, + simplify=simplify, + max_simplify_error=max_simplify_error, + ) + + if len(problematic_stations) != 0: + assign_med_freq = pd.to_timedelta( + np.median([freq.total_seconds() for freq in freqs.values()]), unit="seconds" + ) + + logger.warning( + f"Asigning the median of frequencies ({assign_med_freq}) to these stations {problematic_stations}." + ) + for prob_station in problematic_stations: + freqs[prob_station] = assign_med_freq + + return pd.Series(data=freqs)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/gap.html b/docs/_build/_modules/metobs_toolkit/gap.html new file mode 100644 index 00000000..3a17b56b --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/gap.html @@ -0,0 +1,1011 @@ + + + + + + metobs_toolkit.gap — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.gap

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This module contains the Gap class and all its methods.
+
+A Gap contains all information and methods of a data-gap.
+"""
+
+import pandas as pd
+
+import logging
+from datetime import timedelta
+import math
+
+
+from metobs_toolkit.gap_filling import (
+    interpolate_gap,
+    create_leading_trailing_debias_periods,
+    make_era_bias_correction,
+)
+
+from metobs_toolkit.df_helpers import (
+    format_outliersdf_to_doubleidx,
+    concat_save,
+    get_likely_frequency,
+    _find_closes_occuring_date,
+)
+
+
+from metobs_toolkit.df_helpers import init_multiindex, xs_save
+
+from metobs_toolkit.missingobs import Missingob_collection
+
+logger = logging.getLogger(__name__)
+
+
+# =============================================================================
+# Gap class
+
+# a gap is a sequence of repeting missing obs
+# =============================================================================
+
+
+
+[docs] +class Gap: + """Gap class holds all gap information and methods for gaps.""" + + def __init__(self, name, startdt, enddt): + """ + Initiate Gap object with a name, startdt and enddt. + + Parameters + ---------- + name : String + Station name where the gap occures. + startdt : datetime.datetime + Start datetime of the gap (included). + enddt : datetime.datetime + End datetime of the gap (included) + + Returns + ------- + None + + """ + # init attributes + self.name = name + self.startgap = startdt # in IO space + self.endgap = enddt # in IO space + self.duration = enddt - startdt + + # computed attributes + self.leading_timestamp = None # last ob_dt before gap in datset space + self.leading_val = {} # keys are obstypes + self.trailing_timestamp = None # first ob_dt after gap in dataset space + self.trailing_val = {} # keys are obstypes + + self.exp_gap_idx = None + + # gap fill (only for conventional saving) + self.gapfill_df = ( + pd.DataFrame() + ) # index: datetime, columns: obstypes, values: fill_values + self.gapfill_technique = None # will become a string + self.gapfill_info = ( + None # detailed infomation on the gapfill technique (only for the user) + ) + self.gapfill_errormessage = {} # keys are obstypes + + def __str__(self): + """Text representation.""" + return f"Gap instance of {self.name} for {self.startgap} --> {self.endgap}, duration: {self.duration}" + + def __repr__(self): + """Text representation.""" + return self.__str__() + +
+[docs] + def get_info(self): + """Print detailed information of a gap.""" + print(f"Gap for {self.name} with: \n") + print("\n ---- Gap info ----- \n") + print( + "(Note: gaps are defined on the frequency estimation of the native dataset.)" + ) + print(f" * Start gap: {self.startgap} \n") + print(f" * End gap: {self.endgap} \n") + print(f" * Duration gap: {self.duration} \n") + print("\n ---- Gap fill info ----- \n") + obstypes = self.gapfill_df.columns.to_list() + if self.gapfill_df.empty: + print("(No gapfill applied)") + elif self.gapfill_technique == "gap_interpolation": + for obstype in obstypes: + print(f" * On observation type: {obstype}") + print(f" * Technique: {self.gapfill_technique} \n") + if bool(self.leading_val): + leading_val = self.leading_val[obstype] + else: + leading_val = "No leading observation value" + print( + f" * Leading timestamp: {self.leading_timestamp} with {obstype} = {leading_val}\n" + ) + if bool(self.trailing_val): + trailing_val = self.trailing_val[obstype] + else: + trailing_val = "No trailing observation value" + print( + f" * Trailing timestamp: {self.trailing_timestamp} with {obstype} = {trailing_val}\n" + ) + print(f" * Filled values: {self.gapfill_df[obstype]} \n") + if obstype in self.gapfill_errormessage: + print( + f" * Gapfill message: {self.gapfill_errormessage[obstype]} \n" + ) + if self.gapfill_info is not None: + print(f" * Gapfill info: {self.gapfill_info.head()} \n") + print( + " (Extract the gapfill info dataframe by using the .gapfill_info attribute) \n" + ) + + elif self.gapfill_technique == "gap_debiased_era5": + for obstype in obstypes: + print(f" * On observation type: {obstype}") + print(f" * Technique: {self.gapfill_technique} \n") + # print(f' * Leading timestamp: {self.leading_timestamp} with {obstype} = {self.leading_val[obstype]}\n') + # print(f' * Trailing timestamp: {self.trailing_timestamp} with {obstype} = {self.trailing_val[obstype]}\n') + print(f" * Filled values: {self.gapfill_df[obstype]} \n") + if obstype in self.gapfill_errormessage: + print( + f" * Gapfill message: {self.gapfill_errormessage[obstype]} \n" + ) + if self.gapfill_info is not None: + print(f" * Gapfill info: {self.gapfill_info.head()} \n") + print( + " (Extract the gapfill info dataframe by using the .gapfill_info attribute) \n" + ) + + else: + print("technique not implemented in yet in show")
+ + +
+[docs] + def to_df(self): + """Convert a Gap object to a dataframe (with one row). + + The station name is the index and two colums ('start_gap', 'end_gap') + are constructed. + + Returns + ------- + pandas.DataFrame() + Gap in dataframe format. + + """ + returndf = pd.DataFrame( + index=[self.name], + data={ + "start_gap": self.startgap, + "end_gap": self.endgap, + "duration": self.duration, + }, + ) + returndf.index.name = "name" + return returndf
+ + +
+[docs] + def update_leading_trailing_obs(self, obsdf, outliersdf, obs_only=False): + """Update leading and trailing periods in the attributes. + + Add the leading (last obs before gap) and trailing (first obs after gap) + as extra columns to the self.df. + + One can specify to look for leading and trailing in the obsdf or in both + the obsdf and outliersdf. + + The gap leading and trailing timestamps and value attributes are updated. + + If no leading/trailing timestamp is found, it is set to the gaps startdt/enddt. + + Parameters + ---------- + obsdf : pandas.DataFrame + Dataset.df + outliersdf : pandas.DataFrame + Dataset.outliersdf + obs_only: bool, optional + If True, only the obsdf will be used to search for leading and trailing. + + Returns + ------- + None. + + """ + sta_obs = xs_save(obsdf, self.name, level="name").index + if obs_only: + sta_comb = sta_obs + else: + + outliersdf = format_outliersdf_to_doubleidx(outliersdf) + + # combine timestamps of observations and outliers + sta_outl = xs_save(outliersdf, self.name, level="name").index + if sta_outl.empty: + sta_comb = sta_obs + else: + sta_comb = sta_obs.append(sta_outl) + + # find minimium timediff before + before_diff = _find_closes_occuring_date( + refdt=self.startgap, series_of_dt=sta_comb, where="before" + ) + + # if no timestamps are before gap, assume gap at the start of the observations + if math.isnan(before_diff): + before_diff = 0.0 + + # find minimum timediff after gap + after_diff = _find_closes_occuring_date( + refdt=self.endgap, series_of_dt=sta_comb, where="after" + ) + # if no timestamps are after gap, assume gap at the end of the observations + if math.isnan(after_diff): + after_diff = 0.0 + + # get before and after timestamps + self.leading_timestamp = self.startgap - timedelta(seconds=before_diff) + self.trailing_timestamp = self.endgap + timedelta(seconds=after_diff) + + # get the values + try: + self.leading_val = obsdf.loc[(self.name, self.leading_timestamp)].to_dict() + except KeyError: + logger.warning("Leading value not found in the observations") + self.leading_val = {} + try: + self.trailing_val = obsdf.loc[ + (self.name, self.trailing_timestamp) + ].to_dict() + except KeyError: + logger.warning("Trailing value not found in the observations") + self.trailing_val = {}
+ + +
+[docs] + def update_gaps_indx_in_obs_space(self, obsdf, outliersdf, dataset_res): + """Get the gap records in observation-space. + + Explode the gap, to the dataset resolution and format to a multiindex + with name -- datetime. + + In addition the last observation before the gap (leading), and first + observation (after) the gap are computed and stored in the df attribute. + (the outliers are used to look for leading and trailing observations.) + + + Parameters + ---------- + obsdf : Dataset.df + The Dataset.df attribute. (Needed to extract trailing/leading + observations.) + outliersdf : Dataset.outliersdf + The Dataset.outliersdf attribute.(Needed to extract trailing/leading + observations.)) + resolutionseries : Datetime.timedelta + Resolution of the station observations in the dataset. + + Returns + ------- + None + + """ + outliersdf = format_outliersdf_to_doubleidx(outliersdf) + self.update_leading_trailing_obs(obsdf, outliersdf) + + gaprange = pd.date_range( + start=self.leading_timestamp, + end=self.trailing_timestamp, + freq=dataset_res, + inclusive="neither", + ) + + self.exp_gap_idx = pd.MultiIndex.from_arrays( + arrays=[[self.name] * len(gaprange), gaprange], names=["name", "datetime"] + )
+ + + # ============================================================================= + # Gapfill + # ============================================================================= + +
+[docs] + def apply_interpolate_gap( + self, + obsdf, + outliersdf, + dataset_res, + obstype="temp", + method="time", + max_consec_fill=100, + ): + """Fill a Gap using a linear interpolation gapfill method for an obstype. + + The filled datetimes (in dataset resolution) are returned in the form + af a multiindex pandas Series (name -- datetime) as index. + + Parameters + ---------- + obsdf : Dataset.df + The Dataset.df attribute. (Needed to extract trailing/leading + observations.) + outliersdf : Dataset.outliersdf + The Dataset.outliersdf attribute.(Needed to extract trailing/leading + observations.)) + resolutionseries : Datetime.timedelta + Resolution of the station observations in the dataset. + obstype : String, optional + The observational type to apply gapfilling on. The default is 'temp'. + method : String, optional + Method to pass to the Numpy.interpolate function. The default is 'time'. + max_consec_fill : Integer, optional + Value to pass to the limit argument of Numpy.interpolate. The default is 100. + + Returns + ------- + Pandas.Series + Multiindex Series with filled gap values in dataset space. + + """ + logger.info(f" interpolate on {self}") + outliersdf = format_outliersdf_to_doubleidx(outliersdf) + + gapfill_series = interpolate_gap( + gap=self, + obsdf=obsdf, + outliersdf=outliersdf, + dataset_res=dataset_res, + obstype=obstype, + method=method, + max_consec_fill=max_consec_fill, + ) + + # update self + self.gapfill_technique = "interpolation" + self.gapfill_df[obstype] = gapfill_series
+
+ + + +# ============================================================================= +# Find gaps and missing values +# ============================================================================= +
+[docs] +def get_station_gaps(gapslist, name): + """Extract a Gap_collection specific to one station. + + If no gaps are found for the station, an empty Gap_collection is + returned. + + Parameters + ---------- + name : String + Name of the station to extract a Gaps_collection from. + + Returns + ------- + Gap_collection + A Gap collection specific of the specified station. + + """ + return [gap for gap in gapslist if gap.name == name]
+ + + +
+[docs] +def get_gaps_indx_in_obs_space(gapslist, obsdf, outliersdf, resolutionseries): + """Get all gaps in obsspace. + + Explode the gaps, to the dataset resolution and format to a multiindex + with name -- datetime. + + In addition the last observation before the gap (leading), and first + observation (after) the gap are computed and stored in the df attribute. + (the outliers are used to look for leading and trailing observations.) + + + Parameters + ---------- + obsdf : pandas.DataFrame + Dataframe containing all the observations. + outliersdf : pandas.DataFrame + Dataframe containing all outliers + resolutionseries : pandas.Series + The resolution of each station in a Series with the stationname as an index. + + Returns + ------- + expanded_gabsidx_obsspace : pandas.index + Multiindex with name and datetime of gaps in obsspace. + + """ + outliersdf = format_outliersdf_to_doubleidx(outliersdf) + + expanded_gabsidx_obsspace = init_multiindex() + + for gap in gapslist: + gap.update_gaps_indx_in_obs_space( + obsdf, outliersdf, resolutionseries.loc[gap.name] + ) + expanded_gabsidx_obsspace = expanded_gabsidx_obsspace.append(gap.exp_gap_idx) + + return expanded_gabsidx_obsspace
+ + + +
+[docs] +def gaps_to_df(gapslist): + """Combine all gaps into a dataframe as an overview. + + Parameters + ---------- + gapslist : list + List of gaps. + + Returns + ------- + pandas.DataFrame + A DataFrame with stationnames as index, and the start, end and duretion + of the gaps as columns. + + """ + gapdflist = [] + for gap in gapslist: + gapdflist.append(gap.to_df()) + + if not bool(gapdflist): + # when no gaps, make default return + default_df = pd.DataFrame(data={"start_gap": [], "end_gap": [], "duration": []}) + default_df.index.name = "name" + return default_df + + return concat_save(gapdflist)
+ + + +
+[docs] +def remove_gaps_from_obs(gaplist, obsdf): + """ + Remove station - datetime records that are in the gaps from the obsdf. + + (Usefull when filling timestamps to a df, and if you whant to remove the + gaps.) + + Parameters + ---------- + obsdf : pandas.DataFrame() + A MultiIndex dataframe with name -- datetime as index. + + Returns + ------- + obsdf : pandas.DataFrame() + The same dataframe with records inside gaps removed. + + """ + # Create index for gaps records in the obsdf + expanded_gabsidx = init_multiindex() + for gap in gaplist: + sta_records = xs_save(obsdf, gap.name, level="name").index # filter by name + + gaps_dt = sta_records[ + (sta_records >= gap.startgap) + & (sta_records <= gap.endgap) # filter if the observations are within a gap + ] + + gaps_multiidx = pd.MultiIndex.from_arrays( + arrays=[[gap.name] * len(gaps_dt), gaps_dt], names=["name", "datetime"] + ) + + expanded_gabsidx = expanded_gabsidx.append(gaps_multiidx) + + # remove gaps idx from the obsdf + obsdf = obsdf.drop(index=expanded_gabsidx) + return obsdf
+ + + +
+[docs] +def remove_gaps_from_outliers(gaplist, outldf): + """Remove station - datetime records that are in the gaps from the outliersdf. + + This will ignore the observation types! So all outliers of any observation + type, that are in a gap period, are removed. + + Parameters + ---------- + obsdf : pandas.DataFrame() + A MultiIndex dataframe with name -- datetime -- as index. + + Returns + ------- + obsdf : pandas.DataFrame() + The same dataframe with records inside gaps removed. + + """ + # to multiindex + outldf = outldf.reset_index().set_index(["name", "datetime"]) + + # remove records inside the gaps + suboutldf = remove_gaps_from_obs(gaplist=gaplist, obsdf=outldf) + + # restet to triple index + outldf = suboutldf.reset_index().set_index(["name", "datetime", "obstype"]) + + return outldf
+ + + +# ============================================================================= +# Helpers +# ============================================================================= +
+[docs] +def apply_debias_era5_gapfill( + gapslist, + dataset, + eraModelData, + debias_settings, + obstype="temp", + overwrite_fill=False, +): + """Fill all gaps using ERA5 debiaset modeldata. + + Parameters + ---------- + gapslist : list + list of all gaps. + dataset : metobs_toolkit.Dataset + Dataset to fill the gaps of. + eraModelData : metobs_toolkit.Modeldata + Modeldata to use for gapfilling. + debias_settings : dict + Debias settings. + obstype : str, optional + MetObs observationtype to fill gaps for. The default is "temp". + overwrite_fill : bool, optional + If True, the filled values are overwritten. The default is False. + + Returns + ------- + None. + + """ + gapfill_settings = dataset.settings.gap["gaps_fill_info"] + + # Convert modeldata to the same timzone as the data + targettz = str(dataset.df.index.get_level_values("datetime").tz) + eraModelData._conv_to_timezone(targettz) + + for gap in gapslist: + if (not overwrite_fill) & (not gap.gapfill_df.empty): + logger.warning( + f"Gap {gap.name} is already filled with {gap.gapfill_technique} and will not be overwirtten. Set overwrite_fill to True to overwrite." + ) + continue + + logger.info(f" Era5 gapfill for {gap}") + gap.gapfill_technique = gapfill_settings["label"]["model_debias"] + + # avoid passing full dataset around + station = dataset.get_station(gap.name) + + # Update gap attributes + gap.update_gaps_indx_in_obs_space( + obsdf=station.df, + outliersdf=station.outliersdf, + dataset_res=station.metadf["dataset_resolution"].squeeze(), + ) + + # get leading and trailing period + leading_obs, trailing_obs = create_leading_trailing_debias_periods( + station=station, + gap=gap, + debias_period_settings=debias_settings["debias_period"], + obstype=obstype, + ) + + # check if leading/trailing is valid + if leading_obs.empty | trailing_obs.empty: + logger.info( + "No suitable leading or trailing period found. Gapfill not possible" + ) + gap.gapfill_errormessage[ + obstype + ] = "gapfill not possible: no leading/trailing period" + + default_return = pd.Series( + index=gap.exp_gap_idx, name=obstype, dtype="object" + ) + gap.gapfill_errormessage[ + obstype + ] = "gapfill not possible: no leading/trailing period" + + default_return.name = obstype + gapfill_df = default_return.to_frame() + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["model_debias"] + + # update the gaps attributes + gap.gapfill_df = gapfill_df + + continue + + # extract model values at leading and trailing period + leading_model = eraModelData.interpolate_modeldata(leading_obs.index) + trailing_model = eraModelData.interpolate_modeldata(trailing_obs.index) + + # TODO check if there is modeldata for the leading and trailing + obs period + if (leading_model[obstype].isnull().any()) | ( + trailing_model[obstype].isnull().any() + ): + logger.info( + "No modeldata for the full leading/trailing period found. Gapfill not possible" + ) + gap.gapfill_errormessage[ + obstype + ] = "gapfill not possible: not enough modeldata" + + default_return = pd.Series( + index=gap.exp_gap_idx, name=obstype, dtype="object" + ) + default_return.name = obstype + gapfill_df = default_return.to_frame() + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["model_debias"] + + # update the gaps attributes + gap.gapfill_df = gapfill_df + continue + + # Get model data for gap timestamps + gap_model = eraModelData.interpolate_modeldata(gap.exp_gap_idx) + + # apply bias correction + filled_gap_series, fill_info, err_message = make_era_bias_correction( + leading_model=leading_model, + trailing_model=trailing_model, + gap_model=gap_model, + leading_obs=leading_obs, + trailing_obs=trailing_obs, + obstype=obstype, + ) + + filled_gap_series.name = obstype + gapfill_df = filled_gap_series.to_frame() + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["model_debias"] + + # update the gaps attributes + gap.gapfill_df = gapfill_df + gap.gapfill_technique = gapfill_settings["label"]["model_debias"] + gap.gapfill_info = fill_info + if bool(err_message): + gap.gapfill_errormessage = err_message
+ + + +
+[docs] +def apply_interpolate_gaps( + gapslist, + obsdf, + outliersdf, + dataset_res, + gapfill_settings, + obstype="temp", + method="time", + max_consec_fill=100, + overwrite_fill=False, +): + """Fill all gaps with interpolation and update attributes. + + Parameters + ---------- + gapslist : list + list of all gaps. + obsdf : pandas.DataFrame + Dataframe with the observations. + outliersdf : pandas.DataFrame + Dataframe with the outliers (to find leading/trailing records). + dataset_res : pandas.Series + Frequency for all stations in a series. + gapfill_settings : dict + Gapfill settings. + obstype : str, optional + MetObs observationtype to fill gaps for. The default is "temp". + method : str, optional + Numpy interpolation method. The default is "time". + max_consec_fill : int, optional + Maximum number of consecutive records to fill. The default is 100. + overwrite_fill : bool, optional + If True, the filled values are overwritten. The default is False. + + Returns + ------- + None. + + """ + for gap in gapslist: + if (not overwrite_fill) & (not gap.gapfill_df.empty): + logger.warning( + f"Gap {gap.name} is already filled with {gap.gapfill_technique} and will not be overwirtten. Set overwrite_fill to True to overwrite." + ) + continue + gapfill_series = interpolate_gap( + gap=gap, + obsdf=xs_save(obsdf, gap.name, level="name", drop_level=False), + outliersdf=xs_save(outliersdf, gap.name, level="name", drop_level=False), + dataset_res=dataset_res.loc[gap.name], + obstype=obstype, + method=method, + max_consec_fill=max_consec_fill, + ) + + gapfill_series.name = obstype + gapfill_df = gapfill_series.to_frame() + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["linear"] + + # update the gaps attributes + gap.gapfill_df = gapfill_df + gap.gapfill_technique = gapfill_settings["label"]["linear"]
+ + + +
+[docs] +def make_gapfill_df(gapslist): + """Create a dataframe with all filled values of all gaps.""" + if not bool(gapslist): + # no gaps (will be in automatic gapfill if method is not triggerd) + return pd.DataFrame() + concatlist = [] + for gap in gapslist: + subgapfill = gap.gapfill_df.reset_index() + subgapfill["name"] = gap.name + subgapfill = subgapfill.set_index(["name", "datetime"]) + + concatlist.append(subgapfill) + + filldf = concat_save(concatlist).sort_index() + + # When gapfill could (paritally) not been fulfilled, + # their values (=Nan) must be removed from gapfill, + # so they will be plotted as gaps + filldf = filldf.dropna() + + return filldf
+ + + +
+[docs] +def missing_timestamp_and_gap_check(df, gapsize_n): + """Find missing timestamps and gaps in the observations. + + Looking for missing timestaps by assuming an observation frequency. The assumed frequency is the highest occuring frequency PER STATION. + If missing observations are detected, they can be catogirized as a missing timestamp or as gap. + + A gap is define as a sequence of missing values with more than N repetitive missing values. N is define in the QC settings. + + + + Parameters + ---------- + df : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + gapsize_n : int + The minimum number of consecutive missing observations to identify the + period as a gap. + + Returns + ------- + missing_obs_collection : metobs_toolkit.missing_collection + The collection of missing observations. + gap_list : metobs_toolkit.gaps + The list with gaps. + + """ + gap_list = [] + # gap_df = pd.DataFrame() + # gap_indices = [] + missing_timestamp_series = pd.Series(dtype=object) + station_freqs = {} + + # missing timestamp per station (because some stations can have other frequencies!) + + stationnames = df.index.get_level_values(level="name").unique() + for station in stationnames: + # find missing timestamps + timestamps = xs_save(df, station, level="name").index + likely_freq = get_likely_frequency(timestamps, method="highest", simplify=False) + + assert likely_freq.seconds > 0, "The frequency is not positive!" + + station_freqs[station] = likely_freq + + missing_datetimeseries = ( + pd.date_range( + start=timestamps.min(), end=timestamps.max(), freq=likely_freq + ) + .difference(timestamps) + .to_series() + .diff() + ) + + if missing_datetimeseries.empty: + continue + + # Check for gaps + gap_defenition = ((missing_datetimeseries != likely_freq)).cumsum() + consec_missing_groups = missing_datetimeseries.groupby(gap_defenition) + group_sizes = consec_missing_groups.size() + + gap_groups = group_sizes[group_sizes > gapsize_n] + + # iterate over the gabs and fill the gapsdf + for gap_idx in gap_groups.index: + datetime_of_gap_records = consec_missing_groups.get_group(gap_idx).index + gap = Gap( + name=station, + startdt=datetime_of_gap_records.min(), + enddt=datetime_of_gap_records.max(), + ) + gap_list.append(gap) + + # combine the missing timestams values + missing_timestamp_groups = group_sizes[group_sizes <= gapsize_n] + for missing_idx in missing_timestamp_groups.index: + datetime_of_missing_records = consec_missing_groups.get_group( + missing_idx + ).index.to_list() + + missing_timestamp_series = concat_save( + [ + missing_timestamp_series, + pd.Series( + index=[station] * len(datetime_of_missing_records), + data=datetime_of_missing_records, + ), + ] + ) + + missing_obs_collection = Missingob_collection(missing_timestamp_series) + df = df.sort_index() + + return missing_obs_collection, gap_list
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/gap_filling.html b/docs/_build/_modules/metobs_toolkit/gap_filling.html new file mode 100644 index 00000000..207dda74 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/gap_filling.html @@ -0,0 +1,547 @@ + + + + + + metobs_toolkit.gap_filling — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.gap_filling

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Tue Feb 28 17:05:26 2023
+
+@author: thoverga
+"""
+import numpy as np
+import pandas as pd
+from datetime import timedelta
+import logging
+
+from metobs_toolkit.df_helpers import (
+    remove_outliers_from_obs,
+    init_multiindexdf,
+    format_outliersdf_to_doubleidx,
+)
+
+logger = logging.getLogger(__name__)
+
+
+# =============================================================================
+# Gap fillers
+# =============================================================================
+
+
+
+[docs] +def interpolate_gap( + gap, obsdf, outliersdf, dataset_res, obstype, method, max_consec_fill +): + """Interpolate a specific gap.""" + outliersdf = format_outliersdf_to_doubleidx(outliersdf) + + # 1 get trailing and leading + exploded index + gap.update_gaps_indx_in_obs_space(obsdf, outliersdf, dataset_res) + gap.update_leading_trailing_obs(obsdf, outliersdf, obs_only=True) + + # initiate return value when no interpolation can be performed + empty_interp = pd.Series(data=np.nan, index=gap.exp_gap_idx.droplevel("name")) + empty_interp.name = obstype + + # 2 check if there is a trailing and leading gap + if gap.startgap == gap.leading_timestamp: + message = f"No leading timestamp found for gap {gap}" + logger.info(message) + gap.gapfill_errormessage[obstype] = message + return empty_interp + + if gap.endgap == gap.trailing_timestamp: + message = f"No trailing timestamp found for gap {gap}" + logger.info(message) + gap.gapfill_errormessage[obstype] = message + return empty_interp + + # 3. Get leading and trailing val + if not bool(gap.leading_val): + # empty dict --> no value in the obs + message = f"No cadidate for leading {obstype} observation found for {gap}" + logger.info(message) + gap.gapfill_errormessage[obstype] = message + return empty_interp + + if not bool(gap.trailing_val): + # empty dict --> no value in the obs + message = f"No cadidate for trailing {obstype} observation found for {gap}" + logger.info(message) + gap.gapfill_errormessage[obstype] = message + return empty_interp + + leading_dt = gap.leading_timestamp + leading_val = gap.leading_val[obstype] + trailing_dt = gap.trailing_timestamp + trailing_val = gap.trailing_val[obstype] + + # Make interpolation series + gaps_series = pd.Series(data=np.nan, index=gap.exp_gap_idx.droplevel("name")) + gaps_series = pd.concat( + [ + gaps_series, + pd.Series( + index=[leading_dt, trailing_dt], data=[leading_val, trailing_val] + ), + ] + ) + gaps_series = gaps_series.sort_index() + + # Interpolate series + gaps_series.interpolate( + method=method, + limit=max_consec_fill, # Maximum number of consecutive NaNs to fill. Must be greater than 0. + limit_area="inside", + inplace=True, + ) + + # Subset only gap indixes + gaps_fill_series = gaps_series[gap.exp_gap_idx.droplevel("name")] + gaps_fill_series.name = obstype + + # update gapfill info (for the user) + gapfill_df = gaps_series.to_frame() + gapfill_df = gapfill_df.reset_index() + gapfill_df = gapfill_df.rename(columns={0: obstype, "index": "datetime"}) + gapfill_df = gapfill_df.set_index("datetime") + + gapfill_df["label"] = "interpolation" + gapfill_df.loc[leading_dt, "label"] = "leading observation" + gapfill_df.loc[trailing_dt, "label"] = "trailing observation" + gapfill_df["name"] = gap.name + + gapfill_df = gapfill_df.reset_index() + gapfill_df = gapfill_df.set_index(["name", "datetime"]) + + gap.gapfill_info = gapfill_df + + return gaps_fill_series
+ + + +# ============================================================================= +# Debiasing period +# ============================================================================= + + +
+[docs] +def get_sample_size(sample_duration_hours, sta): + """Get the number of records for a sample duration.""" + stares = sta.metadf["dataset_resolution"].squeeze() + sample_size = timedelta(hours=sample_duration_hours) / stares + return int(sample_size)
+ + + +
+[docs] +def create_leading_trailing_debias_periods( + station, gap, debias_period_settings, obstype +): + """Get the leading and trailing periods of a gap.""" + # Get samplesizes + debias_pref_sample_size_leading = get_sample_size( + debias_period_settings["prefered_leading_sample_duration_hours"], station + ) + debias_pref_sample_size_trailing = get_sample_size( + debias_period_settings["prefered_trailing_sample_duration_hours"], station + ) + debias_min_sample_size_leading = get_sample_size( + debias_period_settings["minimum_leading_sample_duration_hours"], station + ) + debias_min_sample_size_trailing = get_sample_size( + debias_period_settings["minimum_trailing_sample_duration_hours"], station + ) + + # get all observations that can be used for debias training + obs = station.df + + # remove blacklist + # TODO + obs = remove_outliers_from_obs( + obs, format_outliersdf_to_doubleidx(station.outliersdf) + ) + + # add whitelist + # TODO + + # only datetimes are relevant + obs = obs.reset_index() + obs = obs[["name", "datetime", obstype]] + + # Select all leading and all trailing obs + leading_period = obs[obs["datetime"] < gap.startgap] + trailing_period = obs[obs["datetime"] > gap.endgap] + logger.debug( + f" {leading_period.shape[0]} leading records, {trailing_period.shape[0]} trailing records." + ) + + # some derived integers + poss_shrinkage_leading = leading_period.shape[0] - debias_min_sample_size_leading + poss_shrinkage_trailing = trailing_period.shape[0] - debias_min_sample_size_trailing + poss_extention_leading = leading_period.shape[0] - debias_pref_sample_size_leading + poss_extention_trailing = ( + trailing_period.shape[0] - debias_pref_sample_size_trailing + ) + + # check if desired sample sizes for leading and trailing are possible + if (leading_period.shape[0] >= debias_pref_sample_size_leading) & ( + trailing_period.shape[0] >= debias_pref_sample_size_trailing + ): + logger.debug("leading and trailing periods are both available for debiassing.") + # both periods are oke + leading_df = leading_period[-debias_pref_sample_size_leading:] + trailing_df = trailing_period[:debias_pref_sample_size_trailing] + + elif (leading_period.shape[0] <= debias_pref_sample_size_leading) & ( + trailing_period.shape[0] >= debias_pref_sample_size_trailing + ): + logger.debug( + "leading periods for debiassing does not have a preferable size. Try translation/shrinkage ..." + ) + + # leading period to small, trailing period is OK + + missing_records = debias_pref_sample_size_leading - leading_period.shape[0] + + # 1 if the leading period is smaller thatn the minimum leading size --> return default + if poss_shrinkage_leading < 0: + leading_df = init_multiindexdf() + trailing_df = init_multiindexdf() # this might be to strict + logger.debug( + "The available leading debias samplesize is smaller than the minimum. A translation/shrinking is not possible." + ) + + # 2 Try translation without shrinkage + + elif missing_records <= poss_extention_trailing: + # translation without shrinkage is possible + translation_trailing = missing_records + + leading_df = leading_period + trailing_df = trailing_period[ + 0 : (debias_pref_sample_size_trailing + translation_trailing) + ] + + logger.debug( + f"A translation of {translation_trailing} records is done towards the trailing period. (n_leading + n_trailing is conserved: {leading_df.shape[0] + trailing_df.shape[0]}" + ) + + # 3. Try if a translation is within the limits of shrinkage + elif (missing_records - poss_extention_trailing) <= poss_shrinkage_leading: + translation_trailing = poss_extention_trailing + + leading_df = leading_period + trailing_df = trailing_period[ + 0 : debias_pref_sample_size_trailing + translation_trailing + ] + logger.debug( + f"A translation of {translation_trailing} records is done towards the trailing period. Since there was not engough translation space for the trailing obs, the condition n_leading + n_trailing is NOT conserved: {leading_df.shape[0] + trailing_df.shape[0]}. \ + Both leading and trailing sizes still achieves minimal size restrictions." + ) + # 4. If all else fails, it is not possible to make a leading period + else: + logger.info( + "The available leading samplesize can not reach minimal size restrictions." + ) + # no translation is possible, even with shrinking + leading_df = init_multiindexdf() + trailing_df = init_multiindexdf() # this might be to strict + + elif (leading_period.shape[0] >= debias_pref_sample_size_leading) & ( + trailing_period.shape[0] <= debias_pref_sample_size_trailing + ): + # leading period is ok, trailing period is to short + logger.debug( + "trailing periods for debiassing does not have a preferable size. Try translation/shrinkage ..." + ) + missing_records = debias_pref_sample_size_trailing - trailing_period.shape[0] + + # 1 if the trailing period is smaller thatn the minimum trailing size --> return default + if poss_shrinkage_trailing < 0: + leading_df = init_multiindexdf() # might be to strict + trailing_df = init_multiindexdf() + logger.debug( + "The available trailing debias samplesize is smaller than the minimum. A translation/shrinking is not possible." + ) + # return + + # 2 Try translation without shrinkage + elif missing_records <= poss_extention_leading: + # translation without shrinkage is possible + translation_leading = missing_records + + leading_df = leading_period[ + -(debias_pref_sample_size_leading + translation_leading) : + ] + trailing_df = trailing_period + logger.debug( + f"A translation of {translation_leading} records is done towards the leading period. (n_leading + n_trailing is conserved: {leading_df.shape[0] + trailing_df.shape[0]}" + ) + + # 3. Try if a translation is within the limits of shrinkage + elif (missing_records - poss_extention_leading) <= poss_shrinkage_trailing: + translation_leading = poss_extention_leading + + leading_df = leading_period[ + -(debias_pref_sample_size_leading + translation_leading) + ] + trailing_df = trailing_period + logger.debug( + f"A translation of {translation_leading} records is done towards the leading period. Since there was not engough translation space for the leading obs, the condition n_leading + n_trailing is NOT conserved: {leading_df.shape[0] + trailing_df.shape[0]}. \ + Both leading and trailing sizes still achieves minimal size restrictions." + ) + # 4. If all else fails, it is not possible to make a trailing period + else: + # no translation is possible, even with shrinking + logger.info( + "The available trailing samplesize can not reach minimal size restrictions." + ) + leading_df = init_multiindexdf() # this might be to strict + trailing_df = init_multiindexdf() + + else: + # Both leading and trailing periods are not to small + + # 1 does both (leading and trailing) still acchieves the minimal size condition for shrinking? + if (poss_shrinkage_leading >= 0) & (poss_shrinkage_trailing >= 0): + logger.debug( + "Both leading and trailing periods do not have a prefered size, but still meet the minimal conditions." + ) + leading_df = leading_period + trailing_df = trailing_period + + else: + logger.info( + "Both leading and trailing periods do not have a prefered size, and eighter of them does NOT meet minimal condition." + ) + # either one of the periods does not reach minimal condition, so return default + leading_df = init_multiindexdf() + trailing_df = init_multiindexdf() + + # convert to multiindex + if not leading_df.empty: + leading_df = leading_df.set_index(["name", "datetime"]) + if not trailing_df.empty: + trailing_df = trailing_df.set_index(["name", "datetime"]) + + return leading_df, trailing_df
+ + + +
+[docs] +def get_time_specific_biases(model, obs, obstype, period): + """Get hourly biases.""" + diff = model - obs + diff = diff.reset_index().set_index("datetime") + diff["hours"] = diff.index.hour + diff["minutes"] = diff.index.minute + diff["seconds"] = diff.index.second + + biases = diff.groupby(["name", "hours", "minutes", "seconds"])[obstype].mean() + biases.name = obstype + "_bias_" + period + + biases = biases.reset_index() + return biases
+ + + +
+[docs] +def make_era_bias_correction( + leading_model, trailing_model, gap_model, leading_obs, trailing_obs, obstype +): + """Make debias correction of the modeldata for a gap.""" + error_message = "" + # 1. get lead timestamp biases + lead_biases = get_time_specific_biases( + model=leading_model, obs=leading_obs, obstype=obstype, period="lead" + ) + + # 2. get trailing timestamp biases + trail_biases = get_time_specific_biases( + model=trailing_model, obs=trailing_obs, obstype=obstype, period="trail" + ) + + # 3. apply bias correction on modeldata in gap + + # linear interpolation of bias along the gap method: + gap_model["trail_weight"] = np.linspace(0.0, 1.0, gap_model.shape[0]) + gap_model["lead_weight"] = 1.0 - gap_model["trail_weight"] + + # aggregate to timestamps + gap_model["hours"] = gap_model.index.get_level_values("datetime").hour + gap_model["minutes"] = gap_model.index.get_level_values("datetime").minute + gap_model["seconds"] = gap_model.index.get_level_values("datetime").second + + gap_model = gap_model.reset_index() + + gap_model = gap_model.merge( + right=lead_biases[["hours", "minutes", "seconds", obstype + "_bias_lead"]], + how="left", + on=["hours", "minutes", "seconds"], + ) + + gap_model = gap_model.merge( + right=trail_biases[["hours", "minutes", "seconds", obstype + "_bias_trail"]], + how="left", + on=["hours", "minutes", "seconds"], + ) + + gap_model = gap_model.set_index(["name", "datetime"]) + + # Idea: if BOTH leadin and trailing (hourly) biases is available, than use + # use the debias corection (even if it is for a part of the gap!). + # If either one or both are missing, than no bias correction is applied + no_debias = gap_model[ + (gap_model[obstype + "_bias_lead"].isnull()) + | (gap_model[obstype + "_bias_trail"].isnull()) + ].index + if not no_debias.empty: + error_message = f"No debias possible for these gap records: {no_debias},the gap will be filled by model data without bias correction. " + logger.warning(error_message) + + # set weights to zero if not debias correction can be applied on that record + gap_model.loc[no_debias, obstype + "_bias_trail"] = 0.0 + gap_model.loc[no_debias, obstype + "_bias_lead"] = 0.0 + + # 5. compute the debiased fill value + # leave this dataframe for debugging + gap_model[obstype + "_debiased_value"] = gap_model[obstype] - ( + (gap_model["lead_weight"] * gap_model[obstype + "_bias_lead"]) + + (gap_model["trail_weight"] * gap_model[obstype + "_bias_trail"]) + ) + + # 7. format gapmodel + gap_model["time"] = ( + gap_model["hours"].astype(str).str.zfill(2) + + ":" + + gap_model["minutes"].astype(str).str.zfill(2) + + ":" + + gap_model["seconds"].astype(str).str.zfill(2) + ) + gap_model = gap_model.rename(columns={obstype: f"{obstype}_model_value"}) + + # 6. make returen + returnseries = gap_model[obstype + "_debiased_value"] + returnseries.name = obstype + return returnseries, gap_model, error_message
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/geometry_functions.html b/docs/_build/_modules/metobs_toolkit/geometry_functions.html new file mode 100644 index 00000000..fd653daa --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/geometry_functions.html @@ -0,0 +1,224 @@ + + + + + + metobs_toolkit.geometry_functions — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for metobs_toolkit.geometry_functions

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Oct 21 09:13:01 2022
+
+@author: thoverga
+"""
+# import geopandas as gpd
+from shapely.geometry import box
+
+
+
+[docs] +def gpd_to_extent_box(geodf): + """Convert GeoDataFrame to a box with coordinates of the bounds.""" + return box(*geodf.total_bounds)
+ + + +
+[docs] +def extent_list_to_box(extentlist): + """Convert list of coordinates to a shapely box.""" + return box(*extentlist)
+ + + +
+[docs] +def box_to_extent_list(bbox): + """Convert shapely box to a list of the bound coordinates.""" + return list(bbox.bounds)
+ + + +
+[docs] +def find_extend_of_geodf(geodf, lat_size=1.0, lon_size=1.0): + """Construct a bounding box for the plot. + + If the geodf contains more than one point, the bounding box is + defined as the spatial span of the points. + + If the geodf contains only one point, a minimal span of lat_size, + lon_size is created with the point at the centroid. + """ + geodf_extent_box = gpd_to_extent_box(geodf) + + if geodf_extent_box.area != 0.0: + # multiple stations can span the zoombox + return geodf_extent_box + + # else: on station + center_x, center_y = geodf_extent_box.centroid.x, geodf_extent_box.centroid.y + + minx, maxx = center_x - (lon_size / 2.0), center_x + (lon_size / 2.0) + miny, maxy = center_y - (lat_size / 2.0), center_y + (lat_size / 2.0) + + return box( + min([minx, maxx]), min([miny, maxy]), max([minx, maxx]), max([miny, maxy]) + )
+ + + +
+[docs] +def find_plot_extent(geodf, user_bounds, default_extentlist): + """Find the most suitable plot bounds for spatial plot. + + If the user_bounds are valid, these are used. Else the bounds of the goedf + computed. If these bounds are not contained by the default (Belgium) bounds + than the geodf extend is used else the default. + Parameters + ---------- + geodf : geopandas.geoDataFrame + The geometry dataframe containing all the stations to plot. + user_bounds : list + List of bound coordinates. + default_extentlist : list + List of default bounds (Belgium). + + Returns + ------- + list + A list of bounds for the spatial plot. + + """ + # test if user_bounds is valid and can be used + if bool(user_bounds): + user_bounds = [float(x) for x in user_bounds] + + return user_bounds + + # get extent of geodf as a box + # geodf_extent_box = gpd_to_extent_box(geodf) + geodf_extent_box = find_extend_of_geodf(geodf) + + # get extendbox of extendlist + default_extent_box = extent_list_to_box(default_extentlist) + + # Check if default covers the geodf (default is belgium) + if default_extent_box.covers(geodf_extent_box): + return default_extentlist + + return box_to_extent_list(geodf_extent_box)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/landcover_functions.html b/docs/_build/_modules/metobs_toolkit/landcover_functions.html new file mode 100644 index 00000000..df6c8ce2 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/landcover_functions.html @@ -0,0 +1,736 @@ + + + + + + metobs_toolkit.landcover_functions — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for metobs_toolkit.landcover_functions

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Functions that are used for GEE interactions.
+
+@author: thoverga
+"""
+
+import sys
+import logging
+from time import sleep
+import pytz
+import pandas as pd
+import ee
+
+from metobs_toolkit.df_helpers import init_multiindexdf
+
+logger = logging.getLogger(__name__)
+
+# =============================================================================
+#  Connection functions
+# =============================================================================
+
+
+
+[docs] +def connect_to_gee(): + """Authenticate to GEE if needed.""" + if not ee.data._credentials: # check if ee connection is initialized + ee.Authenticate() + ee.Initialize() + return
+ + + +# ============================================================================= +# Top level functions (can be called by dataset) +# ============================================================================= + + +
+[docs] +def lcz_extractor(metadf, mapinfo): + """Extract LCZ for all stations in the metadf.""" + # make return in case something went wrong + default_return = pd.Series( + index=metadf.index, data="Location_unknown", name="lcz", dtype=object + ) + # test if metadata is suitable + if not _validate_metadf(metadf): + logger.warning(f"Metadf is not suitable for GEE extractiond: {metadf}") + return default_return + + relevant_metadf = metadf.reset_index()[["name", "lat", "lon"]] + + lcz_df = extract_pointvalues( + metadf=relevant_metadf, mapinfo=mapinfo, output_column_name="lcz" + ) + if lcz_df.empty: + return pd.Series(dtype=object) + return lcz_df["lcz"] # return series
+ + + +
+[docs] +def lc_fractions_extractor(metadf, mapinfo, buffer, agg): + """Get landcover fractions for all buffers from GEE.""" + # make return in case something went wrong + default_return = (pd.DataFrame(index=metadf.index), buffer) + + # test if metadata is suitable + if not _validate_metadf(metadf): + logger.warning(f"Metadf is not suitable for GEE extractiond: {metadf}") + return default_return + + relevant_metadf = metadf.reset_index()[["name", "lat", "lon"]] + + freqs_df = extract_buffer_frequencies( + metadf=relevant_metadf, mapinfo=mapinfo, bufferradius=buffer + ) + + # apply aggregation if required + if agg: + logger.info(f"Using aggregation scheme: {mapinfo['aggregation']}") + agg_df = pd.DataFrame() + for agg_name, agg_classes in mapinfo["aggregation"].items(): + present_agg_classes = [ + str(num) for num in agg_classes if str(num) in freqs_df.columns + ] + agg_df[agg_name] = freqs_df[present_agg_classes].sum(axis=1) + + return agg_df, buffer + + else: + # map numeric classes to human + mapper = { + str(num): human for num, human in mapinfo["categorical_mapper"].items() + } + freqs_df = freqs_df.rename(columns=mapper) + + return freqs_df, buffer
+ + + +
+[docs] +def height_extractor(metadf, mapinfo): + """Get altitude for all stations from GEE.""" + # make return in case something went wrong + default_return = pd.Series( + index=metadf.index, data="Location_unknown", name="altitude", dtype=object + ) + + # test if metadata is suitable + if not _validate_metadf(metadf): + logger.warning(f"Metadf is not suitable for GEE extractiond: {metadf}") + return default_return + + relevant_metadf = metadf.reset_index()[["name", "lat", "lon"]] + + altitude_df = extract_pointvalues( + metadf=relevant_metadf, mapinfo=mapinfo, output_column_name="altitude" + ) + return altitude_df["altitude"] # return series
+ + + +# ============================================================================= +# Object convertors +# ============================================================================= + + +def _datetime_to_gee_datetime(datetime): + # covert to UTC! + utcdt = datetime.astimezone(pytz.utc) + logger.debug(utcdt.replace(tzinfo=None)) + return ee.Date(utcdt.replace(tzinfo=None)) + + +
+[docs] +def get_ee_obj(mapinfo, band=None): + """Get an image from a GEE object.""" + if mapinfo["is_image"]: + obj = ee.Image(mapinfo["location"]) + elif mapinfo["is_imagecollection"]: + if isinstance(band, type(None)): + obj = ee.ImageCollection(mapinfo["location"]) + else: + obj = ee.ImageCollection(mapinfo["location"]).select(band) + + else: + sys.exit("Map type is not an Image or Imagecollection.") + return obj
+ + + +
+[docs] +def coords_to_geometry(lat=[], lon=[], proj="EPSG:4326"): + """Convert coordinates to GEE geometries.""" + if len(lat) == 1: + return ee.Geometry.Point(coords=[lon[0], lat[0]], proj=proj) + else: + return ee.Geometry.MultiPoint(list(zip(lon, lat)), proj=proj)
+ + + +# ============================================================================= +# Helpers +# ============================================================================= + + +def _validate_metadf(metadf): + """Test if metadf is valid for GEE extraction. + + Returns True if metadata is suitable for gee extraction. + + :param metadf: metadata dataframe + :type metadf: pd.DataFrame + :return: True if oke, else False + :rtype: Bool + + """ + if metadf.empty: + return False + if metadf["geometry"].x.isnull().values.all(): + return False + if metadf["geometry"].y.isnull().values.all(): + return False + try: + # Just testing if it can be converted + metadf = metadf.to_crs("epsg:4326") + except: + return False + + return True + + +def _addDate(image): + """Add the image datetime as a band.""" + img_date = ee.Date(image.date()) + img_date = ee.Number.parse(img_date.format("YYYYMMddHHmmss")) + return image.addBands(ee.Image(img_date).rename("datetime")) + + +def _df_to_features_point_collection(df): + """Convert a dataframe to a featurecollections row-wise.""" + features = [] + for index, row in df.reset_index().iterrows(): + # construct the geometry from dataframe + poi_geometry = ee.Geometry.Point([row["lon"], row["lat"]]) + # construct the attributes (properties) for each point + poi_properties = poi_properties = {"name": row["name"]} + # construct feature combining geometry and properties + poi_feature = ee.Feature(poi_geometry, poi_properties) + features.append(poi_feature) + + return ee.FeatureCollection(features) + + +def _df_to_features_buffer_collection(df, bufferradius): + """Convert a dataframe to a featurecollections row-wise.""" + features = [] + for index, row in df.reset_index().iterrows(): + # construct the geometry from dataframe + poi_geometry = ee.Geometry.Point([row["lon"], row["lat"]]).buffer( + distance=bufferradius + ) + # construct the attributes (properties) for each point + poi_properties = poi_properties = {"name": row["name"]} + # construct feature combining geometry and properties + poi_feature = ee.Feature(poi_geometry, poi_properties) + features.append(poi_feature) + + return ee.FeatureCollection(features) + + +
+[docs] +def coordinates_available(metadf, latcol="lat", loncol="lon"): + """Test if all coordinates are available.""" + if metadf[latcol].isnull().all(): + logger.warning("No coordinates are found!") + return False + if metadf[loncol].isnull().all(): + logger.warning("No coordinates are found!") + return False + return True
+ + + +def _estimate_data_size(metadf, startdt, enddt, time_res, n_bands=1): + datatimerange = pd.date_range(start=startdt, end=enddt, freq=time_res) + + return metadf.shape[0] * len(datatimerange) * n_bands + + +# ============================================================================= +# Data extractors +# ============================================================================= + + +
+[docs] +def extract_pointvalues(metadf, mapinfo, output_column_name): + """Extract values for point locations from a GEE dataset. + + The pointlocations are defined in a dataframe by EPSG:4326 lat lon coordinates. + + A dataframe with the extracted values is returned. + The values are mapped to human classes if the dataset value type is labeld as categorical. + + Parameters + ---------- + metadf : pd.DataFrame + dataframe containing coordinates and a column "name", representing the name for each location. + mapinfo : Dict + The information about the GEE dataset. + output_column_name : String + Column name for the extracted values. + latcolname : String, optional + Columnname of latitude values. The default is 'lat'. + loncolname : String, optional + Columnname of longitude values. The default is 'lon'. + + Returns + ------- + pd.DataFrame + A dataframe with name as index, all columns from the metadf + extracted extracted values column. + + """ + scale = mapinfo["scale"] + + # test if coordiantes are available + if not coordinates_available(metadf, "lat", "lon"): + return pd.DataFrame() + + # ============================================================================= + # df to featurecollection + # ============================================================================= + + ee_fc = _df_to_features_point_collection(metadf) + + # ============================================================================= + # extract raster values + # ============================================================================= + + raster = get_ee_obj(mapinfo, mapinfo["band_of_use"]) # dataset + if mapinfo["is_imagecollection"]: + + def rasterExtraction(image): + feature = image.sampleRegions( + collection=ee_fc, # feature collection here + scale=scale, # Cell size of raster + ) + return feature + + results = raster.map(rasterExtraction).flatten().getInfo() + elif mapinfo["is_image"]: + raster = get_ee_obj(mapinfo, mapinfo["band_of_use"]) # dataset + results = raster.sampleRegions( + collection=ee_fc, scale=scale # feature collection here + ).getInfo() + else: + sys.exit( + f'gee dataset {mapinfo["location"]} is neighter image nor imagecollection.' + ) + + # extract properties + if not bool(results["features"]): + # no data retrieved + logger.warning(f"Something went wrong, gee did not return any data: {results}") + logger.info( + f"(Could it be that (one) these coordinates are not on the map: {metadf}?)" + ) + return pd.DataFrame() + + # ============================================================================= + # to dataframe + # ============================================================================= + + properties = [x["properties"] for x in results["features"]] + df = pd.DataFrame(properties) + + # map to human space if categorical + if mapinfo["value_type"] == "categorical": + df[mapinfo["band_of_use"]] = df[mapinfo["band_of_use"]].map( + mapinfo["categorical_mapper"] + ) + + # rename to values to toolkit space + df = df.rename(columns={mapinfo["band_of_use"]: output_column_name}) + + # #format index + df = df.set_index(["name"]) + + return df
+ + + +
+[docs] +def extract_buffer_frequencies(metadf, mapinfo, bufferradius): + """Extract buffer fractions from a GEE categorical dataset. + + The pointlocations are defined in a dataframe by EPSG:4326 lat lon coordinates. + + A dataframe with the extracted values is returned. + The values are mapped to human classes if the dataset value type is labeld as categorical. + + Parameters + ---------- + metadf : pd.DataFrame + dataframe containing coordinates and a column "name", representing the name for each location. + mapinfo : Dict + The information about the GEE dataset. + latcolname : String, optional + Columnname of latitude values. The default is 'lat'. + loncolname : String, optional + Columnname of longitude values. The default is 'lon'. + + Returns + ------- + pd.DataFrame + A dataframe with name as index, all columns from the metadf + extracted extracted values column. + + """ + scale = mapinfo["scale"] + + # test if coordiantes are available + if not coordinates_available(metadf, "lat", "lon"): + return pd.DataFrame() + + # test if map is categorical + if not mapinfo["value_type"] == "categorical": + logger.warning( + "Extract buffer frequencies is only implemented for categorical datasets!" + ) + return pd.DataFrame() + + # ============================================================================= + # df to featurecollection + # ============================================================================= + + ee_fc = _df_to_features_buffer_collection(metadf, bufferradius) + + # ============================================================================= + # extract raster values + # ============================================================================= + + def rasterExtraction(image): + feature = image.reduceRegions( + reducer=ee.Reducer.frequencyHistogram(), + collection=ee_fc, # feature collection here + scale=scale, # Cell size of raster + ) + return feature + + raster = get_ee_obj(mapinfo, mapinfo["band_of_use"]) # dataset + results = raster.map(rasterExtraction).flatten().getInfo() + + # ============================================================================= + # to dataframe + # ============================================================================= + + freqs = { + staprop["properties"]["name"]: staprop["properties"]["histogram"] + for staprop in results["features"] + } + freqsdf = pd.DataFrame(freqs) + + # format frequency df + freqsdf = freqsdf.transpose().fillna(0) + freqsdf.index.name = "name" + + # normalize freqs + freqsdf = freqsdf.div(freqsdf.sum(axis=1), axis=0) + + return freqsdf
+ + + +
+[docs] +def gee_extract_timeseries( + metadf, band_mapper, mapinfo, startdt, enddt, latcolname="lat", loncolname="lon" +): + """Extract timeseries data at the stations location from a GEE dataset. + + Extract a timeseries, for a given obstype, for point locations from a GEE + dataset. The pointlocations are defined in a dataframe by EPSG:4326 lat lon + coordinates. + + The startdate is included, the enddate is excluded. + + A multi-index dataframe with the timeseries is returned + + Parameters + ---------- + metadf : pd.DataFrame + dataframe containing coordinates and a column "name", representing the name for each location. + band_mapper : dict + the name of the band to extract data from as keys, the default name of + the corresponding obstype as values. + mapinfo : Dict + The information about the GEE dataset. + startdt : datetime obj + Start datetime for timeseries (included). + enddt : datetime obj + End datetime for timeseries (excluded). + latcolname : String, optional + Columnname of latitude values. The default is 'lat'. + loncolname : String, optional + Columnname of longitude values. The default is 'lon'. + + Returns + ------- + pd.DataFrame + A dataframe with name - datetime multiindex, all columns from the metadf + extracted timeseries + column with the same name as the obstypes. + + """ + scale = mapinfo["scale"] + bandnames = list(band_mapper.keys()) + + # test if coordiantes are available + if not coordinates_available(metadf, latcolname, loncolname): + return pd.DataFrame() + + use_drive = False + _est_data_size = _estimate_data_size( + metadf=metadf, + startdt=startdt, + enddt=enddt, + time_res=mapinfo["time_res"], + n_bands=len(bandnames), + ) + if _est_data_size > 4000: + print( + "THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!" + ) + logger.info( + "THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!" + ) + + use_drive = True + # ============================================================================= + # df to featurecollection + # ============================================================================= + + ee_fc = _df_to_features_point_collection(metadf) + + # ============================================================================= + # extract raster values + # ============================================================================= + + def rasterExtraction(image): + feature = image.sampleRegions( + collection=ee_fc, # feature collection here + scale=scale, # Cell size of raster + ) + return feature + + # Because the daterange is maxdate exclusive, add the time resolution to the enddt + enddt = enddt + pd.Timedelta(mapinfo["time_res"]) + + raster = get_ee_obj(mapinfo, bandnames) # dataset + results = ( + raster.filter( + ee.Filter.date( + _datetime_to_gee_datetime(startdt), _datetime_to_gee_datetime(enddt) + ) + ) + .map(_addDate) + .map(rasterExtraction) + .flatten() + ) + + def format_df(df, band_mapper): + # format datetime + df["datetime"] = pd.to_datetime(df["datetime"], format="%Y%m%d%H%M%S") + # set timezone + df["datetime"] = df["datetime"].dt.tz_localize("UTC") + + # format index + df = df.set_index(["name", "datetime"]) + df = df.sort_index() + + # rename to values to toolkit space + df = df.rename(columns=band_mapper) + return df + + if not use_drive: + results = results.getInfo() + + # ============================================================================= + # to dataframe + # ============================================================================= + + # extract properties + properties = [x["properties"] for x in results["features"]] + df = pd.DataFrame(properties) + + if df.empty: + sys.exit("ERROR: the returned timeseries from GEE are empty.") + + df = format_df(df, band_mapper) + return df + + else: + _filename = "era5_data" + _drivefolder = "era5_timeseries" + + print( + f"The timeseries will be writen to your Drive in {_drivefolder}/{_filename} " + ) + logger.info( + f"The timeseries will be writen to your Drive in {_drivefolder}/{_filename} " + ) + + data_columns = ["datetime", "name"] + data_columns.extend(bandnames) + + task = ee.batch.Export.table.toDrive( + collection=results, + description="extracting_era5", + folder=_drivefolder, + fileNamePrefix=_filename, + fileFormat="CSV", + selectors=data_columns, + ) + + task.start() + logger.info("The google server is handling your request ...") + sleep(3) + finished = False + while finished is False: + if task.status()["state"] == "READY": + logger.info("Awaitening execution ...") + sleep(4) + elif task.status()["state"] == "RUNNING": + logger.info("Running ...") + sleep(4) + else: + logger.info("finished") + finished = True + + doc_folder_id = task.status()["destination_uris"][0] + print("The data is transfered! Open the following link in your browser: \n\n") + print(f"{doc_folder_id} \n\n") + print( + "To upload the data to the model, use the Modeldata.set_model_from_csv() method" + ) + + return init_multiindexdf()
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/missingobs.html b/docs/_build/_modules/metobs_toolkit/missingobs.html new file mode 100644 index 00000000..e419a082 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/missingobs.html @@ -0,0 +1,497 @@ + + + + + + metobs_toolkit.missingobs — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.missingobs

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This module contains the Missingob_collection class and all its methods.
+
+A Missingob_collection holds all missing observations and methods on how to
+fill them.
+"""
+
+
+import pandas as pd
+import numpy as np
+from datetime import timedelta
+import logging
+
+from metobs_toolkit.df_helpers import _find_closes_occuring_date, xs_save, concat_save
+
+logger = logging.getLogger(__name__)
+
+# =============================================================================
+# Missing observation
+
+# a missing observation is a missing timestamp
+# =============================================================================
+
+
+
+[docs] +class Missingob_collection: + """Class object handling a set of missing observations.""" + + def __init__(self, missing_obs_series): + """Init missing observations.""" + missing_obs_series.name = "datetime" + missing_obs_series.index.name = "name" + + missing_obs_df = missing_obs_series.reset_index() # needed to find duplicates + missing_obs_df = missing_obs_df.drop_duplicates() + missing_obs_series = missing_obs_df.set_index("name")["datetime"] + missing_obs_series = missing_obs_series.sort_index() + + missing_idx = missing_obs_series.reset_index() + missing_idx = missing_idx.set_index(["name", "datetime"]) + + self.series = missing_obs_series + self.idx = missing_idx.index + + # gap fill (only for conventional saving) + self.fill_df = pd.DataFrame() + self.fill_technique = None + +
+[docs] + def __add__(self, other): + """Append two collections of missing observations.""" + + comb_series = concat_save([self.series, other.series]) + # drop duplicates and sort + comb_df = comb_series.reset_index() # needed to find duplicates + comb_df = comb_df.drop_duplicates() + comb_series = comb_df.set_index("name")["datetime"] + comb_series = comb_series.sort_index() + + self.series = comb_series + comb_idx = comb_series.reset_index() + comb_idx = comb_idx.set_index(["name", "datetime"]) + self.idx = comb_idx.index + return self
+ + + def __len__(self): + """Get number of missing observations.""" + return self.series.shape[0] + + def __str__(self): + """Print overview info of missing observations.""" + if self.series.empty: + return "Empty missing observations." + + if not self.fill_df.empty: + return f"Missing observations with filled ({self.fill_technique}) \ + values: \n {self.fill_df} \n Original missing observations on import: \n {self.idx}" + + return f"Missing observations: \n {self.series}" + + def __repr__(self): + """Print overview info of missing observations.""" + return self.__str__() + +
+[docs] + def get_info(self, max_disp_list=7): + """Print out detailed information on the missing observations. + + Parameters + ---------- + max_disp_list : int, optional + Max size of lists to print out. If listsize is larger, the length of + the list is printed. The default is 7. + + Returns + ------- + None. + + """ + print("\n -------- Missing observations info -------- \n") + if self.series.empty: + print("Empty missing observations.") + return + print( + "(Note: missing observations are defined on the frequency estimation of the native dataset.)" + ) + + n_missing = len(self) + stations = self.series.index.unique().to_list() + + print(f" * {n_missing} missing observations") + if n_missing <= max_disp_list: + print(f"\n {self.series} \n") + + if len(stations) <= max_disp_list: + print(f" * For these stations: {stations}") + else: + print(f" * For {len(stations)} stations") + + if self.fill_df.empty: + print(" * The missing observations are not filled.") + else: + filled_obstypes = [ + obs for obs in self.fill_df.columns if not obs.endswith("_final_label") + ] + print( + f" * Missing observations are filled with {self.fill_technique} for: " + ) + for obstype in filled_obstypes: + print(f" {obstype}: \n {self.fill_df[[obstype]]}") + + # print missing obs that could not be filled + print(" * Missing observations that could NOT be filled for: ") + for obstype in filled_obstypes: + unfilled = self.idx[ + ~self.idx.isin(self.fill_df[[obstype]].dropna().index) + ] + print(f" {obstype}: \n {unfilled}") + + print( + "(More details on the missing observation can be found in the .series and .fill_df attributes.)" + ) + return
+ + +
+[docs] + def get_station_missingobs(self, name): + """Get the missing observations of a specific station. + + Parameters + ---------- + name : str + The name of the station to extract the missing observation from. + + Returns + ------- + Metobs_toolkit.Missingob_collection + A subset of the missing observations from a specific station. + + """ + if name in self.series.index: + return Missingob_collection(self.series.loc[[name]]) + else: + # return empty collection + series = pd.Series(data=[], name="datetime", dtype=object) + series.index.name = "name" + return Missingob_collection(series)
+ + +
+[docs] + def remove_missing_from_obs(self, obsdf): + """Drop the missing observation from an observational dataframe, if they are present. + + Parameters + ---------- + obsdf : pandas.DataFrame + Multiindex observational dataframe. + + Returns + ------- + obsdf : pandas.DataFrame + Multiindex observational dataframe without records linked to missing + observations. + + """ + # Normally there are no missing records in the obsdf + missing_multiidx = pd.MultiIndex.from_arrays( + arrays=[self.series.index.to_list(), self.series.to_list()], + names=["name", "datetime"], + ) + + obsdf = obsdf.drop(index=missing_multiidx, errors="ignore") + + return obsdf
+ + +
+[docs] + def remove_missing_from_outliers(self, outldf): + """Drop the missing observation from an outlier dataframe, if they are present. + + This will ignore the observation types! So all outliers of any + observation type, at an missing timestamp are removed. + + Parameters + ---------- + obsdf : pandas.DataFrame + Multiindex (name-datetime-obstype) observational dataframe. + + Returns + ------- + obsdf : pandas.DataFrame + Multiindex observational dataframe without records linked to missing + observations. + + """ + # to multiindex + outldf = outldf.reset_index().set_index(["name", "datetime"]) + + # remove records inside the gaps + suboutldf = self.remove_missing_from_obs(obsdf=outldf) + + # reset to triple index + outldf = suboutldf.reset_index().set_index(["name", "datetime", "obstype"]) + return outldf
+ + +
+[docs] + def interpolate_missing( + self, obsdf, resolutionseries, obstype="temp", method="time" + ): + """Fill the missing observations using an interpolation method. + + The "fill_df" and "fill_technique" attributes will be updated. + + Parameters + ---------- + obsdf : Metobs_toolkit.Dataset.df + The observations that can be used for the interpolation. + resolutionseries : pd.Series + The dataset resolution series for all stations.. + obstype : element of Metobs_toolkit.observational_types, optional + Select which observation type you wish to interpolate. The default is 'temp'. + method : valid input for pandas.DataFrame.interpolate method arg, optional + Which interpolation method to use. The default is 'time'. + + Returns + ------- + None. + + """ + # create fill column for the obstype + self.fill_df[obstype] = np.nan + self.fill_technique = "interpolate" + # locate the missing observation in observation space + missing_obsspace = self.get_missing_indx_in_obs_space(obsdf, resolutionseries) + + # Set index for df fill attribute + self.fill_df = pd.DataFrame(index=missing_obsspace) + + for staname, missingdt in missing_obsspace: + staobs = xs_save(obsdf, staname, level="name")[obstype] + # exclude nan values because they are no good leading/trailing + staobs = staobs[~staobs.isnull()] + + # find leading and trailing datetimes + leading_seconds = _find_closes_occuring_date( + refdt=missingdt, series_of_dt=staobs.index, where="before" + ) + + if np.isnan(leading_seconds): + logger.warn( + f"missing obs: {staname}, at {missingdt} does not have a leading timestamp." + ) + continue + + leading_dt = missingdt - timedelta(seconds=leading_seconds) + + trailing_seconds = _find_closes_occuring_date( + refdt=missingdt, series_of_dt=staobs.index, where="after" + ) + + if np.isnan(trailing_seconds): + logger.warn( + f"missing obs: {staname}, at {missingdt} does not have a trailing timestamp." + ) + continue + trailing_dt = missingdt + timedelta(seconds=trailing_seconds) + + # extract the values and combine them in a dataframe + leading_val = staobs.loc[leading_dt] + trailing_val = staobs.loc[trailing_dt] + + stadf = pd.DataFrame( + index=[leading_dt, missingdt, trailing_dt], + data={obstype: [leading_val, np.nan, trailing_val]}, + ) + + # interpolate the missing obs + stadf["interp"] = stadf[obstype].interpolate(method=method) + + self.fill_df.loc[(staname, missingdt), obstype] = stadf.loc[ + missingdt, "interp" + ] + + # if no fill is applied (no leading/trailing), remove them from fill to keep them as missing + if not self.fill_df.empty: + self.fill_df = self.fill_df.dropna(subset=obstype)
+ + +
+[docs] + def get_missing_indx_in_obs_space(self, obsdf, resolutionseries): + """Find which missing timestamps are expected in the observation space. + + Because of time coarsening not all missing timestamps are expected in observation space. + + This function handles each station seperatly because stations can have differnent resolution/timerange. + + + Parameters + ---------- + obsdf : pandas.DataFrame() + Dataset.df. + resolutionseries : pandas.Series() or Timedelta + Dataset.metadf['dataset_resolution']. + + Returns + ------- + missing_obsspace : pandas.MultiIndex + The multiindex (name - datetime) is returned with the missing timestamps that are expexted in the observation space. + + """ + missing_obsspace_df = pd.DataFrame(data={"name": [], "datetime": []}) + + # per stationtion because stations can have different resolutions/timerange + for sta in self.series.index.unique(): + # Get missing observations in IO space + sta_missing = self.series.loc[sta] + if not isinstance(sta_missing, type(pd.Series(dtype=object))): + sta_missing = pd.Series(data=[sta_missing], index=[sta], dtype=object) + + # Get start, end and frequency of the observation in obs space + startdt = xs_save(obsdf, sta, level="name").index.min() + enddt = xs_save(obsdf, sta, level="name").index.max() + obs_freq = resolutionseries.loc[sta] + + # Make datetimerange + obsrange = pd.date_range( + start=startdt, end=enddt, freq=obs_freq, inclusive="both" + ) + + # # Look which missing timestamps appears obsspace + sta_missing = sta_missing[sta_missing.isin(obsrange)] + + # Convert to multiindex + if sta_missing.empty: + continue + sta_missing_df = pd.DataFrame( + data={"name": sta, "datetime": sta_missing}, index=None + ).reset_index(drop=True) + + missing_obsspace_df = concat_save([missing_obsspace_df, sta_missing_df]) + + # convert to mulittindex + missing_obsspace_df = missing_obsspace_df.set_index(["name", "datetime"]) + + return missing_obsspace_df.index
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/modeldata.html b/docs/_build/_modules/metobs_toolkit/modeldata.html new file mode 100644 index 00000000..854ea67d --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/modeldata.html @@ -0,0 +1,1138 @@ + + + + + + metobs_toolkit.modeldata — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.modeldata

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This module contains the Modeldata class and all its methods.
+
+A Modeldata holds all timeseries coming from a model and methods to use them.
+"""
+import os
+import copy
+import sys
+import pickle
+import pandas as pd
+import logging
+
+from metobs_toolkit.df_helpers import (
+    init_multiindexdf,
+    conv_tz_multiidxdf,
+    xs_save,
+    multiindexdf_datetime_subsetting,
+)
+
+from metobs_toolkit.landcover_functions import connect_to_gee, gee_extract_timeseries
+
+from metobs_toolkit.plotting_functions import model_timeseries_plot, timeseries_plot
+
+# from metobs_toolkit.obstypes import tlk_obstypes
+from metobs_toolkit.obstypes import Obstype as Obstype_class
+from metobs_toolkit.obstype_modeldata import (
+    model_obstypes,
+    ModelObstype,
+    ModelObstype_Vectorfield,
+)
+from metobs_toolkit.obstype_modeldata import compute_amplitude, compute_angle
+from metobs_toolkit.settings import Settings
+
+logger = logging.getLogger(__name__)
+
+# =============================================================================
+# Class Model data (collection of external model data)
+# =============================================================================
+
+
+
+[docs] +class Modeldata: + """Class holding data and methods for a modeldata-timeseries.""" + + def __init__(self, modelname): + """Initialize modeldata.""" + self.df = init_multiindexdf() + self.modelname = modelname + + self._settings = Settings() + self.mapinfo = self._settings.gee["gee_dataset_info"] + + self.df_tz = "UTC" # the timezone of the datetimes stored in the df + + self.obstypes = model_obstypes # Dict name: Obstype-instance + + def __str__(self): + """Print overview information of the modeldata.""" + if self.df.empty: + return "Empty Modeldata instance." + n_stations = self.df.index.get_level_values("name").unique().shape[0] + obstypes = self.df.columns.to_list() + startdt = self.df.index.get_level_values("datetime").min() + enddt = self.df.index.get_level_values("datetime").max() + data_units = [self.obstypes[col].get_standard_unit() for col in self.df.columns] + + return f"Modeldata instance containing: \n \ + * Modelname: {self.modelname} \n \ + * {n_stations} timeseries \n \ + * The following obstypes are available: {obstypes} \n \ + * Data has these units: {data_units} \n \ + * From {startdt} --> {enddt} (with tz={self.df_tz}) \n \n (Data is stored in the .df attribute)" + + def __repr__(self): + """Print overview information of the modeldata.""" + return self.__str__() + +
+[docs] + def get_info(self): + """Print out detailed information on the Modeldata.""" + print(str(self)) + + print("\n ------ Known gee datasets -----------") + self.list_gee_datasets()
+ + +
+[docs] + def add_obstype(self, Obstype, bandname, band_units, band_description=None): + """Add a new Observation type for the current Modeldata. + + + Parameters + ---------- + Obstype : metobs_toolkit.obstype.Obstype + The new Obstype to add. + bandname : str + The name of the band that represents the obstype. + band_units : str + The unit the band is in. This unit must be a knonw-unit in the + Obstype. + band_description : str, optional + A detailed description of the band. The default is None. + + Returns + ------- + None. + + """ + if not isinstance(Obstype, Obstype_class): + sys.exit( + f"{Obstype} is not an instance of metobs_toolkit.obstypes.Obstype." + ) + + obs = Obstype + + # Test if the band unit is a knonw unit + if not obs.test_if_unit_is_known(band_units): + sys.exit( + f"The {bandname} unit: {band_units} is not a knonw unit for {obs.name}" + ) + + # Make the modeldata extension + equiv_dict = { + self.modelname: { + "name": str(bandname), + "units": str(band_units), + "band_desc": str(band_description), + } + } + + modeldata_obstype = ModelObstype(obstype=obs, model_equivalent_dict=equiv_dict) + + # add Obstype + self.obstypes[obs.name] = modeldata_obstype + logger.info(f"{obs.name} added to the known observation types.")
+ + +
+[docs] + def add_gee_dataset( + self, + mapname, + gee_location, + obstype, + bandname, + units, + scale, + band_desc=None, + time_res="1H", + is_image=False, + is_numeric=True, + credentials="", + ): + """Add a new gee dataset to the available gee datasets. + + Parameters + ---------- + mapname : str + Mapname of choice for the GEE dataset to add. + gee_location : str + Location of the gee dataset (like "ECMWF/ERA5_LAND/HOURLY" for ERA5). + obstype : str + The observation type name the band corresponds to. + bandname : str + Name of the dataset band as stored on the GEE. + units : str + The units of the band. + scale : int + The scale to represent the dataset in. (This is a GEE concept that + is similar to the resolution in meters). + band_desc : str or None, optional + Add a descrition to of the band. The default is None. + time_res : timedelta string, optional + Time reoslution of the dataset, if is_image == False. The default is '1H'. + is_image : bool, optional + If True, the dataset is a ee.Image, else it is assumed to be an + ee.ImageCollection. The default is False. + is_numeric : bool, optional + If True, the bandvalues are interpreted as numerical values rather + than categorical.. The default is True. + credentials : str, optional + Extra credentials of the dataset. The default is ''. + + Returns + ------- + None. + + Note + ------- + To list all available gee dataset, use the .list_gee_dataset() method. + + Note + ------- + Currently no unit conversion is perfomed automatically other than K --> + Celcius. This will be implemented in the futur. + + """ + # check if mapname exists + if mapname in self.mapinfo.keys(): + logger.warning( + f"{mapname} is found in the list of known gee datasets: {list(self.mapinfo.keys())}, choose a different mapname." + ) + return + + if is_numeric: + val_typ = "numeric" + else: + val_typ = "categorical" + + # Dataset defenition + new_info = { + mapname: { + "location": f"{gee_location}", + "usage": "user defined addition", + "value_type": val_typ, + "dynamical": not bool(is_image), + "scale": int(scale), + "is_image": bool(is_image), + "is_imagecollection": not bool(is_image), + "credentials": f"{credentials}", + } + } + + if not is_image: + new_info[mapname]["time_res"] = f"{time_res}" + + # obstype defenition + # 1. if obstype exists, update the obstype + if obstype in self.obstypes: + self.obstypes[obstype].add_new_band( + mapname=mapname, bandname=bandname, bandunit=units, band_desc=band_desc + ) + + # 2. if obstype does not exist, create the obstype + else: + sys.exit( + f"{obstype} is an unknown obstype. First add this obstype to the Modeldata, and than add a gee dataset." + ) + + self.mapinfo.update(new_info) + logger.info( + f"{mapname} is added to the list of available gee dataset with: {new_info}" + ) + return
+ + +
+[docs] + def list_gee_datasets(self): + """Print out all the available gee datasets. + + Returns + ------- + None. + + """ + print("The following datasets are found: ") + for geename, info in self.mapinfo.items(): + print("\n --------------------------------") + print(f"{geename} : \n") + # find which observations that are mappd + mapped_obs = [ + obstype + for obstype in self.obstypes.values() + if obstype.has_mapped_band(geename) + ] + if len(mapped_obs) == 0: + print(f" No mapped observation types for {geename}.") + else: + for obs in mapped_obs: + obs.get_info() + print("\n INFO: \n") + print(f"{info}")
+ + + def _conv_to_timezone(self, tzstr): + """Convert the timezone of the datetime index of the df attribute. + + Parameters + ---------- + tzstr : str + TImezonstring from the pytz module. + + Returns + ------- + None. + + """ + # get tzstr by datetimindex.tz.zone + + df = self.df + df["datetime_utc"] = df.index.get_level_values("datetime").tz_convert(tzstr) + df = df.reset_index() + df = df.drop(columns=["datetime"]) + df = df.rename(columns={"datetime_utc": "datetime"}) + df = df.set_index(["name", "datetime"]) + self.df = df + self.df_tz = tzstr + +
+[docs] + def convert_units_to_tlk(self, obstype): + """Convert the model data of one observation to the standard units. + + The data attributes will be updated. + + Parameters + ---------- + obstype : str + Observation type to convert to standard units. + + Returns + ------- + None. + + """ + # chech if data is available + if self.df.empty: + logger.warning("No data to set units for.") + return + + if obstype not in self.obstypes: + logger.warning( + f"{obstype} not found as a known observationtype in the Modeldata." + ) + return + + if isinstance(self.obstypes[obstype], ModelObstype): + # scalar obstype + if obstype not in self.df.columns: + logger.warning( + f"{obstype} not found as observationtype in the Modeldata." + ) + return + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + # vector obstype + if self.obstypes[obstype].get_u_column() not in self.df.columns: + logger.warning( + f"{self.obstypes[obstype].get_u_column()} not found as observationtype in the Modeldata." + ) + return + if self.obstypes[obstype].get_v_column() not in self.df.columns: + logger.warning( + f"{self.obstypes[obstype].get_v_column()} not found as observationtype in the Modeldata." + ) + return + + cur_unit = self.obstypes[obstype].get_modelunit(self.modelname) + + if isinstance(self.obstypes[obstype], ModelObstype): + converted_data = self.obstypes[obstype].convert_to_standard_units( + input_data=self.df[obstype], input_unit=cur_unit + ) + # Update the data and the current unit + self.df[obstype] = converted_data + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + u_comp_name = self.obstypes[obstype].get_u_column() + v_comp_name = self.obstypes[obstype].get_v_column() + u_comp, v_comp = self.obstypes[obstype].convert_to_standard_units( + input_df=self.df, input_unit=cur_unit + ) + + self.df[u_comp_name] = u_comp + self.df[v_comp_name] = v_comp + logger.info( + f"{obstype} are converted from {cur_unit} --> {self.obstypes[obstype].get_standard_unit()}." + )
+ + +
+[docs] + def exploid_2d_vector_field(self, obstype): + """Compute amplitude and direction of 2D vector field components. + + The amplitude and directions are added to the data attribute, and their + equivalent observationtypes are added to the known ModelObstypes. + + (The vector components are not saved.) + Parameters + ---------- + obstype : str + The name of the observationtype that is a ModelObstype_Vectorfield. + + Returns + ------- + None. + + """ + # check if the obstype is a vector field + if not isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + logger.warning( + f"{obstype} is not a 2D vector field, so it can not be exploided." + ) + return + + # get amplitude of 2D vectors + logger.info(f"Computing the amplited of the 2D vector field of {obstype}") + amp_data, amp_obstype = compute_amplitude( + modelobs_vectorfield=copy.deepcopy(self.obstypes[obstype]), df=self.df + ) + + # # get direction of 2D vectors + logger.info(f"Computing the direction of the 2D vector field of {obstype}") + dir_data, dir_obstype = compute_angle( + modelobs_vectorfield=copy.deepcopy(self.obstypes[obstype]), df=self.df + ) + + # ------ update the attributes --------- + + # add new columns to the df + self.df[amp_obstype.name] = amp_data + self.df[dir_obstype.name] = dir_data + + # remove components from the df (Needed because they are not linked to an obstype) + self.df = self.df.drop( + columns=[ + self.obstypes[obstype].get_u_column(), + self.obstypes[obstype].get_v_column(), + ] + ) + + # add the aggregated obstypes to the known obsytpes + self.obstypes[amp_obstype.name] = amp_obstype + self.obstypes[dir_obstype.name] = dir_obstype
+ + +
+[docs] + def get_gee_dataset_data( + self, mapname, metadf, startdt_utc, enddt_utc, obstypes=["temp"] + ): + """Extract timeseries of a gee dataset. + + The extraction can only be done if the gee dataset bandname (and units) + corresponding to the obstype is known. + + The units are converted to the toolkit standard units!! + + Parameters + ---------- + mapname : str + Mapname of choice of the GEE dataset to extract data from. + metadf : pandas.DataFrame + A dataframe with a 'name' index and 'lat', 'lon' columns. + Timeseries are extracted for these locations. + startdt_utc : datetime.datetime + Start datetime of the timeseries in UTC. + enddt_utc : datetime.datetime + Last datetime of the timeseries in UTC. + obstypes : str or list of strings, optional + Toolkit observation type to extract data from. There should be a + bandname mapped to this obstype for the gee map. Multiple obstypes + can be given in a list. The default is 'temp'. + + + Returns + ------- + None. + + Note + ------ + When extracting large amounts of data, the timeseries data will be + writen to a file and saved on your google drive. In this case, you need + to provide the Modeldata with the data using the .set_model_from_csv() + method. + + """ + # ==================================================================== + # Test input + # ==================================================================== + if metadf.empty: + logger.warning("The metadf is empty!") + return + + # Subset metadf to stations with coordinates + no_coord_meta = metadf[metadf[["lat", "lon"]].isna().any(axis=1)] + if not no_coord_meta.empty: + logger.warning( + f"Following stations do not have coordinates, and thus no modeldata extraction is possible: {no_coord_meta.index.to_list()}" + ) + metadf = metadf[~metadf[["lat", "lon"]].isna().any(axis=1)] + + # is mapinfo available + if mapname not in self.mapinfo.keys(): + logger.warning(f"{mapname} is not a known gee dataset.") + return + + geeinfo = self.mapinfo[mapname] + + # does dataset contain time evolution + if not geeinfo["dynamical"]: + logger.warning( + f"{mapname} is a static dataset, this method does not work on static datasets" + ) + return + + # Check obstypes + if isinstance(obstypes, str): + obstypes = [obstypes] # convert to list + + for obstype in obstypes: + # is obstype mapped? + if obstype not in self.obstypes.keys(): + logger.warning( + f"{obstype} is an unknown observation type of the modeldata." + ) + return + if not self.obstypes[obstype].has_mapped_band(mapname): + logger.warning( + f"{obstype} is not yet mapped to a bandname in the {mapname} dataset." + ) + return + + # ==================================================================== + # GEE api extraction + # ==================================================================== + + # Connect to Gee + connect_to_gee() + + # Get bandname mapper ({bandname1: obstypename1, ...}) + band_mapper = {} + for obstype in obstypes: + band_mapper.update(self.obstypes[obstype].get_bandname_mapper(mapname)) + + logger.info(f"{band_mapper} are extracted from {mapname}.") + # Get data using GEE + df = gee_extract_timeseries( + metadf=metadf, + band_mapper=band_mapper, + mapinfo=geeinfo, + startdt=startdt_utc, + enddt=enddt_utc, + latcolname="lat", + loncolname="lon", + ) + + self.df = df + self.modelname = mapname + + if not self.df.empty: + self.df_tz = "UTC" + # convert to standard units + for obstype in obstypes: + self.convert_units_to_tlk(obstype) + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + self.exploid_2d_vector_field(obstype) + else: + self._data_stored_at_drive = True
+ + +
+[docs] + def get_ERA5_data(self, metadf, startdt_utc, enddt_utc, obstypes="temp"): + """Extract timeseries of the ERA5_hourly dataset. + + The units are converted to the toolkit standard units. + + (This method is a specific ERA5_hourly wrapper on the + get_gee_dataset_data() method) + + Parameters + ---------- + metadf : pandas.DataFrame + A dataframe with a 'name' index and 'lat', 'lon' columns. + Timeseries are extracted for these locations. + startdt_utc : datetime.datetime + Start datetime of the timeseries in UTC. + enddt_utc : datetime.datetime + Last datetime of the timeseries in UTC. + obstypes : str or list of str, optional + Toolkit observation type to extract data from. There should be a + bandname mapped to this obstype for the gee map. Multiple + observation types can be extracted if given as a list. The default is + 'temp'. + + + Returns + ------- + None. + + Note + ------ + When extracting large amounts of data, the timeseries data will be + writen to a file and saved on your google drive. In this case, you need + to provide the Modeldata with the data using the .set_model_from_csv() + method. + + """ + # Check obstypes + if isinstance(obstypes, str): + obstypes = [obstypes] # convert to list + + # test if obstype is known + for obstype in obstypes: + if obstype not in self.obstypes: + sys.exit(f"{obstype} is not a known obstype of the Modeldata instance.") + + # test if the obstype is mapped in the era5 hourly dataset + if "ERA5_hourly" not in self.obstypes[obstype].get_mapped_datasets(): + sys.exit( + f"{obstype} has no equivalent mapped band for the ERA5_hourly dataset." + ) + + self.get_gee_dataset_data( + mapname="ERA5_hourly", + metadf=metadf, + startdt_utc=startdt_utc, + enddt_utc=enddt_utc, + obstypes=obstypes, + )
+ + +
+[docs] + def save_modeldata( + self, + outputfolder=None, + filename="saved_modeldata.pkl", + ): + """Save a Modeldata instance to a (pickle) file. + + Parameters + ---------- + outputfolder : str or None, optional + The path to the folder to save the file. If None, the outputfolder + from the Settings is used. The default is None. + filename : str, optional + The name of the output file. The default is 'saved_modeldata.pkl'. + + Returns + ------- + None. + + """ + # check if outputfolder is known and exists + if outputfolder is None: + outputfolder = self.settings.IO["output_folder"] + assert ( + outputfolder is not None + ), "No outputfolder is given, and no outputfolder is found in the settings." + + assert os.path.isdir(outputfolder), f"{outputfolder} is not a directory!" + + # check file extension in the filename: + if filename[-4:] != ".pkl": + filename += ".pkl" + + full_path = os.path.join(outputfolder, filename) + + # check if file exists + assert not os.path.isfile(full_path), f"{full_path} is already a file!" + + with open(full_path, "wb") as outp: + pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL) + + print(f"Modeldata saved in {full_path}") + logger.info(f"Modeldata saved in {full_path}")
+ + +
+[docs] + def import_modeldata(self, folder_path=None, filename="saved_modeldata.pkl"): + """Import a modeldata instance from a (pickle) file. + + Parameters + ---------- + folder_path : str or None, optional + The path to the folder to save the file. If None, the outputfolder + from the Settings is used. The default is None. + filename : str, optional + The name of the output file. The default is 'saved_modeldata.pkl'. + + Returns + ------- + metobs_toolkit.Modeldata + The modeldata instance. + + """ + # check if folder_path is known and exists + if folder_path is None: + folder_path = self.settings.IO["output_folder"] + assert ( + folder_path is not None + ), "No folder_path is given, and no outputfolder is found in the settings." + + assert os.path.isdir(folder_path), f"{folder_path} is not a directory!" + + full_path = os.path.join(folder_path, filename) + + # check if file exists + assert os.path.isfile(full_path), f"{full_path} does not exist." + + with open(full_path, "rb") as inp: + modeldata = pickle.load(inp) + + return modeldata
+ + +
+[docs] + def set_model_from_csv(self, csvpath): + """Import timeseries data that is stored in a csv file. + + The name of the gee dataset the timeseries are coming from must be the + same as the .modelname attribute of the Modeldata. + + + The timeseries will be formatted and converted to standard toolkit + units. + + Parameters + ---------- + csvpath : str + Path of the csv file containing the modeldata timeseries. + + Returns + ------- + None. + + """ + # tests ---- + if self.modelname not in self.mapinfo.keys(): + logger.warning(f"{self.modelname} is not found in the gee datasets.") + return + + # 1. Read csv and set timezone + df = pd.read_csv(csvpath, sep=",") + # format datetime + df["datetime"] = pd.to_datetime(df["datetime"], format="%Y%m%d%H%M%S") + # (assume all gee dataset are in UTC) + df["datetime"] = df["datetime"].dt.tz_localize("UTC") + + # 2. Format dataframe + # format index + df = df.set_index(["name", "datetime"]) + df = df.sort_index() + + # make a bandname --> tlk name mapper + bandname_mapper = {} + for known_obstype in self.obstypes.values(): + bandname_mapper.update(known_obstype.get_bandname_mapper(self.modelname)) + + # rename to values to toolkit space + df = df.rename(columns=bandname_mapper) + + # 3. update attributes + self.df = df + self.df_tz = "UTC" + + # 4. Find which obstypes are present + data_present_obstypes = [] + for col in self.df.columns: + if col in self.obstypes.keys(): + # column is a regular obstype + data_present_obstypes.append(col) + else: + # check if column represents a vector component + for known_obs in self.obstypes.values(): + if isinstance(known_obs, ModelObstype_Vectorfield): + comps = [known_obs.get_u_column(), known_obs.get_v_column()] + if col in comps: + data_present_obstypes.append(known_obs.name) + data_present_obstypes = list(set(data_present_obstypes)) + # A. scalar obstypes (same name as column) + + # 5. Convert units + for obstype in data_present_obstypes: + self.convert_units_to_tlk(obstype) + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + self.exploid_2d_vector_field(obstype)
+ + +
+[docs] + def interpolate_modeldata(self, to_multiidx): + """Interpolate modeldata in time. + + Interpolate the modeldata timeseries, to a given name-datetime + multiindex. + + The modeldata will be converted to the timezone of the multiindex. + + If no interpolation can be done, Nan values are used. + + Parameters + ---------- + to_multiidx : pandas.MultiIndex + A name - datetime (tz-aware) multiindex to interpolate the + modeldata timeseries to. + + Returns + ------- + returndf : pandas.DataFrame + A dataframe with to_multiidx as an index. + The values are the interpolated values. + + """ + returndf = init_multiindexdf() + + recordsdf = init_multiindexdf() + recordsdf.index = to_multiidx + # iterate over stations check to avoid extrapolation is done per stations + for sta in recordsdf.index.get_level_values("name").unique(): + sta_recordsdf = xs_save(recordsdf, sta, level="name", drop_level=False) + sta_moddf = xs_save(self.df, sta, level="name", drop_level=False) + + # convert modeldata to timezone of observations + sta_moddf = conv_tz_multiidxdf( + df=sta_moddf, + timezone=sta_recordsdf.index.get_level_values("datetime").tz, + ) + + # check if modeldata is will not be extrapolated ! + if min(sta_recordsdf.index.get_level_values("datetime")) < min( + sta_moddf.index.get_level_values("datetime") + ): + logger.warning("Modeldata will be extrapolated") + if max(sta_recordsdf.index.get_level_values("datetime")) > max( + sta_moddf.index.get_level_values("datetime") + ): + logger.warning("Modeldata will be extrapolated") + + # combine model and records + mergedf = sta_recordsdf.merge( + sta_moddf, how="outer", left_index=True, right_index=True + ) + + # reset index for time interpolation + mergedf = mergedf.reset_index().set_index("datetime").sort_index() + + # interpolate missing modeldata + mergedf = mergedf.drop(columns=["name"]) + mergedf.interpolate(method="time", limit_area="inside", inplace=True) + mergedf["name"] = sta + # convert back to multiindex + mergedf = mergedf.reset_index().set_index(["name", "datetime"]).sort_index() + # filter only records + mergedf = mergedf.loc[sta_recordsdf.index] + + returndf = pd.concat([returndf, mergedf]) + return returndf
+ + +
+[docs] + def make_plot( + self, + obstype_model="temp", + dataset=None, + obstype_dataset=None, + stationnames=None, + starttime=None, + endtime=None, + title=None, + show_outliers=True, + show_filled=True, + legend=True, + _ax=None, # needed for GUI, not recommended use + ): + """Plot timeseries of the modeldata. + + This function creates a timeseries plot for the Modeldata. When a + metobs_toolkit.Dataset is provided, it is plotted in the same figure. + + The line colors represent the timesries for different locations. + + + + Parameters + ---------- + obstype_model : string, optional + Fieldname of the Modeldata to visualise. The default is 'temp'. + dataset : metobs_toolkit.Dataset, optional + A Dataset instance with observations plotted in the same figure. + Observations are represented by solid line and modeldata by dashed + lines. The default is None. + obstype_dataset : string, optional + Fieldname of the Dataset to visualise. Only relevent when a dataset + is provided. If None, obsype_dataset = obstype_model. The default + is None. + stationnames : list, optional + A list with stationnames to include in the timeseries. If None is + given, all the stations are used, defaults to None. + starttime : datetime.datetime, optional + Specifiy the start datetime for the plot. If None is given it will + use the start datetime of the dataset, defaults to None. + endtime : datetime.datetime, optional + Specifiy the end datetime for the plot. If None is given it will + use the end datetime of the dataset, defaults to None. + title : string, optional + Title of the figure, if None a default title is generated. The + default is None. + show_outliers : bool, optional + If true the observations labeld as outliers will be included in + the plot. Only relevent when a dataset is provided. The default + is True. + show_filled : bool, optional + If true the filled values for gaps and missing observations will + be included in the plot. Only relevent when a dataset is provided. + The default is True. + legend : bool, optional + If True, a legend is added to the plot. The default is True. + + + Returns + ------- + axis : matplotlib.pyplot.axes + The timeseries axes of the plot is returned. + + """ + logger.info(f"Make {obstype_model}-timeseries plot of model data") + + # Basic test + if obstype_model not in self.df.columns: + logger.warning( + f"{obstype_model} is not foud in the modeldata df (columns = {self.df.columns})." + ) + return + if self.df.empty: + logger.warning("The modeldata is empty.") + return + if obstype_dataset is None: + obstype_dataset = obstype_model + + if dataset is not None: + if obstype_dataset not in dataset.df.columns: + logger.warning(f"{obstype_dataset} is not foud in the Dataframe df.") + return + + model_df = self.df + + # ------ filter model ------------ + + # Filter on obstype + model_df = model_df[[obstype_model]] + + # Subset on stationnames + if stationnames is not None: + model_df = model_df[ + model_df.index.get_level_values("name").isin(stationnames) + ] + + # Subset on start and endtime + model_df = multiindexdf_datetime_subsetting(model_df, starttime, endtime) + + # -------- Filter dataset (if available) ----------- + if dataset is not None: + # combine all dataframes + mergedf = dataset.combine_all_to_obsspace() + + # subset to obstype + mergedf = xs_save(mergedf, obstype_dataset, level="obstype") + + # Subset on stationnames + if stationnames is not None: + mergedf = mergedf[ + mergedf.index.get_level_values("name").isin(stationnames) + ] + + # Subset on start and endtime + mergedf = multiindexdf_datetime_subsetting(mergedf, starttime, endtime) + + # Generate ylabel + y_label = self.obstypes[obstype_model].get_plot_y_label(mapname=self.modelname) + + # Generate title + title = f"{self.modelname}" + if dataset is not None: + title = f"{title} and {self.obstypes[obstype_dataset].name} observations." + + # make plot of the observations + if dataset is not None: + # make plot of the observations + _ax, col_map = timeseries_plot( + mergedf=mergedf, + title=title, + ylabel=y_label, + colorby="name", + show_legend=legend, + show_outliers=show_outliers, + show_filled=show_filled, + settings=dataset.settings, + _ax=_ax, + ) + + # Make plot of the model on the previous axes + ax, col_map = model_timeseries_plot( + df=model_df, + obstype=obstype_model, + title=title, + ylabel=y_label, + settings=self._settings, + show_primary_legend=False, + add_second_legend=True, + _ax=_ax, + colorby_name_colordict=col_map, + ) + + else: + # Make plot of model on empty axes + ax, _colmap = model_timeseries_plot( + df=model_df, + obstype=obstype_model, + title=title, + ylabel=y_label, + settings=self._settings, + show_primary_legend=legend, + add_second_legend=False, + _ax=_ax, + ) + + return ax
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/obstype_modeldata.html b/docs/_build/_modules/metobs_toolkit/obstype_modeldata.html new file mode 100644 index 00000000..68379450 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/obstype_modeldata.html @@ -0,0 +1,775 @@ + + + + + + metobs_toolkit.obstype_modeldata — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for metobs_toolkit.obstype_modeldata

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Class defenition of model observationtypes. These are regular observationtypes
+witht extra attributes and methods for interacting with the google earht engine.
+"""
+import sys
+import copy
+import math
+import numpy as np
+import logging
+from metobs_toolkit.obstypes import Obstype
+
+from metobs_toolkit.obstypes import temperature, pressure, wind, direction_aliases
+
+logger = logging.getLogger(__name__)
+
+# =============================================================================
+# Standard modeldata equivalents
+# =============================================================================
+tlk_std_modeldata_obstypes = {
+    "temp": {
+        "ERA5_hourly": {
+            "name": "temperature_2m",
+            "units": "Kelvin",
+            "band_desc": "Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.",
+        }
+    },
+    "pressure": {
+        "ERA5_hourly": {
+            "name": "surface_pressure",
+            "units": "pa",
+            "band_desc": "Pressure (force per unit area) of the atmosphere on the surface of land, sea and in-land water. It is a measure of the weight of all the air in a column vertically above the area of the Earth's surface represented at a fixed point. Surface pressure is often used in combination with temperature to calculate air density. The strong variation of pressure with altitude makes it difficult to see the low and high pressure systems over mountainous areas, so mean sea level pressure, rather than surface pressure, is normally used for this purpose. The units of this variable are Pascals (Pa). Surface pressure is often measured in hPa and sometimes is presented in the old units of millibars, mb (1 hPa = 1 mb = 100 Pa).",
+        }
+    },
+    "u_wind": {
+        "ERA5_hourly": {
+            "name": "u_component_of_wind_10m",
+            "units": "m/s",
+            "band_desc": "Eastward component of the 10m wind. It is the horizontal speed of air moving towards the east, at a height of ten meters above the surface of the Earth, in meters per second. Care should be taken when comparing this variable with observations, because wind observations vary on small space and time scales and are affected by the local terrain, vegetation and buildings that are represented only on average in the ECMWF Integrated Forecasting System. This variable can be combined with the V component of 10m wind to give the speed and direction of the horizontal 10m wind.",
+        }
+    },
+    "v_wind": {
+        "ERA5_hourly": {
+            "name": "v_component_of_wind_10m",
+            "units": "m/s",
+            "band_desc": "Northward component of the 10m wind. It is the horizontal speed of air moving towards the north, at a height of ten meters above the surface of the Earth, in meters per second. Care should be taken when comparing this variable with observations, because wind observations vary on small space and time scales and are affected by the local terrain, vegetation and buildings that are represented only on average in the ECMWF Integrated Forecasting System. This variable can be combined with the U component of 10m wind to give the speed and direction of the horizontal 10m wind.",
+        }
+    },
+}
+
+
+
+[docs] +class ModelObstype(Obstype): + """Extension of the Obstype class specific for the obstypes of Modeldata.""" + + def __init__(self, obstype, model_equivalent_dict={}): + """Initiate an Modelobservation type. + + A ModelObstype has the same properties as an Obstype but with some + extra attributes and methods. + + Parameters + ---------- + obsname : str + The name of the new observation type (i.g. 'sensible_heat_flux'). + std_unit : str + The standard unit for the observation type (i.g. 'J/m²') + obstype_description : str, ptional + A more detailed description of the obstype (i.g. '2m SE inside + canopy'). The default is None. + unit_aliases : dict, optional + A dictionary containing unit alias names. Keys represent a unit and + values are lists with aliases for the units at the keys. The default is {}. + unit_conversions : dict, optional + A dictionary containing the conversion information to map to the + standard units. Here an example of for temperatures (with Celcius + as standard unit): + + {'Kelvin': ["x - 273.15"], #result is in tlk_std_units + 'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write = (x-32)/1.8 + + The default is {}. + + model_equiv_dict : dict + A dictionary with information of how the observation type is found in + modeldata. A example for pressure is: + + {'ERA5_hourly': {'name': 'surface_pressure', 'units': 'pa', + 'band_desc': "Pressure (force per .... + + Returns + ------- + None. + + """ + super().__init__( + obsname=obstype.name, + std_unit=obstype.std_unit, + description=obstype.description, + unit_aliases=obstype.units_aliases, + unit_conversions=obstype.conv_table, + ) + + self.modl_equi_dict = model_equivalent_dict + self._is_valid() + + def __repr__(self): + """Instance representation.""" + return f"ModelObstype instance of {self.name}" + + def __str__(self): + """Text representation.""" + return f"ModelObstype instance of {self.name}" + +
+[docs] + def get_info(self): + """Print out detailed information of the observation type. + + Returns + ------- + None. + + """ + databands = {key: item["name"] for key, item in self.modl_equi_dict.items()} + info_str = f"{self.name} observation with: \n \ + * Known datasetsbands: {databands} \n \ + * standard unit: {self.std_unit} \n \ + * description: {self.description} \n \ + * conversions to known units: {self.conv_table} \n" + print(info_str)
+ + +
+[docs] + def get_mapped_datasets(self): + """Return all gee datasets with a representing band for this obstype.""" + return list(self.modl_equi_dict.keys())
+ + +
+[docs] + def get_bandname(self, mapname): + """Return the representing bandname of the obstype from a given gee dataset.""" + return str(self.modl_equi_dict[mapname]["name"])
+ + +
+[docs] + def get_bandname_mapper(self, mapname): + """Return the representing bandname with tlk standard name as a dict.""" + return {str(self.modl_equi_dict[mapname]["name"]): self.name}
+ + +
+[docs] + def get_plot_y_label(self, mapname): + """Return a string to represent the vertical axes of a plot.""" + return f'{self.name} ({self.std_unit}) \n {mapname}: {self.modl_equi_dict[mapname]["name"]}'
+ + +
+[docs] + def get_modelunit(self, mapname): + """Return the units of the representing bandname of the obstype from a given gee dataset.""" + return str(self.modl_equi_dict[mapname]["units"])
+ + +
+[docs] + def has_mapped_band(self, mapname): + """Test is a gee dataset has a representing band.""" + try: + self.get_bandname(mapname) + return True + except KeyError: + return False
+ + +
+[docs] + def add_new_band(self, mapname, bandname, bandunit, band_desc=None): + """Add a new representing dataset/bandname to the obstype. + + Parameters + ---------- + mapname : str + name of the known gee dataset. + bandname : str + the name of the representing band. + bandunit : str + the unit of the representing band. + band_desc : str, optional + A detailed description of the band. + + Returns + ------- + None. + + """ + # test if banunit is valid + if not self.test_if_unit_is_known(bandunit): + sys.exit(f"{bandunit} is an unknown unit for the {self.name} obstype.") + + if mapname in self.modl_equi_dict.keys(): + # check if band is already knonw + logger.debug(f"Update {bandname} of (known) map: {mapname}") + else: + logger.debug(f"Add new map: {mapname} with band: {bandname}.") + self.modl_equi_dict[mapname] = { + "name": str(bandname), + "units": str(bandunit), + "band_desc": str(band_desc), + }
+ + + def _is_valid(self): + """Test if all attributes are valid among each other.""" + for datasetname in self.modl_equi_dict.keys(): + # Check if unit is available + if "units" not in self.modl_equi_dict[datasetname].keys(): + sys.exit( + f"No units information is provided for {self.name} for modeldata: {datasetname}" + ) + # check if the unit is known + if not self.test_if_unit_is_known( + unit_name=self.modl_equi_dict[datasetname]["units"] + ): + sys.exit( + f'Cannot create {self.name} ModelObstype because {self.modl_equi_dict[datasetname]["units"]} is a unknown unit.' + )
+ + + +
+[docs] +class ModelObstype_Vectorfield(Obstype): + def __init__( + self, obstype, u_comp_model_equivalent_dict={}, v_comp_model_equivalent_dict={} + ): + + super().__init__( + obsname=obstype.name, + std_unit=obstype.std_unit, + description=obstype.description, + unit_aliases=obstype.units_aliases, + unit_conversions=obstype.conv_table, + ) + + if set(u_comp_model_equivalent_dict.keys()) != set( + v_comp_model_equivalent_dict.keys() + ): + sys.exit( + f"The mapped gee dataset are not equal for the vector components of {obstype.name}." + ) + + mod_comp_dict = {} + for geedataset in u_comp_model_equivalent_dict.keys(): + mod_comp_dict[geedataset] = { + "u_comp": u_comp_model_equivalent_dict[geedataset], + "v_comp": v_comp_model_equivalent_dict[geedataset], + } + + self.modl_comp_dict = mod_comp_dict + self._is_valid() + + def __repr__(self): + """Instance representation.""" + return f"ModelObstype_Vectorfield instance of {self.name}" + + def __str__(self): + """Text representation.""" + return f"ModelObstype_Vectorfield instance of {self.name}" + +
+[docs] + def get_info(self): + """Print out detailed information of the observation type. + + Returns + ------- + None. + + """ + u_databands = { + key: item["u_comp"]["name"] for key, item in self.modl_comp_dict.items() + } + v_databands = { + key: item["v_comp"]["name"] for key, item in self.modl_comp_dict.items() + } + info_str = f"{self.name} observation with: \n \ + * Known Vector-East-component datasetsbands: {u_databands} \n \ + * Known Vector-North-component datasetsbands: {v_databands} \n \ + * standard unit: {self.std_unit} \n \ + * description: {self.description} \n \ + * conversions to known units: {self.conv_table} \n" + print(info_str)
+ + +
+[docs] + def get_mapped_datasets(self): + """Return all gee datasets with a representing band for this obstype.""" + return list(self.modl_comp_dict.keys())
+ + + # def get_bandname(self, mapname): + # """Return the representing bandname of the obstype from a given gee dataset.""" + # return str(self.modl_equi_dict[mapname]['name']) + +
+[docs] + def get_bandname_mapper(self, mapname): + """Return the representing bandname with tlk standard name as a dict.""" + mapper = { + str(self.modl_comp_dict[mapname]["u_comp"]["name"]): f"u_comp_{self.name}", + str(self.modl_comp_dict[mapname]["v_comp"]["name"]): f"v_comp_{self.name}", + } + + return mapper
+ + +
+[docs] + def get_modelunit(self, mapname): + """Return the units of the representing bandname of the obstype from a given gee dataset.""" + # u and v comp must have the same units, this is tested in the _is_valid() + return str(self.modl_comp_dict[mapname]["u_comp"]["units"])
+ + +
+[docs] + def has_mapped_band(self, mapname): + """Test is a gee dataset has a representing band.""" + if mapname in self.modl_comp_dict.keys(): + return True + else: + return False
+ + +
+[docs] + def get_plot_y_label(self, mapname): + """Return a string to represent the vertical axes of a plot.""" + return f'{self.name} ({self.std_unit}) \n {mapname}: {self.modl_equi_dict[mapname]["u_comp"]["name"]} and {self.modl_equi_dict[mapname]["v_comp"]["name"]}'
+ + + def get_u_column(self): + return f"u_comp_{self.name}" + + def get_v_column(self): + return f"v_comp_{self.name}" + +
+[docs] + def add_new_band( + self, + mapname, + bandname_u_comp, + bandname_v_comp, + bandunit, + band_desc_u_comp=None, + band_desc_v_comp=None, + ): + """Add a new representing dataset/bandname to the obstype. + + Parameters + ---------- + mapname : str + name of the known gee dataset. + bandname_u_comp : str + the name of the representing the Eastwards component band. + bandname_v_comp : str + the name of the representing the Northwards component band. + bandunit : str + the unit of the representing bands. + band_desc_u_comp : str, optional + A detailed description of the Eastwards component of the band. + band_desc_v_comp : str, optional + A detailed description of the Northwards component of the band. + + Returns + ------- + None. + + """ + # test if banunit is valid + if not self.test_if_unit_is_known(bandunit): + sys.exit(f"{bandunit} is an unknown unit for the {self.name} obstype.") + + if mapname in self.modl_comp_dict.keys(): + # check if band is already knonw + logger.debug(f"Update {bandname} of (known) map: {mapname}") + else: + logger.debug(f"Add new map: {mapname} with band: {bandname}.") + + self.modl_comp_dict[mapname] = {} + self.modl_comp_dict[mapname]["u_comp"] = { + "name": str(bandname_u_comp), + "units": str(bandunit), + "band_desc": str(band_desc_u_comp), + } + self.modl_comp_dict[mapname]["v_comp"] = { + "name": str(bandname_v_comp), + "units": str(bandunit), + "band_desc": str(band_desc_v_comp), + }
+ + + def _is_valid(self): + """Test if all attributes are valid among each other.""" + for datasetname in self.modl_comp_dict.keys(): + for comp_str, comp in self.modl_comp_dict[datasetname].items(): + # Check if unit is available + if "units" not in comp.keys(): + sys.exit( + f"No units information is provided for {self.name} for {comp_str} modeldata_vectorfield: {datasetname}" + ) + # check if the unit is known + if not self.test_if_unit_is_known(unit_name=comp["units"]): + sys.exit( + f'Cannot create {self.name} ModelObstype_Vectorfield because {comp["units"]} is a unknown unit in the {comp_str}.' + ) + + # check if the units of the u and v comp are equal + if ( + len( + set( + [ + comp["units"] + for comp in self.modl_comp_dict[datasetname].values() + ] + ) + ) + > 1 + ): + sys.exit( + f"The units of the u and v component for {self.name} in the {datasetname} dataset are not equal." + ) + +
+[docs] + def convert_to_standard_units(self, input_df, input_unit): + """Convert data from a known unit to the standard unit. + + The data c must be a pandas dataframe with both the u and v component + prensent as columns. + + Parameters + ---------- + input_data : (collection of) numeric + The data to convert to the standard unit. + input_unit : str + The known unit the inputdata is in. + + Returns + ------- + data_u_component : numeric/numpy.array + The u component of the data in standard units. + data_v_component : + The v component of the data in standard units. + + """ + # check if input unit is known + known = self.test_if_unit_is_known(input_unit) + + # error when unit is not know + if not known: + sys.exit( + f"{input_unit} is an unknown unit for {self.name}. No coversion possible!" + ) + + # Get conversion + std_unit_name = self._get_std_unit_name(input_unit) + if std_unit_name == self.std_unit: + # No conversion needed because already the standard unit + return input_df[self.get_u_column()], input_df[self.get_v_column()] + + conv_expr_list = self.conv_table[std_unit_name] + + # covert data u component + data_u = input_df[self.get_u_column()] + data_v = input_df[self.get_v_column()] + for conv in conv_expr_list: + data_u = expression_calculator(conv, data_u) + data_v = expression_calculator(conv, data_v) + + return data_u, data_v
+
+ + + +#%% New obs creator functions +
+[docs] +def compute_amplitude(modelobs_vectorfield, df): + """Compute amplitude of 2D vectorfield components. + + The amplitude column is added to the dataframe and a new ModelObstype, + representing the amplitude is returned. All attributes wrt the units are + inherited from the ModelObstype_vectorfield. + + Parameters + ---------- + modelobs_vectorfield : ModelObstype_Vectorfield + The vectorfield observation type to compute the vector amplitudes for. + df : pandas.DataFrame + The dataframe with the vector components present as columns. + + Returns + ------- + data : pandas.DataFrame + The df with an extra column representing the amplitudes. + amplitude_obstype : ModelObstype + The (scalar) Modelobstype representation of the amplitudes. + + """ + # Compute the data + data = ( + (df[modelobs_vectorfield.get_u_column()].pow(2)) + + (df[modelobs_vectorfield.get_v_column()].pow(2)) + ).pow(1.0 / 2) + # Create a new obstype for the amplitude + amplitude_obstype = Obstype( + obsname=f"{modelobs_vectorfield.name}_amplitude", + std_unit=modelobs_vectorfield.std_unit, + description=f"2D-vector amplitde of {modelobs_vectorfield.name} components.", + unit_aliases=modelobs_vectorfield.units_aliases, + unit_conversions=modelobs_vectorfield.conv_table, + ) + # convert to model obstype + new_mod_equi = {} + for key, val in modelobs_vectorfield.modl_comp_dict.items(): + new_mod_equi[key] = val["u_comp"] + new_mod_equi[key][ + "name" + ] = f"{val['u_comp']['name']} and {val['v_comp']['name']}" + + amplitude_obstype = ModelObstype( + amplitude_obstype, model_equivalent_dict=new_mod_equi + ) + + return data, amplitude_obstype
+ + + +
+[docs] +def compute_angle(modelobs_vectorfield, df): + """Compute vector direction of 2D vectorfield components. + + The direction column is added to the dataframe and a new ModelObstype, + representing the angle is returned. The values represents the angles in + degrees, from north in clock-wise rotation. + + Parameters + ---------- + modelobs_vectorfield : ModelObstype_Vectorfield + The vectorfield observation type to compute the vector directions for. + df : pandas.DataFrame + The dataframe with the vector components present as columns. + + Returns + ------- + data : pandas.DataFrame + The df with an extra column representing the directions. + amplitude_obstype : ModelObstype + The (scalar) Modelobstype representation of the angles. + + """ + + def unit_vector(vector): + """Returns the unit vector of the vector.""" + return vector / np.linalg.norm(vector) + + def angle_between(u_comp, v_comp): + """Returns the angle in ° from North (CW) from 2D Vector components.""" + + v2 = (u_comp, v_comp) + v1_u = unit_vector((0, 1)) # North unit arrow + v2_u = unit_vector(v2) + + angle_rad = np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) + angle_degrees = angle_rad * ((180.0 / math.pi)) + # return angle_degrees + # fix the quadrants + if (v2[0] >= 0) & (v2[1] >= 0): + # N-E quadrant + return angle_degrees + if (v2[0] >= 0) & (v2[1] < 0): + # S-E quadrant + return angle_degrees + if (v2[0] < 0) & (v2[1] < 0): + # S-W quadrant + return 180.0 + (180.0 - angle_degrees) + if (v2[0] < 0) & (v2[1] >= 0): + # N-W quadrant + return 360.0 - angle_degrees + + u_column = modelobs_vectorfield.get_u_column() + v_column = modelobs_vectorfield.get_v_column() + + data = df.apply(lambda x: angle_between(x[u_column], x[v_column]), axis=1) + # Create a new obstype for the amplitude + direction_obstype = Obstype( + obsname=f"{modelobs_vectorfield.name}_direction", + std_unit="° from north (CW)", + description=f"Direction of 2D-vector of {modelobs_vectorfield.name} components.", + unit_aliases=direction_aliases, + unit_conversions={}, + ) + # convert to model obstype + new_mod_equi = {} + for key, val in modelobs_vectorfield.modl_comp_dict.items(): + new_mod_equi[key] = val["u_comp"] + new_mod_equi[key][ + "name" + ] = f"{val['u_comp']['name']} and {val['v_comp']['name']}" + new_mod_equi[key]["units"] = "° from north (CW)" + + direction_obstype = ModelObstype( + direction_obstype, model_equivalent_dict=new_mod_equi + ) + return data, direction_obstype
+ + + +# ============================================================================= +# Define obstypes +# ============================================================================= + +temp_model = ModelObstype( + temperature, model_equivalent_dict=tlk_std_modeldata_obstypes["temp"] +) +pressure_model = ModelObstype( + pressure, model_equivalent_dict=tlk_std_modeldata_obstypes["pressure"] +) + +# Special obstypes +wind.name = "wind" # otherwise it is windspeed, which is confusing for vectorfield +wind_model = ModelObstype_Vectorfield( + wind, + u_comp_model_equivalent_dict=tlk_std_modeldata_obstypes["u_wind"], + v_comp_model_equivalent_dict=tlk_std_modeldata_obstypes["v_wind"], +) + + +# ============================================================================= +# Create obstype dict +# ============================================================================= +model_obstypes = { + "temp": temp_model, + "pressure": pressure_model, + "wind": wind_model, +} +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/obstypes.html b/docs/_build/_modules/metobs_toolkit/obstypes.html new file mode 100644 index 00000000..7e53cecc --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/obstypes.html @@ -0,0 +1,637 @@ + + + + + + metobs_toolkit.obstypes — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.obstypes

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Class defenition for regular observation types. The default observationtypes
+are define here aswell.
+"""
+
+import sys
+import logging
+from collections.abc import Iterable
+
+import numpy as np
+
+logger = logging.getLogger(__name__)
+
+
+# =============================================================================
+# Standard toolkit units for each observation type
+# =============================================================================
+
+tlk_std_units = {
+    "temp": "Celsius",
+    "radiation_temp": "Celsius",
+    "humidity": "%",
+    "precip": "mm/m²",
+    "precip_sum": "mm/m² from midnight",
+    "wind_speed": "m/s",
+    "wind_gust": "m/s",
+    "wind_direction": "° from north (CW)",
+    "pressure": "pa",
+    "pressure_at_sea_level": "pa",
+}
+
+
+# =============================================================================
+# Aliases for units
+# =============================================================================
+
+temp_aliases = {
+    "Celsius": [
+        "celsius",
+        "°C",
+        "°c",
+        "celcius",
+        "Celcius",
+    ],  # for the dyselectic developper..
+    "Kelvin": ["K", "kelvin"],
+    "Farenheit": ["farenheit"],
+}
+pressure_aliases = {
+    "pa": ["Pascal", "pascal", "Pa"],
+    "hpa": ["hecto pascal", "hPa"],
+    "psi": ["Psi"],
+    "bar": ["Bar"],
+}
+
+precip_aliases = {"mm/m²": ["mm", "liter", "liters", "l/m²", "milimeter"]}
+
+wind_aliases = {
+    "m/s": ["meters/second", "m/sec"],
+    "km/h": ["kilometers/hour", "kph"],
+    "mph": ["miles/hour"],
+}
+direction_aliases = {"° from north (CW)": ["°", "degrees"]}
+
+
+# conversion between standard-NAMES and aliases
+all_units_aliases = {
+    "temp": temp_aliases,
+    "radiation_temp": temp_aliases,
+    "humidity": {"%": ["percent", "percentage"]},
+    "pressure": pressure_aliases,
+    "pressure_at_sea_level": pressure_aliases,
+    "precip": precip_aliases,
+    "precip_sum": precip_aliases,
+    "wind_speed": wind_aliases,
+    "wind_gust": wind_aliases,
+    "wind_direction": direction_aliases,
+}
+
+# =============================================================================
+# Unit conversion expressions
+# =============================================================================
+
+all_conversion_table = {
+    "temp": {
+        "Kelvin": ["x - 273.15"],  # result is in tlk_std_units
+        "Farenheit": ["x-32.0", "x/1.8"],
+    },  # -->execute from left to write  = (x-32)/1.8
+    "radiation_temp": {
+        "Kelvin": ["x - 273.15"],  # result is in tlk_std_units
+        "Farenheit": ["x-32.0", "x/1.8"],
+    },
+    "humidity": {},
+    "pressure": {"hpa": ["x * 100"], "psi": ["x * 6894.7573"], "bar": ["x * 100000."]},
+    "pressure_at_sea_level": {
+        "hpa": ["x * 100"],
+        "psi": ["x * 6894.7573"],
+        "bar": ["x * 100000."],
+    },
+    "precip": {},
+    "precip_sum": {},
+    "wind_speed": {"km/h": ["x / 3.6"], "mph": ["x * 0.44704"]},
+    "wind_gust": {"km/h": ["x / 3.6"], "mph": ["x * 0.44704"]},
+    "wind_direction": {},
+}
+
+# =============================================================================
+# Observation type class
+# =============================================================================
+
+
+
+[docs] +class Obstype: + """Object with all info and methods for a specific observation type.""" + + def __init__( + self, obsname, std_unit, description=None, unit_aliases={}, unit_conversions={} + ): + """Initiate an observation type. + + Parameters + ---------- + obsname : str + The name of the new observation type (i.g. 'sensible_heat_flux'). + std_unit : str + The standard unit for the observation type (i.g. 'J/m²') + obstype_description : str, ptional + A more detailed description of the obstype (i.g. '2m SE inside + canopy'). The default is None. + unit_aliases : dict, optional + A dictionary containing unit alias names. Keys represent a unit and + values are lists with aliases for the units at the keys. The default is {}. + unit_conversions : dict, optional + A dictionary containing the conversion information to map to the + standard units. Here an example of for temperatures (with Celcius + as standard unit): + + {'Kelvin': ["x - 273.15"], #result is in tlk_std_units + 'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write = (x-32)/1.8 + + The default is {}. + + Returns + ------- + None. + + """ + self.name = str(obsname) # Standard name for the observation type + self.std_unit = str(std_unit) # standard unit fot the observation type + self.description = str(description) + + # Conversion info and mappers + self.units_aliases = unit_aliases + self.conv_table = unit_conversions + + # Original column name and units in the data + self.original_name = None # Updated on IO + self.original_unit = None # updated on IO + + self._check_attributes() + + def __repr__(self): + """Instance representation.""" + return f"Obstype instance of {self.name}" + + def __str__(self): + """Text representation.""" + return f"Obstype instance of {self.name}" + + # ----- Setters ------- + +
+[docs] + def set_description(self, desc): + """Set the description of the observation type.""" + self.description = str(desc)
+ + +
+[docs] + def set_original_name(self, columnname): + """Set the original name of the observation type.""" + self.original_name = str(columnname)
+ + +
+[docs] + def set_original_unit(self, original_unit): + """Set the original unit of the observation type.""" + self.original_unit = str(original_unit)
+ + + # ------ Getters -------- + +
+[docs] + def get_info(self): + """Print out detailed information of the observation type. + + Returns + ------- + None. + + """ + info_str = f"{self.name} observation with: \n \ + * standard unit: {self.std_unit} \n \ + * data column as {self.original_name} in {self.original_unit} \n \ + * known units and aliases: {self.units_aliases} \n \ + * description: {self.description} \n \ + * conversions to known units: {self.conv_table} \n\n \ + * originates from data column: {self.original_name} with {self.original_unit} as native unit." + print(info_str)
+ + +
+[docs] + def get_orig_name(self): + """Return the original name of the observation type.""" + return self.original_name
+ + +
+[docs] + def get_description(self): + """Return the descrition of the observation type.""" + if self.description == str(None): + return "No description available" + else: + return str(self.description)
+ + +
+[docs] + def get_all_units(self): + """Return a list with all the known unit (in standard naming).""" + units = list(self.units_aliases.keys()) + units.append(self.get_standard_unit()) + return list(set(units))
+ + +
+[docs] + def get_standard_unit(self): + """Return the standard unit of the observation type.""" + return self.std_unit
+ + +
+[docs] + def get_plot_y_label(self, mapname=None): + """Return a string to represent the vertical axes of a plot.""" + return f"{self.name} ({self.std_unit})"
+ + +
+[docs] + def add_unit(self, unit_name, conversion=["x"]): + """Add a new unit to an observation type. + + Parameters + ---------- + unit_name : str + The name of the new unit. + conversion : list, optional + The conversion description to the standard unit. The default is + ["x"]. + + Returns + ------- + None. + + """ + # check if unit name is already known + known = self.test_if_unit_is_known(unit_name) + if known: + return + + # convert expression to list if it is a string + if isinstance(conversion, str): + conversion = [conversion] + + # add converstion to the table + self.conv_table[str(unit_name)] = conversion + + # add to alias table (without aliasses) + self.units_aliases[unit_name] = [] + + logger.info( + f"{unit_name} is added as a {self.name} unit with coversion: {conversion} to {self.std_unit}" + )
+ + +
+[docs] + def convert_to_standard_units(self, input_data, input_unit): + """Convert data from a knonw unit to the standard unit. + + The data can be a collection of numeric values or a single numeric + value. + + Parameters + ---------- + input_data : (collection of) numeric + The data to convert to the standard unit. + input_unit : str + The known unit the inputdata is in. + + Returns + ------- + data numeric/numpy.array + The data in standard units. + + """ + # check if input unit is known + known = self.test_if_unit_is_known(input_unit) + + # error when unit is not know + if not known: + sys.exit( + f"{input_unit} is an unknown unit for {self.name}. No coversion possible!" + ) + + # Get conversion + std_unit_name = self._get_std_unit_name(input_unit) + if std_unit_name == self.std_unit: + # No conversion needed because already the standard unit + return input_data + + conv_expr_list = self.conv_table[std_unit_name] + + # covert data + data = input_data + for conv in conv_expr_list: + data = expression_calculator(conv, data) + + return data
+ + + # ------------- Helpers ---------------------------------- + + def _check_attributes(self): + """Add units from the conv_table to the aliases if needed.""" + add_to_aliases = {} + all_std_unit_names = [] + all_aliases = [] + for std_unit, alias_units in self.units_aliases.items(): + all_std_unit_names.append(std_unit) + all_aliases.extend(alias_units) + + # add empty alias for all obstype present in conv table if no aliases are given + for unit in self.conv_table.keys(): + if unit not in all_std_unit_names: + if unit not in all_aliases: + add_to_aliases[unit] = [] + # add std unit to aliases if it is not already present + if self.get_standard_unit() not in all_std_unit_names: + add_to_aliases[self.get_standard_unit()] = [] + + self.units_aliases.update(add_to_aliases) + + def _get_std_unit_name(self, unit_name): + """Get standard name for a unit name by scanning trough the aliases.""" + for std_unit_name, aliases in self.units_aliases.items(): + if unit_name == std_unit_name: + return unit_name + if unit_name in aliases: + return std_unit_name + sys.exit(f"No standard unit name is found for {unit_name} for {self.name}") + +
+[docs] + def test_if_unit_is_known(self, unit_name): + """Test is the unit is known. + + Parameters + ---------- + unit_name : str + The unit name to test. + + Returns + ------- + bool + True if knonw, False else. + + """ + if unit_name == self.std_unit: + return True + for std_unit_name, aliases in self.units_aliases.items(): + if unit_name == std_unit_name: + return True + if unit_name in aliases: + return True + return False
+
+ + + +
+[docs] +def expression_calculator(equation, x): + """Convert array by equation.""" + if isinstance(x, Iterable): + x = np.array(x) + + if "+" in equation: + y = equation.split("+") + return x + float(y[1]) + elif "-" in equation: + y = equation.split("-") + return x - float(y[1]) + elif "/" in equation: + y = equation.split("/") + return x / float(y[1]) + elif "*" in equation: + y = equation.split("*") + return x * float(y[1]) + else: + sys.exit(f"expression {equation}, can not be converted to mathematical.")
+ + + +# ============================================================================= +# Create observation types +# ============================================================================= + +temperature = Obstype( + obsname="temp", + std_unit=tlk_std_units["temp"], + description="2m - temperature", + unit_aliases=all_units_aliases["temp"], + unit_conversions=all_conversion_table["temp"], +) + +humidity = Obstype( + obsname="humidity", + std_unit=tlk_std_units["humidity"], + description="2m - relative humidity", + unit_aliases=all_units_aliases["humidity"], + unit_conversions=all_conversion_table["humidity"], +) + +radiation_temp = Obstype( + obsname="radiation_temp", + std_unit=tlk_std_units["radiation_temp"], + description="2m - Black globe", + unit_aliases=all_units_aliases["radiation_temp"], + unit_conversions=all_conversion_table["radiation_temp"], +) + +pressure = Obstype( + obsname="pressure", + std_unit=tlk_std_units["pressure"], + description="atmospheric pressure (at station)", + unit_aliases=all_units_aliases["pressure"], + unit_conversions=all_conversion_table["pressure"], +) + +pressure_at_sea_level = Obstype( + obsname="pressure_at_sea_level", + std_unit=tlk_std_units["pressure_at_sea_level"], + description="atmospheric pressure (at sea level)", + unit_aliases=all_units_aliases["pressure_at_sea_level"], + unit_conversions=all_conversion_table["pressure_at_sea_level"], +) + +precip = Obstype( + obsname="precip", + std_unit=tlk_std_units["precip"], + description="precipitation intensity", + unit_aliases=all_units_aliases["precip"], + unit_conversions=all_conversion_table["precip"], +) + +precip_sum = Obstype( + obsname="precip_sum", + std_unit=tlk_std_units["precip"], + description="Cummulated precipitation", + unit_aliases=all_units_aliases["precip_sum"], + unit_conversions=all_conversion_table["precip_sum"], +) +wind = Obstype( + obsname="wind_speed", + std_unit=tlk_std_units["wind_speed"], + description="wind speed", + unit_aliases=all_units_aliases["wind_speed"], + unit_conversions=all_conversion_table["wind_speed"], +) + +windgust = Obstype( + obsname="wind_gust", + std_unit=tlk_std_units["wind_gust"], + description="wind gust", + unit_aliases=all_units_aliases["wind_gust"], + unit_conversions=all_conversion_table["wind_gust"], +) + +wind_direction = Obstype( + obsname="wind_direction", + std_unit=tlk_std_units["wind_direction"], + description="wind direction", + unit_aliases=all_units_aliases["wind_direction"], + unit_conversions=all_conversion_table["wind_direction"], +) + +# The order of the dictionary is also the order on how columns in dataset are presetnted +tlk_obstypes = { + "temp": temperature, + "humidity": humidity, + "radiation_temp": radiation_temp, + "pressure": pressure, + "pressure_at_sea_level": pressure_at_sea_level, + "precip": precip, + "precip_sum": precip_sum, + "wind_speed": wind, + "wind_gust": windgust, + "wind_direction": wind_direction, +} +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/plotting_functions.html b/docs/_build/_modules/metobs_toolkit/plotting_functions.html new file mode 100644 index 00000000..2230fff4 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/plotting_functions.html @@ -0,0 +1,1711 @@ + + + + + + metobs_toolkit.plotting_functions — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for metobs_toolkit.plotting_functions

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Fri Oct 21 11:26:52 2022
+
+@author: thoverga
+"""
+
+import sys
+import pandas as pd
+import math
+import numpy as np
+import geopandas as gpd
+from datetime import datetime
+import logging
+
+import matplotlib
+import matplotlib.pyplot as plt
+from matplotlib.lines import Line2D
+import matplotlib.dates as mdates
+from matplotlib.collections import LineCollection
+
+import branca
+import branca.colormap as brcm
+
+import cartopy.crs as ccrs
+import cartopy.feature as cfeature
+
+import geemap.foliumap as foliumap
+import folium
+from folium import plugins as folium_plugins
+
+from metobs_toolkit.geometry_functions import find_plot_extent
+from mpl_toolkits.axes_grid1 import make_axes_locatable
+
+from metobs_toolkit.landcover_functions import get_ee_obj
+from metobs_toolkit.df_helpers import xs_save
+
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +def folium_plot( + mapinfo, + band, + vis_params, + labelnames, + layername, + basemap="SATELLITE", + legendname=None, + legendpos="bottomleft", +): + """Make an interactive folium plot of an Image.""" + # get the ee.Image + im = get_ee_obj(mapinfo, band) + + # make plot + MAP = foliumap.Map() + if basemap: + MAP.add_basemap(basemap) + MAP.add_layer(im, vis_params, layername) + if legendname: + MAP.add_legend( + title=legendname, + labels=labelnames, + colors=vis_params.get("palette"), + position=legendpos, + ) + + return MAP
+ + + +
+[docs] +def add_stations_to_folium_map(Map, metadf): + """Add stations as markers to the folium map.""" + points = metadf["geometry"].to_crs("epsg:4326") + for station, point in points.items(): + folium.Marker( + location=[point.y, point.x], fill_color="#43d9de", popup=station, radius=8 + ).add_to(Map) + + return Map
+ + + +# ============================================================================= +# Helpers +# ============================================================================= +def _get_init_mapcenter(gdf): + center = gdf.dissolve().centroid.iloc[0] + return [center.y, center.x] + + +
+[docs] +def map_obstype(obstype, template): + """Convert default obstype to the user-specific obstype.""" + return template[obstype].to_dict()
+ + + +
+[docs] +def make_cat_colormapper(catlist, cmapname): + """Create a dictionary {cat : color} for a list of categorical values. + + If the colormap has more colors than the catlist, optimal color distance is + done. If a colormap has less colors than unique categories, the categories are grourped. + + Parameters + ---------- + catlist : list + List of categorical values. + cmapname : str + Matplotlib.colormaps name. + + Returns + ------- + colordict : dict + {cat: color} where the color is a RGBalpha tuple. + + """ + catlist = list(set(catlist)) # get unique categories + + cmap = matplotlib.colormaps[cmapname] + + # check number of colors in the cmap + if cmap.N < len(catlist): + logger.warning( + f"colormap: {cmapname}, is not well suited to color {len(catlist)} categories." + ) + same_col_n_groups = np.ceil(len(catlist) / cmap.N) + + # group cateogries and color them by group + colordict = {} + col_idx = -1 + _cat_index = 0 + for cat in catlist: + if _cat_index % same_col_n_groups == 0: + col_idx += 1 + colordict[cat] = cmap(int(col_idx)) + _cat_index += 1 + return colordict + + # check if the colormap can be decreased (and thus increasing the colordistance) + num_increase = np.floor(cmap.N / len(catlist)) + + i = 0 + colordict = {} + for cat in catlist: + colordict[cat] = cmap(int(i)) + i = i + num_increase + return colordict
+ + + +# ============================================================================= +# Plotters +# ============================================================================= + + +
+[docs] +def make_folium_html_plot( + gdf, + variable_column, + var_display_name, + var_unit, + label_column, + label_col_map, + vmin=None, + vmax=None, + radius=13, + fill_alpha=0.6, + mpl_cmap_name="viridis", + max_fps=4, + dt_disp_fmt="%Y-%m-%d %H:%M", +): + + # create a map + m = folium.Map( + location=_get_init_mapcenter(gdf), + tiles="cartodbpositron", + zoom_start=10, + attr="<a href=https://github.com/vergauwenthomas/MetObs_toolkit </a>", + ) + + # add extra tiles + folium.TileLayer("OpenStreetMap", overlay=False, name="OSM").add_to(m) + # RIP free Stamen tiles + # folium.TileLayer("Stamen Terrain", overlay=False, name='Terrain', show=False).add_to(m) + # folium.TileLayer("stamentoner", overlay=False, name='Toner', show=False).add_to(m) + + # Coloring + if vmin is None: + vmin = gdf[variable_column].min() + if vmax is None: + vmax = gdf[variable_column].max() + + # Create colormap to display on the map + norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True) + mapper = matplotlib.cm.ScalarMappable( + norm=norm, cmap=matplotlib.colormaps[mpl_cmap_name] + ) + colormap = brcm.LinearColormap( + colors=mapper.cmap.colors, + index=None, + vmin=vmin, + vmax=vmax, + caption=f"{var_display_name} ({var_unit}) colorbar", + ) + + # linear colorscale for values + def map_value_to_hex(series, vmin, vmax, cmapname="viridis"): + norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True) + mapper = matplotlib.cm.ScalarMappable( + norm=norm, cmap=matplotlib.colormaps[cmapname] + ) + + return series.apply(lambda x: str(matplotlib.colors.to_hex(mapper.to_rgba(x)))) + + gdf["value_color"] = map_value_to_hex( + gdf[variable_column], vmin, vmax, cmapname=mpl_cmap_name + ) + + # check if all labels are defined + if ( + len( + [ + lab + for lab in gdf[label_column].unique() + if lab not in label_col_map.keys() + ] + ) + > 0 + ): + sys.exit( + f'Unmapped labels found: {[lab for lab in gdf["label"].unique() if lab not in label_col_map.keys()]}' + ) + + gdf["label_color"] = gdf[label_column].map(label_col_map) + + # Serialize Data to Features + def make_scater_feature(row): + dtstring = pd.to_datetime([row["datetime"]]).strftime(dt_disp_fmt)[0] + coords = [[row["geometry"].x, row["geometry"].y]] + popup_str = f" <b>{row['name']}</b> <br> {'{:.1f}'.format(row[variable_column])} {var_unit} <br> {row[label_column]}" + + features_instance = { + "type": "Feature", + "geometry": { + "type": "MultiPoint", + "coordinates": coords, + }, + "properties": { + "times": [dtstring], + "popup": popup_str, + "tooltip": f'{row["name"]}', + "id": "geenidee", + "icon": "circle", + "iconstyle": { + "fillColor": row["value_color"], + "fillOpacity": fill_alpha, + "stroke": "false", + "radius": radius, + "color": row["label_color"], + }, + }, + } + return features_instance + + features = gdf.apply(make_scater_feature, axis=1).to_list() + + # Add data to the map + folium_plugins.TimestampedGeoJson( + { + "type": "FeatureCollection", + "features": features, + }, + period="PT1H", + duration="PT1H", + add_last_point=False, + auto_play=False, + loop=False, + max_speed=max_fps, # fps + loop_button=True, + date_options="YYYY/MM/DD HH:mm:ss", + time_slider_drag_update=True, + ).add_to(m) + + m.add_child(colormap) + # add control + folium.LayerControl().add_to(m) + + return m
+ + + +
+[docs] +def geospatial_plot( + plotdf, + variable, + timeinstance, + title, + legend, + legend_title, + vmin, + vmax, + plotsettings, + categorical_fields, + static_fields, + display_name_mapper, + data_template, + boundbox, +): + """Make geospatial plot of a variable (matplotlib). + + Parameters + ---------- + plotdf : geopandas.GeoDataFrame + A geodataframe containing a geometry column and the column representing + the variable to plot. + variable : str + Name of the variable to plot. + timeinstance : datetime.datetime + The timeinstance to plot the variable for, if the variable is + timedependant. + title : str + Title of the figure. + legend : bool + If True the legend will be added to the figure. + vmin : numeric + The variable value to use the minimum-color for.. + vmax : numeric + The variable value to use the maximum-color for. + plotsettings : dict + The default plotting settings. + categorical_fields : list + A list of variables that are interpreted to be categorical, so to use + a categorical coloring scheme. + static_fields : bool + If True the variable is assumed to be time independant. + display_name_mapper : dict + Must contain at least {varname: varname_str_rep}, where the + varname_str_rep is the string representation of the variable to plot. + data_template : dict + The dataset template for string representations. + boundbox : shapely.box + The boundbox to represent the spatial extend of the plot. + + Returns + ------- + ax : matplotlib.pyplot.axes + The plotted axes. + + """ + # Load default plot settings + default_settings = plotsettings["spatial_geo"] + + # subset to obstype + plotdf = plotdf[[variable, "geometry"]] + + # Subset to the stations that have coordinates + ignored_stations = plotdf[plotdf["geometry"].isnull()] + plotdf = plotdf[~plotdf["geometry"].isnull()] + if plotdf.empty: + logger.warning( + f"No coordinate data found, geoplot can not be made. Plotdf: {plotdf}" + ) + return + + if not ignored_stations.empty: + # logger.error(f'No coordinate found for following stations: {ignored_stations.index.to_list()}, these will be ignored in the geo-plot!') + logger.warning( + f"No coordinate found for following stations: {ignored_stations.index.to_list()}, these will be ignored in the geo-plot!" + ) + + # make color scheme for field + if variable in categorical_fields: + is_categorical = True + if variable == "lcz": + # use all available LCZ categories + use_quantiles = False + else: + use_quantiles = True + else: + is_categorical = False + use_quantiles = False + + # if observations extend is contained by default exten, use default else use obs extend + use_extent = find_plot_extent( + geodf=gpd.GeoDataFrame(plotdf), + user_bounds=boundbox, + default_extentlist=default_settings["extent"], + ) + + ax = _spatial_plot( + gdf=plotdf, + variable=variable, + legend=legend, + use_quantiles=use_quantiles, + is_categorical=is_categorical, + k_quantiles=default_settings["n_for_categorical"], + cmap=default_settings["cmap"], + figsize=default_settings["figsize"], + extent=use_extent, + title=title, + legend_title=legend_title, + vmin=vmin, + vmax=vmax, + ) + return ax
+ + + +def _spatial_plot( + gdf, + variable, + legend, + use_quantiles, + is_categorical, + k_quantiles, + cmap, + figsize, + extent, + title, + legend_title, + vmin, + vmax, +): + # TODO: docstring + beter positionion of the lengends + gdf = gpd.GeoDataFrame(gdf) + gdf = gdf.to_crs("epsg:4326") + + fig, ax = plt.subplots( + 1, 1, figsize=figsize, subplot_kw={"projection": ccrs.PlateCarree()} + ) + + # Make color scheme + if use_quantiles: + # maybe better to use evenly spaced intervals rather than quantiles? + scheme = "equalinterval" + else: + scheme = None + if isinstance(vmin, type(None)) | isinstance(vmax, type(None)): + vmin = gdf[variable].min() + vmax = gdf[variable].max() + + if is_categorical: + # categorical legend + legend_kwds = {"loc": "best", "title": legend_title} + vmin = None + vmax = None + cax = None + else: + # colorbar + legend_kwds = {"label": legend_title} + divider = make_axes_locatable(ax) + + cax = divider.append_axes( + "right", size="5%", pad=0.1, axes_class=matplotlib.axes._axes.Axes + ) + + # add observations as scatters + gdf.plot( + column=variable, + scheme=scheme, + cmap=cmap, + vmin=vmin, + vmax=vmax, + # color='black', + edgecolor="black", + # linewidth=0.5, + # scale='NUMBER OF PERSONS KILLED', + # limits=(8, 24), + categorical=is_categorical, + legend=legend, + # legend_var='scale', + # legend_kwargs={'loc': 'upper left', 'markeredgecolor': 'black'}, + # legend_values=[2, 1], legend_labels=['2 Fatalities', '1 Fatality'], + ax=ax, + cax=cax, + legend_kwds=legend_kwds, + ) + + # set extent + ax.set_xlim(left=extent[0], right=extent[2]) + ax.set_ylim(bottom=extent[1], top=extent[3]) + + ax.add_feature(cfeature.LAND) + ax.add_feature(cfeature.BORDERS) + ax.add_feature(cfeature.COASTLINE) + + ax.set_title(title) + + return ax + + +def _sorting_function(label_vec, custom_handles, number_of_labels_types=4): + """Sort the order of legend items.""" + # TODO: clean this up? rewrite to better code? + sorted_vec = [] + # group 1, 2, 3 + for i in range(1, number_of_labels_types + 1): # loop over the type of labels + for j in range(len(label_vec)): # loop over the length of the label_vec + if label_vec[j] == i: + sorted_vec.append(j) + # makes a vector of same size as label_vec + # but with the right order of permutations. + sorted_handles = [custom_handles[i] for i in sorted_vec] + # reordering the custom handles to put 1 at the front + + return sorted_handles + + +def _format_datetime_axis(axes): + """Set the xaxes to autodateformat.""" + xtick_locator = mdates.AutoDateLocator() + xtick_formatter = mdates.AutoDateFormatter(xtick_locator) + + axes.xaxis.set_major_locator(xtick_locator) + axes.xaxis.set_major_formatter(xtick_formatter) + return axes + + +def _create_linecollection( + linedf, + colormapper, + linestylemapper, + plotsettings, + const_color=None, + value_col_name="value", + label_col_name="label", +): + + # 1. convert datetime to numerics values + if linedf.index.name == "datetime": + inxval = mdates.date2num(linedf.index.to_pydatetime()) + else: + linedf = linedf.reset_index() + linedf = linedf.set_index("datetime") + inxval = mdates.date2num(linedf.index.to_pydatetime()) + + # 2. convert df to segments + points = np.array([inxval, linedf[value_col_name]]).T.reshape(-1, 1, 2) + segments = np.concatenate([points[:-1], points[1:]], axis=1) + + # 3. get styling info + if const_color is None: + color = linedf[label_col_name].map(colormapper).to_list() + else: + color = [const_color] * linedf.shape[0] + linewidth = [plotsettings["time_series"]["linewidth"]] * linedf.shape[0] + zorder = plotsettings["time_series"]["linezorder"] + linestyle = linedf[label_col_name].map(linestylemapper).fillna("-").to_list() + + # 4. Make line collection + lc = LineCollection( + segments=segments, + colors=color, + linewidths=linewidth, + zorder=zorder, + linestyle=linestyle, + ) + return lc + + +
+[docs] +def timeseries_plot( + mergedf, + title, + ylabel, + colorby, + show_legend, + show_outliers, + show_filled, + settings, + _ax=None, # needed for GUI, not recommended use + colorby_name_colordict=None, +): # when colorscheme will be reused + """Make a timeseries plot. + + Parameters + ---------- + mergedf : pandas.DataFrame + The dataframe containing the observations as a 'value'-column and + labels to plot. + title : str + Title of the figure. + ylabel : str + The label for the vertical axes. + colorby : "label" or "name" + If "label", the toolkit label is used for the colorscheme. If "name", + the name of the station is used for the colorscheme. + show_legend : bool + If True, the legend will be added under the plot. + show_filled : bool + If True, the filled values will be plotted. + settings : dict, optional + The default plotting settings. + _ax : matplotlib.pyplot.axes + An axes to plot on. If None, a new axes will be made. The + default is None. + colorby_name_colorscheme : dict + A colormapper for the station names. If None, a new colormapper will + be created. The default is None. + + Returns + ------- + ax : matplotlib.pyplot.axes + The plotted axes. + colormapper : dict + The use colormap. + + """ + plot_settings = settings.app["plot_settings"] + + if isinstance(_ax, type(None)): + # init figure + fig, ax = plt.subplots(figsize=plot_settings["time_series"]["figsize"]) + else: + ax = _ax + + # get data ready + mergedf = mergedf[~mergedf.index.duplicated()] + + # get min max datetime to set xrange + dt_min = mergedf.index.get_level_values("datetime").min() + dt_max = mergedf.index.get_level_values("datetime").max() + + # define different groups (different plotting styles) + # ok group + ok_labels = ["ok"] + + # filled value groups + fill_labels = [val for val in settings.gap["gaps_fill_info"]["label"].values()] + missing_fill_labels = [ + val for val in settings.missing_obs["missing_obs_fill_info"]["label"].values() + ] + fill_labels.extend(missing_fill_labels) + + # qc outlier labels + qc_labels = [ + val["outlier_flag"] for key, val in settings.qc["qc_checks_info"].items() + ] + + # no value group + no_vals_labels = [ + settings.gap["gaps_info"]["gap"]["outlier_flag"], + settings.gap["gaps_info"]["missing_timestamp"]["outlier_flag"], + ] + # duplicated timestamp and invalid input outliers do not have a known value, so add them to this group + no_vals_labels.append( + settings.qc["qc_checks_info"]["duplicated_timestamp"]["outlier_flag"] + ) + no_vals_labels.append( + settings.qc["qc_checks_info"]["invalid_input"]["outlier_flag"] + ) + + # no_vals_df = mergedf[mergedf['label'].isin(no_vals_labels)] + + if colorby == "label": + + # aggregate groups and make styling mappers + + col_mapper = _all_possible_labels_colormapper(settings) # get color mapper + + # linestyle mapper + line_mapper = { + lab: plot_settings["time_series"]["linestyle_ok"] for lab in ok_labels + } + line_mapper.update( + {lab: plot_settings["time_series"]["linestyle_fill"] for lab in fill_labels} + ) + + # set hight of the vertical lines for no vals + vlin_min = mergedf[mergedf["label"] == "ok"]["value"].min() + vlin_max = mergedf[mergedf["label"] == "ok"]["value"].max() + + # line labels + line_labels = ["ok"] + line_labels.extend(fill_labels) + + # ------ missing obs ------ (vertical lines) + missing_df = mergedf[mergedf["label"].isin(no_vals_labels)] + missing_df = missing_df.reset_index() + ax.vlines( + x=missing_df["datetime"].to_numpy(), + ymin=vlin_min, + ymax=vlin_max, + linestyle="--", + color=missing_df["label"].map(col_mapper), + zorder=plot_settings["time_series"]["dashedzorder"], + linewidth=plot_settings["time_series"]["linewidth"], + ) + + # ------ outliers ------ (scatters) + outlier_df = mergedf[mergedf["label"].isin(qc_labels)] + outlier_df = outlier_df.reset_index() + outlier_df.plot( + kind="scatter", + x="datetime", + y="value", + ax=ax, + color=outlier_df["label"].map(col_mapper), + legend=False, + zorder=plot_settings["time_series"]["scatterzorder"], + s=plot_settings["time_series"]["scattersize"], + ) + + # -------- Ok and filled observation -------- (lines) + for sta in mergedf.index.get_level_values("name").unique(): + stadf = xs_save(mergedf, sta, "name") # subset to one station + linedf = stadf[ + stadf["label"].isin(line_labels) + ] # subset all obs that are repr by lines + + # now add the other records, and convert the value to nan to avoid + # interpolation in the plot + stadf.loc[~stadf.index.isin(linedf.index), "value"] = np.nan + # (WARNING): The above line converts all values in the mergedf, to + # Nan's if the label is not in 'line_labels' !!! Thus plot all other + # categories in advance and the line plot at the end. The zorder, + # takes care of what is displayed on top. + + # make line collection + sta_line_lc = _create_linecollection( + linedf=stadf, + colormapper=col_mapper, + linestylemapper=line_mapper, + plotsettings=plot_settings, + ) + ax.add_collection(sta_line_lc) + + # create legend + if show_legend: + + custom_handles = [] # add legend items to it + label_vec = [] # add type of label + for label in mergedf["label"].unique(): + outl_color = col_mapper[label] + + if label in ok_labels: + custom_handles.append( + Line2D([0], [0], color=outl_color, label="ok", lw=4) + ) + label_vec.append(1) + + elif label in fill_labels: + custom_handles.append( + Line2D( + [0], + [0], + color=outl_color, + label=f"filled value ({label})", + lw=1, + linestyle="--", + ) + ) + label_vec.append(2) + + elif label in no_vals_labels: + custom_handles.append( + Line2D( + [0], + [0], + color=outl_color, + label=f"{label}", + lw=1, + linestyle="--", + linewidth=2, + ) + ) + label_vec.append(3) + + else: + custom_handles.append( + Line2D( + [0], + [0], + marker="o", + color="w", + markerfacecolor=outl_color, + label=label, + lw=1, + ) + ) + label_vec.append(4) + + custom_handles = _sorting_function(label_vec, custom_handles) + + box = ax.get_position() + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.85] + ) + ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.25), + fancybox=True, + shadow=True, + ncol=plot_settings["time_series"]["legend_n_columns"], + ) + + elif colorby == "name": + # subset obs to plot + line_labels = ["ok"] + if show_outliers: + line_labels.extend(qc_labels) + if show_filled: + line_labels.extend(fill_labels) + + # all lines are solid lines + line_style_mapper = {lab: "-" for lab in line_labels} + + # create color mapper if none is given + if colorby_name_colordict is None: + col_mapper = make_cat_colormapper( + mergedf.index.get_level_values("name").unique(), + plot_settings["time_series"]["colormap"], + ) + else: + col_mapper = colorby_name_colordict + + # iterate over station and make line collection to avoid interpolation + for sta in mergedf.index.get_level_values("name").unique(): + stadf = xs_save(mergedf, sta, "name") # subset to one station + linedf = stadf[ + stadf["label"].isin(line_labels) + ] # subset all obs that are repr by lines + + # now add the other records, and convert the value to nan to avoid + # interpolation in the plot + stadf.loc[~stadf.index.isin(linedf.index), "value"] = np.nan + + # make line collection + sta_line_lc = _create_linecollection( + linedf=stadf, + colormapper=None, + const_color=col_mapper[sta], + linestylemapper=line_style_mapper, + plotsettings=plot_settings, + ) + ax.add_collection(sta_line_lc) + + if show_legend is True: + # create a legend item for each station + custom_handles = [] # add legend items to it + names = mergedf.index.get_level_values("name").unique().to_list() + # sort legend items alphabetically + names.sort() + for sta in names: + custom_handles.append( + Line2D([0], [0], color=col_mapper[sta], label=sta, lw=4) + ) + + box = ax.get_position() + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.88] + ) + primary_legend = ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.2), + fancybox=True, + shadow=True, + ncol=plot_settings["time_series"]["legend_n_columns"], + ) + ax.add_artist(primary_legend) + + # Set title + ax.set_title(title) + + # datetime formatter + ax = _format_datetime_axis(ax) + + # Set x and y labels + ax.set_ylabel(ylabel) + + # set x,y limits + ax.set_xlim(mdates.date2num(dt_min), mdates.date2num(dt_max)) + ax.autoscale(axis="y") + + return ax, col_mapper
+ + + +
+[docs] +def model_timeseries_plot( + df, + obstype, + title, + ylabel, + settings, + show_primary_legend, + add_second_legend=True, + _ax=None, # needed for GUI, not recommended use + colorby_name_colordict=None, +): + """Make a timeseries plot for modeldata. + + The timeseries are plotted as dashed lines. + + Parameters + ---------- + df : pandas.DataFrame + The dataframe containing the timeseries. + obstype : str + The observation type to plot. Must be a column in the df. + title : str + Title of the figure. + ylabel : str + The label for the vertical axes. + settings : dict, optional + The default plotting settings. + show_primary_legend : bool + If True, all stationnames with corresponding color are presented in a + legend. + add_second_legend : bool, optional + If True, a small legend is added indicating the solid lines are + observations and the dashed lines are modeldata. The default is True. + _ax : matplotlib.pyplot.axes + An axes to plot on. If None, a new axes will be made. The + default is None. + colorby_name_colorscheme : dict + A colormapper for the station names. If None, a new colormapper will + be created. The default is None. + + Returns + ------- + ax : matplotlib.pyplot.axes + The plotted axes. + colormapper : dict + The use colormap. + """ + plot_settings = settings.app["plot_settings"] + + if isinstance(_ax, type(None)): + # init figure + fig, ax = plt.subplots(figsize=plot_settings["time_series"]["figsize"]) + else: + ax = _ax + + # get data ready + df = df[~df.index.duplicated()] + + # rename and create dummy columns so that linecollection can be used + df = df.rename(columns={obstype: "value"}) + df["label"] = "modeldata" + + # all lines are dashed lines + line_style_mapper = {"modeldata": "--"} + + # create color mapper if none is given + if colorby_name_colordict is None: + col_mapper = make_cat_colormapper( + df.index.get_level_values("name").unique(), + plot_settings["time_series"]["colormap"], + ) + else: + col_mapper = colorby_name_colordict + + # iterate over station and make line collection to avoid interpolation + for sta in df.index.get_level_values("name").unique(): + stadf = xs_save(df, sta, "name") # subset to one station + + # make line collection + sta_line_lc = _create_linecollection( + linedf=stadf, + colormapper=None, + const_color=col_mapper[sta], + linestylemapper=line_style_mapper, + plotsettings=plot_settings, + ) + ax.add_collection(sta_line_lc) + + if show_primary_legend is True: + # create a legend item for each station + custom_handles = [] # add legend items to it + names = df.index.get_level_values("name").unique().to_list() + # sort legend items alphabetically + names.sort() + for sta in names: + custom_handles.append( + Line2D( + [0], [0], color=col_mapper[sta], label=f"modeldata at {sta}", lw=4 + ) + ) + + box = ax.get_position() + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.88] + ) + primary_legend = ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.2), + fancybox=True, + shadow=True, + ncol=plot_settings["time_series"]["legend_n_columns"], + ) + ax.add_artist(primary_legend) + + if add_second_legend: + line_solid = Line2D( + [], [], color="black", linestyle="--", linewidth=1.5, label=r"model" + ) + line_dashed = Line2D( + [], [], color="black", linestyle="-", linewidth=1.5, label=r"observations" + ) + secondary_legend = ax.legend(handles=[line_solid, line_dashed], loc="best") + ax.add_artist(secondary_legend) + + # Set title + ax.set_title(title) + + # datetime formatter + ax = _format_datetime_axis(ax) + + # Set x and y labels + ax.set_ylabel(ylabel) + + # set x lim + # ax.set_xlim(left=dt_min, right=dt_max) + # ax.set_ylim(bottom=y_min, top=y_max) + ax.autoscale() + + return ax, col_mapper
+ + + +
+[docs] +def cycle_plot( + cycledf, + errorbandsdf, + title, + plot_settings, + aggregation, + data_template, + obstype, + y_label, + legend, + show_zero_horizontal=False, +): + """Plot a cycle as a lineplot. + + + Parameters + ---------- + cycledf : pandas.DataFrame + The dataframe containing the cycle values. + errorbandsdf : pandas.dataframe + The dataframe containing the std values. + title : str + Title of the plot. + plot_settings : dict + The cycle-specific settings. + aggregation : list + A list of strings to indicate the group defenition. + data_template : dict + The template of the dataset. + obstype : str + The observation type to plot. + y_label : str + The label for the vertical axes. + legend : bool + If True, a legend is added to the figure. + show_zero_horizontal : bool, optional + If True, a black horizontal line at y=0 is drawn. The default is False. + + Returns + ------- + ax : matplotlib.pyplot.axes + The axes of the plot. + + """ + # init figure + fig, ax = plt.subplots(figsize=plot_settings["figsize"]) + + # which colormap to use: + if cycledf.shape[1] <= plot_settings["n_cat_max"]: + cmap = plot_settings["cmap_categorical"] + else: + cmap = plot_settings["cmap_continious"] + + cycledf.plot(ax=ax, title=title, legend=False, cmap=cmap) + if legend: + box = ax.get_position() + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.88] + ) + ax.legend( + cycledf.columns.values.tolist(), + loc="upper center", + bbox_to_anchor=(0.5, -0.2), + fancybox=True, + shadow=True, + ncol=plot_settings["legend_n_columns"], + ) + + if errorbandsdf is not None: + # Extract colorscheme from the plot + col_sheme = {line.get_label(): line.get_color() for line in ax.get_lines()} + + for sta in errorbandsdf.columns: + ax.fill_between( + errorbandsdf.index, + cycledf[sta] - errorbandsdf[sta], + cycledf[sta] + errorbandsdf[sta], + alpha=plot_settings["alpha_error_bands"], + color=col_sheme[sta], + ) + + if show_zero_horizontal: + ax.axhline(y=0.0, color="black", linestyle="--") + + return ax
+ + + +
+[docs] +def heatmap_plot(cor_dict, title, heatmap_settings): + """Make a heatmap plot (i.g. matrix visualisation). + + Parameters + ---------- + cor_dict : dict + A dictionary of the correlations to plot. + title : str + The title of the figure. + heatmap_settings : dict + The plot settings for heatmaps. + + Returns + ------- + ax : matplotlib.pyplot.axes + The axes of the plot. + + """ + # make heatmap of cor + fig, ax = plt.subplots(figsize=heatmap_settings["figsize"]) + im = ax.imshow( + cor_dict["cor matrix"], + interpolation="nearest", + vmin=heatmap_settings["vmin"], + vmax=heatmap_settings["vmax"], + cmap=heatmap_settings["cmap"], + ) + + fig.colorbar(im, orientation="vertical", fraction=0.05) + + # Loop over data dimensions and create text annotations + for i in range(len(cor_dict["cor matrix"].columns)): + for j in range(len(cor_dict["cor matrix"].index)): + ax.text( + j, + i, + cor_dict["combined matrix"].to_numpy()[i, j], + ha="center", + va="center", + color="black", + ) + + # styling + # Show all ticks and label them with the dataframe column name + ax.set_xticks( + ticks=list(range(cor_dict["cor matrix"].shape[1])), + labels=cor_dict["cor matrix"].columns.to_list(), + rotation=heatmap_settings["x_tick_rot"], + ) + + ax.set_yticks( + ticks=list(range(cor_dict["cor matrix"].shape[0])), + labels=cor_dict["cor matrix"].index.to_list(), + rotation=heatmap_settings["y_tick_rot"], + ) + + ax.set_title(title) + + return ax
+ + + +
+[docs] +def correlation_scatter( + full_cor_dict, groupby_labels, obstypes, title, cor_scatter_settings +): + """Plot the correlation variation as a scatterplot. + + The statistical significance is indicate by the scattertype. + + Parameters + ---------- + full_cor_dict : dict + A dictionary containing the 'cor matrix', and 'significance matrix' + keys and corresponding matrices. + groupby_labels : str or list + The groupdefenition that is used for the xaxes label. + obstypes : str + The observation type to plot the correlations of. + title : str + The title of the figure. + cor_scatter_settings : dict + The specific plot settings for the correlation scatter plot. + + Returns + ------- + ax : matplotlib.pyplot.axes + The axes of the plot. + + """ + # combine all correlation matrices to one with multiindex + comb_cor_df = pd.DataFrame() + comb_p_df = pd.DataFrame() + for key, subcordict in full_cor_dict.items(): + + # if mulitple groupby are given, key is tuple --> conv to string + if isinstance(key, tuple): + key = str(key) + # corelations + subdf_cor = subcordict["cor matrix"] + # make multi index df + subdf_cor["group"] = key + subdf_cor.index.name = "categories" + subdf_cor = subdf_cor[subdf_cor.index.isin(obstypes)] + subdf_cor = subdf_cor.reset_index().set_index(["group", "categories"]) + comb_cor_df = pd.concat([comb_cor_df, subdf_cor]) + + # p values + subdf_p = subcordict["significance matrix"] + # make multi index df + subdf_p["group"] = key + subdf_p.index.name = "categories" + subdf_p = subdf_p[subdf_p.index.isin(obstypes)] + subdf_p = subdf_p.reset_index().set_index(["group", "categories"]) + comb_p_df = pd.concat([comb_p_df, subdf_p]) + + # create plotdf structure + plot_cor_df = comb_cor_df.unstack() + plot_cor_df.columns = [f"{col[0]} - {col[1]}" for col in plot_cor_df.columns] + plot_p_df = comb_p_df.unstack() + plot_p_df.columns = [f"{col[0]} - {col[1]}" for col in plot_p_df.columns] + + # Get columns without variation (these will not be plotted) + const_cols = plot_cor_df.columns[plot_cor_df.nunique() <= 1] + logger.warning( + f" The following correlations are constant for all groups and will not be included in the plot: {const_cols}" + ) + + # Subset to the columns that has to be plotted + plot_cor_df = plot_cor_df.drop(columns=const_cols) + plot_p_df = plot_p_df.drop(columns=const_cols) + + # make a colormap for the left over correlations + col_mapper = make_cat_colormapper( + catlist=plot_cor_df.columns.to_list(), cmapname=cor_scatter_settings["cmap"] + ) + + # make figure + fig, ax = plt.subplots(figsize=cor_scatter_settings["figsize"]) + + # add the zero line + ax.axhline(y=0.0, linestyle="--", linewidth=1, color="black") + + # Define p value bins + p_bins = cor_scatter_settings["p_bins"] # [0, .001, 0.01, 0.05, 999] + bins_markers = cor_scatter_settings["bins_markers"] # ['*', 's', '^', 'x'] + + # # iterate over the different corelations to plot + custom_handles = [] + for cor_name in plot_cor_df.columns: + to_scatter = plot_cor_df[[cor_name]] + + # convert p values to markers + to_scatter["p-value"] = plot_p_df[cor_name] + to_scatter["markers"] = pd.cut( + x=to_scatter["p-value"], bins=p_bins, labels=bins_markers + ) + to_scatter = to_scatter.reset_index() + + # plot per scatter group + scatter_groups = to_scatter.groupby("markers") + for marker, markergroup in scatter_groups: + markergroup.plot( + x="group", + y=cor_name, + kind="scatter", + ax=ax, + s=cor_scatter_settings["scatter_size"], + edgecolors=cor_scatter_settings["scatter_edge_col"], + linewidth=cor_scatter_settings["scatter_edge_line_width"], + color=col_mapper[cor_name], + marker=marker, + ylim=(cor_scatter_settings["ymin"], cor_scatter_settings["ymax"]), + ) + + # add legend handl for the colors + custom_handles.append( + Line2D([0], [0], color=col_mapper[cor_name], label=cor_name, lw=4) + ) + + # add legend handl for the scatter types + marker_def = list(zip(p_bins[1:], bins_markers)) + for p_edge, mark in marker_def: + custom_handles.append( + Line2D( + [0], + [0], + marker=mark, + color="black", + markerfacecolor="w", + label=f"p < {p_edge}", + lw=1, + ) + ) + + # format legend + box = ax.get_position() + ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.85]) + ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.1), + fancybox=True, + shadow=True, + prop={"size": cor_scatter_settings["legend_text_size"]}, + ncol=cor_scatter_settings["legend_ncols"], + ) + + # styling attributes + ax.set_ylabel("Pearson correlation") + ax.set_xlabel(f"Groups of {groupby_labels}") + ax.set_title(title) + + return ax
+ + + +def _make_pie_from_freqs( + freq_dict, colormapper, ax, plot_settings, radius, labelsize=10 +): + """Make one pie for a dict of frequencies.""" + # To dataframe + stats = pd.Series(freq_dict, name="freq").to_frame() + + # make color mapper + stats["color"] = stats.index.map(colormapper) + + if (stats["freq"] == 0.0).all(): + # add a 100% no occurences to it, so it can be plotted + no_oc_df = pd.DataFrame( + index=["No occurences"], + data={"freq": [100.0], "color": [plot_settings["color_mapper"]["ok"]]}, + ) + stats = pd.concat([stats, no_oc_df]) + + # Remove zero occurence labels (they clutter up the lables in the pies) + stats = stats[stats["freq"] != 0] + # Make pie + patches, text = ax.pie( + stats["freq"], + colors=stats["color"], + radius=radius, + labels=[ + f"{j}, {s:0.1f}%" + for j, s in zip(stats.index.to_list(), stats["freq"].to_list()) + ], + textprops={"fontsize": labelsize}, + ) + + return ax + + +def _outl_value_to_colormapper(plot_settings, qc_check_info): + """Make color mapper for the outlier LABELVALUES to colors.""" + color_defenitions = plot_settings["color_mapper"] + outl_name_mapper = {val["outlier_flag"]: key for key, val in qc_check_info.items()} + outl_col_mapper = { + outl_type: color_defenitions[outl_name_mapper[outl_type]] + for outl_type in outl_name_mapper.keys() + } + return outl_col_mapper + + +def _all_possible_labels_colormapper(settings): + """Make color mapper for all LABELVALUES to colors.""" + plot_settings = settings.app["plot_settings"] + gap_settings = settings.gap + qc_info_settings = settings.qc["qc_checks_info"] + missing_obs_settings = settings.missing_obs["missing_obs_fill_info"] + + color_defenitions = plot_settings["color_mapper"] + + mapper = dict() + + # get QC outlier labels + + outl_col_mapper = _outl_value_to_colormapper( + plot_settings=plot_settings, qc_check_info=qc_info_settings + ) + mapper.update(outl_col_mapper) + + # get 'ok' and 'not checked' + mapper["ok"] = color_defenitions["ok"] + mapper["not checked"] = color_defenitions["not checked"] + + # update gap and missing timestamp labels + mapper[gap_settings["gaps_info"]["gap"]["outlier_flag"]] = color_defenitions["gap"] + mapper[ + gap_settings["gaps_info"]["missing_timestamp"]["outlier_flag"] + ] = color_defenitions["missing_timestamp"] + + # add fill for gaps + for method, label in gap_settings["gaps_fill_info"]["label"].items(): + mapper[label] = color_defenitions[method] + + # add fill for missing + for method, label in missing_obs_settings["label"].items(): + mapper[label] = color_defenitions[method] + + return mapper + + +
+[docs] +def qc_stats_pie( + final_stats, outlier_stats, specific_stats, plot_settings, qc_check_info, title +): + """Make overview Pie-plots for the frequency statistics of labels. + + Parameters + ---------- + final_stats : dict + Dictionary containing occurence frequencies for all labels. + outlier_stats : dict + Dictionary with frequency statistics of outlier-labels. + specific_stats : dict + Dictionary containing the effectiviness of quality control checks + individually. + plot_settings : dict + The specific plot settings for the pie plots. + qc_check_info : dict + The qc info for all checks (includes the color scheme).. + title : str + Title of the figure. + + Returns + ------- + None. + + """ + # restore rcParams + plt.rcParams = plt.rcParamsDefault + + # Specify rcParams + + # axes title + plt.rcParams["axes.titlelocation"] = "center" + plt.rcParams["axes.titlesize"] = 10 + plt.rcParams["axes.titleweight"] = 2 + plt.rcParams["axes.titlecolor"] = "black" + + # label size + textsize_big_pies = 10 + textsize_small_pies = 7 + + color_defenitions = plot_settings["color_mapper"] + # Define layout + + fig = plt.figure(figsize=plot_settings["pie_charts"]["figsize"]) + fig.tight_layout() + spec = fig.add_gridspec(4, 4, wspace=10) + + ax_thl = fig.add_subplot(spec[0, :2]) # top half left + ax_thr = fig.add_subplot(spec[0, 2:]) # top half right + + # 1. Make the finale label pieplot + # make color mapper + final_col_mapper = { + "ok": color_defenitions["ok"], + "QC outliers": color_defenitions["outlier"], + "missing (gaps)": color_defenitions["gap"], + "missing (individual)": color_defenitions["missing_timestamp"], + } + + _make_pie_from_freqs( + freq_dict=final_stats, + colormapper=final_col_mapper, + ax=ax_thl, + plot_settings=plot_settings, + radius=plot_settings["pie_charts"]["radius_big"], + labelsize=textsize_big_pies, + ) + + ax_thl.set_title( + label="Final label frequencies", + y=(plot_settings["pie_charts"]["radius_big"] / 2) * 1.4, + fontweight="bold", + ) + + # 2. Make QC overview pie + # make color mapper + outl_col_mapper = _outl_value_to_colormapper(plot_settings, qc_check_info) + + _make_pie_from_freqs( + freq_dict=outlier_stats, + colormapper=outl_col_mapper, + ax=ax_thr, + plot_settings=plot_settings, + radius=plot_settings["pie_charts"]["radius_big"], + labelsize=textsize_big_pies, + ) + + ax_thr.set_title( + label="Outlier performance", + y=(plot_settings["pie_charts"]["radius_big"] / 2) * 1.4, + fontweight="bold", + ) + + # 3. Make a specific pie for each indvidual QC + gap + missing + plt.rcParams["axes.titley"] = plot_settings["pie_charts"]["radius_small"] / 2 + # make color mapper + spec_col_mapper = { + "ok": color_defenitions["ok"], + "not checked": color_defenitions["not checked"], + "outlier": color_defenitions["outlier"], + "gap": color_defenitions["gap"], + "missing timestamp": color_defenitions["missing_timestamp"], + } + + specific_df = pd.DataFrame(specific_stats) + + ncol = 4 + nrow = 4 + + # create list of axes for the small pies + axlist = [] + i = 0 + for checkname in specific_stats: + ax = fig.add_subplot( + spec[ + math.floor(i / ncol) + 1 : math.floor(i / ncol) + 2, + i % nrow : i % nrow + 1, + ] + ) + + # specific style formatting + ax.set_title( + label=checkname.replace("_", " "), + y=plot_settings["pie_charts"]["radius_small"] / 2, + fontweight="bold", + ) + ax.yaxis.set_visible(False) # ignore the default pandas title + + axlist.append(ax) + i += 1 + + # Make pie plots + specific_df.plot.pie( + subplots=True, + labels=specific_df.index, + legend=False, + autopct="%1.1f%%", + title=None, + radius=plot_settings["pie_charts"]["radius_small"], + textprops={"fontsize": textsize_small_pies}, + ax=axlist, + colors=[spec_col_mapper[col] for col in specific_df.index], + ) + + # Specific styling setings per pie + for ax in axlist: + # specific style formatting + ax.yaxis.set_visible(False) # ignore the default pandas title + + fig.subplots_adjust(hspace=0.7) + fig.suptitle( + title, + # fontsize=30, + ) + plt.show() + + return
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/printing.html b/docs/_build/_modules/metobs_toolkit/printing.html new file mode 100644 index 00000000..dbf8485e --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/printing.html @@ -0,0 +1,197 @@ + + + + + + metobs_toolkit.printing — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.printing

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Printing Functions
+
+@author: thoverga
+"""
+
+
+
+
+
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/qc_checks.html b/docs/_build/_modules/metobs_toolkit/qc_checks.html new file mode 100644 index 00000000..66a80353 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/qc_checks.html @@ -0,0 +1,1411 @@ + + + + + + metobs_toolkit.qc_checks — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.qc_checks

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Created on Thu Oct  6 13:44:54 2022
+
+@author: thoverga
+"""
+
+import sys
+import pandas as pd
+import numpy as np
+import logging
+
+
+from metobs_toolkit.df_helpers import init_multiindex, init_multiindexdf, xs_save
+
+
+logger = logging.getLogger(__name__)
+
+
+try:
+    import titanlib
+except ModuleNotFoundError:
+    logger.warning(
+        "Titanlib is not installed, install it manually if you want to use this functionallity."
+    )
+
+# =============================================================================
+# Helper functions
+# =============================================================================
+
+
+
+[docs] +def make_outlier_df_for_check( + station_dt_list, obsdf, obstype, flag, stationname=None, datetimelist=None +): + """Construct obsdf and outliersdf from a list of outlier timestamps. + + Helper function to create an outlier dataframe for the given station(s) and + datetimes. This will be returned by a quality control check and later added + to the dastes.outlierdf. + + Multiple commum inputstructures can be handles + + A multiindex dataframe with the relevant observationtypes i.e. the + values_in_dict and a specific quality flag column (i.g. the labels) is + returned. + + Parameters + ------------ + station_dt_list : MultiIndex or list of tuples: (name, datetime) + The stations with corresponding datetimes that are labeled as outliers. + obsdf : pandas.DataFrame + The observations dataframe to update. + obstype : str + The observation type of the outliers. + flag : String + The label for the outliers. + stationname : String, optional + It is possible to give the name of one station. The default is None. + datetimelist : DatetimeIndex or List, optional + The outlier timestamps for the stationname. The default is None. + + Returns + ---------- + obsdf : pandas.DataFrame + The updated observations dataframe. + outliersdf : pandas.DataFrame + The updated outliers dataframe. + """ + if isinstance(station_dt_list, pd.MultiIndex): + multi_idx = station_dt_list + + elif isinstance(station_dt_list, list): # list of tuples: (name, datetime) + multi_idx = pd.MultiIndex.from_tuples( + station_dt_list, names=["name", "datetime"] + ) + elif not isinstance(stationname, type(None)): + if isinstance(datetimelist, pd.DatetimeIndex): + datetimelist = datetimelist.to_list() + if isinstance(datetimelist, list): + indexarrays = list(zip([stationname] * len(datetimelist), datetimelist)) + multi_idx = pd.MultiIndex.from_tuples( + indexarrays, names=["name", "datetime"] + ) + + else: + sys.exit(f"Type of datetimelist: {type(datetimelist)} is not implemented.") + + # subset outliers + outliersdf = obsdf.loc[multi_idx] + + # make the triple multiindex + outliersdf["obstype"] = obstype + outliersdf = outliersdf.set_index("obstype", append=True) + + # add flag + outliersdf["label"] = flag + + # subset columns + outliersdf = outliersdf[[obstype, "label"]].rename(columns={obstype: "value"}) + + # replace values in obsdf by Nan + obsdf.loc[multi_idx, obstype] = np.nan + + return obsdf, outliersdf
+ + + +# ============================================================================= +# Quality assesment checks on data import +# ============================================================================= + + +
+[docs] +def invalid_input_check(df, checks_info): + """Test if values are numeric and not Nan. + + Parameters + ---------- + df : pandas.DataFrame + The observations to check the values for. Must contain a column 'name'. + checks_info : dict + Specific settings for the invalid check test. + + Returns + ------- + df : pandas.DataFrame + The observations with NaN values at the location of invalid input. + outl_df : pandas.DataFrame + The updated outliersdf. + + """ + checkname = "invalid_input" + + # fast scan wich stations and obstypes have nan outliers + groups = ( + df.reset_index() + .groupby("name") + .apply(lambda x: (np.isnan(x).any()) & (np.isnan(x).all() == False)) + ) + + # extract all obstype that have outliers + outl_obstypes = groups.apply(lambda x: x.any(), axis=0) + outl_obstypes = outl_obstypes[outl_obstypes].index.to_list() + + # first loop over the smallest sample: outlier obstypes + outl_dict = {} + + for obstype in outl_obstypes: + # get stations that have ouliers for this obstype + outl_stations = groups.loc[groups[obstype], obstype].index.to_list() + + outl_multiidx = init_multiindex() + for sta in outl_stations: + # apply check per station + outl_idx = ( + xs_save(df, sta, level="name", drop_level=False)[obstype] + .isnull() + .loc[lambda x: x] + .index + ) + outl_multiidx = outl_multiidx.append(outl_idx) + + outl_dict[obstype] = outl_multiidx + + # create outliersdf for all outliers for all osbtypes + outl_df = init_multiindexdf() + for obstype, outliers in outl_dict.items(): + df, specific_outl_df = make_outlier_df_for_check( + station_dt_list=outliers, + obsdf=df, + obstype=obstype, + flag=checks_info[checkname]["outlier_flag"], + ) + outl_df = pd.concat([outl_df, specific_outl_df]) + + return df, outl_df
+ + + +
+[docs] +def duplicate_timestamp_check(df, checks_info, checks_settings): + """Test for duplicate timestamps in the observations. + + Looking for duplcate timestaps per station. Duplicated records are removed by the method specified in the qc_settings. + + Parameters + ------------ + df : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + checks_info : dict + The specific info (outlier labels) for quality control. + checks_settings : dict + The dictionary containing the settings for the quality control checks. + + Returns + ---------- + df : pandas.DataFrame() + The observations dataframe updated for duplicate timestamps. Duplicated timestamps are removed. + outl_df : pandas.DataFrame + The updated outliersdf. + """ + checkname = "duplicated_timestamp" + + duplicates = pd.Series( + data=df.index.duplicated(keep=checks_settings[checkname]["keep"]), + index=df.index, + ) + + if not df.loc[duplicates].empty: + logger.warning( + f" Following records are labeld as duplicates: {df.loc[duplicates]}, and are removed" + ) + + # Fill the outlierdf with the duplicates + outliers = df[df.index.duplicated(keep=checks_settings[checkname]["keep"])] + + # convert values to nan in obsdf + for obstype in df.columns: + df.loc[outliers.index, obstype] = np.nan + + # ------- Create a outliersdf -----------# + # the 'make outliersdf' function cannont be use because of duplicated indices + + outliers = outliers.rename( + columns={col: "value_" + col for col in outliers.columns} + ) + outliers = outliers.reset_index() + outliers["_to_get_unique_idx"] = np.arange(outliers.shape[0]) + + outliersdf = pd.wide_to_long( + df=outliers, + stubnames="value", + sep="_", + suffix=r"\w+", # to use non-integer suffexes + i=["name", "datetime", "_to_get_unique_idx"], + j="obstype", + ) + # remove the temorary level from the index + outliersdf = outliersdf.droplevel("_to_get_unique_idx", axis=0) + + # add label column + outliersdf["label"] = checks_info[checkname]["outlier_flag"] + + # drop duplicates in the obsdf, because this gives a lot of troubles + # The method does not really mater because the values are set to nan in the observations + df = df[~df.index.duplicated(keep="first")] + + return df, outliersdf
+ + + +# ============================================================================= +# Quality assesment checks on dataset +# ============================================================================= + + +
+[docs] +def gross_value_check(obsdf, obstype, checks_info, checks_settings): + """Filter out gross outliers from the observations. + + Looking for values of an observation type that are not physical. These values are labeled and the physical limits are specified in the qc_settings. + + Parameters + ------------ + df : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + obstype : str + The observation type to check for outliers. + checks_info : dict + The specific info (outlier labels) for quality control. + checks_settings : dict + The dictionary containing the settings for the quality control checks. + + + Returns + ---------- + obsdf : pandas.DataFrame() + The observations dataframe updated for gross values. These are + represented by Nan values. + outl_df : pandas.DataFrame + The updated outliersdf. + + """ + checkname = "gross_value" + + try: + specific_settings = checks_settings[checkname][obstype] + except: + logger.warning( + f"No {checkname} settings found for obstype={obstype}. Check is skipped!" + ) + return obsdf, init_multiindexdf() + + # drop outliers from the series (these are Nan's) + input_series = obsdf[obstype].dropna() + + # find outlier observations as a list of tuples [(name, datetime), (name, datetime)] + outl_obs = input_series.loc[ + (input_series <= specific_settings["min_value"]) + | (input_series >= specific_settings["max_value"]) + ].index.to_list() + + # make new obsdf and outlierdf + obsdf, outlier_df = make_outlier_df_for_check( + station_dt_list=outl_obs, + obsdf=obsdf, + obstype=obstype, + flag=checks_info[checkname]["outlier_flag"], + ) + + return obsdf, outlier_df
+ + + +
+[docs] +def persistance_check( + station_frequencies, obsdf, obstype, checks_info, checks_settings +): + """Test observations to change over a specific period. + + Looking for values of an observation type that do not change during a timewindow. These are flagged as outliers. + + In order to perform this check, at least N observations should be in that time window. + + + Parameters + ------------ + station_frequencies : pandas.Series + The frecuencies of all the stations. This is a column in the metadf + attribute of the Dataset. + obsdf : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + obstype : str + The observation type to check for outliers. + checks_info : dict + The specific info (outlier labels) for quality control. + checks_settings : dict + The dictionary containing the settings for the quality control checks. + + + Returns + ---------- + obsdf : pandas.DataFrame() + The observations dataframe updated for persistance outliers. These are + represented by Nan values. + outl_df : pandas.DataFrame + The updated outliersdf. + + """ + checkname = "persistance" + + try: + specific_settings = checks_settings[checkname][obstype] + except: + logger.warning( + f"No {checkname} settings found for obstype={obstype}. Check is skipped!" + ) + return obsdf, init_multiindexdf() + + invalid_windows_check_df = ( + pd.to_timedelta(specific_settings["time_window_to_check"]) / station_frequencies + < specific_settings["min_num_obs"] + ) + invalid_stations = list( + invalid_windows_check_df[invalid_windows_check_df == True].index + ) + if bool(invalid_stations): + logger.warning( + f"The windows are too small for stations {invalid_stations} to perform persistance check" + ) + + subset_not_used = obsdf[obsdf.index.get_level_values("name").isin(invalid_stations)] + subset_used = obsdf[~obsdf.index.get_level_values("name").isin(invalid_stations)] + + if not subset_used.empty: + # drop outliers from the series (these are Nan's) + input_series = subset_used[obstype].dropna() + + # apply persistance + def is_unique( + window, + ): # comp order of N (while using the 'unique' function is Nlog(N)) + a = window.values + a = a[~np.isnan(a)] + return (a[0] == a).all() + + # TODO: Tis is very expensive if no coarsening is applied !!!! Can we speed this up? + window_output = ( + input_series.reset_index(level=0) + .groupby("name") + .rolling( + window=specific_settings["time_window_to_check"], + closed="both", + center=True, + min_periods=specific_settings["min_num_obs"], + ) + .apply(is_unique) + ) + + list_of_outliers = [] + outl_obs = window_output.loc[window_output[obstype] == True].index + for outlier in outl_obs: + outliers_list = get_outliers_in_daterange( + input_series, + outlier[1], + outlier[0], + specific_settings["time_window_to_check"], + station_frequencies, + ) + + list_of_outliers.extend(outliers_list) + + list_of_outliers = list(set(list_of_outliers)) + + # make new obsdf and outlierdf + subset_used, outlier_df = make_outlier_df_for_check( + station_dt_list=list_of_outliers, + obsdf=subset_used, + obstype=obstype, + flag=checks_info[checkname]["outlier_flag"], + ) + + obsdf = pd.concat([subset_used, subset_not_used]) + + return obsdf, outlier_df + + else: + obsdf = pd.concat([subset_used, subset_not_used]) + + return obsdf, init_multiindexdf()
+ + + +
+[docs] +def repetitions_check(obsdf, obstype, checks_info, checks_settings): + """Test if observation change after a number of records. + + Looking for values of an observation type that are repeated at least with + the frequency specified in the qc_settings. These values are labeled. + + + Parameters + ------------ + obsdf : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + obstype : str + The observation type to check for outliers. + checks_info : dict + The specific info (outlier labels) for quality control. + checks_settings : dict + The dictionary containing the settings for the quality control checks. + + + Returns + ---------- + obsdf : pandas.DataFrame() + The observations dataframe updated for repetitions outliers. These are + represented by Nan values. + outl_df : pandas.DataFrame + The updated outliersdf. + + + """ + checkname = "repetitions" + + try: + specific_settings = checks_settings[checkname][obstype] + except: + logger.warning( + f"No {checkname} settings found for obstype={obstype}. Check is skipped!" + ) + return obsdf, init_multiindexdf() + + # drop outliers from the series (these are Nan's) + input_series = obsdf[obstype].dropna() + + # find outlier datetimes + + # add time interval between two consecutive records, group by consecutive records without missing records + + time_diff = input_series.index.get_level_values("datetime").to_series().diff() + time_diff.index = input_series.index # back to multiindex + + persistance_filter = ((input_series.shift() != input_series)).cumsum() + + grouped = input_series.groupby(["name", persistance_filter]) + # the above line groups the observations which have the same value and consecutive datetimes. + group_sizes = grouped.size() + outlier_groups = group_sizes[ + group_sizes > specific_settings["max_valid_repetitions"] + ] + + # add to outl_obs. + outl_obs = [] + for group_idx in outlier_groups.index: + groupseries = grouped.get_group(group_idx) + if len(set(groupseries)) == 1: # Check if all observations are equal in group + outl_obs.extend(groupseries.index.to_list()) + + # make new obsdf and outlierdf + obsdf, outlier_df = make_outlier_df_for_check( + station_dt_list=outl_obs, + obsdf=obsdf, + obstype=obstype, + flag=checks_info[checkname]["outlier_flag"], + ) + + return obsdf, outlier_df
+ + + +
+[docs] +def step_check(obsdf, obstype, checks_info, checks_settings): + """Test if observations do not produces spikes in timeseries. + + Looking for jumps of the values of an observation type that are larger than + the limit specified in the qc_settings. These values are removed from the + input series and combined in the outlier df. + + The purpose of this check is to flag observations with a value that is too + much different compared to the previous (not flagged) recorded value. + + Parameters + ------------ + obsdf : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + obstype : str + The observation type to check for outliers. + checks_info : dict + The specific info (outlier labels) for quality control. + checks_settings : dict + The dictionary containing the settings for the quality control checks. + + + Returns + ---------- + obsdf : pandas.DataFrame() + The observations dataframe updated for step outliers. These are + represented by Nan values. + outl_df : pandas.DataFrame + The updated outliersdf. + + """ + + checkname = "step" + + try: + specific_settings = checks_settings[checkname][obstype] + except: + logger.warning( + f"No {checkname} settings found for obstype={obstype}. Check is skipped!" + ) + return obsdf, init_multiindexdf() + + # drop outliers from the series (these are Nan's) + input_series = obsdf[obstype].dropna() + + list_of_outliers = [] + + for name in input_series.index.droplevel("datetime").unique(): + subdata = xs_save(input_series, name, level="name", drop_level=False) + + time_diff = subdata.index.get_level_values("datetime").to_series().diff() + time_diff.index = subdata.index # back to multiindex + # define filter + step_filter = ( + (subdata - subdata.shift(1)) + > ( + specific_settings["max_increase_per_second"] + * time_diff.dt.total_seconds() + ) + ) | ( + (subdata - subdata.shift(1)) + < ( + specific_settings["max_decrease_per_second"] + * time_diff.dt.total_seconds() + ) + ) # & + # (time_diff == station_frequencies[name])) + outl_obs = step_filter[step_filter].index + + list_of_outliers.extend(outl_obs) + + # make new obsdf and outlierdf + obsdf, outlier_df = make_outlier_df_for_check( + station_dt_list=list_of_outliers, + obsdf=obsdf, + obstype=obstype, + flag=checks_info[checkname]["outlier_flag"], + ) + + return obsdf, outlier_df
+ + + +
+[docs] +def window_variation_check( + station_frequencies, obsdf, obstype, checks_info, checks_settings +): + """Test if the variation exeeds threshold in moving time windows. + + Looking for jumps of the values of an observation type that are larger than + the limit specified in the qc_settings. These values are removed from the + input series and combined in the outlier df. + + There is a increament threshold (that is if there is a max value difference + and the maximum value occured later than the minimum value occured.) + And vice versa is there a decreament threshold. + + The check is only applied if there are at leas N observations in the time window. + + + Parameters + ------------ + station_frequencies : pandas.Series + The frecuencies of all the stations. This is a column in the metadf + attribute of the Dataset. + obsdf : pandas.DataFrame + The observations dataframe of the dataset object (Dataset.df) + obstype : str + The observation type to check for outliers. + checks_info : dict + The specific info (outlier labels) for quality control. + checks_settings : dict + The dictionary containing the settings for the quality control checks. + + + Returns + ---------- + obsdf : pandas.DataFrame() + The observations dataframe updated for window-variation-outliers. These are + represented by Nan values. + outl_df : pandas.DataFrame + The updated outliersdf. + + """ + checkname = "window_variation" + + try: + specific_settings = checks_settings[checkname][obstype] + except: + logger.warning( + f"No {checkname} settings found for obstype={obstype}. Check is skipped!" + ) + return obsdf, init_multiindexdf() + + invalid_windows_check_df = ( + pd.to_timedelta(specific_settings["time_window_to_check"]) / station_frequencies + < specific_settings["min_window_members"] + ) + invalid_stations = list(invalid_windows_check_df[invalid_windows_check_df].index) + if bool(invalid_stations): + logger.warning( + f"The windows are too small for stations {invalid_stations} to perform window variation check" + ) + + subset_not_used = obsdf[obsdf.index.get_level_values("name").isin(invalid_stations)] + subset_used = obsdf[~obsdf.index.get_level_values("name").isin(invalid_stations)] + + if not subset_used.empty: + # drop outliers from the series (these are Nan's) + input_series = subset_used[obstype].dropna() + + # Calculate window thresholds (by linear extarpolation) + windowsize_seconds = pd.Timedelta( + specific_settings["time_window_to_check"] + ).total_seconds() + max_window_increase = ( + specific_settings["max_increase_per_second"] * windowsize_seconds + ) + max_window_decrease = ( + specific_settings["max_decrease_per_second"] * windowsize_seconds + ) + + # apply steptest + def variation_test(window): + if (max(window) - min(window) > max_window_increase) & ( + window.idxmax() > window.idxmin() + ): + return 1 + + if (max(window) - min(window) > max_window_decrease) & ( + window.idxmax() < window.idxmin() + ): + return 1 + else: + return 0 + + window_output = ( + input_series.reset_index(level=0) + .groupby("name") + .rolling( + window=specific_settings["time_window_to_check"], + closed="both", + center=True, + min_periods=specific_settings["min_window_members"], + ) + .apply(variation_test) + ) + + list_of_outliers = [] + outl_obs = window_output.loc[window_output[obstype] == 1].index + + for outlier in outl_obs: + outliers_list = get_outliers_in_daterange( + input_series, + outlier[1], + outlier[0], + specific_settings["time_window_to_check"], + station_frequencies, + ) + + list_of_outliers.extend(outliers_list) + + list_of_outliers = list(set(list_of_outliers)) + + # make new obsdf and outlierdf + subset_used, outlier_df = make_outlier_df_for_check( + station_dt_list=list_of_outliers, + obsdf=subset_used, + obstype=obstype, + flag=checks_info[checkname]["outlier_flag"], + ) + + obsdf = pd.concat([subset_used, subset_not_used]) + + return obsdf, outlier_df + + else: + obsdf = pd.concat([subset_used, subset_not_used]) + + return obsdf, init_multiindexdf()
+ + + +# ============================================================================= +# Toolkit buddy check +# ============================================================================= + + +def _calculate_distance_matrix_with_haverine(metadf): + from math import radians, cos, sin, asin, sqrt + + def haversine(lon1, lat1, lon2, lat2): + """Calculate the great circle distance between two points.""" + # convert decimal degrees to radians + lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) + + # haversine formula + dlon = lon2 - lon1 + dlat = lat2 - lat1 + a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 + c = 2 * asin(sqrt(a)) + r = 6367000 # Radius of earth in meter. + return c * r + + distance_matrix = {} + for sta1, row1 in metadf.iterrows(): + distance_matrix[sta1] = {} + for sta2, row2 in metadf.iterrows(): + distance_matrix[sta1][sta2] = haversine( + row1.geometry.x, row1.geometry.y, row2.geometry.x, row2.geometry.y + ) + return pd.DataFrame(distance_matrix) + + +def _calculate_distance_matrix(metadf, metric_epsg="31370"): + metric_metadf = metadf.to_crs(epsg=metric_epsg) + return metric_metadf.geometry.apply(lambda g: metric_metadf.geometry.distance(g)) + + +def _find_spatial_buddies(distance_df, buddy_radius): + """Get neighbouring stations using buddy radius.""" + buddies = {} + for refstation, distances in distance_df.iterrows(): + bud_stations = distances[distances <= buddy_radius].index.to_list() + bud_stations.remove(refstation) + buddies[refstation] = bud_stations + + return buddies + + +# filter altitude buddies +def _filter_to_altitude_buddies(spatial_buddies, metadf, max_altitude_diff): + """Filter neighbours by maximum altitude difference.""" + alt_buddies_dict = {} + for refstation, buddylist in spatial_buddies.items(): + alt_diff = abs( + (metadf.loc[buddylist, "altitude"]) - metadf.loc[refstation, "altitude"] + ) + alt_buddies = alt_diff[alt_diff <= max_altitude_diff].index.to_list() + alt_buddies_dict[refstation] = alt_buddies + return alt_buddies_dict + + +def _filter_to_samplesize(buddydict, min_sample_size): + """Filter stations that are to isolated using minimum sample size.""" + to_check_stations = {} + for refstation, buddies in buddydict.items(): + if len(buddies) < min_sample_size: + # not enough buddies + to_check_stations[refstation] = [] # remove buddies + else: + to_check_stations[refstation] = buddies + return to_check_stations + + +
+[docs] +def toolkit_buddy_check( + obsdf, + metadf, + obstype, + buddy_radius, + min_sample_size, + max_alt_diff, + min_std, + std_threshold, + outl_flag, + haversine_approx=True, + metric_epsg="31370", + lapserate=-0.0065, +): + """Spatial buddy check. + + The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for + buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the + (absolute value of the) difference between the observations and the average of the neighbours + normalized by the standard deviation in the circle is greater than a predefined threshold. + + Parameters + ---------- + obsdf: Pandas.DataFrame + The dataframe containing the observations + metadf: Pandas.DataFrame + The dataframe containing the metadata (e.g. latitude, longitude...) + obstype: String, optional + The observation type that has to be checked. The default is 'temp' + buddy_radius : numeric + The radius to define neighbours in meters. + min_sample_size : int + The minimum sample size to calculate statistics on. + max_alt_diff : numeric + The maximum altitude difference allowed for buddies. + min_std : numeric + The minimum standard deviation for sample statistics. This should + represent the accuracty of the observations. + std_threshold : numeric + The threshold (std units) for flaggging observations as outliers. + outl_flag : str + Label to give to the outliers. + haversine_approx : bool, optional + Use the haversine approximation (earth is a sphere) to calculate + distances between stations. The default is True. + metric_epsg : str, optional + EPSG code for the metric CRS to calculate distances in. Only used when + haversine approximation is set to False. Thus becoming a better + distance approximation but not global applicable The default is '31370' + (which is suitable for Belgium). + lapserate : numeric, optional + Describes how the obstype changes with altitude (in meters). The default is -0.0065. + + Returns + ------- + obsdf: Pandas.DataFrame + The dataframe containing the unflagged-observations + outlier_df : Pandas.DataFrame + The dataframe containing the flagged observations + + """ + outliers_idx = init_multiindex() + + # Get spatial buddies for each station + if haversine_approx: + distance_df = _calculate_distance_matrix_with_haverine(metadf=metadf) + else: + distance_df = _calculate_distance_matrix(metadf=metadf, metric_epsg=metric_epsg) + buddies = _find_spatial_buddies(distance_df=distance_df, buddy_radius=buddy_radius) + + # Filter by altitude difference + buddies = _filter_to_altitude_buddies( + spatial_buddies=buddies, metadf=metadf, max_altitude_diff=max_alt_diff + ) + + # Filter by samplesize + buddydict = _filter_to_samplesize( + buddydict=buddies, min_sample_size=min_sample_size + ) + + # Apply buddy check station per station + for refstation, buddies in buddydict.items(): + if len(buddies) == 0: + logger.debug(f"{refstation} has not enough suitable buddies.") + continue + + # Get observations + buddies_obs = obsdf[obsdf.index.get_level_values("name").isin(buddies)][obstype] + # Unstack + buddies_obs = buddies_obs.unstack(level="name") + + # Make lapsrate correction: + ref_alt = metadf.loc[refstation, "altitude"] + buddy_correction = ( + (metadf.loc[buddies, "altitude"] - ref_alt) * (-1.0 * lapserate) + ).to_dict() + for bud in buddies_obs.columns: + buddies_obs[bud] = buddies_obs[bud] - buddy_correction[bud] + + # calucalate std and mean row wise + buddies_obs["mean"] = buddies_obs[buddies].mean(axis=1) + buddies_obs["std"] = buddies_obs[buddies].std(axis=1) + buddies_obs["samplesize"] = buddies_obs[buddies].count(axis=1) + + # from titan they use std adjust which is float std_adjusted = sqrt(variance + variance / n_buddies); + # This is not used + # buddies_obs['var'] = buddies_obs[buddies].var(axis=1) + # buddies_obs['std_adj'] =np.sqrt(buddies_obs['var'] + buddies_obs['var']/buddies_obs['samplesize']) + + # replace where needed with min std + buddies_obs["std"] = buddies_obs["std"].where( + cond=buddies_obs["std"] >= min_std, other=min_std + ) + + # Get refstation observations and merge + ref_obs = obsdf[obsdf.index.get_level_values("name") == refstation][ + obstype + ].unstack(level="name") + buddies_obs = buddies_obs.merge( + ref_obs, + how="left", # both not needed because if right, than there is no buddy sample per definition. + left_index=True, + right_index=True, + ) + # Calculate sigma + buddies_obs["chi"] = ( + abs(buddies_obs["mean"] - buddies_obs[refstation]) + ) / buddies_obs["std"] + + outliers = buddies_obs[ + (buddies_obs["chi"] > std_threshold) + & (buddies_obs["samplesize"] >= min_sample_size) + ] + + logger.debug(f" Buddy outlier details for {refstation}: \n {buddies}") + # NOTE: the outliers (above) can be interesting to pass back to the dataset?? + + # to multiindex + outliers["name"] = refstation + outliers = outliers.reset_index().set_index(["name", "datetime"]).index + outliers_idx = outliers_idx.append(outliers) + + # Update the outliers and replace the obsdf + obsdf, outlier_df = make_outlier_df_for_check( + station_dt_list=outliers_idx, + obsdf=obsdf, + obstype=obstype, + flag=outl_flag, + ) + + return obsdf, outlier_df
+ + + +# ============================================================================= +# Titan bindings +# ============================================================================= + + +
+[docs] +def create_titanlib_points_dict(obsdf, metadf, obstype): + """Create a dictionary of titanlib-points. + + Titanlib uses point as dataformats. This method converts the dataframes to + a dictionnary of points. + + Parameters + ---------- + obsdf : pandas.DataFrame + Dataset.df + metadf : pandas.DataFrame + Dataset.metadf. + obstype : str + The observation type to pass to the points. + + Returns + ------- + points_dict : dict + The collection of datapoints. + + """ + obs = obsdf[[obstype]] + obs = obs.reset_index() + + # merge metadata + obs = obs.merge( + right=metadf[["lat", "lon", "altitude"]], + how="left", + left_on="name", + right_index=True, + ) + + dt_grouper = obs.groupby("datetime") + + points_dict = {} + for dt, group in dt_grouper: + + check_group = group[~group[obstype].isnull()] + + points_dict[dt] = { + "values": check_group[obstype].to_numpy(), + "names": check_group["name"].to_numpy(), + "lats": check_group["lat"].to_numpy(), + "lons": check_group["lon"].to_numpy(), + "elev": check_group["altitude"].to_numpy(), + "ignore_names": group[group[obstype].isnull()]["name"].to_numpy(), + } + + return points_dict
+ + + +
+[docs] +def titan_buddy_check( + obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler +): + """Apply the Titanlib buddy check. + + The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for + buddies in a neighbourhood specified by a certain radius. The buddy check flags observations if the + (absolute value of the) difference between the observations and the average of the neighbours + normalized by the standard deviation in the circle is greater than a predefined threshold. + + + Parameters + ------------ + obsdf: Pandas.DataFrame + The dataframe containing the observations + metadf: Pandas.DataFrame + The dataframe containing the metadata (e.g. latitude, longitude...) + obstype: String, optional + The observation type that has to be checked. The default is 'temp' + checks_info: Dictionary + Dictionary with the names of the outlier flags for each check + checks_settings: Dictionary + Dictionary with the settings for each check + titan_specific_labeler: Dictionary + Dictionary that maps numeric flags to 'ok' or 'outlier' flags for each titan check + + Returns + ---------- + obsdf: Pandas.DataFrame + The dataframe containing the unflagged-observations + outlier_df : Pandas.DataFrame + The dataframe containing the flagged observations + + """ + try: + _ = metadf["altitude"] + except: + logger.warning("Cannot find altitude of weather stations. Check is skipped!") + + # Create points_dict + pointsdict = create_titanlib_points_dict(obsdf, metadf, obstype) + + df_list = [] + for dt, point in pointsdict.items(): + obs = list(point["values"]) + titan_points = titanlib.Points( + np.asarray(point["lats"]), + np.asarray(point["lons"]), + np.asarray(point["elev"]), + ) + + num_labels = titanlib.buddy_check( + titan_points, + np.asarray(obs), + np.asarray( + [checks_settings["radius"]] * len(obs) + ), # same radius for all stations + np.asarray( + [checks_settings["num_min"]] * len(obs) + ), # same min neighbours for all stations + checks_settings["threshold"], + checks_settings["max_elev_diff"], + checks_settings["elev_gradient"], + checks_settings["min_std"], + checks_settings["num_iterations"], + np.full(len(obs), 1), + ) # check all + + labels = pd.Series(num_labels, name="num_label").to_frame() + labels["name"] = point["names"] + labels["datetime"] = dt + df_list.append(labels) + + checkeddf = pd.concat(df_list) + + # Convert to toolkit format + outliersdf = checkeddf[checkeddf["num_label"].isin(titan_specific_labeler["outl"])] + + outliersdf = outliersdf.set_index(["name", "datetime"]) + + obsdf, outliersdf = make_outlier_df_for_check( + station_dt_list=outliersdf.index, + obsdf=obsdf, + obstype=obstype, + flag=checks_info["titan_buddy_check"]["outlier_flag"], + ) + + return obsdf, outliersdf
+ + + +
+[docs] +def titan_sct_resistant_check( + obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler +): + """Apply the Titanlib (robust) Spatial-Consistency-Test (SCT). + + The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the + nearby area. If the deviation is large, the observation is removed. The SCT uses optimal interpolation + (OI) to compute an expected value for each observation. The background for the OI is computed from + a general vertical profile of observations in the area. + + Parameters + ------------- + obsdf: Pandas.DataFrame + The dataframe containing the observations + metadf: Pandas.DataFrame + The dataframe containing the metadata (e.g. latitude, longitude...) + obstype: String, optional + The observation type that has to be checked. The default is 'temp' + checks_info: Dictionary + Dictionary with the names of the outlier flags for each check + checks_settings: Dictionary + Dictionary with the settings for each check + titan_specific_labeler: Dictionary + Dictionary that maps numeric flags to 'ok' or 'outlier' flags for each titan check + + Returns + ---------- + obsdf: Pandas.DataFrame + The dataframe containing the unflagged-observations + outlier_df : Pandas.DataFrame + The dataframe containing the flagged observations + """ + import time + + try: + _ = metadf["altitude"] + except: + logger.warning("Cannot find altitude of weather stations. Check is skipped!") + + # Create points_dict + pointsdict = create_titanlib_points_dict(obsdf, metadf, obstype) + + df_list = [] + for dt, point in pointsdict.items(): + logger.debug(f"sct on observations at {dt}") + obs = list(point["values"]) + titan_points = titanlib.Points( + np.asarray(point["lats"]), + np.asarray(point["lons"]), + np.asarray(point["elev"]), + ) + + flags, scores = titanlib.sct_resistant( + points=titan_points, # points + values=np.asarray(obs), # vlues + obs_to_check=np.full(len(obs), 1), # obs to check (check all) + background_values=np.full(len(obs), 0), # background values + background_elab_type=titanlib.MedianOuterCircle, # background elab type + num_min_outer=checks_settings["num_min_outer"], # num min outer + num_max_outer=checks_settings["num_max_outer"], # num mac outer + inner_radius=checks_settings["inner_radius"], # inner radius + outer_radius=checks_settings["outer_radius"], # outer radius + num_iterations=checks_settings["num_iterations"], # num iterations + num_min_prof=checks_settings["num_min_prof"], # num min prof + min_elev_diff=checks_settings["min_elev_diff"], # min elev diff + min_horizontal_scale=checks_settings[ + "min_horizontal_scale" + ], # min horizontal scale + max_horizontal_scale=checks_settings[ + "max_horizontal_scale" + ], # max horizontal scale + kth_closest_obs_horizontal_scale=checks_settings[ + "kth_closest_obs_horizontal_scale" + ], # kth closest obs horizontal scale + vertical_scale=checks_settings["vertical_scale"], # vertical scale + value_mina=[ + x - checks_settings["mina_deviation"] for x in obs + ], # values mina + value_maxa=[ + x + checks_settings["maxa_deviation"] for x in obs + ], # values maxa + value_minv=[ + x - checks_settings["minv_deviation"] for x in obs + ], # values minv + value_maxv=[ + x + checks_settings["maxv_deviation"] for x in obs + ], # values maxv + eps2=np.full(len(obs), checks_settings["eps2"]), # eps2 + tpos=np.full(len(obs), checks_settings["tpos"]), # tpos + tneg=np.full(len(obs), checks_settings["tneg"]), # tneg + debug=checks_settings["debug"], # debug + basic=checks_settings["basic"], + ) # basic + + logger.debug("Sleeping ... (to avoid segmentaton errors)") + time.sleep(1) + + labels = pd.Series(flags, name="num_label").to_frame() + labels["name"] = point["names"] + labels["datetime"] = dt + df_list.append(labels) + + checkeddf = pd.concat(df_list) + + # Convert to toolkit format + outliersdf = checkeddf[checkeddf["num_label"].isin(titan_specific_labeler["outl"])] + + outliersdf = outliersdf.set_index(["name", "datetime"]) + + obsdf, outliersdf = make_outlier_df_for_check( + station_dt_list=outliersdf.index, + obsdf=obsdf, + obstype=obstype, + flag=checks_info["titan_sct_resistant_check"]["outlier_flag"], + ) + + return obsdf, outliersdf
+ + + +# ============================================================================= +# Helpers +# ============================================================================= + + +
+[docs] +def get_outliers_in_daterange(input_data, date, name, time_window, station_freq): + """Find all outliers in a window of a specific station. + + Parameters + ---------- + input_data : pandas.DataFrame + Dataframe with a datetimeindex to get the intersection with a + datetimerange from. + date : datetime.datetime + The center of the window. + name : str + The stationname. + time_window : datetimestring + Half the width of the window. + station_freq : pandas.Series + The series containing the frequencies per station. + + Returns + ------- + intersection : pandas.multiindex + A name-datetime multiindex for occuring outliers in the window. + + """ + end_date = date + (pd.Timedelta(time_window) / 2).floor(station_freq[name]) + start_date = date - (pd.Timedelta(time_window) / 2).floor(station_freq[name]) + + daterange = pd.date_range(start=start_date, end=end_date, freq=station_freq[name]) + + multi_idx = pd.MultiIndex.from_arrays( + arrays=[[name] * len(daterange), daterange.to_list()], + sortorder=1, + names=["name", "datetime"], + ) + outlier_sub_df = pd.DataFrame(data=None, index=multi_idx, columns=None) + + intersection = outlier_sub_df.index.intersection(input_data.dropna().index).values + + return intersection
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/qc_statistics.html b/docs/_build/_modules/metobs_toolkit/qc_statistics.html new file mode 100644 index 00000000..44a6ce83 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/qc_statistics.html @@ -0,0 +1,272 @@ + + + + + + metobs_toolkit.qc_statistics — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.qc_statistics

+# -*- coding: utf-8 -*-
+
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Module for computing frequency statistics of outlier labels.
+
+@author: thoverga
+"""
+
+
+import pandas as pd
+import logging
+
+
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +def get_freq_statistics(comb_df, obstype, checks_info, gaps_info, applied_qc_order): + """Compute frequency statistics of the outliers. + + Parameters + ---------- + comb_df : pandas.DataFrame + The dataframe containing all obsarvations, outliers and there labels. + obstype : str + The observation type to compute the frequencies of. + checks_info : dict + The general quality control info dictionary. + gaps_info : dict + The general gap info dictionary. + applied_qc_order : pandas.DataFrame + The _applied_qc attribute of the Dataset. + + Returns + ------- + agg_dict : dict + Dictionary containing occurence frequencies for all labels. + outl_dict : dict + Dictionary with frequency statistics of outlier-labels. + specific_counts : dict + Dictionary containing the effectiviness of quality control checks + individually. + + """ + outlier_labels = [qc["outlier_flag"] for qc in checks_info.values()] + + final_counts = comb_df["label"].value_counts() + + # add missing labels + # QC labels + non_triggered_labels_dict = {} + # fill with zeros for non-triggered checks + for outl_label in outlier_labels: + if outl_label not in final_counts.index: + non_triggered_labels_dict[outl_label] = 0 + + # gaps + if not gaps_info["gap"]["outlier_flag"] in final_counts.index: + non_triggered_labels_dict[gaps_info["gap"]["outlier_flag"]] = 0 + + # missing timestamps + if not gaps_info["missing_timestamp"]["outlier_flag"] in final_counts.index: + non_triggered_labels_dict[gaps_info["missing_timestamp"]["outlier_flag"]] = 0 + + non_triggered_labels = pd.Series(non_triggered_labels_dict) + final_counts = pd.concat([final_counts, non_triggered_labels]) + tot_n_obs = final_counts.sum() + + # to percentages + final_counts = (final_counts / tot_n_obs) * 100.0 + + # ------- aggregate outliers ---------- + + # 1 agg to ok - outlier - gap - missing + + try: + agg_ok = final_counts["ok"].squeeze() + except KeyError: + agg_ok = 0.0 + + agg_dict = { + "ok": agg_ok, + "QC outliers": final_counts.loc[final_counts.index.isin(outlier_labels)].sum(), + "missing (gaps)": final_counts[gaps_info["gap"]["outlier_flag"]].squeeze(), + "missing (individual)": final_counts[ + gaps_info["missing_timestamp"]["outlier_flag"] + ].squeeze(), + } + + # 2 indevidual outliers + outl_dict = final_counts.loc[final_counts.index.isin(outlier_labels)].to_dict() + + # 3 Effectivenes per check + + specific_counts = {} + # Note: some complexity because observations can be removed by privious executed checsk, + # so construct the counts in the order of the applied checks + + applied_qc_order = ( + applied_qc_order.drop_duplicates() + ) # when qc applied mulitple times on same obstype + applied_checks = applied_qc_order.loc[applied_qc_order["obstype"] == obstype][ + "checkname" + ].to_list() + + percent_rejected_before = 0.0 + + for checkname in applied_checks: + try: + specific_outliers = final_counts.loc[checks_info[checkname]["outlier_flag"]] + except KeyError: + specific_outliers = 0.0 + + not_checked = percent_rejected_before + ok = 100.0 - specific_outliers - not_checked + + specific_counts[checkname] = { + "not checked": not_checked, + "ok": ok, + "outlier": specific_outliers, + } + + percent_rejected_before += specific_outliers + + # add checks that are not performed + not_perf_checknames = [ + check for check in checks_info.keys() if check not in applied_checks + ] + for checkname in not_perf_checknames: + specific_counts[checkname] = {"not checked": 100.0, "ok": 0.0, "outlier": 0.0} + + # add Gaps + gap_specific_counts = { + "not checked": 0, # all obs are always checked + "ok": 100.0 - final_counts[gaps_info["gap"]["outlier_flag"]], + "outlier": final_counts[gaps_info["gap"]["outlier_flag"]], + } + specific_counts[gaps_info["gap"]["label_columnname"]] = gap_specific_counts + + # misssing timestamps + missing_specific_counts = { + "not checked": 0, # all obs are always checked + "ok": 100.0 - final_counts[gaps_info["missing_timestamp"]["outlier_flag"]], + "outlier": final_counts[gaps_info["missing_timestamp"]["outlier_flag"]], + } + specific_counts[ + gaps_info["missing_timestamp"]["label_columnname"] + ] = missing_specific_counts + + return (agg_dict, outl_dict, specific_counts)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/settings.html b/docs/_build/_modules/metobs_toolkit/settings.html new file mode 100644 index 00000000..44024c79 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/settings.html @@ -0,0 +1,491 @@ + + + + + + metobs_toolkit.settings — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.settings

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+All needed setting are combined in a settings class.
+
+@author: thoverga
+"""
+import os
+import json
+import shutil
+from pathlib import Path
+import logging
+from pytz import all_timezones, common_timezones
+
+# connect to logger
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +class Settings: + """Class defenition to store all settings.""" + + # make settingsfiles path + _settings_files_path = os.path.join(str(Path(__file__).parent), "settings_files") + + def __init__(self): + """Initiate the settings.""" + logger.info("Initialising settings") + + # define thematics in settings. Corresponds to settings files. + self.time_settings = {} + self.app = {} + self.qc = {} + self.gap = {} + self.missing_obs = {} + self.templates = {} + self.gee = {} + self.IO = { + "output_folder": None, + "input_data_file": None, + "input_metadata_file": None, + } + + # Update (instance and class variables) what can be updated by setingsfiles + self._update_time_res_settings() + self._update_app_settings() + self._update_qc_settings() + self._update_gap_settings() + self._update_templates() + self._update_gee_settings() + + # ============================================================================= + # Update settings from files in initialisation + # ============================================================================= + + def _update_time_res_settings(self): + """ + Update settings on time resolutions of self using the default settings templates. + + Returns + ------- + None. + """ + logger.debug("Updating time resolution settings.") + f = open( + os.path.join( + Settings._settings_files_path, "dataset_resolution_settings.json" + ) + ) + res_settings = json.load(f) + f.close() + + self.time_settings["target_time_res"] = res_settings["target_time_resolution"] + self.time_settings["resample_method"] = res_settings["method"] + self.time_settings["resample_limit"] = res_settings["limit"] + self.time_settings["timezone"] = res_settings["timezone"] + + # Freq estimation + self.time_settings["freq_estimation_method"] = res_settings[ + "freq_estimation_method" + ] + self.time_settings["freq_estimation_simplify"] = bool( + res_settings["freq_estimation_simplify"] + ) + self.time_settings["freq_estimation_simplify_error"] = res_settings[ + "freq_estimation_simplify_error" + ] + + def _update_app_settings(self): + """ + Update prefered display, print, plot and staticinfo settings of self using the default settings templates. + + Returns + ------- + None. + """ + logger.debug("Updating app settings.") + from .settings_files.default_formats_settings import ( + plot_settings, + print_settings, + vars_display, + default_name, + ) + from .settings_files.default_formats_settings import ( + static_fields, + categorical_fields, + location_info, + ) + + # 1. Print settings + self.app["print_fmt_datetime"] = print_settings["fmt_datetime"] + self.app["print_max_n"] = int(print_settings["max_print_per_line"]) + # 2. Plot settings + self.app["plot_settings"] = plot_settings + + # 3. display name mappers + self.app["display_name_mapper"] = vars_display + + # 4 Fields settings + # fields without timeevolution + self.app["static_fields"] = static_fields + self.app["categorical_fields"] = categorical_fields # wind and lcz + self.app["location_info"] = location_info # all possible metadata + + # 5. default name (when station name is not present in dataset) + self.app["default_name"] = default_name + + def _update_qc_settings(self): + """ + Update quality control settings of self using the default settings templates. + + Returns + ------- + None. + """ + logger.debug("Updating QC settings.") + from .settings_files.qc_settings import ( + check_settings, + checks_info, + titan_check_settings, + titan_specific_labeler, + ) + + self.qc["qc_check_settings"] = check_settings + self.qc["qc_checks_info"] = checks_info + self.qc["titan_check_settings"] = titan_check_settings + self.qc["titan_specific_labeler"] = titan_specific_labeler + + def _update_gap_settings(self): + """ + Update gap defenition and fill settings of self using the default settings templates. + + Returns + ------- + None. + """ + logger.debug("Updating gap settings.") + from .settings_files.gaps_and_missing_settings import ( + gaps_settings, + gaps_info, + gaps_fill_settings, + gaps_fill_info, + missing_obs_fill_settings, + missing_obs_fill_info, + ) + + self.gap["gaps_settings"] = gaps_settings + self.gap["gaps_info"] = gaps_info + self.gap["gaps_fill_settings"] = gaps_fill_settings + self.gap["gaps_fill_info"] = gaps_fill_info + + self.missing_obs["missing_obs_fill_settings"] = missing_obs_fill_settings + self.missing_obs["missing_obs_fill_info"] = missing_obs_fill_info + + def _update_templates(self): + """ + Import the default mapper-template, and used it on the observations and metadata. + + Returns + ------- + None. + + """ + logger.debug("Updating data templates settings.") + from .data_templates.import_templates import default_template_file + + # Set default templates + self.templates["template_file"] = default_template_file + + def _update_gee_settings(self): + """ + Update the google earth enginge settings using the default settings templates. + + Returns + ------- + None. + """ + logger.debug("Updating gee settings.") + from .settings_files.gee_settings import gee_datasets + + self.gee["gee_dataset_info"] = gee_datasets + +
+[docs] + def update_timezone(self, timezonestr): + """ + Change the timezone of the input data. + + Parameters + ------------ + timezonestr : str + Timezone string of the input observations. + + Returns + ------- + None. + """ + if timezonestr not in all_timezones: + print( + f"timezone: {timezonestr}, is not a valid timezone. Select one of the following:" + ) + print(f"{common_timezones}") + return + else: + logger.info( + f'Update timezone: {self.time_settings["timezone"]} --> {timezonestr}' + ) + self.time_settings["timezone"] = timezonestr
+ + +
+[docs] + def update_IO( + self, + output_folder=None, + input_data_file=None, + input_metadata_file=None, + template_file=None, + ): + """ + Update some settings that are relevent before data is imported. + + When a argument is None, no update of that settings is performed. + The self object will be updated. + + Parameters + ---------- + output_folder : str, optional + A directory to store the output to, defaults to None. + input_data_file : str, optional + Path to the input data file, defaults to None. + input_metadata_file : str, optional + Path to the input metadata file, defaults to None + template_file : str, optional + Path to the mapper-template csv file to be used on the observations + and metadata. If not given, the default template is used. The + default is None. + + Returns + ------- + None. + + """ + logger.info("Updating settings with input: ") + + if not isinstance(output_folder, type(None)): + logger.info( + f'Update output_folder: {self.IO["output_folder"]} --> {output_folder}' + ) + self.IO["output_folder"] = output_folder + + if not isinstance(input_data_file, type(None)): + logger.info( + f'Update input_data_file: {self.IO["input_data_file"]} --> {input_data_file}' + ) + self.IO["input_data_file"] = input_data_file + + if not isinstance(input_metadata_file, type(None)): + logger.info( + f'Update meta_data_file: {self.IO["input_metadata_file"]} --> {input_metadata_file}' + ) + self.IO["input_metadata_file"] = input_metadata_file + + if not isinstance(template_file, type(None)): + logger.info( + f'Update template file: {self.templates["template_file"]} --> {template_file}' + ) + self.templates["template_file"] = template_file
+ + +
+[docs] + def copy_template_csv_files(self, target_folder): + """Copy the default template. + + A function to copy the default template file to an other location. This + can be of use when creating a template file to start from the default. + + Parameters + ---------- + target_folder : str + Directory to copy the default template to (default_template.csv). + + Returns + ------- + None. + + """ + from .data_templates.import_templates import default_template_file + + # test if target_folder is a folder + assert os.path.isdir(target_folder), f"{target_folder} is not a folder" + + target_file = os.path.join(target_folder, "default_template.csv") + + shutil.copy2(default_template_file, target_file) + + logger.info("Templates copied to : ", target_file)
+ + + # ============================================================================= + # Check settings + # ============================================================================= + +
+[docs] + def show(self): + """Print out an overview of the settings. + + Returns + ------- + None. + + """ + logger.info("Show settings.") + class_vars_name = [ + attr + for attr in dir(Settings) + if not callable(getattr(Settings, attr)) and not attr.startswith("__") + ] + + attr_list = [ + "IO", + "time_settings", + "app", + "qc", + "gap", + "missing_obs", + "templates", + "gee", + ] + + # Drop variables starting with _ + class_vars_name = [mem for mem in class_vars_name if not mem.startswith("_")] + print("All settings:") + print(" \n ---------------------------------------\n") + + for theme in attr_list: + print(f" ---------------- {theme} (settings) ----------------------\n") + printdict = getattr(self, theme) + for key1, item1 in printdict.items(): + print(f"* {key1}: \n") + if isinstance(item1, type({})): + # nested dict level 1 + for key2, item2 in item1.items(): + print(f" - {key2}: \n") + print(f" -{item2} \n") + else: + # not nested + print(f" -{item1} \n")
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/station.html b/docs/_build/_modules/metobs_toolkit/station.html new file mode 100644 index 00000000..c5340051 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/station.html @@ -0,0 +1,185 @@ + + + + + + metobs_toolkit.station — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.station

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+This module contains the Station class that inherits all methods of the Dataset
+class.
+
+A Station holds all observations of one station.
+"""
+import pandas as pd
+from metobs_toolkit import dataset
+
+
+
+[docs] +class Station(dataset.Dataset): + """A class holding all information of one station. Inherit all from Dataset.""" + + def __init__( + self, + name, + df, + outliersdf, + gaps, + missing_obs, + gapfilldf, + missing_fill_df, + metadf, + obstypes, + data_template, + settings, + _qc_checked_obstypes, + _applied_qc, + ): + """Initiate the Station object.""" + self.name = name + self.df = df + self.outliersdf = outliersdf + self.gaps = gaps + self.missing_obs = missing_obs + self.gapfilldf = gapfilldf + self.missing_fill_df = missing_fill_df + self.metadf = metadf + self.obstypes = obstypes + self.data_template = data_template + self.settings = settings + self._qc_checked_obstypes = _qc_checked_obstypes + self._applied_qc = _applied_qc + + self._istype = "Station" + self.setup_metadata_dtyes() + +
+[docs] + def setup_metadata_dtyes(self): + """Make sure the dtypes are not lost when subsetting.""" + numeric_columns = ["lat", "lon"] + timedelta_columns = ["assumed_import_frequency", "dataset_resolution"] + + for col in numeric_columns: + if col in self.metadf.columns: + self.metadf[col] = pd.to_numeric(self.metadf[col]) + + for col in timedelta_columns: + if col in self.metadf.columns: + self.metadf[col] = pd.to_timedelta(self.metadf[col])
+
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_modules/metobs_toolkit/writing_files.html b/docs/_build/_modules/metobs_toolkit/writing_files.html new file mode 100644 index 00000000..e8a0efa2 --- /dev/null +++ b/docs/_build/_modules/metobs_toolkit/writing_files.html @@ -0,0 +1,198 @@ + + + + + + metobs_toolkit.writing_files — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for metobs_toolkit.writing_files

+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+Module with functions for writing csv files.
+
+@author: thoverga
+"""
+
+import os
+import logging
+
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +def write_dataset_to_csv( + df, metadf, filename, outputfolder, location_info, seperate_metadata_file +): + """Write a dataset to a csv files. + + Write the dataset to a file where the observations, metadata and (if available) + the quality labels per observation type are merged together. + + A final qualty controll label for each quality-controlled-observation type + can be added in the outputfile. + + The file will be writen to the Settings.outputfolder. + + Parameters + ---------- + df: pandas.DataFrame + The merged dataframe containing observations, gaps, outliers and missing timestamps. + metadf: pandas.DataFrame + The Dataset.metadf attribute. + filename : string, optional + The name of the output csv file. If none, a standard-filename is generated + based on the period of data. The default is None. + + + Returns + ------- + None + + """ + df = df.reset_index() + + # find metadata that are not present + ignore_metadat = [col for col in location_info if metadf[col].isnull().all()] + + if not seperate_metadata_file: + # merge metadata + df = df.merge(metadf, how="left", left_on="name", right_index=True) + df = df.drop(columns=ignore_metadat) + else: + metadf = metadf.reset_index() + metadf = metadf.drop(columns=ignore_metadat) + metadatafile = os.path.join(outputfolder, "metadata_file.csv") + logger.info(f"write metadata to file: {metadatafile}") + print(f"write metadata to file: {metadatafile}") + metadf.to_csv(path_or_buf=metadatafile, sep=";", na_rep="NaN", index=False) + + df = df.sort_values(["name", "datetime"]) + + # make filename + if isinstance(filename, type(None)): + startstr = df["datetime"].min().strftime("%Y%m%d") + endstr = df["datetime"].max().strftime("%Y%m%d") + filename = "dataset_" + startstr + "_" + endstr + else: + if filename.endswith(".csv"): + filename = filename[:-4] # to avoid two times .csv.csv + + filepath = os.path.join(outputfolder, filename + ".csv") + + # write to csv in output folder + logger.info(f"write dataset to file: {filepath}") + print(f"write dataset to file: {filepath}") + df.to_csv(path_or_buf=filepath, sep=";", na_rep="NaN", index=False)
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/_sources/MetObs_documentation.rst.txt b/docs/_build/_sources/MetObs_documentation.rst.txt new file mode 100644 index 00000000..399b7bca --- /dev/null +++ b/docs/_build/_sources/MetObs_documentation.rst.txt @@ -0,0 +1,17 @@ +*************************************** +MetObs toolkit Documentation for Users +*************************************** +Here you can find the documentation on the classes, functions, and methods in +the MetObs toolkit to be used by a user. + + +.. autosummary:: + :toctree: _autosummary + :template: custom-module-template.rst + :recursive: + + metobs_toolkit.dataset_settings_updater + metobs_toolkit.dataset + metobs_toolkit.station + metobs_toolkit.analysis + metobs_toolkit.modeldata diff --git a/docs/_build/_sources/MetObs_documentation_full.rst.txt b/docs/_build/_sources/MetObs_documentation_full.rst.txt new file mode 100644 index 00000000..53c7024f --- /dev/null +++ b/docs/_build/_sources/MetObs_documentation_full.rst.txt @@ -0,0 +1,16 @@ +******************************************** +MetObs toolkit Documentation for developers +******************************************** +Here you can find the documentation on all classes, functions, and methods in +the MetObs toolkit + + +Please report Bugs and request on the `Github issues `_ . + + +.. autosummary:: + :toctree: _autosummary + :template: custom-module-template.rst + :recursive: + + metobs_toolkit diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.Analysis.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.Analysis.rst.txt new file mode 100644 index 00000000..f53c1307 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.Analysis.rst.txt @@ -0,0 +1,28 @@ +metobs\_toolkit.analysis.Analysis +================================= + +.. currentmodule:: metobs_toolkit.analysis + +.. autoclass:: Analysis + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Analysis.aggregate_df + ~Analysis.apply_filter + ~Analysis.get_aggregated_cycle_statistics + ~Analysis.get_anual_statistics + ~Analysis.get_diurnal_statistics + ~Analysis.get_diurnal_statistics_with_reference + ~Analysis.get_lc_correlation_matrices + ~Analysis.plot_correlation_heatmap + ~Analysis.plot_correlation_variation + ~Analysis.subset_period diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.filter_data.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.filter_data.rst.txt new file mode 100644 index 00000000..ed8641b1 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.filter_data.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.analysis.filter\_data +===================================== + +.. currentmodule:: metobs_toolkit.analysis + +.. autofunction:: filter_data diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.get_seasons.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.get_seasons.rst.txt new file mode 100644 index 00000000..d3e28a4c --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.get_seasons.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.analysis.get\_seasons +===================================== + +.. currentmodule:: metobs_toolkit.analysis + +.. autofunction:: get_seasons diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.rst.txt new file mode 100644 index 00000000..7281fc9a --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.analysis.rst.txt @@ -0,0 +1,32 @@ +metobs\_toolkit.analysis +======================== + +.. automodule:: metobs_toolkit.analysis + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + filter_data + get_seasons + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Analysis diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.check_template_compatibility.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.check_template_compatibility.rst.txt new file mode 100644 index 00000000..cfdc3fa5 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.check_template_compatibility.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.check\_template\_compatibility +=========================================================== + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: check_template_compatibility diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.compress_dict.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.compress_dict.rst.txt new file mode 100644 index 00000000..59590fcb --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.compress_dict.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.compress\_dict +=========================================== + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: compress_dict diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.extract_options_from_template.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.extract_options_from_template.rst.txt new file mode 100644 index 00000000..e0183b57 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.extract_options_from_template.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.extract\_options\_from\_template +============================================================= + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: extract_options_from_template diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.rst.txt new file mode 100644 index 00000000..c9bec39d --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.find\_compatible\_templatefor +========================================================== + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: find_compatible_templatefor diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.import_data_from_csv.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.import_data_from_csv.rst.txt new file mode 100644 index 00000000..beb6c85c --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.import_data_from_csv.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.import\_data\_from\_csv +==================================================== + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: import_data_from_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.rst.txt new file mode 100644 index 00000000..7fc3503d --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.import\_metadata\_from\_csv +======================================================== + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: import_metadata_from_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.read_csv_template.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.read_csv_template.rst.txt new file mode 100644 index 00000000..61ab030f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.read_csv_template.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.read\_csv\_template +================================================ + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: read_csv_template diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.rst.txt new file mode 100644 index 00000000..67baaf1f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.rst.txt @@ -0,0 +1,26 @@ +metobs\_toolkit.data\_import +============================ + +.. automodule:: metobs_toolkit.data_import + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + check_template_compatibility + compress_dict + extract_options_from_template + find_compatible_templatefor + import_data_from_csv + import_metadata_from_csv + read_csv_template + template_to_package_space + wide_to_long diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.template_to_package_space.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.template_to_package_space.rst.txt new file mode 100644 index 00000000..22a1c3bf --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.template_to_package_space.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.template\_to\_package\_space +========================================================= + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: template_to_package_space diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.wide_to_long.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.wide_to_long.rst.txt new file mode 100644 index 00000000..8edb813b --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.data_import.wide_to_long.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.data\_import.wide\_to\_long +=========================================== + +.. currentmodule:: metobs_toolkit.data_import + +.. autofunction:: wide_to_long diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.dataset.Dataset.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset.Dataset.rst.txt new file mode 100644 index 00000000..391b9ee8 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset.Dataset.rst.txt @@ -0,0 +1,54 @@ +metobs\_toolkit.dataset.Dataset +=============================== + +.. currentmodule:: metobs_toolkit.dataset + +.. autoclass:: Dataset + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Dataset.add_new_observationtype + ~Dataset.add_new_unit + ~Dataset.apply_buddy_check + ~Dataset.apply_quality_control + ~Dataset.apply_titan_buddy_check + ~Dataset.apply_titan_sct_resistant_check + ~Dataset.coarsen_time_resolution + ~Dataset.combine_all_to_obsspace + ~Dataset.fill_gaps_automatic + ~Dataset.fill_gaps_era5 + ~Dataset.fill_gaps_linear + ~Dataset.fill_missing_obs_linear + ~Dataset.get_altitude + ~Dataset.get_analysis + ~Dataset.get_gaps_df + ~Dataset.get_gaps_info + ~Dataset.get_info + ~Dataset.get_landcover + ~Dataset.get_lcz + ~Dataset.get_missing_obs_info + ~Dataset.get_modeldata + ~Dataset.get_qc_stats + ~Dataset.get_station + ~Dataset.import_data_from_file + ~Dataset.import_dataset + ~Dataset.make_gee_plot + ~Dataset.make_geo_plot + ~Dataset.make_interactive_plot + ~Dataset.make_plot + ~Dataset.save_dataset + ~Dataset.show + ~Dataset.show_settings + ~Dataset.sync_observations + ~Dataset.update_gaps_and_missing_from_outliers + ~Dataset.update_outliersdf + ~Dataset.write_to_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.dataset.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset.rst.txt new file mode 100644 index 00000000..268930c8 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset.rst.txt @@ -0,0 +1,23 @@ +metobs\_toolkit.dataset +======================= + +.. automodule:: metobs_toolkit.dataset + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Dataset diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.rst.txt new file mode 100644 index 00000000..12698b6b --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.rst.txt @@ -0,0 +1,60 @@ +metobs\_toolkit.dataset\_settings\_updater.Dataset +================================================== + +.. currentmodule:: metobs_toolkit.dataset_settings_updater + +.. autoclass:: Dataset + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Dataset.add_new_observationtype + ~Dataset.add_new_unit + ~Dataset.apply_buddy_check + ~Dataset.apply_quality_control + ~Dataset.apply_titan_buddy_check + ~Dataset.apply_titan_sct_resistant_check + ~Dataset.coarsen_time_resolution + ~Dataset.combine_all_to_obsspace + ~Dataset.fill_gaps_automatic + ~Dataset.fill_gaps_era5 + ~Dataset.fill_gaps_linear + ~Dataset.fill_missing_obs_linear + ~Dataset.get_altitude + ~Dataset.get_analysis + ~Dataset.get_gaps_df + ~Dataset.get_gaps_info + ~Dataset.get_info + ~Dataset.get_landcover + ~Dataset.get_lcz + ~Dataset.get_missing_obs_info + ~Dataset.get_modeldata + ~Dataset.get_qc_stats + ~Dataset.get_station + ~Dataset.import_data_from_file + ~Dataset.import_dataset + ~Dataset.make_gee_plot + ~Dataset.make_geo_plot + ~Dataset.make_interactive_plot + ~Dataset.make_plot + ~Dataset.save_dataset + ~Dataset.show + ~Dataset.show_settings + ~Dataset.sync_observations + ~Dataset.update_default_name + ~Dataset.update_gap_and_missing_fill_settings + ~Dataset.update_gaps_and_missing_from_outliers + ~Dataset.update_outliersdf + ~Dataset.update_qc_settings + ~Dataset.update_settings + ~Dataset.update_timezone + ~Dataset.update_titan_qc_settings + ~Dataset.write_to_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.rst.txt new file mode 100644 index 00000000..5a7557a6 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.dataset\_settings\_updater.is\_timedelta +======================================================== + +.. currentmodule:: metobs_toolkit.dataset_settings_updater + +.. autofunction:: is_timedelta diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.rst.txt new file mode 100644 index 00000000..f3ebbbdf --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.dataset_settings_updater.rst.txt @@ -0,0 +1,31 @@ +metobs\_toolkit.dataset\_settings\_updater +========================================== + +.. automodule:: metobs_toolkit.dataset_settings_updater + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + is_timedelta + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Dataset diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.concat_save.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.concat_save.rst.txt new file mode 100644 index 00000000..b94b586f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.concat_save.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.concat\_save +======================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: concat_save diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.rst.txt new file mode 100644 index 00000000..d9e6f261 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.conv\_applied\_qc\_to\_df +===================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: conv_applied_qc_to_df diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.rst.txt new file mode 100644 index 00000000..19535d69 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.conv\_tz\_multiidxdf +================================================ + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: conv_tz_multiidxdf diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.rst.txt new file mode 100644 index 00000000..ae7b63d2 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.datetime\_subsetting +================================================ + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: datetime_subsetting diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.rst.txt new file mode 100644 index 00000000..dacba223 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.fmt\_datetime\_argument +=================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: fmt_datetime_argument diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.rst.txt new file mode 100644 index 00000000..59575d01 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.format\_outliersdf\_to\_doubleidx +============================================================= + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: format_outliersdf_to_doubleidx diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.rst.txt new file mode 100644 index 00000000..8b131064 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.get_freqency_series.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.get\_freqency\_series +================================================= + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: get_freqency_series diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.rst.txt new file mode 100644 index 00000000..537cfd7b --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.get\_likely\_frequency +================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: get_likely_frequency diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_multiindex.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_multiindex.rst.txt new file mode 100644 index 00000000..6df17364 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_multiindex.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.init\_multiindex +============================================ + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: init_multiindex diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.rst.txt new file mode 100644 index 00000000..5f857db0 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.init\_multiindexdf +============================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: init_multiindexdf diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.rst.txt new file mode 100644 index 00000000..17ba3485 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.init\_triple\_multiindex +==================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: init_triple_multiindex diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.rst.txt new file mode 100644 index 00000000..3460b090 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.init\_triple\_multiindexdf +====================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: init_triple_multiindexdf diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.rst.txt new file mode 100644 index 00000000..a2df28e1 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.metadf\_to\_gdf +=========================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: metadf_to_gdf diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.rst.txt new file mode 100644 index 00000000..00b9f818 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.multiindexdf\_datetime\_subsetting +============================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: multiindexdf_datetime_subsetting diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.rst.txt new file mode 100644 index 00000000..ef001536 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.remove\_outliers\_from\_obs +======================================================= + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: remove_outliers_from_obs diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.rst.txt new file mode 100644 index 00000000..333283c7 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.rst.txt @@ -0,0 +1,35 @@ +metobs\_toolkit.df\_helpers +=========================== + +.. automodule:: metobs_toolkit.df_helpers + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + concat_save + conv_applied_qc_to_df + conv_tz_multiidxdf + datetime_subsetting + fmt_datetime_argument + format_outliersdf_to_doubleidx + get_freqency_series + get_likely_frequency + init_multiindex + init_multiindexdf + init_triple_multiindex + init_triple_multiindexdf + metadf_to_gdf + multiindexdf_datetime_subsetting + remove_outliers_from_obs + subset_stations + value_labeled_doubleidxdf_to_triple_idxdf + xs_save diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.subset_stations.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.subset_stations.rst.txt new file mode 100644 index 00000000..737c4fa5 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.subset_stations.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.subset\_stations +============================================ + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: subset_stations diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.rst.txt new file mode 100644 index 00000000..1f43dacd --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.value\_labeled\_doubleidxdf\_to\_triple\_idxdf +========================================================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: value_labeled_doubleidxdf_to_triple_idxdf diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.xs_save.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.xs_save.rst.txt new file mode 100644 index 00000000..ba3c75c2 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.df_helpers.xs_save.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.df\_helpers.xs\_save +==================================== + +.. currentmodule:: metobs_toolkit.df_helpers + +.. autofunction:: xs_save diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.Gap.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.Gap.rst.txt new file mode 100644 index 00000000..3bb08f75 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.Gap.rst.txt @@ -0,0 +1,23 @@ +metobs\_toolkit.gap.Gap +======================= + +.. currentmodule:: metobs_toolkit.gap + +.. autoclass:: Gap + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Gap.apply_interpolate_gap + ~Gap.get_info + ~Gap.to_df + ~Gap.update_gaps_indx_in_obs_space + ~Gap.update_leading_trailing_obs diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.rst.txt new file mode 100644 index 00000000..91884029 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.apply\_debias\_era5\_gapfill +================================================ + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: apply_debias_era5_gapfill diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.rst.txt new file mode 100644 index 00000000..35e457a7 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.apply\_interpolate\_gaps +============================================ + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: apply_interpolate_gaps diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.gaps_to_df.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.gaps_to_df.rst.txt new file mode 100644 index 00000000..efdabbb6 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.gaps_to_df.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.gaps\_to\_df +================================ + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: gaps_to_df diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.rst.txt new file mode 100644 index 00000000..d3f5100f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.get\_gaps\_indx\_in\_obs\_space +=================================================== + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: get_gaps_indx_in_obs_space diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.get_station_gaps.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.get_station_gaps.rst.txt new file mode 100644 index 00000000..8c456476 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.get_station_gaps.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.get\_station\_gaps +====================================== + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: get_station_gaps diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.make_gapfill_df.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.make_gapfill_df.rst.txt new file mode 100644 index 00000000..63b6b74e --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.make_gapfill_df.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.make\_gapfill\_df +===================================== + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: make_gapfill_df diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.rst.txt new file mode 100644 index 00000000..83f8f3ce --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.missing\_timestamp\_and\_gap\_check +======================================================= + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: missing_timestamp_and_gap_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.rst.txt new file mode 100644 index 00000000..3f7c3c01 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.remove\_gaps\_from\_obs +=========================================== + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: remove_gaps_from_obs diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.rst.txt new file mode 100644 index 00000000..c959df1b --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap.remove\_gaps\_from\_outliers +================================================ + +.. currentmodule:: metobs_toolkit.gap + +.. autofunction:: remove_gaps_from_outliers diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.rst.txt new file mode 100644 index 00000000..ce0daa52 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap.rst.txt @@ -0,0 +1,39 @@ +metobs\_toolkit.gap +=================== + +.. automodule:: metobs_toolkit.gap + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + apply_debias_era5_gapfill + apply_interpolate_gaps + gaps_to_df + get_gaps_indx_in_obs_space + get_station_gaps + make_gapfill_df + missing_timestamp_and_gap_check + remove_gaps_from_obs + remove_gaps_from_outliers + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Gap diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.rst.txt new file mode 100644 index 00000000..9903f71e --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap\_filling.create\_leading\_trailing\_debias\_periods +======================================================================= + +.. currentmodule:: metobs_toolkit.gap_filling + +.. autofunction:: create_leading_trailing_debias_periods diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.get_sample_size.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.get_sample_size.rst.txt new file mode 100644 index 00000000..43aa03af --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.get_sample_size.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap\_filling.get\_sample\_size +============================================== + +.. currentmodule:: metobs_toolkit.gap_filling + +.. autofunction:: get_sample_size diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.rst.txt new file mode 100644 index 00000000..371dd3ae --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap\_filling.get\_time\_specific\_biases +======================================================== + +.. currentmodule:: metobs_toolkit.gap_filling + +.. autofunction:: get_time_specific_biases diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.rst.txt new file mode 100644 index 00000000..992fc113 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.interpolate_gap.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap\_filling.interpolate\_gap +============================================= + +.. currentmodule:: metobs_toolkit.gap_filling + +.. autofunction:: interpolate_gap diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.rst.txt new file mode 100644 index 00000000..565a1ddc --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.gap\_filling.make\_era\_bias\_correction +======================================================== + +.. currentmodule:: metobs_toolkit.gap_filling + +.. autofunction:: make_era_bias_correction diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.rst.txt new file mode 100644 index 00000000..1bbb5fb8 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.gap_filling.rst.txt @@ -0,0 +1,22 @@ +metobs\_toolkit.gap\_filling +============================ + +.. automodule:: metobs_toolkit.gap_filling + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + create_leading_trailing_debias_periods + get_sample_size + get_time_specific_biases + interpolate_gap + make_era_bias_correction diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.rst.txt new file mode 100644 index 00000000..84c5ef95 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.geometry\_functions.box\_to\_extent\_list +========================================================= + +.. currentmodule:: metobs_toolkit.geometry_functions + +.. autofunction:: box_to_extent_list diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.rst.txt new file mode 100644 index 00000000..723a99b8 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.geometry\_functions.extent\_list\_to\_box +========================================================= + +.. currentmodule:: metobs_toolkit.geometry_functions + +.. autofunction:: extent_list_to_box diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.rst.txt new file mode 100644 index 00000000..03f59e65 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.geometry\_functions.find\_extend\_of\_geodf +=========================================================== + +.. currentmodule:: metobs_toolkit.geometry_functions + +.. autofunction:: find_extend_of_geodf diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.rst.txt new file mode 100644 index 00000000..da644777 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.geometry\_functions.find\_plot\_extent +====================================================== + +.. currentmodule:: metobs_toolkit.geometry_functions + +.. autofunction:: find_plot_extent diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.rst.txt new file mode 100644 index 00000000..6a924c5a --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.geometry\_functions.gpd\_to\_extent\_box +======================================================== + +.. currentmodule:: metobs_toolkit.geometry_functions + +.. autofunction:: gpd_to_extent_box diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.rst.txt new file mode 100644 index 00000000..ddcf8852 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.geometry_functions.rst.txt @@ -0,0 +1,22 @@ +metobs\_toolkit.geometry\_functions +=================================== + +.. automodule:: metobs_toolkit.geometry_functions + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + box_to_extent_list + extent_list_to_box + find_extend_of_geodf + find_plot_extent + gpd_to_extent_box diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.rst.txt new file mode 100644 index 00000000..0dd94a95 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.connect\_to\_gee +===================================================== + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: connect_to_gee diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.rst.txt new file mode 100644 index 00000000..ea21698f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.coordinates_available.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.coordinates\_available +=========================================================== + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: coordinates_available diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.rst.txt new file mode 100644 index 00000000..70bce088 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.coords\_to\_geometry +========================================================= + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: coords_to_geometry diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.rst.txt new file mode 100644 index 00000000..2c1b0aba --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.extract\_buffer\_frequencies +================================================================= + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: extract_buffer_frequencies diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.rst.txt new file mode 100644 index 00000000..ffc1470c --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.extract\_pointvalues +========================================================= + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: extract_pointvalues diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.rst.txt new file mode 100644 index 00000000..b682b369 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.gee\_extract\_timeseries +============================================================= + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: gee_extract_timeseries diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.rst.txt new file mode 100644 index 00000000..e629207d --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.get\_ee\_obj +================================================= + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: get_ee_obj diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.height_extractor.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.height_extractor.rst.txt new file mode 100644 index 00000000..ffd74605 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.height_extractor.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.height\_extractor +====================================================== + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: height_extractor diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.rst.txt new file mode 100644 index 00000000..cbe149c2 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.lc\_fractions\_extractor +============================================================= + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: lc_fractions_extractor diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.rst.txt new file mode 100644 index 00000000..f55a6f16 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.landcover\_functions.lcz\_extractor +=================================================== + +.. currentmodule:: metobs_toolkit.landcover_functions + +.. autofunction:: lcz_extractor diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.rst.txt new file mode 100644 index 00000000..64b77be4 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.landcover_functions.rst.txt @@ -0,0 +1,27 @@ +metobs\_toolkit.landcover\_functions +==================================== + +.. automodule:: metobs_toolkit.landcover_functions + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + connect_to_gee + coordinates_available + coords_to_geometry + extract_buffer_frequencies + extract_pointvalues + gee_extract_timeseries + get_ee_obj + height_extractor + lc_fractions_extractor + lcz_extractor diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.missingobs.Missingob_collection.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.missingobs.Missingob_collection.rst.txt new file mode 100644 index 00000000..53253190 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.missingobs.Missingob_collection.rst.txt @@ -0,0 +1,24 @@ +metobs\_toolkit.missingobs.Missingob\_collection +================================================ + +.. currentmodule:: metobs_toolkit.missingobs + +.. autoclass:: Missingob_collection + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Missingob_collection.get_info + ~Missingob_collection.get_missing_indx_in_obs_space + ~Missingob_collection.get_station_missingobs + ~Missingob_collection.interpolate_missing + ~Missingob_collection.remove_missing_from_obs + ~Missingob_collection.remove_missing_from_outliers diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.missingobs.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.missingobs.rst.txt new file mode 100644 index 00000000..00c6d693 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.missingobs.rst.txt @@ -0,0 +1,23 @@ +metobs\_toolkit.missingobs +========================== + +.. automodule:: metobs_toolkit.missingobs + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Missingob_collection diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.modeldata.Modeldata.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.modeldata.Modeldata.rst.txt new file mode 100644 index 00000000..2633bf06 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.modeldata.Modeldata.rst.txt @@ -0,0 +1,31 @@ +metobs\_toolkit.modeldata.Modeldata +=================================== + +.. currentmodule:: metobs_toolkit.modeldata + +.. autoclass:: Modeldata + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Modeldata.add_gee_dataset + ~Modeldata.add_obstype + ~Modeldata.convert_units_to_tlk + ~Modeldata.exploid_2d_vector_field + ~Modeldata.get_ERA5_data + ~Modeldata.get_gee_dataset_data + ~Modeldata.get_info + ~Modeldata.import_modeldata + ~Modeldata.interpolate_modeldata + ~Modeldata.list_gee_datasets + ~Modeldata.make_plot + ~Modeldata.save_modeldata + ~Modeldata.set_model_from_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.modeldata.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.modeldata.rst.txt new file mode 100644 index 00000000..6de0e81b --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.modeldata.rst.txt @@ -0,0 +1,23 @@ +metobs\_toolkit.modeldata +========================= + +.. automodule:: metobs_toolkit.modeldata + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Modeldata diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.rst.txt new file mode 100644 index 00000000..4d82ccc3 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.rst.txt @@ -0,0 +1,36 @@ +metobs\_toolkit.obstype\_modeldata.ModelObstype +=============================================== + +.. currentmodule:: metobs_toolkit.obstype_modeldata + +.. autoclass:: ModelObstype + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~ModelObstype.add_new_band + ~ModelObstype.add_unit + ~ModelObstype.convert_to_standard_units + ~ModelObstype.get_all_units + ~ModelObstype.get_bandname + ~ModelObstype.get_bandname_mapper + ~ModelObstype.get_description + ~ModelObstype.get_info + ~ModelObstype.get_mapped_datasets + ~ModelObstype.get_modelunit + ~ModelObstype.get_orig_name + ~ModelObstype.get_plot_y_label + ~ModelObstype.get_standard_unit + ~ModelObstype.has_mapped_band + ~ModelObstype.set_description + ~ModelObstype.set_original_name + ~ModelObstype.set_original_unit + ~ModelObstype.test_if_unit_is_known diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.rst.txt new file mode 100644 index 00000000..3085157d --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.rst.txt @@ -0,0 +1,37 @@ +metobs\_toolkit.obstype\_modeldata.ModelObstype\_Vectorfield +============================================================ + +.. currentmodule:: metobs_toolkit.obstype_modeldata + +.. autoclass:: ModelObstype_Vectorfield + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~ModelObstype_Vectorfield.add_new_band + ~ModelObstype_Vectorfield.add_unit + ~ModelObstype_Vectorfield.convert_to_standard_units + ~ModelObstype_Vectorfield.get_all_units + ~ModelObstype_Vectorfield.get_bandname_mapper + ~ModelObstype_Vectorfield.get_description + ~ModelObstype_Vectorfield.get_info + ~ModelObstype_Vectorfield.get_mapped_datasets + ~ModelObstype_Vectorfield.get_modelunit + ~ModelObstype_Vectorfield.get_orig_name + ~ModelObstype_Vectorfield.get_plot_y_label + ~ModelObstype_Vectorfield.get_standard_unit + ~ModelObstype_Vectorfield.get_u_column + ~ModelObstype_Vectorfield.get_v_column + ~ModelObstype_Vectorfield.has_mapped_band + ~ModelObstype_Vectorfield.set_description + ~ModelObstype_Vectorfield.set_original_name + ~ModelObstype_Vectorfield.set_original_unit + ~ModelObstype_Vectorfield.test_if_unit_is_known diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.rst.txt new file mode 100644 index 00000000..3a347945 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.obstype\_modeldata.compute\_amplitude +===================================================== + +.. currentmodule:: metobs_toolkit.obstype_modeldata + +.. autofunction:: compute_amplitude diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.rst.txt new file mode 100644 index 00000000..31eb0424 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.obstype\_modeldata.compute\_angle +================================================= + +.. currentmodule:: metobs_toolkit.obstype_modeldata + +.. autofunction:: compute_angle diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.rst.txt new file mode 100644 index 00000000..5393d578 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstype_modeldata.rst.txt @@ -0,0 +1,33 @@ +metobs\_toolkit.obstype\_modeldata +================================== + +.. automodule:: metobs_toolkit.obstype_modeldata + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + compute_amplitude + compute_angle + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + ModelObstype + ModelObstype_Vectorfield diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.Obstype.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.Obstype.rst.txt new file mode 100644 index 00000000..a3c11ca4 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.Obstype.rst.txt @@ -0,0 +1,30 @@ +metobs\_toolkit.obstypes.Obstype +================================ + +.. currentmodule:: metobs_toolkit.obstypes + +.. autoclass:: Obstype + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Obstype.add_unit + ~Obstype.convert_to_standard_units + ~Obstype.get_all_units + ~Obstype.get_description + ~Obstype.get_info + ~Obstype.get_orig_name + ~Obstype.get_plot_y_label + ~Obstype.get_standard_unit + ~Obstype.set_description + ~Obstype.set_original_name + ~Obstype.set_original_unit + ~Obstype.test_if_unit_is_known diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.expression_calculator.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.expression_calculator.rst.txt new file mode 100644 index 00000000..e5822c61 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.expression_calculator.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.obstypes.expression\_calculator +=============================================== + +.. currentmodule:: metobs_toolkit.obstypes + +.. autofunction:: expression_calculator diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.rst.txt new file mode 100644 index 00000000..82bb5fa1 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.obstypes.rst.txt @@ -0,0 +1,31 @@ +metobs\_toolkit.obstypes +======================== + +.. automodule:: metobs_toolkit.obstypes + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + expression_calculator + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Obstype diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.rst.txt new file mode 100644 index 00000000..094e66d6 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.add\_stations\_to\_folium\_map +================================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: add_stations_to_folium_map diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.rst.txt new file mode 100644 index 00000000..9b29ee5f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.correlation\_scatter +======================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: correlation_scatter diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.rst.txt new file mode 100644 index 00000000..0d1768a9 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.cycle_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.cycle\_plot +=============================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: cycle_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.folium_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.folium_plot.rst.txt new file mode 100644 index 00000000..1e43f478 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.folium_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.folium\_plot +================================================ + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: folium_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.rst.txt new file mode 100644 index 00000000..a3e4f0c5 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.geospatial\_plot +==================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: geospatial_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.rst.txt new file mode 100644 index 00000000..737713ac --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.heatmap\_plot +================================================= + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: heatmap_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.rst.txt new file mode 100644 index 00000000..d510822e --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.make\_cat\_colormapper +========================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: make_cat_colormapper diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.rst.txt new file mode 100644 index 00000000..b8eedcc9 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.make\_folium\_html\_plot +============================================================ + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: make_folium_html_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.map_obstype.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.map_obstype.rst.txt new file mode 100644 index 00000000..e549ca5b --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.map_obstype.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.map\_obstype +================================================ + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: map_obstype diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.rst.txt new file mode 100644 index 00000000..e01f366a --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.model\_timeseries\_plot +=========================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: model_timeseries_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.rst.txt new file mode 100644 index 00000000..c33060c9 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.qc\_stats\_pie +================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: qc_stats_pie diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.rst.txt new file mode 100644 index 00000000..28932a73 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.rst.txt @@ -0,0 +1,29 @@ +metobs\_toolkit.plotting\_functions +=================================== + +.. automodule:: metobs_toolkit.plotting_functions + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + add_stations_to_folium_map + correlation_scatter + cycle_plot + folium_plot + geospatial_plot + heatmap_plot + make_cat_colormapper + make_folium_html_plot + map_obstype + model_timeseries_plot + qc_stats_pie + timeseries_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.rst.txt new file mode 100644 index 00000000..2bfc77e2 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.plotting\_functions.timeseries\_plot +==================================================== + +.. currentmodule:: metobs_toolkit.plotting_functions + +.. autofunction:: timeseries_plot diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.printing.print_dataset_info.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.printing.print_dataset_info.rst.txt new file mode 100644 index 00000000..2880cd4e --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.printing.print_dataset_info.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.printing.print\_dataset\_info +============================================= + +.. currentmodule:: metobs_toolkit.printing + +.. autofunction:: print_dataset_info diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.printing.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.printing.rst.txt new file mode 100644 index 00000000..a3696cb8 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.printing.rst.txt @@ -0,0 +1,18 @@ +metobs\_toolkit.printing +======================== + +.. automodule:: metobs_toolkit.printing + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + print_dataset_info diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.rst.txt new file mode 100644 index 00000000..673b28df --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.create\_titanlib\_points\_dict +========================================================= + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: create_titanlib_points_dict diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.rst.txt new file mode 100644 index 00000000..b1b51c27 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.duplicate\_timestamp\_check +====================================================== + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: duplicate_timestamp_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.rst.txt new file mode 100644 index 00000000..742c50d2 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.get\_outliers\_in\_daterange +======================================================= + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: get_outliers_in_daterange diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.gross_value_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.gross_value_check.rst.txt new file mode 100644 index 00000000..9e6ca0f2 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.gross_value_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.gross\_value\_check +============================================== + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: gross_value_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.rst.txt new file mode 100644 index 00000000..c2f0a82f --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.invalid_input_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.invalid\_input\_check +================================================ + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: invalid_input_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.rst.txt new file mode 100644 index 00000000..e2965f39 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.make\_outlier\_df\_for\_check +======================================================== + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: make_outlier_df_for_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.persistance_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.persistance_check.rst.txt new file mode 100644 index 00000000..4877aac4 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.persistance_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.persistance\_check +============================================= + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: persistance_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.repetitions_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.repetitions_check.rst.txt new file mode 100644 index 00000000..840adb01 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.repetitions_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.repetitions\_check +============================================= + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: repetitions_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.rst.txt new file mode 100644 index 00000000..44650de1 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.rst.txt @@ -0,0 +1,30 @@ +metobs\_toolkit.qc\_checks +========================== + +.. automodule:: metobs_toolkit.qc_checks + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + create_titanlib_points_dict + duplicate_timestamp_check + get_outliers_in_daterange + gross_value_check + invalid_input_check + make_outlier_df_for_check + persistance_check + repetitions_check + step_check + titan_buddy_check + titan_sct_resistant_check + toolkit_buddy_check + window_variation_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.step_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.step_check.rst.txt new file mode 100644 index 00000000..f1344fa6 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.step_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.step\_check +====================================== + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: step_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.rst.txt new file mode 100644 index 00000000..4db10e06 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.titan\_buddy\_check +============================================== + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: titan_buddy_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.rst.txt new file mode 100644 index 00000000..e4fbebf9 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.titan\_sct\_resistant\_check +======================================================= + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: titan_sct_resistant_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.rst.txt new file mode 100644 index 00000000..b6d5b57e --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.toolkit\_buddy\_check +================================================ + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: toolkit_buddy_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.window_variation_check.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.window_variation_check.rst.txt new file mode 100644 index 00000000..a91cf86a --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_checks.window_variation_check.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_checks.window\_variation\_check +=================================================== + +.. currentmodule:: metobs_toolkit.qc_checks + +.. autofunction:: window_variation_check diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.rst.txt new file mode 100644 index 00000000..5adc0255 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.qc\_statistics.get\_freq\_statistics +==================================================== + +.. currentmodule:: metobs_toolkit.qc_statistics + +.. autofunction:: get_freq_statistics diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.qc_statistics.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_statistics.rst.txt new file mode 100644 index 00000000..81d53a76 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.qc_statistics.rst.txt @@ -0,0 +1,18 @@ +metobs\_toolkit.qc\_statistics +============================== + +.. automodule:: metobs_toolkit.qc_statistics + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + get_freq_statistics diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.rst.txt new file mode 100644 index 00000000..07e375a6 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.rst.txt @@ -0,0 +1,48 @@ +metobs\_toolkit +=============== + +.. automodule:: metobs_toolkit + + + + + + + + + + + + + + + + + + + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + metobs_toolkit.analysis + metobs_toolkit.data_import + metobs_toolkit.dataset + metobs_toolkit.dataset_settings_updater + metobs_toolkit.df_helpers + metobs_toolkit.gap + metobs_toolkit.gap_filling + metobs_toolkit.geometry_functions + metobs_toolkit.landcover_functions + metobs_toolkit.missingobs + metobs_toolkit.modeldata + metobs_toolkit.obstype_modeldata + metobs_toolkit.obstypes + metobs_toolkit.plotting_functions + metobs_toolkit.printing + metobs_toolkit.qc_checks + metobs_toolkit.qc_statistics + metobs_toolkit.settings + metobs_toolkit.station + metobs_toolkit.writing_files diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.settings.Settings.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.settings.Settings.rst.txt new file mode 100644 index 00000000..7304c1be --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.settings.Settings.rst.txt @@ -0,0 +1,22 @@ +metobs\_toolkit.settings.Settings +================================= + +.. currentmodule:: metobs_toolkit.settings + +.. autoclass:: Settings + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Settings.copy_template_csv_files + ~Settings.show + ~Settings.update_IO + ~Settings.update_timezone diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.settings.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.settings.rst.txt new file mode 100644 index 00000000..14a666b9 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.settings.rst.txt @@ -0,0 +1,23 @@ +metobs\_toolkit.settings +======================== + +.. automodule:: metobs_toolkit.settings + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Settings diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.station.Station.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.station.Station.rst.txt new file mode 100644 index 00000000..1c18ebb1 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.station.Station.rst.txt @@ -0,0 +1,55 @@ +metobs\_toolkit.station.Station +=============================== + +.. currentmodule:: metobs_toolkit.station + +.. autoclass:: Station + :members: + :show-inheritance: + :inherited-members: + :special-members: __call__, __add__, __mul__ + + + + .. rubric:: Methods + + .. autosummary:: + :nosignatures: + + ~Station.add_new_observationtype + ~Station.add_new_unit + ~Station.apply_buddy_check + ~Station.apply_quality_control + ~Station.apply_titan_buddy_check + ~Station.apply_titan_sct_resistant_check + ~Station.coarsen_time_resolution + ~Station.combine_all_to_obsspace + ~Station.fill_gaps_automatic + ~Station.fill_gaps_era5 + ~Station.fill_gaps_linear + ~Station.fill_missing_obs_linear + ~Station.get_altitude + ~Station.get_analysis + ~Station.get_gaps_df + ~Station.get_gaps_info + ~Station.get_info + ~Station.get_landcover + ~Station.get_lcz + ~Station.get_missing_obs_info + ~Station.get_modeldata + ~Station.get_qc_stats + ~Station.get_station + ~Station.import_data_from_file + ~Station.import_dataset + ~Station.make_gee_plot + ~Station.make_geo_plot + ~Station.make_interactive_plot + ~Station.make_plot + ~Station.save_dataset + ~Station.setup_metadata_dtyes + ~Station.show + ~Station.show_settings + ~Station.sync_observations + ~Station.update_gaps_and_missing_from_outliers + ~Station.update_outliersdf + ~Station.write_to_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.station.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.station.rst.txt new file mode 100644 index 00000000..ace4e61d --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.station.rst.txt @@ -0,0 +1,23 @@ +metobs\_toolkit.station +======================= + +.. automodule:: metobs_toolkit.station + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + :nosignatures: + + Station diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.writing_files.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.writing_files.rst.txt new file mode 100644 index 00000000..d4459661 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.writing_files.rst.txt @@ -0,0 +1,18 @@ +metobs\_toolkit.writing\_files +============================== + +.. automodule:: metobs_toolkit.writing_files + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + :nosignatures: + + write_dataset_to_csv diff --git a/docs/_build/_sources/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.rst.txt b/docs/_build/_sources/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.rst.txt new file mode 100644 index 00000000..ff7cb246 --- /dev/null +++ b/docs/_build/_sources/_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.rst.txt @@ -0,0 +1,6 @@ +metobs\_toolkit.writing\_files.write\_dataset\_to\_csv +====================================================== + +.. currentmodule:: metobs_toolkit.writing_files + +.. autofunction:: write_dataset_to_csv diff --git a/docs/_build/_sources/contributing_link.md.txt b/docs/_build/_sources/contributing_link.md.txt new file mode 100644 index 00000000..78caf34e --- /dev/null +++ b/docs/_build/_sources/contributing_link.md.txt @@ -0,0 +1,2 @@ +```{include} ../CONTRIBUTING.md +``` diff --git a/docs/_build/_sources/examples/analysis_example.ipynb.txt b/docs/_build/_sources/examples/analysis_example.ipynb.txt new file mode 100644 index 00000000..e4d41d52 --- /dev/null +++ b/docs/_build/_sources/examples/analysis_example.ipynb.txt @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9116142e-ebf4-471f-af77-52efca4aa935", + "metadata": {}, + "source": [ + "# Demo example: Analysis\n", + "\n", + "This example is the continuation of the previous example: [filling gaps and missing observations](https://vergauwenthomas.github.io/MetObs_toolkit/examples/filling_example.html). This example serves as an introduction to the Analysis module." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e7593f73-c25b-4ac0-989e-77a03a8f4a92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
temptemp_final_label
namedatetime
vlinder012022-09-02 15:30:00+00:0026.453659gap_interpolation
2022-09-02 15:45:00+00:0026.207317gap_interpolation
2022-09-02 16:00:00+00:0025.960976gap_interpolation
2022-09-02 16:15:00+00:0025.714634gap_interpolation
2022-09-02 16:30:00+00:0025.468293gap_interpolation
............
vlinder282022-09-15 07:00:00+00:0014.114815gap_interpolation
2022-09-15 07:15:00+00:0014.251852gap_interpolation
2022-09-15 07:30:00+00:0014.388889gap_interpolation
2022-09-15 07:45:00+00:0014.525926gap_interpolation
2022-09-15 08:00:00+00:0014.662963gap_interpolation
\n", + "

5111 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " temp temp_final_label\n", + "name datetime \n", + "vlinder01 2022-09-02 15:30:00+00:00 26.453659 gap_interpolation\n", + " 2022-09-02 15:45:00+00:00 26.207317 gap_interpolation\n", + " 2022-09-02 16:00:00+00:00 25.960976 gap_interpolation\n", + " 2022-09-02 16:15:00+00:00 25.714634 gap_interpolation\n", + " 2022-09-02 16:30:00+00:00 25.468293 gap_interpolation\n", + "... ... ...\n", + "vlinder28 2022-09-15 07:00:00+00:00 14.114815 gap_interpolation\n", + " 2022-09-15 07:15:00+00:00 14.251852 gap_interpolation\n", + " 2022-09-15 07:30:00+00:00 14.388889 gap_interpolation\n", + " 2022-09-15 07:45:00+00:00 14.525926 gap_interpolation\n", + " 2022-09-15 08:00:00+00:00 14.662963 gap_interpolation\n", + "\n", + "[5111 rows x 2 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import metobs_toolkit\n", + "\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "#Update Gap definition\n", + "your_dataset.update_qc_settings(gapsize_in_records = 20) \n", + "\n", + "#Import the data\n", + "your_dataset.import_data_from_file()\n", + "\n", + "#Coarsen to 15-minutes frequencies\n", + "your_dataset.coarsen_time_resolution(freq='15T')\n", + "\n", + "#Apply default quality control\n", + "your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example\n", + "\n", + "#Interpret the outliers as missing observations and gaps.\n", + "your_dataset.update_gaps_and_missing_from_outliers(obstype='temp', \n", + " n_gapsize=None)\n", + "\n", + "#Fill missing observations (using default settings)\n", + "your_dataset.fill_missing_obs_linear(obstype='temp')\n", + "\n", + "#Fill gaps with linear interpolation.\n", + "your_dataset.fill_gaps_linear(obstype='temp')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "cfdf87f1-dcfd-4a13-b12a-7373e880e4cd", + "metadata": {}, + "source": [ + "## Creating an Analysis\n", + "\n", + "The built-in analysis functionality is centered around the [*Analysis*](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#analysis) class. First, create an *Analysis* object using the [get_analysis()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.get_analysis) method." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c69bfda4-8a5f-49b6-9a80-cce0ed2d3dbd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Analysis instance containing: \n", + " *28 stations \n", + " *['humidity', 'precip', 'precip_sum', 'pressure', 'pressure_at_sea_level', 'radiation_temp', 'temp', 'wind_direction', 'wind_gust', 'wind_speed'] observation types \n", + " *38820 observation records \n", + " *Coordinates are available for all stations. \n", + " \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:45:00+00:00 (total duration: 14 days 23:45:00) *Coordinates are available for all stations. " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "analysis = your_dataset.get_analysis(add_gapfilled_values=True)\n", + "analysis" + ] + }, + { + "cell_type": "markdown", + "id": "26990a49-157d-4a59-9dce-9cbb1523d177", + "metadata": {}, + "source": [ + "## Analysis methods\n", + "\n", + "An overview of the available analysis methods can be seen in the [Analysis documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis). The relevant methods depends on your data and your interest. As an example, a demonstration of the filter and diurnal cycle of the demo data.\n", + "\n", + "### Filtering data\n", + "\n", + "It is common to filter your data according to specific meteorological phenomena or periods in time. To do this you can use the [apply_filter()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis.apply_filter) method." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "036ffd8c-bb43-4667-8556-84622d2b5498", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
humidityprecipprecip_sumpressurepressure_at_sea_levelradiation_temptempwind_directionwind_gustwind_speed
namedatetime
vlinder012022-09-01 18:00:00+00:0047.00.00.0101453.0101717.0NaN22.945.04.81.8
2022-09-01 18:15:00+00:0048.00.00.0101448.0101712.0NaN22.445.04.81.7
2022-09-01 18:30:00+00:0050.00.00.0101461.0101725.0NaN21.845.03.20.6
2022-09-01 18:45:00+00:0055.00.00.0101468.0101733.0NaN20.345.00.00.0
2022-09-01 19:00:00+00:0058.00.00.0101460.0101726.0NaN18.845.00.00.0
....................................
vlinder282022-09-15 18:45:00+00:0076.00.017.8101314.0101266.0NaN15.715.08.10.8
2022-09-15 19:00:00+00:0076.00.017.8101320.0101272.0NaN15.515.04.80.6
2022-09-15 19:15:00+00:0077.00.017.8101325.0101277.0NaN15.35.00.00.0
2022-09-15 19:30:00+00:0078.00.017.8101339.0101291.0NaN15.165.04.80.9
2022-09-15 19:45:00+00:0079.00.017.8101343.0101295.0NaN15.065.00.00.0
\n", + "

6347 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " humidity precip precip_sum pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 47.0 0.0 0.0 101453.0 \n", + " 2022-09-01 18:15:00+00:00 48.0 0.0 0.0 101448.0 \n", + " 2022-09-01 18:30:00+00:00 50.0 0.0 0.0 101461.0 \n", + " 2022-09-01 18:45:00+00:00 55.0 0.0 0.0 101468.0 \n", + " 2022-09-01 19:00:00+00:00 58.0 0.0 0.0 101460.0 \n", + "... ... ... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 76.0 0.0 17.8 101314.0 \n", + " 2022-09-15 19:00:00+00:00 76.0 0.0 17.8 101320.0 \n", + " 2022-09-15 19:15:00+00:00 77.0 0.0 17.8 101325.0 \n", + " 2022-09-15 19:30:00+00:00 78.0 0.0 17.8 101339.0 \n", + " 2022-09-15 19:45:00+00:00 79.0 0.0 17.8 101343.0 \n", + "\n", + " pressure_at_sea_level radiation_temp \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 101717.0 NaN \n", + " 2022-09-01 18:15:00+00:00 101712.0 NaN \n", + " 2022-09-01 18:30:00+00:00 101725.0 NaN \n", + " 2022-09-01 18:45:00+00:00 101733.0 NaN \n", + " 2022-09-01 19:00:00+00:00 101726.0 NaN \n", + "... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 101266.0 NaN \n", + " 2022-09-15 19:00:00+00:00 101272.0 NaN \n", + " 2022-09-15 19:15:00+00:00 101277.0 NaN \n", + " 2022-09-15 19:30:00+00:00 101291.0 NaN \n", + " 2022-09-15 19:45:00+00:00 101295.0 NaN \n", + "\n", + " temp wind_direction wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 22.9 45.0 4.8 \n", + " 2022-09-01 18:15:00+00:00 22.4 45.0 4.8 \n", + " 2022-09-01 18:30:00+00:00 21.8 45.0 3.2 \n", + " 2022-09-01 18:45:00+00:00 20.3 45.0 0.0 \n", + " 2022-09-01 19:00:00+00:00 18.8 45.0 0.0 \n", + "... ... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 15.7 15.0 8.1 \n", + " 2022-09-15 19:00:00+00:00 15.5 15.0 4.8 \n", + " 2022-09-15 19:15:00+00:00 15.3 5.0 0.0 \n", + " 2022-09-15 19:30:00+00:00 15.1 65.0 4.8 \n", + " 2022-09-15 19:45:00+00:00 15.0 65.0 0.0 \n", + "\n", + " wind_speed \n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 1.8 \n", + " 2022-09-01 18:15:00+00:00 1.7 \n", + " 2022-09-01 18:30:00+00:00 0.6 \n", + " 2022-09-01 18:45:00+00:00 0.0 \n", + " 2022-09-01 19:00:00+00:00 0.0 \n", + "... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 0.8 \n", + " 2022-09-15 19:00:00+00:00 0.6 \n", + " 2022-09-15 19:15:00+00:00 0.0 \n", + " 2022-09-15 19:30:00+00:00 0.9 \n", + " 2022-09-15 19:45:00+00:00 0.0 \n", + "\n", + "[6347 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#filter to non-windy afternoons in the Autumn.\n", + "subset = analysis.apply_filter('wind_speed <= 2.5 & season==\"autumn\" & hour > 12 & hour < 20')\n", + "\n", + "subset.df" + ] + }, + { + "cell_type": "markdown", + "id": "93399221-9b4e-4a6b-9b00-51ab9bf32a7e", + "metadata": {}, + "source": [ + "## Diurnal cycle \n", + "\n", + "To make a diurnal cycle plot of your Analysis use the [get_diurnal_statistics()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis.get_diurnal_statistics) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e867c52c-72fa-49ac-ae00-98e9150b513c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAPgCAYAAAA4JE15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgsV1nv/1lr1dDdezpDTk5ykgAh5CLCvYDgRRAIaCCMGuUhDAqE8SqPA2JQ4v0xhClMooCo1+EBBAUEBBEvkwyGe0VULgiKjwRIGEJOkjPsoYca1vD7Y1VVd+/p7H3O3mdP6wMn3bu6urqqurt6fdf7vt9XOOccgUAgEAgEAoFAIBBYM3KrdyAQCAQCgUAgEAgEdhpBSAUCgUAgEAgEAoHAOglCKhAIBAKBQCAQCATWSRBSgUAgEAgEAoFAILBOgpAKBAKBQCAQCAQCgXUShFQgEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgnQQhFQgEAoFAIBAIBALrJAipQCAQCAQCgUAgEFgnQUgFAoHAafCOd7wDIQQ333zzVu/KnuHlL385QgiOHTu21bvScPPNNyOE4B3veMcp17366qu5y13uMrZMCMHLX/7yTdm3tXCXu9yFq6++uvn7c5/7HEIIPve5z23ZPq2Vxfu+Xdiu+xUIBDaeIKQCgcC2pBYq//Iv/7Ls4w972MO4173udZb3KhDYXP7hH/6Bl7/85czOzm71rgQCgUDgFERbvQOBQCAQCOxU7nznOzMYDIjj+LSePxgMiKLhT/E//MM/cN1113H11Vezb9++DdrLtfPQhz6UwWBAkiRn/bUDgUBgpxEiUoFAILAOer3eVu/CprMXjnGjEELQarVQSp3W81ut1piQ2mqklLRaLaTcmOFBlmVYazdkW4FAILDdCEIqEAjsGrTWvPKVr+SSSy4hTVPucpe78Fu/9VvkeT623kp1KYtrG+r0wr//+7/n+c9/Pueeey4XXnjhsq/9jGc8g3POOYeyLJc89shHPpK73/3uq+775z//eZ74xCdypzvdiTRNueiii/i1X/s1BoNBs84b3/hGhBB85zvfWfL8a6+9liRJOHnyZLPsi1/8Io961KOYmZmh0+lw2WWX8X//7/8de15dd/T1r3+dpz71qezfv58HP/jBAHz1q1/l6quv5q53vSutVovzzjuPZz3rWRw/fnzJ63/uc5/j/ve/P61Wi0suuYT/9b/+V7Ptxbz73e/mfve7H+12mwMHDvDkJz+Z733ve6uen1FmZ2ebiM3MzAzPfOYz6ff7zeOr1S0tfu/rffzGN77Bz//8zzMzM8OhQ4d4yUtegnOO733ve/z0T/8009PTnHfeefz2b//22PZWeq0Pf/jD3Ote96LVanGve92LD33oQ8sey+j+vPzlL+dFL3oRABdffDFCiKYO77LLLuPe9773stu4+93vzhVXXLHqOXPO8apXvYoLL7yQTqfDwx/+cP793/99yXrL1UitVPPzsIc9jIc97GFLnvve976X/+//+/+44IIL6HQ6zM/Pc/XVVzM5Ocktt9zClVdeyeTkJIcOHeKaa67BGDO23Te+8Y086EEP4uDBg7Tbbe53v/vxgQ98YNXjWw1rLW9+85v5r//1v9JqtTh06BCPetSjmrTh9ZzbU21rJWZnZ3nBC17ARRddRJqm3O1ud+N1r3tdEJmBwA4nCKlAILCtmZub49ixY0v+LSdYnvOc5/DSl76UH/mRH+F3fud3uOyyy7j++ut58pOffEb78PznP5+vf/3rvPSlL+XFL37xsus87WlP4/jx43ziE58YW3706FE+85nP8PM///Orvsb73/9++v0+v/iLv8hb3/pWrrjiCt761rfy9Kc/vVnnqquuQgjBX/7lXy55/l/+5V/yyEc+kv379wPwmc98hoc+9KHMz8/zspe9jNe85jXMzs7yEz/xE/zTP/3Tkuc/8YlPpN/v85rXvIbnPve5AHzqU5/i29/+Ns985jN561vfypOf/GTe+9738pjHPAbnXPPcL3/5yzzqUY/i+PHjXHfddTz72c/mFa94BR/+8IeXvM6rX/1qnv70p3PppZfypje9iRe84AV8+tOf5qEPfeia64KuuuoqFhYWuP7667nqqqt4xzvewXXXXbem567Ek570JKy1vPa1r+UBD3gAr3rVq/jd3/1dHvGIR3DBBRfwute9jrvd7W5cc8013HDDDatu65Of/CRPeMITEEJw/fXXc+WVV/LMZz7zlIPtn/3Zn+UpT3kKAL/zO7/Du971Lt71rndx6NAhnva0p/HVr36Vf/u3fxt7zj//8z83InA1XvrSl/KSl7yEe9/73rzhDW/grne9K4985CM3Jfr4yle+kr/927/lmmuu4TWveU2TJmiM4YorruDgwYO88Y1v5LLLLuO3f/u3+aM/+qOx57/5zW/mvve9L694xSt4zWteQxRFPPGJT+Rv//ZvT2t/nv3sZzci5nWvex0vfvGLabVa/OM//iPAus7tqba1HP1+n8suu4x3v/vdPP3pT+ctb3kLP/7jP861117LC1/4wtM6pkAgsE1wgUAgsA15+9vf7oBV/93znvds1v/KV77iAPec5zxnbDvXXHONA9xnPvOZZhngXvayly15zTvf+c7uGc94xpJ9ePCDH+y01svu30033eScc84Y4y688EL3pCc9aWy9N73pTU4I4b797W+verz9fn/Jsuuvv94JIdx3vvOdZtkDH/hAd7/73W9svX/6p39ygPuzP/sz55xz1lp36aWXuiuuuMJZa8de4+KLL3aPeMQjmmUve9nLHOCe8pSnrGmf3vOe9zjA3XDDDc2yxz/+8a7T6bhbbrmlWXbjjTe6KIrc6M/MzTff7JRS7tWvfvXYNr/2ta+5KIqWLF9Mva/Petazxpb/zM/8jDt48GDz90033eQA9/a3v33JNha/9/U2n/e85zXLtNbuwgsvdEII99rXvrZZfvLkSddut8c+I8u91n3ucx93/vnnu9nZ2WbZJz/5SQe4O9/5zqvuzxve8Iaxz1XN7Oysa7Va7jd/8zfHlv/Kr/yKm5iYcN1ud8mx1tx+++0uSRL32Mc+duzz8Fu/9VsOGDuez372sw5wn/3sZ5tli78XNZdddpm77LLLljz3rne965LPzjOe8QwHuFe84hVjy+973/su+Twvfm5RFO5e97qX+4mf+Imx5Svt1yif+cxnHOB+5Vd+Zclj9blY67ldy7aW269XvvKVbmJiwn3jG98Ye86LX/xip5Ry3/3ud1c9hkAgsH0JEalAILCtedvb3sanPvWpJf/+23/7b2Pr/e///b8Blszw/vqv/zrAac9mAzz3uc89ZQ2MlJKf+7mf4yMf+QgLCwvN8j//8z/nQQ96EBdffPGqz2+32839Xq/HsWPHeNCDHoRzji9/+cvNY0960pP40pe+xLe+9a1m2fve9z7SNOWnf/qnAfjKV77CjTfeyFOf+lSOHz/eRPF6vR4/+ZM/yQ033LAkpegXfuEXVt2nLMs4duwYP/ZjPwbA//t//w/wUYa/+7u/48orr+TIkSPN+ne729149KMfPba9v/qrv8Jay1VXXTUWXTzvvPO49NJL+exnP7vqOVppXx/ykIdw/Phx5ufn1/T85XjOc57T3FdKcf/73x/nHM9+9rOb5fv27ePud7873/72t1fczq233spXvvIVnvGMZzAzM9Msf8QjHsEP//APn/b+zczM8NM//dO85z3vaaKBxhje9773ceWVVzIxMbHic//u7/6Ooij45V/+5bFUyxe84AWnvT+r8YxnPGPsszPKcu/d4vM5+tyTJ08yNzfHQx7ykOYztx4++MEPIoTgZS972ZLH6nOx1nO7lm0tx/vf/34e8pCHsH///rHP/eWXX44x5pQRzkAgsH0JQioQCGxr/vt//+9cfvnlS/7VKWw13/nOd5BScre73W1s+Xnnnce+ffuWrStaK6cSQTVPf/rTGQwGTT3Mf/7nf/KlL32Jpz3taad87ne/+12uvvpqDhw40NSPXHbZZYBPb6x54hOfiJSS973vfYCvfXn/+9/Pox/9aKanpwG48cYbAT+gPXTo0Ni/P/mTPyHP87FtrnSMJ06c4Fd/9Vc5fPgw7XabQ4cONevVz7/99tsZDAZLzjuwZNmNN96Ic45LL710yX79x3/8B7fffvspzxPAne50p7G/68/CaH3Yelm8zZmZGVqtFuecc86S5au9Tv05u/TSS5c8dqo6uVPx9Kc/ne9+97t8/vOfB7xAuu222075+Vppnw4dOrTke7QRrPR9qWuKRtm/f/+S8/nRj36UH/uxH6PVanHgwAEOHTrEH/zBHyz5zK6Fb33rWxw5coQDBw6sut5azu1at7WYG2+8kY9//ONLPvOXX345wJo/94FAYPuxfayCAoFAYANYbWb4VCwueq9ZaXZ9MT/8wz/M/e53v6YW4t3vfjdJknDVVVed8nUf8YhHcOLECX7zN3+TH/qhH2JiYoJbbrmFq6++eix6dOTIER7ykIfwl3/5l/zWb/0W//iP/8h3v/tdXve61zXr1Ou/4Q1v4D73uc+yrzk5OXnKY7zqqqv4h3/4B170ohdxn/vch8nJSay1POpRjzqtInlrLUIIPvaxjy0b4Vu8TyuxUnSwjias9BlY6f1daZunep2zzRVXXMHhw4d597vfzUMf+lDe/e53c9555zUD8s1itfO53Dla6fuyFmfDz3/+8/zUT/0UD33oQ/n93/99zj//fOI45u1vfzt/8Rd/sb4dXwebeW6ttTziEY/gN37jN5Z9/L/8l/9yxq8RCAS2hiCkAoHAruDOd74z1lpuvPFG7nGPezTLb7vtNmZnZ7nzne/cLNu/f/8SY4OiKLj11lvPeD+e/vSn88IXvpBbb72Vv/iLv+Cxj33sKWf9v/a1r/GNb3yDd77znWPmEp/61KeWXf9JT3oSz3/+8/nP//xP3ve+99HpdHj84x/fPH7JJZcAMD09fdoDwZMnT/LpT3+a6667jpe+9KXN8jraVXPuuefSarX45je/uWQbi5ddcsklOOe4+OKLN3XwWJ/vxe/xmUQl10r9OVt8nsBHKE/FahMBSime+tSn8o53vIPXve51fPjDH15T2unoPt31rndtlt9xxx1riuIt930Bfz5Ht7cRfPCDH6TVavGJT3yCNE2b5W9/+9tPa3uXXHIJn/jEJzhx4sSqkaS1nNu1bmu5feh2u5sueAOBwNknpPYFAoFdwWMe8xgAfvd3f3ds+Zve9CYAHvvYxzbLLrnkkiV1CX/0R3+0asRirTzlKU9BCMGv/uqv8u1vf/uUbmownKkfjXQ453jzm9+87PpPeMITUErxnve8h/e///087nGPG6uRud/97scll1zCG9/4Rrrd7pLn33HHHae1T7D0/CqluPzyy/nwhz/MD37wg2b5N7/5TT72sY+NrfuzP/uzKKW47rrrlmzXObesrfrpMD09zTnnnLPkPf793//9Ddn+apx//vnc5z734Z3vfOdYKtqnPvUpvv71r5/y+fX7uJKD4dOe9jROnjzJ//gf/4Nut7umz9fll19OHMe89a1vHTvvi9/Llbjkkkv4x3/8R4qiaJZ99KMfXZdl/VpRSiGEGPsu3nzzzcs6QK6FJzzhCTjnlnV1XPwZPNW5Xc+2Rrnqqqv4whe+sMTRE/z7rLVe6+EEAoFtRohIBQKBXcG9731vnvGMZ/BHf/RHzM7Octlll/FP//RPvPOd7+TKK6/k4Q9/eLPuc57zHH7hF36BJzzhCTziEY/gX//1X/nEJz6xpB7mdKj7yrz//e9n3759YwJuJX7oh36ISy65hGuuuYZbbrmF6elpPvjBD64YLTj33HN5+MMfzpve9CYWFhZ40pOeNPa4lJI/+ZM/4dGPfjT3vOc9eeYzn8kFF1zALbfcwmc/+1mmp6f5m7/5m1X3aXp6moc+9KG8/vWvpyxLLrjgAj75yU9y0003LVn35S9/OZ/85Cf58R//cX7xF38RYwy/93u/x73udS++8pWvNOtdcsklvOpVr+Laa6/l5ptv5sorr2RqaoqbbrqJD33oQzzvec/jmmuuOeX5WgvPec5zeO1rX8tznvMc7n//+3PDDTfwjW98Y0O2fSquv/56HvvYx/LgBz+YZz3rWZw4cYK3vvWt3POe91xW2I5yv/vdD4D/+T//J09+8pOJ45jHP/7xjcC6733vy73udS/e//73c4973IMf+ZEfOeX+1P2arr/+eh73uMfxmMc8hi9/+ct87GMfW9Nn/jnPeQ4f+MAHeNSjHsVVV13Ft771Ld797nc3kc+N5LGPfSxvetObeNSjHsVTn/pUbr/9dt72trdxt7vdja9+9avr3t7DH/5wnva0p/GWt7yFG2+8sUlL/fznP8/DH/5wfumXfqlZ91Tndj3bGuVFL3oRH/nIR3jc4x7H1Vdfzf3udz96vR5f+9rX+MAHPsDNN9+8IdeeQCBw9gkRqUAgsGv4kz/5E6677jr++Z//mRe84AV85jOf4dprr+W9733v2HrPfe5z+c3f/E1uuOEGfv3Xf52bbrqJT33qU6s6n62HOj3vqquuGktPWok4jvmbv/kb7nOf+3D99ddz3XXXcemll/Jnf/ZnKz7nSU96EgsLC0xNTTXRuFEe9rCH8YUvfIH73//+/N7v/R6//Mu/zDve8Q7OO+88fu3Xfm1Nx/EXf/EXXHHFFbztbW/j2muvJY7jJVEm8IP/j33sY+zfv5+XvOQl/Omf/imveMUr+Mmf/ElardbYui9+8Yv54Ac/iJSS6667jmuuuYaPfOQjPPKRj+Snfuqn1rRfa+GlL30pz372s/nABz7Ab/zGb2CMWXbfN4NaSBtjuPbaa/mrv/or3v72t3P/+9//lM/90R/9UV75ylfyr//6r1x99dU85SlPWRJBrD9fazExqXnVq17Fddddx5e//GVe9KIX8a1vfYtPfvKTa/rMX3HFFfz2b/823/jGN3jBC17AF77wBT760Y+u2Jz6TPiJn/gJ/vRP/5SjR4/yghe8gPe85z287nWv42d+5mdOe5tvf/vbecMb3sBNN93Ei170Il7zmtcwGAx40IMetGTdU53b9WyrptPp8Pd///e86EUv4nOf+xy/+qu/ymtf+1puvPFGrrvuujF3x0AgsLMQbquqZgOBQGCX8td//ddceeWV3HDDDTzkIQ/Z6t3ZMq688kr+/d//fdl6ocDp8+Y3v5lf+7Vf4+abb17iNhg4M8K5DQQC6yEIqUAgENhgHve4x/Ef//EffPOb3zwjF8GdxGAwGHNru/HGG7nnPe/JM57xDP74j/94C/dsd+Gc4973vjcHDx5cc9+twNoI5zYQCKyXUCMVCAQCG8R73/tevvrVr/K3f/u3vPnNb94zIgrgrne9K1dffTV3vetd+c53vsMf/MEfkCTJipbPgfXR6/X4yEc+wmc/+1m+9rWv8dd//ddbvUu7hnBuA4HA6RIiUoFAILBBCCGYnJzkSU96En/4h39IFO2duapnPvOZfPazn+Xo0aOkacoDH/hAXvOa16zJDCFwam6++WYuvvhi9u3bx/Of/3xe/epXb/Uu7RrCuQ0EAqdLEFKBQCAQCAQCgUAgsE6Ca18gEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgneydBP5VsNbygx/8gKmpqT1VHB4IBAKBQCAQCATGcc6xsLDAkSNHkHLluFMQUsAPfvADLrrooq3ejUAgEAgEAoFAILBN+N73vrdq8/EgpICpqSnAn6zp6ekt3ptAIBAIBAKBQCCwVczPz3PRRRc1GmElgpCCJp1veno6CKlAIBAIBAKBQCBwypKfYDYRCAQCgUAgEAgEAuskCKlAIBAIBAKBQCAQWCdBSAUCgUAgEAgEAoHAOglCKhAIBAKBQCAQCATWSRBSgUAgEAgEAoFAILBOtlRI3XDDDTz+8Y/nyJEjCCH48Ic/PPa4c46XvvSlnH/++bTbbS6//HJuvPHGsXVOnDjBz/3czzE9Pc2+fft49rOfTbfbPYtHEQgEAoFAIBAIBPYaWyqker0e9773vXnb29627OOvf/3rectb3sIf/uEf8sUvfpGJiQmuuOIKsixr1vm5n/s5/v3f/51PfepTfPSjH+WGG27gec973tk6hEAgEAgEAoFAILAHEc45t9U7Ad6n/UMf+hBXXnkl4KNRR44c4dd//de55pprAJibm+Pw4cO84x3v4MlPfjL/8R//wQ//8A/zz//8z9z//vcH4OMf/ziPecxj+P73v8+RI0fW9Nrz8/PMzMwwNzcX+kgFAoFAIBAIBAJ7mLVqg21bI3XTTTdx9OhRLr/88mbZzMwMD3jAA/jCF74AwBe+8AX27dvXiCiAyy+/HCklX/ziF1fcdp7nzM/Pj/0LBAKBQCAQCAQCgbWybYXU0aNHATh8+PDY8sOHDzePHT16lHPPPXfs8SiKOHDgQLPOclx//fXMzMw0/y666KIN3vtAIBAIBAKBQCCwm9m2Qmozufbaa5mbm2v+fe9739vqXQoEAoFAIBAIBAI7iG0rpM477zwAbrvttrHlt912W/PYeeedx+233z72uNaaEydONOssR5qmTE9Pj/0LBAKBQCAQCAQCgbWybYXUxRdfzHnnncenP/3pZtn8/Dxf/OIXeeADHwjAAx/4QGZnZ/nSl77UrPOZz3wGay0PeMADzvo+BwKBQCAQCAQCgb1BtJUv3u12+eY3v9n8fdNNN/GVr3yFAwcOcKc73YkXvOAFvOpVr+LSSy/l4osv5iUveQlHjhxpnP3ucY978KhHPYrnPve5/OEf/iFlWfJLv/RLPPnJT16zY18gEAgEAoFAIBAIrJctFVL/8i//wsMf/vDm7xe+8IUAPOMZz+Ad73gHv/Ebv0Gv1+N5z3ses7OzPPjBD+bjH/84rVarec6f//mf80u/9Ev85E/+JFJKnvCEJ/CWt7zlrB9LIBAIBAKBQCAQ2Dtsmz5SW0noIxUIBAKBQCAQCARgF/SRCgQCgUAgEAgEAoHtShBSgUAgEAgEAoFAILBOgpAKBAKBQCAQCAQCgXUShFQgEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgnQQhFQgEAoFAIBAIBALrJAipQCAQCAQCgUAgEFgnQUgFAoFAIBAIBAKBwDoJQioQCAQCgUAgEAgE1kkQUoFAIBAIBAKBQCCwToKQCgQCgUAgEAgEAoF1Em31DgQCgUAgEAgEAoHdj3MWhx3eYrHONMsSNYkS8Vbv5poJQioQCAQCgUAgENijOOcaUeMFjmmEzqjIWXGd0ftW4zBYp/0/DNaVWOeXOQwOBziss4BrtikQHO7cmwPpJVt9StZMEFKBQCAQCAQCgcA2Y3kxU993ywseLG6R+KlFjG0ETolzBovGOF2t7wCLwzXbxjn/d7MtL4AWIxDVY/4+CIQQCJT/WwgEEoFACIlAApJIRCN/C7r6KM7Zs3iGz5wgpAKBQCAQCAQCgTWwWMDUQsVHWJYTPMsJnWH0xqKH0Rs3/Hu4jWH0xlFFcOr7I5EkECN7Wd93I0tkJW68aPECphY4shI7yssdWa0zIn6av8Xo62wsYgdaNwQhFQgEAoFAIBDYsSxNTTuFmBkRKT4yYxpRMiZqRlPTMP75TlfypH6dRRGbWmgtityMRm2GSxiJ1iwnWmqxo5BCNEJoKHxGnxPYCoKQCgQCgUAgEAhsKV641Clo5RJBY/DpaNpmaJdjbFGtV9ferDU1rY7eCOqIzWKRMxq9WU60+MiJQhIh5DA1bTTKU6e3BXY3QUgFAoFAIBAIBM6YWsAYVy6brlabDhhXYFyBthnG5WhXVGJIV1EfO4wU4RBIHK6pv5FCjURslqamIVeK8oToTWBjCUIqEAgEAoFAINDgnF0kgKqokCsbRzYvlsphhKiJEumqnqdOhTOLangcXgzJKmWtFkUKRUIkFRKFaJaHqE5g+xKEVCAQCAQCgcAuZNRyehglqtLhqO9rtM1HIkQ+WuSFkMVVdUJDZ7chw1S3WhD520jE/u9KDEmhtugMBAKbSxBSgUAgEAgEAtuYYf1QORYlasRRtczYvBFDpcsqYwQ7tLh2tkmX8/g6IS+IhpGgWhTFMvEW1kJWj4W0uEBglCCkAoFAIBAIBDaZleuHyiXpc8blVZTI31rMCvVDi3v4yCYS1IgiIpRMvDFCFT0K6XKBwMYQhFQgEAgEAoHAGlmufmhxZMhHh4rKSGEoiJp0uWXrh4Zpc6Npcl4cRUgSYhk19UShfigQ2HqCkAoEAoFAILDnaKy2GwFULptCp20lhqo6IuPyYU+iKjK0Wv1QHQmqbyMZj0SLQrpcILCTCUIqEAgEAoHArsI5S2n7FLZHaXtoV9UOVWKorh+yo5GhRfVDdcpcky5XRYIW1w+NWnEHAoG9RRBSgUAgEAgEdiza5pS2T2l7FLZHpmcZmJNoN8DYfFg/1BgmDOuHFDGRTEP9UCAQOC2CkAoEAoFAILDt8VGmAYXtUtoeuVlgYE5S2m5j3w2gRIwSKYmcIFIHQ6QoEAhsGkFIBQKBQCAQ2FYYW1RpeX0K2yXTs2RmltINMDar1hIomRCJFm21HyWTLd3nQCCw9whCKhAIBAKBwJZQR5nqtLzCdBmY4xSLokxSRESiRSI7KLU/NHgNBALbgiCkAoFAIBAIbDqjUabS9hiYKspk+1Utk7cBj2RKJFLaaj9SxKFmKRAIbFuCkAoEAoFAILBhOGfRLqMwPQrbraJMJyjswjJRpjREmQKBwI4lCKlAIBAIBAKnhXGlT8szPtI0MCfJzCzaDtA2G0aZREIkWyHKFAgEdhVBSAUCgUAgEFgV5xzaDSrB5CNNA32C3C74/kxNlEkRiRaRbNFS+0KUKRAI7GqCkAoEAoFAINBgna5S8nyUKTNVXyabYWyGxSAQqCrK1FL7UCIJUaZAILDnCEIqEAgEAoE9SB1l8hbjPQqzcIooU0pLzYQoUyAQCFQEIRUIBAKBwC7HR5l6jc14bubp6+PLRpmUTEOUKRAIBNZAEFKBQCAQCOwSfJQpG+vLlJmTZGYeYzO0ywEfZVIiJRItWvE0UoThQCAQCKyXcOUMBAKBQGAHYp0epuXZLrmZZ6BPUNoBxuZYNACRSFEyJVUzdESMEHKL9zwQCAR2B0FIBQKBQCCwjRmNMpW2T95EmeaqKFMBOISQvpZJpCHKFAgEAmeBcJUNBAKBQGCbMBplKptaphOUto9xOdb5KFPtmJeqaToiCVGmQCCwYynykvnjC9x24gckh45z8JJLt3qX1kwQUoFAIBAInGWccxiXjwgmH2XKzRza5Rib4xZHmVSIMgUCgd2BMZaF411m75jjxK0nGXQziuQY57ezrd61dRGuyIFAIBAIbCJ1lKmONDW1TK6HtstEmeQUSh0MUaZAILCr0MYyd3KBk8fmuf0HJ1hY6KOdI+4kyAMp85nhRBGEVCAQCAQCexJts6HNuOkxMCfJzex4lAlJJL1jXhJNoUS81bsdCAQCp422Fm0tpbFoayitpTQGbS2FNswt9Jg92eXkiQX6gxxtDCJWRBMRUkpAgzYUaHplsdWHsy6CkAoEAoFAYJ1YZxrzh/EoUx9tM6wroerLFMk0RJkCgcCOYyiQTCWSLKX1AinXmoHW5KWmtBbj/OPWOqxzGGPIujmD+QFFP8cWhjhWdNopSRQhBFgBJYYSS0bJgiw5ZvpbfdjrIgipQCAQCARWQdu86ctU2h59fWIYZXI5zi2OMk2GKFMgENiWOFcLJB850sZWt/7vTJdkWpNr0wgp4yzGWhzg/wNSCCIl/a2QpCoilY6il9Of6zM42SPPS5SQ7Ou0kFMKLSwFljlyBmhKLAaHwyERlMJinNvK07NugpAKBAKBwJ7Hmz8UGJc39Uy5mWdgTlDY3qIoU+wFk5wkEiHKFAgEtp5aIJWVIBq9XxpDrrUXSEZjrEVbh7EG4xzOgRB+OxKBUhIlBEpKWlGEkoJISkS90ujrWsegl9Od67JwYoGsX3hh1I6Q+1K0tCxQUGDQWCwOASgkMZIUgcRvt2Tp9rc7QUgFAoFAYFczKpKMK9A2HxFNAwrTpbR9LCXGlWibAw6BIJItlEjpROeEKFMgEDjrOAelNU3NUTlSi1QYQ1Z6cZRrjXHOCyRjsLgmgiSEQApQUhJJL5LakSJSCVKIZQXS6vvkKLKS/vyA+eML9Hp9cmsgVdh9kkI6NAUai6ASZ0jaKCS7a+IpCKlAIBAI7FiWF0n+fmn7FKY3JpKs1Vg0AtHYiytipIiQIiaVLTqhlikQCGwyXvQMTRmGt9YLpCrFrtA+amSquiPjHHXgRgBKSJSUKOkjSIkSROnpCaRToXPNwnyPEyfnme8OyEyBjgVuQuAigUVXokkQI2mhEDswyrQegpAKBAKBwLZkNZFU2D6l6VLaAYYC6zTW+oz7mqFI8kIplS2kikIvpkAgsGms5mCX6zrFrqQwVe2RcxjjU96ccwjhpYeSkqgSSbGStIRApSlKnj1h4pwjK0vm5rvMznU52evR0wVOgmgplJJEwosmH2va3aJpOcKvyTZD25LjxfeZjA4wEc1s9e4EAoHApuCcxbhyVZFUVJGkcZHkf6ilkEh8FEmJmFi2kSpGCrW1BxYIBHYli6NGZW3YYCyF8Q52WakXGTR4ceQEwxS3KnKkhCRRikhKpJBnVSCthLGWzGgyUzLX7XFyoct8b0BRljggiRXtiZRIeNG026NNayEIqW1GZrp8r/91AA7ERziYXsBUfDAMDgKBwI7Bi6RiST2ScUVTj1TYHhYvkIwrcVj8UMMhhfICiSCSAoHA5jHmYGeWRpIGuqwiSKYyaFjGwU54gTTqYHcqg4btgHOO3GpyY8hMSVfndLMBg0FOr5dhco2wkEQx+9udqt9TYDFBSG1DrNWk0QR35N/hWP5dpuNDnNO6iH3xYSKZbPXuBQKBPUwtknyD2ZG0O5dTmh6F9el2Fl+PNBRJniUiSXWq+qQgkgKBwMZQGzQ01t7rcbCDyqBh1MHOR4x2gkBaDucc2hlyY8itpq8LerqgdIa81BRZSdkvsJlGaGgpSZx0kFEQT6ciCKltSio7tNMptC1Y0MeZXbiNCbWPc9KL2J+eT0tNbPUuBgKBXYZztuqNVDQiSbu86aNUN6C1aIz1KXe1SBIIhJAjIikhVhNBJAUCgQ2nNJZ+WVZudj6C1NQfGU2htRdHtUFD3fyocrBTAuQGOdhtR4x15LYkN5rManplQW5LSmdxzoF1uMKi+yVlP8eU1ludpwmqHa7X6yEIqW1OJBNmknOxztDXc9zc+1eOZt/kYHohB5ILmIj27YovfSAQ2FysM026nbF5I5iGzWa7aDvAOI11JdaVtXnuuEgSMYogkgKBwNkjN4ZeXtArC04OMhbyjKzUqzrYRY1Bw+4RSMvhnKOwpkrT0/R0wcAUlFWEDSCSihiJKBzFoCRbGFAWGoA4jUgmk117fjabIKR2CFIoJuMDTET7yWyXHwxu5PbsZvYl53FOeiHT8aEwoAkE9ihDkeTT7YYiKaOoIklLRVJdkySQQqEqZ7tIpEgZRFIgENganINMl3SLgl5RcGKQ0SsKMl1inSNWilYUsb/TRu3Buh1t6xS9koHR9HROYQ2lNeBASUEsFB2VoKSkzEvyhZy5hYwiK3HOEcUR6UQLuQ0MLnY6QUjtMIQQtNUUbTVFYTNOFLdwPP8+U9FBDrXuxL7kMLFsbfVuBgK7Gm0tvbJAO8u+pLWpP+ZeJC1tJKttXomkLtpmy0aSxkVSTCRSlJxEiij0SQoEAtsC56BfFnSLkm6Rc7Lfp1dqCqOxQKoUaRRxMJnYFs52ZxPnnG+2a33KYs/kZFpTOoN1FoEklpJEKjoqbqJKujRkCxmDhYw8K7DaomJJ2k6QKlz7N5IgpHYwiWyRJOdhnKanT/LNhX+hE81wKL0T+5PzaUdTW72LgcCOxjpHryzolj6lZKHIOZb1mMszBlrjcEwnKRdOznCoPcHBdofJOF3H9vWyznY+ktRfRST5H0sloqaRbCRTFEEkBQKB7Y1xjl5R0CtKFvKcE4OBN37QGiEgVRGtKGKmle6pdLPFhhA9XdCvDCG09bWokZTEQjEp0yXRJGss2SAn62UMejmmMEglidMI1QnZBZtFEFK7ACUipuNDuMjSN/Pc3PsaR7NvcSA5woH0AqaiA2FgFQisgnOOgS7pVqKpW+acyAYcz/pNd3lbCZhUKVoqYiZtIYGFsuDLd/wA52AqSTnYbnPh5D72pwkzqUKgx5ztjM29BbjrU9rM90hy3gJ8lCCSAoHAbsAbQxR0i4L5LGc2GzDQvt+SRJBEik4csW+PCSdjbVPX5A0hcjKr0ZUhhBSCWEhaMiJS0tsILsJZR5EVDHo5WTejLDRCCOIkIpmK99T53CqCkNpFCCGZiPbRUTPkts/R7NvckX+XmfhczkkvYiY5FyXCWx7Y22RjgqngZCWYBrokM5rSGIBKMMVMxCkHWxNEI+l7zjkcBY6c/apkX+pNHPrlrdzSW+DmhR6RNLQUzCQRE0nERBTTUhEImnqkIJICgcBuozCGbl7QK0tmBwPm85ysLNHOooSkFUdMpymx2jtRktoQIrOawpT0dEm/MoSw1oLwKXqxULRVjFxFADmHr3vq5/QXMsq8hKruqRXqns46YVS9CxFC0FITtNQEpc2ZLY9yovgBk9EBzm3dmX3xYRLV3urdDAQ2lcKYKi0vp1sWzBUZxwY9umVBpjWFMQghiISgVYmcfWmLWA5/3IeCaZ7SZjgyjOti3QKOAksJlIDAOVAKZiKFIMLYiMw6jvYdtgepckzGgnNaE0ynLSbjlCTkqgcCgR1MbQzRK0tvDNEf0C0Kcu0d9WIpSfegMURtCJHZkoHW9E1ObqsUPee8IYRUTKgEFa/tvJSloajEU5EVWGNRsQp1T1tMEFK7nFim7KvqqPp6jm91v0RbTlX9qI4wEc1s9S4GAmdEbfxQ1zHNFxnHsj7zeUZmfNqEc6BGBNNUOyWRqkl7cM5WgmlhRDAtYF0XR46lAPwPIEIhSBDEKNpA5LezaBJQKUgUEAMOMqvpFgXHswESaMcx+9M2+1ttpuKUyThdLnMjEAgEtg3eGKL019y84MRgQL/0wsk6R1I56k10OnvGGMKOGELkRtPVObmpDSEcAuEFpVRMqnjZFL0Vt60t+aBg0M3IBhmmsFXdU4wKzXK3BUFI7RGUiJiKD/paEDPP9wdf57b8JvbH53MwvYDp+JyQVhTY1tTGD7VoWihyTmR9TuYDBkaT6bLpRt9SMa0o4kDaIVGqSZPwginHsoB2GdbVgmkBR1mJKYNwAoSsBFOCYgIhoiViac0IaKnIp/ZVxzLQJbf2Fvhed45EKibihEPtCaaTlKkkJVXh8hwIBLYWO2IM0c1zjg98fVNhNDhIo4g0Ukyne6O+qTaEyCrh1Nflugwh1vQaK9U9pRHJVOj3tN0Iv9R7DCEEnWiGTjRDbvrcnn+HY/l3mY4Pcah1J2biw0Qy3urdDOxhFhs/9MqC41mfE9mAgfZpeQY/y5dKP/s5k7Q43J5cVjAZN6CwAyy9JiXPiyaDcICIGsEkmUQIdfqCaY1IIZiIEybiBPBpiH1dcuPscQTQimJmEl+bNZUkTCYpKvx4BgKBTUZbS6/wEae5LGM2y3wqtNZIIUkjRSfaO8YQo4YQA+vPS241pbXA2gwh1oJzUGYF+aAYr3tKQt3TdicIqT1MqjqkqoO2BQv6OLMLR5mI9nMovTP7k/NIVWerdzGwy8m0plvmTZTpZD7gRNanV1bGD9YbPyTSF+AuNn7wgimrBFNWCaY6Jc8LJp+SB4gYQYyghWTqrAimtZIoRVIVXlvnyLTmWNbnaL9LJCXtKOacVoeZtMVUktJWcUgDDAQCZ0xhTBNxmssGzGY5uS7RziERtOKIqTgmarV2vXByzpFbQ240hS3p6oKBLpsUPaoUvXhRz6YzoSyquqfugGJQYm1V99RJkHuopmwnE4RUgEgmzCTnYp2hr+e4qftlblUTHEwv4kByhIlo366/gAY2l6Hxgzd/mC9yjg16LJQ5udbkxoDAz+wtY/zgnGkEk3MZmelj6VaCqfSCyfm0iqFgaiOZ3laCaS1IIejEMZ3YR4a1NfS15ub5kzh8iqC3We8wHfs0wCj84AYCgTWQae0jTkXBycGAbpEzKDXGWSLpr78z7faeuKaUlWjKrWagfbPbwuomRU+JyhBCJhtqlGG1Je8X9HsD8n6OKS0yCnVPO5UgpAINUigm4wNMRPvJTJcf9P+T27Ob2JecxznphUzHh5Bi79iVBtaPsXYsJa9pYFt4wZQZ3ytJsrzxg3MaS4aji20E0wLW9YYRpmpmcCiYOkhixC794Y+kYjpRTCepd8gyJbP5gDsGPS+6opgDrQ770hbTSUonSkK0KhAI4BwMamOIRjgV5NpUxhDS15LuAWMIYx2FLcmtITMlPV0sMYRIpCSVEZNnkKK3EtY6ikFB1st83VNphnVPrb1d9+Sc8z/rWGJZ4qpMlJ1CEFKBJQghaEdTtKMpCjvgePF9jue3MBUf5FB6J/Ylh4llutW7GdhCrHP0tf9xrqNMxwd9ZvOMvinJdekN7gSkKqYdRexPWyTK1zEtFky5rQVTfwXBlCCY2NWCaS0IAe0oph35aJWxloEpuaU7y3cXfArkZJJwsNVhOm0xHadNymAgENjdWOe8o15RspDnnBz06ZeaXGsQNI56U8npmSDsFJxzlG4YbeqVBQNTUliDcYsMIVS6as+mM9sPX/eU9QsG3QFl5icSoySiPdFC7PD3YCiAlt63/s74chzOOqyr17e0ZElLZXRUxnTSozVxknz+O1txOKdNEFKBVUlkmyRpY2xJz8zyrYXb6UQznJPeif3p+bTV5FbvYmATGTV+qFPzTmR9jmcDMl0yMD4lRACpjLzxQ5zSateCqfSCyXWxZBS2j2Ue6waVYNKVYJIjEaYJJMmO/5E5GygpmZTeOh1HM2g4kQ2QwptW7EvaHGi1mUpSJuNk0wYNgUDg7KKtpV8ZQyzkOScGGZkufY88IFXVNXmXG0MYa4cpenW0yQ5rbL0hhK+zjYTY8GjTYspce8vyhYHv92Sdr3uaSLdF3dPaBBCAv/UCyAv1en1nHQ5ffrx4/erekteVwtJRBRNRwUScsS/t0ZIFidQ4oCglbZXTL/NNPf6NJgipwJpQMmZaHsJGloGZ5zu9r3I0+yYH0gs4mFzAZHRgV1+o9wKZ1vT0MCVvNs84nvXol14wjRo/tFREJ0440OoQSYlzxYhgyilst4owZVUPpkowCdE45AmmqghT+NxsCMIPnNJFFuu39Re4pect1jtxzDmticq0IqGlgkNnILBTKI3vmdcrKke9ge+VVxqDqhz1JuKYfbvcGMI5523HTX5WDCHWgtWmijxlvu5J13VPyYbWPVmvbLxQqXyUXC14lggah+//O3zc1vdhzQII6jJj0WjQuneiQAz7KEqB8GuBAIWhrXJacsBENGA67pHIkkgYb+zhFAOnWNAtpAKRWiZTA0m2YefrbBCEVGBdSCGZiPbRUTPktsfRwTe5I/sOM8lhzkkuZCY5FyXCx2o7U1pTiSUvmuaKjOODHgtlQaZ9DrkAlPBucS3l7cVjpbCuwJHhXA9LhnY9cj1fGUGUQJ3SJ6voUoJiCoJgOusstlgvjWFgNN+aOwH4FMGpJOGclu9dNZEkRKGXXCCwbciNoZf76/TsIGM+z8nKEo0jQtCKY6bTlHgPpO822RE6Z7YcMDCVw10lmibl2Xe5s9aRD3Lybs6gl6GbuqeYpC3HRNyYyKkEEFRRHipxNBId8oJpKIRsJZx8YqJrvJVGo0bLsZIAAuGzEwR+grMSRSNPWh8OInyaXlvmTMZdpqIBaVyghMEKQWElfRRWRkjpQDqE0CSU1TkSKGVB2FO82PYijHgDp4UQgpaapKUmKW3ObHErJ/JbmIoOcKh1Z/Yl55HI1lbv5p6mNn7olQU9XTCfLzZ+0Di8xW0tmM5pTxALCaL04sh1cWQY16XQ3UowFYCfURJN09oYRRuIgmDapsRKEatx04qT2YDb+z2UlHSimIOtNjNpm6k4pRMFi/VA4GzhHGS6pFeW9PKC44MBvcL3zXPOESlJS0Xs77Q31EFuO+Oca1L1ZosBfVNgnfNOeipBxZt/HupIDs6LG2scRV6Q9XIG3QxdlFggihQyVjggLzU29+LGukUCaJgPNxRWK7y21ziVFGoEkDdrQjYr+L/rJ5wlrLMkrqStBrSjATNJl4k0oxUVSOEwQlAgGTiJERFC1MdpkE6CE2AlzolGPAIrnovtTBBSgTMmlin7kvMwTtPXs3yr+yU6appz0ovYn5xPJ5rZ6l3c1dTGD3WUqVvmnMgGnMz8rF2m/YVe4o0fWsobP8RSIUSJY1AJphzjFhjYbtXMtk7JA4QaiTAFwbTTWWxaoSvTiu8uzGLnZ0mVYjJOONSerGqrUhK1NwZvgcDZwDnol75/00KRc3IwoFeUFMbXiyRKkUYRB5Pd76g3inOOzGj6xounni4wzhBJRUcl67Jlr+t4rHVj6W1YH+FxdjTlDay13gyh/uesrw3CYUqDzjV5VqBLP5EopfRpewLK0kDp09/Ho0DVbRXxkYJKBI2nwW1rnMNZQ6oy2qpPJx6wr9WlkxS04hIhLdpJCqeYtwqH8EKpunVW4Nx2P8jTJwipwIahRMRUfE41izTP9/r/ztHs2+yPz+ec1oVMRQcRIXXotKl/YBYK38C2VxacqBrY1nVMtor3JzKiHUVMxynnpG2k1FWEqVdFmBbIxgSTrWqY1EiEqYMQ0fa/yAfOmEhKpmTKVOyjVbnVLBQFx7M7kEA7jtmfttnf8tGqyTgN0apAYB0Y5+gXBd3GUW/AQGuKylFvrxhDLIdvhOtrdGfLAX1doK3va9VWEUqkOGsxxlGUBmMtzlqfFleZIHjxY71osrZKn/MCqa4FGq0rWj72IRByKG6cdZhSU+baR56sQylJux37NMLd+DY5hxUaSUE7zmipHpPJgAPtPmmkSZVBCEduFbmJOGlauNKHx5zdjSfk1AQhFdhwhBB0ohk60Qy56XN7/h2O5d9lJjmXc9I7MROfSyRDkftq5EaPOeWdzAYcz/r0y4KB0ejK+CESinYU0Ylj9qctlKxd8no4crSbJ3c9rMkrlzyDcAKalLwExUQQTIEGIXzT39Yi04pbewt8rztHKv3n7VDb11ZNJWljcBEIBDzaWnqFbxExn3nznkFZUhqLFII0UnTiiH17UDhBNTFYlswVOXPFgG6ZUxiNdIIYibCC3JT0TYatHeNGIktDIVTFf6S/7035vBCSCFQT/RmaIqx2vp21lIWmHJQUWYHRFiEFcRIhd01U3oG0CGFwWJzQKJHTSfq0o4ypOGMmzWgpQyQdzkoKE5GZhPlCgdst52FjCL9+gU0lVR1S1UHbgvnyDk4WtzIR7edQemf2J+eRqs5W7+KWUhs/dKuGifNFxrFBn4UyJ9PezhXnIwatasZyOk6IlG4Ek3EDLD1yt4AzvgeTF0yAiBrBJINg2hgcDHoDuif7DLoDpJJEsSKKI2QkkUohlUQpiZQCqeTYv502aBozrXBQWENfl9w4exyBt1ifSVIOtiaYShImkxS1w44xEDhTCmPoFj5Vb24wYK42hnAWJSStONoTxhDWOqyxaGOb+8ZYrHFoYxmUOd0iZ17nDJymdBrhBJGVyMruIB8RREJ6UwSlBEJJhBQbfg11zkeeiqykGBQY7ScqVaRI28kO/c10IBxCWpCVgYPQIEqQmrjp31QwE+dMRiWpNEjAOkWuYxaKFtrt7s/rRhCEVOCsEMmEmeQw1hn6eo6bul/mVjXJwfRCDqRHmFD7dtwAcz0Ya+npqsN8mbNQ5Nwx6DFfeMGUGQ1QDUwj2irmYKvlu3yLHOf6lWBaoHA9cpP7prV1nkLTg6mFZAoh1A69+G9fdKnpzfWZP75Af36ANZYoifwMqXGNLS0C6upZIQVCekHlBwQSqQRRrFCV+FKxQspKaElZiTGJkhKhRLN8W1A19ayb/FrnyLTmWNbnaL9LJCWdOOZg2mFf2mYqSZo6rEBgt+CczxroFSXdqr6pWxRkpcY6RyQFaRSzr9NeV03PdqWuGzLGYqwXRcbWAslSaosuDWWpsdW1sE61cw4MlhzNQBhyqbHC+aiciGjLVpUmJ856unCdtpcPCnSpcdahIknSije919TG4RDSeLEkLUJahNQgNQjjrdHxzngdWdKSJfvigo7UpMqiBJROUpiYuaKF2cJok2tud5blRBBSgbOKFIrJ+AAT0X4ys8At/f/k9vxm9sfncTC9kOn4HKTY2TMgzrnGJW+uyDie9bm936OvC3KtMb4Uk5aqrcVjDikBIse5DOP6WLpo16W0pRdMtddpI5jaSKaDYNpsHAy6A7qzPeaPL1BkJSpStDotovjUn1NbdW+3pkpLsc4POPLS29pa64ufoRJgw1lYIYUXVtLPwtbiS0WKOI4QSiIjgapEmKhE2DAStvnfIykEnTimE9emFYa+1tw8fxLHSVoqYipJOdjuMB37NMDdMLAM7C2cg0FZNSYvCk70B/TKglz7gWosJa0o4kBnZxlDeHFkMMa70Vlj0dZ4oaQtZWnQxqC1HdYg1ZNGI8g6cqT8NSsSAiugEJBT0nMlJT7a0SbxqXtbJFSsMZS5phgUlIXGGuuzCpIIuW3fuyq6pAwIL5YQGhEZUAbhq8HA+d8TYyypNXRESUdVwinWpJFvbVLU9U15VI1GzuqRNGMWJ/znyApAOKwAJx2ZNGd1n86UIKQCW4IQgnY0TTuaprADjhXf41j+fabjgxxq3ZmZ+FximW71bq6JTGvmi4z5IudkNuC2wQLzec5AlxgckZBMRAmTkeJg6hCy9I1q3fGqaW2PgS1xFFUkQ4wIpk7VtDYMPs8muvDRp7nj8wzmM6x1pO2EqQOTw14ba8D36VCsJ7W+aZpoKtco4zDaNDOm9exwsxtVo+PhYGYYAVNRHflSqDiqRJZE1KmH1T9/XyDlmQnzSCqmk3GL9dl8wB2DHkp4m/0DrQ770hbTSUonSnbOxG9gz2Cdo1eU9IuShTzjRGUMkRufap1EyqdZp9uvvslZ54WRHYkeVel1xvjIkdaWUlfRI2uHjnVNRN3fSimR9a0URFGMkKxov26cZUDJwGp6rqB0fuAeo5gg2bJzVdc9FVlJWdU9SSlRsSJOt9EwWFTRJVFHl4wXT1JXkaaq/W5tsmHxNuvG0qZkItJMxgX7JnLakSZW/nei0F44LWQpZ2PmtRFLomoWPHorXPNYva4YfaJotrBj2EafoMBeJZFtkqSNsSU9M8vc/O10ohnOSe/E/vR82mpyq3exQVvLQuEjTXN5xtH+ArN5Rl+XlNbPuLWimI5y7EsdQmQY12sEU+YKnClXEEwzQTBtIc45BgsDFk72WDjZpayiT+2pFuos1jUIIXyNkQRY2+s6vLhypoqAVak1OitxvdyLr6rBo38RfL1xFe3y0S+fhqiUGkk9VEvrvqpZ51PVfS22WDeVxfot3Vm+u+BIVMRUnHCwNcF02mIqTpqUwUDgbKKtpV/4iNNClnEyyxhoTal9g9W0Ek5b5ajnqsas1njHOqsdxjqM9dEko42PHpUWXTvX1TVKi6NHVc2RqCZcIhWNpB6v/9iM82l7fVvScwUF20Q8OYcuNGVekg8KbGlAgIoj0vZW1go7H1VSFqRBCOujSkpXBhAWIUZ8BS1YK7GFwxiB1Y5IWNqyZCIumUpz9rVyWsoSKYtzgswo+iahLOtmUxt+BEuiSrVIcoyLpSVCya/Q9NzdDSOeIKQC2wYlY6blIWxkGZg5vtP7Krdl32J/eoSDyQVMRgfO6kXZOUe3LJirok139Lscy/pVSofGCUiVpKMsh1oaKQusW8C4eRwDMleAM9WVJKlMHyaQJKEH0zaizMum9mmwkGGdI22tP/q0lQiETyk6DfFFJbpcZRtcFiV5li+t+wJwbmndVz1bvYa6r1RKWlEbKaHEf7+OZwOk8BMQ+5I2B1ptppOUiTg5rYFdIDCKc9A18xQ2R1b/M84xKAyZ1izkJfN5TqEtxoIUklTFTMUxUau1qb85rqk7qiJIuqo7qpaXpUFrgy5Ns049STI6aS8EzXdSSUEkBSKKkcofz0bjxZNhYAu6rqSk6n21xeIJ6rqncqTuyZtGJO2zXPdUp+BVRg8+uqS9aBI+uuRGEuuclWAF1iisYZiVYC2JKOhEXjjNTGZMJyVpZFHCYawgN4r5MsUUG/denyoFz8/Eja/fBJMc3h3Y7g6hdCqCkApsO6SQTET76ah95LbH0cE3uSP7DjPJYQ6lFzEdH0KJjf/oZrpsRNOJbMBt/QUWipyBrguIoRNrZhJN1Cqw1KIppyAHQ7AV3yE4W0WfZnssnOhS5iUqVrSnWyi5N6IijfgC1hMI2ui6ryhWuEgxrwbcwUmshDSKmags1ve1O8y0WnRaKUqpkAoYWDN90+N4fgcn8mP0y4LCGrJSk+nSu8oBSihiKYmiiFgqQFAg0E4hjUTU8ksohFDV5Ip3mPMG2yP3hUA4UUWPqtQr46NHPprkvyu6NJS6EkdmpAnsaPRI+NRgOTJxEUdRtUye9e+BdY4MTWZLuq6gcFV9mJB0tlg8DeuecsrC+LqnSBIl8SbXPa1g9KB0VcfkmugSgHOyalArcVr63lbWjdSf+Xy9VqSZjko67ZIDrZyJqPT1TQK0FWQmYjaPsWdoDLFSCh4CbL3fcrju4siSsD7ktNcvyUFIBbYtQghaapKWmqS0ObPFUU4WP2BS7edQ687sS84jka3T2nZpDfNFznyeMZtn3DboMpsNmhS9SGpayvgLWlLixFzVzDbHoDG2bl6bVsYPIS1vJ1BmJd25PvPHFhj0BjgHaSdhamLnRJ+2mk2r+xoZRGbOcod0fNObeZFKxYSMmKmaBk+1UlqthDhNiGKJihRSKeJYISOFivwyVd3fbnUsgc0lNxknimPcOjjKQt6nn0sKDQ5BJBNaqk2kZBXxtJVLmGv+BxaDQbvh33WE1jpfS2RtJYDqwbBxQ/Fk/Wce60UVTvoZeueFlyJqIrYiligksVSNIKMRaSCc/3srrk/W+V88L55yCmewVd1vW0SbEu1aDn8uq3fHUjXY9ee8yAvKvNzEuqfljB4MItKN0YOQtl4TUTemdRJnRSWeqESTrfbbYo0/l9JaOrGmE5VMdkr2tzI6kSFR3nChMJLcRHSz5LSMIdyZpOAxFEthdLMyQUgFdgSxTNmXHMY4TV/P8u3u/6OtpnwdVXIenWhmxeda51gocuaLjLmRFL1+WVLYAkFBojQtpTnQyhFyAecGWHIchtIBTS+mKSAOqXk7CGstg4WMhRNdurM9irwgjiM60+09E33aas6k7ssaS241XWc4aXuIQZekK5iwkraRtKwkHhloNrVbldmGkL7PV5zGxGlMkkbeeCOSjQviqOhSka8TE1sw6x84M0pbciy/g1t6P+BEtkBWSKyRpJFkKo2Xpoo6h3XSRwO86VnT/NVaMTRp0LZpCOtFkq3GmaISWrXZixf+UgISmr7zwtfF+LSFUbm2aACLGI58Rz7TtZgCiXAS4RSiuu/Xq8MGVScmN7Ks7s7kKmF2iiGxq8TTwJb0XE4+Ip5SEaFOQzy5qj6zNkmAkckTW52R0Ya7tu5BVaUe18/3Tx3Znm/Eq6INqHs6hdED0iFG8inHoktm2OKhqWtqjsM7A9bHroRtRNNUXLCvVdBSmkR604/cKAZaMVckrOWA1puCN/bEbZSCV5VOAf5bspMIQiqwo1AiYio+xxsDmHm+2/83jmbf4kB8PgdbFzIVHWSgNfOVIcSJrM9t/S7dsmCgMxwZiSxJI1+kKUUXR9ZYjFshES5GkKLohNS8HUyRlfTmeswdmyfr5eAg7aRMT0yF6NMOoE49VFISE1FbzmgcuTP0MfScIxGCtoiYkQltFKlTqGbW1//L+5r+wqCxeF7yWpJh765INSlVKpaoKGqMN6LIux8OjTaGfb6U8m6IsrGfH3dFDFGxjaVJi3KOUpfckR/je73vc2wwS1FKcDEtpUh9QR6DIvc9jRoHO1O51o2Ytbh6Kr4SMFS1R4LGEVNFIETEuvTEyAz/qVbz8mr4JD/AtN7eGgPSjTzmGpO9en+HtSpyZKkYi24NBZmPkOEEpYPSWfqU5M5ihUMJRSoipBVeuFiDqep+awOM+v5SIeQnsbCnEEKL9t/vaNV0V9TLRNNrCvz3VTQProfFRg/Op+HVRg+Lo0tO4FwVVdIS55Z5QVufCztW11R3LImlYTopmYg1M2nOdFyQKk0kXSWcInplzKxd2RhiSQoelegQbkkK3pInbsMUvObTW0XC7Mj8gRMwqPpq7hS2vZBaWFjgJS95CR/60Ie4/fbbue9978ub3/xmfvRHfxTwH+CXvexl/PEf/zGzs7P8+I//OH/wB3/ApZdeusV7HthMhBB0ohkSMcVsMcfXe/9OZr5GXrbR5gCFTnCuQIqMNNakqs9EkgEFjqIyzVO4kJq3q7DW0p8bsDDbpXuyhy40URLRme6saNkb2FlECCIRMUGEE44CS89q5myOEJIUybSMmYxj2mlEu6lrWZk68mWNr6+w1jcc1QODNUPXQ1elcy0asjb3pRJNPZgcM+WoBFUVBYsaceaFmlSiiYKNirOl9vTDnmE7QZfZ5rwNB5emrq+rBtJ1b6I6/dPaofmJrZq+6koQG+P8/aqexFjLLLOc4Dg9umgD0qbEOCSWjHxkb4bDdSEkflwuGtOU+n3bSqqY6tJloyJszYJsKLh8VMfgqugSzmExaGfRGHJXovE1Y8L5kh/lg0XkxotWan8LO3JrvdDAeaME53wUzVX1Yk5V34UmXbGKlAmBcMoLo9GQykaxBqOH0RPprA8hLhtdGqWOno3VNVUCvFKJrcgwkWomYs3+VsZkVJAog6yMITKjmC/SJY1v15qCt4S6xeQ2E0s1zaewPhbANnVXrllJLJ3f2jFseyH1nOc8h3/7t3/jXe96F0eOHOHd7343l19+OV//+te54IILeP3rX89b3vIW3vnOd3LxxRfzkpe8hCuuuIKvf/3rtFqnVz8T2J5Y6xiYkn5ZMtAFs3nGfJmT6wHGZgjRR8p5IpmRJhGJnCQSKZIIRIxPz5us+jJtt8tN4EzIBwW9uV5V+5Qj8NGn9mQrRJ92MaKKHadSATEGR+4sd5ic2xgQC0VbKKZFwoSM6MiIeJmpWymrHlpraLK8EnX9Rp2WNLyt3BC1pciGj9V1NcsJMhh3YhsVZvV9FamRJs1RY9zRWNLL0RTHysK+3lYTOZOVJhRjjnBusaCpZ9xH+pjVAskYi9ZmifOcMT79rXaY87b8DKMWTSSDKmVK+AGjGxGpohI7VZSi7pVmccwxzwlxnIFcwDlBQodOFDXrglhf1Gg7U6UT4micNEcjQFBHh+paxNr63DbPrSMkGouWlkJatPD1PziBdBLpBEKAQVRC3fnrZ6WDhHD+nPoySR8dEyAwjeIbT1Ucx9XFOJVqcHUqo8OLsSZdrg6/jEaBRJWzVt2vn3c6Rg9WDpXLKtTf52Fdk/NCtBYvODqJYSIumYxL9iUZnbgkkd4YojSS3Ch6ZerbEY+KJTHsqzRq8rDk5C1KwdvOv2bLiqYqcjYqSkVz/oaRX6D5PK3hrdlWCNfYK20/BoMBU1NT/PVf/zWPfexjm+X3u9/9ePSjH80rX/lKjhw5wq//+q9zzTXXADA3N8fhw4d5xzvewZOf/OQ1vc78/DwzMzPMzc0xPT29KceyVrrlSb4+dwPTySGk2MP1G8438+yXJX1dMl/kzOZ9ctOnNAOELIhEQSwzImmQ0k+b+dkwhXG6yutuk4h9JHIGRXt7X4UC68IaQ39+wMLJLt3Zvo8+pTFpOwnRpwAO16QBFs4igERIJmXMlEjoSB+tktv0ojBalG4MVXPVOhIzkrpYRc/q+w6aGXIvZLyAgXqgI5r7o2lUYlSo1amIQlSCbhi1kUJCZavdRHRGomZ1GqOohE8tgJDeqETU2xTrjwLlRnNCz3GHuYO+mEcIaLkOkdzmc8KVkKxrZ4bpcIC1VWoh40KoMljwwnYohFxtgLHaDH6V+lank1oJRjlK6UWUrbSRahwHzxJiJErWpO2NRIcqsbZc2G1coIkqSiaaVLxmeW30UEfK1spYXZMbq2uqUdLSiQ0TiWYqytmX5rQiTSINDm8MkdmIwqhG862rXontGVVajBu5rVP06no/5CLRNCKcm+MS9QPV7YiAvPPkSb7y/R/iFY/6w808hDWxVm2wra8+WmuMMUsiS+12m//zf/4PN910E0ePHuXyyy9vHpuZmeEBD3gAX/jCF1YUUnmek+fDkP/8/PzmHEBgzZTG0NdeOHXLgpPZApnpUZg+ThQokZGIglZkmYh9KaIvmvX1TLgYMTL9qKoZHkPOwN5Obk8Qy2lSOeOrLXZCXkxgWfJ+Tm+uz9yxBbJ+jhSCpJPQmWxv9a4FthEC3+o69gUVWByFs8yagmNkRELSEoqZSlR1RER6GpNXPiWtHhiPRlrqqM0wWmUrdVNHcxxg6uhVEwUaih9nbSWMRgbeVBGG6r61jGQaiuFtFWkQkb8uipHoj48E1EoLHAZrGE4p4wf9dUSoPs56+7UwagQYXlB5sTSSnhipSmB5F8Vh2qNcNso22pesFnYO6OmC42WXE/YOcrmAUo4OHRRnqYZ1sRCijqwxLoSoG2PbxqVtsRDCjbjPrcQiISQkw3TOOjoHqx67FQ4tLIWwlNJS22NEzpuzbAluZMRcZ8MtXmW1p9d3RsTWaCremjlFXRMAEmLhmGhrJuKCqbhgJslJVUmkKmMIq+jaiFxHOFFFVCWgRl38hq8J2zcFbyVGznQTTGxEUxVRqxEAVowH1gRVXd/IbbNCfUEbfiZ2IttaSE1NTfHABz6QV77yldzjHvfg8OHDvOc97+ELX/gCd7vb3Th69CgAhw8fHnve4cOHm8eW4/rrr+e6667b1H0PrIy1joEu6emCXlFwMp+nr7sUZoBhgKRPJA2xNCTK+VlMInx1RMvfrkEI+We1iGQLQ0HhZinMLJGYIBX7iMU0Yi9H/XYQ1hi6cwO6JxbozvUxpSFOYyZmQu1TYG1IBC2haFXf+bKKVt3q+jjjo1VtFHEhmLARsRNNKpqpBsJ1uptxtcubrUsjqv5a/rVqIQX4aFA9ohoRI/VIo8lEq26FENUgmqbgXorhQFpUeVXDdUc2cJYYpue5RlC4pr+YRZcjj1fObNZVrmfNvlbCrolSVdEpAVJKrHAMpGUhKik6fURnQBQ5YpMACaXUlOixCBeycqarjQqqx0YzJ4fCdj1CaKQO5jSEEKchhE4Hi0NLR4mhUEPxpJwk2XJftg1kVJCdilPWNdF8VlqxoRP7xrfTScZkmtOSBiktBsHAKk4aRakT6ixFUTk01hMTOyEFbznc2O2Iq+RoNuaYaKoEoR1JnpduBdE0opBq0WTrB3c+21pIAbzrXe/iWc96FhdccAFKKX7kR36EpzzlKXzpS1867W1ee+21vPCFL2z+np+f56KLLtqI3Q0sxsFA+/S8Xpkzm8+zUM5TmAxtuwjhRVMkLZ24skiuo0xE3jVvA1AkKJH47iBuQNcujKT9TSNFuiGvE9hYsn5Od7bL/PEeeS9DSknaSYinOlu9a4Edjo9W+QkaKxwLWc73Bn0GuiSxiv1lzITxDVqrcflwwF4tk82AHaKq3mgogob3d1sEvI5CbQRekNgqtc0ycJYFVzIvSsp0gGr3iSKNLCJcT5E7A26w+kZrIVPnj40Iqdo9zlm38vNHBK2fUQchZFMfBMP3fqsZFU+ltBixS8XTGhmva6pSYBenQkoQClqRppOUdKKCmTRnIipIIo0UjhJJZhRdG6O1HAZQ6hS8bWAZfrqMJk82LoCMCCbAyXHRJBxNtKkRR3W0afQ7VoumJmQ1stFdyrYXUpdccgl///d/T6/XY35+nvPPP58nPelJ3PWud+W8884D4LbbbuP8889vnnPbbbdxn/vcZ8VtpmlKmoaB82ZQGkNPF/SLjPlygbl8jsz00baLY4AShlhaWpFACVUl37SA8dS8zUKikGISJyzGZfTtrWTuOKmYIZYzRHS2xY/jXqaOPi0cX6A318doH32a3D9x1hpABvYOeWno9nIGWUkk4GDcIosNcy2DsJIDNtmTA9KzhZDgnGCgDF1X0kNTphlJq0+SlAgbQZn6aNVafrbrMbMbDujq6GAd8YLtI4ROBwsYaSmwlXjyKkE5SbKeuqCdzip1Tc7noA6FcOJoRyWtuGAyztmX5ExEmlh6owxtfX3TQtHCVu6DdQreTs1bGa82WySYGNE3ctQkpPqv8+m/ok4TXiyaVkrN2+WiaTm2vZCqmZiYYGJigpMnT/KJT3yC17/+9Vx88cWcd955fPrTn26E0/z8PF/84hf5xV/8xa3d4T2AsZZeWdAr+3TLBeaKeQa6S2m7ODdACEMkLLFStKMIQVKl6MVb3lNFIIlEByXaWAoyewe5PUksJ0nkPiImz4qwCwwZdDPvvHe8S97PffRpIiWOd8xlKrCD0NbQ7ZX0+jnGOtI0QlXGBx0itHPMyoK+0By0KdMu3rAoTMDj+xZp5pwmQ0NcErcHtNPcz34XLT+gWw+iihSM/cbs/PfNAVpYSuEd90bFU+zULjjCNWKprPAt2ng7d+9450AJ7y8hQUjDRKTpxCWTquBAktNSmlQYnBPkNiLTEXMmXfK93mm//G7R7aqiaSzVrhZAAuEqR8Z6K6pOzXNnLTVP4PtuyR3mhb7tRyif+MQncM5x97vfnW9+85u86EUv4od+6Id45jOfiRCCF7zgBbzqVa/i0ksvbezPjxw5wpVXXrnVu76rcA76ZU637NErF1go51koFyjNPNblCFGihERJwUSUoEQbiAG15aJpNQQCRYqSKYaSws1TmHmUaJOKA8RiEilOo5g1sCZ0aejP95k/vkB/foDRhqQVM7l/0s8YBwIbjHGWfr+k288ptSWJFWm6dOgUIZh0ERmGW1VGz2oOupTU7dT56W2CcwywdJ1mAU2BIYo0aStHpAM/aCuSqnns3sYBRjhKYSq7cj/AlOxB8VT1FDPa4qzFRBbTook4RcILpwlVMhPl7IsLWtIQC4t13oY8KxLmFzW+3WnncKUo0+hj46Jp+Y3U9vbUBhlbkJoncSTSkEpNS5V0VMmhuMf+tLspr7dZbHshNTc3x7XXXsv3v/99Dhw4wBOe8ARe/epXE8d+cPsbv/Eb9Ho9nve85zE7O8uDH/xgPv7xj4ceUmfIoMzplQt0dY9uMc9COUthumibgTBIIYiFohXFRGLCp+jtcOMGRYwScVNH1bPfQ4nW0D491FFtDA4GvYzuyR4LJ7rkgxypJK1Oi+gM+vgEAqvhcAwyzXwvpyg0kRK0W/Gq5UsCQZsI4xzzUjNwhgM2YcYl29Y2fbtinGWAZd6V9DBYLIlyTKQZrj0AaaCMEXZvXwOG4slSSDMinsQeF0+1iQGYNtjIcSDKmVSafXHGdKxJpUbVjW+tYqFI0TtUkC+OMtWm4otFE4x4byz5cLgR0QRjVuNbkJqnsKTSkChNW/ratFhYlLBYBNopYuxY/6+dwLbuI3W22Ot9pHKd0S279MoFeuUC88VJCtOjtDlQgpBEIiJSKbFIfIreHogWOCzG5RiXI0VMIqartL/OrisePxvoUtOb7zN/bIH+QobVhqSdkLSSEH0KbBoOR1EY5vs52aBESEGaRKf1Fc4wFMIy5SIO2pS22/ZzkVtO4SxdV7KAJsP380qlQ7VybKsHyoCOEWZvCyg9Ip6MsFi8eIrcHpLsI+LJal/3BDR9zJx0lJGhneZc3FrgcDpACefrm4wiswq7A4XTalEmWCSemrqm5bbiEXBq17yzMPKPhCWVXuB2ooKW1MTCIIXDOkHpFNpK36y44i4Ts/zfH/wQv3rZezZ/B0/BrugjFdhYnLOUJqenF+iVPfrlPAvlCQZmQGlyrNMgIBIxkUyYUPtQYm1W47sRX0fVJhJtDDm5O0mufR1VKg8QMbHjo3CbjoNBd0B3tsfCiQXyQYmMFK12GqJPgU2n1IZuP6c3KMFBmka+39Fp0kKROElXGAayzwGXss/GqB1XVbG5OOcYYFhwmi6aEkuMZEJISDNcq4eNCzAR5EtrVPYKuu71VEWefMF/LZ72yDmp2goYa7DlqHiiagztpYWJLMQFF7R73KXVpaUMs3lKuYNSbZcTTLC8aIKh9fjKosmNWOpXi7bINU8AsTCkygunCVWQKE1cRVS9cJL0TIJb9NleYr2+am+B7UcQUrsU5wza5gx0l26xQE8v0C1P0tc9SltgrKl6WSTEMqEdzRDLZKt3e9uiSFEixQqNdl0Ks0BEm1TuJxbToY5qEbrU9Gar2qeFAdZY0nbC1P7JPSvMA2cPYy29QUG3l6ONI0kUkdoYsSMRTLmIAsvtMqNXmVFMOG+VvpcxztLDMO9K+hgcjtRfPSEtvIBKcoSVkLf2jlgYYZi252ueLA6JQDm5d9JFG/FksaVpxBMj4qnGCR+F2tfpc5f2POckBd0y4o5s+7bAWM38YfE6DaLybxi7TI0/Y0w0bbFr3lh9kyzpRCWx1ESVkDNOUlpJ5pYbG1ViWThkFTETOKRwKOWIIn1WjmGjCEJqF2BdibYZue5VKXqz9PSCF02mQDvvUiNEQiwSUjVBHEd78kfsTJFESDGNw6BdRs/cghJ3jNRRtcfWt86RW01u9NCCt+5WX/1XVI0ZltaHivr/w34mix+n7pfSrL7sayxebzNwzjHo1rVPCxRZiYoUrYkWUbRzZg0DOxfrHP2spNvNKbQhjiTt1uml8Z2KBEnsBH1huEX22e8S9tuEaK9Fp5wjr8wj5tHkGBSCNhIpBC72Asolmf8dKtL1O/HtcEwTefKue0PxJIj3yuelsiq3xmK0wZqVxVONUZYozblkcp4Lkz44uGPQrhJEtwenSstbbv0mULSSaBJupK6Js+aatxoK64VTVd/UViWx9M7MdX1TYSIGzefZiyMlfXRJCP+uSTn0EmzGI66RVogdWCMVhNQOwjnX1OyUpl+ZQZxkUPbomz6FLtDWoZ1AEBHJlEhO0JJR1eg2sFEIFLGYwAmHIWdgbyO3J4AJcJOUJqms4QtKY9DWoiLZiKZx3DLL/HqCpeVYdaPPpWsPn9P8LUYfYURsNe0qAT/LLurmovWjYmRbYlSIiWbmVCLQpSbv53Rne+S9AuccSRoT709wQmAwgBnbu8V7P9xnsWT5ep6zVD4uXnf51wnsbByOLNe+H1SuUWswktgIBIIJF1FiOSZzesJwjk2YdBG7PTplnaOPYaEyj9BYEiSTRF5ARSU27eHSDIQFnSDtHhENePFkhCWvxJOrBo7KyT0lnpxzlWHEYvEkVsxOcDhsbDh3aoE7teeZlJrZIqWwWzdkPZX5Q31/ya97rXvGzCBGtlYtHzOEaFY5e6l5ixmtb2qrgrZaXN8kKaxiQOSjSjik8sYRokrnE3UUrTox1tVLASerfm87/zoZhNQ2xTmDdjnaZmib0Svn6JWzZGbAQPcZmBJtvTuNIyISKbGaoBMplNwjF+lNxOGw1o40/HO+0Z9zOFO/P5ZSW0pnKLQms12sPIp1lrJI0EUHihbSSXCQJDGdyTbpREKcLB+hqaNWS+ZjXD2HM/L4iE/M0pSB0fX888bvu5FZoPEZtdG/3ehKo8udpcxLBv2CvJ9jtUEoSTzha+r6aHB6uANjPy/L/twsWbZY/Iz+tfxjSx9fbR3Z/DV8jljyuGh+4EYfr0WlFIIWESl7KC1nm1GUhoWqoS4C2mnkG6+eRWIkkRP0MdwiB8y4mIM23ZUD5tJZemjmXEmGQSBIkXSq9GYnNbbVx7ZGnfj2Rtq4rSJPufCNcn3kiSptb/d9FpbFgaua42pjscY2l/fVxFONFY7JTp8Lp+Y4N+mTlQm3Fx3O5sTEWswflp36rHTPMEVvPMrUZJVsg9S8UQRVfZM0pKqkowpSqaueTg6DwFhJjgI3jCpFGOL6GJrIkmiiS9bJ4TBlZwWZ1kUQUtsMbTNO5t/iePZNSp0zsBmZLimNo7QSh0KJhFhO0FKSKN5DRalrxDEUPtYCzhew1h3PcV4k+ccdWIexDmvM0u7ozvn1nUNjMc7/UJZYNA4nHFb4a6b0cSqkhHakEZ1ZbCvF6Q62bFMWhpN3zKFmFe3JlM5Ei6SVjA36xlPyRhBL7mwJZanJuzn9hQFFViAcTCUJqrNx6VPLGYmumlteLV2+cHe5bfkfAbPCtpa8lht/ZOxx59/7lIgJEdEWMSnhO3k20NbS7RXLNtQ97W1i6UUFqY1IrVrX+ygQTBChcZyUBQNhOGgTpnZDI9/KPKJO3/PmEf54a8dNJy0u7Y848UWIcve3IanFUzEingCivRR5qsWT9VblZlQ8yVOLJ78JRxSXXDg1y/kTPWIcJ7IOZhNd+JaYHCxavhL10dRmEG6xaJLD+2KbpOaNMqxvKmkpzUSckwpDLA1UESftBGXVYEoAKC+cnKuT8gTOga0/44tO2i7WTUsIQmqbcSI/yfe636U0bZyLESImFm1ipejsEdE0Fg2y1n9xF0WDbHXhds5VNqkWYxzO2uFzqgJW5/zfOMcyY3QAb68qQCB9NF06jHQY4QdXZWVH64T/jxSKFmKYEgdIfFhbCUskJEo4ItUjkrMoBNakaNMizyLygaDoK2yakk62iVttRBRjkdWFafu8z8468kHOYCFj0MvQpUFFiqSdnpED2kos96N76lfZuvNlnKPEcMxppMtJUUFUbSLGWfqDkm6voNSGJFq+oe56cDhyqVmICwppGNiStomZ1Mm6HfkivBlFhuEHKmPaGg66ZEc28jXO0sdW6XsaiyNBMcXQzdUJi0tyXKuLi0swatc78VkcWvrvfSktRvihpXSSZK+IJ4aRpzHxRCWe1Dref2E5ONHlgulZ9kUFc0WLebNxw9O1mj8sl8nQPHdZ0eRGUxuq1PftkZpXU9cptZSmJTUtVTARFSTSoISPKJtKNGVO+XTMkaiSGz2OU7CXxNMoQUhtM0pjKY2mE02RyJ3XAPZU0SDn7Mjja4sGuUoArdTyTIgq/UpUdT1CVNapAqSPE/moj2C5cb91DoOPOBUYiiry5LAoLJG0TAhHIiyx8BelqBJMSdUXIZbGiygsUjiksMixsL4BYf3laUbibIS1EUUuMVoishiVJkRpgowjrIvQRBinMNV9i8Q6Vd3Kkb+F39N62QYJsbLQ5L2c/nyfIvf20VES0Z5KdvEQaf0oIVDVpXQoqspGVE3KmDYRSRBVZ0TdUHehn5Pna2uouxYMjl6U01clAujoCCMcvaiklIZJnZ5WdKpNhHaOeVkwcHpHNfKtez/NoSmq0v4WkkgMRYLDVQJq1Ilv9wooC2jpsxG8ePJ1IMpJkh3Yu+h0acRT9Y/KqXrd4qliIsk4f2aWc9s9CqO4fTDBmfx+LZeWB0vF1GLRNCqcatFkR9LxxvoyAYgRE+8tTs2TleudECCFJZKGlvLRpiZNT9iqvgm0k5ROMbAKnGSxHfl62KviaZQgpLYpW5VP7ZzDumWiQbYWN6cXDWq6ki+iMTgQIKofad98D6SQ3tigWedMf6IdEgtC44QGYbCiBDSRMCTCkghNWxoSaUmqC4+kEkZi/HLjoBIvAuMk1gkKFNb6+3bs8jzyLOEQQnthlThE7LClxvUNolcSpxHtdkQnkSgFohJndbmSqO8LgXOiOqoqHxl/UfTiS6GdwrgYQzQmtMaFmG+IZ51EW0HW1wy6GdlI9Cltp2e97mQnslhUFRjusCUSSasSVa0gqtbFWEPdrESIjTOSKIRmISoolCG2ElUNiJUTtI2gkIbZeEDbxEzo9TvyRQgmXUSO5TaV0XfeKr21DRv51r2f5ivziKb3E2qsYbbD4aIC1+7jkgGO3evEZwEjbGNXPi6edl6E8XRxFqwxvlGusbhR8RSd3vseSc15kwucPzVHrAyzWXvdaXyjomk584fFLP5Frte1wkcZm6/3mGhyw2gTMO4ecXbwImloFV5P1nrhVI1dVEkqDW2hSZRBYRAMbci7LsFt4LgyCKgh2+9qHjhtzigapL2A2uhokETBKtGgMz1iWUWBlLD+vjBNep0SFkGJlCVKaoQosRiEMAhqgeQQVYoeApyTGIQXQk6inWxE0vLCaL0IcALnkuoIHEIYSDQiEThr6Bea7myEkClJ2iJpxah4uRnxqvcCtrrQ2kpGWRKZk1aySVTnCSeqtANRCTHfJM+h0NpS5IZsUFIUDh1J3P4EqxK09VExU4tGOxRj/twMz5GpxFzAi6r2iKjKMfRtiapE1UQQVadkSUPd5Mwa6tY4HH1V0osKLI7ULPf9EiQ2wgh7xtGpupHvQtXId/82auSrnaWPYc6VDDA4IEXSYmkzdu/E18elg13rxOeoez0Z8hHxJJ0kdmrPfFNXEk9CCtRpiifwomB/q88FM7PMtDIWypj5wdpr6VzzbzzatFxa3rLPE+CEq/TQeGpenZY39IGofvPPQn/Yuo+Sn1T2IkkJWxk72Gb8JHAkVRZMXAmnWBqi6mxoJymNYuCSDRc7Z0087TCVFoTUNsRa39DU+yLU0SDf7bmJBtXhdWuxmxINUr5QdMOiQWtDMhREckQQqUYkGWKpiYUmkqZZX1SRI4fB4nwOOw7twFSFk64a/FOFs604s5D2xiBwLgIXQSWq4pYGSqwZUJSSIk+JohZJ2iFOI4QcXvkdArNcseda8pmtweQFRVZgigJnNXEkaLVkNeOVIUW/SRmoX7H+0XJOYJH+thKadYROW4W2kb+o2wjr1Ijo8s8bF2G7W4gtFlUDDD2riRDeqELGfrAdRBWwuQ11NZZuXDBQJZGTpHb1yIJyckOiU3Uj3xzD7TKjXzXy7WxFdMo5Miy9kd5PEb73kxJLj8tJ7Y0k2rvTiW9UPNWNcsG/Z0E8nbl4qulEJUemZjl3sosG7hh01pQKt5x4qlkh78PfiqFwalzzRlLzmm2chShT/TsqRprPCjkSXRr5na2e0Bx4LA0JhkRpOlITSz9JCpVwsorBJkVIt0LT2B2mpIKQ2mb0uxn9+QH97gmEU9s4GrQ2xFi0aDmBZIiFrjpimyqFzg7T6UaznYWPwVgnsFZigMJBaSUFUFp8Clv1HFlFmvwpEot3bBtSiyoAf5FNWhrn+ljTY5DNkuct4qRDHLdR8XIdw0+NKTV5VlIMCkzp+zupKEEkLUqgWrQGhmmPYiQFMhKWRGlElI39QNS/C6J6bi3ErBOVGBumSWqnvBirbo1Ty0TAZBMlG1229eJ4dZQQdKpLr3aWAZqeLYiQpERV+p8i3jOiqsrvryZAsqyg2/cNddNIMNGSSFFWnyHX3DJyv27gKETjJ9UMWBhZv5SGQZSTSktiRdNfT9bps9W6s/kEJ/POiKgfRqf6TXQqIbXrb2yeooidpN9EpxIO2PWbWpwOde+nOn3PYEmRY+YRo+x2Jz4tXJW2Z/a0eHKVeDKLxJOMNuYKpITlcGeBI1PzpEnBrE4py2jVbZ9KPC1Zt4ooWcF4at6i5q6bKZqWiyo1ZQFVSt7YQdS+FPVEr/XrJ8KSCu3rnBrh5HydnlPk1qfsbyY7S8psLUFIbTOs9he0JFZEMqlE0nYa97ulaXSLUuuiKmIUV64w9SClvqDU2/H/FU00oh5UlzYaDrDrYVFlCGFwWCza2ep+vRX/P4WvS9j0TpybzngKoJQOqTTO9SjLBUodo/I2UdIhjlogVx/QOWspc00+KCjyEmsMSimi9ExqTYZRqNO56o6mI47OysVSk1IiomGNWhMJE2IkIgZmJCI2TMtUaCcbIeYjYstFwIZCbHTZ2RRikZBEyObzPSqqWmORqlPNNjYeS0MBQVVPx7i4qP9GDAVMvW4tchdvY+XlI9uv3j9fh8iIiK5nYK3P72f4vLpI2gFaa/LCixQ5CbGSw4j5yPEhaI6nScVpBiXVrHOdxurqlF1HIQ259Gm9kasNWRxjW3f+uI50ZjmZT3Brf9+YoFJOoproVHZG0alJF1FUjXz7wnDQpkw6xWZc7Vfq/RSL5QdjO9GJz1afBSeGQ2/fBNVihcNVQsniBZTGYaSfdpNOIJ1oPhGaNc8mrZHTO29re9b6t+2sw5nKrtz6lH8BEAtfm0wtYM50OO3Yn+TcaWKOfe0+PSS3Fy1Aglp5601JQfV3c4SLMu3G65r86428tP+81s4RG0QtimrRhHAo4ZDSp9U32RtieEmCqp7a1iUCQyJhaEnt67OVJpUlUXNdFD7aZOIlz9sMgng6PYKQ2qZIKTfFWnopbsy2e7k6o0hoIqmrWzNivjA0YGgGtzAiirwY0kT+AlINWk954XdgsY1oKrFoN35Zr/s2RQDLpKLsPgS4GEGMUA7nNMZ2MfkCZRERxW2iqINUKeD71jgcpjQUWUnRz9Han30VK+Jk67/6DoFzqupuvv7n1yYc9Q/aUIiVpKKqHatnAV098B4KsdF0RFdFxWohVto6IhZVdXJqLP2wFmGuOtOwXDSkOcph5ARGBMxQjIwJFWdxwmKEwfsxCtpCkEpFC0lciZThtke3MbL9YaL/yP6N/L2MUBp9rF46MnE6cn/0yEeXL7XNHak6qGZex/8ujSXLNUVhcAIimSAklE5Us+PD13FueFb934wc+fLXlRJLpkoKaYmdRK4hlUgJw760x/60x4l8gqP9fZzMJxpJmtgIW0Wniio61TqN6FSCJG4a+fbZ52IObFQj3yr61HWahab3kxzr/bTkKVROfGkPm26tE5+PMiwSR6IWTL41BVisHE6o0dS++OdLYZGqREY5QvrfFCeq3m91DYyTzYDXuVpEDD+ffp2RdLHRz9vo8ubrM/IZHXm8FvWr/v5t8kjWOYvvLGLrH9Emdb/+Xlt3GgVByxxSS2ouai9wpN3FScdtZYJzCj8ntPQ1VpNt9lRayFWRpg0wPFnJ2GFxVKn+CtXv+2hUaaXJOAFVvyZNIjUdVZJIn0cDfmJQW0nfqrMmaraLeHLVd/qYjRFKb/XurIutH00FNpy11xkZlNQorI8M1BcN6oC6vzh5e23ZGDAY6roXsSFW29b5JoYGMFW0ydc5eQR1s9u1Nfbb/QiE8D3GnHMYXaJ1FxV1iaIYqWKcTSkHUAzAGIdSkviMok/bD4fEjAc41/XsJg1jRIhJHEqWpCofmpE0QmwYv6ili62GmKORHRiZjWT47XDDvEaED32MLa+3PypAfMND0M6nvfkGiYpYKGIiVP2qIwLFC1TZbKc52kV/+9ce//tsxr6NdQzykjy3WBsRxylS+HTdjQgIOCCXmkxqnHAkdu2pksYpTuaTRMJwIO1xIO1xIp/k1v4Ms5Wgkk7SMoJSWubijMLGTJTrj06NNvI9IYsmOjXtIk7n/TDO0qvS9/peOizp/bQcNspHnPjYFCe+RhyJYcSjqWHBYYSrjADq67+tg/NLvuL1PIGoPtcC4ffXWkSkEVGJjApQ3mnWOAlOoBpBU+sa/0pCDF+v+S7XLzJm1FN/d0ejH+PiafExN1sc+Q7W39lGrOEnd4ZiYOk2R7/Di7e5+DpQ/YxjncMa5511q1G/FHLTfgsklsOtARd15plIC2ZNTKajqkRp+KL1KMM190d2aPG+LbrOn+muj9qFiyo1vY4q1cYOguHbXr98XVYwfrVf5XXwjW8TYUhUSUeWxNI2BQg+c0KSu/isC5qtFFC2Ek26+meqfwiYsx1UUmzh3q2fIKR2AEvrjCxyLGo0rDOqo0lrqjMaqS+xdtifaDNTm1w1IPRpehaNxbjhBdV/l8RItGkXjfw3ASEEKkrAOXRhyPsluAFCOZSUJBMJiBRMjLM+AhSAWnCcqRATVfrYsrPVG4wXVa5qiwoKQYIilT71b/WKg+2Dcd7OfJCVGGOJlCRON3bfDY6B0hRSI50gPoWhxEpopzhRC6pWlwOtLscHkxwd7GM27+Dw27bC0ldVdKo8vehU3ch3gOEHakDPxhx0yZpttnPno0+1eYRCLOn9tBxOldjW6TvxDcVQPf02FEeWShRVKVB25PFlNMcy4kj6+3Xdzgrn1AqLkxqiAhEXCKlBgLYSV8bNdAcsFws5U9zY/eFPVh2BHnl4LLXWjl8tGnHnhuu6SrANZ3GqTYuRx5cKuFFTqjpFTlSzNc3kyeJbO5JKP3Zoi6PLi5cPr3vTKudOnQXOaQ0YOMnRsgXOi9wm4lXvY3NOlpzQMxZMY8YOdf2urCNKI3W7YmSCy41HlU4nlU4JSyIMqTSksqQtfRaPqo7bOEVhFYNNrm9aibMv1qq6LgFGDkXTSuVpwsGkLMl2mBNoEFLbDEHBeekCk0CqvFuLFGa80etInVE9+7R8nZEYEUZbMMhyPoWgFk66StGzDEP4dYqetx/fGQPB7YSPSFmMNlhtq8nSGGf9YFKZkijRqEgihcTZGGcSnItwNnz9T5868nMWX1F48aRQjajK0AysRiFIK1EVb1NR5XAUpWGQacrSICUkidrQr70DSmHIlEYLS2TlhjTA1U5xIvOC6mC7y8FWl2PZJEf7+5grOkuiU7mNmTzN6FSnauQ7VzXy9dGpWgwsOt4qfW9hpPdTgmRylfS95rlS49IBttX3RhIjTnyr1htVy62wS8TTWsVRNfG/brHZ7LvwGQxWGIgKVFQglUZJi7MKq2OG03KbzZhSGrsmDCNGm8XITFDdrsTWw9eqz9No6m4tLoCmvnDxtkZFm2NVoVM/GAnLeemA85M+kbScMBEG6Kh8LNpUi6ex6Lgbj5Y30bdq+0sieYyf18V24V48jdqFVxHPEeHoxdLaokqrEVWiKRGGtipJZElcCTeLoLSS7CzVN63G2fiZqlPzarFU364U1JYOIgfKVrfOjwfv0ulzND9yFvZ44wgjqW2Gos+R1jyxcyDipj/PuuuMtoDFhhDlMil6AkEzVxuE02nTdJYvNdZWZhtSIOXIwM2Bs5K872fgotgSpTkyzgGJc8qLKhv7SNU6myEGto7Fosrg3f/6tagSilT4SNVW+485HLq0DIqSvDAIsfECCvwgLZclmdQIILFnnna8mEZQSc05ywiqOjo1UN40Y6JMaJ9mdKpu5HuryuhazTkuJa2iU3okfW9Q5UGmSNormUc0kSGwQuNaGaQ9bFSCVVircMpgo7KaLfbKx42PbRsEdXBFVH+fuThajTrVz2DR0iKURqqSJCqrCIPAGYUxu8eSfU04sNZC3RsSQOIde8E78m3WCwMIx4Ek46JWj+moYN5GDEzcrOKgMbjBgarFzTIfkTFzhjoQV0eM6ue45Y9n7LkOP6F8mlGl1UiEIZGaRBo6qiARhqgxManrm7aHc+xmiqfVUvOW2xHlhmJpKJpWPkdnc4JyIwhCapuyULYRcvv+KLiRaJPGVrVNdYqevxLWkaaQorcxLIk+4ZBSoJRa/gImqtQ/qXDWoUtHWfpZyiiGKDbIuO/XtQrr4ioFMAopgDsIISBCEsFQVDlN31XNf4Ui2SJRpY0ly0uyQoODOFLITdDrtaFEKS3RGg0lzgRtI05kk8RSc267yzmt3oigatMyilJa5pOMwpx+dKqFInaOBakZOM2EjVFG0MOQY5ACYuHbW1hhyIVpIkUGi5XWixDpr8sizhHJABGXOCtxJvJTw5X4HIoj72JXD0zPttmEw4s+g8VIf4swRJG3hI6UQQqHsQqrE7bjxOKm4XxPSWcXiadNNKcarVFzgBWCCVVwYavH4WSAdpKjuoUbLQ4d7u7IHxu3T02W48ZtcgyJI5aGdFF9kxrp36SdJLdnv75pJTZ6P04nNa8WS7VgUqdx/dgu53OtBCEVWBNDQ4jKNnaZaJOiKvjdEy56Z4lqpnFJ9EkNbWrXgm+0LKoolaXILboQyEiilETFIFUGKgMnQgrgDmU5UdVzmp7zkaqWiEiE3HRRZawjL0oGWYm1EEUSpTb+9RxQCM1AeUOJeB2GEhtBaSOON4JqwUeoBlMcHcwwX7SxOAYjtVOnik75gcvQcMFRCSJhOSYLvi8MykFHKFIETkDGeAoe4CdRKlEkABlponiAjEuckZC1z7o4Wg0/OK9aWwhf8+R9KR2J8rbQcVQipcVaiTWRN4/YK5wl8TQSZKw1dOOcWC+LheVI0ufCVp9UGGZ1QoEcpgKeJTb6paSwXjRJQ2vZ+qa68e3W1Detxkaci41KzTv964pb5t7OIIyQAktYqyGECtGmTcNHnwymrDrMnyr6tFYECOUTP3yUyqJLiywFUaRQSiKVQ8gSoXJwi1MAo5WvrIFtxfKiqqTnfOpYKiJSIYk3UFTZ2kgiLym1JVKCJNkchzCDI6sMJcQZGEpsBKOC6nBnjnPaC15Q9WeYK1MKaTmZ9unbiI6JkVXJhq16HHnhUAuoOiLjKDAU1CYNoJzACkffWYyNaDmJcsMkmcWDGKFKSAbI2LtguXLjnfhOh6Fwqn5n5LB21jtnWtJKPCnpUxeNVZTl6TkZ7khGxdPQMWLDxNNIwHFZwbTok4TAcTDOuSjtsT/O6RnF7ablM8KbGridQ1SJpkQY2rL0nzdhx+ubbOydFLchZ3K67QqiaaNS89bHMkey0z5LW70DgS3GjfZsCoYQW0odfSoNxpjTjj6tFSEFqopSWWMpTNmINRVFSOWnGIU0iJACuKM5laiqI1WnK6pqI4ks0xSVkUS6CXVQNUVlKFGKtfeGWhsOG5WVQYJEWAHIRZMHbmzmvklorgYk/bJNLEsOTB1jevIEt+UT3JJNM6sTMpmz4ASJVcROeUvoakOycmqwFgocJRZbVbskiySSAfIqatN2kmTxeyYNIhkgk9zXOuloS2sga+Hk6oyGKtXQ4sdudQp4pEqiqCRSGlFFn0odwTrTIncsK4kn34ju9DY5km1nqT+3K41U68/iOC2huSDtcX6rjwNuK1OcEDjptoUwXwtJ1fYlld4YIhWaqHJOHPZvirdFfdNKrFdf1N8xI0CfxdS8U+3VqbA7rEgqCKk9hnWuEk6r92yKCD2bzhbOVeJJG6xxGxd9WisCZFQ1orSOsjTo0iCVREUSFUUj3dpNSAHc4SwnqrquhBFRlQpJtEZRVWrLIC8pCt9EMYnVpvXIdkAmSzJpAEe6oYYSvi7HRSVW1o2sqnRYROUuJqvJJ7Homc3aAGgEg2KCVBqOtBc4nPa4LZvi1sEUs6ZFKR3COdo2QjlZ9Qiz5FjKSqhFSFZKIlKAdJISx4IsaTlF20lvvBDnyDQDpXE6hi2K1JlVhFPd4kIBSmmU1ERxgRIGh8QaiTXbL4Vqc3A4W4kn/+ECqsjTOj7ap0rLG0eM/HdlhLMcTgdc2OrSUZrZMqFA1W/ithVRAtfYkPvGtwVR1b8JfJredqtvWo217OPmp+bthDO1NYSRzy6mNoSoU/QWG0JUFU3BEGIrqJsk6rMTfVordZTKOVc5AxpkqVFxhJISqRQYPzATwoYUwB3OYlGlK1HVdX55q3L/i5BLRNWwoa6vg4rjzTGSqNGVoUQu6yjU6b6Ya5zpbNP8tU6rs0il/ZDBSS9ppPMz9GIol2Q9arWqmvKvolYjzVUBSiM5ZmJSqbmwM8/hVrcSVJMcJ6HAoKzCWh9lkngxu5YjE/hIlQUGqsSqksmkQCnjBVSRcnZmYjx2xFmvTtUbCqdhU3XwEzKR0kSR318hrE/d2zPGEauIpzW8+XYVwTSelrc2wTS2Z/7Dz3TkzSQOJRkDo7i9aDHsVMu2GleP1zdp2rJs6pscdeNbRbYN65tWYrXTu/GpeRvlCLLSNnc3QUjtFtzink2jhhD+A12n5wVDiK3D2Uo8aVPVPvkfTxVtrxQ5IQQiqmbjnaPMSzSVOUUk/f46OZIuFFIAdzpCQFxFQbyoMnSdF1YxsrFUV1ZSlpvbUHcUbyhhvFgQjmRNhhJupAbE4qSr0sts0w+p3jZUs7BWUCmBesnwv2PXy2oUKQBlKntnfIS26UwrcHUkyEpyq7g9mySVJRe05zgnXeCWrMN3sklOmoRYKFomOq20yjgqaKcZTpUMnCAqExI2pn/Waoxbkg+FEwzTwaspl2qp9eJJFagR4whjFG4HDXBPn0o8Oar0Pb90NfG0Wlre8nVMpydDa/HkzSQMF7T6HEn7RMJyvEgwQtbhim0xPhZAS5aklWhKpSaWvs2HQ6CtJLc7z5Bk8akdS82r0vPWmpo3ejsurOtXWc8buS4pvo51dwdBSO1QFvds0q6ucwJGok2qStML0aatxRqLLg1WV9EnIZBKbv/3RYxYqDuH1RajLVIaVFyZU0j/8z2a2rdiCqCNfLQqsK3xokotElWGWe1wpUWU+AbAScQmui77aIssvaEEYpneUKtFl3wF/HjanRc50ko/eLSAs1jrcM7gnEMJ41cefS1hh8/34Sk/aBW+MXOzSxJENaATka4mIiph5SQDC/NlQorhws4ch1tdjmZTfDefpFemxFYR2bXJKalKVJIRxQXOSVyZIIFCWIxzJEISuY0sCV9qST4qnASiSkUcf3+k1E3tk1IanNhDxhHLiyff8290rfWn5Z2pRKjFE1BFDh2HkoyLWl1mopJ5HTNnE79fcmTHtgiJ88JJlUyqnFQaJG5Y32R2YH2TG73rmn5Mo6JptdS8pp7JrjU1by1v4GlJ8dN4zlKMg++WUz66toMII5qdwCJDiLIyhBg1vK1nAH2K3s6ahdntWGMpsgJrHVJKVLwz35+xKJW1lHmJEbWFukJFw+NybjQF0IQUwJ2MAGkEuqx6mEmHSCUGQ+4sqfMD9miDYyClMAyUphSmEgQCI9YYXXICUf3zD/qZWN+71FJax2gTUyEEQoCQEiGrSJIYFwR+3OmqiJVdNHQQi25GogyyMjWXBpRFITBOcNLFpMJyl6njnN+Z4wfZJN/PpujnHRKz8tkUUhOlGapy4jM6biLDAoidwOAYCEOMI0GiTuM7VhtEGGw1C15bkq8mnOrjt6jljCPKmN1vHDEqnhyu/oxV4slWUab6XJ5pHdM6d60ZNdiRxVOq5KJWl3OTjNJJbi+qnlBbHIVSwjapepOqIJYGgUM7yeAsOuqt6fDXcY6a1Dy1Wa55myWY1vsap8Y6OOFa3GY7HHNtjJYciIoN2fbZIgipbYrGYJ1Z1RBCEQwhtjvOOoqsxFm37dL3ThvBmIW6qS3UVW2hPm424JyCJrVv56cA1hO52vpvpJRVyuwu/CpaC0WpKUvj035U5cTn/HkwWHrSIDAoJ0mdOG1R5QeX3g48V5qB8rYLEkEhzKrRpdGl9cacc9gqElCbuIwOagWg1NIIV8PYAVTzvGLZB0eeVjn64UWaHXlIGLzgESCEQwjHQMCgjGlLzSWTx7igM8steYdbBjPkWRtlY4ST/vsjDVGco5IcISzOxDi7vChR+Ia6pXAYDAnCuwSucO7rQ2gsyYX/N7Qkp8pwWH3Ge8w4Qhqc2yvGEcuIJ1m990qMRJxWrmXatMuHGyYD2kUPJcJyftrjgnRAIn1PKO3ksNRvC0RUJHydU0eVdGRBUhm/lE6dVtRpQ0XQai+9zGOLU/PqprbrT81bLcp0pju+Xs78A1GLp9tthztcGzMyudIR5Rlv/2wThNQ2o29KSmHpUWLdME8/GELsPJxzFHmJtXb3iKhFLG30WyKlRipJ1Fiojz1jlRRA6cXUNkwBdA6M9SlT2lqs9U2qARCghEQJQSQFUkqk2NnCyjkoS0OhNdaAUmJJ/xpBZVQxJqpA4CNIyTKiapi2ZLBUA/e6j5KwGOEolMYIh3T+uucc49Gl5UcsfgDr/HszOqiFWjiJ6vO4CW9ME/jyVRpmZKEcXWdEiDlHFRETdF1CN09oxyUXp/Ocn/a4NW/zg2yCrEiIpSWK/XDD6sjXX42kZomRdMPRl6ujU5mwaCAdiU7Vwmk1S/K6yfqqh76ScUS5240jhuLJN6yv3g3/xRhbb8gwyrSpZ2ZEPC1O6KoSsTkQ51zU7rI/KunqiPmy5Z8xGoU6SyIqacRTTkeVRMJHfEsb0TPpkt1wK/6xCusUQetlSWqeWHtqXu2cN56aNz5ttDWiqWZjxdMx10aPiKcEzWHZ57Ds8986d/DZubue8eudTbbPSCUAgHb+AhL5ZPut3p3A6VIZNJjSoCLlZ5BZ5aq601kUpdKlxZTFiIX68j2FtmsKYC2crHNo6zDWNcJJCIEUgrhKAasjH4Wz5MbhM2IkSlbCSvj7O0FYOQfaGIrCYIxDKojiU0eXFosqLSxd6c+XYsSJTgxrmtzIbLfApxoV0jvmJUax6oDA+TQ9auHkbCWk/FyTEF7gy3WkkVlAC5+utt5pDycYyxqoj+lUNBkF1U1mEo6ahI4quTjtcqTV5w4dc6xs0SsTjBO4qKhUkPSW7EZWJhnVCNiJKlWxin7hzdZKaSmxRMILpJUtyU+95z51z1TiaS8YR7jmv87564Jxw2X1x2w0wjT+99lh1DRiqXzzdKTmwnaXw0mGA+4oUhzirEehUqFpKc2EKmipkhiLRVBYRWbHP0NuyR2GB7UF19XTcc1b3J9pZde8xX+vnvq5eZzOh6Ca2BFV3NA5TrgWR+0Et9sOeuTK2kJzQbTAhdE8h2TfX7dxvgYuzjbkCM4WQUgFAptA04spkiAdIikQTmDLZPeKqYpho99FFupV2t/SKJVn+RTAHiCaFEBnYtiEFEDnwDiH/f/Z++8oSZLsvBP9mZl7iNSVmaW1rmo93T0903IEZnoERkAtCYp3wOU7D1xyl1yQfADB8wAS5BLEocJiySXBBbDEAoQgCZIQo7VoNT09M627RJfo0jIzK3VEuJvZ+8PMPTwiIzIjdWRVfudURWQId3MPF/ez797vGjM3ccIpCWWjMdamaX1CCJQPXq21RNpQ0UkgmyVWAiVlWxErC+jYUIk0sTZIOTeBSme8ReKQZ1LDh6TuwwhDLKCEa9yprCS0EmVEqlQZIJKaSGqElah0Wr+6IpeW54PYWeqbkhHbZLlCEAtB5P/Fda9lH7X/QZQtctRM0INmLhhPoJoFrQtF2UqGbY4uVWFfcZLNuTJXSp3cmO6kpEOXAyQdaSdIxqm9MgzWCJdSZ3HpdbgZYSthWnib9UgQWN9uQQhEsh2ZgLCm1guLlHoNGEdUf48M/cnk0iW0sYr6kVe/b1OF0Rr/V4b8u+BvGdPyWkAz8gS126UwbMlPs7MwScH3hIr8dXQlSJSg6rTXFTiziACDRlIxssaavClxWuEdveDUPJNRm2ikMtU/Z47XV3LDa8+ehBRJR7f9vc4/xx1XUlikT1e21nJdd3JR93Ap7ibKkicRsVONsTMYY0BOpxlWxiv01l/Bm9cNtifWidQ61rHEiCsxcTlCSumCPBUh/Oy8pHJHkCkAhEAGPrA1lqiiidFVC3XVWKXyX/YpgIFfVJICOA1WLToF0KXjOOIU1REnhEBliFMCY61zxzTV2WgpIPZBfmaz01BNeJJlrCGOoezfT8hUIN26lKyqBysNoy2VSBPFLiAPVC3Jc8G1d2gTziXUSlfPhPAhnEg+6RUR/6eyyrmGkig2lrIwODdlb7wgDEYaVGJrnqbpuRQ943vtRNYpRrGUaCmIQ0EkZC0pgvRvu0CmqoXkuOziXj1OcUZVycLVp1bgiIpTe6wVTER5JqIcHSpmX8cYWwuTjlBNdVGa0QDbE1hlEaHFihgpvEpnJcoTLIxEW9BSYmOL0jODFpH5TwpLGGrCMCIIY6S0GCOplINU9Vo5ZFQgqvTBJqlslpr3G3/dpt9MXxaQ9AmrISSmdoEuoGTVU+xbJU/+0/QFFXYVJhjIVZjSihuVAskFJyVRy5DK18xpL7aSyCimPXlqB+JUn5qXPLacmmcyqXnp9bC69NaxHBvtftxE9XHjNJ4U+efMJEUJWUoea4aX2aTYwjXd1ZA85YnZpsbZriYYkNPpqRPZYEWUz5XAOpFaxzqWECY2xOU4TS0SwiCC2FkgG4lQ+s4iUx41jX5j5/4200K9ORabAuiaUzuFLPZESFvjY3/fJkDN7E+UpPBo49zLrMGpNfVpt3WrTGayTSOS5VUDEWtnl41XqYQgJyVKyVSxWs4jxNqqkYS2FqUEQjoVqZG6ZEWSBGY9WXKkR/qq+rnm5ZM+dljXXHdSGkrCEgPGKowQRFYQizrVSApixIKCV2Etof8XWEsI7jH5u+5RYjnWUWBCBLylHJnKJcH7shIoQ6A0Srml67QGyq1lSodM6aBKqPJTXJ3u5Fqpk2mrfOsqH1gLt4+Fb0IkACmtO9aUAYxvwOya+WIEMlZI7fpgWT/dHiiNCiLCMEJJjTGCKJLV/lhO55pZnyVmGnOImoO52V6rJ0nJ/y51di6SVKMw1Z07idKWLCa7phlU2TRYkai+ZGe8OXMMjbdQzPLX3Ki3K29lWXmp2Z6fZFthCoHlZiWH8RLjcqlQrTjtrTZxstgasrTg1LzshojM85aw0I2dixQ5AqSwSGEQwl3XEmUpIUY1Q6gbss/FyChF/tqQ+ZKxcMN0cEl3c0V3NSBPE2xX4zXk6XbFOpFaxzqWCFY7cwkLrkcUgIqd3O1JgNXqjiVTQF2jX5M2+lXhTAv1ZpiZAhjXugCaEGtCdKzQRqJNlTxZ69MUhCQQ0hll1C8fV38TW+OaWlvSuqdWyxYTNcr/MWP5CHfjdQGiJcaRuimqilUgJIFyKYGhdL28BIubDLc4dSzSmnIco61GhAKk9bbMzdUlaVVDsmRxjuARjgBFeDKEIKp7TFQjvcCNULOQoEYkqd6TrxUcNeO8LnsoCcUx1cVdZqwm1lzKM1YI62qNfGNfbeQs1wTBlAmZrASuhqp7lM0dE1wqdXK10kHZBP53mvnNhBxlHc/ccWaxSmMDDVa4/SsNgXRqFoDRiliH6bHQ6BxICYqTehsPv8Z1g5odaTPMq9l+TklKgwmGDOdMnzvzBzvzM3XLk37wxs4cd7PDtFmobGd9fwHkK8Pp5laeqpBYNuWm2VmcpFPFjMUhZVMNdFMS1XxY80Ijpz0BVLzTXtKFbcaPu8y3v/mm5lFHlpq75vlfpOXxzzZ5sNykqHruG5ucp7KGFLWKhDxd1t1cvsPJUxbrRGod61gCOIe+So1Dn1Oj9AyL4pRM2QgThaxOQtcqQ4AQEiWptVCXgiCcaaE+24KsL0w21oKIMWIKKw06kOjY26uLEEWAlM0XWk3dMyTZTkoIgiW+I2RJlqybBU2VLANloynpqv+bFIJAJsTKPcrUVCFpEJsJJIX2t2lvaY0htprYGDQGETh1zdapS64Br1OBUiIkGxOiyD8uKI3OWgIc6XFEyKKS1zCeDEHOWHIGT4yW/1wJMRyxY7xBL5Mi4KTs4qCZWNLuRwJPoAJHoIwVGN2k7s/x2RpSMOkJVaeKOdAxxvb8FJdLHVyrdDRI+WsM6+QrBArpjSNyMiaQ1tVY2WQyyDgly7oI1FqZYU4iGaJXfaosJ0sq6hLpaj+QPq++UCWuVZOWVFWy1U/Yuh+lESdoGLMvgDw1WuZ8MG/yZWcqT7L27YboCSrszE+yMVeiYiU3KnlSkrqEKlTWaa+oIsKM09649o6NK0icklq2hCzNOzXPttLQdvYRACtMiqqK0XLBWLjpladm5GmbGmfwDiNPWawTqXWsY7FIHPriWptzEXg1qkGvF6sVInAGoHcsmfJoaKEuYmTQzELdwfhAyFib1tG4NDqFkAolLblQQz4Cq5yrWOwMK4xxxfEtp+6tEBKSVc/3LG6MkdZUNEzjb87SjVck/wQuhStxTRLu5htZSymGigWNRMvAmy80IEmwINlL1qtCxjhiZPxzaVHCpZXlrKGxvpXdYh8EeVlJW5caKmus0JcSXpWTkMNw0IxzQvYwKnKcEx3ssVNLcpY6AhUjhcFa53RXgwbEqTEEkzpkUgd0qZiDnaNsy09zqdzBtUrRKVSzjUNqAqkJw5hAGm+4IinH/ii0wpcN+Zn3pP5KOHJv/W9gEoJlwHoi3mjorVky1Nb9JOmKmbf9wvyTOqYh6teTDeAXSZ4Wi7lWkeWSyT6om2ch85EZuzgUmu35KbYXpshJw3CUQ2eZZkIqhK0qzfNEM6e9spGUTCbDYpmJU1LPFIv5p+Ylj3Nb6VRJTnOjhdZIkSCZAKhiNUhRq8iSpyu6i0qGPOUyytNykacGp2hbY51IrWMdi4G1ROWYuKJdWlpyH5EG1Ew1quarZp1M1UDQxEJdoAKFVM59zHriY7DVPkHC199kUvWsAY0C7dVBaQjz08A0OpZEcUAcK2ItATWv1L2Vg03TAKV07niRMMRSEGGpCJdGF3uVKHnU+BQ7KzCJSjBPV+pEJQotBP4xrHm03qHKqUfSG0NY18AJLzuCAqMMRoIwSaA717Eu0tgd64JpIyxGur+lFUjLkpEqF5i5f8mZ2I1mv5ngbdnFDVkgZwzb7cJteZXUqECjpMFagdZBsqlps9aFxQ+CCR0ykSFU2/NTXCx3cL3cQTnjcCmEJVCanG+cKyVoI6jEtXbzOg0Ks3KpyDxWZ9+lMNVIwup0g4zxv7PxAWJGnXBPbc2i573tDb4wQ/2aZaHtMHveiDwl6ajNhlfPUQSWwbDMruIEPUHEeBwwFudqvpA100h+x1b2twDyMqIoYzqDMnkZE2DdBIxRTPsJqZVSnCoCIgmVZhmwdWSpWs/kHS4TpUhUlaKEJMmmpGh2owVob1LUKqrkqcuTpyo9yNWl7c1R0jw/SEh2qC+3RK2xtpvrRGod61gE4kgTRa4BbfbOLILI3bhmIVJOgXFkSgA2yjX/7B0G4dPWrLVUtMHExpMJ4WyulSdOLUZD1kpnBx0b584nNTKIKYbJewFah2itfIrVytwALRAJiIULEmLp/nb/EsMF6UmSI0wLTaMLsT648Ol0ngylKhKQS8gTwt8sRU06kfERsTU2JU2Jw54WntBm5DStDFp6Iuhs/xawl1ohVY5YzZdUWa9CxSJJJKsd4QYi9tgp3hGdXJId5Ixho63Max1ZJ77ELtwpbQslTs1QJVTdKuZQR5VQDUV5jLTkAu2UMCA2EhtLqtSjdjROEfTBZI2CkdlLtj4rzwWgCIsMqnKR8ctwrb+kT1uTDZweslsz5+a2hOzsdruRJyDTx2v+Z0enithRmGRLbprYp/HVBO91KlQrEBiKMiavIrpVpcZpr2IU09nWE8u8PzWWinTkKarfQdZfr6wlh/sXJIQIi5TOgU5g03q/GmIksr+FTReeGC1Y8MYYcs2RolZhLAyZYpq2t+TkKf3NMkSpha8sOu90hbFOpNaxjgVCR4aoHPvgPhNmKI1QJuNuNQsyZAoLNr6DyZT1gS2k9uLGAsK5yWEsRlukcQ5iKDlrzVMCTTX1D+uCfWHCNIaT0nh3sgrGCKxVxFGINgFGK1cT0iI0eNe5hAglREmkBCn7/kJNF2RKhEhJUUKGlDUobVHG+Nd9LxM/cSw94cnCxRLVwD6uf9OTGN+YCPD7sY44pV8RjkQZaZ2g1rS6e75oRqrcb9s6qXKpQUZUXfia/cqbbJmykVyRRd4RnYTW0kc050il9E1rlSMu2nqT4WXukWIRjOmQcRR9QYX7em8yZSRXoyJXKwVKutrzSfgAcvY95ZwbZQ2ZakS9SE0jbPWP9FNSOHMLpEsNVOi06t94cmU9uVrKPdTu5GkhIrgShq35KXbmpyhIzUicI6q/TqUkijlJlPL1TgXvtJf3v5Fz2guq9XLLjMRNr+JVp/rLhrSWgrF0oumRFUKZ9Prz359FKUrJkK2SpTsRs5MnzTY1zjY1waCcmps8LYAo3Y5YJ1LrWMcCYLQhqriZaVEXSArlw9BWowELGIUMY2c3Gs8zB2utIkOcrLVp01CoDfrTvSurM4bWWGKtEcK4vlSqdrrSUE3/SyYbZTYFJQNjpOutg0ufE0KTz0+7NA1fV6W1QpsgJcfjEq6GMrXqTgiSWbDpAhnjBbx61Igsufca3bCsTVSi6j50T9Ld7QJ64/+qJ1ZCINL+TWAxWJMJmAV+wqC69uwMrwuzLVZatPLLN3OF6YvBwkiVFZa4BQKVxQ47TcVIhmSeU7KLo2aMziYNe4W0aRqfEIbYyrSeaKnQ7NIisChpCISzU4+F5UYc0ikNe3JTDKoKVypFbkTFmYF302W6Vr3JfnWvzTaG+tPMB7NO4qrZCse7LDLQ/lOufxaW1IrdJumBLY22fWDrnmSPt4UHnJb+sMLOwgT9YZlJHXA9KtR+pIZA0fSHUkJTlDFFVaErQ0oiK5nUza4ySw9TpzrVHSKE1lKwhi40HSoiVC4tT1tBZJWr0VvHrLAWbs5Cnrb6Pk8zyNM6UWoJ60RqHeuYJ6yxVEoR1lhkUKs6pWqUnuclx7qUFxlGjijcpmQq6efUEnFqAon7oOuBAzrSmDj5snCzmH65cp7NmFxdR+BCZOHSQ8JcmdCbhmifAhjbkJth48unSJ3naklRmCFDWbvuqj6wQFhnaW6q/YQbj6vuifVENkp2pLUJv/IBrkujbLQ4m3msxmkGoyxW+eUYlxaY6Fx1vI5FbnUdGpAqWSXSCaGykNKf+ZyhAthrJ4msZEyEnJTd3GXGyPvw2AJIi1IxgXL1eMbI1lTpBpgfabAo4c0jhEZ5/3NtBJHfyjGtmLCWLqU5VBxna26ay5UObkYFT6gapxkmBDqFT6dM3ljcL5hRrlKOVk27EtKQ9MS24MmU73O1TOrVYrE85MmhKGO25yfZWpgG4GalULUVT5CSqEapfJbQk6cOVUmd9gAqRjGROO0tMxKjiIpXnupvlcKn7BWtoZuYoopRvvm3tq42a8Z2r2MGEvKUWJWXM+F+iHZpe8E4g2oqTX1cJ0oLwzqRWsc65gPrekUZXevQ5990atRC7+xW3HZkqkqcqo9JNrorVF/4xVviStAsAm0s1mjX6BZvDd7E7a/1wTtLauMdi5IUQBWW6Uey1xadbS7OvSkwoIyopkDVNGtZBrRIoGq+khKNxBQi86Yfbrbw34WuIvt2+jz7aIV1JEramjQ+18undhUJZN2JUrvMxew3T6q88maAWGYUKJv0Dmq0DmeSoJTGUnt+S+CAmeCY7GZaBJyQ3RxhFEW1F5SSxhPu5h2sFnJ5aLakQBqnfknXZtVYiJrUZRohGDMB41rRpWIOFUfZmpviUqXIzbhQq1BlCXV2wP65FW7CoM6OYgmQkCu3khpyBb6lRLI/2ke9yqbuLSV5cssxbM6X2FmYoFPF3IpyVOxMgl61Ns+SKFvjtFdUMQEGgydPZuXI02xGEcpA3lo6rKbDj1eJ5L4hKZugrQhzu2JO8hSMs0ONs1G1kLa3jpaxTqTWsY5WYS2VcoyOtCNR9ZOByiCUTpvv1nzV4Gyp51xHQqZiV46i1xaZSlQOkxAnqnnrLoUMFmvIkwQq2q8rMYiTPmyxFrTWGOMa7kopZtQEzRvSEnsKaJGEWPaoCaTK3t6lb7Ar0UZirHQKl3XPrRU+DWWxBM/P6ibNrpqJbglPSohTXaNUkUiAs6+KKgVJ/PZqqY6VjkQhLNLM3YUleZyNZNU4ZWXemy/Jcul+VfIOLojTwtXOKW+AkW1iayMFUvuENlEds3AOdQcY5ziuYe8purhHDRH4PktaS+ZblD6/T7vCeSUNoYzxXQMwRrZQteVWZhGMm6rL35HiGGN6miuVDm5EeeIWUv6qsXqiYi5nVJYhRnXqlXvXqVei2qPbESuv8lv89Re5LPJVvV/GUk6f9AYVdhZcT6hprbheKcxcep0KJWzitBfRGVRmOu3ZRWvgLWFuowjIGUOnMHSIiFDplDxpJGWt1snTXBDuXjBkilyKu7msuynbdfK00lgnUutYR4uIIk2cOvTVv2sRQVxTC5FY/lrf60hYkELO6BE0A0m/nDB2wWYbk6k5iROwWGEIqsGKSwespiGlXCDrmChAoJw5hdFY4/viKImcz50kSQ2TBpsxCHCKi8QYlQmiPJHwwWUYxNQmvlVJljESvUCS1bQOimS/Wx9ImhmF16JuP7WCeuJSS6zAKotVvhZqjlqFmal9tcjuLUvjANU9zk2ynEGC7y0DDf0drEjSilwjT5UeZAKMRCifnlezAktoNYcY5Th9TJDjlO3lgB5tSNaXLm5x6lPg1ScBzuJ+viYeWcIoqoSqW8UcLo6yNRf6lL+5CVWNm7afzZj39jb6XVr9YPad7LHnfycpccYWwn3IGIOO5h/yNBDk5vz8YglATmi2F6bYnp9CCcvNSg7dSN8STg2WGAoiphBEdKmIwmxOe8uEuY0iIGegYA1FoSmImDDQKH/fiK0kWmAq7G2LhCAnT/3L1jrDiItRN5cakqcJtqsxNq0x8qSwbFCWQMxi59mGWCdS61hHC4gjTVyOkVLWOPQlECpGSKdGWePNzXyDVyFdrY5rqup6yDiVZJYVGomVBpmLMRWB1e1xqtYTJ6jWOS0lcYJqQJKaUWTIg0yezAYpkJ5QWcDEMUY4MiUTeWzGd2YjT7Otz00LJ2M0NfeBWpIVBG6GeF4kyziTiGwvHiypymRsXbGIoOFxuli41QpIUvmES+VLjgvh5bEs92h1FLN9tlWSlXwq+bl8C66Gy6slFRBJp9whQBpJLtRuvyZLsAKJJVSGjqDMUaN5Mx7kpukgFJY9arzBeFpHffAtcDV6SfqeFBZjBfFsLRXmg+QYEt7lLyVUY2zLBVwqO0LVMIDPLiZRiNInMDNtcrm1heyMgvu7RoAVFqks1mpMPL9gPVnySoR2AsumnEvj6wkixuKQUl1j5WSzlNAUgpiid9rLeRXVOe2pOqe95dn/BmY1iggs5IyrdypITV7GhMIdy9YKR55s8zTY2x5NiFIjpIYRsSNPpTrytDWYYIcaZ5OaXFPkycGyKYzZm6+Qk3Bf79hqD2heaI/obB3raGOY2BCXI6d0NLpCCQtBjNECo536BD7gz9qi48iTMS5gm1Od8mRKhC5pZzXI1FzECRxxWsrrdjZ1z6TSy0zlqWXIJCVNYY1Fe/t0IZxtvVQCIxqQJ1sfGSwUCyVZTnsx2pEobXwvLOPUK+PTl4yVy0ac6mHxKpTPhXP9hUQ1KAeoUQwXTqyymO17ye50aXw27RebjevnRIapCSHcZEgsUcq6YwXnghcojRAWY6Rr2CtHOWX6uGI7yRvNVjmVLm6+SNLVpKiqT9I7ZCwpgapdoYNw6XBjOkRoS7eKONIxxmgcpCl/cxEqR8r8coWdp8v7Yo/dOVZmwRqB8imYZg4zoKVQleaLLhWxqzDJ5tw0ZSu5XilQnyYaJE57YYVOVSEnqk57U9p1UWod89/nLRlFGAgNFNHkpSavYgKhkcIfx1Z5U587AJlmswu59iXKkyNPXZRsNTtl7ZMnh06p2V8o0xskxidwpVTgXas8rvlgnUitYx2zwBpnLmEtyKBBvxxjQUVgDTqSCGmdU9wskNKrU9qrU0mfpEYwElIyJRrWXy0lEuLk8tRXhjhBg9Q9xyMWTp6aQEiB8DYHRhiQxqV/Cd/g14p5N3Vd5IgakqwkHdQVd1iEtIRSg/IpVMJirUyLsY1xwaGx0hEsI7ya5dexBLDCpfFZaaGRrXl6XCQKTnVbFkqsGgW0M/925Cnbtmg2ZSszwurrKV+vjkxrhVIRoYpRyiCF8XVv1ZN1oyxRYZzzppt3TDc5NP2y3GSkzSEEzrJcagLp7J2NxZtWrBCSn80KxnQOoS09nlBtjYM05W9WQpXZwenTWXaDbfBsuWD9cSGUBsOsvZFmqoPLh9D3hNqRnyIvNcNxriatMhSaDhXTocrOaU9qQFAxckXMIloxishZCI2liCaUhnzgHAEFLgX1tiVPGaK0VGeqtTBsilychTxtV+NsUi7tc60iwLK7UGFrGHk7e3jtTAe//XNbOPSzBu5f7RG2jnUi1WbQPuhwDUmrMxmNMOfr7dCJcA3DWmdzbkytQ19a92QsBk2Yi7BGzKv+RuDIk8EtR1qnTjX8yVIyVQFyS0qmkrqaGU1wWV7i5NbaIHXPr2upCVQ63y8NrlwgkSxEyuIM1tcRWURTZrs8sP58t16FqzGGEBJ0td4ngcSCdK5eSuGaOqfLE0tGsiy4lEffG6ohiWoEkTw0J1buA42XNjNEaPBKErCL2QP2uiHVLqNR8O/T6nKBRimN1sorQonkUsVWMUFZSK7ZTt42fRwVQ/SIqKVgXAqXuhdKp3SBQM+ZRrrMSNVFwWiGUB3tGONWHHK5UmSoBUJlRfUUW3F5pwlcWrVFhQYbyepvX4eV2PsCS39YZldxgg1BxIQOGPU9oVxz3JjOoEJRRs4N0kLFZm3Kl2+UrRhFhN5pLye0+xc6R8C0x9PtYFO+DESpERx5Knjy1F1DnoK05mntkycHy+YwZk++Qs5nNlwaDfmNf7yN7/xhHwCV/7sMP7J6I5wv1olUm6FciTDWUoo1EGfeaZRS1tqlNPuZRrGpqEY8MwIk0eSPWQOpunGtSSJoLVE5Qsc6JVHWONKjMx7eQc65Rdl4YWOVPgI0xiXONU33WyoylaTqwaJ6OS0GiVubyaTuJVboy0aeJC6qSyM7UbXpTmfifZBvAXRaR7UcjmRZ4mSzBNbW/RizwOBIoGngg7hUJKsmlc8yb7XOZv6v41M1n2oUGogm/yffSFQosYg8rJqaM49AaXJBTKC0U2ZNtt5m5oqEgD1yjIpRjNgCJ3Q/96ibFEWThr0krntJzydXL6LbqdA+o+4lhEpqS08QcVfHKLfiXKpQNQuWRYN92w4xoDUCqSwqiIkXYD6xqHX7xw4Zs7MwyZb8NAa4WcmTkzH94TSdqkxeagLfzDmykmkdZDj8MlyPaM0oIjSQIyFPMbkgRnkJ2FhBxagZ6Yhti5QgLj9RaoSEPCU1T9O3NXly6PJpfD0+jW8ikvy33x/kP//SZnTFZfQ8/ueHGfzLbXQtbAHrRKrNkMQESoiWgspGM2qzpcJkP29nvLicJ+vKE8EZH22FCPqbVVyJ0JFGKEFsDUYnQa8P+KVASoMINTadqV4oBFL6/PPZzCgWSKaWognuYrFSqXuNyRNpACJmSS9xwxBVlU5br06532KhKpXFpueYMdUxZpGWTc2zgXAzzEayBNYZoGBRysxKsiJ8nZYRWG+CYcn65i1fclYNCfMjpy6NbzHxRepyKKrbEoYx+dA5LkbG2S+HgJB2RmpS/XXpgBzhmB5gghzHdD/3qKG0hgVASUMgNIEySCwmVZ/auA1mRk0yCG7FOSSOUB3tuMVonONSpYOhWQhVMumUValWA9nVak+mpNGYZUyXrt9UhWFLfppdhUk6VUzJSKTQ7CjeIi9cTVxsvNMePrBO7RFhKUmUqVOdGhtFuH+BMOSEJlQxeW98gnVpe21LnlaZKDWCtTCSUZ7qydNW3yR3821EnsCl8e0plNkSxggBsYXnX+zm3/z1nYxdc/tg72NTfOjvDfHgfSN86+rOVR7x/LBOpNY4GhOL+S5kwd9cNBZKBGs+s8RE0BhDFMW4aTaTxgE+mvZBryUINUIYfyNuvu55KXIik+5Xp04JcLbM0kBYAZv3JK4Wy9kEdz5IJgWy6leyHUtLoBLy5JWTGvLErOSpERJChUgUqnqVSs56piTEycKM3k2ZtaSfbaSKLCcs3kyhwQodybIgDSo06Q1C4J0ovcmFNq5WyHiSlSpayzZjXlWhkjS+ha4lWVb1JHA/QD6MyIWx267MeaWNJJTxnMqkEnBYDfOmHqRE4JSp4AZ5ZQhEnJ7LxkC86G5qK4g6zlxPqO7qGGUkznHFp/w1JFSZYzx92uLlelnCSeuUqSAwxMxtPjGPxTaEwLIhqLC7OM62/BQWgxSa3tAgsE51MuHMOiKvBC/FOTUfo4jQWgLh6jLzQezU07THk6Cs1ZKMaVFoQ6LUCLOTJ5MhT5O3FXlysGwJY/bky4T+BzpzOc///jd3cPKFLgD691T48N8b4sD7p9ZsNco6kVrHqqKtiKAFrQ1xJfbMIzGOaBBwSoNSMVbXBtWNLoN2jvebQVsD2lmnp8E9gBZIpSEsoyuhC/pslbhYqjffhDjNELfI3IeWGE1T95InSwbblDwxS2PY+SDpDZSqVMYC2ptWOOe/NE2PZsRJ1Kiv2bq0KktfPdQfnzY5MuLa0ERgEd5hUAVx+lPWk6zUwj2TKmhSQ42FbWyjNL56raohMoF7onA12uUFT6K0lr6fVxXGuG0SovHETxahsBxVw7yhB5gk5JTp44HwGuDI55pG9vyiSqgUhu4gYkNHhZE4x+VKkeFZCFXV2Y/5XRCXGIkqrpTrNWfnmbYKjYdfv5QuVeZgxxi7iuN0qIiKcedYZBWTOmys5gjI+MrPe1zJ6Cy0aBQBQYY85YQztXA9nrxN+aIzLxaAFapRWmok5OlS3M3FO448OXRJzYFimW7foG9sWvLb/3ILn//1jQAUejVP/c8jPPQXRlHt2yqzJawTqXXc8bDGqVCxNujY1TVIObvq4NQoZtx857rNzPc2lKTCySQDyQdzOpaIwGDCClE5TB2o0sywzExdo0oNMeO5mPF68vd8xrwSqXtWuv5Fbqew5OSpEdK0P3Bqk7ewb/LpGuKUIPluTXbfMsclrd+inUKT9gRuqPi4YFNbqA9rBBYyJCu3RCQrS6BmizcSa373Q9V/sFZSya5FYsnnIsJAE8eyaYqSNpIw0LMG24lxRKcs84CJ+H55K0Omg7cqGzkcDK/Z2dYaJMQ0s4tjJCOeUDmFqsJwnONKuchwPJNQJfzAZo6R1SJUab1UqF291BzjaIU4gSUvY3qCMruLY+wpTNClYqaNZDzOUZmrOW5LqXzNB6qhJaOInHHHfyBcvV5eVm3KrfUNcltoEr4oJIQxebp8a1p2pORJd3Mp7mYqQ56UJ087bnPyBBAIy558Jo3PwJc/t4F/97/uICpJZGB5+C+O8uTfGKHYV9udbSIO+b3r97FRjjdZentinUit486EV0u08UGxtRitXdrZrM2dnBollMbU26gtAyTV9LiaHD2AWDpb5nxMXA6wDW/Qdpa/qirWYiIZC6lhgoPwBIo0DZKad5n170YUZDXIUyM4PlWrUiXK32zI2spXF7RwLOTXah6SeRKVHGwLSJuzOMbTKslKlt+MZBmv4JisLV/dxjQmso0Up8Z7SwpLIVchUIY4VrPuU2Mc8atXpZoZR3QJzd3hTV6PNnJFd5EXMXuD1W8yuWThWwO+qjOEqjeI2NBZYSRyphTDcS4lqenXMnyhIf9dIRgtUMqC0sSZZr2zTJM0gKUoI7qDCr3hNJvCaTYXSnRJzbR21vFznlU1KtRco6j9RKtGEaF1x2wgNKEy5GVEIEy12XOdvf+icRsRpUaoJU9dTNlc+p7KKE9bbnPy5DAzje+t40X++U/v4sop50Z58AOTfOhnhxjYF9V8czzO8aVrh/ja9f2UTMhTG86s9OAXhXUitY47CtaA8eYRxnojAXxKlgUxB4kCUH6mZSGpIC2Pk9pbaJaQSOvNDxAutTAwBLmYuEIDMjW7Yja/LahSLkviMudryNI8L5EZb+33atc6W2JWEs174pSYRviAWtTZb892e1rOG3dNumUTLIRALSVJmnNdIqNELYBAtbSOeZKsZFzO+CJRwSSxEb4my9VmWd+YuB6NtqGeXClpKITOVjqKW6tXijOqVGPjiNptG1QlDtkRTsb9vBP3UUCzNZhsaV3ZcbctaoW+FFlC1RdU6A8rDEV5rlSKNYQqi9VWp7QBoQzSgp7DfKJ6Kls6VYXuoEJfOEWniiiImO5A0xUYhJXcqOTQrZxV9anJc8BAy0YR3nOWUGhClShPJl3Oono8pezIVp/e5rAWbpk8l3Q3F+PupuRps5okuO3Jk0O3cm58SRrf8KjiX//8Dl740z4ANh0q86GfH2LfY9M13xuN8nzx2iG+fmM/FePoyL6OYTbn1hWpdayjvdBAfZJCIJULfExsMMYg5kjnA5BKI5VZsuLkzBBr7qH1cbes+asaoEsBNpbIlEw5d7WlR9UsIrXpFoCQLXRUb/QB0ThmEMaTJ1sbqGVu9H7efz6DbzqaxgmNc3+vEWonkqv7y2KrtVYtrWl+610IUhVq1lS+5Yf16YLGghUyIz55b0ABUloCYsKg+i28apWkB8aeVFVNL2pJVnbbAqXJhzESSzQvxzZLIGLC0KQKZCPjiOxvvC2YoGQV53Uvx+N+QqEZUKV5rHMNoAkB0EiG4zwKw4agTH/gU/4aEaq6bLYVjz+ta5KulEkdKhtBYugMKnSrMhty03TIiEAaKkaSE4K+0NKpLNNaUZ4rhc+t1vcPY9aLg8X1katIV/M0u1GEn3sShlAaQqHJqYjAn+RmPj2eMkTJbf+dibnI05ZM2t6dQp7A1YTuyZfZknPOr1Es+G+/M8jv/NJWjBZ0DsS8738d5oEfH0dmToeRSoHPXzvMt27sI/Lnye6OET6x5Rg9kcaquNHq2hbrRGodty0aqk+iVnUy2riUvhZIFIAM9IwagQWNrW4R9cSplbGkqpAA4kSZiojLIXZJbnm2Vn3KjFIsgU13Gn8J4+7QiWkEkG2Uu9SYud8X9mM2nJC31WVWVZDGpHG1Zm/rU/lW8r5fvyqLH8cMeJt10+jX8SoWIDIkK/09LCnJ0lb6PlDun5KGXKjRRvgGu7NDYAmUS90LpEEqgxAWrZvXU9VjbzBK2SqumS7ejAZ5l7hGt4zm/uJaQhN1CqqEKhCGDUGF/qDCkCdUI40UKpFREFcyJrUCpHNjjSNSMqWEpktV6A7KbAinKaoYiaFiAiZ0ntBYNoYl+sMIjeBWHLR0bAhhZ01ptLRmFJEzkPTKTshTTkTklDOLAHc+NLQpryNKd4qq1Aqy5OlS3M3kOnnKwLI1jNldKBP6A+b7L3bxL/7aTkau51A5w2N/9RaP/7UR8l3VfXOz3MHnrx3mmZt7iD2B2tc5xKe2HKM0meP3vv9eRmyRJ/rO8NOPrsZ2LQzrRGodtxesC/q1MQ3VpxokJKpFTiCVRgYGE8+PpNi6x+zz+RCneqTfsd6FL1WmIuJK4xSaVpDYKGSbxaaNaZfgLjs7eVo7t/EZt84MiQLfbLmNsNIqVCPSVCNCNMjobFkbtL4NQUMnFTfXLoUllDE55RYeKoOUxtdjiarphZXeYVJ6pden7kmXCqV8mqGxgjgOCOT8GL4QcDgcphIpRkyR1yqbeDB3laJs3LB3TWMWYhBbyXCcIxCG/qDCgCdUlytFbmUJVeZyACtM9I1AKEshjCii6VYl+sISBRljsVRsyGicxyBRWPrDMpvCCjlpGNeqavoz14qapPLNzyjCQXqziJyMydXZlFeMwqYNA2s7wK1jJqyFUZPnYlPyNMn2YIwtdyR5cuhWmgOFMl0+je/atZB/9bd28uoz3QDc9bEJPvB3h9iwo6oqXS938tkrR3h+aDfaH7mHum7wqa3HKI/n+N2X3stNOgEQMVy5smGFt2pxWCdS67gtYK1z3nPqE0nLp+Y1T8aitQtk6hutNro8WixBoP1s9zzHlnlM1rTUN7NEMNKRJAgNAZV5kqmqm1xqbOGmOJfEbex2IU8NUZeZs7L2F61hKQwlZl9+3d9zLLy+pmOpxuLOA5lRUZ2qFAYaBMRJzzcBoTBU/dRd1Jr4ubiWARZtXBpUFsaCVMY1yG4RUsDd4U1ermxm0uZ4LdrEg7lrbgy3G2ZRp6ARoSpzM85zudLBaJyxA89cIpZLncouMq9iulSFXlWiJywTWo02kpIOGYmKNRvWoyI258r0BM6NbzQOaOkozhIof6zNzyjCrV8mPZ5EnBqdWCA2Ap1JKRSyaRL1OjzmIk+b1SQ7gnG2qIk7ljyBu17uyVfSNL5yRfB7v7aZ//pvNmG0YNu9JT7894fY+WA1dflKqYvPXjnCd4Z3YXz0c7T7Op/a+hblsRz/zwuPcV06AoWB/lsV3qMvsv+Biyu+fYvBOpFax5qGMQ3Up6TdRSKreKTpdLZKohACXZOMVf1sFkoZCDQ6ljPem+v2uRjVqVVklx1HEhUalCdTzde8vKl7tzV5gjoC5YLxdtyqpTaUmKGszrbA7IeT+DgTaC8nmQOX6pRTzhRCG1ltGNxgQiRJjUKAnqVOxliJNLOKLw0RCMt9uRv8oLyZaRvyemWQ+3PXUe140CwF5thBCaEKhWEwqDAYlLkRFbgSFWsJFdXjbKGEquFxai1F6clTUKJLVcjJGGMFJRMwZfMYrWpc7HJCszFXYSAsA7ScxgekJMrY+RpFuO8Gvt4pryJCYRDCYJFoK6isRo+nNYyEPCVpexMZ8iS98rROnhJYtoURuwsVAn+IPfPlHv7N393B6FBI9+aYD/7dIe75xATJnPSl6R4+c+UI3x3ZmZ4f9/Zc5ZNbjzE1UuA/PPsE14JOFxsY6BmKGTgWIa5JTrKdYmFt1ZGuE6l1tCds9X6ZjfFd4G+wxjXPTYKh5BZi/JTybJc+Y3TDJHyReVavUQWhTnOi1sLtSkcCFepUmaImKLFV8rTEqXu3PXmCJgSq/bZtsal8c6XmzfmFLOoCxqWOTRotTgpDLtAoaYhbMIdxp4OcO1C3C1OlAPJCOzJV2cyYLXAsGuTu8Obt0WOqEeZQpwAiKxnyhGpjrsRgWOJmVOBKpcgtHUIjQjWP48dmnkgsHSqiS1XoC6bpUBGh0MRWUtIBk7qqPAlhfSqoc0rdEEZsypUoSMOkVkQtmvpYLFrOYRRhE9XJ1/6Bq9dKejyJ2NXoYTBIYiObtLtYRzNYC2M2z8W4OXnaHoyzdZ08pejxbnxJGt+Fczn+5f+8i+M/6CQsGp76m8M8+ldvERbd/jo/1ctnrhzl+7e2pwTqgd7LfHLrMSaud/Bb33ySq7lOxzwsFK9bNrweUxgxCCT5QsRd91ymZ8vEam3ygrBOpNaxPJiFCGXfMdnP16VI1d99rbFp8G8sTnlKkx1qYzyflTYDRrup6Ox354IKXJG5adEmuT0g0JFEBhoVVtBRbtlS9+4I8pQgPUbbl0DBzFS+ueKCeZGm+cQYy0ygoPFwlDTkVIwQtiUSNe91esI1X1UKoFNG3BPe4LVoEzdNB6fjPg6Et5Z8jG2FFnZUZCVDUZ5QGDblSgxkCNVollCJhvNgM2ABJQw54Sy/O2REX1CiQ0UoYYiMYloHjNt84+9bgZCWnrDCgIrpVTGRdWYSc907DNYpThIq0ro6pQwCYwlxqlMgfMjpJzxCNKEw5GRCnnyPJyOxrKV70OrDkaecJ089TcnTFjVBuE6eUoTCsDdfYbNP45uelvyHf7qFz/72IMYI7vuRMd7/t4fp2ewye85ObuDPrhzlldFt6TIe6rvIJ7Yc5/Kpfv7Pz/0QQ7158Kda4Yal//WY4pBh845bHHjPVQ7cc5Ud+4bY1TnBt67uXPFtXgzWidQ6GiLbdLIZEUqUDQAy7lrNE+Rmg0j/T2tshUgND4yprksIQbCA2MhoizFmXiQKLDKIsWuSEAh0LJCBBiqYcuDZ5eJT9+4o8gQzjv+2J1CzqFAzSNNCVabZsMxpfAkaDS9QmtDb59b3dlqy9VqXViyVXdDxvkGVOcIQx6JBLuoe8kKzM1hbvVPmjRbUKXCE6qYnVJtzJQbDMjeiPFcTQmWrk2eJOpUQppyMXfqbT9nLSUdKlDcgKRvFhM6hW1CTQmEYCCoM5ioIaxmPcrNYhtvUntyl7NnMTJ5AWE+crCXnFa5kI4TFp+3F5GWMkgaBxRivPLXptaZdkZCnS7GzKp/IEGVZV/O0Tp7qYdmWi9idd2l81sJX/3sfv/EPtzM2HLDz4Wme/vmbbL2nAsCpiX7+7MpRXh/bCrh6vHf3XeSh6ArHnt/Fv9QfZXyLgg1u6blhy5YTJe7ffIkDn7jK/ruv0d23ttL4GmGdSN2OqFeD6l6bQYRs9f2FkSDIEqH0FpU2aZ3noqxL0bPakahk9nHufkXNYYzFWONzeFtfkAoNUtk1pkZlf0uJ1gYVuHTGuBIsmETdceQJ1kwaH8xUoWrHvsjUvPkgq0ItE4Hyi56BQMWEys2SmmUiUen6rQRrFqRKAWxWU5TtCGfiDZyON5AXmk1qaqmH2X5ocYclhConNFtyJTaGZYbiHMNRSMkKcsKkhCkvNIEwKGn8/cO5MkZWMmlCT5xaOxIFlt4gZlNYpkNpprSkIhRW2tpxC0skXLqeM4qozYmQnjTlaowiqmmDodCEMibvzSLAYlJzk/a8xrQzxkwuTdsbb0qeJm9Pg5clQI934+v0aXxnThT4tb+9kxOvdNC3I+LH/+FVjjw9iRBwYnyQP7tylLfGNwNuHx/Sw2x8K+L8iR38zr79TO4QWM8wChOa99gLfOih4+z4iWE3AXUbYZ1ItSkSgtM8Lc6lD6QvLYoIiZpn6QVfzHh7eWEcgapRn1gcgQI3q2KNYd4VTsKi1pga1fAWYSVWJ3VeEEcBWIloIc68I8lTgjWSxgdgpcUKT6LqCwcbfmEZBrECaXwJGi069CSqvhnvso3B+lopOf9aqQQ71ThlG3BJd3MsGiAnNH2yvMQjbUPMoU5JYQlxvbsCYbBoeoMKO3OjWAFTxqXYTRlFbBUxkpLOobU7COf166cfthSlZlNYpi+IiYFbRvn6URDSorGUrXDKk6A2Zc9aQgs5IKeZkYSXkKecjMkJV7sHTjWtmLU1UdcumIs8uZqndfI0G3I+jW+TT+ObnJD85j/axpf+sJ+ww/BDPzvEu/9ft1AhHBvfxJ9dOcqJiY0ACGsZvFgh91yeMbuZCwcDJp8A4zMoO+MKP7H/ZT5w8NTtWwfKOpFqO5QqEVZZYq1Tu8i50SAtLiFC7X7wpql7S6c+1SzegtHOl0/O80xWgUHI9lejqreILP2shbUCqwVBzu2LOArA4Kzf6z4+K3myYnmC8HZCnZLTbgQqu/utsI48ycybosmHlwvJIbFKKlRibx4q7d32Vu73skaml9qF7Goh4EAwQtkqbpoO3qhs5F25q3TKeO4v3waQwhBiUsIUCk1Bxk5dEhYlvMKEQFvBqAkRFgrK0B9YZCwYjgNKRlV/BJ+SVHMUZAuqRH39rPU9oSoMhhVCLBM6QOOMw2OgIgQVAXHdPUTUqU4yO5GRbJ/QPsUw9uRJePK0Hn7NF1Mm4Kbp4KYuclN3zKh52qSm2OENI9bJ0+wQPo1vl0/jMwa++Af9/Idf2crEqOJdf26M9/3NETr6Na+PbeGPT97NO2Wfo6ct3ScEPa8IjOxgdF/AxE4wnst2iTJ/7tDLPLnzDLLFGTXb5PlawPqZ3GYw1jfNE76hZ3vFcEuHZVKfamDBmoWRKNfhPsbo9vwBatXHBLOP1ViJ1IYw51Kf4kqAK24TvnHOHUyeoEka3+oi3e3CW9XXDyibsbTSccMK1UElaEiiGtqbrxyWQpUSAo6GQ7xaUYzZvGvYm79GXtw+DXslhlAaAp+CFwqTIUwG5VMqEsJkkJS08of0zKOqHCtnmx5G9AUxI3HASJxjyipPlNyBUL3sNzk4raVHaTYGFbqU6wk1YQMiHHkq16tOQGCta4prnVW5SIYoAGNR0pHDnHL1WlIYsIlNebg0O/QOgLUwaUNHmjx5msoQJ3BkYLOaZIcaZ2uwTp5aRa+K2V+opGl8J18r8q9/bgdvv9bBvsen+At/b4j+vRFfPXGYr5zYz3C+CICIofsYdL8ukEUYPRAyvl2i3dt0iAo/dvBVPrDzbQI598X4dgkr1olUm0LQIGha61hm9akexhhXEL6A+Eap2JGJNrOYXextIiFTuZxGAFGkXMd7ZatB+Z1EnhK0QRpfDWlqZffX9EtbxoE1wgqm8UHjzZuvvflyYbGqFIASlntyN3i5kvSY2sgDuWtrzoZ5TsLkt8cA2kqMkZRsUDVxmEe6cGQlt2LpbdMrbAgjbsUhIyZgOpsqlxYJ1i47LzSDYYUNQUQFuGJCykIQCWokq3qjiACfLp4sT1oCnKKWl67HkxTW12kJYrtOnlqBtTBuc6nadNMUKdXtO4GlT5YYVNMMyikG1fQ6eZoHcsKwt1BhU+gU77Fbit/637by5f/UT//eiE/+qxEqXb384fcf59i5fsr9AvIgIug+Ztk3PIbsFJzZN8DYdknse+kWRMSn9r/Oh3edJKfmngBaW1e1ubFOpNax/FgJ9al+ldqtb34OfQ5CGoLQYFYxOMuildS91mFd0GIhLEYQGmIduJl8k9FgbjcS3wyrkMZXcxNpgTTNyNQTVFP5VkGFqm8gutIqFDh781DFyGWyN58PqqqUXVTdYE4Y7guv84PKFiZsjjejQe4NbyzrdXKhqCdMifFDy4Sp6YLt3JM4GcUJIEYwqgNHqMIyG6gwEucYiUOmG0yESSx9QYWeIKYiLedsiK4z4FFJyp4nUfXnoBQWKdz2J9sthcFYSWzliqaXrlUkTXFvGkechnSRcl1IKrD0y+mUOPWr6XWnvQWgURrfZ393gN/5F1updHSz8yfzjOt+fv+NHm49CNEh9z0ZWfaPjPJw4RLXegb4wfguxjcKoh73fihiPrbnLT62+zgdYTTnOG7XX26dSK1jeWB9gGHsiqhPWRjtHPoWQqLAokLt1ajVC9Aax8cL3Xk+2hVV1cn1kpIESkNqs+uUQiHEzFqb2w0rlMZXX8/EPEhTw2UlJGqlVag2SONLsBL25vOFNcIpuyzuZylKzb25G7xS2cSIKXIy7udwMLxqhdqtEKbkUJwXYZoN/jzB+HNStHawRVZyS0tywrAxqNCnnEI1rENXQ4WhM4zJBZqygOuJHYTAGUVQqzo1Qog79vJSo9A+my8hT+2VvdBuMBZumQJDpsgNT5yiOksOiWEgIU5qin5ZSkn5OhaGPhWzv1CmwzvlvfVyJ//nv7yLUzd2IO7rQqN4vQNGH4Soz30nZzSPd57j3YOXePHCET5//EEmd0DlqHtfCc2Hdp7kE3vfpCc3uzlOq79eOVZ878puvntxLw/vOL2wjV0lrBOpdSwtvPpkTbXZ7koRKEhmh5Pb+PxXKqRFqdVTo5ZOYJhJnrJvgbMIlkIShDGWAK0lCEGiG4okar7dCJWtJ1BLs4Fz1jPVodW1tpsKtZRxzXwXtZL25vOBtQJjxKJVKYAeWeHu8CavRxu5qrvIo9kbji7RSBujMWGKCIT1assyEKYGqFlaCzUWjVCxkoonVP1hGRloRq1Cux7KlJO7g7XkM6pTo6NJAEHitJeQJ+HIU4RyypMV85ocsbO8dzvBWBgxhTRNb0gXieuIU4Ch36tNG9U0fevEacmQE4Z9hQobfRrfrZEcv/W7D/Dl7xx15lODMHEQxh42VLrc0d8hKzy9+W32To3x/HeO8hvXjjK5Hcr3uGVKDE9uP82n973BQGH2Vg2t/IrWwrnRfr59/gDfvbSH6djVwIVBZcHbvRpYJ1LrWBJYgyNP1jrHJOFvTCt4p0gc+lyK+0JW7C3CWVk1qjYuXowUNDd5mrFuK5BAGMZAgNYK4d2qbjt1aonroBzBmV9q3sLWweqQqCUkUEsRGq20vfl8sVSqFMCAKnHIDnMyHuCc7iUvYrYFk4seoxKulqcpYaJ6PGsjMVYyvQyECWY5L5IduMAdaYEIGENRts6+PFlZmFiUW0vQZAwSty8ceYqdEYawjjxZVZO25y6PFjELmZptE1aCMqzUmaKtYDghTrrIsCmi6+hpiGbAq02D0hGndkxdXcsQWDZUBIf6SoSBQRvBn33pCL/zRw8wOZUHZQienODygTyTKgdIuoIyH9l0kq23Sjz7xbv41lA/k9ugdK9N6wXfu+UdfnTfa2zpnL1xeCvH9EQlx3cu7uWZCwe4OLYhfX1jxzg/vPcYXR1rqzn5OpFax8JhXC8rq+vUp9WYKLYs3KHPQyqLVHpFZrqbx8PzT0WcL3maMRZPpgI/c+XIFLePOlWXxrcYApXWrUvbcPcu5e6xsDqGEotI41uOIa6mvfl8YJPeakugSgFsCyYp24BzupeTcT95oRlQpZa+2wphSlJ8tZHoZSRMCVpesq17bBEGKAkoCeFqnjyUtRR9yl6z5DtJ0iBXe/LkezwhqVjV1A0ymTS0CxjvSmG5hhVbwZAuMuQd9UZMYUbLlhxxmqY3KKfpleXbup/QaiEqK86e2IgYzfPRh8+xbfMEAG8c38T/+dvv4cypbrbtu86mv1zhB+FWbsXdAPQG03xk09v0XTc8+6dH+cZoD5PbYPo+69OIBA8MXuTHD7zKru5bTdffyjFmLBy/uYVnzh/gB1d3EntDmEBqHt56nid3neLQwDV2FSb55tWdi9wjK4t1IrWOeaNGffKB6UqrT7UDyjr0LVzNUYFmZjX90mJpBIUMecqqFf6thSBLplxtm7vIJaTD+oghVSXWws2wYR3UwgbuUvXsjENj2eqq2kGFmoVArRinW2V78/lCW4FiaVQpgD3BKCWruGa6eDMa5AFxnR5ZTXtpR8IELahNS4REfZqWggpU3faspWChMIvypHz/qryICaVGYrA4p72KDbzt+dyDdZdGO2eK31pHxUqGM1bkt0zBH+lVFETMoJxKVaduUZlBnBa6j9bCLWelYC0MXe3m1BtbOPXmZqaGOvjpv/h9nvzhUwAM3yrwm795D1//773c80NneNcv5fnKrUOMxQWIYUM4xdMb36ZwUfHcf72L4clOprbA9B6LVY5AHdlwjZ848AoH+242H0cLYx2e7uC5C/t49sJ+bk51p6/v7BnmqV2neM/2d+jMra1UvnqsE6l1tIZm6lMbTC8Zk3XoWxikMshAY+KlV6OWLHVPZAjUEpCneqRpfjlNVKmSKXCpkpYkbXMNpPstQRpfM/Vp2U0WEhK1wipUfRrfSq6+EWrszY1s2xn/LKwRPpXMLsmEjBBwOBwmihTDpsgblUGe6jjPBlWiIGPUKhOmdJytfnCJfkNNVX0ymXtQYC0FX/vU6EoeYAikJufVpyp5kkQ2Q7nE/I5+a913ZkvxW2soW8WQLqZ9nEZNnvpfukNEDHi1aVBN0SmiZVOclit9eq2gUlKcPb6J029u4dQbW7g11EkYaH7iE2/yF3/0VQp5jdaCP/2Dbfzurwyw46lRjvxrwddK9zFx03XKHchN8vTA23C2wPNfu5+JUp6pTTB9wGICR6D2dA/xEwdf4Z7+q01/y7mO8dhIXr22nWfOH+CN61ux/mwsBhXes/0sT+06ze6+4aXbOauMdSK1jlnRDrVPs8HZnC/UoS+Bd+qzYhHLqBtX3fKry11A6p5k2chTPZwBhfVkStSkOQqEd51r43S/GhWKBROolVKfsusEqrlHK6VCiQx5yxxTqx0MpvbmcvXtzecLbQVKmgURqZkKk6YgY3YWRvnixH6GdAcvlbbxyZ4TBNgVJ0ywcmpTPSxQAUp16lNiGlH06hO4VD0pbPVRGEI0gTSePLkGuTXkKd2OhW1EK/VS7YySUanadFN3MG7zMz7TKSppmt6gmqJDxqsw0plo93m9hcBauHGlh9NvbObUG1s4f2oQHVcnNx958Dx/6//9HTYPONOH17/Tyb/9/21nqjtg07/r4Bl5D5MTzrxhY26CD/WfpnKik2e+9CDTlZDpjTB9xKADlz++rXOUH9//Kg9tutCQQLVyTF8Z7+GZCwd4/sI+xiuF9PXDA9d4YucpHtp6nnxw+zQaT7BOpNYxE4n6ZCzGnz2rVvs0C6x1NufupF/4ZVQGBqkMJl6cfe2SkieBq7VYAfJUD+c+ZgjDmCgKZtSMtaUZRcM0vvkvYiXVp+x6VyOVr74fVLugxt58jZEoSFQpiRC2aT1XM8IUCIvKKky+qau2kqc6zvGlif2MmgJfHD/ABzrfWZGGvS0Tp2UailOfBCVBjfoUWkun1XR6G3YpDQqDko5ACf8vgUFimpGnZHsWsRHVeqmlUSOXG1MmSInTkO5gwuZmfKZblB1xUtMMyCmKsn2D4Ha4DS0W5emAs8c3uZS9N7YwNtJR837f4AQPP/oOP/nRY+wecOYzQ9cCfvMfb+PF13rp+Nk+XuvdxbQJQcOW/Bgf6D3L2Jt9fONzDxNpSXkASrs0lVABksHCBD+6/zUe2/oOssH1ZK4zohwrXrq8m2fOH+DUyKb09d78NI/vPM0TO0+zuWttmUfMF+tEah0pamufHNpJfcrCOfSZRTj0pUtytVELvPHdLuSpHsbIDJkKMXXF8467tokZxSLS+ByJsTO8AVZqM1bDUCIlbm2I1bY3lxhyKqaigxmF8/OBscIH9nbehKnSRGEqSM37O8/xlYl93NSdvDC1g8c7Liyp69m81KZlVp8iYZkWgoqo/g4SSw8RG0SFvLSImj3l/rK4/WmsTK5Oc69wiQhpQqawbTU3gbUwacM0TW9IF5maQZwsvbLMoJx26XpqmrxoX+LUCGuNTFkL1y/1csqrThdODdZc91Sg2XP4Bgfuucqhe69w344RduYqKAk6hj/5rY38/u9txf71fk7+ue2UTQgGthdGearzHDdfG+Rrb7zb1f31QWVvzHQYAIre3DSf2vcG79t+ilDOnL2b7fi1Fs7eGuCZ8wf47uXdlLxtuRSG+zZd4sldp7l30yXUAlsYrDWsE6k7Hc3Upza+GlnLoh36EqgFqFHLTp6Sxa4yqmQqakimoN6MYoUJ1SLS+FZLfcquf9VUqGVOwVooAhWTW2V7cyGgoGIiE8xjH1mUsIQZlSknNR1BZUGEaTb0qjJPdZ7jG5N7uBj38nIp5sHClQXXpay22pTsG5d+Z4mxTKIYd9pSuvJOYjbICl02BiFdLRgCa4OZQ5vvsbPEqp61ILxz42qdZtbCuM35GifXx6lkw5rPCCx9suSMIbxBRE6sdJO6pUe7k6nSVMiZY0mt02bGb9WqTv2bxjlwz1X2332NPYduEOY1G4KYfbkyHYE7ol59rpP/45/t4vIntnPun2xxKquBXcURHs1f5MoPtvCVk48AUOmxxPsrTIQ5IKAjKPPDe97iw7tOkFe1RHmu43WikuOFi3t55vwBLo1vSF/f1DnGkztP89jOM/QVphe9j9Ya1onUHYq1pD7VwJOoxTn0VRcmg9il4syBO4U81cMYiZJ6VjIFWTOKFUj3W2Aa32qrT7XjYEUNJdo1jQ9cQLcW7M1rCZNXmKQmL2NCYaqEyasiGoEBKmZpa5g2BVM8WrzIc9O7OFkZoENWOJofmvN7q6E2SVwzX4FFioQ4uVQ8JdxesdYyTsCQzTGdCUkCDN3EdBMTeveTiBYIbqtGH4tM5ZsNybVmpeqlrIUxk+emKaZ9nCp14Z3AskFOOztyOUW/mnb79TZEO5Epa+HqhT5OvbGF029u5sLpAWxGdQrCOFWdDtxzlf5N1X5xBWHYmy8zmHOE5+aVgH//q7v4yrYDXPvbm12DYwt7O4Z5SF7lwve28rV33g1A3Gmxh0vcCgpAjpyM+cju43xs91t0hlHtGGcZv7FwzNuWv5yxLQ9lzENbz/PUrlMcGrh+R9varxOpOwlrUH2qh3PoW5p6LRUapLIN1aiZ8e1CyFNmJ8OaIU/10EalZKoShU2J54qYUdh6AjX3wi0zzSNWMQNxRQ0l2jmND0AIQ6g0YVvZm1sUhlA6whQKQzgbYfIKU5QSpupxLxukzCwFduXGmLJXeLm0lVdKW+kQMbtzozWfWSm1SQqXwihEYvBgapU4rzilq7NgkUxbyS0bMk6YIZqWDjQ9xHSgFx6cJetrRqiWm0Bk6qWWg0wZC6Mm72ucXKpeVNclS2LolyVf4zTFBllakZq6dsFqkqnpyZAzb23m1JtbOP3GZibGijXvD2we48A91zhwz1V2H7pBENZeJySWHfkKO4IIpSCO4L/9/hb+r+H7uPixLRif7nqg8yb3xTc5/cJOvnnlQQB0hyE4OsWw6gQKBELzgR1v88m9b9Kbr+1DN9vRMDzdwbMX9vPs+f0MTXelr+/uHeJJb1veUUfIFos2vlXNinUidQfAGjfrZ8waU5/qsDQOfR7CourUqIWTpzrClNqUN/naGryXJWQqF8ZUomBWFW9ZzCjmmcaXzAhbUbu7V+uQXzUVqk3T+KA97M2dm5vrJxQKTUFG9OWmiYOSU1GaEqYWZnIsWCNcmtcy4HBuiEkTcrIyyHemt1OUEZuDqdoPLYHaJBOSlEnBU3hCKYwv8as1dkisHgxgrSTyhMZYGCdgnIByJvAPMPR49WlJg/1G6tQKkYmlNJ8wFkZMwZEmU2RIF50akYHC1KTpbZAl1B1EnBqher9Y5vUYuHJ+Q9rX6dKZgRplPczH7D183aXs3XOVDYNTzZZEf6DZE1TozDly9YMXu/mVlx/klUO7sbvddedw13WOTN/i5Ld28e2bOwAQHTG5uye4KHqwdCIwPLHtLD+y73UGi5OZNTRHbCSvXN3BM+f38+aNbSR9wopBhUd3nOWJXafY3Tuy8B3VBCIzMgsr6kK6FFgnUrcrbgP1KQtjnEPfkpAoXBGnkBYdy7oLy1zkybZOmJLF3SaokikoV4JZgwMBS2NGMc80vkbq00JWuxSwyX/J8SFZGRUqS6Da9PhbaXtzp5I4lSkUmkBoCipRmBwxSBAIQ9kKYqMWZTgBjlAIlq5BbwKBC9IfLFxl2oRciHv59uRuPtx9hj5Zzg6gJSSESAqTqkqJUYZIUvOy1z7rXPCSoMdYQX1z1nQIFspIxgiYIMh8ztKJpoeIImb5UoNWkUws1HxCW8GwKTDk0/SGTRFddyyG6LTx7YCcpk+W1uz9fbmxHOrU1HiO0285k4jTb21marxQ8/7GbaPsv9upTrsO3JyhOtWjIAx7ggobi86x9Ma1kH/x7H388Ya7sYfdb3+06xr7x8Y5/uU9PDe2C4Cgs0LHvWOcsRswtheAd28+x4/tf41tnWPp8mc7/i6P9/LM+f08f3EfEzW25Vd5atcpHtx6gZxaeuOR2mls4VO7wawxt9Z1InW7wYC5DdSnLJy5RDJHsbgNsYCQBhm65nUzb/6ZSOEOJUyzQRvlGlqGUIlmJ1OwCDOKhgSqSaCWPK6weYRt9kf2uWTFDCXauQ4qi0BqwmB57M0FVZe8JCWvIGNyQqOkRWV2jLaC2ArKVmG8JbYQhqKAyErsIkkUsCSq1GwpehJ4tOMipcmAG7qTb07s5umuMzP6+wjq+yp5spSmKs6uKhkriRDzOq60V5/GCIky+zLE0ENENzFqDd+XWkUrzXpjKxjSRYa8HfmIKcwg8TliZ0Pu+zj1yvIdXZcyXyyWTBkDl9/pT2udLr3TX3PRzeUj9h51qtOBu6/SO9Ca6YLEsiOssD0XESiIIsF//N5+fq3yCFP9zg3v7q6r7Bia5vi39/Kdqd0AFHum6bp3lJN6gMgMAHDvwGV+4sAr7OmpqkbNjrlSHKS25adHNqav9+aneGLnaR7fdZrNnRPz2UXzQlWFcv0qTebVtYa2JlJaa37pl36J3/u93+Pq1ats27aNv/JX/gq/8Au/kFpeW2v5h//wH/Kbv/mb3Lp1i8cff5xf//Vf5+DBg6s8+hXEbaY+ZeFmJxbn0Ocm5qsheRhol/ZlFfMmTMlC7mDEWTJVadKTpQ7zMqNISdTcBGql1KdmPCndjCz/zh5DK5TK1+5pfAmWzt7cEabEKS+UmrxwdUxKGoJ0pws0oI2kbJR3A1zZC+N8Van51jYFwvJUx3m+MrmXMVPgW1O7+XjPSYpCZ1LwMqpSBiYlS7OrSq3CWighGSNk0lVO+aE7570eYgrLqT61KwRAlUxVrGTYW5Hf1EVumcKMfZ8XMYPS2ZAPqim6ReXO229LjPmSqcmxPKff9LVOb25merK2SfGm7bfSWqed+2+igvlcgC0DgWYnFbqLjka8cHYj/+DaE5wtOWXp3q6rbL4acfwbu7lWdqSqt2+C3vtHeKOymXPRZgAO9l3nJw68ypEN19PtbLhGC2duDTrb8ku7KWvn5JjYlj+1+xT3bLy8rLbl7n7p0l2NlT5mTeJ5+MHYVnTbGg41RlsTqX/2z/4Zv/7rv87v/M7vcPfdd/O9732P//F//B/p7e3lb/2tvwXAP//n/5x//a//Nb/zO7/D3r17+cVf/EU+8pGP8NZbb1EoFOZYwxrHbag+1cCyYJvzevKUQAYGlfN9owKzIoRJCkteuBni2Eq0lWsuB7gesVGucWoOolbJFGJ2M4o6FaoRgVoJ9SlNyfMLbkSimiZ/Ck9qPEdYbjfhtZDGl6Bqb+4UjlaRNK8NvcqUkzEFGaOETz3zG24QaCOJjKK0CoSpKWZRpVomTQDWuQZmVSXhUxaVMPxIcJz/eusuRnSRb0/s5tM9x5HC4rQnl4oXL5OLXGxFWvuUVZ9y3jii6w5Rn5qhbFRqRX5DdzBq8tT/+kUROWMI6YhTp4jWidMyYDYyZQxcOjvgVKc3NnP5XH/N+/lCxL67rnl78qv0bCg1WdLsKEjDTl1hS4eLC66MFfkn59/Dl27sRgD3d16h74LlxFd3cSV2YfrGTbfov3eYl0tbeXva1UXt6h7mJ/a/yn2DlxGi+S1gvJxPbcsvT/Slr2/uHOOJXad4fMcZegsL25ZWUUOgTC2BMhZeGd/Kl4cOcKncyw91n17WsSw12ppIPf/883z605/mh3/4hwHYs2cPf/iHf8h3v/tdwKlRv/Zrv8Yv/MIv8OlPfxqA3/3d32Xz5s38yZ/8CT/5kz+5amNfNlhHnqyx3v3o9lGfamDBGDMvm/Ma8iT9KwIXwPi4KghjhDJorWq/uMTIi5i80hRlRDGICH1jQ22FC2iMoGICIivRRhEj0Ua4x3kEmauJWDtlinmQKWhiRsHsaXzLpT41conLXN9n3HTnXF+GRGFnptst1Wm6VtL4wKkRYaAJlMbMYm9eX8eUpOU1cspzExLuHFqSFLxlRlaVaggB2CpJElikbGwX3iwFr1uV+XjPSf5k9CgXoj6+PHGAD3SeXbZg3FqYQjFOwCSK5OgW2NS2PH8nqk9AySjfv8m56o2Z/IzPdIpKDXGqT8dcx/Ihe12fGM1z6s0tnHpjC2fe2kxpqrZR8ZadI+z3qtOOvUPzVJ1qIbFsMRG7OyoEAVRiyW9dvIdfP3cvJRNwf8dVOs8qTr2ym0s+Dtix7QYb7xviu5M7eHN8rxtTxxg/tv9V3r35PFI0nkczVvDWjS18+/wBXrm6A21dzJOTMQ9vO8cTu05zqH/5bctnpPBlbrDaCl4a3c5Xhg9wveKcAQsyomJb7+vZDmhrIvXYY4/xG7/xG5w8eZJDhw7x6quv8uyzz/Krv/qrAJw9e5arV6/yoQ99KP1Ob28v73nPe3jhhReaEqlyuUy5XC3IHRsba/i5tkIT9el2vUk5m3Pb1Oa8EWGyGcI0Y7dY0poAq9WSB5+B0OS9RXKXKhNKty6DILKSyVRCd7PKOakpyhiRKYQ2VqBJnMEUZaPQVhF7t7BEzVps+s1SQntlihCiaD5kCmdGkeljJkStlcRSqk81KlP2uaglTg3H2Soks6fXNZoxnCe5mm2s7YhG9uYCn5InE8c8Z/yQI1vH5G68ybHfslNeOyH9naq/uvRkKHHCU6mqVLULF/699NuWNCnPpeDVJ+hVMRhM83T3ab4wfpCT5UG6ZIVHOi4t6WZFGfUpzvwm+Yz6dNtN7M2BKRP4/k0uVW/CziRO3bLMoJxiYzDFgChRWCdOqwKjBRfPVFWnqxc21Lxf6KhUVae7rtHdtxRKjWUDml1E9PS5SdVvD23jH7/9Hs5Pd3Nf8RrhyTxn39ybfuPA3stsvvcmz4/t5gfDhwHoL0zyI/te54mtZ5ByZsYNwM2pTp7ztuXDpc709T3etvyRZbAtb4QaAoXEmOqrkZG8MLqTrw3tZzh2DYk7ZIX3bXiHv7j1dV66vm3Zx7eUaGsi9fM///OMjY1x5MgRlFJorfnlX/5l/tJf+ksAXL16FYDNmzfXfG/z5s3pe43wK7/yK/yjf/SPlm/gS4VUfXKz94kD0O1+k8ranKeXCn+/tsI/9/VMMwJsF21kX/GwqMAA1TqyxUBiycuYvIwpqoi8igiFSxWMjaRsFdqEM77nLJQBZs64yMRBTFhyKqI7qJJ960mWQRIZSUUrYpRLZUJijCsGn0/K1FLAAlorgsDdHOZDpiy1BMkpOF51WKD61JQw1S1oSXdTnQo13+/W74OmpWNrpA4qgRSajjAir2KEdapUUscUyFqnPDdRIFatjmlJkGaqGpSsc8EThsDbrCfK1Gx24WYRNQK7cqM81fkO35rcyw+mt9ElK9xVuLGoTbMWJr36NJVRn2SqPkXk7xCrbWth0oY1xGnK5uo/Ra8s+x5O0wzIKQqyzvVshZr1rgPGRgqc9qrT2WObKE/X/l5bdw+ntU7b9wwj1dL9MgVh2DoVs2NzBYCL0538k1OP8PUbO7ivcIO+03DxbUegBJa7Dl9g+73X+Nbwfp6/ei8A3WGJT+17g/dvf5tQzcwXj7TklWs7eOb8Ad66sTWdbO0Iyzy64yxP7jzFzt5bS7ZNs6Emha+OQJW04rlbu/n68D7GtCu96VZlPth/hif63qGgNN1BZUXGuZRoayL1X/7Lf+H3f//3+YM/+APuvvtuXnnlFX7mZ36Gbdu28VM/9VMLXu7f//t/n7/zd/5O+vfY2Bg7d+5ciiEvGta6U8BoS2xNTU3GUjShbXcYLEZqUGAyhCmLNFhOS5zmDjqktChlMGbhknFOaFefoSI6goic0Ehh3Yy5lUzomcRpPkgKLxvNFQmS3i2OwHWoqCYQ01ai/TIqRlExQY2K5Wb21bLcuFMypVojU66vysy0ubTnU6aWpCmpSP+rf7EOmWKmZQlaBH68S7SCZotp6zooS5BpYJuTmmIQ0RlUCKRGZk5hjTOZqBiFtq2T7vZCVU1K3e9kxgFP2NQFrwpv64tTl4xlWZXlo4WbTJgc35/ezjOTu+mUlRkNe1tBZAVjXn3K2m8XvG15J/q2n9izFsZtLiVNN3UHJVt7rRdY+tLmt85ZLzdLgeRyNutdB+hYcOH0YOqwd/1iX837xc4y++6+xoG7r7L/7mt09ZQbL2gRkFj6xzQHtpQJuy1lLfmNC/fym+/czUE5wpFjZS6e3+M+Kw0P3nOWXfdc5as3DvKN8w+7cQYVPr77LZ7edYJ8MFPBvDjWy7PnD/DCxb1MRFVPgCODV3hq12ke3HK+IfFaDtQoULaWQE3qkG+N7OFbw3uZMo7Ebgim+aGB0zzae57cMjUuXym0NZH62Z/9WX7+538+TdG79957OXfuHL/yK7/CT/3UT7FlyxYArl27xtatW9PvXbt2jQceeKDpcvP5PPn8TOm9HXBrcprePqhYN1+/UKe6dodNFSWTSYmymPrbiidM7tVWadOMtaWKSas3LYurT0hUp05VIS81gXQjjIxiWocrZhphEcQo4ibBtPTpQYEw5JRBBuVq7J2oWVYSWUVZy1TNcrVZ7nExs+AWn+Y3izJVT6DczJUfY6Yfa3ZiOx1SCypTfTHTsgcoiRK1jA5D2UUn/WhWE4raGqaciCkEMQGaUPq0NeHU5NhCpBWxTU7wtQOBS0uUGKQgJUiB1AQYhEw0pOp0gEX47AFB3KwiysJK9TV6uHiZCZPjRHkjXxnfz6d6T7ApmJzze8arT2OElDLKucKktU+521h9shZGTZ4h3cENb0letrWhksCywdc2bVTT9Ktpl5Ewj3UsVbPedTiMDhc5/YZXnY5volLKkF1h2b5nOO3rtHXPcM3EdHbCevGwdEwY9nTFDOxw06LfGNrBPz3+EF3lCttfM1y6shuAMIh55IFT7Lv3Ml+6epjPn3oMcHVMH951go/teYuusFahmY4DvntpD8+e38+ZW1Xb8g2FSR7feYYndp5m4zLaltdjthS+sTjHN4b38cytPZSNN80IJ3h64BQP915a2ubbq4i2JlJTU1PIOhlGKYVxvxR79+5ly5YtfO1rX0uJ09jYGC+++CJ//a//9ZUe7pKgPK2hN+EPJmNnLtL/ZfaVNr8GNyRMpBvlP+T+GZNE2TNn6RazmVIalNToBmpUtuZEYNM6p6KqUJQuXU/4dL2KlUzHi1OdlgsGScUCDYo0pVezpLQURESHMjW73ljpiJYRlG1AZFRGyZK+387cSp4FTEqmBFHkUoCcemRrCFRVfcoQqzqSmKhOM377JgfDisYjiRK1XCsVMxU7qCNWsGzEqmr84AhSXjinvFDq1PggWX1CxCfjwCm/0oCmqalEe8GrSxiUtIQipjOo0CErrtZSZI0dMlbhRmBYIEG0ICQNjU6WEkLAU53nmDI5LkS9fH7sID/ae4xe1Xj2vWIFY4SMO6qYDrYDTTcxnei2v98sBMbCqCl4R70iQ7qDqC71WmLoV9OpMUS/ml50ELjQZr3rcNCx4PzbGzn1xhZOvbGZm1d6a97v6C6x/65r7Pe1Th3dc6eMNbrmzgeqbOgrK+7a4SYsLkx38U+PP8zFq53Y17u5MuQNFfIVHn/4BAfuvsQXLh/lj9/8gPu+MLx/+yk+ue91+vLV2ixr4fTIIN8+f4DvXa7alithuH/zRZ7cdYp7Nl1BriAxmY1ADUcFvja0nxdGdxH52GFbfoynB97mXd1XbjsVu62J1Cc/+Ul++Zd/mV27dnH33Xfz8ssv86u/+qv81b/6VwEQQvAzP/Mz/JN/8k84ePBgan++bds2fuRHfmR1B79AWH93rclos37mSliMcOkx4INPg7ORFiI9OLMF+yL9b5nHnRImW03NSk7qGlVBVKPBzDlvvAth9k692GFb/78KnemDabDA0NdsOJOIShooaiuIrFp0ul47wLiqjYYNYQWkKYOBNOQpIzKuRMa6wFF7Navi1azYSHSiZmXs3I0FjCJQMdZCFKtqoJCoT5lDQNjmE/RzEqiVUJ2aYbn6DGS2qdHS5yRWMK+d4hrYOrKUE5pQeOMHGacGCMkijU9hjY1E25nnhZLGOfNlf+C2Qi1pcumIcZqil5AmJU16TFuzHGqaWH4W5aGE5cPdp/iz0SPc1J18fuwQP9J7jKI3OjAWJggYI6CcIQ9BRn0Kb5NZ4wTGwogppml6Q7pIXEecFMY1vvU9nDbIEmoZ9oO1OFdZs57i1yrK0wEvfXM/L371IFPj1XQ2ISzb9w1VVaddI4gFlEMshExZDZUbHbzvwA1C6dP4zt7DV9/cyegbGymNuXF2dU7z1CPHOHj3Jb5w4Sj/6ZUPY5EILI9tPcun973Opo6qmjRWzvPCxX08c/4AVyaqRHFL5yhP7jrNozvP0JtfXtvyetQSKIE1VfX9eqWTrwzt57ujO1JzoD2FEZ4eeJt7upbfIXC10NZE6t/8m3/DL/7iL/I3/sbf4Pr162zbto2/9tf+Gv/gH/yD9DM/93M/x+TkJD/90z/NrVu3eOKJJ/jiF7+49ntIZRmQqCn18PA0QYDxU/naUtNTNvmGzF4WZK2x9HyJ1mIJU82ycDcSZ6RhvWvb/GHr/srGcUoaZEaNSkwiCjKmQ1V84bvLHYysomTCRaW4rTVYIEb6lMHaYMKpnzY1wSiKiE5lMj1mRdVp0EgqVnk1S6EthGFMiRylOEwJVJpvOEcLr0bjTAe12lDAMqTk1LfVagUziFXmxVpi5YmDSvoxaQoyIq902oco+bz2KqRzjWxhIkF4EiXbiUTNRZqq15/EWdON25In9i0IljFlc4VUKYCcMHys523+ePQoo6bAF8cP8nTPydS63GYu3J1efeq4jdQna2HIFLnhzSGGdbGm3gsgRDPgSdOgmqJPllZs1tyds+v1UnNhajzHi18/yEtf35+aRXT2lNh/91UO3HOVfXddo9i5NG50rZKp2MKliwN8eN91Nh9yzXC/fm07v/2duzj36g4qvoHvht4J3v/etzh05BJfuHiU//jSx1I78oc2nefH9r/G9q5RwE1evnl9K89c2M8rV3em7VByKubd287x5M5THOi/seLnZ5VAkSFQ7p1LpW6+PHSAl8e3pdeTQx03eXrgbQ51DLU01mQSS9ZkAawNCGtXaGqsjTE2NkZvby+jo6P09PSs6lj+7Rf+PZu3/meujnVj5sVzbYNnmfSfRilS1KYMpl9I/9lqChM0kQ7mJwuk2VvJYeeJlGjxqpBdVZXUNYYEcmHFpyRZ19NJVch556zYOge8VtLW1lGL5BBJetykj8K7IvrfxQhBJXb1ZBUdEhunaMQ+bTA2ze3c03i8jo+vanznNnpJpbCFEKjZoIRTlwLpGtgmEwdJfU8yfGNFTQrngiAgkBoljXOMXJW7iSNNgU9frSFNWEdYcM02LYLZbdTdRIvL51/eI00Iu6K7aygu8FJpK5vzY/QE1VnsAEOPV59ul5qFBMbCD8pbOR/Xpn3liFO1aVBN0SvLq0ocRSJSrpOpGRi/VeA7XznE97+9j6jsYqLBrWM8/tHj3PPIhSV12KtHs0MiMpJXL27l8S0jPDLoCNT5yS7+7XP38cyzRzFlNwG1eeMtPvDomxw8eIkvXTjKl88foeJrhe7uv8KPH3iFfb3DANyY6uS58/t59sJ+RjK25Xv7bjrb8m3nKK6AbXk9ZiNQ70z38aWhA7wxsSX9/D2d13h68G32Fm+1tHyJRfkUciUMg0GZr17ew08/+pWl3ZAFoFVu0NaK1Drmg0YpcVXVqrbmQiB8grb11MamxGmGpFWFcQtJDTBavPGkGWVZzi4EGKdENVrODMIETSe66+/9gTAUZERnrkxvroQSzojB+HS9yThsGryvozUkhNgkahYze3M522ft+ghJg1UVZOaCbDL9scpaUbFBSrB0QnIzeuqq/2LJpMJSKS5zpPHNBZkYP3jClBMRRRUTCONVJpdTafANbI2ibLP1L5mhJErhvMZvCZVBipUkUY6sJzV/IY4wJqQpuXa5GibQTVJa2wFJJvNyTmVaCyUk4wRMKMnBThf0GSso6ZD9wSjF27RpbmwFL5a2c013IbBsC8adOYScoltW2mqb180nZuLWzQ6e/9JhXnluDzp2k51bdo7wxMePc+RdlxaUtjdf1CtTkZE8e2U3uwsV/uZdJwmkpaQV//F7R/iPn3+ESskpULu23eADj73Jvn1X+drFw/zWC59mKnYq2v7eG/zEgVc52n+NSEtevLSbZ88f4K2bVcO0zrDMozvO8OSu0+zoubX8G9oAzQiUtYKTUwN8eegAJ6c2+s9aHui+wtMDb7OjMN7C0t31OvSZDNLHZ3qNHvvrROq2houOatL3PFkyXmXK3kxEtpBlluDDZNSklodRvzKbJVEioXM1GYENF9NgnRJLXsUUVEynKlNQrig+UMb3pgmYXuH+Sncismll2KRnVkDslarYSrRW6QcS04Kccr24ELaa+efTy4x1KYNlHdSoWAnZWinXRGBJ66Lmo0JJ33/IpeQZclKTVxF5UWf8YEmJ6bRp7ihZk4GbfS7qPjPL+S2kc7ATwmLMcp1bLZAmm9QACke6U8l7DcAuhL22Bm1hnIAxQqKMAhdiiOKQb4/vI7IhuuMCDxSb91xcqygZxfOlHdwyRRSGRwqX2NqCY+FqYt18wuHm1S6e+8IRXn9xl69RhJ37b/LEx4+z/56rK06ALVAxim9c24upFPjbh15lU34agG+e2s6v/bf3cXXYqRUH917mg4+9ya6dN/jWpQP8X89/irFKEYAdXSP8+IFXeWDwEhfH+/iDNx7mOxf3MhlVHaTvGrzCk7tO8a4tF1bMtrweWQJlccY6CYF6c3ITX7p5kHdKGwB3b3p37yU+3H+KzflWzi9LIC0B2vfas2gEsS+9EGtUEV8nUrcN6uqUEoVJ+vdE7UfTPxOnFVHlTjWC0zyPa5v5v/pikpuVvGurgZuc+fk5gzicPWjSDLczcCYREusa1mrFFBIlzDIGeetIUJNKWv/T4y7ABlDKYH09FTiL6NjKqnsK1Yu48kG0FIZOqWtSkRI7d20lsVGUjfJ9iWpTBuvrIBaFJaqLmo1ACWyGMDkVryAi8jJ2dT6+jslYrwQaSdk2Nn6YcxytvN+gAEvgSFQoNWDTQGfxmD9pssnlzWMtzmUupSplLUwjGSdkItM0V2DpIqaHmDwGEU4zWbzC81O7+M7UTjplhYP54cUPoE0wYUKem97JpM2RI+ax4kX61coW5C8UznDpzqyXunqhl2c/f4RjP9iRXij3Hb3GEx8/xq5DN1dFQZzWAd+8sY+TI5v5e4d/wCN91wA4P9LFv/qTJ3nx+G4ElnsOn+eDj73Bti0jPHdlL//u+UcZ8ul5m4rj/Oj+17hv4BIvXd7DLx//KGdvDabr2FCY5Imdp3l812k2dqwe2a/NZBJoT6CMFbwyvpUvDx3gUtmlyAZC82jvBT40cJr+cLqFZbv6p1CatBF70pKlHlfOFNHtJBe3gHUitSaRIU1zEKbq8zlqmRpk2JlMil9CbhpNGMx8qfoll/Zd+wlrM+trMOlSE5j7RyUNBd8MtytwJhFKuMDc9XTKpSYRQrhAb23YL69dNPqdmn7W/xZJ017dJABPcq/j9OCp1q9V5wisb35qyauIDlWpmclKzBJ0pjlxZBOHQZVauresZqUSziKOp5rUWkeKQuHSGnLeObLgjU+UT7VKbmLJdkwvgDA1woIDNOF6RAXKmbPYBau8VdKk/OxkljQJYT35dumfMUkdnU2JU7Ps4zUHK5rUnraO2AqvPgXEGWqZ98YRXcSoup11X/EaEybHa6UtfGNiLx0yYnvYSkpOe2NEF3i+tIOyDegQFR4vXqBbrnxdyaLgb7Z3Cpm6eLqfZz9/lLdfr6a2Hbr/Mk98/Bjb946sypimdMDXrh/guet7+P/seZP/7cAXCaRlOlL8P19/kD/41gNoK3jovtN84NE32Tgwxveu7+LfvvAYV6Yc2ejLT/Hpva+ztTjGcxf287svv5eKdiG3EpoHtjjb8rs3Xl1R2/JGqKpQAmOkS4u2kpdGt/OV4QNcrzjb9ryMeaLvHB/sP0NPMHcTY4nvvSc1CusdgGdevUvjije/vIFXPjPApTe6ePjnhuD9S7uNy4l1ItXWmIUwJa/XfXROwjQPNFQXJNSUSNcnETdaTnYZLbq1CSx5pSmoiA5VZxJhJCWj0Caklul5kUsaEEs5W76OBK2Qp5rDpiab0ymfc5Gpudbt3AIVUbbkLvOpRM0KpCEvNUKUqk6DGTUr8kpWJdM3KyFcqZqVqKYLPKeUrPZjygnfwDZJPc3UpiTGD9ESEqZ6LOayIHAmFkq5CQrrVez6Fcw8JuZJmqzEiiq5kCK5/N2+IWWS4TyfLbQWplCMETCVUZ9kVn2ao0Hsox0XmDA5zlT6+dL4AX6k5zj9wdyzy+2Kq3EnL5a2o5H0yhKPFy5QkHruL7YbMvVStyuZshbeOb6JZz9/hHdObALcBOhdD1/g8Y8dZ/OOsVUZ10Qc8tXrB/nKtf18ZOMF/vSRz7LR24t/4429/B+feYyhiSKPvOtt3vfeY/T1TPL60Fb+7YuPcW58AICusMQP7TxJqA1fffsoVyd70+Vv7brlbMt3nKEnPzcRWW64ygqXaWGsxFiXxvid0Z18dWg/I3EHAB2ywvs2vMP7+s/SqeaamHBp+4GfKJSeQNWbehkNZ1/q5tXPDHLimV5UH+S3arZ8corp6bUVu60TqTaDQSOkRYSZQqWGKpNYsSLqaulUA5cp0exPMTPOMrPfEkKpKWTS9XJKozAYX+c0Hs3ipJUsWlqkNNhGTaPWsWDU/3LNhM+aNxvUq1gjQDoyZWHJUi+rq8moWVrNOFqyalZRRXRm1CzrU+ayalZZBC5N0NdlRZ5w1ZuVJA1sc1J7AucJk3D24onJhiUxfpCUbTBjOcuFRZOopEdUpmfIzA/aND1R4prbJqYXTUkTokZNd8TpdgwdZ4EV3sRk7o9GGfUpm7payKhPrdp2CwEf7DrD1FjI1bibz40f4kd73qJrzkCp/XAu6uEH5a1YBJvUJO8pXCKcg0i2M1LzidvsVLAW3n59K89+7giXzjriIaXhvkfP8dhHTzCweWKOJSwPxqIcX7l+iK9d38+e4ji/ff/XeLjPGbOcu9HLv/rTJ3jt/GYee+gETzxynK7OMm+PbOTffe8xTt5yRDCvIt41cIlKOeALx+5NbcvzKnK25btOsX/D6qQo1mOGAmWhpAOevbWbrw/vY1y79kHdqsQH+8/wRN85CmquSQlX/xSikdn6J6swFsooSjbg5lCBi2e6GL6VR22A4l/TvOcXhhAZntVZipdnw5cJ60SqzaBFff+OlSNMSXzk4t+G1U71H22IaiXU7J9TwqQmEV2qQl5FhMJggMgoSnGQXoxaRSCNNwRsg6vVbYBGCtQMflTPqua4+TsyZQmVJmLpyFTDdc3426lZccMx1qlZQUwv1doK4wtvNTJVsowVMxrYekNKtK9jKtn5H8dLhcXGYY5EOeMWY2RmeW5fKeH6foQiSUu0SGnTSNDtL9+nKZnckDjSJUDeaaSpCWZTpayFSa8+TdepT93E9BCRW2BqUCAsH+1+mz8ZO8otXeQL44f4VM9x8mtEybEWTkQDvFVx7mE7g1Eeyl9ZsR5Qy4nbqVmvMXDsBzt47vNHuHaxD4Ag1LzribM8+vQJegdWRwkdjfJ88dphvnFjH3mp+bn93+cvbTuBkpbpSsB/+NpDfPYHB3nvQyf5+596nmIh4tzYBn7j5Ud57eZ2tx1Cs7trhJHxDl46vzdd9r4NN3hy52nevf0dikF7EIMaAuUVqEmd41sje/jW8F6mjHMW3BBM8aGB07y39wI5OXsAKnC1zFrCtFUM2xxTcUjJBkxbR57KVlWL73uBd0E/tRM2EkNBaHplmQmTn7miNsY6kWpXNKz2XiJkCFP2sS5pr/7j8118Zqn+dUk6U98hK3QEFULh5lXTtKZsut48IdfVqCVDI0OxrBha8+IC7vLWSIQ0nky5gHsl0XjISdqfs7mt3zZXMOvS1DpURJfPEU8cBstWEZvQf3b1sXgS5e3NpQEDoYhnkqbUJq/anDnSdc1sfVqyEOtNB5qigSpV8erTOCE6s+eKaHqI6FyiprkFqfl490n+ZPQoQ7qDL0/s5+Pdbzv7/DaGtfBqZTNnog0AHAqHuDu38o1KlxNr3XxCx4I3vruLZ79whOFr3QDk8hEPvf8M7/3wSbp6Vie9baRS4AvXDvOtG/uIreTHtpzi5/Z+j4GCG89XX9vH73zrfu6++xz/3//pM4Sh5upkN7/92nv47rXdgLs+9gXTjE508M60I/JdYYlHd57lyV2n2N49uirb1gg1BAqJMTAWF/jG8F6eubXH982DjeEETw+c4uHeSzU95YyFCooyirJ1jxWke80qSpkJnmYDMGUoXVWUr0pyRrNp8zQ79k7QGcYUREzOGw1tDqf56sie5dsZy4B1InU7YxbCVI+U7CzxEALhnMcKKqYrLLvUJ2GqPZ10vpoqtMg7hVKuAGvdZGJhqDkGmuXyLZA4NYIxEulTxmLUipOpRnDzF76Jq6XWsR9BbERNQT+QGkn4p6uOxf48ytd05ZUmlLFrtqxMmnZns6TJNCJNbhTNDCFaGV877MeVhvVC3gSKMUIfnDgojFefYsJlIDg9qsLHe97mT0ePcCnq5ZsTe/hg19m2JSXaCl4qbeOy7gYs9+WucyA3strDWhasxXqpOJK88twenv/SYUaHnHtdoaPCIz/0No988BTFztVJH71Z7uAL1w7zzM09xFZxd9cQv7TnBd618SYA71zv47e+/gCDO4f4q3/5qyhlGZru4E9P3suzV/Z5lzlLYAwmUoyVOpFY7tp4mSd3neKBzRdXzba8EWpqoDyBGo6KfHXoAN8Z3Unk65a250f50ODbHOgcpoLiiu10hClDmua6KkssBWJUxTBxNuDK9zq4dSJP6YqidEXS013h/k8Ocd/Hh+nZtPbSh2fDOpFqM2jje8LM94uiNcI0y9eXBBJLQcbkVUxnUKYgXZ0IAiLfD2iqmS11feQ1c4Oar1c6ebkdgvG1hkR9SkSoGWLoEpKneqRkSmqfS73av59Ne7lkuWOKOs7QTgQK5v8zBcI11HVNfJ0hRqDc7yGwPv3DpTNGpgE1Sv9cHHGa6zvtsn+XC2UE4zZknGzDZEsHmh5iOpZIfZoNg8EUT3ef4vPjh3i7MkjXdIX3dFxa3pUuABUreWF6B0OmA4nh4fwVdtwGjoPNsJaa9VZKiu9/ez/f+fJBJsZc/6TOnhLv/fBJHnrfGfKF1Ulxu17u5HNXjvD80G5nRhKU+bubX+TPH3gbJS1T5YA/euEuSl1lPvSx7yEFjFXyfPbU3Xz9wqGqUYIGGQusDRgoTvDEzjM8vvM0g6toW94I9Sl8WsPlqJvvjO3gQrmXjrDCQ5vOM5ibpC83jZUQIzhu+2dZpiNKReH+5YWmQExBaIKK5vQ3enn1MwOcfak7PU5znZp7nh7m/r8zxI77Jtt2YmaxWCdSbQatq7VJplGlqah7bAm1eVpLGfwJXE+nrElEKHTagDXSihKzmETMtfD6gTYJ6lU6C3SbnqlLjJQsVTOzqrt1GYlTI9QoU3p1yZRowPFnG027HG2t/Fw1pElqcmikN4NIlNzE9LNigsa/wzIRp7lwOxIrQ6I+BZQz6lOQUZ+CFU6v25kb432d7/DNyb28PL2NLlnh7sKNFR3DbJgyAc+VdjJu8oRo3lu4xMZgarWHtexo92a905MhL33jAN/92gGmJ119S8+GKR77yAkeeOIsYW51VJorpS4+d+UI3xnehUEisPzFjmP87XtfZUOHq3999q0dXESx511nEAKmopAvnDvKF88dJfIpb45AuXPzXd62/K42sC1PYL2ZQ6IglWxAySpKVjFlQ9esXMH2DbfYzq3a7/qrqcCSR7t/wj0WiOmQMV2qTJEYK5whE1ZgLVx8vZOXPrORN7/cT3myeg3b8+4xHvjkEEc/OEJYaI99tJxYJ1JthrL26WnC1kw+LSYdJlv51EjwmS8CDAUVZUwians6Teocy1YN0UC1ksLVcayrUbOjYdldjQy1esiSqShWy3f8zAIh1+YFv9GonVue++ea+2qXoudJk7HCWcF7J0IgJVUGmNk5eGWJ01xYq8TKAmUkYwRMkD3OLZ2J+iRW1+jhSOEmEybH96a38+zkbjplhT251a/3GNV5nivtoGRDCiLi8cJFetXqW0ivFNrRfGJyLM93vnqQ731zP5WSqw/t3zTO4x89wb3vPYcKVmekl6Z7+OyVI3x3ZGd6jj1Uuc4v3vsS92xzEwMXbnRzfLKD/I5bbAPKWvG5M3fzxfNHqSQEyjgCta1jlKcOnuLRHWfpXgXb8ixRKqEoewOHUoY8Nb0KCveONi4+65Fl+lR5BmkKM+04JMY1h8/Yl2urwML4jZBXP9fPq58ZZOhcIV1N3/Yy939iiPs/MUTf1sqy75N2wjqRajNoo2fUNjULYBphrsvWQgIQiSUvk55OFYpBRE64Xk2xkZS1QlM1iVjJS6cQoJT1XCCZWVlHgqaeJe1yJ84gIVNhsBpkqg13yBzwQmJLpMnUkaZ6KOEKfd28sXB1YqyZQ6ftiZUGJrxteSWT2hx69ambuK1uxg8VLzNhchwvb+Sr4/v5ZM8JNoerl750Qxf5zvQOIhTdsszjhQt0yPZwQltJpDWcq1wvNTpc5IUvH+LlZ/YRR06J2LT9Fo9/7Dh3PXwRuUptgM5P9fKZK0f5/q0d6WtbRqb4mT2v82MPHENKmCoFHL/VwWSHJp+fpBwr/tOJB3nmyv5qCp+BnNE8uvUsT+0+zb6+5bUtn6koObLUElHySBSlWEsul3q4PN3LZJxjMsqxNz/C+zecZWdhthRYSyAsgdCoOvvyuCI4+e1eXvmzQU5/pyc19AoLmrs+NML9nxhi94MTDTM67gS007V7HYBpoh61grmCiUYX3mbfyQlNQcUUVYVOFZGTGiVM2l9n3M6errdSgYyUBiFNTfPddg+qVgINs+PaMQKuw+qQKQuySkzmgo7g7NfynP5igaDDMnAodv8OR3QMLO9OVktAmmphUcrietkLH+Lbuk+sPTQa80pfByxQ8urTZEZ9Ehn1qZCpiKp+USCkXdUeQkLAk53nmDQhF6I+vjB+kB/tPbYqCtDFuJvvlbZikAzIKR4tXnQTeXciMvVSq0Gmhq938vwXD/PqC3sw2l0ttu0Z5omPH+PQfVdWLZA+O7mBz1w5yiuj29LXuq7H/A9d5/hfPvJdejvdcXt2qMC1nKTSYbgy0c1/Pv4Qrw1vwyQDN7AlP87H9r7Je7afo7BEtuVLSZQKIq4+CpeinTOGE1ODfPnmYd4pbQCcqvRI70U+vO01NuWaT4I4N1pDKAxKOH9QVxMruXK8g1f/bIDXv9RPaaxKF3Y+MM4Dnxzirg+NkO+8Q8/FDNaJVJthvhfG+ZCG2d5TGAoqJi8juoKIgooIhKN1kVFM6TC95c8VkKxcwOIuAM3W28yr4nYlVjPI01qMgFl5MpXcQ7MZjo3WOH5Fcuy/FTn+34tMD1cjhlOfr36mOKA9qYpTgtW3RyMXcKVNCFNS0+RaBcwkTXHLpKkK4ZvnKlltlJtgjR42c2KlrgMa0qa5UUZ9ymHoIaaTOFMR1Xhc7dCIVQnL092n+dPRI9zUnXxu7BA/2nuM4goqQacrG3i1sgkQbFPjvLtwue1t2Zcbq2E+cf1SD8994QhvvrQzvVbsPnSdJz5+nL1Hr6+aicCpiX4+c+Uor49tdS9YS8c1eNfUKH/v6ee4a6dL4xueCLggQm7IHN8/v5PPnb2bi9N9JGZ0wlqO9l3jJw9/n129t+Y9jqUkSomJQ15oCkKTJyFMxvdHc8e/QaC14Afj2/jy0EEul3sA19fq0d4LfGjgNP1h8/5cMiFQUqMwPn1PMjkc8trn+3n1swNcP9WRfr5nc4X7fniIBz45RP/OOyelthWsE6k2g9bNXfuW8vYhSHo6RXTIqNrTSbieThWjmLaNezrNdxzLdY1V0vWxadbQtZkoczsRq4YOe7cBqmTKEMVy2chUti4qa8mSqFPWwKUXQ978Lx2c+1YuTWno2Kg58iMlVM4ydDJg6GTA6HnF9JDi4guKiy9UGwqqnGXD/jijXLnHfE913VXSpF1u+hKSJnDEKd06AVL4ZrjCtoFT4upgsdcBW/d8Gsm4V59IJ50sXWi6ick3Up+aLFcgPMGd56CWGKEwfLznJH88ehdjpsAXxg/yyZ4ThMusCFkLb1Y2cjIaAGBfOML9uWu3revXfJFtzbCcx8jldzbw7OePcOKV7elrB+65whMfP87OA0PLt+I5cCsq8P+ce4jXRh2BEtZSvCrYeMnyt973XT758HGkhHJFcEGHfGdkE8+cP8izl/YyLUJHoKSbQH5k0zv85bu+R2fY3JLbWtdHqVRHlJLnFeae8GtElNxzTd73UWp2fGeLJgyCWEu+O7qDrwwf4HqlC3Dx3JN97/CB/rP0BM2IjkViCb1TrvTX/3KkePvZXl79zCBvP9uL0W6NKmc4+oFb3P/Jm+x99zhSNVnsHY51ItVuqMY62T/n+/WGCIU3iZAx3UE5TdezVlCxigmdZ7ZwYrbLxGzrnWsbFnZv9M1357mDGok2Wvx9yQABAABJREFU7ZAGNB80rHu6TQhUFimZUhDp5SBTM3dasobSmODEnxY49kdFRs9XL5Pb3l3h7j83ze73l1Fh7XejaRh+25GqoRPucfjtgGhKcvNYyM1jtV/o3hqz6XCFLUfKbDlcYttdFbp3RlixONIEM4lTdnNFQqKw6z3XMkjJc+bvuRAjGEcxTlDTXyzvyVMXulmzhzkH0y6ndIeM+eGek/zx6FGux118bXwfT3ef8rPjSw9j4fvlrVyIewG4K3eDw+HQOomqw3LWS507Ociznz/Cmbe2uBeE5ci7LvHEx46zdfetJV7b/PD66GZ+6513Mx4XHIG6LCieDvnx+07wP/2NF+npdEYHF6dy/Kd3DvPFM0d4Z6wfE0AiBSuh+cD2t/nRA6/RGUZOUbKrR5SaLxOyeRLTseKF0V18dWg/I7FTizpkhff1n+V9G96hUzUjg43rny6d7OSVPxvk9S/0MzVSvT9tv2eC+z8xxD0fGaHQvbrmN2sB60Sq3eCZwVIYqSkseRlT9D2d8iomJzTWQoSipIOF3uaBhZO9eiyEaClpZlWjWkW7q1Y14xC1f98JcYUx0qUfsNRkyjbM579xLODN/1zk9BcLxCVfUNtpOPTJEnf/D9Ns2N/8phIWYfN9MZvvq6Y+SWuYvAzDnlzdPBFy/USO0csh41cCxq8EnP5mNX0i12EYPFRh0+EKmw5HbDpcYePBCrnO2c+SLHESyXFSwwgcRZASZ9lrWcJ9eZthjt1igSkU4yimMuqTxNLljSPyi7wqtpMqBdCnSny0+20+O3aYd6INPDu5myc7zy05uYms5MXSNq7rLgSWB/NX2R2uvmNgWyJh/ktEpqyF029u5tnPH+XCqUEAhDTc88gFHv/YcTZuXd1eXbER/PfL9/DFa4cBCMah65U89w/c4Gf/yrc4snsYgBvTOf798fv5w+P3U7EKE4DIWzrzZXqLUzyy9R3u3ngFFJylh1I0f6KU9/2TFkuUmq8rgfuRJ6OAZ27t4evD+xjXzimvW5X4YP8Znug7R0E1vi/V1j85FXliNOD1Lwzw6mcHuHKsM/1s10DEvR93qXsb95WWZkPmifbxo5wf1olUmyFexF1T4Ho6FVVMUVboDCJyQiOETU0ixuYwiZgPVuqQn0lqrHMY8zePpQ4HV1u1mrEu0fBp08+s0WtRUxgjEdIQAPESkaksiYrLcObLBd78L0Wuv16dles/GHP3n5/iwMfLhB1z79QkNU8Jk6bnKQyb9lv27gfz0cQIQjA9FnDjpCNV10/kuH48x423c1SmJJdfKXD5laqtLMKyYVfsyVWFTYfLbDpSoWdr7G7cdTMajVWmhEQZWGXHr7ZHk50TIRgnYBxVMwFV8OpT56KmpRqPo50Ew63hBD/UdYYvT+znrfImulWZdxWvLtnyS0bxfGknt0wBheE9hUtsCdqr0WnbYQnMJ6yB469s47kvHOHKOdeQVQWa+x97h8c+cpING1f/N7he7uTfn34P70y78RXOKXZcjPhfPvg1PvHEaQCmIsV/PHuUP728l45ChUfueZuu4jTdhRJd+TIyk8Z9nY4Z5/lKEqXZUFWhBONRnm8M7+VbI3uZMjkANgRTfGjgNO/tvUBONk6xlVgC6dLEFYYoFhx/oY9XPzvAiW/1oSPf8iIwHH5qlPs/dZMD7x1bUC3voiGsz5BwSNrorCWsE6m2Q+Kg1RqSnk5F5Zqm5ZVOezpVfE+n1jLz1w4SNUqbRh5jM7HYrV9u1arp+Be6wNss7c8CeGXKAnqRZCqpixq7KHnrj4qc+NMipVvJjcWy78Nl7v5z02x+IKq5cWZ/86BBTZPCpDfrpKYpshKrZ4bXhR7DzofL7Hy4mstuYhh+J0OuToRcP55j8mbAyLmQkXMhJ77cmVmGZuPhCpuPeIJ1pMLg/oggX/+Du4kHp0Stk6j5wAKTPnVvOmMRIbGpbXlumfaoBYRtH1UKYF9+hMfNeZ6b2s2LUzvplBUO5YcXvdwJE/Ls9E6mbI68iHm0cJF+tTqz4msNVfMJ5nWtN1rw5vd28Oznj3DzikujDHMxDz51hvd++CQ9G1Z3/1sLN07m+MqxvXxz81FsXtInp9h8LeL9+8/z1//CK3TlnRLzaqmHb04NMjVQ4cmBEw2X1y5EqRkEgL9Gj0RFvja0j2dv7aHse1ptyk3w4f5TvLv3UhPDFYsSNjUnksJy7UyRlz+zkdc/38/4jVz6yS2Hp7j/kze596PDdPStQupehjxZb3KRTIwbK9BmbVGTtTXaOwD5sMSGcIqoaJjSeSomIDIBkZFoJBJLQcbkVUynKlNUMaF0J0JsJWUdEJOdpr69kEjV8ymQXw6itRjVatbxLMfPdhsQq+QCG/gZuIWSKaMtF5/N8eZ/LnLh+Vw65d+5RXPXT0xz+EenayzME8UzUZpCoclJ14BatUiaWoUMYPBAxOCBCnd/Ilk7TA5Lrh/Pc/14QrDyDJ0JKY0pLrxU5MJLxXQZQlkG9kYpsdp8pMzmo2V6NsbrJGoeqCAYI2ScoGYiqphRn1bkCttmqhTAvcXrTJg8r5a28M2JvXTKiO3hwtO+hnWB56d3UCGgU1R4vHiBLtm88H8dM+HIVGsTJXEkee07u3n+C4cZuemNCgoR7/7gKR75obfp7F69ZqrDFwLOvtLBlfNFbk3niZ7qpvik5cfyr9GVKxEIy/seucl7iyMAXItzfGlyM5fiIsYIJsp5xksFJkpFOmSF+zZcYXtxjEIbEKVmyCpQN8qdfOXmfl4Y3ZX2tNqeH+XpgVM80H2lSV2iJZCWAFf/VBmXfO8rG3n5zwa59HpX+qmOvoh7PzbM/Z8cYsuh5m5+y4Ya8gTGSrS/dybxXFY1XEtYJ1JtBiEsyveH6VPTgEHirGglrr5BOSGfilFEJmAiDu6Yegcl3cXQmKXb3qUgWq2qVvWft/UvrATWKLGyVmAsBH7iYD5kanrEm0f81yLjl6vKwo7Hytz1P0yz68lK6kikqLUcD6RG4RSd6g1AEi2CNNVtmb/BZ8whMr9JZ79l72Ml9j5WnSGOK3DzVC6jXrn0wNKo4uapHDdP5Xjrc5llDMZsPlxh05Eymz3BGtgbrU4qR5vBAhpBBUGEYMrkmc7cGhWGbk+gwhU+WZwq5RWHNjpP39txgQmT43Slny+NH+DTPccZCOYfnF2JO/luaTsaSZ+c5rHCRQpyvbh9IbAA0iJMYzIVlRU/eHYvL3zpEOO3vFFBV5n3fOhtHn7/KQodK2drH1lByQaMjOW4frXAeClEFyW5raA+ChuADcTASPqdXhnxqc4r7Mi56+AXru7i/z51FCnh9K1Bbk13YhEc6rvOTxx4hUMbbqzY9iwEWQXqSqmbLw0d4KXRHT7igz2FET4y+DZ3dza2l0/rn6RGGMPZl3p5+TODHPv6BuKyW4ZQloOPjfLAp4Y4+MQoKlzhi0gL5Kke1rp007WE9dtoG0ICWFdzUVTO/SVQLtdVA9pIYquQUiO1QVmFtpLYqNsujS+LhahRS4FWLz31o5rT5bBdfqo1RKwsAmNkS8qUtXD99YC3/qjI6S/nMZH7XL7HcPhHShz98Wn6dusatSmUMYGwrjDX244nzW2XyuFOYP0+tw0YNS1JEEEOttxVYctd1dlja2H8mnLK1fEcN07muHY8x/C5kMmbAWduBpx5rmpsoXKGjQeiKrnytVfF3jV2F5sHNFBB+n+CCpII2eC6aelA042mY6XUp2awAttmvZOEgA90nWFqLOBK3MPnxw/xoz1v0dXUNWwm3ol6ebm8BYtgk5rgvYVLBG22nWsKCeGuM58oTQV871v7efGrB5ka90YFfdO898MnefCpM+Tyy0NctYUSAdM2oGTd42QcMGUCbOgnoTqB/ZDLfM9oGI8KjFaKjE4WmbrYyX0DQ/zP9/+AnlyF0XKOX339IU5M9XLy1hYmItdqYnf3MD9+4BXuHbjSlspTgiyBOj/dxxdvHOCV8W3pfexQxw0+MnCKgx2NnSqr9U+a0Ys5nvvMJl797CCjV6stNzbum+b+Tw5x38eG6BpcOYIMLIg8lacU514b4OzLg5x/eYC9f+46vG8Fx7xIrBOpNkNelehRZUReY4XEGJcyVIqyJhEWKVyPmc6ggvAKlbaC2CgqRhFbhfbpgLeHWmVRygW3dgnVqKVEyyFAxn1v3luynHGGH4wVdeNqs9jGkihTjclUNA2nv1jgzT8qMHS8ah4xeFfEvX9+isMfnaTQoQmlIRSxU3sTtcm4i35kw/rVLhgiDQ4bEKclZNRCQM8WTe+2KY58cBIS5XpKcOPtHNeO5bnmlavrJ/JUpiRX38pz9a18zXJ6tkVV9crXYG3YFTV0OWxXaCCqI0yVhoQpgSXEksPQKSKK1tIu5c7tqkoFwvLR7lP8ydhRRnSRz48f4tM9x8nPoShZCyeiAd6qbARgVzDKg/lmaUvrmA+yzXqnxvK8+PWDvPT1/ZSnHVXpG5zgsY+c4P7HzhGEi58wSRrRTnuiNE1Aybq/GzahVaQW5OVrMHVOwqihM4zp3Rzz3c59vHRrFxaJHJWEk4Kfe+hFfurIGwAcv7WBX3r1Ub57c2e6yC0do/zYgdd4eNP5tj6GsgTq9GQ/X7xxkDcmt6Tv39N1lacHTrG3eKvBt6v1T7pkeeurG/jBZwY594Oe9BOF7ph7PuJS97bdNbWyZFJQU9s/F3myFm68082ZHwxy9uVBLh3vw2hJz5ZJ3vNTxzn75rYVHPzisU6k2gxKWBSGklZomgVzAmMVxmZfcX2VQqkp+FlBbV3gUNaBI1ZrWLUSuLS+tu97kw2U61K06oe+oC1ZMdegWV5og2DOWoEBVFIfqCW33gl4648KnPxMgcqEi/pV3nLoI1M8+BfG2XnfVGO1ySztZEN9DydBJgBeVinSO/NlingBch2W7feX2X5/1djCGrh1MeDa8TzXjue45muwRi+HjPl/b3+jamwRdhg2Hayw+ahTrTYfLrPp0Ny27MsNA15VEjVKU3P/PEvgCVPOP4b+uassteRETMW2Wbq0FS4IazPkpebj3a7H1LDu4EvjB/jhnpNNiuHdefBKeTNn4w0AHApvcnfuZlsrCGsNYyMFXvjyIb7/7f1EZRfiDW4d4/GPHueeRy4g1fyOI9cuRTpViYBpWyVOJWY/T+JxmDormDonmT4nmHpHEFY0W3aW2PPgNLvfM03HBsPJ8UH+/ZlHuXWr6E7qsYCdcoL/46Nf5Z6BmwD85sn7+JdvPELka4cOb7jGU9tO894t76T1qu2IhEBZIzg2sYkv3TzAyamN/j3Lu7ov8/TA22wvjNPoZhtIQ4DhwisdvPqZQd74Sj/RtGejwrL/vWM88MkhDr/vVgOjoeXdsBryhESb5uSpNBHwzqsDnPnBRs6+PMDkSNWZNsjHPPXTb3L3x84hA0v/gxMrsglLhXUi1WbQ/sC087yzOEVKuZlYb98jhCXAONVKWF9jIohwqpU2ithK9BIHkksPr0bhunq39VATiLpHqrxqLQx/VszbQWN5YK3AxJJ3vp3jtf/UycXvVJWVvp0RD/3kGA/86Chd/XrZ1CaYSZzc4KqPK3Nuzc/eXEjYsCtmw66YI09X7Y1LY5LrJ1xK4LUT3uDiZI5oSnLp1QKXXq23ZU/UK29skbVlX0IYSMlSlFGZ4qaEydU25VLSZDxpsktrUb5CSBzZ2k2VAuhWFT7ec5I/HT3K5biHb07s5YNdZ2YcA9oKvlvaxhXdDVjuz11jf+7Wagz5tsStmx0898UjvPLcHnTsAu0tO0d44uPHOfKuS3MqytoKpr26VMooTNN2jn6T1sKoZeodwfCrAROnPGk6J4mGoXuzZs97pzn46BR7/sI0PVuqiqWx8N8v3s1nrx5xB3csYCTg49vP8E8f+TZdYcRwucDPfu/9fOPqbnZ3D/PeLe/wyJZzDBSmlmK3LRtSAmUFr41t5Ys3DvJOyU0gSAyP9F7kwwOn2ZRz2QMOLkIQnkBNXVN8/3Mbefkzg4xcrF57+3eVeOCTQ9z38SF6Nq+gMYsAkZmKn408WQNXz/Rw1qtOl0/21WQThfmYXfcNcf8nzrHtXdcRgdsHgTVcGB1YqS1aEqwTqdsWAmsFETIT5Nq0FqSgIlCuyNpYScUExJ5YtZtqJaVN1aj2GdXCsNbH3xQrrFpN3ZAc++MCb/xRBxPX/WVMWA69f5J3/+Qoex+fxgh3yS/phRAnWxcINtmgZUzVax1LZ29e6DHseneJXe+uGluYGIbeCbl+3KUGJurVxI2AkXM5Rs7lOP7lzDJ6NZsOOWKVEKyNBxrZsjfaEmaoS5FXnJrtV1WjLFXJ01okTLOiTVUpgMFgmqe7T/GF8YO8XRmga6rCezovpu9XrOT56R0Mmw4khncXrrA9WN0Gr7cLbl7p5rkvHOG1F3dhfUuQnQdu8sQPH+PAPVdr6qVMg1S8hDhVZk1mddbhRREjxg0TpxTXXwo499UCt44ryATIxV7N7vdMs+dT0+x57zT9e6KGEysnRjby78+8h1EK7tSekuRL8Ivvfoaf3HscgJdubuEfv/Ze9vVd558++hm2dY0tzU5bRiQEyljB929t50s3D3Kp3AtAKDSP9p7nhwZO0x+W6r7lruO2ZDj1rZ7/P3v/HSZXel73or+dKofOOaMBNHKcGWASQc6QQ85wKIoSSQ2pQCpYwbKudXTukY7vtc9z7Ss99nXQsS3JEi3TsihySImkGIecnAcYDOIgNIDOOVV3deW09/7uH7uquqoTuhvdQAPT63kKXai0d+3a4VvfWu96ufDDCnpP+/JWFpvLYM9Hgxx4OkDjgdjtU3EXIU+6aT0yP/QrHtLou1BhkacLFSTCtqLnKxojtB4O0HY4QN2eaUyHjplVEyUB6bQNp5Ignim2m292bBGpzQZbqsiyt77IqlYCrDkMS7VSELiUNJIisvUnErrI1VrJ+XqrO6NaibxNZHOrZlsowjoTK1kykTEZO6vx/rfc3HjJjalbC3GX6Rz6+RCHPxfGU2s1n86gkq9JEqskRfOx3Lrf8dSQje8RJatQ2Z6hsj2TjWW3EJtWmMgGW+TUq0CvlRw4+J6TwXmx7BVtGap2prJ9r1KU706jlVMU+pBehjDJBeqSVnB/s9QybTQ2syoF0GgL8yF3P6/G2jifrMWtpNjrmCJuqrydaCQi7GgYHHcOU6Hcgfjlewzjg37eem4XV8815AfbbbvHeejJTmq3z5BEZcJ0ETdVEkLLWvEWqVsqgIqBUzJwouOUrJs5YzJ2ysbA20763/UQHi2emNJcJk1H47Q8kKDleILqjvSS6pcpJC5N1vGP/XsZlLygWMqFiKm0OcL82cMv0eGfwRTw09EmJk3434+8dFdYP3MESjdlTgUbeWF6O1PpbLy8rPNIST8fLuvFp86Pl7fGOONXHFz6YRmXXygjFZ0bmrcctax7HR+Zxea8TUFAkmU7zF1RcsqTMY88mQaMdfmzdr0KxnvmiB+AzanTvH+atsMBWg8F8FUmEQgyqoEum3mbjs2QCSbtGJKM/y48N2wRqU2EqB6E+mFeSTVSL6L4pI2OgbVUKx3yPQtyqpUqG9jlDCBhYBUPZrJx65ZqlSvc3tgznCxbtV+bvjZqC8tjFcRKytYxWTcD4iZXfujhzLN+JrvmZqoaDiU4+oUwHU9EUXMTX5IAAaZp2dfEfC/lpiZFq4XVP4QNJFHLwV1u0PZQgraH5i58ehoCPVawRc4iGAmq2GtM/O063h0G2nYTo01ixrn4rKMkBDbJUpa0Alve8kPADwg2sSoFsNMxTdS08V6igbdjzUgIBgw/SaHhlDI85BjCp9y5PkX3AoZ6ynjrx7vo667CWZWg+miAxn2T1O6aBrfJmNAY0WuXfL+MiRMDhzRHlpzoOCQdTRIkQjIDp51cPumk/5ST6d5iVUHWBA0HkjQfS9B6PEHdviSKbYmFZRFN23hraBuv9O8goDnAbY1thC4hoio/29DNvzn0Ji5VJ24o3EjY8Hhn8Cz/sZsCOQKVNmXemmnhpUA7QT0bLy+nOVHWx6Ol/bgXJFoKEtMynT8t4/0fljPVNzfxVFKXslL3npymtP42HS8LyJOEYSoLyFN0xmapTucr6L9QQTJaTKyrWsO0HrKIU33HLIqamwgX6LJJRjXyJ3K7KaHoClNpG2khL1lbudmxRaQ2EQKpIRASYWEnjJ0SkaKJKM4NJ1SFWFq1cigZXEq6QLXKWgI3TLUS+WS2LTXqbsa8X6+If1tRqYps9W7SJKt3kywLJm9onP5GCRe/7ycds6Y4NafJ3qcjHHkmTM2uRS4wQrIKYGUZ04R7dehttQIQeQ/+nYYgGy1uk3HuMqnblaKCNO3LpIbqSQj3qIS6NEJdKqFuldkulVRApqI9k6+5ysWyq/dwLPtKkVOl5gfZbCYcdo4RNW10p8vozFQgS+CTkzzoGMYl3+Yo5rscZjZCPG6qjEyWMDJegmmH6i+M0OjrL3ptDLXIxu/IWvGcko5TzpIlFjamTcclhs46GHjXS99Jp5XiWXhOkQQ1u1O0HrfCIRqPJLG5VrbzDYVKeLl/J6eGW0mpEpToSGqWRCUVXCmd/3z8OT5SMwJAUFe4nrCTFpvfmJsjUElD5fWZVl6ebiNiWHVMPiXJR8p6eahkAIdSPH4zM9D7lpfLPyyl+6Q/Xzek2k12P25Z91qOROdUvQ0+ziVpefJk6BKj10vyCXuTfb6i99vdGVoOWna91oMBPGULr8uGZBEokbPxmeAXMhldYSKjkbkLfu/lsEWkNhFa3PthsJn29vP0GH5msRPCRpVIUE8M7Y6w9TnVigWqlYldtny+JrkEtJxqZdkDrQLEtQ30ZFlkQzLu7oPs3sIipKjguQUPLwjdsFIprShXizQp2Sh/gExK4vILXt57toTBM3MzdOVtaY48E2Lfp6M4vDlyvTgkJCt0IU+m7i1IsjWxAXeGRBX2YiqsZ1pJtHhhDZNpQkC3IacEmYREJKKgz8oYaZmJq3Ym5sey12ao2mklB96tsezrAiFZ58U7vR5LQJKg1T7DtHCAJKGbEgccE1skagksiBAvuBVFiJeDr7y4rkwrJEsFNwd6cRR4vsBFQk/D6CUHfSedDJxyMnzRke+xl0N5W5qWY5ZVr/m+BM6SlZ9IdVPi/HgjL/R20B2qtIYNbgPJY9VKCRMcQfjVjtP8ZscVPKqJEDCQsjGY1tjsk185AhXTNV6Z3sZrM63ETUuSK1XjPF7ew3H/EJo8t82EEEx1Objyw1KuPF9GIjQ39G48EOXgpwLsfjyI3bPIdt6ASZObkadwwJEPieh/v4x0vFh1qmkP0XrIIk+120NLJkHmbHxGNiwMAZouUypDVFeZyGjoS8Sj303YIlKbDabCflsATyLFACUEsTOBiwAOGkSMKhKboFfCfNUKJMksUq3Ail9fq2qVS62BTTvxeg/gVknRoh9ZdF/C6n2hSGYBcRL53kq5tJ+pURvn/t7HhX/wEQtYpyVJEex8PMbhZ0I0P5Bc8X5v9d0pJFN3/IBZJyweb75RyEWLF9cwycu0p7UIk0ZxWp621Jq6KIhltwaI82PZJ69bf0MjGuEx69b92sJY9qqOFNW7Nk8s+0Zis6tSXelSLqWrITtonsm4eTHSzs/6O3F+gMlURsgLyRJW0MNy4U56QiE+6SA55cDvTNDeNkm5N45D0lfUwFiYMHHNRt8pF/3vOBk86yQTL5598NVm8sSp5YEE3urVu2BCSQevDezgpcEdRA07QgZsAsmtI9mta7kSlfi42s3vPHmadmcKRYKUKXEtYSdkbO7haI5AhTJ2Xp5u541gCynTWucqW5SPlnVzn3+kyJ4WD8pce76USz8qZbJrrhm6tyrNgU9Oc+CT05Q3p7gp5ocarWX9lyFPekZipLPUUp3OVRAY8ha91+lL03rQsuu1HJzGXbK83VAg0BUTXTHy5ynFlLHrMl5FEM4oTOpzJCoesTPaU8loTyXjPRVUPzS+9i96B7C599wPMJySwQ5ChITGIB7iaAzgZQInTSJKCelNVYAphLwm1coiZAtVK0uNMjHFB6WU/Fax8aQo9//lZotU2cwqTiY22UDBtH5LskEm2QbTQkgIE/pOOjn7rI+uV9x5i4OnUufQ58Ic/FwYX/aCXrD4m6527vWSkCzSIXMPkKnVxZuvBoXR4oVK03LR4ioLa5jWI1p8NbHsU113Ppb9jmETqlJCwOV0JV0ZK7p4mzZDuzrD98K7CJsOngtv51P+62jSPSgTZ2EIiYRQSJIjS1qeNC13PEkIHFnrXXTMTe+ZWqa6S4hPOiEFR0/08ujHruPx3XzQLQTM9Gv0n3TSd8rFwLtOErPF11FXqUHzsUQ2ICJOadPajg0hoHumgu9176czWIMpS9bJWQEUE9mdIZf7UzuR4p8/8CqPNAao0ixCPaMrXE84yGwCe/JSkLL/TKcdvBDYzjuzTfma8np7iCfKuzngnWsobejQ946XKz8upftNP6ZhPaHYTDo+PMuBT07T9kAYeS1Dm1VOnixHnmYnnPSdq6D3fAWDl8rIJOfogCQLarfP5kMiaraFV6T8CwSmLMioet4dKpsSmq6gCgmPYhLSFYYiToZ7qxjtrmSkp5LghL/oc5wDmzvafj62iNQmh1/KsFcEmcLBEB6SqNygBB9pmkUE122tn1oNFlet5MVUKyQyhuWTNYSCbspW3Pkml/g3DpuDFN0M+domrFAIm2xa6Xq5lEUhWX2bTKVo8YmQzKXveTn7rI+Z/rkq5eYHEhx5JsSOx2Io8xLLV5JVsdhrpOx6CpmiHhZ3F9YnmW+xaHGrF9PS9tvCXkyFStPtdtMtFcs+M6Ax0bnCWHafYVkDO+aaClduX1ks+2bDZlOlTAFnU7UM6daAaI9tkh3aDJIET/lu8L3QLqYMDy9FtvGEt2sTuCrWDiEguYgVLylUUjcZUtmzoQ7zrXhqRnDh7VZeen4noWlLcXW40hx/rIv7H+vC6V6+V1B4XKH/lIu+bEBEZLz4BGpzmTTdn6D1eJyWYwmqdmRuyUGX0hV+2reLV4Z2ENKdc+QJcCopSp0xxlU3yCAn4KNqH1/65HvsdSVwKgIhoC9lY3iTW/kkYDzt5oWp7bwbasif+VqdM3ysvJs97sk8AZ3qsXPlR6Vc+Wkp8Zm57V+3J8bBpwPseSKI07cO47WbHPOF5EkgoWfJUyqhMHSljL7zFfSeqyA46i56n7s0lQ+JaDkwjdO7uv5UpiTIKDpmzuYnQNMVFFPGzMiMDZZz6VotN27UMDVSmo/qz6G8dpaG7ZPs29VPt7TVR2oL6wxJgiqSlIkUo7gYx0UYG5coo0okaLhj9VOrgxAyBmAUqFayZKIisKkpJARm9hQgZIm0oVp2QCFj3OV1Uvnh7yYlRSuBVddkkSZNNlCL1CZL9TGEvOTs4tgVG2ef9XPlRx70pPV72twm+z8d4fAzISrbV37iXumlNzfWVBAYEpsimGF1WD2JyhGmwsa1OZVpJdHihcRpM+vBsgoV2zJUbJsXyz4jWz2vrs2Rq0CvjWT45rHs1TtT1O2MYy8HaTN/edg0qlRGyJxK1jNluJEQHLGP0aTN9fspUVJ83NvND8M7GciU8FasmUfcA5taHRQCMixixRMqSdRlJ/lUzAKSlMnXLDmztuZCpJMKZ17fxqkXdxANWful25fk+Meuc+RDvdgdi1sh40GZgXedefJUOCEFoGiChkOWVa/1eILavcmiySmrVmn1kzLXpiv5x+4DdIUqMXMShQSKZLC/fJSDZSP8oH8P4zZrkO4P6fzentd5sGGCbY40sgRJU+JawkHY2LwHmAQMJb38NLCD8+G6/O+9wzXFE+XdbHdNI0mQCClce9HP5R+VMd45Z91zl2fY/+Q0B56epmpbcoml3OIKFvx4i5InIREYdudDIoaulKGn57a5JJvUd2RVp8MBqloia1MlEeiKga7MxZnLusJUfzl9N2rp66pmsL8CPVNMN/wVEeq2TVHfPkldWwCHO42CoMYZpq+ndA0b5c5hi0jdRVAlQRMxqkSCITzM4GASF9M4qBNxaojfZTN9EqZQMCF/UpAkE5uiW9awbNpNoSVQx1KsDORNPSiWrAIhrNRDlh753yFSdDPk1CYFgSrpaLJl11uoNi1f86anJK7+xM3ZZ/2MFtivqnakOPKFMHufjmx4PYvAGjjkydRdo0wtH28uAD1fv1RMmJb6TaRlCNPdslVuBneZSeuDCVofXBjLPp9gJUIKU12WTfDKj+Y+Q1YF3modX62Ov9b6m7v5a3V8dXo+9OROIh/vf4fOFwlT4Z1kIyHTgYLJMccw1epCW06NFuVxTw/PR9u5mqrCo6Q57By7A2tcDF1IJOc1p83djJtY8XKx4fPVpZVYFxMxjdOvtHP65e0kYlaoiq8szoNPXOPQw31otuLPSMckBs9YalP/KSfjncXJepIsqN2TsmqcjsdpPJREcy69UwgAWSCtgEzNJh38sHcvp8ZbiBn23AYABA2uWT7e0sn91QM8d2kvXxs5hOkBDLhfjPFbJ95mlztBpWZdywMZhRsJR1YF33yQgN5ECT+Z2sHlaE3+8X2ecT5W3k2LcxbTgP5THi79qIzu130YGWs/UVSTHY/Osv/pGdqPhxa4KtZ9XRchT8mESv/75fRmLXuhCVfRe7zlCash7qEAzftnsLvXXrMoEBjz4szDUx7efWEvV861kEoWk3uXN0Fd+xT12yapb5/CU3L39YtaCltE6i6EQzLZTpiwSDCQrZ8awsNktn6qlNSmnu1bDpYqJaMbc19AzoYVaIqRb0ZpYPWyyohcrZVcoHTdboi8j3oBccqSoztNjG6GnNokSyaarKOtUm2aj+CQyvlv+bjwbV/eny9rgl1PRDnyhTANh5K3dR8VwrrwKIK7QpkqjDc3hdUIcb66lF4mWlzKk6Ri4qR8QA2zqg1qdqWLIvOFgMiEkidVudqr4KCGqUuERjRCIxpDS3ymzW3ir9Px1WaKSVbuVq3ftL/OrcDiUFL+GL3diJg23k40EBc27JLOg44hSpWla3ha7bM8bA7yVryZ0/EGPHKaHfbp27KuCaEQL6hXylnx0stqrgL7Eql4dow1nb+iYTunXtzBmde2kU5aI+2yqggPfeIa+48N5HvuGGkYvuig/6SL/lNORi468g3Ic6jcnrICIo4laL4/gcO3CmIvsqqUJJAWmaRJ6Conx1p4cbCDsbiP/AVNgFtNcbymj09vv4RHSzMTcvHHr3ycoTIX2MGeNPnNlnd5pGmQXc4kDllgCuhN2RjdrFY+Adfj5fxkagc34pWAdQ495B3lY+Xd1DsizAzaeOOHNVz5SSnRqTmWVLMjzoGnA+z9RBB36caGqRT2eRJIZAyZySEf3Wcr6TtXwfDVUgx9bgJAUU0adgdpPTxF26EA5Y2xdbnumpJJAoGcJcizAQ8v/v399F5pyL/G4UzT3j5BXfskJa3T+Cujd+249GbYIlJ3MXzZ+qkADoZwk0KhCz9e0jSLKG7pbktIEsiKyEamz8EUMmahjJ21O9lkHXv2O5qiWLUyTBl9w1Sru5s45RIRLbXJsulZahOAWLHaNB+mAT1vujj7rI+eN1z5GVNfbYbDnw9z4OcjeCruXE2fyFqhFKwI781IpgwgI0kYkmXLSwkrLW+5aPHFapiWNx9tAayBpK/GwFcTZ/sJS0WRECimTnDSTmhUIzSmER5XCY+qhMZUwtlbYlYhHZPzatbiCxB4Kgx8dTq+mjkly1eb/X+djqtsbQPyPERWXbjNqtS04eBkopE0Cm4pzcPOIdzyza25e52TREwbF5O1vBZtwSVlaLCFb/q+tSJmqvQbfoLCseRrVhwhfgsIzTg5+fxOzr3Zhp6xyFtV/SwPP3mN3UeHQMBEpz1b4+Ri6KyDTKJYEfPXZ/I1Ti3HEngqb+1cKnJkCkvxzpgy7wfqeG14O1ema4oqIWVT0O6f4ue2X2Rn+WT+/a9e2Mm3pveRzpa0tBtB/vn9r7HdnaDVbln5EqZEZ9xB1NyEVj4Bl2JV/GRqB/2JMsBqWHy/f5iPlvfgTye49tMSXvvxNkbfn6spcpVk2PfxGfY/HaC2YwOsewWYT55iMRu9FyrpOWfVOkUCzqLX+6vjtB2y7HpNe2ewOdfnmhuL2hnsL0PzJajbNoksQzql8s5P9nPm1V1ICNp2jNO2fZztOyZoa5omaChM6/f+1WiLSN3lkCSozNZPjeFiFBcRbFymlEqRpIEYtrskJUmWreHizUiIQMIwpSLrhSyJvGqVG1TMqVZKPop9LapVkU3PeuCuIk6yNBdBrskGGkZebQIJw2RVatN8xIMyF7/j49w3fcwOz83UtT0c58gXQrR/KL62hKINwGYhU1a0uFXHlJGk/H1zyVF1cS8mDbF8tPgW1gxFtQiWt8akgcUVlnRcyhOs8LhKaDRLsgpIl5GWiU6pRKdURi8usSybuax90FejL9v89E6oUmO6h9PJOgxkSuUEDzqHsa8i9OiYa5iYaaM7Xc7z0XZ+xtdJhbq+Np+UUBgwvEyaLshuH1e2Xmm+HW8lEeJrxcykm7d/0sHFky2YhnW9qmud5uFPdFLuDTDwrovv/G0NA6edJEPFJ0l3uU7zMavGqeVYnNLG9Z8YNUyJ68Eq3h5t5fT4XJw3ACZ4lRQfabzBE22duLQ5ohwKO/nK649wrcKHKAHZEHyu6hJPtl5npyNJeVapmMpa+ZZumXBnIAScjdTx/NR2RlJWQIomGRz3D/KR0h6ilxTe+8sybrzqR09Zv5ukCLYfD3HwUwHaHwmj2jZuvykkT6aQGOn10322mt5zFYxcK8nvSwCqzaBx7wyt2aa4pXXxdVF+UkmVgd5Keruq6e+upH77JA8/dQGHy9oPrpxu5fqZVmrrQvziP3mdxpYAqmqiSSZ2WTCdUZn5AJAo2CJS9wwUSdBAjMps/dQ0DqZwMo2dOhGndrPXT0mWlWmtMdVWP6KCQsqsaqXJxgLVSjcVMlnVykDCnBdkcTcTp5zaJCPQllCbzDWoTfMhBIxetHP2WT9Xf+LGSFvb0OE3OPCZCIc/H6asZXWpP7cLRWRKLMhIXFfkosXnEyZjGcKk5glTsdK0mQ/fewor2NA2lxVSUdG2+D4uBMRnFMJjiqVqFahZoTGLbEUDCkZazicMLgWn31igZFlky7IUeisNZBu3RZXqy/g5n6oBJKqVKA84RlZNRCQJPuzpIxbWGNN9PBfewWf8nXiU5XvTrAS6kBg2vIyanryKWyHHaVbCOG9jwu3kiI+3nuvgyntN+cmahpYpGiv7id6I8/zvuYhMNhe9x+4xaLovaalOxxNUbt+YFidCQH+kjFNjLZwcayGULqijESAZsLNkkqfaLrOnaqxo3CAEnLq4jW8MHCKWdXGVmwn+t32vs9MTYpcziT1r5etJ2hnLqGwmK58hJE6HGng+sJ3JtAcAu6zzSEk/R9JD9P/Aw7efayE8Nnc8VrQmOPypKfZ+YuaWVcDlUEie4hEb3ecr6T5bSe/5SmLB4ubkpXWxfEhE454ZNHvBZPkazwG6LjPcX05vVzV9XdWMDJZjmjLNO8d48ktvU1k3C0Ak6CI26WPvzgmOHhgp+gxblkRNZUnUan77qGGjP1nBj4N78LI5xw5LYYtI3WOwSybthKkWcQbxEkVjuKB+qmxT1k9ZatL6fmJOtZpDoWrlzA46TCR0UyYtFMxss1FL6ZrzhG9m4rTRatN8pOMSV37s4eyzfiauzp3ca/YkOfqFMLufiqI5NunGKkCeTMmgm3CrF/u5aHGJjCRnyZOEvkzzDUUU9GGSTOxbhOmegSSBu9zAXW5Qu3dxgmCkITJZoGaNFdsHQ6Ma6ZhMIqSQCClMdNoX/RxJsYIx/EV1Wpk84fLV6jh85i2d94WAznQF1zIVADSrsxyyj695ck6RBB/3dvO9cAdBw8WPI9v5tO8adnltA1VTwJjpZsjw5fs1+aQUrUoI7wosh+uF0f5S3vzxLq5fqM8/5rdPIwbGGX0jzSgq4AMsNbLxcDKbrBendk8KeQNHZOMxLyfHWzg11sp43Df3RJY8OaUMJxq7+XDLDSrd0QXvD4WdfO3Fh7hYVorRYJ3jH/X284vtZ2h1pGmxW8Qvbkh0JhzENpGVL2PKvDPbxAvT7QQzFnF0yWke8fZRe3GGru/7efbctvzr7R6d/R+3Uvdq98SRNmjQlCNPwoSR7hK6z1XRfaaS0a6SolAkza7TtH8mb9krqVlGwV3hhIppSoyNlNCXJU4DvZVFyXq+sihP/MIp2vaMAlZIk82QqXRlqGqZWfB5dslEkwWTGZXgCkiUEDCtu+lNVtKbrGAiM7dPNhO8+RfYRNgiUvcovJLObhFkGjtDeEij0I0fT7Z+yrOJ6qckyWrAu9FNU4tUKxkkctHrBvbsDIhAxjQl0kKxotfZyFqr1UEqStKzQiHUDVCbFsN0r8a5b/m4+F0vqYi1DVW7ye4nrfCIun0r6M6+yZAjU+oqyFQuKS+DRFqS8+RJR2Kpkaos5mx4WsF9OfuJ69Ejagt3HxQblDTolDQsfS5ORuQ5++DYnJUwZx+MTKiYukR4VCM8unRMmM1lZklVMcGyLIQZfDU66hKimCngQqqGfr0EgJ1agN22wC1PyNllgye9XfxjaBdBw8XzkXae8t1YEBG+HISAgOmk3/Dlezg5ydCihimTbl+gzcCNCl7/wS76r9cUrNgs0uAEkZg16JUUQd2+FC3HrDqnxsPJDe9hNpty8u54MyfHWugLV8w9IUAyLQLV6A7yeNt1jjX0WUm5885DQsCZi2188/IRgtsFqAK70Pmt9lMcLR1lpzNFmWoR4Im0SnfSvmmsfElD5Y1gMy9PtxPJJg76lCSHk0PYf5Sg+wUvnfEs6ZUE2x4Ic+hTU+z80CyKI/cd1vu7CGQEsZDNIk7nKuk5V0kiXHwAVjRF8gl79buDqNoq9pVFyJQQEJj00tdVnbXrVZFMFE/OuL0Jtu0c4+iHO6lotiLeEaAYMpqhIC2xLeyydU2bzGjM6ktnwJpCYjTtpydZQW+ykrBRXN9Vq4U44B0mNONe9P2bFVtE6h6GJEEFKUpFivFs/VQUG1coo1wkaSSK/Y7XT1m9pDYccnZZRQ9aaWjWIFrJPmIlmzlkHUnKILC6gBtkgyyEFb1umPKGD3pvpjaZwrIqZDaox5apw41X3Zx71kffO3P2j9KmDId/IcT+n43gKr3T+8+tYTkylbPlpfO2PCsAQixDmDSyKlNWbdIQy+SCLR9vvoUtOLwmjp1pqnYurmqZBsQCypx1sKBeK6duxWdU0nGZQI+NQM/SFkJ3RXFtlr8ug6feYHJ/KUG3GxActE/Qps2u2/fzKmme9N3g++FdjOo+Xo228pind0UEaNa00W/4iQrrO9kwaFLCVMvrUyNyM2RScPqHTbz35k7C8RLrQSFgMog0OI6USFG1IxtJfixO033J2xKZH8tonJ1s4uRYC50z1QVXPSuyVDJAFYKjtYN8pPUa28um8turMHwCLBXqWz89znlnBald1rq3O6b5nR0naXFE2elMYZcFhoDupJ2JTWLli+karwZbeXW6jYRp7R8lcoLt3RMk/pdOb78dsEhEaWOSQ08HOPTJAJ7qTHZ7rT95woCRrhK6zlTRfbaSsR5/UYS9zanTcmCa1sNWU1xf5S2GWEgQCjrzxKnvRjWRcHEcut2RpnnbFG3bJ2jdPk553Sy6pudXSzYlNF1BXmaM4ciWEoxnNMLGQkqRNhUGUmX0JivpS5aTEnMTPgoGjfYg2xwBWh0BfEqKGmeYF2b23tp3v83YIlKbDBthIVMkqCdOpUgyhJsADqZxEMROrYhTSwzlDp37JElsjBq1KHGysNwmFjl1IWvpk7BSfFTJwKZaM8e5VDtdKEVBFvPTBlcDCbJqk5lVmwwUTCsCe4PVpvmITimc/wcf57/lIzKRPUVIgu0nrPCItocSLONYu+tgCskKf5AlEqaSV5oyS6lMwkrKmyNMYtW9mCRJWDPvktgUaucW7k7ICnirDbzVBg0HUyCLBSe4TEKaU7QKbIOFypaelIkFVGIBldFL1vuUEmj8UwWXW8JMCsb+lcFYlw9frasoEMNfY6la/lp9TT3hKtQET3i6eS6yne50OZ54mmPu4SVfPz+JT8GkXolSL0dXpWatFqYB41fs9J50cuXdBiYTTQhPdubcNGF8Br8xQvt9QVp+K0HLAwnc5benLittyFwM1HNqrJWLgXoyBbY6ycwRKAm/PcmJ1ht8qLmLUudCe1g+yS+rQn371BECu8F0mUhC8LN1l3my9hqtjjRNtgySBDFDpjNhJ74JrHzhjJ2XZtp4M9iaD84oycSpemOGxDcMJnQZsGFzGez+aJDDn5qk6WA0qxFJS4wY1gpBbMZG97lKus9W0XuhgmS0eCKjqjVsqU6HA9TtnM3H368V8ZiNvq6qvF1vespX9LyiGjS1BmjdPkHb9nFqG4IoisCUrH5QGdlaviRA01VkU1pShQJwyha5nsjYiBQ0WI4aNnqTFfQmKxhOlRUFgznkNK32adocUzTbZ9Dku3syFraI1KaDsYHFODbJZBsRarL9pyLYGMHNJA4aRYwKbm9vH0uNWqfvK+f8xostZe0QWOl/hpj7oJxqZZd1HFIGClIEi1WrpRujFqlNkoGa7XovSXNJPYaQMEzltigVQsDQGQdnn/Vx7QVPvmeJq8zg4M+HOfS58LIWpLsFuVqmVLYfUxqZVGG8+LzraM6WZ0OgiezfW6SykmztP1skagvrCQFIWYW18DKiOQXlrRnKW5cOxkgE5ayaZQVjzEZtRD5RAhUSRkQw9M8N4hcAbAQHl1a1HH6jIBAjU5RG6K/T8Vbpi9YBNdjCfMjTz6vRNi4ka/HIafY6J4tekxIyA4avKImvRo7RqEQ2JJlWCAh02+g/5bRiyU87STkrEI3V4HaCBzANyh1jHD7exa4Ts7f1HGkKiasz1Zwca+XsZCMJfe530SQdPa1a9j0hs610ksdar3O0bhD1JgPX2bCTf/jxMc7rNcQP6yBDiZLgd9pPstsboMOZoiRr5RtLq/Qk7cu0Z7g9mEk7eWG6nXdmm9Cz9n3fbBzXtyNob6VICmuPaToS4fCnAux9fBrVYWIiZ6fA1geGDiOd2Vqns5VM9PmLnre7M7Rk0/VaDwXwlN1awEo6pTDQW2mpTjeqGR8tLVK5JMmkrjGYJU4TNLYE0Gxz5F4gSCsGhmLm7YCqIaMuY+PLwSWbCGAioxHRlWy9k2XZK6x3AvArcdocAbY5AtTaQus37tsk2CJSH0C4JZ1dYpYgdgbxkEKhFx8TOGkWUbzS7SnOXbMaJQHS0nNHG32ILqZaSYuoVqaQyKCQMS3VSsrXNi2hNonbX4uVikpc+oGXc8/6i/rhNBxKcOQLYTqeiC5ZO7HZYUARWcpZ8xbXjSyCZM+m5GmmyNvy1u8XEcgy2XqozdnHagt3OUTROGpFkCRwlZm4ytLU7E4za9h5O1kJQsEpZXioegj336WJTObUrFydllakciXDCsmQdZu8vkQwhizwVM1Xs6wEQn9dhIPVI1wQ9bwVb8Itp2m1z97WJL7ZYTVLnFwMvOskOqVaVt7qMkRHNTit76UqGfbf38uJn7+Gx3fraYMrhRDQGy7n1FgL7463EErP1Zg4lDSmLqOnVQyhYpNNHmjo47HW67SULAwHWOyzz7zfxj++epTATolMpXUtO1IyzJebz1JvT7DTmcKWtfJ1JexM6kvX5d0OTKTcPD+9ndOzDfm+V+7BBK5/iOB4P4kE+GrT7H9qmsNPT1HRmMw6ENaPQIWm7PSeyybsXaggnSjYJpKgpj1M66EAbYenqN0eRlbWPkLRdZmRwTL6blh2veGBckyj+HtUVodo3WERp+b2SZzO7HiuYLECgSFbKlR+DtGQLBXqplc8gUs2yQiZs5FKriSq6EtWEppX71SjhWhzBGhzTFGm3h677Z3CFpH6gEKSoIwUJdn6qRFcxNC4SillIknThtdPrUKNusPE6Waw6FC2afB81UrScajFxPR2q02LYfKGjbPP+rj8fS/puLVlNafJ3qcjHH4mTM2u2zc4uFXkAiDmCJN1X19ij5GyhMmWv1mqU94ZLwlMWcoS/PU6++dIlLlVD7WFDYOlSs3Zs1aLSd3FqWQ9Ogo+OclDjmGcclaVqNcpqV9acUlFJcLZqPdQEeFS842NzYxEZFwjMq7B+cU/x/svktg/6eCF4Daaro3jOSyQsoX/rlSaVluIUnV9zk+xaYX+U848eZodmhsEC1lCbi5HaqrCkCwC5fKkeODxG9z34W4crtunPo3GfNm48lYmE9784w4ljVdJMxNxkxY2JCQqnFE+3HKDR5q68dpXFgIUCjv5znPHuBisJXI0g3BYzdq/2HSeE+V9NDvSNNmt61jUkOlMOEiYd87frZsyz47v59RsY94f4LiSwPeDMPZrKTS7yc5PzHLoUwHajoZQFZG349/ysjMyg1dK6D1rWfamhrxFz7v8KVoOZmudDgZw+dc+MW2aMDFako8kH+ipJJMuJq/+0hhtOyZo3T5Ba/sEXv8StVVZxcnI2vhEzsZnWjY+ZQW11ilTZiBZzsV4NZfjVSTNuVnW+fVO7nVoZ3C3YItIfcAhS1BHnEqRyMakO5gpqJ+qI74hvvNl1ahNTpxWgvmq1WaAkYbrL7k5+w0/g2fmZo/K29IceSbEvk9Hb0sx9K3AamQ7R5ZyStNSZju1gCzlyNNyLQJz9ihZEiBbF7JbJ1NbyXxbuI0QEmIN5+yhjI8zqVoEEhVKjOOOEbRVTKbZPYLK7Wkqty8+gBKmRVxy6YOF/bVypCsWUIn8/+KU7c5Qvy+O7UEAiViPRO+faky/7gD8uMutQAxLzdIXJBJ6KoxF6zhTUYmB0076T7roP+Vk8kaxciYpgtr9GdT2csZDjSST1vPekgTHn7jO4Ud6sdlvT93TTNLJu+MWeRqIlOUft8k69a4Q4biDYMzNTDY0YXfFGI+1XudA9XDW7XBzCAFn32/jey8eZaZJJnE0AxLUOUL8zrZTbHPPssORwq9Y+8FoWqMneWebNKRMhT/vfYDutJVC6DwXx/fDMPbeNPX7Y+z/f02z76PTuH0ZJMjXMN8KguNOes5W0nO2kr73y8mk5obOkiyo2zFL66EArUcC1LSF11xDLATMBDz03rCIU193NYlY8T7qcidp3T5p2fV2TFBaHl2R2iMQZNSsjc96AM1QUAx5WRtfWLdzNVHF1XglPYly9AIlzyFlaHUEaHMEaLLPYFtj+4LCtXTIOjb57ioj2CJSWwBAkwStRKgWcQbwEsbGKG6mcNAgYlSua/3UPDVqmWAI65kt3ArCYwrn/t7HhX/wEQtYh7ykCHY+HuPIMyGaH7jdtXE3h1WbZkWLF9YzZZaw5knZwAc7okBpWpt5Y33J1BaJ2sLtxVpUqa50GZfSVQDUq2GO2sfWfQJNksFTaeCpNKjfv7hSMp2y05fxk7RZs+4ZUyYQcpH6ShRp2EBzSWTiErFpldi0ytiVxZclawJf9Zxt0OEzGb3kYPSSHWEUH8vVHSlajsepPaQzFmrk3Ft7SU1kk94qojz0iWscOD6Aqt2OxD0b701YiXvXg9V5wiJLJtv9U9gw6A1UMhi3SIRDyfBgYy8fab1OvTe0qmXlVKjLI3VEDmbQS6xB8InKHn6h4SK1thQ7nCk0CXQBNxIOAvqdGzJKQCBg5/++/hDTpR6khEnlf5miYirK3idnOPDvAtS0JVAkM+v6WHv6XiYlM3CpnJ5zFfScq2R6xFP0vLs0SeuhadoOT9F8YAand+2qUzjkyIdD9N6oJjxbHP1ts2dobpvK2/WqameRV0HUBAJdNtEVI69KKaaMpi9eByUETGQ8XI1XcTVexVC6pOj5EiVO67rWOwm8SoYqe4xqWxynYtDun77Fz7y92CJSWyiCSzLoELPMYmMQD0lU+rL1U00iiv+W6qesA06WTWQ5d18s8oot3CqECf2nnJx91seNl9355n6eSp1Dnwtz8HNhfNW3Z2b1ZrhpAMQ8KPPIkj0bM76eXHB9yNRWvPkW7hBWqEoJAZfSVXRnLMWjXZthn23ytk+s5JP4JAfYrCS+KjnO6VgjIdVJ5f+l8Hn/NVRMkiG5IOZdy6tZudj3yKRlIZwd1pgd1oDi2o2yljQtDyRoOR6n5YEEhmzj5As7+OEPtpFJW0OiitowD3+ik733D91STctKkDIULkzlEvfqMArsZ9tLJml0BxmfLeH6eE3+8Wp3mI+0Xuehxh5c2uquyTkV6vsv3EeoRCH6YBqhgVNJ8+XmM9xfNkyLPU2DzVIFIobMtaSdpHFnUvkkID6r8NqzdTzfupt0kx05arDre4M88RsD7Dg+i00zkCWBuUb7nhAwPeKm55ylOg1cLkNPz32OrJjU78qqTocCVLVG1nyMJOIa/d1V+UjywGRxIIWiGDS0TGfteuPUN82grHEftGx8c3HmkilhM7Jx5gW9pgwhMZAq4Uq8mqvxKmb04pj0FnuQ3a5JarQZPEpiHc4PAo+SodoWp8oex6XMKVCmAKdy+5porwe2iNQWFkCSoJQ0fjHDBE5GcBNH4xqllIoUTURxrKjIV+THnlI2pcyK+c753bYGl+uNREjm0ve8nH3Wx0z/nH+5+YEER54JseOxGModrA9eSwBEjizZ8ta824NbIVNb8eZbuJNYiSplCImzqVqGdStha69tku3azG0lUTdL4iv3JfleaBdThpsXI9v4uLcLZ4mJsyRNdccSvbV0iEzNRbuHx1Ri0wpVO9K0HEvgr7MGbbMBF68+d5ALb7dg6NaguaYpyCNPdtJxaGRDWzwYpsSVmRpOjrVybrKRpDF3Um70BDlcNYTIyLw70sLr49WAdbXcXz3CY63X2F05lm3EvjrkVKirvfXEdukkG60B6zZ3gN9qe5cGR5QOZwpv1v41klbpS9msHUkSSLdxQkgC4iGZ039Xzannqxn5vVr0Og0tqvML5nke/ONR7IqOLK2t/imdUOi/VE73Gash7uxEMXnwlidoOxKg9XCA5n0z2N1rs5ul0wpDfRV5u97YcCmi0GooCWrrg/k6p6a2KWy2W5vkNBFkVB0zN1Gds/GZcza+lKlwI1HB1VgV1xKVxAvqnVQM2p3T7HZNcp9nHJucYTytkb4li6TAXUCe3AXkyRAS02kHM7odIQnOTDXyc7ewpNuNLSK1hSUhS1BLggqRZAQ3EzgJYmcWG9UiQT0x1PysZz5lwfojLV4cJGVfeyc91vcixq7YOPusnys/8qAnrZOdzW2y/9MRDj8TorL99s7w5AIgCslSCrmon0Qh5gdA2LNWvTvdrqqYTEmYpjUBsBy24s23sCkgrMHvYsgImVPJeqYMNxKCI/YxmrTwbVu1lSbxlSgpPu7t4ofhDgYzJbwZa+ZR98CyZE9WwZ/tc9W4yPOBMS9v/aSDS+82IbKBCY3tAR5+spP2veMbRiSFgJ5QBSeziXuRjCP/XIUjyrHaflo801yZqOeF63tIZ5uburUUjzR1c6LlBlXu6JqXffb9Nn7w4lEiqkbkwRSGxzrvPllzjU/XXaHGlmG7I4UqQUbAjYSdmVyD1RwpX0ss5CohAYmwzOm/q+LMtyqJeexM/h9VGJUqXiPJ/2PfSartMWTJskyvlEAJAVODHnrOWgl7g1fLMPW5K4yiGjTuDtJ6xFKdyhtja9oXDENidKgsT5yG+iow5ql5FVUhq85pxwQt2yZxudcnmEEg0BUDXS6IMzfn4szDup2r8So645V0J8uLtp1LTtPhnGKPa5LtzgAOWcermMRM+ZZIlFvJUGWzbHtudSF5mki7COlWUErcsFFuj91148MtIrWFm0KTBC1EqRIJBvEQws44LgI4aCBKFfGsZ3eRi3bhSTcbMLEZOp/fC9BTEp0/tcIjRi7OXZSrdqQ48oUwe5+OrKlB5moxFwAhF9U0rVcAxJ3GHJkyQZaXIVNb8eZb2DwQ2X/mq1IJU+WdZAMh04GKwTHHCFVq/LaskylgzHQzZHjzRes+KUWLEsInLz7ZU6PFeNzbw/ORdjpTVXjkNEdcY6te9vignzef20XnuYb8dalt9zgPP9lJ847AhhGokaifk2MtnBpvYaogcc+rJbm/ZoD7q/sJxV282r+Tn3Tuyz/f4Jvh8dbrPFDfh11du0IRijj5zo+PcbW7nmSjQXxXCiFL+LUE/6T1NHt8E7TZ09RlrXxhQ+Zawk5q3sA516w3d3+9IQGJiMx736jkvWerSMcU0vUa0/9nJYZXpVKL8bvbTlKmLZFKtwiSMZW+i+VWUMS5SsKBYptnSXWcbYenaD0SoGFPEJtz9dvZNGFy3J+PJB/oqSKdKrZ9+Eri+V5Ordsn8JUsbIZ8K8jHmSsFceamhKqrTKW9c/VOqZKi95WrMXa7JtntmqTZPpuvi5QQeBSTqCEzkdHIrJJEueQMVfY41bY4noLUYlPAdMbJRMpFIO3ERMYuZzCRiWXsJHQbatqKeb+bsEWktrBCCFySToc0y6zQGBReEmj0i1z/qTAlUmbZIifLirClRt0qZodVzn3Tx4Vv+0jMWoMRWRPseiLKkS+EaTi0MeERawmAKIwXz1n07q5TpIWbk6mtePMt3FkIkb2ZEkJIVl1kdjc1TSvOPyI0zlJLUlKxCZ2DmUlsSQgKN6YpZT9DKviM7P+FtMjzBcsS1v/N7P/JvtfMvtYUkPZDsk4gsiFkUgK0QZXUtI3rwr/052Ufq65OM9Fm571EA4MXqvCNG/nl5b6rOe/9ufeGZlz0dVbnt9XOgyM8/GQn9a3BDfktphMuTo1b5GmwIHHPrmQ4UjXEsZp+Gt1B3hpq5ytnHmU2adnKZMnkSO0gj7VeZ3vZrdWqFapQMd1G7FCaVLW1Q+zzjfHrre9RbUvQ4UzhyVr5hlIaA+mlK04tMrX+NZ+piMJ7z1bw3rNVpKLWNc31iMnkr1aQkVVq7WF+t/FdfOryce5CwHivL1/rNNRZklcdAVSbQfPeabYdDtByOIC/dm31PjMBtxUOkQ2JiEcdRc87XSla2ifzdr3yyrXXVN0MpmQRqEIb30y8hHPhRjrjVUzrxeEVjfbZPHmq1uYl/gnruu1VTSK6wkRGQ1/hhKCzgDx5F5AnB5MpN1MZZzYExKp1digZgjE33aO19AzVMTBSTSJlo6159Ja2ye3GFpHawhKYs+pJ+Von67FSyeo/NSFcDGcJ1TWznBKSNEuRxZskSrmkvi0StRaYBvS+5eLMN3z0vOHKz6j6ajMc/nyYAz8fwVOxfuERAvIR46sNgMipTOsdAHGnsTSZ2krmuxcgBFx5r5HBrgoMQy4elM8jEWYByWA+yViEaBQ/P48wmPPIS/Z1prmQEBSuhznv9TezXDlbYjT/+gCq2yA1aeP6X+3k3MyhDd+uJdtDtP9sP77mGACpWY2+HzcxdqoqH4KzUrg/PoP7RJjxdhvX3qwm0+28+ZuykCTBnvuGeOgTnVQ3rL+NMZq2cXqimZNjLdyYnSNtimSwv2KU47X9HKgYZjhcyit9HfzZaFM+WMJnS/Chli5ONN+g1HnrakVOhersbiBTYhI/nCBjk1Ekk5+vv8THqm9Qrem056x8JlxP2gkaNx8SCgBZIJm3fq5LR2Xe+1YF7329imQkG/TRnqDltxM8V7WHpKnR5Jjldxrfxb1EAEEiotF7oYLuM5X0nq8gGiwmNeX1UbYdmaLtUID6PUEU2+rXOhJ2WAERWbve7Exxip9m02lqm8orTjX1wVUl660FAkFGMTCyNj5TSFwP1/Lc1B4iBc1xVcmg3WHVO+1yTS1LRmVJ4JFNwhmFSf3mJMoh69mapxi+eeRpJmPZ9gJpV1H8fDjmZHyynMGJSvrHqpkOFYdtIMF0YN5jmxxbRGoLWcwnToudbKSiUqgaKUEFSUaEh3FczOJgVtipEXHqpShawWfkrH/31tB64xEPylz8jo9z3/RlE6gstD0c58gXQrR/KI58i2FKuQCIQpXpZgEQxQ1tb18AxJ3GYmRqi0Td/QgGXDz3tSP0FqgW9xK8e0M0/tIQsk0Q73cy+D+aMRMKimogyQJJshJUJSl3I/t49pa1rM49Nu/5gveT/TxHZZKKR6Zwt1q2QTMtETpXQuSSD5dhsn3f2KqXR1IwPSYTr5Up+9I4decyOGKm9XzWOr7g82SBopjsODBGefXaaoyWQkpXODfVyKmxFi5N1+Vn2wE6Sic4VtvHfVWD2BWdd0da+HdvP8FAqDz/mm2lkzzWep0jtYNoyq3HqwsBZy+18YMXjhJP2khtSxNrNxCSTKU9ym+1naLdPcM2e5qarJVvVpe5nrSvvAYmZxe9hfCJdEzmzLcqOP31KpJh6+pR3prkod+YwLjfxl+PHiVjKrQ7p/nNhtM4lOJJwkxK5sILLVx/p5rhG6VFhFxz6LTuD7DtyBStB6fx1SQxV2mzTiY0+nsq83a9qfGSoudl2aSheTofSV7fPI2q3p4ejDkbX1ox8mrS5XAdL0ztIaxbBMolp+lwTbHbNckOZwD7Cvo7yVk7X0i3SJSxxDZzyDpVtjjV9ji+gsbYpoBgljxNpZ3oQkEICIY9DE1UMpy9zUY9Cz5TZDed25PAaU/R0rJ66+6dxAdl/LOFBVgdcVoKqiRoliJUiTiDwksQB+O4mRJOGohSTRxFFsg5j8kWbgohYPSinbPP+rn6EzdG2rrAOfwGBz4T4fDnw5S1rD48YmEAhEwKaRUBEJbKdDda89YThWRKlqWtePO7GKYJp1/ezmvf30MmraJqBvef6MLuzuQH55JMfkA+nzQsNmhfjmQs+tplCMDcOhQ8X/j6RdYtt1w5+/4B4eOSUQlI1ChR7t9zHfVPz2/YNl0yic8dwfboMDx6a59vCIkfh3cwio/gA/Cz/ut4lfUp1l8JdFPi8nQdp8ZaODvZSNqcG0Y1eWc4XtvHAzUDlDviBOJuftq9hzcG24mmLaVElQ0eqO/jsdbrtJTMrNt6hSJWIl9nVwOmXZB+KEbUqwISD5QN8ivNZynX0nQ4krgVgRAwmNYYTGus9tqcq5dabfhEJi5z9h8qePdrVSRC1nYra0ny4K9NsPOxEO/Ha/ibkcMYyOx2T/Jr9WewyXMERZjQ+WYNb369ncjUnOpS2RSm/cgU245MUd8RQtJEnjythERlMjJD/RV54jQ6VFZkCQSoqQ/mm+A2tU1ht9/eprFCQMC0I2lp3KplqB9P+nhuch+DiXLK1DgP+/rZ45qg2TG7qj5wORI1qytMZTQMa2CYH//Zc+TJFsevzR1rQkAwY2ci7WYq7SRlqEwF/QxPVjI0XsnwRAWxZLFqLBDZqHrZ2nVUgVBBIBEWTsJJJ8rA3XU13SJSHxiI/LlySeJ0C8XxTslgpzRLSNgYEF7iaAwIHxO4aCFMuUjMVapuYVFkEhJXfuzhzDf8TFyd62ZesyfJ0S+E2f1UFM2xshNMYQBEqsCid7MACHtBTdNmDoC408iRqa1kvrsXE8M+fvS3Rxntt2pYmndM8slfOktt3Sxp4+7f+4WAzkw513WreWuLNstB2/iaYrNXgsWS+MqlBC1qaHG79xqhSIInvN18L9xB0HDxXGQHn/Z1rmjWfa0wBXTPVnJyrIXTE81ECxL3Kp0Rjtf2c6ymn3pPyNrugRq+8f59XBhvyE89lTujfLjlBo80deO1L1/rsxoUqlCJpB29KkPiUIqUpGKTdX6x6TwPl/dRo+lsc6RRJEibEteSdkK30BtqNeETmYTMuX8o59TXqkjMWs6K0qYUD/76BB2PzyIrcDpUz9fHDmAic8g7yi/XnS9IBYahy6W89jc7mOix4vp9FQke/WwX2+6bwlOexiBrueXmQT+GITE2XErvjRr6uqoY6q9AzxQPh8sqInni1NI+gdtz+8h6fj2FxECyhJ5kCdXuINs9kwDEDY1XAh1MJkrY5Zri58o6F9Y7rRAKApdiEsySqNyxa5N1qrQE1bYYJfPI06xuZyLlYjzhYSBQwfB4JUOTlYxMVJDK2Io+X5YN/L4oaV0jknRiKhJG0UnIui8ZAjUB9kwG320Kv1kvbBGpexIF/juWjiLfiBhTv5RmH9NM4WRIWA19rxlllGSTmdzS7Z3FuRsw3adx7ps+3v9HL8mwdWFT7Sa7n7TCI+r2LX3RzQVAFJKl1QRA5BSnD7rKtBZYqWh392D7gwg9I/Pmc7t45yc7MU0ZuyPD4599n0MP9S1oEH63whRwIV3NgF4CQIcWYJctYPVGWuevuJYkvluFXTZ4ytvFd0O7CBpOfhpp55O+G6uahV8JhiIlnBxv4d2xFgLJOUuSz5bggZoBjtf00eafRpIgoau80reDl/t2MhYtyb92V8UYj7Ve50D1cLaH4vqhUIUSkkA+HGa2ygaoNDpn+e22U9Q7w7Q7UlRrFtEM6jLXkw4y63DuErBsfyk9KXHuOxWc+tsq4jMWgSppSPHgr02w62OzyNkR6BvBZv5hwkosPOYf5Jma9/OEf2bExRt/u53u01UA2Bw6x36+lwc+1YfTqZMy1JumygkBU+O+fDhEf3cVqWTxgN/jS1g1TtmAiJLSOzOYT5kKXYkKrsSr6E6UcbBkkEcqu9FkA1NAT7SaVNrJE95+fKW3RsgVBG7FZEZXCGQ0VMmkyhanyhanRE0VEeVZ3c5owsPFkUZujNQxPFHB6FQ5ekFdnQA0LYPPH0NRDSJJF9GUg6lUtuYpV50gBGpaoMQllKRATQjsU3G08RjqbILSz66vBXejsWoi1dfXx5tvvsnAwADxeJzKykoOHTrE8ePHcTgcN/+ALWwAComTyO78t4c4LQZJgioSlJFkTHIxanqYFXYu6JVUy3GaZKvZ4gcZpg43XnVz7lkffe/MNQIsbcpw+BdC7P/ZCK7S4m00PwAiZ9FbOgBiIWG61wIgtrCF1WCou5wf/u0RpsetWe2dB0f4xBfO4y1ZeaTyZocuJE6n6pgwPIDgoG2CVi2ElLXZrddQ3rIaOek3fKSyQwknGVrUMGXSxiSHFsKjpHnKd4PvhXcxpvt4JdrK457eW17uVMLNqWxc+XC0NP+4Q0lztNpK3NtdNp4nRWNRH6/27eDtoW0kdGtwblcyPNjYy0dar1PvDd3aCi2C+SqU8OjwYIQp2bJRfaSym19ovEiJmqHDmcIlW1a+gbTG0BqsfEuvSPaj5pGpTFLiwnctAhWbtkbP/voUD/7aJLufCOYJFMCL09v4wdQuAD5U2sdnqq4gSxAPabzzrTYuPt+AMGUk2eTgx4Y5/gu9aD4TIWUDYZZYtdkZl0WcsgER0UixxczhTNPSPplXnSqqwnfMNBPW7XTGK7kar8r2d5Lp8Izz5aa3KbVZhC6RseMyYb89CPZbT5tUJYFTMpnVJWxyioPeYBF5AphJObg6Vc3bXdu5OtjE+HRxM2EB2Bxp3O4EQpYIJ5wkDY1krKR4YYbAIXTUqICwiprKNgxPprFNRNGmYsgZA82jU3d/GKniFgu/bzNWTKS+/vWv85//83/mzJkzVFdXU1dXh9PpZGZmhp6eHhwOB1/84hf5wz/8Q5qbmzdynbewIuJ08/qmjYYmm7TKYWrlOH2Gj2nhZMJ0EzCdNMhR6uTohtlMNiuiUwoXvu3l3Lf8RMazh58k2H7CCo9oeyiBJFsBEIlbCICwY3J3nYq2sIWNQyqp8sp393Lm9W0gJNy+JB9/5jy7Do/cU47jlFA4mawnaDpRMLnPPkqtGss/L+aCJm8Js6aNfsNPVFjEQcOgWQlTLcdv6/YsVxM84e3iufAOetLleOJpjruHV/054bSd0+PNnBxvoXu2Kv+4KhnsrxzhwZp+DlSOYMuGHphC4sJ4PS/3dXBlqi7/+mp3mI+0Xuehxh5c2saocYUqFIB71yzjLSop4cStpPnVlvc4XDpiWfnsaWQJUlkrX/gWrHxLoqBeykjKnP/Hck79r2qigSyBqk1x/Fcn2f1kEKVgxCkE/CiwkxemtwPwRPkNnqq4gZ6Wee/HTbz7nRbScesztt03yaO/3IW/PoVuShimjDovnCMWtdPXVZWPJQ8GvEXPq5pOU2sgT5xqG4J3TIEWAiYyHjrjVVyZ19+pwhbhU9UXaXJl6+cEaIaCQ5hI63Rw2SWDUjWBqqSpV9JFx+x41Mt7Ay08f2kfN0bq59YZQAK7K4XNniFtqsTTDhLYSMQL1D0hkHUJSQdFN3CGMxBTkXMjElOgTcfQJqP4/SHKd8cp3ZmgdGccT32aVv80bw10rMv3vF1YEZE6dOgQNpuNL33pS3znO9+hsbG4X3gqleLkyZN885vf5OjRo/zFX/wFn/3sZzdkhT+4EJueOM2Hkm2+a5cMOtQgITNGn+kjJmwMmD4mTBfNSpjy2zB7eSchBAydcXD2WR/XXvBg6taXdZUZHPxsiP3PRLDXCNLIjGMnvUwAhLxEzPiWNW8LW1gcXZdqeO7vDhMOWsrvwYf6ePzn38fp3piB7p1CzNR4O9lATNjQMDjuGKZcmVPacnV9krR2VSpmqvQbfoLCcp8omNQrUerl6Lrb6laKBi3CCU8/r0TbuJisxSOn2eecvOn7ErrKuclGTo23cHm6FjM70y4h2FU2zrGafo5WD+EuqA+Jpm28NdjOK/07CMS9+dfvrx7hsdZr7K4c27DJQSHg3KVWvv/CfSSSdmRNx/uhAD1qCQjY7pniN9vepcoWZ7sjRWXWyjetK9xI2lfcD2gtyKQk3v9+Ge/8zxoik9ag2leT5vivTrLnqZkiAgWWHfQ7E3t4Y7YVgJ+p7OSx0h463ygOkqhuC3Hiy13U7gmhmzJ6QQBEOqUw0FvHjRu19HVVMzFaWrQMSTapb5rJ2/UamgNo2p1zwuTqnXLNcef3d2q1B/hoVSe1zqA1HhKgmjKqoSCtg4IoY+JVk5SoSZzzyNNgsJTXrnXw4uV9TIT9edIkFHA4UkiqIJGxYQqZuLATT87VcJe4okgpiIVdoMtIhoScMtASAtmQkbKTLUoiRYkyQ2PLGJUfi1CyI47Ns8kGrWvEiojUv/23/5YnnnhiyeftdjsnTpzgxIkT/PEf/zH9/f3rtX4fbEhZG9aiNU6bjzgVQs6v89zR6pfTHJACTAknA4aPJCrXjTJ8UopWJYxHurcGNgB6Gr73B9Vcf9GD6jIp25eh9fE4zY8lcDcZZGSZELZF37sVALGFLawdsYiNF751kMunmwAorYjy1C+do3XXzQfZdxuChp2TyQZSqLikDA86hvAuUZ+0FlVqySQ+ZXPYtHfYp4maNk7HG3g73oRbztC2iP1JN2UuBWo5Od7K+cmGosS9Ft80x2v6ub+mnzJHcS+nwVApr/Tt5NRIK+lsTYhbS/FIUzcnWm5Q5d7Ymo75KlR5a5CZPQY9egkSgqdrr/Kpuk78ik6HM4VTFpgC+lM2RjJWct9GwMhIXPxBGe98tYbIhHUd81anOfalSfY9HUTRFu5khpB4dnw/74YakRB8rvoSzSMR/u7f3s9Et1VL4y1P8OgvdbP94Ul0ZHRzTknTdZnz77Ry8qUOkonia2dV7WyeODVvm8ThuLM12YX1TtfilcTNufVVMGl3TrPbNcEe7yiqLZn/mWRTQtNV5Fv83SzylMKnJnDPI089U5W82rmLN27sZCxUgpAB2cTmSWMgk8nu53HTDtm5BKctRW3JNH49SmJcY3KmgrjNm10WyAkDJS2hZCwjsYxBVfkU2w8N0rB/qsjSeS+lOK+ISC1HouajvLyc8vLym79wC4tCYFg9NGSzYMictXRtYuI0H3JWjVpA/ySokhKUS0lGTA8jppuwsHNRr6BKStCshDfFhflWIIAMEomUzMXnfVQ+nWH7/z6Jp9H6bXNIZ6XurQCIuwsyAp9i4FNMDCBuyiQMmaRYynq5hdsJIeDSu0288K0DJGJ2JEnwwONdfOhTV7DZNy7Z7U5hQndxOlWPjoxfTvKgfRjHEgl21ll55bVStyuJbz1wyDFG1LBxNVXFy9E2nPJ1arUouinRNVvFqfEW3htvIqbPzaZXu8Icr+nnWG0/te7iJr26KXFurIlX+nZyY2auv1iDb4bHW6/zQH0fdnVjt8ECFUrWaf7wMOdtlei6QomW4Ddb36XDN0mdptOatfIlTYlrCTsRc2MM3kZG4v0flvHOV6sJj1vb01OV5sEvT7LvU9PZAfPCc6EuJP7X6CEuROqQMfm0o5PAX5Zy6vROwAqSeODn+zjw1DCSRj68JLctrr9fxxvP7ck3xC0pjdG2c5zWbCNcj3f90hDXioX1TnPfwSmn2eWaYpdrkp3OAJqSIa0YiKzFUBKg6SrKSnt6LQIZE4+awqsk8ajp7KS2hZ7JSl6/3sEbXTsZDpeCYqJoJoYzN7sikzQssidLJtUls1Q6ZnFF4kgDOpErNiZEJROtLRgeG9gAIVCSJmpKQs66bcqqg+w4NEhTxxiabbFj5N66Tt5Sat+Pf/xjXnvtNQzD4KGHHuLnfu7n1mu9PrgotEfcpYlgi6lR86FIgiYlQrUcY8DwMSVcTAoXAd2Rr59SNvnXzyXmFQZA5BLzBBLYoeFTxSf2XABEYT3TVgDE5oaEwKuYlCgGJaqOTzEXte+YAhKmTMKULHKVvcVNeUNtNVuYw+y0i598/RDdl2sBqGqY5elfPktdy60XZ29GDGZ8nEvXIJColGM84BhFu9lEVK71zzKq1J1I4rtVSBI87B4gatoYzJTwg9kOIqMebgSqSRlzzcz9tgQP1PRzvLafVt/0Alt5KOng9YHtvDawg9mkZQeVJZMjtYM81nqd7WWTt8WKPl+FqmmYxrwvxnuJGhBwwD/Kr7W8R6mWYocjRXnWyhfIKHQl7egbcFUxdLj8ozLe/moNodEsgaq0FKgDPzODap+79ptm8Rggbcr89chROmNVKJgcvjLOuW+05YMkDnxshPs/14/dpyPmTcKO9Jfx6g/3MTpotSpw+xJ8+OOXOXasC126s1OOQsBkxs3VePWCeieAMjXObtcku12TtDiCKJJAIMgoBqlcnZcA1VBQTXlNNj4ZEzs6dqFT6YoW1Y/1BSp47cZOXu/OkScsG6st+86sXdLnilFbMoNfj2KfTJHuFAQ73YTCGjMOH/EWH4kdXoQtOwFsCpSkQElaCprdmaL14Ajb9g9RUrGUQrv0d5Mw8WpJPGocvz225Os2I9ZMpP7lv/yXfPe73+Wpp55CCMHv//7v89prr/Ff/+t/Xc/1++DiLlKfipBtBLmYGrUY7JLJDnWWWjNGn+knImwM5uunIlRIiU1RP2VAUeiDRZiWTswzkhC8rhHtV2g7EqeqIb0VAHHXQOCVTUpUgxLVwKcYC0h9ypSY1RVkSeCUBU7ZRJHArZi4FbD2mDlkTPLkqpBkJUxpi0avA0wTzry2jVf+cR+ZlIqiGjz6yU6Of+w6inq3nkyXhhDQlSnjSqYSgAYlzBH7yupzlquVyiXx5azXcHuT+NYC3ZToD5fTOVPNtWA13aEK2tvH8LqTqJVpzGkJt5biSJWVuLerbKJolh6s790TrOCVvg7eG23CyKoIPluCD7V0caL5BqXOxGKLX3fMV6EU2eDAh7o446liJlGFKhl8tuF9PlrVjU8x6HCmcGStfL0pG2MbYOUzdbj8XBlv/48aZkcsAuUuz3DsVyY58LPT8/obWgxdlufIVMJQ+crwfXQnylFMk+pnU0xetpxL2+6b5KFf7MFfn8wSqLl1DwbcvPGTPVx/3wo90DSd+090cd+HuvC6UtZY4w4c3jerd2qwzbLHPcku1yQ1Bf2dBIKMbKIrRv4nUgwZbQ11UImkSipuo9Qeo7V8GluBOjo4U8ZrXTt5vXcHfcG58BSy7Q80Rae2bMZSm8IJ6NOJvGVnts/FhOkArBrIjN9G/IiPZK0n3zRMNk2UOCjZ5L361gna9g1T3z6Joi43iVP8/RTJwKsl8dkS+LQEXi2ZPy7r3HfXxNeKidSZM2c4evRo/v/f+ta3uHjxIk6nVRT4pS99iRMnTmwRqQ84rLkNserBoVfOsE8KEBCOfJzuDaOUMclNqxxa0u+/3sg1ss0UqUxLhz/kEvNy6pKIwnP/z0oGXnPi8Jk889dj1DXcebvBFpaDwJ0jToqBXzVQ5+2+aVNi1lCY1a3bQhufwC4JXLKJUzZxKnP3HbJAk8Evm/iZF2kvICkk4kahgiWRMGXSW1bBFWFq1MuP/vYow73WwKyxPcAnf+ksFbWRO7xmGwMh4P10Fb26VVzfrs6w1za1OpKziCq1WZL4bgbdlOkLl3FtpprOYDVdwaqiWieAof4Kdu0YwWHP8NjBK3ym5Ap2eeEgL2PIvDvSwst9HQyE5koStpVO8VjrNY7UDqIpt89qHo44+c5zD3C1ywr0qq+dpvLRMV4MbUNkJKrtEX6r7RQt7iANtgwttozVw8qU6EzYia2zlc/U4cpPy3j7r2sIDlsEylVmEaiDn5lPoAph7ViSLBHNqPzF4DEGUyXIKUHF/9TRBmSq28I88itd1O4NI0QxgUrEbLzz8k7Ov9OGachIkmDffQM8/MRVPL47cz1Nmwo3EuVcjVfTuWS9k0We/OrCdTQkk4yq541GkilhMxTkFdr4ZmNO+scrUExBS8k0+xuGcFTM1YANBUt5rWcnr3V30DdTQeG1o8oXoqpkhhI9ijaeIt0pEbjmIRC0MdfcyYKzMoW2T2W6tIKZdEn+cTlj9XuS0+Dxxtl1Xx8te0ew+9PWspY9TCQ0Sc+TJp8tgXte1DpA2lDQhUI46V78YzYpVkykfuu3fouHH36YP/mTP8HlctHW1sZ//I//kc9+9rOk02n+23/7b+zYsWMj1/UDhbtyDnUJNWql12BJgkopSZmUZNT0MGx6iAgb7xuVVJpxmpUw9nWqn8rVMc1XmfQlI8bnwh9sBcSp0JYXnVL4xq/WMdVlw12u88xXx6jeefu7oW/hZrBUpJxVr0Qx0OZdyzICQlnSNGsoxE2Z5fdkiZSQSBkyQQMo4P0ylmJlESuri7wzS7JUCZySwCkbzFex9LxVUM4SrTnL4FJK6AcJhi7x1k86eOu5XZiGjM2R4bHPXOLIo73cYbfPhsEQEmdStYwaVoH3Ptsk7drqZ28LVanoJkziK8RKiJNHS9JROklH2QQdpRPUe2aJmHb+MbSLkHDwUnQbn/B25RW7QNzNa/07eGOwnWja+t6qbPBAfR8fab1Oa8nMbf2Oi6lQDz16lSsVfl4KtQPwYHk/v9h0Hp+aYYcjRVlWgZjMKHQn7RjreE4wDbj6fClv/3UNM4PW9nGVZrj/l6Y49PPT2JwruQ5LhDM2/tONhwlIbuSYoOqrGSpScR7+vR7aH5lCSBKiwPas6zLn3m7j5Ms7SWWDJFp3jnPiqStU1oaXWtCGIaLb8qrTYvVOHc4pdruteif7EnWJJoKMqmPmotazcebKMjY+IWAq7KVnrJrBiXK8WpLDTQN8etcFnLa5i8toyM+r3R281r2TnukqQMJtS7GnfoQmVxBXKE60G6ZOuQj2uIjoHmCusbSsmpRti1OxK0rJjjgBewWXe7cRCnusgAkhUFKgJgSKadK6Y5T9h7upaQsQN+zZCeZcQob13bKd6rHLOj5bEp8Wx2dL4FIXToYndI2w7iCccRJOuUjqGi3eGcaiZSv9iTYFVkyk3n33Xf7Df/gPHD58mH//7/89X/3qV/ln/+yf8ad/+qcYhsHDDz/MN77xjY1c1y1scsjZWPb5g7zcpXilp3lFgkYlSpUcZ9DwMSmcTAkX07qDejm2qgu8APRsHVNmRT2ZrG7fWkENU444LTc2C48pfP1LdcwM2PBU6Xzxb0apaNuctQQfPAgckshb9fyKgX1e/xBdQDhLmmZ1hehNidPKYSIRM5VFZosFNilHskSeXLkUE4ckUCXwKiZexZw/aUgyq1pZQRdz91MfEBVruLeMH/3tEaZGrZSv7ftH+cQXzuMvuz32qzuBtJB5N1lPwHQhIThqH6NBXbvqljJlBk0vE5ssiW/lxGmCjrLJPHGab2v0Kyk+4e3ih+GdDGVK+PrsAUqMFAOjFZzvb0JkjdZlzhgfbrnOI03d+Oy3X+2Yr0I11E6z//EbfDe4m2jUjl3W+eXmszxYPohfMdjpSGGXBUbWyje+jlY+04DOFy0CNd1vESinX+f+X5rk8GensblWvl/0DJbx38bvJ+HRUEKC+r9L8MiH+9j31AiKrdi1IgRcu1jPGz/ZQ2jGUiMqa0OceOoyrTtvX8pmYb3T1XgVQyl/0XouVu+05Gch0BUDXTbzyq9iLm7jM02J0ZkSeser6Bmron+igo6acR7deY3Pf/Q0btvchOxY2M9r3Tt5rWcnPYFKGsqCNJdNs8c3hDqWJnJNZewffVwNFJMmAEdpmspdUSp3RanoiFK+PUYs5eT8pe2cvHqEdCarspkCNQlqUuD3R9l1Xx/7D3fj9qSI6XYihoP5jgynksavJfBpSXxaAruyMDExlrFZpCntJKw7SQvVksYXC6a+i7BiIqUoCn/4h3/IZz/7WX77t38bt9vNn/3Zn1FXV3fzN2/h3ocksv7WpU/oqyVUdslkuzpLrYjRZ/gICztD2Qt/sxKmcl79VHEd05zKtJTNcH5aXu62WnNEcEjl61+qIzSi4a/L8MW/GaW06c7Grn7QYZPmrHolqoFjHnEyBISNOcUpaiy9n2wcJNJCIm3IhIz5z8zVXuXtgtn7mgwOWeCQDUrnqVhGQeDFHNGy/q7njPWdQjqp8Or393L6lXYQEi5vkic+f4E99w1vKvvZeiNhqryTbCAs7KgYHHOMUqnE1/RZupAYMT2bJolPN2V6Q+VcC1ZzbaaartnKZYjTBLtKJ6jzhFZUD1atxfiQq59XY23ETBsxyYZan+JgZS8irrDPPc7DlX231b6Xw2Iq1EcevcRUo8LfTh0CoNkV5LfaTlHjiNBoy9CctfLFDYnOpCOrlK/DupjQ+VIJb/33Gqb7rHINh1/n/i9OcfhzAezulW+feEjjp9/v4LX2JowSGXXG5ENdg5z41904fAv3r+G+cl790V7GCoIkHv34VfYcGUS+DcqyKWAgVcqV2FL1TiF2uybY7S6ud1oKAoGRrYPKiW3z48x1Q2ZoqpyeLHHqGa8iYyocbunn8Y6rPPhkFx77HHmaiHh5vWcnZ4eb0SWJOtcsB9U+9sZ7mHjPw8gND4OZ4rRsSRaUbotT2RGlYleEyl1R3FVzEeij4+U899o+unobELkearpATQpsGYNtu4bZfaiPhpZJ7IpORqiEMi7SpgIIPKpFmHI3bZ511hQQy1hqUyjtJJJxzil6ueuxmS8eu6ux6rCJtrY2nn/+eb72ta/x6KOP8vu///v803/6Tzdi3T6QMMXdGf29lBq1GFZLqDxShr3KNNPZ+qk0Cv2ml4Bkp0ROIklWM9ulB4oiT5a0ApVpPXoyTfdqfP3LdUQmVEqb0/zi34ziq91cscAfBGiSiT9LmkoUA5dSfGY2BUQMOa84hQ1lU4c8CCTiWSvf9Lzn1MJarCKiJVAk8CgmnkUCL9KmlK+/Kgy9SN4lgRc9V6r58d8dJjRtDXT2H+/no599H5fn3rbPhk0b7yQbSAgNh6TzoH0Yv7J65cQUMG66GTI9xUl8agjfbezhtxLi5NWS7FwDcSpEIO7m5b6dvDGwnaSh4i+JUVEZpqw8YkUy2wyuU0Z/yEezbZY22wwNWhj1NtgZwxEn3/nJA1y9MadCfeTjF/h2aDeDU1bt28eqbvDzDZdwKTo7HSlKs4X8ExmV7qRtXey9woTrr1gEaqonS6C8Ovd9cYojnw9g96x8PKKnZc7+sInX3tzG8DNOTK+EK5zhN+rP0PxgECFkTHNunWem3Lzx3B5uXM4GSdh0Hjhxg6Mf6sa2aGT2+uFm9U7bnNPsWabeaSmYkklGMfI2vlyceSat0TVRSc9YFd1j1fQHKsiYKrJqcKhpkN95/GUebu3C65hb1lTUw8WxBobDpSSCCspohvLOKUav+rg8XrJg2U5/hqY9Iep2R3DvjONpT6Da55EbU+JGbz3vndvFRGDOPienrfqnCn+IPR/qZce+ARzODJpsoEgmCUNDBqocs5bipCZQFkxOSkSyxCmccRLJOLKJgMXKVd7aY95dLX2Ww4qJ1OzsLH/yJ39CZ2cnBw4c4I/+6I948skn+YM/+AOOHTvGf//v/519+/Zt5LpuYbNiBWrUYrgZoSqqY5JkdMmkSgoXxZ0miwx3Fjlaro5pPTF53cY3frWW2LRKRXuaL3x1FG/VFom6HVAQReEQHmVhiEPElJnVFUK6QshQ7pm6Il1IhA2LDBbDsjA6lTlylbMM2mWBLXsrYeHMYXKRyPaEKZPJtbi/g4hHbbzw9we4dKoZAH95jKd+8Rzb9kzc0fW6HQgYTk4l68mg4JFSPOQYxiWvTu0WAgLCweC8JL5mJUyZlEKWBJKUbdS7AVgpccrVN3WUTVDnXj1xAus73Jiu4sXeXZwfb0Bkrw9V7jCP1V/nocYe7KrOaMZLX7qUvnQpCaFxI1XBjVQFGgZNtlnabEGabKGbR8mvYf3OXW7l+8/PqVAfffR9bDsi/PnwA6RMFY+a4tda3uNgyRglisFORxKbbKnN3Ukbk7p28wXdbD1MuPGan7f+ey2TXRaBsnt07vvCFEefWR2BEiZcfaOGN/9uO1MOF5Nf1jCdElVmlH966F08agay9XiSBLGonZMvZYMkTCtIYv/9/Tz0sc4NDZLI1Tt1xqvoWmO901LIxZkbWRufEDAzXcrZq9u5NlLPSLAEU5YREsiKyaGWQU60X+fhthv4Hcn854RTdvqmKxjq8zP4nofxq37GrnnQU8XnekkWVLTEqd8Tpm53hLrdIZqa4qSFzERGI2HKRSQlldJ4/2obZy50EE86sitt1T859AwduwbZdaiXqrogkmSRSZ8tjkPRscs6rnn9qMA6ri3SZJGnqO5YONKSsS4wSBarzIXbiHuHRMEqiNSv/MqvMDs7yzPPPMPLL7/Mb//2b/O1r32Nv/mbv+Hll1/m85//PE8//TT/7t/9u41c33sfd6EgZcnvK1OjFoOJVceUKbDj5ZLzFgziclK5EBjIxEwNXSjoyFRKCerk2G2ZURy7bOPZX6sjEVKo3pXimf8xirvsLvzx7hLIiDnFSTXwyOYCi0XUkPNWvZCu3BNWttVBIikkkrrM/PgBpTDwQsmGXmTJliKBSxG4lIWBFxkBCaOYXOVUrY1WsYSAK+818Py3DhKPOEAS3P+Rbj78M5exOe79CYsR3cOZVC0mMmVygmOO4VWH7YRMG/2mryiJr0mJUC0VJPEJCbGO58wccerMEqfuDSROOeTS917s3cVQeG6mfU/lKI+3XWNf1UjR5zfawjTawjwsBhjXPfSmy+hLlxIzbfSky+lJl6Ng0qiFaLMHadZmVz24no/5KlR9zTSf/uS7vJho453BXQB0eCf5J63vUmpL0GzL0Ji18sWyVr7ELVr5hICu1/289ZUaJm5YPbLsboOjz0xx9AtTOLyr278GL5fy2v/cwXi3n0SbROBXNEybRItjhl9vOIczWycjkDDSEmfeauedl3aSSlr7Y1vHOCeeukxFzfonbM7VO1VxNV69oN6pNFvvtGcF9U5LLiNr40vLJlJWoensb+Qf33yQYNyDyAoyst3kYN0AH2q/zqNtNygpiNJPpDX6+0u4+EYNp3/aSHDItWA5do9O3a4w9Xsi1O0OU9sRxe428mvhVUyShkWikmKORM2G3bz73m46u5sxcjW62fqnmpJp9h3vYfueIRz2NG41jUtN4VZTOGR90US9cMZJKKs4xQ0bK5pkk7F+DIl7xso3HysmUq+88grnz5+nvb2d3/iN36C9vT3/3GOPPca5c+f41//6X2/ISm5h80KSBPJNmu/mIJiLFy8kSyurYypWmXJ9fWKySp/hJyE0RoXGlOleOFBYZwyfs/PNf1JLKqpQdyDJL3xlDKd/6QuQKSAtFBy3eCH+IEFC4Cuw6nkXaYIbN3KR5CohQyGz1fR2SRhIRE2FqKlAkaBhxbY7CxWsrKJllwSaBJpq4lsitj1RUIOVSxVcj9j2cNDJc18/RNf7Vg1uZV2IT/7yWRrabm+a2p1Cb6aEi2krhatWiXCffWxVA72YUBkwfPkkPhkz2+g8tuBzrAQ/1qxKZUyZvlUSp3p3aF3Oz7NJJ6/27+C1/h1Esul7NkXneEMvj7deo94XWvb9sgR1WpQ6LcpDrkEmdTd96VJ606WETQf9mVL6M6XImNRrYdpsQVpsszhXoQoupUK1HhjhL/sfYCLlRULw6borfLK2E4ds0uFI4c9a+cbSKr2pW7PyCQHdb/l46yu1jHdaA3Wb2+Do56c4+oUATv/qrk3Twy5e/9vtdL9bDUB6nyDwCxqmLLHdFeDL9efzxFMI6LzQwOvPzQVJVNXOcuKTl2nZMbXm77QY1rveaTHkEvXGQh4qKqcp80eRgNHpUr5/8jg941YzcFk12Vc7wofbOzmx7Tp+55zylEioXHmvmje+18KVU9WYRjFBLm+OUbc7Qv3uCPV7wpQ1JpZIIrVIVCJLolJCRpgwNFLJWyf3MxYoJ3culnSBw8iwt6OXI/dfp756Jkuc0osGQyQMzVKb0hZxSpoaazqv595ics8RqBxWTKS2b9/OV77yFX7913+dF198kebm5qLnHQ4Hf/Inf7LuK7iFzQ1rFmahGjVHmIrT8pa+GFh1TPPT8m5Wx+SWdPYo0wSFnT7DTxKVHqOEMdy0KiFK5PWtn+g/5eDvf6eWTFym6WiCz/3lGHbP0meHiKlxOllPWNjYa5ti+xqiij8IkLIXhFw4hE8xFhCnZLYJbk51Sq+w/8YWlsNcbPvsvLFULra9KPQiS7KKYtvVhYEXczbBuR5Z8RXEtgsTzr7Rxsvf3Uc6qSErJo881clDH792TzbWnQ8h4GqmghvZwvEWdZYDtokVqzUpITNoeJkUc0l81XKcRvkmSXyrUKVWQ5x2FShO6zmx1Tdbxku9uzg90pxvnlvqiPFY63Uebe7CY1v9eV+SrHCKai3GA65hpg1nllSVETScDGVKGMqU8EZMUKtGaLMHabUFcS/T43AxFepzT7/DZSr5kxsfwRAyZbY4v9l6ih3eaUqz9VCabCWJdiftTOmrLmXPQwjoedvHW1+pYeyqRSo0p8HRzwe474tTOEtWR6DiIY23v7mNCz9tQJgykmxS9oUQF/ZUYSKzxzPBL9VezAcPDPWW88oP9+WDJDy+BB968gp7jgwA63P+Xkm9Uy5pbzX1TjmYpsRYsISrQ3VcHqonnLLz0fvOc2h7LwDxlI3nzx7hZGcHQkjc19TLk7vf50jDQNF+GItonHm5gdMvN3DtbGWePNlcOrUdVm1T/Z4wdbsiOLw3/12kbOP4WJZEJXSFc+d3cPbiTmIp59w2SJvsa+3l0Qffp6VhEo8tuSAYQghrO8YNOzNpNzMpz4Jjes3In1akor519xIkIVY2B3XhwgV+/dd/nc7OTg4ePMhf//Vfs2vXro1ev9uCcDiM3+8nFArh8/nu2HpMj8/yqw//b9TWhbGVGrjKDTzlOu6KDO5y3bpfnsFVqiOv0z5+K5CyfaPSSKTmqUz6Mg1s59cxaSuoY1rJNThXTD1oevMNdMukBC1KeF3SqHredPLt361BT8m0Phjns38+juZc+vAZ1r2cT9UUbYtdWoCd2vQ9nTC2Mgg8uSa42UhyZd42SeWIU9aql9wiTpsEAk0SxZHtBYEXy+3bqXyaYHGqYFJIBMZ8/OhrRxjqrgCgoW2aT/7yGSrrbk9j3Ywp0x8txSYbNLuD3O6D1BRwPl3DoG5Fuq/mXLFUEl/zKs590hK1UplcjdNMDdeCVXTNVpK5zcQJwDAlzo418VJvB93Bqvzj7aWTPN52jcO1g6jyxozSgoaD3pRVUxUwilWOajVCm80iVT7FGjgLAecvt/K9AhXq8UcucfT+G/zN4FEuhiyl9XDJCF9ueQ+vmqbFnqEh2yMoYshcS9jXfM4TAvpOeXnzr2oZvZwlUA6DI58PcN8vTuFaJYHKBUmc+nYrqbhVo9V2dArnMzF+kt6BQOKwd5RfqL2EIglmpjy89uM93LhkBUnY7Bke+PAN7v9QN5pNz+5nUlH4xM1gCImIYSNsOAgbduKmxkDKz41Exbx6p0y23mmCHc7Aqp0guiHTP1HO+f4WboxXMxn2oaOgajqP7r3M4wcvYtN0TAGnr+3k3I1tPNjax7HGHlr807gcc8Q6FtY493o9p19qoPO9KgxDprQ+Qd3uOZteRUsceZVRwVL2+hkzZbqmfbz8+mG6B+sxUFBkg6aqSXY3DHJ4Vw+NtZMLUimFsBSnmG4nadrIGDJxw05Mtxdty3VB7jcuJFHLHKYt3mne6d/F//cTz67veqwBK+UGKyZS9zI2C5HqOt/PPzuxAnukJHCV6Lgr9CzBsoiWO/vXU5HBXWY9v5q+D8sh148pg0RaslSmjCwtXseUhTKPLOWCH25lOLyS025GSAyZXsZMN7lZ2Vo5RqMcWXP91PWXXHz392swMxLbPxzjM//3BKp98c8yhMTldCW9upW+VCHHKVMS+Vnm7do0e7TAB4xMWTU5hQER2nwPtgmhrFVv1lBImB+Mnkj3EiQEjnmx7blGxLZlBrm6ITE86mNotITRSQ+++jDV2wMkRa5J9vojbSj0RMq5Fq7ieqiSnmh5niB0+CZ4pvU8zZ7ZDVn2fOhC4nSqjgnDg4TgoG2CFm15WxosncTXLIfxLaOULAYJy2GQNjYHccohmrbxxsB2XunfyUzCIgWKZHBf3QAfbbtGa+n8XMuNRdiw5ZWqCb24T0+FEqOeKFffauHaBcu1k1Ohwk6Nv+p7gNmME1UyeKbxIh+u7LGsfM4UvuxgdySt0peyrakGUQjof9fLm1+pYeR9a91Uu8mRzwW47xcncZetMkShIEgiPGWpHFVtYR7+lR566v38YMqaTD/uH+Qz1VdJxmy8/WJHUZDEgWN9PDwvSELCqpkxTashb8aUCRv2olskd1+3/sZM+5LreSv1Tsm0yuXBBi4MNNIfqCSUcGFKUsGlR7C7aZBPHXuXCp81qROOOpFnNKrMGHVVYXwlc98tHlU5/3o9p19u4MbFCiq3xajfHcmGQoRxldxaa5Sce+OdKy38+K2DBBNu2urH2dk4zI6GEdobRrHbipdhCom4biOm24gbduK6NRKzyQZIEM/YiK205mk1mE+UFyVT1gSOlP1ujd4ZTg508G+e+Nb6rssasK5ESgiBdA+P+jYLkUrGUvyff/57HCu7xPCYi+i0ndi0SnRaIzatEpvWiM2oCGPlv4XmNLIkq5BgZfIEzJVVupwlOrJi7dsGWERJyjaylSyVSSyxD8hFlrw54rTO8xpFWMkWiAuV/oI6ARWDJjlCjby6+qkrP/bw/f+jCmFI7Pp4lJ/59xMoSwQnxUyN06k6Zk1rmTu0aXZpAWQJujKlXE5bM6ltapD9tsl7mExZfZBypKlEMRYMpHUBoYImuLF1bIK7hc0HleJEQadsoukyLtXApi094ZM2WZAmGF9DbHvKUOiKVHA9VMX1cBW9kbIFs69eLUnSUMmYKhKCR6p7+bmm9/HbNi5NLCUU3knWM2s6UTC53z5KjRpb9j1LJ/FFKJOSqzqv5BWnYDXXlyBOPluiqI9TrTu84eeukYifl3o7ODncRtqw1sdrS3Ki5QYfbrlBiePON1+OGhr92ZqqMd1btD+mZ2xUG3Eebb3ByUALPxrbhUCi1hHmt9pO0eQKUa7qbHek0CQr2KUraWd6DVY+IWDgjIc3/6qW4QtzBOrQzwW4/5cm8VSs3pExeLmE1/7nTsa7LYXUU57kwS/2suORCV4KbuP56e0AnCjt5eMl3Zx9axsnX+4glbQujtt2jXHiqct4q+OEdUtFCukLCVLIcGTrb24OBROvksKnpihRk9TbQux0Ta2q3mkm4uJ0TxvXRuoYDZUQy9gWVZ8VyWBH7SiffOA9qsuDgEBLCUS/jbrKKBU1c33cEjGVC2/UcflcFeGUg5odMep2h6naFlu12rQcknGVd97dxWTMRXPDBDsbh2mpnUCdpzgZpkTMsGfJk52EUVzfJEtgkzNkhEIs4yC1Xja+HJZM5bPiz+XskzIg5WyGWTLV4Jzl5OBO/j8f/fv1Xac1YF2J1O7du/lX/+pf8ZnPfAabzbbk67q6uvhP/+k/0dzczB/90R+tbc3vADYLkQL4V9/9bb5w+FXGEg7MRUrYhAnxWcUiVdMqsYBFrqKBHNmyCFd0WiUTX/4I1jwGvrY0Je0p/O0pSjtS+FrSaEsl95gCTQhsksAuG9gxURHcyY48K1lu0LTTZ/hIYJ2snWRoVcKUyjcfHF38jpcf/b8rQUjs+5kIn/zjySVtlaO6h3OpGjIoaBgctY8tGBBZReRWgW6zOssh28Q9Q6bs85rg2hdpghvKNcHVFaJbxOkDi3RK4fUf7OHdl7YjIWhqCvL05y6ye/c4roJUwfn7UCHEvNj2wlTBjJBI6BpdkUquhSq5Hq6iP1qGMc8qVaIl2OmfZKdvkg7/FHXOEGHdztd7j/BuwFIUHEqGTzVc4aN1NxbUFtwqoqbGO8kGYsKGDZ3jjhHKlOSy71lREt8ysIhTBddmqrg2W033bMWmIE5gKWyXJut5qbeDK1N1+ccbfTN8tK2TB+r770jz3JshHHXw7RcfYNj04WmL4GyIFYUDJDMqMzEXTdosv1h3Aaeq02pPU59VDsJZK19qDVa+wbMe3virGobOeQFQbBaBOvbLk7jXQKCmh5288bc76MoGSWgOnaOfGeDg08OoNpMfTu3k9WArIHisrAfvqODM+W3E0BBuE3tVCl9TlIxNImzYSYuVDdI1ycCnJPEpaXxKMk+YfMrczSVn8vuhXdFxymnSy1jRTAHd41Wc622le7KKQNRj7esL9mWBW0tTXxKko36EbZ4x3LYYvuYIbtXALzK4kwZ+31zNUzKucONSBSPjfnSnQk1HFE/ZBvRjEybTUy5mw06qK2doqA4sqJnMmDIxfY44WcRo8QNWlU1UybCsfRlHvgxi3WBmZSdprr+oJOWsw4ucz7MPiWxIUZN75t4kUi+//DJ/+Id/SG9vLx/96Ec5evQodXV1OBwOgsEgV69e5a233uLKlSv87u/+Lv/iX/wL/H7/un6hjcTdRKRWg3RcthStGYVESiWNhGmXkL0m9goDW+niFyTTgOigjVCPjVCPPf83NqwhTAmb27DshBWWndBTUWApzP/N4PQbSyTNbAyWu84LAeOmi0HTm7fAlEpJWpQwLmlxqf3M1308/28qATj0+RCf+L8Ci34fU8CVdCXdulVQaxc69qQgmHIxk3YRSLmIGTZcSgankqHMHcXnSyBJIGfAl0njVjLW82oGl5LGlf3/eg/c1hOaNBcOUaIaOOcNek0BYWMuHCJibHxk9u2CYUj0DNTgdKSorwkib1Btxr2Ivs4qfvS1w8wGrJnzvfcP8rHPX8DtXRgQICOK6q8skmWpWvNr6goR1VV6oiX0xkrojfnpi/npjfkJZVRavEE6fJPs9E9S7SieyZYQ2BSdtKFyI1zJN/oO0Re1LLmVjiifb7nAkbLhdSEVQcPOO8kG0qi4pDQPOobxLmPHW00SXyGKiFOwmu7QUsRpko7SCXaVjVPnCd/6F1wFErrKO0PbeKm3g4mYdQ2WMDlUM8xH2zrZUb451fulaqEePNbJW5FmLsTq8DhSReeHVtssv1vZSY1mTeQNpzX6U6vvdjh03s2bf1XLwJksgdJMDn5mmuO/PIm7avX2sXhI451vtXHhp40Ypozwm7R+LEDTY9Mk7Sph3c6VWBUzugsJgSKJJV0q8+GUM/iUVAE5SuJTUvjVJD41hVdJYxPGqn7jxYhUJGHn4mAjl4caGJwuJ5xyLrpdFUxKXTFaKgLsrR+iIh5i8pqb0U4PrqoEj3y5h7qyGKVyGkdBSEsmLTMy6iOiO5DLQb71ll7zIJAlE1XOgGEiDBOvZ6HyOh3ykhQqwiaI63bSpsLNJiUlQFN0EJJFuow1pvAt+uFWyYYEWdK09LhF5NN1C5ZdcPq6Z4lUDm+99Rbf+ta3ePPNNxkYGCCRSFBRUcGhQ4d44okn+OIXv0hpaem6fIHbiXuFSOXqmCw7nmXJSyNZNQZLnKEUIdBME5ISxqxMckIlNqwSnbQtULhiAQ09tXJmJCsCV3kmH5Ixn3C5K+aeW6reaC1Y7tSgF9RPiaxhN1c/pRUMRk79Dz8v/3ur6P3+X5nlsT+cJmLYmU5nyVHaxXTKRUh34PPHcTusQWDPTDmdkzU3rQSr885yqG4IWYLRsI9zo42LvkeVjCypSuNSM3mC5VLSOJVMwWNz5MtVQMbWk4ipUqFVT8etzItRFtbMak51Ct9DTXBzMAyJs5faeOXtvczMWgMYpyNFe8s421vH2d46RlnJ2mJ173UkYhov/sN+Lr7TCoCvNM6TXzzH9v3ja/g0QdrQCCa9pHUbNkmiyp6kxR2iwRldllgki4Iu5hStlJCQIE+kBBKmgHemWvh2/wFmM1aNSIdvgi+0nafJPbuG9bYwrrs5narDQMYvJ3nQPrxkUfxqk/hWTpwmLPJUNkGta05xytVK3Y7q6amYh5f7dvLmYDsJ3VLYnGqaR5q6eaz1OpXu6MavxBoRjjr47nPHuDIvka+yMsw3hw7wypTVIqbNPc1TjVeZFi5q1AxfrujCKRtEDJWvTm8naki02oLUaZEV1fYMX3Dz5ldq6T9tnX9k1eTgz05z/Fcm8VTfnEDpQiKsOwjplq0umHLS1VXByGQJukfCLAHTByuNipTiEl45RY0/jF+ziJE/T5oswmRb5jo0v15qpVAlg8mgl7MDLVwfrWE87CdlLMJshMCu6FT7wuysGaOjbBiGBSNXvYxe8THR7cbUZfZ+ZJSnf+8KjTURnAXHlWFIhJIO4oqNqG6/xSrvBSuHIhmociZ/U+ZtK1PA8GQFPcN1JA2VmuYpNPvqruuyJLDJOmmhEs04yJhr9xtKeYXJIkxL5jDnm7kv/5uaBkTG3MwOupkd8pIcseO+L8F/+b2vrnkd1wtbYROrwN1GpArrmPLBD5K0fB2TEGgIbMIKfNCEVc+0mlOCEKDHJeJBhUhAswhWQFtAtqIBjcTs6kig3avjySlc5fOIVgEBc/hWPmu13MsSQqHf8DEjrMGRgkmpmcJIqZz6SQVXLpShV9jwHJAwazSm064F9RSV7giHa4ewqQYZQ+bCWAORhJMyW5zywps9hkdNkzRU4oZG3LCR0DWSsozqsRKMYkkbPROVxAwbCcNG3Fj9DOViuBUi5lXSVNgyedXJs0jyT9Sca4Ibvoeb4OqGzNn3LQIVDFlKituVxDBkkqliu3OpP8r21jG2t47R3jKB27Vx9TV3A4SAznP1/PTZQ8TCVmPdox/q4SOfuYzdsfKZ81DazvVwFddCVVwPVzISL1nwmhpHmD0l4zxQPsI+/xRV9mRRdPv8gJNCGMKqxUoKCOkqEUMhaliR7UlD5cfDu/jJSAe6UJAQPJqtn/Ktsn5qIOPjfLoGgUSVHON+x0jRJE4Oc0l8bszsmXqxJL60IdMXXjtxWgySJDYsqlgIuD5dzYu9HVwYb8hfhardIR5vu8ZDjb041FsryN9ILKZCPfbIJT7y4GUm0h7+svcYQ4kSAD5RfY3P1F/GJpu02dPUZq18A2kX/3lyDxMFfY7skk6LLUibLUiDFl5AqkYuuXjzr2rpO2WNUWTV5MDPzHD8yxN4swQqZSqEswQpVECWrPtWnVLUWDq0oRAyJl4ljUdJMZN2EtIdCAGOSxpaj4Ych4N7B3n0o524vbd2jluOTKUyKqGYk9moi+HpUvqnKhgL+wklnYuOYCRT4LUnaSybYVfdME1iimCXk5ErXkav+ohMzX3/mqYID36yn0d+tp+SgjAMU0DUsBPRHUR1e/74u3UIFElHU+aIkzzvd9YNmf6xam4M1XN9qIHgrI8HDt6gadsQ0hr4jyYbyJIgYdiIZeyrmNwUFpeWLHU4n79RKChlhwRihb0D9ZRMaNjN7JCH2UEPoUEPoREPpl64fQW1J6b4m//wFytcz43DFpFaBTYzkbII05y6lAt+MJe4CkpZwpQjSpoQ+eCHWx7iSiIfL3uz+RBDp6iOK0ey8oSrgIQZ6ZWfpBTNzCcU5ohXobLlrphLMVQ0a10lIGGoTKddBFJuZtJOptNuptMuDEXQUjadL1wOpRy8O9rCUKSU+VtMQlCiJSi3xWgqDeJyp5AksAmDnfI09fZIvpP7SjGhuziVqsdEplKOccwxgioJTAEpM0u8dFuWgGlFRKzw/9brrP+vlYg5ZJ0j/kmOl45xrHSMvZ7pBXHCAwkPndESeuJeBhNukMVtU8TuBHRD5szFNl59Z45AedwJThy/wrHDXSiKyfBYOd19Ndzoq2VwuGKug3wWddUzeWLV2jiFpn1wGjNHZh385BuHuH7BikEurwnz9C+fpbH95klrwZQzn6h3LVzFeGLhubnOGaIjW+O00z9FiW25+iKrwXBxXLt13yGLRSfgc5MFEUMmYigMxd38j97DvBtoAVZXPyUE3MiUcTVj2YUblRCH7eMLlnuzJD4rVa+Ca8FqrgWr6A5Vos/b51ZLnOZjI1SpjCFzaqSVF3s7GA6X5R/fUznKR9s62Vs1uuJ+WXcKS6lQtVWzvDndwtcHD5E2Vbxqkt9oPc0+/wRO2WSXI4lbsbbnUFpjIK1hCJnRjJfetBWrnhRzaoomGTRrs7Tagmjdad75qxp6LvoxyxSolKn9cIKqB1MknRoh3UlItxM2HCRWGtogTJSwwJySkUPgSOm07wywfccUPs2qR/IoaTJC4avDh+lOlIMOvhft2IcU2nePceKTl6movrXWBIYpEYk7mI2682RpJuImFHMxG3URjLqI63aEAkJmYespYX2XcneUbVWT7CofwTmdYOKam9GrXsavezEyxW+qbopw4rO9HPnQCJXVc4ERprD6PkYzTqK6Y53Ik8gTJi37d/5xmMkodA/UcW24gRsj9fSO1pLWVXY0jPMzD52nrGqGaf1mHTUXwlLXM5hCJqrbSRpL5xvkyFyujim/pNwdsTBsT0KyQiWWQCqqMjvoYXbIIkyzgx4iE6557xFIJSb2bUlce2KozRkoF/hn0vzZp/52Vd93I7BFpFaBzUKkEnqQ//LGb3Og6QZBw0YaBWOpq1+eMGUT87L/X/3htnLIkkCWzXW1awkBqYhSQLRywRka0YA693dGIxlaQqGTwPAqZMpV9DKNTJlKplxFVCnoFSppv4ZuX1ohkxBsL5vkaPUATs0iQrNBO6BRoiQpt1nkqdSWQBcy76VqCZjWTGKrGmSfbWpVcavzMWU4OZlswECmTI7zoGMEbbnmmSvASohY2lSotSdod0XY5Qmy0z2LNo849ce9nAzWcnK2lneDNUxnnEsscXFsJmviamARqG288vYeZsMWgfK6E5x48AoPHOrCtgQZSqVV+gar6OqvoauvlvHJYquzqhi0NE5mrYBj92x9lTDh/FutvPTt/aSSGrJs8tAnrvHwk9dQl0joCyRdRYrTZNJb9LyEoME1y07/VJ44+bT1Uvus2Ha3bOBTdVwSeBVz0ch2XcBkysHrU028OdXIxVAlBiafb7nI4bKRRQmLEHAxXUVftiXCYi0Qlkriq5eizIS9XF+GOPkLwiE6SieocUVu2V66XqpUMOnk1f4dvNa/g2jaqu+yKToPNvTwWNt16r2hW1vAbcByKlQahf81cIR3Z5oA2O2d4DdaT1NiS1KlZmh3pFEkK33yetLBrFH825kCIrqN/kwp/ekSAoabTEHmrWlCPK1ZKWwZ200H+DZJp0RN4lOT+LN1SP7sfWYEl77VQN+bVVbNjEPn6GcGOfj00AK7WDyj8l+6HmRKcSGlwfe8nUYlzEeevkRze2BF2yyR1ghFLVI0G3Nbf/P/dxGOOTELAjZybrAccRIL8ogEPnuSWv8s7ZWTNIgp0kMSY50eRq/4CI07FqyH05dh96MTHPvYEDv2BPB55s4ZQkBYaMwaNmJpJ9IKgzGWgoQ5R5yUDIqkLzgODUNmbLKc8+9v4/2+VvqClRjZ411VdB7Y081jR67SUBpmWleZzqx+VKfIAk3SSRsaUd1OJuumWdKWV8xtCg55qfDhuUfE3HNCQHzGnleYZoesW2Jm4W8h+Q2cO+O4dsdRmzIYpWBoC/dnfzrJXz66RaTWDS0tLQwMDCx4/Hd+53f48z//c5LJJH/wB3/AN7/5TVKpFE888QR/8Rd/QXV19YqXsVmIVCB5jR8M/vqCxxWRjRQv+Ls+xq9VYBVq1HojY8rMpJ1Mxt2MB71MRDwEki6CuouQ5CBms2PKN589kqMG2kwGdUZHm9HRpnXUmQyOaBrbbBoiOk2/nKDxi0kkDRAC56ROVTyGvzRNwq9xRq8jJVQUTA7Zx2lU16dZ6LTh4GSygQwKpXKCBx3Di9Y/3Bqs/hM5q55vkSa4yWwT3BldYTJtZyabBGQpXRuriC2G203EdF3mvYvbePWdvcyGLbLs9cT58INXeOBg96rVpEjUQXd/DV19FrEKRYqbeebqq9pbxtnRdm/UV01PePjx144wcMNSXupaZvjkL5+humEuwEAImEx6uB6u5HqoimvhKqZTxdtGwqTJPZtVnKbY4ZvCoy0MpFhPFIZNCMAuWceMVzHyfxcLuZhMOrkYqmQs6aTeE/j/s/ff0XGl150u/JxUOQIoFHImAKYmmx3VQZ3VynKQZMu2rmU5yPad8cx4zdwwa9bn8fWMJ17fufadGcljW7Jlq2WP3baVOqizOpOdGAESIEgiFICqQuV4wvv9cQoFFFAgwdQkJf/WKlSh4qlTJ7zPu/f+bVxauZ7magqJQ5VOFkw/ILjJscywlm54/UYnPskSZFM+3p3rZSrT/r6A0+Z1cXlRqdOpVp45vZODC/11t8QWd4GHBia4t38Kn+Pq/pZXStm8i8efuINjkzYorUahuqJpThfCfPn0ncQrPmQsfqL7KB/pmESVBCOuKtHaxFys6uSJVAeLVR/pjel2xkbnNLumx6dV8WqVBpdCIcCyZByWSUAuE14HSavA1KzWrphRee0vh3nnyV4sU0aSLfY8ssAdP3UGT2izwcmJUx38efomygEZqQxdL8OH7jzG7ptn64ZLhinXo0jpvLcOR+tBqapfOEImSRZuTwUUKFkautkIM0FPkZ1dMUY7FxmJLlNcUDj+VISTz7ZSymx4f0kQGSjStTvLjluT7LpliY7WxkwRISAnVFKWk7SpIZsaiiXbEZaLlITZkKanSJtLDywhU9EdnJmN8upruzl0ZAe6S8Z0Uq9dD3iL3H/LcW7fPUXAVcEpCZKGysolQJRDNpEli6LppGQ6ELAWZdoSmDY+2ChR+ytMmXzMU4el9DkfmVkf1cLm31nym/j2FHDvLKL06phhCUNtkoqJwCtV8EsV/HKFHe5lJhZ7+DcP/ZCaTVwLxeNxTHPtwHD06FEeeeQRnn/+ee6//35+7dd+je9+97t87WtfIxgM8o/+0T9ClmVeeeWVbX/G9QJShlXmK+9+iqFAgqohoQnpshvYXinJsu0mc6XNA1Y7bCernk2Xlbqhw4WjIBKCsFai1VmkRSsQFGW85QquQhUtZaDEdSrxmm18Yi3qVclvTjp2dpoM/nqeyEP2zJVRkEi850K6WUFSJIx5sL6p47XWHAp9GxwMnd6Lh6C06eSVmotXQC5zj2sOp3Q5aWAC74YmuOqGn69qSaRNhVTNkrx8gVzn7f76loCypTaFsKKxAcBMbR2YrT3//QQxJwazZ9s4erifQtaNrEsEnCUe+sAxbr8EgGomISC+EmBqxgar6bMdP1T1VaYh8fozo7z07V0YuoLmMLj/U8e4/aFTSBLESn4ms+21Pk4RUlVPw+tlLAZ8K4zXIk47Agk86lWwEz6PGkGq2fZnuwiuhyuvbDVNScsbMjlL4b1yCyeqYWK6k5udS3SrawYKRaFy2giQwZ69NUyZw7O9vDfbh7FuQPl+gNNG2QOvi4tKGZbE27E+vn96nOlUe/3+HS1LPDI0wc0dsyg3SARWCHj32AB/99TtFEuNUShJFnxvcYxvLe5CSBJBrcSdbedQFQufbPLLHZP0OIuYAv5ocRd/urTzvOdOCYFHVCFuUT0jIa+YKCsmvb1Zxh9KYYRUYoaPjOVueE2nmmPQYacAeuTNaeVGVeLtb/fx2l8PUSnag92BWxPc/flpWnuLm56fXPLx5NM38d5oEDMkkEuwdylNf8cKuZKnIaKUL7m2dYz2usqEfEVC3iIhX5GAt4iJxErRx3wqxHwq3BCVUhWD4Wicsc5FxjoWiQRyVIsKp15o4cRTbSxNrjVBdnoNunZl6dqVo3t3lr5dadoCRQJqGbeyduywU3Q1ViyNjHBgCBnFktFM5SIAas1Rz07Tq24yhgAwLQXd0jAsjflYK6+9vpN33xukZDkw3BKWY+3z+jvi3HfgOHtG7P3CIdktH+K6DVEXdOJbV7ckYeFUDAwhUzIcVETt9av24muv2ta3Nat2PVOqnprnJzvvxaxuHjPJAQP/vjzusRJyj44RkjDUZgVdAq9UrUFTGb9UxidVGzJ6+jwrvDI3xu/8A0hdPf3Tf/pP+c53vsOpU6fIZrNEIhG+8Y1v8OlPfxqAiYkJdu7cyWuvvcadd965rfe8XkAKrqz9+RXTZUSjLAEZ3VWvSapfatbgyapnW834HJJBq9M2b1hv5rB6O+woXXR6nVmFx/9ZlFPP+ZE1idt+PkO416o3Qdb9Mr6Pmbj67W9tConlQ26m/zcP4gLuhauNkFfBKthZZeSeDD37z9+gL2s5eLncS0Wo+KQK97hmcW/h5rVZAo8sCClGvQnuxqi5Lqj3cUqbKkVre0WibPtZV0Y3Aoh5VJ39wRgjvgvX+zSTaUn1+qpTM52cvYHrq2JnQ3znz25hcdZOXRvcucSBz55kQfbXwSm7IS1UkUyGfCuMBZcZD8QZCSRwXWSN4ZXWhUFqs2QEPsVCshTyVR897gL9ns2RaqtWb5XRFU7mQxythCk47Wb3liVxItbFO2cGKOkOgo4SO2vQNB5eIvo+gFMzbTcqla86ePHsDp6bGSNVtiOLimRye/cZHhmaYCC0cvUXdgsde7WbJ/9oHy6vTrijQDiap6WjYN/uKBBuL6A6Gs9s8ayXx1+8jamlKLgt/O15BkYXMRwyK7qb5aqvibGT4FMtM/yznndxyRbLVRe/dfYO3iu02k52apmQUl5LtatdjDnBu38U5tQztTRgSbD70RT3/PIiLX3VBgBLmS5mqiFmqmGSpqfhs6NqgUEtxaAjjU+qMPGDDl78+ijZuL3fRQZz3POFKXr3pqkaCplaDVI67yG+EuDUqQ6WKj6qtxfBLaAsoRzxIpW2PmGpimFD0jpQWvu/QNBXwqGa5EpOJmMdTCx0cjIWpVBpTPtqD2QZ74ox1rXIcHsch2oggNn3Ahx/IsL0y2GMir0csmIxcGeafR9ZYucdy6CAv5bK6NkAT0VTI2M6SaKi10JpsiWhmQryBXt2NTrqaYqOvCFLRAgwhYphaeimDU/FkpPDhwc4dGiEhVgLpgsMl4SozWJKksVNI+e478AJ+jvXUiSdkoUmC+JVlZSxGaJWU/JArIMnYS+nbKFKFpVaKp+5OSfyvKrm1XqEKX3OT2bWR27Rg7A2v4ca0gncnMM1WkLuNtCDErrSbKwq8NSgKSCV8csVfFLlguO0HwmQuu+++/jFX/xFPvOZz+B2X1y9xOWqWq3S1dXFb/7mb/Iv/+W/5LnnnuOhhx4ilUoRCoXqz+vv7+ef/tN/yj/7Z/+s6ftUKhUqlbWZ3mw2S29v7z+A1BaSFYFM82hU1ZLrQLQ+irT6f0r3bGqC2Uw+tUKro1ADpFL9doujSKuziE+pXtGBhFGRePw3oky96EXRBD/+/y4y+mCx4RsmTRcHK50IScKrrB0AHDkD9YhJeUapG2bk1xlrVM/TCNnbojP6QIbxh9P03pxvClU5S+OVci8loeGVqtzjmm062wgClyTqfZxCirmppsMQkKm56l1OE9wbLdvsQiCW0x3MLLZzdrmVKgpCBclp4vDqWCoXBWK3hWf5TPcR2pybZ3gvRjdifZVelXnx27t57fs7qARljF4L3805FlUfeaPRHUyVTIb9ybo5xLA/iVO5vsDwUkBqoyYzEZ5Z2sE9vWfZ4cnSoxYZ1Ap4mzjRlS2Z0yU/h5Y6iVfcSEqVHv/KNQOnjbpQVGo+G+T7Mzt5fW6Qai2CFnCUuH/gJA8MnCToOn9z4autyYMdPP5fbkNY9jlIIBBusIICEQArILCCAiViILeamAGoOBXMJilIzSRjEVZLdDryfKnzOLf57UmVcxU3B3N+XIqOT6k2jVjGp128/D86mFgHULseSXH3Ly/RNlC5YPZH1nQwUw0zUw2xbPoaH4xJ5N7yUpz0IAmZtr0FpCD1OqViZbNzn/CYmHsL4BRQklEPe/Ar1ToUhXxFwjVICtagyeuqNN1OTUviTLyNyYUOJmMdzK20NDzu1HRGO5bsqFNXjBbf2rEzn9A48VQbx5+OkFlYA66WvhI7Pxxn7KEk/nCVdmeWsFbEtc7AQQg7PTBruMiYDkoyWLVjpCRAM1RkIW0Rhbqwo54QYFg2OK1eBDJCwNmzEQ4dGuHYsT6qporhkjBc1G3kXY4qd+49xT37JggHGs8VTslCkwTLukbGVJBqX2jVzXAVmNYk1du3OGoTrQXDQdl0nPe4JQSUUs4aMNlpeelzforJzfVMAM5IGf/+HK4dZeQuE90vU2kKTdSgqVyPNvmkCuol1I7fiCB10SP1m2++mX/+z/85//gf/2M++9nP8ou/+Ivbjvxcrv7u7/6OdDrNF77wBQAWFxdxOBwNEAUQjUZZXNy6N8m/+3f/jt/+7d++ikv6wyEhoGBpZCpu2/FuHSStwlPWaL4DrpeMRdhR2hRFaq1BUoujiHPbUZfLV7Uo8df/awdnXvOguiw+/f8tMnSP7donsL/3aSPM0WoEgYSPKnuVBDkczFteqn6V6l0K7XeXOKAkcG6Ypao3Ql5NI0xqLE24OflikMKKxjt/08Y7f9OGp0Vn7IEMYw+l6bs5j1zbG/2yzr2uWV4u91AQDl4q93GPaxafrOOQ1lL1QqqJa8NA2hRrTXBTNfvmy43MXAfjuYuWLIFHMfBsiHDousIb747wxqvjZPMeXEBHoMADdx3ltn3TqKr9W24nIrZU8fPGSi8HU728k+7iw9GTfLRjAtclwoHTYTA+ssD4yALQvL5q6kwnU2c6efKFm69pfZUpJF4/NsiTr+8h6XNR/qzd7NuW7fDlkA1G/AnGgnHGA8sM+pPn7Sfzw6KAp0hPV4LTlo/34q28enqEqqFwf9dpHu2bot9ZoFMt06FUcMkWu7wZdg2tGS6ULanuEpgzZfLmtWsrILDduSREfRhnCTi81M0zp3dyPNFZf25fMMkjgxPc3n2moa7n/ZIlIGc6yRou0oaL0+faeOt4P+ZPWLj7ihA2yePEbNolvoklXBXkjISjYOE2dcoBhWWPG8uSCUslvth3iNFQAp9istNdwV2L3J2pasxVJdqdhabLmZhx8vL/6OTE90N1B7Pxh1Pc+yuLtA1VsATnhahSRSOV95LKe8nlPSh5N86Kg6ymYYVMXJEyUqfA//E8/o/nKaedJOb9ZOf8VDJOVo/oqmwiVUBUJPAYVG4qgQNa5SI/13+Yrr1Z1Iv4HVfyHiZjHUwudHJyMUplQ31UT8tKDZwWGYgkGlI8TV3i9Gshjj8Z4dxbwXokxOExGX0gwfiHkkTH8vi1Cm2OPGGt2AA5RdOGp5zhQhcyumJiKlZ9AkC1ZNRNaXyiwU2vmaOeDU5aPVXPsBqb2ObzTt59d4hDh4ZJJIJYChhuCdNF/XmtwRz37p/gtt1TuBzrzke1tDy3ZCFLgriukRdKbb2sXuyMEdHEIU+SLByyiW4pFE0n1Q0tD4QFuSVP3THPdtDzU803zwDydBUJ7M/hHKlAh4HuUyjLGhZQRIF1Biju1fS8WqTJL1VQr3hN942jS0rtMwyDb33rW/zpn/4pTzzxBCMjI3zxi1/k85///EWZPFysHn30URwOB9/+9rcB+MY3vsEv/MIvNESXAG6//XYeeOAB/sN/+A9N3+cfIlK2TCGR1l11KFrR3WuQpNvXFevCy+CUjcYIUg2QVmEppJWuG1vbSl7iL7/Uydxbbhwei898OUb/7WuzplUh806lg5hpO4Z1K1ludi7VXfQqQuasGSAu7LQKGYseOU+XnG9ahL5epi5x9qCPiWdDnHwhSDm7tm49YZ3R+zOMP5Sm7xYbqkqWyjvVDjq1CuPODLud6U29nOzBg1yrc1LJXgFw2qjr5Ke7LOm6wuvv7OCFV3eTK9iR9FATgLpYnSsG+ebsPibydj1IUCvx6e6jfKDl7BXd5i+mvmpkcJEdA4tXtL7KsCTO5FuYyLZzIhVlMh3B2BBOdck6OwLxuqveoC+FeoOB06VEpKqmwnSmjYlUO/O6n47uFRRZkMz6eGNiiN62FW4bmCFQi86Uqyqj2gq9Wg6vYhFYV2/lka2mg7niOgv2rGk3E36/7IYkAFlQ0lVePjfCszNjLBcCtccsDnTO8vDQBKMty1cN5A0hkzWcpGvmDGlz1ajBvi9juMiZ2+/345Wr9dQ6j1Ulu+Dj9FQnZl6DokxrNod6xqJa1NADsPgxlXKX/d6B90wiL5jIhuDTnz3G//IzR9BUQbag8fyJdgyXRShawOFqnFBJnnXyyh91cOzJcH1QPPZgmnt/JUZkpIwlJAxTIVNw10EplffY1zkv6YJ9u1zd2sYaQHEaBLpytPSncbaVWc+NTtPAnzOJvRhl+b1WJCS0HUXi95vokkKfK80v97zVkCK3lXRDYXo5wuSCnbK3nG0cO3mdZUY7l+yUvc5F/O7Nx6PEjJvjT0aYeLaV8jrjiO6bsuz6cJyRe1bweHVa1AItWqEh9bdsquQNJynD7vEoEJiyha6Y9ZOWbEl2FAppW456lpDqwKSbGqbYnGJnWRJTUx289dYIJ070YFoylgNMDw2RzKHuJT548wl2D82hKOv31lWrcXBJ9hRJXFfJWbVjzjZG5HbKoUXZdFAwHOi6SnbeuwZM53xk5nxN65kkWeDvy+O/KY9juAJRi6pXpiQ1QuKqXOi1eqZK/fpyXYW3lqDPk7rhIlKXXSO1vLzMH/7hH/Jv/+2/xTRNPvrRj/Ibv/EbPPjgg5fztpt09uxZhoaGePzxx/nUpz4FcMmpfRv1w1ojVbGUWs+kRjiy/3eT0t3bOvEE1HITSCrQUkvB8yqbZ3KuR5XSMt/85U5iR1y4AiY/9YcxuvevHdzTppM3K10UhQMZiz2OOINqeq2gc51ylsaMFSRXc9lyYDCg5GiTSttaF6YBZw/616CqZu3uCxjccv8K934qzs79OcK+xoiKEJCrNcFdTdm70gYg63UD/KznVVVXeP3tHbz42nqAyvPg3Ue5dd/pi5px3UpCwNvpLv5q7ibiVTvFZsCzwud632PHJdZPXUgXV1+1yGDv8kXVV+mWzOlca91V71SubdOMp1wVRI0CHxg5zZ62Rfp9qctqA3A9aDsgtR6cJlaiTGfaMITCUMcSewZnkSSIp/y4KyYDncvItX52uqHw+uwQk/EOu/9U7zEe6TzVAJtKrd7KBisbrjZGncGOPOfXRa1y5oWNYi5V8YKPZ8+M8fK5YUqGfbzzaBU+2DfFg4OTtHmaR162q7Kl1KNIdtPYdbdroFSwttdEVkLgpUpl3glpibCzxC23niHsWKtJCiiVupvnRke+rugKP/XJV+mKphACXlkY4C9i+ymj4TBN9k3HcR+XqGQ1fu2X3uGeu2cBeO31bn7vv9xJPr+2nL5wiXC0gNdfInVaYemYhoXAdEpEb6/Sc18Fw+1gZRWacl6yRff2DRw8RaS8IDvjhBwoJZOegRXu+fEp+obttN+KUJjT/ZzVgyzofqx1VGVmFNy6yaQcJlt1MexO8cWet5q6/kHNaTPrZ3Khk4mFDqaXIw2GKJJk0d+WZLxrkfGuGN0tqaaTSZWCwsnnWjj+VKTBOMLbWmXnhxLsejROqLtMUC3RquUJqOX6OdUUEitVL4mqDxMZt6xTFQqmZAOUWE3jsyScJjjltRontcn3Mi25IU3PFFt33EynPbz99jBvvTVMJuO12644Ab+o24vLssXNo2e478AJeqNrx/7V2qbafwhh97MDWK5q5K3zFE43SCDKEolzQRZOt5A4G7L7M8W8TeuZFIdJcCCHb08Bx3AF0W5RcSsUcTT9nk50AnIFn1QmINsRp6sHTfb3kTacM3rcaV6ZHePfPPwjAlJvvvkmX/3qV/nmN79JIBDgC1/4AvPz83zjG9/g13/91/nP//k/X+pbb9K//tf/mq985SvMzs6iqvbOm8lkiEQiPPbYY/zkT/4kAJOTk4yPj//Qm00IAXnT0VifVIsorYLTdjqYK+vS7lq09al3JdpcedochU1NWW9EFZIKj32xk+VJJ+6Qyef+ZIGOXbb9rhBwxghxpBrBQsYjVbnNuUBY2TyD1pAYUOv7ctYMUKn9Vn6pyqCcwS9vz21MQeCTTJSkTFg16eyqsNHJfSHm5LTbxwkrxGzVwwFnjLBy9WsPbmSIsgFqlBde20W+BlDhoA1Qt9x0ZQBqo3RL5pnlEb4d21k3ULk9PMunr0D91IVUrSqcPhfl1JkOpmY6iZ23vmqR7o6VhvqqqqkwnWutN8CdzreibwAnzTBxLEi4FgVRvcBnPvUmg2MX7idzo6hU1Pirr91NbC7MyNgiY3vn2bEzhuywmMq0MbESZSIV5XSmFUOsH/gIbh46Q1+HPXBql/KEtRKpmhOfjEW3nKdbLjCVbeMbMzdztmDXjERdOX564B32tyxsOQHjkCx8ikVgnQX7RvdNAN3CBitLJmsq5E0F/TwNM88nIWAiGeWZ0+O8t9RTH9x3+DI8MjjBB3pP42pS87XxPYqWthZFqkFSZvV2zQZ8O2ZDYNfYBZQKoVUgamLeUJp38Ni/uYdS3kH/rjif/d9fR3Ns3tc3OvLJssXD9xzmwbuPoiiCiqnw2Ow+XkwMAzDsTfCrQ2/Q5izil03G3RVcssC04LWJdl58o5vEop/lRJBk1kfJcmA6ZUyXjOmU7NtOmQumLWDvqyFvgbC/QNhXJOxbf50n7Ckw80Ybz//ZWFMjiY0q5Jy8/NRO3nunD8dQCfeuPJ7RAutbJgkLdjiTDDgydCj5OgCVqyqnFqNMLHQyGesgVWhsURD0FBnvijHetciOjiXcjubnPWHB3GE/x5+MMPWDFsxqzfhBtRj8QJrdj8bpuzWDW9Np1fK0aIWG1hV5w8GK7iVZ8WLVUsycioFTrlCUwVRMFCycmLgwcUjGBR31DEuruQVu/ZsYhszkZDeHDo0wNdWJEBKWbFt7G0653pbA46xw100nuWf/BCH/6rFeamIxDqumUBY2RBW2gCghoJh2snI2QPJcgNQ5P8mzAXJxb9PnO3w6wYEsvt0FHINVrIig7FIpiuZ1U0502wCi5p4XkCs4rmpzGztdsXmfPal+6fOu8PLZcX730W9exWXZnq4aSC0vL/P1r3+dr371q5w6dYpPfOIT/NIv/RKPPvpovUDu5Zdf5sMf/jD5fP4C77Y9WZbF4OAgn/vc5/j3//7fNzz2a7/2a3zve9/ja1/7GoFAgH/8j/8xAK+++uq23/96BKnZopuVqn9Tut1qNGlF92yaIW4ml6yvwZFWqkeV7P+LBLVy01kjSRL1HOYbKzlns3JLCt/4hS6Spx14IwY/8ycLRHbYB3xdSLxX6WDOtH/3DiXHAefitno4ra42U8CC5WPO8tUjfG1SkQElu6l+SkYQqNU3BRWTgLI5lSddUJg47OcH34rw1vMtZFMask/Q+58quHYKZNPiTuc87VdxcH6jQlS1qvDa26O8+HojQD10zxFu2XsaRbn6kwIZ3cnfLuzmB4lBBBKaZPLoZdZPXawu1L/K6anQOpJCiuikHQ5my6ENcAABrcxoYBlfwmT26Q7Eot1Y965HT/LBjx/fsrHujahc1sWff/k+FhfCWDJUwlBplSi3QjUkITYcJEPOIjvDS4yFl1DDVeJ4bGDSMlSk1VltQYdcpFfONRxPLCHx8vIAf332prqT4e7gIj89+A693gwXlsAti4beVr4tLNhLltQQtcqb8nkj2FVT4Y35AZ45Pc5cbg3G90TmeWR4gj3tC0is1SOt9kLK1NLtssY6UDKdm7apreSSdYJKmYC6DpSUcv12UC3jaVLDsl7JmJc//+17KGRcdO9Y4XP/8tVN6XVg7xt/s0UUCmC+FOC/T9/JfDmIhOCjHRN8susYpZKTDtXi5tYUigSJoos/ePUW3p7tIpXzki9vz3xLrlgoFQulImrXFnJ57X+/p2S7CkbXOQtGC7RG88RnfDzzJztZnAoC4G0pc9fPnmb8viU2ln7pVYWDL43w+nOjVCs2rO7Ys8D9HzvKtDPAk6kdBFxlWlylhgO+KkwcBYnEfJDT0x2Y66JOimzWrcnHu2JEg9nz/ia5uMaJpyMcf6qNbGydccRAkd014whfqEpIK9KqFfCpa5OXuiXb8KT7qFiaHbkQdhQJBE5nAU0p45BMnJKxKRrezFFvu81k4nE/b701wjvvDFKonUcsFZxtFXKmC1GboIiEM9x34AS37TqN4wITC7WlwitbGMgsV1WKNYgSFmSXPSTPBurgtHI2QDnXfDLc01omOJDFO15EG6xitQlKmkZBOJtCkwPDTstbl6LnqLdWEXbt2CVOupzvu26MNtn3grBsgw6BhLBg/QY44E/y8tmd/O6jj13h5bl4XTWQcjgcDA8P88UvfpEvfOELRCKRph/+qU99iueff/7il7yJnn76aR599FEmJycZHR1teGy1Ie9jjz3W0JC3o6Nj2+9/vYDUqUycn3vi/wPNIFF1b2unD6rlNTiqR5Rqxg5aEfclpt3Jio0EN/pQKTOv8o1f6CJ1TiPQqfMzX43RMmBDVMZycLDcRV44kRDscsQZUVMXvb5Wn14VEgumn6zkwCkJ3JJJl1KgQy7hqfVzCijmpgFPqdYEN20oZEyFas3l0DLg3Du1mqrng5RKKj2/W8Vzs4VVAe3vK+zascLAHTkU7coBwo0IUdWqwqtvjfHi67soFO0Tdksox0N3H+XA+wRQG3WuGOSx2f1M5u1jZEgr8ZPdR/hAy7n3tWZQCJiNt/DqzBDHU1EW8VH1Sptq652WwYAzzc0ds9zUFsOVN/nenx9gZsKue+3oS/GJnz9ER+92Bvs3jk4vtPFnf3sPK6obvVVQDUobGqSCUhK4VgTtZoH9XXPcunuGSE+ag9Vu4qYHj1LBp1Trg5hWqUS/ksV9nj5wJUPlO3O7eGphDEMoSFg80DHNj/UdJaBdXH2bVBug+WuTM37FxNNkm7cNhDbXW6VKHp4/M8qLZ3eQN5zIqoXTqTMWjTHQmsRSqKfd2fVIjouoR1ofRardVmoRpVpkaat0su0qE3fz9d++h2zSQ7Q/zc/8q1dx+xqjI+eLQlVNlVTOwwvxIZ7LD2FiN73tXSlhJFwIU+Zff+RFPjh8FoDvTwzx20/eT77aONBVhIGUMVDyOkpep60lx757lxgcTxHyFAn6ShglhdSSh9SSl5VFL6lFL+na7dIWA+eGL2EJZMmkZ1eK8Q/GaO0pEOoo4HTb61BYcPStPl56Yje5jA0BHb0pHvzEYfqGk7yS6uXx5d0A3BaY48PBU7y30s05PYjhEyjrInimLlNZcdJiVtgVWGJHdBmnev7fyqhKzLzezDjCYPSBFXZ9OE50LI9XqdLqKBDWCnUIEgKyhouk7qv1j2w0h5AkC5dSwaPmcSqbf99mjnrbVVVXOH6sj0OHRjhzpr32ieAIVpEDJunS2mTUjt4Y9x04zs7B+Ys4ltv7aElXmZwJszATqgPTyqwfo7J5YlySBKGuHC0DWVyjZaQ+A7MVioqDvHA0/X4aRs0AwgYnO9LUWA+2lmTIFQKo1bqvZsec1WhTzURlAzitqixU0qYbNMiu+PkvH/r6FViuy9NVA6kf/OAH3HvvvZe9gNeTrheQOpNb4cHvfLn+vyqZdpPZVTjSNvRO0koN4e8rJTsaZdmzBVf83d8/rZxV+cYXusjGNEI9Oj/ztQVCPfas0Vk9wOFqFBMZl6RzmzNGq1JEBVRJ1C+K1Ph/4+OgbHhsOxBW3gBOlQ328M3WuWXC3Ls+TjwfJHWHH9cBgVWFhd9yYByBHffZ7n8Dd+RQHZf3q91IIFWpqrz21mgDQLWGczx49xEO7Jm5JgC1Xqv1U385dxOJWv3UYK1+6lL7T21HBUPjZK2+aTIb4Uw+vOmk6xVV3HmBHnOipBSUEnVXq6CnQHlZQy6A06rywCePc8dDp5Cv8fq8XBmWzNlcmKl0G9OZCJPJ9qYNv8POAuPhZXrUDNKCQuxYG7MzbYjavqr6dHb8wklCXXm8SqU+mPJLFQbkLIFtpvYCLJe9/NWZ/RxK9gLgVqp8qvcYD2+on7pYKTRGrfyK3exzo0qmwrFcK8cLLRwvhzlRDrOkbxzEbpaMRUCtNESOAmqlId0uoF59N698ysnXf/seUks+Wrty/NxvvYw3UK0/LgTML4f5u2dv4/RcFCGDx1chEs1QqjpI5b0UTY3yQBWzxV5WJS3jnHEgGxL7u2P8+098n45Agaoh8yeH9nFwoZ2w3063c+plzj7tZvq7HkTRRunBO7Pc+6UYPTcV7XQwAds5spYLKqmlVbjyEJ/1c+54K4WM64InF7e/grPVJGP6KNX6NPn8Je798HFuuv0skgzPJgf5XmIMgF4jhzjrYX4lvBbFkAShSJbeoThaSwVTWTtmKFh0qzn6tAw9WnZT1kZixs3xJ2rGEdl1xhH7sux6NM7IvSlcbp0WrUCrVmhomFuxVJJVLyu6F11sBgpVruJVi7jVNbc+IcAQKrrpaOqodz6tr3teWAhx8NAI7703SLlcM/KQLcI9ObKWqx5pVBSTW8Zm+OCBE3RHUtv6nEpRZelskMUzAVbOBpk/GyI+58cyNwOQopmEe3O09GfxjhVw9FUwwxIp4SFjNa9nVzFtWFp1z5PLONlsorFetbV3mVEoUbdm3yhLyAir9gxB088oC5W05SZjuUnXLmWxts106Tm++vAfX+KyXTldNZB68MEHefzxxzdZjmezWX7sx36M55577pIW+FrqegGpqmnyS4//C35i/E2EMPCpxjVxu1MUO/njRotGSawBTm5O4ZX/0oJsQXSowt2/mMYbsOeZ88KJhYJbNvHJOgG5Wn/dlZAlwBASVSGRFxolS6EoFGZ1N2d1DyvrDvgKFioWCgJVarytIFCxavcL+7mShTDg0EonaZ8bYUgs/I6D/It2ioDDa7LjgzZUDd6ZQ3Ve3MD3RoGockXltbfGeOmNnQ0A9dA9R7h5z0yDte71IN2S+f7yDr4TG19XP3WOz/QcodVRuuz3z+kOJmv1TRPZduYKoU0pHhFXnvHAMmPBZcYCcSIu2yRgfX3ViZPdJFLBhtcpsslg39b1VdezUmU3U5k2pjNtTKUjnMm11Osa6hICT8nkwMA5dkZi7GpZJOwsbRq4FvJOTh7r4uTZdtwPrBAMFut9UopxF6XjAfpDK4zuiuH2bB+kVjWRifCNmQOcK9gpdR2uLD89+C77wlvXT637CnaritVUu3Wudqu3M4aTgKqzx7PCLs8Kuzwpxj0pvE2aICd1J6dKQc5WvCxW3aQNFYds2E1lNTui5FsHkNdKxayDP/+/7iYxHyDUXuCn/uVrlIXGzEI7pxY6mF8Js1JsPjhflek1KQ/rCKcAIejLF9mlJGj153lk+Cx3dS0jS1A0JSbKznpNS3ZJ47WvRXnv71oxdXuQO3B7jnu/FKN3f+GiAGq9JASWDge/NcCrfz1EtWgfL/puTrLrkUUEMpklD6lFL5llD+lFD/mCC8PnwHLWtm1LoBZ1lKKBBCitBqlHZDIjtcH4ghPm16zQu8IpxroWGe+0rclVxbJrgE0PZ/Ug5/QgebHmFihj0anm6TJzlF9RmPxOG8sn1xlHtFXZ9aE4Oz+UINRdxq+UaXUUCKrF+jZjCUgbHpJVX62ee4O9NxZutYRHLeBYB12GpVAyPOimA4ckqJ4vfVRaNRCH9VOUlYrGe+/18+bBHSwstNbv94fzeKNl5tNhqoa93n3uEnfddJK7900S8G5dm5xPOWvQFGTpTJCls0FSS76mz3V4q7T2ZQn3Z/HtKKL06lT9CmnhJmu5N0XEYQ2a1tzzyriaOA9uJbHu1sVD1BZpetuINlWEUoelNWhq5jwp8EsVepxp9KyT//rIn17E8l0dXTWQUhSFWCxGe3t7w/3Ly8t0d3ej6xd/ArnWul5ACq59Q95rF42y58vXR3vsKE+TyE/DY2tRo23U8W5LZg2EjNq1idTw/9qFdY+tPW4DqFSvJYhZXpLChSFkTGQMpG2nxZxXQmCt9pjICopnVSorCkZewshLUIFwtEJ0qETnSAGnZqHUYE212wg2HIRvBIgqV1RePWQDVLFkA1RbS5aH7j7C/j1nrjuA2qiM7uTx+T28nByo1099uGOSj0YnL6o5babqZDLbzkQt4jRfDG16TocrW7ciHw8u0+LcGtgMXeal7+zktafGMJCRAhaRsRwrBd+m+qr1/at2DMZoDb9//avOJ8OSOZcLM5Vpq0eckuXNhdk+rUyHnGflaAgtKTEcSvC5n3uJ5CkHs+94KSZVXEETT4uBt8Wwr8P29YrfxWkrWDfgsSoyM8/0cvqlvnoKkyxb9A/HGdszz/ieecKt23e1s4TED5YH+ZuzN5HV7e17V2iRT/Ydxa3pm13t1tUpNRt8NZMwwdQVLF1GNgW3hWM82HGG3f4VOrQSoS0m8IqmXW+Vt2RylnxFetRdrCwBuZybZNrP0lKQl76zk0zBjRWQIAgloWFpsOkLCHtyqqstRUdLhrC/QMhb4KQc4pVCHxYyEWeeXx16nSFvCk0SjLnKhGttEZZ1hamyExOJXFzlta9FeffxtjpA9d+a495fjdF3c74GUJfioChQhODoS5288PVRctswkshnnbz81C7ee2MAISQkyaK7K0nQlWWxEGRJBMj6nZi7dYjWonSzLuRzGs6kgTthECyXaAvnCUWLhKIF+7qjSChaxFVLjxQCViwX5/QgZ/UgWWut3kmYYByTMQ5KdFs59nwwTt8tGZyqQatWoMWRb+gTWTQ1klUfKd3bZJsVaLXok0stNUSfyqabou6hYjmRsM0mHJJB1VK2BKb1bnlCSJw9E+HgoRGOHO1H1+3xlayY9I3EqWgKM4vta8YqrSnuO3CCW8ZPo61rjyEsSC17bVg6E2TxrH1dyDTvqRlsLRLtz+DrzeEaKaJ0G5Q8Wj0iY7IZBFehybfOctwtXbo78sWl8p3PFEK2JwdWJwk2TBRUm0BTaQto8kkVQnKpfgnKJVTZYsC3wstndvK7H/4hrJE6fPgwAPv37+e5556jpWWtU7Vpmjz55JN85Stf4cyZM5e35NdA/wBSNUnUU0kuPholUGgCQhtS4pRmj9dg6UoNxgo5mXxGoVKR8XUbWApkLQcLhpeipaILiaiSxy3pTWHpavdhEtgDglWoWg9YBjKmWH/bvl5/2+T8BePbV23dswpYtdtYtd+lFiGr316NlDUHsaupckXjlYNj/ODNnRRLdh1BW0uWh+45wv7d1z9AbdTZYojHZvdxcl391Ke7j3DnFvVTqYq77qg3kW1nsbT5ONXtSTMWsMFpLBgn5Nies+O5U218588OkFyy33P85jk+/Ll38YfKF92/aqR/EZ/3yvWvOp/SFRdT6Ug94nQm27LJaVDCoseXZiSUYCSYYDiYIHa0lb//y9sRlkyrN0Fo6RyLx1xYxtYg4hk0GPmXOYK77YGlZUH2ORXzTXB7TQyXm5VqC0vpCJmsv+G10c40Y3ttqOrsWWlw5dQtuRYxctYjSVnDxYru5mwpRN50Isnb3898SoXgeic7pYKpS5xc7uBYrItKxQFCIuAscX//Se4fOEXQ2bidyA0W7Pa1u8n+ZTXUW8nkLIWSdSkA0ShdV1hJ+0imfSRTflZSPpJpP8mUj5W0D91QEQpYmm0A0AycJAQ+rUw0kGWgPc5Y3wI7+pfqqb7pqov/MXM7x3N2/d8dLef4+f63cCsGQcVk3FXBIQtMAdNlB0uGSj6h8dqf2gBlVOwfsfdAjg9+aZGBW/NYgLCkSzh/2OfFs0fDPPcn49sykqhWFA6+tIPXnxtFr6oIoG/vEm170sxmW5haakc3VUDAYAnadBDQOV+mf6aAWJTILHkopJsP/lfl9FZrgFXE46+QX1SIHXZT0mQcd5g47jBRBte2DQWTu7znuNM3S6e2ZkRhCImU7iVZtR0NN0rCxKOW8GgFNHktQqpbKkXdQ8nw1N36VteZS9Fxyga6pdhrvCFiUksrA/IFJ++8M8ShQyPE42vR9kgkTcdgirlsmIXE2nh2fGCe+w4cZ6wvhmVKJOb8LJ4J1aNNy+cCVEtNnCYlQWtnnuhAhmh/hsBwHlePSVx1Mq/7SJkejCbQpGASkkuElQKtagGvVEUyabCqvxxdOJVvq2iTDU5bmUJUhbwuPc9D2nJTbApN4JPKDdAUkJvYqsu2mciAd4VXTu/i337sG5f4ja+crjhIybJcd+Vr9hK3280f/MEf8MUvfvESF/na6R9AqtY/RbbQaiYTTWFIopZ21gyWrsxy2HnP1ACjMdJjrv7P5siQISTOvOPisV/uopxT6Lm5xGf/cBHNJzhajTBj2OkyrXKR25wLl13cfK1lCWzAEjITeguLph9JEvSoWcJyGUNIZFccpBNOinkVHKD6BKrfQvUL5O05Dp9X0mq64ca0xBqIraYtrkKZsuG2zIXheRWgXnpjJ6WyDVCR1owNULvO3jApZs0kBLyV7uav5vZuqJ96l5Babog4LZcbB+cSgh5vupaqF2c0EL9og4JKSeXZx/fy1ou2xbMvUOLDP/MOOw8sbPmai+1fNdC7jOMi+ldtJTvaFGI6E2Eq3cZUpo1keXPajFer1IApzkgowWAgiVs1qORl5t7z8spz40wn7e+rLGfQpmL18Ze/vUrvzXki/SXyaQeFFZWyqeB72CR0n44k1/q4xRyc+A0/1YXmKUWWS8Ns8WF2+jA7nQi/QPgshE8g+XS0UBUpaGC4ZSrq9nZEIcAyJbAkOl1ZdvgShNX1wFTGr1bqqYaWgMNL3Xx/ZpyJRGf9ffqDSR4enOC2rrNoF9ECQJUEfnkNrAKKidZknGcI6kYWuRpk6RtrQAUUii4SKR8rKRuQkuk1YMrmPI3PhzVwqsHTRnBSZJOe1hXGemLs7Fugvz3REEVYryOZKP9j5nZyhguHbPBzfe9wT+sZJEnQ59Dpc9gz/wVTYqLsIh538PqfRXn7r9cAqmdfnnt/NcbgbTmQJIQlXcLklg1QyXkPz31tnKk37CwfzWVw60+cY/8nZtGcGxqwW3D0UD8vPbGLbN6N7pPQuqroIchWGteb31NE3ZEn5XAiY/HTHUe4JRhreE61rJBZ8pCupQimlzykF72klz0UUueHLEUxCUaLhHfliN6+wp4d8+wLxvApa/VpZyohZsshsGR8m1JIBQ65ikcr4FbW+i8KASXDTdHwUrWa9zsCcCq63UeqiX24ZcHUdCeHDtWa5pr2czTNYOfuc6ghg6Nnesnk7Yi1phjcPHqGna1z6CsKyzVois8Gtqxnau/NEu3P0D6QwT9YQHRYpGU3ccNL3PRQbZJOqmARlEuElKINFUoRn1TGqZoIoKg7KV1ErdeFtBmitmMKsTnapNegafWSsdwURHNjFG+TSNMFe1HJAizJBil/8ocXpM6ePYsQgqGhId58880Gtz6Hw0F7ezuKst2mYteXbnyQ2pgW1wR05PM8dhXS4urpcWwBQw2wtAZGq2lxF6uZV938z1/vwCjL9N9Z5DP/dRHdrXKw0kW6loYwqiUZ1xLXPK//SksIOKZHmNLtWbVdWpxRx8ra4xYsHPMw+WyIyWdDZBc1ZAcofgt3m0HfXXn67iwQ2VUGjXrUy1gfDatFzgxsR7MrEbWTaB71UiQLDIm5uTZOTXVQyLvRyyp+V4Xb9kyze2QOh7zZ/fBGVdWU+buF3TwTH6nbRQtTQuhrPU4kLPq9acaCy4wHltkRSODTqud51/Pr5HudfO8vbiaXtgdfN99zmoc/fQTXRdb2VKsKM7PtnJzpbNq/SlFMBs/Tv2orbT/alGE4mGAkFGckmCDqySFJUM4qzL7j5dzbPmbf8bE46Ubvbcfosesh1PkVWipz9B/I03sgT9+BPKHuKrJkN+QtGhpzlp8Fy1tPwy1bKp6KQf/iCqmUh0TeTariJq27yOOkoDooOzUqXg0jqIBrmzPKFYGcNJFTJo68gaus4zUq+KkQUCq0uErkQm5eDoyxJNnnp6gzy+eG3mFfONYwGVHSNV6eHeK5mXGWi/76ejrQOcsjgxOMtMSvSBRZQuBULPw1p0C/bPe6anYeyZY1ziaDTC608u5MJwcneskUmvfCAXv8prp0nH4dU5XIG85NsC4ZAmde545bpzmw9wx9keQFe8MZlsTfzO/lyaWa2YI7za8NvU6n27anH3NVCNXga7GqcmTJw6t/GuWtv4rUAar7pjz3fmmRwTvs7exyAKqY0fjBN3fw7pM9WKaMJFvseSTGHT81gye0eT+cmYzwxJP7WSwHqQYkdF9jGocimwy2JxjvjDHUucxThSEmixEUyeLzne+y17+87SVMnHZz+DvtnHyx3Y5iqgpCkXEGAU2mUnTgcle5457TfPDhCUbG1947nXfz5kovB9VuEuba7+zTq/RpGUZ9cTqdKbxaoaFJrm5qFAw7+rQdtz2nouOSdfR120Y67eGtWtPcdHptoqWnO8HYnjkSZR9vTw7W659cSpWolUadM8nG3E0jNk6PTnQgTbTfBqfAYB6jDZLCU4MmL5XzQFNQKRGSbXDyyY3tZiTJwimbVC2FouncVkub7Wgtla8GTk0e38qCXBdygwlE+jzQ5NkATaHtQNNGrYMoBAwEfohB6odZ1wtICVHhvz31i3x850EyuoYsyU2iQs1h6EoNKtdDjbnutg09jZGgRliyb7/fOfMAp5738Pg/iWJWZYY/WOAnfn+JhOrlrUoHBgoODG5xLhJVt1+rcKNJCJjQW5nU2wAY1RLs1JKbBk1CQOy4h8lnQkw+FySzsHaA1FwmQ3fnGH8ozfDdWRye5gfE1cLSC6Ui2imTTW6vy2a/HMlcKOq1Filbb9axevtagZgQECv56+YQk9l2UlUPIJBUCxRRc5USDLlXeLT9JLtCy3jUy68/LWSdPPnN/Rw/ZDvEhSN5Pvb5txgcj1/2e8OF+1c1q68yhcS5XHhb0abhoJ2iNxKMMxi0o00ApbTCuXd8zL7t49zbXpZPrQ2KBKCPdGBGQyAJ9oyc5MEfO0aoq8raUGMt5TZm+YhZPqzazlO1FPKmk3TJw1whSNZoXgzeTC50vGYVd6WKVjAwEhqluIdiyo+ZcyDlJahKSALkbAllJYe8kkcub/6thQSZO4LEPxbB9NsDruCZHDvfOYvXbTA31MHZlg502X7MJVW5o/U0Dw1N0tWeu6JpuELY0eJk2k9yxcdK2k8q7cEjCaL+EoORNLt64gxGU5vSbi0LZpbDTC21MJfyES+6iJXc5AwXyaKPWCpUH+iuyu2oMtSxRGVGI3XYh7tc5af/j9fo37U958vlspcvn76TmaI92fRQ+yl+qucwmmwRVgzGXBU02Z4IPLbi5u++0sNbf9WGXrIH6Z27C9z7qzGGP5BFkqR1dVAXtdaQEZi6zJvf7ue1/zlMtWj/VgO3Jrj789O09jb2BixUHBw6Psir7+1gRXiwtMbPbPXlGe+KMda1yEh0GadmUDYV/nj+Fk6XWnBIBl/ofocx74XXUyWvMPlcK8efjLB8ah0ARSrs/FCCXY8mCHaW8SpVwnKBsKOAWkuVtCyJiRMdvPj9cd58cRjLkpH8Jo6byjj2l9FGywx54uz3zDHiWq7XPlV1haVYC7miHy1g4Qlsvw5oFaTKusqJiR4OHRrh1Kmueo8nl6vC/n0z+EJF3jvdz7nU2uS/UjTxLFZwrugNGYG+cImOWmpe+0CG4ECBclAmYdpRprjhbXCXW5WMRatSol3N06vl8UklTMuoH0OaSZFNVMmibDooGNtvJ7C11tWGydTBBLY2hTCETMZyNUBTXmw2/gDwSNV6hMkGw/W9qC5BEnY6piWt1ZJIdkTq1eld/JuP/5CB1Le+9S0+8pGPoGka3/rWt8773E9+8pMXv7TXWNcNSOnHEckfu/TXCzbBTrMUuE2X2usNuEK1N++fTjzp5e//eRTLkBh9JM8n//MSk0SYNuwTZotc4lbnAh55O83ybnydrLZwXLdPGMPqCnsc55mBFrB4ws3EsyEmngk1QJXqtBi6K8v4w2lG7tkaqi5FombSYdbgyxAyxarGidPdnJ5vB1WgOQ0CwSKdXSt4feXGGrIrBmJW8xqxpvVhG9IVL1AftnpUXR2cL5SCnMy2cSoXYSrXSt5wISNAsudeFdmk35tiyJ8k6CjxXq6T2VIISRIE1RIPt0+zJ7jIuuSM9efJ+gSG2PB4/T4hcW6qlWMHe9F1FUmxGNq1zI69MRS10Vzmgu+1oaS7/r/YvGyVqkau4CZfcFIouezBpyJAFQgNJM1C1PrXSrVcfQk79cSpGPZFNXDIBmrNBAfsgZtRlTB0GdOwU6skWYBcG0TIICsCSQEh1+yOL3KcUjEVSpZGxVKZybWxtK4uTULgU+yeSAGl0pBiF1QrBGq3HVvYl1sWxObCTBztYfJoF0sLjZG8gDdHxJ8kIKVQiiVKKZXCikoxpZItOog/ECF1Xxih2vmGUkVGKslIQsIRLxN8M0ngcBpZt38RWRF4WnQ84UYDDW9r432rtxVNYFoSmayHZGq1PmmtTimZ8m+qldsoTTPojqywf2SBPX1LjERTdIfy+B2bj8VlXWFyuY0jsShHY+1MJ0O4vUVGOpcZ6VqiK5ziyT/ex3sv9CMrFp/5528wvP/CEZas7uTZ5WGeXhqlbGl4lSpfHDjIgfACEoJ+h06v04bWbFXm61/t4ftf7qZatAGqY1eBe39lkZF77HqfS3PiswEKAUdf6uLFr+/Y0kjCsiRmky1MLHRwfK6LuVS44bMULEaiy+zqm2e8a5E2f77hkwqmxv+Yu5XZchCXrPOL3W8x5ElvvWQWzL3n5/iTEaZebsGs2juJrFoM3ZVi14cT9B3I4FBNWrQCLVoe97oUvbKpktR9rOjeejTdqMp2iuCSh2pOJtKeYmhsAX9wrRZvrhricKGHE+VOygkn+nsuqu+6kGMywfZig+HFqgGGJ1itH3OrVYVM0sPksW4OvjVSb5oL0B5O0+JMk8j5WKQF3V2L8giBI23gXqqg5Q1aOwpE+9M2OA1k8PcVKHi0epQpbngpbQFNLUqJiFogohSJqAVaFDsS45MtMqZCXNdq56nm24NTMTEFFA1nzcX1Us5n66JN615u1zZJ9Xq9VQtyQ0ibIk1bQZO7Bk3r0/OclwNNG7U6ubIKUauLUItIvTa9i9/5YQMpWZZZXFykvb0dWd76bCRJEqZ549WeXDcgZc6Tm/8QDlWnbMkXBiKr8X57zV/8DinLAlmybjiIOvotH9/+P9oRlsSuj+V4+N+t8LbZxYplH1SH1RV2O+I/NClg29W0HuJI1S6iHlRT3ORYbjroX3+XELA0UYOqZ0Ok5zZA1QeyjD2UZuTeLE7vlYOqYsnBy2+O8/LB8frALBpJ8/A9h9m7s7nxwiqIrUa37IjYVrfXYG31NduNJlxIq5YfzQDkxvBA/Ac1U8lQKZgOLElGCAlVh7C8BklBtYxfqdSbiF4JpZJeJo52M3m0m7PTESxrbRv1BUqM7V5gfM8cgzuWsWR4eXqIp8/tZEn1Qq1vnGRZDM8vMfbOOSpJhUJKpbiiUclvnXIvVBnT68DyOjA9tWuvA+HTMN2OCxYx+r1FWsN5WsI5WsN5WkO5+v9+bxlJgoquMrMYYWohyqmFKIW8h7Fokj2dy7XLEgHX5jRVXWDXWpkyLz09yHcf20M25+TH/8lBxu+INVmaNc2X/Dy1NMpryf76AH+HL86Xht6g1VHCKVmMuSsEa+mAh94O8h9+fZxCyh44R8eK3PulGDs+uApQXIIT35ohz5mjLTz3J2MsNTGSyJZdTMY6mVjo4GQsSmljk9+SoMOZ5f47jnPTyNyWKYxZw8lXZm9lserHq1T5lZ5D9LiyTZ+bW3Zw/Kk2TjwdIbu49nmtg0V2fzjO2ENJ3EGdgFqmVcsTVNdqmCwhkdI9JHUvhSa25bYRRBmPWsCpVBpel694mY9FOJHqYFH1kgupiHUF1lZGpvqei+q7bowpu+GspclYDhlcIHvBUBR0qxFwFEzUrI5UMKmENUpRB6JWxCeZgnA1x3jLAoODcaIDGQJ9BdKKqwZMdqSpmVGChLChSSnY4KQWaVHW2h6sSkbgVSwyhkLiPBAlSxaabFK1VAqGs75tbk9NwEmsTtbJ9QkzLDCt1UiTpw5NuS2gybUBmkJXGpo2qmYqgVgHUetW5w8tSP2w63oBKbgGZhO1+im4sfpGvfOXfp741xEQEvt+Msstv1Xgbb2TKioqJgeci3Sp+Qu/0Q+pzuhB3q1GAYk+NcPNjsVtW50LAUsn3Uw+Y0NVanbtRKs4LIY+YKf/jdybwem7tK2mWHLwgzd28sqhsTpAdURSPHzvEfaMNweoK6VGEFufdrhaB7a+Jqzx9hWzrl9bmgbb3tWvvf7/iqlSstR6OpFTMfArVRTJ2vx8ad3/QpBLu0kv+2yjAqAlkifUVqin1qy9vvln25Gizbn2Wz2/Yqgky16SZS+JkpdkyZ6pXk2DsoSdCx9yFmlzFXCbBkZWI73sJ5X2QS39RAgJSVi4rRJSvIIxV0XOVO2Bg1l7j64K0bEiHeMlOsaKeIL2yd+wZM5lgzzz+m6yqhOrzUSErXqrgPqAA3DKBh1aDtOSOF1sQQD72xfwaVVMS6LdKnJ3YPaKQtOFVCpqnDrRxcSRbqZOdFKp2INGwwmlPij2SOiyPQBzKjo7O2PMWz4Wy/a5q8Od5XMD77CvJYYlYCXhJTYXZGkxQDzhZyXjJ1vykq+60Tl/VAnTQi5WUQp67bqKXLsoxSqSKVA0a80qPqzjbBWUWnxkPEHihEhUQ5v2mYCnyEjXEju6lhjpWmSgJd3QONgnN0+9zRQ1qppVN7PIm2sOpkLA8Vw7Ty2OciS7ZrAx5E3yaPQkt4bnkCVoUQxG3RU0CcoVmd//VyO88C3b6KF9tMi9v7LI6P0ZG6DgEpz4VgFKEJ/z8fyfjjG9zkji5h+fJXhnial4lMmFTmLpUMOrZVOgZQVa1qI3kOLDH3+XnsGVJp+zphXdzZdnbyWpewmoZb7Uc5AOZ2Mqu1GVOP1amONPRDj3dqCe+urwGow9mGTXownaRws4ZYNWR54WrYBjXQ1TwXSQrHpJ6d6mx0BF0vGoRTxa0a5zraliOijqXkrm5ibPhpCYr/qZLrUQEz7MdRP1ZkmmNOWneMpH+ZwHNpg+SKaFXLbQ8jrCsihHnZTbtLoRiUcrc/voNHd94ARlp8pyLcqUMD3krc01PxKCkFIiohRpV21wam0CTZu+NwKvbJGuRaKaT0gLNNlEkqBkahQN5wW2qebQBPYxdDVNT2DXnWdXoclYhSZX0/d3SjrhdVGmkFzCJb2P2Trr66FWte62aUmUS07i2Rb+4499/f1bri30DyB1EfpRBilZEcjcWNGoN/8syDO/a9cCHfi5DH3/Ak4aLYBEUC5zu3MBr3z99DPbcBx83zRr+Hm70olAolvJcoszhixd5JyqgOVTLiZr6X8r59acnBTNYvDOnJ3+98EMrm1AVaHo4Adv7uSVg2NUqvYgrrM9xcP3Hmb32OwNET0UArKGg9eT/UzlWpnJtVI2tfoAXSDhlAwGfUlGAkl2+OP0e9OocmNS4sXUrKR1F4/P7+aVWv8ph2Tw4Y6TfKRjsqFHy6qW5wN8589uYX7GNlfo2xHn4//LW7RGr9zkgmFJzOXD9bqm6Uwb8ZJ/0/O8ql3bNFyzIB8KJuq1TWCvz8yCg8k3Wjh2tJu5lQhFbxDL0zjrLJsGbdoKOwYWueUDZ+nuz1AWKgsVP/OVAAvVAHOVIHHd23QQ4ZWrdDuz9sWRoduZJV7x8D+X9hKrBIi4c+xpi6HKgoqh8NZyLwXdSYtW5KHWae4OnWsYWL4fMgyZV46M8NzZMebkQH2jUUoC35zJuCPO2NgCkd4071a6eCk/QJlaI9Gcgeukipw7/3nE6ynTGsrREs7TEswTcBVwSSVcZhkKJqV0La1wRa1FuVQKKxrFlEq1oGA5ZKpRL5VOL9UOL3qre7OrXr6KY7GAI1YgUMgS1Ar4WvS1dMJWvZZquJpeWCXaXiVzOoycczA6mqSvd3N0RQjIWzJThQDPxAd4PtnPVCGIQOLm0Dwfjp5kxJes1xwOOKv01FILTx3z8u9+YyeLcy4iIyXu/ZUYYw9kkGVRqyO5WCMJG6BkWZBLO/nBYzs4/FQ3lilj+CTC95XR+1Rmkm0NNWASgnZvDnNJxVhwoBYEoZYC93/sKOP75i94nFiuevny7K1kDDctWpFf7TnY0OQ7Pu3m+JMRJp9to7xuW+jZn2HXhxOM3LOC5rQIqUVaHXn86pr7p2HJrOhekrqXchPbchC4Fdu23LnOrc+0ZIqGh6LhxawZMZiGxMqKj2QiQCLuJxEPkIgHSCb8dk8nWeDqK+AZzeMeyaO41+1rOjgSMp64hWvRRGQlikknBdVJ0htguWJH+mSHSe/IEiM7F9BCFeKWtyk0gSAkl+tRpohSoE0tXrRRgoLAI1ukDJWkoTbdXiQsHIppp7AbTiqWSnP7h+bRplULckusQVPGcpM2bdvxrLUFNKFvSs9zX8sSh40QVa/fgqVMiIlYNycXuyjpTg70nuGxL/y/12xRV3VFQer3f//3t/3Bv/Ebv7Ht514v+pEFqRswGvXqV0K88P/Yg8Pb/1Ea1y96SFi289igmmKPI/6+zB7bc2NrFSF2XQewWuNRm/tePYFbQqrlQr+/mjd8HKp0IZDoUHLc7oxd8voRAuJTLiZq7n/JM41QNXCHHanacV8Wl79xwFkoOnmpFoGqVu310Nm+wsP3HrlhAArsRrhPLYzx3OIOyuba7+lWqowG4owHlxkLxOn3pa7KdnimEOKbc2v9p8JakU93H+GOFnsdGrrMy0+M88oT41imjNOl89BPHubAvTMXXSO0UZmKqw5MU+kIZ7Itm1ymJATdvoxtP16Dpw5PtuH3FQJSs46aMYRtEJFd2jBIUwQteywc4y6KvgCLuVbKqNBiQNi+yG06lneLdZyXcKbhlsGz7GhJ0O3MElTK9UHpiu7m8aVdvJ3tRpEsdrfEiPpsyAzLJfZpi7yZ7uO55DA50x6I+ZQK97fMcH/LDB7l6k7UGJbMoYU+npkZZybdVr+/XckTTOpU5tyUKk4sGdZb5VmKoNhvUeyx68UQ4FmA7lSJaCBHSyhPa3j9dQGX8+K+S77kZHqx3U7Vm48SWwlvGsh5rBLBUgbvSg51oYARsyil1HrT4u1IBH3Qbte6BuQl+vpijO7JMzyep7e/TGdHBZ97M9iWa/brFaj3uJKAUUeFoMM+0/3tV7v46v89QKi3wr2/ssj4Q2lkeS0CdUkAJQmqFZU3vj3Aa387RNbrphx1YPQplLTGwbzfVWKsa5FOd4a5g+3MTdr7s9Nd5e5HJjhw92nULezb12uh7Ocrc7eSN51EHXm+1HOQoFahnFM4+Xwrx56MEN9gHLHrQwl2Ppog2FnBLVdpdeQJa0XUGkQIATnTRbLqJWN4mg7SVUnHoxXwqMWGprkV00m25Gc2FiVeByUbnFIrvoaU1fWSFYuWlhxtkRxtkSytkSxKtErGqzJnBRprlSwQSY306SD5tAdnaxl3Wwl/NA/u5seDoFyqA1NEtaHJcbHuchvXAQK3LFgxFJKG2nQ9KZKFKptUTI2C4ag13z1ftKm2NVlgCpms5bQjTaYdabKhafM6dGCsg6ZiPdJ0PTRKpzYu2ghR2aKbiVgPJ2LdpItr5kI+Z4kdkWW++Qv/5VosbYOuKEgNDg42/B+PxykWi4RCIQDS6TQej4f29nZOnz59eUt+DfSjClI3UjRKCHjp98O88t/tE+ud/yZH5SN+KqgoWNzsXKRHzV3y+zeCEXUIYh0M1RM8GmDpPMtcSyOSEZhIlMwLpNFcJS0aXt6sdGEh064UuMM5f8F0hQtJCEhMu+o1VcmZNaiSVYvBO3KMPZSh+/YSbx4fawCorugKD997mF2jczcMQCUrHp6YH+fFpaG6DXevJ8U90RnGA8v0ejP1AcXVlhBwKN3NX83dRLJqD5KGvEkelM7w3jd2kIjZx7DRfQt85GfeJhDeXmPe9dputMmjVhgOJhkJxhkOJRgKJPFojQNzIWDlrLMOTefe9pKPN+4LsiLo2FWkr2ZFHtijE1d9zFeCzFcCzFcCpE03TZWXIaXiKZno5xww56DDneHnf+1FAqFSw1N1S+aZ5DBPJnagC5Wgo8ht7bNICoBgVFthn2sR01IQSFQtmdfTfXw/OUxSt9e1Uza4J3SGh1pPE9Iuft02k27IpNI+ZhNhXo8NcjwfrUeWsATOtIQrAepWH2cJJNNOC5MsUPxVSvsNEn57v/SqFX6s9ygPdEzVJ8+2q2zRxdRClKlYlOlYO7GV8KbntAczjHQvMdK5xEjXEmFfcdNzhAWlzJppRiGpUkhptQjXasTL/j9bDmG21FzWkhmklUz9fartGqkHg2Q/4CcaKHOTP8F+5zIHWGR3Twp3E2McIeyJrlxa5ff+zx1MzXi455cX2flIGkUWtaL8i3XiW0vhMw2JF58d5aVXxkj7vJRbtQbAlSWLwUiCsa4Y412L+OQyrzy1iyMH+xFCQlYsbrl7mrsemcC9zRYEZ0oh/mjuFkqWRrczwy93HSJ91M2xJyNMvxzG1GvGEZrF8F0pdj2aoPdABk2xCGsFWh0FPOuiSFVLIal7Wan6mvZAkrBwqyU8agHHuomEYtnJ5FQfb749zsyZTrIZz6bXrsrh0GmL5GiNZGlry9bBKRQuoCgCw5BJpP0sJYP1y3IyQMkp4+vP4+/PofnOv34CcrkRmpRi06j95UiTBC5JkDQUVppClEBT7AyEoqFRqk3GbBVtMizIrZpArIs0NUuh1DAIKWvOeSGphFvavtvh1VdtzCStjp2sujNiseJgMtbN8YVeYum1JsiqbDDcvsRoR4w7+09ycGoX/+En/vQaLf+arlpq3ze+8Q3+23/7b/zxH/8xY2N2P4bJyUl++Zd/mS996Uv87M/+7OUt+TXQjyJISZKo29Je79EoIeDZ/9DKm18LgQS3/XGZwj4vIBGQKtzmWsAvNxYrb6w7WYMg6k5pq95idaew+n1bLEftHS1gvbXy2ic2lyxZCLhmIAUQNz28Xu7GRKZNLnKnaw7tCg78E6eddfe/xGk3lkOhPNJGeagF1JqFcGSFD91nA9T1c9A/v5ZKPr47t5NX4gOYtcLgIV+CT/YeZ1944Zp+D92SeXppB99Z3FlLFwHvKeg5WuYTP/YOO2+5cFrQqrJV51rfpnQbM9nWLaNNQzX78ZFggg5vdhMMCwsSp121Hk5eZt/2UVjZUByuWXTuLtJ7IE/4Vh1rRGVJ+Jmv2tCUM5s3A23TCnQ7snSoOaS0QuZsgDPTHU37Vw30xOuNgbuiKxwrtvPXi3tI6F4kBLe0zRH2FgAJt6RzizNGu1LEoRhUzcbBkSkk3s528XRihPlaGpGCxR2hWR5pnSLqPH9rBbsJrdN2vFttPruuEe2K7qHUJlEJsTqrg6SDK2lfFMsiFCjWo0mNkaU8MoJTJzqZPNrNqeOdlMv2sabUDun9gmrQ/i5RZ46fHX6bm8JbmzWk826mYtE6PC2ng5ue0xFO16FpuHOZkLeEJAuuRKHA8de6+Ps/uBUhJPZ9cIZ990xRTKmcyrdx0NnP2UBrPcXRs1Si7cUVnC8VkQwJWRZ0D5YYuynH2L4co3tzDI4VUTXB8bf9fOX/HmDnj6XY+UgKpW7mdrFOfDZAlaoaxxe6eOPoEBOxTnRH4/4S9hbq1uQ7oku4HAbVisIbL4zy5gs70Kv288f3zXHfR48Rbtt+e45ThRb+ZP4AVaHSq6S55c05pp9obTCOaBsqsmvVOCKg41MqtGp5QlqpPuljCcgYbpJVX22fa1wHwhJUigpupURbKIWm2kBimjKHjw3xyut7OHGyD7Gh6bLXW7ZhqQZKq9DkD9imFaYlsZL2sbSyCktBlpIBkmk/lmgetfK6y0Rb07T2ZNA6y5R99gRMRF0zgmhTCriucvqtJgmcNYhKNYGo1d5QOjJFw2EfR4VUN4WwLMiablK1xrZp074+PzSV6vBUh6aLiO5eOa2DJGpjJknAuppbYT+tPjlRrqpML3cwudDNuWSk/vtKCLrDSYbbFxloS6Ap9u82EI7z5snd/KdP/8k1+H6NumogNTw8zF//9V9z8803N9z/1ltv8elPf5qZmZlLW+JrqB9FkJIVCxlx3UejhAVP/U4bbz8WRAnBvr8wKHfYg6x+Nc0B5yKqZDVGjaQ1cDo/GFF/hlg3E3mlXdeuB5CSgITp5rVyNwYKYbnEXa65y05v2Kh8wcmTT+3lrYmRem68ki7hnljGGc8ycJud/jd6fwZ36Pp1+JwrBPnO3C7eSPTWUyl2Bpf4RM9xdgaXrhsQnDrSwd//zQHO7vCQHwMk0CSDj3ZM8uGOk01nYk1LYjYfYioTYboWcbrUaBPY++jyKTfn3rahafYdH6VM47FLcVh07S3QereOuk+m3OEgZtrQVGxSeyEhaNfy62qasnQ5s00HSYcP9fP4Y3egqwq+SAnLITX0r7J8Jvr+InrE3rPbtDx3dJyjWjNs6FGy7HMu4ZBsO4pmIFX/rgKO59t5KjnCVLGtvqz7/TEebpnCXzHqNuHrgWkl7avXBNbfC9ADUGoDY13bLL9VYdSZ4Ka2eSJhu3YpHCxcsOHsqgxD5ux0hMmj3Uwc7Sad8pIfgvQeWC0X6TGz/PTgO+zpjbGS89ahaWqhnUS28RwoIehsTdWtyIc7l/C7K5s+1x5QcVnFoKfejvI3v3c7limz/6EzPPLFw7yV6uGppVHOFNdmsG8Kxng0OslOv93ewTKxa7nW1XCtRr4qGQW3w6JlV5Fdj6bXAdTFOfFZlsRcMsyJWCdH57qZiUcathHJFHRoaW656Qy7e2NEAmu9uywLjrw5wEtP7qKQs89f3f1JHvjEkQsaSWzUsXyEP1vYjyEUQvMl/L9XRK40Gkfs/kicyEgRTTZp1WzjCNc62/KSqZHUbeMIQyi1+iV/vXYpl3HRHV3mpl3TdHeu9aBaiod49Y09vH5wJ7mCh1CoQFvbWjpeWyRHW1u2HlWzBKSz3jVYWrGBKb4S2NRkeVUuZ5Voa4b2lgzR1tqlJYvX07jNNWvIe7XlkCwcEiRqELXqxrM6KavIdmuMkqlRMJzopkLWdJKyPPUUvazVvA+diklIKa6l6CklPFK1+bnmqkGU3ZN0fRuK9Y22Vnfvel8qJExLqhtgWMJOizUFLCTbOBXr5Ew8im6unQ/afFlG2hcZal/C49js1nkjgtRFj9RjsRiGsblgzTRNlpaWLvbt/kHXQJK0OjS8tqPB9aDTGDWyYUiY8K1/FeWdx4N49sHIf4Wy24WCxe2ueYYdqU3vuebKRROUuk5Gv++zVr91m1LiHtccr5R7SFluXi73crdr7opYneYLTl54fTevvTVqFw4D3R1J7hw7gTFZYnI+xPKim5nXA8y8HuDJfy/ov7UGVQ9k8FwnUHU618K353bxzkpP/b594Xk+0XOckcD2mn++HyrkHDz9V/s4+kY/ADsqBQ7sm+QlrY9T+Tb+PrablxKDfKbnCDu9y5zOtDGVsSNOM5nm0aYub6ZmCLF1tAnsQevySTfnajVOc+96KWc3gJPLou3+Ku47wBpWyQQ8TOqRtTrBdZ4XMhYdjnwdmLqdWToduW0ZO7z+4g6e+NtbALh5/ww//jNvIMuCxIqf4zPdvFTsI9bisqM8lqCnUGTHaIyqrCAMaE9VGY+sbHtCoVzRCOYNHi7N0Zsrc0SOkPA6eSfXxTu5LpRlBe2kEyWuIDU53gT9BQKhAqWwzLzsrxfCy5LFgY5zPDI0wXA4cVmgrqoWw2NLDI8t8ZGfeJulhRATR7o5+l4Pk8EwuR0wpwT4z2fvw/kWOOIqkrkOCCSL7tYUI112qt5w5zLeJvbkmyQkJElcMkedOdrG4//lNixTZvSD80gfK/F/HP0oK1U7VUyVTO5uPcuHoifpcjemccsKeFtts4qttL5edXUQeCFlSi4mFjo5Pt/FiYVOCpXGSKmWNXAvV9jZE+PRHz9KsHUzYJ6eiPL8t/cQX7Qje6HWPPd/7ChjN118RPvFk/182xxHyBLu96oEvlpCMiR6b7aNI4bvXkF1WgTUEm1agcA623JTSCTKPqYWo0zNdtTNHhLxAKmUF2FJjAzNc/cdR7n5Q6dwaPb+p+sKx0/2M322h7LhpC2S46c+/wqtrXk0h/0cISBbcLOcDPLWxBBLKwGWkkHiKwGqevPaYIemE2nJ1kApQ7Q1S3trhoC3dN1MVK2XQ7LQJIgbChlTsSEDweoZVsUiVfUwWwmzbPhJmx4ylqtWF9UoFdN2zVtN0VNKeLeCpvUS0mVMVGyMJgm7915NGyHJAixTtqNoNUASQsKqQdzGyKEQsJL3MbXUyfRiB8Xq2r7ic5YYaV9kOLpI2LM57fdG10VHpD7xiU8wPz/PH/3RH3HgwAHAjkb9yq/8Ct3d3Rds2Hs96kctIqUodhzqaqT0XawJw1ZRI1OHv/oX3Rz5bpDWz0tEf0MGWcIvVbjbfY6QUuFGAaNrHZHauJYyppOXyz1UUfFLFe5xzV5yOkQu7+LF13fZAGXUaoc6Ezx87xHGRxpTy1bOOpl4LsjEMyGWT67l0UuKoO9AnvGH7UiVt+X9dxaazET49twujqZt22QJwa2ts3y85zj9vvT7vjxbSQg4+mYvT//lfop5J5IkuOPhU9z3yWM4nCaGKfH04ihPLI9RqEV6hCEhCmqDfbBbrTIctF30RkLxLaNNAKYBSxOeWo2Tl7l3fVQKa4MDoYA8IuG7W6DskSl1OEmoXvQmdRaqZNLpyNWBqduZpcORu+iaPSHg+Sf28OLTewC4496TfPjH37YNAwQczHbzt0u7yBh2XdUOLcGAJwUh+6iXnfcx9dQQlawNMl3RFUYGFxkdWKAzkmJ5JUQi5a81n11rRlsqb3YAM/0m+mgVo0evp+V5iiajpTTjrgSRkN1XSdckXprdwcvnhqnUjEo8WoX7+k/x4MBJWtxXfoAhBCxnAnbEqWYOkTLdVDpNjEDtOG2Aa04itGAy3B7n1r3T7No9j8N5cceE1UmwS4lKzZ0M89jv3kXRqSJ9pEysz12Hbr9a5sH2aR6MTBPQNoPKdiRL23PiM0yZmXgbx+e7OL7QxdxKS8PjGgaORR3ngo57qcrI7mXu/vw0rb2bf7ulhSDPf3sPZ07aPf1c7ip3f+gEN981sy0jiVWVcwqTz7by4twAZx8KgyzhfbNC/1Mr7H4kwc4PxQl2VnHKOq21prnaukbQc/Ewr7w3xnOv7yGR2Jym6fMVufPW49xz51HaI+n6/fmSm2zJj1BVpHX1XoWi065fqsHSaqRpqwbNimyuAVNrhvba7VCgcFk1su9XREoCnJKJKkHc0MiYCpZlN7dN6l6SppcVw0vc8GE0gSYFc11qXomgUsInVS4eFs8bhbqYlDu7LstcjSDV6rREDZiEwN5HtlkvmC87mV7qZGqxg1RhLbPBqeoMRpYYaV8kGshs+/veiBGpiwapeDzOz//8z/Pkk0+iabX+FobBo48+yte+9jXa29svb8mvgX6UQMqujbLqkZsL6WqaMIh1eenr0+mMqsRf/ZNOTr7hp/v/kvHfZy9Fn5rhNtfCRVuUXmtdS5Da6nfIWg5eKfdSFipeqco9rlk8F2GNmsu7eOG13bz+9o41gOpK8Mi9hxkbvvBMa2rWUTeqWJpYB1WyDVVjD6UZeyBz3hnmy5UQcCTdwXfmdnMyaxe2y1h8oP0sH+s+Tpfn0s1LroYySTff+4sDTB21Ya+9O80DP3uEQkBtEm0S4DKR3Gb9t4jIBe5rnWFfywKdW0SbAExdInbcU0/Vm3vPi16yBwhCA7NXRRpXcByQMAY0sj43ZhNLQIdk0OXINViOtzsKl+1maFkS3/3rAxx6dQcAD3zkCPd96BiSBLPlAH8V28t0yXb2jGgFPtoxwYripCw0JASj8grygsbUTCenZjob6qtU1cCy5C3dxQB83hKt62qUWsL2bcln8Ea5m1fTfXWIbHfk2eNYZjbWxrHl7vqRscuX5uGhCe7snsGpXrlorCVgMRViaqGd6VqdU67UaNKhyCb97Uk8kQLHRBsZyZ451rIQfhfcS6BqBkOjS4ztmWds9wL+wPZMNSS46FqpxZkg/+MP72V5j4P8qFyvf+pyZflQ9CR3tZ5tAIOL1Wo/qK1+02Tea0ec5juZXOygrDcep3tbkrQZOdIvuTFnJCQBkcEc93xhit696U3vl8u4eOmJXRw51A+rRhL3THP3wxO4tmkkISyYfTfA8SciTL8SJnWPm9RP2umq3dNpfqL9OL37s+RzbtymTk9whe7WtWXJ5Ny8cHA3z76xh/ml1ob39vlKtEay7Ns7zU07T9MRSdSPBZaQKBluioaXXMmzoYbJvhRKzesXZcmiNZSzYal1DZxagvl6PfaV1NUCqdXxDdgbjgOLtOVmohTiXDVAwrDBSW8yPlOwapGmYh2eLgmaNsriiqTcrfZEE9uEpK1U0VVm4lGmFjtYXGcaocgmvS0JRtoX6W1JXtLv/iMBUqs6efIkExMTAIyPjzM6OnppS3od6EcJpFTFrgNYDUhfSxOGZqqWJL75j7qZi3vp+Y8Kjm4JuebKN6KlrsuQ/4V0rUDqQqsqb2m8XO6lJDQ8UpV7XHMX7L+Vzbl54fVdvP72DowaQPV1xXnkg4cZHYpd0u+TmnMw+ZxtVLF4ohGqem/O19P/fG1XBqosAW+v9PCd2V2cKdgnAVUyuTd6mo92TxBxbb/o+/2QsODQC8M8+3d7yLscVCPg35sj53Ow3KS2aTXaNFxLzztcjPJGqg8Ah2zw0egkj66rnzIqEgvHPHU78vnDXoyKjHBKGP0q5qCGGFWQxhVKLU5EEwJzyXpDlKnbkaVNu7wZ52YyDJnH//xOjr3bhyQJPvqTb3H7PVMUTI1vLY/zcmqtz9ajbafoCmQ4bdig5JOq3OpcIKw0RjVyeRdTZzuYmumgb3iOUDjH88/egiYLWsM1UFrtsxTK43ScfzvMGQ6eTQzz/MoQem2GWhgSZtrBTmecDw1NsKtt8YocyywBC8lwg6teodw40FUVk4H2uJ2q17XMQHu8nrZlCokXF4d4/Nxe8ob9On/CwH9IRavNI0iSoLsvydieecb3zhOJZrdc9ouJSlkCXpge4W8m9lLsWDvX7fIv8WjHSfYEFi97+6mntVlrtVBVQ+HUUjsn5rs4Pt/FUrYxSuN3ldjZFWO8K4Y3Xeatb/SzNGWPC7wtZe762dOM37e0qZ1AtaLwxvOjvPlio5HE/R87Sqh1e9HG7JKD409FOPF0G7klJwLIfNRF5qP2cXEonaXjnIFPqXLL2Ax37Z/E667Wv+O7JwZ49o29vHV8EJ+/bBs9rDN8aI+maPFl8KhF1HVZCPmym9OxLt6dGmYu3spyMkgm39x9T0IQDubrkaXVS1sod1GRtsvVlQKpNXCyJ2kypouY7iem+1nWfSzoPspic3qigkmrWiAgl/BLVUJyEb98qdBUG3utwtIqJIlmkGQv53ZT7q6UTEtiNtnG1GIns8m2hhq3ztAKI9EYA21xnIrBJWcLCRho+RECqR8m3dggJVbrHc+bSidjD0xVyVyX1bvlO/J+mDBsVCUv8Re/1kOmz0v0N2Vkh4RXqnK3e5YW5crYDF8LXQuQ2u6vVLRUXi73UhAOXJLOPa5Z/E1gKpNz88Jru3njnZE6QPV3x3n43ksHqGZKzzuYrKX/xY6vGQYgCXr3Fxh/OM3Yg+lLgipTSLwR7+M7c7tYKNmDJ4ds8EDHFB/umiDsvL62sVzVydszvTzz5i7ispdKi4RQN6/oLm96XZpegk5vZtMAdKYQ5rHZfUwVbIOEgChx88xZlGfKxI560BUFc1DDGLTByRpWMTrUTY1VoXlj2xb16tc1VMoq3/yTezh9sgNFMfmJn3udXftneTnVz7fjOynU9q9bAvN8KHKSk1YLWcuGg0E1zR7H8nlTCA3JoqoatWCegiwufoC2UvLw/JlRXjy7g4LhQAlUUUOVejWyR65yX60XlV/dRt3RBpmWxHwiXHfVm461U6o2phtqqsFgNF6vcepvT6BdYIBbMDS+NbubZ2KjmEJGxmJcT+J9T2F5pjG9raUtV4eq3oEEitK4TlcHg1uNLMqmwsuJQZ5cGCVp2vu4ZAnuCJ/jI92T9HkyF7lWtlDtvCgsiYVMkONzdrreqcUoxrpBoG1NHmd39wK7u+fpbEmTnPPx0p/t4PSbdqRacxnc+hPn2P+JWTRn47q0TInDB/v5wXojiYEkD37yMN39m+t4N8qoSpx+JczhJ6OcO9WC5XJguTWEX6HwgERh3P68thMWH/JN8fAdxxjojtdfn0j5eXe6nzOJNlz+Km2RHC2tOTRtdTkFLqWMWyniUtd6qZWrGocmRvn+wZs5t9w8kyjoK9K+DpbaW+zUvFUQv5a6FJBaH20SAjKGk5juZ1H3s6D7WdwCmmQsWpQirWqeiJqnQ8vgQadoOtEveJyo1aRLq/XpovEELdaBEraDpO3ud3kpd1dCq81ypxY7mVmOUlnXSDrszTPSscBQdAm/Vq4t1yUsm6j/AWCgJcHBU3v4jz/5x5e9/JerKwpSv/mbv8nv/M7v4PV6+c3f/M3zPvf3fu/3Ln5pr7GuL5D6VX7mwAssll2IWvM2eXXnl+yeROtT7Oyo0fr4z1pa3SowWbVH1ixPLy9qdDVUysp8/R/1ID7hJfhhe0alW81yh2v+ijvLvd+6nkEKoGQpvFLuJSecODG42z1LsGYnn8muAtQODNM+YfT3LPPIvYfZMXhlZtW3Uiam1Zv/LhxthKqe/QXGH0wz9mAGf/v5o2i6JfPK8iDfnd9JvGzbo7mVKg93nuJDXZP4tYsf0F5pmZbEXCFUd9GbSkeaR5uUKsOhRB2choIJvFvUNq2qWpSZP+zl7Nte3sr0cPL2LmiTURULR1nHYRmItuaDgYBSbjCB2NjY9v1SIe/gL/7wPubPteJw6Pz0L74MvTp/tbiH2XIIgC5nls90HEFxmByrRrCQcWBwwLlIp3r+KKOFoKzqIIFTgGpo2zIjAHuwMZ1q45mZcd6K9dVnhNs8OR4amOTOnhmOFKN8PznCctXe/jTJ4O7wOR5qmabVUdryvU1T4lyi1YamhSjTixEqG1LPnJrOYMdy3VWvL5LctsPfRi2W/HxzZj/vproBu//UR9omiSxWOHW0m9Mno5jm2rbi8VbYsWuB8T3zDI8v4nQaW0alUlUXzyyP8EJ8mGLtWCiXBJ0zJX79Ey/RFb6yqbSyJDi1GOU7797ERKyr4bGwt8CurgV2dc8z3hnD69QxhUQ27ebVbw5y9OluLFNGki32PBLjjp+awRPa3B/t9ESU57+zh8R6I4mPH2Vsb/P0ZiGgkHeSiAeYOd7G6cMREgk/hsOBWGefLiRB8bYK+o4qNwfm+aRykrsG1pr0mpZEvOgni4uC5WT9EX/VWjybdxJyZxmMxvC51yaJJs5189K7ezk0uQO9NjC2rcVrsLSulsl9kc2a309tB6RWwWm1yfCC7quDU0z3UWriGKpgEdXydGk5vFIJf80MQpaEbYAjCUqGg4LhRCCtm8AW9d5JDRJrVuCWsFNMTVZ7SNXS76iZOwCSJXOZ2c+XrXTBw9RiJ1NLneTLa6nBHkeZ4Y5FRjpitPjy9lZncmkQtR491q20gXCcg1N7+I8/8UMGUg888AB/+7d/SygU4oEHHtj6zSSJ55577tKW+BrqegKp//Tk5/jxnW+xoqtYqyBVe2z9D7V6krdhXloH9VtszLLdeV2c7znXSIUVhT////Xh+pIb54CEJAT7XEuMackbMpVvo95vkLqUVVYRCq+Ue8hYLjRM9pnLvPXaKG+uA6iBXhugRgauLkA1U2ZRY/K5EJPPhJg/4m14rGdfrabqwQyB6NqJv2IqvLA0zJPz46Rqzl9+tcyj3ZM82DGFR712g4Rc1cl0pq3et+l0trVuQLBeWtai3Spw775T7O1aaBpt2qhKXmbuPbu+afpkkJgeQO/XMAY1O9oUaT7wCCplep3phvS8S4maXGmlUx6+/t/vI7EcxOOt8KlfepXXHV28mekFwC1X+Xj7JLeHZnm32sFyLcoRVfIccCxe0EhFIKgoBpYskAUEBOjmhUHKsGQOLfTxzMw4M+m2+v1jrYs8MjTBvuh8Q5NmS8B7uU6eSuzgXA3+ZCxuC87zSOsUXa4cuilzbrm1nqo3sxihajRuF25HlaHOZbuPU+cSPZGVK16DcjQd5bGZm5kv2svZ5c7wM4PvsMOdYHqyg4kj3Zw83kWpuBYNUxSzXlc1vneeYKiEEHCuGOSppVHeWOnDrEGmM2cSeEPQn8jy8//qZXyhSzOR2EqnlyN85919nFiwAUqWLMY6F9nVtcDO7hgdwTRKbdBrColS2cHb3+nl4N8MUC3aQDNwa2JrI4n5mpHEqZqRhKfC3Y9McOCu0yiqwLIgnfaSjAfqluKJ2u3KFqYMAF5PmbaODJVbStzSf5aPRCbodK5ZXBZNjWTVR0r3oAtlg7V4gETKR29kmXv2Hmf34Ln667IFNy8f2c2bJ8ZAli9oLX4jaCNIrQK8EJCznMSq/gZoatZmQcYiohbo1PJ0qDk6tBz9jhxIsFTVKAmlBkkWTsXAsCRKppPKqvtoPZok1yNGpiXVokhgsRpV2topUtgLwqoJ4LWCqGLFwenlDqYWO0nk1hOPT5YAAQAASURBVMbBmmIwEFlipGORzvCKbegDSBY2RDWxct9SDbgh1Qcr69dK/w8rSP2w63oCqf/n6c/yybF3SVS1WgPQKzBilewTCRKXXWR4pZWLK3zzq4N4f8GB7JJwGjr3BmZpU7aepb3R9H6C1OX8ulUh81Khj5zkxKjInPi7UfIxP4O9SzzywcMM918f/ZOyNaiaeDbI/GFfw2PdewsMPJJjaX8bL+ZGyOl2qk3YUeQj3RPcF53Gqby/aSmmJTFfCDKVjtThaam4+TjjUqqEylUqp1y4EhbhSpmPfvpddt82e971Xs4pnHvHy6kTYaaTYZKaF2NAwxjSEOHm0NSmFohoBeJlL9PZVgxTQZNMu/9UdBLHZRT3X0nFFwP82ZfvJ5v24G8pMvz5aV6q9FOxVCQEd4XO8cn2E+Rw8E4lShUVGYu9jjiDanpb26sum+iKCQLchopLMbfsIwWQqzh54ewOnj8zSqZSs+aWTe7snuHhwQl6g+nzfp4QMFlo46nkDiYLkfr9vrxJ9bQXK92YqudxVmwb8i67AW53Sxr5KhTvb5RdPzVcq5+yl2lfeJ6fHniXTk8O05SYnWlj4mg3k0e7WUmsRVAFAu/+LNlxQUxb20dH3AnUZzSMN9yEWot8/l//gEDrlUupnV6K8N33GgHqzpFpHt17lDZ/gdVmuqsAVTUUJl7u5JU/HyIXt2fez2ckkU27+cGTuzhyqK9mJGGy85Y5ekcSZLPeOjStJP0YxhaREiGQywZKpUpra46hvXFGb1km0p6l1ZejKiR2epfrEyaGkFgqBjm+0M3EfGfdAGK9tXhXa5IP7j/CXXuO4/fY69MSMLvczvxKBEM4iLTmrltr8UuRS9FxyVVShptYdTU1z4amgrXZXVPGok0t0qHlbHDSckS1Aqq0mrMj8EoWVSTiukrJUhBIKFioikVJ18jqbqqmisU6OKpFmtYqyrcvG6IEkiVdE4DSDYUziQjTi53Mr7TWj3mSZNHTkmSkI0Z/W7we4Rar7GNScxHcxvdtSN1rDk/r9Q8gdYPqegSp5YqGuFJmE9dpNGolpvH3bwzhfsj+nq2VAh9smW3aRPRG1vsFUpfzy6azHp5/ZTeHjg8y+vFpAj15LENiOJ9jX9f8dXvyzS1rdk3VsyHOTAVI3dtC6oNhLLc9iAnoRT7SeYKHd0xflvPXRhVKDk7NdiBLgqCvRNBXxO8tochi29GmTm+GkWCC4WAcZ0Jw8C/HyCTtaMreO87yoc++h8e/OSJUSCkcP9rG5Hwrc+UA2ZAbc0BDBDbPDEpC0CoX6PNmtmxsu7F+qkUr8pmew9wenrumv/vc2Rb+4g/vo1hw4tqTpXxvhXgt2jTgXuGzHUfpcWU4XG3nrBECICiXudUZIyBvL5JmYVFWDZDAYShoQt6yIe9sJsT3Z8Z5Y36wXmMTdBZ5YOAk9/efwu+88Kx+RVeZWYzUm9/OFMMY3TqizajvwEpWYqia40DLPDs6l+hoSV9x046L0cb6KUWyeKjjFJ/qO4q3FtUVAuJLAY4e6eHVxADnoh6MVQ8HC4KLJjdbixRf97By1osvVObzv/UyLR1XxthlejnCd9/dDkAJTCGjWwqzR1v4wZ+ObMtIIpt28dLTuzn6bq9dZC9LaG4D3VC3nJxUFBO3UsZMmlhpC7mkI5d02rsy7Hl0mbEHk7gCJi5Zp1XLE9YKDceoU8kILx8d56m395IteDe9v0PTuWPnBA/e8h4DHcv1+3VTpWS6KRmeelP0G11WLcqUMlykTfuStZzEdS+5JtAkIYioBTq0PJ1arg5NtuOvPeRt2L8FeGRB2ZJZrGgULRUBOGUTS0C26iavO9flB12+xGot+/sMUZYlMZ9qYWqxk7Px9oZ6wfZAmpGOGIPtS7gdG1JZJYEkpFoq3wXWw4a6p/Unkgsdym5EkLrovaxcLvMHf/AHPP/88ywvL2NZjYOTt99+++KX9h909VSrq6r/c51ods7DC6l+3A/JCFOwo5rklsj1EfH4UVIq4+H5V/dw8N3hugtP6e0gXe0p8g6NsyEPnaaHqHp9NtHzt+sM/3ieU3f0cC42RLU2cHAsVmj9fpLAO1nes7ws7x5m/KE0Yw9lCHVdWrpaKufh6FQvR6b7OD3XbvffQGC6wHCD6RWYXgtDa2IFLhv0eVOMhpcZa1lmOJTAp1Up5h18/3/exOHXBgAIthT46M+9zcgeu7m5JeBcIsCx6QgzmTBxxUu5w4nolqG78TMkSxCuFun1ZRgMprfd2HbQm+L/HHuBg6ke/uf8XpJVL1+ZuZNnlxN8rvc9Br0XLpi/0pqejPLNP76HklPB+FSOeFQFU8WvVPix6HHuCM6Stlw8VxqgIByAYIe2wi4tsW3oEAgqNYhSLAmlyeDAEhLvLnbzzMxOJpPR+v2DoQQPD05wa9c51PMAeqmq2eBUS9U7F2/dZMMdNgy6rTSFdjgjBTADMqfwUXJ24FVzRMlwGV04L1teVedzg+/yQMc0j83s571UN0/Hxng1PsCP9x3h/o5pCoaDV60enmsfJt9iD2wdwqRjuYz1uhcp62SafgCkiEXbrhUWYi14QhVcrkt342wGUB8YmeZDdYCyIxGyLDAtmaqpkpj38vKfjWwyktj38VkqVQdnZtpJJNbS8RYXQmvpeOtGTKvRIJerSlskS2skZ/cLW7ZYOuRi8W03Enbik9NvMPZgkl0fjtM+UqRaUXCYJp2k6fBl6++ZqHp4anmUZ164maUza+mi663Fx/vnuGnoNF0tCZTaticElE0XRcNLxWysmbpRtApLadNFeh0wpU0XGdOJtQXESAja1GIdmDq1PFEtX480UTNwEEJCF3KtFGJdCxYBftUkbygsVByULQVZErgUnYqpkq26KV/BSdDVVD7gfYMoISCRCzC12MH0UgdlfQ0+A+4iIx0xhqMxgp7NmUCrUSjJki6cyrdF3dONtzVenC46IvWzP/uzPP3003z6058mGo0ibRj5/tZv/dYVXcD3Qz/MESlJFusclK6PzfnofAuH1Q5kj4SZEtzpnGU4en317LmSej8iUhf7y6YyXp57ZTeH3lsDqOH+RR6+9zDD/cuYQuLNSheLpg8Jwe3OBbrU/AXe9f1VvOzle/Pj/GBpCKPmnNTvXeETvccZtRY59bzdp2r2HW+D01HHziLjD6cZfyhNqPv8ULWUDHBkuo8jU73MLtkDG1MT6H6QWquUHCpWE/qXK6AWQS1KqEVQKiDVfiWHphP0FVEti8yCB7MkI5uC0fEFxu6fJSsUZlN+Fg0/2YAb4WgSadIF/myJTjXHjmiSodb0JTW23aiqJfPU0ijfXRyv9aOCu1rO8JPdRwk73h9Xw6Pv9PI3j91Bbq9F6WYdIdstEO5vmeFjkUmcssFJvZUJ3U5FcUs6tzhjRC4yHbgqGxiKhSTAZWhItcJxh2KQLrt56dwOnjszSqJop6zJksUtned4eHCC4XCi6aRPseJgOtbOdKydqYUos4kWxAZAC/sKDHcu1V31IsFc/b1SuovnksO8nOqnUpsUaNMKPNw6xQdCs1c0qnqpOprq4LEz++36KUngdZapSkq9/qnVUeCR9inubZvBoxqUCipf/0/3EltoxXLKCHltfSiKyeCOZcb3zjG2x66r2o6aAdRdO+wIVItvNcolUCULS0jolkIu4+L1vxzkyNNdmIqK5ZKJ7Cni69VJZ3wkEn4q5a2P0TIWbe1Z+gbitLXnaGvL0hbJ4vFWSEx7OP5khMnnWqnka+dtSdB1IE/XvSW0XolE1o9b0tnXe44PjE7VZ/xNS+L1ZD/fS43xRqKXlkmFHkeuwVo8Esrgd+XxqEUcylqkwLAUioaXouHBugSXyfdbdv2SYw2SjPWw5MI8zyBdwSKklO2LWiKi2bVNYbmIQxK19itrKXarCXtN5yBq90kI/KpJ0ZRZqDqpWDKabKLJFnndSbbqqpVYXKHvD3Y9lFU7Z19liMqW3EwvdjC11EmmuBbVdGlVhqKLjERjRAJbtzOop/JZgLlFKt8VhqcbMSJ10SAVDAb53ve+x913333ZC3m96HoBqYJ+jmdmPolH0zFr4LN+Z9u4YUob/258XpNo1Pr32Oq9L3R783Jsb5cxhcQrS10seEMAVI+ZfGToNJH2a1/QfjV1tUHqYg5YK2kvz72yh7cOD9UBamQgxsP3HmGob7nhuZaAg5UuFkw/EoJbnTF61GsPvAtFP9+d28Vr8f76LOVoIM7He46xN7TZCCOfUDn5gp3+N/u2D7GuQ3zHzmItUpUm3FO1i+OXWjky1cfRqV6WU3Z+kukQ6AEBbTpFtTFNz6XoDAUT9HrStKsFAqJCteQgk/eQybvJ5D1kC/btUqU2EygLCBhIQQMpZF8TMJCanbOroKwIvPkqUbXAaDTJjmiCFn8R11Vy1UpVXfzN/B5eXRkA7IjaxzomeDR68qrWT73x8gh/+/Z+8nfoWH774DTmjfPZjiN0OvMULI1DlU5WLLuepUfJss+5dNHOnnWrc8BpqPVo1HLex3NnRnnp3I56OqZXq3Bf/ykeGDhJi7sxMpsvOevQNBWLspAMb0oJbA3kbGOIGji1Bi6czlYwNV5cGeT5lUEKpr3NBJQyD7Se5oPhM7iVq9eo+kISAo5mo/zl7D4WKmvnS7ek86muYzwUna43XRamxOO/fwsnD3ahOQ0++7+/Bg6ZiaM9TBzpJhlvPN929dr9qnbunSfatbnGbasI1Ef2HaHVl685JgpMXSKT9jI/FyY2G2b+TJjZ6VYMVcNyKE1t/cF2XvMHihhlhVLOYUO2o8pdD57gtnunUdS14VIpq3LyuVaOPdFG/IwXw6thBBwoHTLOfomyw0mm4MXvKfHQ3mM8uv8IfZFk/fWxVJDXzw7xuDHGvAjgkar8Utdb9Psyq2sah1zFoxZxqaW6cYkQUDLdFHUvVcvB9TJBuiohoGBppEx3U2C6ECwFV2GpBkxhtUyLUsQv6zV7cAnDlHHIJm6lumb8sO0FtK9WIapgyixUnFSFjEvVsSyZnO6ioDu37dy57Y99H+qhyrrGzLLdLHcpE67fr8gmA5FlhqOL9LQkL1xnufrVm9VDbcM04lL1IwFSu3bt4pvf/CY33XTTZS/k9aLrBaRy1VP8YP7Hr9nnX7K2AWOWkMgYTgzZtvw0lqAjUkR1iHrTua1euyUEcukwuPn21TsZXU2Q2u5SrwLUocPD9dSiHYMxHr73MIO98S1fZwl4u9rBrBEEBAcci/Rr2S2ffzV1Nh/i23O7eCvZWz/B7QnF+ETPccaCW3+H9Sok16Dq3Fs2VAkJ9HYv8l4PpWiIknCtpewFLUSrQUleO1lLCEZCcQ5EZtnTuki3L9PgzrZRVUthoepnvhzg3bM9zJaDWC0CmkCTqILIaJBREWkVkVEhv7XpjFPTCfiKdp2Wt0jQt/7SWLt1KTpdCPPY7H6mC62AHW34TPcRbrvC9VNCwLee289z1gB6tw1FYbXIpzuOsd8fA+CcEeBwNYqBjIrJfucSvZcA9gJBqWZ1rpoymqlyMtnO06d38t5ST33b6vKneXhwgju7Z3Cqdnpktuhaa367ECWWCm16//ZghpGu5XrUKey79LTYiqXwarqPZ5PDrOi2sYVL1vlg+AwPtJ4mqL5/bmuGJfFGqo+nlnYwVwoBtbQqrUC84MeyZBRJ8HDnST7ZewyPrPPtL9/MsZd7UVSTz/5vbzC4t3E/jS/5mTjSw8TRbubOtDXUG4Va8rYD4J55rIDgiSM3NQDUTZ1zjHkWKSVcJJb9pNM+8gUXJd2JcYFsDlU1aW2zm9WuXrudVY682cvxd2wjCUUxufWDU3zgoZO43PaEha5LHH+tg8OvdjE334LudWL4NUyv1gBnsmRxYOgMH9p/hDtHp+rF+ropE8uHyAoXMcPPl2dvJ2W4CaklfrX3IBFHERkTt1rCoxXQ5DVg1i2Vou6lZLhrjr7XTkJA0dJImY0peKvAZJxn+WQsgkplDZaUMiHVvvbLFWTJ3q5kSSDLotZ81jYGMVHqzZXdagWvUq1Hzre34PaVhCCgmuRMhVjFgYmEUzEomyqZqptqk5rWS1VjKt/VceUzTJlzyTama81yV1swSAi6wiu2aURkGYd64fpzQS2wJGish7qMuqeL0Y8ESD3xxBP8/u//Pl/+8pfp7++/7AW9HnS9gJRplfnKDz7DB/tPsvL/Z++/wyPL7/NO9HNS5YhUyN0NdAI6zkzP9GTOcBKjxCBSlChZsmlJtqW79tVeX+1alh5Ja1q21/Z69+61RFmWlZijRDHMcDIncGJP5wQ00IhVSJXTSb/941QVqpAaQKO7MSLf5ynUqXRw6lSdU7/3977f92uolT5SDsSyvyxTrRuWJWd2rRrPWXtcWuG5K71+leVtNvm1dag/P7CJ5TXIoCw5J0/b0racsF1rbfPJgKNAne6rI1BTPPbAaXauQaDqIQS8o8cYrRT0H3El6NNSm9/oDWIo08y3JwY5mVwsCrqtaYIPd5+jL7iwqXXqpsLps1386LV+RjMxLEVDIDB9YARsjJCN5Vk8/hTJYqApwbG2cY62ThBZpXlv0VaZKoeYLIeY1J3rGcPPSp+UlLFRRgzUUYMWPUdfU4p9+xfoOpLHVLSKolV/8daWM/k6desakCSboK/UQK7CgcIS4lVcVd0SAl5L9vC1iUO1wfxu/9bVT+UNlf/6owcYiQZBBlnYPNF6mSdahnDJFmUh8065nSnLsdg1ywWOuafxyRtXZeqjziVb4uTV3Tx1ZZCr6ebac26LjfHIrovsb0mQzntrzW+HpmPMpMLL1tkeTdUUp/6OGcL+rU8ctYTEG+kufjC/m+mKCqRKFvdExnm0eYhW142rYcyZGs/P9vPMbD9pw1ECXbLJA82jPBa7TJs7z1QhyJdHj9aO0YBaZt/EAtlvhFFkm4//5uvsuT2x9v/JeLh0rpNzp7oYvtSOYakYAYlim4wRrA7mBO6MwD0P1xTlbIFsWGgYeN06Pf3zDB6fpCWWIRIu1AIlyiWVHz27lzde2FNL2hs4Os6R91yhaLqZmQ8zMRlhYqKJjOkDeWVFxePWGdwxwaOHz3Bs1yiBuvCRvOViXveTNPzYyEyXA3xu/BhZy0OLluef9LxOzJ3GrxXwKIvJeraQKJle8qYP4yarT0JAQWjL6pWql7Ua0UqIRmWpcomqi2RppddU+2JKklPTpFsKhq1g2TJL3/uGiFTD77sgqJpkTZVp3YUkCZSKlS+re2sW1a3AjbTyCQHTqWilWW4bRh35aw5k2N0+TV8sgX8dITg1VDfSlpyLkG563dOPBZGanZ3lk5/8JC+++CI+nw9Na2TuCwubG9jcSmwXIgVbVyO1WBu1tV93UXcmuBbxsgUMG1EmrBASAmNUIL1S5P5fmEfzLF9P/T1rrnsNMriu5VtEBhVLxrWR2bNrYK23MZ8M8MxLB3n7dF9tdmpv3xSPPXCKHd1zG/5fQsBpvZVhswmAg64Z9mg3LoRACDifjvHtiUHOp50ifwmb4y3jfLD7HD3+9DXWsBzFksbZkW5OD/VwcbQL3VQRksDwgx010QNgKouDA0m3CVzK0jk/z/G+MY68d47mnYs/SgVLY6KOME2WQ8yby9O1AKSshJyQUaYltPN5ukrT9Pen6b09R/eRPO7Axu1yZUMlU0eu6olWOr9IuJaGG6wGd6V2KxwoEPIXl6lbXl+JV/M9fC+xrzZ4ua95lI91bq5+yhbwykIvX504jFEJ6OgpZ/mVA6/RUiEGM5aPt8rtlISGhGBAm2OvtrBpNawadW7ZEv//H76Py/MdgEMM7um+wu0t4+gFFxcmOxiaijGXafw9kBB0NCdrzW/7OxIEvTdPFbIFnMnFeHJuDyPFpto23RGa5LGWIXo8W6cWJ0oBnprZzcvzO2ufd0Qr8kjbEA+1XKkl9tXjdLKdL47cxlTRIZyueZuPNJ/hg/efRZLAtqFYdJFK+Uml/MzNBJmZDrMwHyCd9pEvedAtDdMjUWyWMP3Vk73AlQHPvFgkUKaNbFi4MfB5SgQDRcLRAk2xLLHuNC1dOYIt5QY7XsO+tCRO/GgnLz49SF73YGsSnuYy7rBBKu+rhUkshWTZBJUC3d0L7Ng5T0dLksHOKbqDSULa4nFgCpkF3ce8EaBU18NovBTiT8aPUbBd7PXN8Bs7XyLqyqDWhcLolkbBdNSnrUyKWwohoCRUR1lagTDpa6T+SQhCcpmwWiK6hDCFlHLN3rkWFslTZXsAS8hYtoxhKbXfrpWwbiJVtxlyhUSlTY24oaLJNoYtk9G9FE3Xu8LKt5ALVEIjOsiXPbX7A+6i0yw3Nk00sLE0zJoKBZV6KBbrim9yaMSPBZF69NFHGRsb4zOf+cyKYRO/9Eu/tLktvoX4e0ek5ErfqFrh5c1H3lZ5pdjDvO3MYM//lU3grSw/939P4vLehJiaNdBI0zamyK1LDVzy1zJlTJczUNZMBXULildX+1TnFgI8+/Ih3j69q/YjtK9vkkcfPM2Oro0TqHoIAeeMFi4Zzuz9gDa35U2ThYB3kp18e3yQKzkn3EGRLO5rHeUD3edp924s8CKd83JmuIfTQz0MTbRj2zJCFuhBoMmg5JcbPPt+rcyh0BRtUwuUnzYZ/5Ef21p8g9HDZfwfl0jtDzJOZMXjS56xUEYNlHGBVAggp9zIeZloMMl73n+KfffN4/LenNAAW0Cu4FlT3UrnfZTWaBJaD0my8YZLFHaYpMLOQFMVNrdrcR4Ij9ISzK2pblUxWozwpalDjJUdD7+Sknifd4gP3nYWcBSYc3oLQxXiHpB0jrmniCqbJy2zRS+eQAZFFnzpxL28PLIfj2wQk3PIWZn5VLBWN1j/frtbkk4fpw5HcfJ7bn1NpxAwVGjiqfk9nM0tpgkO+hM83jLEHt/mjksh4HKuhScTe3gn3Vn7fvd4UzwRu8Rd0XHUNWyipinzg68M8szkPhZuV7E9zusjKZ2mCwIz6V6zeN/0sIxA+eYNmpIFXNiUTbeToFfnAGjvSrLnwBT9B+LEutKrvu98wU1iPkxiPsSl4Q6ujrVSRgVllRfYNmrWqFzKdLSlOXTfJIfeM43LLfDKOk1ajiZXoS4hDjKmh3ndT9r0LTs/DBei/I/J29gfiPPB2BkGA9MN6lPR9FGoqU9bh5KtLNYsLSFM5TUj0gVBWSeqFGv2u+olvE6ytBRLyZMtJKxKkp4lZGxbrtn31sK6iNQKJCplaswaKopsUTRdZHTvxuyB18CilW/rSFS+5GY44YRGLOQW+7W5VINdbQl2x6ZpjyyvKVw36uuhqsl8W1j3tBH8WBApn8/Hq6++ypEjR657I7cL/r4RqRulRq0X02aAV0td6ELFygqmfs+mU87yyf9zCs19a0nUVsC2oZB1k0+7yaWd63zaU1muXGfc5FPOtWUq3POpM9z18QsYZYU3vzqIz2vR3JWlpStHuC2/mltkRaz0qc4uBHn2pYOcOFNHoPoneeyBU/R2za/wis3jot7EOcOJDt6jzXNAWznBbCOwhcQbc9383cQg4wVncK3JJu+JXeH9XRdodq/fujSbDHK6ElN+ddrZTlsR6CGQm3UKHqUhSjfqLnB72zh3tI2zLzLTUE9UTCuceamJNya7mIxFMAbdDQMvJWGgDJsoIybqiOFY9Qwbz2CING2AhMdX5omfPcmhu8e2bbz/ZtQtM2hT7DOwwpV8rJKE94qKNqfg0cwGRStUqeFy+XXelts4rVdURh2CJxV++c7X2D84BUDGdvFGqZOMcKyLu9QUB10zG04ktCyJ2XSQtyZ38Gaih1+473k6QilOTfXy3198BDUnoRYb6yNdqkFXc5L+DqfGqa99Fu8NCvTYKoyXQvxgbjdvZbpqA/dd3gWeaLnMwUBiXXHwlpB4M9nFk4m9jBaaavcfDk3zROwS+4OODbhUcpFK+Uil/KTTfubnAk59UtJPNuejqC/az2xNkNktyO8QzsDShsCoRHBIQikKJMNCNmxcso7SZJHq8JDxOBNvMjYH2iZ5YN9FIoESuqHWLvMLASbHmpmabCKZ9CMkp85RyBKay8Qb0nH7DBTNxjAVdEOlpGsUSytbYSUETeEsXr1E+SroYwI1Y6AUDMKxMgOPzzL4xBzBNh0Zm6iWp9mVx68sEmrdVpg3/CzogVVVnNFiiFlT4/6mIZrrrJhly0XB9FG6TvWpZCsr1iulLA8lsXbNT1AuL6tXcshS6bqTQGF18lRvo7NsGduW1r0Prkmk6jZbQeBXLVKGStKUsSXIVnpDrRarvhlspZVPN1VGZ9oYSrQzlWyielzJkk1Pyyy7Y3F6mudq9XcbRrUOqqEeyiGwt/Jn6t1IpDY8Ut+/fz/F4tZ7wH+CCioHnibbWFiVm9WeB1JDjPOKkBdro242bAFn9DbO6c7gtXjeZuK3bPYezvDx/30a9cb2o70umKZEIeMml/aQT7lrpCifWSRLubSHfNpNIePeMEl97SuDdOybp+fgLHsevMqX/9V7McvO4adoFk0dOVo6czR3Z2npzNLcnaOpPbeqLaWK2fkgz7x8iBNndtZilvfvnuDR+09vOYGqYp9rAVkSnNHbuGw0YwmZw66ZTZEE05Z4dXYn35kYIF5yTlQe2eC9HZd5ovMiYde1FQghYHKmidPDPZwe6iU+HwEqMeXNArlFJ69VG6w6A4p2X4Y7KuRpZ2h+2WCzaKucy7dxstDO5YEWrIHFH1vfTAme0dFeLqPMWqhum67DeXrvzaF+1MXrrx4gNRcA4MBdYzzxyZP4QzfP/rUZuDWT1miW1ujq4Q0rqVupnI+LmSYu+SLoHpnCoIGStrCGNcrJcC31UEgCq0fH3F2qfgTIkxruCy6igRyvDO3lbLwLb2+OcrsFkoQqLI4os/S617ZxWpYTLT2djDC9ECaRjDCVDDNVClH2y9gu+MSRV+kIpUgXvXzjB/cRKth0RFO096TpaErRHk3THk3RFMzhUVduyLtd0ePJ8I+63+bD+gWent/Nq6keRopN/PH4cTrcGR5rHuLO8OSK6kHBUnlxbhfPzOxmXndsqSoW+6UF+nIZxFWNl589zHdSfrJ5L4ZVjfaujbkW1XkJcFWWbYFk2YQuCPwTguwgFJtlcn2CYq9FbK5MNGtSRGMOP2Wpsl4hUMoSSknm8kIPly/0rP3mI403TVwUSy5Y0WkqkAxQDIFi2ezpm6a/dYLZH7kY+X4Ew5CRAb9ms/uBBQafmKP7aAZJFviVMs1anqhWqAXL2ALSppd5PUDW8rDyFJfAo5SwJYO7mydr5xnLlilaPgqGD/MaJKceui2TsjwrJuIVr7Eev6w7dUpKcRlh2gqytBTVwIgqbCFhVsiTsCUn7K0y4esoUddWodaNehIlCfyKRdJUyNgSBjLpsmPl20q9ZSusfJYtMbHQzFC8g7G51gaFvD2cZHf7NDvbEni060vtFFRCLyQcK58NCPldcsbbftiwIvXUU0/x+7//+3z2s5/l0KFDy2qkbrWisxlsJ0Xq9771j/m5oy8xq7sQyJWTkWMxcb7kjT/vonavQ7RkyfE83Gw1qmirvFrqZsZyfowXvmKR+D8Eh9+f5iN/GEe5BQ3W9bJSpxp5GpYXlSSHIJXyG2R5ksAX0PGHS/jDZQLhcuXaue0PlQlEyvjDJYLhIpIsmE6EcceyKC6LqXMtvPBnR1mYCmIaK1tdJNkmGsvT3JWrkauWzizNnTlSeb+jQJ1dJFADuyd49IHT9HTeGAK1FFeMCCcrysIONcVtrvU3VNZtmR8m+vju5ADzZec741fLPN5xiUc7L61Yf1EP25a4MtXqxJQP95DMBBAIbDcYYYHUbJBXGs9NO4LzNfLU6V/eO6NsK5wrtHEq186FQmuD5a/DleGwP86RQJwWrUApqzD2VgBf1KBjsIiuqzz99cO889IuAELRAu//9An2Hp5e3w55l6NsKzwZ38t34/vQhYqE4KAnwR1SgqliiLe0NvKV2Hg5LaOe9yCnFz8fl09n70NXiHY7NT4LY2EuvdCHUdRqtVshfwG32wDFqT8pGi4yBS/JvL9SjE6t5s0MQNVBdjA2xq/d9zQA8ckYYY9ONJhfteDdpby7iFQ9bAHzJR/PL/TxSqa3ZtsKSmUOMUt7tkQ+42Wm6OeKJ8Rs2I1dUVglHTzjKu4JBdmQGolS/Rh3k7KqHrYp9FpUkuuRS6DNKyhFGYTTa00pQTVdX1UsXJqJSzWd68pFUy0U1cKlWmiaWbtWZItc0sd8IsDsZBi9oDkWQBsQAtl0Bo97BiZptme48nyI3OyiStW2J8/g+2bZ+/A8nqCFKlk0azmatDyeumSLoqUxbzjBEeYqNkVFMvCrBbxaAaXO9jdSaCYoC/RVidciWVrpUriG5c8n68vqlaqkSdtgi4DNYJE8OaP0euVJ2FLlmBLIzke+bhvfSlhVkaob0aqSjU+xSZsyKUshZ7hIGz5Me4t7Q0mAtDkSJQTMZMIMxTu4MhOjbCx+xmFfjj3t0/TH4gS919/Hr8qdgEoClhMqId0i99JKeDcqUhsmUnLFg7S0NkoIgSRJWNa14xW3G7YTkfrdb/xTfv7255guerAbBEMnyaZKrJAEMqJ24qqm3aiyYOknWu294CzDVrteE6aPV0vdTkG4aTP+O4LMU4Jjn0rxod9LbMi2thaEgHJRJZdqJEWLqpGHXMVOl0+70UsbizCVZHs5KQo1EqRAxCFJvlAZRVnfoVMff25JNrpiguTUS8mWQmbWx9xUgPnJIHOTQeYnneVycfn2Wy6ZUqsbPazWBjRd0XkeuOMcAwem8AZurg3pqhHibb0dkOhRMtzunl7TSlSyVJ6L9/P9yf21BLCQVuR9nRd5uH0Ir7r6TJthylwa6+D0UC9nr3STL1Ziyr1gRWzs6NKYcpu9kVnuiI1ze+sELd7lBbi6LXOh0MrJfAfnC60NA6M2LceRwDSH/XFirtWLd8+/1cX3v3iUXMZ5P8ceGuK9Hz2D23vrev3cKizoXr4+eZBXF3aAJHBrRq03llcy8L3mQjrpobkly8d+6UegwaQRJB5yIxQJYUHmQoSJszEyRR+6pVVsW9QG9SvBlgVm0CFR1ePCLRnc1TbCx46/gqraoKv4pLVPRjeaSNkCDHPRpmYYCmVTxaizrukVO5qzXPdcc4XHq8/RnWvDXPzNEGpFBdxRhqql2pCw8wq6S6rtJzkv4Z5UcSWUDQ2oVNkhOpIQlNIakg3BcJFYVxpNM3HXEZ8qIUrpHl7N9TLnc9fi/6NWiY93nWKgJdFIlioWW4eISFi2jImEYavXnCgUNkyPR7l8tpPLZzqYS4RobkrhT84zd3KRPHmCJvsemWPwfbO09hcBQUgt0qzlCauL6XmWkEgaTnBEwVpNyRBObLmax11n+0vqPp5f2EOyHOLx5ivIEhhCJm25SZlL1CXLQ/4aZMkrGTU1qaYuVS43ssfbalgfeQIQSLLzfGFLmEJe1qx6I1hGpJb8HFdJVMaSmNU10oa30hvqBlj5Km9/IyQqXfAxFG9nKN5BtuSr3e91lemPxdndPk1zILtldvBGEkWtye6tNfItx7uRSG1YJ3juueeua8N+grVhr3ogSghRJUUrPS5QFRvDeZJDuirkSmaRaC09ZJzjX6r9MG2EaAkB5/QWzuhtCCS0lMH5fyShX4W7f2mB9/+r2WueBGwbijlXzTa3smq0WHdkraLerAZVs1ZXjeoJUriMx69vGelbDYqQUW0FU3HSw9xCIhIrEIkV2H3bYkNcISCXcjM/EWRuKsjYaDMXZ7vJ4K8NgLSMgWe2TKGk8eRLR3iSI/gjJUe16srR0rV47Q+Xb0h9zg4tgyIJ3ix3MG6FsMoSd7qnlpGpvKnx9NRenpreS950BjLN7jzv7zrPg20juJSVJ2BKZY3zo12cHurh/EgXZaMSU+4Hu9vADIuKLcix7amSxWBznDvaxrmtdYLQCtZAw5a5WGzhZM4hT/U1Dc1qniOBOEcC07RruTX3WTbl4XtfvI2LJ5zI5+ZYhg/9g7fo3XNzFMHtiCZXkV/e8RY+l84r6d7KuQUUS6C97EW6qNHZneQXfu0FNK/BG4UuZgNO8pSZUxl7q4uJiRbH0iLD0jGPIlv4XDqabCFsKKCR8WiYvjpiUAZ3ClxZlaNHRlFVm+mZJj73Vx9GkcXy2q2625FAnpC3SL7koWxqK5Ibw1QpV0jQUrKznPw0Pqee6NxoSAaowy6UKyr6Ph27R0fSBHLExC1AZBU8p1R8IwKPVsDvKREMFgmGygQjRcJNJaKteQKhMm5XozKkqRayLBg+2crX/uNxfFaZw+8Z4wO/8g4rcdUrMy189+Rhzk05x4pfsWjalWKSAEnFw/9I3MHjitN/ylOZTFEqo1NLyJgVJm3Z8rKJwpWgFxXMOQvPfJLWlIE+HKR4SqGIGyRB7x1pBt83R989SVSXwC0bNGl5mrU8Wl16Xs50MW8ESBm+VWtpVNnAr+bxqoWGprkTxSa+Gj/KuXwH/f4knd4M30gNkLI85Oy1Wxd4JKMWF75UXXLLt36yemXypGAJaUWLnlSZ7BVIWLayaRVqVSz5Tmh1JGq67CGt+yhtYW+o2r/coJWvqGtcqYRGzGbCtftVxWRX6wz9sWk6o8lrN8vdBBr2dqXJ7nYjUe9WbFiR+vuI7aJIFQydI3/9nzgUjdMXmGEgPEevP7Vms88qnOZ1dkWjWuFxoGoErBV+SiwhWesnWmVb4dVSF/FKbxfP5QInftmFKMH9v7rA3f8wW1GKKgQp43bUovowhrSHfMaFWGc8cxUur1EhRSXnul41qihGVYLk9pq3vMB/aUNegUCv9rIR4DZX7y+VmA3zzEuHOHVuR+3T2d83wdFdo0h5wfxUoKZiZeZ9K64DwOPTl5Gr5q4s4ebiigOfjWLKDPBGuQMbmZiS47h7CkUSZHQ335/ax7PxPbUfspgnw4e6z3NP61XUFWZQs3kPZ650c3qol8vj7ViW4li2AkCzQTkgYdT1WPMoBodbprijbZzDLZMrqlqmkLhUaOFUvp2z+VhDUlVULXDEH+dwIE6Xa7nlbyksU+LNF/p54W8HKRddyLLNve+7yAMfPI+q3fwZ4e0CIeB0LsbX4geZMxy7ZpuWYz7rJ18JjvBkbPZaKYQtETs8izdYRggYO9vByMmu2rnApRqVuqVqDZNTxxQN5rGFxJtTO3jqykBD/6c94RkOR6YI2TqZvI/mlnkOHRzGNGX+9IsfZGK67ebvlDXgUs2KNc1EVSznPF8Zm9qmjGXKGLqCXtawTAWEqM18189+1+6zBbJhI+s2ctkCYVPYI8gckTEiMiBQJRuvomNozvGjYHNXeJzHW4aIuTcWmTx2vpkv/7u7MQ2Fgbsn+anfeGvZRNRSAiVLNnfvHub9R07TEsgxVQjxhZHbOJ10Gu0GtRI/s+Mk720fBgmnh5CQkSWBZctYYvkAXNiQHPcwfT5A/FyA6fMBFq56l9UTh9rLDD4xy8DjTnCEhE1EK9Ks5QjWNTY2bJkFw8+CEaBkrxKBjo1XLeJV87iVRRdAznRzOt/FC+k9zJuBNc8lbslc0mNpUV3ybAOytBQrkyd5VfLkYFGFsmwZW0jXpULVo6ZIWY2TEy7JxqeaJE2F8aKftO5dMylyMxAbsPIZlszV2TaGEh1MLjTV3r8k2XQ3zbM7Fqe3dQZts6ERa6EaJCFwBoGVUAlpC3tlbTXejYrUhonUiy++uObjDz744EZWty2wXYjUDydH+cWnvtJwn08psz88y0AowWB4hphnBalXErVI2s0eitciWqYuUajY5uLlAEOxMKZLBhOy3/Qx8fUmUBW0oIJpbnzmxxusEqA6grRMNXKuNde7a7C6lEiBQ6bKqoGQQLYlXJbaQKbiMw6BOn1+kUAd3DfGo/efprM9ueL/KRcV5qccUjU3GayRrFTCv6oVRnObNHfkGshVS1eWaKyAvE7rYhUJ08ePyl3YyESkEpPxJl5I9GNUrBfdvhQf7j7LnS0TyyYH5tMBJ2lvqIfRKUfhtGWBEQS5RafgVRpqloJaidtaJ7i9bZzBpjiuFX6ELCExVGzmZK6ds4UYxbpBUVgpcjgQ54g/To979cjkpRg+G+Oprxxhbto5T3TsWODDv/QWse61AxH+viNR9vOV+CHO5x2y4rFNOlMl0kNhUmUfRoeF3m4iKYI9zTPsaZlBlqCc15g700JUKtcCHzqa0kQCy2uY8rqLF8d288zIPpIlh6hpssm9PVd4bNcFOoKLPZRsbEpqxUJrKWi2QtlQG9MI6xIKM0uSCSVErf5mUYWpq9WpLVu15aqdrfF5FhI25ZKLYsFFIe8in/WSSXvJZPykUj7SaR/2emo2TNshSoaFZFSWdQvZMgkHi0RbckRiRdROk+HOKGfcMYqVZA+/ovNQ6zDvbR0mopU4l2/lqbk9XC44LQYkBEeC0zzeMsROb+qamzI1FOGL//Ze9JLK7tvifOz//UZDMM5qBOp9h87QEsw5gUjVQR5wcqGDL47cxnSl/1SPL8knd51kX3gWWXKcGrbtmNnLOYX4BT/x8wGmzwVIXAhQzi1X+kIdJToGcrQP5OgYzNG6u4AkC7yyQbPLqX1S6hSkjOlh3giQMb0NU4qWkMhYblKWGyHZtLsX6PXM46qQHVNInM138np2F0OltobXyti0qIWKDa8xFc+7iYbSNxubI0+V11ZVqBsRJgF4lTIBVadcR6RckkVANUnoLkaLAQqGZ0stuuu18tkCphaaGEp0MDrbhlm3ja2hNLtj0/TF4nhdN8iKX3ds1UhUJVRiO5Mo+DEhUvIK3qf6eqmf1EhtHkII/vnX/jmdHRP8aK6bi5m2hsE3QNRVYCA0w0A4wUA4QdRVqqlR9gZOGEKAXlRrdrp8xk2hslyo3XbVHtOLGiBoeixJ68dmkVQoT7uY+lwn5cnlNgVZtvHVEaMaSYqUF8MY6oIZrpVO927GSkQKwJZsysriYE+1FaZnIjUCVcWh/Vd59P7TdMRSm/r/pi6zEPdXlKsgc5MB5qeCLEz7nZnulbZZsReTBCvkqrkrR3NHDnUNInup0MQZqxVJhvmcnx9d6ae3QqCONC1a/oSA6bkIp4d6OT3cw9SsE7lcjSlXWsvkXWqDnabJk3fCIlrH2ROZbYgpr8IWcKXUxMlcB6fzsYbi7KBS4rA/wZHANL3u1LpioatYmPHzg68e4dJJZ+bcFyjz8EfOcPT+kRtuB91usCyJ2UyQ6YUIE8kIJ6x24n43zogXpAk38pgbyV7cwQo2XbtmiN2WIOB3Zv+nMyF6yPC+2GW0NWo7EvkAT1/Zz8vj/ZQrqmbYXeThnRd5aMdlgu5G+6ZAUFJNhCSQbQn3kkmKtSBsZ/ArpEWr4FqwbcjlPKTT/kokuK/WbLZ6u1DwXHM9CLFIjgwLSXeWJcNCNi1CwQLR1gKRWJFQW5FwW5FIzLkOtpSRFcFYIcyTib28nuypxUq3ubM83naZ+5qv4l7BPnulEOWpud2cynXU7tvnn+WJ5svs86/c1mBmLMTn/7d7KeVd7Dgwyyf/5Wu1c8K1CFQVEiDV1fMqksCy4anpfXxz7CCFiv33aHSSx1wXKV5QmT4XIH4+wMLYcrVJ9VjE9uZpH8jRPpijYyCHL7pIVBQsolqBZlcOX52CVLYV5vUAc7qfedO/rF4pZXowkLgtMM5dwRE6XItkfUYP8Hp2F6fy3WiSIKyUmC4GGSuGsSyZJ5qHeDBy9ZY7IjaK6yFPDrYmTGKN1QPOJLNfWyRSXtnCq5pMlNyMFkLo1tbGBF/LyicEzOeCDMU7GE60U9QXx0VBT4Hd7dPsbo8T9q2/lcemUK9CVXe9zbYLlViK6i7dGZ3lzSuH+Pcf+dNbuj1wA4lUOt0482oYBidOnOB3fud3+OxnP8sjjzyyuS2+hdguRAoawyYMoTGai3I+E+N8uo2hbMuylKAOb4bBcJwDkQR7gzNIJYlCxrVIkCpx3fllJMm9alrcSpB9Fp3/cJrAUcf+YV3SmP8ffubPyAjD5OhPJzn4/iSBcIlAqIwvWEZRHAtEtX+EvILpsGpFFKLekrh9D/bNYDUiBWDKTq2UEPDcD47x4iuHa49dL4G6FmxLIjnjWyRX1bCLqQBGeeVaDkkShNsKtFTJVaejZJWiMk/N7eW1uV4iviL39A+jKRZu2+QR/whu2cYWcHWqtRZTPp92bKGWJjDCTkx5TtWo//w7/ela0t6O4MKKgxJbwGgpyql8O6fy7eSsxR8wv1zmcCDBYf80uzzJDZEngHJJ5aXv7ue1p/dgmQqybHPnw8M88KFzeP3bu7/Q9aKeMMWTYeLJCPGFCDPpIKYtI9oM7F2lWpCBNK/ivqrS6c1i5WQWroZRyoLjd17k8AeGOGPEMJGRhc3YQhMnZp1o6xZXnk92n+KOyGTt8xUCLi+08tSVAd6J99RmlbtDSR7vO89dnaOrWmF02cRUnIbk3jVssythadiEriuk074aUXIuvgbiZFnrOI9ads12V+2fVFOWdJtgsFAjRuHqdWU51FJC0Vb+mbYFnM6081RiL+ezi9bFvYFZnohd4kh47fCXKqZKQX4wv5s30l21yYteT4rHWy5zNLi4jvkpP3/9B/dTyLjp2rPAp/7XV3F5rBUJ1PH+K7z/8OkGAtWwryVnwC4jsJEwbYVcVmP4XBNPzu3nQiiGkCUwBU2v5mh5IYNSdvZDuLPkkKaK2tS8q7hkMk7gU3SCSomgWsKvlBejx4XE1VKUt/OdnCm0k7S8ZKyl/YQEfZ45jgdHOOibrBF9U8hMlJqYLUdAKESUMj7ZwBISfz19hNO5dmRsPtV+mjvC757EzpXIkykcK976laStDZNYCsuWKJgaedNF3nRhCokef4p2Tw6/auCSbK4W/Yzmg9hssZUPViVR2aLHaZYb7yBVCNTud2s6fW0JdrdP0xZav+th01iqQtWTqG0YKlFF/e6UcBSpt0cP84c/9d9u1SbVcMOI1Gp44YUX+M3f/E3eeuutrVjdTcV2JVI2KrYlUcg6xCid8jKUa2ZYb2ZMDrPg8jbOmtoCz6yNb8LGN2Hhnba5ltXa5THxVSx0vtCina7+th21uRBooojmNEpUZzn9r12c+3YQSRZ88LOzHP7o6v1noN46WJ86uEi0nOWViZYN8C4mWmsRqalEmLwt0d07Qyrl508+91Ps3pngkftP09F2a+xiwobMgreRXFXsgktj4kutMvPHVHJ9i8SrM5/hntAoYtDAUmTcpkXuRJSzF3eQLXidpD03WBELmk3ycuM6d4XmauSpw7/y90oIGCtHOJlzyFPGWpz198k6B/0Jjvjj9HkXVuyfs559cOq1Xp79xiFyaSeNr28wzuM/e5LWjrW/6+82rEWYrBUsZ8JvIfYUsEPO4NIvdB7yXOWetjGC3gLf/vJdnHxjFwCPffwE2p1Zpiq1lM1ygWPuaTySyWsLPXxt8hBJw6nt2xuY5ZNdJ5lNR3hqeIDRuvqnQ22TPN53noGW+JoDEkuyKVdq5NymirKBgZxtwzsndnHxYhfJZIBU2k8+vzE1aZEk2Uj64rI/WFqRJDnLpTVV3pWg2zKvzu/gqZk9TFf6r8nYHItO8ETsMrv8K9t/r4V53cszC/28nOzFqNQRtrlyPNY8xD5jji/9wX1kF7zEdqb4+d9+hal8ZMMECqhMrNnMXfUyfibC+LkwU2cDLIwt1nmWW1US74+Q3+N8Bh7T4EF5mMf2XyLQtNQWJ/DIBkG1jE8pE1RKy1TOsXKYFzJ9vJrtJb9C2IOCTaeW5s7QKAd8UwTVxbhp3dIomD6Kpm9Z6ptuy/z55G1cLLSiSDa/2PEOh4IzS1e/7bByn6eNkqfKuurCJNajQtnCiZGvkqLFS+N9BWtxubhKWMS9LaN8euc7pE2FyaL/hqTygROjX91dZUNlZCbGULyDeDpae74iW/S2zLK7fZrupvkVXRM3BPUqVHWbBYtK1DYcMy0lUNXzem/kx5hIXbhwgWPHjpHLrX7y3K7YLkTq5PlxfvlzX8FtG0iGgBKIkoSsC2Sj/mIjGwIhC4odCoUemUK3gh5tPIHIlqApX6TLyLJDWmCHP0mwRpJ0p97IvTrTEgJGzAhn9FZsZHySzh3KFM//ywgXnwogq4Kf+t8TDL5/Y0XKK6GqVjk1WTTEu2+MaG2/E8ZKRGoqHuXplw5x9mIvbrfOr/7q39DcnMUouQgqTgex7QYhoJBxMzcZ4OR0J69YvcT9wdqDgWGL5rcM3AsCPawi7zHZ9+lhXD6TQtLD28/so+hSsaIW5brGYrJksy8y4yTttU3Q7FnZ+iAETOghTuY6OJVvJ2V6a495ZIMDvhmOBKbZ453fFHmqYnIkypNfOsrkiDOQj7bmeOwTJ9l7ZPpdZ9OpRyNhqpCmNQgTLIY+dDSliEazjPoCnDVbEUi4JJP3tVzmkeZhNNlG1xW++hf3culsF7Js8/hn3iC1S3LaIiAY0ObYqzWqimVL4XuJfXwvvtcZuAsBBRWyKi4s7u0e4dG+83TW1T+tBoGgqBoggWrJuJb2l1kDCwt+vvrlexmbWCGQoqomLSFHVdIkGTbeoE6krWK7ixWJ1BGlUFsJl2drLO8Zw82zs/08N9tH1nQIhlc2eLB1hEfbLtPsKm7J/8maLl5Y2MXzC7tq9lg1b+N/RaY3nuWhX7vAM5cHNkSgSlmFqfNBps4FmToXYup8kHJ++WcU6SrSOZClfSBP60CORFOIb4wfJlFyzjXdvhQ/03uKnaF5NNkkrJVod2UJ1EWOA+QsF+eLrZwrxDhXbCNuBFFwLHj1/ZWiSpFOV5IWdxqPUqp9P20hUTS9FEw/ht2olFdRtFT+bPJ2rhSbcEkmv9x1gn3+7ZvauZXkyYFT61a2FDK6h6zpJmd4aoSosIwouchbGgXTtanaJQmBVzHwqzo+RWesEHUSgyWT25rHOBqdWDHAaDOo1UPZzl6xLImxuVaGEu2Mz7Vi1yZpBJ3RBXbH4uxsm8G1RguPLcdSFaqyzds5VGI1AlXFu5FIbTiL9dSpUw23hRBMT0/z7/7dv+Po0aMb3tCfYBHz2TyWLFOQ3c4n473mS9Bkk4CmE8sUcAsdIyDIuVTmJB9FRWMu5GMOHyeJ4VEM9nsTHPAlGAgkCLtW9+oaQuKdcjuTVqWoXslymATf/p9aGXrBj6IJPvpf4ux9ZGv8vtX6LhupcWalgqVEqz7anYpFZFWiJWCRht3akfBkPMrTPzzMuUs9la0R7O+fwm2pIEDz6FiWgryFDQO3EsN2lL+zDnDJ0wo4s8p3t17l/sAIY+V2zpldTGWasJERQvDW0wMcfewCvmiJox+8wCvn9lIuu5FMQSBh0JnLstc1S1dHmmYpi+wG20Wt7kgImNaDnMy3czLXwYK5OGPtkkwO+Gc44p9mr28O9TrIE0Au7ebZbx7i5Cs7ASeI44EPnOf4o5ffVWl8myFMbs2ohT0sJuU5oQ8ALyV38O3ZAfKmM6i+IzTJR2NnadKcWftiQeMLf/ogY1da0bw6D/y/ThAPu0BAQCpzzD1NVFkeRZ8ueSks+JBnXOAHfDb4LVS/weOxi3y48/ya9VNVCESt3lASEto1jh9hw9x4gPGzUd460c/VXAdClsEWuGcLyCUL2bCQddu5z2c41rveJWpS5drtu7G1wZPFID+Y2cMr8ztq9u5mV57H2oZ4oGUEr7K1g7egqvOhtos82jzk9H2b2ovhl0k/BmetAKeH7ocZ16oEyrZgfszH5FmHNE2eCzaoTVVoHov2/TnaB7J0DOboGMwSiBqVgb2MIWRkS+JTvre5mG0hoJY5HJriUCBOh6uRsOm2wqVSC2cLbYyUmshbbiJqiSalyD2+SSJqiaC8aPGTJROfWsCnFlDrrBuO+uSnaHrXVDfylsafjB9johzGIxv846632OVLXd+OvwHYCHkSwtmPVdKTW0KCcqZ7GTHKma46UrExeCqkyK/ozrWq41eNJbcXL17FqHx+gmZXiav5CP/9yh2MF6K8PtfHhXQH97YOsyuwcn3felG18mFJxJMRhhIdjMzE0OuCtJoCWXbHnGa5fs/yc9sNx1IVCupCJbZfPdRSAoV0q0djW4dNhU1IksTSl91999382Z/9Gfv379/SDbwZ2C6KVCqd59c/+wcM7hwjK6uYioohKehCJV/2kC+5yZXc5IrO8lonL4HAdoPltzEDAjMgWGob1mybqF2iXc7R607R6ssT8JRQfAbTQS8lWUVCcMA1S4+e4uu/0c7oqz5Ut83P/N9x+h7YmtnP60UtabB6vYRoVWu0bhXRkiWbselmvvP87Zy7vEigjhwY5b33nybW4sy2m5KFoVogwG1tzJZ0I2ELOLHQxbfHDzCad0IhVMnizug4XYUCV6/EuDLZhhByLaZcatEp+WUMFHzuMvceuIjfo1Muqox/vQPjVQ+SvkpfFs3CfyCPecQi2aOR9ywqeZpkMuCb5Uggzn7v7LoG2deCaci8/uxufvidgVoT58P3jPLej54hGLn+bvI3CltNmFaqpRkuNPGV+EHGSxEAOt0ZPtl+mr11s+7ZtIe/+tx7SExFCfdmGPhHFylpzhzdLjXJQddsA8kVAoYq9U8n6uufgkmO9I5xptzKaMH5nrW4cnyy+3RD/dRKMCq1hgjwmCrykgGwaUjEh8JMnIsycS7CxPkoRcNNsSuI5Xc+cyWv06tOsWvvHKFYiVBdoIMncPMT1oSAc9k2nkrs4XRmMQxil2+BJ2KXuCM6eV3K63pQyqt84bP3cjXdRPohGb3PBq9zzMlCcGdwgg+1X8BXMmpq0+S5INMXgugrqE3R7qJDnCqBEC27CsiqTVFoLJg+kpaHedPLvOEja2l0uLMMemc44J2h191Y42gJieFiE8PFFvK2C9NWCKtlomv2WhJ4lFKlaW65QX0qmD4Khh9TXDt1NmO6+dz4MeJ6EL+i86vdb9LtubZqerNQJU+GLZMzXGQND2nDQ9ZwkzXcjUTJaCRHxiajwl2y2Uh8qiRJ1fEtI0XOYw3f33V/lQVR1aBoK0yUvKQNjaFsG6/M9td6FHb7Fri/bYgm98YmeqsqVDLn58pUB8PxdnLlxRltn7vkkKf2OM2BW+S+WkmF2ub1UA0k6hoE6t2oSG2YSF29erXhtizLtLa24vGsw0u+TbFdiBQsr5FaDZIsKOsK2ZKXXNFNrlQhWsXF61zJTb7kIVd0ky25KaqqQ6r8AssvljW7lMuwI7jAgX1jKIqglHdx9sV+9LQbkTGxUxaKrtN/e4b2njx+T5mAp0TAW3aWvSUCnjJuzdgWFighcHqPmDK25VxbloxpKViWXLlIWKaCWbltmgqmpWCYzqW6bJoKhqVUHq88r/L4stumXLu/+lrdcH6cJcnm6IGrvPe+07S1NP7wCgSGYmHJmyuU32pYQuK12V6+MznAZCECOESmnxTSmJvEdCVpTxYYIVBayuQ9akNMechV5LbWCY60TTDnc5MXLjySyT3qBOaMxlxdwMVULkSi1UtpEOxY3WnJAO2ShOusRFuySFt7rqHpcFNHblPWKSHg8ukOfvCVwyzMOLahzp0LPPGpd+juW9j8jttiWJbETDpUq1+aXgiTSG6GMKWIBgrrOjbThptvzgzyetoh/l7ZUSgejI42DH4W5gL85R89RHLBT9fDU7S9N4GQJFyY3O6O06Eu2n5NW+Kt6R384Mp+RlIttfuX1j/ZAl5b6OVrkwdr9VP7ArN8quckO1aY8V8x6jyvMnEhwuS5COPnokxfDteaeQtAb/ZQjvlBllBki7uPXuCR95/G4zMbwiZuBUxb4rVkL08m9jBRjADOwPj2yCSPxy6z2z9/U86veknhv/3nhxh2tVJqrZ6/LPbsmyQVUJiRKoX1tsD/hk7o6RKu6cXjUPNYdAxk6T6QoXMgS/O+AkW/xoLlI2l6WbC8LFgekqaXktBQsNnlWWDQm2DQN8Mezzyq1DhRsmB4mTf8TBdDfHHkKCcWegGnHcJP9Zzj3tbRFSYEBKpk4q2oT0rd5EvZclEw/BQtL+udRFswvPzx+DHmDT8htcQ/6X5jwz24NgNLSOQNh/zkTDc5w0XedDu3jUXFKGcsXpdX6YN1LSiSRaBCegI18lMmoOkEtDJ+xcCjGPiURfK06UmtDYxAZQQR1SBrqYyXvBTqYsUNW+Ht+V5OJHuwhdPC4FB0gjubr+Jeh2KbL7u5MhNjeLqD+eziOFBTDHa1zbC7fZqOSPLWjm3WIlHbsMnutWx8K+HHgkj9fcS7jkhtsm+UYcoVVctDquBlONvClUITE0aYtHBxuGeC3mZnAJnIBHnn4k7slAs1J6Hk1y8VK7KF31PG59bxucp4XAZel45HNXBrJm7FRFNMNMVCky1U2caqkJsGolJHSqwKKbHqSEqVvFTJUY3AVImRqdyywdBSOARqlEfuP0Nr88ozl845cvPRzVsFw5Z5eWYn35kcZLbkDJZUYRFK2tijXmRTwlYFRkggt+rkNK1hP7d4crWwiN2RuZqtpCQUXi72kBFuXJjc55nAsmVOVWx7U/risScLm7ZskfCogXRKJXk1WIngXxnh1ryTINidrUW2N3fm8AZWTtabmw7y1FeOMHy2HQB/qMQjHzvN4buvbkmD4s3gVhCmpTCFxHPzfXx3bh9l21Gk742M8VNt5wmqjTUo0xMR/vpz76GESv+nruDd6cz+xpQct7vjeCRnUF0wNF68uoen6/o/qbLFvd1XeKzvAp3BlUNVFuun9mEIBQnB/c2jfKzrDGHNsdLUHy+FOQ8nvryHiXNNzIwGl0Vk+8JlWvYVmJJjLOSc71p//zQf/ehrRKPOQHhpat/NRM7UeH62n2dm+0kbziy4SzZ5oHmUx2KXabsJg/UqLk+18ufffoCkx/m8JGx22glaLi2QOu2iXFAp7VXJPO6ltH/xuGyLZ7nTnmBnfxJiEnOWjznTz7zhqE1Lk/G6XWkGvTMM+hIMeGfxLOmtVLYVcqbbCR2wNWykitpiI2EzV/YzkosgAT61TJO7QKc3jVfVK7W19rLjwLJlR30y/VhiY9UNibKfz03cSdr00KQV+Cfdb2yqLq0atpAzqkSo8TpfI0SLpGilsKL1QMZuUIMCWqM6FKiQpPrbLtlq2G8bDZNYNzYw+lQkm7BqkjQ0xote9FWUs7Tu4ZXZfkZyjv3cq+gcbxlh/woJlrqpOM1y4x1MLzTVjnlZsulunmN3+zS9zXOoN6JZ7kawEoGChlAJyd4eDhbYHIGqvmZHZJZ3Ro/w2Z/6kxuwZRvDDSVSzzzzDM888wwzMzPYduMX7M/+7M82vrW3GO82IiUrzg+EjYQQYNtSjUhYVQWlQiTWJiXO42VVJrfDBq/T1+PKVBtnZjtpOFHaAm/Bxlu00bIOsbJsGQvZabYnSZVu35s8udrCScSpJONI9pLlJdeb+S+ybKOqFqpioSrOsqLYaKqFolioqu08VnetKBaaYqGqFlrtfhNNtdFUE011HtdUs/K86nMWX+9SLdxeHWmNycH692MjKG2yaP56ULYUXkj0873J/SR1RwmQTYF7WsE9IyMUMMM2cotBVmn8Ue8OpLijbYzb2yboDaw+a1cWMi8We8kJN7YtcTbZQa5ix5Cx2eOd50ggzgFfoqHuQwjIJT0VBSvQ0A+rkFmewFWFP1JajGnvzhJqLnDpbBfvvLwL25aRFZvjj17mgQ+cx+29Ofat6yVMVTve9RCmlXAu18pX4wdJ6I46t9O7wCfbz6zYoHV0uJUv/LcH8PQV2PHxq8geGwWbg65ZdqkpJAlm8wF+MLKfl8YW+z+FXEXeu+sSD+24tKz/02qY1718beIQryUd9cEjGzzsvcKusRTBWIaeY7MUki6+8OsPUUwtfhci7QW6B5N0Dybp3JfkwtUdPP30YUxTxe02eN/73ubOO4caB4y3gEglSn5+MLOHl+Z3oleO9YhW5JG2IR5quYJfvXkx+8PxFr712m0Mp5wJBmyBfyRP+J0kWm7x+NC8Jm3H8oRuK1PaqzIRjJAWbue8Kju2ardk4pEN3LKBRzbwygYxLcuAd5Zed5pWtYBriYphCdCFVLmAXS2muE4IAWXLTcH0U7I8m1rnZCnIn0wcI2e5ibly/Fr3G4S1MkJAyVKXEKBFYpSvKEa5BvXIvemwBZ+qE6iqQzUCZOCrBDAEVKOOKJXxKuZ1nCMWI80t26mr2pJI8w2OOjXJJqiazJbdTJY9mOvYhvF8lJdmdpPUncmAVneW+2OXibmzTCw0Mxxv5+psW8M5ty2cqjTLTeDRtkl7i2uRqG0UKrFRArWsbgpHkTo5dpR/86HPbe3GbQI3jEj9/u//Pn/wB3/AsWPH6OjoaGjGC/DNb35zc1t8C7FdiFR8PsOv/qf/g67QHHldwzDVGhFaVF2W2NCuU3Vp3jdP/yOjKC4bPa9x+Xt9ZCZCWC6BERHoUediL3FuSiZoaQlX0rkoeSpzhYDsTAYL2WnsKqkCSRGL90tOqISNjMXmZrYU2cKjOUqXz6Xjc+v4PSX8Hp2At0jAWybkKxLyFQj7SwT8BdQbdK5ZjHav1mg5dVrV2VAJgS0kSqvYLFZ696ZkoavOjP5GY5w3iqKp8tTkPr4/uY+icAiSpINnWkbNSIiwjWhaHlPeH56tKU8x39p+8bTp5nS+nZO5dib0EAORBEFXGdOWyBU9DHrmOOhP4Fc2/uNVyLiYnwrUSFa18XB2YdHbLgChytguheq0pNddom9vnO6+BZorSlaoubhlitRKhCmejDCTDmGvMnt4MwjTUszpPr6WOMCprFOHE1TKfCR2juPh8RXrpi6c6eTrXzxO7PE4zcccBTsilzjmniYg6QwlW3lquLH+qSvo9H863rV6/6fVYJkSieEQbw5385xnF+mwczI6pEzya3e+AMC3f+9OinM+ugeSdB9I0rU/RbDZIWozMyG+8Y17GB937IR79kzxkY+8RiSyvH7iZhEpIeByroUnZ/bwTqqz9r96vCmeiF3iruh4zXVwI1FMq0ydD3LybCdvFXaTDIWQJRufWqI5mad1LIE/UiQ6UCDYX8bbZqAEbFAFLsnCUyFJHtmsESaPbOCWTOTKuc8lCVyASxKoS3apEKCzSJ4cqiYte45TyyojhFQJspErE4mVwT0yRVPjzflu3p7vIW+6KVsqtzVN8UDbKG7VWrbe1aBbSoMSlDNdjBfDvFbowkLGjUmTVaJUR5qsTZ6fvUpFEaqQooDqWOca7ysT1HSCWgm/WkaWJCzhTGTabDZt79qoqVCVhrxb8n828ZX2yBZe2SJe9jBd9tSCqdYDS0icSXbxRt0khVYUSEmt1jA87MvT3z7N7lickHd71H0Di7t6aaBEfT3UNgmV2AoCVcWPBZHq6OjgP/yH/8Av/uIvXvdGbhdsFyJ1ZXKeT/2rv7iudciS3aCGVJWXeqVFUW00zcR3MI2r1zlxiJSCctmNZgvMApz5lp/SvITHb3LXLyWRWiUmRZAJM8yYEaa0pCA3oJTZE5hlIDTDYCROzJ9DkZfbKpbCsiUKZTf5YiVIo1LTVa3tWlb7VfJgrqcB5hJIko3PrdfquPyV2q7acrXGy1uq1X5p6tbI+dWf2NXWttouqm8s6jG1LY9ET+QCfPXibZwodGBVYvLkEmjzMppkY0Vsiix+zopksz+acGLKWyeIetb+0cmaLoc85dsZLUVrg0UJQZ9nge5QEl1SULC52zNJm7K1Hd/LBZX5qQAX3+ngxCt95HMVYmXbyGUL2Vp+6tPcJs0Va2BL16JNMBorICsrnyrfLYRpKXRb4cm53fxgfjemUJCxeahphA+2Xlw1Be7Ea7t4+uVBen5mDHezDgj2agvsUeY5Ee/lB1cGGuqfDrZO8nj/eQav0f+pHuWCwtSliBMKcS7K1MUIpr5Y35Q5pFJ6v+D/e+/3CblKvB3fQbtUZndTY12bZUm89NIgzzxzCMtS8Hh03v/+t7jjjiurbsuNJlKWkHgz2cWTib21QA2Aw+Fpnmi7xP7g7HV+/tWWEfbipE7lGtummNYoJFX0vIxZlsAtobXaeIIGPncZn6bjvo74ZgmBhkOaXJJAW4E4lYVM0VYoWhpFoSKEjGkr1S2vECa5QpgWY4TWi8lCiK9fPcT5dAyAkFbiQ93naPXkK+pQRRlqUIwW7zOWOABk1cIdcIIpLFOmnHMvs40CuGVzsY6oQoj8S9SjeoLkV/U1yHKliX1dk9ybQZ6q/1uWK46xrbLxbXJOwK+YKJJgquRhRndveDsyBS9D8Q4uJzpIulzYflEhIYIOJcs9sWHagzehWe5GsZoKtc1CJTaaxLcWgarix4JINTc38/rrr9Pf33/dG7ldsF2IVCZf4jf+6+9z984L5GwZRaFCgqrkyMKtmSiKjbKUKFWeJ69jFjNva7xe7iRte3AGQvMMaE4B88JVlS/8cieZaY1It8HP//kUke7GH1ZbwFg+yvlUjHPpGJcyrbXZnipaPTkGwwkGwnEGIjOEtK2JBxXCaYa3SLSqpMtTI2IO8VokX0V9devXWnCpRoVslWphGvWhGotBG861x6WvOIO/FtY+6TiRzra8dfVSqZyXNy7v4pmZ3cS9vlqSo1QGd8nG1iT0OkupSzY52DzNHW3jHG2dxK8t1skIQcXqIdWus4aLc6U2zhRiXNUjDYPRLjXDPtcce1zz+DCxhMQlLUJacSMJwa5SlqBpOuuzK4MqW1r2P5xrsCuzpKL+dt3jxbybiyc7mR6LggSKarFzYJb2niTFvIt8xk0+66aYdVHIuSgWXIjqAEkCIS0uS7JA85q4fSYur4nmsVA9FlnDew3CpFdIUvqWEaalEAJOZDv4RuIAC9UwB/8sn2w/TYd7dWXxpWf3cTrXTuyhOJICXgwOqrOcmejmmSv7WdhA/VM98ikXE+eijJ+LMnkuQmIkiFiyPz0Bw1GbBpN0Dy4QGVhAUm2mCyH+w+n3YQqFB1pG+GjnWcJamUQizNe/fg+Tk04vsH37Jvnpn36NcHht8n+jiFTBUnlxzjnu5itWI02yuLf5Ko+1XabTm6n8f7uB/KxMiiq3V3zOlm0yuq1QsjXKQsWskBsJUBC4JBtNslEkG1fl4pVNPLK57Bw4UozyVrqLtzNdDBeauDM8xX2RsZpl0bTl2nFXDYK43n0vBJxJtfO1q4eYqfSf2ghUySKg6bhcOjlVBUkiJJU56kkQdpUqtUYVBUnV8WvlZTbFTWz1GuRJxqmiuJEnjUUbn7Cl2md+navc9AtDqoktYKLkY8FYf31YUdcYSTjNcmczkdr9qmzR1jZPyuMiaTrHYEgrcn/rEDtvUoDLulAlUUv3XXX7tkmT3Y0k8a2HQFXxY0Gkfuu3fotAIMDv/M7vXPdGbhdsFyIF8L98/p/yy/c9R7zkwVpSI1VtNHc9p+spM8Db5XZMFFyY3OGeJqY6SsDskMYX/2EnuVmVpl06n/7zKYKxa6ehGbbMlWwz5yrE6kq2eUlRMfT4kxVilWBfeBbPFvc9WQuWJZEvV5MMPQ3qV76ieuWWqF6rDYzXgizZjYSrjoB5XYZzbrQlx5JSRxCq5KCBKFQe97jLPHjXCTTNYmi0i1MX99SeWyUb1eeuTDgkyrpDPLOWi2xUxmiyF7u1GyDMit+yqhjZAk/JxlO0cZWcbRYr/M/aYEe1Udp05PYScpPRYI2z0ypW3I0Vd0N5uZIoyTYHHhimtTeJbUuc+2E/s2NNy5633bEdCdNKmCoF+Wr8IBcLTiF2k1bg47GzHA2u3mxYCHjy6UPMdav4e51zRYsoMDHWyg9H9zTUPz1cqX8KrVL/JAQkp301tWnifJTklH/Z80JtRboHkvQMJukaTNLSna99r+qjzkvFAF8ZP8rrdfVTA/kkM093YBsqHk+ZD33oLY4eHVnX57A5IuWMelYiNgVLYzgfJVEK4FIsfIpOSCvS6cnQ5CqgSFbda9b579aBckmlWNIomRoloVJSNEqqRgmNkl29qJRE3e2kRmnWQ1s0y86uJE1qkWa1iF/W67ZNOMqLUsav6Hhlo6FHETgELGtWmrNaHgqWxmvpbp5f6CNZaaLtkQ3ui4xxf3SUQF3AhCQ7sd2i0pLiemHaEi8k+nkxsQtFEo4SVFWMltQZBTSdoFrGr5VxyxYnsh18cfoQNjIHAwl+seOdG2C3XIk8yXXKE9xY8uRgy8Mkrms3Lcabjxe9ZK1rJw+aluw0y413MDHfXCOAEoLOpnknNKJ1Fs1lgQ2XM228MtNPwXImWXsrcenRNXpr3nCspkLBtqqH2oiNrz5YcL34e0ukfvM3f7O2bNs2f/EXf8Hhw4c5fPgwmtb4Jf/P//k/X8dm3xpsFyKVz5X4xD2/R9euFLvunKXvrjlaenNOvY3sDNQRK3VDujZsAWf1VoZMZ5DaJBc55p7CV/kRS5x38YV/1EkxqdC6t8zP/dk0gZbNNZksmiqXMq2cS8c4n4oxXog2PK5INn2BeQYjCQbDCfqC81vWjXwrIIQzq5WvtxmuES2fK7kpb2DGbKMY3HWVf/ChpwH4q+8+wtnhnRt6veUS6G0WRkQsntEswJArrFxCMkHNg5aXUIpce7ZLsZHbdJT2MnKz3kieMg55shNuKEnI1YbJkmOxlCWBLFcGELKNJNvsOjZBtCeDEDB5op3MZNh5jWzXXutcN96WKwOA6nU+42Z2KoRRVpGEwBco07kziT9QRpYXnyctea3zvyp9x2TRsG4JQbmoUsy4KKZd5NNu8ik3uQUPIiehFSz6ds/wyC+cJbZj+/SSqUfBUvnu7D6eX9iFjYwqWTzePMTjLUO4Vu25A6Yp8XevHcYc0FHcNsKEVCLEKxf3UG1W2hlM8Xjfee7uGllW/2RbEjMjQSbORxg/G2XyfJR8aolCLAlae3O1YIjugRSh1pX7d60UdQ5wOdfMX165nUkjDICSg4Fkis88/BLh8Hp7gQkUycStGJi2VJllvbZCxBaSoGo9UNXSJursbYvXMuWCQnwqyORMiHgqxJzhoxByU2pRKUddq5JAYYFR0DDzKjF3jmPtY6TfDPD2F3aDLvG+z5zktkeuNrxGk0x8itM01aeUlzW+Nm2ZrOUmZ3rImp5Kmtry/28JiROZDp5d6CNeCTRRJYtjwSneEx2lpTKI3SpV6nrwo1Q3X0scQCBxe3CKT3Wc3sKeXauTJwsJcZPIU21btjJM4jp3kYwgoulkTI2JopfCGkFLtoB4somheDujMzGMuij0lmCG/vZp+mJxfG69UrstkGyJ6seo2wpvzffyTsqJS5exORSd5M6mUdzKjW2wvQyrqVBQ12T31pKoG02gqvh7S6Qefvjhdf1TSZJ49tln17+V2wTbhUi9/fJlfvtX/nuD/zrSUWD3XTPsvydB574k0ka9Y0DBVnmj3MmC7cwG7lYXOOCarVkwJk+5+dI/7qCUUWg/UOLn/nQaX/TaxGa958yM7uZ8OlYjVrPlQMPjbtlgb2iWgUiCA+EE3f7Uhi1ytxr10fL1ylbVZljUXQ2D9oZBvNw4uF9KDmRZ0Nc7TnfnDKYpc/r8XnTdtbgu2ZnBnU8HmJxpYnKmiXzJg+kVlDoszFUIVFQrsj80w/5wgh5fCqW6HfLK22EiMaw3caHcyrDe1NAvqk3NcciX4LB/mjZXHqlClNY7wBQC3tbbGTPDgOCoK8Eu7dq2sCpmJkM8+eWjjF5oAyAYKfDIx09z8K7xG6YIlfIqr/zNXt78/i4sUwFJcPjBcR785HmC0VvQ6X4F2AJ+lOrhb2YGyVZmX48Ep/l47Gxt4Loa8rrK964MoPQ4ds5Myssb5/ZQLDnrOdg6xWN95znQuqhmGWWZqYtVtSnC1IUIeqlxMKSoNu170vRUiFPX/tS6Gt6u1hrANGVeeOEAzz1/gHw35A6aWJVwnP2BGT7Vc5Je30rfJYEiWaiyjiobqCuoKxuBEGDYKhnTTdrwUjBd5C03LsmizZOnSSsC9aRoKUmqHk+LX1hLSCzoHkYmo4zNhZktB8i6XFgtMvhW/2K7LZMWLY9b2ExONzMx1YKRVxElmeP9I7zv0GlaQzne+P4unv7LQwC899NnOf7BYRSsOuKkLyPatpDIWS6ypoec6aFoa2xsyGRzNtfO0/N9XC1FK+9YcDgQ5+HoCD2+TC3k4FbghYWd/O3sfgDuCY/xsdi5Lfg9Wpk8mRXl6eaSJwdbGiaxicNGCDAshaKhUTI0dFNFtmRmS16mi34Klft0U0M3VHRTpWxW7jOc++vJdsBTdEIj2uNE/IutAhyzRSOJqkdK9/LybD+jeae206vo3N1yhYHQ+us6N421VKj6eqhbGCpxswhUFX9vidTfd2wXIgXwL//6n3AgP8KbP+xm9FRzrYkkgD9SZvddM+w5PsOOwwuormuTnbjp561yOzoqGha3u+N0qot1EGNvevjyr3Wg52W6byvys38SxxO8serQTMlfswGeT8fIGo2RgAG1xEB4hoGKYtXmyW0re9T1YjNvpb5eShISHlPFNBUuXe3k9HAPZ4e7yZec/ViO2JS6LSxf3QpMwJTp8SU51jbO7W0TdAdS19yvhi1zodDKyXw75wttDV3v27Qch/1xjgSmibmuv8eNEHBSb2PEdAZXh1wJdmupNV9TzGs8/zcHeOuFfoSQUFSLe564xH3vu4DLfXNmFVMzPp7/0gDnf9QFOIEVxz84zPEPDW2qUfBWYbQY4SvThxitDFZjriyfaD/DYGD2mq+dKAb5Ua4bxWdj2xIXr3QxPNaOKtvcU6l/6gqmKWQ0Js87TW8nzkVJDIewrcZZU5fPoHsgVVGbknTsyazr3LUU9eEr1WbVk5NRvvGNe4jHnfd44MAYT3zobV7I7uTJxN5a/6kHWkb4WOcZoq58jTStRJycWjvFCTyoqD/XUohKpsrL87t4cmYfM5VJIkWyubtpjMfbLtOzIolrRMlWmDd9zJs+4rkA05kgSeGl6FVBWeUgtQWunEVElIj5c3Q3pWnRijSpBRLzEb578jBnJ53vpCzZHO+/UiNQACef7+G7f3IbHq/OR3/lDe56cASfoi/r5SQElGyNvOUiU1GdBJubGa/ub8Ny9uNIKcJzC31cqFhNAfb5Znmk5Qr9noX1z8RsAYSAp+Z389T8bgAeil7hQ62Xri86HBq+Y43k6Vb9qG1NmESVCJUqRKhKiEqGRtHUlt1fe9xcXLavU2FxqQZ9sQT97dPEwo2/Z9UE4Sp3vdYcydV8Ey/N7CZVqRttc2d4oG2Idu8NchmspUJtg1CJ9RKojdQ/rQc/IVLvUmwnIvWvvvVr/IOjLxAveSgW3YycaObK660MvdlKOb9oo3R5TPrumGXP3TP03zGH2788EOK80cIlwym2jsgl7nJP4ZcX46VHXvHylX/WjlmS2XG8yCf/6zQu/839OtgCJgthzqbaOZeOcTHduqwbe7M7z2A4wWDEqbGKuJZbdd4tX+LrOdHU95caHuni8996BN3QEAhMj8DssCg3CezqwKviqe71pLgnNsodbRO0XSOmHJymrBcLrZzMtXOu0IZe17SyWc1zJBDniH+adtfWE1wh4IzRypDhWFAHtVn2uRaWPc+2JN7+4S6e/5sDFPOOQrL/tgke/cQpoi23xuc+eTnKM58/wOQlZ9sDkRIPfvI8hx4cR76Jjoys6eJbMwO8mtoBOGliH2i5yMPNV5bZspbCEhI/SnczozmDiVzew9tn+xC6wsM7L3K7f5z0JR8T5x3VaX4isGwdgeaSozZVoshbenLIGw/abNwuyaZcSZNzmyrCUHnuuUO8+OIgti3j85X4qZ96g0OHxmqvmS97eC3ZhSybHAhNsy8YX2bZEULCtFVM24Vha9hCwaVY66qRSuoenpndzQuzfeQrzVL9is5DrcO8t3WY6JLzlBCQsdzMWz7mTa9DnAwfs2U/RXmNOpCiQEoI/EWDZrVAV1Oa/u4F2sP5ZZ/nyGzLNQkUCBLnQiSHgwwenqR//wzKktqfkqVSsF01AmUIFdNWsK9jVrxKKOrDJaqYKgd5PrmTd7Idtf2+w5PkvU0jDAZmbrhDQQj49uw+XkjuAuD9LZd4pGn1dMc11rRNyROsFCahm2oj4akQoKLeSHiWEaXKc1fre7cRyJKNT9NxqSayYuHSTFyqiUs1cKsmLs3ApZrOcuV+l2ri0ky8mr5iwNZKVr71wBISp1NdvD6/s5beuC8U556WK/iXNCTfNNZSoaChye6tCJVYbxLfVhOoKn5CpN6l2K5EykKt1HXYmLrM2NkmLv+ojcuvtZFbWFRxZNWm9+ACe+9OsPuuWbSoyRvlTuZsZzDUpyY56Jpt8Hhffs7H1/95DEuX6XugwM/8/+Jonlv/VTBtiZGcE1xxNh1jONuMtaSDeZcvVSNW+0MzeK8jrrceN/rdb/Zkk8l7ODPcw+mhHmzZ5hd/5ilkCb701IOcWNhBOSLQNbmWwIeAiFrkvbEhHuwcJuK+do2IKSQuF5s5levgbL6tId4+qhY57J/mSCBOlytzwyeJhYALRjMXDMdqsU+bq6VKAoxebOXJLx9hZiICQGtnmid+9iS7BmZu7IatA0LAxdc7eO6Lg6RmnBCFtt407/30WXYdmruh/9sSEi8s7OQ7s/srdiu4KzzOR9vOEb5GaqYQcDYV46zVgqvSmHh0oo3ESBMHzGn8F8pMn400nHeqaO7J1dSmnsEkobbSln5HBIJiXYPqmbE2vv71e5iZiQBw6NAoH/7wm/j9xZrSpMkGirS8EWnG8DCca8WvWMRchUrT88UnrSdsYqwQ5snEXl5P9tT6B7W5szzedpn7mq8iy4KFKlGqXC9Ulk3WGHguCJgCpiBQKhPz5djRnqZvzwItvWv3N1ubQGWdgAjZqXHySCbqklo23VYoWC7ylouC5UJIErLkKNKGrVy3clAlFosWspUxb3h5IbmTNzJdmJXzfsyV4+GmK9wemt7COqVF2AK+ljjAa+keAD7Sdp4Holev8ap6rEGeKoE/NwqmLVEyXDWSU9BdK6hALooVwlQ0XBT1xeebW0CEJITT01Ez8FQuXk13rtX6+yrL6uJys6eIVzGZ1jcXb74SNkui6lEwNX4018f5jNNbT5NMjjVf5UhkYtmkw4awlgoFtzxUYj1JfDeKQFXxEyL1LsX2JVJKLSWo/kMSNkwPhbn8WhuXf9TWMCvsHSzS9S9mkAMCRdjc7onTrWYb/sf57/v51v8nhm1K7Hssx0f+UwL1xmUlXBfKlsLFTCvnUo4N8Gq+MdFNxmZXcKFGrHYH59BucXDFagfURk46c6kAp4d6OT3Uw9XpVsdKJAkMPzz+njd49MBpyqbKf3jrA0wXI5X1CwZDCT616216Ate2I1hCYrjYxMl8O2fyMYr24pcgrJQ4HIhz2D9Nr/vW9Nm4pDdx1nAsP7vVBbpzeZ756mHOv90NgMen89BPneWO91xZtcfTrYJpyLz91E5e/uZeSgVnv/YfTfDenz9LS/e1VcGN4mK+ma/EDzFdds5fPZ4Un2w/Tb8vuebrLFvirXgPb2U7ae106uTKusr513cg/0DCfdls+N7Kik377kwtirxrIIUvtPEmyuuFQKArJpYswJZ4+ft38MILBxBCpq11gZ/9xA/ZtSOOugpxsoWMaWvolsabyR38xdVjNevO/uAMP9d9ssF6txqRsgWcybTzZGIv57NtgECRBX3BOQ5EEng1gwXLx4LpJWV5WPVoNwVM41ymQJoSuJIWnZEM3XsydA1m6RjI4gmszxI6OtvMd04eaSBQd/UN85HbTtAbTuJbJSAik/IwOR0lsitPwXYUp+r7V2SBZUuYQsGw5dXfyzrh2IJs7EqgwnqQNV28nO7l5VRvrZF5RC3ynqZRjocncK8RkLIRWELiC9OHeSfbgYTgE+1nOB6eXMcrt4Y8Wba0SHZWIkB1t4tLbpcMrSFgYbOQELjriI63QnaWkaOV7tMMXMry4+7acOLNLSExUfKS3IKwpqqVD0Cyr23lWw8SxSA/nN1DouScV8NawYlLDyx3SayJa6lQUBcqcfProdZj49uK+qf14CdE6l2K7UqkhKwgS/Y1T8rzEz4uvRbjqiuE66ESkgzlMY2p/7ONoFJm73GnrqpjT5ozfxfg2/9LG8KWOPDBLB/+dzMo104X3TbIGi4nuKJCrBJLeoS4ZJM9oTkGw3EGwwl2BFLXVUB+syAETM1GOT3Uw+nhXqbnnJoPIQv0AGhtJXIeFRMZSbH4jTufZqBpmul8mP/89uPc13aVD3RfWNH2WA9bwJVSEydz7ZzJt5OvI08BpVyredrh3h6BH8NGhFO601gz+UqUya91IQG3P3iFh376LL7AFtktbhAKWY2Xv7mXt3+wC9uSkWSbow+P8cDPXMQfvv5AigXDyzcSg7ydcQbSfqXMT7dd4N7I1TU/v4Kh8dzlvbw42U///mlamxziPTcRZvyLXXhPFZEtgctj0rnfqW/qGUzSsTeN5r55ExXVqHMh4Mmv3Y1kSuzpm+Tg4AjRyHJCatkKpq1hCg3TrtZgLO6IkqXw3fh+vp/Yi1mpn3qw0n8qpJWXEamSJfP8fD+vpHrJCxeaauFWTbyasdhnbAXIRRsxAWJSQppaVJqYE7T2FOgczNJ1IEvnQIbma6hNK8EhUIc5O+lMKjT7svzM7W/ynt2XaPbklk0mWUJiIePn2W8NcvqtHrxtZT76P71Vm4CQcEJrEGAI5bptfPWQJYFd6Ye0MQh0FF5N9vBCclctLMWn6DwQucr90TF8yuZJvGHL/OXUUc7l25Cx+XTHKY6G4mtuz1LypFsKubKbgu6iYLhqtrii4WogQEtVoipR0reACAF4VL2RCGkGXpdeUYZM3KqBRzVXJkLq8t5fS972lkJCENlgvPm1UKuHsitH+xZusxBwMRvj1dm+Wlz6Dv8897cOEXGt3ZcOuLYKdQvrobYTgariJ0TqXYrtSqSkSmHFtT6gslB4s9zBjOVYiQJxg+QXI1w90YxtLv54ub1litNFRDbPwcdn+NBnZ667duFWY67k41yFWJ1Lx8gY3obH/WqZ/eEZR7EKJ2j3ZrdNcIVtS4xOt9SUp4WMQwptRWCGBGpbmYymVXpyCVAFsmZjSxIBrchvH/s7wu4iwlTxidVPwLaAq+UIJ3MdnM7HyFqL9iy/rHPQH+dIIE6fZ2FbkKcqhICzb3Tzoys7afrgLJIMxgUPD8ZGae9ef6LfdsDCtJ/nvjTIpTccq4jLa3DPh4e48wPDaJsIXjBsmafn+/n+3B4MoTqEIDrKh9ou4F9lcJmZ9XD2TAcvxncz7GmltSPF4f2juDQLy5SY+H432R8GGegaZefBeboHk7TtzN0itU+AZIFawi2ZWEWFoH/5JIFlKxi2Q5pMW0OsZZ2rw1zZx1cnD/FG0rFzeWWDD7afpz8yx6zlZ7IcYqIcpoy6+vlCCLxlA2XWxhhW0IeURcKUdQYe7oBJ56CjNHUOZuncn8W9TrVpJVQJ1MhMK0c6x7m95yr377pMLNjoOhACirZG3nJTsFyMDLXwhc/eR7mo0Xckwcd/8w1UzfneyZKNLDm1S/oW2PjqUR8usZmhWDXRVLcU3sx08dzCLuYriqJLMrk7MsF7oiNENtjwvWwr/Nnk7QwVmlEli481nadLyVE0XBQMrWZ/a1CLKgSpYLgoVB7Xza2ZhXTXqT01W1ydTa6eJDnLegMhajxvLw2TADYTDnIDDvv6ePPxoo/iFlgLt8LKtx7olsKbCzs4mezGxolLPxKd4FjTVVwrxaWvR4WqkiiLm1oPtR0JVBU/NkTqr/7qr/jjP/5jRkZGePXVV9mxYwf/5b/8F3bt2sVP//RPX9eG3wpsRyI1o7sR0vKi3KWYt7y8Xu6gJDQUbI64EuzQnNnlcl5l+K2WWl2VZS6etNw+g/5jTljFrtvmcPtuXbrYVkEImCqGnPqqVDsXMm2Ulsx2NbkKtTTAwXCc6Drqh7YSpilzebyd00O9nLnSTa7gED9LE1hhC6XVIKPU94ERBH1FdFmhXCl+DWkl3td5gYc6L4KrvKynDjj7Yrwc5mS+g1O5GGlrkWB6ZZ2D/gRH/HH6vQs3pO7gejE9FuGpLx9h7LJj7et4T5zmn54BSaJLyXDMPb2tSN96MXa+iWc+f4D4FUdxDDUXeM/PXuDAvRPrUiWEgNO5GF+LH2TOcCZOdvvm+WT7abo9i3ZOYcPchJ+Js07T2wvTMSa6o+R2ulA0mwN7xujtdGq2CpNern5lJx2hND//ay/ivklph0veWSWKvJqopy9Tkm3bCYawUeuI0/UN+k9n2/hWYpCSrOFzl1cMBRECvMKgKV9AnhQUL6ik33JjjStI9ZxVErTsLFRIU4auA1maujeuNq2Eq7NRLkx00OQpcnv3KPvb4g21GkJA2VadGifbTcFa3DezE0E+/wf3Usy56dk/x8/+1mtobmuZjc+05WsGbGwEa4VLrBuSs40IRw+yhMSpbIxnF/qYqthYFWxuD03xcNMIMbeTHioEpIo+ptMh4pkwiWyIvO7UB+VNFwutEpbH6atlX/VD/vqUIZdi1sjNagSodp+rkTS5VfP66m5qWB4msameUDfo50CVbEKKSdLQGC/50K+TsC9a+W48iapHSvfy0uxuruadIC+vonNvyzD7QolFQnItFQoaQiWkDau1m8O1CNSNrn9aD34siNQf/dEf8bu/+7v8i3/xL/jsZz/LmTNn6Ovr48///M/5i7/4C5577rnr3vibje1IpOYMF5ZQVz0OhYAhM8pZ3amfCUhljnumCMnLrU4vfy7C8/+lGcnnI3aHRrEcamiKqWgWO4/Ms+f4DLvvmsUf2d52qfXCEhIjuSZHrUrFGMq21AqYq+jwpheDK8Iz+NWtrfcwLZl01sd4opnTwz2cG+mirLsQCGw3iKiJaDbJSo1NSrsDCwR9JUaLUYqVRLAmV54PdF/gwbYrtRmwqvUJ4aSZTZcjnMy1cyrfQdJcJE8eyeCAf4bDgWn2eOevmd52q5DPunj+Wwd5+6VdICRUzeS+91/knscvMiP7eKPciUCiQ8lyp/vGFJ/faAgbzr7SxQtfHiAz78yut/cleeTTZ+kdWN17nyj7+Wr8IOfyjtUxrBb5WOwcx0KT2KbE9FC4FkU+eT5KMa+R2+kiedBHKVapMwnlODY4hMdngIDECzHiz7Zz6OgYH/n511BumvrkNL+9VhR5ydJ48819tLQWaO9Ks6mZ9SVImR4ulZu5XGpmXA83kAfDlCmUXZRNFX9Rp+NMBulJm+zU8pANT9CgcyBL54EsXYMZOvblrkttaoTALZvoRRXblNgVncOjNYbq6LZSCYdwVCdrhX2zEPfz139wH/mUh47+JD/3r17B47WQZfuG2PiqWG+4xLrWJYtlfaWEgIuFFp6d38Vwsbl6L1FTR1tQSM4HKZkr1N0oNvKuPJLXRpgS9qgPiiqa4tg1fZreYImrhiM4y4vEyLdENdoaIrR51HpCIW0+0vwGvgWXZBNQTGZ0N5NlTy2k5XogbpCVb70YzTXx0uxu0tW4dE+GB9suE/NU1OH1kKibFCpxrSS+7UCgqvixIFKDg4P823/7b/nIRz5CMBjk5MmT9PX1cebMGR566CHm5m5sMtWNwHYlUqZYeZZMFzJvl9uZthwrWLeS4ag7jrbCQOSF/yvKy3/kBDQ88OsLPPAbSYQNU5citbCK5LR/8UWSoGt/ir13J9hzfIZoxzo8wO8SlC2Fy9mWWn3VaK6pYRAlYbMzkKwRqz3BuZUl+wqEgGLZRTLrJ5nxk8z6SVWuq/dl897a/xAILC9IzQZmxCbP4g+9hM3eyCwHWqZJWR5emdtZU9Niniwf7D7Hva1XUZfUPthCkJVBUw3Shpc/Gn2oVpztkkwGfTMcCcTZ6731IRxrwTIl3ny+nxe+PUi56OyXA3eO8cjHTxNuWvwOxk0/r5U7sZFpU/Icd09uW1J4LRi6zBvf6+PVv92DXnQ+s73Hpnno587R3LHYl6tkKXxvbi/PzvdjIaNg81D4CgcSc8ycCzFxLsr05TCm7kwSWJpEZp+H1EEPRsA5h6iSyXsOncfbXARJQirBpb/cQ/5qgLsfvMgTHzlxgyPaBapkNBCnZbOhAjJ5PxeGuuk7NIGOwls/PMCdR6/i8Wx+gkMISJgBLpUc8jRjNka2h4olwpMlpLOCy3IzadlH6JUi3lFj8ewgCVp3FRpselulNlW2Ek2yKk1wnWS9peeebNlN0XZhyRJ5y71sUmgp0nNe/voP7iMz56OtN83P/+tX8Acdpc+spPFtxYB2KTYTLrHm+ipNxwtljelMhOl0mOlMmHgmxHQ6TF5RkVvLSOFFoilyCsy6aJWLdIbSxEJpFLfFy1YnWeHGJ+l8quUMO3wpfC4drZJiaFa2+Uan7W0dqiqUE1zhbPcG9/kNPn16ZQuPbDFd9jBd9myJ6ikqRKDW3/gWwRISJ5PdvDm/oxbYsj80zd3NIyvHpdfXQ92kUIm1kvi2E4Gq4seCSHm9Xi5cuMCOHTsaiNTly5c5fPgwxeK7b+C9nYjUv/7bf8wvHn6JGd2NtYLfP2m5eb3cSUG4kLE57Jphp7o8VU0IeObfN/Pan0cAePh/nufeX0ktW58QMDfu5/KPYlx+rY34ULjh8ZYdWfYcn2Hv3QlifdunvmgrkDNcXMi01eqr4sXGz16VLHb5FujWMjRZRZSC7BCkvJ9U3kc676NsqSBR6Z7uzJItvS3LFlrQpOSXKKI1rH+wOc4dbePsDM/x0kwfLyT60SsWvm5fig91n+OulvFls/UJ3c/JXAen8u1kLBe/tuNFoq4CF3MxzqZ6OOJPsM83i2sbk6cqhs/GeOorR5ibdvZ/rCfJ+z51kt49K0/KzFg+flTqwkKmRS5wt2di2STCjYRtS1yZb+HiTDsuxaQtmKUtmKHFn6sNyDaCfNrFD7++j3ee3YGwZWTF5vZHR7n3oxc5K9r4ZuIAadNRRGILOdqe0sme9i3rSaO0W5TuVplojmBIznco4CrxUP9FQh1ZMjiqpzSpcvK/D2KXFd77gVM8+Ni5G3Bc26iyWbPpqSsm6kk1i16h7OG737uTk6d28iu/+S2CoSK5hQBtwc2p45aQGNfDnM+1cLnUTF6uU3xtgXxZIF4D3gZphf7EnpCjNlVteh37c7j9W2t5VCSrEkmu41fKyyY68rqLk1PdLBT9tLekCfjKrHe4k0u5+es/uI9kPEBTR45f+N2XCEdLN8zGVw/5OklU2VRIZBxLnkOYHNKULvlWfL6EoDmQoymapRCCuOyrvbdud5r3Nl+h053lc+N3kjS9RNQi/6z3ddoqTcTffeTJQU2FElKd8reB7b8Jp0y/YqIgmCx7mN1G8eZbCgnyhosfzfVxIdMOgCab3Nl0lcORiUXXxE0OlVjLxner6p/Wg3cjkdqwMXjXrl2888477Nixo+H+73//+wwMDGx8S3+CBkgsjzsHh/CMmBFO663YyPgknePuKSLK8iJbYcP3/7cW3v6iQ4oe/+1Z7vzFleOwJQlae/O09l7h3k9eITPr4fLrjlI1dibK3NUgc1eDvPqVfoItRScB8O4Zeg4kb2gRuhDOD5xhKc61rdRmUU3bieWtXlfvcx5f/pzqeozKcvWxsqlS1B0bj2WqBC2DsqxgyjK2AqascDnfymVaKxsFuABVgoBU+ZDWsw/kygvBoxgcbpnijrZxDrdMkjU8/N3kAH959fZav6xdgXk+3H2Oo02TDXVAs4aPU7l2TuY7iOuLaYWqZPHWwi7eGzvLvkCCg965hnqp7YqFGT8/+OoRLp3sBMAXKPPwR85w9P6RNdWRNqXAvZ4JXi11MWf7eLnUw72eCVzSjSONed3FuXgnp6a6ODvdSV5fbvWSJJsmX4G2QIa2YJZYMFNbbvHnVrX/+MM67/tHpzn2+AjPfnGQ4RPtvPJOH99t30W5x/kCqPOC6N+ZeC5oZCpkPNJeoHsgibLf4qI/xulUZ60upiOQ4tG+C/S0z3HWbCWDGxWL0qthzvzdHiRJ8KFPvMGd9w1vyf6RsBvUprWiyE1bqzW/BYnh4Rjf+MbdpFJ+fuYfPEswVARLojW4PuKgF2VSU15mJn0Ml5uY9gVJdXgQ3sqXSAZKAk6D9KaAd4Ccs+ZAS5mmo0WiXSWi3UWaugt07MoS6DBWrsC+DsjYlThyhzgtjfA2LJkz8S5OTOzgxGQP4UCBxw+dY3drlemtb3sKWY0v/eE9JOMBwi0FPv3bLxOKlDBspdIT6sYNn5wJH6liLVsbpiWTyAYrRKmiMGXCLBSWN3muIurL0xFK0x5K0x7O0BFKEwtmcKmL+zJpeHghuZPXUt1MlMP85dRtTt0QEq1ann/a+zohtUzZUt915MnBYpiEZSubC5O44QREEFZNTCFxteTbknhzZ61sOxKFAL+q80jsAgfCk/xwZg8z5RCvzPVzLt3B/a1D7KjGpd+EUIl3K4F6N2PDROo3f/M3+fVf/3VKpRJCCF5//XW++MUv8od/+If86Z/+6Y3Yxh97GELiRLmdScthxB1Kltvd8RUHjrYF3/nXrZz6ZggkwQf+YJbbPpFd9ryVYNkS7iaDfY/H6X90hmzGw5XTzYycbmHiUpSEFWT6VIjnz+5G81u07cnS0p8j0lPAlqU6MrNIWhoJ0OqEqOF1tnxN28oNg1W5GMI52ygCZOE0u5WoHDEVP4EQaMLGhYVPNvDIFqpsocn2smu/VuZQ8xSDTXFcis1kIcRfDB/jtbne2uB3X2iGD/ec5UB4sWh1wfByMt/OyVw7U/qiWqhgs8c3xxF/nAP+BB7ZcvafYmHIFrKQUG5BQ7/1oFxSeem7+3nt6T1YpoIs29z58DAPfOgcXv/6LFwtSpH7PRO8XOomaXt5qdTDfZ4J3NLWqAZCwHQmzOmpLk5PdzM819qQZubTygy0TwMwkw0xkwtSNjXm8wHm8wHOJxrXJ0s2Lf6co15VyFX1OuIuMDsSZOJ8BBuTzPsN0repIEtIOoReEoR+aBBrT9P7wSRdg0k69qe5rLfxgysDDCdbIeX8n8GWKR7vu8Ce1jgn9XZOmU49VRNFrn5tB8MnulAUi4//4o84cHR80/tHwmpsfrtCXx/Llmsx5KbtWh5FXlL5/vdv54039gBw70On2HdwDAR4bKVhsGHqEqkpD8lJLwvjXpKTXpKTHubSXvI73Yg7JDgAuOqGCGkBJ8B7waA5l6c5ViK6v0j0kSJN3UUinSVc3sZzaGP8+fVBQuCtKU46niV2RiEgo3t4Y2wXT104wOnpbgxL4a6+ET5xz5u0hdZ33q5HuaDy5X9/N7PjIQKREr/wr18i0FSmbGmYVZn8BqE+XKL+/1i2xFw+4ChMaYcwxbNh5nKBVRMCg+4i7aGMQ5hCDmHqjKTwuoxrEp+oVuIjbRd4tGmYl1K9vJzcQcF20eHK8pmut/BKJrq5NbHjNxdbECZxE8jHjYg3h21GourDJOq2pd2T5Wd63uZCpp1X5/tIGT7+buowO/1z3Nc8TFS9/pYXq+EnBOrWYVOpfZ///Of5vd/7PYaHndnMzs5Ofv/3f5/PfOYzW76BNwPbxdqnWxb/8lu/zgf2niRR9lC2NXJCY1L1Y8gKCEGgZKGWqrG/dWqMkNENhaFX/cxPuUGTaT+q44uJOpKymorjvH4rY2+3Gqpkoco2mmyhyRaKZC96pG0QloRlyVimgqkrGIYCtqMaVX3U0rLb4FINAp4yQU+JkK9I2Fcg4i8QDRRoCuYI+wu4FQtZspkuhriUaeVCOsalbAuG3fhjHPNkGKwkAg6EZwhoy21Jo7ko3x4f5K2Fntp9h6NTfLj7HHtCjpUtZXoqylM74+VI7XkyNru98xwJxDngS+BTGovPnealFpZsIwnwmNpN7UlxLQgbTr3Wy7PfOEQu7QRh9A3GefxnT9LasfFBI0DacvNSqRsdlaBU5n7POJ5NNus0LJmLM+018jSfb5wZ7wylONg5waGOSfpbZpelpmVKXhLZIDO5EDPZIDO5YI1krdk40xaoWRMlqmPuNqk48AhdMQg/Bcw5A5GuPQvc+6mLXHE18/TIfuaLzvapssXxrhEe77tAdyhFwvTxtt5BqRKLvlskeflPjjA11oLLZfCpz7xE/77EKhuzEgSyVFGcJN1RnFawjFZ7OBnriCK/fLmDb37zOOm0U5/58CPvcO/jJ0CCzJUA46+1kJz0sDDhJTnhJTPjrvhlQXQAd+CQp91QL9u6MiZtyTw7xQL9zQs0d5U2ZMlbrSHv+iDwyCY+pYxf0fHK+rJkybKtULBcjKZa+PKbd/L6SD9QbaQ7wvsOn94UgQIwygpf/vd3M36hGV+wzC/87stEOvOYtnLDbHxVOL2iYDYbZLrOkjedCTOTDWKtopB7NZ32ULqiMlWJU5qAe/m5s1or5YxYrv1+pMr3tmhpXMi1stOTxP0usDqvhOsOk7hJxONGxJvDNiVRsOZ+LVsKbyZ3cirZVYtLPxqe4Fh0HNcWNZReugn1BGo71j+tB+9Ga9919ZEqFArkcjna2to2u4ptge1CpC7Mz/K+L/1l7XZv2xyHd11FUQTFssYbF/tJ5la3PWwlJGy0CnFRlyosko1dlihnVEoLGlZRRrIEkgWyLQiGS7S052jtzOEPluuUmeo6lt62Gp6jSDZ6SSNX8JDNechkfaRyflJ1oQ754nJr1VLIkk04UCASzBMN5YkGK5fKciSUx+Myr7melaDbMkOZlloPq5FcU0MUs4Sg15+sEStVsvnO5ABnUh21x+9onuBD3efYGUiSMd2cqihPV8vRhvX0exY4HJjmkD+xao+gKgSCkmogJJBtCbelbgsyNTkS5ckvHWVyxEnYirbmeOwTJ9l7ZPq6HVQZ28XLpR5KQsUv6dzvGccnr+9zTRa8nJ7u5sxUF+cTHQ0NMlXZYl9bnEOdExzqnKTFn19jTasjm3Rx8UyMy0MxxhJNzJcDGAEVI6hgBBQIWsidRaSKOiJKMvaUF/Iqmmzis3X0eRXDLVNukhGqs8MCWomHd17i4Z2XCHtKWELirN7CsOmEywSkMvv1JN/6r/cxNxPC5y/xC7/2Il29qycDOhDIlShyrZao1zgAFQIssRhDvt4o8nxO49vfupPT53cB4FFK9FhXeeSfnKS5L8/YG1H+5n8+WiNNUFnsB/m4QLoTzNbGwVlMzrLfP8ce9zwtauG6vk8bI1ICl2TViJNP0ZelSBq2TMF2UbBc5C03Q7NtfPfkYc5MOI10t4JAAZiGzNf+412MnG7D7TP4ud9+leYduRti4xMC0iVvXehDVWkKr9pg1qUYyxSm9lCakKe0oc9LkZ2YtmupUnJloq1q63732fequM4wiZtIOlTJJqQaJHXXlsSbV7FtSFT1K7SegIu6eqhkycdLc7sZKzrnZZ9S5t6mEfYFZq7rXLVaEt+7lUBV8WNBpP7Nv/k3fPrTn2bXrl3XvZHbBduFSI2kkjz+hf9GwF1ib+8U7S1pZ/uyXiYnm5GEVFNk1Aoh0SQLRdhced5D5qqCIiwOvT9L++5ijZwsKjnLSUv1MVWqPEdxltcb5yoEzI4GuVRJAJwZadx/sb4Me47PsOfuBK07ckiS00spmatLuKu7TlUS70zr2jNZbs1wSFEo5xCjYKG2HA3mCQWKNy2WNm9qXEy31YjVVDG84vNkbI63jvGh7nOE3SVO52OczHUwUorWBm4Sgp2eJEf8cQ754wRXSv9ZAzY2JdVcsb/UzUY25eG5bx3k5Cs7AXC5De7/4AWOP3K51hB0K5CzNV4q9VAUGj5J537PBH55Oem0bYnRhWZOT3dxeqqb8VRTw+MRb4FDHQ5x2h+L41Y3RrSFgFTcx8S5Sgz5uSgLU/5lzwu1Fmm5LcPYnX6GAw651LDYYeTQ0jKzuSCzuSCWJGGrIKrWUgAbZANU03YGp+EMbc1plPYiluY8aZeapD1Z4vN//BCZlI9wJM8v/tPnaY2tNFhfXxS5JdSK2uTCtFVWq8sQNmTnXCQnHAvewoSH5ISXiblWZkMdCJcKQuCKZ3GPpbjvVy9zx6fHKKZVvvprx3C5BeHeIsphQb7fxWxTgKK8aA+SsdnhSrHXM88ezzxBZevaNVyLSKmS5Vj15DI+RV8WEGEJiYK1SJz0ygc3OtfcQKAkyeb4FhAocBIvv/V/HePSmx1obpNP/NbrxPak2IphVK7sYjodWVSZKuSpuErNiyJbxIKZBrLUHsoQ9eW3pO/btVQpR4Vyvru6pSyzGb6bcF1hEjeZcNyIeHNY7BUl2dx6ErUOFar23CWhEkLAaKGJl+b7SVfakrS70zzQMkzMndvw5qyUxPduJ1BV/FgQqSNHjnDmzBmOHz/OL/zCL/DJT36SlpaW697gW4ntQqQA/tfv/EM83UkWbC8gGNTm2KstrDpzUc5JfPWfdXD1dS+a1+YT/zXOrntuXXJiMu7l7KudXDjRwdRUFMulYHkULLeMFJQQPomyuHbhqYQg6C/SFMo5BClYJUwFIqE8TcEcHvfyCOXtgpTuqaUBnkvFyJpu7msd5eHOy8TNIKfy7QwVmxsGazvcSY4EHPIUvk4vtSlZ6Gqlv5Sl3vR6KdOQef2Z3fzwOwPoZWcQfPieUd770TMEIzemCXLBVnmp1ENeuPBIBvd7xgnKBkVd41yig1NT3Zyd7iJbXlQzJQQ7m+c41DHJ4c4JuiPJDX2nbEtiZjTAxLmoczkfJZ90L3tey44sPYNJugdStA+keEvu5Ltz+yjbjv3u3sgYP9V2nqCqY9kSJ+I9PFWtf6qgyZ3HZxokF/yUVa3i4RDs3BVn7/4JZEVQLqucPtlHZs4PORm5IBFUSrz3gbPsiM0RC2bxu0qosokm6xXiZCKtQJxqalOlzqn+51kIyCe1RbI07qnULTm1S2a5rjm0IlPaGcVoc9R0uWQQy03Q2ZZkx/F59n9kAkmC8ryPSTXK5XILV8pR9Lr2Dy7JpN+9wF7PPH3uhU3bN6+FpUSqGhBRjSVfGhBhCyjWFCdXpfXA4n66kQQKQNiCv/uj2znzcg+KZvHR//lNeg5cS3FcjpKhOmSpQpSm0xHimRDZsnfF58uSTWsgS0fYseW1BTN0hDI0rxGqslWo2kqXEt2qlc8WMrqtYN+kJqdbj8UwCcfGB+sOk7gFZMMrW7gr8ebxLYo3h21IotabK1UpN1gpVMISEu+ku3kz2YshFEAwGIxzd9Movmu4TWA5WZKkvz8EqoofCyIFcPbsWT7/+c/zpS99iYmJCR577DE+/elP85GPfASfb+WI0u2M7UKkTi2c4HPD/xFVtcGCPjPDYDixaqRyKSPzpV/pYPKkB5ff5lN/Mk3PHTdmkFqFZUmkcz4W6nsmZQIks76amqQb1y4ulWwbr6zTHMnR3pGiJZpzLHgV6104UEDdRJT0VkEIsCsZiraQnfOikByPupAqjy0uO49VXlN3X/V63vBxKt/O5WIzdt2PYrc7zRH/NIcDcaLq1n52ZcXEqjTe9Jga8k04zQoBl0938IOvHGZhxkkW7Ny5wBOfeofuvo0P8DaKoq3wcqmHrHAjWTB+rp1zY90N9X8eTedA+xSHOiY52DFJ0HNt0ioEFNIu5sf9zE/4mZ8IMDcWYPpyGL3YaGdSVJv2PWm6B5J0D6boHkjiCTjK1rlcK1+NHyRRSV3c6V3gZ9tPs8ObpmhovDTez9NX9jNXqX9SJIu7u0d5rO88PaFUbVsunYjx9FMDBD6QIdTvWA6zsz4uX+hmJh2m/ifVrersbZ1mMDbBQGyCPa1xtCU9ikxbxrBcCJw6J0uogEQxrTp1SlVladJLctxLcsqDXli97ktWbMIdZeQuF5NqN7rtQkJw7LZLvP9DJ3B7LASCguqQuNFCC9+eO9xwbATkMns88+z1zNPrSt2UfmEyFkGt5ATIKDoe2VwWEFGytRpxKtquFQeON5pASZV1fve/HeXEszuRFZsP//O36btthSz3OuimQiIbWkKawqSKy1XTKpr9OTpCKUdlCqfpCKWIBbO1pDzTlm+qdW65KiVqlkrDljGtG18TdmNwHWESt4hoBBQTeYvjzasQskOgblmvqI2oULChJrs508WrC7u4mHPCgFySyV3RqxwKT63YZH4tAvVu/KavhR8bIlWPl19+mS984Qt89atfpVQqkcmsHLO9nbFdiNRzw2f50sy/J5/zcPJEP3rZhaaY7GyaZ3frDHtaEvS1zOHVDApJmS98ppPEOTeesMXP/ek0nYecAaEtqA3yBVKNBDQM8lcY8AsBRV0jXfCRznvJ5r2kC16yRS/Zgods0UOh5F6UrqtpDyvc9rgNvJ4yXo+O16vj0gzMvExxXiOT8GDpknMykEHWbELtJSIdRYJtRWTVmdBZtn1LttVmOcERLH9Pdv1jy94/Dfuk+rwb+UPc6cpwJDDNYX+cZu3GqYdOvZSJkMRNqZeamw7y1FeOMHzW6aXhD5V45GOnOXz31S1sXLoyDEvm8myM01NdnJ+LsevgFKFwAV1XePO1/fhss1brtLtlZtVZc9uC9IzPIUs10uQQp3J+5QkCl8+geyBVIU5J2ndn0NyNkwBzuo+vJQ5wKuvUyAWVMh+JneN4eJyFop9nRvbxw7HdFE1HrQ1oJR7aeZmHd14i4ln+HZk0A5wot2OgYOsSM19uI/VimGhfkYzko3dfgkO3X2H/3nGa/LllVr1U0cf5RBfnE92cT3QzlmpGCBm3MPCWS2gpExIW0qyNljbQ0gaysWSfSYJwrOzEhncViXaXiHYVaeopogTge9+/g1OndgLQ2prmYx97lZ6eeWZNH5dLzbR4F+jxJlkwfHwxfhxTKLSoefa6Hcteh3bj+tZJCFySiVs2ccnOtbO8XOlyAiLc5CuWPXsNdeBGEyhnnQIZwVN/eYjXv9ePJAne/+vvsO94vPYc05aZqUSL1whTJsx8LrDquS3sLdBRDX4ILwZArGRvrX6fqv2Xbjbqw06qKpRhK1vSAPhWYNNhErdMqVmMNx8vekmZWxNvXlu7VLGs2dxaErWe/11v5dtgk93pUogX5/qZrUysRbUCDzQP0+tLAiuoTdKS238P8WNJpN555x3++q//mi996UvMz8//pCHvdWA0N8uv/vAPAUHBdNf6XCCJxQGFJFBkgTAF2M79ikeAXCVL784fkncbZJxiZlkSNV++XLmWqC4veva9ssGAb5bD/nitEeTNgF0Jn0AC1ZJx2Vsf+1sqqLz4d4O88exu7EpD2eOPXuaBD5zH7d1cmMd6kC56K7VOTlBE2VwkOh5XmXvuPYc7YKAIm/u84zQri4qfUZZZmGwkSvMTfpKTfixzlWNIEkRiRZq7czR152nuytOxJ0NLbxZ5lTI03VZ4cm43P5jfjSkUZGweahrhg60Xmc6EeerKAG9N99YUs3Z/msf7z3N31whudfmg3hASp/QYY6ZTgxeRS9wmppk9FcQwZHYOJOjqnl/2OsuSyWW8JCZCXLjQyYXRGHOFMCnbS8nrwQipWP61vxtuSyeiFGj1ZelsTtHTkaQj4kS41w+2z5zp4W//9k7yeS+SZHP/A+fZ+8AoV8wmLpeaSVleDvgnebT5PJaQeH5ugDa1xB7PHE1brMqCQJOsGlFyLgYuyfp/2Pvv8Diy884X/5xTVR0BNHIgCOYwwzwkJ2pyUJYsW5YsS7Z1ne3d39pr2Xvv2rr788+P96693rtee59dS45rey3nkTSSrDSjiZpMzgzjMJMgEpG7gc5Vdc7vj6puNIAGiNAIJPF9nkZ3V3dXnQ6oqu953/fzzmjSHC1JOQFSKkjaDcypFcOyGCi8fb/Sguf+6TZe+fJONHD3T56nameGayW1TAPj1TNSWKOBbDElr61omBJEAnNrPSD8fdximu4uVkJoTN/0Otq4gYESC4RJrGCqWwFvnlYGXZkIydmIpAvQipqo+UahytRDzVdKw7vjrbw2somM8gzppsgQ9zdcImZlbxkDVdAtY6QuX77M3/7t3/K3f/u3nD17loceeohPf/rT/PAP/zCxWPki+9Ws1WKkLicH+JHv/8GSbkOX9j7QeHutKfcLJ/+GUBhFyp4PqDAUpuFONg3C43XNbCj0JNNhlDwm0GQSAUZ7Ioz2RMiMBvxwlLcjrWnI0tQxTvPGcarrspPMSeH107YpmPkxPPMpS9dReI5/2yguY9pjBYN0I8kRirx/oht0KlcvpRQce3kTz351D+lxr+5o+75envjEcRpa5l9Ae93tabjqgyKO967n6mjDpMdrQmn2tvWwd10Pt7f0YZiKl1PrGRVhhKsJvyAYe9uLNCUGw5PIcKUyLJf69jQN65M0dHiGqaEjSV1belqkaSZpDW+Pt/Hl/t2M2F66887oID/ccpK+kVqevnQ7F0YnaKe3N/bx3i3vsqe5d8bf17Ab4miuFSE0rWaCHcEBmsxk2R5O/d0xrrzbQt+FGFffrKL3TO2s443W5anekMPaqBEtBnaNRToYJKGjDKaqJ9WVlVNtOE1DOEl6OEziWhTDUTRuibPp7h6umZHiCQJAg5nkU21vYAqFti2iFTk10JhCFY1SsCTaNNPn6WpBTpklFwtbGRiGmjP+vHOonn85tn9JDRR4UZeRdJSro/W8+upWzl5uw642cGvBnQEzHzLztMUKlLx40TTNJZX1emNZSRMFGkMqpMBr6+HemECJBcEkVhj9LdHELJsxx6S7gnjzgjQgfELfipmouW638HVVqMluzjV4I76RE4l1RVz6HbXdHKq7SkCqG/AXvjDdiEZq3lMJ99xzD2+++Sb79u3jJ3/yJ/nRH/1R2tvbFzXYNXlqCcU4aI/y2OZTJBwTIWTxBB6tGeoO8+0/Xs9YJIa7LoJuC5DRgYmZuIIRckHkwciBzAmkPZFnLKWm1keCTwc5eOS74AKR4AtWI+C1U2GkN8J5nwDYc7YWW4foJUQvTdSvS7H9ngG2393Puh2JJU8Xu1lkaolyJY6hyBlOReqlui408O2/P8C1q3UANLSM8d4fOca2PfPpT3R9ZW2T0/1tnOhdz8m+dsayk4vfN9UPsae1hy3hAYJxh5GeKP1vVnO6u43h7ijZnMm6zw0Q3Zsleb/g2htR0gOesQlV52lYP2GUGtanaFifoqYpM2OEaS7qzVbzT9f2cDbtgSLqrTQfaTxDYiTKf3/5UYbSXhqHIVzubr/Ce7e8S0csPsPaNAKXYR1AmBk+FDpG1RRKnVLQ293IhQvtXHmzjquvVJF06yHgR+hchQhnCFtJ6tdnqGvPeul46zPUtXv3r9drKZO36C/pizUwXuiVVUMqHySeiTBmB4m0ZqjaPUSoLos2NJep9WdrIZpzaWOMRzefxBQK4UrKowxml8HkCFMhNa9cbQF4BrxglPLKJKc94+To6SfgAo3B9c1yOQN115bLfGCRBsrrRxaiN1FLT6KWvrFaehMxehO1ZEvTpyba0GEZziRKXiHSVBteHAq+nLyUPrFiJkr65sPx0/jEMlFZK6sJmISrjLnDJFb4rRbw5sP5AN3ZCHaFAUYrZqJKDdRct1uoh3KuXw81VwUMl/sbLrGr+hrfH95KV6aOo/ENnBlv4T0Nl9hRNbhq4Vq3uuYdkfr85z/PZz7zGXbt2rVUY1p2rZaI1Hh6jH94/YepNTJcHmyka7CRayP1jI55IIdyTQ21ADcAKlC41kz9bwtIh/WxUbY39bN7XS9bGgdnBFisJiVHA1x40zNVnccaJqVcRetybL9rgO33DLBh7zCmdSMeUJdPGk3OcFBycfVSY6NhnnlyL6fe2ABAMGTz4EdOc+cjFzDMynwHA+PVHO9t52Tfes4NNk/63QekzYbgCM3pccK9OVJXg4z0RHHyMzufmnVpmn9hGLnNBaXZOpRgW/0I4ZrKUh/Trsm/DO7khZHNKCSmcLm/phM3EeTlzq2T6p8e2nSeR8vWP2mEdnBTGolDpDpHMDh5YsN1BN1narn8TiPnuzdxoX8zmXQAqzdONJugvj1DbXsGHQxy9VIrqTHPrjS2j/HoZ06zZf/i+peUqmcsxleP7Wc4GsRsyU2a3HCzBqmhCOnhCNmEV4j+oQNv8vie46RyAf7ff/kYpoDm6nGaq8YmXTdGk1jSnVbDFJQOpii/79Iactr0zFLJxZ7Ejp9d18OfV9JApXIBesdqi6apN+GZplS+fPRPojDGNIExl83tg9zznku01iRoiKam1cAthQrbWG64REGFuqi8Y5D3aZem6RP81I1whrlAmMQqOLQFhEvUcBnIB+mtIN68oFVhouaqeUAl5qJy1D0NXEk38NLQFsZ8XHpbKMGDjRdpXgAu/UbSjRiRWnSN1M2g1WKkTnW+jiN+eNKy8XSIgdFa+kfrGBiJMThQhTJNMAwiIXtSc9m66hSGobgy0sCFoWYuDDZzcahp8kwmXqPRjfXDbG8aYFtjP1sbB+ecH79SyqUNLr3VyPnXW7h4pJF8eqIeJhB22HJokB33DLDl0CDByNKgkW90LaZeyrElr353By9/6zbsvAlCc8d7LvPIx04RrVkkqt2VXBhq9s1TO/3jk9ODw/kc1deyGBcVoX6bcufR0lTUr/MiSvXrUzSuT1G/Pkl9e5pAyEVpeDO3jl632qPHBftYb1Ym9UppeC3ewVMDuxh3PfT5tuAwZsLgRO/6SfVPT2w5w73rLxGQLuODQUZ7gzhpTTCYp7YhRfPGcYKRycbJ0ZKBXDUXXmri7Nda6btYQ6TBYTTWxrhTgxCKhx8+xp0PXiJSO9kcuo7grWc28f0v7ySb9PPv9w7w2GdO07xh/mAgreGaU8W5TAMn4m2MW5P3Lc1mkh2hIXaEhmkyUiTzIT9yVY2t4fCOMwgBf/P9hzh6ZRvgNWvdWDvClrpBNtcOsbnOu7RUlf9+tAZbG1PS8kwfl764E+qZjNRiDJSHFvdM0oRhqiWRLU+4FULRXDU+qQ9T/qrJK3+yE5TgwHuv8PCPvbuss9MraaKE8NKwXSXIK2tSNMyQCkO68+uxtAISaIScJ0xilZyZFfDmvbkQ/RXEmxdUMFEsZ8Pd+dZCFV6zQKhEOU3dbIHGVypHCd72cemOj0vfXX2NexuuEJ4DLv1G1E1rpD73uc/x27/920SjUT73uc/N+tzf//3fn/9oV1irxUgNJM7y5Vf+P3Q0DVFXM070OrnsSguUNnC1gVL+tX/RfqqAUoLuRC0XBls4P9jMhaHmaelRAk17bJRtTQMeHbBpgNrw6oWGuLag80Q9519v5sLrzSRHJ2ZwpanYuG+YHXcPsO3uAarqKtes82aQKxQ5v14q4JiY15lR0xrOvL2OZ/5pP/FhD5HcsXWI933qHdo2xhc8jkQmxJHzGznW1cGlZBN2aZax0oQGbCI9OSK9eQLjE8Y4ELGLKXiNHUnq21M0dKSobckgjdl3ZUrDW/lWupwYoDkYuMZGa3GU0SuZWv6xby9Xsl6KY0xmCcQl3YMTvfU2BwfZY3cT60mR7LcIRXM0rhtn494RNuwZmVZ3lU2ZXEvFGIpWcc2JEe+J0HIxRXNThrr1GWQI/vZPH6S7sxEr4PAjP/l9tt9+jdmUSVq8+tR2jnxnM65jgNDsf+gqD37iDFV1s+9nXC24mo9xLtvA+Wwj42qiT5ZWYA5JDjV3cbipe8b+Zx5BMk9QKCIooigMrQlIh4iZn7GOaSBZzeV4I5dGG7nsX3rGaqkO5WiuHqO5aty7rh6npWqM2kh6UTWMU43UfAyU7UqujZWYJT/aNJyqmnF7DZEk62Jx2mJx2mNxOmpHaa4aQ0iBo70zt8vvNPG1PziIciV7Huri8Z86uaxpzdLPC1+JuqhCFMp2DfLuxHGtIIHyolKaVQqbWABMYpUYKJjAm3fnwgzlA1TarHomCljOXlELiUJVACpR0FwM1FQlnQAvD2/hXNKrqw1Ih7vrrrA31jdjSvONqpvWSD3yyCN85Stfoba2lkceeWTW5z733HPzH+0Ka7UYKYD/8LWf5sf2vUx/Pkj3OyGe/S91xJrzbL4nycFPjhIIuhjCRc6Q3lLQVJNVuO0qg4FkrGiqLgw2M5Cc/p4bo+M+ct0zVy3VY6syP1cr6D0f4/xrzZx/rYWR3pJ+KEKzbkecHfcMsP3uAerb0ys30FWkvHRwjOv3l+rvruG7/3iAK2e8nXd1bZrHPn6CPXd1zfm34NqC0WsRhrqinO9q4fxYCz2yjmQ0OOnoYWQU4V7POEWu5amp8eh4BdPkXZJE6/KL+h1qDe/kW7ji1AKwP9DPFis+7/VkXYN/7t/DK/GN3vi1gmGTdCIKCIRSxM4naTk9wo5119h8YIjNB4ZYf1t8WgpkJmkx3FtFOhliPBLiTEMzOWkh8Bpyby9pyJ2Ih/nfX3yYwWsxwpEcn/nZF+nYPJ3SN5NG+yO88A+38+5rXl2rFXS45yMXuOuDFwmEJgxrThlcytVxLtvIxVw9uZLmuNoWuJ0hVGeQ+zou8+j9JzEmmdjJpLyAdAhIm6BwZzQ5jhbFGqaMazKcqeJqop6eRN1ETVaymsFkNc4sBe6W4dAUTfrmaoyWEqMVC2Wu+9spGKnz/S18YwYD1VCVZCBZPSUlr5aBZPWMJ8k1oTTtsQTrYnHv4sMfwpY9icZna4nrGhRKy7verecr/+Uwrm2w855e3v+Lx5DLXJ60MnCJks/ENbHVzECJiajU6iqanTdMYlWdD3t4c1sLupcAb16UnyZ3ndOZymghUSi4bpPduWohBmqqejOTcen1VooHGi+yIRJf0JhWo25aI3WzazUZqc8/9bP8xP6XeOOlGH/3i+ux05KOwxl+5It9BKsmn6x4hsq7GMJFyoWZrGQ+xOXhZk5d8+pSuhN1004IqoNZtjZ60aptTf101I4ueQf7hWi4O8q517y6qr7ztZMea+hIsuPufrbfM0DrttVpDJdDpfVSQgtCzuR6qUzK4vmndnP0ha1oLTBMl3vfd473vP8MgWD5tMlc2mC4u4qR7gmk+EBvFX3UkmoLkV4XwI1MPgEOjtjUjyfZYAyzpXmIRh/6UN+eWtL0TK3hRL6Zi44XRdoTGGC7NTr5OQoyYyap0QDpUYvUqFW8PZiN8PrBDaTqvMiMipvY8RC4klo9zuHMRfbWdLF19yCt2xLTTnzzWZOcHUAEJC6W/78oOZVvKo6pWuQ4HOyj1piI8AwNVPPXX3iYxGiUmliaH/+F52luW1hErftcHd/7m930XqgHoKouw92fOo95R47z+QY6c7W4JbP/YWxEt8XwO424XUHaW0f5+Mdfob111KthEpPrmGaq2XG1mFbDlFOmv63r/0MqJRjJRCbBLgqpg4PJmZHfAEHTpqlqfCKKVTVOS/UYjdEkSgni6QijqShHLm/iWNcGb7ZcKLa39bO+cZRENkxvopZr4zVl61UBIoEc62Jx2mviE6YpFqcqWD4yXoi4OMrrg1Q6/r4LMZ78z3dhZ0223NHPh3/p7YrVIc5VUig0AsetLJ1t9m16BsQj8hmzfqfgfUemsZqiUhMwCS+ND2aFSayyw+hS482L8j+SZcGcLyQKBRWph6qEgSqV0nB6vJVXhzeTVV6Jw5boBC79RtctYaR+6qd+ij/8wz+kurp60vJUKsW/+Tf/hr/4i79Y2IhXUKvFSA0n03zoD/6QJjHKtTclImHT3JTk4c9eo6E2TSycpTqcmQMoYnEmy1Em8UyUnkQ95wdbOdHXQXe8nlR+IiUwaNpsaRgsRq02NwwVO92vFo0PBz0C4OvNXD1Rj3IndoRVDVl23O0RADv2jC77CcpKS6PJ+PVShpIEXRPlCt56aTPPP7WbTMozCbfd0c3jnzhOXWMarSE54sEdhruiDPdEGe7y+i8lR7z0SjsqSbcHSa8LkGkJgFESdVIu7TLOzvo+Dm65ysYNIxjLCAlRLqTjniFKjlp0Vdcw2uH9puWrmux3TdKjAc8wxa1iAbuyBLkGi3xDgPROi/z9AgKgHUFszOH26mvsjV1lX2MXTY3T62VcZeAoy7toyz8xnPhcEirIm9k2xrX3mW8xR9kdGMQsMSO9XXX87y8+RDoVoqFpjJ/4xeeprV9chFVrePPoRl4+v5nsJgGbJv//1hlpdoSGUVdCHPvuVlrrxtnYPsC9h8+xqX2QkGHPSsrLK5OsNkkhyGgDxw2AazEXw7QQuUowko7SP17DwHgN/b7BujYWYzQdnb22wz/JKrwdLTTS0DOexAdNm3VFs+RFmtpjcWrmEPWCiZ5QrhLY2sCZEnEZ7Kzmn/7T3eTSFh27h/jY545iBpYXEFSsi3JlxetiZpIhFVoL8q6BreYOCTGkiyHVikelhNRzh0mswkOORFNr2SQck65MhGyF8eYlGwKWwUQtNAoF3hgVftrh4k3UYg3UVGVdkzdGN3I8sQ6NwBCKg7VdHKrtwpLLu6+opG4JI2UYBn19fTQ3N09aPjQ0RGtrK46zzOjsCmi1GKnTvQP88P/80nWfVxXMEotkiIXT/nWGWCTtX0/cLh8xWrjJyjkmQ6kaOkca6UnU0zdWx7VxD9GbdQJsqBvxARbeJTrDLOxKKJs0uXS0iXOvNXPprUbs7MQsWzBqs+3OQbbfPcDmO4YIhFeXIVwqucLDoSNgrLuWp754HwM9tQDUN4+z/9AlTOUUI0wjPVFyKWvSOrSAbJNFel2A7IYAuarJj9eHkuxf382+9m62N/VXnBbp5EXRHKX9qFFq1CI1YpH2DVEhmpQZM6f1jqr/ZIrGH/cMyfA/h+n9l1pyDUFUiyS0waFqfZ6qhhy1oRT1NePU145Ra2WoNTPUG2nqw9ObKzulxklZ6Bn6/GgNF5w6TucbUUiCwuFg4Bqt5uR1XjrXzN/9+QPkcxbrOkb4sZ9/gWjVwgAfWkOPXc35bCPnsg2MuJOBB8FuRfu1NHvrejlwoAsnZ9EYG6c+Vr6JtNaQ98EPeR8x7oEfDDRUhBQ523tJ5QKMpqPEU140adSPKo369+PpCI7yxlKoc9Cl14XzoxmGZUqXtprEpOjSulic+khqQbVYAo2UGq29RrKOMrym6yUa6Y3yj//xbjLjQdbtGOGH/t0RrNDy7pOWGy4xAZSQ5F1z3lS4lY5KzQsmsQoNFJTizYN0Z8MVx5sXtdwmar7bqEA91FIaqKkazkV4cXgr3Rkvm6HKyPGehktsv0Fx6TeikZpzzHZsbAytNVprxsfHCYUmCvxd1+Wb3/zmNHO1pvlp8Ggn9d+8jNIuDQcU6x7SjOfDJDJhEmnv2lUGyVyIZC5Ez2jdrOurCmWpLZitgtEqmK5IhtpwmupwtsRwzW6ygqZDe2yE9tjItG0lc8Gisbo2VsuJ3r04rkl1KEdHXZxtjQPUR1euRilU5bDroT52PdSHk5d0Hq/n3GstXHijiXQiyKnn13Hq+XUYlsumA8PsuGeAbXcOEIndnGQcADdjMRYPU9MxTrhpHCW84m0jlWP8BLx8Ysu01wipqVqfxd1mMNYY5ppVQ15PmCcpFNsaB9i7roe967ppXUBtXT4ji6ao1AilRyaMUuHxXGo+aSeacCxH46Ykse15whvzhFsc6tIpmprHiPxUHvMnFGEjT3VgbkZFa3C1OcU4Xf8EJKNMjuZaGVReTV+rkeRg8BpBMfmE+fSx9fzzX9+L6xps3t7Pj/70SwRD85uscrTgSq6O89kGzucaSKkAJi5tgXFuCw+wKzLA5uAIDUaa8LaZ151XxuS0PB81PlO0wpaeiUJDYAEmKpO3PEOUnjBGpffj6Sh55/rfv0ATC2eoi6api6aoi/jX0RR10TRVwQx5ZTGYqmJwvBpXCVpqxlkXi9MYTVYshVmKQhPZ6Wl8BSUGwjz5u3eRGQ/SvCnBx3716IqZKFeLZTElpVhzW00HSsxFWguUEsWI1vKpFCYhZ4dJrFIDBRCULlHp0p8L0ZsN4y5VBFICLDHmfCF9oUpfuwgTtZwGqqCGYJqPtZ3gYqqBl4e3MuaE+M7A7ZwYW8eDjRdoCpafBFtT5TTniJSUEjHLr0IIwW/91m/x+c9/vmKDWy6tlojUhXO9/PQv/TUBmecDn3ybvXd1I0sO4lpDOh8omqox/1IwWvF0hEQmQiIdvm5eeUECTXUoWzRXU6NbtZE0NeEM1aEMAcNZUCQrmQtybbyWkVQ1jjYIGoq6SIa6SIaV7qqrXOg9W8u51z1YRfzaxAy9kJr220bZfs8AO+4eoLZ1fiRDgSrWjFjC9Qq2Ed61Frh4B15XS7+4vPJ7Xa0hnQh4EaXuKEPdVcW0vNF0DFVl8UOfe4HNe/sY6anmH375fpy0iRlwiyjx+vVJdLPgWjDGxVQzV0YaJ508VwWz7GntYe+6Hna19k5D6WsN+ZRRNESeEfKv4xapkcnmyM7OL53ECjk0bkzStDFFfXuK2tYMNU1ZqupyBGocrIhLIOgQDuQx55HyoLQg75qM2BF6czHidpgGK8P2yAgg/e9x/sjtHqeKt3Ot2BgYKPYGBthkJqYddI+8uoVv/ONhtJbcvq+Lj//4q1jW3MafUSYXs/VcyNUzrgK0WEnWBxLeJZig1RqfMaIylgpxpbuZq9ca6bpax/CFCJv2DHLg8atzTi8rjXaWo0PmHaOMSZocUcracytwrwplqYt4pqh4HZ24joUzXrRiDrpeH6mFqDSNz9HGjOCE5EiQf/iP9zA2GKG+fZxPfv51wtXLO5HjnfwtD1yiEJ1TWpBzTX97C//MlzsqNS+YxCo2UWHpEJCKviXCmxclALFMJgrmv41FQCVWwkCVk6Mkb8XXczTegaMNBJrdNX3cU3+FsHFjZIvdiBGpORupF154Aa01jz76KE8++ST19fXFxwKBABs3bmTdunWLH/kKaLUYqZOne/jcb/5lMX2qpS3O4x89xtad/bO8amJGTPpJ/kpDKhvyjFW6YLQixP3rUiM2Z8MlFDUhL6WwJuwZrILpqoskaaoeoy6aJBrIYkoXjRe3D5mznwhkbIt0PoQQgpDloPUExl0vkbmYSVrDUGeVZ6peb6b/4uR+Rk2bxtl+dz877hmgefN4yc5yMqUsKG1Cvnma6w5Va1D4B+QyJsv1zddkM1Zy2xUkBsKM9EQZ6iqFPlSRTU5EjDSggiZudRAM77uvrU3wmd/6LqEam8xwCDNjEapzODPYxsm+dk70tjOaiU4a7/rYCLc39LIlNECdnSQTnzBHk4ySb45ce34nZWbAoa49Q9NGj9hX25ahpilDdX2OSCxPOJonEHYwLWfeEYNkPkgiGyHtBHGUgcDrKu9YkkuqjrQKUC9yrBdj/En33XRlazGFy6fbjnFPbfe8tlUqW0uO55u56ni/q1qZ4XCwj2o53Xi+9MztfO9f9gNw6N6LfPgTRyZNqkyXJqNMRt0QjpZEjTztgQTrAuMEZPmIhqtFMbqUdU2OndrMl79xF8OjMSzL4c795+k/UkX/5VoAahrTPPwj77Lr3p5Z5z9sV5CzbKShGE3UcPLi1mnRpFSufNPZqQoHcuUNUsn9SqaLVtJIFYwCft+rcml8BaUTAf7pP93NSG8VseYUn/wPr1NVu7j+bAuRFAqtpV+ztZTbmQBK5F1jbo1pryvtE/yWulZqHjCJVWygwMObCzQ92TBDduXx5vhr1EttohZjoGDBUInVYqCmatwO8vLIZs77uPSgtLm7vpO9Nb2Lag+xHNpQO8jxqwf47ZvRSBXU2dlJR0cHcrkZrEuo1WKkAP79kz9P++gw3/jWAbIZb0Z2684+Hv/IcVrWJa7zau0TwrT/z6KLNSHlvmSlBMlccJLZSmTC0wzYWDY05wOdFIqacMFsZWiIjtFeN0pj1RiBQJ6AYRMO+DUn0dlDzgW6YLleWcthshIDoSKsoutUHVpJAiGb9ZvibD/Qz647++jYPEpNdXbGontHSbLKxNYGUmgMNFIoDKGR+NcV6ANh5yXpZIDUeJB0MuDd9q/TyYBnxgzJUKKOwaEY6XQAYWruft85tu27hpKarOEgBLxwfDffOHGn3wDQk6Fc6sbGqb6WIngxg9MnJsE75qJAxKGqIUdjR5qGjiS1bRlqm7NUN2SJxHKEq/MEww6m5WLIuZtQ8D7nRDbCaDbCaDZKPBtlNBslkQ2jkYRMh6iVpz6coa16jKZIquzn3u1UcyTXhsajw701sJ6okefnO95ka2R6SutcNeyGOJJrI60DgGanNcJt1tC0g5pS8N2nDvDqC7cB8MATp3jsgycmfRYGiqC0CUgHjXdSWmNmCcvyM44eKc+YqGHSnnlyfOjF8HAVX/nKPVy+3ALApk39/NAPvUZDQxKt4NQr63n+729nfCSMFtCwfYx9H+rCanSmRZHiqQgfve81Dmy5zGCihv/2lY+Rd6yy4wqaNrUzmiTvdsha3lnUShmpQhqfoyT5GdL4CsqmTP75d+5msLOG6oYMn/y/X6OmcfnpW4X/B9tdXGRodnnRuYUAJeYiIRSW4aKXKC1xzjCJVW6gQFNrOuS1oCsTITHD/+hiVfQ3cpWaqNJUvjk22a00hW8p1ZOJ8eLQVobyXi+7hkCKBxou0rFacekCNsYGOdl7iP/f+/9opUez9PjzdDrN1atXyecnAwX27du3kNXNqJ6eHv6v/+v/4lvf+hbpdJpt27bxv/7X/+Lw4cMAaK35zd/8Tf70T/+UeDzOe97zHr7whS+wffv2OW9jNRmp3/jqz/MTB17g0nANzz+zlze/vw3leg00D9x5mYfff4qa2rmkmHmmqhCl8haJBe3HlBKMZ0MltVoR4ukJ41UwXeOZ8JxPPoRQ1FYlaauN01A9Rm0kRUt1gpbqOG01cRqiydnHtOQmS2MKRUjaBKWD6bqYrqIqkis7G++6gmQ6iAoI8pRina+fpiYoNVXetZORZMdM7KSBm5VoVyC1xrIcIlGbaHWOSJVNJJq/biPa60kpL2XUxiAYyONoydn+NoZGq8kOGuT7BPleSTphkU5apMcsUuMB0uMWrhYEqhS1rRkaOlLUr0sTa85S3ZAhWpsnXJ0nFLExA745Qs/roGO7Bik7SDwbZSBVTX8qVjRJo9koo5ko8WyE8XyYxkiS9uq4d6lJ0F49SmvV+LzS+QBeGtvAgAwjBYxlg3yw6jxNwYU1qFYaztgNnLUbAEFE2BwK9tFoTF+f6wqe+ru7OHZkMwAf+eE3uP/BM5Ow4kHhzPh+HC0YtqOklUWh0iTnm/hy/w9KwWuv7eS73z2AbZtYAZuHHjvFph3XiGcm1ySNJKMMDNeQVoFZzxoObz/Ppx56EVcJvvS9R8nkQmWNUn00TTiwuJ5gS6HFGqmpaXyOmp14l88YfPn37qTvQh2RWI5Pfv416tqWv5Z0OeASBaCEoyT2AoASc5PGlMpLGVQVNGhzhUmsegNVgjd3Da5mI6SWCG8+YaJYmoa7hY9/IbVQhdfPox7qRjJQpVIaTo218drIpiIufVt0kPc0XKLGWv6o9zSJwufofQMdNQOc6b+T//uJ/7HCA1tCIzU4OMhP/uRP8q1vfavs465bucLY0dFR7rjjDh555BF+8Rd/kaamJs6fP8/WrVvZunUrAP/5P/9nfud3foe/+qu/YvPmzfyH//AfOHHiBKdPn54ExJhNq9FIXcuGcDEZGYry7Df3cvqdDQCYlsO9D5/lvkfOzrHo3DtxFaIypmo2uQXDlZ5IJRwrpBX6BiyRDpPMTs/DLlC1tAQkWJZNS41nqlqr47TVjNJSHWddbJT6SGUjWaW1TCE/NS8onRmjTLaSjI5G6DzXwInX1nH5dBN9V2O4rsQMuGw5OMT2uwfYeufgrDUOWsHYUIjh7qoiGW+4y6PjpRPBGV8XjNrUtqSpqs8SrsoRrcoSieQwpQsO4OIZM6mxqiXhRk20Kk80miUSyhKpzhGutqmK5Coy4++lJU6kl2u872DSffyCcLwdu0Li+OmJaTvESCbKQKqG7vE6OuONXIw3MZKpIu9OnymtDaUnDJNvmtqqEoTMxb0XreGbQzv4l8HbaAiluKO5GyGgSaa4J9QzCUc+FyWVxZFcG6PKQ6x3mAn2BwawptQUCjTCVRx/ZTMWLhvah9mxvZdoqDz1UmkYtKvoztfQl68hrwwi0qbFTM+YB19KuBtNRenur+eNY1uJp6MoE2TYxZVyTie3QmtkVmNkFWZO0d46wp79PbQ3D7Ohw6vrNB2DgF6+3kOV0kKNlACkVHNK4yvIyUu++v8epuvdBkJVeT7xG6/T2DH7BNJSqBQusVQpcaVAibyaf13hfCSFwjRctBIVqPcphUmImWESN4CBAjDQxCybhG3SlV06vPkkE6WpfMPdxabyFU4DXK5bD3WjGqipyromr41s5ORYAZfucrC2e1lx6Rr/P98/Jy33ya+vGeBs/518/mY2Up/5zGfo7OzkD/7gD3j44Yf5yle+Qn9/P//xP/5H/ut//a986EMfWvTgC/r3//7f8/LLL/PSSy+VfVxrzbp16/jVX/1Vfu3Xfg2ARCJBS0sLf/mXf8mnPvWpOW1nNRupgrqv1PP01/fTdbkJgGh1hoffd4o77r48j4hE4aDgc5GW0FTNJlcJ32CFiWcijPkRrfikCFeE8WyoaKwK1wABw6alOk5rTZy2at9oVY/SFhu9Trqg14DWQGAiMIXGEgpLqLI7Rq0paRpqkS0TZVKuoPt0Ledeb+H8a82MDU702hJS0bF7lB33DLBuZ5zEQLgIfRjurmKkJ4Kdm3k2MBC2CYZsDMMBV+NkNblxiZ25/sFPhQM4TTXogIkTFeTqwW7WpGIhgpZDbThFbThFa2SE2xv62NIwSFttgnAgjzQUBoU0RP8kUWi/Do9J14s9oCgNKTvIeD5I0g4xng8yng8xbgfJOhbST9UJB2yqAjlqQxmCplusDatUYXReSf6m9wBHxtYD8Fj9RR5ovMRrufW4SBpkmntDPdNMUDlpDZ1OjOP5ZlwkFi4Hgv2sN8cIFGvpPLMekA6BWWrpxpwgnblauvOx4mXUDrMhmGBHaJhNgVECUvmEu+gMlDvvtj2HmWeBpiacmQRrmKDcedc1oSzDvVU8+6VdXDrmpQNGqrN85v99hkh9dklQ58ulhRgpWRppUcaczKjrCL7+Bwe5fKyZQMjh47/+Bq1brpe6XXkJvP2UF2WpvIkqjdDllLXkAAtPGlO6SMmiolJzgkncIAYKlg9vPs1ELTRiNOvKF7HOOdZD3SwGaqqGclFeHNpKT7YWgCozy/0Nl9gWHVqS9zcX81SqW8JItbW18dRTT3HXXXdRU1PDkSNH2LFjB1/72tf4vd/7Pb7//e8vevAF7dq1i/e97310d3fzwgsv0N7ezr/6V/+Kn/3ZnwXg0qVLbN26lbfffpsDBw4UX/fQQw9x4MAB/vAP/7DsenO5HLncREhzbGyMjo6OVW2kwDtBO3Oine99Yx8jQ15D5MaWBI9/+Djbd/XN85/AS/2bSLWavZ5qJeS4krFMqBjJGhiv5spIA33jMUYzUTJlmnsGpE1LNMGG2CB7WnvZ2jDIupo49eE0YcOdsdDS1WBrQU4Z5JSBrQ3vwK/NOacLKgW9Z2Kce7WFi0eaGOmtmsO71N4LXf9aKT9kM/sJu2EponV5onU2kTqbaH2OunUZgjGXobF6MkGTSGuWqqY0sap00TjVhtNEAnPv76U1XjqLNryIkpYovNoApaV3kBQSAb7x0uQdg1Q+SMY2vR4+2msWGDE9rHh1IEuVlVt0BAn8j8qHbkwGdZSDc5QnJSbsIF/suovObB0SxY+2Hec9dVcBr7bp1ex6bAzqZIb7Qt0EZjFTOW3wdq6ZtLZoMlNstOJsC4wQ8WuaZvr9jSdDdA/WkYsJOnUtJzMtdOdjXiodUCVytKg01RkHlTSJl/RKGk3PnXBnaAU5gXSgLprijl2XWdcYLxql2kh6XvCOyyea+N7f7GbrfV3c/cPvkk+bDJ5qYdv+G7OHyXyM1HzT+ApSruCbf7Sf82+0YQZcfvD/fJP1O0cr9RbmJbmEhL5CFMp2faDEArDmC5X0CX7ebnS+P8Q5wCRWy0FyjgpKl4h0GcgHlxRvXsy2q3SvqMWm8RU0BxN1sxqoUmkNF1ONfH94C+OOl7nVHorzYONFGheJSy98fhPmScyr2OJGNFLzTo5NpVLFflF1dXUMDg6yY8cO9u7dy1tvvbXwEZfRpUuX+MIXvsDnPvc5fuM3foM333yTX/qlXyIQCPDZz36Wa9euAdDS0jLpdS0tLcXHyul3fud3+K3f+q2KjnU5JATcvq+HHbv6OPrqFl747m6G+mP8/Z8/wMatAzzx0WOs65jrAVkUz9WF/2MvpP55vmp5o1TlZBqK+qo09VXlawbyjsHl4QZ64zFs26Q6kGNT7TBb6wdYXzNa9qTVcSUDqSri2TBZ10AYLpFQmtpCjyuhwXAwcTCZMNuZnMXIaBXx4Qjx/jCJ3gijV8IMX44yNhAknzHJZwwmNXwVaTANME28I/MUo+Qqb4/mKxB2iDTanjmqtYnW56lqzFHXlibWlKG6IedBGaJezZFX0O5dBOWjajNJ+wZE+6ZD+YXTyr9vC8j5aOKga2GUOehkbIue8Rg947X+JUbvWC1j+XCZLYIhFK1VCdqrE7RXx+moGWFjzQiNkSSmnAzgMISaVjdmoDxgh1BIfwJACv+kCfDyNOb3GThaMmKG+Y0tz5JWFk1WiojhFM1XrZmi2RznRL6ZpApy0m5kf2AAE43231NQeGmh3oS15tORPgIzpEqoElLeyFiUr3zvEOeNOtIbQNQpKOFZ6JQkMxBhrK8aO2nx7nUORZFArizVLhbKcPFMG6+/tBPXNggGc3zwg29x6NDFRZ8gbN47yP/xu8+S81NEn/njQ5x/pYP1O4Z59MdO0b4tvrgNrEJNSuNTht8Tam4fpFbw9J/t4fwbbRim4iO//NYKmihvrtitYC2RJ89gKi2wlwAoMRcpLdAKhL/bnaumwySmnAKu9EFxAfLw5pqeJcabL6mJWmwUag5QiVvBQBUkBGyrGmJjZKSIS+/J1vL33QfZU9PH3fPEpZeap4nzyVtH8zZSO3fu5OzZs2zatIn9+/fzx3/8x2zatIkvfvGLtLW1VXRwSikOHz7Mf/pP/wmAO+64g5MnT/LFL36Rz372swte76//+q/zuc99rni/EJG6UWSYirseuMC+w518/3u38fqLO+i82Myf/bcn2Huwk0c+eILa+rkWLAsv6uDXuQgp/NQtL60BWHFTpTU4OYmdFZiOImQ4hM08TaE8t3X0EdhS/kg5ko5wcbSJCyPNXBxp4uJIE1fj9ci4wog7mCkXmVPogERWQ8O6JM0tYzQ3jtEa81IHW2OjNFQlCQdt2ltHaW8dhd2Tt5PKBhgYiTEwUMPgtWqGe6qI94UYuxZGj9tERJ5wyCbiR5CidXliLRlizVmqGrJU1eYIV9mYlls0RVIohFDzJvolMmFGM1GSuRCmhEgwT104gxBMMkpcd45II3BBev2Ahkaa6E7UTzJNI5nyETeBpik67tcwJfw6pjgt0fLgBwcTZ94p2hqJb6rKmCxDlJgwCmZMlbzG2+FbQtESTNEyyyxcK7A9Mjx9BHrmA63y00KT+RDDmSh947V0jtTTOdrAIBESgQA65mIcdMGPjWkFudEQmYEwmcEIbnZi9xw07VnT7Woj5Ql3/f0xnnzyHnp6GgHYsaOHj33sdWKxhcEzpn0GaGzLoz0K26C5Nc3lgEP3uQb++v/7ILff283Dn3qX2qbKbG+lVZrG5ygDZ+qJ9izSGp77612c/v56hFR88F+/zaZ9Q0s74BlUCpeopMkpYM0dJcm75pzba1ReXvTZRPlTHtePLhZgEq4ypsMkbkADBZpq/2S4K7N0eHOYaqIqROgrGKjFRqFKTVQZqERZA1W4cZPLkoq7669ye3U/Lw9v4UKqiRNj6zifbOLu+ivsqembMYui1DzJksjTrah5G6lf/uVfpq+vD4Df/M3f5P3vfz9f+tKXCAQC/OVf/mVFB9fW1sauXbsmLbv99tt58sknAWhtbQWgv79/konr7++flOo3VcFgkGBw5mL+G0WhsM3jHz7B4fsu8ty39nDi6CZOvLWR08fXc/cD57n/8XcJhefT0NGbxSvAAaT09mRenczcUv8KpiefMbAz0o/UFO4b5DMG+XThtr886y2beI4kGs3T1Jaidf046zaN0bFtjJaOcWSZ8iDHFvReqaHrfIzuCzGunq+l+0KMxEgIO2aRbQuSbQ2RbQvh1JgQA2ITqVDWWJ6q4TTOSUXmDRgUAYaqWzkWbccNmxAVRJtyVNdmqK3NUFuTpKEmSUssTkNVkmgoz+Z1g2xeNzhtbKlckP6xWsYyYWrCaWrDaWrC6Tk3CAUvNcZrvhwhno0wkq5iOF3NSKaKeCbKaDpKPBMhmQwRNh1qw2lChoOUBdCILqZwlt6W/m3822hNVptktEXatXAE/PT9z9JSk2DIsfiLd+6dlp4TlDbVZs6/ZKm2ctRYWUzpnVDJDAxkYwwOxvxtT9QeTLpfsrxQj4WY+O1NvGYiHbWwXJYsR0xMAkx7fuH9ojmWb+FYroUqM8+O4BCPVF+iyrSxDBdLupjS9W6Lwn2vP42UiqBf0+SZUxhxwgy6UQbdKD1DdZw8u5EzfW2MpqNoLRGGItSYIdycJtyWQVoaiZdeqRxBbjiEMSaoyTu0h5LU1Q5Q156aZJTClj2v2VHXFbz44m6ee24PrmsQCuX40IeOcscdlys2y6rR5A0XLbxAbgjJgz98ljse7eTFf7qN4y928O6r6zl3pI0733+Je3/gPKHIjdEUcqoKaXxe81gPJjGfmX2t4fv/sJNj39sIQvO+nzvBtsMDSzjimTUBl6gsoc+QCrQg55grEoWaKqWE99ucNSpVCpOQ5WESN6iJqjUd8krQlV06vDmUmCi/RKDiJmoxKknlK4VKlFvtrWSgpqrGyvGB1nfpzvTy4tA2hvNRXhjazsmxNh5qvEh7OAEsg3mqONpxebRg/HlB6XSaM2fOsGHDBhobGys1LgA+/elP09XVNQk28Su/8iu8/vrrvPLKK0XYxK/92q/xq7/6q4AXXWpubr7pYBNzUV93LU9/bT9XLnipjuFojgefOM3h+y5imNOPJFNNz2RDI8ln/eu0gZMtXTbxvAnDNHGfeRycraDL+i0J1m9L0LE9Qcf2OB3bEkRryhvAsZEgPVdquHa1moG+KIP9URLxEEZAEwgrAhGXQNjFCrsEQv512PWXKzKGRU++jqvpBi4nmugbq512QlQTSrO9aYBtjQNsaxpgfSxethlq1jYZzwTJ2d4MphQulmETDWapCXn1JrNpPBNiNB0lkYkST0+5ZCKMpquIZyKknCDaENODSAUakutdz/VT12iQoAzQUy5TV9JaPcqvPfJ1gqbDt04e4NvHDyJdEIXLEqGSl0xCw6YMNPq/r/4AXA0x108vFMlx+MF3qa1OI/KQkxJtSHJZi1NHNjN8rRYAGXQIN2WINKcJ1mcnIfNVWmJfDlEbd/jUY6/RUpusaApJX18tTz55L319XtP0227r5gd+4A1qaiobFXKES950QUPQNaelf/ZfqeHZL+3myikPkBOuzvHAx89y4NFODHN1HjCn1kiVpvE5en5pfKV6/atbeeXJHQA89pMn2fdoV4VHPjd5ExaVrYsqTGa4SpJX5jIBJeYmr0GvWxYUcV2YxOr8iV5XAk2daZN0Tbqy4SXFmxdUsYa7lUjjK6hMPdSagbq+lIaTPi49V8SlD3B/w2VqArkliTxpodECpBKsrxqkc+A+fvW9v1/hrcxfS95Hajn05ptvct999/Fbv/VbfPKTn+SNN97gZ3/2Z/mTP/kTPvOZzwAe/vx3f/d3J+HPjx8/ftPgzwsqa3qK0Z0Jg5NLG1wbqOdC30bS+QgAAZGjQfcTzKSxS4yPnTXQFc+Pn1Ag7GCFlW9sHBrXpenYmqBt0xit65M0t6WI1WUo19tZKUjnAmRsj5ZnCwPHMFCisrjWVD7ApaEmLgw1c36wmc6RBpwpSNiQlWdrwyDbmgbY3jTApvohrDlFlDRSuLgKbMfAcSWOMrFdE1uZaH9GWPlAB60Fjiu5MtrAhaFmLgw1k8hGJq0xKnLQLzBHwUxqttzez757OwlFHT9FU/jr8uoE0k6A4UyE4WyUkVyU0VyE0VwYW5U/uJrCJRbIEAtkiVlZagIZdrZ0s3frZbSG4+e3M5KIeZOFftPLwm1vNhfw34sqfU7Jeyx9beG94z9HUfL8kveiS5YrP51q1udPua0QuBJG2gR22DvYV/VDaFROjKf0taXjxB+nvzwQyrPvPReIVHs1dMmhCLmuCJFoDjemGA9aJOTkiHe9kSY24nDuG5twu4Ps3NPDJ37iVaxA5dpFOI7khRd28/zze1BKEg7n+PCHj7B//5WK5/orNFnTBgGWa2DNgFHWGi6+08yzf7ub4R4PkFPfNs6jnz7NtoP9q64GodRIFaK2rk/jm08aX6ne+vYmXvjS7QA89Ol3OfiBK5Ud9DwkhRdVq5TZKWLNXQN7mYESc5PGMlwQlBzrrgOTWLVnRNdXAW8ety26smFyS4g3L0jD4hvuVtJAQbF3VaEeqlz6XvF6le2DVlqFzyrrmrw+somTY16DelO4HK7r5nBd97x7M5bdhm+ehPaMrqEMpBa0VPfSO/Igv/T47y32rSxaFTVSpfVE19Pv/35lXeQ3vvENfv3Xf53z58+zefNmPve5zxWpfUCxIe+f/MmfEI/Huf/++/mjP/ojduzYMedtrBYj1dc5xL/9ud+kyUqQTFnkM+aCTY8G3Poo+ZYasLydqUzlsPoSGOnp1LZC5KYQyQlEXKywwgoVlnuGqPAcK+wS9KM/wYhLIOIQKD7foSqcJ2Tafm+m2fsyOVqSU6aPF7eKxfgrsYfLOwZXRnwjM9jMxaEmss5kIpopXTbWD/tRq362Ng4SCcwnhXKy4pkwJ3vbOd63njP9reRK0jBM6bKj+RotOknvCw2keqIArNs0wvs+9Q7rt3h0grRt0Tseo3usbhIAIpkvP5lgCJe26rEp/ZjiNIRTZXOic4aD68/MhxwLeYMdfXqy1Xyh625G7AhhafMz649we9X0VMy5KqsNTucbkRqG8xHOZxsYdSeb3nXWGDtCQ+wIDfPuixt5+msHALjjrkt85EfexFhkI+VS9fTU8eUv38u1a3UA7Np1lY9+9E2qq7MV20ZBGk3OcFBSzxl1rlzBO89u5KUnd5Ie80zmxl2DPPqZ07RuTlR8jAuVQBM0HFy/x5nt10IttED/xPPreebP9wJw78fPcc/HLlZyuPNSIaXPditRFzWR6ph3zYrXWlVSpVGpQvuPsjCJG9hAgVfvWW3aDOWD9Cwx3ryggonyDMsiVliJNL7CukrqoaZFIUuvV+fPdUU0ibQHSCGKk1yDuSjPD26lJxMDoNrM8mDjJbZVDc8PcFX466fFCy2KBqr0+NFc1XNzGqlHHnlkThsVQvDss8/OfZSrRKvFSHVd6OfnHv5/rvu8qabH8lPaypkeYcGV/nbOd3bgup6h2rK1l/sfPk1T27hnioJqUurR3KUxhSIk84TNgmGyZ+yLozXkdJm+TKu4cadSgu5ELRcGWzg/6EWJxrKTqXQCTXtslG1NA8WoVW145jQqpaFzpJETve0c722nK94w6fHacJo9bT3sXddNk07ywpN7uHjKqwcM12bZ/+FLRDZl6E364IexWkay0bLbEmiai+AHzyy1Vydojo5hzgNzrdFkTQct5n7yvFQqRKJcLXCQxZNeF1Fs8uuU3L+cqePZkS24WlJt5HhPfScRwy6+zkGU3PYx6cXbEsfHpk+9ndceJr8gA8Wm4CjbQ8NsD45QZeTRGp7++n5eftaLSLzn0Xd54iPHKhaJcRzJc8/t5cUXd6GUJBLJ8pGPHGHv3s4li/bkpYNjLMxU59Imr35tO298awuubYDQ7Lm/m4c++S41DZU3fXPR1Bo6S7hk3QA5ZS4oja+gM6+28a0v7ActOPTBSzzwqbMrFoErhUssti6qAJSwlY81XzGgxFzlRaWE8GASXhTq5jFQMIE3788F6c2FfXxN5TXdRAFqgaUtlY5CzWKiSse92qLgK6VJpD38eqcZPhut4VyykZeGtpB0vImwjnCch5ou0hicuYRBl9wq1CIKbSC1RJbry8ZNbKRudq0WI5VOZvmV3/4VHtl5mpQpMcNMMkaLMT3jiRDPf3sPb7+xGbRAGi53vuciDzxxmkj0+n2FBJqgtAlJh5Bhe6bJsDGvE2UqNU15Nfcml6tVWsNgsrpoqi4MNjOQnP6baYyOe6bKr7OKhTKc7m/jRO96TvatYzxX0rgXzab6Ifau88xTR+0o6ZTFt751gKOnNpGrMrBjYLS4JIU1Y/pMfSjlG6V4kZjXWpUgaC4+fUxpsDW4gTwIcO0AeSdcNC4F01J6v9TQTNz2zciMxkUUnzfVuJQ+tlp+R0HhsC04zPbQMFuCowTlxGftuoKv/8OdvP3GFgCe+Og73P/omYptu7u7niefvJeBgVoA9uzp5CMfeZOqqtzsL1yEXOFRHBEQcAzMBU6CJAbDvPCPt3PqZa8BshlwuOuDF7nnIxcIhiuX7jhVhVJzKSd+QYWUVO935Z2Uph1rUcS5i0eb+fp/vwOtJPse6+TRz55ecRM1UQe0UHlRKK2Fl8q3CoASc5WXgqgnwyRukjOfiOFgCU1vNshAfunx5lBiojTzb7hbaQNVMpZCOh9lpvnWDNT8zFM52UpyZLSDI6PrcbVEoNkf6+WehquEfELkpOiWXzsnEUhtIJSYtQky3GJG6sKFC1y8eJEHH3yQcDiM1hpxg/5SV4uRisdT/Nz/+Z+4fV03bkB7aXNhm1DYJuhfJm47BEJ22fqi2dTfG+OZb+zj4hmPchgM5XngiXe56/7zmJZ3sPGiTHbRMIWkQ0A6M0eZlEnWN0tZ1yKnLBwtfJS6f9q/SlDqS6FEJlQ0VecHm+lO1F13ljZk5dnV0sfetm7a6uIkcmF6xmvpHqvl4rVmRpwwmP4suSxcezPBUStHU9U4jdEk9ZE0deE0sbDXSLWccSkakBmMy0wmppxx2Roe4MNNxwH4+uA+LmWal/zzvZ6E/5s18BDnpt+PKukESbkBtIYaM0t7aByz+JyJ3lSmj0Y3KWDTp96eWK/hb6dwu9bIlk1ZtW3JP//VfZw5uR4hFD/wqTe54+7LFXm/ti159tl9vPTS7WgtiUYzfPSjb7Jnz9ICDLRfF6UFGEoSrEARe+/FWp790m66znhR2Wgsy4OfOMO+h6/Oe99WTqVUymIGkV/P5yLQymvMrPzaPunv+7Jq4Uaq80QDT/3+YVxHcvv93bzvZ08sMOK/eFUKLlEASjhKYrsm7qqPQs2im+YA5OHNNdCTDTO8DHjz4pYX2itqKU2U6w1smoEq/rn1NDVlbyHmqZwSdpCXBrdwIeUB5kLS5r7GK+ypuYYpC4VPgB95EkrOOYPlljBSw8PDfPKTn+S5555DCMH58+fZsmULP/VTP0VdXR3/9b/+10UPfrm1WozU5UsD/MxP/dm8XhMIlZiskFO8HSwxXOXM2LW+GG++tJ2AdNnYMcT2rX3s3dtJQ01yxpQvR0nPLCmraJhyc4oyaf+kSPv1N5q5oNRvRGm/ZubdkRYujzXQl61hzA0iLEXQsgkFbKShUEL4BexevLtgkkTx9kq/k5n1YO1Z7qjpIqcMvtp/BxkVKpoYQ+ii8Si9Pd24zGZiJprymlOMy/TbalpNV9Kx+NPuOzmfbkSg+XjLKR6pv7Rsn2k2Y/F3f/YAVy42Y5oun/jsK9y2t6ci6756tYEvf/leBge9fPX9+y/zoQ8dJRpduihUQYU6OeGn9FUqtVNrOHeklef+dhej/V5vsqaOMR799Cm27J9fHdsEKt8/jvtwEs8sCb/xtJgx9WmxRqr7bB1f+b07cfIG2+68xof+9TvICtbCzVeyAiaqCJRwDPLKgFUHlJijbqqDjabWcMjr5cObF7e8EBO1FAYKJqASfn+oCZzIrWugypknWdghVngbXelaXhjcwnDeKy1oCiZ5pPkiHeEkUksPQDLPDd8SRuonfuInGBgY4M/+7M+4/fbbOXbsGFu2bOE73/kOn/vc5zh16tSiB7/cWi1GanQ0xef+22+yp66L4fEwmWyAXMYquZhk/duuM5+UGk19fYqOjiE2bhyio2OYjRuHaGsrj/V2XcHwaBVDo9WMJqKMpcMksyGUpIwxcwiG7DnOuHrbktLr9bOaolRaU2wimfdz/23XJO8a3jLXW5ZzTZIqQEoHSGuTDBY5DPJS4kiJa1DxHALBFAMyxVCUMy6zmxivSa05o3GZzcQohJg/bGC5dC1XxReu3s2gHSUkbX6y/Sh7q5evX09yPMj//uLDXOupIxjK8+mfeYlN2xYOtSjItg2eeWYfL798G1pLqqoy/MAPvMGuXd0VGPX1dT3UeSXkOoK3nt7E97+8k2zKA7xs3jfAY585RVPH+LTnXy9NTxVJkmLO6U6LMVLXLtXw5O/cTT5rsmnfAB/9lbdWFPO+WLiE8D9br3eWtaqw5vPSSh9cKqxSvPnVbJj0EuHNvW1N1rwb7i6VgYKJ+ixX3vIGqvi+S64raZ5KvzoBSGRx3S5wLN7Kq0Mbirj026qGeLihixrz+mUjk7ajoaX6xjNS8/4P/O53v8t3vvMd1q9fP2n59u3b6ezsnP9I11RUXV2UtoPjfOjAsev2kXJsWTRVBZOVy1jYOYOIlacqnKWuKkV9bYqmhjEiMzTmHRsLcfVqI53djVzpbaKzu4mevnrcrETaas5FpLNFxkIR//ak5XlCEZtQxCESzhMM5z0zVmKqCubGVp6BsSeZGu9+zjWw1YTRmVhu+sXQk58/yRip0uV+3xihMQMOZtDBCrjTbwdcxHX+a7QGJ2/g5E2cvIGdM3FsAxTUBLLUh9I0hFPUB1KMXazi8ittOBnv8d37u3nPe89SXZPFnCHisvISBFyTrLBRUmNrl8AMOPXl1OlkE3/efZiMsmiwUvxixxusC00/AV8qjQ5H+esvPMzIUDXRqiw//gvP07Y+vuj1dnY28eUv38PQkLcjv+OOS3zwg0eJROZ3kFqoFF7jXQBLGUtiogAMU3PnBy6z54FuXvnqDo58ZzOXjzfz5yea2P9wJw9+4gzVdbliA+dCmp6rZNk0veXUUFcVX/kvd5LPmqy/fZiP/PLbq8JELZSmZ0iv8KWwz1x9WPPr6CYzTwUZQhEznWXFmxc074a7y2GilCxuxktbq/B2VrFKzVPhv3MpzFMhplQwT0XT6jevNLTkcKyf3ZFRvj/SwbGxZs4kG7mYquOeul7ujPXNCWyllC5uM2iuXgBZOc377CeVShGJRKYtHxkZIRgMlnnFmpZCpuVSG7AJ1RVqmRyCPmb8erVMOb+WKZkLkkwHyYUCBNptmkOj9AzX47oG2hS4lqClOU5zYxzlSHIZi2zGIps1yeQDZPMWjjbQBuSMAAkZRDugM6BzoMcF2ig0fvVua4m/TJQ0gvVvmxr8+8oA5aG0Kvq5Camwgp4hsgIOwWCGqH/bDDp+ndh1pEG6GtPVWFoR1C4hHMLYVEmbiLAJmQ6BoEvAcLAMl4iZp6VqnIDhojWceXsdz/zTfuLDXki8Y+sQ7/vUO7RtjFf0/S6VJF4kKmd6BDep3QWDByqh50c28c/X9qCQbA0P83Mdb1I9z9mwxai/N8b//uLDjI+Fqa1P8hO/+DwNTclFrTOfN3j66QO8+upOtBZUV6f52Mde57bbeis06utLo8n7cAmpBOYyRCXCVTaP/dgpDj1xief+fhdnXm/nnec2ceqV9dz7kfPc+aFLGAF13TS95dLotQhP/ue7yCYDtG6N8wO/chQzsLg+K4tRES6xIEJfKVDCvKGAEjereSrIw5s7DOUDy4Y3L2heDXeLsxwszXdSgFworxmY5tYyUAUVpkjEEpkno2DPJpkn0Hj7NqElUk2k70UNl/c1XWF/zQDfG9pET7aal0Y6OD7WxCMNV9keHZ3h3FSjlJepZEqJRGKsvtnjWTVvI/XAAw/w13/91/z2b/824H2JSil+7/d+b86Y9DXNT1OJeYXbMzVFyyvJuB0ikQ8zko0ylI0ynI2SdQJTojTG5PvCxD4sCO6KMzhcTTob5JrRCEYDRshFG6xc00WtES7Fi3RL7itdXGYGHIIRGytqY0UdzIiLiLiIsEKHNNq8/j+oJVxiRpaYkaXGyPm3c9QYWWqNHFGZX/COu7+7hu/+4wGunPEgDdW1aR77+An23NV1wx0MDC0xXYljKPKGi3TksveXcrXgn67t4cXRzQDcE7vKj7Ydx1pkw8D56OqlRr70pw+SzQRobovz47/wPDWxxaG8L19u5stfvoeREa+J7aFDF/jAB94iPENkeankSIWS3tlKYAlTOMul6dW3pvmhXz5K59nLPPs3u+m7WMeL/3w7b31vM/d94hy73tOzYhCHgsaGQjz5u3eRTgRp2jDGD/67NwksIXXweip8jkrLeaPbC1jzQorzYqiFy6ab3DwVVMCb92WD9C0T3rwgL8A7BxNVml+3VN+Lb9KE61+XbvcWUCltrxLve2o9lTEl6lR8nvBLMTRIZRR7QJVTazDNp9ed5t1kA88PbyDhhPhq/w42hhM81thJY8BrDaO1F4USAgxDEjZdomYKNYEou2E07xqpkydP8thjj3Hw4EGeffZZPvrRj3Lq1ClGRkZ4+eWX2bp161KNdcm0WmqkBpJJfu2pz3N3+wWqAxmawklao2M0h8f9VIvJcpXg6ng9F+KNnB9t5kK8mYvxJoayUZZj7yJQBAwv6hIwXCzpetf+/cJjheWTnzfxHKkVOIAjwBboPKicQOUlOmvgZL2GxLmMRUpZpA2LjGWQD0rssMCtAmoU1LqIwPVGDTotIG6gE9K7jhuT7lvaITy1FiwyMz1x2vIyNWOZlMXzT+3m6Atb0VpgmC73vu8c73n/GQLBlTvxWqxKm7MKLQg5y1cvlXYt/qz7MGdSTQg0P9D8Lk80XFhWQ3ruVBv/+JfvwbZNNmwe5NM/+yLhyMLNTi5n8p3vHOD113cCEIul+NjHXmfHjr5KDXnOqhTqvJwm9266Pk1Pazj3eivf/4edjA15GRHNGxM8+OkzdOwaqdi45lMjlYwH+af/eDfx/ih1bUk++fnXicSWLwpaTguFSxhSgRbkXIm9Qs3Q56xbxDwVNIE3D9GfD7JcZD4oYM719RvuLmUaX+k28CdPtVzVP9GKSVME5yyFeSoiOmZYdSF9byH0PfAm9V8fXccb8TZcPFz6wdg17o11E5QuhgFR0yFq5bGVSdoNkFA53MwT/Lsn/u3i3+witaT480Qiwf/4H/+DY8eOkUwmOXjwIP/6X/9r2traFjXoldJqMVKXBr9NJP9TZR+L58JciDdxMd7EhXgT50eb6BxrID+lNmXC3Ew2MfM1N5b0lwuX7osNHHlpG6nRMEJBS3Ocxz94nO07r1X0pNXVgnE3QEKFGHODJFzveswNMqa8azWHmYqwtom4DiHbIZDVWBmNkQQxJlFxiZO0immKhRqz7LwBHrNIaIJBZ5K5GrpWTSblpb7edkc3j3/iOHWNMzeyu5Gk0WRM28uXVpKAayy5mRrIRflC113056sJCofPtr/FgZprS7rNqTr25ia++nd3oZRkx64ePvF/vEIgsHBTfPFiC1/5yj2MjnrkujvvPM/73/8WoZBTqSHPWZVGnc9M05MozZzT9Jy85J2nN/L6U1vJZ7zC5i139PPAp85Svy61qDHC3I1UZtzin/6fuxnuqaamMc0n/8PrVNevTEPhgibgEnPfjxWw5q4S5NUqB0rcYgYKNNWmg9bQk40wbFssv4li9oa7y2GgCtsRgAtS3dwmSvjFT5UyT1OjTlNrnaY9XwDCa7gutFwwfa9Uo3aQ54Y2cCFdD0BY2ry3+RL3NfTgapO0EyCnLBK5Gi6lTTrMe/nND/7EgrdXKS2JkbJtm/e///188YtfZPv27RUZ6GrQajFS1+JXccfvZShdRX+6mlE7QjwfIZEPYSvDN0RuGUM0YYAMoZZkRt6xJW98fzsvPX07uawX9tl6Wx+Pf/g4LesSc1qHraVvkIKM+SYpobzbCTdIUl2/D4ZAU23kqC1Jt4v56Xc1fireTE2C5/IeJ5mr9GSjNXHbnGH57GasaV2C933qHTbftniK22rTUkYvpupsqoE/7bqTtApQZ6b5hQ1v0BEaW7LtlSoRD3PirY0cP7KR/t46APYdvsLHfvR1jAVirrNZk29/+yBvvuntU2trk/zgD77Otm3LawxLtRjU+dQ0vUK0SfvRpoXQ9KYqM27x2le2cex7G9BKIqRi36Nd3PODF4jULDwqNBcjlUub/PPv3sXA5RjRuiyf/L9fo7Y5s+BtVkKlcIm51kUVseausXIp29fTLWeeCtLUmjZZZdCdDTO2jHhzb+vM3nB3OdL4SuUbOrmajf4itNLmCeaXvjfv8WivFqorW8Wzw5sZ9HHprcEkD9RdIyoDDKUbSORidNkp3lO7i//nIx+vyLYXoyWLSDU1NfHKK6+sGaklUFffKD/2K3+CUzL7W1WVoSaWJlaTJhZLE6tNE6tJectiaaqrs2UR5kuldCrAS0/v4s2Xt6JcAyEUB+66wsPvP4lVbRdN0ZiaElFyg6T19fPuTFyqjZxvknLEpGeOavxlVTJX7EUlALHKUOozmTHDUmzbfW1Fe8ostWzpYhseIjvkmN7Ou8L6/uhG/r5vLwrJpvAIP9/xJjFzaXsoZdIWp493cOLoRq5caC6eqBqGy70Pn+WxDx1fcPPY8+db+cpX7iGR8A4sd999jve9722CweWPQhU0X9T5tDQ97f13un6EaSlpeiN9UV76+51ceqsFgEDY5q6PXuSO93YuCPhwPSNlZw2+/F8O03uunnB1nk98/jUa2hcfCVuMSuESc6uL8oASygdKLJTst2S6eXeRc5LwTVRqBfDmBc3aK2q5olAF3aQmainNUyme/HqrnZy+50WfKplRopQiIG2qAjZSCHLK4qXhDbw4tJ68P+HaKA06jAABIelXIze/kfqVX/kVgsEgv/u7v7voQa4WrRYjdaV7mH/1u39E0LUZiUdxnOvvQKVUVFdnPJMVS1MTS1MbmzBasViaSCS36CiV1pBWlm+Qglwbq+HMlTZG7TCixkXEXETw+j+lgHA8kyRzxQhSEeYgc0SkvYCxaoQs7EBWj6m61TS5XqqyTVuVhi/37+bZEa8G83BNNz+27h0CSwSVcBzJ+dNtHD+6iXOn1uGURBo3bhlg3+FOdu3vIhJdWPQjm7X45jcPcvToNgDq6sb5oR96nS1b+isy/oVK+Sl9CDBdWRZrP3uanmegWGaaXtfpel78u9sYuBIDoKYxzf2fPMeOe/rmtT+ZzUg5eclT/+0QV082EozY/PBvvE7zxuXD65eTZ171nOuiCkAJ2++Vp1cTUGJtZ13Em4/aFt1LiDeHBZio5TZQANI7nAt3Ff1OFyh//rdi5mkhUafia5cgfW/6RhRBmSNs2QhhkFcWSTvKYKae4Uwjg5kaLuYlg8rxxw/rDAtJkgfqbiwjNe+pDsdx+Iu/+AueeeYZDh06RDQanfT47//+789/tGsCYNP6BvY+fI0fP/gcPekIyXSEsfEwqUSY8fEwiUSEeDxCIhElkYgwPh5GKenfj864XtN0iiYrVohu1RZue6YrEHRIqkLaXdBPuwsVU/HG3SAOU3bqG8FgSjQgI6gWOVprxoiZfsqdzBUNU0guBVhBoL19AgqQ0tvjS+Gd9PkNMNaO00ssgYdEzwqvtiZvOBUhvWVck7/oOcSppBd1+HDTGT7QeK7iKaxKwdXLTRw/spHTxzrIpCfaOTS3xtl3uJO9BzuprV9cbdvZs+v46lfvZmzMgybce+8Z3vvedxZVX1UJTUWdW8qYJU1P4miBUhIFfiRk5aIaHbtG+PRvvcK7r6zj5X/0gBTf/KMDvPXtTTz4mXdp3xFf1PpdR/Av//MAV082YgUdfvDfHVlxEwXMy0QZUqG1IOesIqz52k65qALefNDHmzvLiDcv6Lomajm/r4KJukEjUUXj5N/xMmgqZ57kdUARZV9fmr7nVjZ9ryApXMJGloB00EiyOsxouo7+dDPxbC1juZpiGvEWE1qUyRU3T1Irul0bkwDd+ZWN8s9X8zZSJ0+e5ODBgwCcO3du0mPiRuM3r2IJAZFo3pvxbk1gSIUpXaTQKOXVFiglSCZDxOMRxhIREmOewRpLRIj718lkGMcxGR6tZsQJI/O1iKyDzLiIlIMcdxFjDqLKnQNKWFMl8xO1Sb5BqpFZhi7U8vo3b2P0Wg1ZQLck2P2R42y/fX4zwouXQCn/Go2Uohil8nZsa1GqpZTAa9br1dhoHK2wFjGrOpSP8IWuu+jL1WAJh8+2v83BmsoS7Ab6ajh2ZBMn3tpIYnRiQqI6lmbvwU72H+6kZV180b/jTCbAv/zLQd5+24uqNTSM8UM/9BqbNq2OmrlS1HlYS7+fkEYjcPz0vJVsens9CQm77u9l+53XeOtbm3nzG1u4dqmWf/zte9l25zUe+JGz1LbM3wQrBd/5k31ceqsFw3L5gc8dpW1bvPJvYJ6Sfm7Q9UzUBFDCw5q7Kx2FWtsBT1NIuoSlS182RF8utKx484K8n8UUzHmpgVpuEwXFXlE3goqfbal5EouLPM0VT37d9ZSm77lGxdP3ACxpEzaymMLFQZJwYgxmmhhINTOWi5F1QmVfF5UGu0SIYeVy1c1jAyP20qbrV1rzNlLPPffcUoxjTddRIf/dlApDusWZ4pqaDDU1GfJqlDEVmhxRckPexQmR1ibXOxPULuikgRo30eMGetxEjRvoMRM1bhLRNrI6jYylkTETGZMYMY0Zc9jZMcAd/7aLt17bwotP72KoP8bf/9kDbNrWzxMfPUbb+vgyfEpT5ZkqhbczE8JL/RNrqX9LKkNLLGVgGy62dJFaXLfOppwupOv5k647SbpBYmaGX+h4g43huYFNrqexeJgTb23g+JFNXPOhEQDBUJ5d+7vZd+gKm7YNVqz+8N1323nqqbsYH48ghOa++87w+OPHVjwKVUjTU0Jj+9HigGugtImzQml6i5UVVNz9sYvsebiLV57czqkXOrjwZiuX3mrmwBOd3P2xC4Sic6tB0xq+97/2cPbVdUhD8eFferuiuPWFqhQuMZuKQAnH6xm4YkCJtR3tjCrgzbuyYQaWGW9ekC7UHRdM1EoZKChO6N4IJqq8efLONSphnkrrneZvnpicvqeWIH0PTcjIEzGzgEtWBRjINNOfamU028h4vho1B/CUEIJGw6ROGlxwx9gVqa3gGJdeS1fFuKaKSWvIaaOIAE/qAEkdYMyZIOBl9HWoPsIDOdQUCXe5Yl1SWNmIpEE+ZTE+FiFREt1KxCOMjZm4tkkKk9R4mN7ehrKbKNZrrU8TStuMDFRx6Uorf/yHLWy/rZdH33+S1grM7M9fwqfG+KZKCgot39ZM1dLIVBIlFK700sXmWy/1aryDv+3dj4ukIxTnFzveoNZaHF46m7E4fWw9x49umgaN2H57H/sOX2HHrj6sCpqbdDrAN75xmGPHNgPQ2Jjg4x9/jQ0bhiq2jblqpjQ9pQUZP6VPuAa2E8BZjQS3eSpam+eJnz7FHe/t5KW/v40rx5t469ubOfVSO/d87CL7H+/EMGf+r9caXvjS7Zx8vgMhNB/4xWNsObDy0cO5EPqE/z0rLci5K4Q1X9uhXkeaGtNBaejMRBhZZrx5cRQCL92rnIlaTomJuV6hpHewXoWqtHmamkFpzAMUUXZ9y5C+J1BErBxRI4uLJp6LMJBp4lpqHcl8PVknvKD1GkJQK13Mle60Pk+tGalVpDE7xWhQ8OzYJrpz1STcEOPKI+DZc3D1QeEUTVKNnDBMBfMUFs7MJiYKtJR/SGsvLckzVlESvtkaS/imKxFhbCwyvV7LpPgLO3ulg7Nf7EAIRW1titraAhwjVYRiFC6h0MIbml5fhXqqidS/InVsrZ6qYiqk+BXqpXKGQ3AO9VJKw1MDt/P0sEcFvaO6l59of5vgAmvrHEdy4d02jh3ZyLlT7ZOgERu2DLLv0BV2H1g4NGI2nTrVwde+difJZBghFPff/y6PPXYCy1qeKNRMNL2paXqOkfNPngTYwYqnfKy0GjuS/OC/O0LniUZe/LudDHXV8MKXbufYMxu4/0fOsu1wf9n94qtPbuft72wC4ImfPcGOu1cOR1+Q9FnUhb5b5eQ1b9fYrg+UWG5TvLbznIM0daZNZoXw5hOjYMJElS5c7iiUmNi0VGJVmahJn1+FzdNio06T1ikKH9rSpe+ZwiVqZQibefJK0J2qpXu8heFsGxmnFr2EbU9Ws9aM1CrSQHaUzhqTzsSOso9HRJ5qI1+EN9TIHDEzS72VJmZksbx4S8XHJQREInkikTxtbfGyzynUayVKzZV/PTRYw/BwNa7yKFGjo9WMjlbPuL1g0CZWSh4sRb/HUtTUZCp0Mlqop5rIZV6rp6qcBIKgY5I1PZLf9eqlssrgL3sOcnzca+z9gcazfKjprI+7n7uUgq7LTRw/upFT70yGRjS1Jth3yING1DUsTUFrKhXk61+/kxMnNgLQ3Bznh37oNTo6hpdkewUV0vQKn1eBpudqo0jTm9q7SUsHfNS5yN98JqpUG/cO8ZndQ5x6cT2v/PN24v1RvvHfD9K+c4QHP32G1i0TaaNvfH0Lrz/lERUf/ewpdj/Qs1LDnqLZ4BLar2vzsObLCpRY21HOWdLHm4+7Jl0rhDcH3y9JvIhFccGSDWVGFScxhDeWSaZuhbTU5kkivVUs2jzBktP30AQNh2orjSltknaQs6OtXIq3k8g1oqjCuMX5CGtGahWpJVRPNK+4rfYapnaoMhxqZI5q3zjN1GhWCI2F8nuDMOeGjJWUlBP1WuVOGLWGMyfW8fQ3DjA6UoUWgnBVjraNo0hDM+ZHuTKZILmcxcBALQMDtTNuLxLJ+j21ymPfq6sz82iQWi71b62eqhKSSAKuQd6cvV5qxA7zxat30Z2LYQqXH1/3DnfG5nfyOnCthuNHNnHi6Ebi06ARV9l36Aqt7UuXWqo1nDy5ga997U7S6RBSKh544DSPPnoC06zsFOtMaXpaS/JzpOlpFNryi3pdC3ELzCZKCXsf7mbnPX0c+ZctHP3mZnrO1vN3v3kft93bywM/coaT76znpX+4HYD7f+QM+x+/usKj9iSF8vpzlTFRBay5oyT2cgEl1naI81Yp3rwrEy720VkKzclE4Z2HFxcup0pNhL8TEytooiptnioFiii77mnpe9IzoRWVJmJmqQmkAc1wtobLiU1cGW0l6dRhygCWIaeynG9JrRmpVaRqK8L2hMunt56kNxPBnePXo7XAdk2UVpiGQgiFqvisxOIkBNy+r5edu/t4+/XNPP/tPaQSIa4cb6Fj8yAf/cgbrN80Qj5v+BGt6LTIVmG5bZuk0yHS6RB9vfUzbE9RXZ0l5qcO1kxJH/T6a2XLNFJdQ6lXWoaWGErjSkXOcAhPqZe6nK7jj7vuZMwNUW3k+PmON9gSGZ3TusfiYU687UMjekqgEUGbXfu72He4k03bBpaoafXEoTKZDPG1r93JqVMbAGhpGeXjH3+N9vbKgAnKpekpvXCankajA35Kn5KIJUwtWo0KhFzu+/h59j7SxSv/tJ3TL7dz5tV1nD/Sgmt7pwZ3/8AF7vzw5RUeqacioa9MP51SoERemSzpfn9tx7dgFfHmuSA9udCS4c1hHibKZWW+07ImannhEtM+owqbp0ql7E1a/zKk70nhUhNIE7Ey5N0AV8ebuBhfx9VEEzkVIWSYhCyjolvVgOO6uK4GixsuwrVmpG4SebUPBgqBKdwVjU7NJmloDt13iT0Hr/LKczt59fmddF1u4i/+++PsOnCVxz50gqamcZqayvdoKdRrebh3D4ZRNF3+/fHxMK5rMDbm1W51dZUfi2G41BR6atWUmKzaFLEaz3yFQl6D4IKpWkv9m7+8eimDrNBooSfVS72ZaOd/9x7A0QbtwQS/0PEGDYHMrOvLZizePb6e40c3cvl8S/E3LqVi+65e9h3qZOfu3opCI6bKRBM2FErBW8c3889P3UU6E0RKxUMPneThh08tKgq1kDS9ecmwQfopITdhXdRcVV2f5X0/f4I73tfJi397G13veiCdg++/xL0fP7/Co/M0CS5R8j1NYM0FebXEQIm1Hd2itFx4c5j5pL0wx6IFfn8mVuR7LT1H1qIQFVseE1WSRehtbpHmqdKgiLLbmJq+pwrRp8r+hixpUxdKYgmHcTvCicGtXI6v41oyhotFwJBUBcyKmhxXaxxHobXGMATRUICsNKmJBq//4lWkNSN1k0kpiS0EGh+TLij2VVpNCoYcHvnAKQ7de4nnv72bd97czOl3NnDmRDt33n+BBx9/l3AZAEBpvVbrjPVakEqFJkWxpka2kknPbF2vXisQsEuiWCk/hTBNbV2KuliKWG3Kq9daM1WzaqJeykZJTV67fPfabr41tBOAfVV9/B/r35qxYbPjSC6caeX4kU2cPbUOx57YdS01NKJUEk1EKjTQORrlqafu5sKZ9QC0t43w6U+8TGtr3Euvm+P/nJcr750Uz5ymV7neTVq4aNMDuggnUHGi042o5k1jfPzX36DrZD35MZPt77m2cqjwEhVMVME4F1SIQi0pUGJth1YRRQ0HYwXx5rr0CQJkId1iJVP5Su4vtYkqZ54Ku9LFmKelijoVt7NM6XtRK0MskEJpwVCmlgvxdq6OtRHPRlAKTEMSNU1MQ1YmLRFwXIXrKoQQBEyDYMDAMg0MKRnJwZLl3y+R1ozUTSgv1a/Qd8qLTrmr0EwB1NRm+OinjnD3g+d55uv7uHi2jddf2MmxNzbzwBOnufP+C/Oe2ZcSqquzVFdnWb++fGqV40jGx8PTGhiXGq9MJkg+bzE4GGNwMDbj9iKRLLFYmtraqQRCP62wJj3neq1CrZYuRBy013h56rKpy73bpRemPM9bNv1505eXPn8h25y6XKmJ9TS0jrDjwGVcQ3E5VwPAlsQ46y8rnjl+YNo4xsdCjAxVEx+JTqQ1SQjWONTUpamJZTAtl9MXOjh1fsMMn93s7336e5Zlng/av6/8i+tItJZIqbjzodPc9+BpQqaDgyAsFVKArcQ0UzVjmp5e+qa3Gu3VRQnANWAJC91vNAkBm/YNEZI2WWWhV9hIFJKIlZaoYrRJ+9kGXjq3rSQV/Y2smacKagJvfjUTYcQOLNmWrheFKoAkhPbT01eBiQKWBHMuplxX2jxVChQx47aWIX1P4FIbTFIVyJG2g1yIr+dSvJ3u8WZsZeC4GkMKwpZBwDTnDXwqp6nRp0goQNAysMwK78NWQGtH0ZtWAleJEjPl/XOuxugUQMu6BJ/5+Ze4eLaFZ762n/6+Wp7+2gHe/P42Hv3gCXYf6KKSrQVMU1FXl6KubmZyWz5vTKQQzoB+z+etiXqtvpnrtcJhL1IyF4N0M0uFFY83Su5df5Ef3fAmX/i7DzF6Yh2vsm72Fwom7a2yboDsUICBodqlHO511dQ2wmMfe5OGljHyCEZci1FXE5KakHCpMhQRqTCEwsUzVW7BiFUqTW8e0mbem5LW4pZO6bsRJIRClxD6CkAJWxnYroGqVCRxzTwtgSbw5l2ZMOPu8uLNS+dgRKkLUMtsomZIc6s05rycedIl73u+5mkpQRFlt7dM6XsBmaM+lMSQikSuiiN9m7mcaGc4G0MDrjfrScg0CFjGovs5acB1FY4ffbJMScgysSwv+nSzaM1I3eTyolPeQdcyVnd0CmDrzn42/+rTHD+ykee+uYf4SBVf/pt7ee2FHTzx0WNs3Lp8jUwDAZfGpnEaZ6nXymatSamDxcjW2ITZcl2DdDpU0bEJ/6Rq4uKRE6+3fOL29HV4j1HmeWrW5ZO3O/V5E8vHQgZvr6vnqyP76KgbZn00zs996GmO199GPmcx2F/DQF+M5NhEMz/DcGlpS9DWMUJj8/iM76Xc9qaPY+axlfvsTKEJWy4KGHclKS1Rgon1GIpodXZSFoLAe9xG42jJuCMIYhAUmrDUWEBAaHJa4ioDZxn/Dz3UucOtgDq/0VWASzg+xcyQCq0FOadCWPM187RkKuDNx1yT7kyYtFpevHlpFEqUPnE58eai7M3igkpgzpfSPC1lyt6kbRbT98SSpu9VWylqgmkc1+Raqp4L8Q46E21kXe+8xFUKpTSGIQlZBpaxOJiE8qNPSnuRrUjI8qNPy9iSYRm1ZqRuCU1EpyzpeL1GwCf7rT5JqTlwl1fz8uoLO3jl2dvo7Wrgr/7no+zc08NjHz5OY3N5c7OcEgLCYZtwOE5ra7zMM7zPOZ0KkkkHyxqY2c1AueUUr28kvTXWxl/13IGtDdoCYzQIr3dRTX2S5nUDfPXPHypG40zpsv32PvYdusKOPb0ElhAaUU7Cr4MCGHMNRl0TQ0tqZnhuIVIwkaYnsZWBi5eSNY7woweakPQiVDWGQ9hwMQQ4SpDzU/uWSrci6vxGVSlcQggPe+4qSb4SWPM1A7WkMoQiZvh482yE/DKS+SYZqKkUhEJd1HLoOiZqsZjzqTVP08zTHD/ymUARy3FoXY70PUM41AaThM08KTvEmeFNXEq00zPeXKypVFp7tUpSELJMgotI4ytEn1xXgQDLNAhaJoGbLPpUTmtG6hZSAZPuaoVlKKRcfZj0UlkBlwefeJeD91zihe/s5q3XtnD2ZDvnTrdx6N5LPPTeU0Srcys9zFnk7Rqj0TzRaA5TTsw+3SrnM1rDt4e28/VBry/P7ZEBHkz28L0vHcIRio/9zIvsuOMq2/ddJTsWYe+hTnYfuEq0ammhETOMlpDQmFKTUgajjkG6pAZlgqQ3kYQ3yThp6aftTaarTUiQVQZZZTDimISEImz4pkoqqnCwdcFUVe7/clJd1C2IOr+RVAqXKNzOOwa2WgRQ4lbZ2aywAkJRtQJ481KYxLRWkxLPQC2HiZrNQBUWLgJzXrpHLBqoBZqn5Yw6Fbe9LOl7mrCZJRZIIQSMZqs5MbidS4l1JHI1k57nKI3WGss0CJkG5gLNjtLgOC5KKwwpCYcsApZBwDC44WZ8F6g1I3WLyWvoaKBZ3Zj0UlVV5/jQD7/FXQ+c53vf2Me5U+0ceXkbx49s5D2PneGeB88tKeq6MhI4ygNhSKERt4CZspXkb3oP8OaYR7XbNJQk+Z1WvpzaVHzO8Vd62XffBT72My8Qdi0qwwWavyyhCEtNRkmGbJOk6xkoU6oypkkWo00Kr8Zp/gdDQVYbZB2DUcckKDQR6VJtOIQNRRSF65sqe7EHW8MGYw11vtrlfSseSELgAUhyromrFhA9vNl3LqtMBbx5bzbEtWXEm88YhSosXy4631xMFAszUVP3fkUDJcWcztOXExRRdvvLkL5nCJcqK03UyuIok57xFi7E13N1vIW8OxklrrTCcTWmIQhaFoEFpPFNjT6ZpiRqhW6J6FM5rRmpW1RFTLpWGIZCCL1qQRQFNbWM86mffpkrF5p4+mv76euu57lv7uXoK1t55AMn2Heos6JAisrLI9hxC5iphBPkf168l263BpSm6uUAqXebAaiqybD3jk72He6kdf0IeSVQUpMTDiHHXNYTfQNNxFC4GoYdwbgycPGiARqB4xo4RdPELNGmxcgzTDlXMuqaBKaYqojwxpdXHg59Pv+ja6jzG0eimO4jsJWPNZ/v93Wz7lBWsaKGg8HS480pWfOsBoqSJy11XZSY9e6khfMxUVPrn2AihU/4JmomLTcoYsZxLEP6XtDIUmVlCBguyXyEd4e3cCHezmC6HndK+rbW2oM+FNP4jHn3hJqIPnm1T6Gg5aHLDQNxi0SfymnNSN3C0lpg+8jlAiZdKZaFHrYYbdo2yM/822c4+fYGnv3mXhKjUZ76u7t5/cUdPP6RY2zZMbDSQ5xFBTMlkELddGZqPBHixRPb+W54E3ZYILJQ80yIqmHFrjsvs+/wFTZvH0DKicNdwDXJChstNLZ0CSx5cbZGCkXUR9KPOZK4a5FRBk4xPc+7LH8vIY/sl3e9MVnCq6mqkg5R06VGKLSG3BxM1Rrq/MaRFApDamzXmD9Q4mbagdxQ8vDmrhZ0ZiOMLgPefNY0vunDW10mag7phWUNlP9nNgM1OWVPeHGnFTFPlEnfq+wxxBAuYTNH1MwgBAyla7k81k5nopVEvopy1XOO0mjlpfEFDQPLmPuYpkWfDEk0ELhlo0/ltHZkveU1HZMuWL2Y9IKEhL2HrnL7vm7eeGk7Lz1zO9d66vibLz7M1tv6eOIjx2huG1vpYc4ggVIapPQjUzf2uVA2a3Lm+HqOH93Eu9kGEo/aYIERF+y/GOeexy/NCo2QCIKuSc5wcAyF1C5mhWAI03o2oQkApoAxx2TYDpDwZ/7VKmjAOlW2liRcScI1sZwSU2W4xAyFKolUTZ0AWUOd3xgyhUJIRc6xyDnW3IASN/IO4yaQ8Ml8y4k3n1MUipInL9VvpMxuZCYTNVfMebkpoWkGSkx5rOS1KxV1Ko5nGdL3gkaekJkjJPPkVYCu8VYuxtfTl2oi4wTLvqaQxmcYgnDAImDOPY2vEH1ytcYUglDQJBgwb/noUzmtGak1ATceJr0g01Lc9+hZDtx1mZee3sWbL2/j4pk2Lp1t4cBdV3j4/SepjmVXephl5DeqlV56mRB6VdepTZXjSC6eaeX40Y2cOdmObRtk9jukHrRBQJud5Bf2vEbTfek5rc/QElNJHEORN1ykI7xC4HloqmkCr85Ea3C1gYEmKDQZZTDkBEg45pLWMlRapabK9E1VVLpUGS7VhkdBLESqlHQnUOdrJmqVygObCKHJ2AGyjsWs+9s187QqZKCJWXnGHYurmQiZhdSwzVG+b5q4P5ffwGowUYXHlJgVcz5TTL1QByVLDNRKgiJm0lKn7xlCETRyhK0cBppkLsKVZDuXE+0MZmtxZsje0Fp7PaGEIGQZBE1zTml8pdEnDViGJBIMeGmA84hi3WpaM1JrKlEpJt1FFpv4rv6TsEhVnvf94Dvcef8FvvfNvbx7rIO3X9/Cybc3cO/DZ7nvkbMEgs5KD3OatBK4AgxY9WZKa+i60sDxo5s49fYG0ilvFkxLjf2+FKmN3o72gbrLfLL1JMacjvoTspSBEtqrlzIdQo4140FpeqQJv6ExfqNb/CiTQGhNlaFwkPTbJiOOhX2D1wo5WjLmSsZcE8PWRAyXqPQMVVQ6jJse9VC4JmIJT/TWtDBJv/UBGtJ2gJxjMuMp4ZqBWjWyhEfZHMkH6Pbx5tPS0CqoQhRqTrvSpYRLzPDTnPFoVYiczXDucD0DVYhCrU7zxJKn7wVknqCZJyAdtJaMZGq5Gm+lO9XCaLZqlpRzjas0SmlMQxIyTUzj+ggnpcF1XVylkEISDJiEAiaWuRZ9movWjNSapqkQnZJa3BCCiryjAAEAAElEQVSY9FLVNyX5xGdfpevyOZ7++n66rzTy4nd389arW3j4/ac4cNdlpLG6zky0FrgaDOkZg9WGRx/sr+b40U2cOLqR0eGq4vKq6gzb7+zm3R1VDKkYAs0nWk/wUN2VBVFPhZ/i59VLQd5wCbiGd8gQlMGOC1wt/aiTZ5pUMf/FM1sR6dWexF2TYcda0tnjlZKLYNw1GXdNBm1FY2QMU3gnMTVaIgyHvBbk1FKAMtY0P2kM/3eslEflyzll6qFW0w5gTQAEhSJqOPTng/TmQmVTMMuag4VucK5pfCXPXS4TNetepGii5LTFM722kMbnOaYJp7QSlL2ZtNTpe4Xok2XYGGhsN0BvqoFL8XYGMnUk7cisry+m8UlB2DIJzKEnlOMqL3KlwTAkVeEgQctciz7NU2tGak1lVcCkKy2LTXxXOya9VB2bh/nJf/Ms7x5fz/e+sZfR4Wq+8U+Hef3F7Tz+kWNsu/3aqmpxoPHw6AUztdIQivFEiBNvb+DE0U30dtUXlweCNrfv62bfoU5CG1L8cc9dDNtRQtLmZ9YfYVfV4KK2K4Gga5A1XFyp/Bx7zyw5vlnSarppmiyv8W1QKlKuybBtMebenB3VpyocyGGaLkrDULqGOBDxU/+qDRcBRVN1I6U13gwSaH8/6iHzbSXJuwYUZpfXzNOqVVi6hKRLXy5EXy40rwmJ+Zqrop+Y6+9hqXpFzTcKVfJgKaHvegZKl9RBCbE6ok6lWur0vUL0yavSFaTyUa6lGrg63spgJkbenR1iotFFMxQyDQKWgTkLvlhrcEqjT5ZX+xRYiz4tWGtGak2zSmuBrUyUVpiGQogbJzolBOza383O3b0ceWUrL353F4P9Mf7uzx5k0/Z+nvjIMdrWx1d6mCUSuCvYayqXNXnXh0ZcOtdcRC9Lqdh2Wx/7Dneyc08PgYDLqfFm/ujq/WSVRaOV4hc3vE5bMDmv7Xm/oEKTW2+Z1oCWmAocwyUrFLaywO99dj1ZQhExFHkl6MsHiTsW7g3wW62ELOlQE/Rq0hLZKLYysYGkMhmyNWGpiEiHatMl6psqe81ULYuk38jZUR4V0kPrm2i1NvO72lVlOEgfbz5YIbz5JIDElIVCz2MLhXS+VWKiNBMmasb0vcK1b6CkFBhitZknljR9rxB9Mg0HtEApg9FcjJ5kE32pRkayNdPw5eXkKoVSGsOQhCwfQz7Tc12Fozzqq+lHnwKWl/q3psVpzUit6brSWuBoA4VXO2VKjXsDRacMU3H3g+fZf+cVXnrmdt54cTtXzrfwp7//XvYdvsIjHzhJrG5uUISl1/Li0V1XcPFMK8eObOLsyXZse2KXsH7jEPsOX2HPHV1Eq3KAd/B7dngLT/bvRiPYFhni59YfocqvyZn5XUHBNBUyN7T2InFKS2wt0AXkuBYoFyAHhotr5hH58KwHWYmmynBRwJBtMeJY5G/wOqj5SKCpC48jBGTsAGl7ShNGBCllkFIGQ07BVLnUGB4BUAqwlWeqbhXjuRyaiEJB3jVwtUQKhe0auGsmapVLE/Px5leXAG8+ab8u/QjUPHb2Gv81lTRRs/zrz7ZXKJwKSCURagYCX+kdAYYUSCFXV2bIEqfvBaRN0MyD1mgtydshRrIxepON9KfriefK4cunS2mNO6knVPk0vonok0YK4UWfLJOAJRGru+nmDaU1I7WmOUv5RDBTKgzpIsTqx6SXKhS2eeIjx7nzPRd49pt7OfnWRo4f2cSpdzq458FzvOexM4TC9koPE89MFfDolTdTWkP3lQaOHd3Eqbc7SKdCxccamsbYd7iTfYc6qW+cHGFyteAf+vby/fgmAO6t7eRH245jlslBKcAgpP/YBAxC4vhmydXCm40r8/sRAHYQLTIg/X5IZehzAs8UmEIz5hoMOwHSSnKj/CYrpVgohWUoXCWJZ6PM9v41grQySCuDYcciLBVh6VJjuIQNF2PNVFVEhSiUq7wGu1oLpFQ4roHrrp3ErGaV4s27lwBvXtoPCuEFP+Y5wHkbr7msc74PFWEYTJioSY9NebJXAiWQcrUZqKVL35MoQmYOU7o4ysBxTfJugMF0HT3JJoYytaSd0PVX5I3U6wmlvZ5QIdPALNPLyVVevZTWHnQiGrYIWoYffVpFH/xNojUjtaZ5yQNReDUr5g2ESS9VbX2aH/qx17nnoXM8/bX9dF5s5uVnb+ft1zfz4HtPc+i+ixgrDqSY0msKip3dF6qh/mqOH93I8aObpkEj9txxlX2Hr7CuY7TsAS7lWvxp12HOpZsQaH6w5TSP1V/0o0szE/Ty2piINOFdz/0TEJ6ZCmTBcEE5UDyh8VDmYalIKck1O8iYO7f0v5tNITNPNJBDaxjJVKHmEYkrNVUjjldbFpGKasMpmirHN1XOLfjZLkwTQAlbGTh+qpOUCteVOLdIvd6NKomm1soz5lh0LwHevNRELcgMTQVLlM0TnOf65vlwoY6rsKcpNNydOoRiep/2DJRYRQZqqdP3LGkTMvNeVEiZZG2LjBNmIF1LX6qJwUxsRnx5ORVgEqYhCFoWgSlpfKW1T0JIgpZB0DKxLIlciz4tqdaM1JoWoOlNfOHGik4BrOsY5Sf+1fOcO93G976+n6GBGr79lYO88f3tPP6h4+zc27PCO/3F95oaHwtx8q0NHD+6kd6uhuLyQGACGrF5R/+sxrE/F+WPuu5mMF9FUDr89Poj7K+5Ns00FbDjSkvfNHnvYTES2gAngLbyXoNZJbEQRKTCRtBrB26pOqipkkJRG/Iih8l8iPwiZs41gowyyCiDYcck5NebFUxVFHC0IKcFjr4x6iSXW4UolFKCvDKKEwdSaC+FdY61fmtaGZlCETNthn28eaXbJMy7J9RMKyn32lnz6WbQPE3UVAPlHQTEpPRCWfpKvxBKGqvJQE1J31Oy8tEnwyXvmGTsEGhJIhdlIFNHf6qBkWz1LPjyMuPVGmdSGp8xqSfU9OhTkIBlYK1Fn5ZNa0ZqTQvWjdrEt1RCwM7dfWy/7Rpvvb6FF769m5HBav7xL99Dx+ZBnvjoMdZvHFnRMc6311QuZ3Lm+HqOHdnIpXMtk6ARW2+7xv5DVzxoRNCddT0CzbupJv60604yyqLBSvOvNrzGuuA4jpoZO15xuSZI14tKBbIEnAAjToARxyJ3C9VBTZemLpzEkJq8azCWmx2POz8Jstog6xiMOCZBoX36n+M1Akbh+qbKXjNVgGegJOAozzAVqWVCowHHMYr/i2tafQoIb9KgPxeaEW++UE0yUItZUQEuMdfnzmUQZSJbpaZHlzxU+oloAUILhCsKkPLi5NqEgRKrphZHF4q3dOXT94rRJyBrB8jaYVxlMJaP0pdqYCBTx3g+wvy+fT+NT3lpfEGjYI68z9hxXVxXI4QgYBmE1qJPK6Y1I7WmRaq0ia+HSdfcGE18SyUNzeH7LrL3YCevPHcbrz6/g67LTfzFHz7OrgNXeexDJ6hrSK3Y+DzgB5gz9JoqQCOOH93EmRPloBGd7D5wlarqXNn1Cz+BvbRX0/PDm/j7vn0oJJvDI/xM+1Gipk3GtVjOE2cBRFyTjFQooRkVigHbgnnM6t2MqgpkCZk2SsNoppql+048w5RzJKOOSUBoItI3VYYigsIFckrekqZK4jXXVVqQV3IyRMKvH8krs6In5muqrAp48+5ciP554s2vp0IAadH/GQXM+UIHAeWjQqLkKf5Ap3quaS8THqZcKi8FeyI7wXullAJWAUhiWvqeW7n0PYEiZOaxDIe8azGeiwAS2w0Qz1XRm2xkKBMj6wavu66pKvaEMgThgOWhyQFXaxxHobX3WDQU8KJP5lr0aSW1ZqTWVBF50SkTV6sbrolvqYIhh0c+cJJD917k+W/v4Z03N3H6nQ2cOdHOnfdf4MHH3yUcnZ1Qt3Tyek0V8OgoQVdnA8ePbOTk2xumQyMOdbL3UCcNTckpawH8k7/iJKTf4NbREltLvty3hxd9qMShmh4+2XISS6p51ThVQgGhCBuKjJIkMxFC4RSW6VAdyPozfLempqLOnWVrNCzIa0HelcTdCVNVZbhEDJeIUCjtmar8TWyqCu9KFIESElvJydFi4aVeenCJm/NzuBm0FHhzmAAxoCsw5VMwUfNNByyJNl3vXYnCdqa8VpTcFwiQntuSLkh/Qk+hvffp8cxXgYFauvQ9SzoEjRwIj5CazEURQM4NMpytoS/VwHAmNid8+bRxa78nlBCELMOn8Qmvca6rvOiTafh9nySyDGhiTcuvNSO1poqp0MRXIzCFe8M18S1VTW2Gj37qTe564BzPfH0/l8618voLOzn2xmYeeOI0d95/AdOsdPOOuUgweK2Kk29v5MTRjYwMVRcfiVZl2XOwk/2HO1nXMVLSIL48dtz1qWxeg1vve0q7Fn/de4Cz6SYAPth4lsfqLy37gdHwceY2gmt5i7hj4SCJZKEunKI6mCHvWuQqTNO6EST8lD4PdW5NQ50v50gmTJXl9fCSiirpEDVdYjeZqZo8eg8oAWC7PlBiiqRYg0usbnl4c0cLOjMR4k5l8OZTUd+L/uYXaaKut+8uei0BE/EliseL4stFIbqmka5XF6XQE/2gDLniDV2XKn1vcvTJJJGtRmkDKSBth+hP19GfrieRq1pgNFPjKo1SXp1TyMeZe9EnhWFIIqEAwbXo06rUmpFaU8WllMQWAo3CkAoh9A0HoiiotT3Bj/3Ci1w408IzX9vPwLVanv7aAd78/jYe/dAJdh/oWhaTkRwPcurtDZw4umESNMIKOOza183eQ1fYsqPfb5pc0uCWydhx5V/KYccH8xH+vOcQA/kqAsLh023H2Vfdv/RvrkQCXWwWO+qYDDsW2ZKZvbQdImA4RAM56sLjDKRq50WpuxlUE0phGS6uEsSzc+s7shyytSThShKuieUowlIR9VMAY4bXCLJgqm4U4EL5TCjt14N6WPNyUVov1W8NLrFaVcCbp5VBdyZC0q3MqVBpFKoi3/piTNQcolClJqpQ6VRqniaVUvm7WVMZ/gsKPPOJ/a8uzQ8sWfdSainT90qjT1k7yGgmhsSrSxrPh/30vVpSTnjB2yim8UlB2DIxhMB1FUoID3EeCGCZBsZa9GnVas1IrWlJNAmTLv3olOKGPanYdls/W3Y8zbE3N/H8t3YTH6niy//7Xl57YQdPfPQYG7cMVXyb+ZzJmRPrOHF0I5fOt6D9WW8hFVt3XGPf4U527e0i7Pe+0oiiacqXNrjl+tjxC+l6/rLnDtIqQMzM8tPtR1kfGqv4e5pZHso8IDVJ12DItkiq8jP58WyUgOFgGS714XGG0jVln3czKmTmqQp4dW6j80SdL6dsLbFdyZhrMmhbhA1FlZ8CWC09yMmqNFV64nr6qHSxhtCeApQolQeEWYNLrFZJNDHLZtwxK4Y3n2SgKtU5YyEmag5RqKn1T1LIGc1T8TV+NEoqAS4gNLKQWlYCqdAASqMpTJ5O1E1V0lzpAjdeUPH0vYnok43tWsSzNeSdAKZUCC0ZyVXRm/Lqn2y1GEqqn8anIWBIDCGLHtSLPkkscy2afSNozUitaQk1HZMuuPEw6QVJqbnj7svsPnCV117YycvP7qT3agN/9T8eZeeebh7/8HEampPXX9Escl3BpbMtnHhrI2dPtmPnJ/5F2zcOsf9QJ3vu6KSqOl9Mx8s5JoV9sKuMeRP0Xouv55/7d6OQdITi/HT7W9SY5aEUS6FCHVRWSXryARKOWbZJ74QEI5lqmqIJgqZXKzSWiy7beFdKpajz8VyInFuZVKSlloNk3JWMuyaG7dH/PFiFZ6oEnqnKraCpEjPcnlg2AZSwXTkzOKIAl3DX4BKrUaZQ1Jg2IxXCm0/rCVUpLdREzRKFKmeg5pIkpvEJfa4X+BFSYhhy+gsL2za8dDppeC/WXloESutiL8Sp5mpW4ycACil7haVe3ycQFUvfK0af8OqdhtK1oCRB00Fj0Jeqoy/VyGiuetETWK5SuEojhcAUAktIrCJ5by36dKNpzUitNq10leYSaComXcobN9UPIBB0efC9pzl4zyVe+M5u3nptM2dPruf86XUcuvciD77vNNGquRsRraHnaj0njm7k1DsdpJMT0Ij6xnH2H77C3kOd1DelcH3seMaxitEmAKE0piwceee2E1YavjG4k+dHtwBwoLqXT7WeICCXp/bL8NP4XAQDtsWoY835xMZRBqOZKA2RJNXBLHnXIluhGofVqaVEnS+fXATjrsm4azJka8LSJWp4pqpKKgTaq7tS8jpmenGaz5qFH4lylMRRxsyNsUvhEjcYtfRWUEB4v7WBCuHNlyQKVVjnfEzULFGo8vQ9iZxa/zTLqpX0TJTEwDAkYj4BPDFRe1VsH+ubK621fymkBKqpAy2uRGjpGSY/Lb1S4AiBJmjmCUgbWxmM5apJ5iNINEHTJu0G6Iq3MJipY2ze+PLpUn5PKK01ppCETZNQ0PRqnwzjpjz/uxW0ZqRWmUaFSb5M4fKNr1JMuossNvG9cXccVTVZPvSJo9z1wHme+cY+zp9ex5svb+fYkU3c/9i73P3geazAzL2ahgejnHyrPDRi9x1X2XPwKq0dcbTwPre0PbNR0FrgKIkpFdLvNTXbcTjrmvxN335Op5oBeG/Ded7XcGFZ9uMCTUQqpICE69VBLSS9JusESeYcqoJZ6sJJBpILIyXdCIpOQp2vnrqoxchFkFQmSWUyaHupnVHD8UyVXyeX14JcBUzVwl7tASU0YCsDx5WzrswQCmcNLrGC8vp4SeF9bxIvzdJA+8ZB01sBvPmSGajSDczHRE2JQpUzT6Jkck2Kuf06NaCERiqBKYzJaXyLkSjUZAk/2qV9c+WPUYF28QyTomichACEqMgxqhB9EsI7jlzLxMjaQcKmTchwGMtHuJhYv2B8+TRpTd5VuEphSUk0FCAS9NDlN0b0SU/7TeoZ7s000aQnP22GJy3FP9TSa81IrSINZsf5vqzl9VMfY3NolO2REbZHhmkPjhXhATe6CtEpqcUNjUkvVVPrGD/6M9/n8vkmnvn6fvq663n2m/s48so2HvnACfYd6kRI70CeSgU5/VYHx45upOdqY3EdVsBh554edh3sYsP2QQr7VkeXr8Mop0JdmiE1Uijwa6amasQO82fdh7iWr8YULj/aeoI7avoq8Elcd4SEpCIoFUnXZNi2GF/kSWciFyFg2gQMl/rIOIOp2KLWtxplSofYJNT5zbfbVghSyiClDAZtz2iHpUON4UURpNDklfT6NM3h+13sL0AKQGhUOaDE9JIPD4GuJba7BpeonDwzZIiJZsfetWeMpJh+cudqgQK/Sbg3uZRWElsJ0spkxF54D7wlS+MrVSEaNdfBTAR5ptU4CUow5P7z52KiimWCwsOZW8KsGI1PC69+qjhOLZBaIrVf36T81r6GH7WSyqut1l5jWvTE62F+pkoITdDIETAcbNckkYkylvPqTKusLCGZYyhVQ2+qgeFMjb+f1XhFYfN8nyV/bFfhao0pJVHLJGJZmKYBSpPPOhPPL32xmPoF+2jEcjuf4mvmPcwZVlCyjeJ2JyTKbH7SY9MWTokflnlS6SIpbzys+813RL6B1Z0aJagVOUzOZZo4l2mCYQjLPNvCnqnaHhmhyUrd0BHgAiZdaVls4nujYtJLtXn7ID/zb5/m5Nsbefabe0mMRnnq7+7m9Rd3cPCuS5x7t42L51onQSM2bx/g9oNdbN/dRyA4/x32dHmRP6SXZiQEk04CL6dr+V+9B0m6QaqNLD/V/hYbw4kKbHd2WUIRMRQ5JenNB0k41pxOiK8vwUi6muaqBAHDJRZMk7ip6qU09asCdb580iWmatjxIlUR6VJjOIQNF0OArbxIVeE3tPhfkvbrRjRCaoRW2MqcDJSYep5RODn1m5A7juGf+q+pvDQGvhlaoDHK+f26bCVwELha4mpRvChdeI3AqSByf8mjUDD3hrsl57yl5kmDb3jERHZcyUd6PRM16W1Jr6muqY0Fp9Fp/8OaGK6Xmie0RJbcnklCgBCyOKlIIR3QB1lopcoGMKaO1jQcQmYeITRZO8i1TC0pO4wlFdFAhpwT5Gqymf5UPfESfLm3XTHNOUw3BdM/H6UVrqv//+z9WawsXXqeiT1rioic9njmf6r6a65iVXEQSZVMSTYtQa021EaLMNBsSLIF3UoXogQDupJ4xUtdUXcy1W1YptRGo2FYho0W23BbggiNFMlWk6q56h/OfPaYQ0SstXyxVkRG5s7cO/d4cp8Tb9X5996ZGRErIiMj1xPf970f1ntMotnOUjZ7CUkjfU9UO7lgVWIePpqvmn9i2fsqWPreieaJM3MNnXv9KdtaBk3NZxfNU5fNXa3zFNZyXIzZ3L5d3+HC+1saS7tCHRwcsLm5yf7+PhsbG691LP/H//av8otf/tf8/169y38c3uW7ox3Gc84wm3rEF2qwesHmDRoDXLWE8Cjh0Cokhd+e6FTsyxRTRkR8LEgwyRW//T9+kX/2T7/KZDz7/j187yVf/ekf8+VvfkxvcH3vnYppfhBg6l/vP+IfPfk61kveSQ/4K+/8G7bM+Nq2D9M6KAe8LEMdVH4NRfiZztntHgLwYthnXL4ZwLGZHdFPJlgn3kqr96YEnkwEqNpUllRZNFD4Wag6XdN4kYgOfPUsNG4jkSXHZRog6vRVhQknPphLvJEp2cslGql0q4CRJ1yHZiJGXjTAaBaKpv9CGqidA6Ob+JaYAajr3NAq5hINoJ+eaVV4bA6gmM2SOg2iTqQCqvBidU6Iqp30qnXF9+tEtOkqNX+8asB0pCrHyILSa47LHkd5n0mZ0DNjEplzXHZ5PLzL8/E2x+Xla06999jYONcBSgk2ex12N7tkSRuzmJcHitKR25LCObSUpEpzyD7/6fs/y3/+2Z953UNcmQ3ad3fNJIB3swP+5NYP+IWtj7Be8NF4g2+Pdvn2cJfvj7fZLzv868N3+NeH7wBwPzni850XfLH7gs91XtJR5evdiXPIe0HpFY5QO6Wlx65VdCr2ZBJhwjT/teOoar8kPv7tvcAJ+Jk/+T2+8kc+4l/81pd4/ONtPvjCU776Ux+xc/dyzn6ryjoJ0YDi//n8C/zTF58H4Ov9x/yXD3+XVF5FBGyxqjooJTwHVvGiTBhegc3wMo3LhMNJxiAds9055tmxprzG7d2EbovV+bWqBpzw37FXjJ3iZRnSRLvSMVAlHRkiVdYLJnGCXkGSbK4k/lpN5D0C52LbAET1CV7NiEC+WeYSS8Go+r2iicp5jVkwsjUUnQVGAgsnwOjs8d2cmml86wJRgupuvozwVKXIyXqo9csbBhSnHeXmJmWgXzwexelW4qdFmwQy/n4D79jcJpQsydQEKTwTm/JstMVx0cMDG2ZIJ83Zyzf4zvADXoy3LmVfXsk5T2ltuK8iBNpouplme9CllyW3OnvoqmW9Jy8teRmOl1GKXpqwkaZ0EkNmDN8/zOmZy78vN6kWpNZcSng+6OzzQWefP7XzPXIn+f5om2+PdvnOcJePJhs8yfs8yfv88/0PEHjeS/fraNVnsj3MDbmwXUYu9pTR0qGkDSlpN+bsF+5Mh76CVXLO9Pafj68oXZgYVP2aKmg6Td1ezv/6P/u9axz76RqVht988hP83tEDAP7Uznf4T+58+xpr7jypCJPcoZO8KFIObqhu5GDSJVElqS7Z6Rzy9BbXSzWtzo9ukdX5pTUDTqdJMHaKiZO8spJMOvrRpCJAlcd6wdiHiX240UENTMvyMM5TC6IiRBVrai5RuQ1OI0VLwAjqFLAajLzAchKMqqbeVwFGp4/99elG0vgqnQVRJwDKxQWmoDN/rFaBqBMAFV/sha9rlmZeuyja5BXKn52id92qnPeMzLFecVT0OcoHHBcZmS7YTI4ovObpeIcnwzu8mmziLpmCO40+eZQSpEbjBRit2OimDHoZ+k0pbL+EPFBYR16WlC7clE605m6/Ry9J6CYao28/htz+PXjLlEjHl3ov+FLvBQBDa/jOaIdvD3f49vAOz4oeP5ps8aPJFr/16nNoYaNxRQCrd9fYuGKmia8KTXztlcLU6el4VV+mwss4oRAQ8+5vYwH5XpHxG5/+FJ9MNlDC8V88+F1+dvOTM5vzXlRaOHrKkjvJp0XC3pXVQa2q0F/qXm8Poyxb2TF74/4Nbv+qNLU6L6xi/5Zana+sFe74izirFREC5iMjE68Y5obHHhLh6QhPX4dIVVd4LI6xlRRnFGU7BLk7q49ZAF3rQtPhm5r2nwZGiuoYxRevAEaFl3XK3DI4uol9W5cr640CFCyFKAGzNxRqkgq5pKfVqFQQtSyVbyafQopQiyPCzUInbIAoBF40b77ORZuuqG/TZaWkJVPjGH1KeDa8y3HRo3CavhlxN9tjWGb88PAdno53OCx6XPZsq6JPAFopOplCCIHznk6asNlLSRO9Bkfn9cl7mNiSSRGiTlpKOolhI8vomhB1Uus6Cb2gWpC65eqqgm/0n/CN/hMA9oq0TgP89nCXA5vx7dEdvj26E40rCj7fecHnoyPgvbUzrpht4qulCxf5cwHVFJjOk47nbykwLdKPxpv8g09+ikOb0lMT/g8Pf4fPdl8BYRJ4lWliMtZBeeB5kfDymuqgVpHzkpejAXe6B/SSCbnVDIvs7AXXSJXVuffw8g2xOp/RUnCqapYCHNSTyLhM9TkNNzpkbVDj6ghTeHEOHAHPioQ0wv1AlfRiI+DKtCBfFEHxUJxhoS+FxxNszi9jLnESjKa1RYvBKNzUaYJRbiWlD26GZQ1A0/qj5s+bAqOz9PpHcFI3VgtVqQFRM2DULCsTSwwklug0iJr5BhQiZF+IMAgvPK5K66Tq1bSaIcTrkJYlmRrjERwXPQ7zDY6LDlJ4NpIjtLAcFH1+ePSQF+NtxvZy138P2NJOo0+JIU0USgompUUpyXYvpZ+lazaXujmVzjEpLYUNt6BSrdjtdemlCV1jSM16Ru2vSi1IvWHaMhN+1nzCz258gvfwtOjx7eEu/3G4y3dHO4yc4feOH/B7xyHVa1OP+ULnxdoZV6zWxLeqXzotHU9gfUgt81VdhJ9fz5ul3zl8wD968hOUXvEgOeQvP/q37JhxHfEzyiGFw3s58wV7foU6KC09h1bxokg4djd3h36Zcms4nHTYyEZsZsfkVt8ay/A3zup8YapeiCzNRoapJ7KhfilGhU8BprMlmDjFxCleFgmJrKCqoK8sXTWFqsmKaWnVRKmwaq6Oaur6V1l2i3h9qnsazc3SvV8ERgEUizkwmo8WrRMYnab1Ht1riEJV23NhezPHZw6ignPb4vS9eZ0FUQHIohOdrB519ZPSK4zXSHd6bdTrlFEFmZpgveQg3+Ag32BYdshUzm62j/OCV5NNHo/u8nK8Sekvd+2sa598SNnrZDr0fVKScV5grWfQydjophi9XrB53QpRJ0teljgPWgoyY7jbC/2xOtqg1NtzTG75t3Sr0yQE3E+OuZ8c8wtbPwrGFZONOlr1g/EW+2U2Y1xxzxzVUPW5zku6r9W4QsTUPoWRJUbauYjRsnQ86kLyt0new3//8nP89y+DqcRXek/5Lx/8LtmMqUQAVCVDDy8RJ2XnVSocmXSMvOTJJGHf6rU63od5h0SXZLpgp3PIs+OttRrfYk2tzseF4fg2Wp372T/kPDA1UvIqYLJ+Ck5VVPhKbnbM2ZHlXpKXklelwTQiVX0VXAC9pwFVYeszaXQyNuh1glRahCxnhliNvwlGEyvqiJE9BYwqm+/1R4/TdVtG3zy9bgygqm36OYjys7ATms+uBlBN+GpCVLV/HocQEiGrpEDRSM0TeO8RQqCtQq6pdX+iJqQqp3Sal+MtDvMNxjahp8fcy16Su4RPju/xdLzL3mTjUtf5ZvRJKkFqDGmqSLQGAUVpmUxyMmPY6GV00rcnjc86H6NOYT5htGIz6zDIEjqJoWM0V3EF8NzkB/Jq1ILUWyQlPB9k+3yQBeOKwkm+P96OYLXDR5NNnhZ9nu5PjSveTfdjY+DnfPYajSuqu7UyFrVKfP1l4jwUTmOFRwgHXlB49cal411GhZP8oyc/wb8/egjAn9j6Pv+bO/9xaT1cZdUshUMKVoYpHdP4cgSPi4S9UlOu5Rew4NWoz73ePkY5tjpHvFrzNLnNdIhRFusEr8brPdZaPvynSsUT8uSnMaTSyplIUxWNubZ9nIOoeRVesldK9iJUdZWlL0s2tGVD2pr3XDOdDh96eZWKwqm3AoxO023dsxtP45tTE6J8BKEQzQQhTjrwLVNtmCKqBtLVae8JXW0kSqgAUl5GYJyuOTjvCbRbP4gK6WETjMwpbMKz0R2O8gGF0wzMkM3kiOOiw/cO3uPZeOfS9uXN6JPWkn5mYvQppPk67xlPSpQUbPe79Dspb3rAxTO1Jy+dR0lBqjU7vQ5dY+gkBqMu74zrvSf3BRM3wfoynrO36+rSgtRbLCMdX+wG23SAodV8d7RTpwI+K/r8eLLFjydb/A+vPkQLy2eyPb5YG1fsn9u4oioal1X9kpjepK4mVtZJcmSwJaaR3oNESUciC1RsgtlCFOyXKf/VJz/FjyebSBy/dO8/8HObH5+5XLBHnxasnwZTIgKUAF6WmpelYXxGLcnrVqiX6nOne0DX5OTlhOM1rZdKdU4/DT291tfqvAFMzNYwVZ9F61RtLT79/DZeeDPDnGqFzRZesl9K9jE8KRydeLOo6mEUMoo9hZOMiwS/lu/N9epNuMq+ljS+pqLpXvV9N5uOJ+vvwlVU2Y8L2aieitl6eIkSEilkmJAu2FePxwmP9mrGoe91S+DJ9BgtSyY25enwHodFH+8lA3NMIotQ/7T3kOfjHSb24lH7+ehTYkLtU2L0TK3TpChwDvqZYaPXIXmD0/jm7cmTOXvyjjFXAjmlL5m4nNzleO9JZEJf9dnUA3puwv30zuV35gbVglSrWl1V8vX+U77efwoE44rvjAJUVcYV3xnt8p3RLryATBZ8vtEYeGpc0UjnadQH+HhRd7GGKY93daf1DxLrgVPujlknGTuDUZZEWRD+rWuE2dRH4wH/4NOfZr/M6Mqcv/Twd/hcNJVYRdZJfOz3tBimPB3pSOo6KMORuz2Fo7k1HEy6bGbDul6qWLO6Iykc22tkdV59bqu+Qs10vDABjL3f6shS1Y+pevGJFd6czglR8yq95NDOXk+UDPWEk9K8NRB1Oz7dq+m1pfE11TCXqCBKEiNQKwGUh3jzMIY6EUikC4YQznnwAikFUkrEqXc4pxCl16TXnhSOTI9RwjEqM56P7nBU9BE4NpNjpHCh/9NxaKB7mfqnOvrkQvSp143mEXPRldJa8sKSGs3GIKObmjfOTMJzij15mtA1V2NP7rwjd1XUyaKFIpUpO8k9+rpHV3VJRIC04eQlStyu6+x6zSharZW2zIQ/Yj7hj8wZV3x7uMt3RjuMneH3j+/z+8f3gWBc8cXuc77Ye84XOy/YNBOclxRe4KrUHqaTr4t+XXskuQ2RqkSVKOnqu99vk37v6B7/18dfp/Cae+aIv/zo33InGZ17Pc6FBo9KuhmYSoSjoxxjJ/l4krC3ZnVQq+ooz0hUQccU7HQPeXq0yWXc1q5Wnu3sdVidx8hSwxSh8dRyh7yLmLVcEm7OvZ0r3IaMM+9xqcPn5A3U7ftEr6aZ0/Q1pfEBszbnflp7h5BLJubTIipfR88k2CrqJJBChs+sD5kcUgikPguggqzwaC/XAqIqC3OBZ1h22Z9sclz0MLJgO9nHI3gx3ubx6A4vJ5u4C2ZBeMBaiy09UkFiNGmiT0SfIKTxTfISKQVb/Q6DbvpG2XU7D3nDntwoRScxbGYZnSu0Jy9cwcTlFK4AIUiEYVNvsGkGdGSHruogbxkwLVMLUq3OlMAjpOdRdsg72QH/q93v473nR+NN/uD4Lt8e3uF7o232y4x/dfAu/+rgXQDumGM+zF7xYecVn8326FypcYWgjBGtRFlMNFSw7s254C2T9/A/vPos/68XXwTgi93n/IUH//5Sx9d5gXcSLR1GhPSmEsHTwvCqNBS3+k58qJcyah8tHdudI16OBqzDFLJnxmTmOq3Oo19ljBAvBiZJ7sJP5yqb7Wtyt5yPCFzV6q8BooQI1728UFj7+iedV6XXf9Zfn5qud68tha+pCFFVSh+EKNR08j6lK1+PWYCTIQgVU/Z89TJBSNkjtASRApSSwY1vhXCJFQ7lBeo1R+WVLOk0LMz3JxsMyy6ZmnAn2yN3msejuzwZ3bmUgcSq0adKk6LEOkc3TdjoZWTmzfjcz9iTC0jV1duTO++YuJyJm+C8QwtNpjLuJXfoqi5d1SGR5mp2aM3UglSrqGY6XqhfqgwgfKNwumik493RY/7Yxsf80cHH5E7zo8km3xtt873xNp9MBjwvejwvevzLw3cReB4mh3zYecXnOq94P90/w7hi0TfgyQ96SLkROBmASkmH9dW30punwkn+b0+/xr89fATA/2Lzh/y5u3+IuooZg4dMOIz0HJSSZ2XKaA3uWl6FPJKXwwF3e/t0TEHfjjnKO691TFqWbGaV1Xn3klbnvo6eyPgZrp+pnPAakdwqwuSvC5hW1VVEq64BosAjpaMsNXl5e78m38yr4EmtHUBBDVGyTsUDpAiGSTG4JFyMTzmQnvC9teDzGNz1AkTVtVVKhMjBivlmTjikF2hnXtt5sdjCPKOvR9zrvGRUZvzw8CFPx7uXaqBbVtEnCcZosrr2afH6rHNM8pLEKLb7PXpZcqvT+Jbbk6d0U3Ml9uTeewpfMnETSlcghCSRCbtmm4Ee0FUdOjK7dcYRF9Ht/YZodUFVF+TKHS/ceQXqWiWHoHQSW1uKB2A5LR3PSMvnOi/5XOclACOr+cF4i++Nt/nuaIfnRY9P8g0+yTf4Z/sfoIXlvfSADzuv+DB7xaP0cA4GTtbqLL+dLYKrn5MkugxNfOPd9tN1hR/w83xxn9jsagsflgn/1ac/yQ/H20gc/9u7f8Af2/rxOTa8TKEOKhWew1LzvDSMEUjhmuUxt16F0+yNe2x3jtlIh+RWk9vXdYds3up8VROMOcOHBcBkvcRWESYE3sUbIfUkbU11kWjVNUCUx6OVw5aSSXl76gFvxyivVmsJUBCoyAukhzp7ScTxNaNN9b3E5e+eixblglhbJUMt1CppfPU68AgvMO712HUnKidVkxkL89waBsmQ+52XHBVdvrP/AU9HO4zsxW5w+Rh9cg6UFvS6CYlRaL38ZqDHM85LBLDZyxj0MvQtTeNbZE++1enSTw2dJKFzBVEn621tEuG8IxGGrsrYSO7R0126soOWbx9WvH17fFsUTRvOrboHio+2qNW9aB+fmlqGn6hfqt3xGi5A5xtwrY60fKX7gq9ER8CDMuF74+06YnVgM74/3ub7421+C0hFyWdjGuCH2SvumuHcHaGzLwCO4KplVEkiLUq4aESxZhfGE8f17AL9TyY9fuOTn2av7NCRBX/h4e/wxe7LSw8lidbPYyf5aJLyqjQBQEWAYyUtHrnAhOJ2alikpKqgm+TsdA55erz1WhzyzrY6Xw5M1Wc0WIrLOdOHcEMELn4JWRudFa26DogSHi08LprarLO5xJvxibyYTtQ/rcN5Hnum+QhMIjbdxUdz8SXRpmUKn+X623hFI4lF6wlzAe0UN9lsV9CwMHeVhXkf6xUbyTEDc8xh0ecHh+/ybLRN7i5msmOtoywdUoI2iiwJBgnyjOOUl5aytHTShM1eSprcrp5QnmBPPrEl1nm0FCRXbE8+b00ukGQy5W6yy0D16aoOqUzfiqjTaWpBas2kqy/uFS+4lcWCiK5rzUWq5rSlV3UfF+9E3bj2Jo0DNnTOT/af8JP9J3gPL8oO3xtt893xDt8fbzF2hj8Y3eUPRncBGKhJqK+KcLWpJytvq7ChMDxRJUpFI4o1nhAtVGNi8B+O7/IPH3+didfcMcf85Yf/jnvJkMVRu9Wk8PRUifWSJ3nCyyIhbx4jD0WsC5maUNyyY7hQgr1xqJcyyrLdOeLF8GbrpVI1tTrfG/cAUMJOHfIg1i9VwDS1FJ8BpurFvtozXm9R/XVqUbTqindUCI+WDuckeaHxTlKd8uJ62uedPaYFj/nGzzfyvT5F9dfi64YnwcwAwmdP4KOphLASgYhNcM8vj8e7WBMlZfinzr8uj8cLj3I3Z3O+zMJcABsmOPC9mmzy6fAuL8ZbF3Lga9Y+KbVa9Gm6rGNclGil2N3s0s/SW5PGZ50nt7P25IM0YXCF9uSnWZN3VTCJUOLNSPm/KrUgdUskmIKSbCCQJxgFOD9NxwuTLRkbSa7f5FcIuGNG3DEjfm7jE5yHT/MB343Rqh9NNjm0Kf/++AH//vgBALt6WEerPpu9onuGsYL1knFpML6MNul2PaNTp8h7+B/3PuCfvPgiHsHnOi/5Sw9+Z7rvF4hsCRw9FSbt+6XheZEwdGrpxLRwCg9o6ZDCvREw5RG8HPW529sn0wWDdMThNbvl1a0ARIA3gGGeYK1G4PEIihhhso36pYVNXefA6a3UFUajhPBIGSaueaEpSoX3YQosXIwM3CBQrZqQ3Ex2vj1XtfNrLdL35IKNuhhhivb/VfGS9AJ5YYQKUQDnQwNUqdS56qDm1jS1Ob+Bnn9CODoNC/MX4zsc5n2MLNlODrFe8ny8xePhXV5NNs89N5mHp9D3Sa4Ufao0zgsABp2MjW6KWfOeUJ4l9uSDHr0kGEWYFeDxNM1akzu0kKQqYzfZDul6qksqX29LjnVXC1JrKi0dElv/XaXsOBcMH+qml41mtbdVUsA76SHvpIf8CX5E4SQ/nmzUqYAf5xu8KLu8OOzyrw7fmRpXxGjV++k+yQLjCo8gtwbrFKkugk26vx3RqdIL/tunX+FfHQYHxJ/f+DH/+d0/OL+phJ/+kklHJh1HVvG8SDgoo535iUKo2W2UVuERGGkDTC06127ZhL50mr1xn53OEYNkRF7qK+jfdJZDHmxmI5T05FbxbLiBc+G2yEJgaixbP3vLjvO16pL0EADKgReUpaIo1MkbBTHCd91AdZFdedOB6rUB1Fy0CZhCE8T0eVGfG97H1wuBdKAu+F3sCXU+AFoplDp/Gl9TN2VzroQl0/MW5h0yXbCb7pE7wyfH93gyusN+PjhXJsxJeNKkicJohZSrH+ci1g5lxrDRy+ik65vGV9mT54XFEezJu0nCRpZemT3522RNfhNqQWrN5CIkFU5SOI1D1gB10+l4r0tGOj7s7PFhZw+2vx+MKyZbdX3Vs6ZxxcEHKBzvZft8LltsXGG9ZFSYYJOuLBCd/db0WB5bw3/96Tf53ngHgefP3flDfmHzRxdOPzCxDip3ko8nKa8Kg2U2jW9WJzdkrcI7gdElCjfbBHn+5cvGuWYQMCpSjlVBL5mw3Tni6fGqfUqmDnnzwLTQIQ/wTtBPR2S6wHl4fLS1vDFwC05n61IfXY+SYRZclopilR5RVwRU8/csruIK9KYB1Y3XP81Hm7yYiTadHNT0fQxBqAhRXnBRZKmiUFIKVISoyyjYnEv0Ndqcz1uYH0QL854ZcTfbY1hmfP/wHZ6Ndjkqeyuv1zmPrUwjLgFPEIw6xnmJkoLtfpd+J+WSh/ZaNGNPDqRGsXOF9uRNa3LvPUqot8aa/CbUgtSayVlFYTWjIqGkPbEBOqrkK93nfKX7HAjGFd8fb9epgAc24wfjbX5winEFQjKxobmoibVT1knWzSb9Sd7j//TJT/Gy7JKKkr/w4Hf5cu/5hdYl8fRUyKV+nie8KAyTi6Z4eII5SaExlc28a9bzzb72hNYUtvbGvWBOoiw7nSOeDzeYnTD5hU1rm4YtpauAKdRILLrhYWTJbvcQgBfDwaxbYAtO59OFP7INgHKCIo8AdZ5rwDmBai4oea2gc9uB6gRAXcdGzhFtmqfemfeyuQoV3PnUOYwkpuvxMaIFSin0JaNQ0LQ5v57p3SIL83GZMkiG3M1ecVh2+Y/7n+HZeIexXc2NtAlPUglMBU9KIS9IPpOiwDnoZ4aNXodkjdL4TrcnT+hofSmYnrcmR0jSt9Sa/CbUglSrW6cNnfPN/hO+OWdc8b3oAjiaM67ozxlX7OgRRofoVFVPVus1TmT/4HiX/8uTbzB2hh095C8//Hc8SI8vsKYAUFp49kvN8yLh2F6NjbPzkokVpARHPxdrqFYY0ul/s2B4NwJbgpfDAff6+6S6ZCs75njSmTN9mI8wTS3FV4sQex7095ACjvOE/XE3bvmq9+Ut0IVOYR8i1DK48U1KjS1laHx6Uc0BVR3gdSeHeNNQc5uA6nrS9xp3JsTM6hdEm8Tyz2DzBkfzoeZBlSGgpdz5Mhw8AaAEIKRASYlSF62Fmuo6bc6bFuavxlsc5BuUTjFIhvT0mIO8z/eH7/FsvE3hzr4J7JzHOouzAZ600WQmRp4uARGlteSFJTWajUFGNzVrYSZROk9eWnJrEUAS7ckHWUJmzKXtyVtr8ten9qi2utVaZFzxOO/z3fEO3xtt88PJJkc25XePH/C7c8YVX+g+58u95/RNPjWiWDYLukZ5D/98/z3+78+/jEfw2ewVf+nh79BXxbnXlUpLRzqOreKTImG/qoO60gELJlZhCI5+3kmupGTkRmBrsa344bjDZmdIL5kwLhKOyyzUHtYptadt7HTtdg5JdYl1gmeHm5ebwL/NOvdhC++1lB7rJEVhKMvwOb+ydLEqctIAKh//rvS63u11BqqLAdRceGjRzjR31ov6ffB1it6SI9A8WHMPzWy9gqsYyJQe5DkgKqwjmlIICSLYml/cUKK57nAyXqXNuWDWwvz5KBhIgGDDHOOBV5MNHg/v8WKyhT0j4yHAk8NZH+BJK9KOxujLpzM675nkJVIKtvodBt300rVEl5EH8tKRL7InTwxdY9CXsCdfZk1+L7lDX/Vaa/IbVAtSrd4oSQGP0iMepUf88c0544rxNh9PThpXPEoP+GL3BZ/vvOQznb1Z44prBivrBf/dsy/z2wfvAfBHBh/zS/f+A/qcMz0tHD1pKbzkk9gPqrxOUw0vZu3RrwCmVrrc+5kfp8BWw/hBxLS8mEJTpd81bcWPiwQEbGZDtjpHHB6klBdNjWmMqasnbHeGADw93DxzotFqic41Fwjvt4xW5pNCUTgVGqGGp69eC4CK+Pfr1joB1en1TycjSUtXUkWUmjtVLXyRGxWrAlTkHdeAqFWhxUeAEhGgIFibqwvYmp9YN8HmXDt9JTbnAk+qx5g5C3MtLJvJMdYrno53ogPfBqeZXZ2AJyUjPEnUJfscVZoUJdY5umnCRi8jM6/nOrvcnjyjk+hL25O31uTrqRakWr3RmjGu4PuMneIH46lxxdOiz8eTTT6ebPL/efUhSjg+yPb4QgSr97KDWae8KwSrodX8nx9/k++MdhF4/tPdb/Mnt35wrhuTEk9XhVSBF0XCi9IwvmaXplpeBKtoBVo5ZIzeXETnXUqc+N0hZDge9fCIOGUVua9cLqcRptlInefZsE+qCzJd8KC/x8cHu6tH86qJVuN8kMJxb7APwP6oy7BYrV6g1ZzOcXII4YM7pxNMCh3t+2WoYbqJNMoGUEGoofKc35TiOvQ6gSoA1PQNEMCp5nYuvqqOLlU/wx0RH4lMLMoiWEVz9U/1mObUhKjK5+C8EOW9D+eAEMhg6Yn3oC7YG2rRKCubc3VJiKotzHGMbMrL8R0O8x6ZytlNDpjYhI+P70cHvkWNxINuAp4ArHNM8pLEKLb7PXpZcqNpfJ55e3JBqjV3B9mV2JO31uS3Qy1ItXqrlEnLl7sv+HL3BQCHZVJHq7432mbfZnxvtMP3Rjv8v4FUliENsPOCL3Rfcj85mr1QXxCsnuVdfuPTn+JZ0SMRJb98//f4if6zc+yJpysdRjoOSs2LIuHwiuqgzicxtUdXFunP17j3/ABV9WOaPdBV3VLhg6GIjX2YginE4vHMzqXCSB4fbPPe1jMyXXKne8Cz4WZjCT+3NPWs9OR+eO7199HSkZeKF8eDc+5pK2DlE6QCKO8EeakprAo2/VXU46Zq0ebGKxpA1fz7der6gGpJREksSN3zzJg8uMbi4fPUgJRIM9Oxiovf1a8+9Avqn+aHNx+FgpjOR+gVdRZE1XVQIqTxSSFwPtyaUUqu3PvoLF2FzfmshXmH/ckWwyKjaybcSfcYlh2+e/Auz8a7HJeLe+75CE/WeqQKFu7XBU9FaXEu9Nra7GUMehn6htL4KnvySRGiTkYpeknC4IrsyeetydOGNXlXdenIrLUmXzO1INXqrdZgzrjiVZnxg8km3xvv8J3hDkOX8D8f3+V/Pp4aV3yh+5LPR7DaNuPZFa4AVt8Z7vBfP/4mI2fY0iP+8sN/x6P0aOUxJ9HOfGgVj8cd9kt94UjQ1UhgbSga0LpEiTl79KVLnfbcYmDyBDgqnMI5GfqCIXCuijCd7zjMl0aUTvHkcItHm6/YzEaMipSjSSe+bjaCVT3kZUgXbD67kY3opRO8hyeHW1dfp/Y2aJVDJqITn4ciApR1Msx2q/fkvBC1NDSxgpa87s0AquWgtGi/qxsZzWjtbEru7NZOoIn3M+O6VK3HigBVD20uCgXTjEHhxKl1jp4QhRKE1L0qCuVcSDVW8vLOfJUua3O+yMJ8ZDMGZshudsBh0eUPjz7L8/EOY5ueWH4GnmSAp+41wFNpgzW49x4lJVli6KaGxIRtXefV1RMjX3P25LuVPXliSPXFb2K21uS3Xy1ItWoVJQTsmDE7ZszPbXyKlgWPiwF/eHSHb492+f5omyOb8u8OH/LvDh8CcMcc8/nOSz7fDf968wYRc9fWf7H3Lv/dsy/jkLyf7vG/f/g7bOh8pfFp4egpS+EFn+YJL4vkeuugziWBdQJf6NBrSp4OU6L+Ge3FBYi52ZjzgtIprJd1XZNz4kLA1NRpc2IBjIqMV8M+290j7vX3yUtDYecvldO75cJ7vPR4H0wMjCrZ7R0A8OJ4zuq81dlasVhOxf4/tpTkTuOswIsQMqhBZRUAWgnYVhnTCquZA6pFLn83rSlQ+ZpvTkbd/YnaIx/T75rgcbJeqfH6JdufmQbHOqJm9OnCqXsLxrUqQIkFx8AT3PnkaRDVMJKQMq7IB4iSQiDVJaJpcwoQdTGb80UW5rk1bCTHdPQB+/mA7ww/4MV464QD3zw8KaXoZJrEXB08eTxl6SitwwNaSfpZQmo0qdHo64YnP29PLsmM5l4/pZNczp58mTX5HbNDX/dba/JbqBakWrVaoNJJrDPc18e8e+eAX/TfJ7eSH463+fZoh+8Md/nxeIPnRY/nRY/fPniPYFxxGMHqBR929kikBYKpxP/j+Rf5Z3sfAPBTg0/53937nzAr3JoWePoqrOdVYXheJIxuqg7qnHJekpeaRLkZmAroc7KOCSpACul4dePpWM90FdPMs8BpkV4O+2Q6p5PkPBi84qO93VMKqkWwwZZhInp/EKzOhw2r81Yr6sy3e9oLylpBYTXWygDXkgC2Z9VDrcH8pP7YVzVUN5Z+6BdHlPABWprgEw0dAmA00+xmFly6mdM0E306kbp3wejTohDb6aOstSwKVckByosTvXvr5WP0TAqBkA1Y8kwb7V6BM189HuHrXlHnWeO8hflhvoH1wYGvoya8nGxGB77Z5uRNeBIx8tTJQjRIX6IGaGafnKewFuscAoHRko1eShob0l63A98ie/Ltbpd+msSUvYtHnU5Yk0tDV7bW5G+K2neuVasl8sQmvggSaUm15XPdl3yu+wp2v8vYKr432olgtcPjfMDHkw0+nmzw/937DArHB509Pt95yQ/HW/zh8A4A/8nut/nF7e8v/k71s390pCORjqNS8+y11UGdRzFK4ASJ9GhdhKanNOqYkDU4nVXHdLGtL9fqR07w5HCLd7efk+iSu/0Dnh5tnrKGAFM7vYPa6vzp4Wmvb3VCpx6qeStzTWmDlbmH01P51vktcCBi54WzwyWn/N18YuG6/IkHLwVKq4xxTtcCT9XCF4CnxjDCMks4Z2oucXLNUyOJaR1UE+hqiLqktffsmMOAV7U5F8xamL8Y7XKQ91ECBuaYwmmejO7weHSXvclGnYbsvcfa64Wnut7Jh4hdohUb3YzUKFKjr9U4wnvI7fXYkzetyUtXIkVrTf4mqwWpVq3OUGE1zkmMsmhlY28hSaYsX+0/46vRJOKgTPjuMIDVt4e77JWd2rgCwAjLf3H/9/nG4MnyjcXralUHNbaSjyYZe4V5zXVQ8woTNkmY3DbT8qpo0jBPkDKYABRWXUla3oJRLNVlt2J9rJfaeMkgGzEqEg4nyyNMHZPXVudPjjcpvVqrd2zttfDNDOlDQji8l4zzAFBN8PbSIxyzdSu36cA3olNLNb8/FTGeejNGTO3YEVXW3IkUvUvrDIBalrp3aXiqVnQBgKoWPS0KBVOImm+422yo26yDqp/34fmrsjef2a7wGKeRZ9x8WmRhflT0SGTJdnrMqEz50dFDnozucFj0whLeY62dg6fQJPeq4Km0lqJ0eBbUOyl5rfDUtCeHYBQxSFMGaUo3NWRaX/icXGpNng7oqQ6d1pr8jVULUq1arSDrJbaUGC9IlUVhsb66lRy0oXN+auMxP7XxGO/hRdHh26NdvjPc4bBM+c/u/gHvZoenbkfh6akS6wVP8oQXRULh5ezE4aYlfAAmESa01R1gD3gnKa2kjMYPzkucE9j4JS+BVBdobeNyl/uWvOmMrXGR8nI4YLd3yJ3+PpPSLKx5ksJxr78HBKvz0SSDRt3UjWudQaJ5PE4ZZ9PKPC91sNpvTh7jsqEh6unruhWaB6plJ05t1BBAqTqePqbmVT+vVrMA1Hho6cubtVdNva7oU2NoZ0ahYNbmvNpKWHZBHVRzufj8VTrzhW1Pbc5P6xVVW5gLx6gMFubHeYeOnrCTHnJcdPjO/vs8G+8wLDsLI09ZqkjM1cCT957COkprgWCF3u8kZElM2VPXV+/kWW5P3k9Cyt5F7cmDNXnOxOXRmlyRqrS1Jn8L1YJUq1bnUBWdSqKhQoiynPxSEwLuJCPuJB/xrc2PzlyvwNNTAT/2S83zImW4qA5q/hvnSidMIX0qpKm4enveg/eS0gus1VgfUvO8FyE9b8nXYDXnGZeGBEiUxQtXp/qdPZrTdVPz5r1Rj8zk9JIJ9zde8fHenTmLd8/d/h5aVVbnG8zWTd0gTN0GmDhjjEJ4pHTQBCgvZxat7y2sgfvdhTQT4FhClr5h5FDB07WB0ikS022fBlEzn+r6jfIN+BIXOj8XwdtFT/NVolCwuFfUtKHuXB1Uc7lrcOabjilA1DKb80UW5uMypW9GbKeHHBR9frj3Ls9G20ysifBUXgs8zdQ7CYFRks1ediP1TtaHbS+yJ+8aQ3oJe/LWmrzVIrUg1arVOWW9ZFwYjCpJlIUF0anV5cmkIxWOY6d4niccWL0UTk7oQmAVYQmPkME1r1rWeRkdi3TsxxQjTedstjv/yrw04CWJLpY6+q2vP4Dg6eEW7249J1GWu/19nhxu1aMapCP6tdX5duO9a8CUENfv0HYbIOoUBbt7B15QVr2gqvNkekinE+t1hqgTGazNaqCo2lkwvtg3nm9ETE6U5tw0lC8ou3LVXRJOz0hErlLFs0RNaPILn1pNc9H806JQEN6OJkTNN9RdCEhVPZQI6XxXDVFTm/OTkNO0MB8WPfYnG+QuYWCGpOkxe5MBnw7v8Xy0yaSUWOcRwl45PNloUe5cqAtLtGazm5Fcc72TB0rnolGEC1kQRrPb69JPUzqJvrA9edOa3HmHEZo0WpP3VJdOa03eijUHqb/zd/4Ov/qrvzrz2Je+9CX+4A/+AIDxeMzf+Bt/g9/8zd9kMpnwZ/7Mn+Hv/b2/x/3791/HcFu9RfIIcmuwXpGq4tTo1DIZ4ehKy8RLPs5T9ooEe9nZ8ILJm6wjTSfrmEorsU7hvIiRJkIj06vY/Jxyq3AeUlOipKV0y+Fz3ZjAecmTwy3e2XxBPx0zLobsj3sYVXKnH63Oh4uszgXCCRB+Yb+pK9G6Haxza2plXloVor5VxG/BqbgOPZiAs6NKvvGv2pFmausqNOCnh6AGqutM850DtmVXAtl87aJxXMFl7NTG55X8zI+ZiNP8a+D0KBSEt0dAbXHufBWhP1kH1Vx/ZZZwlfbmlZbZnDctzA+LDfYnG1gv2TBDUl/yYrzFp8M7PBsOKKxAiGAjnqWh5smYy8PT66h38oRap8JaCmtre/LOFdiTN63JC1cghSRprclbnaG1BimAr33ta/zTf/pP67+1ng75r//1v84/+Sf/hP/mv/lv2Nzc5K/+1b/Kn//zf55//s//+esYaqu3UNZJRs6QKItRFnDYM2y7JZ6+KnFe8KwIdVD5pftB+RhhAtkIfUzT8kItk3PTOiZ3woj8cjrtq6XaTuEUvhCkpkArVzuv3YavpUmZ8OJ4gzv9A3Z7B0xKw53+PlL4YHU+6i1f2AsEs/2mrkS34cAtkoe6mS5graRwOkZ2ObFfryUKdQKURONn/LWuUbogKK2q6waqJQDlOeMUW7HebdUhnHsVYnbTovnHOVVBlLBiaiQhYp3TKSB3HfbmlaY256YewkkL8wFCePp6TO40nxzf5eOjHV4O+xAdA3sdHeBJq0u9T957itJROouo651SskSTJhp9DSl73sc6J2spXbgAaCnQSrHTDU1xL2NP3lqTt7qs1v7s0Frz4MGDE4/v7+/z9//+3+cf/sN/yC/+4i8C8Bu/8Rt85Stf4bd/+7f5o3/0j970UFu9papt0r3EqGYz2tmLusDTlRYtPPtW8zxPOHbnvfhHYBIgha8L0itgco7QnNTL+O/8aXnn1ZKbtEtlnWQ8MWSmwChLufaW7lPtj7tkJqefjnm0+QIhgtX706MtztyHCFBXVjd1Gw7Zkom2kiGt1DpBbjX2jL5o1w5Ri+5jLAQlOfv8TeuqgeqMCNTSU6wiLAHNubO7wBjWoqKkShm14ZIqlhhJzMh73DU489Wrj0nC2ikkkKgJqZ6Q25QXo10O8z5GWTbMMcMy43v79/nkaIfDsoeWkm73auDJOUdh3Wy9U6dDZjTJFdc7LYo2CUKdUyfR9JKEjg4Rr1SrECU87za8J/fBJKJ0JUooUpm01uStLqy1B6lvf/vbPHr0iCzL+Na3vsWv/dqv8f777/Nv/s2/oSgK/tSf+lP1a7/85S/z/vvv8y/+xb84FaQmkwmTyaT+++Dg4Fr3odWbKj9zJ9R5QVkqEm3JVAlO4EWItkiCpfmxU3ySJ+yXZ9VB+XhHNKTkiapQwYfUO+9gYlUNS7aOMt3sxX+VOVxV4zA7Z5OMi4SUAi0dpauO0rpL8Oxok0QXsT4Onh5tnQkCzeWbJhTzx2XFVay35k+GOkwQrPKlcLEXlKFc5bhdB0BJmKlbqqAJweKeSmumywJV47XVomcu1ghPCbn4NKzm1GcB1bp90h0gLSgkYoX0vMreXEmJvCaI8gISJ+noSW1h/uT4PsdFl47O2UyOOcxT/qe9d3k62qHwXZJEs5WFmqfLcECz3klJganqnWK90VUxRtXLqTKm8IRok1GanW5KxxjSCE3mgj2dYLE1+UD12WityVtdgdYapH7+53+ef/AP/gFf+tKX+PTTT/nVX/1V/vgf/+P8/u//Po8fPyZJEra2tmaWuX//Po8fPz51vb/2a792ovZqbdTeBbkCTbsVBQhh4d+V6cLi14YZhvBx/iDCRV80ZxwiTBimtsPxn5NYwEgHOEovsQieFymvSkM55/gGjX5MC+qYrKvsxSXWidpmfB20tDxiBUDwXjAuDKkuMar6Il2P/TpNzkueHGzzYOMVR5OMYZ6dcw2XqJtax8vDfNRpZoxhPyUOKT3OCSbWUKwahbwqiJoHJ0fD5EGsNzSdpvMA1Vz0af7lC98NP/uCVYMPMh7i+TGs26e7umZLB0qo5XVQDV2Xvfl0TB6EZUOVJArGNuXl8A6jIqVrJgzMIXujLn94/AGv8h3QXdKOondJwCkjPHl/PfVOIdoUoluLok39JCHTAZySC0abKp1uTV5FnVpr8lZXo7UGqT/7Z/9s/fs3vvENfv7nf54PPviAf/yP/zGdTufC6/1bf+tv8Su/8iv13wcHB7z33nuXGutVSbyx1pkXB5qZ5+I3c2VwVYNOtZkIPFWLWN8EnPgq50WYR/kKSqrHBBZiH6Rg612BkvfgZtbZeC6uM/ycPqaEJzF5hIRg6CAJvXEW1jE5iXUS2+jH5PzV1jFdh0RjUnZuecGkMHjAKIv3bm0g8TTl1vCjV/cut5Lz1E2tE0AtnaCfHKQQLhixeMmkVJTncaS8KETVF5YF4FSdW+v+oTqvlgLVXJXTAoBatK7mi87DCs23LBhSiGm0a8YK/fXLE04J5QVayJVuYl6nvTkEC/NUj9AI8qLPi8kmkzKhq4Z05DEvjwc8Hn/AodtFqoxu/+Lw5LynLC2liymEStLPUrI0WJRftt7JeeoUvTKGKK8j2lRpkTX5tt5kYPqtNXmra9Vag9S8tra2+OIXv8h3vvMd/vSf/tPkec7e3t5MVOrJkycLa6qaStOUNE2vebS3QeHithLAnPJccz3VX4JYvLskelM7/zbgpAIV5ySOKdDM/i7mQGY51MzCj5iWPESQuu6v9NJDPsnIdElmCpRwEZCoC+tvqo7pqiTgWnoi5YXBe0GiS+Q5ek3deq1SN/W6T4tzgFP9jHAoGSbORakpnFodkKs7H6tqngrqD7q8HWl6V6kIVBUk1A/GO0+nvgONuqcVAjMzi1WHt+r2Nf+WhO+DKvL3+oGqhigEepWULt9w5pNLLNAvIS0smRrjhWNY9Dke71KWkq4eklLybLzNi/w+R24HbRKyi8JTXe8UrNqNUvQ7hjTRJFpzAaM7YHG0SQJahx5OvST0b0p1lRp4uePnvaf0NqbstdbkrV6vbhVIHR0d8d3vfpe/+Bf/Ij/zMz+DMYbf+q3f4pd+6ZcA+MM//EN+9KMf8a1vfes1j/TyksQ+PxdOTWMarmF5alodvZmJ3DQfq0BGRggJfZQcxNocUf++CGp8Hf1ZADX1MrO/v/6Z49XJIxiVhiLWglzWXvymVd3Uvol3pCg13gdHPyXtQsOON1OnNO99Hbt/AXCavtbVTnyFVaEX1HkijKtEoerVxel4DU7i7QOnBfLVfzxIROj5JOayG5svjofsrP5K84s1A1eSqfPmslWIuI1pQ+HXAFRxg8HdVKBXOTcbEKXUOQ7SCjKyoKNyrBe8KrocjAdoqxnoEblMeDZ5xMvyHiO/hVCSiziW1/VO3qOEwBjNZmIuVe+0ONokMUqFaFNiyCI06UtEm5x3NTCVvsR6W89jNAotTWtN3uq1a61B6m/+zb/Jn/tzf44PPviATz75hL/9t/82Sil++Zd/mc3NTf7KX/kr/Mqv/Ao7OztsbGzw1/7aX+Nb3/rWrXbsk1JSeEFPWyzUNxNruGEKIh6BdwK7JDXNzaWmVVB0WmrabERHTE2r3ooJ7fWpvCURlmZG1Ot4x0ur8AjSmca9b8O5N1s3dVPwClwOnBorUTKkq1onyUu9MkDVk+llEBUJQFT/bTrp3eb6pmuQYwpMIv4euZaFl6ALpu6tCk+LdONA1SA+IUVtc65XaaJeQdSV2pt7ElmQqZzCaV6MB7zMOxjh2VYlpch4nD9i391jaPth6OfcbFFaSjvt79RJDJ0L1jutEm3KYrQpuWC0ydawZCldifNh7FJItNBoodhQA7oqI5EJiUwwwpBI05pEtHrtWmuQ+uijj/jlX/5lXrx4wd27d/mFX/gFfvu3f5u7d+8C8Hf/7t9FSskv/dIvzTTkvc0a2g6P84THx11KTCOic/nUtHa+0aqpJjTVf6+BrJWMnQm9pqQ7tXHvG6dYNxWiyde0z0vB6cQfK61MSYcQUDpBUZoIv6sPZQai6nB6MycY8AJfm0Occ4hvuKobYBU0zafVVZLxGDc/Tqu8Uyfqnhak7l1E1wZUzVAZgIzAJwSVpbhaAaIqZ76rszf3ZConkTkTa3g83OKo6JDqkp00pyi3+TR/xKviDhN3PgObhfVOnYvVO1nvKayjnIs2JUoxmIk2afQ5cgG997PA5MvQ8BhqYDJSs2EGdFRGIgxGmghNuq1varW2WmuQ+s3f/M1Tn8+yjF//9V/n13/9129oRNcvj2DsJMdWY6/47Vl0KW3nJG+PXne06TxyXjIpDMlbClPA1cLU0nTBi67fI0VwmrROUJR6NSvzOdVbl40p9JtuDHFFqgBHNqJPyyXq1D2JCJAg/HQdS9Y9fe5q4GnxyK4AqJoLVOAU97mSiyeS9M1Y2pLVVfbmV+DMJ/BkaoKWBePS8Mlwl7HN6CclO52cvbLPj0bvczy5S+FXd5Jr9neSQlyo3qmKNuVliDZ5qGunemlCzyRkRp8r2lSl49kGMFXvj0KhpaYjUzpqi0xmEZYMRhiM0G1qXqtbp7UGqVbXr/lLVjtneXN0m8BpkZwPvaYyU6CVxVrJbbBHvxJVKWsVYJz3gzkPThdK11u84gqgnAuOi8W5ILeRs1hV/Ht4K40hLqAq+iQ4PfpUSYgKJmZfJRCIyjWyAVSVrhueFulcQHVK1Onkd5qvX668RJ6xR7Uz3yUhSghHR46RwjIqU56O7lL4jE0zoZNaXhYb/Phol0lxn8R3V1pnaUPKnosW5UYrNrOMRK9W7zQfbRIEB8JEK7Y6WQ1Nq0SbQnTJ1rVL1tm438HAQwsdGtzKDolKSGIqnpHJagYfrVrdErUg1WpGbdTqdmpd0/QuLS9C415fBBt57/C3wB79aiTAiemM+bQP4rWBU2O10UgiAJQOvaDOvHs8V+zlASumxhDtxWUlNSNHwp8efRJVJGZl54jg5uejy4kQRMh6PZoFKl8bIc3s0ing1NRFIEqKkM53UWc+iaWjxoBjaDscFJuAoZ9OsFieTe7y6XiXJ0WHLl16nJ7GN613Cvbhq9Y7eaB0jmJJtKmfJDU0pWZxXzfvPZZQt1RBk/cOj0AJGYBJGgaqT1dlGJGQNCJMbTpeq7dBLUi1OlNt1Gr9dNujTeeSh0lhcB4SbfFvkz06BJgSczB1JQYRq0mI0EwXB3kZnPi8l4s31bQc9HE8tpEq5mRtftDqdDWd8SoDiWVnvUAEM4UF0adFa25GtlTEiyqT1HmHi4wr/M1fX+pT3FdgJ6Zus6IBiqeuwzeOnYz3Ik5ZqOHMJ5U4d3qZ9x4lSjpqAsDQ9jgsN5BCsZlOGFvPR6MHPJ3cYa/sMsHSJaG7AKKc9xRlaFAuEKHeKdYmJafUOy2tbWpEm6raJjUXbQp24kUjwlQSDz9KhHS8TKZ01RapTGtQquqX2nS8Vm+zWpBqdW61UaubV3N++rZ+ZRWlAUKvqamj31siH+/OS4+obMeA6zwbhHDIeOKVEaCck7MRrxlwilEmVzmFhjFXs17huZYeZG+aZgDqrOjTktS9RWttwpNAIIl9pRqLVmAVuPlmgGoROAEoqepzTYhY1+UC6Hm/HKgqiArpj2dHoS7qzFfVUSWioGMmOBRDu8FROUBL2EgmHJeG7x6/x7PJNse2i8eTU5Kh6dGpRxbqnWzs7xTqnQaddGm9kwcK5yhnok0Co+Sp0abK7GFiQ4SpSsdDCAwKJUM6XkdmpCqdGj4Ig5btdLFVq0VqPxmtrkRt1Orq9FZFm86potQ4L8hM+Zb1mgKIFulVSOe6XP2iEx8EO/oAUCLkBcnGjNrH1ENfuYouSNWLr5VNOmi1UKum7wkxTWs7S02oWAZPC7fB9QJVE56qaJqU0QRCTiNsM2MSAiFBIBcC1XwUSlUR0TMGUkPUCu4MFTzhPaku6OgCh+bQ7jIsuxhp6ZuCg6LLD0ePeD7ZZuLSuKkAUSZClLOO3DqcByUFidZ0MrOw3mlRtMkohVGSrU5GJzGkSpFqjZQipuNZCj9hXFict3U6nhIKIzW9Cpjm7MTbdLxWrc6nFqRaXYvaqNXqasHpfLJWMfKCzLxtvaai6ropP02fuxJNAco6QeE01sU79FVuWRVxWgZOlRqw1abynS5HjJ7A0mN1nrqnWXiKqW3TFZ1LVwVUC9P1AFlHnc5O16sGJFgEVL6ul1opCsXq9ubV67wHKTxdU5DpktIb9ss7jMoOmSro6oK9vM93xvd4nm9R+tnpVU6Jt6BKRY5FS0k3NWRJrHfSss7eLZyjLE5Gm/ppQi9NSZUi0QqlPKV3IcrkcybOg43peEKRyYQsNqqdpuOFn7cxHa9wllFZMCpLRmWO82CkZJCk9E2Kli0Etrp5tSDV6sbURq2C2jS9y8s5yTh/S3tNwZwJxVJvs1VXhhIeIT3WSQqnKG04nt6JulaCVU0+aohaDgZvu6oAneQ0gJpalp/1/vq5q2ld93T2oivpIkAVAzeERM9G1ElU9VyXGFgEKmRYt3cxiuckUpyMZs3LxZN6mTPfLDyBktA1Oamy5D7hRb7DxBo6uiBTBS/yTR6P7/Ay38ShZrZjrSP3JQAbssdmtxPhKdQ7WecpnON4kjf6QCkSJdnqZqRaoVQYg5cO6wusLxgB2mq01PRUl47MyFQ6NXy45el4hbUMy4JRWTC2JQ6PkYqO0mynGV/cukMvSXg2PObx8JCPjw+wztHVhn6S0tO3ExZb3T7d3k9Zq1uv2wxWJy7PKwy+vaRfrYI9uiE1ZYSp6r7+WyIXJ4zCnxOmqvCnR8lgZ15aSVFoylLj6jS8ZjHUihJhHG0q30lVh6M6qsvS9y5a9ySvGJ4W6TSgqkfViDpJIRBCLk3Xu6gqcPQClBehnsqBkx7nQqR2GVDV9uZzznzTtD0i9Am09HTNBC0dY5vyZLKLdZpM5RjpeDy6w+PJHfaLQagLJGzfOhe3IxAKUq25m2ywlXSx3lPaAE6esB0jBd1EkaYaLUGpkG4ohEPg0UKjhaYjMzoqpONVtUtGGtQttxOf2LKONI1tgfchdbGjNTtZl/vdPptpxkaSMkhSOtpMF96BcVnwYjzixeiYj472eTkZ8XR0hBKCvkkZmJRE3e5j1Gp91YJUq2vVusylLgI+C5drtVbyFUzpMtijO8db02sK4m1/MS1CWlg3VYUNpie9JESgnJNMSkNRqmAOcdEzvlp/m8q3VJXzXAVRM8+tnLq3mmnEdUsQ7MSF91j81DodccIk4qrVTF1UXqLqQjxQCKTwOL8AqHzDmU+KAFHeT28cRHgKAOXo6DEqWpg/m2zgvaSrckZofjR8yNPJLodlFw9YFyJPHo8SAq0lqdYgQl1UT2RIpzicTJBKoJWnn0mMlmglSJXCSFPbiXcjMAVYSm51Ol5T3ntyZxkWIdI0sSVeQCIVXW241+1xr9NnIw3ws5FkZPrsaWqmDe/0De/0N/j6nQcc5BNejIc8GR7yyfEhT0ZHFNaSKs0gSeibNJwXrVpdgVqQalXrdc1/Vr6ctVGfVovkQ2NYDxhlY83EWwRTMFc35aez9qZiA1YpPN4L8okJRhInjtU5UwXbeqiVJOe63p7HsvyiphFXqsrjxFPXJMn4DyFwcg7yrniiOtsTKhyDRZbmQoqFQAXUEOUBZ0NkqoIqJQRaWjpqBAiOyw6HRR+JoKMKjsoO3zl6n6f5Nsc2w1kfb9yAEoLUqJAqKAQWT+FLcnIGOmEz1XSNxChJ16RkOiEVCV3VmXPHC81qbzswQThHJraM6XklE1ciPCRK0zGGh/0Bdzs9NpOMQYw0peryU1IhBJtpxmaa8eHmDoWzvBwPeTEe8fHRPs9HQ16MXyGArk7YSFKyZoSrVatzqgWpW6x1Bp/6Ne3EqtUNKS9MsCN+C3tNiWmy0zQ65KIhRHxeSRcAKkagTgLUdG2rbzhMm1tr8+WaryNaNXXvKk0jLqz4njo/je4IQXS4C6YPVRRNxfFa73H46Mh3NUA1H4VaxUxiBqhcGBNC1Ol0FTwJIdCioKPHWC85LAYclz20cKTSclj2+N7wPZ5ONhkVGutB4BDCo02sY5MeZIlXHoSkqzQF8CjZ4fODR2wlPZKZ/ku3Px2vKTcDTQW5tSAgU5qONrw32ORup1cD002m2hmpuN8dcL874Ks79zgqJrwcj3g2PObHMQ1wdHyIkZKN1rSi1QXUgtQa66rmJS34vD26rO3AbVdRGvCSxBRvtD26oEkusWeTrZ+pU5kAtHLgoSgVuTVXA5h1quAbVA8l5n76uZ/nkZ8CELCyZfl1m0acqbmoUwV9KppENMHppMI+ahHsJVyV9ncJoJqPQqmz6vYqk4jGvlQpe0oIhJI1PIEnkQWpnFB6zat8i3GZYaQllSUviwEfD+/yeNSncBIvHELmKA1SSbQM/Z4SldDRCR2V0jMdUplwUEzYTvp8bfM9evpk093bLOc94xhlGpYFhbcIIFOGrjZ8ZmObO1mXjTRjYFL6SYKR6wONfRNg6f3BFj959yF7+ZgXoyGfHh/yZHjIx0f7lN7R00lrWtFqJbUgtWYyenrBOe2j24JPq0VqL/eEdDUEqX5z7NGFaNBKZT3u4j4tuQYo5RAQjCRKfXXOhm9aKp8IEYZEhQm09MGQ3DeLmSow9dOFQhSw+hke857QMJkqdS+up84uC8/5+BofVxwm/qJC0+m7JFx0vpt933y9bPWAmI7hPPvegEUXmjKFqJMEJSRU0HGu0yYAlRIgLwFUzSiU9nI2ja8JTNV+NIYZjBoEMtadzW7Xk8oJicopnOFFvkNuExJVoGXJ48kGHw23eTbp4hBIaTFGkGhDplMGukvHZHR1QkcHW3HJNB3vZX7EltngKxvv3HqIct4zKos60lQ6hxCCTGu62vC5/g67Wbc2gbht0RwlJbtZl92syxe37zAuS16MhzOmFc9GR0gh6Ouwj61pRat5tSC1ZtJMJ0e3e+rXqtXrk7WSsTek+jbao/t4078CJxkm3n56bThNuuoFZSW5VWHfL2Mk0VQjWnPbIUpLS6ILEmnxLqQ87o36HBUZzk/7Ggnp8NEeHuGpjd4iGEh8cODzIGXsWyxdqOCJIKaEo0IfIXyMKFZRK1dP9BVEp7aG5BSPKvwC6nVXj9fPxXNHUIGZb0BXJI7Koa5aLgKTiCsSJ7Y4HdEUXk7CW22VP7OcxxGtwKsR+LA9P7c+CH21KkSVXsbaspia56e0JJgCk4hjPs0uXuBI1QQjCybO8GS8jUORyALrc753tMnHw132iz5GZfRNxlbaZaPTpaNTejol1WbhuisdFCOUkHxhcJ+BuV0QZZ1jZKseTQWld6E+TGt6JuG9wSY7FTSZlL5JULcImlZRpjXv9DdOmFY8HR3x8dFBw7RC1eDYmla0akGqVatWb6Sck0wKQ2IKtLKUVrGeMOVns6V87N3kxbkizlI6hABnJXmpsFaHoFVVpHPZflO33No8RJ1KUm2RwlE4ySRPeDHZZJinjMpkpomqn1m28YsIYBUAhzh5j+YHC10Tp6qiKNVyUgTTCNkA58AyFWhNoamJMs3XEH+v4Huaoehn41N1Y6TgaymkQKkQtRHThRrrnoJiOEd93E61jWBc0txWOBYewdRZI5hjgBIeRYAkF229g2GGiAYp4V8ArejABwg1PcZCNoBp9s1tgKFvmFeG34UPP8c25fl4B+cEWpQM84TvHj/gxeQ+qB12On0+t92j3wlNb6VYHRSG5YTClXxp4yE7aX/l5V6HSuei3Xj4V7kZdrShaxI+s7HFdtqta5r6JnnrgGGRacWr8Yjn4yGfHB3wbHQ8Y1pxwpa91VujFqRatWr1xsp5yaRIgABT1kpetz36fH3TFJy4EKBI4RASvBNMCk1ZqqnJhI9pZLL+g3PD1K1N5fNoYUlUSSItTkDuNC/HXY4mHcZ5yqRMFkdbogJIBIXAiEdYiSakrQktQIWeSl5WNuA+PBt/nYenYIAQ35+ZIGMz3jQ3mHMed++BymAhmkQQrb2lC78LL6A833rPOYo54IsHwnscDovDCTsdnwgRECMliVA14IkqCigqOHPxuLkp+EX6Eo3zvo4oenAOrA2Ne430TMo+n+bv4tR7DAbbvHe/Q6ovfqMldyXH5YQPB/d4kG1e+IhdhwpnZ3o0We9RCLom1AB9uLXDdtphI8kYJAk9nbQ1QQtkpOJet8+9bp+v7tzjuMh5MR7yfBRMK15NRnw6PEQLycAEAL1NaY6tLq4WpFq1avVGy3sRek15EXpN3bA9+gw4rVjftNJ6hUeJ0Acnz4OVuV8QERGAd4Swx3lh6pal8gnhSGRJqkoknsJLxi7h2XjAKE8Z5SllaWLC2ZJ1NP55goeH8B7pBQoV0/caYRxL9NPzOOHx0uOkx4rpRF9GpzmJ4FrmqB68i/bjlUkEoJVCRIe6m54cez91+2uCokCAlPE4egoshXAoNEYFmCmYwideBuira8UE+JiuGj9HPj7v402J0vm6wW5X52wmY/paMpHbjMVnkdk7vJsOuCg4NVU6y6v8mA96u7zf3XmtEFJYG+qZbMG4LHCAFpKuNmylGfc6d9jKsnqi322NFC6snknomSSaVjzi1WTEy/GQT46mphUWT0cZBq1pxRutFqRatWr15iv2mnI+2qPjTrH/vqRiCtTUQOBqwKlevQhRKA9MCh0B6vR9qWFKiDOa9zYXug2pfCHqlKoSIy2OUBf2YtLjuOwwtCZEJG31HsxGfRoZbTNTagc4PMILtAclFWomB+7EMKY/XXCXM1IhpI9z/ghYsZ5KxJq1C0+rKh72fmoSgUAqgawc9oS8kUzWACwVMLn6poGI55qQAtVMyROh/5PDYz10MGg0zgqKwmG9QKMQsQbL1y6TFYjJOro3fbzh7icFG6llO5vQMw4huozFB4x5iBAPSLm69CvnHS/yIx52NvlM7+65UgEvq9za2ghibEu89xil6GjNTtrl/nafzTREmQYmpWuSGxvb2yYpRG1a8YWtYFrxMkarKtOKp8MjpICByegnyZX0zGq1HmrfyVatWr01KspQLJ7oEnmJXlMzyWB1fUuVpifqO+SNV11aklAHBVBaTV6qc49f+JACOE31WzDTrtOw1jOV72TUSTEuDU/GG4zKhJFLsF7inUDMAVS1t4uOWjA5AAjRJy1UcJ5Tpxxj72fNEYREAVJEl7lAZHg8XjqcCNEqhwtAW0f6zu6MNJ+uJ6oeSEpeS9Spbq9bRyVddCCM4BTP+YodRPCuiwAX2wb7aPJiRSOzT5J7C0gyb+jKBB0Lzko8E1+SY0EIUiUxUtepkFWmlAOc89hY22OkIDOwneb0dI5QKRN/l0P7kJHbIfdXX7PkvedFfsRu2ufz/fvXZvHtvSd3U2jKbYkDEqnoaMPdbo/7nT4baTCBaBvMvn5lWvOov8GjJaYVT0fH5LYkU7o1rXgD1IJUq1at3ioVpcZ7QXqOXlOzzzZT9WSdUlQ9dfbyq6tKb1I1QKmGlfn5VKesecCBE6KOOp0I0awVRHlMrHUKUSdBbg0vxgOOy5RhaZg4gw/ZdRABSrgQ+ZiPNjVWGyAomicIL9BCIJEotXSpuJxvwFOIQAnk0smQQCCcCgBnY8Na6XHREdCJqTmDrKJVVX1VBS4x6qSUjFEnEOeswTgBRyf+jo/5CH+uAjioziCBQniJiLAoK2vy+PfM/0Rlpx4g0+EocAxUly3doRPTnaQMx7E6fhNXclBMOC5zvPcoKfHeU9qwB0oKUqPpGckgmdAzIySKid/glX3EKN9h7DdYjMxXo1fFMX2d8oXBfVJ1NeDivWfSiDRNXAkeUhWg6UF3wL1uL9YzBXDKdDuNW2edZVrxfHTMD8evwId0wda04vap/QS2atXqrVMZ64kCTC3uNXU6PDUMIq5RtZW5kxSFxrpw13vZ9NDP/Wxqfq4sPPiqbqqZJrUG9VAyRp2SKurkFCOb8GTUYWST6LAnp5E1IRAFCBfqaZaBa4UrHh+d9kASI0/ydHjyxNQ8YhqdkEhkdNw7DyrH5DQHygUfOydDqqaVjup/4BFCouI/KUUwiRDzZ+aKcFTvh6hfUhn5eSdwLkRURYysCiHCtqUKkCMlWsga5KQMxzn8nKbtSSFmUvgQ4L1j5EoMmns6Y8NkIVVyiVI0mxqkg8Mi56jMkVKwlXXoGk1f5/T0ECE8ue+xZ99j6O4wclv4G5jW7BdDtFR8YfCA/gV7RTnvmdiyds7LncUDmdJ0tOHd/gZ3Or2Ynhegqe1hdPt1mmnFR61pxa1UC1KtWrV6K2WdZJwbUhN6TZ2EqQZRuJuDJwgRKCFiL6hSY+1qEygx9/Os1woHToo6zUw0ePFm5TEyRp1EiDpNZqJOCRNr4isJ1uOSYNxWyghQi9fcTNkTseZLRVe4U2taGvAUNikwIppGiFOg65z77ZwLjhYuGAMgZfhm1uBVSAmMyYBTiPIzPyIYiWkfp6rvWOxB5quDUKU5RuMGKSRaxX9JgCQlFVoJVHT5o4KjCEXn270QYSm9o6cTtkxGtqA2xHkorKOwJaULO5Eqxf3eBh+mGotnUh6QuxcoCpTcYN++x7G7y8jtYLm5+p/jcoL1ji8PHrKd9FZaxnnPOELTsCgofHAr7GhDR2veH2xxt9Or7cYHSXptqYKt1kvLTCs+PT7k8fFJ04quNm0a4JqpBalWrVq9tQr26IbUlGjlKF1lKOADPLmbgycINVASsF5S5IrSXvMlOpZLYS8wSb6kplEni8RROM2oTHiSdxjZlFFhsPOxt1B+g7AgnQzjXqD5eiclCI57Mc1sqYJDSEzdC4lsulH3dJmD5OswoMd7V6frCQWo0NNJAEKKahjgJM6Jug4r2KQAPngASh9T64SM6ZhVLVg4b6t+S1UESUmB0RqtQvqilDI0Vb2G9956x9iWGCm5m/boq5TmoS+tZ1JaCmeBcKe+axL6aUon0XSMwYgSxT6SEZaMveIL/Oh4wA+OMnKXsZFmpPLmpjETWzC0Ez7fv8/9JTbnzvuZHk2FCzdFMmXoGsOHm9vsdnpsJKGeqW/aiEOroGWmFS/GQ358uM+rybA1rVhDte9Aq1at3l4JcEgmVuNFgZEOa2Vw9LvByIwUHik9zgkmpaYob6B5cFy9cCBcmHE76SsTtGtQiDqlqkQ3ok7Px32Oi5ShTZhYzcLEvEYzp2AgIefWHKIaAVSmvZok8ky3PV8nx0W3uUWmEUv3qArjVaOIa6oDVlMbbu983WhZColQKho0qABDRVVjVKUMylh/FUBJylAEZoWjFCW5LymFxcaaJiUESqiYCijQRqFk2H+pYireDdzJ9t4zcSUOz4ZO2Uw6JFJinWdUWorS4gjjTbRmp9ehm4TIjNEK4S2KAxTHeDQlO4zE1yi5i0g2eD+FQW/Mx4d7PBkdc+DHNwJUhbPsFUM+6N3h3e4OANY5Ro30vNKHXliZ1vRMwjv9TXY73doEom+SAK6tWq2gpmnFT+ze5yCf8HI85EnDtKKwllQp+jENsI1W3bxakGrVqtXbp6bzghM4KxmXKV5ZjC5rK4FrH4bwKBkm2JNcx9qtG5hoRWMG6cQ0JS7+XcNUfOxSmxGONDrsARROMSwSDopp1MkRUpgEJ7+QvArHRjrRsDAPqqI01TiFFxGg5IzBhKsKgRq74yMshohN0zAiAKWowSg47VU1R74yhWgelzqNLu6Fl1CGuiPvQuNbKSVG6RgNCj8rSJONeiIRbcKbsi6k/4WfIT0xFQmZSkGC1OCUoxSxwa0ALQNEadSN9q4pvWViS1Kl2dQdjFBM8pKhD22wjVZs97r0koSO0aRahUifdygOUf4Qj8CyyZAPKcU9SrZj2C5IADtph+00453JzQCV847n+SE7pk9fdvjx4V50DAzpeT2T8v5gi52sUxtB9E3STmpbXZmaphWfbZhWvIimFc9Gx/zocA/vPV2TsNGaVtyYWpBaN7XX3VatrkfVZ0sGeAozcdmYBMPEydBrypTBTe2C9uirDEVFg4Ei9oK6rm2d2LCA4L4tTtQVCQ/SCnzsf3SR6FRlEhGiTiHa93Q0YFhmDG1CHqNO9dtxYoxh28KH6JOysq7tcUzd7RQhXU81XN+Cqsa0lblEaFrc3P0ptMSaMA9Ih5cumiM04CjWGgkvEC4JTXW9iA12ZQ1S3nq89eCDJbnSirRjMEahtDo9pZBo5126Gpyq1EKpBFpK0kxjjIppeaGuqZmW57yj8JaJK5nYgokvGPkc8Cih0ELFhsBX/yVTmUl458mkIXMGW4abBL00YSNL6RhDZjSqqkvzHskQ5fcRWCwDRnyRUjygYBfE6ZNAgbg2oHLeMbEBCie25FV+zFbS5UG6xWaaca/bZzvt1GYAvRaaWt2wmqYVX4mmFS/HQ55F04q9yZhPjg8wUrWmFdesFqTWTLJ15WnV6mpVzZ6rCXM5C0/zqntNzTj6XZ0qK/MiWpnfCEDBiVS+ZdM+AcFCHI9bAaZmo06ewulp1KlMGZUJTVxaurcypMQJHwwkpAsmCRUMQYhqKAJAKAEyRirq9Dzv6qEKARoxNZYg2nA3NmnxeBGgGS+RZQqFRjoVIatypJuNcgFY63DW4VzoZSS1wmQGkyi0Vkv7TznncX4aYaqiZTKm4aWJJjFhHU1oOusmmxSSVEhSaUB3KJ2j8CUTVzByOYUrI4hKtJSYmDJ4GXnvGBYlI1uQCc1W2mXTpAw6KV1jyIw54TQn/DjWPeVYuuS8RyEeUXAHLzrnHsMioHp6DqCy3jGxJbm15K4MEVAhSZWiZwxGw4db7/G/fPAF3ult0Y2W7a1arZMq04r3omnF3iREqx4fH/Lp8IiPj/YpvaerDYMkoatb+L8qtSC1ZqrO6/b0btXqEpqHJydOhad5FaXGeUFq8iuDKdWwMs8Lc3MABdNUPh8icWddXyqYkn5x3dRM1MlLJs7wdLTJMIJT4c5R41UDlEAWMbpTA1TsnSSC6UPVa8gRanFKb2PkJv4TEiNEHXlRy0qjpK17N2lrkIVBWo2Yf08ay7sqxa4MJ5XSEpNoTGowRqLm+vl4PM56rHc463E+9quKwJRoRWI0Wku0VihZ9Yi6mqu/lhJNQkclbPouhQ+gMHEFY18wciXggnOfULEW6/Rte+8pncNaRxEjYIlUfGawzYPegF6Skhl1Ij1R+KI2jXCklOxSiPcouIsTV9MstwlUr5YAVekcuaugyeLxKCFJpKJvErbSDXompaODBfmr/BgjFX/i/he419m4knG2anXdkkKwk3XZmTOteDke8qPatOIYKahrq1rTiourPXJrJrXkLmarVq3O0Pwc0J4PnuZlrWLsU9Ik2KNfpAkuRCtzoHSS4hxW5leiM1L5zly8qk9SltQUJMIi6qhTykHRZVwaxmWKO+/tnwqgnECUoZ6oeq8UEi0CQFVRE4/D4kNtCtFRT6rYC+pktGleXjicDJVV0il0kQV4snrpyK11uNLhvA8GFEbQGSQYo1Fa1dBjnacoy0YdU3DfUzKM0aQKoxVaB4jSjWVvQkIIEqFJpKZPhvOO3AegGLkJubfkPtSxaaEitAbDFeschXM4H8BTCYlUgq7S7GSbvDvYZGDSkxv1FsUhkiNAYdlizJcoxD0sW8sNQC67r0uAas8NUVKRKMVGmrKZZHR1QlcbOiYcm6ZeTYY44I/c+UwLUa1utZqmFV9rmFY8jWmAlWlFokIaYGuKcj61ILVmknX+TePB19LXpVWrW6CqyGWmnuXi8DQv5ySTqteUcpR29S8XKR1ShF5QRXkDVubzuiBEVbYMRk0d9qwXjK3hqe0xKlLGRUp+nqhTU9KHkicnoBB15EtHtzkVPbunHngB0WQj2hQiU6scA4+TFi88wklUYZA2Rp+iVbj3oSbGx8Iq58A7ByJEiNKOQScBnIQQOB9gqcyLUFoVa7SUlKSZIjEKpRRKiQBO4uy0vJuWFJJMJGQSBj6jjGA1cQXDMuewnFA6i0CQyOCo101SlJRMfElPJ9zvhDqhmV5c3iE5QnMYe3BtMuIrlOIBJTszphHXrSZQ7U3GTGwZ+zYZkjN6NB0VEw7LMT935zN8pr97QyNu1er6NW9a8TPundpivTKt+PHRfmtacQ61ILVmmn4nNb55r8hBq1WrN0Lz8OTkjJvbVctVjXuTAFPWylM/ilI4pCRYmRc3ZGV+YhDULnynpfI190MJFxriqhJBcNg7LlKO826odbIGh8Sp4GQnz7lPTsWtWcBKlBW1VbeQ0S0vvlZUqXyEKNNZ0aYT+yUdVliEAwqFzDUUGqzAerCUVFsTIqxfiGDXZxKJVAlSy9jTKZhVuNKGOiYV6pjSJJhIaClROtQdrRswrSLvwVqPLUGi2KDLViowJph7WGFxeIblBOkkd7M+j7qb08mV90hGKPYRlFj6jPiQUjyk5A5e3Fyz3EUSCLbT1Wuvxrbg2eSQn9x5jy9t3r/GkbVq9fqlpZwxrRgWOS/GQ56Phvz4aO+EaUU/Sdpm0XNqQWrNZGJq33xhM0TLXjgJVCdeePXjatXqtaoJTxCtsG8u9cB7yXiSkCYFRlusE8HZrTlE4VEiTLonuaGwqvGhvSE1asNmrM2j/NxfddRJWpyT5M7wcrTJsMgYlym5m/2KkICwEpTDSZCOU+Vi+h4eRAnSKpQPaXuoaP1NiJCoyoL8jGiTd9GXz4eaHTy4aFXuVRiQKCWyMCinEU4HVz8tkWmoQZIyQFLVoFcIiRBQOktROJSapuAZE1LytFLhcSVXi4atqbyHwpbk1tVRp1RptroZ/SQNtuRG16mHh/mEZ+NDtpMeXWNQUnBQjhnZffpyTEeXCPrkPKIQ71Bw90KmEeug0lk+Ge7x5c0HfH37ndloW6tWb4G6JqEbTSu+efche5MRL8cjPj0+4NPhEZ8cHbSmFXNqQeoWqeaoeaDycy+4rnO6BbRWNykB1FYC1PDk/bWVV5w5oEme4F2BMWVsAisQIkShAPJoZX4jvaBODu9EKt/8R1ZJSyJLUmUBYq1Th+M8OOyNbYI7A/6EF6gywpTyIerV2JCjYZ3uQJUC5RSKkP5WQVMVbZIyWBNUgORdqIMiGtr5uQucrO8yCZAgjENJj0KjnMGQonyCSiVCBkA6y0TBec9oUqC1ZGerS5aaKzV+eN0qnKMoLbkt69qyrjFsZH0yE2qE5utznfO8nBwjheQnth/y/mAbIxzD4inHxUuOCnhebPGD8R2Gbgcpt+ibjJ5OzxU9XBc57/ho+IrP9Hf5mTsftHfdW731appWfH5rl4kteTke8WJ0zI+PDng5PubZ8BgpBD2TvLWmFW/fHr8BWhmorm3D17T+Vq3mI09OgA/wVAHU6775lZcGH+3RtQjT/NKGFL4bdeJrqjombholqmqdUhWsyYP7oCJ3hufDQXTYSync+b8GBAJtJdY7rIpRp+CsHZ73oEuF8SqYRkhVv7WyAUgOcLhoMU4NSELKujeUkPEf1L2YvAo9nwQC5TXGZyinkRfoHVSUJWXp6GYJm4OMJLn9X4vOOSbWkZehubSWilQpdroDuiYhS3SwJV/yWToqJhwVE+6kPT4z2GLb5Hj3YzySrt5lI/tplH5EyRZ7+ZiXk2M+Ge7xIj/m5fAYPPR0St+kZGr96yu893w83OdetsHP3vnMrRhzq1Y3rVRpHvYGPOwN+NrufQ6LnBej47qu6tnomPwtNK24/d8Yb5wEFkE/GRNaTgaFiYfAeYEjpBUFC2CJQ+AcuOouuJ9Z3XUM8eR2WrW6qBal7XlZn18+BqXWKThQlBrvQSl3s72gFinWQ1WRKCUtqSxJlI21TobjosdR3mFUJitFnU5T1bPJ4XE2vj/agZJoC4nVaKcaUScxBSQVm+dW6XSSOmIk4vOiWSzV2KrD4US0rPYK7bpol6C85iIXOuc847zAaMXOVo9uN12rc+w88h7y2AvJOodEkmjFbq9LLwnglGlz5k2I0lpeTEakSvLljQ73sxItn4PYRJtvotW7SHUfEZvlKuB+J+F+Z4OvbD3kqBjzMh/yfHzEx8NXvMyHTGyBEYqByejrdC0nVk/GB/R0ws/d/Qwbye1MS2zV6iYlhGAjSdlIUj67ucNPR9OKl+MRH0eo+vHRPg5PT4doVUfpN7IHWwtSa6bS93k83mRv2Al3ZXFI4dHCoqRD49DShYJ2QMoy1BkojyD8O8k3YgphPrS1DBAmAohVkHbeyUgLVK0uqgqeIADUHDxBI8C6ptfd0mpK+xoHECM4wkEmS1Jj655XuTU8Gw4YlVns67Tqpd5X/597yBF9K0K9kw+TaK0FWiiMUwglEUaQJRop5LTWqYoqLQSks0bjcaLEYZEotEswPkU5w/nsJ2Y1KUtc6eh3Uzb6GcbcsjQuH9L18rKkiHVORikGacogTcmMJov1TKuubz8fU9gD3u063ul06KcbaPUeSr+PUg8QK9Q99U1G32S839vhmzvvspcPeTkZ8ni0z9PRIR+PXuG8p6MSBiajo15/c9uXk2MAfu7uZ7ibDV7rWFq1uq1qmlZ8eeduNK0Y8TwC1f5kzOOyQEtJP6YBvinpsy1IrZmU0gzLlL2iB0zTC/zMb+GfxCOFD1AVC90lLj7uECLYL2sihAmHlhYlHKHW2yKkRYoAYIu9yELky/kqChZxzYvpYyJCWAtUrU5TVfMkWApP8RV4v14RqNelRoXYjLRyJLIglQ7pQtTpKO9yVHQYlwmjMsHP91BYCEizir4QU/txEXs9xchSisRoiUokiVJ0dEJXJCRoHHDgx4x8gUFdogDZ44TFYuvUvdT3Quqev9xXVhWFSrRia7tPr5OsLajPyzpHXlpya+t0vcxo7qQ9OrHOyejzT0xyO2I4eULfWB4N7nOv+3nS5EOkeoiUFwcLJSS7aZ/dtM8XNu4xtgUvJ8e8GB/z8WiPvcmQp+MDlJB1GuB8L6fr1mEx5ric8Efvfsh7vZ0b3XarVm+ypqYVm4tNK44Psc6Rac1Gkt5q04oWpNZMknjXl3l4aircig6A03zaz7zaNxebm0FJ6VEx2iWFr+FLCY+of3o0DiUdStgIYtUyFi1DrCuAWPiduU1WkTDfSEn0noB7fgppt9I3uNXZqg0j4h9uMTxVr6rqoN52iKoAquGpQKpKElUihY3NfVOeDYNJxLBIKJ2epkM2/jtzKOMfoooUNb64qpS9Ks1SAhpJIiWJ0WitQHuUUKQYMgwJqg4ZKmCTDI3kyOcoLzDn6BvksDOpe6nvxNQ9M78XF9IkL3He0++lbPQ7GL1+KWZNOe8pSsvEWpx3SCFJleJOr0cvNWTGkGp9QRAsUf6A4/wF1ivudd/ns9s/zUb6AULuXEuUKFOGR90tHnW3+An/iIMi1FY9HR/y6XCfp+NDCmdJpWFgUno6uVbXvFFZ8GJyxE/vvs8XNu5d23ZatXrbtapphRCCiX2daR4XUwtSayajNJbYmLeqfagQZWaSNKuTZVEeIaYwNVMS4QXOCRwX63siKgDDo6Sv0w+laMJZiIapRjRMCYuWIRqmRUhJlARgE/H+edMvI0S+mNaFNaDM+1BLRnys1RqpfjsiDjhB3Sh3idaxDup1SgBaOFJVkCqL9zBxmleTDkd5hzxPmRQG5j7DlRlDdWcv8tLMa+Zv1FTQJXxojGuQJEqTJhqjJE6BFQ6FpIMhJVkKSFJIBqQoITh0ORNfkjZga17XlbrXlHWeSV6QGs1gkNHLkrW8b+N9qFGaWDtthqs0W1lGLw225FnDlvz8cigOURwxKUue5AlJ8pN8YevrvDf4POoGo0FCCDaTDptJh88O7lA4y6vJMS/zYTCtmBzx4jik3PV0SAO8SgOIwlk+He/x1a2HfG3r0WtPL2zV6m3SaaYVHx8fBCOcW6QWpNZdovFDzDx0Ur5CqPC7Zzp/8d5NYat+jMVU1tzIAidAj4xNLaFY5ebBfDSsAq34u2qkJ85AmXChNixGwpR0Ed4CQiV1JO1kNAwIJhxtNOxmVB3C+Ua5Z0DuutdB3aSEdyQqGEVI5UNDX5vwcrLBcWkYuhSsQblg6a1nPBaWH0A3ZyA+E+3yoL3ACInRmtQotFYIKSmxFDgMki4ZGQa1SoRJCLqkKKk4dGPGWFKvGpPV2dQ96RUd30U5g/RX27x4nJfgPYNexkY/Q69ZFKqM6XqFtXjASEXHaAZpj05i6BiDVpcZs0dyjOIAgaNwPT4aPyDnAR9ufIWv7r5LV7/ehrkQ9vteZ4N7nQ2+vPmA42LCy/yYF+MjPhru8SofMrYFWkQ3MJ2iL1hf4bzjx8OXfLZ/l5/eef/C62nVqtXlNW9aYZ27dSl+LUi9SZqDrtlTUeJipbj3HiEkXgQfYr8kxDVfT3FiW2dB2PzfMboWTC8uNjkQOGQjCqbEbK3YFMrC7zpGwTQOKR1CeIwoEcKH5qIxGjY/VFdHw+TJFMUmmL3NELYInuzZ8ARvRx3UKuaZVdTJKAtekDvFQdnneFI57BmcCNbfyktUFaleoup2SROcZPNiEPszKS/QUpJoTWIUSiukDJ+EghAhMih6dMgwF0qxSoVGyQ6HfszIlxgvQDo8LtY9XW3qXlN1FCoxbPQzuplZi/slzjlyG+DJeYeSklRrtrudus4p1frSYxWM0ewjyPF0yXmP5/kOT8ZdHvUe8HO77/Cot3E1O3UN6pmUnkl5r7fDN3beZS8f8XJyzJPRAY9HB3w62sd6T6ZCGmBXJStFlbz3fDR8xaPOFj935wPS1ua8Vau10jq6ep6lFqTeIkkJuGAOEWAKEDJGAwJgNWd/899LM6VYp6QZnv7E5eSRWAeWi9xFbES/8EjpGhDWiIbF+jEtLUY4lJhGw6S0GAKAVbVhiygzRL7momFQ/8RXHovTSpbK4n6ttSzy5FYb95tSB3VaMBcC6yyqTVJAokoSVaCA0kvG1vB8uMGkTBm5FFtflj0ucpNyEnkCUEMfplloCsYQQojAs9Vn2oEi1CwliSLRGqllfefP4ZlQAJCg6ZCQohGXrFFRQtARCucLxr7EuISuH1xp6t68xnnYj81+xqCfnWg0e5OqbMkL6yitRQhBqjTb3YxektJJAjhdReNfQYHiAMUxjoySO+S8y7Hd4cdDF+y97z3gi1t3b1XTTCkkO2mPnbTH5zfuMbEFLydDXkyO+Hi4x14+4tn4ECEEfZ0x0CnJkv37dHTApunyc3c/Q99kN7wnrVq1ehN1e66mb4lENeOSPvgax0dXucu/kmQsvXLBKD0AVUj0EUKAaADVXFrfoiyik1O72SdORLVOi2RduwTWC2wVDXOnv3pWEZzEfDQs1oIJG2q+GtEwI6b1YVIEc3kpw9S3rl3Bx+lkANvwTjRtRprJWFPMquEr/lG5Jk7RrglsVa1c5bg4fZ2r1nMWxFW5YNV5cQ54qvflltZBLYKmClqaD4jpp3dGWlgSVWBkiBflVvNq0ueoCA1xR1YDsjGZ9qG0jHAZkC5ERS2zrQ2qaJOqti0qUI2fawtaCLRUJInGaInUambcFkcRU+xSDB0SEtSlAMrjsZSUogTA+IQHDBg7OLAB1/Q1pG5Y65gUJVli2BxkZOlriEL5qS156cL7nUhFNzFspH06iSHT+grhzqI4RHOIR1GyzZgvUXCP0m/wbDziuMj5cGOHb+w+4k7Wu6Ltvj6lyvCwu8nD7iZf23rEYexd9XR0yKejPZ5NDsmdJZWavknp6RQlJM/HR2gp+Nm7n2E37b/u3WjVqtUbohak1kyJMBw7AVaB0IAPs6lKYn5adzHIEhJErBMKIYK4rhqoQl3VIqA6db2n/S3q7L4ZLUwtXDtFUwt/8WhYZTMvRI009e8y9lSqEgmlmKYdVgmEQlTGHDGiE63uVTT2kLgY6amiZ1VSInF9Nu4J9XrC31OImz23fLSRjK+sflbgBo1IW72mGu6a0FYDXpXeWYPfFApveta7cmZqIzOugiUx8/rZRwQuRp1KJI7SKyZlyqtxh2GZMC4TCh/OIedBC5CNibWLCXrGiRNRKBU/n9UWnQipudY7cOHyoERI2zOpRimBlMGQogSwNn4OHSWhcWuGJhMGg0aK6v1z1NeCFWWxlKLA41Eoeq5PSobxCRJBX0JHpDy3xxz7gq4wS9Dz/BpPimBgMOgw6N9s01fnHBMb4Ml7j1aKVGt2s5SuMWRGk1zAlvyULSI5RnMAgGXAkK9RcJ+SHUAzLAs+He6xk3b4E48+5MPBLvoWpsycpVBf0WEj6fCZ/i6Fs7F31TGfjvZ5Nj7i1TD0rjJC8a17H/JOd+t1D7tVq1ZvkFqQWkd5ESatohk5acIUU6C6DGTF6ECITtGITsWnRXQE83Npf5eY+yxadGqIMX3sVrDVudRwF7zkzp0zDjQLb2LaLyzAWAPO8AgZ/3kfTicnED7CXoyUyLjOUKtW9SwLEToR0yebtWcyWupPcWMWCOtYmPDT4Fsg+brWr0oHrCNnDYCbRufmoK6OsjVfG6GuTk1tdE+bgYYwkGrqKWb+OnmMtQjgpGUJCHKr2Zv0OC4yRmXKxJqZiJ8gAJASAqmmCGtxSASJlxghUVIiI9BUASvrPCUeXIAn6SRGStJEkRoTUva0rNdZfXad9+S+pMAGBz4fok8KDd7j8NjqtbgIutV7EsORzcuNELHPlMWKsE7jUzquQ+pTlAi9pJyYonJPJBglI0zldIRBLT2uZ6u0lrywdFLDxqBDll7/V5rznsJa8tLGwmhJooMteTcN4JRpc8UGKh7JCMU+wQakz4TPkfOQkl08aT22T4f7WOf46tZ9vrH7kI3k7UlhM1JxNxtwNxvwpc0HDMs89K6aHJFKw+cGd1/3EFu1avWGqQWpW6PGt7JnCkjngqzma6eQFaJTVZRhAS3V/WZO1lFdZRChYep1pt480Fquyx3iaTofsPjASU9V8+TLCPFOXPggV9BSRdUqAKtQR1bw1KgzqyBvGi2rImlhbBXuyMZyU3MRTzTzr90foQmKrj6GVeCn2l74vdrVAE/N+NI8Ws0fz2r/Sq8YlwnPxxuMypRxmVD6xVEIj8dVxycaPFTsmKFIfbAdr8bl8VjvKBzgQgNegyRVmixNSBONNiH6tEjOe3JKvIOBTBjIDl0VmuhCdPWLpjNVum/l9Od9TBWM4Oe9x+LJfUFBjnOgSUhchnYJwqnojukpvK3X6eLy1c6m3jD2JS8ZYVAYIWO0TzQigFN4bD5XHZjJpEBKydagw6CfXUmd0ZI3jMJZJuXUltwoxSDLGKRJACdjUNewfcEExT6KMY4uBQ/JeZeSuzi6M689yMc8HR3xoDvgm7uPeL+/fevcr65aXZ3Q1Qnv9rZf91BatWr1hqoFqTdCVwBZcdJZl0c5X09mGgufWUd1VbsT59orp181ddsh60amPk14cmJa83TOg+eX/F7tRN3va6X1igW/LdjiCZBvRlGnE/GYQBhTIpspjG4aAaPqf1ZBF7Wd/gzgxeWq/mkiOkc6LzkuM8ZlciLqVI13nmG9By0lWorolBdek6Biz6UAP9YHMwmsQ3pIhSJVCVlmSBKNNupUeHDeM/GhCW0qNds6o6sS9FxqanD1E2eeeCUlE58jsHRESp9terJLh2zq6hchzMUImMfhXAWP1eMhdbF0jpflkKf2CO8gEyq0JHARvFyMjBFTF+OxK4pgF54mmk7X4A0cTCZMw5l+Cl4yQJis0iHr82Ma5QvngpiBDhttyXMbKtO0VGTRlrwb3fX0labrNVWgOURyjCehZIcR71FyF8uA+TeqcJZPjg8wUvIzd97lqzv318LSvFWrVq3eBrUg9cbrfJBVTRxdZXRxIpIVfq0mH68bqJYsdqrOWtfJqfD16sbuGctpSMB7AWUEqDrNbVYX2e9pktYqULRMp8HSdHJ8Wu5U2FPV/AOY+otUgY2pu97VvAsVNjU/DvEWRD0Wo2Ws4QnRnWD0oJAeCh8rpKxHe0kqBIlK6KQJJlFo0+zHtFjWeya+wAMdYejrjK5MLpRC53BMyCl8iRKKrugwkD26ZGixwDpaCGQjkgSK00oK79Ljftnn4/yAsSvYUemM1XqVmui9p7SOo9EEnaVsbnbZHHRq6PQR0rx3AUC9xzkX0iB9iOg5GwAugJ3D+bCFavnmKaeEINGKu50e3SS5Mlvy5bIojlAcApKSTcZ8npJ7lGyzzPP+5XjIq3zEe71NvrnmluatWrVq9SaqBam1VVWbcJ3bWAJZRNODePfY4anrlCUgXPxen73/7psueFdJHxcEqlNWt1RNJrzo8pfZ/lVohkHm4ckKvJMLDT7E3O8rjXOuZubcI50B8Eb0U1ZRg/mRnXsLEW5ChVP172rgyS+8hyAQwRSC6XGsPhpayzoKVeKjtbnAhaZlKC/pCEVqNGlmMDr0eFrl0JbeMXElQgi6IqGvMjrSIM8JUB5PQcHE5wCkImVbbtITHVKSUwH2ItrSHVKh+CjfZ68cs6Gy2hihumGT5yWTvGR3o8ed7T6dzsX6/zjnazCzPgBViHz5+Fz4PVEhAnVt6YJhNEiG0TTCYRkw4suUPKBgl9O+nie25OPjffom5Vv3Prh1luatWrVq9aaovfKumdIZ967pRLOeVtxY+ELE+awMGWDWx4L/6j4+dUpgFbUKN5JjS9BIPtNUwEZ610Vp6IqBaskmlmqV4V/123Oh/ZSx/ic2EKZO3QtPL4WkCx7U0wHqrOjS5WFpXq7aLiFtTdZQc7ltLIs2VdU9tTHF3GZc/JgoJRESCiyW4MqXWonxwSwiSw1JajBaI5VYiVe8Dw10c+9QQjDQKX2RkUoTUvbOoSp1z+IwQrMlNujL3mzq3jWpoxI+k+3wyWSf58WQDoZMaqx1HA0nJEbz6N4mWxvd2pzjIgpgFJYPX37XlZ63XIIRmn0kBZYeEz6g4BEFd6lMI5bJec/z8THHRc7nN+7w9d2Hb4SleatWrVrdVrUgtWbSUiJd6O6sfGWGHdNP4qR0OhW4AbCqagqCQRjOV2YBAppwBGCBavomqjEDMthy1/w10630ApB1A0C1ZLNLdVlGvOz2T8BTGSJP5+uVdYExLXojLpCKd1lN4UlMm9JyGXhaPdp02iZspCihBFaEqIf00HeSvkzIsgQT652WmUUsHJ2HnJLCObSUbKkOfZmSLkq3O0WzqXuSjsjYkH06ZJhzruuyMkLxXrpFIjWP8wOOxhOMlWwNutzZ7YW+ULdUgjw2yx3i6FByn5x3KbiLYzUQGpY5nw4Pa0vzzw12b9TmvVWrVq1anVQLUmumRJg6xc5Lh3ASFSehoZXrawIrKab+BLEGYbEjVFULMr1D72zlchZTzGScXFbRrCqyxSxkhf07BbJeE1At0nnT/a7kbZJTi3HvJf6G4KnSTCTqilLxzqOrg6eThhCLok2r7pqPY7PeIYRAC4Fy4bzvCMNWktJNk2AWcU64rBz4Su9JhGRX9+ipBHOOS/nC1D2xQVd2ya4hde88kkJyhw7D8YQ9Naazk/JgZ4BWNx85urzK2Cz3CIfGssOYr1JwF8smq35OrHc8Hh5ineNr2w/4+s6Dt8rSvFWrVq3WWS1IrZmMkGAFulA4JXHSY4VH+GZzzlmwqu2LrxusRJg8izhTDH2n4KyNyNiPygX/5Lqxq69W2li/FxeALEFtRvi6gWqRrnRaKqa23d7L2nHPVyfDNUsIMZMeddOq4KmCG1lj0zmiOQtS9GAKTatGm2bXSfw8hpPQO4/xgjTWOKEFPW3YSrroC6SmnXDgU4sd+E5TSN0LiYVV6l5PdunSufbUvVXkvefwaExZOr547x5bdzr8eLLP8/Exd7LeLYEp1zCN8Fi2GPJ1Cu7FZrnn24fK0vxhd8A3d9/h/f7WBWoRW7Vq1arVdakFqTWTVirO3SSiVEg8VjqccjjpEY7afaua+igEXog6FenawUoIpISai5ZGp2YlRSAkj8e7BbP+huHFRSFLECaxfm59t1qCCE8+wJO9RngSsxEdH6FFSMFla4wuKhdpucoOPR88zUabGrciLhRtml3zFJ6ED+mvygvwnkRrOp00XGGloK8SeirhvN4Fl3XgC6l7BaUvkDF1L7judW48de805UXJ/sGIfjfhcx/c4c52HyEEW7bLt/ef8/Fwn02T0THrM+apPJIhin0EDkefMV+g4AEld/Ccf8zzluZf23lAR6/jvrdq1arV260WpNZMqdYoJB2pwOvgJgXY0lFKSykthbAxdW7BHXRuCKzq6FSIMPkafc5eYTUxJzplraTTIEvG6XIDsqqoDXIaf6j2+VZAVgOeoAlP4krgaeldbcGcE5+88aaeVfoqTM0iVnXaWznadPHSqfB5jOeTctO6qaohq0kNnY6hcBYlJQOVkkl9rm3OOPDJhL5c3YEvpO6VTPwEgFQkbIsdurJDRvpaU/fm5b1n/3CMc45H9zd57+H2TC1UqjRf2b5HVxu+f/iS3Fk20/VIaxOM0ewjyPF0yXmPgncouIOnc+H1Vpbm7/e2+OadRzzstpbmrVq1arWuakFqDVXVeUgZJmhBEu811jlKYSmkxQoXrXyrZpjMsNHiiFUAsysDqwtGp6o9reyFnXcXBwQX1gWLISvYDYb9FnK6w0JWk+41gawIT2E8VwBPc9Gl5uMLNeeucJPpXhdz2lsWbZpN+zt3tKmZIuqrz0rYmo83EIwXaCHRWgUXOQHOepJEYVJF7iyZMmzoFL3i5+GyDnwlNrrulRhh1i51b16TvODgcMRGv8N7j7bZ3eotBHwlJB9u7NA1hm/vPefZ8Ig7nf5r4UFBEU0jjnGklOxGgLqLY3CpdVeW5gOT8sfuf8AXN++R3Ip0xlatWrV6e9WC1C2SEKCRaCSJ01jhaqAC6tojFyeYFqjJQFSpUQIFNViF1wZr8wuD1SWiU5WmdVSXAKpFqiDLh9F4O125r4BKVO6CrwGyZuBJBGiyErcqPJ0XlhZpbjvyhpzAzmsWcVqz29Psx5esbCEs1esVYnouKIGvPntSkgiFEtPPhvMhYpwmGplISufp65S+MivdVLiMA5/DkVOQ+6J23RvInbVL3WvKecfBwRiH592H27z7YJs0OeurSPCgs0FHJfzh/lOejA65k3ZvqG7KRtOIQzyKkm3GfCmaRmyxrFnuqnLe82x8xLAo+PzGHb6x+5Dd1tK8VatWrW6FWpC6pZIIpFdoK7HCU8qSUoWpqfHTL3bvPA5RR6IcxLlrNYGtZovh9dM0wAuAlRBIFTbizh2divsVgapqmnnVqu54e+/rCEzdVtg2aoOuGbKEPB88nZqKdxk10/huoA5qkVkELIKnK7AfXxGWhAChZLgZAIhGgNcRnk+FwoiTiXXWeZz1pKkOV1MBmzqjs0Iq30Ud+Bal7t2NqXudNUvdm9d4UnB4NGJj0OH9RzvsbnU5z0m8mWR8fech39l/zifDfTaTzjXVDjkkx7FZrseywZCvUXA/mkZczVdnZWm+m3b52Ufv8WFrad6qVatWt0otSN1yCQTaC5Q1GOEpRImNk3TpJUqK6BM1rZkKQR8/TfOjClyFBrrNSbu/CFhJgazd+ZqNfM+xX/U4zlFHdc71A8th7RogqzoEHvA2WJXPpO2JJcfpOubFzd0W4lrroFZx2rtos1tiSun09/PAUrRrb67U+1CX6EEKSJYAlPNgXdizNNM4BZlUDExKIk6PklzUga/EkvucMrrubYoN+mucuteUc469wxESwfuPdnnnwRaJuVg0qaMMX92+T0cZfnj4ksJaNi5dN1UiyRFMkIyQlFgGTPgcOQ8p2eWsZrnnUW1p7n1rad6qVatWt1gtSL0hEgiUF0hvcN5TCkspHaXwSDdbaE+cRDbhCj9NCWwCVjDGizAQuCYi2Blg1YxOMdfI95x7diV1VMvWfhZQLdIKkEWELCE8lVOCd/G1bi4KMz2A168ZgLq+OqjKaS+A0zw8Nc4fVog2NSJL3l0BLC3SPEDJkwDlPTgXm+pKgVESqSVeQk8bBioNKX9LdBEHvip1r2i47vVlj94ap+7NazTOOTqesLXR4YN3dtja6HDZE14Jyec3d0Pd1P5zno+O2M1WqZuyDWCaIChivF7hSHF0yLkf7crv4uheapyLdJCPeTY65kG331qat2rVqtUtVwtSb5gqoFJeop0PTn/C4qRDONGY0Favn05Yp1GJZvTKU9VSOQIoiGlWHNV0uK53mQerlRv5nq1rq6PigkC1SNWBEY00OdvcEDcHTU1dcx1UE4yaTntNTSNTi6NNzZV57+u+wvOwJJWEi8DSwoGfDlBNeBISlJSkqUZJSSkcINjQhq5Mlm7+vA5809S9HPCkIuGO2I6pe9lap+415Zxj72CEkpLPvLvLo3ubmAtGoRZL8Ki7STfWTT0dHnKn04upcQ5BjmSCZIygiMtIPCmOlJwdLFs4eji68V/GZWuelmlqaa746TvvtJbmrVq1avUGqAWpN1gKgXIag6J0jlKWWOFCc98zqmGm0asFcNVIoaqiWM5XyYKzkFWDVZW2do5Gvst0nXVUVTrheVZ7Y+l4F9U11UEtctqDOogUY1LUz88k9MUatSr6ea2wtEhnAFRV+4QApSRZotBKIpXC48ltiRaSgQ7W5gtWf9KBT3ZIhV7qwGej615I3VNsij592aNLhjwjXXDdNBpNOBrm7Gz1eP/RNpuDi9uBnybvHZsJ/MRWhx8cveLV6FMGSUKidA1MBfexbGNrWOrh6HBdwLRIL8ZD9vIR7/e3+ebuw9bSvFWrVq3eELUg9RZIIkhqYwpHIUvskgjVaZpJt6oiOI0aINeopbIRRhyVI+B0BdE/71LRKbjOOqoKBU5ub+FL11XXUAc1D0+N2OPMoZDRJVE0IQ7fgCWBUOJ6YWmR5gAqlQodAcp5KGyIdkolSBONNhIlVT0k6x2Fs6RLrM3nHfi2owNfsiQNbz51LxMpd2SfLhmJSK7vOFyTrHXsH4zQWvLh+3d4eG/jSpz1wg2THO9HeD/G+zHRCgQhUjo644tbX+O7yvMHByM6apON7E4Eptf3Nddamrdq1arVm60WpN4iVU5/ykqsm7VOl36VVp8ntUpqoBMBqGyMWTkBzgs8rm5serGtT0ch5RTOLp32J8L6KsQ8kUq4zvAEV14H5er/hh2vI0++ii5NzwNBBDYR/34dsLRIfgr3UgRjCCVkuAFgHdYR6p6MwugQfZoH58JbrHP0Flibn8eBz+MpY+qex5MIw67Yphcb5oo1N45YpqPhhNE4Z3e7z/sPt9noX8w8wft5YAq5sUKkCJEh1Q5S3kHKTYToI2UfIfoIYfhG19PJnvGvn/2YvSPLo56aBtVvUK2leatWrVq9HWpB6i1U0zq9FI4yApXj4kA1r2Zq4EnXwABTlgB0pXfYuiKmOSk/70imk/gKfqrUv4WphCJM6s+KyU1rszw0QW3dgOoK66BctIuAKSxJX/V7mkYDFQGWKuh4rbC0QD5GoHwjAiWR4DzWOaQUaCUxqUZpsRA6PTBxJVIINk2ob6p27YQDXzSQWOTAN03dKzFCMxA9+rJP7xam7jVVWsvewYjUaD7/wV0e3N1YycI7AFOEJT8GylheaEB0kHITKT+HVBGYRB8h+wix3D1PCsGXtu7RNyn/8umP+MHhS97rb2HkzR3f4yLn8fCA3azXWpq3atWq1RuuFqTeYgkEZq4XlRWOkqsDqtntzcKVQYCUOAeFc5TORUO7mH4V4apZZ7OYXqb1NjRfKwiNh6uCp0tGZwKkiWmEap2AqplCN2dhf/ai0/q2qrBJeFBIlAjRQqnC/gvE2sHSIjUBSgnQUiGdwFuPkyHtrjKNkGpZ1VIA8omzJFIxMAmp0Hjvyb2lcA7E6Q58DkcRG+YKBJnIgnGE6NzK1L0ZeR+iUJOCu9sD3n9nm373JOR4X0ZgGkVgKvD4CEwZUvSQ+n2k3EbIQYwy9RDi4nVV7/Q2+cV3Ps+/fPpjvnfwgke9Dbr6eo9309L8J3Ye8hOtpXmrVq1avfFqQWrNVE3o3LT66EakvEBajROeIrr8lVTpW8snmkGXG6eQkEiB9hJbOpwPwBLMLFxtxd6MWsFcTU4VXapMLapnBeCDwbF3PnqQL1jB0sGdfEjCNNp1QZhaeMROPLjCSs+VxhdTH6u/GqsXCDQCpSRKCFR9POV6gOKKmo9AGRQyuiZKJdCpwuhgGnHWblX1UB1lGOgUh+XY5eBBS8mG7tAVhmzOge9NTd1rqiwtrw5GdDLNFz97j3u7G0jhcO4Y6pS84DoICmSGEF2UfoSUuzGyVP3rXIv992bS4U88/JC+SfkPrx6zYTJ2squ3M4eGpXlvwE/uPuK93lZrad6qVatWb4FakFoz9VQSaph0gcWhl0ZhrkcCSBA4L7HSYaXDCYtw825vlzCJWPK4JLjKWetwzuE96PhiL+I/GsYVMyubp5BpQ9yqXgc5BapLB5PEdFkfbAvjTqy2RlEVFp3QIpOL6cP1vvvpy6vIUFidjY6DIj49uz4pqkqmAJwagZQqJKLNTPx8HOV5rOZP7tBVOQSepRmAApQTaGSoe0oUWkvUgrqnZcq9xTlH9v9n787Do6oO/oF/z11mTTLZNyCArEEJm8hSNxRZWgWL4sYr6ota+1Oo2iJaqyhVq6jFhSpaFbHFpSpYqm9RBNGoiAIGtWJYCrKFIGvW2e49vz9mMmRIQmYgZCaT7+d55oFM7tx77r0nyXznbJoOi1DgMX2B8KTaYBcWWBUd2lGtTwZMeKUHvuCse3Vd9xywQW3DXffCSImK6hr4jVrkZerokKPDaj0Aae6HCeVIYFKzoSjpUJTkeqHJ0eoh0qpqGJJdAJduxbr9u7Cr+jDyHCkttgB1/SnNT8/uiMLUHE5pTkTUjjBIxRmnYoelyoY0mYpqVcIvTOhSPUabUMsHmvoMBGb58yl+GEJCkQpUeeJTaIeyh2mGFlkFAm/uVSXwZtg0gzP7qUfeBAsRCEN1MwQa0oQ/+CYaUkLK+u14EuGRqd6ixAiscwN5ZAa3Y5U1khMypTwSqIRo9AKLBl/IJr7Z+NOhCebruuCJQFe7sNAoZGjbusY5EeyKpyoCqgh02RNHB6ew1q16fRcblOuoK9LstWvqCoqjvnf0183sPLhrE4GWS8UMLOirCQW6RQnOuKeE3jTLo8d9NXIMKYFaM7horqbBrmpwKDocwgqrojUY+2RCwgdvva57VmQkStc9mBDwQQgPFOGGYdSissYNp82CnMxMpKdmQNPSghM/pEAozmBgckLEUXBUhECf9Fy4rHasDo6bKkhKg3aC45bqT2nePyMfuY7kFioxERG1FQxScUYRgS52DmmDXao4LLyohR86lAafgLcGDSo0Q4dVSPgUPzyqD/7gWlSajKw80gxO/mAi1LVMqWtFUTRomoCiBVoPFEUJhQMA8HoNeH1+mIYMzKQWDEN1R9YFIEVwTJWJwBgvU4ZFqFA5gou8hr4TPIgIvlZChvZ/PDlRCRbMDIZDAKjfyxA4KiaENa0d+aZsdON6T4oj1wkSkEagta6u3HVtcYoIjBVTFQV6sHVGNZo/sUauXNPX4+gweKxtGzsp0fAkj3Q5lEf9i+D5ydAsfKY0oUjAIjToqgpdV6Fp4WPEQuGzifsgZWD2SCO4cK5V0ZCq25GkWGARGjShwIQPtdKHxuhCR7pIQ1Kb7bonQ4GpLjQdicAWmKYVBw47UOPJQV5WB3Qt6IyUpIxgaGo7f0I6OF04L797KEzlO11wHEfrkdvwo6y6Akm6BT/L6YIerixOaU5E1E61nb+C7ZAGBenSiiqhoFL4YMCAVdbNm9a6FClgNXRYDA0+1Q+P4odPMQKTEsjAeJNjBiYhoOqBgf2BwCQgFCU0cUFTLBYNmqbA4/XD5zOgiMA4nvoEAi0RqgLoUGAqgRhlmIEWNSMYrISom3WuroUi2JohJIQIrntlBkJZaGxYtJdaBBeTlQh1TzzS/Q7Nh6X6DVmKCM02KKUZbG1Sw4KmqBvBVq+cCgS0YMuTIgLXJrpTOHp70XSj0kkYxnes0pqQ8BsGDFNCEwJJmo4kixUWiwpVO3KmRxZqrlfA0LUP/MeQJrzSDxnolAYhBTroyehkTYVT1evFuCOxXNZ7JlBWBQ5YobaZQOGDIjwQwh0ITjBQ16HXNK0wzRT4zM4wZTJM6UBNrYY9+0ykuVw4tWcuOuWlB5caaJtSrXack3cKknUrvj9YjlSrHWnWyCa1qJvSvNbvQ3dXBooy8pFuPTljroiIqG1oK3/92y0BgWRpgUUqgdYp4YdVas1O/3Ayy6P5NCimAq/ww6v64FG9AABNKoEZ3nQVFlWBCAamQGg6/rFeiqLAbtOhaSo8Hh98PgOqpjQ5zqFudr9A3goGKylhSMAPE6Z55I2wKgQ0ISCCXcSkGljc1zBNmDLQhbCuQ2AwE0Z6oRoNVHXfOzoshYWXunFhEqGpNoRQoNZdT3Fk67pdBlqe6rrtNT89SFtjmCa8ZmD8l0VV4bJbkGS1QNe0Ru/JkSsU/k1DmoH1oCChQoFDWAGpQoeKjjYXcqxJJ7zuVnzwQ6kLS8IDRRiBrq/QYUorTDMJhtkJpkyBKR0wpR3SdEAiMOueaUr8dKAShmGiV9dM9O6WC2cjM/K1RTZNx5DsAqRYrPh63y7U+n3IcyQfc/xc/SnNz8grQNfkdE5pTkREDFJthRUaMqSCCnhRLfzQ5cnv6meaEjLYTc2UgTAgRGBmOKEADtWKZN0OQ5XwaX74FQNQgMAw/JafPF3XVGhKoHXK6zNgQkLTmj9OoMVGQBWApYlgZYZaGAR0TYEOFaZpwjQCoaouBzW23m8Tw6Hqih0KVEc/fzQzrBElcEQVCjQ1MNZHKAh1QQQC3UBDwSkBw1NdoPVJE4oQsGs6kq1WOKx6VG9iA+HJDz9MaFBgUbTAmCdoqDH8sKk6OlpTkKof/3TbsWOEuuMJ4YUQvmD90QKBSdpgGnkwTBekdARCk+kMBabGVNd6sW9/JbIyktGney465CbeDHSqouC09DykWGz4au8ObKs6iE7O1AbjpgxpoqymElJK9M3Iw2npeUjWEyNQEhHRiWOQakNUKEiVVuhQUCF88MOArQW6+klThlpN6v4VAISiQFEAzaJC0y1QFAWKKqCqKhQ1fMIJCcAHP2rhhRc++GBAgwK1kYVJT4RQBGy2YHc/jx8+nz9Qnii6G0USrEJhRQ2cM8zAtTFk3SwPdecd2M48Kig1aL06qnhHB7JAQK0/ZEiBHuwGGZhMQUKYdeFJhSbqWqYS6w2ulPVaBAWgKALJFhuSrRbYdT3iszWlCa80YMCEAgGLoiFVWGETOixCg1+aqPB7kKrb0dGaArsa7zOt1QUmb7BLnifYVVSFDAYmv5EN00yFKe0wpROmdEBKGyL9/WCYJvburwQk0KdnHnp1zYHD3tYnzDi2gqQ0JOlWrC7/EdsqD6Cj0wVbcNzUYa8bP9VWId+Zgn6c0pyIiBrBINXGCAgkSQt0qaJCeFErDFiPOavfETLYwhRYTsk8MmN3XWDSFKi6HgpKqqJCaJG1dARGWWjQocEPA7XwwgMf/PAFWlXQkmO7BDRNhaoo8Pr88HoDY2Z07fi6DzYWrMzgbH6BYAVIRUIoClQJSKNe2KybMi84CYIJBCfAk6EWrIalDwYnHOnWFxhjFmwVC3aFlCIQoBRFgQYVqoIGC74mAolAeDKD09JLBdCsKpI1HU6LBVZNi+iumsFue36YEBCwCg0uYYdNCSykW1c3ag0fPKYfOdYk5FtToMVVVz4z0LIET3AskwdCIDAbpbTClFYYZi4MMxWm6TwqMB3/eVTVeLD/YBWyM5Jxao985GWntJvQkG514Nz87lj7005sOFQOl8WOKp8HFlXF4OxO6JOaEwpXRERE9TFItVFWqEiXVlTChyrhgyYF9GDrj5Qy2MokwwOTUCBUQFUVaDYdqqZAqApURYUSYWBqjkBgEVQddvhhhRveYKjyQ0Fg9riWClRCEbBatbCxU0qwG9yJUBBo7cFRwcqomylOAEaw5STY1y64ILAI/EDVmzlPBgNWXUNW/cku6uaekGZgvxACqhrspld/pr0Ea3WqY5iBkAoAigIoeqC1065rcGg6LGrzAUpKE15pwg8jFJ6ShR02RYdVaBBh4UKiwu+FAqCTzYUsizOGYeHI1OKBliYPAqP0FEhpgSmt8JtZgcAkk2CajmDXPDvQgq28hmFi7/4KCEXBaT3z0euUHNis7S802DUdw3I6I8VixbcHytDB6UI/TmlORETNYJBqwxRTwGmogDRRofhQK/2wmoFJGIQqoKgKdJsenFo8sBZToPWpdd48alCQBBtssMADH9zwBANVXehriXIEwofdYYHPa8Dr9cPnNwNTYLdQAKkLVnWLA5tKIFSZUsJnGjCC46gQnJgiEKpCDVUIn10iQAKhadqFAFRVha4q0BJ0sog6gW57gfFfiiKg6wpMBdAUBVZNjShASSnhkwZ8wfBkESqShQO24HTljY3PM2HisM8Dh6qjoy0FKZrtpJ3jUaVtIjAFphaXphWmmQafmRaYKc90hCZ/ONm/niur3DhwuAZ52Sno0z0PuVkpJ/V48U5VFBRl5CPf6YLLYoOucEpzIiI6NgapNqCudckwTEgjMIYHEIFP8VUFyZoVSboNVboBj+KHXbPAqmhxM02xBgUarLBBhxe+ei1UAhrUFgk8AiIwVbqqwOP1wec3A605J2FmrfotVlZFhakFwoHPCIQ4Q5rBKc9FYNzTUWPJTBkYkyUgYFFVWDUtMCNfooYnKSGN4JpPigI9OA2+FIHZCO2qCoemHTNASSnhhwFfcIEuXShIFY5gy5N+zMlNvKYfVYYX6boDHW3JsConq8XFV687nhsiGPQkdJimLTi1eOqRmfKCoQlo3RYgv99A+f5K6JqKfoUd0KNLNqwW/imok2lzxroIRETURvCvZ5zyun2BbmMIrBmkKApUTYFut0C3aFA1BZqmBlqbggvVZkoTB/21OGx44IEBGyIbW9JaVCiwwwprqIXKCy/8EAA0tMyU7oqqwG63QA0u5OvzG4GFfE9iFy4FgWnJdcUCUwusc+Tzm/DLwBTq9ZqmAFNChYCmaLDq6jGCXsPBVaLR5+p/0cz3QzMTNvxmY/tu9tih18t629U9c2Tcky4A1SqgaRqEYsCEHwBgVVU4NBWaIiAQmEQhrLRSwqgLT0LCLlSkCT0YnhQImIFJF+BpUI66r92mD1KY6OKwI8tiQhUVDa7H0a+J5NxD2wmjkanFnTDMjk1OLR5LhytrcbiyFh1yXOjTPQ9ZGey6RkREdLwYpOKMHhzzozstsFrtUDUVmhpYm6kuMDVFFQoyNAesioYD/lpUm144FD3uWjoUCNhhgRUW+OBDLTzwBt9ca1BbYOp0EdFCvi1BwIQqTKiKCVUYUETd1waE6Q/M9GcaCETiQPchLTgb39GJRsi65V7DW7DqH+1ojb/FFw02kI3WgXrHOWpHzR+3kefqFjQODgizaCJwrqoKKIDf9EEIAbuiwqZq9bpOGaHjSEj4g2OepAQ0oSBJsQXCE+rqsmiwsPGR8gbusSmBSsMDVViQbwlMbS6kgCkbW19KaeQ50ch5NtxOSv2oqcXrAlN8/cz5/AbKf6qAzapjwKmd0K0gExadv/6JiIhOBP+SxhmbwwpHih1WLQWqEv3Uw0IIJKtWWISKA/4aVJle2IQOPa5mJgtQAFihwxLs8ueGDx74IGFAb4FAFe1CvkfKFQhCqgiEI1UxgwEp8Fzde2QBCVMqMKQCQ6owTAUGFNT6rfAYFrj9FvhMHR6fAo9PQAgVqqaEmnKOhICGwafB8wjM3NbIZjjypr/+xg2fazz8NH4t5NH7bOLYUgqYpgm/EWiFUhUFFosGix5oNTVMCY/phyIUOFQdSRYrbEd14TMl4IMBj/TBkIBFaEgSViQrDjgVK3xCQ2WDcz5y3keHFp9p4CdfDdJ1O3o7s2Ax7ajxNHhxu3GwogaVVW50yktDn+55yEhj1zUiIqKWwCCVoKyKhmw9GRZ/LQ4ZbvilAZsS+To8rUngSKDywQ93cAyVD77gWlQnMtNfYIFdi6rB7/PCNGqhCRMWXQaDkglFMQJBQQCoC0emCgMKDFOBx9DhNXW4DQu8hg6fqcNvavCZKvymBr9U4a/3/2OW1Wj6W22JaUj4DRPSlFA1HRZdhdWiQtM1KELAZxio8hpQhAKnZkeKxQJrMECZMjhhRF14ggxOGJGCFNUOh2KFRRz51XTsTofhagwfDvvd6Gh1oaczA464Xx/q5PH6/NjzUwWcDitO79sZp3TKgKZxAgUiIqKWwiCVwFQhkK7ZYVU07PfXxG1Xvzp1a1FZoMEHA2544YYPfvgbWYtKhlqI1OA4FVWY9f4Nf/ttSAWmVYHHB9R6FFTWCviFHV5pgdewwG+q8EntSCAy1WBA0mBIvvkEgtO0GyYMwwy0POkqrFYNuhbodgoAPsNAjWlAVQRSLDYk6xZY1SMTuPukH27phwETOlQkK3a4FAccijW41tPxO+irhU+a6OnIRFdHWpytD9V6pJQ4cLgGNTVedO6Qjj7d85DmcsS6WERERAmHQSrBCSGQpFpgURQc8NWi0vTAKnRY4vBNpkBgjJEiDNiEAZcwIIUfhnDDJ9wwhQEBNRCopAIT9VuOVLgNG7ymFV7DAp/U4ZdavRajQCDySw1en4oatx9utw8SgEU/0t2OwkkpA9O7G2ZgnSwtMJmHrqvQtCPB1mcY8AQDVGq9AAUAPhloefLDgAYNSYoVrmC3Pas48RYjU0r85K2GTdVRlJSNPEtSu1lM9mgerx/l+yqQ7LRhSP8uKOiQDu0kjA0kIiKiNhakHn74Ydx11134zW9+gyeeeAIA4Ha78dvf/havv/46PB4PRo8ejWeeeQY5OTmxLWycsQgN2XoSrIaKg/5AVz/7Se/qJ0PBSIEBRTFCrUeKMCGEGXZ8KQVMqcKQKkyo8Js6fEYyvIYVblNFlZSoNA3USMA0dQhpg2nqoYAUafc/oQJOZ2AsT02NBx6PH5oWHL9EgAws1OoPruSsqQJOhxW6rkLXwkNnXYDSjgpQfmmgynTDDxMaFDgUK1yKHU5hCyyU20JBx2sa2OetQZbFgV7OLKTqrbU+VHwxpcSBg9Vwe3zo2ikTp3bPRUqyPdbFIiIiSmhtJkh99dVXeO6551BUVBT2/G233Yb33nsPb775JlwuF2655RZMmDABn332WYxKGr8UIZCmOWAVGvb7a1FleuBQLFCjilMyGITCQ1Hd/4WQCMzZFhCYjEGDKRWYUoHXtMNrWOA1rfCZVpimBr/UYZgajGALkiE1GFKHKRuOjZIwAXhQHZzrT0DACvU4uisK6LqK5BQ7PLU+1Lq98HgNWPSTO1V63ArOuOc3TEgpoakKHDYNuq5B19XwayIlfKYZClBpVhuSNAtURcAjfag13dCgwqZYkKo44BRW2ITe4te1yu9FpeFBZ7sLPZyZsClt5tdZi6r1+LB3XyXSUuzo36cjOuWlnZQZKomIiChcm3jnUVVVhUmTJuGvf/0rHnjggdDzhw8fxosvvohXX30V5513HgBg/vz5KCwsxBdffIGhQ4fGqshxzaFaoCsqDvhqUWF6YBUCdgUNQlFdWIIIzOEmIQJTXEOFaaowoMKUKryGDT7DGgpHhtRCwcgwNfiDwcgwNcgTnIlPhYIk2OGAFbXwohK1cMMbHF+lByemiJwiBOyOQFe1mloPPF4DqhqYojxOh5K1KNOUMPwmTNOEqiqwWlVYdA26pkFRj7oAUsJrmvCaBnRFQZrVBqeqwVRM1MIDVQrYhAVZSgqSFCvswnJSQqmUEgf8tZAS6O3MQhd7KtQ47Kp6splSYt+BKvh8Bnp0zUJht1wkO9tnixwREVEstIkgdfPNN+MXv/gFRo4cGRak1q5dC5/Ph5EjR4ae6927NwoKCrBq1aomg5TH44HHc2Q+5IqKika3a7skBEwowg8RaikyQl3shAhMHZdqlag2PDjs98EnFViEFSYCrUI+wxEKR4a01GspqgtJer2JGFr/TawCBU7YYIcVbnhRhVrUwhMY8wQNGqKbIELTVSRrduhuH2rdPni8flh0FUJJvDQVGPdkwjAkFCGg6QqsFissenDNp4YvCAtQqRYLLJoCU5Hwwg+7sCBTSYZTscEuLM1OL38iDGniJ28NkjQLejkykWNNOmnHimc1bi9+2l+JjNQk9Ombi465aYG1yYiIiKjVxH2Qev3117Fu3Tp89dVXDb63Z88eWCwWpKamhj2fk5ODPXv2NLnPP/3pT7j//vtbuqgnmQyEIRiNBiQhglN4BzvWSSgwpQoptcC4I9MKj2mDP/gwpR54mBoqDBM7PW4c9pmwKw6osKCtNMcoEHDACjss8MCHymCg8sAHCzToUVRxIURoIoVatxdujx+qIqCpalu5HE0LThrhN00IBBbKtTsC3fY0vYnp5esFKE0RcFo06JqAriiwCT00YYRDWKC0QouQx/Rjv68WOZYk9HZmIlmznvRjxhvTlNi7vxKmaaJ3t1z07pYLpz369eaIiIjoxMV1kNqxYwd+85vfYNmyZbDZWq7Lyl133YXbb7899HVFRQU6derUYvtvCUnWvVCFCtQbcSSDXepMaJDBLnWGaYXftMGQNhimFgpIgXFJGkwz8LU8RguNBiBfNQCzAj/5amAT/ja3/o6AgA0WWKHDCz+q4Q49dGjQoUJEmIY0TUWy0waL7kdNjRcejx+6RW17n/hLwDADLU8SEpqiwGG3wKJr0LRjjAWTEh7ThNf0QyiA1SLg0HQkqVakKHYkKTY4hKVVu9NV+j2oNnzoak9DD0cGLEr7m5K+usaDfQerkJWejD498tAhx9U+x/MRERHFibgOUmvXrsXevXsxcODA0HOGYeCTTz7B3Llz8f7778Pr9eLQoUNhrVLl5eXIzc1tcr9WqxVWa3x+mi3hwN6qjgBcEMJeLxTpoWBU93VLdqmzKCoKLKlwKhbs9lbgkL8WKartpHbTOhkCk0/osEJHEuyogRtVqEUNPNCgwgItskAlBKxWHbqmoqY20DolAOh6/LdOhS+Wq8Bm1WCpt1huk6SE2zTgNr1QFMBu1ZGm2ZGuOpCk2uEU1lYfiySlxD5fDVQo6OPMQoE9tc3VyRNlGCb27q+EANCnRx56n5ILu61tfdBBRESUiOI6SJ1//vn49ttvw5677rrr0Lt3b8yYMQOdOnWCrutYvnw5LrnkEgBAaWkptm/fjmHDhsWiyC3AgR2HekIoqbCorXt7FCGQpTthV3Ts8lbgoFGLZMXaZj/9DyzumwRng0ClwAI9okClqAqSkqywWFTU1Pjg8fig641MxBBjRxbLlVAV0ehiuU2+VpqoMX2oNX3QFYE0qwO5ejLSdCccwgJNxOb++4PjoVyaFb2dmci0OGNSjliqrHbjwMEa5GQl49QeecjNSmErFBERUZyI6yCVnJyM0047Lew5p9OJjIyM0PNTpkzB7bffjvT0dKSkpGDq1KkYNmwYZ+w7AUmqBafY0lDmrcReXzV8UoVDafnpq1uLDhUuOOGEDbXwoDIYqFQosECD0mzLnoDFokNTtcDYKbcPfiP2C/k2uliuIxCe6i+W2+hrIeGTBmpNL7ymAYeio8CahjybC6mqHXqMwlOdWsOHgz438mzJ6O3MhFNtX+OA/IaJ8n0V0FQVfXvno1fXbFitbIUiIiKKJ3EdpCIxZ84cKIqCSy65JGxBXjoxulDRyeKCU7Fgl7cChww3XG2wq199GlQkwwEnbKiBB1WohRu+iKdOV1QBp9MS24V8G1ksN8lhhdbIYrkNXyphwIRX+uAxDUhTIEWxobs9BXnWFDjiJKwc9rnhNg10d6ajmz0dehttET1eFZW1OFhRi/zsFPTpkYeczJRYF4mIiIgaIaSUMtaFiLWKigq4XC4cPnwYKSmxfdNSuusnPLPicxSkt37XvqbUGF7s9FbgsOFGkmKBJUEWPjUh4Q62ULnhBRDoDqhGMHW6KWVoIV9D4uQu5CsBI9h1r26xXItFbXyx3AYvDYQnH/wwpQnDABRTRarqQL4tBVnWJOhKfKzBZAbHQ1mEip7OTORbk9t0cI+Wz29g775K6LqKXl1z0L1LFqyWxPhZIyIiaksizQb8K03NcqgWnGJLxx5vFcp9lfBIA0nKyVlstTUFpk6vvxaVGzXwQMLf7FpUrbGQb1SL5R7FDwN+GDBgQpECwlBgMS1I1RzIdSQjzWKDFicBCgB8poGffDXI0O3o5cxCum6PdZFa1aGKGhyucqNjTir69MhDVnr7XB+LiIioLWGQoohoQkEHSzIcqh6Y1c9wI0Vt/VncTgYBATussAXXoqpGLWrghRc+6MFA1dTEFC29kG9osVy/CUVRml8st566licDZmD8l9QAvwpVqkjRrMhyJCHVYo2rAAUANYYPh/0edLK60MOZ0eam3j8RPp+BPT9VwGG34PTTCnBKp8zAzJBEREQU9xikKGJCCKRrdtgVDbs9FTjgr4VDtcCWIF396taissGCZPhQFVyHqgYe6FChNzF1+gkv5Fu3WG7dpBGqArvTAt3S/KQRoW57MKEEJ8+wSwsMv4CUAsmaFZk2B1KtVmhxFnqllDjkd8MnTfR0ZKCrIy3uyniySClxsKIGVdUeFOSlo0+PXKSntr9ZCYmIiNqyxHgHTK3KrujoYkuD3auj3FcFrzSQnABd/eqzQEc6dCTDjmq4Q93+jrUWVVQL+QYXy/UbEqhbLNcRwWK5AEyY8AW77tWFJwes0KUGv1/CkBLJugWZ1kCAisdWQ0Oa2OetgV3VUZiUjTxLUkLVn2Pxev0o31+JJIcFZ/Trgi4d0qFpbIUiIiJqaxik4pQhJaSUcfvmUhUK8oMzve32VuCgvxYpmi3hWhR0aEhFUr3Ffd2ohScYYHQoRweqZhbyDS2WK02oqgp7hIvl1oUnAwYEBCzQkAIHbLBAlQpqfX54YCJZtyLTZofLYoMap3XHaxrY561BltWJ3o5MuHRbrIvUKqSUOHCoBjW1HnTpkIHCHrlITXHEulhERER0nBik4owqBGyqhgqvB4eFBxIy1PqhCgFVKFCFAk0IqIoCVQho4iTOGNeMVM0Gm6Jht7cC+/21sCsa7ErijXHRoCIFTjhhD61F5YYHAgJW6A3WompsIV9A1Fss19rsYrkmJPzwwwcDCgR0aEiGHTZYYIEOKSWqfYG2qWTdiiybHSlxHKAAoMrvRaXhRWe7Cz2cmQnTLbQ5Ho8P5fsqkZJsw5ABXdE5Px1qMwslExERUXxrH+9i2pA0ux2nJmXCleaAFIHZzHymCZ9hwG364Tb88BgG/KYJr+GDISUM00Sgg1hgNI0CEQhdigJNKEcCmCJOSjcvm6KhszUVDkXHHm8VDpuBiSjitTXtRKhQkAQ7HLCiFl5Uohae0NTpR69FdWQhX4/HByiARVeDb6AbvzYSMtRtL7BPDamwwx4MTwoEDGmiyueFEWyByrI5kGKxxnWAklLigL8WUgoUOjPR2Z4al10OW5opJfYfrIbX68cpBZno0yMPKUntowWOiIgo0TFIxSGbqsFlsQWm0m6ElIFxMKGQZZrwyyP/d/v98ARDl9c04DVN+KUPhmnCrLcfAYRauFQhoCn1QpcQUQUhVSjItSTDoVqwy1OBg0YtklUrdJGYYz8UKHDCFgpUVahFLTyQQIOp0xU1MFV6U44OTzpUpMABOyxhrV1+aaLS54WEiRTdigybAy6LNe7XWjKkiZ+8NUjSLOjtzES2pX1M7V3r9mLv/iqkuRwYeGpHdMpLb3y8HBEREbVJDFJtkBACWjD4NLfajiFN+IMBqy54+YP/95oGav1+eAw/PKYBnzThNk0YpglDmqhrNREIrJt0dLdCrZHAlaJaYbOlYbe3Evv8NbAqGhwJ2NWvjoCAA1bYg1OnV6EWNfDAAx8s0KA38SMmIYNrPfkhAWj1xjxZj2rZ8ksT1T4vJIAU3YJMuxMpuiXuAxQAuE0/DvhqkWNJQm9nJpI1a6yLdNKZpsRPB6rgNwz07JqNwm65SHIm/nkTERG1NwxSCU4VSmAx12YahkwpAwFLBkKWv17warJboSlhyEC3QiAQDlQEwpVL2AAF+Mlfg1rhg0uNrwVgW1rd1OlW6EiGH9XBqdOr4YYODXqwhapuoVwJCQ0qkkItT5ajugUCftNEtf9IgMqyO5GiW9EG8hMAoMLvQY3hQ1d7Gno4MmBRErN1sr6aWi9+2l+JzPQk9OmRhw45qWyFIiIiSlAMUgQg0OJkUVVYoAJougVJSgl/WCtXMHjJht0KNVWBLlSU+Sqx21MBu6KHZvULjOVSgi1dAkr9B6LrVhhP6iafsEKvN9NfoJVKQECFAkewS6AVelgXwDp+00SV3wtAItViQ4bN0aYClJQS+3w1UIWCPs4sFNhT20Tr2YkwTBM/7a+CKU0Uds9F7265cNib7s5JREREbR+DFEVFCAFdqNAVNeJuhVV+LzbV7MeO2gqoEHCoeqBVq278lmnCLyVMacA0JerauCSAwLQMItS1UIGAogTDV5wHLgs0WIJTp9dNmd5UeAICE4tU+30QAFKtNmRa7UhuQwEKCHRD/Mlbg1TNil7OLGRaEn9676oaD/YfrEJ2RjL69MhDfrYrruslERERtQwGqTijKAJ2mwVlew+HPa9pCnRVhaYp0DQVuhr4N56nUD7SrVBDmsWOjvZKbKrZD7fhQ47NGZq1TcojoctAoIuhKQPhyjBMeGVgPJffNGGYEl7TgGkG1laS9Y4nUK91CwpUAShKMHzF8I2tBhXJaDpQBAKUFwICacEAldTGAhQA1Bo+HPS5kWdLRm9nJpxqYrbImKaE32/Ab5g4XFkLIQRO65mPnl1zYLcl7nhAIiIiCscgFWdSU+w48/Ru8Hj98Hj98Pr8cHv8qK31oLrWh1qPF16vHzV+E37DgGEEo4QIdM87OmjpmgpVU2LetUoRAh1tKUhWLSit2Y9ybxXSNBvsqg4hAE0ozY6hkjIQngxTBkKWacIvzcAU8NKE1zDCx3hJCdNvhI3jAoItXGjYpVAVAqIVW7m8poEavxcKFKRZ7ci0OpCkW9pcgAKAQz43vNJAD2cGTrGnQW+D46EMwwwFJJ/fhGGY8PkNGEZgAhYBAQkJRSjQdAW6oiA91YlTe+QhNysl1sUnIiKiVsYgFWeEEEhzNd16YZoSXp8fXq8fHp8R/H/g31q3D9W1HlTXeOHzG6ip9QbfFBqQUgb3D6hqIGAd3crV1HTrLcml29A/ORdbag7gR/chuE0/UjVbROFFiMA6TqoKNNfWYcpA2DKDE2jUTaZhyCPjuo50Kwx8v363QiAwjktAgSLQot0KQwFKKEi32pFhcyBJa5sBypQS+7w1sCgq+iblIN+aHFfd2mSwVdNnmDD8gYlT6v9rShkor5RQVQWaGvjgQVMVOB0WOGwWOOwW2G06dF2FRddg0QM/PxaLBptFi+tWYSIiIjp5GKTaGEURsFl12KzH7kLk9xuBoBVs1fL6jEALl9ePqhovat1e1NR64fP7UeMOfBJvGGYgrUhAKCIwWYTWsDvhic5CZlFU9HZmwqVZsalmP8q91ci0OEITUbQERQhYhAAUBcda/rS5boUeaYRmLzTrdSs0wlbkaqxbYSB01e9W6DX8qDZ80ISCjGCAcrbRAAUEuiT+5KtBhm5Hb2cW0vTmRs21HFPKRoORzwi0JEFK1F1YVRXQVBW6FghKSclWOO067DYLrFYdlmBA0nUVVl2FHgxLDEhERER0LAxSCUrTVGiaCucxZg4zTQmf3wh1Iaxr2apr3aqp9aK61guP1w+324dKw4DfZ0JCApCAFIE3qU20bh2rZUIIgXxbCpI1KzZW78ceTyVcug0OtXXHmLRot8LgWlx108gbfgmzXrdCTSjIsjqQYXPAoeltNkABQI3hw2G/B52sLvR0ZsDeQvfNMM0jgchvwGeY8Ae7sZqGBIQMZiQRNk7QqmuwJ+uh1iOrRYeuqbBatGDrkQqLFghJnI6ciIiIWgKDVDumKAJWiwar5djVwG+YYS1bgf8b8Pj8qKnxoibYuuX1GXB7fcE3vuEtNk1NlpGsWVGUnINkzYqttQdRa/qQrtnjqnsYEF23wkC4OhK2zOD/rZoGp9a2JyOQUuKQ3w2fNNHTkYGujrSIWhL9jQSjunpimjLQEColVEWBWq+uOGyBliOn3QKbTYc12HJkqd/NLtjVLt7qDBERESU2BilqlqYq0OyWY66LI2WgdetIq5YR1WQZNgjkSgd2GIfxX7iRZXXCqqrQFAWKqrSp1hs1OHEFEmwBYiM4tblD1dEnKRs5uhOGIVFr+EKTNPj9RyZsODLcLDj+KNhSqWkKUmw22O06HDYLbFY9EIpCrUZHQpKmtb1JK4iIiKh9YJCiFiGECL751QBYm9zuWJNl1Li9+KmyCusP7MFuTyXsXg1WaIExLwAkZGAskiqgKEqgW6GiQlEFVFWByi5bLUJKhGaqM8zAWDG34cN+bw1ShQ1Zuh1+jx+7cDgUjOrGICU7raEJGqwWLWz8kSU4QYMe59P2ExEREUWCQYpaVSSTZYwwe+KbvWVYV74bPr+BDIsDMjiey+cz4PYEWro8Xn+gVcsXmGDANCUCc+0F/lGVwOxrqiqgqIFxUGoba91qSaYpQ8HINE0YRqDLoWEEZ6/DkQujqgo0RUBRBXyKAZ8mcXpmJwzIykOKzRbWamSp192O3euIiIiovWCQorijKyoG5XZEtjMZa/fuRHlNNTokp8CmhVdXKWVoevf6Xcp8/kALl8fjh9vrh99vwOc1UGv6YPjrxm4FQpeiBEKDUhe6FBH6ui1kAikRCEWmhGlIGKYRDEgy1JJXR1EQbMkLnKfVqoXGyFl0LdiypIRajFRVwU+eaqiKgoHZ+eiTng01wborEhERER0vBimKW52SXUi12rB27y5sPLgPqVYb0m1H1tgSQkAPLjp8LIYpAyGrXtDyB6fM9nj8ocWP/X4DXl+gZSu00HGQqorARAiqgKrWBQ1x0hY6lhIwj+peZ9QLTHXdHAFAUQOtb2owJNksaiggacGJGOqPUdI1JXAOx+gK6TdN7Kg8hDSbHWfkdkJBcupJOU8iIiKitopBiuJassWKM/O7IMvmwNf7yrC98hA6OFOiahlRFQG1mdkJJQJhxe8PBi3DhM935F+P1xfoUuj3B6aM9/jgN0wE1zmGhIQiRKglp67V5+jJMsLGHxnhIUmaR0qD4FgwVVGgKIEp5h265UhAqgtFemBCjsBMd4GwdKLd62p8XpTVVKJLShrOyOmENFvrrQ9FRERE1FYwSFHc0xQFp2bmIt3uxFflO7Gt8hDyncmwt+BU4gKBRVs1VT3m+K262Qn9wbWO/H4DPn9gMViPzw+3xweP1x9YzNdjoCY4FqluCjsh6o/XErDoKqxOK2wWHbpFPTJF/FGz3KmqEjaG6WTZ765BpdeDosxcDMjq0KA7JREREREF8F0StRl5zmSc36kbvt67GxsO7kWybkWm3dmqZTgyO+GxtzOMei1bfiM4XklAPyokxcvsdaaU2FVVAV1V8LP8zuiVlnXSui0SERERJQIGKWpTnLoFw/M7I8vhxNryXfgx2NVPi7NJENQ4CknN8RkGtlcdQrYjCWfkdEKHpJRYF4mIiIgo7jFIUZujCIFeaVlIs9qxpnwnfqw8iFxHMpx60wsGU+OqfB6U11ShmysDg3M6wmW1xbpIRERERG1C2/jInKgR2Y4knNepG4oyc7HPXYPymipIKZt/IQEAfqqtxgF3LQZmdcDZHboyRBERERFFgUGK2jSbpmNIbgHO6dAVqiLwY+VB+Ewj1sWKa6aU+LHyIADgrA5dcHpOB1jUY08hT0RERETh2LWP2jxFCHRPzUCaLdDVb2vFQeTYk5Bssca6aHHHY/ixs+ow8pwpGJLbETmO5FgXiYiIiKhNYpCihJFhc+CcDqcg3boH3x0oR5XPi1xH0gmvq5QoDnvc2O+pQa/ULJye2wFJOoMmERER0fFikKKEYtM0nJ7TAZl2B9bu3YWtlQfR0elq113XpJQor62CzzQxOKcjTsvIga603+tBRERE1BIYpCjhCCHQ1ZUe6uq35fABZNqc7XIyBb9pYmfVYSRbrPhZXmd0SUljCx0RERFRC2CQooSVarXj7A6nIMPuxDc/7UGVz4s8Z3K7WWi21u/D7uoKdEpy4YzcTq2+eDERERFRImOQooRmUVUMyMpHhs0RnIjiADomuWBVE7vqH3TX4qC3Fqem52Bgdj4cXGOLiIiIqEUl9rtJoqCC5FSkWu1YV74TGw/tR5rVjjSbPdbFanGmlCirroQQwLDcAvRJz4aqcJUDIiIiopbGd1jUbqRYrDizQ1cMyyuA2/BjZ9UhmAm0gK/PNLCt4iCSLDpGdDwFfTNzGaKIiIiIThK2SFG7oikK+mbmIt3mwNq9ga5+HZwpsGl6rIt2Qqp9XuyprkQXVxrOyOmUkK1tRERERPGEQYrapQ5JKXBZu2Hd3t344cBPcFltyLA5Yl2s47LfXYNKrwdFWbkYkNUBNo0/1kREREQnG/v9ULuVpAemBD+rQxcYpokfKw/Cb5qxLlbETCmxs+oQfKaBn+V3xpDcAoYoIiIiolbCd13UrqmKgsL0bKTb7FhTvgvbKg8i35Ec97PceQ0DO6oOIceRhDNyOiE/KSXWRSIiIiJqV9giRQQgx5GM8zp1Q1FmLn6qrcZPtdWxLlKTKr0e7Kg6hG6uDJzXqTtDFBEREVEMMEgRBdk1HUNzC3B2x64QALZVxF9Xv701VTjoqcXArA44u0NXpFissS4SERERUbvErn1E9ShCoEdqJlKtdqwt34UfKw4ix5mEJD22gcUwTeysPgyHZsHZHbqimysdQoiYlomIiIioPWOLFFEjsuxOnNvxFAzIzscBdy321FRCxmjNKY/hx7bKg8iyJ+H8Tt3QPTWDIYqIiIgoxtgiRdQEm6ZhcE5HZNgdWFe+G1srDqJTkgu6qrZaGQ573NjvrkGv1Cycntsh5i1jRERERBTAIEV0DEIIdHNlIN3qwJq9O/HfwweQZXcixWI7qceVUqK8pgo+aWJwbkeclpEDXWm9AEdEREREx8YgRRSBNJsd53Q4BRk2B77ZtwdVXi9ynclQTkIXO79pYkfVYbgsVvwspzO6pKSxKx8RERFRnGGQIoqQRVUxICsfGTYH1uzdha0VB9AxyQWr2nI/RrV+H3ZVV6AgyYUheQXIsDlabN9ERERE1HIYpIiiIIRA55S0wKx+e3dh8+H9SLfakWq1n/C+D7prcdBbi9PSczAopwPsmt4CJSYiIiKik4FBiug4uKw2nNWhCzJtDqzftweV3sPokJRyXF39TClRVl0JIYDhuQUoTM+GqnBCTSIiIqJ4xiBFdJx0RUVRVh7S7Q6sKd+JrRUH0cGZApsW+Y+VzzSwo+owMmwOnJHTEZ2SU09egYmIiIioxTBIEZ2gjkkuuCw2rN27CxsP7UOqxYb0CMY2Vfu82FNdiS6uNAzJ7dQi3QOJiIiIqHUwSBG1gGSLFWfld0GWzYGSfWXYXnkQHZyuJrvo7a+tQZXPg/7Z+eiXmRdVKxYRERERxR7fvRG1EFVRcGpmLjLsTqzZG+jql5+UAke9SSNMKbGr+jAsioqf5XdBz7TMkzKFOhERERGdXBzRTtTCcp3JOK9jN/TNzMXemir8VFsNAPAaBrZWHECa1Y4RHbuhd3oWQxQRERFRG8UWKaKTwKFbMCyvAJl2B9bt3Y2tFQdgSonuqRkYnNMJKRZrrItIRERERCeAQYroJFGEQK+0LKRZ7Vj30y5k2pwoysyDRVVjXTQiIiIiOkEMUkQnWbYjCaMKerIbHxEREVEC4RgpolbAEEVERESUWBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKUlwHqWeffRZFRUVISUlBSkoKhg0bhn//+9+h77vdbtx8883IyMhAUlISLrnkEpSXl8ewxERERERE1B7EdZDq2LEjHn74YaxduxZr1qzBeeedh/Hjx+M///kPAOC2227Dv/71L7z55pv4+OOPsXv3bkyYMCHGpSYiIiIiokQnpJQy1oWIRnp6Oh599FFceumlyMrKwquvvopLL70UAPDDDz+gsLAQq1atwtChQyPeZ0VFBVwuFw4fPoyUlJSTVXQiIiIiIopzkWaDuG6Rqs8wDLz++uuorq7GsGHDsHbtWvh8PowcOTK0Te/evVFQUIBVq1Ydc18ejwcVFRVhDyIiIiIiokhpsS5Ac7799lsMGzYMbrcbSUlJWLx4Mfr06YOSkhJYLBakpqaGbZ+Tk4M9e/Ycc59/+tOfcP/99zd4noGKiIiIiKh9q8sEzXXci/sg1atXL5SUlODw4cN46623cM011+Djjz8+oX3edddduP3220Nf79q1C3369EGnTp1OtLhERERERJQAKisr4XK5mvx+3Acpi8WC7t27AwAGDRqEr776Ck8++SQuv/xyeL1eHDp0KKxVqry8HLm5ucfcp9VqhdVqDX2dlJSEHTt2IDk5GUKIk3IekaqoqECnTp2wY8cOjtdKELyniYn3NfHwniYm3tfEw3uaeOLtnkopUVlZifz8/GNuF/dB6mimacLj8WDQoEHQdR3Lly/HJZdcAgAoLS3F9u3bMWzYsKj2qSgKOnbseDKKe9zqpnynxMF7mph4XxMP72li4n1NPLyniSee7umxWqLqxHWQuuuuuzB27FgUFBSgsrISr776KlauXIn3338fLpcLU6ZMwe2334709HSkpKRg6tSpGDZsWFQz9hEREREREUUrroPU3r17MXnyZJSVlcHlcqGoqAjvv/8+LrjgAgDAnDlzoCgKLrnkEng8HowePRrPPPNMjEtNRERERESJLq6D1IsvvnjM79tsNvzlL3/BX/7yl1Yq0clntVoxc+bMsDFc1LbxniYm3tfEw3uamHhfEw/vaeJpq/e0zS3IS0REREREFGttZkFeIiIiIiKieMEgRUREREREFCUGKSIiIiIioigxSLVB5557Lm699dZYF4NaEO9p4uE9TUzXXnstLr744lgXg1oQf1YTE39WE0883lMGqZPok08+wUUXXYT8/HwIIfDOO+802Oa+++5D79694XQ6kZaWhpEjR2L16tWtX1iKSCT3tL6bbroJQgg88cQTrVI+il4k9/Taa6+FECLsMWbMmNYvLEUs0p/VDRs2YNy4cXC5XHA6nRg8eDC2b9/euoWliERyT4/+Oa17PProo61fYIpIJPe1qqoKt9xyCzp27Ai73Y4+ffpg3rx5rV9Yikgk97S8vBzXXnst8vPz4XA4MGbMGGzatKn1C3uCGKROourqavTr1++Y07P37NkTc+fOxbfffotPP/0UXbp0wahRo/DTTz+1YkkpUpHc0zqLFy/GF198gfz8/FYoGR2vSO/pmDFjUFZWFnq89tprrVRCOh6R3NctW7bgzDPPRO/evbFy5Up88803uOeee2Cz2VqxpBSpSO5p/Z/RsrIyvPTSSxBC4JJLLmnFklI0Irmvt99+O5YuXYq///3v2LBhA2699VbccsstWLJkSSuWlCLV3D2VUuLiiy/Gf//7X/zzn//E119/jc6dO2PkyJGorq5u5dKeIEmtAoBcvHhxs9sdPnxYApAffvhhk9ucc845curUqXL69OkyLS1N5uTkyJkzZ7ZcYSkix7qnO3fulB06dJDfffed7Ny5s5wzZ84x98V7Gh+auqfXXHONHD9+fFT74j2NH03d18svv1z+z//8T1T7qqsLjz76qMzNzZXp6eny//2//ye9Xm8LlZYiEenf1PHjx8vzzjvvmNvwZzV+NHVfTz31VDlr1qyw5wYOHCjvvvvuJvfFn9X40Ng9LS0tlQDkd999F3rOMAyZlZUl//rXvza5r3i8p2yRiiNerxfPP/88XC4X+vXrd8xtFyxYAKfTidWrV2P27NmYNWsWli1b1kolpWMxTRNXX301pk+fjlNPPTXi1/GexreVK1ciOzsbvXr1wq9//Wvs37+/2dfwnsYv0zTx3nvvoWfPnhg9ejSys7MxZMiQZrvrAsBHH32ELVu24KOPPsKCBQvw8ssv4+WXXz7pZabolJeX47333sOUKVOa3ZY/q/Ft+PDhWLJkCXbt2gUpJT766CNs3LgRo0aNOubr+LManzweDwCEtf4rigKr1YpPP/30mK+Nt3vKIBUH3n33XSQlJcFms2HOnDlYtmwZMjMzj/maoqIizJw5Ez169MDkyZNx+umnY/ny5a1UYjqWRx55BJqmYdq0aVG9jvc0fo0ZMwavvPIKli9fjkceeQQff/wxxo4dC8Mwjvk63tP4tXfvXlRVVeHhhx/GmDFj8MEHH+CXv/wlJkyYgI8//viYr01LS8PcuXPRu3dvXHjhhfjFL37B+xqHFixYgOTkZEyYMKHZbfmzGt+efvpp9OnTBx07doTFYsGYMWPwl7/8BWefffYxX8ef1fjUu3dvFBQU4K677sLBgwfh9XrxyCOPYOfOnSgrKzvma+PtnmoxOzKFjBgxAiUlJdi3bx/++te/4rLLLsPq1auRnZ3d5GuKiorCvs7Ly8PevXtPdlGpGWvXrsWTTz6JdevWQQgR1Wt5T+PXFVdcEfp/3759UVRUhG7dumHlypU4//zzm3wd72n8Mk0TADB+/HjcdtttAID+/fvj888/x7x583DOOec0+dpTTz0VqqqGvs7Ly8O33357cgtMUXvppZcwadKkiMa88Wc1vj399NP44osvsGTJEnTu3BmffPIJbr75ZuTn52PkyJFNvo4/q/FJ13UsWrQIU6ZMQXp6OlRVxciRIzF27FhIKY/52ni7p2yRigNOpxPdu3fH0KFD8eKLL0LTNLz44ovHfI2u62FfCyFCbwwodoqLi7F3714UFBRA0zRomoYff/wRv/3tb9GlS5djvpb3tO045ZRTkJmZic2bNx9zO97T+JWZmQlN09CnT5+w5wsLC5udtY/3Nf4VFxejtLQU119/fUTb857Gr9raWvz+97/Hn//8Z1x00UUoKirCLbfcgssvvxyPPfbYMV/L+xq/Bg0ahJKSEhw6dAhlZWVYunQp9u/fj1NOOeWYr4u3e8oWqThkmmao/yi1LVdffXWDT8dGjx6Nq6++Gtddd12MSkUtbefOndi/fz/y8vJiXRQ6ThaLBYMHD0ZpaWnY8xs3bkTnzp1jVCpqKS+++CIGDRrU7Hhjin8+nw8+nw+KEv7Zv6qqDEUJwOVyAQA2bdqENWvW4I9//GOMSxQdBqmTqKqqKuwT661bt6KkpATp6ekoKChAdXU1HnzwQYwbNw55eXnYt28f/vKXv2DXrl2YOHFiDEtOTWnunmZkZCAjIyPsNbquIzc3F7169Wrt4lIEmrunVVVVuP/++3HJJZcgNzcXW7ZswR133IHu3btj9OjRMSw5HUtz9xUApk+fjssvvxxnn302RowYgaVLl+Jf//oXVq5cGaNS07FEck8BoKKiAm+++SYef/zxWBSTotTcfU1JScE555yD6dOnw263o3Pnzvj444/xyiuv4M9//nMMS05NieRn9c0330RWVhYKCgrw7bff4je/+Q0uvvjiZicQiTcMUifRmjVrMGLEiNDXt99+OwDgmmuuwcsvvwxVVfHDDz9gwYIF2LdvHzIyMjB48GAUFxdHNdsbtZ7m7im1PZH8nH7zzTdYsGABDh06hPz8fIwaNQp//OMfYbVaY1VsakYkP6u//OUvMW/ePPzpT3/CtGnT0KtXL7z99ts488wzY1Fkakakv39ff/11SClx5ZVXtnYR6ThEcl9ff/113HXXXZg0aRIOHDiAzp0748EHH8RNN90UiyJTMyK5p2VlZbj99ttRXl6OvLw8TJ48Gffcc08sintChGxuVBcRERERERGF4WQTREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREQUV0pLS5Gbm4vKyspjbtelSxc88cQTrVMoCvP999+jY8eOqK6ujnVRiIhihkGKiChBXXvttbj44osbPL9y5UoIIXDo0KFWL1Mk7rrrLkydOhXJyckAgJdffhmpqakNtvvqq69w4403tnLp4ldTwfK+++5D//79AQBCiGM+7rvvPgDA119/jYkTJyInJwc2mw09evTADTfcgI0bNwIA+vTpg6FDh+LPf/5zK50dEVH8YZAiIqKTwufzRf2a7du3491338W1117b7LZZWVlwOBzHUbL2q6ysLPR44oknkJKSEvbc7373O7z77rsYOnQoPB4PFi5ciA0bNuDvf/87XC4X7rnnntC+rrvuOjz77LPw+/0xPCMiothhkCIiIrz99ts49dRTYbVa0aVLFzz++ONh3xdC4J133gl7LjU1FS+//DIAYNu2bRBC4I033sA555wDm82GhQsX4scff8RFF12EtLQ0OJ1OnHrqqfi///u/Jsvxj3/8A/369UOHDh0ABFrPrrvuOhw+fLhBq8nRLTBCCDz33HO48MIL4XA4UFhYiFWrVmHz5s0499xz4XQ6MXz4cGzZsiXsmP/85z8xcOBA2Gw2nHLKKbj//vtD4eDll18+ZsuNaZqYNWsWOnbsCKvViv79+2Pp0qWhfdddl0WLFmHEiBFwOBzo168fVq1aFVaGTz/9FGeddRbsdjs6deqEadOmnZRuc7m5uaGHy+WCECLsOUVRcN111+HnP/85lixZgpEjR6Jr164YMmQIHnvsMTz33HOhfV1wwQU4cOAAPv744xYvJxFRW8AgRUTUzq1duxaXXXYZrrjiCnz77be47777cM8994RCUjTuvPNO/OY3v8GGDRswevRo3HzzzfB4PPjkk0/w7bff4pFHHkFSUlKTry8uLsbpp58e+nr48OENWk5+97vfNfn6P/7xj5g8eTJKSkrQu3dvXHXVVfjVr36Fu+66C2vWrIGUErfcckvY8SZPnozf/OY3+P777/Hcc8/h5ZdfxoMPPggAuPzyy8NabF577TVomoaf/exnAIAnn3wSjz/+OB577DF88803GD16NMaNG4dNmzaFlevuu+/G7373O5SUlKBnz5648sorQ2Fty5YtGDNmDC655BJ88803eOONN/Dpp5+GlfO+++5Dly5dIr8Rx+n999/Hvn37cMcddzT6/fpdLC0WC/r374/i4uKTXi4iorgkiYgoIV1zzTVSVVXpdDrDHjabTQKQBw8elFJKedVVV8kLLrgg7LXTp0+Xffr0CX0NQC5evDhsG5fLJefPny+llHLr1q0SgHziiSfCtunbt6+87777Ii5zv3795KxZs8Kemz9/vnS5XA227dy5s5wzZ05YGf/whz+Evl61apUEIF988cXQc6+99pq02Wyhr88//3z50EMPhe33b3/7m8zLy2twvM2bN8v09HQ5e/bs0HP5+fnywQcfDNtu8ODB8v/9v/8npTxyXV544YXQ9//zn/9IAHLDhg1SSimnTJkib7zxxrB9FBcXS0VRZG1trZRSyqefflqed955Dcp0rOtRZ+bMmbJfv34Nnm/suj7yyCMSgDxw4MAxj1Xnl7/8pbz22msj2paIKNGwRYqIKIGNGDECJSUlYY8XXnghbJsNGzaEWljq/OxnP8OmTZtgGEZUx6vfmgQA06ZNwwMPPICf/exnmDlzJr755ptjvr62thY2my2qY9ZXVFQU+n9OTg4AoG/fvmHPud1uVFRUAADWr1+PWbNmISkpKfS44YYbUFZWhpqamtDrDh8+jAsvvBC/+MUvMH36dABARUUFdu/e3ei127BhQ5PlysvLAwDs3bs3VIaXX345rAyjR4+GaZrYunUrAOCWW27B8uXLj/u6REpKGdX2drs97DoREbUnWqwLQEREJ4/T6UT37t3Dntu5c2fU+xFCNHiT3dhkEk6nM+zr66+/HqNHj8Z7772HDz74AH/605/w+OOPY+rUqY0eJzMzEwcPHoy6fHV0XQ8rc1PPmaYJAKiqqsL999+PCRMmNNhXXaAzDAOXX345UlJS8Pzzz7dYueqX4Ve/+hWmTZvW4HUFBQURHyMlJQWHDx9u8PyhQ4fgcrki2kfPnj0BAD/88AOGDRvW7PYHDhxAt27dIi4jEVEiYYsUEVE7V1hYiM8++yzsuc8++ww9e/aEqqoAAjPklZWVhb6/adOmiFsiOnXqhJtuugmLFi3Cb3/7W/z1r39tctsBAwbg+++/D3vOYrFE3TIWqYEDB6K0tBTdu3dv8FCUwJ/I2267Dd9++y3eeeedsNaylJQU5OfnN3rt+vTpE1UZvv/++0bLYLFYIt5Pr169sHbt2gbPr1u3LhSQmjNq1ChkZmZi9uzZjX7/6Cnzv/vuOwwYMCDiMhIRJRK2SBERtXO//e1vMXjwYPzxj3/E5ZdfjlWrVmHu3Ll45plnQtucd955mDt3LoYNGwbDMDBjxoywVpam3HrrrRg7dix69uyJgwcP4qOPPkJhYWGT248ePRrXX389DMMIhbguXbqgqqoKy5cvR79+/eBwOFps2vN7770XF154IQoKCnDppZdCURSsX78e3333HR544AHMnz8fzzzzDBYvXgwhBPbs2QMAoS5406dPx8yZM9GtWzf0798f8+fPR0lJCRYuXBhxGWbMmIGhQ4filltuwfXXXw+n04nvv/8ey5Ytw9y5cwEAc+fOxeLFi4/Zve+2227DWWedhQcffBATJkyAYRh47bXXsGrVqrB7eSxOpxMvvPACJk6ciHHjxmHatGno3r079u3bh3/84x/Yvn07Xn/9dQCBGQl37dqFkSNHRnyuRESJhC1SRETt3MCBA/GPf/wDr7/+Ok477TTce++9mDVrVthaTo8//jg6deqEs846C1dddRV+97vfRRRmDMPAzTffjMLCQowZMwY9e/Y85pv6sWPHQtM0fPjhh6Hnhg8fjptuugmXX345srKymmwtOR6jR4/Gu+++iw8++ACDBw/G0KFDMWfOHHTu3BkA8PHHH8MwDIwbNw55eXmhx2OPPQYgMAbs9ttvx29/+1v07dsXS5cuxZIlS9CjR4+Iy1BUVISPP/4YGzduxFlnnYUBAwbg3nvvRX5+fmibffv2NZi2/WjDhw/Hv//9b/z73//Gz372M5x77rn4/PPPsXz5cpx22mkRl2f8+PH4/PPPoes6rrrqKvTu3RtXXnklDh8+jAceeCC03WuvvYZRo0aFrhURUXsjZLQjS4mIiE6iv/zlL1iyZAnef//9WBeFmuD1etGjRw+8+uqrDSbbICJqL9i1j4iI4sqvfvUrHDp0CJWVlUhOTo51cagR27dvx+9//3uGKCJq19giRUREREREFCWOkSIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSFusCUPzx+/3wer2xLgYRERERtSKbzQZFYTtLpBikKERKie3bt2Pfvn2xLgoRERERtTJFUdCnTx9YrdZYF6VNEFJKGetCUHz48ccfsW/fPnTo0AFJSUn8RIKIiIionTBNE1u3boXFYkHPnj0hhIh1keIegxQBCHTnW79+PTp06IDc3NxYF4eIiIiIWtmBAwewdetW+P1+nHrqqUhKSop1keIamxwIAEJjovgDQ0RERNQ+1XXp+/LLL/Hvf/8bVVVVMS5RfGOQojDszkdERETUPtV158vOzsbGjRuxevXqGJcovvFdMxERERERhWiaBrvdjv3798e6KHGNQYoS2n333Yf+/fuHvr722mtx8cUXn/B+hRB45513Tng/1LpYH6g+1geqj/WBjtbe64SiKPD5fLEuRlxjkKJ25cknn8TLL78c62KESClx7733Ii8vD3a7HSNHjsSmTZvCtnnwwQcxfPhwOBwOpKamxqagCaqt1YeVK1dCCNHo46uvvophyRNDvNWHRYsWYdSoUcjIyIAQAiUlJQ22+dWvfoVu3brBbrcjKysL48ePxw8//ND6hU1AbbE+bNmyBb/85S+RlZWFlJQUXHbZZSgvL2/9wiaoeKoTPp8PM2bMQN++feF0OpGfn4/Jkydj9+7djW7v8XjQv3//JusOHR8GKWpXXC5XXISRusk9Zs+ejaeeegrz5s3D6tWr4XQ6MXr0aLjd7rBtJ06ciF//+texKm7Camv1Yfjw4SgrKwt7XH/99ejatStOP/30WJ5CQoi3+lBdXY0zzzwTjzzySJPbDho0CPPnz8eGDRvw/vvvQ0qJUaNGwTCM1ipuwmpr9aG6uhqjRo2CEAIrVqzAZ599Bq/Xi4suugimabZmkRNWPNWJmpoarFu3Dvfccw/WrVuHRYsWobS0FOPGjWv0NXfccQfy8/NbuaSJj0GK2rTnn38e+fn5Df5IjB8/Hv/7v//bYPujm+XPPfdcTJs2DXfccQfS09ORm5uL++67L+w1mzZtwtlnnw2bzYY+ffpg2bJlDfa7Y8cOXHbZZUhNTUV6ejrGjx+Pbdu2NTjugw8+iPz8fPTq1QtSSjzxxBP4wx/+gPHjx6OoqAivvPIKdu/eHdbkf//99+O2225D3759j+satSeJXh8sFgtyc3NDj4yMDPzzn//Eddddx/U+GtGW6wMAXH311bj33nsxcuTIJs/xxhtvxNlnn40uXbpg4MCBeOCBB7Bjx46w/VNAoteHzz77DNu2bcPLL7+Mvn37om/fvliwYAHWrFmDFStWRHiV2pe2XCdcLheWLVuGyy67DL169cLQoUMxd+5crF27Ftu3bw/b/7///W988MEHeOyxx6K/SHRMDFLUKCklaqvdMXlEs7TZxIkTsX//fnz00Ueh5w4cOIClS5di0qRJEe1jwYIFcDqdWL16NWbPno1Zs2aFftGZpokJEybAYrFg9erVmDdvHmbMmBH2ep/Ph9GjRyM5ORnFxcX47LPPkJSUhDFjxoQ+SQSA5cuXo7S0FMuWLcO7776LrVu3Ys+ePWF/FF0uF4YMGYJVq1ZFfA1ai5QStW5vqz9YH5quD0uWLMH+/ftx3XXXRXyNWoqUEjVeX0wekdaJtlwfjkd1dTXmz5+Prl27olOnTse1j+MlpUSt3xuTB+tDgMfjgRAiNH01ANhsNiiKgk8//TSifbQUKSV8Zm1MHu3lb0ZjDh8+DCFEWKtZeXk5brjhBvztb3+Dw+GI9NJQhLRYF4Dik7vGg3HJV8fk2Esq/wa70xbRtmlpaRg7dixeffVVnH/++QCAt956C5mZmRgxYgSKi4ub3UdRURFmzpwJAOjRowfmzp2L5cuX44ILLsCHH36IH374Ae+//36oSfyhhx7C2LFjQ69/4403YJomXnjhhVCrwPz585GamoqVK1di1KhRAACn04kXXngBFosFAPD5558DAHJycsLKk5OTgz179kR0/q3J7fFhzIQnWv24SxfdCrvNEtG27a0+vPjiixg9ejQ6duwY0fVpSbU+PwY8MrfVjwsAX8+4BQ6L3ux2bbk+ROOZZ57BHXfcgerqavTq1QvLli07rv2cCLfhwzkf3teqx6zz8cj7YNeaP99Erw9Dhw6F0+nEjBkz8NBDD0FKiTvvvBOGYaCsrCzi/bQEv3Tjb5svaNVj1rm6+zLowh7RtolUJ9xuN2bMmIErr7wSKSkpAAKB9tprr8VNN92E008/nS3VJwFbpKjNmzRpEt5++214PB4AwMKFC3HFFVdEvCZWUVFR2Nd5eXnYu3cvAGDDhg3o1KlTWL/iYcOGhW2/fv16bN68GcnJyUhKSkJSUhLS09PhdruxZcuW0HZ9+/Zt9Tc37VF7qQ87d+7E+++/jylTphz3PtqD9lAfJk2ahK+//hoff/wxevbsicsuuyxsnCUdkcj1ISsrC2+++Sb+9a9/ISkpCS6XC4cOHcLAgQO5RuQxJEKd8Pl8uOyyyyClxLPPPht6/umnn0ZlZSXuuuuuiM6FoscWKWqUzWHFksq/xezY0bjooosgpcR7772HwYMHo7i4GHPmzIn49boe/sm2ECKqgblVVVUYNGgQFi5c2OB7WVlZof87nc6w7+Xm5gIINLvn5eWFni8vLw+bbjVe2Kw6li66NSbHjUZ7qQ/z589HRkZGkwOLTza7ruHrGbfE7NiRaqv1IRoulwsulws9evTA0KFDkZaWhsWLF+PKK6887n1Gy6bq+Hjkfa12vKOPHalErw+jRo3Cli1bsG/fPmiahtTUVOTm5uKUU045rv0dL03YcHX3hmOBWuvY0WjrdaIuRP34449YsWJFqDUKAFasWIFVq1aFdfcEgNNPPx2TJk3CggULIi4nNY5BiholhIi4e12s2Ww2TJgwAQsXLsTmzZvRq1cvDBw4sEX2XVhYiB07dqCsrCz05vaLL74I22bgwIF44403kJ2dHfYLrDldu3ZFbm4uli9fHnqjXFFRgdWrV8flDH1CiIi72MVSe6gPUkrMnz8fkydPbvBHvLUIISLqXhdrbbU+HC8pJaSUoU/XW4sQIqLudbHWXupDZmYmgMAb6b1797b6By5CiIi718VaW64TdSFq06ZN+Oijj5CRkRH2/aeeegoPPPBA6Ovdu3dj9OjReOONNzBkyJDjPCuqj229lBAmTZqE9957Dy+99FLEA0QjMXLkSPTs2RPXXHMN1q9fj+LiYtx9990Njp2ZmYnx48ejuLgYW7duxcqVKzFt2jTs3LmzyX0LIXDrrbfigQcewJIlS/Dtt99i8uTJyM/PD5sVaPv27SgpKcH27dthGAZKSkpQUlKCqqqqFjvPRJPI9QEIvDnaunUrrr/++hY7t0TWFusDEBj0XlJSgu+//x4AUFpaipKSktCYuf/+97/405/+FJql6/PPP8fEiRNht9vx85//vMXOM9Ekan0AAi3VX3zxBbZs2YK///3vmDhxIm677bbQzH/UuLZYJ3w+Hy699FKsWbMGCxcuhGEY2LNnD/bs2ROapKKgoACnnXZa6NGzZ08AQLdu3WIytjYRMUhRQjjvvPOQnp6O0tJSXHXVVS22X0VRsHjxYtTW1uKMM87A9ddfjwcffDBsG4fDgU8++QQFBQWYMGECCgsLMWXKFLjd7mY/XbrjjjswdepU3HjjjRg8eDCqqqqwdOlS2GxHWgPvvfdeDBgwADNnzkRVVRUGDBiAAQMGYM2aNS12nokmkesDEJhkYvjw4ejdu3eLnVsia6v1YcmSJRgwYAB+8YtfAACuuOIKDBgwAPPmzQMQ+CS9uLgYP//5z9G9e3dcfvnlSE5Oxueff47s7OwWO89Ek6j1AQiEq4svvhiFhYWYNWsW7r77bk55HYG2WCd27dqFJUuWYOfOnejfvz/y8vJCj7rJi+jkEzKaeSIpYdXU1GDDhg0oLCzk9JhERERE7VDd+8Ft27Zhx44dyMrKatFWukTDFikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUhRQrvvvvvQv3//0NfXXnstLr744hPerxAC77zzzgnvh1oX6wPVx/pA9bE+0NFYJ6g5DFLUrjz55JN4+eWXY12MECkl7r33XuTl5cFut2PkyJHYtGlT6Pvbtm3DlClT0LVrV9jtdnTr1g0zZ86E1+uNYakTR1urDwCwceNGjB8/HpmZmUhJScGZZ56Jjz76KEYlTizxVh8WLVqEUaNGISMjA0IIlJSUNLmtlBJjx47lG7QWFE/1wefzYcaMGejbty+cTify8/MxefJk7N69O2y7AwcOYNKkSUhJSUFqaiqmTJmCqqqqGJU68bTFOtGlSxcIIcIeDz/8cIxKnXgYpKhdcblcSE1NjXUxQkFo9uzZeOqppzBv3jysXr0aTqcTo0ePhtvtBgD88MMPME0Tzz33HP7zn/9gzpw5mDdvHn7/+9/HsvgJo63VBwC48MIL4ff7sWLFCqxduxb9+vXDhRdeiD179sSq+Akj3upDdXU1zjzzTDzyyCPNvuaJJ56AEOJkF61diaf6UFNTg3Xr1uGee+7BunXrsGjRIpSWlmLcuHFh206aNAn/+c9/sGzZMrz77rv45JNPcOONN8ao5ImnLdYJAJg1axbKyspCj6lTp8ag1AlKEkkpq6ur5Zo1a2R1dXWsixKV5557Tubl5UnDMMKeHzdunLzuuuvkzJkzZb9+/ULPX3PNNXL8+PGhr8855xw5depUOX36dJmWliZzcnLkzJkzw/a1ceNGedZZZ0mr1SoLCwvlBx98IAHIxYsXh7bZvn27nDhxonS5XDItLU2OGzdObt26tcFxH3jgAZmXlye7dOkiTdOUubm58tFHHw1td+jQIWm1WuVrr73W5DnPnj1bdu3aNarr1F4ken346aefJAD5ySefhLapqKiQAOSyZcuO/8IlqLZcH+rbunWrBCC//vrrRs/z66+/lh06dJBlZWUNjk1HJEp9qPPll19KAPLHH3+UUkr5/fffSwDyq6++Cm3z73//Wwoh5K5du6K7WO1EotcJKaXs3LmznDNnTsTXpO794FtvvSXnzJkj//73v0f82vaILVLUKCkl3NWemDyklBGXc+LEidi/f39Y16YDBw5g6dKlmDRpUkT7WLBgAZxOJ1avXo3Zs2dj1qxZWLZsGQDANE1MmDABFosFq1evxrx58zBjxoyw1/t8PowePRrJyckoLi7GZ599hqSkJIwZMyasC97y5ctRWloa+qRw69at2LNnD0aOHBnaxuVyYciQIVi1alWT5T18+DDS09MjOreWJKVErdvX6g/WhyP1ISMjA7169cIrr7yC6upq+P1+PPfcc8jOzsagQYMivk4tQUqJGp8vJo9I60Rbrg+RqqmpwVVXXYW//OUvyM3Njfh1LU1KCbfhicmjvdaHw4cPQwgRaiFZtWoVUlNTcfrpp4e2GTlyJBRFwerVqyM6v5YipYTfrInJo738zWjM0XWizsMPP4yMjAwMGDAAjz76KPx+f0TnRs3TYl0Aik+eGi8uzv91TI79zu5nYXNaI9o2LS0NY8eOxauvvorzzz8fAPDWW28hMzMTI0aMQHFxcbP7KCoqwsyZMwEAPXr0wNy5c7F8+XJccMEF+PDDD/HDDz/g/fffR35+PgDgoYcewtixY0Ovf+ONN2CaJl544YVQ15r58+cjNTUVK1euxKhRowAATqcTL7zwAiwWCwDg888/BwDk5OSElScnJ6fJblqbN2/G008/jcceeyyi69OS3B4/Rl79VKsf98O/TYPdpke0baLXByEEPvzwQ1x88cVITk6GoijIzs7G0qVLkZaWFtE1aim1fj/6PvV0qx6zzrfTpsKhN18n2nJ9iNRtt92G4cOHY/z48VG9rqV5TC/Gfzqj+Q1Pgn+e+QhsavN/MxKpPrjdbsyYMQNXXnklUlJSAAB79uxBdnZ22HaapiE9Pb3Vu/4ashYf/HhGqx6zzqjOX0ITjoi2TfQ6AQDTpk3DwIEDkZ6ejs8//xx33XUXysrK8Oc//zmia0THxhYpavMmTZqEt99+Gx6PBwCwcOFCXHHFFVCUyKp3UVFR2Nd5eXnYu3cvAGDDhg3o1KlT6BcgAAwbNixs+/Xr12Pz5s1ITk5GUlISkpKSkJ6eDrfbjS1btoS269u3b9RvkurbtWsXxowZg4kTJ+KGG2447v0kukSuD1JK3HzzzcjOzkZxcTG+/PJLXHzxxbjoootQVlYW1b7ai0SuD0uWLMGKFSvwxBNPRPW69iwR6oPP58Nll10GKSWeffbZiMpNTUv0OnH77bfj3HPPRVFREW666SY8/vjjePrpp0PnSyeGLVLUKKvDgnd2x+YXtNUR3ZuJiy66CFJKvPfeexg8eDCKi4sxZ86ciF+vH/XJthACpmlG/PqqqioMGjQICxcubPC9rKys0P+dTmfY9+q64ZSXlyMvLy/0fHl5edh0qwCwe/dujBgxAsOHD8fzzz8fcdlaks2q4cO/TYvJcaORyPVhxYoVePfdd3Hw4MHQJ47PPPMMli1bhgULFuDOO++MuJwnyq5p+HZabAYs27XI60RbrQ+RWLFiBbZs2dKgG88ll1yCs846CytXrox6n8fLqljwzzObnxTjZB07Um29PtS9c8jrcgAAMBNJREFUYf7xxx+xYsWKsJaH3Nzc0Bv4On6/HwcOHGj1bp+qsGNU5y9b9Zj1jx2NRK4TjRkyZAj8fj+2bduGXr16RVxOahyDFDVKCBFx97pYs9lsmDBhAhYuXIjNmzejV69eGDhwYIvsu7CwEDt27EBZWVnoze0XX3wRts3AgQPxxhtvIDs7u9lfYPV17doVubm5WL58eeiNckVFBVavXo1f//pIt8pdu3ZhxIgRGDRoEObPnx/xp2QtTQgRcRe7WErk+lBTUwMADeqAoihR/eFuCUKIiLrXxVpbrQ+RuPPOO3H99deHPde3b1/MmTMHF110UYseqzlCiIi618VaW64PdW+YN23ahI8++ggZGRlh3x82bBgOHTqEtWvXhsZMrlixAqZpYsiQISdwZtETQkTcvS7WErlONKakpCTULZxOHLv2UUKYNGkS3nvvPbz00ksRDxCNxMiRI9GzZ09cc801WL9+PYqLi3H33Xc3OHZmZibGjx+P4uJibN26FStXrsS0adOwc+fOJvcthMCtt96KBx54AEuWLMG3336LyZMnIz8/P7Tg365du3DuueeioKAAjz32GH766Sfs2bOHU103I1Hrw7Bhw5CWlhY6/saNGzF9+nRs3boVv/jFL1rsPBNNW6wPQGDQe0lJCb7//nsAQGlpKUpKSkI//7m5uTjttNPCHgBQUFCArl27tth5Jpq2WB98Ph8uvfRSrFmzBgsXLoRhGKG/BXUTEhQWFmLMmDG44YYb8OWXX+Kzzz7DLbfcgiuuuCKsaxk1lKh1YtWqVXjiiSewfv16/Pe//8XChQtx22234X/+539afVxtomKQooRw3nnnIT09HaWlpbjqqqtabL+KomDx4sWora3FGWecgeuvvx4PPvhg2DYOhwOffPIJCgoKMGHCBBQWFmLKlClwu93Nfrp0xx13YOrUqbjxxhsxePBgVFVVYenSpbDZbACAZcuWYfPmzVi+fDk6duyIvLy80IOalqj1ITMzE0uXLkVVVRXOO+88nH766fj000/xz3/+E/369Wux80w0bbU+LFmyBAMGDAiF5CuuuAIDBgzAvHnzWuwc2qO2WB927dqFJUuWYOfOnejfv3/Y34K6iWqAwPie3r174/zzz8fPf/5znHnmmTHrDt6WJGqdsFqteP3113HOOefg1FNPxYMPPojbbruNdaIFCRnNPJGUsGpqarBhwwYUFhbC4WgbzfFERERE1HLq3g9u27YNO3bsQFZWVou20iUatkgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKEtp9992H/v37h76+9tprcfHFF5/wfoUQeOedd054P9S6WB+oPtYHqo/1gY7GOkHNYZCiduXJJ5/Eyy+/HOtihEgpce+99yIvLw92ux0jR47Epk2bwrYZN24cCgoKYLPZkJeXh6uvvhq7d++OUYkTS1usD+vWrcMFF1yA1NRUZGRk4MYbb0RVVVWMSpxY4q0+LFq0CKNGjUJGRgaEECgpKWmwzbnnngshRNjjpptuav3CJqB4qg8+nw8zZsxA37594XQ6kZ+fj8mTJzf4W/Dggw9i+PDhcDgcSE1NjU1hE1hbrBMA8N5772HIkCGw2+1IS0trkTBIAQxS1K64XK64+OPi9XoBALNnz8ZTTz2FefPmYfXq1XA6nRg9ejTcbndo2xEjRuAf//gHSktL8fbbb2PLli249NJLY1X0hNLW6sPu3bsxcuRIdO/eHatXr8bSpUvxn//8B9dee20MS5844q0+VFdX48wzz8QjjzxyzO1vuOEGlJWVhR6zZ89ujWImvHiqDzU1NVi3bh3uuecerFu3DosWLUJpaSnGjRvXYNuJEyfi17/+dYxKm9jaYp14++23cfXVV+O6667D+vXr8dlnn+Gqq66KUckTkCSSUlZXV8s1a9bI6urqWBclKs8995zMy8uThmGEPT9u3Dh53XXXyZkzZ8p+/fqFnr/mmmvk+PHjQ1+fc845curUqXL69OkyLS1N5uTkyJkzZ4bta+PGjfKss86SVqtVFhYWyg8++EACkIsXLw5ts337djlx4kTpcrlkWlqaHDdunNy6dWuD4z7wwAMyLy9PdunSRZqmKXNzc+Wjjz4a2u7QoUPSarXK1157rclz/uc//ymFENLr9UZ1rdqDRK8Pzz33nMzOzg47v2+++UYCkJs2bTr+C5eg2nJ9qG/r1q0SgPz6668bnOM555wjf/Ob30R5ZdqnRKkPdb788ksJQP74448Nvjd//nzpcrkivTTtVqLXCZ/PJzt06CBfeOGFiK9J3fvBt956S86ZM0f+/e9/j/i17RFbpKhRUkq4azwxeUgpIy7nxIkTsX//fnz00Ueh5w4cOIClS5di0qRJEe1jwYIFcDqdWL16NWbPno1Zs2Zh2bJlAADTNDFhwgRYLBasXr0a8+bNw4wZM8Je7/P5MHr0aCQnJ6O4uBifffYZkpKSMGbMmNAnywCwfPlylJaWYtmyZXj33XexdetW7NmzByNHjgxt43K5MGTIEKxatarRsh44cAALFy7E8OHDoet6xNepJUgpUevxtfqD9eFIffB4PLBYLFCUI7+67XY7AODTTz+N+Dq1BCklany+mDwirRNtuT5EY+HChcjMzMRpp52Gu+66CzU1NVG9viVIKeE2PDF5tNf6cPjwYQgh4qKF5GhSShhmTUwe7eVvRmOOrhPr1q3Drl27oCgKBgwYgLy8PIwdOxbfffddxNeIjk2LdQEoPnlqvfhlz+kxOfbijY/C5rBGtG1aWhrGjh2LV199Feeffz4A4K233kJmZiZGjBiB4uLiZvdRVFSEmTNnAgB69OiBuXPnYvny5bjgggvw4Ycf4ocffsD777+P/Px8AMBDDz2EsWPHhl7/xhtvwDRNvPDCCxBCAADmz5+P1NRUrFy5EqNGjQIAOJ1OvPDCC7BYLACAzz//HACQk5MTVp6cnBzs2bMn7LkZM2Zg7ty5qKmpwdChQ6N+o9US3F4/zrnx6VY/7sfPT4XdGlloTPT6cN555+H222/Ho48+it/85jeorq7GnXfeCQAoKyuL6Bq1lFq/H32ef6pVj1nn+xunwRHBBwltuT5E6qqrrkLnzp2Rn5+Pb775BjNmzEBpaSkWLVoU1X5OlMf04rqvprbqMevMH/w0bGrzfzMSqT643W7MmDEDV155JVJSUpotd2szZS2+29krJsc+rWMpVOGIaNtErxP//e9/AQQmzfjzn/+MLl264PHHH8e5556LjRs3Ij09PaLrRE1jixS1eZMmTcLbb78Nj8cDIPDp7BVXXBH2qf2xFBUVhX2dl5eHvXv3AgA2bNiATp06hX4BAsCwYcPCtl+/fj02b96M5ORkJCUlISkpCenp6XC73diyZUtou759+0b9JqnO9OnT8fXXX+ODDz6AqqqYPHlyVJ+6tSeJXB9OPfVULFiwAI8//jgcDgdyc3PRtWtX5OTkRHx+7U0i1wcAuPHGGzF69Gj07dsXkyZNwiuvvILFixeH7ZuOSIT64PP5cNlll0FKiWeffTaiclPTErlOmKYJALj77rtxySWXYNCgQZg/fz6EEHjzzTcjOj86NrZIUaOsdgsWb3w0ZseOxkUXXQQpJd577z0MHjwYxcXFmDNnTsSvP7qLnBAi9MsnElVVVRg0aBAWLlzY4HtZWVmh/zudzrDv5ebmAgDKy8uRl5cXer68vDxsulUAyMzMRGZmJnr27InCwkJ06tQJX3zxRYNfyCeTzaLh4+db/xNnmyW6X1OJXh+uuuoqXHXVVSgvL4fT6YQQAn/+859xyimnRFzGlmDXNHx/47RWPWb9Y0eqrdaH4zVkyBAAwObNm9GtW7cW2WckrIoF8we3fot13bEj1dbrQ90b5h9//BErVqyIy9YoAFCEHad1LI3ZsaORyHWi7m9Jnz59Qs9ZrVaccsop2L59e8RlpKYxSFGjhBARd6+LNZvNhgkTJmDhwoXYvHkzevXqhYEDB7bIvgsLC7Fjxw6UlZWFfiF98cUXYdsMHDgQb7zxBrKzs6P6o9a1a1fk5uZi+fLloTfKFRUVWL169TFnXKr7BV336VlrEUJE3MUultpLfajrAvjSSy/BZrPhggsuOM6zOj5CiIi618VaW60Px6tuivT6Ybw1CCEi6l4Xa225PtS9Yd60aRM++ugjZGRktEi5TwYhRMTd62ItkevEoEGDYLVaUVpaijPPPDP0mm3btqFz584ncGZUh31BKCFMmjQJ7733Hl566aWIB4hGYuTIkejZsyeuueYarF+/HsXFxbj77rsbHDszMxPjx49HcXExtm7dipUrV2LatGnYuXNnk/sWQuDWW2/FAw88gCVLluDbb7/F5MmTkZ+fH1rjYfXq1Zg7dy5KSkpCnzZdeeWV6NatW6u2RrU1iVofAGDu3LlYt24dNm7ciL/85S+45ZZb8Kc//SkuB5zHi7ZYH4DAoPeSkhJ8//33AIDS0lKUlJSExsxt2bIFf/zjH7F27Vps27YNS5YsweTJk3H22Wc36G5ER7TF+uDz+XDppZdizZo1WLhwIQzDwJ49e7Bnz56wCQm2b9+OkpISbN++HYZhoKSkBCUlJVxrrhmJWidSUlJw0003YebMmfjggw9QWloa+mBu4sSJLXae7RmDFCWE8847D+np6SgtLW3R9REURcHixYtRW1uLM844A9dffz0efPDBsG0cDgc++eQTFBQUYMKECSgsLMSUKVPgdrub/XTpjjvuwNSpU3HjjTdi8ODBqKqqwtKlS2Gz2UL7XrRoEc4//3z06tULU6ZMQVFRET7++GNYrfH/6W+sJGp9AIAvv/wSF1xwAfr27Yvnn38ezz33HKZNi00Xu7airdaHJUuWYMCAAfjFL34BALjiiiswYMAAzJs3DwBgsVjw4YcfYtSoUejduzd++9vf4pJLLsG//vWvFjvHRNQW68OuXbuwZMkS7Ny5E/3790deXl7oUTdRDQDce++9GDBgAGbOnImqqioMGDAAAwYMwJo1a1rsPBNRIteJRx99FFdccQWuvvpqDB48OPShbFpaWoudZ3smJEesE4Camhps2LABhYWFcDjaRnM8EREREbWcuveD27Ztw44dO5CVldWirXSJhi1SREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQooR23333oX///qGvr732Wlx88cUnvF8hBN55550T3g+1LtYHqo/1gepjfaCjsU5QcxikqF158skn8fLLL8e6GCFSStx7773Iy8uD3W7HyJEjsWnTpka39Xg86N+/P4QQKCkpad2CJqh4qw+LFi3CqFGjkJGR0eR9drvduPnmm5GRkYGkpCRccsklKC8vb/3CJqC2WB8AYNWqVTjvvPPgdDqRkpKCs88+G7W1ta1b2AQUT/XB5/NhxowZ6Nu3L5xOJ/Lz8zF58mTs3r07tM22bdswZcoUdO3aFXa7Hd26dcPMmTPh9XpjWPLE0tbqxMqVKyGEaPTx1VdfxbD0iYNBitoVl8uF1NTUWBcj9Idt9uzZeOqppzBv3jysXr0aTqcTo0ePhtvtbvCaO+64A/n5+a1d1IQWb/WhuroaZ555Jh555JEmt73tttvwr3/9C2+++SY+/vhj7N69GxMmTGitoia0tlgfVq1ahTFjxmDUqFH48ssv8dVXX+GWW26BovDP+4mKp/pQU1ODdevW4Z577sG6deuwaNEilJaWYty4caHtfvjhB5imieeeew7/+c9/MGfOHMybNw+///3vY1j6xNLW6sTw4cNRVlYW9rj++uvRtWtXnH766TE8gwQiiaSU1dXVcs2aNbK6ujrWRYnKc889J/Py8qRhGGHPjxs3Tl533XVy5syZsl+/fqHnr7nmGjl+/PjQ1+ecc46cOnWqnD59ukxLS5M5OTly5syZYfvauHGjPOuss6TVapWFhYXygw8+kADk4sWLQ9ts375dTpw4UbpcLpmWlibHjRsnt27d2uC4DzzwgMzLy5NdunSRpmnK3Nxc+eijj4a2O3TokLRarfK1114LK8P//d//yd69e8v//Oc/EoD8+uuvj/eSJbS2XB/q27p1a6P3+dChQ1LXdfnmm2+GntuwYYMEIFetWhXVtWoPEr0+SCnlkCFD5B/+8IdoL027lCj1oc6XX34pAcgff/yxyXOePXu27Nq1a7PXpr1qb3XC6/XKrKwsOWvWrCavSd37wbfeekvOmTNH/v3vf29yW5KSH1lRo6SUcNd4Y/KQUkZczokTJ2L//v346KOPQs8dOHAAS5cuxaRJkyLax4IFC+B0OrF69WrMnj0bs2bNwrJlywAApmliwoQJsFgsWL16NebNm4cZM2aEvd7n82H06NFITk5GcXExPvvsMyQlJWHMmDFhXSqWL1+O0tJSLFu2DO+++y62bt2KPXv2YOTIkaFtXC4XhgwZglWrVoWeKy8vxw033IC//e1vcDgcEV+blialRK3H1+qP9lIfIrF27Vr4fL6wOtO7d28UFBSE1ZnWIKVEjc8bk0ekdSLR68PevXuxevVqZGdnY/jw4cjJycE555yDTz/9NKLXtyQpJTyGOyaP9lofDh8+DCHEMVtIDh8+jPT09IjOrSVJKWGaNTF5tOe/Gc3ViSVLlmD//v247rrrIjo3ap4W6wJQfPLU+vDLQTNjcuzFa++HzWGJaNu0tDSMHTsWr776Ks4//3wAwFtvvYXMzEyMGDECxcXFze6jqKgIM2cGzrVHjx6YO3culi9fjgsuuAAffvghfvjhB7z//vuhbnUPPfQQxo4dG3r9G2+8AdM08cILL0AIAQCYP38+UlNTsXLlSowaNQoA4HQ68cILL8BiCZzb559/DgDIyckJK09OTg727NkDIPDH6Nprr8VNN92E008/Hdu2bYvoupwMbq8fP7t1bqsf97MnboHdqke0bVuuD5HYs2cPLBZLgz+S9etMa6n1+9Dn70+06jHrfP8/t8KhN3/dEr0+/Pe//wUQGBD/2GOPoX///njllVdw/vnn47vvvkOPHj0i3teJ8poe3PFNbN6czS6aD6tqa3a7RKoPbrcbM2bMwJVXXomUlJRGt9m8eTOefvppPPbYY82eV0uTshZ7y7q3+nEBIDtvM4SI7EPH9lYnXnzxRYwePRodO3aM6PpQ89giRW3epEmT8Pbbb8Pj8QAAFi5ciCuuuCLiMQJFRUVhX+fl5WHv3r0AgA0bNqBTp05hY5OGDRsWtv369euxefNmJCcnIykpCUlJSUhPT4fb7caWLVtC2/Xt2zeqN0kA8PTTT6OyshJ33XVXVK9rzxK5PlD0Erk+mKYJAPjVr36F6667DgMGDMCcOXPQq1cvvPTSS1Htq71IhPrg8/lw2WWXQUqJZ599ttFtdu3ahTFjxmDixIm44YYbIjq39qq91ImdO3fi/fffx5QpUyI6L4oMW6SoUVa7jsVr74/ZsaNx0UUXQUqJ9957D4MHD0ZxcTHmzJkT8et1Pfx4QojQG5RIVFVVYdCgQVi4cGGD72VlZYX+73Q6w76Xm5sLINB1Ly8vL/R8eXl5aLrVFStWYNWqVbBarWGvPf300zFp0iQsWLAg4nKeKJtFw2dP3NJqx6t/3Gi01foQidzcXHi9Xhw6dCisVaq8vDxUn1qLXdPx/f/c2qrHrH/sSCVyfaj7vdGnT5+w5wsLC7F9+/ao93ciLIoVs4vmt+ox6x87Um29PtS9Yf7xxx+xYsWKRlsedu/ejREjRmD48OF4/vnnIy5bSxLCjuy8zTE7djTaQ50AAq1cGRkZYZNR0IljkKJGCSEi7l4XazabDRMmTMDChQuxefNm9OrVCwMHDmyRfRcWFmLHjh0oKysLvWn54osvwrYZOHAg3njjDWRnZzf5C6wxXbt2RW5uLpYvXx4KThUVFVi9ejV+/etfAwCeeuopPPDAA6HX7N69G6NHj8Ybb7yBIUOGnODZRUcIEXEXu1hqq/UhEoMGDYKu61i+fDkuueQSAEBpaSm2b9/e4FPOk00IEVH3ulhL5PrQpUsX5Ofno7S0NOz5jRs3hnUdag1CiIi618VaW64PdW+YN23ahI8++ggZGRkNttm1axdGjBiBQYMGYf78+TGbvTEwxXbsxvRGI9HrBBAYJjB//nxMnjy5QfCjE8OufZQQJk2ahPfeew8vvfRSxANEIzFy5Ej07NkT11xzDdavX4/i4mLcfffdDY6dmZmJ8ePHo7i4GFu3bsXKlSsxbdo07Ny5s8l9CyFw66234oEHHsCSJUvw7bffYvLkycjPzw8t+FdQUIDTTjst9OjZsycAoFu3buzjfAxtsT4AgUHOJSUl+P777wEEQlJJSUlo/JPL5cKUKVNw++2346OPPsLatWtx3XXXYdiwYRg6dGiLnWeiSdT6IITA9OnT8dRTT+Gtt97C5s2bcc899+CHH35g951jaIv1wefz4dJLL8WaNWuwcOFCGIaBPXv2YM+ePaEJCXbt2oVzzz0XBQUFeOyxx/DTTz+FtqFjS9Q6UWfFihXYunUrrr/++hY7NwpgkKKEcN555yE9PR2lpaW46qqrWmy/iqJg8eLFqK2txRlnnIHrr78eDz74YNg2DocDn3zyCQoKCjBhwgQUFhZiypQpcLvdzX66dMcdd2Dq1Km48cYbMXjwYFRVVWHp0qWw2eL/k9141lbrw5IlSzBgwAD84he/AABcccUVGDBgAObNmxfaZs6cObjwwgtxySWX4Oyzz0Zubi4WLVrUYueYiBK5Ptx666246667cNttt6Ffv35Yvnw5li1bhm7durXYeSaatlgfdu3ahSVLlmDnzp3o378/8vLyQo+6iYuWLVuGzZs3Y/ny5ejYsWPYNnRsiVon6rz44osYPnw4evfu3WLnRgFCRjNPJCWsmpoabNiwAYWFhTGdYpuIiIiIYqPu/eC2bduwY8cOZGVltWgrXaJhixQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKQood13333o379/6Otrr70WF1988QnvVwiBd95554T3Q62L9YHqY32g+lgf6GisE9QcBilqV5588km8/PLLsS5GiJQS9957L/Ly8mC32zFy5Ehs2rQpbJsuXbpACBH2ePjhh2NU4sQSb/Vh0aJFGDVqFDIyMiCEQElJSYNtnn/+eZx77rlISUmBEAKHDh1q9XImqrZWH7Zt29bgd0Pd480334xNoRNIPNUHn8+HGTNmoG/fvnA6ncjPz8fkyZOxe/fusO3GjRuHgoIC2Gw25OXl4eqrr26wDR2/tlgnNm7ciPHjxyMzMxMpKSk488wz8dFHH8Wo1ImHQYraFZfLhdTU1FgXA16vFwAwe/ZsPPXUU5g3bx5Wr14Np9OJ0aNHw+12h20/a9YslJWVhR5Tp06NRbETTrzVh+rqapx55pl45JFHmty2pqYGY8aMwe9///vWKl670dbqQ6dOncJ+L5SVleH+++9HUlISxo4d25pFTkjxVB9qamqwbt063HPPPVi3bh0WLVqE0tJSjBs3LmzbESNG4B//+AdKS0vx9ttvY8uWLbj00ktjVPLE0xbrxIUXXgi/348VK1Zg7dq16NevHy688ELs2bMnRqVPLAxS1KY9//zzyM/Ph2maYc+PHz8e//u//9tg+6Ob5c8991xMmzYNd9xxB9LT05Gbm4v77rsv7DWbNm3C2WefDZvNhj59+mDZsmUN9rtjxw5cdtllSE1NRXp6OsaPH49t27Y1OO6DDz6I/Px89OrVC1JKPPHEE/jDH/6A8ePHo6ioCK+88gp2797doMk/OTkZubm5oYfT6Yz6WrUHbbk+AMDVV1+Ne++9FyNHjmzyHG+99VbceeedGDp0aARXpH1L9PqgqmrY74Xc3FwsXrwYl112GZKSkiK8Su1HW64PLpcLy5Ytw2WXXYZevXph6NChmDt3LtauXYvt27eHXnvbbbdh6NCh6Ny5M4YPH44777wTX3zxBXw+3/FdtASX6HVi37592LRpE+68804UFRWhR48eePjhh1FTU4Pvvvvu+C8chTBIUaOklHDXemPykFJGXM6JEydi//79Yc3UBw4cwNKlSzFp0qSI9rFgwQI4nU6sXr0as2fPxqxZs0K/6EzTxIQJE2CxWLB69WrMmzcPM2bMCHu9z+fD6NGjkZycjOLiYnz22WdISkrCmDFjQp8sA8Dy5ctRWlqKZcuW4d1338XWrVuxZ8+esDdJLpcLQ4YMwapVq8KO8fDDDyMjIwMDBgzAo48+Cr/fH/E1ailSStR4fK3+aC/1oa2RUqLG743JI9I60d7qw9q1a1FSUoIpU6Yc1+tPhJQSXtMdk0d7rQ+HDx+GEKLJFpIDBw5g4cKFGD58OHRdj+j8WoqUEtKsic2jHf/NOLpOZGRkoFevXnjllVdQXV0Nv9+P5557DtnZ2Rg0aFDE14mapsW6ABSfPG4fxp/1UEyO/c/i38Nmt0S0bVpaGsaOHYtXX30V559/PgDgrbfeQmZmJkaMGIHi4uJm91FUVISZM2cCAHr06IG5c+di+fLluOCCC/Dhhx/ihx9+wPvvv4/8/HwAwEMPPRTWbeaNN96AaZp44YUXIIQAAMyfPx+pqalYuXIlRo0aBQBwOp144YUXYLEEzu3zzz8HAOTk5ISVJycnJ6zJfdq0aRg4cCDS09Px+eef46677kJZWRn+/Oc/R3SNWkqt14+hd81t1WMCwBd/ugUOa2RvAtpyfWhrag0fTnvzsZgc+7uJv4NDa/66tbf68OKLL6KwsBDDhw8/7n0cL5/04NENselCNr3wLViErdntEqk+uN1uzJgxA1deeSVSUlLCvjdjxgzMnTsXNTU1GDp0aGw+qJG1kHv7t/5xAYjsEkA4Ito20euEEAIffvghLr74YiQnJ0NRFGRnZ2Pp0qVIS0uL6BrRsbFFitq8SZMm4e2334bH4wEALFy4EFdccQUUJbLqXVRUFPZ1Xl4e9u7dCwDYsGEDOnXqFPoFCADDhg0L2379+vXYvHkzkpOTkZSUhKSkJKSnp8PtdmPLli2h7fr27Xtcb5Juv/12nHvuuSgqKsJNN92Exx9/HE8//XTofClcotcHik57qQ+1tbV49dVXY9Ia1ZYkQn3w+Xy47LLLIKXEs88+2+D706dPx9dff40PPvgAqqpi8uTJUbXStDeJXCeklLj55puRnZ2N4uJifPnll7j44otx0UUXoaysLKLzo2NjixQ1ymrT8c/i2Axmt9qi64Jw0UUXQUqJ9957D4MHD0ZxcTHmzJkT8euP7vIghGjQX/pYqqqqMGjQICxcuLDB97KyskL/P3pcU25uLgCgvLwceXl5oefLy8vDpls92pAhQ+D3+7Ft27bQWIrWYLdo+OJPt7Ta8eofNxpttT60NXZVx3cTfxezY0eqvdSHt956CzU1NZg8efIJ7ed46cKK6YVvxezYkWrr9aHuDfOPP/6IFStWNGiNAoDMzExkZmaiZ8+eKCwsRKdOnfDFF180eAN/Ugl7oGUoFoQ9qs0TuU6sWLEC7777Lg4ePBh6/plnnsGyZcuwYMEC3HnnnRGXkxrHIEWNEkJE3L0u1mw2GyZMmICFCxdi8+bN6NWrFwYOHNgi+y4sLMSOHTtQVlYWCjtffPFF2DYDB/7/9u4+puq6/+P484vIvcqtAhZ5lwQWiorO5syQvMmMRkkkoRVmul2QtivbLk39lbSlWdZsY87bNppUSJF0UUqaJzWa2WE49QgKhTfHViwJEeXmXH84z+/ih9Y5xo8jh9dj+25wzuf7ufnuvZ3P+3w+3+8ZTX5+Pv3797/hh9rNDB48mPDwcEpLS+2JU319PWVlZSxatOim55nNZvvyfFcyDMPhLXau1F3jobsxDMOh7XWu1lPiYfPmzTz66KPtJl5dyTAMh7bXuVp3jofrE+bKykr27t1LSEjIX55zfULf1TsYDMNweHudq7lzTDQ2NgJ0WF3z8PBwKtmTm9PWPnEL6enpFBcXs2XLFodvEHVEUlISw4cPZ968eZSXl2MymVi2bFmHtkNDQ0lOTsZkMlFdXc2+ffvIzs7mzJkzN63bMAwWL17M6tWrKSoqoqKigrlz5xIZGWl/KtChQ4dYv3495eXlnD59mry8PJYsWcLTTz+t/c1/ojvGA1y7ydlsNnPs2DEALBYLZrO53T1zVqsVs9lMVVUVABUVFZjNZurq6jptnO7GneMBoKqqiv379zN//vxOG5s7647x0NzczBNPPMHhw4fJy8ujtbUVq9WK1Wq1P5CgrKyMDRs2YDab7asTTz31FEOHDu3a1ahuyF1jYsKECQQFBdnbP3nyJC+//DLV1dXMnDmz08bZkymREreQmJhIcHAwFouFOXPmdFq9Hh4eFBYWcvnyZcaNG8f8+fPJyclpV8bPz4/9+/cTFRVFSkoKMTExZGZm0tTU9JffLi1dupSsrCwWLFhAQkICDQ0NlJSU4ONz7Ztdb29vduzYwQMPPMCIESPIyclhyZIlbNy4sdPG6I66azwUFRURHx9v/4BLS0sjPj6e3Nxce5nc3Fzi4+N5/vnnAZg0aRLx8fEUFRV12jjdjTvHA8CWLVu444477Dely5/rjvFw9uxZioqKOHPmDKNGjSIiIsJ+XH9wkZ+fHzt37mTKlClER0eTmZlJXFwc33zzDd7ejm9/7IncNSZCQ0MpKSmhoaGBxMRExo4dy7fffstnn33GyJEjO22cPZlh0x2IwrXl3+PHjxMTE4OfX/dYjhcRERGRznN9PlhTU0NtbS1hYWGdukrnbrQiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVIiIiIiIiJOUiIlIiIiIiLiJCVSIiIiIiIiTlIiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVLi1latWsWoUaPs/z/zzDM89thjf7tewzD49NNP/3Y90rUUD/LfFA8iIvJ3KJGSHuXdd99l27Ztru6Gnc1mY8WKFURERODr60tSUhKVlZUdyhUXFzN+/Hh8fX0JCgrqlMme3H7xsHPnTqZOnUpISAiGYWA2m9u9X1dXR1ZWFtHR0fj6+hIVFUV2djYXL150TYfdTHeLBwCr1UpGRgbh4eH4+/szevRoCgoKur6zIiI9kBIp6VH69etHYGCgq7vB1atXAVizZg3vvfceubm5lJWV4e/vz7Rp02hqarKXLSgoICMjg2effZby8nIOHDjAnDlzXNV1t3K7xcOlS5eYOHEib7755g3LnTt3jnPnzvHWW29x9OhRtm3bRklJCZmZmV3ZXbfV3eIBYO7cuVgsFoqKiqioqCAlJYXU1FR+/PHHruquiEiPpURKurWNGzcSGRlJW1tbu9eTk5N57rnnOpT/v1t3Jk+eTHZ2NkuXLiU4OJjw8HBWrVrV7pzKykomTZqEj48PsbGx7N69u0O9tbW1pKamEhgYSHBwMMnJydTU1HRoNycnh8jISKKjo7HZbKxfv57ly5eTnJxMXFwcH3zwAefOnbNvC2ppaeHFF19k7dq1LFy4kOHDhxMbG0tqauotXzN31p3jASAjI4MVK1aQlJR0w/Hde++9FBQUMGvWLIYOHUpiYiI5OTl8/vnntLS0OHiVeg53jweAgwcPkpWVxbhx4xgyZAjLly8nMDCQH374wYErJCIif4cSKbkhm83G5ctXXXLYbDaH+zl79mx+++039u7da3+trq6OkpIS0tPTHapj+/bt+Pv7U1ZWxpo1a3jttdfsk6G2tjZSUlLw8vKirKyM3NxcXnnllXbnNzc3M23aNPr06YPJZOLAgQMEBAQwffp0+zfLAKWlpVgsFnbv3s2uXbuorq7GarW2myT169eP8ePHc+jQIQCOHDnC2bNn8fDwID4+noiICGbMmMHRo0cdvkadxWaz0Xi1ucuPnhIPt+rixYv07dsXT0/PW67jVthsNhpbrrrkcDQmekI83H///eTn51NXV0dbWxs7duygqamJyZMnO1yHiIjcmq795JVuo6mpmUdmvOWStnf9+5/4+no5VDYoKIgZM2bw4YcfMmXKFAA++eQTQkNDefDBBzGZTH9ZR1xcHCtXrgTg7rvvZsOGDZSWlvLQQw+xZ88eTpw4wZdffklkZCQAb7zxBjNmzLCfn5+fT1tbG5s2bcIwDAC2bt1KYGAg+/btY+rUqQD4+/uzadMmvLyuje3gwYMADBgwoF1/BgwYgNVqBeD06dPAtZvi3377bQYNGsS6deuYPHkyJ0+eJDg42KHr1BkuN7cw9n82dFl71x1e+Q/8vHo7VLY7x8Ot+PXXX3n99ddZsGDBLddxqy63NjN21xtd3i7A4Uf+hZ/nX1+3nhAPH330EU8++SQhISF4enri5+dHYWEhw4YNc6oeERFxnlakpNtLT0+noKCAK1euAJCXl0daWhoeHo6Fd1xcXLv/IyIi+OWXXwA4fvw4d955p32SBDBhwoR25cvLy6mqqqJPnz4EBAQQEBBAcHAwTU1NnDp1yl7uvvvuc3qSdH1L0rJly3j88ccZM2YMW7duxTAMPv74Y6fq6incOR7+W319PTNnziQ2NrbDdjP5X+4eD6+++iq///47e/bs4fDhw7z00kukpqZSUVHhdF0iIuIcrUjJDfn49GbXv//psradMWvWLGw2G8XFxSQkJGAymXjnnXccPr937/btGYbR4Z6KP9PQ0MCYMWPIy8vr8F5YWJj9b39//3bvhYeHA3DhwgUiIiLsr1+4cMH+SObrr8fGxtrf9/b2ZsiQIfz8888O97Ez+Pb25PDKf3Rpm9fbdUZ3jQdn/PHHH0yfPp0+ffpQWFjYoc9dwbdXbw4/8q8ub/d6245y53g4deoUGzZs4OjRo4wYMQKAkSNHYjKZeP/998nNzXW6ThERcZwSKbkhwzAc3l7naj4+PqSkpJCXl0dVVRXR0dGMHj26U+qOiYmhtraW8+fP25Oa7777rl2Z0aNHk5+fT//+/enbt6/DdQ8ePJjw8HBKS0vtiVN9fT1lZWUsWrQIgDFjxuDt7Y3FYmHixInAtXsuampquOuuuzphhI4zDMPhLXau1F3jwVH19fVMmzYNb29vioqK8PHx6fQ2HGEYhkPb61zNneOhsbERoMPqWq9evZxK9kRE5NZoa5+4hfT0dIqLi9myZYvDN5E7IikpieHDhzNv3jzKy8sxmUwsW7asQ9uhoaEkJydjMpmorq5m3759ZGdnc+bMmZvWbRgGixcvZvXq1fZHF8+dO5fIyEj7k8P69u3LwoULWblyJV999RUWi8WeZM2ePbvTxuluumM8wLUHIZjNZo4dOwaAxWLBbDbb75mrr69n6tSpXLp0ic2bN1NfX4/VasVqtdLa2tpp43Q37hoP99xzD8OGDeOFF17g+++/59SpU6xbt47du3frt+ZERLqAEilxC4mJiQQHB2OxWDr1N5Y8PDwoLCzk8uXLjBs3jvnz55OTk9OujJ+fH/v37ycqKoqUlBRiYmLIzMykqanpL7+BXrp0KVlZWSxYsICEhAQaGhooKSlpt8qwdu1a0tLSyMjIICEhgZ9++omvv/6aoKCgThunu+mu8VBUVER8fDwzZ84EIC0tjfj4ePsWrSNHjlBWVkZFRQXDhg0jIiLCftTW1nbaON2Nu8ZD7969+eKLLwgLC2PWrFn2n1DYvn07Dz/8cKeNU0REbsywOfNsYXFbjY2NHD9+nJiYGPz8/FzdHRERERHpYtfngzU1NdTW1hIWFtapK/nuRitSIiIiIiIiTlIiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVLSjn57RERERKRn0jPonKNESgDw8rr2w5oNDQ0u7omIiIiIuMKVK1cAaGlpcXFPugdPV3dAbg+enp6EhoZy9uxZAAICAvDwUJ4tIiIi0hO0tbVRW1tLY2Mjra2tWp1ygBIpsYuKisJms9mTKRERERHpOdra2rBarQC0trbi6+vr4h7d3pRIiZ1hGAwaNIjKykpOnDhBSEgI3t7eru6WiIiIiPw/s9lsNDc309bWRkNDAy0tLQwcONDV3bqtKZGSDiZNmsSVK1c4duwYra2tGIbh6i6JiIiISBew2Wx4eXkxfvx4xo4d6+ru3NYMmzZAyg1cvXqV8+fPc+nSJe2RFREREekhPDw88Pf3Z+DAgfTq1cvV3bmtKZESERERERFxkh7LJiIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVIiIiIiIiJOUiIlIiIiIiLipP8AQhptYOMJ7CYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dirunal_statistics = subset.get_diurnal_statistics(colorby='name',\n", + " obstype='humidity', \n", + " plot=True,\n", + " errorbands=True,\n", + " )\n", + "#Note that in this example statistics are computed for a short period and only for the non-windy autumn afternoons." + ] + }, + { + "cell_type": "markdown", + "id": "d3fdffeb-1ec7-4ffe-8085-c84dd5a3fdfa", + "metadata": {}, + "source": [ + "## Analysis exercise\n", + "\n", + "For a more detailed reference you can use this [Analysis exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Urban_analysis_excercise_04.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/examples/doc_example.ipynb.txt b/docs/_build/_sources/examples/doc_example.ipynb.txt new file mode 100644 index 00000000..3ded40b8 --- /dev/null +++ b/docs/_build/_sources/examples/doc_example.ipynb.txt @@ -0,0 +1,824 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d87ff982-1540-4794-830f-146992df5aa4", + "metadata": { + "tags": [] + }, + "source": [ + "# Demo example: Using a Dataset\n", + " \n", + "This is an introduction to get started with the MetObs toolkit. These examples are making use of the demo data files that comes with the toolkit.\n", + "Once the MetObs toolkit package is installed, you can import its functionality by:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b54b0b5d-59f4-400c-a4a8-ff07fe809ff6", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit" + ] + }, + { + "cell_type": "markdown", + "id": "55faab4a-537b-4028-9adf-890746c4b8c0", + "metadata": {}, + "source": [ + "## The Dataset\n", + "\n", + "A dataset is a collection of all observational data. Most of the methods are\n", + "applied directly to a dataset. Start by creating an empty Dataset object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ffbfd64f-8724-48bb-b8c5-af1c45ad6a66", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "d088aba9-2a00-4030-8395-01792094c737", + "metadata": {}, + "source": [ + "The most relevant attributes of a Dataset are:\n", + " * .df --> a pandas DataFrame where all the observational data are stored\n", + " * .metadf --> a pandas DataFrame where all the metadata for each station are stored\n", + " * .settings --> a Settings object to store all specific settings.\n", + " * .missing_obs and .gaps --> here the missing records and gaps are stored if present.\n", + "\n", + "Note that each Dataset will be equipped with the default settings.\n", + "\n", + "\n", + "We created a dataset and stored in under the variable 'your_dataset'.\n", + "The show method prints out an overview of data in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4296efe0-7a6a-413c-a4c0-7d79b30d0ab2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show() # or .get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "34273a79-477d-4c04-ba59-65a677adfe25", + "metadata": {}, + "source": [ + "TIP: to get an extensive overview of an object, call the .show() method on it." + ] + }, + { + "cell_type": "markdown", + "id": "60edb538-7a11-4745-9514-94f9d577cd9c", + "metadata": {}, + "source": [ + "## Importing data\n", + "\n", + "\n", + "To import your data into a Dataset, the following files are required:\n", + "* data file: This is the CSV file containing the observations\n", + "* (optional) metadata file: The CSV file containing metadata for all stations.\n", + "* template file: This is a CSV file that is used to interpret your data, and metadata file (if present).\n", + "\n", + "In practice you need to start by creating a template file for your data. More information on the creation of the template can be found in the documentation (under [Mapping to the toolkit](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html)).\n", + "\n", + "TIP: *Use the template assistant of the toolkit for creating a template file by uncommenting and running the following cell.*\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a34d31e9-6d3f-46a9-973e-f5a41b38e2e4", + "metadata": {}, + "outputs": [], + "source": [ + "# metobs_toolkit.build_template_prompt()" + ] + }, + { + "cell_type": "markdown", + "id": "65c6e54f-3073-4d77-8f7d-eda0465748a5", + "metadata": {}, + "source": [ + "To import data, you must specify the paths to your data, metadata and template.\n", + "For this example, we use the demo data, metadata and template that come with the toolkit." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bbcbe25e-855e-46b5-ba80-e90a655ef719", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "dd390074-8b96-4ddb-b447-4c8e46b94c3f", + "metadata": {}, + "source": [ + "The settings of your Dataset are updated with the required paths. Now the data can be imported into your empty Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "21708ed0-7671-4e64-b3cc-dacb09baf4f9", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "304853e8-7ab9-4afc-a75f-db33785c57e2", + "metadata": {}, + "source": [ + "## Inspecting the Data\n", + "\n", + "To get an overview of the data stored in your Dataset you can use" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2bc74181-68df-4cdf-9320-9dc43d5af698", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *28 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *120957 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "A total of 256 found with these occurrences: \n", + "\n", + "{'invalid input': 256}\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "aa85e260-48f5-4e63-b3d4-b44ece98df0b", + "metadata": {}, + "source": [ + "If you want to inspect the data in your Dataset directly, you can take a look at the .df and .metadf attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "690a1e21-ee6b-4b4c-a8e4-b937946e14aa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:05:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:10:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:15:00+00:00 18.7 NaN 65 0.0 \n", + " 2022-09-01 00:20:00+00:00 18.7 NaN 65 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:05:00+00:00 0.0 5.5 12.9 \n", + " 2022-09-01 00:10:00+00:00 0.0 5.1 11.3 \n", + " 2022-09-01 00:15:00+00:00 0.0 6.0 12.9 \n", + " 2022-09-01 00:20:00+00:00 0.0 5.0 11.3 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65 101739 \n", + " 2022-09-01 00:05:00+00:00 75 101731 \n", + " 2022-09-01 00:10:00+00:00 75 101736 \n", + " 2022-09-01 00:15:00+00:00 85 101736 \n", + " 2022-09-01 00:20:00+00:00 65 101733 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:05:00+00:00 101997.0 \n", + " 2022-09-01 00:10:00+00:00 102002.0 \n", + " 2022-09-01 00:15:00+00:00 102002.0 \n", + " 2022-09-01 00:20:00+00:00 101999.0 \n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry lcz assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) NaN 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) NaN 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) NaN 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) NaN 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) NaN 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n" + ] + } + ], + "source": [ + "print(your_dataset.df.head())\n", + "# equivalent for the metadata\n", + "print(your_dataset.metadf.head())\n" + ] + }, + { + "cell_type": "markdown", + "id": "24021319-f5d4-430b-8b7f-807a36f91594", + "metadata": { + "tags": [] + }, + "source": [ + "### Inspecting a Station\n", + "\n", + "If you are interested in one station, you can extract all the info for that one station from the dataset by:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0c901b97-90c4-4fae-b181-57c6778a98bf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "favorite_station = your_dataset.get_station(stationname=\"vlinder02\")" + ] + }, + { + "cell_type": "markdown", + "id": "685625e9-462b-4ad1-847f-4d26a0cb5df5", + "metadata": {}, + "source": [ + "Favorite station now contains all the information of that one station. All methods that are applicable to a Dataset are also applicable to a Station. So to inspect your favorite station, you can:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9c777b55-56a3-4c00-aa0e-a93bb29c4f8a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *1 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *4317 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "A total of 256 found with these occurrences: \n", + "\n", + "{'invalid input': 256}\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder02 POINT (3.709695 51.022379) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder02 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n", + "None\n" + ] + } + ], + "source": [ + "print(favorite_station.show())" + ] + }, + { + "cell_type": "markdown", + "id": "82cb6811-3fbe-4f68-863f-c6c3f872293e", + "metadata": {}, + "source": [ + "## Making timeseries plots\n", + "\n", + "To make timeseries plots, use the following syntax to plot the *temperature* observations of the full Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "be68ff53-4470-4c1c-a5a6-501b68df33ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xcV334/7/ObdNnZ/tq1YslW3LDMm7ggsGmGNNxPiQkNi0GE/gSAr9PMISej0NCKAlgSADTQiAYO6HahhhsbNx7VW+r7WX6zK3n98estlgSLkg72tX7+XjInnvn3jvvMzvtvu/7nKO01hohhBBCCCGEEEIIIcQhYzQ7ACGEEEIIIYQQQgghFhpJugkhhBBCCCGEEEIIcYhJ0k0IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xCTpJoQQQgghhBBCCCHEISZJNyGEEEIIIYQQQgghDjFJugkhhBBCiClDQ0O84Q1voL29HaUUX/jCF5odEgArVqzgsssum1r+7W9/i1KK3/72t02L6Zn4+Mc/jlKq2WEIIYQQogkk6SaEEEKIQ0Yp9Yz+HemJksPpK1/5Ct/61reaHcZB/fVf/zU33ngjH/rQh/jud7/Ly172smaHdNh9//vf/6OSi9VqlY9//ONH9etaCCGEEPuzmh2AEEIIIRaO7373u7OWv/Od7/CrX/1qv/XHHXfcXIZ1RPnKV75CR0fHrKqtI8nNN9/Mq1/9aj7wgQ80O5Q58/3vf59HH32U973vfc9p/2q1yic+8QkAzjvvvFn3feQjH+Fv//Zv/8gIhRBCCDEfSdJNCCGEEIfMm9/85lnLd955J7/61a/2W79QaK2p1+skEolmh/KMVSoVUqnUQe8fHh4ml8sdsser1+s4joNhHJ0dLCzLwrLkJ7cQQghxNDo6f/0IIYQQommiKOILX/gCGzZsIB6P093dzeWXX87ExMSs7VasWMErX/lKfvvb33LqqaeSSCQ44YQTprrwXXfddZxwwgnE43E2btzIAw88MGv/yy67jHQ6zfbt23npS19KKpWit7eXT37yk2it/6iYbrzxxqmYvva1rwFwzTXXcP7559PV1UUsFmP9+vVcffXV++3/2GOPccstt0x1td1XGXWwsb++9a1voZRi586dU+uUUnz84x/fb9unjnu2b99bbrmFK664gq6uLpYsWbLffjO31Vrz5S9/eSq+fbZv384b3/hG2traSCaTnHHGGfz85z+fdYx946z94Ac/4CMf+QiLFy8mmUxSLBYP+JgAn/3sZznrrLNob28nkUiwceNGrr322oNu/2yVSiXe9773sWLFCmKxGF1dXVxwwQXcf//9QKMy7ec//zm7du2aavOKFSsA8DyPj370o2zcuJGWlhZSqRRnn302v/nNb6aOv3PnTjo7OwH4xCc+MXWMfX+fA/1dgyDgU5/6FKtXryYWi7FixQquvPJKXNedtd2+19ttt93GaaedRjweZ9WqVXznO9+ZtZ3v+3ziE5/gmGOOIR6P097ezgtf+EJ+9atfHbLnUQghhBDPnlx2E0IIIcScuvzyy/nWt77FW97yFt773veyY8cOvvSlL/HAAw9w++23Y9v21LZbt27lT//0T7n88st585vfzGc/+1kuvvhivvrVr3LllVdyxRVXAHDVVVdxySWXsGnTplkVVWEY8rKXvYwzzjiDf/zHf+SGG27gYx/7GEEQ8MlPfvI5xbRp0ybe9KY3cfnll/OOd7yDdevWAXD11VezYcMGXvWqV2FZFj/96U+54ooriKKId7/73QB84Qtf4D3veQ/pdJoPf/jDAHR3dx++J3vSFVdcQWdnJx/96EepVCoH3Oacc87hu9/9Ln/+53/OBRdcwF/8xV9M3Tc0NMRZZ51FtVrlve99L+3t7Xz729/mVa96Fddeey2vfe1rZx3rU5/6FI7j8IEPfADXdXEc56CxffGLX+RVr3oVf/Znf4bnefzgBz/gjW98Iz/72c+46KKL/ui2v/Od7+Taa6/lr/7qr1i/fj1jY2PcdtttPPHEE5xyyil8+MMfplAo0NfXx+c//3kA0uk0AMVika9//eu86U1v4h3veAelUolvfOMbvPSlL+Xuu+/m5JNPprOzk6uvvpp3vetdvPa1r+V1r3sdACeeeOJBY3r729/Ot7/9bd7whjfwN3/zN9x1111cddVVPPHEE1x//fWztt26dStveMMbeNvb3sall17KN7/5TS677DI2btzIhg0bgEZi76qrruLtb387p512GsVikXvvvZf777+fCy644I9+DoUQQgjxHGkhhBBCiMPk3e9+t575c+N3v/udBvR//Md/zNruhhtu2G/98uXLNaB///vfT6278cYbNaATiYTetWvX1Pqvfe1rGtC/+c1vptZdeumlGtDvec97ptZFUaQvuugi7TiOHhkZec4x3XDDDfu1tVqt7rfupS99qV61atWsdRs2bNDnnnvuftt+7GMf0wf6aXbNNddoQO/YsWNqHaA/9rGP7bft8uXL9aWXXrrfvi984Qt1EAT7bX8ggH73u989a9373vc+Dejf/e53U+tKpZJeuXKlXrFihQ7DUGut9W9+8xsN6FWrVh3w+TiQp27neZ4+/vjj9fnnn/8H27bvsWb+zQ+kpaVlv/Y81UUXXaSXL1++3/ogCLTrurPWTUxM6O7ubv3Wt751at3IyMhB/yZP/bs++OCDGtBvf/vbZ233gQ98QAP65ptvnlq37/V26623Tq0bHh7WsVhM/83f/M3UupNOOklfdNFFf7CNQgghhJh70r1UCCGEEHPmRz/6ES0tLVxwwQWMjo5O/du4cSPpdHpWtz2A9evXc+aZZ04tn3766QCcf/75LFu2bL/127dv3+8x/+qv/mrqtlKKv/qrv8LzPH79618/p5hWrlzJS1/60v0eZ+a4boVCgdHRUc4991y2b99OoVB4xs/R4fCOd7wD0zSf8/6/+MUvOO2003jhC184tS6dTvOXf/mX7Ny5k8cff3zW9pdeeukzHudu5nYTExMUCgXOPvvsqe6ff6xcLsddd91Ff3//s97XNM2pKr0oihgfHycIAk499dTnHN8vfvELAN7//vfPWv83f/M3APt12V2/fj1nn3321HJnZyfr1q2b9VrP5XI89thjbNmy5TnFJIQQQojDQ5JuQgghhJgzW7ZsoVAo0NXVRWdn56x/5XKZ4eHhWdvPTKwBtLS0ALB06dIDrn/qGGyGYbBq1apZ69auXQswNUbas41p5cqVB2zb7bffzkte8hJSqRS5XI7Ozk6uvPJKgKYn3Q4W8zO1a9euqW60M+2bhXbXrl3P+fF+9rOfccYZZxCPx2lra5vqrnmonrN//Md/5NFHH2Xp0qWcdtppfPzjHz9gcvZgvv3tb3PiiSdOjZXW2dnJz3/+8+cc365duzAMgzVr1sxa39PTQy6X2++5fOp7AKC1tXXWa/2Tn/wk+XyetWvXcsIJJ/DBD36Qhx9++DnFJ4QQQohDR8Z0E0IIIcSciaKIrq4u/uM//uOA9+8bkH6fg1VnHWy9fsoECYcjpgNVcG3bto0Xv/jFHHvssXzuc59j6dKlOI7DL37xCz7/+c8TRdHTxnGgSRSgMS7dM3Wwbed6dtVn+ni/+93veNWrXsU555zDV77yFRYtWoRt21xzzTV8//vfPySxXHLJJZx99tlcf/313HTTTfzTP/0Tn/nMZ7juuut4+ctf/gf3/d73vsdll13Ga17zGj74wQ/S1dWFaZpcddVVbNu27Y+K62B/76d6Jq/1c845h23btvE///M/3HTTTXz961/n85//PF/96ld5+9vf/kfFKYQQQojnTpJuQgghhJgzq1ev5te//jUveMEL5iQRFEUR27dvn6puA9i8eTPA1AyVhyKmn/70p7iuy09+8pNZlUlP7ZoKB0+2tLa2ApDP58nlclPrn1r5tG/bfD4/a53neQwMDDyH6J/e8uXL2bRp037rn3zyyan7n4sf//jHxONxbrzxRmKx2NT6a6655rkFehCLFi3iiiuu4IorrmB4eJhTTjmFv//7v59Kuh3sb3LttdeyatUqrrvuulnbfOxjH5u13TNNoEHjuYqiiC1btkxVCkJjsop8Pv+cn8u2tjbe8pa38Ja3vIVyucw555zDxz/+cUm6CSGEEE0k3UuFEEIIMWcuueQSwjDkU5/61H73BUGwXyLpUPjSl740dVtrzZe+9CVs2+bFL37xIYtpXzXSzOqjQqFwwORRKpU64DFXr14NwK233jq1rlKp8O1vf/uA287cDuDf/u3fnlVV3LPxile8grvvvps77rhjVmz/9m//xooVK1i/fv1zOq5pmiilZsW9c+dO/vu///uPDRloVP49tRtoV1cXvb29uK47tS6VSh2wu+iB/q533XXXrOcBIJlMAjyj18orXvEKoDGT7Uyf+9znAJ7TjK1jY2OzltPpNGvWrJnVxkKhwJNPPtn0rs5CCCHE0UQq3YQQQggxZ84991wuv/xyrrrqKh588EEuvPBCbNtmy5Yt/OhHP+KLX/wib3jDGw7Z48XjcW644QYuvfRSTj/9dH75y1/y85//nCuvvHKq2+ihiOnCCy/EcRwuvvhiLr/8csrlMv/+7/9OV1fXftVnGzdu5Oqrr+bTn/40a9asoauri/PPP58LL7yQZcuW8ba3vY0PfvCDmKbJN7/5TTo7O9m9e/esY7z97W/nne98J69//eu54IILeOihh7jxxhvp6Og4ZM/dTH/7t3/Lf/7nf/Lyl7+c9773vbS1tfHtb3+bHTt28OMf/xjDeG7XcS+66CI+97nP8bKXvYw//dM/ZXh4mC9/+cusWbPmkIxJViqVWLJkCW94wxs46aSTSKfT/PrXv+aee+7hn//5n6e227hxIz/84Q95//vfz/Of/3zS6TQXX3wxr3zlK7nuuut47Wtfy0UXXcSOHTv46le/yvr16ymXy1P7JxIJ1q9fzw9/+EPWrl1LW1sbxx9/PMcff/x+MZ100klceuml/Nu//Rv5fJ5zzz2Xu+++m29/+9u85jWv4UUvetGzbuf69es577zz2LhxI21tbdx7771ce+21syYRuf7663nLW97CNddcw2WXXfasH0MIIYQQz54k3YQQQggxp7761a+yceNGvva1r3HllVdiWRYrVqzgzW9+My94wQsO6WOZpskNN9zAu971Lj74wQ+SyWT42Mc+xkc/+tFDGtO6deu49tpr+chHPsIHPvABenp6eNe73kVnZydvfetbZ2370Y9+lF27dvGP//iPlEolzj33XM4//3xs2+b666/niiuu4O/+7u/o6enhfe97H62trbzlLW+ZdYx3vOMd7Nixg2984xvccMMNnH322fzqV7+aqt471Lq7u/n973/P//2//5d//dd/pV6vc+KJJ/LTn/70OVVm7XP++efzjW98g3/4h3/gfe97HytXruQzn/kMO3fuPCRJt2QyyRVXXMFNN93EddddRxRFrFmzhq985Su8613vmtruiiuu4MEHH+Saa67h85//PMuXL+fiiy/msssuY3BwkK997WvceOONrF+/nu9973v86Ec/4re//e2sx/r617/Oe97zHv76r/8az/P42Mc+dsCk275tV61axbe+9S2uv/56enp6+NCHPrRft9Vn6r3vfS8/+clPuOmmm3Bdl+XLl/PpT3+aD37wg8/peEIIIYQ4NJR+LiMOCyGEEEIc4S677DKuvfbaWRVJQgghhBBCzBUZ000IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQkzHdhBBCCCGEEEIIIYQ4xKTSTQghhBBCCCGEEEKIQ8xqdgBHuiiK6O/vJ5PJoJRqdjhCCCGEEEIIIYQQoom01pRKJXp7ezGMg9ezSdLtafT397N06dJmhyGEEEIIIYQQQgghjiB79uxhyZIlB71fkm5PI5PJAI0nMpvNNjkaIYQQQgghhBBCCNFMxWKRpUuXTuWMDkaSbk9jX5fSbDYrSTchhBBCCCGEEEIIAfC0w5DJRApCCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xCTpJoQQQgghhBBCCCHEISZJNyGEEEIIIYQQQgghDjFJugkhhBBCCCGEEEIIcYhJ0k0IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xKxmByCEEEI8E/WwRjksUfaLZOws7U5Xs0MSQgghhBBCiIOSpJsQQoh54f78HTxSug+A5YnVvKz7dU2OSAghhBBCCCEOTrqXCiGEmBcUaup2oIMmRiKEEEIIIYQQT0+SbkIIIeaFSOmp217kNjESIYQQQgghhHh6knQTQggxL4TRdHWbRv+BLYUQQgghhBCi+STpJoQQYl4IZ3QpjXTUxEiEEEIIIYQQ4ulJ0k0IIcS8MLNLaYQk3YQQQgghhBBHNkm6CSGEmBfqUX3qdqTDJkYihBBCCCGEEE9Pkm5CCCHmBXdG0i2UpJsQQgghhBDiCGc1OwAhhBDiYILBAso2wVDYykahAIgZsSZHJoQQQgghhBB/mCTdhBBCHHmiAB1GBA/sbiyiGTlucGrW0nF/lFCHmMpsZpRCCCGEEEIIcVDSvVQIIcSRZ+896N9+AWh0I61b7lTCbZ9aWJn7uIQQQgghhBDiGZJKNyGEEEcUN6xznXsv5tIULe4jnNt/MlWzSlchRs1y0ZaFk25lwh8nbWWbHa4QQgghhBBCHJBUugkhhDiiTNSLFK06E/EqOxIjAFRtn+EWl1IKSqbL7sJu/vXBf8ELvSZHK4QQQgghhBAHJkk3IYQQR5S9QwPoyZ6krtZorSlbVayw8ZWlLJN0MkElLLB5YnMTIxVCCCGEEEKIg5OkmxBCiCNGFEYMbetDNSYpRSmohnkK8QqBGYEbTm2bjMV5eOThJkUqhBBCCCGEEH+YJN2EEEIcMXS5Tlm5U8umqSmFg4zHiuTqabQLw6UxhktjxLTDD578QROjFUIIIYQQQoiDk6SbEEKII0Y0WKRsTSfdxvMOE8EITmhTC+qMRnnaU610ZdrJJbOszK7kJ1t/0sSIhRBCCCGEEOLAJOkmhBDiiOBGLgNuH25ugihqrOtqd3kgWaA/M4abDigH1anJEyJTc3PfzfxkuyTdhBBCCCGEEEceq9kBCCGEOLrpyVkThuv9/DL7m/2uBvnr7anbZbeKH/gk7DiO2fgKG6gMzFWoQgghhBBCCPGMSdJNCCFEU5WCAj/Y+3U0+oD3aw0KTcWrUS1VsRMhJCBmOOR8h/5yP27oEjNjcxy5EEIIIYQQQhycdC8VQgjRVNWwMp1wi8BzDerTw7qhFHi+jw5CrLqJP1ok+9gw9eExFrkpTuo8ib5SX3OCF0IIIYQQQoiDkKSbEEKIphr3Rolps7FggBOLKI471L2IaHJwN8dx2FMa5o7Cg8Rsm+KGLpK9XWzPVbhv6D76y/1NbIEQQgghhBBC7E+SbkIIIZpqV20rrgpnrfvlXW1c/au7KLmVqTHfNg1uA8CoeVPbOaaNjUXezc9ZvEIIIYQQQgjxTMiYbkIIIZqqEpYbN7Ru9CUFdPpubHsL1z84yNruZSigvzgEgFWe7nsaM2xKVNhT2jPXYQshhBBCCCHEHyRJNyGEEE1lYREve9TTztQ6XxcBKHslHtxcIHJGsZTDBitGvB6yL+1m2TbUZAZTIYQQQgghxJFHupcKIYRoGq01o97QrIRbbFeeY/u2kp3IksXCJ4LQIDBcHomKuHtL5O7fi7NzjFQsCcBoZaRZTRBCCCGEEEKIA5KkmxBCiKYJdEDI5HhuYYTyAsJcnL1tBYqtReqEmHYJQ7mYgcLxDOqRTWF9N0YQ0RUl6CqZeLVycxsihBBCCCGEEE8hSTchhBBNUw9rU7c77tjN2a/6Dqf9+Q8ppBvrctomXXgBkR0SWhrfjtAPjmNVPOprOjn2mOMZzoT0VWX2UiGEEEIIIcSRRZJuQgghmqYWVkArzJEqZl+JCKgbIUYIuaJm9RN1PvSTn6GixvZmqAgNi6jgA5Bw4igUBb/UvEYIIYQQQgghxAHIRApCCCGaphpVQGnCziRx38cAynFwYwo3BgaaxaOwYtDB9E0yNZuE6+M/MEK8EpHvhXOTa3mouocwCjENs9lNOmKVf38HA1d+CCOZInXmGfT83d81OyQhhBBCCCEWtHld6Xb11Vdz4oknks1myWaznHnmmfzyl7+cur9er/Pud7+b9vZ20uk0r3/96xkaGmpixEIIIQAe3D3BJ37yGD+6bzu18RT2jgKlgkHNtBnIJKe2S9cAZXHug4t44WNdvG7oRRzfcQGd5WOIuuIEvke9O8kEVcbr481r0Dzg9/cTDA7hbd9O5fd3NDscIYQQQgghFrx5nXRbsmQJ//AP/8B9993Hvffey/nnn8+rX/1qHnvsMQD++q//mp/+9Kf86Ec/4pZbbqG/v5/Xve51TY5aCCHEzZuGueb3O3lkeC+Jtgr+yhZ6B4e5acWp/Hjj61lcbqGn3k5a9VJwLKxQUzVbWNF6Bqs6Tuf53vMJOhKk29rIxlLEtc22/LZmN+uI5m6f8fw4zsE3FEIIIYQQQhwS87p76cUXXzxr+e///u+5+uqrufPOO1myZAnf+MY3+P73v8/5558PwDXXXMNxxx3HnXfeyRlnnHHAY7qui+u6U8vFYvHwNUAckbTWAIx/69tU7767ydFA8rTTaH/LZc0OQ4hDavdYFdCkU/7UulpRsbWrjb+JlrBsz1UAPBx7iAfW3ABAue0MOuwWAMzQIFmKU83B8vYl1NVt/GbPbzij98Cf7UczrTVKKcLh4al1QV9fEyMSQgghhBDi6DCvk24zhWHIj370IyqVCmeeeSb33Xcfvu/zkpe8ZGqbY489lmXLlnHHHXccNOl21VVX8YlPfGKuwhZHIH/PHna88RLMbBYsC6ujoylxaM/D27aN+pNPEtWqdF5xRVPiEOJwGCq6bDgmzwlrCxBGuL7Hla8ZxYv+lz/fejIBASYmx6sTCLIjbCneR9rM0KcD2pXCwsCqN4q1Y5aDQrG3tLfJrTryDP3TZxm/5hqIGjNRJF7wPszcClAGtSeGSBzX3dwAhRBCCCGEWMDmfdLtkUce4cwzz6Rer5NOp7n++utZv349Dz74II7jkMvlZm3f3d3N4ODgQY/3oQ99iPe///1Ty8VikaVLlx6u8MURqHLbbSROOgl361aMeBwznW5KHFGtRlQuE5XLeDt2NiUGIQ6XzqxFb2edKARDa2rVKjXTRxmK5SzBwiQiItA+hm4k17J2K0vU9NdWzHOAKgCrdSeDlYFmNOWI5u3eDVFEfONbUbEsZutqlBVr3Ld3VJJuQgghhBBCHEbzPum2bt06HnzwQQqFAtdeey2XXnopt9xyy3M+XiwWIxaLHcIIxXxTvuVWKrfeCsAxv7sVq7OzKXF4u3ez7cKXNhYmu7wKsVA8MjjI/zljAgBzT42fPvQzyMCrR8+jpupY2iRBHMeI0RLrhBKkMditA7IYGGh00ULlbYrGBCPJGhlXZi7dj25UuJVOXke9JaSWGWXVw70QQTCRb25sQgghhBBCLHDzPunmOA5r1qwBYOPGjdxzzz188Ytf5E/+5E/wPI98Pj+r2m1oaIienp4mRSvmA394BAAz14bZ3t68QJRq3mMLcRhprbFj5anl9HiJ0NS0+i28dfS12E/5anKMOBUzwRozyTJl4WmNowwyoc1ozidDmpSTYKQwOtdNOeIFIyOAwd2v3kLoRKBh0fZ2kqU44Wil2eEJIYQQQgixoM37pNtTRVGE67ps3LgR27b53//9X17/+tcDsGnTJnbv3s2ZZ57Z5CjFkUoHAT2X/i3KdhpJr0jP8zl+hTjylN2AE47N4/sQ311k9VfuoP5G2FBfvl/CDcAx4wzFujlG2eR1RCF0WW4liFemZ+Bst7MMMDw1aYCAsFik/tDDWEuOY2atbKWlTrIUJyrVmxabEEIIIYQQR4N5nXT70Ic+xMtf/nKWLVtGqVTi+9//Pr/97W+58cYbaWlp4W1vexvvf//7aWtrI5vN8p73vIczzzzzoJMoCLH9TX/G4rd+BAAdBkSFGmZ7c8Z0m0W6l4oFZM94lY6MT2r7OIlyDbsvT2BbZCsptjt7aAty7HEG6CZFtxFD+Q6us4YsCpSipDUPFR8mN7qYtt1ZqkmPRDKF0oqCWyAXzzW7iUeE2iOP4qxdi9GxjshqdDNFgR8LAYhqYROjE0IIIYQQYuGb1zU8w8PD/MVf/AXr1q3jxS9+Mffccw833ngjF1xwAQCf//zneeUrX8nrX/96zjnnHHp6erjuuuuaHLU4UmnfJ7lsA2Gtgg4DtA7RZbd5AUm1jlignhgewgnBIcRyA/pbFSsGHJbXe1nlLSUXZfhu18+JB3F0tYNWu5Mge8zU/oHWPDlxL7WiTTXj4lkBx+XWohVs235PE1t2ZAlGhrHaWnFNY1ZVYGCHRF4V7deaGJ0QQgghhBAL37yudPvGN77xB++Px+N8+ctf5stf/vIcRSTms7BYJH3KCzDiSZRSKGUR7holGi01JZ6oWqXr7X+Lu+NJtJKKFLFwjLrDmDGX8jEdtDzwCP/1vGPZuWgLqf7E1DZBUCE5OIpuy+Irg5NMqKFxgHR7AvaOUBjcQ+t4ioFV4zj1BN2JZTy8+y42rr+geY07QvjDw5RvvZ+h3CJ0zxICczrBNrqoQOeeFhLVVBMjFEIIIYQQYuGb10k3IQ6lIJ/HyrahlCKoFHA2rEIXami/SQmvQJPacAqpDafgDmxrTgzisNNhiDKPrlk3++v99HZrjIpP7vFBSt05ADLRdBIoO14lqoxidawjDryR7NR9ZsoGwAvyrH3oRIaW5YklItZ3nsfDA/fOZVOOWGPf/S/c7Hk8cNl9QHnWfQPrxnA8kw235JoSmxBCCCGEEEcLSboJMSkcHcO0JittTI0Rt4mqXtPi0Z50L12oqvfdx56/vBwdhjgrVrDqv69vdkhzShtVaoMBHZUSyd0FKsvbAHAim93OABWjRqpYRLvTVaY1IgI0FVOhu1NkWo/DrQ8z3B+RGkqRT3l0t0bctr05lalHEq01pV/fRu3CVRiBIrKmx4Q0fIURGhihAdjNC1IIIYQQQoijgCTdxFEr8jx2velPMTIZnCWLSZ7xQkxzceNOHWGt7ISVnU2Lz922G7250LTHF4dPMD5OVKkAjUq3o00iVSXRZlGJ2oiNlPFijfVLvG4W+R2UVYV1e3wiXaRf1YjrGGNoYkbAsjUxdictQh2n6m2jM6zTVzXRyqJuRkQ6DVEExrwesvSPEoyNEVu2hrHY4FTCzfAV2ZEU+d4ykR1STZbQrimzvQohhBBCCHEYHb1nJeKo5+3Zg7tlC9U776Twk5+CZxJUioSVIire/Hy0nAcvXFG1ioo1Mk3etm3oKGpyRHMrChzCQRe7v0x/vJ2kauGc4XNQWlMO8li1Iq9mA0auhV6doA2DbhS9ZkRrulF9ajo5apGixemgpxYj1uKC4RImutEDA01uYXMFAwO4W3cRpDOYtcbXfGRrQns6wRsmLIzUUka++msqDwzj7io2K1whhBBCCCEWLEm6iaOWv3s32mucwCutsc0WrFQWM5lBxWzYeStsvQm0fpojHX7Nj0AcSn5fH9qdnBk3ivCHhpob0BwKwohMroDZE8MOA5ZURnmJuYQPjf0feoJO0laOZDbN4pecT2n9+qn9shhk41XMsPGeNawM6AL1oExuKEOYDuhpj2ixlzKw7f5mNa/ptOfh7d6DsuJUcnXCxHRCN5GfHjswcEK0jvB2xZn44SbGf/BkM8IVQgghhBBiQWt+OY8QTRIWprtuLn7zW0gO3ocG6oUq5vLR6UzXktMgnpv7AKXUbcGa+doD8HfswFm0qEnRzK2RkotjTyaCvIit2UU8Na1smiFhGNKnfN5LmZdjs+6YNjZkA1Z5BUBjOmkA+qvbaBtdTrzsUIr5LGpNcVf/vbyWi+e2YUeIba+4CL+vD3v1S6inpsek3PjLY4j9/kbGP7WOAJ/A8kFrNJPdS4+uYkshhBBCCCHmhFS6iaNWNCPxYcTiAChAqRCrMwXKBNOBYl+TIpymkATcQjLrtZfL0ffX72fz2ecw/t3vNjGquTFSqU7lk+2aRyqu6AizhDOyPv/rxjBNk7FIcfziOCvPWYlxTBfbu1eQtxvdci2nFcNaQS2KCMcr1NMetq3JpCtsrhbgKBwrDyAsNrqJ+i0Jiu0V4kWH7ESS7r0h1kP30RPrJbc7IlGJowwTHQWgIsyc0+TIhRBCCCGEWHik0k0c1ezly/F37cI0Z6xrMTGjxiD3OK2w+3bov2/ugxsoAudNLkgH04Wi+ItfgGlhLlpEODKMdmvoWqOrqfHYo1S/+HmsJUtxXvf6BVntOJovQ6pxO9QOXWtXscvwKeORJMZeIjYTUggVuwMbN5kl1pZuVKFi82TbcmoqgeW0EEVlikGZleEKnMEYJW1Sq5qMaR/Gx6Czq6ltnWv1TZuwOjrwikWq7ZAYCykvUsS0TSI1TtkrUfDGKS0zsOuNzzhlmKANvN0ldKRRxsJ7zQkhhBBCCNEsknQTRy2/vx89Po6da8EwFfsSW8qekeDKLga3CIE79wG6eZic1fFIGFdOHBoj//KveDt3gm2DjtD1yYRbLEZm0SLMeAxGR8D3wVl41Uf5QnEq6RYvFvFjWV5cOB0Dg20EXEqFRSrg1Z5FITJosRU1LyBhm6AUo+l2LN9HpWys2LHsLd/G89tOw44pYq1VVvmK2zeHUCgeVUk37XmUf3sLwcgIANXlrYytDgBYsbMHu1NhLerGigxQEFohWmuIQjAN0KDrASppN7MZQgghhBBCLCiSdBNHrbBc5pi3vwWgcfI5xYLe04lWnoMefBgzbELCDUC6lC5I+8ZzM5JJDCskGK8AmuwxaxoJt0lRtYay7AVXeVSoVqdum/WQzsxrppZrACgGQps7yikedh1ekE6ScKxZiefAtrEWZ1GPLQJsqkGJeMWh0lrHsTXjeI3E5Zo1c9WspnO3bmXk85+fXm612XchIRnEiS1ehJVswwwBCyJL4/f9CjO7HrNlCQBRLcCQpJsQQgghhBCHjCTdxFFL1+rTC6pxeqqAPr/GJQ/8A/79n+JfXvQvvODkS5sT4Pg3oVn5vmdpyznnEpZKKMNg3X33NjucI0pYq7HlzLNAKayurqkxt5wlS7ATFYLutXRd+n7qN39v1n7+rY9jnngM1oqOZoR92HheHX88IlUsYVWnK/n6cfki/tTy58oZAuCV8ekkUGe+n3yqDSsKKCZslNmFMrsYre+GsSypRIJBKyCybKhU5rJZTef392OvWE5UKkM6Q9jWSnKiihEa2JWA7+S/T+1EjxUBU9/8odqC3lsFNPbS1YQlD6s90cxmCCGEEEIIsaBI0m2hGxqEu+5qZJNa2+CFZzc7oiNHrTZ1U2uNMTl+VlLbeJFHa7yVifpEs6KbV4KxMQhDNBBVqxjJZLNDOmJExSK63kjw+rt3Y/b04CxZQmzFCsza4zDRRlSroDXUR8ewUklC18NoHUdXvac5+vxT0XVSbQZeWwvWvWMMsYPhRMD9gcN4EGHrVuJo6hjkVITn1vHyPr0xiy6vQjXRQtwvUyCDYcZQRhKtNBEhlfYaGaAllgR/4T13f4g/NIS/cxcAre96L25rhWpr43V31Y7vsccYxFlW43JfQ2PeGJzTT0U9YWBklxIVPcKSf7DDCyGEEEIIIZ4Dmb10oRsZhYF+6O+HbVubHc0RQ2/ZTG79iVPLxowB65M4+JHPcHWYW+76CdFROgvisxI1Zp5U8Tj+6GiTgzmyhPnpmUrRmnBggNo996CUg7P0VNKnnI0yDeKtOeId7ViJyUqjWgl3207Kt9/enMAPEy+YTnbbdYtuVnJC7Ri8oJUh3Y6PIlIKA8XlLSVWdeVwcq3ULYc1o9toqU1Qs9OAxmxxMO3VjNT7yXrTid6KYYIfHFUzmE51W47FSHl5Qnu6THaTu5P+aISdyTJ7i3sxI5s2u4Mw6eAPbkf7BYxMSFSTpJsQQgghhBCHkiTdFrr69Akuvj+VHDla6SBCuwH85mZSzoEnJ0hiE48aRaDbtz1CYXhwLkOcd7TvT423pet1ovHxJkd0ZAmLhf1XGgbxFeuJr72I+Krj8MeGYMbYgbFcC6ZfRZVrDH3ms3MY7eGltSYwptvZF18ydbuoG1MIP8/xeHhlP5/y4PXtGmU23ou2jtCmQ1tlnGosjdOeINNpo8wehmo7SbnxqWOlEg7RyBBMduVd6LTWBINDACQWLSLjh9RjjUkUiKAQlqa2fYR+QsNn3B/FXH8M4fBelN1CVDIJxuoHOrwQQgghhBDiOZKk20I3c1yjMDyqKj8OJOwbx/3fxw86G6hHiEfIR4JzAHDtiNHdu+YyxHknmtFNF6YrbkRDdIDnI7ZsDfFFxwABUCUa2kFq6VKgkUCpj4yiQpe4N4yVbZ/bgA+nuk9q8RiRGzFesHmseMLUXUUUOSPkBYk6P9/wSqw3buT2Ey6Yut9G4fccSyrRScotgWGw5hhQZiuLezcwMVImkY+DhpZ4DDeow/hYM1o558av+Rb5//ovAMx0ikhDKVdDBdDZl0ahMCe/7uszZmLWq5ZgdWenlqPCPBlEUgghhBBCiHlCxnRbSLSG708Oxu44cMFLwX1K5UK9DvbROztd7YknsHX6gPOC7m73ueV4D0NDbLSTzvscHF9RnmjSibuaH7NWRrXZrzFJus0WzUh8K6uR+EiuWz+5xmLil9/D37mVtoteBkBldx/KUI3x3TocsmddONchHzZRzceMexgxg3gYkvAMnsCnbhYYVTVW2AmWLF1EaJgopUBrUoFPPHRZagQQWWSUIu7XMXyfSizN6twgZmoRQ4UygWeQHErRYUa4OiBxlEymoL3pZFn8uDP5wUYfve+Smlmn1+hkQpfoMdrxvemx7sK0jZWNEdX6UYaJ1gtr0g4hhBBCCCGaTZJuC0mlDMqA0mSXqttv27/Sw3Uhk5n72JpIa43/wG6UbUIphERAZDoYYePkMwhDNJqdiRrVeONMNWgxGWn1MAyLyoRMpvCH6HoNe+VKgqEhzFSKLakRqqM3UY9qnNF6Dlm7tdkhNpW7c7pSUgcRKKhtfZIWfxQjEcPt34IFVPb0YdgWxSc30XrSCSQ62tHaIyrkiep1jHj84A8yT+iaR1BKEA1X2Usra7E5DhvCDmrOZhJOK7FFS2clnCu2Q9WyOY0C5OLYlTqYMczAJwo1qS4bM3QoDoxjdTj4BiwzHeq1NogOXNG60ETlcuOGYWC29FDq6GfqyoLt0RcNA7At7OPY2nKK1QopO40XeVh+DWW1oew4Xl/pwA8ghBBCCCGEeE4k6baQFEvTCTeAvX2zu1GmUvtXvh0FtBcQjZQg0ljpNpRfnUq4AVhmYyyphBMDJgcSNxTdsRzxLocv5r/LF772H3Med+hVCPkWx7GMv05cRMucR/AH+D4MD0F/P9HWbfg7dgAQVKs83jNOrdwY1+3Y1PFHfdLN2/qUCUw0eEP95E2H8VqB7a0ex6kOUksb45uN3nMfQblM6OZQyQyp408iGJ/A6V3UhOgPrcD3SHUXARt7b0QSxTgRLSiGvRzL2zOQalwU0FqjAKU18SjEWtJOsHsCfFgSBTyUaSdRrxDryRIfN7g3uJmza6eiDY0VWrgj/dC6rKntnSvhZEWf09aGhzmdcNNg+5o4DnU82lQLVXyyyRSgKQdFMl1dRG4BCAG78bzPkypbIYQQQgghjnSSdFtIKuXZy08dt6xSaVS6HW1q/lTFi9IRRI3EWqQ0SoNCESpNKTk9yUQ9afLGM14FwK1P3kV+58ich503KxRTATsYZ329l0v5P3Mew0ENDcLPfwaAHhgksgyMoPH8BSoEGonMQphvUoBHgChAYxCM7D8RR1At8Y3ij/mh9yt4Ify/kSWsmbzvoe46Z5VKmLEYhB4q9IhG87AAkm5eUJv61vE8g+MxacNgOyF54rwgMWOY0boPCQcNZCq7UI/fSuz8D4Bj0vOzn7DDPJZiKoe7chXZ2DDm5pCwHCPqrkAspBpyVHzeac8jKjUq1BLdXVSYnsV15YDJSx5L8TEnwFCKcV3AqptT95eDAlZbG/Xto1jpbsIxH+2GqLj8NBBCCCGEEOJQkF/WC0m1ColE40TzYLOU1hf+SehTaT/ELOzBKuwGphORjyz1uHOd36gK0aA0jUTlZJVHFIYEOiKXyOKque92VdbTSdQjrpPcyAhYFoQhkdbc/y8XU1uSA60xZ7z0/Mg76CEWvN//M+72PmoPPrLfXY8thR/WbwJDceGxZ9P/wuV8nTKnb3IYv88jqFSnN66XCQvOHAZ++Lh+fepbRwchELGTgO2T97dZEK+V8U2bhF9h3dDNmPnbcbxxHl0EAxNrQBnoNX2o3SZLd2YY6V1Gobebrq5VlKtmI+VkQF0lj4qk294P/v8o3XgjALmTT2S7E+KUbRzXpK0aYmhFl04xplzqeEzUi/RNDJBNZBizRzFbc+j6dIV0WHAxJOkmhBBCCCHEISG/rBeQ0i9+SaYtN2td6PmobBajPjnD5FHYvRQ/RAUuCs2NJ9eoOprQhEVjxvT8vQridajZGtvT+AkDAxMHk5UdK/ny5d+c87A//JlX85P09qffsBk8D1pbYWQE7bqoELTTqKAJZm52tCbdtEZjMXz9w6iYiXYbswZbrUmCikchDa3liHwKsrEUmAYhsMmZYHO6wlljRVL9A1gt7QTBIDqXbm57DpHNw+OwvHE77oV0YNEBPK5deo2AVSmDeqLR1tUjd7Go8AQT0Ta2rexlqGsJ/tD9BIkWgngc3b6Lzr3HQKSJ+zV621ewdyRgrZ1CxwLK2TSkU81r7BwJ8nmMbGMGUqe1FTcWoe02LPck9sSh1DvEspEcq5xOdvl72a2H8KMQ1/MouAVUro2ovI1gdDOxlSsIKz5H71Q7QgghhBBCHFqSdFtA/IF+aoGHk8tNrRu67XZa3vo2UoWJRgVX/ehLuukgZDDn07eozmAuxLUBDWV7djWgZwGGwk9Mj2fkBi6mjrjm9n+Y26CB3BlreV3LMYxWxgm3N3+MpVF3iC3lJ5jwR2llnDV1l04sonic6uJYY6MQEoFFLdZIvfn6KE26hR5B/250pBuTJ0xqO3s1Y7/ZRl+Hy0TWaHRtZvr+DlIM23XsUo3UZHfS2vYnsZYsjLHJdo8Nk/TH2NXWS6Ka4xFVI6Mt9mifcSxMczrdY0UlzPKDDPUuYdOqN2PoGPHaVlzHQnkrscwse3u7CO04aa9CT9tS7q6NsjY3hlm2qFp1GB5uYmsPP+15KMDq6kTZCYYrvdRTIemJHmx6wIJqNskrBldztjqfn9tP8E/ef+KHPolUjFpQp7Ykh9maw+pYS1iCqOw3u1lCCCGEEEIsGJJ0W0AS3d0kOtoBePJfvowOQzAMYjt3kiJCKwW5Vsa+eQ3a8+h85+VNjnhu6LrPlvYRNi8KZq13E7O3Cy3QgUZZ0wmukfIEWT9OaM597YdlOfTmcvTmugl09el3OMy2VB7n4dK9AOzphoGY4jV3GXiVAtg9jY1MqJnTz7MXLvzufQfkV/FGK+zdU8PqyDD88saIbStPWUr2/DfhPfJNYCdJJ87iXM/UbqNGlfGMIijP6FpczkNgshAUCmOoU9rpxGX5VpvjdYJiOMGm4gO8vGsjxyVD+ia3jVf7wS8x3noZ2dJZAKTKGissoXleI2GZa2xbTmRJtC3hiQcrvCDtQ9JnjBh6W0Dz09WHT33LFtxNm4hcA/P8s4kmOqkd04eXUtiNuRVQhs1rovVExVGWdy4DD8YredZ2rQSg2pXEGNiNNTlkYFQLDvJoQgghhBBCiGdLkm4LwcMPocMQy2kkhoJabSrhRhSRv/6/af+LN0OljH/ffYx86zsAtF92KUY83szI54Su+5RiTzmRnDF22z4qBLwQrEafU8vX1L06OR3DDA3mWqjDOX/MP6QSzJ6oYySn+fcLq6RP7UTb+yeFFApPH6VJt6BGkK9z/fkvY81fZadW/zCIeNPWBJVYY5S+VGx60Hu05klngoGuGO/7Py4/rtWwHAc7kyEqlub9rJJaa6r1Evs6fKa8xtdPLSjjaE0yCmYlt+Nrz0D1fZOI6fdeYHdhRGlCQxNQxZo8mopCvGwXXrWftic6yB8zRqnHpbjbP7Jm/T3Eag89RJjPk3jZZzGtDKCop1yUnh4D0LViRFpjENDqNqoqK15t6v56R4J0Yvr9K0k3IYQQQgghDh1Jus1nYQjf+85Ul1ErkyHyfXS2h6Ufuxqvfxej1/07YaVCWC5hao0Rj03tHgwP4yxbGN3Wno5rPqXL1IGSF2GIOVojXDaZvLQVu8b2sjrbxVte8LdzEOVsH/3XS8gsaZ/zxz2YUE+fjFseBDagIMgkmTmSm+OCFwONxo2Ovu7MAPg1zJWX8ILxH5PfuxR3URYMRd00+M81m0gnV7F6R0BkglX2CNIOKMXxleO5ZMcrKJlVxlWSniXbMNNpqnu2kA4uRNnz9yM7qrgoY/p9OOJD1RzDrg9xSnkHFxz3PIpeRK6WJ1Im8Q0noO9eRBRrQROhMAisDFolCKwxIgLCoYh4ysEywa7maUvGGKiaJOsmiVBRJljQSTf3yU3Ejj2WSCmsyc80gwhqcUJcTGKgDELTxogCWlWaU6xjsT2bgcIwSimKySqpWpFgbCsqFodweZNbJYQQQhyBbvglDA+BbcPzToFjj2t2REKIeWL+nsEJ2LsXYnGo1xtdqJRC2TZaRVi5dpTjoD0PM5cjCkNMw8CMx+l60bkU9w4QjI8fFUm3YO8Q2fYY4zQSQEaoCAIfIzb75a8dk91jCbo6bHLB8RhRgj9LnI058G0e/vUH5zzuWTN/2nNT4XT9/X3cuWOc0ZLL31y4lvW9LXh9fUz8139RPCkPqzMABDMm04yHceo0quDMsJFw2+eoTLrtuQuGHmJQHYeT9XAXN9I+gedj2Rauclme6cRcZxFPxRsJt0lBPGDz2XvxnYDKWIzOMYXpOJRuvhnn56vIvebiZrXqj1fzKUUuSRovkKWezaKwnT3xQYxqD2ldZDSVIp/IgdbY2RRq4lE81YaarHaLIoXSDo6q4qkqdvsiNOADvh2jI1VEeyZhOqAGTFQiFjervXNA2RY63UYs1nhfRkSMdwVY2gJfT017vCOoka4oxqqK+9uepMtv5/ktzwNgW2kLK45dhUo2ukAHE7UDPpYQQghxVKvVpv/l882ORggxj8x9nzlx6PTtgUIegKoVYyDdRd7JULMnBysLQ6JSCX/PHvzxCTSglKL95JNQ5RLh2FjTQp9Luu6yt206+ROZmvyuMpHW6Ml/0Oj+FmTbsZM+yepxJOpriOIrOY5lODqa83/GjDybYc5N0u2rt2zjh/fs4X+fHOaJwSIA9Ucf4+47fkM+NvlxMXkiv+95yyfKJFwTNIQzepnaONg4HHXGt6In+thUqBC2xHFGKugowrQtUAptKmiJs6RnER3pHHZt+m9bStXYu36U4TV5tq8fp1wPCD0Xb+dmCtdd18RG/fFq+SppMyCa8PHrBpbXeLGUagXQAQSawGgkwk0doup5ALQy0TS6Wms7R2Rm0boTL1kmoo4OXNARMbdMwjYo+NPPZ7XuN7qSL1Cl//0N4d46oV8lIsKxXbyEiaFjGNom0hpKY3Ql2+nNWHj5URI6Rtyf7sa7vbCNHaOPTS2HBUm6CSGEELPU6+DP6DVTHofCboiOrKFghBBHJql0m88qlambmztWsaO7Uebc6nucUc4T+h5GWzvR+BiR684aUNyMxwkn8nMbb5NEtRr+U4YcW5e9Aj1ocNWjr+DtL3lTY6VWHNuziJouAdM7ZOpLiNXmfiKF1yXT3LtvYY7yBuGMCV33jjcSlfXBPvr/6Zyp9ZEGQzFrfLFabP8fHT4e4/7I4Qv2SBR61Aa3oHU3Y4GJvbodrzOFF3jo320hcc4GtMn05Q6l8BPTf9xoxoy6bsan0p6kJdWJMk2iYn5Om3KoFUouUTzCaLUxiLAnx3TzwjqQImZGBGZjnW0YUBvFM1O4zmrUjPcjSoE28OxRYuZKLBpj5rmxNKevH8KoT489WI8iiCIwF8ZEFE8V1UJSL3rn9AozQBHD9juByV70mXZ8s5H8dnQ/PZUV9Ns7pnYJ8HlE72DV5HJYlKSbEEIIMUu5DBPj08uDT8I9t8GZ74dUZ/PiEkLMC5J0m8/cOl6lQlipMjGk4cJG0q1smNyY6yTKdZL++4/ALd9lcXn27JdLLr4If/woSIjs2I5T3cy+jGO2bKL9M1FY+LrGYq+Htf/8CIU//UcAQtOlHt9JhIeBBdqgYHfQXfkDj3GYdJsGTFb4GHM0B6M7I+vmhRHX3L6Dr+zN8XYaPzS0hkLZIp0Msa1GssgPA+zJZIkRQTSjfjYkJNQhplqYSY+n0sV+Xn3XGWyuhvS4A7z1xe2ooSK4Nmf3XYD18wybT+5nbGlpcgdm1Rv76QA8UJaBGZhMpKC3Dk5HJ1G5fMDHnC+qbkAsMf36slyTiIiCX8ewunj4eS+gbk1O7KIUlIcodL8A0PhGAd+aYEXfvUAbioCNj3yFh9b/C4E1PVFF2o4RZGpTIwyGVgzt+6gFmHSLXBeYPRHOzmP60ew/Oc6YG+DUaiSskNzEUnS6yHBxlLZYhpSdZLAdauXdxMwU2mudoxYIIYQQ84Q7Y7gUY8YVar8CSNJNCPGHSdJtPisWcVIpQtMkpG1qdagU0WQV0libRf21Gxj46mPYgxmc9jYM00RrTVRf+DNLat8nsKYriWL1CL/QBilwjASvPuZjjJkjWEYj82FoC0M7jQHIARSU7CTtxty/VdTM6rY5qnTrTDvsGW8kaGt+yETVx06EVKqKVFKjVKPKbV/CTWvNWCVPT7YDmJ1w28ePPEwzMTcNaLJw9whJq/HeW39sEXaVMdI5Voy2kqt14VTi9LTWMSLId9UI7RB8iBwNCpRpTBVZhk7IvevKDGzNsfrEvyTadTc6ilDG/BwVoFrxcOLTL+S6a+LqImW/D2JLcZ3E1AQnaaWhNMSe1rNx/K24sRa85HZW+rdRqa9sbNPvYq2tEEy9NYdBWwTp6bEQg3SMYHQUe8mSuWrmnCnddBPOMRuo1SZQsSQpR1PvqeG4vfttm0olaQkS1PyI9olRPLK0OGmsWIw2O8ZQOkPMzWHEskQVmb1UCCGEmPLgA/DEE9PLkYHbV2X8lkdZtOheyK1oWmjNMPaDJwlGahBGtL3pWOzu1NPvJMRRTpJu85XW6GQSd/t2PNcn7F0OgQ+GiaEjosnyGR2lCLIxymtWMX7fdhaf2w00Cr+Ohj++rlTwDU1nwSBUoFxwUrmp+1uzK+HYnhl7GCRLJ0/vj2ZXFYL2NXMW89RjD2wC5vaL7PH+4tTt+3ZNkIh8WjIBqWQjWRKEUKsbtDTGbUcpNZVwAzDCRrJQwVQypLprACvWitGawkgu4DHe3BLRxAiPlRrPVToW4MQUYYfJmt8txYkaFUgrHlvEiscWcdfLH6HQWUehCPywMcHHZCWY4SoiR1PPhAyuqHBs6hjMpQHB4CB27/5Jlfmg5gZErsYYsUmbFu2ezdfVL2mJNIlYgmhfMlE3krtl38TNriEys5hhGi/Wh3HRZzkm3pga4Sf/egnZiV3UFzV2S9QT7PUC7C6DRMHC8BRGzcfbuWdBJt3crdtQdopEopXAMnjktALDnasxosx+2/6ummJwyKYlSpDJx7gj3MMJlVVYUYQTyzGWhXDIxQB0MDdVtUIIIcQRb/euxvjZxQLQuAauACKD4r07WTT4AKx/Haj5eUH0ufAGK4TD1anbknQT4ukdDXmXhaleRw0NEe/sZCxfx129HqzGuGOz6hS0RWhGBOecQq7reVAdmrpLBQt/8M+oUMCzYaSlkczIlZz9h/aPz6zCUiTclTOWFHa9zKLbf3jYY32qweNndPOag/NgNwipB9Ml8w/15dEaNh4fEEZgGvDIfxvUVqbp6Rw/4DGifb349PT/azsHSLoVrPWLMJZ3HHC/BWFiG0N5C0sF+FrTvSzAXdEChCQqT33VaU775fGoyT/sr/7iXrzk9Dt31SO97DhxgNCJiJTGtwOUH+L19c3fpJsX4KyIEXT4eFWN0gp7YhAdeQQ6iwFEQEd1gtMWtTA06DGaXEtgZqgl7gIFxowftX49wN83IYCOqMUztJoutSBDraXx4zjo7sHdMUTqhXPf3sPN276dYFhjdUM161Dp2kiqCiH7zxj8cz/L7dVFvDBe5eT83fhGQAWPjmQnIR59ySqGV4cEEEnSTQghhABg0ybYsX1qcd83pOHYWJkskRdh5HdD64qmhNcM4VB16nd+ODG715SONGhN6ba9RFWf3MtXHeAIQhx9JOk2X1WnBxmbSLURZlsbA4YbBmCgJz8Nrcmqh72pUTaY3UzYMZKjw8RaWjAcGx2GC3K8oynFEuGMi08GL591t9Z6ekIArVEHuFJVbunmia39hzPKA2rZMJ10C4vFP7DloVGo+bOWtW78J5fxMQ2o1Aw68yV++NBi3tQHG9uqXPfC/U/woTHchaEb1W6+MZlM8qMDbrtgBB7bqjFqkY8BWDO6Naup6iFNI7VkTCXchniUKJzdpS+fShCvdFMzhqnlXIaXT9BdyOE+8Tip006bk+YcapWqS9DaqPaLVRxGqBMrNrqCJrIOkWFiRAGxwEWZBlsSXQQqg6ZGYDeSaDPHBjQMA8plzKBCaKUwgzpJO44ftBE6je0jM8LvG53jls6N2kObSZz1YQCC+PRXuTHZNX7mZ1vMNAHN3fUEL7QCjqucQBhOX3RpX7oG/Wh96gg6iFDW0XPVXgghhNhPFDUq3ZSCZJJqEGIND+O0ZLHSaVb+yf8hLG7FePi7cO7fNTvaOaGDaNaQN97u0qz7CzfuoHzL3qnl7IuWYcQl3SCEvAvmq0oVz/UIxkZ58iWnohnEMFowI4gMCzBRGJhBC61j51HO3oHZuhQ7uZYg/zN0oYBhGKjBAezFC6/r1ZRyGT82Y3bIpyTVZs7AiTpwhYdOZ6jYcz8mWXbGl9pcDOm2c7RKd9qh6kdccNZWehe7GCaM5xtVWqlExAvuu5WX9t/AutddRGu8je4Jg1IsoppsHCM9GrAyH6OUhp09jZN6z2wk87S/sMeK0qHPr8Y8NmSg4EPCCQALFSosbaJpJB1DQgzU1OQYkeNS+sljWBs6MXuWEE/2Eravxw4CvPBunHrE8PI83ZuX4W2/vYkt/OPsLfWhCwEZt5WugRZMNT0WcTLTSBRFhkU95nNT4rfUnGWYPigSnPHTFSRqy1Cnl+DCLgAMQxEFEFqNbg2OV2BrrUqHsxI32Zid06dGUFp4X3NaayJ3+v1UtfzJyV+cqWSuUooojCh7weQAkQoPSGW6WDSWJR1OT66zuHctY9YwmbJF3EoR1gKszALuCi6EEEI8nccehUwGkknoXUzl93fiDA7itGRRSqEtB+WehedmcUIfTLvZER92kTu7l5Se/C0Slj0G//k+9MxeVJbC21MifoxM0CTEwjsbOQoMXfUPOL5La3cXdu8i/FQ3ca8xLpk2ZvdEVBiY/iLsymlsj8dYrTSGnSCeaiSf3P5+WMBJt8jz8bIJmOxyZaqn+ULU0dS4DBEBUaDQiRSD7/nUYY50f6Yao3U0S2gWqRn3HPbH2zZSZnlHint3TdDR7ZNJN74480XN7v4kS4IJ4sNFHN+j1mbSqQ3GMtGMgezBH57grD0reXyJP5V0cy0f4tZkFeYCVivxQMHg8fJkralTBnKYk6WWanKcxaJZoy1sAaCkPH4arcLZ0ULCWE3r3izpde0YSQtDKYpWGT9WZ2yxg2XE2JYfoudgj38E05EmFp/AG67jtWpGPMVeewjD6gUcTDs2tW1oeOwNBslyLGaUx647JAsaIzQItpUo3LiTlpeuQJkKb6xKdvhBlGlRT/VCCFpNV2xqKyQYLTShxYeX9jymZtwA6rkAY7Lj/L7kG2GAYVpkEw6dMZusCug16hQtm+MKq3jCv5uuyf27Eu3YSpFMN7rWB+NFrMwC7gouhBBCPJ1iEeJxqNdh2TKCn/2CdNeM70bDAsMm0h1QGoDcsubFOkf0U5Juft5l/L824Y9UIdLgT5cJmBmHsLawL7gL8UxJ0m2e0bUa+qGHMJf0EmTSeEkT27X2G/NLE4FurDSUTay+giGnyupqERVLENYKhL5POLowu17tU1Vl8rHGSbhV75iqNjqoGZVwBhYGEZZlkkjNfaVboBZhBzHsoA3LPvxdM8fLHkMll0iDMfk8aQ25ljKpuIXhWTjVGlEyRtnx8XRI3FN4/jK0USXmh+S9XYREOL4m5oHha0JCqAfoysKcLXfnaIWdYxV+f1fImBdxTDxilT9CbDKRpEJodClVRGhqRp0wzIKGrxNya93k3NgSVq/pJb600R289Ogom9N3saI9iUJj+BZulGd08PB3Mz4swogJXSTelkR3VDnunqVs1QWicJwlrUtpzQZot0JgWqA8YvVlGNoCMjhuBStQoBTe3jJaQ8YPMQzwB/LUzjoNQ0coQrpTbUTh9OtM2zF0vKV57T5MokoFZU0nKvWMrhtqXzLOnPH1bpkUtUmSGL9KnIBXT7Lc9ai6NUwNL2w5g7z+/dQc2MGeIVjI4y8KIYQQT6dYhEIBXA9a2wiHB9GLeqd6nxiRh6qOEtANtfGjIukW1XzM1tjUWG5R0aV6/3DjTmv2yWg44RIMVuDEzrkOU4gjjiTd5pnwscfoedE5APiGxo1HRHYSM2gk2vZV0ygM/PIo9mS1gkJRNWwITFQijaldzHgcf2ThJt10FHHbhjp7OxoJyGzxBVgq+Yz3P+63u+g7rp1SLn4Yozw4barpAVvNwx/DXTvH2TVWnXy8xjqlwJksDoyqdYgi9JolbNCNGpmYnyRROweFQhOws2Wc94Qj/J/AwHUS4Ciq1cmxooKFOabbzx7u57M3bZ5c0vxprsj/t8jlO06SGhorMAGDniWb+NTeEqnNv+EHi9/IuNPW6DdswS0Jj9OSjY9jHWmiWkBHdQmGHiE0x6m1uBjxNEUVO1gYR7YgJNbjYnQ12thaiGMaE5jK46XrVjHeFfBQrNFNNBH4pEunYWgb2y2S6/dAg5GyiMo+/u4S/kAFZSiqYRtLKjsYbzsVAENHGGH71MNGZoQK7dljNy4AEwMjYE6/FozYdFfQqaSb1lNd5hO2iW0aDIY2g7RBTNM+kiOxJo5SCnd8M15s+v1Z7RsgzYa5aYwQQghxpHFd6NvTGNdt8RLCep3yrbfS8sHP43Z04ww+iPLKoEMI0+jCHtSik5sd9WEXVYLZkydEMwbACfYfDOeplXFCHK0k6TafuC7mffc0BrhX8F8vrFFxItpH0gRGmbBewHG6UVhoNGGtit0onCFSdSJtMmjH6HHisG84n3LpYI82v91zN9x/H/7zG18AHUOXoPaft3R/WkOkSZQ8nFIFf8BEhdk5GVNtv1ByISTnblylcn26W541Y24NazIDF8VtMC3MFb0UqeNFAZ0T3YzFIxpd3UxWZV7MGqeN8q6v0pgKEVyj8eWsF+hsuVuHyzimgRc2khbG5KslMBv/N4JGIjzUAUsH7uSe1CoKVoZ23yVScQKlGbdAZR1qZZfCaJlfbO/juHSKuO+yL88WOCG+lcKvlbET6blv6B8h8kOM1GRSR0OiEmNZMs3ipRvIxk36rOmkcqQAHRGYRTpGSizZMYy1rIdqrkS0qYblxdjz67tQZg/FsBNVLbGvRGvbxDCr2jPTx7JDDCdFVChg5nJz1+DDbNvDm2mZUenm2yahqmDq1PRGYTT1Rj6xt5X1PTn+70/vQwMmmuGRNRRqfRiGwS9q/fQuSdI7MkLKs9m+6Um6eMkct0oIIYQ4QuQnwLYhFoP2NtzHH0eHEVau8YNDG40r0gogCsEtNy/WORROToAFYCQtIj+EcPZZkr06i7+t0TMjqi/M3/5CPFuSdJtPdmwnMkyUhsi0cGprsUtLABOtauh6DeU0/qSBN0rpkVsJVh+Ls2QZjtVFqGDXeD89ToLq2DiGbWMkn3nl17zieSgg4avGrKTYqJl9cGdUgeyjJiuxtGVQz8awa8M4T+xi4JGe/brvzgX/bOha3hh8dC6SfhU35I0v30U6GZBITH9Jaq3xfY81AybZd7wRP26xmVFW6BxWGJ+qrIlUHStKY5kJ6oNjQKPiaIKJxoHChVfpprVm587xqYQbQLfpUfZrtJUMAjdOPN94j5XcCqV6lWomQY87hO90k0Sx19J0peOMVKq0Kg+cMv0pH1sFrImcqb99YId0xlIMPHYny06dZwkRP0SriHDQZGm5BSMy0MonG0uwt2Shew3ay6OApp4BQ8cwwhiWP4KdKmK0rcCLj2KoEC9WQxfBSisiYqj8TrKJxzAtAzdIEhnTXcFDA1Sshc2b7+W40+bZc/aH3HwT3sqzqOkR0imTarIXU6fQRGg0ulZF1Uz8uIWdaJwYBGHIi9Mud1cs2sMa9VILuWTjR3HZKdPnTJA1OiEOqt6MywxCCCHEEaJSaVS7uS46nmDv/3cFZiaL27cduzOLYZhoM4lhWRAFaC9oxqnCnNNRhLMqi99XJqoeeLw2pys1lXTTniTdhABJus0vQ4OYUePDa2LRWgKSxKIsoDDDBLXCEJbVhTJMwnyF0sO/ofTwb8i+5+VkeRFahWxum2A03Mqrkwn8QpEgWKADXOrGSeNYOkJpe6rb7VQ3swN0NdOWgVX3MVyfeLlGzP0N5//lO1EDA3Ma+j5fLczt13fF81m9rIJSEEUaTWMGxECHmBictyWFGVdoBStopW74uEUDJotrtPJRUaP6JjkWkS5pCCOCwIWkjYovvFmd8hNV2ixFi6UoBJoX7b6X01IRTms3Q60VoEpH0Gj3/+68D41mONbJ3kRj8pLzUwn2VCq0Jx0qvqY1nSBRzDMW2IzhcjEp9l1TDOyQjlgLmzfdM++SbhWviFNW+Iug5Ab0EZCyNIta4nRnQnYlWhhLN7rCx9QQvjmGU7dJ1OoEXhuZNS34o1tJeUlQEToPdqrxzBS9brz2RldIb3A7ShuYfgbLC0lUTXR9gLGdJTitWa0/tHQY4g2PkO44Acu0mMh2E5oWoapjaAsDCxIZtFvHMBtz5CqlSDg2H15U4codFnu0A5XpSjnTMhm0pscLtEeOjiv2QgghxAGVy9DRCYFHsOdBguECRibHPff/isTq41iTduixVWMCp9Ig9MQaFW+G+fTHnsfCCRdv++zxhb2Yz9ZT+olVLVL5BCeedQru9jzKMlGxhf18CPFMSdJtntBaQ7ECNIquyo4i7i0HIMKlPHQno9d+p3G/2egGuPTFb8ZetIaR8C4cqx2tQ5IdeZ4M7+JVfiuJnm4CzzvYQ85r2m2MA+XZYARpNAEKC19XcVTqoPutvfFW1jgfgsilpBehjvl/cNLJcxf4DOq/bpjTxzNtjzAEywLDmE74OaaNrtaJ6caMmnqy9kpNlHls5zBLXtPYzoqyU/sseaxIX1IRmiZ2xYNxn2gBXu3a2pfn5tEaAA6at22/EeekF1PfN/GFNrDcFgITylYGrYv4RhKlNVopXnfxGm7+wUMszqVY09l4/lTUeO5NINw3PoYGN+aTyOTYvGvzU8M44hX9PMFxMRQhHbsTLMGiaAbETLsx2ZXpTFakamqWheXl0JaJXUgR1jyiHFS3jkFLnZaJbqIwIlVtJIYGC0tpA1ToUg88rChDZNZwUwGllgQqvojCwJamtv9QcnfsIDM6QcvKHlTUypZ1HaDimBoi/Kkr7W7RI56LN747JpVTbZyWKnJHIUEi1OgQlAlLo6U8ZD4OQERExMJLkAshhBDPWLUK42MQRVSeuAeAklvmsYk9hA/sxVh5DD0r1wJgJnLo/MPglWEBTt4004Eq14qtVXacOAAKnKrN8zIxgqHGb2NlHg31f0I8PePpN9mf7/vs2bOHTZs2MT4+fqhjEgegKy4MDQEQOWmK3vRVBh16hF5tajm58kRWvvtL2CecB51LSedOIjTKgMLxe/DMgCCaHH9qgV6RiQbGQGk8S9E+fnFjnDutsfTkGGl6/+5TKoxI6aUMuN+j3/8v8l0fgf94wxxHPsMc98b0ojrWAdLwWmu6Rqd72KrJWThVJsdErvvAx3J9nPpkd93JLs8E0awEwEJQKNanbl+UqvLCt/w5vbleXLvRTstrI0qdxwOvPIbsxe8HlWbCbkcDXTGbl25YxBfO8liTmv4Rc/NYyOTFUwbGLIgasxPXcorOVCtj2wfnuJV/vEKtMHU7PllhlTYDWhIxxn2bQqKRcHTtUQzvWECTHi2SHq9j99i4RhmvUqbUMkZo+igUbRON11dY8VFeHW3GsJSJb43Dvi7Pk+PqqcL0eIXzXf2hh0nZOVS8FVRAJZdCo/GNcUJr+nluLT7ALb/5LY8O5KfWTSRSnGBX6TYDaoaiVnTQEbhmxDF7z6ZolDEwqKfT1KrzdKZcIYQQ4o/h+/DQg41JFOIWtf4htne0cM/KRYRm49S57s/4XRH5aJ0At3Dg4y0g2t//5KTcXps6SYjMCMMxUXbjeYpkIgUhgGeRdCuVSlx99dWce+65ZLNZVqxYwXHHHUdnZyfLly/nHe94B/fcc8/hjPWoFg2OgdZEVpJQW5RK07OO1kafZOLaH3Hj8wf5wYv38PDzJhMbk10oba8bL/RQGBhRjIydYjzZ+BA0LLPxpbLQhAGeqWkvTQ/QrpTCMBoJINMNMfzpL4LcngJt23YTmD6h4ROZISEt3NO7eM5DnzYjQXWYLxSFkcYw9+9qPFwc46Ftj7By2EKhCNg3WYBiqDxOKZuZfZzQJ3TL7PnAZ0kXLyE7thLHjbhk+9vYdeVbGP7sPx/ehsyxiUqjUjSZ8Fn7pl1cc06NH56k2Tu2jMxonMxEDgIfFUYYToIV7/4n/vriM3nzqatIZxz6HriTReP9LOvqolKr01+ocEt/CV9rHDyWFB4Fo/F3GV1qYpsOvZlWAn9+JZFGRseJBgxiQwkS5Ubie/PgHm7y2vndxovQGqzII1J1fDOPpoJTrxA3+rDas/jVxswvoR1Qb60SZDzMEDotRVQL0U7jfZ6JxfHtsanHjcyISE8Qqz+n60tHpGB0hFL7ckyzxNiKxoQagVnAd8aoWY/Teft/sWjrdQyN38NPCgkGCpWpfb14ghZvgl7DZYXhEgDKAJUIaK0tJRs1jqcSrezd/EAzmieEEEI0V2V6iIWQkOsKsKW7lWrMxgwjEpZDKaywa3yEAAvGd4GVgfJQE4OeGweqdKtnpn+TxgIHFKh44+KnzF4qRMMz6l76uc99jr//+79n9erVXHzxxVx55ZX09vaSSCQYHx/n0Ucf5Xe/+x0XXnghp59+Ov/6r//KMcccc7hjP6rosXEiJ4l2a9T2bqOQdvHWnAIowsooxVYPpaAei9COzXBtGx3xFRjKxAqzTHi7ScTaUNrBq3p48cx0JZXvN2bnWSB0FKGikMCCfMqivTbjTqUw3YDWwQqhgnpLDBR07RohNPKgEpihjUZTay0ykTyRG+67sintcJadMWv5hqHrntF+tbCCrwNarBznd16EbTz9DKhuEOLY+ydfQz/kvl2PYISr2EmeNuJkaSQ4vDBgQiUp1FxaEo3Xj2naYNpEjaeV0MlSTRsstXKMmHtoqdf3e4z5bChf58SMg5VzMdB4iRDPqbDp+XspddRJVBzsko0GtOdjOjEyNpy4KIdV3MsT43G8lS8lrkKU4TBUdnGDCNA4BBT37iW1/iTsyCa0NOUopFOlqYwN09LTzITwszNey2OsiXCpMeRrysrloR1309pzMq1RhKEilK6TcMfQhsZxTZY86uL7y7AMRRgGZHt6icKQajGP5XUSWREZw2akFhCOVei0duIGCbSqgp6cMdYCQ7XiLKAhyv65/D+cfMwpdIcZSpkMqMYUMW5iB74zyPpHP0dbqcrPvUtx8CnVpt9znmHSa4f4VYOcGeHXJyudYxGLrU4ej+3Aikz8sIy980k4+dzmNFIIIYRolkIROrvAgInCTlKYjBkatMaIIh7rGOWXPX18Kr0EFRRYnF5M5Cegnm925Idd5E2fK9iL0/h7y+gownJNglhIJVXD1z5GzCIq+VLpJsSkZ5R0u+eee7j11lvZsGHDAe8/7bTTeOtb38pXv/pVrrnmGn73u99J0u0Q0/39mPVG2XJlyxb0C47H8Xsay/UQvwuCJCyLb2B1/Hl0JVbP2t8NSvixEsrQtOa62a3GWK5yBMUJ7HIZtYCSbvghRAGBAyqKEZhFCG1MHUcpRRizCByD7N17WTFZQlbqKuPUbczAQEchKINYHmK1Vgq5iaY0Q5nMKnbzIvcZ7VcI8rhRnQl/FC/ynlHSre5HxJz9k26dZFnlpsGCTpKkmD7WiK9ojRtTCTeAKIpQSjUmqwBM3yZRiehItLGrew+9dy+calitNVXXpxhGpJ0qWNPliPnuRnWREU0/X6YzXXVpmganLMrg5lZOrUsEPu+2XCqLU3xzb4UySR4pL+b5yQIhYEQxTCdFSzZJfvfmeZN001pTC6tTy112C0YmRWLF8VjZVqygTBBrIad/ykD8dKygDagTqzf2MZIW1YkxioP9ACTacjhDCUIjZImt2OFFGKkY4/ENrIxVCKw9GNoiBCKj8QYyWDifbze29XG8dz4UwItbaB1ihi2ERgnTtWnpbSTZbnTOpDWjWbp4F7AGADfTzW/PyHDixDj/eUcvyysWrQUNQciT0b2sDNazPGwjoJf/fOILnPaay5vYUiGEEGKOVYah7zGo5tEVlz3bd1ANApgcm8y3TPq6yuzs8flJuJm/9V8IlTzsykNvrpmRzwnlGJi5GGHFw9/buKJZ7KoSxKaTaxMP3o02FEaLg7LN6UnshDiKPaOk23/+538+o4PFYjHe+c53/lEBif3pSKMq0yetTreNt2J6Kr6wVmK01WMipbis610sTRy73zGquoJNBh1FZCsnUzZvIsTDyaQJ8hNY7e1z0pa5ELkBRhTimxojSmCFkwP8z/i8H6y71IjonnwL1FMepdYa6WLXVKfrRNBGdrxO7cDDlh12OmRGB3CFYzyzxIHBsx+nr+6HOPb+V6NG/udRVnXmOMns2e++u6J2Aic9a50yFGrGE60Nh1rKINbTytZFiuc/OvysYztS6arH7XsK7KwGnG+Upu+Y8fTvm831qQylGhOezGBPjnfXYQUYhESY7Kq08Xwax/biLjrdxUq7k+19m1h+2osObYMOFy/AY7rrwe6Tl2GFWTqrb4PIJIinSARVtD9IzGjM6hqr7mHfG1bbCq88XarWdfKxlPv2ki61krM0GSMiqgWYcYt0LEHeLIGe7NZgNhLJGXdhJN3CKMRXmtaw8b4rdyRRyiRUVSK7Qmy0iDIjatqha1nExS/eARr0kIfCAWJYibNZsfh/id8f4gcmRosCLG7sWMXJ41mWAxYWDzOEF3o45tMn7YUQQogF4eHvo7f5qFoaHWkeGBqhZjV+jL9g027sMODXZyVRSvETcxPP87q52DwOQ2uiXZswjg/AWLjzFIZ5lzA/uwiglpq9vPvv/i89x/wVKt74TRdVA8yUTNAkjm5/9KdCsVjk5ptvZt26dRx33HGHIibxFFGljvJraBRjVobb3/Bp9IwT9jHP4k6jnVd1vYUl8XVorXHDKnvrT7IssQHLiHFM6vmU3JtJJk4jUV9H6cQcN+qbeeV9CcKREazVa5rYwkNLV1yuO63AWCYiXkvOuEM3xrkLIwbGKrTNmKmgkq3jxfcf02y5fTLP2/gncxH2fr72g5/Biunll3W/7hntd9Pwf7Ojum+2xmc2cUHdD0kmA2p1RSI+vc+ivUs4e89uOGP/fcyV6zl7VddT1oZoDJRuJEyceopE2aZtxTJuWWrA4wvnipcu1BiaHNuiVxXgAMlOM4hjuh6RH6HT8Vn3BdnF069JrSlYNr9uaefNS/fw5J47uTdax+6om/R4nlomg1YuY6kEy800d+3aMRdNPCSikouvIuyShXYSKNckUhFmPA1KEa8N0aEsijNmzIzXq4CNlVPs3HoHtUxjUP9ES45MZzf5xbsJtnoYvs0pKYPHJuqkszZ5HaGNAGPyqy1SGi/mwvIlPJi/m5Nzpx0oxHljoj6BHUBM2yjLI9w3ULHZuChz9hM38cjxp7Ot+xjOykwmuBXAJtBr0crBDjrIjV/IMvsJvOr0a7Y1UWVHlGGJoWhVIdVcju357Rzbvv9FHCGEEGLBKeyB8hBRoZPILTFarTBRLU+NkZ3yAn6/Hs5b/xHWZE4n0iFPDF7LC4eqZH2TYGtErDwE2fnRE+G50MH0uVPuTeso3dlHNVPHrBtggIo0XnuasDyKNZl0CwuuJN3EUe9Zjy59ySWX8KUvfQmAWq3GqaeeyiWXXMKJJ57Ij3/840MeoAB/5x4wLaJYBjeeJDJjgIEmwjfz9K4/nXce/3esS56JH7n4kcuAt41Rfw+2OdmlMvKI16uE+ETKwwqyqHCyGmS4Od0nD5tKlaoTYfndJMvHE+ET4YNSZAcrtIxUqVTL3McAo+px3Ow2xhYXmVhUpNQeUklO4Do1gqxPWJ1fA9Y3PPuEVt2POHXD+KyEG8CjqaUsaltGaXyUgeFFDPStZnjvSnalltO+fNWsbSMdUVNjjcdXjX9GlCQ1nqB1PMspK8/HHx9DV6vMd7ruU9w2TMoyeH5rjHBFP4mSQs3ooZsaj2MFacKYg07HKVSf0j148jmaedtXBqnRH9LqWPTadRYZRUIjJLSrhFaZStxgbyWPXfbmrrF/JF33IR3iZwICp4RhJYh0RFgpEJWKpCo7yfl1fLMD3xrHdfpJjxdw1FawNEbGxnJimLEYybYOUh2dqG6LeqJOVUdYGDiRpmaaxCybex7sJtCTCXQjwnYdYlGGLZXHCfX+ifX5ZHzvdnwbWsIMQ4vbiZSLb44RGHmMwTo7l6xj28r17GpZjhuYjOVtKv0+y/fcT9v4QygdoAkxoiQ1J8UJXUux6u2oaidnrsgQErEEk5R2WFpr53uPf6/ZTRZCCPFc3X4b/OiHjX+D82/m8znnVyAwCT0Xv1yiXK9N/U5bUvNJ9rTQf1yaVloxlIFl2ExEHq1GEjMWQ4cOlPY2uRGHWTB5nmAZpE/qYujlCdIDAbG6TehEBHGNl4vh73kUI1nBXpTCH6n94WMKcRR41pVut956Kx/+8IcBuP7669Fak8/n+fa3v82nP/1pXv/61x/yII924eg4ZTQDbcspWzHs+iherA1UhBWmSbUkycwYa2vU3cM1e95Ph+plffoc0lYOy4zhdvXi6QGS/gq0CplIZIlsE8rzPwmyTzhaItgxQKrLomy1YeoUAJoQq1RjxYODxOohP7SKPIjiVdaXyR+7lNFl5wGwa6Mms2MPi3YeA4FGGarRvdeY+8ospZ9Zldof8kyPUA88MulG1ZbWUHcNXM/kd2YPuFvRgYHykgR+ghC4y4wTTyZmx4siqbufsi5JqbVOvGLTlVvE//sTg2+Ui8RTqT+6bc0UVT321EK6YyZlr87y3h5qMxOWGnq3LKXSZRDUquwKQzpbpivd9Iy/7cyqv7g7Qrm0l8Vmihvqa6iSZGQ8Tms8ixFaRI5BRXk41jyajTMIYfK5UaGNLvvouIkyLQw7Tj51EhvG96Bt0JMXBAzfQhtxgrKFsdbBcuMsOu4Eeo8/CYBYJk0+10dbMY3WmraSi+t5PFYtUJ9YjA7HplLPo901sD3G/RFCHe0blmVeGrr7dwCYsSz9a1owiGOEcQJ7gsyIRtVeRu+uOK1mwFhgsqOzSMzto7VcYLTtXNBlUCk0AWf1ZLDxCOKN2V67O7vZQsBWAupAKkhzx+Ad1IM6cSv+B6ISQghxRNrbBxOTF9aLBejZf6gQMUlr2Powbn8cXQ+w0xmKA42xtFWkOf09H6dkDbM8aMWItVJNPElk1GlZotg2NEpn2cBRGmrjTW7I4aWDCM/22XnSMNfd+9+4hVEWBz5+q49TMYmP+QQJG/wiUVVhdRqE+YU1iZoQz8WzPnMrFAq0tbUBcMMNN/D617+eZDLJRRddxJYtW55mb/FcRIPDDLQuZmvXMQy2LcOPd6CUQT22m2rqMdS+rlS6UWYzWN2ME1nUgzz/tP0Shr1daB2Rqq5i08O3YOokRuRghh3k7TKqVmlm8w6pcOcoqjDBaCbACJNoGpUtdWc3UdzBqTcSS3cFFnmSrDP6iMzpLlZKG4BBaPtYVYf6E+NETap2e645t+eSUyj701ehNu/M8I0fdnD1949BKYOoowcVW4kXJKhmHQLboJ/EAY4SoXnKZAzKxE15FDorpLNZaj09bB/e/BwiPLLoqse2gQK/H6+zvNSPac8umzcCRfvwclAZaEuyZbyEqaY/bvdNNqEmu5bu+2MHRowacU7x72GIdkok2O1n8eN53NQo9bTFulQ3HUEcwvlRhakrbuNCsaaRJErH0DrCTKRRto3luTgRBOZyHL8HM0pj13rxw1WElqY0Oki9WCDdOd2VOdHSihsvUiEiZhr09JUoOw69mTaWtaaYWVRoB1k6+3IYwWQQ89jI1kewAgiyObzMjK7zQchZt65j7f1LWbKtk2M2L+KM7V2svn8Fl8X/nNSy91NNrQCVxcDBjJJ0tHaQsNKYQUvjGKbGj+qsweJ4LHJ6EePVcTZPzP/3qxBCHJWi6MC3xWx+FcrD0N+H7WaJd3RQ2r2Hu7ZtQlk2Vms7Dyd62Zo4g9bMOrJOB+Xs3VQzD9PaBX55BclUJ1HkEA4ONLs1h5UOIiq5OltO3UOsYwuJJROU1iXw0xFeKqS4zKC2LEc4vhNI4vWVCaTSTYhnn3RbunQpd9xxB5VKhRtuuIELL7wQgImJCeJxuRp+OMQqo1Ts/ZMc2qwRqQCFQRj5GMog0hHnDZ/A/2z6F360+bOYkcGouxulNYGZY3Gil4I/iMLBqZ/IjSdVMYOF82GoQ42R34Y2wApaUVgERhFfe6y4f3AqIZXC5afOh7FVyBjLpvZX2gBlEFjTCY0g/8xmDT30DkWC4Jkdozpjdsm6F9GdGSOu4CKnlVr9XArjS6m0xHjs/BU88IrVLF66/8QbKhhlVspPa1AGPXvbAcXoiipXRG/m37cvgC5rfjA1ntvb6o8SPWU4NxVBuT1BELfwah7Vuk/MNg+cSVUK08vjuGMETgtbVr6V49QevrDoATLKo1Kf/pgutNu4hk3KihEV+w9nCw8Zv+IStfiNXseTs7nu7dvN8DVXYu9+nFaviuPuJTIyU/skxiN8q85g2zbsRJKeY48n3TGddLMmZ1veTRVfa5KhJl5yMQ2DtV1ZvBm9SGu5RkLUdq15nnKDke1PEFgQJWdXiqrARxldRERUUnWiyZae5ltUd9XIhAHn5m/DCh9GE6GwWN3RSgvLaB17GQDphKbNnB5qoNPtISDgoeGH5q6BQgghDp1wRqItmN/DKxxWD34HfefnoQyGaROGIU8kTGoxm9MXv471F3+ccLLiO9QBu92Hpn/uGhDRyYOxM3m8/RWM/rYN/IVb2RUF4ayf+sYB5m6rdibR9TyROwGhxt1emLsAhThCPeuk2/ve9z7+7M/+jCVLltDb28t5550HNLqdnnDCCYc6PgEU7TQDLb1Ty1qH+OYYlfRD1JKbACgFjZMlQxnEZhTA/Ofmz3DuxElTn4o9y15FxuoiMEqgNK6TYrRFQzB/xoj6g8II34hAgxVk8K0xQrtITCVITdTRaPJEOCpgrTE57kJsupe10gqUgRuv4qZqmC0OwVBzut+qP7D0bPZ8JmpencERh8FRg1rdZWUsy0ozoNWbbvvgmjZMN8AIogNeMY2X0iRHR3GtAYx6HRVqVBihiKPNRhIg5aR4rLSVL9z3hWcd45FE+yEFP+LYuIHToklUIhL56deRHquxJxXh5WsUyy5Lo8n3l1LY4YxZYieTcHbk0ZZ/iFh9mInc86g6q+hKZWmzArQ7/UPZCKo8HjfJJBJUR/rmpK1/rFLFnfqmUYHByHiFamGEnrbFHOsNsrY2jr3lSkKjHR3lyQzlce0CQXuA1RknlkoTz7ZgzKhItWKNH78lFTDka6qhxvQiDKXIxGzK5RiW14blt+JPFiHa7vyeTUxrTVlXyUYxZk6Kqwnp2jKEskYZ7y1R6qwy4bhU0IQWRLUIA8hgYYZ5NAEhLlEYAprIqKEiiyBy6erM8GRUZ7v2SXpZWmqd3Lv3vmY1WQghxB/DNMA0wbafe/eJo0HoMXz9Y9R2N2aLNwyDO3duBcA2bAg1Vs0nqJd4tPhbBtxHpi4iAjx+bjd7j22nf107JZKw69amNGMu9PeOcOfFj0+viKZfV3vHBihOTFBclmVkWXYq+RgW3VnDqghxNHrWSbcrrriCO+64g29+85vcdtttGEbjEKtWreLTn/70IQ9QQDHZghk1Eh1h5BEaFSKzjjYCtNZsrdxLxPSJeT2aTpRkdIpY2SdWbHzwKaVQGogUkZEnXm9jIuURbV0gJ1aOgZtMoaI4vp1HqxBNgF3TOG6IQpFA86fGTxj3exn2VzbGx5tkGCZGvA2dimMaNkaLQzDRnCtWs1Nnz+3L6pnuVSkX6On06OmIUNogteNBnggsBpzpCksjijCDkMg2sZz9ExhmBIu27qLQ/iuShWG0ZaBNgwF/BfG9KXKDabyUxq8HPD72+H77zysK9kQwPjZKsKybWsqglguwKgbxUZP6UJHdrsdgEFAzFCeum57Jyp9MHhk6mhqg1w4KJAkJkl1oZXL/aV+k2raGUzIuuhqQGm8hVunEqtepWQ75aoXK3l1NafqzlR8rTd1WRozOthS6VCTwPVqyy1HFhylmTkZRwwwiQivC1AZlxjAsk5Ne9QYWn3DyrGPG0imMWAeREeLhYpiQGKsyNDbC7okKCdsmcMYJ7AnqWY+xRQUs15jXJx26XqfsRJwYLCYwp7NukVGntVwHq4TtmTxx+i7+/fg++h2FnTKIIk0Q1PH8Cml1K4E9gTbrje8CDKwwB5UeQi9ieVcrq40Yq5TN0ihHLIqxZ2yBDwothBALkdZQLEIYgu9DbeH0ajnk4jl0oDEnq+g9v1G9UIkFFM0qtRaHIGHjZrdD6gGczgG0MV2soHGJbJPQMfESEbjFpjRjLlQTNfSMswvThvzAIIMTw6DBjQJ01aPU4hDVdxPV9+D0pqg/ubDHuhPi6TynS/+nnnoqp5566qx1F1100SEJ6Nm46qqruO6663jyySdJJBKcddZZfOYzn2HdunVT25x33nnccssts/a7/PLL+epXvzrX4T4nuu5TiqewIp/QivGI+i693Y3SDa3BiOKsSp7C3tqTtFrdEIVkgjjgERJhYmCGGjc72fU30ijDwCJDQIAZtFONjxJu24LR0wu55c1r7CGgJ0qEYRGjlCbuLgWgmtiMEcYxJr8jisBiY5gWY4jB4DjqmbXAnsadAUSRSZ1BzFIHQVSj9vAI/t7ynLdluW5jerS95zr6+zNLMlQq0+3z8Fn5xDbSayt02EkwEmhgYkkGbRwkT681thtiRIp4yaFtEMqdGtAo1Uatp4IqxHHjVZaMdOOY87sruq541Gs+G6IydadOquwQKJuVDy/C+X2Jn1Y28/y/XATAwEQFMzGZvNR6KtEWzRjjzYh8ltqK7RFgxqhmlhILQlbEhvh1mKXS1ph1rBquIF1czur2InvGj/wfMFEYkZ8xXqDlm5RdH79WIZ1qIWbGoL6TkVQX6CSR1UK8MkaslmSixyOd2b8bM0AsnSVyR0H1kPdtltmggoj2bCt7y3USug3YDYAROrQPtBCrOwc81nwRjI9TS6c5rtyOzkKkKmhlMNH2C1rGLKJoEclijNG4z4BrEUspgqKPigNuCjvdgbIzeLE+UuWTUTN/NMcrmKZDOtFOvw6Ja03BCCjaecJawOaJzaxtXdu8xgshhHh2qlVIp6E0eeFLupceXH4H5ccHyPbWAEXJtkAp3LYU3uIloDVWPSBKDNPT29X4SR7RGDYjjBPYAZaniVU8ArON6vhWkjoCNY8mvXoGHss/wPjyMnpm9kApcosaE3RsGdrJ4u5F0A719jjeo7eTOPM9hGUXr69M4rgD/6YT4mjwrJNub33rW//g/d/85jefczDP1i233MK73/1unv/85xMEAVdeeSUXXnghjz/+OKkZsyO+4x3v4JOf/OTUcjKZPNDhjki1wXF2tq8iMkyUm8fMFYAOAGLV1eRKL2CovpO7bvsAta01XrN5GanzGrPLmpOFjKY/ozvbVO4mwg7biEgzkH2M4x8vwRPXwenvPXAH/XlCeS6erTESNkwWqCVra8nkq0CjO96ja26nfe0KfsVyKlEHpezI9P668ZxFVsie1Y/+/9n773DLkru+F/5U1Yo775M758mjCcoSGglJYBDCYLAN5sqWgWssLB5egq/fF64RDhfbVw8YfIEHLjayDAjbJIEkQICCkYSkkWY0QZO6Z3qm88ln571iVb1/rNNnn57ung7T02Fmf56nnz577bVqraq91qqqb/0CB2beil3IMfHVH6yEnsflpLgQlyHQDaMhp58Kk+fcstSnf2eZeD0rbu6p8wtuQNBLOPDVBSwVGosVKmt5ca8JyURQZ0VCNBHTyhx2n5jiszd4nCgTZzzWS9nV72G3TDCo5EBGdbXEql6g+ppv2djXVyOh7XwIDNXA49tfO8Nnv75KP9aklTl2Bw+RpPWN/azIiNwi9lm2svqS1O1KIlLNcJOga5VP6Cjai6eo7JxFKJ92OMGj+/93EIqw1WP3Ix3wBbOvvo2dr3nDOct1/QDpVvGDjFbLooAdh9ss3dRkV7NCT28n4mEAtLNuTZg4Z6zO3mjotTU6bp83qW3EVQ9pQ6y1WJGjhrcjjcPyjjUefrLJg49PkM7ESO3DAExssBUXx/NJ3RXKSNiUkVloH+3kmMktRGKBXcJhSjeI3T6x6PPJZz/JTa8ei25jxowZc8MwHI4ENyis3ShCFYgLjEleUeQJJh2iuymldfEoaa+BtQS3vIrkrleBEFg0SWUJcbrvXP/POjHGTSETJBWftOxz4omnueneVShPX6NKXVmstQySjL9pfxq79dzjKG0M/XQ0azk5Y7mtXXhk6LWM9NjL1/pvzJiL4ZJFt1ardcbnLMt47LHHaLfbvP3tb7/ocp555hkOHz7MfffdRxiGl9UJfPKTnzzj84c//GFmZmZ48MEHue+++za2l0ol5i4yTXaSJCTJKHB+t3ttXxKD1T7KuEiTMygnzNQmsdaiM4Wfh7SSNmutJ7jpWMTrvl5hcXo7e9ePPWRzTgrNPekyUFjdiFRjfQdrBdrponSF1G0iTQqDE9BfgNq2817P9YzVBrKM2AW5KdaCSnKaJ7tocnr1mOQNDh0zRXnYoy9mcdMAJ/MpDRt4aYnTPamVFlyJDK5NLChrrkACh4vUGKI83RDdVJLRiAsX5XC9LXJfIbIEK1xQ4kwRyVrC3hqDxiJ+b4p7P30AK3LCVkw0ESKFpNx9NYP6g8TllH+YvIaPpfff0AO/5UFGK9N8s0xYmnBwE0HYCVmqNBi+5+9z86Z6TVTLxSpplDFxqk9nR5XEL6xVdy5+gX3P/iqONYj7PoCjBLN1jyzpkTgBzXKF+tpItBImpe0oUqshisHo61okt0lGz0TIVCAoIaKQU90hadSjlczw6doEtv5Dxf1ketSXUuIwIpwpofwXtob0Gjvg6BJ9Ayu5pWoN4VrEQtWlElSJLCBAr8cTvNFjuuWLiwxCaGYNOmFRFysSvGgLykh69YiVuR5xJKkDjhMBhatMEiUoDVI6aGeN3FnFzSZBCIxIkTYklyskTrCegVihhGBLbyerpWW+NP8lfpQfvWZ1HzNmzJgxl8jgecu265ZuX/v9jxD3uwgEN739m5nave8aXNx1RNIlb6WoYGSQ0U+KVfutpf0bYSm00wUtkEZi3DPjGhs5Gq+ngUvnSA26J142ottXnlvjh/775/ih77GEiSILNDxv6JnpjMXuCiv9Fs1Snc6BKZan1ih1T+LM7CBfffkmlxgz5mK45FnIRz/60bO2GWP44R/+Yfbtu/CLe3V1le/5nu/hM5/5DEIInn76afbu3csP/uAP0mw2+YVf+IVLvaQNOp0iO8rExMQZ2z/ykY/wO7/zO8zNzfHt3/7t/MzP/Mx5rd3+/b//9/zrf/2vL/sarjTxWoesWohgub8wEinykNZKSJ52efdfK5rNX4F3GhA9eizzBE0+LhL+F5qP9x9l9pltZL4icyrEFZfYVxgvwooEQwNjFiCYgJNfgdrfuYY1vnxsqhGBop9LhFWkziJKV8Ev4WRDhNMmagp0RWJaEps4yKCM0oVA56UlpFXYTYKJf2+d2tzW853yJWX44S9c3oGXoWNZNifSiKgGxYBCY3mUHOMorOufdZzINOV2xNTyIQYTa5zcm7LjyRn8yKO23CWqOhilCOI9kCeo/DDlvMqE9YjyiJJ741idnsZay2KUkliYTDscpky4GuJkDrE/gdhsEbjJnVQa2HJoic62EChEt1r7ERqdIp6inigsWMuhwpMWPWiRBQ2yfDSY025O6lZ40iwTZgqitet6UJd3IyInwXgWGCBdHykke29/HfaOWwpN2GpKgxPk7pBSe0hSFszs2kLzzr0vWLYT1KnVD9NvOeRikqGB1GoaYWEJKEyAVTFpWbM210UYbmhLt+Hh58jCKWYGN7OmUjLZQcsewVAxbKwBOQ8tehw82iAMwAlaDMrg2xC35aC2V5EWrMrIZRfP1rDCQ1qPMK6R2C42zwjcnNPZJ0pZSBI3SbtnJ04ZM2bMmDHXMXEMU1OwslJ8zgtLtyyJwFosFp0m8KefgH6/WMT7tndDrf4Chb7MWH4SDv0ZvYdPUL7jZpJuj1gqutqwdXYnOA1YH9Op/hpmuhAuRV4kXjNuMaZwkh5+J8LRkAUOx8IVXttfvFa1uuK0hinVco7jQOZoGqcqrHkZaaWN5/lIKcmznE63Sp5LVroDKlOzJO4hKIXYTKHb8Q292D5mzIvlijibSyn5iZ/4CX7xF3/xgvv++I//OI7jcOzYsTOEr+/5nu85y3LtUjDG8GM/9mO8+c1v5o477tjY/n3f9338zu/8Dp/97Gf5qZ/6KX77t3+b97znPect56d+6qfodDob/44fP37Z13QlyNKRGJLqBG0MWZ7htKeZtRPszwTNYBdCuQjlI2SJnIw9GCa3dXjXfSf4028MeXjHJzjW/BR7H36WXV8/gsotMqsijcDTVYzJwC1B0nuBq7nOSTLoDzglDVm/hpfPomwJb5ASDCxCxXztW54GoPwEzP65YO/8m9l95LXsPvJaplf2rusjow7hRs+2c7EiQ9+MUt7a2CJ6MQdUxE4kr8JhzzkEN4DpY21u+5tn2H78y5y85TGeft1JOjMDJIKdT3bY9tChojWtwrU76M5GRF7Ou/VraCftF1/Ba4BNNSczwx11n+2zFpM5WM+g9BxiqnrmzqcHF9biZBovjRAaVJriDQaopTlW039OK/shVj+VsPSfH0V8eZ4sFVjpEDX2cKBUxlkO8AdN3CE0kphXqTlqfgjx9Z2GXQ8z8iCmtBjgZBOovMowy/FLPoRVEAJlUmZXvkC9dZjJ+RoTi1VU7dz322YcvwghkKYexgomHMlMW7PYGrCaruJmpxdfFBMLNUq9GzuOYG9+kV3xHGnoIMwQiQ8K/GgnWgncqMlXj5TJrWBLWaBVD6UdMAI0WO1gdCGmZf4S1mRgcnK1SqYUUbiKzAdEpZGVsJvPsFY5xaHsCeJ8vEo9ZsyYMTcMve5IcKvXyYXgib/80zM8FXSSQrsF3U7hjnqNvXuuOr2TEK0wPLwKgwTd6+IGPsvtFZaSGGd6N4aMbvVL9JzHNw6zDoXglkNv1aGin8Kq0xZxknaQkucvn8QVC92YW7d5tBdK+Cslms/V2fasJAhCpJQkScKwL4nyReYadWYbVZIpn+3HI2xnPRSKAZvoFz7RmDEvY66Yv83hw4fJLyJI51/+5V/yF3/xF2zfvv2M7QcOHODo0cvPxvf+97+fxx57jC984UzroB/6oR/a+PvOO+9ky5YtvOMd7+Dw4cPntMzzfR/fv/CE72qRGxA6xyoH5acoKfnac8/wbeUfhApMrnURYrjpiBIVfBSSW7/lBNo1dPsup/oz7NgVc7i/xoEH9kCphEKD8TEqouukhJ0lKE8UE/ngxlvpslGKQLMoJJ7nbMR0S8se/tCST34ZKO67Yf11mDceOMsorNDYNotu19DC4zLPfakx3QZ5Dy1z8lzgOBaZpahSyIe2P8PCyXshLwYR5zy2Mc/W4HsAgRb/EIDWbI+5o4Xg4ScDLCkSH5FXcYcV+k6Zd+dz9IYtqFwbK8IXxTBleWXAyUFKWEvRFY2o5NR6N5FXz/HusBaVG27/6+NAyJ2fOi3kW+BOIgwgkR2DaXXxDnfYf9skj900CUazdWonemIRjCCWMSv5NJEQRJnGDtcQ13FcWtMZon1B2szQ7hoyrzBMcyZqDazykTbn2z79Wr687V/herNkbo6bOTgXIbr5lRphmOC6CQNtwQVvscPszZNAmWG6lTQ4hV7v5dxEcblZgK8Hhs8+S+nOWXBn0ME0ykDkPEO5u4va6iRGGB4SCQbLP9/Tw4l9ci8l6FbIspz+4QSvXviDxOVDvPmr/4mv3/LfUbqGNF0QMKxPUqkPMZ2cCKjE28FCYEqc7J9kX+MV7oY0ZsyYMTcKWQZKFdlLOx10ltFKn5cUrN8rvjem+Le2Btt3XJvrvRboYsHZRBnetgb+9DTKUSz1O5Tu+QZktUrqzROXnsbxJrHaQ6EwqhDUrIKwnrPS89kZxXSnmgS9lCl3isMnv8zNt96YnkPPpxtlxLZHY25IAtQf3sqsGzJP0Q6+7zNTUvTiHGMNxlhipxDYTDYoLNxCBx3l1yxkz5gx15pLvvN/4id+4ozP1lrm5+f50z/9U9773vde8PjBYHBO1861tbXLFrt+5Ed+hE984hN87nOfO0vMez6vf/3rgSKm3MW4w15rMuVglVO8xEShIt1yeB+8qvjejTOe70/oolh0MrRTiDb7v76FYazozx4lLqc4uaG6NKA1Z3BMFam3kVc90EHhrtY5cUOKbqafILKU9mTOtHA3tjvDDCeLiIPjnBbd/MDhYrIUWHPjTtIvlt8/9WH23V3cW8YCScauf/V+/PmUznpiicw5M4YbQoC1JO5BBIWbQmRrYMGLRm0fGIF2WjhmDkmAkA16tYxXxVM8fuwozNx+Nat6RbBJxte6Kaq7hr3To1bJETlgRq/TM0zohcAdZoBm9KyuBxzDAhLJKu7kfrRKyNcivKfWUPvqaOWwc8se5PJ+AHqVwhUVJ2C2VCdaPkppx+uuSr0vBxtlpLsGaE8jtIfUFVrDJV61+wBG+VR7B3ngzndwdEfKzV8DN3OISgnuXPmCZTueS5q6+N6Q1sCSGksjPp2zFKQu+pmR6HbjDvRsnpM+ej/33P6DaG9zIBVDZa14dmPXYBLYLTWeTkjThPbkAnKrQ+lQjWQ+pXb/LbDjIABHduyj0n+EXuVOgngHPSOwMkGUHQw5ZQQTUR3HeMRqyFOLh8ai25gxY8bcKPS6haC2jjyH54bs9yHaZJHV75+1z8sanWIyTXSkxda3HUB5HsM0pR2EhO+OWOF/gpEIHTCx+m0AWHK2PfIVZk7WeOydn2J+e520qXAPrwBN4prPLcFt3L/8Z9z8Mslg+tUjLdzJUaiTYODRRIyGsmnO1BOKSnILx9cW2DExx1x9hj96s+J7+8NiPBxrbJRD85pVY8yYa8olvwkeeuihM/49+uijAPzCL/wCv/RLv3TB49/ylrfwW7/1WxufhRAYY/jgBz/IN37jN17StVhr+ZEf+RE++tGP8pnPfIY9e/Zc8JiHH34YgC1btlzSua4FVhvS9Um6FBItUnoDSaLm8Hsx5bWIoNtjw6SLkTth7Bj2PrKFt//2Pdz56BZed3CW5nMN+o2I+ZkubruHXHcpFEiOejnp2jSEE4W59Q2I6UZYVcRYEEaRqSLph8oMlohBMGqn6W218xf0vCQB14orEfXgQu6l2moSM2oXKUAaDe0u1sIEAlsecOyumZGrrRCUVgf43S42eG7jWq2Q3Hz/DmaONTb2VZkC0caSk6se7rDO4syAj/dduuvP4o2GSTKWcsPfP/QZWlPFfWQdyKVbZJO0FqEtM0+tUJ/v0zjRYuvBNUBRU/8Fl8eBVRQngBae9yj1nV9j+gfuoPl3D+Btr+JP+FQGCSpqjTxUMRuGWqnjUVIea0eeuRZNcNGkucbU1t8z1kMJhaeL2G4A3WqJQwduI/Ms1VaJwWSCmVI4zQu7gipXorWkUlplzy4f4QmOJm2GqwPaaRexHuVXmITu5ADtmBvWzi1fXaXnGyYTHxNscs9IBKVO8TlxMyasZZeXkafF4Fg7OXbKRQQUrqhrNW450iVMco7s2gdum9xZxYocN91CLluYio+z/vaZzDzq8RTVeIIHjz50tas9ZsyYMWMulzQ746PYJMAF9QZhYwIVbwobEIbQbl+li7tO0BnZfM7+H/wBnHKxUGc8S/3Nm+ajwuBHs+tJhgAUnxt0mTT/jbmlZ5lemUcMUrJgbWP+kDkVHokG8HzLwhuUfpLjeQa15tNYLBHGGarT5zXPuLz+oEfzYJeVxWd5rZ6k281Z7nZIMkvrwASRGol1Nh27l4555XLJS/+f/exnX9QJP/jBD/KOd7yDBx54gDRN+Rf/4l/w+OOPs7a2xt/8zd9cUlnvf//7+d3f/V3+5E/+hGq1ysLCAgD1ep0wDDl8+DC/+7u/y7ve9S4mJyd59NFH+fEf/3Huu+8+XvWqV72oelwNbJIzCDZZNaiUqm+Y2fNqklJAAqhDERN4G0lkTrsWzmgJD21BaYmyMCRl5xd38PhEDxk5WDPEALm7CFi6rsfKsM/WoAHmwm7C1yNCCoROMI5FJXVcXSynuJlGInGdkRtuc6aMXQ7ot86OU+SFHun6rtc0ptsZ535pAo/28g51Z4JOvraxrbYW83hnHjNTYTaYY3n7XHEtxoAQeP2YnV8/icoSnvymUWdqlEMw8EhKGZW2i/QzqiRM9OfphbcitYu1E7jBPIdSQTO6QeNdRBnTjmSPiehUfZz5MnWzAz81RH6x7OdGGbsOPYZnW1gcQCBETNX5GOJ5q57V2zTsfAMA7lwZm2pk1Qcr0GFz45cXSJRxcdoLPGV7VLNFxBpnJGu43kgGCW67jq0qpA3pdCOe7sCb179PfcuwWqJx0sOExTPslD2EvHB9HEditML3Y24+UKb15S43UaFd8Sl5Djor2jkNXWqrZaSW11REfzGkR46ytGcHe0SNTChSdwEQWJWQu6usbslZtRnVrss/3adxXA+jFF5YZuKWnfBsh2w1A6GZi+qckDkSRT+IEDYjc1fx0lm00wdvkkfJyQBpQnKR4WqfI889XrjiKPdClztmzJgxY641WXrGR6n1xlAy7rQB0JUmzM0Vsd+CEDyPVxQmRfcEOooIfJ+eTfm8OElY30Wetoo4bVaDdNAiQlqXnAFPZV3emn8r+xe73DvVYpdqcXLnMRorM5SjaSqqis1tESfbf4FF/huEfpxzx/QCeiKgDfi9Bp/UH+edB/dSdUKmqHPouTX23jLDh4dL7JqdBizbv+UdzHuWxlJRjonHotuYVy5X3d/mjjvu4NChQ/zKr/wK1WqVfr/Pd33Xd/H+97//kq3Pfu3Xfg2At73tbWds/6//9b/yj//xP8bzPD71qU/xS7/0SwwGA3bs2MF3f/d38y//5b+8UtV5SRkOO3S9iFx1ENZFk2C0pBxOgbUIA0HsoDbZb9h126Ygc9Y/g2SJKtPU+n28QQvjN5k9NmDptgbeerBxz2uS5S1YeQ6y4Tmu5vrGGotZ6NKNDZ5rsKlGyz5Kl/GiDCWWycTIesb1XG5+yx6+8ucH0dmZsdPSaCQ6XtuYbi/9KVrpKsaYdQstgTECay0ym2R/bzed4RSd6hQgQEosmslTEdU2JIHE6+7k4dvfzMLsdpKSi9/3KHUDEAJrJUiJFw+woUXLHtrJyLycKRpsF+FLX8GXAJtrHljp8vZ+m9wRuOUMnc6RqPKG6fCeBxfBbCUXJbb4ZyZuqbifAJtjkQgvhDt+Fe4o4n5IT4GFvBUTzAR0giE47kjosCF5Y44d7Tm2xYbHOk9BHoN7/bWltZZhmpDOFIKuF2/nsw8eJfUlqnMM3WigVbEKvP+hOeqiiW0llPbNXVT5ypVoI3EBucn9WfRTeiLBL0VgwBRNipMqTJKAU7nSVX3JyZeXGChDXVeYrzp4WZHpNnGOMnu0hADaEz1CLIIO6bCwcAjrTSb3HmDZ+zImszhlS71bZqh6SKA1uUBj5e1AjBUGK2Kk73KLcnG0ZY2AVA2RuCzpLrpzEjWx+1o1w5gxY8aMuRiOHIHBkIXqDAaJdR3q0VqRcEyC8jxcP8BPU2ivJ2RqrRVJFcw7NjJ2vuwxGjN0UOvj4P8kjmHDrRyoBQgcjBqCFfjxLhxbhL3w8FgSu2gj+OrxKrnjMvFOgZMl9CZTdFRlIfXASKLhCmFt2zWu5OXzzFKPh461WRlEZGIZv7sbISSOsXy+8hj1oMS79AGsNuzrQ3XLG/lg8gnKwU1IIcALiaf7sC66jRMpjHklc1Gi27333sunP/1pms0m99xzzwum+/3a17523u+yLONbvuVb+PVf/3X+z//z/7z0q30eF7JC2rFjB3/913/9os9zrTi+8gS9sImXFfHVfu/PZvmR171tY6XqwBePsdzOgZE1nHheGH0BtCZ2Ul9rI6kxZV0eD3rMtacIhga9rkNlQZMtskY8jAj8GzB7UVoIZV8cGBzl4mZNBC4IEAZ8cYj7B/+A029+KWTh2qzPdQ9tSqRwTWO6XZ710qUkUmhlq/RMGyEEjz9do9X1mNEZE/a1dFsuSejQ3r6+SmctNn0KJ5sBwI9ddj10Jw98l0stLVNZFEXmSSMh6GLjGlnq4fQkoilwTA3DgNUdXXreJFXh0l1aoDZzcSLL9YLuxVRbi+y1q6ztluQ2xV0onfFzhXFxPyqWAei+5n/RPf7fqE4ExK2TZIMOxxp/izd+//sQUp1RfvXtO1j7yFPsvH+R5Xftxmy2LBJFuakqVqNXO1kRh9G9Dgd1uSGyI/cWYV0W45Rbdsyg63NgIQ4P4ySKaquGHhRBFqv3XVxdlCMxen1iINkIkedoQ9WrQF5efwcYrBQ4mUL3+1C+jjNPnIf464/hdk7haZ+kNOq2naSHoAFA3zHskgbluJisaHc3CJBSYXwNRpD3fCprIT/w7DEebDaQ6Son7DEE+5E6JPVOMqjUGdb71NZiUBUm2i4nZ9vEus+jBx/gnjfuvgYtMGbMmDFjLgpr4bOfhjTl/jvfiVkfY7zlmc/hiD454IVlonYLaeXZxw6HULnxFqcuGZ1CtIajKvgTkwgEe2/9J5S8Cbq1L6K9IcL4CCPxszPjhX/vXoePrh7hAbGLE506QvTJg4TMrkAEymsgXMGRtUPcOnfXNargi+e3v3SU//alowinzdb6LImrKbdcjDA8Ph2zUyzwd7mNUDroZh23M6BGmf/3C7/L//6m78VzHFoHPOzjFoFAx9mFTzpmzMuUixLdvuM7vmMjycF3fud3XvbJXNfdiAE35sL0u0sIWQgcxmp6vVFw8fLygKS9yioe+9dFtyM3LTDUcPLwBLdaySkp2H1znWB/k/CJx9GnmuRxk+l+m5MiI2xltHas4eQ1+m4ZAZzqCPZWh+sm0dVrUe3LwiY5KEEbjasbgEQT40WKrYdO0DUJWjoblkhy/S8hzjQoE1JgN2tW19LSbfOVvUTeg+1sFYmiPcjp9l2SVPG65Qpiqmif4abYWjZL8LtPMHVEkSuLNJJKJ2T/ye20Jns4XY9cGlJhCIMIR0E2KNN8bhsLO4sOV5hCQBoGOZOqxMKDD1D71ne/NJV7CbDW0l0ZsKc7zx//vSm2A0pXgGYRy81CZTXCzXI88QhN99fBnUA4LtqtkmiI4hzhVqnOzCGfJ7gBBPsaBLdNEh9pceAr8xydfIr41r8FgEBhMawoyzQpiScL0e06XEm1Wc7AjAZY/hAWk4zv2u6D7aOVIVddbn5wK+EgBFfg722gKhfn3uKXHBI9i9LzCCFwaoql7hAvNZy2VZV5FYvBqEJ0yzotmN31EtT2pSVbWiT2JU5WIg1H90xpuAwUmeZSZbiz2WHvG+8jqNXBWrxy0WfE7hCX4u9kbYoGB/FNCrLCZPsxFiZmULqKFYUL+bAZUFuLCZVHc7lJt2bpB12+cuTr3PPGv3vV6z9mzJgxYy6Sfh/SFC3khuAGxWKdD+RAdWYWL82o94ZYx0G4LkgFcQTRK0R0W3wM+gtI1eRD7xigFVg+Qbj4no3spI21d+DkExuHyHgR3AqlbffwffW9fE+5jhQCvbZGa+pPEbqHSjWDsMysqXCwdZBbr1X9rgDznSIEj3S7+G4xNnMTh57TI3YNT6crHDar7LQNKpMTtA4+zOsP7ONo3mFt0KIRTsOcT18uUEmb2P6NGb5ozJgrwUWJbj/7sz97zr8vh/e85z385m/+Jv/hP/yHF1XOK4Esi1HrVi7aGN73pjvIdI5NNDMLx0i0RtHlmHQozwqeffUpnlj1sYcbPCUMzs4yc02fqckSje/8Hlp/9DROt0+jr5nP+zAsI2yJ3OkitOKgWUEkAipbimQK/i3XuAUuHptp0JaeayjbEgKFQlFt9QgGLpG1uEHGacPm03G1pHyetZs9nYrn9MdrmEjhCpz6QokUIj3EoKmVBV9+eIr/nNbY0ZzbsJZb21pBZBorDKZ1kjD1cfQmocjCtucq7F2b5NQhhb/enx6Ra5QDRZhN4QwChNUgHKQJcONJKlXDE/1lth67wVwY0pxOprnD9JGvvxM7H1CJZhCl9aD9uSZIMxwnR+WryPoEOnw1Jk84KbdBpKG2Ba9cpl45d5wPWXJRFRenGRB22wSDjJZdQnkWi8ZrL1AVARU83LKP7Z5CzN55NVvh4tCWWIxcCaxRvOW+EzSCW4Ay0sYEfcPscw1y1+Iqibfj4oX+sOqxfBJ2TK8/rwYmrE831Zx2kBcCEJrVrTHBIEcvxEzddMVqeNUQQtKb2s+h102TByUMObm7Qn01Z222h3Y0J8KIu2YCGlu34zwvE7i7pYYzD6afoVMPawR3tjIyXeGxZBFhIzJ3WIQniFqsVQUDEhyTk2Tb8NMOgd3CwWzhGrXAmDFjxoy5KLpdmJwkilJKSY/h+gJ61/OpuhN4tSphY4LKYpfcV8g8wVqJHKwH/R8MYPoaXv/VYu0wNPZgTItcsREbd+A/SurOg5agFXZ95hCnKVt6R2hP3AuAqDRwRBGSJUtdGvOGqJYR9hK0G7NV1DnZW7pWtbsiLB5fBKBU6nF6buSklmPucRDwlL9GGhlaScowzzBRzK3JLHXT5OhCl2zSZ28k6e/0qR4JyNs3XviiMWOuFJcc0+2rX/0qxhhe//rXn7H9/vvvRynFa17zmhc8Ps9zPvShD/GpT32KV7/61ZTL5TO+/4//8T9e6iW9bOl6gyItogFjoep7OFJBycEXU8yhmEITGgXzkAUaT0s+ajNEoHh/PcQLHXRucKZCdD9DugrP8WmmIavtDGkCpPXR0kNaidY5OD4MlmHqxhHdyNYz+JUzSv0ZctlCGg+/l2JZYKhThBrd7vK0sLbJVdpxJdKRJMPrQ3S73DNfintpZkeBdqtinsCUcNUoPtigGWBdBSjcx7/OdDBLVE5wUoW7HjcwUjm5Feh8dNyTWZ9jtaf53rV3g5ehsgztOYAkC1aZ2r+VQ/hMPJ4UKe3V2RZf1yM20XRKPoOoy5SeQvmghcLpJ+QVH+sqaq0OwvRpur8K6QS2divDpFsE4wWwFp1m7H/r2897HllyyE8OcfHwAk0oZiADKzTxRJ1Tyx2MXsQCUXuZ0tWp/qWhDbEwOOkUYPGSgDtu7cBaF7IOFsuWpycxMi8E5rpH/Z0Xb4WmHMn0jgnkugjsVBWPD1eJh3XWhh0q9RhhXFQ6oLbSIBxktE8ceUmq+lITPfII9f1VkkoVK04HEZCIrMbEYjGhemZPxHfdceAswQ1AVD0gxSQSCMniKZxwiOsYgkEHZWZRBvBOol2LJxz24VMTiqPOa5DOk1SBVTOA9jFo7LyKtR8zZsyYMRdNpwOrqxi/uiG4eVmMbwxZe41YWLbceic6PoST9ADIG7PIWrmI5ba4ALv3XMsaXBXsyiHS7j56ZgEvCkh9QAii0nHAEka3FCFqbBHPWFhNLXqOlnk1iKIXzvIcI0ApBeKdhFFMZ0qi7DQlU2e+d+Ia1/LF4a4bIoSlHt5ahTCrUm1VmWeee6t/i51qD8PaPmYGbbb2VvjUk/fzzrf/H/z80mdY7fe4adsWsl5Op7zAdJxg4hvHg2rMmCvNJZuZvP/97+f48eNnbT958iTvf//7L3j8Y489xr333ku1WuXQoUM89NBDG/8efvjhS72clzVGWiwGS44UEiXkhgjkROuBstddSy2W3NNsiRX/6a7tPPjTb+fOsk8a5XRWBlhrKb9mlmwxQ6Q1JAmzLQcjEywai2GvatIUJfqrJwqXtRsIm+VYk9P2cxzHRdoSkjLBIEMwxxPR60jSkRglRdFuclOWxDvesodt+9eTBmwUfGNmO7xYMlOIbmkGU8lOtsrTE3ZL7ggy3yliuVnL3KKkuTRBMPBwMweLRUtNtNJiof00m3ORrjHkj2tfYM3tEiYVvMSsi04GtIssWZa3O8Qlg11evtrVvmxsltNeHVD3E8TOBmYqJswb5JWR0KG6kor9PSQJcscd2H/4SzzXew4QCLfCjntey9bbX3VO19KNMmpFeVrluKmzkdBDGh8jMnxVYY+aoOz5LD779DV2gz43VhtiNyX3Vsi9VYQFYQK8bAuwlerQY8dTE1TbVZxcYt506bH9skyTrCcgFo7gZt0gBCZKdbxsFmlCMt/FOII4SOk8ewJrrr+2eiGM1lhrcaduxq4njMjdVdqTn0SaEC0NFstsvIttd959zjKcRom1fBGLRbgJNtFIMUCKDn6WbNpT4LhTtLfXybGkQtATDfLBLlaCBU6wxHDhyZe+0mPGjBkz5vIY9MHzyOVooTl1A2I3xAFCt4ynfEpyNG6x5Sa23YblZVhcvPrXfLXRGZYqph3AjgnSkijCY0uL9VoIPKr91+KaJiv9jJ/840eofep9vPqJD9BYuL/IsC7AdR18x8GjhMs2nHwHhiFeEnOHv58nohu3LQdJTms9bm6tkpBOSDqzA4QVdIOUVzXeyb1zf5djW+/h0dpujseaPyrt4Z88dAK7eh8nOgOalRJmLiSd8HGCLWQnB9e4VmPGXDsu2dLtiSee4N577z1r+z333MMTTzxxweM/+9nPXuopX7G0w4SwW1gCugrIMvY+vExz/uyXlnYMCAhCF18rHM9hemed5WMdht2EYS/B21FFhA5EEJKg+ynYDIHCMTV6vmR7Uudrq6e4t/rMVa7tiyTJEdLBm03w9QzS+lgsQS9FscDA1HHc9ob1mFjXm1/9zQeKhArGIgQMe/EZ1m/XT/bSywvqdiFLvXRDdBPUnpeCo9cIsM567Ltul+3hLRgMrek+yzs73PLgDpRRKFu8RpSQQNFewhaC0p81v8D7Fv8eKhFQVShTAZmThsV5Q89j+MwhynM3SDKF3NDONHfExzjE7QBkYR3vdOgyY/GiLp54qvhcmeHog/eDLiRJVb8V5V44Zpm7tYwIHVQEYV7BkiIIkMbDiJSecghxeb2zg9977LPs+bYlqFxnbagNsRxZUqpcofQmm7zIUu1NYLEkgcG6l36PO54k6xcu+E5N0RcZzdSynosNaT0QRUy3cuwxNFMMO23KzYnzF3qdkR09Sn7qFNWb30Za8rAkDEpfB2BisYowgmOlAd981/ktE6b33kTpm5q0P/oMNvPJBmX85npWWW9TgOj1oNpWSXAV2zKBrwKS1TfjTj3MUjDP/Y9+gW+8+Zt5+NPHOXmwxbabm9z9zrHl25gxY8Zcc6yFtVVIU7LymSEstFQEJxeoyDnUI8vrY7b1w2ID27bDkedgfr4Q7sov47huaR+bCvTqEoNdZ4/zVT4aqwzWE7XNiTV6zhbCqEfH6CIGHrA2SEhkm7lwBomPkUNSPyD0mqz0bsDEdOscWR1wOCrmEFsaHU77HAcDj+3xFijfs7HvI6bC9y/tx6vvxOllDHv3wMod9N70MNWwzMr2NgBmMM5eOuaVyyVbuvm+z+I5VkHm5+dxnEvW8MacB2MMkTv6eeJMI4YRwUoXaSzyeVk1+43CT15JB6mKzJxBaTS5T+Mcb3uF+jfvgoaLkiUkFmFGQS2/ul3xnG2xGGlIujeUlZdNMrCGnc6bzwh66uYGKbo4JeeMvBByXVg7nYlXSoEQAtdz2CxwLR9rX43Lv7K8QHbh5+NJnzyDU0vuGaKbG/TobimBtchMU+olpGaBqBrTmesTNUb3jZIlgoltZwzgJmyNpi1zwl0souvlo0GNF02h3SJ2SCsd4j196Ma513LN6pGYw/e8d7TNbsouKgXl5BkccaT4fPf3kZ82xQKscNl2593ntUg6jTMV4s6WyIOMQFew9jFSdwlhXVScYzZZax2zGQyvQ8tUbUidUSKFHNDDBpkZUu0+TW0xI3VjcichLVnS+NID7L7puw6Q6XXRraxYkkNW000ZU42PFRor1+9Nu5OlIzfWIDg9dgyxcxd+ME0mW2i1HodxaYag7zEIE3pDza49jfOWIR0HpxEiahJZjkiHAdbCIPIZdnvAcYxYRViDlSuoOCYNi/58j+6R2gnqvRqVtMafH0n5z/+fv+RLHz3I8SdXefQzZ1u+jxkzZsyYa8BvfRiOHAEg9s4MNZAmGe6JU/jaARlhbY52ArRbxkoHSmVoNqE5Ab3+1b/2q0nSwZ5U/MG3dfiLuxMwFp3Z0+vG1Nr3ocUqqyee4KuPfIXbxbPUpCbydzKVR9zUPkIpjRBJyv0HT5Ck6abQLsX/fddn2lZA35gZOxfap/1XLG+4fU9hCKAhWDE41TppsorWGXmWE5ZKvDmI2K3b1LMOk94Q6a0QDdeTOZUz8s4xwGD1DTLeHzPmCnPJKtk3f/M381M/9VP8yZ/8CfV6HYB2u81P//RP803f9E0XPP4bv/EbN4SOc/GZz3zmUi/pZUlvcYHaYJQ5MnAVtlYlTE9bEwlAYGxOR0Fvsng5liseMira1w9dqhMhQkCe5EjfofLGrbQ/fwLjuNhUIzID65rB0tQ0tjHAPtuAcArS/g2TwdRKiT35ddT0bVidYRFIXGSqyewylu34oeG0/CHPoze7voNy5EbChSy9lpl2XtqOyVjDWraM40IlBA/BUybhtkpMudShO3kbQlusFAStPkoO6VZ9nnzzMeaOzG6UI61HWK9izniuXawQnAqW+VrpSRr5BFCsmgqqKK0waoGhyUhyjdvvQ/X6v9esNqSdAWIyYrio2EIF15Q2dNra0hJuNkD5KQjJwacWaS2sbBxvzMXFrjudwVOWXWyaE4oV+kDutJEyJDWKr+l5ysKl1PDJeou4M7dd6eq+KKyxCKnxB5MIKwgSCFWFbjpgQgi8KMM4ORhBfEeZsn/pcf227m9QmShW86Uv2aWrDBPDwU6bZCoBK7AypzsZkbkdxAnNoBVfoNTri+z4CfTxY+hmDdfUsBjcxDB5qknqa2QmeGqwzLbjq7glQWP63NYJ7kQALYMhJA8rCAHlMEHbClasWwebHsJU0QGkgUOpmzIj4DhrpNk0DSfllOmzNxdYKzAW+q3knOcbM2bMmDFXkTyHeL1/k5LEcc/4WpTKeNUaxmjI+ijTR+XF/rl0MCtfR62tj36HL3M3wOEqA2VJ1m0ThBFIK/CSHYSDA0gT4ug2AwK+2KkBNfpzf4dSbRcHbrodFudxhw7H0gp/eaxFu5ywZVohrMJJHUqdFY6rCMdxyaJV3OvNE+EiGEQJr6t7HIwjHKcYnyktqXUnOXVLlVALYino9SKGaUYSlPlHrQcZ9rr8fv2t9LTl4HM+eW+BW+0kz71NcuAhhemnqPrZsWfHjHm5c8mi28///M9z3333sWvXLu65pzAtffjhh5mdneW3f/u3L3j83XfffcbnLMt4+OGHeeyxx3jve9977oNegfSTFo4e/TxRllFOUsxwBRlMbEzye1ry+UYL9Y3PAkXAT6mKL11f0VsrxLja5ChhhdpZRT+2gofAjWISv4sVGilLnJgyTKw5GKGQw9UbRnQb9lo8N9MlMFNIPLQc4PUsSlu6s2Wyu57F2Z7hCQ9Hurjy3C5+nu+g85HYdS0TKVwuF2vnlprRZDlKFCUEAWCiKod2JaShi12/l8qLLVyapEEhQmpn1C5uMENp524GXzlET1sE4BnJgJiB6FHRIe5A4PVT0gC07GOJwTjUSgqiHFZXbwjRzWgNcUY+LSjNajp0mJo3CGNRmebmL7ZRshjEGgsrJzdlexQKvxJitEGqCxsZC0ciV6FEiJ8tkYhJtOoWWqzjcUBNcNx0SLXk+ENfYeeON+F4189AxiQ5eT0jKa8Wn53tKBMSUKVXmWR752mczCN3Mob9HK0uL6vV6UdUCMEp2SdLHWy9gZeBUUMyuUS5U6a5AKlMaS9FL1zgdUa+usL8bbcjbEauOiAMuBNMzDtMnyre6xU5oLc6pLsyPK/opmoeouIgVYawgjw3GGvpsAXsKoYQIwp3YDeGtGzpEjGUFUiHtEUV6x2i0+iisbzuxLfi5WWsBZ0ZlHvJhvNjxowZM+ZKEUUwNQ1JDDOzLGYOMulj/KJP0ELhNBpkgKXCUA84Peo6nJ1gn26gKPprkpf5YsryAt2Sxc0gc8AKi0oq+PlO/HwbAFY0aUVFsAqJ5c4f+P+Oxlhf+iI3Pf4wq6uTVERA2lnDTV+LVhHaMQwbTXaYndydzbLSOcqWG1B0O9Ua8pVOSqPR29g2c6xB1JgilynSrZLkhomJKhNApb3AztUBXx0cpea5pP0SX34i4g3fWydt5fQqbUzikvfGotuYVyaXLLpt27aNRx99lI985CM88sgjhGHI93//9/MP/sE/wHXdCx7/i7/4i+fc/q/+1b+i33+ZmzNfAq3+Eq2KpNkqPoeuSzDQOOHUmTs2Uvy/Nc9peyxhJWLdlcoLRr9HEo/Mm9WWMurhFSwQxKBNYSmS522wgsD1eHbpIPu3vQaau1+aCl5hVsUqX7kjZnq5ENOsSMmCEJUbFnZUEUGPQJXwvTJbg51M++fuAJUrz3TPvKYx3a6E4Hf+MmI9Eh+ixOFtOOyWDliIZvZhfGf9MixT/RIGSWvmOWA9huA6OircHV0L1XWRbto0+UT4f/Of//LH8aptVG5I1623lC2RBEtgXFzHoYyAlWXYvfsK1Pel5eT8AKFLRLPxxmBViDIIgVoXa5UoBq36zT8JxzYdLFySQUaeG7yLEN1UbSQMBzqii8DRTYxIsMojFCG3SZ/Ha4ssr5ygsTDPxM7dV6imLx6T5ZhgPaabBe1KwugmCMAfrFHugrAeg0obRJk8vbxYHze/fiusn0ZLy+7Inp42IPMQ62n0+n0ZIOgMbixXj/Yf/iF2+06y2iSOhsxdRuQh5XbRXqnS7C+t9wAvoLgLR6JCl3w5Z0CDpx9aBgnDhgQ0kiZSgyXDBC5xKWOGiBKWljfLrYdvIbvrKIvhKo+Fn+eOZD/e/N3FNcQ54UXEKhwzZsyYMS8RcVyMpQC7Ywd5xobgBkVMN1GpkW3ZgXZKrNiUPbKElYpfj/+En/ffC6d7z+jGWpy6VOyhE0S+IVOAAPPYMgfyv0NnbhQHb9eJ3+ODT8wATSrKnLGoaW6+E/HIo+zO4F/akKfsJNrp4+ZFnFqA2A0IlMty9zhbtr3+KtfwxdMbFgvIlUprY5ubOMzfPIms+ehM89TSGq/ZVcR6K4U+pfU2+jv1mAfbDfK8QWfwBO4MJBMDxOdvJ37yWfztd139Co0Zc425rKXpcrnMD/3QD/Grv/qr/PzP/zz/6B/9o4sS3F6I97znPXzoQx96UWW8nIiTHsJ4GDLsuqTmRWe7Og4bEY7jEPYbTC7tYWp5z0ZGTi9wCMouypGkm451t1dIS0VPE/Q2iXE2wMknqDohhxdDSDrPP911y5Jo4aQNBAJDitRlvDhnUI8YVFtUfEvolfGkj3ceKzc4HePt8pIWXGku/you7sihHiAQJElGq+0ztf46MMqwVpsqRD+jmf3qQaQZIMUp5vcXscO0suSuQDsCTBGPa7NzoBE+ubCUUhgkp3CjkaAeRHMIHYDMWLB9tDEwf+qya3s1efJoDykkTA4wGbjD5kZSDjfOUJxETdfhfX/DyuRbQWx+xRZ/X6y45O2qIesuFotMXIwsBsHCKoROyFRxHzedEr+mHuU37v/lK1fRK0BvJSpEN+3j5E1yfyTUOpkEC6kbkwRDQGKM5cTTK+cv8DxstrCKRI40Fq8fYUSMtCFgGTQT0iAjQJJEN04gX5tl6JVVGrvv3thmREKUJpQ7AZGfcUgss2VHMVG4kGWuu62CrLj4+LjuFGlm8Ko1pBj1D8PwawzDr9ObKgJJ36o0ns1Y9Ldj5SbrB280KUvjG6dNx4wZM+ZlSTYaz5988nHS/Mz+IEPwldvfyhdmdvC5+iRP3PI9/Okd387n974ZpMQIB6s8rHLOKOtlh9HYXp+lusEx0I8GPNA/RRp4hYuCtfjRSdzhEvO2TgnLW/bUzyii+4UlTh69HT2Y4Q04fFcWYNat9QUClabEymWOCqfaR69FLV80nV4huk03e2Ch3HUot2rENR8z6HPq6AqfPDjPYmeANZp9VY9qUIxFZo+fwPeXQMZ0+8VY1TiWzNes/vp4rj/mlclFWbp97GMfu+gC//bf/tuXdSFf+tKXCILgwju+QkjMEIGHXA+41ht02dItOsHMTck9y6AWs7y9g2s90OBmAcq4VJohAI6nSKIcayyDdswDf3EI6UhmdtWh4WGyiLATk4tFED5YhZNOoFWHTm4hap33+q4nrLWs2EkanXuwaKwWBANNqR1hVZ+tJ57Ay9/F7Xd9O/Iikn3M7t3G0pMnCiMxc2PFf3o+LzQF7x0/gfUsvu+S02VBDogTw5aKQgu1bvEnmTseI1UVIzRJpbgHrQNOVpTuSYmx9gwFPyckMQnfsbwfx5RI+5LaYp80dMlrNbykTOYLlsot1qIBM+1OIfJdQhKIa8FKKwYhkSWJalcR/sht28v6SKVRr3orzN1BduorG5aSXnWalCIOns4uTqBwmgGq7hHFHYgCUm8epas4eR2rAp5NEmCJBiGPeC0ORZ/nn5scR14fCW2ifoadyUDliNwjdySWFisLKa9bysgrBpPnpH68YZ178ukVtu2ffMG4n2chR3devC4eWamKzKXWYmWOFRIvLgRMYW8cgShvtXDuuBM9sQvyNmmYkLkruLGk3xyS+TnVpeOkaiuOKzcSxJwPGTqYfoZAML9SJQokt0wF9L2RN1EcrmCcDpXSNEYKpjBsJWJFOkwem2RpXyGgu+UOtWZGqTlJllzL2JdjxowZM4Z0lC1cCwvOyDKrNFgjMBl9rzQaZ1kD1jCU0M67iNBB6PUy4ht77PuCRC2wHoMgI3eg4pSZXakSb5EgBdpkTHS+zt88fYzb2UUqt/KPWx6Lv/IQWBCuxAwzVMNHdxIcKwhil+Gwi6tWsMIHr0pOwPa8xtfWboxF5efTHRQLa7ONBWbbO8lyxXCijLfcYZB0ebIV809eu5fJSoAAIq/EriBEyhlOLDxNeU9ISs6xeY+tbsak59NvRNTrk3T+/M+pf+u3XtsKjhlzlbmo2dl3fud3XlRhQgi0fuEJzXd913ed8dlay/z8PA888AA/8zM/c1HneSVgs4SwP4pxVS3XSIJTxGFK7miEgMfe8hxBtoXdR24rgv+vZ4hMo0IYEUJQnyqTZ5qol2xYI6TDnKTiEC4LSu0ERBmjBhibofs1TlUSknsq/EFwionlT3B3/Q1MeFNnX+T1grHkpoKkGGBIJchqLnRTMGWqg4hUyosS3AB2v2oXi4/8JQBp/xoKGJfpXXrmtPv8hWRZwmze5FB2il5nG/eaKrgwNNGGebzVOaleI1THEf6mLJzO6Cw6zotEHZvKzq3CmgS7NE8eP4EzexPJa2ewFiRNtAKhA3pljZCC3rBHtdWCiQmuZ9I4x+EE3SRjsgzIdYF7MMDruWR6J+72GQBMPhIipm+6i37fxxhLd3VIdaJ0ruLPwN1aRnczrLDI1ENYFy8bJbDwPZ84txgMLgptc/7ZX/0wP/naf87NEzdf2YpfBoNBgnHXRTARYKWHtTGVsIIb97BYHBGgmlWMHFlKD3sJ5drFL8CctuwFSETxDnQyTcZ69lI7JA4TWtM9siWXeOXFWWVfTXS7Tf74k7j3NcEp4tSlapVqRwM5pZ7PPvk3HJbvIc8M8fCFrRPc2TLujgpZHJM83uXE4Emmd+2htLVGlJ5CKw9lfDQaLdok9ZxSx5AJWbg4p9uAYtV+iKbbcum2uuTpNXTDHzNmzJgxkG0S3QBrcmzrJKK5jWF5AqFz3CSC+CS2OYvEgpCUspiqnGFghpyW6WySXCc+Hy8BcZs0AduPqbiCVuBx9773FYtySUouY3Qy5Cl9gG9nju2mwmxHk631wZOoZoD0HUycICsexwcJvYHBqxnkYGpj2B07LgMn45nV45x45EG23/Xqa1vvSyCfb1NK4NaJNW5tTLDYNEBCfWGSvBxCvcTdlRTXGS325VKwZiSYlEQrqq6knblk2RDjaURkaPvHqHs++dLSta3gmDHXgItyLzXGXNS/CwluALVajXq9vvFvYmKCt73tbfzZn/0ZP/uzP/uiK/RywFpLp5SSBV4Rv2n9De5FEEQe4cDHi1wGjRjHFGa7m73YHG/k6Cck9FsRxowmRdZY7ESAk1n8SBWB77NZPD1DOmjgZgoRKladjKcHT3Jk+PRVqfflYjNNJmKMKEw1RJyDsXixJgtyTjVeS1hrXHR5cpPlzOZ2u/o8TzC76BhvFzdU6uddFkst6vUQktE9k5VkkfrcWoTWIEoY9uOEI7fc2tRINBLGggW56fqyHHKbIVwPO1wjcLdSXxmSlgvxCAHa6dP1NdOlKlIbOHr9m+B31xLymUkmtgbE9R5OXsRLyctlEIXgoXbsAEDnIwGkMVunuzpk2IuJ+unZBZ8DVfEQCLw4REQhVkQUEluKSYbESG5jhh1ZjXf0tjMk49GVR3lg8YErXOvLo5dGqCwAq5DaI0j34WVbwEB1OcLtKzIxxJqInXfs3jju2JNLl5TARGx6+UUyIcJiU13EJhMxlgDrODSXq8yIAB3dOG4zptNB1rchvAaWoi8wXpubn2pSa5VZ2b5G2fk0RhZTJaNfuN1U3SM73oeBoew0AIj7PRxPIe1WpAmQugrSMmxmxEGTA57LSSrEMkCkFaQRVHHou6sb5ebZWHQbM2bMmGtKmqKVwmDJjCHzGojmto2vheuTBxVozuIOVjiw8HWsVAy9CllllmVRuEdaIbH9GBvfOH3lpaDbPdJAsLTdpT/h4PkObmMOPA/ruWR2yJue+P/RY5I7bINX4SLzYpxLYjC9lHw1wnRT/L11tmlBw/poc3qMloDWeHlOw1bIogFLTx+8oRKz5SfXODG0HDGHqLkClRbjrMyrkYUujuswXS9RL/nFnElKUrdEY8t2DG3ibMiczjDpNCcXtlFqStKGIZ+uoZf7RA9+7RrXcMyYq8+LMuOJ4/iSXUI//OEPv5hTvjLINJGboNIa0vobolswLF56ykj69R6Tpw4wvbq3OGbTu9xxRwJKbaJEa7F/Rj6AYS/BmQrIPYGXlTFqiDIVpPWYDOaIEo+ahDVOF319dxT9tIN1A2TqY61FBIU45A1T4nKGEIrq7CVkDtpkOWOvpeh2BU79Qr9cZkbij8xG90xaC7Cnhcc4oepOYGTGoQMjUV0ICa6EzCAMGGvYbD+Ua9Amx3U99MpJzHAVv9PYONbNJsm9VXQ1oE9CRfk88bVPctt6RuTrFTlIEDMjCzZBuPG3k0pkSSPDQpDcbOnmhR6OJ8lTw+qpLqWqz9b9kxc8n39Tg/wrMU5UQzsxAonAA99jVUXo1LLFrXFrZ4a/qh9nkA95YP4B/rdb/7crWOvLY5AkaLewjpR5CbEe9c8mOV6kAUHqJSjHYXZXk6iXsHy8Q2uhTxJlBKWLDMy/SSQfyowQQXmYE1NBWReJQ+6OngSRXt/vs83krRbutttIgjLitA2CUXinrZbDlH7jO4iC3cVX+oVfGu72KrLsYgYZs+Eunux8iajXZVe1xGIrQZkKXjJLXD6IlQlJ4FAJoJZqum6VpL+TRs9hrZ7x5eBJdmGQyMtOgjFmzJgxY64QUYTSGgustteItMWlWMgXQpAqjzQMwRp2xT1mBm0OGYP2KnzrzPuY7z7HTXIBYXJsq0V6Yg1//+yFznrDMTjR59G9KdGGWd/6/0KQt5f46ol/xn12mpyb2SUcNOBOBQS3TBA/vIzpr3sThQr/libxU2vMxfBo1sOKHGl9UJCokD1qC+SSqNMiiyO88MJeDtcD2XKXTm44UIqR9RqpZwi6NZJ6FVEsyxeI0ZgjdQO61WmkDNG6Q3jiGNT3s9Ly0NqSlnKWt3fY7QRkS09v3JdjxrxSuOREClpr/u2//bds27aNSqXCs88+C8DP/MzP8Ju/+ZsXPH7v3r2srq6etb3dbrN3795LvZyXJSbOENoiUoeYDrm2yFafXA429knLDnPbRkHcN08jK42RENqcq3Lg3m1M76zjhUVihSzJqc6UMU0PkfUQ6Qq5amHJcaTi4Oeb3HV4pMde76JbL+sgs6LOm69VZTlrc10qzUnKk9MXXZ54nqVYel3EKxJctr/pObBJTiY2JdFIR6JbvknscKVgWB4yaHToTUVMutPcXL6DN0y8DeEU954wFmvs5r4XKwWpTgvxzmr06tOEZrgRS0StW4g5jsszdo2jtMl1Qrd36YH0ryYyTnDE6P0lzehZczKNKo2eG70pELFyXJRTtLHODccPLV/U+bytFbJSijT6zCD2QEcNWBymLPcHvIN93EadOdvg8aVHL6tuV5p+Pgq070cVDCmpswKtUVIN7WRIx8X1FKWajxcU7ffQp57h/j99ikHnwhnUNlumJrJoc2eTu6MwHmbT8pLDxVkaXg/Ehw/zwKsnaU+N6iiswOoerekex+88hi01Nr7TFxDdnKqHt6uKMxsyWdpKc8t2OkuLPP1XnyKzS+SqjasLMdjaiO60wjFwp58SigFL/gzbFitMDRpY4ND0V4rzji3dxowZM+ba8Km/gg/9JjxYWLkLBHGWY7KUZOU4Ni/6vFw5+GlMY9iiHrWZiLvsaI1SrB/Ux7DrMWGFTqE1vPp1uQr8y6+0iVONF1lIJH7rLrDg9VN6/RPsb7f5f7K/x+vIWEUTT/o0372PiXfvo/Sq6Y2Zs9MMKN02hbu1wqKJ8PIBmbuElsONuUiqXFzhAJZ0MDj/RV1HWG3I8oSqifm/J+bIJFSWQ9SggeiNxqFr3T6D8qOk7hIWjdQZrVKTajiBECW2dJfxvJPktk+eF2P/zkyfz/xbj7/6v+5hMbkxY92NGXO5XLLo9nM/93N8+MMf5oMf/CCeN5qc33HHHfyX//JfLnj8kSNHzumGmiQJJ0+evNTLeXmS5KTmLjy7hYA6rpKYZoXSoLB6y5ycRmMnO+NbqTQCGjMVJuaqNKbLlGo+fnn0u5SqPtPb65SrAaWKTzzIiAcZylPowME6kHkJRuZkzgrt3oBhUGXBjCbG17PmZtOczjPHEKKos7U5/sqA0uoAkcdkfo7Ockr1xsUXumnlRSnBoH0jp04/949nooRsk5FqkzUOiSHHklV6lVH93SRGu+AmLtRiKk6NCW+KSW8asZ41UiFwfAftS1Zyw3JmSGKLNhmOX1iC6e4p/CyhstIn6Ca4SQ2VNbGZoidTSrjss02Gf/w/r+sAvtJ4ONUK7qkArz+BMMVSaWW1TZCdxN9dYuW5p3ng936bzqkTuEFIdXYO5flnuAfrzPDUV44z7CXnOxUA7ky5cB23I/fpjWvxPHzHYbpSZq5aJ+9U8OMatEL+y7//S9qL127AbI0lYnS9ghq52wKhsbHF2VklDvrkTopaj7UYVkZBn60txMksubAFldhkmRqpQnTzBymps0TqzSOsIPMMK1s7rNgIpctYcx2/1DZxeOEw27M5dDASxVXsIq0hC3KkKLG6/fs2vjP5hcUvWfWQJZdYRUxVtxOUK/QPz2NkjBURRkR4wyYqs3ixg9crMefDXJBQ1kP6g9diojINU+bBbX/Bx2/91bF76ZgxY8ZcK7pdyFIWa5rff+OQP3lNxOLNDv70DvypHYh1Ic1Ih3LaRwDd+DjKGvatPouM12il88RCYLwq2q9hvDJ28PIS3b58eJXX//r7aVX+kLyhSEMBviGIt4LRmLzP/vbjfH9/kYrdzh4EkYAqAm9bsVDs7avj7arh76vjbq0gPYVwJRkJNrZYoVGmtLF4/5ToMpeHpFMOaXSDzCUyja9CdnmaasljtuWQGxCyDNXRxKGWRAwrjyOMwqIxKgOZMV0HrENTp8hc4agBR06A33dBF5FYVD+hlV7fi+xjxlxpLtm99Ld+67f4jd/4Dd7xjnfwvve9b2P7XXfdxVNPPXXe4zZnQP2Lv/gL6vVR+mWtNZ/+9KfZvXv3pV7Oy5I8TXCy2Q13rNPIrLC4cnJFOBXSzfR6YPYBd71t7xmT1uezdf8kypEM+wmOp1BKYuseghLCtvDywhIsUTF+2ERtipN0PVu62WFCazBA1wdYkWOMIpkqOsfKg5JBPaZS2r6RHfFiKMydC8syYwzHD66w8NzVz+T6/FYvTLEvfNxFGWtHOU5kqVPmeNZmV38LqfXY4boseCHS5Bih8AeacjfAdb/GtyTTMDtKhOJMBPTTHOtA3E2o9nLKjiSzFh0ZMpNi1wWV/NgX8Ve+m/5ri98GWcHIGEeFzN9c4Q0HA1yrKA8h6bXwgy0X1UZXE51pvKxLqdyjszUGYio9BwT0JxvIJwLwS3QXFkl63Y3jpvffhON5+GWPJBpZTa7N95jeXqdUPf9z626r4Aw8nJKHkRG57CKsIh26KPqsDhtI00cbw3Re5dnwONV4kqd4mKOP30JjdudL2STnJc802je4cR0rNU4eoKWL0lXqvaPkSzEBFdrOAtItHJMrjZA03uS6K4tyLoRQo/dkJHNOoOkYjZcXLuWpu4hRMHWqDgJWlCZL9YZV3fXMs9Eit4b3kruQqzYgmTkxoDSY4em7TzLZAxOWCf1i0WFzPM/z4U6ERI+tIJXEaznIhgJj0Azw9FaMyAjjuxiWD9LeEjJ7bMh3hhmf6FSps4aMJ3nD13fwubc+Sj8c0gtaY/fSMWPGjLlWrA/61iqGtVqxACJtleB0d7ppYSp2A1LH575YcIoO/XSA9t6Cp6Ee7kWLY/hJMX7Ju/2XlQvgg8fW6LtfpS5mSDaFnHCdCghF3pjg1fd/nAezO7mJJrOETFiJN1dGVYs+tnT7FKXbz0wsJz3Fdtmg1V+jXRqi6aO0RylN2OHO8bAXcrxziFsHb7mq9b1cTJrxscUB027MU+Uhp2YkkDN9vEyax3hhIbw5c2185SHxkXiAx2JlB7fsbnL0VIq1bYwJyZI6Wmfk7hBhIS9B9YSm312B2jWt6pgxV5VLnnWcPHmS/fv3n7XdGEOWnT/o5ukMqEII3vve957xneu67N69m1/4hV+41Mt5WdKLe0hdPmu7kxdm4yd2rPG6d34DJ79whGE3QbkSv3ThjHyu75BG+fq/DDFTQuAg85G7VSX0SYI6bt4EClPo61p0G6S0sxgvKzJGakYrSV6cE5dTQtO45HKFEFhrcVxZTP7zqz+pvPxhzoWPtFlO1x/SCQbUApc35QG7cOgRE5UCzPrK6ORJDQZ0mMPr/smZZaQaLzZYAcbYIqECkNtRQPfV4SpVwCZd0HHhiioFKq8W7pLS0Nrlkz4ncNcNo44ef5Sbpq8/0S1tR2TeNHl5ZAUqpL+hjjpxiLOlQdJ5buP76uxWvFIhNN7x5t08+aVjtJY2uVdewDJJ+gpTNnhxHSvbOKYYoYQhTLizCPUEk+V9ZDrnDQf38pm5Jxh4XVwd8PRX3s5db782olsSZQwcjQ46RT1sGZlXMGSUuxmsLyjkTraRVdgLHIRkI/6kNZwhUp7GWou1hUFqFudnCOpaarajKGWCw+vbBAq9aYDtC+j2+0wFjSte7yuJNYaTiw9z986/j/E8HB2g5ZBSq3i+/cTwjocDTnzDJPnxHlmSk+fmgpOk8pu20v30UUpphVmxi6cO3Y9bCYl/6Vf5pu//xxyuvhmb1oj94+SOi9+u8LrSKfb5Dk/YWbpujV2DI+RZCP4QhKUftYBt5z3nmFcgWoO6sAg8ZsyYF0lajOE75dE4VZrRnGAjZIoQDP0KE/0VJJYtVEHDY2sPU556LdrWWAm7bBssFPvnKTbVCP/6X6C6GPL1celO1SQ+PSbQPkIU7ymV5ZTMo3xK/2v+IdsJEZhQ4e18YWVI1QpBThpJXhoS9CugYBh6pE7AhC3RktEN414atzr81okebw/a1HwfKOb22qvhuSNLN6EME+4UucqKdLnrOGENZVfIREbJ9EhlnY99dhs/SgXhCv7qBx6kt6PCqfj6T542ZsyV5JLdS2+77TY+//nPn7X9D/7gD7jnBYKgn85wunPnTpaWls7IepokCQcPHuTd7373pV7Oy5J2khQTRWK6LGxsV7khdzTRdI4FBp0Y5UqqE6Uz4hqdD+VsmpxmhvpNE+RlgcoStBxgRIq1mm0TVZ7KNu97/Vox2FTTzTcH+AeZasJWRHuqQxJmbLvj7ksveH1lUACOo67Jv3OYul16+5zvmEyTyULQ0Nqyy7isYjhlVojdUXIAd9hncU8LufPs2AvCLwYqwoJJDXJddNMWjAbHWnS5hPF9rJQMZIstB5eRmUbi4sXbOP0K+lhjgXl6GCyfe+Ljl1zPq0G8su5q4W2yxrIeWEtpLcIdZpx89mE6J08gXZfSxCSTu/aw7c67N/bfd89Wdt8xs/H5QqIbgLuvCiZDqzNdPXrOFDuzL9OJBiip2FVyuC3eQ6ADTtYPceroGs999dpkiOqvxajm+gcrQJYxxGTuMhNaggOZmyDKiomdezaOu/1Nu9h71yjpybksqNI458sff5IvfexJHvrM4TPefbko9lf55phuLtqBqJyQWU0gBfcfuz4yvL4QutWiVbY4qo4gwBCTqzX8SBGVUhw3JVMeYaO88W7P4pwvfexJvvixJ84QdzcjXUn1rTswJZgOt7O1tI+410UYSxgvge0DgiDei3FBexIrfH6g1meXiomlz/0Tr4NoJLJ1BwvnPNeYVxidDvzGr8P/+2vwu79zra9mzJiXP8ZArweuy7A8ErmF8DFZgh72zthd64R61AYgci2/8c0D1m46RS76CASPzuzBSheLQJgUfeLqe3m8VCz2EurW4a6b76FdLrKR+slWAGScsf3gEyR4aG7Gt9DDEOypU3vr9hcs15kMyWSKk6izxml9R7KFCpmKSIbn7pOvN1orbQ4NMrZ7Cf3AInPw+j6ICoa4cCUlQnkST/ooL8KSrxtoWJzSxMb0pZZ3QPWxVtCTMW7qoLJifjU0N0Z7jBlzpbjk5YsPfOADvPe97+XkyZMYY/ijP/ojDh48yG/91m/xiU984oLHP/fccxfc55VOO44QNFEEGBL6nQ6zmUBlGqUVzWA76Xoqb50ZHOfitFPlbhLSckNQ9uj4DuW1nHi2sKyzUjMVOhxM4LSNzBPPPsMbZ952Jat4xbCZJpWwsfYiJMZT2FiQlDNQl2cxJoTAUrhr3fqGa2MtdPxrz1zWcRfjCWCtJVmPf2UyeJQcASiVotddi0WuiSt9+o2I6rf9X2eVITetftpUI9Z7WasEYc0hzwUOIJPChC3O+lTbHVbjOokjCOLdpOFxALq3lFk6MaDlxMxEDgfXDnLzxM2XVf+Xiri7How4KOojjIPWFjeJCIddSrNDunKIzor9pvfddIbgBoU1V1AauZNejOjmTIfYpyMaSwrDCkZ5OLpG6lQJzUn6WY+1PGaqJNgha6QmZs2kDCaf45FPD2lum6Gx9YUHjVcSYyxf/9wx1P5CAJMmBCGQBFiRU0VADlIp8jRGuaMV+dpkGak2iWjnEPyz5yU22Zxg2KjigzqjXQVGQTjwQUBgIv7q6c/ybfe+8wrU9qXjDx777zx22yzd9czCkgCjYsr9gHDosaXjs+Y1qZTdMxZUALAvHN8tuKmJc3CR9sl59jfuZUXOo7MYf7iAtMfJ1HbcvIkRMVngYHLJW4OUTzg5y2nGmj/BXDZBvbsbgL7XfolaYcwNhZKjxaEX8HwYM2bMFWI4gOlpMBbpWLAJCJDKR7o+uGeGr1DKZylfZEH3CEplEKC9Dqm3QNwr4cgJ2n6FZtRC6BTTv0HikF0EnWHG7XaSLilsWLfVkKkmiHIq6XM8wq3ciuY5DALB3m/adcFyZcnBNR5+7GLkgNRdROV1lA1AhWzNK/yNHpIObwxLt04nKgzXrGYpyDCOJK0kqHmJrsc4JkAQslvt4s7Zb+D+/gKn+iNryuXpJrJcwR1O4WsPdOHtMZApU1ow93STQXiEfOsk2mqUGFtEj3llcMmi23d8x3fw8Y9/nH/zb/4N5XKZD3zgA9x77718/OMf55u+6ZsuqozBYMBf//Vfc+zYMdL0zExyP/qjP3qpl/Syo59lZO5ysWqgDZV6nSjTKG2J/YzZuf1FBtKJEtYYgop34UI509KtvdSnMlnCCEEWSiwGgcRqQ3cwZKhHE+FWev2udGXDFOmPVCYn1ZR6Q8JuipXF4P/52UgvinXlytprGSD8JXTrjXN0sC5oZJJXrb8KHnM3TZSExUscBo0Yxzs77thpSzcosqGuNzdpboj6Gq0Vyh8dl+ke1UWLvNWiUoNwAzCAKISTUlBmkA+oGZ9f+tov8YYtb+C9t7+X64X26hBvcJJMp3jtOlLUsdYgBKg8Q+eTZLbIbKpcl+2vuvec5ShXUmkGgABrsdZy+OF5hBRIKdhz59wZ+/tbanhZmdbckKnFCo4uJObIqYNZw3dc4txQ8iQ3leEZHVHuTPFs7Ql2d6aJ2mtXVXTL4pxhN0Ui8PtT+MltkA/I/YzUWWLgNSjVLElcDECVc6ZrvOspqhMh1tpzCkdZonE9hc4NbuCQZSmnpXWjiptQ5ZpMrGAdgxU5Ap/cyXByheMEpJHmxz77Y7xl21v47pu++6VtkMvk4MpTTIhJhiWXTLUBEDorghEDgWtRysMLnLNFN15Y0PV2VHGUh800SjoIIzDaELXbBHN9cimxMkNFLVqNAVtjxbQyzCqNNJKAmFZ/P3Fex5qQYf3lFXB7zOWyqa91Xh4uaWPGXNdEESwUlsYre6LRI9ixsO60oPIh2ikBEGdd9kURQSJo10fJjmKxiM9tJHmftl+hpnPAQnJ2iIcblXaUsksEDMPTK8QCJ29iHEFSktQHh/mK3koNnwzLjFR4M2eH+nk+suaRVzX5MKbUEnjMFtvTIYv0aKqEY8Mh2XBI+9RxGlt3vJTVfFHYXNPpFvfFbZ7guHHRiz5p4OPmoLW/cY/lg8KKcrZaY3l5mURIjIjol0qkuo8hoZKN7sPDzhoy60DcJ1cpwdCylq4w7c9ei6qOGXPVuaxR0Vve8hb+6q/+6rJO+NBDD/Gud72L4XDIYDBgYmKClZUVSqUSMzMzY9ENSKxF5mWULdHjMGQ5bqyxWGIN22+forc2oLdWTHSmttcvUGKBckYiSTzMGLaGaE/iZpCKBGElQkl2zEzyxHwFWAOgl3dZPdlncj17z/XEoB2TWEFJRmAdjOfRn3SYebZNZ7IQdC8nCOzGMZfh0nnFOOPcRYy5i6vJaK/zXb3VBtc4mNyQpYJVDA0E5WaJaN1dT2VQ7gScvGkFqc6OGSgChVWgpcDRlkwJhLZkp0Nl5IA/EoSzpIcILV6UE9V9lC0hdRXj9pAlxdDJuT2d5hm1xvzxL/PZPOJde97FdGn6omr9UnPiyBLD6jQT9RbDRgc/auI5PrkDXn8Abox0FMrzcfzzJ0dQjqTfKjK0ur6itzZk5UQHYyzKEey8ZRrljp7VcMcEXlZGGLAyAx1grWXNBIUxv+4zUd5ONx5wX6/Jh8qPk5UjZO5wii5x7+qa8CfDlCTKyBoDtKcpRw1QJaxYI+UZZgb3FuEiS8V9Kp83OfdCl347QkiBe45YMskwJVt3O437KVloOB0jTgtIsfRzjWunIAMjIxCa1M8xuUVbydHWERbUYXzlX7eiW54MuKW/A2+2jKsbAKTecyB9Mi9nIo9YdUKmfAfHVWfEwwMw+oUXDNzpEvUjU2Rhxq7wDpbjE/QGKWG2wNB/LRhIKj08MUWWtKAMN3sZ/9Odopp26MV7Id4PZKwNx+6lY55HFLERfHHMmKvAQnQSTwU4QlF16i+bBAAvSDwSzjI5GvGJiQqnQxyfFtystbhOiYnOcap+hbarUVqjpSVzOkx4RUyIYbCKah8H5aEHZxpG3KhEqSZKUu70tiCUQwyorIpj6iAEbgxh+yTz+iZusQ5TQmBmSwh14XvIqfk4PUWj2uTgzNPMLIElw3glSv4cZetCJhmsLbPw5OPXt+g2TNGRw1T1JJmTseo4pNUYNwnQtdLmnBz05o8DtxF6ioygWHi3YAjQyQLSeoR5G0hBJfgmYAc7yaN5Tt6dYKKctXR5LLqNecVw0THdWq0Wv/zLv0y32z3ru06nc97vns+P//iP8+3f/u20Wi3CMOTLX/4yR48e5dWvfjU///M/f2lX/zJlIAvBzWJoshNcB3+4Hn+rKQjKLkk0skjyggsnUSj2c7j7bXsR62/NaJiRlB1UrrAyQeJzevK6IKobx63JJb7wx4euUO2uHNYY+sd7SM9DmhBp3Q2rNjfOaU+fFhsuX3Q7b0y0q469ogKgyTP6XkTmaLzcYXL9VeA2R7+7k2iSclq4Kpxj8Cp9hdDgZBaGGldbHIqYbgAiiRDBKOjqoFVMzGvrsdEcXafSfe3G919J+oDlVqb5jvwmHlx8kL88+pdXrM4vlpX5DouVo0Ukfjgj2YkX56Q2YrC2gk4T9r/l7ectZ3OGydZCn8e+cBRzOh5ebomjM92yvFoJI3JkLrGieA8IIaiWanzvlllIDyOEYKJcI2kJfmXiNUgJRyee5BNb/ieLz61esTa4GFZOdemtpmgvwtVNHN0AIdBySNAbvau0U9RTPU90E0JQqgWY3NJa6GPX28baIptwEp/ZPpu1JSsNHoLmpsV5YYv4NEklxcOhrgRN0yA1KZ8/cXZ80uuFw8MTTNgmcXWTJW8CXuKQhBlDGZLv2IMQAjdweL5RrtYv/L7wdlVBCdzEpeHMEFZrtLoRE2lnYx8jI9LQIdPFPXt3kOCalJ5XZzR8cDkVX0uL4DHXDc/vo8YupmOuIp9Y/J/8/qkP8d9P/mdSk1z4gJcDSbzxZ+ZsEt1UeNauQgieXfxffPzhBxFCkPsCrQAhcPzRs3qq6fHIrgR0AunLw9LtsVMdvnZymblRMBqcfBJHnxbdMvr67/MPeAeegN8XGbPvufWiylb1YnE5GHggczJnFUEx1smUx01MoVxwpcHk1/c70SY57dyQzPxXZkshcVNjHIMQTaxy0GoUIzAf9jBa0yi7qPVMChKPWM3hBSHYnKlkEYkAXaWzvk99sYJKNMMyzMcnrkk9x4y5Fly06PYrv/IrfO5zn6NWOzuLS71e5/Of/zy//Mu/fMFyHn74YX7yJ38SKSVKKZIkYceOHXzwgx/kp3/6py/t6l+m2PVOwYocuf7idtctO1ZfU/xkw16KcoqspeFFupcChDUfP3RwPMWwG1PZVkGZHCvXrcKQrA0Tys6oTCXgC91PX0cCVIE+0WZoBI4YdaIys/i9FDduM2gUg5EX4156TS3dzkBcprfpuQ/SetTxu+sxoxQCUx893yqLWNzVWj/72a8KuUk8Utlo0m0cgRtI8kxgy2W6gcfAc8njVUAQdhK8YQ7GoEwJjIMTRayUapwcRKwkQ16ttzJXmuOxlccup9IvCckgQusF8qCoq5M2ybOcynKPisjI6qMVYb90fpcE133h+BXzz66dtU3XM5QWGDH63ULX4VnXozddojVoMUgiHF3mrvoe3ujtp5xXWSuf4v6H+1f12c0zQ5YYhHFwkubG9qR0mDd/8lZSV5DPaXqNQgyUztmLBv6mhYTHvniEL3+iSJzw1FeOM394DbnJnXKz2ORKhxhzxv0orYuwgjQo2k4Iwd6sSALQy3poc30mimlnfXalWxiURr+dlxTvpTTMSMImQb2wYHC9s++pC1q6ba3iba2gGj43H3gjN7/xGzDGMCuHGHkKLSKE9Th10wQPvPFVANzm52zVber5mQtsrXMkvBgzZiy6jblaZCZFiFG/kJj4BfZ+GZGmZJ7HQAryzaKbdYoQNdaSp6MxRYDDsD3k04ce46Hl4xvbtYrIZY9cdVipWu6/KaXnZy9plJOryXMrA7aWcnaZBvF6Oyk98t6ZPjFPTpkFco6h2bOtRnmydFFlC1chtwTofkRtuYQ1XbQsFv1TVXg9NFTAWj5E59e3iGlTzWLSY9JUObxpQVTqMpgUI1IMPby0iys0i4eexHcltUBjKcYcuQiZ3b4X3JCm0dT1Mkp16OlCCK6tlqgc6VNeTVhJx1byY145XLTo9od/+Ie8733vO+/3//Sf/lP+4A/+4ILluK67kW1uZmaGY8eOAYVwd/z48Rc69BWBMQZBRMwiHb3KcmtAZamP3+3TmxhS21Xioc88Q2tx5DJ2KaKbEIKw6hNWPIKyT+YrVFrCyJFgMFHy2emNJmy3MMOwscqzDy1fmUpeIewwYdBJsYEh8eZJnWWs66CFRZqc3kRhW385otv1YelmX+DT+bmY+upg9OhLDQ/LHl+qJHQntyN1jsg15U4X7RT3wbncNEQw6pC9Td9HqSGLDWnmIj2XWpxSTjNEMkDUYkqdpKiNlEWQfZmThyFq+zSZ0XTjDIVkay5pJ+2LrPVLT55YTDnAyTzcZBZpA0gzjG/xU4Mhx6/WCBtNvPL5RTfpSEr1c7ufnnY3XTx6ZhxFZT1UrsidFpmzVGyTgpnhG1gLM4SwDNI+JaVA1bmzUcM1HuWszrw3z/KRpSvXEBcgGWQ4IeR+F6MyMrWCyVe49a9nUFrg5LaIhTfhENTqeKWzB7almk9tMqQ6USId5ph1q61BO6ZUD5BS4HqKSjMkz0dPhm8DBhRu2NauWwVaBy0HdCYHLNNhJTNMpSNxuZeemd3teqGvMnKZEpcTMrlKKlcIWjkrWzusbu0SGQdv/Rn0Sy6l6qgfEAKWjrU5dnCJhz7zDF/+xJN85c8PsnJqJJa5M0W7q6aPiXK8IGRpZUDDybFCoZ1O8SaxFotgoVYlkAIv6eJlQyAHEYOzRmIFZ5najXkF8rxeKn15uKaNuf6JTUxuRyLvK0F0e+ozn2Th4Qd5tr6bB/e8mVr72/AGhaueMuViLCgEcTaydp/KG4Dg0VPHmY9HfZ/MfZSp4Og6SlcJUsFq2AdjLriAcyNwfG3IWjpgXvbwBjlhN0ANq8hMU1qL8PqGFhnCWj4mM+b+1p4LF7qZ2FDXEwxrCdpPUaYQ9NKsz+N6kX1xg2eyFvo6t3QjzVkzKbtdeLScINoTOMkMfrQLcPDyJpIqqVejWqtuWO4FvsSIGCNSwODKFKMH1PI1lFE4ss28hUPOSXqDITYTBH2NFIrMjPuJMa8MLlp0O3z4MAcOHDjv9wcOHODw4cMXLOeee+7hq1/9KgBvfetb+cAHPsBHPvIRfuzHfow77rjjYi/nZcswSxBmhoBZPOVQQRDVA/whYAVZmhP1UnSm0drQmDkz29/F4LiK3lpEZ3kAgcTJLTKN0HQxNmaxM6SnRqJB2TosZ0s8/KljV7i2Lw6bG3IHHFXGT7fg5dO4g5T6aoywCrseVP3yYroVbXotRTdx3g8vnqw/yqIkcpdJU8KvN8ikwgiJlYIdj8XElaIzlOeydNuUSMEMcvoCEleQKUFYVcRxAJtim4kkwWYSNzOY04EhrAJb/F3xI7I0oeF5WGspp5IsHfDEyhNXtvKXicgNtYqEXGFkDydv4JRDkqAMiynd3gJJr0up0TwrOcAZ5QiByQ3iHI9tlmjSKGPpePuMe0+ELjKXSBPg5jMAnGoPWFYlPja7hdBxkcLBEZaFJxfYHzRI3YgwrXGy/Byf/73DrB59lqWnn2Lx6SfpLS9e8faBwroq6qfImgJhcPMJXD2FdKZoLrlIIxHAMGmTDvoYrXGDs91gpBJ0VyN6a0McT22847JEY/JiEpBnGp1rTA6rrUVWWgsIo4lEYXVlbZdctTAiRpkyVsE0daZciYtmX30f+xr7WBpePUHyUphsK+7u3wG+g2sm8cwUtVNQaYdox5B5FfxSIbS5nsOwNxq4WgvJMKO92CfqpRhtyVNNe2m0WCOUwEqB6abYVBM4ZYZxjs0ESrtIXUYYj8zpIIzlWDDBWmwp2ZieWwMcsAHkE3QyC+nVjR045jrH8yB9hbj4jbnmJHqUZdOXAbF5+WTdPBdZFBF3Ouh+n+ON7axWZlBmEmWKECHCqA3Lo0r5ALlJWY6fxcuGiPXtItg0hlMpVqx7vFgflWiOlWPuHz6A7d34Aqa18Jqa5g12B71Jl6gWI90A4yrimkc46FLC56SFrwvDNxyYuqTy1XpfXF0LUXGKFgMslrQ8i1IST0iOpj1Mdp1bumU5CX3uMVsQW11sY43cX0KZGkiJwEMajUyH9E8eob9SGGOUAgdpPbASkNS37cUrTYLJ8fKczFZI0NyUb6MZVCl3JIOqROaGleT6HIONGXOluWi1RinFqVOnzvv9qVOnNizYXoh/9+/+HVu2bAHg537u52g2m/zwD/8wy8vL/MZv/MbFXs7LltW4u9FRGnLCRoj2HSprMUs7WkSbJlav+9ab2PuqLZd8Di/YHENJIKUkCzMUNaQImK2XmAxHotuE8DnuP8PRU6forFw/WersMKHTypBsCtZf9lC5ISkVotJluZbC9eFeap537su4Fns+91I7cger54odKNaqDrkbgJQ4UZGNNC6fPxnF5uylTmaoWPAzS24h6mlWe7Nkzkh0k2mCXbeg9KNi4KHwkKbY51g+5NGBZSIMuYlJannIV5cf5j899J+I82s76DO5JtcWv64ZTnfQ7rAYYFBkzAUwqvh/5sCF44Dc8479vPHbb+NN33EbclOg3kojQOeW3mq0Yd0FIEsuSksQo99ta6OMn+1nKW6RrXyIqUqT7Y2tVHsV7jMeW0oNlqpHOdR8iBNH23zufzzGU5/9LM987jMsPfP0FWmX55MMM5aP9tDrOXrE+m+LtQRDy8K2DkvfvZ321DwApUbznOVsjlM57MZnrLQPuwlGW/yyR9RLGfQSmvVppppz1Jwqg/W4IQKFo5u42QxsupcBFsN5DncOc7J3kiPdI1eyCa4IiU7oNH0yNEaOnrMtJ8oEQ4/WTJ+B9TesnL3w3DmRzPPiuj3/MfZ3VMlXY9L5AV4cEMcaz02o0sYxVbx8lmHlSaKqIi/XmAgE27NVYqfEZqum1Iqx6DbmTEO3NIXoxp+sj7kx2GzZlpiYYT54gb1vfLpL8wzWVnABu+nFLqmCBaXrCOQZi3fTwV7KW/Zxd7Pof2Vlk5W5TDCyEMml9unXFcO65Ku9LzPotK9GlV5SnlrokWdDhu76WMIInHwSACfWqLRGiMNHZMrui3Qr3YwsFX2w0oq42kfZwtLQOC43McNr3B086BxkOLi+Ld3SVNMxEe/kZrzS+jjMCtxkdB8ZqUBIBJZ8Pabg7jmPIhCNgxUVvOYW0uEqoNkWn8Lkk8xvioNcXqoRTwSs5Mt0s/bVq+CYMdeQixbd7rnnHv74j//4vN9/9KMf5Z577nnBMqy1zMzM8MY3vhEo3Es/+clP0u12efDBB7nrrrsu9nJetvSSGBBoIhxpELmlsjLEj3KSaopO1+NJuQrHdS7LiqvcCPHXX6bGWijlZ7iXAlTdkZBVEwENT/P45Bf5+mdPXn7lriDWWuzagIgMYc90r1VpTme2WDm5XNFt5F5645nVX0ydN7thqFzxDDnZdHljVh4MUpIwJS6liPNofSJ0kGUXK0FuiqGVOwLHE6S6xMnhLZvOk2FKhSDiRfmm7TXyXIAs8WtmLyvDIY5Q/LP81YTC4YunvsgHPvl/XFIbXHGSHIxgwl+PH2jhdNIRZ73u1oPmjt3Ut2y9YHGbn9ut+ybZdmCK29+8Cy8ciU15NhLYZNPHj9VZLnwBU5wYLlJTKzy9cIhMaxpBlacPbuWW5CZqosrQ77BaPsWp5yocPzIHQG/p/AsoL4Y0zkkTg6ytZ8DNq1hySu2Y1M/oV2NKvtiw3HT84JzleOHIdfL0nEFsSpsllaDSCFCuJEsNZl1ErsmQVRnTxyDWA2kLFCCJKglrbpeMnIYps6O6g9SkPLL8yEvQEi+O1vIpJvMGedlH4GPIyOmjtCUJUgaNiNLsxMZ73PMdlHN2d67z0f0ipCCNzlxl93bVUBM+ZAa36xA2ptBa0cxGbkfabdNtfJ5OULgt7SEizIdnCCwrsg/p9bMgM+Y6YfjyFj7GXD883510oK/PsAFXCp0WYzjHQropBrPMXIR1cfNJrMlYTY/z1eX/QT8pPFVifwq3Vix2+XtuBiMR2seLdpKrNQw5Eh838VmYtFRMzpfnv3z1K3iFaUcpc05O4hYdl6MbKBOCNjQWBmg0nyXjUTTbpqsXKO1snOmQjBR/4G7EyD5NplxmbZnl6hIPHNbXXXzszRzqW95897dw6PYfQLrri+NZFe07GwYhAHbdVcN5TtH77f9B+aM/jBCn1vcR5PVRhtbZdJXy/5+9/w6zLLvK+/HP3vvEm2/lruo0090z05NnpBmNIkhIBGGSEDZYIGEM2CQ9JvuHwfgrYwT2AxK2AAMSBhswJggZIyEkoTyaII0m9fTEno5VXfHme0/ce//+uNVV1ZM7VHfPTL39VD83nrP2vufs8K613qWbHENySETkaIS9AtkzYC3Lgy1pqS28PPCCSbcf//Ef5zd+4zf4wAc+gNbrm0GtNf/tv/033ve+9/FjP/Zjz3kMay179+7d0m57DnSjBIFAEaKMoNiOCbspaZDRrUdIJSnVQ6oTz64Z9XwICh5+6FKsBsS9BFy1FlYOEPd6KLNOyrRFzA+nr6E/tkxz/hJZRKc5WOiKHlYYUmeJzBmKxYosJyqesv9cSbeLNzk+7dTn0ZSc9Xu4o6GJXSd8rKXQTvEjbzU66Jn7UIUOpp8hDAht6UhYzgzNXk5YcQncAY14gsWROu3Aw0titBoSKaXlaLVJFqlLOI4lDHKOyyp3dlIacUI9L/JOey0VCty9cg+/9tn3nL8OOEPkvQSV9QmdIdEmdQFtM/xGh2qjQVKLKEyNUhobR7kvXGMRYOf+CXZdPUF1rHiaIH6+QZxehR5GCIw6nTRxRZmFpIFwfbJkgSSP6SUJCyeLZIenGDdTzDBBs/YkSuV0O0WQVfIkwZxnQd+l422OP7ZMHmuccg5WIG2AwCF3DL2RAQ/cfIJQJPjlCpWpacoTU894LC9wSePT7StVA6rjBWqTJS67bgrPd9CZQQiFMcPFYFEUkEhKSITukLqLw0piVpEUMkayCi4OU8koJbfEtaPX0s8ukTFtA+afeIzRvEq3rpHGR+IikTjWwY890kLG9N7xtXHKDZzTCLZCxadUC0BAsTaMNrTG0lzs0dyQYupMFJChi7ujjMKhu7JEp1+kkidUB0+gxQoqK5I7KzhpxJGR3YzmyyirTwubi7FgLm0P/hYuADZOWr4Pl7p+0RZeElj63f/OsV//j2vPi6pM+yUePaOz4ZrdB3K57qwT2sftjw8fSxepI4rpCkHzdsLuA/jZCsGON/JNMz+IFxZBGqxK2Hk4RUUGa/rkNCh2ShQ7hj1yiodbj1yMJp5XtAcZk85QkiaMyvi97Rjbxx+kBN0eDQvHjaaWC77jFdvP+PjCUbh4FJsBhdb61lolXR4zbbqk1M1qMYXs0tUws3mOzFNyk4PxcLvbqDe+CcyQTDPEVAuK8aUlth+7ktIxQedgHfnE53HTJxDkWHKsG1KZ2IsX1piKT7Knd5SGXGHZwmOqTWUApiTRCuJB+3nt2sIWXgp4waTbd37nd/JzP/dzvPvd72ZkZISbbrqJm266iZGREf7Nv/k3/NRP/RRvf/vbn/tkUrJv3z5WVlae83MvZ/R7EUYuE7GMNwDtSpxEI7WgX4lJBzm9ZoTOzr5aXKHir+khpYnGSkmuOqTuPFr0CUolJqvraV8aw5gNyVRCQy6xfOLiexBtkiNGiuhSFy8bw8vHUXmR0kqEF2V0RlZTzM4iEnD1i6snukQ8UlacV1u00Yw1Q+onS0wPfBQCeyqFTwiUp+mM90kL2bNGzskNKW1ObqkYGHMliQHfttHCRTmGqHAVWgoyIcgdDVbj91NErrEixcmHXsWCrxFOwoc7Hq4UZLnm+7gWYS0JOXcu3sV9i/edtz44E5g4I/fHifwErz+Cm8wgpB7KWkmBSCWDzgojO3ef03n8gku5HlKuh2TpOunk1AMUGitOJ6IKssC2bAqrPEy2gDaaRpRQdvrUe1P0dItaWCapLiGlxXEsUVrCL5boNZbPydanot+O6Cz30cbiVBVutAOtOoishd/pI4wgV9B49KvoJCHpdp+VoPR8hXLXpychBSPTZeoTZWpjRSZ31YeOg1pAZbSIWa1AWlUh0ep94qQSL5vAzUfBOsSFlCcKx3koOIRRhieaT/DA8gOXZKTb3LETTHe2sVxvIezqhmqV1MrcHCuhUl93vAghKI+EBEWXoOQx6CT0WjFZnNNvrepqrQYYxt11nS13JCCb7ZEd66JnB+y89gakSPFEk3ZhL8qO4qYlhPVZHhvQCmsUwglGRIqv1yNLcuPw7q/8Oh9+/MOb3jdbeJEgSfjCw3/PF2e/eLEt2cJLHOmTT5KodadDahLm4qMcHTy/zvSLFaeIm0gKzKoz09gUQYhrp8hVk16+yL3tj/Gl9t9wPJB03BqzzZzPeW/Er07Chmrot331Z6nGDkpWcRghLlVpj0iMByfaRy5GE88brLWUPcVlnuVhv0EUdjGuxgqNQCD6CW0MfyFTRl3Ba/aPn/E5nNGAuBAjZUZnpEXqLKFFjPbLKFVkyXS5rbuTpurQXWk+/wEvEgZGYBwP6ViM1wRXwGr0Gmiq+T/wpi+/g6nHHkGlCdYGYDOWol+mMDgGKAQOrWIN9d11nB/eR+179nKVOw8mpI0g00WOm/X79Vh8aWRQbWELm40zUuD/T//pP3HnnXfy/d///UxPT7Nt2zb+xb/4F9xxxx382q/92gs6xq/92q/xsz/7sxw4cOCsDH6pI0kzsAVCxsiLFaJqQNBLkUYQl1Ncz0Eq+RRdtjODlILLb9hG3B+WAxeOi1UxXjaFtArynEGuwQwvjzIBVSFwdJsHons4drDxPGfYfNhUYxt9ltMYI3KMSLAqpTca4mWC3uip1LIXb6SbsE+1/cxTXZ9N0y2TGcv1iOa2HqmwtAsCZ4O2mByAyiRWPnsfytABCaLo4jgK7Qgya8ETFLfVyFIXYyTdyuWMDBKqaZFOZEEoSq0E6yiE9VB5DaE1mZZoIzig68RpTNHxcBOXHxavoUfE8egkv33fb1+UyKSs3SOXHvVCmbTYQEiNsiFJpYLXkWhSEILS2MQ5nUdIQbcZ0W1GdJbW2+mNFJCxDxsiFPtJhhQOB/UKRioK5hCZEeysVbhu0vJwOs6ibHIkmSebgSxzUa5PezFm0Gpw/N6vYM35S5/W2uL6Du2FBARYlQIW61Qo9RRZMCQMo1aDPE1I+l1KY8+8uHU8h1e99Spe821D3btXf8t+ZvaOMb13lOm9Qx0W5Sr6rZheK1kn3WRIsqpLY8UAi0bLHlhJHmjqeYVdyTa2x5O8Nr6J6/VVbE8mz1sfnC/MLS9Q9nxMqYCRA4xIELkmcRPScLhReqpD4brXX8bNb97HTW/ag1QCx5PYVV1Ix1dgwfUd0mSduM2NgVBBqDCA0ZpBbAlMBFYjsw7W8dAyZlB4mEwpXNHn247/Bd+6/PG14xiruGP5Qb5w4gub3zlbuIRx+nzT7ixy98m7L5ItW3g5oJu3acke/R1l3MYAjCWzKT3dfUmTblkS4/kBRenj6qFovxAOShcJ4l04uk7DzHJk8R6m093MHT2M8mcIqmOE4+MMqj7GWV9PfOHEDzCxcjtYiyFG6qGu2TX+Nma7s5dswaEXgtlWhE4zShbqzrByuZdNoqgQl33KXcsxoGvhe2VwVs56WXAIBgFev4iV6TAQwA7lM0bCceqySN316YcnOfjpezh81+1YY4g6LQatBv3mCll08Yt/ZKtjuBERKh3FSyaRRoAUjDX/O6//xB+TzHXwBxZhFSCwlMkKN3DNjn/JKdkVEPjV7cjpAu71o0zX29zcOsj/RXMDPjNJDastgyRiNlm66LrNW9jChcCZlb0Ebr31Vn7rt36Lj370o3zsYx/j/e9/P7feeusL/v473/lO7r77bm644QbCMGRkZOS0v5c7oryMtAUMOcoMIxncOOfgbUdBQJ4MK/c53tmTbgClWsiOK8epjBUAl1x1ABAE4DiMFgpIG66+Btczxde6Y9xd/BT3fOrJi69JsFoByFYdHF1GWh8tVosnxC1YFWI/66KflwDp9myE2fPjuVttrSXbEDEVZg69ckixsC4eq1LDoDKcBOUGIffTzhI6OKMhtp9hoxyVWxq5JU8t0vPxAkOeuTRqVwNwbMc3cOjQMNXNTTUqHXoZ/XQGKx1GaxmVgsuSP86jK018xyGwAW90prnKzJCScefJOy9KtFvv+Dyxl8BqFwmzns4hc4N2MpwNlVrPFhuL0Zx4fGUtbTIYr6C0xG4opFD0XYpeEZtOkEvFZNBlkA5/M1cKHilYssHl9E2fezp3kRcHDLqGVnuCLIppnTjKkS/fcd6u8aibkEYZeWKQNYGbj+DoOgiJ30vJ/GFKeFirU53ewfS1Nz5rIYUXAmc1FVcIudZPoaOIV69tmacIFMqUUKuFHX5rz58iEVye7eDnn/x+fv2xd3Pl4WmySyw1cqHbYDSrEVcMyhSR1sdNLX7mk66Sl89Ghgsh8EOXPDVrwbGOKxFiqLnX2kDmthb7JBKINNnxLrd863fS6+dU7SIOOcatUGxPgMrIvWX6Xko5GN4EhWRDxLN1iU3KZ098lkRvVax82eIpQ0kVn9neVhTDFjYPH5n9U774I5ex9Ka9ZCMF2KD92c1fmmlrRmuSbgcRxyRuQKaGov1DGfvyWgXTvl7htw//O375yM/xHdU3sCjvoBR4TE1V6YyF6FXSzeaCZXkZI42vgBBIApysCkDsWlqyxWePffqitfdc8dBcB7fd4J+4ZTJvuHaTp0T9jcVJDF9F8+pI8srXn3mUG4CqrK5tE+dpmm6p8thJlaudcY6WHuX4IxFzB+4j6fd4+B8+yr1//b+578N/zsLjFzeNd7g3GD6O6RNGeyhG14Eckodhf5bl9JdY6v9nSHZiKRCIjw2drP0M/dWFDUfzCPqvXn+qJLt6h3mUYVThtFUEKwEFP6RSLnNw+eCFa+gWtnCR8IKYm2PHjrFz584XfNDZ2VlmZmae8b33v//9L/g4LzekJkWa4YbGkFLoOzipRiZ9evVVL8Dqotb1z410k1Kw46px1BOS7hEX5DAPX2y4JKQuYFSfQZbTEwm3mcv5kH+Av7z8fXztPVez75UXL0LEZhptLZft/xoy1UQ7LYSOKTRrOPESwnGA/Bwi3VbJj4tNLp6C4Ow03Z7pO8aSyXXSzU0V2YbISXeQ4Q1yuqPDhYMUz8zNCyHwd1fIWwlkhrTicWhuKKZeGDxOqVqnETvkbpXPvP43sdKlsqEQgBtlaE8Ndd3yCtau8PrJx/h8bwf/Lr+G/9WaZbwYMJkEfLf/Rn47/38knuWDD36Q18689iw64+wxP7uM4Ti9Wo7MiqhknSyyxGRuys6bX3XO5xmdqdBc7NJvJ+RJTtzPKJR9ZMVDkqNVj8xp4OQ1BJKC5yDaY0QGam7Oo905XLfAWCHkKjfnKyuvw1gISi3+4Ybf57sO/BxxLwVvJ4p55g7cD9Zy2W2vO2fb0zgjTTTKExBalF4ncYNBTreeowSM7t6D4w0XqOIFVLx+NqyRblJi8uHmIVSSeJWYdLKU9aXv8LMt2+awP8eV8W4Ukr6MGM/qdNMuI8Gl4/RpN05wVe1y0kBzit7142G7ksJqpNtzjG1u4BD1hq0Pyz7jO6qcPNQgS/LTiimkcY5xJaARFrZt38fsgSK+7TCi52jqErmqr2WXPHbZXdwwUmQkn6Gz3Ed6C1gkUmj2FKbpknOsc4x99X2b0S1buOSxPuH0SAmtQ24ufvTGFl6aMElC1lyBWjBcq606SyUSg2GgLz29zvOBRz71MQatJoWwQN9ZF/3XYrCqozqcVx9PP4nx3sU/fs9XyD2NkJb5J65gPBylM15AaIGjS6w0NR8oTjA7fz1XAIYMN50kHFjabs412QTH578KV333RWrxueEvv3KCV1UFczbhYXxkVkLlJchTCicjniCjZzSvDmDyhjPXcwNQFRcx5qKSjGJzWHRAINFak6+m/87kZRqlRTpHh7N6OuiTb9B3y+OLPFbmBqkNXt5hRbQY9053uE/e+90oTiJFB088giuPYrwWSe1tqMRBH+tyxcwcj/v7sUIhbW04JQjIXI8xvQQIHsn7TKmQWrvIo8VlpBQcaNzPzVM3X4xWb2ELFwwviLm55ZZb+PZv/3Z+8Ad/kFtuueUZP9Nut/mLv/gLfuu3fosf/uEf5t3vfvczfu5d73rX2Vv7Ekc36ZOrHkYmaJ3jFHeQFqEwUESVU9EDw0WF4z5z9NGZYnrvKMeP+4zM+UN9B+EgtKbZW0auCnCvGEkvCvELffan23hCNphdnGcfFzEty1j6hZBWfIKiE6CEh3YT4pKHp1twKjrrLDXd1iXdLmJ66VMYsxdqycYmP1O0nNWG2Fsnv1SmsKFDEsf4QUBWcPE9zXwlWrXj2ftQ1PyhVpSvENaylA/PV2vdQbf0RvJY0G8I0AKsIZeKxDj4UuLFOXEVJC5Kl6g2H6MQTnC5WGRWV1nJNCYasL1Y4tX9Mh9x63iVMbS1HFg+wLVj177AHjl3NBp9TNmj0HfJiz5SrGuR+ZEDnkN54tzvB893qI2X0JmF0KXfioakm6dQqYcVGjdfJ4cKrkMpniYSghowSGJMnrDUTbnFH+FAZx+2/ABO5jFaDfjq+D9yi/sWVKGGJ3pk0YD2/Cxxt0NQrpy13cZYpJL4gYcxYHUMVpC684Qdn06xyaCcYAzsvOmWcyLb1voqUNQmi/Q7EaaxHum2LGLuJaeTxjjuAgiLyIee2kIuSWSKs0rClUyBnekU7aTN4OffQ95oQJ4z/u6foPjqVz/ruTcT2fIyURCyK57hkPLXssqTbsTSyDLLM8MIs+dKgamMFkiijKSfEXUTvMChPlUi7qWrep4G5cghUVp0ENoipUBlitQpYYxPYHIc08JaHycZJQ9XsMJAwaVxcpYiEpMOr/lcpMxHTfo2Yr4/v0W6vUzx6Je+yJWrj0t47LI1UrOl4buFzUG+uIhxVsfBDePhTLCL3ObP6jB8scPxA/xSGbncYLE6hp8v0g1AWAepPUAOq0jmKa1ggSwcOlpMLoicBr1OETf00E4P46QUA8lMf4XPy1F2RH1CLyPzc2I/4ETYYZtT4vCLWNft8cUuN5iIaeGz7PtUyNFOGxUVSLKMwIKWhu2OQ3lb7azOoco+djnDGyvRG41QjVmUruBQpW97PJacxHcUk90Kj4zfz/XeTh76xN9hco10XaSUpNHFrQBukoyeH2KFxLUWgYsmwckFfq+DLxYQoo8nj1Fz/wSAhnclpmDxigEyt+xC84TJQVoEehi84QyQrkPXq3ONaBOZKhEp3RxqxSFpPDd/7GI2fQtbuCB4QTPSwYMHKRaLvOUtb2Fqaopv/uZv5od+6If4iZ/4Cb73e7+Xm2++mYmJCf7wD/+Q//yf//OzEm6ncOjQIX7xF3+R7/me72FxcagT8Pd///c89NBD596iFzFaUbomLC+MwmvH+O0YQ0RSHHpDlJIERQ/XPz+kG0AYlmhMJ6T+CtZ2sEpRq06idAmAWa0oK0PROlzuFFFK8dDSxQ0FtnHGoJ0wXtpLge0Yd4AbZ4TtGIeFNdLtbCPdOLVYMxcz0m1zzi2MRduE8pIgXPZoRApR9HAdB6zF66eolZzcXy1G8VwRNXV/2EcW2OAV8wfHuM75cy6/YpaR7H6E1VggtwJ/lXDx2gnWGgwp0nosb5tkZDyjact4JuePnphj1A1xjCQUkpvCq3mi/QSZyXh45eFN6ZtnQ9Qe4FZjGtvb5N4iaEWW5MPrLdVUd2/HL5bOy7kKJZ9BJ8Zae5r+lpMb/E6GoYc1Kb0oJTeGFRvypC1zWO2ml7UZKVWwymOEiDEj8Ja/ich5nMPpYR4q3UnmxDz5YMqTj20jjRL6K8vE3c452ZwMMlzfod9JCacLSG1ws0m8bAod1tl2IsTK4YRzPgg3AD/w6DYiTM5aRnWoJL5Q3ITDdD7UbfHSKZQdOhD6/etYTsaI0Wg0LdUh9lO67SXShZxswUXH0/Tvffy82Hg2iA8+zHKxy4K/TOZEZM4KuWox1fMYb4zRmhxWHxXPMX0rR6EzM9R2cxVBwUUwjEY0xvLol0+Qp8OoNysh6OZ47QzdSZGlEZRcomCXydUI/sAhjK9YP3ZhSDjLDRqTFsm+YIarR6+mlbQ2pV+2cOmjceLo2uMOCSdEhyTdinTbwjli7itw//+CB/6U4YA/RNpYwY03rJOMJZwfkNqEk8lxZuOjaHt+q3RfCmgcO0Jnfg4HQeyGpCpE6RJKl7CAETG5s8JOp0Cg1qPyTSqolgaEEuSGauj1SON5ijlbQAiJFQWshVprBNdK9qR1Bv0XZ9SgtZbJcsB4oPhkkiACcLI6VliE4zEyiKhYxVtSB69afP4DPguEI3GmCth82E/SFHH0qRTdCnVTJFMGX0pW/DnaDY1JUzAak2UYrdHpxZVmyFODXd37pCYlTxRCRAgL0w8/hrARmm0ouYQFtHCJnRH0lCad7aE7MYPHQtysj5UuRgZ4yTDrTYkMsgHXHv84xf5hrnIKTCbrkizLndZFaPEWtnBh8YJ2P6Ojo/zmb/4mJ0+e5AMf+AD79u1jeXmZxx8fbkze8Y53cM8993DHHXfw1re+9TmP9bnPfY7rrruOu+66iw9/+MP0esMNxP33388v//Ivn2NzXtzoDFK8bAplSgiZklYDHG0Bi1Gr4pa5Je6nuN75I91Gt40BDCv5iNVoF2uQeqjp1rAOBQe22zJ7bYWubHNw4SC9xkUUvkw1kV5fbFmRkQch0oInVxCruh7nXEhhk4ivF4SnatyfJwLQGkvfjemNWqKxlAlnhPGJCtJxQAhy38Eb5MTFZxZs34jCjZPM/MfXMvOe1xC/Zj2lXOMhVhtQ9Z7kDXf8AjtPfJqx3p1rn6mtxAghEbhr19oef55jTHHSn+LJwi5a8QCZO9SNZUevSCNr8dDyQzzcuMCkW6tLqSAQZtgXypZwPEVUDfCiHKcSnrdzhRUPnRt6rZjWUo+ot7oQk4L+aBtJCSE9SqHHVCXEZCVKecxl+ghlfRhXCraXS1zvJ7w+UizrImn7Rtp6hXZpkfnSYVoLA5ZOGPr9YQRYnpzbYi+NMtpLfQbNBEKPvKw5xYTJPEMaS+bnZ6+x+AwQcqhdpjNDng+v1ZLj0Ge4kVBaYMSp1I3heLmob+A/ap830+EJf46arrCvu5PeoSdxtr2V8Obvx7viW0mPXTwtoOzoUYQU3DC4AqF83HwUR9fwVn+ieNUB81xj2/SeEW79piuZ3jvK1OV1KqNFLr9hG7XxYbRbe6lHa6k/rDa7WiXWAvlKhFMdzgd1M0/mjdKvBXjpehSnCU+NrcBqX1sraaUDDq4c5ET3xHntjy28eNA8eXztcQWfm+w2nCQFe/4KtmzhZQaj4eBfw9JBWDwA2ZDE7eUdltpHSAsbxkEpyAsK5/iwMrdE0s1eWrpu1tq1yqW5DGkUR7CiTO60sCJH4qymmDrEbkjuruvAOqFhnsfpfOphxo42QAzvS5cKvyxXaKoKJzopQnq4ukbs17HlkCvkGE9GCyTpi494a0cZdx9pMG37LCZ1CmWJo0dws1GM6zLShCyDVuRy85ufWRbphUJIQZjUADByPWqtLwXjYYW9jDBRDJlzjtMdnJ5oZvKc7uICyeDiRbsl/cGapI5Rfcp2F9LWcJKUYq9AqvdjnDGKv/RBoncf4s7t/x+H699CKzvJ6DuvRq8kpId71JO1VCG8ZBoA6Qiqukc5a2PyeQCcZH0fe6KfbOl/buEljzMKOQjDkLe//e28//3v52/+5m/4+Mc/zp/8yZ/w0z/901x77QtL9fq3//bf8iu/8it88pOfxPPWU7Te9KY3ceeddz7HN1/6iDZEtQglkamm0ErIvfWJ7tRGywvdp33/bDE6MawGqJ0O1marg65dK+QQS59H+was4PV2N1YYDnuP8qk/vrDEx0bYXNM261oIVmQI6+BFOYG7zHrhz7Pb5te370Q6DkJKWnPHn/8Lm4GncmwvkHN7PqLR5DlzxWXQUJ8r05yZxPPUMJVWG4qNAcK1xJVTgu3PPkwIKdZIOWdD9GVug7WNllwt0ODkMW7WXiMyw24C6fAcXroNrECUfa4VTyIxHAt30U/WoyQukyPsNGNIKfnS3JdeWGecJ5hBwmghwAoL2ht6MI2lvNBDmBRVPfciCqfg+ev3dntxwL3/eIgsyXGkxMh4mDayioKrsPkIvVUtyOmwxZ1Hj9NLYm4sCd401uJrIoVt3IbJS2Qm476pT+P4EqNhaX547y8fPrfILq2HNqWJwZ8qYpVe9bpnOPGQLcr8HEedP2cBrGtbniqkoKTiFH2ocoFdrWQq7KlrWKxef4qGWt+MmEfnEE6w9jxfuHgOhei++5C+wkjBeiUwkIOUfjAgCZ+/6MPaPekoHEetvRaWfaQSWAvtpT5ZqkkLiiyQCCBZGFDdfhm5DhnN55kaHERgkbaMSodee11z8R1neBev6ucZqyiKIfG8MFh4qjlbeJkg7nWf9prXbkFv65rYwlniqUVu9HDd99GFv+ITOx7HFPy1dQSA6if4f/153MYAg6GVNy+ktZsOk6/3R7u2ndTxMWTkbgMj151nWg7wHJfcW5/npIHx8YS9kxrs+vrZyRRT/i3c2l/kE4+cIEoSQOJlU/R8wX7G8aXHEyfvuiBtPJ+Y7wzn8m1+k4d8BcUlvGQbIAjaMWFzkZXcMFrKGd0/fU7nUhUfJxvOt9rpYBj+Vk23Tpx2qRDwinwb85VjHK6na9q2AMrzyeKI/vLFqxKbtbvDNO08Q8gNZG2SEvQLQEJwRQnpOQS1OrWZHQgp6TeWcaeKyLILAgpLem3972VTVJpfy1U3fx9797+B5eIOOjon0RGVpQJ5Z7jeddw6v/CFX7gYzd7CFi4YLrjgwYMPPsh3fMd3PO31iYkJlpeXL7Q5lxQWWk0yp0HizWKEwXgKGWcMquuaKIWyT2WscM6FFDbC81eLN8gYIdzhoCvUWslwISz3thPm+wGuULwtv5V+ocnS8Q46u0gebCk4nPfWnhqZEbZyqgs9nNd+15oW27lULzV5jtUaay5OG0+PsjvbljydqetEXYpZSGXRwXQtrYKi1ekPN+pKonIgE2TF566S+FQ47vpwkluHUnqcUnqCwB8uenae+DTTjS+AGNrk9FNw1bDmlglAWKKgzE7RZIdZRkvJgz1NK+9jJNRx2eFMcpmaxlhDM74wi2lrLalVWN+AAGldjIixcYYXa5R28EfOT2opDInMy6+fIiy5KEfihQ5zh1ZQrgJhiYPDGIZkZMFzwPjEq+mT436fZqppJBlLScLlkwk31WMK6RQq2UFd7SEqtZncU2FsewFUjbBap7swz+G7bj9rm80q6WZyg6q4qGSAsO6qJohheaJDGmTPGTV5Nth2+Qjb942tEZFSSrJVokpqSeYukblLGJENbwUpOXUvHZURB8NDHPKPQ9ugBw1gSE7ZJL9oeo7ZwgJjpsaJ4nDcz5xlMrlCkGgUwxxdgXhBfTm9d5TpvaNrz/2Ci1mNEB50E8Kyh6x54EqyqouOMqrbdyIEuCJhjAXcNAILI41vZnTxbTRKiiQfRi2KVdLNWsUrSpdx1chVnOyfPP+dsoUXBaq16trjFQY8LJZwjIPeqmi7hbOFTp/xubLOMBtAm9OWOTLRlB9ZQmQGkWk+ufi3fGHlkxfO3k1Gng6JnNaOVzM3uhcY6uJaocmcFbTNMeTkTpNxFJmXU14OCds+KlMEXQ9dyiivLBB0PeonitTnyggVc5s0hEsH6EQJudNA5SUGDhy3bW6Lpzlw7HMXs+lnhccXeuwcKZDIjMUgwYnHkDpAyw7F3jI2X0a7mu3bJE54bs5Td7pI7nQZmS3jDQRytQxS7pcxeZPZZJnLxDDddzltMn3tDWy75gaqMzsp1EZwg5DHPvcp7vmLP+Grf/VnF3wNkg6Ga3XjagphSiYaaLFMeTkjCvu4YYvw+tXINamGayVjAMs9f/O/SMsJ3o4yfl8PJXqEQFgHP9nOwNnJ3tveyuj0djKvhK9CgtjDSQRzCwqVbufg8sP8wD/8wAVt8xa2cCFxwUm3Wq3GyZNPX5Tfe++9z1rx9OWCNI+xIkPpEmEno9iIKEQax1/f0FdGi4xMlpHy/G1epVRIY9eiQgCC6DinVjKBSXiwM2DgpPRtyi5K1NJxlkaOsDz7dM/2hYDtxrR0TNMcIXUXMHJAUikRthO82755zfaz3eRv/N7F2nyfj1/4mSzvJh0aYYf2TA66iEwNRjmYLCZsNPHiFdrjPaSrmPCm2FO88hmO8nS4vsPU5VWmdkikyPDMgJ63naS6g2bo0ygE5I4HcpV0E5JgoQVkax7a1PfYLY6jhKaU9XkgL2ONRDiGEBjx6mirmS5Oc3DlAukKZho/SRhxhvehNAHKFpBFH0FGFOmDxwABAABJREFUHPTxziPpBjB12QhjMzWkFEghaMx3cdVqJJZVCGNIk4xmP0aiie0wyqjkZpxsdCh7Hkio+S3qiYtjBW4ekmnLWDBGr7iMF7hUxsusLEiElHQW5jj4iY9y8BMf5f6//Svu/fCfc/ATf/eC7NX5kPSKY4MZ5FixTtb6mWBssULma9R5FrYemSqz8+qJ0+5RteqhdVKFysu42TjKhqsk4BDCXSQzGVdHe9iT7CCICzjl9RRKNTqBbl6cCInEOARCsVzp4eR13HwM14zS6syyPD606WzT5oOiR2W0MCy0MMhwXAetJGqgcdsZ+Ykenh/Q7blESZl6vABCDQk2HJQpsTIxSvjum/HfsZ/tk6dSYSTaQKACtNVoo5/LjC28RLE8N7/2eJQC++04r5A7WGxvpQ1t4SzxDKSbsYZGvghqGL21ISiHYK5DfUnj9tJhxoM1GPvSGY/idovK1DRpcWLViQQWTe40MU6Pdr5IKro00wV6GuJSRncsIqom5IEmLqfk9ZhuPabQ8cnFAGkVqpIwllu0VuRRB6Ellhylp5i3fSZtkaONQxe59WeO440BO6se11JjtCoQ+ORuAydzceMUA8TAjsvOXSJESIEf1+jVY/qVBplaIUpz+lmOUSE6t4xkIdPtOieDw8jiXi6/7XXsuflWppdW2D9IuSbKSHtd3DAkHVzYdN5TGsK56pJHI7h2BGXHkHa4J5JuQuGG9XVSdXo75ckpEIIsikjyAUYbCp4kyLpgLQKFQCJMRs9kfOMN1zIfjAMQRB6Mp0xPaiZGE4gn0EbTTS7OvnILW9hsXHDS7bu/+7v5+Z//eebn5xFCYIzh9ttv52d+5md45zvfeaHNuaTg2h142STCSpJSmf5IiMw0dmo9UmFspnpa5ML5grJgSLCkoA2xN46wHkL7GCk4kRr2BYYxXaVqNU+WH+R48VFWZi+OxoPNNANHUpe78bLJIbukJXGc4ZT9tSixsy+ksLEE6MUh3Z6h7ugL/OZztzlK+5TiACeV1PQk2leMFH2EUkQjdaae0MhcUJQldoSXc9vI176gsypHMP9km/njhoFZv0ZlsUg9ShgZxHixi3XXIweFsoCLl04h8hAnt1zhzvKk3EaiPE6kmroXInJLaA0TUYFD+QmW+ouc7F2YiBqbaaxVDNwYJ/GRel1s141BGYVbOH+abqew46pxRqYrxIOMPNUghl5Tq2KELOL5LnvGq4BisKEQtePNIKymLBSkhplyA2NgkIzStYdZaC8h9/eYe6JNZzmmsuNWJvZdhVQOOkvRWcqg1WDQXKF5/CjmBRAop6KnVMEl2FHBOOW19+QqIdeTBseevzTcjUiymEHUpTfokBhFG0PHWrSzITXfeJy6h2w2wUmjiElZcFYwkUX3l9Y+q1sd8sULn+aRdzqsDFKuGVzBWHH30BYRYUkZF6OcypI923GtUB5WG+42B+SpZtAdera1K9CuwKrhCbI8JvS7jHrzGHV6VHXqZaiZMu71E1y1Z9i/1ipGRYFHVh6mM2gy1587K/u28OLGRmeVxnCSLlGesNTeSi/dwllCPyW91GT08i4lp4KbWOpfPs7Uhx8AbbDW8viU5b5Sgyt+5v/i9XOMsByLDl8c2zcBvZVFovkF3CxCGI0wmnbt0yTmEB3nK/zXw99PZ/L/4Y3NUi4XyN2coOshckCD33PJw5x+LSIqp3RnLLXFInmzyi3hNprOLk60+yhbReCgXdhVvpqdzghf7Bylnby4NPIOL/fpN5Z5MO8jChDEu/HTHaCK1I87pDYFnbPrG24853Opqo9B4yYKK1NcPUroOVSrY/iiy5Rfoyp8ZKCZ18c5+vgSJAnBygr1LKdkDKG1lLWhMz9Hco4Frs4UeZISpgNy0aBS0GjZA6PxIo0/CBn96X922udnrruJ6//Jd1Ksj4K1xLTIZ/u4jZjYGa6T7eo/o3yWKzUW/Sn+xdftw+Yx6Qb9OseBLBpnpb/A3fN3X9B2b2ELFwoXnHT71V/9Va666ip27NhBr9fj6quv5g1veAOvec1r+MVf/MULbc4lg1xbBEONO636a9X2nFSTbVv/mc6aRHoeKGsxKh3aoCSoYCjgndfJpcuD/m5m+zEjUvE1ZhcYeNS9n5OHLtIEnGnwNyzw3Q5KKwarehfnSrqdFul2USuYbsB5MqOnu/SCmNwzCFFHVoJhJIt0EbnBHeSkYU7ol/Ck97zHO4XTNN1u/teIH/708PXAJ1uNzLT9PoJ1EsftDzf9AokQkAQue2vL+GS03RrHZZ0kz8AoKtowvkp4Hesf5/7l+8+1K14QbJpTckvIkiT3E8QGnS03MejQDItQbAJ2XT2BH7pkiSaOV/tQnJ6qVXBDjup1LRLfKXOi3SBwHEoEvG7/IfYWByTRTiyCE8kx/n7lI3ihQ2c55vjDDYRyUa63/ues68plL0DY95Sm2ylZysLg6rX3hJUYYfnSw1Wu9r79bLviOaGUQyEsUypUKFCjiqSuHcyGvpLGR264r5esIcBjMh8lMGVUcXzdZuWSL1x4oiA7dpxe4yQVG9DaXsbLJlE2xOk9iSMdoupqEYVzSNOtjBSwBoyx6MxQqgVoT6IyCysxNtMk2XDOEcBNR7+K0BuI8g3LBrEqxG2tYiJziU3Cw+3HONI+ctb2beHFi3KhsvbYAh9tT3O4cT3HO8fIzUuviuQWLgCeIdKtkzfp5m0yX1B6dIn8s/fxgS/+Cb/7hT/lr+fu4Ffe4fCPNym8hWHETKT7mJdIMQ+jNRPSIwsqWKmwUpG7LUTRJZYZxhrS1XVwwVEc379EXE5RicTJFUkpozc2YHl7m6iSoPqWytLQaVh2KrwVlwMNARYcXcPNRjk0PsUERQ6bFvfMvXi0t7U2fOrhBaSdJcnrFEY10q6vab04J7U59bKF4tlXLj0FZ1sRIQRe4mDl6ddtLNq4yuEKOcaVapSThaPcc+g+ODmH+Pzn1laVDoLJ1YJdyQWOdIstRF4B6yU4uoYyJRCSYiOlNxUjXMXcEyuceOx0KSgnGGZhJEEfFOjlmFsevI+bkn9AWItAkKoVEiekM7GbR0b2YaVL2a7LEbiOQz+e5Gh/lvfc8R7+6MAfkWzJEmzhJYYz2ilmWca/+lf/il/6pV/isssuO6sTep7HH/zBH/BLv/RLHDhwgF6vx0033cS+ffvO6ngXCp9c/FuKUeGcjzMd7OD66i1Pez3JNJoeRmm06qDS7cM30hRdWd9gbRbpVk0tvWiDcGbWJw404eAKHPEVml6dX18a8G5XsssNuMJO8XjpOMePLAD7N8WmZ4PJNbgKHedENHCVRMsYPxJoeaqa3imG6twj3S5WeunTI+xemB3P1+LErIvER05A3E/wQnd1sZDTG+kjS/CNk287I3M3VtTNUr3Wh1IpcqVwTY5KUoSzvvgNWxGJTomVwEnHyL15zNg4e+ZPMptP0HZr9JJ5fMdFWsGucJpVbVoWBxcmEknHGYWwzGJxuIAXxsViCbopTpLDuQ8LzwrHVYzOVGgudEkTn2IzQD1FY7DgKQ7n29aej09U6Y0ITnaalP0Qv1fjmqkedx3bQd65hmLhEA807uddr6my8mjC0tEuTzy4jTd+7zevHePIl7/EytHDmCwji2P8UpnnQmdlgHIVwlfoOEYEQ2LGEFN7/Bgn6jFJpqgXXziJeybYmM54eTmBeFi9VKsOFg1I6o23cv3EIY6dHDoKFjbcT67xT3NBibCEbl94h0K+uEC76FPTIa1qgrNqYn3eBzLS+rCd5zIPjM1UaS316TWHuoClkZAscKAzHDvNICfOHYytIkhQaZfRuWWWdw7TSqRZJ2TlGunmMCbWU6wv1L25hUsLUg7ngDsjnx9eHGVgJEpU+fCXP8Jv7/gsb9715ots4RZedLjvf60/dkLQOd28TUlVsI0mfmPA0ZpgNPHoiITUG45Jzu6dlOYjdLENE6PEekDBOb8yEBcDRq9Hva+9tupcilermiZ5iue4OJ4iV8Nx3U89Sgsh3ZGI7kQfJ1WEDYewaVDawWIRwLtEyHd3FA/mEdoHJ6vRDPq8ytTxjOTA3J286bJvuKBtPlscXhnQi3MuH8+59zUJE2M5YsVFiz6FtsKJn+B4OkZ9+/lZxDmjAbZoKDVDsg1LnTTXHKHA7ngJ5VW5LZvhTn+BT9qP8OP3KkSxSBrHGJ0DlooQ+OUyy08+wfjlF25vHK9Sf9YKgmgvhhi/bzCyS7+ecsffPYxguBOZ3ju6JnN02atex5N3fJ7e8hJpGBO6VVhIKe5ZQdocLVxcPYUhxdOSnhNw8ppRZh5uoVKJ9gy+l6LSCW5wd3A4W+C37v0tPnvis/zRN/7RBWv/Fraw2TijSDfXdfnrv/7r83LinTt38k3f9E1813d91yVPuAFkJiE9h79ID1hOF3iy/xhP9h992vFzY1GUcHUVhKC0bKie7BEmkG/Y724W6ZY4kkFtPaIld0IcXUHpCkrkFG3M3brOR1ou9+oBb9P7qdoROqPz3PPxI5ti07NB5AaSnKJfI2QER9dApBQbOQuc7k0/H5pu5y3E7JxsODvyzz6D7YldJ91ct0RQ9BFCoLqLhM1lMk8TjDw3yfJMcDaQbnlq1uwXQrBUK7NcDMgc5zSqXwmPRHkIhlWPjMowgSYVDi2nQNup8Gi7y2wyANdQzRQ3uVeyP9hDkl8YL1jWjcETJHmG36khklEEgqTsY/2U4r6pTT1/uR4SFD1kUKRfj4kLHaxpItKM5W5EyRMctePcbS/j8ewqptIvIptfAqPpRD3SfsI1xSY3VcuU0hkcW2RMTXJg5Ha27akyuqPE4tEOn/zDh9bOKYQkbrdIB33y5PkreaZRRmcpwq/7qCAgdzqk7jypP8/kkkPcKPDlB0apnseqyxuxUbNn1BuysjKXIE5piggsOTftMXzvtx1mcjSimTs8VjrEkcJx5FMjOnNLvtLYFFufC7rVYm5qgpl0Ais9ctkllx0684Ll9AjJyLmTboWKT22iRFjyCIoutbES+YbDmSjHKdeQoo0QMYgYb7AhfTndkDquImThEE4wyxglXqN3cJ2c4UT3xFnbt4UXL67b/zoATmpFxzjkSBIrKeWTHOscu8jWbeHFhiMPzWPy9Qrm5BHohF7epac79KsKrxHRKMGKn5J5gmrPMtECWQpAQDRTJXJzEvPSiJoxOkep9XnUS3tDYTsgyRJCbeidPEQ4f5RSOyNflfNQmUJECi9yqC4VSYs50UgODKUFhuvc4XpRRhk4BZQpIU2RQeCwbAfcmIwx2zl6gVt89jgw2+bamQpjTkbmG4QAZSooW8S4El8M6MsqM5efe5QbgApdZOJgpKVfHa6BDDmeo1BejkNCd9BjUpSpRSEEMXmcQ6WCrlSIS0W0H5Bai2l3SLoX1vHnZAlj3SXyFDJnBSNTvCSj3PbJPIPrKxBDZ/Disdba9wr1EZTn4YYhuZtBUSELPsXiNOXsJFL3EXaAkCsEWQc/j2lsL5NXIupHQ47PhnT7PjYepSyKKARF6XOie4J+dnEkjLawhc3AGaeXfvu3fzsf+chHzumkH/rQh7j22msJgoAgCLj22mv54Ac/eE7H3Gy40sc7hz8lFH3dYyGd43h05GnHz/U6OWK1wCiHqOrjZAbtr793vqv/nYKyAitTMtUibEY4yYBMrWBFxlRxQIJLw7p8Pq3QzYpMUSAYlDncO8yhry6xePTCaQ/YbHXjuYG8sSIH6eKthoace3rp+q1xqaSXPhOB9sx47jbnZFSbPqVFDxOnxHFGqjXWr1Bo9Sg3Qwo7z1w30PU3VC9N9GnXqiMgyHJSJSHfoOPQahAmEVrEyLyAzEo0K3u5msNMmS61rE07sxSsAGFxspxu2qabtHGVy0PLD7HZGCw3KIcVsumcpNLC2VDExO0YClP1TT3/6HRlWCUqXyWGRI6QdaznMlYOqYQ+CR43uisUZrbTu/Wb6F79dtrlcULXIUlz9hWKHB1keI2biVWXTGfc3v8Mr/qnu4l7GYNuShLlPHnfUNfM8YO182cvgHQz2pDFBuGA7rXw8jG8bAppfJ6UfY7LHlMlQzXYLNJtPfpv1Dc8ieZ4DkZGq1qVFpCU5Tg7Jw03XnuS2G/jZQHkCpuvk3a6t4yJ2+h2a1NsfS6kx47hpAlzxR6unsIxZbCCYjei6kyRjp8qEHNuyhA7rxrnpq/by81v3kdltIAaDcjLDnnFYfmxFcb2XIHWRdKshJAGleZgUlJnmcxtrfshrI8Z7CGPdlMk5EG5gLaaZnJxilBs4eKi4lUY9MqUunV+RICLYVTmZL19PH70IBz6FLRePJv2LVw4tPoZj8/1uedQi/sOtXl0ts/CQp/5xQH3PbTCfQdXePxwG3R6WrS+003oBetzcrskWKzBkVKMWlonLTZ+58UMqzWJXF/8xp5HHgUs9xq04x6RkjyhE6KpXSxvK67t8txUIRKX1rYezekexUZAcUlR6tdwMrsqGyAQwqKx2KhN5jSwIkfZAZEwbBNVep1lHv7U3/PwJ/+OLI6e2chLBEdW+phUE5mUtOsg+jUsKSLXFJp9MruNfg47bzx/jlMx5uKmEivT4RoIhzjLeUJsRzkFFA5VXCIVscuG9OIUBgPCsXFqe66g6PkI12WkVMYJNzGN4qmwllZQZbk8ju8UEGJYPKlycoVubUBcyHBdhTXDommDzjqJLYSgOjVDHsdYx6DbMaJQQo98Pa+5vIjAomUfaDAoPETiQuoqDl2zh6Qu2DETsWt6QO72OBjP8o2FXQirUdbyaOPpQSpb2MKLFWcsRLRv3z7e8573cPvtt/OKV7yC4lPy4N/97nc/5/f//b//9/zmb/4mP/ETP8GrX/1qAO644w5+8id/kmPHjvGe97znTE26IHjLxLdSqVSe/4PPgka6xF/O/dHqs6eTJ1G6nv8vlCapBhSXB4DGqg2k2yZFurkoEBplikR1F5lnuLqENn0qboXXde7is7XXcTAzHE/LfF1Yo1DoMNc9wtKxLnd85BBv/dfXDz0hmwyb5ljAU0MSwogUxFDUnitbfHzhw6SrXs3zUUjBXiwtkLNMa32+Fvfp0akmWAQFXSNYbavTT9n2hMVKSfEsiKSNmm5pnA9Lhp86Z7XM9GKTPO+fptHie2NEfoiyIPEwbo+jO27h8m84ztxcyoP3ljnQz/mmIMSkhrI0fL25kd8RH2dpscvnTnyOa8auOWNbzwTLR05gAosVq15gs05IebHAndr8lJWZfaPM3zFM2TMbtEKMtZQ9jyfsKIvF/Xz55t8ZvmENUeMfuKpYI9eaq5Mmu8oz3LtcptzZT7P+VeJOn/sX7+ef/rtb+NBPfYGj7RV6KzFTl1dx/PWCB3n8/JsVnVuiboaol1GlDeOkzdljSjxCysogIvQ2Z3zYSLpVXEkRwaR2OB4eJQmPUm6+jjC5HJFXUFmVa/Ys8YWvTNB2W9zQuwY2BLqp0hjYDNN7bFNsfc52dLqYUoWx8jY6aAQK7XTYkyj6pZiO6oIFbc+vPta2q8ZpHmxhJDQONxn7hp2opU+jFJQKoxALkB5ePkZk1jvrVHopgKN9QlwO2nlk41ESneCrzSmcsYVLE/HKCvHSLvYDkxh+lx4rRiKSEb58tI31P4VIe1DbdbFN3cIlhqOLEU8unE7i1KXi/sf7HDw4LMxSCB32vTkj0uvRL243IdowfgtrsULQFBFOb3WuNJZIX9oE0QuFyXMC6QzXh0JghcYJY8YYYanXAGvpp6uOTQOrpadRmaLYX+0oDf2R4bw+dWK4nhEVgV31nYdC4hsQ+Qha9Egdl/HCXirpY/zf+AHedvQRAjzaJ+cYu2zPhe2AM8DjCz0OLPZ4y3SKmnJRWiJtgHUUTi6xdKi4CjUx/vwHe4FwXA8v9gCNXZ3DA9fhM4W38rrB/2SsvAeVu9QKHqUsI0x6kEK69ypUtYy6/z5CwMlT2oMuRmuk2vx9Fd0uenXNLnUBJxtFIKkt5JS6BY55bQbd4f0UdROUc7rjb2r/tRy5+3YGskWxWyWNe2RzfUqv2knxkXvplq8EUwfxawgvwHArnXEHo0pAjywXhE6ZThRyQ7id/60fI41zHlx6gJsnb9789m9hCxcAZ+wu/9CHPkStVuOee+7h93//93nf+9639vf+97//eb//u7/7u/zBH/wB733ve/nWb/1WvvVbv5X3vve9/P7v/z6/8zu/czZteJFgA4nzDO+ubIgMEKubGj/OMSp5SoTT5pBuzuqlsC7SLjEiRdkiNbGNdOp+qnkXbeG3WlWmTJlfzd7EyYnHkUpw4uEms49doOiGNMdYi6uCVZtzsAo3NUSTfVKTMOFt46bKbbx9+vvP6hSnRRRepEC3p/3SZ2PHU4i73OQshYtgYPzYxBq5aI1hZDYiDTJm987hFc7cw6aUpDYZIqUg7uen9aEZqZMpiTIWMVgGeyrlYT3CSJrhBl0rQ3lyB2+6bYF//s+O82BeojnoI6xgFMvlahsTtkqmM748/+UztvNM0XjyOHJUoD0DxkXqEliLTDUqM3gjm0+6FSoB4Wr0mZUbigMIwWTJo0eRw+7GNH0BE9tpDnpIKdF9j6uLLTwh6DVfjZcViXTEr979qwQFlzd//368wGFlrs8nPngAr1Bci3bL4ucvpHAq0k0WTo9kE6vp3l0s1cDdtEjdjaRbQQmWsMP00lVop7W6AHaQ6Si+Z7lyd05h8MyLbaE8dOPCp5dGx0/g+BXaE3JIuIkImUXkUtMb7TPmTjDlzXBd+RXn9bxqPMR6EmlANhISd3LtPd/PkHaj40etDU5CrL8eacV36WsoW48DKwf41NFPnVcbt3Dp4//q29ce1xDslCkVqbE4HO1NsKBjiLeiILfwdOhnyCho+gHR1/zs2vM4zrFZQidvAVBaiPGX+rSLICxU8HlFeAWeVTzutnCXejjdBKQgNs8/j70okGZo5a6v3cS6AybNMxCC7kqH4P4eYpV0Ezn4fZdq18eNFRtqQRF2PawEdzpEqPVj+b0IQ4ayJbTjcXziKm6yQ+3YrhoSdrMP3rv57T0H3H5oGWFhzDNIZam23oiwHk6UM/1Ig4GW7NiuIAie/2AvEKoc4MYOKpeYDWu1auByIlkhyQbUnQKvSLaxX9YJBKRW8bmPL/DJj84TqQAJVFcn2fRCFVNoNslXNTndfAywpO4Chd7wvkzC4bUhJEgl6DUjjj2yrt2qHAc3CEmCAbmXQWYZ3LOADMtoZ2L4IeHipxKpH8TvzCEsWHcEjML3LOWwQJRPEy053OKNklnD7z3wexdPV3sLWzjPOONIt8OHz630dpZlvPKVr3za6694xSvI85dudaunqHM97f1W1CJzFFZoTJ5TXBkQdBJEUMDadQ+d3KRN65DAyjAyRRkwSiLtcAAWxmX/1GXER5qcSGJ0UOMzacqNQZkgkKiJjEJc5MHPnGD3dWObYt9G2DinkRn6SQPX0yipCXqjeP2MpJxRlkPyJlABjjzLqpKXRKTb8zx/NjzHNbKSLuKlLoWGRLRDMAmZp3CNxtCnX48IfBf/LCs5WTusithvJ6fZkYUB7moFRJ0myNVUVCddJ90CUyfJRgCLMkWkBE8aZp1trERzRHnOeKXItsIkVyY72VYyLAwWuG/xPm6cuPGs7H0hGLTbeKNjVBdKDCoOWitcITCeInfaKH9zUiY3QilJIRwuDLVIMKwgGaYAz5Q86rLNEecy1ug/IRDFGt2oQaYTqqUKU15Mai0kM4y0r4QdcywOFnmi+QQ7r9lJqX6MHpalY12EmlnTckv7z71Zsdaic0My0ISBxPbbiOJqVarVioUdLPXi5kU9bSTdHCE4rlKyTOB362hfouV61dm4X2Ap8ZkY0TT7JQ6NHGFXZxyRRsigilAuSBfduvCFFJJGE7lzjEY5I3OWsVi8CFyjEKHFX3U0BCo8r+d1RwJEOuxDz0Cva7HxCEUPhIqGEROrkNobjkXitL0bcQa7TZWuM/SGLw2WzquNW7j0Udj9zdx3/WUYJdl75yzfmff5VFxgkR6xGeG/tuf5VfcJuO+P4cZ3XWxzt3AJIX8mGQ8hwCvhOBKw1Ks+nW6TKIwY96ZQS48ic0M/lFgBHRK2TV9FfCIhz1NMvUReHs47A927sA3aJIg0obcxgnhwcv29RPM90W5Gx25jujXDiaRJ6uRYBxwjCSKPLBiuuVSqKPSrlBshwoBbKZLJLmiBFpo0ipEM1zauNvT9EjN5mUkvoFHocVmwl2zQv3CRWGeIONO0BkN917JnaVuBNCECidQ5onuIJi6j0+dHz+0UZOiguhLtGjJ3EROPY3SAwPDB5AZ+pTCgN0i43h2jThEEeEKz1JR0FjJe9coC1hUU8hS/6NNvrBCUzz7L6oUib3fJ5VDL2docQx+Z9BiUYwbVmKiQURLD9UdtssTKbIeFI02CgsfEzhowjHbrnJwj7cQ4XoDupaRzPSrlCm7jMWKnzDUPPEmWH8bVJR67+p8wKDggh9dkrbxMf2En9/UeZs/MKKkQLNqMo52j7K7u3vQ+2MIWNhvnJgxzFvi+7/s+fvd3f/dpr//+7/8+73jHOy60ORcQzx3p1ul0cfNRvGwCJYv0Rwvk2iDr3gWJdCvjMnIyQaZtwkaHoNMnp00u+tjsKq6++kcZFRFKCqaI+OKgymG6fJd3I636HKWRgDw3aL35BJW1lgVgsrSHkAmEcEkLfaQxFNIS3zj5Nr5x8m3PWCX2heL0SLeL5WU5W9bt2b8R6QGFKCR3BSU7AgUf13HA85EmwY1dbBmUe3ZVJid3V5jaU2V8R5ksWSfUxAYSTw+awJDIcVJNaWWFepZiRELmNsjcBm42/LySkMiAQ6kit3Ckr+lGmqudy+j12ky54/zjsX88K1tfKMxKn6ia0J7skYUtPLHaN9bi2XDToreeCj/wGWtJ6gveGuEm8pwkNyhp+Irdz+jKnThpm1IgCVVOpC1CwCDtc2NZsb/oMmMcgugyBu2MEW+ETxz9BGHZY9c1I/gFl0LF4/hjMbXtuwiqNTqLJ+ktP3s1yqiXIqXCKbvkjVm00OSygbHLuFHCw7qHchKu3V7btL6Js4jZk09ycvEoBV+ireC63CMpN8m9FYzTXfusK12SVFIILA2nS5gXMeSo4tiQcAOEci9O9dJWm9aowQlHcPMxvHwckUc8Yfpc4Y6dl7HtmSBLHnJbkbTmIjxJ3E8xNifJUtLcIjZGutkC2NU0FDW8x6/Z2+K+axbp7R/ldZWreOXYTegNxS228PKAW9pGFrpoT5EUPX64OuBw5rKQVomjbSzrdBjl3J272KZu4RKD+7TdiEHoBLHyJDKskOeWpZWYhskYcYfzn9MbRhKd0nTzpEfFr3AgPcYjZp52c4XSI4tUH1o8A03cSxuusThy3dGnnfV2xd1xri78Iv+08PWUmyOofJ0MW4kkvY6iNlfC7SuUFhhivCTEjAc442WCiS7eaB8BZL2U1F0cFgOwGhu1iaSkbgp0whgpFUG1zvKTT1zI5r9gLHRibt1V56rJE6RKEjdHyWQDLbr4nQgpPJr5GOM7zi+h5W4r4qxWmJcmxBVFfEexrVLks1YhvBJZllGTIZ6VPEyDuX5IL3VwXEU3khgUiZSMuwGtuePn1b5nw2CuQTDoYfsttNPFOpYs6JCGGX7kon1LrxUjlaQyVhzu93LD7BMrPPaVEww6CaWxCbTOYEIOK7EqQfOvH8eVktgdxx+cpB3uJli6jwfvu4vK/GGkDnGTEfqtGsofELmWqK642V6LEJLLnBKfePh/X5A+2MIWNhtnHAb0Az/wA8/5/h/+4R8+7zE+9KEP8YlPfILbbrsNgLvuuotjx47xzne+k5/6qZ9a+9xv/uZvnql5lyyej8RJ8nwtakBkIDNNKdY4BY+N1MlmabrlUtLY5lNpWSI5nIQchgSXQCCcnK+55VZ2yTE6/Yje3HFmWGKp12eu1Gb5UJf6VIHZR5vsvPrMRfjPCP2EpW4XOTkMdbciQxgHL8oJzlM0jZAbI90uhcXa2f7up9veyldo1oZkwvjRADKNdSTCWsrLAqUFk1dceU6Wzh8aHj/uZWuvqXKZXAq04+AmPVyG6aty0Kc3uhcAJ68jdIDSam1TrwXETsj9EXzdRJmVOOPuI0X2lPfwJ/VPsNxsIhw1vE43ifyy2qUVdje8MLxTVWYwInuWb51/FCsBbQxZrcv4fIbAxToOMyNlmnkZFdRYWe3LXmygcBmyl7B3bDudqMtlJ+6h3JxnTl3PtuVb6M38X9wEDrcP08/6XPOG7dz7yeP4BYdHvrTI69+2h0Nf/DSOH9A8cYzS2MQz2jXoxJx8ok2i29R33oDFIIwEAdqdZb8q8T/zAUGyeZHMThAws+1yAI40HiWSOd3cQ2iJVQYjYgwJRqQYYxmrx7QcxVF/ha/PrhoOuhuhPMRZpFifK2LPIw9yjAItB0jjU2pL9soiytm8a00oAb0Mr5uhB5rmQg8/zahUErK8iNhQ8ViaAqxquQXecHzZu7tLZ2wAeLiyxhcfv5Pp6o5Ns3cLlyiydb1J7UgaRc2NosNcAie7Mcu6y7E8Y2d581PyX2w4+sB9KNcj6rbY88pXIeWlFz20mWhHpztsPROTqgKM70UUatBtAdBIGhyPh9fZFc0U6fsUMs2ILONKjzF3hJIsUM8dYgX9q4bzViNahNoFbNAmoX9ylnzi+rXnIizTjwYIJRhkgn5uODyIqC2XiMrJMErZCvzYpRa5PFQboB2DkAKZ55SaLhAjQwccj7TpIQVMJoqT2bDvEk/THZmhslylF6WsOH06cyfxS2W6i/NM7Du3NeNmYKGTcPfRJv7kPYwUt7NSzvBWhpk4Xt7BlVOMFBrUrji/msDCVzjRcB+yUQokcB0GWZmcHpWwyqSB1NVMU0CWMrJMoITh/tky/2RmmV6ukLpNz3NYOXqY3tICOsuY2HcVpbHzp0F3CnEnor1zDAFI20HpEkY+zMjCFI2pDqf2IMqRlKsBWTxcz0XdhLifUN9WZnznbg7ffTtNd5bxYBeyK8nyiPLDDY5fPoK10zjFGjNhh4+reS5rZiAqZH6Dog/VYBzTGWeRz7PffD/Hk0+iRIdw6f7z3t4tbOFi4Iwj3ZrN5ml/i4uLfPrTn+bDH/4wrVbreb9/4MABbr75ZsbHxzl06BCHDh1ibGyMm2++mQMHDnDvvfdy7733ct99951Fc14ceCaPW27WCQPhBBhX4UY5zkhw2uc3i3Q75TnTaj2VzGR3MigcAI4zojWyUubqyRqv3jNNr76NEVPhhnSE7swcRluWjvZ45Evzm2LfRthMs5KuT2ZWZAir8PoxpcL5SmG7FEg3e1be2ee6RlKzvinCLYOrhmSVtpQblry8zLa9+8/GWACK1fX+7zbWfyNVKBB5Dn6akT95cP11J0RmQzJBGherYnKvj7SrpJy0LCuPj5qZ4UKw6HOVSTh2dCdXmGnats+XF7/CbG/2rG1+Pgjj4bnrnmWxOmyq3JwmwL/ZKI2EuKv7knXtRSj5LgZF7jx9I9ucmCHKMurFGiG7+KblT9JWcMyB/QuvZiVb4eNHPs5Dyw9RGQu46tVTJIOcxaNd8KZwwwJ5EnPyoQfIN2yoNyKNNUtHB2ixPLSNDTp9q0UzljHUws1Lw42TDcLa0qPpJBQRSD30K1mZIvFxbBkdVyiElm3jOeq1LTpugnROHzeEVCSPPb5p9j4TrLUER5+kpAtor4gyBSyaQmeV5C1t7sWmqsPjy9QwaEf0TB0hDJ7bRZr1pYLKy2uPT0nhjNXXr8f8VEpxcuEqWm/h0oDcEOmehYrP3jTg9W+d4599xxwzYyGPRG1+rXU/dE/Ck5sbofxiQZRHWGv5yH/5j/yf//Bz/O1v/CrtxYWLbdYFR5afTrop1p00qrIuW9K1G+ahg09ikoSj49AwXWyWUc59embAcdlhxV3/bJJdIG2sTYQ1Bsdaev66Q6htZimGBQpeyKB1Bc1M8ydHupRyl7f88SvZc88Md907SvfgKCXp8Mb/czOv+pNX840fvJXX/9U6eacqHt41V4JxwCiq/Y3RzcO5e6eznTGvxBeW78OEHkmvS3P2GDrPLxHn9DrmO0NHkZAJInSRdn2Od1YdgEGgYeT8Bgm4YyFONlx3bCx6FbqKPBvnQG4peD5XOuNcxxRVAo44Me1vuJdHrvwsC12PREvKrqacavoL8zzyqY9x4v57OHnwAZ744mfOq72n4HSHGrYWg6MrWDQqG87hcTFb21coR6JcRbBhPWIN9FvD/q5OTZMnMfP1x3H2FiHWBA81QAjSwhSLo68BYM8VV9OuLFNqrdtQDA1aV2gWMjqLDf5D9QdZNDGfbxyk23v5jYlbeOnhjCPd/uZv/uZprxlj+JEf+RH27Hn+Kjaf+czmDBiXOp6XLLMeOT2QOTJfHcyiDG+mfNpktlnRPI50wYCWHdwowgoXkRToj8REwQmabg/HraJtirQOb7i6yl+KPqPSoeoJgn9+hDzRHBVP8vGF81vieTrYcVo6lc00bZ1wKmHRiAw3lQgyCt752diLDZU3L1566VNwFmY89SvZBtItKVWGEWLWUFnq0S93SEZzlHP2fTixu8L4zhLN+QGdlfWNuOt5LBdDhIXSyhxC9rFm+As6SUrqumDWz2uFAxYKIqVMn6NyhEc7i+wIFRMlSTo/xUjjKmbG25ykyW/f99u89/XvPWu7nw3NhS5WhuSOxuv7aKcIViDTjMpiF3sBg6FKlQC1qABN5jQp9EOMK7FCcGtNU/A2FBPwJLmx7H7ztyDu/SitZpd6oYQQRbaXXOZ6Gdfn6xuZxWgRIQRX3DrJ7KNN4n7O/Z+a5dZv+jqWDj1Gd3GeL//Z/+C27/shhFy/N6yx/N1/exBsjCrFmDwFmaNVhpUJziDiCCVWsNQKm0e6aQXN1iKO4yKRWDfmZGyQuYP20tPEpnt9n8cPVLn5mjZTVwvuvuwhvv5/Pl1n1PQjrNaIC6RXY/oDpDFUdQnEcINgnAHewHKCAVP1M68ofCYI9tXRUY5uxDiRIVbr5JoS6+OGoytIHWKciLERgaM0I7X1993VFN12euHTc7dwcZEZseaHyB1JLtdnIN83+IMruCf7Cv9zcIx3Hv087HwtOOdPxPxFh7vvwrn3K2RY9r9+N7+98iXeMnsjnz0ikUcXKAWKr7th83VyLwWkTyHdWktNil6fvDSCV5+E0EFJQSRyQlnFyyX+wpBIS1anlj4pv3pwPUOm4WfM5AbrSOLsxa/pZrRGWVgoT4E1CJ3SkIc5NTPkWYlHki433Ps52PFteImDSBWJlQyyGDwPL3GoBwIjBW7iYAF3MsTbUUZ4Endijmw5xe+CFk0sHsIo/CwmdgL2LVd5uLzMr6u/5P8nvp2k2+HOP/49bvj2f0Zp9NK5VhfbMWOBA25GHjqIfF0HVaQZKzrl+ldXwDlL3edngTMS4iSKYjNAmD656SFFESkFtULGX3dcXlM4gnG3o5A8Kpb5K/sgH+k8ii3CNYU38FCjxq5yn1qQMqocvDynYgVdJVnodbjnL/+EV3zX955Xu9kwVueiB8QU2pJuNaJbG4BdJd3c4Xro8uunSKKMQ/cONQXbS8N7ceqqa8mThP7KErPNB9lWuRJ6GU6myV3FIJhBy4Bd2ye4f2yBcLB77byj1QyQdN0a7e4Kr/LexCv83TyQHOORe36XW77mP5zfNm9hCxcY50XTTUrJT/3UT/G+973vfBzuJY9nil5SooxDCWWqlJehtDygmBi8sdIFiXRTcrUyokrJwpA8cKh0DfX2PyC5i8Q/CKW7iO0sqe3hCkkm9mFcgSckppigyhZZMLS7PVKTnJe/lXSRQ/1H+WrrjvU+8Bx6WcRS/xCpO49WHVQuyfwccZ4m0EsivdSu/QdA0j33yJHUrBJhVqAyjck0WI2VMZiUy/aem1ZUoeohhGBid4UsXo94cn2fyHdJHIXePo216wRM9fgsdZvjYCnlO3DSEYyKENbHUZaS6lNUHf50UGC2NyA2KfsmG4x291CNtzEhanxl/issR8vnZPszIR2kODIgKWakxQRlSiAMTmZxY4tfLj//Qc4TpJJ4qwsfIRy0p7BCUOk2+Jp9Oyn568TSIDWkuaU8vZPiK95MP0+Yby9z445dfAefZrvrEpo9XN69nhvqN/HZY58FYOaKOuXRkLEdJaJuSn37TpTr4RWKhNU6/dbKaTY9etc8lTEfbyKjsP1K0m4DIQTKFnB0HTfP2Y1iz1TIrpHzK1i8EcJV1GsTlEt1XOVTDyJ2oKgtj+MkE1i5fi0a43B0tkyaC3QO7sA5bYy12SL58mPDYgqdCxetZdottPIZNeMY0SFTDXLZQ8sE60rU6Oam5AlfoYouZjyg7DqkRhFlFaK4jGCdQA+TDOxwnM1yePtUQmG+hEwlQSQZyXxeUdrPROGZ05G38NJFumGqNK4iWU0/zjNBIUjptPcyMCkn0w7oFLLoWY708sBKaw4XiYdilAJ9PwMvAATGQppfIg6/TYa1lkrooDYsb6fSLiUlqcVtCiPbGEQ53X5GzyZEpk9bdvFaEbkEvbqTMWgC4SOFpCQCvjydUL/7OJUHTuJHm683vNmwRiOEwkoFQiJtzkpvPfVukLh8cQXuqq2ne25/YIqD91bpdU6QLzxEZrpIJaHiYjxJMuZjpgrI0MGdLoF0cEo5Mo8QhDi2iLQFEjdgxcJORghSj75I6NQEThDiBiH9xqVVOOdkJ2Y5zklsREMmuNkEuWohshSn1cHxBWLs/EvhyJKLqzT9ekwWpDiyhBSCpW7MTNnj83EJZfpgDRmaARkH5RJCCEbdURZveICGqpEKh3YesDu1jFtJGcmkthSihLjTxpjzp5k6WGjSIkSmi2AFji1hlUAISbkd4qsik/FuSvWQkanhmrc2XmJsukp9soQfOuSZxhhLaWwcr1DEK5YIdtSgJlA1j7G5LqW4jav7zG77Dkpmjl61j9vPCXqTeIMRaqHAd+dImcEYjcHyS6V3c7U/wiOdw2uFubawhTXc+TvwgVvh998I9/zxxbbmeXHeCikcOnToBVUfjeOY//Jf/gtvfetbeeUrX8nNN9982t/LFjYmYQmt2gzGSsRlj1ym3K4/y1IyTyBDqk4dR5xfr8wpnKryqeUAlQwoNiLCrs+uE49S6yzhZQbHKNL0KzgixFqJyWsMspRa6oGrybsCkTqYgcCT/nn5G+g+i+lJHu0dWLPVtAcITzFe3IOXTaFMES8KsMIi1Pnqn4tfSOGp9OoX/vo4Rw+sPONnnx2n2+5Yj0LLp7hSI66WUJ4DyqPcVFS6o1SuuOycbK5NFFg82mXusRZLx9Y9y24QoGZmKOer9IZoYfMUk0XkShFrcHVOahKUVGjVQ+UlfJGSah8EfKJXol4sU/YN11W63JBNUolHaNs+/bTPe770Hr668NVzsv+pyAcZwqR0w6EXz83GECjSkkdleYBbvXChbkIIijqgvOijNlR9zaXDK0qWbuxyotWhMRjgu1ArOmTawL4rGCvVkcLFcSpM9x4h9CVZd4aWt0Q76tBO2+QmRyqJdAR5anA8xWN3zxNUKqTRAJPnHLnrS8Sd9Qimxsk+JrfYEKTjoAolRJ6QOcvkqo1KcxIsd8wP8J+ulH3++mZDBVlHOpTdDI1FOylG9dlYftOVkkcPVzi5EOK4gsFYjHbW3xfuBM7YFQRXX4tuNjfN5qcib7Y4PnkZ0UgJZeu4egSBobqiSJwewt28SEEApx6QHeuiFmO2T1aobJsgdDuEQRdHrv/miVdE2lUnjTFcsbtNOtPDeIY4NNiSzz29h3lw6cFNtXcLlx5SvT5rGfJT8pc4rmWkqnF0ib3uZesk98ucdIvS9ZTHwDq8I7iRa3ftO33N8fBBuPtueOgARM9dSfrFCm1guZuhLWA0IksY8xzisIyRDt7G6PskJ2hLvHaOlAWibSMATHiX8drRf86rR76Ly8ObyYSl50MyUaJz/TbmC/1LLgXyTGG0pl2Zwc1TpNFoPaDr5ix0l2k0oBVJvjZX3FTYtfadNpZYwM3H7kJWpkEopJK4jmIw6tG4usL8pMcTX51l9skGeUeTd3wcimRqhcxZQYse5f4KqeMzk5ZJVIojPQa7KgggqFTJokvrXlZScF09YEaXSEcLGDXAiAwrHbx0WHGdfVec9/MKKVDRMN5Xqz65Hc6dk5WQerFMKgdkXowUgiGtZHlSDtcZQgi+lH6GQbWOR45SAywWx2qE1SjHYTwoUBwdI+l2n9WGjVg42mT+SJP5ww1WTj6zE7HzyCwDr4TxJtayqaxMwKTE9YyxqQmuGruasekK9cl1559yJEIKkignGWSk8VAqprZ9B535OVonj5OXMkysKUQZWVDBy7vYsMhoegClDEGUkPp9rNB4+ISFnCyqcXjlEBJJQRRwrcOcjmDx4DPav4WXF/SRE+Sf+Cz6U59Dz/Zg+VGY+yo8+dmLbdrz4owZio2FDmDooTp58iQf/ehHede7nr8E/L/8l/+ST3ziE7z97W/n1ltvPad0yfe+9718+MMf5pFHHiEMQ17zmtfw67/+61x55bqXJ45jfvqnf5o///M/J0kSvuEbvoHf+Z3fYXJy8qzPezZ4rgg1bTSKKRwUOcNB0Y01aZDTL0WEFAhVgelgJ0VncyJrlDwl/Bmj/QJ9H/yozi0P3sXVD9+LvuK1pNUb+cf7Pkr2BoUjXbqNKb7+xCRaneTT1xiy/3M5uYSp68f4xn99/fOc8YXhj499gNg8ZTLPDdmG6yZ32nhWkwU54jylqpwe6XZxPKRPjYg8/njC8sqjjM4MI4bGtpeYuWKEpeMd8tRwyzcPCbPnutY6eZNBLcFJS5SWDFYNiRA3zrEYZPncNPHCkotUAqMtUT+nthrR73k+s90WVyYJHD0GN6QIx0MAYSeh6TiAgzAhiXcU14DSFayEt8h7+HP9JhKV8l/vv4NfedX1GBtzm1jm0ONv4c5bPg95wmdOfIbACbh58vyR962THWyxjisyEnKkWe8flRmccvgc3z7/yKWkO5FQbg8II8BaBqUamS2xmyZT1WERlCSDJMsZKWmYKmIch8lKFUcJ0v4cy/0l/LzOSH+KJ/x76bc6HG4fZl99H2/9kev44L/5AstAnhte8517mLoCnvjSnbjdNu35OYJKlV4zobEU0elkVK6dwhnfjpASkce4eYCWEU4u6FoLAiYrm5dG5gYBWZ7iOh4Cye4go4sl7JZoTA/THywagcJZvbejZD1tNPNznPz0NNLk8SfJl5bxL7980+zeiGxxgZFeTFi9gtapF62m3PZp1BbBP196lc8MVVlNDJSgexmUXXSqUFIjnrJXdZNJcm+JIJDkk/Fp7/mrjqEov7Q2YVvYfGizfqG0x3rIfCgRZS0ox5LE4zx49CbCnV8AJOTxsx/sZYBe1OaU79tH8b3yRo5u30dzdX2jjYUHH4BT5H+hCJedm2PsUkS+QQuw3J7lzce+ggUWKlN0iiPIy9crTA7qPnHVgFUER+ZolgAcri+/iTeMfQ8AT3Tv44+PHSRTA7L+ABhF5RDpPoVn0D691GG0IRlkWJOzML6PzBmO1U7jDkZ21ZgsD9M6o8ThJwlQG0IGjYBy2mfb7D2Im96Fg8B0hnIAMz92PQe+OkuepcTd4WvbfYlc5XaVEThmGA3WDQ2lNGIXZWI3ZyVucDQ7yVQcksURju/D9ZdO4MTBuQ5PLMfs3jtPKiGMt+Hl46CgMpB0nByKmxN972wgrhxRBcAYS+AU6A1miDof4MTCZ/nY3BUoKfjd172JP9+f88njn8HB5X9VfpOx1k28VlawWASKJTFgLJOUs4xjWcxjt9/Nvtd9LY4riXop1fGnO4CttZx8ssGgM4xUd31Frxkxs28Mx11f7/SPLaxm+WuGpfMkRqYUu2WCpsvYxFUEe59Z3sILhoS4VIK4nxIUhpkRQwha0Rwjgyn8lZgEQVK7kUrnIDuX/ghXvIF+eYVCfw+92v0UQpgY2caTK3UWnUcQQF1WaGjFQ9ECNB6HqfOzt9zCixf2wQM4c4cB0KoCzjjoFsjNdUyfD5wx6Xbvvfee9lxKyfj4OL/xG7/xvJVNAf7u7/6Oj33sY7z2ta8901M/DZ/73Of4sR/7MW655RbyPOcXfuEX+Pqv/3oOHjxIcXUw/cmf/Ek++tGP8pd/+ZdUq1V+/Md/nLe97W3cfvvt53z+s8VTyZRe1kes1S7ViNxQWurRC1M8ub7R8uTmCWk7alVDaIPwZ+6USEQF33Z4fHA7O6o38tp9b+CDB+9jx5XXc/lEjTsbE3x3knDfieO4+1/H7OMtjh1ooHODcs5HZMvq5LXaZ9ZayDU4G0gxmaBSQRKkuOcrvVRsJN0ukndUnP5kZBKcsk8a5TTm+hx5YIWvfOzo2idufPNOXP+59afy1ZB0ZYprhJtIc8JORHeiOaxieC4mS8HOa0Y5dnCFldke21YlPvxCgcQb6ocIwPRXkOXtALjJev86WYkkACNjgmgPceERblGP8Ff2teTS5/bSNZxorjBVG2WimLLdc3n7Y/+aj+37QwYi5Z6Fe/iJf/wJAF459Uredc3zOwKeCzZOEa4iLqVghyXgT0HqHKd+YStcKoaTipERwhjsqr5aJhyqq3qGcaYJVhdUUTrczCyPjTFy4gRjpSpZeS8/nf4ffs37IV7b2sNs7XGWoiV+74Hf47qx63jXNe/iLT94Nbf/1RPMPtLkL//TV4bnVnu47ubHmH/kACePFXngM8dhR4XJf3olNs9Il48z23+Sy3d/zaqNA2SiWBCGaugwVd080iioVGgtLjFanyLwCowGJQpFB2+wQexXGIRdJ93iDaRb6meE/acWU3DIL6Cgef/kMdJwnGh8/RpTmaFTHxB40eaTblUPWXAwgxzdjBFVSTcpUQ26KHE6gSZXlbu0BjFx+nu1ZHhNxvrlTai8HGE2OKsWd9x+KgsZIaBezgCHvH0rxzqPwqSBl/k1MiwiNLyvJynhCkXkrjsnslRDb4MW2UVyAG42cr2+BnDzYbSMADy9WrFZOQjHw+YpmRiO246xCGA1qIiJYBjdZa2lYK4gmv1uCrv+kGOiy3SSk/sO/azzoiTdWkt9HrnrOFYP0KPr5Ecnncd31+e4PJWopzhdu8byhhNfReiUfOFB3FXSwt1ZpjxTYVsrot+O6HcSdGboBZKqCzYTGLthbBewVJnktvIkI32PRiHlyyv3cJt4A9Ya0v6lVaiiFaVcm0lSLyUpaIr91bWasTiZobR98+ZTryZQmcRsKHglpWCsOLy3l3WNMX+JqpPQyQOaC0v85Fu+i70jV/GRh/6Wx/OHeU/pGKnQ/NP0GkZEyKNimZ9XX0cx1Yxry399+OP0v/wFbjj5Roo1j+//tdc9zY5kkA0JNzEk3LJEM/v4CsVqyNjMkMg2xiKWFkn37YTVq8eSY2wXv79aXOk5imCV6wHLs4o81cT9DMahUB/hln/+L3j4U39Pb2GJoBDi9tbXW1GwDWFzPJEwe9Uipc4kvdrwvWpJo4/tpWG/vPb5bWqM29P7WZ6/j7H9bxtOKFt42ULo9UwfpS2M/zT0b4f+4kW06oXhjBmKcy2EMDMzQ/k86SB9/OMfP+35H/3RHzExMcE999zDG97wBtrtNh/60If4sz/7M970pjcB8D/+x/9g//793Hnnndx2223nxY4XgtOij57C4fTS9YlNGEvQTXBTy/0i4gcnv+uC2OeqIuNRRtIJhm5pIcg9wUDeCPIxfH2cedHELSjcJ47T7u2h2RO4tWkemz/AWB8KV1UxxjJop9z/6ePc/PW7nve8z4enDa3GggVrU3p6Gd+3GJHgpIos0LgvofTSp14oo+OaaDWKpDQSsGN/gZOH2vSaw4m930qoTRaecoTTj6HtcLCSev1zbpoT+y1U9ZmrU54ppvdWyRJN1FlPhXH9gJmrr6OxMqAQJfgrs7jBFSAUQXPAaNwgcko40RSZP0+mesi8jBWSW8Wj7C88xOP9PcyG03yiMce3lOqE0qVaT9jevILd2S7qnsPOqWv54vKdtJM29yzew/fu/16UPDshfGstptfBOpLcH/absOvXl5OBd6FJNzFcBFmRrxFuYdTHFELs6mZtkMcs9HKunxldI4zN5ARzDz1I0fOp12/kW1bexxfNK9kVXMsT8VfIijGfPPJJvnDiC9w8cTNX7N/PdV8Ts3S8y+EHltGpQWtFnI5w8B8rFGon8CaLeFfU0b0YaweobEDH9hE6IwnaZP48jpHEQDvKmaxsXlSgH4RoHSGlwpeKfaPX0ZuLKPR8ZFbBuB1AAy6+BBkcoxNlLK2kbNc18tUiFHbVzwsgLr8M3btw4tuDTpPW+JXkgSV3Glg0btSjX44ZqY1sPulW9jGDoUSE7qRIKYlyl7IdQXmnO1BO3QdpbHAdB+sNN8BWglotPBHlEcYapNi8tOItXGI4bTN0+uxd9A1CJkBE3L4e6IJ5aZJILxQ9UgYICniUV8m3nlfCyVNyI7HdPiZNkaf6NUme42gvXuQbIiRDo+kmgyERl8SwypHJoIjupeRCIgBHW1rbR/iZ7x5mh4w4OzHGIqXAUxI33knaeA3NsS5T/nC86jdnGQ+nL3TzzhmD1UqcWEN6KpvDGhrN2wmcWwFIEsE2IZ+2v8jymH958GME111LcM0I4VV1nNER8BRCCi67boq5J1bIsybWB1nPSHoJnujh9CSmuIKVDtKUyZVLJh2uXp7k8VzTLDeZnTbsi8fJogHWmNMKLV1MtAYZZdmjqodZTVZoctmm1PZpJEuMTm3ftHO7dY+RuQpJcPp+pBY6OKrJ5/NrecdlHtWmxBcuK23NjjzjR2/8UZ48cpwDXYXCxREWlZdYETkLXswRVqg4PofMPJ+vfRFbN+xbfgW0Kvzeuz/LW37gGi6/cXztfA/fdYxSPcQLHLTW9JrDtNZeK2JspkJrsccT980xLVKWNpD9AgfjZnjxahRb+Oz7qqDoUSh5ZJmm34qAOlIqvLBAoVYn7fVIKjFht0t9ZUBW8xkEUwDcePAgjxw/weBNN+Gk41iRM1oUWF2iVc6R4yVWmgt8b+kbOdJ9kgfzHm/MIvAu7Lp7C5cWbGbWAjjWMHEdyHsukkUvHBd8dPyN3/gNfv7nf56jR48+/4fPEO32MHd+ZGSo8XDPPfeQZRlvfvOb1z5z1VVXsXPnTu64445nPEaSJHQ6ndP+zgtO49xOnxXbgwGZs0LqnSR3YqJ6iFERg+DC/TzS8VgKXTqTMU7coLQ8QGUpRlcw1jARzZM2v0BPRtR7s9RKBbaPVilXR+iSEeYBYnebLB6KaT5yxzzWnD+y6hR5YHONLgUUAkVJjeHm41ihcVNBEuSnVx09B1w6hRTWMXN5wjf/6A1884/ewD/7d7fy9T94LfXpAuVRn+l9Nfrt51+QG7vuIZBpjs1zrM1xjMGep+KIu64bI+5n+MX1ibp5sk97aYGk1yXJEpyxUYQbIhyPgi6RSResxpgq0ngoUyB3mkg9hVuqcb14HISgoAfczRjtLKNjFTdUWoyOwnfOfT8/VPg2CgPI9ZA4GA/HufPknWfdDpMbCnqA8tZJcSuGm8SgMUA7A9xNjN56JshTVS3l+m9tHReVpng65XhrgdlWi5FCQHuQ01olUYJtMxAEKM+hn3QQ/jX8sPP/KPY6hAONP3Cw2sJA898//Kfc98lj3PwNu5jcXaEyEjB5WYXxGcnskSpSQtxLh5FR2gyrlYp5GqVPMHa5QJgeQgiMyFC5xOYRr9s7RiXYHD1KgKBU5tjcYyTpcHOipEJWFIN+ukq4DRfdAMpRmHgn6Arjox7JxIB8rQjFhpvu+AKLf/BBHv2Zn+KBv/tr7v/bv9rUsSCdm6VcHcHaGDcfwcvH8SMFAkaaC+BvbpVH4UqCa0ZRowG6m8BAkGQCgUa5pxMowgx/yzy3w7FSDgm34XHWf+f4ZZ4++PLDqch0g3VWnTirt0w5MFgdYnWFRjRObIdFfF7OGPTK/MflSd4+N863nRjlU4MAIyUGC56DGK2iV6sB47rDyiUvQaS5YSQQjGZdymkfX3m0opgwiim1Vii2V1DFyxFqGrzhNeZYSzNtYIWl4ozTz2LMaiRgLfR4xyuvYLd/LY1ei/IDJxk5mdDtXfqREM+ENM5XM0cs9pRj2cJccphm1ObYAiwvOFQQrHA6kb292wCg9MY3su1n/zm1b7mO0mtmKL1yau0z03tHufGNewlKHu5kCWEVwk8wXoZkFGWqJIMu1dYJjkcxV/XLZCKmlNc5lpxESElhZJSk98J0xi4EdlQDtgUDRBiDcXDzURxTBSEY9cep7t28SqtOXRGVEzoTTVJnlizNiNPhvZs7HZ4UI7gnv4zKengiR0pBungIkg4/uufd/Jfdv80bRr+G6coYBzpF/i6f41iSQ6YRRrPH1JkQHn5a5G+v/gB/c837yLOMz//ZPXzuf/wNcbdDEmc4roNJu3SPfQUZPQa9R1CuZOFok/s/e4hDD5yku5QgpGSQReSmjRZtNMt43RSZxHi7K4jnIN0K1YA80ziuM4zM3YB9r3/T/5+9/w6T6zjPvOFf1YmduycPBhkgAJJgzkpUtETZlryyvV5bjnLYXUu2vLb3XevTt+uwTvt6V9yVLVlayTnJtoItK4tBEilSzAEkkePk1Ln7xKp6/+jBzIAZIDAgad7X1eSgu885dU7XqfPUXfdzP/Rt2kzXryLS3lxKdBKctENkFxitz+FP1BGpInXnUU6NneWQjHOMI3ERFcZ4wmWdGOESa5Sj7QmIXzx97BWcH8i4+1RBjhTAi38R77QZii1btrB169ZnfD0Xrr76asIwZOvWrRQKBfr6+k55nSm01vzSL/0Sr371q9m9ezcAMzMzuK5LuVw+5bvDw8PMzMw87X5+7/d+j1KptPzasGHDGbdpNZ7NZ6vdDQGBEw8ufy/XsNDPIuk927CtFRWKtj3aA1na/SWq7o346Tz55hyVmS+yvn6MobxHtRNS74aEqWI9eXwks8ceJ1f2aFdD4iBh6lD9BbfrKZ5/qSaY7yDtlcHdiBQ7ksSZ+OxVd30RpJeaVf8FUFH8lLZsumiA1mLE1MH6suLt2ZAspW7YSRnt2gjbxo0Upfk8Sd/Z8WCqDGdpLQQ05lcm3GEnId83gMpmKLe6RHsfXf5MBm0qnQW6to82LjIeWCq2oLHjQSpJlTfaXyfGIzU2ByOPvYsLDFkxJTvmcm+aoC3otAxvEVfyW6/5LZpxkyONI9wzc88Zn4dShuZcnU7RwWs4WLGPnZQBiAs+fsdD5s5dyvfTwV5a5dYiQsYxdjcmtB0iLBKvyIbyMJbIUg0CgrSLJkYpTb7Sxz37HmPQy5H1B7D86xgMJ5DVB3jDg5v4gdtHcbRAKMNEdz8PTTzCxIFFLn/zRn7kN67nB/7L1QxtLqC1xnYUw+sDtr9mHV7JQWaytDcfhJ0Vcv4wCB876Uc5NaIYZi2bbpy+IP/O54KXzTFTm8R1PIwxGGOQEkbahZ6pjREo2aWbdgmiHhkQxyuPv9hOMVphVpuXSRszNYX66i20ZmeIOq1zOqmIalWsoRFUdqVPWYmim40pWwbcc9/X3PUFVDXExBrZEHRTCylrSFrYYQLaINNkJd0/UWhbIxRgwG1JrFbEsCyxobCBbvLyNH5/BU+Pk3e4ESvkkLUUB+e8CKw22DWEDKkrCWexAt9LERNdwd2Bz/2Rz/4kw0NWH6nlgFyZ5AYnK5gmCawqYvNygdaGhUZMNTQsOgVsKXEsiyA1JFrQLvfTKfWTzWuMmoKTYXEM86NZtC3YlLmEsjOAJSVaG2xLsnvdEJtKW6knbVoXDxM7EIcvzQl7EqVopdGr4j9bp8wLj42VMTYOg5MRfJ/t0f/kaV13AVkqYZVKz3mcC6/byJbXb8Zup5jQx04iNBGp1cTN+jTK68HPsUOXqBaqzHXnacuQ9vws9YkThC8S0q0dpdx/tMYiTUb0EFL5pHYNLWKcbkyiU7K7N5+z47ujWZzIAqGwdBHLltiW6PXtZJCJuBfHFZ2I+aYhjiLmZxagOYnR0Kp2eaN+LX944Y/x3y4exY/KTHlz3Gmm6NcZ+snwX8M3I5E0/XnqmVm+uenTHNNTHNvnMHdsmup0izhM6NSqxM0ZqkcPoqMaQatL2p6hvTBDOH+Y1sQcUqXEhSFsWcIyJSwG6FY6FBsDJJNtpP/M2SKWJXukXTOkVesyfmCe6SOLxEFvruHl8pC3MDmD24zpZF1SWWK+/1VYIgbp0qmEoC1QLtm+hEhtoWatZ//8g2QSBweH9XI7J1AQVM/Z7/YKXvzQSYoR1pM1KZA4IM4sq2ktcdqk2y/90i/x/ve/f/n18z//89xwww00Gg1+7ud+7jm3/+Ef/mEmJyf53d/9Xf7wD/+Qm2+++ZTXmeK9730vjz32GJ/61KfOeB8AH/jAB2g0Gsuv8fHxF7S/FawicZ7UXWrtBCftQ2Avf2bHCr2GE3rLWqXY0T3yxliS2FrH8cJbMDpmtLmfwvGPM5YZpF2dp5z1KeVyTFrDXEo/ydHHuPzNG1DK0KnH3PXZQ2eBsFoO43v/U5pW50mebiLFDSHKJmdtYn/Kfl4kFa86iwsEjfop7+XKK79bp9773Z6NeEyWKgyvLgiQqyq01MQDZye9VEjB1W/fTLe5MvEyWpMrjdFZWokwyYr/h/TLZDr1HtEpXHLdy1F2A22F2OkwbrLIm8Iumf6v03YKHM5s5ovTXeY6HXzbsDHfwYptFqYsGlPjlMyK9HyqPXXG56GVplmfw8saolKCckOk6V03N0wxAsRzeOidbeTyvcDZyBjtuqRZF4RAraps2QgTpuoJGTtLGAmaQUq2WGKh2+XI4hxZx8PLjPEv09cTVI9h1CQCzVvuG6HrxRzpO8QXCn/B8SdmSFetXJaG+8mV80iZkEQtpueahFqiVRe1VN3ST4bRTg4wJPYiReXQEJKrN535gsrzgZ8vMHHiAP/3r3+dfUcfYKY9Ts3rkg1sBDaInhlx1s4yUOj1jyhZ+e2UqxGyV9VtGScVJmkKxpB0u0+5/84molodXRkAscpUvGoT+QnC92AN0nbcDXkwoNsJsgZLcTO2rUh9B6RA2w627nmmpm3NTZ+8lu0PjeF1HeKCJhkrsxjXGW+NE6hXiin8a4FZsqUAMGLlWSKXurOxwLEUpBVUsJmpsPCvXul2JMxyLHUAQYgkHtxINdePXqXYV9lVHmTPs2LhSwndKGX/1CoriqjDHYf3ccvBOoQrMURhaANIgVhKdVcR+HkLgeBdo/8PFb9MonrppcvbiA0smhgsSXvAY1K89JRuRhsWp1oYA1quxKLCaDq2hbX0XNCJzdvipyqS7MZxdKOB9TxtfaRnIQZ8SLLYqUbiYaviciiezVdY7/UjDNTkLA8F+5a3Dc9WZtALxGwzpF8JilYLK5MgTQY7rSCNi99JSUnPkuf008OuZHGiXvyg7DZSWtiWxbaBIv25Po6rXgroaKZJnML8YsjMVBXG7+oVODCaijmMP/5V+vxpfix+K9mkyMe9uzlOnSIe18khXrXwKkaaW4nsgL2jd/HNzf9Aq+Fx/JFJjj46Q9RNcK1g2QtSx11IW9B6HBoPQ/cwhXiWoWyIsp6UtWFinMjCKnnPOa8q9GVQqSYJFeN75zm6Z5baXM+aY+zSK8n19dOx6owcrGKkoFG+gPF170ToELvVJvI7+OE2sGIodBnrD6h5OX7/yEeJRcKg1ccbvNdwR+cEur12Pruv4EWIMEV2G0+d5Sr5kqhOfdr5Pu9///uf9v2PfOQj3H///c+5/V133cXdd9/NZZdddrqHfka8733v4wtf+ALf+ta3WL9+JU9/ZGSEOI6p1+unqN1mZ2cZGRl5mj2B53l458A759QOcmrHCFZNbK1E4Dcj7CjFL5/bdKLVsMVKVxBpFS8pkHgWWAVmy69nlElMMokbnaCcOYGp9jHXGKaSz3K/V2FjMMMOmWVydpad149w7NEF5o61aNciCn1nfh4rlNvSNUs1zXYKlZUJs1AubiBpVYKzpnRbnaZ6vm5k8aR+IoSkvTBHtrySB5qveFRGsoSd5GnTS5/c9EQ9lXQTusWxS2bwvLMXhAxuKp4S/EpLEHV2cO1/++8s/Pqv46dtMmkHYfcm7+XFFn0DNVpujsgyWCqHsprk4t0oIbGN5vrhOt/sHsHpDHFv+Spu2/9V3nLh5RS8HN93wSR/vXcL67dG1O98iKuGr+Jo4yjHm2eexq6UplOv4W5Yut5GAhqUwG9FCPdplJjnGK6dIddJ0OkqGfXJya4x+FEX2W0znqRMt1wGcj5HF+e5Mj/G9utuYKFaZTSKyLguY6USB+ZnMUC2MsJGy+KCuYDjfQ2Ou4dZUHMceKDARTdsBOCK79rMjqsLHLzjNo73XUucpITeFEHhICZISI6GiFIeIQLiTBNjRVipBKG5bMNzr7K/oOuSyWCMJlWaIOqQ1wkmp3FjRbH+OgQCoZcqvlkWUohTlG7HVYehb99M5ad+jehA7z5qFzz8RQvjuogoxvgeswf2Ulm/8ZycQ9INCbYOgwlQIgATka0LalsiyPafk2M+Gc5YHmd9AVULMYspUb8kVYMIcaps/+S19JWL1BI7trFiC3IJSMFQ6DCVT+kkLy5z7VdwDqE17L6NOdmrLHkSfizwU0PgQdZJacQAkodbg1z5Mi0M8HwR6VVxDIZCpUQziMmjEITYdo62tiiGPTN0q/HyU7qFyUqQMlqbIBzfy30njmC5F2O3Q8rdKk2/hHPpG9h43Vupqn+CSBNON+jb0E/WamMtxa+dKOKhPUe5eMcWsG0KnsNHZn+AO5II13HpyLjni3eO/THPJuJohXhUqxZeHBVSW5UNk40ly+ndxizHJmLyXgDkaVTqzF88QOuew7hRysrRe/trGcNQPk8msuhmFDNRjdzAIN3qIvOHDzCy66LTP8mzjJlGwKBlEdldMlYGma6cuxMrUuvckv0ynyPb9Mg0PDCnxuWljOBoa4Bvx29mi3c/Q36LRuwztX8fV5WPsWHi19ioE/Dy6Gt+CulnefPb+pl5/OcQVZ+v29+hJHNU8PlJeSEHFi/ho85fsODPspCf5N6NX+SW2jR5kUVI2CUGeT2r/LWbj8BSuQSlBDuzMU2tiOxTM6tyNYko2Djrn7vwSG7VXFUIsByLif0LDG+qIITAL5VpDk1huk2yrYjElbRKF0IakMnHaLtLtraB2J3AiIh3XrHIx785xBOjdW7xHubV0YVstzcSG5uJ+T1s3PL6M/9xXsFLG4laVshr6SKsLr0EFXGKQvzFirM2y77pppv4zGc+85zf27VrF0Fwdla/jTG8733v43Of+xy33XYbW55USv2qq67CcRxuvfXW5ff279/PiRMnuOGGG85KG54/VivdTkWctomdGWJ7HiNdwqJHu9RAraGKZjXpZixBlHfRjkXiOaQGmn03oYZ20irsoBzfg9uYJk4S5moN2l6ZYzSxjMXdj93DyJYift6hOODz+LcmX2DLTnrELLUtVXRjjbeqqqt2mlha0qmcRVXFKUq38zMxeHI/yZSKdGunSquzJZfaTJegldA5mV56Cg906l5OerppESMThYhSZNqmPthBiLM3YA1syLPhwhV1k5exyFXWc2RiFLtcJvLFMuFmki5WLaSoYhLpIo2Hk/SjZYCyunQueCfxusu5OBOR89uQmyVLzP2ij33VKoc7MJ86vHbLPBPHh/Edj5JTZEtxC8aYM/aV0qmmFneRlqE8XcBrDyNwwJLgCsS6tU0thZ5XWSfnEOVXyAwvSfDiEIQg9HMUhSZNGgRpSqhCjs8YvvFYFXa+gY7rsdBtMVFfZNfIGLbQVCp5BjeMsmHHxQyl/XjapZjmOBIeorl4anpgrq+fwd1XI1WMnXTRXkpSmsFIiMQQvlPB2Bns2KJvqoAVS7QjuXR9+ZxeFzezom584tB9zHUmiZwuvjNN34RPvppHmpWgcjg7SWjmGJ+LyU8uEsQRsRPhbevncHGSPZmDhLZGpArZDcgXimTKFTqL84w/dN/TNeEFw15sYPIuCAfLZLAok9odwly0Zl5OVsbBHszgjOZAgBvkCVML8aRg5qTiM6967299dJTywsrEZv1S1dhXSLd/PTBoyrU3U1n8Hsq1N2LH/eRafThK0MpAKgX9hZXx5JHmPCZ9eXqUPR+8+19+hAmzogg0CFphQq0b0lYakamgHJdqJEnDkLjd6VUcfxkVU9hzrMn9hxpINPmwyUBngXr/Ztb/1O8y8oPvRg/146UxfhKA66NVu6eGyfbUSo5tUbD6ON7Zz+HFRSam57Frc+SyPnnPYSTncCgSpAfm8efbtEWCmnt6a5kXK+Iw7ZnhZ2zMqury86FhduaXl//tJXJVtWCB0opacx6CRQBk7vlXbbUHM4iswGvFaDOFYhGVKpzWItLLUsrk2DyfZ7CxESfJoXMuXr5Ae3Ge+//+L3nwM3/L5GOPnJ0LcAaYbUb4oWHR7ZDzy6cU81FBi/DcrgEi8nmEgaAUkTor8edcs03edbD8GoecLWh7AxIY8HoFqJh6DKnj3oK7SknabRa6/Rypb+JnGn/ET0S/hZfcTkMJ5roZspamlA+5rnkNnvZwjMuh4QfoOm2q4TyT6gTfiu/lTvcACInleViOy8l5QdD1ce2UQ3aESJuYJCJ2ZoncaZQVQ0s9LxlDoZyhMpynb7SAn3fJFjwsRxItSeVt1yOIa6QyAlsQZ1y67jBEbQo7N2NkgGM2Y6kCTrdEv6/AOORDlwPhUQJPcUgd4+cK7+Tx5rGz/nu9gpcOTJwsK+Tv3nwtt279Lr6+7SY6FCAzdJ5b99w4a7PsT3/608/Lk+33f//3+ZVf+RV+53d+h0suuQTHOZVdLxaLz/uY733ve/nbv/1b/vmf/5lCobDs01YqlchkMpRKJX76p3+aX/7lX6avr49iscgv/MIvcMMNN5x+5dJ9++Daa09vm2fEk+gUVcQ1PeWd06xiEVGZ9chcu3arcdYqwkXTJdOIkGlC6glKKkM9u4HBZkpVNchZGYoze/Bz76TVDTFOhiIeNZ2Sk8fpW5cjCVKkbXF0zwKXv2Ujfu7M/OmeTFUabZhpaFqmwaDsomWIFilCCYz17KmVpwPH9ymPbSRqt6iNn6BTPQ8+Ak+SqSVhSG3iOOsvuwp7yd8pV/IoD/eqE1lOL7B4pmtgjMEs5frYqh/tWGAMlVnBgWs6jMqzlwLoZx2+532X8+0/vQuMIU0UJppF2TaxEVCfQ4ULSKeMoZen73ZPQK5XaUoYCxBoEVFvBZSmH2Z9+S24pcN0m69HuIaG08c3p47zvuFRhI7Ju4rp0KXdzJHxLSbiFpVMhW+Mf4O3bXnbaZ9DEIX4HZtaqUN9tIWVGljiEGSgEfHaly23Ze8+0iLCitp4HYnKCJRrYwuDE3bZJjr8y0LKTbuzCKMxxqbWTvCyRQ5OHOfi7RciTvqeCUmr2SKvUi587dv5xl9/FdWvyLUle078A33hBCa+nBve9W+W2yAroxS7bRq1OsbqEd3OfED1xEbG/KNkvH6iQpVWqYWlLEpFjw1957balOuvrLQaA7mBIayci0okynV6HhBCLQ+9odmM6NbZMHSMNv04R7rMZbax2c+yrTkGwEN9d3FSU5rLl5hrVbE9n7h7jnzKQg1hitCKVNaQWjB8vMjhy5M1VWZkdlRo3HocEUO5M0J3nY0rF5Y/t6KQON9Lc8uqleeG33YpzGVQjXGGg14/fYV0+1cEbXDSQQQSgyZ1F0ld6Ju3EFWBk4m5cnvEseosAsM0Fkkcs/ZLF+cf7bhNtT3PVr1CVI86hotGygAsNlq43SpuapC5HN290+Q2b8QIgTh2FHbuOk8tP7uYnW8TKAuQtP0i45lhWm4Ft9yLAxq1KgNJi3qmDIBwV8VEgaKjHAasYTbldkIO9ieSjZfsxqQp9SjBdyz02A2QrRHbFkHcptGZo2+18udFjjhIaNd6z1ntrCzEL0YK27aYnPWxpOLCro1c4rC1MSQG7FUepaejdHOGsxA4WLYhdQVCgxSGpNBPozVOMexQQDBhN8mG/YzLhJEoAmOWfU9n9z9O/6Yt+IXnP6c7W5hphGzyXY4Lg2eVQdsk9jxumMeJNF7h3D5PhZfFXbJmUFYDK6ihMhWGinn6shmEcflC35tIx9+JUb9FI/FwZcqehTqezDLZLXK8XSbZ9zjD60P6MvfhmEdxgPeoIkmxS8POkhqXdfk2Ww9ehR78KlJIOrJJUVWQRlKzF8kIj3v0fgYyfVwiNoHWCMtHhRGuM0NiChT9ARLZxpZF3GQYgyKNu1jDGaz+5646ny36XHh9LwPg+BOz1GbauBmb2eM1Nu4awl6KX5SVkqmHoBUWVbpb3oozMYOyuqRWHZlqtJUgUosrHMOh7g7urt3Lj/fdhDEwIvs5HB+GsAn+2verV3D+Edy/hzwwXlrHgldAOx5SazpegUynjlhlc/FixGmTbldcccUpKVXGGGZmZpifn+ejH/3oc27/trf1Jr9vetObTnn/pBxaqecv+/3jP/5jAF7/+tef8v6f/dmf8ZM/+ZMA3HzzzUgp+f7v/36iKOKtb33r82rnU7DvCbj66jP21XkW8RHCcsCAQREXK3idlMRLybjnQemme+4iQckDPMpzIXHTJrZaJP519M18FCMbXDO0iXvjhJG+Igsth9G5PjbIiEU9xe1ffoStV47y2DcmcTzJ1MH6KWWsTw9PunkSRRwrKtkNWDqLpbM9s9J0iXA6Szdbrm+Ai9/2vZx48F4a05Oo5Oz4nZ0WnnQqcTek3dS0F+Ypr+sRA5Ytibop9dmAbvPZ29iY6y5XlJVL6WFCQ6YjCYoRkrPf34QQGGMoDWbQ08fJWBHqVVdT/ouDCK0Qlo2wbNJOgU540nMkRQuNkgFCWzTzO0Dcytu7Ab8lJ0nSf8M4isDewIXt+/nb/Yd43+4dKJ2y02vyzccrvMq9gC/GtyDrkiAJuGbkGvozp5eiN9OdQaUWJddjERBmlcF9qvEG1/6h75z0GRMK5WTp9kn8KOmZbxsQtssPRYf5n+k6fuMrj3LT7hKv37oRV2YR+QqJ9FloNdg9uoF22GG42M94vcoFr3szlpPnu173X/la42fpeAmpiNl59/3Upw+y8eJLGNu5HYBGN6UZapRbIHGWVtETzaJw8XNbMIARE0vXSfIjb95+zq+LkBLHz5CEAWmS0FmYAwPSd8i0BbX1uWVDd6FTMo5FnKyM5VGxQKOygyhcIYmUtbIc7pjeam3cabN4/AjbXn3jWW2/1prEHyQaKSCNjzQOWjSRCNJcAt21I92yVwwRHqrTfWAWR2Ro1XyG+laIRuX5uMk6MAIfhxCDj0AYQWsogKEBBu9wcaVLO26vWbtfwfmF1k9ShGsbZMoF0zb3bk1Y9G02bFRw1yBKS/bGD3NidpLtO85Pe9caxhi0Ukw/8SiHW8cIogahFlgYFPCpLfN8x55Dao+2aBBnNxIDE/Mt3G/fzc6LdmEWF2Fi4mVDuukwAmdlQabeP4pRK+oa19H01RY53r8JjMFY6XK/UoFiwUnIuINEqcKzLXaO9JZJjDFUTi7o57ZhdYfRlRCPDAemnuB6rlnjMz1zpLFCWrJXSMFaidHaaUrG14wN95RU5dmV55kAvtbSXLLnU5ys0Snzz590c0fzEAlkkCXIHqLUeC3Q8+bFLeI5GXZUB7knd5C26vCPs1/mfdZr0FGyvI+w1aQ5M3VeSLfFTozsKoKRWZzspp6CKh3E2JBTLvnN53YREGnjhL05lTEJKtPrl6nWFH2XblThRJCgLYNnWZD0Fgu/NbuJUDtLyZ+9u6B5dBxXpIiBbVzXdwQ7aiLatzFQ/n4Sp0Xsz+OwmZ+473fZs+OrxJHiquNvJ5cLsTcf5X8UP07bBHyzNU19cpgjuQMseHO8p/N9XNrfZRSbezI5bGvD0kik0TLAj3Oo2QB5zenRBJsuGqY+16E+1yHqJvSvK2IvVV5PMhF2R9EZK+GGimYrJOu3QSikcRCUSbIHYSNcld3GQ/FWpqJ97EkP8Vr7MkQq+UZ3DlpTr5Bu/wphjCG4+y780SwPbbgKvTQf0pakmSkwqCuQhuA8N1F8vnDapNs73/nOU4gNKSWDg4O8/vWvZ9eu5w4Ebr/99tM95DPi+Xht+b7PRz7yET7ykY+8sGNVq1CrQf8ZeuuIZ04vRdg90k0opLFwwyXSzVm7/GRL2AjTs61Sdnc57zjybbI1l4aA6XCAdZteh3Xi2+xSX+IrMz9BKbeDoWKWL8k+fsDMcZ0c5L/UvsYvX/U+vJxN1El5+JYTbLls4AURYsu/dapotRW21SNoDCkIg1RL/hVnq3rpEizHXZJjrz0sVpNogiMHNlLrWmy7bpLyurHla5IrewSthG4jXibVngxjDLPHmtCvwIhemiQgU0WYTUDwlBSys4Kl3zyNuuRKBp1AWimTDvYT7v8imct/qtcvTIFuUEHqFC1tpMpgMh200+HQ9ncxuWEagP/Qdx3HL3wEnZQBgRVdjtQxf1fqUrYFggAvaTKbWPxs7vuZljU0ms9M/jUbC6dXiXheL8APFkm83vKx0CvXR6aKY/nj3Df7xFm5TM8XXbVECgkQOsFIj0QYbP9byEGbpJrwpStC/v3uY+xPLEasncQmwsEjjC3W//wPcSI3xYmFOaSSZK7eQblT47bCUTY6MyRbUn4k+F4adhuDIb7CJd+0+ecjf8qW0lUIIYgWLkarMlp0SOyeAsqXkoVVCxLKWiJpIpD5tSGM8pU+atOTpHHvvtFpghxs4YVN4OR4oUHa5B2L6WAVyewZ5r1NHHnoXkbp9RNJnkQKHG2QqcLJZIm7HZKgy8SjDzJ2yVMXoE6SzKc71plugBzYhsGspMGakMiPMa4Gb+38PQHcLUW6D89iKYtkOo95GqWiMC4ZZeMvjbn2qsIUG5susY5pJ6+Qbv9aYE6xYRAgU9AW2VCwbtbmwEaDXzQM9YfMzGeJCfnzY/fw26/90fPW5rWESmLu+atPArBfjJMRDvPKQiEY8bt85Y0LwFfAgD8gUHM/goVFN1OmZop0Jyfx140hjh9b8fF8iSMRT7OIveo5kghJpbuIFwdEbgYt416/MiASwWFCBp1teLZFK0ooeL2x88njb01vZ4THAPji7CLXncEYfb4QhQlaLRnh2yux6HTH4HsrIgU3WHlGRAasuENbLrDpJ38C3/NxNz1/dZ+wJfbWHHZioeXKGC6kpO3lKPoZrkxHeeBok32bFngkvo8vDPXxtu6WFR9mpZh6Yg9DF6w9QXz3oQXenkjucxvgeVh6ZRLuhCn59ec+Dc1NJUIJUrcJOgVpY0vJWKlXaGq2btF/wzD1b/wH/MBn3ea9xLW9rMs2CIKQxSBL2q7RCRUd5fKd+XVszs4xlg+x46OYtI5jl7Hbkku3n+D+vVvQLY93VLJcvm2ciWaOR/fuIHd5mY5bZ49zLw9t/fbyBNTKjjKqtxIZzcxS1ceTSwCRM02p1YvbrNLpz3+2X7mO/fdNELRjDj44ySWv2cH0448Qxi2yjTZ2WCT2Cyz2XcnmiU8AkDiLyFW/0wVZg5rcRTjyef7f+T/nusH/wQ5nM1NtCQe+AN152PTaF/YjvYKXFlINSYTtFJ9CpEwV1rG1nkMkwcuLdPuN3/iNF3TAG288uwqBtcI3t97IOxbmz5h0e6ZCColKVk3mDZlaF6/VoTHQpuCtHelmSwez1EhltSnPdog9iMse/mSeWNToOFns0Rto1Bbw4xqZhX1MlwbwfR9/cAt7Zw6yTmSpDT/EoQdmueptm5g53KRTj/jn//0w3/efrjjtdp0MjE5eMZ0o4shQkL0Awwi19P+l759l0m3skssZu+Tys7rP54sTD/wDq/uKbWkcV3Lw/jqbroT6XJd/+J370Npg2ZJCn/cUtdu+277MVM2jNDrGfHUrDBtkmiGVHWydw4QJs5t7qbPngnQb3LaD2vhxdJpg2Q6GPM26xisPY08exERNsDMIy2XboMX9S22wdG+Sb6wasJPIzSAwZCyHXDYkiWIsYxE4JTJpnabuIKw8njA4doLBwtZFsl6IEdBNO8T69LxwYh2QsV0wkGkWcZKL0Tol10ioTHWoX5qc9j5fKJRZZWtsEgwe2rIwVhWp86i8IlKSvG0Y9gKaeg+RmmO9uYycnUGaIqk3AxkHHQVgu+SlIY0nWLDHKLkWQ+4YpDNEaUiaN0idwyjF4vwUhf4BdOwT6zm06aDma7jNCHfR5127LseK2ig7IfZ6SjdXO0h/bcYxa0nZkC6pUlWaoAcKlGcfp72Qp1vMod1eW/ozNsebqyZ8ria1fRpzB5ZJN6Tg3p0buGGhi2/ZZCtlOtUFMIYTD95LcWiE4sg6oKcAuOdv/mSJdIPr3v0exGmoonWjTjq6HavbIclZKKuFHS1gJD2TWHttDWL9LSXkBVmSoy3cbpagM/CU70jt4q6yhbXjFdItuxRaNKKXn/H7K3gGPN0iqFRYaZFys46abKJLWXaMtpmrdzFJhdvSu86IpH4pQq/K4ri1aVH2Klx06Q7+3XCFVNYJOLbyZWFYLP4L22dfTy3rMPF7n2Te1RjH47vm78c/fgw2b3nKMV5q8NKY2PKenkDUith28ZVmy+IxatkyU/1L44kAoWya1SYXyW1MNVo4UpJF49oSAyhpL/crXxWZPOGQKxkW3Az/5e8f5P/9d1et3Ym+AKTxUsV3ozCrpmzVbkTGX7nn3O5StUxjqEchfriAMQF+fz+W7ZzW8wjAW1/EnYpRVpfYmcNKC1gmQ9vxqHUWuW5sM185cJjF8gW0CpPcNv8d8qMeP7r++1k8doS40yaoV0nCAMdf20lwsx4hsBBGYByJTPMkVpX8oktt8TCbN529Qn7PBM9IjGXQBMsG71GS4lgGKVNsp8NiTrLugi10mjHzk4LBjevJZAu89sot8Kr3cf9f3swD37gLOr304vbYG+GirRy57W42+HuxsrsQVpHNXhsxVuX7M5uwLYObjxjLhxyoFbl28iYKdoHFkRPssx4iNiHbdD9X6fUsEJMIST0s4qkOnnRI3DraaSIVeNtL2AOnrwrMFX1yRR/LksRhghCSkQsvYdE/jL2/jR9EqFTRzO/Ejzq85q/+ib1vuQZBP040DEmNTF9I9riFM38lrfLj/EH17/npvptYZ60niVs443fBxlfD0xH3r+BlCZOontgAULIXb6okIUNKI1uh2tnAwBl6eK8VTru3WpbF3NxTy24vLi5iWc8vPe2OO+7gR3/0R3nVq17F5GTPaP+v/uqvuPPOO0+3OWuGVCcsTtRfwB6eXulWjRaXDeyNUASVLHZq4yQ2GXftJloSyUn7B21FKFtixRpbAEpiWzaWnwFrG9qySK0cF1c/i2VJgiAgFg5dt8BBmnyP3sFU/XEuf9NGjDb4ORvXt9h719Rpt+vJVy1oxVSKk7icVM9oCgslhBJP2eKlDvtJFQNfMzKJa6cc2wtf/thDfONv9gM9nzuVaupzAZ1GdArxqI3BaI1WKUG7RxBJk8Ve8pKRaYpZKkMvxNlPLzVKkQRdVJJg2Taen7L+kp3oSoXEThCW1ctxNTHRt2+lGMdkojn8wCXbrGB3A4QKMfwUthljqD7F9u4MOlaYVBPHNk5qSLoJ9dBCJxI7kQxZCYXYRsUKRzjEaYIrvdN6JUmC2xTUB9qE+RBkikAQ52xwGuiiPO19vuCXWFV1Nm2QX+iSrYfIjsY1Dr6XxUkleWOxUQjiVNOImkjjolMbggHMwu7ed3FwEwWJpD9ZZKC1n9Liwww3x8kGDUwaoVNFrGKIJc3JOjOPLxBFixgVo5IOppnQH0FdbyMMJ8AYtEhRdrPXh1OJzK7NOObne0bRWmu0Uqg4JimPUQm/gRECNwgRSUwqp3nDVTUc5xgT01CfnUc1pkjio6hkhUQ1NvhBxFQaIZotMqUKTiYLQmDZDp3q4vJ3w3YLy3bQSiGkpFuvnVbb2zMzBMMV4pxEWW0s5eJ1LGI/7d3N7tqqbe3+DPY6D6USNCntY+uWP7PimMReQKocrHKDaK+qQtjod/FD/Qrp9q8I5knppV6nH69bZiFwMLMBWAZVD7GyBp0MQDxCK8rz8PSR89TitYVZRbq1wlmMm9Kfccg4Nr5/KmGptUALRRoF4FmIjEPq+kij6LRCaDbXuvlnHSpVtPwiCNEzkV9SSi4TsEYhVIzQKRfO7WWwPY9lVtL/XTLMlg1VFRPpEFsKkqCDshy05ZCmKUIlREGHcqwp5gJabRtjDHPzpzc+n0+kyVK/MQq9qsKkp6qUrAWaxyPUkQZ+2vvMEgJXWmSDefJj6xn8mZ+h/6d+8rSP6w4XsCNBaU7iJkNYJkOQpDhRHVB044DdaR/XHXstUlg4yiMsO6y/9ErK6zeAkHi5ArWJM68gfyZohQkbsy6LvmIhP47RWYSxQfTikZyVxy6de+W4by35UIuVmMJzbNaXCzjSwnO6jAdt/LyD61kMb7+Ry2/6ea5+3/+CV70PgKt//D9x0U0/x9YNA1RKWR6qjnL75HpauctZDFoYLAyQUw4lOyZUEkcohIROanPxSJsro9dx0663ccOrdnPJpgv599f/LD+z/R1ERZ+BfB8jG7dhulUMCUrE2ImL14pxAgvVSnAGzowwzeRd3KyNVpp7vrSfqQmPbr2G6jbQaByjScQgltKMHTpMamZRhGjRxQky1El4RwxBeAEYzb3RIzymj3C5u5nJqAphvacgfAX/epAq2pZFZLkUoybdWpW5RgdpDH4ScGzB4Zt//6nz3cpnxWnPhp4ppTOKItznMTH4zGc+w4/92I/x7ne/mwcffJBoqRJTo9Hgd3/3d/nSl750uk1aE3jSYnKqQSFIcTMvdBK5cg0XowW0tDHEGJPihC5ukBB5KQX/zIoPnAmEEFhIUjTK1khjaA0V6ADrjEvUsFHaIhJ5Dl/y61x+/we40X6QT800ecuuDdQbTcqlC/AXH6ZrCnzZ3k9tYp4bf2Qnf/5r38bPO7RrITuuGVk2/H+eLTvlX92OwkqOIKw3AKBlRGuggbFGl8/j5YInq/YytuKKUo3JTo7DD1fJFUEs5QQL2UszbS6GsKoyk1EanSa05ueJ6r0PrDSHEm0snaPc0nQLPWWQPAdKN7lKoRO22xQGh7j0u67mUPbdzO95mPITATLX8/uzZuZpui4wRGqDMV1k4mNkBTess3UqZOeBvwTgh5IPsMdsZkRFXDO3j21eg7/2xrh2tMgflBukChZCn7/N7qNbarGpspF3rPshdvU9/1SHP7j/Nxi9YxfB7iNYKo8fbQEJbpBQmPPYOnoN3vA5LoP1JCxEs3zx+F8j2hqEQ3tpFfL11dfgFUtkLtxA9ZbPUgyrBF6ZP5D/h2jm37HtCpdMzgMl8JIsNyZXkXnsIRIhuG2myg3Rp3GEwhIS20T8TTHHX1fKrFeSnUfKjB4pokWR3O7rMRfHuJUR2vd9h5FwE6+7qs1fygL9dgbtZJDpYTIND2VpVBwh1kjpVhwYojQ0QthuMnHkMOu2XQAZj+HO14H/TJjJgmNj61EyTpvvfr3N6HCEJQdJ+xJqQ/uZmB/k4u/09pe/aAPTN11DgqFbWcAbPU7a79OcriLshBPqTjIn9iCkRCtFa1uPhBOWxWzzy7jJM68QG2NITcKgN8LFhStYnDyG6hvETlMwvftBi0MEhbS3GOKs3bPgJLJXDdO4dxy7k8WsWjxUjgNGYqkCclUK/EDsMtN2kO0mWJLLoiFS80pQ/K8GT4oNo9wiQltkixexZaHOvaMhTlcxanfYMFzDL4dMRYa/vvfzXPF9/+k8NXrtoOOYfg05A7+R3cidje2I0d7CmCJEdn2EbdDCQakQS0naJQ+hXYQUIASJtGh7BfpfBhVM43pr+e9c3KG9VCxhGdJGY2hnSpTbC2xfOMzRkRxWWsCIBA/BgBnm0oHdACRxipPrjbluEjI5N8/mwX68TI5Re4ykYNjQH1LI29z9aJc7Ds7z2gvO1Gt4beFlHVSUYFbFaHNhwroNOYqbEsDDfmTlGRELi5GZ2+iu9884JnbXF5DtArV1J+if7YCRZJwM7dJmcpk+4laLTfk8h+qKVKfYwmZ8cYrZziyDW3cw8dD9ANQnxhnavnYpphPVgKKSeKpJpTuC9jQmTLHTEl4QYdBrMk+wUw+3Y2MlFqgulvCINFSDiHImx1w75Rv7Z/jht17N7R/fQybn8NBXj7PlklNV5f3rd+LlP8D4p36d9rEjJJHmsYXr2ZX3eUvmW1B4G0ZrRosdgqBn9mAZTbngcN2o5rp3XgeOw2u4gJ+4+CcgCKD5MKQHIWgzt2k9uR27sK0Vz796f5XtDw1gIoU4rfnaCjZeOMTMsSq16V56chQk+H6OdCTECaHT75CL8jQKO7FyM3jzVfTQDbQrd9MdhFySY/39w2Rag3QHywhZZ//0Ea4e2cHh5DE223lQCVj/Gkvx/CtFoqgLj4bdh9IGr5BDLp4gdC8AQNol9n7jy9z4s+e5nc+C5303ffjDH+bDH/4wQgg++clPLv/7wx/+MDfffDPvfe97n5en22//9m/zsY99jE984hOnVC599atfzYMPPnhmZ7EGqOcqTK7bxJf/5NEz2v6Z0h7nOnPYqoKlCiAsEt8m04xJvHTZn2KtYC+1UdkaJ1iZLJk0T7k2zODMZuYfLTJ4KIvpeyOO5dA++h1SA8MDfRwob2JMVLhaDjBe/jLRV/8HuZLLRa9eR9hOmD/R5u5/OkQcnv5EzCwRle1qQGR3sTipDjy5r3Pj6fZigpaKSwabvGnjNP3lJlK0sWSEMb1F4nY1orUYnLqRMBgDjQUoBD2loaWKWCYPQlCc7xDmehPnc5FeKletzGI0frFHUo1degXacVDtmeWPbaeC1eopY+wkR1CKaPTPIZOY2O/j6OYfJ84MIoBflp8j0B5HRYk7i5dTr3fYlM7yz/Ui00ri2jCcDbnhxFupJos8NPcQf3DfH5xW2xutKtp1SLwUqU71BAHWTMG1GrZ0CF1N0EfP32YJsZbUjx/DaE1S7scxKYWwzaXZC0hLX+R/3v44t+zv+eIFsaa+eScYg5O47M4P8qC5kA8lP8BHk5u4Q12IE28mEoJDjiE7fAJlNFo3Ke6+Dn9kC0II+idjhi68gqzVJOPmyWc3Y6RFmJklKEWknsIRPtYZVi4+Xdz03l/mpz/8CeIgYOroYZ74zrdJ4g7R5Z8mE2tYpRy24jKWpTF6adywJDoHcXZFrWNbFjrjEmcdojQg1hFKKrRrSEVCmHaoLU7RbC4QqRDlGJRjSGVKmHSJdfSMr0iHTEXjPNK8j28sfoX6+DFEqUTqrIxfuSYE+fi8KN0AvFye+eGjJE6InZ4aKjiqDycewDEr6lg7sYnyCcFIhqL0kZNzHGseW+NWv4LzhlWkm0D0vEONSzXfj4+NnmhhFR02bQj50X8zzZuvcpGZKb4++9WemvbljCjC1Gvs0IINRnKtN8h4eAEjfWWkEBg7RGdDlBvhqBKunyKyLVrFJ5CWPIUk6Do+vAxIt6SxotZ7CuEGICRJtp9ZP4dEIzDEToSyW2grxJEuWzIraYLOqvE9dnyG+wcw3d4xlJ0ljnvXLJdLebgp+OBn9/CxbxwiTJ5/8bbzgaAVEXUT0jjBrMpGGG96lAorhQv8zsozIkFQqU/h9z/VFuD5wur3sZfUh8ppYbESAyW2y3Cpwo7hzdTNNFdOvIW6vcC91bv59tS3cbMrBE7YWVtfz6OLHWbnOnS8JrXcDLYo4CZDSOPhtyKMr597J2cBOdshzqUE5ajnlS0tbNtiIJ9hOJ/BGJ8Ti4pxmbJue4VuM+HY4Tof/Oi9/OAffJNf+r07+MwfPcTskRZRJ6E4fAFJGDB3dC8qOUik89C5B4zGwsXRkpKXcP9MP3sWyr0xYnEBZmdXGhXHMD8Hjz4M3Q5kFN++92tY3qlqNiNjnMjGKr6wuGNoQ5mB9UsFDwwIb4i2rjJwrE7q2jQGNnF87AcwSQBzBxA4iKUibzqXcImVoSbXk7QuIfBC9nTH2W1fyIFuhNaCh79+nC9+9BHu/9LRF9TOV/DSgNEGJQz5QpZOroJlexyU31n+3MuViMPwKar7FxOeN+l28803c/PNN2OM4WMf+9jyv2+++WY+9rGP0e12+djHPvac+9m/fz+ve93rnvJ+qVSiXq+fVuPXEnYaEmYLzM6EhN3kuTd4EsQpiZIrwelCc5XM3RgytQCjGnQLEbk1TC8FsJce6NpKyc1W8eod0Iaw4GInKxPnbLWFGvsx4gv+O5c6x7jvwFGmm13ibJn9xRJZHDyvQm7yL2Hv57nkDeu54Ooh3IzFo7dN8JWP73nebXoyiVabbRB4EYoUJQLUksmrstXTfv/lhFvFIULPw0iLt22qsvOSBTZum+OqdbNcNljFsiUL4+1T1KiW4xLFBQ7t28TOoQYYQa59KZoQGSvCap0g1wtGzwXpZq1SuvmlMluue03v70KJ0thGjJrD6ARjDLK8heKBR3HqNaTJkm3mSX1FZWacbDsmFhkmNvwQAJfJI2wq30qfSJn2xzhW3MGVssalpRb/p1akrns2MT81kGHbwuX4JsN9M/fRSTpP286ng2qkGK9DammsuIAmhlTRN9VboZcvWPF6+rDFyn1oxIr8KE4hbXWoT41jjQ7TdfNoIXmHvIKLRwYx/hGm2w3mWgFSQi0WcMOrIW8z7BYoDPwon1DfTdtk+Ja+nA82f4XhpEheCe7PZPmuscO8Y9sJ3KFN6E4bOTnJZudBpOMzFUKxb5QoaZBt1EmdHnFqKUkqop5KY40ghMDxe6kjcRQipKaGx+bZ4wweHl/+nqMyWLEkXUpLl0ISxwmBWZnMOqnGiiNUoMioSdyDt+Mdvp2ybagMrMdKRO+VgpUKLGWtvJfwrGnCnlxdXMLQmF1AZ3wwojeuiQbEIfWhNkJI8NaueulJ2J4PjqQ+MIOyk2VSRaYKLQLcZGSZtARoJCt/q4xDPoT57vyat/sVnB/0CimsvtcFQnsETgZLSuIvH6X7v+/n0KECrY5NuWjIy/Vob4pfv/PXz1ez1waf/TSZr38dAbSIqNHliFmZ6Gq5Uh3YjdZz5ESROJFE2aMYk4I2yG6Ck4SEfh7Sl76CNO6EuEmI/STC1RgDauX8coufIc7nSHMjaGtlMuVYPiXz1MrY2bCFasdIy0LNncAPesSbVxO0O20cG7576x5a7S6//5X9/MKf3XeOzvDsIAp68w3bFT0fI6OJE0Wc1hksd9HtGOtohBeuig1UjGUSvKEzLxggpUSI3rWLnRkUK7HTpOjSibqMFsvsTA8xGl7KhtZOcqrExx/5OLbrkh8YwslmScPgmQ5xTtCOUnwtqLp1Bt2NyFVV5+1OCFvXpiiR6/rY0dKcSi5dA2PQWrNlwAM0tqX5428d4fp3bqWyu8yHSyH/eGyeBxfa/HO9yR8dn+Ev75vgt++f5Mi668lVxhDSRsdPkFgFIIHaXxGXD2GGLBqWYSpw2V8t0tEuWDY8vErMcve34ZavQy4HBR/cDo9NZXoxxipoGeNYLvbo8694+3SQlmTLJaOs296P7Vp0OwKkIbVWiMAjm3+cpDSC3a4Ru1O40SgyzRIUYvptzXelKfHim9CzN3I4ewxX2HQPX8fHP/dGvvPFSU48UeWezx8l7Jz+vPwVvMSQaqRjcbR/K5m4QzU4woHOA8sfa8fDsiVRt/ssOzm/eN6zxqNHe0zyG97wBj772c9SqVTO6IAjIyMcOnSIzZs3n/L+nXfeydatW89on2uCNMaJA0rrPO75/CFu/HcXnvGuVpMiTldyMoyQKsWNLMpVh6OuwjpN49MXCoslY0IbvMTGDmIcxyEY8ijPrlrxkB6T6Tj1/ACbvYB9i9MkQxVaSYeql+eY2ctrkzIHPLhs7igDF+W54V3bWZho0xUxi1MdlNJY1nOf30kS7SRRGQQGZac98sE4pEtVOLWtT/n+ywHuk6rXflQdZnvuci4fGUHXalymNWEmRFZaGCOohh7tiZDK+F5YWlxy8wVaXZ+cFxELsJIyqdVEILESyVhgsy/Xe1gJcfYVSavTS43Wy4SIEIJc/wBpewJXLlUcc8vYRYXT6WA8gSeK+IHEoUkaJGRHckxu/3FY+GfSoMnrxFFusW+kGIe0ChsoxPtwUSza8EBs87pcRMlV/ER8IR+KpiiXy/zDvn/gpy75qefVdrvtEBVDjGMQsYXEBRts2+BuyCHOA+nmnEK6dSksdEEa2nMt+vpcOtVFcuu2oPc5hFaRa6Isny1l6Msb6skcqdlE1pO0gxS2bYO99xF0NFuchH7b8OfquxmrZNhqCdpqI13VomNN0ypKosqFWFEHx3XYmHucXRe1uA/F7NwCTq6GiTRh4BE7SwR4CoGz9t5D26+5gen9TxB1uyRpRCmp4quE/rkJFraMYaTEwmXPbcNcfP0cY5UmWjR4/J4HWQgHgTcDkD88R/uOfQBcs/lBRjIdkA5c9x9g96/y0H2fQiUxtudTGBxmZl+vOl62b4Di0AjbLnrmokHKKD55/ENAL71MtxpYroc0EkkGg4s0Ca2+LlLp86J0E0IwuPUCwkYLXTUIYzBCIAykVgOBhzKrKvrGK881lXXYwRB1d23Tr1/B+YNJU3rWGb1nsNfpw40KWEsEihxvkyhFMu0R5jRBYDHs7qRZj7lj/G5+8bZf5MNv/PD5O4FzBa1BKYwQSAMFPP7OPErTuhyAIHOIyJ3BinJYscCerXCpbdH2ejFNYW4eofO0RgtoHELpQrj4LAd88WNxusnk0Srx8FIxCJX2CAKWLEKslXElsX1k/WuYgR9FrSLdhBYMmqcWNrOiBKvUq1YdtgNGZo9iJbN0hwxHcwGZZkpfJWVoKsHg88RMk//2j4/wWz+4opp7/NvHicMErQ0Xv3oTfrY3/h5+ZJrmQgdjDJsuHqZ/tHjWr81qGG3I5N2l8017pvFCYFkGY2XQSqBrXdwwj7WkRu4mEbR7pEZp8wubUzlLC/HK6qBFRBx5KBUz6QoGag3iNGRjJcti0GG9sxEntXGF4Zbjt9CXJCTdLiqO17RYSidKyRlB6M2zlQuxw35SWcdKFLmOhs1rVNQh4zMwUSLKJECNXNMiLORpd0L68gZkiOcqgrhM38YCB4cstsw41NKULgYHOC41XdfQNoagbvM6k6Ff5jA6oosgXvdqXCvFzQtw83i6iVvQ1MMiE60m2y8u9sbfxx6D3buh3e4VA+x0oBjAaB/mgXki6tjKBysAE9E35eEsSuSWFz4HdVyLXKlHhohcCTe3FT0Z4DW7pJ6FpUOi0jqsMCW1W2AETpLBCQTJQMD2yZhviC5h/dWM2k/w+TsXEVaJvmKbZieD9Cycks1j35zk6rdvfsHtfQUvXsx3EiZufBepV0DJiLT8CK8e2k5Tfp4tkzfgqIQ0UYT1+WWP5xcbTvuOuv3228+YcAP42Z/9Wd7//vdzzz33IIRgamqKv/mbv+FXf/VX+Y//8T+e8X7PNWwpyaddvILNsUcWWZg4Tcn0MzxwdGqInTkSewHQiFTR7OsQ5KI19yeryDwDQUphMUu2ERMXM5hEE2ccxElFg9BIYooijyscRstFDjUN5XyOxBhsp0wkNCO6wm3+CHN7ehPRQp/P8NYi0hKoVPG5//kgX/zoI8wceQ6j7eX6470JXRIb2qtSwIxIkakgcZfeexl5urm2hRErE9lCHPDJ+AQsLuLbNr6BglIUlkiO/kyIIEUkK31TSpd2Q7Ip36VjNJbOo60IqTzsxS5TbrwUFICwzj7p5mRWfK3kk0jkgc1b0bqOSWN0GmGMpjy2me7YetJMmW7ZpjrcJPZaSAFRmIJXYLSTsjNocKM5TIjBEprDsp9JnWXnkW8wrxw+neYRSuLbiuusfl7HCHFb8aXDX+FA7cBzN9xoMoFHxutQni1ix4Xlj6yGIpkPke7ZLzzxXLDlym+kLU17IEu7L0cibUwcs3jkENlKDpMqhFaUtUc36WC5LeZbKTnHot5NSJTBeB5kM2SNxjHw88UmpYzDv71mI5/6gc3cUM4w4rfIGZeq20TnR/G6x7DiOeTiQapzi2TiE0TuOpKkhifzqEAjliZGtrJxrbVZVV4N188QdjrYjsPxJx6jkB7BzkhEtA6z1AeFStiTZmhYFtaoxBmpUNXfz9HWd3PcOYYt9tPwOpzYNs93rpriv6wvsiAlOD4cug3+/sfZOv4J+sL9WI6D1orcQE9V0K0u9KqcPgtOLXai6SYxtuqZLif2AokzT76RodUX9L7rrf11hN7925ybxIolJ+u6CNOrXGpEhHbKy98dTVYmM+0+j6lglvtm7yNSL/1UuFfwPPAkpVucbRJnDQv5QQxgL1Ubq1Ud7ExMlEguUJeSN4q4q+h0Av5kz5+cn7afSxw+DMUixmgSrVigy5Eg5kJfM9ueouPvRVsNlBMixQb8TD8jC1kKc1lysy6DxyfYec80TjOi0qniphEkL+103G4jQq42QV8i2Z4uLSi1C4BBFcdI7ZX+5XgltO1gVTsI1dtOpooN84/jLRwnqc9ihke5cOYxBmp1crFhsG8Qa7RMf3/A/2/9FInSNKKUb+2b488/9TAH7p9g8tACQSci7MYkUcrs8RoHH5xg73dOUJtpEbRjwk7CxIGFlSIH5whpomhVA1rVgDBRSK2QKiWMIob6p0iaGpFzcJJVlaMdD2yP2LHxRkdf0PFjWhTnsmSaKY7pI+Pa5DNZFtwsGS9LM9IMZYa4hr/hosU8VWuWpKs5VD9EttJHrn+Q3MAQabx2/bUdpvgGUithfWEdWGCsBGQO0WqTX7c2Pn5W3iNxQ2rrWsQ5Q6dcRlk2eVvgySxSKuLEYiDv8sk7jtAwBl10iG3Bq0fL9Jd8fFvSEIYAaHdTxsUIgY5JcWi2j3D/Iye4+8EpHv/m1+DAH+Ev/h1D5Q4qStgXjKJm5qFW7aWTfuMb0Gr1PN1sBRvyPDZl4xV9ojRASheLClhFqqMtMqUcVt/ZiTuyRb9XVK9QBDuDsloMjDdQnkecKRH1jVEUOfxWHScpoWSE1A7T66sMei7auGgrYsIeZTLcjxeWCBLJZRfNIS1BtujSWFhbReUrWHvM7T1A6ueW5vkKvBaVXJHENswXSkTZMgBh/anFPl8sOCOpxsTEBJ///Oc5ceIE8ZMG0w996EPPuu2v/dqvobXmTW96E91ul9e97nV4nsev/uqv8gu/8Atn0pw1QWxnqGfyiEKLTmORww/OMrD++TOpp1JBK0SKxMNNepO11G6Qr8cUqzmiXPKUrc41uqQsZGzItHCCACMEnaILBjQGCQgjiZs2/amh4G2kvPmdVE/MEmtBpW+ATuhwGcM0rJRHMjFvnzvO2NL+L3/TRvbd1fPwmj3aU8CkseKdv3Tls7TqpNKtpxBstVJU/8r1MyJFKknip0vffvmQbojVPUBQz3eZq3+ZA2/5JDuaHZiaREmB1WqRsVP6/IhjtQx6VRxo0hztmmT9+kXyuRQ37seLe4FYf6NFSQiM1L2JtDz7aprVRNsp/m5AYWiEzOggSAspLUwMbrL0OyYpUuWwUkFgRZTrEdMDOTLCZrFyBe7MNNuSKXb0fZV7Zr8XITW3yi1crfdxpKrYlynzkT7J++MqI77mZ6Precz9Rw409vORhz7CB6//IEPZZ0m9iDtkgzKm36Y+vEC+oXsGvEisVGMV1z7dD8ASFsIIjDAoGbJUIIvUzlDIj3KsPkEaNIncHAPtaWLls7l/lL2Zz9Lp/iaTjYAL/RLtMKUTKvLFIhZVCpbmp0oN3vXum6iMVZh+Yg+jSYmviyolx6XaP8amTI6odAHa8tiw8DVywTHsiT+mufmH8YoXoSwfefQB1LW9CZCVSrRce7+ca7/vB3n4a18klJKF8XFEMUF663FXe0lagr6sS7fTewR2Q4nvjdJOs2yiQgpop01ry6Vc1hwiH3s8UNnDWxdvgfm9MP84RUC0p1l0t5IEXYJGfXn3adTzlWgvLuDl8iRhl1zfir/OKaSb0uggS3u0jGXASiF25tDSYCyDMOK8pJcC2EvH7Y0RS1WONdi6D20CtLOyaKLjpXs9BS82jNSg4leY68yxobhhzdv+CtYYqeKUdVwjkSqLrRISaWNbFiQQTbpUygm5XEJYd/nxb/03Prv7Zu6tfoeqXuCHd/0wWeeZi5C81GAeegBRq2GM4ZP+PqSVp1UdIRqqUBwIaHlLFiMGCu2rsFKNH7q0hro4HYsoG4MxKN+m5vYR2y4sjD/7QV/kMJhTFhRPQrc6yyq1kxAmwqreTrL113rbmF4fM06GPqtAu28pBc4Y7FSxc/bTzJV/iLB0A9LLMV4bZmfaYsGMMkubJElQdkoqYn55u89/PxASdmIemGuxI+PSWOiglMHoXjtnjtVQ8SqvT0eSJppuI+ToozNsvWwUyz43WSlpvPL8TCwLvUROBjollykxvLUF5Mjst3rB4tIllUmAk6T07b7kBR1fZgXdUoSxqvQvrSOlSvNtb553uH2MOQpbgAxq5Lvj/Im9QCOt8vVjmlflf4rOYs9eQEUhzho9w8JU4SHYV9rPzvw2nKQPS5WQOiSb2uTXrw3pZucy+I0smG6vOu9JZHP0acnGwgDHahH3HF5k30yrRwAHKd976Sh/+CO9OdHNXz/Avu9Mc+mk4oCj+HzpYi6sfweIqXWOcndzEyBY12lwgfc4tqUY2nQ3D3S+nyDQPJopcnVpFsIQDuyFogtjG8B+HObn+coTOygMD1O0e3MCg0bLAL/roOfis+bHmy14qFTTqgdkvTyRaZNJVu4p7XvIA4doDrQo166nk99Hs6+DTBOuPuyR1oqQJCQLr2Ehvpt8NIq/cZZrd5xg74nNzB1vYrSh04jIlc5PrPQKzg6M0pCoXnabMijHZvZYlaAZU19swkBvrJXGw+ie+Fc5DbTVJfFivDdu4JHgEfrjyxHGIC37lIyr843Tbsmtt97KO97xDrZu3cq+ffvYvXs3x44dwxjDlVc+G3nSgxCCD37wg/zn//yfOXToEO12m4suuoj8i1QKeBLl1gxRfgd6pALWDI/cOsE137PlKeqdZ8ZqT7cVKGGzHHto8Jb84sJcvOYEki1tTua6akdSmmlR3dxHp+IT5T2y7V7blLIRrUXwKgyKEhd7D7B/bjvXbRqima0Q+GVuCC3+s1fgoexBLoxjLNelMprjR37jOvbePc0Td04RdVIm9tW570tHuebtW562TauvWrvWZHpeodatrL6cJN1iL3nS918GMGJVsk7vj3a+xZ9+8rf4vXf/GsL1sEsWYTvCkzFbSh1uOzFCJ1h5UB55ok2/l+GCSosJyyD0iholvxjQ9RNGw5R1geKiLc99/54u+rdsoziyDjeXf9pVbHfLFqLxKtZSBVO31sX2CqS+jdetEOQMjYEOOx6oUdtUIsBi/xW/zfBXv8qWNOV6fQvDpTfxxUaW8dxmxnObe6rI1PDlaj/vW3cc2cyx2bP5X8H38v2Zv+G28dvY1beL/3j5syhr4xZWmEMuKSgtnUMgQfWKjFiDa5Si8DSwsElJUHYIS7FcLASqrZEKxh+6n/LgEGlnDjcNucys5w7fIcgd5MD8MNsGCohIUG3H5K98LfqJ40jTI9UzBx+DsdfSmp/l8ngDd1hDHBcLeJf8GQeFQ7Y7TmXhHhqM4spFis27qA/9EUK69LfnOREYtN0b0KxUgLv2d2Shf4Bi/wDNxQXmxo9hdo+An8MJ29hBQppxwM5yaUkwPpfhskiS9TX9lZC5EysTvqaT49+u+/8TXNQbb4J6HfPv/wJx5/+GB/8c2nMUk0ns2hGC7KmkUhKGtBcXePTz/wiAdBxu+PGfW/58tYpZaUW3f2x10WGM6NLo6ylWBQL886R0W1LYaalWlG7aoOkiTZZuYQzD1NJ8TyOUwNiGxu4RnNybuGEdfLv+dcpB+ay2a52/gUtL15zVfb6CFwhzKukmEEjtErkZQieDsxQrXeKHTExlGRvtYm1vEoqUXFSCAhyqH2KmM8PW8ovYauQ0YdptBLCgIzLDb6HUdz1DO3qfte0lvyUDucZ1S4s6Kfma31Pw5xT14Q5jhwaxE03sWqTSfskr3Yw2GB0+5X2rXYcnkW5K+qAjBBC4US/bIi3iOgWGrDzLun4hsKMUOnfjzW6H/huwMnkO7n4zB5UicZtY6gvgOEw7guPMc8VGn8KxhFaseLQR8MNAEqmTu8MYlgk3aQtyBR9pCaIgJezEzE80GFhfpDyUPyeZKauVdN1VPnfNIMH3Vj7LpJlTJhap6vCtnRv4yUrfCzq+yVtYqSS2QwwKgYVtSTx3gEerCZeWNGOVAerNnVxj/xNXTP8IDw/fyYH6AQ5npzi5rJlEEWv1BKt3E/JK0HUbDPubsFUFg8Jp10h0RHFgbUg3mc/gTfVi8dQNOVno29aKwXyG125bx7H7D5MYyUK796EEtg6tzIULvs0l14xw3dUu9rfGWdSGb6/7t3QzZS4OHmbH7B0kqWAqKHG43ceu4jxfOR7Tyt1KMN/gvv0bye0a5sLtNYgjiG2YX4RiDe0PcMd4g5s2X7Cq1YbYnSFb7/1aL7SQwkkIIagM51mcatIJPMobNtM9ulK9OLDXM7L/Fmr/dAvNt+zEjcaIMseoj3TQziZec9kh7nxkKyreyKx3K2OLXyZ3wIEb+rjqxhx3f63N3PEWB+6d4Yq3bDorbX4F5wdqvkX60InePzIODzY0I/YTHFdX0Np1xapvClZbEaayzZEtd+Bs3coxGtzxmf+L15XsevNN9G968cQTp70884EPfIBf/dVfZc+ePfi+z2c+8xnGx8e58cYb+cEf/MHn3P4973kPrVYL13W56KKLuPbaa8nn83Q6Hd7znvec0UmsBR5txnhBFT9oUNqYR9rw+Lemnvf2z6R0S1dVfxPCIklD5sfqaNusPekmVgZYbWuyLY1fb+JGKd1KbxBWMsXyNMayESZGFDy2D3h0qtNM1Vuk3RYznsWi6XJjPMxjXobpT/1PAKQUVEZyZAsuWy4dYGRrETdj8+CXjxMFz2QMvKJ0m9w7g+dC6q8iPESKVGKlAufLiHZbcfvrwY9cnFgyzwzTMoG33YT87u+lObiFmW6GWEkuHmgQJivhjRSKK4aOM9/usGgEXrgBJboY0yE2LU4MtHCVweXcpEpatoNfKCKlPKWowknYlQrp3D503AU07OnghimZeoDTkRSmIrqlCDtKybcjSlmbSORoZwepWRZXqi7vGDjAtUM5NoiQiu5gmxRXKKZaih8a3472Y7oKBkyJD8RvpN8e5B8O/AOpfhYz6qiJjEtEbi81brl6qRQ4sUL652/lpGIGKc2H2HFKbjHAb4ZoVxDXuhTy/dQnT2DaB4mkJJAuF0zV2VHZQaXUopUuMtsKsC2od1LI5mkMrFvet6gdAUAlMVk8LtGbGHDWUY/nmAqPUE9j5kNJ4lTouOto5C/CUopMdx6rO0u06okiYoXJPpVoXQvkikWyhQKO5xEbifQLCCyy9ZVUx4sGc9QaDnOLHq26xQWDiwhrpZruYFQgESkyTpGJQmbytPe3wC/Cru9BDO8m8fq5uPa3S35WIC2bXP8A0rJ44mtfQNg20urVhY6DU81d5dLjNwoiwsF+nE5MKlsk9gKpXWMezdhhzWsP5uE8rdQVhkbI9Q+ALcnWQ7L1EDfoMtidQdABK0OwFJjXi+GyDYFxJNJz8GyXQAXPWsn1dF/T4QR7mg/yrYWvnZdr8gqeHlo/SdVqJML0VAcLZiW99MrhOlMHyoyfyNOuu+gfPECDldhj6kR1zdp8zqEUyrZpY3hMJBQqpxLF2loaEwR4yTAAMtVk2t7y4kWQ66VNWWlvLE2kTZi8tE3DjTFI6SCVOqXqbWHiQXYc+ijbjv7p8nvK8hEmJdlQIrSXyAnjYFlZZu1Tny+WSokAPbmP6Mj96MYspCFJJyYTGNSSNFx6HnvtcazuNK/fNcTF64rUlSFUGgQ4nkWhP8vghhKZvEtlJE9lKE//uiIXv3oz269ch7R6Y92+e8Z59JvnpnpimmoyBY9c0UOvqly62I3I+Cv3mxedqu4xJqLju7iZF7Y4aMoZrNTCyFMzbyr2GJNezES9ymyzwfqhS5lniNd6CxRVhYzJcUStzI/S6KkE67lCz9MNpLZw8EisGqldx+tGBNEC0lobWxBZzOHGNghQVhunXScTdnGShEanwfqyi5QRl210Gcy7bB3I8gtvuoD/9OYdy/v4mddu5X1v28nVN21hx8X93JTJsbV/jL6+HLafJfLL4Hk4nsXRaIhHki2EB2YIpw/hxZM0Ovdwy965nlBhVMP6FhRrkB/l/z6xnV2NRwhyfaR0wKQkziLKbmIn4Izlkfmzl/1SHs5T6M+SKWQwVgXbCinM1/E6Ic385fRf4DB6LKQQTGEpFzsp4XXyJH7KZbsTyuUawmrRcCrYOmKqfYITH3+AEWcf/WM5ysNZ5k+sbaXcV3D2cOihKe790n6OPDCx8maScFXmM7TzHq3BHGiz6nkhl6kUKy2gZecUokUtPT/TF1ml79OO5Pfu3cvf/d3f9Ta2bYIgIJ/P81u/9Vu8853vfE5ftr/4i7/g93//9ykUTl3NCoKAv/zLv+RP//RPn2HL84tmrAizvfQgkeng5WwOPTzD9quHlo1Ony9OdpnFE8cQxiJ2ZwGDlRYpdgXJkmn2Wnu6WZa3rJyJmodw0zpm3S78MCXM9dpkaRsVgrAttPCgFbGtNMDtUy18aWi3mwSyyAlxgA1U+Lwv6R79O/7mN96A49q84/2Xc/mbNwLwwFeOodI5gnbClz76KFsvH+SyN52qGFl9BRqzTYoFm8jrrR4lVhUrhnwzv0wfr/U1O5cQT0q/kBQodQKqOcGXP/5hKmPbKA4OcfmVb0WMH6ed2PRnQ46ZHFAHQKkOlomI0pSF3AZSp4FUWYQ2hF2FWnR5WzgI7gurUnSmcNZvwPb3I6TAGI2tJHHGIfUsRNyHFSbkOz7B+ggnTNGWIJ91aQxcTTR3J4NG8M/5Y/x27ho+mjg8Mt9A2AUco4mET2TleDSj2BUrRGTxar2BB1pNqhvhK8e+wvds/Z6nbZeJOwhlU7Cy1EwHIxRKBJTmTS8VN3v+SLfI6tIc9HG6NRzRC6r9MCE9FlJcX6ZLl24wRdGUEUaxS43hM0cp12FicQ7X3kYjiOkGNge+eQtB1EYJQcaAVw+h0UAt2QbsNhs56rgM+r179juLD/HNQ2P89w2vYdDbjJMp4IU1tOVSikNCO6E8kcORkkIzg3We0iIzpTLTR3sE4nwKmXAO1z1GqW7RHO0VwVk/PMKP50qY7CKOCHEGNCLbR9QyeAhcJ09a6q06izjFbjZ5fO801/+H9/UO8rmfJ401KorI0sCUt6DTlM5iLw+nOLKOdnUBKSW5vkHmD+1n7JKVlbrlIjFGY1UKJDkXW7ugCzjBLMcF7KTIcG7jWl22p8AvFOksLuDZHlFOEuV9rNhhg2lT1xLSiMVRRdeuYSUuTmwRORpL+4hEk7EKaG1w5dnrB7GJiFXEfDzz3F9+BWuGJE6X+7QWMSDJNDV9wQJOpoi7RBxvdEJmJwa54KI6KtWk+TZ61frvwuxz+Ly+lBBFOEGAg0DmioSqg4WPLW2CRBGqCLtdxko1MrDwophcPaTTsZETBRLZoOu0WUg1ekn1pC0bK1g7EuNcYH7v3TjeEHoVAWK0ZlPtywx1DlMrXkxmaApPNbBUyLeveQuLpTuwIgtMAScaxkiXPtteVVMTrAg8XScMA6xDt2Py/wZf1cAZwG6lZBp5hKoybHJ8glvY35xFdL+fon8ZF40UuLcVctPmPrIFjwuuHHtqw5dQ7MuSK/kE7RitNWE75u5/2YuXdbjijdvOWhyqEkXQilBC0O1b8dLO64C8XKR1LCSjQzLRqW1NdQfbcV8wwWRVyljJPAgwIkYYn1RpZFTmcLbKZbpIpFNUnHI8HWVnN2I4v55Qdfhq/Q6+4Vn8t9J71nTi2+7GTLotGtl5HKeCk/SumxMtYq3h9EAWCniqR6obkZDkyyRATqWIuE2QCoaKdexggZ+8+lV4uTzz7t/z/ttnUFrx7l3v5oaxG5b3d+GrRxneVuCibowxsOu661Hxj/L1//uHqChg9nCTyYaPJ1PQIIwhkTZddYA/+att9A9fy7W7T7C+f5qvfu1xxhfbPFq+jF2ZIjY5lIiwY5dslFJcLJBMtpFnKb0UoG+kwNThKq5nY1lDmMwiievgBQ1S2Yet5sjc/ihXXvBG7njDZrqFGqkLtZE2gzg4ModRPoHVh5PWcJKY9vFFxgYEaaLJFh3iZxRvvIIXO4J2RJoo5goZqpYgiWdo1Oep3vYIuVdfhrV5xbfdWAKBQBgbI1KU3SK1Glip38sAAtRS133Jk265XG7Zx210dJTDhw9z8cUXA7Cw8Mzm0c1mE2PMki9XC39VuoxSii996UsMvYDy1ucatSDEirs4aUikYjqtFMsS1OdaZPJPraD0VDx1tK/VphHkcU+ucMYdQiKiYri0xVqnl66Qh3JwM8VujsP9FUwnwXkSyaCrTcin4Htc1FfiI0dSfqhSBspEDcGOxTJGbuEfeYAHMxHpseMkhfWceHyRymiO+lyX4kCG1797F//4+/cTtGOibsLO60fwTxnoV6qXLk52mFvUZKyeZN5RfbTzx9CE5JreKd9/eeDUcwm9OnOuh9IO9X0Nus09hJ0t+N9XxndC2sYmSCVkBlgm3YJ5pJCUMx5hpowwFtL42MEEY0mGQ1YV6kehdH4m9nalQveeL5J949XIQk9x5bUihLFIow6tdT6uiXnikmOMzfbRaBdxbcnkhp/hgomvM29JRHMfQ94s//bCi1n30CfYM3gtd2UvIQ4iYuXwRWuIyzcdx5sdwNU+N1l9fGbyMH88+ye8ffPbnzZFfHF2GqFdLAFeewChbaRxQEaIjMQqrH01yZNw7R45nvgB1lyKnSg0AqMdLKVJo5BWKslaDiOJQhqb/7Px/+H7Ou9n/sjV2NLGAI12SKbZpN2t0RbQZyQmMXDH7ai0N8ZvZJB3ZF/PfHQcT+aZj2cIdR/H4wzZ7CbaxYvAKRB6BR6dvI1BeQG19b1pkBvZyOzZL87xfJAv9+H6PrbrMj57nIvK16JMjuxCHqcbgx2AV2CzY5OkgyxWGpjI8MbLJnjYpEjfpThTwu7EGAnKd9CeTz2X5bP/8k3e9b03QmUT/t7P0zYFMuEUi40K5XXrMVqTxjFhswHGkIYR3cUF0ihgZNduLGfpmgjR88s04LoOVhAS5UOEcdFWhzu+afOLu1LYeP5SycTSvSG1hVS9v7UlyKc2Wnhk4gBkiYGq4h5Zw44tolyCtgwDH/oaH/oJix+76Mf46W3vOmtt+sSxD6FRyxWtX8GLA+kq9ZU0bm9BMZ+n6gww3JmlnPXoGBeJQgLtSDLQp0iiEO2uxIPd8OVjiJ22WstBdsMrk7V71S4NCjdfI/SrpDJGaxcZFohcUPWQP9EJ6/IRGTvBrjr0OVCLFHS7uCLpFYTRGta4wv3ZQBrHxO0qMrOisDZGo8OQjGzhqhal8ChBbh0B68h0DzIz1GVBTdET5DfxOsO4RlITKVYnQmUcnEjjdhUnwlGmmzaLizOse8tWrM4xRup3cbh6NWILJL5PrqOR0uK4mmFAfplHDq2jL+fSLmf5lddsxrGe+7pe8tqeJcrBB6eYH68DEHZiDtw/yY6rx84K8aZSjdEpqUzR9kqq6KE2eGMFCpsV4OM8YJMajb2UbyVJ8Z8kbDgT2KV+rO5hAFKriRW72JZkXWkjx6s5qmKEgayPNXuQsijQF03xG8cu4r9srjIX1SmYDPfM3ce6zTtfcFueL6JAsVF2GepuBgGpVUdqD7ebonXnObc/W7AKHnarH6/VwglTSCMcLVAmpZgtUm+GlP1RDjaP8btjHfJb+vlPtz/Evuo+hBDMtGfYdXQXv3jlLzKUHcIbLFApZ5kfb2DJnk8aeLzrA7/JHX/7F9y793GkMIAkb7rcsuWt7J5+mGOZDdRkmd3TR3k8LvLG9YMcnthHJx6nXbqMWCg0CRYeCI/q0AxDx3spuGczo8N2LIzSREmKl3Vx1vmQCMJsGRNYqGIRf9dmZK2Ok1aQqY+V2sReTLGWwXI6CLdB17dJrRDLlnSG8ojJh5FyO425gHyfT7cdkz2LCr1XsDbQWmOAwHboOA7G3UTQSKhbQ1gxVEJFnLExS2OzEh10VyKWsrG13cGYnoqaVoKSLkhJbeI4QxfsxPHPnyXQapz2E/v666/nzjvvBODtb387v/Irv8Lv/M7v8J73vIfrr7/+Gbcrl8v09fUhhGDHjh1UKpXl18DAAO95z3t473vfe+Znco6xr+2h3Cxhto9CX5OoG9KYC5k6/PxSIZ4uvXRm6hhGrCgAlONT7qwUBVhrWKtIN2Vp7ETjLi4SFTzqQ7lTkh11N0UkEUSK3XYfbTWP0r3zqgmHAelyJetInQJfL0Cfu49OI+Y7/3KEr//Z43ztE4/ztU8+zjf/bh9jO8qouEeqffszB09p0/J1M4bGXI+MTPIrJstGKCwll9MGXk7ppVq6rE5F3uoMIr0q9dI8Vd8mjiJmDh9k8fg+6rFD2U8Zywc0F1f6T8aaYX25RN7zif1+nHQAaRz8Rm8FrpRdCkK84lqe2jLs4aWKj9++efmX87sJie9hckNs/Ow4QTFibkOdODzGsC8JEs187kKc7AXsjgK+a3E/M9FxMlHMyI5XcdHcfWzongAk3Vjxj/MVZrTGlOv40vBGs4UfMzsZ5wiPHX76SqaTJ9ooU4ScwbgutqogsCnMBZhAI85jeumyakiCGyZEBY9OySfpSvKiDxMruqmP6jyCBFwM6UOP8KqxG3D6b+XIQpe869JJJLVGb4I7JSDA9AozTE4jg6WUJsel5K1n0NtE0elnXj9GXWuOxDk8leIV++hmyhgMDzUn0KtMFqxUYp2n4Gdoy3biMKTbbDLXsjhQ3Qf5fuxYkWRdErfnoJbaDiK+EqFzWFnJzotDupuLULie5gUXkmYdVMYFpUiLWfTIOv7lrt/l7/7Hf+Vzt0/yncky+XiK0XLC+suuorJhM3G3g04T4m6H0V27GbnwYpIooLO4QHN2qkfKReGyl6fWGq8wQJIV2KqMpbP4oaJK2jOA9c+fMbCQsreyKDVyqUKgsSR+10UYQzefo1PpBTN/WbiXKFkKiFzN568bBGOYaE484/7PqE3ipELwFdLtxYRUnZryKIyNMD2COXR8UiWoNWLSNOHKksds3SGT0xT7CmTyK4qc2an6Wjb7nKI7M7n894KzoiaP6VLv/wraDkAqpFqJadwwpYmh1bbJ5j1qG9WS3QhE2SytTIlUOvASSzE9eb8GjQakIfGqaunh+H4m//IfWKcfIKOqKLPyWTM/wkLfCBgoTztk2xfhhFcTZfLkfR+V80BKkoyNG6T8y4nLmFpU2CrCas/QKWyjPnANmQuHUAyReJq4z2eT3c+FchOz9mHs4kNUOymPTzV5bPL0lJbbLhthw65BHM8GA4tTTcLOykJJ2InRSjO+b57xffOntW+ValBt6B465f3ZVkBmladbLiwuE24AcdqhMvrMSr3ni0y+jJ2eTCMxWEskb9Z1uWjXezhx+Vs5sOEKhop9HNZXkhczXOJ8jje0J1Fo6qLDffJwbwFqjRAHKYHTpFtoIrWHrcpIk8ELFEKsnUJU2BI3hagQ0+lrgO2RuC6hlwXLZUO5wLrCMHG8nm9NHeG+qYfYO38MbQS5zjt4aM+1/MN36nz50C0EccrX9j7Cd/Y3ONyFYx1I0pUZmZUvMlJOOdK/k339F1LcMsqQbPLp0X/D/eWrOJxZz0J8BHX4s9xz2z/TadS4s3Idk9kNDGQGkfTut14hhRC/4yJ8C3GWpYFjOwaIuinNhS5O31YyzSZx1qNV7qMzdDVO+wnad97CQJRHWyGJ3ybKQWkujzQZTDxMW/cRC2i5LgvNhEf39CHRdBox8yda1KfXjlh9BWcPxkBqCbqOgxEChEVm/U7yO67G33YZUd7FWaVktEwOx1vxP1RWB+2ECCEQRRflGdCaxtQEtfHj5+OUnhanTbp96EMf4rrrrgPgN3/zN3nTm97E3//937N582b+5E+eudz77bffzq233ooxhk9/+tPcdttty68777yTEydO8MEPfvDMz+QcoxGsBDj5QgYpDmMM1Ka7JPHzqdC3qiTA0lyhFTQAD0VAatVxw17q2vnyJ7PFCpGglrwyvMkJ3ChFO5Ioa6FkipEa7eYRaRekxjMOA/2PsGdmmlaYEGYr6KW2XxjnuC/jk934eRzfojUfUpvqET5CwPzxNq/9txcwuLGAZQv23TVDvLrKoFhRulXnXbRUOM6K5bgRKTKV6KX2vpxItyfjHZEglw5gLMMtO7KUSx4Cw/TehwhlSiOy8W2DHa8EFt1VIky9KujPtkImZUIl34JMH5Q2r+GZrMDu78dZvx7LV6jJf0DYMflqgNeJQVq4ySi5ho2VSg5fMUH4zXEIEkyquePqv6AlLK6MI35T30qZDoXBzeTyea5pPMio6hHiDSX54IELqGVi8FIio7jKrMMG/u4fv/K07ZqaUASZKoGXYKVlDDEGhb9keHu2DGbPBM4qctxrNHC6CdqWRFmHcCIkmy8jUMy4wxyWmlRI8p1FfvHCn+eijREn2seYa3cxCNJsb/XcCDgue2dpMGxqdbB9n+K6DSjPJ9URc8ER5s13KGz+OHeqh7kch1quHyfuEjf3s1/a+NYqIiROsErnpwrhxsuvoG9sPZZtU6s2MCiUSE+tYHpSiSB8+hfexfYHr6Rx5HL8YCsGhVlaZnC6MZVqC6fbIzirO3PcFt3P8cPj3LWwmTuqO/Brj2O7HvnBIdzsyn3mFYoUhkeWV9me+OoXuOvP/phH/uUzPYkboJXCdnOnKLespqaolxQ/3vkponASUlpoqZY9pQBMIKi0D+JEEd2KjwEunQOnYeN1HKxUcsT5BQySvbW9z7r/yT0PM7nn4efdHrFK/fwKXjyI01PjICdycbsCN4lIpY27VHnRaM3lRQ8vXTWOeSvP7Vi9tIsErIYOQ9IkoWtA5DcRpYrFTsBibYWMk0mRLX9ziO337uGiWw9jjiywiEbplfC8rlsItXL/KWkRLMyt6bm8UOy7d5y7/vkJHv3GPiwDib3qGRo2eEf/R5d9bPWqWLSdv4rB+R9ncPZHGakv4qYCgUVq26hVVUOdIMZtB/hWb/x1XBenehQ/mCXMjOLOHsRa5X32QfUGfjj7JvpFHr/0IJbdxGD4wGf3nNZ5SUuyYecgYxf0Y7s98rhd643dWhsevOUQ3/nCPsb3zzO+f/7U+PY5oBINRqGtlWuVJgmL3Rh/laebH2ZIVheqsjXl4ZHTOo+ng58v4Hd6Y7phRYEqhCBRCaiUdqbIopa8bf0gh5MxIpPjVxvz7Ag3UBBZDohJapNnd+Hl2SBjQ2R3ydnl5Uq3AE4IdmZtnxl52TuekeEp3oVSK4zRfM9F6/nd776O/uKbCKvbudb6Hdr7fpvZ8WtQnR3EC2/jtz7b4nP3TOOk6zHGoI0iNvDZe6f5mb+4j0/ecYR/irfywcov8IX8G/lq/nV8Qr+Gb+vdZAjwTIQvYh7uu4KmXWDKHeJobhsL3iADnkYuz7FiEnuCTMvBSx2ckbNvOVMZypMr9+KZmWMhfhDhtyIQglr5GgYu6pDWFhkME/xwCKE8qmNN1h3sx1qKLSOVpSQcpDHU8z6P7Blm+mgH25VYjmRh4hVft5ciVKLBFmgMmbBFJu5gpzH9Wy9FLsXAljKnPAcznRUFrba6oFaeG055hSfQ6sWTdnxacg2lFBMTE1x66aVAL9X0Yx/72PPa9sYbbwTg6NGjbNy48SXnvWXUcabnN7M9KzB+jj5ZZVGD7djMHK2yYeezV8RZfb4nJwvKlkhySByUSckvdpnoa9Ho6zH1a00g5ewCwyGoWJC0x0kXHOzhMi2v103SjEum23vQq06Km8age3bgb960gSANqbaaGM/h8RhcK+W75S5a8QJfzKVc5sQkoYXoiSewXQsvYzOxr8ZFrxnl0dsn0Mpw61/s5aZ/f8nSNVi6ZgY8L2FOtuljFZO0pHRLnd5N9VLrV8+GJ5/KVQsHqawbwCTDOMUODVFgZCCkuvceNm2+nm7LJVI2mYFkKbkURFGyL1ygmt+JMIJUVjHEZFqaIe2QjmTAy0KmvMZn14MsFEhmZiBN0bP3Y134XWSjAoljgdHU3/yjlOe/STcbkvgpqr5I65BLdiSHa9U5su5drJv+HP3pPMfGx8kPbqV/w1bk1AQX1x5nrv+1KODORol721t4a65KIlMWw4Q3pFezf/A+vv3pg7z6By44pV31GgT+MbQ3iNQ+cqn2lidTnPU5rPL5Ux+VnQqtEyk6cpFCkCylcKY5jQphcHQLpenPUXW3smjlyAqHPjzEAwfZ3F9ivFGlk3TQLUVb9rGdI+CN0oirVIkZNJq8kVzdiZk9vgcu2IEVtkl1jUC1GHEV/6vo84STJxs0CFWbR5Pj5NJNFG2YXWqnjY9TPj9VqSsjYwxt2oJJUqKgS7teJXFG8DINKnMtgrJHaNtAz5hVGk1z5EK2YrA0GFJAYqUCYwsGFhYxiY1uxbxt5H18Ze63uX5gI2ltisOdQcLDMd/18xejjKA4up6gXkVaFsXhUaRtMbh9J93aIs3ZGYzWqDjqVfOVoIXCyeSJhSK2ZkEYukGLnZ0ZGLkUCudHhXoSwpJoqZFqZdKQHH4AcVGBpNi7D5Qj2TYnkFgEud4C1UC2Qy0eohk16SZdss6pBKzRmoc/9yniMOipWMY2kOt7bqsG+Qrp9qJEmp4a2CoXlJcjVh4dLZYnd1orduZdvpGuqJk8Vyz7yYbqxeXB8oIQxwT5Cg+vu+z/Y++9wyzLqvPu394nn5vrVq6u7q7OYXpyZBLDkAQiSSCQZEsoW5aRLBvpkyzLQjafkoNkbD0KllFAGRGEyKABhoHJOXWs7q6uHG6+9+S9vz9udVf3AJOnG/h4n6eemblzzzn7nLvP3mu9a613UcoNYhoGhpPQyt3H6aeVWzAY/Mpd2LdcR67jkANaQnPAvAV3xUCLlFg/TpJsOBuRTBHdb62MjiRav2MVY5o5Qg1SpZAmqMXDFB2FQqJND0YuOnOcRp3JxJmYWyV2NtHJQWadS7olno0baMZ9k9yAz+De1+OVxoniGlbawWaJWnMY26lgxh1CM+S6wON69zICO+SfW7P0wlEaPYd/uH+Wt16x6Tndn19w8As27XrAkQfmOfLAPIYlMW2JyhSn+4w8cvs0l7x8G5b9zO6XRuP5BkFgIOIQbbuYlkWQZAShQXiiQ15ZaDNExTa9JCXMYmTJ5trv+xfPafxfD26+gDYyolyCoWq4tRKxX8QyDCzDQkQBdthh3vTRzXmOe9cwlgHSYGvcwiyP0YyarKgGJ++7iy1XfuNqqBcLYTdmye5SNAcR6w3CNJq0l+LY5zc71IkcKgvrNlDvCKYxBQakloVkI/tTAyIrcuOW3dx2+HbectHFXDJewTENlL6MOM1oZ/1GQo4lsfDItGaxEfHfPnOIkaLDJrNFLTWJsWmLHFWamEIzImrkCJjXA3TzQxTDNl+tXk/Rkmzxe4TxCrZdBAIyMyIoxtgtE+29+E2wLMekOlYgiVJUppEoZBwhfJPDu9/BSnkbe+f/LUt/+vsUf/FWmjojMxKOXTXGjidOMectk8oYyzAotSMCyySn2oQWpOtdhruNb6P94/8HOPLAHN1mSBwmJL5JtbOKVBmZkLhCEvlFTrcgk0qhDYlGo2QHKxkhSRRuNkBmd0Bu2CCpaQM9tlf2UTiliFYOY126GVm4sEHs50S6GYbBq1/9ap588knK5fLzuuCWLRvtfA8cOMAnP/lJJicnn+aIbw7cGucRloUFmIbmqklJi2WWOlXC3nONzPYX2k63jVA1pOWgRExq+RR6DifXnZavYV1eYiidseQCrmbr0ChmbwCndQKv0cZIDRJbkhkpytOkVq6ffkwMpRKjWcQD9ZRtBYtWGKHHtqHmjpF3cyRaE5g2XuGzYL0ZlWmufdM27v3ECXIlm+ZywE3fv5sj9y6DBGkIHvzsDJe9ejNnNN20BkwCu0XO2hCU1SLDSCXCdxiwXDx5YTJrXgqIc5xKwZASOGoZrYboGoJOENOVAjfOcCshomeDgIoTsLB+lCstAlJUcZRUZGD06+YTM+WojLmhrCBsQX7sAtxhnyQ1SiWytTWSbkp1Yo10Lt8PUAqJNi0S43owl3DDOsZATDLXgakS2iizuPkH8Jc+xg+264TZR7nYH+TLjRZZkLFPSu5UEV3pkCh4z6NVbrhkhVxqE8oOE4nFtAr49MynmToyyPjO/rzSShEEEmVGGLGBFW+QHkZTkbTCC6rpluiE2pAJKDYdD/BrAYKMKO+jVzuUnRHCgs1iWkKrmEVhkpcm9twJnLKkru6laN9Alimy/DDL5ddi6xTiLkFS48a5g1j09caEUwZtYVlVjO4xJsjx1vQiXAySXJFYBSxZsNQ5hpPtpyE31kKZSezKhSHdADbtv5i5g09iOTbN1RWyqiZrFdCZwMo0ylDEwsBUIanhIpTCkAbQ7xytiWC9q6KpE7ShSCyNn0kGdt7CQ1csc/yBRTpeiiMEf/7BN6ILFUpOiZ+afCtVu3qGRJq65nrmHn2INI7p1lZJo5jT9fqZTLGijMyzMNUISkRkiYvpurC4CFu2XpDndxpSGmRGgt1tkKsJICNRimLrEIGxC5HaxI5B3s0Igo0ywaIJwfybye/8G/7qyb/iJy7+iXPOG7b7Oq9pGCGk4NhXvsiB7/6epw2cHL1/maykwYRuM+T2Ow7TWukh5LdPsOV8IU0UcS+lPOpzxWu3MjD2wjIbsuQp0WRtINT6Ounl2Dsyjtp2BbNTO9HFElfpl5EsLjIv7sUwN7J2gvRbu0nA2dBhRM/yWS2OnDG2M6NNelZXZ+kqtu4/zBJNQtdiNXLouU3ysgIZZKJHZm6Ud/cPykFnlSzJmDu2RtiJCdoRlmOy88pNWPa5AvpLJ+uE3QTQlAZzlIfP77rcqvVIogytYvJqmgm/yZ1eCSVNMCVe2qJoBWRWGcu1Gd5/FQO2SRJ2aKfrTpLqEnuDlLpHEVlGTxWolzb2YbcdELeO0U3KzDXmGbqsSmliG6fWlnCj1b6tYZqEfp3YhzAvUfM93m1dxmeMo3xl4E46M++gJ2P+9p4ZhgsON+16+mD62ciXPaIgPcdqyxKFNATV8RKr8y10pomDlDhMnxXpFgcp7SAhqEyhz9I9HBRrbBru4ubz6A6YkY9pAAb4ls1cFJGrDHzjEz9L2J6Hkazb4DJDFypYQJopoizBFQIrScAv0qudQnU8MOtIK8+IzvGkzvAzi2Pd44yeGjwvpJsVKWy3w2A6iCIgsSI0imJm459ne8SyHVqDPTJLkV++Dz/ZAYbsZxGoFGR/DkghsKSknWl+/OpL2J5zsS0DhERpTUiGYxisdhXtZsD2qkMYK7ZW8hxb7bDUirgoL/ke4yB/vHYR5rpx8aPlh9ifPs57Om8mb0YcrexESpMSMWTL7PMSXPv0HHfQcn79GZrI6ksjobJp1xDdVkR9qY2ULmas++WEWhLkN2HlMtwT04y2X05tKEYql9hp8NZgG3GQ8FUR0srfiRe4KJ2Qs5u0DDaaAPa+ebKavoNnRmO5SxKlWGmAzBVIDAtHZYiwS5QfQAmJ7LaxlI3VS6ECoDFUX7PSNmwyqwFKIFMTZfZ//9MdvgtOuR8870ToXgzfSqQbwEUXXcT09DRTU1Mv+OInTpwg+RbRpXiZGuKRbsTo+Ci5qE1xcgej9TUOn1yjucVHa/20zsJTs9ZUlhE7BgU5AhnE1jJWrCiFNp1K8HWPealxdoe51O4v2naYEJT7k7u82MXITERHESQWhXodPTIKvZjtzjjvO/U437VrO5BjqRXzMu8kdjLBcd9iVQXcsvsoP/z26wHQSnPHB4/Sa0ZIQ6K15i3//nL+5j/fzeLRJvOH66wttOldE9NPMtJEkWCtVOMi+5Yz49T0y0s9N8+AP86gM3K+HtdLjqc0L8VI20xGcCy3QhZpTpTG8Zeb4EyQXvW9pEt3Mmo0cIwNB2ZTVmKXGOAruSEM8sjEplm6nUK7gNYSszsPhgNehQsFo1gka7WQQpOfOEJnejNXfvwop/b4LO6ZBCwsVSSxajjbjvFj/+ZavvxEjdWWTertYpMsMhWv0OIuBhYD3lyC/730MoQKeXvzk7x/4C1oNCtK8JnFMm/zY3ZS5WYz4c+Nu1iy5mh9bpUf9d/KJRMHWHn0ICf1MjJnUxtr46QKJRKkts6U2F3QRgpnvaciC+kNeIg4ZnW4SGW+S3SyRWXmHxkphcwVb6YHqDTASxMmRJ5P2h/hfz5Q4gd3/xC7h/NorYkB3BJZlOch/xRX9cK+VL1dRBmCzDS5stPjXxVeT69ewUfwWdei5eUYMorksxrz0RCjfsBp1RojkzgDFy5L6+JbX8uX//rPSKOYoh2RxMvYjLDz/hlyUwVmt1VYthxapo/MUnJxh6OrPbwtNQwvI/AOM7j6NpTKODqxhX1fnefh126nyC5uCAqUZz7La0s38THjSb5qnGI+moVolryV58SW13DpzlvPGc/EgUuZOHAph7/0eVaOHkKcjnIbGVG+gpbrpUSyRyeSbCquGwcXqAPsafR13UCIHN2BPjHTLu2kNrKfrl8GIPEsSlZGHBigwIoMyrZPHHs0evB3B/+W11rXEK6toZKEwsgYQgiCZgPo7wdBs0FzfpbyxNcPwi0eb3LysVXSqxTChDhMefQLs1SHwDG/fYia84UgkNQbNssn2wyO+wyMvTCbLs3OzYwQysRIDLQJqTQpDk2QbL+RZF2HxQc0W1ClQ5SaeURdYiiTOPn2KC/VSqEbdRLzXDIzI0CmCcq0QGvGa7dRKLdphEVkmmMQjWFsNBUztM+d3Tu4Ot23cQ5pouqrLM3UWTpRJ4n6e75hJoTdGMveEI0OuzErp5q01tY7KWp9Xkm3bjNk+USdqJdA1mPYXaIiM5RcJx/Q3Nz6v5huwuJbvszYvn6GWfjgKr30LAdJOPTccbQQtItfWzoZFjxKYpKCdQIA06tSyZkc6Q6TWDlKSZN8qullFkZSZjrX5EpnkGLQ4mo1Ttm/Hab+nuWjP8Kjcw1uO7j8nEg30za44lU7mTm4TKvWo7XSf962a7Lz8gkcz2L28CpCChaOrbF5zzC29/SNhtI4I7E90tzGOLJMcSwo4jj9EmUjAC0V4qxyZGuo9DXnej4QQmCsu2hK9s58bkhBzujvS7HtEqseQ7XjbGrWWE0L7LUOc23g8oFomIL0mKfB+UhMzpSGRNMzAwZyW7CyQURmkBoNzFRiD57foLx0BVZkkFmKJCcQ9fX8bCHAsBBwpsEgQMk1KXsVDGlBGtHJWtTSZSr2KI45wNRAmU6UopRmIOfw1ssm2T7Wv6eff9Uu+Kvv4991//vGAP7tHDh5PvP71/If567hL7NXQ6YBwS3iAX6gWONxXo3AWRcW6fueVmIhvZdOt9jxLFSqiQs2Wx6Z45SepDGWR0iIxyYwj0xTXlKkm9qILCbyu2xzh/l52lyuU6Yq1zNoFzGUwnMbGBXF9Gx//jdXAqJegnOBmnh9B88Nel1mxRUhNaNCz8lRnXmI+doqzqXb1r+koR1TWOvRHvJJ7NMyBCFCeWjZBqlR65luOkwJs4DU1BhJD0wXoRX6qYHBC4DnrOn23ve+l3e/+918/OMfZ2FhgVardc7ftysqU1WeONKkk7bpukUemrgE34YtxhqH71yh03z2Hbc0mjQK0ZZ3zqdmokikIrX7BtT5Jt0scZZuxHq5phVsGMCJa5KJrJ8FErk051xII0gy9uotSP8Inz3U127oDEywUhhhu+lyWTrIimnw9+1D6Gz93qRg8/4BlNLMH2nQqfedptf/64vZemCQXivh0J1LdGv9VGEtIDM0R/wFbGPjuZ1upGBaFra8cETIS4Kv8/P/cLNNWUsMZ5WHpkJC6dBamOPDv/3rPLDwJIlSOGcJ6m6WJdreIF1/AKltMhGQWCuYiUHPSPrRtsLYec+qPBvWpk2QJCRrPXSS4Vb7BYpjxyKcuz+P6NTQaKxsgGaqUElGtWCtD9ni9pFrkcAAAUoLOnKSfZUeUmic1grjySLQl/d4z9IwD8cGAsEVepw3tG8gsDrclvswP3/bv0GlKXd97m4+vPtP8LMhYi/BTCtIbSGTDKuXIisOwnzOS+eL97zOek/NsMnE4ytow6A9nOPEniGCQy20BjdZAa0ATVtKTBTXhj45kScr38bxtTrdKOkHC4QANJlbYn7sSqZFX5WxaQ+TrTuHxZEDsDqAlwmWjZRWcQu+UaQVzTMaF7i7EWHLDcs66izj5C5c5qkQgmu/5x0IQ3Jqvs1qax7QkJoQL2KqBtXaNP5j96CkQdsrM2opwixDyRhlBhhBX28kKfvM7amy4555pIaB3CYGJ9/I6/QO/iD9bm44UmTPdA4zhU7S4U8f/9NvKPQ/dfX1TF5+NXI9yo2UYFlI7SAwUDKkHgjGT3NtF1jTTRgGSqbniNgeuWQLDX+j+2DsmbhWStTsG0OJl1HyMlA50mCSpWCZk0/8CZW1L2Gv3M//uet9/M39v8N4oQ1oDMsmjUIOf+nz5zgh0HdK0jjjQ79zPwfvXDwT3DLMjLFqjby1hm2l3/l7jn+WsRHwTFZnXvA8SdW5Bq0VWRhp/3dMDJN/3vNqIicPWYIbNvqBSgRmViFn+2ipSM2YmG8P0i3qdujNzhAb59oloW71CTfg1i/+Azfc/WmEBLmuRxMIhf+UTDXTVmTJRtlUgkGyssyJx5bPEG7QF94POus20/p7dOSBuTOEG0C7FmyUtT3lXXspcOSBOZZPrQvpqxQ0BKrSz3ITAuIermlw3H0z5c0bZKNnP2WPFSaLI7fiBN9AFFtrhNJ4ZoHiwAibL9pEvuTiRAGZ4VMbvBbt7mZo5fupNF6FOVbijk1XooDths17o1fTNY5gWRFRqvnCwaWvf51ngGkalKo5rnztLq57414uubnvOE7sHOTq79oFWrM80+TIg/PPeK40ydDqXI2qMMkwDYVl9X83O7IQSp7zOzrjz54sfCaIda3G1Kwj4/7cWmmHfHl6Q1Owabj4tsNUdZjFbj+7e18Uk4tztAl4UszQq6+hsmejf/380YlSylqyVDpM3h45U16qjB460Zjl8xsENEo2Vth/1xMnZfcdpzCfogEuhEDTT9ropt0+4QZg2OTtKptz+8mbA2f2vYJrrb8bmno3pdSqU3DW14vv/l14xa/BtlfAjb8A9jrh/4N/z+ZX/WteNtDmRn+Oa+zjXG4c4f5LvhdB39DQJMTOKqWlHEYsXtLO8xM7B7n8ldspD+cIKz6F1R4y0/TyWzh59U+x5ZVrDE5/CjMz0UZEr7DM8rDDCJK3U2Q3F5E38ozkd1C2rmHTWUvY7ME6M088uwaH38GFhVKKNOm/D9px6Dk5jCxBrMwQdhvnfNcOUhLXIrMNNAkgMLSPmZ7Fo6QupP1Gd72JDvdPzeMsPYI7dw/O/H0QXXjb4jlT2a973esAeOMb33iuTtl6plf2HBbVG2+8Ec/75mjj+kxYmirx5lyeg2tHuXhgEz2nQMfJU/AyuksJf//e+/jR/3rjN8x2eyqBlkQhw0mD0/F5mWZkvZC5wc4ZsuV80yCW3FhkT2e6Wb0Ef7mBcj1SSyKFJHFjzNgi7JQpxD3wHYazMpdtsVleOcVio0jZc1iw8+QywY3ZJIflAidMydzCvWza1E8xn7p4kKAV02lEPPDpGW7+gd0UBz12XzuK5RgsnWzSNfpFlkLAXE4RVmoESRPP8EjNLm7DIBeZXD/yXZilC5sR8mLDEf0o8GksTf4Iu1b/ml1xxEquyny5y8NDt7Kj/hisrXCkvkaxuhuDDcM1zjTzo7shi0mtEGWEKKPLTJJg5NcNcfuFt5Z/ITDOam0fBx52dZU08KFXpvrEGrXco/QuugYN9AYv5xMPrJJpGMibxJlmZcdPI0/9EwCRytFMBxjOOexIW8x2XfY3HqM7NEAXmxTJnzeK/JeRBp7IeHtllNujIlmaEcqE93zo+/hcaZl8b4BWOsZ4awiZ2WSiTr7pIAHjJYwAPhucTS4rK2VgqUt9UBFVB6lPFIieXKGTvR43exLWCdi26RKligOqyBY5ScNtcs/cp4k7L2Pnpgm25V0KRkhqe6jcEI/ufyOPCoOx9qn+hYRg4MSTUCgggIFt2+lFgig4RYkaB9TNjJgCzLMc7zTFMC/ssxrdvovhrdvoNuqsJSlbrPVVNasz1Vmmd6pD+NAJsp37yQyT0azFk+o4A7l+AGmm2UCHOcYKDmtbSkwcrFFot+jlczS9EsdzEwx1V3lP5dV87OGv4AtobytSj1vcNnMbt2659WvGZHkemy+7CuvU/cRZG1OVIEnBWhealwmN2GS8WoCJQSheYE03KcmMhPJih/aQR5i3iXIbc9CIU1LHoFrI80TQPRPKq/op5bRNu/ZyvNIT/MfeV/lebyt/Fx4nMlJUBj9dGiefkzSLF9FZW6a7tsKdf/qH5KqDXPKmtwHwd++9F8OSDE7mqQz7zEiDjBQhNdsmVrj0QLMfOPgOnhPmTqZ89FP97LY0fuHESxQpWDfnFCkjJ6oYNAgqPoHjnwns2CpltL3MCbfcP65bQOiNvTvRF94wfjGQxhG2hlqakfXqNLTL4doCWyqHMdelC/0oRGq9nvDVf3iRUNiGSayiM1nNSdGj017DrVfBlITKoCQTDEtiOyZewaa20Cdn9Lr2YtRLeORL00hTYrtGv7xTQ68Vcuc/PbkuJAVe3uGyV2x/SZ6B1hqVKUxbkGVguRpSTVNtaDeKJCARRQJjHG+923WiYmb1A9jGVoysbx+YYQ0vXkZ28niNDkHB75fqrUOmGd1kEVtr8jKH49jkii4DvsNykpAJiUwDlNnXqHSiTSSmTahaRKLEJWKIXDyKzh1lp3cdp2o9Gr2Ysv/cgrnjO87VpTSsPiFimBKtz2oYEjxzlY8QAqRERL1+eamQxGnC1vwq7abA77QorGx0KW2mChF38MdevIoPGSiKKz5KpphBG1Mryq5JlNR5dF6wp+zQsnPMNmqUPR8jt4euNUc+brA1HGBVFFk06ygUca+L+xJqlHbjhAHDoGs3KRtDKGJSq0liLJEpE6Nyfis6ZLFAeTmPAGInxe51KS23qI8VUYZEZimr0Sxd3aHqbqVoF1FZjERgpBHoFEelxMJAI8k8H7CwpMmTra+w07mIkZFxXtd5DNgOpQm46d/B6SYlp/3R8mZ+8hb4yVt28ydfnobuKsGp/4sdTvYJPw1axritEL/lIhAvaaabZRtYtsGOS8eZq8WII02KS206VYulgRsJdJVq+5Pkouto2y6Z2aA7YHEcxSwKyznFnkZGZlWIdICIE6CfvesVLFZOttl55bdP1dO3K6JegmH2ffxMCApBi1RlHJ1+Ajl8lqamEFTn27TWM1W1kSKy/tz2u5rYAQSY2qc43aS2u79vNqweMRnOaW3Hbo8Ljef8Vn3hC1940S7+yU9+8kU710uNTClkGNLoxfRKIZUMjmuLnBliWAK/aHPvJ45z9Xdve8ZzaTRZFGEiScUiWtooIfC1JEk2jIjz3RTAkR4jWQEVdCBdI13tYHXb9IbLAJiZIsnFaEuD0hhakUQmFhqrnGcsaXHvbAdLQicIqVt55hODCaOKoQWDCp584oNnSLetFw/y0OdP4Zdsgs6Gob3t0iG2XTrEQ5+f4bHSE3TpCwaf8lNKlom33r3UVDatakA24yOsC5d59FLh7KwhgGT0auyVv2Y00dTCFonZ4eBlf8NCx+VNd46AzjhOg216kNOeb11UyYQEaWEqG6UUAwsFdsY+J3IRVLZD8YW3ln8hsHfswLvySgSgRBVnsEVnRgKKcmEr8iN/yPRl+4AMKxkm1X1bQgO+Y6ANuHPbjzA48w9EbOK+3q9jFzzy/BkEM+xLTzCtryCTDj2teSjzWc46jFmCi+QYPxq8hQ85n8VSJl9oLzGaDnIqFYx5KakjSKhjpAXcOMHelMcav3A6ZQCe9Cn3yrAwS5as4C11KVo+9ct8wGZ1cwn38BsoxEcYip6g5WyjpW1WJFSlT1lLMiNP6M8yV6uz2gyZzhV52x6bxHJBKxQCU8e0vA0D2fQ96AawfQfRpVdReGiNAmUmkoC7umtsdQw0moG5AmhFa/6eC/aMTmN4ahuCvi7ZanMNBvufZ3GBtHmYtX+6A39kkmYU4OgEbI8BYxDVtUFoHmguUzGrDDoVPK2JciZbpo9zbO82QuFyaHQPnZnD7B7qMFYusj9M+Wo7oFSs8r4H38eVo1dScr5+qY9KNQiQKkeuFdFd11DRIsFeWWHi8irEfc3MCwkpJbGRQloHPYgZJsS2gTb6DmFmm0S+xYApMNuruAvDiFRQFym5JCWJIR+59JyYz4bzpFqRopkwfP6qc5zvlnmq23YQtGoIo28cpUnCx//3wywca6AVjG4vEQcpw1uLLPkWvSzCdTP27OtSC30WuhWENJ7hTr6DsxF362f+Pey9cPHpKMjOkG4Sk9Jamfp4jsg9zcQpUCnji0fYsfYoNcNgdThPzjSpnkWexN8upFsUQZrRMW0Mv0IVePjBWTb5K5isv9PL/Xtdi38WSFEC5u2YnO2eIdxS2WJmM+w90Sas9J9lvFrCSDOGNpVwfRvLMc+Qbmq9XKfTCPAKLnEQI00DyzYRpqTXCvv7pwYpBUL0M+SMFzl7O0syHvvqyXUtOSgP5yiXKpgzOQ7KPWe+p5sL3NH6EXI7X8f+9c9OBtMUHI+oC4oYmSpSd4CWO8CgWiP4Og16ZAZ5axRXlsmtHDlDfuWloi5MzKhLagggRkuJE08S1E6yYEnGk4BVARcxzP1mjGlk7B4t8OhskxufQ4npM0EIQWkoh0r1mU6nT4deOyIzLLSzkTHelU1ueGWbQklDqYBaUcQOyEBTMiWpttHlFy872nQcWkP9taK8EuGIAk6WcWR+hbG9eZqRTSnrEdhF4jDAtmyEIWnpMTYLg57yGbI9HjaXuKjZeElJtyBWxGnIQG+YEWuMzGwjlYXfMsmSAKN6foMz1mgVtdSlNdh39gM1TbFRIag6pJ6LZUmOnvhbBivXYro7yHSMpRKsJMTtLbEpW6MapUx3GrQGdhDrMQIdUJMZJiYr2SJGJvj18F7WPv1RsGwylbEWruFbPq988q/4wb0/eM6YfvzGbSx1c/zOV7+HsX6BKwCZ2aZdbVJa7c/3l5J0Ow3bs8hNleGBFRCS1O3P8547jtUJcMIGHWsYkXlEuRr/yjlGTMrm4oP8pwfnKe75eTzDRScthrfmaSwGCENw4rE1tl4yyPiO8kt+D9/B80evGeIXXeIgIRAO7XV/o+wECM/AikMyTMxYYXcTZCXDX23QKXZJ7RCtFUq4ZzKUrHiYfbM1HqmkSCyq4dgZwk1Ji+aRQ1T2bb6gyQDP+cqnu5C+EMzPz3PHHXewvLyMUufqgPzsz/7sCz7/SwFtmZjCIFYS2y5iRwGpX8HvncRKQoKWYG2uw9KJFiNbv3ZTOYdA05AmEbE7hKlH1zXdlojjlG7u7OjX+dZ0s1ky2pAHr5LHHJwCaeB0ItAg4wyRCWLdw4otpBWT1RPMShnWukwYQ9zlPYpl34yhFc1Us19ktPUobUOxOUk5sbDhiNuuSZpkfaNMQxKfKy576Ss3c2Rac7pH15JzlLJ5rjGhRYoVmQjz209I29BnvxuCR7zthBPfzy+e/ANunBxAoxASpjZdh/qBHwWzw+PH/zd7hQWsa7z4eVJhgAYlO8R2g06hy4oS+LkAWqdg7PILcn+nIT2P4L77AEhfdQVeIcKpdElnStjSpzzyemSaIXV+XQdLg8owanOsOBPk7Cnum3wzDxhLDNZKvM3vcfW7b+axv7ubEx87iW8EFMMVZtwySggWYoN7ujZvzHfpZCk/sG0bHz5lsmI0CETCrLVEsX0dhp1hpWM4cb+Mzm6sEs92LjjpZkiTht+A7XmG14oIbxOjK9Ms+j5elBLZJqkepBf+ABNrv8/K2M8BKTWlcLVmPDF5Qp1goNBkelmSzwSOlbHWDvCK9ro3ZoJKiA0bL2sT42ONjxKZEyxP7WPmRAuDFJnFyKzBWuIhUkjtDrWJNgDFC6xFBmC7HiPbd/HIP38aC4de1sbzcyR6BNuqkJ76C5w0oVfss3Fx2KZiL1LPrQKQBA4Nmce0LEQ7omuG2J+5DTNbJLn8tSgNslrEWbSo2CbleZeBquLR9hyWYfH2j7+dqlvll67+JQ4MHThnbFmiwQY3rtKtbug+yVRxxBhgLO2BMMG6sNokdq6AKiq8mTy77lrg4ddM9Vlv2XfSRarQlma0UMZZOElnXWMm3xU0rDK5MGC1ux/Huo+Tuk3JKBNkTU5mXf62tsLI3A7U8QUGJi4i7D1CEkYURJ6FYzXioO8QBK2Yt//HqwF4/FR/re+pjM+tLPOBWp1TfPkCPJlvbRhKU97dn1uf04o//L9/9YLO5yqbtwxszHFlCMzkbPF/icYkkRZuGNAtTiCyGGFEODaEy69A2k2Cl7jc8XwhaTYwpex3B19HIxqgpFuIGUXmWqx+wWP8Zgj1LYCF0JocGY65QciYqsho6SIa20unOU262iVNNNt2eeCWWZ3fkHY5bVOHnZgszUjijN1XjbEy26S+3F73sQXSAMOQGKYk7ETkys+u6mRltkFzpUtztUe/MUOe6niBysi5GfOtekCv1a/lEALcnE3UbiFSTZDzESoDrXGWHmFGX8Hl1Y3rzwczrOgFynoKkSo4qwrDSFLMXkTqWmfWIOCMRqYhbezIRscxwrbJuSaluRoZMUs1k3S7whLlvjRJ3qHb8shlKceyjItth7vECocWO+wYLnJ0pfOikm7Q16LstaJnbP6itSaJU7Rz7u+SmDUGK9HpL+F2TGSiz3QHzrIIN/fijVmd/Q7riI6QuGaM55boxjA42ieQB1YrZLWIlp3nxFKPLYUGb6prPrspYTgsc9JfpLOyTGXT5hdtbE9FEGd07RbzpeMoIbHSPvEa5B7FwMJ4ng0Any/MShH3SAm3nWCFkJR8RmbrbE7WmLtkJ7KS483BTrr+AHVhAQqpFOXjX6Q4Os7uN3wv+k//hGMovLXDKCEwqjsZ1gIHF88ZoJ2s4FhjdHqPg++TqpQna0/iGR4L3QUeWXmE377pt88Z16eOf4pJ6zIEEhCIpIey78BrWziRxKg4yPz5sTuG9gwS9Q7iNyK6ZQfRmiMsT1DuHMLrLJOVfYy0RJCf5eIdZRK6LC+VWQ6/RDVexpIOytAsTS8gZIE4ykjCjHs+Ns3r/vXF2O6Frbb4Dr4xgk5MliqiRNHzN/yFxaUao0OaeL15TGaDnUb0Rir0vHxf3zuZAAFZvATZLEgBWjBEmfZgAy01pYZJS0cUhYNUCTKKUNmFrcB5Xlf+8pe/zB/90R8xPT3NBz/4QSYmJvjABz7A1NQUN9xww9Me+2d/9mf81E/9FLZtU61WzyGjhBDftKQbjonh53CXKpjSput7iGGTA43jvGJvk88+AtMPJgSdhNf91MW4z7BgJWGIMDe+I7SkGKcs+xvlWedb082RG4RW6vU3demWkRkEJYfYtzB7NonTRWqDJPYx2l1Ovyrv2vPTHBG/zky9yeWToySpi1MociDQ2NrlkBOj0jo/koaY6+TZ6LYST35lgV4zYvlEm4ldG+nfYadD2G5yOii86D5GNXfuM9Eiw47MC6qx9VLBjs/NPshyeQ5u+1GGV77A3Sfu5+0TY/Tye3jT6M9jCAutB7hjQPOH6aNczT5QJqt5i3i9lkXqPJl5Ajs0GUUSFlYgiyE3/PUuf95gjZxVDrsWIicSytsfJVgaxApdjMH9ZCxjMnqGh9bCZC31KeUz6rHBhLub1vDbeKT3V9iNNtRq7H3t28jf/z/40KkDXLd4G4c2byUxbJSC31wrMmGk3OBHqPlTfHDnv+bhYBsfOPGHyCRhsfYy7M0SmW2QIc56l2KjeGG1A92z3tPE6a8XtvQxeh2CfIlsXLLlUZdIX0Ix8ZlofYm50i20Jcwa8GPRxXxIPkxDdtm56cM8cOIHWIh7tIKUfz0p0eslqanhk2oFQiKUwvNsFpXD/Udb67FRk8ww2Rc+yi/WLqMQCZS5YaAb8pvD2BnbsYsHPvmPpEQ40kNEkl4nQxYHMMsDpMtLGN0WWa5IaOdIzI016G0lyX8/2cW0TKIBk7U9kwzcV+X2Jz7O/r2vROZdTphb2L56lH1jPnfNdthzf47iVYN8eeQ4c5055jpz/PKXf5kPvO4DVNz+uaNeQhJkYIOZniu0ntoRTruN7AQw9cyZ0y81VBIThg00mxBI9t01S67qc+feQZRloE1Jt+DiOxabBzfzJP056doJlk5ZtjeTny2zZ+UkjYE2UlsEFZfICmjJDklqsnSsw+zhNpY7QBor9GGJYWZM7K6wed8gl7xivblCFp9xrjs64T/0Poe2Ldxk0zca/nfwDRCj8Y3+bxVrSPUL01sy5bl7sDIkxlP1i6RkLtZcnKZUghar5jBG5OJ7FsnaqwFNI3/fCxrHhUaUqL4O4eoqK9uupFPY2N96cYoSOeLN/XXAaEbrJYf9ZxfbPZ4oL+Fa55ZG7Rl87ZksXYDUdOmtGTD9MMV9NyPPInBUptFK02mG9Fp9GyJf8rBdi9XZDXLOyduEnZikFtDrxOTKHmmSIaRgcbpGGmeMbK1g2gZzR/p6XIZpMHt49ZyxLc806LVCitXcOdlyq6eanI4bHrh5G/mSy+EvPkbgbKPr9Ttryjig+OQ/ocUVVEbXS4e0ppO1SMy1/nMxjfWGC32IqELq2V+rQ7v+FSEkli4TPP44/mWX4bjrmlqGTd6GU6vHGBy/tt+duzDBknsKutNcYpYoqCn+PPcF6iuv5vH5NvvHX3ydarme1amVftoGbFmq0CpDPfX/263TSgQgBMWogqnEGdsoi1vk8i/evmEZHtDX5BO6Q2xZJNrkomGftd7G2ObMEhfn2lgC/uzx3VxdPclVQ4cx9RQLxhpWKFg6/AQTl1yOlC+Nvd6LM3zZxhAWOXvjvZNZhowihHd+NWaNko0T2ISFmLAAUdVFrVmoxMYIE4w4w3ZdkvpRnqj/AyUNl4vLALBcr08qD41x5cIplgWcWJsGldEdu5S8OYIGKs4mLAwG3W3UzQUWk0e4cTzPQ0sPMteZY6m7xM9c+jOM58dpxS16SY8/fvSP+amJP0LSfzeczhpLm/u65G7bI6tHL6mm29kQUmAUbKpzbeb3DYI/xZHZNzLpfJrNMw9xcnILmV0js2rccmP/mH+4Lcfd+0z2d9fIVw+QqAgr+gKJ+wr8vE3QSZg70mDpeIvJvS+8i+938NKgXQ/otSJiyziT5YbWBDEU7QJnr75mF2L7tP5g+8znM7Ux6icnuHpLFVC4xm04SYPQgczWFDhLjifrodIULmA+wHNe+T70oQ/xmte8Bs/zeOCBB4ii/qbebDb5jd/4jWc8/ld/9Vf5T//pP9FsNjlx4gTHjx8/8zc9Pf3c7+A8Qfb6Ke43lyrcuXgbYdah4xU5YeQZo8a/OHAC25MsHG3ysf/54NOeq99IISIzNzYAq6dxOjFdbyPT7YKSbn4IBAineKaZgjYkSc7A7ZioXg0VdQgX24ikBwKMQPH9e99Grf0ItXYPw5DcZo5SMuBXauMUM8VJCe/63L86c519148zOJlHK/jSXx86Zzzd1eVzOh4ZA3fiUwS18aHbkThdq89yf5vhqbZWECVow+Dxvf8Fwx7i1l7IO6v/EikMlFYoNDdW30m10De43HALkXk5mn5EOTGaJOYKRmiwTEa1uF5edAE7l0K/vNTZsxth2yTLDdreNSBsqgfuJ3OaaDRG1iWV5woKK69MPeoLyoJgb/5ljI5dx87hJXjwfozKON7rfxPfTLBExtsbH2UPC6Rk9ITF7zWLPBpZJBrs6WNsimbIGR6bsyHuxqdQtHHiMRQxii5WmCALNrJ4YTO4HLkR+Y70CjruoMUAVrsB9BueCFeAMKilv8aW+F6GzBUMy6aXJTSMPBfpTfjaYcY5yDs25SmYkiOhweGjs1RXVyg0FrHTbp9w0ymDySLy0kupDW5C0/eDRss2l0e34ek2S5FmCEFmbrybnn9htchOY/OBS3n7e36Lq9/8NhLR36/sTCAsg+LN34138VvYc+cqF3/yKKOH6wwdN/BbPiITeF7Gfx5/nFML88gko1f1SYbGSfVBZh77EvFaByVN7t5yLaXCfr5r5xAuGZP3hLx5yxvYWtyKZ3jMdmb5jbs39seDdy72y0sBM8tDmqFJyEQXrUJy2br2RP7CZlUCGJYNAmInJDMFRqyofM9OClojsv7aEpQ8AtPj+vxZhLQnubw5TSUJ6JgFjqrvZXy1yK33FRldlTixS2iESCtgeNLjiu/awiW3bqU8bDCyqUNloMHgqOby12zBOC0fMHsXIuo7gKczO4Sy8EQOT37n77n8GcJnQdgsCxtTWvjCf0F/jn5KFrohsHsRrGc0aa37jZSm9rEQuww1ZxC6g8TG14P4VoIjMm4wx8geeHob6psZD59o8akHVrnL3MOhsf103QJRmnJkpYETLmJ46/M2ThE9hcaH9RIYIQNypjgn0w1AnU2Ias3i5BB3XvlW/vGf7gc4h3TTSrMwXaOx3EGaguKgj+Wa+EWHvddtZmxbhaHNJca2bTijcdi3O+ePrnH3xw9y8oll5o6u8cDnj3LPJw8xd2SVhen6GcLN8gyKgx6WY2CYkk4jZPrhcxsDROGGLev6FlopVk9OE8uNNU2GHRrmNaChONjf11ppg1PBccwsA/uf8f/bj+Hf/dmzbr+Ku3IuGbb/89Ps/dJMvwOj1hjlKWZ/9udY+9M/wy85eAUbV8G2+SexexGN0u1ksofAprvpelT3LiLVYgsV3myMYFo1ChY8MNN45h/8OUIa5xKk3whpnIHOyEwHkYb9dyjq4Q0dI44hbGbs+9g41RN5ammf6I3SmKA3j5t/8XR6c+Wz2F7VwO+GSOCS4Qpz3VmW2gFKaU56VVYSqPg5yn6Ru9Y2o7TBjb0MLy4wI1ZZ6ywzc99dzD360Is2vrMRJBnK6lAVg2jOCgAmKSJqgH1+s8Zl3sbPNhIpeuYKOg2JltpMhR22zK9QnpzC0fAKfQmvVpcgtMIvlBi/6FIA4vJOkskbKG+6gR0D+7CCOiQhQkjkuo+Yt0cZ9Pezy34lb638LL8/fTE3RRPktEWqU17/kddz2Qcu440feSNv+6e3EaYhBWsIjUYR4dU3fG8r6jO65zO4XLh5E56/EaSNSiNEbYPtR5/ghtu/ghtszEGtYSRX4e59Jofdo4ThGqawqRgRptnCK9nkyg4CuP1vDn2dq30HLxbmj64xf3TteR2rlaa52sWwJN7ZWdZC4I5OUfY3snWNOCWzBKlh0Y3WMOImSvRQRJgYZFmKQCAw+EfjKEbUf/d7JjwpVnl0cCsHB7dxPJlGZelTh3Je8ZxTEd773vfyh3/4h/zQD/0Qf/u3f3vm8+uvv573vve9z3h8r9fjHe94x0sW6XipoFwLZRkYnkE63aVbqaPCgFODU0wtPYoE3rnrIJ+d3cxSw6JdCykMnGuECvpdagCiqIdUMalYQwuBnQhOBV105axU7vOs6WZLhzFrDNWawUxygIcwINeMUWYPbQsi3URmIYaVR1geqheAShE5G92LuXLblfy9fTv1zgG6YYA9sInF4BTXmbvpyOMoIVhubXRKG5kqUhryiHspYTfhvo98BkP3O8+kcYxxwIb1dhNmPMKEGj+HYAsKAU5qn3f9u/OH/nwRWrPS6FHK2zjlKXreNi498Ks4SYNTtNHaphUvM+FMsN+7mtnsGF53D5lsYygPGSdIEeE1YgqNPAUk+YIN/gBYF67DJIC9ZQvCsnAvugidpmT5zWTdxzAKEebgEp2TVXJLHcJRgRYJQhn9COA5WbL9CPkWZyeP5x7n6oUFaDYpXf1WJj/4JwRhlyDqEeoyqdjPjBrn0djhhxaHuckL+C+DdYbqh/j5N/40H/3Lz7PViBCbL0GRAQZaJFiRRrVjpHdhtaMcw2XUnKB39CA6y5G1F3HzeXK1EEMrzIER5KBAtgW02oTdvezU93O/uw1sG5lkTCUjpECPCFF4gsLqdnKG4jPHV3ht0UE3ZqkZF1Hw+sTssNn/ZyfIqORNpBBcOlXAXFthtWMxYAkOWBbZWZluwrywGYGn4RdL+MUSi8eO0HBqVBwL3yyiBgoYuy9C9gLcWg1p+1hS49YN3GGJE+bolkL23ncJ5pSgVkzRacbJzZvYdpfFl4f/mWp0FcV2m8Sx0Npn18RlPLJcoyscpu7Q/NL/82He/NE3k6qUxe56F12tOXzPIvJ1Eg1I5YFpIDAwtAWpZtJLYXTzBddzAzDWy1uFFhipRqsMs+piDHjoTt+xLnSXqLsOo40Oo7M+sQUyFbyybVP3LYQQxHIrSes1pOZBFKtEdl844Ipr7mXyupuhtJmHPj+DX/RxzB7jWxTFsbP0vRYehKUnEJV10mL99R8QA3z2wDPbHt/Bubjz1CrvvL9PonzP1pj/9GNveUHn+8LHPkbjrP9WUmBlXZB941mrDJ3GGN0eq6nFeOsexPgosRViZQM4fo9608HDhcOHoJCDnbte0JjON5JUEUYZUmyUeaIF7SiilTTZnNTISv110WrHCGmQpnlscRDIcNMTTOx6Azd7w6QqRcgUgUGchaQqJm9Xz0x8mSWYU5fRWTqJNDecUqU0UZicIXS8fD9IJISgMpwnaEU4QK7oUhjwaNcDZg+vMndkjcKAh+2a/bLG00u56P8ZhkBnIE1JZbDAjsvHadcDlk7WWD7ZZGW2xcrsE1RG8uy9djNSCgoVD2lKTMsgjSN0mtDqKqQTI9CI2hzK307Zz5Fbfy4r0SKljk+iUlS7zTbzGlYffQBGR5ClEbS1QLxaIC7lsB0TlMbvpBuDFSDzQ5Cm1P70T9n0vW9HGpJCxcNTTQodj0ajiRIxQlsIBPcVr+TKtM1BCXvUBBpBOwHVDF70OSLP0i9USmF8g9yHOExBp2irhF6vDNGuiTQUtgGiY5E7Bk1WUMYEA6aFY9o0JLgvYrAmVxygslDoBz/DFqYKyFsKHIPVcJkg6bHcShjwixxPPephk4s3bePeEw8yE0+xNY1ZMTsspSOclGuUDj6ONAzG91+MeJH9wF6QkJkBtl0hS1soLwI0didDqBCs82uTCClwlEf5VN/VzlQP3ZsFa4K01cSeGKM0uInu8jxOt0eHhIKXQ9k2XrGEevBj6LUMrAmEsPFNByfuYcQdMsMCJGdeVAF2GhOGITqf5xfjW6iKIkdZ4REWwHKwpEUn6vJTm38fnUVoSyOyHsrZIPXdXA53dwWjfP6Cy87mIvahOpXVHpEJqZejecrFr6Rsa3yFBy6+BWHm0VYHIaDsWpSWbL64ZZ7Niy3sNGbAnaBlPIZgnMqojzQEUZCyMtNmaPOFbRb37YZjDy/QbQZEvb79N7K18pw1QXvtEMezMG2DVWkgsgQtDAyVUB0exzkr40ZLSbdkYTbmqRtrDDshQnsIBJ4REnTXWGrmGSx4qM3fS1abRjUeRZY8jm1/A9qpoAVsqz+ISl/aDsrPhOdMuh06dIibbrrpaz4vlUo0Go1nPP7HfuzH+OAHP8gv/dIvPddLX1A4rTpmZKB0xtZmBZWGID1Wc0PctvMV+GnIZSfvYdh4iNmey/SDW7jk1nO1C06TbhpNq9skcUcwdbXPq1hNdimbo/aFKy8VQlDP6oSeRW4gwLBXiFcThK7SWe8aknoeJKtobITlIUwXpTQyTdFZRt7K08sfgUxhyL4Y/iMqz0VUuKQrCU1NzjU4cfyf2TrV7+xnm3XCTow0NKunOhTyfQffsPrR0TPj0y5b1dZzxlxccXHDF0809psKT/n5perXvksfHtr7/xCJHJFTYBBIPZ+c3oTOFFEk8bp7UEYPM6kgsgQn0MQ5m2Z1iaxX5KQVsZ0I7NHzTu4+FdJxSJdXSJeWiGcGKf7sLyCXAZ3DH1mjO1NFZD0yQyGIMPRZ5Xha0Te0BUIIfLPIsWyZq52tcOI4zsWXUN58CWtPPkymNRctPsjtY5fjS01HCxpacG/o8DNLVRSw+Ed301BFfK2QVg4QaBRKpJjrra2ld2E1tjzps5QuoLcW0FaGWd1BGkOm2nTH+90IRUWRrSoM2yZIL8UL70AWTIJGnVgIrtJT3C+nSYFHjU8z5v8rWpFBXmbcvZzxGm8Jp+lhrNuoW9RJWBhEiK2oMCMOUsJP1bBVmRNZh82ehdkGZWy8r+dEyL8JcOV3v4WGcZzoaB0QyIfrJHMFhCn7gqzBCpONLo/PThNfBmZi9sncVFBsZTQzjRtkeOUh/n74hzh5eICp/Sl57TCchrS9EuWwScW20L0V5MlVjvz2W5kaX6VRnsSzPO5fup+h1S04vsnpQLzMFDIOyNYF53NNA1soWFyAffsu3ANbh2H3J4Ey+vNfKNCJwjpLR9OM5um4c4TFQbqFJu1SipFIbmgc5mRxF4cdDVrw1fJeDnnDBI1rSXs9KuVPcXzcwz9+iCPHvsrqqZPMPfEwaRgw83ieK1/1WiYvvQJTBVA7CmkXcaaMrH/9suEjrO80UXiucM8ykr+8YvLjf37vCzqf30i45SylAmUIZO+s/Zs+8ZYEbU5c8QqOhS2cLIeRSpzOFnLuY9SbILAwmnVYXv6WI92CWLG2TgCZSV+wP0HjWQZRoinVW3hzLZylLlYzBKUImhXifL+xgK9P0CtswxOnf5u+ie6aFmHcOqfMUqYptlbMPPk4k5fccubzdr2HShSmLbEdi/Ht53bTPN1gIOzGtGt9Uilb1+1KwhQhIF/26LUjVKaxHIPxbdWvOR6gUPFIwiLLJ5tnPoujlPlja7TWeqhM4653Os6SBFMqOu4Qaj0g48qE+WQbvfku3noGeSOqYQaS1JRsfXQMRip0/GP0tl4KQNOvs+VIly+MNBnqWozECkhBGKAFGKBThbXzbaj247AwQ7eZgYZcHLGzmOerY22i9gm87l5QcHLgWvbN309BmlwsBxi067SNkM3WEHd95EMUcw5aKbZceR35wReml/bUUuBvhDTO8IsWMgmxkwaRXSaKG2f+v79sI4SkaFY4FGbkVEIxWEbb6YtKupVHRqmLfjmXGwxQbEiUtChqAyPV5GwHlSp6lse4ldBTJjnHpTQ4yELQZFvU5vO+TyGEJ/xT7E82YdgFVk9MM7Rtx4s2ToCgHVN3OpStYQwzj5mUAfCaj2J4XBB9VEt7NCbT9XEYaCx00iFuGJhDAcX8JCdNE2tklHhpnijoYqQxlueRLZ0E9+X9E2UxBgGlwgTtlTmCsRwIgV1fIRmZRKuMWFpgaG4fvRyZz/PzS5v5y9pnsITJ1sobWFQNRMGlaA4iNSgkVrhC7EZUVlw04KQOWSfBOE/lpQD2ZAGtNMIQaCkwkoy1dBdF9xEAJk49Tm3s3TSLdxCLDpsnA+6aqWDJ4zgih6ktxrytHFz5BH7pJG5+H7WFLrZncvyR1e+Qbs8T3WbI2kKLbiNAZRp73ffp1APCXoxW4PgW3WZIsfrckjd6rQjLMUmSDG2BliYIQSYdOsLi4SM27o4MA7CilI4vaXfa5AfKwEm0SBHawpQGORkzUuqveUVnmEAlJOOH+x2TwwGkdjHiDqGdp7f0BLmBG1/cB/Uc8JxJt9HRUY4ePcrWrVvP+fyOO+5g27Zn1hH4zd/8Tb77u7+bT3/60xw4cADrKYvg//gf/+O5Dum8YLNznLnBLVjdmKmRHTyUPMnFlZ19/QkgSl3qbokhdx4nOsaJR058Dem2Ac1qo40arp7hVez1aqIsn52Je10IKsSRHqEKiW1NFg9hFMHq9kAPYCYJcWEAabbQAnQaotOYtFHD8oogE3QnZLA8AseOM7rvetY6IZ9VA1xhuPxg4vPufJfxsMadh/6BrVtvIWq3EekScVQFMhZOOBhTNpaVgo7RasMxsIw6VVEFpdByXSw4H+HoCy/Yfj7wwbunyRUtfvv7r+ZUuotC+yGq9QfYnT3Gw3v/MzPGAFbawglaxM5ezLRMYtRQmQvFHJlsgoBS5IDQSBXD5HUX+rYAMEdGSBsNpOPgl3KAhRA13JzNY/UvMhi/jJnBj2CHJpXV70XbDqApzD9Ad2g3ysqvlz0WmTNt6PVgYQGxdx8DL/95jtX/hPqJB3Blwof0L3Nc/DDxgXfy4fYp/nE64nTridnMQqDxHButQxA2sb2AlQxjkfWj6P6F1SoTQuBLnyBsQZqiVYaQIWZ2Vpbs0CBiepWkOwEiJUmewHJcAvqZVpv1INeoXXzYuBsvi3hZdYaPHtmEIyCKVrhB/wWuKZi47g1nuugmBz/JvPdjABQaEd27Fuj5IyxWI75Sj7gc55xMN7d8rrP3zYDCDRN0vjTLWU27EFYOAXS/+HvQ3czL/+iP+fjB97NQqsNgF13R5BoRUdEliTNUL2amuJsg1Ew3mxyY3M5qz2DVH8Bsdbhy1ODPHs1h9DK6QZ1XZGv8Gj1ynRx/8PAf8P2dn2V1toNKNDJzEDjEnkIQI7RJohO2Tg4DTchd+PJSaZoIaZAZCiVAW4KoHmAmCqEztDBo5rdTTuZwfEU+knRSMGMDuXUbb/7Sf+BtE5P83ev/LZ9omjSyPD08SLp09RCfvO8RRDnHE48co1PbKFXoNBosHZ+ms7ZCWS1B4wQENZSsArofxFIGBdPDvmLrhXo837Lww43upcd7goHwhZVduGeVc50u7bJw+0SREAhp0LjnE+T3XIs9MIqIy0R6FZtNSBExWXGZXYKeOi3c+a3XUCFKFK4lieKMyfoJTg7vREqTHLDYlGyOF2hevB2A8oP9ckwjd5azYgSwTridrfeltUbJfp2EEAKRZKSOh9xyESePfonNl/VjZ8IQdOrBmeSXNI6wv0EXwq8nMN5phAxNlth5+bPvaD4wVuBlb9qH1pr7PnOYXitk6eTGXDh9nSyOMQyIjY37LWZ1jnYn8Is2UgpSlVDrLFGvdFGmZmC1gGV6jMRjdAAZpmT5CZZ3dRjMF/BNE93oASb5q0t07m5CBtLMIcauQOUGiA4dxnZ2k8QpkYKxoa3ASVLdwMBBmxoGNvOZL3+Qt+6/lEhn7BR57giHeDKEU4uLjNspQhrUZ0++YNLNODvT7ew9+ymIw4RGJ0GXfUJnFKEzjKJFFJqYVkYushmwR2mnHUzpU3ENcLfSWzmEYb54hEmhUuF0CmtqpXitHgvjJZw0olrOaIaKqYE8URKzhM0BP6WubYJGwHxumHf0HuX3q+PM+0toy6ERdRhMXXq1FXiRSbdaLcTUESXZL50U9LuBazPD9r+ODuB5gOVsyGwkZoRR3IKOWgizBGGG7kVc9pZ38Nin/rFffg9Yng+rR9GJBF0HswSGjbY9nNY8w//4RzgPP4Y9NklqOchrXs7jr/8XAESGS2S7WELw+Ogermkl7Dk2y8rEDWzLlc6tENEarzFPZyClPtSvKDI+m2BuPf+JDPlrRnEeWKG2u4pwtzL9k/8V9798P1OvWiGXLdDIcghMpBWQK8Kbr72Bjl5i8f4Ou09OEZsJA6/dQb3yJL3cKtmURazhidxBVubvP+e9+w6eHlmmQPeJsTTJ0N56xZUUfXJ0uJ/koDKFlIJTLRs3ffZZpEpper2IpJiisxxecgmoDWLUunyCSK3hmRItBJnSRGUbZ3wQT7rE4j60SEFbFHOSiV1Pea+tDdshkz1k5pLZeU7tGuRI8FUGllZe2AP6Oui2e8/qe8/Ze/yJn/gJfu7nfo73v//9CCGYn5/nzjvv5N3vfje/+qu/+ozH/+Zv/iaf+cxn2L17N3BuV89v5hLB+eghdHIjSc6G3WNcbPSNEiFEXzTXcljLVbmkOsTrbJu/eegrJOHLsM4xbNYNKKBR68GYx+nEkIlDLWbISPLZGY2/853pBhu6boml0UIjtMBva4xUkdo2QU4gvQoq7SFMF2G6pPMPYY1ugV5M1uzxy9f8Mv/3wd8mCK9gqODR3jyJOXOIW7JLmIq/xHEb3r9yH9/XXaKz2sEUKxRKFu1mkV7P5/Dj27j2zZMMjTQ4kj7A6fLSi4MpBspj1CQITJSIKdS8b8vOpfBU0lWggCdbMWuNHo5tkhoDWEkL88RnGbL3MLfpnSROhcS+Fis1yWSbmphm1L4GlCKx++VtZmSS+DX0df8e4X5z6G5ZExOEjzxCMjdH1qjT+OeTSJYZfOVOUm+ZcK3e15Xy07OUKAVm0kGmMcruvy1VexNLQ5eSnWxinDwB83OUqgWKI1OsnXyQUFksBEWE1eCxL80x/DKLSysRq12BkSkOWCFCCA4UbYT00ChSo0muM4II1696HlqpPxN8M0/X7tCetNFZjJA5vLM6H5+SCTs2+3QPdUnUFN2lrZh7NsjpQMDL9F4+px+mLXrcZX6AK8ffyQPzozwRl/kufhsS+MfOg1xS7JcBBtnGfVvrDrru+Vzc2wV0qCDOId1yI+Mv8VN47jAKNu7eAcIn+yXsuBLDgejgV1GNWbp3nCJdWMZPPKBPSvTyIfmmJFcL6A54BGMFbmku84V8nntOtrh2S8BIwecx5wArxRHKzUleWf9vfHHOYTEsMnAMfthf5i8Gety9cDenov/I5vzFXCmHMLMyyiqgRRtD2ShCkvmUi0UXXBcqF1ZvEfqablplZGaE1ECsCVYC7MdrMFkEA5RdZLl4GaL3JUYbBouDEOUSjr9xhEu6l+NNjDPQXWJIVmibZp9Q0Tk67et5zPlThr7Y72otTZPR7btYOTFNEoUcefgB9t/yasrJnRDUwHDprpMxQgiccCf/bdPP8eRdM09zB9/B10O9tvHvpgBatW/43WcD2zw7S1+SOCZ2KzrHyUs7dbrHHkR6OaziIJllQ6IxtMtEKQ/06OkNoulbbWePEkWYKBACL0sxkgjl9NfNVtThQLxCU/dJN5tLqL2mwLh6+LSkG5m94Sx0wmPkvW0IJEIIvrj6Aa6KLmdo8jr0WZmdp2YXUUnUf6XSc4lKaYhv6GxKQ3L5K3dw9MF5WmsbDoOXe34leEIIRrZWmD20StDeKAu3nP5YsyRG5MukuY01bZndaNVhfGcZgKVogeP6GEgoLeYwQomwPIrWLswwJXVNaptLoIvk1+eV080Qoo05sYPTgv+yKFAtkMUpan/zf3D+1XuIw5RuvsJELSAf+XRzy6ggROJi5UoseRVWO20G8wX2GzZ3rI9Rj+3AaE2TJTGnHrqPiQOXIY3nn1n7rDXdkowwXyRzi6AVWlpkIsBx++9ZJSgSq5A71+5he+UWTk+i3a+8+XmP7evB8f0N0s3OcLqA1kSmw45qnqV2lx2DRXzH5aN6jN16mpF8gVfsOsCHHrqbR8feyk82PsVvVisczWa4VxzlVVGe5uLCizpOgF4nJnCX2eJdut6ZE5SIMWID078w2dD5ylnaiU5GproYTpF4pYs/MUC23MbaPYZpb7x3uUoVvvTb6OYojN0EOgY/j+jFjObKeJUpuHkL5Vd9D0auT1bMBR0aXp7TNVWJgmOUYMcNsM5tup16vxqmVIUkJigcZ2o+T21iPQCjwQls7K3n3y9wdw8wec8i4Vyb+kSB2N7MoR/9PU56HcYadxFZd5KJl1Ef/DimGVGpuMRtm4XROrtmtuKkNgNhlYZ9gjhdwPTKqNQnTFLabYl/gRugfatAA2Ev7pe3w9cq/xtgWhKlQa0L8KgwRbjPfr+Oo5QgiUGCnUycQ7hB3+YsWiH6LM6kM1RCSoeIFpmZYqj1jHJhM2ntP/cezhqIlmk/owKQRh6tFVEavOil7YmKnvlLPA/S7Zd+6ZdQSnHrrbfS6/W46aabcByHd7/73bzrXe96xuP/+3//77z//e/nne9853O99AXFXHea8pFZKl4eXXRpGC0ST2EbJRzDJ+20mTWH2dx7mILr8/rdIauzHcZ2lM+c48w80JpeJ8Vf76qhSUlbMcdRWPaFJSHLVpW4vYBSQGUNvejhdAV2NyHLasQyImvNIQujZ45pPfIo/kVXoEsD6GbA4OQm9m3fzZGZR7EGdzFazPGLyU7+yFrmNd0ut6kyq77mk19+D5eO/QR+ucSm7YpW22NtPkQIePz2FW76/l1EjQdgPWFmb3c38VlJbVqk+ImHOXxhNcnOF3b4BmGiOPbgCf7lD1zJ2u1forB8J5E5xPDRv6Tq7WN5+OWAQWwuE+YOU27updXqMkRCz14mF3hELcGgfQqR++Yp/zPPIhem3/wmdJpAllG4YjvDIzbHFh8D0c8ctdoPMLm6AzHpk0hB2Fsj9fuTpJfVGXS28cnKZ3hDtgseehD/ulcztvMiOjN3oWqHua+2iWs393C0yQ3mCL/y/+zmv/7t7Xz6yRXeUWpzpJeye6BKJrpkRg9lRFjJhkN5PtPuvxHOND2RgjhbxjXzjLQEfPLPWbzm1SwUyzjVOYZzGh1GJOl2Nu3a3u9qt7ZCEvTI4/IT2ct4Mlfk7vgODrt/zy7rLRxMJjm9WjXHXgHR5yEN6DRGcXWIQOMbIHwTooBAw8WWyVhqIDLI1VxE0KUw+c0zv85G/uWbQArS1QBr1EWGEapWRe3aTbK0QPjQwwwNVGjaXRpmi9qWFSrhVvLNEC0FYc7ilTnJwKkvYr/jx8nZBnEWYwmDldwgNX+A3iv+CO/vfhmdtYlin4FTFS4VIxzzWqxaCyxtOcUB8204WZ+YlMoiFU2kCpDzKVNbClAuguc9/c2cB5zWdDtdXgoQ3bOIFWf4JYduyQUpCOxBRNJkU3wxq8dXOTXV5MS+Oqfecyk33g8/udzmJ+yA9yaf5QNzP0amBSQlGmMZOd/ErY5z1Rvfyv6bXsEdf/vnHLzjSwTtFtNf/QRbLragOAmVKWrJ3ZSsHAJBQY3SNVzSC6zT8a2IimnwW7sH6GUaxwi5eLj5zAc9Deq1gLMllVNb9gOHpzPWVMZNzq14iyEzlYBasZ8Rl1irGJnPaL4A9AjWs9tVqvhWKxqO4o3AB3GH5Cxdy0ZnBmNThN2sUOq9BoZg9U030rz9A5hhDVPMg7VGrnMcQ0UIsUgihzFV3wEeOd6loOfJFULCnEW2TuYlY3nu+ru/Ir/plnPGkq+4bNr99FlZbs5GGOfamdbXyYB7tnDPJuxE/7/H1stbmwvz4HasAxIAAQAASURBVG44VzIOaTzSprqpQHW8LxnxUPNuCoFHGivKK3lW0pMMJmUMXWF4usbCrira6Dt8p6s07TDDcDXGgIs1kUeFKTJvotprkEmy5QTz4a/AlitJS4O0HruP6iYfsyqInJO4vR39Ms1dl/DIY7dx6dRF7LACJt2M2cTm8Z5gz8AgKo0JWy2CRp1c9fnvbZZr4RcdVKbJ0m+c6ZbGGeo0ubee/ZjJDXI07USsRXMIN2MkmidNXbTMqOy98nmP7etB2iZGLMlsRWpmOO02iDEAdvhlHqotAP3/FoND3Dm/wBV2h03lAWLT58/nK7x7NOS6IOSYWeXzziO8Mr2ENApf1HECBJ2YwK4x5uzs+1VGi8xsYSYGhn9hSBe7lKcyXyBxU2QSECSzeHERIQZI6stYxig6VWy69EqqUztIwwBXxnD3J8h2/x5E8wjfR26bond8FVtlDLyxn9WW9tqoIMAwJHuV4snlebrbdpFmAtIYDOtM0ENEIWmnA4aBtXgKLTXZQAuna9ErRuRrLoWGhzNexB7PPc0dvTSQtkHlqjHGn1zDXGjTcyXRpq0E+QHq8uWgFW60jBlXiY0aWkR43TJLuVVqpTq5JEe1WeZ44qJUTBKtIY0epj1G1hXY51Gj7lsZcZiiegJTWKDBtI1+ttt6A0PTMiiWfdAQBjFRL0Glmt5qQmX42VVmJInGVH2tX0t87VyTysBIfdL1rUhJgTb6dmhKDyuSiPVqN4lEqR4IF7m+TtpZGZkU0SIhEqsYKoeQCSKzyCsTq9tClka+5rovBIl8djboc95dhRD8yq/8Cr/wC7/A0aNH6XQ67Nu3j/yz1BBwHIfrr7/+uV72giNbHsWxjiOyXaSugb+2xpHCJykMvZGquw3tWkTKoOWVsJMOFc9i6auPMLbjLP07IUCv91rMjaPpkRgZoBjuZjRHenSNjKJZIW8WzkRqzidSndBYX5uCuIBvO5iJJsrbKHMIYbZZ2dnj+NVPIJCMTg8wcTghXFrCcVzUGug45aqLXs7Rv/8LGs4IptBcunMz9yUprz3yKb6imxSyIW5rz7HfXyJsNXCMBq/84Ru585+WaddCVKo5dPci9iUGMSAzwe5gK6llcLouTGaK4qyHasbf8H6+pfEUztUkY0fO4I5GyA+vtvF2XEX2WJ6u9MknS1TaB+nmt9H1BlFGSGZ0iLIUI+6i7YTO4DIAEwwyNPjiCwS/ELj79uJfey3R0aPoNEXHCUbepXuyx1jVYuHIcczjm9FODiVrDDxRp7rVYd7Os5pt/P5R0kFqxe3ZCd6Quxy0Jh838YtVrNwAquthCoHlBOR9h4XpJg989iQ//co9vNpfYqmW42H9V1T4UTpZGYmHFUTkmuvGriEQ9oVPU3eMjfT/bHAIOj5WvYH1hU+hr34NZneNyPEQRgPhAWkVpx2jlcKwLKzlEl6nyKvi7VwhBYvjx3AKNSbG51mbrRIpA8sy+L0HNXeYm/kP2w4RpiXCQv+6TjqNP7BMd3aCPPDTkWAEmM0ldAdCwCBXKF+AJ/PMcLeUcP9lv0FBttYhPbiATnLEJ1zc/ftpffoz5H70e0ArrLpiLpth8WVtEmsHZroTI9WIN76Sy6NrCSwPhEAiidIIYdg4SUTVjJjb/lP4J97PICdorri8bNWmeZnPcjFBZoLHlp/k4so2qu02YTFGaEhFTLdu4O6zIffNEUw4XaoUWQFxBURmES92KI7kOSUFVpgACidbo73aYmjwEKSDfc06CUYKgQMqTemaKf/CuIL7nR6HdEBKjIrLPDDi8JN7Jtl/0ysA6La3EAUGiCEeubfGzMwbMA2FO+KR3to3tkwh+bSqwPTf0VPdC/R0vnVh43CRkUeQccot0rFemH7aU5tjZbZBRoQRRGhTopMUuxNhCJNKHdKFNo1CjSw/QpY1cAzIe6coyf67mUTptwzpNvfuXyBdWaHzstfAJf05vJQfJkrbOEY/06WQxBSKOdSKi/ZDhFlEmTYd/yZKYUSmK0grppvv63LmmydpZuYZO2BnO2Nn83EakzchrQLK1JhRA4oGX/3Cxxm8/262X/s2SiP9TDrLMRkYeWYtI9e3OE23SkPgF59/aVmu6DI0WaJTDwHNln0jFAd8HjnRZrFXIcptOFi5NGStB4VBg6Et/XFa0sIJTKxMMfFwjqR9hKZYo8BmqicNVjeXSC2DzBSczuxyskWcy3Zj5m2SuX6Hc6NUxKjYxNPHsLZcg2wsUbzcQ1S2kt32t/jdq+gWE9D1vjaQMnCmLmfpq39Dt7eJkiPI6wJVt8tjYcZPXXoRq9NH8AeqdNZWXhDphtb0Wv2siKcrL5VSYEqN0TpO4laRcZtErpDM5skDzhI04lWmqg6Fpkbm+06ks/3ZlwY/WwzM26RGhplaWO0ahXoHkZMElk2zt8j06gq+6ZIv5FjNTAIl0VmEVx4lTUPGsoypJCFTHicdm9+QH+LHwtdy+Ys8zl4zYLS8GRmtId1tyMxBGxFmYmDmLoz2s1WwCYkJihGW4xColJzogCwSLBiE9YD6ow+gOglG3kK1u3S7dbrHd1EckUALbcSs/cGPk7vq1ejRzVjVYdAa4bpEWYyTKXJBh53LJ3ikUEK7OXB9yDIkCjONUVGM1ayTFspgmoz85a8w/1u30CnvxO1ZmLHEkv3GJNb4hZG18C8epHz3PGWlma04zA2ZQAaqL1GQGVXssEpSmccC4geGCMWnafR2MehpvMBi6Mv7mD3xYZSKkKZHfuvlGM4QI1ePctmrv5Hk03dwGqcOLdNodomDhNJgjh0XT3D0wTmCTp9gG5wosXVkg7B6/Csn+hm7EkRTkCu5TB0Y/YbnV0pz+OQsvVaIUhq1ZYh2t0lHmKh1W7M4t8aEscTxkQApbYwgwVBdGt1FHvIfZ9/WFDdexYojrKiKfkozQEPlqK69CS0ieukqhtHfd+w1mz0zCWXZo/qTb3lRy81bXuuZv8TzIN1Ow7ZtCoUChULhWRNuAD/3cz/H//pf/4v3ve99z/fSFwRuY4htlx6ldN8Y3WN1IkJe43+UX0lmuGHb/0QYJsrPuG/zVbzp5O0AGLUTtGtXn+lielZTdyy/jNRVpHLIZIfQXSYqRtiGjW/YjDqbzrC25xO23IgGKb+LqqcILXDrXRLVQqM5dVFIbaLv5GidMcYYwckV4nAUITPkpiZDW7aSPPoAX1ws8843vw1TCmZ7E+y0X4UUn6KeNWmnPg+27mWqvJssjrB8n3zFZe5gHa9kU5vrEu/vR44HT5WQWmJGGeH6k8zMBDsy12tjvv3QD0BvlB8IYuZCl1Gdcv+dj3P1tlmy6sWEvTaym7B78TZ2z/4Tf3DJ67DGS/jtSxDCpFAuYNWPnjlPPtbUovb5v6GngTk8TO/RR5GGgYpCyFLMYo5spYYslZifh+JwiBdauF0HNDS+uoKnipSHTXqVLtqw8M0qvaxOYJa5fflhZr0W/sFjnOj6TORHWJ3W+EbAycU1VrNpbG+Mo/ctMblnL5e88W38xd99lHE3Rzy2GUOOgobAs9CGwBxyEY75TVEGn5N5cj0LllaJ9BK5rABCUqg6aMdBxDGp7WFXTbonBCaC5FQTw7aJg4BCXMINfMhsiqZgJChx3J+lMfEEn/2Rf0fFrXDgPZ/hxFqXwYLLXbUSlWwj68qxmpheC2ENoBKXizAI0aRnl5f6F77z5jNB5hx0K8Sf3Mfq/O+jsxTDz+Hdfzm1WzsolRGMJZheC8OoU2p5aJN+9o5VwqPPLXXjhDQDrVOE7ZFJyaVXD6JH3kL68P/gZM9H0+PaewvUh4b53BUPct/swwzG17PNsTF13+lURp1JEUAjhclvDgNRmn0zQVkp5jKkTobQoBa7hHsG0YYEpTADh3ljlAEzjzAKIBogIXbhyZJNo7yDa7JFRjOJiySO+lk4DQu+snWVgWaT1v/6RTbLbVydtNgyWWam3uDoWodG7TiLwwkLwUm26/X9VAhce4ww6RJHF77k+1sNwrSRTj/DWLZPsm944BmOeHo82Eo4rZSiSLGChKRcIvP7v9eWx+u42Gg05aUex68cR6oimSGQRgFfJcTxFqbp2xZJlPKt0CLp0MK93Lf0ZcIsYr/3hjOfN80cJjm01iy0OwwbGfUhD+nm0aZxZmtPnTKaDgqJsDaCYSY9lBUgUhulwHNi9ognOLqccXzMAUOS+EMMJVN8bP8Kr7nfolubpTSyHWkInGfZ8EcI2deDk4LRqQqFyvPPrs2VXHZePsHMwX6Ab2Csv67VOjFdPLBdUBkIidutkypBr5WweV+VTGcc7x2BASgtehTaFY4d/CC5dg/7wA+Rd4e56PPHObWnyvTWEp4GR2uMKA9CYJQcZNFGugZGziZdtcDIgZnBk/fQ3jyDrgwhO02qzgRH3UMUojYiMkBItJljzRnhiYVT3LCrys9GLgWVcmhlid+a+QrvWDuAZbssHXqCkV17n/czOrvL39NlugXdmMD00M5Uf7+xi2SVr2JZAapn0puNOdx9jJflL0UlPXTQ78Bt5F/8jJ6gqOkMJBhJhh0J2pW+z2fqYVrZ/UyUb6XVC8lJwZOxwat9CDo9duc9Zlf7pYs/X2/yuwWHO/MrmNLg79UdvDH9eaz1bNClw09imCZZmlKe2IyTe+7ZVkaQILZXGS5ddeYzmaaInsZ4nmXTLxQyb2GtQlCExBMI1QZrNzoOyXpVskYISZ+0SIMUEKjMgZEfRUUKa2iEeGWe6OBBouMn0Ai0Sin96LtIxkdZDmocGLqY1DIpDG9h6o9/nYO/8L4+oSAlQkqcvEf6yIMIlZGWB3AWT0ESkGu4dMs9UIJOKWL4aBWdKKRz4fZT6Zok8x02aQ0rj5KUEua3vApMCy0kTjRFL5ylHQactHyuD69HIGh0Ja6nuHr3SebnDpAFd6FVwOr0J/Grb+XIfYts2lthaPI7TRWeDlEvJUsVSZQxubffGWnHZd+YyN9//VYA7vnkQRD9svhD986y/dIxzK/T4CoJU2oL641Z8jar3bQfvD6NsAtJQGJ5YBgoy0DZBk6jTm5wjLT7EJmlMUIfUw2jLfA7s/T8URQghHGGbBHawWKATrdLmCaMGAZDwiMghVMnYfPWF+ORPSc85zcrTVN+/dd/nfe97310Ov2oUj6f513vehe/9mu/9jWNEZ6Ke+65h9tuu42Pf/zj7N+//2u+/+EPf/i5Dum8YGs8wS9038875LV8l7JJMFlKLuK/HPscv1j4P9w6/JP9jIDKEMu1Yca7q+RbdeaeWGbPDaedpw1nXeaLCL1+7zrFCy3qQuGbHrY0zyG/ziess66b2nq9gyMYGPRG+i/eyvCXz3ynV0gxt95AqgqkCymQYj25Rml7FWuswrUL97PaexNbB/IkskJW3sMfz32ea8fa3J20SVtf5ifCIYSU2J7P5a/ezIOfnaG7nr0Wph3yGkanB5iMhrm/7J/JANQyJV/3EMULn3n0UuCpev2vLtX43MIIp8KMX3gs4+0zAW/Z/oMMZ/+AiHLMedewPPhGDop7OKDaeOE2DFnAjiNI5886r2Ku9c2lb+BedBF0u5xtgkazTeyhBTbdOE7BtzBrXbqTLt1qDfWFDFpABjnLQNv9eepgYxseI/nreF/nAxyJTqLmNQYG/++23yV66HNEKke95pMbuJM4uJWVGcVXPnSE7/43l/D4kTu5cqiJ9volPUoGGMpDBop0JcSe+ubQwDOkSddPYKpE/JU2GFOkvRjDkNiLswQ7D7AI7C0lkHVImSReDCheNcraiWO4vSJm1jfOjRReHt/Ap7M7aNYb/O59v8u/uezf8L1XDPNnX5nns90CvdY2/v3QRvTKNrsUthynsOU4d3/+NUxg4MA5mm6O9S3gMjvmmaYKRq5APDONatRJ/+B9XH/Vb/Hl8v3onEEiQEZnpY+vE6/WwinW4pRmvsxktU9gaCAyTCInhx9KCpbN1lyNhbAIWZuhpTZXnZjgZG6RHZsuJigYZ3KaZRLj6y5EwEUHzueT+IYw1km32A6QAuxA9bO1Q4WtNJEBSEngVzm45YcBsJIe2x6/mOmLPwFaEI6OUXcu4+7VE9yw9BhDxkYw4b+mL6ds9Si4NvsZxkCjDZ/K2DZGS10OrdxBNf/P3LPL4GH5OFPyu4C+bofW8EeNMneHw08d9nfwDJBI3JbD1W7EtbqM8YW5F3Q+M1+BTafPbdIZNKksbGQgyrRfot+IV3Adn1wzoj5aJLEX8YPdFM2U8dIKQbefVRx0IvxUnUNSfDPiP3zhFzj8yi4vyya5ZGBjjVS5IQy773SMFwvkWw8Tv3wTrjeFEW8QCqltAoJR6wdYNF955nND9agPfgKAj31+jJtaKaa5SnW2zdJUmd5A31Ep2sNEFUHPjFmefoCx3Tdw9RsuOqdL5tNh6qIRpg6MvKjBJNM819lqdtIzlR5ICVqz/fCdPJZdwvCWPHGvy/Hph6DfMByv6yFaS5QbPW47INg7bHCpEBgIrERzx5ElKsdqvIv+M7Au85GeiQDS5QANFG7ZQvMfU7QaIpm5F/vg/UTXvRYMA/+RUyRbFDVjkeFOf0zSEkxs38Hj997BTTtSdtspD8clRNPki3N/jZdPeUPnAHHQo9dqYhgGzvNodHP2fE6Tb0y6JUlfxw0AIdBotNG3i2XXIk7XSJIGJbZgDoz2GyqZJ1+SoKAVr+vyWQqcEkackdkGjlFkzvswjvkjDBVzLDZ7/HU7x89VmmwqV3AMA09kqPK/RCazvHrZ4J9ykhVvjkNqhodm7uWqbdeTxjHTd96OWl8jdt78KoZ3PPfM206vS94+t6Q6cQIcbWPmLkyw1Mzb2PMuEIEUtLIHqfpXg5BkXegLqYE9kSdbmSFZTJC5EbBzJLGNW8gR3PtZvBtvpLfWIe2FpJtGCEaqoFLStM1ab5mh3BiqYGIMjlC+7R8Ip/aRDo2RloZohxnsuAikxKgtUzl+EP/KG8g3PJSEVrUHEoozPtamC9u8qfDySVZ+/yGyesTQwFZmnEfwFh8nmLwMAIMSBja5YoNlW/LFpa2Mu8tsb22FNsAJypV9rERPotI1EKfoNb5AEt3MV/7hCG/++Rc7v/LbB0opWrUeYSfGco1nHbgBmNg5SG2xQ7vWo9eKGN1apjS0MZeU0ggBvc6G9plhG0RPXQPdHEZplKXqTrA2/NROaQSEZHb1IHvNnf1GCuvo5TchVIKUG+MN7VO48SSGtAmlYrCUoxnE5IVLAU3v4EP43wqk27ve9S4+/OEP8zu/8ztcd12/8+Gdd97Je97zHtbW1viDP/iDpz2+XC7zPd/zPc9vtBcQk8kYUZqR5jTNtqKI4Gh2LY54mD2dr3DC28+WwnUYGNy97Xq2zzzExZzkrrufhBvOzVjIMo05mDtDHhlZf/I8eGqQ94zeQM65cJpRltiY5LK6BqfKIAysIAb6KZxS+WQ0EUBYilF5D9HpIteJj3S2iVaavZdfz/2f+wSPHz5C/sAeqr5LzR9gR/5mrut+hId9h4fTFVKRkPMH+sLYvsWlt27iwc+f6mcZOT1G61UmDw8TkaCsDYNFixSv4yAGvrmN8ucL+RTjaavT48pcj/u6PqeijP+2MsKfNxbZX3gFXXUL9y9GmCcX+N5bMtxwOzLzgZCR5S7zxRiZCOzAIJYzhHxzlK6dhjkwwOY/+1PaX/oSvQceJJ1fRLWbdA+uMWZKvuvlm/h8d0MvJ/Jj/NQHNPl6xL4nljh2YJgo1Qgh2V+8EUs6HJ77jzjaIBaKr5pf5gd2dKEzyx2rUwStGTR/i1v+SeYONfjo7z7IVnk7b1o5xScuyaEIiKxFRJbDiCWyZONsL1+wZ3Q2XLlBaIXpLDrejLDL5G96A1ZzldP5EmleYuQlWS8jmjeoTu2gMDJO4/fuW/+GQkvJru4kt+Zu4Yvd2/nIsY/wkWMf4bqxl/GDl72Tjz6yTK1XXC/p6cNinRR3R5hGUUBQRJJZ68SU0hjimz/7SAiBsX2Y7MQqg+/4GRqf/RDB4/eje23Sn/h3DP7MtazeOAVCEItTbJl5lCd31IidiMwM2PvYxZQf/SRfrGs+PLaLPVddwo7RQazT4uUDeXZs/T682hMU1u6mFjos6Qo7ph1yW2zKhSm07qJFDiU6WKsho24GW3fAMwSwzhfk6U54EjoH2ozdcD1z/3gEGSm2iBR9ssWRyfI6eanYU/syqVtiunoRRlpAZjnKzZtBaOrD2/nM2iMIEdD3sGGLGuMi+u/2Gj2irElVFbCloOT5XDU5xldOnKL0SAdxGYizOlrvPTEBWcJgXMfSL6z75v/fIEyDFafIFwOPqsyz8yy9qOeDCelw7VM+S+0N8kUmCq01ZXsIgcBvBXTKFt38Emk8hpEW2DqQZ6XTz4zRmaLXCikMfHPtVU/FSk+DBZeqUSLLR6gMM4hJch5GlJ7RXivbwyxXXbzOuo2lNSJT69p3IYaRkpgbZJyRBbCu+2vLjLvUft5tfgwzXWDkuMPx8iQIQeQU+Q31Sv6xeB/e2gLdxgJSPnvCXjxLcu65YHzHRufqJFUbwTTRZ8rLrUW6FMkNuFQnLO79mz+jXc3gUnBbNsVTBsHqY3zyCsHf32TwyvphLl3q+xsTxxo0aHGN7bC+DWFW+vuhNVlAH2+SLQeYQx4yD1lLYG+5AdE8SGE+wNn5duSJhEI7JfRTQv8uvO61aAyMS78P46FH+Mr0Ya6slFnKKixmOXQ4xifNr3K9uYNq6vPgB/8Sw7K55l/++HMmuYyzsj/U02hRxml/Xplxi9Tu6xNpFDIwaDUEa617AXCNQVTcRWcBpZdf/ZzG8mxhpxt7UcwqufokvaqLMjxyaDpxQN72sC2Dn5ka5c5VgyvdI4zkC9ycLwAKvP2Ugge59tiruG33X9A12/y/9/8WH932T3TXVvqE2/r86KwsPi/SLaHFoLMJpVKElCgRoUSAkRrICyTpZZRscnWX1kCX2Esphw1OLvwh48Z2nH23IB0Xuwz2zO/RaW1j4OVvpP14hyyAaCnBHIax33kvB9//MPahE3hBBzksGfqum5n/p9/HMjfRUYKKSjCEiXjlq7G7C1CbJXA9cDxE2kUur+EdfYLSVz/H7p/6Dxw/ukxpNcf/x95/x112neXd+Het3U8vT2/Ti6TRjHq3ZcnCuICNO2BsY5OXQAAnhMBL4P0RfhDyJjhACIHQYmMSZIPBgItcJLlJlqwuzYw0vT69nX7O7mu9f5xH84xsyfaozdhwzed8PnPKs89a6+y99r2udd3XXR9pIxOBHVoUVQln0/nNULBHs2SuGMLfvwI1xfjAbhbDwxiPrOJvu4o0X8COh0jtVTaPRXz2SIlfd9bVayVT8/037efu+17J4sKDqHQBFT6K8PYwe0gQBcmzVm7+Z0ASKYJOhGlL8uVzU5qObxvA9iz8dr/i6ezR2jNIt5lDy8wcXjnz3LAkA5Mlji9EGGlMaqzPMdrOEFt9gYNIVT+bQitEe4aF6DCIZ5JuAKXmU4wd/TM+MvQL7CiX0eOnMdMiRpqn1vMRQlDwhnjcidgRQufEkfOyCj7nM+/222/nYx/7GK973evOvLZ7924mJyf5kR/5kW9Lun34wx8+91ZeIKgmRcx8i8OdMraGjLqeN8Xb+JncCb5+6jcY3PYhLOniyiKnRy8iW5/HCRv0WhGZgn1G55b6JoZIz6QXyFjxOAmzaXpeCTeArJFnQBVRYYtEtHm6kdnlNn7nON0dGyjMZGiPdUjsfsDguy1yjQgsgVnKgzRIp1e5ZM8NPPrIl4iaJ+n2JlBJymNmmSE8flxdyR8Hj7JqF3iodIx3bFr3+dtwaZUkVghDcKeM2LB/iPpQG6smQAhis47WCrsbYEbGNxkBf89APPOJY6Rcke3SSQ1mIou8IRi0Fa1E0VWwIWsxYCU0pqtEbhlhGYCBNXeKcCREWZrASmguT2NnXph/z0uB7HXXERw4SPG1r8V/9AnCY8cQaYteLWVwIItY7VGeDlBOFT+TUMkZqMRC1CKsBR/nEkG4FgDHKmDS28lFYoI6HSpmgQU1y9SQQ95aZn9rBDO/AaUscgMzmO5ONiaf5SJ1muXMLghXSXIpyuhSajlk4wZmJYM18vIbzD4bHLkux06LAr1axyhpMCtkTjxJmi+ghqr4GYGX7SENG60V6nSInvURRghOE6nyBFYVM1b8JG9hqbrCofohDGFQD2u8c6PD4nSTTe0iTaGg1qOuFP/u+BRvLHa5cdzgLrvBRFKhoNaVbjJWF0Qa7ncCWc6imz0cbyt5/zZ0GhEvz0GrwZY/fZBwMEtYzWI3A7w/+1/I376WaK1S7OD0AmL/Sd46218A3T71QbqVPEXXQ0pB13QpegblS2zqh10cPc3jqxGLPY/R5gaEkCRGBDrCTAWljmZsNAel81+19GlkqwOMXrKb2qkTNON5JjxFKgWpZ2AYmqIhMeOIxLIAzcncLob0Mhoor/wAAkFKF0M7gEG8/Q3cNNVh6d4DLMeaA2HClNOjTUJDBNxpH2esZLKrNkqsG5Q3j1JjH76QFNo2g2r93A+FRBsuY1EbUz+3auSf8SxIFXgZtsoeeWlyJH5hRTsGnsWDNj6LdLPSPskdqR6W6WKFitT2SMwGSvYISBjJe5xeKz1mWgadxoVPuok4BAtyyqJhWthBi9AtQtq/TmTDJzC75KqTePMnMF23f28XAm0apJaBwOf+y/+I1dIVoBIqjb2Yep2QKRsdZvF4MN3IlC6SrSuMOCV1LBSScWcbKvMgVqdAa/4R4DXnbTy+ER0/IetIeq0OGCaGSvAaswRmCctOCOsHcYtlpq1TmIsCKwG3FtAUNb52sWSoBZPBIAuihqsL1El5p/C4wTIwRnIYJRdrZG1D2DVRveTM/81Bj7S5hCyMMqALpPUYzDykIUppYiNBZ6bJdK5EkCI8B2/nDmaPH2Sk2GJcOhSkQas7Sn6gw5fjJ3lr0k9dNGyb5WOHGdq645zGw81YlIazRL2EoBc/5+eiNR+rxC4g4w74bRjWKC8lUf2/c6SHkCbCNkmWTlJ87Zuez0/0bZEP80TzKVpAbLRRhiZZUzO+e8Pvsb+2lylnBznXYzqJ2V4aY7FxmihpU8laOAIsGpQL4wwtbWG4vYlW9RTLwQoz7RnEygpusUzc62K6Ln6z7zL42Cc+RhqFCMNgz5vejml/a+ZMmnPAFqJoGdcdxdAeWipkLBAD54dMko6J4RhEmf556QvNYnSKyXwFoQKsoiQ33qO+TyDNU5gZE28qQ7TUJelB71CL7q/fj5MxMArDyMwQhpSYPRsvY+P0YrTu0E0ySDQVb4il7ix2UWM390JrH73KFtI4xYh7ZMIucauG3LgZt2MTZmKUrQmNmKyTxx49vzGuMCXuzgpJMyRZ7OEsSipjk2hrjk6hBEC2exnZ7h5eUQ6JRw/xcEOzy54nEBb3rXR59RaLbTtLWPZOFuZC0lSRhl+gPPnj3PXhp3j9T+8+r328UBEF/XkliRTW8/Cuzlc88hWPbiuk2/D7FcifXpNF6/ezXMVDCoGVtYGI1LCwkpDE6KcQB4UtoGKEFqA0Mk2w4yYnl58k1+7P9VqcdbzGImOzn2LotMnbZpuY9Dj0qoSw4mPICNs0aHXaxIHEM0r86pxDPXHwf/3TfPJnb2HDwMt3zp8z6eY4Dhs3bvym1zdt2oRtX1gpay8mTpin2eFP8rnyh3jrwr/B1QaLKG7TBf7gwe24k2V2RfOUnAkQAqES2l6ZXKfJ43ee5oa3buVpFkWFLqK3RFToAQKv1+MyTO7feH5lvQBSSFZkEzyIcyGIiLSziliRJJeMkFoGOJeRbwTINcXBqSszbNzbIb/qkzRTpJuguhGTl+zGVgZefS+e833YhkGaGyCwB7gsVjTlXiLd457Og7yn+m/OtGF8e4Xx7RWUUuz7bAkrtLBCE8O0SAmwkrUFqQwQxGB8byrdvhGfF4+SFkP+S3YbW9uf5f+Id3F/tIVYxJhuFiEE12ys8L7SPv7W16RqmWKSwarVMQNJeS5DailmGxk2bvjWVc3OF6rv+3EA5o78GtHxIwDUPvEYeAburdupT7pAl8CcRfl53M0FosUAmbMo1wPkeI5emGJg0wt99hiX8WD6dYw0pRe2iFR/jrph4DRfYTeJBtK9TOaWKHUPYCeKxKuCU8WOITFr+PYIhppDtWOs8xyQPI2MkWFQDhMePEhUn0HrK1AkaO1CrUmcr+I2l4hyUxTzXbptC2kLug/MorohRhSioxxGaQURVUgcAyeE22/8Hd784L+iE3XIWTmuGm7z6ssO8PknLqXnmVDJUAZWD0j+amaQLYVFHo1c3g/EaLJNFzMy0M15OLe1yHmDMZDDGMiRnFgm511P4fW30fzyZ6h/7GMwM8Plv3AHM2+5pC91n9vH6NFbMKZCFAa9AUFp863osE26cpB33vGHPDH8b1Gju5AIhGHwVelxi5xgdWo7G0/+Z66s1BAVxXS1ykx9gWY5g6QAAkqLJ3HKEsql8z0sZ+Bkc5iOi1IKw7YJWjW4tErkx4huxJDSFBcCWoOSxAElDOKwS17P0/TG0EKB0Ig0QQNaGjhuDmmFXDeUoW1neGKwzGOZIh+a+UVePfh/ERhFrMwoxdkvUtSCd4xfz76gzgbdxkHy9FL1vT94jMgXXK1eWOXNf4pQYQO7NIYgoqYn2W28sGpehlgnEDQh2XpCbEuyNR+RKkQYkoqUNANxNsToRbiNAJkTyMTFMGK2TEQYw3N8zguIrRli9Xkyixd21blXXn4tkalwk+8jIgPaObOhKjRIW1IMXNh6Fd1NdcxaA8ePweiTAIlt4GcMFoauh7VKbrXKFSTWCVjzt9t6ScTWqQ4Pi9dSeGQZI+xhdSskdg4hNI/u2MDkpqswuwY1O+BTpz+K5VwY4xbXJ1CigLINhMiQYLMwmTBfXsUwVzhZ9PtVbIWLaQpCU1H1t/DQW2pcPfVqIjXAJY/vQGORa0nCXMRWFI1ciIxToijlIf8A+FAuuJTG++M/t/ce5LigOC8QaYoQLtIP6JVSMg2H3KqHSEW/KqcEgSAiwXn1AM0rN1P0fC7SqzhCgbGV1PUAyTERYKaAEXG0eQfmvi9i2DaZ73CjRKWKVtZHFgSmbXDoOc7vdiWL8CcwlEBZVRJvXdlhDcc4P3EVuW6GxsFljMSke3mOg8v/8MJ/sGdBkPWpj/TthPyBIexuC8oeGFD2BjA9H09pUuqMXXaSuhsz2zLIEiFESMaUWIZEY+BcepwbnItou8NIBJ+e/WsGjBzJlhCVJBhWgJBtTs//HY2Ni+i1lNOFpX84U0n7uTD2mpCN9tVI1teiWsREVpfPV+ZgceVb/PVLB6dpUFzMIhQceccuUg0PtQOMwoNYA2MIkZD88DbQApm/FzFmY5TzbP34AIYv+8RDW+BnU9zQJHQV+x66h+VdLkF7hZ7lkNGrZ3zhexMpWrc5U4SAfVjhKdoXKxYv282hrbOkRsrog/1zr7SYxUokup1gDZ//GDezexCj5FD7qwNopcktl1FWlsV2HZUt9L3qkJh4XHvpThaWRthW81GLs0R+mQfCJ3ntFh8zGWd1uYTpCqKgTWv+o2Tyb2J5uv3P3m7PgiROKQxkSBOFfQ6ppU/DzdjYronfCUmV4Kn7TrPx0mGyBReVKHJrfqGlgSymZWC6698Rm2fNg2s+jzpNkVpgximm6vLA/B20xmuUFnIYZ6lSOqVhSkeOIu0pCqmJg0WpHbNSdkiJMAyBxmE1SDhhXcax8BQSDTrmv9z1IH/0w8+s/P1S4pxJt5/92Z/lN3/zN/nwhz+Ms3ZTD8OQ3/qt3+Jnf/Znv+Xf3nHHHXziE5+gUqnwvve9j4suWjcjrdfrvPWtb+WLX/ziuTbpZUFR5cmkGVZFnb/LtflPrSoaGEBQTSX/6O9gJplhNH8lCANlJIhSlczKPEuHFgh7GxBPnyRpFm1b2HE/yJV6GoDQPf+1upyz0tbkaEBl099x6r/fRyZNUb9ze798vXr6ZFcIDIJ8yswOm533nkJYJjpK0d1+OfBrv+9NRH/51zw21+Q1O8aIU8Xhqeu49PjXeVWS50NOi1La5VjzIYbY8oy23H3qbibnBxmaLmFFJovFORKrhBGPAWCupYaL79FCCt9YvfSorDMnOlxp7cYZfxfvf/NP8X1fupuFaCMAm66dIl90eehJQaYnkFaJji1x4yIrG46ROClez2b5yEE27bn85e/POcCaHANpgND09vf96AoXD9NMFY7vEGU81HKAZSoMzyRpBMhWSKP09Plr4MgMuwffzvHZfTwipxnRKV0jR1FmGS0JLh2Z4q4v3IuUElk7zO7Bh8nQ42FzO1r7IBwSq4bX24ZsO6TdGLNyYfiUOYbHslqE7WWyx5aRnQz4Lmm3hzN/mmhsIxEbaagG42Ob6M62iZsGqd8CU6AYxRInMYoK51QKpCSdFObneOXEK/mLJ/+CSEXceezTvM0ucbVp8JRhnjFK78WaWuBw/2qG2Ax5b6r5B9lPVYi8BMe6MBZ85wJz0yBs6pPR1U0/foYABrgIWP6D/0HNO0peH+PQ8ACWb3D80kWumt+BY74T1Vsm8ee4Zr/Pk5UQ5fXPlYPDV7Fz5YuUqlnurn6U0dm/YDLzFNPWJmIzhzIUqAjQFJZcjGoKW7e9/APwLZCrDhL3utjZHH6jTqEyyeyRHkJC20/YfKiJtEKeuHmE2PZomEPEVhmBQTvzVbSY59pf2svRD/w7kmIVIWDn9sso2lAcKLEiBJOhzy8N/RlWcRxDWsQ64o96f8uHVy/GdQyKTpFXYPCYtlhUBq6/mY2ZDA5TcJ48UL+rkVMkwgUkOe2j5AurAKuE4uk8QoFDr+zgGiFhzkILgedrhBZ0J5pUjo4QDadExTyJ10UFIW5cRcsOWccgsjSRTIlVgHmBCxgt02FspYqZvQwsZ+2+rXG6Md2Z+7AnbiAsZJCRSaa5Byca6xfe1LqvVjMUiR3DmZ37PmOX2usdlxZ0HQ+JJDYM8q0KmUYXv1wANIph3EyBMO2CSpk7fYKBiQms85w5AZAGOXSYAwSaHgKX2Ogh3AQMRaCjNf9gi8RNyNU8vLbD6mCKtksUWhWKQY5qt69wGOi4JFaK6TsYiWTmFXUi1c8zXdkWM/6lPKmhINGceEONk6OnGb2/QKk1SHOiybErWmQOncJONtOp9OPUbM8HVUaQ4hjbCLwGRtJCeFliJFlp4ssMUkakBQfRDID+75UkXYQKMFTmG0O2Z4UWkMgIrSCOxXOe32lawtEDIEAToPV6lXYhFYkRI1NJqdm/Z7UGm0QqfPaDvUAY8frGduQlbHy8SZTN0Rko4FCmaRwiS590bHAcIx+hugltcqh4CZwsWdtGaYXjRhRUma7ZQACrwTIeGgkI2yBVEVKY9IImiYjBAhCEiY9pPPdkoJVC2JKYHjYSsba81SLGih0iU8FLND7fDp40aA7351dP50jCmBhFkvQQroHWAl0sonpdDM9EoIl1xP53zKOUZvTrBVSqOLVrhZv+ZhtmT+IsSsSGEqleIjViIlIsYaDXFLLaMFFxvDbXgPD64yEcB2WqtfVo32exNdCjOlPs+yJeIB6azlSB0X9/LQu/8zDJsk/WFlz0tWMsjthMX+PiRtsATTHjUtw4wlKmw2hiclFg8t/8O7gqU+KiDafZf/Q2mq0DJMFXSAKT03s/yidOfpWLX/XD7L5lA8XBC1tJ/Y1IohS/E2K5JmGvX2H0xUIcprRW+jYTQxPPTxm65bIxFk/WOfbEPJ1U0VjqkMk7REGM3w5BwKWv2IgQgtnVAFuFRMJCKoWSBmHaw1mzWbBWF7jsa4sgcow5b+dPiq9kIh2jMdIh2+qS7aYg+ryJFTUJ1OU4a4R72nIRZoAXDyDsNitd2FjNs9i2KGY9lrsRUikePlZnqRUw9AKqdp8Lzvnqeuyxx/j0pz/NxMQEt912G7fddhsTExN86lOf4oknnuAtb3nLmcfZuP3223njG9/IwsIC999/P1dccQV/9Vd/deb9KIr4yle+8sJ79BKhosrs7u5gVbf4qe0xI9d4/HfpsxWDH8bhpxffxEq4gFw7ARLbY6k4wnheUvUXWJ5unyFRjLiKctd/YCNOWUUxMXj+lW6Osd4uXwrMkgdpfxI32suIvn5j7Z+BJgVp0BnMkEQNSCFpp+iVLiqMueZVP4BZNWg8ehdzrR62abBcHsdxHC7qXY6loW4IfveR3yZJ1m+IOtX87eN/x+VHt2BFJoEbseQqlLH+GSvsD6j4XlW6mWsO72cgOCmX+T3xOT7qP8nvfe43+I+N2/m8/0lSlXB0JeTOJ1aphyVWkwXSYJrhYw2E0a84CCA6/V1DN3dh7/JUfvRHEF6mnwK1htJKFwxJmIvxqxAtR2BI8ttdhCmRZ5l2Z0wFlkdcHOfGgR9DIJlhgaVqFUMFmHGDi07/LpuyqyiVMrOS8uWZMZalpJXdgRAeIBCJ299R62qs4cwFkzKZNdbnirDskiw+CdoirhfJnDW3dFsdnEdeSzb/AGiNCjWqq5BGF1feh8iuE/2ip+DgAd5/yfu4eeJmakGNWusERB1UbJCebQCdJqzGNrefGqCT2BiAI/Qz0ku/1yBzOazNmxj62iG2HM8QuynLG5scvO40ojSGNXoZ7qbX4folKssRQgiEEEyMDPBx9yrcZahMFdl8sUWu7BDltxHksxhpDqltlF4hiQLk5OT57uo3ITswhOk4RN0OjblpxrYOUB7OoRXUVYpGoEKHK7/2ITL+LH5mksTIItLjBLk5wlyCvP6d5L7+5f4BpcGe8TKbhipIKSGOwM3gVTZhGjZCCCzp8PaxX+X/GPv5feMB7jCOsyS6tIixwgEK7esoBrtxKSAS+58f5/iQyqO/7yoROsTQ+Rf2UN9c/TTI27jNkOFjDYxUE5shtZ0zKFthhf17m1QOsb0ASDKihI4GsGPRV174EhMbWzoX7mO1xA985QakXtvD1pryTJvhR4+yb7SBceLLjD5xgiTjkvP3PGN8Utskzrgktg/6aa+3HkbyJUpz60SyrQ380GI5zDFjm0gk1QXFWmUCJIMMJrfQsANUEJM0m9RPzmKJ8zt2pspCUEVoC6E7CDKAQMdtdGBgxIqoF6AKksRNcds2I8cqPLHpADWzi98eYWy6ysRKHpkI7t+yRM9OcCILmQjaUyHJiDjzfUbW4vTrm0gtyC45bLi7guuW0CokJUAlPkZqEZcKpPosD0N1eI2CMHHSXeTMq1BBynjQJgwNlnyXoD1MNwmZ6yxQHpzASCVGLDBigQwVlja/ozFxpIOlbYzURMbP/jeWcNY8efsQuCjjLA+jSKGDBLO3Ho9oQ71kv+PT6xqAntdCaonXXr/Hh+l6XJ5EWbptTXWoiA5ddCjpNDuYMXipSVkmaN/EbRcJkpBW0qUX+xixwDEzmKlE+Alxo3NmfI0YDCW/9bmmLUhNHEpnCDfok25axtjaOn/XwVl+VTKVZDshMgoxWj5iaRVb2ThmDq8wjK0sUBZ+I8WvJYSNlBiFYUBJmJy4eR6hoXQ8w7ZPb2Bq9kqcIITUwUpNHO2QEQUK+QGqwxuoDE5SzgxidiPMboQdCcxEEvgdjlw9S2uwh9u2ufQrm8ndPPFNc/j5hrdnEGdHGXMwQyYs4BkjWH6b5aG/esbn/KEcx6+ZpL7zUn6qdTn3LcYYRswbX/EIQl6E4d6I5eVR8QKd1Ud45NO388Rdp85Tr54/Gssd9t1zkkfvPMqT950ijZ/bF/JccfaxpPn8RUAD4wUsxyRNFLNHVgm6Ic2VHmmiKA5kz6yjemFKJB1AoAwTDWcINwA3dDm+p82J3XuRwmcuO8+wWQL6hRQ5a16y4jZJOtB/D81I1yFaiys8u0x26WFMUibLWd69e4wr7ACBYKnt8Nipl08Be85Kt1KpxFvf+tZnvDb5HSwSPvjBD/K7v/u7fOADHwDgb/7mb3j/+99PEAT8xE/8xLk242XHiqyxNZzsxzjZGJFKquUuJ2o2Y1pyI3m6s9fAaP/zYdxE2llqccpEJeYrtx8ifY8GAyxVIVX1M8c24pQmmskLwLskbxQYMSdo+rPUTRthmf1qU0phH/gMy7u7mEmRqdwIteA0SXsIqSt9YiwDlgKdaLQQ6KaPM1SguHmKytEneerUjeS2TZK1LU5nh7mJy3lf/W4+XZCcMDTv/LvX8Xfv7Csdl/7ocX5x7u107YAkl9IY7rAviRkX67t9Z0i3C2Rn5kVH+ZkpoD8/9z6uHz7JFyun2TX6bxFANVnmD0/8C+TcEpeX/y1O3PcK3OQPYmZ62H5Mz/Vx2iZ2qPFP14ALn3QzikUGfuKnSVOH1l//PjqOydX9M+8H2RjMHL1Fn8xEjszGBD+CTDskNSVG0eiXNgRKAzfxi5Ur+POj7+XrnsvmgVspr9yJJUJu2hTgnwyp+Q4HO0P0zDp2rh94CASGyoIQ2EGCUbxw1FuuzDBkj9KdmyZ1TdL6SayNWxGiQHHXdXinDpPaLmHsIwY247BAYWQ/IVegFXjWCfKrH6NWupmgYGIGKTI2oNOh+PA+bp28lcO1w4yb/fNExdYzSLebJm2+ciplybcoWwkbvQxGGJwh3YwXLw64YFB9349Tevvb6H3uo2xa6BLGRZYmu8xsW6FV7XHtJy8ClaJJsML1eaoTRFQnJvicHuM1px7g5MC7yY37tJZb2GuJkonZxgjbyKgLgxce6eZkMuSHRwmaTdrLiywd3MvURTvptQNiPyXMGFh+jB+/jq3+IeTM37FQuYbVindGwRO4q2w5nuHwE/fS3nMjIFCqXwnV0AoZ+CjDhCRGSwNlWVjCobDjl/ij42/lPfEeQkJ4NEf+4lv7uXtaI5VCpt+DJ9xLDCUEyng6aHXQovbCDqgFsdEjMVvkam2Kna10PQM7SLH9GK01TmeBW/xl5rMmqerPz0LZJEaLxGjSbHo8dWySX1BLKMtn3+ir2TE6QWno/G9IPhe+8Mj/n+O7BvpFnlKFTDVuO+RQLeSBT1coen/E0NvfSy59ppJf6L7qqVNxOXzdq868bncjhk9cBOlJTu3op02PtLJ0Z2zuvaeFU8xymQGZRkCnHZLPP73JspmR9s1M/+PHKDZDAhI23WRx3Y+9j2y5yvnAfD3kQRoEKz0KbkiQAxBsfDyicXgH45NHOPU2r6/ESQWDp0tMPTrChyjxtyeKJFLwTjXCNClNAz43X2LFM3nHpSWM2CRfcrlobNMzvjPNRtSOHyY63aawaHDjoRtofv23SJaXyZQqFLb+v4Rzp+me+DRhaRPdYkhlLmaxehrPGkIJhxGxi0fu+ByV+CS14Zt4LM1TVyZ7Nv8987mQ2275Qa4u7GHp8AFai/MA7NnyKnLV78y24+Cpafx2iNaw5+JNGN+wwI3ChC8+OUNs9UCkJFYeJQLMjk0QSOL7TqG+dhCR07D2lRtWHK4bfmmK1D0y/UVmWADAOn4Mgjz5Vh6/5dLNGTRrdUxvGk9UmZ+t8uCc4pev3k5y/zL12TZR+6tMbb2YnUNVTNMlWflD7kkL/NqIRep2OSwr/Nbwz7Hjiu/n+H1foT5zmjjwQa+Py4arLmFi85XP2caFY9PcdexzbFqzK1b0UPjYTUX5dI0rO1fBRS9NoYlvh7nsfqaX5ontlPxcjYv/9F6mRww2nV7CmHwF5Tdeh1kog0qJpcmqkCxjoJRGJRpc2GIr9sxqRKppRA+TihJONMzoQ0OMPilobFE43lbGLdknkKdTSFbAqRCcPsn8H9yLPTSGe9m1JK8Yp718iPteNUR+1aO4lMVzMue9iMKzoXjbBgCad5+i24oYPl6jWawTqYDYOokRF9EUkIaBFIJO1WPz0h6uCBaYO9VlYmOXd7/+ET521430Wj0yRZdeq04a7uWxz55idXorkxdfylU/8Obz3NPvDO26j1zzMdcaDj08w8XXb3hRjp0m60S6aT3/dbVhGWy4eIjl6QZBL+bII3MICaZtkq+se8d2wwTPXyVwSug1laZYK8Cm0jozO/cTZU6BgPHZMl2rzS2961mmgZLrRL/d8RG+jRIVeqQkCFY7BqrbJRarmGmebQMuzvJdLBavZ2ygwmarjSkUS6nJv//EnSzI9f6+95L3Pu++fzucM+n2fAshHDlyhB/8wR888/wd73gHg4ODvPGNbySOY9785gv7hI+MhEVrldFokBWaKBt+ftcEn9rbJdMET2l2Nko81dyP5w0jkTi9VRbtPAOWxuhK0lghhIUWMSpJSawaMk0gCjltp2wtvzAj4xcDObOAFop8IlCGwirYCMdG+wGiN41z9B5UIc/Ulh8j7SlWOy2kHid1IPQ0hXYNozyAdmzShSbGUIHx8a0snjrOse4KTb+MH9j4uQqxDLhp9Xo+rR7GFbChPs6B3/gCRVmgm3ZpGz1yuMxtW+H45fO4R7eRiHU1k6PA3lRAFr43U4vsLUNPW7oAkO/luGpxJ0eGLWIVYkobR2Z4pb6VPekepO9jJgZWL6C4/ziDlonoFVgdVYT5hDAP9oLF5CWXki2Wzlu/vlOU3vBG/KNLtJQmbfrIg4uokw0KlBBJPyXSP9rCGvYwRxysowG9fJ8Ys6MUq7dK7BQRArrxEjudnZw0Q5xNVxJ1DyHjNrnhzVwysIXHnjjFKpovLk/wGqFQaoXUErjtiHKtTmZjAXvywln4GdKgk7bpDZjYsoRqP4EhU4xsBzO3lbg8RFIooVp10sefwrH3Y1kDpIXfBcfFcZdhFWTZQyhIHANbKXA9mJ/nxtwYH/eqDFtFTghNPmtjW4JCN8IeybJ90yT3z5/C8rs4UlI0JWaoz6h55fdoIUkjlyP/uh/C+fyfU9w7wZ3VEA1YgcGTN57gknsmif1Z7E6O3IrHvBeRCBetJJ04ZjmFofoyR0fH8LqLiF6bMK8wYgPdjjDUCgxemH6Lueog0jBBwMKhJxndtRsnYxN2Y5QByjQQZBD5V1PK3EDu0J8Q9VJcOYjrlOkVOlSsLFNf+isObd1NN9XEpkMKZG3JgE5Jjz8FQFgo0R0aByS2kWO7dzN/p+7jnvg0N8+8hs1TERT7qpnh04tsXn5uQ/J/xrOj0Vnl4A2TxA5oCYZ8YcSlBtAK2+8yfthH5EOyyz7DRzoIIdBA2jyOf7qO1F3M0KU438Y38ihTY6VlBnJQzTp0W5JKYnPx6iO0WwMXNOkmtaBli7VUUYnTiZg4XOdIYnF9u4EzWMQvd7Bas0jlYCX93XizGxFnLBACmSQ4YQOjvkrGNxg51GJx8/oioGApLpvq8lgc4Kf9lDE7UiTNHlpEiGx/fEasST538SyveGgMcFmemyH2fThPdVl6QYKqdzGkBg3VzjKGSolii0mjg1kEI+pnT9i+yY57p3gsbHCv6rDJgPfY45yWCksKAqtfpdSeLFLdPdK3A3gWGDmb8pu3sfQ/HkO4JlgOMpvFMiRJECHSFG/TBsKjGrQiX3MJ7S5Rt0muWEJjYqiA/M5rqR+4n0nhc1C7eEbI5toPMbDxKT574rP8+g2/jk5ThDRI45Cg2fiOSTeVKvxOf2Pm2eq/JFGCdCWJ0Y9niu06qWrSLkeYuX5N29zwJob0urpUOi+dPY0nPCqzefq+5rPoxMdK4zUNQg9HWoxm+5tFQ9kOh1KFUimjWwvAJnqnHiGIV4nSCqZoYVmDXJnMMMjlaBVjZRTZkWEM0yQ/PLpGZGq00miVYnoeWutv1URWFlrkrQmanaMUM5uQMoMkQ7PawpEZyJ6/OSQ/WKVZ6gfz9mgO0zVxTImVt1G9GeL5YwgmEeVRQsNgVRm4jolKFWGQYDsmWRXR+ORfES/OEi8eRg6/GmvqBhAGQnugmzRjnyHTxQKEDsAo0Pzc/6H95CGEaZI0V7EqFQx1nHq5QqnmIZQk07Gxyh5G9vynoz8Xiq/egDAkvccXKSxbHL3GBu5l52ce5PTEz+NmR5C5LNoQnBrbSXF6GhCcWJJUswZX7TzGU/Pfz47rCzzwiT8gTSJAsHj8BI2FebZdcz3FoZHz3MtvjzhI8PIOQTvCdGSfvFf6RalCfTbpZrxAMcvgZJGFU3UMQxL0ItxMf52eK51FuvUifK+/IWR15lghJCvGMLMO0iiD6PTVb+2IxyvjDHQK+EMJucUMbmSupZ5D7Dk0u/8SRIJtujhasKXncWzwOE5zAzqR9MxRnNospteioW1uqVh8fCVmSKTEGv7w/jvIF1aoelUKdoE3b3tpOKmXrW5uoVBgcXGRTZvWd6VuueUWPv3pT/MDP/ADzMzMvFxNeV4ox1kaqstl7c3saz7JD5VeQZQGvPHiHP/1/gbvxqHYSxnK7KSrmzhmDhU1SIplWF4gbnZBgxlXAI1hZTBVBQRY0TKLEVyXO/9KGiEEhjRpGIJsYlDvCKQFaSDoTRRp7e5L+VwjQ9bIM+eu4vZa2B1NnCmguw5JU5E2AoycheqGXLLjap78zGeoFZcZzl9FlKScTAe4uDfDQGGSP5v9Km/emGFTfTPZXt/40MHkkFunva1D6/L+zao6VECdVbHEappEJ+rYExe2auv5wt51MTxwYu2ZQCuTis7wBuP1LKYmGBaOcnln9v3o7godZRLkTXL1HoOqiFhL3+nlQnLTPqqUpXZ4htqT89z87n9x/jr2HUK4FlaUYI8NI2yBIcAYy9OxQTV6CGmhAs3K4jKD1SqZgsTqRighSKXGaZxGuiWS8gQKg/Hiq8hKjwfGr8cUbyFjCCzXZPvl4zw1+yukK6eoth3S0ihSFkFFGKKIMiXxQo/MVRfWDblsVZC1DmI1IHV90rgCUQ+ZGGQaKwSdJlIrut0KBXsFEdfxtmwAYaDDK6GzBeUVkQJEqpGeR9oNMNKEwROLNJIV7MIAdpoQLLq0d5oEWRujm/C2Kyf53TuPAJrVSLJrNCDy169NQ3wPl2R3i9iDEmO+ySv+9iK+9M4naVd6RI5DkrQxsHB6il7Ro4RLPQ1ItCRONX+lR3h/7zRTM4u0pq4jyNlYaR4EZOITfZ+V4RdmaP9SYeqKazj0pS8Q+T5CwJGvfhFhbUCakqhs457uoW1JNNPl1MYcj81UaaxMY1/mIBoJYcYhDULMOM/O/+dHeDC/ha++7efZOVpmebXGvekf82/+UREvzdLIC1Z++hfID16J0vDGoV/iS09OEz65l/yVe8C1+yq3VFG0DjL0gR8+38PzXYf27f/A/MY7AHA7CcXa6gs6nqEtpNpCdb7A8KlRkCugEzQGWilIQ1zvEczcJqxuStKV+AUHZWn83CpO3KLWMvBMg46SVA0Dz69Ta7SAgRehxy8NptIKYiBHYvfnvNJiP15pCs3FrSZxIukYPmZcQZOgiHD8BEMYJBq0IVC2jW8PQX4I69gcSsRItb7j1hQ+sRPx7usOcmiTy7HHJKqe5/BDp1msKN74yssROkWbWba5A8zma4x3hgmCkLmn9pIEPgObX36fyFMnWlDOYgCi1aVn2pgioRxvoUyTk4M2mZaiVwi55K6tpFqyaucpr06zw3QZdAVFJbEzJrvftZ13PgfR9o0wCjbKT6AdEx5tYBQK+KdPY42PE33xs8hbXk/5dT/FgfLfk+14hJmIfM0iKRpoYWAJRa26g2LrE0Sxz0r1DeR1ysPdUS5ZeoK9/l5+8cu/iAwTNq26XONdysy+x5k/8CR2JsPUldfiFZ5bNSTPskRJU4XJMwmzJFbEcQxrpFvPMAgd8JYztJ2YXJDQ6dbAnUSFK6AU5mDh3H+g7xCWbVOrtgGojGURqyluW9EtuICLCMu042W6gU0qDFKlOLDaZUclR2ulQi90Od4w2D3hkqLQ3nV0ml/EDQxmjEU2ZTZwotRhAzC0dQcnHrgXw7JIwn52QxrH+I36czcQmFtsspS12Wo6fT9g+m6HMg0xY+BFICWeL6yCR67mASlGO0DFKVFXMnHNNKvHQ/RD/wH3//dlZqcjZrsaaaRc+X3bzqThpasdoofvI62dwD/0JDqMYOXvkN4wsrwJYdhkD5eRxYTp9lG85hyuOYhwR4jaW4mnP9sfD9PEGwjIn/wwsxt+rK+0LftM7R+m+tYLv/JV4VWTpLUAb6aA27IwgpheZpJr/uBf8LE3/jG7r9oOWrPsFnhk6+sBTbF5FF9PMzawSr1zmul9G7n89b/E41/4JIm/l16zQRp73Plnf8jbfvU3z3cXvyWay11UukZG0yfJTMugsdShPPLC18FCCDIFB5XqZ8xRz/dYUoAfxGgNQS9mcLL4TA+6JMTpNQkzA8S5MagdRRYt0HG/UrLdAQPCos3h0jhGp8s4ZRZEjXalRrmeAAK7F5MkY0jXw9SAJWiaFlY7JZXz2HIPkSdplcs0B9uYqxnahTKv7S7y2/UKA7bCqu3itPU3dIMe//OhP+GemXv4zZt+k6z14hYWOedRXV1d5Wd+5me4+OKLGRgYoFKpPOPxXLjmmmv47Gc/+02v33zzzXzqU5/iv/23/3auTXlZ4ZFlS7SBa3tX8PXGo9Q2GCAlljQYnHT5HwRUlCDTjsnaVUzpEGQHiXNDlMyYy3bZ6DXSzdQVhFzfUch2FMdQjBQvDJP2IWeUnp1SdwXNQRPp9lP1orMulozMMuSMErh1JAWSbL5PMAKgSZsRerWDWmyxYc/lmOU8F5+4h/0LTfKeQ+TlaYQwMng54/h84ciN3NK5BomkJ3w+Wvkc/37jB3ls2/Ez36mVRMnOmedGspae8r2aXvoNUCf+nMxmk1bGAscGIVCmgw40llOmW82QujZDIwJvso00+zupvVJAd9Shl1foWt84OF85P+km54S1Sd/IV4gXWqh6F7vd71Pkhmj6O9XJPXdhCsgOWkgNacai59p0xq5AGxapdBhwN7Kj/BqmSjfT6Fj4Qzlqhkm7GVBbaPPDv/HbPH6Ly8nhLmLN11DJHok9wPCBJqobY49fWGoLS9p0itDeViH0lxB0SHtForqJY5hEYxsISwPU3UsAEKQQ9wNXrW1YPUYrKhJ4BmYvhXpIfMn1EEWwtMQns+/nUrvMSOqilCC1+4GsbQqqOYenfuO1XCUf4z2THj89NYk6Syljmt+b6lMADBsEFLceA0yKK3m65ZDWQAd/xEGaBYorimw9ILVMCk6GUsZmw0ABb3CY/7ZkMRVGaDfP2Z6NbifF8C4Mz8Dnwvabb2PDFdeQBAErxw4zMJhy3Q9cxMU/cTmGITEChbsa4i/32HLNWxkbuh7hmfijisZ4glHeiqzcjLY2cZk3xdiJDn9+3zE+c6DBgeA0y5dFpCsLZE/M4/3xr6B0iiEleccmlhaF1Tmq2zaAY/arhMuEieax8z0s35UQufX7+eBsyI1ffuAFPW740lNc/fkdbN7b35iTWQvWfM6ElMQzD6KSFLuaJbupCwmMHq6jzQLK6GKoDEO5LEN5l1bavw4MLRjYfx/qjjvgs3fAQw+8/AP1bSC06Fd1X4MT9GW+W2YeYtdTH8IwAQGJVcPUeSQ2sZehcrrN9q/PftPxnNRFGhZCrc8FR+Q04Yhm6ft3UN7WJd3cZhsGA9LksaBvAaINi9Qu8H357+OpbT06YoX2yhKLh55iZu9jhJ32OfUrTRKiXhetNSo5N+lymio69ZDls3xWw0wZ3ytS9hsM1myKzhDdkZj2oE8gFW9dTXmN6HD3wqP88gMfYaiwkR3KYALJjnde/JzKtmeDEAKj0Ces0k7E2G//F3SvR++++8jc/2n8VkBzMULXAtpVn9pIh/G6iTb6BR8Co8jWao5PDL6eQmuWq8NjLCmbmTjLpSs7OF0/zudOfY47Fu7i6wPz5DZOkkYhrYVZVo4foTE7/S3bZ5y1oFXJN0vdkihFnRXWxpkCQjTxB3uYhZjVU7MQGOSEg7CrSG8Ic/ilSw10zHXrm8iyEOFpjNb6OTFgDJCiGckXKeeyHOjA7ceWiYKQXNUBMcRMbYbFdhPTLGJZQ4w707xubpiGtcJjK49w9/TdAEjDIFuqEPd6z2hDEgbfso3H506xJbOHvLtuz+BnDmLGCilScM7f+soczCCVoFOJqO10CafrFHr9eKm6eYnqTVMYOzezlPZ/dNu1nuEfnM7UiQ7eQ+eRx/qEG0Cq8R/4I3pf/S+Ai+V7FBY0hUYB29iDZgIVmBiVi7Avfgt2UbPz5yfIzf1HaM2xVCnRGOoRuymZpo1xgRQJ+3Yo/dBWsjJPUIjpDkF34wRqTjK48kCfWJUCK+PRzVboZqvMjV3LauGVDAUOVw4uUZ9rcmrfEojLMbx3Y2cmCTptZg4+yerM6fPdvedEEqUsTTeoLbTptUK2XzVGGivCXszqQutF+Y4oiOm1QoJu9IKVbgAT2wdJY4VKFFpppi4aOvNenCiaAYSZgTNWQAu9hHsf/zLd7JP0sk8xemydSFzMlcH1WR1r0RzqEmYXufQLh7jy08fYdfdJhHPWpkOqKfoKS0k6xYMoIya1yzSGr6BdeAqnUKY1tI2Z2cexJRwOiyw2dnPNyd8hG27l5PwmPvOw4DMP3I1KX1x/6nMe1Xe/+93ceeedvPe97+W//tf/yu/93u894/Fc+Pmf/3lc99kv6le96lV86lOf4j3vec+5NudlQ9w8hUJxZfdilt0OP7X/F7lp+cd53erPsKOgOe4opknxGgFG2L8ZpTpmLj8AaHZmFjEtuVaxVCCURBOTih62rxiumOScC0MdMuKM4cUuiYAlz8QZ7ZOpvQ0lRJAgj9VQrZCyXcW2I1LZBRSdkQo6XbsRpwqkJDm2hBCS4UsuIm+scvTRr7HQ7qGB+zffQOuQYC78GD31oxTTPD6KL+X200ES1m5EB2epi2QKQqFJQIfIfxKk2/qiPGk36C3P4XsWIkowogSBpj2QISmeReKKBo41j6AvzV8dqaE1iNUIsRKRLVcveE83ALHmW+Bs3IVZyaKDlMF6iJ2aJC7EehUhDTh6jFbUQ0hJkWemmWk7S6l9AikEUsgzKQrd2KCby9Iu5Jg+uMTxQ/M8FezDswsI6aAISY02mQZkWj72VB5z4Pynf5+NzNnFFKpZ0t4xpBWiQoeq4WLVV9DZPPPhJWc+J7uHIe2CM4zGANMlzJskjoRYEycFGB2DUhsjPIRIQ1YCA6ENkjWPB3vtejOkANVhwHQxhCA2FSIFM5A4nH/V7kuK6g6E4zF41QMUH/gqbi0lcRWNwQbSLaFESGG5g4xTEJI0XiSIY7YNFviMn+fH5weJLQeBRJOQ0iFbD7A3j57vnn1LCCmxM+tkTdTrL6qlJSm/fTvmUAax4DN0uENxdomJeh695t1VH+gHhubANjI3/muKF72R/wuXX8HjpK+ZrH+AX506zQffLGlnYNfxiLGP/z9o1b+n/NDuSSrDQ0jb7AdpScpE/XGc69/2Mo/C9waUXL+3yESSmvkX9jCeuSlhDmYQtuwXFMka2JsKRM0ErTSGleBNOlRWupTmBVI5BM5plE7YXM3Tkv35QySLzGQzHPMFnD4Bjz4KwbdefL/cML0sypR95WWY4DUClNZsjH0EGttxINZomoizvAedIMHpRHjN8MyiwwkSsmvepYa9Hg8GZ/nXoKE22ifQiggafsTp1fZanqLAHrqJiXKBu65aJYpC2rV5/FaDx//hr581RW923+M89YXPMLvv8We8vnryKA999C+470N/xL7P/P05jcl9f3uUj/z7r4EdouIQ7XdQpo3T8zFOeqQ65quVR6iPdogCyZGTebSWjLcX2daY4Wtjl3KtligEjayB+zyyGdztZWTGRHcTVCchd8stGKUSzJxGrvb9yYz5FLtrEGUSjLiFGbcBjdApg8U8hcIQT+Z2UmydJEdEguD+xlZ+ofhuRrOjZK0sjyw9wv+cvx3LyyDN/m+2eOipb9k2aT5T6faNSKKUxHCQyTppqcVZhcb8hNeMv4/B3BUIIUhWDuFueekU0q67TrolOQvBPCYBhcUOMlEU3UlmOg/TTZoM511G8w5PtUKiYJbKhIuT24OQVU6urhAmcb/atD3JDlMx3N6IpWy+Pv/1M98xeskepGmxtFBhaaG//ojDb115dHb5NHmrT8xqrVEEaB2QabpIU4Nz/mISI2fh9PobkdqAuOjiKY3S9M3gB7dRX+wQRymGJRmYeKZqUS0voFvrm0vl2y6ndOt12KN5iFeJjn+JtFdD+Q1UcxrVOknamkH1aiDA2f5anKt+ltVjt7Ia/z+03J+id9ZGgZv3LpgiYd8OQgpG37TrzNIozrm4r/45tj/xCTbdcwirs+6nq7VGa0XbziACj2Js8/YrD1BfCMi4AZapUeJGcpVBdJryyd/5T+epV98ei6fqLE83kaagOJilNJgjV3KRhqC53Pv2B/gOoNRZMcGLoAzNVzJc+oqNjG4uMzhZxD6L42j2EkJtYSYBWmu6YUwr12TnG2ZIVUymaTB5YIikIdBKYZRsqnGJ2FnjGDSYkYFRkgjRn0+1XrO4USBcA7drg9B0s/tIZRszLZHvXIcdH2WwWOCprW/iN7In+bPBeRSCu3sxx479MNHyGwhXb+Xf332KH/nDe/gXH3mIP7/n+LP08NxxzizPPffcw7333suePXu+/YfPws0338zNN9/8nO/fcsst3HLLLefanJcNAoW1NlybWwOcEv102IbuMJ6JGc877A1TRsOYdO3EagXz2EaJvVaXS4ImNxZvZf+KTSyXMXARWEhtshL2EJnnVgm+3ChZVQztUg0CfOkhPYs4Z6MMgXe8Rq8TEzSaDFa30KNFRpsgTGInQRhrJoh+iKgMQZIS75vh0stfwbFDjyM6+3n4+Ha2j4ww7kie3L6TLY+fQKUmNsf5pJjkT4tfJ5EhTjhBXrpAPwjVpBjJWmUiYSL0PwXS7SyUykReg7IrCImJuiluT5M6FmGakvMbZMw2eQ7gTjYJ6w3ScByBSf5Ek7Zjk9S7mHkDabx0/h8vGtZ2g+2x7chyGStjQycgWqvi1Ssr5OnT6Pwg6eGHEVe+CnG2IbEQaOliN49QHdtGr92jrSWGXFNfoEk8B0ekPLDvLgYokl9L7ZM4aJGQ7UZk8gnmcOZF8Ux4MVE0ywzEJaKZafTmjaS9GrbbRtoJhY6NW29gLs1Ru+516AN/ghApoMFYI02sMtp0CQuKyItwBjN0966Su/IEwm3RL0VsopMSq+M57F6MkgGTG8bPtOGy4jGuH6nxRDSPZwq0AYmhMN0Li6B80ZEdQuSGUMuHGPFD5uZXcTtVlkaXmdhXRDoept8h08qhPIWR9Dgg53BEmUsGE8LAIPRDnIyBwEQIC6+Xw955Yfq5nQ23UKQ0Pknk9/CbjfXXd1aITrVotjoYjZBCU5IVVTbsC1jaVCOxFc3BHqWmDXEAOKRIrkKyVQoerrl8dsdPkw48Sv2rX6VjaUb2n2D5bTFKmkgBY7e+GpK0v5Do9ti5eDfGVa86X0PxXQ1lnaWk6LmM/ModL+h48XKPxd955Mxzs+oSL/f6JvlIzKEsnc/M4Z/ciDkWYuYM3GZCqR4xZwTE9iJWOIAfZVgd2UzceIq7L30PieyrGp2kx9TqIbjz8/CDb3pBbX0xMVgex/TjfgGfROF2E6QQ2E6eQ8MmwnPBEsROFzfq35/cZoDbCvveo0FM5BgoS2J1IjIZE3tTAXrryjTjLJNnd6lLkPXQaLZZBl4iOLTUZDhrkbEMmm6OH40v5he9uzk5DiNff5xtdz2Edlwez+S47M3vRAhBbfok048+RJokxIFPr7YCaMYvvZz9d/wD4qwYobO6zMmH7mfj1dc/6xhorfnLX70Pv9Vf8FZGY+LOXyIzv4a0HBCCfGcFAodM18eXAc1tTRaXi/iBzen5LG4ccMP8fm6Ze5xDV72TrClpVRymtpQxvHPfkDZHMpgLfbKot3cZe+sW7ONbiVdrFNszxFs3kVmtoFoRmY5HnOsx3I5pFusEIodSCVvdDHGuzHBjLxviBerOMHsji3+3aHLrFbeSt/LcdfoungqP89nJw7zRu4zuyhJhp0XYaeM8x+amYaxfeyr9ZiI0jBIwLBQWQsVY9Q69sXXSaTK7mYQIFfcwhETmFObYS2d/4TlZqicKJGaKNhRC10AEuEGCagUE2QQjDugkC8SR4qKBDIHv89nZOm+ZiKiNbCQJBplptphsNSl5Gpm5lY32fi7K7GI6zdJptrjj+B28fvPrefzLASvTW+k0UlAKwylQHH1u3840VXSdFbLaxgjqpG65X/HVitFpjCzl4TlEHy8HhBCMGGOoRYVv94hv3EP2yHH80ZvIWgnc8qska8q3NFZYa2vI5MQyyXQNM32KuGPiTFWQXhZr6+tI5mfwtoW4176ZtFXrp9RaDtKahGiBtH4Qa7gIURmdGhieQyo8Ej1J0LAR6jDFhSxmKsldO/Stmn/BwZ0ssvHoJuq1RWInQWa3s2E5xV7u0Fr1qdmSlTim5BkgDBLTYdaC8ViTD1x+6oqD3Dc7yCk/h+sUUekQhS0DdBs1gm4H9zz6/z0btNYsTTfIVzIkcbJGtkm8vIMQgihMiMPkzHnzfHH2XCSMF77eMUxJvpKhXfNxvmFJ4IcphWCOkByJ65J1JDqImJt3mcodhWaB5eUpmqGFUW9gCIvh3jCx279OrNDoe+ePuTT23oE5dDnSLYIGWXJQ3ZhKq4xaULRKC4RmBjudxIzLKOmQax7k6sGUueWEHbLLNiNgJklp6QKBjDHsDkJ4HGss4S/n+OLBJX7/7iO87coJ/sMPXvIsvf3OcM6/0M6dO/F9/9t/8HsMcVQn9OdZyCcMqArztAmJcITNjDzJuLeJptRMtUPEShuVVWTIkMZNIrfKqg4pHkoxDYNQK4R+WpkUs8HPce/AhUOC5K0iHatJxwYhEi4ZzhAs5chONwmqGazUo7G0wMjW7Uy4G+nJVYhNrI5NmkQYMoLYQvtRnwSJEnZf/So+9eHfZ1Qd4q6jJ7lywyRWmJKa0BguU1o9yJL4Q/5BvZ9g4Ucpuz6pkrjGWkU1LUiMJgbrV658eoIwLywy5KVCdtRm2cxSDzTg4Rh1pBXjyRbYYCMJRJYMpxACVGSQmCm18TZQRp3qB/Fu9sXNUX/J8DTpNjpF0oywC5LsSpdB34QoR+I5mIUhhBCkc5qaX8PZJHAmDULTQGqNEjaNzCTFxjzjA1X2LdXo6wMkGoVl23RTzUx8gqJy2TR0K4ms90vLqQQrDkGbF1Tl0qdhCpMVqwGb8vhJg2Reocauw7BT3GYbs+ySOg5m2KaVDlE05xG9YwizBLaLHrsBpE3qhmhDIMIOUkQk9TZWJiXpZujMTlJzNtEsCxKRkNgWpUx/7kpWGhQ7kp3WRgAOmkfOtM12vkvOseeLzABEHWJtUoogGswTDBmYQQAoICXTCFm0JW7kI40MWdMnMZYZHerRqlkk7S5WVqLoIQixV1dwNuw63z37tvAKRcJuB52mdFaWiHpd7EwWaRvEOzXiIdBCIbREyBSva6NlP0hqDPlkoxy5kRWSVYEIbdxU8ocqS0dpFr+2gcgeoDBVw11tIESPSucYq/mLkUIwNlg+My9MLs9hForMfPkLdOMXJ73inxJacl1hIzGZ/ul/9cIOKPOI/A+ceWoOZZDHmmAZoDT25gGsTZtZ/tQBht9zCVa+QS82qcxrCoseQa6LwMI2BPHgOPeUyyiVEFsuUiUcrW5loH2CTHsR4hisC8P0286XSLy1OVFojl52gK4dIckz/NjPcLq4v/+e0cSI+pV5Y9fE7cYIBXaQkloxkWsSZi28Zoj2TOxqltJyjrbuPiNSN1LIrsLJ6+YZOzRBWIenFltcv3kYjUYJA7dyLR9dKWFuEZjDknvu75BzXDbGKf/4O1/Fb/mEAViW2/cH0hnSxOTJR+cw7BXiwMW0YPM22VfQac3SsUPUTp/EKw/w1IMSy8vgdw2qozk69YDQT9CACh+lMZuQ23EF8eoc8co0ucoIMtWEnond6jEt5zlRjLETSTEXM33Y5jUzj/CWY/fw4Z/6IO+WBaYMC+UnuNueXxUId2uZ5j/01UFG0cGenCSt1bCHBgmbDQxTYkcOK6Mh4FNdCtjxyBLLt4ydKWBwcdnkrqUK1+gWXlxn1RkmR0QQlvjAkTHkD72Gvzn8NyituH/+67xu7CrUksKwHTqry89JulmOSa7s9mOXZ1G6dXsJXnsWbZpomSO1HZJYY89nWQl7lDqaplyhJC1I5iF4EsP7yec1Tt/RWGay1EfaKEOTCoGZVUTRKm5vA72CTSFSeN4ElnCxHMXVm0Y5udzg/pbDG3o1ssUqdXOExfY0htyIoUMKMiQTPMGW6B0cdJ7A0xk++7n76HWGiEOFmy9SX2pimorFGUFjWdLzv8zu11yBm3+mEqzXjAhzAXPJDDl755nXtYixEw8j6EIm843delnhGhlimeD6Hu1cltxMg97oa8gOlmBgG8mxvqdmUc5TrB2E2iqy00Oke4Ae8WqT8HQNqFF53xi5628krd9K+4lloIrGBVMgnZj8La8mf1M/c2z1w39BXMtjlK8gmmuiO/3N1/pwh8RJyXZdqmMbz8+gvABYBRfdUjg9k24lJHv9L6Hrp8ne66OyBf5flvjA627CslJCHfLljVcxrjzcNGG8Mc1l9glOPbkVKTV+28bUpygNjnL4/nvZfdtrX9a+HP76vRy49yt06jV6zQaFwSFe8y9/jvLIGAC1hTa2a6FSRa7kseHivjjAyVj47Qg3a7My22J08wsT7+hnKN1ePDHL2NZvtjNq+Sktd+wZr3mZLsOjAQkwvG8UXxtIV1MqFvHiLHN6ETswcXq5vooNcCZyhI9/DHFFFqrjmOObIFIYeZu8lWfZXESZAd3c4zi1LQitSAwXZbpsKJscHRxmQ7LMbxsn+JN6jvt9i2FTcyi3lyTYiJYhSbq2eRMmfH7/AseXO/zMLdu4ZtO5j/c5k25/9Ed/xC//8i/za7/2a+zatQvrGwKfQuGlM/M8nxCrM9jjN1Lu1RkOKzykD6MF+DrkL9qf5IPjv84vTy/xRl9zYCCPEfZwnSLtaJGqt4HC8lPUFmZgYA+2m0HLLooAJUOSSFIqXTj59FJIbOWA9pEKhG0TjBeoXdP3ShBfmqOZ9uX5Go0ywEyH6IyCcpcxIoO4k0AYoXsanXVRLR+j4DF8OmbSneYLj53ivbdcTDNMSGyTjepOes0ulyazHNXbWOjY3LilyuVbPI73DiOTIhgxMloPwORasPJPRelmjRTwDYWrIkLDJhMtU89vRasGSljEwqWaLiLoK8FUAh1nFa9lE1k96CncXB4vf+GVBX9WGH1/BmHZGLZNcHyG9OgKy7dtAa/BaKGCmo2Q3hDasFE9GDm8yrgT8kSxQq/gAJLIHqUWNKksH8GzdpyVsGsQRSGrVpOD6VEWRYNceWNfgZpmicwlNj5VIw4MCqMX1s4XgGOszxlJNY8+UkMFOVSoULHCtdvUp7birM6xal1CUc8jlI/O93dpdLuFXlP96UxKMqMRZsrC9GXkLzrCjLyEVn6KTtWju1bmu1V/HMMpAhXCg8foDpeYS5epyAKpsS7rd70Lb7xeVOSGoLdCoWLAsI290iXOWVhtRZpxMUJNrmOSmiYtp0g+blF2R+klLfZMKOr66xRzl6F0f5wiew5Xb8DedOHvOEvTpLphEzNPPAZScujLd1IYHqWzskzUaRPv8MnM9uOAZnURp1ckzMXYPQM/38PogB8OYRKhUwsLgYUgg0YoQRDkqE38KJ56lHZxALuxjC70q19Ko5/GhxCUa8skgyV68wZ2d5h/GlsvLx7MAR/oezwaVo600/nWf/BtD2hinsUxCCkY/aWrzzzvfPWrRIePEAGLH3+M4ffdipnr4jQytIZ9wIcumFoiXI9maqN1ihAmyjBpu4LHJl/NluV9WE8+jrvzcrLu+bfkkNLkTNJoEHJ01xzC8UBBoT4M2Tx2B5TZJbUt0BozBTPuxy+bHlsEYHZnf2GiVwPMSweQrTaNwf5vkm16xGGEowRB2SGsRKjlJuNqEFsKTjZ6PDazyiu2jPSNxEeuoVe5hHK3xsDSfgobE+abO6l/NaWVJpwp+4aNEKD1EmnSv4KEAGkMYJiKpZXdtBanSaII07bRJhwVX2cu22bBOYljZRg9vpmReJiRtIJnzdPt3EcQJFSueT+ZkQm0nUelMU3DwmsHmKnD7w59gSvzl1EtxASRwc999aNcuXSY1tRW/sebrqL5mRNEM22ka5K59PkV0TDWqtqLrAWpxtmyhej4caLjxykUS8ys9DCTIjpt4PQkkZkgQokXCSJDA4rxYgbPniDFwAvaLHgWm4yQQ6FkT2uV2u13cp39Sj7HJ4mSiD9d/jg/0tuNncvTq9epbnj2tmmgU++nST+bp1ucavz8xPoLqoelUnoDPuaKougOkDEL2FaJePFrbLr9T5/XGH2nMDI29mmL1EqRkSZebKNycwwf2kxjKEc9kycfD3Ks+xhXld+IldG42SKry6s83Ey5elQyvW8Qpbq0Ap+xwjBRLIidnbz/Tbv4X1+YxsGloztsPX0Ttu6bub/jV6/mK395H4vTLkmUcmr/IpuvXP4m0q214lPMOmzPXfuM10WSYgcmhhef1/RSgEF7mIcqD+O0TPJjRaRn03Q2MXjDuwBI45SC26GiFvHqTwIKgYnFAwjZhiTAKOVIWz2czVPo2S5xzUSFDlrkyU5M05ufRCuX4FCN/E39jITqu95OMjNHdHKW8Eh/rRRbMVbYF3pkEher8N23SVqyBzhSOUCmaVMf7JFbKaDSOkNeGSvtUDJL/P3e47zrmouJk4jYdGjYQwiVEhkWuaUGm8drPHZwDNu+jKXFx7AaHfxewMWvvBXTfvl8iU/ufZxjD3/9TPq/324xf+QQ5ZExtNY0l7t0Gj5prNi4a13ROrq5wsyhFYQUxGHC0FTpBXmxKXXWRtyLoHT7VogShRW1iK08vSjBMCS2sa5mHQkc/pqEbg88L8WPA6yiR2QmBMUIMzSRMiLxE8yREWSmhHAGIFKoTgxOyuThYRZfO0/d8MHQJE4dOxxBEdDLbsSI2mwvPMpY4BImBj9HGzW3l3H3bRzZ+WVcJAPGILsyw8zULqG2OsVcEzphwpcPLT0v0u2cf51SqUSr1eLWW29laGiIcrlMuVymVCpRLp+nuuQvA+L6MVAJBbvKe/ZO8dH/kvA//yDh5sdTDqcn0WaDnUMuquFjBgmpkwGdkreHebIyRg6bWDrg2QhhIHUBqV2UCFmNBbsmSue7i8+Aq3NEpmDJMzDKJnF+/Yblr7Q5ve8JAEbdSZSxnk8eehKkQdx1iA6dAgS0A9KZOqO3XgdCc83yE1zZipl8YgllG7SreRZG3spWXeMnM//ITZuL3LClyvVb1tlxOx4gNTt9BdIanla6fW+Tbuv9zW4borF1F4G0kVpxhbgPV3foGRUCmSfFxOwsEMVljp/KEjXzBIMmfiEidQzCI0sEnfa3rKp1IUGYfYUEscLIlgCwl9YXhp3BFClthNmXWKM1OgbXT9nZbHDFpw6TW/EBQeqVmZ2rnxnNRK0RRNJmSSU8ovfTESHZ7BCGyiEQVGZaqMAAW2BPXHgkkiPXSbfYEaSnT5GZPAbKIO3ZFFMXoRXh8BQntr+3/8Fohadvq0cn306jEzMoU7KTp/AG59Gxx3RxK1/KvIsjA3tY3Faht6byE6niWO8Q//mB/4zWmvDJA2TdImPGIK5wSJ31IMXNXPiegS8I9vr5YFazuPMN0oyJP2zTCw4izf6YFZZ7KNuima1SmbsXz8gx4mzjoq3vRnln7byrAFSCzH53FKAYv/QKypNToFJa87PMPP4wjZlT9Bo14sBHehaTV1/N2K7LKMsBrEASZVKWNtbQAmRoosIMRqZDbuMRhJ32K7cCDoIxI0d50ysZrlzM8GOHKCTxuueMEBh+jFioUHviarLLZYzURKp/fpzL4+zwz8TFyOVe2OMblCTfGLKbQ+uEctrsK9ilJ3ECG7E2KcXW8vrvLCXCtFFJBGmKMhyWimPcv/X7+WowxYOH68/qUfZyQxXXCQBj/iTC9fqdN2B6V5PupiJRDqzA54r7jvEDO4rs+uKp9QM4krHfupHi9aNkNhbIvWqS0pu2kh0vnfmIa7pYjo3yLIbuPEzqKFammuy7+gS3X16mYgo+f3AeP05ACGLLpZGtcmJoG8c33MBlOxz2jfx3Vut3InmA8c0+G3ZoSoOwJXcSM7yLuP2/idv/myT6JOWhhEer/8j/Mj7Ix8c+xt9v/AQfH/8Yt49+hH+86G94aOqzTBcPcHToEe7Z+nH+ftsf83D1i8S9BQI/JI4VmS2Xoe08ojmPNvokn+WnnLBnWLGuZnzQwnUUteOaq5cOIYBodJLWnacIjzXQcUr1vc8/jUfaxpqnW0w013nG+Rfs38fQVBE3rfTfz0NjoA0JZGfWPAOFgTVa4rqWx1crr+Ki1kFyaZcTqsCfNTJYQjGilnnX7FamchvopT2+snIfnzMfx+80WDpyEJWmqLN8/M6cJ8a39nTr9aJnPLfSDu2RDqmlMBo9SuYwOat/fhTf8tKrcoQlcXyL2EtpTSiSOEXXH8bICnJLPbSUVN1NtNMWCoVtGlw8lKOhTP58cYA0nGHzrjx2/u08fOoYSmlsZ5isuZnCoc/x45f8OCEBK7lZjr3ybq587QYuu22S6liWDZdvR0hQyqDdzBF1vtm/qjbXJs1/81yQ2CEjxyqYObfPJp9HVKqjCAVhIaGxs0i62qX35HphmOWZFgNqH6PWPtCKVJVRqgo4UJwgXAhIGx2Qgv0n9nLg5GMkrZS054IGu7SCU1pC+4rwSIP4vv+NfvQjtP76U9Q+vp/aFwzQ4E426Uws4xciEielFGQRL7BS5fnARfk9ZIwsvWLEid0LYHgY+VEQkopZ5saww9FaTBCnZMw8lrA52nkYJaCWG+ThsRvYVKghhCZKyxSKO4jDiKUTx1g8fvRl60eaxJx49EG01uTKVaRhEAc+s4eeIk1igm7Mwok6aaxwsxbZswouWrbJ6OYKWml6rZBO44VlIb7Ynm7P+T1a0+jGxHYBrRQZx8IxDVxzfd6zIoM20O25uLZBOZtjqDxErxqgpKI6n0cpm6QRkK60MCrbENLGHM6QuXwIQkU80+Gqo9dwTe4Gdu3VmPWHaRXvR9InmVM7DxPXMBsvYBsmo4Ui75ws8ajZ4u2P/wrvfeg/Mb64nengFDO9IzTVCTKWohUk/MlXjtHy42eM2XeCc94mfNe73oVlWdx+++0MDw9/15gvvlDs/YUdDH9pGQwLx6rQRlBVHu97zGZlOOTR/EF2DE5xaCWD3QiwsxaJlxJHAcIt8bCXYljfvKDSwsdXMeMvYbnv54OclaOlV0AIwkKOJL9uXpzVisUTx9BKMWAPccI5ThKtYEZ5emaHbGoiDJPOXIbqRaClhW76bNtxBScHvohsd7ku6eIsdjA7RQIHjozuprhwM9ta9/Cr+s+496L/wL94xWZac5rZz3yK3u4bkWPTiGR9wpFrJ7uwvvtuGOcMLfjs4Lv7yiStKaSLNL98Ndb1kqDaH4dC0MZdrrOcbmR+ep4N0qLtnMatKQwBfqM/oeW+W8jxswIBb9ulqG4bp+ZTbsUknoHKtMEYhrWKT8pfxSgNErcVpQHBXEkzcGoFZQ7i5yVxbhihFfmsxdH6AQQVKvYoA/Ykm91dbEhLz/j6bEsgXYG1oXRBppd6MsuAPUR3YZo4b4NStHsNLCdERRa5pknxyD7ak1toT11BesRGxnPcm8uSCpuk+GqUEGzNZiiGHZwxSa8XsriphBHFKEOAFmhDYkYxornKw+FnmD05z1Rhijc/OYt9dZ9c01qT2us3H9u98EjKFxXShPIW0u4KwgtwVtfnx67/CN5iiDmym0wtwM87hBkYVlnm4zq2VQGdIv2QJAsQY3d7xL0TCHHreevSucB0HDZecwOG4+I36qikv0NpWDZeqUx1aiPFjRvo7KujL1LkVgS9oiDyIhqbV8jODpLkIJc9RGHTElgu3VOTpJGgJTWoFEcJDCFY5BVMHn2Uf72Q4S2jVUamhnB7MVqt+YcaGkrfBdWYLzDozHr1QUO7eNf9zAs6ngoTouNnpfl+Q2xoTUxgbdlCfOIEcatG2GthuA5CC6ozRbrZDqlYxuyOEGcsBBoVR6RBF+n146Nsb4XY9EhMh2bPYLkVMXSe5+azY+D6xiV0AioCy5B0SwFgkKu5lBfyZHMuVsXDVvrMBpCRs5GGZOeOMu2lLmRMjKxFYff4mT23si4QPa1gPzrPjr+/hBOvNlncWGdl7D7+VeNafvt4k7957CR7RstcPuqhDRcQrOaG2FTcxGs2XcV/Gv8y//FEBnt+mf0nZ8iJAtYlO1m+YTv31faihWZu8BRu/H9TisokaT9ZXmiNRCFlhrHOBIHUBCLGi0yKiWA+v8D9G+4lEWUu6xYp7noFZtrDiOvES6eQuUGcdoJTW+FJZ4F3vNpguSZpr0jKdx5DSYP67mu47B0/S+frq+Aa2KNZrJEXlhIo8zaql5C2QoTjUPmJn6D5j/9IurhINVyiMjzB9NIj0O3QHdBE8TKV44KlDWUSW4LjMXFtlRNPbCSb+zobgtPM26PMWgVqwRIlZ4BdlR4fOP56/vfkQxzTB/lk9CDzRo33tW7l/o/8CV6hyBVve9cz2/VtPN2iOIE1xxk78sk01jcbzZ5Pxnz6vqvIXvPSWxIIIbBjG+gXdgg05CsRplcnH+fINgL8nGRKDrEUHadsDXPlVJUnjp3kpG/wB6cU/3Zsme2XWDz1sMNss0HJc3HNzXhf/k3e4OV4sJLnpONxT3gXP1b+l2Q9B2lIrn79JpKgw5EHp+m2bL7y8RV+5Bu6vHB0iXSgTCdaIi9LKEOQmj6p0cFcjjEuOv/xiDucxz5lEzoRYbl/79rg9lBpjDQsiDsMmcfQ2kFrgWIDopBBiCWEbRI3+zFGIARf+eu/ZKA0THFgGNvOYDgSMw+emkfFNkmQo/VYGX82359DdN9dXnoJVjFlNV/HCg2yvsdIbvy5G30BwzM8tud2Md05TrO4ysLmZUaPVtFJiA4jbgp8PmnGnFhtsSGnydowP/OHDIx+gIHsRUSmzRNb38iE0WD5kVV8/wpsZ4lURfzNb/waN//4B7niNZte8n781a/8W/xOm9LIKFf+wFt48st3snD0MHvv+hxPfeWLTOx+DaPbXwGA7VnfRIblSi62axKHCXNHVykOPH/V4jM83V5C0m2pEdHuxWS6yyyTIZvNodE4GR9nWVFuVpFK0kKTBOs0VabqosMeVmRSXF4jzuo+wiud+YxZdsleNYyKEsLjLZKvNdia24jROUnv9EG6VU1sLmPFZQQmvjvGk1tu48ThA+wRPXYMjfFbpRP8/vHdSKkwQg83lBQHHiOqfp1C8/W4nVtZ8CN+/X89yI/tHOKK27Z9x30/Z9Jt//79PPbYY+zYseNc//S7GmneQecKmDIPQpLkMpiTk1S9LG+odZjTy1xRGGTGcvtuUU8rw3pdAr/GtOsxZXpUuiv0VEq7KNCGQokmjxuS61/Cct/PBxVrgE5tBVd28AtlonKX/IElRJKi/BhvZIza3AyV4QG0fApUCuESHWOeQcYBjdISHYXIShatFLvc7Xw6KxkxRykSEfkhVsNnIavIuTFkr8CI9rNz8Q52GvPQu4qCqnDX7CW88hKBNkIw1ncF7aKFU7SRF0CKyUsPgRfUCdwSUijyrQAz16Ow3AUliDIW5ajOHsfkeH2JpZOnGXOK9IoBQaVPSpUzg2QuHWd483c+QZxPCCH6xFuqMAeHkdk8+XyBeqG/a57Ptc8Qbog6iBhpBaSJhbJM3KEsejlAS/BaIaFbIqM6OGaVSlkyv1JD6SEUCVflv49iECLT9IxEww5ipC0xSxce4QaQMTOsREtQcchuGsUe30i7tshQcQtRkkM0TNzKAH6SoutLnNz2k0yc/FsMlSCFQSQNHJXSkZIpNJnSSY5svph8OyI2QQlNtJaSkZgGbkaSUwXM5jIf2fsh7huIeYP97n5jFGihKc/nIezhXnX+g9yXHImPETVxKw7Vxzv4++vEhmJxJ+T/5MNw9U/iDmWRaQ6vEZAaJk77GLP2MQaTEQqpjc72UwWEcQLxInpovBzIlCrsuPm2M1UPxy+97Mz/qxu3nHkt9n2O7T9JPd+3JGBkiWZpilAH2EnAydkAEZzElqNIw6K0dk3HAnytcYTgzgMrWJ2YXDFL9vAcO2YXkI5EZIq0vC4Xf+DCLcJ0oSI48giwVmUxAhUk3/Lz3w46VYiMie6tHecbYnYjl0OgQSlUfRXTMVE5E7NkEBs9/GqKGS+QLuxEWBJpQJrGiLCHspy+X5QUWFGLrihipxEzK955J90SN4C1nfNosIVIBUZqYKYCFSusyMBqp7i1HvamEgD21iLhgX5qrzyrSED+FesphdmpCpwEBCTmulpqan+dUh1mXmWhIkhEwrU7m+ROCfbNNXhirs7GyzJUJzajpAVoDlc3cnN7jox5G5dMlnG0waHlaZrvfCuhU2VUal49to07Dv0m+a6JE5vEOsRINFZ/1d6Pe80IIzdMIdyKXLoRhxRt/iPjA7CQrHBsJGDXShGrOEDqVkiBqnOKpFMnVTY67LFkDJO0l1CxJNPq8YavfgV3bJQdN11JNBtj5BxUEGNPFV7wpr6ztYSRtfrEWzPCnpxAui5iZAQ5cxxn8HJky0SnIZlWTHOwS3Wps1YFr5/K7m4d4Kpej8b+LJPpIt00R0G1+UgNfm6oiWF43JJJECdO8fvbqxjC4Fi0SEdEFEQOO5tDJcmZyqbAM1LAni29NIwCXNUkNXNEsSaj169NMwVDaZq9k+SJsSdf+YLG6DuFnaxbCfX8iPJEBaVW8fwRMAT5XoSWIEnpqlUmsluYzJuEKmUlNvg/yxXeWepQHb2EpaiLFF1CA06GN3NR4ShXJ4KWmZI6BZw9XfYMbT3zfRffNMWxR2axHOi2FHGYYjnrPthR8xQDo4Pk7KH+2ar65KAyujjWJoz8M5WD5wOGazJaG6Kl68RWhLlljPZsj/T4PspbL8dNlghkBUeEYBY5Oe2ycmCOhx+/m8HhUbaliiCfoeNY6DRleXWOBXkaZ9cgx69YwMqaeMrnshkDMxcSd2ysUkjccEAqpGXgXTrF6dIJmrYkH3pgCaojLz2x9FJhxB7jtDwOpuTAddNM71jhmk9tI+3OUDEMpmpz9Fo1FkWBy8KTSGsPd89+hB/Z+Mt42kZLg2RDhfKJFplgkG5rK3G4RKJNHv7k/6G5+DZuefdFL0nb9979eeYOH8B0HDKFEkbcZrezj0WzRljOohHE2mH52MPYbo6RbVcxtuWbNxdzJQ8vZyOkoNcK0Vo/73nzaU83IcVLKqhaXmlgdxdxtUEQxrSCOrH0cVOJjBLCJKBWFNTaTZxkfcMhrUQYvkEiNNnFALusUXGMc8kVqGAec6CKNZTB2VhEeiYrf/kUCAgO1ii+/hbK/+sQjVoAxmmU6WJqF6kCtFvA3vM61KFPEgchvtKMeI9RDy7niuYNvMK5iC9NfJ4FGoT54yw1L2LMG2F5rXhFfbGD8R3WjjtntuKqq65ienr6nxzp5o8X6KYnybZLqDSitWEnhvDxH3mE8ePwl7ua/Ej1tZiVFq1WRMcLCGSC6WSxwh5hZRf1VKOkQewUsJQNClS6QiHxyXkXVlqRKS1auQ4tIMhKRKJQliTYXOXq+V2cWDzF0qkT7Bx/JU1jmrK+jDQT0d6wjbQWYyoJSpE2emB5CM8mGxgsjaVc+9QUMqfIaEEnjHCqOZI0plPdRbW5EdKHYPoBcIssrhq00lfQTWKyQRGZGpisYvds0iWfsBNTuO05jDO+pyDoZfvpEVPzRxl9skEaeowdajJmNBEC7GKK+sDbaX/0Qwx7Qxhaknou2dM1knIG6WuWT5/kitddOJXfvi0MASlk91zP6ic+jNEtklnp4eQcOJuk0GWEsUra7GLZGWhFFIZd1EqKX/QAD5HERCpEhylvv/w2jh5ZZF/fu5bduZuxk5N0xfqU6PiQBinGBUq6uTJD0Syjl+qoMADTorfQQA5GkBqAYGAhYWl7AacVUyu+ivzQNBJJYBho0Q/eAylZsDaT9Yp0nQy+NElNydihJWZ39g1bEYKNk8Nc+8Q4x/RRAp1wcFTzOjTHwpPkKRBmY+qj/WIdpvwnQITnRkAltBaXKD/4JPt/9PXYqz3Cqkd7W5Wl7ScwhibolKfwWoI4snnz6SfA9rn/E79J+EO/Tq9qg7DwWpDa37z4+m7A+KWXPev/n4bleXipg9OViBRWMz43zO/lqJ1jTk3w6JcexXE6fH/5ekyZ0pd4CEwgKwQJirYeZsn1iU92yeyosTTs0hytUa8uoCpwevETL1Nvv3fQs9pYvokZG3hti2T5m9O2zhlKgykx8hZG/ptjGqNURmQ8hGEiTBMja5C0UvIrNokVk8ge2k3B0CghsTsdlv7xv1N656+AaZPIDK8+8lnuvPgHkaT0mjW0fuHkzAtBYkfrgbSh+6KSRKI8hUYSmYrEU2x6ahS5ta/UTxrrJIBZeXY/XyEEVXuIYKFJ4MU8LXszt74KM7uFPV/2uP+NT5LohCOVGS4bHuGLswag+O+H9/OnbpOZ4WuRSpHYBVZzw1zTEcxObKNheYztvIUoUyGxs2iVMCLzXLzz9/jI0Q/iLbXZdHIIT/XtGQSaSDj0rBwdq4DNKsvySyAkobeDRNdIRpZQOuGLo0u8bbRCpu0jRYTpZAmkTeDlmKplaA/08JRBsRCx7cHjOMUCpR99F86WV9N9ZAnVjTDKLqXXvXAyQBiCpB4g8zbxQhdn+w5Ut4ssFGh99rO4V/pkJwo0hwP0fItWdpmqruKttumM9TMCtDTJbR4lrryPt+79IP8quRFHhfxt1+G98X4qcgyDlFd6VzO5XGXaWuZjheM8Ys5xc20jzbkZlo8dZnjHxWfaJb9NeqmWCi1tYrsINnSW1tORsz2LIO1RsEoI4b9s535W58iu1JGJRo3mMT2B3zyFyRZ6Vzto6TLiX8JKPMuAuQXL0vzuT76GG//zndjCZDFOaZCSLW3mK6niZ3MzNHsdhL2VueV9TAxpQjvLaORzdOkJ9gztOfPdxaEijhPTaRlYtuKpe2bYsxb3L0+3qaXHkGmBNGpi2EWkzJKqE2SaNmZjFVEYe65uvaxILfDtGLem6U1NYPs9otm9+N4EY94itg6RBEThbu65/x+o1/t+j60nn8TXGi+I6JoSw7LRWjOR3c6h4Wma5S7K1OTjLPe+cpbU0hixgQRSoci4eS4LLqewYxT1hb2obZBamsAKGShdGGPzfDDgjNCK6yQkJDkwEkltpENZT1HRip8NM/zx6RZvesUEq70hNjojfKl3L0dO/Q9eMfAe5ksbsFXM1qssOLXK0dpujh78GAoPrQQLR6e580OKPa+eZGjDd56NdnLvChpYPtVi+kANw5ZEQUqvth/HaxB0ahhmRG3mJGniUxjYiJQb+IcvbMZzJvjRNx6gmbp89K8fQUiL6b13EbSOcsVtv/JN3+Xl+4rQNFYYpiDoRni557dmsV0TrZ2XfE4J/JBAJwReBc/SVB2HBnWi2ECVLKrHy1SamgZZ3FaF5foyhl1nTAyRuCmZuosXV4jqAmEpktka7tAoqgNijYy3hrNYgxmSekDaimh9oUbhK48TvOHVGEkDJ7Xw/Dl8dwxNl16jyXF/im3yGAVD8bpKysFGiwN+HqeT56fM7+P/jv+cWKziRzZLVgtHlgiDiCOPzhClwbfpdR/nvDL6uZ/7Of71v/7X/OIv/iKXXnrpNxVS2L1797ke8rsDSUo3PEix+HYSFdFQmzDr+6gCw02DiW6F1XKTHYMVjnRS2kUXK06p9zpUiwMYYZaWKZCui9NtkpgmAokyfDq8sB3m/4+9946X5KrPvL+ncld17r45zr2TNUk5C0lIgAwmyVg4YQx4vbu21zbG/rzrtb1mHfC+Xq/x2i84LcHYYIxtghEII0BIAsWZkSbncHPoHCuf948ezYxMkkAjjQSPPvrM7e7qrlOnu6rOec7zPL8LAUdPggtISScdUblmnO5oBrUbsWHsSpbmF1g9fZJN178M29TwEqdIdNfj92t0rOOkOwogCJfrqJksYb1FZ8bl3RO/x/KpAwyoI7gy4HcOz/O7ay8lkAkWo4iJTb8E7r2w90Nw7F72R5dTtifo7xO0jDZ0DUIKhDZo4SoAiv0SnuCfVfuKswHiLKVA1pAJgTGgIyKBt+jj1TT8hRZVBdJkULITdHMHaA86KF5MZf8RpIwZnFr77fZ4cUFVgQghBFquD3/mGLQvp1q0CWRMK91BkQp200LlSWLtVoJqiNEMSdgqrX4dzQsJTQ2paASKTkp6tGeOkEoXodyzxUW6hW/3ESsKStwrEGJ0LaQP+tjFmU8mhEATGuU8mJ6Nu3ASI5NGT4e4y70bj9mOEEKh2zdItRJSkBZNTSNSdZJ+iZZRRI8V5sUoVWULWJBP6SSO1xg60mDoSANVDRiaPAqXX4H5yWVevcvl3y5T+ZtXCsbNMabNSSI35qA5c7Zt5+fNvWRhpKC9QjptIu66C3tmhsaWQYK0SfNXtnNsvA7iGH1Ll9LN2cy7Q+xYsiGwGPD7OTY8iiJ6QayGG8LU6HfY4YsXWydv4HD9o4SOZE4IVo+2afsdhAAnlaJWWuLT7l9y29a3MpDM4876T8VikUflJmmw2lnmqqEMT15SoTbYQgkFmdUkwlbxY++FPsQXHTTToGgOkl9IMxGOIPqeu4G2OZUlseUbA/AnPvK3ZxWdT63I1/d8DSvM0u5v43tdjvpfYHy4l00zVC0guwJvdRZ1zVbakULHKpDtNlnIjuK5HRrdkIz9wlUyFVI5q+rTvl5kW/52IhlRzNX58thXAFC6GoOnh9Bf27uXqIlzxRfkNyFdnoIXu7QLHiI6992kszejqCkyq5L1j49x6NoZylqDV1xlseveNLWmQbU7TL1ioPbHRKpB29J5bGAH7fQ+EoUtaIqBGnpk3QaF6ixW6LNndAdYeX514ueYX/kku1JJ9ma3IPJrON3xkdVThEJBINBkhKBnkRUS4qWbGZvZxvGr/pmFkYhaKkHaNokx8GQ/7VQGohglaBKmDAYHqigKFPavMvGxjxO3DCofPYT0Y7T+BAO/dNlz8t0Yoyla988TNXyChRapm7ez9msPcuTSywhOn0ZdXqHvzW+llm3QSho0T8+hmFeiqsY5e7QQaFmHvuwm1jX6uP3oY3xOu4FW7PCGuQ28QX+YH8lJxpxpNgiHtWECqhG/bX6VkljkTnktx79+/9NIt6dluoURvhuiqAJVU4jCCE+1CKxzk/xsFLJw5u+cPs5AsjeGG/xvO56Tfnom0AKFdrE3XupIBTNt0Nx5guTL7kB3Q3xbJ6XkeKh1D2uS19BoR9Q7Ee961WZ+518PUPct/oEsP2o3WZ7pYz4N67IFkpbNfQc3sfGaaVZr91GSHuLwJ3jjJT/1tMn/lusNvvaZELdtsusLx1mzI4dmWMwdqjLXOYGdehOqcc4x1MwfIFQ9NC/uqRYvAhSMIrPpObppaGYyFE7OYrZPEc4eIyOPIYRPJPPsPDBzlnADSHkBhWZPvdecnuYXP/gRgo7PzPseZm7DKpEek/YcJhr97B06eTauU/EFsSEpxw38U3VuO3oLQ4UR9mTm6egefXERVX3xzp8cLcnbJn6ZL6/ezbHOQToZj6XJFQqrPVHQOs3ixk6Iqeso2XFygYcx1+QDaz7OB8qP8D9Sf09g9XMKwc3JY2xYc5pdyTT3PbxILBqsnN5PZUUjXbS+KekmpaQ81+LozmXiMGbrzaNohsbBry9y4okz81NVEAVdZNzEb30B5HkFi5Q8irkFL7wOxQxYLBkIIgwtJGGHvPInf4mv/POH6DZWmT9YY/X0KQanv9GplMwlqC63iGNBs9L9rkm3TtPD6wRohvqdN/4uELg9Ymq1ESKdUZASRendCX3qMOjh6YLMcs8pU0Iy4Kv05WIgg2f5SFWS25eFoAlmARkIMFNIGSOE8rQooMJbNlP+yAHcgxXCahdzzUbSqxZL6xfQSk06ziTEEd3EEKreRdZH+PADu3jbNaNkkhEjyVW2dTvMezqnllx+0fwxPmT9MwvmaSqtzUTSY8WPyYaSbueZqWmf9dl21113AfC2t73t7HNCiLMDqOibhIa+JKCpuHqVUHZRhclAYpw95ce4aWQcsTDLJUc7PNK/l9ucq0mvSIy2j2/rlDzIdluoZ6r5RV4X1e+CkyLGBd8nrTS+w86ffxSMPgzXxjc7NByL6Ez8ut7tEYSOnebUmWIKo9YEp/VVYncSxbRoJtqk2xkQguayja/V8WbPecX79WE6UYuvl76MWVzLoeU1TBVSLKcHiPc+gpJYB2tvhxMPsDNag5lKERgrIELU6JyGUw16v7WXNOkm6Dk7UEAIzJZHotlGmgIVE81QEVqMvwoylLSPrrDz7k9z59gvEipeb3LaCYjnOyiqSnZwFCf3vZWVfj5hXjeNFBB3A7QPFfBnjrH+jx9k75/8MC1L8tUf20OymuDmf9lIdptB6fE2QrPwS22sAZP+vIYtoBnFSFVB7bTxFo7wxO7jqKbDuhvfyNHFDgiFyCn2pMaEhGodw9XAAHP84spbPB9Fc4CGX8UbSuOOZEisLGP26ViZx1h9/EoUILvYojZk086PUvKuIRI6hleiGMziazl8RaWq5DDjFmmljaqPYRkCo8/AGE7gdI8gQkl49AjericQjsONnT62f8Vh7et79sg4igjOy4j6viDdRq6E0iHorOJMehQOtOiOdAkKNotavbeNhFBro4cJfDNF3H4IIfKELR//PFt8oukjXoQVxJ4pTCdJ6rhCvT+im4o4mpSYnd6EanTdBmKh0lhdZrUyT9Jr4QyN4p5eRWoZhFAY1xL8SnY9u64/Qq2/dSYjy8HPxhhO9jktb//9BkMxURPPLWmlWN980H6+hfqpCbU1ZZGd10isMyDtMz7c7a0vAWEy5Ia+1/HgzAHs4hgylWV5civF0gIVp4Cr29RaIa3j+6kvzpMZGvmmassLBfnUQthTxxSDkdAAjcHMKGsODqO0BMOn8uhDSfSBXkaZVrDwT5y5Rnyb366pWrSiBlKRiBBMV0cIi8hvo+g2I0eLhP0Bx8YXafSv8I43lfnjD6xHygS/dUqwKVrk1ZeMoSgCkcyRdK6nG3VQogAFQVNRMLpVcqVTjKuS5eJG5vuuIL7jcv7us7tRZcx4q0Og6Kw6Y/hngsZScZsBrUU7MmlEGh3V5rSzhsSJAbYNDTCxfgdx2GKkVWMxO4rmehA8yQOvO8GGjA9uRHH3IqPDb2f1z8+FlitZE2tT4TnLEzLGU2jFBGG5S3vXMulbxxGAsXYt3v79RMeOMvAHv8npD72JIJegvt6GUzC+Z5X5lTkqa0fBPheV8C/KT/CEnGXcn2PGGGVGGeNP5Sj/VG/yNethmnEftqFwG9MshG3+SHuQhbjCZmWc685rl2qoaIZKFEREoeTw43M0yz2l6dB0nsBKQRwihYrnhXDewrwV9e6tkddESz1/C4KJ+Fy+nt+f6fHM7jzWdINMKUt5KElsJgm6y1T8BfLGMCeXO+wYzvN7r9vMez53kEfaSUIEPz61yIdreX5FKVOwEuyYvI5azeO1zRb3OA5Ptk6x2F5k5eGQ+SNVRtbn2HDl1dTrJ9j71VU6TZ2dn92Hleln1xdmaI/XyCvn8mWl6BIpHbRARYndF7xy6VNIJrNn/w5GBvB3Pcao6eF2ZhDCJ5YK7TYEgc/6625i/VXXsnr6JOKLX4KZld5nTK9F1XVON4/ylR/bhRooFJdSXNO+hCWnSrGWJnuyl+VWGq7TLriERkR93Ec96nOweJqO7qEHKlu1C58HeKEhhCCr50koNq7sUBlvEz3cQREmCIXXRxonDq9yak2OdP96tudXiOz/iGqWKDf2MqjdQNd0OFRYy7b5LlsGFY7011kuu0T+o+iJ7cwdqnH1a79x362qx8d//7Gzj/fev4CTMWisuiiaINNnk0hq+O19zO3/wlMtJje8lVa1jKJaJNMWSatGGAlcX0eicnhmCClVOBjid7KoaokoCFg6duSbkm59Yxkqi006TY/5oyX6x7PfVV8+ZS+9UEUUlg7tY2bnI4RrXwUaxGGIpet4QYhMrCAUid7WSJZ1wvJxNFuj2T6nmJeKROtoBDMx0p1DyfQjXQM1MwaAcFTU9LmxjFAEmTvWECx3iGoe2vBryB3bSXVEw7MWMBsWsZrG8Ku0jByddYMMr/857hGC4WMPs6ZxiPE0TCmwp27zjlKWqwp3cMpcouGOUe+mWASG0yZO3zMjKp81W3Hy5Mln+5aXDNykj+y2aWs+WbMAxT78oIM6tpY1iy2W1YBFUaZf5BFhiF4NyQQ+x8oh00UF1TCptSqooYdAQWAhvZDpRPuFPrRvQNYsYCgmCU8SqhAaZ4KyuwFup0ShmOdU7SRf/8TfY902jqU3kKKKVgnoFFPI1QiECrGGNxsjEgoEILImIq1SPTnPonaMtW2D1fISjqaSt1ROjGxi7eoxeNlv4C39Kp/p3MAGR+BRw+im0OIzlRTjGKNgoiZNxEs60+1s3DJEMSIMcYJlcpd5SDmKEIKwFaLnI6Rm0T6+SmFwFE2zaaV7aoHY1gnbHlEYoOovnCLgu4EwNASg6BqJyy8n9tpoKytMHUswN9ImFAqB4aJPLCM0UIwz2TrzM/hTBiKKEKaDTPUGzno3QOvUAEEUROjdKoqwehVohEBgIRAIoaB7Oui9KmgXKxKKTSB6A3IvZ2IfayL0NJolSE7N0D49Qm6xTqT4+MEqy+MvA0XDN4sM+Q8QhJtY0ARSgCnbrAubZKsVZDqGS9O9TL3OOLiC8t2fx9y0CTWXo7DxclJbb6QUVSnpTVJuiGopZJYdpN/GGL04BrkXFHYBMhNgOIh6mUKqQHmugV53kek0iSBBQEAsVzAbJlKzaGRSJGaOofaNIkVMRBkhY5yagTb90u0zw3ZYU7yE495xvK5LeTxk4rCFI1Sm1m6gVq+j6hbHOk+S3fZy8hkF93QNIc5YvM5UqYyVmMyqgxAx2x8fxbksT/a6K17IQ3vxYwC49IXbvTVhk3y8hlWVuIrA1SWGQS+LxXJx9BxXUGShE6JaLjPtDlsap0inB0ioOof2L1Jc3UvgezRXFulbux4j8b0F8D9TSBlzfnidRLLjtnEA/Lkmmz/a+1skdYwJB0Xr3UsSW4q9Kry2hrXxWy+CnV28ECA1kJpAM1tEbgVhTGN1DLYe2sKxwSX0SEUJDa65pMrug3nqocRttplfrdKfS4IQKIBEoRZ3UYWCUHVKDPBYt8VjRxb5KaPIop6HKOAXrhznX3cepahGJM02RTPBYtsnJmQwHZHQwGg2Ea6FFkVEQqXDCGl7iKVGm6Ls4sqAjn8ad3AXwo2IQqitKPTJDrloE5pqoOYTEPbOb2sq85zYSp+CmjFRixZhqUtUcll6704Gf/lyij/3H3CPHqPzyMO4swugqkhdxcsZ4M3gOKOkaz7dmWMEuSKNnIkZqcR6Hx3F507tbr7kRSxpfVixRzYq8dqlaT6R+RcWw58ik2jxmnAjrpB8QHmc/XKWz374cgbJ8S8/9jk0TSH0e4vGURAh43NqR88LQeggemMfy9IBn9SqTdx1EbWAUvcUA9nqc9ZPzwRJmSS3mCJWY+KhPO5iFW3cQS7vxkmN47Z9Al3ljuTbkGofUsZUWiG1dkhSsflvt2/n03tOsn8hxs01Oa2YPNZ1uFK2KCZTHD+2wq07ruVgbQ/dKOLtH/sPvGXhN+k0A1ZON7HTa5ncMcTxXYsYZsTxPRI7UyJdtDiQqLBZ6Y3xemS+hVRcNF9FUbtgXRyLgPlUP8VDGTzbpzOg4M3WOf6/vsr4O9PEwkFKky8/uczy0irbbruDDdfeyIZrb2Rx31G666qo/f1M3vXjAJT8ZZLVBJEWk5AOma5DuuMw2ewjqkrilkQek5zatkRr2KWr+XxmzYP4BJiuhqJqjI2/+Ek3gMtz11HyV+i0S7STdXxzCb0sUJIjyKiLXlaJixbLns9Nl16NEDFCiXlg6UPcUFIpZi9nMTOMGYVsXN3PdRumObC8yMxqim7z71k6+eP8zTvv54Y3rWPjtUMA1Fc7fPR3zlWf1QyFVN7CtFU0XSEMYtZd3s+Vr1nDPe+/n3Iqjd/1sVI58iNr0K0Rtq5JQWeVUC2zZrTEI4c3YWT7WZ33cJseUoJtXo4lKiwtV/jKh/6Sh/75Y/zc+z+Mop6bl1i2QXE0Q7vWJfBC9j5wkq03Pvvr6FPjrAtVRKG2OI+dL7Cq9Yg0LwxJ6DqmrqHoHaQqCJwIY26JuLXKjhiWV4vUyjrZbIgSCZyWSXa5i4wb6IMO3tEZ1OIEQijIdoSafvo4Wu+3SV49iHuyQdx06asPU1pcIky0CbUmqXaZUEkgZEwsFBQpkVHIcmGK4flDtH0fXbNY57hM1SUPlNbhZ+awjCax7jIvx3n7LZtoNJ6ZeOpZLw9PTEx82/9fqsieaNLYNkkUhQhVI5QhSbuPjpTEqsYUgxxtH0ZHI8g2iS2DIG8zkE/Trpdwg4DQ98haiaetjKZbKpeNXHyTrYRh0VXa1K0uS7YkPrMSrnZ8LLuIpSXxOi0OP/wgpjSoaKeJFR0Ze4Q6yKhn95Fn/hMaqCmN9LUDJDf1s+bGHeTUJFc1DnFopoShKVTdgBVhQ8KGusqftd6AHXTJJjXiQEMIFSk6FMJ5UuU20YpLuNS+qEmR7xUBJwnUGhCjRDFaEBPNPgpsRghBHMeoiQiJivRjwlWXrfZNuLWjNOLDpE/5pPYtkwwchtdvYmDNi8ha+u9gbJxERgFqrsgl97VJLpiIZkjSN1jdMovmnJtoSaVAa3cTb3EFNTxXRtstZJmMR9k+uJ4tfTHxwS+TMM5cBqUEIiJRQgRlDB30/oub0M3pBQbEAJmZDv7maZR8P3GcQeCSmlxG0SNyS26vkl3ChjAiW3uCQvVxBpIx+ThAlRJDRqjY5CIN6YXQdMEPwQvwKnVO/uXf0Nh/gLhRxz9+nOS1N0I2QVHNUQxSRJ5Hy6lQH2jTGANDubgyKi8YcpOI0EXGJoNmijBno7mSTk6ha/jEKmh+SKjHGC2PslsgXHmEqNEmtFKoFJCqjR10EMmX7nVMUVUuXfdy4oRA6oJ2XiVjqKSEwlDbQ9d1nEwSRTMoVxYJYxXFOS+ZNu4Ry+WRJvWBNr4VoZsCu//Fo9r9Ab45rM0FEn4OiURBIKRCHIFdMjBaPetmtq0iTAc/DGglhzDCqFe8CYEWNGh3PWQco5kJSsePPm9t71lDn066PQUlY6D2J3oZM5FEOS/jLrEhT/6N68i8ag3m5LcuolXQiwwaI4gz+zBVC/uyCdw995zdJqh0ebVxBzYWRWGyvi8mrUdoiqTeaaMslXh9p8bWoEvOKzNb7lKpKxgiRUK10YfHSWy/liF7hA/vLdENI6quT182xX++bQf/5do1/MwVG/g/Oyr8/dVf5tM3PMSrpj5B23k/b3xZnR2vfJSfveqfyNqSMS1kMmujCwXfTHPEdnFTC0ihEZkeRILBusa6uTVsWrwcvVBEL9gkrxkiec0QuTvXP4ffTo+AsaYyoAhQIO6ErLz/SZI3v5z+n//PTP7t35L/8R8jt5ols5Ik0XXwNB2hKTjtLnFhAN1rYRt9qIk8xYyDIyTrtRU+5/w2vzL/l4x4ixBERDH8bP0WPlgqIiKdRGTz6ngDkzKLAAJC2rjUVxeeZt9q17q0a+dVv24/PW5GSslcokuzr0N7PCar9FNMTFJ83fMb5WPbKapDTer9bdpZs5eVV0jS/uo/kB2xiBTRWwzXU2cUrWdsGvSGVpahsr4/R0qTPN5OEAMPRimkUJBItvWNUjjez0Sk0BfBQDjHUvipM6SkZPcXZ0hms5iWxHIUEnZEFMT4bkiot2m6C2ihh+8FBNoyCIkW6AjD6I19LgLkM/24mQDNlYQJQBXIIEZXGiiiTbOtc/zAIQLX5do733zujZqKkskQzM1iTk4Sy5hStNwjQNWYba1tBHGA67fpxE28TJPA7KJmFDa4o6hSxYx07MBCRUOxTXKpfqxnmv7+IkBSS6FaDkXXpHRTBMTIoIlQTfrrLv26RtrS0RSBJlQ0YXBd/0/QcApU1JhI0VhK9jOTGWMiMciVxY0M2CGKZhMFp/DdkL33zTF/pMqpvSX2fnW+pyBWIHTvwU7eT6fyOaykQbqYYOvLRlk9/QR/8yt/zLHHTxJ4gjiW2JmNvPI6nZ+6K8mO8T3smD7Gjg2zuOYYmQ1rsTIGN75lG+PTCl3PpOMNo+kJclf9ELmb7iJ53Zv48B/+v/zD39/Nv37uYe69fz+rJ44xsrZAfEYirukqSycrz7oP4wuodIujiMbCHO1KGS1qYbUW8T2PUrXBzGoV4UpShxukT2mo6Ei/TcuP2BUM4KMQB1ovL3XeIqrNI2WLuBsQ1ZaRfkTsLmJMplG+SdRE8voRoppL3I1JtQqAQixLCGkQIwj07Hl3brCJ8aKAB9fezGM1n24QEcTwnnyV2zUPQ/PxAwvLgBPl1WfVD9/VjPIjH/kIf/EXf8HJkyd56KGHmJiY4L3vfS9r1qzhda97EYW0Pws0BgzM1Q4tbY58dDlB3EFpSU5nLLbv2o2RyWIdMWlc1mSsbwrdDYmRRH7M546s8OATB7lrfZqMaKNNXkmodBBSJww91PTFWenPiCx8JFrUxWz6xIrAaEWg1bEMjfrKMlYyRVjuoOgKyJAoM0zQmqVy6P0Utv7q2cFi3JGghlijDtpEgRQwemQLhx9+kNTSPrLOtfhhxGKzQyMSJPbs4bGmyimlj+tzOkp6BQ/I1PsoaxoJq4uS0J7m334pwlW+htf3BGZDcvPf5IkbpxEsEMcRUkpqjVUyUYfs629i9a/2o6JQiAdQUuCNLhFoy3Q39eF+4jDhkRX6JiZf6EP6rpHYsgXv6GGEbSNDnxve/Ad8MnMPXV+yqkZsalZBxMi4p3iLOm0IdBKGhYhj5FNZQlWDWDUx82P0RbNEjUWOqxlixQABiszhmcvEXR1Nf+ECup8JklqaZblMwlbpqC3i00dplcqYQxGKqKNnmkR+DrPepL5uBEFEM7medOsYQreIdIubVpYxRQR4xMIB2csmiH0PoenEfkDkS8JqFapV8u94ByLQoHWGzNRVomaDOGEBvbwKTby4FJXfNdIj0FxA4NDXP0Qw1OiJNs6oD2NV4iZKqMpW/CigYr+MTOPjiIEpICLGJVbamM0sSuriWI2/UNAUjen8JTxRfwRT0bE2DTK+cx5Ul0s2beXuj38EO5NhfjZk+/A2tKSNt9QGzUKoOj4tzBAUqeCEMdntddBeukTl9wuEnUURHiMnBtg/Po8me5P0TtGnXZC0lRYpP0Oy2qU0kSGMuzxpG2TCkJOZPpxOQGJgCH/+FIHosLD/SdrVCutuvPAVbUPf5XzSTchziiU1aRDXPGQYQwzG0LO3j8dIlvx5oGcDTiYzpG+fZuWPO8g47C1EehHpappGXxtiGBs3WduIGRmqY4SSt3gvAwnTasyGDePkv/xpNhcNwk6KezNXoakS09CJi0Moss5XnzjFa3aMkEz0xlYriTFEFBI1t9JeWuaB6n1Yh+b5w5PjqJsDtk1ew8roOn51e8xgu0y538RXLXzRQGYPEhpdUCLG9w4wsWuarFCIuyGxGWDv6Cdz+4VdrE/dNEbqpjGq/3KU9mNLBHGMd6xGYnOvEmDf296Gdv/f0cgvkaolaBolzPoQidggSOfBspAyxouaTGUD3FihLg1sPeDmwZO05u+jbBT46MhdmNJn1RFsW8zz2rEVBqIE74veyE8YH2eBKraw+MLhz3GHfM3ZDDffC5Hnzfja3QBFCCJVJ4wlBDFZK8ZvGXiWD40AFFA333BB++3fIxEnIAKzq59R4kU4WZPlf+swlCnzRDQMYYQQBopQiGWIHawwMDLF6RUXgSCTMOnGOqejNGN6nY/WMgSx4A/7KmiRSlH0M7qygy+N7iIb+YSjD/MjfT/E/BcDpJTUd9/H1k0zdMurNCoZVpXrGdmS4P52TH9qKyFgaBDGBkZHx3A1lNiHi8ThYRoJpJQ0Cz7EGtLKE8yXiNwIxdRodsZIpDM4mezT3te890tEpRLawACKbTPfnaFNm27aw6knyGUHqI1X+Yff/jWEoiCE4MrX3sk117+GcN881y31FG1PFI8SGTCa2sAVuetfgB64cLgufyt/N/d+olxEHNboH61gNl+JjCNMXyFZdfHTOWIhCMIYQygktBSqPc2R5kNsyb6ceiLDqfwUlu9SDJe4cmCUbX0xzWCRvcsGS8cqfOEvdiM0m25DIhlheG2duX0nWTneRTN0vLIHisqBr6qsnJwjCqpAiGXl6B9Yw+UbwWofRrZBqCpSzdAKspz0LkMICDCY232Iup9DKC0SjsbaNds5denrQKjEUYifG8IoDBOoGmEccWr/boqTU6y7dIRH7j6EbqoIVTC45tktSp5fvfS5htdqYKbSBGFMYOQJDAhaLrGE4XxIVYtoTyTJlxzU3CTBzNcpGHmcwOXzn53mrh01JgK47LExvPJ9xIogXO6ipoeQQkXRdaQffdO2C00hsblA88uzCCtBspPj1JpFcqUWXXv8qa0AKIYuqSigXRhG+F1Wtt7Al5o1fsQ9TUJ1eQsxpWiQ+6Sk2UoyV2tSbT8VvPCd8axJt/e///389m//Nr/8y7/M7//+75/NcMtms7z3ve99Xkm3+++/nz/6oz9i586dLC4u8slPfpLXv/71Z19/61vfyoc//OGnveeVr3wl99xzD88WsWPSGMxwVG1wzQOCrNlHRi1yKDjCWLFIvlRi7ZOCD2/4DH+c/VWsKKJjWmDqjFpFnhQZqkEVPfCxnBxqbCMJCRot1MmLU32UNjMs06CuaXDGwpk4chR5iUMmbfcC2ht13FMlxHqBby2jR/14E+sJDYdA1jDO2IOIIDFlEZ8XNvjyd/xnBqbWkn7sMP/3awf52Rs2o/QN8XkjwbYjD/KIPomhKkwNCtoAUuGpn6zqSeJuiD52cRKWzz0kmDpxu4Z3aicyCFBNi1a7wanSLPqeEGfUwpoxMJXe6lUpc4ruaAa8kGi2V1UymfvGktMvFhiTE6Rf9zoan/40/uljmPsXSF2aoJnocloxCZQWIy+/h9OPbEa0xlANB0+x6Ap5lnADENWIxmKIns9gZNPUlx5Enb6JONnXy84DYtEGsojExU26FcwBDGHQLULt0mH4290YXkAsB9CUE5iZJdzlPMkmrAgFqepEQL7yKAytBV+yGJfZYH6JMN5KFK8BeueUN3sca81GzMExUlffBDP76C6voDkOeOetxgcRfr1KpPcmnEpwLq/pJY9EAcwMildHUxbJev2s2vWzL6uxQiezgr0a4icNVsfWU6xvwxvpA8VBATzlJAYBSuKlvYAAMGAOIxB4cZd9g21GNIHW7TIVhvzCO3+Dex95kIMP3sfHF/+U9X3b2WTcdPa9zXyDttMbb+QWh4jl9NOqAP4AL1KoBjI4yOjx2xk7Psz/DX26dxxj7UQbIQS1dJdUPUOq4rE6KdC1JPekWvz6ymFO59fQSo6jVapMbd1O6cQRvEadlWaTYqNORjFQLuC1SA1c6Ntw7onzyBMhBIO/fiWKoyP9+Hxu7hnDUc9ldvmxh6laKI6DUELEUxWiQ0l3d4Udd17NrtbDYLvcdKV71lDxnmOPsrRrHbGUiIdn2Z6eZjqX5mOzLQ5a8zT8mDs2DnPdmn7qfQ4PPv4k9YX9PBQe4A2+wqCc4PTwLVSyE1jOj/OufQn2jx+lM7WVxVvfeK7AE7BEbywbiyZBYgZNsRFeArMbYTcNVEAbsEFVEIr4ltl/FwLJG4Zp71xGtkJajyyeJd2C5TbJZR25BhrFLu0+m+KKROAwfe8ejt2+DSEULC3DvKzyyu2HuPlEj0idSlawEzFxt8pU6zgnnCkOtmL+MrLZ0TKYSPnkEbyZEf4Kl1Ms8+czH2L4VICd20QQfWPxnABBrFsgJbomcMtNGoMd3KSP6irkW3nUnHG2St/zBdNKoEiBlwxoTybhUUlqUz9LnoG67x5GB3+KOU0/ewooQqOrDxOFMbom8EPJdF8KNJVdjZixrEQBPtVx+NFOi8udgNF0jlvnhsgeEvyfjQpPamXi1u/wMn6doOWTfvBdjMg5AJoU+XLyUo4sPsbC0ODT2hrpbXw7QC3ZKBoXTaYbQFbPMW8tUB3zibZcjfbw3fjlFqK/j0//28fx3A5Tl115dnsZBETlMgDa4DBSSvadeISKU4EYirNplHU6g9Pr+PkP/AO7PvdpAK6988cgBnUoC6qAIMKcK2HgvSSdCEII7ui/k08tfZTZvojWazL0PfoYtbUpcktpJg4oJOpdDok2f77kcdl4kcuzPsWhSbZkX86u6j1cmbmNilPgoTXXs7H0JAPhIYZVAyEERWuOT+x+iGqrN84VikkiPcmp3aeIQw87ZbN5MsHS6kkCabBadlCFieYMc92aPLpw8e0668d6BLCUEK7O0rbXU9NHEUCnEeBkDCKZoza/iKKodJohR+rbMETvfFdUDWtg4sxnSFA1ap2QfZ//DPnxSZLZJK2aT3WxSRRGqM9iYfIs6XYB7pmdahWv2SA0zi0+5WwDRYGF7mn0yS4ShdxCb/4h3RrFJnT1BJ0uZNoKeVQkkqh6EtXOoSRjYtJnb63Gmm+tGjfGU72YBjcmu2jAVoHrNEm2e/0jIhepmKwYNmr1EBtqT3I0fxXq8BQAXzgScktzlm1Jn7+Ii7w1nuXhyg6OLcK9B5d45frsM+qHZ026/dmf/Rl//dd/zetf/3r+8A//8OzzV1xxBe9617ue7cd9T2i322zfvp23ve1tvPGNb/ym27zqVa/igx/84NnH5nd58VWi3o/Rc0J8W8FwPfqTkxysP8SqFmFrKhtnIna5MBMtYBnnyKC32yq/7y7x6fmQN819kfwNPwJArHZJLS+gXHXtd9WmCw1HT0Ivyg294aHVuhirLeL6CZRUP1uuvJGZU4fY80+fZuR3XkNTdIhEDaMa4q5ZT+DOoaZTKIGKSMaYmZj49Cpy4yBCCBLJFFe+9k6GN85y6C//jpMPnCCz41achMOjW19Bdn4nt60pIvUmxCqp9rkTSgt6F75/799+qULKAH18ldae/SgCSscP4mVT3P/IZ2g0K/BE70K5PXcLQ8Yo1uppqm+KMBcbaCttIt/AHusj0z/4Hfd1sUIoColt22jfdz9Ru4l/6jhDG4sookLT7HDPUB/LdoicXmL6kQbTOwsYKynSxyMqW88VQ7ALPloc461CUIUJZR3a/OMs33ozkdUjLIXsAFlU5+JW0piKyYg1wcryUdrTRWQuR9ioIkkTyzSq7YMQpMsdrFaImxI9u9aW22DtOuS+NgIfIUAQcKZqB/WvfpbGg1+kcOfb0fuHSV33SuINW3Biid4/gFREz7ITxQhHx2+3ibTerU+5+IoxXzgoKoxcBasHEK1F7Kj5tJftwCSqNejY+0hXtxCaKsvXvQkjUolEG6kEKJGLYko086U3EP73GDRHuLX4Gh6vPchKvMqnbrX4kScK6JUK7N6NXelZIlyvQ7NThrOX/IjWmhA1FDh+gj4jByRQR7Iv0JH8AM8pFB8t7F1r+1B5ZDXBVNbDs9qsOFXG6oM4NQ+1VidM2YxnbuD/Lf8xt7a2EloFWplNDN7/axTdXdjOTWBdAqePEcr22SJQFwISCf0bz5Jt8nzJEj21G/BdEyQFo4+slqcW9s4LW00ihEBNn2eXUwXBqQbJv+kyuq2PZqFNx+gS6BGBKRifarLrsRrL7QS1UHJf1eNPTzfIaoIhs8XWlE6t5pBP2eTtBHfeeCWL3gnWRAZ3s48fPvk+rMIgbXsNrm5y/6Wv7x2vlBA3CDVJrPhIEaIFKlLoBEYV35jDbCuY3YiBUw5TB0fRx1Iopoo5lSF14/NbrVnrszGns4SlLsFs82zxN3+uidM+Z7Pz+9JorRpRN0MqSJGYP0l3bBqp6Zhahnuij3D5ll/i7n3XsOTPMZdNsSPYxa21B8ioHU5ltnA0jPnZCtxjLiNUh7d0LyWIVL482OFY9zTvEZ/ktys6yalJ2o0QoUAql8CwdGY9kFFAiEKj65NfrlFf62LXTBJNk65bJT09/LwvbGkJA93T8LSAMKkTNCKiTkDhlevxdz9C/sffwVwt6hGwseyND4Bscz9aYRsnl3vK+Gsm8+yerfJ4N8sVTof9XYvfrOb5ECvkzIhtw+Pc+/UJCmOLtGyP/WKFP5v8NcyOSxiqNK0pEvEKdlznmuRf8dnoCDllG3HYRlESyCAkcHp5d7qnoerioiLdMtki836vFm289XqUvV9l9b5l1FeM4AceTi5H/+TU2e3DahW1rw/FttHX/CjH3nsfp157Cr2jYXV0Nj00iXqZgappqFrybJ6lUJSnB0gZGpdO3fJCxndecBSMfq7L38rO8v1U0y7Vl4cocY2ViRrDx3MMn4wZAjZIn/9w+DCHMgXemm5hmZKcPsDhpS9wY/5W6rrOoeJ2TmbWMrJ8hKmlo+SdJP/xhtuZr9VY7AQc9VLEwTy5wWlSNFgzksDp2qxLJCh1GhzRY7YVC0xlUyhC9ApOajFRJaKbcHjiiEKuuB5bSzLnbiLu1LHcMoE5jqqrjGwpcPzRMglHwW+7aF0fTQnRWhV8ERPrDlI1kJFPNb2G5mP/wHClhKInSPRfg9v2aTc80vlnZq2WUp5V3F4Ie+nckzsxnCRGbpjzja8uxzFHH0dvath1i6EjJsH8TqLyMS6deBNfJoUEtD0pPAReVEMrJIhdl9ZX/hpry50Iq4BQBcbotxbhGMNJ9NEUUd2jUMnTf2yFdnGGhl1m7bE2QoYEMqDVdwuL2XVs/8rP4m3735xwJ8BK0l17OXsfOka6tcxAdpSfUod5+Mxnf/CLB1kqPbO59XdVSOHSS7/xtDVNk3b7+S0IcMcdd3DHHXd8221M02Rw8HsnGkaOh0R2jcDWaeVr9NUcbApYqT7cWhvXNFB0Da3epV5wSapNUtWeBFtYDlvVUyyEKR4buZG1fpvQDCBukyiVUPv6vuf2XQgUzCJL1TyB3iFIQ5A2sUptosBE1bNkbJtkrkDgudihhU+IKrNEWYiSWdTyCjK1ibgVoMYqUvMQQUR0dB5t/bkB18j6MS63O3TLR2l416MoCvWux22bx7i8mEByENPLYAQayaiK7vskPNDHkuj9F0dWwwXDeWN4Z/1amsUiYTJDvVGhqpeR4syEQggQCkei3fjzX2XI0jEraxF+CM2AbqNOt1Enkb54K3E+E5jr1qL1DaLlBwjmZzAredKaQyK0WLXKCAkCiT61QvxEElWEJLoeWjSOJMaMQ1LFQ3QXUyCGEVovodrOTp0l3EK1AWETPach7IubdANI6RmanopYWKU5oFKsV5ByHYpoYKRctEwIDcgs1TFaGmpBJbv9MrB1kG1U0WPWNfUQ0sox/3/+HG95lrhSxZ8/hZQRyfU3oqoxMoqRaL1BdSzPeDlC/CgkOrOipgYvZG+8ACisg+Y8InRZ50fMzLaJiiaqVHCiBL7bII5KRGZvhTMs5okUA1U6EEGy6RFbXTT7pZOv8q1gqQnWJjeyq/4QprAQpkXgJNBdBxTBNVJSXl7CkzHlbomys0RBGwRUfEch56WJVciIbM8Knnrp99n3A8wrL8F99CSukmCtk+UkMUomJIGJeua6nGj52J6Cr0scPcMBW/Ayr4QiVFK+yuLIG5hY6UfGLkRVpJKBuHNB2x1LyfkSNgX5rTf+LpDWsnixhy4MdMVg2OpZYaztm5DReRsqglQnwbb7RjixbQkZWoQLuzh46zAt3eCSK2cpPzCBGRloiiBravhhRFpXmLA13qzOsldbSyxCOlFErBgMamvIZw2ak+Mo7kPE0kSRBSRpECpSlkAYBPoJPPsARncTSjyKpIzmtxmo3UT/qSWGD7ugm2hZk4H/8PzmkJ0PIQRaXwKkRIYxnSdXcXb0091XIpXKk19KEwtJqHSRqo4wMrC6il1yiOKjeMMTxIbGj/b/Gi1nmh1vWMu+xRr3P3qC6foJ1rDIeONe/tIeRxoZGr7NMbfKeqMOQuO29gi7nTb5oI4fujxuneL6Tg1IImOw0xZT24YoHaxQXq6hWw6FZAK128R3QnxCjJpAU3y04vM/7lVSOkZHxyMgsAVRO8Atu2j9Dt6TR8kXEuSX5pE1BRnF1BJdKokWxymxYVSjL20QRDGbhjLohsLqYoWFRoStxJSlwgNukluUFlHc5rapHeyfb7I85SMU+HTC4w1tk5qYRtGyDMuvEcsES9ESX9VDhpQ+FK2noBGmAaJ3cqi1FmohA9bFQ7qNZqapHJjHlz6L4wusH72E5kqdez/3BJm+AYSiMDh9LtswrteJVlaQmXFAMLt5lcJyGtf2cdoOiXV51Oy547viNW94AY7q4oAQgk3JbRxo7EYG4AcuRDG2azCzYZmNuyYRAkZI84+xw666y2Krjel1cTSTT518LwuVr/DqDX+AoUikprM0spZceYm4UUYYCv25LJNFjStVhaZr8E/7Zrhu4whDdgbNDCHUGczl2DieYufQpcxrGrFQuPb0AySCEBoOSmIbfl9MNWlRCxSQMbassW3sER6p9BHECUxbQ486JE6fIti0ASVhEGPQPFpja24Xp70JWnoOVUjiSFKLE3j79zK56RLilV2kx65idab2LEi38/rxOSTdjn/tq1RmThL6Pk6+wGG1Rr22TNLJE8UQJ+skyzZBwsepW6TcBAwNoKhbmBgZJYoEKhIPCBSw2wt0ZmcBsK8cRHolhKGj9g1gjH7ras5q2kRJaAhNkKiAWYvxzSYinmfN/L8wXD7JidG7OJy5lGRQY8/m3+Kq3f+J1Mid7B/7aXxX55DbJj55hFdvyzOgqGwz2uwPNI7WI1qPzj6j/njWpNuaNWt44oknvqFowj333MOmTZue7cddcNx333309/eTy+W49dZb+b3f+z0KhW9tsfM8D8/zzj5+qiJFLrSZyXUwVxqs9JfJrybRnQxX3/RLNI99juw/fgSAvtUu1ckmRaHTzPV+7CPpJgcXN+FaTUgWiBNZFMC1WuiVFdRs9oId//cCy7DoJHuctNXwER0PR9WRjYOInCBp6TRKqyRzebRZn0a2TEpW0JodwnSG+JHPow3fRqC4SMUHNY8Eorka6rqRp63UbbjuGr7+iY+Rvu+vcF73K2ixyuhAkiHZZUb3kCKkm7BQ/RwkwAgrBLN1xBUvXuXWs4IQWJs2IpbmcEZGSCRctv2X/4ermg3+8j/9NJpuoJkmV7zmDeifuRs3H6L4IX4+QeJImVSxD90wSRUvToL3mcLatAlv5iSKlSColRitVyn/P1fT1FsIoRKJCDWO8RHMW/cy3vkJNC8gVFVAxVPA6TtF94nj5K75FWp7A2JXwQpDNNfHT0iU2EKRXWIvRjUu7kIK0JuYHUsKjLJK48ZLCE9XkdjEMo3QFYo3rFDZM8L4wRoAev9h0jf3BnWSXoBSK8pj6xL38EmkFxBXqxBHVD/3MQb/y39DcSykpkIokaoGMgah9O7UfkgcRth1B6Oro7vet2ntSxCZMUgOQvUk0zLBV3MmMtGz2Rh1jWpOwWo0UcI2ZlslTo3g6w1iWUUqCsKX6AM6mv3SznQ7HwPGEIveHIZiMnP9GqadTfC1B7DqdeqdNgjwVQVbJPGli2klqPe3KTk9627aSyAsDWFe/OfnD/CdkfvRn2Dl2IM4uk615ZGsmVAxUHwV3TR61kgJ6YrPctYm6zv8rPcLfDD+EHflfpsgjjnSfwnF6kkcBIFQacXL4D54QdvtIoG3n3tCPLekW0bPEckQgcCPXcYTZxQwgUdUn0GYDopT6KmKgl4Bq6nd/cR+m3A2ycK1LZKupOC5dLZ8nTu1d+EoSe5eqFMYSvGL2/qZ3f0YR+slrFYZZfAKlqImQgpMw0AaTapGlci2Ka5+CeRdCNGTzwiRRwSPkXYPkF62GPNmOenk8dUMyBSjJ79M7miCQC9i5TMYwy98FIi9rY/S3+5HSkn0b6dxj1aJ2yGGJ6hc1RvrGzUTuU8SixGEIhl9/AgnNyXx1mxEIFmbuQlV0am1Qy4fz3Pt+hwf/VQN2T6GOrSOH7P6+Ov9VQIZ87u1Sf5gQDAk2gw58FvHBb/r6OxUa3xV7mVt9wpyei9vy3IMoigmCCKkqhHFMd0gZIPSoruUJNQjjJqCoeXQB14A0s02cE6Z4ElEt4Mf+mg6SEMjaPj06xWuXnyQ8oG1BA7svmEKJzKpSg0t7tLsRtimxi0bBnjg8yu0VIOUFbJc90mqkv/VSXJdqoMbqViaxg21DfyZspOhuMuXTYUxu8klbofHjP/OmNxF2435Ok3UuIWu9yIeQi2JiDzUjkvatUl5fahe6aIppAAwbk9yX+6zWFUdL28Rtn3k6ikuLWkcWB+TW7uO4fUbz24f1esgFLTRq1ic9nBx6SQ9/ETAjZ+aJjDaKM7FkVl3MUAIwY+MvJU99ceIZMSuha+g1ku0lBrSzyP0FCBwUJnCxA5MpGlTESF3bPtfhJ0KUXsemRzFVw3iOObAlmuQgUUy6JJaehLFrWPGEtW0+Mkr15GQPoonaCs5FjMjVJI5zNCjbjq4egJBzAMT1xMpJiBIyBg7bGIpAk1ICkZEIRWhksRORDi6gu9Lbtnksv/+Oo2Ug1/qIFQFf6WJPHmSa/tP4l57FbvjHbTqTazNN9LdeTf7H/4ahuUw0BKEXpMjX6+xeOQQdjrNLT/5NgbWf3Oe5ilrKXxz0q186gRus46MYgrT60ikvrWAo12tUJ05idduU1ucw+/0BFkHSgeobdrEAAMABKGPq9XxDQ8/EbLx8XEIDawtExTf8mNUPnGYxs4VNAQKkrouSCeOYKxbR1gpE9XrBIf+msHf/TsUx0bv+/bnuTAVokoXxdJIuFlWMqsYFZX5/Gby1WWKC5/g2MjrkVqKQM9RTa4nV9+JNv2zmJFLYtt1HN3zdXaePspl67ZyxDfP3HoVls8rhvPt8IxHrP/jf/wP3vWud/HOd76Tn//5n8d1XaSUPProo3zsYx/jPe95D3/zN3/zTD/uecGrXvUq3vjGN7JmzRqOHz/Ob/zGb3DHHXfw0EMPoarfXMHynve8h3e/+93f8PyUO8BJe47GlkHCUomNOycx3RCrESKGJ4GeKOm2fRoHLmuwLT6z8hBLAqHyq9m/47fUafqt14CMeoGISgelVkO5SMpZ/3s42hnWWIKbNiBtIA4uIjeXwMhStCs0Vpdp16pYuwoEr9ZQGxlkKkdQWCVaXkFNAosmoerTrLXJFvNE3YDu8ipGLo1m9o59++2v5Gv/8BFqC8dQ936F3JV3IOOYsmLjG1UivUOqcY5g086UW1fTL21Lljhv+cGYnkZ2u7j79iHOyOUTqTS/9JF/6UmXz9glTn3sn1kaCmhN54ktnfSJKs1SiKKqZPoGXqhDeU6gplIohkHc6NkH2jsfYHPpLu6d3Hl2m0hVWMonuH4sTXN/E7t9TlWpyJ73May0CEqrpDaOUd/VIlGB7V88xud/9nGQkF9MoToKin7xT+o3JbfzqPlVOutzxGGA9+QKYeRgao2eC8ibQR/djj+ziowCvBNLZ98rJRiKS1Lt5YO098zjHt8PUjL2vg+heTZSSpS8g7rxUuRDDxHM1YhTvbLpBBFKZ5Gw41EdbIIC6fLFrw58zjFxE5z8CoRdMjJF6czTycBmpqjiJRqYJZNuVkWJY3wzRogMilTIlUKWO6tsSDz7oPUXK3ZkrubQwl4aYQ1HTfZIt+tugOtu4HJFcu8X7wbgM63/jytfeydXr30ZsX0Q6OXkGa6CfvXYC3kIP8BzCFXXcDdlMZ9ocT06Tj3LUn4RGYJY8M/msu19dDfFjbcRmxqp7Civ2fkznBg4zFTyMlzd4utjl9JcuoevKyV+/81/heVcWCVko9uEPQtnHz/X+XFCCN46/otPu78D6AMDRB0LxS70Bp5n4k+Ckw+jj16B6vShbnoFU3seY//rVBQ3ZvjJJkH8MCi38eqhNBlTZ3FXBW1piHQVQBIfPkZsnORz2scZmBph+/YrQETonSIj+16B03DJlfaztEFBijm2zP4dyqW3caSp8uT4DyMVnbGV+9ix79d4PPdOEuYYpmcTdwKyb1r3nPbNdwNjPEXhLZspvX8PUSeiW3FBAe08C3Jkm/hLAmtKJQwHUdJ5Bv/pd2le+TJwUkipnP0uVqttXrFBpTC5ldzAjSAENnDbE+/jn5Wr+HqU5E8Wv8a7cjWGM5cyILP8d1fhjfYXOB7O88n2P/M6zSXvXIamKbiBpNKJMfTe+G650WWT5lMb7BUoGjw1gqZLzPW5573vemNtQbPYBQSeaWINp1EbXaouxEe+guqdJL3tMuq7WvTNtlmdyhPGNmL1MKa+gUoroOuHvOWqaZ6YqTFTbdOSVU43PFRi3rxc5P6xZWK7j5Sh88iePh6+9DPMayp/kEtzzdE3Ubc+xec37EBf/Dp7TElFNfkRvY9YT6EoCqg2XrKOb3fQPQ0t7YBy8WR/qkIjFaUp95UJzBC3kMGopijWV3FWy2x6+89RD6qcbB/FiztsqgZ4a9ZgTF/JkctmaOV7Nt2pXUOorkDJ6d8/GbrPAtsyvVy8Y+1DVOxVOtkue1e+wrbTrwMk5oYcRw+v8LLHV4iRHLyiSHd0LdKJaRKiKjpIiRJ7dLQs6CpdHB5NXkXKawAxOW+VqfJJlBBcO8Ni7ir2JbNnMy6NoM1QaSfLXoPO6C29hWrAk5Jo9WGm+0dJiwQSg24wjOsnUSrLZIZTOLag1a0y1nyIetBHNT+NUBTqXZVHZ7YwsvNh1p78BJfctsCu4p3omX6GvSrq3q9yYGmew/f/I1HoE0e9OU99ZYmDX/m3b0m6xd+BdDu96xG61Z4IR6gqI1t3fMu+L586zuyuR5/2XCKX57g1x8zSYV41eGPvcwwXz1ki1iJSqwnMbm8+HzV84ijGn22eJakUBNPXjdC538I/2qtQ7pUraMPDZF71zKpeGyMp3L1lMBVyosDh7DJuyuBoOAlfeSVy6xbucR/ixqFfoCsDFqf+E+uW7icVNCkn14DWx89ctsAHd8F1U5tIKbAa91p4e0dy5Bm04RnPKN/97nfzH//jf+Qd73gHiUSC3/zN36TT6fDjP/7jDA8P86d/+qe8+c1v/s4f9Dzi/PZs3bqVbdu2MT09zX333cfLX/7yb/qe//pf/yvvfOc7zz5uNBqMjY2h5/so7HyM0tUjdPoF7WyAUzOwGgHmWJqOZaK5HmJ5mQFlC3FURw9TBKpCZFsc0zYTKjUmHadHuOERKS1E98LaH74XOGoKQ5r4nFGuRDFGzYXuPIb2OZLmVrKDw9SXl1g9cIhw3RBe3wymP0p306VEioaaWCGwC2gdA2/BI8pHqIrG8S99hfQl04ztuAIATdO48nVv4vF//Sdqu++lvvd+hjddR25QoTTYQfcFWTfPU4lJmh8jEtr3TaYbgKLrJG+5hdZ999HduZOwWkXL5c7ecIUQhJUK3Z07qb3pDmJdxZqrMxxlKL7+FtZffQOa8eInKYd++X9Q/oe/xj3WI4fyZQVjTMc/z9fYVQWTE2m+cOCrbHWvZdsXIkxlkcJ1h4lDhdBV6B56gtQN/WQuS9I5vkine2aCJkAJYvSsjnKRVL36dlAUhc2JbeytPUJjywDzdx8jH6o0wxGS9iKKrGANxrSiNkJ18GcrxL6PYhggJSrn+s1fXsaY3khixyWYU1NEB5d6E74g7A0kLrmEuH66p3SLQ5ROGa0+R6SqZ/NDNPl9SLppJlzyJjj8GW4vt1k80Oa+B2tsf83LWRELlNNdPP0UCXeKdsEGaQIxgbpEf9xgqd16SZybzxRpPcuAOcyqt8xs9+TTCIXB8UmshI175t6YKhTRJgs0Wx2EhJTvoGQdROL7p79e6lAUQeRomAM6nWWf7ZUklY5GYIVUBs8VJgn1frS9h5Eb19EcTLE+l+ShQ/fjbEkxYE7T7tuBm7Bpdb7EH937Z/zIwIUdk7aCVs9i/9RxqM/95Pf8+/tT0EdG6R5pAv3nbSnRhrbTffjPGfqj36Px+Zh8dweJ+hG6aY+105fS9zGN8c0VZuw0mYcrPb7OEChaAiWMUH2dG9jK5fZ6vrxjN8gI1bcw/UEWLhk446Qd6bXBq3L5id9hfnYtR3f8KcQBdneRlL9IHIYkOoOYno1UJalbxnuEyAsMIQTmSArn6gGkECB7hRSM4RQ55QS1sEw756IWd6CnKsg4R9Q2cK54B84TX6d53SvOEqAAsdARX/kHNo/cRRzLs6TrQLvCDeqj7Exexr/EN7G/XuELiWOgF+lXR/mVxvX8fuoBHuEAs/4SH7n2ZgrDaWpu9LT22mEXL3HuOb0J1ojxgpAsiq2RiM6R2G1dEHUlejqB3l/Ae/zLGEEJJfcq7CkLp9KmMpYG3eLE6f1cdsuV3H+gQtfvWbIvGcyyZTDL0b40H3/kEJVQMBPq/JfFFO8pVhnJ5PhT2+F9nVfxEesLlKwun936ZyAF+XaBMTPHmqDOG5oe68a24j9FTEsP36ygdzWSVQtlw8UXqXKJtp3HWl+jm/ZYuet61j/wWlqffydTq3WiPp1/mD8nYJmojXDybZexcsVh9K7K1OIE9nQebSQkmRrFuez7xO3zXeLlfa/hscOf4XRyldlX9bPp/xxAtzbiHa5xjZ1gf9ejIyXpekTC6dLNWKiKQRSHKMR4eg4t8hgN9xILlZaSp6MmaBsZlu0xZu21JP0mbSNJy8xAFNJpHaN/8esE+S3siRfZb1a4yV2hEKlUnQJSKIxPX0Wi3cRYfBSQ7Bm/gvnhzTAM81HUc+e8/PXoV76MIJ3rXXq7LkPO3bjbbNa7efq0Cu7xT0HxTgDE4Hpu7CwzlCvw5ZkToA0QdCt47SZxFHFk1+Os2fkIE5df/Q39dL7S7d8vHsk4plurnX28eHDvtyXdlg8fAEA1TKxMFgHEhsI/Ln+O2+3fPLtdK/0YsYgwGxr9M+cWEqKGT7TaJVzpgiFIbOsjc/M4wlDwnsye21EiQfLml32HX8A52Jf1091bIlhsk1lxGD5aYHGqTHN9Dn3f5xELyxRuyXLceZg1ycs42n8d05UnmCrvoZEYIjAsdm18D2OHf5d/O7CT/71RsM5IcI9c4clu9jvuH54F6XZ+QOxP/MRP8BM/8RN0Oh1arRb9/f3f5p0XD6ampigWixw7duxbkm6maX7TYgtqJoPz0ArdvgTBSB/1QotkLY/uR2RNydyZuoem5+N0OtiJFMGZjKOOLZnwhrBG7+a1hV/kNKBgEqsemnPx3RCegqMl8UWPcFN8yO6aQ8SSsB0jYwtDWaAwOoaVTFKenYFjVXxrCdW00Ds6rUuvJj+7B63/h/BEE+EKOkETTdFxjBSlk8fOkm4A66++ivpqk+rhJ9C9NmnPo610Scy3SKWHSQQJCGvIrkBzQ2Q3RM28tCdehUfnaazN4Q1niGSEc801RLUaUbVC5QMfoP9Xf/Vp23f37kUdH8UbzpA8VsaodrEiAzWVYWDq4qyS+2xh334NrT0PIQOf2PdQqg02BmuRFY/VRI2SUSLUBR8Zz2D8iAafPETarRIak4iyhZJvI/QsQbWEN3cSa6SPKLIJtZDUqo0SgVPW0LMa6otA6QaQcfqIvF5b/b4U7soCai6JQwJkiKKVUZKCuFFGG95A5W8/QvEdbwcJKufZQTUbLZfFnJ5GMXuVTgEIen/FsQYJA+G2IfJRDAUxOU745PK5j3j2qQUvDRTWg5Ek0SwxYmnETRcj1kmFSbzTy2AsYVTTRMksvu0TaF1CvUkxWWFm9YVu/PMLIQR5ow8ktKImjaBGxugNuoq33s6W5QWWTx5H1XUmtl2KSCfwOgFSgKqpqKO5H6zuv8QgVRUjr1JfCdEjDSl6Bct955xtY30KlqpLJGtFNCuBm1G5cc8NTF06hSwkOLx6GmEWuN58E7vr99DwGtjqhVOQhlEInKlGR4winh9iSc3nCJYeQ0YxWnEaLB3Z9VASKRJXvQJr3Tje0RL5ME12eR4pJN2Uj50cIDgaMqDUCZJqTyGnKwgziew0KVGla3U5/uplEjWDWJU4jQLp7mbsVgvFFLRTOoo7S8ue4NOv3IcEku0TxGqGfpFhXc6ibP0syXoOX3fRUhbWuuzz0i/PBEJTyL2hp4xoPjBH3PDRciaqpiBjiWf7yKgJQkEv6ChmhPQMUg2XVreNTDgIIYjikG5U5Z7BH6HHRkq8xipxp8X4bT9G8p/ezWpmLStqhnJo8LelOd7Sr4MwuNaboF/OUs/M0hUef3DoD3nv1PtwSzW8rge6iucHeMtH6SR9kssWqlQQpRbm5udf5Qa9a3a2kqIwn6bruDT7LcKOhlevkZjO4h48ijm8ioyqxLkx7BkXs94l0lVOqIPc+JmfZPrGvwEJ5WZApRVQ7/r0OSbpRII7nAoy8shpEZ4aEEegKio/F49x3L2WB5XTOEJgiRhHSZBKZ6ABtt8hVrMgxJlvQYAaESTAblqo6YvPSTSYG8Oo6xgrGoEZgaoSTawj21jldHqVJGncuIsudL42uYDrO6QXdSJHITc8yBUDN8GL27TyvCFvFJkY3MHqibuJVMnOV9S54eFposggEcF9GxyUQ3VuObrCyKky81cN0bUFdTlHICBjjpASCcTCHtT8NIrloAGJSEEhQlEUOmaOKI5QuzUqosux8CD/W/wjVP8RDQ0NlcOVz/PX1q/yWLIX8RMAVvUosWaBjHE1Cz30CFSDUOlFtwgZEzgplMAjVCDvznNNbhADFZEMEOIatLjMaOkApdQIjUSaUAiKqQyaqoDskB0cptWo0K7V6TSbnN71CAPrN2H9O3uo1/HRTQ0rqZMqPF0h3q6UMWybOIoQQqBbFrWFWbLD3+g2kFISnFkwVVQVw0qQGRqhO5pk7N+uAH+SIIwQikesdEEFu2qy8bHxs58hdIXq3SfQihZK0sAYTaMVe21SM+cKKhpDQ5jrnpnKDUBLm9iX9ePPNunuWSBZNrH6NQLaNLaNUnzgOG+cX+Kx+An0y/rREimOTNxFv9sgHYTU3SbNzHrW9QUcXjlNn1xDXTG4RTE4tOH0M2vDM24t31hG1rZtbPvi8cp/J8zNzVEulxkaGnrW71XTKRKzdSJDw2gE1Ac8iisaKJKU7KAOD9KoVRGaRmN1HvJ58kGToKWelZQ60kT6AhGWiVSwS120jv9cH+ZzBktJMGCMsOzPExsQDORIbN+KDAVSOKDqJFJpOvU6mmGQaNrIRBdCFRk1e8Gz9TnMaQdNM3qBljLAjX0MxUDTdLxOG9PuDYoLI2NsufU1HFtdwIhc+j75dxz74UmMxAjdfIDSlTSTWTBhzKqjjyVR7ItfifS9IDZUkBJ7pUvVL5G5/TYqH/gAan8/sfeN2Vne8RP4mycwah5xGKM1PIYv2UbfSyhcVRvIoBXTeKd7EuOoVuVy/+XEpSp78ycoJ6ogY3xVkDd1Tm/tsvZQElXvUD2wCSPnIrOXAgbdlTSd5RikIEpGNPt6NwunZKGpKor24iCQMkaO/HxE1GkRjBapzR0jjCxStgSRQNMrKIl+olIZYTgE88eBM/ZSrw5nuGttYIL+d/422nieaLWJyCZAiHPx4H6E4phITUEZzqG1etYqJZsFerYHXfn+UZ8+DYYDdhG9U0J3dHQtZn75JEEqork2h+F6JEsNNNcmcJIYYRIjXEaLVlHSU9/5819iSCg2ESE5vUAzrJ8l3VRN42U/9XYe/+wnAcgPj+LHHvJMXpapJtDG8i9Yu3+AC4NYCKpyBU01qIUKmcUk1YSHH0RIJALBvc1lTnshP3SJQhZBYziJMzPPVz6+j/5UQGrzBPGEQyeqM524kofdJQQXjpyVSEYSawiVJrHaRdWeH5WvuWYNxnA/IjnSu4iHPXuklCGok5Q/No/sRuhjSbKNFNXBJnpXpTkQ4pxoYKcT+FECMRAjck3qVo7d7cf5Gju52bkczbPwkxHZ5RRXfmkco28RZ0OCU4ZN0utQskZRzpSNUGSAaw0zXvUZW16lVjPxWptRY4kidbThxHfM2nmhkLpx9GwV1cHyKEoL/HaXjlFCWzFIjAYEXg6hGOT9BAtKL/Q8lpJIegRBA2mkUGLQVJUVHEJVo+Cv4utZrpx/nPvW/hBeq80/B5fR33Z5ld0hYyb4yVM/w/s2/BEKOqVZl/95z59whfIqzHTv2mZqGmlCZApaAz3iea2YwJh+4UQOTjqDlziBVRfI/gGCdgsZBkSKQrhcRhRXek4eWyWZ0ohUCFVJWltPWya4ZDgBam9MtftEncdPukRxzLXjBcKuwWvVvQBU+5KIoyVG7DRIwX8Nd/A2dZByfIjx7gZe3/4h3vCuy0gkDY586D+zX+/lBUZhhBaXyC2kiKWHsnwakdz+gvXXt0ImV6RRayMViVRA0QNSo5dw4oYIpVylMNTHkjtPVi/QMGfRPQPVV0i7aS7beP0L3fwXHTb2Xcb+Jz9DLHpEVrN/ntTqKLGq8ssdg98wJL/kd/jfQZLs/bOkJxPMZY5wVN3DlcM/R1k20AZfS7u8jCqSKKqOCMCIBZGhEgO60FAij4fan+Lr1X8mJ1Js0dcxFyyxLCvEikpTC8+2KRKiFzWlaNQ1C0VKzNAjULQz9lSBFAqCGEFMsVVmx8wj6OiExOhCQ8YueiRRY4mQAUYY0VQ7pDSPu667nCC9QhirPPxYjZM10AydTqtFq1z6BtKt2/JIJA3iKP4Ge2mnWsZKpfFaTbxWk6DboVuvf1PSzWu3sPNFVFXFzheYvq6nRLt/7n6OzDrcttFC11TAxujaJCs+hSddusInoRoQg2KpxHUPJWUivRC9/xwJaExOoA0NEdXrxO021trpZ/VbSF0/QvmjB0EROBUdzVUwWpLuSLpnQ/dcdnzxEZbW3EJkhaxoNnEiRSpu0lYd4nqNyiU/g7H6t0i/i2sptEWALpa+8855lqTb+vXrv+PqcqVS+bavP5dotVocO3bs7OOTJ0/yxBNPkM/nyefzvPvd7+bOO+9kcHCQ48eP8+u//uusXbuWV77ylc96X2omQ3rRpb2+iNqNkFaF6V1FTFeHSg1TQqrSs0FUDz1OZ/1mImHScVTMluDq7qX8f0qepmEgtSQKUCu2MFLZ56g3nnsIIQikD1IgJJhzJbpP7sVITKJQJ8Yin8mz/6tHUDWd6PAc1mvXojf6ia0qoZ0hOPQYdlKhc6yF1mcTNhWsvE0MhJ02br16lnQDSGYsto6uJVFZYElXqV0+TmNTEeii6ecKYIiqJBbBc1pl5WKEvdBk8ZY12CWXir9KMb+FsFLBP32acGUZfuM3AAhin4X2KQ70z1F9RQ63YBBmMhT3lVH6X/gA4+ca6uAAwrJRnRRRuwFnbD1Z3yFQzlg/FIVKyqC5xadR6LLx4UF0P9GrXGr2ftMyoDdpERAa52wcSm2WbrJNUvvWRVcuJmS0LJURFWNZwenWcNwBygxj6AtATO30PtTMawhX+oi9JsGqjnd6CYlE6XQIYg+hCfT+UbTx3qBfaAqy1j2zg95NT7Y94lIvX0ZJGDDVG9AGf//Fs23RlRcHUXlBYKYJYoVOu8v1V+SZGFqmZBRYapdRqweI7M0EpkDKEKlEqGYTM6tRny2/0C1/3pHRc5TqKwCM21OMMvm018+vwtaNOqS1LEEcYCdeGKXHD3BhoRoqg/1jqO7X+PtTa8mqEdpQ7/rjWyGmqzNj9/Ow9Ok/usDLrt2C4oWkhwuYJz5D3bue5oNLKA8sk7y8j8SEjac9H+ODgFj1CIxlzG+RFfxcw1y3jri7jJpOIAERSmTrJOHqCfSJG4hWXRDgHaySXpvETQboHcGpdcdZ+uKn+NJrBs/mDtlWljiboC9n0z+XpTUW4+d88gspLrt3LZKYVqvN3PGjdK0GU/lLWG/lOWadGbdJSdiNGNhTptMKIZ4m1haJtJiWXWL01heHwl4VGiWjhNMw6eZMkksaen6Y0O0StbIYnQbQqxIvAF3YWEY/aBYxMFI9wER6iINOBq/moxYmyM4d4y5/N38cb6UlEvxJvcFHOxaDWsTVesSP7/4tPnzFb3NEHqJ5sk06fxM5O415ZrHvBsXnUfNc3pzaidDXvXB2wnQ3RSvvQx7USoHoeInMjgJh0eb0pyXFbUWC7imS1hjeiEmiXKE2NQaByh6u4drqaSj2JsmT/TanVlw6QchQMY0qU8waA+TcZVbcOSbX1jj4+BxbR8YYUGJ+pzuBJydYiQwSYZ25gxXWXTnI/cq15H0fYQoURcG1fOrFJlbLQE2OoqS/dUXDFwqKUEgaaUI/QIkg6HMI97ZY7U/QUctofsyNxdv50upnUcyYzmCIVEJe85mNKLd8H8Z3PAdYa67lkaF5tLrCHm8vV1RLqK0rif0Wf1Ao8GC1yXu9Ln+tOrizIa/Y6/DEmq8gR38eBYOGoqONrCWMfBTVIvDbtI7sQvZ1WAgXSbePUotK7FFOoXXHWR8YLNZfxxJt2kN/QUdfRTsvyiWKApQ4ZMlKM1NYw7KZRjEsMq0SHd0iMJO9xW6hkAi63HTyERAmBx2bXZxCM4bQWhaJ3C24dhHFNFGjDrvW3EGhVWJq9TBOw0YqEZaRxfcW0fQstXKDlSMHMSwL3Xbw2i1UTac2v4LbivHqZZJOmkMnHiXwPQY3XkJl9jTdWpXA7SIUFcO2cRu1b9rPnVoFGYW0qmVS/b1rlZSSh+f2cknqevzYII4lQoFOeoFOJsYWZarJAEckiRs+YaUnKIndiLjpY4ycO4e1YpFwcREUhbDTwdq8+Vn/FpwrBunuKZGp5GgOnMYybdw+C6IIDAN97iTj73knR//k47iGhS4stnRmWE0kCJIZusZWhgseT55c4a5Lr2VWNhgIn9m851nNjt797neTOU/a90Lj8ccf55Zbbjn7+Kkstp/+6Z/m/e9/P3v27OHDH/4wtVqN4eFhXvGKV/C7v/u739Q++p2gZrPoCxWm3/cQx//ztTQSTZamykwcGCSSJpbj8JQJIpg7xVK1Rt7xqFspOvkE7WyCIWuC0nkroWq3hdp3cVtzXzv4ZuYPVFnee5rM7/9fAIJ6iFB8FOEz0jyClJLQ98CHdKNNpLRQ9RztrVfR/fCfkH/7KkKohIttWuWY/DU5kkaGqBbQXl0hs1ruER+XbMFJKIj2Cs3jR/BKZbxc77syIp1InOs7LYhQixc2JPliQPpoGSGgM+yw7C2yPrUFrb8fv9kkWFomjmOkkKx4S9xT/jRssYAzcnopSe46hfKGV72gx3AhoI0NI90OodshLK8gzuTFDLf6eIv4SWpHPsEX13To6ipuLkMz10LKZbY9MAVIjD6dqBsRN04T1VZQimPI9DkLvR4IEuaLJ9je1pIYgYo/kKJ89RjhB1Zwrn0lsVxBVZbIGNAcNfFPWqiaBfRR+9xu2LoJQzbRM2fOs42XnPtQ9TyrVBQ//V84S3QCxJoCZ8yomvLSVp9+W4zfiDb/KJmUSSZlAidwQpvQ0QidDPmHjhOvuaGnvZEquWCZMFbRkhenEuRCwlbPLQa0w9a33bYbdWiENQDM71cl5UscTt6GRRddwM9mazwZxZw485rr+JiuzvpuibULu/laZzPXX7YRzdJpbhgj+Wib49YputYkestg0I8wXJ9Av/CVlGMRECs+seIjnscM0MSWESofeRcEXbLv+Dman/2/6BM3IOwQc00OIomMYZA063c2OHLlLPV1JsYrtmN6ixgbxkBRGJuYPJu3lhmH2FMpzNkUqhmaqTKpZgGjaZB1B5CXCNpeHaREy6Sgsg88H6+ynrARIYRHrC3jGlkQMUpCIz3w7J0lLwQyeo6YmGaxS3NEpa88SPO4T3I6hbfYQE3kyK50qI0nEHFMFHokjHOTwS+2H+au2kb0iWsxCgPMjV+GMXcA9+DXePNNG5mvVzjZNLjf7Y0r/BxsjrtcOX87D0x+kuP6QWqWyuB56vpm18M/zx1Z6c68oEUBHDPVK9whwE1p1B44TmZHAS1t4bc02qdrBIMzmDlIKDDhRNTjGGmalIq3IVeOIM6QbhlH4zVX9HH3zlXs3Ll7QSeZpesNE7ayzA0tUTuxl+m+fopOgvWKh+J4LJoeX/lXh+nL+ll1FQpnqpMKINR7VWh1T4OwCc7FeW/dnr6SByv30h2A5UyFzPUvo7bxOKgKI1GOicRafmboF7jvb99NdfM4uZUU9mTxhW72ixabrng92u7P8+DgSUoFm0f80+z45yXsNa8kXJJcjYqGSRlJEYU4M8HPzv53dn7pHewcWCU19h8YtTajCZNJZxuGmeTIYMRHS/+LWAEZq2giIr9yDbXqy7lXpuidLCba8g9hDf8zn88v8pQ2LA47hKHHI5NXg6I8FYlMPdWznz6VcxvHMbVwhf3RCjNiju6a38JRrbOv+/TilKWURJpDQ7Vp2HlMr8WmSoCMJaulSxDKMmFQYfFEl5GJEfxOm8LkNDM7H+7tWDVB2BBWWXzyXL81FufP/p0eHCEKfdqlVRYP7qNbr5MeGGJ4y3aUMwtOrZUVOmcKLiTPRI/NNmf52O7H+Y1tf9CzvQKePguiN5+oaD47Wg6x9FFSOnGzR07KLuhjKRTz3Nw/sW0b6x9/nMoHP0jsuijOs5+nmVMZkjcPI++bx66bdLIe1asmiMxH0Dy/5+7ptkkePUhtyxVUdI1DiTHycZtZJ0topzAG1kBpDj8KGdcyvCzY8Iz2/axItze/+c0XVX7bzTff/LSsuX+PL3zhC8/ZvoSqohUKJOYbZ5/z+ySKrRGOrMNat5Z4dhbZbJKWsFous2WwhNM16Oo67bzFoBcRKgqhaBFpLbR2F2N05Dlr44WAqVqYCR1pp4jG1mL4LaKuII4LCNFkINHGMlVcN0QzTEbTU6y0F5DKAOQHkFPrWPmfv4M6eCva4KUoMoVf7aBkdCzdofzIQwyjQRzD8hL65i2UnniS0tcfIsqm8PqS2B2dQbdAFHSxlBDZ1dDUCP0iKEF/oeGcqpM6UsIbybKk9y5+yZfdRCuO8WdmCBYWWM4H/NvKJzGaEVHgY1VdNFS0hRKpIyXU7MVDlD9XMAfPrfbGVohI9vyRKgqa0OmmNrFm9+ew+xIcGU7RVlVmN62w+aFxDCVEcxIQSqzptST68uhzf0035QBbAdDDM4SS+sINcJ8tHC2JTx2/YOPVTxE4NpV6jmzSRRFNjMxhnGunaD24CMKg+/gh5JaNiLAL9M4l+9bzrAvnHbt8yr50Hukmzns90sFs6aihckEzlC562Hm8Na8hOvU1rKiKIgQZeQjoSfmVbARS9vKqRIe+qEQYq2T6v//CkB0tRU4v4scu3aj9bbftROdIOUe9+JQLP8D3DsXUzqqv+nMlCr7H402fgmbiOh6ZssP2vMbL+0u0l9vse2gvV23ZQJi1KP7UrzG79zFSuz9HFMOpE/3kcq+kLzN8wdvdSe7Bs2cBSGvPn5Ut80OvortrJ8HcLLUP/hXCMtFyNYpv2YQ1PU3zgTmgZ6HsfMKldbTF6liD1dvXsU7d0MtzEwACpQu6r9M/kySgTSGw2d53I4vXHqJzpI21kkBvW/TPTLI4coTl6hxTGQvH7aex0yUll1FEiY6RwUtCp+8kRn6QZKH/7GTsYkdGy579OxiO4CBEtQhvuUVitEFr5z6Si9fjpW26KZPUah3zax/iX68V1EWb491HWVSO8NrORqpmhuKmKzn16GfJRF36H/w7zM2vJmCJtKYxH9t8tqbwpC55vbuWRvlq9psVciNZ/DDCOLM473dD2pkQs6VjlzQend7FN0+jfn5gFG0Kqxk6VpcwZdI9VaJysEpufQZrKEn5gId5WY1qDBkFhkybJyuzKE4/YSrJ0qE6Q2eEKYoQKJpgrGgyX+pS7/j4sSSdMFGNJKX8pVi5mAUzCYceZM0l4xxqQZYAxwy5a2gv3r+U2KYmOD+kJzJ65da0TozwypC8OO8Xo4lJRqxxqo1Vjl4xT6RFWGUf5/gKa/sn0SY1qv92EsPeju43MTsqxqaL81heDDASScbXX8fgniOUBgT1y4Y5MXeYdY98HXNgLWrfKJe6OkosiXvJgIw4w9id93D16QYNs8CceZLPdf4Xk1t73EIukWF9KClGgtNLb+agewlN4ZETZUZlhSppSmQI2xt59eHfZ12tjra1RWio+KrK57e8GjUOCNGIiAhlwH2lvyNvDLE1GuOB8GF+KPN2wuQGVoZG6Aw6dIMIPQ4xNRWiGM0NUL2YbkolUkERKsSS48UJRktH0VG5sr/C3dURolASRzWOH86iHjcZWKqQslTiKILIg6fynRWFVHEAv9vGzubRDINOrUpqYIDs0CiaaTK/ZzfVudNUZ09ROnmMvun1jGzdQXNlCUXT0AyLZKHHF31g3wcYCF4LQNv1cCyTWHXROwZ6M0INekSj2m9jTqQJyx38Ez2uxVzz9Pmr0HVUXUdJJlGS3x0HIDQF57IhWl8+wuYHJ1lYV6JWrPHo372Za3/qn1CkQHXSFP/2fyPfehftdbdT1hOYkUo6WqUpsjzW9yOkjb/m0OJxhrPDjCjPLDvyGZNuPwgtBvuaa8j4ZYqH68jJKTqiQ9wJiY0sWiaDYpqUQx/Vdem0WphRC00JcVoRftYkWmzjTRto0kT1QxLHqtjrb3ihD+s7IpW3yQ2mkN0WcWmJIJkEERNHJsIpMGk9iZ8wiccuZd3YDpb27yMMTERQpXr7G+n72PtRlSYy9EDXiLsJzLyBrZiUFWhLcAwDZmdx5+dpzc2h5bK0BmwyCxFqzkAJQjxNx9WSkAKlJREXoFLYxQbNj9ArHRTdQPQLgthHzefRikWUVBJ3337K12QpmgM0KicpnOqy/ZPzzL1pG52DB9G64dOCJ18q0IaGcG68kbjVIm43Eedn6cRgZIfwHrZYF3u00mlmbAURqrgDNeyuiT1ugW1AxwdGkH3b8aIjpA4so3gRdrOnphEvItJtLL0O8eR9+I6K50S02iG5eJAoXiDEQajLpF/xQ7QfXkaGHdRkGvEvH0Zc0es7GZ1RL5zB0449OrO48TSlW+91v9NBOAZesmcFE+6LY5J1QSAUrOnrIW4QzD5O7AuSgctoO8BXFWSihBYv4RoWkdoh1bY4OXMSfXzbC93y5x2OmqQalABoRY1vu20gA4bMUSSSpPaDicdLEarZG46eEdJgRAr5lIFE0olnCctlrh5u41y7nd9rbWH17n9h5+Q4moDIMViz6VIq3UX6kw6TqSJu2kYx9G+7MPtcQMTnXROfp0w3AGvzZswN60m9/OW0H3kEGQSY69ZiTfeURE9llQHkzSI79q3na5kn8eMWkQgJMhZSVRFS4NRUMismTkPnkuhaim+9qvcZjDKX2k1wbxWRUBCeQn5oimZtieXlGYqLI6gZFdlo00n5eMUH8awh9NQAxTXrvm2Fu4sNtppk0BwFJMZ0Du1xi7jpEpQDclemaO9qYK+UcPMZpEwRO2n8wiA/9Ocf5N13uagalEwDU0YooY9pGLQK6wlrsxRlwJXlU7w7+17qyTfzuuorEZpBS6hcd10RtTnMzv1XUbzURFUUwjBkoD2LJmPUUMHs6qheyOjlL2yel5LQCfyQbtpHODpxEOB3JM2FJsbaLN7uMnEIHQkp2Zs3Dmspan5MN6yxWM7x73WPl09nuXw6y4NHS/zh3Qd42dQACpLJQhItaGPmB1lJOpTcFvdmL+enKvshiBlGY7C8wub0APvcNl3VQHd91NgnX0mRqjoIU0Di4nTEZPQcprDwNJ8oFaH5Crmajr3QIXzfn3HyfR9H3/YWplp51uzOo2gtjNt/cO/7XpAqjnDrjb/Ap47+DdKL8IazhMc+RXxKJ/vD/w2ppfEVHdcNcRDEQEYoRDJD/+GAIc2ilt9IUP4KQsugqzr9ocK+pbejeEmSeDSlwUDkU4gb/DAPY8R3Ik2bNSgMV3McdxwQglYUkPaauJqBKyVz3WM0w2V2Ln2Ca/veyFF/hrAhEYkIIRTqAw6l1SZ5y0CoAtHyMQB7qULu6BzzV6yhaUnCTBI3bGCpGoesGNsroeUDbs59kkPNQZpxH+36EfTE9cwcihgZt0hnzi16KrqJYSfY+urXs7B/z9nnnULf067njwaH+CifQtEVNjfHefNBjygMkDLGsJMoqoKZTPHnu/+c1VaNiVSecqNJ2jLRmzVq6f0Etk9oSibdUZSRFKoqSGzK489qqLbey5we/+a/+cLPvPV7+i3o/TbaUMTAbJrycJ2EmUDrlli583IGPrOP2NBJqDpDx45waPwaLCHRZUxXS5EKVzmYWMdEwmOpuUJ/Msuq/8wcGN9V9dLvV8SdDuK+h6i/5UdJEhIlDfSxFNJyMEwTVlYpAOSyzMcuWXEM19iI6oeEukLHB7Pl0sx3CPUKhq2SWLfuhT6s74h03uZYy8eYWIvqOGiaQuR6qFoMQufV0wugJuCn3wKpacLU50k2tyOFT31yE3knhdpcRCvqgMSd76I4TRRVBwQtU8eJBUhJ69HHII6JPA9543XUxzSgzURnmPqZAFYlitAcFTX3fWAzEgK97tJda5AWOmV/BXtigsrp0xijowTlVSpBQNtv4DsaU589DnqSqSc6dA/GsGkTavGlJ0nXslm8mRniVgulXKb6yU+Q2n5zb8aGxHKS7HtsH9f9+GYcqdBJSCDEvGI3hXY/gbIGbaJAeHCx94G1edoZn+bmXkko7VQvn/HFpHRThYabNdArHTpjKeywzv/P3nuHWXZdddrv3iffnOpW7KrqnFvdysmSLUvONo7YpLGxgSHOwAwPDDAMzHzA5AjMAEOcMQYzJhjnhCVZsmIrd6tzqOrKdXM6eX9/3FJXy5btlu1Wp3qfp5++4dx99jl1ztl7rb3WbwmZwDRAKYnnttEsibQTxD2LWEaI/X+BvLkf3aeirykV/pLpperrvm/Xa0TnjCSWeWlOcl9RNr0Bbe4pvG5IyteomhpOpNAHuziFM3iNM0hVI9Ns05YK+xJdjb+QmNKkYJSQaJjfImW0HTaZ8/qRO/uyN78S3VvjFcZIGlTbtbNGueMq6CnyXQeyZfTiMHHjWdT618PTxyi/8fXceP/nOHjrm2nlbBJCI973Bk6cmWLjQJliKkM8dQDi6Jvu9zulV15tX3+Fx4vhX/u1/ouVlMNvZIjoRRv9iMMd993EkdxjLJfmMI62Wbwxj0AQJjR2ftJAmsuUfvfGF/127Np91OdP0nliAWnrlMIhFpuHSdcL+J6L6dkwmKM13iT0tpAqlth+z5sv5GFfEJJ6ivmVZ4ywBFpxDNX1+kWWOi6q+TTaM59m6Pj3cOCnfhwRRRjbb4Lpw+SaD9LKROhGTMc/g0ztIwOI4jBG9ShNJIeXDuE3d/D2ic/w6sSdfLKjk5SKvz4xQEq8npJsM9vsMJJJous67cQQCzmJ2dPoZTxSi6BbFzdVUsuapE+nUJUI2WjiZ210v4ci1ddOsyTBTI/qhGREi5FA0dRZkia6F9EyDboHlkns/Po56e2bS/zEazbzsUenGUiajBczxEYCP4bO8hKO77F5LMs/aYygOgG/O9hgHRE9M0FoJzEAISXdoUU60ifZtPuBnK9gyvfLxdIdIhmBgtCO6aVg+58+RhQERJUqcrgOoQa6hTE5hVG+NFNlLydSegYjkyWpp4k26jzzL19NaGlYvfvY8ckZspveQVScIHZj/K6HFUt0BAKBFRW5ffkD1KMhYqNB2WsS6f+EaGwHgTB5w2KH7QWb9MAGhJhh22PLVCJoKItBNCI/JFV3kYZPYGgYYYArBJ2wTlLPUmk+jxkpHqx/DCFgovJu9EQbNZojihWD2QSJusv6h2aobsoTANnjLXIqy7IHftqh67bJmGnisEkvkafot2iKiP+ww6JbaTPa8vGkz5C/jrHuJAcqEW7mIAtanSlZYSBV5ucmP4SQ8iUXTRa7i3zh9Bd4WDvCGdVfNK3EDWpum9efXGZ9UMTvdhjZeQ01r8aJxgn2n/K5J2OhEJimgfLaIC3Sy0m0To/19RFUtYUvBfb2As6OV0ZLe+BHXsfcv3+UoRN5ZrcsY3QGaacWGfR94u4CsZOAL3yFRv1ZnB/43/gqxhcmmpbHsnrkspLHjla5YdxGD9xvvUNehtMtPnc17ypFLw8gI4Wz1KNWbJBIWbQXq1iTGRIrzjMFxPUGvVYdPzZIKpdqLk3Y9mlpBoGtY4RFAnMevdnF2Xx5iMyWx7Msaw7a6eMEiSRnfv9h0jtt8ndshPwEVKdRy8egsIm0suklTpLo7sAvmPQSWcSRx0jc/I+ImxaRD5qeRQ96+AIWC3kG3/wOePwx2n/39/SmzyAdB+P970Y2vkJMTCK0qKw4BGSgiNoR2kpK4ZVO+liF+bdsJ/CXWPaX2LxpE9HiIr3FRXo7Rplz19NRbZzFDvKrz2J94AOECwt4R49CFGF8G9V6LwfMsTG6Dz5IXKmw/Ie/R+JfX4/UdZQfkRwtEkWKbi8mFXWAFDJWtHSJim0QCuGcc/1IE1c3EGGM0iW2u/JovIycbgPWIE8WTKQFNXuKDZ/5c7x7vhelsmhyCiO0oHkGLWsR97r9AimLcwi5CwDF10Rp6Oekl648/1W4amCKle8bi/NE9qqzzjTXJoYIgbj9F6n+zb0MGnOkg1kWEuD5IYnWMapGgFQaqTCm1fYoXIVON4CYmGqwTD2sntUoUUpRDZaZ7p0kVhGbkttxo9UJjXWeYfxrXF5YSRvOcdgnfAmOoOa4ZPL9v3/sCYJ5idx5LfHxJZI3ZNn6xBwn90JlIkfWMshv306n06H+6OfQHvgLuIDVSwFSY++hm+u/lvrFmZN8q1X/5K0juMcbuAcrbGpcw6aT21CxjnhOYoynsTZnyf7B5Df8ffaNk3jHagSzHbqPLrBp5Fa6S4tokYEi5kzyOeJqRHZ0HdvuftN39+BeIQxpYgoLX3l4kYs5ksI7XANdJ+ylKH/wn2MbX0Qpn9QDj/PInTfiDQ8Tv+EH+cftu/m38W/yVLTAaPcpbizsQ8QRrdFr+EK4jnec/HMIO8xEWWbaZ/j59VN81d3KkcCkPb2EFQjswRQ520ZbcaDaQYfF9THL4/3U+uHHFaM3XVx7QctYaG1Fa8KFoolfTiE9j9TIMLLepb6gIR4+THxzzDOBZLMek4tCgpQJto4XTrLw1TnWDSbRX0KTeddwlu4OhX42JVnDHtqAv/dNzH/xT8n3XDa3SzyT28uvnMnyrm6J1KtTZJTq6zAphZL9ZFPD0xHS/7p9XEq8qnAPKoo41H0OAJMkBH09K+HkEDKDzBUJ5p7CGBq8mF29YhBC8N7RDyGE4DHrAY4OJ2lFTQgiDjbb7Pyr/01sFulqBn5phM8V7mYMjdcKE0NplEnSaZgsl7fhuy76JsHrHauvoV1s0y0lqBsaxCWqxQTW8km+SJJpXH6NNNmFNjPbBgBFz0wSqZC0VkQTBtk//C06141y72jIgIzZ193AhpPz6McWee72DqHlMnQiSXsspDpyEi8RsLxJkFlIkOylaaYHSXgWyrCR0kLltjLWCliSISlGeHb4DMdHPVAtCt6H2bxwO57W5nn5KJ7sj7Gn2/N8pPN5fsm/jpT59embj84/yu8//fvUvBplp8xib5GO8HhEHWKhWeUD0V1MZieJtwxxrH6MB2cepFl5M/nREuVcv4ikl0sQaV1apQ6ldgIn7o+bwtJe0axKLW0iEwaZSorAjvCcEG1jEbyV+Wa7n4Fx45dbWNvu5Zmb3gBK0dMchrMaPyN/mX9u/RZ/8uiDaJyffuxVXGbu5WOOrUM4DoOffp7u5jvp5jymdyyS744hX38niYlx2lNTZHsejdnDNKJdZON56lESP2XSLCaITIMYn0BvIJs9hH15RIVYjkHvrnfRu+d7KX/1Y7j3fgH3WEzsRZTfcD3MPEU43SI6+RybsiM8k2qhiBCWg/aDHyR/7Emc6yZo3TcPEYQdRXal+lVzfpY4DInabXpHjoJlkXzNa5iPasTEJH2bTNsiSvVvRm1FX0rLXCVOt+cXsSs93CLMu2fYMbTt7HeVpEsnaqOFkDhVQS+VSFx3LXO/8i8hjrG2bkX7NvPeL3WGf+1fsfy/fo/mZz+L6nYJF2cxR8YhiLCTKdLFEvNLEeUypIKItqFxPJVky/JehK3BOZVvldBpp5MoXaI3ejhef3X0ckovHXUmGZOjzNpnmH73Tsbf+WEC3aH75rtIOhUM0YFDH8fa+Gb8xS7SziJT5bPOM6G9+H4SQoCpgR9BGKNiRbywkgboGGD3z1FtbobYXnXYGfaa0w36q+7SMlEY7KrmaRl12qZGmwAZw3jHRyiLhYrL0GUyDny3SWop6kGVUAX4sYel2bTDJh+b/dOz28y50zjn6ARa2prT7UrESZksBB1yK+8Tgc4LGjOBFQKgtDw0emczL6p/+bsEDcWw+gD14WvA1FFKcWCpw3JyO9Mjb7vg/f7QucHBxqU5pRZCkHvzejojSfzTTfwzc6AijIEyWtJAs41vauwIISi8bxta2qT1wAzeiToyZ+I6PYIBl2SyDCgy5eHLWopmzJnkdPcY1XAZMWEjExpxN6J3xscaKBNE1yCFR2HbMwyemKSdTdEZGEENjfELf7OPf7n9fk6I09wYhyip89Zd47x++yif+vB6xtffhKYiPvF0zHvGjvIbxRH+xXKGE6EOBtyZT5BeGVOJI+zOMSq51XF1unuIu5Lvu0hnpo+WMbE7q/MEr+AQdixAkNwxCLaBWmggF2eIh8ZpxVBWEbc0ltnvJOmUEjyTd0h89DCDP7X369qvd0J0TSMMQzRtxQDXDDI7byOXz3Lq7/4nN3hT5MM6nx98HRtGpqiY+85qQerhqpPN8HSEfmk73YQQXFe4nfVfGiA63EaJmOSP/zTSEHSfmUMmiqjQI+4sYG275WJ394rhhWeUJS2yRh6qLdpJwdJdm3g+lWTnf3wA2m0MtZ/b37qLQb/J826GLbkJNAQDJ+q0htKQsjCFAD8ETdIeSvWvRaVACuY3jbBl2WUbMZ8D5oTHwMkmI6ZGc4vJscoposw2BIKjSzX+5+4P8vkgzT8/1Y+sA3j69mOc2bp8Vndhad05B9ITCAMW19dILbcpzxdoF2yIQ5AG1ex6PpVdz3BjlvcfuZ+se5LTXpoo1pgaafHI+CfONpXx86TTKRb8Of7+xN/zqnWv4g2Tb+DPDvwZAO/f+X4A/vPj/5maV6NoF9mY3chIcoT68iyzqsppFvkd/dP8yeR/4se/9JPMd+Yp6BmEfw3ri2nCKEZqklhUiIwOMoB0rV+lVR9JMPCBXa/AX//FZO5aR+MzpyifzrE4Xqexp0SQsjDaHsbwONbEZrBMHFHFnf8sdvm1IAxs2+RHb9vJ04O/yKYH/htz3fOTlrg0ZwiXKFo+j+r1SE7VCbW+48dN+sTVEDIZzM2b6dWqaN0eZquJa40gVEj8QrWORH9AlZg4tS5hO7iolYheDuligvyODXjdgK4y0VX/+KOeBt0KTN4CXhs0yHtpbHsRsRI5E6ZzGGNjmJNFzBMdwvkmUSfGKmaRUxXiYgG/28EPI4zRUbTyAPaWzfixR75jo4SGttTBctpYXQ2rFWIUjKvD6SYEyekGicUeyeEJakEF6Tgkb7uNqF7HS+sUjTLB3DTjz7QxJycx168nbvadIzJ15Yram+PjmJs2Ym3ciAoCguoC5sg4Koj6g6oQLCwpNnqjlN1FFFC1NLycg5PPvMjphjTorjgnw7RN1PNQKfMV1ej5TjGlSSYxQHe5hl9bxts4hPPwl1jYeQ3liSEMcx4ndNEbDxIZG9DcmMTdv0btSIWB6x6Hb5a6EkbgrZY7F5o8O3HpNGoIqZNZTCAU2MUr08n77dBLxsyeSVIa3EDaf5xANVAaDHohIx1wPYNqrYd5ierOXGhG7AlCFdEKG9SCCkPaKM2gTl4v0gjraEKjEdYwpU3RKGNIE0usOd2uRIQQqKQGlf57K1h9PntandhvIOwSkdsCt83Mv/95MCyUUmgnH2bkiTRBMklDc7kj/AyPi+00d99wQfus4hghDpx9v2ng0h1v9aJD9u4JWl85c3ahxdqQfZH22zfjhdQ2aWtIWydhF5BOhyC3hI5Gdnj0stJweymG7THcuEcv6nDIOcLGyTzukQpRR+Et+1ilbcRKIZ0Bti4scmz2JP611xAZBuVWlm2nNcINTZAvmFYCU9N5+/t/kjjwkaFL/bm/Z642xY2vSvKOp2PKUZP/VU9QdM5Jg5QakR/jpnzSiw52Q2M+2aPkXFypEKFLcrkS+eU6ofIJsjZRJ6LaCNFDH218kGjJxb7/43S/92eYjzWShqTROoxt7yDsKkw0ZooO9udPkX3d5Iva7/l9u0LXdZZmTxAnyxRTDpoUqJGdDN3xLqa//P+Y7E2zQSzzZJRgNLk634gaMyQrJoYrsOYayNSlP66m9DRRsYRb1Ahm2oRqH9LRyX5Pgvb9NYRuYQyksFa0Gtf47rEnewN7sjdQK1T48vKnqbfmqewp420awj61TBhFDH/1D8i/77385eOnEF6eDWaaRFfhND08RwMhcJbb9AYzfYdbGJ3NkAkcDUGP7WS5DlgmRrdrjHVTzDRseqkNKNEGGVGceJ6fnqnTO2mhMFAI9GTI0mgDzZdEZv/eEB5oShL2dBYDSDkxCSOml26RfG6J1HKS5Yk0kaXQgg6GErRMh7vjAZ4XPYSfoBkYLHclu7J76dUdenGPycZOPvijb+FfPvpLuKHLbz78m/zpc3/KXGcOTWgcrx/nq7NfxdEcrhm4hlLwNv7hoSyaFJTTi4yOfgSCGEe3edehn2ZXcRd7y3s5fFBx86YRas022YQNjSU0vQaDEBtgdQ3itIE1lkHPvPKSUfbmPN7xOulKAi8R4OUi3LfegfXQSVQUY7zjhyh4s5jlw3Qf/ggqsx3LHkMISSFpYW7fh239OG/o3s+v/O0XvuX+1pxuLwN9aAh7715EzqZU0YhFiigvkb3+adTXrcPc/zhuNk3JyXL6TMDIqE9W1Il7JpElMboNOtkezVKTofDySdm1EyZSCnRTQ77pnXBv30Met5uQ2QJmGqF56PIxymGN2EwQ+7MIpaHt2EVxw21ELR8VxigU7nwHzWhReOhpvA9+H9XpU5gnTmCMjBD3upjrN7DoHqOddDFDHU3ptI0CGCC7HYJqBXkRbtCLgYgVWi9ECgMhoBd2CBcX8I4eo/GOISrBIgxbpEMb6KLCEHvXLoTjkNi792J3/4JiDA7hPtcPzQ+vq0HCJG50UVHMputvIlpqocVlksESyhag4MuZh/BrXcYfybK3fC0AKjOGCE6SeWYeveuTz+xEtP0XO+YuAyzNpmp3YThBMFHCqSm040eoFm6jnJ8DFDKr0MMQRN9xFkc6fkuijY1/XXtC11B+hApjYjdA5BOgQBZXjcvl06dIbByhWe4CoBtXx315PmgDGRrHZxiMx1HohHG/AEzd0NnQ7WAaOpW6h2FdnecsqaUARcEocap7jCF7lGZUpxZWzn6f0wtUgyXqQRWJhq1d+obUGt8eyaECTPVfG6Ei3XBoGC3aOYVneVg9n9aRBn6tirHv/XhuC7d5nPg6RflUFagyZsQ4u95HudLhlm7wTff3HaMUdVZ1LvOXgZGfftXYeTvaLsTvL2UmnI0833oGWzp0tQ7W5ATukSpoEHYCrKIOAmI1SGKDT+Leacy2R+hA/W0/wi/dt4+5KZfWugaGmUQKialLIiEJscCwkIkkC0sLcOSP+ZnkzXT1AU5HYDjgdGv0EnkA3CjA6pkgFCh4zDnGTxoXP4rcjCxqpX7Ka36sjP9UjeGCARhUSwmipkCfOoqoL+OMj9LVFElhkmweppPeRBhaLA4kGH52EXtbAWu8X9n7+HwXAaRpIXpVMk/9Cr/Gz/Bjd11H0jRQKqY4VGDBtmi5IdeduZcv9m7mR/YpXN/HRJKmzkKxH9226elJhN69SGfp5WEMJeke7OtjKTciVhD7NsZoinB5GXv3BHo+f5F7eeWSN4tsSe3kudgjCHsc+eW7eNUDAfU//WviMKT5hS/wax//OJU/+r/0DjsodMy2R8JSgMTyQ6zpGs3hFcdbHGK3XXTlE+Pg6x0233OChQQ0Q438p5J8ovAxdtv3kBVDxNLFtY8zVsoSnqigiSF8Aac3LSFrDrLQRfcleqAhY8GwMNn/xSwPu0mKm2rs2rVMSWlo4QxGsAEVg+hGVH0fITQmtB5dZ4wfbiS4d15xrJVg33SBDXf/AJ+39tNt+NwQ34k8lmNbYRtJI8nx+nEWOgvU3TpZK8sXTn+BvQN7Od2cYvrEbWyb3EkUT+MGEXVtiLHlX2Hv5Fd4Q1sj4Qdoc4J7M9BtjzAwlEDoGlIKlNvGHayQnbLRY0mqZWCmjIumV6gXHYzxDKmDDkvrGiRrNpWNJum/OEYkBDORhmPZmMPX88POR3jfqV/knVv+CEtz+hp1QnAqs4O/fuDk+e3vAh/PFYVRHsB96ikUUP/ZbWhhD9kG70w/qsjcsQPjT/4UA0jmsoRuHanlaVg5sMDquUSGhREkiLUOund5FafYuHeERz51CDM2SSVSSNsBqaO8NiJ0EWIBoUdohGhaHkGZiB49v58aoqVNjOEUwWwHoUtCV6JpFt7j+5lrt0g98ggcPUpcr2Pt3IHVO0EUmzihTXXpNGzqO0j0MEDaEmlePlFI3yl2xWXOWyRnFqiHNfSREcJGE5VOkHAlrgiIH9xP5qf/KeH8AiqO8J59ltRtF7fa1YVGGygh0mn0fI448KDng6mh2i53/fCPE83VCZ6aJuHrdI3nAVhI1MCE5pnDDCTXMdoZYLHXxpc6vYkM6WPLyER/9fRySi+FvpPCEjamMGnLHjmhEIuzDBVHCYJZYvcEmqEgWt//gRKAIA6z6CL8+gZfOP4gIppvoGork9iBVQ0y3bSIzVXnpCEuXeHiV5pEJsvU8gKM7cKMdJQtURLMMMKJAkKloxQY1tUZvbUltZMHK1/C1Kyz6RR+7JHRc7TDFq2wQStskNXzJLU0hvjmaXBrXN7Yg6uGpUQyGhapp9p4oU9rWMc6qeHNeqBK6Jkiegb80c1osUZQfw4wiJJ5luZPkEvkWDeQuaD9jSPFA2J1Hif1tSn15UxKz9CLOrhRr6/xti6DCiXCiIl7oBAIJCAh0thw5yTNwGMhlUH3I/TyBjYvVnnOTKGEQAlBGIbEcvW6CIs7mPdKzLgzjOp1TIr8WLbJowlBYDigFKZfxZMasR7TzvdaKxPxAACUXklEQVQYPe1gDV4a2rxJJ4vmS4yOICoXwa/hB9B1Q8TGEXj4AUQyjXHkabyBMp2szSYjjx6H1ERM1zGIQ8HR0QwbvjzFyPdtJ5SCStNnqekTqBRbZj/MTrkfz/gLPj01yWu3jADQTk1y064i9z8yTTqsc0PjKXTtbjTDQAC9qEmiYeE5AVbHQCYvj3E1sWeAziNzRPQrwCsvovf0EsKQpG7fQvaeey5yD698dmWuJYh9Hq1/hTClc2inztD6IeLnjhPMzjH78z/PyL/6VUSzSeNTR7Gn56g+M4/EJqGXOX5tktgsrLQW0i2kQcXAIq2xGuagh2/qKL/IkT0pduXfQkbPoasUleyX0Q1BsKlN+aH1xPRobgiojNfxyx0iI+b1f7qPU9fMopset7eSvOYX3sfPA//94x/HTC7gNXUWcx2GjrtEjone8VEqgZWxqbs6jdwOpPdeipW/5NmGQVoExLP38b4tb+Dvnwk4muhx3xePUt73Q/zAbev5wtz/5bH5xyglShxcPEHQXc998ymK3rvoBaN8ZP40JV0RCZhrufS6LnJ5G4fjkCE95KdydZy6RZDcSDqVIutYiDgiLqwjNg8SpCJEHDF0ZghZhvTtoxftb2+tSzPyqRLP3zaFi4cay+NtGkOvR2jLc/SKNtn0DuS2t/Kvj1T5y9O/zd4Nv0gYKzRNMlLKIt70ev7qj3/xW+5rbYbwMtAH+0KWAsid6rC8TeI5Ps1nmgwD+kB5deN6jVZlDt8twooD17MtEALfmO0LubsXtqrWdxtNl6TyNu1KjOp1iLptvBQIKwVW6kVCgkOuyxljGTMYYqEe4AcRpqFhTmToPr6ACiDyC9j5EVJffYyGlERffQihFNb27QR6REVrgAaZXoLm3NHVfnggM1eJYb9iYDrLPUIClv0Fav4yxS1baN93P411SQI7xjndRDa72Lt303noIbyDfQeTMfH10UtXEsbgIKrVImi1CCfO9HUPvAjV8VFpGxX0o0kTwTmTLwFCKKIb8twbPcXu5Q3U2lla63SQgsyBBbTBlZQF/fJyuhWMgb4QtHLR3rSbkc/8Nb1anajXJZJbWe7VKTtLDN/5BYJ2iuX9txA087Rnd5K742a+7mjPSa+NT1VWPz/H7zF//CjD21fTXvQ1p9tZ7FSaYEVn5o65a/jCF/+S2fVNNly/lzDewJl5A3gU/SqNdBNCMOyMMdU7QTdq0wlb1IIqzbD+ou2aYR2FYtK59Kt9r/HtkxwY6OvhCIFCcbB+HK1oQEbjS7s/yw9OTRIEw4CO6swgbIdyrkzYiGDoVmKvje63aNY6HAwXSNkXNtVdxAI41+m29uy7nBFCkDUKzHtnmOq1icuvQ1qC2JP0TsxR/eh/Yt1v/Hdk7CLjKUztKFr3FpBlQsegnQjIY3PtZ04SzD3N1KSgcc87X7SP4tt+DoBnKwcYffy9PDPwz6nH6+hkB0D2x1vfKhKZHo1yB4DkfAdt48ArezK+Afl0f6x38xHt0RT+zAKGvplcWsffkiV59yaqnz+M9fiXaF1zK80gxrMjciLLLZ2AP9b3sz5zM5V1GaIzTTKnG/QGksxU+/aDE9cxgzoAr/W/xMPeB1GqrxXYkykmrrmGW7OTPPyFB8hmbIzEygKgG6DyXbrZfjtWz0DkL58FmuI/2sHynx3AP9EP4lC9EGMog7SvnuCCi82O9D4erX8FX4QcHIfOP7mNDb/eIJqap/npz1CcnMA2DWSzSCgsAsNjdneD7vAcjYEILxUCilz1dZjBEAjJ1A6b2oatZLobkC0bIyrRGRcMACiIRA83bmICvVRMrJsoE55+zSH8RH8hPFm10D0LU2jo6QK87q1n++z4WcIYtLxHd6TF4BM+s1FMmLbItiHWNOJUlpnFAVK9nYwkfpRXDWaY7y1w+OAzvPq2x/gf4zdwX70NPvBol4Xna2zY4WM5aW4auRV39h08Me0AgpweslFrc1PKx0onebwl2GKEuGHECc9gIXKwdMHj85Jrt2/nng0D/YyaIEAZBpFRoZurgYThIwVUCObwxY3gNddlkCWbTftHeO7OU7gpE/G929j0X+/FX66ymN/K0OICvPqXME/8AsLrQNzA0HJAv2r5SO78pCUuL4vyIiNTKew9u9GHhkhN1ftzLQlfed2TABiTE2jbthIKQandxe82CEOLUjiNEa9UwwjbxGIJZyFEu7Q1Pl+SwYk8yXwCnP4FFnfDvjNfKZTqz5cBBr0ImCXU6oCi3u0/PJwtedKvGUWYgmA5QpRfDXPz2M8eBCmIU0nMiQmaT63qpBieAENiRl3Mjo/p9zCKl8cK1neLxHLv7OtO1MbZsQNu3E1k61hzTdIn6zjXX4+9fTvhwuLZbc2xdS/V3BWDMTR09nVUr559rdyAeKlNeGAGBQx287zp5M2sXygztlTAPOHD0RahjHiyfJRT13chiEg9t0Dp2SYytRIhcZlFuhWtMhuTW7GkTX1TFrlvF6iY5S//HZaZ5rmjXRbFTjrGAP7w5Mqyi8KdS9M71Pm69kTC6BdN0CVooj9iZGz0scLZbfxel+gcW9OQa4bnC9ipFK7bod6s4Le7GLqBeLjCrsqtRPEOPL+/8GLYV9fz7FwKRomMnkMg+PCZ3+Nw+9mz3+WMAqa0UShyeoEh++Kthq5x4dENg6dtk/3VNse0FJOzGYJuQBiGiFKJOj0UHtAjigIUCk/6iASAQphJZGqIQTXMeGeUbte7oP9c1+sHC6+grTndLnvS+mp0ZNfwsDbnEEaESBRAWXQefQhpm0jLROAx5kyT7LXR/YB2ycaf2Y/strGKO8gY5yx6qhiUIo5C4sDDTY2jVMARf4njg1v7ha+85tnNNXNVfqa9OE2hMPKKHP+3wi6myC2mcFom3WGToFqhuxSilGIgJyi/dTtyz070meMM/clvsNuI6DmCuH2MTlDhDUGGY0tfQQsiGsMp7p/t8dChOpqApCUZ6zzD5lN/AoAlQj4UfgQvCImVwjJ0PvRgmcL6W9l1x2sp7VjVbHQ6AZ69Gq1vegYyfelqLH4t0tIpvHsr+tCqAyJ50/AVm8p9KWJpFncUXse+zC3Y0mFqCB767bcw94FbkabJ9J/+H5RSnNg7zye+/whf/ccVTt3aoTHQwWlFJEIHGYOSqwEoC1tGiPQslj+GEa0sTqu+zFJMSCWcZ3AqS6JuoDRwky5fft8T+E4ICqyWzuDpPFba5cY73sGNd74LzFU98x97z6uZ6GWwl3s0ym3q+KQWOsiOD0mTZN1F90IaqRLz1TJLai95ZzN7CndAGPCRTx3lvnoLm76ajgkcanTJfeEarC+/nX/30RGeON6/JpOixYQWkBYBSRnwUxsN/mR8iv858Dw3J1zGdJ/rjCq/fs8ufuSuG9hRtFmoNujUa+hxQNDt0DOfQfMl2YUkY4dLyKTEGL6496nQBNZ4hvJUnhs/uY3sQoL6jet55C+/H33mMB0jRfDUM2AmsbbfzT3qGvTag3Q7PbwgpNHzWaw2v/WOWIt0e1kIIYibLcL5eTIPOiRftZVQhBiBzqPL93PD4KswymW6p09jRRF2vUagnH66ZeQSSh0lenhODb+gIy7DKmzZUpLFqToimUZ120Rd9+x3L2T9xMok10th6jV81SPUQ+rtNOWshZa1cLYX6Ty2gIpDUEmc666D555DbdiAEpC4ficL2hz5joYeSMylOaSTwNcSkARCHZm8fFawvhukZtqsT2zBjXrMuKfZveUm3JQkTph4CRPjQBV7x3akbaNUjHPttaBJ9MHyt278MkbaNsnbbyd2XaRlU/3Sx3APPYsKPBLXXk/he94PjQ5WbDLgmiwm8hBDdN9JaqMh2oRNT/OIRT+6wllskXz2JPo/ygH9h/HlhClNMnoOU1hoCFqbChTczXhLs9Ray8RRmkryDkaM58mWEvRKFmHVR/mK5n0zdB5fpPC+rZijK6vHsYLei3WR9PEiwuoPHUopQjckVKsOu7VIt1V002Jgw0ZymSIApmmTSGZYqs2hBHgyYN3O3ejGVVAU5huQ0FNnI9sE/QgnWzqUzWFm3NNERGhoOFqCvFG8uJ1d44KT2L6Dhw/+BdSn2XTjLRjCp+M1MaXBQx/UceJFEobFm3k3tYNVuu2QdMak9nQdGj2kZhP5XSI7Ihle2DmWRNKkcfa9uIrv4yuFEXucbtQmVjEzvdOMD5XgaB1in8Rt/4zOsSco/UgaUTWhPshAZ5bYNIilRnukzIHvfTV2ZCOVZOTJUzgHHgfdxNu0HSFVv/iGYaOwOGLuYkfnUT5l/ihmq8JAwiDbPIQXZOjaPtn5BIanEdZm2F26/WKfGgC0vIVWMeilm4BA7tlN80xIE49i3gFp44zn8M4UCCsLSLdL/X/8Js67fozi2AA5FXHvmV9ks/1hpJUi0CUa/TStcs5i1+wjMHErLB6C4kYmxDwHEwb1Xt+h9po923hCWSSuWY91jkKP3Qupmv1tZCDRIonMXD5ONwC9YONsLRCUHAgV5lj6W/9oje8q2zPX9O999xSesImMkMW7N9PbVGLo8Xn+duQ0KpPHbETEIkZEMVrDQ1Y9EiM7IQywwioiKqCUhZI+EkUsQWCgiECE+JFLgEBvNTCqAmGHCFfjwfccJDAiRASJns7k4RJbjwxjljT04ktHhGWsAs1ThzE8G5GeIdUr07Q1bD+GWGG1fAJD4qHwVoQ8GkQMOwUeqDrs2ODRJkHLlQwKjbYXsj+vOB0HpBR4RKSlxz7T5w9Lh0BFRPVHiR57jlhooDReM/Bevk/fj55M80V3F+1AIjUdM2gzvHSS5tAuwk5EXOyQXLaRKEr1HFITGAMXXwvV2V0iU+3hnGpxfM8cRi8m0fRZ2uiRFhI/N4Bx5DDW2E7SLTDbB+naPrPNEAV87P4nz2s/a063l4m1dSsi4TDs26x/4jY+u/detK6g3qsghCB96600HnyQQJM4Jw4SY2LHy1T1AUSsiLUMkV7rtxVeXlE0AFbCIPBC9NFJDMtBGII4Bk0qFALQEAjyQYyIl9HiNLHoUXe7QD/Vw1iXQUsKVCAhCondTF+ctl5HZDOIZBpfb2Mom4bVwQ4zYK5GehnSR0tfHRUSX3D52DWPMA5w4y5JLU04XqaTUKRP1FEqppAaYehHfhkA97nn+umlmoZevPKN1HBhAe/oUYRpohUHCeemAdDLQ6jai6O3dlb7WmbHOv9A48Epfmz9D3DfyFNMpRZQSmEeXiYqDeJbEjtho6Tk8nK7Qc4o9tNk7BLLQ5LSyQRiuUb7I79H9vrrMeYPUREatZpicGeK6v39tFHVDQn9CG+6fdbpJl6ieqswVj+LggAzElhRhuxiDyV89PG1YeUFhBD0Oq2z703DwjYdBvJ9fZ6ZM0dZOHH8qtYpy2h5slqOTtQhJEAiMaVFRMiANUTNrxATUw+qlMwrexFhDdhy061suenWs++3+kv8/exHcFttgoRGIASdKOL/qI+R2THC+vYeikeOUr5+I7XP/BWNL/w1xsa7KV3zRkr2hY30FsCcOnP2vSbXnn2XO4PWCPdVPgtAUk+zITuK8hRCM1AijUwM4rctrMk74aEnEEj0OKSnWaAgzJdoK0Gq2kELYrY+OE3n2F9x4jf/DE3XCZSHV5lFC9q4ZgnVXaScNMmk8ngqxrP6czaj+SyBFDSLXR6bXORd9qUxl9MyFulFB1c54Lk0ujNkGjfwZO8Ut1+jMByTwr4ClZM23oKk8tmPohpNvOkToBTH8z5bxToeqvw2tw3/C7QYUGB3PEb2z1FZ2kLSewxbq8KZfvZCdt0TuJm+pnPGsTAtCyVkP8p0JcUmbLoYkSQzr2MGfWebzF5+dkL2jesvdheueqSQvGPkB3mm8Rj761/FGSrhtXyOvmESN28S2JA81WTgvuOM/k0/K0uUh9B+eidfvjEgTrpkAwFxhBAWHefjpE6kaI63EJpCSIh6W+hGitvum6I36nB4lw5BQGCAkCBjwa0nTAbYAa8a/KYRj9nkICeHsliuoDUAGd9HT2bQ2hGhrRMoRdfzeDQTcKQZ8g5hUyckXbyDM505cLsIQ+Nte0a472SHdaMpTix2oAdhAG/UDvHvMw9hOxtAlCFaRAseJo4Fhq4glsw9vZ/D5T0Q5MjTwUoN47SnqT35GQ41PbJOGT03jABiK8bwTHR0Yl+hZS/+YlVie5HE9iKVjx5ix0MdHn3TIQzdwitKRvwGXd3ArNRo2xlai3NIkSMhFZau4YUhxez5OQ7XZggvE2GaZ/Wy0m9VWD2jr7sQLVP1lyn+0A8x/x//I4YfkqnVkNUl0qkqgen0qxAREskWRDGadXmtwkDfiNx64zpO/G4AZ04A4LZ/iGT0d4jiJBARx0k0WWcwdpkVJnqUoNb2X9RGYkuWxleWQegIawzaHbR2B3d0iCjOspj1WUz1B1yrDSRWz5XoSmTy6oumyRp5pt2T1IIK7ahJ8l/+HF7jUXzlMXzz289up/wApEQvlRDala8HoQ8O9p1uiQT4q2Hd/vRpvDMnscb6k5g4jpArmilRFKCkIFYxd87uZXF5hsa//WfosUKUBrEiDdVyEZeZphvA5tQOHqndx5w3Tekdt2Llofdvfgt0g+z4RsasvsOn02giMgp17iGGit6Ti6RvXhFtPvf4X5AvOsfp5ve6pM0MrUKX5kAXEYEm1oaVc0me4/i2nRSOncL3XUzTptNtYjoXf5XvYpIxMjSi+tn31+Vu5drcLQD83eyf46l+NLUpLRL65WdErfGdUTQH+OHJf8p9p7/EbOsQnt3GMyQRiko8Q9tpUr1hglsXDfRc/14Lph8gvWeM7DWv50KvmiivAmQBEPLKH2+vdJL6yoITAjdykZkVg3BFazD2JN3nDmCuexNCM9GjFre0HkGTuzlkOcwg8BMp2nmHmes2MnogSWv7zzL47FfYvi7HFxoB9qab+/s6pZOMZrFlP5VUqpBY9Pe3NLlMaEYklwSPFmr8WmnXK38yXgIhBI6epFk6g9GVdDeNE9UrHKvP4rt53vFajbiswV1jTP/uw3QfuRd8l96hp8nccjc7gFG28ZnOl3nvtgU2PlPEO1En9iL82Q6wlUi8C03UMeRpAHILD7KQuRaUopR2EEJQ63rkE9YLnWKg22XOjOjmQopnVs5n6uJXe13j8mVP9gb2ZPspzI8nH2TWnUKfmSG3f55NX14keeOrmXntVswv/Q1qeQnv4cfhxvW4iaMUjjxMFO+hs7FAN9vj2hObeGxzHTcdgAKVeZbTfzzCWxnEX87wdGYBYkD0p9nf+/huMu97/Xn1c7C0iV74CJ4b0awLxh9qITeXaRUt2l5IxjEwsXnbRINKpY47u5ltWEzrYyxlk0z7NpOyx6/nH+HG59bzcKWLoUv8KGZXTvKb7kdwrBtR1nqE0AjO/A6GBZ3IJHIVZ3o5DlYNhl73buzhDbSUIn7w74m7J5k/fgRrcg/JiZ145hyR1cHLepSezRF3Yoy8jpCXzqJzYvcA6acWCe2IRiJGtW060x2qaQOr2mZ2JbkvVoIhUSfMTmLGITtuKfDJ82j/8rMoLzLGuel6UYdrvryJZMOmQZ37lj8LUjL9qpvxDI1SvUHqf/4yhWMPc0/rj7jp/sdoJz8PGiSmG2i53EU7ju+ERNpCGxo8+z6sStTx+3G9t+IGbyOMN6KUybooJNCnAEW3Z9B1V/UW9OEE0pGgwBzdt9p4KkHSGaFjrDpPDF8izqnup4UxMnF1Od0UiuQ5Bmc7bDHjnsZXHkktTdnqa5upIMA/dqxfAWvD1bFiNvLv/i3mhg3E9Tphpa9nJwyTcH6G+d//Tepf/gRxHJ91uAEYySSh750Vubc0Az3u5yqIFb1ChLhsI5D2ZW/GkjbL/jyz1+URdqK/ZDW9WtZaSAlhjJF4sZMsanqoFXHGF1VvVayIPqxuH3guRiAIzb42mR5cvufsQpEdXq06l0xlyCRzmKZNEPi0OnVM5+o2DHJGkaRcfbYltNXXlrbqkMzqeda4esmk0yRSRaznO+xabFPuBST9GM9pcUJ/jkdHjvDIW0xmvu8GlO/iL8z0f6gu7L9zNd3kVbDIdaVjSpMhq68duezPY63PMvC+SaTtgorRCluo/t6f4e8/BaWtIHRsY54g8rCArO/Rev4hlK5RH8tw4PVbmL/9RmavfS33OhOo7mo68nG5lWFRI2WsjLMqXvkvOjumqq7L9uE9DCYHuVQYTI5idQ2CRExr7zjR4gwDpXVMnV6k0TMRAlJby+Re/zbMsUmY3AbD2bO/v1Pby4Jo8RsP/wbC0pC2jpYxMddnEMLFV3tZ8P8LzeDtKAXlpfsQcfCiOZkWegTBik0RxYigRjfnQgzJhoMKfWT66l7QWuO7hylNTGlhYmCgo6VSyFQKLV8gKo2AUkQPP3p2+3bs0tyaIZYB2eUltGoFPVgZHwTIBYd3BwmEKmI0PMon8n2PjICc55DaUHrpjrwERbNMqhYSm5LlsQoojex8G4Ei46zayl82JllfKuOaVSJgPSaKJA6Kn0p1Ecc0fic3T0GP8MMYAdzSepJ06S5I9O30arVLkNxAFAm+OLeRPz55E5+f30qMwEj37/HYd6lHLicOPEsUhkTZvh5lYCwS2h5GVyM/l0JLSZKbLq171NqYw5zMUj7d1xlubs2QOPA02kmD9pOKwsOHsB97EpRCdk5hxhG+1Amj85vHr4UkvEyMyUnsPXuIOx1it0OmkmD8QJn2deCZAZ+Y/0uYnOD04UOkeh7DfoBeXSK10aYdKnqpfiqXiBRm+dIoAf5yEUKgrZtEjm9CeD2CRgs1dCPI/gqh0ooomSbV7KDLJUItjSTFYjvBpN3fxtxQwhqvEC77BIstrGu+D+/5j2EPlggij7beIeslkc0eeQvcSJJoNRGBgebFaKmrxOl2jgOjYAwwbK9j0Z3jy8ufJiYmIVOUzPLZ1dlwebm/sVJoqasjKkQvlTBGRhC6jnfkCADCclBhQNxuUvv0X5C85mZkYbX6l5lMUp7cwPTiCfKpEs4LFUAAI5Prv7jM9NzOZcyZZLp3km7U4Yg2y03rNxPWK6jqapENTerEjoazNYXRhcgX/cIovZDGZ06Se9MGVPJrqmrGCmmv3nuB62Ki09X7um/6i+Xf1gDKW7fSeOI4lrQYW7/tbNEEwzDp9dqYmUtr0vFKI4TgmuwNhCrElDaj9qr4eF4vMMVxoJ/yscbVy77CjexM7OOpp8qMn/os1yZdHhxJcUpPEGkxJ8VJGFDwzm1Iw8J5cAopXoFqVS8ME1GMlGvX6JXAoDVKrGIiFXE6OMG6ZAYjlyRqLqKCkKjeI2o1YWQIlRomqC4RxW2GezCo6Tx75PH+wtXIMAN+liCXIdY1omQRbcMtxO06KvKo2FsJMEi4s2gdl1ZqE3ptDrsrWFqpm6Bcnx0Duy/uCfkaSukhUt0kZqdLdzJLsPg4E7ffTtNrMbUk2T6RQos97CEdbyqJVOCnMsjuE4RsZLM1yVBL5wynqb46ZPKOnWfbrvz6PxB7kpBhWuIDWOuHySx/EjOo4+tp1IoW9sRAluW2T+h2yfmC0FyZfMiVyqW6iZa7uhe01vjucTbqbRC4Hvhg//P2wQWqiSzi43+K9Npntw8KCaLu42AYJFsdLPEV1j10NzKjWJiskqo7DFKg0T1J2hxh8vEEyojplUJGy1uQ2647777pUiftmoh2k9iWKN3Dqfs4Ay49e3V++ZCn8wYdBlKLLFZ1HJK8hpDjZpdrZIPIEtxg+nzIb7A/NAgxeJMhiVSKyKviUmBGH0Vs/1FaD/4li10PkwAFpBwdTdPRFo/QPTON+uonSWSztIWOlh0lrrdxC4dJLqdINQ2SzQR6UkdPaC+ycy820tJI7CqRrNikqw6xVETlAtr8AiEmSQYwGxtoffKLyO+9lVR2H37sEBq582p/zen2MtHSGdxnngEgblWABBueHeHJvVPo0kAiMHeNUeneRuKp52F6ll49Rj/ZoRUlKcynUUEX+/kFSG68uAfzHWCXsnSnjgEQNCtERohIH0Q5BRRppFEhZ4Dtz9O2JhFWm+mKzWSp7xzScklS1w1S+/Q0Ko7RB3fin/gsjmbTEhWc0CREIc0EkVMgMky66X5VKduJEMmLnwP+SpM18mhIUlqaVtRAIPvC+efc7OHSEs4N10McY27afPE6+0oTR2cdbgBaJgOaRtxuIAwL/8xJjHOcbu16hcUzJwjGrsU3ejTnp2HLFpxMBiO/op1wGRtQWSOPIU202CWhp/CHMpieh4pjwlYDPZ1F1w1kL8K0wJ7Mom8ZZvnPDqIA72SD7rNLWKMOkW2AH4IAYZsvSjkNfA9bswlXFI31y1Cn8kKTHhnEmu72076FwMBgZu44mm6QGh4iUS5860aucHZnr3/Jz3Nmkayex5AWY87kK9upNS45TNvgxrffxRf/0+e4YTPsXurSNi3qepJQ81G6Qo8UC6+awB0aQPv4n1zwyFv1npXUUliL8r1CGLCGeLrZj1pphFXWWQVk2kFYJYQF9o3/mNZjD5C47o2gIrwoBuETyhA7lWRCajz/uT8ifusbceIR8uE23HSCyDFQKIRpg3Cwd7yaz278EmGyn6mg+020QCPUOuRmkxBFnGaGkdSlZSsk8hnkcYVuWiBCtHVjpGs1Etk8TTdGc7LE7ZDsvjapfTcTIDgq7oTqP4AR47lNNprjnPYX+MzJz/ATe3/ibNvF9B/QjTbRiH4Q4TjUW+8ln1pChl2QDmiKtKOjpGBUzBAEEYlGgTi/Wu3VcPumrZa4+uyENV5ZNF3iX3M7+r1/j2ysXoNR0iTdFbh5hw2HTjAgmxyZfjPbVZb1B4aIV0KlM8YgUWuOQs9mLH8DAz+67xvv7JsgTJPWcApQuI5HouehhHZWFSaKFTlb47fmdH42O8eGms68SjLqQxTOsBDM8eRyzLu3bucnCnX+YN7CGRvHzOxhv5WnaSYJYpvm6QZpGdO+4Z9RvDND6HWpPfxnxJkQvXuSlOlQ8D26iQwzSnEov4XrdYeIBnqQQg9cTE/vV3pNXJrjpbO9iP2VBM2BWQDckgYnapAehThCL2xGf/YfiOYXicZCdEJc1Ldotc+a0+1lYgwNInM5tGyWqF1FpjYgLY3x5hiPJfeTM4qEhZCZwweZccD/4C+Q3KCTbZ8gDOpUR/qi2sPPgpa5fCvTZDeP002k0JNpwq5LsO1NaLoDsgBCR2EQhhqFaIqe8xo036JJxFKjnzZq6JJUIYGekgTVJEQKmd1EMlNgKuOipKRltChWLULPI0qsphapaoyWsb5R165YskaeNw99L4/X+toC0K+0dX3+trPbBHPz9B57HIDUHXdelH5eDIzRMWQ+T9xqIZ0kzta9OJt2svDH/wklBLXPfBQMA3NgBGNkhEShSNpt0fM6bC9fh9vuMXfkCD3AuGslAvUyjnQDyOg5TneOkTML1PYNk3vocfTyCN2nvkrmVW/E87oknBcKJkhkwqDw3q3M/4fHAKh/9iTJfWXMdeV+Ra2jC/1tzzEsA9dDkxZOyyLWYmzv8j5nFwIhBPr2IYKvHgdDo5Atk1jR8/z7z/0Rm9K3fosWrl62pXezLX1pRXmscfEJnEFOTh9j9+YMb55t8UheQwm4puHwVxMRvTRILeSx0oXXzfUKDpoboofxJbViv8a3T1JLYQkbS9r0wi5Ck4goAlRf2s1I4c4Umf3DCraTwx5rEJmPYam3orohu7ffyum541SPPMiTy0/zI80PYAzsJG4vcGa9wdKr7gS9HzEeJlbTRmMFcb5AYrlCfaRfBOrk6Tqvym25GKfhG6JlLSzPojZYwVmOWWodJ7tQwJU15upJ4l4NISIEPjodpNJZOvksOziEHLkZY7bG+vRWjtemOTL3NOw9p/GwR0K7H5UYpdb6QWI/opl7K47bpJcYBwStXkTClHiyABZsenaBkxt9knWLUPMxGj1U0EKYa4uAa1xY7LRFFMa0furfYVgaae0+aDaJ0inCBHSTMUXXwPIO8qT2CUb4AWylsIRASonSHWSyhOosUfrQNd92P1JaBrNSw/AFni3IKg3P6judhRDommBdIcNnjwlqaY202sgAS7zVP8p9J+/lkZSJkpL/Wm3wszfcxI8WejwxkGUmOUDH6mdNxUGMttGip8XoJbs/3vkdave8iW5Yx0hmiY0xygf+lokTp5gb2smxTXu4JZUnzndRWki72GXkTAGjJdGHL005Br1gk58cxuyewvB0fNul9+B/wdrxTsz1rwYVYaTXE9cDHFGnouVAnN+xrD2RXibmxk3EnQ7B6dME08eI2wFhxWVkqkTayFIJFqmUO2D3/wBuexlfJXCXhuicoyllVroY2ew32s0ljzM2At024dIcLM5A9gaUvR7CDiBRKomhu0yKmFBvIpSD75k88HydB56v89SJBqqcxvrejZy4ZoH937PAgX9xI0f2FZgqVqg4TSKp2JXcx963vYfwnKITpogR1lXmLz7HiX5WW0BamPLFK3nB4sLZ1/rg1VPpz9q0kbhWgzAkbjXQnCTOlj1kX/0W6LYJ5qdZ/IN/S+O+T4EfkRsapLW8RL2+BEDcXQ0LlyuabuIyjnQD2J25jlgolvwF5l89jrZ+PeHUcSqf/AhRb9XhBsBKlVIts3o9xRWP1henqfzF8yilUJH6usISgedi2AadvEsv419SgqiXEuKFNN0gwjL6r+M4Igh9UoVLoyrdGmtcLtz4tndz/0MzfOWxeRYrLkYYkonbZOJprqt12VsNKc/1CJPmBf/nLHVJTdcpPHpmLdLtCiFvFAmUTzOqUw2WQJMkxm2SmxIIIRCagZZeR1z16c5M4s+NkzLbBOIMMoJCdpC0k6FQ1ZkZSuA9+WHwO+jFTVi5LSSef5Jg7mT/ejnnmomtDEpI7Hbl7GfNoMNEduJinIZviEwZFKpZQjuiNQadyRJJz0e2e5x++glOL6aQwkMIhRAgRchg+BWiZA+iDs66Dbzbeg2tlM4DC4+w+MgXVxsP+krlicwBUq8eAy/GXSiSmLdedK66fkxPZhhffo7YV/TSPp2ch5dWWKqAls2u3Y9rXHAKg2lufut2JnaWGd7Qf260koqeDY2kIqPncFNv5tjfD/EDxz6PHfVwhESomBekbKWZQsjGd2RzpAtD+EWHzrBNL+ki5rvc+MBxSsGqxIJj6jzaiPn1qY3o4jQxQ8TJa7i7fIDxRA0Rx1CbZ//MLG7rKyymS3TsNFq3RTpoEFa7yISFtBOAojX1PJqZZEfmdq7J3UPGWk8cNxntHqTZjfho+QY8LY05OoyfqhHYdSIjJjPTD7TR0i9o3F1692l+4yh+IqSTd3FzoG3diTtqgmYgnTzW4PUEM3W05gyB1Gjq5xdVe5V5Lr5ztFSS1O234x44QG//V0m97l39LxoRN+VezVPNh1lS86R/9iZ6/3U/Ua9KEG3HrQ3gbqii90CvNrHnmuiZy9fpppdXHTpBo4rULPAXkY39xGNvJg7yIH2KcQfOzEO5r9Oj8NGlSa0TcaLa5F73j9GviUDXiXVY1HoIBXZokuiZJIwUqtcjkhZGL0ALQ6yCcdZJcMXzEg+jcyvqfC3hwgIym0XL5zFGRi507y4ZrG3b0MtlwsW+ZpmWySN0HWPixWkZLzjXdt31Orbd8RoWnjpAq9sgbNfPbqO9UEjhMo90szWHW/Ov4VD7WapqmdM/sI/J/1YlrCzgz5zE2bSqo/JCwQShS/SSTbjsrjbkxsz8yoNYm3MM/PCLK6gFnotmrg42OlfJffkykbrWr/oaRMiVFTHX65EplRnccBWlga+xxneBwugYb/ynv8hDf/2XaKdqDLe7JBM6Z+KYkUpAZng9Bzel6egXXtPNdzuoKCZsht964zUuCyzNZsxZz7K/wJw3Q7ySBqVnNMAHXmxgeT2HWIEjp4n0SdzpHnem34dSMa/y2kjr13Gf/nP0ydsZ8LYwZKRZ/sqnmf2e19LNlBGWg6YU8cnjbKpmWFjfRQYQ132qrTqDiUuniAL0I2fWj2xnqjqHa3rMvvc6hj/457xqZB33bh1mbj5mLH8XUhxH0COKW2xdH6EbeeKpj+KK1zBU2sifJH6Ff9z8//iZg7/FR/UcXHsdWGlw8ohsmdzrJgln23jHKqQXTczJFn4ygVxJm0t5s6S6XRDgJVeLr9kdEy1nf8P+r7HGdwu5stA8uqlf+MA4Y+LGPRSKglFiW2oP675vK+6+6/E+/HNI/zjK2YMQGnGzX65UqRiZib6jfqRzI1DtS191mULLjhFVPcwwRBomMWAbOjcXLJ6sZ1jgWcrCIWKQzNggrw2P8/DSGMc7JR448ChT7/hJNCOF5dUZnn+Ebq+JYezFFWn8uQPUTx3ms50k733LetJJE10z6dRbLJ1o8Vz+JznwGp0ThsuvbiihQkUk59FcnVTDIlm3MEYcNPvSDWxI2Zmzr91kyMZf+GUWZ5aInm4RNyO04ibk9L241UUyuWW884xhW3O6fRuY4+uI2y2iZgt9SEfaCYSjM5HYwOHOsyS0FG0zoHTtVmgIdM1CM5oEuR6hA+Fohm4Apn35CmjLTIbU3XfjnThD7LlEKkZ6y4jeKWQiBC+JDLpYukA+f4iovBOBCdInRuCYFtV2j3KUoektEQodLZYYgNAVOadIuTDKaGEv/qlTeGaOwDTAV2iaQBiX7s16MQkXFokbDeJGA710/tVvLnesbdtQAkQigTBMjLF1ANgj63H23Yh3/AhCyLNOzNLkeoQQLB8+RlrL0kRgb9uFSJpo5QFELnFF6AauT2zhaOcgBa2EOyLQMnlkIoV35gTWhu3AisMtdU6Em3vO4O9oCE0gpCTuBCilXrR6HAYBRmp1cquLtSHlGyEHM8RtF+o9FipnqNQWCAOP3ODQxe7aGmtcVggp2XzjrRy490ssRAHPPXYKt9Vg384iuhGw6853ct3QK1Oo6sO/9HMsnDjaj1J41yuyyzVeATJ6liD28GOPmqiRAfSkBrqG8nyUiiBsYG/ZTFCvEUQaiha9ToV2zQM0YhVhSA21ax+uW0czmvitwxSsCYr56+kde5yqnUUfXI+vYnKdHsUlm7nNisy8yVLaZVtmC5q89BazcmODRF2FmwqQponSNFS9hlezaTV6xGoIIWp95Sp1lJ4bkjAyGNo8Ag/VbVKyC9zSHGQ5r/ijA3/Ch7Zshs5Ksaf8ZH8/37OJyp9USFXrWL0CQgsIHI1sykB6PonIwVUgfY38TBIlweyCc8vVk+mxxqWDKVbn0pa0GbbH0KwUyeuvw332g0T7Z4iXjyGzYyA18DsQLVP4kTd9R/vNmkVKp1x8PaJXSKAJAy1nUTxTZXZLP5Ag7jbYN15iujPDY0GCdXfsBiTI/8sNz/wor5GHqM5mMd72r1G6Dp0KnbDHb8wU2SIFndmnGFl8Ehm5KDS2F95G41gVe3MR3dYxTItwziURJXjTret4qyOxCwkQPoqYZNXGcQ3S6SR6yli1JS7B+AZHJhkIBojbIYZl0Z6SjNgdqmmddqNN5LoYoY0IfGI/IOG1zqvdNc/Ft4FWGiBYXETL5YjqPv6pJv6pJkIIRqx1RIQoN6Bi16hOHyEQBfx6kdCzyJ4RJE5WyS110a3LdyVGCEHcbKJ8D+EkCbo9SEwiHQluF9VziOIClaainLPQQw1kAEiUiAmUT7WlWDJc3KLFhv1Z9AB0XxLHIU1aZPW+jlvUaBCsVCzS/BgtrV99YePq/EQahWli79mDuXEjWvnqmXTo2SzSdpCOA1GIke0fu1EsM/rLvwlhQNSo4p0++qKy8zvveR2kLWKvjXvoOXr7n0D4oOpdcC//yAVHTxDGIcLQ0AYKzG+QCCmJahXa3TpRFBITI7TVSb0xmkKmDYSlMfCh3Vjrs2hpE+noeEfrL2q/16iDtlrNVD/PEOurESEFBCFCl6QTOQzDJI4iSuOXVurQGmtcLrz9F36Vd//Sv+GGt76DiT37OHwm4rnjHb70x7/H6WeeekX6oFRfPPuqm5Nc4WSNPF7sEaqIh9wHIGMhTA3NNECFCARC04maLZQA6Saw9Rp6bCKURCDRhIFtJRm943WkfuhDPHiXRscIiTWTWGpkF8cIDj5E+MDHaH7+D8k8fwY/bFMdaVBf5yMzJvO96sU+FS+JOZIiN58kV0uTWpYExTSYFkNYxGF/7hTF22l3x/GDEn4Q0/ISVDI3ERt1iAVWKHn7+A/iSsmnOUTv2f105k2WDyap7G+z/Hu/j563GXyPgwy7iChGBB5a4OLXF5FeA9UO0dIarVKb2miH+nAHI7Cw1mW++QGsscYFwDhH8qcVNsibq8EPxR/+ANk37kWm8hD2IOjiPfMR/MN/QWLPpu9ovzkjT3PARDXbBAvHCBY6qFhhtCISYYhQCqUUtxRcfmlHjqc33Y5rpuimM/hmkkZmG44Rcc+ugDiKEE6OKFacOHWCp6oxX6ilqHvLaLFEUx6aXmKjTCGPNtFtHSElum0wcsMYme0l9KSBXUwidI1YVJGhjrIjrMCAWCBTl/YCvS516maDSr5GLdsg8jRoNjBSEoSNilw0o4BmjxAKGydunF+7F7jfVyT2ls0Ep6cITk+RGf8+IEHc60eB7Mzs49H6VxBZC21zHvV4i17FpWD4NMtdGmMKKKAqbQzr8jZQjbExuo/2KzxVq8sUktM4c58iHnsbigSarJK0FObCk7SPnOQHfuu/8OEz/wtZ20Giux2ISNf2ERkRzoFPc9fBt3F43wmqIwuMp7ezI7MXgKDeQMgCSIXuKYziVVRE4WVO5Hv79+OfOoVMJtFTqQvUqUuTTZ/7LABxx8O/f7WSKYaGXhrAn+6hohB1zikVpg5eRNxorn5mrzjD9StjTeJ1g2/nI2d+H2lIGq+fRJ9+jNLsaf7qr/8zRiLBvje8hdvKqwKuX5tCym2jLP3eM6AJVBhjb1ktauK2WyuLBwEApnEV3ZsvE2PnKNGXDkIYk3BSbHv9Pez+8e+/2N1aY43Lnuvf8g6uf8s7WDhxjA//0s/SbT5Jc2mB3PCFl1hoLM6vjNNrTrcriV2Za5nunWKqd5yesHBvLJE8FZCXkt7zZ5j/nV9Hn7wVZ+8HUDJJb7FMZ1HhNj1kfWUhSoByIQyHGNFzPKkfp9J9gvcFP4Q+fivJyORNN3yA3Fie+z79OwxpwxhaklgDYuj6XcqJS3PxVNo6eqRTz7ewdZPOsI190qWATqitmpaOnQRuxQ+OkzeXcPUMp1smpee/QPqO97Er2sL7xNv4rcrv8rk/+k12HxjBr3vAMvKJPyMOAzI37aJs/QKVk/+PYzePAhBgs332f+AH90AvIjT7C9MyEAze6WGtv3zle9a4fDHE6iK0oyXRvkZgXy8W6Xz2h/tvhMAcH2fj5z7/He/X1hzQJa0dg/ilFHwqJphpoaUEPU1DCYFMZKl1QzYMWLx+XYJgJYI2jAyWrGuYVH9NN7uVVGmA0M6z/KX/Q/Pos8jyO6goDcNtQbQAmiQ1+jrsdSXskgAVoen9e94uGGjFLJaWJDw0Tfpjf0P6nkmO3NOllQ6YODBEWA0pvDFHPF1dOQ2X5thpSZsg8vE1H+9Mm0U1jIx8pDOA0BIYIku0VGFwUGdSPXFebV4ZVuUrjD64qq+ggm7/RQzKi5BCMu5sACnQN+bxVIeo1UAFJm6iry8i3YDIizHsyzfSDV4s1B82arTsTdCrIpqHiSmiVALbkkyMpWlXlxFCsM5ZT2AsoYgADSvYQrK7A3HkKL2v/Bt0X0cPCwRP1FAr0V3dZoPQ6DsoLa9zyXvILxZKKYIVTbNzr9GrDZEwse7egbZxALlxAH3zIM6114EURLVlqp/487PXlhACOZAi9lY1zPoioYB2ZTweU1qa7x35IBk9R3NXmaf+85voTB0il0zhddqcfubJfqGEbxBNaY6lcXaXIFb4J5uErVXtFLfdRljnRLqZa063b4Z580as1+3Ees029NH8t/7BGmuscd6Uxie54Xvezbqde0hkc/jd7gX/NzC+nrFtO7npHe+52Ie/xneZEXsdEg1feSy6c/1CQlJgjW8icc3NREvHiHt1RGzSOrmVzsmtRJVVA1IRI0LoLUqOtU7yTPd5FgoK7+DfEbUW0KRNeFLg+S6J5RjbHsBLBnTyLgrFbG2RPQN7LuIZ+OaU2gV0T8NN+7T2TRI365RPnHxJ9/PCUoRSgoTWpFgI6Cw9jzt9HF0a3GPfgmWlOXnX9Zx+z9swShly1w0gTZPK7/wuUz/3q4jhCcZr/xGzszr/MFozeJ0EKoTQ7Mti6B4YO7a/QmdgjTVezOsH38mPTfw8Hxz/p9w98Nav+14bWLWbZT7P5F999Lu27wR9ySovbyNSswhTg6bCCPr3hgDiZIljiXTf4RZGCD8CU2dm6LU8/TcjnOzeTmgXUd0a7twJCr0qrwuOc4N8ih3tw0CMHN3I4Nv3kb12DGtiDN0wkPVliGOkbmFpSUQQwnKNYnaI9gYHPxEgAkGyZmFtSHxdUbZLEXslwy5wImTWxG85uN0shC2EmcTIbkFfnsNt+7Tl+clZrHkvvg2MkRGSt91GMD9H1DyDvX2SuBcStXykrVM0y8z3TtKlR/qaDZj4gAMKktM+2sw8bcvAuIzTSwHMiQns3bvpLNRoN+q0omHWAaI3B5ZNrAr4ERTziihYwOt2KBplaqk2nnoOozOOCJMoIvy3/jDxf/8Fxr9YY31hPXqxSKX+PKUf2kGvE8IA/VUBXKR+eZ+3b4vzSC+NWi20YgFtYgL7Kp50CCHA0BBGX2xXaJLUHa9GVXt0nnuM1v2fwT/xI1gb+0UWRMYmjlYncnLlvhSXeSGFFxBCkDeLJLQUXqtGFPp4129k8+Aoj7s95o4d4bff/25e/xM/y9ZbXvX1v9clxnASf7pF3AsJzrTRt/eda4HvEWsGqUUNESqSo2ury98M+UIV0yvEobvGGpcSmq5zx/d/gMc/+bdMH3z2Fd236SRe0f2tceEpmgOUrSG6UYflYIEt63cSLTSRrkn6hjvRxksEiwcQ9i0rSQkKZAyxDk7cn4v4isgLOXnseay8Rs+ymEl3GJ1/lOSGW4lDg6U//xTr8jcQB13aqS5WVacqaqRlkhuHbrzYp+EbUnSGyLSn8V2f9pb+Qq/uuRgvsfg2vyxJFVMM5iKK1jzTk69D3P/X5F7zXigN8InC/0AKicgL4m3vIHz64/jWGYRpQhTRiu4gpX+MdUcO4pkDaIHCrBVxPQsMCI0Vp1sgkGs6qWtcJF6IbDOE+aJU0xcwx0YZ/LVfI241kY6Dlv3uzZnX6euIp5+iWzBodg5SWr8bd6ZGbrZFayxJT9NRqu98Eyom63t4gaJnJCBT4vR/+CtEt4u5fJwg6qKa0/Q0mx3VIzw4eZyuabPh7b+AbWewOh6hlGhBiFSKRAXCToPmcBYUZBc7DP/tb2Pe8EFOJqYBUIYiExsYI8kXd/wSNbWKRt9BGsYhqqwjKjoiDFAxhLXTiGQRrdXGTFvMq1vPq801p9u3gZbJoKIILV9ACEkw06+IGLcCGICcnkdqOuFMi0jrEDTbhLpJu9iDokm2ZqABhnV5R4VomQzus8+iAYmwRayHtDa8l0RUR+QTKDeN6jVo9xRbdm+iNjdLbqSI0p4nka/SiGOczlaUqkMckRy3CGf/CJH/FWRCR+iSxudP0W3aZOp1QJAMWqBdRREiLyPsNlpcJJw+Q0g/BfpqR18/cPZ16s5X0XvkKTgg0HJ53IPPn3W6yaSNdJJYW3YiNIm0rqxItxfYlNzGgdoy8VITd88EpZpNujRAp15FNy0qM2e+4W+N0RRa3kKYkuaXprA35xG6pD43S27ietrlfnquvMyfaWusscblzwvppmus8Z1QMgeJlUIgmOqe4Prc7ch8glgIkjfdSu7672f5Tz+Gf9qHKEDYABKEhooEekYn7MYIBJPVjSSLWWYKM4wsRQh3P/HY9QghMIZuJG6egZTCzfp4hZAkaSoLXXYP7L7Yp+EbkvZTxEGE6emobAZzwzYUim1jO79uWzO3kVhrglQEsY29LkXr/grOwjRyaQZ362ZyVp6ImK7qkdt6C9Z1guVPfIKo0WT5Ew9TC20m7vgkvd5NhGqIFj+IEAIlIpIVExEGOI0Q9l3e0j1rXLlIy6Lwfe+7IG07hTJiKiK9FNNMNSlbGsIU6IBUIQiJQgEaSoAhQuxmjJ+IUVKgxTEa0GkE+HaEq1tEUYx5zV5eo91AduM4jj1It3iUZed5rI6HFacYOTRK4ennmX/tbaSWOv0AmXqTuLyFyK0SGpBfSKHFAtPVMIr2eeuUX0wCFbDs97PHkm8Zw2ucIa61CXwDkSoSuxXMKEEY1JDG+S26XVlW5SuIzKTxT5xABS1EQqIPOkSdfvrogDVE2+qiZW2cdQOoOKQ54JOs2VhLHvZsE1+Tl32kmzE0hCwWkaPr8JcqxLGi7SURcRNV66I8G1vvogIXf+kUtflZBsxBlv15Kt4ibuoAQoHOCI3JHSil05t2aX/2V4nbPv6ZFv5sG1fL08zlaOay2E67X21xja/Dn5nB3LgRfXgYY3TsYnfnkkImLVJvuI2oVUcr5Og999zqd1kH/9QJvCMHcJ9/FlnMIRLmi9ImrwRK1iDVRA9PhrQSMVkl+b5/8x8IfR8rmaK5OP8Nf+tsLaBMCBd7BGfaLB85CYCQGpG9qllh2ukLfhxrrLHGGmuscaGxNYeiOUA7bBHEPhV/EWKFavbA0IjrXco/8f2M/bt7GPuPb8JO7kcFDkoJCCVaUqxEcShyWpnt7Ul8XafjSOK4Ab0mQk8gNAtjaB/SSNJLBpg1SdfrYchL20Yw8g5arNHJeYS2RatXIThxmDSrc4JOt0W1tkivWqPnR1jSx6bNoHOM5k/+B2bOTDF/8hkGJwb4qnySU+EZesrlmOxR6VRZ9zM/g3RdglOnCBoCldlEaWIRsBDoCCXwnID6aI/aREiYWrMP1rg6KVqDNEeTeDKirrt0n36YeLGH3fbo6CYKhUBjJdYNIQXrnl1iYK5NrCBM5fDyJYzBYURV8PjENaQ1SaG8g4Htr8bYuAdLmURalV56hvrwMn54hOTv/SRdO2Li8Dw7j86x/aszTJxsktn2emSqhClM3JSP64TQMDFGvtZOuDRD3axznr++9Bn4kd1EkQQMhJ4AYWKENt3qErWF9nm1ufZ0+jax1m8gqlbxjx9EdWPChR5RrZ+iltIzOMJBlGzCYR1dRvQSHbpZF2/AInGmSWQYSO3SKwP+cjDXr0c1m8Qz0+iLM3SMCeayb0Sc/BwAsSoiRcTgQILhAYd2tYKtOexI78XHI1Yxkd7X0gqcNJpYrdKUvEUSVV28QzV8fbUKkSPjKy4C6bw4j1UB/+RJ/BMnCOfmMDdueAU6dXmRuOEGnD178A4dov6xjxHW60C/mELc6z8whe0g/BjV9RHWlRUInDdK6EKnO5mnOuHQ+epXcTJZcoND1OdmOPXsU3RbzW/4+3p78ezrh//PX9Cp12hMzRKZ8dnPrfNc7VljjTXWWGONS51Ba5iIkG7cYcmbQ98yBIaGqnUJD869aFuldxi963OMvPpzMPznHGk+ijtSBfoV07d2xpkrRvzfuy3odHCf+zuEbiOt1TluJx/g52Mc02Zj+tLOWNAHExRmU3gJn8ZQTPv6flSev7xwdptkIk0hX2bTxC6eP9nqVzuXgmw5iSPbxE4WLzlK0JznjsJWPjX9qwxoBTbZm9DNcR568ku46f4CaNRqUfvEJ1ECovTT/NHA3+BN+PTSq5UDbffytqvWWOPbpWQNgi7pjmepj5h0v/oZhLRIn67Rc/6WbvIgXedZ2qknaCefJB230R2JtdwFXaIsG+UkiVNZnMo8uzLbcV+3F7lpOyqTIVXtoqIunVyl7z0SUF+v4+c0KBapt5ew0xZmyYDQQCmLKJegsq5JL9kPPEJG6INJONekvTR9bljaqtPNjfu+CqPkwIrjUk8NY7gW9r1/h+qtOd0uKMZovyqWcmtnP4safaebEIJdqWuJFjqIgsOJm5Z4/rbTaL5G+nCd9CNnMEoDL9nu5YR0HOw9e9BKJbSZEwD4xgAoH2F6KH2ASBXw/Jh1oxna1QoAO9P72J2+lnI3iTFzAL1ZAU2HDUOY6QA0jbh+huL7d5J61Si+E6AFAbbbxtYMhLyKLtuXkV7a2/8E2DbWli1YW7ddwE5dnghdJ3nzTRjr1qG6XdwDB85+94LTTXNWKr6aGiJ9aa8yv1x0qTOe2IjViWlvLdOtLxJMT/Oa9/8Yw5u34jYbfPRf/cI3/H3P7NDwl4lVTFJkmD9+FFslzgoYAy+pYbHGGmusscYalyPrEhtY56zHkQn2Nx4CKRDGimMnCF9UgCj3/p+h9mSXqN1jdGuWoQGDqeoROkGDMA7Y09tCLkwxlfcgYRPXp/DPPIxSK2OoilkcqeH6LkutKrvz17xEjy4drPE0m8t7yC9nMAKNqXdMgNSIqqtON9/vG6upVI7lmTnY/X0wsBNDeFyT+hzqtjvw7ngrxxY62MYpfrIyzd8u/w8edB/BEDp7Mrdiv/NHGf/V/0ruje/BnZ3lsU9/greM/QGfKN1LNBrRSdchhmTFoNC4suZta6xxviS0JKNyCDs2aewbJexMEczsZ2HDEq1MDzNSJHt1fOsEvdRBFpNNpCXJz3cYPrCEeKHAXK/Lxoc/wz/fuJ43x6syDcVql5EzJ1GEyI6P5gYIoVD3bGFy7/MczdTophoYI5Kw4OMZAUEpWO2fq5OZOIE0Lo8soqRMktTSmMLCi1aeY7ePohX7Mjoq8jHym3Huu5/M7/+r82rzKvJefHcxRkdxrr8ec2IQ6bQxxlJETf/s95OZzZi2g4gU9QkPzwrILiVJnW6Sm67hx8E3af3yQUhJtLyM6LbIyBrJeI7GuvdAGEAgUCrJUqWLEIpeve90y5tFbi2+luEFibk4hzE7Tap+is6Ou9BzKeydO/GOHcXZVkDLmIQJk8gwcO0UjtDhChG4/24TLi3hbNuGVihgrZ+82N25JDE3bsQYGsTeuZPWffdz9LV3c+z1b0CFIdbmHVibtoOhga4hUlfe5G3MnkRDR/oRj/z593Fg+gEm915HqlgiVSjidjssnT75kr8NUxGdsMGSO01ZjbF0+iTjIztRvQa5KY38yRBLrmm6rbHGGmuscWWQ0JKktSxZo0BSS9MIaghjJQpeAdFqpLc+MArDO0FoeHWXRP1xnjx4H8veLFVvDj2SlKMBMoMboetCHKDqR1GqR0xE1+4RhiHNVhPXD9ha3HpxDvo8kQmD4b2bSfdS5GophNDp3L0Pf76vD1trLLGwPM1ibZYgDjBth7bIQ3YdFLdAfpIdqfuxVAPPHMZ//KNkh/byQ9ECybRNW/WYjRaJREwjn8Z/zav57Z/bys+8tcJkYoycU6Qkc/i2ID+fwghNUqmrSPN5jTW+hlx6hLxTJtUR+HvXIVKCmY2LFOczWGqaiaWPo/s6lp+mbtbQ0jGJpGS41mUoinCWzmDVlrA7TSqf+xJewiDZ7JKpNknnOjA2hTIEcdIksg1iQyNeXyJTNLjzdSMs1xdZaE8Rl12sokY72yO3lKSwmCDTU9jFZRDyxdlbl6hJr0uTTtTCVx6eWol0G06hpS2IXVTooSIf0kVi+/zsxTWn27eJXizSe/xxek88SNxbuWLk6pVTMAcQXvxC6jRCCTo5l8L+fji6uEIqXZmbNmHt2om+6xraC11a+iRdZwOCOiLjgJEkmUoSYZIyX+xo3HzaYt3RCtHAMFrQJLAlfs0FKYiWlwFI3TaC2TlGtjNN2p3HCwJE4io07L9Femnv4EG0XA7l+wjbRlzmqcsXCmvrVoLZOTB0/KnThEtLBFNTxN0O3tGDxJ02xDEiaSLkJToSfAdsS+9GmRqxJoh1Qa23gBCCsa07CVwP3TRZPNV3uqk45t7/84fc+3//kEc//jGa/jJKxRjCQimF6kYk4ySdfER9PKK2Xsdcc7qtscYaa6xxBZHS03hxD0vafV23hInI2v2CYUH0om3zP/ghYjfAb/kYhmTYFnhRF0OzCWKfvWKQewplxGAK6RgEUw8RmzoSjfkNdSrePLphoAsDR3cu0hGfP3rGojSXo5fykb6iOZpERSEA+ewAum5Szo9QSA9QGBimPj8Hk3dCHCD9JtJKYsR1iH2OOu/idOL1nOI2ipnbGLn7dp6xp/CJsDHxRMiu3F40BZVehe3F7SSERaPQpTbSpj7YIZcsXNwTssYaF5G0nsWNeiQG11G5fT3H99RpDPSol9r4QcimM6cIDQ+BINJbeHKROBY4KYudsaI0d4zMg58jbtQIuwY9UxLqGp1MgkTs02ofInNgAWumgVWPGNCKsHsY4oicf5jywGkGikNIKbHHTNyBHvWBDtVyF93TMXPtl8jgujRtrXM13V6IdNOzFnE36NvYmo4Ku7BhL8I5P9tnzen2baIP9stji0QCFbkEZ9r0nllCnbPqte6pFN3/+SRIUJoi1mNKD/dL58pk8iXbvdyQCQfvuQOEzz2NbFQRkUs1HiPuVFDNHsrLkE8LEmaIHTWIVgZjAP/ESeQXP4VfHKRZ2MpC+Q78iQ24zx3AO34Cf26OcGmJxvAOGsl1RGaCpJ5B5q4Mh+V5cZ7Pos4DD9K+917cAwfIvf17LmyfLmOsyUmiZhP34PMEJ06C77/IoSltByKFuW/iIvbywvLOwntBk0gvoh21ABjcsIlus47f650tqNBrt9j/qb9j/yf/jq/+vz8nDHyaQZWCPUSSDOZzINuKKLkaKm7LS99IWGONNdZYY43zpWQNUgsqLHnzHGg9hVAK1XBRtS58jdNNSEloTpKZyJEbz3HHTUM0giXyZpkcGfYFo7w9mWPbr95N7s59+DfeBJpGRMT8aIVUqUQhk+end/yzi3S0L5+SV6Cd7tEaglY2pvvUw2e/63SbxCqm3WlSnzpDdaZvA5EagtYstuywMXWIQC/STOxiLvFaZgvvYGmuR7ft8ba73s/7Kr+AqzzKWpGb2MZ7DhV5h7+L377rt/vFnAwDze+bs+lE6WKcgjXWuCQYsIaohRVqfoXKriLH3pggdBSRGWN2DGiMIwhxzSZdw2U5N0PUCOjNtlk8WieKFaHt4DppOpPb6TgWnmPioKBbxU0YNHcO4o1m8XIa9biFu+5GyKxDc5cpZ1v4GYU9mMFNBbg5hQz792YyjPtRbvBiTbdLlBc03QxM/Ng7+7lMmoCJ1B0YmCC+4dXoP/HD59XmmtPt20TL5bB27EB1u0T1Ff0CBeE5KaapfJF4vs3OPyry+v99A7f9zS5U1I/2kqkrw+lmrDgfAUYHACFopq+nIkaBfjGFIJKkkyYZvUN3RbweIGo00Lpt1v/yP0KLfer5a5j54C8hbbsvdv/Xf4134gSh0TfkDeWiMMBci+L6WsKFVQ0NvTz4Tba8uhFSUvqJn0BIQTA1dfbz9JveRPEnfoqRP/hvmHdsuaIr5KaKw+ROtYkTBvOTBoHnUhhdh2aYuK0mZw71K7u+oMEIEIUhXrfD4cajTHcOY2BRVmMMpjYROCsLDUqtRbqtscYaa6xxRTFsjTHubCQiZM6bxtdXF4/PTS99AevO97Hw0BSaYzC2pURoLOFGXRJ6hpvd7ThCYzrogJUhMAx0zwAJtfVdTN2gWq8y4JRfwSP8zsiYedLLCSIrpnLzOKHbJfb6kSFb3vw6hBCkkhk2Te6mWelnsZAdB90Gr4GTMdHiLkpziMXqIl6v7WNoBh9/+8cp7tiCJiQ70zvYmdmDcWIGwhilFK2S33cqNAV2ei3SbY2rl5JZJqWl8VSPdm7VVh5/psyu+yepZz9Idq6MUBq+VWNx3EDbnaedsXhm5wCze19D9a0/ROWdP8ry7s24aQMRx+T9HkE4i6uvRoLogUagfM50T6EyIzwqJtgvhnl8+Ak+vvWrfHrbo5wqzRHLmMKZNINtQL6E/X5pBrrhyAQaGgE+nZUABQAtu6pdrUcG2eUBaqdPnVebV65leYERQmBOTGBt3UrcncYYSSATOuFi9+w25fUbGN2yk3QvhR5rJFo2XVujncuQHh2/iL3/7mFt2ULihhvQh4eRM6dwZAst7tGWOUiZ4AwQxDZLlR6Wpb3YkG/0Kw5Zs1MkujNY7gJeZgRjx07MyUm8Awfpzc6jRP8mNZULGKsitlcR6lssC0StFubGjdh7dqMPrTndvhn27l3Y27a/KNq09CMfovxPfxo9lUImr3zHUdFNkJluo/kxS6eexkmnz1ZTblX7VYTb1Sqm7aCbJlYiidtq4cVd5rsnUPQNDSl1ZChIzQtKS/0KbWusscYaa6xxpaBLg5JZJqml0YVBxVitlqnCr3e66aUh5jyJ23AJ3YAbgxlEQYeki9dOMxe5POlXce94F/9tbz+yvF3oga9oLC9jBZeH0PgLWBMZNs5NUJpKY3oaR3/tDUSt/jnSUg5ixapO54pUZ1YWOzNjUNgMZhrZW6Kc75GOz4BYnd/7vX6QwnhmHD2XxMxnCDsNbkrv4033dYg9nyiI8JL9YAfD72cfrbHG1YohTQatUYpGmVCPSSz0SJ9osekBk4S0kTWD9FKM1ctj+Gmmsz2CJ2do52z0jg9RhOy08TfsopvWITjB4tBHeXrd3/MPt7bxwojEmQapky0M0Y8Eawct/ih6iqcn2jy9yaMqIrRIImIgAqttkAggOTB/zv196Ye6JfUUEf1I5k60Wp3UmshgjqdBl8i8idIhZZ1fcUz9gvT0KkGaJt7hw+jjRZTvY4ykiNurkW7p4gBRz0czDQI9QGs1SLT7f7iGfmX4O42xMaJmE3N8HVIT5JmmEo8ghAVtHQWYuiJRdEinFSfmZxne3BeH1bIZEjdcD7rO4PK91LN7wExS23Mr5WNPghDUH36M3BtG0S1JJl7C1cew9KvH6SbOcwnAP3UK//hxAIz/v737DrPrKg/9/127njpnei8a9WZZttwkFxnHxpgS024wxZRLLiH4XnD4cUmcUGJyE2rA1AvJBRMImFAcQ4DQbByKq2xZsnq36sxoyul1771+fxxpRiNppLEZaSTN+3meeR7NLuusc/TOOWe/e613Ncrw+lMJLVpEUCmD62LYNuFlF2E2NEx3t86qBqOe3FASNPyX/imz/vPfWDmYZdcVF1Mplgh8n+zwIOViAQCvXMa0HZxwmIOFXcwpHybm1mL4mkxdFi8MOn9hvKcJIYQQx0pYdcSsOHESDAdJmjkyouokSTeAfVacjqE84ZhD84tmc/jxPTizZlEu+pRLYR7IDfJD65+YXeliT+gAAy1DWMNlugoWi+euPovP7A9nRGy6n2vjuUv3EOiAVFeU9P40DdEuVHgsgRiN1lAeLPL9v/8AWsOlc23mNAegNd3Br/HjUAlc1pdeju3YFPNj11NGTbhaN1uB09JF3R+/geT3vo8X1JHoj4EBoYEsqlm+h4iZLWrGyPkZDGWRbwmjKgGuF8PPBWAZRLMFoJVADaJVkYfesglt7aZl34vxtYs13Eelto1wMk2hdQjDVwQqwM0UyHTVUWiMYJQD2mjFNwvk02kqyqMYLoEPTtlC2z5lE4xAEViahRuacRY+B0ZNtZPH5tzO0Zv1tnLoCs2moo8rQ1TjoAEjYaN8jY5D3J3cYBdJuv0B7O4urO4urKYI3qCHN5jEbonAiur+urZ2CgdHqO1shDL4QTVjGgBu/YUxBNpub6e0axdUKvipNO2X3ciB1GIsP0cFjR11Cco1jKRSaMMkUzw0em7+iSfxk0ns9nZmHVjDr2a9DdfPUlm9GOs/7ydcKZDrmksyWq2vFS8mcQJ1QRa4/0Mp28aZNQsMA+U4pz1+JjNjMSiVwPcBTWHdeqymyd2luFAsqL+E4HP/yprPvhQrXWSQYbr7D5Pcu5dEZyepgT6yyWFC8RqK2Qw1jc0M7ttDuVBNwj1S+A9yB4dpSWbw3JcBCieYOclwIYQQM0ej28LA0CEsZZNUgxzubGLZyGwSew6jFeD5KNvEbEkAUDDr2Jnp4/KuMH6+jOnkqIworLBBJF/LZm8YSNHk1xHBJR6Jkw+GyHbFaIp3Tetzfb6sxjD+/jxNLQ1svziPnSpzqDlLc1styrEgZFFIpwmZYYqZDP27tgOQ8BqY09gJBJi6gKEBNHH6SBfbGDqQRl+qUUqhTANnxSz0UA4vMDCjtRS3bUdfsprhzurUr7akOmcv4IU4WxJOPZsy61AKnJyH059BF4YgGkfZJlbeIZxroxjeCSqgFAOCAoNtm3DzMVRtPYZpkWttpJA4gF/OoKMuRtEDPyB0oIIRbwezQp91EGrGHtssGRQiHhXLBxTa1NglRSxrVf801flznaCUohwUyfoZYlacgp8nbEaw26NU9mcwEi5+qozbEiMRn9yqyXJL4A/QdMcdmNEYpc3PjG7zRsaK7TmhMLHI2AgaXax+MFQsg1D8mCg9jynDwGqqjqyqDAzg1iaozTxN3qrD0gpyZQwrQV3CIR5W5PdvAcAvlfDTaQCs5iai+b0s3/S3FJ0Gkr7N8J/dRd9Vt1CIJEYfK0x+bKn2meYUI3Erg4OUtm6lvGcPVsv5UwdkOs36wQ9Y8PhjLHj8ceb99jcoY2a9FbqLFxPeO4JR8fHqIqSWtmL4ZdTAAAe2bKJv53bShwcoZtKgNenD/ZRyudHzcyPVKahWyBxdtdn1z68pMUIIIcRk1NkNdIRmUdFlihTZFdvHntBBSBbw1u7Fe/YAlU1jN5Ut2+aJdYdRtolTFyHclEJXbLx0HH0owatS87h98e38sX0jzcVGUi0Fcl1hAgWNifOr/IxZU73R27uuFUxFuSnGLnM3yjJQpoGRiBB2ItQnmsgfHisxs3HrMN51H4Qb/g7aLq0mCYwi7bED2BTQGnau6+PA9kEObB/k4O5hPFNhxeK4rb3ook8uPVbP2C4jN+XFjNfstOJRwdMe5aiF25emvPWXUDHROU1NMkIon6Bp4A2EMnOrNdVMj0J8M8nmJ2na+CRNz6WJpEpobwfEQiilyLXXkOuqpdiRwC5auNsqJzy27wZU3IDeAcXNv5rDwse6mfVsK1YiWT3AOMlCCufwn2xLqJ2cn+FwqY/BUvW9xky4KMsgGClVa/n35anszZympaqZdaV5BkRXrcRMuHiD28ECbzA/bn/33KVUghJ5L0Ol7xlKlkk+GiGSSEzQ4vkndt1qzKYmguFhfKcD1yoToMhp0JZBUGkgUwTTUKjsAQLfxx8YAMBsbMSd04sCWg8/jO1VL+yT3QsYevXb6H/7X6J0hWZvN93ebphBU0uBSd21Kz77LEE2i93RQeTKq85Cp85/xjGjAY0ZODLQjESouf56er67gfD+FLnZ9Qxe20uiUJ3O8fi/f5fNv30Yyxmrb1c5Uhj5WLGOFvAD7KEcNb6sXCqEEOLCo5TiqvrrWBxbjmuEMJXJs407CThmeukxiypce9ubec0HP0654RJ8QiQuqhBq7MewyxQGFmI8sY5IYDHbqM7kSDXlsJIF4rtGcKzQ2X56fxAjahO9ur1aT2pPPXaqzEhnCL+peiNOhcZuyMWiNdXvtUqhMXj8ge+z5qf/AeFGsKrfIer8zayI/jvtziYGnhvhuU0D1Z+NA+wrgh+UMEJhovOWkc+PjLYdwhq9CSjETFXvNFFj1QLVfFbbglWouR346QPowCc64OJmDuIUK5gkCOXm4KZbMSoWSkOhK4zpBZilMr5ZOuljRNI2tcNxYtnxNRRb9tVRMxDB3duGtauROevbmPtsK+Ha6o36oyPdTlen/FzR4naQsOoJCFifXgOAYRiYNWPXRsoxKO+bXNJthg4bmjp2ewdWcyMqpDEjHgQQFD2MUPWlda0ItuFiGy6FQgbX88lXKjjhC6fYp93agtPTQ1BfT/FggajuJ1HeijK7UZ6Dpp7AqWUol+aiRc38/Cv3sPqK1RAE+IODGI4NGkLlIeZkfsPIrD9mKFvBqwSAxsQjFiRRlTI0nF9fRs6G5Pd/QPiyFRhuiMiKS6e7O+I8Ebn6amof/h7DI0XMXJlcd4LWfotkfYxiLktNUzOlQo54YxOZocPYoRD1Hd0kD+6nmM0Sb2yifk4TB0yDSkMUMyUj3YQQQlyYGpxmrm28ifBIhL7cPkqZNFtr97EoWU2cHZt0a5o1u/qPERf6XIK9j2O6WZQJOqe4tW8R7aWLSJcC8uE0nuuDG8bInH9JI6UUVn0IHWiiyRAlt45yqo91n/xTuntW0Hj7n1FyNdm+fmpiDRzq2wOA1j7P/PzHhKJxLnv5P4NfgsNbUfl+wKfLeoaU10ouGCvHU7QtKlYYKzmI095DaX8fiYEoZsUg7itJuokZz1AGcyILKesigQ7orplDIfwMwdA+lOWgTJu63UV0rI9IqgNtdHC4/jcYAbjFKNlEgTmP9tNYGGT3/CLgYhQrOP1ZKvURYiMBkUyUWCiBrQeImNXxWzW6hjgGDXtcep/uAlWdYmpEiugajW5ciGpbcWKHz+Ep4c1uKwm7Dl97DJUHCHSAoQys1iheqgSVAO0F2K2Ty+nISLc/kN3eRnHdOryBA9W6DXUulcHC6H7XPuY/olIdKVIxTcLR+Nnu6hljz5qFPzKCEYtR2t+H449QMhKU/AIVx4JEK/H6FlRQxvMCdH6E0v79hJYtI3TxxTi9HdB5OXRexiK9iVWL6rmoJ45lGSgFoUqSi4obsIwGCE5etHam0pUKQS6HLlfws1mil18+3V0S54n6172ORH+ZUmMEL+Zw+EXz2PfKToLrmvBmhcglh1ly7Q2UVRn7T+ai7lhE+rUJjKUNOJEIxVwWL2ER3zxAfPMAtVw4o3eFEEKIk+mNzCet0xjKJBPKj02PCjRaHzeCo242NMzDcEKYsQrKCBMUsrjzVpF6cANWwsUzvdHD7fyJU7bOB3ZrFExFLBnCd3y05bDjlbPx8lkI2ViYBErT1NI57rxiNkuy/xCVcgnmvQQWvAyMIzfwNETU8LjjC+WAwAuwmlvANCiEyqSacwx3ZHAjkXP6Al6Is+WK+mu5puEmrmu8mY5EL/aLbkCrAygrhFY2Lc9p2jbvomYwR+1QP4s2bMbzvSPjzzSG4aA0xJ7LE908UL2hYBv4cZdUdxg3D872gJF4kryfJe9n6QsOsthaVJ1mrgKUoVGuh9WaJohFUHWzoWUpRx7ivBCzarCVTaB9HCNEppIEwIhax7zvQ+VQfsI2jiUj3f5AdsuRFSv8DHgRStuT+CsK0FlNqrlOdPTYivIJlKJsmYRiseno7hkRXnoR5Z07MWpqcGb10HiZSdFopajK1Jc9tKEgUk9jwiKZLmNXsmS2bsU7dAjv8GHsN/0xPPVktbGG+QDMao4wqznCM9/7MsvrngMDAr++WpR1Jjr+i9wR+bVr8Q4fprxnDzUveclZ7pQ43y24/0c4wxv4Rfo/oeJTXtmJAQSdIZqbOln6ulewNbUBFtShbBMNtL72Sppaq8lv33yOUrNBuSFCLH9h1KkUQgghJlLnNFAI8uQdH9NT4y8gfQ3WcYmf5iXQvAR3zR7S2/ZhREMEhSj+SIQgm0Q3ONipIl7YxlbnZ7mL0Jxa2v/6KvjwIwx2pTkwr4gVjdG/+0k6asKYpYB4uJawOXDS84vZDHa9Cw1zYcXbUU/+X3xsIkYK/PHHDgUGkXwFZTkU6m3sAlTCPjG3Rka6CXEcwzTpuuwKsvvTDP70J4SW3YYOfCBC264kTat+Rv9IQDmbotIDKXLoXwO1rSSX7gfAzJQptsaPXIsqQpUwTtlC6eqKwkeni9Ytbebwf4yANtG+IljVij9nGc0Lz9964zV2LTvzWyDIkfJSJJx66l81j7pXzOHAh35fXR1zkkPYZKTbH8ieNQuruZlgZKyAqpccmwMdiYxdiJqFDKbWEAmTaG49q/08k+yOdtyFCwnSaTIPPoTVuYyG5ENksfA1UKzg+w342qC2xmFBuyL50H/hHT6MUV9PaE7HMY2N1YUKAp/Uvm2jv2siGDMt6XaKu3ba9xn59n2Ud+4E26b+bW89e/0SF4zO2gWE+vNgj9VLtLoSpP4ozM/678d6+SzUMfsGS/0Mdxaxw2EON0K5IQIVn1rnwliRWQghhJiIoQw6Q7PwVcCh2BCFY+se+RPPxlBAqN1GWQ5mvAVlV2/OZxMFKolq6ZTawvlbQsVwTZQNdQfjqAC8RJiRNhsMUHURQm6Y2d2LMU6ygmExmx37JdaKdhPVRRUSh7l8cT8rLx4kmqjWURrywLp+AamYzb6LS1TCPo07LFpLDTNuUSwhJkO5Nk7nLILkZoqbHsAf3Ep5238SJL+KYSq6WsNE/bG7B/lwAX3M5bbtOdVFEJQilLdp2VaDChRxPz6acFMonGgrre+7io6/v4a2uy7F7E1gnawW+7EDSc7x0alRc2yQVN4fq92mLAO7+0iOZ5KT8GZYBmPqmZEI4UsvoXwgjT+8Had3CV7/2DBDNxJjiAF0uQCV6rTTcGsbduj8/WA9nlKK8CWXgILK3n14ofm4kY2MaMhriIYsVClBstxAVPfT0RpjMDWC0zWLUFszVuSYMHTGpuP+5l+/hvKKZPMRXDdKMYgQdiVkjxq57zvkn3oKs70du7WV0KJF090lcR6yDZvFv+insGcXGhj829eDoegIdaOUQV9xHwm7HkOZhIwwa9OPcaBtmIH2LCpf/TBVShGNNE7vExFCCCHOgia3lWwpSSZIM9RQoHOgmhDSfjDxYnyBJtQWonjgINqPgeGiHM1I0wDOUJ5Q2qe544qz9hzOhNrXzqX54YP0741TqPE48LpLqBw+jFEbIdnXj6NsGupbODx0cPScmsZm8skR6J5V3WA6qNpeyB5E5Qaw9z4IaLq63sQBM0wxV2bgYIZkMIxZhnDKJn6ohGoMndMrIQoxXVTIwmyqJ7biCjJPPwJ+mSAc5kAmiTXSTHO9w8Uxhx2FCoeVIttQwD48Vqc5kg+xojLEwbCFP9KCEVST244xtqDA7Mh8lGFg1VcHz5iJKB2JKOe7uFVDo9NCJSiT98dPI3V641T2Z6E8ubYkgzEFrOZmvMEkKhJHuT5Baaw+gyoERImDEyfrV++GWfUX3ogQu7OD0tatuAsXUDyQpsYcJF/egmF0UvFjGIGLbzdQyfdRKfqEk0l0MoluqofKMUFsj/2BZkdG6GmoIRbxgTRa2zN36PhJppeW9+7F6emhcvAg4aVLUOYMW9lVTJme+AIKXp4gk+HK7BWjCdz1qSdxzTD1TiPLEpezJfMsURWjoAtYysYL8iTW9WOPFLD/m9R0E0IIceGrteswLZs61cRgXZ4tsd3kVB4GH2d18y20hjpOOEcHGitqEmo2KRzUKGVABSoRiKYDfFPR3rP87D+ZKRS9uI3W5Cq2535BQAW7DHvCG5gduQRlGgwOHSIWrePw0MHqIk2Dh0kPDpAdGT6uoUYY2QWmA74Ppk1i8FcU9AIG7NkM7k8zpIeJj8RAaaLJHDTa1dE4QohxVMhBpwuEZi+h2H+AwsA6gqTHjsYIPTrA8wMino8KNNFcmYHoYcKDY0m3UCHCglyZeSmX5I7Z0Gijgdp0hFSNhUZTGc5Q3rdnUv3RxQpEHFTYHjeT5lwUNqMMlvsByHrpcfuc1ji54MCka9TJu9MUcLp7KO3chsLAT5UI8h7+kcRbUBorRpCxNHnXJnS0DtwFJDRvHsVt2wgKRcq7d1Nb45E2e6hohVEuUcmnsY06bAuyh7N4jQn8hhbs9hbY87uxho6MdBvpO0gpn0P5Y8P2NQ7qZMNUL2SnGHbr9ffhj4zgJ5M0v+99Z7FT4kJjRCMUt28D06S0axcA2UcfY9Zjw1zxqwIL09Xp8AvjF/Gmnj8nbEQwMNBoim1xtGuhIhfOisxCCCHERJqcVgbL/ZSDIv3GABmVIWlnyHhp9qZ24A1mKK/fR+npPQS5I99jjywEFpnXC2YIrTUBAcVQgVLEoBIyqGnqPMWjnh+il7fSvrOJZHsJrzbOgR1Pk33qUWJWlI6WXpoa2rEch2te/2YitbVE6+rZt/FZ+nftGGuk/TIoZ6s3nG0X/DJmcZBmcxtBboj+8gGyQYpCNE+qKUftUBkwZu6NeSFOxTIgZBNZcSW1/+M9VObPw1u0gKF4HNNUuI5Fk6cZDNu4jfX4kQBtj/0tWWhU4OHQh86aVAbLeINlTMPEVwGB0kT8ELriT+oH00C5FkZd9JxPukWMKBEjRp194mwepz1aTbgdX8dzAjLSbQqEl11EMDJC5dBmnNBqygcyVA7mMHsT6GOSbrFMCtB0rLxm+jp7hoSWLkVns5Q2bSLf3EzjOz5Py8bD7No9zBIV4Pqg/QSRkInGIz2YAlJACX7/1bGGzGoR2d1r17D32XUsvKYVODIVV7vVNw6Bl8mQf/wJ/GSS0LJlGM75WXxXnBvCy5YRDI9QHB5h5DvfIfGyl3HgzjsJUqnqAR/4APVveuPo8ZfWXsVvh38JEQsvarP080+hXi9fdoUQQlz4YlYNrhliuDKIgUHgBKDBN3x25Dcxd3uEiF/97urXRVE9DaMzFgzboPWvlrPjmqvJdtWQuv1l+NEIXUPhUz3kecOI2DTaEXxbk2mp4FfytP/9l+h59ycA6F10MeacRmoamsgnkwBs/K9fcfi5Xdz+8c9VG3Fr4IaPgGGC71HY9G2c/s2owgEidjM76wNGGqpTVLs2NJHo76ued47XhxJiOihVXfCAXImIE6Fr5bUk9+/FeW4z6zcPceM1ncS96tT4YaOEOzfNc0/+BodLqucXHQhKeKE42jvyN2YqriwvZ9XwCgACApT9/K7R1XlwTR+2ohSCHPkgi6nG99dsCKFCFiQnN9RNkm5TwJk7F6u9nSC7F11JoVSCyr4Mod7EMSPdfI6OPzTj8Wnr65li1dcTve5aCmufIf/YY+hA40YcQJEKFHXKxzFq2ZOZT2xw7+h5RnRs+Co3fAgueRMAB7ZsAjSJ2hiBNoEwGnfmjXQ76rjppaUNG/CTSayWFmJXr5qmTokLRfiii6h56UvJPPQQhSfX4A0PExwtbGwYDP7f/0vdG99Q/eAGZkXm0uA08+QX/xqvIUpj+MJZGEYIIYQ4FaUUNzXdSt7L8MvB/wAg7LmEPZdkKMsj7Ru4cd9lAPg7BvCfG4JC5cjJYNcl6P7a19jT4+MXf0c47dPZdvF0PZ0pV7Ogi96n97LvoiT5zhhbXt5O4uEHqL3hVYTtCI4ZIRQbfy3ke2OleVAKji64YFr8tt5md6wOANfbS9lU4EMo5xBNhzGO3neWkW5CnJSyTXShAhWf+re+heKGdXT8TLFjyzoO/2gnNVELq6MePwzEbbp7ajiSysb0DIrlOg7GriDqBaiwidUQJnzZnOl8SmeFoQwiZoycnyHnZcfvMwwa37KYiFWGe07fliTdpoAZiaDzefzMTuyeEUK9HeTXDpBb04c3UgTbAL9/7PhY7BStnb+c3tkEuTz+8DDFHTuoaZtFXbyEl8pSsuNUgoBY3RLSB+7Hao1jxFwOZftpW3h59QO2eRG41Q/h9OAALbPnEYvaGMpH6zxFM4JjnvtZ8Sk1wV274sZNuAsXYsZjOHPnnuVOiQuNEYngzJmNtX49QaFA7rHHCC1ZQmX/flCKoFhkx+rrAWj92w8Tv+EG3KyHO5TFHcpieFLPTQghxMzRGuogVRmhyWlBYdCdbuCgM0BD2aQ/lOTfZ/+GiulzZXY5PYcbxk488r0ueuUVJIcepHbAxPJtGutmTc8TOQNCizpo+W6Ewz1psg0+fbcs4Fd7U7y6XCRWU8uli5eQVyVuuPq1tDV3A7B/5LmTtvXboV9SVOBqhQZigSZfiRM57NF0sJE569sx3GrWTUnSTYiTUrZZHfqjAT+g46Ll7N6wjoM7ttE3lCPjN9DUX4vZNELOCIgtaSRy2CSsbSIVH7/sUDAaieQPVtuYZB2zC0Gr20HWT1dLAugA45gRb+6sBKV0+hRnj5Gk2xSJXHkl3sAARqgGjSbIVwhyZfAANOixBQKM6Pm/msfJOD3dFJ58Equtjeyvf03Tu95FRcUoe0O0h2oJimUGf/w9so/vwwk8dNGj/ZYYu3yXusEnqAvXArBv43rcSJTmaImiZ1DWzZjaJuQHYMoHamnnTorbtqFLJcqDg7JqqZgSTs8sVDiM29pKcctWiuvXA6BiMXQQ4B0+DFoz9LV7yT3+BHX/7bXM3x8lKBZwLp49zb0XQgghzq6EXcer298MQGn/boaMYcpmGc/2SFseKlAky0P0eHVjJx3zNbbg53GbWin4OZrcC6fes90cpcWbx6GUR7b+EGiNF7LYfN8/0pgJ0f7hfyA0u5HuzvlEw9Wb7cnMMFrr0RH1R+W8LIEKUFrRUvJQWhNRGSJ9NfQ+UiZgL1bTkVkzMr1UiJNStVFUAAQBwWAWszVBpLaeXHIEgGJ2hFC5g6SZwq74ZCM2+SafPD4t21vI7uyk7uDgaLLNiMycFFJZl+gvVaezl4MSIfOFlQKYYcOGzhzlOBSefRZdzuEdyBGkjibcjtAeZm0tynEu2KRb3Z/8CaXduyk8+yyFp54GwI2FydktBBqyOzZSeOp32IUSuuQT5Mu0zG9g9tw2zNlXQShBKZ9jz7PP0LdzO3E1QmPCxlF9eP4yANRMG+l21DHTS/Nr11J4+mnKu3fjLl6MO1sSHuIPF166hPL27eQ3biT105+ObtfZLJRKozFYWLOG1P33UznUR/6JJyiufxYlNQWFEELMYEbUYeFgF4Ph5GhiTStNyskdd2B1Z8WvkPKGGSr3YykL27hwPkeVoYgsb2Lpr3q49KG5YBl4EYsdNzaT2bgGfygNmRLRhobq6JEgwLYdfv7ZT5Pad5DU9ucY2LWTkl8k56cZLPdTi8stB1O85FCalx4cYu7T9RjRWRjRbsyoW31gGekmxEmZjTH0SA6dLeLtGUSXPeL1R0bgKgX4RMqtpEOaZMQgXRsaPdcumuiCjZEsY8RtlGNihGZO0s01xl6LUlB8we3M0AzG1AtfeglKKSr7nxmXILG7YnR89Bq8A9/DTybR5TJGTc30dfQMUpZFdOVKdCZD7ve/pzI4SO+yVhzHpAzkf/dzgnQSlKa0+qX0/Y+/oe9wAa01Nc0tBF6Z/Zs38sS/f5dSLsu8OY1YlPCCGJojtR9m2nLgJ/n+UFizpjrtz7ZxenvPfp/EBcnu6SHxmldDoYC/f//YDtMcXXXtqCCTobx799ghidqz1EshhBDi3GPNa6Fl5eW42ql+d9OAgr3xfnzGPkOP1iYe8QYZLA/gaY/2UPf0dPoMcrqq39ubn6tjzlPt+PEQycs72fk/Lqe8cx/eM3shX0YphWEYtDR0clnnlbgbhnB3pHnm3x8g7SUZLA/ga5+a2CxY9qaxBwiqF8JBKYOZaK9uk6SbECelasNYC1rB1+iRPMFgljmXXclf3PdD3vvtH/LmT3yRq2++mFmVefiGQf6YRRHskg0oCCDIVNBlHxWaOTXWQ8bYyLZiUHjB7cywDMaZ4/b2HkmA9INxJAvqGMRWdaCUIkhXh2+qcPiCXmkyfPEy3MWLMeJxShs34rgW3UvbMVWewq4tGLEaor0R8i95K3bnUgplk3IloOIFbPnNz3jwa18m0dJGc3cXlm3iuQ14uo7RUJXppeSffRa7p4fIJctp+f/eO93dERcIpRS1r341Vnv76LaaV72Sxve8m+hNN6IikXHHlw8eHP23mZCabkIIIWYu5Vi4bpiruJIb09fQWWolXo6glCLl5lDttViL27HmVaeRJivDxM0E9XYjCbvuNK2ff5yuONHr2rFsl7a9DdQMhzCLPv03z6eU6oOyP3psKagm31ynenGrtaa3cS7rHvvV6DE1bgPUz4EFtxI0Xo5WYfzcQYLUJoyaI0lLmV4qxEkpw4CIDY4JjklQqmCYJoZhogyD2pZmLNukTrURIgJaYwaalhGD+DF/q0fNpJFuCbuOBruJmBmn4OVfcDsz5xU7w+zOLkrbtgHgzn0J7qKlEGjsxuoHiJ9MARf+xakzqxcjFMKdP5/i9u3EVq8mnjnA4R98Hbu1DVC4C1toCLZQIcKOPpeaaJkg0KjiMImmZlKH+1l2zbWEzM1QGsLjmIUnZtpItyP0kUn0uUcewW5oAMvGbm6WaX1iSkVWrCB2zTWUn9uDEY5Qe+utRK+6iqF7v463/wBBsYg/PIzd3k6QyRC54nJ0EGA11E9314UQQohpt7D3KgDyfYod6c2Eyy7DtXnaL+4ad1zGS5HxU+BDzIqfrKnzmhGySPxRD4V1g9RX6mk/WM++5uoAhKd7D7DaWA6mgXItvEwJ09eYpoXv+/h+hZDpsqewFkZs4g1NtLqdYIWg6yoqlRRe5keoShk/nUQnGiDsnHR2iBCiynCdsWT30dWUjzOvey5DI/s5kNsFaCrhCvFAc3zazXBnzkg3U1kMVQ4DkA+ypzl6YpJ0myJ2cxNWeztGNIou/I6mt79+dJ/WGrujHSORwGpsnMZennmhJYspbt6MWVND+qf/ScNb3kJh/Xr84SG8/j7Cyy6l8a8+Q34gz9DOYfzaAjWxJ8nkfSy/SPpwjlA0xsVXXwk7RqiUymi/Zmyk/gwbOq6O+wZR2LiRIF+gsn879W964zT1SlzI2j5y9wnbGt72Vhre9lbSv/wlB/7XuymlUpg1cfJPPAmA+rN3nu1uCiGEEOesxtpO1pSeIB5EybonjhTxtU+D3UwpKBIxYydp4fxnuBZm2EYHmkX75/Nc8y4Mz6dgFjkUHqKt2IjOV1AJFzM5toiCaZokmlrwF1RrYJeLBQ7/dgMb9/yIfDpJi9dNs2Fix9vQ2R3YgYFCnbAIgxDiGM5YokxXxr8n6WIFfyRHtD9Li1PD/pBCoUFBvKGP5EDTuOOVO3NSSFEzRtxM4BgulaD8gtuZOa/YGaYcB2VblLdvRxcKBJUKhl1dTUcXixSeWQeAVX9hjwixOzqI/9ENpH/8E7yREUrbt5P8zr9R2roVTJOm2/4XOlPEtqt/+DUtC/HtHTQkUrgWFFPPMf+SpZA/DPlB7MCjHMzHZOYl3I7nJ5OUtmyhuGEDAKElS6a5R2KmsVvGVlfzhoZH/23ELszFYYQQQogXotFupqLLDKkSIffEpNpQ+TBDlQEAouaFN9LtqIa3L6Xv7x8H4PK9s/jNn/WRCzQ7RvbRdACstlasubXs/eHv6OmcP3pexspDoMFQlHcO8eDXfzm6L14XxklchlIGfrE6AkXF3LP7xIQ4zyj7mKRbcfxIt2Aoi7e+Ws95IS0sNl8Cvo8R2ozX2gSbx7dlzKCablErNjoqubHywleZPq/n6v3mN7/hFa94Be3t7SileOCBB8bt11rzoQ99iLa2NsLhMDfeeCPbt28/Y/2JXbcas76eyv79lHfuHN3up1Kj/77Qp5cqpYhcfkV1sYhymcKzG/D6+wGwauoxTBN/II11JNuuDINydDZaa2JRmzvevJirZw3D9v+EICBLOybt+BqIh07xyBc4DcPf+hbpn/4nKpEget114xIgQpwNdk8P7oIFKNvGTyZHt1+oKzILIYQQL4RtOvSE5+Aol4OlfVSC8Re5eb86TUmhCJuRkzVxQbDiDrGr21GOQUz3EDlYwCh5HCxtpf8bn8RZ3k2ssZHmP7qcZ5LPsmXfegAybh4MRTBSwNs5PK7NllAX+GWCYhLDPbJIxQy/MS/E6WjLQNVFwFDowvgRW8eOfDNQVC+8DQwzhNXoYDWPvUepiIXZFGamOHYkcs7LvOB2zuukWy6X4+KLL+aLX/ziSfd/4hOf4HOf+xxf/vKXefzxx4lGo9x8880Uiy98uddTcefOwZndiztvHoVnN4xuPzbpZiQuzJVLj+UumE9owQLcxYvIr1+HCoUIL19O5MpVELLQ2RLxujB1rXGitSFGvA4OFOoZKYXpL8TxahdBrA0aF5ALuoEQpgJlndfh+sIcM1S+tGMn7pLFmDU1uAsXTmOnxExlJRLYHR24S5YQ5MeKiZqSdBNCCCHGqXUaqHcaqbFqGSz3j27XWlP2SzQ7bcyJLsJQF/b3W3d+LUaNg7I8lB0hCNuUGyL4uSwq7mIYJnWzu7HiYUqNin+b+xC/b1uP6Rs0mU2snH0DAKZt0z5/IZFQHGWFwHJw2o4soiBJNyFOyTCMao1wraFQofzs/tF9x083BVCJMEHdZVhLVxFe0kBocT1mYxi7OYLddOHeKDheyAjT7nbT7LSd8F7968M/5aHDP5lUO+f19NJbbrmFW2655aT7tNbcc889fOADH+DWW28F4Bvf+AYtLS088MAD3HbbbVPeH2fOHPxkCrO2lsq+vaPb/XSG8GUrwPOx2zum/HHPNaEFC6gMDmLV1VF5bi9OVxdBoYByXUBVV3jKF/E9H9MyKIdmEe5eTF3PkdWbnvstjHh4sW7yIx3YuoypFNGWC3uU4KlorQmyWQzbgUiE5r+4c7q7JGYoIxJG91cwa2qwenvBslCSdBNCCCHGqbFq2Rfsxg98nhp5hAa3iVq7gTa3g6gVw9PejKj9H5pfj2E/B3Gbpj0hQtu3ku+I8/vP3sjGPV/HjsSYF1vMZS9/Fb/f9hM8DgFgBgb5cJmafJhZiy4mX8wy78qrcR+LoD2glEOFqqV8pJ6bEKdnhBwCXQBApwtjO7RG1UbQ+RJYJuTL6FQBFXEwXJPEzbPI/HY/aHBnJzCj9jQ9g7NPKUXGT5HxUrjG+Fl3ewu7GMmPTKqd8zrpdiq7d++mr6+PG2+8cXRbIpHgyiuv5NFHH50w6VYqlSiVSqO/p9PpST9mePFiyrt3YyQSmHW1o9v9kWEKa54CIHbDDc/zmZx/jHAYIxSq1nFzbKh4BLkcda97PRQraFPh7xliyao5PPmzbaQH82SG8rQcTbr1XAs915Luy+BlnyNiVVfuPHYu+kxh1tXh5/Moy8QfHqK0cxeRyy6TLxdi2tgdnaR/XL2r4/X1AWDGLswi0EIIIcQL1eS0jNZty5bSHCg9R8KqZyh8mKyXJutn6I3Mm+ZennlKKcwah8rhPMv7rmZjbJihrurF64AxBMVhUuURDhaeoxQpYBZNKspjUbILA4OOaCePDAzRsHgel770Vg49/mt0xUNXclgtR2ply0g3IU7LXtZFqS8FSqE9H+0HKNNAZ0vo5JEZLOWxUW/KHBvZFb+2k/i1nWe7y+eEqBmj5BdxlEMpKOEaLl7g4RohHGNy9SQv2PHMfUcuBluOq3vV0tIyuu9kPvrRj5JIJEZ/urq6Jjz2eEYkQmTFCoLhYbK/fhg/lwNmVk23o7r/+Z/o/vq9BCNJgmy1bkVoxXKMjlrwNTpVIMiWcELVvG+pUMH3g9Hzg0BTLlTGB6h5wYbrhOy2VoKREfz+AYobN6GLRZye7unulpjBrObjVzByUdYFe/9GCCGEeEHqnSYa7fHXISlvmI2Zp8n4aTSwKH7x9HTuLKt97TzMGpfKgSy9uy9n1tefpnbtAWp3ZQgZIbJBmm25TTzn7aZkVlg2OAc3cLCD6veLpQuvJFZXD6UAXXFQdgRdKWC391QfQJJuQpyWMhRmb1N1kZJ8heBIou34hRVGzcBr75Npcdsp6xIZP81IeRCo1uVMeSOUg9Jpzq6SV/I4d911F6lUavRn3759z+v88KWXjhYaL23ZAkAwA5NuVmMj7uzZxG65BWfhQqLXX4/b24vZmoCwDYbCW7+P1t46YnVhTNtgYG9y9PzB/Sn2bOrHPraOmznzPlDdhYuq9dscZ3Sb/TwSwUJMNXf+fMKXXDJab9CQUW5CCCHECQxlcFX99cyNLKQz1EOrM1ZiJmrWcFXdakLmzChIbsVd3Nk1WM0RbD/OktxsGjaPUP/gFtqtDhxVLUEDEFVRGpxmwmsLxNZXKBSyzJ61lJbeeQT5seSAEbFwmlqrv8gMECEmRcVCELJAgb97EK01OleCiFNdaOFYknQDoM5upNFpwTVCHC5XB2/ljiyGM1kX7PCE1tbqm3B/fz9tbW2j2/v7+1m+fPmE57mui+u+8GWnnZ5ujFiM0KJFFLdsIbJiBTrQhI9MCTTr615w2+cbIxql6zOfZujerwPV4eVGYwwVcdCALvvEIzYpAnpMH739EOVMDmdZF0OHMsTrIpiZHBwZAKdm4B++0zsLIxrFamhAA6HeXpw5c6a7W2IGc3t7q/UZlQKtMSIz44JBCCGEeL46wt10hKszFPbld/P74QdRGLSGOrg4cfk09+7scjprCLIeVr1L5eC19P7+i9XvEf/0JOqOlWQrabJeGtcM0b70Yn78Hz9hRddVhMPVm3v1rQ1UBscGMihLoawjtaVkpJsQk2IkwtX6bZkSQb5EZcshjLoo2vPhuFJOagYOeDmZJrcVN+viOi3sze9kafxSin6eVreDQrlw+ga4gEe69fb20trayoMPPji6LZ1O8/jjj7Ny5coz9rihRYsobd9O5dAhUg/8EK01lX37KKxZQ/7JJzHj8TP22Oeqhre9lYa3vRUAZRioRBgqPiiwU3lqSyWcIMD1A7yhHId2DQGaSsnDOvZDdAYm3UKLFlHYupUgnydIpcg/9RRO58ycTy/ODVZjI05XJ5gmKhLBnTd/urskhBBCnPO6Ir3c1vmnvK7zv7O68ebp7s5ZF7uqDT9XxhspYda3YzSvxKi/BHOggasOXEbrjjrihyPMVQuIWDEqhSLDqQGGkv2k8kkaGlrJPfYUujxIUBjACOnRtpUk3YSYFCPmYs1thnwJ/ACdLhIczqBH8hj1UXDMahLbNsGdOQsmnEq904ihTLJeGk97ZL0UGS9NX+kAfaWDk2rjvB7pls1m2bFjx+jvu3fv5plnnqG+vp7u7m7uvPNO/s//+T/MmzeP3t5ePvjBD9Le3s4rX/nKM9Ynd8ECwpdeSu7hh/GSSUrbts3Imm6nYtRGCHYNgh8QPDdIwhur5eYXK/Rv7ifvQU1DhLraCEHfkcUsZmDSze7pAfToFGV79mycWbOmtU9CtN59N21/93fT3Q0hhBBCnEfiq7sY/tfN1RvvLdcBEFTyJL+zg07idBIDq4/Sfz/A6z/8UUprtqDSBhiKIFOkuH4byrkMBYRXHDPzQ828awQhXigVcUEDRQ+tj9kedsYWUgh8zOaZN1hoIk1uK/uKu8l7OQbLA5SC4vM6/7xOuq1Zs4YXvehFo7+/973vBeAtb3kLX//613n/+99PLpfjHe94B8lkkmuuuYaf/exnhEKhiZr8gymlqL/9TRTXrcMfGWH4G9/AP2YFVEm6gZGIoKJudVniIwm3QFX/aQOd+Ix019Mxu57gkSNJ1bCNijgTN3qBMgyD8Lz5FNauBcDpaJeVS8W0U4Z8uRVCCCHE8+N0xbEaw3iDY1OyDHusjpT2PRRN7H/PJylv/zlGopZZn/4mQz/6PZXv/RRvcAB34WUA2I0JKGTBNiBknvBYQoiTM0wDXAtKXnX22REqfNzINue8ThVNqRa3g7iVIOOl6CsdpBQUUBhH6lGe3nn9Sl5//fXoY9Ozx1FK8ZGPfISPfOQjZ7FXEFmxAmfePHQ+T3nPHoxELaFly1Cug4pETt/ABc4I2aiogzYUZIqoRBgjFiI7kCVSqRBVEO0fRg0fU7fBMGZssqn2jW8gtGwZBD61r371dHdHCCGEEEKI581KuIQW1JHNlKAcgAYd+Git8QY2YSXa0crEqOvGbGjArG+h71trMOKzMBp6cerKaH8IsyaG6RhQACqBrKIuxPNkdtUTjOTQI/nq4JZYCBWyMec0ga/BVDP22vtkGpwmYmYc1wiRrAxhKRtNQFlPbvVSeYc6A4xQCMO28G0LDIPSpk14fX2YjY0SvEeosFNdo8gP0F6AFbFpe9F88g9uAl9X9wUaYi7KNjEaotPb4WlU+/KXw8tfPt3dEEIIIYQQ4g8SW9lOfu0A2gbtB+hSCgJNZc/PMZe+EWU5GPVzsfyXoiwXs6a66qsOAjBslGogyIERNlFGpHq94MolrRDPh5EI4/clq+WbAg0VD+VY2PNbp7tr56SoFUOhcI0wBiYpb+R5nS9zhM4Qu6OT4sZN+MkUfjIJyNTSY9mL23FXzMJor8VsS2DNbUGZBtEXL60m2DTVN4B8GT2SR8nwViGEEEIIIc5rVmOY9g+tJHZtJ/HruwkGv0/u53cR9G/HCJsY4XrMUC1O17WoWDdBfrA67dRQqGNqt6lKBT2SR6cKGCEp+C7E82E214Cnq9NLSx5Ga60MDjqN1Y0v4UBxDweLe0lXks/rXEm6nSHhS5aD71Pevh1drBbak6TbiZRloKzxYWjUR6EhVk26Hbl7ZXbUTVMPhRBCCCGEEFPJCJkYIROnp2dsY/ERQvN3o9zqlC0r3ooRaUSZJjCWEAivaIaKV/1FISPdhHgB3Kvn4r5kKe6Ll2B1ybX26cStBAtiF1HWJSq6/LzOlXeoMyS6ahWx666jsGUL/qFDOHPnEll51XR365xj9TadsM2e24KZL1PZ1ge5EkZdFGVJgVQhhBBCCCEuBPFrOwGw295K+NJLserrcXt7cXp6GPzWJsrPZQjSZTA8lOmhK9WF8JSlsOpCaF2u1qIK2TJCR4gXYHQmmSl/P5OhlGJx/GIOl/oYqQyi0Vhqcuk0SbqdIXZLC3Z3N+X9+wmiUQh8LBnpNmlGxMFd3j3d3RBCCCGEEEKcIaG5cwnNnTtuW/zqDpLp3dWkW2BhtiQwjABdqFT3X99J+cHN1RkxpkzcEkKcHc1uG+2hLjJeElDU2JMbISjvUmdQ4paX4PX3A1A5eAh3/vxp7pEQQgghhBBCnLvs9hiVvizYBipk4nbFqX1RK4mVDdRe3YjOlasJNwBbxpAIIc6e3uh8Aq1RKDz8SZ0j71JnUOjii5n/+GMMfuGLAESuvHKaeySEEEIIIYQQ5y7DMTFjLv5QEV0BI2KjXBuyJbRlECRz1VpuGpQjJWiEEGdPm9vJ23vuRClFKpUC3nnacyTpdgYdrS9gxGLjfhdCCCGEEEIIcXKNb16MitpQ8sEyUOUyfsiGYgV//whowFAQlpVLhRBnz7E5ncnmdyTpdhY0vO2t090FIYQQQgghhDgv2C3R6j+qYxfQZRMjESZAQ7a6uimBxpDF1oQQ5zip6SaEEEIIIYQQ4pylHAsVc6sLJyjAVKjaCMTc6e6aEEKckiTdhBBCCCGEEEKc0+z5rZj1MfA1+BqdzGOEnenulhBCnJJMLxVCCCGEEEIIcc6zFrRCxCYYzKISYVRNeLq7JIQQpyRJNyGEEEIIIYQQ5zxlm9izm/GOFDBXhixUJ4Q4t0nSTQghhBBCCCHEecPqbZruLgghxKRITTchhBBCCCGEEEIIIaaYJN2EEEIIIYQQQgghhJhiknQTQgghhBBCCCGEEGKKSdJNCCGEEEIIIYQQQogpJkk3IYQQQgghhBBCCCGmmCTdhBBCCCGEEEIIIYSYYpJ0E0IIIYQQQgghhBBiiknSTQghhBBCCCGEEEKIKSZJNyGEEEIIIYQQQgghppgk3YQQQgghhBBCCCGEmGKSdBNCCCGEEEIIIYQQYopZ092Bc53WGoB0Oj3NPRFCCCGEEEIIIYQQ0+1ojuhozmgiknQ7jaGhIQC6urqmuSdCCCGEEEIIIYQQ4lyRyWRIJBIT7pek22nU19cDsHfv3lO+kEL8odLpNF1dXezbt4+amprp7o64gEmsibNFYk2cLRJr4myRWBNni8SaOFsk1l4YrTWZTIb29vZTHidJt9MwjGrZu0QiIQEozoqamhqJNXFWSKyJs0ViTZwtEmvibJFYE2eLxJo4WyTWnr/JDMyShRSEEEIIIYQQQgghhJhiknQTQgghhBBCCCGEEGKKSdLtNFzX5cMf/jCu6053V8QFTmJNnC0Sa+JskVgTZ4vEmjhbJNbE2SKxJs4WibUzS+nTrW8qhBBCCCGEEEIIIYR4XmSkmxBCCCGEEEIIIYQQU0ySbkIIIYQQQgghhBBCTDFJugkhhBBCCCGEEEIIMcUk6SaEEEIIIYQQQgghxBSTpJsQQgghhBBCCCGEEFPsnEm6ffSjH+Xyyy8nHo/T3NzMK1/5SrZu3TrumGKxyB133EFDQwOxWIzXvOY19Pf3j+5ft24dr3/96+nq6iIcDrNo0SI++9nPjmvj/vvv56abbqKpqYmamhpWrlzJz3/+89P2T2vNhz70Idra2giHw9x4441s37593DFPP/00N910E7W1tTQ0NPCOd7yDbDZ72rbXr1/PtddeSygUoquri0984hPj9m/cuJHXvOY1zJo1C6UU99xzz2nbFBOTWJs41u6//34uu+wyamtriUajLF++nG9+85unbVecnMTaxLH29a9/HaXUuJ9QKHTadsXJSaxNHGvXX3/9CbGmlOJlL3vZadsWJ5JYmzjWKpUKH/nIR5gzZw6hUIiLL76Yn/3sZ6dtV5zcTI21YrHIW9/6Vi666CIsy+KVr3zlCcccOnSIN7zhDcyfPx/DMLjzzjtP218xMYm1iWPtd7/7HVdffTUNDQ2Ew2EWLlzIZz7zmdP2WZycxNrEsfbwww+f9PtaX1/faft9ztPniJtvvlnfe++9esOGDfqZZ57RL33pS3V3d7fOZrOjx7zzne/UXV1d+sEHH9Rr1qzRV111lV61atXo/q9+9av63e9+t3744Yf1zp079Te/+U0dDof15z//+dFj3vOe9+iPf/zj+oknntDbtm3Td911l7ZtWz/99NOn7N/HPvYxnUgk9AMPPKDXrVun//iP/1j39vbqQqGgtdb6wIEDuq6uTr/zne/UW7Zs0U888YRetWqVfs1rXnPKdlOplG5padFvfOMb9YYNG/R9992nw+Gw/spXvjJ6zBNPPKHf97736fvuu0+3trbqz3zmM8/npRXHkVibONZ+/etf6/vvv19v2rRJ79ixQ99zzz3aNE39s5/97Hm9xqJKYm3iWLv33nt1TU2NPnTo0OhPX1/f83p9xRiJtYljbWhoaFycbdiwQZumqe+9997n8xKLIyTWJo6197///bq9vV3/5Cc/0Tt37tRf+tKXdCgUOm2fxcnN1FjLZrP6ne98p/6nf/onffPNN+tbb731hGN2796t3/3ud+t/+Zd/0cuXL9fvec97JvGKiolIrE0ca08//bT+9re/rTds2KB3796tv/nNb+pIJDLuvU9MnsTaxLH261//WgN669at4763+b4/mZf2nHbOJN2ONzAwoAH9X//1X1prrZPJpLZtW3/ve98bPWbz5s0a0I8++uiE7bzrXe/SL3rRi075WIsXL9Z33333hPuDINCtra36k5/85Oi2ZDKpXdfV9913n9Za66985Su6ubl5XFCsX79eA3r79u0Ttv2lL31J19XV6VKpNLrtL//yL/WCBQtOenxPT48k3aaYxNrJY+2oSy65RH/gAx845TFiciTWxmLt3nvv1YlE4pTPQbxwEmsTv6995jOf0fF4fNwXXPHCSayNxVpbW5v+whe+MO68V7/61fqNb3zjKZ+XmJyZEmvHestb3nLSi9NjrV69WpJuU0xi7dRe9apX6Te96U2TOlacmsTamKNJt5GRkUm1cz45Z6aXHi+VSgFQX18PwFNPPUWlUuHGG28cPWbhwoV0d3fz6KOPnrKdo22cTBAEZDKZUx6ze/du+vr6xj12IpHgyiuvHH3sUqmE4zgYxthLGg6Hgeqw3Ik8+uijXHfddTiOM7rt5ptvZuvWrYyMjEx4npg6EmsnjzWtNQ8++CBbt27luuuum7BdMXkSa+NjLZvN0tPTQ1dXF7feeisbN26csE3x/EisTfwZ+tWvfpXbbruNaDQ6Ybti8iTWxmKtVCqdME0+HA6fsl0xeTMl1sT0k1ib2Nq1a3nkkUdYvXr1lLY7U0msnWj58uW0tbVx00038fvf/35K2pxu52TSLQgC7rzzTq6++mqWLl0KQF9fH47jUFtbO+7YlpaWCef5PvLII/zbv/0b73jHOyZ8rE996lNks1n+5E/+ZMJjjrbf0tIy4WPfcMMN9PX18clPfpJyuczIyAh/9Vd/BVTrLpyq7ZO1e+zjijNHYu3EWEulUsRiMRzH4WUvexmf//znuemmmyZsV0yOxNr4WFuwYAFf+9rX+OEPf8i//uu/EgQBq1atYv/+/RO2KyZHYm3iz9AnnniCDRs28Kd/+qcTtikmT2JtfKzdfPPNfPrTn2b79u0EQcAvf/lL7r///lO2KyZnJsWamF4SayfX2dmJ67pcdtll3HHHHfI5OgUk1sZra2vjy1/+Mj/4wQ/4wQ9+QFdXF9dffz1PP/30H9TuueCcTLrdcccdbNiwge985zsvuI0NGzZw66238uEPf5gXv/jFJz3m29/+NnfffTff/e53aW5uBuBb3/oWsVhs9Oe3v/3tpB5vyZIl/Mu//Av/+I//SCQSobW1ld7eXlpaWkYzwUuWLBlt95ZbbnnBz01MHYm1E8XjcZ555hmefPJJ/v7v/573vve9PPzww8+rDXEiibXxVq5cyZvf/GaWL1/O6tWruf/++2lqauIrX/nKpNsQJyexNrGvfvWrXHTRRVxxxRUv6HwxnsTaeJ/97GeZN28eCxcuxHEc/uf//J+87W1vGzciQLwwEmvibJFYO7nf/va3rFmzhi9/+cvcc8893Hfffc+7DTGexNp4CxYs4M/+7M9YsWIFq1at4mtf+xqrVq26MBbumO75rce74447dGdnp961a9e47Q8++OBJ5/h2d3frT3/60+O2bdy4UTc3N+u//uu/nvBxjhbA/fGPfzxuezqd1tu3bx/9yefzeufOnRrQa9euHXfsddddp9/97nef0HZfX5/OZDI6m81qwzD0d7/7Xa211nv27Bltd//+/VprrW+//fYT5jQ/9NBDGtDDw8MntC013aaOxNqpY+2ot7/97frFL37xhPvF6UmsTS7WXvva1+rbbrttwv3i9CTWJo61bDara2pq9D333DPh8xKTJ7E2cawVCgW9f/9+HQSBfv/7368XL1484fMTpzfTYu1YUtPt7JJYu3XCPh/r7/7u7/T8+fMndaw4OYm1Wyfs87He97736auuumpSx57LzpmkWxAE+o477tDt7e1627ZtJ+w/WlTw+9///ui2LVu2nFBUcMOGDbq5uVn/7//9vyd8rG9/+9s6FArpBx54YNJ9a21t1Z/61KdGt6VSqXFFBU/mq1/9qo5EIqcsBni0MG+5XB7ddtddd8lCCmeQxNrkYu2ot73tbXr16tWT6r8YT2Jt8rHmeZ5esGCB/ou/+ItJ9V+MJ7F2+li79957teu6enBwcFL9FicnsTb597VyuaznzJmj77rrrkn1X4w3U2PtWJJ0Ozsk1p5fIuTuu+/WPT09kzpWjCex9vxi7cYbb9SvetWrJnXsueycSbr9+Z//uU4kEvrhhx8et0RsPp8fPead73yn7u7u1g899JBes2aNXrlypV65cuXo/meffVY3NTXpN73pTePaGBgYGD3mW9/6lrYsS3/xi18cd0wymTxl/z72sY/p2tpa/cMf/lCvX79e33rrreOWz9Va689//vP6qaee0lu3btVf+MIXdDgc1p/97GdP2W4ymdQtLS369ttv1xs2bNDf+c53TliGuVQq6bVr1+q1a9fqtrY2/b73vU+vXbt20iuEiPEk1iaOtX/4h3/Qv/jFL/TOnTv1pk2b9Kc+9SltWZb+53/+50m/vmKMxNrEsXb33Xfrn//853rnzp36qaee0rfddpsOhUJ648aNk359xRiJtYlj7ahrrrlGv+51rzvtaylOTWJt4lh77LHH9A9+8AO9c+dO/Zvf/EbfcMMNure394Jcie1smKmxpnV1BMvatWv1K17xCn399dePXgcc6+i2FStW6De84Q167dq18hn6AkmsTRxrX/jCF/SPfvQjvW3bNr1t2zb9//7f/9PxeFz/zd/8zWReWnEcibWJY+0zn/mMfuCBB/T27dv1s88+q9/znvdowzD0r371q8m8tOe0cybpBpz059577x09plAo6He96126rq5ORyIR/apXvUofOnRodP+HP/zhk7ZxbCZ+9erVJz3mLW95yyn7FwSB/uAHP6hbWlq067r6j/7oj/TWrVvHHXP77bfr+vp67TiOXrZsmf7GN74xqee+bt06fc0112jXdXVHR4f+2Mc+Nm7/7t27T9pnGX30wkisTRxrf/M3f6Pnzp2rQ6GQrqur0ytXrtTf+c53JtW2OJHE2sSxduedd+ru7m7tOI5uaWnRL33pS/XTTz89qbbFiSTWJo41rcfuEv/iF7+YVJtiYhJrE8faww8/rBctWqRd19UNDQ369ttv1wcOHJhU2+JEMznWenp6Ttqn070+MvrohZFYmzjWPve5z+klS5boSCSia2pq9CWXXKK/9KUvad/3J9W+GE9ibeJY+/jHP67nzJmjQ6GQrq+v19dff71+6KGHJtX2uU5prTVCCCGEEEIIIYQQQogpI8spCSGEEEIIIYQQQggxxSTpJoQQQgghhBBCCCHEFJOkmxBCCCGEEEIIIYQQU0ySbkIIIYQQQgghhBBCTDFJugkhhBBCCCGEEEIIMcUk6SaEEEIIIYQQQgghxBSTpJsQQgghhBBCCCGEEFNMkm5CCCGEEEIIIYQQQkwxSboJIYQQQgghhBBCCDHFJOkmhBBCCCGEEEIIIcQUk6SbEEIIIYQQQgghhBBT7P8Haks2mkbRlZQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_plot(obstype='temp')" + ] + }, + { + "cell_type": "markdown", + "id": "c9f0ae66-9077-451d-b13e-20994d16f438", + "metadata": {}, + "source": [ + "See the documentation of the [make_plot](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_plot) method for more details. Here an example of common used arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f4351d2a-fab5-47a4-9756-6aa98ba18492", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQ4AAAHjCAYAAABisoJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb5fXA8e97JXnvOLZjZzk7IRsChECAlk0pqwVaKAFKgRZ+hDLaQgtllFI6WC27jFBSWiijlLZsaICEEEbCCgmEhMR2Ysfx3pLu+/tD1vWVLduyLWv5fPLkeWzp6uqVLN1x7nnPUVprjRBCCCGEEEIIIYQQQtgY0R6AEEIIIYQQQgghhBAi9kjgUAghhBBCCCGEEEII0YMEDoUQQgghhBBCCCGEED1I4FAIIYQQQgghhBBCCNGDBA6FEEIIIYQQQgghhBA9SOBQCCGEEEIIIYQQQgjRgwQOhRBCCCGEEEIIIYQQPUjgUAghhBBCCCGEEEII0YMEDoUQQgghhBBCCCGEED1I4FAIIYQQQox4hxxyCIccckhIy5511llMnDhxWMcjhBBCCBELJHAohBBCCCHCavXq1Vx77bXU1dVFeygBPv30U6699lq2bdvW77IVFRVce+21rF+/ftjHJYQQQggRqyRwKIQQQgghwmr16tVcd911MRk4vO6664IGDl988UVefPFF6/eKigquu+46CRwKIYQQYkSTwKEQQgghRJwzTZO2trZoDyOuJSUlkZSUFO1hCCGEEELEFAkcCiGEEEIM0GuvvYZSiqeffrrHfX/9619RSrFmzRrrtldffZWDDjqI9PR0cnJyOP7449m4cWPA43qrm3fttdeilAq4TSnFRRddxMqVK9lrr71ITk7m+eef73PM//3vfzn44IPJzMwkKyuLRYsW8de//tW6f+LEiZx11lk9Hhes9t8f//hH9tprL9LS0sjNzWWfffax1nXttddyxRVXAFBaWopSCqWUleXn8Xi44YYbmDx5MsnJyUycOJGrrrqK9vb2gOeYOHEi3/jGN3j99dfZZ599SE1NZc6cObz++usAPPXUU8yZM4eUlBT23ntvPvjggz5f/8MPP8y3v/1tAA499FBrXP712V/n66+/zqJFiwA4++yzrWUffvjhXtdvmia33XYbe+21FykpKRQWFnL++edTW1vb57iEEEIIIWKZBA6FEEIIIQbokEMOYdy4caxcubLHfStXrmTy5MksXrwYgJdffpkjjzySqqoqrr32Wi699FJWr17NkiVLQqq115tXX32VH//4x5x66qncfvvtfTbrePjhhzn22GOpqanhyiuv5De/+Q3z58/vN9gYzP3338/FF1/MrFmzuO2227juuuuYP38+a9euBeCkk07iO9/5DgC33norf/nLX/jLX/7C6NGjATj33HO55pprWLhwIbfeeisHH3wwN910E6eddlqP5/riiy/47ne/y3HHHcdNN91EbW0txx13HCtXruTHP/4xZ5xxBtdddx1btmzhlFNOwTTNXse9dOlSLr74YgCuuuoqa1wzZ87ssezMmTO5/vrrATjvvPOsZZcuXdrr+s8//3yuuOIKlixZwu23387ZZ5/NypUrOfLII3G73SG+u0IIIYQQscUZ7QEIIYQQQsQbpRRnnHEGt9xyC/X19WRnZwOwe/duXnzxRX7+859by15xxRXk5eWxZs0a8vLyADjhhBNYsGABv/zlL1mxYsWgxrBp0yY++ugjZs2a1edy9fX1XHzxxey77768/vrrpKSkWPdprQf8vP/+97/Za6+9eOKJJ4LeP3fuXBYuXMhjjz3GCSecEBDQ3LBhAytWrODcc8/l/vvvB+BHP/oRBQUF/P73v+e1117j0EMPDXiNq1evtoKws2bN4sgjj+QHP/gBn332GePHjwcgNzeX888/n1WrVvXaGXnSpEkcdNBB3HHHHRx++OF9dlAuLCzk6KOP5pprrmHx4sWcccYZfb4nb775Jn/+859ZuXIl3/3ud63bDz30UI466iieeOKJgNuFEEIIIeKFZBwKIYQQQgzCmWeeSXt7O//4xz+s2/7+97/j8XisQNPOnTtZv349Z511lhU0BF9w7fDDD+c///nPoJ//4IMP7jdoCPDSSy/R2NjIz372s4CgIdBjCnQocnJyKCsrY926dQN+rP/1XnrppQG3X3bZZYAvKGk3a9YsK2gIsN9++wHwta99zQoa2m//8ssvBzymcHjiiSfIzs7m8MMPp7q62vq/9957k5GRwWuvvRaVcQkhhBBCDJUEDoUQQgghBmHGjBksWrQoYLryypUr2X///ZkyZQoAX331FQDTp0/v8fiZM2dSXV1Nc3PzoJ6/tLQ0pOW2bNkCwOzZswf1PN399Kc/JSMjg3333ZepU6dy4YUX8tZbb4X02K+++grDMKz3x6+oqIicnBzr/fKzBwcBK7Nz3LhxQW+PVj3Bzz//nPr6egoKChg9enTA/6amJqqqqqIyLiGEEEKIoZKpykIIIYQQg3TmmWeyfPlyysrKaG9v5+233+ZPf/rToNbVW/af1+sNentqauqgnmcwz+9wOKzfZ86cyaZNm3juued4/vnnefLJJ7nrrru45ppruO6664b0XN3ZnzeU2wcz9TocTNOkoKAgaM1LwKrvKIQQQggRbyRwKIQQQggxSKeddhqXXnopjz32GK2trbhcLk499VTr/gkTJgC+Wn3dffbZZ+Tn55Oeng746vTV1dX1WK57Ft5ATZ48GYCPP/64R6afXV/PP2nSpIDb0tPTOfXUUzn11FPp6OjgpJNO4sYbb+TKK68kJSWl18DghAkTME2Tzz//PKApSWVlJXV1ddb7NVwGMjV7IMtOnjyZl19+mSVLloQ9oCuEEEIIEU0yVVkIIYQQYpDy8/M5+uijefTRR1m5ciVHHXUU+fn51v1jxoxh/vz5rFixIiAo9/HHH/Piiy9yzDHHWLdNnjyZ+vp6PvzwQ+u2nTt38vTTTw9pjEcccQSZmZncdNNNtLW1Bdxnz9CbPHkyb7/9Nh0dHdZtzz33HDt27Ah4zJ49ewJ+T0pKYtasWWitre7B/mBo90Ck//XedtttAbffcsstABx77LEDfHUD09u4hrrsKaecgtfr5YYbbuhxn8fjCWkdQgghhBCxSDIOhRBCCCGG4Mwzz+Rb3/oWQNDA0e9+9zuOPvpoFi9ezPe//31aW1v54x//SHZ2Ntdee6213GmnncZPf/pTTjzxRC6++GJaWlq4++67mTZtGu+///6gx5eVlcWtt97Kueeey6JFi/jud79Lbm4uGzZsoKWlxerqfO655/KPf/yDo446ilNOOYUtW7bw6KOPWhmLfkcccQRFRUUsWbKEwsJCNm7cyJ/+9CeOPfZYMjMzAdh7770B+PnPf85pp52Gy+XiuOOOY968eSxbtoz77ruPuro6Dj74YN555x1WrFjBCSecENBReTjMnz8fh8PBzTffTH19PcnJyXzta1+joKCgx7KTJ08mJyeHe+65h8zMTNLT09lvv/2C1pY8+OCDOf/887nppptYv349RxxxBC6Xi88//5wnnniC22+/3fqMCCGEEELEFS2EEEIIIQatvb1d5+bm6uzsbN3a2hp0mZdfflkvWbJEp6am6qysLH3cccfpTz/9tMdyL774op49e7ZOSkrS06dP148++qj+5S9/qbsfsgH6wgsvHNA4n332WX3AAQdYY9h33331Y489FrDMH/7wB11SUqKTk5P1kiVL9LvvvqsPPvhgffDBB1vL3HvvvXrp0qV61KhROjk5WU+ePFlfccUVur6+PmBdN9xwgy4pKdGGYWhAb926VWuttdvt1tddd50uLS3VLpdLjxs3Tl955ZW6ra0t4PETJkzQxx57bI/XEey1b926VQP6d7/7Xb/vw/33368nTZqkHQ6HBvRrr72mtdY9XqfWWv/zn//Us2bN0k6nUwP6oYce0lprvWzZMj1hwoQe677vvvv03nvvrVNTU3VmZqaeM2eO/slPfqIrKir6HZcQQgghRCxSWkepirQQQgghRALweDwUFxdz3HHH8cADD0R7OEIIIYQQQoSN1DgUQgghhBiCZ555ht27d3PmmWdGeyhCCCGEEEKElWQcCiGEEEIMwtq1a/nwww+54YYbyM/PH1IdQiGEEEIIIWKRZBwKIYQQQgzC3XffzQ9/+EMKCgp45JFHoj0cIYQQQgghwk4yDoUQQgghhBBCCCGEED1IxqEQQgghhBBCCCGEEKIHCRwKIYQQQgghhBBCCCF6cEZ7AInANE0qKirIzMxEKRXt4QghhBBCCCGEEEKIKNFa09jYSHFxMYYR3zl7EjgMg4qKCsaNGxftYQghhBBCCCGEEEKIGLFjxw7Gjh0b7WEMiQQOwyAzMxPwfSCysrKiPBohhBBCCCGEEEIIES0NDQ2MGzfOihfFMwkchoF/enJWVpYEDoUQQgghhBBCCCFEQpSzi++J1kIIIYQQQgghhBBCiGEhgUMhhBBCCCGEEEIIIUQPEjgUQgghhBBCCCGEEEL0ENeBw1WrVnHcccdRXFyMUopnnnkm4H6tNddccw1jxowhNTWVww47jM8//zxgmZqaGk4//XSysrLIycnh+9//Pk1NTRF8FUIIIYQQQgghhBBCxJ64Dhw2Nzczb9487rzzzqD3//a3v+WOO+7gnnvuYe3ataSnp3PkkUfS1tZmLXP66afzySef8NJLL/Hcc8+xatUqzjvvvEi9BCGEEEIIIYQQQgghYpLSWutoDyIclFI8/fTTnHDCCYAv27C4uJjLLruMyy+/HID6+noKCwt5+OGHOe2009i4cSOzZs1i3bp17LPPPgA8//zzHHPMMZSVlVFcXBzSczc0NJCdnU19fb10VRZCCCGEEEIIIYQYwRIpThTXGYd92bp1K7t27eKwww6zbsvOzma//fZjzZo1AKxZs4acnBwraAhw2GGHYRgGa9eu7XXd7e3tNDQ0BPwXQgghhBBCCCGEECKRJGzgcNeuXQAUFhYG3F5YWGjdt2vXLgoKCgLudzqd5OXlWcsEc9NNN5GdnW39HzduXJhHL4QQQgghhBBCCCFEdCVs4HA4XXnlldTX11v/d+zYEe0hCSGEEEIIIYQQQggRVgkbOCwqKgKgsrIy4PbKykrrvqKiIqqqqgLu93g81NTUWMsEk5ycTFZWVsB/IYQQQgghhBBCCCESScIGDktLSykqKuKVV16xbmtoaGDt2rUsXrwYgMWLF1NXV8d7771nLfPqq69imib77bdfxMcshBBCCCGEEEIIIUSscEZ7AEPR1NTEF198Yf2+detW1q9fT15eHuPHj+eSSy7hV7/6FVOnTqW0tJSrr76a4uJiq/PyzJkzOeqoo/jBD37APffcg9vt5qKLLuK0004LuaOyEEIIIaKjWtfyL+9rvGy+icLgXtf1pKu0aA9LCCGEEEKIhKG01jragxis119/nUMPPbTH7cuWLePhhx9Ga80vf/lL7rvvPurq6jjwwAO56667mDZtmrVsTU0NF110Ef/6178wDIOTTz6ZO+64g4yMjJDHkUhttoUQQoh48ZL3LY5zn2/9vi7pSeYY06M4IiGEEEIIIRIrThTXgcNYkUgfCCGEECJePOR5kh96fmn9/ozrLo5yLI3iiIQQQgghhEisOFHC1jgUQgghRGIrJ7ABWpmu7GVJIYQQQgghxGDEdY1DIYQQQsS22z0rAFjuXBb09/4eu8pc1+v9H5qbui3/MM20hLRuIYQQQgghRP8kcCiEEEKIAenQbvbpOBGFolgV8N+kB6z7tNbs03EStbqedjrIIJ00Uvi393UaaaZc7yKD9D6De8vdv6KdDraaZZiYvS43ihwcOABNLtmUsYsHPP/gZMeRjFVF4XzJQgghxKB9rf17fKl3UEM9pWospxrHcJXrh9EelhBChEQCh0IIIYQYkJ3sZrPeBsA2XR5wXwNNfKI/t37fQx0AG/UW67YqamjT7aSo5KDrf8r7IrupIYdMlhh79zqOLJVBCYUsNRbxL++r7NY17KaGbbpcAodCCCFigtaat/UG60LYJr2VN/X7UR6VEEKETgKHQgghhBiQcr3L+rmdDtp1B8kqqfO+0OoMlutKJqvxPW5v0+3spgaAGWoSTyb9KaT1aTRvet4b0BiEEEKI4VZHQ4/s+RbdGqXRCCHEwElzFCGEEEIMSPfAXIWu6vW+XtdB8OXs6yoZQNZgiSq0jWFXH0sKIYQQkRNsv1hPYxRGIoQQgyMZh0IIIcQI1qxbSCUFhaKFVtJVWtDlWnQrySRhYPCVWWHdrlCc676Kw9USLnaeyUrvswGPS8JFB+6A2xSKn7l/zxg1usfz1OoGFAqNDggG9se+7H89b7DcsQyHcoT8eCGEEInHv4/7o/cvaK05x3EyTuXkfu/jfTbf6s0BaiEXOc/AxMSFkzu9K1llruMgtQ+nOb7B37zP8YZ+11reoz0UMRoFaNt6duoqbnU/xAXO75CqUob+QoUQYhgprbXufzHRl4aGBrKzs6mvrycrKyvawxFCCCFCdnL7Rfxbvw7AwWoRLyQ/FHS5/+u4nvvNx1FANlnU00g+eUxnImv5EDduDAzSSWUcReyn5vMT57nUUE+RMZo/ex7nJe9qZqrJjDUKedN8r9cxaa3Z25jNpa6zKVT5Ib2OVt3GVe5beMh8kjbaeTfpKWYb0wb6dgghhEgg3+r4P14w38CDFwPFYrWAN/V7pJBMPrmUqrEhradK7+FLynDj5gHXr9mmy7nRczfppKLRtNGOBy8unGSQxmw1jU/1F1ad3xIKOUIdSLvuoJFmXmctTbRwqeNsbnRdOozvgBAiWhIpTiQZh0IIIcQIVqmrrZ+rOmsLBlOBbwqxBpppQaPZzR6WGAtwm76MQhOTRprJV3nMcEyi1DGOUsYBkKOyKDRGMduYCvgam/RKQbFREHLQECBVpZCtMmmjHfBNDZuNBA6FEGIkK9eVuPEA4EVT1lnKoo12knD1vS+yaaYVt3Zb6yzXldY+L4sMPHgBcOPBwEGWykBpFbCOGY5JAOzWNfzL+yoAZVKTVwgRByRwKIQQQoxg/oAgBNYX7M5eo8l/Egbwf47v8Yz5csCyf0+6jVyVHXDbcucylrOs63fbz+Fin64sJ2NCCCH8NW8dOPDipYo91n0XOc/gR87TQ1rPO+aHLO34buc6KwP2iQcb+/Iv81Xr96ONpfw56Ua+13EFT5j/BWCamshyp2+/16Rb+L33AWtdQggR66Q5ihBCCDFCebSHXXRlHNbTSJNuCbpsRZCTmwLymGgETvNKI5UcojMdY6wtcBhsvEIIIUaODu22MunT8NURbKHNun+wdXQrdJW1j0nCxaRu0539y6arVOu2NNvPGSrN2k9W9NIoTAghYolkHAohhBAJpEzv4lXv27xjbmCbLidZJfVYplW3UacbMNGUUsJuaskig0KVz3c6fkyScgUsr7UmubMelAMDLyZZZLDQmEUR+eyt9mKrLsOBg32NuSilejxnJExUY5nDNBpo5jVzLcv1spCnoQkhhIgvz3lfw4OHN8z32GaWQbddj1t7GEsRqSqZTNLJUVlsM8tppoVkkkKubwhY+7pW2vhcb6NDu5mhJjFBlTDbmM4870y2U04qqcwypgAwQ01iNHkAzFJTAtZ3iLEvrbTTqJs4ueOiob0RQnRTrWuZoSbxLcdRHO5YEu3hiAQgzVHCIJGKXgohhIhvz3hf4jT3jwGYQDHjVXGPZbbo7QFTlBepObyR/Bg3uO/ss8vkUmMRV7su5Ab3nQBc7brQui/YbdFwgfsaHvY+BSANUoQQIoHt234yH+pNGCgOUAtR3SOHnfz7LsDaz9lvGwj7frL7OgazH+xvvyvEYLyt1+PGwwRVwqbkF6I9nBErkeJEknEohBBCJBB7vaQclRU04y6LjIB6hqOVLyMiS2X0maHnvy/oOmMksy+LrnE00BTFkQghhBhO/v1dFplkq8xel7Pvn/z7ucHus+yP7b6OwaxzKGMRojeG9lWk82hPP0sKERrJOAyDRIokCyGEiG8/d9/CH7wPAvBf1wMc6tivxzJ/8/6bs9w/tX5f4fotpzqOidgYh9MN7ju50Xs3AM+67uEIx4FRHpEQQohwa9Pt5LTvDcBitYDXkv8S5REJETumtR3BdiooZBRfpfwv2sMZsRIpTiQZh0IIIUQcuN2zAsDqyui/rfsUpw/MT62fx/ZS+L17QfiBFIiPdfbMDck4FGLkCLY9XGossn62bzsHs76lxqIBr0OEn//v0qxbrdt629cJMVK5lBM0uJGMQ79g+4i+9LXNH4n7BwkcCiGEEDHsv97/8TPP76nSe0ghmYsdZ/K6+Q63eB+kSu9Bax0wRauI0WSRwThVxFhVFHSdM9QkfuY4j9fNd3DgYIaaFKmXM+wySbd+btASOBQi0T3rfYUHvP+gUleDhkyVTotu40t28KL5Ji6cZJLBhY7Tcar+T31+4v4t23UF5bqSJFyY2uQrKvjC/Io9uo7rXcsj8KpEdxe4r6FBN1l/F6/2MpupTFAlnOk4MdrDEyKmOHEA4MEb5ZFE35kdP8HEy069GwOj3+Ur9R7qaOBjczOnOY5lm1nG6e7LUBikkcIMYxLluhIXLup1A3uo41PzCw43lliNkRKRBA6FEEKIGPax/pxNeqv1ezW1fKa38JL5FgDz1Iwe9ZvAd/UzVaUEXedolce1routLMZ8lTtcw484+3vRSHMURyKEiIQP9SZeMN8AYB81myyVgUZTq+sBX8ZNC23sopqxBL+YYvequYaP9ec4MDhKLcWrvFZNWGliET0veN9gJ7vJJN2XSaogl2yWGouka6wQ3bg6wzwjPeNQa82/zddoppV8ctnPmNfvY77SFVSxB4Adeic79C7K8NVTTcLFJtN3TH60Opg9qpZK7Vv2S72DWUjgUAghhBBRYG9iAr5i8PYGKL92XsbXHYsHte5EnFYR0BxFMg6FSHj2beSfXL9kvjGTSl3NhPZDeizXWxZ2sPWNU8U8mfwnAMa2HUQ1tT22xyIy3NrNLqoBmK5KeTLpT1EekRCxzYULkMBhA0004ytrMNuYFtK24zeee7nW80fAtz+opd66z5/BWUAeTyffycOep7jAc03nspU9V5ZA+s/VFEIIIUTUlOtd3X4PDBxKbadAmaprqrJkHAqR+OzbQ3+91tHkoVC9LtebFt1KTedJYgld21b/eiuowtTmkMcsBmYX1Wh8/TwTqSavEMOla6qyh5HcCzdg/0Bo244S2wWmcl1JmW0dJmbAMvbtUVmCBw4l41AIIYSIIbt0NaPI5i7vX1llrmOd+aF1XxJObvDcSaWuRqHQaIrlJCqAv8ahgSEZh0IMg3bdQQNNpOkU2lQHo1ROxMfQoJtoMBsx0XxhbkMBBg7y8ZVdMJRBCsm00gb4tp2/8dzLo95/orVmgTGLXzh/RBvtNNPKo55/4sbNfsY88simhnqKVYH1fMWqgA36M3LIZIvezlQ1MeKveaSq1NVUmntIJYVW2mSfJ0QInLYwjxdvwO+JrlE348XLw56n+Kf5Mk6cePCEfNGhGN+234mDe71/o1139Fymc//gX6cDgye8/+UT/XnAcu6Ono+NVyPnEySEEELEgXntx9FAE8UUMEmNY7qaxGQ9nnlqJqOMHFaZ68hU6UzW49nbmB2QYScgn1zrxH83NdEejhAJ51nvq3zPczkAe6mpvJf8dMTHcIX7ZlaYvudVKGYwmSOMA1GqK8twU/ILOEyDPaqev3v/zSpzHe+YH7KbGv7j/R8/cp7OOvNDTnD/yHpMgXcUNdQzihx+67zCuv13zp+xtmMD1dRyhedmnkm6O3IvdoQ7rOMsPtfbyCGL/zPO4FLnOdEekhAxz99VGXzTlUdS4PCv3n+x3PMrXDiZzHgWq/nsr+ZzWYjbjiXGQiqS3+JOz6O+urYKCvQoFqm5ZBppmNrkYpev1M80NZEdyau4x/MYq8x1PS5Ye4IEHePVyPkECSGEEDGuSbdQTyPgK8BsNfpQUGqMBQi4rdgoCLaaEW20yqMe34FbKFMThRAD09JZLwp8U3ujoYkW62eNJkdl9tgeFqhR4IBR5JJlZpClMkjWSdb95XoX5d1qFjZ0bjtMTMbY1jdJjbVKH0idw8jRWlt1w1w4GWXkkqOyojwqIWKff6oyjLzOyv5jPzcespRv259v5JKtMkN6fIpKJoVk67EAKBhnFFk/+zPtncrJaPICl7VxKwkcCiGEECLM7IWV9zPm8XDSzT2WWU7iNTQJJ4dyMIbRlLFLAodCDAN7Jq89gBdJTTrweR9w3cQkY1yvyy93LmM5y7je/Sd+7b0H8NeLDawh20470LOOnqEMilUhX+ly2a5EUD2NVmODOca0hGzoJcRw8DdHgZHXIMW+jb7XdQMzjcmDWo9/vzGUZRuSGsjm/kE9f6yR5ihCCCFEjCgLUuRfDJy/YcxuamjT7VEejRCJxX5SVkt9VJqF1Oi6gN/t9Qj7Yi96X6YrKScwCOhvIRCsjp6/7tUe6mjVbaEPVgya/bNWHGJjAyGEL0PXz407iiOJPPt2PdR9g+ifZBwKIYQQMeB98xP+Z65lGqVoTOYZM6I9pLg1Q03Gi0kGaezWNYxTY6I9JCHixhZzOy+Yb/CB+SmbzK24lYdiVcBK1x94znyNDu0mhyw66GAsRXy341K+5zyBYx2HDOu47vQ8yjrzI3bonTSoJpJ1EgaK8aqYFJUc0jpmGJM4wjiQWl3Po95/0kobJRTSRDP7qfl8pDeTRxZLjIU9HnuwsS8FZh7v60/Yp/1EpqtJFJGPQ/mmBC53LmOKMSGsr3kk22R+ydPel5hOKSaafY050R7SkG3XO3nB+wZPeP9DEkn8zHU+Bxp7R3tYIgGN1KnK93v+TiGjmKomAIosek4fFoMjgUMhhBAiBjxvvsHNXt90hm8bR3OK45gojyh+OZSDdeZHgC8jahwSOBQiVGv1Bi713ARAOmk06xY+0J9Sriv5g+dBPtCfolBcbJzJ7eYKNutttHrbhzVw2K47uMzzG8DXOX2+msm3HEdxtevCAa1nibGQZ5Pu4Qb3nawy15GEi2yVyVJjEVe7LuQG950A/NR5Xo/HXuv6P1p1G7nt+wCwRe8gmSSr4+a+5lwJHIbRm+b7/Mp7FwBHq4M5z3lalEc0dO+ZH/N/nuut36d5J0rgUAyLgIxD7QHVx8IJQmvNTzy/o5U28snlfMdpAQ2zxNBI4FAIIYSIAfYpWWPU6CiOJP5l0dVpuqGzoYEQIjT2bVE6qTR31jEs07usmoCZpDNGjcaBAy/eHrUCw83ekCSdtF4L0Yeq++P9P/e3zlSVgkKhOyc12zN5WpDpy+Fk/0wVqfwojiR8tDUZ3kfqZYrhYu+i7BkhNQ5raaC1czucq7KHtI8QPUngUAghhIgB9pOky5znRHEk8S/TdrDYqJuiOBIh4o89mHGK42j+5H0UgG26nKrOxigz1WQucZ3FPebf2KbLhj0AYq9Z9W3HUfzO9dMhra+3QvahNN8wUHg7A0BeW+Bwp949pDGJQPa/+Q+d34niSMJHAociUpxq5AUO7cfRi4350kwpzCRwKIQQQsSADeZngG96yWjyojya+CYZh0IMnj2YMV1Nsn6+2XOf9bO/eVMJhWyjjFoaaNGtpKnUYR9TpBtH3e5ZwSpzHQBe7cVL8GYwj3r/yUd6k/X7UmORnLgOQeDfvKiPJeOH2e2zs0lv5eSOi6I0GpHIPjS7tkUXu28IuKCaqKr0HuvnNd4POFlH/7vl7uiI9hDCRgKHQgghRJR9rf1MnDiYyRSucH0fQxnRHlJcy7QVw26QjEMhQvaady07zArGUkSxKuAIYwkPuH7Nq9632WxuJZN0JhvjuaAzA2wfYzYdZgeNNFOuK5mqJoZtLKY2mdh+KC204sbDBEqYpMZylHFQ2J6jL5+Yn3OB+xprG1KgRqG1poBRtNBGEk5mMIlW1U4W6bToNhp0E1prPucrNppbeN/8lBVJN0dkvInkee8qdps1jKOIYlVIHtnRHlJY2DMOlxkn4sTJZr01iiMSicqeZdigm7vluiamTXorGaSRhIsM0mPi+M+jJXAohBBCiDBo1i2s1u8DUMpYvus4Lsojin/2ujaNRP/AUYh48YXexnp82c/7qXlMMEqYQAnVupY6Gny3G/NYaiwCwIHBOu1rRFSuq5jKxLCNpZpaqujKIPmKco41DmGGMTlsz9GXbbrcem3T1ETfdkVBjs60MlumGhOZZUwBsLISUVBr1lNJNR2mOyJjTTSb9TY2dH4Ol6i9E6bBgT14M9uYhonJLlOmuIvwS9ZJ1s/pKjXh6/1prWnoPN7LIZNioyDKI/JxKwkcCiGEECIM7EX/FxlzoziSxJFBmvVzg5apykKEqsw2PXSZ40Tr595qAharrpOzcsLbICVY/bcfO88K63P0/fxdr+fHjrM523kyAA97nuICzzUALDT24vzObr/292f/9m+zXm9kJ7vxai8O5YjYuBOB/W//fee3oziS8LJnHCp6/14JMVQ/c/+O27wrALjedQlLjIVRHtHw2q538p/2/wFwiLEff0u6LboD6tSQ1EA290d7GGEhc6GEEEKIKLKfqI+NcO2uRCUZh0IMzkBrCdprz4W70UP39RkYFBG57rqB2+au12l/X8p66SbtX8aLl0pb1qQIjT1oW0Li7BftgUNDTsPFMLJ3VXbrxG+OErDNkGPpYSEZh0IIIQatTbdTriv5s/tx2pWbMWo0b+v1QZfVWrOPMYfvOo5jolES2YHGiCq9BzceHvf8hzf1e9ZtKSTRjlsOdsIkiwwMDDJJxzMCDpiFCJd2OsghkzoaQwwc+pZJI4UXvW+x3LGMZJXUz6P6tsn8kn96X+EZ8yUcGFYzklyycSnXkNbt16ibqda1POV90SoV0XMcW0nCRUe3bbM/iJhHNk26JehjS1QhThwUMZqN5hcUO2Jj2ly8aKeDbDKppzEgqzXaNptbecb7Mmv1hkE93h5ofs77Gj9ynh6uoQkRwB44HAldlXfpaooYTRV7onos7dEetuoynvG+xNt6gzRHEUIIIQA+0Z+zpMM3TQsNCsW+ai5JBJ7caa1Zwwf8x/s//mW+yprkx6Mw2uj7k+dRfuu9H4ViNlPJUVmkkMwiNZcD1d6c6zgl2kNMCBmkYWJSTyNV1ER7OELEjQ/1Z9TRSD65ZJPZ7/IL1SwucHyHe7yP8aZ+l416C/PVzEE/f5NuYV7HNwHIIYv9mc8StZCfJ/0orCe/r5lvc4p7OeCrLTs2SNfeMWo0YxjNAWoB01WpdXsxBSThooZ6NrIl6Pp/47icx73/oYxd/NTzO951PB22sY8E683PqKeRsRSRopKjPRwAWnQrczt8NYhzyGSOmj7gdbTqNuvnV/Xbw9qJXIxsLjWyAofbdQW72I1CMZbodWHfrncyp+MbABQwisk6cRIlEj5HurGxkUsuuYQJEyaQmprKAQccwLp166z7tdZcc801jBkzhtTUVA477DA+//zzKI5YCCHiR7CpaaPIIUtlBPzPNjJxdQYTy3uZ2jUS+N8vjSZPZQe8RzlG1pAzdYRPtuoKeDTIVGUhQqK1tjKiclV2SA0pnMpJvsq1fh/qdOUK2+PTSCHHyGKUI5dklUS6SuvjkQNjH2f3/VX3/3lGTkCNwmwj07o41tvrTTNSyVHZfS4jgvNqLzvxNQwZpXKiOxgbez3iNFL7/dwE+5+qUnpdpxDh5LJPVR4BgUP78fWYKDZGKadre59OKpkJ1JQm4TMOzz33XD7++GP+8pe/UFxczKOPPsphhx3Gp59+SklJCb/97W+54447WLFiBaWlpVx99dUceeSRfPrpp6SkpPT/BEIIMYJ1PyHKIoOnku8MuuzB7aezVm+gihradceIDJLZDygeT7ojIMAlwsfeHKVRmqMIEZIGmmimFRhYjSh7DbqhXhiy1xX8juMb3Oi6dEjr64193/Vr52V83bF4QI8vUYVs0lsp15VorYMGWUsoZBtl1NIgmWUDUEWNlSEVS+U77J/NUx3HcJPr8gGv4xHPM5zn+UXAOqcwISzjE8LOSdfFDg/eKI4kMgLq80axLqp9HBc4v8PZSSdKc5R40NraypNPPslvf/tbli5dypQpU7j22muZMmUKd999N1prbrvtNn7xi19w/PHHM3fuXB555BEqKip45plnoj18IYSIed0Dh2n0fsHFfgKwU+8etjHFMn92QQZpZJE4VyFjjaF89Q1BMg6FCJU9+2kgJ15jAxqkDC2DqoKBNWcZrPIhNqXyj62FVupp7HMZkMyygagYYIOeSAnHZ9PeHKX7OoUIJ5etZJAbdxRHEhn2bXo066LG6vYrHBI649Dj8eD1entkDqampvLmm2+ydetWdu3axWGHHWbdl52dzX777ceaNWs47bTTgq63vb2d9vZ26/eGhobheQFCCBFmT3j/y3azgn+ar5CvcrnQccaAMy1Wep+lVtez3vyMjeYWiimgmlrGMYZFxpxeH3ewWkS1qsWFkyfNF7jMOGeoLyeuvOp9m0lqLMWqgGIKQpoGKAYviwwaaZaMQyFC9JL5JoepA2ihlQONvUN+3CQ1jq+p/dmuK3jRfJMf6e/iwsVd3pWs9W5gmy6n1BjLn1y/ZLwaE3QdXu3lV567WW1+QDEFjFZ5zDFCryF3q+ch0khlg/kZlVT3u3y5rmQCJWSo1IDO0KGao6bTqtpx4qBcV5KjsnosM0NNYrGajxMnFbpKMstCVKX3cJDaBzeeqLxn//X+j016Kx+an1Gt66xacXW6gUmMI1OlD6q+IYDZ2egHYCoTeMDzBE96XwjLuIWw22R+yQRKcGJwr+dv/N37n2gPCfBt68uoZIoaz5mOEzjGcciQ1/m2uZ58lcsUPZ4klRTWuqibza1c77mTNt1Ou+ogmwyqdA2ZKj3o8tW6llLGkqHSA2rjJoKEDhxmZmayePFibrjhBmbOnElhYSGPPfYYa9asYcqUKeza5ZtOUVgYGA0uLCy07gvmpptu4rrrrhvWsQshxHD4jec+PtGddVw1jFfFAw4c3u/5O293dhRcohYymfGcbZzM1a4L+3zc+a7v8Iu222ikma+8FVzmHFmBw3+br/G8+QYAryX9JcqjSXwZKg20ZBwKEaqHvE+xUW8hgzTOdp4c8uMmG+OZbUzjVe/boGGz3kYKyfzKc5e1zOfmNj42NzHeETxwWMkebvLeA/i6FX/DOJSDjH1Cen6tNdd5/kQb7eSTy0w1ud/HZJJOpkpnqbHIt60YoFRSWKM/AHxByL2Y2mOZbJXBGr0egB3sHPBzjFTbdDlv6HcBOEd9K+LP/4T3ef5q/guAvdmLNHxTzA0MSlQhS41FHOzYd1DrtmccTlUTaaSZBi37KBF+29lJB24ySaeYwpj5nLm1h4/ZzMd6M620hyVw+Iq5hufM1wD4tjp6yOuzW29u5B/m875fOr++YymilLFBl0/CxVhVxFJjEXOM6TSQOAlmCR04BPjLX/7COeecQ0lJCQ6Hg4ULF/Kd73yH9957b9DrvPLKK7n00q6aKw0NDYwbNy4cwxVCiGHVfZrMYIq2++v8pJNqZVlkhVj8t0QV8pn+ss+6UIkqoP7KIDJcxMD4p4I30oypTQyV0NVZhBgy/4nlYMoo2KdkletKUuhZw7av/Y39vkzSQ96nANRQTxu+mUC5nU2nQjWQZe3sr7esl7qO3d8TEZryKE/1s9cizle5OFXg6fJgPzNAwBFYqkpGMXKOgURkObWTDtx48Q7pMxtubjzWF8GegTsU9m3GGDU6LOv0CxZwzVaZ/b6nsfSeh0vCBw4nT57M//73P5qbm2loaGDMmDGceuqpTJo0iaIi34lbZWUlY8Z0XQGtrKxk/vz5va4zOTmZ5OTwpcAKIUSk9AwcDqyQvb3b4VQ1kSeT/jSgx/sDh620UUsDeWQP6PHxzH9go1CMIT/Ko0l8mSrdOjhtokVqSgrRj0Z80/p7m4LVl1ACh2V9Bg679kXnOL/FcueykJ/b/tgDjAXc67oh5McO1tgQgoIlAbUfJXAYKnsgdjD1J4fK/7fKJJ1/Jt8T1nXbj8EONw7kLOdJYV2/EH6L2k/iI70ZDQM+Vh9OjbqZ0e37AcMTOLzc+f2wrNPPf85j90vnRXzT8fWwPk88SPjAoV96ejrp6enU1tbywgsv8Nvf/pbS0lKKiop45ZVXrEBhQ0MDa9eu5Yc//GF0ByyEEMNIodBoPtdfcbtnBQCrzHU9lltqLGK5cxm3e1awylxHm27H29mdbTCZAIHF4ivJUyMvcFhEPi7l6mdpMVT2QGEDTRI4FKIPpjatwOFQMw7v9/wdI0j/xZXeZ8lT2UGDgn/1Phd0XX7+fVD3fRL4auJZj41QN037GF803+RqepbqkIzDwamgq5FM8TAHDu2fI/BNe9+qdwDDk+1oDxxKtqEYTqmdzQpbaYupGT6G7XNvdktmGCx/Q5IkXOSTG5Z1+r1ovtXjtkRrehKqhA8cvvDCC2itmT59Ol988QVXXHEFM2bM4Oyzz0YpxSWXXMKvfvUrpk6dSmlpKVdffTXFxcWccMIJ0R66EEKEnf+gNYUk7nBezc89t3KV5xayyKCY0eSpHMB3xb+Gel403+Jv3n/TqtvIV7mgfTV/phmlnO8M3kCqL+cbp/GluYN6mrjacxtPJ3XVwPJoD2PalwCQSzabU14c+guOER7twYmDOUxnhjEp2sMZEcarYuao6Xjw0KRbkHM0IXrXTKu1f8gYRMbhLDWFv7lu5QXvm2zUW0D7ApATVAnHOg7hTe+7/Eu/xu2eFawzP+TRpD8AvuyT/Tq+RYfuoIh8DjL24WCjq36cqU3mdxxPra6nhjr+bb7Ozzy/J4dMJlBCpkrHpZ0sZBZTjYmc4ghvfaveTFbjudBxBk95X+QLvZ13zY/Yp1tzsAKdx/5qPo000UxrRMYV757yvsguczfFFDBJjRtU9msornDfzGrzfRp1M7kqm6TODrRaaxYwi+nGJL7j+EbYn1fbMqwkcCiGU4pKtmZdtNFuBRKjzX5RKVwZhx7tZTbTGG+MCakszfS2I6mhDgcOdiT/L+jF/HfMDznP/QuadQsF5FHKWApUPi7lZFqCNT0JVcIHDuvr67nyyispKysjLy+Pk08+mRtvvBGXy/cB+clPfkJzczPnnXcedXV1HHjggTz//PM9OjELIUQiceFiH2MOVfgyNWqpZ7waY9Xk8Ggv9TQC8IH+lBSSmazGg4JsMplvzGR/Y/6An3dvx2y2uLezk91U65qA+3ZRbWW8NNMaU1dIh2onu9nOTmAnpZREezgjQittfKQ3WT8LIXpnbyKUxcCDNdkqkxMch/OVrqDK3GMF6g8wFnCm8wRqqeevnn9RSz0f6I3W48r1Lr70Z3hRyD7GHMbZOi9XU8tmvTXguTSaWhqYoSb59lmdz7XQ2IsZRv+NUcIhXaUxRo1mZ2d23Fe6gn0IDBw6DSc79E7KqWR3t/2dCG6L3s5mtgFwqNp/2J7nI72Z9/QnABzJgV11DDuPceYa0znMcUDYn9eeX5UoxzciNtkDha2xGjjUQw8ctuhWNrIFgCwdWrZ8BZW+WotAIy1ByyZ9pcv5TH8JwAw1iZMcR1r3DdcFjViX8IHDU045hVNOOaXX+5VSXH/99Vx//fURHJUQQkSHfZpM91T7m5yX8zWH70D9V567AjpiTlLjwlYjpUQVslPvZhfVuLXbutJnn8plYiZUDURpjBJ5/k6YIIFDIfrTpJutnzOHMK1/uXMZy+k5FXm5cxkPd3ZttjfHstc9/I7jGz2mMfc1xfcB101MMqLXnDCUqchjVRHlupIqamjXHSSrnrUfRRf7+3ie89Rhf54M0ngm6e6IBfECpyoLMXzSAgKHbRAjx9PhnqpcobtKG4QyhbhVt1lBQ/A1PwlWNsm+LbrSeQGnOo4Z4kjjn7QYFEKIEcS/i1YoslQGThzWffYi5N3rRIWznod/XRrNLqqt2+07f9/viVMTaqAHNmLoUuhqYtaq26M4EiFiXwNdgcOsYcqm8G/72minhnogcNs4NshFle77BbtiVRDmEQ5M95q9/S2zU/cssi8CVUSgo7LW2nqeElUY0cw/e+AwWB1QIcLFfgzUFkPHQOGeqmwP8IXSTKn7PqWRnl2Tuy8nx+0+CZ9xKMRI5NVe1pobcConVd5q8oxs0klnkjF89WJEfPHX1skkgwYaMdEBRcjHqiKSScKDFwdGWHeaxaqQPLJJIokz269gvjGLEx2H80/vy7hw4sZDIfl8ZG5mtjEtbM8baVpr1pjrcSoHG7wbKWUsleyJ+sluLKvWtZSZO3nc+1/a6eD3rp8N+qQuVdkCh5JxGJK13vUopXBqBwsds6M9HBFBLbqV8RTTTOuwNRIqpoBcshhFDi953mKd/pCXzdU4ceDBy8uet5iqJvKW+T7rzU9RSlGpq0knjQ468OCxwi4pJPtqeEVRCYUk4SKNVN7xfsRnji09pkqPYTTZZDCaPHbqKiaO0FIV73g3gAKHdrB3H9sWF06KKWAPdRSRH/L6G3UzX+odPOd9jXXeD5njmM5ZjpPw4sWBg5XuZylTu0gnla1mGQ4cZJAW8YCANEcRkZKqujIOW2Koxqo9cKjDEDjcoXeSTy6NNPfZTKla17JL7+bPniescw0IvGgGsNHcQjJJfGRuIpUUOnBTjBy3gwQOhUhIFbqKr7nPBHwbaNPr2zD/xnk5lzjPiuLIRLTpbtMCypPfwFAGpjYDCgp/3VhMXfJ71nTlnzvD12n+D86fcavrKm5w38mN3rtZY67nbvOvAMxhGtsop5JqrvT8nu84w1+cPFJqaeBr7u8BWCfGgByA9OE/3v9xnucX1u/XcBHZZA5qXak9pumIvnRoNwe7zwDAiZMmx/roDkhEVANNbKcCgDSV2s/SgzNOjaGWBmpp4CzvT3vc/xyv85z7daCzzhzTSSWFhWoWS41FXOk4P6TC95EySY2jKultcjr2ZjXvc4H7Gl5PXhmwzDg1hnqaqKeJHexkMQuiNNro8WgPS92nA+DAoNnxYa/Lvq8/pYIqRpHTVXcwBGvNDXzDfZ71+/PeN/hcb6OJFl42V/tu7Dz8KSKfeWoGS41FYT22CYUpzVFEhKTaZ10QOxmH9ovB4ZiqfLnnZuo6Sxtd6Di91+X+7X2d8z1XA74GjLWdWe+NOjDj8Fz3VbynP0GhWKIWslQtolSNHfI4E0Hs7H2FEGFTQVd6tf1qThJSW0f4+Hfb/pOw7idjhjJQyjedOUtlhPVkzb+uLJXRY6pOvsojhywAKtmDW7vD9ryRVq53WT/7g4ZAQOF/EaicwOl+fdU3609AfZ8YmqYTq+zTcjx4aNcdURyNiDR7cD1tmIro95UN0l0Gadb+x//faTgxlGH9jzalFClGMumkAQTUa/QrNrouFA1lexbPKjubsAF4MX1d7nvR2Flr09+oLVTB3ttyXRn0dvtnKtKfo4DmKBI4FMMo4OKpjq2Lp/5j/6FOVdZaW4290kjp8/tsP75Mt9XAbuyWcejfZmSSTrbKJNvIlEZGnSTjUIgEZD8BtB+kGHKQMuJ1zzjsT/dC9eG03LmMGz13B3Tz/GfS3ZzpvoId5k40mp1UM574DLT1VptLpir3rnudsHJdySymDGpdKbZpOm2Scdivim5B2wpdJVfZR5AW24llyjAFDnurP2XPyPY7w3E817kuHpZxhNtUNYH1eiO7qMarvThUV+1gezOsvuo1JrJg9YunqdKgy/qPBwY6Xd4eFMghizoaqNBVNOELUhoYVpDiMsf3WeY8cUDrD5fAGodyTC6GT2rAMVBsXTz1fx+HGjhsodVaxxRjYp/L2o8vv+c4npu89wLQYGsM5tZu60LHdFUatqaQiSL6l+uEEGFnz3Sy8x9AiZHLf9AaK1e6XbbrVwXkkaRcAYG13j7L8SBY9kke2QEHcyJQ9+yQoWTo2KfptEjgsF893ntGZnbUSGU/sUwdptqBvV00KQxSy64kji6w+F+XBw9V1ATeh2Qcdt+PB9s3ArTrDjrwzTLIYGD1uO3vbZHyfZ4qqKKeRgBctkZwuSprQOsOJ6lxKCIllo+B/EHzoU5VttcnzOxnmxHYRKUrIcHeHGUn1dZ3VC7y9yQZh0IkgDrdwK8997BFb6dG12FgUMAommnBRFtTkBp08M5RYuSJxAFrq27jTu9K3jLfo1LvYYwaHXB/ra6nzjqod7LImAvAUmMRm8xtoDRPeV9ksRGfNaEaaWI6k6inkSScjFEFLDEWRntYMWWtuYHnvK+xWW+jXjdSTyMlFNJGOwvULB71Psu/zFcDHrNH11FPI6PI4amkO3ud0hZY4zC2rrbHmhe8b/C69x0KGEUTLUxXpTSZzXJ5eQSxT1VOJYXHvM9RpnfxmvdtdurdjDeKudBxOkc4Dhz0c4xTYzjDOJ6PzM18zlZMNOMo4kTjCHawk83mNiqoZJwaw3xjVjheVtg85X2RL/RXvGN+SKvZxk61m/FqDN91HMfRxsFMVCVsMDdxVPv3KVKj+KPrGqYZpRSrAvZX83HhJGUElot5yfsWL3lXU0Q+jTRTyjiqdW3QZe2zDwbS2XuLuZ09upapTMCpnJxkHEEDTWw2t7JNl5Ov8tCYuPFgYjJZjR/y6xosqXEoIqWYAg5R+9JGB819lAeIhnBNVbbXJ+wtcLjO/Ih/el9mt65lPGPIV7lMYAwHqr1Rnf8ANplfco/nMWaqySTh4kjjoCGNLRFJ4FCIBPCVruAO7yMAFDKKaaqU6aqUtfpDOuiqU9XUrY6DGHkGOlV5KFpo4xeeWwHIJSugpgj4rv55O6enufFQo32Fik9wHM7Vntv53NzGWjbwO1fPIvrxYKPewia+BOBc49sUqnyudl0Y5VHFltXm+/zO+2cAplNKgRpFhkpjqbEIgFXmuh4XPL7UO6jqnEqyQ+9kLzU16Lpjub5PrHnRfJMHzCes3z/QnwbUJROJr6VbjcM7PSt5S79n3bbR3MJEVTKkwGGOyuLPSTeyvONXbDA3Ar7ay9cnLQfgBvedrDLXsdRYxL6dF5JixePe//CM+TIAC5jFp/oLPtVfAPBM0t0AHNN+Lpv4kk36Sz7Um5hGKckqiS/1dqqooURHtoNvLHjFXB2wbfmYzXzJ9qDLNmp79lDoU5U/0pusv80h7GvtZ29w30mL2cZSY1HM7Hsl41BESopK5nX9DgBHszTKowkUtsCh7by2t4vIb5vr+b33AQCmUcrRxsFkGOm86fHt3+brmQBs0J9xt/kYAF9XiznH+a0hjS0RybVkIRKAvW5DFplW0eeMboEaex0HMbJF4oDVfoDswtmj0H33KbvJqisbo6SzFlYTLXGbKWuv61SsCgdc7H0ksL9HeSqnx2ck6H/bVeW+aobZp1vGWn2fWBPsfZT3bGRp7VbjMNhFpnB1J7efLI5WudbP9u95rLFnLeeRHfT2AjXK+tn+nfLXOfTXQBxJyoNsW3rbbgcGAULPOLSvz/43iMXPkzRHEZESy/VVwzZVWfc/Vdl+jpynsjuPI7u2Cf5M5962I6KLZBwKkQDs9WIucZ7F9zuvkixqP9nK4oLAOg5iZIpkxqH9ufYx5vQoMnyXZyWXem6yfk+2TePqXhcqlg78Q+Wvp5JMElc6z5eubEHYa8486LqJUiOwGcdyejbnuc/zNy72/AqAsj5qYNozDltoHepQE1qw2mvyno0s3WscBg0chilzd1/HPO43Hwfgm46vW7cvdy4L+p2PBS266/vweNLtjOrYFwh8T85xfou/dfwbCPxOFasCPtCf4sVLJXsC9m+Jrrdux8EETFUeQMahfX1nOU62fo7Fz5M0RxGRElgvPLbqq4Yv49Be3iD4NsN+jvxn141MMSawXe/sWkdn8NH+Hn3f+e0hjStRSeBQiATwtPcl62d718JkXAHLNchU5RHPf8ga6YzDYM+X1K3ek/3zWmL7HJfpXcxk8jCMcHj5D0JKVOGIDxre7lnBKnNdj9vfMt+3fg61ELX9KvqT5guczclBl7MXBm/Vkj3Xm9s9K/hQfwZADplW3VGpCzmytATUOOwlcBimz8Q/vP+1fi7ppdNyrLEHVtNUKikk00Z7QBZmCV2vxd4QxP4ay3XliCq672+ylEsWDTTjxdtrECOgXtkALhaWBTQ9iO3Pk0xVFpFSRD4OHHjxsspcx8kdF0V7SBb/hck9um5I6wnlYkP3izi+ZbuyE/3rsC9n35aLLhI4FCJOfa39TN7W6zExGU0uc5nBHGOq1WAC4I/Oa/jc3MbPvbfiwMAh1QlEp0gfrgY7QLZPTYbAjMMpagKz1VRqdEPANIN4sKzjJ/zDfAEvXsZSxNWO2KitFC3T2o6gjTYMDKaqiQH3zWASHXQw3ZjU4/PQm/2N+ZxlnMS/zddZY35Aua4MGnxII5UZahJuPDiVI8iaRq7TOy7jX+ardOAmgzRyyOZY42CmG5P4iee3wMCyy27xPMh1Hl9G8YnG4TycdPOwjFsMH/vfO41UGIapyjv1bvZv982IKKaAQ439OSBOGkb5X3sqKSilSLUCh10BxWIKmK9mUq8bA2Z7TFel7KWmUKPrKTd3sciYE/HxR8P9nr/j1A72YgpnO7/FY97nqKeRdNKCLl+layhiNPnkMJ4xQZcJpkbXUspYslVmzGdzSnMUESkO5eBZ1z08432Jj/TmmCr74+38HtRQx0fmJuYY0we1nirTl8E9itxeL8g06CYmM55iNZo05SvhZZ/W3KSbObrjXMrNSsZSxIHG3jF/ASJaJHAoRJwq15XWAchualmoZjPXmEGe6qq9s8AxiwWOWfyf9wZfZ1c98jr6iUDRmqocTPeMWJft91Eqh4/15wCUE1u1WfqzU++2mr6UsSvmivxHUoNuYjsVAIwip+dUks7zpvnGzJDXOUrlkKKS2U0NQK+BwxSVzGfa15xmui4dxOgTV7mupAM34KsjmkE604xS9jPmWcsMpMbhLl1Ne2cjrlibEiVCY/97p6jkoFvvoWbulutdVtOdCRQz15jOaJU3pHVGij9A6M9kTiWFWhoCAq6pRgplehfV1OLVXQGibJXJJ52NVCribH82FGW6ki2djVBmqslU6mrK2EUzwTu87mK39T9zIF2V2cFWysjRWWQYoT8uGiTjUETS1x2L+VhvpsKMre2O0r5LU15MmnrZHoRiF9VUUEUFVeTazn/9TG2yma104CbNVr7GoRykk0ozrTTQzHZzJxVUkUk6C4xZuJSrx7qEBA6FiFv2A68Ukvhn8t29LptBGvU0BkwDESNbZKYq9/18yd2mKrtsu6RYrs3Sn+6vdSRNS+vO/rc70jiIB5Nu6mPp0IXy+QiscShdle2adWD9wm85jmS5cxkfmp9Ztw3kPWvWXfsjqY0YnwKnKgc2R3HixINnyBmH9u/q2c6TWe6MrfpzffEHCP3blVSVArpnFmaxKqBa11JBFaY2MZRBMYFTlUcKe/2xTJVOknKBxrpo0V3AVMEQM3601tbj4mFfK81RRKTFYq3P3LZ9rG3nUBqkBExDDpJtXE2ttb0p7rZNySKDZlqp143sZDcA09TEuNovRZrMWxQiDmmtqaVrGkxaL9M+/PxZPg3SHGXE0zpyGYd2wQ6PuwcOnXRNJw2sCdV7A4xYZJ+KlISrR/fokaSslzpfQxXK58Ne47AtTE0dEkUdDQG/+99Pe7B1IFOVq3Wt9XNtt3WL+NDaR41D/3cpnIFDe63SeOB/7SnKn3Hof08CszD93yUPHqo6s6LHBtTsHTmBQ3vH0yzSSeqcVeDGE3T5wXw+9lBnZTvHQ71MaY4iROBnfygNUuzHf8EuHPR1MSLTdm7s/17GwzYkmiTjUIg4scH8DBOT/3hf5x3vh6STRgNNGKh+28b7C8Y204pXe3FIva8Ry79zjHRzlGC6N0dxqq5d0mjyGEUO2WRaJxvxwqO91s+jyI3iSKJrq1nGF/oriimgmRbGq+KwrXssRRSQh4HBf7yrONTYn72MqQHLOJSDJFx04JZGHzafm9sopoAydqHRJOFinPLVE7MHuXubqvye9xMaaKSJFmaraZQaY3EpJy7txIOXIvIj8jpEeOWSxSQ1jnbdQYotcKhQpJFCI81D+h616w7KdCWF5NNMC2OJt8Ch77X7p7v5g+yttKG1thpglaqxjKcYL16udP+e37l+SokqJIsMCsjrUaIjkTXZGvJlqgxrVkFvGYcuXExS46jTjRQQ2hT2teYG5quZ1Og6Shk79EEPM5mqLETgZ99e1sFPa80L3jd5znwVjeZq10UUqcBji21mOZkqg8mMx9SmdVHH7gPzU+aq6ezRdUzodgxaSglePLTjpoRCmmllgioJ0ytMTBI4FCJO/MJzKy+ZbwGwv5rPPGaw1FjE1a7+Gy9kqnRrfkQjzeSQNZxDFXEgFroqd2+G4bBlHBrKIEOl86XeQb3ZOHyDHAatqg20b+r1l8mvRHs4UfOo95/c6PWVUDjVOIYfOE8J27oPduzLa+pR9uo4hl26mt947uUvSb/vsVwqKRI47OZO70rWsgGAs4yTKFGFfMtxFNAt47CX7LLj3OdR05nxfpXjAq4xLmKNud7KIlqtP8Ct3VIjKM5s0+V8qXeQhAtDGQGBw5TOablDydzdriu4xfsgAHsxlUMd+4Vl3JFgatMKpHefqgzQji/YCnCL6yqK1Giu8dzOY+ZzHG9+nRMch+PGwxdsJ0X3PLlNVN07nvaXcfiW+R7V1DKeYgwV2qS4Gz13sV5vxIGDW11XDX3Qw8zU0hxFCPrJOKylgRM8P7R+399cwPccxwcss9J81jovftL1p6DP8kvPHeymhnGM4afO8wLuu8Z1EUs6TrN+TyWF3zp/MvCXMoLIVGUh4oQ/3dqBw2oy0KPRQC/sLeobbFeAxcgTyeYodsFrHAYGFuyBQ+iqV7KHugFNm4w2/8lSFhlWFspIVE7XFJEiNTrs6y8JYfqffzphi5a6e372qTtjVEHAfsQ+vbu3Gof2IGw5lXi0x6oP5Nc4hGLnIjr8wRx/Vpg9cGh9j4YwVdn+Hc1XOYNeTzR0bxwDfddQDVaDNbOzpIx9+m6ia+x8rQpFOqnWZ8uLNyCABtCm26nGV/JgILUK/e9vEflxMZtGMg6F6H+qcvcSNMFK0gTUNwyyzWjT7VYTvZIg93cvh1CsCkb0MXsoJONQiDjh30BOUMU8mRz8ykpv7N3pGnVT8IJzYkSJhanKfdU4hM66UJ2rqNBVTFbjwzq+4eI/WcoMMbCfqOwHdVc4zw37+lNUMvnkUk1trw0HrEwpyTi0+A/ADQx+7rwgoERASkBdyJ7vmanNgEzEcl3JLqp7HPg36CbygnQ4FLHLP33UnxVm33p3Tcsd/PeonK4Tv286vj7o9USD/XVbGYe274rvO9H1eS+xTcO2AocqgypdE9AwJNH5L6Jlko6hDFy2i4VuPAHHAPZt+NgQ64x1aLfVpTteapNJcxQhAj/7wQOHlX3+3v22YN//Cl1lu79naYwC8nDgwIu313WIQBI4FCLG3e5ZwaveNdTjm65ZwsA3bIEZhyPnoFX0FMmMw36nKtN9qnJgErx9J367ZwV3JF0d5hEOj66Mw/R+lkxMt3tWsMpcxxrzA8D3dx5FzrA8V4kqpFrXUsYubnM/zCWuswLuT7PVIRM+/oPtMYwOCBqCr0RACsm00R70PWvqlklYriuDHtA3SWZ73Omecejnyzj0fY88eDip/cJBZWV8ob+yfl7p/Revmm8PYbSRZc94717jEDqD7La3xB74+pv33xSqfOs4rJGWgJqIicy6iNa5L3QppxU568AdGDjEHgQIrf5lYGAgPk76JeNQiP4Dh91nkQQ7zthgbgR8F7vyg9QTD9ym9Nw+GMqggDxrxsRgzq9HGgkcChGjvjR38Afvg3xubqNG1zGFCRSpfE51HDvgdY1jDAepfdBombIngMgfsAZ7vu7NUYxugcOvGYup1028ab7LGr2e173vcIhj32Ed51C1mK3MVdNJJYVpamK0hxNRz3pf4X/mO2w0t9BICyUUUaTy2c+YN2wnyWc6TqDcrOS/5iqeNF8k3ZMWUEvR3vl0pJys96VDu5msxjONUsb2cnJ+sLEvLbqVXNWzFq79wtMocihVY3nM8y++rhbzhf6Kr6josZyID27tyzh0WRmH/qnKvu/ZYRzAW973aKAJpQf+PWrRrVbwzKu9cfUZ8WgPpYxlnBrDSY4jAJiuSq3vSh2BdXhLVCE/dHyXjd4tbOJLnvG+TI2u860LD220BwQeE5HWmgmqhMlMYFznSbu90Zm9Qcoqcx2PeJ5mKhNIJ42vGfuH9BwPef/B19ViFIpvGIeG9wUMEwkcCtH/VOVGmljCQj5kExMoCWiW9G/v67xirmYUOUxQJSw1FgWtifo3z3N8XS3GiYOvG4uDjmOZ40Q26M/QWnOMcXAYXllik8ChEDFqs97KA94nAJjKBKYbpSw1FnGu89sDXpepTN7Q7wK+grNCREK/U5VV98Bh4EH0EY4DaaGVh8wnQcNavZ5DiO3A4U52s05/BEBhP93OE81r5lru9v4VgAPUAqYY41lqLGK5c9mwPeeFzjPYrWu4pf0h0JBrZvEDugKHKZ0n5yZmjwyXkWgnu1mtfZmgJ6jDgi6z0dzCdioo1D0/v422+mx7qON58w0ySaeeRnJtUzUbR1Adt0ThzzhMUt0Dh4qznCcBcDu+bOLB6NBuK1iYr3KDdsCMWQryyGGpsYhvO44GfO/X/8x3AKjS1QGLp6lUbnVdxe1qBas977NT7w4oA9BAU8IHDutoYE3ntuZryhcI7D5V2W+tuYFHzWcBON34Jkc6DgrpOZ4yX+JzvY0M0njOeV+4hj6s7EESCRyKkSqgq3KQwOFn+kve4n0APmYzHt21vVhlruOuzmPN84zTuMF1SY/Ha635q/kcrbQxU03udZtyreviobyMEUcCh0LEKHua9nLnWYMKGPpl2qcq6/i5yi/CL7JTlbuEMlW5e8YhBE5Z6q2OXSwpsxVwjpepU+FiL169Ium3jFNjIvK8+eSShIsO3D0+I6kq2fogttI24gOH5SF8PjNVOujgjbS6Z4mZmFYZjVyVRa2uD7qciH3+DLCeGYdd2+7lzmUsZ3AXAha3n0Kl3oMDB88m3RMXjSz6EkpzpuXOZTzmfY71eiPtdFi3N+pmClX+sI8xmgLrj/n2471lHNqXPc95akjr11pbj4unfa1kHAox8BqHAU3ZbMcxyx1nBl1/LQ1WuZV42j7EOumqLESMGkyh6N5k2ZqjdK9RJUamyE9V7impW1flYGOy7/DjIXA4mDpNicL/9zEwKCJyJ8VKKetz0v0zkmbL6hlKY4dE0V8xceiqR9ZKW8BVfuj7wpO9xtBI6hybKKyMwyBdlcPBf7IXL91v+zM2xIta/u+ZPWA0EgLrAduaztphTlu+in9qfI9lQzzeraOBFloH9JhY032WhRAjReBU5Z4JDf5tgn+pNlud2bIQthehXCQVAycZh0JEmb/ulr+hgN8G8zPr56Fu9Lo3R5FaXyNXtJqjBJPcLXD4jrmhx2ezkFFW17P15saY/uxqrSk3B34CFO+01tzhfYSP9eeALzDgUq5+HhVeJRSxlTLqaKDJbCbD8AW/UuyBQ902ojvK9/x8Bg9sZ6kMK0uzkeaAKch9BQ4LVb7tcYkfGEk0oWQcDla72cFuagF6ra0Zb+zb90e9/yRXZXGx48we+6dg+4GREFgPFgxMUvapyj0DhwO56BTKtiwWBWQcxuixjBDDTdly17pnHGqtrcZHTpy48dDceZHAfl8+vZe8KDNtgUNpehI2knEoRJS9bK5mdNt+/NZzP5vNrTToJhp0ExMpYV/mcpZxElOH2GQh05ZxeKPnbm73rhjiqEW8CncWSZ/PpfuekuPEyX9c93OCOox0Unlbb2DvjhMDlnEoBzc7r2AUOeyhjvu8fx/2cQ/WHur4lfcusslgNtM4xNgv2kMadm26ndz2fbjJcw+5ZPEj47v8I+mPER/HXGM6EyghjRSrQx5AgRrFOMZQwKgR3xiqgSZ+6b2DLDKYzdRei4Xbu4F3n658hedmiilkLF0n6qPJ40C1Nycah1PKWArJp3mEv9fxRmuNx8o49AcOfcKxr9jJbpJJYjzFzFXTh7y+WDBZjWdV0l/5kXE69TTyK89dHOP+QY/lLnGcxXtJT5NDJgqFEwetJPb3w63dXOb5DVmkM51Svun4GhA4y8Be47BK76GYApaohT06vfemXFeSSTqljGUaE8M6/uEkU5WFCMw49OINuO9Kz+9x4WQmkynpPNZoooX0trmktc+lij1Mp5QbnZf2uv4yXUk2mUxhPJPUuOF5ESOQZBwKEWXlupLGzpOzMWq0L9sDrMyYmcbkIRcRt2ccarTV3U+MXJE/YO35fEopvuZYzEd6My95VtNIM9t0eY+swumqlD3UAYE1BGNNua6knQ7a6WCaSiZPZff/oDhXritpo5022hlDChOMEhYae0V8HCkk8RXlgO+AcWrniaQHDzvYCUCbGtlTle2fzySVRL7KDbpcpuraXzTqJuur26bbqcB3pb+YAmuZ3dRQTAGlxli2Ugb4phGK+GEP4jh7TFUeunJ824ntVPRoihWvUlQy+6q5rDE+oNVsw4OX7bqix3KTDN9JawduNBoPXit7JlHtoppW2mgFximHVc/RZTvt9Ge4dmg35VSi0QPKDCrHd+zcSDM5KjOs4x9O0hxFiO41DgNnJ5XpXVRTSzW1LFCz2NZ5t7+JShvtbGIrc4xpva6/girqaaSexl6PdcTASeBQiCiz10S71nkx33AcGvbnsJ8IgtQ5HMliaaqy33LnMl4w3+BV821aaKWOhoDpkaHWkoo2e02VI4wDoziSyLFvv05xHDOsHZT7ElALk66/g9Q47GL/7hxuLOl1ue6lLfz804MA8lR2wO8lqjDgcY1BGquI2GVvVBGsq/JQJXK9qeXOZTzsfYqNegvlurLXchrFFPAF2wGo04kdWLdva5Ya+1o/B8s43Mlu67M2kM/GYOoixgL7UZHUOBQjldHHVGV7DcMcer8o0Nf33n4cGE/bh1gnU5WFiLLuJ1/DwT71DGC3rhmW5xHxIxK1dQYyJcdeo8j+nfDd1/W98Gc8xaLyCHyXY00ktl+hCPiM2MaUQle2dpse2YHDwI7fBb0uZy9t0WirxWb/7tkbofjWV9gtU1ECh/HEXm/ONQzNUWJlOzFc/K+pjXZqe8m2HWXLetmlqyMyrmjp7e8dLOOwYpABQPv2KG5rHErgUIxQgVOVAwOH9hqG6Sot6ONdOBlNXq/rD9wGxc/2IdZJxqEQ0aZhtppGnW4ImP4VTpmkk0k6jTTjxBHQ2U6MLJHMOLTr7wB5mprIXmoqbjz82P3rgOAFQDJJpJGCu1uX11jh1m626h2MpYgW2pigSiLyvLW6nk/1Fp70vsAm88shlzUIhdaaXVRTo+uooR4XLhTwd++/+Z/5zrA/fzD1upFUUjAxudXzEG9538OpnHyht1vLXOu5g3u8j0VlfLFgq95BFhm4cfOI9xleMN8Mutw2s5x0UjEwuN5zp1VXdKfeTRYZePCwRW8nnVRaacPA4C3zPb7q6Jqmucp8h5M7LorI6wpFnW5gnjGDZY6TmGfMiPZwYk5AxuEwNEdp0W3MUzOo0w0JWah+pppMldpDB26+13F5wHZYa009jVTZLtg+7v0v2/VOrnb9iHFqTDSGHHZaa/5pvsy/vf9jg7mRfHLRaErVWGsZly3jsKOzq3KdbmBvNZta6inu44JGd0orZqtp1Or6YTt2Hg4SOBSi21RlbQb8PEEVk0YKeeSQarv468KJF5N0UpmlpmCo3vPf0kllLzWFZlrJJWt4XsQIJNEDIaLsHb2Bj/Vm39UT1fvVk6FwKie7U9ZS0nYge6jjLfP9YXkeEfvCWfC+/+cKPUh5hfNcrnCeyw3uO1llruvRvdVfm221fj8mOyuX6ypu8T4EwAwm8XVH8MYT4bbO/Ihvui8AYDxjmMDwByw7tJv3+QQABw7SSSWHTNJI7bPr7nBSKLLJYBfVtNNBpd5DJum4dVdApEm3BEy9HWn26Hrr9Xu12et70U67VYOtQTda071rdJ31mPGkMVGN5Svtqys5ilxabHXb2uiI2mchmLf1et7yvs9r5lo+SP5ntIcTc+w1DoejOcrHejMb9GcAFCdgxuHvXD8FsPZfHbbtDsBbOvCYazNb2WxuZX/vPM5xfiti4xxOtTRwmvvHAbeNp5iTHUdav7tsjU/8zXjKdCXv6Y8B33YkVGv1Bj7Rn5OEK65qmEngUIjepyo308ob+l0ADjX2J0V1lZtx4+F7xvGMV8Vc7bqwz/W/Zq6lgSYmq/Exd74QzyRwKESU+eu0FKvCPq+ehEOJKmSPrqOCKkxtDvvzidgV/dYowWWpjK4GQTaGNjAx0egeNRBjgb3W3yiVE7HntZ/wp6iUoO9duNXRYEUVXDhJIZl0lRaR5+5LFhnWFECHcpClMgLGmqSSoj7GaLJf1c9XuVYtu+4aaAr+ntmuA+SpbLJUBun4phH5l3FoA2/n9zSW3mulfVug7rWUhI890NWzOUo4ahx2bR8HklUWb3rff6keDQAgtmv2DlR5kMZl3RuE2Wsc+rNcm2z1UAeyzfC/dyWqMK4CA9IcRYjAz77H1lXZXh85i/SAOtUAY1RBv9uJRt1sXeRMxNIY0SSBQyGiqEW3UkM9QESm75SoQj7Um/DgoYoaisgf9ucUsSVWpyr7LXcuYzk9G2yMbtvPOqCo0FXkxljHYnudpuFocNQbe22yZY4Tucx5zrA/57+8r/KW25dB81PneVzpPH/YnzMUKzxPc77nagDOdJzA+c7T+Kv3X5zjvhKAcxwn80Pnd6M5xKjap/1EdusaknDxbNI9vZ5sP+V9ke+6LwXgDMc3+bHzbAC+0/Fjtpm+DMOHkm5mgiru8djStkPZyW5yyOLJpD8N0ysZuKK2A6ijIUpbv9jnCZpxGMauyp3bxwLyEqarcjC97b/y2/YN2pQulmv2DlT32sQA+xnzAn631zj0X/RqsNVDzexWj7s3zbrF6txeQnzVL5PmKEIEZhx67YFD20yFTDICpioDXOW8oN+SPAF1UxOwNEY0SbqREFEU6YLhAZ1Hg1wdFiNHrE1V7o/9hCMWszQCM2oid6Biv1LrxDHsz3e7ZwXXev5o/R5LtaXsmUxPe18CArsqt9AW8THFEnt2e18ZOvYDdft7Zv+Mj2F00Mf6G6TEWldl/6uVjMPg7DUO/dNJw5Vx6NVedrIbSMxpyqGwZ9rZxeK+bLDKgryWlG4n/cEyDhttJRNCzTi0HzvHWwarTFUWIvCzb2+O0hCQgZxOiu0YLouMkOp4l8Vpx/V4IBmHQkTRTr2b/dR8knAy25g27M83k8kcpPbBjSfhu/qJ4CKZcRjOA+RUUoB6DIyAIvOxwsBgqVpEG+0UMCpiz2ufquwaxl36nz1PsE5/yBZzOw7tYCoTGaNGs8iYM2zPOVAzjcmcYhzNOvMjtusKduidnZ8bn9YRHDhsNluYqiaShItJalyfy9oP1Ft113uWpTJYwt5kqvRepzkfoBZQSB7NtOHWbly9LBdp/uyGaGVcx7rgNQ7DEzjco+s4QC3AxGSaUTqkdcWr7tvmFJLZR80mj5zoDCjM3NrNM96XmEgJ7bQxQ00lW2VwpHFgwHI5ZHGQ2seXYdT5VbTXWs0itMBhja7vXI/JVDUhbK8jEiRwKAS+UlmdXwV7xntDt4zDIxxLqNCVNNPCVBXa/mO3rmF/NR8XTqbE2fYh1iV84NDr9XLttdfy6KOPsmvXLoqLiznrrLP4xS9+YV1x11rzy1/+kvvvv5+6ujqWLFnC3XffzdSpU6M8epHotlPBWr0egOP5+rA/X6bKsIrObtcV/SwtElE461YNxFCfz38ya2KyVe8Ix5DCaqsuY5VeB0CGSovY89q7TA9n4PA1822eNF8A4FC1H2mqiKXGImYZU4btOQdqrCpijCpgK2WA729iz3hp0+3RGlrUVVDFO/pDoP+srzRbMfI2fO+ZR3t41XwbE5OFzOr1sTXU8YZ+D4BdVDOO2OgY6w8cSsZhcAEZh2GucdhAk3XcMV73nN4+Eri6ZRxqNG/q95jI2F4eEV92Us1L+i0A9lJT+W/yn4MuZyrT+iycyrGArx6ZX6YKbapyNbXWeg5XSwY97miQGodCBE7T92p7jcPADOQDjIUckLRwQOveShlvd55b/5/63tAGKgIkfODw5ptv5u6772bFihXstddevPvuu5x99tlkZ2dz8cUXA/Db3/6WO+64gxUrVlBaWsrVV1/NkUceyaeffkpKSko/zyDE4AVOVR7+Oi2BU5UTZ4qMGLh4m6qcqlKsq5P2RiSxop0O6+fkXqalDQf7lVrHME5Vtm8vnk66K6TpItFg38ZV6Comq/HW7yM547Dctq8Z20/g0D5VubUzcLiLauuEt699lf2+Cl3FOBUbgcOuqcqScRiMPXAY7q7KDYOYippoXMoZUNzO0RnIboyhzuNDYa8pdrCxqNflgmWADybjMPAxoQUbY4VkHArRLXBon6qsA5ujDEaFTFUeNgkfOFy9ejXHH388xx7ru7I1ceJEHnvsMd555x3Al21422238Ytf/ILjjz8egEceeYTCwkKeeeYZTjvttKiNXSS+SHcaLLE9hwQOR6Z4napsr1VXZsZefc52bQ8cRq74vz1wOJzTQv3bi3xyYzZoCIHb0XJdyWzVNXNgJNc4LKfrO9PfvsZ+ct+iW32PD/FAvPv7HyusqcpaAofB2DOXe3ZVHprBNL9INN1rHPo/jw00obWOq67AwYRa4zdY/VR7xmEGoWXrd2+gEE+kOYoQoGxtNgK7Ktu+24O80BStmuMjQcI3RznggAN45ZVX2Lx5MwAbNmzgzTff5OijjwZg69at7Nq1i8MOO8x6THZ2Nvvttx9r1qwJus729nYaGhoC/gsxUO26g2pbrbbINEfpygZZZ36EW7v7WFoksohPVR7iiZF9yulavYGTOy7i5I6L+IP7gaEOLSwCM3YiFzgc7hqHWmvazHZ24auJGutXb+3j+6/ndZJ01wl7kxlbDTsiaae52/q5v+x2e2DYP1W5wgwtcGi/b3cM1SKVqcp9s3dn99ev9AdZh7qvGEzzi0TTPXDo32678QRkq8er3SEey3avn9qh3Vb2YBIuX92zEHRvoBBPJONQiN67KtfqrpjKYC80VetawHcRrIC8QY5QBBPxwOGXX34Z0ef72c9+xmmnncaMGTNwuVwsWLCASy65hNNPPx2AXbt8V+ELCwN3dIWFhdZ93d10001kZ2db/8eN67vQuBDBHNxxOi+Yb5JPDucZp/bapTKcMlU6NzkuI5N0vmQHT5jPD/tzitgSyXybsHZVtmXTzWEab5vrecF8k196/xgTWUQd9qnKKpIZh8PbVbmCKnI69saJwQJm8lfXLWF/jnCar2byI8d3SSeNN3mfSl3NJDWOdFKpZeRe5NvBTpJJYhxjKKGfGoekWj/7pxOWUYkTB8UUMpGSXh87mjwKGUUm6THVgMt/gi7NUYLzai9ZZJJHNinat/0KZ41Dv1CnoiYa/0UdhSKd1IALTfb3J17t1LvJII1CRpFPbq/Lda+f+mfv43yhvyKDdI5QB/b6uO66N1CIJxI4FKL3qcrVuoZkkhjPGArJH9S6K/UecshkBqU41PCV8BmJIh44nDJlCoceeiiPPvoobW3DP23o8ccfZ+XKlfz1r3/l/fffZ8WKFfz+979nxYoVg17nlVdeSX19vfV/x47YK9QvYl+FrqSRZtx4mWyMj9jGbYJRQiPNmJgBNRbFyBDJ5ij2U/ShPps9my5DpaFQeDr/xUJAKLDGYeJkHPqnfLTSTopKZrIxvp9HRFeqSiGHLJppAaCJFsr0LpppZSe7+3l04qrQVbTTwQ52UmIMvMZhha7Eg5cKKilQvXcNz1aZVLKHRpppoDE8gw8DCRz2za08NNBIDfUoFdiBesgZh4NofpFo7J2qm2kN+Bza35941UATTbRQyR5yVVavy3WvcVihq/DgpYlmilToF88bAzIO4ytwKM1RhAjMODRtF8B3UU07HWxnJwVG78cafamlnjoa6VCe/hcWAxLxwOH777/P3LlzufTSSykqKuL888+36g0OhyuuuMLKOpwzZw7f+973+PGPf8xNN90EQFGRb8pOZWVgLZ7Kykrrvu6Sk5PJysoK+C/EQLTrDqrwTe2YoSax3LksYs8dqzWoRGRF4nA1nFfW7dl0DyTdxDGOg63fy3X0ax622zJIEjFwCHC07T2PZfaaNuVUWVPnRvL2zv8dMTAopO+DcXtZgFbdmXEYYo1DezFz+3TCaPNvf2SqcnDBMpfDFWSVjENw9tEwKxEyDu0ZgH39jQNqHOo2ymz77v9znjHI54uvYLT9e2UkfsUwIYIyeqlx6D9OUyjGDCLj0NSmdWEh3rYN8SDiW6z58+dz++23U1FRwYMPPsjOnTs58MADmT17Nrfccgu7d4c3I6ClpQXDCHyZDocD0/QdPJaWllJUVMQrr7xi3d/Q0MDatWtZvHhxWMcihF9gN+XI1gwL7Kwc/YCLiKx4zbixB8XceCih68JOLASEApujRLCrcpCmBuEUj93pxnbrHu//rNTRQLNuidawosr/HRnDaJyq78+JoQwr+O2fqhxqIy97MfNY6hhrdMuiE4H6Knkw5KnKts9Bxgg9kUvq4zvXEEPfk8EKtaFBSrepyoNtYhCOBgrREs6ZGELEq8Aah10X9PzbhEJGDarhnz2jO962DfEgal2VnU4nJ510Esceeyx33XUXV155JZdffjlXXXUVp5xyCjfffDNjxowZ8vMcd9xx3HjjjYwfP5699tqLDz74gFtuuYVzzjkH8BXsv+SSS/jVr37F1KlTKS0t5eqrr6a4uJgTTjhhyM8vhN1n5pc87X2R981P2UtNxYmDuWp6RMcwhtHMVlPpwMOH5iZ+2PFLjnAcSBvtvOJZzSf6c2YaU/ip8wdMNyZFdGxi+EV2qnL4Mg7tgUMPXiaoYmYxmQyVzh5dN6R1h4O/xqFCDUsArzf2jMNwPu9b5vvs0bW8Yq6hgFG4cDJJxUc93wmqhHnMoJ4mVpnrSCeV2UzzTaPVe5ikQuvcmSg6zA4mqfEUMbrfjsp++6g5NNPMqM56ZXkqmwXMwouXNJXa6+Ps2UaxlEllWBmHEjgMxhNkOxKufUUSLhaqWXTgGbEZIK4gF5PGUkQSLu70rqSGek50HB6FkYVHQLOSPv7Gad2mKueqLBYwCzfuAU1jTyOVBWomXkyydHpcReDsNZllqrIYqRxBahyu9W5gmprIGEYP+kJ1YIb7yNzfDKeoBQ7fffddHnzwQf72t7+Rnp7O5Zdfzve//33Kysq47rrrOP7448MyhfmPf/wjV199NT/60Y+oqqqiuLiY888/n2uuucZa5ic/+QnNzc2cd9551NXVceCBB/L888+TkpLSx5qFGLinzBe43nun9Xsm6fzMdX5Ex+BUTt5Nfpob3Hfye+8DPGQ+ybPmK+yhzlrmA3Mjs82pEjhMYPEWOHTYMw61myKVz6dsAQ2H6QOGtO5w8Nc4TCZpyB2kB8J+wu/qJ5NsIO7yrORJ8wUAFjGHIxwHsthYELb1D6eZxmReTH6IwvbFbNNllFBIOZWgoYY6JhEfAdBw2amqWaM/AAg5+LubGjbrraSTitf08qL5Jh24maOm9fm4dFJRKDQ6pmq3yVTlvnl0V8ahI8xTlbfpct7XnwLxV48uXLp3VQY42rGUx73/5VnzFVab78d14NCfXWxgBDRX6q77VOW1egNttDNLTRnQ863XG/lMf0kaqaTH2YUgaY4iRPeMQ99x7IPmP3hd+2I/97iuH9R6G+O4cVI8iHjg8JZbbuGhhx5i06ZNHHPMMTzyyCMcc8wx1nTi0tJSHn74YSZOnBiW58vMzOS2227jtttu63UZpRTXX389118/uA+pEKFq0+0Bv0dz6l+WyiCNFNrpCAga+sXC9E8RftGaqhfejENPYK1Oov9Z9dc4jGR9Qxi+rsr2Mgb5Ki/uTvizyCAJFx24rem2AA0xFMyKFPvfMtSMw2JVwGa9lWZa2UqZ1QW2v+mEhjLIJJ0GmmIs41CmKvelrxqHQ26Ogr05SnxtR8IlWP3ZBt1MDpnU00g1tbRpXwOqeNRg1RTL6PPCmb05SqNupq2z+VKo2yU///FpsSqI6IW6cJDmKEIEn6o82NIFdgHZzyO0Gddwinjg8O677+acc87hrLPO6nUqckFBAQ888ECERybE8KvTgV0moxk4XO5cxjrzQ/7RmVXUnQQOE1ukMw6HymnrOu7BS4mKsRqHVsZh5OobwvA1R/E3wxhNHk8n39nP0rFHKcVENZbNeitNdNU1bIyhYFaklA+iTmUJXcttMD8b0OP9gcNYyjj0n6TIVOXgvPapyiq8gUOZOhZ8qnIjTSwy5vCVWQH4vqeTVWx3re+NP8sng76z/wxlWBd07NvigRwLN+gmKxgdL3V37aQ5ihDgsHdV1oGBwxSSySN7UOttkIzDYRXxwOFLL73E+PHjezQs0VqzY8cOxo8fT1JSEsuWRa7LrBCRUkFVwO/RPuixB1/8FL7iza+bazm54yKWGosAWGWuY6mxKKIdoEX4RTLjZrhqHLrxkEc2KST3KLAeLR2dzVGSIpxx6LZ1cw52cjoYt7ofohxfllq0t1FDUaIK2ay3WtlyEFudfiMlMHDYc5sfjP3vvlFvCXp7bzJVOujo1ji83bOCVeY663d/1mUjzdzuWSH7sW4CMw4DTw2GnHHYeSLnwBGQcTaS9JZxONWYaP1eTiWTic/AYQ31QGhT0dNIpQM3zbRat9kvVPQnYHs2gMfFCrl0IQSoIF2V/d/tElU46EzipoCMQwkchlvEA4eTJ09m586dFBQEpqXX1NRQWlqK1+vt5ZFCxLc3zHep1fXkko0Dg28ZR3Kc8bWojumbjq9TqsbykvctPtfbmKhKmGlM4Uu9g3fNj3jTfI//me+QQxYttLLZ3ConXHHOf9Aa6SkyQ3227oFDpRTLHWeyzvyIdjr4u/c/nOo4ZojPMnhWxqGK36nKFbqKC9zXUGlWU0IRc9V0TnFG7z0dqr3VLNpVBxW6km2UA7HV6TcSGnQT//K+ygSKSVdp7KNmh/S4qWoiB6q9aaODHeZOFqk5JJMUUmDjAGMBeWYOjTTRrjsi+p243/N3XjXfpqwzUJjSWVPNn2noxcsDnieYrko5yrE0YuOKdX1OVR7iVNCuaazpcTetNFySbN1BF6sFmJikkcI3HV/nI3MzHjys9DzL0qRFURzlwN3r+Ruvm2sZxxgmqBLOdp7U72MOMw6gXO+iUu+xtitTBpBpWaPrOUAtwEQzVU0YyvCjQmocCtHVsAx80/fbzHbmqul48DJeDb45bpvuYD81DwcOChgVjqEKmwEFDk3T5H//+x9vvPEGX331FS0tLYwePZoFCxZw2GGHMW5c/0W37d2k7JqamqQZiUhoG80veEu/D8DJxpHclvSLKI8IlhgLWWIs9AU9TKyMwts9K3jDfJd6fFOr/VP9aqinUTcPqPudiE2ROFwN55V1Z7cahwBfdxzAzd77AdjHnBMbgcNIZxzq8E1V/kqX86L5JgATKeFgx76c5jh2SOuMJgMHqzu3uX6xVHcvEsr0Lmu/s5C9mGyEdoKeq7J4U78H+ILh6/RHAPxUndfvY2t1g/W+79S7mahKBjP0QVljrudp8yUADlb7ktHZOMGhu7IbNrOND/UmjkICh36BXZX9gUOfcGUcjuRpY/bmKF/pciqoIpcslhgL2ay3UsYuPtfbojfAQVptfmB93040DufbjqP7fcw2Xca7+mMAvtQ7ALhcfT/k59xDLas7mz0dqw4Z2IBjgAQOhehqwgW+Goctqs065hhKpuAealmrNwBwnjp1aIMUPYR0ltHa2sof/vAH7r77bmpqapg/fz7FxcWkpqbyxRdf8Mwzz/CDH/yAI444gmuuuYb999+/xzouvfRSwHfl8pprriEtrasOhtfrZe3atcyfPz88r0qIGFRmm15xlqP/q7KRtNy5jOUsC/h9rbmBp8wXeyxboSuZrqTbcrxKlKnKEDhNyd4AIhqi1RzFHXDCP7TAoX0K2A+cp8Z9dvHYINNqY6nuXiTY/6aHG0tCfpx9SnIl1UFvD+Wx5VQykcgFDu2Nkp5IusM6Admn/UQ+1p93LRcD5Q1iSbCpyl01DofGn3E4ki842vdf+SqXCl1FLQ006xbfZzTKU/sHy/49+pnz/JAeU6IKrcCh/bZQBdbMjL9gtJbmKEJ0a47iDWhiZ+++PlABzVFGaE3d4RTSWca0adNYvHgx999/P4cffjguV886Sl999RV//etfOe200/j5z3/OD37wg4D7P/jAd3VIa81HH31EUlLXyVVSUhLz5s3j8ssvH8prESKmDaZAfTT1NsYyXcl0JHAY7yI/VXlozxeQcah9J7n2z2hZFAMBpjatjJ1IN0fx2k/4VfgCh/GwjepPsHp+jSOsxmGZLaAeLJDaG/vfv0bXBb09lMdGOqDv/wxnkh6QtdC9CYEEDgMNV1dlj/ZYJ4SZI/gkzp5xOErlWumcFbrKOrltphWv9uJQQys5EUn+Wrg5ZFnZvf0Jtg0JtfYqBF78icdgtP3SraGkOYoYmQylrC+DiUmbbrfuG0otXHs5mkypcRh2IZ1lvPjii8ycObPPZSZMmMCVV17J5Zdfzvbt23vc/9prrwFw9tlnc/vtt5OVlTWI4Yq+1Oh6skjnTu9KPNrLuc5vk60yoz0sAbTqNhppshqPxMNJuX2MCoVGY2DwF88zfN2xOIojE0MRrYzDobLX7/MH6VJUMvnkUk0trbotaidd7Z2NUQCSIlzjMLA5ysADhx7toYkWHvY8xYPmP6zvejxso/rjfw0Gyqpx16zb+npIwqnSe3DhxI1nQH/TfHKt7qf+bNoM0kLK8PE/jxMHu8w9DLH0Jh7toZFmVnie5g39bp/L+gOl3V9r9+BXvW4Y2qASjMdW8sAxiMChW/uaXTzseSrgb+TWbmubMpIL1dsvfH1m+poNGSjO6biSbZRZ953YcSGubheAYrEpndaaPbqOPZ0XFQaybfEHCf2fi1RSyCX0c8L4zzi0z8QQYmTqMVXZ1iwpVQ0+cBjv24dYF9JZRn9BQzuXy8XkyZN7vf+hhx4KeV1iYI7vuMBK/9doPtVf8EDSr6M8KgHwT/MVnjVfJQkXB7FPXGzMznaczPccJ3CH+xHqdD3v8ynv6U94Ur/Aw9wc7eGJQQpHFslAnyscz2c/mbJPz73BeQmXen7Nh2zij96/cInzrCE9z2Bc7b0NhcKFk6sdF0b0ue3vxWACh5/qL9i341s4cVJEPktYyEJjLxapOeEcZlQUU0gBo9hNDQ4MNFDPyAoYbaMcNx7yyaF4AB1IDWUwV81gvf6UZlpw4mCOmh5Sc4sSihhFDnuoYwcVQxk+AFv0duZ1fBMnTgoZxSTVez3tRWoOi9UCLnB9J/D12DIOnTjZHIf15IZT31OV+/+br9efcVDHd3DhZAyjmWCra7kEXy3ly1yh17FLND93/pCrnBdws+c+XvW+TT2NtNLGR2wiw5aJWUsDKdp38Wmd9jX+esN8N+YCh1XsYULHIThwMIdp/DPpnpAf+33Ht/iP93+81VnPbI6aNqCmOQEZh3GYxSo1DoUINlXZnnE4hKnKcb59iHWDntfk8Xi49957ef311/F6vSxZsoQLL7wwaIOTk046iYcffpisrCxOOqnv2m5PPfXUYIc04pXryoAdkr3Wj4gu/7SoDtwUGvlx0VnQn62aZ2STRzYbvJ9hdv6Lt+k0oqe4nqpsC5YVqlHWAYf9wCOS3HjQaDpwk65SI/rcQ+2q7N82efCQSjLZRiYlRiEpavAHbrEiX+VQRwMajbdz32ivozMS+P++1dRRYgwsizQJl/X58uAN+TNRrArYQ13A8w9Fme0zmkJSv5lro4wcilVBwG32Do4ePFSyhw7tDuh2O5IFljwYeHMU/5R0Nx5SVUrg30hBnpEzojMO/Z+zbJXJKCMHh+lA4zsmtNfFTSXZmn6rtC/IFMlZAqHyf6+9eElVqT2+b33JUVkBn6iBXvCyZxTF51RlCRwK4bAFDk1MWrW9xuEQpirH+fYh1g06cHjxxRezefNmTjrpJNxuN4888gjvvvsujz32WI9ls7OzrUBJdnb24EcreuXRHnZ1FjA3MDAxpYZPDLHXefqB85QojmTg/Fe6XzZXW2cSjTSTM4CpJSJ2xOtU5WDNUQBS6QrUtUZpGqo9eDfUzsYDNdSMQ3ttyEucZ/N957fCMq5YYCiDYlXINt01FbBVRye4HC3+44AkXOSTO6DHlqjCgIJcJSFmLNqDCOE4DrGv4yLn9/ih87sDXkewE/QKXRXRjs+xbKg1Du1/oyuc53KG4/gwjzAx+BvRHd/xQ14w38BEc5RxEA+Y/wDgetdy9jfmAzCt7Qi2U0HaEE6ih4v9732U46ABP95+/JijBnYsac84jIfZO92ZtuYo3WuvCjFSOAIyDk3a7BmHQ5iq3KhbrJ/jcfsQ60I+y3j66ac58cQTrd9ffPFFNm3ahMPhO8A48sgjg3ZThsDpyTJVeXjsotraGaWRQhMtVOhKtNZxkd2W6Cp0lfXzQIpAxxL7BrhBAodxL+6mKvcWOLRlQUUrm8xeZ3ConY0Hyt8oBsA1iMYs9m3TQJpnxIsSCgNqiI20jMOKzhP8ElU44GOB7p+HUOuYJaskCsijipqwBA4rGHrTnmAn6BUR7vgcy+xZ3D1rHPYv4BiH+DzGiST759h+ec0eFDOUATqyF/tCFfj3Hvh3Mk2lWi98oNlF9gZX8ZhRZP9rSsahGKkM2wwZE5MWwptxmISL5AjXHB8JQj7DefDBB1mxYgV33XUXxcXFLFy4kAsuuICTTz4Zt9vN/fffz6JFi4ZzrKKbv3v/A8Aa8wM+925jPGNIU6lkk0mBGkW1ruWo9nNoUq2MVYXc5/qVNEsZJg95nqRcV/Ku/ogcsng4qasG4Ervs2SQxhQ1Ho/2Mob8KI508OwHaI26Sao6x6lonYQM9eMyWY3neOPrbNVl3OJ+kD96HmGiGstPnedZy0QtcKiHlvXXn0c8z5CqklljrucrXR5wX6XeTRGjGaWyQ56q/Jz3NRpo4m3vetaZH1FMASkkJ2T21X5qLu20877+1DcdZgQFDpvNFmapKXTgZpwaM+DHzzVmsK85ly/1dtJIY44xLeTH7qPmsJsaUknut7TFs95X2KJ38IL3DfboWmYbU9mlq33BBWCX3k0JhSSrpD7rG/bFPlV5X+aSqlJ43buWA4yFg1pfohlqxqEXk/3VfFpoHdC01ZFqMuNZoGaRSgopJDOVCdTTxJ2elaSTxgGOBdZn1ozBwGGTbmGxWkALrYwdxMXwOcY03jR9TXTmqNC3KwDppLJIzQU0mTo97o5FpTmKEDBDlVo/rzc/43Bjt/X7YGocbjA/42nvS+zQO8khk/lqVljGKQKFfIbzr3/9i7///e8ccsgh/N///R/33XcfN9xwAz//+c+tGofXXntt0McuWLAg5Cvd77//fqhDGvGu8/yRL/UOkkliXzWXCZSw1FjE1S5fcf4b3HfygPcJdulq3tMf81N9HgvVXlEedeLRWvNjz6+tNGsHjoDmIT9338IuqskgjeWOZbjitKaSvcisvcaMiC8DqVsVrucKhyMdB3Gk4yBucN/J7d4VNOkWPtAb+YX+kbVMtKah2k+6HUNtIRvEFZ6bqaeRHLJ6nGQVqdEU4eu8aajQpj3d5lnBm52dTw9QC5jMeJYai5huTAr30KPuMtf3uaW9a6ZDtOpgRkMFVbylfcdUpYMIuH3H8Q2+4/gGN7jvBOBbjqNCfqxSinXmRwBUsodieg8m3eJ5kLf1Buv3j8zNlFDIJHxjTiOVSWocS41FzB5A8LLbiKyf6lQD7+gPedf7EVc6L5BZGQw9cPiu+TFv6/XA4LNCR5I8lc0H+lMAJqtxfM5XADyvV1HsLeAAxwLrfbdPbY0Vn+jPWaM/ABhUoPgK57lc4Tx3UM/9rv6YLXo7WWSQZkS2pnA4SI1DIeAUxzFc5/0T4Mv+/1LvsO5LGUTg8D/m//iN917r98rO8m0ivAaUGnHqqady5JFH8pOf/IQjjzySe+65hz/84Q/9Pu6EE06wfm5ra+Ouu+5i1qxZLF68GIC3336bTz75hB/96Ee9rEF0p7W2pgDlkGkVnbYXn85SGWSpDHZp35enXFeyEAkchlsN9QG1Gbx4adcdJKsk3NpNJXsAyCUrrouD2wOHTbYaEiI+ReJwdTgOkLNUBumk0kQLGk2zarXua4tSUMg+zc/e/TkcmnQL9TQCfW9DBrJtKcdXczWFZHJV9oAfH0+6d9Vri1IdzGiw168cyjT0wXw27MGjcl3ZZ3ChLMh05uzO45ehjsPPPlW5mEI2s41mWq2A/Ehn34YNpquyf5uSQxYZKm0YRphY7Fl69tIbAO2d+zH/ZzYWpyqXh6F8wGDYz33iNUAtgUMhepYPadBdCSlpg2gyaO8lAJBP3uAGJvo04DOcnJwc7rvvPlatWsWZZ57JUUcdxQ033BC0m7LfL3/5S+vnc889l4svvpgbbrihxzI7duzo/lDRixrqaacD8E0nejLpTz2WWe5cRg5ZnO+5GgisSSLCp/vGCnw1WJJJYifV1kHC3sZsq9FIPLKftEnGYfyK3lTl8BwgL3cu40u9g3u9fwOgTjdY97XQ2tvDhtVQG5T0pcIWVNnPmBdQBmEwtNbWvmCyGh9035FIkpSLFJKtoHLLCJqqHI7agMCg9lv25/N9hucEXc6rvVZjN7tfOC/kJMcRA37e3ti3P8WqwEqHrtBVA27OkIjstVK7Mg59+tt227cp8RrMiTT7+9R9m9SI78JsLE9V9v+9M0mP6EWnWhqsbXm8ftakOYoQ9JghYz+vHMxU5e4xjkS9GB5tIW+xtm/fzimnnMKcOXM4/fTTmTp1Ku+99x5paWnMmzeP//73vyGt54knnuDMM8/scfsZZ5zBk08+GfrIR7DbPSs4reMS6/e+ruTb73va+9JwDmvEClb83X/lxB5UjPe6P5m25ihPeV+M4khEOES6OUo42b9LV3tus36O1jTUYNk64WLPxgrHidIe6qyLTvG+TQpVli3rcCRNVbbvm4ojfJJd3C3jMJjbPSs4vuOHAd+frseH97O503ZSMUaN7ndsI02wcguhNkcZiduUobJvy+0XvwCqOmcJxepUZXvWX6T/3olwTC3NUYQI7KoMgTPZBtIc5XbPCk7uuIg3zfcCbk9BGqMMh5DPcM4880yKior43e9+xwsvvMD555/Ps88+y3XXXcdpp53G+eefz0MPPcTjjz/e53pSU1N56623mDp1asDtb731Vp9ZiwLO6LiMVtrZrWtwagdzmMYkNY7vOU7o9TFzjemcaZzIa+bbfKa/ZJtZzkQj8QrgR1Ol3sM8NYOdejdVndOS/V3fdpm7maumk0Yq01V81w87xNiXbxtHs9p8n9Xm+9KxO05FMuNwuKbkHGMcTLGrkD96HuErXWHdHq1pqMOVcfiady23eh5iHGMoUYWc6Dh8SOu71P1rvjC/YioTmK4mcZ7j1DCNNLZlqHSqdA3gC/J6tAdnmKeUx6I63cACNYsUkgfVwGAoJlDMAWoBLbRRo+sD7nvP/JifuH/HTl1FBVUkk4QTBwYOWmnFgYMkHb5awN/suIDtdG0nJjGOxWo+LbSxS+/u45Ejh2mvcagGNlX5Rvdd7KvmkkoK5zpOGb5BJpAsMvia2p8GmnBg8BPHD3jC+x868FiB21idqny/53HmqxmYmJziOCaiz32z+372U/NIJ5XvGSdE9LnDRZqjCNEz23aD/ox5agbZZDJK5fb7+Ec8z/CY+RzVZi0uHExmPHuow4mD4x2HcZRx0HANfUQL+cj53XffZcOGDUyePJkjjzyS0tKubjgzZ85k1apV3Hffff2u55JLLuGHP/wh77//Pvvuuy8Aa9eu5cEHH+Tqq68exEsYOV4211BHA3lks9hYQC7ZHGAs5EBj714fU6jyyVVZ7GAnANupYCISOAynbbqcDfqzgNv8gcPt7ORDvQmAC9R3Ij62cJpsjKeWequ2TQ31jCInuoMSAzaQulXhFM7nm2NMZw7T+Y3nXmrpCkpEL+Ow66Q7nIHDr3Q5L+m3AF+X2n2M4NM9Q/Wm+R4f6k0YGHzf+DZHOA4MxzBjXhaBU1ZaaSdzGLpfx5rNepvVgCHS2TlFKp/Vnc0TpuvAi2Zb9Hbe0oHZAVnkkUk6X9KEBy91nXU9h6pdd/Ci+WbAbdkqkzWdjTy+sgUUR7KhNEd5W2/gA/0pDhz8x7h/+AaZQJRSlFPJJr2VNFL5j/PPvGi+yXq9kV26Gq/22jIOYytw+DGbre/2rcbPI/rcb+p32UU1xRRwkGOfiD53uEiNQyF6Bg7raKBK+5Jv8sju9/Ef6U28Zr4NwGK1gDyVTTEFLDUWxXVZsFgX8pHz3nvvzTXXXMOyZct4+eWXmTOn5wnMeeed1+96fvaznzFp0iRuv/12Hn30UcAXeHzooYc45RS5UtmbJt1CHb7pDLPU1AHVpQqsNSR1DsPNXkfKr7FzqrL9/Y7Xeix23etWjVI50RuMGJJ4nqrst5+axxa93fo9WvXr3No+VTl8XZU7Oqf/ARzjOHjI6/Nvj8ZSxCWus4a8vnjRvUFKC609bktE/vqYDhwUkR/R5+5rqnKw45CbXVdQpxu41HOTb5kg+9XBCFaPN8P2t5djIp++Aof98X/OisjHocLfVT5RlahCNumttHQ26SlRhazXG/HipYoaW43D2Jqq3GLL7B9MLbLBsjcbjOfjaQkcCtFzqrLXtg8K5UKnfd/9oOsmSo2x4Ruc6FXINQ4feeQR2tvb+fGPf0x5eTn33ntv/w/qxSmnnMJbb71FTU0NNTU1vPXWWxI07EfFEOpc2b+AUs8n/ILWOOzMOAyox0J81mOxK6b/ulUitiXCVGW/7gcXrVGaqjxcNQ7bcVs/JzO0qZttup1qaoH4rQ01WN2LZLfqkVHnsDyKAZ0MlWZ1K/Z33O0+LrtiCoflWMXeqdHPPi1X9mM+g+2q3JEgwZxo6H48Ffj53xWzU5XbbBfoUgZQi2yo7M0G43kfJs1RhOj52fd2fi9Gk0ey6r8+YSLUO41HIZ/hTJgwgX/84x/DORbRTb1upIU2/u75N/8yXyWZJDroYOwAD878B3PJJPGCdxX/5/geSSp89YNGug7tJoVkvHjx4CUJF7d4HuRx73943/wEBwZezIQ4qPa/hjRSeMjzJEc5lkZ5RGKwIj9VOfz8ddt8r0Wzh1pO7rgIAFObaDRLjIVc4frBMDx7F/9JtwNHWOt+ttsyDpOHUOi5XFfSpJvJJpMGmga8D4l39uzCNFJo0dHpvh1JHWYHzs5/0dr3lKhCmnQzaDBNkwpVhVM7WGOux0Bhoq3941hVSDqpAKSQzKOef9Kq27nSeX5IJxG98ZcNsWvWbSThwsRkq7mDr3QFE1TxoJ8jEQTPOPTpa1+xU1dRxGiq2JMQxziR5H+/8sjmQ+8mq/RLPrnsNKtjtjmKvSRIqhrejMMdeie5ZHOP5zE2mlsoYBS7qYnrz5o0RxECTO3tcZtCMYbRPW7/0tzBPzzP0646OMFxOC9432Cz3oYTB7lkD+kYQQxMSIHD5uZm0tNDn9bTffm8vDw2b95Mfn4+ubm5fZ5Y1dTUhPw8ie4J7/Nc5LkOhWIqE9lXzWWJWsgVznMHtJ591GzOd5zGvd6/sUq/y0a9hXlqxjCNeuRZrzfSRjtzmc7byU9wo+duVpnraNBNTFETmKzHs68xj5RhPsCKhNMdx/Gk93le02v5p34Ft3bjkiC06MVw50ksc5zIWY6TmN5+JJVU00aHlWH0gf6UJlp4wfvmsAcO/c1RwlnfEMIXOPxexxWs1u/jwsnlxvf5yTC/H7EmR2VZP7fQRotK/MBhBbuterST1LiojGGyGs8n+nO2UsYeVccpHRfzfmfNRfDVnpzLdPY35lOqxjIBk93Jazmu43ze1uv5jfdevuE4hH3U4Gt7Bgsc7qSK7cn/Y0H78WxmG4vaT6Iq5e1BP0ciGGyNwzIq2cVuFIqJyFSxgfAHq2uo52zvzzhCHYgTJ9XUsoMK21Tl2Mo4bLVlHKZ1BvuHy+EdZ7NNlwXcZmAwIY5rtUtzFCFgtDGK1uSPmNT+dXbim3as0WR2q0ndoluZ1XG09fuvvfeg0WSTyU+MH3Cx68yIjnukC+ksZ8qUKSxfvpxly5YxZsyYoMtorXn55Ze55ZZbWLp0KVdeeaV136233kpmZiYAt91229BHPUL4pydrNNkqgyyVQa6RTbpKG9B6XMpFPl0diip0JfOQwGE4NOgm68Qk18jGUAZZnX8ri4JCY1SURhheqSqFbJVpRYR2Us14gm8TROzROrK1dYZ7qnKq8k2T8tdZ8h10pKOUwqkHVqdrKIYtcKi7AodJQwgcVnQelDlxkm/kkqkSv76fXQaB+8wG3TOYlGjsNQLzQ+hQOBzsNXArdFWPeoJppJJtZDLayMOhHDhw4MJFtsqw9jFDrUHYGGSqcoWuIkdl+bYf2lcHsVE3j7jvhZ1H9zVVuXf249QCI2/YxpeIilRg3VEnDit7vUJXxexU5UjVONRaB5Rp8jMxKTQiW7M1nKTGoRA+SqkeZXhSjcBtSvdjAP/3J5Vkso3MgAvDYviFdJbz+uuvc9VVV3Httdcyb9489tlnH4qLi0lJSaG2tpZPP/2UNWvW4HQ6ufLKKzn//PMDHr9s2bKgP4u+ldsO/O9yXcscY/qg12VP6y+Tmj5hE1B7srNezXLnMpaTuJ/zkoCi97sYryRwGI8ifbg6nAfIM4xJbDPLAbg/6UZGqRwOaT+dt/UGwHcCEs4pxN35s3XC2RgFApujDHYqhqlNazs1RY0fkd3mugeEGoM0zEg05UOoixwu9ufdZpZZtfD87nZdy9FBmv58y3E0L3R2Qh5qDcKGXjIOwddc6Uu9A/Dty6erST2WHSkGm3EYC5+zeFXSWWrDz/4+l+ldMTtVua1zqrITJ041fN3pq6mlw1bn1y6eP2umlhqHQvh1n03T/UJvbzGLkx1Hjsjj2WgLaYs/ffp0nnzySbZv384TTzzBG2+8werVq2ltbSU/P58FCxZw//33c/TRR+NwhHbiVFVVRVVVFaYZuEOcO3fuwF9FgrIfkBUPcSdZ0keHQzF4ZQF/o5FRnLWvbpkitkU6cyFSz2evYdegmxilclC2A3Iv3rA2Lelu+KYqD705iv3ka6j7kXjVvYNysGBSognn8cNg2RuCfaa39Nge9DYu++OGuo8JlnG4szODofsF1emM3MChvaNl90y3UAOHI3X7Mljdjxmb6SqhUK4rA4JKw33xayD8U5WHu6NyX9/9eG42KDUOhejiUs6AL0VKt+1K9+ZqfrK/iY4BneWMHz+eyy67jMsuu2zQT/jee++xbNkyNm7cGDBtDnwpq15vz2KZI8mfPH8hjVQ+MD9ll97NOMaQodLII3tI652sxnOscQg7zJ383ftv1uuN3Oe6gQKVGFNoo+UVczVfU/vjxsPexuxoDyciJlDCIjWHZJKo0w3RHo4YtPifquyXaSsN0NQZFHLYsv+Gu0aUf5qfa4idj7sbao3Dr3QFKzxPM4NJoOAQY99wDi9uZHbrqtw0AqYqt+l2DlR700YHYynq/wHDYJYxhW8aX+MT8wse8P6DDNLw4iWFZApVPuN6yVafpMZxrHEIe3Qdr5trrYZHAE26hXoaGaNGc5vrF/02NTHRLFEL+UR/QR2+/VUBvuOevY3ZHGTugwsnr5ir+bpjcZheefyZpMZ1ZhqqHgGqvrbdKSRzoNqbJlqCFrUXvcsnl6lMYAeVaLxUU8P+zGM3NdRQH/Cua3TMBJn8XenThtBReZ35EWvMD9hgfkalrg6aUd+iWyllLApFlsqgSTfTSDM5KiuuL9TLVGUhuhykFvGZ3mqVaciwlWN71fs2G8yNTKeUMirJJ5cmmhmjRjNXDX4Wphi84UvB6MU555zDtGnTeOCBBygsLIyZK2ixQGvNLzy30UY7+eQyU00mV2Wz1Fg05PdpijGBJ5P+xNL27/Kh3sRWs4zNepsEDofAq7380fsoHjzMVzM50XF4tIcUEYXGKNZ5PgJgbz0ygqWJIpq1kobzADnLnnHYGTg0lLKuYvqyaYaviY+9q3I42WscDiZw+KH5Gb/23g3AwezLj51nh21s8SSrR8Zh4k9V/khv5k39HhC9bPj9jfk8nnQHxW1LOgMhinEUMUGVsNRYRN7/s3fe8W1V5x9+ztXw3o6d2Nl7kwTCCpuyyiyUWSAUSkvLKhToDwptgZbVltGyW8ooo5RSdqEtK0AgjJCEQMggO3Zsx3Yc2/GQdO/5/SHr+l5ZsiVbw5LPwycfNO44so7OPfc97/v9itALouO0kTzvvpebvfeZRmMBtshqNlPNcvk15xurGePoPXBYLetYLD+3vfZRl4TBdxxHcJvvIVbI1bynf8ZvnFegiaFZOvi1XM8KudocZyLVw10mV5n9LFlamqmKEIKVma/xd/01zvP+nC/lOs7RTmSJsQIkjKa7bxsYg6asNZBxmCn6Hzj8n7GYm3z3AjCdiaajdDAjxXAO0uZzg+ticzw4SJtv6hunIsocRaHo5i73dZxsHMkRnvMAv2lagBeM//Jn/R8AnK+dwghRZo4BRzgWJKO5Q56EBw43bNjA888/z8SJExN96kFPI7tM7ZBiUWAabOQHZUsMhGGi2LyZVmWmA6OORjNgkMp6K9ES0HIEv8ahInVI9Ep3cFZ5vLBmlAVKE+0Zh/HViDJLlWOs92TVOOyPOYp1jB/Ki0TBLn0tQyDj0Do2JzM7R0ppGoi5cJIjsnsaiIUh1HYF5EU1hwmlZ9lpcYWtFOWskKvx4aOORoaTuqYLAyFQqhzKkKO3a4X1txSsTaWIDOv80SpP4bU8HkwGKbEoVbb+dotFYa/jgfVeKNKxYzCjMg4VCjvWYKF1YTdYCiNP5KTFGJDKJDxwePjhh7NixQoVOAyBdaK/nzaXh1w3x/wcZziO5TXj3R7nU0TPYLkxSzTWz6qMdlKXxLgqJ4ZQkw7N8vn0OAcO42WO0jlAc5RtljFqoeM7MWlTKpIvhl7GYWBsHkZxv411YsFOms3A+oHaXrzm/nPE+4YyGntT/5DjvD8E7P07HKEctDssvyvr9axK1vRwuh0qBMZIR8jAYXgCv6UcsnCI2I5/QwXrYmwrbeZjaxAx3nIb0dDeleCQNYBSZev8+Wn3HyJa2EoX40GJMkdRKKzYdcq7r9mBwKETJ9c5L0ITWlqMAalMwgOHf/nLX1i4cCFffvklM2fOxOWyl4+dcMIJiW7SoOF+39PmY+tEoi/u8T3Oe8anPV4/SJvfw3HIurL5mv4uVzrP70dLFTB03QQzRQalFFHPTpW1mmIk0xwlrhqHISYd1oxDq/B/PEiMOUr0wZ+3jI/MxyOH0BgVTH5QxmFzCMOMdEKXOtvZAST32nSP73Fe1d8xn8eiLdZ+/JbxEb/hil63bw1hhBOo7PC3qVv/sUrWsidDU36jO3AYKvjXd8Zh8G9METnW4PVHxucIBBJpyzgfLM7KXuk1r6fRBg6t9yqLDb98gBsXpQytEndljqJQ2LFmEH4hV5uPv5GbARjBsCErIzLYSHjg8KOPPmLx4sW8/vrrPd4bquYof9Nf4kHf0+ySLUxiDHto0/iu4+g+93tbX8K1vt+zW7bjxkWJKAT8mj6NNPGJsYJTHcfYJiXTxUQudJzGv/VFrJYbWWV8w3RNZX/2h1qjgamMJ0/kMF6MTnZzouKPvif4ne8vSCQTxWjezXgqqv0P0fbhG7mZFnZjSEMN6ClIoies8TzfCFHGPmIPmmimkSbAnnEY72yN7sBhPM1RIj/2YuNzrvD+lmbZwhgqmCOmMUZUxrRtqUQRBewtZrNSrsGNO+YB3sFGrWxgDBUUiDzmi1kJP/9/9Q/4pe8edss2nDiZy3QmamO40HH6gI89RlTyiPMWbvbdR62s51zPNTzhviPs9qGyS33o+KQPp3AykVHMF7NoYTe1smHA7UtVjF4zDnsJHHYFZoMNiBSRkykyeNx1B//VP+B/xuKuEcphy2AfLKXK7bKDWUxBE4JxYmRE+0gp2cfzXZplKzo6Y8VIpjCOydo4jnUcMuTmj7bfltL5VygoJI9rHBfylP4yO2Qj//F9wM/1Oygkn4mM5peuS5PdREUXEc2ev/jii4gPOHv27F7fv/TSSzn77LO54YYbKC8fuhkQVtYYG1gqvwJgH7EH87VZEQXzNsitrOiKzM8Sk82I/RZZzc4u98BtssYWOCwU+QyjmCpqzW2nowKH/WEL1axmA0hSbsV0lfyGHTQCfpdKKWVUE5g22lkuvwYY0rpQqUaibz0SdbNTLAr4uMvwIJAFm6iMQymlqXUa81LlfpqjbJRb+UKuAWCGmMT+jnkpLSY/UEpEIcvkKrz4aKeTTbIq2U2KK9XUsoGtIGG+lvjA4Xq5xbw+7CGmUiHK2EubGZO2ZIlMvuc8gUt8N9JOJ5/Jlb1uH07Psp1O8nBSLIr4tOsYm9O8X/RGfzQOpZRmYDbYgEgRHac7vk2N3MGrxjt04qETexnrYClV9gqdlawBCSNEZC7aO2k2r0elFJkaZXtoUznFcVQ8mzsoGSxBYIVisOAUTkaJEWZsYpn8itVyA+A33TrWcUgSW6ewElHgcM6cOQghIgou9JUx2NDQwBVXXKGChhas5Z4PuW5iqjYh6v1udv6Uox0HAXCH78/80ndPj20CVFhKfZRGXf+x6itVppjGobVfdNBJE80UEdrhMhTWkrOhrAuVaiTcHCVB57PrlPn7dqJuuqxBSWeMM9kC4vgaGs4ojFesv+8bnD/hpCHi+B4OTWiMoIwtVAPdWVLpSrJlNKznv8X5Mw537Bfzc4wTo1glv6FK1vY6Nw0Etlw4zcxg8Bs85JFju3YPZekNXQZnHHYTbuzeTbs5xquMw4FzuXMhi42lvGy8DdjLkwdNqbLlN+SOMAveqmf4bcfBPOz6TczblUoEfjNK31Ch6MZ6LQ6UKAMcqu2TjOYowhDRqLVx40Y2bNjAxo0bef755xk3bhz3338/y5YtY9myZdx///1MmDCB559/vs9jnXzyybzzzjt9bjeUCETYwa630/d+1sBVecjHoQxQRtreH7oT5YES7PaUSgR/79H2g0rVh1KeRBfIxDNwOJxSM8OwO+Ow+/IWz4xDn+XYsXZVDpQqR6tvaA8cRX5NSWesY9Yu2ZLElsSfZAcOrYtq8dLWDHyuTjw0dMkThCKQcRgc1A8YPNg0Dhm617LAGBkYRyNZ9LGWgauMw9gQbrweLFlqHovubqTSHLbxCHU9CgSBlb6hQtGNdezbLKtDvq5IPhHd5YwZM8Z8fOqpp/LHP/6Rb3/72+Zrs2fPZtSoUdxwww2cdNJJvR5r8uTJXHvttXzwwQfMmjWrhznKZZddFkXzU5svjbW8qL/JGmMjblxoaOSJyCZfTbIZr/SSRw6t7Lb9sCoZjhMnOWTxF99zbJO13OS8HLfw/60rRTkaGmWUsNvi4KaInFpZjwsXwyjGiy/i7y3WbDKqEELwvO8NFsvPI96vRu7AhRMfOsUUcK/vSS53LmRahNmulWI4rq4+9rjvBU5wHN7fj6BIIMk0R4knDuFgBMNop4MM3GyXO4IyDuOXreGVXsopwYdOLtkxOeYO2UiTbKZVtuHGRWYUgcN1xiZ0DPLJpYXdQ8q4qTcq6C6r20V6Bw6baKGCcupoSOiNeqPcxQ7ZwHq5hQzcePDEbVGtUpSTSzbZZHK25yqyyWSONo0zHMcyWRtnbpcnciiWBRhI2ukwX2+X7SD87xeQhxsnTumgVtZTPgQz6ANjZOhS5dA0y1YqKKeNNgrIi3cThwSVotw0R7EyaDIOpTVwGNlC2Xq5hSLy1fWoi8A3qwKHCkU3gbGhkDxq5A7yyKGNdjVmDDKiTo9YuXIl48aN6/H6uHHjWLVqVZ/7/+UvfyE3N5dFixaxaNEi23tCiCETODSkwf6e0/HgJYcs9hF7sEDMi3j/N40PecZ4DYDD2Jci8s33DtT2pDnjc/bznMYKuZrV+gYWOr7DNOEPClVQjkRSww5WyW9i+8GGCI/rL/C29DuWPuO8K2nt+IXvTp43/gPAfGaRKTIi2m+GmMQCMY/rnBcxynMwjxn/4nXPIjZnLup7Z+BM7VieFC+xSH7Ca/Jd2mQ72SKr359DkXgSIcqdyNLoB1y/5njvRTTI5Tzge9qecSiNuKVY+oROLX5TBT1GN3fP6K9yjc9v+DCV8VHpQJ3tvYoVcjUOHPxcu5ARRKZDle6UiiLzjq01zRfM1hgbqe7KnqskcTIarxnvcqH3FwBMYDSnakfHbVHtT84beNB1Ezd772OR/glv8D7/1hfxkvEWSzNeAPwafGvlJiSSEgpt+7dbnJUfdN7Imb4reVsu4Qn9Ra52/iAubR7M9Bo4DHOtaGG32c9yRWwWTYY6lzvO5Xe+v/RY3Bg0GofWjEPRd8ahV3q5ync7EkkFZZzn+E48m5cSBH5bKmyoUHRTLAvIIoMmWmjqGv8mMJoTtMOS3DKFlagFFqZNm8att96Kx9Mt2u7xeLj11luZNm1an/tv3Lgx7L8NGzZE25w+GTt2LEKIHv8uvvhiADo6Orj44ospKSkhNzeXU045hdra+Jer1LPTTPnPJot8kUuRFrnGnDX1v0wrsU3sHMKBJjSKLZp11tKhYlFglr6pMtP+YSu90JK3GmItRS8VxabodCT/irQC3JqbfPzaRLU04LGsJveGUzgpEyXm82pZF9sPpogLySx3ivck2VZyKGsRCco49Nk0DmNjjmIdXwpFvml8Fc2+eWRTpBUo18YuCkT34poHb8RjXSqSrOuT9XpUKPKimtNESyBokS9yKdDyzKxc62f34DXHPEfQb9OafVihKemNwKKHQ0RujtIsu0uVc1WpckxwCVfIzPXBWKocicbhdurNtheJgqi0etOV7sChujYrFAE0TeuhtV+sxoxBR9TfxoMPPsjxxx/PyJEjTQflL774AiEEr7zySswbOFA+/fRTm2HLl19+yRFHHMGpp54KwBVXXMFrr73Gc889R0FBAZdccgknn3wyixcvjmu7rJPTExyHc5/rV/3e/wLnqSG3OclxBO/4Pu6xvRCCSlHOerllyE6SB0qyNaQCBMxtyijmhYz7+nWMvbSZbDW2A/4A4FhRGdF+I4NMdiYyppetFYOBRJujJBKb7ia1tky71AscdgdgHnHdwgRtdET7dchO6tkJwFQxgcudC2PSnnQgOPjawu4eWWjpQkD/uJB8chKYCWa9Lt7jup69EuDofLlzIZezkCM6z+N9+RlN+Ev8c0W2LTgYXFbZLrszDpVmb/80DlstJkPRLG4oeqdQ5Pfoh4OmVNlijhJJqbL1WnawNj8ubUo1lDmKQhGaAvKopjsR5VBt3yS2RhGKqAOHe++9Nxs2bOCpp55i9erVAJx++umcddZZ5OT0veJ4/vnn9/r+X//612ib1CvDhtnLtG677TYmTJjAwQcfzK5du3jkkUd4+umnOewwfyrso48+yrRp01iyZAn77hu/DjvQwFO1TWw49P7W41p/iIH31sstNNNKi9ydNI2+VKXaNGBwMJzk6CHpUmc7O4CBicfa+0ktY4kscBi8nyK1SCdXZYB8csklm1baqJZ1tv4Z38Bh941UrFyVqywZvNFcH6yZv/EypUhVgs0bmmUrJaIwOY2JI1JKsx8kelGr2tZvEytoXinKzVL0alnLZDGONkvgMDiobw0qDqcUDQ0Dwza3GkqYGYdRuCo3WwOHKuMwZpRS1OO1VM04TOaYMFhR5igKRWiyRKbt4pNFZPJbisTRr7ucnJwcfvjDH/brhDt37rQ993q9fPnllzQ1NZnBu3jh8Xh48sknufLKKxFCsHTpUrxeL9/61rfMbaZOncro0aP56KOPwgYOOzs76ezsXq1ubm6OuA3v6B/zofycJfpyxjKSUlHIfBHdqvyXxlp8UmciY3AIjQoRWsNoihjHmdpxrDE28LjvBd7TP+VJ9+8pFUUcKQ5AExpO4eAp/WUucp4ZVRuGOmWUcoDYkywycYjYZBlFylP6y1TJWlboqxnPKEpFIUc5Duz38RZoe9JKG+v0TXzPcyVedCaLsfzUeV6vpidztOl8S1vAZqOK+3xPcqZ2nCqLHOQktVQ5zn1DCMEh2j5sNLZRI3fwnvzEfC9W2oOh8MnujMPgcsj+8IDvaSpFOZPlWPJEbsS6pff6/kaDbGKWmEwWmRym7TfgtqQTeZaMqHJKucR7Iyc5juBC52lJbFXsaZItHKDtSYfsjDh7fKAsM1bxiv42dbKBkQynWBRSRnFCzh1gmpjAAjEPgUa1rGMy42iX3cFBh2W6O4vJ7JbdOpdO4eQwbV86ZGfMDI5SDcMMHIbKOAxNi6VUOU9lHMaM8YxiGatoo93MaB88GofRZRzulM0cKPZCR+cT/Qu+a1xKnWxgmEjs+DCY8KEzjpGMFiOS3RSFYlBxhLaAbfp2mtnNCIYxR5ue7CYpgogocPjyyy9zzDHH4HK5ePnll3vd9oQTTuj1/RdeeKHHa4Zh8OMf/5gJEyJzdO0vL774Ik1NTZx33nkA1NTU4Ha7KSwstG1XXl5OTU1NzwN0ceutt3LjjTf2qw3/Mz7gTv1RwD95PUo7kCMcC6I6xqfGSl6UbwJwNAeGvbGcpI3lUfdtLOg8g82yis2yivVyC6WiiEucZ3N9510goVW2qcBhFHiklzfkewDsLWYn/PxP6S/ztrEEgP3EHA7T9uP/nD/q9/G+4ziC7ziO4Cx5JYsNvzNzvdzJBH10r4HDA7Q90RCsYxNIv27nsATfLCr6T6IzDhPBbtr5inUAXXYlfuKZcajHuFT5t74HqGcnheRxqnZMxPvdqz/FJrmNTNz8zHEB5zu/O+C2pBMBLVeAOhp4S9ZTr+9Mv8Ahzbxl+I27wi0qxpqPjGXcoj8IwGTGcrx2aMIX1PJEDoul//q1tatUu8NigOISDjOTYSVre1Rh7JItfCpXIhB4pBd3BMYP6YRumqP4rwsRaRzSHTi0/r4UA2OYVkSz3mp7bbCUKntsrsp9/0bWyU28Lz/rfkFCHjmmzvpQZBjFIOAAba9kN0WhGFTc6LqMG11DwyQ3VYkocHjSSSdRU1NDWVkZJ510UtjthBA2PcFI0TSNK6+8kkMOOYRrrrkm6v0j5ZFHHuGYY46hoqJiQMe59tprufLKK83nzc3NjBo1KqJ9t1nKYEpEYb90YaosZaHlou8y2WGi2JwwB0qkM0UGpRRRz84hq+nTX6r7WUYYKwLflxsnxfSvD4ViuLCX9XfgCbNlN8HaUEN5FTkVSHTOQqI1FcPJNliDe7HGVqocg2BJoIQyg4yIf9v+8lT/uFBIdGYqQwWrHIcbF5140vLaZ9WdS1QWmPXvWCQKktL/7Ncif+CwrReNw+DvvlKU86lciUSynR2MYWDzxFSjN43DcLRIa19TpcqxYqromUQxWEqVrdc7VwSmBVaNwwB5ZKtrFEoXVKFQpB4RBQ4Nwwj5OJasX78en8/X94b9ZPPmzbz55pv861//Ml8bPnw4Ho+HpqYmW9ZhbW0tw4eH1+LIyMggI6N/dffWoNPz7nv7JVxuPcaPnWf1uf1pjmN4w3iva1+7tmK93Ml2dmBIA00ood5IsOr5JTpwKKU0HbLHiJE8n3FvzI59pfP73K8/ZT5vobWXrf3YdA5lLXPo21ldkTwiKT+LFwkJHIb5Pca1VJnYlSpLKc1gxygxPGJzk3p2mtpTe2jTlClKCKwZUQXkUUcD9eykQ3ZGXA6eCiRDd84ahPuz6zdM1sYl5LxW7Nci/xyp3aZxaJ/uWudRPfevZYwYaoHDYI1DlXGYLGZrU3q8NlhKlaPVONwWYnHmNMe3uc11dUzbpVAoFIr4MyAl946ODjIzM6Pax5qpB/4bpe3bt/Paa6+xcGH8bnYeffRRysrKOPbYY83X9txzT1wuF2+99RannHIKAGvWrGHLli3st1989KFWSX8ZXRaZnOu1Z1cepM2P6IZvsbHUfBxJ4MqahXO/72neMT7mIG0+laKcFXI1PnzU0Zg0k49UI1mOyvf4Huct/SN20x6Xcwd//x8ayzjFc0mv/dLat9IxeyedScdS5XCGIKniquzBa/7NMon82vo731/Mx8l0eR/M5FmCaNYyuWpZx3gRWcVAKpBo3bl7fI/zX+MD83lFkvqf1XjhfcNfGtlhcU4ODhyGyjgM995QwJpxeI/vcdos+pBhA4fWjENljhIzpjK+x2uGNBK/2hcCq8ZhX4HDe3yPs0J+DfjH3M6uKhZlkqJQKBSpSdSBQ13XueWWW3jwwQepra1l7dq1jB8/nhtuuIGxY8dywQUX9Lr/smXLbM81TWPYsGH84Q9/6NNxub8YhsGjjz7KwoULcTq7P3JBQQEXXHABV155JcXFxeTn53PppZey3377xdxR2ZAGUzuPxokDJw6yyGCZsYoJYjS7ZAubqeYjYxnZZHKh8/SQxzi8cyG7acOQkrlMY4I2JqT7WjB7aFN5yfUAr+rv8KbxIe8bn/GBsZTvakcxU0xmp9zFNqOG4Q4VOIyE7Ya/jKlQ5DNWjIz7+c7z/Jwv5VraZSfDKGY+s5imTeAC56kxPY9TOPmr81aWG1+zQq5mh2zkA2Npr/1yjKhgjpjGLtnCdrkjpu1RxJ5EB/ISXap8lOMgnuIPXOW7jXp2mjc58c04jJ2rsjVDKiuCLLjX9He52nc7XullIqPZV5vLTxx9Z6EPRYrIZ76YzU6aKKOUCspoooVrfHfwT/efkt28mJGoLLD9Ok9D4A+cT2IsnXiYpI0ltx9VFLGgjGKudvyAv+kvUi3rON/zf/zL+J/5vssS1B9NhbkAF2AsI9lDTKVJtvTIRkx3pOwep5fL1az0rbGNZeHGbg3BZMaSgXvImsrEA6fmZJ6YwTK5yryGzvOchIHB97QTuM/9q6S1zZpxGM4c5Q7fn3lKf5lO6WE8o9nINjJwkU8uR2gLOF6LrxGmQqFQKOJD1Hc5v/3tb3n88ce54447uPDCC83XZ86cyd13391n4PCdd96JvpUD5M0332TLli0hA5N33XUXmqZxyimn0NnZyVFHHcX9998f8zbU0cgWqs3njeyilCLyRS4evOySLQBskFvDHuMLuZoWdlNCEZO1sczXZkXkVFoo8jnKcSCr5QbeMT42byw66ORLuRYIlN/OHMAnHDpsZTubqWazrE6Ipt/Xcj1fynVoaEwR4xBCMEObxD7aHjE/11nO4zmL47nH9zj/0v/bZ78sF6Us71pR3iK3x7w9iviRiECe/XzxZ7QYwWjnCH6p34PXEshOlYxDqyZbdgQZh5vkNvO3uYeYyixtMjO1yQNqQ7pSJAr4Qq6mEw9u4WabrKGZVlvgNx1IRBaYT/r4Qq5BR6eScuZofomKvbTkzSEcwsFEMYYa6gFYKzfbzVEs2VFbqMYhHehSN01chmnFrPCtBjDlQIYKVg1YL96u0FC3xnG4a8U2WcNaNgFQIPLi18AhSAZu28JbW1egezNVyWoSAF5pdVUOnXH4jdzMGrkRgH3FHNpkO220M4xi9tCmMlZLjNu7QqFQKGJL1IHDJ554gocffpjDDz+ciy66yHx9jz32YPXq1TFtXKw48sgjbSuqVjIzM7nvvvu477774tqG6hClL8c6DuEh1818Y2xmpsdfQh1KDwSgWbbS0qVdNFObxPPu6LXtLncuJJssLvXdBIBGt6bhUFthHwg2c5QwZgzxOF8l5fwrI779NMDlzoUcqx1i9suqMP3DpgvF0CvvSjUSn3GYHKaLiayXW8znidI4HGjgsN1SHhhJqbJ1LLrNeTWHOvYZ0PnTGSEElaKcDXIr1bKOSlFOs2ylWtYhpYxoES4VsGrTxkt8v5YGM9g0V5s+aDI2rdejOtlgey84+KWjU0sDFfidp63X8lDztXSmr/Ex3C8jMCd14RzSLrnxYKQoD3kBbZZ9a0/Hk0gyDq2l/jc6L+Morz9p43jHYUp/V6FQKFKYqN0wqqqqmDhxYo/XDcPA6/WG2MNObW0t55xzDhUVFTidThwOh+1fuhJKMycwUa0QZb1uF/z6QIJVVg0w62RxqK2wDwSrS5z1u4sHHbKTHTQCidcui6RfFpBHDlm9bqMYPCS6dDjR5wsQnGkV14xDGTtzFGuGVCSlytaFpnD6jopuAtfOJpop79J0baeDnTQns1kxJREZh8nS+e0L629gJ7ts74VyVrd+Duv1LtwCbrrSl+t8X+Yo+eSmTeB9sBDud9WU5LHKazVHEaEzDgO/qywybc7bg2msUCgUCkX0RJ1xOH36dN5//33GjBlje/2f//wnc+fO7XP/8847jy1btnDDDTcwYsSIITHZ+MBYyjP6q+SRQyceiijAh8+cqGaLLCopJ1Nk0CJbObrzfKZpE7jL9QsAamU9y41VjGAYrbQxSowIe6522cEWWc2T+sssN762XdillNTLnbhwkUcWa4wNZJPFcErpsJSlKOx8YazmOf0N8++5WVZTQiHZZJEh4rfKvtJYwy7ZwkiG08JuRifY5dGLjzKK8eDjC7ma0R0HI5Ho6GSSyQmOw7jb9QvGUkkTreSTm1aZO+lO4kuVE3e+4Eyre7yPcYB7z7j0Td2WcTgwjUNrqXJWHxmHS40vceGklCKaaY37IkY6MIIyyighj2w2y21kkcEYKqiStRSLgmQ3LyZ48DCWSjropJD8mB13ibGcUop4Qf8f/zYWUUAuOgYjB5HRQYUoJ4csssmild04ceLDhxuX7bdZQC4lFLFI/wRd6oBkX8dcKinHiYNcstgitzO6l7lWOmF17M0kg046KafULPsON3YHgkKJMOEZaoygHAdaj2zQNtnBFd7fmvcHsaZNtrPMWMUr+jtIDM5xnsRkMY53jU/QEGwwumVrgjMONxhbaWE3PqlTQB4unPzGdz/5XWNFIip0FAqFQhE/or7L+eUvf8nChQupqqrCMAz+9a9/sWbNGp544gleffXVPvf/4IMPeP/995kzZ05/2pty7JZtfMvjT83PI4e9xWw+kH5X5ECJDMA3GW8ihGBsxyGslGtZpH/K753/h0M4eE1/l5/4fg3A0eJAfu28NOz5vpBrONjzPfP4ExhtvtcpPXzCFwA04qWRrwDYwFa+kIOzzDzZSCnZz3M6Ojo5ZDGPGUwUYzhIm8/1zp/E9dxXeG/lA+l3h7za8QNucl4e1/MF87z+H+q6sh2LKKCDTlpp68re2sWD+jPc7ryaYaKEr+Q3VHVphhWgtI4GK8k0R0kkwZlWr8p32UkzxcQ+OGQLHIoBlipHoXF4lvdnbJZVZOLmKu0CcpJkSpFKDNOKqdMbqKO7jHU1G6mSNcwiPbQhN8sqNnXpoMUqGCql5GjPBXTQSQmFTBcTmS2mcpA2n6scvetaJ5J8kUt9xif8xnc/7xmfcqDYixtcFyOE4HrvXbyrfwzALlrZRSvX63eB7teTa9KWcrfzF5zqu4zNspq/6S/yC+ePk/yJEoN1DOugEw1hBg0hkoxD5agcaypFWcgS8m3U8ID+DHc4r8EVJuNvIKyWGzjc211OvMz3NXc5ruME748A+4JWsKvyffqT3Kc/ZXutg07miukcpM1noeM7MW+vQqFQKBJH1KXKJ554Iq+88gpvvvkmOTk5/PKXv+Trr7/mlVde4Ygjjuhz/1GjRoXVG0xHrBpUeeTYStFGad2r2YFMmGJRCPhvuGu7bm6q6T7GcFHaa9aMVW8rkwzyRa75r1B0Zx8EJoJa1/9VmWlo2ukwJ9UZQX/PeGfWVeEvic4kg1JRlPBMPuuvNAM3mWT0WGEOaIUFUP0odUjnUuVQ2m7x0i2zuyoPsFRZdl8fMglfqmxIg+1d15ZCCijQVLA+EsK5DIfTcE1FrJ8lVqWBO2k25y7FojCh18FoEUKYbSvQ8iJqXycemmllpNadPTmUdJ+DA1TBphehxu5O6aGzq1IlL47u3UMVa18MhTWwG0uC+32VrDUXkMEeZA41HwzGhWvQjhUKhUKhiI5+1VUdeOCB/O9//+vXCe+++27+7//+j4ceeoixY8f26xiphFUr5wzHsXwh15gRmcoQJT4HanuxSv8G8F+wK0SZLRjzY+f3ej2fz+J4drLjSH7jusJ8rkudnE6/E28GblsQs0rWqjLTEDTTrc+yQJvHc+4/JuS8Ukrze58gRidFUNoa9Pm181LOc57MVd7buFd/0ny9itoegcPp9NRAVQwOkrlkk9DAYYgb2SpZy8w4ZJX5Ylqq3G4+zhLhMw7r2WmK1M/RpirB+QjJF6Ezo6rSSOM3cN0opYjMCHQyIztm999nf20uD7lujslx48XlzoVcjv03ofWxTl4lg69l6dMn+iJY49CNywwKQuixu8UyNwr3u1L0n76C/lWytlfZov4SvPhbJWttvwW7OYqrx7bg7y+B+eOe2ox+mTkqFAqFYvDR77scj8dDXV0dhmFfqRw9enSPbYuK7NlSu3fvZsKECWRnZ+Ny2S88jY2NwbunNIGsMfBPBF433gP82SRFIfSH7IYUNcxnVlgB71D0dhPrEA5yyaaVNnMSHdC26aCTRnZRQmGEn2xo0GJxsIuX0HworIGBZAlKh8oWC+5/VbLWJkivTHYGN/bvNLHnSyR5IW5k42V4EFNXZas5Si8Zh/ZrgtKNipRwmVFVaeIIb0jDrFCIpealrb+lqE5ZXwsXVbKWqWI8Lpx48Q2p7PngjMNMMmyBwVB/Oau7b64qVY45w7vMm8IRr/4ZPIfroJN1cnPIbYNLlQNtKqGQenYCfUtuKBQKhSJ1iDpwuG7dOs4//3w+/PBD2+uBbDVd7+nOdvfdd/e7ganKS/qbfGys4HPjKyYyhnJRwl7aLF7T36VUFFEo8kNm9+2nzeUSx9lskFt50PcMf9NfokHuZJIYSxH5lFLU63n70tvKJ5dW2vDhYyyVbKMGEGTg5rDOc5iojcGQBuvZymhGcKrjGBY6h64uSUDDB0KXP8aae3yP0yh38ZWxlulMZJgo5iTtW3E/byik5WZCE/5A8z7aHE7RjmSp8RVNtPBj7y9x4CCbLEDyO99fKBT5fMfRt2yBIrmkc6nyTDGJqWI8q+UGAOYxgwd8T3GP/jjF5POG+68xy8YaaKnyx8YK3tDfZ6n8kgZjJ5PFWCopZ09tZsjtPzVW8lffP5kuJpBFJkdoC/rd9qFGqMwoJw5e0d/mCsd5TNUmJKFVsaNONrKPmI2GxhQxvl/HeEN/j3eNj/lGbqFNdpAlMtgt25kmJlBCIQu0eTFudWKwZhweqx3CJmMbrbQhgInaWJ7X/8MRjgUcIvbxG8uIoVP+H+w6H2zMFGrs3il3sY/YgwzcTBOp/bsZjLiEi8mMZS2bbK/vJWaRSzbtsiP0jgNgu9zBWrmJSWIsLXI348UossnkY305IxlOM63kkM1wUUIeuWSLLHPfF/T/MU1MYBoTqBTlPG68AECmChwqFApF2hB14PC8887D6XTy6quvRuyKvHDh0Cuj+q+xmEf05wCYyzQO0fZhupjI23IJAAeJ+SH3O0ibz0HafG723sd78lOaZSvZXS6BB2nz+/x793UTmydyQPrLDQIC6oH9qqilTJZgSIO1bGQtG/EaPhYyhAOHsnvVPREZh3/TX+RLuQ4Njf3FXA7Q9uR853fjft5QWHPFAr1ugTaPBe553Oy9j7/o/6CJZts+G9jKf4z3VeBwkJKsDEBITIZjgNnaVL7nOIEbfHcDMF4bxbvGx9RLfxZEtaxjvBgVk3MNtFT5E+MLbtUfBGAq4ymnlP21eeyrzQm5/WfGSh41ngfgeO0w9VuLglAl7D50GtnFl3IdU0ntAEg1tSyWnwMwRRvXr2O8Y3zMPfrjAMxmiml2VUoRB2nz+ZZj/9g0NsFolhHoIseZLBHLAXjdWMSbxoc4cHCv/CV1NLBCrsYtY288MVgJLlXOEZm2CUCowGEN9XwsVwBwsNg7ru0bqkzQRrPW2GR77TO5EoCDif3f/Bu5mZeMNwHYm9kskcsxMCggj120AP7F9IC+rlXj8A3jPd6U/oSSZxx3moHDrBgt0CkUCoUi+UR9l7N8+XKWLl3K1KlT49GetMGqCVIqisgXuTZx/so+yn0CYsLBr/VFXzexwTdOVi0SLz7yRa7/edek0SO9wYcYUrQkOOMwIC5dQB4FIi8h5wxHb9li+SKXfHJNAx8rQ6nEK9VIdAZgMjUVrRlGmbjJI8csn6qilvHEKHAou8dcRz8yDq2aUTkiK+TYb8X6+yrvo5xNYScvwr9rqmL9DKE0lCM7RvfcpUQU2rKKknk9GijWRVcDw/wslWI4n8tV6OjU0mCWs3vw0ik9ZAh3UtqbSHRpzzgMLj0Oda2w9pO+5rOK/pFLdtj3rDI6scI6fpRpJYwwhlFFLbtpC7m9VU7DaoxiHSf81SgKhUKhSAeiDhxOnz6d+vr4uHmlE4ELsAsnL7kfRBMab+kfme/3pVsXStw7EvrS28rtyjgMMJZKNrIN8E+Un3HdhVu4yO6YjYGBl6EdOLSWKsc747BNttPILgCmi4lJF5TuLch0uXMhlzjOJr9zXo9shXS4AR8KpHOpMoDDEjg8xnEws7Qp/Nz3OyC2fXSgpcrWwOEvnD/m245Det3eqkF1qfPsqM83lMnr5UY8HcYtuxZh/zQOrVqgL7jvj1lJf7KxLiRIpGkotMG71Xy9Stb6y9m7hq1mWhlGcULbmQyCr+HBc51QY/c2W5BaBQ7jQW9zTuvcNFZYx48zHMdSK+upkrW2+wormRYDr8C+mWTYTFN60+pVKBQKRWrRu81cF83Nzea/22+/nWuuuYZ3332XhoYG23vNzc19HyzNucf3OKd4LjG1tXLJ4VTvZdzje9x2UR7Zz2yAvujrJjY/aCJinfBJJNvZAXSXIHgtxxuKtMruldZQhgux5FbfQ+bjwTARtwZ9QjlSOoTDFPC23lislRs5xXMJp3gu4R7f4/FvqCJikluqnNjAobXP6ui239Rtvodi1jfturLRlyp7ZXiXylAoY5T+E84cBfwluqmONajc32tIPFyZBwPWUmWrpp/dSbnW1kea45DVNRgJvi4UBOk7hs44VIHDeGMNzIH9e7DK6MSKqqDxo6/v1Wp8EugPlaLc5sidqQKHCoVCkTZEdJdTWFhoK/OQUnL44YfbtunNHGWoMK7jMDLdmWSRwTxm8Dlf0Ukn/zU+4F3jY44SB1JGMcUUMkZUxKUNfZUq3+L8GdfJi7hffxoDgx85zuBrYz0/0X+ND50FnaezLfN93LjoxGPLhhmK1Mh6yihhGEX9zuDoizf1D1novQYNjQmM4hBt30GRSWS9uQoX9HnGfRf55PAL7138Vy7GixcDyafGSlpp40Pjc3bTznXOixLVbEWEJDrjMNFYMw4NJIdp+/Cu+0ke8T3Hi8ab/MZ3P5tlFXe6rhvQeQbqqmwdY/sKHM7rPIl22cFYKjlA2zPuixnpRjEFVFBmOg9nk0kbfpOBb+Rm/qcv5ghH6prN1Mh6RjCMYgpsbveRcrvvYTx4mMEkLhkE16BYImyBw+5xaZwYxVQxngbZRJWssRnoWJ2F0xnr4kc+uYyhkrGMZFNXNUqoK0Wn9DCaCty4+jTtU/QPa7C7kDzOEidwv3wKsMvo9Id/64s4zXsZAsEcMY33M56hXXYyihFk4GYYJUwXk3iTD2mljXJKqcVebRYw0bnO+weyyWQ0I/i544e00W5uY5U6UCgUCkVqE1Hg8J133on5ib/55hvWr1/PQQcdRFZWlhl4TGVa2c1uOqiknGyRiVf6zIw9Lz62sp06GqmjkXIRH22qvvS2JmijAZguJwKwl2MW88QMLtSvB7rLH1TGoZ8adlBHA3U0UCIK43KOKllLA00AlIsSJmtjB4W7ZyhzlGD21mYDMF2byGv6u4A/4Ghg0EY7bbRTK5W0wWAh0YG8ZJYqB2cclooiSkUR/xOLzYDAFrl9wOcZaODQmiXu6iVjUUrJN3IzHrwMp5RZ2pSozzXUyRe57KDRfJ5Hrhk4bKcj5cuVt7Kd7exgOzv6pXG4RW6nlgZqaWCONi0OLUwewaXKAYZRbFaIVMs6mw50PMpBByO6ZZGwmVaKtXw2GdvM10JmHFLLFqoBKBT58W/kEMTaZ5tooUQrIHC5GWjG4S7ZYl676qR/TNxOHVvxXxOLRD65IovWLn3D4KAhdJchb5HV5rgzT5vBJ/KLHtsoFAqFIvWJKHB48MEHx+yEDQ0NnH766bz99tsIIVi3bh3jx4/nggsuoKioiD/84Q8xO1eyONtxIt9y7M87HnvpU53sNpKIV4lZpHpbAX0fAE3TcOHEiw8PXgzDwN2V+TLUzVESURZYRfc5fuW8lOMdh8XlPNESTdDnWueP+J3+F/P5SDHcdLBt77oxVyQfezB46GgcWjOMrnNexG36w+joMQkU2cfc6EuVrRmH7l4yDuvZaW47W5tqG8MVkSGEII9cGrsWasZQYbshto7FqUigP+eR069sVGupYoWIT4Z9stBs44G1VLn7c26TtUyzLNq1xKEcdDASrHE4RowM2qLn2B3IeMskA7cYOg7UiUQL+ru304kbFx68A844DBiFAab5iTUYmUeObc4buEewPncI/z3GNts8uYx2o3vOl4m93FqhUCgUqUtEGodWvvjii5D/Vq5cybp16+js7Ox1/yuuuAKn08mWLVvIzu4WKj/99NN54403ov8Eg5CRojzkDelO/BqQTpyUxUlwu796WzkW0fgqas0b4KFujhL4HjNwU0JhXM8Bg0srKJqgT7bIoojurANrkLxd9j4mKJJDaud3942wZhxaM7GFgxEMA+yBkv4y0IzD4JuxcAzWcSLVyLG4fGYF3dSmcsahlNKmM9YfrKZu6WYKYh3vrAsJ1gBplay16UAPnVJlu6vyBEbbnoe6/geCTMG62YrYEfx3b6bVzIhtHmDftF77dtGClLJHMNgqzxM8VlrdkoN1UTvonvNlCxU4VCgUinQh6vSIOXPm9FpS7HK5OP3003nooYfIzOx5wfjvf//Lf/7zH0aOtK9oTpo0ic2bN0fbnEGFCycCB0/oLyKRFFPQFXwR5JBJEy1UUEa5KEUTUcdsI8J6E+uIIi48glJ204YALvBca94AD+VS5TXGBspFKQYG2WTFtJS+Vtaz0ljLO8YS3tM/oZA8DOSgCgj0ZY4SzDQm8jlfAZBPnqkjpjIOBw/RlCrvkI0sN77mHeNjVuhf4xFeJoox3OW6LmLThMGTcRh0YyxG45QaIHja+zIztcnMdkzt13liqXHYW8bhZ8aX7ClmsJNmxotRUZ9H4WekGM4O2YgDjTKKGUMF26hhFCMgiZqcA6FNtvOW/hFllNBOB9NE9FIXb+jv4cHHcEoZIcriNkdJFmWihDliGjtkI3f7HuNJ/SXzvUwyEAi2ye0INKYynl208ozvFfYUM5ikjU1ewxOAdXzMJINJYozt/VBjdyDIlCfCGw4pBkbwvGuVvq5LwTSPYRSzztjU777pQyePHNpoZxJj2SEbzWBkIBhcRgkZuNHQqKCcYRSzkW0YGGR0XasMaTBCDCNTunEKJz/3/o639SUUkEcWGUr/UqFQKNKIqGeGL7zwApMmTeLhhx9m+fLlLF++nIcffpgpU6bw9NNP88gjj/D2229z/fXXh9x/9+7dtkzDAI2NjWRkpLYWRiYZjGAYmWSQRSYzxCR+4vge2zMXs9BxMnPFdL7vOIWPMv4Rtzb09yb244znu0qVfbzHZ+ZxhrI5yqP687xjLGG13MBtrqtieuz3jc84zvtD/qD/FS8+ZokpXOo4J27al/0hEnMUK3e4r6aDTjroZDXrzddV4HBw0td3usRYzvHeH3Gn/leWsJz35Wc8ajzPZlkV8Tki0cmMF1aN1+CMmhyRxSaq2UQV5+vXcZHvV/0+j08OrFTZa9m/t8Dhjb4/sVR+hVf6uNr5g6jPo/DzTsbfaMpcSkPmp0xzTmQz1egYbKKKT42VyW5ev1gnN3Oq7zI2U0WFKOMZ911R7b9btnGS9yeskRtw4YrrHCVZnO04kSUZz3Ge42TcuGiWreY/HZ12OthMNc208DvXz9lOHf+RH/Ck/nKymx53rOOjjk6+yLWNZcFjt5TSEmRSgcN4EXyN/oDP+Zr1rGcLS+RyntBf7PexPzdW0cJudAxW8Q3V1NEi7cHgqY7x7Mr8nJ2Zn7E88yXOch5vmRf621ZHI5/IL1jHZr6W67lHf5ytbGe2mMIFjlNT2mxKoVAoFHaivsv57W9/yz333MNRRx1lvjZr1ixGjhzJDTfcwCeffEJOTg4/+9nP+P3vf99j/wMPPJAnnniCm2++GfBrDhmGwR133MGhhx46gI+SfDLJIEdkk29ZgQ08zhe55r940l+9LbdwkUeOWZoTyBQayhmHttJAYpsJaD12ochPSN+IlmiDPuE0IFWp8uAhmoxDax/NIYvdXU6J22QtUxgf9bkTbo4irGYI9sBhXtDNbiQZteGwZ3n3p1S5e3Em3JjdITtNU4/KNNOeSybWUjxI3VJla9lhfzJ8qmWd+TheJmCDhVDXWpfs1m+rkrUcr3XrDKdqn4gGq8SNGzdCCHLIYhctQM+xu50Ocx/l7B4/+rpmDqRvBuu5bjNqzGBwXpjyc+t4GdBfDCX3kUv2oJzTKhQKhWJgRB04XLlyJWPGjOnx+pgxY1i50r9aP2fOHLZvD+1Weccdd3D44Yfz2Wef4fF4uOaaa/jqq69obGxk8eLF0TZnULEq83XyM0K7y13uXMjlxF/MfiBlc2WixBQD11XGYQ/B51hinfD9zvVzDtT2iunxY0G0ZabllCAQ5n4aGgYGHSrjcNAQzXe6zXJDcIp2NA8YTwPR3awk2sXZisPmqmwPHOb3uNntfzvturID0zgMZzJgDez0xy1XEZpgaYhGdtEuO8hKMV0u62/yZMeRUe9vvdYdru0XkzYNVkLNxfbu/C5fyNWAP4BS6ezuF6lumBMJ1vExUIKaS7YZOAzGqv2oMg7jR18LWv3tm4Y0qA66jm+WVWbiQbjAYagF9FDzgXMdJ/FL1yX9aptCoVAoBi9Rp1lMnTqV2267DY/HY77m9Xq57bbbmDrVrxFVVVVFeXno7KOZM2eydu1aDjjgAE488UR2797NySefzLJly5gwIXpdHoWdgQQOrZOCXV36NTo6hjTC7ZLWBDT6SiiM+Y3ku0a343assxljRbSBQ4dwUEhej/3bVOBwUBJNNsMUi47SP43eTazu8T3OKZ5LOMVzCXf7HjNf/6v+PKd4LuEe3+P9am+0aLbAod01NPhmNziwGA2ROtmHw7o4E84cJTAWgTJGiSUjQwRhrUHaVKHK0uZQn6nP/eleJBiK/ctq8FElaykgzzTRCQ6wpCNWuYQM3IBfziFA8LWiJch9VxEfwl2jA69/Zazr1/W0np09qok2WiRIwmUKlosS83HAYCjUeKkWtxQKhSI9iTrj8L777uOEE05g5MiRzJ49G/BnIeq6zquvvgrAhg0b+MlPfhL2GAUFBfziF7/oZ5MVvTEQva352izW6hupod6mS+fFZ04mhwrP6a8zQYxikhjDHmJazI77mbGSh/VnMaSkknJGieExz2aMFdGaowAsdHyHf+uL2Mg2c2LajipVHixEmgH4a++f6KCDSYyhWBRyoDafS7VzeMN4j63Gdh70PcNFzjNt+/zJ9ze+kZtZY2ykEw9OHLTL7nGkXbazUq7hbWMJv/Hdjwsnk8RY9tRmcqfr2ph+Tgg2R7F/7uDyuk489Jdcclgg5qGh4e7HONmXOcpPvb/FI73MYBLFooAjNKUZFStGiRH8VFvIU8Yr7KadEQzjz/qz3KZdneymRYUDjYPEXnjw9Usnt0k2m314jKiMQwsHN1ki00w6zicPIQRHaAfQIBsBgZQypuZog43dss18HBiDpjGBtWwCwDDsCyvNcrfZX8YJu9GhInZolsDhAjGXepoYzjC+lGvx4aOIfP6mv8hljnOj6p91RiOHiL1pki3soJFxYiRLjS85UOxFpsjgO9oRIfcbJSo4VOxDjshmppgE+J2ep4rxNMgmHDiopJz52syBfXCFQqFQDEqiDhzuv//+bNy4kaeeeoq1a9cCcOqpp3LWWWeRl+fPNjrnnHPC7j9x4kTOPvtsvve97zFp0qR+NlsRDmvmTLR6WwUijxrqe7zuwTvkAoeLjE9421gCwI3uy2J23BXGGlPQeqaYzHccR0bsUJtoojVHAbjNdTWrjfWslZvM1zqkyjgcjPT2nT5rvMZGuY1MMviB4zRmaJO42vUD/tT5NwBeN97jIuyBw1eMt3nP+BSAo8SBOIXD77zZdUOeJbJYLdfbxqiP5Qo261VxCRz2lnEYnCUT0G/sDzXsYLH8HOhfxqE18yM441BKyaP683TioZwSznWcpMTmY0iuyOZW11Xc0/kEEsl6tvCS8Ra3kVqBw9VyA+/JzwAoEgVR779WbjL78C3iZzFtWyqQRfc1+AM+o0N20kQz78ulgD84UmDJpk83rKXHGV1/iwaazNd0ERQ4pNXsL/uwR/wbOESx6vRe4/whRzkO5GjPBTTIJqCrMkj6v6totE13il28Kz8xnweybHfJFpDwD9c9Ifcr1gp4PeMR22tfG+tZLTeYz092HMlsbWrEbVEoFApF6hC9BSSQl5fHRRdd1K8TXnzxxTz99NPcdNNN7Lnnnpx99tmcfvrpDB+uUttjwUDK5sKVKA1FgxSbMUoMyy6sQtI3Oy/nGMfBMTt2rOmvI+54Mdq2s8o4HDxEknEopTTLjyaI0Vzu9OuBlVKEGxcevCEF0QO/mXxyeSnjAQCe0l/mAu91AFzoOI07fX9lC3b92x3sRJc6jn7oA/ZGbxmHudIeOGy1lN5FizVjsD8LLB4ZPuOwgSYzG3K2NtX8LhSxQwhBAXk00Qz4+3GqZZg1d0mLgL3sNlLs17uhV6qcRZbtebWss0mIVMlaCkT6Bg53051xmCkCpcrZ5nXcK+xzwBZrf1MGGHHDurgXuHaH0xksFZEHDgPuyYB5TQ8snkUrzROss3ih47SI91UoFApFahFR4PDll1/mmGOOweVy8fLLL/e67QknnNDr+1dccQVXXHEFa9eu5amnnuK+++7jqquu4tBDD+Xss8/m3HPPjbz1ih7YhfqjiwtXEjpANhQNUgKBEydOyiiO3XFTSKssWo3DAOO0UVgl45TG4eDBHgwO/Z1ag1XWPqoJjQpRzia5rYeukTXYGK5fCwS5IqeHD4mOTh2NjGBYlJ+md3rLOAw2MWmmtd/Bos5eAn+RYF3sCc4Srx7iAZ1EkUeOGTj04KWenQyL4bgfb6yBgP5ozgV+uw4clFPSx9bpR1ZQ1n81dbbfW5WsZToTE92shGEtVc7syjjMsQRTfUGLx/ZAtQocxgvNtvjln1SFug5Uy1r2IPIsv2ZLhmkh+dTRYH7H0V5ngucCymVboVAo0peIIksnnXQSNTU1lJWVcdJJJ4XdTgiBruth37cyefJkbrzxRm688UaWLFnCj3/8Y77//e+rwOEAGYg5ysgwE4ahGDjcLncAUEGZrVykv/ikD6dwssRYbr422AWk+xs4DJ54+vBxcufFYYMyB2nzVSZVEgj+NnSpo6Hxe99fzNeCv8tKytnENhrZxXc6f2L+NrzSa+qiWvcJznDMDJORt9XYzghHbAOH1iDck/rLfGysMJ9vkfasRy8+OmQnWSLTNIP6k+4vy+6rb3os+ogZov8ah25ctt+IT/qokd3SEYPVRCkdyBe5toD2732PcLsrdcqVA4GAHLKiztz1SZ95vRvBsJhn/qYCWdgzrLYZ223zocd8/0priYBWogsc2sxRVKAoblg1DgNZ86Hm6U/4XuQIbUHEyQLWhYYSUUidbDCfRxM49BpearrGjgAqkKxQKBTpS0RXGaswcrBI8kD45JNPePrpp3n22Wdpbm7m1FNPjdmxhyoDCRyOERUscT3H4d5zbZpfXumNrlY1xemQndSzk3JKmKfNiMkx53m+w065iwzc7MMezNAmUUz0WlSJpD/mKAAjGU4u2ebNSC45fg2loEyzb+RmGmjiHWMJpziO6pcbqCI6eitVftV4h3O915BFBhMZzZHaAVzuPM+2zYOuG3ELN4/6nmexsdT2nS5gHnO0afzYeZblfN0I4GnXXXxtrKdDdpIh3Fyn/4F6uZOf+H7FZ44XYvMhuzhM25f1GW/xR98TfGp8QbMtKyubeczgK9aZ2ZXFnr1YIPbkt64rOdRzNhJ/vz9OO5QJ2uiw57Eaq/SnVDkgBRGcrTiu8zA0BBMYxRHaAVzgVNfHeJFHtuVxDg/pz/Atbf+UCRYF+nZ/sg1v9N1LC62MZxQ3OmOn55tKWDUOM3BTTR3nOE7if8Zi3jY+5kX5P3PxLx1pNvz9RyAolPkAZFtclYPlaqwZh8pVOX6EKlX+juNIXtD/x8fyC7x4yCOX1+S73OS7j5tcl0d0XGvG4VhRyQ7ZaGZZTxMTIm7fNfrvEAgycJvXwVzLWKpQKBSK9CLqWdATTzzB6aefTkaGvbTD4/Hw97//vc+MwUCJ8jPPPMPGjRs57LDDuP322zn55JPJzVUrVQPFrnEY3dfrEi7mOKaR5c20Bw6HWMZhlazFwKCWBpxRBMzCIaVkm6yhjXaGUUypVsQUbdyg19AKZF5BdBmHI7RhtgwGHT2kDpKQAg9e/78hFpweDAR/p1Wylk48dOJhjKhkjFbJGFFh22aSNhaAIpHf8zsVMFqrYKI2Juz5xmqVjNW6XVt/pt9KPTvxycgy1aMhS2RSSSYVoiy0YYSA1cZ686nEn3nj//37b9J0dNtNcigGGjgMZBxajVE6ZCc7aAT8GUDjtJGD1n09HcizZBwGjCJ20ZLEFkVHoM15/dCbq5K17KadDWxlpjY51k1LCawZh514qJK1DBPFSLr1/2ppSNus3xatDXR/cMqp+Recs60Zh0Hjsy3jUGWYxY1QpcrDRDEefLR1zdEb2QXYdUr7wvr95ZNLPTsB2EGjX04kQqpkjc1YJ5fsmFToKBQKhWJwEnXg8Pvf/z5HH300ZWX2m5iWlpaISo2nTp3K/PnzufjiiznjjDMoL0/PiViyGEjGYYBxYhT1cqf5fKiZo1jFnmNRTryLFnOSN0ubzPPuewd8zETQt41GaIZTanvuQAv5mS/wXMdThl8zNbgUShEfpAz/rVq1im51XsVhjn3Dbnu5cyGX03d5eW/nA7+u6ka20UQzu2WbX5A/xvTW1vmdp7BSrrG9Vh10A2bNVAyFVeMwVhmH1u9ivjZLlfLHmVDldX1974MFKaUZ3O6PMUoq6e7Gi2AziFB6rVWyNm3/Pq22QKC/D+VYgqnBc0BrsChflSrHDRGiVBm6/uZBl1br77gvrOY2wZUe0QTHg4OVqkxZoVAo0puoA4fhBOS3bdtGQUHfpZdr1qxh0qRJ0Z5WESGxCByWikLbpGSoaRzG2mEyXg7N8aa/Gocu4SKTDDq63JStGVn27bqHn6EWnE4WskfxcDfbLE7J4fROY3k+6Pp9dW1SLeuYJMbG5LyREhxoMTB63AxZb5JDYdU47I85ircr8GjNEI/14oWid0LptPX1vQ8WdtNu/s76m3EI/oDRUHXItZYqQ/ffJDhwmK5YKwQCpabZlkWcHuYoUpmjJAItRKky2LM8s8mijfao+qe1VDm4qiCaOW/gnAKBRCq9S4VCoUhzIg4czp07FyEEQggOP/xwnM7uXXVdZ+PGjRx99NF9HkcFDeOLT/a/VDnAJMbyXxZjoCMQnOy5mJliCplBwv/tsoM2OpgpJnGD62LKRWmYI6YOUkq+NNYymgo66GSCCK9tFgmbjCreNT5mPKPoxMM0MT5GLY0//Q0cAoyjkq/ZAPgnvz/z3MrRjoNsmmHWwLaP2JeqKnon8J1ukdv53PiSTbKKYgpw4KAiDpk1ofrQDG0ic4xp7KKVX/ju4veu/2O0GBHzc4ejSBT0WCTxSYORDGcb/kDqm8aHvGV8xCp9HbXUk0UWxzsO43zHKQzXhpmB8WBzEyv/1t/lDeMD1hgbyA3KqpRIxotRzBHTzNc+1b9gXzGHFlqZLMbF+FMrgpnMWPZgGrvZzTdsAVIn47BFtrKnmEEnXkYT2W/HkAb/MF7nI2MZu2Ub4xjZq45nujNSDGdfMYdlchUONDbJbRzVeT475S6yycKJg+u9d/KW/iFXOL+fdn8rq6tyIPhTQqH52iZZhVd6WWR8ikSyRVZTQiFZZFIo8hPd3CFDqFJlsC90TGJMl9yHl7u8j/JT53m9yuDslLsQ0p9ZqGMwWYxnBGXsohknTmqNeh6Wf0cgmCBGc5hjvx7H+NRYSY2+AwcOcsmmEy8jKWeeiI0muEKhUCgGJxFHlgJuysuXL+eoo46y6RG63W7Gjh3LKaecEnLf4uJi1q5dS2lpKUVFRb1e1BobGyNtkiIE1gCMo58Zh4VaPrrhP45EUksDRbKGYRTbttsma9jINpbI5Rxm7MfJjiP73/BBQgNN/EH/KwDjGcWxjkMGdLw3jQ/5me82AI4RB3Ol8/yBNjFh9NccBWBZ5ssUduxJB5104uU+4ynel5/ZAocuS3bWUNPRTBahzFEWGZ9wofcXgL/Pn+k4rkdwK5bns3KN80LyyOEK3y1sNLZynH4o5zpPism5IyE4SNlOJ0vll2bQEOBB/RkAcsg29c6W6auYrI3luxxtCxyGolN6ONl7CeDPztmDqbb3J4oxHKTN5wbXxYB/8eIm/T466GSamMAFzu/G4JMqeuMK5/fNv3kAaxbWYKaZVpbKrwDYQ0ztY2s/9ezkPO/PASgin+87TjH731DkRMe3ONHxLRZ6ruFZ49+00UGG3Eo+OabMSDOtrDe2UmGUc512UZJbHFva6DAf54s8AGZrU8zX6mhgO/X8wncnK+RqBIIFYh4Ha3szTBT3OJ4iNthLlbsDh9ZMeU1oZubftfofONf5HVvQN5hVcj1PGC8CsI/Yg0Mce7PR8TY3e+8D4CnjZd6WSwDYV8wJGTh8wPc0TxuvmM+LyOcsx/FDegxRKBSKoUDEgcNf/epXAIwdO5bTTz+dzMzMPvbo5q677iIvL898PNhNIVIZ3VqqLPoXOAylcaIJ0aOMKYtMM1snXcqZrfpmJaIwpscbnmIZmdaJarQZh+APklhvxINLlq1mEKpUOfEEvtMqS4lySNOTARBJ1qq1NKqaxJYDBgf7WmQr1WGuTzlkmYFDgDbpv9kO9Otw+oZWc5VM3CH/vtbXdtJs/m7SVVNtsCGEoFKUs15uMV/ryxRnsNBs05uL7Ldr1dDMHcIlysEMF8Msz6T/7xK09tEpQ0tvpDJtFjO8gq4y2OBFn2pZa/abAnIpEHmq38QZe6lyN1ZJgnxp/w6qZW2vc9cWa5m59Thdj+toMF8LGHQFE6ynmEmG6gsKhUIxBIi6lnXhQr9Iu8fjoa6uDsMwbO+PHt2zhCOwD8B5550X7SkVUTAQV+UAoW5Wj9IO5FbXVbbXHvb9nct8vwHSJ/Bj1Yk5Ujtg4MezBEJ+4jxrwMdLFv0J9ReIPOpk9yTU6uQHqlQ5GYTKALT2+Xtc17OXNisu5w7Xh5KpI+YOCvbtopVWGTrT7DTHt7lX/5v5fHvXzZOnS6MwbODQcqN2qLYfj7tv77VN1kCuChwmjuDAYUuKlCpb+1dehOYo1t/Zec6TlflOF9c4L+Qe/XEApmoTuMV5JfM99koaTxjN3lSmXXYv8BXiLz0OvlZsNLaZgaSpYkLKmLylMuFKla0Zhy7hskUVq2Qts+jOFg3GuiBineMGxoDbfA/ZjhVK1z74On2M42A1higUCsUQIOrI0rp16zj//PP58MMPba8HLi663nsAwOFwsH379h6uzA0NDZSVlfW5/2DmbM9VuDzRu2rGkk+Nlebj/pqjhLpZfdtY0uM1a6mpR6ZHxuE2y4QoFjpvHxrLYnq8RGLLFutHlnCw8UQDTbZJqDWw7ZXpEXhOJQLf6AfGUvO1WBtx9FWqDPbfRaIDhxlBuq1613+heFv/yPb8df09fu78YXepsgg99ltNNvIiKAG/3/e0+bgiCodLxcAIzrRvThFzFKtDaqRZP9bgdAVlvWw5tCimgAzcdOKhStaSGyIQG87sK5WxVgYU4K8OCh67f+u733ysFjQSQ7hSZas5yia5zbbP4/qLHO04KOwxX9TfNB8HjHAC7JZt7KTZfN5BJ7f6HuI6V3dpvpSSTbLKtl+kCxYKhUKhSG2iDhyed955OJ1OXn31VUaMGBF1QEHK0DeSnZ2duN3JDboNlBbZilMm9zOUUUwBuUwQY3pMCiKlkjIOFHvhwUutrEciaZVtrDTWMMuie2N1xQ123UtVdskW9hF74MbVw20uGn7ovR6BIFfmMIkxjBD+byaVGIg5CsB8bTZ1egP17CSHbCaLsdzr+xuXus4F7KXK4YI1ivixQzZypucKkJKRDGe8GEUZsdWrsnsqh+5DZRRzsLY3Xuntd5Z0f7FmCU5lPE0048FLBx5cOJD4b56yyCATN8UUsIsWJPCN3MzvfY9YSpVDaxxaMzz6ciA9x3MVq4xvKKOEWWIyR1o0QRXx5VTtaLYY1aziGzLJJDNMBulgo9mSyR28WBOKTunhef0/jKGSbJHJvtqcOLYutRBCcKnjHD43VuHDx7vGxz226UwTWRYrmRZX6VzNP2+0jt3jGEkeOUxjAqPEcM5yHJ/gFg5NrBmH1vnYPtpsrnNcxMP6s2xgC25cZJJJO+28YrzF1I6jWJHxim1hbK2xkYu8v2K5/Np8zbrQ8GffP/jEWME4RpJNJrPFVJbJVTxv/IdOr4cbXZexU+7iAs91jGIEEoON+IOWyk1ZoVAohgZR36UtX76cpUuXMnVqZCLcAf74xz8C/onZX/7yF5u5iq7rvPfee1EfM1Kqqqr4+c9/zuuvv05bWxsTJ07k0UcfZa+99gL8wcxf/epX/PnPf6apqYkFCxbwwAMPRO0AnSdycYXJOkkUgYnAQdp8MkVGH1uHOYaWx3L5NS3spoRCGmgC/M561hIIqz5YumgcrmUjH8sVANwlruvXMaSU/FP/D220U0Yx87XZHKTNTzltz4GYo4C/hG5rl8lEO53Uy52UyiIuxR84dAqrxmF69J/BjvU7baKZtwx/Ft0eYirHOg7B0U9d1EgIFzh0CAcbjK1sZTvDZGKF9q2Bw9VdLuABxjOKDOGmQTZRIgoZIcookyW8Id8H/AYT/zU+6FPjsFVaMw7DBw47pYfnjDcAv9j8kY4D2E+b278PpoiabzsP4UzflV3fZzNLja+S3aSIaCWy/hWgWtaxSH4KwCymME2bELe2pSJHOQ7k9/ojAMw2epZ8pqPGoVXXLjCOWa8VI8QwvwM9/rnlQE3jFJFh1Tg0LEkXU7UJfJuDuUV/EPDPv4sooJkWADZRxXa5g7Gi0txns6zmQ/m57fjWhaxFxsf80/gPAP/n+BE3OH9CXudcDGngMpzcyGVsldv5t1wE+K+PoY6jUCgUivQl6sDh9OnTqa+vj/pEd911F+APqjz44IM4HN03qAFX5gcffDDq4/bFzp07WbBgAYceeiivv/46w4YNY926dRQVFZnb3HHHHfzxj3/k8ccfZ9y4cdxwww0cddRRrFq1KioTmCfdvyffnR/zz5AMKkU5q+UGW7ZMsFi8Ow1dca2lkv0tx2mi2RQbn6VNSVktIMOWcRg91r+fQCCRtr+vMkdJLgFzD4DbnFdzqGOfmJ8jklJl8PeVrXI7O2ikQ3b2e9EjWsJlCQJc5jiXi1xn2l6TUpLdOdv8XC2y1Vw0CW+OEllGmNWw4jBtP6UZlQTyyTV13Gqoxyd9tgWOwUg0Ga1g1909VIv9bz7VsZas17CDTDJ6NflKB6y6jaECh3O16fzBdW3C26UIXaoMPWVFsrDfq1RRy1i6A4ctIaQXrJmCVp3pHzpPxyEcVFLOVrab8zbr/G2qGM8GudV/HFWqrFAoFEOCiGbEzc3dmhe3334711xzDbfccguzZs3C5bLfeOXnhw6cbdy4EYBDDz2Uf/3rX7bAXTy5/fbbGTVqFI8++qj52rhx48zHUkruvvturr/+ek488UQAnnjiCcrLy3nxxRc544wzEtLOwUYgcGgN6ASbW7jSMOMwMDHKItMUCe/vMSD1dA2tDLRUeaRlYltALk202P42yhwl8Vi/0za6A4eVIj46Z5H2oUpRbtbGVcs6xotRYbeNJcHmKFbGWLI1AgghyCeXXV2ZHbssQZtwx2qxmVeED+xYAzoVcfo+FL2TK7LZIf2BQx2dWhp6aB8ONlpsGa1938Dbr0+qnwVj/Ztsk7Xkk2MLHKabOYqUEo9lnhcqcNif679i4IQrVQZ6yIpkCneQSUqN7f3mEGZP1oUG6xwsMDerFGW2BT2rBniGyDDPpxyVFQqFYmgQUeCwsLDQVmYppeTwww+3bROpOco777zTj2b2n5dffpmjjjqKU089lUWLFlFZWclPfvITLrzwQsAf0KypqeFb3/qWuU9BQQH77LMPH330UcjAYWdnJ52d3RNJa2A1XQhki2kIM/Os14zDNDG32NU1uaoU5f0qLe6QndTIejQ0DIxBf9PZGwO9cbBmHOaQRRMttLCbRr2JQi1fZRwmAet3upNd5uNEBLj7DBziv2GpkrW2Mqh4EmyOYmW0GBHy9TxyugOH0ho4dHKP73HeMz61bW916s0PE9hplx3UGQ3meKvMB5KD9UbahZNNRhWVjsH9XbTYNA57v4HfLdtokDvNDHDVz3qSKTIopYh6drJRbkUPyvRKt4zDNtluuy64Rc8sbBU4TA7Wv/p/9Q9Y6PgOmvAHEx3CgRuXuWjvkvbbuRqjnsDarEd6aZRNPY5vzzjsnoMFtIYrxXCQK3Di4GTPJVTRHYzMsMzfVKmyQqFQDA0iChzGOti3bds2Xn75ZbZs2YLHY5+E3XnnnTE914YNG3jggQe48sorue666/j000+57LLLcLvdLFy4kJoa/4WwvNw+gS4vLzffC+bWW2/lxhtvjGk7Bxs3OX/KFDGem3z3mhPl4IxDq5FBOmQcdkoP26kjhyzG0D9jlL/pL3Gp7yayyeRQsS+XOM+OcSsTx0A1DisZznCGsYNGckQ2QsJu2qnwHsAX7ldV4DDJ7Kad/ZnLHto0ciNw++0fkZUqjxMjTT3Vaur63iFGhCsvFggmaWNDvpcvcs2P1cQuNDTKKOYd+TGLfZ9TQB5TxXhz+2EUU0Ihe2uzOUo7MOQx79ef5nrfXWSRwZHiAM51fGdAn0vRP6wZoRoal/luZqnjhSS2qG+aZAtuXOSSHdIF2Mr1vrt5WH+WHLI4XhzG0Vp499WhzPvuZ1gnN3GW90paacOF07xGpZs5yizPcbbnKuNw8HC240RyyOZHvht4Sb7FA/rTXGyZU37iep453hMAWMla275b2W4+fkZ/lev07nurkzmCUVqFzVE9VMbh713/xx+5gft9T/Ge8SlllFBKEdPFRP5s/AMnDsYzmgO1vWL7wRUKhUIxKIkocHjwwQfH7IRvvfUWJ5xwAuPHj2f16tXMnDmTTZs2IaVk3rx5MTtPAMMw2GuvvbjlllsAmDt3Ll9++SUPPvggCxf2T0Pq2muv5corrzSfNzc3M2pUYjJkEsVwUUoR+bbV9WCNFOvKdDpoHAY+327abY7R0RAoA2ujg3JRSqlITEl+PLBq6vQr41Aro4YdgD8oaw0h1dGAwzL8+NIkY3WwY70ZlBgUaQWM1XqW5MbjfL1l8A4TxaYJU3CJVTwJFzh04AiZeQN2ncJANlINft1fD15cOHuWbgkYrg0jS4TWzK2SNUgkbXRQoZVRLFLLgT1dyBc5ZlC4E4+trHew0ip2+zOK2EVBHyWDVbIGHZ1W2hirjVRuqGEYp42k2WillTbAvrCVbuYo7RbJClCBw8GEW7jIE9lmqXxz0Bx8ijYOBw70EFIv1rGrJahMucxRSoUos5mhhQocjhDDAP9imXlNE1AiikD375Mh3AnTJFYoFApFcok6OvLoo4+Sm5vLqaeeanv9ueeeo62trc9g3LXXXstVV13FjTfeSF5eHs8//zxlZWV873vf4+ijj462OX0yYsQIpk+fbntt2rRpPP/88wAMH+7XYautrWXEiO7StNraWubMmRPymBkZGWRkpP+FMriMKVgjJd0yxpoj1CLrDatO2U+cZw24TcnEGujrz21DKUVmpkZweVeVrLX1H18a9J9Uw4EjocY9vfUh61iTyGCNO4w5SjbhTbHyLBmHAbLING/Aj3YcxP2uX0fVDutnvsL5/aj2VcSO4HG/iWZaZVscM3IHTrNV47CPjMNAP9PQ+IXzori2K9UJp/+YbhqH4QOHisFAriW4HxwAFEKQRzZNXdIZVqzXlJ3Y5ZTOd5zCbG2q7TWftAYO7beGlzsXcjnd93ZfGeu4TX8IgHma/f5KoVAoFOlL1PWHt956K6WlpT1eLysrM7P6euPrr7/m3HPPBcDpdNLe3k5ubi433XQTt99+e7TN6ZMFCxawZs0a22tr165lzJgxgN8oZfjw4bz11lvm+83NzXz88cfst99+MW9PKhEcOOyRcZhm5ijWz9dfsWdrtlSq60cNNONAE5qpnRe8Ul4la2xZncocJTFE6nIcu/NFhtUhMpGBw3Aah5mEXxgKpedUSpHl/eizuKwBneH0vL4qEkMoDcrqQZ512NKlPezCGTaDNkCgnw2ndNC7RSebUopCLiykk8ahLnU6gj5P4DPbr/+KZGG93gTrjANkkRVyv22WuWiw/EeohXG7xqGjx/tWonVyVygUCkV6EHXgcMuWLTZX4gBjxoxhy5YtIfawk5OTY+oajhgxgvXr15vv1dfXR9ucPrniiitYsmQJt9xyC9988w1PP/00Dz/8MBdffDHgX7H76U9/ym9+8xtefvllVq5cybnnnktFRQUnnXRSzNuTSlSKcmYzmUzcZOJmhfE1B3eexTmeq9lobEu7jENb4LAfN/9fG+vJJ5cxVDCS4f12ZR4sxKJUaX8xl73FbArJw4kTgSCLDF7W37atcKdD/0kF7Fmk8b8djLQPjaCUaUxgLzGTrF6y/WJNGcUcpR3IBEbbxrPMXgIws8VUyinBiQMHGuWUMkZ0a6LmRbnosNz4mnJRyr5iDgeKPXGFKZFWxJ+ZTGJPMdMcww8We/Oh8Xmym9UrgetWPrm9ygF4DA8TxRj2FDOYq7KE+kQIwT5iD8YxklyycXRNl9NJ4zBQig3+4GAR+ab5hipVHhxYs4ibg3TGAfbRZlNJOe6uK5LAH/zNxM23Ohayd8cpfG18gxMHWtf1KpeeGdTWcudAHwhHSxRZzgqFQqFIH6IOHJaVlfHFF1/0eH3FihWUlJT0uf++++7LBx98AMC3v/1tfvazn/Hb3/6W888/n3333Tfa5vTJ/PnzeeGFF3jmmWeYOXMmN998M3fffTff+973zG2uueYaLr30Un74wx8yf/58WltbeeONN8jMTNwN7GCkSBRwpvN4OvCY/z6WX/Cc8TqL5VJ7xqFM/cm0tQwk2pt/gP8Y7/Oi8SabqWYvbWa/XJkHEwM1RwG4znkRn8gvqKYOHz4kknY6WSKX21x9VeAw/ent5tMlXDTRzGfySxYZnySsTVO1CbzkfoAzHMfaAv3uXtyWr3CeRy0N+NDRMailHmtOTrQZGC/qb/Ka8S5L5HJ+5rwg6s+giB0/cp3JSrmGzVRTTS2L5Cf8SX8y2c3qlcBNfF/XrBrRwAdyKUvlV7YguSI8EtjINlppM/VM0ynj0Jo5JoHrnD+2PFeBw8GAtfqlJUTG4d/dd7M+8y2aM5dzlHYAEn8F0Hq28gFL+YI1LJErqKCMax0/YnPmuwzTinscJ1D1EVymHApbxmE/q3MUCoVCkXpEPXs888wzueyyy8jLy+Ogg/yOfIsWLeLyyy/njDPO6HP/O++8k9ZW/0XnxhtvpLW1lWeffZZJkybF3FE5wHHHHcdxxx0X9n0hBDfddBM33XRTXM6fylRYym2tNxtVstaWGZMOgZ/mAWYcWkssh3eJSqcyAzVHgfA6UQBNslt3R2kcJoZEl59FUxpdIcrYLnewnR14pTehmXf5IpcsS3myo5dAuVv4szmsJX45lnKxaDMwrLqovf1eFIkhjxwaaOoa82QPbd/BRuAmvq9rllVGQ/WzyKgU5T30FjxpZI7SEpTBZpVokFIFDgcDtlLlEBmHVnr7XeeI7F6DfIE5WF9lyv52DFwPXKFQKBSpR9SBw5tvvplNmzZx+OGH43T6dzcMg3PPPTcijcPx48ebj3NycnjwwQejbYIigVh1+vbX5vGc8ToQCBxaS5VTP+NwoJMha+Dwckf/HLsHEwM1RwH/ZLWAPHaFEO9ukt2vpUPgOfUYPKXK4B9rlsqvkEhqqGcUI3rdPpZc7lxIjbGDu4zHgN4DhwCZZNoChxnCZf5gos3ASCdd1HQgT+TSIJvMnhus7TuY6JQeMwOur2uW9fpk1RRVhGdkiN9jOug5BwjWzMu2uL4nWtZCEZoM4caNCw/ekBmHVnr7XV/qOIfznd8N+353xmHfgUO7HrgqVVYoFIqhQtSBQ7fbzbPPPsvNN9/MihUryMrKYtasWabZiCK9qKR74rxSdpvMvKS/SblFxD8dAj8tAyy/sIrop0NGR6xKlcooDhk4/MhYZj72ytTvP6lAosvPogscdt/0VMs6RonEBQ4BskR31mBfpfkZQaYJS4wV5uNoMw6rpV+4PpuslNdFTQcCmXuBvttMK1JK/qg/AfiDzIOFaG7gA/0MVIA6UkL9nVrYzT2+xwdVP+gP9/ge53n9P7bX7vM9yb/0/wJQL3cmo1mKEOSTSz072SprOMVzie29g7T5Zl+0ztd7HKOPOW1UpcpSmaMoFArFUKTfQjeTJ09m0qRJAH1quRUVFUWs99bY2NjfJiniQKUo50fa6bxhvE+zbOXHjrP4yljLV/IbHtdfMLdLh1X4VtnGXDGdPHIYRk8NmN74rudSssliGhMYLSrCurWmErEKMl3j/CGL9E95Xb5LE80IBG7cbGW7uY2uXJUTQqJdla301YdOdRzNBmMLrbRxt+8xnnHflaCW+cm2OSn33taTtCN4yPg7AFlkUkQ+JRQyQYxmpjY54nM+pb9MAXkcIvZhgTYv5XVR04FA5l7gt2JgMK/zJKqpw42LedoMDtT2SmYTTdpkO/uIPZBIxlIZdrtm2cpzvjcYzQjyyGVvMTuBrUxdDtX25WTtSN4w3qMTL+WUkIGbP/v+QSYZ/MjZtzzPYOOn3t9SLxtZL7fSITvNbDbwZ7CaWYgSpjKeqWI8pzmOSWKLFX9wXYsA3tDfZ6v0z5vaZAdV1LDa2EAeOZzv/C4LtHlMZhxr2djjGH0F+PoqVf6J51c8a/ybNjrQEJRQSCXlUV3vFAqFQpHa9Ctw+MQTT/C73/2OdevWAf4g4tVXX80555wTcvu777673w1UJBe3cDFTm8xDxrMAzBKTaRA7eU9+RgNN5nbpEDjcJKtYJlcBUCIKI97PJ33821iEgcFIyjnMEXuTn2QQC3MUgHOcJ3KEYwFPdr5ovuajnTbazefpkLGaagw2jcP9tXl8wxbWyy3ky8RnMWRa3Jz7+tsc5zjUDBy208FoUYFbuDhQ24sRUeibLje+5mPpz1a83vGTqNusiD35IqeHrt3XrDcfbzC2DprAoQev2X8mivBVH1Wylk/xm9rNFdMZr41KSPtSnWnaBNpop40OAKrpztr8TH7Jj5LVsAHwuvEem2UVuWQxToy2GdvlipzuzDQBpRSxnzaX2drUJLVWAXC649sAbJc72GX4qzcMDGpkPQCfy684n+8yQRsNQvYYvwDy+shI1qVf0zpc4PAz+SW7u+ZsOpIGmhgnRqrsZYVCoRhCRB04vPPOO7nhhhu45JJLWLBgAQAffPABF110EfX19VxxxRU99lm4MLVLOoY61olBlazlPMcp/KNL6zBAOpSaWk0KopkM1VBvGonM02akfAlTgFiYowQooxiBCBtIUuYoiUESC+XKaM4X3dkqRTnr5RaaaaVF7u7zZieWZFqyhPsKd1rLvjQ0XnY/2K9sQZvuXC9lZorE0ZdWYF86Y4nEumBn1RwOZptFR/Nb2v5xbVO6EU43zqpNmkro0p/dn08e5zhO5BrfHeZ7d7iuYR9tj2Q1TdEHlzsXcjn++WWNrGds5yGA/TqSG0Yqo6+Mw0DVhyOsxmHP69sR2gF9tFihUCgU6UTUgcM//elPPPDAA5x77rnmayeccAIzZszg17/+dcjAYTDr16/n0UcfZf369dxzzz2UlZXx+uuvM3r0aGbMmBFtkxRxxqY9Rl1IwfB0MEcJaEDlkROVxmG6is7HMsSkCY1cssMaDaiMw8ST6KLYSILP1uBZtaxlihjfy9axxY01cGj0sqX9JiybzH6XGKebLmo60JdWYAttCWpJ31jHTTfhXcit+oYj0+galQiCFxHduPHgsf1NU4lAgEhD62GOkmWTa1AMZsooxokTHz5bXwynsZvXp8ZhV6ly2AWInstpKttQoVAohhZRBw63b9/O/vv3XLHef//92b59e4g97CxatIhjjjmGBQsW8N577/Hb3/6WsrIyVqxYwSOPPMI///nPaJukiDOByYELJ81GKxVO/3MnDvSuG+x1chMnd17MAm0elzsX9jL5GJxIKfHiRUPrczK0S7YgkTzm+xfvy8/YIRvNCVw6TaSkjK2RRg5ZtsChhsBAIhD8R3+fU+QlYfeVUrJAm8cVzu+jif6XTQ91Ep9xGJ2mYuD3U0geVbKOKSQucJgpum+a+yrNtwZpssnqZcvwNMlmPPhw4KCEgrTQRU0HAkFhBw50dJw4EQhzcaxFDtKMw16mc/U0kk0WbbSn1TUqEVgXMxxoFJJHPTtpkE09jCoiYX8xj4ucZ5AjsmPZzD5plq14pc8MNjuFkxZpX8jLssg1KAY3mtCooIxt1FArG8y+uFpuCLn9g56n+ZX70rDXmb5clY0Q1/JQSQQKhUKhSF+ivgOfOHEi//jHP3q8/uyzz5pmKb3xf//3f/zmN7/hf//7H2539wXssMMOY8mSJdE2R5EAimUBIxiGFx+r2UCuyGacGIkPnbFUcp3jIkoo4t9yEb/Q7+I5441kNzlqmmhmk6xCIpnM2F63fUj/O8M79+d6/W42GVVk4GY/MYertR/wI0fqiaWHI9YOvEszXuRs7UQcXcNO4PgzmMhoUUGzbA35b5mxyuxbn8uvBtyOoUxiw4bR96ExopJMMmiixVZemQhO0Y5kV8bntGesZIn7uV63HSdGsjPjM5rdn7Ms46V+ne9e/Uk+l1+RgYt7nL/s1zEUsadSDCcDt5mZ5cNny6gPztJKJtbAYW8ZhxvkNtpoJ48cVRIfJd91HMU8pgOgY3CG9m2aMz7nh47Tw16zQv2rMxr4t7GIX+h3cpE38b/3X3j/QKXnAOrxuyU7QmQcWhdPFIOfDzOepTnjcy5wfNfsZxlhxoE75aNc6/t92GP1FTgMaCCC/1r+M+18DtH2GUDrFQqFQpFqRJ0WduONN3L66afz3nvvmRqHixcv5q233goZUAxm5cqVPP300z1eLysro76+PtrmKBKApmn+CaXsLssNrExXU0ceOWSJTDMq0Sk9yWpqvwl8LomkQMuPaFsfPgpFnlnWXKoVJVSTLd7EyhwlQIkoZJgoMrNUA0c3hNFraXiG7F5gUCXNsSMWweBYn69clNBBJ2DXHE0EDuEw9Z3C6zz50YTmHwMFlNC/TMHAONJGB+O08I64isRSJPLpJPw1rFmGlltIBlZtYVcvgcOAHl8Lu6nQVEl8NOSIbP/1qeuC1UQLTuEkX+RGJWmSSYaZxd8cRrIjnrQGldg7cfTInu1v9rQiOZSKIgBbX8wlO6xIb3vXtTUU3a7KoW8LDaxjjZMyrUQFmhUKhWKIEXHg8Msvv2TmzJmccsopfPzxx9x11128+OKLAEybNo1PPvmEuXPn9nmcwsJCtm/fzrhx42yvL1u2jMpKdfM0WKlkOBvZRhPN7JZtVIpyVslv6MTDOc6TKNYL+aHvegA8vdx0DVaiMSmw6sk84f5d2pZ+xdIcJUCov9UwUcLz7nvD7vML7538Qf8roAKHAyXa0uFEn8/aP6z6f+mIXRs1PceQVKSv8X8wmaN4IyxVDlyzXDgZRnHc25VuVIrhZjBmB42A3agiEjzSS36nf44cXCKcCFpku+25A0ePAKbSOExNrH3xMd+/uMgXOqO1TXaEPUZfGYcey9wrm6y0MQFUKBQKReREHDicPXs28+fP5wc/+AFnnHEGTz75ZL9OeMYZZ/Dzn/+c5557DiEEhmGwePFirrrqKpvhimJwUSnKzYlztawLclqusemmdKagUcq2KG7iA9kbDhwMpzSu7Uom8QgxWc1jAi7LfWmGWbO/fF2OkIqBk4iMw2hLla39o2qIBA7duCilKMmtUQToyzxkUGUcWkuVRW8Zh/6+ViHKlUZsPxgtRpiPG2RTv47hFi4yyaCDzqQEnxuD2u1Aozno2pupAocpT29ZsB30P3BonddrCbdWUygUCsVgIOIZ5KJFi5gxYwY/+9nPGDFiBOeddx7vv/9+1Ce85ZZbmDp1KqNGjaK1tZXp06dz0EEHsf/++3P99ddHfTxFYhgvRrGnmMEhYm/qaWK+mM3+Yi6Hin15XX/PpqvSW5nXYKVV7maBmMeeYobtJiGYP/n+hhcfk8RYTtAOwyF6L2lMZWKtcQgwUYxmfzGX8YwyJ5/r5BYu9t7Ig76eEgZgz6TxqYzDAZHojEMrkfShMoqZK6axn5gT1h0y1VlsfM7Dvr/jwsksMZkTtW/125VZEXsqRBmzmWq7puWRQzGF7CvmUCGGJbF1duzmKKEDh//1fcAcMY0DxJ4cJvZNVNPSivGMNh+vkt8wq+NYjuv8Ia/ob/e57599z3Kp52Z+4LmOnK5S4GSUKpdqReRbxlQnTkpFEYXkk0cOB4u9VVA5DRgrKjlKHEgZJWTgts2fPjNW8g/fv3vsI6U0NV3DlSp7u+b1DjTmi1lxaLlCoVAoBjsRZxweeOCBHHjggfzpT3/iH//4B4899hgHH3wwEydO5IILLmDhwoUMH977Sr2UkpqaGv74xz/yy1/+kpUrV9La2srcuXMjMlZRJI8skcHSLmOKH8t6LnB+l1t8D1BFLav0dTyo3WRu60nBjMNVfMNi+TkAI8LcGHbITq723Q74y9meybgrYe1LBvEIHM7SpjBFG8+H+jLztRZaeUR/jjFUcJHzrB77uCwO3apUeWDE4zuN9HyRoAmNetnEVrazTm6OU6uSy0v6m/xRfwKAc7QT+bP7t0lukcJKlshkC1W2DJsWdlNIHkvkcmoYmcTW2bGOh+HMUZ40XuYt+READ7huTEi70o1xWiVdcRVaaWMdm1knN2P4DI53HNbrvrf5Hjb1Wkfg15dMtDO3lJI3jPdsczOBYLGxlCaaAdgotyW0TYr4ME+bwUsZD3Cz9z4A1sgN/NP4DwBV1HG3/jinOb9t2ycQNITw+r6BUuUJYgwvZTwYj6YrFAqFYpAT9fJiTk4O3//+91m0aBFr167l1FNP5b777mP06NGccMIJve4rpWTixIls27aNUaNG8e1vf5vTTjtNBQ1TgHy6yx9aulbLAyW9tTTYzDNS0RzFqltYGaZUzbpNsSiMd5MGARZzlBhmIoQrBe8Ik6nqVBmHKUt/XJwD/aOenXTI8GLuqYpVu3GEUEYVg5GSEKXj+eQB/uz0wUIkrsrW61aF6m/9YnQY86JoKw4yuoyUmtltGqUkgnp29ljQ9eFjZ1fQEJTOaroRMEwZJSpsrztC3Pb5LIFDZ5g+3YZfI1PpYCoUCsXQZUDRgIkTJ3Lddddx/fXXk5eXx2uvvdb7yTSNSZMm0dDQMJDTKpKA1S04IOxtnWhaxb5T2RwlkwyKKQi9jcXl9VBtn4S0K5kYccpOC2c+0BxG98laaqMyDgdGojMOrUR6vpE2g5S6XrZMTax6qtc5L0piSxThyBc9y+QLhT9wGG6cSgZWV+VwJYZV+DV5i8gnR2QnpF3pxogBaBnrFpOxQNDGh890j08EofRig88/UgUO04rLnQu53Lmwx/caqgrAFjgMkXGoS92ce6nAoUKhUAxd+h04fO+99zjvvPMYPnw4V199NSeffDKLFy/uc7/bbruNq6++mi+//LK/p1YkAWvGYeDGyRo43EWL+TgVNQ67xePLwuqNDTUXVHuQKXaEMx9op6OHWDuowGEq0x9NxQrLb+se/fFYNmdQsFpuAKCUIjKFugkbjGSEuDkOLI558PIH71+5x5f8vtmXOYqU0maMougfLuEKmakVKPG8x/c4p3gusf0L9A9vGOmWRAagQwUO62Sj7bnqH+lJ8PdqDRJ2v9b7AkS7JcicKTJj2DqFQqFQpBIRaxwCVFdX89hjj/HYY4/xzTffsP/++/PHP/6R0047jZycyITszz33XNra2thjjz1wu91kZWXZ3m9sbAyzpyKZ5FlLlbtuoM50HMdauYmdchd/018y3081V+VOw8MYKnEKjQlidMhtpJTc5X2UCsrII5ejtQMT3MrEE6/stD20qdzt/AW3+x6mg0586GholIliqowa8h0TbdtbV8BDTXoVkZNMjcNIz3eG41jyyeV+/Sn+rP+Dv+uvMVWMZ1HGU/FqZkK4z/ckz+v/pZgC9hVzOMd5YrKbpAjDdc6L+Ni3ghflm+xkF43sopru7Nff6g9QQC7TxASOdByQtHZaF1JcIaZz9XInY6gkX+QwV0xPZNPSjgPEXmyU29hOnfl3f8f4mHEdh1Emis3F1U7pYSPbWGmsZadsNiU4MnAzWYxhJMNpopnbfQ9zp+u6hLS9VtYzA/919Su+AWAXzZRSTAcdVFI+JBZDhyJ7a7PJJ9cMVIeqCOor47BR7mICoykS+cwRU+PXWIVCoVAMaiIOHB5zzDG8+eablJaWcu6553L++eczZcqUqE949913R72PIvlYS7cCE5A9tZlsllWskRtt5QuppnHYInbzBatBQrkIXZK0k2ZWsBqASSKbKdr4RDYxKcQryFQmSvie4wR+6vObQhSSTxPN7JItVLODaQQHDi0ZhzK1gtKDjf5oDsaKSPvQPG0Gm2U1jfouwJ/NvFR+iSGNlHb9XCnX8mGXAdPx2mGc4jgqyS1ShONIxwEc6TiAG7iY8zw/5++GXYaljXbaaGezrEpSC/30pXFYTR3r2AQSZmvqhn8gFIhctshq22sSodBRQgAAaWNJREFUyXbq2C3bOFDbC/BXXOzoyuZbZnzFbtrM11tp5335GQBZRuIytzbLajNg2N12qMffzjVsNPUXFelFpSinTJSY1Rwtsq3HNn0FDmupZz1bQMKezIxfYxUKhUIxqIk4cOhyufjnP//Jcccdh8MRnSC0lYULF/Z7X0XysJUqW8pJK0U5a+RGWylDqpUqWz+PNbPSSpWsMR/vr82Ne5sGA9bAoTYwOdQe5IkccxXcmikTqqTKZSnBU+YosWTwuSoHCM5+8aGzg0bKB6A1lmysffsa54VJbIkiGi5wnsrfPaH1m5tJrlFKX4FD63VLZZQNDKtpmhuX7W8/RYzjefe9ABjSoLBzTzx42Wr5+wNsZwfDKGYHjSGvdfEiknNlKu26tMW6sN8SYszqq1RZjSMKhUKhgCgChy+//HI826EY5NjMUSwTj4oQRhepZo5i/TyhRPHBPvEO9ZnTkXiZowSoEGU0y1abPqbVgCaAKlWOHfHSrYzsfJGfMZT7a5WsDZsRnAoExpAM3GENmBSDjwrCOxGH0mRNJH2VKtuvW8pReSBYAyZa0FhmHa80oTFClLFZVlEddD2rkrVMFmPZIRvZzg50qUftzNwfQl1Xg8lSeqtpSxbd2a3NtCKltGl5+2T3vMoRIuPQNo4oZ3aFQqEYskSlcagYuuSTiwMHbpwsNb7kl957+JnzfCpFOU4clFJMDTuA7ozDermT3bTzvO8NFneV6FnxSR2Jwb7aHK5z/Tihn8eKVaQ8P0TGYZ1soErWUUAeLbQOmRXXeAeZKkU5m2QVheRTww4KyWOzXsUWx3ZGixHmdsocJT4MVldlgOFBmYWVlFMvd8a6SQmjRtbjxkU+uZSKorAGTIrBR2C8zySjhxNtjbGDdcYmJmljk9Ay8FikG1whMg530kwZJeygMawplSIyKihDICinlBbLnEEgehhQVFJOLfVk4CaXbHbTjkAwnFIKyCOLTLLJ4sTOH7O/Yy4XOk9nmCiOS7sD42YmGejoYa+h2WSFfF2R+uSJHBzSgY6OAwcndv4Yl+akTbajSY022nHiwImTHGHvB02ymVbZTh45tLKbStQ4olAoFEOV1BWMUiSUTDJozVjOQWJvaqjnDv3PvG68xygxAh+6GTSEbnOUx/R/MaXzSK7T72SjsY1m2Wr794H8jP/KxdyiP5SsjwVAi7VUWfQMHN7ve5qLfb9mFy2cJo7lXMdJCWxd8oi3kcYYKumgkxp2IBA00cJj8l8c2XmebTsVOIwd/S0dTvT5nMLJzozPuMvpNw+oopbtckcfew1e7vY9ynL5Na20cb/z18lujiIKMkUGlZT3CBoCPC5fYH/P6UlolR9riaFL9FwHXic3U0cDAsEIhiWyaWlHkShAIqlhB5c5zmVnxmfszPiMtowvuNX5M9u2Y4X/2lZLA620MY8ZaGhsZBt5ZNOY8SlnayfwJh9yk34fP/b+Km7t/pv+Iu8YS+igk8PY13x9mpjAfswxn6tS5fTlNfefOUM7FvC7fDeyi2bZymfyS97iIz5iOXnk8jPH+Tzousm27899v+NX+j20sJsLxKkcqO2ZjI+gUCgUikGAChwqIkIIgRCCUlFkvlYla6kQPW9GAuYo1vKGQpFPvsi1/QuUREiMOLe+d6w6Vfn0LFW2lvmM0Epxi56ZHelIPDUOwW5EYz1Xe9ANulVzR2kcDozEuyp3E+3ZskQmxaLQfG7N8kk1AmOhgcEoSzatIjWwXveCaWE3HbJnUDERRKpxaGAwSlP9biAUi255gRZ2kyUyyRKZCCHIDCrzLRcltucjxDCMrnlODfUIIRhm6VPNcRzbrPOwUq37nG5cOC3B5iyROLMWReKxjmFO4SBf5KJbpF8MDPJDLJy3W8a2Iq3A1mcUCoVCMbRQgUNFVPzAear5uErW9CjRgW6NQ6ug8uPu23nefa/t3xQxDrBr6SUDa8ZhbqjAoeVzDCVTA8MS0I2XxmEAqwZPa5B4ty3jUKrAYawYzKXKAayB/GQbUQyEbUojKqXp6ztLpNGFlUg1DrPJooC8hLUrHbEZxPUR6AueF53jPNGUXwh8Jz9zXmAuirXI+I1t1r55ruM75uPpYiLTtAnm8yyVcZjWWMewi5xn8k/Xn7Au52WTyeXOnuaVHXSYj3/sPCuubVQoFArF4EYFDhVRYXUWrJK1IQXDO7FnHGpoPTTLAEvGocSQycs6tGUchlhxtd58FZKfsHYlG3u2WOyDTCMtfcdhGYp200677J6sOlWpcsxIlVLlAFbpgJYkG1EMhMAYUkKhyuxJQfrStY3EfCIe9J1x6G9XpShXupoDxGYQ10egL7i/VIpy87VaGvBKL0IIc2EkURmHJRSajx04bNn92ahxKZ2x9skqWUsTzbTRbr5WQz1ei2ZqANVHFAqFQhFA5ZwromIEpZyoHc4q4xu2yO28pr/LvmIOThxslzsoE8U00swpnkvowMN+Yg7jxWhcIcp7HUFuue4kxbE1KThA7ImBQaElK0NKyU2++3DhZBoT2N8xb0jdfMXbHGWSGMvhYj82y2oaaKKAPDx4mMZEqmQdE8VowF9WE0BXrsoDIvGlygM7X6pnHOpS5ybffeSJbKYzkYO0+clukqIfjBUj2UfswUq5hlKK2UUzeeTSShvDKeUyz80MF8MoFgWc4TiOExyHxb1NjXIXu2Ub4xlFpnBTElRO/YLvv+yrzcEnfczWpsa9PelONBmHU8Q49hdz2SyrcONmtKhgrjYdl+HE0TVXGi0qyBO5NMpdcVsUud/3FB10MowiRooRaKJ7juUQGrtlm/k8UwWF0pqRDGcfsQeNsolF+ics179mImPYSTO5ZDFBjGa5/jV36o+iCYFDOskQLpYZq8xjZKk+olAoFEMaFThURIVLuHjWfQ+FHfPokB7+oP8VHz42ym0Ukc8Z2rG8Z3xKs2ylmAIO0uZzg+vikMdyCoeZ1ubDFzJjIhFso4YP5FIAckS2+XoTzdyqPwjAOEZynyt+AuaDkXgHmSZqY5iijeMt/SMATte+zbPGv/mcr6iSNUzEHzhU5ijxIdEh8P70oTzrzXoKZhzW0sDt+sMATGIsd7t+keQWKfpDDll8LFcA8CvXJXzPcQIAL+r/4wzvFQCslhtA+jP/EhE4rJI1PGv8G4A5TGNEkN7wc8YbvGl8CMCDjpvj3p50J5fuuUFfGYcztEm8nfE3bvbeB0CZKMGFkw/lMsCfoTqaCkvGYXwWRX7pu4dW2sgik29rB9s0gp04bdlkWUKVKqczFVq5OYatk5sRCBaIeeSQxQq5ms2ymu/Ko3lB/g8kZOA29crBf/1O1hxdoVAoFIMDVaqs6BeB1ekW2UoF/hKInTSTibuHCUo4nEEZh8kinDmKtcTHatIwVIi3OQrYS9+tk1Jr6Z8KHMYOe+FwYjMO+4OtPDAFzVFsZYJDcAxJF8KVqYbS+A3lvhwP+jT1UrqaMUUTmhk8jLS02DoHqggqFYVuTeUOOvGEKBMdCLrUacWfUZjRNS/TLbrFDjTaLfp1KpssvRlBqW3xLp9cCkQeeZaxYzs7zMd6kGlhFplDquJGoVAoFD1RGYeKflEpymmSzTSz26+d0hUfOMlxBFdrkRmI2N1ykxc4tJYJWTXVrDdeR2gLEtqmwUC8zVEgvHaY9W+vXJXjQyJuAaQcWNaq9aamOY4GAvHCaqx0jOOgJLZEMRDClamGGr/iqVdnxXrdOtixT4/3t3X1vTKKcYeQClFET35XeXqkZiZWs4lgjTno0lTuGiJb2G3TIBwogaAhwF7aTC53LuRTY6X5mhOHzTFXmaOkNy7hooxiamkAYJoYz/Pue7nJey8f6P6Km22W61XwXEsFlhUKhUKhAoeKfhG4oW+jnQq6S6T+6Psbf3LfENEx7BmHyQsIWW/0rDeI1uBVX+L46Ui8zVHA/nf9Qq4xH//F9xxuXFzuXKgyDmOI1YQoFVyVM4TbXzKFh41yaxxaFV+qZZ35eCiOIelCuJL54ZTiwGHTXl1lrOce3+MhHUpjSbjrFvizzWqoB+xZ3YqBkSdyQPqDfNFi/f2/qr/D5c6FtkzRsz1XkR3COOkgbX6/+lKo/mHtp35zFH/GoRNnSB1qRXoxzBI4HNGVhWytCrJmHAbjVreLCoVCMeRRpcqKfmGdbJzkOIJXXA8xlfG8ZrzLwZ3fi+gYg6VUOZA9IBDkkAXAH3x/5V7fk4xkOEeLAznScUDS2pcs4m2OAjBLTOaHjtMZwTA2ySrucl7HgWJPdrKL230Ps8JYbQ8cShU4HAgGiXUvj4WL842Oy6igjA48PKW/HINWJY522cF0JjBLTKE8hLO8IjXIt5XMdweNHMLB3113cbI4kv3EXPYXcwH4ve+RuLfJmoGbF1SqXCPrqWAYs5jMfDEr7m0ZKuwj9mCWmEwu2Tb9t0gIXOuKKeR9+RnFHfNZa2zkv+5HuUD7Lh48NMtW898aYyPvG59xt+9xm0FFpFizIgOl9tZ5lhMHZRQzg4nMEdOiPr4i9bjdeTV/dv6Wvzh/y08d5wH2RZGdxi6KKQi5yGedrysUCoViaKKWkBT9wnqjMkIrY19RQbO3lWrqqJMN6FLHIXqfaFhLUJPplhtYmc8l23QdXCM3sIpvAPiudhRjREXS2pcsEuHAWyjyKSDPXOmeKMaQKTLNrJ4tsprpYqK5fTIDzOlAIrJIw52vv0zRxlGt+zP31htbSKX7l2rqWMV6kFAg8vreQTEoye/FpOd4x2Fs6MqGfUV/h5qusaxVtpFrMduKNVbNT6sGI/j73VZq2EoN+4t5cWvDUKOVNlbKtYA/m3icGBnxvoFrXSNNgL9ao45GDtLms0xbRY1Rb9t+u6yjmVaaaaVR7oq6rdaMw8B8TZf2jMP1bGU9WyiWBVEfX5F6HO7cv8dreZYxajs7aCR0X4uXzrVCoVAoUgcVOFT0C7tYfCsImKNNo9qow4ePOhoZwbBejuCfuAbwST3xNq9dBFbmw5UpX+P8YcLbNBhIhDkKwEhLKV2VrOW72tH8z1hsPt9D686GUBqHA8OwBF5ToVQZgrTBLKY5qUBfBhaK1MCqfRuqTDVQSvq5scqMllfLWiaLcXFrkzXjMLhU2aqtqUrkY0fwWDSOyAOHYL/WAeymHfD3n8uxlyPf4nuQm3z3AuAhuuxGCMo4NEuVreYoDjODX7nlDl2sY8fOMEFDhUKhUChAlSor+ol1shG4kbJOqqtl3zf41tKHwZBxaA2GBrTJssikiPyktCvZGAM0togUW7+hroeIvF3jMLbOk0MNe8ZhIs438JxDq0abVTMwFQhnvKRILaxB39707Ubaxq749tVWepaidp97aOvzxoto5zi97Q/+vuQN46ZsDeZ19idwaF206Oofdo1DzbyeOlUOwZDFel2yGuoEY8SkfkChUCgUqYyaLSj6RQmFlFFMBhk0yWbAPykuJI8ySvjSWMee2sxej+EUyTdH0Q2dUlFErsxheFeG5GZZTQF5VFBGnshBiCSlQiaZRJQqg7/fZJJBGSXslm2M1MrJwE02mbxvfMaF8jQqKKONDpYZqzjFc0nYY+lSx4uPedoMrnFe2OOGeqhjNUdJROgwFn2omALyyCGPHDQ5uH+LutT50FjGNllDm+ywBXCCs8IUqUMWmZRQiBsXLhm+Vr5SlFNAHi6cPOB7mkNDuB3HCo/0Ukk57XRQgL0Mvlm2MpZK6migEmWOEiuGU0o2WQynNGJnZSuVohwnTnO+M45KPjdWsY9jjx7bZuA2H3eGWDDbLKtZp2/iOf11vPg4x3Eihzr3Nd9vlx2MpoI22s3+YQ0cOoUTT9dxlev20KWQPEooxIsPL16cOHssjjhw2HTNFQqFQjE0SfuMw1//+tcIIWz/pk6dar7f0dHBxRdfTElJCbm5uZxyyinU1qZWOVwyKBB51NHIVrazQ+4E4BrHhRSKAtayiWt9v+/zGNZV7mRp19WJRjbJKmrYQY7wG6Pc6/sbS+RyqqnjXuevktKuwUAizFGALuOLTrZQzVdyHVPEeH7sOIudNLNELmcTVWzIfJuLHd9jrBhpE5AP/rdabuAt+RG/0//Cm8aHcWx1apJ4jcOBBw6FEJSJEqqpY4lcEaumxYXtcgdHeM/j+77/42L913wqV5rvBYyXFKmHEAIXTrazg6/lhrDbXeQ4k7Giknp28qp8JyhQH1s2UUUVtTSyixJRaHvva7mBTVTRRgeVlMWtDUONYaKYNtrZwFY2yaqo958jptGSsYwrxPcB2MA2btLvDblthjXjMIQRy32+JznO90Mely/wtHyFU32X2d5vZBdbqKaenabWpq9HxqE/gOlSOQRDlhnaJJZlvEQzrbTTSQu7uZDTaM9YyW73Cv//M1ewNOOFZDdVoVAoFEkm7QOHADNmzGD79u3mvw8++MB874orruCVV17hueeeY9GiRVRXV3PyyScnsbWpQYXovhkJ6I5pQqOi6yalkV20y45ejzEYXJWtWlCBz2TNEgrWJBpKJCrjcJgoNm9cqmQtQoge5crgd/Lu618g+AvQTu/9byhidVVOdO7eQPpQYFzZRQutMnw5VbKpJnR5ah45pvGSIjUJXB+2swNfGHd3TWjmdgYGO2iMW3sC1y43LkopCnqv+xpWoanAYaywGhz1VrIejsDidblWYrvmhcJtyzjsGTgM3m837bZ+aTVHyTc1Dq2uypaMQ6VxOKQppQjNcn0e5RyBEAKH5hiyFTcKhUKh6MmQWGZ0Op0MH94zALRr1y4eeeQRnn76aQ477DAAHn30UaZNm8aSJUvYd999e+yj8BNO66dSlFvE4euYIEaHPYY9cJicUmWrZlrgM1k/jzVAOtRIlDmK/2a7nM2yyvw+QgUOQwnIB/Oo73l+7PNnibb1EbgeisgEqxzGQuMQgseV+JpODIRwumeqTDn1qRTD+VyuwsCglgYqCa0dGDx2lYvSuLQnMFZWiPIeQenqrsW8IvLJiaOz81CjN3ftaPip6zz+YjzHN3JzWN3WDNEdOAxljhIcOJRIW78Mpa+qMg4VodCERgH5pjmK0kVVKBQKRSiGRArEunXrqKioYPz48Xzve99jy5YtACxduhSv18u3vvUtc9upU6cyevRoPvroo2Q1NyWoDHLCDWAVh99myeYLxWAoVbaLyPs/07au18ootk3ehxqJyjgEzJudBppolx32jNYoROizRKb5uENlHPYgUeXnoc/X/zNaM3+39cOUIFGE66tKazP1CbWYEYqKCLcbCG2yncbATX5QAFNKaZ5XBQBiS1/u2tEQ+G6aaQ0ZhMyIMuMw+LVQju7WjENNauZzlXGoyCLDfDyM4iS2RKFQKBSDlbRfZtxnn3147LHHmDJlCtu3b+fGG2/kwAMP5Msvv6Smpga3201hYaFtn/Lycmpqwge9Ojs76ezsNJ83NzfHq/mDljKKOV4cxmq5nk1GFZ8ZK9lLm8UB2l5UyTpWyNXc6LuX34lrwpqkDIZS5d2ynQPFXhgYVMhhXOm9hXyRyyw5maMcByalTYMFW9AnzuUq87TpaIYG+G96x4mRHKsdwlpjI+/rn7LRsY1x2sg+j2Od/LbT2cuWQxMjgcHgYAZytgXaPFbI1RgY/MT7KybqY9hsVLGXNpOv5QbyyeW/GY9GdKyvjfU8ob/AKuMb1sutjBEVnOv8Dqc7vh1Vm57WX+F9fSmfyZXkkc3dzl/wkbGcMkpootksAxzFCPYRPc0PFKnFIdre7JItLJdfc7X3du5wXcM+Ws/vdTyjWCDmoaFxu/dhHtL/jgsnL7jvj1lb6mQDh4n96KSTGWKS7b0dspG9xWwEMFEbG7NzKuzu2tZS4P5wkvYtv5GcXMsxnReQITLIFplIQ6IJjSa655XB5ihSSkpEIS2ylVbaTT3EYzwXkEkGU8Q4Nslt5vbXeO8gW2TRLFuZwGhGiuHM0qYQmHa5VOBwyHOCdhify1VIJGNFZbKbo1AoFIpBSNoHDo855hjz8ezZs9lnn30YM2YM//jHP8jK6p9Y/a233sqNN94YqyamJJrQOMF5OK943wbgE+ML9tJmcazjEJpo5h/efwPwqbEybODQYQ0cyuQEDr+Ua3lffgaASzi53/c0AJMZy29cVySlTYOFWJWZRoITBx90fQ9VspaDtb2ZI6bxGu8C8LX8hnH0HTjMthhQ9KWxORQxbAH61NEuOsZxML/y/ZEv5BoANhl+Y4J1xmZzm3bZYcs4Dcdy+TV36Y+Zz7+Rm8nXc6MOHD6v/4fXjHfN5+/LpfzTeAOAcYxiI1sB2Mp2WxBAkZqc5DiCDjw8430VgCXG8pCBw1JRxGL5efcLXbKiLXJ3zDJPd9LM29JfFTFdm2h7r5o6PpBLAZjI2JicT+Enmyw0NAwMWylwf/ix8yy2e3fwnPG6/wXp/+fCiTdIQ9Mj7YHDDjpZLr82n5+rnchLxls00MRu2tkud9gWztrpNOdYFaKMA7Q92csyL3OJtL8VUPTB3e7rk90EhUKhUAxyhkSpspXCwkImT57MN998w/Dhw/F4PDQ1Ndm2qa2tDamJGODaa69l165d5r+tW7fGudWDE2uJlFWnx6YD1MuqvL1UOUkahxYzA2s2VokoCrX5kCIQOExEZpq19D3wndhLA0PrQAWTKawZhypwGExiFQ5jm7XaV9llOK2wSLaLdN/e9llnbDQfl1Boe0+VjKYHdm3f0H1mZJjvOpz+ZX+wlrYG62f20BxWxAwhhPn3bmHgJk2h+opOTyfuYI3D4HlVhSgnl/BalsUU9DAS81rmXKpUWaFQKBQKRV8MucBha2sr69evZ8SIEey55564XC7eeust8/01a9awZcsW9ttvv7DHyMjIID8/3/ZvKBJOzzAvQgFxp+jOONSTrHFYQB47LVlB33YcnJT2DCYCQZ94GqMECKUfNjKMjmZvqFLl3pE2V+VElyrHN3AYcHfvC6uTehEFQN96rH0dB2CTrDIfB48flUPYnT2dsC6WBX//5jZhvutYanNa9fWCsxhtur1hDFwU/Sevq1x5oBmHELqvGCECh8Eahy2y+/sXCK5zXsR/3N1SDXO16eZ4mUkG/8q4j+fd95r/LncuNKUUQJUqKxQKhUKh6Ju0DxxeddVVLFq0iE2bNvHhhx/yne98B4fDwZlnnklBQQEXXHABV155Je+88w5Lly7l+9//Pvvtt59yVI4Aqwj8x8YK83GexcWxNwHxZGscWkXkK0SZ7UZwKLspBzASmHEYygzF+tr/jMURHSeL7lJVlXHYk0RrHMay3L2ir8BhhIGZqhCu6dXUcZc3Mo1EgE7poY5G22vW0sFxQRpRajxJD6zf46fGypDb5IkcM7hkJZZGKdaMs+CMw20q4zCu5HcZpDQP0BwFIv9+ggOHD+l/Nx9nk4UmNFvf/Mz40uxv+SH6ImALHKqMQ4VCoVAoFH2R9oHDbdu2ceaZZzJlyhROO+00SkpKWLJkCcOGDQPgrrvu4rjjjuOUU07hoIMOYvjw4fzrX/9KcqtTg1yRzdWOH1BCIbto4XV9ERBUqtxbxmGSS5V/7v0dZRQzh+lc7/gJ2416KhnOTCYzmoqEt2ew0V2qHH8qKWcPMZUxVLBDNgAwQYzmcsdCnDhZKr8ks2MmuR178E/9jbDHsQUOpco4DMZIoG4lxNaZ+0ztOP7r+isniyM4gv05WRzJIcynGH/G9w+8v+Annl/32O8B39Pkd8wlp2MPsjpm8ZLxFllkMldM517HL3nJ9QCF5HOt/geyO2ZzROd5vbZjg7GViZ2HM4xi5jGdcYxEQ6OBJioo42ztRA7T9uM/rr9yhjiW72pHcZimFqLSgUyRwWuuPzOaEeymncM7F4bc7nn3vXzk+gdHcgCF5FNOCdv7UQ4fik/1L/ih9wbzudXpF6BO1jOK4cxisgocxoF5YjqTxFjcuGiT7QM61mQxln+7/sIPxKlMZRxHcgDnipN6SB0EAoe/9z3C7M7jeUp/2XzveO1QANzCxc2On5JLNlvZjoHBCeLwsKY8XotuojP95c4VCoVCoVAMkLSfLfz973/v9f3MzEzuu+8+7rvvvgS1KL0YKYbTQBMA9V3/t97ItPaiA5TsjMONbGML29nCdvZ1zOEl4y2qqKGKGkaIYQlvz2AjkRqHw0UpK+VaDAyGyWIAskQmw0WpLajsQ6dR7gp7HKs5hso4DEUyXZUHdr5x2kjGMZJllsy+zbKKd/VPAb/cgVWzNECdbLBl14C/b9TIHeznnMtOuYud+PuUgcH2EMewUkUtO9gJwFQxnnVyM0bXfy6czNImU66VUk6pmYVYLkr7/8EVg4rDHfvR6m2jkV0gN4Tc5iBtPgBTjHH8V/8AgG1EXw4fig48tjExOKNsM9VspYat1KjAYRzowMM6uQmA7XIHE8Tofh8rW2RxmGNfVso1bDd2mP1msf45DbLJ3K6zK8i3TdawVm60HWOaNsF8PEObSKvun3PtopWR2vCw5nRea8ahUBmHCoVCoVAoeiftA4eK+JJp0ZTr6HKxtd7I9G6OktzAYaA02YGD4ZSGLGEcyiQycOgSLoZTSjV1do2uEDe+TTK8Q61d41AFDoOJZQZgtOeLFZc7u7O8tsrt3K8/bT5vkz0XKnaHyQoK9K1C8nHiMMegcNsHsPbP4x2HsdlXZUoynO/4rq191seK9GGUGEGj3NXr9Q3gZ84L+JP+NyB2pcodQdqteUGlyoHz5JBFAXkxOaeim2Bt5wn0P3AY4HLnQi6ne6z4wFjKernFfB4wRwlVwWGt8AjWTLzS+f2w57Sao7jUrYBCoVAoFIo+SPtSZUV8yRI9zSiyyMTRFRTsTUA82aXKgRus4ZTiEA7TXKGIfLJFVsLbM9hIpDkKdAdra6g3y6hG0DOAGyqrLIAqVe4dw2aOEn/i7eI8HHsmn9XgKEAtDSH3DfQ3IQQ5FkfSnTQjZfiAZ/ACg3WsCDaqUKQnuV2LYx68dEpP2O3KKDavc7EKHAYHK3MsY56U0jT6qRDlA3YyV/TEqrUaqSFTtARrZAZKlUNpRlvHnOAFz+Dx0YrSOFQoFAqFQhENaplRMSCy6b5pftX3Nsv1VeSJHCYyikaaaZVtLNI/4WDH3j32dVgzDmViMw47jU7/Tb/MopJy/qcvRpOCYRQzQYxKaFsGK4k0RwEYxyh20EipKGKZ8TV7O2ZTRjEONPSugJeGxnLjaz41/r+9Ow+Psjr7OP47z0wmC1lIgCQkQGRRBHcBFRSwuODS1lbaarWordbWYt3qUtrXWpcqrRtUxVpKkVqUWqVqi622WrCICgKiiCKrLBLWLISEJDPPef8IGWYymSRkmyTz/VwX1zXLM2fOTG5mueec+/5II5zjIsbwKUGDTIH22f3aZLdqQtX1Ydf7rV8HVKXjncG61Xt13G0hDUvktXNSoS3iKMEkqLvSVHIwmeLIifibf+quD4shqWal9BGmT/B8rumpUrtPVlKB8lRsS5VpMiLu70P3U5XafeqtXipTufqYXOUpWxu1VVZWWaZ7qz9GdDzpplvwP1OpytRLWfUe5xhHg01/VdtqHbAHdH3V3Xrcd1eL7jt01VmCvEoI2Wa6wl2to80AFalUg1qwhRbR9TO91Vu9ZGU1x/+Kvu18udVfS3url3LVS7u1Vx559Ja7VF+p/IGW2Y+Dx6SrmxKUEBZ7PZWpJCXKyipZSfKa6B/xQ1cckjgEAACNIXGIFgndqvyW3q/5MmWlR7yTdb//d/pMm/T16kna4yyJ+HAdy63KhWZPsFba0WaAvlL9A0nSIBVoQeKcdp1LR9WezVEk6UHfHTqi8kx9br/Qg4E/6K+e32qwZ4D2ez6UJAVsQKmVJ+pd+4FuqL5X7yQ+HzGGMUarEufr3uon9Ja7NGJr1w67W59pkxYGluhIU6BrvZe2y2PrKEJXHLaHttiqXFdh0jvB07V/91B5Jkd5ygnWD5OkOxMmhR2zMvHvuqbq5/qz+7LWaKO2a5cyFZk4vNc/XX9335Qk3eC5Qqc5J+rVxD+05sNBJxC6PXif3a9epv7EoSQtS/ybxlVeocV2uda4m/SgvSOsFuvhCq0bPDPhfp3sHBM8/1BgZjC59GoCcdkWLvKcrZmBF/S6u0iFdrd2qyhq4ri5kp0kFbq7JNV8NqpUlbbawuCWZUk6wQzRGGeExntGBy8zxqg4aVmT7iN0xSFblQEAQGP4tIAWifYFaJvdoUyTrt22SOWqULFKI76Ie82hxGGgnbcq19Y3lKTUkNUjPVgxFNSeNQ6lxmtjeoxH6UpVifaF/f3qHcukKr1Ot1FJKldFyEqhyG1fXV14jcO234Le3jUVo/3da69rSGg9zW12h4ZqUMQxtXFnZNRbNFCKV+kh20Pr2z5aV77JCb7ufGF3tqihRuhrY3qU+oYSdXrbUt3XioYSx80aX5G1fR3jBEsoeOVp8LWuKaptaI1DVhwCAICGkThEi4Q2owi11e7Qac5JWhv4XFJtIrFO4jCsxmH7rjgM/YKVGPKh+TzPmHadR0fW3onDZCXJkSNXbtTamEebAXrPrtRO7VWlrVKi8dV7XN1i87XeCLyjC6u/L6n+QvNdXXvXOAzVHnEU7e/eFPkhiZatURLTta8becrWzQnRGw+gawtN2DXWIEWKjK2WNNQIfW1Mq5M4qo3bbGXRKbcN1U0cnqghrTp+nzpNTiTpPGe05gRe0X5VqLey9aLv8RbdR2hX5YQGtjQDAABINEdBC6Wo/hWH/3YXaZt7KDk33R+5/Td0q/IfAs9rmn92608wivBC9YcSGvX90h+v3HZujmKMCX4hj7YaMPQL2xd2p6b5Zx9W3ISu0GjKSqGupit0VW4roR1J62t6UGWrg41W6uv2jfgRmrBrqAFYrdDY+mPghRbdd+hrY+gqbb/1q1C7I+4PrS/0c8KfAy+3+vh59TQFe8N9R7u0V1Ljq6ebghqHAADgcPAzI1okqU7icKD6qYe6a6O2aovdrvPNaK2zW7TE/UivBxbpXM8ZwWOPNUfql94f66/+f2m33as5gVf0Y89EOaZtE1Wz/X/TB+4nOlIFSjdpylS6zjDDJEn9TF6b3ndn0t4rDqWabpLFKlWZrT+p9xVnnPa4xVquVTqx6ivyyKNc9dKZzqk6wTm60fHDtkPH4YrD8MRhe99fx+7wmq8cjTbDZWUjOuXusnt1X/V0DVKBEk2CvuP5aoxmiY6gpzI1ypysBHma1NjrVOcEfd/5lha4S/Sxu1bzAq/rYs+59R67MLBEk/0PKVE+neuM1uSEmvq7k6ru1uvu29qnMhUoT3kmW71DVjLO8D+vsWaEHONonHNa6zxQ1GuYc4y+6ozTG+47+qe7UKdXXqp/J8xSipPc+I2bIN/kaJw5TQEb0KfaIKlmNWkvZWmwGaCve85p8X1Uy6/TzcnyyKNeymzxeAAAoGtjxSFaJNmEb1VenviSjnYGaJf2aq02Kctkaq02aZU+02J3RdixRzsD9VPvDxQwAe3QHn1o12i3itp8zv9y39Jcd77W6nOd44zSbhVpkV2mRXaZesdZl92GtHdzFOnQSopoKw6/7f2y3tcq7VO5KlWtch3QBm3Rh3ZNk8YPWynUhC2GXU0sE3kdPnHo5Oh/9n0tsssi4qnQ7tJT7lyt0+fqppS4a6qDcFauFtvlWmiXqsQ0/jpyinO8rvR+/eB74VotcN+Leuxy+7GW29V6x36gfxxsxCNJf3ff1BZ9oWKV6nN9oa8449TTHEr4vGoX6k37rv7jLtaVnotb9gDRoOOdo5WgBO1XhQ6oSsvsKm3XrlYbv7uTrlcT/6DXkmapXAe0Q3u0W0Vy5OgCz1j90PvtFt9HsS3V23a53rJLg7sLAAAAoiFxiBZJDllx6Mgo0fj0g5Av1RU6EDxd3/Y/STrdGXboGFv/Ma0p9D5+5r0ubF55bEEMitWKQ6mmiYnf1t8wJ0vpEZc11iylVnhtsvjbqhwI+4LIVuVQPZUZ3LJXN55CY2Wkc1K7zgsdT2h93mpb3cCRh+TVqYsXTYndFzwd2sAo9L00Q2m6JeF7YberHTNRPmXV0xEcrStX4T8yRvt801Khf8tLPBfqRm/zarjWFVqqIy2k2Q8AAEB9SByiRUKbozgHaxaG1lcKLRwfLblTt9B4W6u9jxz1kM8kBM+nK5UP0CFsO9c4lJpWgzC1nr9RU+Omm5KDidCm1Cbretq7xuEhHXu9YU2NzdrXorrxFN6QgteIeBfaeCS0VlxDctRDnoPvkQ29Xu21JcHT9mAzo2pbHfZ6mKqUiNvVjplvcmRMR//f1vllmLSw82312SX0/a57PT+aNVdoqY663bkBAADqosYhWiQh5AuUczA1kK0seeWVX34tcT9Ugryqll8fuWs0tfpp3ZRwlay1wS83oYXGf+n/rWYFXoy4nzHOiBb90m5tTQojYAParp0192ty5LquvrCHzuMQNwYrDkNrEJbYsohO3FLNipq6/ue+HxZT0dQ2YCnRPn1qN2hC1fUtn3Qn8rm7LXh6k93a5o9/lbs2eLqjb1WWpHzlaqO2qkilKnP3K9XpJmttWNKGL9kIbSYR2p22IR7jUW/10lYV6gu7I/ieZIzR1OqnJdW8Ty12lwdv41dA1lptt7vDxqr7Gljm7leJalYq0uCrfdT9Gzwf+Ke+7flym95PUit2yi5TefA0P4YAAIDGkDhEi72VMEdVxi+frflQ6xhHC3zP6EH/H/Rv920ZGR1jjtTHdq1+GnhIdwam6hfe63Wb9xpJ0gWesVrivKC5gfla6n4U9kv4Wvu5ilSiN9139V3PhGZ3E/xe1c/0vJ2vgFw5MjpZx2hGwn36SWCKUpSkAuXpHs8NLX8yupBY1Dj8mfc6fVK9XjvtXt3s/5X+5pseccyfvQ9phbtau2yR/KZajwae1ja7QyOrvqV3E//a6H0s9P1ZM/x/1XK7Ku4apFSoMnjaldvmj7+3eilbWTrFOV7HmqPa9L5aw/HOYG0OfKGd2qPt2qUj1U0TqibpX/Z/wWPSxJfseJcQkjisamLiUJLu996iXwWe1E67V7/wT9Pr7iKts5u1/2ASx5Ej9+AqQ0mqVJUW2xX6StUP1F1p6qveutV7jU4wg8PG/UI7lSifstVDxznh16FtfN97iY43g/VIYJZW2NVa4L6nfXZ/qyfhnvE+qB3aLSuroc6gVhs3dDcIP4YAAIDGkDhEi53iOSHisuHOccpWD5UfrMsUWrepWv6wbT29TJZ6mSz9130vMjForSpV0+G0VGXN/oC73exUwNZ8IXNllWR8OsY5Utv8hdqjYu1RsU70DG3W2F1VcEVMO6YOjzYD9JndpGr5tTXK1vZBngIN8hQEzz8Q+L32ab822y+adh/OQPVzemuTu7VV5tyZFIVsg/TI0+xEfJMdDJ1+Tp4STeRK0Y4mST5tVk0cbbU7dKSOUKHdHdY8oM2fM3R44SsOm7ZVWZKOcwZrjX+jpJqtrZvtF8GkoaSwpKEk7bP7tc0WqlwVKpc0yjlZl3gviBh3q92hSlVpi7aHlQ9B28kyGTrfO1ZPu/NUZmv+hqUqa/UfFgZ6+mmg+rXqmFLd8gu8pgEAgIaROESbucF7hWZUPS8psklCffWAbvReqRsVvh35+9X/p2cCL0mq+RLV3BxW3fu7wDkz7HJHTkSx83gXi+YojnGUZ3L0ud3W5JpRQ8xALbbLtVclKrcVSjHJjd6mvliLB0/6n9XN/vslSQNNX73oezzGM+pYwuqtqiZx/cXB0ga1WJ2DhJCPTlVNbI4ihcfXZvuFilTa4PH7tD/sdfBSz4X1HhfamIOSG+0rLeT1YJ8tkzrJ818aVn6BVdQAAKBhNEdBm8kz2cHTdbdzNb0L7qEPtKFbaw6HtTYiCVVb2Lz28lz1DKvXiNg0R5EO1ejaqxJV2AONHB3+Rbm2XiXqZztVu5L2V7dRU7Wt1g7tCTumvhqbiC8JzVxxmG5SgyvSNtvtEdfX/ZFmn/aHrbwObTwWalvYMZ0jcdVVpIdsTd4Xsnq0owstU0H5BQAA0BhWHKLNdDMpGqqB2qUiletAsH5TrnrJYz06t/K7GmQKNMD0U7rpJiurH3gvDRsj9Nf8+uqxFdkSLXKX6S13qda4G5VgakLaWqtyVai/6aM+prcylKoqVcqVVYIS1EPd9XD1TBkZpSpFfvnjrlFGY6rlV6bS1d20XifHphhk+mmn3a0DqtJU/2yd7pysMZ4RUY8/2hmg4+1gVala11ffLSOjwc4AHakjlGA8spLOdE7VYKd/+z2IDsq2c1flzqafydMgFahSVXrN/z9V2WodoXxtVaGsrFKUrCS2gsa98K7KTV9xKEnHmCNVavepSn6dak7Q53ab9qhEiUoI/p+s0AEdZwarTPv1ZuBdZam7jKQ+9SQOy2y5dto96qNcVeiA+pm8Fj02HJ7QzyjP+f+h952P9D3nG0p0OvYPDNmmh47RkXLlymv4KgAAABrGpwW0qbsSfqxLqm8KnjcyWp/4H32/+v/0rPt3vWWXhhWE/7bny2E1xMJ/zT+0tabWSneNvlld09QkXzkaoL6SaronL9YKLbBLIm5zlDlCJzlDdVnVLYcuU/+4a5TRmKPMEZJqOlq3pyyToXXaLEm6O/CY+gRytc7zn6jH/9x7nX7uvU73Vj+ht9yletd+oP8G3lOifMH6mJOcy/Wwb3K7zL8jc0kcNuhk5xj9O/Fp9a/8krZouxYHVkiSRpjj9L/E52I8O3QUYVuVDzNxmGKS9K79QJK0zn6uTKVrX9KKeo+tfU3rqUyNcUaooJ6k4Gd2o6YHnpUknWSG6iSHWr3tKfTzynR3juRK431naEAb1CVsTR/ZNdpot6qnMmM9FQAA0AmQOESbqrttyspqh/aEbWMOLQi/ze4I+yDe2IrD2jpkktTdpB26rZG8rlf+eraR7bJ7w2pCSVJPkxlcrYhw7d0Mou52PK/xNOl26SZV6SZVKTZJJSoLJg0lhZ2OZzbk/xppw/plKyuiu20vkxXDGaGjaW5zFCny9a2hrcW1r2m1p+sTWoajpyEJ1N7qqw+4TTs7fOLwgK2UJCUrKcYzAQAAnQGZErSp+moybbM79FPvD/RQYGbEdVttoYZoYPB86Jel+lYchn5putM7SV/znBM8P6zy6/rYro24zQ7t0WZ3W/C8T1697HtSxpBK6QjqfpE2tml/l9qGJ9+sukF/d98Mu6659TG7mtCeraw4rJ/HeJSvHG3RoRp00ZpSID61ZMVhbQ3X4PkodQulpjVxCn0P/IZz3mHNBS1XX0fipjb2iqVy1dQPTjYkDgEAQONIHKJNZStypc7v/XM1w/crdVe6iut0laz7gTv01/wZgb9ogfte2PWr3M+Cp2u/gE3zz5YUfSWIldX9/t8Fz/dQJknDDqSlxf3ru/1O7ZV0KDZu9F4ZPP+Wu7RF99eZrHc3B0+TOIwu3+RoS0jzioaSO4g/YSsO7eGuOKybOGzZ613oeyaNUdpffSsOv+gEicOK2sQhNVsBAEATkDhEm/IYj65wvqbNdrvW2c/llUfv2ZWSpJ96r1WlrdKcwCvB7cvFNjyROMQM0v3eW/S/wPsqtLsjVo5lKkMJSlCu6Smv9eqSyhv1rv1AZSqXTz71UIYqDjZF6a8+GuIM1Dr7ubbYQiXIqxQl6xrPN9vt+UDjBpp+usb5pv7ovlizXfQw81tfdr6kPiZXfw+8oc/sJmUoTSV2ny6unKSV9hOlKFmltkwb7BZtsttUZauUYpLb5sF0ME7Ik0mSIbprvN/Uqe4JestdohQl60hTEOspoQMJ7ap8uCsOT3NO0G2ea/SfwGIlGZ8ucs5q9jy22kItdz9Wf/VRiknSEGdg4zdCqxpiBukXnkl6NvB3FWqP+phsldmO3V159IFvB+OWxCEAAGgKEodoc7/33SdJOqvySr1tl0lW2m/LdZP3KknSHhXrt4E/qcTu02faFHbbI5x83eJ8Tx556l0ZVruVeYwzQntVrJftG8Hr9qtCA9RH2aanJOkqz8W60XulhlV+XUUqkSQNM8fq5wk/au2HjBboaTL1uO8uPX/gnypVmars4X0xP9szSmdrlBLk1UP+mdqkbdpqd2iFVgePWegu1SL7viTpFHN8u9dxjBUrq9r+KNTti+47noskz6EVqtmmR4xnhI4ktB5ufXV0G3KcM1jHOYOD9QjHe0Y3ex4b7Ba9Yd+RJI3WcH4MiIH+Th/9zLlOVarWlMDv9andqNV2XaynFZW1Vkv1UfA8NQ4BAEBTkDhEu8k3OcGkxRd2p4482LX3Vu/V+m3gT5Ki1wZqSq2nP/lfirjsOu/l+rF3Ythltb+wGxm97Jt+GI8A7amnyVSpLdMBVTbr9jd6r9Rr7v/0pvtuxJf7HdoVPP1kwt06xjmyRXPtLJa7H2tU1SWSJEdOjGfT8dVuaQdC+Vqw4rBWa8RW6PvlVzzjWjwemu9n3uv068AMWdkOXeNwt4rCzieYhChHAgAAHMI3R7SbPiGrIbaGdoJUZvCLWEtqA9XtlCxJvdUr4rIv7E5JUq568qG5A6tdCVHRzMShFL023V5bEnJM/KzSccO6KlPjEGiO0OYoh9tVuTVR37Dj8JkE5ahmZXLtZ4yOqO7cvPLEaCYAAKAzYcUh2k3oF5tZ1S/qNHOCHOMo0fjU22Trc7tNm+w2fa3yOo00J+kW73f1kP+P8sqjBOOVMUY3eq+U3/plZTU98Gxw+/Ioc5IK6/mwXlu77oCtVKJ8mup/WoXaLUnKM9nt8KjRXLUrQ8tVIWttsxrY5Kn+v3HRwaY8KUpWhtKaP8lOxoacJm0INE9rrDhsTIU9oCQlqkrVSpBXjgn/nTdgA9pp9wTPkziMvTyTrUK7W3tUrGq3WglOx/phsspWq9DuCrvMw/oBAADQBCQO0W4u9XxZ2eqpq/2T9bxe1fNVr+pbzvn6k+9BvZowQxkmTV+uulb/sv/Tv+z/dFfVb4O3NTLyyNGVnq9rpfupzqu+WilKUoIStF/lmq8FGm2GK0mJylKGnvM+ou4mXf2cPEnSddV36W/uv5WkRJ2soTrDGaZrvZfG6qlAE4TWXqpUlZKaUcS9v+mjVKWoTOXqrjTd7v2+9thivRdYqVOcE3SV9+tx1VHbhqQOWXEINE9Luio31dDKC7RdNT+GrfLN16A6DXpW2bX6beBPSlGShupInWCObpN5oOmOM4P1uf1Ce1SsHWaP+qhjdWOfFXhRt/gfkFce+RWQJDmsOAQAAE3AT41oNz1Mdw1w+oSt0Cg62EV5oNNPPU1m1GSGlZVfAVWoUtu0Q1ZW+1Uhj5zgVrGttlAHVKmd2qsRnuM12DNAyaYm+bRNO3RAlSpWqXqYTPV2sjXA6dvGjxgtUfu3k6QKHWjWGNkmS2Wq6XBZrH060zlV2aaHMpw05Tg9dJTTv1Xm2lmEJg6pcQg0jyck2VLdRisOy7Q/eHqH9kRcv80WSpLKdUDdTVrY6yViI9kkaY+KJUWv1xxLW22hAgoEk4YSK88BAEDTsOIQ7apuzblyVYSdH22Ga4VdrWgq7IHwgvDOOD3tzpMk7dJeSTXbU+tu66qt65OuVL2c+GTzHwDaTXLICsNyHVCmMg57jLrxlm9ymtRop6uixiHQcsYY+ZSgKlW3yVZl17raH/LeWJskDLUtpDTHxZ5zW30OOHyh28U7YuKwI9deBAAAHRtLTtCuspUVdn6vSsLOdzMpDd7+gCrDPpAf6RzavlW7sqxu7UJrD3U5pK5h55EUslX5gG1eg5TQL3JGRr3qxF+8Yasy0DpqG6S0RXOUXdobluSvLwlFY5SOp6MnDutrIGfDKt8CAADUjxWHaFeOcdTf9NEWu11SZPOK/qaPstRdJSqVkVFArnxKUKWqJEn3+afrM3ejstVDXnl0ohmqYeYY7bfl2qG9yjIZGuEcFzbmG+47GmGO035VaIgZ2D4PFC12nHOUttrt2moLdUf1g3rCd5dyTM/DGqOHuitbWQrIKt10i1iJGm9ojgK0jhPNEJXrgHIP8zUpmvmBBZKkhe4SfRxYq57KVKnKlKJkzfH/XTvtHm20W+W1Xl3ivUBl2q/+qin9UWDyWmUOaJkBpq9O1lAVaZ/+EXhTJzk19ZRj6Y/+F1Rqy7TS/USJStAR6qMilcgjR44cHWXiq1wHAABoHmOt5efGFiotLVVGRoZKSkqUnp4e6+l0CuMqr9Biu1yStDdxabD7cX0mVz+kRwNPB8+fYYbJyGiMM0J3JkySJN1b/YTecpeGXVbrm1U36O/um5KkdYn/UR/TsQqWI7pfVj+mKYGnJEkvJzyp8Z7RMZ5R57bIXaazq2q2ad/i+a7uT/hJjGcEdE79D3xJ27VLfZSrdUn/afF4J1R+RWvsRnnl1UhzYs1l5mg97v454thh5hgtsx9Lkm71XK37Em5u8f2jdWxwt2ho1fmSpAnOeM3xPRyzubjWVWrliWGrV3sqUz/wXBrxOQkAALS+rpQniu/lN4iZ0C09jdXdCd2y6pFHGSZN6SZV6SY1eHnt+dDLDo1fsz3HkaNctc7qELSPjr71q7OhxiHQOpJMTQ3WA2peGYW6at8Hu+vQ+1ueya73f+l2u0tSTXfnnspslftH6wgthxLr96yddba8S1KWyaj3cxIAAEBD2KqMmOgTkhDaandokAqiHptsDjXJSFM3veh7POKYhhpe1H54z1VPeQ0h35nkd6AvYV1B6AJzEodA8yUf/EGruR3fQ5XaMu072EX5GOfIsPe4aYHZEV2Vd6tIknSE6aObEq5q8f2j9SSZRPVUpnarKObvWfU11RnpnKQbvfHZHAwAADQfWRTEROhKsjv8v9Fl9itRP8ymhKw4TJLvsO6nylYHv3RRQL7zCe2KXF9hdxwe6lIArSMlmDislLVWxjQ/ET/F/1TwdL7C36ey1SMicVjbyZn3tI4p3+Roty3SNu3QxZWTZExNaZW2TNhN88+WVPMj6jT/bL3lLlXhwZWpYXMTMQMAAA4fiUPExJnOqXrEO1l/CrykLbZQv/M/px97JtbbvCLRHlpxmHiYicMH/TM0ypykRPn0Dc/5LZ432leesnWGGaZq+eW3gVhPp9ML7aDpUKkCaLbaEhquXFWp+rDemy6rulkfup9pl/ZokCmQYz06RoPUz+TpMs9Xwo69wXuFPnA/VbnK5cqq2JZqtV2nI80RutLz9VZ9TGgdt3i/pwp7QAvdJdrgbtEWu13r3c0q1wFN9v6gVe/Lta7OqLpUG+1WJShBLwReU4U9oHJVqJeyNFQDVSW/TnaGKsf00vmesa16/wAAID7EVeJwypQpmjx5sm688UZNnTpVknTgwAH95Cc/0dy5c1VZWanx48dr+vTpysnhV9m2dKxzlI51jtLvA3/RHhVpj4q0S3uVU08NQk9IMtFnEg7rft62y/X2wSYsz3oeadmk0e56mkwttR+pUlUqU3msp9PpUeMQaB3JJjG4hLdCBw4rcfiG+65KtE+StMx+rHSlarQzXGOcETrbMyrs2Iner2liyPlp/tnyuwGNcUboIs/ZLX0YaAOXeC6QJJX492mPLdZ7dqW+0E695S7VZLVu4nC3irTcrg6e32lrVqf2UKaGOAPVU5ltvtoRAAB0fXGTOFy6dKmeeuopHX/88WGX33zzzZo/f77++te/KiMjQ9dff70uvvhivf322zGaaXw53RmmTwMbJNXUsMsxkYnD0O2VCYcZsrU1hlKUrAylNXueiA1jjPJMtjbarTGvF9UVhK44JHEINF+yDq2Er1ClujfxdhX2QDBpWGuw6V9v7d76NFTPFx3Ljd4rdYPnCvWsPEX7VdEm72HRxjzPGa2Zvvtb/f4AAEB8iou9amVlZbr88ss1Y8YMZWYe6kBYUlKimTNn6pFHHtG4ceM0bNgwzZo1S4sXL9a7774bwxnHj6Z1zT2U7PAcRuLQWqutB4uD55ucFtWgQuzkq6bOYbFKVWZZddgSJA6B1pGs5ODpCtv0Bim13ZNDUauw6zLGBGv1brOFYQ2qWkO0z03EFAAAaE1xkTicNGmSLrzwQp19dvi2nmXLlqm6ujrs8qOPPlr9+vXTO++8E3W8yspKlZaWhv1D89QW6k6Ur95C3lL4ikOvPE0eu9SWKUE1W5v5EN151f7tkpSob1RerynVT+mArYzxrDqn8BqHJA6B5ko2oSsOG04cltsK7bP7tcXdrk3uVvkUXnKD96eurfbv65VHU/y/14Sq6zWh6no9XP1H7bUlzR631JZps/tF2E6M2tf1PsQUAABoRV1+q/LcuXO1fPlyLV26NOK6wsJC+Xw+de/ePezynJwcFRYWRh3zgQce0N13393aU41L/UxvdVe6ilWqzXZ7vcdc5fm6vu1cKCMja5r+a/0X2qlilSpRPh2pgtaaMtrZwwk/1eP6hb5ddbPetO9qQWCJhjnH6hzP6bGeWqcTtuKQFbhAsyUfbI4iNZ44vN//Oz0UmCmpZqVvT2Vqghmv2xO+r1STIr9o/NSVHWWO0EK9pxKV6TeB3+tYHaUP9Inma4Heskv1su/JZo17VdUdetUuDLvMSvqmOV/frtNkBwAAoCW69IrDLVu26MYbb9ScOXOUlJTU+A2aaPLkySopKQn+27JlS6uNHW9yTS8Vq2bFZrQtN17jVTcnRSlOsrqZlCaPXbtNuVJV6m7SWz5ZxERPk6k0002pJiXY3KP2b4vDw1ZloHXUrXHYkH3aHzxtZeWRo/6ePspzspVuUpVlMtpsnoi97kqXe/C1t1LV6qUsBQ4mi7e14L2sVGURl1lZ5TnZSjPdmj0uAABAXV06cbhs2TLt3LlTJ598srxer7xerxYuXKjf/va38nq9ysnJUVVVlYqLi8Nut2PHDuXm5kYdNzExUenp6WH/0DxhNQ7VuoXDQxORfUz0vyc6h4merwVPt3asxIvwrcpd+uUfaFOhKw4bK51QtzbrCc4QutzGkdBtwz3UXfOSnlA/ky+podrOjduv+mv+3ua9ptljAgAA1KdLf3M866yz9NFHH+mDDz4I/hs+fLguv/zy4OmEhAS98cYbwdusWbNGmzdv1siRI2M48/iRblKVpppfxlu742BocokaUp1f0xrpoCFu2IpDAM2VbA4lDstV0eCxu+zesPO8H8WXrJCe27UJ59r6zkUqVbltOH6i2Wsj62sbGfVoco9vAACApunSNQ7T0tJ07LHHhl3WrVs39ejRI3j51VdfrVtuuUVZWVlKT0/Xj3/8Y40cOVKnnXZaLKYcl85zxmin3aNddq9GHbhE4zynyUo6zzNao53hzRqzyJZoq1uoAeorv/waYPq27qTR7vqYXI02w7XHFuu/gXd1qb1JU7y36QgnP9ZT6zTYqgy0jlz11GnmBPnlqryRrsoZJk0ZNlUVqlS+cnSyOaadZomOoK/JVZ6y5cjRcKfms+cZzjBl2nRtcws1rvIKFTh5mpZwp3JNzyaNudhdrsE6Qtu1U44cuXLVS1lKUzfq1wIAgFbXpROHTfHoo4/KcRxNmDBBlZWVGj9+vKZPnx7racWVZ3wP6qzKK7Va6yRJywMfS5KKVNLsxOE6u1mz3BclScPMMRrqDGqdySJmeppM/TvxaV1QeY3etO9qk7tN37Dn6QiROGwqEodA60g0Pr1rV0qStmtng8e+4S5WicpUYPL1SeK/2mN66EBO8ZygDZ43wy67O+EGSdK4yolabFfoA/cTXeN+S7mepiUOnw/8U6/rbUnSQt8cneqc0LqTBgAACBF3icMFCxaEnU9KStITTzyhJ554IjYTgiQp3XST6jRMbsl21NCC4z1NVrPHQceTbXoEY4Uty4eHGodA62hq6YRyW6G9Kqm5jdiijHDNfT8LPZat7wAAoK3xzREdQppSIy5rSbfB0A/V3/Kc3+xx0PFc7f1m8DSJw8NT25VaYsUh0BL5IQ23Gnod+sIeWo1Iggd1fcdzUfD04TT9qv185MhRrpq2ShEAAKC54m7FITqmdNMt4rL1doum+WcfdvfJaf7Zeso/N3g+X3RU7kpCV+18EfKFfZp/dthxdeNmmn+23nKXaowzIuy62svjwXa7K3iatCHQfL3VS0ZGVjYsOVhXaFKxD4lD1BGaTK4bR9Hes0KP7a1e8ho+ygMAgLbFpw10COkhKw77KFenmhO00n6i3/mfU0AB3eL9XqNj3F79G31i12un3aPuStexOlIFJl/HUN+wS8lTtk43J+uAKlWlak3zz9a/3P9ppfuJSlUmSUpVNw0xA3Wu5wxZazWu6grtsUUq1G595m7UXf5pcmXlkUfDzDFxs/rOaz0aqoEa6hyprzpnxXo6QKflMwk615yhPSqSp4HNGw/5Z+pUc4KylKFveM5rxxmiM8hTtkaZk3VAB4LdlXfbIl1cNUnFtlSF2q1P3Q360F2jmb77JUlP+P+sfJOro9RfX3a+FMvpAwCAOEHiEB1CasiKw60q1HWey/Si/zVJ0gp3dZPGeMddoaX2I0nSBWasjDEa44xQL2ocdilJTqLW2I3arSLttHuVrGT913037JhilWqN3ahzdYaKVap37ApJkkcerdXnIUdW63P7hY53BrfjI4ghI/VSlkY4x2mQUxDr2QCd2i7t0XK7Wo4c+a0/YuWXtVYL7RJVqVrHmCM17GBHXaBWL5OlpfZDVcuvavklSVttoZbYDyXVbEUuVZmq3OrgbVa4n2iZXSVJetTzs/afNAAAiDskDtEhpCt8q/JQHVoluLWJdexqt4TlqqfmJdLspivLNznabYu0Xbui1sKsvTx0q2CesrVF28OOG+oM0ou+x9tusgC6pHyTq+V2tVy5KtRu9alTFmO3ilSl6oPHsk0ZkRzjKM/k6HO7LfheFfqe1UtZ2qHd2q5dcq0rxzhhtRCJKwAA0B5ojoIOoW5zlIFOX/VQd0nSF4peP6qW3/pVqN2S+CAdD2r/xn75tcXWJALrbhfcdrAGVGjdqGzTI2Ksbkpuq2kC6MIaqk9X9zLelxBNbd3evSpRhT0Q9mNY9sEdE375tVN7JR2q7dtNycpQWjvPFgAAxCNWHKJDSDfhicM8k6M8k619dr/223LdVzVdF3rPVG/10ga7RQXKU6WpUrZ6aI8p0ezqeUpUgipVrTy+oHV5eSZbjhylKkW7VCSvPEpUovarXFLN9q633WWaUHW9Cu2uYGzkm2wts+Fj8cULQHPkmWxJUg9laHVgnd4OLNP8wEKdYI7WT33Xaq27STnqqZ3aozxlx3i26KjyTbY81qNuStLNlQ/I53iVoTSVaJ/yTa5W2bXKVU+tDqxVmdmvgA3IpwTlmRwZEx/1eQEAQGwZa61t/DA0pLS0VBkZGSopKVF6enqsp9MpudaVkdF9/umqtFW6z3ezSm2ZtrjbdUr1NxRQQInyqVJVYbeb6blfVwdqavz0Ua6ucL6mWxK+p1STEouHgXay35YrUT494H9Kb7lLNdoM1/e9l6iXydQeW6zp/jlafLCuYa1R5mTd5L1SqSZF91ZPl7Wubk24Rj6ToGSTFKNHAqCzes7/D13j/7kCCkRc55GjLHXXLu3VEA3U24lzlWJY3YxIZbZcjjXqVXWqAnKDl/uUoDc9s/XVwI+0V8UaogH6RBuC159nxuilxOmxmDIAAGiCrpQnYsUhOgTH1GwzTTepqm1wm25Sle30CH4p8x8sHB4qtNFFqklRhpNG0jAOdDv4N043qUo3qcpw0tTb6SVJyjE9leV0V7obvoo1y8lQppMhSerhdJckZTisNgTQPL1Ndr1JQ0kKyNWug1tLM0wqSUNElWpSJCN55VUg5MfRKlXrSG9/pbup2muLw2obSlIP072dZwoAAOIViUN0KDd6rww731OZ8ilBVaoO+yW+1nq7OXj6Z94f6lueC9p8jug4bvReqRt1ZZMvD70eAFqiTxPLYuSb3MYPQtzLVo+w5l2pSlG6UpWvHG3SVpVqf9jxPUkcAgCAdkJzFHRoxpgGaxbWNsaQ+HIGAGg/tTUOW+s4xLdkkxh2Ptv0OPgZqP74SRIlNgAAQPtgxSE6vK864/SF3am33KUqUamsappf9FB37bZFKlCeupkUHWHyYz1VAECcSDHJutg5V0vdj2Rk1EMZWqfN2ndwZdhp5gT55NMI57gYzxSdwRgzQntssfZpv/KUrXOc02sud4bLkaM17gat1+eqVLWy1UPHO4NjPGMAABAvaI7SCrpS0cuO7CdVD+gJd07w/FhzityD25fHOCN0Z8KkWE0NABCn7q1+QpJ0Z8Ik3Vx9v54MPBu87mgzQB8kvhKrqaELubf6Cb3lLuXzDgAAnURXyhOx4hCdRt0ty9mmh8pVIelgUxUAANpZ6PtPmrqFXZffxDqIQGNqm4HxeQcAALQ3EofoNH6S8D39KjBd5TogSbrS83Wd7RkV41kBAOJZaLOlukmdhmr0AoejsaZfAAAAbYXmKOhUEnWoeHiuesZwJgAAhEuvu+JQJA4BAADQubHiEJ3KVO/Ptd3ukpWr/qZPrKcDAEDQeM8Y/UVT9afAS/IYR9/ynB/rKQEAAAAtQuIQncol3gtiPQUAAOpVYPJU4M3TJm2TJA11BsV4RgAAAEDLkDgEAABoRaF1DwEAAIDOjBqHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACN5YT6ArsNZKkkpLS2M8EwAAAAAAAMRSbX6oNl/UmZE4bAV79uyRJPXt2zfGMwEAAAAAAEBHsGfPHmVkZMR6Gi1C4rAVZGVlSZI2b97c6QMCsVFaWqq+fftqy5YtSk9Pj/V00AkRQ2gNxBFaihhCSxFDaA3EEVqKGEJLlZSUqF+/fsF8UWdG4rAVOE5NqciMjAxeVNAi6enpxBBahBhCayCO0FLEEFqKGEJrII7QUsQQWqo2X9SZdf5HAAAAAAAAAKDVkTgEAAAAAAAAEIHEYStITEzUXXfdpcTExFhPBZ0UMYSWIobQGogjtBQxhJYihtAaiCO0FDGElupKMWRsV+gNDQAAAAAAAKBVseIQAAAAAAAAQAQShwAAAAAAAAAikDgEAAAAAAAAEIHEIQAAAAAAAIAInSpx+MADD2jEiBFKS0tTdna2vva1r2nNmjVhxxw4cECTJk1Sjx49lJqaqgkTJmjHjh3B61euXKlvf/vb6tu3r5KTkzVkyBBNmzYtbIx58+bpnHPOUa9evZSenq6RI0fqtddea3R+1lr94he/UO/evZWcnKyzzz5ba9euDTtm+fLlOuecc9S9e3f16NFD1157rcrKyhod+8MPP9To0aOVlJSkvn376je/+U3Y9R9//LEmTJigI444QsYYTZ06tdEx4xExFD2GZsyYodGjRyszM1OZmZk6++yztWTJkkbHjUfEUfQ4mjdvnoYPH67u3burW7duOvHEE/XMM880Om68IYaix1CouXPnyhijr33ta42OG2+Ioegx9PTTT8sYE/YvKSmp0XHjDTHU8OtQcXGxJk2apN69eysxMVFHHXWUXn311UbHjjfEUfQ4OvPMMyNei4wxuvDCCxsdO54QQw2/Fk2dOlWDBw9WcnKy+vbtq5tvvlkHDhxodOx4QgxFj6Hq6mrdc889GjhwoJKSknTCCSfoX//6V6Pj1vcgOo3x48fbWbNm2VWrVtkPPvjAXnDBBbZfv362rKwseMwPf/hD27dvX/vGG2/Y999/35522ml21KhRwetnzpxpb7jhBrtgwQK7fv16+8wzz9jk5GT72GOPBY+58cYb7a9//Wu7ZMkS+9lnn9nJkyfbhIQEu3z58gbnN2XKFJuRkWFfeuklu3LlSvvVr37V9u/f31ZUVFhrrd22bZvNzMy0P/zhD+2nn35qlyxZYkeNGmUnTJjQ4LglJSU2JyfHXn755XbVqlX2ueees8nJyfapp54KHrNkyRJ766232ueee87m5ubaRx999HCe2rhBDEWPocsuu8w+8cQTdsWKFfaTTz6xV111lc3IyLBbt249rOc4HhBH0ePov//9r503b55dvXq1XbdunZ06dar1eDz2X//612E9x10dMRQ9hmpt3LjR5ufn29GjR9uLLrqoKU9rXCGGosfQrFmzbHp6ut2+fXvwX2Fh4WE9v/GAGIoeQ5WVlXb48OH2ggsusIsWLbIbN260CxYssB988MFhPcfxgDiKHkd79uwJex1atWqV9Xg8dtasWYfzFHd5xFD0GJozZ45NTEy0c+bMsRs3brSvvfaa7d27t7355psP6znu6oih6DF0++2327y8PDt//ny7fv16O336dJuUlNTonOvqVInDunbu3Gkl2YULF1prrS0uLrYJCQn2r3/9a/CYTz75xEqy77zzTtRxfvSjH9kvfelLDd7X0KFD7d133x31etd1bW5urn3wwQeDlxUXF9vExET73HPPWWutfeqpp2x2drYNBALBYz788EMrya5duzbq2NOnT7eZmZm2srIyeNkdd9xhBw8eXO/xBQUFJA6biBiqP4astdbv99u0tDQ7e/bsBh8XiKOG4shaa0866ST7f//3fw0eE++IofAY8vv9dtSoUfYPf/iDvfLKK0kcNgExdCiGZs2aZTMyMhp8DIhEDB2KoSeffNIOGDDAVlVVNfg4EIk4iv6Z6NFHH7VpaWlhyQxEIoYOxdCkSZPsuHHjwm53yy232NNPP73BxxXviKFDMdS7d2/7+OOPh93u4osvtpdffnmDj6uuTrVVua6SkhJJUlZWliRp2bJlqq6u1tlnnx085uijj1a/fv30zjvvNDhO7Rj1cV1X+/bta/CYjRs3qrCwMOy+MzIydOqppwbvu7KyUj6fT45z6GlPTk6WJC1atCjq2O+8847GjBkjn88XvGz8+PFas2aNioqKot4OjSOGosdQeXm5qqurG5wzahBH9ceRtVZvvPGG1qxZozFjxkQdF8RQ3Ri65557lJ2drauvvjrqWAhHDIXHUFlZmQoKCtS3b19ddNFF+vjjj6OOiRrE0KEYeuWVVzRy5EhNmjRJOTk5OvbYY3X//fcrEAhEHRc1iKPon61nzpypSy+9VN26dYs6Loih0BgaNWqUli1bFiwftWHDBr366qu64IILoo4LYig0hiorKyPKtSQnJzc4bn06beLQdV3ddNNNOv3003XsscdKkgoLC+Xz+dS9e/ewY3NyclRYWFjvOIsXL9Zf/vIXXXvttVHv66GHHlJZWZm+9a1vRT2mdvycnJyo9z1u3DgVFhbqwQcfVFVVlYqKivTTn/5UkrR9+/YGx65v3ND7xeEjhhqOoTvuuEN5eXlhL3KIRBxFxlFJSYlSU1Pl8/l04YUX6rHHHtM555wTddx4RwyFx9CiRYs0c+ZMzZgxI+o4CEcMhcfQ4MGD9cc//lEvv/yy/vznP8t1XY0aNUpbt26NOm68I4bCY2jDhg164YUXFAgE9Oqrr+rOO+/Uww8/rPvuuy/quCCOGvpsvWTJEq1atUrXXHNN1DFBDNWNocsuu0z33HOPzjjjDCUkJGjgwIE688wz9bOf/SzquPGOGAqPofHjx+uRRx7R2rVr5bqu/v3vf2vevHkNjlufTps4nDRpklatWqW5c+c2e4xVq1bpoosu0l133aVzzz233mOeffZZ3X333Xr++eeVnZ0tSZozZ45SU1OD//73v/816f6OOeYYzZ49Ww8//LBSUlKUm5ur/v37KycnJ5hdPuaYY4Ljnn/++c1+bGgcMRTdlClTNHfuXP3tb3+joHwjiKNIaWlp+uCDD7R06VL96le/0i233KIFCxYc1hjxhBg6ZN++fZo4caJmzJihnj17Nuk2IIbqGjlypK644gqdeOKJGjt2rObNm6devXrpqaeeavIY8YYYCue6rrKzs/X73/9ew4YN0yWXXKKf//zn+t3vftfkMeIRcRTdzJkzddxxx+mUU05p1u3jBTEUbsGCBbr//vs1ffp0LV++XPPmzdP8+fN17733NnmMeEMMhZs2bZqOPPJIHX300fL5fLr++uv13e9+N2x1Y5Mc1sbmDmLSpEm2T58+dsOGDWGXv/HGG1aSLSoqCru8X79+9pFHHgm77OOPP7bZ2dn2Zz/7WdT7qS0u+Y9//CPs8tLSUrt27drgv/Lycrt+/Xorya5YsSLs2DFjxtgbbrghYuzCwkK7b98+W1ZWZh3Hsc8//7y11tpNmzYFx61tSjFx4sSI+k5vvvmmlWT37t0bMTY1DhtHDEWPoQcffNBmZGTYpUuXRn1cqEEcNfxaVOvqq6+25557btTr4xkxFB5DK1assJKsx+MJ/jPGWGOM9Xg8dt26dVEfY7wihpr2OvSNb3zDXnrppVGvj2fEUGQMjRkzxp511llhx7z66qtWUlgtKRxCHEV/LSorK7Pp6el26tSpUR8XiCFrI2PojDPOsLfeemvYMbVNO0Lr4aEGMRT9daiiosJu3brVuq5rb7/9djt06NCoj68+nSpx6LqunTRpks3Ly7OfffZZxPW1RS9feOGF4GWffvppRNHLVatW2ezsbHvbbbdFva9nn33WJiUl2ZdeeqnJc8vNzbUPPfRQ8LKSkpKwopf1mTlzpk1JSYkI4lC1RS9DCzRPnjyZ5ijNQAw1HEO//vWvbXp6eoNFYkEcNfW1qNZ3v/tdO3bs2CbNP14QQ/XHUEVFhf3oo4/C/l100UV23Lhx9qOPPuILewhiqOmvQ36/3w4ePJgulHUQQ9FjaPLkybagoCDsi/nUqVNt7969mzT/eEIcNf5aNGvWLJuYmGh3797dpHnHG2IoegydfPLJ9vbbb494DMnJydbv9zfpMcQDYqjpn4mqqqrswIED7eTJk5s0/1qdKnF43XXX2YyMDLtgwYKw1vbl5eXBY374wx/afv362TfffNO+//77duTIkXbkyJHB6z/66CPbq1cv+53vfCdsjJ07dwaPmTNnjvV6vfaJJ54IO6a4uLjB+U2ZMsV2797dvvzyy/bDDz+0F110UVibbWutfeyxx+yyZcvsmjVr7OOPP26Tk5PttGnTGhy3uLjY5uTk2IkTJ9pVq1bZuXPn2pSUlLA225WVlXbFihV2xYoVtnfv3vbWW2+1K1asaLALTzwihqLH0JQpU6zP57MvvPBC2Jz37dvX5Oc3XhBH0ePo/vvvt6+//rpdv369Xb16tX3ooYes1+u1M2bMaPLzGw+IoegxVBddletHDEWPobvvvtu+9tprdv369XbZsmX20ksvtUlJSfbjjz9u8vMbD4ih6DG0efNmm5aWZq+//nq7Zs0a+49//MNmZ2fb++67r8nPb7wgjhp/PzvjjDPsJZdc0uhzGa+IoegxdNddd9m0tDT73HPP2Q0bNtjXX3/dDhw40H7rW99q8vMbD4ih6DH07rvv2hdffNGuX7/evvXWW3bcuHG2f//+DSYk69OpEoeS6v03a9as4DEVFRX2Rz/6kc3MzLQpKSn261//ut2+fXvw+rvuuqveMQoKCoLHjB07tt5jrrzyygbn57quvfPOO21OTo5NTEy0Z511ll2zZk3YMRMnTrRZWVnW5/PZ448/3v7pT39q0mNfuXKlPeOMM2xiYqLNz8+3U6ZMCbt+48aN9c6ZVT7hiKHoMVRQUFDvnO+6664mjR9PiKPocfTzn//cDho0yCYlJdnMzEw7cuRIO3fu3CaNHU+IoegxVBeJw/oRQ9Fj6KabbrL9+vWzPp/P5uTk2AsuuMAuX768SWPHE2Ko4dehxYsX21NPPdUmJibaAQMG2F/96les8KkHcdRwHNWuanr99debNGY8Ioaix1B1dbX95S9/aQcOHGiTkpJs37597Y9+9KPDTvp0dcRQ9BhasGCBHTJkiE1MTLQ9evSwEydOtNu2bWvS2KGMtdYKAAAAAAAAAEJ02q7KAAAAAAAAANoOiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAQJ84880zddNNNcXffAAAAaB4ShwAAAIiwYMECGWNUXFzcKrebN2+e7r333tabIAAAANqcN9YTAAAAQNeXlZUV6ykAAADgMLHiEAAAoAvav3+/rrjiCqWmpqp37956+OGHw65/5plnNHz4cKWlpSk3N1eXXXaZdu7cKUnatGmTvvSlL0mSMjMzZYzRVVddJUlyXVcPPPCA+vfvr+TkZJ1wwgl64YUXGr1d3a3KRxxxhO67777gHAsKCvTKK69o165duuiii5Samqrjjz9e77//fti8Fy1apNGjRys5OVl9+/bVDTfcoP3797f20wcAAACROAQAAOiSbrvtNi1cuFAvv/yyXn/9dS1YsEDLly8PXl9dXa17771XK1eu1EsvvaRNmzYFk3x9+/bViy++KElas2aNtm/frmnTpkmSHnjgAf3pT3/S7373O3388ce6+eab9Z3vfEcLFy5s8Hb1efTRR3X66adrxYoVuvDCCzVx4kRdccUV+s53vqPly5dr4MCBuuKKK2StlSStX79e5513niZMmKAPP/xQf/nLX7Ro0SJdf/31bfEUAgAAxD1jaz+JAQAAoEsoKytTjx499Oc//1nf/OY3JUl79+5Vnz59dO2112rq1KkRt3n//fc1YsQI7du3T6mpqVqwYIG+9KUvqaioSN27d5ckVVZWKisrS//5z380cuTI4G2vueYalZeX69lnn633dlLNisMTTzwxeN9HHHGERo8erWeeeUaSVFhYqN69e+vOO+/UPffcI0l69913NXLkSG3fvl25ubm65ppr5PF49NRTTwXHXbRokcaOHav9+/crKSmpFZ9FAAAAUOMQAACgi1m/fr2qqqp06qmnBi/LysrS4MGDg+eXLVumX/7yl1q5cqWKiorkuq4kafPmzRo6dGi9465bt07l5eU655xzwi6vqqrSSSeddNjzPP7444Onc3JyJEnHHXdcxGU7d+5Ubm6uVq5cqQ8//FBz5swJHmOtleu62rhxo4YMGXLYcwAAAEB0JA4BAADizP79+zV+/HiNHz9ec+bMUa9evbR582aNHz9eVVVVUW9XVlYmSZo/f77y8/PDrktMTDzseSQkJARPG2OiXlab1CwrK9MPfvAD3XDDDRFj9evX77DvHwAAAA0jcQgAANDFDBw4UAkJCXrvvfeCCbWioiJ99tlnGjt2rD799FPt2bNHU6ZMUd++fSUpogmJz+eTJAUCgeBlQ4cOVWJiojZv3qyxY8fWe9/13a61nHzyyVq9erUGDRrU6mMDAAAgEs1RAAAAupjU1FRdffXVuu222/Tmm29q1apVuuqqq+Q4NR/9+vXrJ5/Pp8cee0wbNmzQK6+8onvvvTdsjIKCAhlj9I9//EO7du1SWVmZ0tLSdOutt+rmm2/W7NmztX79ei1fvlyPPfaYZs+eHfV2reWOO+7Q4sWLdf311+uDDz7Q2rVr9fLLL9McBQAAoI2QOAQAAOiCHnzwQY0ePVpf+cpXdPbZZ+uMM87QsGHDJEm9evXS008/rb/+9a8aOnSopkyZooceeijs9vn5+br77rv105/+VDk5OcHk3L333qs777xTDzzwgIYMGaLzzjtP8+fPV//+/Ru8XWs4/vjjtXDhQn322WcaPXq0TjrpJP3iF79QXl5eq90HAAAADqGrMgAAAAAAAIAIrDgEAAAAAAAAEIHEIQAAAAAAAIAIJA4BAAAAAAAARCBxCAAAAAAAACACiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAAAAAAEQgcQgAAAAAAAAgAolDAAAAAAAAABFIHAIAAAAAAACIQOIQAAAAAAAAQAQShwAAAAAAAAAikDgEAAAAAAAAEIHEIQAAAAAAAIAIJA4BAAAAAAAARCBxCAAAAAAAACACiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAAAAAAEQgcQgAAAAAAAAgAolDAAAAAAAAABFIHAIAAAAAAACI4I31BAAAANC6/H6/qqqqYj2NmEhKSpLj8Ns4AABAayBxCAAA0EVYa7V582bt3r071lOJGcdxNHToUCUmJsZ6KgAAAJ2esdbaWE8CAAAALff5559r9+7dys/PV2pqatytvHNdVxs3bpTP59NRRx0lY0yspwQAANCpkTgEAADoAvx+v1auXKn8/Hzl5ubGejoxs3fvXm3cuFGbNm3Saaedpvz8/FhPCQAAoNOKr5+hAQAAuqjamoapqakxnkls1W5R3r59u+bPn69t27bFeEYAAACdF4lDAACALiTetifXVbs9OTc3V7t27dKqVatiPCMAAIDOK74/WQIAAKBLMsYoOTlZe/fujfVUAAAAOi0ShwAAAOiwFixYIGOMiouLD/u2xhhRzhsAAKD5SBwCAAAAAAAAiEDiEAAAAAAAAEAEb6wnAAAAgNZ1XfVdWu2ui+kchjqD9GTC3U06trKyUrfddpvmzp2r0tJSDR8+XI8++qhGjBgRcWx5ebkmTJig0tJSzZ8/X927d2/lmQMAAKAWiUMAAIAuZrW7Tu/ZlbGdhNv0Q2+//Xa9+OKLmj17tgoKCvSb3/xG48eP17p14cnP4uJiXXjhhUpNTdW///1vpaSktPKkAQAAEIqtygAAAIiZ/fv368knn9SDDz6o888/X0OHDtWMGTOUnJysmTNnBo8rLCzU2LFj1bt3b/39738naQgAANAOSBwCAAAgZtavX6/q6mqdfvrpwcsSEhJ0yimn6JNPPgleds4552jQoEH6y1/+Ip/PF4upAgAAxB0ShwAAAOjwLrzwQr311ltavXp1rKcCAAAQN6hxCAAA0MUMdQYdVo3BNptDEwwcOFA+n09vv/22CgoKJEnV1dVaunSpbrrppuBxU6ZMUWpqqs466ywtWLBAQ4cObYtpAwAAIASJQwAAgC6mqd2MO4Ju3brpuuuu02233aasrCz169dPv/nNb1ReXq6rr75aK1ceavLy0EMPKRAIaNy4cVqwYIGOPvroGM4cAACg6yNxCAAAgJiaMmWKXNfVxIkTtW/fPg0fPlyvvfaaMjMzI4599NFHw5KHRx11VAxmDAAAEB+MtdbGehIAAABomfLycn3yyScaMmRIXHccrn0eNm3apM2bNysnJ0eXXXZZrKcFAADQKdEcBQAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAuhDXdWM9hZii7x8AAEDrIXEIAADQBfh8PklSWVlZjGcSW5WVlZIkv98f45kAAAB0ft5YTwAAAAAt5/V61bNnT23btk2SlJqaKseJr9+IXdfVli1bVF5erkAgEOvpAAAAdHokDgEAALqIfv36KRAIBJOH8ch1XRUWFkqqWXWYnJwc4xkBAAB0XiQOAQAAughjjAYMGKCXX35ZmzdvVq9evZSQkBDrabUba62qq6vluq7Kysrkuq7y8/NjPS0AAIBOy1gqSAMAAHQp5eXl+uc//6l169bFZbMQa618Pp+GDRum0aNHy+PxxHpKAAAAnRKJQwAAgC6ooqJChYWFqqioiLvkoeM46tatm/Lz80kaAgAAtACJQwAAAAAAAAAR4qvVHgAAAAAAAIAmIXEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAECE/wcjAFhSW5yYmgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Import the standard datetime library to make timestamps from datetime objects\n", + "from datetime import datetime\n", + "\n", + "your_dataset.make_plot(\n", + " # specify the names of the stations in a list, or use None to plot all of them.\n", + " stationnames=['vlinder01', 'vlinder03', 'vlinder05'],\n", + " # what obstype to plot (default is 'temp')\n", + " obstype=\"humidity\",\n", + " # choose how to color the timeseries:\n", + " #'name' : a specific color per station\n", + " #'label': a specific color per quality control label\n", + " colorby=\"label\",\n", + " # choose a start and endtime for the series (datetime).\n", + " # Default is None, which uses all available data\n", + " starttime=None,\n", + " endtime=datetime(2022, 9, 9),\n", + " # Specify a title if you do not want the default title\n", + " title='your custom title',\n", + " # Add legend to plot?, by default true\n", + " legend=True,\n", + " # Plot observations that are labeled as outliers.\n", + " show_outliers=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "7ec5ac1d-0753-4afa-b648-97c118533b86", + "metadata": {}, + "source": [ + "as mentioned above, one can apply the same methods to a Station object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "403d6e8e-ada3-4ab8-b943-947a71ba91a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dfn3Huz9yYkEMLeewkoLnC06rdaR2sFtU5cta2/aqu2atXaOvqt36pt3aNDK7a1ihtUZChTQAIJkEBC9t6593x+f4Rc7oVA1t28n3346L3nnnvOJyHJvfd93kNprTVCCCGEEEIIIYQQQgi/Mvy9ACGEEEIIIYQQQgghhATqhBBCCCGEEEIIIYQICBKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIACCBOiGEEEIIIYQQQgghAoAE6oQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIUTAa2xs5Ic//CEZGRkopbjtttsGfEylFL/85S+d91944QWUUuzbt2/Ax/bmMYUQQggRuiRQJ4QQQoigpZTq1X8rV67091L95o9//CMvvPCCv5cxYA8++CAvvPACN9xwAy+//DI/+MEP/L0kvysuLubiiy8mISGBuLg4zj//fPbs2eO2z/79+/nVr37FrFmzSExMJCUlhYULF/Lhhx/6adVCCCGEOB6rvxcghBBCCNFfL7/8stv9l156iQ8++OCo7WPHjvXlsgLKH//4R1JSUli6dKm/lzIgH3/8MXPmzOHee+/12jl+8IMfcOmllxIeHu61c3hKY2Mjp556KnV1ddx1113YbDYef/xxTjnlFDZv3kxycjIA//rXv/jNb37DBRdcwJIlS7Db7bz00kuceeaZPPfcc1x55ZV+/kqEEEII4UoCdUIIIYQIWpdffrnb/bVr1/LBBx8ctT1UaK1pbW0lMjLS30vptaamJqKjowd8nPLycsaNG+eBFR2bxWLBYrF49RwD1fX9/OMf/8ju3btZv349M2fOBODss89mwoQJPProozz44IMAnHrqqRQVFZGSkuI8xvXXX8+UKVO45557JFAnhBBCBBgpfRVCCCFESDNNkyeeeILx48cTERFBeno61113HTU1NW775eTk8K1vfYuVK1cyY8YMIiMjmThxorNs9s0332TixIlEREQwffp0Nm3a5Pb8pUuXEhMTw549e1i8eDHR0dFkZmZy3333obUe0Jree+8955qeeeYZAJ5//nlOO+000tLSCA8PZ9y4cTz11FNHPX/79u2sWrXKWQa8cOFCAH75y1+ilDrq+9VdT7Uje7m5Ht81U6/ruatWreLGG28kLS2NrKyso57nqry8nKuvvpr09HQiIiKYPHkyL774ovPxlStXopRi7969/Pe//3V+Hcfq+TZhwgROPfXUo7abpsngwYO56KKLjrmW7r72rn+Dzz//nFmzZhEREUFubi4vvfTSUc/fvn07p512GpGRkWRlZfHAAw9gmma353r33XdZsGAB0dHRxMbGcu6557J9+3a3fbp+pgoKCjjnnHOIjY3l+9//PgBvvPEGM2fOdAbpAMaMGcPpp5/OP/7xD+e28ePHuwXpAMLDwznnnHM4cOAADQ0Nx/x+CCGEEML3JKNOCCGEECHtuuuu44UXXuDKK6/klltuYe/evTz55JNs2rSJ1atXY7PZnPvm5+fzve99j+uuu47LL7+c3/3ud3z729/m6aef5q677uLGG28E4KGHHuLiiy8mLy8Pwzh83dPhcHDWWWcxZ84cHnnkEVasWMG9996L3W7nvvvu69ea8vLyuOyyy7juuuu45pprGD16NABPPfUU48eP57zzzsNqtfKf//yHG2+8EdM0WbZsGQBPPPEEN998MzExMfz85z8HID093Xvf7ENuvPFGUlNTueeee2hqajrmfi0tLSxcuJD8/Hxuuukmhg0bxuuvv87SpUupra3l1ltvZezYsbz88sv86Ec/Iisrix//+McApKamdnvMSy65hF/+8peUlpaSkZHh3P75559TUlLCpZde2uevJz8/n4suuoirr76aJUuW8Nxzz7F06VKmT5/O+PHjASgtLeXUU0/Fbrfzs5/9jOjoaP70pz91m/348ssvs2TJEhYvXsxvfvMbmpubeeqpp5g/fz6bNm0iJyfHua/dbmfx4sXMnz+f3/3ud0RFRWGaJlu3buWqq6466tizZs3i/fffp6GhgdjY2GN+TaWlpURFRREVFdXn74cQQgghvEgLIYQQQoSIZcuWade3N5999pkG9Kuvvuq234oVK47aPnToUA3oL774wrntvffe04COjIzUhYWFzu3PPPOMBvQnn3zi3LZkyRIN6Jtvvtm5zTRNfe655+qwsDBdUVHR7zWtWLHiqK+1ubn5qG2LFy/Wubm5btvGjx+vTznllKP2vffee3V3bwWff/55Dei9e/c6twH63nvvPWrfoUOH6iVLlhz13Pnz52u73X7U/kd64oknNKBfeeUV57b29nY9d+5cHRMTo+vr693Ode655/Z4zLy8PA3oP/zhD27bb7zxRh0TE+P2fTvy6+rua+/6N/j000+d28rLy3V4eLj+8Y9/7Nx22223aUCvW7fObb/4+Hi3YzY0NOiEhAR9zTXXuK2vtLRUx8fHu23v+pn62c9+5rZvRUWFBvR999131Nf/f//3fxrQO3fuPOb3aPfu3ToiIkL/4Ac/OOY+QgghhPAPKX0VQgghRMh6/fXXiY+P58wzz6SystL53/Tp04mJieGTTz5x23/cuHHMnTvXeX/27NkAnHbaaQwZMuSo7UdO2AS46aabnLeVUtx00020t7c7p2z2dU3Dhg1j8eLFR53HNVOrrq6OyspKTjnlFPbs2UNdXV2vv0fecM011/Sq19s777xDRkYGl112mXObzWbjlltuobGxkVWrVvX53KNGjWLKlCn8/e9/d25zOBy88cYbfPvb3+5Xf79x48axYMEC5/3U1FRGjx7t9u//zjvvMGfOHGbNmuW2X1epapcPPviA2tpaLrvsMrd/f4vFwuzZs4/69we44YYb3O63tLQAdDv0IiIiwm2fIzU3N/Pd736XyMhIHn744Z6+dCGEEEL4mJS+CiGEECJk7d69m7q6OtLS0rp9vLy83O2+azAOID4+HoDs7Oxutx/ZU84wDHJzc922jRo1CsDZ96yvaxo2bFi3+61evZp7772XNWvW0Nzc7PZYXV2dc43+cKw1H6mwsJCRI0e6lQ/D4Sm9hYWF/Tr/JZdcwl133UVxcTGDBw9m5cqVlJeXc8kll/TreEf+XAAkJia6/fsXFhY6A7iuukqVu+zevRvoDP52Jy4uzu2+1Wo9qs9fV7Cxra3tqOe3tra67ePK4XBw6aWXsmPHDt59910yMzO7XYMQQggh/EcCdUIIIYQIWaZpkpaWxquvvtrt40f2OTtWFtixtusjhkR4Y03dBVwKCgo4/fTTGTNmDI899hjZ2dmEhYXxzjvv8Pjjjx9zgIGr7gZJQGcwp7eOta+/p9Jecskl3Hnnnbz++uvcdttt/OMf/yA+Pp6zzjqrX8fz9L8/dPapc+2h18VqdX97Hh4eflQgMykpifDwcA4ePHjU87u2dReEu+aaa3j77bd59dVXjxkoFEIIIYR/SaBOCCGEECFr+PDhfPjhh8ybN88nwSPTNNmzZ48ziw5g165dAM4BAZ5Y03/+8x/a2tr497//7Zbt1V3Z5LECcomJiQDU1taSkJDg3N5dFltiYiK1tbVu29rb27sNFPXF0KFD2bp1K6ZpugWjdu7c6Xy8P4YNG8asWbP4+9//zk033cSbb77JBRdc0G2pqKcMHTrUmS3nKi8vz+3+8OHDAUhLS+OMM87o17kMw2DixIl89dVXRz22bt06cnNzjxok8dOf/pTnn3+eJ554wq3UWAghhBCBRXrUCSGEECJkXXzxxTgcDu6///6jHrPb7UcFnzzhySefdN7WWvPkk09is9k4/fTTPbamrgwv14yuuro6nn/++aP2jY6O7vaYXQGjTz/91LmtqamJF198sdt9XfcD+NOf/tSn7LvunHPOOZSWlrr1k7Pb7fzhD38gJiaGU045pd/HvuSSS1i7di3PPfcclZWV/S577a1zzjmHtWvXsn79eue2ioqKozInFy9eTFxcHA8++CAdHR1HHaeioqJX57vooov48ssv3YJ1eXl5fPzxx3z3u9912/e3v/0tv/vd77jrrru49dZb+/JlCSGEEMLHJKNOCCGEECHrlFNO4brrruOhhx5i8+bNLFq0CJvNxu7du3n99df5/e9/z0UXXeSx80VERLBixQqWLFnC7Nmzeffdd/nvf//LXXfd5Sxp9cSaFi1aRFhYGN/+9re57rrraGxs5M9//jNpaWlHZblNnz6dp556igceeIARI0aQlpbGaaedxqJFixgyZAhXX301P/3pT7FYLDz33HOkpqZSVFTkdowf/vCHXH/99Vx44YWceeaZbNmyhffee4+UlJQBfb+uvfZannnmGZYuXcqGDRvIycnhjTfeYPXq1TzxxBNHZYX1xcUXX8xPfvITfvKTn5CUlNTv7LXeuuOOO3j55Zc566yzuPXWW4mOjuZPf/qTM2uwS1xcHE899RQ/+MEPmDZtGpdeeqnze/7f//6XefPmuQV7j+XGG2/kz3/+M+eeey4/+clPsNlsPPbYY6Snp/PjH//Yud/y5cu54447GDlyJGPHjuWVV15xO86ZZ55Jenq6574RQgghhBgQCdQJIYQQIqQ9/fTTTJ8+nWeeeYa77roLq9VKTk4Ol19+OfPmzfPouSwWCytWrOCGG27gpz/9KbGxsdx7773cc889Hl3T6NGjeeONN/jFL37BT37yEzIyMrjhhhtITU3lqquuctv3nnvuobCwkEceeYSGhgZOOeUUTjvtNGw2G8uXL+fGG2/k7rvvJiMjg9tuu43ExESuvPJKt2Ncc8017N27l2effZYVK1awYMECPvjgA2eWYH9FRkaycuVKfvazn/Hiiy9SX1/P6NGjef7551m6dOmAjp2VlcVJJ53E6tWr+eEPf4jNZhvQ8XoyaNAgPvnkE26++WYefvhhkpOTuf7668nMzOTqq6922/d73/semZmZPPzww/z2t7+lra2NwYMHs2DBgqO+98cSGxvLypUr+dGPfsQDDzyAaZosXLiQxx9/3K3P4ZYtW4DOIRY/+MEPjjrOJ598IoE6IYQQIoAo3Z8uuEIIIYQQws3SpUt54403aGxs9PdShBBCCCFEkJIedUIIIYQQQgghhBBCBAAJ1AkhhBBCCCGEEEIIEQAkUCeEEEIIIYQQQgghRACQHnVCCCGEEEIIIYQQQgQAyagTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAYPX3AkKRaZqUlJQQGxuLUsrfyxFCCCGEEEIIIYQQfqS1pqGhgczMTAzj2HlzEqjzgpKSErKzs/29DCGEEEIIIYQQQggRQPbv309WVtYxH5dAnRfExsYCnd/8uLg4P69GCCGEEEIIIYQQQvhTfX092dnZzpjRsUigzgu6yl3j4uIkUCeEEEIIIYQQQgghAHpskSbDJIQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIYQQQgghhAgAEqgTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAIIE6IYQQQgghhBBCCCECgATqhBBCCCGEEEIIIYQIABKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIAGD19wKEEEIIT6rUNXziWMNb5sfYsHCv9WaGGVn+XpYQQgghhBBC9EgCdUIIIULKRnM7P7Df4bzfbG9hnjGdW61L/LgqIYQQgc6+4Q84Cj9C1xWi4oZgyTkD6/Sb/b0sIYQQJxgJ1AkhhAgpldS43V9prudrcxc3WL5HmLL5aVVCCCECnX3jk9BYAoCuzcdevVMCdUIIIXxOetQJIYQIKVW61u1+PY3s5QD5ZqF/FiSEEEIIIYQQvSQZdUIIIUJKvW4ki3RKqcKOHYBUkviT4+88Yfm5n1cnhBAiUIUv+Qrd1oDuaESFxaDCYv29JCGEECcgCdQJIYQIKQcp5wBlbts6sFNPg59WJIQQIhiosFgJzgkhhPA7KX0VQggRUlxLX3eHf0AOg6mlnk/Mdf5blBBCCCGEEEL0gmTUCSGECClJxHOSmkorbSTrBKYYY0nXyYQRRp3ZQLwh2RJCCCGEEEKIwCSBOiGEECFlg97OZv0NNqxEqgiSVAJvmR8CsIt9zGSin1cohBAiENk3/AFH4UfoukJU3BAsOWfI1FchhBA+J4E6IYQQIaWeRgBiiUYpxTQ1nl1qLw00k28WMtOQQJ0QQoij2Tc+CY0lAOjafOzVOyVQJ4QQwuckUCeEECLoObQDi7JQpxto0E0AxBANQJZK53O9AYB8Xei3NQohhBBCCCFETyRQJ4QQIuiNaTuLA5Si0UQQBkCs6gzUjVLDGKGGckCXsk3v8ucyhRBCCCGEEOK4JFAnhBAiqJWbVdRQh0YDMIg0IlQ4o9UwAIaqTGp0HTkMBpQfVyqEEEIIIYQQxyeBOiGEEEHtdfNdGml23t/LAdDwmu0xACzKwiCVyja9mwKziA7dgU3Z/LVcIYQQQgghhDgmCdQJIYQIWnVmA3+xv+68b8WCHQcAKSrRuf1s4xRSzWRA87ZjJf9jPdPXSxVCCCGEEEKIHkmgTgghRNAq11V8Q4HzfleQTqFIJM65fbFlAb91/AWAVke7BOqEEEIIIYQQAcnw9wKEEEKI/qpStc7bOQwmDBsWLMxX07Gqw9eiJqnRfMdYRDopbNV5tOsOP6xWCCGEEEIIIY5PAnVCCCGCVr1uJJUkLFjIJZt2OnDgoJo6t/3iVAwWLFRQhcbkjo7fUKVr/bNoIYQQQgghhDgGCdQJIYQIWlXUUkE1DhwsNGZTFb6exvDNvBf23FH7PmH7Oc9YH6CNdp42/8a/HB/6YcVCCCEClZE2GcITwLBCeELnfSGEEMLHpEedEEKIoNWsW523U40kolUUACkkHrVvskogU6WRQhKRhFOhq322TiGEEIEv7Px/+HsJQgghhATqhBBCBK8WWpy3o1Rkj/uPNoZRRiUAa/Vmby1LCCGEEEIIIfolqEtfH3roIWbOnElsbCxpaWlccMEF5OXlOR/ft28fSqlu/3v99dePedylS5cetf9ZZ53liy9JCCFEHzRzOKMump4DdYNJ5zQ1h5PUVFp1uzeXJoQQQgghhBB9FtSBulWrVrFs2TLWrl3LBx98QEdHB4sWLaKpqQmA7OxsDh486Pbfr371K2JiYjj77LOPe+yzzjrL7Xl//etfffElCSGE6APX0tdIInrcXylFLfV8oTfxhd5Ii9na43OEEEIIIYQQwleCuvR1xYoVbvdfeOEF0tLS2LBhAyeffDIWi4WMjAy3fZYvX87FF19MTEzMcY8dHh5+1HOFEEIElhaXjLoo1XOgDmCeMZ1KRy0HKKWAIiYwylvLE0IIEUTa/3UxZvEa6GgEWwzG4LnSt04IIYTPBXVG3ZHq6uoASEpK6vbxDRs2sHnzZq6++uoej7Vy5UrS0tIYPXo0N9xwA1VVVcfct62tjfr6erf/hBBCeJ8FCyPUELIZRKTuXaAujhiaaGYSoyjWZV5eoRBCiGBhlm+Btlow7dBW23lfCCGE8LGQCdSZpsltt93GvHnzmDBhQrf7PPvss4wdO5aTTjrpuMc666yzeOmll/joo4/4zW9+w6pVqzj77LNxOBzd7v/QQw8RHx/v/C87O3vAX48QQoielelK8nUR+zlIdC+GSQAMU1lUUctmdrJH7/fyCoUQQgghhBCi94K69NXVsmXL2LZtG59//nm3j7e0tPDaa69x991393isSy+91Hl74sSJTJo0ieHDh7Ny5UpOP/30o/a/8847uf3225336+vrJVh3gvmb/b+8ab5Pk27mOutlnGc5zd9LEuKE4Fr6GtnL0tdUdTjrulLXeHxNweZ9x2f8n+M1rFj4H2MRl1vP8/eShBBCCCGEOGGFRKDupptu4u233+bTTz8lKyur233eeOMNmpubueKKK/p8/NzcXFJSUsjPz+82UBceHk54eHifjytCxz8c7/COXgXAEDNTAnVC+EgzLc7bUb2Y+gqQrBKct6uo9fCKgs/7ji94z/wMAIc2JVAnhBBCCCGEHwV1oE5rzc0338zy5ctZuXIlw4YNO+a+zz77LOeddx6pqal9Ps+BAweoqqpi0KBBA1muCGIz2v6HYl1OOx0cCP/ULXNnftulbNbfOO/XaOlRKISvNLsOk+jF1FeAZBKZpSbRShvtdHhraUGjTbU5byvlx4UIIYQQQgghgrtH3bJly3jllVd47bXXiI2NpbS0lNLSUlpaWtz2y8/P59NPP+WHP/xht8cZM2YMy5cvB6CxsZGf/vSnrF27ln379vHRRx9x/vnnM2LECBYvXuz1r0kEpt26kBrqaKGFYtO9+fxOXYCdw/0L63WDr5cnxAmpUTfTpDv/3isU4YT16nkpKpH1eitbdR579QFvLjEomNo8fBvtx5UIIYQQQgghgjpQ99RTT1FXV8fChQsZNGiQ87+///3vbvs999xzZGVlsWjRom6Pk5eX55wYa7FY2Lp1K+eddx6jRo3i6quvZvr06Xz22WdS3nqCMrVJG+2dt9EcoMztsSaXjB6AL/XXaC0fdoXwttPar2CD3gaADSuql+lgMUQRhg2AKulRRy2Hs4A7tGQYCiGEEEII4U9BX/raGw8++CAPPvhgr44TGRnJe++9N+C1idBRrxvJJoP9lALwsmM5u/U+rrFeTL1uZCy5fEMBGlDADDWBcl1Fukrx67qFCHXtLkGlwaT3+nlKKeaoKTTSTCzR3lhaUGkzD38fE1WcH1cihBBCCCGECOqMOiF8oU41OoN0AK+a/+EO+28AaFBN7DgUpAPQwCd6HaVU+n6hQpxgOg5lugI00tSn57bTwUa9nVV6PQ26b88NNa0uPep26UI/rkQIIYQQQggR1Bl1QvhCg248alsLbcxqu5DhDHFuiyWahkPBgkoppxPC69oODYKwYeUKy//06bnzjenYTCuttLHL3Mt0ywRvLDEouAY5a2UYjhDiBGaddhOOwo/QdYWouCFYcs7w95KEEEKcgCRQJ0QPGo6RqbNV53GQcuf9cWoE6/QWAKqQQJ0Q3tZKZybYYJXBr2239+m5ySqBz/RXAOzSe5nOiRuoq3f5G1dJDXZtx6rk7YEQ4sRjnX4z1uk3+3sZQgghTnBS+ipEDxp1s9t9xeGG9S0cLhlLJI6RKod0UqjWdT5bnxAnqnDCGEImo8jp83PHqZFMUCNJJJ48vc/jawsWWmvKdCXxxBJLNAaK5eYH/l6WEEIIIYQQJywJ1AnRg2ZaSSXJeV/jMnyECOftWBXDbr2PMiqp0NU+XaM4sa1yrOe5jn/ycsdbrHNsYbW50d9L8rp23UExZRRRcsys1+MZoYbwjd6DAj4yvzhhJzUX6mJy1GBMTBppYhCpFOuynp8ohBBCCCGE8AqpbRGiBzW6jgq6D7y5bnedllhFrbeXJQQApjY5t+Ma7Dg6NzggmQSKIz7378K8zDU4F6di+vz8YSqLxcZ83jFXUa2/powqMjjxJjX/y/yIDXo70JktnE8RG8ztfl6VEEL4h25vQLc1oDsaUWExqLBYVFisv5clhBDiBCOBOiF6cLxsnSgiCcPKFDWWUQxjvpqBiYMObffhCsWJ6lPzS9Y7tjKYdEqpRAOxRDHTmMhGxzamhfCABNdJrbFE9fn5hjKYrMawjd1YMNhl7iXDcuIF6lwH3wxnCBkqBTgxswuFEKLtxRnQWHJ4Q0wmEdfk+W9BQgghTkgSqBOiB8cL1DXTQjOwUq/nevU91urN2LGzR++ntL3Cd4s8wsnGTG61LvHb+YVvvOtYxeOOFwD4gXE+Cy2zubrjLlaYn7HYWMC0EB6Q4DqpNEZF9+sYmSqNIjo/kO3UBZzMTI+sLZhUugy+6aCDz/UGInQ4pjYxlHTHEEIIIYQQwtckUCdEDxq1e6AuhkhGkkMee2mjA43JGIYz2zKZx7mTdJXCx461bNe7/bLWQg52ZgepVC6xnOPzNQjfqXQpsU5VyaSQePgxHdqTh2t1AxPUKKKJIJfsfh1jnBrBPDWNBprYp4s9vMLA97T9r/zV8TYWDFJJYraaTCpJOHBQrqvIUKn+XqIQQgghhBAnHAnUCdGDZt3qdt+ByaXWb/GK/V98zS4A4lUsg1Qq11gvAWCvPsB+86DP19pKG9W6lmpq2R3gkyybdQvNtPKq49+YWnObdQlKqZ6fKJyqXIJxt1mXUKQPl+uU6yp/LMlnqqhhm+78/TtXndqvY4wwhrJadw7eMB2a+623YVEWj60x0O0x99N6aHJ1BdVEqgi+MrcBnZl2GUigTgghhBBCCF+TQJ0QPainEYUinDDeszxHsiWBEcZQLrWci0ObOHAQqSLcnnOrdQm34vvS0/cdn3Nex/UAAT/F8iNzDd/tuMV5/zvWRQwl048rCj77dDEWLIwih2SdgIlmKIPZz0H24/tAsS9V6lrn7WSXTMK+SCOZpcZ3eM38D9vYxR69n5EqxzMLDAKtqs15+1XbY3xpbnXed/3+CiGEEEIIIXxHAnVC9KCNdjSaVtrItKaRrQYBkK5SIMASwFSgLeg46nUjqSQ5J+e26JaA+34GMru2k0wCY1UuMURjMSyk62RMTCaokcTR90mowaSNNqapcTTTSppK6tcxlFIMVunEEUMUEezRRYwkx7MLDVBF5kE2ukx3naBGUkYFY8iljgZedLxJua7iYuvZflylEEIIIYQQJx4J1AnRg67SMIAIwv24kr7RAT658Rtd4AzSATTTepy9xZEKdQmf6a8A+B/jTKAz8BSlItiq89ij9/tzeV5XqEvYqHcAkKji+32ckUYOlY7OEuJtOp/FnOyR9QW6N8x3+Upvc96PUdGkGEnsdOwB4K/m26wwP5VAnRBCCCGEED4mgTohehCsgbpA10iz230J1PVNiS5noZpNG+1MUKOc2zvLQPfSSDOtuo0IFZo/s67DMlJI6PdxxpLLfDUdCP2+fq5s2ua8nUUGCcQyimFkkUEplVgwyCCVjeZ2phnj/bhSIYQQQgghTiwSqBNufm9/Ea01t0pjf6dW3e68HU6YH1fSN4GdT9dZ+uqqRUugri/2c5CVeh0A31VnObenqATnP36lriFLZfhhdd5XxeFAXbLqX486gOHGUD7XGwDocHSArYcnhACtNXU0OO+fYZxEhApnpDGUA5QCYAe+oYAN5jYJ1AkhhBBCCOFDEqgTAOSZezit/QqqqAXgl44/8HbYn5hvTPfvwgJA26GMOoXCFuC/MsHUo66RJrf7zbT4aSXBqcp1mIJLoGq6msAetZ/9+iCFupgsQjNQV2yWkUMWQ9UgEnVcv/sbxqgozjIWkK8LKdQlaK1D/iLFrPYL2aZ3AzCW4dxkvRyACBXOq9ZH2WJ+w6vmfwjD5pa5KIQQQgghhPC+wI46CJ8pp9oZpIPOcs8aXee/BQWABrOJvfoAtdQDnWWvof4B3lfqdAMKgzCstGMnnWSaJaOuT0p0OZmkUUsDyS6ln1Eqkp16D0MZzE69l3mEVrC9Rbfylv1DtIIqXUMEYViNgb2UdWCnVFeSzSDKdTXpKtlDqw1MrbrN2cPyGwoYqgY7H7vQuphRZg6PtP8FgKIQnx4shBCuws77G2bFNnR9ESpuCEbqBH8vSQghxAlIAnUC6PzAe6QTvWfYK+a/+JH9Qef9iCAqe4XAHibxnvkZ/zI/dN4vo8oZEBU901rzguOf1FDPKDWM0425zseWGv/Dr/gDBRTxF8c/uNp6kR9X6nmbzG+40vEz5/3XbI8P+JgT1Wg+Yg3fUMAu9pJOaAfqXINv0UQSq6LdHnfN0OzutUEIIUKVkT4VI32qv5chhBDiBCeBOgFAk25hOhPZzHYcmAA06xO7FNGO3Xk7igjmGFP8t5heCpbSV9eyzS4v2N9kg7mNZ2z3Y1EW3y8qQP2f/RW2m/nUUMePjat42XyLDeYOwgkjl2xOMWa6ZXrGGjHMVJNooZUoIjC1iaEMP34FnlVMKdFE0oGDWKIYrXIGfMxRKodpahzRRFFklkDofLuO0q47aONw381ooo7aJ0nHM11NIAwb8cT6cnlCCCGEEEKc8CRQJwA4QCkb+NptW8sJnlHXpjuct5tppVCX+HE1fRfIGXXd9b3awk62mDu5U1/PcDXED6sKTA/Zn6Hy0OCE0QzjGfPvzsdSSeIPtnuOek6UiuATcy0AxZSRzSDfLNaLfm9/Eej82Wk61M/wWdsTHgnq5qohbNQ7AJiqx/F9zhvwMQOVa4sDAKOb4H6EEc4uvZcGmqg+Yn8hhBBCCCGEd0mgTvDrjqd4wvHCUdtP9NLXauqIJtIZFHDtAxaogiWjzsBgtppMm26nnkaKKEGhSCSe3Xofw5FAXZeuf1EDg0aa3R47smSxy2w1hRpVTwON7DL3kW0J3kDd8/Z/8rjjeSp1DTZsLDLmMUNNIJIIRnkgmw4gV2UxQ03AgoV2Onp+QhCrMmuYwChKqWCIyuSHlu92u1+ySqRBN3Wb/SqEEKHKseddzOI16No9qIRcjMFzseSe7e9lCSGEOMFIoO4E16xb+NrMo+GICZwANY46mizNRKujS6NCnUM7KNOVziAdQIpL36ZgEIgZdW26nXY6KNIlrNNbALBgOMutK6iiyDwIUvnq1H6oBNvEZKW53u2xqWpct89JU0l8oTdiYHSWcgbx9zNP72GX3geAFQtbdR5b9E7CCXMbgjAQ6SqFr/Q2AAwzhOtegUpq2cYuAJYY/8NVx+hhmEIC+zhADfXYTfuAB3YIIUQw6PjoNmg8XEHh2Pl3CdSJAWvSzRgYRKqIE2K6vBBi4EL7E4no0f/aX+Yt3dnU34qF77CY8ENDEx7Vz/Gg/Wl/Ls9v/mm+x9/Nd9zy0yYyym/r6a1Az6j7r2MlqW2zedFc7tz2D+v/8jfr4ySTQBhh7Gaf/xYYgFz7iXUFWLocq6R1iMoknWTCsJFPoVfX5207dAFWLBgo7DjYpncTRyynqjke62UYrsKIIwY4ujQ01FRxuOz8eBcfZhgTSSYBBw4OUOaLpQkhhBAh6Z6O35PYNoPI1on8sOMufy9HCBEE5BL5CahcV/G5YwONNLPesQWFQqMJJ4zhlmzaHIcDAy36xCx/rdK1zmESVqzYsBBnxPh5VX0TmBl1bVixYMfh3DbDMoF63egMkHTXv+5EZWqTDFLYR3G3jx/r3zhdJVNGFYCzv12wqtI1zp+XEQxF03klOkF5dsjBeEZSSx3xxHn0uIGkyqzlA8dqBpGGAgaTfsx9o3UUMUQzTGWxRxeRQ2f24r/sH9Km2oknjlgVxUnGNB+tXgghhAhO9TQCne/bXIfVCSHEsUig7gS01tzM9+y3A539rzQwiFT2RnxCja7jt46/OPf9q/k2j3HiXfmp0NXO2/+0/YHFlgV+XE3vBXpG3S4K3YJ0AFFEYlM25/1gDyx5Uh0NxwzSAWjVfaAu2SVTKtgDn5UuGW7O7EANT9vu8+h5wgwb35h7QHcG6pNVgkePHwjeNj/hBfNN5/00lXLMfUcbwyg0iynUxWzX+ZzGXLTWXG2/y9krcZwawcbwt7y9bCGEECKo5em9ztthhPtxJUKIYCGBuhNMk27mN/Y/uWzpDNV1fSiNJ5Yz1Ems01tooKmzP5G2Y1Un1o9KI82cpKYSQTiDVJq/l9MvgZhRV9VNEC6ScKKJ5ALjTL7WeeSbhSEbKOmra9t/cdQ2KxasWJitpnCyMbPb5yUTz+nqJFppwxLkHQ6Gk80gUsmnkCaaseNgCJmMVcM9ep45agqmMnFgstvcR7JlikePHwgiXT4cJJPAWCP3mPuOUbmcpKZiwaBcVwJQrMuYqEazUW+njXaqgjwILIQQQnjLE/YXeNf+KdvYTTSRzu2SUSeE6I0TK/oiqKaODXq7835XMKcrA8dQBm+H/4nvtC/jHXOV8zlpJPt+sX60ydzBF3oTAENU8EzMDOx8Oo6aIBmGzRkEzlApvGV+AMBOvYd56sQuqbNrO//VK533pzOeDWzHjoMIwnkv/LljPtemOnvTFepi4nRM0DYubtVtfKzXApBAHC20OR/zdCA3TSXxmf4K6Pz5m8MUjx4/ELhO8p6lJpF+nIy6kcZQ59/A7Y58UlQSE9Vo1hzaBp3ZjsH6syWEEEJ40xuOFXxF56Aq1wvVXVnpQghxPBKoO8E06sMvDlYsaDRppDBSDXXbb4zKZb86SKNupsKsJs1y4gTqXnX8mypdQwapDFfZJKjQ7VnlawpFEvHUUI8Fg/GMcD42RY0li3QaaSbP3MO8E7z3VZWuZQiZNNPCMLL4reX/sVHtwIqFROJ7fP6Z6iTWsYWDuoISXc5gdex+ZIHKdbDDBEYySKWxi71eCeIOJoOxajgKRbPLtOdQ0ugy3Tu+hx5/iSqe520P82/7R6zU63jE/mdOVjMZy3DKqCSCcFppC9qfLSGEEMJb7u34vVtixDiGU0gJ0UQFZMWLECLwSKDuBNPVzBRw9go7SDntdLjtp9F8rTsnTP6y4w9kdKRwie1c5lum+26xflKoS9hBAQBnqfl+Xk1oKdTFVFMHdP78uU6TzFaDOEAZaSRxUJf7a4kBw7U/3RnGPGbZJjOLyb1+fqSKYJu5m2wGsUcXHXdwQKCqMmtIJ4Ua6hhpyeEp26+8dq5EFcc3uvP3viREf/7adAeJxNNIExcZZ/W4/2WWb/GNmc9yxwdEEcFBKvjm0N9GgCFkBu3PlhBCCOEttbreLSB3heV/+JXjScqposAs4mszj7ftn9Cu7Nxh/SGRKsKPqxVCBKLgbl4k+qxBH86oSOVww/kYot32c21G/x8+5s/8g8UdV6J16F8Fcu27dKX1Ij+upO8CvQStwSWjByCcMOft0WoYMURRTrXbVcgTlev3Kk71feLweDUSKxaKKHEGoIJNJbWUUUk7HaToxJ6fMABR6nD/mFDNqKuhjhrq6MBONFG9es69lptJJ4VmWinQRc7tlkM/Wzv1Hm8tVwghhAhKrhf8rleXcZttKckkAFBOFTPbL+RX5pM85Hia1eZGP61SCBHIJKPuBFOj65iuxmPDSp1uoOJQzwRTu0/izCCFcQx3ZpYBpJBEta4L+Sb/jbqZoQzGxBG0gyQg8IZJ3N3xOPv1QbdtVizO24NVOjlkEa0isMmfJh62P+O8HdPLoIqrISqTXIaQqhJp0q09PyEAufZ0STYSvHquKA5fzXbt5RZKXAOQMUbvfqYshoXJagwNNFKiK5zbs8kgU6VR7jIhWwghgp2yRaMxABMwULbonp4ixFGqqXfezjIyAJhtTCZTp1Gl64gl2lk14drmQwghusin4RPMHvY7s5Wmqwl0xXKO/GAapSLdgnQAZVRSRqXzilAoMrXJy+a/MDEZRGpQDZKAzh5wgUhrzWOOF3DgHhB2YDpvK6UIU1bW6a0Y2qBVtxGhTswR9o26mf+Ynzjvx6q+f1AYqjLJYw95GgbrDE8uz2dch4+kKO9m1EW6BuqCNLDZE9e/866ByZ6cZzmdm+zuZcf7KGafLiZKRx7jWUIIEXzCl0p2kxi4rguNMUTxE9vVADhwsF5vPXpfmaAuhOhGUJe+PvTQQ8ycOZPY2FjS0tK44IILyMvLc9tn4cKFKKXc/rv++uuPe1ytNffccw+DBg0iMjKSM844g927d3vzS/GZjxxrWKBmcLZxMkuM/+Ei4yyuMS7me5Zvu+0X61IKG+dyuyLEsydqqMc8FDyK7Ue5YSAJpIy6Ot1AIoeHcgwilSstF3KH9Ydu+51izGaemsZENYp8s9DXywwY+eY+wrA572fT94Cxa+ZrJcH5e1umK5mmxnGamsMQMr16LtfS15ZQzahzCUBG9iFQN04NZ4GaQRrJZJLKAmYwnfGcpKYSjQTqhBBCCIA23c7o1sXs0fuJIYpzjVOdj81Sk0kgFoXCQBFDNJPVGFp023GOKIQ4UQV1Rt2qVatYtmwZM2fOxG63c9ddd7Fo0SJ27NhBdPTh4NI111zDfffd57wfFXX8kp9HHnmE//3f/+XFF19k2LBh3H333SxevJgdO3YQERG8zT4rzGrW6s2008F8ZnBt2CVcyyXd7uuawVPv0itrr3mAUyyzvL5Wf6k0Dwc0pqvxflxJ/wRiRp3WmloaqHQpY8xWmd0OBohXMazWnVezvzHzGWUMI0zZjtovlGitUUrxRMcLdGDnJsvl7NR73Ae89OOfNZ5YLFhw4KDCDM5A3T5dzEa9A4A/qHu8ei730tfQ7FHnGoB0DUz2ZKSRw2f6K+f9EirIVdns0ftJ0DIVWwghhAAo0iUUHippbafDLVsuw0ih1tEAdBY0NdLEFr2TOUzxw0qFEIEuqAN1K1ascLv/wgsvkJaWxoYNGzj55JOd26OiosjI6F3pl9aaJ554gl/84hecf/75ALz00kukp6fz1ltvcemll3ruC/Cxv5ivo1CMIoerLBced984DmeTRRBOK51Xe25w3Mvl1vOwqqD+0TmmSmqIIoIE4hiqvJvB422BklH3I/uDPOP4m9u2sGP86RmvRqJQaDQ/cNzBcuP/ONtyii+W6Tdvm5/w/Y4fOwNzdzuecD4WRyw/tlzJuWphn4+rlGKaGsc+XewWbA8mJbqcVBIJI4wh/cgq7ItIHU4WGbTRjhmiQ3NcA5B9KX1NIZGT1FTW663YcWDBQipJ7GE/tdTToTuwhXhAXQghhOjJAV2GFQv2Q61eRqqhzscWGfO5U13LQ/pPbs+R0lchRHeCuvT1SHV1dQAkJSW5bX/11VdJSUlhwoQJ3HnnnTQ3Nx/zGHv37qW0tJQzzjjDuS0+Pp7Zs2ezZs2abp/T1tZGfX2923+BqFbXk6uyKaGcycaY4+4br2KJJxYrFto4nJIdQTjrzaP7K4SKaupoppUSyoOyP1ogZtTVm01uQUMLFjJUarf7ZnE4oB6Oje1maJScH0+lrnHPnnPRQgvfsSwi3ojt17GbaKGCasqoHMgS/aaCaiqooZZ6bIZ3A0E2w0YZlVRQTQ11Xj2Xv8QQxQg1lKFqMJH0/u+bUgq0woKFcMLIYTA5DGYYWYwhl3Jd5cVVCyGE73R8+nPaXp5N61M5tL00m45Pf+7vJYkgUke9M0hnwSBeHc46T1GJzLJOwYqFMGxYsTCCoZgBcmFdCBFYQiZQZ5omt912G/PmzWPChAnO7d/73vd45ZVX+OSTT7jzzjt5+eWXufzyy495nNLSUgDS09PdtqenpzsfO9JDDz1EfHy887/s7GwPfEWe95n5Jd/oAppoYThDjrvvYJVOWcQa/p/lWn6mruN96/NAZ+nUG+aK4z43mFW6XNVKxrvN670tUDLqzCMGSPw/yzW8Eva7bvedYoylwbaJBOJoo4M/Of7hiyX61fGmfXVgJ4fB/T521+CXFlpp1sFXzlmvGwH3npneFHWo31qoTn3dpfeRrwup1NV9zoC7ynIhbbTTRjuttJFsJLCXA+xkD/so8dKKhRDCtxx5b6Ard0BrFbpqB468N/y9JBFE6vXhCobHrXdxj3WZ2+OLjfk0hG+mPmITccSQT2FIJ0AIIfovZOoXly1bxrZt2/j888/dtl977bXO2xMnTmTQoEGcfvrpFBQUMHz4cI+c+8477+T222933q+vrw/IYF0m6USpSGxYiTB6l00Rp2LAAqONYcxSkwgnLGQnIgJU61rmqClEqDCGBGHpa6Dl02mt3QYZxBJNrnHsILFSCqvFyhmOuZTqys4eHmYTMYZvAjX+UK8bGcFQ8jl6eMYCNWNAmWTj1Ag0GgsWqnVtn/qSBYJGOrOffTXYJYoI6mgIyqBmb3SV1/TnIsR4YyRTzLEYGMwwJjBK5TBLTSKGKMrNqhC67CeEEEL0XaVZzcP2Z5z3Y1UMhnJ/cXS9f7oxl4O64oR4ryuE6LuQCNTddNNNvP3223z66adkZWUdd9/Zs2cDkJ+f322grquXXVlZGYMGHe6JVFZWxpQpU7o9Znh4OOHhgV0m2abbeVt/AsBcNbXXz7vVugToDLjs1vuooZ69+oBX1hgIdugC1urNoOER6x3+Xk7QO0ApH+rDJeMNNBHL8Ye5AEQQwed6AwAF7Gcyxy/VDmZb9M5ug3QAy8P+OKBjt6hWPjc7v4/B1qdOa009XRl1Pf/MeEKkigAdmlNfTW1SdaikN8VlInBvTbWMY63ldef9Nx3vs153ZgGczkkeWaMQQggRrHbrQvaw33m/p2qASBXhfI+2m0KmMs6r6xNCBJegvgauteamm25i+fLlfPzxxwwbNqzH52zevBnALQjnatiwYWRkZPDRRx85t9XX17Nu3Trmzp3rkXX7g2t5XarqezaFUopzjYVMUWMxMWnUx+7zF8wUMFmNYaIaxdABlBwGgkAofC0xyxnPCBKJYwRD+aXlZmYbU3p83jhjOFPUWCaokZTqCu8v1I/KzSrGkHvUsIRhZPep4X93XN8kNgRZoK5JNzOcIUxRY5nUQ09NT+n6fodi6etBXUEqSUxT45mvZgz4eCkuryPSCFsIIcSJ7saOXzlvW7EyWKUfZ28Yq06c97pCiL4L6kDdsmXLeOWVV3jttdeIjY2ltLSU0tJSWlo6y5YKCgq4//772bBhA/v27ePf//43V1xxBSeffDKTJk1yHmfMmDEsX74c6AxI3XbbbTzwwAP8+9//5uuvv+aKK64gMzOTCy64wB9fpkdUmTUk0NmQPrkfgToAi7KwWX+DiWa3uc+DqwscO3Q+W/ROduiCzrLfIBNIwyTyzULydSHbyaeGeq6wXsDPbNeRoVJ6fG48cWzW37BN7+aALvPBav2jxWyhhjp2sc9t0jJAPQ1HlUz0VazLMRt08ATq2nUHG/R2drOPzfobn609ikgUCgsGDtPR8xOCyB5dhEazUW/3SI18yqHy2XDCqNahOXxDCCGE6I1Ks4bGQ1UAAHbsZKmM4zwDElze6xbrcm8vUQgRZIK69PWpp54CYOHChW7bn3/+eZYuXUpYWBgffvghTzzxBE1NTWRnZ3PhhRfyi1/8wm3/vLw858RYgDvuuIOmpiauvfZaamtrmT9/PitWrCAiYmDZLf5USS21NKBQpJPcr2NMVKOJJJxSKshjb0imaHeVB8YS3TnpMIj5c5iE1pqp7efTgd25rS99sVxL86oI3WydfIrYRzFWLMxVU/nc9jd+0fE4Vm3h5vArBnz8WBWcGXXb9W4Wd1zlvH9kENNboohEo2mkmXbVQSQWn5zXF77RBZRRSTSRjFMjBny8LNJJJ5kyqijQRR5YoRBCCBGcdrGX/ZRixcKN6vssC7vceUHrWNwy00P4va4Qon+COlCn9fEDEdnZ2axatarPx1FKcd9993HfffcNaH2Bol138H/2V4DO4E2Cy6jwvhithpFDFkkqgW3mLrCc68llBoRGfThQF4wCJaPuK/Nr0kmhkhocOMgkjWHq+P0jXQ0ilamMxVAWmkK0zBo6yxEXqBlUUEOmkUaEEU62pbMEtqeSid5IIYEpaiw2rLTTMeDj+UqpriCNZCqoJgwbI44zgMSTwpTNWTPeShuRAyw9DiRVupbZajI11JGrBj7sKM6IJZ0UBqsMopVveggKIYQQgajQLGGumkod9eRashjai4F0KSQygVFEqnAc2vTBKoUQwSSoA3Wid/boIucgCeh/6euZlnk0djTzjS5gu2M391tvC/qssyN1ZR25ZiIFK39m1L1jfsoBSgG42DibkSqH0yxzev38TCOdTXwDGtJ1/zJAg8EevZ/P9FcAZBmdAbquAS6eEKbC2Ky/AYKrj1i+LqKcKgCesd3PpT66KBBBmPN2K+0+OaevrNYbWae3ADDGyPXIMeNVbOfPr4YaXUeiivfIcYUQQohgslXvZI3eBMAIldOr5ySpeLaxCzSM1L17jhDixCGBuhPAle0/w4KBRjNFjWM64/t9rDONeezSe2mmlTJdSYZK9eBK/evbrdfhwEE0kYxWPQ8mCUSBklG3UxcwlMEoYLga2ud+f4NJ5zQ1hzbagyoTrK8qXUodUkjw+PFdM0PrXXqnBLoqXeu8neyF78uxhHN4enerbvNIL7dAYWoH89Q0IokglSSPHPMkYxqY0EIbu819zLJM9shxhRBCiGDw/9p/y4d6NQd1BRPUKCKJILeXFSTJbqWvtV5aoRAiWPUrUNfR0UFpaSnNzc2kpqaSlOSZN/3CO7aSh4POlOrvG+cxztL//kSRKtw5SryA/WQQGoE6h3bwMWtx0NlAvjgEBhj4K6PO1Cb/Mj/CxCSLDO613dTnYyilqKWejXoHVm2hyWwm2gi98roKs8p5u7+ZrsfjGqgLpknNFfrw9yXFC9+XY4lQhwN1bbT57Lze1mQ2s0p/hQMHc9Rkj2VCp6hEZ0boTr2XWUigTggR3CzDFuMo/ARaKiEyBcvQU/29JBHAPtFr2a7zAZyDlTJ72bokkTgUCo2mwqz22hqFEMGp14G6hoYGXnnlFf72t7+xfv162tvb0VqjlCIrK4tFixZx7bXXMnPmTG+uV/SRqU1nkG4EQ7nYevaAjjdCDWWYyqJRN7NfH/TEEgPCQSqIIRIbYUxiFL+z/czfS+qXQMioq6UB89DP3Dij/0Hhqy3fpc3xGvt1Cc+ab3CLMfDhCoGmSB8klUSy1CAGM/CedEdyLeEOpoy6Ql3i/L5keuH7ciyhWvq6i30YKHIYwknGdI8dd5wazng1gmJdRp7e47HjCiGEv9jO+F9s/l6ECBquQ9MAYohyu+h3PBZlYbExn6/NXc52MUII0cXozU6PPfYYOTk5PP/885xxxhm89dZbbN68mV27drFmzRruvfde7HY7ixYt4qyzzmL37t3eXrfohRpdxxsd75FNBqkkMdoYRqoaWPZjskpgrz5ABdWUu2S9BLsqXUsdjVRSzTBL9oACTIHCXxl1B3U5wxlCJmkDCj5NNEazW+8jnHD+7fiYGl3X85OCSLNuIUKFY8fBDp3PIC+UkcfoKFJJZCiDMXSv/twHhDgVQwQR7NH7SRvg36y+iHAtfQ2hjLqvzTxSSKSYUpJdJioP1HA1lDy9lyQSgioQLIQQQniCTVudF8kTiGWoGtyn5zfoJuw4yFaDqDfldVQIcVivMuq+/PJLPv30U8aP77632axZs7jqqqt4+umnef755/nss88YOXKkRxcq+u4Dx2quMO9w3o+jb33CupPsMmq8Moia0/fE9WvxZU8sTwuEjLoiXUIBRQBkqrR+H2e6Gs+PLVfxkOMZKnQ1a83NnG05xVPL9LvtOp/l5gcATGM8hvJ8IC3OiKWCGqCGYoKnnPsTcy011DOCoT4dWBPumlGnQyOjTmvNjfZfYcdOGsncYvmBx449hEFEEsEe9mMxLR47rhBCCBHotNbkU+S8MF5LA1PUuD4dY4jKZLXeSJmupIQyj3xWE0KEhl4F6v7617/26mDh4eFcf/31A1qQ8Jyt5k6iiaSJFsAzvZ4ySOFkNRM7DlpoHfDxAkULrSxUs2il3SuZTf7gr4y61eZGTlNzaKGNaar/g0ssysIYlcsQBmHByn4dWmUBrlNYkwzvTMuM5XBfv2DKeGo+9LclWkX69LypKomT1DQsGJiH+lUGuzoasB8qzYlXMdiU54q6DMNgjjGFRt1MnIrBoR1YlATshBBChL4aXc9UNY7VurN3dxrJzFNT+3SMNJXsvF0Z4gMlXre/yxvme8QQxRnGSVxm/Za/lyREQBvw1Nf6+no+/vhjRo8ezdixYz2xJuEhr+v3nEE6cG8s31/ZxiA+1V923jEHfLiAUalrWKnXA3A55/t5Nf3n/3w6+IfjXYooIZ5YzhlgBtxwYwhFdPZC3KR3eGJ5AcN14uu3DO80q44iEgMDE5NG3eSVc3iaQztoO9QfLpIIn567jXa+0BsBuIXQ6InoOkF36gAC58diYLBGbwLdmU0QzBnJQgjR9urJ6MptYNrBsKJSJhD+/U/9vSwRgKqpdQbpAMqp4juWxX06hms7iqoQqlTqznLzA/5lfghAKRVchgTqhDiePgfqLr74Yk4++WRuuukmWlpamDFjBvv27UNrzd/+9jcuvPBCb6xT9NEHjtVE6QhGkkMScZxnOYNFxrwBHzdOxXCusZBSXUE9DR5YaWBwzQ6MUr4NDoSSZt2CgWKGmsholTPgssVRDGO+mk4jzZTqSg+t0v/Oa7ueNXoTBgYjGOK1LE6lFLFEU0cDDQTH1NdmP/4uhrm0EG+nw6fn9pYqXcMERhGpwhmlcjx+fNfAXJWu8WgPPCGE8DXdXAbmob//ZkfnfSG60cDhC6CDSCVHZTFcDenTMbIZxCw1iTbaqdPBU/nQV426mU3mduf9dh0a77GE8KY+N0X69NNPWbBgAQDLly9Ha01tbS3/+7//ywMPPODxBYr+KdTFFFLMbvZxne0yfmy7iomW0R45dhMtbNDbKdNVVJqhcfXHLTjg4yweb/FH4etus5B6GvlKf43q+5+Xo8QZMezR+9msv6HYDJ3S1416Bw00YWKyi33EerEnScyh8tcWHRyl6s0uWcBR+Lb0NRQDdZXUsI1dfKm/9kq/v66WCjasVLpk7wkhhBChzDVQN0rlcIHljF5PfO0SpSJYr7eyRe+klApPLzFg7DYLqXFJ8AiWKg8h/KnPn6Tr6upISuqcwrdixQouvPBCoqKiOPfcc2XaawDJ03tpppU4Ysgiw6PHnq4mEEs0FVSzi70ePba/NGv/BQc8yd/DJPLYQzV1JBDLZMMzgeGxajhh2NhKHm0h0uC/xSUYBZDixSykQSoVK1ZqCI6puc3aNWju299Fm0ugrkPbfXpub3ENnqUw8D6lR8pQKUQTSQd2qgiNCzdCCCFETxpcgk0LLXO41bqkz8dIdukfXhXCF7t2UkAt9VixYMFgN4Vo7Z9e2kIEiz4H6rKzs1mzZg1NTU2sWLGCRYsWAVBTU0NERGhkIoWCrimm9TR6vKwuiwzSSWG2mkShWezRY/uLa+lrZIiUvvpjmMQ2czdz1BSSVWKf0/+PJVpFOrObqkKg0W6T2cxIlUM4YdiwkkwCSXhnmAR09hCzY6eRZkwd+I0lm2lhmhrPJDWGTB8PdrG5dIMIlYy6NtqYrsYzVg0nlSSPHz+OWGcv1FCaBC6EEEIcT4tuZaoaxwQ1qt+vryk6kdEMY6oahxEQnaa9Y4eZz1w1hXDCGEwGM42JbDN3+XtZQgS0Pveou+222/j+979PTEwMQ4cOZeHChUBnSezEiRM9vT7RT64BjWQPTHt1NdIYSr6jkHwNJ+lpXMa3PXp8fwiV0ld/ZtRprfmz4+/UUM9g0jnHstAjx3W/2lhDpkrzyHH9ZQ+dpbwAlxnf4vmwh716vhgV5ayDbqSZOC+W2XpCI81s1J19TBYw3afnDnOZiNoRIoG6Ql3ChkPfzyQvZG66ZoOGQiBdCCGE6I1yqpyDzvrbUzfFSCSPvaAhXSf3/IQgpLXmGcffqKeRFBIpooQis4T3jdVMxDPVN0KEoj4H6m688UZmzZrF/v37OfPMMzGMzqS83Nxc6VEXQBKIZYGagUKRQKxHjz1a5TJPTUcBtTo0BkrYtJV5aho2ZfPIdNxA4OuMugpd7cwUy/VQNh3ARDWKU405NOhGinVZ0L+oF5j7maOmYMPKdMPzUziP5BqYa6Ap4AN1rqUk3uzd1x3XHnUdhEjpq0s5qjdKrLMZxOlqLk20UKODo7xaCCGEGCjXLPL+tpZIJA6FQqNDtvT1EfufmWVMwoqFNJJ5yXwLCP0pt0IMVJ8DdQAzZsxgxowZbtvOPfdcjyxIeMZacwtFlJBKEoYaeFN/V1kqnc16B020UKLLMbXp8XP4Wj6FrNYbQUOCivP3cvrNnxl1uylkvd4KwERjlMeOG00Un5hrO89hFnKWxWOH9ovtejdr9WYAlqnve/18MS6B5wbdCCrd6+ccCNfmzLHKt0HzkBwm4fJG2NPZ1QCDjQw+0msAiDVD4yKHEEII0RP36qWEfh3DoiwkEU8VtW4X1kLJv82P2aC3oVB8Yfu7M1BXoav9uzAhAlyfA3VXXXXVcR9/7rnn+r0Y4TldTb37+8JxPEopbrb8gHfMVRTpg3xofsEiy3yPn8eXXK9iebNfmC/5OqPudfu75DKECML4lnGax4471hjOVDWOMl3Jbr3PY8f1lzxzL5mkk66SGa1yvX6+LJXOKJVDi26lQTd7/XwD5Z5RF+XTc4dij7oD5kGGkEm2yiBFJ+DpWH46yZyiZlKkD7KXA549uBBCCBGgmnQLOQwmmqgBfXaYZIyhSJe4vQcJFVpr9ukDDGcIo40cctRg5qgpFOsyivRBfy9PiIDW578INTXu0f6Ojg62bdtGbW0tp53W+w/n+fn5FBQUcPLJJxMZGYnWGqVCt4mmL7WarWSoVOp0g1eahwMMN4ayw5HPEDJD4g9tOGGk0dkbwqqC94XSnxl1+zjAHooAz2bUjVBD2aR3kEFq0PcNa9PtaKVp0I2U6nJyVbbXz2mi2XUowOmarRao2mgnk3SaaXbLBvQF16mv7Tq4f9YATG1iUzaadDNlVGEzbD0/qY+UUrTQRjW1ZOtMms0WoozgnZwthBBC9MYBStlH51C9VNX//nK1up4CXYQFS8h9Ht5m7maQSqVIlzCSoSQa8ezSe7FgCeHRGUJ4Rp8jEsuXLz9qm2ma3HDDDQwfPrzH51dVVXHJJZfw8ccfo5Ri9+7d5ObmcvXVV5OYmMijjz7a1yWJI9SpRgp0Z8DEW/3WRjMMTVdj/B1eOYcvbdV51NHAcDzXW83ffJ1R15WVqFAk4rny4SQVTzRRlFLBF3qTx47rD/m6kNfNdwGYwEjCVZjXz+laPtpAo9fPN1BV1FBCGQBxysc96lyGSdhDoEfdAcr4Un8NwMnM6GHv/huvRrJeb6WOXeRTyCTGeO1cQgjhTbYF9+PY/ym6dg9GQi5G9sn+XpIIUF091sIJI5r+X6CKOVQ94MBBK21EBvFQuyP93fwv2/RuAK43vgfAJDWGlXodK/V6GnSTz9ucCBEsPJI6ZBgGt99+OwsXLuSOO+447r4/+tGPsFqtFBUVMXbsWOf2Sy65hNtvv10CdR7Q6FLe5q0PuiPVUMYxnDgVE/SZJx26gzo6h2KkeqGHky/5M6MuXsUyl6lEq0iPZyWmqESadHPQN9r1RD+TvjpymESgc/375evBLuE6jLlqCgrD+cY5mJWYZZyu5lJLAyONHK+dJ1dlMU2NI4E4DpqVTArulqVCiBOYZczFWMZc7O9liAB2Z8ejrDY3UKVrOUOdRIZKGVAWXJyKoevaej2NIRWoa9ItzFfTqaeJMcYwACYZo2kxWwnDRr7ex1Tl/cFqQgQjj32aLigowG7vOQPh/fff57333iMrK8tt+8iRIyksLPTUck5o9S5ZM966SpFoxFNOFV/rXeTr4P53q+LwpEJvNFs/EbTqNj4y16DRzGCCx4+fQgKFFFNNHQ7twKKCc6KEa6BxkWWBT84Zow4HnFz7vwUqX/z9OhaLMlhzaNDHlBDICiukxDno4VLlvYFPGUYaGx2dmdXnc4bXziOEEEL4k9aaJx0vOyfD1+oGqsLWD+iYrm0+GnUz6SFUE/qxXkOe3ksE4QxRmQAMUqms01sA2Kn3MhUJ1AnRnT4H6m6//Xa3+1prDh48yH//+1+WLFnS4/ObmpqIijo6U6G6uprw8PC+Lkd0w21qohczUk42ZlKoSzDRNJnNRBvBmYFSZdYwVY0ljHDGqRH+Xo7H+LL09aCuYLaajAMHk5XnAxwLjJmEm+GUU8VBXUGWyvD4OXyhRbcwU01EocggxSfnTNIJzFFTsGPHoR0+OedAuA+T8G2gzurykmgn8L9XPalym/ia4LXzpHD42KE6tU4IIYQo1ZWkk4KJSbpK4fuW8wbcUy5XZTFHTaGDDreqgmD3mfkVYdrGAjWDSWo0hupMt5+gRjJfTaeRZvaaByA4r70L4XV9DtRt2uTeI8owDFJTU3n00Ud7nAgLsGDBAl566SXuv/9+oLMRtWmaPPLII5x66ql9XY7oRqPrB10v9nhyYLJebwWgStURHaSlYpXUsEl/A8B8pvl5NQPjr4twNdSx9lAm0jTD81fGTEy+0BsJJ4zdupAsgjNQV061s2fYrarnCxueEKHCnf82pzLHJ+ccCPeMOt/2qLO6vFsM9kCdQzvYqw9PYU3Be9nCrpnIpWaF184jhBDeZlbvQtfswWwsRsVkYiQOx0jy3IAsEdx2631UUkMrbXzHWMRN1ssHfMw22p3v0+pV4PcS7q09ZhHfsAe7tvM9y7ed23PVED7XGwAYp0MnQUIIT+tzoO6TTz4Z0AkfeeQRTj/9dL766iva29u544472L59O9XV1axevXpAxxadGmkmnDAiCSdWey8jxTVDo0rXMEQN8tq5vMkffcN8wZejJOq9nAU1UY0ik3RKKGOX3supzPb4OXyhXrsEoXyULRbrWvoaBD3qas0GIggnkTjidLRPo8/ugbrgHiax3cznD46XAbBgOEtOvCGbQYxQQynUxRQfGgQihBDBqP2f34bGksMbYjKJuCbPfwsSAWWnLqCVNjJJY5Ia7ZFjxrgO/dKhE6jbpfcBmlQSyXb5jDiUTMarkezRRWw+lCghhDiaZzu+98KECRPYtWsXTz75JLGxsTQ2NvKd73yHZcuWMWhQcAZ6Ak2zbqWNdtpoJ0J5r5x4KIMZzTDClI1SHbxZFE26mclqDE20kEb/x6sHAn8Nk2h0Lbf2Ql+xLDUIO3amqnE0ErxlAa5r91X/NbdhEkHQo65a1dKq26ijkSij/1PU+sOt9DUIyoSPZ78+iBUrDhwoFEO9GKhLV8k06EZGkTOgyXdCCCH8b7VjA7v0Pmp1PZdbzifVSPL3kgJGgd7PdDWBEl1OjpHV8xN6Ic7lwm1DEL/HPVIlNdhxUEENGepwuxerYcWmrQxhEINUKqY2nWWxQojDehWomzZtGh999BGJiYlMnTr1uLX4GzduPOZjHR0dnHXWWTz99NP8/Oc/7/tqRa+00Oq8HaW8NzkoScWTx17QsE8Xe+083naAMrbonQAkqng/r8ZzfNmjztt9EXPUYMqpolxXMcIc4vHj+4qv+ke6cr1S2xgEGXVdfdWSXfqe+YolhEpfvybPmRX4ou0RIr34WmAog3gVx3adz36z1GvnEUII4X1XddxFIZ3v63ONIZzP6X5eUWCwazt/dLxKB3YmqJGcbMz0yHFdh0kEwwXV3nIdoHbksL40I5n3zc/JM/dRSwNJhM7nLyE8pVeBuvPPP9856OGCCy7o98lsNhtbt27t9/NF7zS7Buq8OOJ7rBrOSWoaBooyXeW183ibrxqu+4K/MuqqdS2z1CRiiXZLb/eUFJcX+EqXUuVgE6HDma+mY8Fwy3TzphgdxTw1DQPDq33KPKFDd5CtMhnDcIYpz1yp7guryzRhR5AH6qp1HQvUdByYjFbDvH6+rsBqPY206w7ClM3r5xRCCOF5Jubh20GeXe5JJbqcBWoGrbR79HU1WSUwX01HoXx6kd3bDAzmqWlEqoijLr663q/SNSSFUKKEEJ7Sq0Ddvffe2+3t/rj88st59tlnefjhhwd0HHFszbrFeTvKi2VII40cvtCdGZRW7fMqao+pdAnUBXogoy98+WK/Wxc6B4vcpW7w+PFjiCIMG+10uAVWg803FDgb6PoqezNKRbD60O9pR4D3Xduj97NBbwM6yyl9zX3qa2B/r3qy2tzABr0dhWKEGur186WoRGdjzCpqGUSq188phBDC81ppc94+IH1Hncqo4mO9FoDJxhiPHTeCcOd7wwV6hseO609aa1aZ66mjgSE686iLd+4X4GsYSY6PVyhE4OtzdOXLL7/ENE1mz3Zv5r5u3TosFgszZhz/D4zdbue5557jww8/ZPr06URHu5d/PfbYY31dkjiCe+mr9wJ1KSqR2Woy9TRi18H7obZddzCaYUSpiKBPvfZbjzrdzBhysSoLwxjs8eMrpZivZnCQcgyCt49FV5AxDBsxPpqSbFVWZ5DT9W9DICoxyxnOECIIZ6zy/SSwUJr6atFWxjKcRBXv1V6lXUapHCaokTTqZirNKgZZJFAnhBDBKIzDQZVmWo6z54nFWxU4MUE29Ks3SqnEQDGekcw2Jh/1+FCVyUQ1miaa3UpkhRCH9TlQt2zZMu64446jAnXFxcX85je/Yd26dcd9/rZt25g2bRoAu3btcnvseL3vRO+100ECcbTS5tXSV+jMnMjXhSQQ59XzeNM+DpDHXizaQoIK3q/jSL7NqNvHTvaAhjQvZUJVUMU3uoBwwtBaB+nfC0UcMcQS7dP1RxFJOx1uZfGBqFRVUkARAFepC31+/lAK1H1NHi20Mg7fBDwVim16NwBV1PvknEIIITyrXXe4Te9u1oH9vsGXynUVaSRTS71HK3Bi3YZJhEagbre5j3hi2ckeTlWzj3o8nHC+1p3TlCuDuFJGCG/qc6Bux44dzkCbq6lTp7Jjx44en//JJ5/09ZSijyp0DbWHPijFE+vVc6WQQD6F1FJPh+7AFoR9iSoPXclJIj7opw75K6OugmoAEonDqrxTBp18qLSujXYaafbZMAZPadYtzjcls9UUn547ighqqXcriw9ElW5Xq31fhh4qpa92bXdmT8b56PfENbug8tDfAyGEEMGlEvegSaBn4vvSPl1MOVXYsDIcz7WUiFWHexY3hsgwiZ26gH0UY8HCuG4qJI4sfRVCHK3Pn6jDw8MpKysjNzfXbfvBgwexWoO3T1koqcJ3wxHGqOGYaKxYqdQ1DFJpXj2fpx3QpYxQQ8kkzW10uOibXLJJUYlezUgcrYbRpJoJw0alriFWBVeg7k3H+yw2FlCla5lojPTpuSNVBOjAf8PdgZ25airttJNGks/PHyoZda5X5GN89HsyiFRmqAnYsAV8QFgIIUT3qnUtkxnDFnYCUvrqqpFm5qqp1NHAUMNzg9NidRQz1AQsWEgI8hY8XSp1DSepadTTyMhu+uQOIpVZahIQOsFJITytz5G1RYsWceedd/Kvf/2L+PjOPya1tbXcddddnHnmmT0+/9RTTz1uydfHH3/c1yWJI3TV+luweD2jzlQm683OIQLV1DGI4ArUbTF38rFeA8A9lpv8vBrP8lXpa4fu4EP9BQBzOLoPhSd9qb8GOoPRw/D9VNCBeNLxCpv1N1iw8Jn1NZ+eu6sEPtBLX/foItboTYDvhm24cgvUBfGkuwaanbd9lXkap2L46tAgkDM4ySfnFEII4Tm/t79IvlnoDNKBlL66+sRcy9d6F1asHp1MH6uina+fwdyH2dUXepNz4OAo4+gJuYONdOcQuhQdOoP8hPCkPgfqfve733HyySczdOhQpk6dCsDmzZtJT0/n5Zdf7vH5U6ZMcbvf0dHB5s2b2bZtG0uWLOnTWh566CHefPNNdu7cSWRkJCeddBK/+c1vGD16NADV1dXce++9vP/++xQVFZGamsoFF1zA/fff7wwydmfp0qW8+OKLbtsWL17MihUr+rQ+f0kmgblqCvEqzut9sFx7NARjjwH3ia8J/luIh/ij9LWKOudtb5Yruo9yr/Xaebyl62cthQSf99ebosYSQzR27Ni13WvlyQPl+u/qj9JXi0ugzhHEpa91ZgPT1XgiCGeMyu35CR7g+u8VzJOZhRAntvDLVqGbDqKbK1GRKagYz2VOBap/OT7kPvv/cVBXYHN5HRxCJtHdDKW7pv3nfG5uwMTkKduvOM0y15fL9QuHdqC0wVw1lQyV4tFWPzZlI4JwWmmjMUR61LXpduaoKcQSRRpH967OIoO5qjOOEE6Yr5cnRFDo86e1wYMHs3XrVl599VW2bNlCZGQkV155JZdddhk2W89/tB5//PFut//yl7+ksbGxT2tZtWoVy5YtY+bMmdjtdu666y4WLVrEjh07iI6OpqSkhJKSEn73u98xbtw4CgsLuf766ykpKeGNN9447rHPOussnn/+eef98HDvT83zlC/0Jppp8UkTcdcPZ8EeqPNHYMCbfJVRV2pWOG97s9Q62PtZVFEL+Ofn7CAVzky1RpoDdviLvwPnhjIwMDAxg7r0tZpaNujtAMxhik/O6XrRptxRTYO1KejK04UQQsVkoGIy/L0Mn9ps7mT7oWFArooooUAXHbV9nbmFvRwAYK9ZjEtsL2QV6YPspIB23cF56jSPHz+WaFppoz7IA3XtuoMGs5ENehvNtDJbTe724rRSimJdRhElpGnftzoRIhj0K60iOjqaa6+91qMLufzyy5k1axa/+93vev2cIzPcXnjhBdLS0tiwYQMnn3wyEyZM4J///Kfz8eHDh/PrX/+ayy+/HLvdftyeeuHh4WRkBN8LdbNucfaTSPbBB91BpJJFBrXUOwMRweSfjhUkk0AS8Zyhgr9cyx+jJEp0GQpFFhlMUKO8dp4kEhhEGs200BBk/SyadQsddJBGEqPV0SUA3nbkRLFADdTV6DqSSSCVZKK6uYrvC1YstAd5oM71b7G3+5Q6z0MC2WSwn1LeYAUft62hJGK1T84thBCi/6qOuPhpw0rHoazyRt181P5lVGIc+t8r5r+4mot8sk5/2qX30oGdbDKYriZ6/PixKpoKXR30/drednzC9+y3A50/R3ONKcfcN0UlUKRLqKIOU5tBP9BPCE/rVaDu3//+d68PeN555/VrIWvWrCEiIqJfz+1SV9dZgpeUdOzIfF1dHXFxcT0Ovli5ciVpaWkkJiZy2mmn8cADD5CcfHTqLkBbWxttbW3O+/X19f1YvWeU6SrGqRG00U6uyvb6+eJUDAcoBQjKQF051VRRixUL8YZ3+/n5mm/y6aCYMiaqUZTocq8Gh2NUFAcpB3BONQ4WldRix0G5n6Zhug4UaNBN/ono9kLFod/HSAb2WjAQIxhCB3a/DLPwlEpdwxiVSwttPusbGq9iKT70+wmdpSz7zGJyjME+Ob8QQoj+aaeDOGJoopk4YkkingI6M+nqca92qjHrGKtGsF5vwY6dcqr8sWSfq9A1TFZj2K9LSVOef38whEwUihgV5fFj+1KNPtwOR6NJ5thVJLkMoY5G55C4NNX952whTlS9CtRdcMEFvTqYUgqH4/hZCN/5znfc7mutOXjwIF999RV33313r87THdM0ue2225g3bx4TJkzodp/Kykruv//+HrMBzzrrLL7zne8wbNgwCgoKuOuuuzj77LNZs2YNFsvR+d0PPfQQv/rVr/q9dk/ap4vZofMBONdY6PXzpQR5X6Ku4GKKF150/cEfPeo26O1s1XkAjFI5XjtPjEtWWHdXeAOZ6+9Gih9KX+OOyKgLRFprKg/9Pqb68fdxP6U00OTWry7Y5OtCduo9AKT7aJq1UgobVtpoBzrLrf9rfsIy43KfnF8IITzBvvU5zKJP0HX7UPE5GENOxTrpKn8vy6s2mtudAbka6qhx6T18ZAXDQSpYqzc77wdjz+D+2KkL2Ky/ASDHC8PMOrB3Bkd1Z3+3cBWcfdu2kue8bcfBCIYcc994I5YCR2dAeB/F3fayE+JE1qtAnWmaHjthXJz7gAPDMBg9ejT33XcfixYt6vdxly1bxrZt2/j888+7fby+vp5zzz2XcePG8ctf/vK4x7r00kudtydOnMikSZMYPnw4K1eu5PTTTz9q/zvvvJPbb7/d7VzZ2d7PZutOkS5mgZqBA4dXyxC7JJPIPDUNhYGtf5XUftNstjBLTcKBgyEq09/L8TitfZNTF6HDOVnNpIEmRnmxrDNOBX6w6VjqdAML1Aw02qOTwnorkzTmq+kYGLTqdp+fvzdqdQMnqamAZoQXA7496Zr8Gsylr020sEDNoJ0On5Zaf8s4lR1mPoUUM02Np0L7J4NUCCH6y77uN9BYAoAu34x5cH3IB+qyyKCOBgopcW6zYWWOmoL1iPf2rn/Xs8ggQ6XQbLYQZfinXYWvVLhURKQanr/gGqeinaUwDTQF5YCFlx3/okbXk0AsbbQzUuUw1nLsfumT1GhOUtMwUOzV+5nFJB+uVojAN6DISmtra5/LVV944YWBnLJbN910E2+//TaffvopWVlHfwhuaGjgrLPOIjY2luXLl/dq6IWr3NxcUlJSyM/P7zZQFx4eHjDDJrbonXymvwLgPuM2r58vRSWw+tD47UgdGN+D3qpXTazS6wE4V4VG2as/MupW6fV8owuIJtKr5cOufdbqdd8Gz/hbKZXO38sLOMPn53cok8/1BgBupsHn5++Namqd36NM5b/+oF2ZdI4gDtR9bK5hrz5ALNFkKt+UvgK8GvYoVbqWwW3z+VxvwKKDNytRCCFOBM26hXf0qqO2W7A4X5M7dIdzyqlrm5sDlHJAl1JAERMZ7ZP1+ou3p9LHHPEe1x/VFwP1puM93jU/BeBmyw/4re3/HXf/HDWYLw59hpxjTuESy7leX6MQwaTPXRsdDgf3338/gwcPJiYmhj17Ostr7r77bp599tken5+bm0tV1dH9DGpra8nNze3TWrTW3HTTTSxfvpyPP/6YYcOOzhyor69n0aJFhIWF8e9//7tfffAOHDhAVVUVgwYF/oj2/eZBxjGcuWoqo8jx+vniiXV+sA220lfXhq2uQaBQ4aupr13/7sfrQ+EJccQwS01ivBqJieeyfH2hys/ThaNcer410+rz8/eG6yTfFB8NQOiO5dDLokMH189YF1ObROgwJqnRnKJmdjttzZuSVQKL1HwmqtGU6xOjd5EQQgQr18DbHDWF89TpXGScxWQ1xmWfzlLYh+zPcE3HzzFQWDAYwRByGEyeudfXy/a5Kl3DOEZwmjGXZB3v8ePHqRjn7cYgqhp53f4uKa2zSGudw2pzAxMYxXCGMJj0Hp87WuUyV01hrBpOoS7pcX8hTjR9DtT9+te/5oUXXuCRRx4hLOxwWu6ECRP4y1/+0uPz9+3b120fu7a2NoqLi/u0lmXLlvHKK6/w2muvERsbS2lpKaWlpbS0dE497QrSNTU18eyzz1JfX+/cx3UNY8aMYfny5QA0Njby05/+lLVr17Jv3z4++ugjzj//fEaMGMHixYv7tD5/qKSGAvazUxf4pM+ToQySiceKBTPIPti6lk/GqtAI1Pk6o840TQwsWLB4PbiSpOJZr7eyXe9mn+7b3wp/a9QtzqulKV4OaHYnksMlKc26xefn741qXUsCnRmZ/ghmdukq8wnWjLpaGviGPWzVebSpDr+soYkWtuvdtOsOKs3guoAjhBAnkiqzlkTiUSgmGCOZZ5nGTGMiY4zO5IkEYik1OwcF7TcP0kwrJhoHJvkU0UAT+brIn1+C1+3XnV/3bvZRqIsJMzxflhpL1KH/j6Y+iCa/1ukGGmmmnkZaaecbCohXMdxmW9rjc7NVBpv0N+zR+6nTgVntIYQ/9bn09aWXXuJPf/oTp59+Otdff71z++TJk9m5c+cxn+c6Ofa9994jPv7w1QiHw8FHH31ETk5On9by1FNPAbBw4UK37c8//zxLly5l48aNrFu3DoARI9xr5Pfu3es8X15ennNirMViYevWrbz44ovU1taSmZnJokWLuP/++wOmvPVYGnUzaw41eD1VzfZZJkWmSqdcV5NPcL1Qu5ZPhmJGnS80qRZKqQAgAc9fYXRlUzYSiKOWerfsq2BQRoXzCmnXmzFfilKHM+paAjSjrkLXUEsDCkWq9l+gzujKqAvSQJ1b9qYXpzAfz6O2nzGn/bsUUMQt9vt5Lewxv6xDCCHE8VVS4xwekUYKt1qXAPB7+wuEE0YtDRygjCmMY53egkYziDQ+sD7H9x0/YYveyZOOl/mZ7fiD+oLZzzseZ4veSSJxPGd92CvniDt0obKBpqDKqHPta9hOBxYsTFPje/Vci7KQq7LZofPdBpQIITr1OVBXXFx8VNALOjNrOjqOffW+a3KsUoolS5a4PWaz2cjJyeHRRx/t01p6apa/cOHCXjXUd90nMjKS9957r0/rCBT7dQkLjdlU6RoyVc8px54SfSjw0EgzrbqNCBXYAc0uzbqVmWoiDkwG+bCPk6/4ovTVPSvR+wGoOWoyldQQRhhaa5+X9fVXA4en1CaoOJ+fPxhKX6sOBV81miQjwW/rsCgLaHAEWXl1lxrqmaOm0EY7OWqwX9bgOpynmcDM4BRCCOFe+pro8v5kCJmMZCgJKp6N5nbONk4mlSSmq/FEEckIaw4jHEOxKSuxRPOV42tmWCb64SvwvjiimaUmUaarmGqM9co5YlzeQwfTwLRGl/e30USSQQo5fRiaFn8oQFlPI+26gzDVtz7yQoSyPpe+jhs3js8+++yo7W+88QZTp0495vNM08Q0TYYMGUJ5ebnzvmmatLW1kZeXx7e+9a2+Lke4OKDLWGmu42u9izTluxHXriWPri/4ga6Car7UX7NRbyeM0Hhh8HXpa4NLVmKMD7ISO5Sdr/Q2vtAb3SZwBTq375MfyqyjgqD01a1Rsx/Kg7scnvpq99saBqJcV7FWb2aT3kG4ny6aBENgWAghxJE9dBOcty+wnEkJ5Xyuv+JFx3L26WJW6nVs0Nudgw4usZ7DV3obn+h1ziECoehDvYb1eitNNHstkBTjUm0RTKWvrtVJTbRQwH5yjexeP991aEYwfYYUwhf6nFF3zz33sGTJEoqLizFNkzfffJO8vDxeeukl3n777R6fv3dv6Dcc9RfXcsBUH/Z4GqtGUKVqsePonPjnw2y+gahya14ffNOVeuL7jDrvB6CmqLE0qxasWDlglpJm8V1AeiDcvk9+KLOOUdEsUDOw43D2YAtEJ6mph/od+u/30TlMIkgz6lwDnv7ohwgQThgKhUbToiVQJ4QQgcqBg5PUNBTurxlKKc42TqFQF9NEC1vNPGaoiUQSzkyjM3MuVw1hlppEGDba8U9PVF/oGj7nzQutru+hg6n01XWt4xhBOGG9Ln0FmKEmUK8aqaWeYrOUQZZUbyxTiKDU509s559/Pv/5z3+47777iI6O5p577mHatGn85z//4cwzz+zVMZqamli1ahVFRUW0t7e7PXbLLbf0dUniEH9NlnTg4HO9AYAKHTxZToGSweNJvs+oO5zy7osAVIyKdvZhPHioN14waHT5PsX4o0cdEXymvwJgPEe3LggEeXovX+hNgPtVfV/rmmIdtD3qAuAChFKKKCJookUy6oQQIoAd0GV8oTcC7uWXAFZl4XOz8/39F+ZGvtJfA3CluhCATJXGer0VgEgdQajqutga58X3uXEcnvoaTKWvrmu91HIu4SqMHKP3bTesysoqvR6AAl3EDEKzfFqI/uhXasWCBQv44IMP+nXCTZs2cc4559Dc3ExTUxNJSUlUVlYSFRVFWlqaBOoGoFrXkUoSccSQhvcnvnZxT1sOnib/NbqOdJKJJYZkLw9C8AdfZNRV61qSiCeeGJ9kUqa4NMev1MHzs9asW8kkjUEqtbMHmo8FQ0lFZQAMQQDX0tfgDNRVm3WkHXod8FdGHXSWWzfRQpP0qBNCBBEjcQRmay04WsESgZEYmBe3PKWeYw9Wm67Gs0ZtYr8+yGb9DQnEMph0xqjDE2ENDExMt2SBUNKuO2ijM6nEmy1e4ohhGFk00xpUmegObTKIVKKJ5MeWq7AYfXuP+x1jEf9U71Gsy/ij4zUusZ7rpZUKEXx6HairqanhlVdeYcmSJcTFuTdDr6ur46WXXur2sSP96Ec/4tvf/jZPP/008fHxrF27FpvNxuWXX86tt97av69CAJ0917r+S1S+Czwlk3go4BVNQ4AGAbpTTjVlVFFGFSmG7wKboaSaOud/EXi/H1a6SiGdZGKIojqIelmUUEYVtYQT5pfzx6nDV2oDtaQiDBtDGYzG9Gsz4cMZdcFZ+lqhqimn878kH74OHGkwaUQSQWqIZCsLIU4MYRf9199L8KlG7dqaI8btsSyVwQFdyhAyqdI1WLCwkz2MUsMAMJRBLtm00+GT94D+UK1rGUYWdhxkefGCdIyKYi8HgM6hUMGijEoOUkEs0X0O0gEMM7Ko0rXYsBKGLagGxQnhbb0eJvHkk0/y6aefdhuIi4+P57PPPuMPf/hDj8fZvHkzP/7xjzEMA4vFQltbG9nZ2TzyyCPcddddfVu9cONWyunDkqcUlUAZVeRTRIku99l5BypQMni8xfv5dL4vs8tSGZRRRQH7yddFXj+fJzi0g2rqAP/1DHO9Sh6IwXS7trNGb6KQYr9MxXVlDfbSVz+9DhypWbVRRAm79D6/rUEIIcTxHa/X8GJjARmkksdedlBAFbWMZ6RbiWyiiqOIEtbqLbRp93ZGoeAApezlAPs5SLyK9dp5YgL8fdqxdK11IO1vxhjDOEApn+mvKKfKU0sTIuj1OqPun//8J48++ugxH7/uuuv4yU9+ws9//vPjHsdms2EYnfHBtLQ0ioqKGDt2LPHx8ezfv7+3yxHdMDCYp6ZhxUKyjsdX7cqSg3RiT4ZKZT7TsWAJmXHgvu5R16ibmaumYsPKILzfAHa4GsJJairluoovHBtpsbYSqQK7L0qtbuBkNRM7dkaoHL+sIZww5qvpQGdPmUCzTxczW03Ggcl45d8yo65hEhqNqU0M1efh6H6VQiLz1XTa6SBRx/nsdeBI4YcmaXeVDAkhhAgMv+34M9/oPRw0K9jANpKIJ+1QZYwri7JwgeUMDugyNusdNOpmxhi5bvvMNCZhM60YGOTrQsarkb78Urxui7mTRcZ8anQd09UEr53HNUja4FKOHOi6Ar0DGbQxT82gWbViU1becaziSuuFnlqeEEGt14G6goICRo489h/fkSNHUlBQ0ONxpk6dypdffsnIkSM55ZRTuOeee6isrOTll19mwgTv/QE8EXxqrqecajJIIdrwXcN612y0YOpR8am5nipqGaay/L0Ur/BFj7oteidrDg0AyDIyvH6+eBVLjspyDh3I14VMVKO9ft6BqKfR2Sg3008TkZVS7ND5VFPHcIb4ZQ3Hs0vvdQ67WGDM8OtaDA6XbjhwYPQ+8TwgfKm/ZrveTRSRhBv+KbUGnGXeoTwJUAghgtFvHc+69aYDaKS524vWD9p+DMD9Hf8HwN22ZW6Pp6ok53uyx+0v8JewX3tjyX7zvvk575ufA/B3y++9dh73yofm4+wZOLTWHhm0caFlEfc4ngAN8cRyJRKoEwL6EKizWCyUlJQwZEj3H/JKSkqcmXLH8+CDD9LQ0ADAr3/9a6644gpuuOEGRo4cyXPPPdfb5YgjNOsWMkglS2WQq3z7QTyFROaoKbTSht/SN/ooEMoRvcHXGXWGNpimxhOOjTSSfXLO8y1nsNbcTAttvOh4i98Z/88n5+0v1yujR5aV+FIM0VRTR4MOvCu1+WYRYxlOgoplohrl17VYlcVZN+7AJNhybesP/fvG+mG6sCvboe+ciYld27Gqfs2uEkIIn2p/92rMolXQVgcR8RjZpxB29rP+XpZHFOmDzGr7jvN9SRg2HDgYRBqXWo7fxN+1162rbxkLqTcaecv8gPfNz/nAsZozLfM8vnZ/qXctDfbiMIlwFcYpahb1NBIV4JUiXZp0M+MZSbiyMW4A1RBDVSanqFnU0UC5ltJXIbr0+p3z1KlTeeutt5gzZ063jy9fvpypU6ce9xhaa9LS0pyZc2lpaaxYsaIPyxXHUkktW8kDDTk+zhCLVdFs1NtppwMzSBqwl+lKoomkkWaSVYK/lxO0vtRbqaaOXJXts+avpxqz2cN+DAz2mgd8cs6BaODwlVFvvsnrSayKBu2+nkBRSAl72E+bbud3xs/8uhaLS0ZdME5+bfRAGYonhKswZ8CzjXas/RsyL4QQPmUe+ByayzrvNLV23g8RRWYxDTQ76y26Mp4PUMqd1uuO+9xbrUu63T7RGM14y04eN5/HhpXdeh9nEjqBOtdhG9FEevVc+bqQYsrI1IHXoqQ7DaqZbewCPbCKEauyUkE1O3Q+ySRwYdtNzDQmcbX1IlKVDPsTJ65e1/TcdNNNPProozz55JM4HIc/vDgcDv7whz/w+OOPs2zZsuMcoTNQN2LECOlF5wWuJae+DjwppZxZaa6NzAPZW+aHNNJMFBF81zjb38vxCm+Xvtq13TmZypdZiXEqhplqIgYGaw+VWwQyt4lqfgyedAUJW2jFru1+W0d3NpjbaKOdwWQwkhy/rsXi8rIYbAMlOstQOgOxcXSf/eArrhOOpfxVCCH8L18X4cBBOGHcZiyhIOwjfmZcy/XGZUSr/mdhj2U46STTgZ2v9S4Prtj/uko7Y4n2es/ars9vldSgtS9Gwg2M+8Tggb2//aftSarC1/M/xpl8oFfzS8f/8rD9mYEuUYig1utL3BdeeCF33HEHt9xyCz//+c/Jze1sJrpnzx4aGxv56U9/ykUXXXTcYxiGwciRI6mqqjpuvzvRdw26idlqMo00k+GDpv5HmqLGkkoSYdiCogF718TXZlpD6mqNL0tfN5rbma4mYOLweZ+4dFIYQy5pRhLfmAWMNYb79Px90UIb09V42rH7dbpwrsqmmRbCCKNeN5IUQJmkqSqJSYzBjp04w78BJqtbj7rgyBDu0qpbmaRG48DBSDXUr2sxzMN/i95yfCjNoYUQws+6Br610c4sy2QGG+kkGvEkEj+g4440crBhI5sMNprbaNGBP+irtwaTToQKJ8YH7SRGqWGAIpJwGnTTMcuNA0W9B1u7DDM6q8HSScFAkUUGLbptQMcUItj1KZry61//mrVr17J06VIyMzMZNGgQV155JWvWrOHhhx/u1TEefvhhfvrTn7Jt27Z+LVh0r5Ia1uktbNe7iVThPj+/oQy26J18qb9mP6U+P39fuU6nDd3SV+9ejVthfsZX+ms26h2cZVng1XMd6ULrYraxi4/NtXxsrvHpufuqWteyQW/na51HGP5r7t9KG1t1Hl/pr2lULX5bx5Hs2s5/zI/Zqnf6tTS4i3vpa2BlHvakWtWzUW9ni97p92mr7S7nv8t+7InxQgghfMOt+ubQhcNbrUuOWdbaW3EqhoXGbPZTyhadxy69b0DHCyRf6E1s1t84K0i8SQFb9U7W6S1un1MClevQC0+9f/uF7UYiiOAApbxpvsfv7S965LhCBKM+N42ZNWsWs2bN6vcJr7jiCpqbm5k8eTJhYWFERrrX+1dXV/f72CeyBrf0Y99fgZllTKJON9BOB7vNvQy1ZPp8DX1hxcJ8NR2FIjmUhkn4qE8cdJYFnqxm0kqbzyfnupbaVgZ4uXWjS0+4OH+Wvrqcu1E3Bczcl66hLhAYQfMcNZj5ajoa3VkiHCDfp95wb4Hg379rroFCX0ygFkII0RPlfO+b4uFqktONuaw1N2Ni8h/Hx0w2xnj0+P7QrFtooRXwzfsT19ftKmoYhm/fW/dVI83MVVOxYWWI8sznPqUUt1ivAA3/Mj/kb47/0kxrjz0UhQhFvQrUFRUVHXPaa3eKi4sZPHhwt4898cQTvT6O6D1/T5ZMJ4XP9FcA5Om9nBHgjWS363w+1xsASPHzB1pv8faH4w16O5/qLwEYPIAmsv3h+oapUgd2cN+tNMCfwyRczu26Jn9z7Wvp7+ASQKmudP5tsKvgKn11DVr7s8wa6MzaPPQnqAUpXxFCCH/L03ucr2+eDjx923IaV9o7h0F9bK7lF9zo0eP7Q4XL+0tf9GJ2fd0Ohp7fFbqKNYd6RV/MOR477l3W62nXHTzQ9n+YaLRd8/8s1wR8WyUhPK1XgbqZM2dywQUX8MMf/pCZM2d2u09dXR3/+Mc/+P3vf8+1117LLbfc0u1+S5YMLL1adM91kmOcH4IBZ1rmMcUxlnoaecvxIcusl/t8DX3RlXkSTpjXpzj5ki971HW9ibBgIZ5Yn50XIJM0ZqlJFOsyiijx6bn7yn2YhP/6jbhm2rpm4Ppbpa4mnRTiiCGH7i/w+JLrdNIO3RFUGXXVuoZBpBJHDNlqkF/X8jfbEyzpuIM9uggbNhzagUVZen6iEEIIr3AvfR1YX7ojxago5qjJlOkq5wCGYPe8/Z+kkki2GsSllnO9fr4slcFolUuDbgr4ahFwbyOU4uHAb5iycbPlB3xofkGBLmKt3sxJappHzyFEoOtVoG7Hjh38+te/5swzzyQiIoLp06eTmZlJREQENTU17Nixg+3btzNt2jQeeeQRzjnn+FH1goICnn/+eQoKCvj9739PWloa7777LkOGDGH8+PEe+cJONI26iUzSaKWdOOXboAlApkqjQldTTJkzTTyQxRBNOilEEO7TclFf8mY+XZ1uIAwbg0jFgsXnV7nSVQrb9W5iiSbQB2NpOgOLzbQSq73fjPhYEokjhQQiiAioQF0VtZRRSRmVhCv/9fDrYnN5WQy2HnWV1HKQCg5SQZSfG3nnGIOJUpFUHPpg2EKbT5pxCyGE6F4UkWSQigMHNmXz+PEbaWYvB4jQ4Witg/79da1qIIIINuudjFG5Xj9ftIokT+8BOktfA51d28lmELXUk0Ccx48/VA0mXxcRTyxPdLzIqLBhIVsFJUR3evXpOjk5mccee4yDBw/y5JNPMnLkSCorK9m9ezcA3//+99mwYQNr1qzpMUi3atUqJk6cyLp163jzzTdpbOwswdqyZQv33nvvAL+cE9defYASyqmjgcH4tgyxS9cfz2AYK75F76SMSqJV6GTTge+Sf9aYm1int3CQCpZav+Ojsx6mlGKiGk0plXyov6A1gCdDlehySiinlnpi/NyjrpJaDlDq1hfO3wKpXBPAplwy6oIuUHf4jb0vynR6EsXhYGEzgTPARAghTkRf612UUkEk3rmQ09W+opW2kPib/7n5Ffs5SARhPukXl+zWfznwA3UHKGU/B2mgiSTl2QxNgKst3+XX1h9RThX/1h/xofmFx88hRCDr0zCJyMhILrroIi666KJ+n/BnP/sZDzzwALfffjuxsYczv0477TSefPLJfh/3RBdLNPPUNOpoJFtl+GUNM9Ukoomigw6qdI3HG9V6ikM7nG8g/FEm7Cve7FG3xtzMqWoOTbQwgVFeO8/xnKJmEYaNSBXB046/cpt1qV/W0ZNGlxKQOD+WvqYc0aQYoFW38X/2V3jHXIUDk1utS/gfy5k+XVc77cxX0+nATppK9um5u+OaURdsgbom3cJcNRUDRQap/l6Oe6BOtwZVGbEQIrDtcOTzqOM5inQJTbQwWg3j+5Zvc4ZlYD2SrROW4ij8AN1QgooZjCXnDA+t2P+6SlK9NdhqqhqLXdnpwE6JrmCkGuqV8/iC1pohajCxRBNGGDbD8xmIR0olidlqMlYsGL3LpfGrZn24girKC22EwlUY49UoRjCEehp52v5XRqghzDAmevxcQgSiPk99Haivv/6a11577ajtaWlpVFZW+no5IeN983MOUsFg0rEqn/+zdlKaL8yNAOzhACkEZqDOtXeGPzOcvMFXPer+br7DPn2AOGI433K6T855pF/abiatbQ4Nuok8vTdgA3X1bhOZ/ffz5to4ulp3ZtRVU8fPHY87t6c4En0eqNurDzibWycqz5dO9FUwB+o26R3Oxs7Zhn971AFEupTfBkNLBCFE8Fint/Kq+W/n/Y16O/m6kO06n1ut/e+HbZ17J9a5d3piiQHFru20HhrsE+Ol9yJWrKzWnZ8D9ur9jCR4A3WNNPOOuRKAhcZsn5wzyYhnnd4CQIr2f1Z8T1xf1yO91G7jVMtsfsktXN7xE8p1Nffb/8i/wp7yyrmECDQ+D9cnJCRw8ODBo7Zv2rTpmJNixfFprZ0lT/6s3R+jhjNTTWKmmkiZrvDbOnriGqiLw38ZTt7mrYy6Ft2KTVuYrSbxLWOh33qQKKW4ynIRJ6uZxBLFR441fllHT7oy6sKw+bUHWwqJzFVTmaEm4MDRuTaXIGIUEVjwfbN/1/KOQCjXDOZAXYQOY5aaxAI1w+MT/frD9Qp7k8vAIyGEGKjWI4L/is62Jr+3vxjw7Vf8ocEH2f1nGSdzqprDLDWJfzje8co5fMX9vUmCT87p2v4jGIZJNOOaUee9vrizjMmcomaRTALbzF08b/+n184lRCDxeaDu0ksv5f/9v/9HaWkpSilM02T16tX85Cc/4YorrvD1ckJCvW7EPBSUSfLjh7MkFc+Xeitf6q/Zr0v9to6e1JuNztsxSpqb91WhWcxBKlint6L8nJo/yRjNp/pLvtEF7DGL/LqWY2k8FKDwZzYddP5tWKM38ZXeRr4uBNzfuDfTynpzi8/X5dpXLTkAmgS7T30NrkDdar2R9Xor5VT5eymA+xv3Jh38/YqE9zi0A3uQ/b4J/zpysqgG2umghPKQmTrqSV2Z9OC99yPzjGl8qbeyXm9lh5nvlXP4SqmucFap+Oq9SaSKIPrQBa46Xe+Tcw5Es8vrujdKX7sMUYO4z3YrVdRSTBl/tb9NbRB8f4QYKJ9/yn7wwQcZM2YM2dnZNDY2Mm7cOE4++WROOukkfvGLX/h6OSGhilocOIgjhqH4r9wpJUiaoNapBgDiiWUQaX5ejWf5ovR1LwdopJkEYhmmvN9c93iyGXToCqRiF/v8upZjqdcNRBFBNv7pHdklkTjnz0fVoSu19UdMf/XHIJj9+iBh2JjEaBK07ydWH8nG4T40HXT4cSV906bbnR9OkwMgMxE6/8bGEYMNKy1aSl/F0b7TvoyI1glEt03mt/Zn/b0cEUSON708kN+D+kspne2FkklggvJOb2GlFAuN2cQQxSa+CehBXz05SAUaTTrJjFMjfHbeHJVFFBFUUuuzc/ZXV+mrgUEY3u3hN1mN4W/WJ0gglk/5kgftT3v1fEIEgj41M+vo6OC6667j7rvvZtiwYf06YVhYGH/+85+5++672bZtG42NjUydOpWRI0f263iiM1AHUE8jEV7qEdAbaSQxlEwcaN5yfMgecz8Phv2YTBVYwbCuIEUdDUSqcP8uxou8Vfra9fNWS4Pfx6RnqBTnegL1jXkDzbTShkOZfl2HRVmYyCgcmM6yyDbamaLGkq8LiSKSbJVBnW4gwUe94hza0TmlWnVmslkM35feHsl16qs9iEpfq3Ut09V4mmn1ewC9i01Zqaczg7lFBe8HNuE9Du1w3q4JoGnUIvBZsRCGjXaXCyoKxRTGUqVrySW7X8dt/fNoaCw5vCEmk4hr8ga6XL8rMouZriZQqatJUN67KBZDFOkkk6FSKdIljFL9+7zob7W6nhlqIgd1OUl4fqLpsZiYNNPqs57TA5GmkhnPSCwYXm+DE6HCmWVMogM7g0h1y+YTIlT1KVBns9n45z//yd133z3gEw8ZMoTs7M4XUX/1uAoVVS4BimQf9VHozmAjg0IOv7nZofPJa99LpkrjZGPmgJr7elKl2/crMDJPPMUXL+xVLn0z/N0HK9ltkmmt/xZyDB26w+vNm/uiVbWzS+9lv9nZJ7SOBjbrb4DOEt1yXUU1dSTgm0BdNXV8pDt7C55tnOyTc/YkWHvUVVLDBr0dgDnGFP8u5hDXUpiuSdtCuIpQEXRdUzpehpQQRyrSB92CdOGE0UY7m9jhnGwuDtuid7JBbwPwavAsWw3ib/yXAr2fA7qMUQRnoO5rvYuv9NcA5Bi+u/jVVZbcRAumNjFU4E5/3WrmcYBSMkjxyfkGqVQsWDhIBR/oL3xyTiH8qc+//RdccAFvvfXWgE767LPPMmHCBCIiIoiIiGDChAn85S9/GdAxT2QNNDFfzWCBmsEQlem3daSQyLeN08gkjXDCGEYWDu3gG7OAfzje4XXHu35bm6tKapijpnCamkOOCt0BJt7KqKvR9cxVUzhdzSXbj6XW0FnOeaaaxzw1DasfBiH0pMGlgX5sAEwY7grk19NIu+7o9oqkLwOeVQEYNHf9OQqqQJ1rAN2PF2xcRbr0qGuW0lfRjUh9OKtdLtmKvmg8og+d60WWSgnUuXFoB1+bu8lhMMPIYrzhvSqmFLcLqMH771DppyQI197ZjQE+hKlrfTE+en+rlOIsYwEL1AwGkSJZdSLk9SmjDmDkyJHcd999rF69munTpxMd7f7Lecsttxz3+ffccw+PPfYYN998M3PnzgVgzZo1/OhHP6KoqIj77ruvr0s64ZXocj7XXwFwrbrEb+tQSvF62P/ye/uLzm3/cXzMVp0HGlbYP+O7lrP9tr4uO8x81urNAPxG/dS/i/EwX2TUfa3zWHPo+/eU4d/fV0MZ7OUA+bqQSB0RcFcf3ScM+z9Ql6ISndkrFbra2V/EVaWu9tl6KlynqgXAlFII5oy6w/9u/i5J7xLl0oqhu581IWzK6vybVBYgQ1BEcDhyYIRrj6wKs5oAvHbnN0W6hI8OZSCNVyPIUN7LgHKttAjUliS94Rpk9OVrahyHJ/LW6QavTegdKK2183fQl+9vbdj47NBn3l3mPqZYxvrs3EL4Wp8Ddc8++ywJCQls2LCBDRs2uD2mlOoxUPfUU0/x5z//mcsuu8y57bzzzmPSpEncfPPNEqjrh0Ar5XQtcf2h8V3O6biGSmoopNiPqzpsj3mAEQwhRSUynCH+Xo7XeCujrtAsZiRDGaTSyCLdK+foi1lqIjasNOtWqqgllSR/L8mp0WxkGFlEEE62H7Ndu8xQEyhUxRzQZRTpEppdgidDyMSC4TYZztv26gOkkcxgle7TZs3HE0cs49QIOujA1P7tK9gXtWYDw8gimqiAGZIjpa+iJ2GEOW9L1mX/aK1JbpsJQCpJ5EW87+cV+caRpdIRhDFbTaZEl1Pk0oZFwDP2vzGUTNJVCrdZlnr1XOmkMEmNpolm6nSDV8/lTVZtZTTDiFDhXpuS251pajx71QH264MU6zK/V64cSwutOOjsMeqrjDqAGcYEtundlOoKdul9TEECdSJ09TlQt3fv3gGdsKOjgxkzZhy1ffr06djtwZO9EEhaaSeFRGqoD5islC7RRhQlupxa6slQqewx95Nr9K/BrydorVFKU6arcGiTKMN748T9wdsZdR1mBxZloeT/s3fecXKV1f9/P3dmtveeTbYlm03vIT2EoiIgIqKIUgXBryKCCCo/BZEiVlQQQUURUUQRFFFEEQKkh/SebO+9952Ze35/zO5kJtnN7uxOubOZN6+82J255czszL3Pc55zPh9pJIYoQ1SvaZg4KsWAI2mdqoyTqOtQ3ZRSBcAHWBPgaCBSRXBQTpBDJsekhG6XtoGhiU0j/qmo65N+KqWGAazslSNueoOB5ogUAQ6NmGChXjU5P2txBmizBgiXcKKJJIJw7EGU9AzhP8JchqGhqsvx0T5oWQRnV1ViGGFYsDjduWOJZYfsJ4VEusTYLYP+poV2euhjpxxgtWmJT8+VoOIcnTScdJoNRkqopIhyEiTOr1rqYcrCQTlBNlNoEON+nzukiwxS6KGPeHxnTnIqmSqN/XKUTNKpps5v5w0RIhD4fZZ93XXX8dRTT532+K9+9SuuueYaf4czKaiQappoxY6dRD86E42VFyw/ZgArW2R3wO20u+llu+ynk26mqoyAxuJrfFFP16Ba2C/H6KbHMFU7rslpo+nSuE4WjGAmcb32MeKIpoxqfm3/M73DJKL81apyWAp5yP4L2uhgOQv4gBb4RCZAhDpZ4dNP8DiVupu8GCPpGa1F0E0vzbQ53V9DhHDFHErUTRjX776vKumNSLlUO5N0ABkkM40MmmjlvcHWuBAO3pNdNNJCJmk+F/531XNrDuLW167Bik1/VtMBZJCKjk4Z1RRS7tdze0I7ndTRRAddfk3UzVJ5RBBODfXs0Y/47bwhQgQCjyvqbrrppjM+/9vf/nbUY/zmN7/hv//9L6tWrQJgx44dVFRUcP3113PXXXc5t3vsscc8De+sxFVE3EjVREPM1wqYzjTiVRw6ga2qcE1CZKjkAEbiG3y95uc66MrQUn18trGRr3JYpRahIzTozQFYfhgZ1+SEEaqcErQ45qp8dHTSVArhhLNKLaZLurFjJ0HFYfLTG1gm1axTyyiVKqZoKYS7JMgCSQQnxe37GAhgJGOnTK+mSVqYQTYKxRRljO+m+3sZPEnPEP7D9XrjL7fpyUYL7UQRQQ99AR9j+ZOhxK4ZMxkkM99UgFm3kEEKKSQxoA8Qpo18XynRK/mx/TeYMDFPzeTz5qv9Fbpf2WLfzQI1c1BmIs3n1WEpJLJSLUKh0Iw0IPOQjkH9NX8bgWVqJxfBjZzobHIxHkv2YzfXdJXNdLKIUzF+0eUOESKQeJyoa211v2hYrVYOHTpEW1sbF1xwwaj7Hzp0iKVLlwJQXOxoV0tJSSElJYVDhw45t/NnmXGwMyR4GkMUESp8lK39T6SKoJs+jkoJR6V4sP00MH9fV3FYo1Sd+ApfrKwb0VkyQcWxXfYDUGSw1UdXDR0jVNSBo1V4m+wDgUgt3GmsAoBAqvgn2f8b20tsFofO6ROm+/xyzrEQjMmlnbKfl/Q3ADhfrSJLGUPTxvW9DFVLhRgWl6HAMSkJXBxBTKM0O1tfrdgCOsbyJ0OvebbKY1f43wD4+MBt7NIdc4l21XVGzdod+n5+Y/8rANlMmbSJuj/o/+A1fSMA71te9vn54rQYiqScZtqolFqfn88X2MXu1FX1txFYiovWuNG6RFxxTSL6M1EXpixYlY3tso/9csxwJnIhQngTjxN1f/vb3057TNd1vvCFLzBjxoxR99+4caOnpxyRRx99lFdeeYVjx44RGRnJmjVr+P73v8+sWbOc2/T19fHVr36VF198kf7+fi666CJ+8YtfkJ4+sgi+iPDtb3+bX//617S1tbF27VqeeuopZs70nZ35eBERLFhYpRaTq6YGOpwR+YzpMrbr++iim7/b/8cV5g8GJI5O6Xau9GUbVKB1Ivh6dala6lioZpFEPLPVdJ+ea6zMVjNYr5bTRz+10hDocNywYWeFWogZk2H0I1NUgrMvutllRXQI12SsL3jXvpPv2X9Fo7SQQya5ahqLtbk+PacnhLuI2/dJcCTqyvVqlql5tEg7OQa6D7i/l8FRnRjCv7guJ7UTvMLzgeTUa3Y/A25J8smIiDiT/66mNa4LYh3SdcYukzppIpooNBRpk7DDYghXkxbX98qXnKetpFrqAeiXAcNUzI+VdulkiZpLJBEsUAV+PXcSCaxVS7FhxyzGtS7ulC7OUQsIw+J3Y7nVaomzWKBBmskwSBdBiBDexispaE3TuOuuu/jJT37ijcONmXfffZfbbruN7du38+abb2K1WvnQhz5Ed/fJKpavfOUrvPbaa7z00ku8++671NTU8PGPf/yMx/3BD37A448/ztNPP82OHTuIjo7moosuoq/PeBUBzbRRKGVsl33DTrqNwkptIe/IDnbJIY4HcNW8hXZ2yH62y76zYsXZ25RJNQfkOO/ITpKUMfQQZ6gsNstu3peDHNILAx2OGw00s1MOsFX2urkbBpIUl4lLq4vD69AEp0l8Zyahi84hOcE7+nYOcYIEFcclpg1kKmPoHQJuVcn9QdL6elxK2S2HKaWKu8w3BjocJ+7vZXAkPUP4F9fK7z766dZDJgCeUiuNbr/3nAXVq67VzpEqwvmza5tiF2f+LBVKGd300Ek3R13GpZYPP4Np3UNo82/CtO4hLB9+xouR+x9XLdoo5Z9EnRUr22Wf4ecmI9FKB3vlCFtlD21+XkBIVvFskT3skP1OYysjUkMj78tBtsgeolWUX8+tKeX8fBm56jBEiInicUXdSBQXF4/JtbWvr48nnniCjRs30tDQgK6762ns2bNnzOd844033H7/3e9+R1paGrt37+bcc8+lvb2d3/zmN7zwwgvOttxnn32WOXPmsH37dqdGnisiwk9/+lO+9a1vcfnllwPw+9//nvT0dP7+979z9dXGKo2vlFo0FCkkMp3AuamOxhptKcvUfMqkil/b/8I3LJ8PSByurYixxAQkBn/hi9bXQ3KCSCLIIoMClef144+HSBXBBdoq9uhH2C/HDNX20+X6eTOARh3APDWTLKZQRZ2zgkVDY4Eq4LiU+HRQWipVfNX2PWKIYia5vBb2S1IM1oIejK2v++UYsUSTw1TymBbocJwEo95fCP9y6n2qijpmYYxq7WChRurRUCgUZsx0SY9hFtJ8hWsyMoqTiTrXNsVOujkTB+QYGho6Oj30OscOpqz1mLLWez/oADHSe+VLXKVlmqXVUItxY8E1+ePvbgiLspBAHG10uOnAGQ331lf/juPc2oN93AUSIkQg8ThR52r2AI7EVm1tLf/617+44YYbRt3/5ptv5r///S+f+MQnWLFihVcn1O3tjuqQpCRHxcju3buxWq184AMfcG4ze/ZssrOz2bZt27CJutLSUurq6tz2iY+PZ+XKlWzbtm3YRF1/fz/9/ScndB0dHV57TaPRIV300EcPfcT4eUXDE+JVLHbsNNOGGXPAkimdLuL+RkmceBPfC6sqstUUGqXFUK3WkRJBInGkqST26kdYapoX6JAA94mCv53DRiKZePrpZ4GaRT8DFKhcTJiwYqWFdjQ07GLHpLzfclEkFSxVcymSChJVnOGSdADhEkY+OZjQCMMS6HBGRURIJYle5RCSt2jGiTnCtfU1SJKeIfyLa6JuDjOolvpQos5D+hkgjhja6MTOAF2jJKgmA13SzRw1Azt2tyRQConMIJswLG4Ls6ciIkQTRThh9NKHIPzB9irLtPnMNeX74yX4DffWV/8k6tJIJpdpxBJNmwRfS3u93sRcNYM+GSArADI5s5lBC63EGbigQMPEHDWDTukmUfxrBJROMrlMJYZo2vHfnDtECH/jcaJu7969br9rmkZqaio//vGPR3WEBfjnP//J66+/ztq1az099RnRdZ0777yTtWvXMn/+fADq6uoICwsjISHBbdv09HTq6uqGPc7Q46dq2J1pn0cffZTvfOc7E3wF48O1tD/G4Imn5EFtLBs2v9t5D9Hp8n75WyDW33i7os4qVl7X38GKjbnk+ySRM15uMV/F5dYvUCKVvKL/1ziJOpeJglEGXLPUdBpooUFaCCeMfgbIUVPJVpkgoKPTRqdPzEKOSCF75Ajg0K00ItFapNOUZK4Yf8LWTidvy3YALlCnLz4FEleNuv4g0fsL4V9cXUqPUkyxVHIBqwMYUfDxpr7FrRJ6tEqyyUAbnRwVhyHdOpY7H49UERRTAUDLGaqRamnkXdnp9tgt9m/xGbmM35oe9X7AAcTVHdei/LOQE6OiKKMKOPPfwaiUUsWRwc9Xiub/BcVILZwTehkINEmrIRc1C6XM+R1M1PxbwRuv4iijGnBoTYYIMVnxOFE3UTOIqVOnEhvr/QTNbbfdxqFDh9i8ebPXjz0a9957r1ulYUdHB1lZ/mlDda/YMW5FHcAyNQ+bstFDH9VST7zyf6JOCaxVyzChkcjkaw3xZUVdjTSwQa2gh14KNGO0vQ5RoPJYqRYRhoUOl6rJQBNDNOvUMjQ0w7i+zlQ5LFZziJVoNrMLgBQSWKrm0af66aWPKqnziYtXs7SyXi3Hio05BjEjORXXhGowTHibXdo+Us4gnB4ITMrE+WolNuykq5RAhxPCgJy6nNQc0hvyiK32PRSoXCxidk5cz1RJNln4qvVkMs11Ucm95bJtxP2fs73Ch7VzOaoX0UAzvYMVv730Ya/chF63G2krRSXkoWUsC+pW2GkqnWgiifbjHCHY7qOn0jQ4VrFhY3YAKnwXqVn0qj6iiaRKag2ZqHP9u/p7Idq1HTmkURdiMuM1jbqx8uMf/5ivf/3rPP300+Tk5HjlmF/60pf45z//yXvvvce0aSf1eTIyMhgYGKCtrc2tqq6+vp6MjIxhjzX0eH19PVOmTHHbZ/HixcPuEx4eTnh4YBy2OuVkUsIoiYCRMGHmXXkfgBKpZC7+r1YpoZItshsgIIlCf+Ltirp6mvmfbAVgMXO8euyJkqMy2S/H6KOfBr050OE4OSTH2S77AUhS/m0NGIloLYpSqXJzWExWiZiVyVlhUCqVLGK218+9Rd/LNnFUZRdoxkzUxbhMZoJhwhtILZ2xsE+O0kqHoTVUQwSOU+9TZ0quhDidLbKHjbLD7bFgTIx4glWsbB4cxwEkcPLe6pq0a5KRJ/C/1/9OqVQRSYQzSQeOLhXrG5+DrhrnY/aYTEy3HPdS9P5nm+4Q3M9V/tMvdZXiCYb76Kls1fc65woztVy/nz9OxbJd9gFwm1zDYub6PYbRGNJgViii/eQmPMSpGoghQkxWPE7U5eXlnVFbrKTkzI6ey5cvp6+vj+nTpxMVFYXF4l6G3dIydsdBEeH222/nb3/7G++88w55ee5VPsuWLcNisfDWW29x5ZVXAnD8+HEqKipYvXr41oq8vDwyMjJ46623nIm5jo4OduzYwRe+8IUxx+YvuqSXWeQRraJIM1g1xaksVAWsUAtpopUTeimYzvd7DK6TAF9UDAUaX1bUBVI4djQ0pfER7XxOSBmN0oxVrH5r8TgTQ0LACcQZIp4hklUC7dKJhmKBmsUcNYMFOL6fzbRSqJeDlzubrx64kx7pJY9pzFX5htWINCkT0UTSTW9QTHj/Y9/EXPKJUhF8UHlXUsIbxBJDKx1uxiohQgzhmqjLIytkOuIhJXolBeRiw064CkNHpyMINcE8oYWTbuULmcXHTCc1pbNUBuvVMupoZpN9Fyn2FSgU52sr+UvY487thsaCaSRzu3YtD+tPoaNjQvPb6/AHdrE7368UH8hZjESwV9QJwnwKSFCxAVnUT3FLOLf5/fxjoWPw7xpLtN81x1NIZJmaTy999GP167lDhPAnHifq7rzzTrffrVYre/fu5Y033uCee+4Zdf9Pf/rTVFdX893vfpf09PQJfblvu+02XnjhBV599VViY2OdGnLx8fFERkYSHx/PzTffzF133UVSUhJxcXHcfvvtrF692s1IYvbs2Tz66KNcccUVKKW48847efjhh5k5cyZ5eXncd999ZGZm8rGPfWzcsfqKBpo4TimI8TXqcrVp7LQdII5YagmMpoAVG1FE0EMfSZOw9dUVr1fUSTMJxNJGp5vjknEQDspxppFBsVQy2wCtldqgIYHRksIpJFJONXZ09ssxzuUc8ga/nzFEUyTldOrdVFPHbG2GV87ZIM0cpxSF4vOasdyzTyWWaKzYsIs90KGMSrFUcoQikMCs/I9GrIoGcdcHDRFiCNf7VCmVlEt1AKMJPrrooZp6uul19hE3TuJWsE7pptxeQzIJtNHBYm0OM7Rs5/NZagqbZQ8mNNrocOo410qjc5sBfYBIwumlj0yVxpfCruP+vsfpoZdjUur31+RLWqWdZBJopcOvC6xDHT7RRNItvX47r7fYK0fopS8gnT9wcjE8nljaDZp4F4RwwgJilJasEtgthwCYIql+P3+I4KRcarCIiW7pJUNLNWzBgCseJ+ruuOOOYR9/8skn2bVr16j7b926lW3btrFo0SJPT30aTz31FADnnXee2+PPPvssN954IwA/+clP0DSNK6+8kv7+fi666CJ+8YtfuG1//Phxp2MswNe+9jW6u7u59dZbaWtrY926dbzxxhtERPjHLckTXK27UzF2Rd1MckghkSZaeV/fH5AYSqSSHvpIJ9lQFU7ewpcVdRVSQxudRBHBdLJH38HPLNRm86r+FpXUckJKA6Ir4oqIUCTl6Oh+d8QajfmqgPfloPP3FJVIPtmkkkQjLTyn/43nBv5GFJE0h++c8Gppp3SzdbDl9cNqPXdabpzQ8XzNAjWLN2ULRVQwIFbCDHytaHZrfTVeAn1IO7WXPmxiw6z8rrgRwsCc3vo6eZNMvmCnHKCbXuKJoX1Qn3Uyv4e3WL/J3/X/OX8/VfIlSkXyRdNn+IX9BRo52aFTLBXOn5tVO/U4JDKm4NDOzFIZHJdSWgxavTReWmh3vg9pJPvtvMnEY8ZMN71BpzvZI71OA45A3VOTScCEiXY6qQ9QYcOZ6JN+iqQcQVigZvn9/PHEYsaMDVtILiHEmLly4DYOSSEAvzI/xPXmKwIc0eh4bcR88cUXc++99/Lss8+ecbvZs2fT2+ud1RWR0SuGIiIiePLJJ3nyySfHfBylFA8++CAPPvjghGP0NZESzgq1kD4GSMRYyYBTidGiyVPTyGUqsSoGEfF7ufTQANbo1YfewLv1dNBFN6vUYlpoJ1sNr/EYSKYzjQJyiVOxVEt9oMOhh16no2GMZqzPW66aSjop9NBLMgnMJIdILZL5WgGt0s5RKcaOnQWqgFppIFOlj37QM1Ckl7NOLaOLHvI0/+nkjJc0lcQiZpNMAlVSx3RlXH21ZBKc94BAOGmPxkyVixU7Fkx0SjeJanJXMofwDNdE3TzyySBUHeEJQy3lscSQo6YRSTjaJGvfdMV2SpWzqxbaENPJJp0UuuhBx44NOwvVbDr1LmK1GLdEZpzmuGbOVzPRReiim3apmDT9Fq4apol+1MlN1OKxYQOCT3eyWdpYrZYwwAAzyQ1IDCkqETuOz7oRzRIqpJbztVU0SyupAZBdUkqxTi2jm56AVPSFCD7+Zn+TVulAQ8Pif4uGceO1SP/617+SlDT6l/V73/seX/3qV3nkkUdYsGDBaRp1cXHGTjYZjf1yjJ1yADBmNcWpxKtY/qdvBYFGWvy6wmcVK610ABi0dXPi+DLtuVHfwUE5gQUz0zXjJS5mankcHmwBnKEHvuKvw82R2VgDiRvMV3C//WeAQz/mMtMFAPw77BkAzu3/DDvlADtkPyeknEwmlqg7RolT/PtT6pIJHcsfpKok9uvHAKihwdBGCFv1vVRSSzrJfl/4GAvd9DpbVDpVz6R02w4xflwXlA5TRLnUjLhtiNMZcjmPI4YD4rhmJUtCACPyLdZT9Kii1OmdLvlaNnX2RrfH3pEdNNBCLDE0uiTqhsaCA9gopAxwtBNPlqtUk5u2cILfzjtWUw8j0kSr0/RqqTYvIDG4tikb8f2rkQbe1rcB8EEtMNq4ffQ5O0O6pYfoYZL2IUIM8f+sP6YaRxFHPwMckzN7KhgFjxN1S5YscZsMiAh1dXU0Njae1lI6HB/+8IcBuPDCC90eH6qustuNrwlkJIZWWhKJC4qWotVqCf2qnx76OKGXkmbyX6KuRTpYqRZixsJ8babfzjtZSCGJNWop8SrGkG3D+WSzXi3Hht0Q4sWu4vlGS9SlkczV2qUIjoqEU/+euUyjkRZSVRKlUsl5rJjQ+Sr1GlaqhVgIY44KjOaLJwSTo1jzoPyB0QxehnDVAOmSbt+uJoQIOk5tfe2ihz7pJ0KFByii4KFfBrAOVi25JsCDrYLJE3rF3Wwkahi3yQKVx3q1nK2y11mVBI7x8gyyqZF6lqi5JBDr1LJ1TWJpk+gi1S9W1qql6Ajpg22+/iBKRXKBtpo+6Q+6Kmq35GaAFvWTJZ6LtPV0SCc2jDcvdm1nDpQG8zJtAUrXMGOiUuoMoUsdwriYT0l5GbFSdTg8zuxcfvnlbok6TdNITU3lvPPOY/bs2aPuv3HjRk9PGbT0i+/dy4YGZEadpJ1Kqkpk02BlzXG9jHWm5X47dzOt7BisPjRyhYy38KaZRK/0sVG2A7AO//3NPCFai6JcaqighhRJRNd1NC1wLUCtclL30miCpUopfhf2/RGfv8VyFX8ZeJ1SqWKlPnE90YNS6PzuPa2+M+Hj+RrXaoBavcnrDrjeokd66cEhJZHsR0c/T3BNUhshgR7CWAx3n2qQZrJVZgCiMT4DYsWMCU1pbt+nOC2aRD2OVjpoklb6ZYBwFYZVrGhomJRBL2Ie0qt63cowIzm9oi5bTWGnHHBL0sHJRZcSqWSvHAHgS+o6wL3LQve6cEjgaKKFLbIHgFvUVX49d6Fe5qj2Fv8tyHuDZhft75QAJaHCtDCOSyllUkWyJAREKuhM1MlJ3bxAJTMjCHNWPtZJU8B1qUMYm1PvBzvtB7CarYYsPHHF40TdAw88MKETbtiwYUL7BxOz+i+iSd5HU75JFljFig0bmaQzV3nHmdHXfES7gD+q1yiTan6h/5Gb+YTfzu2aPfenTb0/8ZWZhBEGLmPhAm0Vb+vbqaKOBtVChh9XkE+lRhoIw0I2mcwLgioyVwrIY4EqoEYaOCrFEz7eYb2QNJLIUlPIwfgT8Bkqm3lqJuVSTTV1gQ5nRJqklViiiSeWApUb6HCGxVXsvUO6AhhJCCPimqibRgb1NFEl9WQHwXUiEHzL9hOesD+PCY2PciExRJNALLlMI1KLYIe+nxrqWdF/JUU4zIzetPzOr4uivsQuOgrl/NwM1/pqUiZes/ySROL4h/4Wv7a/hKDTJQ4H2KNSTCJxZJJOgcoDHBX5k5GeQVMEgKhhkpq+JEUlUim1NNFmuETTmWjR20ginjhi/FqFeCpL1FxsYqWdLtrpJMFAOuTVeh3RRJFLJnkqMLrDrpV8wWZYEsL/DGmGh2EhmkiKKOdl/b9cbbo0wJGdGY8zSCaTiYaGhtMeb25uxmQa24rdpk2buPbaa1mzZg3V1dUAPP/882zevNnTcAzNdJVFlfhuktdCO130UEM99sEPoNHJ1NLokm7CsBBPDJV6rd/O3SGdzFJ5ZJJGqh+18QKFNyvq6qSJApVLFhlMM6CRxBAxKop++skig69bf0CJXhmwWFrpYKbKpY5GYggu7Yw0lUSNNKChcVRKuHXgW+gyvmuMXezEqmjCCaOXfiyasVevAKapDIqknEjC2ahvH5NxUSBooZ1OuqmizrCToHSSyWYK08mixaXKNEQIcL9PtdFJAblUENKpG4k26UAQbNhpUe10DX7/NaWwiQ0bdjJJo40O7OhoaJPqe1dPk/MzE04YCSM4qp9rOocFpllMVRnU0Ug9zU7d2EjCSSSOUirJU1MBR6umaXBKZMwr6fjokZPmfcO1CfuSKaQyjQxmM5126fTruSdCI6200E4Z1ST40YDjVCyYqaKeTrqN186uIFOlUUg50yZoNjZeMlQqGaSST47x3p8QhiNJxZPLVLLIoJtekkgIisVjjxN1I01Y+vv7CQsLG3X/l19+mYsuuojIyEj27NlDf38/AO3t7Xz3u9/1NBxDc1COc1xKfXZ81wtToDQCxsMXzJ+hklq2yl7+rb/rt/PWShPHpZQaGvzqfuVPfFVRVy7VnJAyKqkjTRk3yfl98z08brmPcmr4s/46f9ZfD1gsR6SIw1JIFz1kBVkbl1KKaWTQSAvV1PF7/e9UMT4n3TKpZofsp5I6ZpHn5Uh9w3SVxfnaKhppZZccopbG0XcKAEbQ0hmNFC2RCmopoZIqA1cnhggMrom6Lro5TBH79aMBjMjYuI4pBzgpr5KsEpmjzaCeJoqppJ5mAOzoFFPh9zh9xZB5xiyVR3vEHi41n3fG7V0r7noHq8ve0XdSQhUJLtrOV5ouoit8PwtUAXOvn0baF/IJv7ODiK90EnHLcd+8GD/Q61JRFzlM9aEviVIRVFHHYQppI3gSdUbQXwP37hXXrhYjsF3fT6GUMYB1wmZj42Uq6dTRSBHlFMvkucaF8D6d0s0eOUIZ1UQRxQBWGmjmkJwIdGijMubW18cffxxwTOCeeeYZYmJinM/Z7Xbee++9MWnUPfzwwzz99NNcf/31vPjii87H165dy8MPP+xJ7IbnXG0Fm/T3+aDJN444tdLASrWIcMKYS/C01i3R5rJWLSOcMHbrh/12XtebbzA45E4Ub1bU1Ug969VyBrAaWrDVpEzMVfnkMpVOevib/b/ca/58QGJxTaJkqMC1T4yXD5nW0WBvopk2YomhSC8j2zTF4+O8ob/HBdpqrGJlrWmZDyL1PkopFjOLTbzPAFYu7f8cz4X9gIXa6Pc4f9JJN+vUcgSdLOX538Yf5JPDOWoBEYTTElr1DnEKrnepWUwnXSX7bMFpMjBN0jlCNIIQJZGsV8vR0ckkjRSVyGoWc5Dj9NDvbPWZLNUmIkIXjvbVsRo0uVaRDel5DiWvotTJ54Y0/FJUEggMYKWLHsMZQXlKL/3On/3d+hrjaiQURPqkNrGxRi3Fgpk0kgIWR4HK41x1Dv0MUKs3jqO0xncM/T3DsBCujV6k4wtmqGyWqwVEEk73YFt7iBDDUaxXsE4tQ0dnpsrhoO5YfOkU41+Xxpyo+8lPfgI4bpRPP/20W5trWFgYubm5PP3006Me5/jx45x77rmnPR4fH09bW9tYwwkK3tN3UqM38iB3+uT4xVLBDtkPwCfVxT45hy9Yps2njQ4OSyEWMfNzud8vYo6u7R/BVIHoCb6a4OzSD7NJdgGQr3J8cg5vMVPLJUtNYZPsollaaZF2kgLgOua6AhosZi+uPGS5k+kqiy/Yvk0zbRyVYi5gtcfH+bf+Hm/r2wB43vQjb4fpM0zKQvfgxO4oJezQDxguUVcj9Wwe/F7erD4Z4GiGp0DL5X05CIBVtwY4mhBGw7VL4zglHJcSBkKfkxF5i21OE4lCyikXh3zMF9U1XKqdx/W2rzkTUkMEi7vdaHTT61yAjFUxo2ztwNVsokccCboh3bbhEleu+sVN0mo4IyhPcf0s+Lv1NY6Tf6NgMhLaJvs4KsWEYSFDpQYsjngVy3vyPgBFlAcsjuEY+nu6/o39zVSVznEpccp/hAgxEkcpZvOgkeUGbYXz8aGFHyMz5kRdaamj3P7888/nlVdeITFxfBPPjIwMioqKyM3NdXt88+bNTJ9u3Eqd8bBCLaSNbt6yb+NCk+cT3NEo0auYwwwSVBxzteCpqAO41vRR/mV/h2baeN7+KjeZ/WMqsUjNwYxGIsFlFz8evFVR1yO9HNeLmUIaMUQxQxlfdPlq06VU2erooY9nbX/lq5ab/R6DRcwsVnOIIJx4iQlK4Zu5Kp/VagntdFIqVeM6RrPexmI1mxSSSA8ibchPaBdRKKX8Rf83YEyx4iaXSpkUg7a+RqsoPqKdT7XU00pnUImKh/A9rvepGKLoosdwbV5GQUTodJlYuCZhkklEKcUy5rKTA9gGq+ySVMK49UWNRqd0s5BZmJWZ/DGOQ05tfdVFp2+wymy4RN0SbR4VUksdTZRLNXkERijfa4iwUM0ihihi/ayV66rNGwyVK+CopuuVPpaoucxQWc7W6EAwR81gjVpCO13OhLxRGPp7xgQwka2U4iPa+ZyQUhqkhT7pJ0KFByyeEMZls30Xy9V8dHQuVufyKL8ETkopGBmPC2k3btw47iQdwC233MIdd9zBjh07UEpRU1PDH//4R+6++26+8IUvjPu4RmSnHKBOGikS36yE1FBPEeVsk73MNHiV06mcoy1ks+ymVKrGnQDwlHKpZr8cZbccJm6Mq7HBhi8q6ppoYx/HqKWBCBVGuApMmbsnrNGWUkoVjbTwqv1/AYnhEIXsk6MUSTkmbWxGO0YjX8thm+zlhJRSLZ5r1HXpPTTQzD45RifdQZWgmWOawf+ZPw2AGRPtuvFu6M20Ysbx2TJylXAf/eyVI7RJBw3SHOhwQhgI10TdkKvhgAyMtPlZTR/92LE7f++nH/PgevuQnpVV2enHih07ldSyX45S6KMxqL/ppY8DHGePHKZjjIkf1yqyPhk4RbPt9AqzKCI4b+e7/PblvSz67afo/9OF2LY9OvHgA0Qp1RyQ42yVvST5+R4xNM42Y6IjSMwkqqWePgbYK0fQvSgfMx7yVQ5bZS/HpIQq3TgVYyKCFRsAcQFuDVcodsth+umnUJ8c17kQ3mevHGGXHGKfHGO5tgBtMP1l0+2j7Bl4xrVUUFVVxT/+8Q8qKioYGHAfUD322GNn3Pcb3/gGuq5z4YUX0tPTw7nnnkt4eDh33303t99++3jCMSwpJNJMBwfFN0K02/R92LAzj3xSA6ijMB4KyGUKqdTSyB7xj06da+l9IMu1/YW3KuqaXbTWVmmLvXJMXzNT5fBx7UO8qv+PnRykWdr8nsgYet+MnEAZjWSVwGI1hwNynO36Po/3L6KcauqJIJylap73A/QxKSQ6q3zqDGgoUS41TpfHLIypUQewVM1jK3upp4kTlJFO8Gk2hvANrvepTJVGjTRQQS02sQW0msWInNo+2McANmyEYSFmcML8p7CfECFh9Kp+FvVf5nCMnCQViq5JtqgxGiNESBgWzFix0U2Ps+0Vhq+o+5TpEsKP3Y/W1Q70Il3N2LqqMK++d8LxB4IhfcJIItw0+fxBColEEE4f/bQFQeUKOMyv6mjEjInsAJuAxagozlEL2SOH2SZ7DVON3jjoN2/BzCI1J6CxLNJm85r+Ng20cIJSFlAQ0HhCGJOhSvQ4YtA0jViiaaeTVmV8R3SPR0FvvfUWH/3oR5k+fTrHjh1j/vz5lJWVISIsXbp01P2VUnzzm9/knnvuoaioiK6uLubOnetmTjFZCCeMZWoeVrF5/dhdejc5KpNE4h3iywa4eHtCqkoijhgyVAoR+KdU2bX0PtrPWh3+whcVdfXSxFI1Dzt28lSW14/vC8zKzFTSBweKERRJuV8TZv16P/PUTProJ08Fd+tMBinYsROnYmjXO4nXYse8b7lUs0otppV2sg1qdnAmklWiU8PCiJPdBGJZoubSTiepyriLNdlMYRrpJKp4yvVq1mvLAx1SCIPgmqiLINxpgNBKR9AtQPqaTunmHLWAE1KKBTMD2BjAygBWp5baFJUKChKBBWoWPfQa2qndE0ZLsg1HhBbhrP7pp58e6WO5mo8NO9OGcatMVPH0GUm1f4JkqjTCsLhp9fmLOBXjbDM2onTEcAzd523YDXFPnUIqc8knTkXTIC2kG+C7XCG1nKvOoZGWgGs4ZpNJOinMVTOo0RsgOJtXQviYTnEsFMSc0v4/dG8wMh7fje69917uvvtuDh48SEREBC+//DKVlZVs2LCBT35ydDHrm266ic7OTsLCwpg7dy4rVqwgJiaG7u5ubrrppnG9CKNixcpuOcwb+nteP3YRFWyW3RyQY46BWZChlCJRxbNXjvIv/R26/ODYM7QaHUs0mpo8AzFfUyKV7JHD7JdjJA62JgUDedo06mmmnGqO6sV+PXezameH7Ge/HHNOPIOVTC2dg5xgi+zhBGUe7XtAP8522cdxKSVfC672fHAkwoZK5F0rS43CP/WN7JUjhBNm6MWafC2XE5SxQ/ZzwEcV5iGCE9e67wR18v5ixO9boOmkm/flIO100USbm77OcImrLrrZJ0d5V9/pzzB9Ro+c1OQba+IpgpNSHX0M0EvvYAvUUXpV/xn2DH5EhI36DvbKkdMMRvyBq4lWsDgPu153kl2MRQLFNC2dgxwfHH+VBjocACqllvfkfY5KMVPV6clufzJLy6OIcnbIAf6o/yOgsYQwLk7zk8F2fMtgnVowJOo8rqg7evQof/rTnxw7m8309vYSExPDgw8+yOWXXz6qztxzzz3H9773PWJj3asyent7+f3vf89vf/tbT0MyLBdqa6hSDfTRT4veRpKW4LVjN0kr56uV9NBHgcrz2nH9yVptGRbdTD8DnNBLWWrybWtcHtNIUYmTVp/uVLylrlErjaxRSzChMUcFj+HLGm0pH1CrsWLnbX0bN/Jxv53bbbAXhI6vrixRc1ivlmPFRolewTnagjHt9w3rD6mSOuYwg1gVzSItsC0S48GkTFyuXUijtIy5lfxJ2x/4i91hQJGvcvhN2Hd9Eluv9DldaZMNaiQxRIHKZZ1ahiC0ivFbDUL4D9fvVR7TWKeWoaO7ubSfzfzHtpmv2B6hmnrCXZJOmaTRSbdzAjJcZ8JQ8q6fAexix6SCu9zEvfV1bF0Rru9LH/2nVOUNfwwrNizjjNFIdNCFbXAimqT8b6CWQiLr1XIEQQsSN61GaWWFWkisiiZHTQ10OFygVnNMlWBXOv+ybzRENXqTgZKZM1Q2F2sbOKoX0SxtAZG5CWFseqWPPJVFEnHM0xyt0c5EnRjfYd7jRF10dLRTl27KlCkUFxczb54jwdLU1DTifh0dHYiIw7Wqs5OIiJOrYXa7nddff520tDRPwzE0YcrstAMuooIVXrygVUkdG2UHANdyudeO60+SVTybZBcAx6WUpfg2UbdF9tBBFwUEZ2JzLPhiKPS+fpCtsheAmVrwvHeLtTlUUMcJKSVSIrDrdr+ZOri6cQZ6IDNRstQU5/d0vb6cT41xv5fsb1BNPVFE8G3T7UHZ+gqORPV22Qcwptbf/+pb2CH7ATggx/iV/pBPPneurbgpBh+YTlGp7B80FKmW+kmRNAjhHVwTdSalsVl3jJkaaQlUSIZir36EEioBR8JtiBoanD9HETlsRW2kinSu2PXSf1rbT7AxrtZX10SdDIzpGFaxTopEnXtCxf+LOSkq0Tl2iJbg+OwdkxJ2ygEQeMwceF3CD5vW82nbV7CKzdE+bIAPpmsbc0qAF6LDVRhZKoN/8y4Ax/QS1ppGl+EKcfZwQi/jkJwAIEscupNDJky2yVhRt2rVKjZv3sycOXO45JJL+OpXv8rBgwd55ZVXWLVq1Yj7JSQkoJRCKUVBwelij0opvvOd73gajqGZoXLIVzl0Sy8143BMPBNdrsYIQVohNo+ZLFCzqJF6jkuJT88lIidLXwPsUuQvvGUmUShlZJPJdJUVdCtV52sr0XWdKqmjkjpy8c8KabO0kk4KccQwTWX45Zy+YpbKY7GaQ500jbn1wiY2rFjJYxpztXzuMN/g4yh9x42mj9Nr76NK6vil/iJf02454/bteicxRDGAFQGqVD05eF+UullvJQ2H1ucMle3143sTpRS3m67jVf0tKqSG/+ibuMR0XqDDCmEITt6nEjlZ9dMUJK1yvsQmNr6jPzHqdiMlnFwf76E36BN1fdLPNDIIJ4z4McpwhLlkNvrpp1dcXF9HeN8sk8TEpF06mUIaUUQEZKFsSDpCRw+aVvZe6SWHqZjRfHLf9hSzMnOxtoGD+nHKqDbEIleb3slUMoglihQDVPN/SruEXfohaqSBp+1/CiXqQrhxglLHXIx0lmqOgiCLMoNM0tbXxx57jK4uhy7Gd77zHbq6uvjzn//MzJkzz+j4unHjRkSECy64gJdffpmkpJMinWFhYeTk5JCZGfiLojdJVPEUicMuuk5GrjYcDx0uibrYIB18TVdZHJITZDPFKTjrK7rpdSauYgIsfupLvG0m0a53kqTiqZEGrBi/RPhUYommVhrIZSrFUu63RF0TrdTTRD1NRKvg/H4Oka0yOSYlJBI35ptaM2000AK0MIcZvg3QxyzV5nLIVkgicfzJ9hrd0sOHTeeyWlsy7PbFVDgNKOYyg732w+SYvX9vaxp8jxtowRQECsr5Wg6F9jKymUKl1AU6nBAGwXVBKYE4Eoglnji68b1urdGpkYZB0wjHvTeWaOzomDFhxYYNGxGEj6hT7Jaokz7flNz7kS66qcJx7TCPMVmhlHI6jzpaX09qtY3UPmv2fGpkSNrponaw8tIXRmOjYVImppCKjh4QM4vxUEY15VQTThgRmjFiNqHRQhs5ZFIm1QFfmKujkerB76ERFu9XaAs5IMdII9l5rQxx9nBQP45JTPzZ/i9aaOdxy31uFeY1egPpKoUiqWDaoKbipNWos9vtVFVVsXDhQsDRBvv000+Pad8NGzYAUFpaSnZ2tqGFr71FsuvqsJcdj7pcHExjg7SibprKQBDKqWGnftCn5+p0rUAMVdSNmROUcXCwZHiumjnh4/mb2Wo63fRyjBKOSDEXssYv53X9vqcEeeurSZmYp/LZLYdp0rc42oLUmfsvXIWjg12jb56aSWv4Lr5v+xWP2Z/l+/Zf87T9RerCt552H9NFd2tJPUIxz+l/42N80OtxubafGGGwPBqzyMOKjSIq2CtHAh1OCIPgepdK0hJos3fSRifVXu5CCEYqqXNOPBXKbRwzxJkmGpHqZKLBVd8tWBlP6yvgkqgbW+trIJJavsC18yZQ7pwxKorjUuoXwzhv0Dm4QBBroHnCHDWDv/Em7RRxQkqZQWATda5jHCOM7yzKwmw1g0Nygv/qm9FFDxkGnkV8w/Yj3tK3OX+/j9tI46Q78i/1FymRShKJ4xLNkYuatIk6k8nEhz70IY4ePUpCQsK4TpiTc9L5b8GCBbz++utkZWWN61hGJ4kEVqqFWLCAeEva34EFM2vVUgSI58yaSUYlUosglmg66fa5dXuHdLJGLUUB+SrXp+cKJN4eYJZJNevVcvroZ44WPEYSQyzQZrFOLaNBWnjB/hpXmi4iU/leC9MkJtar5fQzQFKQJ+oAlqi5WDBjwUKpVI1qYFMnjaxUizBjDioDkuEwKRMmTMSpGBKJI40kslUmddLIlFM+Sw3SzDI1D4tYKKSMApXruP77gAGxsl4tZwAraSrFJ+fwJgVaHgtUAbHEYBN7oMMJYRBcF5SSXNoZm4KkVc6XuLYLRhPprNQFyGUqZVQDI0+Wp5LO6kEjKF93LfiD8SbqVmmL6JRu4ohBRGetWoqOkDDG9tlO6QqSejB33BeoA7Og79DGK6WTbu6yfhdEkazi+abliwGJZzSGiiACldgcjjlqOsvVAiIJp8qDavTt9n382v4XTGjM0LL5uvlWr8STTAJr1VKs2EgwyPxzuZpHDFFYMFMptYYwAgnhHyIknGymUEcT2UzhDfsmrjd/zPn8UOFAikpyFhkMjcsnXaIOYP78+ZSUlJCXN3FR+bKyMqzWyVummqji2SEHAJgi3k0OFEo5W2QPAPHKGBfK8ZCsEumUbp9bt7fQztbB92sJc316LqPgjYq6A/oxpxjwN9WZHZ2NyCJtNqu1JfzQ/gwIPGR9kqfCfK+FWSTlzvctIYi/n0OkqWS26w6DhBNSNqohS7FUOA0VruYSn8fnD+4w30Cl1PJz+x8olxpOSBlTcL+ul1DJ++KoDk4hkS2yB000+qSfCHW6K+NEqKbe+Rm7m5u9emxfEKuiaZY2DnCcY1Ic6HBCGAS3RJ1LZaivF++CAddkZSzRbok6159HMizqpY9tg0ZQPZOhok5Otq1GjuDYOhyFUk6xVJBIHBey2jl2/oL69LDba9PWoVe8S39/I63h8F6mjSulJ+hkLDpdOm8CJfmSohKcZbO/sL8AgIbG3ebPEa7CRt4xQHTgkHYyUkVdnpbFLptjXJEvOaNsfZK39G38Uf8HAKl6ktcSdVv1vVRQQypJhqlcS1FJbNf/BjjGqDl+krkJEVi6pId/yTvO34uo4A39Pa7nY4DDGKidTsD9PjmkXWrHjogYusvT40Tdww8/zN13381DDz3EsmXLiI52v5jFxY1thepsINmHg87J0lr3AW01B/UTNNBMr/S5tWp4k8nUincmvF1RVysNLFFziCZq1Coqo3K56UL+q2+mXGr4p76RJ+Q+zD4Wi3ZvOQnO1nRXFmizWKsvpYNuiqVi1O3LpIZFajYxRDNbBbdGnSuL1GzWqCV00EWRlLOBFW7PF+kVzCWfBBVLNFF00k0r7RTqZSwwzfJqLK6TsNgAVUt4yjptOSVSgR07HXoXcVpwxB3Cd7hp1Eksy9UCFIy52mky04+V5Wo+GhrJJGAX+6D2J3xeuxqbshFDNCu0hcPuH+7meBr8FXWu7btRHowVh6rJOulxaPUNHWOEZF/Yxb8B4GHrT9is76aVDhbq5Sw2zRlP2AHDho1lah5mzG5SPP5kmZpPI63s5pDTzCRVJVGklzPPZCw5lV69jwJyiVKRzDXQuGUGOSxT89FQ2BhbNfonBm7nbX07CodpSrpK5mHbL/iWeeKVjEPzWSNJbixUs1ijltJJF0VSwQdZG+iQQviBE3ops8gjgVhqaCRNJbvN91ulg6VqHmZMzHeRb3LVIbViczMdMhoez1YvucRRHfHRj37ULQM5lJG028fe0rJ+/XoiI8e+KhZsxBGDBTNWbLTo7V499tAkLYLwEQcbwUCP9LFD9hNHDIV6OQu9PJkdolYanD8Hc2LTE2SC7dZ90k+pVLNXjhJOGDkqOM1elmsLmK6y2C/HiCCMY1LCfHW687Q3cTd7Mc7K7HjJVVMd1WFolOpVo25fKlUckOMIwkwt1/cB+olslclW2YsJE6VSfdrzpVLJCcqwiY1rtct5U9+CGRM/tv2W35m+79VYOt2SwcFR6aFjd1YcNtMWsHasEMbBNVFn0SwckhP00U8/AwGMKrCICDo6/7C/xS45BMDF2rk0SItzm+vMHyNXO3PViGsVb/8kaH111TmL9mDcO5QgsmFzVkzByK6vQySoOLbLPiIIp0jKWUxwJerqpZndchhwT9r6k3AVxjYcVZ0tOOZBvdJPkZQzD2Ml6lpUO4coBGFEg5ZAkKBiOSjHGcBKvz5Al/Rgx86ztpfppJtvmb9IGx30ywBRRNJIC0f0QqdxSg99HJJCNJvGHaYbJtTW26v3OXUzkw3g+DpEjjaVrbY9KBQ/tz1Pk7TwLfMXDV0pFWLiHJMSKqjlOKWkkcxuOUQmaVh1KxbNQifd7Bm8BuapkzJrQ66vAFashk7UeVyzunHjRue/t99+2/lv6HdPeP3115kyxf+W4f5CKcVabRkRhFNG9YQTJ640SDPhhJFLZlBfiBZrc0ghkQ66OE6Jz85TPZioyyQt4I5JvsSbFXVb9b1skd0kk8AdpusDbgk/ET5r+gRZZNCPlWftL/v8fK5mL55MKIzKTHLIYxoa2piMAHbpB7FgZhGzSXcRdQ12Zqk8Z0vFvmHeh/1yDB2dbDK5zXQNH9M+iELxovzLrW3LG7hX1AVHMti1mjnU2hgC3BN1CuXUHpsMrZrjpZ5movsXsVG2Ox+bq/Kd7s5pJI/puhrBydbCvkmQ+OyUbkyYSCXRoypi18TEUBsUjF6VN1flM4VU+ujniBR5HnCAMYKZxFyVTypJzt8jiaCXPo5gPPkDV01II3XeKKVIGUyKNUsbf7W/QXr/ar5h/xGP2J+iijp+aHuG3IHzSRtYxbyBSyihigjCmE4Wq1lCDFEc4Dh/tP9jQrE0qzas2IgmklwDLd4vUrPZF/YqS9U8yqjiEftT1NEU6LBC+Jin7X/CipV8sjlfW0kcMdTQQAW1AG4LM64L2pZTKuqMjMcVdUPurROhpqaGzZs309DQgK7rbs99+ctfnvDxjUSMRJHLVBJUHPXSTIaXRL876aafAfTgzdEBkKemEU0k09U0DutFfNJHuSA7dpaoudRIA5n43kxgMlAldSxXC2iSFnLVtECHMyEWabOwYSeTNLboe8fkXDoRUlQi8ynAhGYYDY+JEKNFE6diWCpz6Zd+Luy/nk9rl/G+HKCbXn5v+YHzdXbrPUxV6UQTSSJxQb2QcCrpKgUNxTxmEi5hNEgzacoxYd6vHyOScKaQSifdLNJmk2yPJ4l4ooniFft/udZ8uddiiVQRLFCzsGINmkRdJmnMZjpRKpJW6Qh0OCEMgOvypUINVjm10ytnb6LOdaFniBkqm2gi0dCIJpJIbfTWzwjX1tdJUFHXrNqwi51GWklWY2/lzGYK88jHoiy0i0uibpRFtJkqB1BMI53/6pu5T24LqvtZp4uOYVyA7hEzyMaKnQjCsWBGEJaquVjFePrkQ21yvfQZbp6wQM0iSeLpx0ql1JJAHG10kEYy9w38lDoa0dDQccypY4gijhjSVDKLtdkctRcxjQyKxiBdciaG2gq76SXCR1JF4yFChTNbzSBKIggnjGQSKdLLmWIyTmVkCO8iIsQSzaxBw7qpKp1kEpivCqiVBmaQPaKhTiapzKcApRzGbEY2+h6XUNOmTZv45S9/SUlJCS+99BJTp07l+eefJy8vj3Xr1p1x39/97nd8/vOfJywsjOTkZLebnlJq0iXqcrWp/NO+EQROUEoGE0/UiYjzwxeom6+3uMx0AXdaH2GnHKTYXskDltt9cp5t+j5nJVC2ZpxVIF8y0frNvXKEXYNtarOC0PHVlXSVwhptKS/r/6Fa6imTamb60P13t36IBlrIYvJUDO8I/yu/t/2dW23fAoEt9j3O5x6Wr5A76LJVRIVTwHy5aUFAYvUVSimuNn2ER+1Pc0COcZ/1p/wy7CEAXrC/xsv6fwG4RvsomtL4ueXbvNz/X+qp5EHbk15N1B3TSzgoxwFHi1YwEKuiOUYJCNSHVrtDcGpFHUSpSBCcbVtnI65VAEN8yLSOm8yf8Og44a4VdZNAo26o4slTyRelNA5TBOIYCwwxknPswF8vRa/dRZa9j70mxc40Mx+9PIPv2p4yrFvpcHTKyc9RoMwkcrWpdNGFDbszWbxHjpAogdHMOxP1NDnb5Izk+gqOVr1DUgjAI/anAEgingaaeVH+BTgqbW8xXQXAe/r7nKudw32W2wBHh8x+OcbT9j/xqPmucS9UuxrcjGRiE0iuMl/CJtsueqjlqBSxnuWBDimEj6inmbdkGwAf1NYyTWVQShWlUkU5NazDfdErxq2yuotDnAABq5pkFXUvv/wy1113Hddccw179uyhv99x4W1vb+e73/0ur7/++hn3v++++7j//vu599570bTgrzQZjQ3qHA6rIkB4w76Jc7VzJnzMbnqdg9tA3Xy9yRWmD3JEL8KGnbfsW7nQtMbr5xhqs4oi0jERmKR4q/XVKlaO6cXkMg0NxWwV3Ik6gGXaPPbohxGEIilnJrk+OY8uOs2DWiwpBmqf8AbLtfnMIIcyqpwixWkk86r+P+7QbgCgUVq4QK2mmx4KfJgMDRQbtBWUSiV79MPskP3s0g+yXFtAh3SxTi2nSmqdeo5KKW7QruCYlKArnV/aXuTz5qu9EsfQNS2aSJ+Z8HgbN4MlHzt9hwgOQq2vp9N5SkVdBikkSKzHq/6u14XJoPk3jQwSVTyxRHtU2eYmei+wVi3FgmVEWQq9tQhsjmq0CBvMbQ9jKun8R99MjbWRJy3fnsjL8BupJLFeLUcQYiQqIFUjJmXiWu2j1NGEXey8Lduxoxvy+u9uOpcQsDiG43LTB0iVJF6Uf6FQJBHPAq2AfHLZJDtplnZSVRJxg+ZlcSrG+TPAem05sXo0NuwUS8W4Tb5qpYEVaiHRRDHLgAZzc9QM1qplKKBOQouBk5kivYzVaglmTKxUC4lxKVwa0jPtoY81ailmTEx1qZINc1nE6peByVVR9/DDD/P0009z/fXX8+KLLzofX7t2LQ8//PCo+/f09HD11VefFUk6gEtM53GN7W4GsFKnN/GIfGXCpfOdk0yofoO2gp/b/wDAWvtS3yTqBleBjLgC5CtkAjV1xXoFG2UHAIvULMMNWsZDpkqnFIcRwiG9kItNE2/jH452OrEPOnNNhvfNlblaPgu0mRTr5YDjWtRJN8/Y/sKXTdejlKJa6nh7cJXrWrxXQWYUzjOtoEQqeFH/FwjssO9nubaAd/QdlFJFLNHcZ77Nuf1XLTeR3b8BxGGycavpU15pnxqaVBhJ0Hk0XGN1XZkPcfZyaqJuSOC/nwF+Yn0WheJOy40Bii4wdLm0LILDeCVG83ysN5laX0WEt2QbVmwsUrM92jfF5bpTShUnpBQYeyXy0ILbTjnA+/aD/Nj0DSK0wJgzeMJhKWKrOCrfowO4QP30YNU5QE7fBuppptHFGMUouN6TUgx2X73OdDkm0XjW5tBYTiOZv4X9AoCf2Z4D4A7zDc7t7+AGt/0TVBybZTcAP7L+hmfCvzuuOAqljJ1yAIDb1bXjOoYvmanlsGXwdYbrYaNsHSKYOSrFzu6dq9TFxLkULg3lSeqlyXkN/Ky60vm8q3mEFeO14bvicaLu+PHjnHvuuac9Hh8fT1tb26j733zzzbz00kt84xvf8PTUQYlJmfiS6Vre1rdTJXW8q7/PeaYVEzpmu95JLlOJIJwcdWbXr2BglspjuZpPo7RSQqXXjz/Ux55IPPlajtePbyS8tSjwS/uLZJNJhkrhHtPnvHTUwLJBW8GHtLWUSw3P6a9wD755Xa3SQS7TiMDC9EloXHKf6TYu0y5AEF6zv8022UcxFST0L0MQrtQucm5rtPYRbzFHm8EyNY8GaaaIcvqkn2bamM10Fmmz3RJxqSRxv+lLPGP/C/XSxC/tL/J/5k9P6Pw90ksf/cxmOitNiyb6cvxGqkpkoZpFNz10n5KMCHF2cmqiLl9lUyuNlFPN/fafAYrbzdcFtZmRp3RLL3lMYwArF2qrOV9bNa7jxBLNPDWTPvoZEGO394xGJ91O0W9PF8AyVArzVQHlUu1M0lkwe9Rd8UnTxbypb6Fa6imhkrnkexRDIOgdrEo1Y/apJq8nXKitYbccpl4afa4V7Cmd0k0e04ghys0Awyh8UFvLM+ZH0NCYpjKcj7sm6EbiKu1iCrVyNurb+Ku8wZPyAOHK80RWkV5ODlNJVYkUGLCiLo1kzlcrqaTOaSgQYnLSK33MJAeFRqZKc3O2HqpKb3KpknVNvrt+9o1ebe5xoi4jI4OioiJyc3PdHt+8eTPTp4/eHvfoo4/ykY98hDfeeIMFCxZgsbhfpB977DFPQzI8eSqLA/IcWUyhXKonfLxu1UMZjuNsYGJJPyOQp6axV46SSOxpK8neoJ8BigcTgKkyeRwoR2O8FXVWsdJMO620UyE1rDEt9XJkgWGKSqVDuqmSOvKYxkH7MRaYPFuZHwuddFM2WLm3dhLqY8wzzWQeMwE4LqX8w/4WGprzZlcvzc5tg11DcyRmqlx2y2HSSKZH7+NNfQuRRFBEBUuY67atUooNphU8aP85EYTxD/tbXGza4GyPHQ8VUkumSqdMqlgm8yf6cvxGkkrgwKCuXs2gE3eIs5tTE3Vd9FA+OL4ZchcslSry1eReZHOlnQ5n9fc6bTmfNn9kXMeJUOEcHtS1ahuUYwhWdukHySaTdjo9riKOI5ZDcsLtMU807gDiVSzHpIRsplAk5UGRqBvSeRxJiy8Q9Es/5VJNLlOpknryDGRUVkuD83uX6IFZib9I1ZK4Vhtfl0KBlocgNNNOEnHskcOsVks8OkaX9NCr+mmSFqqkzqlLbCSUUvTQR500ksUUuvUeorWo0XcMEXTU0EAhju6eRBWPJhqRRBBDlLOrqY9+0kmmhXa3BZ5wl4q6foNX1Hncf3rLLbdwxx13sGPHDpRS1NTU8Mc//pG7776bL3zhC6Pu/+ijj/Kf//yH+vp6Dh48yN69e53/9u3bN57XYHjmqOloaJRTzX45OuHjdcjkan21KAuL1GyaaOMtfRt2sXv1+G6twmpyX7C9oVFXJBX8RX+dTrpZyORoex3iecsP0REOUcg99h/65BxuduBM7s/bXJUPKOycdO8eMiCByaGhORwpKpFoomigmc2yi09av0w9TcxhOo9b7jtt+xVqAf+y/IoBbLwt23na9sKEzl8hNRyXEvoY8IpBkb9IcWt9bQtcICEMw6murzGnjGm66XVWQZ0tdLiNWcZ/DXUdH7oeMxj5hu1HVFADwG/Mj3i0b8owY5itlj97dIw5OAoRSqnisBR5tG+g6Bl0TjZSoi5Ty6CPfo5RQoXUBDocN5poc/482fSFAT5vuhoNRSOt/NH+D4/336Uf4nX9Xbrp5RwWYFbj8qP0OQu1WXTRw1GKnYmcEJMPVx3bKCKJUzH00kcjLTTiaK2vkBrqacaKjSQX6SvX1tcBgyfqPP6WfeMb30DXdS688EJ6eno499xzCQ8P5+677+b220d37Pzxj3/Mb3/7W2688cbxxBuUzFS5zCKPeBXjEC2cIF24uphMjkTAfDUTMybCCaNCashTWV47tqsw86mTgMmGQnEJG9jKHvbKYRb0XUqelsU/wp522+4+68/oohsdna+YPkuudnJlrEQqWK+WUSpVTNXS/f0SfEqWNoXlaj4mNBKIZaN9B+ebVnr1HCO5DE1G5mr55JBJK+100k08sUQRSYHKJZxwUmTyDXaHSCaBbnqop5kL1CoKpYIsNWXYibVFWZitzSCDFPoY4C37NnSzjqbGp9XaxEktnWD6jkaocM5VyxnANmnuXSEmxqmur6d+f+armVRJvZ+jCizuY5bxf09c9z3VoCKYqJBactVUookikgjCNM9a9lJJYpVaRLFUooAsNYVU5VlrY77KYS75xKloOqTTo30DxVDrq5HMhqa4uO42uyTGjEAKiaxSi7FjnxRFEKcyR02ngFziVSzWcbTCV0gN6wbnBtMMPO7IJ5elap6jGluvZLE2J9AhhfABQwsR4FiMsLgk34aecx0rp7ok308zkzAwHifqlFJ885vf5J577qGoqIiuri7mzp1LTEzM6DsD4eHhrF271uNAg5k0lUw19RyWQipk4j3zrhVicYztfTc6aSqZ3+t/B+CElJGHFxN1ru+Xmhzv10iYlIkIFU7b4ECykHIK9XKapc1ZGdcn/fzI/oxzgrROW0YuJxN1h6SQTYNirN8z3ePfF+AHHrLcyXkD14JArTRyvumPXj3+ZPx+jsQibTb9DNA+WEXYSgetdFA9OLHO0FIDGZ5PSVEJVEgNXfTwtmwHYHPYyJVyU1U6y7T5vKa/TQttzsnneHB3pwuuZGgL7RySQixiNpxGUQj/c2rr66kT5ENSyPP2v3Or+VP+Di1gdHlpzOK6b1cQV9Tt04/wD/1tAB403+Hx/mkqmX1yzGmo0S5dHlcqztRyOUwhuuj06sHhSDxUceJpm68vcW1bbjaYodBWfQ/V1JNJmlcMn4xGkpZAIy0cliKKpcLj/ffLUachxa1ecq/3BdO1aeyxHwYgzG7hCvOHAhxRCF/Q61JRF6ki3Krkhp4busZEEO52HXTVqBswuEbduK1Xw8LCiI2NZcqUKWNO0gHccccdPPHEE+M9rRvvvfcel112GZmZmSil+Pvf/+72vFJq2H8//OHILW8PPPDAadvPnj0xHSulFDeaPs55aiVpKpn/2bdO6Hj1ejML1SwuUKsMpe8wERZqs1inlrFEzaVEvGso0S09nKMWsEotJpspXj22EbnG9FHWqqUkEU8MUWQxhRdcytxfsP2TWeSRSBw5ZPIP+1vO547rJfzD9ja5TGOhmsU52sJAvASfMlflc5fpJmaSQ5008kPbM149/oBYWaEWslotMZxzmC+423wzt2hXcb5ayWq1hGgimUIaH9bWk2RAnRdvcY/5Fp6xPMJFaj0F5HGuOoc0zqyBeaPp48xRM5hOFl+3/WDc5+6VXs5RC1irlpI+yjmNxvnaKtaoJcxSeZRKVaDDCRFgTk3UTVGpZJBKFBHEEUM2U6iRhgmPm4KJDuliqZrHh9TaUa8pZyJOolmvzmGlWmSoZI2nuLpxjsfl2qRMXKZd4Ky4SCbB40RMuArjMu2CwYorHZHxaQD7C5vYmKlyWKUWs1zNC3Q4TvLUVM5Xq1is5lArTYEOx4mIOKtvJpPcy6l8xXQjH1LrmKGyecj6pEf7Nkkr56gFrFfLmYXxjCSGWKrN407TDeSTQ6GU84ztpUCHFMIHDGlwgmMxwvUeN/ScCRMr1WI+ql3gds0Pc9OoM3aizuOKOpvNxne+8x0ef/xxurocVRQxMTHcfvvtfPvb3z7NHOJUdu7cydtvv80///lP5s2bd9r2r7zyyphj6e7uZtGiRdx00018/OMfP+352lr36rV///vf3HzzzVx55ZWnbevKvHnz+N///uf83WyeeB/+Em0uP7X/DoBD+gk+YFoz7mM10OQU5H5AfXnCsRmBXDXNuVITaQvnC+bPeO3YHXTx/qBu1gfU+N/3YOFS83lcaj6PY3oxiwcup4seXrS9zu3m62mTDgop4xglgKMCCv3kxeuQXsheDqMjfEitm5DgvVGJUzF8yXwtj9l/C8Au+6FxXAlHpolWp339F5X3PsdG5TbztYCjtSq139FG3E0v+TL5HG9ducL0QcBR3fae/j7naueMOvm71HQe37Q9RgmVtOud2HQbZs3zD185tc5rWoKK8zz4ABJLNFtlLyZMFOrlFGjGHfCH8D2nJuoUijoanY8NaX4e1gsnNG4KJkqkkj1yGBMmMlXauI8TroWzVw7TRQ9tdHgxQv/S4mKEMZze3FjQxY51UItovFWKAwywXfYRQTilUmloV/cW2tkvxwBINNA9IlOls3GwAn2uGMeQo0t6nBP2YKtS94SbzJ/k3n6HaWOLvZ27zJ8leowyFAfkOEelmETiSFPGXSCcqtL5tOkyfmp/DoDD+olR9ggRjLhr1EVgcZnI9UgfjXoLhVJGD31En9L+H45rRd1JjTpddBSKx+2/p0/6udt8c8Ad5z2eIdx+++288sor/OAHP2D16tUAbNu2jQceeIDm5maeeuqpM+6fkJAwbFJtPFx88cVcfPHFIz6fkZHh9vurr77K+eefP6o7rdlsPm3fifJBbS1r1BIOSSFP2J/nTsuN4z7WUSkmlmhiiSZrklSILVAFXK5dyJv6Frayl17p85quxtnUiujKDJXNp7RLeE3fyG4O0SStfGjgs1RKLZmkEUkE7XRSTjVN0ko0kVxru5sIwshlGk9bHgz0S/AZU0hlmZrPCSllP8e8emxXLaCz6fMWq6LZFPYnXrH9Bxt2bjZ/ItAh+YU7zDdwBzeMeft1ahkt0k4DzVRQy/RxtPm7tgwF2+r/PG0mOfapVFHHMUq4lPMCHVKIAHJa6+spLYnTyXJIh1Do79ACgi46e+QICcSyTM13a9EZD8kqkS7pcWuXDzba9A5iiCKKSOKJHdcxvmO5gwfkDmJUJAPqzPpc5pVfR6/YiLSXoeJz0bLPB+Cz2pWckDIqpIbf2P/KI9pd44rFH7jJIxiosj+HTBaoWZRKJQfEu2OvidBMGxoaicSN654cLMSrWH5m/hYP2B7nOKX82v4X7jTfOOp+3dLDUSkmmQQ2aCsM3xqczRSmkk4n3Rzj7DIjOluw6jbiiSWScMIlDE3TCMPCAFZ66eMEjiRdBqmsUO7dYfHEkkoS3fS6zdne1rfzUev/IYP/fdR0IXPUDH+/NDc8TtS98MILvPjii24JsoULF5KVlcWnP/3pURN1zz77rOdReoH6+nr+9a9/8dxzz426bWFhIZmZmURERLB69WoeffRRsrNHXjnr7++nv7/f+XtHx+krl0kqHgsW0kkhVSVy3F7CLNOZE4Yj0SxtdNJNFz2keSiIa1QiVQSxRBNOOEkkUCTlLFCzvHLsDi8JMwcbFmUhRSUSSTgxRHHdwD20SycxRKGhkU4yA1hZruZTJOWU6zWsUUs4JiVEq8gJreQbHaUUFrGQTjIpJNKj9xKleac1qIse58+T3UziVM7RFrBV2wPAbC2wNzejkkg8YVhYquZRLOXjmhRoaMxRM+iRXpJdnKyCgTym0UU3c5hBi94W6HBCBJhTXV9P1ahroY1UknjX/j63yDf5vuVrk7qlvl6aWaRmUyeNhE0wSQcwmzzCCSNcWcZdwRtoOlQXXfTQRc+4q+HytZwxb2teeBMsvOm0xxeZ5tBsayWFRN7Rd6DL+A2BfE2dNDJPzaSfgXFrofoCi2bBJIoppBJPHHaxB7xiBaCZVnR0mmnDYlA3U2+xTJuHFRvxxPBf+2bmq4JRq5W36ntZqRbRQDMJ40yW+5MEFUcjLQxgNZwWYgjv0KE6aZdOrNjQNMd1eDbTGcBKKklU6NUsUXOplybSXUxsAMKUxekM69pC20wbOjrgSOZVSz1zCOxcxuM7THh4OLm5uac9npeXR1jYxAcVvuK5554jNjZ21Gq+lStX8rvf/Y433niDp556itLSUtavX09n58guT48++ijx8fHOf1lZw0+8bjZ9kkLK2Cp7+Ye8Pe7XMqSjkES8IW5w3mKmyqWVdqqo47h4bwXEW8LMwciPzN+gOmIzt5iuwoaN6SqLm0yfoDD8TT5h/jCV1LJLDnFUL+Y+20/ZInuwYec9y8ii+JOF6do0iqhgu+ynGM+FdUfCvYLz7ErUwWCFmXnsFWZnG7O0PKqoY48c5ogUj+sY2/S9HJViuuklSgWX9lSByqWZNg5xgi2Dcgchzl5Oc311qUK2YKY2fCtZKoNyqnlef5Xd+qEAROk/aqhnm+yllCqymHhnR5SK5ASlHJQTlFPjhQj9j1Gq1LOZwlptGbU0slsOU4Vx3YjLpJrDUkiRlBuq9RUgR5tGIeVskd2UizE+k+4ViAkBi8MfLFPzaQjf7jTC+qrt0VH3eUn/NztkP6VSxedMV/khyomhlHJqRAdzNXGIkTlplnOy+66ZNo5RwhEpYr8cY68coYYGZpLrtq/rfaTTpbjCNanbTue4TFe8jcfLBl/60pd46KGHePbZZwkPDwccFWWPPPIIX/rSl8647+uvv84rr7xCUlISn/3sZ5kz56RlcmtrK1deeSVvvz3+BNaZ+O1vf8s111xDRMSZ2ylPrRRcuXIlOTk5/OUvf+Hmm28edp97772Xu+46WQLf0dExbLJutspjtVqMCdO4LxyH9UKmkEaeypo0RhJDrNaWcK5+DmZMvGd/n0+YPuyV42qiWKeWoxASMdaAxdcMlafHqRhnkjJOxaCUYo6awRq1BBMa/7K/wxw1ndlMJ1/Lca5OTGbO01ZSI/VoaPxbf48FmncqOCMknHVqGSa0s6r1NcTYWKrNY4NagUlpvK8f9Hj/Hr2XeWom08kOyorqGC2aDWoFOjqJk7gyKsTYOLX1NZVEIginj37MmByGXmoGJVKJIDxse5I8Nc2jCqlgwnVsmOIFraylah6NylE5UCTlzMC4umoj4br4FcgqdaUUy9V8jlAEQKFeRrbJmPIzPfRyvlpJNz3kK2N9V+armTSoZqKIoEYaDNFqWiuNrFSLiCRi0l5bhlDKoQW6gNl00kWmSmePfpil2vCmI7+2/YUe6WOuyseExqwg0ZU9X1tFhdTQRz82sWGe5JWSZxu94kjURbok6mJVNIhD21ah2KBW0EU3BVqu276u3XWd4tDBbZdO3tS3MoVUagd1cptp8+2LGAMef2r37t3LW2+9xbRp01i0aBEA+/fvZ2BggAsvvNCtYs3VGOKFF17g+uuv58Mf/jDHjx/niSee4JlnnuGaa64BYGBggHfffXeir2dYNm3axPHjx/nzn//s8b4JCQkUFBRQVFQ04jbh4eHOpOWZyNdy2C77EYRyezXfs9ztcTy79ENsFUdr2Y9MX/d4fyNzrukciqzl1NDAfjnG49znleNWUc9m2QXAA17SvQs2htPRmqnlslX2Ao7KBSsO3ZZnzI/4Pb5A8DHTB7jV9i0A+uwDfM18i1eOe5RipzFKUpDph4XwPXO1fHro5X39IArFr+Qhj6riGlUr/xOHA+aV6iJfhelTuulhlxxCE80wrU8hAsNprq9aGn04pET0weeeCvsO37P9kgdsT9AgLRyTEvKZnJPpoY4J8E6ibqqWzma74350qZzHRayf8DH9jWuiLtYP8iXSVYd01yI9TajIFFTMFFSMo7pxikqjFIdb9VEp4kJW+zye8XBQTrBRdgAOcX0jkaTi2TY49ryWywMcjYNCKWOH7AfgK9wY2GD8xC3mT/JF2wMU6eV83/Yr/hz2s2G3+6v+Bu/qOwG4yzR284lA000PmwbnfuVSwwwDm7+E8BxnRZ3LvH5IOqOLHrbp+9gu+wCYolLd9nXVwh26vzxo+zn/1t3zUEZom/Y4UZeQkHCaa+pIrZ6u/PCHP+Sxxx7jy192uJT+5S9/4aabbqKvr2/ESjVv8Zvf/IZly5Y5E4ue0NXVRXFxMdddd92E44hSkXzedDWv2t+ijU526QdZri3w6BhFegXTySJFJTJXzZxwTEbjc6areEN/j3pp4iXbv/mkeWSzkLFytrcijsRU0rlWfZQ/yT+xYiOZBNaoJaQSfFU64yFOxXCxdi4VUuvmMjhRhi7sYVjOKk3EEGPnWtPlmOwmGmjmN7a/crtl7PeXYDaSGCJZJYKAjk4bnZO+1SjEyIi4J+qSVQL3m28jiQQ313FXQfwmAwyefcWfba8zmzzSVSof1NZN+Hiz1XRWqkU000axHvg2nvFgEo155BOnYojC963+/X/aAF0uLZkxmUTcchxwLLSsUAtpoc0QbVEj4dbKaTAXU9d4jDARBijVqyggl0QVT4EKjoqxiXKhaQ1P8yA/tP2abfo+brV+i19ZHnbb5pe2F6nS68giAzPm07S+jMwnTRdTL8000coz9r/wqOZ5cUwI4zKkLed6TxiqqAOcGnTxxGJRFrd9E4lnuZpPN71USi2z+i9CE8UMsrBgppl2UlQifYNO0IHE40TdeM0gCgsLueyyy5y/X3XVVaSmpvLRj34Uq9XKFVdc4fExu7q63CrdSktL2bdvH0lJSU7zh46ODl566SV+/OMfD3uMCy+8kCuuuMLZtnv33Xdz2WWXkZOTQ01NDd/+9rcxmUx8+tOf9ji+4chVU6mlgXDC+Ln1DzwUdidZamyl8y3SThMt1NBAiVQyQ5t8qwPztZk8aP85sUTzPduv2C2Hx1V56MpQWStATChR50QpRbyKxS4O4UwdnXWm5YZ3c/ImvfRzTErIZgpNegsp2sSTlBoaUUQQT9xZ9V6GGDvLtfncYXuYSML5m/4mtzP2RF2dNJFMwmCCy1gTsLGSTAImTCQRR63eQLIpIdAhhQgQp5pJAPw/8xdO226ouiyBOKrEuNpgE6FSaumhl3JqaZZ2ZnqhBW+mymWH7CcMCzvlAA3STJpK9kK0/uOElFFFHRmSEvB7ar7KYaccIAwLW+x7sJqtp00CjYAdO9FE0U2P4RZChuKJJ8YQ+mH9MkCP6qVK6qiQWrLHOCcLdnJUJp8xXcYXbd9GodhtP0SRqdyt9bdEKqilkR56+aLpM0GlP7xWW8Y18lXCCWOjfQc2c6j9dbIwoA8QQxR99Ltp1MUSPVgkEY1ddCIIH3ZBO0nFs0scerciQh/91NPEfFXAJ7SLeMD+BI3SwlQJfDWy34So4uLiqK93H1ydf/75/POf/+See+7hiSee8PiYu3btYsmSJSxZsgSAu+66iyVLlnD//fc7t3nxxRcRkRETbcXFxTQ1NTl/r6qq4tOf/jSzZs3iqquuIjk5me3bt5Oamjrs/p5yk+kTbLL8CUF4Uf7F92y/GvO+r9r/x7P6y/QzwIfUOq8IDRuND2prqQvfSipJHKaQn9mfY0CsEzqmW9vEWebCORr3WW6jJfx9OsL3cjD8X0F1E/YGS5RDJ7OUKk5Q5pVjForDEjwYnLFCBIaFahYXaevopZ+tsodu6Rl9p0EqpZZm2jChUWAw7aGxMlflo1A00koVdYEOJ0QAObX1dSQu084nX2XTRgd/0F/1R2h+5/u2X7FJdqGheN7yQ68cM1ZF84z5u+joHOA4z9uD770b0gkyQmVYkornJtMnsGLjAMcplPJAhzQsZVJNNz1EE0mYwRKJeWoaccTQThfFUhnocNgvx/i3/h499HGtdvlZJcUQpiwcDfsP4YRxmCJutv4/53N90s8T9j/QQy+5TOV75nsCGKnnpJPMtdrl9DPAPo5SJtWBDimEl+hWvbTSQS/9RLt0LqWSxABWWmijjCr66Gchs0/bP44YzIO1ak20Uk8TUUTwE/P/4+vmWzHhuAYYYSHB49Ryc3Mz999/Pxs3bqShoQFd192eb2lpGXa/FStW8O9//5tVq1a5Pb5hwwZee+01PvKRj3gaCuedd55b28Rw3Hrrrdx6660jPl9WVub2+4svvuhxHJ4Qp2Io0HJJJgErdg7rhTxt+xP/Zx69Yq9RWlitllAiFWSrKYa1hZ8IkSqCSCJIJpFmWkkigRKpYLYavz1yGsmcoxZixUqsRHOGucBZR4KLG1hKkFbnTIQ8sphLPnEqmgq9hjXa0gkdzy52ugfLsc82h+EQY8eiLEwni1SS6KOfL1kf5MPaej5lvnTUfZuljdVqCe10MC1IV/4zVRqzmU4//Txre5lDUki4WLjdcj2v2d+mUup4R9+OLsJ3LXdRECTi1SE851TX15EwKzMzyCFBxRFFJD16L1FacDkej4ZVbKxUi2ilnYXKO+ZGAIu0Wc4JzN/tb3K16VLD6ZaNxKu2/7FMOUTu56r8AEfjYAZZZJBCOOGU6JXM1YwRlytDTrmxBuwiyVaZpJDIHDWDaD+0Mo9Gi8tkPEMLntZOb5GjZTJFpRFBGDFEcl7/NUxRacwgmwu11RzXS5mmphgu4TsaQ6Z5U0knnDDe1XdOeqOQswVXp1bXApx4dbJAYj4FmJWJLO30oialFOvUMkqlEht2Zqk8OsVhOqGUYr1aTjc9hrh+epyou+666ygqKuLmm28mPT19zGXoX/nKV9i6deuwz5133nm89tpr/P73v/c0nKAkXsVSGrGRrL5z2S772Gk7QK/08RXLZ8+433bZ5xRg/bpl5OTjZOAi8zretx2gnS6OSymzGX+i7pCcYI8cwYyZcC3Mi1GGCHZmaNkctB8HAZPdxNVmzxcMXOlyuXnEBIngbojAMFXLoFF3LGz9Sf8nb+vbxpSo2yp7nPeBYHFfO5WZWi6HOAFAoZTzqu0tAN7Wt3OCMjftp4v0daFE3SRmrBV14NBk/I++CYBiKliA95JZRuAN/T3qaSadZJK0BK8dd4E2i5tMn+AR+1M0Sxu79UNMNQVHou6X+otOc6Y/hf0kwNE4yNOyqLU7dG0PcYKPcH6AIzqdoU6SQLrkjkSYstBDLztkP9UGaGN3M3A5CxesAQ6Hvw7AdQP38Ja+HQTMmLFhI5Zojof9J8ARjo/rzJfzTftjAPzU/jtuNn8ywBGF8AZuklYucy3XNtdDnACBa9RHhz1Gr/RSjkOLNEHiuM10jVODsY8+3peDAHRLT0ANVDxO1G3atInNmzd7bMywYcMGNmzYMOLz559/Puefb7ybnS9Zry2nRCrplG5+aX+RO803njHxGUkEa9VSdISpBMcga7zMVwWsV8vpZ2DC5cpOZxjOTsfXECOzQCvgC9pn+J++lSqp45e2F/m8+epxH8/duCRUURdiZC7QVnGndiN/0v9JO51YMHOf9ac8ZLnzjPtFEckatRQNLWiNX2apPNawlF0cxI7OOWoBeWoam/RdNNNKOGEIwjQy+I++mVv4VKBDDuEjPEnUzVP5rFKLMWGiThonVaKuVW8nXaWST45P3AnnawXk2adhw06pVHn9+L7CKjbWqCXEEGWYJMosNZ31ajkDWKnTm0bfwc+IiHMsYlQDtWSVSJ00OduaA0md3sRSNZd44shjWqDDCSgzVQ755BBOGDZs5KlpbDCtCLg25HhJJYlPahfzvn6AbumlWK+YlPruZxsjzbXyVQ4XqFUclSIshJGjMkesxL7Z/EkW6nNQQB1Nbl1Q67TlmHUz3fRyQi9jiWmuz17LaHicqJs9eza9vb2+iOWs44Wwx7hi4Ivsk6Mo4CHrk3zD8vkRy4vf09+nkRayyZyUba+uTFfTnLbas/XxV9MB9EgoURdieNJUMl80f4anBl4A4Le2v3Kr6VPjHpQMtZuAMVeyQxiHpdo8lobNI82axDftP6GKejbat9Nn7idChY+43zv6DjroYqbKDdrBc5yKwapsTv3Ri7VziVDh/EN/i176AYgmkhIqqdMbJ2WbY4ghxp6oS1DxbJd9AFTIZWfcNpiwi50jejEH5RgCzNEmNuYZjukqi1IcCbqXbf/hi6bPGNIEwZUe6WW77MOKjVVqsWGudzNUFltkDzq6uxuKQeilDzt2wLjjkGSVAOKItUvvJkYLXJzlVLNHjgDwvbPcGfR+y5e43/IlfmZ7jvf09zlXOyeotauVUsxUObzEvwE4oheFEnWTALe5lstiRKpK4m3Z7vy9Qmr4tXpk2GNcb76C6xneyDRBxTkruU9IGUsIXKLO42zPL37xC775zW/y7rvv0tzcTEdHh9u/EJ7xkPlOfmz+Bikk8X39V/xdf3PY7XTRnStPqQYQ1PU1+eSwUM0imQSOSNHoO5yB3sGKukgVStSFOJ08NY3PaB8hnhj2c4x6msd9rGZpI4ZoppFBNsGpHxbCv9xluYlfmB9gnprJUYrPaDBkFSsdOEr+jebk5ynPWB5mo+V5/mf5HZ81X8kd5ht4K+z37LC8xCbLC3zVdDOzVB46wvOT1DwgxPCuryPhOvZpdmlXC3YOSyEX2q53vhfzmOn1c8xW0/mW+Yskk8BuDvEv/R2vn8PbVEot4YQxlXTmGUSfDiBChfMBbQ0ZpHKEolG1sv1Nq3QQTSSZpJGPMZMS56gFjqIDNCqkNqCxlOnVpJJELtNC47ZB7jDfwMthPw/qJN0QV2mXsFDNIol4ntT/GOhwQniBVmknjhiymUKGOqkrWUAu8YNGfhbMfFz70LhcnOepfGapPKKI5JiUeC3u8eBxRV1CQgIdHR1ccMEFbo+LCEop7Ha714I7G5ivFVAsFXTQRQqJ1EjDsNs1SSsFKpc+6SdXTfVzlP4nSoukS3qIJYYYoqiVRqao8Tnv9gyK+0cZQLQ2hPEwKzMJxGFHZwppFOnlZJjGJyjcRgdddNNFN5aQDXyIMbJOW8ZdtkeJI5p39O3UyafdBh9D1Eszs1QefTIQ9PeBWdr00x5brM1x/tynBviJ/VmSSeBp2584oB/nfsttTg2REIFhi76HKCJ4076FHbJ/wserlFpiiCKKyFErphKJJ51k4onFLsE/1iyyl1NMBa/a3yKSCHrpQwGJWrzXzxWuwpitptNND6kkc1wvAYObWzbRRhc9dNFjuMowk2hoKPJVDlVSR5aBjH1aaKObXrrpRYxRhHgaZsx008NCCqihgbkELhFbTxONtNBOp5vBWojJwWzTdBqszaSQSLPeyucH7uMpy3cmfWfaZKaVDjroooMuotTJuX2ylogNO2FYsGFjuZo/rr/zDJVNhdQSSxT/07dwv9wWsIpuj2eS11xzDRaLhRdeeMEjM4kQIzOLPPoZoJ5mduuHht2mjGpnVvcDao0/wwsY/2f6NF+z/4AyqeItfSvXmi73+BgiEtKoCzEqc7QZdOmOCcFRKWYdy8Z1nEY56XqdbBA9nRDGJ1/l8IDpdr5u/yH10sxb+lauMZ0ugFtGNcelFICPqPP8G6SfWauW0hC+nUsHbuFt2c5RvZgN+jlcZbok0KGd1dxhfYhDUoiGxhq1ZNQquNEY0mM7Vztn1G0TVRz1NFNPs1MEOpi51fYttg4awwxRa9lKnOYbfdMrtA9yN9+jjkaesv+Jr1s+75PzeIsm1/upi0i4EZilTeff9veokQZOSBlZBqrEapST1aZGrbzOU9Nopo1m2iiRCiBw85qmwfcrhcTQnHaSUhz+FtdYv8rf9f9xUD/BvfJ/Qb/YeTbTyMl7Q8op17iG8G2YlAm72DGp8a1GzVS5rFPLeFO20CAtNNBMOoFZJPY4UXfo0CH27t3LrFmTR8Q30MzQsjlHLSCCcPQRBC/K9GrWq+XYsDNfFfg5wsCw3DSfD+hrqKSWx22/5yPa+R6vdvVIL6vUIsyYKVAh58AQw7NUm8cH1RoqpJZf2//M5aYLSVPJHh+nX6ysV8vR0YetiAoRYjiUUiw3LaDAnksrHTxue47LtAvcxG3BMXG9QFtFl3QzU+UGJlg/MbQKmq9y2CtHSVYJbNP3ORN1DdLM92y/ZLd+CBNmPmhay73mkRMPNrFxl+1RaqWBZmkjUXm/aulsQKGxVi1lACvxKtZrxz31sz4crlo0XS4aNcFKGCc14uaRz3xtFgkm31X0mJSJi7UNlEoVGoot9t2sNY1vUcofdEsv69RyBJ1MPxqohV35GtJagt5VjYrJREs8XTNwgSpglVqMGROVYqykcSddznFItsoMdDjDkqZOGiE1BdBQQkQoUHlMJ2tcY74QwYFJmbhQW8MJvYxmWrnOejd/C/sFKWeBlNRkRAmsV8uxo59mMjSUnBtvkg4cY/IN2jkU2yvQ0PiX/V1uMl85oZjHi8eJuuXLl1NZWRlK1HkRi7LQThfvy0EiJBxd9NNKNQ/IMae5wjfUrYEI0++s0ZaSq03lf/atAByXUlYqz9yGW1Q72wbFp0MX5BAjsUybzxwtnzftW0HgIesvyNeyPdbnqKDa+T39trrdF6GGmKSs1Zay3nQOv7G/RKO0cMXAF/mo6UK3z2CRVPC27hDK/Yq6KVCh+pXHw+7jX33vUCTlNNtbecx8L0opHrI+ya/1vzi322c7wi794Iji16VSxa/sfwYclRNz8L5g/9lAArGcq53DfZbb/H5u12ReJz1+P7/XUcop0nep6TweHMXx2Rt80LSWz1jvAmC9nMPacVaP+4Mq6tg8eD/9srreb+fVkgogqeCMncG52jS22/YBYLfr3BigSdxw1EqjcxxyozJOXK4ku+pNSuD0Jrvo4R3ZAcB5amXA4gjhe24xX8UxKeZJ+x+pl2Y+MXA7V5g+OCl0+M42jkmp8xqX5KNq6ytMH+Jb9p8C8Av7H4MnUXf77bdzxx13cM8997BgwQIsFnfXqIULF3otuLOJC7VVxOrRNEoLFVJDrnK3CK+QWuaRT7yKPasqw5aoeWSzhR56KdTLWKl5lqhrljbnz0ZrnQhhLBYyCwtm7Oj8UX+VMN3CLaar3PQPRqPJReD81FWeECFG4zrT5fRKH5v0XRyWQo7YirnNdA3mQb1D1wnN2XQ9+77lHv5mf5MqqWNB/0cIUxZsYmMG2QwwwCJtDnaxs13fx3Z9Hyu1RazSFrsd4/MD97NMzaObXhKIG1MFV4jhCdR7F0uU8+cO6QpIDN6kXe9ioZrFgFhJ8lOL4iptMZeoDdTRxMv2N85YhRpo3MdvxrqfzlczuUL7EDv0fRyRIgbESphBXHTdxyEJgQvkDCSTwAq1kD76GcAWsDiaxPjvVQjv8WnTR2iRdrbouzkmJTxq+yWfN11NhAoPdGghPMDVTMpXRTg5KpOrtUt5T99FpdRSJ00B6ZTyOFH3qU99CoCbbjq5mq+UCplJTJBootgth0ghkSKpIBf3RF29NHGcMsxiGpeDSbCSpTKooIYYoiiXao/3d7hwRtFFT0gzLMQZSdESsdodA8Ye+tDQKNLLWWiaPeZjtEsnZkzYsJ9ViZQQ3mGVtphVYYtZ3v9xKqWWWKIpk2ryVQ7g+FxaMGPFdlYlgj9h+jBP2v7ITjlAJBEMyAA27CxWc/i06VPcYb6BTw3cQbO0YcbEz61/YG5YvjOhNKAPUEcjZVLNfDWTd8L/EOBXFGI8WJSFCMLpo59e6Qt0OBPCpttoVx2UShWL1GzutNzol/NmqjS6VA979MNMI4MKvYZszZjtkS20u1zvEgIdjhvxKhYzJmpoIJZoiqWSOep0g5xA0CxthGFhAKvhEpxDpKhEdsoBANIkcC2nddJ4co5g0PcqhPdYri3g2bDvsbr/KiqklgjCecj6JDeZP8EMzZgOySFOZ0CsmDChUMThm4VDszKTqpKooZ4YojigHyPDtM4n5zoTHlthlJaWnvavpKTE+f8Q42OemkkcMTTRylEpdnvOKla2yh50dFarxRPquw42ClQuaSTTRQ/75JjH+zfRShc9mDGRRkh/IsTInKetpDj8LR423UkkEXTRw3FKPTpGkVRgw04eWaRIaNAXYnx8wvRhooigk25OyMnPYI00YMVGGBbifTQ4MSp/CPsRLeHv8xXTjaxiMXdoN/Bm2O+cbSu/tDzEY+Z70dD4q7zB6/q7zn1LqaKESkxoLFcLAvUSQniBZWoeGhplVCMyvKZvMFCnmiiRSgDyTlmY9TW3mj5FAnFUUcfz+qt+PbcnlOiVWLExhVSmkeG389qP/YWBN79E/0uXYH3zS9iP/WXY7RZps4kicvA6bZz5T7lUM4CVdFIMZXLhSjyxmAabi10rJ/1NNfV00UMUEczi7OlWOtv5e9gvaAzfQTrJPKY/y6qBTwb1/eRso1SqsGMnh0yfGsDcYLrCmYP4rf2vPjvPmfC4oi4nJ8cXcZz15KlppJDIbDX9tJtWqVRzjlpIJ11MU/4brBiBbJVJHDGEY6FEKmmSVo/KXIdaxWzYSdRCtushRiZChTOVdGaqXKaRThzRvGR9g1ds/0WA2y3XsVZbOuL+xXoFU0glQoURTRQm7exJqIfwLvlkk00mySqBvfoRLjGdB0AnDgF9h5D/2XU9m6ocYvJxKoZ4LZZMLY1YddJcIEHFMUNlk0g8Nuw8a/sr89VM5msFlEglq9US2ukg6yyqSJ+MTCGNhWoW8cTyvn6QFabglFsZGucJQpKW4NdzzyOfROKYqXIM3UIcQxRL1Fxs2InRokffwUtYN90HXQ6DCHvVJuxlb2KafdVp2+Uylamkk6TiqZZ6v8U3GvHEsFTNo40Ow5paKaVYrRbTQx8JeM+UxlPapYs1agn1NIfMJM4i0ge/F8kqAREhkgiuGvgyL4U/EeDIQoyGiNA8aEAT6eOW5TlqBtFEsnRwgTAQjOuszz//PGvXriUzM5Py8nIAfvrTn/Lqq8ZdmTM6s7Q8Sqhkpxxgs77b7bnjUsJW2cNBOXHWTTI0pXGZ6XwqqeOwFPJt68882t9dfyJU4RRidGZpeRRSzm6O8A/e4m/yJn+XN/m9/W9n3O8tfSv/k63slsN80nSxn6INMRm50nQRdTSxRfbwO5fP3ZDTpUIRzdi1EycTd5hv4OWwnw8rAH2RaT0/snydZlp5V97nX/o7AByUE2yTvRyRYmZoWX6OOIQ3ucZ8GfvkKO/KTr5t82w8YCRcxybJfm7rnK5lU0Et78tB3tV3+vXcY6VJWvmPbGKvHCHJoA7NBVouhZSxQ/azWz8c6HCcvK6/xx45jBmzT6tNJsoAVvbIYd6W7fRIb0BiOCQn2Cp7KZYKcrSpAYkhRODYGv4XcrVpHKeU12Qjj1p/GeiQQoxCD7300Q/4XrvUpExEq0j2yGFe09/GKlafnm84PK6oe+qpp7j//vu58847eeSRR5yadAkJCfz0pz/l8ssv93qQZwOJKp6L1Hq66eHU22q51LBKLcKChQXa2ee2+yFtPW/at1JDA2/r24d1xR0JHZ21aikaWsj1NcSYmK6y+ZR2KW/p22inHVDEE0u3nNllsEYaWa2WYMbEHBVylAwxfpRSXKKdS4XU0ksf3dJDtIqiY7CiLpZoQ0/AAslSNY9Z5GHDzlZ9DwBb7bs5T60kXFlYpuYHOMIQE2GhNpurtIvZrR+iVKo4qB8PynFRrTSwXM0nlmhm+dkgLFyFcak6jxbasGLzaEzlLwr1Ms5RC4ggnDVqSaDDGZaZKpd1ahmC0ENgEk2nMiBW2ukE/J8A9pR12nLCdAv9DFCol7PIAz1gb9EkLc6fjf5+hfAN12qX0yldVEodz9v/zh3m6z0ykQvhX1qknbVqKaD8Mtf6mPZB0iSFARngFfubfMp8ic/P6YrHd+YnnniCX//613zzm9/EZDrZ2rV8+XIOHjzo1eDONnpVH5tlN5tkF616u/Pxg/pxtst+NskupquzrxrgfNNK8rRptNBGKVWUS82Y9y2ScrbIHjbJLr+5qoUIbsKUhU+YLqKJFqzYsWKjiVbe1d/HJiO7k+2RQ2yTvWySXczUQhIBISaGWZnZLLvZLYc5oTt06joH29Ri8V8bWLAxQ8smVSVTTAX/0TdTYavmP7KFd2QHXdIbEowOcqaqdJZrCyimkjKq+ZHtN2e8LhuVYqlklxxio+wISMWYrnQ2y252yH4qpNbv5x+NE1LK+3KQTbKLVJUU6HCGJVJFUEU9W2QP7+g7sOr+r7Y4lUbXxJPBDa2SVDybZTfvy0GOB0jjr1F87x4Zwthcb/4Y81QBTbRSQiUP2n4elPeUs4UOutgie9giu+nF96ZS55lW8ra+zXG/1Pf5/HynMi4ziSVLTl/dCg8Pp7u72ytBna2sUUsoULlEEs4JypyPH9OLmUIqS9Rc8jk7Jxn/z/R/rFPLyWYKV1vvHPN+TYN97BC6CYcYO2u0pfzT/Cs+q13JWpayRM1FQ+MLtgdG3OeYXso0MlivloeMS0JMmKVqHnPUDGKI4gTlWMVKKx3kMpVztXMCHZ6hudF0BQvULBKJ44fyG8IJYyY5rNaMWZkTwjM+Zvog/wt7jlkqj//om1kw8JFAh+Qx9dLEVDKYSU5AJE2uNV3OIjWbFBL5pf1Pfj//aBzTS0gmgfkUMNfAFerPWB7hI9r5JBDHrIGLAh0OlYNOlgXksUzNC3Q4Z2QeM5mvZpJIPMfFM+Mub1EpdUwlgw1qRWgB7CzmK+Yb2RT2JxarOfze/nem9q9HFz3QYYUYhiGtZvDPonUBuSxWc8ggNSDXKY8TdXl5eezbt++0x9944w3mzJnjjZjOWlJUIlVSRzaZlEk14BBNNCtHh3KLtBGtRQUyxICxxDSXJlocosJEcUg/Mab9NBTTyCCFxLNW0ymE5ySrBD5gXsNsbTofNq3ngBxnACtH7IXs04+6bVusV/Cs9a9Eq0h66WMAa6gtMcSEmaYyKJYKMkilRuoplWryVQ4ddDFA4Cs3jMwSbS6HpRAbNv5i/zcRhFFDA6mhxZpJQbaawjptGd3SSz/9mMXM/f0/5WvWH3BcN4775pmooo5q6iiknCkqze/nX67N55AUoqOzRd9DrTT6PYYzYVU2YonmKMVMV8atUF+nLaNN76CLHlJUIi0u3TCBoFyqma6yqKKOaIw9X5ihZXFMStFQvKVvc6sG9AdW3UqKSsCKlVbaQ+O2s5h52kzO0RbQzwADWEkino8NfJGP9X+Re60/Zo+BNCjPdjrlZKIuxg+JulSVRKXUYsaEBbOzw8VfjDlR9+CDD9LT08Ndd93Fbbfdxp///GdEhJ07d/LII49w77338rWvfc2XsU56Zqnp9NDHcUo5qB8HoIFmtsgeamlktoFXFf3Bny0/o5ZGtsgevmt7etTtddHZru+nijpSVVLoJhzCY+4w38A9llsoCXubNjrYzWG+bvuh2za/sP2RL9gf4KgU00wbf7L8JEDRhphMzFJ5WLFRRDm79UMclxIOyQlaaD/r7wWjMUfNYCY5dNJDO5200Uk3vRTgXy2wEL7lQm01vfRTSBk/kGd43P57fmp/LtBhjYkhR3oNLSCul1NJ5yfm/0cL7eyUA7xuf9fvMZyJbfpeyqhGR2cq/k9kesI800waaeGAHKfQpRsmEPxO/xtHpIgeernG9NGAxjIa+SqHh0130kwb22Ufb+nb/Hr+RtXKDtlPA81kcXYZ9YUYnu1hL9EUsZPPmC6jS7p5Q97jJ/Znucv6aKBDCzGIa0VdnPJ9ok4pxUuWx6mijjdkE0/a/+jzc7oyZjOJ73znO/zf//0fn/vc54iMjORb3/oWPT09fOYznyEzM5Of/exnXH311b6MddJToHJZouYSTSRdg8L1lXotF2qr6ZAu5mpn9+RshspirVpCvTRTKGVs1nezTls24vZVUscyNQ8bdmYaeEU2hPFJ15LJIROASHG3A7ejE00kNuzkMpUpKjUQIYaYZOSqqc7r3T79GH0ywFzysWHjHC1kiHAmNKWxwbSCans9PfQRSQTpJDPXlB/o0EJ4kXPUAt5kC9300EkP8cSw236I3aZDLDPwd+SQfoIslUmLtBOlIjEp0+g7eRmlFAu1WWSTiR07v7K9yIv2f2LGzOfNn+Jjpg/6PSZXhmRLUkjEpPn//fGEuSqfFWoh4YRRqlexUlsUsFiGEsBhWAzrljuEpjRmqjymkYEFM7XS4NfzN7vo06VpIbmSEA6jHYA4FUOiFk+6nkw8cUxV6Txhe57bzdcFOMIQfdLPGrUUBaSrFL+cs0DlaB9D+wAAWRRJREFUsVjNIYYoBvzs/DrmRJ2IOH++5ppruOaaa+jp6aGrq4u0NGOvdgULWWoKx6SEXvqopxlwtEcMrTJdrj4QyPACjlmZ+ar5Zq6w3gYCj1h/wb/DfzPi9sellE2yC4BVARw4hZgcTFUZbJHdlEk137f+iq9bbgXgf7KVbnqJIpK94a+GKjdDeAWLsvAV801caf0S4DDGAbhUnceHTecGMLLg4HHLfTxuuQ+Ah6xPApCjMgMZUggv8ynzpXzJ/qDz91Y6aKWDm63/jxkqm3O1c7jDfEMAIxyeTfou/q6/CcBH1YUBi2OVtpgoFcExKaGaehgc5jfaWgKeqBtKohjdEAEgT01jpxwAQLNrXG2+NGCxNEsb4EhwBsNYpEDLoYo6AN7X/WtI2DT4XkHI8TWEO3eYb+AOHPeOqX3reFn/D9v1faFEnQGoo5GtsgeA27jWL+dM0RzSZE20UiKVfjnnEGNO1AGnXfSjoqKIijK2BkIwoSmNW7Sr2COHaaGdd+w7QzeSU1iqzWOuyqda6jkshYjIiIORIr2ceeQTr2JZpPxv+x5icnGn+QZm2LN4V3+fJ+zPc4f5BjQ0EEdlx3SVhaY8lv0MEWJElmnzySeHYiocq4ekMFcLVYV5SpyKCXQIIXxArIrmG6ZbsaPTK31UUkulXkufDPC+HGSPfoQ5agYfMq0LdKhu2LE7fw60du7/M/8fHdLFa7aNbGcf4HAOfcX+Xz5u+lBAYmqXTpJJZK7KZ2kADBFUVDrS0wi6DTQzKir9jNsv1ubwOe2TvKlv4agUsVM/wAptoZ+iPYlVrIRh4Ry1gLkqOO4TeWoaG9QKuuim2cX8zR+0STuL1BwiCCNHTfXruUMED981f5U39PdolBYuHvgc/w57JtAhndU0Bygv8g3T53lD3qNNOrjf+jMetNzhl/N6lKgrKCgYdYWmpcW/YqCTjblaPo/bfk84YZyQEhqlFYVCkJBrKY4y1yw1hSNSRBQR1EgDU9Xwg6hyqjlOGTax8bD2FT9HGmKycZnpAl6x/5dyqokgnBK9Ek0pmmihSMrJU1mBDjHEJCNDpZCo4hARBJiusnjIcmegwwo6jFhVFcI7PGD5stvvP7M9x5/s/6RBmjGhcUg/YbhEnc7JDpVLTecFLhDgKtMlAHTTyxQ9ld/pr9BJN0f0ooAl6gr1Mlppp1yqma8V+P384de859H2aSqZOdoMntFfwoyZo3pRQBJ1lVJLKx2USlXQVA+blZl6mjgmJUyVDGy6DbPm0dR03NTTzH5xmIN9Tl3ll3OGCD5uMF/BU/0vsE+OEivRPDTwJF+z3OJskw3hX9qk0/mzP/Mi15gv4+7+76FQ9Nn7+ar5JuKV7/VlPboafuc73yE+3tiaB8HObDWdTNKpoZ5DUogVG4IwlXRyCa34ACxT89nBftro4ISUMZXhE3V75Sg6OtlkMiskIh7CC3zS9GHe0DfRRgfP6X9jtbaYNjpJIp7FKuR6HcL7PG/5kUMXQ1kdFZwhQoQYkTvMN3Cj6eNcOnArB+QYT9r/yF2WmwIdlhuuFXVG+U7fYb6BLumhdKCS7bKfn9mf45vmLwSkffIYJXTQRQoJQdMNcZV2Cb9Sf6ZYKvmF/QVuMH/c7zGUSQ1tdBBNVFAtHK5WS6gShwtyOTXMINsv523ipEZdSqhjKcQZ+KPlx7xk/zffs/+KR/Sn2CArOFedE+iwzkrqaUJDI4k4kvz4vU1U8Txhvp97bT/iEIU8Z/8bXzZf7/PzepSou/rqq0N6dD6mQMtD0JlKOjv0A8xT+SxWc6iVRnK0UKIOIIdMkohntvr/7d13fFRV3sfxz7mTThoJIQmQhNCL9CYdFAR0rbh2imUtK4L6WNbdtaCuYgXXsvrs2te6i+1Rd20Iiii9Iy2U0CIEEkISSJl7nj+QkUgCAZLMJPm+feX1mpl77zm/GX5OZn45pQWL7UqG0qfc8+KIoaNpTSH7iXc0GlFOXkuTSg57Aci2OWy3O+lpOpFt95BqtGuYVL3met8XOS4xJopYomhFGjEmijx3H9FOze+sWpHDR9R5AqRQBxBpIkggnrakE2di+cj7FecG1fzayD/Z3fQ0p7DL7qk1I8MSnDgibQPakk4s0bjWrfGlMHb/XHgqoLBWzcBJNgkkkUC8iSHDZtZYoc6xhm6mA/kUEocGoUjFWjqpNHbjiSSCCMJ4uOQFBob0rBXrQNY12TYHF5dscmlUw2uYdnXaE4SHWKJ43/tFjRTqKv1bRMlYM+JMDIOc3mzjJ5baH/nUncUS+yMeHK2z87MxQeeynZ38YJfwqvf9cs+x1vKRO4Pldg1RVP/2zVI/xB/24XeBXc4CdwUL7HI2sY22jkZtiogEgmZOEqtYz/d2MevY7O9wygjEEXWH/CPkL6xgHTPtXB7x/q9fYpjnLmWBXcFmttPG1J7fq02cxqxkHbPsPLb8vEFCTSqzdlMt2ITjkJZOKuvZzFy7jFV2fY31m2G3sNiuYp3dRKyJrrF+pXa6KuhCujsd2cNevrY/+DZ9lJp1aC3LGKIINsE12ncvpxOtTBq57ON7u5j99kC193lCu75K9Trd6ctCdwUllODFpZNpQ3PTzN9hBQzHOJzpDGaX3UMxJZTYkiP+Z93LPt+H4dr0gUUCW0OiudVzJZ95v6XUeplvlzPQ9KSQ/TX2V2ARETm6bqY9GaYnpXjZYLfQg1P8HZKPi+u7HUgj6gDCTChXOaPZShYuLv/0fsgVnnNrrP8sm02uzSOdZnhw/DKiruTLiXg3fw37syG8EZ60oQQP++sxr+vpnEKuzaMUL+vdTaR5ajZ2F5eBpicuLgk2rkb7PhntacEA0wOAnbbm1jnPp8B3O0oDIaQSepvOrGMTLi7r3E0keRr5O6R6J40mP6/f7J9RsGc5Q8j17sPF5X3vF1wWdHa19lfpQp3rusc+SarE2Z6hXFv6Z9/9rTZLO/39ioPhW7sAgAw3k3aelmWOZ9tf1p6Ip/ZMAZDA5jEeHgr+H/7t/S+Z7AA4+NdYoolw/Lt7n4iIHJRikn2fEQZ4e/Bbzyg/R/QL72GFukAbUQdwY9AVdCs+WJxb4a7jfe8XvmODnF5M9Iyttlk2q9x1zLLzARhoeuIxnmrp52i8Gz+D/O0H75Tk4934GZUZt5FMY1/OrXTXc7qnX/UFWY5Mu93XfwMnokb7PhmtnObMtgsB8HpdKvViV4G8wwt1mnkjlZBoGrGRrQA86/0nA5wemnFYg0ptKV/Z77FYelPzG/YADPf0Z7L3GQD+5n2TSz2/qdYcCLxPCEJDE8PvPBcRycEv/m1oroXqf+USz1n0Mp1oRhLPe98+4vhGdyuxRHEKbejm6LWTqvW34Mn0N919X7I0alNEJHC0NS3oYU4hlSZkkOnvcMpw7eEj6mq+EHUsLU0qbwVP5VrnYtJNM/JsPtluDt+7i5lS+gJXlvyh2vpe424kkXi6mHaM99T8hgwno73Tgu6mI81IYr2t+enW+yj03a5NhadoE8kIZwCtTBqZbK+xfvPtL4W6BugPrXJsIz0DeTXoEdJowix3HleX/NHfIdUrOeRhf17j1V/fuzqYVtzmuZokElhp1/GpO6ta+1OhLkA1NYkUcACDYS2bSNFC9WWc6nRjvl1OKaXkse+I49vZSUNiWM0GImvRBxapHU5z+rLKrscAIQSTQO2ZZiIiUtelmSYst2vYTQ4/uuvJt4XHvqiGHD6izhB4ozFCTDDne4bT0kkl1kQTbSJpaGLIYS/5FLLIXcnbpR+Ta/OqvO9MdlBECcvs6lq3gVork8Yiu5ISSsgjv8b732dr7wixIkrIsruIogHZbs6xL6gCoYTQiIYkEFfjG39I7ZRikjnXM4xMdlDAfla661jprvN3WPVGls0mhSRiiKKR8c/3rggTTkenNT+xi1BCWWs3VGt/emcKUBM9Y9kXupg/eq7nTud3DHK0DfThGpmGpNKELLKZ6c474vhS+yMb2YqLSzvTwg8RSl1mjGFN6OcUhC0jL2wxX4e87u+QRETkZ0EmiAmeMRSwnx/ZwAJ3hb9D8im7Rl3gjag7ZFLQOKaHPMP0kGf4IPQ5NoXMpIRS1rKJ8aV/4APvl1XaX7Et4a/e18gljyYk0sf4Z2rTiWpoYkg3zfiJ3Xzt/lDj/e87rDgYZWpXoa6TaUs+haxmA2vZWCN9rrUbySaHMEJrpD+pG8JMKBtDvsbFspTV3FTygL9Dqje22O1sIYu97KM1aX6L43xnOM1IIoe9PFv6ZrX2Vek16qRmRZiDw7CjTSSYg3/hlLIGOT3JtDuIMGG8W/opFwWd6TtWZIvpZ7qzj3zamOb+C1LqrMN3YdYaFSIigaWNaU5TEgkmmC225qbUHYtbZo262vO7I9FpRCzRFPw8xfJf3v+QSx43B42vkvb/Ufouw0w/1tqNpJjkGt/RryoMND1JIZlwwnir9GMuDfpNjfUdRih9TBeCCSbKNqAWpRbppildTTtiiWGnu7vah5G41mU3e4GDf/gXOR5JTiNamVSMNRygiDOLfseHIc/Vyves2mSuu5Shpg/5FNLetDz2BdUkzITSx3QlhZ2EmVAWeVfS3dOxWvpSoS7ATQoa5+8QAtajwXfSpKg/WJjnLmcHu3yv1+fud2xhBw2JprGJ93OkIiIiUpNaOqls4ycAltgfGcN5/g3oZ2VG1Plhs4STkRU2B4CmBwbwlf2e70oXMdEztkqmDj7kfZ5scmhAOCtDPj3p9vzhseA7SSzqC0C+t7BGC3Wz3YXsYg/JJBDm1K5RYsmmMUvsagCG07/a+9vLPrx4Aa0xLCdmSehHXFH8P/zb/QyAyaXP8GDwLX6Oqm570/ux77v9bzxD/RrL2UGnMa7kDrDwAMG873muWvqp1VNfv/nmG84++2yaNGmCMYYPPvigzPHx48djjCnzM3LkyGO2++yzz9K8eXPCwsLo06cP8+YdObVS/C/OxPBA0M10Ne2xWJ4qfRWv9fKldw5xxDLI9Ga85wKNdhIREaln2pDOANODnqYTO+0ef4fj462lI+oON8j0oi3pdDcduaP00ZNq6yPvV5xRfCWNiGWQ6cWDQbfU2jXDYkwUZzqD6WO6cICiGut3lncerU0a/Uz3gNrhuLIOL5btttW/Rl22zaW76cippiunmNbV3p/UTWM85/EbM5TGxPO+9wvuLHnM3yHVWYH23b6P6cJY5zya05TF7o+sczdVSz+18zfhzwoKCujSpQvPPvtsheeMHDmSHTt2+H7eeuuto7b5zjvvcOutt3LvvfeyaNEiunTpwogRI9i5c2dVhy9V4PagayihlBz2spM9rLYbWGHXspw1fGPn0dXp4O8QRUREpIY1NnGstOtYYJfzo7ueA7bmCidHU1vWqDua10IeZQNbmGMX8Yl3JqOLJzC6eAJPlLx4XBt35Ni9rHc38607n9VsJN0044agy6ox8upXwH7m2qUst6t5oPjZGsm79TaTOXYxc+wi2tbCdZkb8cv00x12V7X3t4dcFtmV/GCXUEJptfcnddMIz0DeCnmSbHLIIJPXvR/yWMnfT/j/+Vybh9d6ybeFFNniKo62djv8u30Xp72/w6G505RUpwmb2EYWu3ik5H+rpZ9aXagbNWoUDz74IOeff36F54SGhpKUlOT7adjw6GsRPPnkk/zud7/jyiuvpEOHDjz//PNERETw0ksvVXX4UkXeCZpGd9OBUIIZU3I7T5e+TgRhnGq6coZT/UPoRUREJLAYY7jJM5amJLKCdXzpzvF3SAC+KXcATi39GB5sgvkm5E22hc7mMs/ZbHF3MMP9nj97p/Gc941Kt3NJyS084H2ORsRxlTOax4LvrMaoa8Zfg/7Mo0F3EEYYf3H/xlfu99Xe525+GYXWqBZO5WxKIu1MC8IJZbut/oERh4/ai9cadXISgk0w34W8zUgzkAIKudv7FJ+7s0+orZHFV9GgqAuNinrzf+6MKo60div73X6Av8MB4ErPaM53hhNGKG/Y/6uW4mrt/IRwHGbOnEnjxo1p27YtN9xwA7t3767w3OLiYhYuXMiwYcN8jzmOw7Bhw/j++4p/0RYVFZGXl1fmR2pOK08aWEMzkvBYD01NIs1MEmGE0tDE+Ds8ERER8YOWTioulh6mI8vdtf4OBwAX67vtqcUfw7s5HYg3sUSbSGJMFC4uMUQxw/sDn3m/Peq1m+12/s87g322gDhi8OLS1mlRZpMmf/G0vRDTqAOExWPiO+Bpe+FxXd/WaUFjE4/BEEsUz5T+kxJbUk3RQqHdz26bQxMaE08sSSah2vqqLjFOFAdsEek0I8KE8ZPNrtb+sm0OHU1rWpk0mpJYrX1J3dfN6UCcicVgaERDJpc8TccDoxh04DIWeivecTzfFvJa6fuMKLqSUQeuJt/ux/z830Mlz9P9wHmMOnA1Dxe/UCMF7EC1z82nmUkiySQQQjBxAfLdvqlJJMKG04BwUklmjruoyvuovZ8QKmHkyJG89tprfPXVVzzyyCPMmjWLUaNG4fV6yz0/Ozsbr9dLYmLZN+3ExESysrIq7Ofhhx8mJibG95OSklKlz0OO7cqgC1jDRpazhnl2GavtBl4P1loBIiIi9dVFziiKKGKhXck/vO/6OxygboyoO9ykoHF8HvIyuaGLKGQ/M+1cJpX+5ajXfO79lt+WTGSRXUkn04Ztod8GzOZpwYP+QuiYuYTdsInQsXMJHnT051Kei50zGe70I5d9fG1/YIPdUg2RHrTZbucp72tsZydNTSJ9nC7V1ld1Gus5j1Vk8B/3G76rhi+8h1tnN7PSrmO93UxjE1etfUn98GLwQ+SGLeQ6zyWsZRMZbGEey7iztOLvoivsWq4tvZtZdj5fM5fNbGOA6UF/urOaDFaxnq+Zy2T3ab5x59fgswksa9nEXLuU9XYzaaaJv8Mp43dBF7GbXDaznek/byxSler0rq+XXHKJ73anTp3o3LkzLVu2ZObMmZx++ulV1s9dd93Frbfe6rufl5enYl0N6+V0ZrznApa7a9hlc2hs4khw9MtXRESkvjLGcL5zBhvtFlzjMtu7kAGeHn6Nqa6MqDvcoYW9TzVd8eBQQimdi35Dvi2kj9MFL16SacxTIX9mp93NZ+53tDXp5Ng82jjpfl8YvKoZY+junMJCdyVwcA25tlTP2nHZh017jSW6WvqoCR1Na/qb7hgMW90sqnP5xiCCGGL6sJd9tDSp1deR1BuH3sOiTSRNSGQHO3FwyLX7OLvoOrLYRQxRXBk0mss957De3cyzpW+QTAK7yaURDUk3zQ6OKjaQ5DbmJ3ZhgXhiOWAP+PcJ+tFn3m8ZavrgYhnqnOrvcMpo57TgNHMqmexgljufA7aIMFN1u27X6ULdr7Vo0YJGjRqxfv36cgt1jRo1wuPx8NNPP5V5/KeffiIpKanCdkNDQwkNrV1bodc1XZ32PO/czwMlz/KNO59BTi9/hyQiIiJ+NsTTmxdL/gUWTnP6MgD/Furq2oi6w30e+jIAbQ6cQSbbAXjf/QIAg2GKvY1VbgYf/7z+Um/TmUeD7/BPsNWsmUlkI1sBWGXXcxZDqqWfw9dbO8MTGGs3nYhWThrflR4cSdfMVvydqyossMuZaecCkKARdVKFJgWN840OPvSdNMfuZTkHl15YX5LJe97P2W53stiuAmCo6cN/Ql88oq1v3PmcUXwlu9jDeptZc08iwPzH/Yb5djkGw/ueijcQ9YdYE02iacQM9wcA1tvNnGLaVFn79apQt3XrVnbv3k1ycnK5x0NCQujRowdfffUV5513HgCu6/LVV18xYcKEGoxUTlS0ifT9iIiISP3WzrSkt+nMbnLJcP3/Zafsrq91q1B3yEhnIEvtj1gLEYSxy+Swxm4grqgXFksqSYQTTl+nm79DrTZtTYsaybv99gDtaIEHDwnU3o0RWpJKP9ON3eSSaXdUa1/7bIHvdhQNqrUvqb8OfR+NJIIutCOEYIIIIs/mE2HD6MEplJgSejinlHt9BGG+24Xsr6mwA461Lh1pRbxpSIQJ93c4R7jQM5I57mIKKOTvpe/wVMjdVdZ2rS7U5efns379et/9jRs3smTJEuLi4oiLi2Py5MmMHj2apKQkMjIyuOOOO2jVqhUjRozwXXP66adz/vnn+wpxt956K+PGjaNnz5707t2badOmUVBQwJVXXlnjz0+O36SgcUwiMNY5EREREf9qaVKYb5cTTBCL7EqybDZJppHf4vHaXwp1dW1E3SF//fmLylOlr2Kt5SHv85QeNpIwkyxu9VzJQ8H/468QK1T0SndsTgbgAg6mYUtCxx//mmmtTRrz7DKiaMAes7fK4zwkhzxWswGAEBNSbf1UtzAnlCyy2W53EkE4e+zeals0fh8HC3XhhBFkavVXYQlgv/5O+lTpq7+sNffzbP9BTq8K1+eM4JeiVCEVT31d4a6lKYnkmQI8ODQz1TsitSZZa1nMarx46UYHf4dTrgFODzazjTBCWeCuZLm7hk5O2yppu1a/Oy1YsIChQ4f67h9aJ27cuHH87W9/Y9myZbz66qvk5ubSpEkTzjjjDB544IEy01QzMjLIzv5ld6GLL76YXbt2cc8995CVlUXXrl3573//e8QGEyIiIiIS2CJMOK8ET+Gqkj+ynLW86n2PO4Ou9Vs8ZUfUVeNCXAHg0BfQy4LOJsh6CCOUB7zPgoX7gyb5Obry2ZIC8P0buT/fP34RJpwuph1L7WpmufOw1lbLWnyHf4E/fARObTTBcwV3lj7GYlbxf94ZjAs6v1r6OTSiLlqj6aQGHe9gkvDDR9RVsEada136FV9MMQd3lp7oGVunlhPYyz7fchHxJta/wVQgxkSRGTqLQUWXsZAV9Cu+mJzQBVXyR4BaXagbMmQI1toKj3/22bF339i0adMRj02YMEFTXUVERETqgM6mHQnEUUwxH3ln+LVQ5z2sUGeoW5soVKSxifeNIElyE8BQL0YytTHNCcJDBOFk2WySTUKV91Fof5kSd/gInNqoo2lNO1oSa6JYYddWWz8tTQpJNCLe1N6pwlL3RZhfCnX7fy7Iv1D6Nu95PyPDbiGPfCIIowmNySKbIDzMdOfhtV485uAfgV4pnc4Kdz157KMBEcxwvyeIIPo53ci029lLPskmgRuCLgvI9d2zbS79TDeKKaW1SfN3OBVqbOJJpBFeXFqZNL525zLc0/+k2637vyVFREREpN5q77SklUljtl3AHruXXJtHrPHPDpn28BF1pm6PqCtPRdO86qJE04h/uf8FYK3dSDJVX6jbf9iIunBTu0fUDfb0Zn/pAZbbNSz0ruSRoNtxTNVOD/daLzPtPCyWXnSq0rZFqlLZqa8HC/IPlD5bZqfnPPLLXLPMrua+0qd5IPhmAO4qfYIc8o5oO9PdTgtSWMpqsBDnjQ3IQt1ucphjFwPQh85+juboHgy5heHF49lid1BUWqRCnYiIiIjIsVzlGU22dzcl1sudJY/xQsgDfonj8BF1Tj0ZUVdfdTHtGWh6sp8DbLBbGEzvKu+jLk19BTjd9CWRRuRTwFabRappUqXt55CH5eBsrECdSicCEG5DGWpO5QBFxBDF2OI7aE0a4YSSRwFFFBFLNIk0opgSYogig0ymez+jh+nIc+6bNCCCAvbj4tKAcCyWZiST7jSj2C0hjhiiaECuPbKYFwgO39U60EfAdjSt+YPnOj5yvyLb5nBl8R94OWTKSbWpQp2IiIiI1GmXBZ3NH0ufIItsdrs5tC1pwe+DLsNiCSGYZ7z//GWh72q00F3hu13X16ir71JNMt/aBQBEeiO4yDOKBiaiSvuoa4W6Biac79yFAKy1m0ilagt1Zb741+JdcqXuC3KCWGxXkUseLWwK2eSQRz7tTAvWhX7pO++p0lcBaGvSOa/k9+xiD9NKX2EBKymlFAeDi2Uv+TQmjkVhH/iuTTswmM1sx3UtxbaEEBNc00/zqHbYXb7bjYj1XyCVEGdiuC/4Jv5x4F2yyWG3m0u+W0Ckc+JrYapQJyIiIiJ13r9Cnma93cztJY9wt3cqDUw4e9jLI6X/SzQNSKYx0SayWmNoTjNSaUIfpwuJxFdrX+JfPZxTmBH8GmNK7mCuXcbw4vHMCX23SvvIc/cRTywxRBFF9eZuTehs2tHSpLLF7mCN3cAw+lVp+zvtHhoQTgzRpFXxaD2RqhZvYsm1eb4iXRMSj5iiemg5gb12H7d4ruRl73R+YCnRRNLetGSCcwU9PZ1wMOxkT5lrbwwawyve6WTaHfyfO4PRnhE19twqY7vdSSghNKcpLU2qv8OplI9CnufB0udY6K6kTfEZbAudfcIbCalQJyIiIiJ1Xi+nE0Vu8c+LcIfzj9J3GeL0IY4YfiKbdqYlUaaad4L8+fN6MyepXq5RV59Emgj6ebpTXFJMA8JJII4vvXMY5qm64lM2uez++SfOxFRZu/7S3GnKztLdtCSVXYeNfivPPlvAbHcB33kXsdBdQQsnlbuCr6OZSarwmj3kUsB+CthPmAmt6vBFqlQrDhaniigm1SSTbXOIpfz1VWNMFE1NY0opJYRgDIYDFPHb4FG+c9JoWuaaNiaN3TaHtjRnm/2p+p7ICcojn3TTjC0266j/XweS7k5HSigljBDSTTNmunMZ6jn1hNpSoU5ERERE6oV+phu/91zONO8rLGcty921hBLCnc613B184wn/5VukIptDZ9K6aDif2dksLFnJVs+3Vdb27p8Xlm9AeK3fTAKgNc3ZRwE/kkFje/QRp0vsj5xfcqPv/tfuXLp7O3J10IUVXpNtc323NfVVAt15nuHcUHovAFttFgDXey6t8Pzfey5nQtAYHih5FoA/Bd1w1PbbkM5e8tnLeha6K6so6qrzjTuf1XYDHjyk08zf4VTaW0FPklB8Kpvtdu4rffqEC3VVu5WOiIiIiEiAcozDAKcHKSQTTBCRRNDRtCbGiVKRTqqFYxwu9pzJRc6ZNDGNOa1oDJl2R5W03dKkMsD0YIDTo0ra87d4J5bfOqP4rTOSPJvP4KLL8Vpvuedm2z0MdU6lEQ3x4BBBOM96/8nzpW9V2H6RLWag6Ul/050k06i6noZIlejmdOC3zig6mTY0JZFOpi3JpuLdow/tkhxtIok2kcfcNbmVk8ZA05N4YvnE/ZrfFt/EEyUvVelzOFGudYklmgGmB8Od/oQ4If4OqdIinQZcan7Dmc4QmphEHi39+wm1o0KdiIiIiNQbv/EMpYEJp4RS8inkUs9vfOv8SP0WfPo0PD1vwWl1Lp6etxB8+rQqafeh4P+hpUllmV3DHLuYZe7qKmn3S3cOs+3CgJy2dqJeD3mMYkpYbFcx1y5ls91e7nnrbSZfuz+QTQ5eXArZzyq7nvtK/+pbYP/XNrONb+0CvrOLiDFR1fk0RE5aV6c9r4c8xjnO6bQwKZzjnFapPyhNChpXqd9pISaY9k5LdpNLPoX8n/s1r7jvVUXoJ20LWcyy85htFxJUCzdeein0Yea7y3jf/ZzHS1+s8D3paDT1VURERETqlb94buUf3nexWH7jDPF3OBIgPC1G4Wkx6tgnnoDOpg2pNKGQ/axzN3Gy3z1LbAlFFAMQSTWvrVjDLnRGssxdQyH7ecn7bx50bjninMN3cL3KuZBcm8c6u5nt/MTU0lfYY/cyOXhimWuyD7sm0HeRFDnk0Ai56tjsaIznPHa5e5hvl2Fw2G8PUGJLCPbzDrC/K/4z3ehAghPHBM8Yv8Zyop4MvosF7nI+8H7Jw6UvcLZzGi2clEpfrxF1IiIiIlKvnBU0hPdDn+OD0L+RfhwfnEVOVHOnGZlsZy/7+Nj7NftswUm1t49C3+3q3q24pg3w9GQjW8kmly+93x0x/TXLZrOPQt9Im4lBY3gz9EnO8ZzGbnLJZg8/2ewj2s0jnxAOFiAambjqfyIiVWBS0DimhzxTLSO/ezmdeCt0Kn2dbmxhB168rLeZVd7P8Sh1S8liJ8tYw2a7jSGe3n6N50T91jOKYILZzHZKKWWFXXtc16tQJyIiIiIiUo1OMa25P2gSFviORcxwvz+p9vJsvu92VB0bUZdEI8Y452GxLGE1m+y2MscfK/07L3r/hQcPY815tDbNAfhz0O9pSAyleFloVxzR7lq7kWJKaEEKcbb275IrUlW6OO0JJ5Qd7GKd3eTXWDLZwdqfY+hlOvs1lpM13jOaxsSTTyH/8P7ruK7V1FcREREREan33J8W4+5agc3LxESn4iScgpPYrUraDjbBtCCFhkQTQRjb7c6Tam8fBfQ0nXDxkmqaVEmMgcIYQzunBU3dxhygmNtKHuHPwTfQwzmFUlvKLptDGk3JZg+pThM8xuO7LoIwctjL7sN2eAXwWi/NTVMiCCecMBxH41VEDmlOU1JpQkMT4/c1LzfYLfQz3cgjn7Ra/t7W0qQQRwwpJolQjm9DDBXqRERERESk3iv+6BLIP2zzgsgmhP1uTZW138Zpzi72ALDAPXLE1/HYY3NZYJcDMIQ+Jx1boPmfoKvoZNpwTsn1/MfOYn/Jfv4b+hIb7VbedT8FoD0t+XPw78tcF29i2WZ/Yje5WGt9i+/nkMdn7mwARjgDa/bJiAS4Nk5z1rARLLRy0/way0q7jjl2MQA3O+P9GsvJMsYQZRow3y5nkV1Fod1f6WtVqBMREREREalmrUhjoOmJ+/MupSdjN7m+2/Gm4UlGFpg6OW0ZSE/WsJEsm83viv/EDruLVqSRTyHdnY5HXDPI9CKWaHLIY4/dS7yJBcpuPhGvjSREyjj8vangsPUv/SHLZtPXdCMID+1o4ddYqsIY5zzibUNKbAn3lP6Ve7ihUtepUCciIiIiIlLNIpxwNtvtZLKdWBtFkbeI5+3beK2XW4OvOq626kPhKdkk8EXYKzQ+cCqr2UCWu4tc9gEHC3Ivhjx0xDXFpoRv3PkAbGCL77X5ye72ndOojhY2RU5UhBNOJjvYbLfR0Ebjuq7fpocvdFfw/c8j6lo7zf0SQ1X6XdBF3FP0FLnkkeHNrHShTpPzRUREREREakBz0xSAXPbRsKQnfyqdyp+9U9lr9x1XOwW2kCQSSKcZcaZub4zwXsizjDAD2Es+HhzOdU7nueD7yj23FWm0MCk0Jp4tdofv8S12BxGE054WdDCtaihykdrjNOdU0mlGPoXsNHv8Fscau4FmJHGa6UuMifJbHFXFGMMZTn/SaMo2fqr09FcV6kRERERERGpAJBG+2y6WUkppTDzr3M3H1c5u9pLFLjaylcg6tuvrrw1werDb5hJMEB48lFBKK6f8dbQaOjFssFvYyW52HjaKLo98UkwSG9lGHHW7sClyIsJsCHvIpR0t2OJuP/YF1WCvu49mJpliSiihxC8xVIcQQsingLa0IMNuqdQ1KtSJiIiIiIjUgLdDprE3ZBF/8txAOs0AyCKbH8k4rnbyD1tHKtrU7UIdwIzQ18kLW0xe2GLeDp5W4XkJ/DKtNZtfpgcvt2tZYzdygCKamaTqDFWkVkoxTdhLPstZy0a2+iWG7exkoV3BTnaTUst3fD1cB9OK3eSygrWstZsqdY3WqBMREREREakBISYYDES7kSSZRjjWwYOHp0te43vvIlba9Tg4XBt0MZd6flNhO3k233c7qo6PqIOfX7dybv9aEgkMND0pxUvBYVPMsu0vU/kSnUbVE6RILZboxIP34O3sw9bArEmHF9cTTZxfYqgO7Uw6vUwnwgjlJ7urUteoUCciIiIiIlKDJgWNY1LQOG4quZ+/e98FYJm7xnc8uzTnqIW6fAp8tyPrwYi6ykpxkvnWLgAg1Ib4Hs+2ub7bdXXzDZGT0ejw0ah+KtSV2SSnDm360tppzvzS5QDEuZGVukaFOhERERERET+41PMb9tp9ZLiZFFNCJjvIp5D1djPNDwyhl9OZf4X89Yjr8m0hXU07GhNPnI0B44fgA1C8iWWEM4Bsm1Nmg44DFNHNdKApSYSZUD9GKBKYmplkhjh9yLY5ZJHtlxi2uDtoRwsSTBytTfnrUNZGzU1TBpve7COfbHIrdY0KdSIiIiIiIn7Qz+lOv5DuPFX6Kt+482ls4/nKfg8cXLtuobuCc4uux2tdOjvtuDX4ShqZhmxnJz/aDJqSSLgT5udnEVj22UIW2pUkEMdedx/7KOAnm802fsJjtES7SHlSTTIz3bkYDK3cFL/EsJ1dbGALq+0G7jeT/BJDdQg2wWSxizV2I03dhEpdo0KdiIiIiIjUe6HjFmCL9mFL8jEhkZiQqBrre1LQOCYxjp12N15cHir+G15ckp0EpnpfoZD9fOnOYWnxKl4NeYwfbQbhhNHP6VZjMdYWvZxOLPeuYRd7WMcm7i99lu3sJI0mPBt8n7/DEwlIUaYBLU0qm+12FrPaLzEstqsooZQUkmhDc7/EUF36mm5ssVlsJatS56tQJyIiIiIi9Z4JiarR4lx5Gpt4AFp5fpn2FU4YhRzcGGGFXcclRTfTzXSgSDuYlqspiSTSiA6mJUu9qwmxwXQ17dlHPp1NW3+HJxKwggmilNIya8XVpHAbSifTliKKiHfqzhp1AEmmEc1IJMqkM6cShVAV6kRERERERALIpKBxR9y+ovg2/u3+l5/YDfbgsXc8T/kjvIDW2kljvXcz6y00sYl8bL8G4E7PtRijxfxEKhL/84YS+RRywBbV6HqOe+0+/mO/AaC/6VFj/daUlk4aa72bsNZbqfNVqBMREREREQlwrUwqaTTF/fm/BBNHc9PU32EFnDYmnQE/f9HPcrPpZ7rhweEUp42fIxMJbKc6XQlyPeSRzzb7Ey1Nao31Pd37GYNML4LwcLqnX431W1PacfB9qcQU8Y1G1ImIiIiIiBxb6cKn8W7+Crt3MyY6FU/zYQT1uMnfYfncFzyR+4In+jaeGOT0ItgE+zusgNPcNGW+XU4RxUQTSZ7NB2CKud3PkYkEOsssOw+A9e5mWjrVX6iz1mKM4e/ed1lsVwHwiFP3/l9t46Qz2y7UiDoREREREZHKKl30DORvB8Dmrqd0z+qAKtQdcmjjCSmfx3g40xnMCruODLuZVJrQ2MTRmrRjXyxSj13ojOBbdyE/2V38r/sOIxhY7X1eXvI/zHB/IJc8AHqYjrSqg/+vxpgohjv9WWc2sEYj6kRERERERKQ+cXDYZrMII5S97MNrvUQ7/t0oRCTQdXU6sNKuJYJwimxxlbZtreU7u4hZ3nnM9S6hmZPMpZ7fsMluJY+Do14dDDvtHsKdsCrtO1AUU8Jum1upc1WoExERERERkTrjOs8lvO9+gYsLHOA6zyX+Dkkk4Blj6GLaM8cuYob9oUo3lNjBLoYVHzYS2IWX3H8D0JymXGhG8mDoLeTbwirpLxBND34Gb2gJscQe81wV6kRERERERKTOaO+0JIVkNrMNgEQT7+eIRGqHzqYte+0+drGbMSW3c5YzhPFBF5xQW9Za7ih5jHnuUjLZTnOakk0OJZTSgHDiaUgh+2lkGpLgiQMg0kRU5dMJKJEmgjyTV6lzVagTERERERGROiPBxBFjIsEevO+1rn8DEqklkpxGrHTXAfB/7gwy7fYTLtRtZydPu6+Veaw1aaxjM0UUs4e9AHwc/L+0d1qeXOB1jOPvAE7GN998w9lnn02TJk0wxvDBBx/4jpWUlHDnnXfSqVMnGjRoQJMmTRg7dizbt28/apv33XcfxpgyP+3atavmZyIiIiIiIiJVZaJnLKeargw2vTjD09/f4YjUCiOdQdzrTCCWaKJoQCghJ9TO3SXTuL74HlqTRjyxJNKIlqTS1+nOOc7phBJCEB4GmZ60MClV/Cxqv1o9oq6goIAuXbpw1VVXccEFZau8hYWFLFq0iLvvvpsuXbqQk5PDpEmTOOecc1iwYMFR2+3YsSNffvml735QUK1+mUREREREROqVK4LO5Yqgc/0dhkit0tVpT9eQ9rxw4G2yyGaj3UKJW0KwE3zMa3NtHg0I5znvm7zmfZ+f2A3A/Z5JhJqDBb9JQeO4uGgSRRzcrCKTHb5j8otaXYEaNWoUo0aNKvdYTEwMX3zxRZnHnnnmGXr37k1mZiapqakVthsUFERSUlKVxioiIiIiIiIiEujOcU7j3+5n7CKHTWyjNc2Pec0dpY/ypvdjoomkBSm0IJUOTkvuCP5dmfMeDr6NJ80fCbHBZJNTTc+gdqvVhbrjtXfvXowxxMbGHvW8devW0aRJE8LCwujbty8PP/zwUQt7RUVFFBUV+e7n5VVugUARERERERERkUDSyMQRRSQtTAoZdssxC3VFthgsJNCQXeQQb2IJMh7aOOlHnNvC+Xmqq4EE4qoh+tqv3hTqDhw4wJ133smll15KdHR0hef16dOHV155hbZt27Jjxw4mT57MwIEDWbFiBVFRUeVe8/DDDzN58uTqCl1ERERERKqZ07gLbkkhlORDcCRO4y7+DklExC/aOOls9m5js93GSruOkQw86vnb7U5ecz8AoAMt+TD0bzUQZd1VLwp1JSUlXHTRRVhr+dvfjp4wh0+l7dy5M3369CEtLY13332Xq6++utxr7rrrLm699Vbf/by8PFJStCCiiIiIiEhtEXLuu/4OQUQkILQlnX6mGx4cdttjT0/dfdgU1hhT8cAoqZw6X6g7VKTbvHkzM2bMOOpouvLExsbSpk0b1q9fX+E5oaGhhIaGnmyoIiIiIiIiIiJ+1dppzhy7GIAS13vM83fbXN/t05xTqyusesPxdwDV6VCRbt26dXz55ZfEx8cfdxv5+flkZGSQnJxcDRGKiIiIiIiIiASOSBPBmc5g2puWbLM/Ya096vkb3a0k05ie5hTaOi1qKMq6q1YX6vLz81myZAlLliwBYOPGjSxZsoTMzExKSkq48MILWbBgAW+88QZer5esrCyysrIoLi72tXH66afzzDPP+O7fdtttzJo1i02bNjFnzhzOP/98PB4Pl156aU0/PRERERERERGRGldEMRk2k1BC2HWM6a/b2QlYFtgV2iCiCtTqqa8LFixg6NChvvuH1okbN24c9913Hx999BEAXbt2LXPd119/zZAhQwDIyMggOzvbd2zr1q1ceuml7N69m4SEBAYMGMAPP/xAQkJC9T4ZERERERHxm+IPL8Ld9v0vm0k07at160Sk3upi2jGDH1jPZtawgcYVFOC81ss07ysUU0IfutLP6VbDkdY9tbpQN2TIkKMOwTzW8EyATZs2lbn/9ttvn2xYIiIiIiJSy7g7l0JR7sE7RbkH74uI1FMtTSqdTVsiaUCmux2cg0W5h0tfYK67FAeH8UEXEEUk/U0PCijkFNOKUBPi79BrvVpdqBMRERERERERkarV0qSx1K4GoIftyOWcwya7jQe9z/nO2e89QGfTlq/tDwA8EHSzP0Ktc1SoExERERERERERnxamGb1MJ4IJwsvBnV/XuZvpZtqz2m4klBBKbCnZ5NLHdCGEYNqY5v4Nuo5QoU5ERERERERERHySTALz7XIArAuudVnHRhbbHwHYzwEW2OXstjmsZRMxRJFktLZ/VVChTkREREREREREfEJMMNFEkkc+u8llg93C7aWPEkUDIgjHg8N2drKJbXSgJXcFXY8xxt9h1wmOvwMQEREREREREZHA0pZ0WpFKDJF84X5Hb9MZgyGaBgDEEUswwawnk8Ge3n6Otu7QiDoRERERERERESkjwglnvrscLCwuXUUpXjqZNswN/jeO4/BAybN8485noOlJAnH+DrfOUKFORERERERERETK6G06U2pK2WKzSDYJRJkG9DVdcZyDkzOjTSTRJpIYJ0rTXquQCnUiIiIiIiIiIlJGoonnO7sIgEy7nQgbzkehz/uOTwoaxyTG+Su8OkuFOhERERERqfeCuk/Au/kr7N7NmOhUPM2H+TskERG/GukMIiE4nv+UzsI1ljM9g3GMtjqobirUiYiIiIhIvRfU4yaCetzk7zBERAJGKyeNVqSRZXcBcInnLD9HVD+oUCciIiIiIiIiIuWaFKTprTVJYxZFREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAEOTvAOoiay0AeXl5fo5ERERERERERET87VCN6FDNqCIq1FWD3bt3A5CSkuLnSEREREREREREJFDs27ePmJiYCo+rUFcN4uLiAMjMzDzqiy9ysvLy8khJSWHLli1ER0f7Oxypw5RrUlOUa1JTlGtSU5RrUlOUa1JTlGsnxlrLvn37aNKkyVHPU6GuGjjOwaX/YmJilLRSI6Kjo5VrUiOUa1JTlGtSU5RrUlOUa1JTlGtSU5Rrx68yg7m0mYSIiIiIiIiIiEgAUKFOREREREREREQkAKhQVw1CQ0O59957CQ0N9XcoUscp16SmKNekpijXpKYo16SmKNekpijXpKYo16qXscfaF1ZERERERERERESqnUbUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAFCrC3UPP/wwvXr1IioqisaNG3PeeeexZs2aMuccOHCAG2+8kfj4eCIjIxk9ejQ//fST7/jSpUu59NJLSUlJITw8nPbt2/PUU0+VaeO9995j+PDhJCQkEB0dTd++ffnss8+OGZ+1lnvuuYfk5GTCw8MZNmwY69atK3POokWLGD58OLGxscTHx3PttdeSn59/zLaXLVvGwIEDCQsLIyUlhUcffbTM8ZUrVzJ69GiaN2+OMYZp06Yds02pmHKt4lx777336NmzJ7GxsTRo0ICuXbvy+uuvH7NdKZ9yreJce+WVVzDGlPkJCws7ZrtSPuVaxbk2ZMiQI3LNGMNZZ511zLblSMq1inOtpKSE+++/n5YtWxIWFkaXLl3473//e8x2pXz1NdcOHDjA+PHj6dSpE0FBQZx33nlHnLNjxw4uu+wy2rRpg+M43HzzzceMVyqmXKs412bPnk3//v2Jj48nPDycdu3aMXXq1GPGLOVTrlWcazNnziz381pWVtYx4w54thYbMWKEffnll+2KFSvskiVL7JlnnmlTU1Ntfn6+75zrr7/epqSk2K+++souWLDAnnrqqbZfv36+4y+++KKdOHGinTlzps3IyLCvv/66DQ8Pt08//bTvnEmTJtlHHnnEzps3z65du9beddddNjg42C5atOio8U2ZMsXGxMTYDz74wC5dutSec845Nj093e7fv99aa+22bdtsw4YN7fXXX29Xr15t582bZ/v162dHjx591Hb37t1rExMT7eWXX25XrFhh33rrLRseHm5feOEF3znz5s2zt912m33rrbdsUlKSnTp16vG8tPIryrWKc+3rr7+27733nl21apVdv369nTZtmvV4PPa///3vcb3GcpByreJce/nll210dLTdsWOH7ycrK+u4Xl/5hXKt4lzbvXt3mTxbsWKF9Xg89uWXXz6el1h+plyrONfuuOMO26RJE/vJJ5/YjIwM+9xzz9mwsLBjxizlq6+5lp+fb6+//nr7v//7v3bEiBH23HPPPeKcjRs32okTJ9pXX33Vdu3a1U6aNKkSr6hURLlWca4tWrTIvvnmm3bFihV248aN9vXXX7cRERFl3vuk8pRrFefa119/bQG7Zs2aMp/bvF5vZV7agFarC3W/tnPnTgvYWbNmWWutzc3NtcHBwfZf//qX75wff/zRAvb777+vsJ3f//73dujQoUftq0OHDnby5MkVHndd1yYlJdnHHnvM91hubq4NDQ21b731lrXW2hdeeME2bty4TCItW7bMAnbdunUVtv3cc8/Zhg0b2qKiIt9jd955p23btm2556elpalQV8WUa+Xn2iHdunWzf/7zn496jlSOcu2XXHv55ZdtTEzMUZ+DnDjlWsXva1OnTrVRUVFlPhTLiVOu/ZJrycnJ9plnnilz3QUXXGAvv/zyoz4vqZz6kmuHGzduXLlfaA83ePBgFeqqmHLt6M4//3x7xRVXVOpcOTrl2i8OFepycnIq1U5tUqunvv7a3r17AYiLiwNg4cKFlJSUMGzYMN857dq1IzU1le+///6o7Rxqozyu67Jv376jnrNx40aysrLK9B0TE0OfPn18fRcVFRESEoLj/PLPEB4eDhwcMlyR77//nkGDBhESEuJ7bMSIEaxZs4acnJwKr5Oqo1wrP9estXz11VesWbOGQYMGVdiuVJ5yrWyu5efnk5aWRkpKCueeey4rV66ssE05Psq1in+Hvvjii1xyySU0aNCgwnal8pRrv+RaUVHREVP4w8PDj9quVF59yTXxP+VaxRYvXsycOXMYPHhwlbZbXynXjtS1a1eSk5MZPnw43333XZW06W91plDnui4333wz/fv355RTTgEgKyuLkJAQYmNjy5ybmJhY4bzlOXPm8M4773DttddW2Nfjjz9Ofn4+F110UYXnHGo/MTGxwr5PO+00srKyeOyxxyguLiYnJ4c//OEPwMF1JI7WdnntHt6vVB/l2pG5tnfvXiIjIwkJCeGss87i6aefZvjw4RW2K5WjXCuba23btuWll17iww8/5J///Ceu69KvXz+2bt1aYbtSOcq1in+Hzps3jxUrVnDNNddU2KZUnnKtbK6NGDGCJ598knXr1uG6Ll988QXvvffeUduVyqlPuSb+pVwrX7NmzQgNDaVnz57ceOON+j1aBZRrZSUnJ/P8888zffp0pk+fTkpKCkOGDGHRokUn1W4gqDOFuhtvvJEVK1bw9ttvn3AbK1as4Nxzz+Xee+/ljDPOKPecN998k8mTJ/Puu+/SuHFjAN544w0iIyN9P99++22l+uvYsSOvvvoqTzzxBBERESQlJZGenk5iYqKv4tyxY0dfu6NGjTrh5yZVR7l2pKioKJYsWcL8+fP5y1/+wq233srMmTOPqw05knKtrL59+zJ27Fi6du3K4MGDee+990hISOCFF16odBtSPuVaxV588UU6depE7969T+h6KUu5VtZTTz1F69atadeuHSEhIUyYMIErr7yyzMgDOTHKNakpyrXyffvttyxYsIDnn3+eadOm8dZbbx13G1KWcq2stm3bct1119GjRw/69evHSy+9RL9+/erG5iX+nntbFW688UbbrFkzu2HDhjKPf/XVV+XOWU5NTbVPPvlkmcdWrlxpGzdubP/4xz9W2M+hRYA//vjjMo/n5eXZdevW+X4KCwttRkaGBezixYvLnDto0CA7ceLEI9rOysqy+/bts/n5+dZxHPvuu+9aa63dtGmTr92tW7daa60dM2bMEXO0Z8yYYQG7Z8+eI9rWGnVVR7l29Fw75Oqrr7ZnnHFGhcfl2JRrlcu1Cy+80F5yySUVHpdjU65VnGv5+fk2OjraTps2rcLnJZWnXKs41/bv32+3bt1qXde1d9xxh+3QoUOFz0+Orb7l2uG0Rl3NUq6dW2HMh3vggQdsmzZtKnWulE+5dm6FMR/utttus6eeemqlzg1ktbpQ57quvfHGG22TJk3s2rVrjzh+aGHFf//7377HVq9efcTCiitWrLCNGze2t99+e4V9vfnmmzYsLMx+8MEHlY4tKSnJPv74477H9u7dW2ZhxfK8+OKLNiIi4qgLIh5anLi4uNj32F133aXNJKqRcq1yuXbIlVdeaQcPHlyp+KUs5Vrlc620tNS2bdvW3nLLLZWKX8pSrh07115++WUbGhpqs7OzKxW3lE+5Vvn3teLiYtuyZUt71113VSp+Kau+5trhVKirGcq14yueTJ482aalpVXqXClLuXZ8uTZs2DB7/vnnV+rcQFarC3U33HCDjYmJsTNnziyzHW9hYaHvnOuvv96mpqbaGTNm2AULFti+ffvavn37+o4vX77cJiQk2CuuuKJMGzt37vSd88Ybb9igoCD77LPPljknNzf3qPFNmTLFxsbG2g8//NAuW7bMnnvuuWW2KrbW2qefftouXLjQrlmzxj7zzDM2PDzcPvXUU0dtNzc31yYmJtoxY8bYFStW2LfffvuILa+Liors4sWL7eLFi21ycrK97bbb7OLFiyu9s4qUpVyrONceeugh+/nnn9uMjAy7atUq+/jjj9ugoCD797//vdKvr/xCuVZxrk2ePNl+9tlnNiMjwy5cuNBecsklNiwszK5cubLSr6/8QrlWca4dMmDAAHvxxRcf87WUo1OuVZxrP/zwg50+fbrNyMiw33zzjT3ttNNsenp6ndzBribU11yz9uBImcWLF9uzzz7bDhkyxPc94HCHHuvRo4e97LLL7OLFi/U79AQp1yrOtWeeecZ+9NFHdu3atXbt2rX2H//4h42KirJ/+tOfKvPSyq8o1yrOtalTp9oPPvjArlu3zi5fvtxOmjTJOo5jv/zyy8q8tAGtVhfqgHJ/Xn75Zd85+/fvt7///e9tw4YNbUREhD3//PPtjh07fMfvvffects4vOI/ePDgcs8ZN27cUeNzXdfefffdNjEx0YaGhtrTTz/drlmzpsw5Y8aMsXFxcTYkJMR27tzZvvbaa5V67kuXLrUDBgywoaGhtmnTpnbKlClljm/cuLHcmDXK6cQo1yrOtT/96U+2VatWNiwszDZs2ND27dvXvv3225VqW46kXKs4126++WabmppqQ0JCbGJioj3zzDPtokWLKtW2HEm5VnGuWfvLX6M///zzSrUpFVOuVZxrM2fOtO3bt7ehoaE2Pj7ejhkzxm7btq1SbcuR6nOupaWllRvTsV4fjXI6Mcq1inPtr3/9q+3YsaONiIiw0dHRtlu3bva5556zXq+3Uu1LWcq1inPtkUcesS1btrRhYWE2Li7ODhkyxM6YMaNSbQc6Y621iIiIiIiIiIiIiF9pSykREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERkXpsyJAh3HzzzfWubxEREZFApEKdiIiIiFTKzJkzMcaQm5tbJde99957PPDAA1UXoIiIiEgtF+TvAERERESkfoqLi/N3CCIiIiIBRSPqREREROqJgoICxo4dS2RkJMnJyTzxxBNljr/++uv07NmTqKgokpKSuOyyy9i5cycAmzZtYujQoQA0bNgQYwzjx48HwHVdHn74YdLT0wkPD6dLly78+9//PuZ1v5762rx5cx588EFfjGlpaXz00Ufs2rWLc889l8jISDp37syCBQvKxD179mwGDhxIeHg4KSkpTJw4kYKCgqp++URERESqnQp1IiIiIvXE7bffzqxZs/jwww/5/PPPmTlzJosWLfIdLykp4YEHHmDp0qV88MEHbNq0yVdUS0lJYfr06QCsWbOGHTt28NRTTwHw8MMP89prr/H888+zcuVKbrnlFq644gpmzZp11OvKM3XqVPr378/ixYs566yzGDNmDGPHjuWKK65g0aJFtGzZkrFjx2KtBSAjI4ORI0cyevRoli1bxjvvvMPs2bOZMGFCdbyEIiIiItXK2EOfckRERESkzsrPzyc+Pp5//vOf/Pa3vwVgz549NGvWjGuvvZZp06Ydcc2CBQvo1asX+/btIzIykpkzZzJ06FBycnKIjY0FoKioiLi4OL788kv69u3ru/aaa66hsLCQN998s9zr4OCIuq5du/r6bt68OQMHDuT1118HICsri+TkZO6++27uv/9+AH744Qf69u3Ljh07SEpK4pprrsHj8fDCCy/42p09ezaDBw+moKCAsLCwKnwVRURERKqX1qgTERERqQcyMjIoLi6mT58+vsfi4uJo27at7/7ChQu57777WLp0KTk5ObiuC0BmZiYdOnQot93169dTWFjI8OHDyzxeXFxMt27djjvOzp07+24nJiYC0KlTpyMe27lzJ0lJSSxdupRly5bxxhtv+M6x1uK6Lhs3bqR9+/bHHYOIiIiIv6hQJyIiIiIUFBQwYsQIRowYwRtvvEFCQgKZmZmMGDGC4uLiCq/Lz88H4JNPPqFp06ZljoWGhh53HMHBwb7bxpgKHztURMzPz+e6665j4sSJR7SVmpp63P2LiIiI+JMKdSIiIiL1QMuWLQkODmbu3Lm+AlZOTg5r165l8ODBrF69mt27dzNlyhRSUlIAjti0ISQkBACv1+t7rEOHDoSGhpKZmcngwYPL7bu866pK9+7dWbVqFa1atarytkVERERqmjaTEBEREakHIiMjufrqq7n99tuZMWMGK1asYPz48TjOwY+DqamphISE8PTTT7NhwwY++ugjHnjggTJtpKWlYYzh448/ZteuXeTn5xMVFcVtt93GLbfcwquvvkpGRgaLFi3i6aef5tVXX63wuqpy5513MmfOHCZMmMCSJUtYt24dH374oTaTEBERkVpJhToRERGReuKxxx5j4MCBnH322QwbNowBAwbQo0cPABISEnjllVf417/+RYcOHZgyZQqPP/54meubNm3K5MmT+cMf/kBiYqKvGPbAAw9w99138/DDD9O+fXtGjhzJJ598Qnp6+lGvqwqdO3dm1qxZrF27loEDB9KtWzfuuecemjRpUmV9iIiIiNQU7foqIiIiIiIiIiISADSiTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgEgyN8BiIiISN3jui4HDhzwdxgiEmDCwsJwHI0VEBERqYgKdSIiIlKlioqKWLVqFa7r+jsUEQkwjuPQoUMHQkND/R2KiIhIQDLWWuvvIERERKRusNaydu1aiouLSU9P18gZEfFxXZeNGzcSEhJCmzZtMMb4OyQREZGAo0KdiIiIVJni4mKWL19Oeno6cXFx/g5HRALMnj172LhxI5s3b6Zv374kJyf7OyQREZGAoj9zi4iISJUpLS0F0LQ2ESnXofeG7du388knn5CVleXniERERAKLCnUiIiJS5TSlTUTKc+i9ISkpiaysLFauXOnniERERAKLCnUiIiIiIlKjjDGEh4eTm5vr71BEREQCigp1IiIiIscwc+ZMjDEqKlSTqnp9N23ahDGGJUuWVElcx2vIkCHcfPPNfum7ttJy2SIiImUF+TsAEREREanf+vXrx44dO4iJiTmpdlJSUtixYweNGjWqosjKN3PmTIYOHUpOTg6xsbG+x9977z2Cg4Orte9jGTJkCF27dmXatGl+jUNEREROjAp1IiIiIuJXISEhJCUlnXQ7Ho+nSto5UdrpWERERE6Wpr6KiIhItbih5F4GF13u158bSu6tdLxFRUVMnDiRxo0bExYWxoABA5g/f3655xYWFjJq1Cj69++v6bC/MmTIEG666SZuvvlmGjZsSGJiIn//+98pKCjgyiuvJCoqilatWvGf//zHd82vp75u3ryZs88+m4YNG9KgQQM6duzIp59+CkBOTg6XX345CQkJhIeH07p1a15++WXgyKmvh9r96quv6NmzJxEREfTr1481a9aUifnBBx+kcePGREVFcc011/CHP/yBrl27lvv8Nm3axNChQwFo2LAhxhjGjx/ve+6HT31t3rw5Dz74IGPHjiUyMpK0tDQ++ugjdu3axbnnnktkZCSdO3dmwYIFZfqYPXs2AwcOJDw8nJSUFCZOnEhBQYHv+HPPPUfr1q0JCwsjMTGRCy+8EIDx48cza9YsnnrqKYwxGGPYtGkTXq+Xq6++mvT0dMLDw2nbti1PPfVUmT7Hjx/Peeedx0MPPURiYiKxsbHcf//9lJaWcvvttxMXF0ezZs18r/Xhr/fbb79Nv379CAsL45RTTmHWrFkVpYeIiIgcg0bUiYiISLVY5a5nrl3q3yDcyp96xx13MH36dF599VXS0tJ49NFHGTFiBOvXry9zXm5uLmeddRaRkZF88cUXREREVHHQtd+rr77KHXfcwbx583jnnXe44YYbeP/99zn//PP54x//yNSpUxkzZgyZmZnlvn433ngjxcXFfPPNNzRo0IBVq1YRGRkJwN13382qVav4z3/+Q6NGjVi/fj379+8/ajx/+tOfeOKJJ0hISOD666/nqquu4rvvvgPgjTfe4C9/+QvPPfcc/fv35+233+aJJ54gPT293LZSUlKYPn06o0ePZs2aNURHRxMeHl5h31OnTuWhhx7i7rvv9j3vfv36cdVVV/HYY49x5513MnbsWFauXIkxhoyMDEaOHMmDDz7ISy+9xK5du5gwYQITJkzg5ZdfZsGCBUycOJHXX3+dfv36sWfPHr799lsAnnrqKdauXcspp5zC/fffD0BCQgKu69KsWTP+9a9/ER8fz5w5c7j22mtJTk7moosu8sU6Y8YMmjVrxjfffMN3333H1VdfzZw5cxg0aBBz587lnXfe4brrrmP48OE0a9bMd93tt9/OtGnT6NChA08++SRnn302GzduJD4+/qj/LiIiInIkY7WCq4iIiFSRwsJCfvzxR9q3b88oz+/8XqjrY7owK/SNY55XUFBAw4YNeeWVV7jssssAKCkpoXnz5tx888306tWLoUOH8uOPP3LxxRfTunVr3nzzTUJCQqr7KRzB5mdhC7LKPhgWixPTHFt6ALt79RHXOIldAXD3rIWSwjLHTEwqJiwOW7gLu29b2QtDInEatjqu+IYMGYLX6/UVj7xeLzExMVxwwQW89tprAGRlZZGcnMz333/PqaeeesSab507d2b06NHce++RIyLPOeccGjVqxEsvvXTEsU2bNpGens7ixYvp2rWrr90vv/yS008/HYBPP/2Us846i/379xMWFsapp55Kz549eeaZZ3ztDBgwgPz8/Ao3pahojbpfrw/XvHlzBg4cyOuvv17med99992+QtoPP/xA37592bFjB0lJSVxzzTV4PB5eeOEFX7uzZ89m8ODBFBQU8Omnn3LllVeydetWoqKiyn39K7NG3YQJE8jKyuLf//43cHBE3cyZM9mwYQOOc3DSTbt27WjcuDHffPMN8Mu/5T/+8Q8uueQS3+s9ZcoU7rzzTgBKS0tJT0/npptu4o477jii30PvEZs2bWLTpk2kpaX5RgSKiIiIRtSJiIiIkJGRQUlJCf379/c9FhwcTO/evfnxxx/p1asXAMOHD6d379688847eDwev8RauvwlvD88XOYxp93FhIz6BzZ/G8VvDjzimrBb9gFQ8vn12B1lp/MGj/w7nvaX4F37PqVf/0/ZdtNOJ+SCD447xs6dO/tuezwe4uPj6dSpk++xxMREAHbu3Fnu9RMnTuSGG27g888/Z9iwYYwePdrX5g033MDo0aNZtGgRZ5xxBueddx79+vWrdDzJycm+vlNTU1mzZg2///3vy5zfu3dvZsyYcRzPuHJ9H3reFb0WSUlJLF26lGXLlvHGG78UmK21uK7Lxo0bGT58OGlpabRo0YKRI0cycuRIzj///GOO7Hz22Wd56aWXyMzMZP/+/RQXFx8xvbdjx46+It2h2E455RTf/UP/lr/+d+vbt6/vdlBQED179uTHH3881ksjIiIi5VChTkRERKSSzjrrLKZPn86qVavKFFtqUlCnq/C0OLPsg2GxAJjIpoRc9m2F1waf8Xy5I+oAPG3Ox0nuXfaCkMgTivHXO58aY8o8ZowBwHXLn5t8zTXXMGLECD755BM+//xzHn74YZ544gluuukmRo0axebNm/n000/54osvOP3007nxxht5/PHHKxXPsfquauX1fbR48vPzue6665g4ceIRbaWmphISEsKiRYuYOXMmn3/+Offccw/33Xcf8+fPLzO673Bvv/02t912G0888QR9+/YlKiqKxx57jLlz51YY66HYynuspl47ERGR+kiFOhEREakWHZxWx7VGXLXFUAktW7YkJCSE7777jrS0NODg1Nf58+eX2RxgypQpREZGcvrppzNz5kw6dOhQHWEflYlMwkSWv7OpCQrD/DzNtTxOXJuK241IwEQknGx4VSYlJYXrr7+e66+/nrvuuou///3v3HTTTcDBddfGjRvHuHHjGDhwILfffvtRC3VH07ZtW+bPn8/YsWN9j1W0icghh6Y8e73eE+rzaLp3786qVato1ari3A0KCmLYsGEMGzaMe++9l9jYWGbMmMEFF1xASEjIEXF999139OvXr8zIwYyMjCqL+YcffmDQoEHAwamvCxcuZMKECVXWvoiISH2iQp2IiIhUi78FT/Z3CJXWoEEDbrjhBt/ulqmpqTz66KMUFhZy9dVXs3TpL2vtPf7443i9Xk477TRmzpxJu3bt/Bh53XTzzTczatQo2rRpQ05ODl9//TXt27cH4J577qFHjx507NiRoqIiPv74Y9+xE3HTTTfxu9/9jp49e9KvXz/eeecdli1bRosWLSq8Ji0tDWMMH3/8MWeeeSbh4eG+zS5O1p133smpp57KhAkTuOaaa3ybaXzxxRc888wzfPzxx2zYsIFBgwbRsGFDPv30U1zXpW3btsDBdfHmzp3Lpk2biIyMJC4ujtatW/Paa6/x2WefkZ6ezuuvv878+fMr3DDjeD377LO0bt2a9u3bM3XqVHJycrjqqquqpG0REZH6xjn2KSIiIiJ135QpUxg9ejRjxoyhe/furF+/ns8++4yGDRsece7UqVO56KKLOO2001i7dq0foq3bvF4vN954I+3bt2fkyJG0adOG5557Djg4mu2uu+6ic+fODBo0CI/Hw9tvv33CfV1++eXcdddd3HbbbXTv3p2NGzcyfvx4wsLCKrymadOmTJ48mT/84Q8kJiZW6eixzp07M2vWLNauXcvAgQPp1q0b99xzD02aNAEgNjaW9957j9NOO4327dvz/PPP89Zbb9GxY0cAbrvtNjweDx06dCAhIYHMzEyuu+46LrjgAi6++GL69OnD7t27j1iX72RMmTKFKVOm0KVLF2bPns1HH31Eo0aNqqx9ERGR+kS7voqIiEiVOXzX12Mtbi8SqIYPH05SUpJvt1Yp36932a0M7foqIiJydJr6KiIiIiL1VmFhIc8//zwjRozA4/Hw1ltv8eWXX/LFF1/4OzQRERGph1SoExEREZF6yxjDp59+yl/+8hcOHDhA27ZtmT59OsOGDfN3aCIiIlIPqVAnIiIiIvVWeHg4X375pb/DqJWaN2+OVtERERGpWtpMQkREREREREREJACoUCciIiJVTqNsRKQ8em8QERE5OhXqREREpMoEBR1cVaOoqMjPkYhIIDr03lBaWurnSERERAKT1qgTERGRKhMcHExkZCTbtm0jJCQEx9HfBEXkINd12bJlC4WFhXi9Xn+HIyIiEpBUqBMREZEqY4yhefPmrFy5kjVr1vg7HBEJMK7rkpWVBYDX6yU8PNzPEYmIiAQWFepERESkSoWGhtKmTRs+/vhjsrOzSUxM1Mg6EcFaS0lJCa7rkpeXh7WW5ORkf4clIiISUIzViq4iIiJSDXbt2sUnn3ziGz0jIgIHC3ahoaH06tWL/v37q5AvIiJyGBXqREREpNrk5eWxa9cuDhw44O9QRCRAOI5DZGQkTZs2VZFORETkV1SoExERERERERERCQD6E5aIiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEgP8HUVKE05Gal5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "favorite_station.make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "d15ba9cb-5914-4d06-9fd9-4ad7c547b0ec", + "metadata": {}, + "source": [ + "## Resampling the time resolution\n", + "\n", + "Coarsening the time resolution (i.g. frequency) of your data can be done by using the [coarsen_time_resolution()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.coarsen_time_resolution)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "02f28392-3c7b-4dbd-b535-85c42ba874f5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tempradiation_temphumidityprecipprecip_sumwind_speedwind_gustwind_directionpressurepressure_at_sea_level
namedatetime
vlinder012022-09-01 00:00:00+00:0018.8NaN650.00.05.611.365101739102005.0
2022-09-01 00:30:00+00:0018.7NaN650.00.05.49.785101732101999.0
2022-09-01 01:00:00+00:0018.4NaN650.00.05.18.155101736102003.0
2022-09-01 01:30:00+00:0018.0NaN650.00.07.112.955101736102003.0
2022-09-01 02:00:00+00:0017.1NaN680.00.05.79.745101723101990.0
\n", + "
" + ], + "text/plain": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:30:00+00:00 18.7 NaN 65 0.0 \n", + " 2022-09-01 01:00:00+00:00 18.4 NaN 65 0.0 \n", + " 2022-09-01 01:30:00+00:00 18.0 NaN 65 0.0 \n", + " 2022-09-01 02:00:00+00:00 17.1 NaN 68 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:30:00+00:00 0.0 5.4 9.7 \n", + " 2022-09-01 01:00:00+00:00 0.0 5.1 8.1 \n", + " 2022-09-01 01:30:00+00:00 0.0 7.1 12.9 \n", + " 2022-09-01 02:00:00+00:00 0.0 5.7 9.7 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65 101739 \n", + " 2022-09-01 00:30:00+00:00 85 101732 \n", + " 2022-09-01 01:00:00+00:00 55 101736 \n", + " 2022-09-01 01:30:00+00:00 55 101736 \n", + " 2022-09-01 02:00:00+00:00 45 101723 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:30:00+00:00 101999.0 \n", + " 2022-09-01 01:00:00+00:00 102003.0 \n", + " 2022-09-01 01:30:00+00:00 102003.0 \n", + " 2022-09-01 02:00:00+00:00 101990.0 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.coarsen_time_resolution(freq='30T') #'30T' means 30 minutes\n", + "\n", + "your_dataset.df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "2c4cbdce-829d-4202-81e0-6ca74dde05b4", + "metadata": {}, + "source": [ + "## Introduction exercise\n", + "\n", + "For a more detailed reference, you can use this [introduction exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Introduction_01.ipynb), that was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summerschool 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/examples/filling_example.ipynb.txt b/docs/_build/_sources/examples/filling_example.ipynb.txt new file mode 100644 index 00000000..185a1b70 --- /dev/null +++ b/docs/_build/_sources/examples/filling_example.ipynb.txt @@ -0,0 +1,592 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "22d1edf5-474a-4d54-a156-8db22360fc6e", + "metadata": {}, + "source": [ + "# Demo example: filling gaps and missing observations\n", + "\n", + "This example is the continuation of the previous example: [Apply quality control](https://vergauwenthomas.github.io/MetObs_toolkit/examples/qc_example.html). This example serves as a demonstration of how to fill missing observations and gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1353eb89-00b1-4595-b3ff-6cbe91ee2316", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "70c58a51-8c28-4045-a078-8e7ad4ea4284", + "metadata": {}, + "source": [ + "## Missing observations and Gaps\n", + "\n", + "When there is no (specific) observation value for a timestamp we have a *missing observation*. If there are multiple consecutive timestamps without an observation value and the number of consecutive missing timestamps >= the *gapsize* threshold, we label the period as a gap. \n", + "\n", + "The default gapsize is set to 40. As mentioned before, the gaps and missing observations are localized when importing the data from file. To change the default gapsize use:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4c071bd3-3094-4efe-b7a6-6184c5fc133b", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_qc_settings(gapsize_in_records = 20) \n", + "\n", + "#Update the gapsize BEFORE importing the data\n", + "your_dataset.import_data_from_file()\n", + "\n", + "your_dataset.coarsen_time_resolution(freq='15T')" + ] + }, + { + "cell_type": "markdown", + "id": "19735eeb-84b7-4109-a26a-4dbde3c38f09", + "metadata": {}, + "source": [ + "## Inspect missing observations\n", + "\n", + "To get an overview of the missing observation use the .get_info() method on the missing observations." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "08520854-25db-4742-8006-3f21b066c5cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n" + ] + } + ], + "source": [ + "your_dataset.missing_obs.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "04cecab3-7117-477f-bade-36d007ca2ade", + "metadata": {}, + "source": [ + "These missing observations are indicated in time series plots as vertical lines:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "eb684e4f-ffc0-4766-a442-5b58ac873e50", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU9fnA8c93NvedEJJwBAhXuBFBUPDAC1DbSq31aFVQ64m2aKutttVWrVe9Wm1ttd5Hf60H1hMvFEUBBTkEJNw3Cbnvc+f7+yPsZpYEcu3uzG6e9+vly83u7Mw3S5KdfeY5lNZaI4QQQgghhBBCCCGEsJVh9wKEEEIIIYQQQgghhBASqBNCCCGEEEIIIYQQwhEkUCeEEEIIIYQQQgghhANIoE4IIYQQQgghhBBCCAeQQJ0QQgghhBBCCCGEEA4ggTohhBBCCCGEEEIIIRxAAnVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHAACdQJIYQQQgghhBBCCOEAEqgTQgghhBCOV1VVxc9+9jOysrJQSjF//vxu71MpxR/+8Afv188++yxKKXbs2NHtfQdyn0IIIYQIXxKoE0IIIUTIUkp16L9PP/3U7qXa5u9//zvPPvus3cvotrvvvptnn32Wa665hhdeeIGLL77Y7iXZbu/evZx33nmkpKSQlJTE2WefzbZt23y22b17N3/84x+ZPHkyqamppKenM336dD766CObVi2EEEKII4mwewFCCCGEEF31wgsv+Hz9/PPP8+GHH7a6f+TIkcFclqP8/e9/Jz09nblz59q9lG5ZtGgRxx57LLfffnvAjnHxxRdzwQUXEB0dHbBj+EtVVRUnn3wy5eXl3HrrrURGRvLwww9z0kknsXr1anr16gXA//73P+677z5mz57NnDlzaGpq4vnnn+f000/n6aef5tJLL7X5OxFCCCGElQTqhBBCCBGyLrroIp+vly1bxocfftjq/nChtaauro7Y2Fi7l9Jh1dXVxMfHd3s/Bw4cYNSoUX5Y0eG5XC5cLldAj9Fdntfz73//O5s3b+arr77imGOOAeCMM85gzJgxPPjgg9x9990AnHzyyezatYv09HTvPq6++mqOOuoobrvtNgnUCSGEEA4jpa9CCCGECGumafLII48wevRoYmJiyMzM5KqrrqK0tNRnu0GDBvG9732PTz/9lEmTJhEbG8vYsWO9ZbOvv/46Y8eOJSYmhokTJ7Jq1Sqf58+dO5eEhAS2bdvGzJkziY+Pp2/fvtxxxx1orbu1pvfff9+7pn/+858APPPMM5xyyilkZGQQHR3NqFGjePzxx1s9f/369SxevNhbBjx9+nQA/vCHP6CUavV6tdVT7dBebtb9WzP1PM9dvHgx1157LRkZGfTv37/V86wOHDjA5ZdfTmZmJjExMYwfP57nnnvO+/inn36KUort27fzzjvveL+Pw/V8GzNmDCeffHKr+03TpF+/fpx77rmHXUtb37vn32DJkiVMnjyZmJgYBg8ezPPPP9/q+evXr+eUU04hNjaW/v37c9ddd2GaZpvHeu+99zjhhBOIj48nMTGRs846i/Xr1/ts4/mZ2rp1K2eeeSaJiYn89Kc/BeDVV1/lmGOO8QbpAEaMGMGpp57Kf//7X+99o0eP9gnSAURHR3PmmWeyZ88eKisrD/t6CCGEECL4JKNOCCGEEGHtqquu4tlnn+XSSy/l5z//Odu3b+exxx5j1apVfPHFF0RGRnq33bJlCz/5yU+46qqruOiii3jggQf4/ve/zz/+8Q9uvfVWrr32WgDuuecezjvvPPLy8jCMluuebrebWbNmceyxx3L//fezcOFCbr/9dpqamrjjjju6tKa8vDwuvPBCrrrqKq644gpyc3MBePzxxxk9ejQ/+MEPiIiI4K233uLaa6/FNE3mzZsHwCOPPML1119PQkICv/3tbwHIzMwM3It90LXXXkvv3r257bbbqK6uPux2tbW1TJ8+nS1btnDdddeRk5PDK6+8wty5cykrK+MXv/gFI0eO5IUXXuCGG26gf//+/PKXvwSgd+/ebe7z/PPP5w9/+AP5+flkZWV571+yZAn79u3jggsu6PT3s2XLFs4991wuv/xy5syZw9NPP83cuXOZOHEio0ePBiA/P5+TTz6ZpqYmfvOb3xAfH88TTzzRZvbjCy+8wJw5c5g5cyb33XcfNTU1PP744xx//PGsWrWKQYMGebdtampi5syZHH/88TzwwAPExcVhmiZr167lsssua7XvyZMn88EHH1BZWUliYuJhv6f8/Hzi4uKIi4vr9OshhBBCiADSQgghhBBhYt68edp6evP5559rQL/00ks+2y1cuLDV/QMHDtSA/vLLL733vf/++xrQsbGxeufOnd77//nPf2pAf/LJJ9775syZowF9/fXXe+8zTVOfddZZOioqShcWFnZ5TQsXLmz1vdbU1LS6b+bMmXrw4ME+940ePVqfdNJJrba9/fbbdVungs8884wG9Pbt2733Afr2229vte3AgQP1nDlzWj33+OOP101NTa22P9QjjzyiAf3iiy9672toaNDHHXecTkhI0BUVFT7HOuuss9rdZ15engb0o48+6nP/tddeqxMSEnxet0O/r7a+d8+/wWeffea978CBAzo6Olr/8pe/9N43f/58Dejly5f7bJecnOyzz8rKSp2SkqKvuOIKn/Xl5+fr5ORkn/s9P1O/+c1vfLYtLCzUgL7jjjtaff9/+9vfNKA3btx42Ndo8+bNOiYmRl988cWH3UYIIYQQ9pDSVyGEEEKErVdeeYXk5GROP/10ioqKvP9NnDiRhIQEPvnkE5/tR40axXHHHef9esqUKQCccsopDBgwoNX9h07YBLjuuuu8t5VSXHfddTQ0NHinbHZ2TTk5OcycObPVcayZWuXl5RQVFXHSSSexbds2ysvLO/waBcIVV1zRoV5v7777LllZWVx44YXe+yIjI/n5z39OVVUVixcv7vSxhw8fzlFHHcV//vMf731ut5tXX32V73//+13q7zdq1ChOOOEE79e9e/cmNzfX59//3Xff5dhjj2Xy5Mk+23lKVT0+/PBDysrKuPDCC33+/V0uF1OmTGn17w9wzTXX+HxdW1sL0ObQi5iYGJ9tDlVTU8OPf/xjYmNjuffee9v71oUQQggRZFL6KoQQQoiwtXnzZsrLy8nIyGjz8QMHDvh8bQ3GASQnJwOQnZ3d5v2H9pQzDIPBgwf73Dd8+HAAb9+zzq4pJyenze2++OILbr/9dpYuXUpNTY3PY+Xl5d412uFwaz7Uzp07GTZsmE/5MLRM6d25c2eXjn/++edz6623snfvXvr168enn37KgQMHOP/887u0v0N/LgBSU1N9/v137tzpDeBaeUqVPTZv3gw0B3/bkpSU5PN1REREqz5/nmBjfX19q+fX1dX5bGPldru54IIL2LBhA++99x59+/Ztcw1CCCGEsI8E6oQQQggRtkzTJCMjg5deeqnNxw/tc3a4LLDD3a8PGRIRiDW1FXDZunUrp556KiNGjOChhx4iOzubqKgo3n33XR5++OHDDjCwamuQBDQHczrqcNvaPZX2/PPP55ZbbuGVV15h/vz5/Pe//yU5OZlZs2Z1aX/+/veH5j511h56HhERvqfn0dHRrQKZaWlpREdHs3///lbP99zXVhDuiiuu4O233+all146bKBQCCGEEPaSQJ0QQgghwtaQIUP46KOPmDZtWlCCR6Zpsm3bNm8WHcCmTZsAvAMC/LGmt956i/r6et58802fbK+2yiYPF5BLTU0FoKysjJSUFO/9bWWxpaamUlZW5nNfQ0NDm4Gizhg4cCBr167FNE2fYNTGjRu9j3dFTk4OkydP5j//+Q/XXXcdr7/+OrNnz26zVNRfBg4c6M2Ws8rLy/P5esiQIQBkZGRw2mmndelYhmEwduxYVqxY0eqx5cuXM3jw4FaDJG666SaeeeYZHnnkEZ9SYyGEEEI4i/SoE0IIIUTYOu+883C73dx5552tHmtqamoVfPKHxx57zHtba81jjz1GZGQkp556qt/W5MnwsmZ0lZeX88wzz7TaNj4+vs19egJGn332mfe+6upqnnvuuTa3tW4H8MQTT3Qq+64tZ555Jvn5+T795Jqamnj00UdJSEjgpJNO6vK+zz//fJYtW8bTTz9NUVFRl8teO+rMM89k2bJlfPXVV977CgsLW2VOzpw5k6SkJO6++24aGxtb7aewsLBDxzv33HP5+uuvfYJ1eXl5LFq0iB//+Mc+2/75z3/mgQce4NZbb+UXv/hFZ74tIYQQQgSZZNQJIYQQImyddNJJXHXVVdxzzz2sXr2aGTNmEBkZyebNm3nllVf4y1/+wrnnnuu348XExLBw4ULmzJnDlClTeO+993jnnXe49dZbvSWt/ljTjBkziIqK4vvf/z5XXXUVVVVVPPnkk2RkZLTKcps4cSKPP/44d911F0OHDiUjI4NTTjmFGTNmMGDAAC6//HJuuukmXC4XTz/9NL1792bXrl0++/jZz37G1VdfzY9+9CNOP/101qxZw/vvv096enq3Xq8rr7ySf/7zn8ydO5eVK1cyaNAgXn31Vb744gseeeSRVllhnXHeeefxq1/9il/96lekpaV1OXuto26++WZeeOEFZs2axS9+8Qvi4+N54oknvFmDHklJSTz++ONcfPHFHH300VxwwQXe1/ydd95h2rRpPsHew7n22mt58sknOeuss/jVr35FZGQkDz30EJmZmfzyl7/0brdgwQJuvvlmhg0bxsiRI3nxxRd99nP66aeTmZnpvxdCCCGEEN0igTohhBBChLV//OMfTJw4kX/+85/ceuutREREMGjQIC666CKmTZvm12O5XC4WLlzINddcw0033URiYiK33347t912m1/XlJuby6uvvsrvfvc7fvWrX5GVlcU111xD7969ueyyy3y2ve2229i5cyf3338/lZWVnHTSSZxyyilERkayYMECrr32Wn7/+9+TlZXF/PnzSU1N5dJLL/XZxxVXXMH27dt56qmnWLhwISeccAIffvihN0uwq2JjY/n000/5zW9+w3PPPUdFRQW5ubk888wzzJ07t1v77t+/P1OnTuWLL77gZz/7GZGRkd3aX3v69OnDJ598wvXXX8+9995Lr169uPrqq+nbty+XX365z7Y/+clP6Nu3L/feey9//vOfqa+vp1+/fpxwwgmtXvvDSUxM5NNPP+WGG27grrvuwjRNpk+fzsMPP+zT53DNmjVA8xCLiy++uNV+PvnkEwnUCSGEEA6idFe64AohhBBCCB9z587l1Vdfpaqqyu6lCCGEEEKIECU96oQQQgghhBBCCCGEcAAJ1AkhhBBCCCGEEEII4QASqBNCCCGEEEIIIYQQwgGkR50QQgghhBBCCCGEEA4gGXVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHCACLsXEI5M02Tfvn0kJiailLJ7OUIIIYQQQgghhBDCRlprKisr6du3L4Zx+Lw5CdQFwL59+8jOzrZ7GUIIIYQQQgghhBDCQXbv3k3//v0P+7gE6gIgMTERaH7xk5KSbF6NEEIIIYQQQgghhLBTRUUF2dnZ3pjR4UigLgA85a5JSUkSqBNCCCGEEEIIIYQQAO22SJNhEkIIIYQQQgghhBBCOIAE6oQQQgghhBBCCCGEcAAJ1AkhhBBCCCGEEEII4QASqBNCCCGEEEIIIYQQwgEkUCeEEEIIIYQQQgghhANIoE4IIYQQQgghhBBCCAeQQJ0QQgghhBBCCCGEEA4ggTohhBBCCCGEEEIIIRxAAnVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHAACdQJIYQQQgghhBBCCOEAEXYvQAghhPC3t5oWsYntJBDPTOMEBhn97F6SEEIIIYQQQrRLAnVCCCHCzu/cD5OntwNwZ8QNzFeXEKkibV6VEEIIp2ta+Si6oRJ9YA0qYzwqKpGIidfbvSwhhBA9iNJaa7sXEW4qKipITk6mvLycpKQku5cjhBA9SpNuIr1+CnXUA5BFOg00sjb6bdJVqs2rE0II4WR1T+ZC1T5QBmgTEvoSc0We3csSQggRBjoaK5IedUIIIcJKnt7uDdIB5FNEKRV85v7axlUJIYQQQgghRPuk9FUIIURY+U5vZQB92M1+PCnjaSTzL/O/nMMMW9cmhBDC2aLnrACt0Y3VqMh4UMruJQkhhOhhJFAnhBAirOzW+9nFfgAUCo2mmDLWmZtsXpkQQginU1GJzf+PlvY1Qggh7CGlr0IIIcJKgS7y3n4/8mkmq3EAHKCEEl1u17KEEEIIIYQQol0SqBNCCBFW8i2Buj6qN+OMXO/Xmw5OghVCCCGEEEIIJ5LSVyGEEGGlgGLv7UyVzgg12Pt1nrmdY42jbFiVEEKIUNC08lF0QyX6wBpUxnhUVCIRE6+3e1lCCCF6EAnUCSGECCue0tdYYkgknlFqKMeridRSxy69z+bVCSGEcLKmbx6Dqn2gDNj2LiT0lUCdEEKIoJJAnRBCiJBXritJII5iysjXhUBzNp1SiiHGQJbolQD00Rl2LlMIIYQQQgghjkgCdUIIIULeuQ3Xs0SvQFvuy6IXANlkEUsMtdSRJz3qhBBCCCGEEA4mwySEEEKEvHxd6A3SpZLMMDWIoWoQAIYyGH7w9ja9mwbdaMsahRBCCCGEEKI9EqgTQggR0rTW7OOA9+tSytmsd5Cqkrz3DVc5ALhxs9mUrDohhBBCCCGEM0mgTgghREjbSwHV1AIQR4z3/lzLtNeZxvGcYZxIDv35n/lx0NcohBBCCCGEEB0hgTohhBAh7Utzlfd2DXXe27lGjvf2ZGMc75mfsZ09vOteLOWvQgghhBBCCEeSQJ0QQoiQ9m7Tp8QRwyQ1xuf+EZaMuuFGDnONc5isxrGS9bzsfivYyxRCCCGEEEKIdkmgTgghRMhqMBswlEEjTWzRO733xxBNOqk+214a8SO+0mtJJoH3zc9xa3ewlyuEEEIIIYQQRySBOiGEECHrWzbxsvkWjTQxzZjImqg3qYpaTV70+yilfLadYoxnjvFD6mlggfkhb5mLbFq1EEIIpzIyxqP6HAOx6ag+x2BkjLd7SUIIIXqYCLsXIIQQQnRVpa7x3h6phpBrNJe7ZpLe5vbnGDN4yXyLk9Rktpm7wRWUZQohhAgRUWf/1+4lCCGE6OEko04IIUTIqqTKeztRxbe7/enGNGKJZrH+in+a/wnk0oQQQgghhBCi00I6UHfPPfdwzDHHkJiYSEZGBrNnzyYvL8/7+I4dO1BKtfnfK6+8ctj9zp07t9X2s2bNCsa3JIQQohMqqfbeTqT9QJ1hGN4hE7v0Pmp0bcDWJoQQQgghhBCdFdKBusWLFzNv3jyWLVvGhx9+SGNjIzNmzKC6uvmDW3Z2Nvv37/f5749//CMJCQmcccYZR9z3rFmzfJ7373//OxjfkhBCiE6o1JZAnUro0HOGqxwANJrNlgEUQgghhBBCCGG3kO5Rt3DhQp+vn332WTIyMli5ciUnnngiLpeLrKwsn20WLFjAeeedR0LCkT/QRUdHt3quEEIIZ/HNqIvr0HNyjRwwm2/n6W2MZ0QgliaEECIENfzvPHRtEbp8Jyp5ICo2XfrWCSGECKqQDtQdqry8HIC0tLQ2H1+5ciWrV6/mb3/7W7v7+vTTT8nIyCA1NZVTTjmFu+66i169erW5bX19PfX19d6vKyoqurB6IYQQnWXNqEvoQOkrwDAGkkQCA+hDiS4P1NKEEEKEIPPAGqjaB8pA1xxAJ/S1e0lCCCF6mJAufbUyTZP58+czbdo0xowZ0+Y2Tz31FCNHjmTq1KlH3NesWbN4/vnn+fjjj7nvvvtYvHgxZ5xxBm63u83t77nnHpKTk73/ZWdnd/v7EUII0T7rMImkDpa+DlT9qKCKdWxmrc5r/wlCCCGEEEIIESRhk1E3b9481q1bx5IlS9p8vLa2lpdffpnf//737e7rggsu8N4eO3Ys48aNY8iQIXz66aeceuqprba/5ZZbuPHGG71fV1RUSLBOCCGCoJIa7+2ODJMA6Gtkem8X6CK/r0kIIYQQQgghuiosMuquu+463n77bT755BP69+/f5javvvoqNTU1XHLJJZ3e/+DBg0lPT2fLli1tPh4dHU1SUpLPf0IIIQKvylr6qjrWo643qRgH3/4kUCeEEEIIIYRwkpAO1Gmtue6661iwYAGLFi0iJyfnsNs+9dRT/OAHP6B3796dPs6ePXsoLi6mT58+3VmuCFMn1v+U3nVTiKkbQ1bdVM5quMLuJQnRY1RYS1/pWOmrS7noTSoA+RKoE0IIIYQQQjhISAfq5s2bx4svvsjLL79MYmIi+fn55OfnU1tb67Pdli1b+Oyzz/jZz37W5n5GjBjBggULAKiqquKmm25i2bJl7Nixg48//pizzz6boUOHMnPmzIB/TyL05Olt3smTZVSw0dxm84qE6DmqdEvpa0IHp74CZKp0AAooQmvt93WFknJdSbFZRoFZRJEutXs5QgghhBBC9GghHah7/PHHKS8vZ/r06fTp08f733/+8x+f7Z5++mn69+/PjBkz2txPXl6ed2Ksy+Vi7dq1/OAHP2D48OFcfvnlTJw4kc8//5zo6OiAf08i9LjxHTJSZemZJYQILE9GXRyxuJSrw8/zBOoaaaKUnj2p+9bGB+nXcDwDG6bzq8Z77V6OEEIIIYQQPVpID5PoaBbE3Xffzd13392h/cTGxvL+++93e20ifDSZTfzVfJ4qXUOSSmB+xFzvY1praqnz2b6cSmp1HbEqJsgrFaLnqTzYoy6xE9l0AJmke28X6CLSVLJf1xVKrBcXCimxcSVCCCGEEEKIkA7UCREM1aqWW5seAiCWGJ9AXQ21uDFbPWePzmeYGhSkFQrRc3nKzhNVx/rTeWSplkBdvi5iJEP8uq5QUmEZyCE9+4QQQgghhLCXBOqEaEc1LT0P62mgwWxgauP5KBQptEz4jSfWu+0uvZ9hDAr2UoXoUb4zt9JAIyerKcxwndCp5x5ljOR0PY18XcRGvZWTmRKgVTrfPgq8t7fr3ZjaxFAh3RlDCCG6LOLo69ANlegDa1AZ41FRiXYvSQghRA8jgToh2lGjWwJ1Jia3Nj3MOr0ZgAhaemKNUcNZrtcAsN3cDa7jgrtQIXqYL81VNNDIJ3o5szixU8/tr7L40PwCgBXmukAsL2Ts1vu9t2uoY4fey2CVbeOKhBDCPhETr7d7CUIIIXo4uWQuRDusGXUAj5sve283WQZJ9COTsWo4qSSxk31BW58QPdX/ud+mLxn0IYPLXT/u1HMnqFHE0Dwg6Ev9TSCWFxKqdA0lNA9TiiOWSCJYqzfavCohhBBCCCF6LgnUCdGO6kOmuB465dUj28jiW72JUirYrHcEYWVCtHjf/TlPN77Gc00LeNv9id3LCYrteg+72Y/GJEF1bphEtIpiImNIIZFM0jlgFgdolc62Re9kmBpIMonUUEsjTXxprrJ7WUIIIYQQQvRYUvoqRDuqdW37GwE59CeKSBpoZKPeFuBVCdFCa81vGh/gO7YCMEQN4EzjpLDvM1ZGBQApKqmdLds2wTWKL9wrWaZXs05v5hR6+XN5IWGNuZHNeqfPfV+aPTfDUAghdEMlaI1urEZFxoNS0qdOCCFEUEmgToh21FhKX1NJpvRgmdih0owUhpmDWK83s1XvolE3Eqkig7VM0UP9uvHP9CeTEcZgtpq7MVBMVKPZbO4g1zXY7uUFTKNupOpgtqt1qEtnjFItk17z9DZO4Vi/rC2UWMt+RzOURJVAL5Uif7+EED1W/XOToGofKAO0CQl9ibkiz+5lCSGE6EEkUCdEO6w96n7vupab3ff79KbzSCWZXJXDer2ZRpr4fsNVxHeyHM9fTjSO4RcRc2w5tgieMl3BX93Po9Fkks5UNYFP9XL+a77H6a7jySV8A3VlVHpvp3Yxoy7XaHl98vT2bq8pFHnKXKOIZIgxkDfNj0HDXn2AQaqfzasTQgghhBCi55FAnRDtsJa+xqs4fu+aR75ZyBK9ko1sw8RkjnEOo9UwLnf9mLNc01niXskmvZ0KXRXUtdbqOraxh03mduKI5YqI84J6fBFcy801aDQAQ1Q2Oao/n+rlAOSZ27AMJQ47ZbrCe7urGXW5Ksd7uycG6ip0FVprjlFjGaD60E9leR/bzX4GIYE6IYQQQgghgk0CdUK0w1r6Gqdi+HXElQCcUPcTGmkC4Cu9hj6qN32NDACKdKktzelNTEp0GSWUsUFvCfrxO+sD9xKGqoFkqywMDFwqjCNLAbBV7yaBOKqo4dqInzJRjeGZhtcA2BTmgacSSwl6VzPq0lUqvUihmDIKe+AwiU16O1vYCRrGGMPJVn28j+3W+21cmRBCCCGEED2XBOqEaIe19DWeWO/t+6NuotKsJkpFYigDpZT3sV9EzOEXBL/09BtzPVMbzgeag3ZOVqNruaBxPjXUAfBx5HNMc020eVWh5XPza6qppTdpjFW5DFB9iCGaOurDPkPMHxl1AD8wTuUVcyHr2MwenU9/S1ZZuLP+jOSqHLKtGXUSqBNCCCGEEMIWEqgToh01ltLXOFp6zh1nTACHDdVUtAQLPSWRTrXG3MgA1Y+NunlSabml55jomN16PxpNEaUMVv1xKRdHMZJKqkgjhQazgSgjyu5lBkQpLYG6VJXc5f1kqnSqqAZgqbmKH7vO6PbaQkWe6Ruoy1AtU28lUCeEEEIIIYQ9HBZmEMJ5fDLqVOwRtrSfYfmVdnpG3Tvmp94gHfgGXkTHeIIpfcnwTujsb2Syni18rlewg712Li+gfDLqulj6CjDVmOC9/YX5zRG2DD+b9Q7v7eEqx6f09X/uj/lL03M2rEoIIYQQQoieTTLqhGhHNTXe29bSVydSltvOzqdr3UPNGngR7avT9RTQ3FfNWrI4/JABCcPJafXccGAN7KbR9Yy6KcZ4JqhRJBIf9OEvdivUJRyvJhJDNINUPwwM5rl+ykr3eraxm1fc7zFcDeIM10l2L1UIIYQQQogeQzLqhI9v3Xl84V5p9zIcpVbXeW/HOTxQZ82oc3rp66E91CSjrnP26gLvbWsmVK4x2Ht7o94W1DUF02Zzh/d2dzLqklUiJZTzmf6at8xFaO3s3xt/yddFLNErWaJXUk0tLuVCKcWDkbcw1hjOAYpZodf1uCxDIYQQQggh7CaBOgHARnMrveqO4ZjGH3Fq4xwy6o7lf00f2b0sRwil0ldrjzonl7426ka26t0+95Xq8sNsLdqyy9JDzCdQZ82oM8NzoESjbmSx+TUpJHGp60eMYVi39ud5zSqpZj+F/liio93f+CQj6md6v55mHO3z+LURP/Xe3q/D//UQQgghhBDCSaT0VQDNH/qtAakKqrxldT3d4aa+OlGoDJPYqwvIVTls1buoox6AUil97ZRl5iqy6E0p5T6BumFqIACZ9PL52Q0nb7g/op/K4Gv9LXt1AclGYrf2l6ty+IAlQHNws68rwx/LdKz9utD7ewcwVfkG6jJVuvd2AUVBW5cQQjhB1A/+D9wNmOXbMZJzwBWeQ5mEEEI4lwTqBOCbneNRoOUDGrRMfVUoYomxeTVHZoRKoI4DrNebfe4rk9LXDjO1yX/Md8mnkGEM4ofGDO9j8SqOEWowG/U2FplL0VqjlDrC3kKLqU3ucf+TDXoLA+nLza4rur3PXNVSLrxJb+dkpnR7n05WTJn39ueR/2aM4ZuRmEoSkUTQSJO8Dwghehwjs3nIkNE3vN8LhBBCOJcE6gTQMj3SSjIpmqWoJI7lKBJVvOMDHj6lrw7utVWlq1vdJxl1HbfW3EiuysGNmzSSyTLSfR7PVn3YqLdRTiUFFJNF+mH2FHq2mbsZq3JpoIFEElqVbXbFcDWIcSqXZBIpp9IPq3Q269/2kcYQYpXvBQilFJmks4d8CdQJIYQQQggRZNKjTgCHCdTpnl36WqLLqTfrWWx+xTK9mn36gN1LaleolL5W0hKoiyISaM6oK9Kldi0ppHykl/I/82M2652cZ5zR6nHfPnXhMVBCa02xLmM5a/iP+Q5b9C5+YJzil+B5jtGftTqPz/UKVpjf+mG1zuYJvsUTS4KKa3ObPqo3AIWU0qSbgrY2IYQQQgghejrJqBMA7CHfe1uh0Gjye3gT8bkNv+ZLvYoGGgHf4IdThcrU1wpd5b0dTRQNNJKntzO8fgaboz+kl0qxb3EOd3L9RazS33m/Pt01rdU21p/VTXo7JzE5KGsLhC/dq/h50x3s0QVkqyzOME7yPnaUMdIvx+hDb1y4cONmt85v/wkhzhOos/aiO1SmSgfd/HekkFL60DtYyxNCCFu5t70HTXWYResx0kdDRAyuwa0vigkhhBCBIoE6wbvuTzlwMHsulSQiiKCQEvJ7cMlThVnFPl1AlSXza3gIBOpCZeprFTXe25EHM+pMTBSKr81vmeU6wa6lOVq1rmGpXu39OpF4hqlBrbaz/qzuMltny4aSrXon6w72M4zR0Xxjrvc+5q/fyQgVQV8y2M3+NrOLw0m9bqD0YD/IzCOURFuDeHvM/fRxSaBOCNEzNH48H6r2gTJwaxMS+kqgTgghRFBJ6WsPt0fnc37jfPbofG5y/YzFUS+RqXoBzX2MtIP7nAXSQv0Z6/AddpBrOD9QZ+Xkf7kKWjLq/hxxM69HPEYi8TTRxD/d/7ZxZc62Se/w3v6BOpX/RT3eZunnEJXNAPoQQzQb2BLEFfrfAUq8t/MpZM3BbMIoIhmk+vntOJ7JuUWUegfIhCPrNO+sI2TUjVXD6UsmAHsoCPi6hBBCCCGEEM0ko64HqtI1zGv8A6cZU9mp93KyOpZFeikazXAjh9FqOKbWVFHNvMY/8PeoP9q95KDLM7d7b0cRiQuDwWTbuKKOCYXS1780PsdSc5X364FGP6apozGbTOppIE9vP8Kze5Ym3cT1TXcyWY3jBfcb9CHD+9hk1zimHmaQQl+VyX4KaaQp5DPEDh1mUE0tI9RgkkjApVx+O0626uONbu/R+SGRQdtZTbqJz90ryKYPddQzVA087La9VRr7Dgbo8nRLn8Nd5j7+0PQoM4zj6aVS2iy9FkIIIUSLb9zrecL9H05zTWWA6stkY5zdSxJCOJwE6nqgZ92v8R/zXf5jvouB4S2RnGWcCMBzUfcxvv777NL7edF8k7/T8wJ1myzBoq+iXmWEMcTG1XSc7zAJ55W+Vusafu3+s899STRP081VOXyjN7BD76VO1xOjom1apXO8Zn7AM+7XeIbXWj12pJ6JhjLop7LYofeEfKDu0BL8GurYqLfxt4g/+PU42SrLe3uX3s9wwi9QV0YllzfdAsBQBnBn5PzDbus7kKTl7+FjTS/wsvkWL5tv0Y9Mtro+Dth6hRBCiHBwd9M/eFt/wrPm60xR41kc/ZLdSxJCOJyUvvZAB3QJaaQAvn3MrKWdqSQB0EBjj5z458nqiiCCIWqAzavpOGsZpBMz6r5qY6JmAvFAS78xE5OteldQ1+VU+WYhkxmHgWIMw4gmihQS+YFxCmNV7hGfm01z4KmUCip19RG3dbICWgJ1lxizGa9GkEQ8p7mm+vU4g1R/jlVHcbKaEtKv15FYh7jEH2baq8dQNdCboWu9cKFRxBELwAGKe+T7gxBCCNFRW8ydfK3Xei+mVxO+7TWEEP4jgboe6EX3/yihzOc+Fy56HQzeAaSoJO/tMiqDtDJncJtuby+wwSqbSBVp74I6wfDJqHOer/XaVvclqQQAco3B3vuk/LXZq+ZCvmItJprvGSdzo3Epe6I/579Rf2WQceT+bJ6ea9BcyhmqPKWvccTyz8g7+Z5xMvOMixio+vr1OIkqnmV6NZ/o5ewldF+vI7EOx5lkjD3itjEq2tsD8Fu9iUcan6XebOAJ8/+oOfgho5Emdui9gVuwEEIIEcI2mdt511xMAcXeC+h7Q/icTAgRPBKo62EadCP7KWx1fya9MFTLj0MKlkCdrgjK2pwiT29HoRivRvJ942S7l9MpTp/6utXcRTqpPvclHsyoG8swJqkxDKQfm0wJ1EFL2Wdv0kg1kkkxkohQHetYYA3UhXL5qydQl6XSUUqRpBJIMZLaeVbnJdKSYVZpmUocTqzfl/X7PZyHIm7h3YgnGa5yeMD9FDMaLqWeBp9tJKguhBBCtNakmzi78Rr+0vQcUxhP/MFs9FCvdBBCBIf0qOth9uj8NksiMw+Z/pemkr23V5rrWGvmkW304Zh2sjDCwZd6FbXUsUZ/xwXqTLuX0ym+Peqcl1O3QW+hiFLv1y4MolUUADlGNiua1gGw0dK8vqfSWnvLPjNVL34RMadTz/cE6rJI54AubmdrZ6o364knjjrqyaT5b1RnX4eOSlDx3tuVlhLRcGL9vqzf7+HMcjX3Lc1vKqSIUsoPya7uQ2/JDBBCCCEOUaVr2GBuIUK72M4e4lQMuTT3Ygb4xlzPd+ZWznJNx6Vc9FUZ7exRCNHTSEZdD2PNrPFc2YHmQICVNaNuTtOv+UnTjdzceF/gF+gAX5grvbcPN1XTqZw+9fXQzK4oory3h6gBbfbE6qnKqKCBRqB1IL0j+qkMFIp8itiu9/h7eUFRpMrYQz611JNBWkCPlUSC93Yl4Xml2/p9Wb/f9pzpOgloLnX1MFDsp5B1erP/FiiEEEKEgSXmCk5s/Amb2ckkxvBS5IOcbhzvffyRpmeZ7/4TwxpO58KGG2xcqRDCqSRQ18PspiVQEkPLVE1rfzqAVEtGnUcmvUO611VHxRLDFDWefmQyQY2yezmd4lv66qxAXb1uIB/fCZ4uy58ga0+sPL0dUzuvdDeYCizTTrPo3ennZ6ne3mBtwSGve6go1i3Zl2lGSkCP5SnBBqgI05IU6/eV0IHSV4/JajxDGchYhnvv8/x9CeWyaiGEaIuKjIeoRFAuiEps/lqITrC+Nw40+jLOGMFo1dziZSJjKNMtGeq11NmxRCGEw0npaw+z2dzpvT1A9aVYlwHQhNtnO+swCY839If8wDyFn7i+H9A12klrzf+Z71BDLSPUYKJCaJAEHDpMwlmBur26oNV91sAiQK7KYZveTTW1bNO7GaoGBmt5jpNvKVfN6kJGnTULryBES1+LDv59Alr1NvS3BMsU1Kowzaizfl+JHSh99ZhojGYLO33uc+HCjVsCdUKIsBM99xu7lyBC3C7Le+OlrnMBGGz097Z4sSq2nOsIIYRHSGfU3XPPPRxzzDEkJiaSkZHB7NmzycvL89lm+vTpKKV8/rv66quPuF+tNbfddht9+vQhNjaW0047jc2bQ7+8R2vNe+7FDGMgFxtnc4kxm9nGaVxpnM9c1zk+26ZaSl8zaCmL/dIM75OXKmq8Ew2zVOezmOzm5GES1g/0wxnEJa7Z3OC61GebHxtncJYxnTSSedP9cbCX6CjWLLiulL72JtX782DNzgslxZZ+hukqsIE6KX09vOFqUKv7PFnYu3tAlrUQQgjRGdZz3gEHewaPVyOIs7Qd8jhAcY+vIhFCtBbSgbrFixczb948li1bxocffkhjYyMzZsygutr3Q9YVV1zB/v37vf/df//9R9zv/fffz1//+lf+8Y9/sHz5cuLj45k5cyZ1daGdmrxfF1KtatnMTlbpDVwdcSH/F/UIf436PSe7jvXZ1lr6eoBib++w78ytQV1zsFkDGp7m9aHEycMkNukd3ttXRVzAE5F3cWukb9B8vDGCd8xPKaGcT/VXNOjGIK8y+ExtYmqTj9xf8ob7I0xtssXcyWrzO+82XQnURapIbxZafqgG6ixXmXuplIAeK4ZoXLgAwnYam/X76sgwCY94FUc2fXzu82R5llNJua5s62lCCCFEj7NXF7BT7/N+3V9lAc3nZZONca22b6SJUiqCtj4hRGgI6dLXhQsX+nz97LPPkpGRwcqVKznxxBO998fFxZGVldWhfWqteeSRR/jd737H2WefDcDzzz9PZmYmb7zxBhdccIH/voEge9VcyD59gD705jzjLJRSh93WmlEHcLY6laV6NV/obyjWZQH/0GwXaw+1rpQb2s3JwyTy9DYicDGKoUxQI9vcZrQxjCuM81ikl/GBuYT/mO9ysevsIK80uL4x13NC44Xefy0Dg2nqaD7XKxhEf6YZRzPDmNalfWeqXhTqEgooQmt9xN95J7JOCA506atSiiTiKaWih2TUda7nUq6Rw26zJUOgv8pirW7OYN+j80lWif5ZpBBCCBGimnQTo+vPoI4GoDl7PU61ZNFd4TqPDeZmDlDi87wCXRS2n62EEF0T0hl1hyovLwcgLc13OuBLL71Eeno6Y8aM4ZZbbqGmpuaw+9i+fTv5+fmcdtpp3vuSk5OZMmUKS5cubfM59fX1VFRU+PznRLv1fmqpYz+FTHVNOOK2qSQTTyxRRNKbNLKNPuRTCMAyc3UQVmsPn4y6QybhhgJrGMYpwyQKdQk3NtzN2+5PaMLNt2xipDH0sNv/JOL7bNW7yCWHA2Zo9lbrjD3k+/xLmZg00Eg6qRRQRK7KaXO4S0d4MvHqaaCc0Mt68s2oC2ygDiDhYPCqqidk1HUyUDdCDSaJBKKJJJF4BjOAvmQyllz26QP+XqoQQtim8bPf0vjhPOpfPonGD+fR+Nlv7V6SCBFrdZ43SOfC8A5J8zjBmEQJ5UQS6XNxPVQrH4QQgRM2gTrTNJk/fz7Tpk1jzJgx3vt/8pOf8OKLL/LJJ59wyy238MILL3DRRRcddj/5+c39djIzM33uz8zM9D52qHvuuYfk5GTvf9nZ2X74jvxvlyUNO1v1OcKW0MfoTXHM11TErOK76IVMNVoCe+Hcp843UBd6GXVOLH39W9NL/N18mR3sBWCwyj5i4Ok4YwJ9ySCP7dzvfjJYy7TNrjaa8S/XayiilDONk7g58oou79tavp2vC7u8H7sUWaa+HjqZOhA8AxYqwjajrsp7uzPDJADuj7iZAzHL+JXrZ/zcdQmjjCHso4BvyWOH3uPvpQohhG3cea/iXvc8+sBq3Ouex533qt1LEiHiC3fLZ6QHIn7DV9Gv+TyeoXrxadSLlER/xX2uX3nv9yRDCCGER0iXvlrNmzePdevWsWTJEp/7r7zySu/tsWPH0qdPH0499VS2bt3KkCFD/HLsW265hRtvvNH7dUVFhSODdZ7GpgYGfen4oIQEFcex6ihGqaGkk0pZCGbmdFR+iPeoc2Lpa7EuZTDZbGc3R6vRzDJObPc5w4xB7DMPePtfhXNZ3ZGmZh5vTOzWvoeobKaqo4lSkZSG4O9tMIdJQEs5aA21uLUbl3IF/JjBVKlbsskTO5lRZ6jmvy1JqnkIhfViT1vBZiGEEKKnedV8j2PUWGKI5gRjUpvbTDLGApBt9GWaeTQGBlX68NVeQoieKSwCdddddx1vv/02n332Gf379z/itlOmTAFgy5YtbQbqPL3sCgoK6NOn5YNIQUEBRx11VJv7jI6OJjo6uourDx7PdL4+9CZSRXbquVlGb4p1KRvYwkb3Vv4WeXsglmi7ghDvUee0qa+1uo5/ma+g0UxgJF9E/6dDz7M2rg/3/ldHCtQNVznd2rdLufhSfwMartOHzyR2Kk9JZSQRnQ4sdUWCiscT366kmpRDenWGOk9GXRSRRKuoLu3jFxFzAMgzt3nvO9LPsBBCCNETbDf3sEbnUUc941Quo9WwI26fppL5Qjdn4E3Uo4OxRCFECAnp0letNddddx0LFixg0aJF5OS0/6F29erVAD5BOKucnByysrL4+OOPvfdVVFSwfPlyjjvuOL+s2w61uo7Cg41L2yt7PRxP0OAAJZTocr+tzUnyzSJGMYQT1TH0JbP9JziMb+mr/bbond7MviP1pTuU9Wc03IMA1kzX3vj218w1uheoswa3Qm1AwlZzF3l6O2MYzm9cVwVlEEYov14dUafrGaty+Z5xcrf35ZliBy0XgYQQQoie6lVzIYPJZgRDuNg4u93zliyf9iTSo04I4SukA3Xz5s3jxRdf5OWXXyYxMZH8/Hzy8/Opra0FYOvWrdx5552sXLmSHTt28Oabb3LJJZdw4oknMm5cy3jsESNGsGDBAqB58t/8+fO56667ePPNN/n222+55JJL6Nu3L7Nnz7bj2/SLVeZ3pNCcldTVQJ01aLBJb/fLupxmnd7EBrayXm8mzehaA387GQ7rUZdn+TnpTNAp2ycIEN6BugaaiCCCPvRmgOV3M55Y+nUzWJxIgvd2qA1IWGmuJ5s+rGMTEUEqQU0gzvv/ajO8ylDKdAWb2MG3Oo8DuqT9J7QjXsV5+waG+++oEEII0Z415nfNlUdsZYbr+Ha3z1ItbYgKCP/haUKIzgnp0tfHH38cgOnTp/vc/8wzzzB37lyioqL46KOPeOSRR6iuriY7O5sf/ehH/O53v/PZPi8vzzsxFuDmm2+murqaK6+8krKyMo4//ngWLlxITExMwL+nQPmP+Q5lVDKIflzuOrdL+xihBntv55nbOdY4yk+rc4ZKXc1eCoDulxzaxWmlrz6Buk68pj2l/1WtruNbnQfAKDWUZ6PuI/lgcG0/hd3OIrMODAi1AQl/d7/ELvaRQhJzjHOCcsxYmv/GV1FDjaoLyjGDZZPe4b09opuZmh7Zqg/Fuoy9FIRlTz8hhBCiozzvsxFEMFi136s8kXhiiaGWOp9hdkIIASEeqNP6yBlD2dnZLF68uNP7UUpxxx13cMcdd3RrfU5RoItYZW5grMplu97NeGNEl/YzimGMZAgJKo7tYTjlb1MXs7+cxKf0tZ3fj0DabO7gM3MFy8zVZJKOwjfQ257BKpuxDCdaRXlLtsPRXl3gvZ2ikuilUrxfW/v0dZUnQwyaA9GhQmtNnm7ugZZAHFlGcPpFWvu2NdIUlGMGi2/QvOO/i0cyXo1EoYgikj26gIGqr1/2K4QQQoQSU5veQN0Qld2hXuBKKTJVOjv0HgnUCSFaCelAneiYp92v8ZVeC8BvXdeQqrpW0jnWNZzvmraCBpdpANf7cZX262r2l5P4Tn21z8fmUuY3/QmAoQzkfNeZjDA6PmV5oOrLNnZTrWvJdxdB52afhAxrtuCALpakH4lnQidAVQhl1BVRSikVQHCD5lGWH7QGGoN23GCwDn/w19+3NJXEKnMD0NyPciASqBNCCNHz7NL7qaMe6Nx7bBa92MEeiimjQTcS1clhf0KI8BXSPepEx+w293GCmkQW6VwW0bWyV4DeKs1bErpSr6dWh1dp2B5zP1PUUZygJjGqnUlNTmUtlLSz9NUa9Oyt0nwCRh0RoSKYbIwHYA/5YVv+au3t1dXekUdiHY5QcXDiZyiwK2geYbl21ajDK6Nuq97FZDWOU9VxjFIdD5ofibVFQLj2LRVCCCHas1nv4Bg1lhPUJI5R49p/wkGZqqVi4ID0qRNCWHQpUNfY2Mju3bvJy8ujpCR8y9LCgdaa/5rv8bleQTxx9FPda04/1ZjQvF9gg7nFDyt0jlX6O5br1XyuVzBUDbB7OV2iHDJMwlO2CPBK1F/5RcScTu9jqmr+WVMo3nF/4re1OcluAhyos/Soq9KhMxxhq7nLe9tfZZodYb2S3RhGGXVu7eZjcylf6bWs05voZxnW0h3WbMc8CdQJIcKEK2cmxrDZqNShGMNm48qZafeShMNt1Nv4Wn/L53oFWUbv9p9wkDVQJ+WvQgirDpe+VlZW8uKLL/J///d/fPXVVzQ0NKC1RilF//79mTFjBldeeSXHHHNMINcrOqmcSqpo/oA+wOh+WdJENZolrKCEcr7R65nImG7v0yk2HgwuRREZsr2WfEtfbQzUmc0f2nuRQrpK7dI+zjZO4xu9nkXmMv7tfpurXRd2e7iC0/hm1PkneGIVqhl1BRSRRW9iiOr2xYXOiLRm1IVRj7r1erP333+qcbTffo+sQdSNluC8EEKEssjT/mr3EkSIsb4HdqYSYDDZDFHZlOgK8s0iqXUTQnh16M/BQw89xKBBg3jmmWc47bTTeOONN1i9ejWbNm1i6dKl3H777TQ1NTFjxgxmzZrF5s2bA71u0UH+DgQMUv3Zwi5KKA+rcsQm3cQWvROAoWogESo02zc6IaOuzKwgVSXRh97dyoYaawxnl7kPhaKvymCX3ufHVTqDW7sZRD9iiQ5IRp11mERVCA2TKNBF5FPIDvZ2OdDbFeHao26ruYvxagRRRDJVHe23/fZSKWSQRn+yiNFR7T9BCCGECCOmNvld48MsM1d77xuuBnX4+Qkqnq16N6WUU4Bk1AkhWnQoGvH111/z2WefMXr06DYfnzx5Mpdddhn/+Mc/eOaZZ/j8888ZNiw0e3yFE621b6DOD1MkrZlmu8MoULdD7/Vm0ITqIAnAJ1PGrkDd1/pb1unmYP1F6uwu70cpxfdcJ3Of+0neMD9ihnk8lxld77HoRMv0Gnawl3hiSdaJvk0G/SBCRRBHLDXUUknolL6W65bsv2QSg3bccM2oW6bXsEZvBGC4Mciv+85WfVip17NPH8Ct3biUy6/7F0IIIZzqLXMRD7if8n6dTCIpKqnDz8+ylr72gB51nmo8IUT7OhSo+/e//92hnUVHR3P11Vd3a0HCf25v+itvuj/2fu2PjJ3+lqy83Tq/2/tzinxdyGnGVMp0JSP91GjdLgqFRts2TOJLc5X39ljX8G7t60RjMve5nwTCr1m91po9B3+HBqi+GEZg6h0SiaOGWip06JS+VlDpvd3ZQSTdYQ3UhVNGnfWiynA/X4jIUr1BNw+vKaSULNLbf5IQQggRBkp1OZMYwwrWkUN/TnEd26nn96QedaY2Oa7+PPobWfRTmdwd8UsSVFz7TxSih+p2fV9FRQWLFi0iNzeXkSNH+mNNwg+adBMvuP/Hfg547xvgh0BdnIolnVSKKA2rUsQ9FPCR+SUAF6qzbF5N93gCdXZl1H1pfuO9PdXoXpldODerL6KUOuqBwAyS8EhQ8RToYqoIndLXcuzKqLMMk9DhF6hTKL/3/Dv0Q4Y1O0AIIUJR/UsnomsKoK4UYlJRcZlE//Qzu5clHOjf5jusYB0AX0e9RoIR384zfPWkQN1X5lrWsJE1ZnOG/1zXORyt2q7WE0J0oWXleeedx2OPPQZAbW0tkyZN4rzzzmPcuHG89tprfl+g6JqVej3Z9CGFJAaTzV8jfsdYI9cv+/YEFfZxgCYdHuVhFdqawRO8wEAgeAZK2BGoa9CN5OntTFSj+Z5xsk8GZlf0I5N4YoHwCtT9ufFfjKv/vvfrQAbqkmjOSKukBq3tGzDSGZ7sPxcu779/MERaelM2hVHpqydQ14fePpNt/SGTnvMhQwjRM+iaAqjaB+56qNrX/LUQbSjV5UBzj9v4LmSHZdLLezs/zN9DnzVf98m6D6fzeiECodOBus8++4wTTjgBgAULFqC1pqysjL/+9a/cddddfl+g6Jrteg9fsYYyKrgm4idcGXEBvVWaX/btGUoRTyx7dHicvPhm8ASv1C4QPJ0fTBsCdav1d+RTyEq93mfiaFcppbw9A+t0A/Vmfbf36QQb9BZKKfd+HYiJrx6egRIaTa2uC9hx/Kn8YOlrEvFB7WUSjsMk6nUD+QcbVAciIGzNoAv3DxlCCCGEVamuACCVpC6dr0SrKFJp7mkX7sMkPjW/8p6PAOSZEqgT4kg6HagrLy8nLa054LNw4UJ+9KMfERcXx1lnnSXTXh3EmtmQqXodYcvOG6dGkkQCFVSxQ+/1677tUm7NqAtiqV0geCa/2pFR58+yV4+xKpc4YthHAbsIjwEm+/QBn6/74d9yRKsM1YsoInHjpkqFxkAJT0ZdcicaMvuDT+lrmGTU7bH0Eu1uhmtbrO8v4f4hQwghhLAqozlQ15kBEofylL+Gc1b6Xl3ADr3H575w6z0thL91OlCXnZ3N0qVLqa6uZuHChcyYMQOA0tJSYmJi/L5A0TU+gTo/N/fOUulUHMxAy9Pb/Lpvu1RYMuqSVPczwexkZ+nrTnMfk9QYUkhkmp8CdekqlRqaM8F2hcmkYevJSRrJ9FEZATtWBBHe7LBK7fw+dVprb0ZdsLNbwzGjbh8HmKzGMUoNYYga4Pf9Z/pk1BX6ff9CCCGEEzXpJioP9v/1ZMV1xXByGMNwxqlcqkznn6d1xevuDxircsmhPwnEc5Qa6XPOJYRordPDJObPn89Pf/pTEhISGDhwINOnTweaS2LHjh3r7/WJLrKWIPm7ubdvg//wCNSVa3ua1weCJ6Mu2FNftda8Yr5HEaWkksQIBvtlv9Zyvd1hEKgr15XspzmgMU1N5OPo5wJ6vERLz5TKEBgoUUe9N5stKciBOuvU13DJqNuh9/KVXgvA5erHft+/9KgTQgjRE5VZJtR3J6POpQzW6U2goVRVkOCH1jFOorXmKfcrbNTbiCWGDNJYrb9ji96J1jqoLU6ECCWdDtRde+21TJ48md27d3P66adjGM3ZO4MHD5YedQ5iLUHK9HegToXfJM4KrMMkQr1Hnaf0Nbg26e0UUQrAccYE79+G7gq3QN0acyPjVC5pJHOCMSngx7P2CgyFQJ1Pv8ggD3axlr42hMnUV+vvzADV1+/7zyKdU9Vx1NGAO8gXB4QQQgi7lB3sTweQ0o2MOuvnjgpd1dJsOkys1t+RThqTVDzRRBGlItlp7qOKGsqp7NZrJ0Q463SgDmDSpElMmuT7AfOss87yy4KEf3gyG6KJ8nuGWG/SSCOZEsr5ztzq133bJZwy6gybetSt1hu9t/3Vnw58By3sIf8IW4aG5XoNa3UeABeo7wX8eImWE8BKy8+5U/lMYA52Rl0YTn21BuoCMUwizohlo97GXgropVP8vn8hhBDCiUosQ8HSVHKX92P93FFuSRwIF5+ZX7NErwDgr67fsYJ13sd26/3dykYUIpx1OlB32WWXHfHxp59+usuLEf5ToIuB5rIkf6cUK6X4kTGLxfortuidFOgiv2ftBZsnoy6GaKJUaPdMsKv0dbPewSD6E4WLMWqY3/Ybbhl11oEb/urjdyS+GXXOHyZhb0Zdy1tiuPSoC3SgDmC4kcNes4BiyijSpaSr1IAcRwghhHCKgGXUhRmf817XRArcxd6vd+v9jCXXjmUJ4XidDtSVlpb6fN3Y2Mi6desoKyvjlFNO6fB+tmzZwtatWznxxBOJjY2VGnU/ajQb6aVSMLX2+8RXj2SVwKaDY7WXmquY7To9IMcJFk9GXbCb1weCXVNfd+l97KB5opM/S+xSSCKReGKJRunQ/huhtSaCCFJJIoIIhqqBAT9mApYedSEwTKJCV9KfLKqp7VZz5q6ICsOpr55AXRyxpNH1K/5Hkqty+IRlQHM7BAnUCSGECHeltATqUv2WURdegTqtNZW6hl6k4MZkpBpyyAX40K+UESJQOh2oW7BgQav7TNPkmmuuYciQIe0+v7i4mPPPP59FixahlGLz5s0MHjyYyy+/nNTUVB588MHOLkkcolxVsfHgkIeJjA7IMaYaE8DdfPvLMAjUeaa+JgU5gycQWqa+BlexLvPe7qVS/LZfpRSDVD++1Zv4Qn8T0kH9Wup4y1wEwBQ1Pijfh/VKbWUInACWUO4tcQ52v8hwy6jTWntPgrNVVsB+3nz6lprbgpIpKoQQgRJ5wp3oxhp04VpU73GoyLj2nyR6HJ+Mum6Ub1rbfFjbf4SDzXoHi/RSAM43zsRQRthVyggRKF3qUXcowzC48cYbmT59OjfffPMRt73hhhuIiIhg165djBw50nv/+eefz4033iiBOj+wZs0kB+iD7rHGBAbQlwGqD006tDNPTG16A3XhkVHXLNilr8W6JdvW35k7fVUm3+pN1FFPISVkEJhM0UCzXn319zTmw/EpfQ2BjDrfgG9wM7N8MupC/O8awD59gFyVQyzRjDSGBuw4Q9QAxqkRpJIYEgNLhBDiSFwjzrN7CcLhnm96g9fc7zNGDcfAYFg3KiSsn9XCLaPuC0vZ6xhjOAAD6MskNYYoIqmh1q6lCeF4fgnUAWzdupWmpvY/2HzwwQe8//779O/f3+f+YcOGsXPnTn8tp0ersnxQSlCBGfGdppJpoIEleiXb9G4e4taAHCcYKqn2lomG+sRXsK/0tYgyoLlUNdLPff6sAyV26/1kBKikO9D8dfW1MxKUpfQ1BIIonsnBAOmkBPXYEWGWUfeVXssqvQGAqQQuy22Q6sfag8Nk+pgZATuOEEIIYTe3dvNP9/+xUjcPRbjKuIBjjaO6vL8ka+lrmGXUfalXeW97Bs0NNPqySn+HGzfVpgTqhDicTgfqbrzxRp+vtdbs37+fd955hzlz5rT7/OrqauLiWqeQl5SUEB0d3dnliDZUWD6MW7Np/C1b9SFfF7GfQhp0Y8gOYSjR5YxXI4ghmjEMt3s53dZS+hrcQJ0no86fZa8eh6bJT2SM348RDD79TILUf81aUhEKgTprRl26Sgvqsa1/w8Jh6qu1gfNUY0LAjmMdJlRA8RG2FEIIIULbm+Yi1uvNHK8mUkoFg43sbu3PmlFXEWYZdZVmFVPUOJowmaia2zFFqUgGq2w26x1s0jswtYmhDJtXKoTzdDpQt2rVKp+vDcOgd+/ePPjgg+1OhAU44YQTeP7557nzzjuB5v5Tpmly//33c/LJJ3d2OaINVTp4gbqv9bdoNHt1ATmqf/tPcqBSyllzMBtkvDHC5tV0X8vU1+AF6hp1ozcIlY7/yxXDpfFsqS733u5O4+HOSLD8DagKgdLXIksJda8gZ9SFW4+6XXo/CoVGc1wAA3VJJBBDNHXUU6CLAnYcIYQIBrNkE5hudOVuVGI2GC6MtNC/kCv842tzLSYmS/RK3or8J6e7pnVrf8lhnFH3mf6aEsoZqPoRo1oScnJVDpv1DmqpYzf5DMR/Q+iECBedDtR98skn3Trg/fffz6mnnsqKFStoaGjg5ptvZv369ZSUlPDFF190a9+imTVrJjFApa9wSPCE/eQQmoE6n55YAQgyBZthQ+lrCS0BqGBk1IWqUh38jDrr34CKUMios5a+2tmjLsQz6tzazfvm58QTy0Q1OqCBYaUUmSqdnXqvBOqEECGv4bXvQ9U+UAZoExL6EnNFnt3LEg5Qpit42P0sicRzjBrHacbUbu8zKUwz6qp0jffzQTZ9fB4boQbzNs0xhU3mdga6JFAnxKGCnmc6ZswYNm3axPHHH8/ZZ59NdXU155xzDqtWrerQ1FjRvgrd8kc+IaAZdb59w0KVT0+sAASZgs2bUaeDN0wi0AMA+pFJXzIZR67f9x1MZQS/R12oDpOIJCKgGcFtibQE6kI9o26X3k8d9VRRE5SftSyay1+LKaNBh/ZrJ4QQQrRlmbkajaaCKo4yRvhlmrpvRl34BOr2WD4bWj8zAgxW2fQlk0lqjLTMEOIwOpRRd/TRR/Pxxx+TmprKhAkTjvhH6ZtvvjnsY42NjcyaNYt//OMf/Pa3v+38akWHVFHjvZ0UrIy6EA7UWaeVBnvKZCDYMUwi0AMA+qoM9lHAPgpINEN34IdvRl1wSl+jVCTRRFFPg8+gGafylL6mk+qXE+DOsJa+hvrU1016u/f2cJUT8ONlql54/uQcoJj+ZB35CUIIIUSI+cKn96t/hjRFqyjveVoF4VP6am1VY/3MCDBYDWg+r9cFfGduAVewVyeE83UoUHf22Wd7Bz3Mnj27yweLjIxk7dq1XX6+6JjKIA2T6E8Wx6kJROCiPoQzKIp8Sl9TbFuHv9gxTKJcVzJNTcSFwaAA9CqMUdEkEEcVNT6lkaHGjow6gBPVZGqpIy2Ix+wKrTXFB6cHB6KEuj3WQF1TiGfU5VkCdblGMAJ1loESuoj+SgJ1QggRiup0PSc1/JQkEhihBvNo1G12L8kxaqnjJDWZEsqYosb5bb/T1RSqqSXV4edpnbHLJ6PON1CXpXp5b+dLywwh2tShQN3tt9/e5u2uuOiii3jqqae49957u7UfcXiVlrTpRBW47KM+RgZLD47dTtGh+8ZiZ0+sQApmoG6vLuALvRKAi9XsgByjl0qlStf4lNmGmhLLMIm0IGXUAeTpbexiH711cKeodlYNtdRRD9iT3WooAxcu3LhDvvTVJ1CnBgf8eNZA3QEtZSxCCBGqtupd3iFra/RGHkUCdR7vm0vYrHcQTyz9/HhBags72ap3kaaDd24YaNZqqwGHBOp8p8VLoE6ItnR6mMTXX3+NaZpMmTLF5/7ly5fjcrmYNGnSEZ/f1NTE008/zUcffcTEiROJj/fN+HrooYc6uyRxiEpL6WsgM+p6k+qdKBjKDcQD3V8t2OwofbVeDfP0qvK3dFLYyV6KKQvZUe52ZdTFq1jQzYEwJyvUJQykHwnEMkoNtWUNUURSizvkh0lUmdXkMphIFcEg+gX8eNn0YazKpYZanyxlIYQQoWWj3mb3EhxJa+0NPmWrPn5tz+H5vFZBNVrroLf+CITt5m4G0Y9MlU7OIdU2KSQRRSQNNIb0Z0ghAqnTn3TnzZvH7t27W92/d+9e5s2b1+7z161bx9FHH01iYiKbNm1i1apV3v9Wr17d2eWINlgbxicQF7DjRKpI0g9OSQ3ltOVA91cLNjtKX61XwzIt6ez+5AmimpiUhWgPj326gGQScOEixdI8ONDiiQWghjq0Dt7PRWeVUM5O9rKeLbhx27IGT/lrqGfUbWYHeWzjO701KGXESSqBb3UeW/UuDkhjaCGECFnWjOymEL9o5U9FlHqz/g8t5ewuz/C/Jpqop8Gv+7ZLHtvZwV5W6HUMVL4XDJVSZB68sC+BOiHa1umMug0bNnD00a2bZ06YMIENGza0+/xPPvmks4cUnVRpGe2dFMDSV2gOyhTqEgooCtkrQJ7m9bHEEKdibV5N9ymlQDcHtILF+iZrTWf3J2v/wGJdSpoKrfKAr8y1fKs34cLFL43LcKngdc6NO5hRp9HUUkcczvw5L7IOdsGe7Naog5NfQz2jrvDga9mL5KBkn1qDgUW6JODHE0IIERh5Zkugro6GkD2/97fdR+i51l1JKt47kKmSamKI9uv+g83UJpv0DgByVH+iVVSrbbJUOrv1fgoppUk3EaE6HZYQIqx1+uw9OjqagoKCVvfv37+fiAj5BXOCSh2c0ldoCcrU00B5CGY5aa1JII4pajynGMfavRy/aCl9DR5PoM7A8GZZ+pu1f2BRCA6U2GXu40zjJKKJpJ+RGdRjx1sCc9UOLn/1yW61YZgEWDLqQnhADmAZyhGcgKf1977o4LGFEEKEnlgVTRLNF/pNTMe3zQiWQAbqEiyf1yosvcZD1R4KvD83Iw7TJ9fzGVKjKQzB83ohAq3TkbUZM2Zwyy238L///Y/k5OaMlrKyMm699VZOP/30dp9/8sknH/GqzKJFizq7JHGIqoNTXyOIIJrWVzD8KRPfSX/B7LvlD1v1Lr7SzZOIZ6kTbF6Nfxg29qjLIC1gmWLWjJ1QHCjxX/Nd3jUXAzDDOD6ox/YJ1Olaejv0wrgT+kVGHsyoC+Vynxpd6z1BDlZmou/vp5xwCyFEqPrAvYQKS3VOJTXEB7CVTqjwDdT5d7J5omoJ1FVZeo2Hqjyzpc9hrmp78ry1AidfF9JH9Q74uoQIJZ0O1D3wwAOceOKJDBw4kAkTJgCwevVqMjMzeeGFF9p9/lFHHeXzdWNjI6tXr2bdunXMmTOnU2u55557eP3119m4cSOxsbFMnTqV++67j9zcXABKSkq4/fbb+eCDD9i1axe9e/dm9uzZ3Hnnnd4gY1vmzp3Lc88953PfzJkzWbhwYafWZ5dE4jlWHUWG6hXwVPUsnz+yReQS+OmC/rTEXOm9PdVoXdIdijwZdcEqfTW16e1JFaiyV/AtfS0KwUCAtcF+sE9GrCXdTr4y7lv6mmLLGiJVBOjQ7lFXbMloC1ZmonWKcSgG0oUQwiP6wsWg3ejaYlRsLwhiqwo7VOgqTmr4KbXUEa9jKTikz2iVroYAnt+FilJdzmQ1jmii/D6kKcmSUVdJ9RG2DA3b9G4mqtHEEcM4ldvmNiMZwvFqIjXUka8Lg7xCIZyv04G6fv36sXbtWl566SXWrFlDbGwsl156KRdeeCGRkZHtPv/hhx9u8/4//OEPVFV1LtV38eLFzJs3j2OOOYampiZuvfVWZsyYwYYNG4iPj2ffvn3s27ePBx54gFGjRrFz506uvvpq9u3bx6uvvnrEfc+aNYtnnnnG+3V0dGj0CnBrN0v1appoYjwjAn48n/HaIdgMdLve451cG26BumBl1JXocm8/r4AG6qylryEYqCs+mNafQBwxKrh/T6xXwp1c+lrsU/pqV0Zd89tiKPeosyMzMVJFkkISZVRwQBezW+/3e2mQEEIEg0pozpZSiYGfmO0E+bqQ7/TWwz5uza6D5rYx75ifMtM4njoafLLBwtl3epu3Cqev8m8LkwTLa1gZBqWv6/VmVur1ANxp3NDmNvEqliW6OWHCmq0ohGjWpaZy8fHxXHnllX5dyEUXXcTkyZN54IEHOvycQzPcnn32WTIyMli5ciUnnngiY8aM4bXXXvM+PmTIEP70pz9x0UUX0dTUdMSeetHR0WRl+TetORjyKfKWbAXjQ1IfetOfLMqoDMlJf1/rtaSSRDTRjGW43cvxi5apr8GxjwIMDDJJZ7QaGrDjZJBGNn0op5KSEOyB5Qme2FHSeWjpq1M5ofTVM0wilDPq7MpMTCOZMirYzh6G1Z/OluiP6O/n8iAhhBD+lc+RL7RXat8Mr0/M5ZzbeD0GBjFEUxz9VY8YNuEJJimU39/bPD0BITwy6qyTg4cfpvTV+jl1lwTqhGilQ4G6N998s8M7/MEPftClhSxdupSYmJguPdejvLwcgLS0tCNuk5SU1O7gi08//ZSMjAxSU1M55ZRTuOuuu+jVq1eb29bX11NfX+/9uqKiogur9w/rFYkBQQjUpapk9pAP+Jb2hYoDupgSyokmKuATcoPFc6oUrNLX3TofE5P9HCBeBa6HSapKZjfNP9+hNkzCrd2U0Pz3Kd2Gkk7f0lfn9j6xBpjseJ0A+pJBDbXegF0o8i19DV7AM/6QacJLzVX82HVG0I4vhBCi86wVMWkke89XPA4NHH1jrieReCqppoZaCigmi/AvjfV8xupDb6KUf88REiyVDxU6dAN1ZbqC2xr/wmrzO6D5Inuaarvd1EDV13t7t84PyvqECCUdCtTNnj27QztTSuF2u4+4zTnnnOPztdaa/fv3s2LFCn7/+9936DhtMU2T+fPnM23aNMaMGdPmNkVFRdx5553tZgPOmjWLc845h5ycHLZu3cqtt97KGWecwdKlS3G5WvepuOeee/jjH//Y5bX7UyAnErXF+iGwOMSCJwClujmomkpS2FwNDHbpq8/PHIH7mfP5WQuxoHAZld7Aabo6/IWEQLEGUGqoC/rxO8oTYIoj1ie4GExlVLCFXUBz/0VDdXo4uu2swxyCGajTSvuk8n4pgTohRAhqWvs0NFZjHliDkTEeIuOJGHeZ3csKGGug7tAgHfgG6kxt8pD7aZ/78sxtZLnCO1BXrxu8mYeB+HzlO0widAN1T7j/wxPmf7xfZx2hJ7M1K1FKX4VorUOBOtP0X2ZOUpJvQMQwDHJzc7njjjuYMWNGl/c7b9481q1bx5IlS9p8vKKigrPOOotRo0bxhz/84Yj7uuCCC7y3x44dy7hx4xgyZAiffvopp556aqvtb7nlFm688UafY2VnZ3ftG+mmXUEO1PUK4eAJNH8oB0JuWu2RtJS+2hCoC+DPnG+z+tAKChfbPCQhLkRKXwfQh14qxdZ+NxGWTLpGmgI+OTsQ6nQDx6uJgO9k7kD7oTGDOHcsq/mOXDWYPXKFXAgRgpqW3wdV+0AZmBv/Awl9wzpQl99Oj+kqS4ZXnt7eKpi3SW/nJCYHZG1OYX0/8/fEVzik9DWEM+rWm5sZxiC2sINj1DhmG6cddttYFUNv0iikhF16XxBXKURo6FKPOo+6urpOl6s+++yz3Tlkm6677jrefvttPvvsM/r379/q8crKSmbNmkViYiILFizo0NALq8GDB5Oens6WLVvaDNRFR0c7ZthE0DPqrJM4QyyjrlE3ehvrpxA+gbqWqa/BCdTtClK5tbVZfVGI9agrsnlIQnwITH3VWvOh/hI3biYwyrZ1eKa+QugG6raw09ugOZg/b7+NvIbfRl7DlPpzWaM3sk5volxXkqwSg7YGIYQQnXPolNdDVVgyvN52f9Lq8e/Mww+iCBff6jzv7UB8vkqwtI4J1R51B3Qx/zHfBeAYxvBZ9MvtPidbZVGoS9jHAZp0ExGqW6EJIcJKp2t63G43d955J/369SMhIYFt27YB8Pvf/56nnnqq3ecPHjyY4uLWbwhlZWUMHjy4U2vRWnPdddexYMECFi1aRE5O62aVFRUVzJgxg6ioKN58880u9cHbs2cPxcXF9Onj/Al2Jbqc0Qxlihof0DJEjzgVSyzNr2moZdSV0tJLMDWsMursK33t5+cpWIfqpVKAUMyoK/Pe9nwPweQzTMKhgbpyKnHT3DrBjtfII9Jy/aoxRAdKWMuYAjmJ+XCmHZygrdEsN9cE/fhCCCE6zvqecZfrBs5RM7xZ2dCS4aW15nX3+2TQizM4kSlqPMPVIFbrjUFfc7AtdH9GHDGcbZzKmcZ0v+8/EcvU1xAN1C01V3lvn+jqWIblFHUUE9QoBtKXffpAoJYmREjqdKDuT3/6E88++yz3338/UVEtmQZjxozhX//6V7vP37FjR5t97Orr69m7d2+n1jJv3jxefPFFXn75ZRITE8nPzyc/P5/a2uYPop4gXXV1NU899RQVFRXebaxrGDFiBAsWLACgqqqKm266iWXLlrFjxw4+/vhjzj77bIYOHcrMmTM7tT47bNRbWc8WvtHryQrSBzRPKV+oBU/KtCVQR9uNTkNRS0ZdcIZJuHETRSQZpBGrujcQpj3pNGcHlVJBk24K6LH8qVxXessaehH8jLpQKH31CWba8Bp5+AbqQudnzMrzocvAoLcNr+XUg4G6DNLkxFsIIRyugUaiiSKSCG6MuJQprvGMM0YAEEMMB3RzgsV2vYdElcABislXRRTqEjbpHazU66jXDXZ+CwFVbzbQiJsGmlhkLmOsMdzvx0g8eI4YTVRIvZamNinWZWwxd/JS05ve83TPeUB7XMpgld7AdvawG2mXIYRVp/NLn3/+eZ544glOPfVUrr76au/948ePZ+PGw19RsU6Off/990lObgmMuN1uPv74YwYNGtSptTz++OMATJ8+3ef+Z555hrlz5/LNN9+wfPlyAIYOHeqzzfbt273Hy8vL806MdblcrF27lueee46ysjL69u3LjBkzuPPOOx1T3noknuymfioraE3Q01Uqe3Q+RZShtQ6ZoQzhmlEXzGESWmtW6+9opIls+rb/hG7qpVK8ZYkllJNB25OYnaaQEiqoAiCF4JcBhkLpq295cIpt64igZWBQE0cejuRUnn5DvUnFpVoPQAq0gfRDoThACV/qb5jLOe0/SQghhC02mzuop4FB9MdQBr+ImEOZWcF77sVsZw9b2AnAW+YiPtNfE0M05xqz+E5vZZu5m3oaWKnXMVV1LDgTajawhZfM5s+x040TA9LXOpF4XLiopyGkWgkVU0Z2/Yk+9w2gL8eqozr0fGsZsQyUEMJXpwN1e/fubRX0guaBE42Nhy8T8kyOVUoxZ84cn8ciIyMZNGgQDz74YKfWovWRAxHTp09vd5tD9xMbG8v777/fqXU4RaWu9gafsvF/o9PD8QRPmmiigiqSbQhEdIU1oy6cetQFc5hEJdXerKNkI6Gdrbvv0OElGSo0AnXlusp7245+XT4ZddQE/fgd4TNww4Y+fh6hnlGntabg4GQ6O8peATKMXt6/P07N4BRCCNH8nuEJDCVa+qSlGEmYByd5f2WupUE3kqe3A1BHPSe6jiHRHc8SVjJA9WGLubPDWVShxloaPE7lBuQYySrB2/6jQlcG5BiB0Nbgi3gVSy8jpUPPl0CdEIfX6UDdqFGj+Pzzzxk4cKDP/a+++ioTJkw47PM8k2NzcnL4+uuvSU8P7zHedvCdSBS8fnrWMrUiXRoyjcPDN6OuWTCGSRT5TDMNfHAlVIeXVNBy0mXH70d8CJS+FllKX9NtmIzrEWF5W2zSTS2/UCGilApvgNGuQF0CLR/2qhwaGBZCCNHct7ae5lLLQy+STVUT2Kn3Ukc9q/QG8szt3seGq0EYhmKHew879B4G6X5cwg+DuvZgsU7FDVRboQgVQTyxVFNLOVXtP8Eh2uqnN0mN6fDzJVAnxOF1OlB32223MWfOHPbu3Ytpmrz++uvk5eXx/PPP8/bbb7f7/O3bt7e7jeiaYE989RihcjheTaSJJop1GUMYELRjd0epbhkvH4g0drsEs/S12DJ9NRjTJUeqIZysjqWMCvaYBV3osmkPn4w6Ap95eKh44jhBTcKNm0QV/ON3RDEOyahTLVPBQ3GYhM8gCRwQqNMSqBNCCKeyXnA99CLZycax7NH51FDLcnMNmw5m1PWhN8kqkVyjZQjgJjN8P9/lU+i9HcgLYMkkUk0tFTo0A3X9yeJU4zjOdc3q8PMlUCfE4XU6UHf22Wfz1ltvcccddxAfH89tt93G0UcfzVtvvcXpp5/eoX1UV1ezePFidu3aRUODb8PMn//8551dkjhotyWjboAKfL8wD61giV4J+H7YdroSS6AuLYyGSQSz9NW3XDEl4MdLVol8opcBsEXvCPjx/KXCcnU0yYaMukQVz+d6BQAx2pm9NoOdnXk4oV76Gowr/+1pbkkeQRNNji21FkIIceSLZJOMMVzZ9DsA0ppSvBdnhxs5ACSoOPqRyV4KyNPbQ6pPdWcUHBymAYEN1CWpBPbpA5QTOqWvVZbS17kR5/C7iGs79fwM0ogikgYa2W7u8ffyhAhpnQ7UAZxwwgl8+OGHXTrgqlWrOPPMM6mpqaG6upq0tDSKioqIi4sjIyNDAnXdsE8XkE4KKSSRrTKDdtx0a+mrJcPK6fbrQtJIIZM0suht93L8JpgZdYXWAQBBCK6MUJartzp0rt5aT7rsyahrKX1tq5+IE8gwCf8o0WWkk0I88fRVGbasQSlFAnGUUSGlr0KIkGOkDkVHJaGr96Pi+6Di7flbGgy+F8lSfB4boQaTShKlVLCM1Wg0w8lhhjGtZRtjMHvNAkqpoJCSkBny1RnBylT39Piuoga3dtsyDKqzfC5Ed+H81lAGPzbO4FNzOVvZRa2uI1bF+HOJQoSsDheOlZaW8uijj1JRUdHqsfLy8sM+dqgbbriB73//+5SWlhIbG8uyZcvYuXMnEydO5IEHHujc6oWP/RRSRBlb2EVGEDMprJlU1gwrp9tHASWU8R3b6GOEz0mYsjTV6sgwle4IdkbdYJXt7SGWF0KBOk8ZQwQRxBL8ExBDGSQSD7TdT8QJGnQjOfQnnVQZJtENJZRRRBk72Uu8pQQ12DzB4WopfRVChJioc98hes7XxFy7h+g5XxN17jt2LylgfC+S+b73GsrgOGMCqSQRRSQazSa2+1Tt5Koc0klhFENZb24O2rqDyZqpnhnAIWZJltYkFSHSp67S8h6f0MVzjkgVwV4KaKSJFXqdv5YmRMjrcKDuscce47PPPiMpqXUvr+TkZD7//HMeffTRdvezevVqfvnLX2IYBi6Xi/r6erKzs7n//vu59dZbO7d64cPnik8wA3WHDJMIFZ5eCJFEkBlGVwB9AnUBzqoLdrlipIpksMoGYJPeganNgB/THzwZdckk2FYW4g3UOTSjbrX+ju3soZpaMkizbR2hHqhzypCchIPTAyWjTgghnMdzIbfYMsiprYtk17p+QhNun57ExxktwwOPUxMooowNbAnbIItnknoyiQHN9rJWXJSHSJ+6KsvF30QV36V9TFUt04K/NL/p9pqECBcdLn197bXXePDBBw/7+FVXXcWvfvUrfvvb3x5xP5GRkRhGc3wwIyODXbt2MXLkSJKTk9m9e3dHlyPa4AnUKRS9g9jjyVqmVhxCpa+enn79VRaGCpGpBB1gDdSZmN6edYHgO0wiJWDHsTpFHUsGadTRwCa9w6cc1qnKdXOgLsnGQQ4JKh60MzPqmnQTW/ROoDlr0s5yD+vU10YdeoG6Mt0SqLNzSI7nynoVNWHbt0gIIULRN+71XNx4E0cbo9ljaeB/aOkrwFTjaBKJ5yg1kizVm3Iq6a+yvI8fZYz03g7XIMsg+pGl0klVge1nbe1hHCp96qyDL7pS+gpwnDqK0QwjTSVLnzohLDocqNu6dSvDhg077OPDhg1j69at7e5nwoQJfP311wwbNoyTTjqJ2267jaKiIl544QXGjOn4OGfRmic1O4M0IlSX2g92ifUKXKiUvlboKsoOZp70J6udrUNLMDPqfEtfgxMczjLS+UfTvwH4ylzLCMPZgTqtNeUHSxg8/UfskGQpfXVa4GSH3uvNXstVObauJZLQnvpagjOG5MSrONDNf4NqqSPO0idRCCGEff7jfoet7GKrucvnYu6hpa8AcSqW9dHvHjaTbKgaSG/SKKSEL8xvaDQbiTQi29w2FFXpGj7WSwE4UR0T0GP5ZNSFSKDOmjWf0MWMuqHGQIooYb3ezBq9kb/p20OiP58QgdbhVBuXy8W+ffsO+/i+ffu8mXJHcvfdd9OnT/Mo5j/96U+kpqZyzTXXUFhYyBNPPNHR5YhDaK29qdnBLHsF3ytwRZYUeifbY5mQax0NHg6sJ12BHidRrisZp0ZwmppKbx2cQN1Uw5Iir51/9baGWtwHhxLYnlFHc+Ckmlrb1tEWa7/B4TYH6iKUdZiEZNR1lbVXjZS/CiFCScN7l9Pw+mzqnhpNw+uzaXjvcruX5DfXNf6RtTqPuIP9ck1M+tCbq10XeluLHOpI5Z5KKa5zXcSJ6hhqqeNNvSgg67ZLsAZJgG9GXUWIlL5ae+kldrFHnVLKe25fQRXrdXj2OhSiszqcdjVhwgTeeOMNjj322DYfX7BgARMmTGjzMQ+tNRkZGd7MuYyMDBYuXNiJ5YrDKaXCm5ES7EBdtIoikXgqqfYZ8+5k+brQu+ZwC9RZ86RMAtfDTWvNSr2eKmoYpPoTZUQF7FhWx6ixRBKBieaAWdT+E2xWbjmJsTOjztOjDpqz6rra9DcQ9ukDxBNLNbXkGnZn1LW8LYbi1FefHnXYF6izDrKo0jVkBLABtxBC+JO5ZwlU7QNlYFbsgoS+7T8pRCw31/Ct3uStvlAo9lPILr2vyxcTJxpjuN39V+KJZZW5gR+5ZvpzybbyJEEAZAX481VIZtRZ+h4ndrH0FWCacTQLzA+JJ5Z5jX8knVSGGYO4P/JmfyxTiJDU4Yy66667jgcffJDHHnsMt7vlw4vb7ebRRx/l4YcfZt68eUfch9aaoUOHSi+6AAjmFZ+2eMoei0Mko24vB6ikmhiiyaK33cvxK2tJYyBLX/dxwJspE8xyxVgVw0nGZFwYvKc/p1bXBe3YXVGhW062utq/wx+sgboqhw2U+E5voZpakkhgAPZ+IAr1YRKejLpIImwtN/UMkwColow6IYRwBM/nhSzSWRP1JrcYV3GBcRa3R1zf5X2eahzHVHU0btw86H7a25c3HBToYu/tQCdC+Ex9DZGMuko/DJMAOM91Jmuj3mK+ay57dAHv6yX81f08hbrEH8sUIiR1OFD3ox/9iJtvvpmf//znpKWlMWHCBCZMmEBaWhrz58/nxhtv5Nxzzz3ywQyDYcOGUVxcfMTtROcV61Imq3GMVsMYYEOG2ETGeBvN1prODpxAy4fZOupJM+zr4xQIvqWvgQvU5Zkt5YrBHuiQQS8aaESjvUMInKqKWiapsYxVufRTmbatw3oCZS1VcALPiXAFVba+RhD6gbrSg3/bUkmytQ+hT2BYAnVCCGG7Jt1E4cHKl/4qi1xjMMlGIhOMUYw3RnR5v0opjjJGUEcDGs1yc42/lmw7n0SIAAfqeukUxjCco9WokDn/qPDJqOt6oC5D9WK4kUOSSiCWaG9F0FJzVbfXKESo6tQ4yD/96U8sW7aMuXPn0rdvX/r06cOll17K0qVLuffeezu0j3vvvZebbrqJdevCc4S3XfIp4iu9lvV6sy19sOKNGFbr71inN7GKDUE/fmeV6paG63aWhwWC79TXwAXqNtnYV8xaHrlJ7wjqsTurTFewQn/LtzrP598m2HxKX7WzAif7daH3dqbNJZKhPkyi9OAwiUBPp2vPoaWvQggh7FVIqfcCrifo9IuIOfwiYk63923tH7zEXNnt/TlFviVQlxXoHnVGIuvYxDd6A3t1QUCP5S9VBzPqoogkWnW/Bc4vIuZwX+RN3q8fbXqBet3Q7f0KEYo6PRp08uTJTJ48ucsHvOSSS6ipqWH8+PFERUURG+tbmlNSIimuXWEtOQ3W9E2r49QEnucNAL40V/m8YTtRGc5ouB4IRpCmvu7XB5iqjsZABT2jzlpqax1E4ERVlrIAO4dJWDPqrGtyAk8PmGQSj9i0OhgirBl1OjSuaHs06SZvGYrdFyCk9FUIIZwlkNlhx6qjOFqNIp44inRo9KvuCGuPukBfSEz3Gc4XGq/hAPqSpBKIV/5rtXGcMYEfqzPYqfewQ+/l/MZf8EbU437bvxChokOBul27djFgwIAO73Tv3r3069evzcceeeSRDu9HdFyRZYiD9Q99sEyzBObWmBuDfvzOKrFk1KURXqWvvhl1gRsm8bX+1jt1dbgxKGDHaUuuJTC43r25C5ccgse3LMC+AQ7WjDrnlb7aM7G6LRFYp76G1jCJMkvzabsvQFiHlbzu/oDZrtNtXI0QQgjfftb+DTr1U5ns0HspoZzteo9f922nPTrfezvgpa+WRItQGc63TK+miFIG0vbn/q5IV6k8E3UP2fUnNg9LNBtZa+Yxzsj12zGECAUd+nh7zDHHMHv2bH72s59xzDHHtLlNeXk5//3vf/nLX/7ClVdeyc9//vM2t5szp/vp1aK1YsuVFzsy6oapQYxXI6nQlWxxeCkihHdGnQpSRp2nR10ayaQT3J+5wWRzqjqOPL2NNXwX1GN3VpVPo107M+paju2kYRJVusbbw8zfHxy6IlJZp76GVkZdoVlMOimkkhz0LNdDzXadxla9ixfd/+MD8wtWmRuYYIyydU1CCNGT+ZRx+jnopJRiuMphmV7NHvKp0jU+mdWh6jtzK/3IZLwxIuDnuqkkoVBodMgM5/Nk8Sd1oz9dWyJUBHdGzOcl91us0N/yQNNTPB91v1+PIYTTdShQt2HDBv70pz9x+umnExMTw8SJE+nbty8xMTGUlpayYcMG1q9fz9FHH83999/PmWeeecT9bd26lWeeeYatW7fyl7/8hYyMDN577z0GDBjA6NGj/fKN9TRF1tJXGzLqlFLUUcd29hCv7Zs02FGeYRIAKSTauBL/C8YwiUpdzV6a+2cMVzlBb1ofbURRTS17KADdfJXYCdlYbbFmr3Wn0W53pehE0kgmlhhqHDQpt8Dng4P9E5hDeZjEAUoooowiymzthwjNmQdRRFJysGdeWRhNARRCiFBUQSUD6UsxZWQEoN9arpHDMvdqoLmP8dEqtD/T7db72UNzRt1gnY1Ludp5Rve4lIs0kimmzKdSyqkadCP1NPePSwjA+e1PXN/nj02PEUUk+bqQbeYuBhsdr/ATItR1aJhEr169eOihh9i/fz+PPfYYw4YNo6ioiM2bNwPw05/+lJUrV7J06dJ2g3SLFy9m7NixLF++nNdff52qquYPsWvWrOH222/v5rfTc1lTpNNtyKiDlpTwamod3zy89GBGXSLxRCgH1012gfXjeaCGSVgHSVgHOwTT8cZE720nT4Wy/i4E4kSmoxJVAiWUs5cCCnFOL1Br/xd/X+HvilAO1Pn20rH/tbT2G6zDOcFhIYToiXbovexkH1XUBKTfWij1D+4I67nlNMs5ZyB5qqJCIaOu0qdixP/nt3Eqlt9EXEUEEXymv+YR93N+P4YQTtapCEVsbCznnnsu5557bpcP+Jvf/Ia77rqLG2+8kcTElkymU045hccee6zL++3pPE1HI4ggCXvK6zItV+cKdBEJyrlXPTwZdSlhNvEVglP6usHcwrHqKAAmqbEBOUZ7TjSO4RP3clCaV9zvObYHVqXPMAn7AnXpKsV723ql9q2mRSwyl/KpXs6DEbdwiuu4oK6rVFdwvJpIE24G0T+ox25LKE99LdDF3ttOCNTF0RKoq6XexpUIIUTHRYyZi24oRx9Yi8oYh4oKj17Ggc5gH8sIJqtxROBii7kTApuAFnAluoxT1HHsYT8TjeBkB3qqoiqool43+GWSaqBUWtqo+Lv01eMnru9xZ9PfOEfNJJYYTq+fy8KopwKe3SiEEwQ9lejbb7/l5ZdfbnV/RkYGRUVFbTxDdIQnUJdOStDLED36WN708yliCM4M1GmtveVYaSo8Tr6sglH6ulSvZpleDcAfVdv9KAPtFONYruL37NeFfKe3UarLSXXgv2eFdkbpq0+TYsuV2rvdj7NKN/f5e879RtADdbv1fpbolQBcbvw4qMdui3WYRKhNffX5EIb9ZcSxPoE6yagTQoSGiONusXsJAZHvczHH/xl1Y1zD+KppLQDKNPg98/x+jGD6wlzFIr0UgFFqaFCOma5S8Zy6F1NGXzKCctyusPZgTgjQhehUlcym6A/4WeOt/OVgRt1b7kXMjnDmxXkh/KlDpa/+lJKSwv79+1vdv2rVqsNOihVHprWmmDLAnkESHtYMDusHRqepodZb0hZugyQgOFNfvzCbAysRRHCMYU9GXYSK4BzXDEaroRylRrLY/MqWdbTHMygBAnci0xHW3pVFluEzkbolg6zQchIfLD7NrQPQM6ezIrAOkwitqa+BbBTeFTFEe2/XasmoE0IExsUNv2Ji/Q8ZWTeL6fU/tXs5juVpj5BEAnHK//2k+6jeDFbZAKzQ31KvG/x+jGCyo51EL0v1g3VQoBMFqwdzkkrgSuMCpqjxDFUDudf9BFoHblieEE4R9EDdBRdcwK9//Wvy8/NRSmGaJl988QW/+tWvuOSSS4K9nLBQrWu8gSfrH/hgs16dc3KgrkS3NFpPDfvSV/8rNyu8wwiOVqMCcrLXUacax7Feb+FL/Q3fmptsW8eR+JS+2phRF6UivWXxnsA+QLlqafK/SC+jRtcGdV2+J8Iy9bU7nNyjTjLqxJForWkKsQxW4Rzvm0tYrzeznT0s02so1M7pw+oknnPzQL4/TFVHA82Bm81maPep87xeCcQFbYKtdbJskcMDddYezIGuGDnVdRyNNLJF76Ra17DIXBbQ4wnhBEEP1N19992MGDGC7OxsqqqqGDVqFCeeeCJTp07ld7/7XbCXExaKVTlu3CSRwCDsy0q09qjLd3Cg7gAlaDSpJDFMDbJ7OX5nBLhH3Qa2spv9pJDEJJuy6TyyVR/v7d20ztR1gsqDpa8GBnHYOxHZE8i3XqW1TkAGKLIE8YLBGtR3QnAppIdJHHwtI4lwxEWIOCl9Fe14rmkBMXVjiK0fy0kNF9m9HBGCanStT2YPwDJztT2LcTDr65QZwOz10Wqod3LpajYG7DjB4On7Gsxzkz6qN6kko1A+F1WdKNDDJKyUUvwm4iomqFFsZif3uZ8I6PGEcIJOBeoaGxu57LLL2L6961dIoqKiePLJJ9m6dStvv/02L774Ihs3buSFF17A5ZLGkF3h+dBdQZWtTUf7qyxGqMEMVtm84f6ImfWXsdjtvHLE3bo5oFNKRdCukAVToEtfPa9fGRVkqyy/778zfAJ1Ot/GlRxe5cHS10Tibesf6eG5UltKBU26yadfo0ewSy08wSUDw+dKsl1COVDXi1RGq2GMUyNs/1kDKX0V7bP2VK0huNm8IrQV6VLebVrMzY33e++LJIIpajz7zIJu7bvuyVzqHk6k7pHk5v8/mdvd5drOOmwoK4DZ6wONfpRQjkb7HDPU1Ol6ymi+kBnIwOahEkmg9ODr5/TJr749mAM/yPAsYzoVuooM0uhPFvvMAwE/phB26lSgLjIyktdee80vBx4wYABnnHEGP/7xjxk2bJhf9tlTWf+Q97Lxg+5IYwiro9/kJDWZTWxnsf6K65ru4EcN1/GXJueM1LYGdKyBnnAR6KmvTnr9kkkkgeZgqyeA6DSejDrPOu3kyajTaEqp8OnX6BHsUgtP9m0GaY6Y4hWqU1/rdQOf6GWs15uJdMioPWvpa51k1Ik2WLMuQ72flQiupe5VnNM0j3+Zr3jva6SJ5XoNn+kVNq7MmfbpluBlIDPEQqVfdXsKsAY2gxeoS7e0MCrC4aWvlh7Mgc6oA3ApF2e4TuQAJbxsvuUdaidEuOp06evs2bN54403unXQp556ijFjxhATE0NMTAxjxozhX//6V7f22ZNZ/5D3tnGYhMdwNYhE4pimJjJdTWGzuYOX3W/x96aX7F4a4BvQsTvQFAiBnvrqpNdPKeVdw26935HNZT2lAcE4iWmPNZBfrEsppaLVNsEstTC16T0ZdkLZK/hOfQ2lYRJ7HBRA94i1ZNTVSKBOtMEnUIcE6kTH1arWf1M8lymdeuHOTu+bS8imD2cbp3KKCtx096wQaYPTnnxd6L0dzPOTdJXmve30YRI+pa9Buhg91TjaeztPh3YPRCHaE9H+Jr6GDRvGHXfcwRdffMHEiROJj/f98Pnzn//8iM+/7bbbeOihh7j++us57rjmN4qlS5dyww03sGvXLu64447OLqnHs/4ht3Pqq8cNkZfy84hLcCkXf2x8jE3sAA0L3B9ybYT907isJ3ADVF8bVxIY1oI3M8CBOie8ftmqD9/prdTTQCElZGD/QAIPU5veK45JQSgLaE+65e/Dfl1E7zYCUcE8MdynD3gHNjglUOdT+hpCze13OSiA7mHtySg96kSbLG9YdUh5tOi4Sksje48kEimnUgJ1h3BrN8vM1exmP3vMfO6O+GXAjuWTUUfoBup8++cG77yyFyne20UOL32t0tYedcE5x81VOd7beea2oBxTCLt0OlD31FNPkZKSwsqVK1m5cqXPY0qpdgN1jz/+OE8++SQXXnih974f/OAHjBs3juuvv14CdV1Q5FP6mmLbOqw8JWy3R17Hy+Zb7NR7+Vp/S4NuJEpFtvPswPKcwBkY9KW3rWsJBJ/SV619I3d+4Hn9Iokg0wFBsaPUSPapA5ToMnaZ+8hw2b8mjwpdxQD6EkcMwy0nF3aZrMZxrDqKDXoLm/Q2IlTrtgOFQQzUven+GIAT1ETmGj8M2nGPJCJEe9Q5KdPVQ3rUifa4LX1UJVDXddPqz2eD3oqB4qOoZ5lgjLZ7SQFXZcnm8chUvSjXleynkHrdYGvfZif5Wn/L1/pbRqthjFA5DDEGBOxYCSqOeGKppjakS1+LdRk59CeeOPoTvPdU6wXVYoeXvlqHuAR66qvHEDUAAwMTk02SUSfCXKcDdd0ZJAHNAykmTZrU6v6JEyfS1BQ6H4qcxPqHPN0BGXWHmqaOZo/OJ4f+rNbfMVmNs3U9EUR4e5tF2hw0DAQV4NJXFy6SSKAXKRgq6IOjW4lTMazTmwDYQz6TsHcSrVWFqmYX+wAYyRCbVwP9jEyWNa0GYLm5lj4qo9U2wTwx3KJ3kUYKn+uVPGjcErTjHkmkanlbbAqlQB3OC9T59qiTIIxozW3J6q2jHq21IwahhJo9Ot+btVqvQ6e3ZndYG9l79COzuYoD2KsLGKyyg7wqZ/rC/IZa6livN3OtK/CVLZkqnW16d0gH6gooYjt7AEgOUrYYNFdfRBBBE02OHyZhoulFClXUBC1QF6OiGaT6UahLMHDJe4YIa0H/lH3xxRfz+OOPt7r/iSee4Kc/tb8sMhT5DJNwYKBuujGFKCL4jq18Ya5s/wkBZGqTr/Rayqkkg7T2nxCCAjn1tUJXsUpvoIIqx5wAW8tvnTb5tUJXem8nBfFE73AmqFHeLKcv9SpKdRs96oJ0YrhL7+fv5kuUUMbJxhTGGSOCctz2+A6TCKFAnQMz6qw96qT0VbTFmlHnxqRaJr92SZ2lv19dD+n1Z21k/17kU1RHr2Gc0TKdVcpfW3xpfuO9Pc2YEPDjeaakllIRskNifD9bpQTtuEop0g9WRwV7uFdn7dMFFFNGPQ0kq8SgHXeEGkwl1azQ3zp+4IYQ3dHpjLrLLrvsiI8//fTT7e7jqaee4oMPPuDYY48FYPny5ezatYtLLrmEG2+80bvdQw891Nnl9UjWP1LpDil9tTrGGEvtwWyKL81V3MCltq2lgipv8CrNSLFtHYEUyOtK1ob1WcoZZcPWoITTTszLLWUByQTvJOZwolUUx6mjKKeSTJVOma7gODWBOl3fHLxWvYI2ndb6weE4FfgPDh3lO0widAJ1FbqKKWo8JibZZNm9HMB3UECNlkCdaM19SJ/MUsodMSE7lGitfQKclbTONAtH1kb2vVQyLuUiR2UzQY0igThKdbmNq3OWVJKZosZTSAm5anDAjzdSDcGNm2iiOKCLHXPxqDOsQbJ0gpsE0Uulkq+LgjrcqyusF3tTgniOa60G2a3301uFZ+KFEJ0O1JWW+kauGxsbWbduHWVlZZxyyintPn/dunUcfXTzxJatW7cCkJ6eTnp6OuvWrfNuJ2msHee56hNLDHEq9sgb2yBX5ZBGMiWUs8Rcgdt04zJc7T8xAKxvKqkk2bKGQLNOffV3Rp0Ts3aycW6gzmkZdQBDjYE86f4vaMgwerFUrwKa+4lt07spa2MSrL+V6nK+dLcE6qxTvOwWGYI96hp1IwvNz6mhlmz6OOYiRKSKxIULN27qJKNOtMF9yHtUma5wzHtLqKik2ueiQmUbvdvCUaW29sdqfn/tpVJYpTcAcBbT7ViW47i1m5fNtzAxmaTGBOXzlUsZfGWuBaCQEp/ztFBhDZIFu1qpl0oB3ZyJXqNrHfnZDpozJqG5P12E6nRIocuyVcvFyN16P0cT/j05Rc/U6d+qBQsWtLrPNE2uueYahgxpvwfTJ5980tlDHtY999zD66+/zsaNG4mNjWXq1Kncd9995Oa2pL7X1dXxy1/+kv/7v/+jvr6emTNn8ve//53MzMzD7ldrze23386TTz5JWVkZ06ZN4/HHH2fYsNaN150gnVSOVUc5suwVwFAGV7kuYLm5luV6Ne+Zn/E942Rb1mINQqSo8AzU+QyT8HOPOidOluynMlAoNNpxgTqnZdSB77/bfgq9t3uRwl4KAt5TRmvNDxvmUaNrmaLG48bNFGN8QI/ZGaEYqFujN1JzMKPGSUFPaC5/raLGm1UthFXrjLrAXygIN4f+za7UPSRQh3XiZHN/rF6WzKf2yga3mLuY1XAZEbgYZgzirah/BmahNiuj0nvRNlifE6z/Dk7vs3Y4xQd/fgyMoF/Yn6BG0aSaL3AV6GJyVP+gHr+jyg5mraaSHNTjOrmSRgh/8kuPOsMwuPHGG3n44Yf9sbsOW7x4MfPmzWPZsmV8+OGHNDY2MmPGDKqrW968b7jhBt566y1eeeUVFi9ezL59+zjnnHOOuN/777+fv/71r/zjH/9g+fLlxMfHM3PmTOrqnJcRoLXmC/0Ny/Rq9jqsP5fVJGMsi/RS6mn0Nv63g2+adngG6qwDHvwdqLO+IQ5wSKAuUkXSl+Y0eEf3qMMZGXXWE5wDuth7O0M1T8sNdE+ZpeYqCnQRa8ljh97DucYs74csJ/AJ1OnQCNStMzd71x2M/kOdEXuw/FUCdaItbu2bUVdiltmzkBCWzyGBuh6TUdfSo87TyL63z8TMsiM+f4u5gz3ks4O9LDNX+zwWOetfRP5wAa4T7ibyhwuInPUvv6072IotActeQWqPY/13CNUeYkUHf37sGJzWSCNf6m/4Rm/gAMXtP8EGWmvvhZXUICc++AbqnHXeL4Q/+S1PdevWrR2a2lpXV8ejjz7KJ598woEDBzBN35O0b7755jDPbG3hwoU+Xz/77LNkZGSwcuVKTjzxRMrLy3nqqad4+eWXvWW5zzzzDCNHjmTZsmXeHnlWWmseeeQRfve733H22WcD8Pzzz5OZmckbb7zBBRdc0OH1BUM5ld6Sh2A2O+2sM4wTGa2Gsl8X8Wf3v/h1xJW2lDdbM+pSVXCvAAWL9VU1Axios6ae2+17rpNZ4P6QAorYpw/Qt41ppnawZtSlBLHR7pFYT3BKLD18+qgMb8lQAcUMCFCpyn3uJ9nOHiapMfw84hLOc50ZkON0VQShN/V1ibkSA4MhZDPBcFYJiCdQVyc96kQbrBl1EUQ4vieTE/XcjLrm99coIolWUYBvxlhxOxl1numwzfuqpkrXkKCa+yO6sk9o/v+g0/y5ZFv49LEOVkZdJ/4dnMqzbjs+W3kunELr32+nqKHWW3UQ7Aql/viWvgoRrjodqLMOe4DmwNb+/ft55513mDNnTrvPv/zyy/nggw8499xzmTx5sl+DNeXlzR8609Kam0quXLmSxsZGTjut5Y12xIgRDBgwgKVLl7YZqNu+fTv5+fk+z0lOTmbKlCksXbq0zUBdfX099fUt2QIVFcEr3fCZShTkZqedYSiDPiqD9XoLACWUB+3KnpU1MBGuPeoCWfqqUIxQgynUJfR3SEYdNJeVeq46fml+w7muWTavqFm5T0ad8wJ11qbj2bS0AyjQRQHJmNxrFpBAHL1I4YAu4YfG6X4/RncppRhJcyPsUMm63aS3U08DW9nNaDXU7uX4iFXRoKFGetSJNlh71DXRRIFDs0ecbLfez0D6spN9QM8bJuHJpgPfjLGidkou8/R2n6836x1MUKP8tj6nsGN6aWf+HZyoTtd7pwrb8dnKMzUXnBuoK8G+z1P9VRa9SCGdVKKIDOqxhQimTgfqVq1a5fO1YRj07t2bBx98sN2JsABvv/027777LtOmTevsoY/INE3mz5/PtGnTGDNmDAD5+flERUWRkpLis21mZib5+W2nynruP7SH3ZGec8899/DHP/6xm99B1/heKUuxZQ0ddWhPATuuUvWEjDrrMAl/B+q+0N+wU+8ljWTvlWcnON6YyP3uJwFnBeoqrD3qHDJMoi+9MTAwMb3BkyQSyDIy8HxmzteFR9hD131sLuU1830ALnbNJlI58wSrgCJKKA+JHnVaa+8HzgH0dVzT6ZbSVwnUidbMQ3rUOfVDqZN9Y27wBukAKqk5wtbho+pg6Wui5b01WkWRSDyVVFPcTsllnukbqPvO3MoEI/wCdUU+pa/BCTql+5Qgh15GnTWz147PVlmqJVCX79C/iWXavp7fUSoSFwZ5bKfGlHMLEb46Hajr7jCIfv36kZjo/8ySefPmsW7dOpYsWeL3fbfnlltu8ck0rKioIDs7OyjH9uk94dBhEh6HBuqOYmTQ11DWA3rUWTPq/Dn11a3d7NUFgHMGSXhMMcYzRg0jTaX49K2xW7l23jCJSBXJGcaJVOgqlunVQPPvQiYtpRaBOjH8Qq/03j7LNT0gx/CHXiqVEl0eEk2wCyimnObMzVwjx+bVtDZejSSReJpw02A2EGVE2b0k4SCHTn2VQF3naK350vRtGVPVQ0pfPRfCEvG9aNhLpVKpq4/499vUJo00MJbh5FNEpurF/8yP+AnfB8C9+3Nw12MW52H0ygVXtLccNtTYEXTyLX0tO/yGDlWkS5mmjsbAYIRqf1Civ2VaAnUFOPNvonXwjx0VSpkqnQO6hAKK0Frb0k5JiEALbndM4MEHH+TXv/41O3fu9Ns+r7vuOt5++20++eQT+vdvmYyTlZVFQ0MDZWVlPtsXFBSQldV2fy3P/QUFBR1+TnR0NElJST7/BYs1pTzdwaWv4IwpPT5vLDL1tVPyKfL27HJaoC5ZJVJFLZ+ZX/M/8yO09m8mYVdVYCl9dUhGHUA1tXyuV3gzxtJUss8V3P36gN+PqbXmc/cKoHlgwyQ1xu/H8BdP2U4FVTToRnsX0448c5v3dq5yXqCugEI+1ytYqldRrnpGSZ7ouEOnvjo1e8Sp9pDPXnzPVyt6QOlrnVlHPc1DjxLwHUaUfvDvdwnluLX70KcCzWWvy/VavmUTZVSwTm/mY3Mpf25sHhrRuPBnNC74Ie7Pb6VxwQ9pXPizwH0zAWbHBf10a+lrCGbUHdDFfKG/4XO9wuecOlh8AnXame0A7Myog5bXqIFGmRYuwlanA3U5OTkMHjz4sP+1Z9KkSdTV1TF48GASExNJS0vz+a8ztNZcd911LFiwgEWLFpGT4/shZeLEiURGRvLxxx9778vLy2PXrl0cd9xxh/3+srKyfJ5TUVHB8uXLD/scO1lTyp08TAIgG/sDdT0ho87wCdT5zy7dUlrjtEAdtAQpKqhqNQXPLk7MqIPWAZ0UlcQwNYjTjKkMUv1Ypzf7/Zif6xVsYzeT1Bjmu+YSq2L8fgx/Se/E5EC7HdAljGQI49UIhqlBdi+nFevfWevfXyGgjYw6h/ztDhXbzN2MZiijGea9r8pBWeWB8q65GICpagJXus7zecwTjDIxKbNcLLP6wpKFOMs4gdnG6aSRwl/dz7Hd3BOgVdujyJpRF6QL+nEq1tv2IBQz6qznkNaLmMGSQcvnYadmGZdqmzPqQqCPnxDd1enS1/nz5/t83djYyKpVq1i4cCE33XRTu8+/8MIL2bt3L3fffTeZmZndSlWdN28eL7/8Mv/73/9ITEz09pBLTk4mNjaW5ORkLr/8cm688UbS0tJISkri+uuv57jjjvMZJDFixAjuuecefvjDH6KUYv78+dx1110MGzaMnJwcfv/739O3b19mz57d5bUGSqgMk4CWKaHxxNr2xt1II3HEUENdj8io82fpq1Mnvnrkqhze53MANprb6OPqbfOKmjMaY4lG09xTwykODdSlkkSO6s8yczVV1FCqK9js3kG9amC0GuaXkoJ15iaySGeFXsd1xsXd3l8gWS96FOtS+ij7f5YOZw/7+Y6toJ15sSbN0gvU2nxaCGidUVegi6WMqRP2kM96mod0RRFJA409IqNurd5EL1L4Uq/iFnW1z2O9SMHAIJkEvnCvZIDqw2Z28mPXGd5t9ukDpJFMCeX8KuJnvOZ+nzf4sPkxDgRo5rk9GnUj8cRRTU1Q3yN6kdI85MsZBQ6dYg38ZNoQqItUkaSTSgVVuLX/zuP9qYwKkkiggipbMuoO7eM3kuCXKAsRaJ0O1P3iF79o8/6//e1vrFixot3nf/nllyxdupTx48d39tCtPP744wBMnz7d5/5nnnmGuXPnAvDwww9jGAY/+tGPqK+vZ+bMmfz973/32T4vL887MRbg5ptvprq6miuvvJKysjKOP/54Fi5cSEyM8zJArCnlvZ3eo44sskgnnyLW6I22rGG3zqeGOuKJJVHHY0NGe8AFqvR1t24ZpuLEjLrhluDTJr2dk5li42qa7dL7qKWegfSzeyk+hreRURehIphijOdjcynlVDK28XsA7IpeTIalf11XPdj0NPkU0Y9MzjVmdnt/gdTbcjXb6RPrnH6xRjLqxJEcmlFXQy1V1PhM8hSHZ/39jyWGBhqpDPMedVW6hj+7/4WJyTFqLKcZU30en2oczf/MjyilgvOamj+zRBPF6cY0b0DhY/NLSignkXjGMowlqqV/arhl5+zQe6mmBgODVJ0UtPPeDJXGHp3PJraHXPDdN1DX/fOfrhik+rFCr2Mdmxz5+uXrQiqoIpoo+hH8i/eh0MdPiO7qdKDucM444wxuueUWnnnmmSNuN2LECGpra/1yzI70oYqJieFvf/sbf/vb3zq8H6UUd9xxB3fccUe31xho0TqSyWoc9TSQZukJ4URRRhQJKh50EZv0DkxtYqjgtkks1CUAJBKPYQS9RWNQBGrqa42u5Vh1FFVU+5QxO0WuymEEg0lRSRQd/He2k9baG0hPdNCEXIARxmByyaGAImKJYbwaAcAJxiQOmMVsYzfVNP+dztPbyejmiWqlrvb2URqg+hKh/PbWExA+GXUO76/j9Is11una0kdGHMqaUTeYbDJUL/brQhKVBOo6wjrRcwSDMZVJFM7J3g6Er8y13p+bo4yRrQIYg1Q/7/uXxziVyzZzN0e7RgMtrTwSiCPOiCNTt7zH/avpFabrWpz1rt11ngzLGKKJNIL3s9F8vg+NNFFDLfEh9Ipae2VaSyyDKUklgIZ6Giin0nHtenYdrLKpp8GWqgPfPn4SqBMd86fGv1NDHTXUcm/ETUQrZw8481uk4tVXX+1Qj7l7772XX/7yl3z66acUFxdTUVHh85/onNV6I1/ptazRGx35Ie1QI1RzH8Na6thNfjtb+5+n35TTJ+R2h/WU1fRjoG61/o5lejXr9GayDQcG6owcNrKNZXo1X+pVdi+Hamq9za6d9vPWX2WxJuYt5rku4jLXuVwdcSEAv3Zdydcxr3O8muTdNs/c3u3jbdIt+xhhtN/L1G7WzDRrI24n8smoc9jPGfg2mZaMOnEoa0bdNnazTK9mjw7+uUGosvbQbFSNfK2/5Qv9TVhn1X1qLvfenmoc3erxKcZ4nwuWAF/rb1msvwKgXjewn0KgpTrAGoxZpJdSHkblw+W6uU9fMsEdaGXtWxZqF2nydaH3th2lr+D8HmyedjgKRT+VGfTjZzn89RHOU6Nrucv9OA+6n+Zx979ZpTfYvaR2dTqtYcKECT5Xr7TW5OfnU1hY2KqktC2zZs0C4NRTT/W535PW63a3PaFJtM3T8DSdVCId1APrcHJVDm/zCQCbzO0MdPUN2rFrdC211AHO7OXkL4ErfW1+U44gwucN0il6k0YqSZRS4ZfgUndZMx2cOpH50Em0nr/tA1Qfb18Za5Ctq/Is+3DiZNJDpVv+PhQ5fJiE9eeslwOzqkP5w5oIvLamcto1bCoUWS8kDFB9+ebgB489Op+RKvx6Nrm1m/+632W8GsFA1ZfjjYmttklU8VxunMsr5ns+wyQ8WXZ7dcuUXE+grvXAgBBsrHYYnoy6YE+eP/QiTX8H9jY+nAKaJ60mEEeCTRURh/Zg+3/2zjs8jurqw++d2V3J6rZkW5YlW3KRe+8d021675gOCRAHAiQEQiBA+EiBEEIgIRAgdDChg0MxuHe5d1uyJMtVvdiSduZ+f0i7mrXVVtoq3/d59LDenbn3rFjt3Dn3d35nAKG1yen6nk4mKSiqpGTRlRliPNXUuO/tFIrmWGVu9LgvXmquZaI2MngBtQKvE3UXXHCBR6JO0zS6du3KKaecwsCBA1s8f8GCBd5OGbYckUXE+VGqLKV07yIEa8fHW6zeWAvNlZyhTwnY3MHofBUM/FX66roo9xTd0YXus3F9hRCCASKD5XI9+RygQlYFbYEF4dGRea5tTqPPP2i/g5er3wfqGnO0l81mQxfZcEjUWZVp+WZoJw1cipo4YkKqYYkLj9JXqZpJKDw53qMOII/Q/psLJawemn1FL/fjPLm/Q5qr75F5HOUYOXIfnUV8k365Q7T+vGy+7/FclaxL1DXWGOv4NbQv107BxJAG5dSpKwPdeT6cN2lC4d4q2VJOGmoebI2pUgNNqujuVsnazNC2U1GEBl+bizz+vUPmBCcQL/D6k/3oo4+2a8IZM2a06/xw4rba3/At//Hb+KWUc4xqIHhmp95yqjaRC7XT+dpcyOfmDzwm5wbMp8668xyqiRNf4I+ur+Wy0r3QCkV/OheZWgbLjfUA7JQ5jBKDgxZLqJv8N0cPunKWmMZauZm1cnO7jYzXy23EEs0g0ZfhouUNnWDTl15MFqPZKLezS+YGO5xmcX2vhep3WjjfrCn8z/FdX0Ep6rzBtSEUTScyRJr7+dwO+jv81PweDY0kOnORdnqTx83RLyLP3E9frRc/dT4KNCjqrIlgV5IhkQQEwp2g6xhpOtxJOgi8oi5cN2kqZBWVVNGTZMaJYUGLw9ODrTBocTRGY6rUQBMtokgkgUJK1OaOokWqZQ3vGV8QRV1j0Dhi2G2G9voe2uBRp+s6hw4dOuH5wsJCdL11KptFixZx7bXXMnnyZPbt2wfAf/7zHxYvXuxtOCHNGnMztbLWb+MfDAGzU29J03pwSBYhgQyRygZze8Dm9iwRC6/EiTf4o/Q136Pja+iWLwwQfUgkgVR6MLf2CTYG8PN1PFaT/6QQTaI0hRACTQgOU8QRitnZjl0np3Sy3FxHOZXkywOkiG6+C9RPJGmdyZUFlFPJarnJr9/j7cGQBkXU3QCFqkpYedQpmqOxzSSVqGuaw2YR3xpL+MT5LRuN7Q2JejrXWRbUs8zM4tc1f+KWml93KP+mI7KI/RzmCMUM1vo3eVwnEcmTjnuZrI1yP1dZr6g7KqsZJPrShXj32lkXOgnEogWqJWqAKJENpb9BVdSF0Xd/vtyPE4N9HPBYTweaUPaoOyiPMFT0J5mkoPjTuXAlCffJg43aKCgULlaa6xki+lOLEycGBzhCASfms0INrxN1TXVara6uxuFouUZ93rx5nHXWWXTq1Im1a9dSXV2nCCstLeX3v/+9t+GENFUcJcvc6rfxrV2JTvTXCF2u1M+hmhq+NH/kY/PbgM1rNV0Ot8SJN2geijrfJOqsN069ROB8Bb3l5/ocPnQ8zyGOsFJu4A/OfwUtllA3+W8Jq0n3EnNtm8fZKHdQQVX9mKPapcwLJK73X8VR1sttQY6mcYopcyfjw0JRF0Y3a4rAYC197VS/052nmkk0yYvG25xbeztXOH/Oz2ufpNCVqBcJHsqWt8xPecZ8jTfNT/nWXBqscH2OtZtrNJ1aPD7KYn9RVX/uHpnLVrmbIko9VEv7I5fygH4bAEOuT2XRz74m8uelRN5TTuStwdv0aw9lFo++oHrUhZGaOs9jYzp4FSTHe9SFEvs4yCa5kwMcCapntev/jxOnuxRXoWiM98wv+UYuwYlBLHVd5Y/K0Pc2bHXp61//+legTmnxr3/9i5iYhi98wzBYuHBhqzzqnnjiCV566SWuv/563n33XffzU6ZM4YknnvAm9pBnqOjP2+ZnjNeH+2V8q2dBuHjUAczWZ/Az5+MALJVtTwB4i2fpa/glTlqLfxR1B5ksRiMQDBDpPhnTH+hCZySDsGMnmSQqqKRcVhIrogMeSzg0k2iOGdp4pooxFFPGa8Y8UkVymzwlt5vZzBQTKaGMSRZ1Q6hzpj6FQ7KQIxTxQO0f+Yf9d/TX0oMdlgdHZDFTxBgEMEj0C3Y4jdJJRHKGNoUqeYyYVtxYK04urKWvI8VANDSi1OekSeyWZXsplUzVxuCUTvqJ3qSJHswQ49kot7uVtgBLzSyu0c8PRrg+x6WKg9Yl6qzHuJJ8VRbj+WjhOYZHciTEfMHagrV7beC7vlpLX8MnUZcrTyyNDgbJJDFNjMXEbNQiIJhYN6K7asGzXrJW+OTJ/WHVsEQRWJaaWUCdj3tnEU+hLPG4FoQqrU7UPfvss0Cdou6ll17yKHN1OBykp6fz0ksvtTjO9u3bmT59+gnPx8fHU1JS0tpwwoJNciflxjH+ZPslNuF7o0urZ0E4JepSRTK9RU/2yn2sNDdQY9bg0PzfMchquhyOiZPW4o9mElvkTndS9TfiTp+M6S86iUiu0GbxqjmPXHM/K80NnKZPCngchR6lr+H3eRuvDee39rs5o+YGAL4yf2xTom6lXM8CuRyAP2gP+DJEv3KtfgFHZDG/cv4JgLVyC/1JD25Qx3FQHmGJXAPAePyzIeQL9smDbJG7cGDHKZ1+uR4qwhOrou4YNWTVdy2tlFVEB7EZUKhiVcmXUsamenuHFNGNGBFFAYc8knRQ19muo2Dt7hglvEzUyRMTdS6/IheevmDhn6grkw2JujgR2NLX8FXUWStIgpeoSxBxbJI7KKaMvbIgaHE0hoe1SxC7zVsTqXlyP5MIn81gReAolqVskbuAug1B17qjyqLQDlVavVrOzs4GYObMmXz00Ud07ty2G8/k5GR27dpFenq6x/OLFy+mT5/Qaj3dXoaIfkih8aO5yi+JgjxzPwPpQ5Lo4mEiHA5crJ3JEnMNOXIfWWxlAiP8PqeBwQgxEDs2ugTxwhJIzCZK1b3F2hlnoBb6f6fT9HG8as4D6m5SgpGoM2Td5y0SB4lh+nkbKBr+X2+X2W0aw3peOHR8tXL8IjDUCBdV9QCRwRa5ixpq2SsLPLpTKk5urEqRBEuZ9BFKiEYl6o6nzKKQKrYk5FxJmAlihNtTNJIIBoo+RBLR7oZAoYJn6WvLn48IHGhomJhU1VswHLWo8jodl+wbrw3nDfsf6E4SA8JgrdMSpVg96gKrqOtiUdQVhVEzibwQUdQJIRgg+rBcriOfA1TIKmJCZPMiVCqUBoo+TBajKaSYbDMfWmeVrzjJ2G3mMpwB6EJnijaGVeZGAGqoDfnNY68jW7BgQbsmvPXWW5k7dy6vvvoqQggKCgpYtmwZ9913H7/5zW/aNXaosVnuQkidLXIXp+H7RMF2stnGHpB76B3CvmGN0Uek8az8N1CXSJmg+T9RlysL3F5T8QH26ggk/ih9dSVb4omlO6HfYdjlLxaBg2yZF5QYdslc9+ctVP3DWiKJznQhniJK2W62MVFXf15n4uhKF1+G53dCPlEXJqrqTEuCdrvcQ19Uok5Rh1VR11nEudttFsrisFvXBAJrcs7l/QkNSZghlhJ4BzbWyTqf5GNUuz0AwxlvS1+FEETTiXIq3Uq65hR1PUV3Ltdn41z2FLLmI2oObUB0G45wxGOb9KCP3kXgCAVFnUB4JEdDnQoqsWHDiTOoiTqAAVoGy411AOyUOYwSg4MajwtrhVIwN6LTRA93tU9bN5MVHZ9c9rOB7SDhUnE2USLSvdY4SjWx3qfDAkabIsvPz+fTTz8lNzeXmpoaj9eeeeaZZs/91a9+hWmanHbaaVRVVTF9+nQiIiK47777uPvuu9sSTsizXe7x07h1X0qxRAfVzLMtTNXGuB8vNbO4hxv9PmdpEE11A4mvS1+r5FFy62X3A0RGWOzK96IH08U4lsosPjG/o1bWYhf2gMbgal4SRadWleiEIkIIMkVGm3d0K2QV+dQZM4fLZ8dK6CfqwqPz9wAtA5dwarvMZjanBDUeRehgVdRZPa2sHkiKBprqnOxa08yxXcxsfQbdSeJK5z38YK4A6pRoHSFR51LF6eg4aN013ZWoa03pqwvnptegogCEBvmLICYlLBN1wVTUJchYOhNHMWVh5fe3Te7BiZMedA2Kv7GVAR6bXNmMIjQSdaFi7dJP9EYgkEh2qESdogk81soi0cMHt4qj7uYSoYjXibrvvvuO888/nz59+rBt2zaGDh1KTk4OUkpGjx7d4vlCCB566CHuv/9+du3aRUVFBYMHD/ZoTtHRaKsSpTmOymPslfuA8LwBHiAy6EE3uoku6N43H24TpdJqqhvYncVAIjy6vprNHNk6dslcJomRlFLBcG1Au8cLBEIIuosknNKJEycb5HbGiKEBjcFVGhCuZa8uhosBlMsK4kSM1zu635vLyBTpRNGJsdowP0bpH7qTiB0btThDMlG3XzZ0OQvlzt+DRF/60ovOIo598mCww1GEEFZFXRfRkKizeiApGrCa8meQSjb5QMOapouId/8erdeeSo52CG9eV+lrNJ1ave6NEp1ANvgRWTv9dYTkZXNoUmOMGEI1tSRYEuGBQNd093o0nP6eXZsEDuF/7+yWGEJ/MkknTsSy28wNmdJO1+/Iho24ACeArUSKCNJFT7JlPttldocp8Vf4lgPHbWpbv/er5DEI4Y+M1xmSBx98kPvuu4+NGzcSGRnJvHnzyMvLY8aMGVx22WUtnn/TTTdRXl6Ow+Fg8ODBjB8/npiYGCorK7npppva9CZClW71ZV7+yPLvknvdaqnMMPN9AtCExkCRwXq5jY/Nbz06ZPoLV5v6CBxEhMAF2F/4uvR1u9zDUpnFZrmT3qJnu8cLFMerNgOJlJIj9Yq6cGwkYSVd68lmdrFMrvO6tOBVYx47ZA4b5HYu0s/0U4T+QxOau4tYnjzQ6vOOyWp/heRBuHjUDRb9yGM/q+Um5puLgx2OIoQwZIOirouHoi58buwDibX01ZWkg8arBKxK7qowKj1sDpcqrjVlry5cxzZ0fa37byQRaCIwG8XBYi/7WCM3s0nuIDYI/mYu/7JwUcga0nA3YwlmkwQXw/QB7CCH1XIjP8qVwQ7HjeueLYmEoCfGXKrDcio9OvYqFC6sa+VkkVRX+lrP0RDv/Or1FWrr1q1cf/31ANhsNo4ePUpMTAy/+93vePrpp1s8//XXX+fo0RMXDEePHuWNN97wNpyQZqo2liliDJkig3Kz0qdjH5JFnCImMFGMZFCYGt5ajXoDIVl2KeoCLf8PNJqPtwbCtRnAZDGKSfU/m+SOgM5dSrm7pCtc/elcDLA2lPBCHbzW3MwKcx3TxFiGiwFMEKHblbQ5ztFmMF2Mo5tI5IB5uMXjy2QFGdUzGVd9MZOqL/frDbJLzm/HRmeLEX+oESEcjBZDgDqfnY7QTVHhGzwVdQnux0fC5MY+0BQ3UfraWJWAtayz0uJnF864kmydROuVcK5E3TGqMaThLn1tquy1IxHsShKXqrOMCmpkbcDn95YSyt2VKMFskuAiRXRzb5CvNDeEzO/QZe0SCr+ji7QzmK3NoBuJfGJ+G+xwFCGIZ+lrksd3f6h3fvU6URcdHe32pevRowe7d+92v3bkSNOL77KyMkpLS5FSUl5eTllZmfunuLiYL7/8km7durXhLYQygiVyDYvkao9sri/Ilwf4Qa5guVzn0SktnLAmfbaZ/vHxs+LqlhZoQ91AY93d8kXp63bL/5twStQN1vqxRe5imczia2Mh0kcdcFtDoYfRbvAXMu1hwHGNAFrLEnMtJZSzSK7mJu2SkO6q1ByRRLJQrmKHzGa5XNfi8avNTZRRyUa5gyy5hdVyk99icy0+upMU9F3tlphS3+BFIMgytgY5GkWoYFo86qylmYVhVCrnbzaa2ymRZewwsz0UdVYaU9RZVWeVHUVRh/eKOg9lIcfcpa8dvewVPLsExwdh7dtVNDSQciV3QhmrkjdUSsUni1EAVFPDZjOwm86NUSWPulVIobARPUIbxJfmjxyikFXGpoCu9RXhgWutrKOTSMJxHnUdTFE3ceJEFi+uK12ZPXs2v/jFL3jyySe56aabmDhxYpPnJSQk0KVLlzpz8sxMOnfu7P5JSkripptu4s4772z7OwlBuouG7pi+NlK1XnzDNfFkLdn1t6LOlKb7d9bRFXW+L32t+39jw0Yfkdbu8QKFLnQmaiMBOEghu2VuwOY+4mG0mxCwef1BuuiJvd7O1JvS15eN9+lFCv3oxfW2i/wVnt+ZrI1yP15irm3x+H8b8zw8W1pzTlswpYmGTgapYeEdOU4MZ7DoRxfiWSHXBzscRYhgVdQlaZZEnVLUAXV/51fU/JzU6mkMrzmvyZuKRhV1wtMwO9wxpEE1dUIBrxJ11oQlRxsUdWHa5MkbSqWliVoQDNOtiZxwKGc/EiJNEqxM1kYxUPQlnli/bvy1lsOyiK50oS+9GEDwN+9HaoOYKSbQR6TxmfzO3cBMoXBxUBYCdZZkutCJFBHu16yepaGI1xKHZ555hoqKuoTHY489RkVFBe+99x79+/dvtuPrggULkFJy6qmnMm/ePLp0adhlcTgc9O7dm5SUlDa8hdClm2UnydelPsHs5OQrBmgZCASpJLt3Sf1FBVXupFW4JjZbiy+7vprSJAIH3UgkQcQGvHNqe5msjeI7cykZpPKZ+T33aP7vLgx4eC6GQmlAe7AJG33pRSElROLAaTqxac1fOpzSyW6Zi4HBKDHY46IYbkysT9R1Jp6vjIUUy1Jm66dwcROee3tkrlv10osefrs5KaeSA9SV4vYh9BPoQ7R+bHHuAgJjdaAID6xdXxNlAtF0Ip44bKHimh5kNprbSSOZPeQhgFii6UQkhZTixOk+rjFD9+jjElThjvU9eJNk80jUySp30vJkKH11bVBH0Sko6zerKi0cytk9qiFCZJM1U2SwTdZVr3nrE+wPCinhMEUcpohTRdMCnUAyUhvEAqOuw/V2M5s0vUeQI1IEiqPyGKvlJhY4l1FCBdfazme0NsT9umEaJIg4nNIgRXQHOK70tQMl6gzDID8/n+HD67yGoqOjeemll1p17owZMwDIzs6mV69eIV+m4wu6WhR1vk7UlUmroi48E3UpshuROMhjv99UJy46QmKztVj/ssx2Jupy5X5WyY0ATKXlrs6hxlXaubwu/stOuZd/GR/wM/16dOH/G8AjHuUTCX6fz98M0zL5wPyaw7KIvRTQl17NHr+fw+4b8LT6ZgzhShcRz96IH/hb7Zv8zXyTN81P+dFcxXnazEZvfFzdYTU0ctnPx8a3/Mn+K5/HVSQbSuBC2Z/OhUuZWYvTqxJqRcfGqqiLEVHUUEsBB9khc4IXVAjxoTmfH1kFgATKqKSMSjoTRzENfnWNlTVaE3VVIa4aaA3WRF00rW+MEG1J6pXJCmqo8/k6GUpfXYq6YK17PRR1YVDO7rHJGiKlr1Y/75BI1IWgtcvxFVqnMzmI0SgCySa5kzNqbnD/u8B5kHcdf3H/u0iUslnuBGAEAwGOK30N7U0sr0pfdV3nzDPPpLi47V+2vXv3difphg0bRl5eXpvHCnW6YSl99auiLjwVYpqm0bP+Jj5XFvjVV8Ca2AyGT0cg8WXpq1X50kdrPjkTivTSUugtejKE/iQQy3+NbwIyrxMn08RYJogRdLMk7MOVDEvJc2vUUHmWzltpIvx3NruLJJK0znQikkQSmKSNZIu5+4TjjspjHKIIaNixy+cAFdL3Ru4llpv0BBH6iTq7sNNX1H2H7JR7Pbp9Kk5erIo6m7ARW1+eV45vG3CFK011LB9MPw8VXWNljR2t9NXamCfKi9LXXiKFyWIUk8Uoj+RmlBcNKcKVBm/mICXqLImcX9b+ketq7ueWmoeoljVBiaclrD56oWJb0p1E932eNw29pJTcUfMIc2p+yZjqCymXvvlODUVrlwGa1Us5+MlMReA4fuN3qbnWI59gFUola0mA5yZNqG9iee1RN3ToUPbs8c1ueE5ODrW1odHBxh94etS13C3QGzqCog4abuIrqPJIPvqajpDYbC2+LH316Pgapt2Ff6nfymZ2skZu5g3z44DMmSv3s0iuZoVc79XOf6ji7SIoTzZ4hHSERB3AXNscfmO7k0JKeN/8iqXyRBXwPnnQ/dha8rPTD+oga/fHcGko5GpMUk0Ne2VBkKNRhAJWRZ2ORowrUWdZ45ysVMsaVtcr2hOPU2YP1Pu6kzA2bI0267FeezpG6WvDhke0F6WvTulkqcxiqczikOWmrblkn5Y6Fa33aRCbitb7NLTUqW0LOogY0nAnvIO17rUmcvI5wAfmV7xpfkKW3BKUeFqiMARtS4QQ7mtnLgWt7iS/U+bwmvkR75lfsFnu4i3jU5/EE4q/owGi4f5kg7k9iJEoAs3xyetDFHl4kluFUt2pS9RZN2mOdqTSV4AnnniC++67j8cff5wxY8YQHe25ixcXFx43DIHA06Ou0Kdjd5TEk7UsLk/u95sypKMkNluDVVHX3q6v1p2KcOr4amWGNp4pYjTV1LLV3EW2mU+GlurXOYPdac3XeHZ+PfkUdS5GWJo2NPZ7yD3ufefIfe5jRzHYp7FYFXWdRbxPx/YXw8QACsQhTEz2y0Nh4a2n8C9WRZ2OTpyIBgnl+F6FGm6sMTfRjURSRTJdRWc+Nb93v3aBOJ2NYjtTtDGMEI03k4k+zpst3PEsfW19oq6zZV3pUjxD86WvjlmveBld6GFVpQZr3ZsqejBTm8AGczs11Lj/rpeaa93NvkIJJwZjxBAcOE5IjgeT6do4NFOjmDJ2mDmM1Ae1eI7VUqgbifzB+TI36pcQIRztisXqNRgqnXETRQI/1a9hubmO1XIj++RBetb7kSk6NtYqn6GiP5FEki3z6UdvAA5amnkmi/pEXRiVvnqdqJs9ezYA559/vofPnJQSIQSG0fpylmnTptGpU8ftutSFBHR0DAwOmP7xqBMIYsJYsZNGw018ntzPMPzTvbBEdozEZmvwZelrrtyPQCCRZIr0dkYWHIQQzNQn8oTz7wAsk1lk4N9EXansWJ6IVv+PTeaOFo8/Iovcn5uOlKiz7to2lqhbYa5zf+cPEBkskquxobPEWMOV+jk+jSUcFXWxItrteVnAoSBHowgFmlLUHeUYTulsVCl2MlAja1loriaP/eTJ/Tyo3c6nNCTq+mppLLS93ewYHa301Xpd9ab01boBbPUga23pa7WsYa/cR6YWXpuVpdYNwyCte9NEMgvMFR7P6ejkmfubOCO47Ja5rJGbgdDp+gp1G77L5ToAdpDNYaOI/iKdrXIXI7RBpIhu/Nf4hunaOOzYeMb5byqpcq9HDlFIb1L4yPgfV9nObVcsVq/BUGm4ARBDFGvlZmKJ5omav/Ok4166hMkmpqLt7Jd1FYs2dDbVe9HtkQ22ah6lr6IrEF6lr16vgBYsWOCzyb/88kufjRWKaELjAu005puL2MZuqmVNu3cyXJTUK+riiEETXlcwhwzWm3irGsXXuBSInYmja4jsAPkLzSNR13ac0skScw0ROJghxoeFD1ZTTBFj3I+Xmmu5Wj/Pr/NZFXUdoctwnIjhPv1m/mm8xyq5kSxzC6O0phViu2UeGhpJdKYHXQMYqX9JFAkk0ZkjFLPd9LSAkFLymfk9BganiPHcrl3JIYr4wvyBT83v+IN8gE4+9ERydZYFwmYx6mEsHgYdABX+x+pVqKMTW6+ogzpFUGfC47Pta0ZVn89uGm42ztam8ZTxD/e/U1vRpKejdX11rXsT6UxvkdLq87pYPkPWJENrkn2X1tzNt+ZS4ohmb8SPYdUIr8yS2AyWoq6ziKcbXdxKRjs2NDS+k8uDEk9LWK9LXULou8da1bDB2M7L5nvuROzP9Ru4Xb+Sa2vvQ0NDQ1BNDQJBf3rThzSOiGLWyM383niJy/VZ7Wqq5tkZN3Tup+6yXYtA8JLxDv+W84h1RvMH+wPBDkvhR0plOavkRmKIYrQYwkJZ13jJWu5qrWjsLk6C0ldX99b2UFBQwOLFizl06BCm6Vma97Of/azd44cSnYh0L5DWys1MEqN8Mq7rAhwX5mqdPloamaSjC51l5jru4Cq/zOMyPy2mrEOUIjaHr0pf18tt7s9uuJcLj9eGEUMUGaRSYlEi+YuOpqgD6CV6UMlRhpHJpTV3c5aYxqW2s3jT+JR/2H/n0QH1oDzi3sV1Sc07CmO1oeSZ+zlKNdlmHhlaXflmttxHpsggV+6niFKG6pnYTRvRdCJTZPCO8Tk32S71WRwlYaios5bJHAmDDoAK/3O8os66pimn6qRN1FXW3zwI6hJT48RwOhOHgUknIlq16etZ+hr+iTqXpUIhxV6t46ybjFYlclQrur46cXKMao5RzS65l/5hVFngqagL3jqkNz3diToHdio5Sp7c767ECiVc16XOxIWUmteaqJtnzqcvvVnLZmKI5ivjR47JY4wQA8mSW5BIkkmilHKkgJn6RD43FpBALINEX7LMrYzVh7Y5Fuu1O5SED91EIrfbruRp45+AaipxMrDcXIdEUkFV3b1G/SaftdzVmrRLrveoi5adGERfbMJGBL4RUPmLNn0LLVq0iH/84x/s2bOHDz74gJ49e/Kf//yHjIwMpk5t3nD1tdde4/bbb8fhcJCYmOjxJS2E6HCJusnaaN4y6ww8l5pZTNJ8k6hzXYDjwzyBMkWMxhSSHXI32TKfIlnqF3VIKJqf+gtfNZNYbKx2P56ijW5XTMEmWkQxWPRjpdzARnMHf5WP+FWF5FLU2bE164MTTlynX8gkMYqptVdRTQ2vyg95tfZDAM4yp3GFPtt9rOvCmERnjwReR+BK/VxuMH8JwAvOt/iT41cALDZX8675BQA3a5chhOAB2y3Mr1nEIrmafOcBrtMuwK755vdR7OFRFx6JOut3r7UETXHyYh7nURcjGqw8ymUFhNZ9fMA4RjUAfUVv1jk+QRMa+yOXejVGRyt9tXqf9vJCUWdN9haZJe7HzSmcaz48B1l5iNcq95Id5eRwJ41rLvwF1+jnM9c2x7vAg4Snoi54G9RdtHhc+fg4YqjkKEc5RiElIeNx5sJ1XQq1+4Q+Ig0bNpw4ySafHPYxiL5sZTfbyWa7mY0dG9eJC7nTfjWfGt9TI2u5xX45vUUKEUSwyLmaT83vGCz6tStR51LUdSLS4zsmFOhBV+KIoYwKlag7CbD6ME7XxvG++RXgWe5qTdq5FHWdRCRb2Q0SBst+AYq2bXhdMzlv3jzOOussOnXqxNq1a6murltMlJaW8vvf/77F83/zm9/wyCOPUFpaSk5ODtnZ2e4fX3WTDSWmiNFMECOYKsawzfTN+6uWNVRT19o8Lsz91nShM1WMYaDow6naRFaa6/0yj9X8NJQMYv2BLxR1UkreNb5ktBjCWdpUpmvjfBVe0LAaFy83s/w6lzuRTmzI7Ri3lU4ikmH6AAbShwxS6U1P4onhFDGBJcYa93FSSveF0dr5uqNwujaZVJKZJsbygfkVh2WdUsBqaOtKbI/QBjFFjGaSGIVE8pH8xmdxhKOizvrdW6gSdQo8FXWaOF5RV9nYKR0eU5oedh1tVfZ0tNLXXEunaG+8T62Kur0UkEoyl2pnM02MbfIcs3gXsmgbETXVDCquZXCpoFCW8qbxCVvMXW17AwHmKNVMEWOYJsaSEkQLigu1M5gpJjJTTGCg1uDzmhtinb9rZa377y4pxO4T7MLOnfo13KPfwPnaqXQjkXO0GfQWPZnMKIaJTDJEKkP0fozQBhEnYkjSGkrEz9VPcY/VWMf61mJKE4FgqhjDxdqZ7X1bPsfaIXev3MfREPcfU7QPDY2ZYgKDRF9mioluoYo1UZdALNPEWGaKCW5P/3DaxPI6UffEE0/w0ksv8fLLL2O3NygDpkyZwtq1Lf/xV1VVceWVV6Jp4eur5g0DtAx2yb0slmv4wlyAKdvXhROO6/ga5oo6gIv1M9km9/Cl+SMLzVV+mcPqSxJKBrH+wJoWaquebqfcyx7yWCs3s18eZpDo64vQgspki5r1S+NHv87lLk3vAH+fx7Ms4n22Rn7NVsdXdKITP8gVvGN+7vaaKqXcvZHQvYOVvULd98eF+ukskqs5QgkLjbrvLOvurbX5xj22G1kms8hhH+8ZXyJl+xq8uLB61IWLos763XuEkuAFoggZXF1fdeo8k1zNJADKZV2izld/M+FCKeVuNXx7vGGjLY3GOkbp6wGgrnyyG11afV5ny0ZGISXkc4CPzP+1SpXnWk9paOzjABvlDrLkFq/iDhaHZCFL5BoWydVBVbbfaLuEryL+xVcRrzBDG+9+Ps+PvtRtodByTQ01RR3A0/b7ecp+H+87/kp2xPc84biXrY6vuMB2OtfqF7DO8alb7TnXNsdD+ZkqkuktegJ13aQrzLZtgmyRu9gkd7BYrqEiRDdSXOsviWSHqVR1HZkfzZUskCvYKnfTW0txl2Jby10XmqtYJFeTwz63cMJzEyu0O6J7nS3bvn0706dPP+H5+Ph4SkpKWjz/5ptv5oMPPvB22rBFCMHkenVFEaU+keIWm2X0pDuD6Bu2nTitDNQakkD+kiq7pNo2bGHv69cSvih9fdX4ADs2hoj+3KZf2SFUYdO0cVyhzaY7iXxifkeVn25cpJQeirqOhqt5jaZpbuVYOZXubkvWnazudLxEHcBP9WvIII0M0ZNXzLrrmeu7K5IIelnUHjO08VyqncVwMYAvzR/4n7nYJzFUyxr605vxYjixluRGKBNLNPZ6xw2lqFNAg6JOr79uxVpKXy+uvYu4Y6P4xPw2KLEFC191dHYIOxPECPqL3r4IK+i4EjupItmrJmqRIsJtQVFJFf1J5yxtKhla67u/W2/stofJzb+HPUKIqK6tSsiQS9R5WOQkBC+QVuBehwnNnZRr6W/ibv1aJogRVHKU9+pLBL1lqaXUcHKIWuKM0YYwQgykG4nskDnBDkfhR8rr77UiicAmbG5xwEGOIKWkWtZQVJ+At96PWL/P/XUv6Cu81tMnJyeza9cu0tPTPZ5fvHgxffr0afwkC0899RTnnnsuX3/9NcOGDfNQ5QE888wz3oYU8kzWRvGZ+T396M1aczODtPapk4pECfs4yD4OchqTfBRl8EilO1F0ooqjfkvUuXwnkkjoEEmn5vBF6esycx1HKOaILOYC/TRfhRZUEkUCJpKDFDJKDOY940tutF3i83mqOOpWiXRERZ2Vydoo5pnz6Ul35huL+cz5PWvkJvfrHa2RhIs+WhpHOcoBeYQyWcE3ziXEEU0cMaSLnh4LZiEEl+uzubx2LgnE8ZrzI7qIBMZpw9oVw26ZywGO0FN2D5vO30IIkujMfg6rrq8K4ERFXaxlI62WWgDy5cHABxZEfKmWzZP7KeBQ2Je+5pr76UQEJqZXZa8uOhPHUY5hYLKTHC4TZ3t1vrX8eEeYeF952COEiOo6TfRAIOhOEsWytOUTAojVNzXUvPN8wURtJPc5n6YbXdpsxVQgD9GT7uzjYMgm6nqK7qyX2wDYQU5wg1H4lfJ6NVxc/WZ1V7oQSwxJJFAkS6kSDdc96/2ITdhwYKeG2pC/Nnq9ur/11luZO3cuK1asQAhBQUEBb731Fvfddx8/+clPWjz/qaeeYv78+Rw8eJCNGzeSlZXl/lm3bl1b3kPIM0WMIY4YdrGXb03vzIAbI1RbY7cVTWhuZWC2zKda1vh8jsL6MquO8PtqCWuiri2Kuip5lLVyM1DXaaqraH2JSahzv34LmSKdLLmFp5z/oFbW+nyOUOm0FgimaKOJI4Z9HOQR4y88Yf6dr+RC9+sdsfTVRaZWV15xiCIudP6U1XITk8UovnG8dsKx52ozecP2B2qp5b/yG+6pfbJdcxvScHfRC7dkqEupcITik66kUXEiJyrqTlSH7pG5AY0p2PhKUQcd5+/tFeMDDlKIjs6d2jVen398osrbZJ+O7u4OuE2Gh592kSUR1iVEuienkYxAcIDDbA2x32OhxY6hI94rjNWGMVWM4RBFPG++4VEe2Fq+NH9kHweJI4bhZPohyvZj7ZAbLupXRdsol3X3WzH164ZEkUA5FWSTTwllnhU+x62VXaq6KkLbx9BrRd2vfvUrTNPktNNOo6qqiunTpxMREcF9993H3Xff3eL5f/7zn3n11Ve54YYb2hJvWDJSG0QtTgCWyvab2HfEXZ8pYjQROJBItpq7GKkP9tnYVbKuwxSEvpzdF2iWRN2Lzrd5xfkhXzpeJlJEuJ//Rc1T7OcQKSKZK/XZjLWoez4xvqW/SCeWaMZrwwMau78Zrg8gw0jDkCZJojMfGvO5ynauT+fw6LTWAUtfrQwVmTgtXRtd9KMX3UQi/TtAaX5TDBAZLKTOn86lCkrTehDfSHc9TWhcbpvNfc6nqeQoWXIrlbKKaEuZnzccoditlg23ZOg4MYwYonFiUCLL6OzH7suK0KchUedS1J2YqAuXxIivKPFhR+ck0QUk1FBLBVVhUyZ/PDZ0JogRrJNbGa0P8fr8qWIMJbKcAurUmW1R5Z0mJlNECRLJMVntsaYKRayfo4QQ+Z7tKZLdG8ihVvpaISuZLEbhxCCFbsEOxy9M1EayuL751zIzi4v0M1p9rilNdylpsuhKhBaan/8+ohc6OgYG20+ya8fJhqvhlOu6Zq1iKqfSIxl9/Fo5ik4UUxbypa9eK+qEEDz00EMUFRWxadMmli9fzuHDh3n88cdbdX5ERARTpkzxOtBwxiHs7jKnvXIf+fWGuG3FuuvTURoj9NJSWCHXs1JuYKXc4NOxrablHSWx2RwuA26A1XITS+Va1tQr5AD2m4f5l/kBH5nf8DfjP3xmLHC/JqXkNeO/bJG7WCHXc5k+K6CxB4IH9FvYTS4r5HpedL7jkwYvVjwUdR289NUmbPQTvU54fhe5LJVZpNebF3dErLu2LqZoY5o953z9VKAusfe9saLNcze3SxjqSAHL5TpWy43sIS/Y4SiCTEPpa9OKui3m7oDGFGx8qaizdq88Esa+kH82XmWFXE86qaSKZK/PF0K4k3SAh49oa0nSElgu17FCrme1xeIhVLF+jkLFo84h7PSo70Abaom6XPazVGaxUm4goZENt47AFEu56nfGMq/OzZX7OUY10Pj6J1RwCDt9RBoAm+Uu/lL7WnADUviFalnjFkG5LDOO7xp/oBnPbNdGeYcrfXXhcDiIjY2lR48exMS0/mZ07ty5PP/8822d1oOFCxdy3nnnkZKSghCCjz/+2ON1IUSjP3/84x+bHPPRRx894fiBAwe2O9aztGlMFWMYJPqyzGifqi6cDE9bi9XrYInZftWhlVKznAliBBPECPo0klToaJyvn8ZTtl94dJ60GsD+zfiPx676Crne/fh7czkr5HqmiNGcqk1knGifj1YoMlkbzdmi7u9xEzv42lzY8kleUCmrGCeGMUmMIg3vbwbCjbn6HG7WLuVq7TymMdatjEkgjoGiZd/ScGWmNpGnbL/gAnEamaQzUYxkmja22XPOF6dznjaTFLrxgfllm+c+KAvdj8OtYYf1M+EvT1JF+HC8om6AyOCP+i+ZLEaRSndGiIEUUcIKc31zw3QofKmos5bwFRKeibqj8pg7QdBWK47j/bTakuybLBrGsK6pQhXX56gTkUQIR5CjacClZjzAEb9Y3bSVA/Kw+3G4bYC1lonaSC7WzmS4GMAn5rccla0v+7N6M4Zyog7gF/pNXKSdQRrJvGy8H+xwFH6gzCKKcDWhihHWrvEVHKQhUXe8TYyr9LWSoyFtC+F1os7pdPKb3/yG+Ph40tPTSU9PJz4+nocffpja2pb9nlauXMnrr79Onz59OO+887j44os9fryhsrKSESNG8MILLzT6+v79+z1+Xn31VYQQXHJJ8wbyQ4YM8Thv8eL2d+kbLgawWK5hq9zd7vLXI3S80teRYiBR9X80u03f+tGUinJWyPWskOtx4ntPslCjv5bOPbYbmWdvSIgvNlcDdebCy+sbRbjIMw/gNOt2JT40vsbEZIlcy036pR2y8YYQgltsl7NYrqGGGpaZ63w6fhGlrJIbWSazoOP9+k7gGtv5vOB4lFcdTxEtOrkVMsNEZtg0OWgLQ7T+3GO7kcn6aPpr6Vykn0FP0b3Zc6boo1hirqWAQ+w1Cyg222amfaCZxUeoo/xjFFYM6amo6y6SuNt+HRfopzNBG8l6uQ0NjXecnwczzIBiVcx2bqe3WKJFUReuDVyKfZC4tCqJInAQJTo1c3TjTLUopreYu9oURyBxNZMIFTWdizRLkrS9FUa+xGMDLMyuq62ls4hHINggt6OhMc+Y3+pzt8hdaPXf0wO00N6EvcF2MQfkEbLJZze5IV/eqPAea/WYS1FnFaGUU8UB05p8T/Q435VzMDCoseQGcuV+aswaPjcWeJXI9hdee9TdfffdfPTRR/zhD39g0qS6jqPLli3j0UcfpbCwkBdffLHZ8xMSErxOyDXFrFmzmDWr6dK85GTPHbNPPvmEmTNnttid1maznXBue5mgjUBDq0uCmGvaNZZnM4mE9gUWItiFnUu0s/jaXMhqNpIr97epNKExKmWV+3E0bfOECkf6id7cql3Oh+bX/M9cwnZzDx+b37JErqU/vYkUkRyUR9jNXnaTS7lZyb/NeSTRmSnaaC7SWu9dEW7M1mYwSYxkm9zDM8a/+aXtNmLa6Bd2PKWyYZcnroM3kzie39nncqFxBmO0IUgRujtUvmSubQ5zmdOqY6NFFHP0i/jQmM8K1vOF/IFrucDrOcO59NWq9A2X7okK/2Eep6hzMdc2h2pZw9HaYywz1/GS+Q63m1cySOsbjDADygHzCBE4SKdnm7zUrFjtUY6EqaLOF91LU0Uyn9hepI+W5t5Mag7bhF9CbSXmofVo3UaAPZq+ohczxQTWyM18ZS7ElGZIb0YV1XcPDjUfUOtnOk8eoC+hUeliva52o+M0UTue+/SbKJCHWCU38oTxIlfq53h0NW6KteYWNARDyGSUGBSASNtHmuhRt2FOXUI4M8RVgArvqMCSqKtX0nkk6mQlBfIQnYgkmSR6HOc7GS064eq3WMlRd7OgU6uvYx8HkUietf2an9iu9vM7aR6vE3Vvv/027777rkeCbPjw4aSlpXHVVVe1mKj797//7X2UPuDgwYN88cUXvP766y0eu3PnTlJSUoiMjGTSpEk89dRT9OrV9IWkurqa6upq97/LyspOOCZOxDCMTEopJ5YYSswyErS2LTispa+h0snJF6SJZA7XdzJcZmbRS/dNoq6ChkRdY/43HRUhBBlaKiVmOUNFJnNrn6ScSnrQld3kcYe4kr/Lt4G6ErT/GUsYK4ayWm7iDG0qutBbmCF80YTGUC2TZcY6AFaaGzhVn+iTsctoaCbRWGOBjsxwbSDDtfZbBXRkztam86zxGgBLzSyu1b1P1FXJowwR/SmXlSSHWelruuhJF+LpTiI2Ou53jKJ1uJImWiMFHhHCwXRtHF+ZCxlCP35R+39cYzuPa/TzAx1mQNlJDtXUsJs8D/VRW7Bu5nYIRV071GFn2aa1+ljb8JsafT5exFJWvxm3Re5iqAjNzpfVssbdRK29Poe+phc9SaMHXUQ8hyhs+YQA4fKzSqIzdmEPcjT+Y5Q+hCgjkghpp6vszLU19/Gc4+EWN/2WmmtxYrCHvLCwNbGKPXLlfjJRibqORJk1UVcvwrHe45dTQT4HOMox8jjQZOkrQCVVdCGew7KIfOpUvpFEeAh9goXXW0ERERGkp6ef8HxGRgYOR+h4IBzP66+/TmxsbItqvgkTJvDaa6/x9ddf8+KLL5Kdnc20adMoLy9v8pynnnqK+Ph4909aWlqjx03Xx5HDPpbINe1qmOBqjpBAXIe6mHj61LVPdWil4iRV1AHcql/BBsdnnK+dioFBFJHcqF3CEse7TNRHuo9bbKzhFfMDVstNjBfDubaD3wiB/z5vJR5dX08uRZ2iZcZpw7DV75G19XO3Re5is9xJLgWkaM2X24YautBJEp3Zyh6+NH8MaW8Qhf9xe9Q1sTF0i345i+zvkMM+vpfLeKT2OZzSGcgQA4q1s2IfkdbuNV6ixR4lXJtJ+EJR5ysmaaPcj5eEsE+dL8qF/UWq1p089rNebmNn/Wc92Egp3X5W4aZSbwvP2x7hZ/r1rGIjH8tvWWA23dxKSkmOme9OYIzXRrRKgRdsPJWbodW4RNF+Kqylr6KRZhKy0v3/vafofsIaI8qSqHOVRrs6IgMco5qnjH/4PnAv8TpRd9ddd/H44497KMiqq6t58sknueuuu5o998svv+SWW27hgQceYOvWrR6vFRcXc+qpp3obTqt59dVXueaaa4iMjGz2uFmzZnHZZZcxfPhwzjrrLL788ktKSkp4//2mzSgffPBBSktL3T95eY13shuvDXc/busF3imdRBHJNDGW8zT//b6CwQRtBKPEYKaJseyTB1s+oZVUWhR1vipvDBdiRTT9tXTiRIz7J16LZZQ2mAGWHbEvzB8YK4YyUPThQv10IkVotl33JRPFSIaLAUwX4yiydAZuL2UeXV9PLkWdomWiRCfO0WYwTYwljhgOmd4rClyLDw2NlPoOeuGEawFdyVGPG0rFycfxXV+PJ0ZEMVYfSg+60YNuDNH6+7wzfCiRV68AAN8YtqfRg7O0aUwQIzzM8sOJYhq8PIPttzZZjGKsGMZUMYatIdyNuESWMVWMYaoYE3LG/6GYQCmlnGrqGluEm+9rW+ijpXl0qW+uOcr35nLOq7mdsWIoY8QQLtROD0SI7caqRg6Vz5nCd3g0k6gvebXe4xfKEnf5f2ON/aKFVVFXl6h72/iMEWKgW4VcyVEPsU8w8DolnpWVxXfffUdqaiojRowAYP369dTU1HDaaad5KNY++ugj9+O3336b66+/nrPPPpvt27fz/PPP869//YtrrrkGgJqaGn788cf2vp9GWbRoEdu3b+e9997z+tyEhAQyMzPZtatp49iIiAgiIlpObFh34r43l/EYP/M6no1yBxvkduBEY8RwxyVZXSRXI6SgWJb6xFvDWvoac5Ip6lw05qPVX/R2P97LPnbLXOKI4RbtskCHFxTSRU9y5D7K2M5es4Bnecgn45ZaFHXxSlGnaIQMkcon5ndAXdfl8/Bu08W16OxB17BUVR9/o9YlxDyUFIHj+K6vTfFr2+3c5Pw1+81DjDWGntDFs6NgVdn6IsHSW0vhh9oVVFMTUmWG3lAsreqwwHxXyIoDIA3k0UJEp0QQOiImmZHaILbIXVRxlBy5j7/4aN3ga4opZbGs+yyNYnCQo/EkFBN1Hr6vYWYn0Vas3unLjXVs1Xc36gH6mfk9O9kLEi7RzuJ225VBiNZ7rJ+zTXJnECNR+INyeeK9vdWjztrxtTELCWvpa7EsZYOxnQVyORVUuf3qoO67IUYEz0fTa0VdQkICl1xyCeeeey5paWmkpaVx7rnncvHFF3uUf8bHe15M//jHP/LMM8/w+eefs2jRIl5//XVuv/12XnnlFZ+9maZ45ZVXGDNmjDux6A0VFRXs3r2bHj3a75eWKpK5Q7uKIaI/q+RGtrVhN86662HdDekoTK5PZkokK8z1PhnzZC59bY4o0Yn79JtJJAEnBqPEYO7RbyBOOzlUYEII941QrizwWVco6y5PnFLUKRqhtTvZjXFUHuNQvZdne43mg0Uo3qgpgkNLijoXU/Vx7sdL6w3COyJfOn8kik6cr53GbO2Udo8XIRyME3XVHNkynwJ5qN1jBppiGXhFXfU7M6j+10Bq3p5G9b8GUv3ODKCu8ZmrOiafA+SG6PeX9XcW7HLh4+lCvLvsLC9Eur7uMfPoQTfGiqGM0kIrsekvYkU0z9ke5iH9J9QKJ1NqrjyhPL5MVvCG8V+GkkkaPRgrhgYpWu/pK3pxh34VafRgobkqJPzGFL7D2kwirr701VUCC3BEFrkfN7ZWtpa+fmH+wMTay0glmcliFJNEg7DqgCXhFwy8VtS1tRnEzp07Oe+889z/vvzyy+natSvnn38+tbW1XHTRRV6PWVFR4aF0y87OZt26dXTp0sXd/KGsrIwPPviAP//5z42Ocdppp3HRRRe5y3bvu+8+zjvvPHr37k1BQQG//e1v0XWdq666yuv4GiNDS+Ul5zskksAjtX/lBttFzNZPafX5i8w1dCaOYso65I7yZG00LxhvEUs0f3G+TicimaGPb9eYJ3Ppa0skigQKKUEg2Cx38omt+WYwHY0Bog+r5EYkkl1yL8NF+xshKEWdoiUmaiOBut0/b29UrLYAYZuoQyXqFHU0KOqaT9T1Ej1IJZlDFFIrnThNJzYt9H2SvKHcrMQpnNTIWpaZWbxm/z+fjDtZG8ViYzU96c4XxgJutV3hk3EDRQmh41EHdeWvP7CCdFLZZG73WeMzX2K1FAi1pnNCCNJEMttlNnlyP1JKhBBBjWk3ueznEPvlIW4lvP4+2sOttsu5t/b3bJW7ySSdN41P+LntBvfrK8z1VHGMTezgNv0K7rHfGLxgvSRKdKJMVpDHfkYwkCXmWs7UpwY7LIWPqJLHiCeWcirdSjqroq5IltGVLhymqNG1srX0daW5kVii2cYe7tauI1l05QdnnW+jVW0bDALWVzwuLo6DBz19x2bOnMnnn3/O/fffz/PPP+/1mKtXr2bUqFGMGlWX+bz33nsZNWoUjzzyiPuYd999Fyllk4m23bt3c+RIw/+E/Px8rrrqKgYMGMDll19OYmIiy5cvp2tX3/gA3axfxr9t/0cUnfhUfsfPap+gRta26tydZg6fmN9SQjnXaOcxVPT3SUyhxJnaVJY5PiCKTvwgV/Ar55/abTauSl+b5hb9ct62P8Nux3e8bX+Gbh2snLolBmgNpUXbZbZPxnQp6mzY6ETznpiKk5OuogszxQQqqOIT81uv1JxWBUevcE3UKUWdop4GRV3LHYBHa0OooZYlcg0FIjz91ppjiVzDx+a3SCTnajOJstxItIer9HMYKvqzj4O8YnwYdg1cPEpfQ6CD6ShtMJ2IJId8lpnrgh1Oo4RSA47GcF0DjnKMQh96BLcV6/pvoBb6HU19yVx9DmPFUHaQw9POf3pUIS01G9TL4VjFdaN+MV2IZz3beM34qOUTFGFDESWUUo6J6W4iEWu5xy+mjMMUEUUkmSL9hPOtFXar5UZqqeUm7VL+aP+lh7VYsBN1Xm9HFhYW8sgjj7BgwQIOHTqEaZoerxcVFTV63vjx4/nqq6+YOHGix/MzZszgs88+49xzz/U2FE455ZQWFxy33XYbt912W5Ov5+TkePz73Xff9ToOb4gRUVxlO5c/GC8TL2PoLVJ4z/iS62wXtHjuFnM352gz+MFcST/Ru8kuaeFMrIhmJAMRCDoTx0DRhxyZT4ZovJNua7DKnaOVos6DWBHNxfqZAKTQLcjRBJ4RYiBjGIpTOJlvLOIyfVa7xyytT9TFExP0XWJF6JKupSKNFdTiZJW5sdXK4cOyiMliFJUca9f3YjBJpycjGEQFlSw213Bdzf1sNLfzjuNZ+opeXFZzN4O0fmw0t/OW488heaOp8A2tVdTBiebg4ZqobgpXssDAYIruu4qJgaIvNqmTTk8yRCpbzd0M1vv5bHx/IqVkm9zDSDGIBGJJFJ1bPsnPDBH93Q0/dvhog8/XeHR9DYHk5vEMIINCUUI0nSiQh0gK8v9Xa6KusZv6jkxvrScDRB/2y8OM0gZzTfW9xGuxVMgqiihlnBjGQXnEw2c9XJisjcZZvxm0xFwTEupNhW/w9C6t+46zCzuRRHCMandpbBXH6KOduFbuI9KYyQRWsJ5YYiiihEv1swFPn8oD4Zaou+6669i1axc333wz3bt3b/UH/p577mHp0qWNvnbKKafw2Wef8cYbb3gbTtjyku13zKy9jiVyLTnOfeyXh3jAfmuz58wz5/O5+QOAT7xLQhUhBDfql/CU8RLvmJ9zlpxGBm2/IVWKOkVTzNDGk0sBh2URu+Refm/eRzetS7vGLKsvfY0TquxV0TSTtdH825gHwN3Ox7nBvIif2K6mk2hehbmTHLdHVw8Rfh1fAXppPdhDLuVUslvmurt4/rT2UdJIZr5czHxjMQCvOj/kXvtNwQxX4Ue8UdR1dCWmNVlg7creXoQQXGqbxcPOZ8kx9zFJG8VgwiNRt05uJUtuAWCmNpFEkRDcgIDeIoUIHFRT4zMlvq8JdUVdvIgly6z7/7pfHmI4A4Iazw6z7v9jdxID1rAklPiD/QFiieZp5z/5J+9x2PQU3czSpoflxogudCZqI/mfuZiDFLLZ3MlQPTPYYSl8gKclQsPfbCzRHKPavZkSTSd60v2E88doQ1lCFjXUUMUxThUTmalNADw7Px8MN4+6RYsWsXjxYq8bM8yYMYMZM2Y0+frMmTOZOXOmt+GELRP0EZxrnEIqySyWa3jceIFL9bMbzfq6sC5MM7X0AEQZPMZqQ6lfv7PdzKYVa/gmqbCUlalEncJKhHBwjXYeq+RGcmUBfzfe4lHt7jaPJ6V0K+oSQnAXWxE6TNfG8RP9avLNA2yQ2/g/45+YQnKf7eZmz7NeBxrrZBUO6EJnvBjBd7Ju805D43xOBQTz5HxiiKIWJ31EKs8Zb7QqgakIP0zZUJHROkVdB0/Umf5T9ZytTeNhngXqlCU/43qfju8vsswtnC4ms0fmca4WGvcIutDpL3qzSe5kt8zFKZ3YRGj5JRYFoQGHN1hvhPfL4JaxV5iVZIhU+pBGmkgJaizBwpUAjxMx9BFpxBPLeDGcTeYOqjjGHN17H/lQ4XJtFjoaWeYW3jO/VIm6DkJTlgh36tcw31jMMuo2tDNFBpo4cX3RRcRzrX4+ZbKCQoq5Tb/CLT5LJZlztFM4JAvJD3LDG6896gYOHMjRo77pjniy877jr3TTEtkgtyOR/Mf4uNnjXQvTbnTp8Dctrm6c0P7SAlczCRs2HNjbNZai43Gn/VpWyg3kcYAsc0urPSMbo1JWuRUiSlGnaI7eIoVn7b9mgJbBXgooo4JvjKUclceaPc8zURd+O9wuBll8gCaJkfwn4o98L5dhYFJBFdFEsVXuoZZaPjS+DmKkCn/h+q4E0LxU1AV78exrDsgj7JX7AOhBV+J93DF8sOhHPHVjZplbcUqnT8f3F0vMtXwrl7KHPE7TJrZ8QoBwKR6dGOwx84MczYmEWgOO4+keQoqVgxSyTK5jqczCxGz5hA7MXNscfox4i00RXzBCG0ia1oNbbZdzoX5GsENrM9P18XxjLuUAR1hsrqFcVrZ8kiLkKaZuMyKKTkQIh/t5Q5juJB3UJeqa4u/2R3nT8Se+crzi8RnvrMWzWe5ildzIYnNNu+4L24vXW0B///vf+dWvfsUjjzzC0KFDsds9Ex9xcaF3QQhl7tCvYpGxmrVyC88Y/+Z221UeO00unNJJAYeA8L45ay3poid2bNTiZJvc066xXKWvMUQpbwLFCaSJHlyuzWaxXMN8uYilZhantLHTcCGlROAgic4MoOmLg0Lh4gn7PVRxlO/MZfwoV/Cm8UmzXRldXWJjiApr1ead+rXMEtNxCAexIhq7sPNP++M4pZMKjmJKk7fNz1gjN/Gk8RJX6eeGnGpF0T4MlKIO6pSFo6svwIbOpdrZ3G27zudzaELjfv0WXjc/Yqfcy0fm/7hcn+3zeXyNNYnTvZG1cbAYI4aSJbaQJ/ezg2wySQ92SB54qk1Cr5TTI1EXZA8o62essfuvk5W5tjnMZU6ww2g3vUQP7tavZb65mGUyi1eND5lrC//3dbLjKu8/XjH8E/1qTGlSJis4RjV32q5p0/iTxEhyZD7HqCZLbmGC8K6S1Fd4vepNSEigrKyMU0891eN5l0GjYRhNnKlojAQRx3BtAN8Zy5ghxrHG2MQ5tlNOOG4fh9w7PSdDos4mbAwQGZTJSo7JakpkWZt3BV3NJKLxTQc1Rcdjpj6Bt2o/BWCpXMsptC1Rd4hCqqlhHwcblVorFI1xrX4BfzfeJoNUvjYXcaO8pNGklJTSnaBIEz3CeuMhQ0slQ0v1eO74Xfv/1nyDKSWJMoFzam7jL/aHGKT1DWSYiuP4wPiKKnmMQlnMErm2XWMZ0iCGKKLoRG/Rs8Xju5NIFxJIIBab98vXkKNIlrLZ3Mm35hKK6tUB1dQwQfPPDcFYbRgPG8+SSTofG99ymTYr5L9DXEkcB/aQ2phI0bqxx8gD6rwFzyU0ynJduBR1UXTCIUKvkiSZBn/Vg7IwiJF4zh9KyWCF75ijX8Szxmv0JoUF5nLukFd5qLAU4YerYc7xuYEuIp7f2O/kOefrAAxs45pxsjaaj81vyRTprDe3+e263BJer3SuueYa7HY7b7/9tlfNJBRNc6F2Bs8ar/GjXEWS2YVzOOWEYzpKuZM33Klfy13O32Fg8A/jXX5pa7p7b3O4FXWq46uiCSaLhg57yyzt6L3FujOsFnyK1jJaG8Ic/SJeN/5LtpnPPGM+V9jOOeG4wxRxjGrg5LgOPGv7NRvkDq6vvR+ndPLH2n/xasRT7tetHdxa081NdXxrH07p5KHaZ8mlgFiiGSr6tzthNkoMZro2jt/Y72zxWE1oJIhY9sg8iszSFo8PdZYYa7jM+TOP5yb7sbPiDG0cl2pn86H5NTvMHP5nLuYsfZrf5vMFrmtqd5JC6m/Xas+yvZ1VH/6gKbVJqNBdJLofB7urolq3dXwGan25Tb+Cl4332WsW8LbxGTfoF4fUd4qi9VTLGneziKY2cNqrmpyijaaGWtbLbfzPXMxtNF3p4k+8XmFt2rSJrKwsBgwIboeejsRobbC7zLOpC/4+eYDJYjQagkHi5FAUTNfGEU0kI8VgD5NlbzClyVCRiYag90lqEqtomQyRykQxEhs6R+UxDGmgC+87mFgXnN1JbOZIhcKTq7Tz+NL4gYGiLy8a73C5PvuEReR+eZhTxHhqqGWICI+uje2hn9abZNmVSBwk0Z1lMou9ssD9Xf6s8W8+NxZgF3ZGiUH8n/3+Zsf70PyaF53vkCnSOSyLQK3RvUJKSYqo+/8hEHTxUQdOb/w800QP9sg8SiijTFaEtRfoYRo6K6aSTCcima6N89t8Qggu0c5kgbmcUWIwy811IZ2oc0onhykGAl+S6LjkMzANZHkeIjYNNM/1gLXZx442rk/9hZSSfqI3felFcoh2Bu8kIoknllLKg+5RZ21mkYxK1HVUrtUv4L/GN2SKdP5pvMeP5kpeczwd7LAUbaDY4sHZ2U8enANFH+KIppgylplZmNIMSqWU14m6sWPHkpeXpxJ1PsQu7PQVvdgm97BT7m00SbDF3M3S+jKTX4ibghFmwOmr9WKQ6MdCuQokPCV/4fVuVwnl7t9bR2/AoWg7Qgh6iu7MM+cDdWbb3bREr9vRK68TRVuZoY2jv0hnkVyNhsZZNTcxW5vBXNscd8LukCzkB7kSgOltLM8ON2JEFPfoN/K48QIArzo/ZI5+Een05Hnnf9jPYZCwls10I5EL9TMa7Z4upeR1539ZKteyVK5lOAPc5vqK1mPHzmXaLB6w3RqU0qE0PH3qhoj+AY/BVxykoeRukjaSTJHBGG2oX+c8RzuFW3mYb+VSthi7eMR2V8iqSg5RhEQCgVc6aV3qO0MmDWr09WgRRRo9yGM/2+QeTNNE00LD7qKMChbJ1QCcKkKnAcfxdBdJlMrykPKosyr9FB2L8dpwtjm+pnfNTCqoZIvcRUpNN35jv1PdH4YZxdau1sI/Hpya0JisjeYL8wcKKWGluZ6Juv8U703hdaLu7rvvZu7cudx///0MGzbshGYSw4cP91lwJxMDRAbb5B6qqSFX7idDeHr3WDufNtfBpKMxVRvDCmM9UFeS6G3noUJZ7H6cSIIvQ1N0MCZro9yJutNqr6e/6M0qx0de3cSoEgpFWxFCcL/tFr4zl5ErC1hiZrHG2MRUfQxjxTAAjtDwfZbkIzVTOHC77Uq+M5dSQjnPGa/zN+M/DBJ9mSRGsUnuoLtIoqfozj+N93jY+AubHF+ckKz7xlzCt3IpE8QIyqmsS/iEZn4i5IkTMUHz9zm+ocQQwjhRZ7ledBNJAVEHOjQHE7QRfGcuo4BD5Mh9J6w3Q4VQv55epJ/BMjOLnXIvuRSQTmj8Hj1+byGsEJsqxhBLFMWUUWZWEKcFRx0b6p8zhe+I1qI4XZvEEVlMKeU8Z75OutGT22xXBjs0hRe4Or6Cf8v7r9bOw4nBYnM188z/hUei7oor6mp0b7qpQdUlhFDNJNqJK/mWRGd2yb1kHHfB316fqHNgJ70VpssdhcnaaP5svEo8MWwyd3qfqKPE/ThJdPZxdIqOxBRtjPtxNTXoUmer3M1gL0oM1YJP0R5m6TOYpc/gypqfU1iflFtirmWsVpeo89h4OIm+z5JEZ0ZrQ/ib8SYJxFJNLavlJmzCxs22y5hrm8P5NXeQwz4SiOOh2me4xXY5p+mT3GOsMjfSmThWyPW8a3/W62uJIjRIE8nux+He+dV6vZhrm+O1grutTNHG8J25jO4ksVpuPGG9GSoUyIPEEk05lSFpJREvYlklNwKwRK4NmUSdRylnCK9DjlHNGrkZgH0cJI7gJOoq5VF0dCSSJE6e6+rJyruOv7DO3MrEmsuwY2efPMQbzo+53nZhsENTtJJSWU4UkVRxrM2NJlvDNH0sNzt/TS1OCuQhquRRokRgG1N6rdPOzs4+4WfPnj3u/yraxlDRnzhiOEIxW+Quj9ec0skuuReAfqJ3m7yzwpWJYiR9RS9KqeBrc6HX5xfKEvfjk+nGVuE9w0Qmyxzv85j+M2KIYj3beN/4yqsxPBQSIXhjoQgPHrb91P14qdnQWfOI5fvsZLuhmGubwzv2Z/mpfg1jGMKl2tm8Zn/abRj8uv1p/m57lARi+a/8hrnOJzBk3cZhtazhD8bLlFHJaDGY87RTm5tKEcJYFXW5YZ6oC5an6TQxlhS6cZAj/GCuDNi83rJXFlBOJbFEezRvCATGtvdxbnyN2u/vxbnxNYxt759wjLUJ1dJ2NKHyNZ6lnKGbqOtl8Y0OZtJ9u9yDgcEQ+p1U91cnMyO1Qbxsf5K79Gv5i/EatzkfZou5q+UTFSFBEaVUcQwdnS7SP6WvAN1EIldos4kkgnnmfJaZ6/w2V1N4rajr3bu3P+I46emj9aKMCqBBPeciR+5jnBhGGZUMF5nBCC9oJGoJOKgrr86SW6mUVUR70b31iEWBcrLd2Cq8Qxc6o8Rguoou/Nb4KwBvG5+SbebhxOAC22lcrs9udgwbNkaLwUQQgUPYmz1WoWiKwaIfPehGskjCRsONQ6FH6evJ9X2WJnqQpvcgVxYQr8UyThtGutagLu8s4rnJdil/Nl4lVkbTnUQ+Mb7jYtuZrJWbqaYGgMGiv7oZC2MyRCojGIgUktX1aqZwxZVQ6UxcQEuJR2uDOVTfyMK6ERBquNbC5VSSqgW2y3Xtot9ARQEIDaQJMSnoAy/3OGa8NowkEugtelIsy5oYKfAclA3eh6GcqAuFpPsxWe32iowOsFJGEVyu0y/gr/INNDTGMYy7ah/jGv0CbrZdGuzQFC3g6mptYBCv+ddreKY+kdfN/wJ110trpUYgaJPz6X/+8x+mTJlCSkoKe/fWKb3+8pe/8Mknn/g0uJMJawep4zucbpfZLJFr2Si3kxqg0ohQYrJWt2tpYLDIWOPVuSfzja2ibaSKZHrXl5fnsp/35JfMk/P5s/PVZs/LlwdYLNewVm7BLrzeA1Eo3GhCo7/oTZbcwjzzfxTVG+cqhXCdsm6e429uJd3xvGD7LVUcY4lcy1+N1wFPtctkLfAeIwrf0U/rTYRwsEFuZ4G5go3G9mCH1GZcCuxAJ1OiRRSjRF2ThK1yt8f3Sihh3bQOtKKuNUSLKNJFGmvkZj4y54fM7zFcPOp6eSTqCoISwz550P047SS8vzrZuVm/lKWO98hiK0tlFk87/0mNWRPssBQtUGRpJtEF/ynqoCEHAbBUBl457XWi7sUXX+Tee+9l9uzZlJSUuD3pEhIS+Mtf/uLr+E4a4kUsKXQDPBtHQJ0s28UALfQWK/7mXHEKs7UZ9BO9eNf83KtzPW9sE3wal6LjMke7iP7CUz28Ue6gVJY3ec4ySzJgklDJAEX7sH7Xu64JHs0kVHOcRpmhjWeEGMgEMQIT2GXupcA8xFRR15RjgjYi2CEq2snl2mzGiCEMFf35k9H8BkqoUmSW0E/0ZroYywwR+A7OZ2vTmCbGMkoMZnkIlW1a2VG/aZ1E55DdaJ1iuYlbHoSyqMawllT3EF2DGEnzhILfpFXJpxJ1Jx/RIopBWl8G0od0UnHi5B3zi2CHpWiBEhoUzP70qIO6DYUztClMFWMolMXUylq/znc8Xifqnn/+eV5++WUeeughdL2hfGTs2LFs3BjeZQjBJrP+xuwwRRSaDTdk1l3FgaJPwOMKNlP1sSw1s9glc1ltbiLfbP0F3fPGNjQXeorQY5I2ip31vpAuJJKvmvFJ/J+x2P3YunhXKNqCVUHiUlm7Nh46ERlwQ9twQQjBhdrprJDrWSnXs9hcwwK5nMVyDRvktpBU5ii840b9YvbKAjbJnXxvLuPJmhfdfoThwk72sl5uY6FcjSECH/swbQCL5Gqy5BaWhGD5a7lZyX7qmiJkhvDfrFWh2xYfZX9wwNJMIpRLX60VQhvNHUGJIU8l6hTA8/bfkEM+BRximZkVkt+JigasVgP+7PrqogsJ9WvI7ayX2/w+n5U2NZMYNepEtUhERASVlZU+CepkZZIYSaZIpxMR7CDH/by1FDaUFyz+IlZE8wv9RsaJYewml+eMN1p9rlLUKdrCKdp47tNu5kP78zyo384ZYgo2dN4zGt9pK5XlfGJ+RyIJXK2dy0RtZGADVnQ4Blg2ZVyKOlfX10SlpmuWKXpDB+fF5mqPZkw2VZYe9kRrUfze9gtu169EQ+MJ8++sk1uDHZZXWNd1A4KwATvJkmAKRZ+6PeQRSzR96cVYbUiww2mS6do4Ltdm05k4PjL+R6WsCnZI5MoCepLMNDE2IDexbSVGRHG/fiupdGcLu9hl7m35JB+Th0rUKWCSPooH9Tt4SP8pC+QKzqi5gd1mbrDDUjRBIBV1AFM8rpeBVaB7najLyMhg3bp1Jzz/9ddfM2jQIF/EdNLSVXRhh8zhKNUei7hI4aAHXUklmRgvGil0JObYLmaj3EEX4tls7my1F4iJSSrJxBHj9zp2RcdBCMETjns4V5/Jr213sE3uwY6NCll1gidSgTzED+YKetCVQkqIFJHEiZggRa7oKGRqGejo9CKF9XIb5bISgSCFbqRaSoYUJzJGDMGBnV6kUCrLqaGuVEGp6ToO19suZKDow0GOIJE8WvM8t9U8zNvGZ8EOrVXsCLL/WlfRhUyRQSIJlMoKDptFAY+hOfLkfsqoYDe5xAn/moW3h84iHg1BMWUMEf2DrsSplbXsIZ99HKCMCoQQQY2nJWJFFPkcZCSDyDI3B3z+GllDOqlEEuG2H1KcnPzWfhcOYWOv3Ee66MlPah/hkpq7eKj2GX5b+1eklMEOUVFPoBV1Lp+6PqSRY+b7fT4rrU7U/e53v6Oqqop7772XO++8k/feew8pJStXruTJJ5/kwQcf5IEHHvBnrB0eq1rOtYgrkxX8YK5kP4dJFz2bOrXD000kcp/tZio5yvdyOX93vtWq81abG8nnAPHEYlddOBVtwC7sPGT7CXbsLJKrT/BE+tT4jitqf852sjlFTOBXttuDFKmiI9GLHlypnUMuBXxrLuVJ59/Zz2GOUMyN+iXBDi+kiRQR7Ir4lsnaKD6TC9zPn4yK9I6M1WLgG5bwhvkxv6z9I1XyaBCjah1WS5NgfS7v1W+kkqNsZTcvGe8EJYam8ChJJLSVTtfo5+PAzkK5ireCnCjeI/Nw4gTC4/vuKu1cNARr2cy/zA8DPv8WuZsc8jlGNckh7OenCAy361fyo+MtrtLORQIbze382XiVp41/8pX5Y7DDU9RTTF0ziRiiAnJvP4i+9KYne8jjQ/PrgCZtW52oe+yxx6ioqOCWW27h6aef5uGHH6aqqoqrr76aF198keeee44rr7zSn7F2eKzm4a5FXL484H6u90mcqAO4VrsAGzpTxRj+a37TYolBkSzlEHW7xH20tECEqOigXK7PIgI7E8QI1skt7DHz3K9tszR7Gaj18ehkplC0FSEEI8RAutKFM8QU3je+YqoYgx0747XhwQ4v5OkmEhmpDSKZrvQnncH0ZYL6vXUohoj+jGAgg0RfBIJEEkgXPXnD+DjYobVIN5HIFDGGIaJ/0K4ZM/WJ7jXVi8bbXFj9U2ZV38KrzsAnTI4nnLzDTtHGo1Pn2R3sMmKPTrlh0HwuTevh9o/ebu5p4WjfY1XmdBGq6uZkJ0HEMUEbQZyIIU7E0E0kEkUk08RYXgyxzYyTmZL6v9uEAJX265rOIK3OouIQRW47lUDQ6kSdNXt4zTXXsHPnTioqKjhw4AD5+fncfPPNfgnwZKIn3YmiziB8q7kbCK/Fir9J13pyqXY2i+UatshdfGk0v7vh0S03DHYWFaFLlOjEXfp1rJDr2S6z+Zfxvvs168L4YdtPgxGeooNymT6LwxTxjVxCAYdYLNdwlpjGIK1vsEMLC36iX83OiP9xuT6Li/Qzma2fEuyQFD5EFzorIj8kK+ITFtjfpJASVsmN/Nn5CpfU3MVzztdDtlzpW3MpS+QaDstCNOG1C41P6C1SuEybxWK5hiJK+VouZIFczsvO94PenMO69g31zS+7aNg8yWM/W8xdQYvFunGYKdKDFoc3ZNZ7NB7giPsGPFC4lDmdiCRSRAR0bkXoMtc2h3mOv7HQ8TYDRAaL5Gq+NZfyQM3TlMmKYId30lNc71HXOQD+dC4mWxT8Xxg/BGxer1YHx3sdREVF0a2bqun3FZrQuEKbzXgxnHIqKZXlqnX4cfxUv5pM0hktBvOm+Wmzx3qaNatEnaJ93GK7nHFiOKPEYP5uvM1BeQSAHfWfs0QSSBKqs7DCd/TQujKIhqTcODGMubbrgxhReBEhHNiF3b07rui4TNRHcJN+KX+xPcRF2pmsN7fxvPM/3OX8XbBDa5QaWQOAA0dQ47jbdh3na6dypTiHJBLoRQpb2MXH5rdBjSvPUk0SDE9OEdUdYlJAj4CYlLp/N8N12vmcLaYRSzQfGl8HKMoTqZRVjBFDGSOGkiHCo5LEqvzbIXMCOrcrMRjKTTcUwUMTGvfYbuQG7WLGMIR/mu/zjPPfwQ7rpOaoPEY1ddfPQCnqAM4W07hIO4M0kgN6ffSq/VlmZmaLxqRFRaFlSBtudBIRrDQ3ALDCXB9Wu4qBYLg+kBqnk7VyC5EygmpZQ4RofKFbIA9ix0YtzqB0VVN0LLqIeCZro3jOeJ0edGWhuYpZYrrFqF59xhS+Z6Q20K2wNpFM0EcEOaLwY65tTrBDUASAv9sfBeDPta9QwEFMJAvM5cENqgmOUQ0QdBXPYK0f7zv+ynPO14k2o3jF/IBIIvjU+J6LtTOD1ozgCHUdrruTGJTfUcQ1C706fpo+njucj2JgkCv345TOoHSY3ib3sEZuAqBHmHiuuTbSOxHJLnNvQK0dXMqcQHSOVIQnl+uzmaSNYmD1WRiYrDTXUy4riRXRwQ7tpKRIlmBDx4kRUEXdUC2T7c5s8jhArIxhqbGWyfrolk9sJ15dRR577DHi41UNvz+ZpI3i78bbACwx1x5X+qo6/QFMFqPIkXXmr1lyCxPFyEaP2yR34sQgmSQyRGpgg1R0SG7Xr+Rj4xvyOcgLzjcZZO/LYYqIJZphIjPY4Sk6IL+x3cVD8qfsknvpoiUEOxyFIuT5hf1mvjQXskSuYY/MY788HHJJi+r6DZ6IICvqXMy1zUFKSVXtUb42F/Ge+QXXmRdwuj454LEckEfYJfcSQxSztVMCPn9b6C1SOEubyo/mSt40P+EX8iYGicBbFByRJe7HiSQEfP62MEj0JZmuHOAwW2TgyoZrZC1V1DWeCaQyRxF+pIke3KPfyLvGF3wvl/OK8QE/t90Q7LBOSgopwYlBNJ3oRUrA5tWExoP6HfzB+Ccb5Q7+YLzMx/qLfp/Xq0TdlVdeqUpd/cwkbRTRdKKv6M1Scy09RXeGi4GUyDJSlaIOqKsT/85cRrroyXpzGxO1kY0elysLkEgOUqjUiAqf0EdLI0JEYEiDNXIzO806Q9FyKlXZq8IvuBrh9KN3kCNRKMKH8WIYOTKfPiKNTeYOeuihlahzK+pCJFEHdfY25+mn8o75OePFcN4wPg5Kom6ZmQVABVUkioSAz99WxmhD+cL8AajzSLbaFgSKwnolYjSd6CQiAz5/W+gnenOAwwDssHj++huXPx0E1utKEZ5cp1/An4xXGEYm843F/ES/usmKLoX/OCgLAajkKDEBVjVeqJ/GQ85nSCWZclnJemMbI/SBfp2z1R51wZK/n2ykimRma6ewQW5jkVzN1+YiNsht1FBDjIgKdnghwRQxmoMcYYVczzfmkiaPc6kRU+gWkPbNipODydooAGpxsthc7X5eeUgqFApFaDBWG8Y+DrJIrmZ1fSlgqOCUTkxMIPgedcdzgXYa08RYVsoNvG9+ySpjQ8BjsHZOnaL5v7TIV1i9kLcHMOFkpbBeUZdI+Gwc9hI9iKSuvDmQv7diaUnUoarFFM0zQOvDzdqlbGQHC+Ry3nJ+FuyQTkoOcMT9OFkkBXRuu7Dza9vtFHCIJXItzwbAr7BNXV8V/uUcbQa9SWEqYymp90/IDIM264FigJZBl/qL6jIzC1OaJxxzTFZzkLqsuyoZVviSc8QpnKVNY4DI4Adzhft5lahTKBSK0MDaGXm7uaeZIwPPsXojbAi+R93x6ELnKv1cBtOPMWIIfzJeCXgM2WY+U8UYxovhTVZM+Jvab39GzefXUf36GGo+v47ab3/W4jkeiToz8Ik6U5oUUgJAUhgpEXWh01/UKcZ3yzxqZW1A5nX504FS1Claxw22S0inJ5PEKJ433wh6d+yTEVcjP4DuAU7UQZ1nYQapTBVj+FYuZY+Z59f5Wp2oM01Tlb0GiAu1MzjAERbToNZRXUsb0ITmbpNcSEmjC6J98qD7sUqgKHzJdH0cS821bJfZ5LDP/bwqr1YoFIrQoK/ohVa/xA1kOV1rcJW9AkQQemr/q7XzKKaUNXIzC8wVXFB9B5fU3MUlNXfxRO3f2SsL/DZ3haziK7mQxXINlRylswiO0snIno+582Nk8S7MnR9jZM9v8Zx+ojeCuuqjrWbgvNZclFDuVmomhpkVh+sex4mTPdK/N74uXB1fQTWTULSOcdowMkQqy2QWubKAr8wfgx3SSYdnoi4x4PNHiU5cq5/PYrmGQkqYbyzy63ytTtQpAkekFsEYMdTjOZWo8+RMbSqjxGBiiGKpzDrh9VyPJhwqgaLwHfEilnv0G5goRlJZb0QMdWXrCoVCoQg+EcLhbiK1XWY3qrwPFtVWRR2hpaiDujXo7+w/5wXbo/xEv5oqjlFolrDW3MxTxj94qPbPfpt7hbkegzqVistmIlyIFBFcoc2mn+jNdrKpljUtn+RDCmWx+3G4NJJwMUIbxGDRjx50JdvMD8icHoo61UxC0Urus93CNDEWHZ0nnS+pisMAc8CaqCPwijqAO2xXMVT0J52ePGu85te5VKIuRJmijUYg0NERCAaIPsEOKaQYrg0gS26hgiqWmGtOeD1b5pJGMhE4VKJO4XNutF3KWrkZGzai6URXuoSNcbNCoVCcDAwQGUTTiRS6kSP3tXxCgDgmGxR1oeZR5+I6/QJutl1KFxFPnIghQcRSSAkCwV6zgPOqb+eoPObzeeebi+gt6jr5TdHG+Hx8f2PDxi65lyqOsSbA3ohHaEjUdRVdAjp3e0kkgS1yF/s5TC7+U2xaKZdV9KAbMUQFTbmpCD9O1SZSQRWVHMUpnVxY81OPKi6FfzlIcEtfATqLeBJFZ7LJJ5cCtye+P1CJuhDl57YbOByxgl/pt/GAdgsztPHBDimkGCUGu3eiG1PUZcmt5HEAHY0xYkigw1N0cHqIrsyz/42CiMUURq5id8R3wQ5JoVAoFBama+M4Rg072ctauTnY4bipocGDKzLEuwbOtc1hnuNvfBzxIl84XuZp231ksYVv5BLeND7x6VxlsoI3jI/ZKwuYwEhmiek+HT8QWFWAS80T16b+xNVIAgirbrngWfmS68ebXiv75SH2c6iuu7BMCMicivBHCMEL9t/yT9vj7CSH+XIRf3W+EeywThpcpa8xRAW1yeZk0dDoyJ/f9Ta/jaxoF66LbJyIAQEO1bXUgwjh4GwxjYMc4SCFrDO2MlIf5H7d9UdTTS2Dtf7BClPRgTlDn+J+rP4+FQqFIrQYLPq5yyiXmmu5VD87yBHVYfWoC8XS16aYpo0lhihAkEp33jE+Z5XcyD/tT/hk/FedHzJI9KVAHmKAnk68FuuTcQPJFDGavvQiWXQNuIrzsCxighiBhkY6qQGdu71YPX7z5IGAzGlV5iRrwVHmKMKT0doQeoruGE6T3qTwvbmMIllKF6XM9CuFsoRKeZTJYjQZomdQY5mmjeULYwAO4eC/xv+4Qp/tl3mUoi7EmWubw1zbnGCHEZKcbzuNZXIde2Qer5kfcaTen6NIlrJZ7gRgpBgY1Iy7QqFQKBSKwDNBG+E2919irg1yNA1YPeoiQrT0tSlGaYPJc/xIFcdYKrN4y/iMrebudo972Cziz8arLJNZ5LGfe/WbfBBt4MnUMiilnCVyDfOMrwPqjbhDZrNCrmeZzCIpzJpJWD1+8wOVqAty90hFeNNdJPFT/Wr2UsBGuYOf1DzioWpV+J73jS/J5wBL5VpSg2xrdYo2nlJRwWq5kS/MH9hl7vXLPGGdqFu4cCHnnXceKSkpCCH4+OOPPV6/4YYbEEJ4/Jx9dss7qi+88ALp6elERkYyYcIEVq5c6ad3oGgPF2qnM0Mbz/36LWw1dzOu+mKOyWqWG+voTzpTxRhmaTOCHaZCoVAoFIoAEy9iuVg7k0liJEWylDJZEeyQADgmwzdRB9BZi2eyGE06PelBV/7sfLVd460xN9G35jS6kch4MZwb9IsZqIWnL7MQgkn15a/FlLFN7gnY3Nst3Y0HaOHVgC5aRLkbYPjT78mKK1GnoZFEeCU2FaHBHfrVTBfjmCRGsUyu49Kau4MdUofmv8Y3TBAj6Ct6caN+SVBj0YTGbdoVTBGj6UoXvzWVCOtEXWVlJSNGjOCFF15o8pizzz6b/fv3u3/eeeedZsd87733uPfee/ntb3/L2rVrGTFiBGeddRaHDh3ydfiKdhIlOjHf8Sq75F5+lHXJ1I+M/7FUrmUnOSyWaxis9QtylAqFQqFQKIJBkujMMrmOPPazwlwf7HAAqAljRZ2Lfzv+j1LKyecAy+Q6Lq6+k0tq7uLh2mdZbW70aqx3jM+xYWMzO+kpuvN3+6P+CTpAuHzq7Nh4uPZZdpo5AZnXlaiLphM96R6QOX2Jy6fuCEXUmrUtHN1+XN0ju9EFXeh+n0/R8cjQUvna8Qq7ZS6HKGSPzOWWmoc4LIuCHVqHo1iWslCuYoVcTzwxpGvBLX0FuMV2GRvlDgo4xHpzKwWm73NFYZ2omzVrFk888QQXXXRRk8dERESQnJzs/uncufldk2eeeYZbb72VG2+8kcGDB/PSSy8RFRXFq6+2b8dQ4T/u029iohjJIYp40niRpZYSl8na6GbOVCgUCoVC0VGZogXG8NkbPDzqRPh41FmJFdE8Z3+YBY7/cKU2m2JZxnJzPX8yXuFntY8jpWzVODvMbF4w3sKOzixtOv+2/5+fI/c/l+uz+dD+PD3pzpfyR37n/Jvf56yWNWTLfAAyRQaaCL/bu7O0aXQniSqOsZldfp3LlCaHKARU2auifWhC4xX773nG9iACwZvmJ/zN+Waww+pwLDfXuR+HSkfweBHLfbabGSj6sFpu4m/Gf3w+R4dvJvHDDz/QrVs3OnfuzKmnnsoTTzxBYmJio8fW1NSwZs0aHnzwQfdzmqZx+umns2zZsibnqK6uprq6YeFVVlbmuzegaJEx+jA6GZFEyUiSZGdy2U9/0RsQJKsLsEKhUCgUJyWTtdE4sNOP3iwzs5BSIoQIakzh7FFn5fJ68+yV5gY6izhqZS1RdCKSSGbUXMM7jmfpKZpWdr1jfM42czdDRX82yZ1M0caETOJSH3ApVJdgHt6E1nUoRCS0+tyeojtdtHgOUUQs0WhoFMoSv3Zi3Sp3M0IMpFSWM0SEZyVJN9HF3eBhqbmWkdqgFs5oO8WUUYsTUIk6Rfs5Q5/CQNmH+51Pk0wS+fIAF1TfgU3YuFyf3WKjgR+MlfxorsSG7tGhvFY60YXG9fpFXKSf4e+3EdJsMXczWgxhl9wbUiKc6/QLecL5dzJI5Ygsximd2ITv0msdOlF39tlnc/HFF5ORkcHu3bv59a9/zaxZs1i2bBm6fqLM+ciRIxiGQffunguL7t27s23btibneeqpp3jsscd8Hr+i9fxSv5VLzbtZQV1pi5CC5/SHgxyVQqFQKBSKYJEqkrlUO5u3zc/YInex0FzFDH18UGM6ZknURYZxos6Fq+nZTjOHJeZa7nA+AsALzjd53PZzAHShY0jDXWJYa9byWO3z5LCPSCK4QbuY2/QrgvUWTsA+/cl2nd9JRHK1di7/Mj/gPfNLLjbP5AL9dB9FdyKrzU1kyS0A/FRc7bd5/IlVJbPUXMtPucZvc6lGEgpfkyZ6sMzxPkNFJr+ufYb35Bc4pcEWuYvLtLPdKlfr96Dr8dPGP1lgLseGzjAGECOiqJY1rGEzhjTIkfu4UDs96JtMweQL8wd3EnOiGBncYCz0EF05Q5vCF+YPZJv53CGvYrQY4rPxO3Si7sorr3Q/HjZsGMOHD6dv37788MMPnHbaaT6b58EHH+Tee+91/7usrIy0tDSfja9omRnaeIaK/vQSPdknD7BR7uBs2/Rgh6VQKBQKhSKInKZNYqG5igFaBovN1UFP1FVbmkk4OkCizkV/LZ1YEUOcM4bOxPOjuZKp1VdxmCL6iDR2yb0si3if7iKJD+V87NgYL4ZTSjkDtT7EiZhgvwWfMkufwb/MD4C6rsP+TNQtMde4H4/Th/ttHn8yTGQyQQzHgYPDFPtV/VokS5ghxmFg0o9efplDcfIxXBsIQA+tK53NeFJEN2Zo47m05m6KKaWYMmZqE3nW/mtMaTK95mpGa0PoSxpV4ih7ZQE9RNe6z72AeDOWOGJIII7Ta27gW8drJ2Wy7pisZrWs8z7tK3rRQ+sa5Ig8cSXqoO67frSmEnVtok+fPiQlJbFr165GE3VJSUnous7Bgwc9nj948CDJycknHO8iIiKCiIjQkOufrAgh+NbxOjZh4/HaF5gux9EryK2bFQqFQqFQBJeLtDP4Cb8l3zzAXlHAQ/w0qPFUdwCPuqZIFkkURCxmYPXZrJGb0dAwMcmXBwB42fk+p2gTmGfMZyd7QcL/7P9muj4uyJH7nonaSPfjlX5uZLJSbgCgE5GMEoP9Ope/0IVOrIjhW3MpSMiR+8gQqX6Z6yCF/ChXATBbzPDLHIqTl7m2OdypX+O+Jy2WpaxgAyYmh4xC9pr7qKCKLLmVNcZmUklmjn4RD9pu9yibdEon59fewffmcgDKqCCe2GC9raCxQW6nhroGM6FU9urC1UAI4BtjMXfbrvPZ2OHnNtoO8vPzKSwspEePxhM4DoeDMWPG8N1337mfM02T7777jkmTJgUqTEUbcX25xYkYErS4IEejUCgUCoUi2ERpnRgjhgKwS+51d3sMFh3Fo64pbMLGGdoUThOTmKtfz3AGEE0UDuw8Yfyd02vnsMRcw6/1n3CHfhXTtLHBDtkvJIoEZonpDBH9yZH7MKThl3lqZC0R0s4g+jJVjMEh7H6ZJxBYb8KXyDXNHNk+imWDl3gC6n5B4Xus96RdtAQyRToXa2dym34F5VQikYxjGFPEGM7SphInYk7wNrMJG4k0NME8IosD+h5ChV1yL5mkM0T0YxShtxExRPTnBu0i+oneLJAr3BtTviCsFXUVFRXs2tXQGSg7O5t169bRpUsXunTpwmOPPcYll1xCcnIyu3fv5oEHHqBfv36cddZZ7nNOO+00LrroIu666y4A7r33XubMmcPYsWMZP348f/nLX6isrOTGG28M+PtTtI25tjnBDkGhUCgUCkWIMEUbzTIjizR68IWxgJttlwUtlo7mUdcYLzrqfJufc75OmtYDu2lnDZvcrxdThgD+Yn8oSBE2T/Vro5GVB8B5DGyRiOhkIm5Y6/U4kSKCzeZOoE4h1lf4vsyynEq2sBuAXiLF5+MHksmiLlHXjS5sN7PhRDtxn1BCQ6Kus4j3zyQKBfUenjTclz7nfL2hzF/AdG1cs/etSaIhUVdICX0bKdU+LIv40Pia8WI4m+RO5tgu8t0bCAGyZT47yAEJ6VrofcfpQqerSGSXuZfuJPHb2ud40HYH/bTe7R47rBN1q1evZubMme5/u3zi5syZw4svvsiGDRt4/fXXKSkpISUlhTPPPJPHH3/co0x19+7dHDnSsLt6xRVXcPjwYR555BEOHDjAyJEj+frrr09oMKFQKBQKriNd0wAAPoVJREFUhUKhCH2u1s/jS/NHtshdvGJ8wE36pUHz+umoHnWN4bpJzTbzyWM/2WYeMUTTSUQwwVIaGmrI2kqoKQehQU050tG2crNMkeF+vENmN3qT3V7KZaX7cRzRPh8/kIwXw+hNT/ayj8/M73mcn/tlnhKlqFMEieMTdy1h7RZd2ISi7gXnW/yf8Q8AbOicrk9utuN2uBEOzV/utl1HD9GVh5zP8Jb5GVFGJ57XHmn3uGGdqDvllFOQUjb5+vz581scIycn54Tn7rrrLrfCTqFQKBQKhUIRvgwSfXFgpz+9sWPnO3MZp+uTgxJLR/aoa4oMLZUMUpmudTwvuuYYoGVAfcXrdpnNLHzvh1ZOhftxjAjvRF2U1onuIpG9ch/b5B6OyGIPRZGvKPZQ1KlEnSJ0SbKWvlJCoSzh2tr76EUPjshiimUp69hKZ+IpppTRYggvOd/hcfvPTxjrr8432GBs53u5jJnaBIaI/nxrLqWaWi7UT/ept5ovCYdEXTeRyHX6hdzn/D8AlppZPhk3rBN1CoVCoVAoFApFcwgheNB2O1fU/hzkXl5wvhnERF2t+3EE4esnpmiZTJHufrzB3O6XOcppUNTFhrmiDuqM2Vcadc0xlpvrOFef2cIZ3lMsS92PVemrIpTxKH2Vxbzq/JAF9c0lupPEQeqSWFUcw4GdlXID241sfq7fgF3YiCWavxpv8L1zOYtZTSVHAXjL/IxMMthJDhLJXuc+fqpfjS78VG/eDqyJum4kBjGS5okV0YwUg1grt7BZ7uTRmud51HF3u8ZUiTqFQqFQKBQKRYfmXG0mE8QI7Nj4Ua5ktbmRsdqwgMdxzKqo4+RQ1J2sDBB9uFa7gM1yJ9+Yizkmq32uoqyQVe7HHSFRN0EbyQRzHQLYKXP8MoeHok6VvipCGGsziQLzEG+bnzFODCNXFjCIPhg46SVS0NDoTzp57GePzOOf5ntsMXexTe6mO0msYD2VHKUzccQTRy/Rg0yRTqlZjh0b3UQiP5qrOFWfGMR32zgHKAQgkYSQb5Zzi345OXIfnxsLeMZ8lTPMKUxpR6dalahTKBQKhUKhUHRodKFzvX4RdzofRUfjqdp/co/9BkaIgaw2N7He3Moiudrvcawzt7ofd8Sur4oGYkU0lVSRJbeQSALzjPlcYzvfp3OUWUpfY8O89BVgqOjPCrkegBTTPz5bLo86Hb1DJDcVHZcki0fdVrkbCaySG7lSO4fXHE97HLvHzGNozTmYmHzhXECZqGCHzGEbe6jFCdQlqec7XmW4NhCA6cY4rq99gHx5gIUhmKiTUroVdaFa9mrlJtulvGl8whZjFxqCd52fM8WhEnUKhUKhUCgUCkWTXKufT765n/lyMf+Ti1hRs46f6dfziPEcPehKd5L8nuzoRQqpdGesNox00dOvcymCz336LRyShayWm3jSeJEr9XN8Wl5mbSYR0wGSThkiFTs2anGyXWb7ZQ6Xoi6B2KA1lVEoWkOipfR1g9zGUY7SX6Rzh37lCcf20dK4S7+W+eYiVstNIGGUGMTF4iyqtRqmi3GskZvcSTqAyRa111LpfWdrf1NOJUc5BoRHog7gCm02H4tvWCU38rL5PreZVzBMG9CmsVSiTqFQKBQKhULR4YkQDn7ruJuvqhdiYNCPXrxrfE4GqWSTT6bIIEZE+TeI+rxALy0Fe4iX8Sjazxh9CBGGA01qdJHxnF1zM3+zP8IArY9Pxq+gofQ1rgMo6mzCRj/Rm61yNztlDoY0mk1sbjS385HxDU7p5AjF3Ga7glHa4GbncCnqElQjCUWIk0gCKXQjAge5FGBgUixLm+yafZ1+AX813iCZrtRQwy6Zy62Oy92f9el4NvRJFcn0IgWJREiokbUhVV6aI/cxQGRQTQ0ZIjXY4bQKu7Bzqj6Jz50/MEoM5t/GPJ7Rft2msVSiTqFQKBQKhUJx0vCy/UnOrbmN5ax3P3ebfgV/tf8miFEpOirP2R5mo9zB9bX345QGf3K+wsuOJ30ytkfpawdQ1AEMEBlslbupoZZsM59+eu8mj/2T81XeM79w/1szNP4mHmlSKWdIg5J6RZ3yp1OEOhHCwSx9Bq8YH7ifm6yNavLzPUwbwA+ONxkvhuPEYIPc1mJC+lRtIq+ZH5En97NObmUcw0JGabpBbnMrawcK32xuBIIb9It5x/icVXIj641t3K1fT7ro6fXvVfNTfAqFQqFQKBQKRcgxTMtklDaI08QkxovhxBDFtfoFwQ5L0UHpr6VzujaZSCJIJ5WF5mry5H6fjF1hKX2NFTE+GTPYnKlNZY52ESPEQGbWXscKc32jx1XKKkpkKeNoaArzrvE5Q2vOYYfZeNlssSxjshjNNDGWkaJ55Z1CEQpM08bSix4MFwMYKvozS5vR7PETtZFoQsMh7K1qmDRGG+p+fEvNrzmv5vZ2x+wrlppZ7scjxMBmjgwtokQnZuunMIxMpouxnFNzK/825nk9jlLUKRQKhUKhUChOKt6zP0eEcPB47QvMlBMZrw0PdkiKEMF+2l/AeQzzyGa0pCFgi2z3mHEihp/p1/N74yUAXnN+xG/sd7Z73DIsiboOoqi7yXYpkUYEr9f+F4B5zvlMcIw44bhV5ibmy8UAxBNLab2j1W6Zy/3Op/nE8dIJ5xymyO3F1Uuk+PFdKBS+4TLtbC6NOIunnP8A4EbbJT4d39qVdAc5ZMt8ss18MrTgl5ouq0/U2bAxLghd2tvDL/SbmC1mMKH2UgDeND5hjn6RVx6lSlGnUCgUCoVCoTipiBB1HVfjRAxdtPggR6MIJfQ+s9AzL8I++WH0zIvQ+8zyybh32K5ishjFQNGHvxivUShL2j2mZzMJP/srBpBLtbNJoTspdOMt81OqZc0Jx1jN76/Vz+dJ/R5SSSaF7mwyd3JzzYm+UAfqO0gCJIeJOb3i5EYXOjZhI07EEOcH1exA0Yff6XM5m2nEEk2mSGeeOd/n83jLYVnEPnmQUWIwl2uziBKdgh2SVziEnRH6QEYwkF6ksFyu52PzW6/GUIk6hUKhUCgUCsVJyVzbHOba5gQ7DMVJQDeRyAhtENvkHnrSnTXmpnaPWWFR1PnjJj5YOISdU7WJFHCIQkpYKzefcMwKYx1R1Kkd79Kv4xf2m9kR8T8OUcg+DrJKbjzhnIM0JOrCpYukQgH+u1ZpQuMB+638n+M+yqlks9zFenObz+fxluXmOsqoIEtuobtIDHY4beZJ+73kUkAs0awzt3p1rkrUKRQKhUKhUCgUCoWfuVo/j3hi2UEOrxoftnu8MtnxSl9dTNZGuR9bvaoA1plbmS8X48TgVv1y0kVPoC7pMFj0BWCPzKNW1nqcd1Ap6hSKRukjeqFTV5a5Qzbu8RhIlpoNitnJlvLccOM0bRITxUgqqeLPxquUyYqWT6pHJeoUCoVCoVAoFAqFAjAPZmEWrMC59V3MghWYB7NaPqmVjBaDOcoxAHc3w/bQVXRhjBjKKDGYCBztHi+UmKKNpgddGUI/5hlf86TzRfdr/3S+x1QxBh2NYSLTo5viAJEBgBMne2Sex5jWRF13VKJOoXDhEHb6il4A7JA5mNIMajyVHGWcGE4X4pmojQxqLO1BCMFIbRBODEzMJpvjNIZqJqFQKBQKhUKhUCgUQM2nV0JFAQgNpAkxKUTeut0nY+tCp79IZ7PcyS65F6d0YhNtvx1bbW4kj/10o4tHsqojkCky2OaYT0rNVCplFZucO8CEy/VZvGZ+hIlJJulcq11wwnkutstsBtDH/W/lUadQNM0AkcEOmc1RjpHHAXoTnIYrUko+ML6imDJSSaar6BKUOHzFFG00LxnvAPCDsZIJtK4xhkrUKRQKhUKhUCgUCkUAGCAy2Cx3UouTHLmPfqJ3m8cqpASARNHZR9GFDkIIIoSD0WIwZbKCSBHBM+arLCOL/vQmXsRyrjaTKM3TZH6Q1pfJZl2p3H552OM15VGnUDTNKDGIIlGCiSTHzKe3HpxE3WGKKKYMgIFanxaODn2maGM4RzuF/fIw8+TX/EK2zmtQlb4qFAqFQqFQKBQKRQCwKr5edr5PjVnDInO11+NUyaNUcRSARDpeos7F/xz/5jH7z1gh11PJUVaaG9hONlvlbm7VLz/h+DTRg6VyLUvlWrbK3R6vuUpfI3AQT2xA4lcowoUk0Zklci3LZNYJZeOBxGoLMMDyfRmupIhuHKOatXIz5bKSreaeVp2nEnUKhUKhUCgUCoVCEQDO007lbG0aGhrPma+TWDOes2puZLeZ69U4LjUdQJJI8G2QIYQQgrO0aVyknUE8sZRRQX/SuVe/ic5a/AnHp4ke7sd5cr/Ha4dlEWkkM02M63ClwgpFe2nubyeQbDc7VqIOYI5+ERmkAvC2+WmrzlGJOoVCoVAoFAqFQqEIAMO0TDaZO4nAgQM7tTjpRQqvG//1apxCWeJ+3BFLX60IIbhAP51SyrFhI4d8brBd3OixySRhr3d3siYbKmQVBykkjwMcozogcSsU4YRHoo4DQYujSJbQX6QTgYNMEf6lrwCnaBPIJp9CStgp97bqHJWoUygUCoVCoVAoFIoA4BB23nU8S3bE99zJNXQhnhz28ZzxOvvNw0gpAdz/bYojstj9OKkDl766uFQ7i6/tr3LYsZyvHK/QQ3Rt9DhNaPQUyYBnoi7f8jit/nWFQtFAqCjqVsuN7JQ5VFNDugiOT56v6UoXOhMHwE4zp1XnqGYSCoVCoVAoFAqFQhEgxmp1Xf+SbV0ZZmSSK/fTXSTxkPPPbDF3k6715Bg1fOz4e5NjeJa+dvxEnU3YOEUfD8BUxjR7bBrJ5JBPMWWUy0piRTR5skEhZE1IKBSKOuJFLHHEUEZFUBN1rr9VHZ3UDpJUF0IwQGSwXK6ngEOtOkcl6hQKhUKhUCgUCoUiwMy1zeFybRYDa84mW+azVm6mhlrWmVsBWOZcS289lWSS0IRnIVShRVGX2IE96tpCmugB9YLEfHmAQaIve2WB5+sKheIE0kQPNsud5MsDmNI84XsnELiShCl0wyY6TrpqgNaH5cb6Vh/fcd65QqFQKBQKhUKhUIQRPbRuzNXnECdiKDJLWGiuYje5lFDGmc6bMZ0mb9v/zAX66R7nnWylr94wWhtCjsznCCXslrkMoq+HQqiXStQpFI0yRRtNlBlJGZUckoUkN1Fi7i+q5FGOUPfd1lHUdC5GiyHsENkUiiI2sq3F41WiTqFQKBQKhUKhUCiCxO/scwF4zvk6F4sz+avxHyRQSy0Cwe+cL/C687+kimRut13JEK0/BfIQAoFEKkXdcXQR8SyVWQDslDkAbJDb0NEwMJWiTqFohlVyIwD5HCCZwCbq8jtwiXqqSGaZXIeURquOV4k6hUKhUCgUCoVCoQAi5qwGKZG1lQh7NAgRsLnn2uYAMETrT4KM5XXzY5w42WruZhGrKZeVHHQe4T3Hc2yTe+qOpR/96B2wGMOBASLD/Xi7zOagPMICcwUaGtdpF9JfqN+XQtEY1uRYrtzPWIYFdP7cDqx8tX4vtQaVqFMoFAqFQqFQKBQKQDhi6/4bERe0GM7SpwEwgZE853ydQ7KIGllLV7pgl3bmVP+SlXI9EkmNcBKvxQYt1lAk05qoM7NZZKxhhjaeReYqEkQsdmEPYnQKRegS7M6ve2QeI8UgaqglU6QHfH5/ki56YsdGDUpRp1AoFAqFQqFQKBRhy1zbHOba5rDbzCVDpDKi+nx2kuN+fbI2KnjBhSixIpqedGcfB9ku9/Cm+THzzUUAXKqdHeToFIrQJdiJulVyI+tkXTOdflrHUr7ahI1+ojdb2NG64/0cj0KhUCgUCoVCoVAo2kFfrRcAo7XBHDWP0VN0pxYn52ozgxxZaHKuPpNt5h4OyyKWmGsB6EoXxmhDgxyZQhG6BDtRt8RcA4ADO6PFkIDP729u1C/hkO0wT3Jfi8eqRJ1CoVAoFAqFQqFQAM41zyNrypGH1iO6jUA4YrGNuTvYYbl5zf40Qgiec74OwHn6qUGOKDRJII4f5UoABHU+g5O1UYgAeg4qFOFGCl3R0DAxyTH3BWzeleYG4s0Y9sq6OceIoUSKiIDNHyh+ZrueMluZStQpFAqFQqFQKBQKRWtxrv0bVBSA0GDPlxCTElKJOleiydV4QtE4U7TRuKygInDQl15MEWOCG5RCEeLYhI0rtNmslBvYKfdSI2tx+NnTcbeZy4yaa9AQGJgMI5Nb9Mv8Omc4oBJ1CoVCoVAoFAqFQqHoMEzQRiAQRBFJJUfZzE4ytfRgh6VQhDwSyW6ZC8A6uZXxYrjPxv7I+B9RRLLO2Mpy1vNz/Qb2yQN0Jo4iShEItrCb6fo4n80ZrqhEnUKhUCgUCoVCoVAoOgzxIpYZ2jh+MFe6n7N2g1UoFI0zRRvNu+YXACw11zJe802irkbWcn/t0+zjIAKBRJIn97NZ7kRHYxzDeMf+DFvZ4+GVd7KiBTsAhUKhUCgUCoVCoVAofMlA0df92I6N3iIliNEoFOHBFG0MQ8lkvBjO58aCdo9XKsuZduwqzq6+iRLKSCcFiaQ3KW5POhBcqJ9Bqt6DM/Qp7Z6zI6ASdQqFQqFQKBQKhUKh6FBMFCPcjxOIQxd6EKNRKMKDwVo/okUnVsoNLJZreKj2mTaPdUQWM8+Yzyo2spQsKjlKDgWMF8PZSwEVVAEwQYzgF/abfPUWOgRhnahbuHAh5513HikpKQgh+Pjjj92v1dbW8stf/pJhw4YRHR1NSkoK119/PQUFBc2O+eijjyKE8PgZOHCgn9+JQqFQKBQKhUKhUCh8xVRtLNdo5/Mz/XoetYVOQxCFItT5qe0aZmnTGURfPjC+4kvjhzaNc03tL3je+R9GMIBIIrhaO5crtXM4Xz/NfcwQ0Y9r9fN9FHnHIaw96iorKxkxYgQ33XQTF198scdrVVVVrF27lt/85jeMGDGC4uJi5s6dy/nnn8/q1aubHXfIkCF8++237n/bbGH9a1IoFAqFQqFQKBSKk4pULZlXHL8PdhgKRdhxhT4bB3auMu8BYJ3cxmxOadW5nxnfM00byz+d77HO3EIpFSTRmd/qd3GP/UYAlplZ7uO3yN3M0Mb7/D2EO2GdgZo1axazZs1q9LX4+Hi++eYbj+f+9re/MX78eHJzc+nVq1eT49psNpKTk30aq0KhUCgUCoVCoVAoFApFqDPA0nxlu5ndqnNyzH1cWXsPUUQyRgxlGAPopaVwhT6bs/Rp7uNGiyF8bX+VzsSyUm6kr9Z0buZkJawTdd5SWlqKEIKEhIRmj9u5cycpKSlERkYyadIknnrqqWYTe9XV1VRXV7v/XVZW5quQFQqFQqFQKBQKhUKhUCgCRl/RCx0dA4MdsnWJuiy5mRliPAvlSmzoRGudGKEN9EjSAUQIB6fodSq6EQzyeewdgZMmUXfs2DF++ctfctVVVxEXF9fkcRMmTOC1115jwIAB7N+/n8cee4xp06axadMmYmNjGz3nqaee4rHHHvNX6AqFQqFQKBQKhSIAaN1GIGN7Ikv3IuJ7IzolBTskhUKhCDgRwkGGSGWX3Mt2mY0pTTTRfIuDt4zP+F4uA+D/7PczVOsfiFA7JEJKKYMdhC8QQvDf//6XCy+88ITXamtrueSSS8jPz+eHH35oNlF3PCUlJfTu3ZtnnnmGm2++udFjGlPUpaWlUVpa6tVcCoVCoVAoFAqFQqFQKBTB5s7ax9hhZuPE4A3706RpKc0eP6z6XHbKHKLoxJGIFS0m9k5GysrKiI+PbzFX1OEVdbW1tVx++eXs3buX77//3uvEWUJCApmZmezatavJYyIiIoiIiGhvqAqFQqFQKBQKhUKhUCgUQSeeGBbJukac22UOaTSdqKuRteyReQBkinSVpGsnHfq350rS7dy5k2+//ZbExESvx6ioqGD37t306NHDDxEqFAqFQqFQKBQKheL/27v3qKrq/P/jrwPKRUEuhoAKSKZ4SULTEhTFC2H5a8xsunspndRUsvl6yemrZlYyqamj+dVvk2aOtymdcqkzqRmWmnnBS6iBImQ2MprhBVFQzuf3h19PnuAgGnKO8nysxVqwz2d/9vts3gvw5d77A8C1NL5qQYlrPafusDmiYhVLkhpZGtzMsqqEWzqoy8/P1+7du7V7925JUnZ2tnbv3q0jR47o4sWLeuyxx7Rjxw4tWrRIxcXFys3NVW5uroqKimxzdOnSRbNmzbJ9PWLECG3cuFE5OTnasmWLevbsKXd3dz311FOV/fYAAAAAAAAqXZTbL0Hdd+ZwmWP3WQ8pTCFyk5vdfrgxt/Strzt27FCnTp1sX//xj3+UJPXt21evvfaaVq5cKUmKiYmx2++LL75QQkKCJCkrK0s//fST7bWjR4/qqaee0smTJxUUFKT27dtr69atCgoKurlvBgAAAIBTFX36uMz5n+wWk/Do8XdnlwUAle7qK+oyrnFF3U6Trh+UK1/VVFvLPTe7tNveLR3UJSQkqKy1MMqzTkZOTo7d10uXLv2tZQEAAAC4BVmP75Hy/y1Z3GQKjsv4lP3wdAC4XdW2+CtGTeVpqS5/+dq277ce0oeXPtFxnZSPpYb+Un2sNlvTJElndU7Rbk2cVfJt45YO6gAAAAAAAFDxPCzV9Y3ZKxmp0BTJ0+KhfxZv1HTrB5KkanLXy27PKc3sk3T5+XR1LNe/NgDs3dLPqAMAAAAAAEDFC7P8sqjmj+Y/kqStZo9tWxPLnXr90ruqIW8lurXTc+69Kr3G2xFBHQAAAAAAAOyEWUJsn/9gjumiuahvrRm2benmoFLNVp1RvtZZN6udWytnlHnb4dZXAAAAAAAA2Ln6irofdEwfWf+jHP2oSNXXv3VchSrSMZ1QuOoqwe0+3e/GQhIVgaAOAAAAAAAAdq4O6o5Yj2m3OaAmljv1nTmsNpYWyjZHVaALOqJ/6zH3bk6s9PZCUAcAAAAAAAA7Vwd1m4t36nN9LUn6vVs3/U+1CfJxq6nXi2bp3zquRLd2zirztkNQBwAAAAAAADsNLPX0iKWrjpr/aLPSFGdppRxzVE+6/z/5uNWUJPm5+cpPvrJYLE6u9vZBUAcAAAAAAAA7ARY/nbKc1Q7zrSRpi0lTCzVWN0u8bcxL1fo6q7zbFkEdAAAAAEiq1mqoTNFZmeN7ZKlzjywevs4uCQCc6r/cn1e0JUrnTIEOmMMaUu0Zubu5O7us25rFGGOcXcTt5syZM/Lz89Pp06dVq1YtZ5cDAAAAAABww2ZcWiCJK+h+i/JmRVxRBwAAAAAAAIcI6CqPm7MLAAAAAAAAAEBQBwAAAAAAALgEgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFVHN2AbcjY4wk6cyZM06uBAAAAAAAAM52JSO6khk5QlB3E5w8eVKSFBYW5uRKAAAAAAAA4CrOnj0rPz8/h68T1N0EgYGBkqQjR46UefKB3+rMmTMKCwvTDz/8oFq1ajm7HNzG6DVUJvoNlYVeQ2Wh11BZ6DVUFnrt+hljdPbsWdWtW7fMcQR1N4Gb2+VH//n5+dGwqBS1atWi11Ap6DVUJvoNlYVeQ2Wh11BZ6DVUFnrt+pTnYi4WkwAAAAAAAABcAEEdAAAAAAAA4AII6m4CT09PjR8/Xp6ens4uBbc5eg2VhV5DZaLfUFnoNVQWeg2VhV5DZaHXbh6Luda6sAAAAAAAAABuOq6oAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4gFs6qJs0aZLatGkjX19f1alTR4888ogyMjLsxly4cEFDhgxR7dq15ePjo169euk///mP7fU9e/boqaeeUlhYmLy9vdW0aVPNmDHDbo4VK1YoMTFRQUFBqlWrlmJjY/XZZ59dsz5jjMaNG6fQ0FB5e3ura9euOnjwoN2YtLQ0JSYmyt/fX7Vr19YLL7yg/Pz8a869d+9excfHy8vLS2FhYXr77bftXt+3b5969eqlBg0ayGKxaPr06decE47Ra457bcWKFWrdurX8/f1Vs2ZNxcTEaOHChdecF47Rb4777YMPPpDFYrH78PLyuua8KB295rjXEhISSvSaxWJR9+7drzk3SqLXHPfaxYsX9frrr6thw4by8vLSPffco3/961/XnBelq6q9duHCBfXr108tWrRQtWrV9Mgjj5QYc+zYMT399NNq3Lix3NzcNHz48GvWC8foNce9tmnTJrVr1061a9eWt7e3mjRpomnTpl2zZpSOXnPca6mpqaX+vZabm3vNul2auYUlJSWZ+fPnm/T0dLN7927z0EMPmfDwcJOfn28bM2jQIBMWFmY+//xzs2PHDtO2bVsTFxdne/399983ycnJJjU11WRlZZmFCxcab29vM3PmTNuYl156yfz5z38227ZtM5mZmWbMmDGmevXqJi0trcz6UlJSjJ+fn/nkk0/Mnj17zO9+9zsTGRlpzp8/b4wx5scffzQBAQFm0KBB5rvvvjPbtm0zcXFxplevXmXOe/r0aRMcHGyeeeYZk56ebpYsWWK8vb3N3LlzbWO2bdtmRowYYZYsWWJCQkLMtGnTrufU4lfoNce99sUXX5gVK1aY/fv3m0OHDpnp06cbd3d3869//eu6zjF+Qb857rf58+ebWrVqmWPHjtk+cnNzr+v84hf0muNeO3nypF2fpaenG3d3dzN//vzrOcX4P/Sa414bNWqUqVu3rlm9erXJysoys2fPNl5eXtesGaWrqr2Wn59vBg0aZP73f//XJCUlmR49epQYk52dbZKTk82CBQtMTEyMeemll8pxRuEIvea419LS0szixYtNenq6yc7ONgsXLjQ1atSw+9mH8qPXHPfaF198YSSZjIwMu7/biouLy3NqXdYtHdT92vHjx40ks3HjRmOMMadOnTLVq1c3H330kW3MgQMHjCTz9ddfO5znxRdfNJ06dSrzWM2aNTMTJkxw+LrVajUhISFm8uTJtm2nTp0ynp6eZsmSJcYYY+bOnWvq1Klj10R79+41kszBgwcdzj179mwTEBBgCgsLbdtGjx5toqKiSh0fERFBUFfB6LXSe+2Kli1bmv/+7/8ucwzKj377pd/mz59v/Pz8ynwPuHH0muOfbdOmTTO+vr52fxTjxtFrv/RaaGiomTVrlt1+jz76qHnmmWfKfF8on6rSa1fr27dvqf+gvVrHjh0J6ioYvVa2nj17mmeffbZcY1E2eu0XV4K6vLy8cs1zq7ilb339tdOnT0uSAgMDJUk7d+7UxYsX1bVrV9uYJk2aKDw8XF9//XWZ81yZozRWq1Vnz54tc0x2drZyc3Ptju3n56f777/fduzCwkJ5eHjIze2Xb4O3t7eky5cLO/L111+rQ4cO8vDwsG1LSkpSRkaG8vLyHO6HikOvld5rxhh9/vnnysjIUIcOHRzOi+tDv9n3W35+viIiIhQWFqYePXpo3759DufE9aHXHP8eff/99/Xkk0+qZs2aDudF+dFrv/RaYWFhiVv4vb29y5wX5VdVeg3OR685tmvXLm3ZskUdO3as0HmrKnqtpJiYGIWGhioxMVGbN2+ukDmd6bYJ6qxWq4YPH6527drp7rvvliTl5ubKw8ND/v7+dmODg4Md3rO8ZcsWLVu2TC+88ILDY02ZMkX5+fl6/PHHHY65Mn9wcLDDY3fu3Fm5ubmaPHmyioqKlJeXp1deeUXS5WdIlDV3afNefVzcPPRayV47ffq0fHx85OHhoe7du2vmzJlKTEx0OC/Kj36z77eoqCjNmzdPn376qf72t7/JarUqLi5OR48edTgvyodec/x7dNu2bUpPT9eAAQMczonyo9fsey0pKUnvvPOODh48KKvVqnXr1mnFihVlzovyqUq9Buei10pXv359eXp6qnXr1hoyZAi/RysAvWYvNDRUc+bM0fLly7V8+XKFhYUpISFBaWlpv2leZ7ttgrohQ4YoPT1dS5cuveE50tPT1aNHD40fP14PPPBAqWMWL16sCRMm6O9//7vq1KkjSVq0aJF8fHxsH1999VW5jte8eXMtWLBAU6dOVY0aNRQSEqLIyEgFBwfb0ubmzZvb5n3wwQdv+L2h4tBrJfn6+mr37t3avn273nzzTf3xj39Uamrqdc2B0tFv9mJjY9WnTx/FxMSoY8eOWrFihYKCgjR37txyz4HS0WuOvf/++2rRooXuu+++G9of9ug1ezNmzFCjRo3UpEkTeXh4aOjQoXruuefsrjzAjaHXUFnotdJ99dVX2rFjh+bMmaPp06dryZIl1z0H7NFr9qKiojRw4EDde++9iouL07x58xQXF3frL17i7HtvK8KQIUNM/fr1zeHDh+22f/7556XerxweHm7eeecdu2379u0zderUMX/6058cHufKA4BXrVplt/3MmTPm4MGDto+CggKTlZVlJJldu3bZje3QoYNJTk4uMXdubq45e/asyc/PN25ububvf/+7McaYnJwc27xHjx41xhjTu3fvEvdnb9iwwUgyP//8c4m5eUZdxaHXyu61K/r3728eeOABh6+jfOi38vXbY489Zp588kmHr+Pa6DXHvZafn29q1aplpk+f7vB9ofzoNce9dv78eXP06FFjtVrNqFGjTLNmzRy+P1xbVeu1q/GMuspFr/VwWPPVJk6caBo3blyusSgdvdbDYc1XGzFihGnbtm25xrqqWzqos1qtZsiQIaZu3bomMzOzxOtXHqr48ccf27Z99913JR6qmJ6eburUqWNGjhzp8FiLFy82Xl5e5pNPPil3bSEhIWbKlCm2badPn7Z7qGJp3n//fVOjRo0yH4Z45cHERUVFtm1jxoxhMYmbiF4rX69d8dxzz5mOHTuWq36URL+Vv98uXbpkoqKizMsvv1yu+mGPXrt2r82fP994enqan376qVx1o3T0Wvl/rhUVFZmGDRuaMWPGlKt+2KuqvXY1grrKQa9dX3gyYcIEExERUa6xsEevXV+vde3a1fTs2bNcY13VLR3UDR482Pj5+ZnU1FS7pXgLCgpsYwYNGmTCw8PNhg0bzI4dO0xsbKyJjY21vf7tt9+aoKAg8+yzz9rNcfz4cduYRYsWmWrVqpl3333XbsypU6fKrC8lJcX4+/ubTz/91Ozdu9f06NHDbpliY4yZOXOm2blzp8nIyDCzZs0y3t7eZsaMGWXOe+rUKRMcHGx69+5t0tPTzdKlS0ssd11YWGh27dpldu3aZUJDQ82IESPMrl27yr2qCuzRa4577a233jJr1641WVlZZv/+/WbKlCmmWrVq5r333iv3+YU9+s1xv02YMMF89tlnJisry+zcudM8+eSTxsvLy+zbt6/c5xe/oNcc99oV7du3N0888cQ1zyXKRq857rWtW7ea5cuXm6ysLPPll1+azp07m8jIyNtuBbvKUlV7zZjLV8rs2rXLPPzwwyYhIcH2b4GrXdl27733mqefftrs2rWL36E3iF5z3GuzZs0yK1euNJmZmSYzM9P89a9/Nb6+vubVV18tz6nFr9Brjntt2rRp5pNPPjEHDx403377rXnppZeMm5ubWb9+fXlOrcu6pYM6SaV+zJ8/3zbm/Pnz5sUXXzQBAQGmRo0apmfPnubYsWO218ePH1/qHFen/R07dix1TN++fcusz2q1mrFjx5rg4GDj6elpunTpYjIyMuzG9O7d2wQGBhoPDw8THR1tPvzww3K99z179pj27dsbT09PU69ePZOSkmL3enZ2dqk1c5XTjaHXHPfaq6++au666y7j5eVlAgICTGxsrFm6dGm55kbp6DfH/TZ8+HATHh5uPDw8THBwsHnooYdMWlpaueZGSfSa414z5pf/jV67dm255oRj9JrjXktNTTVNmzY1np6epnbt2qZ3797mxx9/LNfcKKkq91pERESpNV3r/HCV042h1xz32l/+8hfTvHlzU6NGDVOrVi3TsmVLM3v2bFNcXFyu+WGPXnPca3/+859Nw4YNjZeXlwkMDDQJCQlmw4YN5ZrblVmMMUYAAAAAAAAAnIrlpAAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFENQBAAAAAAAALoCgDgAAAAAAAHABBHUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAqrCEhAQNHz68yh0bAADAFRHUAQAAoFxSU1NlsVh06tSpCtlvxYoVmjhxYsUVCAAAcIur5uwCAAAAUDUFBgY6uwQAAACXwhV1AAAAVcS5c+fUp08f+fj4KDQ0VFOnTrV7feHChWrdurV8fX0VEhKip59+WsePH5ck5eTkqFOnTpKkgIAAWSwW9evXT5JktVo1adIkRUZGytvbW/fcc48+/vjja+7361tfGzRooDfeeMNWY0REhFauXKkTJ06oR48e8vHxUXR0tHbs2GFX96ZNmxQfHy9vb2+FhYUpOTlZ586dq+jTBwAAcNMR1AEAAFQRI0eO1MaNG/Xpp59q7dq1Sk1NVVpamu31ixcvauLEidqzZ48++eQT5eTk2EK1sLAwLV++XJKUkZGhY8eOacaMGZKkSZMm6cMPP9ScOXO0b98+vfzyy3r22We1cePGMvcrzbRp09SuXTvt2rVL3bt3V+/evdWnTx89++yzSktLU8OGDdWnTx8ZYyRJWVlZ6tatm3r16qW9e/dq2bJl2rRpk4YOHXozTiEAAMBNZTFX/soBAADAbSs/P1+1a9fW3/72N/3+97+XJP3888+qX7++XnjhBU2fPr3EPjt27FCbNm109uxZ+fj4KDU1VZ06dVJeXp78/f0lSYWFhQoMDNT69esVGxtr23fAgAEqKCjQ4sWLS91PunxFXUxMjO3YDRo0UHx8vBYuXChJys3NVWhoqMaOHavXX39dkrR161bFxsbq2LFjCgkJ0YABA+Tu7q65c+fa5t20aZM6duyoc+fOycvLqwLPIgAAwM3FM+oAAACqgKysLBUVFen++++3bQsMDFRUVJTt6507d+q1117Tnj17lJeXJ6vVKkk6cuSImjVrVuq8hw4dUkFBgRITE+22FxUVqWXLltddZ3R0tO3z4OBgSVKLFi1KbDt+/LhCQkK0Z88e7d27V4sWLbKNMcbIarUqOztbTZs2ve4aAAAAnIWgDgAAADp37pySkpKUlJSkRYsWKSgoSEeOHFFSUpKKiooc7pefny9JWr16terVq2f3mqen53XXUb16ddvnFovF4bYrIWJ+fr4GDhyo5OTkEnOFh4df9/EBAACciaAOAACgCmjYsKGqV6+ub775xhZg5eXlKTMzUx07dtR3332nkydPKiUlRWFhYZJUYtEGDw8PSVJxcbFtW7NmzeTp6akjR46oY8eOpR67tP0qSqtWrbR//37dddddFT43AABAZWMxCQAAgCrAx8dH/fv318iRI7Vhwwalp6erX79+cnO7/OdgeHi4PDw8NHPmTB0+fFgrV67UxIkT7eaIiIiQxWLRqlWrdOLECeXn58vX11cjRozQyy+/rAULFigrK0tpaWmaOXOmFixY4HC/ijJ69Ght2bJFQ4cO1e7du3Xw4EF9+umnLCYBAABuSQR1AAAAVcTkyZMVHx+vhx9+WF27dlX79u117733SpKCgoL0wQcf6KOPPlKzZs2UkpKiKVOm2O1fr149TZgwQa+88oqCg4NtYdjEiRM1duxYTZo0SU2bNlW3bt20evVqRUZGlrlfRYiOjtbGjRuVmZmp+Ph4tWzZUuPGjVPdunUr7BgAAACVhVVfAQAAAAAAABfAFXUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4AII6AAAAAAAAwAUQ1AEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOACCOoAAAAAAAAAF0BQBwAAAAAAALgAgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFENQBAAAAAAAALoCgDgAAAAAAAHABBHUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4AII6AAAAAAAAwAUQ1AEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOACCOoAAAAAAAAAF0BQBwAAAAAAALgAgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFVHN2AQAA4PZjtVp14cIFZ5cBwMV4eXnJzY1rBQAAcISgDgAAVKjCwkLt379fVqvV2aUAcDFubm5q1qyZPD09nV0KAAAuyWKMMc4uAgAA3B6MMcrMzFRRUZEiIyO5cgaAjdVqVXZ2tjw8PNS4cWNZLBZnlwQAgMshqAMAABWmqKhI3377rSIjIxUYGOjscgC4mJ9//lnZ2dn6/vvvFRsbq9DQUGeXBACAS+G/uQEAQIW5dOmSJHFbG4BSXfnZ8O9//1urV69Wbm6ukysCAMC1ENQBAIAKxy1tAEpz5WdDSEiIcnNztW/fPidXBACAayGoAwAAAFCpLBaLvL29derUKWeXAgCASyGoAwAAuIbU1FRZLBZChZukos5vTk6OLBaLdu/eXSF1Xa+EhAQNHz7cKce+VfG4bAAA7FVzdgEAAACo2uLi4nTs2DH5+fn9pnnCwsJ07Ngx3XHHHRVUWelSU1PVqVMn5eXlyd/f37Z9xYoVql69+k099rUkJCQoJiZG06dPd2odAADgxhDUAQAAwKk8PDwUEhLym+dxd3evkHluFCsdAwCA34pbXwEAwE0x+OJ4dSx8xqkfgy+OL3e9hYWFSk5OVp06deTl5aX27dtr+/btpY4tKCjQgw8+qHbt2nE77K8kJCRo2LBhGj58uAICAhQcHKz33ntP586d03PPPSdfX1/ddddd+uc//2nb59e3vn7//fd6+OGHFRAQoJo1a6p58+Zas2aNJCkvL0/PPPOMgoKC5O3trUaNGmn+/PmSSt76emXezz//XK1bt1aNGjUUFxenjIwMu5rfeOMN1alTR76+vhowYIBeeeUVxcTElPr+cnJy1KlTJ0lSQECALBaL+vXrZ3vvV9/62qBBA73xxhvq06ePfHx8FBERoZUrV+rEiRPq0aOHfHx8FB0drR07dtgdY9OmTYqPj5e3t7fCwsKUnJysc+fO2V6fPXu2GjVqJC8vLwUHB+uxxx6TJPXr108bN27UjBkzZLFYZLFYlJOTo+LiYvXv31+RkZHy9vZWVFSUZsyYYXfMfv366ZFHHtFbb72l4OBg+fv76/XXX9elS5c0cuRIBQYGqn79+rZzffX5Xrp0qeLi4uTl5aW7775bGzdudNQeAADgGriiDgAA3BT7rYf0jdnj3CKs5R86atQoLV++XAsWLFBERITefvttJSUl6dChQ3bjTp06pe7du8vHx0fr1q1TjRo1KrjoW9+CBQs0atQobdu2TcuWLdPgwYP1j3/8Qz179tSf/vQnTZs2Tb1799aRI0dKPX9DhgxRUVGRvvzyS9WsWVP79++Xj4+PJGns2LHav3+//vnPf+qOO+7QoUOHdP78+TLrefXVVzV16lQFBQVp0KBBev7557V582ZJ0qJFi/Tmm29q9uzZateunZYuXaqpU6cqMjKy1LnCwsK0fPly9erVSxkZGapVq5a8vb0dHnvatGl66623NHbsWNv7jouL0/PPP6/Jkydr9OjR6tOnj/bt2yeLxaKsrCx169ZNb7zxhubNm6cTJ05o6NChGjp0qObPn68dO3YoOTlZCxcuVFxcnH7++Wd99dVXkqQZM2YoMzNTd999t15//XVJUlBQkKxWq+rXr6+PPvpItWvX1pYtW/TCCy8oNDRUjz/+uK3WDRs2qH79+vryyy+1efNm9e/fX1u2bFGHDh30zTffaNmyZRo4cKASExNVv359234jR47U9OnT1axZM73zzjt6+OGHlZ2drdq1a5f5fQEAACVZDE9wBQAAFaSgoEAHDhxQ06ZN9aD7H5we1N1vuUcbPRddc9y5c+cUEBCgDz74QE8//bQk6eLFi2rQoIGGDx+uNm3aqFOnTjpw4ICeeOIJNWrUSIsXL5aHh8fNfgslmPxcmXO59hu9/OXm10Dm0gWZk9+V2MctOEaSZP05U7pYYPeaxS9cFq9AmYITMmd/tN/Rw0duAXddV30JCQkqLi62hUfFxcXy8/PTo48+qg8//FCSlJubq9DQUH399ddq27ZtiWe+RUdHq1evXho/vuQVkb/73e90xx13aN68eSVey8nJUWRkpHbt2qWYmBjbvOvXr1eXLl0kSWvWrFH37t11/vx5eXl5qW3btmrdurVmzZplm6d9+/bKz893uCiFo2fU/fr5cA0aNFB8fLwWLlxo977Hjh1rC9K2bt2q2NhYHTt2TCEhIRowYIDc3d01d+5c27ybNm1Sx44dde7cOa1Zs0bPPfecjh49Kl9f31LPf3meUTd06FDl5ubq448/lnT5irrU1FQdPnxYbm6Xb7pp0qSJ6tSpoy+//FLSL9/Lv/71r3ryySdt5zslJUWjR4+WJF26dEmRkZEaNmyYRo0aVeK4V35G5OTkKCcnRxEREbYrAgEAAFfUAQAAKCsrSxcvXlS7du1s26pXr6777rtPBw4cUJs2bSRJiYmJuu+++7Rs2TK5u7s7pdZL385T8dZJdtvcmjwhjwf/KpP/o4oWx5fYx+vls5Kki2sHyRyzv523erf35N70SRVn/kOXvvgv+3kjusjj0U+uu8bo6Gjb5+7u7qpdu7ZatGhh2xYcHCxJOn78eKn7Jycna/DgwVq7dq26du2qXr162eYcPHiwevXqpbS0ND3wwAN65JFHFBcXV+56QkNDbccODw9XRkaGXnzxRbvx9913nzZs2HAd77h8x77yvh2di5CQEO3Zs0d79+7VokW/BMzGGFmtVmVnZysxMVERERG688471a1bN3Xr1k09e/a85pWd7777rubNm6cjR47o/PnzKioqKnF7b/PmzW0h3ZXa7r77btvXV76Xv/6+xcbG2j6vVq2aWrdurQMHDlzr1AAAgFIQ1AEAAJRT9+7dtXz5cu3fv98ubKlM1Vo8L/c7H7Lf6OUvSbL41JPH01853Lf6A3NKvaJOktwb95Rb6H32O3j43FCNv1751GKx2G2zWCySJKu19HuTBwwYoKSkJK1evVpr167VpEmTNHXqVA0bNkwPPvigvv/+e61Zs0br1q1Tly5dNGTIEE2ZMqVc9Vzr2BWttGOXVU9+fr4GDhyo5OTkEnOFh4fLw8NDaWlpSk1N1dq1azVu3Di99tpr2r59u93VfVdbunSpRowYoalTpyo2Nla+vr6aPHmyvvnmG4e1XqmttG2Vde4AAKiKCOoAAMBN0cztrut6RtxNq6EcGjZsKA8PD23evFkRERGSLt/6un37drvFAVJSUuTj46MuXbooNTVVzZo1uxlll8niEyKLT+krm1qqecnyf7e5lsYtsLHjeWsEyVIj6LeWV2HCwsI0aNAgDRo0SGPGjNF7772nYcOGSbr83LW+ffuqb9++io+P18iRI8sM6soSFRWl7du3q0+fPrZtjhYRueLKLc/FxcU3dMyytGrVSvv379dddznu3WrVqqlr167q2rWrxo8fL39/f23YsEGPPvqoPDw8StS1efNmxcXF2V05mJWVVWE1b926VR06dJB0+dbXnTt3aujQoRU2PwAAVQlBHQAAuCn+p/oEZ5dQbjVr1tTgwYNtq1uGh4fr7bffVkFBgfr37689e3551t6UKVNUXFyszp07KzU1VU2aNHFi5ben4cOH68EHH1Tjxo2Vl5enL774Qk2bNpUkjRs3Tvfee6+aN2+uwsJCrVq1yvbajRg2bJj+8Ic/qHXr1oqLi9OyZcu0d+9e3XnnnQ73iYiIkMVi0apVq/TQQw/J29vbttjFbzV69Gi1bdtWQ4cO1YABA2yLaaxbt06zZs3SqlWrdPjwYXXo0EEBAQFas2aNrFaroqKiJF1+Lt4333yjnJwc+fj4KDAwUI0aNdKHH36ozz77TJGRkVq4cKG2b9/ucMGM6/Xuu++qUaNGatq0qaZNm6a8vDw9//zzFTI3AABVjdu1hwAAANz+UlJS1KtXL/Xu3VutWrXSoUOH9NlnnykgIKDE2GnTpunxxx9X586dlZmZ6YRqb2/FxcUaMmSImjZtqm7duqlx48aaPXu2pMtXs40ZM0bR0dHq0KGD3N3dtXTp0hs+1jPPPKMxY8ZoxIgRatWqlbKzs9WvXz95eXk53KdevXqaMGGCXnnlFQUHB1fo1WPR0dHauHGjMjMzFR8fr5YtW2rcuHGqW7euJMnf318rVqxQ586d1bRpU82ZM0dLlixR8+bNJUkjRoyQu7u7mjVrpqCgIB05ckQDBw7Uo48+qieeeEL333+/Tp48WeK5fL9FSkqKUlJSdM8992jTpk1auXKl7rjjjgqbHwCAqoRVXwEAQIW5etXXaz3cHnBViYmJCgkJsa3WitL9epXd8mDVVwAAysatrwAAAKiyCgoKNGfOHCUlJcnd3V1LlizR+vXrtW7dOmeXBgAAqiCCOgAAAFRZFotFa9as0ZtvvqkLFy4oKipKy5cvV9euXZ1dGgAAqIII6gAAAFBleXt7a/369c4u45bUoEED8RQdAAAqFotJAAAAAAAAAC6AoA4AAFQ4rrIBUBp+NgAAUDaCOgAAUGGqVbv8VI3CwkInVwLAFV352XDp0iUnVwIAgGviGXUAAKDCVK9eXT4+Pvrxxx/l4eEhNzf+TxDAZVarVT/88IMKCgpUXFzs7HIAAHBJBHUAAKDCWCwWNWjQQPv27VNGRoazywHgYqxWq3JzcyVJxcXF8vb2dnJFAAC4FoI6AABQoTw9PdW4cWOtWrVKP/30k4KDg7myDoCMMbp48aKsVqvOnDkjY4xCQ0OdXRYAAC7FYniiKwAAuAlOnDih1atX266eAQDpcmDn6empNm3aqF27dgT5AABchaAOAADcNGfOnNGJEyd04cIFZ5cCwEW4ubnJx8dH9erVI6QDAOBXCOoAAAAAAAAAF8B/YQEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOAC/j9Uvk9SMCsE5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder02').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "87c51e9f-7a5e-4254-a9bb-cf46a9f3891c", + "metadata": {}, + "source": [ + "## Inspect gaps\n", + "\n", + "To get an overview of the gaps use the .get_gap_info() method on the missing Dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5b948da5-2ec3-412d-af69-632ed6abfbb1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are no gaps.\n" + ] + } + ], + "source": [ + "your_dataset.get_gaps_info()" + ] + }, + { + "cell_type": "markdown", + "id": "c24c3802-459c-4260-aa75-582b9582338f", + "metadata": {}, + "source": [ + "## Outliers to gaps and missing observations\n", + "\n", + "In practice the observations that are labeled as outliers are interpreted as missing observations (because we assume that the observation value is erroneous). In the toolkit it is possible to convert the outliers to missing observations and gaps by using the [update_gaps_and_missing_from_outliers()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.update_gaps_and_missing_from_outliers)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4e023c8a-9898-4bc0-9bcc-cf5953212c04", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwdVd348c+ZuVtyb/alaZruhZZS1iJQZN8RBZTFR1ERFZFC/eH2qOgjrg/q46PysLogoIIgFVBk38q+Q9lbui9Jmj25Nze5y8yc3x9z1yxN0qRJ2n7fr1chs505c+acM2fOnZmjtNYaIYQQQgghhBBCCCHEmDEmOgJCCCGEEEIIIYQQQuxupNNNCCGEEEIIIYQQQogxJp1uQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0w63YQQQgghhBBCCCGEGGPS6SaEEEIIIYQQQgghxBiTTjchhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEJkNDU1cc4551BRUYFSit/+9rcTHSUAZs2axec///nM9IoVK1BKsWLFigmL03D88Ic/RCk10dEQQgghxASQTjchhBBCjBml1LD+TfaOkp3p+uuv55ZbbpnoaAzqa1/7Gg8//DDf/e53+ctf/sKpp5460VHa6W6//fZRdS729PTwwx/+cI/O10IIIYTozzPRERBCCCHE7uMvf/lL3vSf//xnHn300X7z99lnn/GM1qRy/fXXU1lZmffU1mTyxBNPcOaZZ/LNb35zoqMybm6//XbeeecdLr/88h3avqenhx/96EcAHHvssXnLvv/97/Od73xnlDEUQgghxK5IOt2EEEIIMWY+85nP5E2/+OKLPProo/3m7y601sRiMQoKCiY6KsMWjUYJBoODLm9ubqa0tHTM9heLxfD5fBjGnvmChcfjweORJrcQQgixJ9ozWz9CCCGEmDCO4/Db3/6Wfffdl0AgwJQpU7j44ovp6OjIW2/WrFl89KMfZcWKFRxyyCEUFBSw3377ZV7hu/vuu9lvv/0IBAIsXryYN954I2/7z3/+84RCIdavX88pp5xCMBiktraWH//4x2itRxWnhx9+OBOn3/3udwDcfPPNHH/88VRXV+P3+1m4cCE33HBDv+3fffddnnrqqcyrtuknowb79tctt9yCUoqNGzdm5iml+OEPf9hv3b7fPUtv+9RTT7F06VKqq6upq6vrt13uulprrrvuukz80tavX8+5555LeXk5hYWFHH744dx///15YaS/s3bHHXfw/e9/n2nTplFYWEg4HB5wnwC/+tWvOOKII6ioqKCgoIDFixezfPnyQdcfqUgkwuWXX86sWbPw+/1UV1dz0kkn8frrrwPuk2n3338/mzZtyhzzrFmzAEgkEvzgBz9g8eLFlJSUEAwGOeqoo3jyyScz4W/cuJGqqioAfvSjH2XCSJ+fgc6rZVn85Cc/Ye7cufj9fmbNmsUVV1xBPB7PWy+d35599lkOPfRQAoEAc+bM4c9//nPeeslkkh/96EfstddeBAIBKioqOPLII3n00UfHLB2FEEIIMXLys5sQQgghxtXFF1/MLbfcwoUXXshXv/pVNmzYwLXXXssbb7zBc889h9frzay7du1aPv3pT3PxxRfzmc98hl/96ld87GMf48Ybb+SKK65g6dKlAFx11VWcd955rF69Ou+JKtu2OfXUUzn88MP55S9/yUMPPcSVV16JZVn8+Mc/3qE4rV69mk996lNcfPHFXHTRRcyfPx+AG264gX333ZczzjgDj8fDfffdx9KlS3Ech0svvRSA3/72tyxbtoxQKMT3vvc9AKZMmbLzEjtl6dKlVFVV8YMf/IBoNDrgOkcffTR/+ctf+OxnP8tJJ53E5z73ucyypqYmjjjiCHp6evjqV79KRUUFt956K2eccQbLly/n4x//eF5YP/nJT/D5fHzzm98kHo/j8/kGjdvVV1/NGWecwfnnn08ikeCOO+7g3HPP5d///jenn376qI/9K1/5CsuXL+eyyy5j4cKFtLW18eyzz/L+++9z8MEH873vfY+uri62bt3Kb37zGwBCoRAA4XCYP/7xj3zqU5/ioosuIhKJcNNNN3HKKafw8ssvc+CBB1JVVcUNN9zAJZdcwsc//nE+8YlPALD//vsPGqcvfelL3HrrrZxzzjl84xvf4KWXXuKqq67i/fff55577slbd+3atZxzzjl88Ytf5IILLuBPf/oTn//851m8eDH77rsv4HbsXXXVVXzpS1/i0EMPJRwO8+qrr/L6669z0kknjToNhRBCCLGDtBBCCCHETnLppZfq3ObGM888owF922235a330EMP9Zs/c+ZMDejnn38+M+/hhx/WgC4oKNCbNm3KzP/d736nAf3kk09m5l1wwQUa0MuWLcvMcxxHn3766drn8+mWlpYdjtNDDz3U71h7enr6zTvllFP0nDlz8ubtu++++phjjum37pVXXqkHaprdfPPNGtAbNmzIzAP0lVde2W/dmTNn6gsuuKDftkceeaS2LKvf+gMB9KWXXpo37/LLL9eAfuaZZzLzIpGInj17tp41a5a2bVtrrfWTTz6pAT1nzpwB02MgfddLJBJ60aJF+vjjj9/usaX3lXvOB1JSUtLvePo6/fTT9cyZM/vNtyxLx+PxvHkdHR16ypQp+gtf+EJmXktLy6DnpO95XblypQb0l770pbz1vvnNb2pAP/HEE5l56fz29NNPZ+Y1Nzdrv9+vv/GNb2TmHXDAAfr000/f7jEKIYQQYvzJ66VCCCGEGDd33XUXJSUlnHTSSbS2tmb+LV68mFAolPfaHsDChQtZsmRJZvqwww4D4Pjjj2fGjBn95q9fv77fPi+77LLM30opLrvsMhKJBI899tgOxWn27Nmccsop/faT+123rq4uWltbOeaYY1i/fj1dXV3DTqOd4aKLLsI0zR3e/oEHHuDQQw/lyCOPzMwLhUJ8+ctfZuPGjbz33nt5619wwQXD/s5d7nodHR10dXVx1FFHZV7/HK3S0lJeeuklGhoaRrytaZqZp/Qcx6G9vR3LsjjkkEN2OH4PPPAAAF//+tfz5n/jG98A6PfK7sKFCznqqKMy01VVVcyfPz8vr5eWlvLuu++yZs2aHYqTEEIIIXYO6XQTQgghxLhZs2YNXV1dVFdXU1VVlfevu7ub5ubmvPVzO9YASkpKAJg+ffqA8/t+g80wDObMmZM3b++99wbIfCNtpHGaPXv2gMf23HPPceKJJxIMBiktLaWqqoorrrgCYMI73QaL83Bt2rQp8xptrvQotJs2bdrh/f373//m8MMPJxAIUF5ennldc6zS7Je//CXvvPMO06dP59BDD+WHP/zhgJ2zg7n11lvZf//9M99Kq6qq4v7779/h+G3atAnDMJg3b17e/JqaGkpLS/ulZd8yAFBWVpaX13/84x/T2dnJ3nvvzX777ce3vvUt3nrrrR2KnxBCCCHGjnzTTQghhBDjxnEcqqurue222wZcnv4gfdpgT2cNNl/3GSBhZ8RpoCe41q1bxwknnMCCBQv49a9/zfTp0/H5fDzwwAP85je/wXGcIeMx0CAK4H6XbrgGW3e8R1cd7v6eeeYZzjjjDI4++miuv/56pk6ditfr5eabb+b2228fk7icd955HHXUUdxzzz088sgj/M///A+/+MUvuPvuuznttNO2u+1f//pXPv/5z3PWWWfxrW99i+rqakzT5KqrrmLdunWjitdg57uv4eT1o48+mnXr1vHPf/6TRx55hD/+8Y/85je/4cYbb+RLX/rSqOIphBBCiB0nnW5CCCGEGDdz587lscce48Mf/vC4dAQ5jsP69eszT7cBfPDBBwCZESrHIk733Xcf8Xicf/3rX3lPJvV9NRUG72wpKysDoLOzk9LS0sz8vk8+pdft7OzMm5dIJGhsbNyB2A9t5syZrF69ut/8VatWZZbviH/84x8EAgEefvhh/H5/Zv7NN9+8YxEdxNSpU1m6dClLly6lubmZgw8+mJ/97GeZTrfBzsny5cuZM2cOd999d946V155Zd56w+1AAzetHMdhzZo1mScFwR2sorOzc4fTsry8nAsvvJALL7yQ7u5ujj76aH74wx9Kp5sQQggxgeT1UiGEEEKMm/POOw/btvnJT37Sb5llWf06ksbCtddem/lba821116L1+vlhBNOGLM4pZ9Gyn36qKura8DOo2AwOGCYc+fOBeDpp5/OzItGo9x6660Drpu7HsDvf//7ET0VNxIf+chHePnll3nhhRfy4vb73/+eWbNmsXDhwh0K1zRNlFJ58d64cSP33nvvaKMMuE/+9X0NtLq6mtraWuLxeGZeMBgc8HXRgc7rSy+9lJcOAIWFhQDDyisf+chHAHck21y//vWvAXZoxNa2tra86VAoxLx58/KOsauri1WrVk34q85CCCHEnkSedBNCCCHEuDnmmGO4+OKLueqqq1i5ciUnn3wyXq+XNWvWcNddd3H11VdzzjnnjNn+AoEADz30EBdccAGHHXYYDz74IPfffz9XXHFF5rXRsYjTySefjM/n42Mf+xgXX3wx3d3d/OEPf6C6urrf02eLFy/mhhtu4Kc//Snz5s2jurqa448/npNPPpkZM2bwxS9+kW9961uYpsmf/vQnqqqq2Lx5c14YX/rSl/jKV77C2WefzUknncSbb77Jww8/TGVl5ZilXa7vfOc7/O1vf+O0007jq1/9KuXl5dx6661s2LCBf/zjHxjGjv2Oe/rpp/PrX/+aU089lU9/+tM0Nzdz3XXXMW/evDH5JlkkEqGuro5zzjmHAw44gFAoxGOPPcYrr7zC//7v/2bWW7x4MXfeeSdf//rX+dCHPkQoFOJjH/sYH/3oR7n77rv5+Mc/zumnn86GDRu48cYbWbhwId3d3ZntCwoKWLhwIXfeeSd777035eXlLFq0iEWLFvWL0wEHHMAFF1zA73//ezo7OznmmGN4+eWXufXWWznrrLM47rjjRnycCxcu5Nhjj2Xx4sWUl5fz6quvsnz58rxBRO655x4uvPBCbr75Zj7/+c+PeB9CCCGEGDnpdBNCCCHEuLrxxhtZvHgxv/vd77jiiivweDzMmjWLz3zmM3z4wx8e032ZpslDDz3EJZdcwre+9S2Kioq48sor+cEPfjCmcZo/fz7Lly/n+9//Pt/85jepqanhkksuoaqqii984Qt56/7gBz9g06ZN/PKXvyQSiXDMMcdw/PHH4/V6ueeee1i6dCn/9V//RU1NDZdffjllZWVceOGFeWFcdNFFbNiwgZtuuomHHnqIo446ikcffTTz9N5YmzJlCs8//zzf/va3ueaaa4jFYuy///7cd999O/RkVtrxxx/PTTfdxM9//nMuv/xyZs+ezS9+8Qs2btw4Jp1uhYWFLF26lEceeYS7774bx3GYN28e119/PZdccklmvaVLl7Jy5UpuvvlmfvOb3zBz5kw+9rGP8fnPf55t27bxu9/9jocffpiFCxfy17/+lbvuuosVK1bk7euPf/wjy5Yt42tf+xqJRIIrr7xywE639Lpz5szhlltu4Z577qGmpobvfve7/V5bHa6vfvWr/Otf/+KRRx4hHo8zc+ZMfvrTn/Ktb31rh8ITQgghxNhQeke+OCyEEEIIMcl9/vOfZ/ny5XlPJAkhhBBCCDFe5JtuQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0y+6SaEEEIIIYQQQgghxBiTJ92EEEIIIYQQQgghhBhj0ukmhBBCCCGEEEIIIcQY80x0BCY7x3FoaGigqKgIpdRER0cIIYQQQgghhBBCTCCtNZFIhNraWgxj8OfZpNNtCA0NDUyfPn2ioyGEEEIIIYQQQgghJpEtW7ZQV1c36HLpdBtCUVER4CZkcXHxBMdGCCGEEEIIIYQQQkykcDjM9OnTM31Gg5FOtyGkXyktLi6WTjchhBBCCCGEEEIIATDkZ8hkIAUhhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEIIIYQQQogxJp1uQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0w63YQQQgghhBBCCCGEGGPS6SaEEEIIIYQQQgghxBiTTjchhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEIIIYQQQogx5pnoCAghhBDDscXZxr3OIygU+6h5nGAumegoCSGEEEIIIcSgpNNtmLrP/jf63Sg4GgyFKgugO2IjmgYwZhbhPXkm/ssPAsB67RrsTY+juza5O4p1gHZAGRAoy04XVODZ/wt4Fi8b1+OO//YNko9swl7ZMupjH8425uIVqNIm8CZxVs+GpAmGF8+R+1Lwq+0fu/XaNehEBOUrwrN4GdZr19D7jSR6kxcdD4w8nu3xnZ28w6Zmr8fYdx0qGMFpmooq60QFOgEFWqFqWtHhAoj7cbZMR1VEMQ58DSNggccDoVo3L/mKUJ4AWtvQucEN3PRBqBZVPANz1ol5eWzA/OkrwqhciO/MO0n885M4re9DIuzmV0AVz0B5AqjqA1C+IoC885LLeu0arLdvhp7WTJ5Px8N+5sgB8x4MnJfUlA8wZq9GFXWje02UP46zZj46sje6o3RM8ufODmOiwlR190F3IVgGakYzur4S3ViL7i3BPOZ90I3olnLoLQDDi7N+NlhB8AUwD6zKq9PSBssbffPYSDzsPMO3rF8CsJ+azzPXPw9WFNB91lRQUIUx9RCc+hfB6oWiaRjle2M9eQj2qwF0RynGosdBN6L8vaA0eAyc9/ZCN01Fx8tQZVX90spYsBzdHkJVtKJ7QhhTtkFxB866ORiVbThrFuCsWwCUDXlOVEUB/osW9Uu73PKRKX87cC0YqvyOVOKfn0THwyh/MXrDd0g+sgk8d6Ebq8FIgBfUjPfQzdWo0k50ZxW6vRjdXg2JYlRZFarqCYyZa1BVzVAcQTdX4WytxSjrctM0XIruLEFvmIvTPA0Vmt0//Rq6IWqNOP5ifJhHPYu9ej7mQe+hm6ajo7XojlLMxSvQTdXoaC2qrAOsFrSjMerqUUVxKG3GWTcLVdiLjpSAZWDUNuDUT0OVh1HlLW7dEylC1bWi20LojTPRCS90lkHS178qGGdqr9JJc21QdfdhTN2KmtqAjhShSrogEEM3TUFNaYJYAfa7+2Ae9gp4LLcO7ChDd5aAVu7xzF2P3jALVbcVPDb2s0dgHvEidBVDeYe7rDgMKpUA/pgbDoAnCd1F6J4gzqq90evngDUH3RsY3/ZkQcStO5MenNUL0OGF/doEIzlHqnYtqjCKql4PhT0ow8HZuAhn7V7ghCb8vE9EmOMVL2PBclRhF05DDaoyjN5SDZYJKHRXHSRA9xaB40NVTZ6yONJpY9HjqLK3wQFQqJIu7JX7Y9Q2oqpasNfshVFX7+bprdMwqluhIIqa0oxuqYKkF1XWCcEoKAfntYPRtgfz8JfQjVMh4YWkD2frTJS3HHPhPhT8atmYtxlyZcJuWpl3nzucdmHvN6/BenMtqnQdqrAHdBKUxvlgPjq8YLttfGPOBqALVb0eVdYOpg2As2EWqqQLvWk2xqK1OFvLM/WeMa0eZ9UC936rvBvzgLfAG0GVt0OwG+e1gzGOeAFMx42gY4BtYL94GNgezCUvutOvLsaYtQln3RyIByBchNYGtNSAUQOB/nk0XXdpK46x9ypURQvO6we751MrKOlEBeLY7+2Dufh1KIq4+eDFwzAOfsPdj6PQnaUQC4DXQdVtdttloW4o7MF+ZTG0l6Mba0HVYez7IqqkCYwETmMdqqrBvU6UdqKCSZwN89FtfjCSbvoseg9jznp0w1Sc1Xu71w+tMJe8BIaD/dpBqOIIKAcKYujVe+O8vwASftAGeFT25HoNCHonTVk05j6EjpioihZUMA6mPeR9QXetOawyIJ1uw2Sv2AqqIDOtW2N5y4c7ba/pxHm/Pdvp9vq10N0w8E5jbdm/4x1Yr187/p1uV7+Bro/mzdvRYx/OOubiFW4hBax/nuwujBSTWN9Nwa+2H9dMWoZq3U6316/FeWFpqhEe26F4Tha6tRJz/7+DcrAePAHfZTekGrapxm0oigoGAbDu+yi+y25ABXrcZVYCOte6f8fa+t+TWBZ0rkV3rsVqX5Xf6TZQ/oy14UQ2A+BseMi9eKbmA+jOtWhlwPoH3M4+yDsvebvuG36sLROPxNXBIfNe7jwdL8U88zU3/2gjlVYnQzgAxAYNYyT5czzDGM8wddP+mcaG77SHSTyxFCLFAJj7PApA4tpLMusQCaa2jmE/tiWvTksbLG/0zWMjYePk/G2D1T3Imhp6m/Pj0LkWp2s9yb/ul8oTnZjnuseWrnMgVe+kjl23duaH2hrDPPdVEtdegu+yG0hcewmeZddDqBvrtk/jWXY91r9Ph3AhEM9s0zeMzN/tceJXvzF4p9tA5W8E14Khyu9IpdNTK4PE1aeg66P4rliRlzd8J91D4pETMumDVnnpqZvm4jnuYQh1g9IoDdYd52XSURV1Q20DiSeOhXAJms68OEzmelq4zKOedTtnFr9A4toDM3WwuTiVV8IBdFEQcOsR8yMPumUwFMW67T+yeQfwHPk81v0fSV3zHKzlnwCt8J3yqLtOxP1hBz05vpai13TmT0/gtUE37Y9n2bNuuQrEIRR1y1xVKwR7oTCG8+yReI5+LrtheQfKl8hOK9z1fW4nd2b98s7sslDOdVr1aWH4OlHlnVh/OR/CJamZw78ej1V7Ms2tn7ffJhhqvzpZgqYE34n3ZturD5wCYS+D1fs7cmy7ajtjZ8bLPPfVVNvuRLeeeGxpdoVIcbb9B+jOzgmL52inzXMfzc+7oSjOGwfhOfIFCHXj3HIBnmXXAWDd/XH3+omGom6Uym6TLo/2s0cC4DnuKVRVSyZY677TIVyC/ap7jzXWbYZcg4U9nHZh4s/dYFfjW7Y8lS4K0Fj3nzpkeXbi7rUmt7wCWHef5eahFcfg+ei/se7L5iXPUc+5dUWkGB0JY5y5GtCZNLWfPRIzt940HTAdnJx0BnCe+zCeo5/Duu3Tqcil29DFqQ078+KaW3clrr0Ez4mPpPb3YXzpc5yqb52bLszsB5+VjVOwF8Ct89NCUZRuycTfeWFJXtvM/OyKbF12/8n4lq0g8fCJ2evu/cdn4w6Y59wDRRGUL4n1r4+5+UwrPGfd58btjYPcbQGUJvHAaW5nYPrXGSvnOmHZ0GtPmrJonrsi1cZ/PL8/Yjv3BfYHvf32PZDJ0UoRQgghhpDQ2ZvBBMkJjIkQQgghhBBCDE1prSf4YfzJLRwOU1JSQsf79YR6PKC1++te0IeOJkc0DaBCXlSxD1XkTutEBB2PoJPuExs6mf7FUKG8hZlp5Q1hhGoyr+uNFx1JoMMJnKaeUR/7cLbRyQjajoIvgROOgKMxSkrwzJmNUVG+/bgmIqnwFMpXhE5EcBqi6EgSkr4RxzPxYgPJX78GW4bXg73TlCj4yFQKLt4LbfWgCj2gwelsBtsB00AVhXBaNwEajBBm1Qy0pwtVaKAKfRjBKnQyivIGcV9J1djhTaA1yhvECFahfCGUrygvjw2UP5U3iPIVYYSm4nQ3ouNhtNWL8hYCoHwh3PwbJPOTW855yaUTEZxII9qKks7z6XgQ9w+Y92DgvJTNO0mccNg9Nk8Qs6I29Ujz6PPnzg5josK0mtagE91oJ4FZVoUTiaBUAOULYZSWYLfVoxM9oAyMYvfcKG8Q5S3EmBLMq9PSBssbffPYSPzMuoGfWO6vu3XU8H7rj3GiTehoE5gBsHrAjqNKZmGWzsYITnHjkezFCFa7eTPmQ3cn3fxldbvHluwBpTCKi9BRG2UWuuWitKxfWtltW9HJKNqKoYIedDKK096Achy0AWbVfJQuwwhUDnlOVMiLURvql3YDlb8duRYMVX5HyuluJP1aiNIV6HACu74ZHI22e1FBE7utCfedGIVRUozutlCebHrabfU4vS2QaAN/Eh3rRLdsAOVBe0swpx8IPTbKV47yhjArp/VLP6e5B2tVO4mfvzTx9bPob6EX/38twZhquGUp6IOEH52MANl6yG5ryJa9kiKcjm3uNCYqFEJ3tqDtGMpTgFE5A6crdc1TBmbVTJxIBN2dRMccDF85JAPE790Mj6yHrnE+ZgNYUELozo9NmmuD1bQG3duM7tkEug1n05OoZBTt2KiiqehYL5heMP2o4ikoQ6O7I2i84AmiSuvQXe+j4t3uK/rBYnRXvbsPDaq0Ch3uBMMPniJU1Xx0uBkME4WNKq0FDTqaQHsrUaHp+OYeBQnfuLYntdGJ094M2kAVlOOpntuvTTCSc6TtbvAlsnWdUpjlNe510ROc8PM+EWGOV7zstq1oqxttxTCKinAi3eCk6oTyGnSPjfIEAAOjtHSXSb9+01Y3VsNb6Fg7OAlUaSU67D4dDgYEDGjb6D7Ib/oxqmej2xvRTi/KTkDpFIj2uOtbEfAqtGWjw42A170e1x2CClRiVkzBqKjAqCgf8zZDrnTYTk9Tak5+m397bRqnrd3919UFipw2fiFmxbTttvHxJVJtvSawutFOHFXgQUeiYAZQ/gqMkhB26yZ0bwdgunknEcDwl7vtV38Me9tqSHZCrBWMHnRPI7rzfSAJ+FEls9G9SVABMEyM6rno7h7wlrj1adUsiNpgFmIEyjEra1He4KB1lxNrQRud6Ob3wOpFaxNjygJ0tAe0DXYCVWjgbHkMYp3uE2Ml08AoRDs+lL8KCqswKqajWz+A3la0lUSVVKHjgFmECk7DO20RuifhtjNt9x7T6YoAmnQ7TnkKsTd3u+v1dKOKNHbzB5CMg/JgVNbgNL0LiW4cEpjl03A6omAUgunHnDYPp8uLYZahvAWY1WWZc6sKvW7fyCQpi05XR+p+qAdV6AX0kPcFEd1L2T7T6Orqori4mMFIp9sQ0p1uQyWkEEKInesbyau4zr4NgDKKaQw8P8ExEkIIIYQQQuyJhttXJK+XCiGE2CW06+zjKxGiyG9GQgghhBBCiMlMOt2EEELsEtpz3hmzsIkQ3c7aQgghhBBCCDGxZPTSYeo++9/od6OjHsrWmFmE9+SZ2dFLBxqeOWco5cx0QQWe/b8w/qOX/vYNko9swl7ZMr5DvHuTOKtnQ9IEw4vnyH0p+NX2j9167Rp0IoLyFbmjl752Db3fSKI3edHxwMjj2R7f7v7Gk5q9HmPfdahgxB3CuqwTFegEFGiFqmlFhwsg7sfZMh1VEcU48DWMgAUejzuKaGrob+UJoLUNnRvcwE0fhGoHHLZ7qOHDE//8JE7r+5AIu/kVUMUzUJ4AqvqAzDcacs9LLuu1a7Devhl6Wuk7fLj9zJED5j0YOC+pKR9gzF6NKupG95oofxxnzXx0ZO/tDic+VsNMj0UYExWmqrsPugvBMlAzmtH1lejGWnRvCeYx74NuRLeUQ28BGF6c9bPBCoIvgHlgVV6dljZY3hhqaPjt6ch50g3Ac+1cYlYv9BuTV0FBFcbUQ3DqX3S/R1Q0DaN8b6wnD8F+NYDuKMVY9DjoRpS/1/32iccYcmhwY8FydHsIVdGK7glhTNkGxR046+ZgVLbhrFmAs24BUDbkOVEVBfgvWjT46KW55W8HrgVDld+RSvzzk+h4GOUvRm/4DslHNoHnLnRjNRgJ8IKa8Z47NH1pJ7qzCt1ejG6vhkQxqqwKVfUExsw1qKpmKI6gm6twttZilHW5aRouRXeWoDfMxWmehgrN7p9+Dd0QtUYcfzE+zKOexV49H/Og99BN09HRWnRHKebiFeimanS0FlXWAVYL2tEYdfWoojiUNuOsm4Uq7EVHSsAyMGobcOqnocrDqPIWt+6JFKHqWtFtIfTGmeiEFzrLIOnrXxWMM7VX6aS5Nqi6+zCmbkVNbUBHilAlXRCIoZumoKY0QawA+919MA97BTyWWwd2lKE7S0iPVKfmrkdvmIWq2woe2x2V9ogXoasYyjvcZcVh0oPS4Y+RGcHUk4TuInRPEGfV3uj1c8Cag+4NjG97siDi1p1JD87qBejwwn5tgpGcI1W7FlUYRVWvh8IelOHgbFyEs3YvcEITft4nIszxipexYDmqsAunoQZVGUZvqQbLBBS6qw4SoHuLwPGhqiZPWRzptLHocVTZ2+7nUVGoki7slftj1Daiqlqw1+yFUVfv5umt0zCqW6EgiprSjG6pgqQXVdYJwSgoB+e1g9G2B/Pwl9CNUyHhhaQPZ+tMlLccc+E+FPxq2Zi3GXJlwm5amXefO5x2Ye83r8F6cy2qdB2qsAd0EpTG+WA+Orxgu218Y84GoAtVvR5V1g6mDYCzYRaqpAu9aTbGorU4W8sz9Z4xrR5n1QL3fqu8G/OAt8AbQZW3Q7Ab57WDMY54wR21FMAxwDawXzwMbA/mkhfd6VcXY8zahLNujjt6Z7gIrQ1oqQGjBgL982i67tJWHGPvVaiKFpzXD3bPp1ZQ0okKxLHf2wdz8etQFHHzwYuHYRz8hrsfR6E7SyEWAK+DqtvststC3VDYg/3KYmgvRzfWgqrD2PdFVEkTGAmcxjpUVYN7nSjtRAWTOBvmo9v8YLgDmBmL3sOYsx7dMBVn9d7u9UMrzCUvgeFgv3YQqjgCyoGCGHr13jjvL0h9e88Aj8qeXK8BQe+kKYvG3IfQERNV0YIKxsG0h7wv6K41h1UGpNNtmOwVW0EVZKZ3dChbe00nzvvt2U63gYZQTou1Zf+Od2C9fu34d7pd/Qa6Pv9pkvEa4t3658nuwkgxifXucNbbk0nLUK3b6fb6tTgvLE01wmM7FM/JQrdWYu7/d9yh0k9IDeOsydxhhKKoYBAA676P4rvsBlSgx11mJaBzrft3rK3/PYllQefaAYftHmr4cGfDQ+7FMzUfQHeuRSsD1j/gdvZB3nnJ23Xf8HOGD09cHRwy7+XO0/FSzDNfIzNkvHKwHjx5yOHEd8aQ72MRxniGqZv2zzQ2fKc9TOKJpdmhxPd5FIDEtZeQHe48mNo6hv3Ylrw6LW2wvDHU0PB9XZm8mn/aj1Og/DTolrxlyuoZZCsNvc35cehci9O1nuRf90vliU7Mcx9NBZQzjPwQQ4Ob576aGk78BndI92XXQ6gb67ZP41l2vTvMfLgQiGe26RtG5u/2OPGr3xi8022g8jeCa8FQ5Xek0umplUHi6lPQ9VF8V6zIyxu+k+4h8cgJmfTJHZZet3aim+biOe5hCLkfhVYarDvOy6SjKuqG2gYSTxwL4RI0nXlxmMz1tHCZRz3rds4sfoHEtQdm6mBzcSqvhAPooiDg1iPmRx50y2AoinXbf2TzDuA58nms+z+SuuY5WMs/AVrhO+VRd51I6uPbenK8uKHXdOZPT+C1QTftj2fZs265CsQhFHXLXFUrBHuhMIbz7JF4jn4uu2F5B8qXHSUahbu+z+3kzqxf3pldFsq5Tqs+LQxfJ6q8E+sv50O4JDVz+NfjsWpPprn18/bbBEPtVydL0JTgO/HebHv1gVMg7GWwen9Hjm1XbWfszHiZ576aatud6NYTjy3NrhApzrb/AN3ZOWHxHO20ee6j+Xk3FMV54yA8R74AoW6cWy7As8wdVMq6++Pu9RMNRd2Z8cvS5R3AfvZIADzHPYWqyrajrPtOh3AJ9qvuPdZYtxlyDRb2cNqFiT93g12Nb9nyVLooQGPdf+qQ5dmJu9ea3PIKYN19lpuHVhyD56P/xrovm5c8Rz3n1hWRYnQkjHHmakBn0tR+9kjM3HrTdMB0cHLSGcB57sN4jn4O67ZPpyKXbkOnv/vVmRfX3Lorce0leE58JLW/D+NLn+NUfevcdGFmP/isbJyC7uBSKpDz4EgoitItmfg7LyzJa5uZn12RrcvuPxnfshUkHj4xe929//hs3AHznHugKILyJbH+9TE3n2mF56z73Li9cZC7LYDSJB44ze0MTP86Y+VcJywbeu1JUxbNc1ek2viP5/dHbOe+wP5geAN6SaebEEKISafN6eCb1i94zHmeFtpBg4EaekMhhBBCCCGEmCSk000IIcSkc5t1H39z/p03z8l5TnMq1cCmcY6VEEIIIYQQQgzf5HgeXwghhMjxn84vt7u8keZxiokQQgghhBBC7BjpdBNCCDGpxJzJM4iJEEIIIYQQQuwo6XQTQggxqZyYuGCioyCEEEIIIYQQoyadbkIIISaNTbqBV3lnoqMhhBBCCCGEEKMmnW5CCCEmjZX2e0yhcqKjIYQQQgghhBCjJp1uQgghJo2/Ow/SROtER0MIIYQQQgghRs0z0RHYZZT4IQJoQAGmAbYzsmmAkBfzwOpMsEb1ATjJHkh2uzMcO7sTw8xOGx6M6gPG6WCzzAOrsaIN0BUf/bEPYxunvhZV2AOAqmgDx4BQFFXrGzKuRvUB6KJpqILKzDRFCej2gTZGHs9JRJV04TTWoAIx1NRtOI1TUIHsx+aVx0Z3loJjZJYbxWF3mQIMj5uXlOHmK+2AY2V3YHjAG+qXxwbMn8qAggp3uqASetvc8AzTnecNgelDlczMnIvc89Iv/J7mVFxSeT4Vj0HzHgx4HlVpNo103I/yx1EVbeh4ASR8Y5I/d3oYExSmqm2E3gBo5aZhRRs64YOkF6dhGhgWqmYbxAOgQUeDbtlUCkr8eXVaxiB5Y6h67BHn2e0u7ytdVFW/JcqNQ09qlFPDA4FyjLk9OB8UQtyfPTZ/Tlkqb08du8/dpk9aOdumoGpSZbC2Ad1WhjJs1LTU35Vt6O4QOObQ58RjDJx2KXnlbweuBUOW35EqqIRkFLzBTPl06mtR5R3gKFCg28qzdVTNNugtyEtPNaXJTSePBb44urM0m3YeC91Ziu4tcM9DLABOQf/0s5wdi78YF059LQRimbyRroNzp1VZGJSVrXMCMZShUdMa3DJW2wCO4eaLdH4q7EVN3QYxv7tNTRM66XXzRqwgtff+NcG48kyea4OqbUyVq6RbzjwW+BLu34U9kPChpjVktwGI+d22RIoq6nbXD3WDwl0/tR4FsWy4ab5E9m/DcddzDLeuTHghGXCvHePZnjQc0Aq0GrxNMIJzpEq7wHDcfJq6drj1flHqujix531CwhyneKXTPFMnpO8TwL3OKA1xv3u+Peauk359j7NhGioYIU15bFTNtsx1Uk1ryJTTdDsE00EV9mTnp8o75JRbTbZ8p+4XKImgqt36c8zbDDkyYce7yLvPHUa70JgbR7d1Z64V6c2H08Z3rzW2m3cCvZm6LtOOK2932y0120gv1G1lmbagKu1Et5WDYWfSNJOeuXR+OuMY7nRPoft/24S4D7Ry86rlA9W/jZmpu2obIFoIBb2ZNhIKlOGA4aTCNMB0svu2DTctIHNPiJHNF3nx7ynIxCPv3nvqtvx2XCCOqmyDhNctX6TaeYU96PYytwx6k5D0uvV9Om23TXH/9sXdtIyEchKrz3V6EpVFp742mzdS99lD3RdQ6Ie27WZhNxyt9STrXphcwuEwJSUldHV1UVxcPNHREUKI3Y7Wmr3iJ6HR1NO0Q2G87fs3exmzxjZiQgghhBBCCDGA4fYVyeulQgghJtQWtrGVbTvc4QawUdePYYyEEEIIIYQQYvSk000IIcSEWuWsG3UYG/XWMYiJEEIIIYQQQowd6XQTQggxoVbp9aMOo0E3j0FMhBBCCCGEEGLsyEAKw9Q152Z0ZAw+/hry4vlwLcF7PgpA4p/n4dS/MLyBFGadhO/Mv4/nYRP9+L+xnhu/gRQ8n/tz5mOO1oOnuB+BTPpQtT6KXvjhduOa+Od56N5WVEElvjP/TuKf59H7xQ/tHgMp1G3BPOlxVCCG9cRxmEc8nz+QQnULurUCHCOz3Ji/xl02koEUpi3Jy2MD5s/UR1UDF68j9ru5wxtIIee85Er88zycjY/2H0hh2hKSt3xu4LwHAw+kULcF88TH8wZSsB46Gd1QJwMpDDWQwrz3MgMpmCc8if3kMejGqZD04vnc7WBY2M8ekR1IYWtd3kAKuXVa2mB5o28eA3hf79iTbh03bMqZuoIYV+RMKyis6jeQQvJPn8T5oBLifjyfubXfQArWA6eit9UM+sFUz+duwn72CMwPP4/9wuF4jn0KVdVKcvnZeI55CuuRk9EbZw57IAXPKTP7pV1aXvnbgWvBUOV3pGK/m5sZSMF+6Gqs5xrwnPkH7KeOzgyk4DntIawnj8U84nns545wB1Jors4OpDB7FZ4TnkBNaXEHUmioxXriODzHPIWa4tZjurcA+4lj0Q21MpDCLshzwZ+x/n4OnvOWYz91NLqxFhI+PJ/7c2ZaTWkmPZCCecKT7kAKlW0kl38Cc8mL2M8fDo6B5/gnsZ5MXfMKe7EeOwFifszjV2A/dwR6Sx0ykMLA66h57+E5dgVqSjO6tRJV2eoOpNCQ+kh3wkfy7+fi/dxfssnWG0C3Zgc9UtO3orfUoeq2goLkrZ/Fe8Ff3OtFQcxdVpkz2nS/gRTcgROSd53t1ovjOJBCpj2ZM5DCoG2CEZwjNX0LGA7mCU9krh3WwyejN86SgRR2crw8n7vJbdul2rn2k8dmB1JomsLuMpCC5zO35g+kUNlG8m/n4Tn+SdSUFpJ/PwfP8U+6ee/x4/Ac+5Q7kEJtg3vdhEx5B0j+9XwAvJ/7i9t+g8z9Aj1BVHUBRS/8cMzbDLkyYQ80kMIA7cJckSU/RLd1Yx73ZN5ACsNp46vpW0HZbnnNGUjBevQEtx335LF4Tn0E64ljSS/0HP8E1oNuW1BVN+M5/UF3IIUqN02Tfz3frQdzaUj++bOZdMYx3PXOuZvk8k/kD6TQNGW7Ayl4Pvdn7Jc+hPecu6Ggl+Rfz8dzzFPu8VS2guG4dfdnbssMpJD882fd6fRACq2V2YEUUvkinSeSfz3fHUhhWw1YPjyf+Wv23vuJ4/ActyLTjlOBONbDJ+cNpOA5/UH32rB1mnuvnhpIIZ0myb99EvPI5wFQvriblptmZNK333V6EpVFz/m3YL9wGOaHs/fZQ90XhAtz7qe3QzrdhqsrDirVqNPkN/pHMt0Zx16ZfSLDaX4T4p0D7FDnd4o4lrvuOLNXNkNn9oZ0VMc+jHWMaQ2g3L91W2q0nEgxurd7yLg6zW9CdwM6VJudjnzY7XBjB+I5ieiuEoyp20A56MYajKlNqcov1TsYiKFKO911U8tVbp2WzkvaBtvuvwPHgnhnvzw2YP7UNvSmGtm9rW6nSu4+4p2gDHRPc+Zc5J6XfuFn8rnOi8eQea/PPN2ZTSOlDTet2irci9xgYYwwf45bGOMcpm6Y6jZSAWPqNqy2CreDDTBq3W+lWdtqMuvgmNnt+9RpGYPkjYHqsZiOE6KQbnr6hzOEwW+xdTafpuPQ24qzrhCiXsDJHFu6zgHQ7eWZY8fpn35GTRPWNreMWQ21qIoOKOxF17t/u53fZt42fcPIsJyB0y4d5YHK3wiuBUOW35FKn1OrN1M+jWkNWO1lmbyhKtozdVAmz+Skp26a4qZZIAZKuyODpdIuXY+pkjBWezkk/MCuU08LlzGtAWKBbN5I1cG507qjOLt+qt6msAddX+uWsfSNY0VHzjXPvf6hlVtPbZviduq4a473YQ5sEl0bdMPUVLmKu+2DQDxT5jAdCMTR9bX5SZdeN4cq7cyso+trM+tlluX8AJi+KcsND3A7AmKFw4r3WBw75LcnM4uHahMMY7+6s8QNv6Yp215N/ei5o2FOtjbBZI1XOs0z15j0fQK41xnlDK/Nv5PjOdppo7Y+P+8GYm4HUOo6qetrs23+dDsE7Xa8pctvqrxDTrlV5JVv3VgD4RJ0xL3HGvM2Q47+YetB7z36bbvOD7Y3e61AAXpYbfz0tSa3vALodDuuvdxtt2yrySxTFR2ZtqDuLEVVtLuBpdI0k565VH46YzrudOq65u40VZGm20SDtG+MaQ3uNTDYk9lf5hwX9rqr19e69XjuvlP1OuSf50y+yI1/Ttss7967sSavHYdy3PpNZy8UqqIdTNsdjbytws1nWmXr+201bnqDu7/28lSiDHKdnkRl0ZjWkGnjZ9JkiPsCunKugdshr5cKIYSYUG/o93aow00IIYQQQgghJjPpdBNCCDGhmvTof0UVQgghhBBCiMlGOt2EEEJMmLhO0EF4oqMhhBBCCCGEEGNOOt2EEEJMmCbaJjoKQgghhBBCCLFT7NKdbjfccAP7778/xcXFFBcXs2TJEh588MHM8lgsxqWXXkpFRQWhUIizzz6bpqamCYyxEEKIXPJqqRBCCCGEEGJ3tUt3utXV1fHzn/+c1157jVdffZXjjz+eM888k3fffReAr33ta9x3333cddddPPXUUzQ0NPCJT3xigmMthBBinbOZU+Nf5OLEf010VPY4Ng7fTf5qoqMhhBBCCCHEbs8z0REYjY997GN50z/72c+44YYbePHFF6mrq+Omm27i9ttv5/jjjwfg5ptvZp999uHFF1/k8MMPn4goCyGEANY7W1ihX5roaOyx/mE/wlXeb050NIQQQgghhNit7dJPuuWybZs77riDaDTKkiVLeO2110gmk5x44omZdRYsWMCMGTN44YUXBg0nHo8TDofz/gkhhBhbTUpeK51IW2mk3emc6GgIIYQQQgixW9uln3QDePvtt1myZAmxWIxQKMQ999zDwoULWblyJT6fj9LS0rz1p0yZwrZt2wYN76qrruJHP/pRv/nmsXXwbhQcDYZClQXQHbERTQMYM4vwnjwzE67n4MuwNz2O7trkzoh1gHZAGRAoy04XVODZ/wujT7AR8v+/g0g+sgl7Zcuoj30429ivHYsqbQJvEmPBGkiaYHjxHLnvkHH1HHwZOhFB+Yoy08klSfQmAx0PjDye7fGdl7AjpCpbsd9ajApGMA5+D/v9A1CBTkCBVqiaVnS4AOJ+jAPfxH7/AIwDX8MIWODxQKjWzUu+IpQngNY2dG5wAzd9EKpFFc/AnHVi3n4HzJ++IozKhQAYs0/FaX0fEmE3vwKqeAbKE0BVH5A5F7nnpW/41ts3Q09rJs+n46EGyXswcF5SUza7aVTUje41Uf44xrxN6Mje6I7SMcmfOzuMiQpT1T0D3YVgGdjvHoQxfw26sRbdW4L9/kmgGzH2exd6C8Dw4qyfDVYQfAHMA6vy6rS0wfJGOo/V69F/X7Pboyi0NCp3v+6eoKAKY+ohOPUvgtULRdMwyvfG+xk/9qugO0ozx6b8vaA0eAyMvTagm6ai42Wosqp+aWW/fQjGfu9jv7MI49A3cDbOhuIOjMNfxNkwE2P+Opx1C4CyIc+JqijAf9GiQY8vr/ztwLUgvX20axUBAoRjW2j32qyq8OGgWWb9hNt8/zvs9DZmn4qOh1H+4uy14fVjMWa3gZEAL9ir52Mc+LabPgeuQrcXo9uTkChGlVWhql7HWT8HVdUMxRF0SxXGkc/ibJyJqmhFh0vRnSUYs7fgNDuo0Oz+6dfQDVFr2PEW48t+5kioasN+bQnGnDZ01O+Wt9eOzUyrsihYLWhHY7+1P6ooDqXNGIe/iP3eAowPvQ6WgbN+lntNe28RqrwF4+A3IFLk1lP7v4PeOBOd8EJnGSR9oCf22NVepZPm2qDqnsHZMAs1tQEdKUIlvBCIoVsqUYYNsQKMI59Fx33gsdw6sKMM3VkC2q1VVajbXd8fA4/trm+Z0FUM5R3usriPTCXsj7nhAHiS0F2E7glifOgV9Po5YM1B9wbGtz1ZEHHrzqQHY6916PDCfm2CkZwjVduFKoxiv7U/FPagDAdjYT3O2kJwQhN+3icizPGKl/32IajCLowD3nHbufPXgGUCCt1VBwnQvUXg+FBVk6csjnTafv8kVNnb4AAoVEkXxkFv4Kyfhapqwfjw8zjN1W6ePvRlnA2zoCCK0qBbqiDpRZV1QjAKysE88lm07UH3BtzlCS8kfRgHvYPylmMu3MctskO0+UcjE3bTyrz73IHuPfryfS6E9eZa7HcPQhX2gE6C0m57Lbxgu218Y04j0OVeZ8rawbQBMA5aif3OQozZm3E2LsA4aGWm3nPWz8KYtw6naSqqvBtn43zwRlDl7RDsdtPTMsB03Ag6BtgGxpHPgu1Bx/zu9Iefw9lch3H4ixAPQLgIrQ1oqQGjBgL982i67jI+tBJn8wxURQvmkc/hbJzpxq+kExWIYyx5ER0ugqIIJD1unLoL3f04Ct1ZCrEAeB1U3WZ0SxWqtwAKezCWvADt5ejGWlB12K8fiyppAiPh3mN+sHemHaeCSYyF9eg2PxhJAOxV8zHmrEc3TMWYv9q9fmiFbqoGw8E46A3st/cF5UBBDGPuOpz3F0DCD9oAT06r3WtA0DtpyqL9+rEY+32A/c7+qGAcTHvI+wKztgIeG7oMKK31BDdRRieRSLB582a6urpYvnw5f/zjH3nqqadYuXIlF154IfF4fsfJoYceynHHHccvfvGLAcOLx+N524TDYaZPn05XVxfFxcU79VjE5PA3+9/8Z/KXHGrsz9c9X+DDxsETHSUhdjtfTf6E39t3jmmYQQppC7w8pmHu6jp0F3PjJ6BQROnNW3acOpwH/X+coJgJIYQQQgix6wqHw5SUlAzZV7TLv17q8/mYN28eixcv5qqrruKAAw7g6quvpqamhkQiQWdnZ976TU1N1NTUDBqe3+/PjIaa/if2LC87b9FCO/c7K+jVsYmOjhC7pbF40q2v3j6dSgLutB9gMYuI0ouR90wgdBGZoFgJIYQQQgixZ9jlO936chyHeDzO4sWL8Xq9PP7445llq1evZvPmzSxZsmQCYygmu5edNwFQKD5k7DfBsRFi97TO2TzmYTpounXPmIe7K/uX8zjP8Crgpo/K6Xjr1tGJipYQQgghhBB7hF36m27f/e53Oe2005gxYwaRSITbb7+dFStW8PDDD1NSUsIXv/hFvv71r1NeXk5xcTHLli1jyZIlOzRyqdPQjbU2BlqDAhX0oaPJEU0DqJAXVexDFbnTOhFBxyPoZLc7nUzfBCmUtzAzrbwhjFDNgN/F2pl0JIEOJ3CaekZ97MPZRicjaDsKvgROOAKOxigpwTNnNkZF+fbjmoikwlMoXxE6EcFpiKIjSUj6hhXPzU4DC7pK0bqG416ZA1ffSdeWCX56pkTBR6ZScPFeaKsHVegBDU5nM9gOmAaqKITTugnQYIQwq2agPV2oQgNV6MMIVqGTUZQ3iPsdOI0d3gRao7xBjGAVyhdC+Yry8thA+VN5gyhfEUZoKk53IzoeRlu9KG8hAMoXws2/QVCpG/yc85JLJyI4kUa0FSWd59PxIO4fMO/BwHkpm3eSOOGwe2yeIGZFbeo7AqPPnzs7jIkK02pag050o50EZlkVTiSCUgGUL4RRWoLdVo9O9IAyMIrdc6O8QZS3EGNKMK9OSxssb6Tz2Fg8ZfWh+h6qem2qIhZxr0FB0qFB/ZCZZUswS2djBKe48Uj2YgSr3bwZ86G7k27+srrdY0v2gFIYxUXoqI0yC91yUVrWL63stq3oZBRtxVBBDzoZxWlvQDkO2gCzaj5Kl2EEKoc8JyrkxagN9Uu73PKRLn87ci2w411sjrzO3GQCgMKkQ4/HoNtn0BTy9HvddChOd2PmWyxKV6DDCez6ZnA02u5FBU3stibcD9EojJJidLeF8mTT026rx+ltgUQb+JPoWCe6ZQMoD9pbgjn9QOixUb5ylDeEWTmtX/o5zT1Yq9pJ/PwlmOj6WfS30Iv/v5ZgTDXcshT0QcKPTrplPl0P2W0N2bJXUoTTsc2dxkSFQujOFrQdQ3kKMCpn4HSlrnnKwKyaiROJoLuT6JiD4SuHZID4vZvhkfXQNc7HbAALSgjd+bFJc22wmtage5vRPZtAt+FsehKVjKIdG1U0FR3rBdMLph9VPAVlaHR3BI0XPEFUaR26631UvNv9LmawGN1V7+5DgyqtQoc7wfCDpwhVNR8dbgbDRGGjSmtBg44m0N5KVGg6vrlHQcI3ru1JbXTitDeDNlAF5Xiq5/ZrE4zkHGm7G3yJbF2nFGZ5jXtd9AQn/LxPRJjjFS+7bSva6kZbMYyiIpxINzipOqG8Bt1jozwBwMAoLd1l0q/ftNWN1fAWOtYOTgJVWokOd+N+L9GAgAFtG9EOYPoxqmej2xvRTi/KTkDpFIj2uOtbEfAqtGWjw42A170e1x2CClRiVkzBqKjAqCgfss0/GumwnZ70Ww75bf7ttWmctnb3X1cXKHLa+IWYFdO228bHl0i19ZrA6kY7cVSBBx2JghlA+SswSkLYrZvQvR2A6eadRADDX+62X/0x7G2rIdkJsVYwetA9jejO94Ek4EeVzEb3JkEFwDAxqueiu3vAW+LWp1WzIGqDWYgRKMesrEV5g4PWXU6sBW10opvfA6sXrU2MKQvQ0R7QNtgJVKGBs+UxiHWCZUPJNDAK0Y4P5a+CwiqMiuno1g+gtxVtJVElVeg4YBahgtPwTluE7km47Uzbvcd0uiKAJt2OU55C7M3d7no93agijd38ASTjoDwYlTU4Te9CohuHBGb5NJyOKBiFYPoxp83D6fJimGUobwFmdVnm3KpCr9s3MknKotPVkbof6kEVegE95H2Bo4fXDt2lv+n2xS9+kccff5zGxkZKSkrYf//9+fa3v81JJ50EQCwW4xvf+AZ/+9vfiMfjnHLKKVx//fXbfb20r/R7ups9v6BYFYxJvNW0IMUb3A9hx/4wH7obhrdhqJbARavHJA7DFZ79J3T9+D0N4bvi56DcD1Mm/u8yd2akGEq7KWn+7na3zaRlKp1if5hP/LKloHeDBzqLwviWXQ/KIXHNpfguuyF18U0V31AUuoMAmeWqZAdG3u2TxwbNn8ogcHkXsd+WuDfhAyxHO+4ADpB3XnINGn6olsR/f3tkeS8njdBGJq0Ilww/jD1VcRfpD8j6ll1P4pqlbrkjVSaBxLWXZNZJL0vLrdPSBs0boVqcL62kPP6hUUe744ZNfV6Y7COdD3Om4z/9ViZPpI8tXedAqt6JDP5ZAd8VPydx7SX4LrvB/f+y6yHUTeKq/8ym3Qjy3EBpl7a98jGca0HX72fjj/YfJdZWUPGVmZRSzLbA88OOa+acKoPE1b9B10cz6ZHJP1+9jsQ1SzPpg1b56VnclUkzlIZIyK2z0vO6g6ANd1spu7sk3xU/d8vDd3+Zdx4zeSVcAkXZ61Om3g5F3e3SeYdsfeRe81J1ulbu/GsvgUjqRm13uM6Ptdyy1h102wmpMkdRN2jlpvcVOd841irTlgDc9dLrA4n//ra7vlbZsEI512nV55YiVS8krvrPcS/Pue3JtDFpE6TybibfjlW4Ykjpc5pu5yauWZpdGCnOtv92cf3ybrpuzGtvXAeQvX6is+U1tU26PCb++9upcH+RXU5Ovk3dYw3V5h+N7d7vDtGm6aq+Cmwnp8wpQA+v3A1QXiF7r5Rux+XmJd+y60n836VunioK4/vqdYDOpGmmHuwjL51T077v/tKt/2DQNnRfmXbmd3+Z3V/6HKfq2751d17dDAPX4znxz22b5d17p/LTQNfdTPy+ep07gEOkyE0npd3rcvq4U9dxwN3f/12aulZvt8U+KeS28fP6I7ZzzsK6lxnWt4f8ptsu/aTbTTfdtN3lgUCA6667juuuu26cYiSEEGIoq5z1Ex2F3Z7Wmh568W9nnV7km5VCCCGEEELsTLv+zwFCCCF2KS/oNyY6Cru9t/VqEiS3u06CJLvww+5CCCGEEEJMetLpJoQQYly97rw30VHY7d1tP4qFvd11NHrE33UTQgghhBBCDJ90ugkhhBhXH+gNEx2F3V6XjuSNVDqYRt0yDrERQgghhBBizySdbkIIIcZVvW6e6Cjs1rTW3OQsRzP0q6NvOavGIUZCCCGEEELsmaTTTQghxLiKMn4jIu+J2ukiQWJY655vfYNW3bGTYySEEEIIIcSeSTrdhBBCjCv5jtjOc0niB3wo/okRbXNY/By+lvjvnRQjIYQQQggh9lzS6SaEEGJcDfWB/7Gwp47J+ZTzCg2M7PXdepp4Qr+wk2IkhBBCCCHEnks63YQQQoyb4XxnTOyYmI6zmYYd2rZRt6C1nBshhBBCCCHGktLSyt6ucDhMSUkJzTe8RPDNCNrWYCrMqUGcxuiIpgGMmcWY+1ViHlwNgNP0Bk7LO+jwZgB0dBs4FhgeVLAmM62K6jDnfgRjykHjevz2681Yb7div9g46mMf1jbetWDWo4I96IYYWAaqvBzv6SfgPemo7cbVaXoD7ASYPowpB+E0vUFyeQP2ugS6t7jfPt+u3sIrDS9i2AaO6dBU0wPAlG2FGLbBcY/VUb2tCO9OT+VhqG7Gc4YXzA5UQQCURkc2g+2AMlFTPOjOeoh7IVGKqpqJUbMKymxUeQijchE6ug1VUAmeADgW9panQWtUYQVG5SJU8QyMqkV5eWyg/KkKKlEV8/Hs8x9Y79+BbluN7m1FBWsAUMUzwPRilMwG0+cGlHNecjlNb2CvewAd2ZrJ8+l46PppA+Y9GCQv6U3g3Yoq6ka3d4G2ITkFo+YgdEfZ2OTPMQjj7eRqXlZv0VTTw7RtRTi2zuS/Q5rmUufUUGmUUVM3Y0ziNax4ttyFjkbBcmBKFbRFoLcMVA3mwiB24xvQGwfHAyXl6JZqlFEBRZV4D5+aV6elDZY3NlSUsF/ZFWNSLG5+qJm5nUkqYjYJUxGwNKajaQx5cKYewoemfxFn81Po3naM6v1RZXPRm6txVsfRnWVgfOAemxUBU6HKS9DbfJCoBM9UzFmz+6WV3fo4xDqAKKpIoelE9zahEybKAOVZhO7cCxXaa8hzYtSF8H10Tr+0yy0f6fI3nGvBXdaDfMH6LkksAA5oibNva5Lp3UkAaqI2RkEVz5ZFuGvvEFWU00J7Zvt1/seZpqYMmt7W+3dAshe8Baje493y+cYz6JgBdKCKPThdH6AswKNRRZXoVgOSleCvdtOz+Qk0a8C7DYq6UYk4TthCW17wghGcDZ1eiE0HajHnHdL/HLzdivV6C2zp3tGsI3YiNa0eZkzB3CcGRiVGaZlbB3vXgmVglJaBJ4mz9W10MoryW6jqIDq6AeJJsL1QGEJHOtGqF5IhjMoasDdB1AuJEEyZDl0d6G0BnIgPkrUQDaLf65nQx1z93//QTrm+7FCYLXeh7c1QuAlUL9rbiVYOxP0ofxKd8EBvARRHwG9jmBY6HEQnAuCYGKYXXb4VHQ6hAnG0L4lqLUeXhCHpwQj24nQVg1agwFBetIqjDUBpDI+CpNcNM1IG0RmYc8+CSNH4ticL6tFdzWjLg0pMx5h6dL82wYjOkWcLKtSB074OjATKA6p4H3TzVPBUTfx5n4AwxyteduvjYDWBZaHKitEtPWAByoTSvaHDAkoBP+a8GbtM+vUL0/gAu/1eSITB0VAcQDd7wZOAQBJleNFOM1gmOh7EKCpFO03gi4KlUKoUbccg0IvyxCEagqSJDrahE35IFGD4ZoKqxZy+N+b+B+A96agh2/yjkQ7baXw57z53oHuPvpKPPoP9xjvYLVtR3iQ63A6ODYmpGNUHb7eNb1Q1o2ONbnn1taKMHgiY6HYDtBesaRgzPejmDTixGCiFUeJDt1WAXYcqKkRVNeJ0vgO+DijsQEUDUNaC44uB0mB5MWwPurXcTd+yDrf+7CgGZaATQYxANbqtAE0AQ01D1e2HEaoZvO7Sq6CwHq3eR3UHIOkDfy3aCYMnDjEfqiKMLlyLtjzQVooRjOPYHlTSi06EMKwSKKkC9T464bYLVYGJbi+GaCnEZ2HMOh4STWhdD3Si/EF0pA0ShtuOqygBpwb7rTg63gNWD6qmHYJrIeZDh4vBWwDeZlRxF3iS6EgF9PjANlGmg7Zr0RtrIVYGZghjalnm3KpSP2pK4eQpi+1vohPNblqUmmA4Q94XdFcbVF1yGF1dXRQXFw+aj6XTbQjpTrehElLsev7X+hPfs3494LJLjc9wlLmYs8yTxjlWYnf39eR/c719OwAzmMpmGgdcr97/LBWqdBxjNj7+mPw7l9k/HpOw9mY2H7BhwGUnGkfwb9/vx2Q/u4rPJr7JXc5DmJjYg7zCe5BayBv6PQAOVvvyun43s+x+7x84wVwyLnEVQgghhBBiVzbcviJ5vVTssRr1wN89KqSA/+e9QDrcxE5Rr5syf59oHjHoegfGz+AnyevGI0rj6gW9ckzC8eLhIuPcQZevctaPyX52FW86q3jHWcOBah9KKRp0PQOV+Xu6qsn8vUDNoSEnbwohhBBCCCFGTzrddnNxJ8HH40v5dOLrfC/5m4mOzqRSP8gNZoIEn058nTPiF/OE/eI4x0rs7tL5zsCg3CkZdL0W2nnc2f0+bt8wSGf3SCWxOMSz/6DLt7KNsN5zXj98yVnJ+6xjpX6fpcanBl0vqrMjx06hKvP3Kr2eNXrTTo2jEEIIIYQQexrPREdgVxH70YuoV7rcd+sNhZF6D3gk0wDG3BI8H67Fe/psAOz1D+LUv4DudJ/KcL/bY4Nh5nzTzUYVTcPc93zMOaeNKN5baORB/TRoCFHIz7xfG9H2yfs3YD/XQPLZhlEf+3C2UdUrIbgVVdCLs7UAkgYUhvB99Bj8Xzxnu3G11z8IVgw8Acw5p2Gvf5D4b5pw1jroaFG/fV44pYILG8/AtBW2qfO+6WbaikVvVuC1XqSLV0aUZjuDqtuCcUgn+DtRThF4k2jd5B4LJqq6Fx3tgd4AOlyOUVKM2utNjGILigIYFfv0+6ab0/gy4ICvBKNiH1TpHIxpS/Ly2ED5UxVUoqoW4T3i+ySf/ym69R26e7bQWVgIOJSVHkjIU4ZRua+7L8g7L7ns9Q9iv3sbOlKfyfPpeDjvLxgw78EgealwLapkI6o4go7EwbTQ7dMwAvvjtFWMSf4cizB+llxA3JxDV43NnG0Wx9lnZvJfOu+lp01Mws1/RznscLyGFU9uhyjut0CqPeg2DR1V6GQV5sFxdPg9dFSB5Qd/CL21DqXLoLAMz5G1eXVaWjpv6J6cb7qVzmFa1Zswa/Rlwo+XeX/+NBuiWylIahwFhnb/RXyKVeVeOmZcgX/z2+hYJ0blvqiKBTjvzMF+00a3VkDpa+jwe2D0gKFRwQDO5nII14CeglE3s19aaXUfOhZD+brBb4C/A8wOdLgI5UuiO/dGN8xH+WcNeU6MaSF8n9unX9rllo90+RvqWvCS81bm7znGTHDglI09HLYtzpxO95tuU3psogVdrK0Iccuhe1GhSghSSBS37hvsh4i05PM/hWQUvEHoOB/7uQastQ+gI34wIhghE22sRve634zCqEC3+qG7CowqNz0TD6GK16KKWqCkC7oDOOEClDbcb3naFdARQrdPh55ajLqD+qWf/V4bemMY4s4ocpDYWYwFq3ASUzD3aUEnqjF8VThtFajqlejeAIavCgp7cTo+ACsBRVGMcgPMrTjhAMox0EYAYhYqGEFHSlBFASjYim4rh54QqqoAHYmjt1ZAjx8dqYbeQuia2C+meD4+d6dcX3YoTG5HBbahKurRtkIVRt22Q7gYVRyBuB+ntQKjbgv4LDBt6ChD9xSAYwAKNWMTunEqqqwD/AmctXMxZm2EaBBKO91l3qRb8ToG+ONuQhiOG15vITpchG6qRjdNxyg9Eh0uGt/2ZLAZHY9C0oNumYkROKxfm2BE56h4HUZRF461EeWLgcdBJRfgbJ4FRuXEn/cJCHO84qXVfeBpRUe9GCUenBYDLAUYYM6BsAarFLQPY1bdLpN+/cIsfQ2tHgEr9R2ukIWzpQpV2IMqjuBEi1DBDkh43fIcVODvQBWH0dECSBaiAlEo7AEzidNQC0kvxoxN7je4YgVgl6B7pmBWzsI86GD8XzxnyDb/aKTDduqfz7vPHejeo6/4TcuxXn4b3bsZ5Y+j42FAo1unY/gP3H4bf/pWsJrc8lrU6n4PzVTo5mIwNXROw5gbwWmLkP4qhyqNoeunoSNTUSUKY+YGtL0ZFeqCUBhnWw3G7A3gS7gbJD1ge3A2zHLTefZGcAycLXWoghg6XAJ2EbQXg/age6ZilO+NCtYMWndpzwaMyq1QvBmncSpKAzoEBV0ofxyntQxjRgOUNUHch7NpJkZNEyS9bl3XE4TeEBT4UGUb0N0FKK8FgSTO5jroLEO3TcOoOAQK14F/KxjdKKsUTRs6GkD5k6hiP0TqsNcqIAY6iZrRgFG7Ht1Zgm6qBsMAXy/GjM3gtdzwHRMcBf4ktNbgfDAPeovc7+iVBDPnVoW8qIrApCmLWj+HTnag/J2oIsC0hrwv6K0bXneadLoNU/z/VuJXBZnpvk39kUwn/7Y6c5OVfPxy6B54tLncpqNuehVn2ysj7nTboLdm/rZSH9ceid7LnkTXR/PmjebYh1rHd8UtuD0MYN11mTszUkzsuTX4v7j9uGbSMlSLOec0ko9fTvL3S3G/6hvtt8/DKAEGf9JoMtFdJZgLbwPlkLjmUnyX3UCqBnZXCEWh261wEtdciueyG1CFYfcDsx24NzcM8n3paFNmub3qzrw8NlD+1AAbHsR7xPexX/4f0A6FQGFmjZexlYGtHQjVurNyzkuuvuGn42evupPEf397yLyXN6/Iwbfs327+0UYmrZxwEtg2aBgjyZ9jEcaBVPRZUsD2aJoy6TLaeA0az+IF7sewAd+y60ncvxQi7ncJjNOvhqmQuPaSzDpECtHEgW0kXtyWV6elpfOGewxZ3wt6+OusaQMd6ojESRLq2JJ9WTJnJxUJzRHbEtB0S2ZETqdzLay7j/hPvwXhEqAT3xU3wlQydQ6k6p1IMWDhvLIub58O4LviXySuvQTfZTe4/192PYS6SVz1n27aXXMKhAvQNGW26RtG9u8m7Je3DdrpNmD5G+RakH6C0IeXzU49AL9+up1p0b7fdktw3KZOvnOoianNTIcbQD3b73TLnFNlkLi6Fl0fxXfFLam8Ueqmz1dfInHN0kz6oFV+ehZX41u2HELdbh3mC2HddmkmHeluhhqDxLWHQrh4wHMgJjfPJ+4lcdV/Yv7H70hce0mmDk7nFSechKIeoA5w6xyUA6Eo1lX/mc07qWXp/IRySNz9EdDKnX/tJRBJvUqtDSZ0BIUU656h8+tOq8f7ThcvwLfsiVS5CrrtBKXdG82ibtAK66Yv4LniF9kNq1szbQkAvA6UdaXOF1j3nuWuX5BwwyrrcsNNU33OQagHqlpJ/P1cCJdgE8X9hWcnHzv57cm0xAPHD9kmGHK/RQ4ORfiWPZMJP3HNoRC2YZB6f8gwd2B6soa5M+Plu+Jfmbad57IbsO5bml0hUpxq/2kgjvPGJCqLI5z2XXFjft4NRbH+embmOmld9Z/4lrmfH0lcc5Y7n1S5joQy26TLo3XjxQBu2fWl7wXrSVxzHE64hGSpe481VJt/NAYNm/73Hn3FvrsGbB++ZY+k0kUBmsQDS4Zu47/bA33KK0DiH5emrjVL8Bx1PdY/snnJt+x6Ev86DiLF6KIwniVPu7FNpal148X59aaZBJJY/zoDILPMuvFifN/9JYmr/jN1wOk2dHGqLhw4j6avlZ7v/tvd3++/lD3HqfrWuu3cbBw8sWzdnN5Hbj1e1A2BUDb+v/9Cpm1mE82rKxPXXIpv2YP5191rLk2F694XeM+4F4oiECki8dCpbj7TCs9xT6fi9ml3WwClSfzfsalrdSpuPdlrgAb0mslTFtNp77vsn/n9Edu5L0jkvEGyPfJ66W5uo67P/B0jQVInJzA2Qog9nR7FjfGh6gCMEVy2Jv4WfHwkdZKn9MsUEeJItZifOtcPa7soPYRyusuHetJNCCGEEEIIMTLS6babWRQ7nemxo6mKHUZcJ9iY86QbQBtdExQzIYTY8Y6wIoIElA9HnnXqZ7NuxMEhQjdxnSQ5yMilfTXQwkI1Lzutm5ABzYUQQgghhBg70um2G+nVMdayiRbaiRDlTb0q70k3gFbdPkGxE0KIHTdT1XKo2n+iozEp5dbzHXQOe7t63cQCY05mOkovXUTGMmpCCCGEEELs0aTTbTeyWee/K3+t9RcUiiJCmXktumO8oyV2U79J3oIzyHNL6fmWHvl3BIUYyEFqXw419qeQwERHZdLJ7XRbw/BHIK1nG3sziyAF+PExlxk06padEUUhhBBCCCH2SNLpthvJHTRBAXc7j7DceYg4scz8VuRJNzF6GrjC/t9Bv8+Vnt9F9zjGSuzO4iQ43TiWNv8rHMKiiY7OpJL7GQF7mK+Wgvuk2xw1gyi9xEmwjs1s0607I4pCCCGEEELskaTTbTeS+7RDDVVYqZuvqpzRElvlSTcxJvSwPoivsmNLCjEqDzlPcaX1f5yTXMY8Y+awthnNoA27Cq11XqfbYE+fDiRBkpAqzJsnP8wIIYQQQggxdjwTHQExdq62bs38beLhEBbxCfNkkthcaV8NQIt8002MAQ3szWwYwatsQoxGmChX27fgxUcRwaE32ENclPw+bzmrmcdMmmklTHTojVLKKO43soX8MCOEEEIIIcTYkU633UgzbZm/kyRoo5NHnGdZYhzEMepQbGySyDe2xOhpNB+wYRjryUiTYngKCNCb8yp8GcV0EM5bJ4lNkl566B3v6E1aL+qVrGUTJiYjHRu2gzBxEhgYmVFh5YcZIYQQQgghxo50ug2XwUjvZwYNRwW9mUnlDaIxYBidE8o7+NMdWmuiOTeiIYKsYzMb9FZ6nTgv6TcBaLe7KCaET/lYZn4GQ23/DWMV9KKHF70xoeM+MFPfJPImAQX+OMo/dGeh8gbRvqJMOilvEAyNtkd74ibBS5IeK5s2/kR+OgFKK3Qyla/Sy1OHrYYdeaNfHuubP9Mpaavs/40+yeuk5kc9ih6vSaXKPy/9wx84HiPOe7lp5Jhg2OBLpgIY3zfpdc5/x8pOzYX+BNgmkCqD3iQoB7Ryp1X+OtljU/3qtGyETdD5J88Bot6Bj8ODmTdtDfFtsnQo20tlWylMnbOGMlEBCx3R+cdm5Owr59gZIM113JctY/4EOulFOUbmbzfP6QG3HfA4Bkq79LJBrg/pstSmO1mr3adNp1PDRvJHq456FTb9c7+dE7X39BoqKKUl9VppK9t50i19TpWZKZ867nOP2XH3opPevPTBMvPT05dKM61A6ez6qXk66XXL7wSVXTF6Ou4Dw8nmjdR5zJv2WKDccpKutzPlKJ13dJ/8lLr+YZupsBKpMACdUycJV59ylVvmFLhl0p/I3ya3LYGbmpn1U2Gm18uEpXPSXPWpkbXK7mc79erO0LedBIxNveKxQPUJf4T1vtgx/drB6fsEcPOX0rtFXTBQGz/v2plub0DO3zpTXjPbpMtjTjnPLd/4E+CPZe6xBr0nVfntsx0x+P1u/3uPftv6LXTS6V+mh1OeByqv4KZn6prktt36pFG6LeixsumbTtO+9WZa3/n+hNs2Sl3P3HaSGrIuzFwDHSOb39NxcIyB45BbN8PA9Xhu/O1s2ywvbdL7yr3u+pJgZ9M4fU3QSY+bTobjxjV9LUinbbp97U2mt8yJ0eSU18bP7Y/Y3jkb5uVEaa3H9s5wNxMOhykpKaGrq4vi4uKJjk4/rzpv86T9Io/az/M0rwy4zofYj1d5p9/3jTb5VzBFVY5HNCfUjxLXcJXzux3e/g+en/JZz1ljF6Fd1EanngWJU0a0zQI1h5X+f+2kGE1erzhvc1TiU2Ma5mb/U1SriqFXnKQc7RCKH5h5oqqvckpopyszfRJH8SjPjGqfHjx0B1aOKozJ7Cn7ZS5Kfp/NNFBBKW10jjiMjxrHscVp5E1WAXCWcSJ3+H47thEVQgghdgP/tp/kMHUAWulduk0mhBgbw+0rkifddmFh3c1RiU+j0f2eEknz4eUV3h7whqxeN+0RnW6baBjV9tXIRbVVd/C+s3bE24X1njd6qaUt6vW2AZd58ZIkOeCyoTTp1l26gbeN1kE73IC8DjeAS41P0eV08jJvD7qNgdruwAEWFkmdxKsGf5psV/aqfofNqfptRzrcANbojeytZvOmdjvd6nXzWEVPCCGE2G2sctZxTnIZAEEKaAsM/LCDEEL0Je9t7MJedbJPr3kZ+KYykbrB9+Prt6xeN+28yE0i6/TmUW1vDtKhuSc5OX4h51hfHfF2XUR2Qmwmt4uTP+CzyW8NuGxHO9wALkp8f4e3nQyanFa8I/id52jzEJrV9j/qP5yROiP0DHufu5r3nXWjDmOjridGPPP6cotuG2ILIYQQYs9zj/NY5u8YceRlMSHEcEmn2y7sFf1W5u/PmGdsd93EADf7e0qnW5NuHdX2tap6jGIy+T1gr+CQ2Mf5cPw/+EXy9wBs0628x1rsIb6xNZAovST1jnc07YreddbslAFL1jG6zuOJ1kL7iNKlwCigeQw6gHbnpy1X6/WjDsPA4C29KvMDTt8nDoUQQgjhPulWQhEANg77xz/KRYnvTXCshBC7Anm9dJgiR/0dvTHhfq9RASEvRJMjmwaMmiCek2dQ8PMjAUg+/T2cTY+hu1MdYMkomY+xeoPZaW8Ic9/z8R79s0ycenWMJeogNuqttNrt1FDJNvI7mPZTe+PHxzt6Tb9jGk6nW+93nsV6ZDPOus5RH/twtjFPvB9V2g6Gjf36ge5HuLUHc79pBG/7znbjmnz6exDvBH8p3qN/RvLp79FzSRFPNZ6AY3noCVoURj0YWuEoPeA0kJnnj6efcHtwwm9D1ez1GAe9hQp243ywADVjM6qgO/V1TIWa0oTuKIWkF+f9fVAzt2IesBI8NsowwF/q5iVPAEwfaBt62wHtfiDVX4oKTqFwRjnvHL4FNPgdH1986h26Nt7Nup5uNJrCpEPco1hf7OWEc6by+PJG5nQl8duaHq/bh99UaBIzFe9W+Oj0G/R6vgvx3sx5yZV8+nvY790GiW7SeV4Fp2DMOhHrgdMGznswYN5Rdesw9luJCkXRvX5UIIb9xkHo5tkQKRqT/DmcMP7pHIGjlgwrv40kPzpK0xX6w5jFM3eesdcKdCQEjoGxz2qc1fPQDdOgJ4h5+lNghNEbZqF7CwADvX42WH4wPRjzSvPqtLT47cegO9eDFQNvkMNI8FxhjMenF/CDI8ry1jUxsHNePVVAREdZpPbi5ZwfF/pqvnET3kF+aO7xwKoyH9Xt+xFzHDePl8zE+tdx2G8UoyNFmMf8C4wwKhBzPy6rwH71YHRDLcRDUFjUL63MY+5Ab6pDzdyEbqzFmLcWVdGK/cqHMOasd/Pc2r3BKRz6nIS8+C7Yp1/apeVdH/pcCzxH/ZT39fafdPvx8x2csKWXKT1uh3nf8uvDR5w4TTmjxlZQiqOdAQfZid9+DCTC4CvGeetnWI9sRs25DWfNXMABA8wDX8NZMw81Ywt600x0VzG6uRoSQSgswpj5Isa+b6OmNKGCUZyGqTirFmDM2oia0oxuL0eHi3DeWeTmQW91//TrjIMlTxhMVuZHHsR+4TDMo17AWbM3um0aRIowT7wfZ+1cdNs0VGUr0A0ajH1WoUK9qIoW7FcOQU3dht5aC7YHY8FqnFXzUTO2oEo7cN7eD90dxFiwBr25Dmf9bPeD0OEidwCOif5Ac2Vg51xfdiBMY68VGHutQdU2oNvLUBXtqEAMp74WY1oDOhbAfu4IPCc/6n4wWuGW17byzAexjbkbcNbPwpi5GUwH64FT8Zz6MDpShCoJ46yfhSrvSH3AXqEKckaW9ljo7hDE/dgvHoazdi7EKyHhG9/2pC/uflzfNrFfOxjdPLd/m2AE50jNWAe+OMaCd1GFPaA0zsrFOGv3Ajsw4ed9QsIcp3iZx9yBKux264RZW3De3ys7CFRLrbtuT9CtC4oLxzyeVwYr+Xn03Lx2moGiq+f6MT1285h/oco2444mBqq8HfupozAWfICa0oT94qEY+6wG28R5fz7GvPXgj2HUNuA0TgXbg6psRRX0gALr8ePBMfCc8gjOljqwPWB5cN7fB+wijDnTCd72nYHvST0BVOkc/J9+itHIhN2xntz73HSbv+/9Qa7o+T/HWdOAmvsOKthDejAG+/WD0M1zttvGV3M2gOp1y2tJV2ZwCeftRagZW3De3QfzQ2/grJqXrff2We3WFQ21qKo2zMNfAm/cTdPCHqzHj8dz2kPZy01qkATr4ZPddD71YbBNrMeOxzzkdexXDoGED90ddAcuaKoBu8S9zx+k7tKtJZiHv4wq7cB6/HiMWRvd4ylvA18S+7kleE54EgpiYLv79pzwBDoWcPfRVgEJL3hsjOlbcBqmoso63fg/egK6s9Rt69qlmMc8iippB2XjrN4HY95qnDV7udfdwhjOyoPQ3X53wATAPPQVjLnrcTbPwH79IJQ3gbY87nErsJ88BjV9KxgaFeh103L13m6+A/JG+DMUeI1JU5eZR9yLbqhCzdqIKoyBcoa8L+iuGl67Qzrdhsl5rx1UQXZGrM9TP8OcdlpjJDtimZsse/Vy6B7km2N2LOfvOPbq5XmV0iPOs7yu3wPgIZ6hl3i/ID6qjuMq53cDvl66Wm8YeL85knd+gK6PDngsOzy9nXXM/Va6I4QA1t1nussixVjbhn5aJZOWoVq8R//MnV67lEDqolUYy38Fd6jpyUS3VmIuWAXKwfrnx/Cd8FjqwpG68QxFUamRd6x7zsJ34hMob+qpIm1DLPXEUG6eygTuLtexNhbEQnC4+90wBRir72VmNL/LsdDWHNjq7uvA1gSmTs93z1tlzMFWsLglQX3QxFT3Ync3Zc5LLnv1cujNeZrJjqFjbdjxTpJ3zh067+XM09vKMc9dlRphxsikFeFCyH1KbxT5czjTgVS1OtL8Nqz8GOtz/saoLDqJfTKNDfOsf2E/cgJE3I+BmvNfByDx8EnZkYl6A+7/kzbOO215dVqabl6ZHb3UjuEH9o1Badzp1+mW2+EG7ivdzbQN2OHmxUMSCwMDrx78FrvQcvNnZnTdWBs63oH12EkQ9gKxzLGl6xxI1TupY6enf3qb81eRePQ4fCc/RuLRE/EctwJC3Thv7YfnmGew7j0Tev1k8tz2zkHcJnnnB4N2ug14fUhdC1qP/H/Uqil8sJ16/Oy1UaZF8/efW34T9B+BawNbiRDN/JqfK3NOlZG5NvjOWIm9Ykm2sXrWJqz7Tsd34hMkHjnRnZ+Tnk5iNp5TH4RQNyiNUdWKdccBeI56DkLdbj02pRn74ZMhXAwMkefFpGMe+Cb2g6dgLnobe8WRmTrY3G8l9lNLIFyI7i0FSt31P/4vtwyGojhv7Yfv6Gfd+gbwnPQ41r1n4DvxCbdO//sC0ArzzH+TePR492YLMjenE651GPl1tPX2MMN0EvvgOf5Jt1yZNoSimTKHP4HyJXFWHgAfeSizmSqOoIz8+tioagXTnZdeXxVHsstCOdfpPqOXuutFcN7ZF8IlqbkjuB6PUXsyzbrnrKHbBEPsV28rd8M/855se/XeM6DHy6D1/nCOZQyPfULD3InxMufntINPehz7oROzyyPF2fYf7JSyWBEryJvOttPGME/HbLdtkpt3Q1GcVQvwnPSE29548wA8Rz8LgHXX2XiOexrQUBB3y2Rqm0wH08oD3HkffSC7HLDuORPCJTjr3HusgdscMffaP0qDhp1q82+v0816VIM9Bd9H/pFKFwVot9wNUZ71llKgNK+8gptuvhOfwH7kRIxP/BPr3o9mlnlOftxNm0gx2jIxpm8GdCZN+9abKMB08tIZj+2ep488jPPWfqnIpFqs6TbRIO0bc7+VJK69BM8Z/87sz3PUc9k4AM5b+8NHH3S3S+/7Iw+hfO7bRSp3pNZAPFtXK+1um9M2MxetzKvLPCc+inXfR7PX3Xs/mo07YMzeBMEejLp6rLvPQqd/dClz7xedVQvwnfhkKm202y62PWRa7LmXCVuDbU+ausxctJLEikvwnfxofn/Edu4LnJZehkM63XZhW3M+1j5QhxuQGbWznBIaaclb9pDz9M6LnNgl5X7o3tJ2v86QHQtTy1fxxIj48NE4wAf9l5mfpZgQzbqN+cYc4JLxj9wksZ6t2+1wGwk/PuI5HXCdRAbsdBNCCCGEAHjRWUkZxan2mBBieybJT4NipBI6STPtI9rmWHUY3zC+kPmYeRJLPgIq8uR2sr3CW4QZ/fewtB59x53Ys0ynJvMUb64qVU6xCjHPmMllns9MQMwmj8FGyN0R8T5PvHXq8JiFLYQQQojdxy+Sv2dKbAnHJj7D162rJjo6QuwSpNNtF9UwwFMg29NKBxWqlB95v5oZ6VSjd+uPjIuRs3Ie0R7OyJDDkf4wux6j8MTux9fnoesKVcrrzrv91ismxP/zXMD/81wwXlGbtMZyIJwqKvKmO6TTTQghhBADaNTNdOG+Yq617jfo1f9Yf2T/2EdZHD+LP1nLJyKKQkw60um2i6pnZDdcSSzudh7hjORXKCKYmb9GbxzjmIldmRfPgN//G43003MxPfAr0EIk+oxqGlJBnnPeyEz78FJAgFecwQdV2NOMZafbPKYTyCn3rXpkT1ELIYQQYs8QVdnvWj2hX+zX6fa08yofsJF39Vpect4c7+gJMSlJp9suqmEHbrg0mgpdQnFOp9t7eu1YRkvs4uIk+r1qNlacMfg+nNgzvO68y1YaM9MJkvQSo0E385XEDyYwZpPHWHa6eZSXWE65X6s3jVnYQgghhNh9dPV5Gr4r9Smatc4mXnBW8nJOR1uC5LjGTYjJSgZS2MW06U4ecZ7lLuvBHdr+Lv0ws5mWmV4jN1dinPQQ6/MSmxAD66H/SEABfDypXwIN39dLqVM1ExCzyWMsO93COpI3LdcFIYQQQgykq8/3ntNtiOMTn6OZ/KfeWukYt3gJMZnJk267mJvsu7gw+R3e0WsyAyKMVAfZG6yNun6soibEdsk33cRw9fQZRn0Re3GkOiQz/XLqNVPFnmvrGA6ksJF65pMdfUyegBZCCCHEQPp+DzzdCRej/2dkxvIHQiF2ZdLptkvR3GrdA8BmGkj2+Q7ScOU+6rs7V4Y7mj5i55DXS8WOeoc1HGEclJn+RvLnExibiWdj9/s1eTS6iLCa9ZnpjXrrmIUthBBCiN1HF/lPx38r+QvmxU4knOp88+OllCJg977PFGIkduhRqWQyybZt2+jp6aGqqory8vKxjteko2YUwzYbtAalIGBCbITTgKoswHvC9Ey45uxTsDc9Cb2t7gw7Bhr3EQ4zkJ32BGibdSjrWDnqY+mll0ICePAM+aSI97RZJB/bgq7vHvWxD2cbZ/UCKO4CpVHT6sExoboVc++hX0w0Z5+CjnWgAmUAvDqjhr1q2wi0lqBtk3jAxh8zUbhJOtA0kJnnsQxATYqnaVRFG866OVDYgzF3Pc762VDYk10+pRndVgaWB2OOu9zY/20wHJRS4A26ecnwgekFx4Zk+pcqd3lbgckjdXbefh+ZWcCxW2JUxNz5AVuTNGBryK061pZ4qOu28TqamOmmVFvAIGEq3i/30RFw+/XLYg7hgJcv9zkuc/Yp2KvuAiuWzfMFlZgzjxs878GAeUdVtWfSiJgfAnGM2kYcwwfR4Jjkz4GmLRx6A25H9lD5a6TTA4VZGPNiYoxpWTT2WovuDoJWOOvnoKbVo+uBWAHOun3A6MWYswHdWwBaoeMBsLxgmqi6UF6dlsmTZfPQ4a3gJHBMP9300BYwWDG9YBg5PquIIHPU9LzBFhppplv34MFAD9KZmzBgY7GHOV0WHg3KG0IV1WIeFsd5O4GOBjPHRiAGyq14VW0jugGIF4K/oF9aOevnYMzZgLN+Fsbea3AaalBVrRjzV+M01GBMa8DpLQTtG/qcFHjwnjZr0GPPuz7kXAvemzkbK+ebd4MZqvwOJncU41yqbB460Y3yhTLl0/lgAWpKC6DBAKe+NlUHzXLzTKQIrRUkCsBfgDFrM07DVFTNNlRBL05rJcaC1TiNNagpTei2CoiEUDVNaMcEVdY//aJJpA9/8nJWzYeiCM4He6NqWtCpOthZvSAzrao7gBigMvW2qmzFmP9BpmxhmW6ZmuvmJ4rDGHPXoXsKs+VwwyxwFHSHQLvX7AlV5B3T68torlnGXmvd+mlqI7qtEgWoQMwtc4EYOhbAWLAaHAOUAwp0dxDdWpk5HKOo210/GAVDu+trdz2VWpab4sofy54C00ZHg5D0Yuz9Ac66uRArca8d49me9KR+aLYNjNqGgdsEIzhHqqodvEm3HVbQC0pjTNuGEwuC453w8z4hYY5TvJz1c6CgJ9POzdwnANpQ7rq9hW6eLvSPLp5AJBDHHzMxUBgY9AYsvDE1aDvNxMQoGKAOGOG0s24fKGkCrQCFclrdY26oQdU0udfM1kpwlFu2GmrAl8TwxzPzlVaoVNvGLbcKbCOzHNvEmLsenQhhzqh2i+xA96SGD1Vcl1fN9X3SrYX8wZc+rA4hSZJn9Kt0EaFb9+BPh929Nf8+N9Xm3x7PEht7Y0vm/LuVjR68POekp5raASrhlteibGdhup2iarbhNLjtljSnoSbTFlTVrTgNU8FjoXQLqqA3Uw9m6joNaJVNZ8dw65sFq9HtZRjzV0PSi+4pBJR7WpNB8AQGrbuMvdei28tQReFMGwlAVbaBJ+mGmfCCL+nmgwWrIeFx2+catx63PGA6mXyRzhPG/NXocDG6UUMyhPPBAgh1geG419ucdhwFMYxp29C9PjDchpeztRZj9ka33TatHuVLoJM+dCSUl7YoDYG4m5Zrgm66uEeRPbkK8BiTpi5zPljgHlumfmfI+wJV5oV1283CqSyr9bDe+YpEIvz1r3/ljjvu4OWXXyaRSKC1RilFXV0dJ598Ml/+8pf50Ic+NJzgdhnhcJiSkhK6urooLi6e0LhcZ/2Vb1hj+4RHNRVsDjw1pmFOBgmdZEH8FBpoHlU4v/V8j694PjVGsZrcPpG4lAecnZsXOv2vEVD+nbqP8XZE/Dxe1+/t0LYLmM0qNoxom0XsxauBe3ZofxPlOfs1TkhesMPbLzM+i0/5+I19c+aJyb94/4dzzdP4k7WcpdYPt7v9mcYJ3Om7eof3P9lclPgef3H+uVP30eN7C8OQh+GFEELseZ60X+K05BcB+LL5SV633+VV3tnuNrd4f8F/mKePR/QmjNaaovhBWNt5m+jjxkkEtJ8V+iXKKeVvvt+wtzFr/CIpxDgabl/RsFrUv/71r5k1axY333wzJ554Ivfeey8rV67kgw8+4IUXXuDKK6/EsixOPvlkTj31VNasWTNmByKydsawywN9sHx3sNpZT2efx593RJma2I7W8bRNt+70fYzFOZlsPtAbR7S+kfMLzzXmDzhfnTGi7Tew6736t05vHtX2h5kH8Cf7rrxXlP9o3eUuMw4YcvvVzsg6Nie7fzmP7/R9bEC+9ymEEGLP9J5eg4n79Myhxv68Tv6Pq8YAt9Ab9oBPM/QS226HG7jfdptqVNFIC++yhkY9ugcghNgdDOv10ldeeYWnn36afffdd8Dlhx56KF/4whe48cYbufnmm3nmmWfYa6+9xjSie7qkTnKX89CYhxsjMeZhTgYnJS8ckw7Fg9XAeX531NlnCPCds48ualTl0CvuIjqcLrrpGXrFHE5qQAk/XpaYB7FRb+V2/a/MMBM+PHmvUvYVpZekTuJV3h2N9rgb7WiYC9QcOnDzp4mJjc1L+k2iTg/T1JQht2+kZVT7n0zadGe/kcN2hpeclcw1+r82LIQQQuzuXnRW4sPLNKaxwJnT77vEDk6mPZK2J3wPdTjtD7/2McXItvWb2Pk/6gsx2Q3rSbe//e1vg3a45fL7/XzlK1/hC1/4wqgjJvI9Zr+wU0Z/HOrXil3VWD3BV8qe86Rb2zgM6/0Da/d5xQ/gd84dO7ztIjWfu+1HWer8KK9kb6/DLW2tM7pOrPG23tkyrPX6fo0pSCGHcyBJnU2TdMM3SZLf2LdQQhGe1K/Rg9mdBlVZpdcPvdIYWOm8Py77EUIIISab9/U6eomxnq0cb39uwHVyO9y8eNjg7P6dbmE99BsrWsGUnB/Ym/TYDfwkxK5qhwZSyBUOh3niiSeYP38+++yzz1jEaVLqqvk92sr5FlX6K5ojmQbwGJj7VRJ68ZMAxG87Gt36Djjpm8KBAzkWeLLKx3HnTB3tofTT7fQQMgoHXnb4ndhvt0Iy5xeeHT32YWzjXXYdeN2P3lq3fcr9GGRvAarCoviDK7d7HPHbjkb3NKEKp5A8O8mTyxtZcPEVqKT7RJBWqW+lp6MzwDTkz4Pb6NruXseHqm7G88m/g9fCuvNcPJ+4BzxWJm1VeTu6vQxQmeVqWoO7TEF+gg98QtYYmncr8vPYk8sb2bctgcfJ37LXo6i9aAYNf9hMgaXzQrMMsAxFh9+gudDtDKnusWkuNPnyuflfmozfdjS6eWV+3AwPqnIRyWsuHTjv9Y866Pw0wjLBY2Pd/kl0c3XmQ7u56w8nzKGmv4LmK3x5wLwznPym9Bq28IVBlw8e5oNuvhyjsqhq6yHpXg48n7wL6+/nolsqwTHwLrselIO1/BPuR1nBTdP0xt78Oi0tdk01WG7n9x9S/yyDfnksV9+fFaKppwg35rzqWMcUtrANG4dvXPtt4nx70OfYej0qkz9jFIGngMTVF6PrK8Ax8V52nfsBcU+24Wzd9qnMsaNUv7TyLrsWa/nH8Zx9D9bdZ+E5bzmqvIPkjRfhOW851t8+id5Wk03s7Z0TBeZB1f3SLi3/+uBudDDDvxYMVX635zWn/7drYtdUgx0H04912zXYb7fi/co1WHd9IvOBXM/5f8P6u1sHWf/4OFhedGtFJj3V1Ho8n7wLVdEOpoVuqXLrrPOWoypS9Zjlwfr7OW4+0+b287SYdLzLriN5w0V4L/k91l1nZ+pg77LrsO76BLq52v0YdOpEej55F3gtVFmqHH3iXqy7zwKtMvWR5xP3gDeJded5kPS48//x8WxdZKWbs3277sfZGF5fRhumqq3Hc95dmXKlyjsyZU5VtYDtIXnDl906Ps3ypNoSqWCqW9DNVahqt5ZNXrPUXd/ygMdyl5Xn/GBn5vzAodzw0IrkjRehG2tS1+I+H9He6e3JbIU7aJtgmGG6adIMaDz/cZfbDgM33L71/gjCHPb0ZA1znOLlXXYteLLtYOvv52bW0a2V7ofe03XBANfvkcTzMY5Dq+NGfN/Qpa4Z9bF7L7sOvNk3kVR5B8nrL85cO5M3fNmtNyFz/URpVFULuqUqs026PCavXQqAd9n16OaqzI6sO89FR0KocpviD64c/J7UU0BgmfuK6HCedLOwqCY7AF6Tbs0JO5l/sKk2v//8pwcNL7z3j6AnmblWpAcxGE4bP7+8Zvdt3XGe246762w8n7oT685zM8s8n7wL63a3Lagq2/Ccf7ubvqk0TV67NL/eTElek01ntJvu3q/8geSNF7mZJd2Gbh28jZmuu6y7z8T7lT+AJ0ny2qWpcwyqrAOUduvuy67P5OvkNUvdaTu1j9Q9IWTzRW78SXoz8fAuuz57733nuXjOy73uWli3fzIvjT3n3565Nli3f8rNZ7bHrXPBzavn3OMejGm7adlUnT3Oga7Tk6Qu8152HdY/zsJztnvsMPR9QdiM9z+eAYy40+28887j6KOP5rLLLqO3t5dDDjmEjRs3orXmjjvu4Oyzzx5pkLuGpJOfR/o2+oc7nXRwmqLZ2T1NfSqggQNRuB0XO8MaNnIQCwdc5jRF8zs98qO1Y9PbWUcVRdybYED3pEY5jBSjzaEred3TBN0N2Dho/FT32BiWh/SJU332OdT0ZKJ7A6iiblCOe4Es6k5FOBVp00YVuB0c6eUqr07Tg/ydnedz+uex6h4b3wCjBPptnfl/ejfp//scMLVmWjQbVvrvuM7P67qnqX/cnCS6p2l4eS9nXm4aod3R2HRPYf7FeKAwRpA/+06rQfLWQPNGOz3gvDEqizoSyrQeVVG3W/ZS6aZSoz3p7uw6eZVhnzotw85ehNKPVA+Ux4Yy26jLe2XjIGNfGp2WAa+1fQ4rL3+m46Q7/WDnH1u6zgHyjn2g9FOhbnS3W8Z0pAhV2OvefKb+To9OlReRvhHL+XvAtMvEpf/1YSTXgqHK7/ZsYICnE+04aAfseKZ8qqKIe8zp/FPYm6mDMnkmJz11d8hNM9N2G5AFvdl0TNdj2hi47KbCEJObKoqA7UnVJYV5dUl6WvcGctZP1dvpcpQqW5Cfn9LXP7TK5i87nUcmuLMtbQyvL6MNU0dC+eUqp8yhcEcXTaVzRk5bIi13OrO+aWeXmTn1Ud/TkFqmI0XgDHDLMU7tycyi4bQJhthvOu+qUHdOe3WIen+IMHdoerKGuRPjlU7zzDUmfZ8A7nlNjfY5FvFUqB27bxiDY++Xd00779qpI0U5bf7U9ROdLd+pbTJJkVPO88tzCMIlaMO9xxr0njSnPRfVPeyr5tFLnI26PvWarYGd8/rtRmcrK1X2afltunWQsLNt/u3Rnb7MNcVNF7e3ZDjleaDyCmTbcT2F7nWmO5RZ5rblCjLXqkz6ptK0X72ZDjN3fnq91HXNXSF1QrbTxoTUtTK1bTqcTBxSHf06UpRf5aSnc+vmnLjkXgN0pCivbZZ37526buRdd3PaeOn0QelsOintLk/X990hN70BlM4pp9u5Tk+SukwVRTJ5I68/YnvnrO+96iBGPDTZ008/zVFHHQXAPffcg9aazs5O/u///o+f/vSnIw1OTALrnNF95HyysfXO6ZwUo7e7Dtwhdp4SitikGzKX6tOMo3Fw8l7rEGOvkRapS4UQQgiR0UGYd/Va1ust+HHfJLL7fO/uXdbyA/u3melm5PVSIUbc6dbV1UV5eTkADz30EGeffTaFhYWcfvrpMmrpLmqj3r1GqYvvpoND7A5GOuiAEK/ot7jR/htTqeZzxlmca5xKCQP/yijGjgZuT/57oqMhhBBCiEkirLNvHv2XeRlv++4f8PvXFjae1At1TVoGUhBixJ1u06dP54UXXiAajfLQQw9x8sknA9DR0UEgEBhiazEZ3W8/OdFRGFM9xCY6CmIQMeLEtXSKinx+vIMOhvCOdn/M6SLCPmouISPIWcaJVFE+nlHcI/3Q+T+0lvc5hRBCCAERsp/EqDOmsJcxk8QgDzsU4X4vXDrdhNiBTrfLL7+c888/n7q6Omprazn22GMB97XT/fbbb6zjJ8bB2oG+3bMLM4cYyVBMrG16sM/eiz1VnCRWn9dFQxQynRqKCHG8cThfMs/ja94LAdjLmEUL7RMR1T1KgiSv6LcnOhpCCCGEmATCOQMpXJb8MdNjRw34sEMV5VRSxjHqQ1SrCrR8kFXs4Ubc6bZ06VJeeOEF/vSnP/Hss89iGG4Qc+bMkW+67aLa6ZzoKIypGMMbRURMjOusv050FMQuoJseKlU5paqIZ53XuNzz+cyy2Wr6xEVsD9JCO4/bL0x0NIQQQggxCURyXi8N000LHQOu10I7G2ngKf0Kb+nVJLEGXE+IPcWIRy8FOOSQQzjkkEPy5p1++uljEiEx/mxsHO1gqBH3wf5/9s47Po7ibPzfmb2qO+nUq5tcwDamGGNC7xAgoQRIgECAkEYPkDcQSAJJ3oSWRughgST8UngJNbTQe7exjbtxt9X76SRd253fH3t30lm6JsmyZe+Xj/Dt7szs7OyUZ56deR4Li5xZrtbRqfwUisE2ICx2P9w46UuhKF+kVvBb7UfsKadSJcoS56eImrHK3m7Py/q73GD/3o7OhoWFhYWFhcUOxk9qj+vb4sJJBNNjaViFcWyvTFlYjANyVrpdfPHFaa8//PDDw86MxY7jrcgnHO34wo7OhsVOgkBst6Xgr6n3eVp/lYtsZ2yX9C3GDxoypcINYDqTOFU7lomyKum8pXTLjEjnmj0HFrEcwzASq9otLCwsLCwsdk8GrnTLGHbAVtSwtdLNYjcnZym6o6Mj6a+5uZnXX3+dJ598ks7OzqzTWbt2LS+99BJ9fX0AwzLWfOuttzJ//nzy8/MpLy/n9NNPZ/Xq1UlhjjrqKIQQSX+XXHJJzvfa1fm5cfeOzoLFTsT2tr3wtPHKdk3fYnywrZv5bZklpw9SuAEUCZ/lwTQDo6V0CxJmCatGJS0LCwsLCwuL8Uu76so6bAUl2LAxmRqMbez2Wljsbgg1Cq7JDMPg0ksvZdq0aVx33XVpw7a1tXH22Wfz+uuvI4Tg888/Z+rUqVx88cUUFRXx29/+Nuv7nnjiiZxzzjnMnz+faDTKjTfeyLJly1ixYgUejwcwlW577LEHv/jFLxLx8vLyKCjIbmub3+/H5/PR8M1nyFvgB0OBFMjyPIzm3pyOAeQ0H7ajJuA4d08A9FWPoW95G9W5HgDV2wyGDlJD5JUT7NnKJmMLDR6N/zcrn8f38GRdPrmgIfm77Td8xXZC0vnwv1YTfWsr0fcbRvzs2cSRUz6G/HqEK4SxqRCiNoTDhe2LB+H6wYVpn0Ff9Rh39N3Fcq2Ox/fwcNaaHr5+61GUryvH6MujpayPsmY30hAYmkocV6gSXJqLBaVrARJhatf5sKmdY3WHmLwRuXcTuLugrxBcQdBaAQGGQFZ0o3p1VJ8bWsvAZ0Pu9SnSE4U8J6JoOqq3GeEqBpsLjCiqeYmZuN3DFl8erxc08U6NK6mOnbWmh8Pq+pjaZX6hKuvT6XBpLCuxc90RJdzxdht7tYUpDhq0uE0HFht8dkIaLC110Gczy88dNeizyUTaJ4rDedp5P/qqx4gu/Ssq0JCo87JwKnLiEeiL9h2y7sHQdUn41iDK1yMKulE9BmhhVMNkEHuh2kpGpX7GjzeVd9DX2J5Ul4Ah61e2x+1lYWqaCwgbYXTNyJim1DT2qJg1Km2R/MdQAQ0iGqIyjGpxoNoqoK8E7QttqOBalN8JYSfC7sbYNBn0AnD7sB1cldSnxYm8fi1GyzJW9S6gyS0TdWNgHbOhDXKgEGcee3GN/ZucpZ045PXvhH/CT//6IAV9QWyGwsD8iiSAkAbrC2y8X+3iyK195IcV64ucHFl2PvqCWeifgmotQVR/gAquBa0XpEK4nBgbKlHtlRAtRVZOHFxWvqdQvQqR123WWW87uLtQLaWQ14dqmI7aPBNsNRnfiazy4Lh4r0FlF2fg+KB6m1mjr8t6LKimnEPWbEjbfrPlOu07/ML+fSKvX4sKBxAOL6rpe0Tf2orR+AyqwwuyB5EnIX81dHvB3QeRYow2D/jLwChGVk4E+0tQug5R1ILwdaE681EdhaBFEb5uCBaiOvIxGidDVzWyfM6g8tM/74TmHiwZfudE7rcYo7UGbfZWVKAKRDmqrQQ55WOUPx9EOcIbQAU2gq4jijsQRQa4G1AthWYj1t0QUlDYgeooQeQrREEDqrECFfAiyhV0K4xNVaigE7pKIehiR5t01Y6oGfH4MloyFfmPQUEDsrweFXQgvD3gDKHaixHF7RB0YWytQe6xBuxR0HRoL0YFPGBIEAIxZQNqy0REeTM4whhL90bOWgHdBVDcbl5z94FQoAQ4Q+ZvocCmQ8CDCnhRWydgbJmIcO2P6vaOrTzpbYVICBW1o7bWgtp/kEyQyzsSJWsRXj84NoIzaJZb12yMjbVA8Q5/78myShuhRnPuYmiKWRVzUM19o14/x+pZ8T0Fznbo8oLPQDW5QdfMuhedjOpREPKB4UROrMw6n816K+2yK2e5LZ2cVqFKKNIKh/XsovoDcL8DuvlhUuQHMdZNAp8fUdiJaitFFLZBxG625/wguLsRRe0ovw/CTvB0Izw9oBkY62oh4kDOXIVqK4aQExXxQEcVwleDtu++uH5w4ZBzUuEqRpbNwX7M7wCoDR5NA5kdonlxE6AvcXzOmiB/bPoiqv6jpHluXObXZn4tZVrB3/6N6CcrgE0Idx8q2gsoVF0tqDnpZfzJm8BoNdtrYRtCi4AA1VAGzghG8wS0Gc2oNgOisY+VpV0YGyfHyieKnLEGRDOisBO8AYz1tcjZK8Bubp0lagNdw1g5EyJ25OyVYGgYa6YjijpN+TDsxejMB6VBVyXCW4twl6fuu7RGRM1GRHE9xrqpYIuAciK8XWY/XleFnLEeCtsg7MBYNRNZuwHCDtA1VHc+qs+NcEhExWZUZwHCGQJ3EOPzGaj2YlRLNcIzG1G2Ajx1IPugpwScreDPB3cfIl+iWmoxNmughQADOXUDYtIGVGspxpYahFRgjyD3XA2ajlo7HaRhjuXOEEbdBNSqPaDPA8oGngEbjd02RKFzh/SPQ6bhfRNCveBpR+TrII2M84LARBtVfz2Nrq6utPqlUVG6AaxevZqjjjqKhoaGtOEuuOACmpub+fOf/8ysWbNYsmQJU6dO5aWXXuLaa69l+fLlw85DS0sL5eXlvPXWWxxxxBGAqXTbb7/9uPPOO4eVZlzplqkgtxcPhR/jcuMXmQOOEDdOpopJvOL4K8XCt93vt72YGjyGeppzivN97UKOkPM5M3JF0nmJpNf12Whmb6flqvAvedB4dEzv2eFcgFu4xvSeo8WlkZv5i/7EqKY5T8zhPeejnB/+AY8bL2UML5H0OJcgxOisaNoetKlOakKHDXlNQMr1lBJJi/NDPCIvZdqXRG7ir/qTAOTjSXJjPxR2bHS7FmeR650TvwpQHjoo6/AHin34WI28/xIIzuNU/uz61YjTsrCwsLAYO/YPnc4KtTZx3Oz8kG7Vw03RO9lHzmSOmMGx2iE7MIc7B+eGr+GpUd6B8VV5Ev/P8etRTXNH8qr+PmuNzfxI//WwHdatc75GjagY5ZxZWOxYstUVjdoynnXr1hGNZt6v/fLLL3P77bczYcKEpPMzZsxg06ZNI8pDV5e55LW4uDjp/D/+8Q9KS0uZM2cON9xwA729vSnTCIVC+P3+pL8dyWvGh2Nynz5CCCX4SF88JvfbHkSNKMYwtkVuVFtpU52DzhsY6Gr3WErRpFrH/J7tZL9EfWej08i+X8hWJXan/ccAHCj3BUBDSxvewKCF9qzzsSPYqLamvKaASkqHvDaLqWkVbmAqleJ4cGfMy3j3nLVZNaDlMGRXqbLMgbJAofgnzxJRkVFJz8LCwsJibGhVyTJCF908rb/CP4xnuT76ay6J3LyDcrZzYCiDDcZWNqSRVYZLmzG0V8/xys+id3G1/sucFG4aMsnUxUZVtz2yZmExLsjZkcK1116bdKyUoqGhgeeff54LL0y//Q+gp6eHvLzBk6n29nacTmeu2UlgGAZXX301hx56KHPmzEmc//rXv87kyZOprq7ms88+4/rrr2f16tU8+eSTQ6Zz66238vOf/3zY+RhtVrN+zO61jDX8XL+Hk2xHjtk9R5NN1NOYxZLnbdmgtrJIDb3CMkSYvCwm9OOdJnaA0k11jtsvXkvV6syBYmyrBk61pfLmyB9wCxf7i704QRzGy+rdjGmvNNZRrmW/TXCsySRgNQ6odw7shGNerg4SczOm/YWYcnLbdHZVNqgtGW3gDWQ01z8aGKxXW9hTTB3FVC0sLCwstheGMmjb5uNmp+FPWklvYBBSYV4y3uEUecxOvXJ+e9BIK7PCQ5uwGCmv8yFBFcIlhj+33ZloHMbH+W1llg1qC4ey/2hlycJiXJGz0m3RokVJx1JKysrK+O1vf5vRsynA4YcfziOPPML//u//AiCEwDAM7rjjDo4++uhcs5Pg8ssvZ9myZbz7bvJE9bvf/W7i9957701VVRXHHnss69atY9q0aYPSueGGG5IUi36/n4kTJxJ5aSO9q/pAVwhNICryMJp6czoGkDVetOmFaHsWAWC0r0F1rMcImJNT1dMEykAICZ4KzuxaypdVkCaPjXdrXKwtsg+7jLJhqVpDr+ojT5iKJn11B8baTiKfNo/42bOKozaDaETk9WI0dkMURGkZjuOPwHZg+on4pva3mBkOExWCtUV2pndEOOSNiZRv8WH05tFS0UdZkxvN0CiWPtZWtOJrkrgMJ0Ju4sKKvSijCKOpB2kITnx2MqEVf2anWN9R2Yn9omJQHZDvRqAw2jeArkBoyAo3Rss6iEgwipBVeyAK10IRyGIPonQ2qqcJ4S5FaHZQBtGt7yKUQrhLOMK3nAJvL+t9dtYW2fHiJkiYKR1BpnZFqAqYq4TKe3Xa3BqbCuy8NtnNsZv6mOwPU9qnaMozV+E0eG3oQlCXrxGNCXA2pRLvJU6b0YnRuQZjyzsYgYZEnRfeamTRNFRL2ZB1D1LUpWidWXc8PRht7Qh0MMqQNfti+H2jUz91cw//EaX5nNo017ThIRUtFTG7Hk3upHPbHpc35SEMhrxur3CS3wQRYwl7yz5qK/all1DaNIOVn9HbqkbeFrc+i+rtgkgUWV2N0dIB0SKErRw5vQi97jNEXzcKG6KoFDqKQCtGeMvQ9i9P6tPi6BtepqT9Ka7r6UyqG/E6ti0+vLRgfhneQ07J2CRmiqn8+R1BYUcjZT0RwprApSscumKDz84nlS4Wlzs5oLGPkqDBihInesnLqKZi9I1B0+6Jscl8tkinab+otBjVIsAoBXs5cvLkwWXV8C4EO1BGAFEgwehEdW5FRQVCCkTBvtAzFbwzMr4TrdqD7cgJg8ouzsDxwRt4geujHVmPBetFHdPbI2nbby4sN9YyfdNalB5GaA4Izzfb56KFEFFgdCJ8dlTraoiCsgmErwTaAVUEzlh51r2HiqyNtdVuCAcwOrtAd4LdjizeC9WlIVQNyErk9P0HlZ++vI3oR03waW6mBCzGBlHagjhkEtosA2zFyMICsw9Wm0EJZGEByqajNi9FhbrBrpDlPozOdYhQL0rZEPk+VEcLyggCHmT5ZOjdgArZQHciq2eg2tox2iTKr4Gqhl4vxjsdEMpeOT3aOO85akTjy6jKVFufRYU3gliPsHViGI2AAVEHwqZjRGyIsAPcQXAKhKajehwQcYBhRzg9qLzN0Gs3bb7ZdfC7wBUCQ0O4wxg9boQuQEiEzRN7X4DUEQ4XGDZUlwOCxWBMwTb7qxiB/DGVJ3HWo9rrISJATESbePggmSCXd4SoR3j8GE1rETJq2gMtnYVqLwV76Y5/77HjPhnk66UzkmSG+sp3OLgRjjDmE5FRuip03hZ/58PGN1hs/IsyWcI3a87frvkaUZoN70KkBcJBRGkxRnOnadtTaMjyPVDtUdAKQdiQUyZlTDNQ3sG19XPTym2ZjiG17Ndqf4PSyprcn93YhFH/DCrYAXoEUViIaouCMMARRTg1jN6tiKiGMvKQhTWovq1g60bpIJylEAyCIwhaABF1o8ICJdtBt4Geh8zfCxzVaJNnos2che3AuUPOSYW7FOGbQlP1yD5uTu+IIAKvEG5ZnjTPjcv8sniPlHGjHy8iumINqmkrSAPV2WLa1FJlyKr90sr4FLdDX5PZXrV2FAGEWzPrinKBnICc6MFoWIHqC4CQyKJ8VJcPxASEJx9R3IrRtBBkO9jaQCmwd2DYuxEo0O0I5UR1eiHqAE8vwpmP8tsAFxh5SN8kVJsDhAscE9Em7QWeitR9V3QVOBtQvUtMW6VROyJ/BirsBxGCiEAUBlEsRulAwINwCJRhg4gTVAFClCKKqlHBZRDuMfPtdpv9eKQIxVRs04/D6OkEvR6MTvB4oL01IcfJkiKQZehLAqieXlQ4gCzvxlCrzD61Lw/hLsYwNiBcAbBHEOEiVMBmloUUCNckjK2lEC1DaF60yf07MUShE1GWN+b9Y8rj5tUQbgbViSiwm/Utw7wgXJTdLrtRs+mWLcuWLePYY49l//335/XXX+fUU09l+fLltLe389577w2pCMvEFVdcwTPPPMPbb79NbW1t2rA9PT14vV7++9//8sUvfjFj2vF9upttt1MgRmfFk6jxULDBVFAG/7QnBOqzilfn0djrggmZA46QVx1/4zA5DwB/7cOouvS2kkYTx423mYMKEL4rZmOtuwAKA/iab0gbt/XBCXh7uhLltPyRrZRe+XPYSZwhjIh8P44r7wNhEL77chxX3G8aKo6vo/L2QMA0rB6/Lny5b42Ol90kqthMA8sf2UpNz+BVWbqAkksm0/bAJrQhehBdgKbM9ABqevRB9fcWeS2X/e32oeu/t5rwLdfnVvcGlBFKJsoK//i1UThmFHSZhogBx5X3Eb77MrPdEWuTQPieSxNh4tfiDOzT4gTv9IEaPPmN1wMHNiJEUYAbF04cdGLW2f/YH+AEbWhbcAPp+31+yhVdCjBi9bA/o5LQL3+YqBPxZ4v3ORDrd7pT22Rw3Hgb4XsuxXHF/ea/V94H3gDhW6/rL7sc6txQZRcn1fiQzVhQRjHvPbKC8p7BW0Hi7TcXLtfO41f33ma+UyEJ/+H3qLqeRHkk6s9V9xK++7JE+aBEcnkWdCXKDKGg22v2WfFzAQ8oaca12u64xHHjbWZ7uOGOpPeYqCt+H+T3j0+JftvbY8aL1x36+yNzzIv16UqY5++5FLpjXox3hXF+tBnY1gIeU06ItTnyA6CEWd433t4fR4mELAGY4eLhgfAt15vhlehPyztgnBbbCASxfiF863Vj3p4HypNxRkUmiNXdRL0drXQtMhJ/p3E5N3z3Zf0Xuwv65b9xzqC6G+8bk+SNewH6x09Uf3uNxYm3x/At18fSvb3/OgPqbWyOlUrmUEJSdMnEnJ+jktLEToRVj9RT2ZNiGYO3Gtd3Uu8g6Sq/FXRjQJszrQJn1e6GaK/QP1eKy3ED65LjyvsI33W5Wafy/TiuuhdQiTJN9IPbkFTOsWPHDXeY/R+klKG3JSFn3nBH//3i7zjW327bdyf1zTB0Pz4g/wNls6S5d6w+DTXuJvJ31b2Q3w3d+WY5xRzpJJ47No4D5v3uujw2Vu/8K2kHyvhJ+og078yv+pgUvX7sbLply5w5c1izZg2HHXYYp512Gj09PZxxxhksWrQoZ4WbUoorrriCp556itdffz2jwg1g8eLFAFRVVQ0n+7s0RRRwuDiAtcbIbOvtKMa7zaadiWrKt/s9HjNe2O73sNh5CccUbmBuQQgNsBMyU+b+8cUimRbaR7VPXGGszRzIwsLCwsLCYrdHkGz6IxfzGBYWuyJZbS/df//9ee211ygqKmLu3Llp9/x/+umnKa9FIhFOPPFEHnjgAX784x/nntttuPzyy/nnP//JM888Q35+Po2NjQD4fD7cbjfr1q3jn//8JyeffDIlJSV89tlnXHPNNRxxxBHss88+GVLf/ejAzztqAVPVRC7ijB2dHYsdyGdkb7NsuKxn9A3XWoxPokRx4saJwobGRCq3y33GdFn3DkIgcOHAzuiaInhXLRzV9CwsLCwsLCx2TXYHecvCIheyUrqddtppCScHp59++rBvZrfb+eyzz4Ydf1vuv99cunjUUUclnf/LX/7CRRddhMPh4NVXX+XOO++kp6eHiRMncuaZZ/KTn/xk1PKwK7LKGDvnDaNJiPCOzsIuQy/B7X4PP4Htfg+L8YGBQTfmkvkL5dm7nTHn0cSLm2566SOEAxsM4bRjOMS3AltvxsLCwsLCYnciswqtmnLqseysWlikIiul28033zzk7+Fw/vnn89BDD3HbbbeNKB0wt5emY+LEibz11lsjvs94p5hC2unMOvxKtQ6l1Lia+OpKx7CWLo87QirMruHXyWK0mCm3n4dMtRt8e9XQBvy2AYNtug0XA2NA6hYWFhYWFha7OtlITtYczMIiPTl7L/3kk08wDIMvfOELSec/+ugjNE3jgAMOSBs/Go3y8MMP8+qrrzJv3jw8Hk/S9d/97ne5ZskiBVWUUSXKqBUTWaXW06v6aKGdAL1p4/kJ0EDLmNj1Gi1a6dgNptO7Hr30WUq33RSBSFKCTaSa2XIap2nH7cBcjX++Kc9gC02ECOPhWWDsHOFYWFhYWFhY7FooFBoyrV22Jkbm3dTCYlcnZ6Xb5ZdfznXXXTdI6VZXV8ftt9/ORx99lDb+smXL2H///QFYs2ZN0rXxtLJqZ+cMjudJXqFBtTBH7sHT9vuYETo+Yzw7dg4S+7LG2Ei1Nn6Ubk2qFU/mYBY7GWFSeDKy2OXZdtVZI82cKA6jRlRknYY1YiRTSAE/sl2CT5oeHYPipR2cIwsLCwsLC4vxTiZHCAoyKuYsLHZncla6rVixIqE0G8jcuXNZsWJFxvhvvPFGrre0GAa32n/Is5E3iBDlY+MzJooq5ou9+UytIpRG0REhwjtqAcvVGo7iwDHM8choUm1sv01pFtsLfZTsTVmMfzzk8XPtqu16j119e+lHjn8nFG4WFhYWFhYWFmOFpXCzsEiNzDWC0+mkqalp0PmGhgZstpx1eBbbiQmygn3EngBsVY30GL18XTsFI8tJ50q1bntmb9RptJY1j0t2bRWIRTrENuvUqimnWBbumMzsAjiwM1nW7OhsWFhYWFhYWFhYWFgMIGct2QknnMANN9zAM888g8/nA6Czs5Mbb7yR44/PvH3x6KOPTruN9PXXX881Sxbb4CUPTWgcKPelRW+nhQ5WsZ4vysO5hluySmOVsWE753J0aVKW0s3CYmcik6fLbVed5eHarvnZ1dmbPcfsXopdf9WghYWFhYWFhYWFxWggVCYXoNtQV1fHEUccQVtbG3PnzgVg8eLFVFRU8MorrzBx4sS08a+55pqk40gkwuLFi1m2bBkXXnghf/jDH3J8hO2L3+/H5/PR9tZaPPVRMBQIgShxodqDOR0DyFI3ssqDrDItkKlAI6qnAdVrKo1UsB2UYo3YxA/kHykK6ggF7W6NFaUOmjyZ9aQ1VLDO9Rq3Rv/Iz6N3A/CY/Q+cqh3L9yO/5En9ZVpoT5tGKUVsdb2D0dCD0dCDvqZjxM+eTRwVaQG9DdxBVGsnREGUFmP/wgFo02tT5ve6yB38n/9hNAW6gCaPjYqeKLOWllDcnEc0mEdXcYinu3+LVFrKPDSrVn7Q9AukEhz74gS+9ORE8sjLWObbnT0NnNfUovQuRL7pekC1bALdAGlDlHpRTWtQUYHQChDVM8G1FVEokb48ZGEtKtiOcBaCZgelozcu4oHIP1jpbGejz06bW6PJoyXVsYqeKBU9OiV95jbQoqCO5ixipaeHZWVO5rSEOLVvDtFgO584twDQ5tYwhFln9ZjWZeB7GUhFT5R5rYJH9ZuQUkM4ixDuUoS3CtWdP2Tdg6Hrkgq3xupOH6qj3byuFaLVzET1eEalfjZFW/kf4w66ikMUtjuRSqALRVex6SFy23Pf6vgyzaqDt1mQiPOw9kts0pGx3VycfzOtdA5Kc6jjCzmdY+2HDLst6pvfhb4O0MOIigmotg6gAGEvRkwoQdWvRAW7QdgQRcUQ8IC9COEuQtuzKKlPi7O+6UWu7LgcX0inw6Ul6sa2dSxOrZjASud/c2oWwcV/ZFHbc3ze/SEhTeCOKjxRyaoiyZJyB2uLHOzZFqYwZLC+0E5LnsZFPRfwvdYzUb0eVKTFfLZwN0iBKC5GdeoICsFVjKyqGlRWRv1SVKgD9B7w2sDoQjVvQhimGkpU7IeITEB4J2fsH0WJG9s+pYPKLo4KNLKxewGX+a/KOBbco93Et+1fGxQ/Pr746eU33b9mncPPWk8fy8pyd2EypyWE3QBdajTrBdQ2lHD46mIuF+dToCtkgQ2jeR3oCmwSUViM6tIRwpcoT71+GfRtgEgTuPsg1IHRtgWhO1AOL7JmPsoPwl6JsJcgJ88a/A7WdxH9uBH976tzfgaLMaDIj/1b+yCnCbD7kEUeVI/Z3lAKWeQBodDrVkOwGzSFKC1CtW+EcAClbAifD9XWCJEe0PKRldNRnRtRUQU4kdV7oNrbUR0GqgeEVokK5hF9sg62pncWtd1wgPvJU4c9voy2TKVvfhd6N0F4LYgWjM6lCHSULhEOByoMGHawK4TbCw4d/DpKt4NwIfLLUNG1CD0C0Sg4bajuENh1UALhtqF6dPPBpR3hqUb1dZlfWzQD4S1GGAKjW4BRgnBPx7bX6ai+vLGVJ+1NqJY6lKEQzglokw4YJBPk8o5UtB2RF8Bo3ADooAlk2TToLQBb4Q5/779ruo8lxuqUMkNRuxMxhOxyLAfyKh/TVRzi252ncKo8dtTfyUif1Rx/2yDahygpRrV2gA4IgayciuqMgj0fhA1ZXZk2ze9Hf8mG4tasZKz4caA4TFG7C4eygxDUF3clyi9VnAOK5/L9wLm5lUWkBWPLq6ieZjDCiKJSVHsfCIWwKXBJVMcGiCqQHkSZ2T9iBEBFEfnVqN4+0MKg/AhNQ4UUKtgCyoaQXkTVgeCuQpswHW3SJLTptYPmpFf7r2O9s4smjzYsmWEg8fnEzd0n80VxMEiZJPMLb2XKuPraDegbN2O0NIFQqM64jO9Dq56VXsbPD6CCbWZ71TtA9UKeDdXRC9KNcNYgKgsw6ldAb3tCzlW9eQh7NeT5EF4/Rv0CCLWCakGIIEpvQelNgAG6DeEoQgUkKBc4FLKwCtUdAVmAkh5k6TRUpwDNjXBXo03YE9zFKfsuFdyAsDdjtC6AcBgMG6J0b1RfN4IwKhxFFChU+2ugh1BBOyKvAIQTFXYibCXgrECU16I6PoPeVjAMREExqgegGJzTsU0/HCPQC5EWVNSP8LpQHW1m3bJJRFERwlaEsbIbw9+H6vUjSoMYXSshEkboDkRhFYZ/OdCN0iJIZyVGVwShu1E2O1rJDIxmL0KVIpz5yIn9NuOFz4kodo1Z/5jp2GjZigq1IqIBKLCBIOO8IOCKUnLkdLq6uigoKEhZj3NWugH09PTwj3/8gyVLluB2u9lnn30499xzsdvtuSaV4Gc/+xmBQIDf/OY3w05jexBXumUqyNHmvsg/uFa/dVhxZ4vpfOp8mkeiT/Pd6E8A+L3tRi61fR2A6cFj2crgLcIDOVwcwD/sv6VclgwrD2PNDZHf8LD+OF0EUoYpoZA617tp0/GrAIeHzmU15kq/eWIv3nP+36jmdWdiavAY6mnOKc45nMwWmniPhQD8j/Yt9hUz+Ub0h8PKQwmF/Nf+EHtrY7dSZ7i8Z3zKseELsgrrwM7f7b/h7uj/4x21IHF+s/MtykXmdnVR+HoWGEtZy+aMYc/jFB5yDa+/2F4sMJZxWPicrMPn46HFld4Rz7YopZgSOjrhNSsbI75ny5P5m+OOnO6zI/m7/gzfjvw4Y7iVjv9SKyekDTMxeMSgDy4unAQJjSiPixzPMEtOG1EaFhYWFhYjY5GxgpPD32a2mMEWVc9mGrKOO4UaNlIHwKXa1/m9/cbtlc0dTpfqpiJ0cE5xiijgh9q3MZTBCrWWF9XbOHFkNG9zLIfwvOvBkWR3h7FX8CTWsWVU07xInsEDjl+MapoWFjuSbHVFOdt0A/B4PHz3u9/l3nvv5Te/+Q0XXHDBiBRuAOeffz4PP/zwiNLYldiish8ot6UAL0CSF8A61a9kmy6mZEzjHbUgoXgaDyxRq9Iq3DQ0jpJfSHk9ToHwcpntvMRx3wgnozszSila6cg53gHaPqwZUDde0N+iQHiHnY82OnlfLRp2/LGkQ3WhZdlt7idmcap2LBuVKcQKBNOYRKvKrsxLRVFWCjeAx3mJxp1si3Wz0ZZT+G56CKlwTnGEEBw9oF1nY8Q32/LfWWhVHUymOm0YG1pGhRuYqwm3ZaQKN4A+giNOw8LCwsJiZGxRjUwS1bynFnKcOCRlOPsQ1oXiCjfY9U22rFLrc45zpvwi19ov5n8c3+Z6+/fopDsre9IbspTjdjZCKjzqCjeABWrZqKdpYTEeyMqm23/+85+sEzz11FOHlZEPPvgAl8uy6RPnE2PpsOP6hOm9rkb0L98cqHTbV+7Jm3rmFSWrjHUcLg8Ydj7GkkwTfB2dA8U+WaVVSlHid7e5BneXpFv1EE7jyTYVlbKUn4uruCz6MwBWsBZjhB6LPjKW8D2yXxW1o6hXTVl7Z/KSR6fhpy62qlShWMdmtqgGZjM9Y/w9Rfb+eEOEWWKsolI7LOs425vNqj7nOK10UENF5oAD+I39R0yPTuaX+n1ZhW9XnTnna0fypvERm0hflgcxF13pKBQ2kXpYnyxq+Fh9lnRuX2byGatHZKNtV/44YWFhYTFe+Gn096xWG3BgT3zwG4oI0bTp7Gwf8Uab9UbuyqRD5bzE7z1lLTOZykoyO51rHsbH7Z2B4XyUz4ZO5adNdVIiCrdL+hYWOytZbS+VMruVHUIIdF1PG+aMM85IOlZK0dDQwIIFC/jpT3/KzTffnNW9xor4ksH6Mx7Hs9hv7uGVAlHqRrX25XQMIKcWYD92Eo5vzwEg+tnDGJvfQHVtBED1tYIyqKeVJpeiJGggDUVLnsZf98rnb7PzM+b5q/Ik/p/j13SrHspC5iqQI+R8Xnb8BYDnoq9zVvSqjOlcpn2d2/52KpFXt6B/0jjiZ88mjpz1HvgaEI4wxvoqVERD2J3Yjp6L+2ffS5nX6uChnLJiK96IImAX/G12Pheu6Ob8m06idH0ZetBFcWkl3jaZMZ+9LZ20Ge1U1nsQgBzegtBRRUzZgNxrC+R1QVcZeAPg6Ii5/xTI8g5UwIYKuaChCoqiyL0/ReZFwGlH+Kag+lpNm242FxhR9LaVBAkRtAk25dvYWGDjzYnupDp24Ypujt4SZLLfVM6VBA2KnBNxlO1LxdGLeeDVFvZqjzAt5GO1y7RtsbHARkgTLC1zErCbRt0GvpeBXLiim4uWB6jqVVRqFaZtB98U5KSjMT4+cMi6BynqUska5IS1kO+HXgn2MGrzVAjNRLUXj0r97NL9dMkA7aVBiltdSENgSEV7qbnSp7jVhWZolMsSIqU2Wlvrk8IUt7ooMgrI17wZ201PicHnbBx0n1THQkomlE0ZVlsUZU9idDtBl8gqP6qpANVcieorQjt0M0Q2ozq9qKALIZ0YGyeDno9wetEOrEjq0+J8/PyhiLaV+EIGbS6ZqBvb1rGBXCG/wa/t16V1tjOQ4P2TIeTHUFEM+pduRwXUezU+rHRyWH0IT8RgY4GN1UV2fB8cwfGfHo1qL0ZMexsim8HeZ9ogstkwPp+Maq2CcDGirGpwWdU8Ad0OyO8A3QVFLQhvJ6quBvL9qM17YGyYiZDlGftHUZ6H8ztzBpVdnOhnD/PKhl9R6O/IOBYI4FH7HzhNOzYp/sDxpaN3A1scPSwvcXDJcWUAfFEexmajnpVk/vL/wKstFEQUfrvgvS1HcPgbNRzVV0d+6wQ0LYx0SihbBR1FkB+AnhKM9nzoKINoIaKsCgpeQVStRRS3IHx+VFsxqqkMPL2Iwg7oLUR1FGBsqYX2akTRnoPKz9joh86Q5f54J0Ue+DHGllq0OetQHdUQqUS1FyNnvYdqL4JIpfnug3Uow0BWtEBBGJHfjKqrBFsEQh4ISyhrgeZy8IUQRU2oLRMwur3Iyh5Ulx1j00QIOqCrGMIuMugStv+zzy0b9vgy2jKVKHsSihuQlfWmfaICPziDqNYyRGkrBF0Y66ci9/kMbDpIHdqLUd0FYJh9sJi6AbVpEqKqEexhjAUHIOcuAn8BFHeY1zw9IBQoAa5gzIOOAnsUur2ogAe1oRZj02QQsyBuf2ms5ElPJ0qPQsSG2jADgnsPkglyekcVa5GebijYCO5e0AxomI2xfjoo3w5970tLNuFrtWclM2wruww8V97qpVqVjfo7GemziponwNUJbUVQFELVF6KiEhDQOxH6gKAPpezIqtRtMZ0sl+q4UpbTURrC2WqQb+TRIFtpLg0MWX7bHu/XNjWnZxfT3kbkfwKG2ZQoCKBW7gGlbYiSNtTWiYjyJojaUY3lUORH5AUQpa1m3Y44oMBvtk1pYCyfBVEbcr8lqOZyCDtQYTc0V4O7HG3vvXH/7HtJMkOvCtLS9zldDpEkMwyX+Hxi/+YQxSofr/Qmyfy2fS5OGbfvZ39E/3Q1ODdAXi8YYUChNk6D4Oy0Mr6s3Qiq3WyvhW0ILQpSoLZUQ14vRt0ktFmbUU1uVLzfK2/FWDcVWqqhqA9t9grQOhBFneANYKyYZfaD9tiAo2ugaxiL9jXLef/F5vHSvRCVTai6agjlYXQWgJLQUQmOGoS7NHXfRSeidh2iuAljxSzw9IGhIQq6wBVEra9F7rUCfJ0QcWAs3hc5ayWETFle+X2ooBthNxDVW1BtxYi8XnD3YSydg9FeDI3V4JiKnLIY8utBhsy8FTRBW7Epx3l0qJuO0egwbQSikHusQdRuQDVWoDbUgqaDNJD7fYbQdIxls/vHAlcQY8MU1MqZEHKBsoFT63+5Tg2R7xizcTFj26t4Ffqi4GsDTxghjYzzgsBEG9VPfHX72HQbCRdddFHShEpKSVlZGccccwwnnHDCWGYlK+JKt8222ykQ7lFJU9R4KNhgdi7BP+0JgexWhNR5NPa6YOgtRDY0opgKz29rX+Ueu6m8LA8ehJ8AhRQklpOfKU7kUfUsnXSnvd/R8iD+b89DUHVjt9rLceNtIMyVROG7rjBPdhdAYQBf8w1DxlFKkRfah2WPbKGmR0+U0/JHtlJ65c/NDm68k+/HceV9IAzCd1+O44r7TSE3Puv09pjG7SFxXfj8Od9m2zq2/JGt1PQMVqQrISm6ZCJtD2xCG6IH0YXpPKHOY3asA9/LQFKlj7ea8C3X51b3BpQRSibKCr8v+zR2Vwq6zAkT4LjyPsJ3X2a2O2JtEgjfc2kiTPxanIF9WpzeOwuQQwwvQ9WD78mzecl4jwaaecvxD/aTs7LKdvD3qT9CKMx548D6qQuI/vL6RJ2IP1u8z4FYv9OdetB03Hgb4XsuxXHF/ea/V94H3gDhW6/rL7sc6txQZZd4vhTjQ6qx4D7bz7jYdlbG+LqAkksmA/Bd7WxsSuM+458Z8xpv77qAzXfeSHW9N1Eeifpz1b2E774sUT4okVyeBV2JMkMo6PaafVb8XMADSppxrbY7LnHceJvZHm64I+k9JuqK32d+HImHj/fb3h4zXrzu0N8fmWNerE9Xwjx/z6XQHesDdoVxfrQZ2NYCHlNOiLU58gOghFneN97eH0eJhCwBmOHi4YHwLdeb4ZXoT8s7YJwW2/T5sX4hfOt1Y96eB8qTcUZFJojV3US9Ha10LTISf6dxOTd892X9F7sL+uW/cc6guhvvG5PkjXsB+sdPVH97jcWJt8fwLdfH0r29/zoD6m1sjpWNzDBcUsr7AN5qXN9J7Ripq/xW0I0BbU4AKrt2N0R7hf65UlyOG1iXHFfeR/iuy806le/HcdW9gEqUaaIf3Iakco4dO264w+z/IKUMvS0JOfOGO/rvF3/Hsf522747qW+GofvxAfkfKJslzb1j9WmocTeRv6vuhfxu6M43yyn20SXx3LFxHDDvd9flsbE6uw/qO5KBMn6SPiLNO/OrPiZFr8+odMtqe2kqgsFgzltC//rXv47klhYpKKOYBlqAfptuAGfI41mntrBALaMTs+NZo9YTJLPtpEXGcgJqP4b2q7fz4Ccwoq1RFrmz83ebFjuaTG3SgT2xvblKVrDR2ArAU/orWSvddnUUKqe2NtCMQC5xzpVfykrpZmFhYWFhYWFhYWGRGzl/DtB1nf/93/+lpqYGr9fL+vXmlpSf/vSnPPTQQxnjT506lba2wfa3Ojs7mTo1extGFqZzgDh59Cs/bQN0qU7h5B21IMnQ9UrWs6+YmTH9TroxxoEya7wZRt9VcDEy9+EWuzcD7QmeJo9FIJjJVNaoDYzxAuydllxtJdZl8Eo9ZBzVxCFiXuaAFhYWFhYWFhYWFhY5k7PS7Ve/+hV//etfueOOO3A4HInzc+bM4c9//nPG+Bs3bhzS7lsoFKKuLrXRT4vB7Mueid8u0a90kwPWRpwujx8ybrZOBcbDCrLtZezTIj1e8nZ0Fix2EaaKiZwsj2QV63nKeIV/6s/Sp4IE1e5toF9X6W2kbstwVrp1qC4qZWnO8SwsLCwsLCwsLCwsMpPz9tJHHnmEBx98kGOPPZZLLrkkcX7fffdl1apVKeMN9ID60ksv4fP178HWdZ3XXnuNKVOm5Jqd3ZYiCrAJe8Kk18BVRwMVZYfLeTxq/z2fGst5RX+fz9lIA81UijKcOAhl2GaqIdnZrVVvMRp3dBZ2SwqEN3MgC4sM2LDhwM4x8iCeN94E4FvRG/lW9Eb+YruVc22n7NgM7kCy9ZQb78tzVbo5cbCJerrpQSLGxcpmCwsLCwsLix2PQDCFGjawdUdnxcJipydnpVtdXR3Tp08fdN4wDCKRyBAxTE4//XTA9HB64YUXJl2z2+1MmTKF3/72t7lmZ7fl+/JCVrCOj9USAC6T57GJOmxC4xR5TCKcTdg4XTueTaqeCbKSRcYKAPJFXkaFG0CIMB7s2+chRonlRmrjmxbbj4G2Ay0shouXPIQQnKYdR4Nq4SN9Ce+wACBhp3J3RSfzSjc7NmqoYD1bqFfNWaftwkkQcyXhKrWevZjBUtYMO68WFhYWFhYWuw8VlFoKNwuLLMlZ6TZ79mzeeecdJk9O9mLy+OOPM3fu3JTxDMP8Yl9bW8snn3xCaam1nWW4SCTn2L7ML6L3cKjYHydOTtIOp1gWpozzfduFTNKredZ4HYAuAlRRlnFSGyEKO7HSbZGxgmeM13Z0NnZL9hMzgf/u6GxYjHM8mF6hJ4hKfmm/hmv4Fe/optJtONsldyXM/jc9+zGb6XISNaoCiaTH6MUjM2/9jivcAH4WuTvJxp6FhYWFhYWFRTpqKCdK1DLzY2GRBTkr3W666SYuvPBC6urqMAyDJ598ktWrV/PII4/w3HPPZYy/YcOGYWXUoh8bGlNkDZ+opXyuNpKHmyKR2VV5jahI/K5TTXxB7MvT6tW0cbJZabEj+cT4jBWs29HZ2C1ppTNjGInM2Ri8xfhnpb6WSWmu7yFq2aS2Uk05e8hkBzpX277J/fq/AEvplo3SzSvdhAjzjjIVlb/RH6LYKOQAMYfUn8GgklIaaQXgXbUg473iylELCwsLCwsLC4ewU6FKLaWbhUUW5Kx0O+2003j22Wf5xS9+gcfj4aabbmL//ffn2Wef5fjjhzbavy09PT289dZbbN68mXA4eYvjVVddlWuWdjsqKMVQBpuU6XhisqhGCJEhFlSL8sTvetXEIXJ/ntbTK912djYqy/nGjiKb7aV5OAnQl3PaEWWtuhnPLDXWpFW6rVHmx5cN1DGJmqRrVZQhEChUyu2Sa41NFFKAB8jc841PQiqc1UePuWI2AXoTx7fqfwTgOHEIj6eII5H4CeSUn55htGMLCwsLCwuLXZNiCnEKx85u+tvCYqcgZ6UbwOGHH84rr7wyrBsuWrSIk08+md7eXnp6eiguLqa1tZW8vDzKy8t3XqVbno2kOYcUYKjcjgFcGnJGUf/poukYwU7Qg+YJ1W/K2hAgVf/vdT7zdR0i5tJAS2I7UK2YkNUjVFKaWHlUp5qYrU0n05xu/fQuijpduHsHVJXhPnsWcVRLKbjMshC+LlAS5QgjK4aeWg9Uuq3z2fA7JC1umTgudoeRfU5QIqd8DnRGIXaCab3wBlCtJeAMIUraUG3FYA8nNA7CEUZ154MS/dcL/OY1AQgJygCE+RuFUv0r0AwBQU0k6licdT4bhSEDtx7zihtPw5GPT+TTbRcUhBUilgaY6UQktHvcyLwyNqt6/A5Jq1sb9FzrfDYqe/Wkeh7UBC2FXipn5CM6QtA7YAVOmrok8vvLiLADHGGErwvVmwdR+6Dw2aQ58FgZirhkYUiFNPrrhRF7gIHnkAIxcJHfgDQVKpFGon6lyFem+2ZznHSPIZ5VlLZByAEIVFuxWW59LtBtqNZSEAaipM0sVwQq4DXbFALybEl9GsD39V9xRIq6sW0dmyKSlW4OYaecYppoS7nS7ZTI99igttIRKxnBYJlPAd12gS8cKzthHlPVhiPoRkTtiWfD0f/xR/j8iWdHaIPrQVtxoo2J0lZUVwHCHun/XdgVa4uyv8xT1S0pBpVdnFf0d3H4NApCOi5dDTkWgKl0W6kGr/YNER5yfAGBcOQzS0xnsVqJjk6EKNWUU096m3DddoE7quizCdZP78LX6cTWUorw+cEwn1d1FfSXT0kbhJyoPjfoGggNUdxuhnGEwBFBdef3l50jZJZdyNnfdg1H+rZpsdOhWkrBEUbF6ka8Dx54LPIDZttDoFqLwRlG2KNmXYi1LZRMqk/x8Y+wI1a/2lFBJyBifRPscDX8COSfnI6zSFOUtpnl5zTblXCGwR5rc94eiNjNch5IxG62wRgiP2CGzzeV9InwEbv5juPpxrEP+GAmlBnOkOZ77XND1NbfN27HZ0+SJ0XsmhJm/zyUTJBlmvEyQSizTsbGjiH7/RzSHMmzK2OALDcMGQFIG0ZIOWrvZMTPGivzxBgTmycAqKDLfNdhOyBgm3wbEhRGTuWjpECmkOMG5jOXd5BNearWUnD1TzqFI2z2d7FxUpS2JtppfPxEGghPT//5WHuPh0k8U7x9x+YLuEKIUlM+l0XTiQTbQDfNT0jVL0sNxRPOe4iqKPmh/TLq3eLzibxof0glBFJzI4sG24ofiKwOobqC/W1OCRAqdXseUJ5J7dXZb1ZDlLT3y7tdBYiS9v58dRUkZEGRH+gv31iZDuo342kOPK+EeRxyJsazeN1MJ2PG+654XJyh/ncsFMIeNfNS2pqkKDDvIcw+FxJzQoRCeHuSxoB42gk5f+Dcu6Qtedx1hBGFXRCxJYZX1VVg1rWufLMN2qJm3x67d7xsAfN+Pn+s3sWfdYj6NEbjYsa211Ka9OyQeV6A0wb+wY+0LUIplZX02tHRwd///ncuvPBCCgoKkq51dXXxyCOPDHltW4466ij22GMPHnjgAXw+H0uWLMFut3P++efz/e9/nzPOOCOb7IwZfr8fn89HV1dXxmcbLWYEj2MLQ3vkLMLHv21/QEjJseELALhM+zq/s9+YVdrTgsdSRxNlFPOe8//YI5Td6sQtzrcpE8XZPcAYclDwqyxmZcrrL9r/zNHaQTmnWxk8hE78zBBTWOrMvG16PBKvC9nw/2y/5qu2k5LO3Ry5i9v1B1PGmS2m8w3tdG6I/gaAfDx005PV/fZlJp+ziS3Ot/CIzPapxoJrgrdwP/9MG6acYpppx0c+Dc73kEIOCqOUojA0jxBh5ogZLHA+lTbNLaqBGVm20zjxlWIAJ8ojeNpxX07xR0JA9VIaOjDr8D+zXcmPbN9LOndI6Gt8qlaYK7Kcn2IT/UomXekUhQ5IfHS43/Zzvmk7k5mhE9motg6pgNuWPFx4yONs7WR+Y/9R1nkdS34XeZgb9d9lDLfA8STvGAu4JnpL0vn9xCw+dP47ZbyfRu7k1/qfAThLfpG1ajOLVeq+NB15uGh3LRhWXItdi3/o/+ER/Wk6VBf32G/mQLnPjs6ShcUuzYGhM/lMbT+HYh3OBbiFa7ulP1ZcE7mF+/X0Mty2LHQ8xV5yRsZwB4S+wjL1edowk6lmppzKM44HcsrDWPNg5P+4Sv/frMI2Oz+kQHiZFDySZtpyuo9AcKQ4kP86HxpONi0sdhqy1RUNnhGm4J577uHtt98eMjGfz8c777zD3XffnTGdxYsX84Mf/AApJZqmEQqFmDhxInfccQc33pid4mhXpyONulRDcpjtADYa/d5iasXErNP+jnY2x8tD6aKb5foaHFk4SRAInoy+nPU9xpINbEl7fZZM//UkFS7Mr+ZBFcoQcvySixJ1gqwcdM4n+reXThtiM+FEqihW/bYG42WaDUtYRS99vGy8l3Wc7c1K1qe9XkkpBXg5UhzI1+RJQyrcwPTgXIq5uqlVmXYwfh65m6NC57Nv6BQei744KN10+AZs8y2igApKzFWJMZaOsXffjSo3T1ZThlipe6DYl8PFARwk9qVRDfhCqxQrjLVJRv/jq13zMZWz2XxF6iVIC+0sMVbllNexZEOGcnThZLaYzgwxhVIxeLVcvG6lYqAyZJKo5jLtvOFlFAhZThgsYtSrZt4yPuYztZqGHLzpWliMlL9En+DI0HkcHjqX/xd9ekdnZ8xoUkOvuhktdhXbqjoGeTnYJp1MNbNFdnOICpHZOeAm6llkrMj6/juKTPOqgSw0lgMwg8kZQg5GoViglqKrndt2uIXFaJG10u2JJ57gkksuSXn9e9/7Ho8/nsqCTD92ux0pzduWl5ezefNmwFTcbdmSfUPfleklmPLar+Q1APxTf5Y9RC1zxWxmiqkpw2/LTFnLK8Z7HCDmsI7NzGBKxjgKxf/Tn8n6HmNFi9FOFeVpw5QzvNV5rthXvYEe/nY1lqk1WYetEYOVbgX0b0FZx+ZB1/tEkBJRmDjOdWI+X8zhXWNhTnG2JxszCCJ5ws1aNvOW+pg9ZG3asHGFZwsd/CB8Gw/oj/KhWsxqtYGnjeSt+3Zhx5lGOd41wDZXB36aaEMO6NrraKJPpe5TRptMyiINSTH9ytght8cLeEct4H21iNeMD/hT9DG+FP4Ot0X/yL36P5gywA5cXOk2XUxmrpiFC2fGPMbLZ7VKr0jdkWwy0turDBIiTASncFA6RD/XSCuGSu3EZL7ch1KKOEDMoVV1UjaE4i5bdvwGfIudhaIBbbtNde64jFjsdrxqvM9HagmfqKW8aXy8o7MzJkSNKBNEZdLHt9FmUUyxMt75yFhMbw62SV9y/CUre9lg2trOhhY6iKrMDpJ2JJlkuDiVlLJembL/ETL73Q0DCdDLqp1YDrOwGE2yVrqtW7eOGTNSL7GdMWMG69Zl9iI5d+5cPvnkEwCOPPJIbrrpJv7xj39w9dVXM2fOnGyzs0uTztvjmfYT+UBfTIBe1qgN2LFxnDwk67RPk8dRTTnvq0XcHL0ryblCOtaxibXGpqzvMxYsUitYlWb1kQd3ytVGmUisdNtFlW5BFSKag2faqiEEioEr3YbCh9c0sBojTDhNaCgcoMQD+EQt42/6kzvNasN2utJel0riiz3DadpxacOWUAiY3oHvNf5Ox4C0Vxhrk1Z3AfhIvVx5IskKURcOqun3VGxD45Ex/OqfybmJjkE7XQlvmNvadINkT8uP6S9yZfQXvGZ8wAJjGQYGm2kYcD9TQAzQyyK1Mqs2a4sNfc20Z1wRtqMY+IypmC2mAVA6QLkdJ0qUdWoLW1QD/4m+xoPRR5OuV4pSPOSxQC3jceO/aetYJqLoZGmpwmIXZ+CHlnSr9i0sRpuBK6B3F8cvbaKThWp50se30Wax2nlXhOfC1hxW7E2iiilysGySigpRklU4haJlJ/f0uVYN/og+FI20Jj6Mn6AdOqx7lVPMamPjsOJaWIw3snakoGka9fX1TJo0tE+6+vr6xAq2dNxyyy10d3cD8Ktf/YoLLriASy+9lBkzZvDwww9nm50xxz/7Ecx5cMxst0NC2MjtGBCFTmxHTSDvkS8CEH7xWxib34JQbNJthGlThmkLUYLdiNkF1eDZqXl8cNIiTol8D4lkf/biB7aLs/4SA+bWtrlyNvVGMz30USnK0u7Huu9bx3Do29WUtriR/IeuETx7NnFsZz8KHtPopf7GkabhyYgdOcWL99Wbk/L2sfos6fjBV1soCRq0uSTfPa6Mh15tx//dO1CdTjC0nPL5OscljKd2kXnb9PZGTN6Edti7kNeH8cFByP2WgHuAkdWKZmgtRukaxgcHI/dbgtxrhWlAUwCaC4wwSBsIG0rpdMQMpSogpEGXU/J2jYvvHleWSPfBV1s4ui6KHqo2VXTxNDyV+C76I0v+vpXKHh1NmfUVzHRCmqCz8CXy3Mt4UCW/l4E8+GoLp6zvxaFj2sKW/fmI/utsDnu7mr6WB2NqlPR1SUzcmCgjgqbxUf2tI1H1E6HPPSh8rvVzZfjchL2wiMPAHpZJxwD2sEQikDxBV5r69v/Ym7Bj9qA04seCf9Hl0BL5WsyZKNSQ93WEZeI9DnXdPG6mk7vBIU2nCtvkS+6xCNWTBwi0gz9E//BAVH01hJzYznkSZAjj07mmoWIEauNks00JiSh3J/VpywxzBWWquvF2jYtLj6s0+x9KKVPFg5ZKDfwY0DjAuP/z6k1Q4MSBRFJ3/2oEmwiSz2PJSaALqPNqTOjWEbE63pynIf/+NQpWTkH1uck783E0+UV6nKFEHvTXj0I1VEHIBXbHoLKynfUIxqJ9kXMXY3y2N/LATxBlregvnIicvwD9rSNQ66eCsqWub/Fjh4b99GmJshtIKx08+GoLR9QF8YWMQWPBd48rY8/YKufSFFvFAy98A3vdEg4PGQgEQeN7ifbr+tZyDpR7s8moo5c+OlR6pXL8nXojioBd8N4bF3Do29XUHPMsxscH0K2uBaHQjnoT46MvIPdbjLFoP1SPB9VUAWEn2B2IqUvRDnkfUdmMcPWh6mrQPzgIecACRGUztJagevLQ3z8YVV8Dyju4/ILWdpSdlaOBtnMKiT53MrZTHsL/8Weoxhroc2M7+1H0jw9ANdaYY5YwDWJrB38IeX2I0lg72mcZxpK9UbqGdvCHGB9+AbnfEoQ3gP7eoaheN9rBH6Ev2he1abJpLDrWf+3wdZcubdjyz2jLVHKPRcgDP0ZWNaJaY4a5nSFUXQ2ipg5CTqLPfhnb2f/udzbQk2cacY8hJm9GbZqEmLQFhCL66NewnfOYWd6eXvPaQOPhAwyVoxnQ60ZFbegvnISxrhbCXohq2+XZH2Q6BtNi46JGz9mHgSeAsEVRCjA09DePQNVPGiwT5PCOxKRNoEXRDv4g5qgB9DePjPX72pi+d4dDUBf+TlrZJNMxkDaM4YCu8D0jro+j8Z5tZz0Crj6MD005WP/wwH5HCo2VZtig2/Sa4LQlxV/oOCPjs8aPJYIu7sk6n9eFnfyQ72RV5tLxGF1hlTZN25n/QuS3k+jPStvQnz4VedCHiMpm9OdONvtNJczxc/4npiOamjpUXY3ZJ5a2IFxme4w+fiYosJ39b9SWiaBEbL5wECroQVb78L56M+EXv8UTm1+nIGSOsXbDlKUaPRr7nj94V0J8t8B8ufega9sSl2dK+wyEitn8l5uIOi8gPOlkHCeltu0WOO7nGPWdaAd9YM59YkWVsj0PKE8xZROICNrBHyA8Pf2y3ruHIvdbjP7hQWhHvYXx4ReIfzvUDv4Q/Q1TFhTlLWjHvYawRRFlLeAMEX38TLMfHIgSRP/vq2Y5n/Nv0CXRx89EO+m/6C+ciIraIOgyy76xEqJukPaUc2Fj+Uy0L72I8PQQffxM5AELQJgOE4QtSvQ/X8b21SdNJwaxe9vOesJ0vgCo1lJUVENoBmLCVrPfj40B0X+fiQp4TVk36sZ25r8Tc2/jg4OQX/goIcfhDqK/eaTpBCI2TmjHvo6cshlj80Rzru4IQ8SB7ezHEEIRfep0M65Q5lzsjaNi/WN8fN5mnJZjNy5mOrZ95Z8Yn81Bzl0EbnOXUKZ5QXdB6sVSA8la6TZ37lyefvppDjpoaKP0Tz31FHPnzk2bhlKK8vLyxIq28vJy/vvf/2abhR2KauoFEbcFoLYR+rM/Vo29RN/pXwlibH0XepO/vmixKLYBSbh1OKw+xD/VEjMeBnvK2owraoZippjK87wJgD1DFTj4vSoqmzxDPsvwjtOHkbUbiLt8jDbFVrt0F6D7B3/F+8RYmnR8aH2Imh6dOo+prJhfH0C1OWMDcm751Ha04L4Nqr0IOXkLCIPo5onYTn0u1vnFRghPDyizG4tfF3F3h9DvvVAPA+GkpxOY9cvda3BoffIqoUPrQ5T1bvP+9DB0b8Un8pkQMJUq0F9f3b0GuoDJ3Q20e7o4lOT3sm367njyKjkf4feqqEhb95LPDSwjlDTLqqkcelz95TSC+mkbsDDYFkz+wLDtcTb1yx1MbnuD0hhUH0XG+2bMV3DbgcHMl7FxcmIwlJO2EH3mFOg1y15ONoWq6DOn9g+YeizvSg3q0z4wFgGkrBtH1euJ+lcsCof8WFMzYPXetqv+wPTMeaQ4EMFqUgzhaCqWh9ixWzePo8smgd9ckWifvDEWub9cos3liWdHH/wO5aQtprBz2nNE/3MKtlNeAG8AY0Mtti+/aPZb8fLJVN+CelLZDaSbHg6tD1HZm/zO3DqJdjpLxla6xVZOgqmQrKGCLrqprF9DUSJ+rL+ItV+AA+W+/Nswx+D1Wdhxib/TwlD/2KDVbkR//qT++lPZnOiDov85xTzfl5coT7W1BlnRYvZZQiGK2zHW12L70ov9/VhxB9GWspggnam9WuxMCEBO3QA9HmTtRqLPn5Tog2XtBqLPnwg9LlRLYSJOot/29pjt6Ev/NfsgQJ7+LNHNk7Cd+jwIA2PTJFAi0Q7piY8Rw1vVPuqMQP4Z3nHqMMbGydhOed5UaBa3mx+kYm0Omw5aH8b62n6FG/SHHYAobk+EMdbXJsIlruUNWFU2MK14eoCxYQoE4qtpsx2Pc3t284NX/zg5UJ6Mjw/RpooMMkHm+6q2IjP9SVsHyKvlpofmYaY53GeXQZVkTmLEMsJQ54Kx++eQr+1Vx+WkZDk43k8AZl8Ql/9gUJrbylxDPWvycfb5lAP+n5scNnSacvL6JLkETw/G5onYTnvW/L2+FtuXXgDMtmX78gvEJ46J9uvpG9xupUpcj88X8PvQW805lr71bSq2kfltMVlqKFapDRjKwCZseMkjQO+Q4YDB8kx8ntsbMOfCadA/c4Bemnj/xFSYmduzSow1A9srYJbnqc8R/U8ZssKUW+LI059NyIKqTUdWNJtpx/rQRHkOZOB5YT6csb4WW0E3xobY+bgMHZcxU8g38bHSVtCdSNf2pRfNMF7TIZ2xodZUuA28d6xfB7NvTsjF8XoRz/+GWjMvcTl/4Nw7Vs/655qxuZTql7JlZTPYI8jyFvMdxLSowtObVLbxvEWb4/FTzK2NsRsXMx0nyv60Z/vLJMO8QPVlt7I6aynliiuu4Le//S333HMP+oAb6rrO3Xffze9//3suv/zytGkopZg+fbplu23YCD42+ld33WS7YlipzIxN1IAxtfU02nhw4SW1Z0tnDob7LXInGxsiYcvA+m7FWmMTa9iYNowdW2Jr81BbSwEmDNhe2kn3oOsCQaEY/nbI8UAow3bso8QXmC/Mr8t2Yeen2uV8SR6FRLKeLbTRmXEL+f5iNgeIvTlMzKNDdXG6yP0jjoWFhYWFhcX4R09j3iiOCyeTqAaglz7W6psAsrIRbmGxO5P1SrczzzyT6667jquuuoof//jHTJ1qbmtZv349gUCAH/7wh5x11llp05BSMmPGDNra2tLah7NIhaKQAg4Qc+jEn3LCmom9xR7MZRYRdD6KrZwbbyileNZ4gwipDZJqO8uX712UApGfMUw2A7jFrsE6YzNP6C9RRRkNtKQMN/CrfKo+bOD2Uj2mOMrHwwRRgUBSKoqYLKpHKec7H9nYMQwSZIackjj+sf1SABbpKzg48jWgv+xSMVNOY4EyVww7lWO3sYNkYWFhYWFhkUxERTMqBg5hLvO1vfmL/iQA86Jf4ZjowSwje+dsFha7IzlpJX71q1/x4YcfctFFF1FdXU1VVRXf/OY3+eCDD7jtttuySuO2227jhz/8IcuWLRtWhndnFPCY8QIL1DJKKcrJlttA9pOzmCCrWMYaCkdgPHtH0k1PWoUbgEOk9vhoMXKyWekmdrJtuhbbj3eNhdys35VW4QbJqx+nDOW5FNMTbAmFFOHDgR07Ns7RvsQi53/41Pk0Lzv+kuRsYVdjaTi98Koh+Zvj10NemyNnJMwGGIktF0NTjI98zCXzG9RWDpT7DCO3FhYWFhYWFuOdbHanGEKhKRvNtNFMGxGivMQ7Gedk6VDWB3qL3YCsV7rFOfDAAznwwOG5Bga44IIL6O3tZd9998XhcOB2u5Out7e3p4hpMZAKkZ176lRcqZ3PFtXAp2p8ugJvUenriQM72oiGAItM5OFOY73BRGWY9FvsOmTrZj5Z6ZZ6te5G5xvYhZ3/jdyLUorrbN9Jur4rK92ela+RbpGaDRsTUqz0sws7M8QUVqi1GdufEIJaMYHP1Go2qwYOEJYHcQsLCwsLi92RTKvjAd5UH9GoBn9cPZ5DeJ0Ph7XDJayiuDMHs7AY12SldNu8eXNKr6VDUVdXR03N0JOpO++8M+t0LFIzUqXbEdqBHGccwlc5iZ/pd4079VRrBpfbs5kOfJY2jEVm8smDIWxqgTlhFwl/TBa7OxuzVLoJ4EscxdX2i5gtp6cMZ4+tVC0QXhDgEs6k67uy0u09/dO01/Nwpb1+sjySsB4Bhn4nA1vsFFHDZ2o1UaJMFROppYYNDO3cwcLCwsLCwmLXJFuF2SrWJ35rSNy4WMoaDhfzeVN9lPN9e+jFl3MsC4vxRVZKt/nz53P66afz7W9/m/nz5w8Zpquri8cee4w//OEPfPe73+Wqq64aMtyFF144/NxaJBip0g3gl/ZrWGWs48f670YhR2NLq0qvdJskqrGUbiNnpCvVBMJa7babkK3SLQ83T7juyTrd79uGHjNqROWQ53cFPmdT2ut2kX7oLhclrM2QBsCL+lu8bvQLyD30Jdncs7CwsLCwsNg9MIaxSq2QAtroJEAvPxNXDUvpFrKcrlnsBmSldFuxYgW/+tWvOP7443G5XMybN4/q6mpcLhcdHR2sWLGC5cuXs//++3PHHXdw8sknp01v3bp1/OUvf2HdunX84Q9/oLy8nBdffJFJkyax1157jcqD7eqUUzIq6cyU06iinAaaRyW9sSLT9tJZAzy0WgwfD3lAIOd48RVwlsJt92Gjym51lD13qwZDUkXpOFufmz2ZHBrYSW+vcr7cO+31eLv8xFhKANP9vBMHDaqF48VhrFP/yiG3FhYWFhYWFuOddEo3Jw4kgj5CFOOjna7E+elMIk/k8S+eG9bHdoVii9HARFk1ovxbWOzMZPVJu6SkhN/97nc0NDRwzz33MGPGDFpbW/n8888BOO+881i4cCEffPBBRoXbW2+9xd57781HH33Ek08+SSBgTuiXLFnCzTffPMLH2bUZaJS+chRWusWZy+xRS2usyLS9dF+x5xjlZNfFjRNbhhU1mRwlSATScqawy6OASlFGCYUZw9pGSelm30UdpfSpID0ZrSWmZz8xC5mm5SkUhjL4TK1OnAsRZpVax5e1o0Z0bwsLCwsLC4vxRzplWYgwfYSoopxLtHMpijni66aHQlHAcvU5ujLYkynDuu+zxuvDzbaFxbggp9mP2+3mrLPO4qyzzhr2DX/0ox/xy1/+kmuvvZb8/PzE+WOOOYZ77sl+y9FYox1QAWv6zNmlAFHgQPnDOR0DyAlebCdMTqRrm3MR+qZXUN31+FUAFfYjAQPodkjywwYSEA4ff5vV3xmOxvbSOF/kUF7gzSGv/f3CVRz96gT2XFWEMARKKrrzw+R3O/CqPKSQWT97NuWlL/4CorAVNB05bT3oGkrZsM2fmpSv1iFWuj0yy0tB2MDvkFwk98I25yIi+4Qxtjgg4swpn2Ejgq3HiCmVdrwPTlHWir58b4QngNx7Ffqq2Yi8mK01BaKiFdXlhbADuddy9FWzkfstQjqiYNPAXQZhP9jyEDYndXo95b1RUBCV0OrWqPdqvDax35TpHtRimzMvUT+BRBqyeA8zXzUHY7R/joz20euw0666qPdqlNmq6Cybwlu2VfQRTLyXbXlklpdvrAzgCxuJOh/PRzRF3QMo7HbjUe6k9yhq2s0y8gZQfQ6EM4ScshnVPg3V5RtR/azP78TbbRvUBuLHeoFGMb6c+4RUx92iB39+CImkvNuHpgR+ERh031yPA/kRPCIP4Y8gDYERCzNh2lJEtxd0ib5yDnLaelR9Nao3H33lISDakbNWQZ8bhIaxvhaiLrA50WYX03NCCYvVyqR3+36Vk+mdEfIiiu7Yu6/3asypPW80mgQAEU3Dpg9t+NfvECwtdbBfSxiHrmhxa2zw2dBO/YyqhVNRXQUUrtwHrwginSGQCl0qqN2I0ViFDPoQ+UWD3pG+fG/krNXoK2Yi9/sMY9MkKGpHzvsUY9NE5NSNGGv3AAoyvmfhc+C4OHl19+dqY+L3I7O8HLulj+qAnhgL+hwOqudclLZc3MLFVuc75O99Lz0bn8cVaAMUwVAbnfYIWwrzKTLWsmbAvQBWqvV803YWqZYQvl/lJD9s0O2QvBlrn3MXz4WJ9UhhoNsMtHVTkXutQF85E7nXalRnAao1CiEvIr8IUfMpxsbJiIom8AZQzWXI+Z9gbJqIKG9BdRShugqQE+swmhTCWTO4/Fr6IGx5O9vZULH/Rz8+AIrbCS3ej+jEerQuDdlVhL74C8hJLahOO6KkC1QXylDoy2cjvH1Q3IKc9yn6qj2Q+y2BqA1j4yTknOXoq2YiitqRey+DgNfsp2avRG2YgoraoMsHug3Ujh2tRY1n2PJPrvJkpjBi6nsYmyYhqupRnYWIiA3cQVRzGcIWhT4Xcv4nqIgNpAFCQacP1VGUKEfhDaBayhCuoCmXzf8EpUvoKoCiTjOtiJ3EjV19JAQmWxS6vaigC7nfYtS6aRCuQgVdo/bsQ42LosCJ8ofIW7Q/jqIOpDMISkHUhqzdiGqbMUgmyOUdiZp2hCuIvnw25PUipIGcXoex1g2GZ7u/9x6/H93QhyUDDHUMZBXHbthwS9eIZPyR1nF9+d6IvG5zjFk1u3+eANBWA1FQvV4wbIiifJQ/TJ8RJCKjGZ9VSEF+QeGw8xkxovTJYFZlXtDtRDMkUaknXXdIB64CD/rKQxDFa8GItcOiTuScZRgbJyEqmpEHLMBoLoeohpy7yJRDXH0IaaCayyBqQ5S0Q14vCIU2/xOUIVEhR+I6UTtyzgqE8CH3MHcHPTIrn2O29FIdMOWq/LBBn13weWH/R87ztFPwiXwKKaADP930cIX8Br807uVdtYCvciKr2DCob4zLM3u2R5LmuXGZf0N0MZfZhpYP7V+xoy/fjL5yDiKvh7inKVm7CdU2Pa2ML6d2gegxx5nCDpDmSCXnLEdfuSdi0haMTVORc5Yl+j1j4yRk7UaMhipEaSfGpqlg70OUtIKn1yxPXZr9JoAhwZDI+Z+AIVFhO+ia+Z7qK5HzPoWQ0+wPlUA1VyJUMTgKUs6F5X5LMeqrEEXtaDEZCQQUtSOcYeS8haiePPMdR21mnnpdEHSBEqiOYgg5wKYjJm4x++qQA/L6kPMWQkcRqqEKjDJz7u1rBRk155gD5DiRF0JOr0N1OUEzhUN97VTk1A2oLROQ09aBPWK2w9YSEAZy72XoK2aaY4q7DzllI8aqPSFij72UAfNBTYBLG7NxMdOxvvgLyFmfo6+chcgLglRmPWusRgXzh5wXaJX58OGQVTcJoZQa0/1fXq+XpUuXUltbS35+PkuWLGHq1Kls3LiRmTNnEgwGxzI7GfH7/fh8Prq6uigoKNiu9zo7dDXPqFeHvPaJ40nmh89IHK92vszkFN7rcqVV72BC5PCc492oXcJN9itGJQ+58q3wjfzD+E/K6z3OJWhCG3b67aoLvwrgFk6K8OHYxVbVFATnZnQN/i3tq9xrz3716UJjGYeGzwHgEu1cbrX9gLPD32eRWkFLbGXiaNl485JHk/ODEb3jXCgI7kc4zWbGW7UfcI39m6N2vy+GLuYt9XHi+Bn7/XwrcmPGFZ6ZsKFxtDiIRWoFAXqJEEHHwI2LZucHw149ttRYzfzwmRnDlVHMZudbCDE6E+M/Rh7l+/ovAXOLQ4jwsNI5RR7Ni8bbRGOCnIak1fkxbpHeYcH24P/0F7gwcl3K6z+S3+VnjqFtpmbiiehLXB/9Ne10cpQ4kBfU23hwJ7azzhTTWOh4Ek9o35zT1pDoGFRRxgbXG8PKn8X4xq8ClIcOGnT+P/YHOEE7bAfkyGJX5ZHoU3w3+tMhrw2UM2aJaSxyPjOWWdvuHBo6m4Vq+Zjft4Qi6lzvjPl9R8qc0JdYqzLbOP2O/Bp3O24a9n3e1D/mxMjFWYc/U5zAE+rlpHOHiXk847gfj8gbdj5GgiuY3oP5RCp53v4n9tBq+WP0X9wT/Tufs4nHbH/gTv2vbFENbKExZfxKymiiNeU84H37/7G/ZpmZshhfZKsrGnOLyYWFhTQ0NAw6v2jRopQeT3cXPt9m1UEcD272EtM5V36Zi+VZ/Ey7kkpGb6VbqVaUcxyJ5N/6iwTUyLZBDRcNiRPHkNemUDNiZUyx8DFF1lAhSnc5hZtSKqPCDWCmmJoxzEDcAzwq9tKHW7i4zv7dJMPsI1G4eXBTRAFlFFMrJrDWyCxEjRaRDG7U95UzR/V+l9jO5Qx5QuL43/qL+Mhe6a8hsWNLWqEpkUTReVctZJ6YQ5AQOgbXaBfxluPvaAy/zXSm8HC7LQ7so6ZwAzhOO4TL5Ne5WJ7Jd7SvDTudRtWWULiB6cGrSbWNRhZzZpWxPu31Y7TBSo1sOU07lna66CXIx2opkOw8oV41DbvvjNefBlroUzvXxzOLsaFAeHHjHHS+hfQ2WC0scmWjkdqGaFzOkAg6lZ/LIj8bo1yNDdnaTx1t/PjpVj075N7DRVc6m7Isr69rp4zoXlNEbnPYaUziO9rX+I74GnOYwYHswydqKVNCR7NP6BQe1/87ovyMNiUUMpVJ7KHVAqbDurjTp4ui17NALUso3Bwp7M6ac7fBY0Sc4yIXZbTZbWExXhlzpds555zD9ddfT2NjI0IIDMPgvffe43/+53+44IILxjo7OxW9KYxnT2MyUkj+4riN+xw/40f27+EUQyucxgIPbgwMPmcTn+6Ar20AK9TalKtaviZOGuPcjC86lT+rcE/qL3Fm+Ar+EP1bVuFdAwbSPhUC4DA5j+PFoYnzI1Hs9BKkAz8ttLNUrWEl64adVi4oldkhxDyR/utgrnxFO56H7LdQywQOEfvznPEmBWT/5VPHIEI0SeFpYGDHxlwxi6liAjOp5TAxDycO9pEzkWL4w0G2dWqSGF0judPkJH7nuJH7HD/nx7ZLh53OUEJeE60jydqw6cnwIeMLIvdVaHFswsb+wvyKPHDVZNx4sp8AvapvWM4uJJKDxVwOEfuzXm0Zdh4txi89qpfgEONyJm/jFha5snqI7WvbYqBooIWX9XfHIEdjQ6/Rxzw5J+VH5+1JBJ1PjM/G/L4jYaOqY18xkzzSr1ovwsc8OTI5boKoQMthWv2hWszd9pu423kTJbKIj/mMEGG66WGN2sB7xqcjyk+u6Cr9x+V2unjQ/r+J42PkwUxlIkUU0EuQfej/+OxKoVhroJmfaJekvMcUavhHNPUuJguL8cyYK91uueUWZs6cycSJEwkEAsyePZsjjjiCQw45hJ/85CdjnZ2dik0M/TXmAu20Mc5JegZ61vt4Bw3ALWm22Q1369XuwiqVnbLKQOFXAfwqO++leaLfHlyQUOL3bfYfDkjTGLZ9PIVKEjRXqfQrgkYLfwbvrTY0fDI/bZjh4BYuLtfO5331KXuKKcNaJahv44kqQpT31SIaaGEtW3hXLeQf+rOM1MpAR5ZKtxmidkT3SYcnB6XktnTEvHANpEntGKXbq8b7Ka8JwClTfyXOhi/IffDhxY6NYnxJilkfXraoRvLob8vZttcoUT5Qi3hffTrIVpzF7kEn3UOuwl9qrB4itIXF8Mlm/I+vutxKI/WqeXtnaUzwix5eNt4dtimFkfJvY+dafZWJhWoZC9Qyekm/+nqKqBnxrhabsFFDRdbhN9NAREX4a/RJChksQ461grOe9G3kXPFlJmv9q/mcwsFy5wu85/g/ABawFA3JZGpwpVAKGyi2Gk0plZMrWMsf9UdHLJNaWOyM5GTTLRKJ8L3vfY+f/vSn1NaObPK0efNmli1bRiAQYO7cucyYMWNE6W0v4vt0N9tup2CAUmEkiBoPBRvMff/BP+0JgfrsInqrcX1n+wivecG9MYaY1C+aeR7V9d7tcs+hcNx4GwhTURC+K2YvrrsACgP4mm9IhCsJzk9S/gEsf2QrNT16opyCf9qT0BWXgRpz3fLok+/HceV9IAzCd1+O44r7TQOV8Xfm7YGAByBxXfiGVoTEbD8OSZ1HY68LJgDwJXEUd//t3xT3DLHyRkhcV3cRvNMHarBBc12ApgBvzO5goD6RthM7odj21sQ7GyIf4Vuuz63uDSgjlEyUFX5f9mnsrhR0JQzIOq68j/Ddl5ntjlibBML3XNpvpLw7eatrT7Vg6qoHks61PbDJrAPbMor9WPD3qZWdCtMG8cA86AKiv7w+USfizxbvcyDW73Sn3srruPE2wvdciuOK+81/r7wPvAHCt17XX3Y51LmB4wFAcfCAxAQhVfvItgxTjS+6gJJLTIc+v5TX8BPj94lrz9r/yE8jd7KYlYPixd+pLmDznTdSXe9NlEei/lx1L+G7L0uUD0okl2dBV6LMEAq6vWafFT8X8ICSZlyr7Y5LHDfeZraHG+5Ieo+JuuL3QX7/+JTot709Zrx43aG/PzLHvFifroR5/p5LoTvWB+wK4/xoM7CtBTymnBBrc+QHQAmzvG+8vT+OEglZAjDDxcMD4VuuN8Mr0Z+Wd8CWQ7FNpx/rF8K3Xjfm7XmgPBlnVGSCWN1N1NvRStciI/F3Gpdzw3df1n+xu6Bf/hvnDKq78b4xSd64F6B//ET1t9dYnHh7DN9yfSzd2/uvM6DeFgb4uOEIpj70pSFlDl3Ao1f8hW/IU3nAeJRvaKdRJPrr+8zQiWxUW5HIxMr5SVSxmX5zUinlGZLnHm5cHMJcZmnT+I39RwB0ld8KujGgzQlAZdfuhmiviXIbIMcNrEuOK+8jfNflZp3K9+O46l6zfGNlmugHtyGpnGPHjhvuMPs/SClDb0tCzrzhjv77xd9xrL/dtu9O6pth6H58QP4HymZJc+9YfRpq3E3k76p7Ib8buvPNchLKHJfjzx0bxwHzfnddHhurd7RbwswMlPGT9BFp3plf9TEpev3o2nSz2+088cQTuURJyaRJkzjppJP46le/utMq3HYn5Ngvehw2fSo4SOFmMbrk4+EJ5z0Ui8JRT9vD6CivLXYehlLYW+ROl+rO+EV+NBAInrHdzzXaRZxkO4ISChPX6lQTx4jh242zsLCwsLCwGF8s09ekvf6b6J/xhedxXfQOntBfSrp2oNgH6DdVATBPzqGa8mHl5S0+4R7976w3LFMVFrsOOWtaTj/9dJ5++ukR3fShhx5izpw5uFwuXC4Xc+bM4c9//vOI0rQYGbZh2PDZUaTbWmoxOuzF9lOEj2QboMXOiWLwakeL3BkrA9kSwRdth3Or/X/YS86gWvRviVmrNnG29qUxyYeFhYWFhYXFjmeFsTbt9XqaE2Zefq//FWPALpfz5amcLU9OMgFTLcpZ53wt53wECRElCsDTxis5x7ew2FnJWdMyY8YMfvGLX/Dee+8xb948PB5P0vWrrkpvT+umm27id7/7HVdeeSUHH3wwAB988AHXXHMNmzdv5he/+EWuWbIYBRzYk+xw7cy0Wp5ttjt7yCnbLe08a6XbLoe10m102LCDHBAcJw9mqW5uV31If5xrHd9Muq6hoWfw4GthYWFhYWExPlmTwTlJ3I5giDDr1GZWqw3MEtMAOETbn+9Gf8IUamimjVoxkaVqDUIIXDiGdLCTCh/5hAihgHf0BVxruzhjHAuL8UDOSreHHnqIwsJCFi5cyMKFC5OuCSEyKt3uv/9+/vSnP3Huuecmzp166qnss88+XHnllZbSbQfhwpnRYPzOQpvqTHs9oHo5L3wFf1S9KZxWW2TiVHnsdkt7JB5MLXZODGul26jQpbqRiDFXYl5j+ya/1/8KmE4llpP8xVtDWko3CwsLCwuLXZS+HE1bfGQsYZY0lW5ekccF2le4Q/8TAB1qOShYa2xippjGYjXYRmwquuhOOA57Ub3NFtVAegtoFhbjg5yVbhs2ZHbTnY5IJMIBBxww6Py8efOIRqMjStti+LgzuNPemWgh/Uo3hYFfBawtbyPgUG3/7Za2GAeGNC1yw1rpNjqsVht2SFmWUoQNjWhMsbat17RIzPGJhYWFhYWFxa7HGjamve7EkVjtZkPjUf15DpT7MFtOB+B47dCE0g2gkAIe0P/FieKInJRuposEEwd2XtHf48xcHsTCYidlzK3nf+Mb3+D+++8fdP7BBx/kvPPOG+vsWMQYT8btW1V6m24CSYHwIsaRc4idiQlUJHklGm3GyzZmi+yxFNyjw46yVymFpILSxPH7+qdJtlkslaqFhYWFhcWuS6YtoCHCVFHGH7SfUE4Jb6qP+FH0N4nr+4vZiZ0sBeTjJ8Az+mvMZiq2HHa4GCgqKUUgCBPhHv3vw3sgC4udjJxXul18cfq91Q8//HDGNB566CFefvllDjrI9JD20UcfsXnzZi644AKuvfbaRLjf/e53uWbPYpi4hWvczKyCKkQh+XTSPeR1r8jjCcc9BMUrlnpnGOzLrO2afgdd2zV9i7FnnHQdOz2NRssOu/ex8mD+Y7xGD328oxbiIS/xVdvCwsLCwsJiVyU7Ka6BFs7TTuFm/S4AXjc+pEN1USR8eEQe35Rn8KlawSK1gnliDivUWv5s/Bs9xw+znXTjxEGQECvUWuDAXB/IwmKnI2elW0dH8pf4SCTCsmXL6Ozs5JhjjskYf9myZey/v7l1bd26dQCUlpZSWlrKsmXLEuGEsLagjSXjaaVbPc0pFW4WI+dS27mZAw0DGdtW2oE/Y1gB2MeRR93dnbinKYuR0ah2nNJNx0j0q110U0NFhhgWFhYWFhYW451sP5xOohqv9HCZ9nXWqy00qzYOD30dn8jnXce/qJRlfBpdDsBmVccsMZXVagPOHC1sR4jgowADgzzcKJRlmMZi3JPzrPapp54adM4wDC699FKmTZuWMf4bb7yR6y0txoDx5FGyS1kKt+3Jsdoh2yXduK2qGirYSmPasBoaIUuRY7Gb0UTbDrv3FFGT+O3BTesO2upqYWFhYWFhMZZkp3abLicDcJP9CgBmB09iPVtAmfLLV+Tx3M6DzBbT8asAC9Vy9mAK4RztwgoETmy0EyFMJKZ0s9RuFuMboZQalZ1Bq1ev5qijjqKhoWE0kttp8Pv9+Hw+mv73TfIW+EE3wCaRVR6M+p6cjgHkVB+2+RXYjpwAgL7lHYzGhfyp7XZAUdmjoynQBTR6NE7v25sSChDeCWgzz0KbePh2ec5vhP+Hfxv/HXT+kHeq2G9hGV94vxJNF+iaorGql8qGvKTj2Q1VdOl+dE1xZM1ReBvEoGfPprxE/jJw14G7D6MBCGuIggLspxyD86snA3Bm+AqeN94clNfD6oLcyDc50nEE2sTD0be8Q+iheozPI9Dry/odxc/p79ZBz4712Bf3GCirGpFHhJD2ToTdA1JHheowV2wLRIWBCrRBnxPVW4gsqkRMWYos0KHQjSzdGxVoYLm7k3flUjRDcUh9EKmgwy1ZUexgo8/OuvISnpi2uP/+sfqpOk0HKirQgPCUIUpmY593OZGF96LaVqB6WhDeKjro4rfe11DSTk3JYVzp/A4ASyJLuE7dybs1psMOgUChOKwuyFc+DzAhoCfq/EafnU/LnZSsn0fNQm1Q3QNi9U9D13Qaq3qZ3ziN2Q6JPa8OCgKorgAIHRWoQhbORbUVZ/3eB4bp0rt4V3w6ZJ2vbMjDo7s5ynFQTnU81z5j4LmHy1+gosE9KB82XSMaK4uB+ZxcPQN7Q4gN0S1DlF9/GicHG6jqLURFYE15M4VtLlSglGJ9Bhv3rsPVvgZ3n518vQiXtxRVVw2iBMNTyC8PepKF8xp4//Dkvv/SJX5mtocp69Vp9GjsIWo5svhsZOW8UevHgo8eD12bINSFLiW9RgCpoN0lWVzu4P1qN0du6aM4qLOs1MnnRXbk57VMWVGB0VZMVV4Tc9qDuImipKIjP4K7roy+Xh/tuJky5VCqGrxJ70T1vIARCiBsPZAHQusC1YrR60LYdAjOQjXviXBPzfie5aR8HF/bIzEeFAT3IzxA2XxYXZC5zSFquyLs01vIfLFXTmNBpvY7kL/rz/DtyI/TpnfpEj/uqEGfTbLEvyf7LSzj5BUGtl4XeTJEID/M5HA3MmxH2XXK3XugWuwQLAWtHG1yLYb/ZYRzDeS1QIEf+sDotiF0G8IVAa0K1eFGdU+EcBVa7QGDyk9f2oqxsh38loOHnQ0dHTl1Ay0uG12zNuHXPbTmCVR7MeUFDaiwg9Y8Aa4QR7Xk446CyAshSp2gb8TokQjdDg43qrcX4exF9eUjfYUo22ZUlxf6PMjyEgx/D6reBwEHqrcC+vKgfseO2fZv75X1+IJu0K5183zFRxQ32BN9clNVX6KfP9Z+KM7qwpzSTBz3/guh1UHBFkAHdwA0HdWTh/D0QsiB4fchy1rAEQZNhy4fqs8NSgISUbMV1VKCyO8GRxhj6wRkRROEnFDgR7WUIaQBQgESbLEt6dIAm4KgC/xejPYSVNtEZPUJ0FUwKN9L9VVsFg0px9pMMkA8jKFBQ1UPlQ15lBc0kO/qwuPpoKgX8qJehL8WWXjoIJkgq/KMH3s2IvI7UYH1YAuBXSG02Rj1ExCydHhpZnn8pv4x3Q3Nacsnl+OOqgjlopQTGvcH3eA9sZhVVQ0Z09izoZKA3p04niEmc0TjnO0q/8THXyVbUEGQhXkYLRGIxupq3jRUpwKjEEPZ+OuUj9PUHQGa5MQJX4T6vlHN538rFqDXd6csv54qgadBpZTjmqp6qcxr4uBwHe6o2ZR6vWGcjcUIRxi8vTj1QoStHcI2VK8X6XGhbK2IvG5UyInQvaD1gbsXbGFUWwlE7IiyBlSvB0IuhCpHRSuRVTO4f84yfvyVz5JkDoDKHp3WPBsri+3cv28BX5en8LDj1kR/d1zoQt5VCwF40f4QR8kDuSH6G+7U/8Z+zMIpnHykFgP98szB9UFcyk5QRJJk/vj8IE41ZdRjrv6/7Klyblh8BHmdLeCIoHo6AQPlr0H69s8g49ejIo1me81rBVsfwiYx2twIIVGBGuTUKEZrI0SigED6FEZTBfRVQ4EDOWEzqm8twt0Jni5URyGiuh4cMSNGUQ2idoz6Kgg7kFWNICRGYznSrmP0ehGiCNXuBewQrkZUzkZ6qlLOhZVtLcJXB661GG1FCN0Gshhh6zL74m4PsqIVCrdA2IHRWIks7ISoHSI2VNADoXyExwt561BBzeyrnQZGUxn4i8A/AVF9GIKtYN8Cwg+yABVsQ4VsCLtCFOZBsAZ9RRT0XjDCiAnNiNJ10O1BdRSDdICzwxxL7BGMlkoI2cDQwB6F7kqMtVOgzwfChSjt90crChyIcvd26zNyPVY9n6CirQhbBxRIkDpGnRd6y0FUmnLsNnEC1RoVPz2Krq4uCgpS+9odNaXbCy+8wIUXXkhLS/rtMcFgkLvvvps33niD5uZmDCN5n/enn346GtkZNeJKt0wFOVJcwTlDnm91foxX5G23+8a5NPwz/mI8njHcQO81A7lInMFf1ZMA/Fq7jivtF4x6HuMcF7qId9WCIa89a/sjx9sO3W73Hmu+Fb6RR43n0DE4T57KQ45bRpTe7dEHuTl6V8rr14vv8nPnVcNOP2SEODByFqvVBmaJaSxyPgPASmMdc8OnJcIN9JSYitPFcTyn3sgYLs69tp/xLdtZw877UDytv8I5kWtSXt9PzOJD579H9Z7pKA0eSIDeQefzyaN7iPNXat/gJu0KpoSPooe+lOnasdHoeB+PzOO+6D+4PfonWungBu27HCLncXLk2wCcIA/lP44/JuLdH/0n10Szq5P/o32LX9pTl+VICakwvtDoet39m/0OztZOHtU0U5Ep/9+T5/AHx0+22/3fNRZyXPhCAE6Qh9GoWvhMrR5Rmj3OJWgiewPKFuObJ6Mv8/XotZkDxviL/TbO1b68HXO083NK+Hu8YryX8vpyxwtMk5PGMEc7hq+Fr+I/xuujklYq+eJJ+z2crB01KvfYUXw59F1eVe+PaprllPBz21V803YmP4jcyv36vzCysMF1iTyXB4x/AXCQ2I83nTuPwfsNxlZmhU9MG+ZUcTSPOe8e9XtfHv4ZD6WZT02iis0kf6R04kQnmrW8e5N2BTfaL8kYLqB6sWOjjU7qVBPz5d5DhisMzkvp5KyGCp51/JFqyomIKGWiOHHtoejjXB79GQB32n7MJbZzWagv45zI1WyhkVomsIGtALhwEiSElzx66MOGRiTNjhY7NnSMRF38ubyK6x3fzfjMFhZjTba6opzdO1577bVJf9dccw3nnHMOZ599NmeffXbG+N/61re44447mDx5Ml/+8pc57bTTkv5y4dZbb2X+/Pnk5+dTXl7O6aefzurVyZOEYDDI5ZdfTklJCV6vlzPPPJOmpqac7rMjGQuFG0CB8GQVzsvQ+XELF4eJeUykcsgVc6OJP409t2K5/bxu7ghO1A5PGCBtUM1J13pVX85bbftUetcSX7Edn1sGt8EpnQn7gKvUevwqAECFKE0K58jCvoMUMiGAaCm6qoF2357SX6ZhlG1itanOtNerRfmo3i8TLpyDzkkEkW0EtRIKmSGm0KRayZceaqgcFK8AL4XkU0oRAsE7MUX2SfJIKimjVtTwS/1+uo0AF8uz2ENM4WXjPZYaZh/bZXRzn/5PHFlaKSgVRbk+bk44hYOvctKoptmq2kc1vXS0kP5exaJwu95/4PZSGxrna7mNx0MxlILYYtdltdqQU/hghvFod2C58Xna6+27ieOhNjV6z1lC4ZDnV+VYP3dGRkvGmcYkZjGNw8Q8Wung0ujN+IL783f9mawUbgAfqSVMiMkWq9R6RmkNx6jQRGvGMEfI7WOcfw+mpL0+lF3jGUxKyLs2bEPKvO6YbJ2Phz/rjxFWmVd6Pxh9lIrQwewZOoHTwpfyv+F7B72nTXp9SoUbwARRyWw5nUJZkKRwA5glpyZ+r1SmnfZ52pyEzL+BrUykimlMTNwjRJhZYlpGu82FFODBjUQgkfzO+At9KpjxmS12DxpUC5/pqygMzqM0eCCHhbaPPfLRJGebbosWLUo6llJSVlbGb3/724yeTQGee+45XnjhBQ49dOSrkd566y0uv/xy5s+fTzQa5cYbb+SEE05gxYoVeDymEumaa67h+eef59///jc+n48rrriCM844g/feS/1lcazxG4Ehz4/l7vUikWY5ZOw/N07a6BwyzPvqUwwMttDIFtXIZtXAJFG1XfLaxdDlBVC6zYAw3pkiJiR+b7tS6ebIXfzdeIbZYjr7y734tf36jOn1ZJgET5UTh5fRAcyX+/CpvgKFYoGxjGO0gyiiIOnrsx07kH7w7BwgmKTyfBT/SubEQb1qYp/Ql/nU+TQTR6nubVbpt8tPpibt9dGmkIJBtrYMFEFCOHAQjq1CbaOTNtWZUIB+UR7GBmNL0ldF/zbt6EnjZb4oD6dWTuAbtlP5XfQvzGY65+hXU0UZjbRxiJjLb6IP8TfHHfxE/z1+1Z20HTIVB4u5TBUjr1uZ8Ekv8aoiGLlX1RY1dnbNWjPcq0Rs3w8K1ZTzRXkYAdVHQPXiHkLBmyt+AvjIH4XcWYwHGozcPmju7t5xG4xm6mlOG+YP0b+yQdVhYPAr2zUcox08RrkbW+JezTW0hFmN4bLt2BbnE+OzEaW7M9A2DFubEplQpMXHxXVs5krtfJ4z3uQ8eSrPG2/QTldObbJb9TBF1LBVNdKJn0ZaqaIs5/xtD5pUZqXbYdoB2+Xes7TppNNbDvUxao7YgypRTpPRymcMvcI8RJBifPTQx95iT6aHjmOiqMLA4H3H/wGDnRA+pb+SUHbNEJP4jfEQNXoFF8d2hSiluDjyo7TPUyFKUl6byVSOFAcSRU9SCF+gnc6e+lTWsYlP1NIkGT6KHvNImp52OgfEU3TRzedqI/uImRnjWuzaNKs25oVOp4TCRP3eqLbu4FxlZtS2l2bL7NmzefTRR9lnn31GPe2WlhbKy8t56623OOKII+jq6qKsrIx//vOfnHWW2cGsWrWKWbNm8cEHH3DQQQdlTHMsbLptavgP/23/fwBJNt2aPHYu7jsM0Le7Tbc/Rx7jCv0Xg87Hbbod/H41QlfomqK5qo/ybexKVTV42ENNYZOoJ1RtY05DDZOMqu1i060yePCQ3ksPqwvyH/kHnLaCXcimm/l/WdVIwxGbmWh3Jmy6RUObCegBDCR9Fd1U9zgy2nR7z72ZZXJTSptut9b8A23SEf33z9GmG8ASXx8vqQ9pKy5jP9tczredBnqI8/QbeLrGXFI+kSo2sDWlTbfF5S4c62exx0JvGptu/fZbJjQUUGRvocLTh8zvwes3kBIKAtORhZnsPaSun0ujq9gsU9uZ2UtNZ4pt4pjZdHu+/GNo6MnCXotp66a9KsI3mk6gQ+/kfbEopU23LwebyOvVUBHILy+HthAtAY023Un93k3MaO/G3WfHiGp0eKCsYW8COFmR18kHh9SxeF5LRptup2rHUVF4wHaz6Ya0ETVChFSIdpfks3In71a7crTpFsVdV0pfr48efAQmlw2yU7O9bLq9qX/EiZFvJT1f3AbKnC4bR/RNoprS7WbTDeDI0Hl8pJYA5laRq6O/Srqei003w65T5JqCvdVj2XTbTUjYIM3SptthLXnkR7Xd1qZbg97Ip2JlWrtbQtPYWuWnsiGPmWoq02yTd0mbbq9H3qdPC9FSFaSswZWlTbf04+C2Nt20iANX957j2qbb3/QnKW5wDMuGm6bZ2FLlZ0JDAeiKA+37kl9dih07C+s+piXajktz8XlVc9ZpFmqFNFQFcAgHBzfOoFj37RQ23ZpVN89N+TxN3ZF80X44WnX+qOezrwJer38jbflNbSjB0HWCWpjGql5qG4o5Rn2BxXI1CyvXU5XXxCHhOlxRhTQEQW8Ye2MJwhFCeXvRo3by7L0QtmP0eujLU3jsvWh5PQmbbkrrw3B3I7QIRnsJhG3YyptRvXkQciNUOT1RHx9X9PDKPn7++JW2IW26lXimc0jZ+UPKDAAzQyeyUW3FhZMW54fYhbmT5XNjI3uHv4yPfHrp47g6xaxmPwfXBzFUdJAd521tupVSlPjI/L2nSjhyoZeD/aUUOJ2WTbfd3KbbZtnAmqoWQvUdiXbVUtXHxdpXdw+bbtny4osvctddd/HAAw8wefLkUU177dq1zJgxg6VLlzJnzhxef/11jj32WDo6OigsLEyEmzx5MldffTXXXDPYvlAoFCIU6l9m6/f7mThxIpttt1MgRsfDp6jxULDBXBUY/NOeEKjPLqK3Gtd3RmZjJxWPRV/gguh1g84vmnke1fXe7XLPoXDceBsI88tG+C7TOw7dBVAYwNd8A0op8kL7oIZYw7L8ka3U9OiJcgr+aU9CV1wWEx7HOfl+HFfeB8IgfPflOK64PybkxsrB2wMBc/CPXxe+wUvYicVIuYpymzqWsn4KievqLoJ3+kAN/qSnC9CUqTguEUXYAs20eJzMuCB5m2PinW1DnUcjfMv1udW9AWWEkomywr9rbTneLhR0gTJrhePK+wjffZnZ7oi1SSB8z6WJMPFrceqrA8xd9Y+kc20PbEIbanQZxX4s+PvUq6gUYMTqYRxdQPSX1yfqRPzZ4n0OxPqd7tSDpuPG2wjfcymOK+43/73yPvAGCN96XX/Z5VDn4uPBY/oLXBBJ7oNTtY9syzBT+92W/4ncxj26aZfneu073K7/Kel6/J3qAjbfeSPV9d5EeSTqz1X3Er77skT5oERyeRZ0JcoMoaDba/ZZ8XMBDyhpxrXa7rjEceNtZnu44Y6k95ioK34f5PePT4l+29tjxovXHfr7I3PMi/XpSpjn77kUumN9wK4wzo82A9tawGPKCbE2R34AlDDL+8bb++MokZAlADNcPDwQvuV6M7wS/Wl5e/rDi206/Vi/EL71ujFvzwPlyTijIhPE6m6i3o5WuhYZib/TuJwbvvuy/ovdBf3y3zhnUN2N941J8sa9AP3jJ6q/vcbixNtj+JbrY+ne3n+d/nqrF3ZRvfnR1DJHCpkB4ILwdTxmvADAB47HmCtnJ659PXwtTxovA2nkGUyZf68LJiSdK6aQ9tjuqvpJ56DpYkCbM9dsZtXuhmiv8WcfKMcNrEuOK+8jfNflZp3K9+O46l5AJco00Q9uQ1I5x44dN9xh9n+QUobeloScecMd/feLv+NYf7tt353UN8PQ/fiA/A+UzZLm3rH6NNS4m8jfVfdCfjd055vlJJQ5LsefOzaOA+b97ro8Nlbv/B5oB8r4SfqINO/Mr/qYFL0+o9It5+2ltbW1g5avDmT9+vVp4x9wwAEEg0GmTp1KXl4ednuybaf29uHZ0DEMg6uvvppDDz2UOXNMpwSNjY04HI4khRtARUUFjY2NQ6Zz66238vOf/3xYeRjPFKWwgbGzEaB3SIWbxc5JFIMm1UYNIHI3IWlhsduQaXvpWHCg3Ce+vJbPjU07NjMWFhYWFhYWOzVfkPsklG7/F32BuY5+pds3tTMTSrdc1S099HKQ2I8PY95PLSzGOzkr3a6++uqk40gkwqJFi/jvf//LD3/4w4zxzz33XOrq6rjllluoqKhIq8DLhcsvv5xly5bx7rvvjiidG264gWuv7fe+FV/ptqvjk2O3mm0kdKVxoiDGgQZ9d0Ei2daohUQwmWo2kd3KTut9WuxO1Kkd7+DnMDGPY+XBfGasZqlas6OzY2FhYWFhYbETc7I4ihVyHY8az/M340nWhDZwhJzP1faLOEoeyLe1r/Gy/i6K3GxuhQjjUs6UjlEsLMYbOSvdvv/97w95/t5772XBggUZ47///vt88MEH7LvvvrneOiVXXHEFzz33HG+//TYTJvQvT62srCQcDtPZ2Zm02q2pqYnKysHe/ACcTidO58gNSI83RsNo9lgQ94Y5FNJS0ux0OLHHPGvqhAjjJ4AdW1o34XGsFY0WuxNbjKFXX48l1bKCNtVJC+0ZvalaWFhYWFhY7N7UahPo1P0cKvfHRwHvGQt4X1/EN2ynUyIKmc00nuTlmEfW3Gxufs6GlA78LCzGG6O23+ukk07iiSeeyBhu5syZ9PX1ZQyXDUoprrjiCp566ilef/11amtrk67PmzcPu93Oa6+9lji3evVqNm/ezMEH75oeoIaLG1fmQDsB6Va6SWv74k5DXP1ZKooTCl07Ng4S+1FBacb4lgLVYndjs8rStud25iva8UxjEtOYtKOzYmFhYWFhYbGT8yf7L3nGfj+NyvTI3Imf5/Q3AHOLaSf+JA+m2VJHM0Wkt39mYTFeGDUtxeOPP05xcXHGcLfddhs/+MEPePPNN2lra8Pv9yf95cLll1/O3//+d/75z3+Sn59PY2MjjY2NCaWez+fjW9/6Ftdeey1vvPEGCxcu5Jvf/CYHH3xwVp5LdydcYnysdOtRfThSLNC05b5w0+L/s3fe8XEUZ+P/zu5ek0469eZug22MwZjewfSeACHJGwIklCSE9oYkJIQ0AoEX8gsECCWBhBZSIHQwvfdm3MAF96re7qRruzO/P/budCfdSTpZtmSz389H9s3u7Oyzs8/MPPPslG1AsbCnLkeJ00gLblwDXAHSGeXm8CVjIyM/0g3gUu0sLCFZy8aRFsXBwcHBwcFhlFMgfAghuMb1vwCMoZqH5FNIJfFpXiaLoS3TpKMxltphlNTBYeTI20sxe/bsjHXYlFLU19fT1NTEHXfcMeD1xx13HABHHnlkxnGlFEIIr9BssgABAABJREFULGvwQ0/vvNPeGePwww/POH7vvffyne98B4Cbb74ZTdM4/fTTiUajHHvssYOS88tGAcOzM+vWpo0OYjmmJrrQt7E0DoMhOQJRIPhEfTbC0jg4jE5GyxQKn+bjG9oJ3GLdj5nnVBAHBwcHBweHLyf7it35kf4dbrUexJKS+63H+a5xOtPFZOCdvNOzkNTTNPyCOjiMAHk73b7yla9kON00TaOyspLDDz+c6dOnD3j9a6+9lu8tc6LUwKNhvF4vt99+O7fffvuw3XdHZHtZ0y2ounKe0x2n26jGWaPNwSE3YaIjLUKK7xnf4AbrryMthoODg4ODg8N2giY0jtMO5UO5kPlqKb8z/8wR2v4Jp9vQcNaXddhRyNvp9tvf/naLbnjYYYdt0fUOWwdvDqfbaNtBMkR3znPOmm7bBxrCmT7q4NCL0eSUHiOqOVd8jb+r/460KA4ODg4ODg7bCYfp+zJdTiEio2xQ9Vwav4YrjAsoxAfk3gzPwWFHJ28vha7rNDY29jne0tKCrg9upNFbb73Ft7/9bQ488EA2brTXjXnwwQd5++238xVnB2B0dLSEEImdZTIZTR1BgFbVkfOcJhyn22jGQOcAMZs57DfSojh8SRhtHw1yIVX+Cwxvbc4wjh9pERwcHBwcHBy2M67TL6deNVNCMStZx0q1flDrOTs47MgINZg5mmlomkZ9fT1VVVUZxzdt2sSUKVMG3Jn00Ucf5ayzzuLMM8/kwQcf5PPPP2fy5Mn8+c9/Zu7cucydOzf/p9iKdHZ2EggEcDdMx1vs4z33w8zQdhq29BdZy9knflrWc194XmKc2HYLSJZE9iRCrM9xLx4iaVOfZjODT/m837RcGPxTv4larYqj4+dQgI/pYjJ3uq5mqjap32v748LYr7lXPpb13GfuuUzRdqwd9/aOnMZilmc9N5YaNtOElbbu0h+Nn3OR8W3qVTPHRc/lC9ZgIfHhYRemMK+f9/a463aO14d/JGq9bOJ66y/cbz1OjajkA9cjXGZey2PyRWLEB51OIT7GUM1y1uR1fwODWir5P9dPOF0/dtDXnRL9AS+q3B8C/u66nm/pJ+cly5bSIYPUxQ7KugvU74zLuMK4gAmRw2igBYBi/MSIp8pvFWUcrO3F3mJ3fm39aVBrdmloyCHsOpVkoetppupDL/ODpU11UBc9mAK8RIhRQwVztP34h3xqi9MeSw0rvC+zSTUyOXoE5ZQgENxjXEuVVsGe2q5Mixyb2nzg5/r3+a3rkkGnv9bcxDTzmJznv6mdyH3uG7b4OfKlOnIAHQSHPDq1hgrWeF8ffsEcRiXvmJ9wpHlOXtcU4KXF81HGsiU7KrtFTuKLPNuvbOwtZvK2599bLtAIMyZy8IitZfk7/VKucH1vRO6dD/+wnuT8+FWAvfZyN/33sXqz1P0CE7UxQ7p3SWSvDNt/MPzB+BmXGGexb/R0FqplAAQ9n+IS287hcmbsxzwqX8h5/hHjFk42jsx5fjh4IP4E37N+OWC8u4zf8VvzVkwsSkWAJ1x3ZPRj3pXzOCJ2dipcRTlRonQMMGLMi5tx1PEb42K+ZhyXce6q+E08I19jhVrHTmI8y9WanAMs/uW6mVP1owd8jmy8ZL3DV+M/pI4q/lf/Ds+o13hNvt8nnoFOOSUpu3WwfEU7kv+4bxmSbA7bJzfF7+UX1h/7jXO5/l2uc/14G0lkk/QVdXR0UFyce7fdQQ8NuvXWW7n11lsRQnDPPfekwrfeeis333wzF1100aDWdLv22mu56667uPvuu3G5eirhgw46iHnz5g1WnBEhSoyLYlcPa5rvyk9ynivZxtsku3FnPd670V3JugHTimNymXUNe2ozuEL/HhaSj9Vi/mDes0WjOjbIvqMsk1SI0iGnOxpZpzazmvU5z2+gPsPhBrBG2Z3+56w32ExPXoWJ9utwAygWRVsgbW5eUu/yF+vfRIhylDiAgFbEd/XTceX51auLMG3k3uHYk0N/JZINbOYDOR9LDX5h+IYBFm+tZODdmoebQuHLue36w+ZzAMzSeurhsdRklN9GWnlMvkScOEdpB+a8TzH+1O/+HG6D2TG4TCsZMM5wUCoCrHG/RpQYFhYbaRi2kbqbaWST1Ug5JfxS/yGttNNMG181L+I68y5aZBtdaVPfw0TySv99Nb/f86UiMBSxt5jSRBs01OngjbTmVeYctm9CeToEALqJ8KL15ZjlMFw7FA/U4d5eyNeBNJzcYf2Lb0b/l041uvOyWbWlfsfz+EiZpE5UDRwpB0OxcR61XkAqyUTR4+hr3MZrctWr5n7PH6TttdVlGKyj8105jz8aV2Jislqt52uxizk59n0Ojv4PR0e/wyvmeyl7TEejkZYBy7+GhoHBF6zhX/KZlI6bymSxtZyX5DssU6sZSzXr1eZ+7aQt0Z+j9YO4y/U7LjS+xU+tG/hCrskaT6LydrgBvC8XcHrsYq6L38V6tXnIcjpsP8wbxGZ8o7l9HLTT7eabb+bmm29GKcVdd92VCt98883cdddddHd3c9dddw2YzrJlyzj00EP7HA8EArS3t+cl/EjwHp/yrvx02NJ7X87PelxDw0/BsN1nMAx26O9gO5SbaGKpXMVlxtnsI3ajijIelE/ygPXEkGX8gtU5z6U7CnYExlFDOZmOxAK8CAQeXBTjp6LX+VVyPV2qm8vN6wFBCYPvrAe2Uv4tk6tSv0/WjwDgIG1PvDmcZEMlSoxqKvocl0gMDG61HuRdNfiy29LPVGYYGSevIXI7uRaznKXWKo4Rh6SOtdCWNe4CtZTDxL6MoTrr+SBdWaeb96ZgEBuwlG7DjwfVWkXGx4qwivKq+wEOYs8hpaclpqdaSCbHj6Akuhefys85Rzstpb8L5FLeUfNoo0dfNqr8OtfPqTdznqujirE53tPWZrI2bouul8hRsyurw9YnvQzkwwXmVRntxI6GqUwWWkvpztMZn4sOlfvj0/ZEdAhOpOGigWaeUC8zJ/pt/ms+P6hrulWYZXIVMRXnM/nFVpbQJtPpZuZ1bSE+3FswwmwCdYOO66cQgA/UAt6SH1MtemyxhgGcYMPNQLtdbosPgTuLCYOK92/5LAdoszlOHEqAIpawipfkO3ysFvGJWswf5D2E6MKDu88H1/SPnmUEUpvJuTGIEWcqk3hWvs7/M/8GwBvyI/aOn8Z6tZnZzGAD9egDLMExRmyZ7XGW/hX2E7OopZI2OlL9zPSlP4Y6k6KBZl6XH3KNdTu/M53NEr8MfK5WDBinSeXvwN1WDNrptnr1alavXs1hhx3GggULUuHVq1ezbNkyXnjhBfbbb+C1mmpqalixom+mvf3220yePPTdTbYlN8aHb1e3JSq7oemnYJtPt/DhzXqsqJfzTyJzjirqzQPycQqEj58Y52FgMEPsxOXmdayVGwmryKB2oE0nl1GvIXa46SlCiD55X4CPA8RsFHaD29zLqfK+ms/O0aMJE6GDIHuJGcwWMwZ1v6010m2JWpn6PV2bAtjOox/p382qc7mYwU6U0L+MSSeTgZ5ymECPsfrfxGiwwdDez6g6gPIRGlmZy1npxc2V1v/jGP3glGHTRCv7i1l9nJEfyAVcYpyFK8tItTKK2VXsNKhRbAPtuCkAXWzbXYWP13qmSK9kHQdqezJZDM151HuEl0KxTm3iLvfv2FebBcB6NjNfLs0wiDeohrzu857MPcp7E434xODLyXAyUYzd4jS2dYfLYeRoVe1Duq6RVk6OfR9T5edU2F64x3qEfeNfG7b0RvOX/MFyQ+yvW7RswZaSHN2zhJV82/wJy2XPB92wiqT+T9qoYRXhRvMe9oqdyk7Rozgudh4tMvtHreFkS3Zu3E/M2qJ77yamDjpuiC4Ayinh5+b/G1GnW3/3y2bzbA3Sn78/YsR5Sb7DbtpUWmjHk7Dd3LjoJkKMOBoa0V5L/7gwmEbPsh2zmJ6a+eLFw3jq2EQj+4jduNG6mw/lQp6QLwHQRmfKiRfsZ7SphkZNlg/Z+XKgNhuJpIswGhpHiP2HbRZCmDAKxTPWq8TVyDnxHbYNgxnRuEZu3AaSDI2813TbUq6//nr+8Y9/8Pe//52jjz6auXPnsnbtWn70ox/xq1/9iksuGfw6ONuC5DzdJ/b9MXuuqEFIgdIUxcWl0Bm390EQIIrdqM5Yv2EAbawf45gJeH9lOyhvfGsq+69voS5kV5ZFMZnwhAqKPLUQ6wQlwVOCMfMcjAOu3GrPunvkZJb3Gkn24+v3Ys7LY5m2tDT17MGiOEVBN0KSCMcSYdEnjIadV0B3ZxBLWkhN0lVk4g+68CoPLmGk8ks/5EVESTPoFnLRdLB0lDIw9plMwV9+gj8yK+s6VF48NH/6NVSsA+EOYBxwJeZ71xO+1ECud0PcM+h3lDoWGvkKPNkwaZNXoWZ+juYPYa2dgFbdiFbQlYwE1Y2IjmKIuZErpiBrGzD2mA9ui7guafbpFMUkYZcgqgt0CTXdFigwNWj26dQV7YF74rEZOma+dz3W2pdQwU32gVgnGAVoZVNxnzGX2CMnINuWQ7wb3PYII+EfgzA8iKrdEe4Af7b+gRVtI+z28IuDV6Y2vFgl13P/Owdw1pIQgZhtfgfdGpv8Oq+M82G+fGQW3bMNj3R9CxXF8Qdd+OrW4Zq+FOEPoYU94IlifbYrwdYaVEcgER8KiwPonWbu95441tHZmlWnk+ExwbIB09jScLY0OzvbIGfZi1MXLCUku1LnS4I+pJQoTdFVZCIQFAXd+JQHSygaizoYM2UBIugHS4Od1iBWj0duqsXsLiR69Jv4RQQ21kHYhyUEctUkLNNN1IBl09t47agN/PHKzKnyTz9Zz07tcWrNwgzd0CceNWz1WOTWCrAyHX8q8dfpFiypKOCAJpBWlE0+xeqAgf7CEdR+MhnVUUzJfm/hFxE0TxQ0haUpWLAbVn0NZqSQZr/s897r9nkNrb4aUbsZ1VqGNn49orQVuXgm2piNWItnEl+xEwalA75nEXDjPndXJvz0f+kg2Of5fvZRO0euDzOzy09BLJ53WzBQ+R2IP5j38CvzT6nw00/WUxSTBN0ar39+InNeHsvsygWwdjyakFiGxDv9c9Ta8VBTj1Vfi9ZegmqugqgfUVSKGPMW2s5LEdUN4A+hNtcgV01Cq61HVDWh2kpRHcWoZdORDXUIz5i++dcUhtjo23ziy45K/Ksf9Qry0z1Q+32MuXYCkY5yVEeAgoPfQK0bR6SjHMpbKVIxhBSIKatQ/m70shbk4l0RpW2o5gowDbRJq5GrJyFqGu1ytnQahPyIyetRmytQqyeiTAM6AmAZoEb245sYU9hHX5tpw91JP/V2/uExogYGaD/E5BfRJqxB1G5CtZcgStvAF0FtqkXUbYawF+uTPdEPfxM0CUJBewDVVprKRzFlFWr1JMS49aBbWK/MQT/idegohtJ21KpJiNJ2Ujf2hkl97zJMCPpRES9y/izUyikQq0VFvHTLMKZmDenZgUFdU3DwGxglrWjeCJoCTANr0Uw6W+rSbAJFd5GFQFAYNBJ2LUSLwd2p8CoPutBpLOqkJOjFkhaucWvQvBE8E1ZBQRihSeSSPZArdgJZOKw2QVdnJ5a08n52IQW6plNYXDwkO0N1xojLOGEtOsh3IjL6BaLYg+qMIqTAo3nwFBcMi/2j7f0woiCIXDMBUduEWjXe7icAtIxBmRDr9iClTktJvI+cGhq1wZKtbqepzhjBNDssdx9J0FUUpzBooEsNU7MwigtQ+z5DoGwzyERhKm1Hvr8vYtIaRHUjcv7uaFNWg6kjV01CjNuA8EYQtfWo+mowDUR5KxR0g1DItw9ESQ398DdRG8aAaaBMF3LlZLqEm/k7RTj1ts9SNkddyEJHozbuzctmyMU3Ypcx/YNHOXJ9mGmtcXQEFoqgW2Oz3+DlcV5u2Kck5/WPX7Irs5b4KRyzFgq60ROWnlw8k1DLWOgI4FFuDKH3eUfa5FUguhATliNK2rArA5DLpiKqG5Bf7Iy+x2fIVWNT9Z42eTVy0W7IzbWIinb0veaBK4wob4bCbuTbB6Id8bpdbwJIDaSG9fqhIDX0OW+ApWO9dRDarp8jF8+EqMeuD5VANdYgVBm4s5dP/ZAXUSEX2qz5drv3zoGI2no7UmkrwhPD+mQ2+sHv2u/YNJCvH4p20LsQ8YISqLYyiLrBsBDj1qM21yACHVAQxnrrIGgrRW2uBVmJts+biEAzaCZyzWTEuDWoteMRNQ2IgihyyW6oDg/o9ocxbfZ8tMmrUevHIhfvCq44WLr93EJivXcAorLJblN8YdSimXbbHXclXkramC9dgLfve+sdjhdrhDs7B9U2FCv/kMuzNusZVEsRom4joiACmkIu2BVVX4eKFCGKSvtcE6rRGPP+dwdc021ILv8NGzbw1FNPsW7dOmKxTO/7TTfd1O+1P//5z5FScuSRR9Ld3c2hhx6Kx+PhJz/5yahzuKWz57wqikXaVKpgd8Z5FYwPKmxt7EJuCKWcbl9b0kRdV7avuwriad7aeBfm4vu2qtOtQHj7bKb67funU7cpc9phcdCTV1gFbeeQD43k4MqeOAqIp/JH3+MDEHYlZj5xgh0lWEx8Qwj+Qs6F38soxlx8H4Q2gb/Odrotvg+58Ie2BZV2jx65+g+PBpJDsFVTJe6Zn4GQyGdOwHXYm3Zllnxh/i7w2V+szCdPwT3nTYQnkacSxnbZ+RaIq2Q9kcJInu/6BDO0OdPplszTdGJBZNgevi83vmM7AhLHAVRoI0posOEt8NfxddVOWVc3TYVxtEN6KtrJ2jh+uMQi0NXzTgNxi7FdFmNCFrFB6F7GsU3VuE9/lJTVLCTWsydQ1Nlrim0w88tetveugnGK06ZOZtfxeEb8bGkMZzh5rChtpFsuuZJx+i+bFhowJlgEod1QCWPDffJcYi8fDsFiDKBgl4UAxF4+EpSwS3GwCAPwAPt8VMOYjf4+TrcDN0fRFUAwQzfM0Ibhq8esviPtROIvEFPsu7kLlF3rjO2C2m4L86ndIaET7sSzJescHYg9cTJ6sBgdGNNrsGNx0IN718+JvXYYriNfI/bnC9EPeQf8Icz7z8Y48H3Mp07GCPlJ6kd/71WF4nT/fSEdP+3rcAM4e0mIMV0WpI92yKMtGKj8DkT6ujzQ804tAWMT5dP9i/uIvb1/Sjf0E58hNvc43HPeQL5yhK1XQdsIUZ1dqOAUjKNfAH8IhEJUNWH+5+sYl9wB/hDCF4baelvfOgOoxAiKJKOxnnawSbhpMPb9mNgrR+DZYz7i7QNwJcvb7HnE3tnPDnfYozcV4DrlWbsM+rsw7z8L98V3EvuzvdC5MecNzKdPwn34myAk5iOngxK4T3yO2CsXQjAx+lmNjt3L1ca++lrea3RyvjZU9nD/5UIF46jgTIxD37TLlTtu2wmJMocvAt4o8qN9MI5+tefC0g6EK80mFdidp8SxVPzSDvtcVZOdbip+LyOytANBB+Z9e6TqXYhTgAEYW5wX/cVxz56XqtuTmE+d3McmKM5S/fpTxxRgUhNMzjrQYKM95U4/4dkee/XpE6HTTa56P9uxwYQL0CExbTCfZ+9JY2A9ySWnC3DhGdI7sb8h9dj5+cqRSy79nEV2PfDs8bjn3EnspcPT7lkMQuJO1AVjujNHiPfImdt2Gy47DRikHQZFwfQpwAYELdy7LMjUXX8X5uKZuOfY5dn8eG+MAz4AwHz0NNwHvwcoKOy2y2TimmR5tD7ax0792Jd7zgPWkydT0Blgv8864LbP0mwOAAuI52Uz5GIfbXdOX/IAtan+ri1X0uavC5n9Ot32e3I3dEvgPur5RL4IQGE9fRKFqfIsAdnnnchVASCA+4QnMvLUfPRU3Ie/ifXKEWhfeRrzqZ4NJ4wj3sB86mQIFqMiHrTTVtkyJ/LU+mgf9PR6U5egS2RaPkMc+fHeGEe/inl/YjOM5EehYHEiB7KXC32PD4j9+UKM459L3c99yR09MgDyk70S9wFcZo9MPtsuFu60fCgI99TVQiE/2cuWJWGbZfS9nz4B9+Gvpuw4hMR8+riMD1r6GY9BURChrcd88hRbz5TAOMPe6FAumon74jvtyEIRe/okiLtJ9T5lWjshFcT7vrfeYVfQro+S9F+uBra/c4X1c+y8dx/5cqY/Is2O7X2NtWFw65Pm7XR75ZVXOOWUU5g8eTJLly5l5syZrFmzBqUUe+458Lo5QgiuuuoqfvrTn7JixQpCoRAzZszA79+x1uMaPNt0oGG/JNdkGK2sMzflPFe0g63ntiNRJkqAbipF30V5891MwcFhRyM2iqdETBqG6aUODg4ODg4OX15OEIcNqrdroOccXOHgsL2T96fBK6+8kp/85CcsWrQIr9fLo48+yvr16znssMM444wzBrz+3HPPJRgM4na7mTFjBvvuuy9+v5+uri7OPffcIT3E9szocblB8Sh3uj3NaznPBQZY68thdDKYxfodHHZkRnIHv4GopoJySjLWR3RwcHBwcHBwGCy7aFMGtCNcGE5fzmGHJu8e75IlSzj7bHuYpGEYhMNh/H4/v/vd77jhhhsGvP7+++8nHO7byQiHwzzwwAP5irNds1quH2kRMiga5U63F+XbOc+VaNtuh0SH4SO5vpuDw5eV3gskjyZKRDEttPfZUMLBwcHBwcHBYTAIISjE12+cOCaxEdzR2MFha5N3j7ewsDC1jlttbS0rV/bsTNjcnHvHmM7OTjo6OlBKEQwG6ezsTP21tbUxd+5cqqqqhvAI2y9vWB+OtAgZFGoFA0caQRbKpTnPleI43bZHklucOzh8WRGjeBRZbiN59Mrs4ODg4ODgMLrwiCxr//Ui2GuNMweHHYm813Tbf//9efvtt9lll1044YQT+PGPf8yiRYt47LHH2H///XNeV1JSghACIQRTp/bdhloIwdVXX52vONs1r6kPOGSkhUijAO/AkUaQSD8jQkqE43TbHnGmrTl82VGjeBSZJjQK8dHVZwrs6JXZwcHBwcHBYXThHuQaziUU007nwBEdHLYz8na63XTTTYRCIQCuvvpqQqEQ//nPf9h555373bn0tddeQynFEUccwaOPPkpZWc+i6m63mwkTJlBXVzeER9h+2aAaRlqEDLwM/BVi5FC00ZHzbDkl204Uh2HEcbo5OIxmiijM4nQb3SP0HBwcHBwcHLYvdLRBO+ccHLY38nK6WZbFhg0b2H333QF7quldd901qGsPO+wwAFavXs348eMRwjHYF6glIy1CBuWUJDZhHn0MtKbQk/IVfqi6nT1MHRwcdhhGg2PLLwpB9V06YjSP0HNwcHBwcHDYvpBIGmkZaTEcHLYKea3ppus6xxxzDG1tbUO+4YQJE1IOt912243160fXZgLbCqXUqNu1zie8o7YbNVAHz1IWCrmNpHFwcHDY+owGx1auDXZGg0PQwcHBwcHBYccgafH4RvXMKweHoZH39NKZM2eyatUqJk2atMU3X7NmDfH49rFTSWNVNwUtntRIsLhb4oppqbDm1tFiJEIC3BrEZGYYECUejEPG0EUYieKdOg+HbowQiNoOI5cETSV2ddTcIBPrmGlutLEHb9VnzLYu2nsHbeagN+uoaPKlntV0S4y0Z4+7Je6Y/XzZ8ibutp/NHdPQ0UjmhxUzSXYrNbeBFlNYqychCkMgFKK6AZQGpe00Tgj1K3upKKZ+zFQC0QD4ygHQxh6MKI+i2j0g9ezvJMs7Sh0bJT48BWhlbci146AgjBi/HrluLPgiqThCNEJLGcrS0RLntV2XgFAoAVHd1i1LgKkJNKXwWmnp617wBvromDb2YOS6NyCamNorY6AZUFhjh4vGQqgelGnrK4A3ALoHrXTn1Lsg3NLzu1f6kS8eRbcslIC4JujwCN6p82Bm0b24W+LDk6E7SX0zylpTeUTEA54ooroB03Khwt6cZbdHP3V0BBaSWJY46WHdbSBiipy6k0u/8g1nSVPGbAdzrmexwwKFyvmsvY8VTFwLXQWAQK4dh6huQFk6KuohvnYiuhZHjFsPEa8dp7sAJTWkgJbKMO8dtLnPu93g1xnXJdCUzNCN4a3Hco/NFUKnw19IINiJAKK6oLFAQ5u5juIlE1FhHyLxbHiiqZnOoqoRZenIqIeoq29eGevGIcYlytjENciGSoQUaJNW27+rG1BdhaAM+nvPEoXpllnzLsk7dR5O2mhQEI0NqS0YsPwOAj89G+xs8Ov444qQS/DhQQ3s92Y1Y1ZPRFQ2gRIoAbK+KlUHiXHroasQZRrImJu4S+Adu9HOJ6EQ3jCqtQxt8urUMVrKUV0FiMomVNwNyp/IL4lCId0CPWI7/Ry33+hCJf6VqyZBYRdy9USobMJK1MF6WlhUtqALC5Toadtks12O1ttlS1k6sqESbfw6W5/8IbQJ61DdPmSiHKq1E0CJVP014ksWePVUeZcoom67oe2vPRlKGMAT01G92kEdu/7HraFNXGvnn2ahWssQmgRP1P7tC0PUgzZ5tZ1/IlGPdvtQrT3Lv4iikB3f3wVC2fET8Sjs7kk3iSfa81uXdnqmgTZpDXLlJMyoDyw967MJBJrbSNWPEjnoNqx32B3TkKsnQWEQDMs+IfWcNkG2NH0xF9naZ1HeBrpp22HeCAgQ1Y2oLj8oHRBE3HEEAiMm0BLjG6JuE1dMT2ioQHPr/doApltBTOb97L31YCh2RjJsoYi5rUHpY39xLLfCFdMTObEF9s+6ceANJ9qYcT39BEBJHVCoiBclNaKevnL68GwTO42Y3V5ZOXR4oLBYOxGjqJ0ewwT7mRPtpDZ5tV1OlbDLVkMlwmUifOHUcYREeO3yaJdzQIrUeWXpdn8i0symWnsQSHqf1IsHIeN52wy5SNkj4Sa7iyUUUU3R4dF4py7TydZ7V/dNu61n7GZvj42fyOre5RnActv2fDKSqGwHEbfbkMKuVJam7JSqJmSDbbeoRDUoGypTtqAob0U2VCEMM1WHpurBdJToyWclwNLs99RZhDZpNco0bBs6kfeYPtBc2e3D1ZPsNrCzCFHYlbKRECBkM8Iw0SatBtMAw+y5t6lD1M5L1VqGMnWELlN6kZJ/0mpUyJ+Sw64r7b63Nn59hh2HL4KoboSYK9VOyPoqNG8E2WjbvLhjEHfbtlsyjXVj7fieqJ2XIX+auW6/hGT7JbXs/ZWhtIv9xTHc2fM7o45ZPQlt3IaMfnZSF4h6weXuc40oLoCNA5UAEEopNXC0Hp5//nmuvPJKrrnmGvbaay8KCzO/ghcXD35B+6KiIhYsWMDkyZPzEWGb0tnZSSAQwN0wHVGcfafFAEVMEmN5z/3woKfNrlObmRo9Ouu5n+nf42rXpUOWeai8YL3FV+IXDiquF3fGxgYlFGEhE87E7N4qPwV8YPyXKcZ4AO6NP8oV1h+YJaZzun4MFxrfokm2snfsNASCCBHaCVJFOS20YfXjBXvH/W/20mbm8bTbD82qjUnROVhYiIRTKEkhPiLE+Ko4irfURzTSmnf6B4u9edlz3zBKnB9Xxv8fN1uDv//3xTfZRCNvqg+ZwBg+44uMPNmPWXzAAsDWU0VPA95Xb3sWbNXQKMFP6wALuLow6PDMsx3jI8DT1qucEe+/fgjgp4P+HdVJiijgdv1qzrGu6HdklQAOEnvziVrEFMazlFWYWP2m/Zn7WaZoEwYlx9bgDetDvhr/IbuJqXSoIMvIYihtIRWUEiaSWvfscu27fMxifqZ/jyP1A/q99ujod3hLfdxvnCddd3KsPnJb7pwWu4i58o2MY0mnbj70d00NFTTTxv5iNjuJ8dzl/l3q3HK5mnPjV1IrKnlTfoyFySFiHw7X9+My45z8H8hhqxFUXVRG99vidD51P8ku2pRhkGhkOSNyCU/z2la9hwA8eIhgd64fdt3CKfqRADxjvcad5j8x0HlJvZuyzZ407uI68y4O1fdmvKjlTP0UCkSunYq3jCesl/hm/EeAvZB6jNwf2p9y3cUxuv1B4QexX/Ff+QIhuod030u0s/iD+2ccFTmHt/kkr2srKGWWmM6PjXM5YoA6PBctqp1yUdLn2Izo8XQQZGcxkUWeZ/pN42bzXq40/zik+3d7Fg6LjXJr7EGukDcM6VoXBnHMVPhc/Wvc4frtFsvUH4dE/4eP1KKs5/wU0Oz9cKvePx2pJAXR3XOe9+DOcC7l2676KSBGjF2YwqueB/HhpYMgD1hPAGRtH5N6eWv8Aa6wbsyZtoZGyDN/q9q5Sil2iR7HmizeCjcGsTTdyQcDg3WeNygTgS0V0WErc2LsAl6R722z+4U88zFE3uPNBiTpK+ro6OjXD5Z3aTrhhBNYsGABp5xyCmPHjqW0tJTS0lJKSkooLS3NK61DDjkEn2/rNPTbkg6CrFBrecx6cdDXtKr2nOcmijHDIFX+BETRoOMmHRcGtiOynBI0RE6HG0CIbh5ST6XCc/T9CBLibfUxj8uXAKjUynjEfSsLPU9zvvZ1jhYHcb5+BpMY1688vlG+8+qWUCFKuVq/FJn4apYkuavgNCayVK0cksMNRk7fklSLitTv3Zk+YPy/qH/ztHqVcaKWhSyjuNdKfh+wgFoqMdD77HgbIYYrbYCvBxfJb68SOaDDTUOjTlSPmMMNwJ9jul86nXlsux6km/+oZ6mm70jEdBTwnprHaeIY7nffSAED191lvTod25qDxJ5UUMqHaiFfsHar3KOZNnamZ+T3TfJe5svPud36ByHVf4fxU/X5gOmPdPksTBvplmQo014VKufYtEPFPswQO/G2+pjF8guOj57H7eY/eNR6gTvNf/GZ+oKn5WscIfbjWfc9PO65w3G4jUKGawf0pANpe2ceA5fvLeFw9uNd18P80fh56liTagPsJTfekh/zoVrIq+p99mdWKs4jci6fsZw/WPdwiXkNy9Twf4wAWCyX84rV06H6iXZev/H31HYFIKS66SYyZIcbwHXG5QAcpR+U97XNtPGKem+LOoO9HW7JY8njzWpge61dBYd070IKhs1G2V2bOuRr472cJh/KBVsqzoB0qNwfG3vbilsbTWj9jsfuPZqrd7u6NzPR0q4fQ1XG+RDdxDCpp4WX5DtoQqNUBLjMOCdn+5jUv0/V5ynbNxulFG91O1cIwa2uX2U9F8NM9S8HS3JEaTXl3GX+a4vlc9j6rFYbgG23keMaNYjhaFuRvEvUa6+9lvp79dVXU3/JcD7MnTuX2trafEUYlYTo5g7rIZoTBs9AtKqOnOcmirHDJVZelDL4UYpJTCw0BCtZz0wxcOP8uPVS6vdEbSxjsYcsfyIXYyl71My+2u4UCz+VWhm7a9MIE6WF/vN1dO+8umW8YL3FJDGOQ8TeGce7CDOJcXzOStayCVeeDVSSidrocbpNzWNUVLeKsIfYhbZejrIAfo7XDmVcQrd6GzbphmAjrVRRnmqsB0IiGc/I1lnlBDIMMaBPOJtTpDDhJMtmyLwo32EX+h9ZcgCzmaPtzyRtHFMYT3AQI+lKhlCnDCeGZqRGTvT3QWBLmc/nffL1BfkWl8au4U35UdZr3rI+GlSncsIIO92KxMBO3sGiUH10FWCqPomfGd/jbuP3rGI9r6kPuN78C2fGf8yr8j1msQuTGMue2kz202ZlSdlhNKALPeOjxlAJExk40ihHKcVGtu4O9V/VjmK2PoNK0TMdtDnx8e09NZ9brPuJYzFJjOUAbXYqzj/kU8TTRpwtUSvzuu9n8guWy9XcYt7P6bGLuS5+J9kmzXw9dhl3y4dT4ULR14GfpIhCKoT94f5t+TEPy+fykqk3C9RSAGZp04acxody4RbJkI1K7HfVRidx1f/yOu0DfATMxVBs+VyM1+qGLa3P1Uo65dAciYOlvza1gvwGhgwHHtw5zx2pHZDz46ULFz8yvsuBYq/UsaYc/aAGmrkq/qc+ZfAW835+EPs1EZX5EeNN60Nelx/2O3uodBuNEpuj7cfOTMx6bqCZFOkkbU0NwUYaeFq+who5sg4Wh/4xpcl6ZS+vMpx1Vn/82rxlm9wnF3lbR8ldSLeETZs28fbbb9PY2IiUmYX+0ku3/bTK4eIdNY+r47dxm/vXA8ZtpT3r8SIKGSdGplOfbU233vQeLg49O4tOE5Mpxs9z6s2c169gXUZ4P20WG2Q9XYR5X87nIL2ngbnMOGdQ06/A3gRiR2SVXM+p8YuQyFTjXYCPKFEkinqagOyGho6ONYhGa9IIOXmTVNPjdMs2qiYXq1jP3mom+4lZfKAWoKEhkXQQ4rv66dzq+hVF0dkpB5SB3qcRVygaaWEGU+gSYdpUB2GifRx16eQzInRrUKaV9NnNd6BxR+WU0E4nGgI3rj75ECfOa3yQGK3aN7Vi/FxjXMaB+p7sHD2a/1hz2Z3prGMjbeQ2okfDLtXf0U4lpLp4VL6Q8dxDmSLZH+kp6egcxr48oV7i6dirXKydxS9c38clXKk4t1sP9ZveZMaykzYRrxjZDwrZNlLYnWksYWWftmComMrkdONYbozfTUdCn5ppY192RwhBuSjhVO3o1Nf7TaqRRyy7U+6MeBtd+PBssV50DHGEz2hhk2rkj/F7tvp95snPAFLOKiD14ffxxMyLCBGuNH7AN7UTEXG4Wd5nrzOVVhculatAtx2Fm2miTlSxSTUCUCfs0TWfys/ZQ+zCrdYD/MG8h3Y62YUprGMTc3mDk/Uj2E30OLg6VJBV2BuljaOWK43vs0rl3jgtfUTvB1vo7BLA4/Il9tZ3Y5oY3PI12aa+fqI+w1TmsE5HqhClqcaihQ5q0uyf3gx1pFstlUO6LhvJ9z8Q2foGkNnOFuBlnlrC4ew7bPL1JtzPBnX95fXWohh/zpG7QdXFGeI4nlSvpOyzpP2lIThZPwI3LnRT8AYf9Ts1eyVrOSJ6Fl81juYb+olYyuIe82G+YC2TzLH8zPU9wC7jPzP/H205+qAAu7ITB2h7Dv2h88AlXHzHOI2rzJv6nsuhU9nooDNlg81iOgvUMq417+Ae9++HUVqH4WS5WoOBwQyx01Ybbd2bBtm8Te6Ti7zXdAN46623+Mtf/sKqVat45JFHGDNmDA8++CCTJk3i4IP7X+D5vvvu4/vf/z5ut5vy8vKMTpkQglWrVuX/FFuR5DzdpcW/pzrcMzRZagpNihxhgdAEyLSs1RLnvDr6vjX8a26MS8xreOrJevZqjOG1EhWtSqYACA1UwikpNLSxB+P+2rNb50GBqIoRiGZWtI+edBKzP66ioLvH6Oj/2bOHgYxjQtNAJptilbrGfcHf7IVpAfPxr4DSUBEPHVVBpn6Qe/puveddCh79H1RXI6KwCvfXniX23xMJnz8Hwm57Ucts7yTbO5LD1xHfUpL5o9Vuxjj5WfBEMZ85AeOYl8EV61ljtaIZ1VIOSqTOi0lrEidBClu3FPZmCho9ugYghAa6F6127wwdi/33ROTmj8FKjDxQ0k7QU4z3hxuI3DEWop22pMmh6LoXdBeisBZRaBts6e8lndh/T8Ta8HZKz5UQRHTBx1Uu4nefn1X3gKz6ptVtxjjJziNibnDHMJ84Bbm51l5stFf8zDQFuuwxDgfS6aT+psimO4PRt3z1MRFnsHL2DQP0jWNMXANRNyAwTnoW89njUfXVYBkYF/wNIRTmi0fZ+YpAbapFKTuN7gKTT/du5PRnMtenWfO39ZQkN5tI043eOrYlRG4ewAHqCUC0I7l+MCGXjrrru7hXjwXTwHO+/Wy4e5ys5uNfRdVXoSzDLje98sp7wT2YLx6FcczLmC8diXHC84iKFuIPnIlxwvOYT52MWj82lT9SA3ud8cREE02gpJ0vUlO8d/DmPnmX5PWnutijodsuf0NoCwYqv4Phmvjt/N66E4A1f1uHz1S4XEW8/th32OPjCgJn3o/1/LFJ5cI49QnMZ4+38+fFoyDqQTVW2YviCzDGr8U4aa69+YI7jtpcY9dZJzxvb57QUg5RD+bc41Cba0G6M8qA0kgLO5spjDYUCtcFf8N84NsYZz+I9fxxyM01YBq4Lvgb1vPHIjfXIKqaEMLWR+PEZ8ETQ5S32uXo6FcwXzoSlIZx4tyUPuGJYj59IsTcGCfNxXzxaNTGWkAk6iYY6Y0UMvWz/zZrS8LJNG2nBkhNpuIIBFJT6BNXY5zwHKKqCdVcjqhoAZdd5kRtPcRdxO87C9f3/tbzADE3qrlnqQFRtxm1qRZRZ49IiP/1PDt+oo1Vm2rtdJO40hwDQtnxpEb8gTNR68fZi4mr7M8mEIn6UWY9n29+puzJ5CYRSmA+eQpyU1+bIHeaPfV28r2Kuk0glG1vJNoO88lTUOvHphb1z9V+pz8bmkCkjzvoZQNITWWcz+fZUzXjFtgZSaw03cp1z8HKlS0/85HLdcFfbNsuYeeazx7fs5FCY6W9eVjMBYkykC6D0hJTELeRnQZ2fThQf1FmyV/P+X9HeHsciKK8hfh952CcaLed8fvPwjhpLkCq/USTiJp6VL09yyNZ3gHid58LgOt7f0NtSgzsSPQXVJefjvIupn7wYqpP6rMSMyiGYDPkImWPmGmDBISG1D0sri7i8FMKsn70BVi+3zEEOl24Tpprl7nE5i+5ynN6/mrp5TVtoxfz6ZMwjnkJc+5xGF95GvPZE1LnjBPnYj7xFVR9FaKqGeO0x+38TeRp/O5zM+vNBPG/2lPoXd/7Gyhhxzv7IeIPnGkrYEI3VUMlWAYIPavuuC64B/OVObjOfgg8UeJ3n2u/Y6EQ5a2gSbvuPv/vqc5c/K/n4brg7xC3P+6q5vJUPonaerveT5OfqAfVUAWWYaeT7Hs/cwLGic/1tLvuGOaTp0DcSDWvxmmPJ9qGGswnvmJv5mAaqTyJ33sOxjGJmW2uuJ2XG9JnbYhU/zb7exseX0O2OLpMm9mUpTy7zrsb8+UjUs8OPf2CXO+s0xNjfOePB1zTLe/PN48++ihnnXUWZ555JvPmzSMatRW4o6OD6667jrlz5/Z7/a9+9St+/etfc+WVV6JpI7cuUr4UdBsZDkI97SVmC/dx3CTD3SbyizaaEsN9p3SYFJo5nDxKZvyWbSuGJPtg8Qg3HjxE077KTF4RoLDblRFvoGcfMG+gx3hJ/JuMIyqbSVoZqiMxvDlYjN9y9U0jDS8eO39Cm1Axe0i+bFsB4WN6DLxc7yRXeBSQzB8V8tuVpZColnK70hUJhwaAO44osr+KJs+nDzLS05y5QmXpligJZncfHZNtKzIbSDsyxBJfYGPBHhmS+mp2g6Whoh2pd5H+XnqnL9L0XChFgamY0mESG4TupR9TwZ48Qml2XnUEEObg9TdpqA65fOcTZyj6mCo3g5Ozb9i+unecVOMMiPJWu+yZdidWS3Sokk5dO9AzSbCw28XkFX2nIhTFM+svIKuObVUSeiqwy0BRXBLfXJ7qoCefLb1nozqKwXSnrklHl8LOn0QZU80ViECnvSNg4rdqD2Tkj957BodUGfVetrxLMqE93Lf85dEWDFh+B0H69NKiuEJXoGJd7LaimsJuDa2yGbOjuEd/Ap09+ZPUGdOVyk/VWmbnmTtuG4NFwZ58TNZj/q6EDiZ3D+xBZNFhh9GDQKBVNkPMjVbZgtlRnKqDk7oiTBcE/ak3Kypa7RebLEeJsgWZ+pRs/1DJclgG8dHhbEvSWz/7a7OGKywgsyOB3fFQzeV2uXIlypWrp8whlO2Aa+41+sfVY0uk0k8Lp+InOvOpdFORe1WaiXOquQLi7j5vKVvbKvrJv3zyM92eTMnfPrBNkEuuVBpB+wN8UieT6aYcbr3ipx/L+EyQpW1IR9uCZ88pxxBsl966tSXvZEvlSq8HUrZKkrjb3rEzsVxIn3Iioc+8gK1op4FdHw5cnvvmr1bRS3fdcVRLT9upmit6bP5k+4kCTfWU10R5T8ZJyZRenlvKoTOAP9YB9O6Tpv2fh82Qi6z2iJJoZpiadonMMtXWh4cwUfyby8ASaWVOAGpQ5TlbeQXs/EzokN3OpO3aHOhM2YIq6O/J30Se9qk3k2mmH0/GS7RrdoSEbAn7mt7jnpI2fmVz6tpkOikZEo5D1VyRMXpCNVek6nXIfM+pej9dfiVScmT0vVvK+7a77YGMjyUi0Gk7IQNBuwwKZZ9P1veJvE3lQ0fSEZXe38oMD3e7OKg4WcqzqGzOeHbo6RfYgSzvrHtwIzLz9npde+213HXXXdx99924XD2KftBBBzFv3rwBr+/u7uab3/zmduVw2xpsVFt3rY+hUjbCazANlf7WTXBwcHCA7W9cVL4LCW8Nsm3coVAYw7B2l4ODg4ODg8OXG1+OdbnDO8imOg4OMASn27Jlyzj00EP7HA8EArS3tw94/XnnnccjjzyS7213OJarNSMtQla21eKZw4kH96hYO8rBwWF0s73VEvoocLrl2khhNDgEHRwcHBwcHLZvCkUBx2j9L0/l4LC9k/en6pqaGlasWMHEiRMzjr/99ttMnjzwgqXXX389J510Es8//zy77bZbxmg5gJtu6ruY4o5IvWoaaRGyEmBkF4kfCoU5dv9xcHBw2J4xxMg7tsZQzSwxPeND0XBuQOHg4ODg4OAw8mTbXXzb3FdjD6azgrWpDVgcHHY08na6XXDBBVx22WX8/e9/RwjBpk2beO+99/jJT37Cr371qwGvv/7663nhhReYNs3e5aj3RgpfFhpoGTjSCDBb24VPrMX97pIzmvDgZn9tj5EWw8HBoRciseaGQ/7MYCd21iZg0P8aqduCKlHGArW0z/FWOqjJY7dhBwcHBwcHh9FLro0MtgVXun7AP6PPYKAjEInd5p1PfA47Dnk73X7+858jpeTII4+ku7ubQw89FI/Hw09+8hMuueSSAa//4x//yN///ne+853vDEXeHYbufra1HklCdG83DjeAKLFtttWwg4ODw7bgc1bYayLnvwLEsDNe1GU97qb/zW0cHBwcHBwcHAaDT3i5wjifS81rAXvUXe+9RhwctmfytuiFEFx11VW0trayePFi3n//fZqamrjmmmsGdb3H4+Gggw7KW9AdDduDP/qopGzgSKOMXAtwOjg4OGyPCARf1Y4aaTEA8AoPdVT1OR5xFjh2cHBwcHBwGCZO049FR6eKMmqpQiC22w3+HBx6M+TP6G63m6KiImpra/H7/YO+7rLLLuO2224b6m0dtjIVonSkRcgbH96RFsHBwaEX29tOoaMJNy6O0g4YaTFSTBRjR1oEBwcHBwcHh63ISK3plqRClHKGdhyNtLKRBqYwnlY6R1QmB4fhIu/ppaZpcvXVV3PrrbcSCoUA8Pv9XHLJJfzmN7/pszFCbz788ENeffVVnnnmGXbdddc+8R977LF8RdrukGr0zlCvENvfSDevM9Jth2OkG34Hh5Fmb233UTO1YqIYw7tq3kiL4eDg4ODg4LCVGA1LWhyozebf8lkAwkT4uf59BB0jLJWDw5aTt9Ptkksu4bHHHuPGG2/kgAPsL/Hvvfcev/3tb2lpaeHOO+/s9/qSkhJOO+20oUk7gsw9aTUHLRiLJgVSU7RWRChr9qJJgaEZ1FcEU+He50u1EvyVtjNLm1zM64dvSKV7494B5qyPMKEzjo7G7tFKUBKEhvBVoMLNoCSioAp9t+9u9eesJHOk200/m8chr41hz48rsz5b3zAEK0zGNZfhkQaNWistFfb6dbmuQRN4KwJUtPiwPj4eApsR7hjMXIKK60QNwbOH5954okDYu5ca+/0M4l3gKkyFzWO6kKsERAoRFT5UcxikAk1kDQOpY2pj19bI4ryQiX+18mZCC2ajF3QR338e0SW74vV0IxQoBLKqGSPkhagPsdc8gkt2xb37AmRBlLBHsq7IoDwi6XALIoZGmfIzpS0MSoHhRQQmIgIT0cbPybi/sd/PkOteQ3WsAUCFmxGeEkTFrgBo085ANX+GirYjfBUAiMBE0D1oVbNS7yL9vfRO31p0L6q7MaXzIjCRf9atYE2a7ulSQ2qKlooIoChr9mJIHUuTdFTECTS7KKmox7VwNqIoiKvbjXDFMad/QX2kEtVamoivaKnoztBFs8KFCwOtOYaSsl8dL5HFFOv+AXUnl37lG86VZsyKU6819ZEzmRfJcGeFRXGzngoXVpQhkYSb29OeLcquVQsxgoVg6nR9Ngtj1yVYjdVo4XLWLNuHarMbbfYCVMRLTBPINROJmR6CHvh07ybenLOxz7uNTjsZX/PKPrrRW8e2CG8ZRDtBmZC+cYMwoGgMWt3+yA1vQbwLEZiEKJuG+8IA1sc6qrUMa/lXUPE14AqjdEnMUIhdlmM1V9MdLWBjJZQ0u9GkSOnaTgtn45q9kOjCmVgHfgCrJ6L7g+iHvIW1ciLmzCVEV+1Eu+YZsL5sqgrzj+/23aRgtpiBW7gw08rfUNqCgcrvYDlQm80m1ciLO0XYwxzLPGMdzyfK59GfHIa58wYMLYbpsShaMh32/JTo4plE91mA3hLAaisnbPpYV2kxrXglrJiCXt4MgU5oKUOf8xrW6gmIkjbM7iJEWwBzp1XEWir5otTdJ//GrSmiuMODlnjdo6Gj4GAjgfjLczBrGoh+tB+RqesJxtpRraUEPj4QlQgT6KAmGkOTEJ0/i3igC29RG+KQtzE/m4468AO0mI61YjL6XvOwPt8DUdqAvu/HyKAf67N90fZciFw7DiJu6CiDmBfMkXjmHvf4oj2a++gr5LZ/hhrOlaYhdar1SoyKQkTlW1grp6DVbEJ1FyCibvBEUM3lCBREvOhHvooKe8CwQLOgtQwVLAZpf/gShV12fFccXDE7fsyAzmIoa7PPhb3YxogAb8SuilHgMiHoR4UK0fd/H2vtBDZQguoqQJMCl+aisaKL2uZiTBknppl5PbsuNTyaB3dFMcUtOnErzuZEuzimuYTSj4/CCmxALwziskDEXchdlrEpXI1qLc2ZpqXJrPctb/YhJBRUb8QoDFO0YA90XwR0ib7HZuSqQlCBAdvvJquFsBaltSLCrJZJCEkfG6BTdLOqoiEvXSrQCimvrB42OyMZri8PEWvuHLQ+ejQvbRURvM2q3/wsa/YSkH48mpelFRsyzldVjMEnvH3kshYeCN529L0WYi3dG23X5ShTAwSh7jJEWCMeKUBKg3W10Yw0x1ROwMDYZnZaMryxvB2rubvPs9t5o2iriFLW7EFIUucrl+3D2OL1CClAgSoOIfb5CGvFJChvRTv8DWRDFZgu9APfJb5qIlpBF5pp2zYq7kYUdyAKu0BT6Ee8CqaBChWgmiog5kbGPJj7zqPZq/POTPsdvrjPAZyzsXSLbYZsJO0RWf9xRj+3t114in4U78hPaVTNLFDLeMh6isk/KGTfeYWUfbY7oqAbt1SAwtxlOfXhqj7lubzZl7LbxKQ1FKsYRQtmoZe0InSJ0AT6Pp9gLZqJ2Gktcs1u6Pt+jErUe9bKKYjpy6GpDkrDyDUzQW9DlLaDP9RTD7oSDY6lg6X35HO3zw4f/jpy9QT0Q96CaAGyvRiUBm014B5j9/Oz6I718fHo+89HrpmCKGtI2EgTQeqI4g7wRtAPfQvVVgKBdoi7bZk6/RD1gKWhOgOoiA/hkoi69aiWMkRXAfjC6Ie+iWwtg/o6cE/Gmnc8FG3C0rqJ7D8PtXQa2l4LsBbPgkLLrt/q3aDHAIW1eAZi0mpUfTXajM9Bt0CTyI11CN1C3+cjrAUz7bbAG0FMXY5aMh0Z9aCURtwDBjoWFt3uOKGi2FZtF3OFOyrizGwZn1EHW/OOR5+9AmvxnlAYQ2gSbZfVqOZaiJUhKmv7vDNjnAGPDlwGhFL5DbsKBAL8+9//5vjjj884PnfuXP7nf/6Hjo4dyxvd2dlJIBDA3TAdUaznfb0PLydoh/EP1/9L7c56bORc3uDDPnH3ELvwvueRLZZ5S/hYLuLg2P/0OW6g57UO3XHaITzmup266MF0EsowSrPxuOt2jtcPyzimlKIgutuAO9d8VTuKf7v/NGjZtifmyc84MPYNwJ5yltzkoohCXNjOohBdVFLGWfpXucI4n2et1/mm+aOcac5mBofoe3Oj64pt8gxD4cLYr7lX9j/qVSBS+xrtI3ZjiVpJLZXEMVlDjxPIjQs3LkysjHWo6qhiArW0iSDdKkI9TTk3EXHjYicxgT8aP2eOvv8wPOGWUa+amRg9vM9xDS2jrM1kZxbzBWDnlwcXCntNSQuLIgoJ0uNcvkP/LRuo5zrrLgCu0f+XX1l/GpqMnncpEdvPWhy3mPfzpvyI/ZmFS7iQSC4xzuKM2KW8rN7jGO0gVskNLGXlkNKvpoIGmgeMN4E6ztK/yi9dPxzSfbYGz1lvcGr8IgAu08+hUpTxovUWa9RGxoga3lOfjphsF4gzuM3zmxG7v0Mmm1UTk6LD41gvI8BGz9ujfmf7U6M/5Dn15kiLkeKvxrWcbXx1pMUAYJ3cxGnxi1im1hDvZ5OuAEV0EMwr7dliBivUWhZ5nqVGVKCUYkz0YFrpoIJSVrpfYVzsEOKYCATdRNDQMND73TDMi6fPmpVe3OjouDBoT8g5RYxnsfvZvPXznNjP+E9iJM9i97PspE3oE+em+L380ropr90k/2H8P75mHJeXLIPhTvOf/Mi8btDxD2I27zKfasqpp7mPXeLDQ5goPrzMZCr7a7P4VC1hqVpBM+0A3Gb8mguMr+cl58zIiaxgbc7zrZ6PUh/ptyV3mA9xuXn9gPE8uIkSA2B3pnGAPpuHrbnUUMmShN2R/LTow8t69xvsFjuJzTQNi5yz2IXvG9/gXONrw5LelqCUYpfocXQS4iCxFy+rd4kRxRpkefDiJpLISw0NNwYRYuzCFKIixgfu/1Ik+g4E+LJzVuwnPCKfB2CJ+3kmafktLRJVMWbFTsGtDKRQXKafzQXGN3jCeolvxu1+6VHagRytHcRlxjkcGP0689Tnw/4cg6WSMn5vXL7F7WXSV9TR0UFxce5+T96fhz0eDxMnTuxzfNKkSbjd7nyT2+EJE+FR+QLz1GepY4tZnjXurmKnbSVWTipybKSQ78YPH8lFCARX6RcO6HADuDv+cJ9jb1kfD6p63ZGnl66U61K/k0ZiIT4K8HKb8Su+rZ9CF2HWsJGJjOHfci5/MP/Wb5qf8jnxkRgOkAd7absNGMeFgQc3lZTykVpEGQG+YG2Gww3sfAvRTYQoAtDR0NFw42I+y1iqVrGR+n71KEacz9UKdtemb+mjDQuVlGZdM613WUvvWCgUEWIIBBYWfgoZR23qfDklzGcJp+pHAzCZcfzLeqZfOYx+BksXsu2N2y3hMuMcHnX/mZ+6L+B/Xd/hcte5uISLR9y3ssD9FLPFDIKEhpz+YBxuAGvZxH7arCHfZ2uwd1p5/FAu5Hz9DD5VSwjRTatqx4unzyjpLcFAx8vg7IlX1QfDdl+HLaeGClz5T6LoQwlFTBbjWKHWDRx5hPme+MZIi5DBVeZNnBv7+UiLAcDT8lUWqy/6dbgBdObpcDMw+FR9zh+NK6kRiZHUQrCPtjsVlODFw5vqI36tX0yYKN1EmEAdEtmvww1gTNaNY2LEMTlDnMDBYi+KKKRIFfLT+I3cbf4nL9mrRXnqd32OduELtSYvhxvANG1SXvEHSw0VecV/l/n8WD+Peprx4eljl4QTDs0wET5iIQ/IJ3hbfUw7QQx0JjOOh625tFrt3BT/O29YH7JYZu83pdNEa7/nR2r953Gits8xHXsQR/pGcFFilFCMFzedhNhX7E6lKMeFiyJsB9FuTENHZ7yo5S75b76mH4dIswbduNDR2FlMBPJbW3cBSzhY22toDznMCCF42XM/T7ju4Gn1Kh7clOVhYyQdbgLbLo4Qw4uHJaykVXWwV/SrPGA+sXWE345J/wg/FKekR7j5i/E7VrGBkOrmX9azrFebWaJWpeJ8Vz+dy4xzANikGrdc6C2giVbusfr6H7YWeTvdLr74Yq655hqi0Z6vQNFolN///vdcfPHF/V47d+5czj//fK644gqWLFmSca6trY0jjjgiX3G2CwwM7rHsEWxKKVoSX3J6M01M3oZSZadymDZSCBPhc7WC7xnfGJQB/gJvc1f8n6lwTMW52PztoO7lEzvmRgqmMvm1eUvGMR2NLsI00MIt5v28JN9JnbvD+icXxK/iExYPmPZo3zDjLO0USgfYsShGnEpKaaKNKspYx+bUuRKKsl7zQ+1MDAwsJGvYSBh7OLKFpHMAh0o15ZSLkvweZCuhC3t3p2zUUJn63UALBpkjdJNf8EN0MUZUp4630M691qOMo5af6uezmg00kntaN0BpjnwGcIn+1/fcXnAJF1O08RQLP1PE+C1Oz4e3X+O/GD+Haftu8X2Gk0pRxmQxDoAlaiWWklxlXIgCVrIOhaKJtmG7nz0qNTaouOmOY4eRRwiR8+NdPrQT5GO1mI/UwmGQautygfzlSIuQQROtzJVvsFb2nfa/rVmu1vR73k8BQJ7uJTiYPTlRHM639VMyjl+tX4qBQT3NrJbr+ap+NJ6EA38wH4ABNtCQ9XiMOHer/3Cu/jU2et4mQpQ/ywe5xLyGNXnkdbXocWI1qeyOoo05ZOiPrbXhTY2oHDhSBgq3MpgixqccbOn0dgQlO/pHi4M4X/86q1hPuwpyu/UQv7Bu4tj4uXwtdsmAd+2iO+e5QnwjNmI23c5KYiUGMvTOn3Y6mcok6mnmPPMXrFBrWcjS1KyOhSzDwmKZWs2z1uv4lJdqylPlJ0YcC4muNO4yfsdzxj3cqF/BeOoGlHOG2ImpW8lxOxTGihr21Wfxde14fqyfm3I85oOClLbtyQxqqKSdTtaxmf+azxFSuXVmNKKU4lP5OX+K38dv4rfwkPXUsKYfTMuPoeQ3wGH6vlyuf5cgXSxSy3jWep1XrHdT56cnfB1RGR3QUb4tmKc+5x3zk21yr7w/R3766ae88sorjB07llmz7K/xCxYsIBaLceSRR2as15a+KcI///lPzj77bI477jiWLVvGbbfdxj333MOZZ54JQCwW44033tjS59lq7LqwnJ03laMpgV8UsK6slZJWD5oSWELRURbNGRYCGssWskR/E3eln6qKAhprbMWu7jKp7rIoD1vs62rBjP7HXmdL0xCeUlSkFZRCFFSgVcxE+Gu26nMW4MONm1iiw1NVX0D15gImfxHIeLZdW8fRoYIERTjns6/kdXZyHcqVxSfzhvqoT5yq1gJMJVPh91qf4HRVziL5DovdCzm7OYguK9hcbvL63hEWTo7kkNnuwKpQPSgLhI7w16BC9ZgLm1H1MVS0EFHuRbVG7HnYQmQNA6ljsWdWI/+7Yqvm90C8xolAmPqdm3nu0i+YogJ8WrgcC8HE5tV40IhSTHN5jGnNy9BjXkK6i89rNIp8rXQHorQH4qwJuCiNWHR4dEwNdtc3EGu6EZAITxlaySR7bQV/bYaOqVA9qmszqtv+Gqsirfb6Dv5atKrdkY0LUV319rpdHtuRJ3wVoOkIXzmIhMMn7b2ko0L1yOZFqO6WlM4LXwVufy2Ht+zGmk0rGP+FP0NvgJQuVYhS4mWTaGttoi5egSE7EL4wE1oLiEmDoMvFZzUCuuw03GIjp5fNpKu1A00JJohaPi/bgBsDvVX2W54PaNuFqL50ULqTK06+4f7S/Lo1nYWla3PUO4FUeM/W2axXm4kJ2Sf/DtHHYpWMY7+NYUrDEpepeLL6Er7ZOo5qtTPrPBHW1bqYUS8piigsAY2lFvuHDuFDfS2rfF2snqrTUNOdqtOS5NKN3jq2JcTn34NsX4kKbgKXB2LdYMYQZTuh1+yJVjYV2bIEFWlDK90JUVCF6ihANsRQ3YWoeBNq0xJULGivzVBWhmq3EJSAtwyttjaV3z8Q+3Nh2WG8suEe5offxS3jdBVF8cclk1okhrKXk1pc6aU9HmBToSenLo1rLaNLddNSHmHpzNaMvDtPnIE74bBML39DaQsGKr/58DvjMh7bfBOrrdX8w3UtP+Aq5q17m/KlzUStKD7LpCsQY58GP12yi7hm0lAi8Xf46NJctHk11lZLdttsMjYSodSMgC9MadRiXLuCuIsOt2BenRtv0Eur5qXd42LRWPrk34RVRcyaV8Fp/5yIQNCBsyP6aOL90iN54JzFNE5uotPtoj0Qgy4/pVYMpaA9EENoMGOzoigqkZqkodxkUouFP66QaDQXSca0wXTrr3Qb76HV7IRqX4MyFeBBq5uKam1FtUlUFwi9BhUpwHxsI2zYth2pjzkZgJgLLvjPq330FfrqcO/w2NYSulUk5/nyVi8+5SEoIoNO87mNl/KtyGxc8VUgmpDtixBYKEtDuN2oGCBd4FIInx/cFnRaKMsFwosoqkSZKxBWHEwTPAYqGAWXBUogfAaqywLcoLkQhXWocIfdy9Ulwl/GmeYqvhM06JIFrPcU8MQML3QXoilBkShkbVkLJa21g7KlpVB4yvx8Rzud+paNFCoPcdcXGe3idKG4tPhI2ltaWGb9mybrnzzk2o1w6yoiZoigawxvjDMxuoqQirzeUTLczmuoQg9XbSxggypFGoqPK2+lNnoqGCUDtt+zYi7OZhaNZV0UtG8mqvW1K6ZZEC0dO2hdCig/bvcGYsNsZyAE40slX2mc0m/e9JZrVdkHXNi2H+9Id9ZrOsuiBFo9GEojLiR7ls/ilI5D2Gw2osS+fFG6mSW8yVda7fsGhJ9YzVrkpkWoaAuYYUR5Gaq5DSxACL5dUUphp5duTccSsLbWSt2zSBQSq1k74LMOt52GEIwpk3ylof/8y8ybLr5vTmfq+rXMDAeQKsraQAzaQVcKaUj8BUVUtC9Gmgs5VAhWVLqY0C7xqRhCQYN/NYGua0CHPejiLzoYcZ3ysIkmDSKamw9qNBq8XpbWKdaN1/jxtIuG1WboTTJt2bo8o587kF34gPsPWCtW41rxPuEmQZtop7pdoEkI6m4+q9FSNn62/NSKQpTHLCbXr6VGulH4CfmilLR/ymucSql3BuNqplJZ3wDdrSAMRGmZvQ6mqw4KAgh/J3LTxxBtBtWEEBGU1YSyGgAJloFwl6JCGigvuBVaSS0qGAetGKUVolVMQbUL0H0IXx362GngK8uqOyrehIqsRrgakc0fQywG0qC9YgJLg68xHsVES6KKJW1tP8NjRVERF6KgGIQHFfMgjHLwVCOqJqHaFkJ3M0iJKC5DdQGUgWcnjJ0OQYa6Id7E16Od7FVQTG2bjhT3EDY0RGkpwihFLgkiO8Oo7k5ERQTZsQTiMYTlRpTUIjs/A4IoPc7lnnLObvMTsTTixt+oqHBxacMsasUujPUsJTyujWba+IG5G8HiOO1l0QHLRX9hJRRtedbj6eF/q1t5W69hTOkEDm8dS3lcIcwQFBsgyNkvSL4z0zu42WN5r+n23e8OfjH/e++9N/V79uzZfPe73+XSSy8F4OGHH+bcc8/llltu4bzzzqOhoYG6ujosK79pjFub5DzddcYNFA/TWgCb6kLMXvoQAJ89sIExXYN8Zn8d3guWDYsM/XFO9Kc8pl4ijsmn08+kbpN/q98zifsX/4e9oiHEbk2MnAwWY5V0ULfu31mv+Yl+Hte6fkTk7mkQ2pTKp8jd04he/EN70crtnaJO3JfcAUISu+0i3BffaS9cnPy+5e+CkP1VInleBLJvs53+5acPvXQslae9ERre/+0g8qeAvSBqlvMoCf7E17W095JOzvT9dbT9/hIKNuVRPaXlEUpL5RWdgcGn8WWluMNeBBtwX3IHsdt+CEF7pKH7F/8HQOzPF6biJM8lSa/TwNavtrvWZ9eNYazHIjfnHmlnC6JlyiA0otf+NKUTyWdL1jmQqHeCuUdZun/xf8T+fCHui++0/7/kDvCHiF1/RU/e5aFzvfPuUdefOVE/3H6+fsrHYPJwoPKbDxtUPaW37IyuwBIQvuX/4doYS+VHSn8uvZ3YbT9M5Q9KZOZncUcqzxAKgn67zkoeCxWC0uxrnbK7XeL+xf/Z5eHKGzPeY0pXOgNQ1NM+peptf5d9XVJ36KmP7DYvUacrYR//84UQTNQBO0I7P9ykl7VQoW0nJMocRSFQws7vX9zQc40SKVsCsOMl4wOx635mx1eiJy1/2qZTolebnagXYtdfsc3Lc7o9mWRYbIKE7qb0drjSdRiQ5DtN2rmx29LWPg0W99h/2zl9dDdZN2bYG7cD9LSfqJ7ymrgmWR5j1/0ske4NPefp0VtZ0oGr4XKMe2YPm83Qm5z2CAxo03RUXQ+WTCtz9up2gyp3Wcor9PSVknZcui65L7mD2K0X2TpV1In70tsBlcrTVD3Yi4x8ToTdV95o13+Q04buTcrOvPLGnvsl33Givu1dd2fUzZC9Hk+TP902y+h7J/QpW7ubku/S26EoCMEiO58SG+mknjvRjgP2/W69KNFWj+71WSHTxs/wR/TzzjpVmPHmzwZc0y3vkW7pjrR8+OKLLzj55JNT4a9//etUVlZyyimnEI/HOfXUU4eUrsPwEyU+6tb86q+YesWOu6bblxmBBnmuJegwOjDYMaaWjgRHageMtAhZGStq6E7bIbZThSgf5LprDg4ODg4ODqMTgT2LK/t8IgcHh+Fgy1e7HSTFxcU0NDQwaVLPfPE5c+bwzDPPcNJJJ7Fhw4ZtJYrDAOynz+IJ8+WRFiOD/sY7jdTiqA5bF81xum23uMh/p2eHxAYCo/gjgpbmdLN3WXOcbg4ODg4ODtsz+Wy44ODgMDTyHoPb0tLCRRddxIwZM6ioqKCsrCzjLxf77rsvzz33XJ/jhx12GE8//TR/+tOf8hXFYSuxj7Zl8/a3Nb4dePfSLzPaCC1667DleBxnzJAoxZme5ODg4ODg4LAtcextB4etTd4j3c466yxWrFjBeeedR3V19aB3g/nRj37Eu+++m/Xc4YcfztNPP80DDzyQrzgOW4HdmIoHd2Ikw+jHGem2Y6Ll/03AYZTglMmhMZlxIy3CoHC+ijs4ODg4ODg4ODgMjrydbm+99RZvv/12aufSwXLYYYdx2GGH5Tw/Z84c5syZk684DluBgDbA4uSjDJ9wOvg7Ik7HfvvFP8Stxr/sTGfySIswKATCcaw6ODg4ODg4ODg4DIK8h5JMnz6dcDi8NWRxGEWU0v/OKqMJZ3rpjokz0m37pVg4TrehsLe220iLMGhixEdaBAcHBwcHBwcHB4dRT9692jvuuIOrrrqKN954g5aWFjo7OzP+HHYMqigfaREGjTPiYsfEGee2/VLC9jVadrQwS58+0iIMCsH29WHGwcHBwcHBwcHBYaTIe3ppSUkJnZ2dHHHEERnHlVIIIbAsZ7fBHYHxWh0L5bKRFmNQONNLHRxGF6XC2RBgKOwpZoy0CIPGI9woZ7Sbg4ODg4ODg4ODQ7/k7XQ788wzcblc/POf/8xrIwWH7YvtZUFvcKaXOjiMNmpV1UiLsF1iaHk3yQ4ODg4ODg4ODg4OoxihlFL5XFBQUMCnn37KtGnTtpZMo4rOzk4CgQDHPHQUey2rQZMCqSmaqsNMb6ijTbYjNUVbdYzSBnfG+coGX0YYYHNdF6undLJy5w4AdmqLs3OH5OHozwFQXQ2gJEJoUFidCmv+GrRxh6KVTd0mz31P/GEutn7HlC8CTFoZYPdPy/s82yHsw2H6fvy04lYCDVrqfHN1hIoGL5oUoAkaqrsAOKJhD6pkGa9o72XNn8oGH5NQlBIhWthOSaOGEdfYWG7x3yM6eXXvrqyyfuJ+nF21nZGty0FaoOloZVORrcsxX27AWheFcBGiugDZ0A2WQugiaxhIHYs/tRIWt26T/O6POHFiNc28cPZ8CokRKjQRwMQ2C90SSCForgqzc6vFmPhYQpaL16qbKSqtp7usi5aSOEvL3FR1W7T4dC53f5+J1GBueBuhFMJXjqiYgfDXoZVOydAx2boc1bYKGdoI2PopfBVoJRPRJx2DtfpFZMca6G6GwmoAhL8OoemIonGg6YmEet5LOrJ1OXL9W8jQ5pTOJ+VQTZVcvOTHlH4a71OOsulOhRWmRHQjCrupazNASoKqkPl1OrKjKE0/o/ym+TxKrSKu5c5+09Sk4GjjYParPSAv3ckVJ9/wQGn+p/wV1jWsJiajOeudZFhpgsZEWaxs8KFLHUuzaKoOc9ymEP6whTsO62pgbLOHDtOgVfewZkonszdZ7BmbRJPqYHlJJ7HWYtp1neZCjYWzm2mcYrJw582p93qNdhmXb5yQVTd669iWEHv1p8j25RCsB8MD8QjIKASmoNfti1azJ9bmD6G7Ga1yJqJ4PKqhDGtNBNUZALkWa+NCRLwdhEBUlKGaBMgKcFWhTZjQN/83vw2RNpqs9aws2oApmxnbGUeZBkoolhb5aQ+Vs8bvzflOqhp8CCloqOnm3UM3s3LnDgSCsHdRn/KRLH9DaQsGKr/5Yq1+EWXFELobYvsgV7QT//QTiCuQ7YiAC9W8DExQhkAEyqEVGqTF0+7FLBrXzf6bw4yNBwkQQfiDlMQFgQ6BsgxiOiwp8+DpKKBN+mnVfHwwRfXJv2mflzL7o0p2/7QcgRtX3k/isDURFU2IA8ej7yLBKEMrKUZ2BmiVC1gjN0OpnwqtmK4NHxOOttBhdNBYGWNiZ4zCmEBKnVa/orYDPNIiKt2srFKMCUfxRLxELY2ltVDTajC1dRpVwQpQddDtR77VBlG5zZ85nhj1+Zs/fURdQzE1spxNWjMbqzuwsKhs8LE3u3K8MYfPKzfw6OYnEjaSxi/H/DhrPf+u+TGv8n6vehwaq7uB3G1WMnz0pg5q4mGqRQdeV4RSmbChTBcYFsQNVMyF8EWIeSzQTfRQAZguLKnT5REUF7Sid3vAZSJdJqKzEOGNgDTAF4EuH1g6COgyNDxSAgo0RditUKaBESwkGimkxQrw6LQCVMifapPc1UWMayihTbbToXVRUF3KHo2TOJR9tritDcvlPCkfosjXzrRWH1OsCTRSwOdjq/msvYlO2clYrY5PqlcMKj+T4VLRjeYPMrVBYgiFZVgsK3Mh28ppM1y4NTcbqjtRSCobfExR4/iW6ysZct6l/sWS6o3UNRTzM/G9DLnvij1Es9aWsx+RPBbQirlkzPe3up0hqgt4c9ObvGl90Ccv0DQaqkNZ8+/Qht0oU8WsFOtYVL2+3/ztqDYpa/CgpERoGj+puwSPcKfkWKmt5daKR9h/czelZpx9zKlUVE4i3NjER/FFmCiWV2kUtRYQ0l2YCJZNjFLZ4KNUFvN91//grgkMWneGO/9kQzerzDX8k2f6PPvlNT/kpvo7EmVCoVcXsYcsYFbDSmqiOlhxPi9uoqDVDUIS8Hgp85TR0bWMuKUwLYN1JTq14RhuI4JmabR5DHxRgeaK4tZjKMtLIFqEpTejTBdxy8WK4kKqXDOZNHEO+vRdMPadPew2QzrJtK2GeRn93MHYheaHn2J+vhzVsAE0iWpvAqnYYFmsra3gjfblCEnKpk3PX1HaSkXMZGqDpEiL4BYmEW+c4jYfcXRatAI2jw0xu16nIGxiomgtt3C1lRMS5Wzwhzi9fC/0hvmgtYLRAkqBqw3pCqJQaJYLqdxo7UVYphtZGKTLI/B0+AkLQdwyWF9k4G0vIiJ0Gg0vC8YKGgt1qhv8IGVmf4YQ480Qfl8bU8MhjIhBoVmCr3gXVKwTRBTiAlESweRTsECFCrHcFm7pg7gHVDFCVCBK61CRxRDrsuX2+aDTC/FSFJMxdjoK2dXOuvgnrJafESkQ7N5RSa1ZiTIEWnkpaJVYC0Korm5ULIRWFUSqpRAXEC5A+MqQcjXCGwJXHBErRYUMMN2gCYR3PHJDBcTLiWoenho7P/VuO0pitFSF+7y3SLWOt8EaVJ2cDJdRym9azrf78FqcWyoeoaTBoFE2c6i+H49UvdZPHwlC1YrxTUHKYjEKZZyuQAw0SV1TLUJWssjdyrJxZsrHUa6VEaqWvF2yhBfPfJmOjg6Ki3MvvZK30+3QQw/l17/+NUcddVQ+l223JJ1u7obpiGI941wRhcSIEyW2Rffw4qbdO2+L0hhuXrM+4KvxC/t9tjliP57z/I2zYj/lafkKkRxxDXRMLIopxMCglQ4E0FvxPLgAwd+067hE/o4x1LCY5QPK+pl7LlO08YN/uO2IVtXBztGj6GJwm5fcYPyUd6x5PK/ezFjoXEfnILEnYSLMdd1DkbZ9LHT/1/h/eFm+w0vqXSxMYphZ4wkEqo9G2RjoaGip/DAwOFjsxTP6XzjeOp+FahkdBHPKsNL9MmO0mi1/mK3ABfFf8qD1xJCuLSdACx19js9hXzzCw4dqIbuInXhHfQLAcRzCa3xAlBhuXP0upP9n/Tec7zpjSHJtL6yQa5kZOxGw15UMExn0tdn01YOLDu+nwyrjaCGouqiOHoCkrzPETyFlFNNBkG4ixHOU8VwsM15ggjFmuER12MY8ZD7N+eYvctbfvRlPLRuoRybiH8hsXvU+uDVFHDTJZVYAVlnrmBE/IeP8X4xrOMc4lYVyKfvGvgbYdmST94Os6d1mPshPzRsyjunoWPQs49Jf2zcceHH3se2KKKSbMAV4CdKdkMO26dy4sLCwspT13vgp4DP3XB6ST/FH8+9MFuMI0c17rofxasMzg2FG9HhWqfV48dDgfg+P5uZ+83G+b/4qI56GlrV+yjdOkv3Zg49YRBVljBdjeMV1X8ZI5kOj3+JDtRCALvcCdK2nf1EdOaBfmyTJ/2gnca/7/wYlz5bykPkU55m/6HO8lgoaacvQySRjqGax+1n2iZ1GAy2E6MZAJ46Z6hckmc5klrIqFX5Q/wNnuI5PhU1psl/sayxlFRWU4cbgdtdv+Xr8MsZTy3LW5JR9tLStERmhJLZ3n+PHiIN5Ub2dCtdRySnakZSLUn7luoiYihOI7olCsZfYlXc8/wEydWgw6GgZ5dJAp9HzPgXCtwVPNTo4PXYxz8rX+xzP1tcEcGFktTWSM6csJDoaYaIAPGT8kdONY/vE/238Vu61HqVSlGOg87b7X5wdv4IFcimG0AmpbtroRKFSNqKfQkziRBK2tC2hSNnUWqJO7y33HkznPc8j9nP1mmWYrguL3M+wk5iQ90zEu8x/8b/m7wH4m+s6ztRPyev6wfCj+HX8y3qGdvrfA6AAL0UU0kDLgGkGKErVlweJvXjFc3/q3PPmm5xl/pTdxFQ+U19QQSkrWZ8zLQ2Rsi16U0UZMUw6CWGg48JgXzGL99V89ghO5fWqfw3odMt7I4VLLrmEyy67jPvuu49PPvmEhQsXZvx9WdAQlFKMmSi0YguWfa+hcrjEGjbqRGW/DrdCfCxVq1gl1+PGldPhBqQa1k66aKMDD64+Ki2AKHGmMYk/qr9znfHjAR1u46hhttiFQrb/BiMXfgooo2TQ8d+Tn/KCeiurQ+RN9REr1brtxuEG8D3XN3jYcyurPK8wmfE5S1nv5ql3eUzPDxOTt9THFJmzmS127de41RDUieohy7+12UVMHjCOK8c4oD2Y0SeffHgJim6+pZ/MBeLr1FJJMX52ZWeWsJIJjGEctewm+h9lVbwd6dhQ2UmbwEx2ZhqTKMY/qGvKCTCZcVk7yQU7cD1WJArZW2TfmbWOKooopINQ3g43gM2iaUvFcxhBdtem5uU0Sne4AXzCZ1wau4bjoufy1dgPeUt+vDXEHBTpnZyJ2tjUJk8e3FRRzr7a7gDUUU2AIsoIsLOYmDM9b5alM/ReZns5JezKTkOTdwC7VSCwkBRTSIAiDHRu1K9gmfECR7A/QboR2O1G8o3EiQ/aMbWvmMV91mM8b71FAT4+Uou427h22BxuAAeKPdlTzGBnJrJL7Dg+k19wkj4HD25caSvsDEbmXHEEAoMep5mfAt5nPgrFZpr4QM1ncuwIbojfzSdyMQCFoiAV/xrzDs6IXcqd5j95w/qQIKFBPdslxlmDijcc1Irs/RQTmVOLPLg4K/ZTvHgI0oWOlqrjeztll7IKFwZaYuzyhdZv+Kv5b26K3cu3YpdzfPx83vc8goFBA82sp54fx29gdzGtX4cbQDml+T7uVsGrebOOy35b9dRZfgroJspj8kWKsO2o9Wpzqo6cKMYCEFYRNqqGvO6fnuc6OidpR+wQDjeAfXLs/J6rZclla1hYhIkSI46OjkAwjUn8yboPS2U6lhfIpTxhvUwHQRar5YwR1Xwj9r9sUPW00E676uQd179Z5XmFY8RB7M8eGOiUUswkMY4L+RbF+KmjOm1QgI7M0SLOZylfi13C1eaf+5w7VT+aasqZzQxOj13MPdYjOfMqF+l9ocBW2AytWbWhlKRzEB8UuokQSnzQyUWyzk2Xu05kLm1znHEoX9dP4AO1kN3F9AEtDYnK2S52EKSdTiSSGHG6CPOm+pDP3HN50nPXgM8EQ3C6feMb32DJkiWce+657LPPPuyxxx7Mnj079f+XBYliHZtTldiW7OQ2Y4gG09Zkguh/5EAXYdy4eU6+wS7alEGne4H2DVZ7XucYDgZINUDJgrCQZQhlOzR3Y+d+01pPPfPVUspEyaDvv73RSYiyQeiWGxce3HwgF2R1Qia/Qo4ZxQ6k/igVAf7kuiqjwuyvUUhvsswsX2AtLBSK++SjBPpxmCj6flEaTewiBi578Rwj0vbX92Bqrw6fFw/dRDjbvIIb1N38Vz1PjBif8QVr2cQq1hEn3qejWNBrB+Gksbij83X9BJaxmgaaBxW/hQ5W5fjKVjRIx932ypOuO7KW2eliEodr+wO2kzuf0iYQKUeGw/bJTDE1w/kxEL2/QkeJ8Vf5H15XH/K8fJP7zMeGW8QhoQmNnZkA2DL68DCNSQBUaKU0eN9jk/cd3k2MWsmGT3jQ0DIcbXPYPyNOM238j37yoGQq7lUvK1S/u78rFHFMOumigyACwRXWjRxufZtW0clMduYS7WzCRNASJVeRu6ObRCCooJTX1fv8ybofC8m3tVN40X0ve+vZO89D5W7XtVxtXMZiltNJiOvMuwjgZ5PnbT53P8df9Gu2uL1SqJSdUUJxqrNYkfbBtJFWfmPdwm/jtwFQRI/TbZFaxtPyVX5kXsft8YcQg+ya7S623TI/uTZHaqWd/9N/kvXcKjbwDK8RFlEmMSbDFsvmVvDhRaKIESdMhEvNa7lJ/p3H5IuYWLwhP2KG6OkvbWATH6qFlNL/xk3VlA/mEbcJlVkcgN1po+RDdNNOJz/Qv8X/ur4DwGq1IXV+UsLp9pJ8h43YTjeBSJW/wVKAl98bP8pX/FHLvmIWYDsTt4T02TQhunFhsIzVBFUXp8UuTn3U+b15Jx/JhWymiQgxThVHM4vpdBLCg5vztTN4wHUjf5D3cGb0x7yg3uZ95lOAjz8bv+ZTz5NsFk0008YaNqbuqaNzMnM4Iq2eT3+zz6rX+a/1PAdFvslXIhfy1egPuSH+V36g/w8fuP/LUlaykvWsURuIqGhez96hepxXxWL47dH35KfcJf+dcyRZbwaa4VVFeYbeCwRjs/Rxf2dcxt5iJm+pjwdVF+T6CJhtMIuFZA0bssTOTt7TS9euXdvv+QkTJuST3KgnOb30D2efx6GfjLPnAeuKpsowlY2+jHB1YyFIlfM8wJrJnbxz6CYe+7q9hsTXlnfxg83j2KfTVnDV3Zha/0oUVKXCwl+Lsdt30Kd/fZs9e3lkH459eAwHvVXHPu9V53h2qKiupbl+U795A1DZ6KNCllBhlCOr3GxsWEvYCmdcUzppCb7iVnRPDPe6aogbdLvh0aNb+fmlfTurNVSwxvs6ANbSh1HxboSrAH3617GWPkzkmlbkCoUKF6FVFSAbu0Eq0ETWMJA6pr5oH9h63FZMWENo5gpcvi5ikULwRvDr3aCE/Vfdid4tIOxFNlcSDETw7roYszBMl89iZcBFZdgCbykz3DNBmqjGBXbarkJE6U5oJZPRxh2aoWPW0oex1r+JareH/avuRoS3DK1yJq4jbiL+6uXIpsWoSCuiwP7CoJVMBt2NqNwd4bLzNP29pGMtfRhz0X2o0OaUziflsD6dhfnGBsx3N9vvQ4P3Kpba6+M0+nBJnbhupXSnpLSegspNEOjE1+VC6CbxzWNYSyk0l+fUz+5Ku3LvrbPJ8FRjct66kytOvuGB0oxW6ayuX95v2ctVFsepWjy6mxWVjUwoehsj5EUzDbqq2/E1F2M2VxGOFNK87zLGRbsxOgsh5kEaHuJrxxCUBh1ewUf7NTDv0FYe+vri1Ht90X0vB7z+r6y60VvHtoTI3dMh3AxWDPsbUmI9Id0DJVPQxx6EtfY1iAcRpVPRyqdjfbwL1jxQzeWIuvdQkRWgd4OmEF4PcnUNqrUGzAq0mnF930ngcVS3QhQEkZqG6W/E7QuhmirAF6a7fjzhtZNo1n0DvpOG2m4eOmcpj319BXsyg3e9D/cpH8nyN5S2YKDymy/xVy9HxUIItx/V8H3MNzYg659EtflB60IUaFC0DIJ+8IUhXoZsKYTOSpBlrK5RlLnep7BiE67SVgh0INoD0FYKuokIdBKL+KGtmFj9GCId5SyucPXJv8krAlQ2+dAtgZb/t0OHrYy2x3xk8xj0GRtQoVoQVaiWcrSJH6I6i0BUIfwhVGgNWBbxska6S7vw+9oRTRUgFKblwojqaCXtyLZyIv4wvkALqr4GFfITqgziC3kQa8cgIj7iHSWoiBd31HbgjZRe6IeOSdUZ68Rm1lba68JObq5kjKzKqy0IW2HWa/U0VHalykCpEWB5RQMSmTpWYgRYVrG5TznZu/hzPMWtuKrrIeJB+LvAE0W1liHKWiHiRW4YgzZ1ObhM0C1oLUOFCkFq9jqXE1ej1o9DVDWCO4ZctBvaLp9DsBjKWu1zvjAIZdsinqj9Wyh73bhQISrkR24Yi1w/lmXuEgjaa7oV6D5C1Qp/o6DQ8lGqlwxrW6tN/BCKNiH8zVjxCMQN4hvHY8rd8bWOTcVfWdnIJtU4YNtZ2ejDkBqFFRsR/iBl7nY0bxR0k+b2Oqw1kwgrH2bCLgGy9hNqVDkhLczKyqY+52sb/UgpB2y/S1Ux1XrlNrEztKoCoo0drDbXZ5WrqnosS+UqyhrdffLLJz0IXWNtZeug8tclDeK6mXrWiY1lRGUMU7eIVupMLZ2P5m5H6ywiGojgbShFmQKFoDVWgqfbRTRagKUMVo2JUtnoo0gVMEavHTE7LT28WWtiRcXAurbf2C58vo/Asl0UVlEXrJyIHuhElHRgtZShl7Sh4i5UaymiKAq+DrTSdlRnMTLmQSsMIQq7QJfIlZMg7kabvhTVUgZRDypeCG21iMAY9Fmz8P74nGG3GdJJpi03vZ/Rzx2MXRj54/2YH30OrEX4wiizG1CojZNAzUS2lNFktdCqddBcGaGi0ZvKTzFhHQEZoczdjlHShmaYSKEQm6sR7jixphrCO6+luKUQYdrthqxoQ62ZQLStgligG33nLygW3WiBdkRRF3LVJLQZn4Mr4YgxDbB05JLpEHehzVgCUkcu3wlR2o5sqsCKeaE9gFI6sr2KVYU6jT6tz7uvaiygZNLnFBtduMesx1PWhFw5GQwTUxno/k6EJ4rcWIe280q0kjaIuZFLp6NNWg0xN1g6KliECvsQbg1RvQ7VXozwRMEXQX6xM6q1DNVUhyicgaj8nHDBSpTeRawrQMATQXQGwBdGFGmopknIdTroUUCiTV6NGL8a1VyBXD8GoSlwxdGmLQPdQq3YCTRpeww9UeTGsailU7HCPiyl0V3Q49yM+Ew6SmL92sq6brCpsjPjvFnlxmiIo0mQuqKlMso0bTIVjd4+Za/d6qBJa6O+MjSgr2Zn/xoK4gpXYSfxoggIC2P1OOJtlYTihayqtjKu8VeXUzZuPLX3fWX413QbTbz55pv84Q9/4JNPPmHz5s08/vjjfPWrX02d/853vsP999+fcc2xxx7L888/P+h7JJ1u64wbKB6mYbib6kLMXvoQAJ89sIExXX1H4mTFX4f3gmXDIsNgmBk5iUemH0Tdpm03AsP9i/8DYY8ejN16sX0wWIxV0kHdun/3ib+nmMG7HrujGrl7GoQ2pfIpcvc0ohf/ENQO0Ckr6sR9yR0gJLHbLsJ98Z22UZv0Cvq7IGR/rU2eF4H+58xnpZeOpfK0N0LD+78dRP4UAJVlyoXQ7OP+Ojuc9l7SyZm+v47YdT9Dbcy+eUZW0vIIpaXyis7+v4I6AMUddocJcF9yB7Hbfmh3qkiUSSD25wtTcZLnktTXdTNrac+6Su+5H2aXWw/IrhvDWI9Fbh5gCHxSD9PC0Wt/mtKJ5LMl6xxI1DvB3I2m+xf/R+zPF+K++E77/0vuAH+I2PVX9ORdHjqXbA9OFIfzqCdz2kB/5WMweThQ+c2XVHkXGrFbbkZt7ErlR0p/Lr2d2G0/TOUPSmTmZ3FHKs8QCoJ+u85KHgsVgtLsa52yu13i/sX/2eXhyhsz3mNKVzoDUNTTPqXqbX+XfV1Sd+ipj+w2L1GnK2Ef//OFEEzUATtCOz/cpJe1UKFtJyTKHEUhUMLO71+krRunRMqWAOx4yfhA7Lqf2fGV6EnLn9ZOi15dikS9ELv+im1entPtySTDYhMkdDelt8OVrsOAJN9p0s6N3fbDnpPB4h77bzunj+4m68YMe+N2gJ72E9VTXhPXJMtj7LqfJdK9oec8aXpbEiLQeOWw2wzp5EwbBrRpOqquB0umlTl7tbZBlbss5RV6+kpJOy5dl9yX3EHs1otsnSrqxH3p7YBK5WmqHuxFRj4nwu4rb7TrP8hpQ/cmZWdeeWPP/ZLvOFHf9q67M+pmyF6Pp8mfbptl9L0T+pSt3U3Jd+ntUBSEYJGdT4mPLqnnTrTjgH2/Wy9KtNWjd+ZQknQbP8Mf0c8761Rhxps/G/413QAefPBBDjroIOrq6lIj3/70pz/x5JNPDiW5IdPV1cWsWbO4/fbbc8Y57rjj2Lx5c+rvX//61zaUcPtmcmIY82hmjBidC9w7OHyZ6D0c+8syvXQ4qRCjY90ZBwcHBwcHBwcHB4fhI2+n25133snll1/OCSecQHt7O5aVWMegpIQ//elPwy1fvxx//PFce+21nHrqqTnjeDweampqUn+lpU7HZrDsJ0b/Wjnb6xplDg47Er2dbn7hON3ypbbXArAODg4ODg4ODg4ODts/eTvdbrvtNu6++26uuuoqdL1nwcK9996bRYsWDatww8Hrr79OVVUV06ZN48ILL6Slpf/tZ6PRKJ2dnRl/X1bGaXUjLcKAOE43B4eRp/fy9+mLRDsMjmwLwDo4ODg4ODg4ODg4bN/k7XRbvXp11l1KPR4PXV15rL+0DTjuuON44IEHeOWVV7jhhht44403OP7441Oj87Jx/fXXEwgEUn/jxo3bhhKPLiZp28P0Uqej6uAw0vQe6VaQZQddh/6ZzuB3gXZwcHBwcHBwcHBw2D4Y/D7tCSZNmsT8+fP77FL6/PPPs8suuwybYMPBN7/5zdTv3Xbbjd13350pU6bw+uuvc+SRR2a95sorr+Tyyy9PhTs7O7+0jreJYgyhkRaiH3ZmAuOoHWkxHBy+9KTvFKghEGL0L5Y62qjVKkdaBAcHBwcHBwcHBweHYWbQI91+97vf0d3dzeWXX85FF13Ef/7zH5RSfPjhh/z+97/nyiuv5Iorrtiasm4xkydPpqKighUrVuSM4/F4KC4uzvjbmozmrmkdo3uNoS9YS61wOqoODqMJHX3gSA59cDZScHBwcHBwcHBwcNjxGPRIt6uvvpof/OAHnH/++fh8Pn75y1/S3d3Nt771Lerq6rjlllsyRpaNRjZs2EBLSwu1taNndFTvtZBGE7rQ0Ye2we02o85ZfNzBYcRJH+lm5D+A+kuPQFCMf6TFcHBwcHBwcHBwcHAYZgbdO1KqZ82eM888kzPPPJPu7m5CoRBVVSPj+AiFQhmj1lavXs38+fMpKyujrKyMq6++mtNPP52amhpWrlzJFVdcwU477cSxxx47IvJmYzQ73QC0UTxqpZRiCoSzdpSDw0iTvqabB9cISrJ9UkmpMyXXwcHBwcHBwcHBYQckryEJvTsFBQUFFBSM3C51H3/8MXPmzEmFk2uxnXPOOdx5550sXLiQ+++/n/b2durq6jjmmGO45ppr8Hg8+d/MpaHMno6lEiDS1g4fTBjANCSN1eHU8fYCHzVhQJrJmGk3FRlhUbDtNw2orhlLrKkRPd5zLN9nR9hPkTtOIqAEKlgELvtmoiAMyr42Fui7ScdYUZMRFgXV9n0S+SQKqsFlQUwk7kF/2dsz1zdzTfgRRSX+1XwRVNAPLhNRFLJ/G2ZKZuGLoMI+QPScL07svCuSzt3kg2V7UAGa0UfHREE1qrupr37qnp7/zXBPGgCaYf95S1Pppb+XPumHNmfKlpBDqy7EagxDXGaICWB/A0jkTkJ90vMIUwfDQhR0I0N+kD0jsXKVzVz6KYaqO4O5ZhjTVKgByqJAJQLpzyaFQi8KQdxuDlTQjygIo7oKQWp2ngqF8IfATMYpst8pAlwaTWl1mhev/SOHbmzTeixDBjssSqKoLgukbtc3QoLRs7lO+rMjRJ/8ViE/wm+XMVEURHX7EN5Iz++CblRnceqy/t6JAhqrw1SLiqziZ5a//NuCActvvugesKKge1LlUwWLEAXdqTKmun2pOsjWGVdGfgp/yI7jC4NuosK+nrzzhe16zDTsfAz5QemJdiCltIhkoXUYlahgkf1ug/6e95gob8mw8EVI1eHJts0btXUhUbZQIkOfcMURiboqqV+qO2GDmqJXUR0hHdlGbYPdBOa2SRGgFYUyypXwRXrKnD8Elm7nczqWnrAlEskUhRJlNJQIB1PxMMyedJPoZs9vkYinhP1eQ4Ug9bRMGWJeMLhreuzJHvsiXR97p6n6yc/0sJbQXRVK2GFg2xqdxRnxoW/72/sdkeMeucIafdukbWVnJO3RfG2o9HCqXIrsdtxAaSbzPNXGJPoJgN3OaDJVF2S752CfNa/wENNU/Ty7rbuxnkt8kYy2UxQFU+U02X4m7bTU8UR5T8ZJpZ8q34n+AiBKbBto2G2G9MdOpR1PPzoou1CUxKA73mPj2wZo7vKclp8io7z23DtlxxV02/nq71nF3LblbFtQ+CI9+ZvI0z71ZjLN9OMqETaNVHuWsqG7ClFSy1lOUm2gaYART3vHILxRW5aiYCofUvdW2HUupPqE0KMXGfLHXT1yJPOVRJ2f0e6aCRuvJ4+T+ZXMJ3QTLCN1b+EP2fmNAt2y8zJYRJol14fc9V+iBG+juixlW6TnSUIXcr2zuCEhrenLhVDprUw/aJpGIBAY8Gt8a2vrYJLbbujs7CQQCNDR0cFs96lspKFPnCPEASxUS2mmLe/0j+cQHvfeORyibjXuMR/hYvPqVFhHxyKtk0qPTn9XO51/yWeIEAWgAC8BitlMY87rC/HRRZiD2ZPzjDP4rnllIp6GRZrDpRfHaYfwhHt0592WIpWkLnow7XRSTTlrPK/zI/M6nrPeYAMNvO9+mPGijnHRQ/HgJkgXLgwCFKX08RX3Axyk7TnCTzK8xFWcQHQvJJIpjOdnxvf4nvlLAH5vXM44ajnb/Gleae7GNBaxLOPYT/TzuNb1o2GTe2tyavSHPKfeBMBPAbVU8QVrUufnsB8VopTn1JuE6AbgL8Y1/NK8mSbsevtM7RT+5r4OgKiKEYjaenOQ2ItXPPfznvyUObGzALhY/zb/z/VzAMoie9ON3fGawU7M8z6x1Z93tPK89SYvme/wN/XfVD2YZBJjCeBnPkszjs/R9uc59z3bUswRRypJSXQvYsTZVezMJ57Hc8ZdpzYzNXo0AKdqR/Mv983bSkyHbcR8uYT9Y2f0G0cg2J1pLOhVfpLY60kqpopJfOp5citIOXroVCF+Ef8jj8oX6SCITNhKvzUu4efG9zPi/jX+b66ybiZI34+X2SihmP3ELOLEWaCWYqDTTBvF+GnD/pi3P7M4STuSX8qb8OFBRydENxoaB4jZTBB1FIlC/mRctd2M4t0lehyr1Qa8ePHjy9umL8CLRBIh1udcFeU00pJxrIhCjuFg3uAj2unATLOLsyEQhL2L8pJpOAmqLiqj+w35eh2NFs9HeEWPA+df1jOstjbyV/kvGmjJ2SWvpCxlpyQpoZhCfFn7ZUmOEgfyjOevQ5Z5a/K12CU8I1/LOKajUUIxGzxvIYTgnOgV/EfNBeBAMZtXPQ+OhKg7DN+IXsZ8tZS1bKSMEkJ0ESOOQKCjYw7Gc5IHApGh0+OpYx2bMuK4MIgP830Hw0HsyccsIkq8zzkfHmaLGejoSCVBwI+M73KSPocfx6/nWO0QHrCe4Dn5BhGi/FQ/n18ZFzFXvsEZ8UsBOEv/Kne7ruVdax7Hx88nmqVeTGKgU4iPncUkThNH49ZcbJSNbKaR/+f6+VZZ8/jC6G+4Vz2acay3jy7pnxgI1WkRq15KR0dHv3sB5DXS7eqrryYQCORzyQ7FGFHNRtW3cp+j78er5nv9XptrENXeYvfhEW4rcrI2h3vEw6xU6wjSleEwc+PCQlJDBbtr0/iOfhr3yh4l7iZCNxECFNGB/QXA6mVYdBFmDNW8x3zeNefjwoWOhoGOQOQ0FMf0Gum2I6IJjdO0Y1iqVtJIC2vVRupEFWsTlfYStZLF6gtixIklKs44Jvtps3hWvg5AOTtemXUJF1PFRJaqVWygntq0kUKdKsSe+q4czJ68zbycacxiekbnrZG+Hwx8wju8gm9FTtAP5zPzCzbThIXMcHQDfMJnvOv6D8/H3sKNCwOdH5m/T3XWAHYXU1O/PcKNBzdRYgQT+xg3qObU+Vyjs4xRPCV9W3CcfijH6YfyavR9lqiVqeM6GuvYxC36L7nY+l3GNRUMv0Ex2tGExnhRxwq1ljVqA0qpnJ3zetnIbDEDH152S9NRhx2HwRjVCsUxHMRilmf9ICeR7MvuHC6G7hjYXigWfnbWJrKLmsJMduId9SmG0Dld67t8yt76bgQt245KjnrP5trQ0CinhJ8Y53GZcU7q+A9jv2WxWs4KtZZaKpnOZBaxnN/IW9ibmSxkKTH+P3v3HWdHVT/+/3XO3La99/SQBiEkFCG0BARCURFBRZFiV0TA/rF/LD9BRQHB9vUjVRAVEFSUTpDeUiBAet9kd5Ptd3dvmZnz+2Punb13S3YTNrsbeD99RHbKPffMmfc5c+bcKTY5hCmkgDJVzGF6dlYaB4KpagKbzHZixAig/ePfcNk4fj8sSIAAFj2pH176DrhpNF10s5sW1gYeotQ+asj0cxnb/kiByiNCuN+PSXsSIuiXiYPLT+0/8P3gZf7yj1jvAQs+7J7B6YlP0sCurAEIjWIStTTRzHvUSbxh1rORbQC00UFbahB4MLPU1L3ZxFF1ifUBwibEPeYhwNtWB5dm2lhh3qTFbedh87S//oXW+8cop28fd4R+wcnxi5ikanjOLAe8umow2NgovLs1eogNmsZQF4RotN+vzmxpFdDArqx1iykcMob3lxd4td8gY4AAn9TncYSeSyvt/Nd9CRScqI/iPdZJAPwi6F0Yc7NzD0UUMEdN5ybnHsKEeMp9mRIKOV2fyIf0GXS7PXzW/i65RPbYlhoM7UTZTStfDn0CgOvtW6mmfL+9ZOxnoa9zZ/yfWfnqe1wczoDb3tirQbfzzz9/zJ7fNh7Uqar+ewTvqpJpTPQPBEXk0040a53BLic80jp0hHM58qp0eerEu//gV4IkBeTxHuskrrQuYYqqo4pyGvFOztMH3HY6USj/oJKplgqaaOZMtZgt1POqWUOQHKYxkVf7XHmUFiQwrg+mI6lalXOTezcAL5nXmK2m+ctWuxvZaXZxrFrAMvMGU6hDK53V0Jeot9+gG8AcNZ3VZiNxEiSMzSJ1FHGS9BBjsqrheV4d8HP55DJXzeDj1nl81v6uP7+T/peL5/DWL6kfLVNUHVvZCXgDr/OZw0a20ZFqizqIssZsYqGez8PuMyRIciyH82zGwORkXZeVZiH57KKFjlTdbzS9Jw6VlAHQZbr9q9wA8lXe/tnAA8wH9Glc69xMD3EMxm/3/ub+p9+6Fe/QN5cuUkdRSRkJEuwwjYP+kFJPE8vNGwCcoU4czSyKUVJBKTVUsLPPSUlfOSpCvsklRoJiCmiiufdWbgwvsJJl7ut81H0Ps/S0PaZ1oLvM+hhftC7kBud26t0mTtRHMUNP6bfeAnUw89QsCsjjebMCgwLcrH6phUUVZbwZ/A/hPreS/STwZY5InEM1FfQQYzUb6aYHB4eXWcUkaihM/bA6gWr+HPgllj7wfnyZoib4f79Pn8yd7r/8aZX6/8FvjvL6w+mBuiQ2SeysE/BM6XlPs4yZ9qnDyt9cxv4Hh3JK2E7DgMu8n/J01pV+fa/g+X/OXZxtvZv5ek7W/Ol6Em+E/01d/Pisz7gYdtDE4eoQNpvtbGEHk1ODcD3DGPybrGr3ZvNG1XuskyhVRdyT8AbdXAxlFHOUnsd3EtfyOuv8K0stNBdb54xldt8WAirAr4PfZ2Hyw3xAn8bL7iq20+DHnIE9DrgBexxwAwas7+m0EySJECZOAoPZ6wG3EAEM/evV3lIobGxy+gwwllLEC2Yl11jfIKiCXEH/H06+lfwFhSqfqUxgF808bbxziD86dxMkQLWq4Gn3FX4T/F9+aN9I2ISHHLxKl+lRqndMZH//aFOg8viy/gRXub/Lmh9AYw+xj/fVsF9NeaBcHr4/1anee84L6D2x3GVa+I51qT/dTnTYzxOZrQ+MgaN36d4r8krovXQyfUvj7527eMJ5nkfcZ6ihwl+eIIlOlUYxhf0aq9lM4z363SwP3c/fwr+iiAIAuunhaH3YoPlJYlP6Nh1M6iuzHF50X2WOmu5Pr3LX8mf3XzxrlhMjzmo2slDNJ4DFNDWRSkopfRte6QYwW02nnBImUM3Nzt08aV7iebPCG7RVQQ5Sk/p9JpC6BeZ5s5KpGR1sYMBfYSIH0KDbYv0uv13KI5c2OvwBN4AcIvzWvpPZ9MbPs32uBJzWp8wKUgNoncZLp8W0M0NNpopy/83BW0z2pfLF8hZOAL4TuJQrrUuyTtICWLxoXiNCyJ8XIkgFpWORxTFXoop41izjZbOKV8zr/vyHnae5NPF97nce41/OE9Sb3pM8eWP121NYhfYwnNHrFnMvl1oXECdBI80Dvuwpic3L7qqRz+Q4YykLrTRXBC7mntCNg56kKKX4jnUpz5hlVFHOkRxKHd4A94X6bH5pfZPm8Is8Gb6j34AbQLEu5HfBH/ImG1BKcZI+Juukz2D8H3h+H/rhATngBt4PV2lz1EFZywx7ehpRr8xyyScXF7ff+UC6nwvg4rCbtmHlbyZjf76wp/Y3iZ014JZHbr8yayfKNxI/I2n639LWSgdnsKjf/ARJlpnXKaeUABZb2EEP8WGdZ03T/fuB48kxan7Wy6e+HPgER6hD2Ew9DfTeWXAQk9Fq2KfsYg8OtWaxInQ/t4V+zhl6UdYgWTB1LVKI4H55LmiQIKUUYTDksfcvAkxgD3kb+nAYjHe7ep8BxiaaKSCPa+1bBvxcp+ni184d/K99A7937/IvjLHQ1NPIVnaw2mzk6sBXuTD5Nda6m1nLJv9q18FUUUaIIEfr0b3778LA2VnTeUT2acBND3M4ba+e6dbQ0PCOu9It/Uy3bdN+S+7OJC4OBohHHMIxCwUoNIFIiEQs5t8PnLk8PQ3QXB7jvydt52vXPwVA21OLYeuT0JNqXJ1Y74MRrUjvdCCCNfuDBE/51ahuf8+lj5N8dBv29o4Btz1zWqNwMf2Wq4h3mb0bS+Kmfl3tu04oEsbEHKyz70EXdoAyOM8e4z3I3Qmw7qAOjv/bi1l56/ussuSjl2NirahICcFTfkXy0cvp+fQEzO4QuEGIWBBzvKe3KjXwNPTOs4dVNfY7A+gpm9BHv+Q9rHfFYahZa7yHV6aoqkZMcynYAdxlC1Cz12DNWwXa9QbMg3leLOkQWEFwHUimB2RSy3PKsSaflBVjyUcvx9nyRHZ86hCqcALhi18hfusRmI7t4Ca8eAXIKUcFQqiyg1ER7wqezP2SKfno5Tir/wZ2rDfmU/mw730/yUe3Yeqjg+4jB5fuSJJwzCI0aQvWUS97D/yMhSESx3nuaBI767yHoZIdr+nnKKTr5kAxHcA7qdnr2Blsnb2d3ss0e8JJrFjv7eyxPvUsGXGxsNAxk7WtRbNe8x5ybRTW4StxVhyKqa/DxCKYc/5JyErgvjkH05ODMWA2TwE7iLIC9NRZ/O2klX6b9hF9FjeHfjpobPSNsbcidm0RDHaA1CFU8RRM60YwDgTzUAW1JP96Ju5rxZiuPAJn3g26ByKx1JNRFc4zCzE7aiCeC+GcfuUdOOsO3NUz0bNX464/CH3oa6iK3ThPLELPfR33+WNw1x8EJoSDoTuSGDC2VGr//P2D6wn++kQ+F/hIv03Iqn/7cCwYqv7urfitR2ASUVQoH/eFn5N8dBvWkbfhrJzrbZ0Ga+GzuCvmoWevwV0923vpRmMlJHIgnIOeugx9xCuo6gZUTg9ufR3u8vnoua+n2rEy6MzHeeVw3B21dBMhEgv4xw4rEsTqdgfd7WLsBT7wd+xHTyZw2mM4r87DNNVBVx6B992L89pcTFMdqrIJiAEKa8EKyO1Gle/GWXoievpGrw7ZFnrBCtwV89Gz1kBhB+5LR2K6c9ELVmJWz8LdNNnrJ0TzwfR2fMfsRQoFwXFzbNAzn0fPexVVsxPTXI4q342KxHC3T0BP2I6JRXAeOYXA+/8Byntuj+nMx+zufXSAnroZd9MU9OQtoA32ve8ncM593sswCqK4m6agynsHB1Q44wBkOd7D7ZNBnMcX426YDrEisIOjclwMvO9eKGzvfXi6o3GfXYjbMAW68vql6fT09vFNRGPFwAzQZw1M2oIKJgksWAE5PaAM9nPH4GyYjutaWX3+wdp+6H98HqxvnZ42EYuwGiC+RrGfYePSk+pz9T2/Ge62kNqWUFxnfUdm+fdNM11exWf9HZXbg7v8MNTsNbgrDvNf4uM0VnsPoe/Jxbia7hyH/Fg49RD28dNP6zudCLsQc1CAxsKJQOjMewkU7/ae0o7y2sb/LEEvWIGqbsR57GT0ghXgKu/4eegqCCXRdfW49XXgKlSFV99RBvuf7wGjCLz/ftytk8BV4Fi4yxdgEvlYkyrJu/87I95nyOSnHd2efZ47jH5h19k/xtm8C+uwZZDjPZMYZXCfPWbg+pxRvmrqJlAJrAXLIONFB+5LR6Bnr8FZtgB93HOY5b0XOOgFK3CePdbrC1buInDiU94LPCp2oXJ6sP/5HgLn3Jf97CijsO872yvnc+4HR2P/8z1Yi/6Ls/RE78UF3bmAwjRUkUzmELMGrjeRs++HLZOwTlqKKujA/td70HO9HyZVeTMEkjiPvJvAex+AUBJc77sD7/kXJh7xXhawu9x7EYPloiduw62vQ5U1oyIx7H+e5b3wa2cNiWSE8JkPYBV0gDY4y+djHfaq348jJ4bz/DHQE/ZeVAJYJzztHRu2TsJ59hhUKIFJhrwyAZx/n+59VhnvXOzZhZh1B3nHarLv/jMKHMvFiUBOLOgtHcW66PQkssYmCpf8C9ZPw5qzGnK8+uM848WCE4/QHeq/z3aVxDl847dH7plurvvO7uGarR1YKif1oF4IRfv8khdNEsr4xbXv8vR0QTRE6KGMX142PwLR7CtFvC8E3IxbVJNRnE0PZfweMjqS/9mMqe/CgkG3fahpogawsVIPqhx4He9e+sCstV7nD7DrU786dhYyrbkdyB50y/xVEsDZ9JBXlvm1BFPTZselqY64m/0WTMwQ0+OHAkxzGdb0jaBc7HvOIXTGQ6lBglTTld+FSjWG9sZphM58CGWlt8f0DrC59gBvWEktHyDG/DLN5NqY1vXeJ1vXg0l9Tzpek1GM0piWtZCfurQ/Y79kcjY91Ju3dMyn8pH8z3xMfeYtzf33kYWiIJq6amhXuV9GGO2V1Y5agh3ZDWBv7BlCWP1jkb7xuS+xM9Q6ezs9vM/kJLO3JThU3UzNc9cdRPp1YXra37EfOB06C1FA+KB1ANgPnOmvoxKpqyFcl5zNLqdktGmlqeeTDRYbI9uO7aHOuonsPCSjmNb1OC+EoSMEJNHT3/SWqd507B010JmKmUTmr3NeeetpG7H/vYTAmQ9i//sMAksegfwo7ppZBE57DLu+FpJex8GC3vhMydwHwajFKQ9NYrka+OrAAevfXpThUPV3b6XL0yjtHxv0R1djP3xSb/zU7fBOzM98CPvfZ3jzo6krOxJJ3M2TCLz3X5AfBWXQ5buxV88icOpjkB/12rHyZuwHzkRFe68pTx87iI7Pdlr00rPXwN/PRs9ci/3wu6EjB3DRs1ZjP3ISdORgnN5bqvV5qXY7v8urR6c+7sUOEDjrQex7phE44yGvTd8w3ftx4Nz7SPz7dOj0YkuZcXIVSGf/NiPb6B0b3HUHETj9Ya9/oID8Lr/OEbRRgS7c1bP8EykAld/Vb7hSl+8G7fU13NWzQHnr+cvyM47TWa/n7F3PXTsTOopSczP7JvvvuKhnrc5q2wHsHbV+PPZdP7Of23uR+AB91l3eoKQ+9++96dfXYiV6zwKG7lcMfXzu308G2FN87f9+RiCzzzVYPoe9Ldn7YE/nGeCVlzV9U28/+MyHcB4401+uOwtBuX5bUBD1Xqyyr9u6v/ppfadDSSDj/NGKQuigtdmxm9+Fu3EagbMe9Pobq2cROPVRAOy1MwksedRLO5T06mTqM+n66K6elUrc7V0O2HdPg44i7Hov4Ee6z5CpX9p9+vx76tPYz1ngVKLPSR0rUkMee6rP6Wmz0zvW6HM3Zff1Nk7z+ylW7U4S9/Tevhs468GsvqCu3emlnSrTdDvoU/TOB69N1a63n865H3dNan76tbydhQSh3zan4z4way2JR95N4Ny/++kGTn2sNw/gpXnufanvS333B+5DBVPP78zMXzou0vlfM8vLS2chISCYee599wfQZz7o9+NQLnZ9TW/eAT1hB0Ti6JoG7Po6jDJ4b6n24shNla2XEeOVpatJ/xyWdYwxYNnWgG1C1kr7qS72HZsIpspen/Vgb5mkYsECCvrcFBWKWpjO4V19OE56KULsHYXKuo1VCDE+vFNvlXwrMm83EkIIIYQQQrx9yKDbGBruPcCivxwi8nwDIcahynfoSwHeisJBrnQTQgghhBBCHNhk1GIMBQZ4ALAYnrK36csBhDjQVaiysc7CAadIXj4hhBBCCCHE25IMuo2h0Kg/oe3tI6wOnLdKCvFOUqwHf4ioGFih3F4qhBBCCCHE25IMuo2hfHLHOgsHrGLkxF6I8aj30fdiuIrk9lIhhBBCCCHelmTQbQwVyi1F+6xcnhslxLgkPybsPTkWCCGEEEII8fYkg25jSAaO9l0V8twoIcajfCVXuu0NjcJS8nxPIYQQQggh3o5k0G0MTVQ1Y52FA1aNqhzrLAghBlAgV7rtFSWHYSGEEEIIId62AmOdgQOFPrgUNidwXIe4StKdZ1PYFcY1Lq4y9OTZ5HYFsYwGBR15cXK7AmijcJWhO88GoKmqmydO2Q5AqSrGmnUe7pZHMdFG74uSXYABFATzeqeD+Vizzhv17Q5+eCb2w1txN7SB62WL/CCJaLe/7d15dr9tHWjbC7vChEzQTyMe7cb0SYPXDkUXt4J2UVO2gG1hjMWqQ9qy8jVRVffLqzXrPIi3QbjYn1YHxTE7w2AHIT8IXcms7eg3Db3z4s7IF+g+UuW7cVbPhrwozFmDvW4GOqfLy7cBVdWEaS2GZBA921seOGwlBByU1l6ZJLsgEAErBMaBnpbUhy0IF6PyqtBTTsn63gHjMxBBFU/z8lU5H9O2EeyYF6+AyquCQARdMdffF5n7pW/6zht3QCJKOubT+Rgs9oB++y0e7SZY1YS9ehbkR1E9EVQkhpq0je5GB9NZkBWP+V0hMCYrPvO6AiijMAq68pLkdQXIMZHBY2VPsTPcz+zHNOMqQWdeYsBt7Vs/K2a+AZ0F4GrsNTNRk7dgdtRBdx7JNfPROoqeuQ7TkwNozMYQ2GGMFeDNaU1+mwaQS84eY6NvjL0lKgDGHnhZIBdVNhuz+3VwbS/GiyYTOMXGWZ7EdBbgrDkcdAcqEgNlQIGatA2zoxbi+ZBb0K98nTWz0TPX4ayZgZ77Bu62Caiy3eh5r+Fuq0NN3opZPxPcXP8zyWgMx9igFLE8h1CXQhtFND/JE+c1MXOQzcuqf/twLBiq/u4tVTkfEh0QKvTrp7NqPqquCXBBg7t5Mnr2Gpy1M9Cz1mHaCzGWC4k8yC1AT17hlVlVIyqvC3dXOXr+Sq/sqpowLaWYjgJU3Q6MUhCs7B/jbXGwzT5tg9j/nBWHQXEbzqpDUXVNmEgQOgtwXpvvT6vyNiAKBpzVM1H5PaiyXeh5r+GsOwh9yOvgBHC3TfDjSRW3ouesxkTzvHZq1lrMxingBDAdBeCmrxhVqLHa+PLIuDk26BnPe3WtdgempQTlalQk5tW5UAITi6DnrwTbAssBBaajANNcCsYrQV0Q9dbP7QbL9dZ3FaazAFXUgburHOVYXvtpFCqnp7csAjYmmg/xMHru67jrp0O8HBKhUTkuOq/NRxW3QCgOxoBjoSZtxTRNTx3vBk7TVS4ted3kdgUImgCWsmjJ6/KPm8HqJnQoibNmJiq3G5TBnbIVZ91BOG5wj8fafZ2OqPC46mf0RKMow4Dbmu5DZW5LLM8hpyuQ9Zl0+QZVwP+OpGuTVLafZkFXiICx/POuijUz0bnd6FleP1dN3gKOV+/tXVUoV2G6c3FdjVMQJtKtx0Vd3NtpZ83hqJKtYLwf5VRpC3r2av/YqQ9biburAhwLPXcV7rYJEI6hA0ncXeXgBFDlu1E53aBI1VsNyYC/HDuAnr0WnAL0tInAyPcZMvlpt24k8zx3OP3CwKkKd10jzppZqLxuvMJK9deagv3rc0Z5qoltoHq8+lrU7rVV0HtcqavH3TYJPXu13+652yb4fUFV0Yy7bRIE416Z5nZ75ZnaBEhtjqt7y9m2vH1z2EpMUwV63muQCGGieWAUprGaHjtMV1Bn1BuDk2cR7tJYr81HH/IGpqnSO+6l+kgoUKXNEEqi570KPRHIiYGT+u54CBOLeN/RXAaJIAQcdHCb11bbAS//817FtBVjdtTQY+dgVs0lUNgO2oU5a3A2T/LLx+R2407Zio7morRX7u6myejpG3G316GmbEEFExg7gGkt8uJt9mqcNTNAG1SkBzVxG2bNTIzjDTulihmFQmkFQT1u6qKzaj5q5np/21EGJm3D7KjBjuXQntu/Xd9U3gqrhq4DyhgjPdc96OjooKioiPb2dgoLC1nlruXIxAcAWKTexZPmRQAOZSa7aKWJZk5UR/KCWUkPcT8dhcKQXdTftj7Pd4NfGL2NGUH32A9xgf2VfvMtNE6qMeyriHweDNxErVXJVrOTl9xX+bJ91T59/wPBP/Bua+E+ffZAdqfzT6qp4Bn3Ff7rvsQxaj4XBN7LbD0dgFfcVRyXOB+AT1kf5Mbg98cyu6Pmm8lruNa5JWteDRXsZNeA639af5A/uH8bcFkeOXTRQwmF7Iw8O9JZHTV/tP/Gj+zf0MAuKihlFy2DrvtefTJ/C/2Kzye+x33uo7TSwbX6m0y3JnO8PoKf2L/jCutiksqmNuMq061mJzPjp/rTCkVP5LX9ul0Hoped1zgz+Wk6iFJGMc20+cuOUfNZGv7T2GVOiAPMrfbf+ZL9E7rxBng0ChdDAIvP6vP5ReibY5xDcSDrNj1UxI/BweEQDuK+8G+ZkXGcAwgS4BvWp3nAfZLl5g0AAlhYWMRJjGh+DlOzeSF894im+Va9L/E5HnafHnDZYnU0S80L/eYfwgxeZ12/+Q8Fb2KR9S4Avpq8mhsd73hYQB6ddPFd/QV+5P466zNBvBPsJMlB85iZrhD7y73Ow4RNkCZa+K59HbtpzVo+V81gs9lBlK49pnOkmsvT4bv2KQ8NZjdT4ov9aQsLh72/cCRMkArK2E7DPuVjbxRRwM7wM2g1/u72eMp5mSXJT+AOMp7Rl+lwSFSt9seKBjP+tnScm6GmoFPF1mB2caSayyw1lcP0HCopZbqaxFLzYtaAG9BvwA2gXJWOSp73h0P0DIop9H9PDuD90uTg+le6WH3Cq50oC+0PMSu+hEuS3+A0fTwXc86gv0lXUcYSjud71mX9ltWoipHcnAPGR633crJ1DIUqn0KVT7ku8QfcAOpNo/933QBXA75dzVL9f4VrpxOgX4wCLNSHD5pWetC44AB/uP0p1nE0pAYdE0OcBKSfL/nZwEdopQOAr7o/5X3Jz7HCeZOvBD5BkSrIGnAD6DTRrOm8VN0X2Y7Qc/2/u4llLStSBaOdHSEOaKdax/kDbkUZ7bSNwxPm+bHKlnibyFU5nKdP51A1ky3sJGD63xSUxOYXzs1sMfX+PAd3xAfcAOao6UOvNMqWqBP6zSumkDlqOu2mY8DPdNE94PzvJa/3/45mrDNdTeKawP9wh/nHAJ8ylDL4yS3AFD1hj8uFGAkfsE7jrMBJfDxwLp+2Ptxv+UXWORyjDus3fwp1hAn50wN9driqKMs6504PuO3tFd9xkmynod/5u4U1rOvHA1hUUDKs7z1KHzouB9wATrCOpCSjfSmmgOAAN4fu7TX143Nrx7GwCjFNeZfhbmEHL5tVrDGbaKODi6z302LaOFwd7K+fS4TQIHfxVnDgvkhhgqqmjQ5/MNHOGFFPv+QgPXiRQ8RfZmGRIEEFpTzjLGMz9QMOSAK00sFi62i+ELig37JiteeD7dvdFYGLuSd0I1cELs6a32LaOU4dzgnqSKbxzulwvEvPY5E6yp+eQDVJvNsTFN5gUDpGNZoT9VF8SJ/JERzSLy079bnCA/yFAJNVLeeq0zhZLczqyKZlDkKWUQx4v6ifpo5nFlNxcAkR5HT7kxwafw8/c/7QL40OsgfdBrvK9Z1OKeWfOPVkDLpVUsqH9RljlS0hDki1qpIP67O4XF/EdDUZF4NGU0oRp3LcWGdPvA0UqXxeM2uJ0sWb7oask+O0HmK00O5PGwyTqRvxt1HP1m/91r6R9m59TL+T0B5ivGk2sIntA36mnkYmUO3/MA/eVaovsJLH7OcwxtBlevsqfwldT4PZhW2crJPbHCIksWmkedD8KRQTqNrXzRNin5RknJtOYxKL1dEcpw7nM4EP80V9YdZLAFtox0ITJkiEMOfrs/b5e5VSfj8+cxhoIvv27PjM8wOAEziCwBBDRgqFg0sPiUHO6nsdyVxO1/0H7seTo9Q8/+8JqnrA85vBxi8GI4Nu++AIdQiHMosFHOwfCBrNbj5rnY+FxbLUpeYAMeIkGPiZQwfyFQ75KpfyQQYNJ6u6rGWZJ5kODi6G580K/uTeT5Ua/C2kC/UCvhT8OK0D/GpWMsQvXO9U680WnjHLeMq8fEBfSbm3DtYH0U6UAAEKyWc7Df6g2wSq6aL3OTN55DBBV3Nb6GecY53WL6304NyBfqUbwMcD5/G4eY4pTED3+UUmc6C8IhUrSin+Ef4dy8L3cSwLAEWCJF10s97dQqfJvjy+7/RAJybCM0tP9f/2bkPSNNHCHH3QGOZKiAPTraGfMlHXsMy8zkI1n8W8i2IKudX8nSedF8c6e+IAd5TuPeF6iVcppP+PcKHULY6Z6mno92PUYIZzvMwhwqHMGlZ6o2mGntLvJDR9lV9b6i6DvpLY7KLFv0oVwMVQQB4fsb/E15M/y/qBMJ9cvm19niKVnzXo1kOMQ9QMCgbYJ2lz1HR5K7gYdcUZ56Yb2cprZg2H6dm8z3o3Pw99g4v1Of7yDqJ0EyNOkoPVQYT1W+s/1yhvkNngXfBzpJpLYB8f3R/vc9v2U7yMHiItk/rf5daFQ6b/Mquy2tjx6DA9mxBBcgijjeZgBr/i2GJ4bY08020I6We6bQ39lELj/Toz2MjmQM9t68vVsHF6G8e/8lceD93GEbd9CtO6AYZxhYgqmUH4kmV7vQ1vRefc23HXtw2Yvb0d4R2O0Feu9R7oCyT/7xOAgq48ksUdTFh3L+BdqdQVXolS2YMI8VsOx3Q1oPKqCV+yjPgthxP7/EXgaPb+IttxpqSF4CduAcshefMlBC+63S8nAFXcjmkrAvCXq4rd3rJhb7pGlUzPirH4LYcPHJ86SOSKFmLXl4Lb95kaGrTlPXw1z7vFNXO/ZPLS7/uMDy8fiWu+NGjsDSijjHAt0A7Jmz4Ou0sxffZ/ZgduT3E8ho/jHjHDqaeqYrf/MOLgx28hefPF0FoCRhH8yrWgIHnrhf46tJSk0la42vhtWg0VbIo8ATBobPSNsbcidu0QP1zoYHYedJDEzy/H7CpNbdsvvaZB99al5P99wt/2gdqN4Fd+SfK2CwledLv334/fiipqJ3Hd5QQ/fivJmy6B3WX9Pmsy/r+XwppZTMGqgTspg9W/4R4Lhqq/e8vfpzpI8g/X465vI/ilX5K89SLv4AYEP3UTyZsv9ssH24K24t7yLN9F8BO3oorbQLuYlhKvzfq4N8+0FYFrkbzlIthdivw2eOAJfuWXJK+7nOCVv/JiI7Ufg1/5Ze90SVvqgdaK4MdvActBFXV49SgdOwaCn7jVj6f08Q/H8tqpWy+EltSPS67OqF1vh5Z7BFTsyqpXqrjdr3OqtBVcTeLaK7x+V5qr/b4EgCpt7V0fSPziS976ru5Nq7j3ai90n7bG1WAUiesu99rFQdrV/SH4lV9m9ZMAv08wVLsycHvtUSWt3jPgU3Hbm27ZfugVw3iN5/1xDpAtc6u970qfI6T7ucmbL+5dr7XYa1NcPcDnDyx9Y1cVt5P45RX+sTNx7RVe/IF//ATj19f0Z9L1MfGLLwFe+aWXpz9LRwGqOEbhtu+OeJ8h06BpD6Nf2DHxR5ikm1XnYJj1uaSlX331PnsJwYtvJ3nrRQQ/cQvJm3rvHAp+4laS//dxry9Y3Ebw0zcBxi9Tvx3sI7Oc09OhK3/ltX+ply2AgtZijMmMz+w6nu5nhq78FVgOiV98qXcfF3WAMv3a7qy2GQZuxzPyj2P5+cg6907FU9Zx96aPp86lU/n79E2o0hav//Z/n/DizNWEvpra7l9eQfDi2/3+dfL/PuEfq9Otxvhs1bL7+FnjEanzgoFavQ4VY3LiG0M+003eXjpc6TdbsOdAGSqILBfyurxfx/LJxSS7GO6ogrfu6DLpt3oMYH9UGBVOgEp9YTL1K2I8jI73/gKQT26/ATdIlU+iExMq6J12R6+Dt1/Zgd6yiYdSfxv85ksZVDA1uJBaPvzBtjS3X4wNGp/Gyf5vn3QwZO2LrL/7pT9wPvYUewPKLCPjeP9NBKHfNV7ZxmvDP1KGtX3xkP86IRVOeHUv/dascKLfOuk6pQDLVVltmm+Q2BjVdqxvHoyDiQWytxV62xzI2vaBqHCitw7GQ169027v34kgA7U5KuP/s7LUNfiDoAerf8MtwyHr797KqPfp+qnCCW+b02UaTGaVD0Zll2ciVU6pN4j566fmqWDS+55U3RUHHhVOgKt7Y4OMtiQ9bQey11dubz1Kxw594il1/MOoVFrZbdLbuyXfB33rVWadA2863ufqisy+RHpW5nR6/cy01B4GX5Tp/Z49tKv7Q1Z/Mm2Y7cpg7TXgx25W+ql2/50Ug6O7tRnH7Mx+cDLjakOjyTpZO4D1i11lso+d6boNGX8PUL/TMup5v/ocj2Di3p0hI95nyExi0PPdofuFJh4Ax80oFwWY4dXngeoreOWZOiZ5fbc+ZZTuC9qB3vJNl2nfdjOt7/x4yD+ueRuSik0zxHlJ+hiY/hEjcx9nzBvwu/u285nblJn/VN9M0ads0t+VedzN6ONlpq2CtldOqbdX++mnyzadH7+ejv82MquPnzkekT4nGugzwzxXlR7tGMrLPEEVw3YYs8c6C0KIAYz0s2yEEEIIIYQQ4kAmg25jKF/JoNu+6Pv2PyHE+FBK0dArCSGEEEIIIcQ7hAy6jaF8udJtn6Tf0CKEGF8q9vBiFCGEEEIIIYR4p5FBtzGUQ2Sss3BAqtRyYi/EeFSq5Uo3IYQQQgghhEiTQbcxEiKIVlL8+6JMFY91FoQQAyijZOiVhBBCCCGEEOIdQkZ9xkiYQd58IoZUquRqGiHGowoZdBNCCCGEEEIInwy6jRG5tXTfycPahRifqlT5WGdBCCGEEEIIIcYNGXQbI3nkjHUWDlilcnupEONSiTzTTQghhBBCCCF8yhhjxjoT41lHRwdFRUU0fvkhcl5qB9eAViRrgrxS/xIRJ0TCstlR3Ul1Qx7HMA+0RtfksW7nmzQnW3AsQ2N1NxrFxmntvLiwgR1nhHkl8necjf/BrX8O07YRANPVAK4D2kLlVfvTqqAO65ALsKadMarbn3xgE84zO0g+vcPfdl2Th7uzC1xDvW7kpcoNVDXkYjnK39bahgJwXH8aYEJDIYczB60D6Jo8Nu1cS2Nyl79OVUMuFZVbyM1vIZyTpKi+Ep0M0ZDTzZ1nNPPTixsB+E/wj5xkHd0vr87G/4Adg0AEa9oZOBv/Q/zaRtz1LqarICvffbcjPQ3489zlTZAcH9VDTdiGPrINwm0otwCCSYxp9PKOhVvZhdsVhZ4IpqOMUFEJasZKdKENBRF02RxMVwMqpxwCEXBt3J0vAi6EitBlc1DF09B1C7NibKD4VDnlqIq5BI/9Dslnf4zZvQrTvRuVV+3ltXgaWCF0+SHed0HWfsnkbPwPzut3YDrr/ZhP58N9c/aAsQcMvB9z16OKNqMKOzGdcbBsTEsdOjIPt7nMX/+Jqlcp2AnasYhbCT8+ZzVWU+DmgQWTaqYPGSt7ip3hfmYs0nSNy3M7nvXr63F1x+PwJ7q7YijbIlaRpLSlGForMMkKrMPjmI43iHXZJJLQGQF320RsU8DOnCQvHNvAiwsbeOSMrbwYupt5ejbAoLHRN8beititR0F0J9hdgAXGAeNCqBBVfjB64gm4Wx7DxNrQ5YegymbjrpqGs9LB7C6D4lcwHW+A7gZtUHkR3K2l0FENpgo9YXK/8jPqn5hYDBWKQlhDuBWsVkxHASqUxLTNxOyYhQpPGXKf6Lp8QhfNIXjW1AG3L7P+7cuxYKj6u7eSz/4Ykl0QzIPWC3Ce2YG9/t+YzjDoTnS+hdFrMD1hVDgJugyzOwzRCtAVXnkmHkQVrkcV7IKidohGcDtyUEaj8roxThm05mNaJkJ3LXrCgn7l57zRjNncAXF3r7dB7H969mrcRBXWnF2YRCU6VIHbXIaqXIHpiaBDFZDbg9u6FuwEFHShSzVY23E7IihXY3QEYjYqrxPTWYQqiEDOdkxzKXTnoypyMJ1xzPYy6A5jOiuhJxfax/aYHTin/7EDxujYwJ2oSAOqrB7jKFRul9d36ChEFXZCPIy7uww9YRuEbLAcaC3BdOeAqwGFmrQFs7MGVdIK4QTu+unoKZuhKw+K27xlwSRo430mHPcKQrteej25mI4CTGMlpnEiuvh4TEfBqBwXVeUKyNuOymvCxLsgGcDsmoyOHJ3VJxg6TXiw8mXKGyLkuGFmFDtszn+dWqeLYMghEgiikrNxt04BXU67jvJE5asA/frGw53ODeQyr7Z/2zdmsbSH6e3V7bzsrhrWtpWYQmZb04nWGF6rX0GuE0ZbFhuqd/dbv1gVclzjwaxOriVqxWis7uYoazN5gW6s7gi5RfnEmhyMrTDATp1PbmeEKns6QfLQUyYcEOU3YJrFr2DUw2DbAKh8G3dbBSq3G1XYidtVgMprhUTQq895CsKtqMIOTFcOJHNRkS7I7QYribujFpJB9KQtmI5CiOWAU4TprsIqn4K14HDCnzxvxPsMmdJpu/XPZp3nDqdfGP/j3dgvvobp2YoKxzHxDsBgdk9Eh+f3q89Z5TlxO9iNuPZmVMFuCMTBUpimQrAMtNWhp3fiNneC432fKo5h6uswnTWoIoWevAnjbEXlt0N+B25DNXrqJgglvA8kA+AEcDdN8cp56mZwNe62CaicGKajCJwCaCkEE8B016BLZ6Lyqgdtu0xgE7p8OxRuxd1ZgzKAyYecdlQ4jru7BD1pB5Q0QjyEu2UyuroRkkFIWpjuPOyeXHpyXPJLGlHRHFTQxo0kYOsEnLYS4s0VvFFSREFuA0U5beRr6LAtCk0cunMglKCjMEm0s4yq9RUElUPQuJhJ2wnXbse0FWEaK1FaQ6gHPWkrBG3crRPAtcBVEE6Q3F2JWXMQxAoImAgU5fn7VuUHUWWRcVMXjXkGk2xFhdtoyW8jacUIbaumsGM62tTSWJfLxh1rstqqLXWdfPdXN9He3k5hYeGgcSyDbkNID7r1LUhjDPMS72Gd2UKQAEm8hvHN0INM1RMAuM6+hf+xr/E/EyFMDK9DslAt4Inw7aO4JfvHXc4DXJL8BgBf1h/nl+7NACgUhv6h9UzoLo7QcwG4JPEN7nIfyFpeRAEuLp10cY4+lQus93Fe8otZ67wQupvDUif2wvMX599cnPw6AD8KXMnXAp8a4xyNX9fY/8f37F/h0nvCfl3g2xyrF/CE+wIAVwQuHqvsjYpJsRNpogWAB4L/j5P1QqriC+kgyiRqWRt5GIAN7lZqVAVhQnwi8U3+Yv69x3Qz2z8hhBDi7eB/kj/nOudWAO4O3MB5ttcvPVEfxcOhm/utf1Ds3WyncY9pTmMiG9k24LI7AtdwbuD0t5jr0fGS+xonJD4y4LKlwT+xOPkxf3oqE3kz8h8Azox/isfN8ygU05jIBrZmfbaUYurDT/GE+wJJY3O2/bns7w3dwzmJL7Cdhqz5W8JL5VEX4h3rf5M3cLXz+2Gvr9FZ50P74hP6PApNHn8wf6WLnkHX+0Pw/+NC6+y39F2j6SvJq/i1cwcAS0N/4hg9nw3uVg5JnJm13ie7zuU35T8cctBNbi/dR0opZqgpACSxqaMKC4uNpvcAOkdNz/pMDmH/7xlMHpV87m9TVJ3/dyddBLAABhxwA3jTbPD/bqS53/J2OrFSafzH/S/PO8v7rSMvUujvTbe3XPvGnch2tJ7f7wDzUeu9zNOzuSJw8dt+wA1grp7p//0D+9e4uH7cbGUHUeNd/ffexGcpi7+L/Ph83mTDgGmlRQhTRvF+y7MQQggxFo7S8/y/H3T/6z8iptHsHnD9T1kfypqexywqKc2adwgHDfjZECHO1IvfQm5H12w1bdBlOYSpogzwTu43sY0m4/X9j9bzAe98IUiw32dbaGOju42TrWNYEjieb1ufz+pjPO+spJW2Ab5Tnpkt3rmOzmirhmNfB9yCBPy/b3Hv4f/M34iT2ONniinYp+8aK9PURP/v9Hn2FFXHkWouJRnPl3/NXTOs9GTQ7S14V0Zg19OIg8PqjEGlmWoKCzjYn84ciMpVb4+DwlTVe1XLFnZwCsdSQiEK5c+PZAw2vulkDLqlOiuZywHmM5sz9SIA/ur+J2tZHVWUmMFHkd+p1piN/t8y6LZnx6oFnMsSf3C3glIKVf4Y52p0fUAtYQJVRAjzkllJXfx4Vpm1/vK1ZhMb3W1sZBsm9b9dpjUrjcwDLkCSJAUqDyGEEOLt5HR9AsepwzmCQ3jIfZoqvCupGgYZdEv3YdNWsda/ujztnzzBdCbSVxH55OgD5xyhQOXxAX0adVT584IEudK6hAmqxj9PSJ/cX5L4BjNjp3KT8zfO1Is4hvmsZkPWeUOYEBOo5lHzrD/vVOs4XFyKyCdEkEfMM8QGOMnP6XNOIcQ7yZHqUE5QRzKdSfv1e1xcjuNwCsgjRIguerDT9+dmUCgCWBzMQUxRB9adMLMzzqdXp86zLWWRIEkr7f6yV83wBt3k9tIhpG8vbfrtC+St7MQ4BiyFVZPH9vrNvJJ8laTlsLp6J1UNucwx01gYPAKrJg97R5TbE3/Hthwaq7sJEWLDpBbenNvCeUddwNcDn8ZtXI67axWmw7us2ntujw06kPFMNxtVMAFr+pnoqgWjuv3Osibs13bjPL8za9vdnV3etIafV9xJWUOIEqeQGYGp/LPqOaoacgk7IQqtAuqrO2mljaqGXOqcSpaEF2HV5HHbtjtJOjYRK8Km1PMc6oKdFAY7MHlRahtKSCRtGksc/nR6K3ef3IGFJhpeiVKqX17dxuXgJLzniVUtwG1cTvLuHTgbEpiewux8992O1DTgz7Mf2gw7B79MdlRVNhF4XxCsVlROBJTBdG4Fx8Uoi3WV26hsj6NiIQqSE7AqJqOrV0OJgyrNR5fP7fdMN2fbf8EYVG4ZunwuqnASumJuVowNFJ8qpxxVNovAnPOx37wL07wG05Px3K7CSWAF0UVTwQp5CWXsl0xu43KcDf/GdG73Yz6dD1NfN2DsAQPvR7MFgttRBVFMS7v3fK9kFbp6Aaa1JGv9Vdtf4yV7BcWBQnJqSjjdOnHI2Nib2NnXNEYrzfiONu5I/APHcmms7ua05kYKeyxy7RDNlZrJLcW09wTZrmDNrB0c1pSkoEdjuxbNRWA1VbNbK3blaV5+VxNvzm1h44Iedkde8PftYLHRN8beivg/P4ZpXQfdzWAFvThzk1BQh645Gl13DO7WJzE9LejKeaiS6Zitlbhr4pi2EtBrcXYuB7sTLIUqLcI0hCBRDoEarClT+5Wfs/sxiLUCXagChaEN09OISVgoDSowF9M2A5U/Y8h9oifkE3rPNKzDKwfcvsz6ty/HgqHq796y37wLkj0QzEH1nOzVz+VPYWIaaEUVBnDb16JsIGBQBeWY3RqS5RCu9Mqz6XEM6yDYAAVRVCKO22Fj7CAEQedNhbYgxCYCtVgHHdl/H7y2G3vZLtgW3ettEPufqquHSVVYc2Kgy9HFJV4bHFwPtkYXl0Agibv9NUyyCxW2UZV5mK5NEE+CE4TcfExnG0b1QDIfXV4NzhboCkIiH6omQnsrpiGC2xmCZC105WHe6GaQC+1HRfg7R42fY8Ouv2GcrZC7BVQPJtiGUS7EvWcumkQAenKgsBPCDtqyMR15mEQEXAttBTGl2zEd+ahIHBNKonaXYoo6IBlA5/XgtheCUaBAqyBGxTEaUAYdUJAMeml2lkDXJKzp74fOgtE5LgbXg1WPyqnHtDdh7AAqMRFdc2K/PsFw0nx4+yNss3dSEmwjpyDGtNYkWAlqA5XkFS7ANNVAoAIshV0d4uf2H6hqyEU7GmNBQ3U0azpUU0hiZwfKATd1LK5qyKXaKefM8EkHVD/jbvshWnfuRDva35Yrm84nx4R4iddYUbUZqyGOdjRBK8DWau+c4HhzBC+rVeysjlLSEEQ7GsvSbK/uAGBB41RO5wT/e15puBFtdhFKKJpLHUp3hbAcC0fB+qIQha25LNKnAmGsgyYdMOXXL029FqflPkh0eM+bKoxgmoIQSEAkidJBjNsEtoWJ56ELijFuI4S6wFYoVYxxYhDpQQXi0JXvPecrrxmTCEMiBx2aDKoWa+JMrHmHETz1hBHvM2RKp+3ufDHrPHc4/cLkI0/hLF+Fs2s7KpjEdLR4z4VL1KArD+9XnzPLU1c0YWI7cVs2QGg3SndDxMK0aDBBsOvQkwOYpk24sRgohS4KYZrLwJmAKshFVezEbVsFoVbIbUV1RaBkF24oBsqAHUQ7AczuUq98S1q99rO1EJTGJPLQkUpMcw6GCFrVoSYcis6vHrztMqshtx6j3kRFI5AMQbgW43Z4z6WLhVBlHZjc9Rg7AM3F6Lw4rhPATQaw4yF6nByaCqFWtRBKWiggHrHRLcUkuwtojRezdEKEsmSSMrrIVUmiIUN5p8JKWrgBl10lSdrdPKauqiIvrsi1XezqXZTm70LHwrgdBXQHNAWhKLqwHRWwSXYUYfVEME4AYzm02/moLZMojk0CKx9dU+LvW1UcRlXljp+62LISk2gC2kgUubyglpHXUEw4MYFDQsdjTZnKY9sfZ7O9HddycatzaK10+MHlN8gz3d6q9KDb1sBPKVQj88bRHbVRXlw/m4sD5xD7wyyI7hjeB/NriXx6eKOpI6Vj6k2Y+q5R+77Qt64G5f0alvjVZd7MzkKc4nZqt95FEfk0Rp4f8LN+WabKKfaHWcQvuxSvB3iAK+gg9MXfgHJJ3PAFQpf9ltRTNb3l+V0Q9Rqc9HJV1LH339MnxgaNT6WJXNlO7Loi78H1AyzHuJBf601n7JdMg6afX0viJ9/Yu9jLKCOM9suKDrkdeUiF7d6JExD64m9I3HApdHoHjtC3rgYgcePn/XXSy9J21EY5c/UjbIo87s8bNDZGsB2LXTvEperpOMyYjv/4a35MpLct3eZAqt3pHPygGfrW1SRu/Dyhy37r/feLv4H8KImrvt5bdnsRc6ouj8JNnxhw2Z7qx3DKcKj6u7f8fao0ieuvxdR3+eXhx8/lvyZxw6V++WBUdnkWtvtlhjLQme+1Wel50Tww2vus1N0DUuhbV3v14Zs/y9qPfqx0FEFB7/HJb7fzu7zPpWOH3vbIO+al2nSjvPk3fh46U23A2+E4P9Iy61o0z+snpOocBVEwyivvb/209zNG+X0JwFsvvT6Q+Mk3vPWN6k0rP+M4rfqcUqTahcRVXx/1+pzZn0wbkT5BKnb9uB2pdMWQ0vs03c9N3HBp78LOwt7+3wGuX+ym28as/savAXqPn5je+pr6TLo+Jn7yjVS6P+1dTkbcFkcpavrmiPcZMu3xfHeIPk175VXguBl1TgFmePVugPoKvedK6X5cZiyFvvgbEr/6ghdTBR2ELv81YPwy9dvBPrLKOTUd+ubPvPYPBu1D9+X3M7/5s97vS+/jVHvbt+3Oapth4HY8I/+ZfbOsc+9UPA103PXzd/mvoaATOgu8clLGOy6ntzt1HAe87/vVF1LH6v4XzIw3mX38rPGIPeyzDtPDJPsb8ky38apaHvK5TwoPsPvBhXinKEZu+xZCCCGEEEKITDLoNkbkzTr75kB7CKMQ7xRl8oITIYQQQgghhMgig25jRAbd9k2JnNgLMS5JmyaEEEIIIYQQ2WTQbYxUUDL0SqKfUmTQTYjxaOoB9lYiIYQQQgghhNjfZNBtDGg0ARUY62wckMqVDFYKMR7NVFPHOgtCCCGEEEIIMa7IoNsYsKTY91mpKh7rLAghBjBdTRrrLAghhBBCCCHEuCKjP2MggFzltq+KlbxIQYjxqEKuQhVCCCGEEEKILDLoNgZCBMc6CwesYgrHOgtCiAGUq9KxzoIQQgghhBBCjCsy6DYGLKyxzsIBS95eKsR4pChGrkIVQgghhBBCiEzKGGPGOhPjWUdHB0VFRbS+WU9+dwCMAQUqL4TpSoIxdBHjmOBHyO0KYGExS09hdt5s3uxcwzo2YyubUG4ubXTQnW9ze+n1nFi8EACT6MTEOzHJqDed7Ep9s0IFc/1pFcxH51ejQqN7Yms6E5iOBG5j94Dbnjn95eRPeMYsozvX5t/J3/Cys4rfuHfSkNsGQG5XgBzC9Kg43bk2uV0BDucQinQ+j+a8xIk9h/ELLsc4XVyrfk9r+w42mXraClxWT03SURbk/uBvOdE6auC8JjpTeVKoUAEm0Ym7owvTmYRkaNB8Z04D/rzE8ztI/vIV2NYzWsU9sCIFZ9aQ89kZGLsblRvgXudhHtx1DwbDOdbpnFFyOu7uLYABnY9VMQkTaEflalRuCJ1XgUl2oYJ5gAJjcDq2gDGoYB46rwIVykeFCrJibKD4VME8VKgAnV+DG92JiXdg7B5UMBcAFcrHi988UCqVUO9+yWQSnbidOzF2F+mYT+eDeHjA2AMG3I8m2YlxuiCUxO3o8LYtkIdVVguJ8LD3+55ifH+nMVZp2o3ruCP2J5YnXyVUUsXZ3cfyNKt4Ur/B7mKbU1un8VnzfmpUFbrQ2zcqmMf7zJd5o7Ke3IIC3qx4LGvfDhYbfWPsrUhufxa3qxHT1QhWBOxucOKooilYxVPReVVePpI96LxKLzZjIUw06cWXHcVprscku0EpdGEBpstBWblevSgu6VdWTvN2TLILY8dQeQFMsgu3ZQfKdTEarIpZKFOCjpQPuU9UfhBdm48qCA24fZn1b1+OBUPV373lRneCcUFplCnDdCRw6pvANRinB5Vn4TQ3Ai6g0EWFmKiNCvSWp9Ncj9uzCxLNEE5iYm2YXZtABTDBIqyJ86HbQYVKUcF8rPK6fuXnNnVjr24hcfULY98+i/4ODhL+7kJ0jfbqUl4IEmFMshPobYec5h29da+oALe1wZvGQuXnY9p2YZwYKpCDLp+E294Ejhd/VsVk3M5OTDSJibnoUCkkI8Tv2woPb4T2Ud5mDcwuIv8v7x03xwa7cR2mpwnTvQVMM+6WJ1DJLozroApqMLEesIJghVGFVShtMNFODEEI5KGKJ2Da30TFo2D3QF4hpr3e+w4DqrgC09EGOgyBAlTFLExHE2gLhYMqrgUDpiuBCZaj8icSmn4CJEKjclxM9wmMbsNtaQKjUTmlBCqn9+sT7M0+Mk4UQgm/rbvPfZSni7bSEO9kc6ANowzduTbg9XsVisdCt/CzyK082PE4CsUdoWs4KP8gXu1cxXeS19Kt4hycP5PrE98cF32CkUjjotYvscZswihDLNehsqsIMNTpaubmH8xX4xfzw+SNPGCW0p1rc3zXfK4IXsRsPTUrTdc4fMn+Cc/lrKK8pYfcpCHPgaZCm7J2CwMooL4UzoudwqWRTwIaXVx8wJRfv2k7ir3jVUysBdwEqrgc0xEFZbzGJqKheTPGBawwunIqpmUnxu1BOQkoroKubm99uxOCCmM7mI6dQNA7Hk84EhUpxyqrQpeVoctKR7zPkCmdttvdmJqT3effU5/GbW7x/rW3gyKjj5+LVVa3xz4+oUSqr9cIdhTjxlE5AUxnF1gRVLgMXZSPs3sLpqcVsLzYSUTQ4VKv/xqO4TSsgWQbxHaD7sZ078S0vQkkgTCqaCqmJwkqAtpCV07HRLshWOS1pxVToMsBKxcdKcUqr0UF8wZtu9zYLoxuwzS9AXYPxljoqtmYrm4wDjgJVK7G3fYoxNrAdqCoDnQuxg2hwhWQW4Eum4jZvZaunh3ckbiHpiKYHpvE+aHzieWVclr5T8npsci1XQodTXskTlEUAo7CtqAj36E7YFGzPZ9IV4CzYkfySOHTzGiwOcUsYJaegS6vxm18HRJRXBJYpXW4rV2gc8EKY9UdhNseRFslqGAOVmXv42hUbhCVHxw3ddFtb8Ukohi3G5UbBAyvdL7K780/CIQKObZ0MRfF3pP1mU7TQ8mcOtrb2yksHPyOPHm42DDp2nwCgxRkEZCM5fIGjRgMr7KLydTTSDMx4gCU4dJMh7d+KCPYRvAEdH9QBSFUQQhdlz/kutX2bF63H6WSMp4KbOZkfQoXJ36Gi+uvU0QBXXRj4wCwhmf9v38R/DBBazo7zS7+N/5fDAYLCye1HByK9vBMt77lqEIFWFP2vWwDR1TBFxbs8+f3pwcTf+OfrkUX3Xwv9DnCeu8fYm+VzRxynaHiU+fXwFs4EKtQAVbZIOmHGHbseSr3OR/vdNasdzHTsbg0eTGwm+26mk2mhVeNd+b6Oq+xUVUyX8/hA9apzNbTAXg+to0eYhysavul+VZjYziCE44dcp1+HcV8oDw9UUKAiXv1nRaj9+y6t3p8GOnjS9+yHKh+BpmzxzRGovysWSUET6gj59OHvuW0xGjKbqP3tu4NR+SDEhNp1qx39ZnzvTHJx9jZX32CKqC3rWu0t7HT7SBmclhlNgz4ic+q63nDrGctLQDkhCdgqRJed1p4LLkWgNOs9xEIvn36MQvsE7jHfhkLjYPLBtpTf2/jGTbz9fBXeDa+lddTZbKJ/1JkTeKa4DFZ6axy1rLB6eINd5c/r5ZK70IGurPWPc4qIRicvv83br8rIXDIyLePQ9mf56TptHVB//7iUHRZKbrsrT3CZKi+CRwxxPIj39L3751KIB3Hpw+x7seHkd5p5ADXxJ5mFy1Uk+QTkU+SYwxr4z8kQXLoJA7rQaGYalXzJ6cVgEODH+IIa/Ewvv/AMVAfNdfN567ELwEIWlP5RJ92WncM7w5Gub10hCzUC7JuG93CDn/ADSCJ7f9drN6ezyU7TR/HdDWJJpp50P0vE3Q1c9WMrHWidPmDbID/dxlFnKy9q//+YP8Fg3cBppOxLkC5PKydrWYnd7kPkCDBOfpUpu/DgJsQfS3U86nE69Q87D7NRrMta/k/zGP80LmRzyS+C0CX6aaHGCD1UgghxDvTFYGLuSd0I5cHLhp0nfvMo6xlsz9dSB4AL7mv+fOO1ofttzyOhXP0qcxSU3EyfnhP/93Abv7pPE65Ks76zEPO0xhj2OLWs9R5AYAb3T+x1H2RAnL99XbQRE/GOVZahMh+2BIh3h5mq2mAV/82udtQSpFLjr98hpq8x89PZQKtqQuIAKpU+R7WfvvI3M4m07zP6cig2wipVuXYGQNraROo4ubA1RzOIcxmKgvUwRSb8Xtl21sxX82h3Xi3jzzoPkW36eEr1if9E3kg6+CbqYMubGziJsENzu3kEqGGin7rlY/iVSbj1f3Oo4A3kDtPzx7j3Ii3C0tZfMv6PHPVDHqIE+3zC3Lai7xKZewY7rD/6c+rQF6iIIQQ4p3raH0Yvw58P+skdjAFqUG3F91XAVAojtRz92v+Rtt0PYkwvY9OyCHs/x3A4jrnVtazxZ+nUaxjMznxQ5mVWML7k5dijPEHJruIcU3gG5ysFjKZOmYxtd935qhwv3lCCM8V1sWcrk8A4GbnXgDuCPyC3wV+yOf1RzlOHcEFvHfQz+9kF/9wHmcGkzlaHUbtO+QOowpK0Kkhs0aze5/TkWe6DSH9TLf6U+4g7/UucA1ohSqJYFpj/nRHSZJESyfKVSitaSnpprg1TJ7JIUfnsK24hThxtk/qYsmSDxP50uEA2K/cgLPlMUx76sATa/WfmUOkpHc6p4zAvE8QOOKLo7r98euWk3x4C86KXYNue+Z0VPXQVhInr9Ui30QI6iCbinfh4FDcGka5CqMNbSXxftM1bUWEDn+KQEkzBBOoNdNRyQBJrXh8YSufvGoTHZHlg+bVfuUGTKITFSogcMQXsV+5gZ6vJDFbgph4ZI/5Tk8DvfNa+v+KNlbU1I3oQzag8jpJNFaiSloJRKIoFBiFqt6N6ciBeBh320RUWRd6/ivoiA2BAOTXerEUKkAFIhjjQNsmL3ErBPm1qMJJWFNOyYqxAeMzVIAuP5jQ2X8hcf+HcXe/CYkOL14BVTgJFYigKg/zL1PP3C+Z7FduwH7tZuje7cd8Oh/OU8cPGHvAgPtRVa1FT12DKohieixUOI67bhamcyamtXj4+32IGN+faYxVmmrCPyGai7E1zqR6dH017s4a3O4Ceha/QqHphF1lmJ4cbK0wG6eCnUd7MMlrhzUTP7WcD3/l61n7drDY6Btjb0Xshhqwu4C+hzEFORXomiNx65/3nkdUUIcunYn9xJE4L0cwrcXouY+B2YkK93jPPglo3DdmYBprMPESVElFv7LSs+/GtOSjynZjuvPRVQ1Q2Iq7YRq6vBl33WzcDbOBkiH3iSrLIfzpuYSvHPg29qz6tw/HgqHq795K3P9hTLwDFS7EbPofkg9vgcDfMDsrQScgCGrSG5imSlRxG6atAtNSiGmphEQhqqQCVfE4evI6VEUTFHZimipwt9eiS9q9Mu0oxrQVYTZNx22qQ+VP7V9+O6LQ1f9HLjE+WCc8jbNmFtaCNzCNEzFdtZjWYqwjlmIaKzFdtaiSVrB3YVyDnlCPKohDcRPuhimo3B5MZxHYGl27A7e+DlXagSrdhbtxKnQWoCbsxjTnYzZPxiSC0FYCyVD/pmCUqRnF4+bYoCb8E12zHVWzA9NZgCpqh0gM01iFqmqEWA7O63Owjn4JArbXBraWYNqKwHjPY1XTN2I2TUFN2A4BB+fpY7GOfR7aC6G01VtW2OE9OwkgHEs9dwoIJCFagOnOw109E7NxGtjTMD2RUTkuWkcsRRU3Qk6n13YmA7hrZmM6Du7XJ9ibfaRq16Nyu1CVGyG3G6Vd3M1zcdfPADefDtVFc0kPLi5FrUG/n9tdAkVtQYKuRa7ORZWEaWvZjXLBaEVxafm46ROMVBoxN0ZC2ewu6aawNYB2Na526SyxKWwNoVxwtTvgOQEoJreV0eFEMdrQUwJT5jyLym3H3VGNXd6C3lYNtvekpJ72CsKJELqnGNwQqmL81MW9ndZzH0OVvOY9HhWFKmrHWTEPXbsTVbELZ90M9IR6L6a316Erd0NOF6qqCbOrApJBVEkb5HWBcnFfORzjBLCOeQGzswYSQUiGcLdPRgVLsQ6eQ841XxzxPkMmP+3GFVnnucPpF/Z89QbsletRxRtQud1gkqAM7tpZmI7Ze+zj62mbgHZU5UZUSQtY3h1U7qYpqKJ2zJap6LnrcbeX+u2erqvHXT0bt7EGVRrFOuxVCHaiSlsgL4r7yuHoY58DK3UhiavB0TjPHw1OAGvh8970y0egp2zB3TAN4hHoKMAYDbuqQVdDpH+MptsuY8fRM1ejynbhLjvc259GQVEbKhLHeWMO1hHLoKDTi4Pnj0Yfvtz7Hldh2oohFoGgi5qw1euX5UchtxvnpSOgpRSzsxbUBPQhz6OKGkEncHdOgIp67zhR3IqdFyOxaTrh5iK09vpdeu7r6GmbMDtqcNfM9I4fRmEtfAG0i/PKAlRhJygXcmKYNTNx35ydevaehoDq3blBDXnBcVMX9fQHMZ0WqmwXKi8OloP7xgwSjZXEYrnsLtFMaavI+ky01qLu0QvkmW4jxVm6HVTvr1dmdyxreeFuIOPS59LmzF9bYkzcnQvkctD6EhJrVvQOui27EaI7Bv7SWMYljPFW7GU3jv6g2/XLMfVdWfP6bnvmdD6a/OZ0OblAnKm7+wdgeXPugNOhI5/zKimQuP9MDBDoLOTdG9vJvaphj3n1yzK/1ht0W3Yj7nOXpjrhsT3me6Dp8cTsLsea91dQLvo/7yZ02W9THdtU5za/C5Xn/XJq//M9hC77LSqSulLJTkDbeu/vWHP/cxLbhrb1mLb12C2rswfdBorPWDNu51YA3E0PegfP1HwA07YeozRs/Lc32AdZ+yXrq/umH2v285G4Pm/I2MucZ+LFWGe/QqoHC8rF/s9p0BEBYoOmsac093V6JNIYzTRN4zy/sxE54yESj5+I7ixEA2VzvFs8Ejd+HozyDhqdXp0uJ8hJj+cSXa3gK9npDhYbfWPsLbGjgyww0NOUnYe29bjtG0n+6dBUTLRhffARb5nqvQLXvv80f/vM7rbsVHfHsD74MokbP0/ost+SuPHzBL74G8iPYt/xUQJf/A32v86CjlxI3fqyp31gWuLEr18++KDbQPVvL44FQ9XfvZUuT6M0ieuXYOq7CH1rqR8bAKFT/07i4Xf75YNRWeVpGqcTOOkhyPceCq0M2Hd9yC9HVRCF2h0kHl8MHUUY2rLyMJ7baeGxTnjaG5w54jkSN87322DriFSsdEQwBXmQutrHOvM/Xh3M78K+4/ze2AECxz+L/cCZqWOei333B8AoQkse8dbpTN05YMbHjRtmXVv29BgeG0zjPAJffNqrV5E45Hd5da5iN+T1QG4M9+njCZz4TO8HS1tRoUTvtMJbP+SdbPnrl7b1LsvPOE6rPj2MUBuqtA379gugoyg1c/jH47dyXLSOWJrVtgOp9nnPfYKhvtckizAUETrlPj99+99LoCMIxCkkQGHzAHe0ZN2V5PVJiwj2ptvcNuw8DHedsehnZM6LABECFDZnnweU97lDa7BzAnAoS1852AzWh15O9e1OIXLZb0k8usj/TE5nYW//DzBtbcPO50hNj1Sa1gcfyY7d/C7c5QsIHP8c5Edxb7mYwBd/DYB97zne8RMDBVH//WXp+g7gPH08AIGTnkRV9D4bz/7nWdBRhPNylJxrRr7PkGmwtIfTL0zcFgWnktAX706ViwIM9gOnD1mf3bh3rMmsrwD2ve/3jjVLFxF4z7+w/3mpvyxwwjNeW9FZiOnsQJ+9BjB+mTpPH4+V2W5aLlgubkY5A7jPHEfgxGew7/hoKnOpndOZrg9tWXnNbLsSN36ewCkPp77vOELpfZxqb90/ftz/HkJ2b57yvJdLqUjGhSP5XSizy8+/+9zCrL6ZdeHS3rbsgdMIfXEpiYdOJXjZbwkoF/3AEjDKP3+0zvs7FHSiQknsf7zXizOjCLzfuwPGXb7AO2YDKEPi32d4g4HpX2fsjOOE7UCPM27qovXBpak+/mO9ZXL/aQQ6C8kH8puhb7w5a4f3Qq/x0UsRYhjSl+MLIcYXjRp6JSGEEEIIIYR4h5FBN3HAGOgZb0KIsSeDbkIIIYQQQgjR3wE96Pbf//6X9773vdTW1qKU4r777stabozhe9/7HjU1NeTk5HDKKaewbt26scmseMsm6uqxzoIQYgD6wD6UCCGEEEIIIcR+cUCfKXV1dXHYYYfx61//esDlP/vZz/jVr37F7373O1544QXy8vJYsmQJsZg8E+ZANJm6sc6CEGIAWh3QhxIhhBBCCCGE2C8O6BcpnHHGGZxxxhkDLjPGcN111/Gd73yHs88+G4DbbruNqqoq7rvvPs4///zRzKp4ixQwSdeOdTaEEAOwDuzfb4QQQgghhBBiv3jbnilt2rSJhoYGTjnlFH9eUVERRx99NM8999ygn4vH43R0dGT9E2PPAAVKXqQgxHgkt5cKIYQQQgghRH9v2zOlhoYGAKqqqrLmV1VV+csGctVVV1FUVOT/mzhx4n7Npxi+KsrHOgtCCCGEEEIIIYQQw/K2HXTbV9/85jdpb2/3/23btm2ssyRSqpUMugkhhBBCCCGEEOLAcEA/021Pqqu9N102NjZSU1Pjz29sbGT+/PmDfi4cDhMOh/svKApDJ959jgqwNDhuv2ljwCiDYxkCjkIZhVHgWK6XTn6QyPxKP1ldeRhushuSUW+G6/R+ibZ6p3UAXXnYPpfHvrLmV2J37YD2+JDbvsdp8Oe5yuBaBu2Xj8GxXCxH49bXonK7AVBlzeBqyO+ipbaTqiEG3XTlYZiCOlROuT9NQQKiITB6r/M5HpjU/+uidtyd1ahIDFXTgLuzChWJ++upgINpKwZX+8t1oXdrtFKADnixpLQXV8YF1+79Ih2AYH6/GBswPpWGnDJvOqccepq99LTlzQvmgxVCFU3290XmfumXfndTKi+pmE/lY9DYgwH3oyruLSMTD6PCcVRZMyaeA4nQ8Pf7CMT4PqcxRmmq2p3QEwGjvDIsa8YkQpAM4u6oA22jqhsgHgEDpisP42qMgq4im5KMNs03SGyMXjumvDx0N3mTOgCRUvT0bty1uRAP925bOKMulbaktj3kfaZPWbkNVajqVB2s3YFpLkFpB1WX+ru8GRPNB9caep8ENNZAZZeSVf/24VgwZP3dWznlkOyCYJ5fP936WlRpK7gKFJjm0t42qroBenKyylNVNXrlFLAhFMe0FfeWXcDGtBVjenK8/RCLgJvTv/xsd9/yL0aFW18LkZgfG+k2OHNalXSAsnvbnEgMpQ2qbodXx2p3gKu9uEjHU24PqqYBYmHvM9WNmGTQi41YTurb1VhuOgTGz7FB1e5M1aukV88CNoQS3t+53ZAIoep29H4GIBb2+hIpqiDqrZ8fBYW3fmo9cmK96aaFEr1/a9dbz9VeW5kIQjLi9etG4bjo9ye1C0aBUYP3CfZiH6nidtCuF6epY4fX7hd42zZEmunzBNcCy1Gocdgn2J9pZJ8DkDpHMgQcjTEGFN5yNMrBn+dYLoFUmfttQvo8AbzjjDIQD3uJBqwDp/z69jN21KHyOv2qpAIOqrrBP06quh1+PU33Q7BcVG537/xUfYeMemvord+p8wWKOlGVXvs54n2GDH7a8XayznOH0S/U0+OY5qh/rEh/fDh9fO9Y43j1NdLjt3V+P660xeu3VDeQXmiaS/y+oCpuwzSXgnb8MvXLM5PJLmdc7U1353r/dSyIh8AoL1btEKj+fUy/7ardAV25kNPj95FQoLQL2k2lqcFye7/b0V5ZgH9OiO6Ni6z8d3t9M9cOZp971zRk9+MicVR5MySCXv0i1c/L7ca0lHh1MJiEZNBr79Nl2+DdaahCca8sO/MzCqvPcXoc1UW3vrY3NlLn2elYMMkgjlb++IVKtV09uQaa9xjCXjrGmHEyvPDWKKX4+9//zvvf/37Aa6Rra2v56le/yle+8hUAOjo6qKys5JZbbhn2ixQ6OjooKiqivb2dwsLCIddvMs1MiZ+Ei8t0NYlVoQf4dPI7/Mm9H4DlofuZo6fv20a+TfwyeRPfcn4JwGf1R3jcPEeb6aCVDqooYyLVWCrACvMmuUTYRQsWFp3h5e+4tyS2m06q4gsByCOHg9UM/hu6A6XG+MRCvKP9IvlHvutcz1w1g/fok/he8LKxzpIQQgghxrl/2o/zQftyACZQTYw41VSwka2crk5kpXmTbmKsDj/EcvMG3078kmdYBsA0JvJU+M/UxY8HIEgAjSZOgkPVTF4K3ztm2yXEgSRuEhwcP4MgAU7QR7HabOAl8xoAjwRv5ZLk18lREd6l5nFT6Koxzu348Ffn31yU/DoAn7XO5/rgd5geezfbO3aQqFo95FjRAX2lWzQaZf369f70pk2bWLFiBaWlpUyaNIkrr7ySH//4x8yYMYOpU6fy3e9+l9raWn9gbn+oVGUcr49gmfs65ZSwyqylkd3+8qGu1nonWGgtAMf7+yHzFJvNdn9ZPY3kEGGD2cq71Dy2GO9XgyrK3nEDbgBFqoCDmMxWdtBFDx+z3icDbmLMXRG4mLOtUzhITx7rrAghhBDiAHGadTyFdj4RwsRJ0E2MVawlSIB7zcMATKCKj8a/zKcDH6JSl3GUOZT1Zgulqogfxm/w06qkjHoaASikYEy2R4gDUViF+Lh1Lj92fsNmt54CvJcVVlLKCdYRbLAeG+Mcjj9n6EWECVFKEVvNThzXoZm2YX/+gB7FePnll1mwYAELFiwA4Mtf/jILFizge9/7HgBf//rX+eIXv8hnPvMZjjrqKKLRKA8++CCRSGS/5usj+j3ESfCCWcnfnUdoNN6gW5AAJQx9tdzb3Xw1h2BqvHe72dlv+Qa28i4O5erAV9lFC+ANZr5TPRO+i9bQy/y/wI+5wHrfWGdHCAIqIANuQgghhNgrYRXi2sC36KaHZlrppgeAJL23KW+nkQdYyvvtS/m3+yTdJkYrHbxsVnEnD/jrHaJm+H8Xqczb14QQQznTWuT/3YV3e+nsd/jdeHtSoPI4X5/FTnbxH/dJlpoXiBEf+oMpB/SVbosXL2ZPd8cqpfjhD3/ID3/4w1HMFSyxTiBpeweP+51H2U0r4L19U65SghwV4afW17neuYUteFeyHc5cQipAl+niNdaxgtX8KXk/TuqSuHfyFYJFqgAUXKTfP9ZZEUIIIYQQYp+dYS3icfd5SlURS90X2GZ20k2MBMl+6xoMr7POn7bpfW5gtSr3n8FciAy6CbE3DlUziRAmRhwXw0ymcK5eMtbZGtdOsI7kVvfvAPzevmuvPvu2eabb/pJ+ptvWsuso7Bz+w19ty6Az3ongWC4KRSA/h8BxteT9/T0AJO7/EG79c8N7kcKUUwmd/ddR3f6uc/6F/czIvkgBBcYC4xj/IapYCu1A4KLb/Ic52v9Z4j0EMhkiUQvlz/1kj3lN3P8hTM9uVE45obP/SuL+D9HzyaMO6BcppKkJ27BOfQwViWE/fhLWsc9mv0ihchdmdxm42l+uZ3mdlL16kULdwqwYGzA+Uw9VjXx2A7HfTx/eixQy9kumxP0fwt38SP8XKdQtJHnLRQPHHgz8IoUJ27BOeSzrRQr2g6dhdkyQFykM9SKFg97wX6RgvfsJnCcWYXbWQDJI4KI7Qds4Tx/b+yKF7RNSD4xWUBTOatPSBouNvjH2VsSu3dPtJApyK/q9SCF504dx15ZDPEzgY7f2e5GC/e/TMQ3Vg75IIXDRH3GePhbruGdxnjuGwOInURW7Sd59LoFFT2I/fBpm8+Rhv0ghsGRyv7JLy6p/+3AsGKr+7q3Y76f7L1JwHrwe+5kdBM7+A86TJ/ovUgic8SD2E4uxjn0W55ljvRcpNFX2vkhh6moC734cVbXLe5HCjlrsx08isOhJVJXXjpmeHJzHF2N21MqLFA5AgYtvw/7reQQ+dDfOkydidtZCIkTgotv8aVXVRPpFCta7n/BepFDeTPLuD2AtfB7n2WPA1QROfgL7idQxL7cH+9F3QyyMdfJSnGeOxWybgLxIYeB11EFvEFi8FFXVhNldjirf7b1IYUfqId2JEMm/fpDgRbf3FltPBLO790dONXE7ZtsE1ITtoCB564UEL77dO17kxLxl5b2PUOn/IgXvxQnJv53rtYuj+CIFvz+Z8SKFQfsEe7GP1MRtoF2sdz/uHzvsh07DbJ4yrBcpHAh9gtFKw6SmXQuUYzLOmQxgsBydMc8l56LbvL5dqp/rPLG490UKjVW8XV6kEPjYrdkvUihvJvnnDxE4+QlU1S6Sfz2PwMlPeLH32EkEFj/pvUihdod33AS/vgMk/3QBAMGLbvf6b+CfL9Cdh6rMoeC5/x3xPkMmP+2BXqQwRL+wc+H/YpqjWCc9kfUiheH08dXE7aAcr75mvEjBfuTdXj/uicUETn8Y+/HFpBcGTn4c+z9eX1BVNhE46z/eixQqvDJN/ukCrx3MZCB524V+OeNqb73z7iV59weyX6TQWLXHFykELroN54WjCJ53L+T0kPzTBQQWPeltT/lu0K7Xdn/sDv9FCsnbLvSm0y9S2F3e+yKFVFykYyL5pwu8Fyk0VGPsIMGP3dF77v34SQROWur341Qkjv3QaVkvUgic9R/v2LC9zjtXT71IIV0myT9/GOv4ZwFQobhXllsm+eXb7zg9jupi4IJbcJ47Guu43vPszPMCoy2M42a8BMalIbeTQ5u/9/Z+ptuoao+DSnXqDNmd/gGmA7bKmtZ26qSzLY6zoslf5DathHjbAF9osgdFXNtbd5Q5K5qgLePSyWFs+x6nU/OUDSpV6ZSB9FXlum4HKG9905y6pbSzkGBPJ0Nxm1ZCdAcmv7Z3uvM4b8CNfcjnOGLai9A1DaBczM5qdE1jquBSo4ORGKq4zVs3tTzrosp0LBkHHKf/F7g2xNv6xdiA8Wkc6El1snt2e4Mqmd8RbwOlMd1N/r7I3C/90vfj3GTlY8jY6zPPtPWWkTLaK6vmMu8gN1gaQ6S5T9MjkcYop2l21HhHD0DXNGA3l3kDbICurQfAbqj218G1ej/fp03zDRIbo9eOmd44TeehZzfuhlzoCgKuv23pNgfAtJT6247bv/x0dSN2g1fH7B21qLJWyO3B1Ht/e4PfVtZn+qbhs92Byy6d5YHq314cC4asv3srvU/tHr9+6rod2C0lfmyosha/DfJjJqM8TWOVV2aRGCjjvRksVXbpdkwVdWC3lEIiDBw47bTw6LodEIv0xkaqDc6cNq29HdN0u01uN6a+1qtj6RPHstaMY553/MMor51qqPIGdbw1R3szBzaOjg1mR02qXsW9/kEk7tc5LBcicUx9bXbRpdfNoIrb/HVMfa2/nr8s4wfA9ElZZnqANxAQyx1Wvkdi2yG7P+kvHqpPMIzvNW1FXvrVjb391dSPnvua5njrE4xWGio1bdn+VOqcqU99Tp1HpcvcP8akzxPAO84od3h9/pHY1v2Ypq6tz47dSMwbAEodJ019bW+fP90PwXgDb+n6m6rvkFFvFVn12+ysho4iTKc3yDbifYYM/dM2g5579PvshjA4wd5jBQoww+rjp481mfUVwKT7cS2lXr+lodpfpspa/b6gaStGlbV4iaXK1C/PTCq7nLFcbzp1XPO+NBXX6T7RIP0bXbfDOwbmdfvf5+/jXO92bFNf67Xjmd+datchez/7cZGZ/1TfTNHn3HtndVY/DuV67ZvprZOqrAUsx3sbeXMZ/ghUur1vqPbKG7zvaylNFcogx+lxVBd13Q6/j++XScZ5gXJN1viFti2K2sMDb1cfB/Qz3cQ7yTjpUAshhBBCCCGEEEIMgwy6CSGEEEIIIYQQQggxwmTQTQghhBBCCCGEEEKIESaDbkIIIYQQQgghhBBCjDAZdBNCCCGEEEIIIYQQYoTJoJsQQgghhBBCCCGEECNMBt2EEEIIIYQQQgghhBhhMugmhBBCCCGEEEIIIcQIC4x1Bg4U1uIJ8HoXuAa0QpVEMK2xvZoG0JMLCJ422U83cPhlOFsew7Rv8WbEWsG4oDRESnqnc8oIzPvEqG93+IoFJB/egrNi11ve9uF8xnllMaq4EYJJ9Ox1kLRABwkcf8iQeQ0cfhkm0YkKFfjTyYVJzBaNiUf2Pp8t8f1XsHtJle/GefUIVF4n+vA3cN48DBVpAxQYharejenIgXgYPX8lzpuHoee/go7YEAhAfq0XS6ECVCCCMQ60bfISt0KQX4sqnIQ15ZSs7x0wPkMF6PKDAdBTT8fd/SYkOrx4BVThJFQggqo8zN8Xmfulb/r2azdD924/5tP5UIPEHgwcS6pqq1dGBVFMj4UKx9EHbcF0zsS0Fo9IfO7vNMYqTTXhKYjmgq1xXl+AnrUOs7MW01OE8+apYHaiD30denJAB3E3TgU7D0IRrPkVWW1a2mCx0TfG3pJAPthdgOmzQEFOBbrmSNz658HugYI6dOlMgh8L47wMprXY3zYV7gFlIKDRMzZhGmsw8RJUSUW/snJeOxJ96Js4q+ai37Ucd/NUKGxFH/M87qbJ6FkbcDfMBkqG3CeqLIfwp+cOvnmZ9W8fjgVD1d+9paeejol3oMKFvceGZYvRU5tBJyAIzppZ6PmveeUzfzWmpRDTkoREIaqkAlWxDHfjNFRFExR2YnZVoI9/GnfzZFTZbkxHMaatCD11G26Ti8qf2r/8dkShy96nbRD7n/PU8VDRjPPKQvS0ZkxX2Ktvryz2p1VJF9i7MK7BeXUeqiAOxU3oY57HeWM2+qhlYGvcjVO8Y9obc1Glu9CHL4fOAq+dmrcKs3kyJhGEthJIhvo3BaNMzSgeN8cGNeEp3E1TUDU7MJ0FqEQQIjHMrnKUdiCWgz7+aUw8BAHbawNbSzBtRWCUtz35UW/9cAwCjre+bUF7IZS2esviIVCpAgjHvHQAAkmIFmC689BHvYTZOA3saZieyOj2J3M6vbYzGUDP2IDpOLhfn2Bv9pGqbUflduG8Og9yu1HaRR9cj7s+F9z8Md/vY5HmaOXLee1IVG47+rBVxN88BD1rHdga0NA+ARJgegrADaEqxk9d3Ntp581TUSWvgQugUEXt6AXLcTdOQVXsQh/3LG5TpRfT73oRd9MUyOlCGTC7KiAZRJW0QV4XKBfr+KcxTgDTE/GWJ4KQDKEXrEIFS7EOnuNV2RHuM2Ty025ckXWeO5x+YeiifOyV63FeX4DK7QaTBGW8/lrH7D328fW0nUC7d5wpaQHLAUAvWIGz6mD01K24m2ejF6zw2z134xT0QRtwG2tQpVHczbMg2IkqbYG8qFeetgbL9TLoanA0+vinwQlgYmFv+rhncLdOQB/zPMQj0FGAMRp2VYOuhkj/GE23XfqoFbhbJ6HKdmEd/wzu5sle/oraUJE4euHzmI4CKOiEZMDLUzTX+x5XYdqKIRaBoIuasBWzqwLVkwO53eiFz0FLKWZnLagJOMsWo4oaQSe8c8y1M/1+nMpLog+uxzSHQScBcFbPQk/biNlRg561xjt+GIVprATtohcsx3ntEFAu5MTQ0zfgvjkbEmEwGgKqd+cGNeQFx01ddJYtRh+6FmfVPFReHCxnyPMCq7YMHh26DihjzBh3Uca3jo4OioqKaG9vp7CwcKyzI4QQQgghhBDvWMYYlFL+f4UQYiwMd6xIbi8VQgghhBBCCHFASA+0yYCbEOJAIINuQgghhBBCCCGEEEKMMBl0E0IIIYQQQgghhBBihMmgmxBCCCGEEEIIIYQQI0wG3YQQQgghhBBCCCGEGGEy6CaEEEIIIYQQQgghxAiTQTchhBBCCCGEEEIIIUaYDLoJIYQQQgghhBBCCDHCZNBNCCGEEEIIIYQQQogRJoNuQgghhBBCCCGEEEKMMBl0E0IIIYQQQgghhBBihMmgmxBCCCGEEEIIIYQQIyww1hkY74wxAHR0dIxxToQQQgghhBBCCCHEWEuPEaXHjAYjg25DaG5uBmDixIljnBMhhBBCCCGEEEIIMV50dnZSVFQ06HIZdBtCaWkpAFu3bt1jQQrxVnV0dDBx4kS2bdtGYWHhWGdHvI1JrInRIrEmRpPEmxgtEmtitEisidEisbb3jDF0dnZSW1u7x/Vk0G0IWnuPvSsqKpLgE6OisLBQYk2MCok1MVok1sRokngTo0ViTYwWiTUxWiTW9s5wLsySFykIIYQQQgghhBBCCDHCZNBNCCGEEEIIIYQQQogRJoNuQwiHw3z/+98nHA6PdVbE25zEmhgtEmtitEisidEk8SZGi8SaGC0Sa2K0SKztP8oM9X5TIYQQQgghhBBCCCHEXpEr3YQQQgghhBBCCCGEGGEy6CaEEEIIIYQQQgghxAiTQTchhBBCCCGEEEIIIUaYDLoJIYQQQgghhBBCCDHCxs2g21VXXcVRRx1FQUEBlZWVvP/972fNmjVZ68RiMb7whS9QVlZGfn4+5557Lo2Njf7ylStX8pGPfISJEyeSk5PDnDlzuP7667PSuPfeezn11FOpqKigsLCQhQsX8tBDDw2ZP2MM3/ve96ipqSEnJ4dTTjmFdevWZa2zbNkyTj31VIqLiykrK+Mzn/kM0Wh0yLRfffVVTjjhBCKRCBMnTuRnP/tZ1vLXX3+dc889lylTpqCU4rrrrhsyTTE4ibXBY+3ee+/lyCOPpLi4mLy8PObPn8/tt98+ZLpiYBJrg8faLbfcglIq618kEhkyXTEwibXBY23x4sX9Yk0pxVlnnTVk2mJgEm+Dx1symeSHP/wh06dPJxKJcNhhh/Hggw8Oma4Y2Ds11mKxGJdccgmHHnoogUCA97///f3W2blzJx/96EeZOXMmWmuuvPLKIfMrBiexNnisPf300xx33HGUlZWRk5PD7Nmzufbaa4fMsxiYxNrgsbZ06dIB+2wNDQ1D5ntcM+PEkiVLzM0332xWrVplVqxYYc4880wzadIkE41G/XU+97nPmYkTJ5rHHnvMvPzyy+aYY44xxx57rL/8j3/8o7n88svN0qVLzYYNG8ztt99ucnJyzA033OCvc8UVV5if/vSn5sUXXzRr16413/zmN00wGDTLli3bY/6uvvpqU1RUZO677z6zcuVK8773vc9MnTrV9PT0GGOMqa+vNyUlJeZzn/ucWb16tXnxxRfNsccea84999w9ptve3m6qqqrMBRdcYFatWmX+/Oc/m5ycHPP73//eX+fFF180X/3qV82f//xnU11dba699tq9KVrRh8Ta4LH2xBNPmHvvvde88cYbZv369ea6664zlmWZBx98cK/KWHgk1gaPtZtvvtkUFhaanTt3+v8aGhr2qnxFL4m1wWOtubk5K85WrVplLMsyN998894Uscgg8TZ4vH396183tbW15oEHHjAbNmwwv/nNb0wkEhkyz2Jg79RYi0aj5nOf+5z5f//v/5klS5aYs88+u986mzZtMpdffrm59dZbzfz5880VV1wxjBIVg5FYGzzWli1bZu68806zatUqs2nTJnP77beb3NzcrLZPDJ/E2uCx9sQTTxjArFmzJqvv5jjOcIp23Bo3g259NTU1GcA8+eSTxhhj2traTDAYNH/729/8dd58800DmOeee27QdC699FJz0kkn7fG7Dj74YPODH/xg0OWu65rq6mrz85//3J/X1tZmwuGw+fOf/2yMMeb3v/+9qayszAqIV1991QBm3bp1g6b9m9/8xpSUlJh4PO7P+8Y3vmFmzZo14PqTJ0+WQbcRJrE2cKylLViwwHznO9/Z4zpieCTWemPt5ptvNkVFRXvcBrHvJNYGb9euvfZaU1BQkNW5FW+NxFtvvNXU1Jgbb7wx63Mf+MAHzAUXXLDH7RLD806JtUwXX3zxgCenmRYtWiSDbiNMYm3PzjnnHPOxj31sWOuKPZNY65UedGttbR1WOgeKcXN7aV/t7e0AlJaWAvDKK6+QTCY55ZRT/HVmz57NpEmTeO655/aYTjqNgbiuS2dn5x7X2bRpEw0NDVnfXVRUxNFHH+1/dzweJxQKoXVvkebk5ADeJbmDee655zjxxBMJhUL+vCVLlrBmzRpaW1sH/ZwYORJrA8eaMYbHHnuMNWvWcOKJJw6arhg+ibXsWItGo0yePJmJEydy9tln8/rrrw+aptg7EmuDH0P/+Mc/cv7555OXlzdoumLvSLz1xls8Hu93q3xOTs4e0xXD906JNTH2JNYGt3z5cp599lkWLVo0oum+U0ms9Td//nxqamo49dRTeeaZZ0YkzbE0LgfdXNflyiuv5LjjjmPu3LkANDQ0EAqFKC4uzlq3qqpq0Ht8n332Wf7yl7/wmc98ZtDvuuaaa4hGo3zoQx8adJ10+lVVVYN+98knn0xDQwM///nPSSQStLa28j//8z+A98yFPaU9ULqZ3yv2H4m1/rHW3t5Ofn4+oVCIs846ixtuuIFTTz110HTF8EisZcfarFmzuOmmm7j//vv505/+hOu6HHvssWzfvn3QdMXwSKwNfgx98cUXWbVqFZ/61KcGTVPsHYm37HhbsmQJv/zlL1m3bh2u6/LII49w77337jFdMTzvpFgTY0tibWATJkwgHA5z5JFH8oUvfEGOpSNAYi1bTU0Nv/vd77jnnnu45557mDhxIosXL2bZsmVvKd2xNi4H3b7whS+watUq7rrrrn1OY9WqVZx99tl8//vf57TTThtwnTvvvJMf/OAH/PWvf6WyshKAO+64g/z8fP/fU089NazvO+SQQ7j11lv5xS9+QW5uLtXV1UydOpWqqip/FPiQQw7x0z3jjDP2edvEyJFY66+goIAVK1bw0ksv8f/9f/8fX/7yl1m6dOlepSH6k1jLtnDhQi666CLmz5/PokWLuPfee6moqOD3v//9sNMQA5NYG9wf//hHDj30UN71rnft0+dFfxJv2a6//npmzJjB7NmzCYVCXHbZZXz84x/PuiJA7BuJNTFaJNYG9tRTT/Hyyy/zu9/9juuuu44///nPe52GyCaxlm3WrFl89rOf5YgjjuDYY4/lpptu4thjjz3wX9wx1ve39vWFL3zBTJgwwWzcuDFr/mOPPTbg/b2TJk0yv/zlL7Pmvf7666aystJ861vfGvR70g+//de//pU1v6Ojw6xbt87/193dbTZs2GAAs3z58qx1TzzxRHP55Zf3S7uhocF0dnaaaDRqtNbmr3/9qzHGmM2bN/vpbt++3RhjzIUXXtjvfubHH3/cAKalpaVf2vJMt5EjsbbnWEv75Cc/aU477bRBl4uhSawNL9bOO+88c/755w+6XAxNYm3wWItGo6awsNBcd911g26X2DsSb4PHW09Pj9m+fbtxXdd8/etfNwcffPCg2yeG9k6LtUzyTLfRJbF29qB5zvSjH/3IzJw5c1jrioFJrJ09aJ4zffWrXzXHHHPMsNYdr8bNoJvruuYLX/iCqa2tNWvXru23PP1Awbvvvtuft3r16n4PFFy1apWprKw0X/va1wb9rjvvvNNEIhFz3333DTtv1dXV5pprrvHntbe3Zz1QcCB//OMfTW5u7h4fBJh+KG8ikfDnffOb35QXKexHEmvDi7W0j3/842bRokXDyr/IJrE2/FizbdvMmjXLfOlLXxpW/kU2ibWhY+3mm2824XDY7N69e1j5FoOTeBt+25ZIJMz06dPNN7/5zWHlX2R7p8ZaJhl0Gx0Sa3s3EPKDH/zATJ48eVjrimwSa3sXa6eccoo555xzhrXueDVuBt0+//nPm6KiIrN06dKs18N2d3f763zuc58zkyZNMo8//rh5+eWXzcKFC83ChQv95a+99pqpqKgwH/vYx7LSaGpq8te54447TCAQML/+9a+z1mlra9tj/q6++mpTXFxs7r//fvPqq6+as88+O+vVucYYc8MNN5hXXnnFrFmzxtx4440mJyfHXH/99XtMt62tzVRVVZkLL7zQrFq1ytx11139XsEcj8fN8uXLzfLly01NTY356le/apYvXz7st4OIbBJrg8faT37yE/Pwww+bDRs2mDfeeMNcc801JhAImD/84Q/DLl/RS2Jt8Fj7wQ9+YB566CGzYcMG88orr5jzzz/fRCIR8/rrrw+7fEUvibXBYy3t+OOPNx/+8IeHLEsxNIm3wePt+eefN/fcc4/ZsGGD+e9//2tOPvlkM3Xq1Lfdm9hGyzs11ozxrmBZvny5ee9732sWL17snwtkSs874ogjzEc/+lGzfPlyOY7uI4m1wWPtxhtvNP/4xz/M2rVrzdq1a83//d//mYKCAvPtb397OEUr+pBYGzzWrr32WnPfffeZdevWmddee81cccUVRmttHn300eEU7bg1bgbdgAH/3Xzzzf46PT095tJLLzUlJSUmNzfXnHPOOWbnzp3+8u9///sDppE5Cr9o0aIB17n44ov3mD/Xdc13v/tdU1VVZcLhsHn3u99t1qxZk7XOhRdeaEpLS00oFDLz5s0zt91227C2feXKleb444834XDY1NXVmauvvjpr+aZNmwbMs1x9tG8k1gaPtW9/+9vmoIMOMpFIxJSUlJiFCxeau+66a1hpi/4k1gaPtSuvvNJMmjTJhEIhU1VVZc4880yzbNmyYaUt+pNYGzzWjOn9hfjhhx8eVppizyTeBo+3pUuXmjlz5phwOGzKysrMhRdeaOrr64eVtujvnRxrkydPHjBPQ5WPXH20byTWBo+1X/3qV+aQQw4xubm5prCw0CxYsMD85je/MY7jDCt9kU1ibfBY++lPf2qmT59uIpGIKS0tNYsXLzaPP/74sNIez5QxxiCEEEIIIYQQQgghhBgx8iolIYQQQgghhBBCCCFGmAy6CSGEEEIIIYQQQggxwmTQTQghhBBCCCGEEEKIESaDbkIIIYQQQgghhBBCjDAZdBNCCCGEEEIIIYQQYoTJoJsQQgghhBBCCCGEECNMBt2EEEIIIYQQQgghhBhhMugmhBBCCCGEEEIIIcQIk0E3IYQQQoi3icWLF3PllVe+475bCCGEEGI8kkE3IYQQQoh3oKVLl6KUoq2tbUQ+d++99/KjH/1o5DIohBBCCHGAC4x1BoQQQgghxIGvtLR0rLMghBBCCDGuyJVuQgghhBAHoK6uLi666CLy8/OpqanhF7/4Rdby22+/nSOPPJKCggKqq6v56Ec/SlNTEwCbN2/mpJNOAqCkpASlFJdccgkAruty1VVXMXXqVHJycjjssMO4++67h/xc39tLp0yZwo9//GM/j5MnT+Yf//gHu3bt4uyzzyY/P5958+bx8ssvZ+X76aef5oQTTiAnJ4eJEydy+eWX09XVNdLFJ4QQQgix38mgmxBCCCHEAehrX/saTz75JPfffz8PP/wwS5cuZdmyZf7yZDLJj370I1auXMl9993H5s2b/QGyiRMncs899wCwZs0adu7cyfXXXw/AVVddxW233cbvfvc7Xn/9db70pS/xsY99jCeffHKPnxvItddey3HHHcfy5cs566yzuPDCC7nooov42Mc+xrJly5g+fToXXXQRxhgANmzYwOmnn865557Lq6++yl/+8heefvppLrvssv1RhEIIIYQQ+5Uy6V6OEEIIIYQ4IESjUcrKyvjTn/7EBz/4QQBaWlqYMGECn/nMZ7juuuv6febll1/mqKOOorOzk/z8fJYuXcpJJ51Ea2srxcXFAMTjcUpLS3n00UdZuHCh/9lPfepTdHd3c+eddw74OfCudJs/f77/3VOmTOGEE07g9ttvB6ChoYGamhq++93v8sMf/hCA559/noULF7Jz506qq6v51Kc+hWVZ/P73v/fTffrpp1m0aBFdXV1EIpERLEUhhBBCiP1LnukmhBBCCHGA2bBhA4lEgqOPPtqfV1payqxZs/zpV155hf/93/9l5cqVtLa24rouAFu3buXggw8eMN3169fT3d3NqaeemjU/kUiwYMGCvc7nvHnz/L+rqqoAOPTQQ/vNa2pqorq6mpUrV/Lqq69yxx13+OsYY3Bdl02bNjFnzpy9zoMQQgghxFiRQTchhBBCiLeZrq4ulixZwpIlS7jjjjuoqKhg69atLFmyhEQiMejnotEoAA888AB1dXVZy8Lh8F7nIxgM+n8rpQadlx4QjEajfPazn+Xyyy/vl9akSZP2+vuFEEIIIcaSDLoJIYQQQhxgpk+fTjAY5IUXXvAHo1pbW1m7di2LFi1i9erVNDc3c/XVVzNx4kSAfi8sCIVCADiO4887+OCDCYfDbN26lUWLFg343QN9bqQcfvjhvPHGGxx00EEjnrYQQgghxGiTFykIIYQQQhxg8vPz+eQnP8nXvvY1Hn/8cVatWsUll1yC1l7XbtKkSYRCIW644QY2btzIP/7xD370ox9lpTF58mSUUvzrX/9i165dRKNRCgoK+OpXv8qXvvQlbr31VjZs2MCyZcu44YYbuPXWWwf93Ej5xje+wbPPPstll13GihUrWLduHffff7+8SEEIIYQQByQZdBNCCCGEOAD9/Oc/54QTTuC9730vp5xyCscffzxHHHEEABUVFdxyyy387W9/4+CDD+bqq6/mmmuuyfp8XV0dP/jBD/if//kfqqqq/IGtH/3oR3z3u9/lqquuYs6cOZx++uk88MADTJ06dY+fGwnz5s3jySefZO3atZxwwgksWLCA733ve9TW1o7YdwghhBBCjBZ5e6kQQgghhBBCCCGEECNMrnQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEOL/b+/eo6Ku8z+OP4eB2RkZkvslubohokamSApJqBCa66bSyX65KXlZdQXy189L1lHLrDglkWfLX3vsmObR8JT1O67SSV1Dk1ZCbS3XC3khTixubqJHQOUy8/vDZWoCSm1gWn09zvEc+M738/m8v99hxjPv+bw/HxERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXExJNxERERERERERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXExJNxERERERERERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXMzT3QGIiIjcLJqbm2lsbHR3GCIiNzWTyYSnpz4GiYhI59P/NiIiIp3MbrdTVVXFv/71L3eHIiIiQGBgIJGRkRgMBneHIiIiNzAl3URERDpZa8KtR48eWK1WPDy0uoOIiDvYbDbq6uqorq7GbrcTHR3t7pBEROQGpqSbiIhIJ2pubnYk3EJDQ90djojITc9qtQJQXV3NmTNnSExM1Iw3ERHpFPqqXUREpBO1ruHW+iFPRETcr/U9uby8nLKyMux2u5sjEhGRG5GSbiIiIl1AJaUiIr8cre/JZrOZ/fv309DQ4OaIRETkRqRPACIiIiIiclOyWCxcvnxZSTcREekUSrqJiIjINSspKcFgMHDu3Dl3hyLiMq76u66srMRgMPC3v/3NJXFdq7S0NObMmeOWsf/TtK7lpvJSERHpDNpIQUREREQESE5Opqamhu7du/+sfiIiIqipqSEwMNBFkbWvpKSEYcOGUVtbi6+vr+P4e++9h5eXV6eO/VPS0tLo378/r7zyilvjEBERcScl3UREREREAJPJ5JJdho1Go1t3K/b393fb2CIiIvIdlZeKiIh0kVlNS7jn8kS3/pvVtOSq4718+TJ5eXkEBwdjNpu5++67KS8vb/fchoYGRo0aRUpKikpO23HhwgUmTpyIt7c3YWFhFBYWOpUArlu3jsTERHx8fAgNDeXhhx/mm2++cbRvLXvcunUrCQkJmM1mBg8ezKFDh9x0Rb98aWlp5ObmMmfOHPz8/AgJCWHVqlXU19fz6KOP4uPjw2233cYHH3zgaPPD8tKvvvqKMWPG4Ofnh7e3N3379qW4uBiA2tpaJk6cSFBQEBaLhdjYWN58802gbXlpa79/+ctfSExMpFu3biQnJ3Ps2DGnmJctW0ZwcDA+Pj5MmzaNJ554gv79+7d7fZWVlQwbNgwAPz8/DAYD2dnZjmv/fnlpdHQ0y5YtY9KkSVitVqKioti8eTNnzpzh/vvvx2q1kpCQwL59+5zG2LNnD0OHDsVisRAREUFeXh719fWOx1euXElsbCxms5mQkBAeeOABALKzs9m1axcrVqzAYDBgMBiorKykpaWFqVOnEhMTg8ViIS4ujhUrVjiNmZ2dzdixY3n++ecJCQnB19eXpUuX0tzczLx58/D39yc8PNxxr79/v4uKikhOTsZsNtOvXz927drV0Z+HiIhIl9BMNxERkS5y2HacMvtB9wZhu/pT58+fz6ZNm1i7di1RUVG8+OKLZGZmcvz4cafzzp07x+jRo7FarWzfvp1u3bq5OOj/fI8//jilpaVs3ryZkJAQFi9ezIEDBxwJlaamJp599lni4uL45ptvePzxx8nOznYkeFrNmzePFStWEBoaypNPPsmYMWOoqKhweynhL9XatWuZP38+n376KRs3bmTWrFm8//77jBs3jieffJLCwkIeeeQRqqqq2v27nT17No2NjezevRtvb28OHz6M1WoFYNGiRRw+fJgPPviAwMBAjh8/zsWLF380nqeeeoqCggKCgoKYOXMmU6ZMobS0FID169fz3HPPsa+ojfYAAAyfSURBVHLlSlJSUigqKqKgoICYmJh2+4qIiGDTpk1kZWVx7NgxbrnlFiwWS4djFxYW8vzzz7No0SLHdScnJzNlyhReeuklFixYwKRJk/j73/+OwWDgxIkTjBw5kmXLlrF69WrOnDlDTk4OOTk5vPnmm+zbt4+8vDzWrVtHcnIyZ8+e5eOPPwZgxYoVVFRU0K9fP5YuXQpAUFAQNpuN8PBw3nnnHQICAvjkk0/4/e9/T1hYGA8++KAj1p07dxIeHs7u3bspLS1l6tSpfPLJJ6SmplJWVsbGjRuZMWMGGRkZhIeHO9rNmzePV155hT59+vDyyy8zZswYTp06RUBAwI8+LyIiIp3FYNeqoSIiIp2moaGBI0eOEB8fzyjjdLcn3e4y3MGuX63/yfPq6+vx8/NjzZo1PPzww8CVxFB0dDRz5sxh0KBBDBs2jCNHjjBhwgRiY2PZsGEDJpOpsy+hXbaaeuyn652OGXx/hUdMd+yXmrEdOdumjfHOYABajtVCQ5Nz26hb8PA3YztzEfvXF5wbWk0YY32vOrYLFy4QEBDAhg0bHDOBzp8/z6233sr06dPbXfNq3759DBo0iAsXLmC1Wh1rdxUVFTFhwgQAzp49S3h4OGvWrHFKWHQVe91p7PWnnQ+affHoHo29+RL2b4+2aeMR0h8A29kKaHLeLdLQPRKD2R97wxnsF6qdG5qsePjddk3xpaWl0dLS4kgEtbS00L17d8aPH89bb70FwOnTpwkLC+Ovf/0rgwcPbrNGWkJCAllZWSxZ0naG6G9/+1sCAwNZvXp1m8cqKyuJiYnhs88+o3///o5+d+zYwYgRIwAoLi5m9OjRXLx40TFzMTExkVdffdXRz913301dXV2HGzJ0tKbbD9dTi46OZujQoaxbt87puhctWuRIiu3du5chQ4ZQU1NDaGgo06ZNw2g08qc//cnR7549e7jnnnuor6+nuLiYRx99lK+//hofH5927//VrOmWk5PD6dOneffdd4ErM91KSko4efIkHh5XinJ69+5NcHAwu3fvBr57Lt944w0eeughx/3Oz89nwYIFADQ3NxMTE0Nubi7z589vM27re/OXX37JP/7xD373u98RHBz8o7GKiIhcK810ExERkTZOnDhBU1MTKSkpjmNeXl4kJSVx5MgRBg0aBEBGRgZJSUls3LgRo9HornBpXHWIy8s+dTrm9V9xdFt7L7av66i7a2ObNt0bcwG4OG0HLWXOySPLmxmYJvam6d0vufSYc4maZ0Yk3lvvv+rYTp48SVNTE0lJSd+N3b07cXFxjt/379/P008/zcGDB6mtrcVmuzIlsaqqij59+jjOGzJkiONnf39/4uLiOHLkyFXH4krNX6ymZe8LTsc8ek/ANOoN7HXVNG4Y2qaN+b+vJDCbts3EXuNcquw1chXG+IdoqXif5o/+x7nfqBGYxv/fNceYkJDg+NloNBIQEMDtt9/uOBYSEgLgVMr7fXl5ecyaNYtt27aRnp5OVlaWo89Zs2aRlZXFgQMHuPfeexk7dizJyclXHU9YWJhj7MjISI4dO8Yf/vAHp/OTkpLYuXPnNVzx1Y3det0d3YvQ0FAOHjzI559/zvr13yXp7XY7NpuNU6dOkZGRQVRUFD179mTkyJGMHDmScePG/eRM19dee43Vq1dTVVXFxYsXaWxsbFNC27dvX0fCrTW2fv36OX5vfS5/+Lx9//Xh6elJYmKi214fIiIioKSbiIiI/AyjR49m06ZNHD582OkDfFczTe+H1xjnMjyD768A8Ai3Yi2b0GFbyxvp7c50A/B6IBbPwT9YEN/q2tl89fX1ZGZmkpmZyfr16wkKCqKqqorMzEwaGxtdOpYred4+BWPP+5wPmn0BMFh7YHr44w7bet37ersz3QCMvcbhEZbk3MBkva4Yf1h2azAYnI4ZDAYAR5Lzh6ZNm0ZmZiZbt25l27ZtvPDCCxQUFJCbm8uoUaP46quvKC4uZvv27YwYMYLZs2ezfPnyq4rnp8Z2tfbG/rF46urqmDFjBnl5eW36ioyMxGQyceDAAUpKSti2bRuLFy/m6aefpry83GnW3fcVFRUxd+5cCgoKGDJkCD4+Prz00kuUlZV1GGtrbO0d66p7JyIicr2UdBMREekifTxuu6Y11Tothqvw61//GpPJRGlpKVFRUcCV8tLy8nKnBdrz8/OxWq2MGDGCkpISp1lZXckjzBvCvNt9zGD2dJSStscY59dxv0EWCOp4nayr0bNnT7y8vCgvLycy8kpi6fz581RUVJCamsrRo0f59ttvyc/PJyIiAqDNgvat9u7d6+ijtraWiooK4uPjf1Z818tgDcVgbX+HToOnGcO/S0nb4+Hfq+N+uwVh6Bb0c8NzmYiICGbOnMnMmTNZuHAhq1atIjf3yizJoKAgJk+ezOTJkxk6dCjz5s370aTbj4mLi6O8vJxJkyY5jnW0cUmr1nLulpaW6xrzxwwYMIDDhw9z220dv2d4enqSnp5Oeno6S5YswdfXl507dzJ+/HhMJlObuEpLS0lOTnaa0XfixAmXxbx3715SU1OBK+Wl+/fvJycnx2X9i4iIXCsl3URERLrI/3o94+4Qrpq3tzezZs1y7BYYGRnJiy++SENDA1OnTuXgwe/Wplu+fDktLS0MHz6ckpISevfu7cbIf3l8fHyYPHmy414GBwezZMkSPDw8MBgMjllDf/zjH5k5cyaHDh3i2WefbbevpUuXEhAQQEhICE899RSBgYGMHTu2ay/oJjJnzhxGjRpFr169qK2t5aOPPnIkORcvXszAgQPp27cvly9fZsuWLT8rAZqbm8v06dNJTEwkOTmZjRs38vnnn9OzZ88O20RFRWEwGNiyZQv33XcfFovFsdHDz7VgwQIGDx5MTk4O06ZNc2wksX37dl599VW2bNnCyZMnSU1Nxc/Pj+LiYmw2m6NsOjo6mrKyMiorK7Farfj7+xMbG8tbb73Fhx9+SExMDOvWraO8vLzDzSKu1WuvvUZsbCzx8fEUFhZSW1vLlClTXNK3iIjI9fD46VNERETkZpSfn09WVhaPPPIIAwYM4Pjx43z44Yf4+bWdGVZYWMiDDz7I8OHDqaiocEO0v2wvv/wyQ4YM4Te/+Q3p6emkpKQQHx+P2WwmKCiINWvW8M4779CnTx/y8/M7nC2Vn5/PY489xsCBAzl9+jR//vOf3bZ5xc2gpaWF2bNnEx8fz8iRI+nVqxcrV64ErswyW7hwIQkJCaSmpmI0GikqKrrusSZOnMjChQuZO3cuAwYM4NSpU2RnZ2M2mzts06NHD5555hmeeOIJQkJCXDqrKyEhgV27dlFRUcHQoUO58847Wbx4MbfeeisAvr6+vPfeewwfPpz4+Hhef/113n77bfr27QvA3LlzMRqN9OnTx1EyPWPGDMaPH8+ECRO46667+Pbbb9usY/dz5Ofnk5+fzx133MGePXvYvHkzgYGBLutfRETkWmn3UhERkU70/d1Lf2qBcbl51NfX06NHDwoKCpg6depPnt/RLpVyY8vIyCA0NNSx66i074e7xV4N7V4qIiJdQeWlIiIiIp3ss88+4+jRoyQlJXH+/HmWLl0KwP33X/0uqHJja2ho4PXXXyczMxOj0cjbb7/Njh072L59u7tDExERkeukpJuIiIhIF1i+fDnHjh3DZDIxcOBAPv74Y5W+iYPBYKC4uJjnnnuOS5cuERcXx6ZNm0hPT3d3aCIiInKdlHQTERER6WR33nkn+/fvv+72aWlpaEWQG5vFYmHHjh3uDuM/UnR0tF4fIiLyi6SNFERERERERERERFxMSTcREZEuYLPZ3B2CiIj8W+t7smbIiYhIZ1LSTUREpBOZTCYA6urq3ByJiIi0an1PbmxsdHMkIiJyI9OabiIiIp3I09OTwMBAqqurAbBarXh46DsvERF3sNls1NXVUV1dzblz5zQLWUREOpWSbiIiIp0sMjISwJF4ExER9zp37hz//Oc/aW5uxmg04uXl5e6QRETkBqSkm4iISCczGAxERUVx6tQpvvjiC/z8/LBYLO4OS0TkptTU1ITNZqO5uZkzZ84QHR2Nj4+Pu8MSEZEbkJJuIiIiXSQlJYVLly7xxRdf0NzcjMFgcHdIIiI3Jbvd7vhCZPTo0Xh66mORiIi4nsGuLXtERES6TFNTEzU1NdTV1WnXPBERN7JYLAQHB2O1Wt0dioiI3KCUdBMREREREREREXExbZ8mIiIiIiIiIiLiYkq6iYiIiIiIiIiIuJiSbiIiIiIiIiIiIi6mpJuIiIiIiIiIiIiLKekmIiIiIiIiIiLiYv8PZoO055aketYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#first apply (default) quality control\n", + "your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example\n", + "\n", + "#Interpret the outliers as missing observations and gaps.\n", + "your_dataset.update_gaps_and_missing_from_outliers(obstype='temp', \n", + " n_gapsize=None) #It is possible to change the definition of gapsize.\n", + "#Inspect your gaps using a printout or by plotting\n", + "#your_dataset.get_gaps_info()\n", + "your_dataset.make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "dc9f60c4-f471-4ad2-9710-6100ba6168c7", + "metadata": {}, + "source": [ + "When plotting a single station, the figure becomes more clear" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a5bb6973-1f80-4d90-ad4c-e888289688b5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAADM5klEQVR4nOzdeZwT9f3H8ddMstn7AJYFlvsSRDwQpSoKeOFVj59aj3qAqPUABK3Wq94Wqq1XtWqr4kG11rMeVaxWRbF4n2hBBeS+FtjN3rtJvr8/lmSTTXaT7GY32eX9fDz2QWYy85nPTL4zmXz5zvdrGWMMIiIiIiIiIiIikjB2shMQERERERERERHpalTpJiIiIiIiIiIikmCqdBMREREREREREUkwVbqJiIiIiIiIiIgkmCrdREREREREREREEkyVbiIiIiIiIiIiIgmmSjcREREREREREZEEU6WbiIiIiIiIiIhIgqnSTUREREREREREJMFU6SYiIiIiHaqiooLzzjuP3r17Y1kWs2fPbnNMy7K48cYbA9OPPfYYlmXx008/tTl2e8YUERGRrkuVbiIiIpISLMuK6e/dd99NdqpJc//99/PYY48lO402mzNnDo899hgXXXQR8+fP56yzzkp2Skm3bt06TjnlFAoKCsjLy+P4449nxYoVYcs1d178/ve/T0LWIiIi0hJnshMQERERAZg/f37I9BNPPMGbb74ZNn/XXXftyLRSyv33309hYSFTp05Ndipt8vbbb7Pffvtxww03tNs2zjrrLE477TTS09PbbRuJUlFRwcEHH0xZWRnXXHMNaWlp3HXXXUycOJEvv/ySHj16hCx/+OGHc/bZZ4fMGzNmTEemLCIiIjFQpZuIiIikhDPPPDNk+sMPP+TNN98Mm99VGGOoqakhMzMz2anErLKykuzs7DbH2bx5M6NGjUpARs1zOBw4HI523UZb+Y/n/fffzw8//MDHH3/MvvvuC8BRRx3F6NGjueOOO5gzZ07IervsskuXPS9ERES6Ej1eKiIiIp2Gz+fj7rvvZrfddiMjI4NevXpxwQUXsH379pDlBg0axM9//nPeffdd9tlnHzIzM9l9990Dj6a+8MIL7L777mRkZDB27Fi++OKLkPWnTp1KTk4OK1as4IgjjiA7O5vi4mJuvvlmjDFtyumNN94I5PSXv/wFgEcffZRDDjmEoqIi0tPTGTVqFA888EDY+t9++y0LFy4MPFI4adIkAG688UYsywo7XpH6IGva91lw/OAWdP51Fy5cyMUXX0xRURH9+vULWy/Y5s2bOffcc+nVqxcZGRnsueeePP7444H33333XSzLYuXKlfzrX/8K7EdzfaSNHj2agw8+OGy+z+ejb9++nHzyyc3mEmnf/Z/BokWLGDduHBkZGQwZMoQnnngibP1vv/2WQw45hMzMTPr168ett96Kz+eLuK3XX3+dgw46iOzsbHJzcznmmGP49ttvQ5bxl6nly5dz9NFHk5ubyxlnnAHAc889x7777huocAMYOXIkhx56KM8880zEbVZXV1NTU9Ps/ouIiEjyqdJNREREOo0LLriAK664gvHjx3PPPfdwzjnn8OSTT3LEEUdQX18fsuyPP/7IL3/5S4499ljmzp3L9u3bOfbYY3nyySe59NJLOfPMM7nppptYvnw5p5xySliFitfr5cgjj6RXr17cfvvtjB07lhtuuCHskch4clq2bBmnn346hx9+OPfccw977bUXAA888AADBw7kmmuu4Y477qB///5cfPHF/PnPfw6se/fdd9OvXz9GjhzJ/PnzmT9/Ptdee20Cj25kF198Md999x3XX389V111VbPLVVdXM2nSJObPn88ZZ5zBH/7wB/Lz85k6dSr33HMP0PBo8Pz58yksLGSvvfYK7EfPnj0jxjz11FN577332LhxY8j8RYsWsX79ek477bS49+fHH3/k5JNP5vDDD+eOO+6gW7duTJ06NaSSbOPGjRx88MF8+eWXXHXVVcyePZsnnngisB/B5s+fzzHHHENOTg633XYb1113Hd999x0HHnhgWGWix+PhiCOOoKioiD/+8Y+cdNJJ+Hw+vv76a/bZZ5+w2OPGjWP58uWUl5eHzH/sscfIzs4mMzOTUaNG8dRTT8V9HERERKQDGBEREZEUNH36dBN8q/L+++8bwDz55JMhyy1YsCBs/sCBAw1g/vvf/wbmvfHGGwYwmZmZZtWqVYH5f/nLXwxg3nnnncC8KVOmGMDMnDkzMM/n85ljjjnGuFwus2XLllbntGDBgrB9raqqCpt3xBFHmCFDhoTM22233czEiRPDlr3hhhtMpNu6Rx991ABm5cqVgXmAueGGG8KWHThwoJkyZUrYugceeKDxeDxhyzd19913G8D87W9/C8yrq6sz+++/v8nJyTFutztkW8ccc0zUmMuWLTOAuffee0PmX3zxxSYnJyfkuDXdr0j77v8M3nvvvcC8zZs3m/T0dPPrX/86MG/27NkGMB999FHIcvn5+SExy8vLTUFBgTn//PND8tu4caPJz88Pme8vU1dddVXIslu2bDGAufnmm8P2/89//rMBzNKlSwPzDjjgAHP33Xebl156yTzwwANm9OjRBjD3339/pEMoIiIiSaSWbiIiItIpPPvss+Tn53P44YdTUlIS+Bs7diw5OTm88847IcuPGjWK/fffPzD9s5/9DIBDDjmEAQMGhM2PNFLkjBkzAq8ty2LGjBnU1dXx1ltvtSqnwYMHc8QRR4RtJ7hft7KyMkpKSpg4cSIrVqygrKws5mPUHs4///yY+kZ77bXX6N27N6effnpgXlpaGpdccgkVFRUsXLgw7m3vsssu7LXXXvzjH/8IzPN6vTz33HMce+yxreoPb9SoURx00EGB6Z49ezJixIiQz/+1115jv/32Y9y4cSHL+R8H9XvzzTcpLS3l9NNPD/n8HQ4HP/vZz8I+f4CLLrooZLq6uhog4oAPGRkZIcsAfPDBB8yaNYvjjjuOCy+8kM8++4zRo0dzzTXXhCwnIiIiyaeBFERERKRT+OGHHygrK6OoqCji+5s3bw6ZDq5YA8jPzwegf//+Eec37YPNtm2GDBkSMm+XXXYBCDw2GG9OgwcPjrjcBx98wA033MDixYupqqoKea+srCyQYzI0l3NTq1atYvjw4dh26P/p+kebXbVqVau2f+qpp3LNNdewbt06+vbty7vvvsvmzZs59dRTWxWvabkA6NatW8jnv2rVqkBlbLARI0aETP/www9AQ0VuJHl5eSHTTqczrF88f8VhbW1t2Pr+Pttaqlx0uVzMmDEjUAF34IEHNrusiIiIdCxVuomIiEin4PP5KCoq4sknn4z4ftN+wZprndXcfNNkgIT2yClS5cny5cs59NBDGTlyJHfeeSf9+/fH5XLx2muvcddddzXbeX+wSIMoQEOrsFg1t2yyR1c99dRTufrqq3n22WeZPXs2zzzzDPn5+Rx55JGtipfozx8a+nXr3bt32PtOZ+itdnp6elilZPfu3UlPT2fDhg1h6/vnFRcXt5iHvyJ527ZtsScvIiIi7U6VbiIiItIpDB06lLfeeovx48d3SEWQz+djxYoVgdZtAN9//z3QMApmonJ65ZVXqK2t5eWXXw5phRXp0cTmKte6desGQGlpKQUFBYH5kVqXdevWjdLS0pB5dXV1ESt94jFw4EC+/vprfD5fSMXS0qVLA++3xuDBgxk3bhz/+Mc/mDFjBi+88AInnHBCxMcxE2XgwIGBVmzBli1bFjI9dOhQAIqKijjssMNatS3bttl999359NNPw9776KOPGDJkCLm5uS3G8D8a29yAFCIiIpIc6tNNREREOoVTTjkFr9fLLbfcEvaex+MJq0hKhPvuuy/w2hjDfffdR1paGoceemjCcvK3vApuaVVWVsajjz4atmx2dnbEmP7Kn/feey8wr7KykscffzzissHLAfz1r3+Nq1VcJEcffTQbN24M6X/N4/Fw7733kpOTw8SJE1sd+9RTT+XDDz9k3rx5lJSUtPrR0lgdffTRfPjhh3z88ceBeVu2bAlr0XjEEUeQl5fHnDlzwkaq9a8Ti5NPPplPPvkkpOJt2bJlvP322/ziF79oMV55eTl33303hYWFjB07NqbtiYiISMdQSzcRERHpFCZOnMgFF1zA3Llz+fLLL5k8eTJpaWn88MMPPPvss9xzzz2cfPLJCdteRkYGCxYsYMqUKfzsZz/j9ddf51//+hfXXHNNoEVRInKaPHkyLpeLY489lgsuuICKigoeeughioqKwlqfjR07lgceeIBbb72VYcOGUVRUxCGHHMLkyZMZMGAA5557LldccQUOh4N58+bRs2dPVq9eHRLjvPPO48ILL+Skk07i8MMP56uvvuKNN96gsLCwTcfrV7/6FX/5y1+YOnUqn332GYMGDeK5557jgw8+4O67747aWqslp5xyCpdffjmXX3453bt3b3Wrslj95je/Yf78+Rx55JHMmjWL7Oxs/vrXvwZa8/nl5eXxwAMPcNZZZ7H33ntz2mmnBY75v/71L8aPHx9Scduciy++mIceeohjjjmGyy+/nLS0NO6880569erFr3/968Byf/7zn/nnP//Jsccey4ABA9iwYQPz5s1j9erVzJ8/H5fL1S7HQ0RERFpHlW4iIiLSaTz44IOMHTuWv/zlL1xzzTU4nU4GDRrEmWeeyfjx4xO6LYfDwYIFC7jooou44ooryM3N5YYbbuD6669PaE4jRozgueee47e//S2XX345vXv35qKLLqJnz55MmzYtZNnrr7+eVatWcfvtt1NeXs7EiRM55JBDSEtL48UXX+Tiiy/muuuuo3fv3syePZtu3bpxzjnnhMQ4//zzWblyJY888ggLFizgoIMO4s033wy03mutzMxM3n33Xa666ioef/xx3G43I0aM4NFHH2Xq1Kltit2vXz8OOOAAPvjgA8477zzS0tLaFC+aPn368M477zBz5kx+//vf06NHDy688EKKi4s599xzQ5b95S9/SXFxMb///e/5wx/+QG1tLX379uWggw4KO/bNyc3N5d133+XSSy/l1ltvxefzMWnSJO66666QR0bHjx/Pf//7Xx5++GG2bt1KdnY248aNY968ec0O5iAiIiLJY5nW9BorIiIi0oVNnTqV5557joqKimSnIiIiIiKdlPp0ExERERERERERSTBVuomIiIiIiIiIiCSYKt1EREREREREREQSTH26iYiIiIiIiIiIJJhauomIiIiIiIiIiCSYKt1EREREREREREQSzJnsBFKdz+dj/fr15ObmYllWstMREREREREREZEkMsZQXl5OcXExtt18ezZVukWxfv16+vfvn+w0REREREREREQkhaxZs4Z+/fo1+74q3aLIzc0FGg5kXl5ekrMREREREREREZFkcrvd9O/fP1Bn1BxVukXhf6Q0Ly9PlW4iIiIiIiIiIgIQtRsyDaQgIiIiIiIiIiKSYKp0ExERERERERERSTBVuomIiIiIiIiIiCRYp650mzt3Lvvuuy+5ubkUFRVxwgknsGzZspBlNm7cyFlnnUXv3r3Jzs5m77335vnnn09SxiIiIiIiIiIisjPo1JVuCxcuZPr06Xz44Ye8+eab1NfXM3nyZCorKwPLnH322SxbtoyXX36Zb775hhNPPJFTTjmFL774IomZi4iIiIiIiIhIV2YZY0yyk0iULVu2UFRUxMKFC5kwYQIAOTk5PPDAA5x11lmB5Xr06MFtt93GeeedFzWm2+0mPz+fsrIyjV4qIiIiIiIiIrKTi7WuqFO3dGuqrKwMgO7duwfmHXDAAfzjH/9g27Zt+Hw+nn76aWpqapg0aVLEGLW1tbjd7pA/ERERERERERGReHSZSjefz8fs2bMZP348o0ePDsx/5plnqK+vp0ePHqSnp3PBBRfw4osvMmzYsIhx5s6dS35+fuCvf//+HbULIiIiIiIiIiLSRXSZSrfp06ezZMkSnn766ZD51113HaWlpbz11lt8+umnXHbZZZxyyil88803EeNcffXVlJWVBf7WrFnTEemLiIiIiIiIiEgX0iX6dJsxYwYvvfQS7733HoMHDw7MX758OcOGDWPJkiXstttugfmHHXYYw4YN48EHH4waW326iYiIiIiIiIiIX6x1Rc4OzCnhjDHMnDmTF198kXfffTekwg2gqqoKANsObdDncDjw+XwdlqeIiIiIiIiIiOxcOnWl2/Tp03nqqad46aWXyM3NZePGjQDk5+eTmZnJyJEjGTZsGBdccAF//OMf6dGjB//85z958803efXVV5OcvYiIxOIH30+sNZv4p/dNvvYtZbS9C6c7f84B9t7JTk1ERERERKRZnfrxUsuyIs5/9NFHmTp1KgA//PADV111FYsWLaKiooJhw4Zx+eWXc9ZZZ8W0DX+TwXWHPUn2t5XgM2BbWN0yMNtrQqaBsHlNp+2BuaRNHkj67DEAeD67F++q/2DKVjVutGY7GB9YNmR0a5h25WIXjsJ1/D9af8BaofbuL6j/9yq8X26Je1/jnW4uppXrwrFbD7Jf+HmLuXo+uxdTV47lysU5diaez+6lbn4NnlcyMJXp7Z5nqsW0B+biPPxByFsPde6GstSUv6xl9sC5xzScY2eGHdOw8glYeQNwDDqsYZlvHoWqkkB59b/XNFa8/GXPt6q8y3wmXTGm1SOT9PNHB65pfnUvnYqv5H8hZa+1ZeOa+ju40/toyLwDrX1YsGRsWPmLdL0MvjZ43z8wUK4i7WdHHs9o17aw8y/O74K2rt+SZH83NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2uzSR927BQu5Hgn7nWkV7xhS78sRX8X67FVNelzLHTzEV0+qWQUWxg75vnRH18dJOXenWEfyVbqudt5FnZSYkptU3m7yV0wCoeWgEVKyPcUWbjNllCckhVu7B8zDrKjt0mxHZFvk1M1pcJHAsc4rJOH8ZNQ+NoPbqs8Cd30FJph7X3Gux7BhP8R3HLViL5TOnuOHfSO9HiBWvlCl7ElXwNc2v5u78hpuqplpRNi6rn8P93qcAsLHx4WNXayiLn1jafPkMul4GXxvq5lyZWuWqhWtbs+dfjN8FbV2/JTo/RUREOr+Q36UJvHcLFu33RLTYZRn3NVR0iKQYt6lmgOfKqJVuXWb0UhER6ZqqqQ287kUPAErM9mSlIyIiIiIiEhO1dIvC39Jt+//WkVPlBGPAAivbhamsD5kGwuY1nbZy0rDyXFi5O5avK8fUlmPqKwLbNPX+1gMWVloWpr4SKy0by5WLndOnQ/fflNdh3HX4NlXFva/xTjcX08pyYuW5sItzWs61rnzHuhaWK7fh2Lrr8G2sglpXu+eZajGtnDSMYyuk1WA81VhpWeHHbEdZs9JysHN6Y7lyw45p0/IJYLlyAsv6yjdgPJX4y6v/vaax4uUve6aivst8Jl0xppWThl2cE7im+fkqNmBq3SFlr7Vl45y6q/i7r6Efzt2sYXxrfsTGptx6Hyo2hZS/SNfL4GsDtemBchVpPzvyeEa7tjU9/+L9Lmjr+i3GTvJ3Q1g+ney8UczOk5diKmYqx0zVvBQz9WMCYb9LE3nvFiz4fiT4d66dXRRTbN/6Ckx5PaayLmWOn2IqppXtotxU023Xvl179NKOZBfn4GzhQLZWIion2pOV23Ahtvu2XOGVCpoeR8uVi1UIdmGPJGWUCtr2ucVSPh092qf8+suedE52Th9I0H8S1FIXeN2DbgD48FHqMvTosUvU9UPKsItOU67a+v3Qnt8vnem7QURERKJL5L1bsLbej0RreCGSLLbbEdty7ZyHiIhIm1RTE3jd0+oeeF1itiUjHRERERERkZio0k1ERFJaTVBLt6KgSrctbE9GOiIiIiIiIjHR46UxqjjpVcy3lW0ehrbp0MwhQyj7BQ2lTEa3hmlXLnbhKFzH/6ND97v27i+o//cqvF9uSdowvlauC8duPch+4ect5ur57F5MXTmWKxfn2Jl4PruXuvk1eF7JwFSmp/Rww+0R0x6Yi/PwByFvfcjQ3yH8ZS2zB849poUN2R2xfEJg+HAAzzePQlVJoLwmYmhxaCx7vlXlXeYz6YoxrR6ZpJ8/OnBN80vksPM1JngghcLA65zPHqPm2/NDyl+k62XwtcH7/oGBchVpPzvyeEa7toWdf3F+F7R1/ZYk+7uhqc523ihm58lLMRUzlWOmal6KmfoxgbDfpYm8dwsWcj8S9DvXKtozptiVJ76K99utmPK6lDl+iqmYVrcMKopje7xUAylE4R9IYbXzNvKszITEDBmauaUhlMNWtMmYXZaQHGLlHjwPs64y+oLtzbbIr5nR4iKBY7lj6Omah0ZQe/VZ4M7voCRTj2vutVh2jKd4hCG7ow3xDUR+v41Di0MKlT2JKvia5pfIYecPqD2Fz813OHHyJ+dvudhzIwDrnnCTXbm9maQar5fB14a6OVemVrlq4drW7PkX43dBW9dvic5PERGRzi/kd2kC792CRfs9ES12WcZ9DRUdIinGbaoZ4LlSAymIiEjnVk1DS7cMXAywitnL2pVKqqnnsyRnJiIiIiIi0jz16SYiIimtZkelWyYZHOY4gA/Tn+UU+ygc+goTEREREZEUpl8sIiKS0mpNw0AK6bgC8/KsHCx9hYmIiIiISArTLxYREUlp1dQAkGGlB+bNck4hx8pKVkoiIiIiIiJRqdJNRERSWg0NLd0yglq6iYiIiIiIpDpVuomISMoyxoT06SYiIiIiItJZqNJNRERSVj0eDA3DxKeTHmVpERERERGR1KFKNxERSVn+/twAMiw9XioiIiIiIp2HKt1ilZ8O1o7XFuC0w6cjzWs6XZCOY6+iQFi7aE9ILwDb2fgXvJJ/2nJAZmE77mBkjr2KoCDCvseyr/FON7eMw8IqzIyaq120J1affRuO6Y5pe2gVOHwdk2eqxSxIB09eQ9nxl6Wmf/6VbGfguDU9pmHl03ZCekHD8S3ac0ccGrex4722CpS9rvSZdMWYTjvkmhaQWRhe9lpRNvyPlgJkNGnpFrH8RbheBl8bQspVso9nlGtb2PkX53dBW9dvSdK/G5r+dbbzRjE7T16KqZipHDNV81LM1I/ptMN+lybq3q2pkPuR4ERijG0VZoLDSq3jp5iK6bQb6ohiYBljTExL7qTcbjf5+fmUlZWRl5eX7HRERHYqq8x6RtROBuBk+wj+5rojyRmJiIiIiMjOLta6IrsDcxIREYlLrQlu6aaBFEREREREpPNQpZuIiKSs6uDHS9Wnm4iIiIiIdCKqdBMRkZTVUp9uIiIiIiIiqcwZfREBKBvyKKbcBkNDx3kOG7y+0GkIn9d0OicN5/hisl/8OQB1L52Cb91iqK9o3JjPS2Al29EwbdmQ2YOMC5Z32D4DVP7fq3g+WA9ltfHva7zTzcW0LawemeStPbfFXOteOgVTXYKVWYjr+Geoe+kUaucMw/d1L/Da7Z9nqsXMScP165ux0ivA+BrKUlP+smY7sQcdjuv4Z8KOaVj5BEjLwe67f0OIn94En4dAed3xXtNY8QqUvYr6rvOZdMWYThvnEQMD1zS/mr8MheqtoWWvFWWjxjRf6Vb30inh5S/C9TL42lD/2NmN5SrSfnbk8YxybQs7/+L8Lmjr+i1J+ndDU53tvFHMzpOXYipmKsdM1bwUM/VjQtjv0kTduzUVcj8S/Ds3PT+m2O5+j2C2VoPPpM7xU0zFdNi4szzNFdsQqnSLVVktWDtGmTOAx9f4XtPplpYprcX75ebAbN/mr6C2tJmNmh0/JgHjheqSNu1Ca3i/3AyljT9649rX1k43nec1mJLqqLn6Nn8FFesxOcWBad/yPcBrd0yeqRaztBacbvCPleJr4aLg8zQcv6azmyuftaWNywfi7iivwe+1QVjZ27GJTv2ZdMWYHl/INS2guqThpg0ay0grykZISzcrtNLNt/mr8PIHYdfL4GtDxHIVab8izevga1vE8y+O74K2rt+SlPhuiKSznDeK2fnyUkzFTOWYqZqXYqZ2zCa/SxN179ZU5N8TJubYpmRHhRuk1vFTTMUsi/CbIgJVuomISEr51vcDm8xW/uV7l0+9S+hBATlkMYDiZKcmIiIiIiISM1W6iYhISrnf+xSPeJ8FYAyjGGUNY4K9L2c7T0huYiIiIiIiInFQpZuIiKQUt2nsQ7DAyiXLyiTPykliRiIiIiIiIvFTpZuIiKSUCioDr+e7/kih1S2J2YiIiIiIiLSOnewEREREgrlNY6VbLtlJzERERERERKT1VOkmIiIppZyGx0vTcZFuuZKcjYiIiIiISOuo0k1ERFKKe8fjpXmoHzcREREREem8VOkmIiIppXzHQAo5VlaSMxEREREREWk9DaQQI8ekfvBtJfgM2BZWtwzM9pqQaSBsXtNpe2AuaZMHBuI6956Bd9V/MGWrGjdWsx2MDywbMro1TLtysQtHdfRukz5rDPX/XoX3yy1x72u8083FtHJdOHbrETVX594zMHXlWK7cwLTvzBo8r4CpTG/3PFMtpj0wF8s+APLWQ527oSw15S9rmT1w7jEt4jENK5+AlTcAx6DDAPB88yhUlQTKa/B7beEve75V5V3mM+mKMa0emaSfPzrs87MHH4mv5H8hZS/WslEeY0s3594zwspfpOtl8LXBCipXkfazI49ntGtb2PkX53dBW9dvSbK/G5rqbOeNYnaevBRTMVM5ZqrmpZipHxMI+13alnu3loTcjwT9zrWK9owptvPoQXi/3Yopr0uZ46eYiml1y8BR3APein4OWMYYE99ps3Nxu93k5+dTVlZGXl5estMREenSak0d+bV7A3CgtQ9vpT+W3IRERERERESaiLWuSI+XiohIynDvGEQBIM/SyKUiIiIiItJ5qdJNRERShts0VrrlaiAFERERERHpxNSnW4x86yvw/FgDxoAFVrYLU1kfMg2EzWs6beWkYeW5sHJ3LF9Xjqktx9Q3/tA09ZU7XllYaVmY+kqstGwsVy52Tp8O3W9TXodx1+HbVBX3vsY73VxMK8uJlefCLm75B7ipK9+xroXlym04tu46fBuroNbV7nmmWkwrJw3j2AppNRhPNVZaeKf0/rJmpeVg5/QO9IcXfEyblk8Ay5UTWNZXvgHjqcRfXv3vNY0VL3/ZMxX1XeYz6YoxrZw07OKcwDXNz1exAVPrDil7sZQNf39uALlRBlIwdeVh5S/S9TL42kBteqBcRdrPjjye0a5tTc+/eL8L2rp+i7GT/N0Qlk8nO28Us/PkpZiKmcoxUzUvxUz9mEDY79LW3rtFE3w/Evw7184uiim2b30FprweU1mXMsdPMRXTynbhM9UxnQOqdItR+e5/w7IyExLL6ptN3sqGTutrH98HKtbHuKJNxuyyhOQQq/I9/oZZVxl9wfZmW+TXzGhxkcCxzCkm4/xl1D6+D7VXnwXu/A5KMvW45l6LZZvYFt5x3IK1WD5zihv+jfR+hFjxSpmyJ1EFX9P86h4eCcYXvnCUshFc6RZtIIUWy2fQ9TL42lA358rUKlctXNua3b8Yvwvaun5LdH6KiIh0fsH3cK29d4sm2u+JaLHLhzzW0Hm9SIopj7HSTY+XiohIyigPfrzU0uOlIiIiIiLSeamlm4iIpIRNpoSPfF/Rnz4YDAOt4mSnJCIiIiIi0mqqdBMRkZTwke8rbvM+BMCB1lh+6Tg2yRmJiIiIiIi0Xqd+vHTu3Lnsu+++5ObmUlRUxAknnMCyZeHPhC9evJhDDjmE7Oxs8vLymDBhAtXVsT1/KyIiHWOpWRF43d/q2EFjREREREREEq1TV7otXLiQ6dOn8+GHH/Lmm29SX1/P5MmTqaxs7Nx58eLFHHnkkUyePJmPP/6YTz75hBkzZmDbnXrXRUS6nKW+xkq3S51Tk5eIiIiIiIhIAnTqx0sXLFgQMv3YY49RVFTEZ599xoQJEwC49NJLueSSS7jqqqsCy40YMaJD8xQRkeiW7WjpZmEx3BqU3GRERERERETaqEs19yorKwOge/fuAGzevJmPPvqIoqIiDjjgAHr16sXEiRNZtGhRszFqa2txu90hfyIi0v76WX0YZQ1jV2sImVZGstMRERERERFpky5T6ebz+Zg9ezbjx49n9OjRAKxY0dBq4sYbb+T8889nwYIF7L333hx66KH88MMPEePMnTuX/Pz8wF///v07bB9ERHZWxhhe8r3Fd+ZHcshOdjoiIiIiIiJt1mUq3aZPn86SJUt4+umnA/N8Ph8AF1xwAeeccw5jxozhrrvuYsSIEcybNy9inKuvvpqysrLA35o1azokfxGRnVk9nsDrNNKSmImIiIiIiEhidOo+3fxmzJjBq6++ynvvvUe/fv0C8/v0aRj9btSoUSHL77rrrqxevTpirPT0dNLT08PmZ9w7ibSvyjFeAw4LR59sfBsqQ6aBsHlNp+2BeTh2LwzEdR33NL4tSzDuxnxM5UbwecB2YmX3xlRuxMosxOrR8X3RZT//czzflOD9cEPc+xrvdHMxrZ5ZOEZ2i5qr67inwVsHDldg2jFgO57/lOErzW33PFMtpj0wD6vIBbkbMdUlWNm9w46Zv6xZuf1wDD064jFtWj4BrLwB2D0bWpR6l7+GKV8bKK/B77WFv+yZVe4u85l0xZh2vxxcPx8S9vk5j/gLZuuykLLXUtmooz7wOt2KrdLNddzTYeUv0vUy+NqQNrZvoFxF2s+OPJ7Rrm1Nz794vwvaun5Lkv3d0FRnO28Us/PkpZiKmcoxUzUvxUz9mEDY79J4791iFXw/Evw71+4zLqbYmfMOw7t0O74tVSlz/BRTMR19sskssuGi6OeAZYwx8Z02qcMYw8yZM3nxxRd59913GT58eNj7/fr1Y9q0adxyyy2B+WPGjOGoo45izpw5UbfhdrvJz8+nrKyMvLy8hO+DiIjAVlNK39oDATjSPoh/uh5IckYiIiIiIiKRxVpX1Klbuk2fPp2nnnqKl156idzcXDZu3AhAfn4+mZmZWJbFFVdcwQ033MCee+7JXnvtxeOPP87SpUt57rnnkpy9iIj4Bbd0c+nxUhERERER6QI6daXbAw80tISYNGlSyPxHH32UqVOnAjB79mxqamq49NJL2bZtG3vuuSdvvvkmQ4cO7eBsRUSkOSGPl+JKYiYiIiIiIiKJ0akr3WJ9Mvaqq67iqquuatO2am76EOuTMvAZsC3sHc/0Bk8DYfOaTttD83GOLybtmMEAeFe8jm/dYkzpisb9qtwIPi/YjtA+inqOJu2A37ZpP+JV/6+VeD9YT/2i9XHva7zTzcW0e2bi2L2QjBv3azFX74rXwVMDzgwcQ47Cu+J1PG9tp/7lGkxpTrvnmWox7aH52CNexOq2FlPVUp9uXqzcvjh2OwPHkKPCjmnT8glgFQzB7rt/wzLfPokpXxcor1bBEF7tXcXqwbszyzmlFaWugb/seZeXdZnPpCvGtPvm4Dp718A1LfD5/fdWTMmSkLLnLzdNyxlAnakLvI51IAXvitfDyp//evlxDy93jesFwJmrMjjOjAdnBr7/jQyUq0j72ZHHM9q1ren5F+t3wT2ex3nP9wljflrDoRtsxrqz41o/Fsn+bmiqs503itl58lJMxUzlmKmal2Kmfkwg7HdpvPdusQq+nwn+nWv3PSCm2DU3foj3mxJ8W6pT5vgppmLafbKp7hdbdVqn7tOtI/if013tvI08KzMhMa2+2eStnAZAzUMjoGJ9jCvaZMwuS0gOsXIPnodZV9mh24zItsivmdHiIoFjmVNMxvnLqHloBLVXnwXu/A5KMvW45l6LZcd4iu84bsFaLJ85xQ3/Rnh/U7aLw8/em7Od/8dvnRfHk3JAypQ9iSr4muZXc3c+GF/4whHKGcC3vh8YW/d/AEx1nMiDaTdH3W5L5dNnWRx/0YkAPPX4m+RWuiGnmLo5V6ZWuWrh2tbs/jXzXfCNbxkX1d/AVlOKEyevP/ExhZXVMa8fD52fIiIinV/I79I4791iFe33RLTYZRn3NVR0iKQYt6lmgOfKrt2nm4ikJg9eVrOB//mWJzsV6SRqaWzplqjHS/OsHAAs7ITES3UbTQmfmiUADGcgNlaSMxIRERER2bmp0k1E2k01NclOQTqJRA+kYGPxvOs+AGqsN4HSNsdMdaW4A6/Pd55Kd+tHoCp5CYmIiIiI7OR2jv/+F5GkqKY22SlIJ6GBFNqu1DRWuuWTm8RMREREREQEVOkmIu2o2qilm8SmthUDKUio7UEt3bpZzfcrISIiIiIiHUOVbiKScP6epPR4qcSqPvjxUkuVbq1RZsoDr9XSTUREREQk+VTpJiIJZ+2odtPjpRKr0MdLVenWGmrpJiIiIiKSWlTpJiIJF6h00+OlEqPaBA+ksDMKaemmSjcRERERkaRTpZuIJJy/0q1GLd0kRokevXRntJ2ywOtuqNJNRERERCTZVOkWq0QdKRus7MYflFZaduzBLUeCkoidlZ2WGqXEYUVdxErLBlfujmPaMG1leADTzsmlKBswsX94/uMWPi9SDLvh+EZYB2xq0pxA2/p0S5myJ1EFX9MaZ0a6XtnNlJnQgRRcMY5e2lysptsPvjakXLlq4drW7PnXzHeBv6WbjU0OWXGvH4+UO44iIiISnya/S+O9d4tVtN8TUcXwO1AkKWKtxjHG7KQ1ErFxu93k5+dTVlZGXp5aDojE4oDaU/jcfIeNTWX6V1iWviylZQ94nuJSzxwA5qXN5ZeOY5OcUeczqvYoVpg1dCef9RkfJDsdEREREZEuK9a6Iv0/tYgkXCaZAPjwUY8nydlIZ6DHS9vO39It39LIpSIiIiIiqcCZ7AREpOvJtNIDT/VWU6NKFImqlsbHS9NjfLxUGj3nXcAu1mDqqWeg1TfZ6YiIiIiICKp0E5F2kElG4HU1teSjljfSMrV0az1jDBfV30A5lQyy+rHI9XSyUxIREREREVTpFrPyg57B/FQHPsACctKgsj50GsLnNZm2e2fjnDyAzN8fCED9e9fiW/UWpmJT48bqK2loJmRBWnbDtDMDq2AI6b9c2GH7DFB91SI8/16Nb3lp3Psa93RzMTOc2EPyyV18aou51r93LdSWQnoBaRN+R/1711J3fxqe/xRAjav980yxmHbvbJyn/hErdwt4ahrKUthB21HW0nJw7HYGaRN+F3ZMw8onYGX3wh50GADe756Eugr85dXK7sWZ/dN4Zf+GZatNDbSiS7dA2dtY2WU+ky4ZMycN15RdA9c0v9qnJmJKV4SUPX+5aVrOAOpMcKVbbC3d6t+7Nqz8RbpeBl8bPK8d1ViuIu1nRx7PKNe2sPOvme+CdWyinIb9GWkNjnv91kj6d0NTne28UczOk5diKmYqx0zVvBQz9WNC2O/SeO/dYhVyPxL0O9cqGBJT7PL9/4FveRnUeFLn+CmmYuakUdHTaq7YhtBAClH4O8db7byNPCszITGtvtnkrZwGQM1DI6BifYwr2mTMLktIDrFyD56HWVfZoduMyLbIr5nR4iKBY5lTTMb5y6h5aAS1V58F7vwOSjL1uOZei2XHeIrvOG7BWiyfOcUN/0Z4vzQ7h0Fn9wDgc9c/GWUPizlnv5QpexJV8DXNr+bufDC+8IUjlDOAq+r/wN3exwH4j+sJxtt7R91ui+Uz6HoZfG2om3NlapWrFq5tze5fk++CN70fcGz9BQBc6pjK3LTL41q/NXR+ioiIdH4hv0vjvHeLVbTfE9Fil2XcBz5VWUjqcZtqBniu1EAKItLxguv8q6lJWh7Seejx0tZbZlYEXo+whiQxExERERERCabHS0Uk4aygardqapOYiXQWwZVu6ap0i9lK31q2mjIG0Ac3lexqD012SiIiIiIisoMq3UQk4UIq3Yxaukl0tWrp1iov+v7NXO+DAJxoT+Zn9p5JzkhERERERPxU6bYTuMfzOO/5PgFggr0vs5xTkpyRdHXBlW41aukmMQgeSCFNlW4xqwp6fLtAowSLiIiIiKQUVbp1YX/wPMxL3rcoN5Wk4WQDW/jC9x3V1HCV84JkpyddWmOlW5X6dJMY1FEXeJ1uxTZ6qUCVqQ68Ps3587jXf8rzCpd55uDFx6H2/jztujuB2YmIiIiI7NxU6daFfev7gU/NEgD2ZQ+2Urpj/o9JzEp2Bnq8VOKlgRRaJ7hSO4uMuNffYDZTSjkAS4MGZBARERERkbbT6KVd2DqzKfD6Ode9EeeLtAcHNj+z9mSoNYB7PU8wq/5W3vV+nOy0JIWFDqSglm6xqqKxpVs2WXGvX2rKA6+3mG0JyUlERERERBqo0q0LW89mAPLJpZfdg+7kh8wXaS8ZVjoL05/kNPsYfmAVf/E+zbn1Vyc7LUlhtUGPl6qlW+yCHy/NbE1LN7YEXm+llLKgSjgREREREWmbVj1eWl9fz8aNG6mqqqJnz55079490XmlHGtAHmz0gjFgWZDhgJom0xA+r8m0VZhJ2qH9A3Edg4/Au+odqC5p3Ji3BgwN3WI5MhqmbRdWXr+Y8zXGBFq0FVtFgX+3mTLWm00YY7Asq6UQAKQdNYj6t9Zg1lXEva9xTzcXM83GHhC9g3DH4CMwNduxMroFph0/q8W7yAv1zvbPM8ViWoWZUN8XsreBr66hLDXlL2vODByDj4h4TMPKJ+DOTGdt/8Hsbu+Cd+mz4KlpLK+ZhTgGHgxAnpVDGmnUUY+biqifYbBA2dta3WU+ky4ZM9NJ2lGDwj4/q9swjHttaNkLKht+/oFevvEtC8yLtdLNMfiI8PIX4XoZfG0IKVeR9rMjj2eUa1vY+Rdh34IfL822MmNaf3tuLs94HmeWcwrrCG35vMysZJy1R9Rjn/TvhqY623mjmJ0nL8VUzFSOmap5KWbqx4Sw36Wx3rvFK+R+JPh3bk6/mGLbuxTgW10O9b7UOX6KqZgZDqxuabA8+jlgGWNMLCdLeXk5f/vb33j66af5+OOPqaurw19x069fPyZPnsyvfvUr9t1331jCdRput5v8/HzKysrIy8tLdjox22bKKK4dD8Bh9gG86vorx9ddxBu+9wFYk/4ePa2uX1kqifeTbx3H111IOZVMdZzI9WkzWlz+oNrT+cR8g4VFZfpX2JYa2ApUmiom1Z2J21RiMPSgAA8edrOH85jrtmSn12kcWXcu7/o+AmBr+sdkWy0/Yrrct5pf1F9CidnOr5yn8qz3dZaZlVhY7GYN5ybHTI5xtu3mWkRERESkq4u1riimX7933nkngwYN4tFHH+Wwww7jn//8J19++SXff/89ixcv5oYbbsDj8TB58mSOPPJIfvjhh4TtiLTOOrMx8Dq4pVvj++rXTVrHtmyWsZL1bOZbE/1cz7WyATAYKoP6n5Kd2xaznW/M96xiHXXUU2wXMcAuZow9KtmpdSrxPl7qwMF35kc2s5Uvvf9j7Y7vCoNhifme9UGPm4qIiIiISNvE9HjpJ598wnvvvcduu+0W8f1x48Yxbdo0HnzwQR599FHef/99hg8fntBEJbq/e1/FYFjtW8/bvg8pogdpOBlpDQFgpDWEvaxdqTG1zKq7ldH2Lkx2jOd4x2FJzlw6kz4UYmFhMDFV3uaRE3jtpoJcstszPekkSmjstP84xyH8Ke26JGbTefkHUsgkI6ZWpAOsPmSRSRXVLDKfsbe1GxvMFn5kFQBlO0YyFRERERGRtoup0u3vf/97TMHS09O58MIL25SQtI4xht95HuBHswoHDn5m7cEIazAT7H25zDkNgFnOKcxyTuHmuvu43fcQH/m+4g3f+6p0k7ikWWn0ppANbGG9iT4oR67VWOlWbirA6tWe6UknsdWUBl4X0i15iXRy/j7dsmIcRMG2bHaxBvGl+R+luHnffMpB1j78aBoq3UqNu91yFRERERHZ2bRqIIVgbrebt99+mxEjRrDrrrsmIqeUVNb7rxhPeuMMi4ZOIIOniTCv6bTTxrF7ITkfngpA7ZMTMCVLwOcJWrCZIM5MMmZGruRYaday3KwGYKBVTDcrH2joyL6pfDuXHF82pbhZy0YqTBU5zfQDVLHfP/B+U9LQcWW8+xrvdEsxs5zkl14UMUe/2icnYKo2YWX1Iv2M96h9cgK1N0zErO7ZuIH2zjOVYjptXDdej+WsC5rZVONKVtEY0s94L+TdyOUTvrZhSY80YAM1W/KC4lhgO7EKRwdi5dJYttxURsghskDZ8/i6zmfSFWNa4BhTFLim+dXcWwSe6qAVCCkbW4JaurW2f8naJydgNn8ZmkyE62XwtaH+3umN5SrSfkaal6RrW/j5F75v/sdLIz1a2tz6bzid9Dq/b2C5A+y9ed/7KQDbia3SLenfDU11tvNGMTtPXoqpmKkcM1XzUszUjwlhv0uj3bu1Vuj9SFAidlpMscsKHoAqT/P70lU+E8XsdDHdjlpiEXel2ymnnMKECROYMWMG1dXV7LPPPvz0008YY3j66ac56aST4g3ZOdT7Gj8sCD3gkaabW6beh29TY8WDqdoEvvoWNhwUxNv8h/q9WckYRlFpVXOifTg3pM1sdtlZzil8Z37kce+LACwzKxhrjY64rG9TZeiPqiYpNTuvrdNN59V4I+YXsnjVJqhYH1jNVG3ClKYT8sG1d56pFLPeB3Z9Cws1WaUq/FHR5spnmg+KqvyfSXBcA776kFi5BLd0i73SLWLZa7q5SNOxLNOVPudkxzSEXNMCQq5XO1YIKhslZnvg3R5WQYSNRtcQq0kyEbYffG1otlw1Wb3ZeR14bWv2+yFo3/wt3ZqOXNrS+i6vj6edd/GcdwHr2cyxjoO5zftXAMpibOmWMt8NkXSG80YxO2deiqmYqRwzVfNSzNSN2eR3abR7t9Zq9n4m1tjB90qpdPwUUzGb+03RRNzDCL733nscdNBBALz44osYYygtLeVPf/oTt956a7zhJEHWmk18zrcsMysYaPWNury/nzeApWZFe6YmO7ng1pblVCQxE0klwZVuhWgk5dYwpnFwkizCK92aYwEnOA9nX8ceHO84jOHWoMB7sbZ0ExERERGR6OJu6VZWVkb37g0/kBYsWMBJJ51EVlYWxxxzDFdccUXCE5TYVO9o7QCQZUXv22ckQ+lHb3pZPdjo2wKO9sxOuiIXTmwcQFWLy+UFDZzgjqOlm3RtJTRWuvW0uiUxk86rHg9eGv73N5aRS5ua5ZwCgM/48A+OUmY0kIKIiIiISKLEXenWv39/Fi9eTPfu3VmwYAFPP/00ANu3bycjI/6bfkmMyqCKj1haPIy0h7CWjaw1Gyk26the4tfT6rHjVcuVbrlq6SYRhD5eqkq31vCPXAqRHy+NlW3ZFJDLdtxq6SYiIiIikkBxP146e/ZszjjjDPr160dxcTGTJk0CGh473X333ROdn8SoygS1dIuh0m2gVRxoGaHHS6U95Qa3dItjIAXpmipMFSfVzWCR77PAPI1e2jqVQZVusY5e2px8Kw9ALd1ERERERBIo7pZuF198MePGjWPNmjUcfvjh2HZDvd2QIUPUp1sSBbd4iOXxUtuyGWEN5kvzP5ab1dSaOtItV3umKDupXKux0q1Cj5fu9Cqp4n++5QxjALXUsYs9GJeVluy0OqXqoP9sac3jpcG6kcdPNPTpZozBsqxoq4iIiIiISBRxV7oB7LPPPuyzzz4h84455piEJCStUxXcp1uMP75GWEP40vwPHz5+NKvYzRreXunJTiwvaPRStx4v3el58FKPl152IQDj7D2SnFHnFfp4aVabYuVbuWDAi5dKqsmhbfFERERERKQVlW7Tpk1r8f158+a1OhlpvSoT9OMrxh9Lo6xhDKYfPa3urPCtYTdblW6SeN2tAva2RlFKOYt8n3FY7RQ8eNnTHsk9ab9NdnqSBOc4T+Qa54XJTqNT8xgPi31f0o/eGAzDrAFtircLgyhhG5ZlsclsJaeNlXgiIiIiItKKPt22b98e8rd582befvttXnjhBUpLS2OO8+OPP/LGG29QXd1QWWSMiTcVCRLc4iEzhsdLAUbYg1jJWj42X/MVS9srNdnJDbD68N/0Zzjd/jmFdONT8w0fmi+Z7/1nslOTJOmLBm9pqxJKmeW5lbVsJIsMLnWe06Z4mVYGS/iBb8z3/GTWJihLEREREZGdW9wt3V588cWweT6fj4suuoihQ4dGXX/r1q2ceuqpvP3221iWxQ8//MCQIUM499xz6datG3fccUfMucydO5cXXniBpUuXkpmZyQEHHMBtt93GiBEjwpY1xnD00UezYMECXnzxRU444YSYtwOQdtZIrE/d4DNgW9hFWfg2V4VMA2Hzmk7bQ/NxTurXGPegW/CueQ9T2jiYganaDD4v2A6srCJM1WasjO7YPUc3m19rHi8daQ0JvF7mizyYQsac8XgWrsXz3w1x72u8083FtHtkYO9eGHV/0g66BVNfhZWWFZjmN2XUv+TFlGW3e56pFtMemo+VfTJWt7WYmm1YWUVhx8xf1qycPjh3nxrxmDYtnwB2wRDs/hMA8HzzGKZiQ6C8Br8XLM/KIc/KwWGcQB1efC1+nv6y5/uxrMt8Jl0xpt0nG9e03cI+P8ce5+LbsiRQ9lb61rIwbwvv981gihVeFlsj7aBbwspfpOtl8LXBnrNnoFxF2s+OPJ7Rrm1Nz7/gfSszjaOMBo8QHOv6TY2wBgdeLzMrOJT9Wzz2yf5uaKqznTeK2XnyUkzFTOWYqZqXYqZ+TCDsd2nTezeg2fv6eATfjwT/znUU7xdT7LRfjcb3TQm+rTUpc/wUUzHtoizS+jvhsejngGUS1MRs2bJlTJo0iQ0bNrS43Nlnn83mzZt5+OGH2XXXXfnqq68YMmQIb7zxBpdddhnffvttzNs88sgjOe2009h3333xeDxcc801LFmyhO+++47s7OyQZe+66y7efPNNXn/99bgq3dxuN/n5+ZSVlZGXlxdzbh3tkNqz+a/5HIDy9C9Ii6Fj8npTT7faffHgYbQ1nE/TX2zvNEX4We3JfGWW4iINd8YXyU5HOsi5ddfwpO9lAL5wvcSudvT/pJHmfej7kkl1ZwIw3XEGd6Rd3aZ4i31fcHDdWQCc7ziFe9Oub3OOIiIiIiJdVax1Ra0aSCGS5cuX4/F4oi7373//mzfeeIN+/fqFzB8+fDirVq2Ka5sLFiwImX7ssccoKiris88+Y8KExlrzL7/8kjvuuINPP/2UPn36xLWNzsL/eKkTZ0wVbgBpVhrDrAEsNSv4wazCa7w4LEd7pilCOi4A6qjXKIk7kXVsCrwuTlBLt51ZmSkPvC6g7f8hFNzyeWkzLZ9FRERERCQ+cVe6XXbZZSHTxhg2bNjAv/71L6ZMmRJ1/crKSrKywh8N2bZtG+np6fGmE6KsrOFxoe7duwfmVVVV8ctf/pI///nP9O7dO2qM2tpaamtrA9Nut7uFpVOH//HSWB8t9dvb2g3LWDgtB0vM9+xp7doe6YkE+CvdAGqpI4O2nffSOYyxdsVjedlOWciIttI622n8biqw2l7p1s3KZxgDSCc9IfFERERERKQVlW5ffBH6OJht2/Ts2ZM77rgj6simAAcddBBPPPEEt9xyCwCWZeHz+bj99ts5+OCD400nwOfzMXv2bMaPH8/o0Y391Vx66aUccMABHH/88THFmTt3LjfddFPY/Po3fqJqaTV4DZbDwuqVhW9TVcg0EDav6bTdNwfHsAIcI7o1LL/te8z2Ffgq1gW2ZSo3gfFhWTZk98JUbsLKLMQuGIRj8OSIeftHL80mM7YDtsNB9j485XsFDCzwvc+edmilm3fZdnw/llL/+ea49zXe6eZi2oWZOAbnkXbkoBb3xbft+0AfAXb3XfBt+x7f927qF5diynLaPc9Ui2n3zcHK+wJyS6CqBLLDO6/3lzU7pzd2/wnY3XcJO6ZNyyeAlVOM3a3h8UDfmvfxVWwIlFf/e01j+aVbLtjxUHtLlW7+suddV9FlPpOuGNNRnI1zYr/ANS3w+a38N76ynwJl72a6YeWcit1tKFZ6Ylo3+rZ9H1b+Il0vg68NZkvPQLmKtJ8deTyjXduann/B+1bWP6ilWzOVZC2tH+m7pNDqxofmK771/UCtqWs4V5uR7O+GsH3tZOeNYnaevBRTMVM5ZqrmpZipHxMI+13a9N4NiHpfH4vg+5Hg37lWrzExxa5f8BPelWWYkpqUOX6KqZhWryzqusXWU1vclW7vvPNOvKuEuP322zn00EP59NNPqaur4ze/+Q3ffvst27Zt44MPPmh13OnTp7NkyRIWLVoUmPfyyy/z9ttvh1UUtuTqq68Oac3ndrvp378/Vb9cgNOKr0KrOVbfbPJWNlRQ1j1/LFSsj2k9r2XjmF0W8T3/46Wxjlzqd7C9X+D1Y54XyCCdWc7GFouVR76IWVcZV8x2YVvk18xocZHAscwpJuP8ZdQ9fyy1V58F7vwOSjL1uOZei2VHvxj4IHDcgrVYPnOKG/6N9H6EWH7BlWw11JJPbsTlUqbsSYvqCb2mBea/9AswEQbLaKFsxKul8hl8vQy+NtTNuTK1ylUL17bm9s9r2WyfcXtguqCZc6il9SN9lxRbvQIV4uvNZgZb/cKW8dP5KSIi0vkF38O1171btN8T0WJXnfBqQ+f1IimmekfDp2jsds4jzOjRo/n+++858MADOf7446msrOTEE0/kiy++iGn000hmzJjBq6++yjvvvBPSV9zbb7/N8uXLKSgowOl04nQ21DGedNJJTJo0KWKs9PR08vLyQv46A//jpfG2dBtk9+U653TmOefiwMG9nvlcX39Pe6QoAjR9vLQ+iZmIdF4hfbol6HHQvlZja9j1bE5ITBERERGRnVlMLd323ntv/vOf/9CtWzfGjBnTYsfnn3/+ebPv1dfXc+SRR/Lggw9y7bXXxp9tE8YYZs6cyYsvvsi7777L4MGDQ96/6qqrOO+880Lm7b777tx1110ce+yxbd5+qvAZHzU09EOXFWelG8C1zovYaEqY5mkY/e5b80NC8xMJFlLpZmpB4yiIxC24T7duCRhIAUIHuFhnNiYkpoiIiIjIziymSrfjjz8+MMjBCSec0OqNpaWl8fXXX7d6/aamT5/OU089xUsvvURubi4bNzb8SMjPzyczM5PevXtHHDxhwIABYRV0nZm/lRvE/3ipXw8aH8EsMdvbnJNIc4L7iaqlLomZiHRepaax0i3fivx4abyCW7qtM5taWFJERERERGIRU6XbDTfcEPF1a5x55pk88sgj/P73v29THIAHHngAIOxR0UcffZSpU6e2OX5n4e/PDeJ/vNQvzUqjgDxKcVOCKt2k/TTt001E4ldK4+Ol3UhMv5V9rcb/pFpv9HipiIiIiEhbxT2QwieffILP5+NnP/tZyPyPPvoIh8PBPvvs0+L6Ho+HefPm8dZbbzF27Fiys7ND3r/zzjtjzsWY+DtUbM06qewez+Ms8L4XmM6idS3doGHkulLjVks3aVfppAVeq083kdbxt3Rz4Gj1f7Y0VUzw46Vq6SYiIiIi0lZxV7pNnz6d3/zmN2GVbuvWreO2227jo48+anH9JUuWsPfeewPw/fffh7zXUl9xEmq+9yXu9zxJhakiAxd7MpLd7OFc4jy71TELKeBHVlFGOXWmHpeVFn0lkTilB7d0M2rpJtIa+eSyhzWCAvIS9t1ZTBH7WXtRQVVItwUiIiIiItI6cVe6fffdd4FKs2Bjxozhu+++i7r+O++8E+8mJYJlvhV8YRqO9zhrT3pa3djTHsle9q6tjllodYcdDQG3UkofeiYiVZEQwX261alPN5FW+db8QAnbGWz1i75wjNJtF8vNarawLaTPOBERERERaZ24K93S09PZtGkTQ4YMCZm/YcMGnM64w0kcDPCX+n+wma38YH4KzP9r2s2MtIe2OX6h1S3wusRso4+lSjdJvIyg0UtrVOkm0ipuKgDIJTvKkvHpa/Vii9nGBrbgNV4cliOh8UVEREREdiZx15JNnjyZq6++mpdeeon8/IbOm0tLS7nmmms4/PDDo65/8MEHt/gozNtvvx1vSjsNHz5meW8BYBdrUGB+cOfXbVFIY6XbFvXrJu0kHY1eKtJWdTv6Q8wlJ6Fx+1q9+NL8Dy9eNrNNLZ5FRERERNog7kq3P/7xj0yYMIGBAwcyZswYAL788kt69erF/Pnzo66/1157hUzX19fz5ZdfsmTJEqZMmRJvOh0m+z8nkbHeAz4DloXVIwOzrSZkGgib13TaLszE7tPYMiH99IWYyg2YqpLAPFOzDYwB28ZK74ap2YaVXsA01x3AeoDAYAe5ZJNrJaalQ3BLt2s9d1LsLeKI98YybcupeL/fHve+xjvdXEyrIB27d/R9TD99IRgv7GiZkX76QtImVeD9rhxTmdnueaZaTLswEzLGYWWWYWpLsdK7hR0zf1mzsgqxC0dHPKZNyyeAlVmIldMHAF/JN5iqrYHyGvxexM8pqE+3WtN8pVvOf0/Ft6ESX0l1l/lMumJMq0cmzj0Kwz4/1y/fx1RuDCl70cpGvNJPXxhW/vzXy+DtBF8bXD/PDZSrSPvZkccz2rWt6fnn37eynGzgQgDyWrj+N7d+S59BsRU8mMLGZls8+8/PZH03NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2u7S97t2C70eCf+faBcNjip39YcM9hymtTZnjp5iKafXIwJvhgYlXRi3DcVe69e3bl6+//ponn3ySr776iszMTM455xxOP/100tKid7x/1113RZx/4403UlFREW86Hca5V0/SJ+QlPK6V0xsrp3dMy/5U+wiYhkq3sh2PFvW1eiUsl2PtQ9glbRAve99mmVmB21SwqXcVzv5FOPcuih4gyZoeRyunN47h4BiepIRSQts+t1jKpyPG8uuXYQW3dGt+IAW7T3bIjYB0LnbRHsAe7boNK6d3TOUvuAxbOXSactXc+VfqW4O/kWhLLd3i+X7xC/5OWW82N7uc//zsDN8NIiIiEl173bu15n4kmHOvnrCXWt5L6nG6Y+sDuVWdsGVnZ/OrX/2qNas268wzz2TcuHH88Y9/TGjcrsQYE3jtxQuEtkpoq6H2AIYygB/MKrb4tgGQZyX20SWR0MdL65OYiUjnVE5l4HVLLd1ao5jGSrd1ZlNCY4uIiIiI7GxiqnR7+eWXYw543HHHtSqRxYsXk5GR0ap1dxbVVi0YsLEoII8sMtndGpHw7cxyTmEWUxIeVwQgI+jx0poWWrqJSGT+QRQg8QMpDLb7sQuDqKaGV7zvcJzj0IS2qBYRERER2ZnEVOl2wgknxBTMsiy8Xm+Ly5x44okh08YYNmzYwKeffsp1110X03aSofKcN+FLd8MzvLaFVZiJKakOmQbC5jWdtofkkXboAFznNfSf5fl6Hr7V72DKfgpsy1SXgPGBZWNlFmKqS7DSC7i22wbOOiyH3vTkHMdJAFyXNr1d97vu4SXUv7UG7ycb497XeKebi2kVpOPYvZCsxya3mKvn63lQXwlp2Tj3mIbn63nUP1tJ/UsWlGe1e56pFtMekofjgHlYBesa+mbIDO93y1/WrKwiHLufg3OPaWHHtGn5BLDyB2EPOBgA7zePYqo2B8qr/72msfxiHUjBX/Z8K8u6zGfSFWNaRVmknz86cE0LfH6vn4cp+Tak7EUrG/HyfD0vrPz5r5dW4W64jno4sJz/2uD7eFygXEXaz448ntGubU3PP/++9etRCIc0LJPbQmvk5tYPPjZNHWTvwyXOKczw3MQas5F/exdxjvOksOWS/d3QVGc7bxSz8+SlmIqZyjFTNS/FTP2YQNjv0va6dwu+Hwn+nWv33iem2FVT/433m5KGPt1S5PgppmJahZlU9o/twVHLBD+z2AGmTp1K8Oiltm3Ts2dPDjnkECZPbrlSJRncbjf5+fmsdt5GnhV+o98aVt9s8lY2XFxqHhoBFetjWs9rQY8LBzLMGsj5jlOAhlZp7ck9eB5mXWX0BdubbZFfM6PFRQLHMqeYjPOXUfPQCGqvPgvc+R2UZOpxzb0Wy47xFN9x3IK1WD5zihv+jfR+hFh+C70fc0R9Q/m/3HEut6ZdGnG5lCl7ElXwNc2v5u78hpuqplooG/FqsXxaNhmzy0KXyymmbs6VqVWuWri2Nbd/xrLoduEAAP7ovJIZzrPiWj/42ETylPcVptVfDcBdzmu4yPnLsGV0foqIiHR+Ib9L2+neLdrviWixyzLua6joEEkxblPNAM+VlJWVkZfXfP//rerTza+mpibuR0Ife+yxtmxSgByy2r2yTaS9pAcNpFCnPt1E4hZ829nSQAqtlUnj93oVNQmPLyIiIiKys7DjXcHr9XLLLbfQt29fcnJyWLFiBQDXXXcdjzzySNT1hwwZwtatW8Pml5aWMmTIkHjT2Sllk5XsFERaTX26iSROewx2kxl0jlar0k1EREREpNXirnT73e9+x2OPPcbtt9+Oy9XYYmX06NE8/HDkPmKC/fTTTxH7fautrWXdunXxprNTyrFU6SadV6x9uolIdDnt8J8wGUEt3WqMKsZFREQklNd4uabuDs6u+w3T627kfd+nyU5JJGXF/XjpE088wV//+lcOPfRQLrzwwsD8Pffck6VLlza7XvAIqG+88Qb5+Y39bHm9Xv7zn/8waNCgeNPZKbXHjyyRjhJc6VZjVOkm0hbt0tLNUks3ERERad4H5nPu9D0amP7Rs5o3XPOSmJFI6oq70m3dunUMGzYsbL7P56O+vvn+mfwjoFqWxZQpof2RpaWlMWjQIO64445409kpZSdoQAeRZAju022h72Pu8TyuPgpF4mCCenXLa4c+3bKCWrpV6xFwERER2eEez+O85/uEpb4VIfPXmU1Jykgk9cVd6TZq1Cjef/99Bg4cGDL/ueeeY8yYMc2u5/M1jIQyePBgPvnkEwoLC+PdtOygPt2kMyukG6+k/YU/eB7iC/M/7vXMZ09rVyY5xiU7NZFOwcJiD0Yw0h7CAKtPwuOHDKRgqhMeX0RERDqXelPPvnUnUW1qMRgG0IdcslnGSqqpYb3ZjDEGy7KSnapIyom70u36669nypQprFu3Dp/PxwsvvMCyZct44oknePXVV6Ouv3LlylYlKo2yUUs36bzSLReHO8bzV+8/KDeVlFPJJkqSnZZIp9Lf7sNYezTZ7dDHZ4alwU5ERESk0UZKWGoaWrf1ogf5di755FJhqvjRrKKKakpx0438KJFEdj5xV7odf/zxvPLKK9x8881kZ2dz/fXXs/fee/PKK69w+OGHxxSjsrKShQsXsnr1aurqQvt0uuSSS+JNaaejgRSkK5hsH8grvrcBddYuEg8bi+dd97Vb/Ew9XioiIiJBgh8fPdFxBHelXQPA+fW/5UfvqsAy3SxVuok0FXelG8BBBx3Em2++2aoNfvHFFxx99NFUVVVRWVlJ9+7dKSkpISsri6KiotStdMtyQvBTNrYFPhM6DeHzmk5nOLCHd2uc1W0YvppS8AZ1Vm18ja8tG4wPg0V5WsOsjhxIwR7eDe/2WqjyBM2McV/jnW4upgXkNfYD1myu3YZhXHlY2UWBabtPFb7yXDB2++eZajEzHODNBLsaMA1lqSl/WbNs7G7hfTVGLJ8AjozA8r7KjSFxgt9rSfCACnURRjENlL0ab9f5TLpiTNsKuaYFuHKh1k1I2YuxbMTK7jYsvPwZH2A1bD9oOf+1IaRcRdrPSPOSdG0LO/8i7FtLWrt+JtEHUkj6d0NTne28UczOk5diKmYqx0zVvBQz9WNC2O/Slu7d1pvNgcX6Wr0aX9P4er3ZzGh2oamQ+5Hg37nOrNjuC/NcUFYLppX72lk+E8XsfDHTneAmqpgr3bZv387f/vY3pkyZQl5eXsh7ZWVlPPHEExHfa+rSSy/l2GOP5cEHHyQ/P58PP/yQtLQ0zjzzTGbNmhVrOh0uf815UfetNVwn/yum5eZ5nuNiz41Ax/bplvPv/+uwbbVV02PpOvlfuE5OUjIp46I2rR1r+WyNjKABFWoiVLp1prIn4TIuXtvu24i1fAYv15muCW09/1q7fkZQpVtzrVB1foqIiHQtLd27rfPMD7wutooCr/sGvV5rNkZct633M/mbf9Wm9UXai+V2Q/6voy4XoelLZPfddx/vvfdexIqn/Px83n//fe69996ocb788kt+/etfY9s2DoeD2tpa+vfvz+23384111wTazo7nZ87DuZs+wROs4/hMMcByU5HpM2CW7qp3yiR1GFbdqDirQoNpCAiIrKzWx/0eGlw67be9GRPayS7WyOabR0vsrOLudLt+eef58ILL2z2/QsuuIDnnnsuapy0tDRsu2GzRUVFrF69GmiouFuzZk2s6ex0iqwe7GYPZ4w9iv7tMFqdSEcLbk1TG6Glm4gkj/8RU/XpJiIiImuDK92CHi/Ns3L4yizlG7OMDWZLMlITSXkxP166fPlyhg8f3uz7w4cPZ/ny5VHjjBkzhk8++YThw4czceJErr/+ekpKSpg/fz6jR4+ONZ2d0iznlGSnIJIwruCWbhpIQSSlZJLBdtw6N0VERAQXaexhjaDUuEMeL821sgOv3VQkIzWRlBdzpZvD4WD9+vUMGDAg4vvr168PtGBryZw5cygvLwfgd7/7HWeffTYXXXQRw4cPZ968ebGm0+Hco57AlEBDD44WuGyo84VOQ/i8JtNWQTrOSf3IeuKIhsVfPxff6oVQW9a4MV9Qqx/b1TBtOyG7Nxnnftv+Oxuk6uw38Ly7FrO5mnj3Ne7p5mI6Law+2eT9MLXFXOtePxeqt0JmD1xHPULd6+dSd3tvvJ8Ugcdu/zxTLKZVkE7axb/DyiwD42koS035y5rtwh5+HK6jHgk7pmHlEyAjH7v/xIYQP7wcEsf/XtNYTQX36VZHfdj7gbJXWttlPpMuGdPlIO2EoYFrml/NI7tBxcbQshdj2YhV3evnhpe/CNfL4GuD5++nNJarSPvZkcczyrUt7PyL87ugLetnWOlgmh9IIenfDWE728nOG8XsPHkppmKmcsxUzUsxUz8mhP0ubene7YND1vGTWUt38smyMvHLIyfwutxUEknI/Ujw79ysnjHdF7qHP4bZUAkekzrHTzEV02VTnudrrtiGiLnSbcyYMfzzn/9kv/32i/j+iy++yJgxY1qMYYyhqKgo0KKtqKiIBQsWxJpCUplNVRC4wJjGke8iTje/jNlYhef9dYG5vrWLoGoTzfKPOuetg/L275i8Kc/76zAbq4LmxL6vrZ9uMq/OYNZE/58T39pFULEecooD095vzoI6u2PyTLGYZmMVpJU0jrLSdATSYN6ahuPXRLPlszJo+eC43prQ91oQ0ll7hEfYwssedPbPpEvGrPGGXNMCytcSGKHKX0ZiLBux8q1dFF7+IOx6GXxt8Lw/PkK5glS8tkU8/+L4LmjL+llkAM0/XpoS3w0RdZLzRjE7YV6KqZipHDNV81LMVI7Z9HdpS/du603DQH7BrdwgtKVbOZEr3Zr/PbEppvtCs6ai8fdMCh0/xVRMUx1b38d29EUazJgxgzvuuIP77rsPr7dxg16vl3vvvZe77rqL6dOntxjDGMOwYcPUd5uIhAykoD7dRFJLZqDSrQZjTJKzERERkWTx4Qs8ldLX6h3yXnBLNz1eKhJZzJVuJ510Er/5zW+45JJL6N69O2PGjGHMmDF0796d2bNnc9lll3HyySe3vDHbZvjw4WzdurXNiYtI5xYyeqlRpZtIKonWElVERER2Dl4aH6Fr2tItg3ScOx6ea+7xUpGdXcyVbtDQB9uHH37I1KlTKS4upk+fPpxzzjksXryY3//+9zHF+P3vf88VV1zBkiVLWpWwiHQN6SF9uqnSTSSVZFoZgdcawVRERGTn5TWNT7kFj1wKYFkWuTQ8eqqWbiKRxdynm9+4ceMYN25cqzd49tlnU1VVxZ577onL5SIzMzPk/W3btrU6toh0HmpJI5K6MoPOz4bBFPKTl4yIiIgkTXBLt770Cns/lxy246ZCLd1EIoqp0m316tXNjloaybp16+jbt2/E9+6+++6Y44hI16U+3URSl79PN4AHPX/nlrTZyUtGREREksZL8y3dAPKsbDDgbmYgBZGdXUyVbvvuuy8nnHAC5513Hvvuu2/EZcrKynjmmWe45557+NWvfsUll1wScbkpU6a0PlsR6TIy1KebSMq6zHkO1Z5aPvJ9yZPel7nZOQvLspKdloiIiHQwg2E3hpFupdPb6hn2fu6OwRSqqaHe1JNmpXV0iiIpLaZKt++++47f/e53HH744WRkZDB27FiKi4vJyMhg+/btfPfdd3z77bfsvffe3H777Rx99NEtxlu+fDmPPvooy5cv55577qGoqIjXX3+dAQMGsNtuuyVkx0QktTlxYmFhMOrTTSTF7GGPZKspZSMlANTjwYVuokVERHY2Xrx8y49goMjqEfZ+npUDOwY6L6eK7uqSQiRETAMp9OjRgzvvvJMNGzZw3333MXz4cEpKSvjhhx8AOOOMM/jss89YvHhx1Aq3hQsXsvvuu/PRRx/xwgsvUFHR0OHiV199xQ033NDG3RGRzsKyrEC/burTTST1ZAUNplBFdRIzERERkWQJ7tOtR4QKNf9ACgBuo8EURJqKayCFzMxMTj75ZE4++eRWb/Cqq67i1ltv5bLLLiM3Nzcw/5BDDuG+++5rddz25tinF3xf3VCLb4GV58K460KmgbB5Taftfjk4Jw8MxHWOnop31ZuY8vWNG6tzg/GBZYMrr2HamYXdfZeO3GUAXNN2w/Pv1Xi/2xr3vsY73VxMKzsNe5duUXN1jp6KqSvDcuUHpn0n+PC87sVUZ7R7nqkW0+6Xg+XbA3I3Qn1VQ1lqyl/W0gtwjg5/9Dti+QSsnL44Bh0GgGfJY1BbFiivwe9Fk46LamqopT7sPX/Z860t7zKfSVeMaeW7cE0Lb6Fs9x2Pb/v3IWUvnrIRC+foqWHlL9L1MuTaEFSuIu1nRx7PaNe2sPMvzu+Ctq6fFdSvWyXVFNB4DUn2d0NTne28UczOk5diKmYqx0zVvBQz9WMCYb9Lm7t3e77/RgAKyIv46GiulRN4XRGhX7eQ+5Gg37lW911jui90HFiM7/vtmMr6lDl+iqmYVp4LR+9c+DBqEcYyxpjoiyVOTk4O33zzDYMHDyY3N5evvvqKIUOG8NNPPzFy5Ehqamo6Mp2o3G43+fn5lJWVkZcXodJCRFptUM0kNlJCf/rwQ8abyU5HRIJMq7uap3yvALDE9S+G2QOjrCEiIiJdTa+a/SmjnGHWQJak/yvs/Svr/8A93scBeNv1BAfYe3d0iiJJEWtdUUyPlyZSQUEBGzZsCJv/xRdfNDviqYh0Ta4dgymoTzeR1BP8eGmlHi8VERHZ6dSbespoeDqgkIKIy4yyhvEza0/605vVvvDf+SI7uw6vdDvttNO48sor2bhxI5Zl4fP5+OCDD7j88ss5++yzOzodEUmiDMvfp5sq3URSTRaZgdfq001ERGTnU0Jp4HWh1T3iMnlWDh+Zr1jDRlawpoMyE+k8OrzSbc6cOYwcOZL+/ftTUVHBqFGjmDBhAgcccAC//e1vOzodEUmi9B2jIdaq0k0k5YRUupnU6vpBRERE2t9Wsz3wutDqFnGZkdaQwOv/+Za3e04inU1cAynU19dzwQUXcN111zF48OBWbdDlcvHQQw9x3XXXsWTJEioqKhgzZgzDhw9vVbyOUtbjQYyVGX3BGFh9s8lbOQ2AmodGQMX6KGv4V7TJmF2WkBxi5R48D7MuvEPMDmdb5NfMaHGRwLHMKSbj/GXUPDSC2qvPAnd+ByWZelxzr8WyY+y2ccdxC9Zi+cwpbvg30vsRYkUSPHqpMQbLsgLvpUzZk6iCr2l+NXfnN3SU21SMZSMWLZbPoOtl8LWhbs6VqVWuWri2Nbt/MX4XtHX9lkYv1fkpIiLS+YX8Lo1w7zYM+DbbwW5n96OQyJVuQ60BOHDgxcsysyLs/Wi/J6LdF5Zl3Ae+Du2GXiQmbhPbkyBxtXRLS0vj+eefb1VCTQ0YMICjjjqKX/ziF62ucJs7dy777rsvubm5FBUVccIJJ7BsWeNJu23bNmbOnMmIESPIzMxkwIABXHLJJZSVdWzFlYhE5u/TDaAuwgimIpI8waOXVqGWbiIiIjuz5lq6uaw0hlkDAPjW/MiJtdM5qW4G93ge78j0RFJW3I+XnnDCCfzzn/9s00YfeeQRRo8eTUZGBhkZGYwePZqHH3447jgLFy5k+vTpfPjhh7z55pvU19czefJkKisb/vd9/fr1rF+/nj/+8Y8sWbKExx57jAULFnDuuee2KX8RSYwMq7HSTY+YiqSW0MdL1aebiIjIzigNJ6fYR3GsfUizy/zOeRkvpT3AhfbprDRr+cD3Gfd65vO298MOzFQkNcX1eCnA8OHDufnmm/nggw8YO3Ys2dnZIe9fcsklLa5//fXXc+eddzJz5kz2339/ABYvXsyll17K6tWrufnmm2POZcGCBSHTjz32GEVFRXz22WdMmDCB0aNHh7TMGzp0KL/73e8488wz8Xg8OJ1x776IJJD/8VJoeMQ0j5wkZiMiwbIsDaQgIiKys3PiYKw9mqH2gGaX+bnjYACWmhXYxqbUlFNKORvZ0lFpiqSsuGudHnnkEQoKCvjss8/47LPPQt6zLCtqpdsDDzzAQw89xOmnnx6Yd9xxx7HHHnswc+bMuCrdmvI/Ntq9e+SRVfzL5OXlNVvhVltbS21tbWDa7Xa3Oh8RaVk/ejOaXbCsHS1prOjriEjH0OOlIiIi0t0qYJZzSkzLznJOoYA8LvBcB2ggJhFoRaXbypUr27TB+vp69tlnn7D5Y8eOxePxtDquz+dj9uzZjB8/ntGjR0dcpqSkhFtuuYVf/epXzcaZO3cuN910U6vzEJHY1Vn1LOF7MFBGRbLTEZEgGr1URERE4tXSQEwiO6O4+3Rrq7POOosHHnggbP5f//pXzjjjjFbHnT59OkuWLOHpp5+O+L7b7eaYY45h1KhR3Hjjjc3GufrqqykrKwv8rVmzptU5iUjLgkdBKgkaklxEkk83zSIiIhKvkP+00/2DSPwt3aZNm9bi+/PmzYsa45FHHuHf//43++23HwAfffQRq1ev5uyzz+ayyy4LLHfnnXfGlNOMGTN49dVXee+99+jXr1/Y++Xl5Rx55JHk5uby4osvkpaW1mys9PR00tPTm31fRBKnp9X4KHgJqnQTSSXZZAVe66ZZREREYhFc6VapgZhE4q9027499IdxfX09S5YsobS0lEMOaX5EE78lS5aw9957A7B8+XIACgsLKSwsZMmSJYHlLCt6507GGGbOnMmLL77Iu+++y+DBg8OWcbvdHHHEEaSnp/Pyyy+TkZERIZKIJEMPqyDwusRsS14iIhImpE83PV4qIiIiMQhuKV+tPmFF4q90e/HFF8Pm+Xw+LrroIoYOHRp1/XfeeSfeTTZr+vTpPPXUU7z00kvk5uayceNGAPLz88nMzMTtdjN58mSqqqr429/+htvtDgyM0LNnTxwOR8JyEZH49SSopZspTV4iIhImU4+XioiISJw0EJNIqLgr3SKxbZvLLruMSZMm8Zvf/CYRIWPi7xtu0qRJIfMfffRRpk6dyueff85HH30EwLBhw0KWWblyJYMGDYp5W+k3/AzHp27w+sBpY/fJxre+MmQaCJvXdNoeko9z316BuGlHPoxv42eY0sYBKkzFBsALOLBy+mAqNmBl98TqMSr2g5MgWY9NxvPJJjyL1se9r/FONxfTLsrEMbpH1FzTjnwYvLXgSA9MW3nbqH+tArbltHueqRbTHpKP1f9KrIL1mMotWDl9wo6Zv6xZOf1wjDw54jFtWj4BrILB2L3HAuBd+hymYi3+8hr8XjSFVlCfboS2dPOXPd+Ksi7zmXTFmPaAXFyn7BL22ToOmoPZ+l1I2YunbMQi7ciHw8pfpOtl8LXBucvgQLmKtJ8deTyjXduann/xfhe0df3skD5ZQm+ak/3d0FRnO28Us/PkpZiKmcoxUzUvxUz9mEDY79JE3bs1fbw0+H4k+Heu3e+AmGJn3D4e75Kt+LZUp8zxU0zFtPtkk17sgOuinxOWMcbEdPZE8dprrzFlyhS2bNnS4nI1NTXce++9vPPOO2zevBmfzxfy/ueff56IdBLG7XaTn59PWVkZeXl5yU5HpEtZZdYzonYyAP9nH87fXXclOSMR8as1deTXNnQHMZh+/C9jQZIzEhERkVS3wWxhcO3BABxnH8Izrj8lOSOR9hFrXVHcLd2CBzqAhn7VNmzYwL/+9S+mTJkSdf1zzz2Xf//735x88smMGzcupr7bRKRr6qnRS0VSlos05jnncKPnXiqp5ur6PzI37fJkpyUiIiIpTI+XioSKu9Ltiy++CJm2bZuePXtyxx13RB3ZFODVV1/ltddeY/z48fFuWkS6mCwrkywyqaJao5eKpBjLsjjKMZFpnmsA+MosTXJGIiIikuqCK900eqlIKyrd2joQQt++fcnNzW1TjGSo+dMX2Ans0805sR8A3jXvx9WnW9rY6R26356Fa1OmT7f0S8a0mKt3zfv4+21y9D8I75r38fx3J+/TbcCCuPp0c/Q/KOyYtrZPt6axmrO7tQuVppqeQf27BZc99emW2jH9fbr5r2l+9Z/9udl+QWItG9F417zfYp9u/utl8LXBrEi9Pt2au7Y1Pf/i/S5o6/oABeQFKsbXmU2B+cn+bmiqs503itl58lJMxUzlmKmal2Kmfkwg7Hdpou7d0qw00nBSj4dqakLuRyL16RYtdu2fvlCfboqZkjFrimMbmDNhfbrF6vXXX+dPf/oTDz74IAMHDuzITbeK/znd1c7byLMyo68QA6tvNnkrG1oF1jw0AirWx7iiTcbssoTkECv34HmYdZUdus2IbIv8mhktLhI4ljnFZJy/jJqHRlB79Vngzu+gJFOPa+61WHaMp/iO4xasxfKZU9zwb6T3I8RqzgG1p/C5+Q4bm4r0L7EtG0ihsidRBV/T/GruzgfjC184jrIRTYvlM+h6GXxtqJtzZWqVqxaubc3uX4zfBW1d32/32p/zg/mJXLLZktEwOJHOTxERkc4v5HdpAu/detXsTxnl7GIN5uMnvm/x90S02GUZ94GvQ6ssRGLiNtUM8FyZ+D7dBg8e3GI/bCtWrGhx/X322YeamhqGDBlCVlYWaWlpIe9v27Yt3pREpBMrtLqDAR8+tuOmBwXJTklEghRbRfxgfqKcStymgjwrJ9kpiYiISArLIoMyyqk0VclORSTp4q50mz17dsh0fX09X3zxBQsWLOCKK66Iuv7pp5/OunXrmDNnDr169dJACiI7ucKQwRS20cMqSF4yIhKmL70Cr9ebTap0ExERkRZlWZlgoFoDKYjEX+k2a9asiPP//Oc/8+mnn0Zd/7///S+LFy9mzz33jHfTItIFFQb15VZCKSOSmIuIhCu2igKv15pNjGRoErMRERGRVOcfTEGjl4qAnahARx11FM8//3zU5UaOHEl1tUYxEUlF//K+y6z6Wzmy9lxOqpvBNlPa7tsMqXQzerxcJNXsYg1mD2sEI60hzPE8wEl1M6jQ4yIiIiLSjCwa+kKvoTbJmYgkX8Iq3Z577jm6d+8edbnf//73/PrXv+bdd99l69atuN3ukD8RSZ6T62fyF+/TfGq+wW0q8NH+nZaGPl5a2u7bE5H4nO08gY/Tn+ck+wgcOHCbCkwHXBtERESkc8oKGoBQ9wyys4v78dIxY8aE9MNmjGHjxo1s2bKF+++/P+r6Rx55JACHHnpoyHxjDJZl4fV6401JRBLAhy/wpZhJBnlWDjbt3+di6OOlaukmkqryrJxAf24WFugmWkRERCLwP14KUGEqyU1iLiLJFnel2/HHHx9S6WbbNj179mTSpEmMHDky6vrvvPNOvJsUkQ7go3GI8Mn2gTzimkON9SbQvo+RhT5eur1dtyUirTfLOYVZTAHAbc3DUJnkjERERCQVXeO8kEJPN97wvU8F61TpJju1uCvdbrzxxjZtcOLEiW1aX0TaR3ClW3BFWHvrSeNj6ap0ExERERHp3Mbao3HzCBsp6ZDuakRSWdx9ujkcDjZv3hw2f+vWrTgcjphivP/++5x55pkccMABrFu3DoD58+ezaNGieNMRkQTxmeRUuhXSjWEMZA9rBGnx/z+AiIiIiIikmBHWkGSnIJISLGNMXFXPtm2zceNGioqKQuavX7+eoUOHRh2Z9Pnnn+ess87ijDPOYP78+Xz33XcMGTKE++67j9dee43XXnst/r1oR263m/z8fMrKysjLy0t2OiLt5iHPM8z03AzAA86bOMd5Uods1xhDQe1YaqljN2s4n6W/2CHbFRERERGR9vEP72tMqf8NALc4Z3OF87wkZySSWLHWFcXcrORPf/oTAJZl8fDDD5OTkxN4z+v18t5778XUp9utt97Kgw8+yNlnn83TTz8dmD9+/HhuvfXWWNMRkQQrofHRzo5s6WZZFsVWESvNWtaZTR22XRERERERaR8jg1q6LfWtSGImIskVc6XbXXfdBTS0SnnwwQdDHiV1uVwMGjSIBx98MGqcZcuWMWHChLD5+fn5lJaWxpqOiCTYVpOcSjeAYnqxkrWU4qbSVJFtZXXo9kVEREREJHF2sQZxv/NGRtpD2NUamux0RJIm5kq3lStXAnDwwQfzwgsv0K1b636U9+7dmx9//JFBgwaFzF+0aBFDhui5b5Fk2RJU6RY8uEFH6Gv1wt/H6nqzmeHWoA7dvoiIiIiIJE6mlcE058nJTkMk6eLutfydd95p0wbPP/98Zs2axbx587Asi/Xr17N48WIuv/xyrrvuujbFbk8VR7yI+b66oWLAAivPhXHXhUwDYfOaTtv9cnBOHkjGdT8DwLN4Lt5Vb2LK1zdurM4NxgeWDa68hmlnFnb3XXD9omP7vKu55SM8/16N97utce9rvNPNxbSy07B36UbOWye2mKtn8VxMXRmWKx/n/lfjWTyXukd8eF7PxlRntHueqRbT7peD87g/Qf5GqK9qKEtN+ctaegEnjOrP0n1GUkEV3ckPHNOw8glYOX1xDDqsYZklj0FtWaC8+t9z7n91LEUMgL5WYx+R68xmhjMoUPZ8a8u7zGfSFWNa+S5c03YLXNMCRevZo/Ft/z6k7LWmbLTEs3huWPmLdL0MvjZ43jokUK4i7WdHHs9o17aw8y/O74K2rt+SZH83NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2u7S97t1C7keCfuda3XeNKXbFYS/g+347prI+ZY6fYiqmleeionds45LGPZACwNq1a3n55ZdZvXo1dXV1Ie/deeedLa5rjGHOnDnMnTuXqqoqANLT07n88su55ZZb4k2l3fk7x1vtvI08KzMhMa2+2eStnAZAzUMjoGJ9lDX8K9pkzC5LSA6xcg+eh1lX2aHbjMi2yK+Z0eIigWOZU0zG+cuoeWgEtVefBe78Dkoy9bjmXotlx3aKb85OZ5eze+PESXn6F1iW1XL5zClu+DfS+zs+g1jd55nP5Z7bAHgkbQ5nOI5LnbInUQVf0/xq7s5vuKlqKs6y0ZIWy2fQ9TL42lA358rUKlctXNua3b8Yvwvaun5LdH6KiIh0fiG/S9vp3i3a74loscsy7gNf3FUWIu3ObaoZ4LkycQMp+P3nP//huOOOY8iQISxdupTRo0fz008/YYxh7733jrq+ZVlce+21XHHFFfz4449UVFQwatSokIEZRNqiwlRxRt0M/mKqSEt2Mp2Ij4Yv2UIKsCyrQ7ddbPUKvL7d8zAveP/NvWYk2R2ahYiIiIiIiEjixNYeLsjVV1/N5ZdfzjfffENGRgbPP/88a9asYeLEifziF7+Iuv60adMoLy/H5XIxatQoxo0bR05ODpWVlUybNi3q+iLRGHy4TQWGCP9TI83y0fA/SB09iALAfvZePJV2J1PtE+lG3o7PT/+jJSIiIiIiIp1X3JVu//vf/zj77LMBcDqdVFdXk5OTw80338xtt90Wdf3HH3+c6urqsPnV1dU88cQT8aYjEsbCJs/KwYq/eO/U/JVcPZJQ6VZsFXGiYzK72kPpYRXs+Pw6trWdiIiIiIiISCLF/XhpdnZ2oB+3Pn36sHz5cnbbbTcASkpKml3P7XZjjMEYQ3l5ORkZGYH3vF4vr732GkVFRc2uLxKrHCuL5133UWO9SW2yk+mEetLxlW5+s5xTmMUUANzWPAzqM0pEREREREQ6p7gr3fbbbz8WLVrErrvuytFHH82vf/1rvvnmG1544QX222+/ZtcrKGjoJ8qyLHbZZZew9y3L4qabboo3HRFJsEKre7JTEBEREREREen04q50u/POO6moqADgpptuoqKign/84x8MHz68xZFL33nnHYwxHHLIITz//PN07974w97lcjFw4ECKi4tbsQsikkg9KEh2CiIiIiIiIiKdXlyVbl6vl7Vr17LHHnsADY+aPvjggzGtO3HiRABWrlzJgAEDOnx0RBGJTU+1dBMRERERERFps7h6mnc4HEyePJnt27e3eoMDBw4MVLjtvvvurFmzptWxRCTxkjF6qYiIiIiIiEhXE/fjpaNHj2bFihUMHjy4zRv/6aefqK+vb3OcjmD1yoISAANY4LKhzhc6DeHzmkxbBek4D+obiGv3OxDf6oVQW9a4MV9d42vb1TBtOyG7d/vuZATOg/rieXctZnM18e5r3NPNxXRaWH2yo+Zq9zsQqrdCZo/AtGP3aryf5ILHbv88UyymVZAO9YWQWQbG01CWmtpR1jy2g2+KCyimiL5Wr5BjGlY+ATLyG4434Pvh5cYya7tC3muLQNkrre0yn0mXjOlyhFzTAnL7QcXG0LKXoLLhZ/c7MLz8RbheBl8bQspVpP2MZ9/b+doWdv7F+V3Q1vVbkvTvhqY623mjmJ0nL8VUzFSOmap5KWbqx4Sw36Xtde8Wcj8S/Ds3q2dMsa3+OZgNleAxqXP8FFMxXTZWXhasa67kNrKMMSb6Yo0WLFjA1VdfzS233MLYsWPJzg79wZCXlxdzrNzcXL766iuGDBkSTwodyu12k5+fT1lZWVz7JtLZ3FL/ZwCuS5ue5ExEREREREREUlesdUVxt3Q7+uijATjuuONC+mUzxmBZFl6vN+ZYBx10EJmZmfGmICLtIM/KSXYKIiIiIiIiIl1G3JVu77zzTsI2/tprryUsloi0zSznlGSnICIiIiIiItJlxF3p5h+FtC3Wr1/PokWL2Lx5Mz6fL+S9Sy65pM3xRUREREREREREkinuSjeA999/n7/85S+sWLGCZ599lr59+zJ//nwGDx7MgQe23BniY489xgUXXIDL5aJHjx4hj6halpWylW5l/R/GVKc1zrAt8JnQaQif13Q6w4FjXG9y/v1/ANQ9dwy+DZ+Ct6ZxORNUEWnZO6YtSM8j4+K1idupGFRMfhHvxxuhytM4M9Z9jXe6uZgWkJ9O/uZftZhr3XPHYCo3Y2UX4Tr5X9Q9dwy1N+2J7/teYOz2zzPVYmY4cF1zI1bajo7OLZsw/rJm2dj9DsR18r9C3o5YPgEcGdh99mlIe+2ikDj+95rGileg7NV4u85n0hVj2haOCX0D1zS/mvv7Qa2bkLKXoLLhV/fcMeHlL8L1MvjaUPfX8xrLVaT9jGffY51uLmaUa1vY+Rfnd0Fb129J0r8bmups541idp68FFMxUzlmqualmKkfE8J+l7bXvVvI/Ujw71xnVkyxy4r+CmW1Df3Xp8rxU0zFtC3c6UEDg7Qgwq/wlj3//PMcccQRZGZm8vnnn1Nb2zACXFlZGXPmzIm6/nXXXcf1119PWVkZP/30EytXrgz8rVixIt50Ok7wDwsIPeD+6Ujzmk5XefD9sL1x1vYfwVPVcAHy/wULTBuoK299/q3k+2F75H2PZV/jnW5uGQO4oxdo3/YfMduWNhzTHdO+DVmNFW7tnWeqxazygMM/siChZaxpWTO+wHELCROpfBofeKoaju/2H8Pi+N9rq0DZ60qfSVeM6TMh17SAunLCyl6CykZg05HKX8OLkOtl8LUhpFwl+3hGubaFnX8R9q0lbV2/xdjJ/m5o+peImO2Rp2J2/rwUUzFTOWaq5qWYqR/TZ8J+l7bXvVvI/UiwWGO76wJppczxU0zF3HEOxSLuSrdbb72VBx98kIceeoi0tMaWX+PHj+fzzz+Pun5VVRWnnXYath33pkVERERERERERDqFuGu+li1bxoQJE8Lm5+fnU1paGnX9c889l2effTbezYqIiIiIiIiIiHQacffp1rt3b3788UcGDRoUMn/RokUMGTIk6vpz587l5z//OQsWLGD33XcPaS0HcOedd8abkoiIiIiIiIiISEqJu9Lt/PPPZ9asWcybNw/Lsli/fj2LFy/m8ssv57rrrou6/ty5c3njjTcYMWIEQNhACiIiIiIiIiIiIp1d3JVuV111FT6fj0MPPZSqqiomTJhAeno6l19+OTNnzoy6/h133MG8efOYOnVqa/IVERERERERERFJeXH36WZZFtdeey3btm1jyZIlfPjhh2zZsoVbbrklpvXT09MZP3583IlGMnfuXPbdd19yc3MpKirihBNOYNmyZSHL1NTUMH36dHr06EFOTg4nnXQSmzZtSsj2RURERERERCR+FaaKezyPJzsNkXbV6iFEXS4Xubm59OnTh5ycnJjXmzVrFvfee29rNxti4cKFTJ8+nQ8//JA333yT+vp6Jk+eTGVlZWCZSy+9lFdeeYVnn32WhQsXsn79ek488cSEbF9ERERERERE4ldJFXd7Hqfe1Cc7FZF2E/fjpR6Ph5tuuok//elPVFRUAJCTk8PMmTO54YYbwgZGaOrjjz/m7bff5tVXX2W33XYLW/6FF16IOZcFCxaETD/22GMUFRXx2WefMWHCBMrKynjkkUd46qmnOOSQQwB49NFH2XXXXfnwww/Zb7/9Yt6WiIiIiIiIiCSGBy8b2Ewl1RTQcj2CSGcVd6XbzJkzeeGFF7j99tvZf//9AVi8eDE33ngjW7du5YEHHmhx/YKCgnZraVZWVgZA9+7dAfjss8+or6/nsMMOCywzcuRIBgwYwOLFiyNWutXW1lJbWxuYdrvdADiPG4r1pRt8BmwLqzATU1IdMg2EzWs6bQ/JI+3QAYH4zp9diW/1O5iynwLzTHUJGB9YNlZmIaa6BCu9AKtwt8QdrBhlXDuO+rfW4P1kY9z7Gu90czGtgnQcuxdGzdX5syuhvhLSsgPT5qJK6l+yoDyr3fNMtZj2kDws12SsgnWY2lKszPBj6C9rVlYRjt3PiXhMm5ZPACt/EPaAgwHwfvMopmpzoLwGv9cW/rLnW1nWZT6TrhjTKsrif+c6cHv/ywe+z/natxQsuGGXvRmxtSak7CWqbPg5f3ZlWPmLdL0MvjbYQeUq0n525PGMdm1rev7F+13Q1vVbkuzvhqY623mjmJ0nL8VUzFSOmap5KWbqxwTCfpfaI36BKfk24fduwfcjwb9zPy5y8mS/ht/aFVRRQF7E9dNO2wXvNyWY0tqUOX6KqZhWYSbO/k54Pvo5YBljTDwnTX5+Pk8//TRHHXVUyPzXXnuN008/PVDx1dF8Ph/HHXccpaWlLFq0CICnnnqKc845J6QSDWDcuHEcfPDB3HbbbWFxbrzxRm666aaw+WVlZeTlRb4QiIjszIbWHMo6NpFBOvtauwMwwd6X69KmJzkzEREREUlF59Zdw5O+lwH4yvUyI+whSc5IJD5ut5v8/PyodUVx9+mWnp7OoEGDwuYPHjwYl8sVb7iEmT59OkuWLOHpp59uU5yrr76asrKywN+aNWsSlKGISNfjNhWso2Fwml4UkmflBP5ERERERCLJsbICryuoSmImIu0r7kq3GTNmcMstt4S0HqutreV3v/sdM2bMaHHd1157jfPOO4/f/OY3/O9//wt5b/v27YF+11qT06uvvso777xDv379AvN79+5NXV0dpaWlIctv2rSJ3r17R4yVnp5OXl5eyJ+IiES21KwIvD7UsT/Pu+7jedd9zHJOSWJWIiIiIpLKcmisdKukOomZiLSvuPt0++KLL/jPf/5Dv3792HPPPQH46quvqKur49BDDw3pry14UISnnnqKs88+myOPPJJly5Zx77338vDDD3PGGWcAUFdXx8KFC+PKxRjDzJkzefHFF3n33XcZPHhwyPtjx44lLS2N//znP5x00kkALFu2jNWrVwf6o4uV58st1K7f0PAMr2Vh9cjAbKsJmQbC5jWdtgszsftkY/dp6HfMVGzEVG7AVJU07lfNNjAGbBsrvRumZltDPzw5fbCL9ogr77bybajEt6ES7/fb497XeKebi2kVpGP3zsa5V88WczUVG8F4wXJg5fTGVGzEt6EC73flmMrMds8z1WLahZmQsRIrs6yhb4b0buHHbEdZs7IKsQtHY+X0DjumTcsn0NB3W06fhjJS8g2mamugvPrfaxorXv6y5yup7jKfSVeMubXbtxTtmsXm3lWMtBofC/Bt/hpTuTGk7CWqbPiZio1h5S/S9TL42mDKcwPlKtJ+duTxjHZta3r+xftd0Nb1W5Ls74awfe1k541idp68FFMxUzlmqualmKkfEwj7Xdpe927B9yPBv3MH522jV7qHTdlOKk3zLd08X27Bt6GyoU+3FDl+iqmYVo8MPBmemM6BuCvdCgoKAhVYfv3794+63h/+8AfuvPNOLrnkEgCeeeYZpk2bRk1NDeeee268aQANj5Q+9dRTvPTSS+Tm5rJx40agod+5zMxM8vPzOffcc7nsssvo3r07eXl5zJw5k/333z/ukUsrD30ehxXeeXNrWH2zyVs5DYDav0+EivUxrmiTMbtj+8yrOOAfmHWVHbrNiGyL/JqWW1IGjmVOMRnnL6P27xOpvfoscOd3UJKpxzX3WizbxLbwjuMWrMXymVPc8G+k9yPEilfKlD1p0QHAf4p/wcSl/2RXa2hgft1TBzV0lNtUAsqGX4vlM+h6GXxtqJtzZWqVqxaubc3uX4zfBW1dvyU6P0VERDq/4N+l7XXv1tz9yJnAwdkOdju7X4uPl1bu94+Gig6RFFNpYmuhGXel26OPPhp3MgA//PADxx57bGD6lFNOoWfPnhx33HHU19fzf//3f3HH9I+UOmnSpLAcp06dCsBdd92FbducdNJJ1NbWcsQRR3D//fe3ah9ERCRcFhlc5PglhzvGJzsVEREREelkKlpo6SbS2cVd6dZaeXl5bNq0KeQR0IMPPphXX32Vn//856xduzbumLEMvJqRkcGf//xn/vznP8cdX0REorOwNHCCiIiIiLRKpQZSkC4s7oEUtm7dyvTp0xk1ahSFhYV079495K8548aN4/XXXw+bP3HiRF555RXuvvvueFMREZEUkGNlaeAEERERkU7o8vrfc0jt2fhI3iOcGr1UurK4W7qdddZZ/Pjjj5x77rn06tULy7JiWu/SSy/lv//9b8T3Jk2axCuvvMITTzwRbzoiIiIiIiIi0gpf+ZbyX/M5JomVbrH2jSXSGcVd6fb++++zaNGiwMilsZo4cSITJ05s9v2DDz6Ygw8+ON50RERERERERKQVyihPdgp6vFS6tLgfLx05ciTV1aqJFhEREREREenMtht3slPQ46XSpcVd6Xb//fdz7bXXsnDhQrZu3Yrb7Q75ExEREREREZHUV0ryf8Pr8VLpyuJ+vLSgoAC3280hhxwSMt8Yg2VZeL3ehCUnIiLSVh48OIHNZitOU0V2shMSERERSRHlVCY7BbV0ky4t7kq3M844g7S0NJ566qm4BlIQERFJpno8GDyAI9mpiIiIiCRdMkcsDaaWbtKVWcaYuM60rKwsvvjiC0aMGNFeOaUUt9tNfn4+Jc98RebSavAaLIeF1SsL36aqkGkgbF7TabtvDo5hBThGdGtYftv3mO0r8FWsC2zTVG4C48OybMjuhanchJVZiF0wCMfgyR26/95l2/H9WEr955vj3td4p5uLaRdm4hicR9qRg1rM1bfte/B5wXZgd98F37bv8X3vpn5xKaYsp93zTLWYdt8crLwvILcEqkogu1fYMfOXNTunN3b/Cdjddwk7pk3LJ4CVU4zdbWjDMmvex1exIVBe/e81jRUvf9nzrqvoMp9JV4zpKM7GObFf4JoW+PxW/htf2U8hZS9RZcPPt+37sPIX6XpZs/VbDqg9iTrLsGvJfjy1+ka86yoi7mdHHs9o17am51+83wVtXb8lyf5uCNvXTnbeKGbnyUsxFTOVY6ZqXoqZ+jEB7L45rB9axchBpwJw05rduKzy0ITfuwXfjwT/zrV6jeGMrPv4pFs13cjnEdcc9rJ3DVu/fsFPeFeWYUpqUub4KaZiWr2yqOhm6HnKnpSVlZGXl9fsORB3pduECRO4/vrrOeyww+JZrdPyV7pFO5AiIpK6dqs9muVmNVlkUpL+EbYVd5emIiIiIl3KZ74ljK87DYBfOU7lT2nXdej2V5n1jKidDMDJ9hH8zXVHh25fpC1irSuK+/HSmTNnMmvWLK644gp233130tLSQt7fY4894s9WRESkHe1qDWW5WU0V1dzkuY+b0i5JdkoiIiIiSVVqygOvC+j4Bia5QT3tulOgbzmR9hB3pduppzY0P502bVpgnmVZGkhBRERS1kzHWUxx/B9vexfjiH/gbhEREZEuJ3jk0gIrt8O3n0tjlxHlRpVu0jXFXem2cuXK9sgj5VXNfhc+dYPPgG1hF2Xh21wVMg2EzWs6bQ/NxzmpH67TG/rE8y59Bu+a9zClKwLbMlWbA32TWVlFmKrNWBndsXuOJu2QOzt0v+v+vgzPwrV4/rsh7n2Nd7q5mHaPDOzdC8n606QWc/UufQZTX4WVloVj5Cl4lz5D/ctl1L/kxZRlt3ueqRbTHpqPPeZJrG5rMTXbsLKKwo6Zv6xZOX1w7j4Vx8hTwo5p0/IJYBcMwe4/AQDPN49hKjYEyqv/vaax4uUve74fy7rMZ9IVY9p9snFN2y1wTfOrf/syfFuWhJS9RJUNP+/SZ8LKX6TrpXfpM4zfcW0wn/Wi90IPFSteiLifHXk8o13bmp5/8X4XtHX9liT7u6GpznbeKGbnyUsxFTOVY6ZqXoqZ+jEB7KH55E7YDCc1fJce+u5L1G59OuH3bsH3I8G/cx3F+2H3n0DmoAyqqaGciojrV13yLr5vSvBtrUmZ46eYimkXZVHVP7bqtLj7dNvZ+J/TXe28jTwrMyExrb7Z5K1saClY89AIqFgf44o2GbPLEpJDrNyD52HWpcD/OtgW+TUzWlwkcCxzisk4fxk1D42g9uqzwJ3fQUmmHtfca7HsGE/xHcctWIvlM6e44d9I70eIFa+UKXsSVfA1za/m7nwwvvCFE1A2AttoqXwGXS+Drw11c65MrXLVwrWt2f2L8bugreu3ROeniIhI51dZbHH8srfx4WPRA+9gtcO9W7TfEyPO6s0mtjKAYr7P+HfYImUZ9zVUdIikGLepZoDnyqh9urXqGZv58+czfvx4iouLWbVqFQB33303L730UuuyFREREREREZEOU4+Hb8z3fGt+TFoOuVYOQLMt3UQ6u7gr3R544AEuu+wyjj76aEpLSwN9uBUUFHD33XcnOj8RERERERERSTAPnmSnEBhMwU0leghPuqK4K93uvfdeHnroIa699locDkdg/j777MM333yT0OREREREREREJPE8NDSg6U8frCTlkGs1VLp58VJDbZKyEGk/cVe6rVy5kjFjxoTNT09Pp7JS/buIiIiIiIiIpDofDX24jbSHJC2HPHICr916xFS6oLgr3QYPHsyXX34ZNn/BggXsuuuuichJRERERERERNpROi6GWP0Zag1IWg7+x0sByo0a8UjXE9sYp8DNN9/M5ZdfzmWXXcb06dOpqanBGMPHH3/M3//+d+bOncvDDz/cnrmKiIiIiIiISALUUscKs4ZiqyhpOeRZaukmXVvMlW433XQTF154Ieeddx6ZmZn89re/paqqil/+8pcUFxdzzz33cNppp7VnriIiIiIiIiKSQFlkJG3bwS3d3GrpJl1QzJVuwSOJnHHGGZxxxhlUVVVRUVFBUVHyasZFREREREREpHUyklnpZjVWulWgSjfpeuLq082yQsc0ycrK2nkq3NKaHKqmw7tYzcxrOp1mY/dqvLBYWb3ATgsK0EIQR3p8OSeA3Ss78r7Hsq/xTre0TIaDaKysXpBT3PDvjmmroBYIGnq6vfNMpZhpNvjSImwoclnzH7eweWHl0wI7reH4ZvVqEqfxvbYKlL2u9Jl0xZgWIde0gJDrVWi5SZSI5S/C9oOvDSHlKhWOZwvXtvDzb4cYvwvaun5Lkv7d0PylrHOcN4rZefJSTMVM5Zipmpdipn5MC7xpsLlXNQCZVnq73buF3o8E2RE76kAKwfdKqXL8FFMxLcLvhZthmeAmbC2wbZv8/Pywiremtm3bFtOGOwu3201+fj5lZWXk5eUlOx0RERERERGRNrnL8yhXe+4A4Km0OznRMTkpebzifZvf1T9AtVXDL+yj+G3axUnJQyResdYVxfx4KTT065afn9/m5EREREREREQkOaqpDbzOpOOfqPIbZQ3ja5bhMz4Wmc+SlodIe4mr0u20007beR4nFRER6WD3eB7nPd8nAEyw92WWc0qSMxIREZGuqNrUBF4ns0+3IVZ/Bll9WWHWsMj3KcfXXoTTcug+SLqMmCvdoj1WKiIiIq2z1LecqfVXUWbKceCgj9UTt4nQr4mIiIhIAlTTWOmWaSWvpZtlWVzrvAiD4X++5fzH+19+Muv52reUAvKY4vy/pOUmkgitGr10Z+Qe8xRmoxeMActq6NCxpsk0hM9rMm0VZpJ2aH8y7z8EgPq3LsG76h2oLmncmLemoe9/C3BkNEzbLqy8fqRP6dgmt9UXv039W2sw6yri3te4p5uLmWZjD8gl9+szW8y1/q1LMDXbsTK6kXbYn6h/6xJq78rHu6gH1DvbP88Ui2kVZpJ2zu+xsreBr66hLDXlL2vODBwjf0HaYX8KO6Zh5RMgsxDHwIMbQix9Fjw1jeV1x3tNY8UrUPa2VneZz6RLxsx04jp1l8A1za/28bEY99rQspegsuFX/9Yl4eUvwvUy+NrgeeGExnIVaT878ngGXdvWmc18af4HwFAGkGflcMw7r1Cz5sHG8y/O74Kw8zeB3yVJ/25oqrOdN4rZefJSTMVM5Zipmpdipn5MYHqPDAYefBBX3PM+WWS0271byP1I8O/cnH6B2Gc4jgPgHvM4LstFqXFTipufzDrK9/gbvtXlUO9LneOnmIqZ4aC8W2znQMyVbj6fL9ZFuySz2g1Wpn+q4aRvfLfJdPPLmPJ66l//CX8k78o3oGJ9MxsFfDtaOvg8mO0/tnU34lb/+k+YdcFDN8e+r62fbjKv3ofv+9KouQaOZU4xaTumvR+dBdWOhnjtnWeKxTTl9ZC2DjymYbavhVYz9RV4V75BWpPZzZbPHcv7X/s3i6+i2VjxCi97OzbSiT+TLhmzyTUtsNT2H8HsWM5f9hJUNvy8K98IL38Qdr0MvjbUv75XhHK1I0ASr20lbA8s8SvnqcxyTqFm1Yjw8y+O74KI52+CvktS4rshok5y3ihmJ8xLMRUzlWOmal6Kmcoxu5c7OOyNAQBkktFu924R70cM4P4pLPYs5xTG2qM5rG4KALXUNtwr+cyOfFLn+CmmYhp3NbGIbYxTERERaTdbzfbA60Irxv82ExEREUmAjCQ+XtpUBq7A6+DBHkQ6K1W6iYiIJNmWoEq3nnRPYiYiIiKys8lM4kAKTWUEjaRao0o36QJU6SYiIpJkJWwLvO5hFSQvEREREdnpZJJKLd2CKt2MKt2k81Olm4iISJJtNaWB14WWWrqJiIhIx0mplm5Bj7rWUpfETEQSQ5VuIiIiSbbFNLZ064n6dBMREZGOkY4L20qdaoHglm7V1CQxE5HESJ2zS0REZCflH700kwyyrKZjwYqIiIi0j1Rq5QZN+3RTSzfp/FTpJiIikmQlOwZSKFQrNxEREelAqdSfG4SOXqo+3aQrcCY7ARERkZ3ZeXXX8v/t3Xl8U3W+//H3Sdu0pWlLW2jL0hZEZFMExQWQTUHADZG54qgso46iIKI/UdGrjiuMgsBFvXgdBWVAHAdURp0RFYuCK/uwCFJBRgQRLN33fH9/lIamTdoU0iYtr+fj0ceDs33O55x8cpJ8OEuKktXeaqv/Dr0j0OkAAIBTSOV7qAWDUCtUoQpVqUpVxNNL0QTQdPORrWu8tLdYckqyJDnCpLwS92Gp+rgqw7bkKIVemuqKG9Lpd3L++LFM7i/HV1aSJ8mULxQWVT4cGiGr+WkNsq2VhY0+Q6Ur98mZcbTO21rnYW8xI0JlOy221lxDOv1OKjoqhTd3DYcOLlXpJ2VSob3+8wyymLbkKKn0dCn6V6m0sLyWqqqotTBH+f7zsE+r1ackKypJtnaDJUll2xdLxbmqqNfK006Gq/YO5jWZ16RJxnSEKWz0GdVePyuxh8zRH9xqz1+1USGk0++q1Z+n42XlY4NbXXnazobcn8eObevNR9qhDDlMM10acpFb3m7vvzp+Fpzs8jUJ+GdDVY3tfUPMxpMXMYkZzDGDNS9iBn9MSd8lHtAng/e5Li+tr+9ubt9HKv3OtZqf5jV2hOzKVakKVCRbz5ZyZmRJhaXBs/+ISUxHmGwtI6UtHkvYjWWMMbXPdurKzs5WbGyssrKyFBMTE+h0cMx2524dNIf1nvNT/eDcpxArRP1t5+mu0HGBTg0A6qRj4RD9RweUrBbaG5Ee6HQAAEATZ4xRs6LuMjI61+qmteFvBjolN20L++mwMtXeaqsd4f8KdDqAR772ijjTDY3SC2WL9UrZW5Kknuoqh5op2+QGOCsAqLs85UuSoqxmAc4EAACcCopVIqPyc28iFXwPcKp4mEKR4UEKaPwa9YMUPvvsM1155ZVq3bq1LMvSO++84zY9NzdXkyZNUtu2bRUZGamuXbtq/vz5gUkWfpVvClz/jrWiFWM5FGM5ApgRAJyY3GNNN4dougEAgPpXoELXvyOD7J5u0vH7zBVyTzc0AY36TLe8vDydffbZuummm3TNNddUm37PPfdo1apV+utf/6p27dpp5cqVuuOOO9S6dWtdddVVAcgY/pKv4023V+3T1dpKDGA2AHBiSkyJilUiSYqi6QYAABpAlCI1zjZSJSrVHaHXBzqdaiqeYFpA0w1NQKNuug0fPlzDhw/3Ov2LL77QuHHjNHDgQEnSrbfeqpdeeknffPNNnZtuWS3nyxg/nHprk2ynN1f01jGSpKKF58hkZqj8jny1LRumiLt+O/kc6iDnzEVy7j7qU3r1Ksym2LyJrsH8Sv870+zYzT+LFp4jk3dQVlSywsdvUNHCc1T031fJHIpX+d0OTzE2yf7kw7JCynya3YrrqPDxG9zGea9Pm6y4DpIkk/m9x2lVY9VV0NQeamU74/gxrULh3HjJWVJ1Tr/URoXy+qxafxWrOn68rHxsKJ55d1DVlQmzSUfK/+2ocnmp1/efj58FJ7t8TXh/AgDQuP3Zlqjs021K3XqWpPr77lbb7wlPsSsuLy1UkbKiXpBK+MKB4JNtFdQ+kxr55aW16dOnj1asWKH9+/fLGKNPP/1Uu3bt0qWXXup1maKiImVnZ7v9SfLfDwunZPKOH8xMSZ7vwY1vzRN/MhVP6Ai0MvfnfeSb4023qGP3ITAleVJxzrF9Wj5sCkN1SjbcpGNPVvH9xavYb9XHeYrhLN+/HpapmHaygqb2UKvKx7TjIz0dr/xTG65V1BSr0vorHxuCrq7KjicTVeWeKl7ffz5+Fpzs8jXGDrb9CAAA6sRySs3zKn33qKfvbrX9nvAk4thJFUam2u9AIGj4+F24STfd5s2bp65du6pt27ay2+0aNmyYXnjhBfXv39/rMtOnT1dsbKzrLyUlpQEzhq8qLi8NVajCrLAAZwMAJ4/LSwEAAKQIyx7oFAC/afJNt6+++korVqzQ+vXrNWvWLE2cOFEff/yx12WmTZumrKws199//vOfBswYvqpoulVcWgoAjV3Vy0sBAABORRWXl0pyPWUVaKwa9T3dalJQUKAHH3xQb7/9ti6//HJJUvfu3bVp0ybNnDlTgwcP9rhceHi4wsOD7wkucFdxeWnVy7EAoLHi6aUAAABSpPg9jqajyZ7pVlJSopKSEtls7psYEhIip5Mb0TR2FWe6RVqc6QagaYjiTDcAAACF03RDE9Koz3TLzc3V7t27XcN79uzRpk2bFB8fr9TUVA0YMEBTp05VZGSk0tLStHr1ar3++ut67rnnApg1/KHi6aVcXgqgqeDMXQAAAO7phqalUTfd1q1bp0GDBrmG77nnHknSuHHjtHDhQi1dulTTpk3TDTfcoN9++01paWl66qmnNGHChEClDD9wGqcKXE03fqQCaBp4kAIAAID7Pd2Axq5RN90GDhwoY7zfWDE5OVkLFixowIzQECoabpLUzKLpBqDxqvwJxoMUAAAAqj9IwZIVwGyAk9Oom244NeVXbrpxeSmAJoIHKQAAAEjjQkZqkO1CvVn2fqBTAU4aTTcfhU/uIdu3WZLTSDZLtlZRch7IcxuWVG1c1WFbh1iF9m3tiht2yRw5938pc/QH1ziTd1Bylkm2EFlRyTJ5B2VFtpDV8swG3+7I5wepbO3PKlnzc523ta7D3mLaWkYq5KwWrpzyTIHr35WbbmGXzJFKC6XQCNew9XSmSlYUyhx11HuewRbT1iFWtha3yor7SSb/sKyo5Gqvb0WtWdFtFNLthmrTPdWnJFnNT5OtTW9JUtm2xTI5+131WnnayaiovbKMrCbzmjTFmLY2DtnHdqn2+oWcP1Xm8Fa32vNXbVQIu2ROtfrzdLysfGwIad3ZVVeetrMh96etZaQ+63b8vqRVLy+t+v6r62fByS5fk0B/NlTV2N43xGw8eRGTmMEcM1jzImbwx5RU7XdpfX13q/x9pPLvXFubPl5jd7S1U0e101azS1vuK1SvbW3k/LUgaPYfMYlpaxUle9tQyYfHBVimpuszoezsbMXGxiorK0sxMTGBTgeSdjgz1LN4hCRpbMjV+r+wJwOcEQDUXYZzn54v+6v+UbZKRkbv2v9XZ9rOCHRaAAAAAGrha6+IM93Q6OSr8plu3NMNQOP0rvNj/W/ZEknSSNsQGm4AAABAE2MLdAJAXeXJ8+WlANCYHDFHXf9uofjAJQIAAACgXnCmm4+Klnyn/M05MmVGCrEUcuya3srDkqqNqzpsS4tRyFktFHJOYvn8v2yU89etMtn7XOsqv9a9VLKFut+jKKGTQrtc16DbXbbhkEr/fVhlXx2o87bWddhbTKtlM4V0jpP9+s6SpALj+emlzl82SmXFUohdtqSecv6yUWWbMlX6SZacR6PrPc9gi2lLi5GV+LkUfVCmoKZ7upXKim6rkA6XyZbU0226p/qUJCsmVbZj94Uqy/hAJucnV71WTKsa60Rrz/yY3WRek6YY09bWIfsVp7mOaRVKdyyVObLTrfb8VRsVnL9srFZ/no6XlY8NZn8bV1152s6G3J/nJBRp1Omna9l1uzUhtPqxver7r66fBSe7fE0C/dlQbVsb2fuGmI0nL2ISM5hjBmtexAz+mJKq/S6tr+9ulb+PVP6da2t1vk+xi5d8p7LvMuX8NT9o9h8xiRnSKkrFib6dw8Y93WpRcZ3uvtA/K8byz6WMVpsoxey5SZJU+HInKfdnHxe0KWJKll9y8FV2+1dl9uc16Do9slmKLZwkSXq77CP9vuRuSdLToffontAq+9LRWhF/3KnClzupaNoYKTs2YGkHmn36Q7JsPr7Fj+23ymqsT8exG696mu4hVl0FTe2hVpWPaRUK58RKxll9Zj/UhmsdNdVnpeNl5WND8dP3B1Vdldmcan30Ze0NT1ey1cJtmtft8/Gz4GSXrwnvTwAAGj+336X19N2ttt8TtcXOini+/Ob1QJDJNgVKLb2fe7qhack2udrj/I/aKEmSlGK1CnBGAHDyEnTq/ucAAAAA0FRxTzc0KjvNHj1Y9pz26xe1slrqv0KGBzolADgpcYpRmBUW6DQAAAAA+BlNNzQqBTp+P7coNQtgJgDgHwlWXKBTAAAAAFAPaLqhUan8EIWLbOcGMBMA8I8WoukGAAAANEU03dCoVD7TLdKKCGAmAOAfLa34QKcAAAAAoB7QdEOjUqAi178jFR7ATADAHyx1sToEOgkAAAAA9YCnl6JRqXx5aYQ40w1A4xYimx4PmxToNAAAAADUA850Q6NSWOlMt2ZcXgoAAAAAAIIUTbcAurPkcR02mYFOo1HJr3xPNy4vBQAAAAAAQcoyxphAJxHMsrOzFRsbq8wd++XID5WMkSzJirLL5JW4DUuqNq7qsOUIkxVjlxVtV7+i32tH0WY5ip3abb0ry7LKY5TkHVu7JSusmUxJnqywKFn2aNkcrRp0+01OsUx2sZy/5Nd5W+s67C2m1SxUVoxdttYOPVHygp4q+19J0rth/6uhIf2O51qcc2xZS5Y9WqY4pzz3g/lSkb3e8wy2mJYjTCbkiBRWKFNaICusWfXX91itWWEO2RzJsuzR7tOLc2SKcmRKct3GW3aHa15nzgGZ0jxV1GvFtKqxTrT2TG5Jk3lNmmJMyxEmW2uHrGi72+vnzD0gU5TtVnv+qg1XjRTnVKs/T8fLyscGFYW76srTdjbk/qx8bPO2fZXff3X9LDjZ5WuMHeDPhmr5NLL3DTEbT17EJGYwxwzWvIgZ/DEluf0ulervu1vl7yOVf+faohJ9iu38OVcmp0Qmrzho9h8xiWlF2ZVjChTXpY2ysrIUExPjtYa5p5uPbK0dCq1hR56IAhUq125TqT1SoRGd/BrbX6zo8gOxrY3nH4UNrfLlpRFVznSresC27NGyWki2FgkNkltwOrnXzZcPwpAE/zRQqq072l6tkYPGw+ZoJdXzfxJY9mif6s+thu1qNHV1sl9y/dngrBY7yD4bAADAyamv724n+33E239OAoFmyw7xbb56zgM1qHgSJ5dJ+q6g8uWl3NMNAAAAAAAEKZpuAVRoyptuzRQZ4Ewaj4LKD1Lg6aUAAAAAACBIcXmpj3JHvSezLU9yGslmyYqLkMksdBuWVG1c1WFbWrTCLk1T+JSeKlChJm7O1uX7slSY2/P4ygozJeOULJsUEVc+bI+WrUVX2Ue82aDbXTRno0pW/qiyTb/WeVvrOuwtphVtV0i3BEUtv0L5pvKDFNybbqXr58kU58iyRyv03DtVun6eihcVqvQfETJ54fWeZ7DFtKVFK3TIfCnmZ6k4u7yWqqqotcgEhXa/SaHn3lltn5b9+IlM1o9u462YVIW0G1w+z78XSPmHXfVaMa1qrLqqqD3njzlN5jVpijGthEiF//FMhU/p6fb6Fb87Ws7DO9xqz1+1UaF0/bxq9efpeFn52FD2+UWuuvK0nQ25Pysf27xtn9v7r46fBSe7fE0C/dlQVWN73xCz8eRFTGIGc8xgzYuYwR9TktvvUqn+vru5fR+p9DvXSjzbp9h517ynsm1HZHKKg2b/EZOYVlyEclv7dnkpD1KoRcWDFPaF/lkxln/OSLPaRClmz01qXniu1r+eoTZ5ZT4uaFPElCy/5OCr7PavyuzPq33G+mazFFs4SaOL79K7zk8kSRnhn6iNleSapfDlTlLuz5KjtSL+uFOFL3dS0bQxUnZsoLIOOPv0h2TZfHyLH9tvlbn2qZf5JXme7iFWXQVN7aFWFce0ygrnxJZ/qarKD7XhWkdN9VnpeFn52FD89P3BVVfHjm2eeN0+Hz8LTnb5mvD+BACg8av8Ha6+vrvV9nuitthZEc+XNzqAIJNtCpRaen+tD1Lg8tIAMca4PRQAvql8eWnVM90AAAAAAACCBU23AKHhdmIKTKHr3zyAAgAAAAAABCuabgFSQNPthFRuVkbQdAMAAAAAAEGKpluAFKiw9plQTf6x/RapCFmWFeBsAAAAAAAAPKPpFiCFhjPdTkSBq+nGWW4AAAAAACB40XQLEM50OzEVzUoeogAAAAAAAIIZTbcAyafpdkIqmpURFme6AQAAAACA4EXTLUAqP4UTvqt4AEUzznQDAAAAAABBjKabr2LDpYr79luSQm3Vhz2NqzrcPFwhPRJdT+Hc0sKuwvBIyRZ6/K/yQhXDVogU2aK+t7KakB6JUnMP2+7LttZ12Ns8IZasFpG6tniyzlB7DbQu0Jyw/66Wqy3xbFmtzpMt8WzXsK1DvhTibJg8gy1m83CpNKa8dipqqepfxUK2UNd+q7pPFd68+nLhzcv3b+LZx+Lo+DqOTTtZrtprSq9JU4wZait/raqKbFG99vxUGxU81p+H42XlY4NbXQV6fx47ttW4fZXff3X8LDjZ5WsS8M+Gqn+N7X1DzMaTFzGJGcwxgzUvYgZ/zFCb63epSz19d3P7PlI5ER9jWy0ipRAruPYfMYkZaivvEfnAMsYYn+Y8RWVnZys2NlZZWVmKiYnxW9x3yj7SdSV3S5KeCr1H/y/0Jr/FbqraFQ7UQR1WWyVrd8THgU4HAAAAAACcgnztFdkaMCdUUnGZpMSTOH1hjNFhHZUktbDiApsMAAAAAABALWi6BUjle7pF0HSrVZZyVKpSSTTdAAAAAABA8KPpFiAFlZ5e2szyfk8flDtsMl3/ThBNNwAAAAAAENxCa58FkpR12gKZHJtkVH7jvBCbVOZ0H5aqj6s67AhTaN/WKnir/PLSNz44pMEHb1ZhyfHLTeUsk2shW0j5sGWTIhMUcVtGg22zJOWNfE+la3+Wsorqvq11HfYW02YpLiFU2l0+S0svZ7oVv3utTMFhWZEtZB/xNxW/e62Knj5dzi1JUpmt/vMMtpiOMNn/3+OywnMl4yyvpaoqas0WKlu7IbKP+Fu1ferc/6VUkuu+XJhDtja9y0Ps/UhylspVr8emVY1VV67ayy1pOq9JU4wZalPo0DRFvX2F2+tX+FIHqeCIe+35qTYqFL97bfX683C8rHxsKFk49nhdedrOhtyfNktWQqRifrrZ+/ZVfv/V8bPgZJevScA/G6pqbO8bYjaevIhJzGCOGax5ETP4Y0qu36UV3+Hq67ub2/eRyr9zw2N9ip3d9hWZIwWS0wTP/iMmMUNsym5W6q1s3dB081VWkVRxRpqRVOo8Pq3qcE3zHC1S2aZDrstLux8uVlhRmZeVmmM/JiWZMqng8MlvRx2VbTokHa3UEKzLtp7ocNVxZUYhh0tck7xdXuo8tFnK/VnG0do17MzoLpXZGibPYIt5tEgKzZYqnpXirOGg4Cwt339VRx/aLBUdrT5/0dHj87viHqvXytNOQrXaO7aKRv2aNMWYpc7y16qqgsPlX9qk4zXip9qo4Dy0uXr9SdWOl5WPDR7r6tjigTi2mcMFNW9f1fdfHT4LTnb5mgTFZ4MnjeV9Q8zGlxcxiRnMMYM1L2IGd8xjv0td6um7m+ffE8bn2ObwsYabFFz7j5jEzPLwm8IDm09zwa9yTb7+4VyleDVXqDycfYQacXkpAAAAAAAIdpzpFgBGRrGKVqwVrWbaI6k40CkFPVPp394uLwUAAAAAAAgWjfpMt88++0xXXnmlWrduLcuy9M4771SbZ8eOHbrqqqsUGxurqKgonXfeedq3b1/DJ1uJJUsxlkMxlkNW434JGtDxtlsCTTcAAAAAABDkGnXHJy8vT2effbZeeOEFj9MzMjJ00UUXqXPnzkpPT9eWLVv08MMPKyIiooEzdeewmmmZ/Xktsz8vh9UsoLk0FkZSmlrrUquvulkdA50OAAAAAABAjRr15aXDhw/X8OHDvU5/6KGHdNlll+mZZ55xjevQoUNDpAa/M/pRP+tq2xDFW7GBTgYAAAAAAKBGjfpMt5o4nU69//77OuOMMzR06FAlJibqggsu8HgJamVFRUXKzs52+0NwsGTpT6F3BjoNAAAAAACAWjXZptuhQ4eUm5urGTNmaNiwYVq5cqVGjhypa665RqtXr/a63PTp0xUbG+v6S0lJacCsUZP2VltFWoG9NBgAAAAAAMAXTbbp5nQ6JUkjRozQ3XffrR49euiBBx7QFVdcofnz53tdbtq0acrKynL9/ec//2molFGLztZpgU4BAAAAAADAJ436nm41adGihUJDQ9W1a1e38V26dNGaNWu8LhceHq7w8PBq40MGtpW25UlOI9ksWXERMpmFbsOSqo2rOmxLi1bYpWmuuKHnTFLZj5/IZP14fGWFmZJxSpZNiogrH7ZHy9aia9W06l34XT1VsvJHlW36tc7bWtdhbzFLoy0d7RqiySHjasw19JxJMsU5suzRrmHnjYUq/Ydk8sLrPc9gi2lLi5Zl6yPF/CwVZ5fXUlUVtRaZoNDuN3ncp9XqU5IVk6qQdoMlSaX/XiDlH3bVa+VpJ6Oi9pw/5jSZ16QpxrQSIhX+xzOrvX629sPkPLzDrfb8VRsVQs+ZVK3+PB0vKx8brEp15Wk7G3J/WtF2hXRLqHH73N5/dfwsONnlaxLoz4aqGtv7hpiNJy9iEjOYYwZrXsQM/piSqv0ura/vbm7fRyr9zrUSz/Ypduhl7VS27YhMTnHQ7D9iEtOKi1BI6wTp49rfA5YxxtTtbROcLMvS22+/rauvvto1rk+fPurQoYMWLVrkGjdy5EhFRkZqyZIlPsXNzs5WbGyssrKyFBMT4++0AQAAAAAA0Ij42itq1Ge65ebmavfu3a7hPXv2aNOmTYqPj1dqaqqmTp2q0aNHq3///ho0aJD+9a9/6R//+IfS09MDlzQAAAAAAACavEZ9plt6eroGDRpUbfy4ceO0cOFCSdKrr76q6dOn66efflKnTp302GOPacSIET6vgzPdAAAAAAAAUMHXXlGjbro1BJpuAAAAAAAAqOBrr6jJPr0UAAAAAAAACBSabgAAAAAAAICf0XQDAAAAAAAA/IymGwAAAAAAAOBnNN0AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADws9BAJxDsjDGSpOzs7ABnAgAAAAAAgECr6BFV9Iy8oelWiyNHjkiSUlJSApwJAAAAAAAAgkVOTo5iY2O9TqfpVov4+HhJ0r59+2rckcDJys7OVkpKiv7zn/8oJiYm0OmgCaPW0JCoNzQUag0NhVpDQ6HW0FCotbozxignJ0etW7eucT6abrWw2cpvexcbG0vxoUHExMRQa2gQ1BoaEvWGhkKtoaFQa2go1BoaCrVWN76cmMWDFAAAAAAAAAA/o+kGAAAAAAAA+BlNt1qEh4fr0UcfVXh4eKBTQRNHraGhUGtoSNQbGgq1hoZCraGhUGtoKNRa/bFMbc83BQAAAAAAAFAnnOkGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPCzoGm6TZ8+Xeedd56io6OVmJioq6++Wjt37nSbp7CwUBMnTlRCQoIcDodGjRqlX375xTV98+bN+v3vf6+UlBRFRkaqS5cumjt3rluM5cuXa8iQIWrZsqViYmLUu3dvffjhh7XmZ4zRI488olatWikyMlKDBw/W999/7zbPhg0bNGTIEDVv3lwJCQm69dZblZubW2vsLVu2qF+/foqIiFBKSoqeeeYZt+nbtm3TqFGj1K5dO1mWpTlz5tQaE95Ra95rbfny5erVq5eaN2+uqKgo9ejRQ4sWLao1Lryj3rzX28KFC2VZlttfRERErXHhGbXmvdYGDhxYrdYsy9Lll19ea2xUR615r7WSkhI9/vjj6tChgyIiInT22WfrX//6V61x4dmpWmuFhYUaP368zjrrLIWGhurqq6+uNs+BAwd0/fXX64wzzpDNZtOUKVNqzRfeUWvea23NmjXq27evEhISFBkZqc6dO2v27Nm15gzPqDXvtZaenu7x+9rBgwdrzTuomSAxdOhQs2DBArN161azadMmc9lll5nU1FSTm5vrmmfChAkmJSXFfPLJJ2bdunXmwgsvNH369HFNf+WVV8zkyZNNenq6ycjIMIsWLTKRkZFm3rx5rnnuuusu8+c//9l88803ZteuXWbatGkmLCzMbNiwocb8ZsyYYWJjY80777xjNm/ebK666irTvn17U1BQYIwxZv/+/SYuLs5MmDDBfPfdd+abb74xffr0MaNGjaoxblZWlklKSjI33HCD2bp1q3njjTdMZGSkeemll1zzfPPNN+bee+81b7zxhklOTjazZ8+uy65FFdSa91r79NNPzfLly8327dvN7t27zZw5c0xISIj517/+Vad9jOOoN+/1tmDBAhMTE2MOHDjg+jt48GCd9i+Oo9a819qRI0fc6mzr1q0mJCTELFiwoC67GMdQa95r7b777jOtW7c277//vsnIyDAvvviiiYiIqDVneHaq1lpubq6ZMGGC+b//+z8zdOhQM2LEiGrz7Nmzx0yePNm89tprpkePHuauu+7yYY/CG2rNe61t2LDBLFmyxGzdutXs2bPHLFq0yDRr1szt2AffUWvea+3TTz81kszOnTvdvreVlZX5smuDVtA03ao6dOiQkWRWr15tjDHm6NGjJiwszLz11luueXbs2GEkmS+//NJrnDvuuMMMGjSoxnV17drVPPbYY16nO51Ok5ycbJ599lnXuKNHj5rw8HDzxhtvGGOMeemll0xiYqJbQWzZssVIMt9//73X2C+++KKJi4szRUVFrnH333+/6dSpk8f509LSaLr5GbXmudYq9OzZ0/z3f/93jfPAd9Tb8XpbsGCBiY2NrXEbcOKoNe/HttmzZ5vo6Gi3L7g4cdTa8Vpr1aqVef75592Wu+aaa8wNN9xQ43bBN6dKrVU2btw4jz9OKxswYABNNz+j1mo2cuRIc+ONN/o0L2pGrR1X0XTLzMz0KU5jETSXl1aVlZUlSYqPj5ckrV+/XiUlJRo8eLBrns6dOys1NVVffvlljXEqYnjidDqVk5NT4zx79uzRwYMH3dYdGxurCy64wLXuoqIi2e122WzHd2lkZKSk8lNyvfnyyy/Vv39/2e1217ihQ4dq586dyszM9Loc/Ida81xrxhh98skn2rlzp/r37+81LuqGenOvt9zcXKWlpSklJUUjRozQtm3bvMZE3VBr3j9HX3nlFV133XWKioryGhe+o9aO11pRUVG1y+QjIyNrjAvfnSq1hsCj1rzbuHGjvvjiCw0YMMCvcU9V1Fp1PXr0UKtWrTRkyBCtXbvWLzEDKSibbk6nU1OmTFHfvn115plnSpIOHjwou92u5s2bu82blJTk9RrfL774Qm+++aZuvfVWr+uaOXOmcnNzde2113qdpyJ+UlKS13VffPHFOnjwoJ599lkVFxcrMzNTDzzwgKTyey7UFNtT3MrrRf2h1qrXWlZWlhwOh+x2uy6//HLNmzdPQ4YM8RoXvqPe3OutU6dOevXVV/Xuu+/qr3/9q5xOp/r06aOffvrJa1z4hlrz/jn6zTffaOvWrbrlllu8xoTvqDX3Whs6dKiee+45ff/993I6nfroo4+0fPnyGuPCN6dSrSGwqDXP2rZtq/DwcPXq1UsTJ07kc9QPqDV3rVq10vz587Vs2TItW7ZMKSkpGjhwoDZs2HBScQMtKJtuEydO1NatW7V06dITjrF161aNGDFCjz76qC699FKP8yxZskSPPfaY/va3vykxMVGStHjxYjkcDtff559/7tP6unXrptdee02zZs1Ss2bNlJycrPbt2yspKcnVBe7WrZsr7vDhw0942+A/1Fp10dHR2rRpk7799ls99dRTuueee5Senl6nGPCMenPXu3dvjR07Vj169NCAAQO0fPlytWzZUi+99JLPMeAZtebdK6+8orPOOkvnn3/+CS0Pd9Sau7lz56pjx47q3Lmz7Ha7Jk2apD/84Q9uZwTgxFBraCjUmmeff/651q1bp/nz52vOnDl644036hwD7qg1d506ddJtt92mc889V3369NGrr76qPn36NP4HdwT6+taqJk6caNq2bWt++OEHt/GffPKJx+t7U1NTzXPPPec2btu2bSYxMdE8+OCDXtdTcfPb9957z218dna2+f77711/+fn5JiMjw0gyGzdudJu3f//+ZvLkydViHzx40OTk5Jjc3Fxjs9nM3/72N2OMMXv37nXF/emnn4wxxowZM6ba9cyrVq0yksxvv/1WLTb3dPMfaq3mWqtw8803m0svvdTrdPiGevOt3n73u9+Z6667zut01I5a815rubm5JiYmxsyZM8frdsF31Jr3WisoKDA//fSTcTqd5r777jNdu3b1un2o3alWa5VxT7eGRa2N8JpzZU888YQ544wzfJoXnlFrI7zmXNm9995rLrzwQp/mDVZB03RzOp1m4sSJpnXr1mbXrl3VplfcUPDvf/+7a9x3331X7YaCW7duNYmJiWbq1Kle17VkyRITERFh3nnnHZ9zS05ONjNnznSNy8rKcruhoCevvPKKadasWY03Aqy4KW9xcbFr3LRp03iQQj2i1nyrtQp/+MMfzIABA3zKH9VRb77XW2lpqenUqZO5++67fcof7qi12mttwYIFJjw83Bw+fNinvOEZteb7ca24uNh06NDBTJs2zaf84e5UrbXKaLo1DGqtbo2Qxx57zKSlpfk0L9xRa3WrtcGDB5uRI0f6NG+wCpqm2+23325iY2NNenq62+Nh8/PzXfNMmDDBpKammlWrVpl169aZ3r17m969e7um//vf/zYtW7Y0N954o1uMQ4cOueZZvHixCQ0NNS+88ILbPEePHq0xvxkzZpjmzZubd99912zZssWMGDHC7dG5xhgzb948s379erNz507z/PPPm8jISDN37twa4x49etQkJSWZMWPGmK1bt5qlS5dWewRzUVGR2bhxo9m4caNp1aqVuffee83GjRt9fjoI3FFr3mvt6aefNitXrjQZGRlm+/btZubMmSY0NNS8/PLLPu9fuKPevNfbY489Zj788EOTkZFh1q9fb6677joTERFhtm3b5vP+xXHUmvdaq3DRRReZ0aNH17ovUTNqzXutffXVV2bZsmUmIyPDfPbZZ+biiy827du3b3JPYmsop2qtGVN+BsvGjRvNlVdeaQYOHOj6LVBZxbhzzz3XXH/99Wbjxo18hp4gas17rT3//PNmxYoVZteuXWbXrl3mL3/5i4mOjjYPPfSQL7sWVVBr3mtt9uzZ5p133jHff/+9+fe//23uuusuY7PZzMcff+zLrg1aQdN0k+Txb8GCBa55CgoKzB133GHi4uJMs2bNzMiRI82BAwdc0x999FGPMSp34QcMGOBxnnHjxtWYn9PpNA8//LBJSkoy4eHh5pJLLjE7d+50m2fMmDEmPj7e2O120717d/P666/7tO2bN282F110kQkPDzdt2rQxM2bMcJu+Z88ejzlz9tGJoda819pDDz1kTj/9dBMREWHi4uJM7969zdKlS32KDc+oN+/1NmXKFJOammrsdrtJSkoyl112mdmwYYNPsVEdtea91ow5/r/EK1eu9CkmvKPWvNdaenq66dKliwkPDzcJCQlmzJgxZv/+/T7FRnWncq2lpaV5zKm2/cPZRyeGWvNea//zP/9junXrZpo1a2ZiYmJMz549zYsvvmjKysp8ig931Jr3Wvvzn/9sOnToYCIiIkx8fLwZOHCgWbVqlU+xg5lljDECAAAAAAAA4Dc8SgkAAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAoIkYOHCgpkyZcsqtGwAAIBjRdAMAADgFpaeny7IsHT161C/LLV++XE888YT/EgQAAGjkQgOdAAAAABq/+Pj4QKcAAAAQVDjTDQAAoBHKy8vT2LFj5XA41KpVK82aNctt+qJFi9SrVy9FR0crOTlZ119/vQ4dOiRJ2rt3rwYNGiRJiouLk2VZGj9+vCTJ6XRq+vTpat++vSIjI3X22Wfr73//e63LVb28tF27dnryySddOaalpWnFihX69ddfNWLECDkcDnXv3l3r1q1zy3vNmjXq16+fIiMjlZKSosmTJysvL8/fuw8AAKDe0XQDAABohKZOnarVq1fr3Xff1cqVK5Wenq4NGza4ppeUlOiJJ57Q5s2b9c4772jv3r2uBllKSoqWLVsmSdq5c6cOHDiguXPnSpKmT5+u119/XfPnz9e2bdt0991368Ybb9Tq1atrXM6T2bNnq2/fvtq4caMuv/xyjRkzRmPHjtWNN96oDRs2qEOHDho7dqyMMZKkjIwMDRs2TKNGjdKWLVv05ptvas2aNZo0aVJ97EIAAIB6ZZmKbzkAAABoFHJzc5WQkKC//vWv+q//+i9J0m+//aa2bdvq1ltv1Zw5c6ots27dOp133nnKycmRw+FQenq6Bg0apMzMTDVv3lySVFRUpPj4eH388cfq3bu3a9lbbrlF+fn5WrJkicflpPIz3Xr06OFad7t27dSvXz8tWrRIknTw4EG1atVKDz/8sB5//HFJ0ldffaXevXvrwIEDSk5O1i233KKQkBC99NJLrrhr1qzRgAEDlJeXp4iICD/uRQAAgPrFPd0AAAAamYyMDBUXF+uCCy5wjYuPj1enTp1cw+vXr9ef/vQnbd68WZmZmXI6nZKkffv2qWvXrh7j7t69W/n5+RoyZIjb+OLiYvXs2bPOeXbv3t3176SkJEnSWWedVW3coUOHlJycrM2bN2vLli1avHixax5jjJxOp/bs2aMuXbrUOQcAAIBAoekGAADQxOTl5Wno0KEaOnSoFi9erJYtW2rfvn0aOnSoiouLvS6Xm5srSXr//ffVpk0bt2nh4eF1ziMsLMz1b8uyvI6raAjm5ubqtttu0+TJk6vFSk1NrfP6AQAAAommGwAAQCPToUMHhYWF6euvv3Y1ozIzM7Vr1y4NGDBA3333nY4cOaIZM2YoJSVFkqo9sMBut0uSysrKXOO6du2q8PBw7du3TwMGDPC4bk/L+cs555yj7du36/TTT/d7bAAAgIbGgxQAAAAaGYfDoZtvvllTp07VqlWrtHXrVo0fP142W/lXu9TUVNntds2bN08//PCDVqxYoSeeeMItRlpamizL0nvvvadff/1Vubm5io6O1r333qu7775br732mjIyMrRhwwbNmzdPr732mtfl/OX+++/XF198oUmTJmnTpk36/vvv9e677/IgBQAA0CjRdAMAAGiEnn32WfXr109XXnmlBg8erIsuukjnnnuuJKlly5ZauHCh3nrrLXXt2lUzZszQzJkz3ZZv06aNHnvsMT3wwANKSkpyNbaeeOIJPfzww5o+fbq6dOmiYcOG6f3331f79u1rXM4funfvrtWrV2vXrl3q16+fevbsqUceeUStW7f22zoAAAAaCk8vBQAAAAAAAPyMM90AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn9F0AwAAAAAAAPyMphsAAAAAAADgZzTdAAAAAAAAAD+j6QYAAAAAAAD4GU03AAAAAAAAwM9ougEAAAAAAAB+RtMNAAAAAAAA8DOabgAAAAAAAICf0XQDAAAAAAAA/IymGwAAAAAAAOBnNN0AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn9F0AwAAAAAAAPyMphsAAAAAAADgZzTdAAAAAAAAAD+j6QYAAAAAAAD4GU03AAAAAAAAwM9ougEAAAAAAAB+RtMNAAAAAAAA8DOabgAAAAAAAICfhQY6AQAAThWlpaUqLi4OdBoAcEqz2+0KDeVnEACg/vFpAwBAPTPGaN++fTp8+HCgUwEASGrRooVSU1NlWVagUwEANGE03QAAqGcVDbc2bdrI4XDIZuPuDgAQCE6nU7m5udq/f7+MMWrXrl2gUwIANGE03QAAqEelpaWuhltycnKg0wGAU57D4ZAk7d+/X/v27VPfvn0VEhIS4KwAAE0R/9UOAEA9qriHW8WPPABA4FUck7ds2aL09HSVlZUFOCMAQFNE0w0AgAbAJaUAEDwqjskxMTHasmWLjhw5EuCMAABNEb8AAAAAAJySIiMjVVxcrLy8vECnAgBogmi6AQCAOktPT5dlWTp69GigUwH8xl91vXfvXlmWpU2bNvklr7oaOHCgpkyZEpB1NzaWZckYE+g0AABNFA9SAAAAACT16dNHBw4cUGxs7EnFSUlJ0YEDB9SiRQs/ZeZZenq6Bg0apMzMTDVv3tw1fvny5QoLC6vXdddm4MCB6tGjh+bMmRPQPAAACCSabgAAAIAku93ul6cMh4SEBPRpxfHx8QFbNwAAOI7LSwEAaEC3lzyqAUU3BOzv9pJHfc61qKhIkydPVmJioiIiInTRRRfp22+/9Thvfn6+hg8frr59+3LJqRc5OTm64YYbFBUVpVatWmn27NlulwEuWrRIvXr1UnR0tJKTk3X99dfr0KFDruUrLn18//331b17d0VEROjCCy/U1q1bA7RFwW3gwIG68847NWXKFMXFxSkpKUkvv/yy8vLy9Ic//EHR0dE6/fTT9c9//tO1TNXLS3/88UddeeWViouLU1RUlLp166YPPvhAkpSZmakbbrhBLVu2VGRkpDp27KgFCxZIqn55aUXcTz75RL169VKzZs3Up08f7dy50y3nJ598UomJiYqOjtYtt9yiBx54QD169PC4fXv37tWgQYMkSXFxcbIsS+PHj3dte+XLS9u1a6cnn3xSY8eOlcPhUFpamlasWKFff/1VI0aMkMPhUPfu3bVu3Tq3daxZs0b9+vVTZGSkUlJSNHnyZLd7n7344ovq2LGjIiIilJSUpN/97neSpPHjx2v16tWaO3euLMuSZVnau3evysrKdPPNN6t9+/aKjIxUp06dNHfuXLd1jh8/XldffbWefvppJSUlqXnz5nr88cdVWlqqqVOnKj4+Xm3btnXt68r7e+nSperTp48iIiJ05plnavXq1d7KAwCABsGZbgAANKDtzt362mwOXAJO32e97777tGzZMr322mtKS0vTM888o6FDh2r37t1u8x09elSXX365HA6HPvroIzVr1szPSTcN99xzj9auXasVK1YoKSlJjzzyiDZs2OBqqpSUlOiJJ55Qp06ddOjQId1zzz0aP368q8lTYerUqZo7d66Sk5P14IMP6sorr9SuXbsCfjlhMHrttdd033336ZtvvtGbb76p22+/XW+//bZGjhypBx98ULNnz9aYMWO0b98+j3U7ceJEFRcX67PPPlNUVJS2b98uh8MhSXr44Ye1fft2/fOf/1SLFi20e/duFRQU1JjPQw89pFmzZqlly5aaMGGCbrrpJq1du1aStHjxYj311FN68cUX1bdvXy1dulSzZs1S+/btPcZKSUnRsmXLNGrUKO3cuVMxMTGKjIz0uu7Zs2fr6aef1sMPP+za7j59+uimm27Ss88+q/vvv19jx47Vtm3bZFmWMjIyNGzYMD355JN69dVX9euvv2rSpEmaNGmSFixYoHXr1mny5MlatGiR+vTpo99++02ff/65JGnu3LnatWuXzjzzTD3++OOSpJYtW8rpdKpt27Z66623lJCQoC+++EK33nqrWrVqpWuvvdaV66pVq9S2bVt99tlnWrt2rW6++WZ98cUX6t+/v77++mu9+eabuu222zRkyBC1bdvWtdzUqVM1Z84cde3aVc8995yuvPJK7dmzRwkJCTW+LgAA1BfLcOdQAADqTX5+vnbs2KEuXbqoWbNmGlB0Q0CbbhdYZ2t1+OJa58vLy1NcXJwWLlyo66+/XlJ5U6hdu3aaMmWKzjvvPA0aNEg7duzQ6NGj1bFjRy1ZskR2u72+N8Ej54E8mYPuTx+0mofL1j5WprBUzh2/VVsmpGeiJKlsZ6aUX+K+bFqMbPERcv5aIPNTjvuCDrtCOjavU345OTlKSEjQkiVLXGcDZWVlqXXr1vrjH//o8b5X69at03nnnaecnBw5HA7X/buWLl2q0aNHS5J+++03tW3bVgsXLnRrWjQEk3tQJu+g+8iI5rLFtpMpLZQ58l21ZWxJPSRJzt92SSX5btOs2FRZEfEy+b/K5Ox3X9DukC3u9DrlN3DgQJWVlbkaQWVlZYqNjdU111yj119/XZJ08OBBtWrVSl9++aUuvPDCavdI6969u0aNGqVHH61+huhVV12lFi1a6NVXX602be/evWrfvr02btyoHj16uOJ+/PHHuuSSSyRJH3zwgS6//HIVFBS4zlrs1auXnn/+eVeciy66SLm5uV4fyODtnm5V76fWrl079evXT4sWLXLb7ocfftjVFPvqq6/Uu3dvHThwQMnJybrlllsUEhKil156yRV3zZo1GjBggPLy8vTBBx/oD3/4g3766SdFR0d73P++3NNt0qRJOnjwoP7+979LKj/TLT09XT/88INstvKLcjp37qzExER99tlnko6/ln/5y1903XXXufb3jBkzdP/990uSSktL1b59e91555267777qq234ti8Z88e7d69W6NHj/ba4AQA4ERxphsAAKgmIyNDJSUl6tu3r2tcWFiYzj//fO3YsUPnnXeeJGnIkCE6//zz9eabbyokJCRQ6ar45a0qevIbt3Fhv++kZq9dKudPucq94M1qy8QW3ylJKrjlY5V97d48ilwwRPYbOqvk79+r8C73S9RCh6Qq6v0Rdcrvhx9+UElJic4///zj64+NVadOnVzD69ev15/+9Cdt3rxZmZmZcjrLT0vct2+funbt6pqvd+/ern/Hx8erU6dO2rFjR53y8YfSf7+qsq+mu42zdR4t+/C/yOTuV/GSftWWibi7vIFZsnKCzAH3S5XDhr2skC7XqWzX2yr99P+5x027RPZr3qlzjt27d3f9OyQkRAkJCTrrrLNc45KSkiTJ7TLeyiZPnqzbb79dK1eu1ODBgzVq1ChXzNtvv12jRo3Shg0bdOmll+rqq69Wnz59fM6nVatWrnWnpqZq586duuOOO9zmP//887Vq1ao6bLFv667Ybm/7Ijk5WZs3b9aWLVu0ePHxJr0xRk6nU3v27NGQIUOUlpam0047TcOGDdOwYcM0cuTIWs90feGFF/Tqq69q3759KigoUHFxcbVLaLt16+ZquFXkduaZZ7qGK17Lqq9b5fdGaGioevXqFZD3BgAAFWi6AQCAE3b55Zdr2bJl2r59u9sP+IZm/+OZCrvS/SwVq3m4JMnW1iHH16O9Lhv5l8Eez3STpLDfdVTohVVuiO/w/9l8eXl5Gjp0qIYOHarFixerZcuW2rdvn4YOHari4mK/r88fQs+6SSGnXeY+MqK5JMlytJH9+s+9Lht26XyPZ7pJUsgZI2Vrdb77AnbHCeVY9ZJby7LcxlmWJUmuBmdVt9xyi4YOHar3339fK1eu1PTp0zVr1izdeeedGj58uH788Ud98MEH+uijj3TJJZdo4sSJmjlzpk/51LZuf/O07pryyc3N1W233abJkydXi5Wamiq73a4NGzYoPT1dK1eu1COPPKI//elP+vbbb93Ouqts6dKluvfeezVr1iz17t1b0dHRevbZZ/X11197zbUiN0/jGmrfAQBwomi6AQDQgLraTq/TfdXqZf0+6NChg+x2u9auXau0tDRJ5ZeXfvvtt243aJ8xY4YcDocuueQSpaenu52R1ZBsraKkVlEep1kRoa5LST0J6RTnPW7LSKml9/tk+eq0005TWFiYvv32W6WmljeXsrKytGvXLvXv31/fffedjhw5ohkzZiglJUWSqt3UvsJXX33lipGZmaldu3apS5cuJ51jXVmOZFkOz0/otEIjZB27lNQTW/wZ3uM2aymrWcuTTc9vUlJSNGHCBE2YMEHTpk3Tyy+/rDvvLD9LsmXLlho3bpzGjRunfv36aerUqTU23WrSqVMnffvttxo7dqxrnLcHl1SouJy7rKzshNZZk3POOUfbt2/X6ad7P2aEhoZq8ODBGjx4sB599FE1b95cq1at0jXXXCO73V4tr7Vr16pPnz5uZ/RlZGT4LeevvvpK/fv3l1R+een69es1adIkv8UHAKCuaLoBANCA/jfssUCn4JOoqCjdfvvtrqcFpqam6plnnlF+fr5uvvlmbd58/L50M2fOVFlZmS6++GKlp6erc+fOAcw8OEVHR2vcuHGu/ZmYmKhHH31UNptNlmW5zhyaN2+eJkyYoK1bt+qJJ57wGOvxxx9XQkKCkpKS9NBDD6lFixa6+uqrG3aDThFTpkzR8OHDdcYZZygzM1Offvqpq8H5yCOP6Nxzz1W3bt1UVFSk995776San3feeaf++Mc/qlevXurTp4/efPNNbdmyRaeddprXZdLS0mRZlt577z1ddtllioyMdD3o4WTdf//9uvDCCzVp0iTdcsstrgdJfPTRR3r++ef13nvv6YcfflD//v0VFxenDz74QE6n03XJdLt27fT1119r7969cjgcio+PV8eOHfX666/rww8/VPv27bVo0SJ9++23fruX2gsvvKCOHTuqS5cumj17tjIzM3XTTTf5JTYAACfCVvssAADgVDRjxgyNGjVKY8aM0TnnnKPdu3frww8/VFxc9TPDZs+erWuvvVYXX3yxdu3aFYBsg99zzz2n3r1764orrtDgwYPVt29fdenSRREREWrZsqUWLlyot956S127dtWMGTO8njE1Y8YM3XXXXTr33HN18OBB/eMf/wjYAyyaurKyMk2cOFFdunTRsGHDdMYZZ+jFF1+UVH6W2bRp09S9e3f1799fISEhWrp06Qmv64YbbtC0adN077336pxzztGePXs0fvx4RUREeF2mTZs2euyxx/TAAw8oKSnJr2d1de/eXatXr9auXbvUr18/9ezZU4888ohat24tSWrevLmWL1+uiy++WF26dNH8+fP1xhtvqFu3bpKke++9VyEhIeratavrcunbbrtN11xzjUaPHq0LLrhAR44cqXYfu5MxY8YMzZgxQ2effbbWrFmjFStWqEWLFn6LDwBAXfH0UgAA6lHVp5cCFfLy8tSmTRvNmjVLN998c63ze3tSJZquIUOGKDk52fXUUXhW9WmxvuDppQCAhsDlpQAAAA1g48aN+u6773T++ecrKytLjz/+uCRpxIi6PQkVTVN+fr7mz5+voUOHKiQkRG+88YY+/vhjffTRR4FODQAAnCCabgAAAA1k5syZ2rlzp+x2u84991x9/vnnXP4GSeVP4/zggw/01FNPqbCwUJ06ddKyZcs0ePDgQKcGAABOEE03AACABtCzZ0+tX7/+hJcfOHCguCtI0xUZGamPP/440Gk0Su3ateO9AQAISjxIAQAAAAAAAPAzmm4AADQAp9MZ6BQAAMdUHJM5Qw4AUJ9ougEAUI/sdrskKTc3N8CZAAAqVByTS0pKApwJAKAp455uAADUo9DQULVo0UL79++XJDkcDtls/J8XAASC0+lUbm6u9u/fr6NHj3IWMgCgXtF0AwCgnqWmpkqSq/EGAAiso0eP6pdfflFZWZlCQkIUFhYW6JQAAE0QTTcAAOqZZVlKS0vT4cOH9dVXX8nhcCgqKkqWZQU6NQA45ZSUlMjpdKqsrEwHDhxQUlKS4uLiAp0WAKAJsgx3DwUAoEGUlZVp7dq1WrdunYqKimi6AUCAJSYm6oorrlBiYmKgUwEANEE03QAAaEBlZWX6+eeflZuby72EACCAIiIi1KJFC8XGxgY6FQBAE0XTDQAAAAAAAPAzHp8GAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn/1/AyxGFG2zl6QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder05').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "2704ba92-ca78-478e-8c7c-0b2858339d5e", + "metadata": {}, + "source": [ + "## Fill missing observations\n", + "\n", + "Missing observations typically span short periods, so interpolation is the most suitable method for filling the observations. To interpolate values over the missing timestamps use the [fill_missing_obs_linear()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_missing_obs_linear) method. The specific settings that are used for the interpolation can be changed with the [update_gap_and_missing_fill_settings()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_gap_and_missing_fill_settings) method. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3081b116-3eeb-40ae-84d1-d7a36d4b4fb4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 892 missing observations\n", + " * For 28 stations\n", + " * Missing observations are filled with interpolate for: \n", + " temp: \n", + " temp\n", + "name datetime \n", + "vlinder01 2022-09-14 17:45:00+00:00 14.657143\n", + " 2022-09-14 18:45:00+00:00 14.485714\n", + " 2022-09-14 18:30:00+00:00 14.528571\n", + " 2022-09-14 18:15:00+00:00 14.571429\n", + " 2022-09-14 18:00:00+00:00 14.614286\n", + "... ...\n", + "vlinder28 2022-09-12 07:15:00+00:00 13.600000\n", + " 2022-09-05 18:15:00+00:00 21.300000\n", + " 2022-09-14 18:00:00+00:00 14.800000\n", + " 2022-09-14 08:45:00+00:00 15.025000\n", + " 2022-09-14 18:15:00+00:00 14.800000\n", + "\n", + "[891 rows x 1 columns]\n", + " * Missing observations that could NOT be filled for: \n", + " temp: \n", + " MultiIndex([('vlinder02', '2022-09-10 17:10:00+00:00')],\n", + " names=['name', 'datetime'])\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYuElEQVR4nOzdd3wb9f3H8ddJsrxlZzl7J2QQRgIJIyUJUAJlFFooe5UNSdi0jLIpFFpWmS0lYRR+0DLLaBiFhL0JEEbIgoRsx0OesqS73x+KZclTsiXrJL+fj0ce0Z1On/vqdJJ8H32+369hWZaFiIiIiIiIiIiIJIwj1Q0QERERERERERHJNEq6iYiIiIiIiIiIJJiSbiIiIiIiIiIiIgmmpJuIiIiIiIiIiEiCKekmIiIiIiIiIiKSYEq6iYiIiIiIiIiIJJiSbiIiIiIiIiIiIgmmpJuIiIiIiIiIiEiCKekmIiIiIiIiIiKSYEq6iYiIiEi3qq6u5rTTTmPAgAEYhsH555/f5ZiGYXDNNdeElx966CEMw+CHH37ocuxkxhQREZHMpaSbiIiI2IJhGDH9W7RoUaqbmjL33nsvDz30UKqb0WU33ngjDz30EGeffTaPPvooJ5xwQqqblHLr1q3jyCOPpLi4GI/Hw6GHHsqqVatabNfW++JPf/pTClotIiIi7XGlugEiIiIiAI8++mjU8iOPPMJrr73WYv2ECRO6s1m2cu+999K3b19OPvnkVDelS9544w123313rr766qTt44QTTuDoo48mOzs7aftIlOrqavbee28qKyu5/PLLycrK4vbbb2fmzJksWbKEPn36RG2/3377ceKJJ0atmzx5cnc2WURERGKgpJuIiIjYwvHHHx+1/MEHH/Daa6+1WJ8pLMuivr6e3NzcVDclZjU1NeTn53c5zubNm5k4cWICWtQ2p9OJ0+lM6j66qvF43nvvvSxfvpyPPvqIqVOnAvCLX/yCSZMmceutt3LjjTdGPW677bbL2PeFiIhIJlH3UhEREUkbpmlyxx13sP3225OTk0P//v0588wzKS8vj9puxIgRHHzwwSxatIhdd92V3Nxcdthhh3DX1GeeeYYddtiBnJwcdtllFz7//POox5988skUFBSwatUq9t9/f/Lz8xk0aBDXXXcdlmV1qU2vvPJKuE1/+9vfAFiwYAH77LMPJSUlZGdnM3HiRO67774Wj//6669ZvHhxuEvhrFmzALjmmmswDKPF8WptDLLmY59Fxo+soGt87OLFiznnnHMoKSlhyJAhLR4XafPmzZx66qn079+fnJwcdtppJx5++OHw/YsWLcIwDFavXs1LL70Ufh5tjZE2adIk9t577xbrTdNk8ODBHHHEEW22pbXn3vgavPPOO0ybNo2cnBxGjRrFI4880uLxX3/9Nfvssw+5ubkMGTKEG264AdM0W93Xf//7X/baay/y8/MpLCzkoIMO4uuvv47apvGcWrlyJQceeCCFhYUcd9xxADz11FNMnTo1nHADGD9+PPvuuy//+te/Wt1nXV0d9fX1bT5/ERERST0l3URERCRtnHnmmVxyySVMnz6dO++8k9/+9rc89thj7L///vj9/qhtV6xYwbHHHsshhxzCTTfdRHl5OYcccgiPPfYYF1xwAccffzzXXnstK1eu5Mgjj2yRUAkGgxxwwAH079+fW265hV122YWrr766RZfIeNq0bNkyjjnmGPbbbz/uvPNOdt55ZwDuu+8+hg8fzuWXX86tt97K0KFDOeecc7jnnnvCj73jjjsYMmQI48eP59FHH+XRRx/liiuuSODRbd0555zDN998w1VXXcWll17a5nZ1dXXMmjWLRx99lOOOO44///nPFBUVcfLJJ3PnnXcCoa7Bjz76KH379mXnnXcOP49+/fq1GvOoo47irbfeYuPGjVHr33nnHdavX8/RRx8d9/NZsWIFRxxxBPvttx+33norvXr14uSTT45Kkm3cuJG9996bJUuWcOmll3L++efzyCOPhJ9HpEcffZSDDjqIgoICbr75Zq688kq++eYbfvazn7VIJgYCAfbff39KSkr4y1/+wuGHH45pmnz55ZfsuuuuLWJPmzaNlStXUlVVFbX+oYceIj8/n9zcXCZOnMjjjz8e93EQERGRbmCJiIiI2NCcOXOsyD9V3n77bQuwHnvssajtFi5c2GL98OHDLcB67733wuteeeUVC7Byc3OtH3/8Mbz+b3/7mwVYb775ZnjdSSedZAHWvHnzwutM07QOOuggy+12W1u2bOl0mxYuXNjiudbW1rZYt//++1ujRo2KWrf99ttbM2fObLHt1VdfbbX2Z92CBQsswFq9enV4HWBdffXVLbYdPny4ddJJJ7V47M9+9jMrEAi02L65O+64wwKsf/7zn+F1DQ0N1h577GEVFBRYXq83al8HHXRQhzGXLVtmAdZdd90Vtf6cc86xCgoKoo5b8+fV2nNvfA3eeuut8LrNmzdb2dnZ1kUXXRRed/7551uA9eGHH0ZtV1RUFBWzqqrKKi4utk4//fSo9m3cuNEqKiqKWt94Tl166aVR227ZssUCrOuuu67F87/nnnsswPruu+/C6/bcc0/rjjvusJ5//nnrvvvusyZNmmQB1r333tvaIRQREZEUUqWbiIiIpIV///vfFBUVsd9++1FaWhr+t8suu1BQUMCbb74Ztf3EiRPZY489wsu77bYbAPvssw/Dhg1rsb61mSLnzp0bvm0YBnPnzqWhoYHXX3+9U20aOXIk+++/f4v9RI7rVllZSWlpKTNnzmTVqlVUVlbGfIyS4fTTT49pbLSXX36ZAQMGcMwxx4TXZWVlce6551JdXc3ixYvj3vd2223HzjvvzJNPPhleFwwGeeqppzjkkEM6NR7exIkT2WuvvcLL/fr1Y9y4cVGv/8svv8zuu+/OtGnTorZr7A7a6LXXXqOiooJjjjkm6vV3Op3stttuLV5/gLPPPjtqua6uDqDVCR9ycnKitgF49913Oe+88/jlL3/JWWedxaeffsqkSZO4/PLLo7YTERGR1NNECiIiIpIWli9fTmVlJSUlJa3ev3nz5qjlyMQaQFFREQBDhw5tdX3zMdgcDgejRo2KWrfddtsBhLsNxtumkSNHtrrdu+++y9VXX837779PbW1t1H2VlZXhNqZCW21u7scff2Ts2LE4HNG/6TbONvvjjz92av9HHXUUl19+OevWrWPw4MEsWrSIzZs3c9RRR3UqXvPzAqBXr15Rr/+PP/4YTsZGGjduXNTy8uXLgVAitzUejydq2eVytRgXrzFx6PP5Wjy+ccy29pKLbrebuXPnhhNwP/vZz9rcVkRERLqXkm4iIiKSFkzTpKSkhMcee6zV+5uPC9ZWdVZb661mEyQko02tJU9WrlzJvvvuy/jx47ntttsYOnQobrebl19+mdtvv73NwfsjtTaJAoSqwmLV1rapnl31qKOO4rLLLuPf//43559/Pv/6178oKirigAMO6FS8RL/+EBrXbcCAAS3ud7mi/9TOzs5ukZTs3bs32dnZbNiwocXjG9cNGjSo3XY0JpLLyspib7yIiIgknZJuIiIikhZGjx7N66+/zvTp07slEWSaJqtWrQpXtwF8//33QGgWzES16YUXXsDn8/Gf//wnqgqrta6JbSXXevXqBUBFRQXFxcXh9a1Vl/Xq1YuKioqodQ0NDa0mfeIxfPhwvvzyS0zTjEosfffdd+H7O2PkyJFMmzaNJ598krlz5/LMM89w2GGHtdodM1GGDx8ermKLtGzZsqjl0aNHA1BSUsLPf/7zTu3L4XCwww478Mknn7S478MPP2TUqFEUFha2G6Oxa2xbE1KIiIhIamhMNxEREUkLRx55JMFgkOuvv77FfYFAoEUiKRHuvvvu8G3Lsrj77rvJyspi3333TVibGiuvIiutKisrWbBgQYtt8/PzW43ZmPx56623wutqamp4+OGHW902cjuAv//973FVxbXmwAMPZOPGjVHjrwUCAe666y4KCgqYOXNmp2MfddRRfPDBB8yfP5/S0tJOdy2N1YEHHsgHH3zARx99FF63ZcuWFhWN+++/Px6PhxtvvLHFTLWNj4nFEUccwccffxyVeFu2bBlvvPEGv/nNb9qNV1VVxR133EHfvn3ZZZddYtqfiIiIdA9VuomIiEhamDlzJmeeeSY33XQTS5YsYfbs2WRlZbF8+XL+/e9/c+edd3LEEUckbH85OTksXLiQk046id12243//ve/vPTSS1x++eXhiqJEtGn27Nm43W4OOeQQzjzzTKqrq3nggQcoKSlpUX22yy67cN9993HDDTcwZswYSkpK2GeffZg9ezbDhg3j1FNP5ZJLLsHpdDJ//nz69evHmjVromKcdtppnHXWWRx++OHst99+fPHFF7zyyiv07du3S8frjDPO4G9/+xsnn3wyn376KSNGjOCpp57i3Xff5Y477uiwWqs9Rx55JBdffDEXX3wxvXv37nRVWax+97vf8eijj3LAAQdw3nnnkZ+fz9///vdwNV8jj8fDfffdxwknnMCUKVM4+uijw8f8pZdeYvr06VGJ27acc845PPDAAxx00EFcfPHFZGVlcdttt9G/f38uuuii8Hb33HMPzz33HIcccgjDhg1jw4YNzJ8/nzVr1vDoo4/idruTcjxERESkc5R0ExERkbRx//33s8suu/C3v/2Nyy+/HJfLxYgRIzj++OOZPn16QvfldDpZuHAhZ599NpdccgmFhYVcffXVXHXVVQlt07hx43jqqaf4wx/+wMUXX8yAAQM4++yz6devH6ecckrUtldddRU//vgjt9xyC1VVVcycOZN99tmHrKwsnn32Wc455xyuvPJKBgwYwPnnn0+vXr347W9/GxXj9NNPZ/Xq1Tz44IMsXLiQvfbai9deey1cvddZubm5LFq0iEsvvZSHH34Yr9fLuHHjWLBgASeffHKXYg8ZMoQ999yTd999l9NOO42srKwuxevIwIEDefPNN5k3bx5/+tOf6NOnD2eddRaDBg3i1FNPjdr22GOPZdCgQfzpT3/iz3/+Mz6fj8GDB7PXXnu1OPZtKSwsZNGiRVxwwQXccMMNmKbJrFmzuP3226O6jE6fPp333nuPf/zjH2zdupX8/HymTZvG/Pnz25zMQURERFLHsDozaqyIiIhIBjv55JN56qmnqK6uTnVTRERERCRNaUw3ERERERERERGRBFPSTUREREREREREJMGUdBMREREREREREUkwjekmIiIiIiIiIiKSYKp0ExERERERERERSTAl3URERERERERERBLMleoG2J1pmqxfv57CwkIMw0h1c0REREREREREJIUsy6KqqopBgwbhcLRdz6akWwfWr1/P0KFDU90MERERERERERGxkbVr1zJkyJA271fSrQOFhYVA6EB6PJ4Ut0ZERERERERERFLJ6/UydOjQcM6oLUq6daCxS6nH41HSTUREREREREREADochkwTKYiIiIiIiIiIiCSYkm4iIiIiIiIiIiIJpqSbiIiIiIiIiIhIgqV10u2mm25i6tSpFBYWUlJSwmGHHcayZcuittm4cSMnnHACAwYMID8/nylTpvD000+nqMUiIiIiIiIiItITpHXSbfHixcyZM4cPPviA1157Db/fz+zZs6mpqQlvc+KJJ7Js2TL+85//8NVXX/HrX/+aI488ks8//zyFLRcRERERERERkUxmWJZlpboRibJlyxZKSkpYvHgxM2bMAKCgoID77ruPE044Ibxdnz59uPnmmznttNM6jOn1eikqKqKyslKzl4qIiIiIiIiI9HCx5orSutKtucrKSgB69+4dXrfnnnvy5JNPUlZWhmmaPPHEE9TX1zNr1qxWY/h8Prxeb9Q/ERERERERERGReGRM0s00Tc4//3ymT5/OpEmTwuv/9a9/4ff76dOnD9nZ2Zx55pk8++yzjBkzptU4N910E0VFReF/Q4cO7a6nICIiIiIiIiIiGSJjkm5z5sxh6dKlPPHEE1Hrr7zySioqKnj99df55JNPuPDCCznyyCP56quvWo1z2WWXUVlZGf63du3a7mi+iIiIiIiIiIhkkIwY023u3Lk8//zzvPXWW4wcOTK8fuXKlYwZM4alS5ey/fbbh9f//Oc/Z8yYMdx///0dxtaYbiIiIiIiIiIi0ijWXJGrG9uUcJZlMW/ePJ599lkWLVoUlXADqK2tBcDhiC7oczqdmKbZbe0UEREREREREZGeJa2TbnPmzOHxxx/n+eefp7CwkI0bNwJQVFREbm4u48ePZ8yYMZx55pn85S9/oU+fPjz33HO89tprvPjiiyluvYiIxOIDcwlLzeW8GfyA760fGOMYxhHOAzjcuX+qmyYiIiIiItKmtO5eahhGq+sXLFjAySefDMDy5cu59NJLeeedd6iurmbMmDFcfPHFnHDCCTHto7FkcN3PHyP/6xowLXAYGL1ysMrro5aBFuuaLzuGF5I1ezjZ509OyDFINt8dn+N/9UeCS7bE/VzjXW4rplHoxrl9H/KfObhT7fc9sBRra13S22m3mOl2rjXXeO6ZP1ZlzGuSiTGNPrlknz4pqefZZf6/cHvwoah1expTeCP7kbhjRZ5X0PJ5trbOjp9tqZbq74bm0u19o5jp0y7FVEw7x7RruxTT/jGBtLlWqPn1iwS/3opV1WCb46eYimn0yqF6kJPBrx/XYffStE66dYfGpNsa1814jNyExDQG5+NZfUpCYiWbd+R8rHU1qW4GOAyK6ufG/TDbtD9F0ulca66nv3bpJNnn2fn+P3J/8P8AcOIgiMl2xki+zH4h7li2O686+dmWarY7jiIiIhK3dLhWqMy5O5ToELEZr1XHsMDvO0y6ZczspSIikpnq8YVvD6QfAKVWWaqaIyIiIiIiEhNVunWgsdKt/Nt1FNS6wLLAACPfjVXjj1oGWqxrvmwUZGF43BiF7hQ/s9hYVQ1Y3gbMTbVxP9d4l9uKaeS5MDxuHIMKOtV+c30NVnVD0ttpt5jpdq4113juWdX+jHlNMjGmUZCFY1BBUs+zkxt+zxPmSwDsYGzHV9b3AFRnL8FlxDc0aeR5BS2fZ2vr7PjZlmqp/m5o0Z40e98oZvq0SzEV084x7douxbR/TCBtrhXM9dVYVX6smgbbHD/FVEwj302VVUevCYMze/bS7uQYVICrnQOZqYzC0AexY3D6XRRCqP3Ocfb+IpHWNZ57Ij4awrf7Gr3ACt0uo5IS+sQVS+dVYqT7d4OIiIikh3T8cVJ6BofXGdt2SW6HiIhIl9RRH77dLyLJVmqVp6I5IiIiIiIiMVHSTUREbK0+otKtxOgdvr1F47qJiIiIiIiNqXtpjKoPfxHr65ouT0ObLlMzN/Ld8Tn+V38kuGRLyqbxNQrdOLfvQ/4zB3eq/b4HlmJtrbP1dMPJiJlu51pzjeee+WNVxrwmmRjT6JNL9umTknqe1VtNEyn0p2/49lYq4o4VeV5By+fZ2jo7fralWqq/G5pLt/eNYqZPuxRTMe0c067tUkz7xwTS5lqh5tcvEvx6K1ZVg22On2IqptErh+pBsXUv1UQKHWicSGGN62Y8Rm5CYqbD1MyNvCPnY62rSXUzwGFQVD837ofZpv0pkk7nWnM9/bVLJ8k+z3b3/YYl1rdk4eJu19WcGbgSgL+6/sAZrqPjimW786qTn22pZrvjKCIiInFLh2uFypy7Q4kOEZvxWnUMC/y+w4kU1L1URERsrZ5QpVsO2YxzjOQgYxbjGMEjwef41Fya2saJiIiIiIi0QUk3ERGxtcYx3XLJZnfHzhzlOpBl/MAn1lL+Z76f4taJiIiIiIi0Tkk3ERGxNd+2Md2yyQZgojEmfN/X5oqUtElERERERKQjSrqJiIit1TV2LzVCSbftjJG4ts0D9I21PGXtEhERERERaY+SbiIiYmtNY7q5AXAbWYwxhgGwzFpNwAqkrG0iIiIiIiJtcaW6ASIiIm2xLCucdMslJ7z+ulfOpui5bHp/m4//4Xpc2xWkqokiIiIiIiKtUqWbiIjYlm/bJAoA2dsq3QB2/2oSfR/LxfGZScNSXyqaJiIiIiIi0i4l3URExLYaq9ygaUw3gJzt88K3fV/XdmubREREREREYqGkW6yKssHYdtsAXI6Wy62ta75cnI1z55Lua3cXOXcugeJWnnsszzXe5ba2cRoYfXM7336Xo3vaabeYaXauNRc+9zLpNcnEmC5HUs+z+ohKtxyakm7ZEyOSbt/EnnSLOq9SfTy78NmWain/bmj+L93eN4qZPu1STMW0c0y7tksx7R/T5UibawWjby44DXsdP8VUTJcjlCOKgWFZlhXTlj2U1+ulqKiIyspKPB5PqpsjItKj/GCuY3zD/gD8xvELHnX/GQAraPFtrw+xfBa5u+Uz6q0dU9lMERERERHpQWLNFTm6sU0iIiJxqac+fDuye6nhNCjYrxhHkZO6T2ow681UNE9ERERERKRNSrqJiIhtRXcvdUfd5/A4MSuDEISG7+u6u2kiIiIiIiLtUtJNRERsK2oiBaLHTciOmEyhXpMpiIiIiIiIzbhS3YB0UTlqAVaVAyxCA+c5HRA0o5eh5brmywVZuKYPIv/Zg1PzROJU86sXCby7Hip98T/XeJfbiukwMPrk4vnp1M61/5UfIWAmv512i5lm51pz4XOv2p85r0kmxnQ5cO0/PGnnWb3V+kQKADkT45/BNOq8gtQezy58tqVayr8bmku3941ipk+7FFMx7RzTru1STPvHhLS5VvAOeRBrax2Yln2On2IqptOBNy/Q1mkbRUm3WFX6wNg2y5xFKInTqPlye9tU+Agu2ZzctiZQcMlmqGiqNInruXZ2ufm6oIVV2rmuY8Elm5viJLuddouZZudacy3OPUj/1yQTYwbMpJ5nbY3pBqFKN0exk6xh2QS9wZjitXpeQdp9tqWaLb4bWpMu7xvFTL92KaZi2jmmXdulmPaOmSbXClbptoQb2Ov4KaZiVrZyTdEKJd1ERMRWFgU/Yrn1A++an/KjuZ5hDKSv0ZudjPFR27mGZkEQfF/WYsaYdBMREREREekuSrqJiIitPGm+xILg0wBMYSLDjcHMcEzlYOfeUds5HA6yJ+RS91E1/h98BKuDOAucqWiyiIiIiIhIC45UN0BERCRSlVUdvl1kePAYBXiMgla3jZxMwfetJlMQERERERH7UKWbiIjYShVNybPH3LfS2yhqc9voyRTqyJtamNS2iYiIiIiIxEpJNxERsRVvRKVbIXntbAnZO+SSu2cBhsPAvza2wUxFRERERES6g5JuIiJiK1WEkm655JBlZLW7bfaEPOreC21vZGvEBBERERERsQ9doYiIiK14rRoAPOR3uK2rfxbOPqHfjzSmm4iIiIiI2ImSbiIiYiuNlW4FRsdJN8MwyJ6YC0BgvZ9AmT+pbRMREREREYmVupfGyDlrCHxdA6YFDgOjVw5WeX3UMtBiXfNlx/BCsmYPT/GziV32eZPxv/ojwSVb4n6u8S63FdModOPcvk+n2+97YCnW1rqkt9NuMdPtXGuu8dwzf6zKmNckE2MafXLJPn1Swl53y7LCEyl4aH3G0hbnysQ8at+uAqB+aS0FM9qeeCHyvIKWz7O1dXb8bEu1VH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCaTNtYLrwBEEv96KVdVgm+OnmIpp9MrBOagPvN7xOWxYlmUl9F2RYbxeL0VFRVRWVuLxeFLdHBGRjFZn1dPLtysAMxxTedW9oMPHlD+6mbL7NhLY5Kff7wfT+4wByW6miIiIiIj0YLHmilTpJiIituGlaebSWCvd3CNzqP80NA6c72uN6yYiIiIiIvagMd1ERMQ2qrZNogBQGMNECkB4TDeA+m/qEt4mERERERGRzlClW4zM9dUEVtSDZYEBRr4bq8YftQy0WNd82SjIwvC4MQrdKX5GsbGqGrC8DZibauN+rvEutxXTyHNheNw4BsVW9dK8/eb6GqzqhqS3024x0+1ca67x3LOq/RnzmmRiTKMgC8eggoSdZ5GVboUxTKQA4OqdhWtgFoENfnxf12JZFoZhtLpt5HkFLZ9na+vs+NmWaqn+bmjRnjR73yhm+rRLMRXTzjHt2i7FtH9MIG2uFcz11VhVfqyaBtscP8VUTCPfjWnF9mO/km4xqtrhnxhGbscbxsAYnI9n9SkJiZVsVTv+E2tdTccbJpvDoKh+btwPs037UySdzrXmevprl04SeZ5FVrrF2r0UIHtCHoEtlTh6uQhs8pM1oPU/IG13XnXysy3VbHccRUREJG7pcK1QNeqh0OD1IjZTFWPSTd1LRUTENqqI6F4aY6UbQO6uBWCBf0U9PnUxFRERERERG1DSTUREbOFHaz0vBxczhuFMNMawg7FdzI91j8qGYOi2JlMQERERERE7UNJNRERs4RPzK+abT7GCH+lHbw50zor5sdnb54Vv13+jpJuIiIiIiKReWifdbrrpJqZOnUphYSElJSUcdthhLFu2rMV277//Pvvssw/5+fl4PB5mzJhBXZ26H4mI2Mm31srw7WHGwLgemz2hKenmU9JNRERERERsIK2TbosXL2bOnDl88MEHvPbaa/j9fmbPnk1NTdOYQO+//z4HHHAAs2fP5qOPPuLjjz9m7ty5OBxp/dRFRDLOMnNV+PZFrvgG9XUWOsndrYCcXfNxFDixLA24KyIiIiIiqZXWs5cuXLgwavmhhx6ipKSETz/9lBkzZgBwwQUXcO6553LppZeGtxs3bly3tlNERDr2nRVKurlwMdoYFvfjnb1dVP+3AgD/2gbcw7IT2TwREREREZG4ZFS5V2VlJQC9e/cGYPPmzXz44YeUlJSw55570r9/f2bOnMk777zTZgyfz4fX6436JyIiyTfGGMHuxs5MM3Yky8iK+/E5EeO6aTIFERERERFJtYxJupmmyfnnn8/06dOZNGkSAKtWhaomrrnmGk4//XQWLlzIlClT2HfffVm+fHmrcW666SaKiorC/4YOHdptz0FEpKcyLZNnzVf5wFpCsHEa0jhlK+kmIiIiIiI2kjFJtzlz5rB06VKeeOKJ8DrTNAE488wz+e1vf8vkyZO5/fbbGTduHPPnz281zmWXXUZlZWX439q1a7ul/SIiPZmfQPh2FvFXuYFmMBUREREREXtJ6zHdGs2dO5cXX3yRt956iyFDhoTXDxwYmv1u4sSJUdtPmDCBNWvWtBorOzub7OyW4wDl3DWLrC+qsIIWOA2cA/MxN9RELQMt1jVfdgz34Nyhb6KeetLlP30wga9KCX6wIe7nGu9yWzGNfnk4x/fqdPsbXlyF+VN10ttpt5jpdq4113juWT96M+Y1ycSYjiEFuA8e1eXXuwF/+Lbb6NxXU/a4XPJmFGL5LYLlgVa3iTyvoOXzbG2dHT/bUi3V3w3Npdv7RjHTp12KqZh2jmnXdimm/WMCaXOtkDv/5wS/K8fcUmub46eYiukcmE9uiQPO7vgcTuukm2VZzJs3j2effZZFixYxcuTIqPtHjBjBoEGDWLZsWdT677//nl/84hdx7Sv72PHkneXpcpvTjXNKCc4pJXDSxI43tiHnlBJyp5SkuhnSCeFzT3oEHw3h29m4OxXDkeMgsNFPw/f1GDkGVtDCcBpR2+i8Sox0/24QERGR9OA+dnyqmyDSqgavN/OTbnPmzOHxxx/n+eefp7CwkI0bNwJQVFREbm4uhmFwySWXcPXVV7PTTjux88478/DDD/Pdd9/x1FNPpbj1IiLSKKrSrZPdSwGyJ+bR8H09Vr1Fw6p6ssfmJqJ5IiIiIiIicUvrpNt9990HwKxZs6LWL1iwgJNPPhmA888/n/r6ei644ALKysrYaaedeO211xg9enQ3t1ZERNrSYEUm3TpX6QahGUyrnisDwPdNrZJuIiIiIiKSMmmddLMsK6btLr30Ui699NIu7av+2g8wPq4E0wKHgWNbn97IZaDFuubLjtFFuKYPIuugkR3s0R78L60m+O56/O+sj/u5xrvcVkxHv1ycO/Ql55rdO9X+hke+xVxXnfR22i1mKs61YHUQZ4GTOwMPA3Ce66ROx2o894IrKzPmNcnEmI7BBbhPnNDl86whontplyrdtk2m8M85r7J0uwdxN+QwwzE1fC5GnlfQ8nm2ts6On23tuTPwMG+ZHwMwxZjI5a6zMQyjg0fFJ9XfDc2l2/tGMdOnXYqpmHaOadd2Kab9YwJpc11af80HBL8qxdxSZ5vjp5iK6RiYT92Q2NJphhVr5qqH8nq9FBUVscZ1Mx4jMRUTxuB8PKtPSUisZPOOnI+1ribVzQCHQVH93LgfZpv2p0h3n2vfj/uMdb02c/SLVxMsgGOdB/PXrCs7Faunv3bpJBHn2VLze3Zt+DUAv3Uezn1Z13YqTmCrH993ddy648O87f6UT6yvcOFimmNHXnI/YL/zqpOfba35yPySQxvOwsTCiYNa6qnHxzfu/zLKMTQh+2hku+MoIiIicUuH69LKnLtDiQ4Rm/FadQwL/J7Kyko8nrbH/3d0Y5tEJIMFq4P4f/Bhbg5SWVBDNTWUWuWpbpakicgx3To7kQKAq08W+dM9FOV68BgF+PBTRQ2brNJENNPWyq1KyvFSSRVgUI8PgA+sJSltl4iIiIhIT6Wkm4gkhO+bWgCy67LC6+qoT1VzJM34EtS9tNF5rpN42n03uWQDYJL5v5CW4w3fPsKxf/j2h+YXqWiOiIiIiEiPl9ZjuomIffi+DiXdcuqaqpTqtlXaiHQkeiKFrifdGjlxAhAkmLCYdlVpVYVv7+DYjh3WjeHgj/di+o87wSUpbJiIiIiISA+lpJuIJIR/QwM5u+Tj2OgMr6uzVOkmsYnsXprYpFuooDuImbCYdlVOZfj2QKOEJ468lvova8EBwbOCOAud7TxaREREREQSTd1LRSQhat+qov7TGsx1QbKtULWbupdKrKKSbkbiK93MHpB0i6x0KzIKyd29MLRgQt3H1SlqlYiIiIhIz6Wkm4gkRP227qXOfi5yjRxA3UsldomaSKE5BwbQUyrdmsZ064WHvD0Kw8u173tbe4iIiIiIiCSRupeKSJcFNvsJbg4lTXK2zyOXbCpQ91KJXaInUmgUHtPNyvwx3SqspsRakVFI7h6F5P2skMAWP3WfqNJNRERERKS7KekmIl3WWOUGkL19HjlGNlhQr0o3iVGyJlJwbCvotnrA7KUVNHUv7UUR7hHZNCyvJ7DJT2CTH8u0MBxGClsoIiIiItKzqHtprBJ1pBxg5CfugjLZjPwse5wlzs5dKKbTsU64bjzXGr6vI2fXfPL2KiR3lwLyyAWgtgtjutnm3JMOJeI8i55IIZHdSxsnUghVutnuvOrkZ1trGivdnDjJJxfDMMLjupkVQXzL6hK2L9sdRxEREYlPulyXJvBvJZGEivFvYVW6xahoy1l4PJ5UN6PbFS49IdVN6JJ0b3+6qFtSQ/0nNQD0v3E4uWSH1lOPZVkYRvxflnrtepaGyO6liZxIwXCC1TSmWyafV42Vbr3whN9zebsXUv2/CtxjcqhfUkPOhLyE7CuTj6OIiIjYR1HNnFQ3QaRVhtcLRb/vcDv9Ti0iXeaL7F46IY8cQhMpWFhRFUwibYmudEvkmG6hr7meMHtpY6VbkdE0gULuHgVYNSa+JbXUvFmZqqaJiIiIiPRIqnQTkS6xTCucdMsakY2z0EluQ2hMNwhVuyVyNkrJTJETKSR29tLG7qWZnXS7NTCfycZE3IaLCcbo8PrcyQUYLgPLb1H7flU7EUREREREJNGUdBORLvGv9YEr1JUtZ/tQ17XG7qUAdfgoTkXDJK0kayIFZ7Mx3TJR0ApyfeAe6vGxHSN53n1/+D5HjoOcKfnUfVhNw/f1BEr9uPqmwfgtIiIiIiIZQEm3GFXt9S+sHxrABAygIAtq/NHL0HJds2XHgHxcs4eR+6efpeaJxKnu0ncIvLoGc2VF3M817uW2Yua4cIwqovD9ozrV/oZHvoUqf/LbabOY3XWu+b6qxawI4uznInePULe2xu6lALVWXahNcQqfextrMuY1yciYBVm4T5rQ5fMssntpVkKTbk6gqXtp1HkFqT2eXfhsi/SjtT48U/B4Y2SL+wtmF2O4DYKVQWo/qsJzYO8u7Q9s8N3QXLq9bxQzfdqlmIpp55h2bZdi2j8mpM11adUeT2KurIT6gH2On2IqZkEW1f2Mtk7bKEq6xcj8pgyM3KYV9c2qJpovt7GNWVqPv7ze9h9ujfxPfo+1riZ6ZYzPtUvLkevqgpifb+m4sa3wP/k9lEbMoJnMdtosZneda/XfhGZEDG4J4B4eqnDLNZoq3RqTAfFq9dyDtH5NMjKmL4j/ye8TmnTLTuBECg5CX4aN3UvbPK8grT7bIi2zVoVvjzNGtbg/e2IeW67/KbTL96sTknSzxXdDW9LhfaOY6dkuxVRMO8e0a7sU07Yx0+W61Px8C5jbxq2x0fFTTMU0t9S1jNsKTaQgIl3iW9p04Z29rXtpHk0J6jrqWzxGpLnkTaQQqnTL5O6l31orw7cnOEa3uD9v98Lw7doPNK6biIiIiEh3UaWbiHRJ/dehDL+RZeAeG+pW2nxMN5GORFW6JXAihabZS62ExbSTL8zv2GBuYQzDCRBgR2Nci22yBrnJGp6Nf50PsyqA2RDE4XamoLUiIiIiIj2LKt1EpNMsv4mzr4ucKfnk7lGIwx36SMmJSLrVW0q6Scd8VtPspYmsdHNk+EQKr5vvcZf5KCv4kV0ck5jk2K7V7Qp+UYzhNKj/vBbfV7GVwouIiIiISNeo0i2DmZaJw3BwZ+Bh3jI/BmCGYyrznCfgMJRvla7zfV9P7SIvAEVH9QmvzzUiJlJAF/jSseRNpND0WWdaZsLi2kWNVRu+XURhm9tlj8vF8oWq/WrfryJ3lwIgdEyMbePe1eOLeu+KiIiIiEjXKPOSwS4P3MrA+j35S+BBVplreNP8kGsCf+X3gT+nummSIXxfN13wN47nBupeKvFroKnSLdtIXPdSB03dKBtnMM0kkWMmHus6pM3t8vZofVy3B4L/It+3I/m+HfmVf05yGikiIiIi0kOp0i2DrbM2UU6oCmkUQ6llVXi9SCLUL41Iuk1sSrrl0FQtU2dpIgXpWLImUnBE/LYUzMCkW21E0i2PtqvUcnbIJ2dKPo58B8GKQHh9tVUTHu9uvb4bREREREQSSpVuGeyniAuo5933hW8r6SaJElnpljOpKek2zjGSYxwHM83YiTsCD3Fcw0U8EnguBS2UdJG02UuNyKRb5o3rVmM1dd9uL+lmuAycHie1b1dR81ol/p9CFahlVIa32WRtTV5DRURERER6ICXdMth6NgPQh2KKHR5K6A0o6SaJE9jiJ2dqPvn7FpE1vKlL6V6OXVng/hP7OfbkB9bxtPkKVwfuTGFLxe4iJ1JIxuylkJkzmEZ2L80z8trZEnJ3j+hi+mE1EP19UEkVpVZ5glsoIiIiItJzdap7qd/vZ+PGjdTW1tKvXz969+6d6HbZjjHMAxuDYFlgGJDjhPpmy9ByXbNlo28uWfsOTXp7TcsMdxUaZJRs+78/m60yNrCFoBXEaTjbCwFA1i9G4H99Lda66rifa9zLbcXMcuAY1vYA4R21v+GJ76E+kPx22ixmMs+1OwMP46wy2PvDsQDkTivAcBgttvMYBWThwkcDXqrj2kf43NtalzGvSUbGzHWR9YsR8Z5CYY0TvXxlfR9el7zupUHckecVpPZ4duGzrVENTdWm7VW6AeRtS7r9c86r5Bd8yEXWWVFJNwODVdZa+hq9Otxvyr8bmku3941ipk+7FFMx7RzTru1STPvHhG67Lu0qx3bFmGuqwG/a5/gppmLmODF6ZcHKjs/hmJNuVVVV/POf/+SJJ57go48+oqGhAcuyMAyDIUOGMHv2bM444wymTp0aa8i04vn8WDweT6qbEbNSyvETGrdnsNE//P8S61uCBNlMGQPp12Gc3Hv3ITepLU2u3Hv3IffefVLdjIyywvyRWwPzGfp1X/bmYiB6EoVI57lO4pngq3xofUENdTEneyH9zz1pn9eqZoRvb1w4ySOX8YzCxGQXx6SEzq7sjJhIIYiZcedVrGO6AeRNL6Tu1Wz+b+oitjrKqQr4wxXRBga98LDGWs80duxwv5l2HEVERMSeCr88PtVNEGmV4fVC0dkdbhfTlc1tt93GiBEjWLBgAT//+c957rnnWLJkCd9//z3vv/8+V199NYFAgNmzZ3PAAQewfPnyLj8B6ZrI6oVB25JujRVvofs3dnubJP0FtvppeKyKzWxl6NdNSducNpJuAIVGfvh2dURVjvRsW6wyaqnDSzUODPo4iunn6M0Ix+CE7ie6e2nmTaQQOVFJbgdJN6fHxcAZg9no2IKfAN+aK8PfFRYWZVRSZlUks7kiIiIiIj1KTJVuH3/8MW+99Rbbb799q/dPmzaNU045hfvvv58FCxbw9ttvM3bs2IQ2VDp2W2A+1VYttdTxRfA7RjKEQiOf3YydANjNsRNlViUbzVLmNFzHSMdg9nLsyhyXfj2Q2DSsrCdwRiXOXznIqXNT3auOgvLcNivdADwUhG97qaaIwu5oqthcKeXh24c6f87tWZcnZT/Nu5dmmhpC3WTzyMUwjA63H0QJHgrwUs3b1sfMMKbipZoPrCUA4RmvRURERESk62JKuv3f//1fTMGys7M566yzutQg6RzTMrk78E/WsxkHDnY3dmIIA5jhmMpJrl8BcLzzUI53Hsr1/nu4JfgAX5jf8oG5REk3iVmwLIDTdNB3QzFPnPUGT5z5BhM2jWRR/8fafExkpVuVVQMd5wWkB9gaMWB/LGOIdZYzKumWeZVujd1LO+pa2sgwDMYbo/jI+pI6fLxqvcPPjF3C91daVUlpp4iIiIhIT9SpiRQieb1e3njjDcaNG8eECRMS0SZbqhzwd6xA0+yMGBA1EV5jIqH5uubLLgfOHfpS8MFRCW3fj9Z66vEBsJ0xgl5GERAayL45j1FAIfmUUclGSim3KsPbN1e9+5MEvyoNDVwZ+Tyg4+ca73J7MfNcFFV03F+6uerdnyT4+eamOMlup51iJuFcC1aExgks2VDMpqFlYEDpgEqKctoe77CQpqRbPJMphM+9gJk5r0kmxjTAObkk7vNsS0TSrR/JTLo1jelmYkafV5D649nJz7ZGdVZTpVusxjtG8VHwy/DybOfPeCfwKRB7pVvKvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8eEpF2XJlpl8X1QG7oGsc3xU0zFNMDr9BGLuEerPvLII7n77rsBqKurY9ddd+XII49kxx135Omnn443XPrwN6uQsGi53Nq65st+E3NTTUKbBvCx9SVOHPSnL4c79udp99087b6b81wntdj2PNdJHO7cP7z8nbWqzbjmpprWn3sszzXe5fa2qe9ctzBzU010nGS3004xk3CuBctCX3jFpU3J3NHGsHYfUxjRvbTKir094XMvk16TTIxp0anzLLJ7aZ8kVro5wt+yoUq3qPPKDsezk59tjcLdS43YKt0ALnaeyifuZzjXcSIHG3tzkGNW+L5YK91S/t3Q/F8iYiajnYqZ/u1STMW0c0y7tksx7R/TImnXpQkX+beSXY6fYirmtvdQLOJOur311lvstddeADz77LNYlkVFRQV//etfueGGG+INJwlSaVWxhXI2UcowY1CH2483RoVvf2e2nXQTiRQsDyXdXP6m6qHICTpa44nsXkoafLFLt4jqXprESjdH5OylVmaN6WZZVtzdSwG2c4xkkmM7Bjv6s5dz16jvDI3pJiIiIiKSOHF3L62srKR3794ALFy4kMMPP5y8vDwOOuggLrnkkoQ3UGLTeOEFsVU8TDBGs7MxgQLy2MTWZDZNMkiwPJS02PGjUazdfyv+nAC7Gzu3+5jISjevFXv3UslsWyIq3foZvZO2n8gx3awWP1Gltwb84RlZ82h7MpO2NFZCW5aFEydBglRYSrqJiIiIiCRK3Em3oUOH8v7779O7d28WLlzIE088AUB5eTk5ObH/0i6JFZl0y49hbJ9xjlEssb4NbW/Gf7EmPVNjpduJdx/Adaf9nuwJHZ87qnST1pRaZeHbfYzipO0nk2cvbexaCvF1L23OMAyKKWQrFVSo0k1EREREJGHiTrqdf/75HHfccRQUFDB8+HBmzZoFhLqd7rDDDolun8SoxqoN386NIek2iBIKyaeKmnbHdBOJZG5LugE4esX28dHZiRQks1hWqMrsr8FHeMv8mPfNz8P39aE4aft1Gpk7e2ltZNItju6lrSkyCtlqVajSTUREREQkgeJOup1zzjlMmzaNtWvXst9+++FwhC5oRo0apTHdUqguzu6lhmEw3hjFx9ZXrLHWU2PVkm+o4k3aF4xIujljTbpFzKBbHcdECpJZ1rOZCb4DyCWHQvLZnrH4CbCjYxwuo8sTabep+eylmaTOivjcj2P20tb0IjQDcSXVmJaJw4h7yFcREREREWmmU1c6u+66K7vuumvUuoMOOighDZLOibd7KcB4x2g+Dn6FhcX31g9MNiYmq3mSIZy9XbgGZmH5LBzZsV2Ue6Iq3ZR066nWWZtowE8DfooppNgRSvKMdYxI6n7VvTQ2RUYhWKHEZBU1FFHY1eaJiIiIiPR4cSfdTjnllHbvnz9/fqcbI51XYzVdfOXG2M1oJ8bxrTGJXHJYZa5lskNJN2nfsKfHx/2YfkYffuM4gB+t9XxqfsV031E0EGC8MYpH3X9OQivFjtZZm8K3T3X9ht+5Tu+W/TrJzO6lPquB54KvM5phOA0Huzl27lK8nYwJ1Bs+GvCzySoNJeFERERERKRL4k66lZeXRy37/X6WLl1KRUUF++yzT8xxVqxYwcqVK5kxYwa5ublYloVhGPE2R7aJ7F4aazfRUY6hfBJcCsAe1mQOZ/+ktE0yx7ozVuAocJI9IY/ep/eP6TEDjX486v4L1/vv4S3zYz62vqIeHyutH5PcWrGT9RFJt8FGbOdOImRq99KtVPCn4N8A2M4awQnOQ7sUz4mD96zQOHurrLVsx8gut1FEREREpKeLO+n27LPPtlhnmiZnn302o0eP7vDxW7du5aijjuKNN97AMAyWL1/OqFGjOPXUU+nVqxe33nprzG256aabeOaZZ/juu+/Izc1lzz335Oabb2bcuHEttrUsiwMPPJCFCxfy7LPPcthhh8W8H4CsE8ZjfOIF0wKHgaMkD3NzbdQy0GJd82XH6CJcs4bEte9YdGZA7XHGqPDtZW1MppBz43QCi38i8N6GuJ9rvMttxXT0ycGxQ99OHZecG6fTMP9rzA01SW+n3WIm+lwz64JUPLwFgLwZnpiTbo08RgEeowCXFUqCdFR11HjumSsqM+Y1ycSYjoH5uE/ZvsPXP7LSbRDdl3Rz0PRjThAz6ryCls+ztXV2/GyrtKrCtyPHTeys8Y5RNPa+/c5axQHMaHf7VH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCSTtujTRss6YhPlVKebWetscP8VUTEdJHllDXfBQx+dwQkavdjgcXHjhhcyaNYvf/e537W57wQUX4HK5WLNmDRMmTAivP+qoo7jwwgvjSrotXryYOXPmMHXqVAKBAJdffjmzZ8/mm2++IT8/P2rbO+64o0uVdHl3zMLj8XT68ckW2b001qTbCGMw2bjx0dDmDKbuY8bhPqZlEjNdpHv77SRYFv8kCpHOc53EeZzE7r7fsMT6tsOqI712mWWdtTl8e0iKKt2CBDPmvCqnMnx7T8fkLscbH/EjTCwzWmfKcRQRERF7y/vrrFQ3QaRVptfbfUk3gJUrVxIIBDrc7tVXX+WVV15hyJDorPrYsWP58cf4upstXLgwavmhhx6ipKSETz/9lBkzmn6lX7JkCbfeeiuffPIJAwcOjGsf6aKxe6mbrJhnAnQaTsYZI/nSWsYKaw0Nlh+3kZXMZkoaC1Y0DULv7OVsZ8v2ZeMGwE8AzZLYc0RVuhkl3bbfyDHdTKxu22+yVVje8O1io+s/CEVWPn9nruxyPBERERER6UTS7cILL4xatiyLDRs28NJLL3HSSSd1+Piamhry8lp2DSkrKyM7Ozve5kSprAz98t+7d+/wutraWo499ljuueceBgwY0GEMn8+Hz+cLL3u93na2to/G2UvzYpy5tNE+xu4UkEc1tXxiLmVPZ9crJiQzdbXSrVG24aYx9+GjIeaJPyS9/cr5c0ZbQym3KmMedzIRMnX20gqaupf2outJt0Ijnz2NyVhAH6O4y/FERERERKQTSbfPP/88atnhcNCvXz9uvfXWDmc2Bdhrr7145JFHuP766wEwDAPTNLnlllvYe++9421OmGmanH/++UyfPp1JkyaF119wwQXsueeeHHrooTHFuemmm7j22mtbrPe/8gO139VB0MJwGhj98zA31UYtAy3WNV92DC7AOaYY57henX6urand1r001q6ljcY6RnJH4GEA/msubpF0Cy4rx1xRgf+zzXE/13iX24rp6JuLc6SHrANGxH1cgsvKCSz+ieD6mqS3024xE32uBcsjkm69O18R2VjpBu0n3RrPveC66ox5TTIxpnNQPq6ZQzo8z+a4ju/0OdMVUUk3y4w6r6Dl82xtnR0/2yIr3RI106iBg/esT8EKfafkGW3/iJPq74bm0u19o5jp0y7FVEw7x7RruxTT/jGBpF2XJpp/4Q8EV1dildbb5vgppmIa/fNo6BVbL5q4k25vvvlmvA+Jcsstt7DvvvvyySef0NDQwO9+9zu+/vprysrKePfddzsdd86cOSxdupR33nknvO4///kPb7zxRotEYXsuu+yyqGo+r9fL0KFDqT12Ia52LkDiYQzOx7O64wRlPBonUmjvIqk1hzj3Zl7gOkxMXjYX0zfQi/NcTRWLNQc8i7WuJqFt7RSHQVH93LgfZpv2p0giz7WopFtx57uX5tBU0VpPQ5vb9fTXLl34Sc5nWqI0n73UdudVJz/bEl3pBtu6/W7722G9tZkxxvA2t7XdcRQREZG42flvuEa1h70YGrxexGbqIsbVb0+3D6Y0adIkvv/+e372s59x6KGHUlNTw69//Ws+//zzmGY/bc3cuXN58cUXefPNN6PGinvjjTdYuXIlxcXFuFwuXK5QjvHwww9n1qxZrcbKzs7G4/FE/UsHTd1L46t0KzH68I+sP/Jq1gI2WaVcF7ibs/xXJaOJkuaiK9260L2Upio5XztJN5FEiJy9tKPJO9JJdKVbYr6nIie4iByDT0REREREOiemK+cpU6bwv//9j169ejF58uR2ZwH97LPP2rzP7/dzwAEHcP/993PFFVfE39pmLMti3rx5PPvssyxatIiRI0dG3X/ppZdy2mmnRa3bYYcduP322znkkEO6vH+7CFrBcPIi3qQbwLHOQ9hilVFKOQAbrS0JbZ9khuhKt64k3Zoq3XyWDzo/qbCkiWB1kMrHt+DwOMkem0vuLgXdtm+nET17aaaooCnplrhKt4ikG0q6iYiIiIh0VUxXzoceemh4koPDDjus0zvLysriyy+/7PTjm5szZw6PP/44zz//PIWFhWzcuBGAoqIicnNzGTBgQKuTJwwbNqxFgi6dNVa5QfzdSxv1pggDAwuLUqs8UU2TDBI1kUJXKt0Md/i2Kt16hsCGBjbMWw1A0bF9GbJgbLftO3r20kytdEvMmG6DVekmIiIiIpJQMV05X3311a3e7ozjjz+eBx98kD/96U9digNw3333AbToKrpgwQJOPvnkLsdPFzU09SWOd/bSRk7DSW+K2EoFpVQkqGWSSXJ2zsfzq94EywO4Sjo/kUJOxEQK7Y3pJpnD9DZVmDkKOz8eYGdEz16aQUm3JIzpFpl0W29tTkhMEREREZGeLO5ylY8//hjTNNltt92i1n/44Yc4nU523XXXdh8fCASYP38+r7/+Orvssgv5+flR9992220xt8Wy4h9QsTOPsSPTMnEYDu4MPMzC4Fvh9W3NBBmLvkYvtloVlFpliWiiZJjep/an96n9O96wA81nL5XMF4xIujk93Zt0i5xIIaO6l26rdHOT1aXP/UiDjJLw7XXmxoTEFBERERHpyeJOus2ZM4ff/e53LZJu69at4+abb+bDDz9s9/FLly5lypQpAHz//fdR97U3VpxEuzf4GNcF7sFNFv3py27sxK6OSVyUdWqnY/ahF7Caamqpt3zkGNkdPkZ6jjVHLSPwkw9nnyyGPT++0+/XyDHd6i1foponNhZV6VbU+a7JnRHdvTQzfnQBCFhB+tOXQZQk7LtzoNWPicYYtlhlbEBje4qIiIiIdFXcVz/ffPNNOGkWafLkyXzzzTcdPv7NN9+Md5fSinXWJrxUAzDaGE5fo5hhjkFRlQrx6mf0ovGatJRyhtByPDzpuXxf1tCwyoezt6tLF/mRY7o1qNKtRzC9EeMBprR7aeZUum1kC2VUkt/JcTxb43K4KLcq2UIZLqt7XycRERERkUwUd9ItOzubTZs2MWrUqKj1GzZswOXq3gqGnubRwPO8a35GORVRY2E9mPVHxjiGdzl+X6N3+HapVc4QQ0k3aRKsCCUsnL269j7XmG49TzCq0q27u5dm3phulmXhpQYAD4mdCXaw0Z8N1hY2Uorf8pNldH78RhERERGRni7uq+fZs2dz2WWX8fzzz1NUVARARUUFl19+Ofvtt1+Hj997773brZJ544034m1Sj3F7cD7fWCsBGM2w8PquVLdF6kNx+PYWjesmESzTIlgeqlZy9upa0iQnonupxnTrGSK7l3Z3pVvkmG6ZMnupjwYChN6PheR3sHV8Bhv9+cRaioXFRkoZysCExhcRERER6UniTrr95S9/YcaMGQwfPpzJkycDsGTJEvr378+jjz7a4eN33nnnqGW/38+SJUtYunQpJ510UrzN6Tb5/zucnPUBMC0wDIw+OVhl9VHLQIt1zZcdfXNxDOzcRZKbpoqDUsqB0Kx1eQnqXtQvotLtysAd3B/8P/Z/axdO2XIUwe/L436u8S63FdMozsYxoHPHrOC9owh8VYpVWpf0dtotZlfOtebMymC463FXK93ckZVu7YzpVvDeUZgbajBL6zLmNcnEmEafXFw79m33NQ+mcEw3B00/8gQxo84raPk8W1tnt8+2xqEFADxGYivdBkXMYLrO2sRQo/WkW+NxTNV3Q3Pp9r5RzPRpl2Iqpp1j2rVdimn/mEBCrxWSKf+D0N8cVoXPNsdPMRXT6JNDMCcAM3/f4Tkc99XP4MGD+fLLL3nsscf44osvyM3N5be//S3HHHMMWVkdd0O5/fbbW11/zTXXUF1d3ep9duDauR/ZMzwpbYMjYoydqm0XXYONrs8m2eho50HMdkzn4eCzfGR+ideqZtOAWlxDS3BNSUw1XXdzDMzHnQZfJnbXWOUG4Ohq99KoMd38bW7nGJifFn8ISMfMyojzp5tnL3VEzl5qBTPivKqyasK3k1Hp1mi9tbnN7RqPY7p+N4iIiEh6cO3cD3bul+pmiLTg8npj264zwfPz8znjjDM689A2HX/88UybNo2//OUvCY2bScyIQcAbZ+EblMCkWz+jN/2M3vQ3+1JkFAKJr6KQ9BSZdOtqpVt21Jhumr20J3AUOnENdmN6gynoXho5e2lmdC+NrHQrNBKbdIscrmCdtSmhsUVEREREepqYrp7/85//xBzwl7/8Zaca8v7775OTk9Opx/YUtYYPLHDhZBiD8BgFzHJMS/h+znOdxHmclPC4kr4SmXTTmG49z4CbRzDg5hEp2bcjAydS8FoR3UsTPJHCeGMU+xi7s8Zaz3PB19jPsSfjHaMTug8RERERkZ4ipqvnww47LKZghmEQDAbb3ebXv/511LJlWWzYsIFPPvmEK6+8Mqb9pELNb1+DJd5QH16HgdE3NzROWMQy0GJd82XHKA9Z+w7Dfdqk+Ntg1QLQn74c4zwYgAtdpyTuSbai4R9L8b++luDHG+N+rvEutxXTKM7GuUNf8h6a3an2+x5YirW5NunttFvMrpxrzSWt0q2dMd0azz1zdWXGvCaZGNMoySP79EkJOc+SwWlEV7pFnlfQ8nm2ts5un23V1IZvJ7rSbYpje45wHsA5gWtYYa3hPfPzVpNuqf5uaC7d3jeKmT7tUkzFtHNMu7ZLMe0fE0jotUIy1Z78KsGvSkNjutnk+CmmYhp9c6kZGtt1sWFZlpW4t0THTj75ZCJnL3U4HPTr14999tmH2bPjT6okm9frpaioiDWum/EkaMICY3A+ntXxJ8v61+9BJVVsZ4zkVOcRQKgqLZm8I+djravpeMNkcxgU1c+N+2G2aX+KdPZca67s7xvZMG81AIP+PppeJ3V+HKe3zI+Z3fBbAC52nsoNWRe0ul1Pf+3SSaLOs2T4v+CL/NZ/KQC3uy7nuLH19jqvOvHZFvmcbnNdxjmu4xLapMj4t7ouZY7r+Bbb6P0pIiKS/uz8N1yjypy7Q4kOEZvxWnUMC/yeyspKPJ62x//vUslKfX193F1CH3rooa7ssseyLCtc3VBAbtKTbSKR8vYopP/NwwlWBMid3LXKmshKN3Uv7Rka1vhw5DlwFjkxshwdPyCBoruXtl+JnS6qrMgx3RI/7mZuRBfwOo27KCIiIiLSaXFf/QSDQa6//noGDx5MQUEBq1atAuDKK6/kwQcf7PDxo0aNYuvWrS3WV1RUMGrUqHib02M04A9fMOaTl+LWSE/jHpVDnzkD6H/NMHJ27FrSLXJMN02k0DOsnPoFywZ/woqdv+j2fTszcUw3ImcvTfz3QS5NP6bVWfUJjy8iIiIi0lPEnXT74x//yEMPPcQtt9yC291UsTJp0iT+8Y9/dPj4H374odVx33w+H+vWrYu3OT1G5Bg+BYaSbtK9Nly4mm8KPuTbPh/i+66uS7GyyQrfVqVb5rMsC9Mb+sx3FHXvzKUATpr2mTGzl0ZWuiV4IgWAXKMp6abEuIiIiDTnsxo4ync++/pO5Ne+ufw7+N9UN0nEtuLuXvrII4/w97//nX333ZezzjorvH6nnXbiu+++a/NxkTOgvvLKKxQVFYWXg8Eg//vf/xgxYkS8zekxIpNu+SRmbDmRWAXLQhMpmNUmDk/XEifZkZVulpJumc6sMWnMdTkLuz/p5qBpDNFQpZvR9sZpojqi0s2TlO6lEZVuqNJNREREor1hvs/z1uvh5cpAFb9x/iKFLRKxr7iTbuvWrWPMmDEt1pumid/vb/NxjTOgGobBSSdFj0eWlZXFiBEjuPXWW+NtTo/ROHMpQL4q3aSbBSuaqlOdvbqYdDOaKmTfMj/izsDDGqMwg5mVTTPfOoq6NvNtZ0RWuoW66Hd/GxLtQ7Opm66HxM5eCtFjutUq6SYiIiKAaZncFXyUt8yPWWmtibpvHZtS1CoR+4v76mPixIm8/fbbDB8+PGr9U089xeTJk9t8nGmGSh1GjhzJxx9/TN++fePddY8W1b1UY7pJN2usdDNyDBy5XUu6ldCbr90vM89/He9an3Fd4G7GGMM5yDkrAS0Vu2nsWgrgTEn30swZ063qlXLWnbKCnS8diXWoydQBOzHCGJLw/USP6abupSIiIj2dz2qgn283csgmjxzGGiMoopBvWEEVNay3NmFZFoaR/j0KRBIt7qTbVVddxUknncS6deswTZNnnnmGZcuW8cgjj/Diiy92+PjVq1d3qqE9XXVkpZuSbtLNghWhpJuzV9erhFyGi9HGMAqMPHxWAz6gKqK7nGSWYETSzZGS7qVNSbd0H9Mtf+8iRn+yE6P4gg0FVYxyDI2qHE2UHCNyshNVuomIiPR0663NNOCnAT955IaGtzBgoFVClbWaBvyUUk4/eqe6qSK2E/cV9KGHHsoLL7zAddddR35+PldddRVTpkzhhRdeYL/99ospRk1NDYsXL2bNmjU0NESP6XTuuefG26QeoZamwes1kYJ0t8ZKN2dx4rrmzXbsxX/MNwCoVzVNxkp1pVtk0i1opXfSzeF24Bjo5iJO46Ik7icvakw3vTdFRER6usjuo79xHsCfs34PwNn+q/k+GCqqWWdtop+hpJtIc526gt5rr7147bXXOrXDzz//nAMPPJDa2lpqamro3bs3paWl5OXlUVJSYt+kW54LIidtdBhgWtHL0HJd8+UcJ46xveLefaq6lzrG9iJY7oPaQMTKGJ9rvMttxTQAT+eqORxjexHcUNsUN5nttFvMTp5rzZk+E6s2lKxw9k5c0i2yQqe1WUzD5159MHNek0yM6TDaPc+iK91SP6Zb1HkFqT2eXfhsS6bo7qWtV7ql/LuhuXR73yhm+rRLMRXTzjHt2i7FtH9MiOtaYb3VlHQbbPRv9fZ6axM7MyGmeHHxuKHSBxb2OX6KqZgOA7Jd4KVDMV8BlZeX889//pOTTjoJj8cTdV9lZSWPPPJIq/c1d8EFF3DIIYdw//33U1RUxAcffEBWVhbHH3885513XqzN6XZFa0/r8LklU2T30rxunL204NVfddu+kiHd228HwfKmi+pEVrrl0H7STa9dZjC9kRMppL57qc6rjmXjxsDAwmpz9lIdRxERkZ5jXUTSbZBR0nSbkohtNidl30Wbz0hKXJGuMrxeKOq4/4mjwy22ufvuu3nrrbdaTTwVFRXx9ttvc9ddd3UYZ8mSJVx00UU4HA6cTic+n4+hQ4dyyy23cPnll8fanB7FbDA5LnAI5zlO4hzHsRzm/HmqmyQ9SFTSLZGVbhFJt3p1YctYwcqI7qWeFEykYGTOmG7Vr1ZQett6yh7YRGBL27OFd5VhGORsm8FU3UtFRERkfURCbbAxIHy7n9GboQygH72ptKpS0TQR24s56fb0009z1llntXn/mWeeyVNPPdVhnKysLByO0G5LSkpYsyY03XBRURFr166NtTk9StXzZawq+hznVXX0+9hDsZG6ijvpecyIpJsjoZVuTYO1+6yWlW6SGXr9toTRS3Zi5FuTyN+7qNv3n0mzl3qf3cqmy35kw9xVBDYk9z2TG066aSIFERGRni6q0i2iuq3IKGQtG9lCGWVUpKBlIvYX8xX0ypUrGTt2bJv3jx07lpUrV3YYZ/LkyXz88ceMHTuWmTNnctVVV1FaWsqjjz7KpEmTYm1Oj9I4iP1xt+/HoImjYXqKGyQ9SvaO+Yx8exLBsgBZQxI3/lR2B91LJTM4i1w4i7p/LLdGmTR7abC6+2aCDY3rVqlJTkRERIRcctjTmEw9vqjupR4Kwre9VKeiaSK2F/OVkNPpZP369QwbNqzV+9evXx+uYGvPjTfeSFVVqPT0j3/8IyeeeCJnn302Y8eOZf78+bE2p9t5Jz6CVQqhERwNcDugwYxehpbrmi0bxdm4Zg0h75H9Y953Y9INwNmrey9ea098hcCin7A21xHvc417ua2YLgNjYD6e5Sd3qv3+51ZCQzD57bRZzM6ca60JlgWw6k2yhrjJGp7T8QNi1NFECuFzr8KXMa9JRsZ0O8k6bHSXz7NkaT6RQtR5Bak9nnF+tplV3Zh0M3LAarvSLeXfDc2l2/tGMdOnXYqpmHaOadd2Kab9Y0Jc1wqLzY/4iY2U0Dvqb/hC8sO3qyLGIE8k79iHsDbUQMCyz/FTTMV0O6jymG2dtlFizuBMnjyZ5557jt13373V+5999lkmT57cbgzLsigpKQlXtJWUlLBw4cJYm5BS1qZaMBonMLCaZr5rdbntbayNtQTeXhfXviOTbq4+3Zt0C7y9Dmtj5Ado7M+188vN1jVYWGs798tJ4O11EbGT3E6bxezMudaaqufK2HjJDwAMfngMxUf363JMiO5e2tqYbi3PPUj31yQjY9YHE3KeJUvz7qWtn1eQDp9t3Zp02/b+rG0j6WaL74ZWpcn7RjHTsF2KqZh2jmnXdimmnWPGeq0QtIJsYAsAgyJmKwXwGE2VblVJqnSz1lY3zRppo+OnmIpp1dURC0fHm4TMnTuXW2+9lbvvvptgsGmHwWCQu+66i9tvv505c+a0G8OyLMaMGaOx2+IUSGGlm0iwIjnnn7qX9gzrTl/Byt2/ZPXsrzHrmn/hJV8mdS9tTLoZWQaO7Ji/vjsl1L009N40rfQ+biIiItJ5mykjSOhvkMHNk26R3Uutmm5tl0i6iPkK+vDDD+d3v/sd5557LldccQWjRo0CYNWqVVRXV3PJJZdwxBFHtBvD4XAwduxYtm7d2u74cBItqntpn6wUtkR6omR1b46avVQTKWQs37d11H8e+iPMSHKiqDWZNJFCY9It2VVuADlGNjT+qIyPPHLbf4CIiIhkpHXWxvDtyPHcIDRcTBYu/ASSVukmku7iuoL+4x//yKGHHspjjz3GihUrsCyLmTNncuyxxzJt2rSYYvzpT3/ikksu4b777tPECTEKlvnDt529kn+xJRIpWJ6kpFvEeBANqnTLWEFvU6LIcBjdvv/iykJuenYuzqDB0LFDgY0dPsaugtWhpGF3JN3yaBq/sU5JNxERkR4rcubS5pVuEKp220qFJlIQaUPcV9DTpk2LOcHWmhNPPJHa2lp22mkn3G43ubnRf8iXlZV1Onamaqw0cnicGFndXykiPVuykm4djekmmcH0bvv8KkrNDwYlG4uZffZOABSf2I90TrqFK90Kkv89kBuVdGt9XDcRERHJfOutzeHbg40BLe4vNArYalVQnaSJFETSXUxX0GvWrGlz1tLWrFu3jsGDB7d63x133BFzHAlpTLo5e2s8N+l+UUm34mSN6eZvZ0tJZ+a2SjdnN1RntcrZVF1nBa3UtCEBrICFVbet0s2T/O+CyKT4/YH/44asC5K+TxEREbGfyEq3QZS0uN+zbQZTVbqJtC6mv9ynTp3KYYcdxmmnncbUqVNb3aayspJ//etf3HnnnZxxxhmce+65rW530kkndb61PZBlWkq6SUo1Jt0cHieGK3HdA3OixnRTpVsmsgIWZs22RFGKKt2MiKRbOg/pFqwKkD0hF7PeJGtg8sf2vDHrIsoaKnnP+ox7g49xvet8DKP7uweLiIhIam2xyuhDMR4KGGD0a3F/4bbJFHw04LMaooaQEZEYk27ffPMNf/zjH9lvv/3Iyclhl112YdCgQeTk5FBeXs4333zD119/zZQpU7jllls48MAD2423cuVKFixYwMqVK7nzzjspKSnhv//9L8OGDWP77bdPyBPLJKPe3oHAVj+GW11Lpfs1Jt0SPXOuy3DhwIGJqTHdMlRjd0hIYaVbxMdmOle64Qcjx4HRYCW04rQtA41+1FJHFaFJMHw0RFW/iYiISM+wiVK2UsFWKigxere4v9DIC0++VEVNVG8WEYm6HGlbnz59uO2229iwYQN33303Y8eOpbS0lOXLlwNw3HHH8emnn/L+++93mHBbvHgxO+ywAx9++CHPPPMM1dWhMtQvvviCq6++uotPJ/P4f/Sx5qhlbP7DGuo+qEp1c6SHsSwraUk3aOrCVq+kW0YKVjZ1TXYUpahSN7LSLdj2ZnbnKsli9Ac7MvabyQy6b3S37DPPaBpztVbjuomIiPRIW60KAAwMelPU4v7GSjcAr6UupiLNxXUVlJubyxFHHMERRxzR6R1eeuml3HDDDVx44YUUFhaG1++zzz7cfffdnY6bbM5d+8P3daEsvgGGx43lbYhaBlqsa77sGFKAa/bwmPcb3Bog8FMDgZ8ayNuzsOMHJJj7lO0JvLqG4Ddb436u8S63FdPIz8KxXa9Ot79h/jdYlb6kt9NuMeM911pjVpvhX66SkXTLJota6vC1knRrPPfMn6oy5jXJxJhGkRv3Ka1XKEdWujk8qepeGrFgWlHnFbR8nq2ts+NnW3fIJzLpVhf1h3aqvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8cEYr5W2EI5AL0pwmm0/HvOYzQl3aq3VcgnkvNngzC/L8eq8dvm+CmmYhoeN84BhfBBx+dwt5cefPXVVzz++OMt1peUlFBaWtrdzYlZwSu/wuPxdPt+A1ubBph39kn+OD7N5Vy5G1y5W7fvN1Fyrtwt9BykU5yFTibW7I5ZFcRqsBIeP1zp1sqYbul+7gkEKyO6l6Yo6YbDCN+0gpbOqzhEzmBaa9VB06HUcRQREekhtlqhpFtfo1er9zdOpBDatjLh+y94/dcJjymSEF4vFP22w826PelWXFzMhg0bGDlyZNT6zz//vM0ZT3uyqJkjk1BpJNIe/08+Kh7bgrOXi9xdCnD1S2zi1224wUJjumUo9/BsBvx5BMGqAHm7dX+lLhA9kUIady9NhTwjIumm7qUiIiI9js9qCI/v2ofWk27jjdGMMYazxlrPhoiZTkUkpNuzOEcffTS///3v+fe//41hGJimybvvvsvFF1/MiSee2N3Nsb3g1oikWx8l3aR7+b6vZ/NVawHoe8kgcncp6OAR8WmcwVRjumWmrKHZ9Dl3YGobETmRgpn4as3uUvVSOaV3rMdR4KTP3AEU7Fuc9H02714qIiIiPcsWysK3+7VR6dbHKGaF9SMA32/7X0SadPt0mDfeeCPjx49n6NChVFdXM3HiRGbMmMGee+7JH/7wh+5uju2p0k1SKVgRcf4lYcbE7HDSrWX3UpFEMLIMXAOzcA12p6SLfqI0/FBP7Vteql8uJ7DJ3/EDEiA3IulWYynpJiIi0tM0TqIA0LeVmUsBJhhNEzx9Z61MdpNE0k5cV9F+v58zzzyTK6+8skX30Fi53W4eeOABrrzySpYuXUp1dTWTJ09m7NixnYrXXSr73I8VMZNbVxiD8/GsPiWmbVNd6eYdOR9rXeIHxIybw6Cofm7cD7NN+1MknnOtNcGyiPOvd/JmL23Aj2VZGEZTV8Ce/tqlk66eZ8nkLHIx7oddw8u2O69i/GwzqyMmpSjonvHx8iO+8+qadS+13XEUERGRuHX0N9wWq6nSrQ/FrW4zwhhMNm58NPCdtSrRTaQy525I494Kkrm8Mf4oHVelW1ZWFk8//XSnGtTcsGHD+MUvfsFvfvObTifcbrrpJqZOnUphYSElJSUcdthhLFu2LHx/WVkZ8+bNY9y4ceTm5jJs2DDOPfdcKisTP8BjsqjSTVIpqtItKbOXNs1C2NoMppLevC+UsekPP7Llz+vw/6Rqxq6Imgm2sHuSbnloTDcREZGeyLIsLMviseB/wuv6tVHp5jScbGeMAGCVtZZf++ZweMNc7gw83B1NFbG9uLuXHnbYYTz33HNd2umDDz7IpEmTyMnJIScnh0mTJvGPf/wj7jiLFy9mzpw5fPDBB7z22mv4/X5mz55NTU3o1/f169ezfv16/vKXv7B06VIeeughFi5cyKmnntql9nenVFe6Sc8WVemWjKSboaRbJqv5XyWlf17P5j+sIbCxe7pEZqrIpFt3zQQbOXupupeKiIj0HGZVkG+LPsRzj5Mpq8dxpuNojnYe1Ob2f8u6nqXul7jIeQrLrR953XyP6wJ380LwjW5stYg9xX0VPXbsWK677jreffdddtllF/Lz86PuP/fcc9t9/FVXXcVtt93GvHnz2GOPPQB4//33ueCCC1izZg3XXXddzG1ZuHBh1PJDDz1ESUkJn376KTNmzGDSpElRlXmjR4/mj3/8I8cffzyBQACXy/5JrHClmxHqJiXSnczy7uleCqFx3YpIzQyXkhxBb9P5013VWZkqWJXq7qVKuomIiPQUgY1+LJ9F3lo3vSo9jHIMbbPSDWCKY3sAik0PbiMLn9WAD6ikqptaLGJfcV9FP/jggxQXF/Ppp5/y6aefRt1nGEaHSbf77ruPBx54gGOOOSa87pe//CU77rgj8+bNiyvp1lxjt9Hevdv+QKisrMTj8bSZcPP5fPh8Td2gvF5vp9uTCP0uG0LDGh9mTRDDaXT8AJEEiuze7EjCRApjjGHsaUwhSDBUSaNTPKOYlRGJoqLUJN0s0+KnE5dD0MI9NnJqgPSSmu6lkbOXqnupiIhIT9E4adPx98ymT9ZABuw+IqbHnec6iV4UcUYgNEFinaW/H0TivopevXp1l3bo9/vZddddW6zfZZddCAQCrTwiNqZpcv755zN9+nQmTZrU6jalpaVcf/31nHHGGW3Guemmm7j22ms73Y5EK/vHJgy3QfaEdL1UlHQWTHKlWzW1vGd9BuiXsEwUTEGXyBYM8P57KwC5uxWkcdLNDN/urqSbupeKiIj0TIFNTcO+uPq729mypchKef1oJ9KJMd266oQTTuC+++5rsf7vf/87xx13XKfjzpkzh6VLl/LEE0+0er/X6+Wggw5i4sSJXHPNNW3Gueyyy6isrAz/W7t2bafb1FVW0KL65XKqniuj5vX0mfxBMkc46eYycOQn/uOiL01VqaVWecLjS2qFK91cBkZut3/dAKEK7HAFZTB9Z76Kmr00Ce/F1rQ3e6mIiIhkrsixeF0DsuJ6bORETDUankIk/kq3U05pe0phgPnz53cY48EHH+TVV19l9913B+DDDz9kzZo1nHjiiVx44YXh7W677baY2jR37lxefPFF3nrrLYYMGdLi/qqqKg444AAKCwt59tlnycpq+4MjOzub7OzsNu/vTsmuMhLpSPVoHy6/E6fDGUpeJFg/o1f49hbK2tlS0pG5bUw3pyc550/MnAYELKxgx5vaVWP3UkeBA8PRPccyevZS/dEsIiLSUzR2LwVw9Y8v6RY5mEetKuVF4k+6lZdHV6P4/X6WLl1KRUUF++yzT4ePX7p0KVOmTAFg5cqVAPTt25e+ffuydOnS8HaxXKBZlsW8efN49tlnWbRoESNHjmyxjdfrZf/99yc7O5v//Oc/5OTktBLJnqJmjlTSTVLg5wvmUUUN2xkj+ZIXEh6/T0TSTZVumSfo3ZYoSlXX0m0MB1gAZvpWurlHZ+Ps5+q2SRQgekw3dS8VERHpOaK6lw7ofPdSVcqLdCLp9uyzz7ZYZ5omZ599NqNHj+7w8W+++Wa8u2zTnDlzePzxx3n++ecpLCxk48aNABQVFZGbm4vX62X27NnU1tbyz3/+E6/XG54YoV+/fjid9p5NT0k3SSW/5aeKGgB640nKPvqipFsmM7cl3VI2nlsjpwGkd6Vb7u4eApv9OPK6r5tunv5oFhER6ZGiupfGWemm7qUi0RKSyXE4HFx44YXMmjWL3/3ud4kIGZPGseFmzZoVtX7BggWcfPLJfPbZZ3z44YcAjBkzJmqb1atXM2LEiJj3lX31bjg/8ULQBJcDx8B8zPU1UctAi3XNlx2jinBN7R/TPoNbU590y3toNoGPNxF4Z33czzXe5bZiOkpycU7q0+n2Nzz5PebaqqS3024x4znXWlMRMbFBsZGcpFvk1OOlRCfdGs89c1VlxrwmmRjTMawQ95HbtXhtzXoTqyFUWZaqmUsbGc5tlW5BK+q8gpbPs7V1dvhs6/e7wck4NO1q74/mVH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCbR7reAocpI7tQCz3oz7OjRyIqbaBMxemnPLdIJLt2JuqbPN8VNMxXQMzCd7kBOu7PgcTlgmZ+XKlTHNPlpfX89dd93Fm2++yebNmzFNM+r+zz77LOZ9Wlb7XYVmzZrV4Taxyjl3MgUeT0JixcoOY7q5Zg7BNXMIXLxLSvbfVeH2S9zKrabJO3pRlJR99DGKw7dLrbKo+/TapTerwaRg/2KC3iA52+eltjHO0HAFlqnzKh6R3UuXmz9iWiYOI1Rpl+7fDSIiItK22re9BDb4cQ12xz2WbKIr5bPPndzlGCLJEPB6k5N0i5zoAEKJrw0bNvDSSy9x0kkndfj4U089lVdffZUjjjiCadOmpXZwbZsLbG0q61X3Uulu5XjDt3sbyUm69YuavbQiKfuQ1HB6XAz/z4RUNwMIjekGkM6zl6aC28jitayHOMZ/AZso5TT/Fcx335TqZomIiEgSWUGLwObQdWi8XUsB8iPHhKU2Ye0SSVdxZ3I+//zzqGWHw0G/fv249dZbO5zZFODFF1/k5ZdfZvr06fHuuseJrHRz9Y7/A0+kKyIr3YqTNKZbtuGmkHyqqGnRvVQkYRor3dI06WYFLMx6E0e+o9t/qNrZMSH83vyJjd26bxEREel+wVI/bBsHtzNJt1yyw7cT0b1UJN3FnXTr6kQIgwcPprCwsEsxUqH+r5/jSOCYbrF0b7LDmG6BxT/ZZky3zpQWBxb/1OPHdOtsV7ruqHQD2NMxGa9VQ6ERPU5T47mnMd3sHbNxTDc7d9ksOqovZk0QV9+sqPMK7DGmW0efbfVf1rBqj6/AgN5zBzLwLyOSerwiFRr5eCjASzXrrE3h9an+bmgu3d43ipk+7VJMxbRzTLu2SzHtHxNo81ohsCliEoU4Zy4FcBku3GTRgD8h3Ut9f/1cY7oppi1j1g+Kbdzqbs/k3Hrrrfz+97/n/vvvZ/jw4d29+07zXfsh2RH905tPgtfapHhtbdMwOB/P6o6rAgv2LcLIdhAsC/WnT4Xak1/FWlcTtS6e59rZ5ch1QcDvMDqVdGve/mS2044xYz3XWhNV6ZakiRQAyqxKPra+wrAMAlYAlxH6WGrt3IP0f00yLWYQCLz8Q4vzzL+hgYbv63AUucga5k5pte7A20aGb3tHzm/1vAL7fraZVdseYYHh7v4hGQYb/fFa1ay3NmNZFoZh2OK7oS3p8L5RzPRsl2Iqpp1j2rVdimnvmK1dK0TNXDqgc3+/5ZNLA/6EzF5a/7t3wQz1VrDb8VPMnh3TZ8V2fseddBs5cmS73VtWrVrV7uN33XVX6uvrGTVqFHl5eWRlRb+Ry8rK4m1Sxmr40YfhNsiZmIerr8Z0k+4VVemWpIkUAPoavcACC4syKimhczPVir3U/K+SdaeuAGDAHSPpc/aAFLcofYWTboCzsPtngh1klPCttZI66inHm9TPAxEREUmtwKaG8G1X/84VfuSRSzle6tS9VCT+pNv5558ftez3+/n8889ZuHAhl1xySYePP+aYY1i3bh033ngj/fv310QK7aj8v1LqP68BJ/S5aFCqmyM9TIXVlHRLZqVbXyNyMoVySgwl3TJBsDKie3xR9yeKMkmwuinp5ijo/mM52Ogfvr3e2pTU7uYiIiKSWv6I7qVZnax0yzVywILaBFS6iaS7uJNu5513Xqvr77nnHj755JMOH//ee+/x/vvvs9NOO8W76x4nWBa6aHX2dik5Kd2uLKJ7aVIr3SgO39ZkCpkjsjrLkYLqrExiVpnh26k4loNoSrqtszYxie26vQ0iIiLSPaK6l3ZiIgVomsE0Ed1LRdJdwvos/uIXv+Cyyy5jwYIF7W43fvx46ur05otFOOnWS11LpXvcFXiUD80lrLU2Uo+PoQyk2CikXxKrz5pXuklmCHojukSmuNJt5e5f0rCiHmexk3Ts5BqVwPR0/7Gc4pjIr6z92Gxt5dbAg/w9+CR3WeNpOZ2BiIiIpDuzJoh7+1yc+U6cnUy65ZIDQAP+qDGbRXoiR6ICPfXUU/Tu3bvD7f70pz9x0UUXsWjRIrZu3YrX6436JyFmgxm+0HL2Sd0A5NJzBKwAlwRu5inzFb62luOhgBHGYH7p2Dep3cn60it8e6uSbhnDrIxMFKX2Dy2zOohZFYxKBKYTM6J7qTMF3Ut/6dyX/3PfzizHbliA16rGwur2doiIiEjyNayop+HrOuo+qu78mG5GTvh2bQJmMBVJZ3FfCU2ePDmqq6NlWWzcuJEtW7Zw7733dvj4Aw44AIB99903an3jjGjBYHpeFCWaWR4xHpIq3aQbbKUifDuPHDxGAUD4/2TpazQl3baoe2nGMKsiPsNSUJ0VyXBu+84y29/OriKThansqusxCsKfBwYGKPEmIiKScQIbQxMpOAocnf6xL29b91KAW/0Pcq279SGqRHqCuLM5hx56aFTSzeFw0K9fP2bNmsX48eM7fPybb74Z7y57pEBZ0wWrq4+SbpJ8kV07D3DO4O9ZN3TLfiOTbqWWZi/OFMHK1HaJjLKtptsKpmeSKLLSzVGYsAL1uJ3nOonzOAkArzEfi5qUtUVERESSI7BtIgXXgM5VuQHcmfUHPP4CXjDf4M/mg1xhnYPbUO8t6ZnizuZcc801XdrhzJkzu/T4niJYpko36V5bIpJukV0+ky1yX6VWRbftV5Ir1eOQRWmsdEvXpFtVamcvFRERkZ7BrAuGhwhxdXLmUgjNfB4gSNW2H+hWWD8y0RiTkDaKpJu4fzJ3Op1s3ry5xfqtW7fidMZ2MfD2229z/PHHs+eee7Ju3ToAHn30Ud555514m5Oxglsjkm6qdJNusDWia2dk9Vmy9aUXuxk7sqcxhVyyu22/klyNlW5GjoHDnbrqLEj/7qWG2yB7h1xypuRjKOkmIiIiSdJY5QZ0ejy3RuMdo8K3v7NWdSmWSDqLO5tjWa1XCvh8Ptzujt+YTz/9NCeccALHHXccn332GT6fD4DKykpuvPFGXn755Xib1C2Ktp6Fx+Pptv1FVbr1Tl3SzbP6lJTtOxHSvf3dqTSq0q3jSVESxWMU8JW1nFrqohJ/eu3SW2OXyFRPogDAtjyVFbTS8rzq97vB+Df4MasCuIptcDzR+1NERCQTRSfdutYddLyRmKRbUf3cLrVDJFkMrxeKft/hdjH/9f7Xv/41FNgw+Mc//kFBQdPg6sFgkLfeeiumMd1uuOEG7r//fk488USeeOKJ8Prp06dzww3dM4ZUOnD1z6LgwF4Ey/xkDVf1jyTfFprGU+trFHfbfg3DYLDRn+XWD6yzNnXbfiW5xn43GbPGxKpJ/eQ4hiO9K92yJ+SRPSHVrRAREZFM1ziJAnSteynABGN0+PY35vIuxRJJZzEn3W6//XYgVOl2//33R3UldbvdjBgxgvvvv7/DOMuWLWPGjBkt1hcVFVFRURFrczKeI99B4cG9cPVxkTetMNXNkR5ga8R4an2N7qt0AxhklLDc+oFqavFa1UmfMVWSzzCM0IxXdugOGdEEy7SaknAiIiIiEhasCJA9IZdgZbDLSbcxxjD2NfbgM+trPjS/xLKsqAkZRXqKmJNuq1evBmDvvffmmWeeoVevzo35NGDAAFasWMGIESOi1r/zzjuMGjWq9Qf1QJVPlFL+YGjsvFEf7kiuJlOQJIucObQ7J1IAGEz/8O311iYl3SShwmO6QWgyBSXdRERERFrw/9iA79s6AFwlXRvTLcvIwjQsyi0v5XhZZa1ltDEsEc0USStxZ3LefPPNLu3w9NNP57zzzmP+/PkYhsH69et5//33ufjii7nyyiu7FDuZqvd/Fuv7OrAAAwyPG8vbELUMtFjXfNkxpADX7OHkXLlbu/sLlttjTLf66z8k8Ooagt9sjfu5xrvcVkwjPwvHdr0oeP3XnWp/w/xvsCp9SW+n3WLGeq41KjDy2dOYgh9/tyfdBhkl4ds/WZsYz+jwuWf+VJUxr0kmxjSK3LhP2T7qPGsc+9Muv2b2+8NQgmV+DKeB76aPCbwWOq+g5fNsbV2qP9sqnyrFke/ENdBN7s75STpK8Un1d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5hAq9cKUd1LB3Yt6QYwyzGNN80PAHiv/jNG58WfdKv++TOY35dj1fhtc/wUUzENj5vqAbFNFmdYbc2M0I6ffvqJ//znP6xZs4aGhoao+2677bZ2H2tZFjfeeCM33XQTtbW1AGRnZ3PxxRdz/fXXx9uUpPN6vRQVFbHGdTMeIzchMY3B+R0OQv3D/l9Ts8gLwPit00LdtFLAO3I+1rqalOw7isPo1CCatml/isRyrjWa6vs1X1nf4yaLyuzPujVhcn/g/zg/8EcA/u66gRNdh/X41y6dND/PfN/WsnLqlziKnBSf0I8BfxqRusY1Y7vzqoPPNstv8k3BhwDkTS9k5BuTuqtl7bLdcRQREZG4Nf8bbs3h31H1YjkA2/2wC1ldTLx9V7aCn65cxcBFxXgmFzP0n9vFHaMy524w405ZiCSd16pjWOD3VFZWtjvpZtwlVP/73//45S9/yahRo/juu++YNGkSP/zwA5ZlMWXKlA4fbxgGV1xxBZdccgkrVqygurqaiRMnRk3MIE2zlxpuA0d+bBlUCbkz8DBvmR8z0hjCJVYROaluUJponL20H727vUIpstLtL8EHed58nbus8dijpkfiFawKYvktgqUBrAb9kdQVwaqmiSgcdhgfT0RERDJWePZSA1z9ujamG8A4z2isJ8swq4LUeL0a1016pLizOZdddhkXX3wxX331FTk5OTz99NOsXbuWmTNn8pvf/KbDx59yyilUVVXhdruZOHEi06ZNo6CggJqaGk45JbaKnJ4gsC3p5uzj0gdTjNYe+z3LRn3Kqru+55vgCu4NPk4tdaluVlqwLItSQkm3vkavbt//DMdUPnQ/xQXO39KfPnitaiyUrElXZmVEosijRFFXmN6IY1moYykiIiLJE9gU6sXm7JeF4er6NajhMsjbK1QBFNzsD48XJ9KTxJ10+/bbbznxxBMBcLlc1NXVUVBQwHXXXcfNN9/c4eMffvhh6upavtnq6up45JFH4m1OxmqsdHNqAoWYBbb4CaxrIG+tm4ARZG9jN/oYxaluVlqopAo/oXMuFces2PCwk2M8A4y+eIwCPEYBBko2p6vI6iynJ/WfYb7v66j9sIra97ykWy7XrFbSTURERJLPsiwCG0OVbq7+Xa9ya1T4i2Ly9vKQvX0uNYsqExZXJF3EnXTLz88Pj+M2cOBAVq5cGb6vtLS0zcd5vV4qKyuxLIuqqiq8Xm/4X3l5OS+//DIlJSVtPr4nMetNrFoTCFW6SWwsX+iYHX/PbJZlvcJL2Q+kuEXpY6tVEb7dl94pa8d5rpN42n03T7vvpsDIS1k7pGvMyqaJYOxQ6bbx9z+yesZSVu/9NZipbk18zKqmBqt7qYiIiCRLsLxpWJBEJt3ydi+k9m0vvq/rqHlDSTfpeeLO6Oy+++688847TJgwgQMPPJCLLrqIr776imeeeYbdd9+9zccVFxdjGAaGYbDddi0HUDQMg2uvvTbe5mSkxio3UKVbPMJjR7kMHE6NgxePLZSFb/dLQfdSySxBb2SlW+oTRUbqm9BpZmTVYKE+10RERCQ5wuO5QZcnUIiUPSkPZ18XwdIANW95sYIWhlM9WqTniDujc9ttt1FdXQ3AtddeS3V1NU8++SRjx45td+bSN998E8uy2GeffXj66afp3bupmsbtdjN8+HAGDRrUiaeQeYJlTR94zj6J+5Uh0/W9eFCoJDrNKlnsoHESBYA+SrpJF0WNQ2aDpBuO9P3DLlitiRREREQk+QKb/eTuVoCRZeAel5uwuIbDwHNYb3zf1WHWmdR9XkPerppEUXqOuJJuwWCQn376iR133BEIdTW9//77Y3rszJkzAVi9ejXDhg3T5ADtsALgHpdLsDyQkFljeoqiI/qmuglpKzLp1g8l3aRrTFW6JUxkpZvDBuPjiYiISGYKbGig7sNQcY3n0D4JjZ2zUz7l/9gMQO2iSiXdpEeJq6+K0+lk9uzZlJeXd7xxG4YPHx5OuO2www6sXbu207Eylaufi0F/HcmIlyfQ92JV/0nyNc5cCtDXSN2YbpIZIidScBTZIFEU0YXBSreJFCKPpbqXioiISJI0TqIA4BqQ2MKP/FlF4dvVb2pcN+lZ4r4amjRpEqtWrWLkyJFd3vkPP/yA3+/veEMbMPrnQSmEpr4zwO2ABjN6GVqua7ZsFGfj2mtwu/uqWljBhnNWATDovlH0OqV/kp5Vx1x7DSaw6CeszXXE+1zjXm4rpsvAGJjf6fb7n1sJDcHkt9NmMWM51wDqvqhh5Mp+TN1te+qKGhjlHtqpY51o4XOvwpcxr0lGxnQ7W5xnURMp2GDGTSMiV+WcOgDzkw2h8wpSezxj+Gwz60yMfAdWjYnTRt1LU/7d0Fy6vW8UM33apZiKaeeYdm2XYto/JrS4VghsbAjfTuRECgDusTnk7JiLkefEarAwfSaO7Fa+z1thDC3A2lADAcs+x08xFdPtwPDkwbq2ztwmcSfdbrjhBi6++GKuv/56dtllF/Lzoy8YPB5PvCHTguebE7vtuQXLIyZS6J3aKpG8R/ZP6f7j4VtRh+E0cOQ5cPUPDf6ZTu1PlZo3Kxn/+35MvnQUnl/3Zqedxqe6SYBeu3T2rwsX4f21lyJvASP77UzihuLtpIhKt6yb9yZ7bOLGKUk2q8EM/ZEJGDZKuun9KSIiklkiJ1JovJZKFMMwyN4hn8rHSgGo+7ia/J/Fdm3tWX5yQtsikiiG1wtF8zrcLu6MzoEHHgjAL3/5y6hx2SzLwjAMgsFgWw9tYa+99iI3N30ufrpLcKt9km7pZNXuX2FWBcken8uYL3ZOdXPSRuMXbH5VDkU5mZk0l+71/I6L+WiHLwE4L/uMFLeG6IkUzNQ1ozNKrhhKyRVDsfxmWk8IISIiIvaWzO6lEOpi2ph0q1lUGXPSTSTdxZ3RefPNNxO285dffjlhsTKJnSrd0onVELqaNty6MI1HYFOolPz4e2Yz5oydU9sYyQheQoPwFpKP0wazGEQ2wTKt1DWkC4ys2LpgiIiIiHRG4zWBkWPgKEr832/5s4ow8gyyx+fhX+NLeHwRu4o7o9M4C2lXrF+/nnfeeYfNmzdjmtFlB+eee26X46e74NamXxmcvTV7aSwsy8Jq2NYFS0m3uAQ2JPdXLel5vNa2ma+wycxUzvStdBMRERHpDo29X1z93VE92hLFPSybrCHZ1H9Wg++rWgbeMRJHXup/nBVJtk6VUb399tv87W9/Y9WqVfz73/9m8ODBPProo4wcOZKf/exn7T72oYce4swzz8TtdtOnT5+oN7RhGLZNulUO/QdWXURCwmFAZMVEY7ef5uuaL+c4cU4bQMGrv2pzX8Ey+1S6Vc9+luBHG6G2qU0xP9d4l9uKaQBF2RRtbqebWpDQmIaA4W6qCKme/SzBt9Y1xU1mO+0WM4ZzDSJ+1cpOzq9anRU+9+qDmfOaZGJMh4FzxuCo86yx0s1j2CPpNvAvIxhw03BwGtT9+nkqP94UOq8gtcczls82m0r5d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5gQda1gNpgYLgOcyf0RPn8vDw3f12P5LWrfq6Lg58UdPqay5O9Q6Qtd69nl+CmmYjoMvNlNk4+0J+7+Kk8//TT7778/ubm5fPbZZ/h8odLQyspKbrzxxg4ff+WVV3LVVVdRWVnJDz/8wOrVq8P/Vq1aFW9zuk/khQVEH/DG5dbWNV+uDWAuL293V41JNyPPgSMntV2KzOXlrT/3WJ5rvMttbWMB3vZP6MaupRBd6WYuL4+Om8x22i1mDOcaRPyqNSA5v2p1Vvjcy6TXJBNjmlbUeRa0glRTC9in0s2R78RZ7MJZ6MRcUdF0XqX6eMbw2bb5urWsn7eKTVeuaXe77pby74bm/xIRMxntVMz0b5diKqadY9q1XYpp/5imFXWtENziD43pFoSsYcmbAit/7yIwIHtCLnVLqmN7kLchXFxhm+OnmIq57T0Ui7gzOjfccAP3338/DzzwAFlZTVnw6dOn89lnn3X4+NraWo4++mgcDo1P05bGpFuqq9zSSWPXUoiudJP2WX6TYGnofFPXUkmEKmrCtwuN/Ha2lFhU/ruU8r9vouy+jaluioiIiGSoyJlLncXJuybIm+HBUejE920dVc+WJW0/InYSd3Zi2bJlzJgxo8X6oqIiKioqOnz8qaeeyr///e94d9tjWJYVTrq5lHSLWXTSzT7VWnYX2Bw5NbiSbtJ1lTT9allEYQpbkhnM6lA3WEehfkwQERGR5Ej2zKWNsvq7yRqWDUDdZzUEK2KrFBJJZ3FndQYMGMCKFSsYMWJE1Pp33nmHUaNGdfj4m266iYMPPpiFCxeyww47RFXLAdx2223xNimjWHUm1raekqp0i53la717qbTPv9GPa2AWziIn2ePzUt0cyQBVVlPSzS6VbtWvV1D7QRUELbLT7G87syr02eYo1PeBiIiIJEfjGM8QmkghmfJnefAtrSVrsJvaD6ooPKBXUvcnkmpx/xV/+umnc9555zF//nwMw2D9+vW8//77XHzxxVx55ZUdPv6mm27ilVdeYdy4cQAtJlLo8VwGY7/dGSPbERpkW2Ki7qWdE9zkJ7Ah9M/zG51w0nV2rHSrfr2CrbdvAGBIH6uDre3DMq1wpZtTlW4iIiKSJJHdS5M95EzBfsV4nynDv7aB6tcqlHSTjBd30u3SSy/FNE323XdfamtrmTFjBtnZ2Vx88cXMmzevw8ffeuutzJ8/n5NPPrkz7c14vm/qWLXblwD0OqM/g+7quHpQ2p5IQdoX2Nh9v2pJz2DHSrfwjEVpxqwxwwMHOwrsM7OwiIiIZJbu6l4KkLd7YfgapObNyqTuS8QO4v7p3DAMrrjiCsrKyli6dCkffPABW7Zs4frrr4/p8dnZ2UyfPj3uhrbmpptuYurUqRQWFlJSUsJhhx3GsmXLorapr69nzpw59OnTh4KCAg4//HA2bdqUkP0nQ+N4bgDOYnUnilXW6BzGfjeZMV/uTMk1Q1PdnLQR9auWxnSTBLBjpZvhTNOkW1UwfNtRqKSbiIiIJEd3/hDvLHaROyX0w+yCA1/k9poFSd2fSKp1ur+K2+2msLCQgQMHUlBQEPPjzjvvPO66667O7jbK4sWLmTNnDh988AGvvfYafr+f2bNnU1PTNHveBRdcwAsvvMC///1vFi9ezPr16/n1r3+dkP0nQ7AsYuYYjekWM4fbgXtkDtnjcskanJ3q5qSNqC9YzV4qCeCNrHTDJpVukfmq9OldqqSbiIiIdIvu/iG+/59GcPOap3ngDy9yrfNufFZDxw8SSVNxZ3UCgQDXXnstf/3rX6muDl1cFRQUMG/ePK6++uoWEyM099FHH/HGG2/w4osvsv3227fY/plnnom5LQsXLoxafuihhygpKeHTTz9lxowZVFZW8uCDD/L444+zzz77ALBgwQImTJjABx98wO677x7zvrpLcGtEpZuSbpJk0eM3qHupdJ03stLNsEmlW7p2L62OSLqpe6mIiIgkybsnfEPRtDx6VRbiyE7+OLL5e3moaKjGa4b+bqyhjmx0LSKZKe6szrx583jmmWe45ZZb2GOPPQB4//33ueaaa9i6dSv33Xdfu48vLi5OWqVZZWWoT3jv3r0B+PTTT/H7/fz85z8PbzN+/HiGDRvG+++/32rSzefz4fP5wsterxcA1y9HYyzxgmmBw8Dom4tVWhe1DLRY13zZMcpD1r7D2nwOwXJ7Jd1yrpiG//W1BD/eGPdzjXe5rZhGcTbOHfp2uv2+B5Ziba5NejvtFrOjcw3s3b208dwzV1dmzGuSiTGNkjzeO6WaHwNPsNRczufmNwxjIL2MIkYaQ1Jw5rQiIl9lHLUDzo1bMVeHvi9SeTw7+myLrHRzeuyVdEv1d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5hA1LXCecf+mRrqGG+MYgkzY/pboKsKyAvfrqaW3hS1ul3W0dsR/KoUq8Jnm+OnmIpp9M3FNdQFT3d8rsed1Xn88cd54okn+MUvfhFet+OOOzJ06FCOOeaYDpNuCxYsiHeXMTFNk/PPP5/p06czadIkADZu3Ijb7aa4uDhq2/79+7Nx48ZW49x0001ce+21LdbnL9gPj8eT8HY3Z7dKN/dpk3CfNinVzehQww/1VL1UjuF2kDu1gNydQ93a0qX9qdLYvdTZy9ktv2rFQ69d+jitfgZbAmXkk8sUY3uGM5gZjqns7JiQ6qYB0WO6GT8fQ/7B01LYmtiZ9Sa5uxVg+S2cJfZKiuv9KSIikhmqrVpqqAOgv9G5QofOyDeakm61Vi200TEh76HZ3dQikfhYXm9MSbe4r7Kzs7MZMWJEi/UjR47E7U5dSeicOXNYunQpTzzxRJfiXHbZZVRWVob/rV27NkEtjE1kpZvLBkm3dOFbWsvGC39gw9xVVL9SnurmpA3XYDfZk/LInmSTsbck7Wy1KthCGRD6Q81jFIT/2Yaj6a84K9jOdjbjLHaRNciNs7eLrCHZqW6OiIiIZKBNVmn4dn+6L+nWvNJNJFPFndWZO3cu119/PQsWLCA7O3QR4PP5+OMf/8jcuXPbfezLL7/MM888Q+/evfntb3/LhAlNVRDl5eUcfvjhvPHGG/E2iblz5/Liiy/y1ltvMWRIU3emAQMG0NDQQEVFRVS126ZNmxgwYECrsbKzs8PPKxUCNqt0SxeW3wrfNrLsVbFlV8GqILVvVwGQPyv5VZySmb6zVoVv7+eYzp1Zf0hha1pnRH4kWFab29lN3u6F5D0xLtXNEBERkQy2kaak24DurHSjabiIaquu2/Yr0t3izup8/vnn/O9//2PIkCHstNNOAHzxxRc0NDSw7777Ro3XFjkpwuOPP86JJ57IAQccwLJly7jrrrv4xz/+wXHHHQdAQ0MDixcvjqstlmUxb948nn32WRYtWsTIkSOj7t9ll13Iysrif//7H4cffjgAy5YtY82aNeHx6GIVWLIF3/oNoT68hoHRJwerrD5qGWixrvmyo28ujoH5OAa2XllktzHdzA01mBtqCH5fHvdzjXe5rZhGcTaOAfm4du7Xdjt9Zvi24W6qajE31BD4qjTU/zrJ7bRbzI7Oteipwe3VdQ2azj2ztC5jXpNMjLm119eUTMhj84BaJhijU3CmdMw1yE3utAJwgCPYQOCzzZiloT/uUnk8Y/lss6tUfzc0l27vG8VMn3YppmLaOaZd26WY9o8JhK8VNpVEVLqlqHtpTTuVboElWzA31ITGdLPJ8VNMxTT65BDICRCLuLM6xcXF4QRWo6FDh3b4uD//+c/cdtttnHvuuQD861//4pRTTqG+vp5TTz013mYAoS6ljz/+OM8//zyFhYXhcdqKiorIzc2lqKiIU089lQsvvJDevXvj8XiYN28ee+yxR9wzl9bs+zROo+XgzZ1hDM7Hs/qUVu8Lbg0NbO/wOG1RsVW955NY62pS3QxwGBTVt11JaTVY4duRSTfbtD9F2jvXoidRsN9sQT39tUsXM4FFg47i0GVv2mYMt+aKj+1H8bGhxJZ35Hxq7HRedfDZZld6f4qIiKQ/Y3A+G5c39fLqb/Tptn3H2r20ZvcnQ4kOEZupibFCM+6kW2cnQli+fDmHHHJIePnII4+kX79+/PKXv8Tv9/OrX/0q7piNkzbMmjWrRRtPPvlkAG6//XYcDgeHH344Pp+P/fffn3vvvbdTz6E7DH9pAsGyIGZNGg08ZAPRSbfUJyvTQVTSbYD9Kt0kfWTj5kjHL9jdsXOqmyIiIiIicdgYMabbALqv+j66e6nGdJPM1W39Fz0eD5s2bYrqArr33nvz4osvcvDBB/PTTz/FHdOKYWyenJwc7rnnHu65556443c3y7RYsdMXOD1O8vYsJH+6xtmKldXQevdSaVtU99IB9qt0k/RhYNhr4oQMseHC1VS9UIajwMmwp8fjHpWT6iaJiIhIhtmUojHdCiJnL0VjuknmijvptnXrVq666irefPNNNm/ejGmaUfeXlZW1+rhp06bx3//+t0W3zpkzZ/LCCy9w8MEHx9uUjGN6g1i1JoFak2CFKt3iEVXplq1Kt1hEdy9VpZt0XoGRx3muk1LdjIwT2OjHv2ZbctypHxNEREQk8arMGvrRm3xy6U1xt+03X7OXSg8Rd9LthBNOYMWKFZx66qn0798fw4jtQuCCCy7gvffea/W+WbNm8cILL/DII4/E25yMEiyLmEShT+onUUgn0bOX6uI0FtGVbkq6SebyvlBG6Z/XgQl96syOH2ATZlXTjy+OQv2YICIiIom3ia1soYwtQG+jqNv2G5l0q1H3UslgcWd23n77bd55553wzKWxmjlzJjNnzmzz/r333pu999473uZklKikmw1mLk0n6l4av8BGe0+kIJIowVI/dR9WA2AVQbp8QpjVTUk3Z6EzhS0RERGRTFWBF4AcsskxsjvYOnEKIiYpVKWbZLK4Mzvjx4+nrk59rpNBSbfOq/X4MEY7oQGC+elTyZJKhssgZ2o+jlynKislsznSJc0WLbit0s3IMWwxm7WIiIhkngorlHTrRfeOJx41e6kq3SSDxf1X/L333ssVV1zB4sWL2bp1K16vN+qfdF6gLKLyqLe6+8Xjb2c9x5TPTmHK0lNYOv2HVDcnLdR9Vk39xzU0rKzHSNOkhEgsjG3joZmGiUX6TDnf2L3UoSo3ERERSZLGSrcio7Bb95uviRSkh4i7vKW4uBiv18s+++wTtd6yLAzDIBjUBACdpTHdOq+BpoSlGyUsO2IFLQKbQ8dMkyhIplt+2AbmHvoXlrt+5MsJJ1FYkeoWxSacdCtQ0k1ERESSo2Zbwqs4lZVu6l4qGSzuzM5xxx1HVlYWjz/+eFwTKUjHopJuvZR0i4eSbvEJbg3Atvy4km6S6Tx5BXzRsAyAAAE68dWXEo1JN43nJiIiIslg0jQsT3F3V7qpe6n0EHFfeSxdupTPP/+ccePGJaM9tpX3+AFkfVcHQQvDaWD0z8PcVBu1DLRY13zZMbgA55jiVvdhx0q3/IW/wlxRgf+zzXE/13iX24rp6JuLc2T7v7xEJt2yaZoUIH/hrwgs/ong+pqkt9NuMds71wKbImcuteckCo3nXnBddca8JpkY0zkoH9fMISk4Q2I3yhhKFi78BDj/hU/495obCK4LTayQyuPZ3meb2WBiNYS6wtqxe2mqvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8cEcAwu4KfRNeHv0u6udHMbWfzKmM0X1rd4qeLV4DvMdv6sxXZ5zx1McHUlVmm9bY6fYiqm0T+P3F4WHPn7Ds/1uDM7u+66K2vXru1xSbes/UeQ95vkfhDZcSIF57heOMf1IuugkaluSrsarNYr3RrbL9ECGyJnLrVnpVv43Et1QyTtZRlZjDGG8621kjfGfoMxaSg5hj0+Y9vSWOUG9uxemi7fDSIiItK2reZXsO23+F5GUbfv/xb3JYz17QcWPBR8ptWkW9YBI3Q9ILbUEOOcBnFfdcybN4/zzjuPSy65hB122IGsrOi3wI477hhvSNmmzwWDKDykN8GtfrIGuVPdnLTij6h0yzL0sdyRqEo3mybdRBJpgjGab62V+AlwfeAers06L9VNaldpTjkv/f1TPNV5DB08mOFMSHWTREREJMM0zlwKUET3di8FKCQ/fNtLdbfvX6Q7xJ10O+qoowA45ZRTwusMw9BECglQ+pd1BNY14Ozjotfp/VPdnLSiMd3i498UUelm0+6lIon0B9c5/IFz+FfwZZzYr3KsudLcCq466n4Afus8nIPYP8UtEhERkUzTOHMpQC+je7uXQnTSrdqqaWdLkfQVd9Jt9erVyWiH7dWevwg+8YJpgcPAUZKHubk2ahlosa75smN0Ea5ZQ3Af07J7bv0n1TSs8uHs5bTNBBUN/7eMwOKfCLy3Ie7nGu9yWzEdfXJw7NCXvL/OarOdvjaSbg3/t4yG+V9jbqhJejvtFrO9c82sDuIa7CZY6idrgD2TlI3nnrmiMmNek0yM6RiYj/uU7Vs9z+xkomMMAFP+L48BiwNUr3oGaPk8W1uXis+2Kpr+8Iz8g9QuUv3d0Fy6vW8UM33apZiKaeeYdm2XYto/JoBjdBGeGZvh8NB3aSoq3ZyGk3xyqaEOL60n3WrPXYT5VSnm1nrbHD/FVExHSR61Q2NLpxmWZVmdfI/0CF6vl6KiIta4bsZj5CYkpjE4H8/qU1qs/27ARwTLg7hHZTP22ykJ2VdXeUfOx1png18dHAZF9XPbvPsXDafxpvkBAKXZH1FghN5Ytml/irR1rq094Xu8/9oKwJilO5M9NjHndiL19NcunbR1ntmR7c6rNj7bXg2+wy/9ZwFwufMsrspq+/MvFWx3HEVERCRu1YPgmGXv4yaL37vOYD/n9G5vw8j6vdnAFoYwgBU5r7e4vzLn7lCiQ8RmvFYdwwK/p7KyEo+n7UpRR2eCP/roo0yfPp1Bgwbx448/AnDHHXfw/PPPd661ghW0CFaEuuY6+9iz8sjO2ppIQVoXiOxeOtCdwpaISGuiKt0M+1W6iYiISPoLEOQj60vesT5lgNE3JW0oNAqA6L99RDJJ3Em3++67jwsvvJADDzyQioqK8BhuxcXF3HHHHYluX48RrAjAtgS+s5e9Z9Wzo6iJFOLvNd3jBDaGjpejwIHThjMjivR0VRHjmhTYsHupiIiIpL8AAQAcOBhrjEhJGwoJ9VCqogZ1wpNMFHfS7a677uKBBx7giiuuwOlsuljfdddd+eqrrxLauJ4kuDUQvu3so6RRvBonUnCTZZvx8OyscfZSV39VuYnYUbUq3URERCTJ/NuSbiOMweQY2SlpQ2Olm4lJLXUpaYNIMsWddFu9ejWTJ09usT47O5uaGpWEdlawPCLppkq3uEUm3aR9Zr2Jua0rs8umkyiI9HRV1IZve1TpJiIiIklgbetqNcEYnbI2RP6d09ZkCiLpLO6k28iRI1myZEmL9QsXLmTChAmJaFOPpEq3rlHSLXZR47n11/ESsaMqqzp8u0CVbiIiIpIEOWQzxdieccaolLWhkILw7ci/f0QyRcxJt+uuu47a2louvPBC5syZw5NPPollWXz00Uf88Y9/5LLLLuN3v/tdMtua0YJlqnTrCp8V6i6ppFvHGruWgrqXithV1EQKqnQTERGRJKjHx2fW1/Q2ilLWBo/RlHTzoqSbZJ6YszvXXnstZ511Fqeddhq5ubn84Q9/oLa2lmOPPZZBgwZx5513cvTRRyezrRktKummSre4NU6kkKWkW4caJ1EAdS8VsavIiRSUdBMREZFkyiU147kBFGybSAHAa6l7qWSemLM7kTOJHHfccRx33HHU1tZSXV1NSUlJUhrXk+TtWUjJ9cMIlvnJmZTX8QMkSrh7qaEkUkeClQHyflYIBmQNTd0XrIi0rTpiTDd1LxUREZFkyiEnZfuOrHSr1phukoHiGtOt+ayQeXl5PSfhltXsUDWfINNoY13z5SwHjv4tL6DqltTQsLwOTHD2sU/iyNE/v/XnHstzjXe5vW1ynLSnrTHdHP3zo+Mku512itnGueb/wUftO1XUvl1l667M4XMvk16TTIxp0Op5ZldR55Udjmcbn22R3UvtOJFCyr8bmv9LRMxktFMx079diqmYdo5p13Yppv1jGhDMgs39Q7OF5qZo5lIADx10L438W8kux08xFdOg5d/CbYjrinu77bZrkXhrrqysLJ6QaaNo4xl4PJ6kxa9ZXIn3X1sB6H3WgKTtJ14FHxyV6ibEpDHplk30GGXp0v7ulC7dS/XaSTKky3lVva17hQMHuSn89bkt6XIcRUREpHW3BeZzeeBvACn9W2M7RvJzY082s5Vl5mpo9ntkUcXZqWmYSAcMrxeKLulwu7iSbtdeey1FRakbZDGTRY3p1tu+1Ud2ZFmWZi+NQ/RECjpeInbk3VbpVkh+hz92iYiIiMSrDl/4dirHdBvuGMTrgfcAyDY1yZtknriyO0cffXTP6U7azcJJNyc4itrvSinRAjQlLDWRQscCm7ZVuhngKtHxErGTOwMP85b5MWus9UD04MIiIiIiiVJn1Ydvp7LSbZRjKDsa4/jSWsYyazWH+s7GZTiZ4ZjKea6TUtYukUSJOemmX9qTK7g1lDhy9nLpWMepscoNNJFCLBqTbs6+LowY+6GLSHJ9bn7D7Ibf4sBBLzxMZiK7OiZxtuvYVDdNREREMlAdEUk3I7VDWdzouoh8I5fXgu/yQvANlls/sMj8CAuL810np7Rt/9/efYdHVab/H/+cSe8h1ABJQJqgUhQLRYqCASyguKCiwsquusCCBewFRL+ggoCoKz9XARHEAiIrKzYMC9joSIcIIgiCkEJ6yDy/PzBDhmSSCU6YmfB+XVeua06Ze+5zck+GuXmec4A/64zuXnouymw3T+ZQkWSMZFknL+iYd9qyVHrdactWrTAFXZ2gsNeucopflPZH083HppbmDlumwi9/kTmQVeljrfSyq5hBNtkSoxS16fYyc8wv2XQ7baRb7rBlKpi/U8o7UfV5+ljMsmrNGKMTh05OLw2s69vDtx21dzS32vxOqmXMsEAFD2xe6m+ar3KqK8m757PE37bfTZrj5gm1Faeatlgl2OLVxJbohbNUMa9/NpzO3943xPSfvIhJTF+O6at5EdP3Y0oaXjNMjbpfqTHTVnh1eqkk9QjoKEn6wb5JYVao8kyBpAKlm+M63vod2fcdlwrtvnP+iEnM0AAdr+Fefbvd4bHb7e7uWi2ZfZmSFVa8dPJNf2rracuu9zHHC1X46V6FldxSaJc9s0iS7zXdCj/dK3Og5K2b3T/WM18+bV2hXfad6S5zLCin6Vb46V4pq3h7FefpYzHLqjV7RpFMvpHk+9dzK117kr//TqplzDLqzJeVXVeSt/+2HdGpmxDdG3iLRgTe4c7heI1PfDaUyU/eN8T0w7yISUxfjumreRHTl2PWPB6gHp8lSvLu9NKSRgUOVnvbRbq64E5JUp7yTv5byW5O7uBD54+YxDSZuXIHc8t8QFFakeNxQJxvN0J8UXlNNzjLO5IrBVmSfPvOpcC55qhJdzyuZcV5LxEAAHDOCbW8O9KtpFCdmo2Tp4Jy9gT8g28NqzpHFR091TTytZFu/qDQnDp/QZR0uVaft029jvxNSWn19E9zh0aombdTAiDpiDnmeFxLbo5VBwAA8ABfGekmSaElprrmlbjDKuCv6FD4gOLruUlSIE23Sis50i3E8u3rlHnbb/pdsqSf4w6piFIDfMbvSnM8rmXRdAMAAGdPuK823QxNN/g/vnb7AFuNQMUOqa2iYycU2jbC2+n4HaaXuu8387vjcT2rthczAVDSUUPTDQAAeEeol2+kUFLJqa6MdEN1QNPNB9izihTcKFQBFwcq7PJIb6fjd2i6ua9k062uankxEwAlHSnZdGN6KQAAOEtCFSLLsrydhgPTS1Hd0HTzATkrj+vw2F8kSQ3nNlNIU3+5D6BvyC9xgU2abuU75DTSraYXMwFQUvH00kiF+9TFjAEAQPUW5kOj3CRupIDqh7uX+oCiY6eu6RZQgz5oZRU43UiBplt5flOJkW4WI90AX1E8vZQ7lwIAgLPJl26iIHFNN1Q/NN18gFPTrSZNo8oqLDm91OL8leeQOSLp5IjAWEV7ORsAkpRccJeCFawmStBHga96Ox0AAHAO8bUR9gFWgIL+mJDH9FJUBwyrcpOtVZy0t0CyS7IkRQZJ2YXOy1Lpdact2+pFKPCaRKfYRcdONY18baRb0MDmOvH5PtlT0yt9rJVedhUzNFC282Jc5ljeNd2CBjZXwdvbpOOFVZ+nj8Usq9Z+M0clnbyemy9du6Esjto7lF1tfifVMmZkkIIGNv9Tv+uzyamuJO+ezz/+th0yR3RQhxWtSLUMaHK2TsWf4vXPhtP52/uGmP6TFzGJ6csxfTUvYvp+TEnb6vyqZT1+8bmRbtLJ0W6FOqE85cvWrrbsqRlS3gnfOX/EJGZkkGy1w6RNrqr4FMsYYyre7dyVmZmpmJgYZWRkKDo6ukpeY2/yFmWnZEqSzj96mQIiA6rkdaqT5UU/aKfZq5X2NfrZ/qsO6DfVseL0ROAw9Q7o6u30fNKJzEKNXvasjrXKUs16cZoS/bi3UwIgqUne1Tqg31RfdfRT6DJvpwMAAKo5Y4zC8i+SJF1qXaQVIe96OSNniXlddFjH1MhqqO0hS72dDlAmd3tFvjWs6hxVPL3UCrZki2DGrzves/9XbxV9KEm6WK3UyGqgLrZLabiVI+frTP19YC9JUtywetIULycEQJKUo1xJUoQV7uVMAADAuaDkjehCfexGCpIU8kdO+VzTDdWAX3d4/ve//+n6669X/fr1ZVmWFi1a5LQ9KytLI0aMUMOGDRUWFqZWrVrp9ddf906y5ShKO9l0C4gL9Pkpf74i2+Q6HkdbUYq2IhVtRXoxI9+XtTTd8Tjymliv5QHAWZZyJEmRoukGAACqXo7yHI/DLB+cXvrHdeZyuaYbqgG/HumWnZ2tNm3a6K677tJNN91UavsDDzygZcuW6Z133lGjRo30+eefa9iwYapfv75uuOEGL2RcthNHTzXd4J5cnWq6zQyeqHirthez8X3GGOVtyVF45yjZc+2K6Fo1U6UBVE6BKVShTn4GhCvMy9kAAIBzQayidJ9tsAp1QvcH/dXb6ZQSqmBJ3EgB1YNfd3l69+6t3r17u9z+zTffaPDgwerWrZsk6e6779aMGTP0ww8/VLrpllH7dRnjgS9ENsnWNFZRm++QJNnz7DI5dkm+2XQ7fuEc2Xenn7xgoDcF2RSTPdyxWPJ/ZyLK+aJ6/MI5su9Mr8rMfFeJWsvfnqvc77MkSRE9YmQL9/3rBvpM7aFCtuan/qb5Ol+rKxNkk07e30SRfjS91NfOIwAAqJxHbKHKbGpTw831vJ1KKcU3d8hTvjIiXpUK+QcHfE+mlVvxTvLz6aUV6dixoxYvXqwDBw7IGKOvv/5aO3fu1DXXXOPyOfn5+crMzHT6keS5LxZ2yWQXOhZNrl3hXaIVckGYgpv53igHU3yHDm8rcr7fR8nppWHlXIeg5Lk+55SoNX+cWuoztYcK+dP7zOfqquhUMv40vdTnziMAAKgUyy7FZvve909JCvljpJukUt8DAZ/h5r+FfW9olQdNnz5dd999txo2bKjAwEDZbDa98cYb6tKli8vnTJgwQePGjTtrOZoio7i/11VAXKCCm/refHpflfvHSLcgBSrICvJyNr4v66t0hbQOV0BMgN803YBzTYTlm//wBQAAOJtCrRCJXhuqiWo90m369On67rvvtHjxYq1du1aTJ0/W8OHD9eWXX7p8zqOPPqqMjAzHzy+//FKlOeZvzdH+O3bp52u36diM36r0taqT7OK7/fnRyBBvKcoqUs7yTOVvylHhvgKFnM8Xe8AX+dNINwAAgKpS8o6qhu4b/Fy1HemWm5urxx57TB999JGuvfZaSVLr1q21YcMGTZo0ST169CjzeSEhIQoJOXu3TS46dsLxOKBmtf11eFzOH9NLw8XowIrkrMqUOXHywyqyZyx3yAV8FDdSAAAAcG66Af6u2nZ5CgsLVVhYKJvNeTBfQECA7HbfuRCNU9OtRrX9dXhc8fRSX7zFta/J+m+abFE2hZwfrqjrang7HQAu+NONFAAAAKpKqEXTDdWHX3d5srKytHv3bsfynj17tGHDBsXFxSkxMVFdu3bVmDFjFBYWpqSkJC1fvlxvv/22XnrpJS9m7exEiaZbICPd3HZqeikjQyqS9Xm67Bl25a7NVnjnaG+nA8AFppcCAABIoSVvpAD4Ob/u8qxZs0bdu3d3LD/wwAOSpMGDB2vWrFmaP3++Hn30UQ0aNEjHjh1TUlKSnnvuOd17773eSrkURrpVXpEpUr4KJDG9tCLmhJG98OTU0vBOUQqICvByRgBKKnmVEq5RCQAAIIXxHQ/ViF93ebp16yZjXF9YsV69epo5c+ZZzKjyuKZb5eUq3/E4jLv9lcvkGZ04XKCghCBF3xjn7XQAlIPppQAAAFJIiZFuRkaWuCY1/Fe1vnupP2CkW+VlK8fxmJFu5TN5J69fWPhLoSKYWgr4NKaXAgAASKMCB2t78GcaFTBYouEGP0eXx00hI9vKtjpDshvJZskWHyH7wWynZUml1p2+bGsSo8BO9R1xi44VOh4HxPneryPsle4qWvWrClf+Wuljreyyq5i22mEKuKiWI6cck+d4XNHd/sJe6a6Ct7fJfiCryvP0tZi2pBgd/aJQtgMBskXYFHKhf32hL669otSMavM7qY4xbQ0iFXxnSy9UyJkpWVdS6eMsa11V/m1bfsGp65L6091Lvf3ZcDp/e98Q03/yIiYxfTmmr+ZFTN+PKanU91JfUsuqoVpWDdW319Gmh/LUfksD2Y/k+sz5IyYxbfERCm4YKLlxuwDLlDc/E8rMzFRMTIwyMjIUHe35kUK7221Q/tZcWWE2tUq/3OPxq6Ot9t26uKCfJGlwwI2aETTeuwn5qKwv0vXzddskS4obGa/4Fxp5OyUAJayzb9GME/O10r5WIVaw3g+apqa2JG+nBQAAAKAC7vaKmF7qZSdCimSFWlzPrRKK71wq+dfIkLPt+GfpJx8YKfyKKK/mAqC0ZfbvNNv+kVK1Ty2tJjTcAAAAgGqGTo8XGWN0WcrfVKBCXVHQRima6+2U/EKOOdV0i6Dp5tLylmt1/pX1FbzaUuRVMd5OB8BpfjfHHI9rWTW8mAkAAACAqkDTzU3587YrZ+NxmSIjBVgK+GNOb8llSaXWnb5sS4pWwEW1FHBxHeUoVwU6eU23kNAQbx6eS0XrDuvEj7+r6LuDlT7Wyi67imnVDlfA+TUUfNv5kqRcnbqmW5hV/o0UitYdVsEnP8m+P6vK8/SlmMfr2vVpg7l6afwxxbdsoY9jr/B4bVS14tozP2dWi99JdY1paxip4OvOU8DFdbxQJZVXsq6k0sdZ1rqqOp+XxBWof7OmWnDLbv0j4FavnZMz4e3PhtP52/uGmP6TFzGJ6csxfTUvYvp+TElO30t9WcG87Sranib7kRyfOX/EJGZAfIQK6rg3cZSmm5vy/pmiYOvUqKoTp20/fbm8fawGEYrec5eOKsOxLU4xnkjT47L7fyJzINtpXWWO9UyXS62zWY6mm/P00vKbbqfnX+V5+kjMMEkvq7t+rZ+lj3fHlfEKvq+s2pP893dSnWMWztyq6D13lfFM3+OqrqSzfz6vUbSutnXXglt2q6afjXTzmc8GD7ymJ/Iipu/FICYxz7WYvpoXMX07ZvH3Ul+We9eXJy9eL987f8Q8t2PmlpiBVx6abl6UZko03axY7yXiR46YY1pn36LzlKAgK0gXWs29nZJPC1SgrrF19nYaAMphyfLZ/3gBAAAAcOZounnRUZPueMwXLvfsMfs1uegtSdKlukg9Azp5OSPfVteqqWa2C7ydBoBy1FSsAqwAb6cBAAAAwMO4e6kXpZWcXmrRdHNHjjl1PTduogCgOqjJSGcAAACgWqLp5kXHnEa6xXotD3+SV+ImCp0D2nsxEwDwjFryz+suAgAAACgfTTcvOqp0x2NGurknV/mOx2EV3EQBAPxBbT+7iQIAAAAA99B086I0k+l4zI0U3JNbYqRbRXcuBQBfZ8nSlTZG7QIAAADVEU03L+JGCpWXa06NdAtViBczAYA/zyabhgfe7u00AAAAAFQBmm5exI0UKi9XuY7HYRYj3QAAAAAAgG8K9HYC57IiU6R6qqVABSraREqWtzPyfc7XdGOkGwAAAAAA8E003dwU9ePtisgJlIyRLMmKCJbJLnRallRq3enLVmSQrOiT+/6uNB3S77JkKdTyzQZS1KbbZTILZP8tp9LHWtllVzGt8EDHOcs1p67p5s6NFKI23S77r9kyWQVVnqevxSxZa/6ouPZMVmG1+Z1Ux5hWZJBs9SO9UCFnpmRdSaWPs6x1Z+Nvm7/x9mfD6fztfUNM/8mLmMT05Zi+mhcxfT+mJL/5rhD10xCZ44Uy2QU+c/6ISUwrIljG5EotH66whmm6uclWP1KB0dEejVk8aitMobIsy6OxPcWKCpYVFSxbA9/4Up1XcqSbG9NLrahgBbTw/Q8TlFZce4AnUVee4WufDQAAoHryp//cxbnFlhng3n5VnAfKUXwnTqZJuo/ppQAAAAAAwB/QdPOi4qmS3IXTfTklb6TgxvRSAAAAAAAAb2B6qZuy+n8isyVbshvJZsmqESqTlue0LKnUutOXbUlRCromSSH3tTs1vdSH78KZP3W9Cj//WUUbjlT6WCu77CqmFRWsgAtqKmLhdco1p0a6udOszJ+6XvlvbJY5mlvlefpazJK15o+Ka8/+8/Fq8zupjjGtmmEK+fuFflNnJetKKn2cZa07G3/b/I23PxtO52/vG2L6T17EJKYvx/TVvIjp+zEl+c13heybPlHRlqMyxwt85vwRk5hWjVBl1XdveqlljDGee0tUP5mZmYqJidG+wOcVbYV5JKbVIELRe+5STN7FyleBLrKaa3XIQo/E9rTMxm/JHMj2dhqSzVJM3ggNKBipxfZlkqSfQpapvlWn3Kf5TP5eUlxr/uhc/935E3+qM5+rqz/+tvkbnzuPAACg0vzh33AZoa+cbHQAPibT5CrxxMPKyMhQdDnX/2d6qZfYjV35KpAkhcszzbxzQclruoUzvRQAAAAAAPgomm5eUvIunKEW13RzV8nppVzTDQAAAAAA+Cqabl7CXTjPTO4fN1KwZClYQV7OBgAAAAAAoGw03bwkV3mOx4zYcp/j5hMKlWVZXs4GAAAAAACgbDTdvCTXnGq6uXMXTpxU3KxkdCAAAAAAAPBlNN28pORIt3AP3RX1XJBnTo10AwAAAAAA8FU03byEa7qdGcf0UoumGwAAAAAA8F003byk5F04mV7qvpw/bqRAoxIAAAAAAPgymm7uigmRiq/bb0kKtJVeLmvd6cuxIQpoW0d5JW+k4MOjtgLa1pFiyzh2d461ssuu9gmwZNUK0xX5f1ENxaidWuqD4Onu5x9oOzt5+lrMP2rNXzlqrzr9TqpjzECbX9WZU115+3z+8bfNH3n9s+H0H3973xDTf/IiJjF9Oaav5kVM348ZaPOb7wpWrTApwPKt80dMYgbaTvaI3GAZY4xbe56jMjMzFRMTo4yMDEVHR3ss7kdFX+jWwvslSf8X+IAeCLzLY7Grq4S8LjqiY0pUfe0M/dzb6QAAAAAAgHOQu70i21nMCSUUT5OUpHD550iHs8lu7DqqdElSbauGd5MBAAAAAACoAE03L+GabpWTpkzZZZck1bLivJwNAAAAAABA+Wi6eYm/XNPNV/xujjke11Ss9xIBAAAAAABwQ6C3E/AXGefNlDluk4xOXjgvwCYV2Z2XpdLrTl+ODFJgp/rK/eDUSDdfvhNn9o2f6MSqX6WM/Mofa2WXXcW0WapZM1DafXKX2pUY6ZZ94yc68dnP0gl71efpazH/qLWIj65z+3z5EkftZRVWn99JdYwZaFNgcpLf1JlTXUnePZ82S1bNMEXvH3q2Dt9jvP7ZcDp/e98Q03/yIiYxfTmmr+ZFTN+PKfnNd4XMhm/KHM2V7MZ3zh8xiRlgU2b4CVdl64Smm7sy8iXrj2uvGZ1s4hQ7fbm8fdLzVbThsHJNiZFu8t2RbkUbDkvppxqElTrWM10+fV2RUeDvhY5NNa3YyuVfHKeq8/S1mH/Umr8qVXuS//9OqmPME3a/qrMy60ry2t8283uu/JFPfDaUxV/eN8T0v7yISUxfjumreRHTt2P6yXcF8/sfDTfJt84fMYmZUcZ3ijLQdPOCLJOjz+wrlaB41bJi1dCq5+2UfJ4p8biWangtDwAAAAAAAHfQdPMCI6NwhaqR1UBdbJeqpa2Jt1PyK5WZXgoAAAAAAOANNm8n8Gf873//0/XXX6/69evLsiwtWrSo1D7btm3TDTfcoJiYGEVEROjSSy/Vvn37zn6yJViyFG1FOn7gjlNj3SozvRQAAAAAAMAb/HqkW3Z2ttq0aaO77rpLN910U6ntqamp6ty5s4YOHapx48YpOjpaW7ZsUWiod6+hFmmFa0HwK17Nwd8YGdVSnDpbF6uNdb630wEAAAAAACiXXzfdevfurd69e7vc/vjjj6tPnz564YUXHOuaNGEqp7/6XcfUxJaoCCvc26kAAAAAAACUy6+nl5bHbrdryZIlat68uZKTk1WnTh1dfvnlZU5BLSk/P1+ZmZlOP/ANgQrU2MB/ejsNAAAAAACAClXbptvhw4eVlZWliRMnqlevXvr8889144036qabbtLy5ctdPm/ChAmKiYlx/CQkJJzFrFGeJlaCgqwgb6cBAAAAAABQoWrbdLPb7ZKkvn376v7771fbtm31yCOP6LrrrtPrr7/u8nmPPvqoMjIyHD+//PLL2UoZFWhpMTUYAAAAAAD4B7++plt5atWqpcDAQLVq1cppfcuWLbVy5UqXzwsJCVFISEip9QHdGkpbsiW7kWyWrBqhMml5TsuSSq07fdmWFKWga5I8e7BVKGRUOxV+/rOKNhyp9LFWdtllzKggFbQK01OB155R/vlvbJY5mlv1efpYTH+rtdMV15795+PV5ndSHWNaNcMU8vcLvVAhZ6ZkXUmlj7OsdVV1Pq2oYAVcUNNr5+LP8PZnw+n87X1DTP/Ji5jE9OWYvpoXMX0/piS/+a4Q2KeRirYclTle4DPnj5jEtGqEKqB+TenLimvYMsYYj74rvMSyLH300Ufq16+fY13Hjh3VpEkTzZkzx7HuxhtvVFhYmObNm+dW3MzMTMXExCgjI0PR0dGeThsAAAAAAAB+xN1ekV+PdMvKytLu3bsdy3v27NGGDRsUFxenxMREjRkzRgMHDlSXLl3UvXt3LV26VP/5z3+UkpLivaQBAAAAAABQ7fn1SLeUlBR179691PrBgwdr1qxZkqS33npLEyZM0P79+9WiRQuNGzdOffv2dfs1GOkGAAAAAACAYu72ivy66XY20HQDAAAAAABAMXd7RdX27qUAAAAAAACAt9B0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICHBXo7AV9njJEkZWZmejkTAAAAAAAAeFtxj6i4Z+QKTbcKHD16VJKUkJDg5UwAAAAAAADgK44fP66YmBiX22m6VSAuLk6StG/fvnJPJPBnZWZmKiEhQb/88ouio6O9nQ6qMWoNZxP1hrOFWsPZQq3hbKHWcLZQa5VnjNHx48dVv379cvej6VYBm+3kZe9iYmIoPpwV0dHR1BrOCmoNZxP1hrOFWsPZQq3hbKHWcLZQa5XjzsAsbqQAAAAAAAAAeBhNNwAAAAAAAMDDaLpVICQkRE8//bRCQkK8nQqqOWoNZwu1hrOJesPZQq3hbKHWcLZQazhbqLWqY5mK7m8KAAAAAAAAoFIY6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCfabpNmDBBl156qaKiolSnTh3169dPO3bscNonLy9Pw4cPV82aNRUZGan+/fvrt99+c2zfuHGjbr31ViUkJCgsLEwtW7bUtGnTnGIsXLhQPXv2VO3atRUdHa0OHTros88+qzA/Y4yeeuopxcfHKywsTD169NCuXbuc9lm3bp169uyp2NhY1axZU3fffbeysrIqjL1p0yZdeeWVCg0NVUJCgl544QWn7Vu2bFH//v3VqFEjWZalqVOnVhgTrlFrrmtt4cKFat++vWJjYxUREaG2bdtqzpw5FcaFa9Sb63qbNWuWLMty+gkNDa0wLspGrbmutW7dupWqNcuydO2111YYG6VRa65rrbCwUM8884yaNGmi0NBQtWnTRkuXLq0wLsp2rtZaXl6ehgwZoosuukiBgYHq169fqX0OHjyo2267Tc2bN5fNZtN9991XYb5wjVpzXWsrV65Up06dVLNmTYWFhen888/XlClTKswZZaPWXNdaSkpKmf9eO3ToUIV5+zTjI5KTk83MmTPN5s2bzYYNG0yfPn1MYmKiycrKcuxz7733moSEBPPVV1+ZNWvWmCuuuMJ07NjRsf3NN980I0eONCkpKSY1NdXMmTPHhIWFmenTpzv2GTVqlHn++efNDz/8YHbu3GkeffRRExQUZNatW1dufhMnTjQxMTFm0aJFZuPGjeaGG24wjRs3Nrm5ucYYYw4cOGBq1Khh7r33XrN9+3bzww8/mI4dO5r+/fuXGzcjI8PUrVvXDBo0yGzevNm8++67JiwszMyYMcOxzw8//GBGjx5t3n33XVOvXj0zZcqUypxanIZac11rX3/9tVm4cKHZunWr2b17t5k6daoJCAgwS5curdQ5xinUm+t6mzlzpomOjjYHDx50/Bw6dKhS5xenUGuua+3o0aNOdbZ582YTEBBgZs6cWZlTjD9Qa65r7aGHHjL169c3S5YsMampqea1114zoaGhFeaMsp2rtZaVlWXuvfde8//+3/8zycnJpm/fvqX22bNnjxk5cqSZPXu2adu2rRk1apQbZxSuUGuua23dunVm3rx5ZvPmzWbPnj1mzpw5Jjw83OlvH9xHrbmuta+//tpIMjt27HD6d1tRUZE7p9Zn+UzT7XSHDx82kszy5cuNMcakp6eboKAg88EHHzj22bZtm5Fkvv32W5dxhg0bZrp3717ua7Vq1cqMGzfO5Xa73W7q1atnXnzxRce69PR0ExISYt59911jjDEzZswwderUcSqITZs2GUlm165dLmO/9tprpkaNGiY/P9+x7uGHHzYtWrQoc/+kpCSabh5GrZVda8XatWtnnnjiiXL3gfuot1P1NnPmTBMTE1PuMeDMUWuu/7ZNmTLFREVFOf0DF2eOWjtVa/Hx8eaVV15xet5NN91kBg0aVO5xwT3nSq2VNHjw4DK/nJbUtWtXmm4eRq2V78YbbzS33367W/uifNTaKcVNt7S0NLfi+AufmV56uoyMDElSXFycJGnt2rUqLCxUjx49HPucf/75SkxM1LfffltunOIYZbHb7Tp+/Hi5++zZs0eHDh1yeu2YmBhdfvnljtfOz89XcHCwbLZTpzQsLEzSySG5rnz77bfq0qWLgoODHeuSk5O1Y8cOpaWluXwePIdaK7vWjDH66quvtGPHDnXp0sVlXFQO9eZcb1lZWUpKSlJCQoL69u2rLVu2uIyJyqHWXH+Ovvnmm7rlllsUERHhMi7cR62dqrX8/PxS0+TDwsLKjQv3nSu1Bu+j1lxbv369vvnmG3Xt2tWjcc9V1Fppbdu2VXx8vHr27KlVq1Z5JKY3+WTTzW6367777lOnTp104YUXSpIOHTqk4OBgxcbGOu1bt25dl3N8v/nmG7333nu6++67Xb7WpEmTlJWVpQEDBrjcpzh+3bp1Xb72VVddpUOHDunFF19UQUGB0tLS9Mgjj0g6ec2F8mKXFbfk66LqUGulay0jI0ORkZEKDg7Wtddeq+nTp6tnz54u48J91JtzvbVo0UJvvfWWPv74Y73zzjuy2+3q2LGj9u/f7zIu3EOtuf4c/eGHH7R582b97W9/cxkT7qPWnGstOTlZL730knbt2iW73a4vvvhCCxcuLDcu3HMu1Rq8i1orW8OGDRUSEqL27dtr+PDhfI56ALXmLD4+Xq+//roWLFigBQsWKCEhQd26ddO6dev+VFxv88mm2/Dhw7V582bNnz//jGNs3rxZffv21dNPP61rrrmmzH3mzZuncePG6f3331edOnUkSXPnzlVkZKTjZ8WKFW693gUXXKDZs2dr8uTJCg8PV7169dS4cWPVrVvX0QW+4IILHHF79+59xscGz6HWSouKitKGDRu0evVqPffcc3rggQeUkpJSqRgoG/XmrEOHDrrzzjvVtm1bde3aVQsXLlTt2rU1Y8YMt2OgbNSaa2+++aYuuugiXXbZZWf0fDij1pxNmzZNzZo10/nnn6/g4GCNGDFCf/3rX51GBODMUGs4W6i1sq1YsUJr1qzR66+/rqlTp+rdd9+tdAw4o9actWjRQvfcc48uueQSdezYUW+99ZY6duzo/zfu8Pb81tMNHz7cNGzY0Pz0009O67/66qsy5/cmJiaal156yWndli1bTJ06dcxjjz3m8nWKL377ySefOK3PzMw0u3btcvzk5OSY1NRUI8msX7/ead8uXbqYkSNHlop96NAhc/z4cZOVlWVsNpt5//33jTHG7N271xF3//79xhhj7rjjjlLzmZctW2YkmWPHjpWKzTXdPIdaK7/Wig0dOtRcc801LrfDPdSbe/V28803m1tuucXldlSMWnNda1lZWSY6OtpMnTrV5XHBfdSa61rLzc01+/fvN3a73Tz00EOmVatWLo8PFTvXaq0krul2dlFrfV3mXNL48eNN8+bN3doXZaPW+rrMuaTRo0ebK664wq19fZXPNN3sdrsZPny4qV+/vtm5c2ep7cUXFPzwww8d67Zv317qgoKbN282derUMWPGjHH5WvPmzTOhoaFm0aJFbudWr149M2nSJMe6jIwMpwsKluXNN9804eHh5V4IsPiivAUFBY51jz76KDdSqELUmnu1Vuyvf/2r6dq1q1v5ozTqzf16O3HihGnRooW5//773cofzqi1imtt5syZJiQkxPz+++9u5Y2yUWvu/10rKCgwTZo0MY8++qhb+cPZuVprJdF0Ozuotco1QsaNG2eSkpLc2hfOqLXK1VqPHj3MjTfe6Na+vspnmm7/+Mc/TExMjElJSXG6PWxOTo5jn3vvvdckJiaaZcuWmTVr1pgOHTqYDh06OLb/+OOPpnbt2ub22293inH48GHHPnPnzjWBgYHm1VdfddonPT293PwmTpxoYmNjzccff2w2bdpk+vbt63TrXGOMmT59ulm7dq3ZsWOHeeWVV0xYWJiZNm1auXHT09NN3bp1zR133GE2b95s5s+fX+oWzPn5+Wb9+vVm/fr1Jj4+3owePdqsX7/e7buDwBm15rrW/u///s98/vnnJjU11WzdutVMmjTJBAYGmjfeeMPt8wtn1Jvrehs3bpz57LPPTGpqqlm7dq255ZZbTGhoqNmyZYvb5xenUGuua61Y586dzcCBAys8lygftea61r777juzYMECk5qaav73v/+Zq666yjRu3Lja3YntbDlXa82YkyNY1q9fb66//nrTrVs3x3eBkorXXXLJJea2224z69ev5zP0DFFrrmvtlVdeMYsXLzY7d+40O3fuNP/+979NVFSUefzxx905tTgNtea61qZMmWIWLVpkdu3aZX788UczatQoY7PZzJdffunOqfVZPtN0k1Tmz8yZMx375ObmmmHDhpkaNWqY8PBwc+ONN5qDBw86tj/99NNlxijZhe/atWuZ+wwePLjc/Ox2u3nyySdN3bp1TUhIiLn66qvNjh07nPa54447TFxcnAkODjatW7c2b7/9tlvHvnHjRtO5c2cTEhJiGjRoYCZOnOi0fc+ePWXmzOijM0Otua61xx9/3DRt2tSEhoaaGjVqmA4dOpj58+e7FRtlo95c19t9991nEhMTTXBwsKlbt67p06ePWbdunVuxURq15rrWjDn1v8Sff/65WzHhGrXmutZSUlJMy5YtTUhIiKlZs6a54447zIEDB9yKjdLO5VpLSkoqM6eKzg+jj84Mtea61l5++WVzwQUXmPDwcBMdHW3atWtnXnvtNVNUVORWfDij1lzX2vPPP2+aNGliQkNDTVxcnOnWrZtZtmyZW7F9mWWMMQIAAAAAAADgMdxKCQAAAAAAAPAwmm4AAAAAAACAh9F0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAACgmujWrZvuu+++c+61AQAAfBFNNwAAgHNQSkqKLMtSenq6R563cOFCjR8/3nMJAgAA+LlAbycAAAAA/xcXF+ftFAAAAHwKI90AAAD8UHZ2tu68805FRkYqPj5ekydPdto+Z84ctW/fXlFRUapXr55uu+02HT58WJK0d+9ede/eXZJUo0YNWZalIUOGSJLsdrsmTJigxo0bKywsTG3atNGHH35Y4fNOn17aqFEjPfvss44ck5KStHjxYh05ckR9+/ZVZGSkWrdurTVr1jjlvXLlSl155ZUKCwtTQkKCRo4cqezsbE+fPgAAgCpH0w0AAMAPjRkzRsuXL9fHH3+szz//XCkpKVq3bp1je2FhocaPH6+NGzdq0aJF2rt3r6NBlpCQoAULFkiSduzYoYMHD2ratGmSpAkTJujtt9/W66+/ri1btuj+++/X7bffruXLl5f7vLJMmTJFnTp10vr163Xttdfqjjvu0J133qnbb79d69atU5MmTXTnnXfKGCNJSk1NVa9evdS/f39t2rRJ7733nlauXKkRI0ZUxSkEAACoUpYp/lcOAAAA/EJWVpZq1qypd955R3/5y18kSceOHVPDhg119913a+rUqaWes2bNGl166aU6fvy4IiMjlZKSou7duystLU2xsbGSpPz8fMXFxenLL79Uhw4dHM/929/+ppycHM2bN6/M50knR7q1bdvW8dqNGjXSlVdeqTlz5kiSDh06pPj4eD355JN65plnJEnfffedOnTooIMHD6pevXr629/+poCAAM2YMcMRd+XKleratauys7MVGhrqwbMIAABQtbimGwAAgJ9JTU1VQUGBLr/8cse6uLg4tWjRwrG8du1ajR07Vhs3blRaWprsdrskad++fWrVqlWZcXfv3q2cnBz17NnTaX1BQYHatWtX6Txbt27teFy3bl1J0kUXXVRq3eHDh1WvXj1t3LhRmzZt0ty5cx37GGNkt9u1Z88etWzZstI5AAAAeAtNNwAAgGomOztbycnJSk5O1ty5c1W7dm3t27dPycnJKigocPm8rKwsSdKSJUvUoEEDp20hISGVziMoKMjx2LIsl+uKG4JZWVm65557NHLkyFKxEhMTK/36AAAA3kTTDQAAwM80adJEQUFB+v777x3NqLS0NO3cuVNdu3bV9u3bdfToUU2cOFEJCQmSVOqGBcHBwZKkoqIix7pWrVopJCRE+/btU9euXct87bKe5ykXX3yxtm7dqqZNm3o8NgAAwNnGjRQAAAD8TGRkpIYOHaoxY8Zo2bJl2rx5s4YMGSKb7eQ/7RITExUcHKzp06frp59+0uLFizV+/HinGElJSbIsS5988omOHDmirKwsRUVFafTo0br//vs1e/Zspaamat26dZo+fbpmz57t8nme8vDDD+ubb77RiBEjtGHDBu3atUsff/wxN1IAAAB+iaYbAACAH3rxxRd15ZVX6vrrr1ePHj3UuXNnXXLJJZKk2rVra9asWfrggw/UqlUrTZw4UZMmTXJ6foMGDTRu3Dg98sgjqlu3rqOxNX78eD355JOaMGGCWrZsqV69emnJkiVq3Lhxuc/zhNatW2v58uXauXOnrrzySrVr105PPfWU6tev77HXAAAAOFu4eykAAAAAAADgYYx0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICH0XQDAAAAAAAAPIymGwAAAAAAAOBhNN0AAAAAAAAAD6PpBgAAAAAAAHgYTTcAAAAAAADAw2i6AQAAAAAAAB5G0w0AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAPo+kGAAAAAAAAeBhNNwAAAAAAAMDDaLoBAAAAAAAAHkbTDQAAAAAAAPAwmm4AAAAAAACAh9F0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICH0XQDAAAAAAAAPIymGwAAAAAAAOBhNN0AAAAAAAAAD6PpBgAAAAAAAHgYTTcAAAAAAADAw2i6AQAAAAAAAB5G0w0AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAPo+kGAAAAAAAAeBhNNwAAAAAAAMDDaLoBAAAAAAAAHhbo7QQAANXPiRMnVFBQ4O00AACAm4KDgxUYyNdDAPAk/qoCADzGGKN9+/bp999/93YqAACgkmrVqqXExERZluXtVACgWqDpBgDwmOKGW4MGDRQZGSmbjasYAADg6+x2u7KysnTgwAEVFRXpvPPO83ZKAFAtWMYY4+0kAAD+78SJE9q4caMaNGigevXqeTsdAABQSYcOHdKBAweUlZWlzp07KyAgwNspAYBfYwgCAMAjiq/hFhkZ6eVMAADAmSj+DP/xxx+1cuVKL2cDAP6PphsAwKOYUgoAgH8q/gyPiIjQli1blJ+f7+WMAMC/8c0IAAAAAOAQFBSkwsJC5eTkeDsVAPBrNN0AAChHSkqKLMtSenq6t1PxC8YY3X333YqLi5NlWdqwYYO6deum++67z7FPo0aNNHXqVMeyZVlatGjRn3rdIUOGqF+/fn8qRkXGjh2rtm3bVulrFPvqq6/UsmVLFRUV/ak4nji3UunfmS+oypx88Xgra+/evY73oC/EKamgoECNGjXSmjVrPBYTnmVZlrj0NwD8edy9FAAAeMzSpUs1a9YspaSk6LzzzlOtWrW0cOFCBQUFeTs1v/LQQw/piSee+NMXMT948KBq1Kjxp/NZvXq1IiIi/nQcf1HZ401JSVH37t2Vlpam2NjYqkusig0ZMkTp6elOjdqEhAQdPHhQtWrV8tjrBAcHa/To0Xr44Yf11VdfeSwuAAC+hqYbAKBK/KPwaW217/ZqDq1sTfWvoHFezeFck5qaqvj4eHXs2NGxLi4uzosZ+Z+VK1cqNTVV/fv3/9OxPHUn4dq1a3skjr/w1vEaY1RUVKTAQN/5J3pAQECV3JF60KBBevDBB7VlyxZdcMEFHo8PAIAvYHopAKBKbLXv1vdmo1d/3G365efna+TIkapTp45CQ0PVuXNnrV69usx9c3Jy1Lt3b3Xq1Ikpp6cZMmSI/vnPf2rfvn2yLEuNGjWSpFLTSyvyyy+/aMCAAYqNjVVcXJz69u2rvXv3OrYXFRXpgQceUGxsrGrWrKmHHnqo3GlQmZmZCgsL06effuq0/qOPPlJUVJTjmkUPP/ywmjdvrvDwcJ133nl68sknVVhY6DJuWcfVr18/DRkyxLGcn5+v0aNHq0GDBoqIiNDll1+ulJSUco9//vz56tmzp0JDQx3riqe2vvXWW0pMTFRkZKSGDRumoqIivfDCC6pXr57q1Kmj5557zilWyemlBQUFGjFihOLj4xUaGqqkpCRNmDBB0slmz9ixY5WYmKiQkBDVr19fI0eOdMQpa0rwv//9b914440KDw9Xs2bNtHjxYqfXXrx4sZo1a6bQ0FB1795ds2fPrtRU7QULFuiCCy5QSEiIGjVqpMmTJ5fa5/jx47r11lsVERGhBg0a6NVXX3Vsq+iYylOZ4927d6+6d+8uSapRo4Ysy3LUgN1u14QJE9S4cWOFhYWpTZs2+vDDDx1xi6evf/rpp7rkkksUEhKilStXOn7fM2bMUEJCgsLDwzVgwABlZGQ4nmu32/XMM8+oYcOGCgkJUdu2bbV06VKXx1RUVKShQ4c6cmnRooWmTZvm2D527FjNnj1bH3/8sSzLkmVZSklJKXN66fLly3XZZZcpJCRE8fHxeuSRR3TixAnH9m7dumnkyJF66KGHFBcXp3r16mns2LFO+dSoUUOdOnXS/Pnz3fqdnIuOHz+uQYMGKSIiQvHx8ZoyZYrT3505c+aoffv2ioqKUr169XTbbbfp8OHDjucX19eSJUvUunVrhYaG6oorrtDmzZu9dEQAcO6h6QYAOOc99NBDWrBggWbPnq1169apadOmSk5O1rFjx5z2S09PV8+ePWW32/XFF194ZRpZ4cEC5a7Pcvop2JMnSbLn2Utty12f5Xhu/o7cUttOHDvZVDpxpLDUtvxduZXKbdq0aY4mwMGDB102Lss9vsJCJScnKyoqSitWrNCqVasUGRmpXr16qaCgQJI0efJkzZo1S2+99ZZWrlypY8eO6aOPPnIZMzo6Wtddd53mzZvntH7u3Lnq16+fwsPDJUlRUVGaNWuWtm7dqmnTpumNN97QlClTKn0MJY0YMULffvut5s+fr02bNukvf/mLevXqpV27drl8zooVK9S+fftS61NTU/Xpp59q6dKlevfdd/Xmm2/q2muv1f79+7V8+XI9//zzeuKJJ/T999+XGffll1/W4sWL9f7772vHjh2aO3euozG6YMECTZkyRTNmzNCuXbu0aNEiXXTRReUe27hx4zRgwABt2rRJffr00aBBgxzvmT179ujmm29Wv379tHHjRt1zzz16/PHH3Txr0tq1azVgwADdcsst+vHHHzV27Fg9+eSTmjVrltN+L774otq0aaP169frkUce0ahRo/TFF1+c8TGdyfEmJCRowYIFkqQdO3bo4MGDjmbWhAkT9Pbbb+v111/Xli1bdP/99+v222/X8uXLnWI/8sgjmjhxorZt26bWrVtLknbv3q33339f//nPf7R06VKtX79ew4YNczxn2rRpmjx5siZNmqRNmzYpOTlZN9xwg8vastvtatiwoT744ANt3bpVTz31lB577DG9//77kqTRo0drwIAB6tWrlw4ePKiDBw86jVgtduDAAfXp00eXXnqpNm7cqH/9619688039eyzzzrtN3v2bEVEROj777/XCy+8oGeeecbxuyl22WWXacWKFZX5NXiM/WC2itYfdvqx7znZ1DR5J0ptK1p/qplVtCOt9HOP/fF3+Ehu6efuSj+jHB944AGtWrVKixcv1hdffKEVK1Zo3bp1ju2FhYUaP368Nm7cqEWLFmnv3r1OTf9iY8aM0eTJk7V69WrVrl1b119/fbn/oQAA8CADAIAHZGdnmzVr1pjs7GxjjDFd8m4zIbkXePWnS95tFeadlZVlgoKCzNy5cx3rCgoKTP369c0LL7xgvv76ayPJbNu2zbRu3dr079/f5OfnV9l5rMhvz+wzm4O/cfr5ZfBOY4wxebtySm3bHPyN47mpV24qtS1t7mFjjDG/v3aw1LY9fbZUOr8pU6aYpKQkp3Vdu3Y1o0aNciwnJSWZKVOmOJYlmY8++sgYY8ycOXNMixYtjN1ud2zPz883YWFh5rPPPjPGGBMfH29eeOEFx/bCwkLTsGFD07dvX5d5ffTRRyYyMtJRnxkZGSY0NNR8+umnLp/z4osvmksuucSx/PTTT5s2bdq4PC5jjOnbt68ZPHiwMcaYn3/+2QQEBJgDBw447XP11VebRx991OXrxsTEmLfffttp3dNPP23Cw8NNZmamY11ycrJp1KiRKSoqcqxr0aKFmTBhgmO55Ln95z//aa666iqnc1ts8uTJpnnz5qagoKDMnMr6nT3xxBOO5aysLCPJcT4ffvhhc+GFFzrFePzxx40kk5aW5vLYi912222mZ8+eTuvGjBljWrVq5ZRTr169nPYZOHCg6d27t1vHVJ7KHm/x34mSx5aXl2fCw8PNN9+ceg8aY8zQoUPNrbfe6vS8RYsWOe3z9NNPm4CAALN//37Huk8//dTYbDZz8OBBY4wx9evXN88995zT8y699FIzbNgwY4wxe/bsMZLM+vXrXR7n8OHDTf/+/R3LgwcPLvU+Oj3OY489Vuo9+uqrr5rIyEhHLXbt2tV07ty5VG4PP/yw07pp06aZRo0aucyvKuWO+86kB73s9JN958m/MSd2pZXalh70suO5xzu/X2pb/jvbjDHG5L22sdS2rD6LysyhPJmZmSYoKMh88MEHjnXp6ekmPDy81N+dYqtXrzaSzPHjx40xp+pr/vz5jn2OHj1qwsLCzHvvvVdmjOLP8nfeecdMmTLFHDt2rNK5AwBO8Z0LRgAA4AWpqakqLCxUp06dHOuCgoJ02WWXadu2bbr00kslST179tRll12m9957709f3P7PqPG3uoq6zvnC+AGxJz/OgxqG6LzvXI/kafBGU9lznO+GGZQUIkmKubmmwq+IdNpmizz7x7lx40bt3r1bUVFRTuvz8vKUmpqqjIwMHTx4UJdffrljW2BgoNq3b1/uFNM+ffooKChIixcv1i233KIFCxYoOjpaPXr0cOzz3nvv6eWXX1ZqaqqysrJ04sQJRUdHn/Gx/PjjjyoqKlLz5s2d1ufn56tmzZoun5ebm+s0tbRYo0aNnM5L3bp1FRAQIJvN5rSu5PSykoYMGaKePXuqRYsW6tWrl6677jpdc801kqS//OUvmjp1qs477zz16tVLffr00fXXX1/utcWKR2RJUkREhKKjox2vvWPHDsd7p9hll13mMtbptm3bpr59+zqt69Spk6ZOnaqioiLHe7BDhw5O+3To0MExLfRMjqk85R1vWXbv3q2cnBz17NnTaX1BQYHatWvntK6skY2JiYlq0KCBY7lDhw6y2+3asWOHwsPD9euvvzr93ZJOnqONGze6zOnVV1/VW2+9pX379ik3N1cFBQWVviPvtm3b1KFDB1mW5fS6WVlZ2r9/vxITEyU5ny9Jio+PL3W+wsLCHNO7z7bgv1+ooOsbO62zYk/+PbQ1jFTk9wNdPjfs3z2kHOeRYlbSyb8VQTc3U+AVp10DLzK40vn99NNPKiwsdHrfxMTEqEWLFo7ltWvXauzYsdq4caPS0tJkt9slSfv27VOrVq0c+5V8n8TFxalFixbatm1bpXMCAFQeTTcAQJVoZWsq2X0gBw+59tprtWDBAm3duvVPTVH7s4LigxUUX/YXOFuoTWHtIsvcJkkhLcJcbgusHaTA2t6/w2hWVpYuueQSzZ07t9S2P3Nx++DgYN18882aN2+ebrnlFs2bN08DBw50NGC+/fZbDRo0SOPGjVNycrJiYmI0f/78Mq8jVsxms5Vq9JWcspWVlaWAgACtXbu2VKM2MtL176lWrVpKS0srtf70O8BallXmuuIv3qe7+OKLtWfPHn366af68ssvNWDAAPXo0UMffvihEhIStGPHDn355Zf64osvNGzYML344otavny5yzvPVua1veFMjqk8lT3erKyTU7uXLFni1DyTpJCQEKfls3Fn2Pnz52v06NGaPHmyOnTooKioKL344osupyP/We6cr2PHjnntphW2+AgpvuzzboUGKqBdHZfPDWjh+o7AttphUm3Xf2s9JTs7W8nJyUpOTtbcuXNVu3Zt7du3T8nJyY6p+AAA76PpBgCoEv5y19AmTZooODhYq1atUlJSkqSTjZPVq1c7XSR/4sSJioyM1NVXX62UlBSnUQTwnIsvvljvvfee6tSp43KUWXx8vL7//nt16dJFknTixAmtXbtWF198cbmxBw0apJ49e2rLli1atmyZ0zWovvnmGyUlJTldd+znn38uN17t2rV18OBBx3JRUZE2b97suKh+u3btVFRUpMOHD+vKK68s/8BLaNeunbZu3er2/pURHR2tgQMHauDAgbr55pvVq1cvHTt2THFxcQoLC9P111+v66+/XsOHD9f555+vH3/8scLzWpYWLVrov//9r9O6ylzjr2XLllq1apXTulWrVql58+ZODczvvvvOaZ/vvvtOLVu2dCx78pjKExx8shFeVHRqJGmrVq0UEhKiffv2qWvXrpWOuW/fPv3666+qX7++pJPHZrPZ1KJFC0VHR6t+/fpatWqVU+xVq1a5HFG4atUqdezY0em6cKmpqaWOo+QxlKVly5ZasGCBjDGO0W6rVq1SVFSUGjZsWKlj3Lx5c6lRfzjpvPPOU1BQkFavXu0YPZiRkaGdO3eqS5cu2r59u44ePaqJEycqISFBkrRmzZoyY3333XeOGGlpadq5c6fT+wQAUHW4kQIA4JwWERGhf/zjHxozZoyWLl2qrVu36u9//7tycnI0dOhQp30nTZqkQYMG6aqrrtL27du9lHH1NmjQINWqVUt9+/bVihUrtGfPHqWkpGjkyJHav3+/JGnUqFGaOHGiFi1apO3bt2vYsGFu3RGzS5cuqlevngYNGqTGjRs7TVFt1qyZ9u3bp/nz5ys1NVUvv/xyuTdnkKSrrrpKS5Ys0ZIlS7R9+3b94x//cMqjefPmGjRokO68804tXLhQe/bs0Q8//KAJEyZoyZIlLuMmJydr5cqVFR5PZb300kt69913tX37du3cuVMffPCB6tWrp9jYWM2aNUtvvvmmNm/erJ9++knvvPOOwsLCHI3oyrrnnnu0fft2Pfzww9q5c6fef/99x00QSk5LdOXBBx/UV199pfHjx2vnzp2aPXu2XnnlFY0ePdppv1WrVumFF17Qzp079eqrr+qDDz7QqFGjJMnjx1SepKQkWZalTz75REeOHFFWVpaioqI0evRo3X///Zo9e7ZSU1O1bt06TZ8+XbNnz64wZmhoqAYPHqyNGzdqxYoVGjlypAYMGKB69U5OXRwzZoyef/55vffee9qxY4ceeeQRbdiwwXH8p2vWrJnWrFmjzz77TDt37tSTTz5ZqhHaqFEjbdq0STt27NDvv/9e5sX2hw0bpl9++UX//Oc/tX37dn388cd6+umn9cADDzhNdXbHihUrHFOc4SwqKkqDBw/WmDFj9PXXX2vLli0aOnSobDabLMtSYmKigoODNX36dP30009avHixxo8fX2asZ555Rl999ZU2b96sIUOGqFatWurXr9/ZPSAAOEfRdAMAnPMmTpyo/v3764477tDFF1+s3bt367PPPlONGqWnEE2ZMkUDBgzQVVddpZ07d3oh2+otPDxc//vf/5SYmKibbrpJLVu21NChQ5WXl+cY+fbggw/qjjvu0ODBgx3T5G688cYKY1uWpVtvvVUbN27UoEGDnLbdcMMNuv/++zVixAi1bdtW33zzjZ588sly4911110aPHiw7rzzTnXt2lXnnXeeY5RbsZkzZ+rOO+/Ugw8+qBYtWqhfv35OI1fKMmjQIG3ZskU7duyo8JgqIyoqSi+88ILat2+vSy+9VHv37tV///tf2Ww2xcbG6o033lCnTp3UunVrffnll/rPf/5T7rXnytO4cWN9+OGHWrhwoVq3bq1//etfjlGEp0+tLMvFF1+s999/X/Pnz9eFF16op556Ss8880ypOzM++OCDWrNmjdq1a6dnn31WL730kpKTkyXJ48dUngYNGmjcuHF65JFHVLduXY0YMUKSNH78eD355JOaMGGCWrZsqV69emnJkiVq3LhxBRGlpk2b6qabblKfPn10zTXXqHXr1nrttdcc20eOHKkHHnhADz74oC666CItXbpUixcvVrNmzcqMd8899+imm27SwIEDdfnll+vo0aNOo94k6e9//7tatGih9u3bq3bt2qVGGxYf63//+1/98MMPatOmje69914NHTpUTzzxRGVOmb799ltlZGTo5ptvrtTzziUvvfSSOnTooOuuu049evRQp06d1LJlS4WGhqp27dqaNWuWPvjgA7Vq1UoTJ07UpEmTyowzceJEjRo1SpdccokOHTqk//znP47RmQCAqmWZ8q46DACAm3JycrRt2za1bNlS4eHh3k4H8GtjxoxRZmamZsyY4e1UPOa5557T66+/rl9++cXbqfi8sWPHatGiRdqwYYO3U6kyAwcOVJs2bfTYY495OxW/kZ2drQYNGmjy5MmlRmKXJSUlRd27d1daWppiY2Pdeo3iz/Lt27fryJEjGjx4cJn/AQUAcA8j3QAAAHzM448/rqSkJJ+6MUFlvfbaa1q9erV++uknzZkzRy+++KIGDx7s7bTgAwoKCnTRRRfp/vvv93YqPm39+vV69913HVOTi0fonn5nXwCA7+JGCgAAAD4mNjbW70cA7dq1S88++6yOHTumxMREPfjgg3r00UclSb1799aKFSvKfN5jjz1Wpce+YsUK9e7d2+X24ruOouoEBwdXejrquWrSpEnasWOHgoODdckll2jFihWqVauWt9MCALiJ6aUAAI9geikAdx04cEC5ubllbouLi1NcXFyVvXZubq4OHDjgcnvTpk2r7LUBX8f0UgDwLEa6AQAA4Kxq0KCB1147LCyMxhoAADgruKYbAMCj/PkaVAAAnMv4DAcAz6LpBgDwiODgYElcDwkAAH9V/BleUFDg5UwAoHpgeikAwCMCAwNVq1Ytx7WSIiMjZbPxfzsAAPg6u92urKwsHThwQOnp6SoqKvJ2SgBQLdB0AwB4TGJioiSVe5FyAADgm9LT0/Xbb7/pxIkTCgwMdIxiBwCcGZpuAACPsSxLSUlJKiws1Ndffy1JqlGjhizL8nJmAACgPIWFhbLb7SooKNDRo0fVvHlz7kYOAH8STTcAgMc1bdpUubm5+vrrr3X06FFvpwMAANxgjJFlWWrWrJl69+7Nf5oBwJ9kGWOMt5MAAFRPhw4d4towAAD4CcuyFBYWprp16zLKDQA8gKYbAAAAAAAA4GHcVg4AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAP+//IU26osJkF5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Update the specific settings\n", + "your_dataset.update_gap_and_missing_fill_settings(missing_obs_interpolation_method = 'time')\n", + "\n", + "#Interpolate the missing timestamps\n", + "your_dataset.fill_missing_obs_linear(obstype='temp')\n", + "\n", + "#Inspect the filled values by plotting or printing out the info.\n", + "your_dataset.get_station('vlinder05').make_plot(colorby='label')\n", + "your_dataset.missing_obs.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "7838e138-3eb7-4da8-8e7b-b435e88918ed", + "metadata": {}, + "source": [ + "## Fill gaps\n", + "\n", + "Because gaps can span longer periods, interpolation is not (always) the most suitable method to fill the gaps. The following method can be used to fill the gaps:\n", + " * interpolation: linear interpolation of the gaps. Use the [fill_gaps_linear()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_linear) method for this.\n", + " * Debias ERA5 gapfill: Use ERA5 and a debiasing algorithm to fill the gaps by calling the [fill_gaps_era5()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_era5) method.\n", + " * Automatic gapfill: A combination of the interpolation and ERA5-debias. For the shortest gaps interpolation is used and debias-ERA5 for the longer gaps. Use the [fill_gaps_automatic()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_automatic) method for this.\n", + "\n", + "Here is an example of using debias ERA5 gapfilling of temperature observations." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3f66d0f6-2912-40e3-aa50-0cb27821b495", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

To authorize access needed by Earth Engine, open the following\n", + " URL in a web browser and follow the instructions:

\n", + "

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=gOIKcfY39t-LaSM_esufmUl1XAlzLqE3KVIYY7vUJ04&tc=5laNPc-Y_M4z8qVxTUtp71dwfdgRuNHjkYgSdWvirrQ&cc=3Auxy8YEGzBho3lWk01G2QP8A9QF5VEoEoHxuxl65-0

\n", + "

The authorization workflow will generate a code, which you should paste in the box below.

\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter verification code: 4/1AfJohXnKdN9MAKx-q9l7U6FHNF4FR7u6VH8zU5WXCgT1sZMJKO7TfV3G3ig\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Successfully saved authorization token.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n" + ] + } + ], + "source": [ + "#Update the settings (definition of the period to calculate biases for)\n", + "your_dataset.update_gap_and_missing_fill_settings(\n", + " gap_debias_prefered_leading_period_hours=24,\n", + " gap_debias_prefered_trailing_period_hours=24,\n", + " gap_debias_minimum_leading_period_hours=6,\n", + " gap_debias_minimum_trailing_period_hours=6,\n", + " )\n", + "#(As a demonstration, we will fill the gaps of a single station. The following functions can also be\n", + "# directly applied to the dataset.)\n", + "your_station = your_dataset.get_station('vlinder05')\n", + "\n", + "\n", + "#Get ERA5 modeldata at the location of your stations and period.\n", + "ERA5_modeldata = your_station.get_modeldata(modelname='ERA5_hourly',\n", + " obstype='temp')\n", + "\n", + "#Use the debias method to fill the gaps\n", + "gapfill_df = your_station.fill_gaps_era5(modeldata=ERA5_modeldata,\n", + " method='debias',\n", + " obstype='temp')\n" + ] + }, + { + "cell_type": "markdown", + "id": "6cb0626d-a45c-4bd1-ad93-32c933f9d10c", + "metadata": {}, + "source": [ + "The gaps in the station are now filled. To inspect these filled values, you can plot them" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "524065e9-13cd-4359-8ca7-d9cdc931ace9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb5dXA8d/VsuQh7xEnjrN3yE6AkEGAsAqk7E3KKCOMQEsLtEBfKKOUWWhpocwABQoEKCPsBAjZJGSR5ezEe8lD1rzvH7I1Yide2j7ffvhU9+rquY8VWdY9Os85iqqqKkIIIYQQQgghhBBCiKDRRHoCQgghhBBCCCGEEELEGwm6CSGEEEIIIYQQQggRZBJ0E0IIIYQQQgghhBAiyCToJoQQQgghhBBCCCFEkEnQTQghhBBCCCGEEEKIIJOgmxBCCCGEEEIIIYQQQSZBNyGEEEIIIYQQQgghgkyCbkIIIYQQQgghhBBCBJkE3YQQQgghhBBCCCGECDIJugkhhBBCiLCqr6/n6quvJi8vD0VRmD9/frfHVBSFP/3pT97tl19+GUVR2L17d7fHDuWYQgghhIhfEnQTQgghRFRQFKVD/y1evDjSU42Yf/zjH7z88suRnka3Pfjgg7z88stcf/31LFiwgMsuuyzSU4q4AwcOcP7555OWlobZbOass85i586drY473O/Fww8/HIFZCyGEEOJIdJGegBBCCCEEwIIFCwK2X331Vb744otW+4cPHx7OaUWVf/zjH2RlZTF37txIT6Vbvv76a44++mjuvffekJ3jsssu48ILLyQhISFk5wiW+vp6jj/+eGpra7nrrrvQ6/U88cQTzJgxg3Xr1pGZmRlw/EknncTll18esG/cuHHhnLIQQgghOkCCbkIIIYSICpdeemnA9vLly/niiy9a7Y8XqqrS1NSEyWSK9FQ6rKGhgaSkpG6PU1ZWxogRI4Iwo8PTarVotdqQnqO7Wp7Pf/zjH2zfvp2VK1cyadIkAE499VRGjRrFY489xoMPPhjwuCFDhsTt74UQQggRT2R5qRBCCCFihtvt5sknn2TkyJEYjUZyc3O59tprqa6uDjiuX79+/OIXv2Dx4sVMnDgRk8nE6NGjvUtT33vvPUaPHo3RaGTChAmsXbs24PFz584lOTmZnTt3cvLJJ5OUlER+fj733Xcfqqp2a06fffaZd07/+te/AHjppZeYNWsWOTk5JCQkMGLECJ599tlWj9+0aRNLlizxLimcOXMmAH/6059QFKXV89VWDbJDa5/5j++fQdfy2CVLlnDDDTeQk5NDnz59Wj3OX1lZGVdddRW5ubkYjUbGjBnDK6+84r1/8eLFKIrCrl27+Pjjj70/x+FqpI0aNYrjjz++1X63203v3r0599xzDzuXtn72ln+D77//nsmTJ2M0GhkwYACvvvpqq8dv2rSJWbNmYTKZ6NOnD3/+859xu91tnuvTTz9l2rRpJCUlkZKSwumnn86mTZsCjml5TRUVFXHaaaeRkpLCJZdcAsA777zDpEmTvAE3gGHDhnHCCSfw9ttvt3lOq9VKU1PTYX9+IYQQQkSeBN2EEEIIETOuvfZabr/9dqZOncpTTz3Fr371K15//XVOPvlkHA5HwLE7duzg4osv5owzzuChhx6iurqaM844g9dff51bb72VSy+9lP/7v/+jqKiI888/v1VAxeVyccopp5Cbm8sjjzzChAkTuPfee1stiezMnLZu3cpFF13ESSedxFNPPcXYsWMBePbZZyksLOSuu+7iscceo6CggBtuuIG///3v3sc++eST9OnTh2HDhrFgwQIWLFjAH/7whyA+u2274YYb2Lx5M/fccw933HHHYY+zWq3MnDmTBQsWcMkll/DXv/6V1NRU5s6dy1NPPQV4lgYvWLCArKwsxo4d6/05srOz2xzzggsu4Ntvv6WkpCRg//fff8/Bgwe58MILO/3z7Nixg3PPPZeTTjqJxx57jPT0dObOnRsQJCspKeH4449n3bp13HHHHcyfP59XX33V+3P4W7BgAaeffjrJycn85S9/4e6772bz5s0cd9xxrYKJTqeTk08+mZycHB599FHOOecc3G4369evZ+LEia3Gnjx5MkVFRdTV1QXsf/nll0lKSsJkMjFixAjeeOONTj8PQgghhAgDVQghhBAiCs2bN0/1/6jy3XffqYD6+uuvBxy3aNGiVvsLCwtVQP3hhx+8+z777DMVUE0mk7pnzx7v/n/9618qoH7zzTfefVdccYUKqDfddJN3n9vtVk8//XTVYDCo5eXlXZ7TokWLWv2sjY2NrfadfPLJ6oABAwL2jRw5Up0xY0arY++99161rY91L730kgqou3bt8u4D1HvvvbfVsYWFheoVV1zR6rHHHXec6nQ6Wx1/qCeffFIF1Ndee827z263q8ccc4yanJysWiyWgHOdfvrp7Y65detWFVCffvrpgP033HCDmpycHPC8HfpztfWzt/wbfPvtt959ZWVlakJCgvqb3/zGu2/+/PkqoK5YsSLguNTU1IAx6+rq1LS0NPWaa64JmF9JSYmampoasL/lNXXHHXcEHFteXq4C6n333dfq5//73/+uAuqWLVu8+4499lj1ySefVD/44AP12WefVUeNGqUC6j/+8Y+2nkIhhBBCRJBkugkhhBAiJvz3v/8lNTWVk046iYqKCu9/EyZMIDk5mW+++Sbg+BEjRnDMMcd4t6dMmQLArFmz6Nu3b6v9bXWKvPHGG723FUXhxhtvxG638+WXX3ZpTv379+fkk09udR7/um61tbVUVFQwY8YMdu7cSW1tbYefo1C45pprOlQb7ZNPPiEvL4+LLrrIu0+v13PzzTdTX1/PkiVLOn3uIUOGMHbsWN566y3vPpfLxTvvvMMZZ5zRpXp4I0aMYNq0ad7t7Oxshg4dGvDv/8knn3D00UczefLkgONaloO2+OKLL6ipqeGiiy4K+PfXarVMmTKl1b8/wPXXXx+wbbVaAdps+GA0GgOOAVi6dCm33HILZ555Jtdddx1r1qxh1KhR3HXXXQHHCSGEECLypJGCEEIIIWLC9u3bqa2tJScnp837y8rKArb9A2sAqampABQUFLS5/9AabBqNhgEDBgTsGzJkCIB32WBn59S/f/82j1u6dCn33nsvy5Yto7GxMeC+2tpa7xwj4XBzPtSePXsYPHgwGk3gd7ot3Wb37NnTpfNfcMEF3HXXXRw4cIDevXuzePFiysrKuOCCC7o03qGvC4D09PSAf/89e/Z4g7H+hg4dGrC9fft2wBPIbYvZbA7Y1ul0reritQQObTZbq8e31Gw7UnDRYDBw4403egNwxx133GGPFUIIIUR4SdBNCCGEEDHB7XaTk5PD66+/3ub9h9YFO1x21uH2q4c0SAjFnNoKnhQVFXHCCScwbNgwHn/8cQoKCjAYDHzyySc88cQThy3e76+tJgrgyQrrqMMdG+nuqhdccAF33nkn//3vf5k/fz5vv/02qampnHLKKV0aL9j//uCp65aXl9fqfp0u8KN2QkJCq6BkRkYGCQkJFBcXt3p8y778/PwjzqMlkFxVVdXxyQshhBAi5CToJoQQQoiYMHDgQL788kumTp0alkCQ2+1m586d3uw2gG3btgGeLpjBmtP//vc/bDYbH374YUAWVltLEw8XXEtPTwegpqaGtLQ07/62ssvS09OpqakJ2Ge329sM+nRGYWEh69evx+12BwSWtmzZ4r2/K/r378/kyZN56623uPHGG3nvvfeYM2dOm8sxg6WwsNCbxeZv69atAdsDBw4EICcnhxNPPLFL59JoNIwePZrVq1e3um/FihUMGDCAlJSUI47RsjT2cA0phBBCCBEZUtNNCCGEEDHh/PPPx+Vycf/997e6z+l0tgokBcMzzzzjva2qKs888wx6vZ4TTjghaHNqybzyz7Sqra3lpZdeanVsUlJSm2O2BH++/fZb776GhgZeeeWVNo/1Pw7gueee61RWXFtOO+00SkpKAuqvOZ1Onn76aZKTk5kxY0aXx77gggtYvnw5L774IhUVFV1eWtpRp512GsuXL2flypXefeXl5a0yGk8++WTMZjMPPvhgq061LY/piHPPPZdVq1YFBN62bt3K119/zXnnnXfE8erq6njyySfJyspiwoQJHTqfEEIIIcJDMt2EEEIIERNmzJjBtddey0MPPcS6deuYPXs2er2e7du389///pennnqKc889N2jnMxqNLFq0iCuuuIIpU6bw6aef8vHHH3PXXXd5M4qCMafZs2djMBg444wzuPbaa6mvr+f5558nJyenVfbZhAkTePbZZ/nzn//MoEGDyMnJYdasWcyePZu+ffty1VVXcfvtt6PVannxxRfJzs5m7969AWNcffXVXHfddZxzzjmcdNJJ/PTTT3z22WdkZWV16/n69a9/zb/+9S/mzp3LmjVr6NevH++88w5Lly7lySefbDdb60jOP/98fvvb3/Lb3/6WjIyMLmeVddTvfvc7FixYwCmnnMItt9xCUlISzz33nDebr4XZbObZZ5/lsssuY/z48Vx44YXe5/zjjz9m6tSpAYHbw7nhhht4/vnnOf300/ntb3+LXq/n8ccfJzc3l9/85jfe4/7+97/z/vvvc8YZZ9C3b1+Ki4t58cUX2bt3LwsWLMBgMITk+RBCCCFE10jQTQghhBAx45///CcTJkzgX//6F3fddRc6nY5+/fpx6aWXMnXq1KCeS6vVsmjRIq6//npuv/12UlJSuPfee7nnnnuCOqehQ4fyzjvv8Mc//pHf/va35OXlcf3115Odnc2VV14ZcOw999zDnj17eOSRR6irq2PGjBnMmjULvV7PwoULueGGG7j77rvJy8tj/vz5pKen86tf/SpgjGuuuYZdu3bxwgsvsGjRIqZNm8YXX3zhzd7rKpPJxOLFi7njjjt45ZVXsFgsDB06lJdeeom5c+d2a+w+ffpw7LHHsnTpUq6++mr0en23xmtPr169+Oabb7jpppt4+OGHyczM5LrrriM/P5+rrroq4NiLL76Y/Px8Hn74Yf76179is9no3bs306ZNa/XcH05KSgqLFy/m1ltv5c9//jNut5uZM2fyxBNPBCwZnTp1Kj/88AP//ve/qaysJCkpicmTJ/Piiy8etpmDEEIIISJHUbtSNVYIIYQQIo7NnTuXd955h/r6+khPRQghhBBCxCip6SaEEEIIIYQQQgghRJBJ0E0IIYQQQgghhBBCiCCToJsQQgghhBBCCCGEEEEmNd2EEEIIIYQQQgghhAgyyXQTQgghhBBCCCGEECLIJOgmhBBCCCGEEEIIIUSQ6SI9gWjndrs5ePAgKSkpKIoS6ekIIYQQQgghhBBCiAhSVZW6ujry8/PRaA6fzyZBt3YcPHiQgoKCSE9DCCGEEEIIIYQQQkSRffv20adPn8PeL0G3dqSkpACeJ9JsNkd4NkIIIYQQQgghhBAikiwWCwUFBd6Y0eFI0K0dLUtKzWazBN2EEEIIIYQQQgghBEC7ZcikkYIQQgghhBBCCCGEEEEmQTchhBBCCCGEEEIIIYJMgm5CCCGEEEIIIYQQQgSZBN2EEEIIIYQQQgghhAiymA66PfTQQ0yaNImUlBRycnKYM2cOW7duDTimpKSEyy67jLy8PJKSkhg/fjzvvvtuhGYshBBCCCGEEEIIIXqCmA66LVmyhHnz5rF8+XK++OILHA4Hs2fPpqGhwXvM5ZdfztatW/nwww/ZsGEDZ599Nueffz5r166N4MyFEEIIIYQQQgghRDxTVFVVIz2JYCkvLycnJ4clS5Ywffp0AJKTk3n22We57LLLvMdlZmbyl7/8hauvvrrdMS0WC6mpqdTW1mI2m0M2dyGEEEIIIYQQQggR/ToaK4rpTLdD1dbWApCRkeHdd+yxx/LWW29RVVWF2+3mzTffpKmpiZkzZ7Y5hs1mw2KxBPwnhBBCCCGEEEIIIURnxE3Qze12M3/+fKZOncqoUaO8+99++20cDgeZmZkkJCRw7bXXsnDhQgYNGtTmOA899BCpqane/woKCsL1IwghhBBCCCGEEEKIOBE3Qbd58+axceNG3nzzzYD9d999NzU1NXz55ZesXr2a2267jfPPP58NGza0Oc6dd95JbW2t9799+/aFY/pCCCGEEEIIIYQQIo7ERU23G2+8kQ8++IBvv/2W/v37e/cXFRUxaNAgNm7cyMiRI737TzzxRAYNGsQ///nPdseWmm5CCCGEEEIIIYQQokVHY0W6MM4p6FRV5aabbmLhwoUsXrw4IOAG0NjYCIBGE5jQp9VqcbvdYZunEEKIrlvmXstG93aWuFayXd1Nf00f5mhP4kLt6ZGemhBCCCGEEEIcVkwH3ebNm8cbb7zBBx98QEpKCiUlJQCkpqZiMpkYNmwYgwYN4tprr+XRRx8lMzOT999/ny+++IKPPvoowrMXQgjREQtdX/A316ve7Z/cWziglkrQTQghhBBCCBHVYrqm27PPPkttbS0zZ86kV69e3v/eeustAPR6PZ988gnZ2dmcccYZHHXUUbz66qu88sornHbaaRGevRBCiI5oxOq9rW/+ruigWhap6QghhBBCCCFEh8R0pltHytENHjyYd999NwyzEUIIEQoNqi/oNkgp5Ge1iBIqcKtuNEpMf3ckhBBCCCGEiGMxHXQLp7ppb6PutoMbUIBkPTQ4Areh9b5DtjV5Sehm98X08HGR+UGEECLGWGny3u6lZPOzWoQLF2VUkUdWBGcmhBBCCCFCqe6Yt3AX1UKTs+1r8M5uQ/fHkDFlzGQ99dnK4V62ASTo1kHuzVWgmHw7mlyBBxy6fZhj3BVNOKqbJOgmhBAd1OC3vLQ3ud7bxWoZeYoE3YQQQggh4pV7bTm4m1e4tXcN3tltGVPG7Ma2u9xKR8i6HCGEEFGtUfVluhUovby3i6WumxBCCCGEECKKSdBNCCFEVGtppKBDRx8lz7t/gevDSE1JCCGEEEIIIdolQTchhBBRrSXoloSJCZpRXK05jyH0Z717C4tc30Z4dkIIIYQQQgjRNgm6CSGEiGot3UsTMTJGM4xfaI9nG7soYi9fuZdFeHZCCCGEEEII0TYJugkhhIhqLd1LE5ub2UzSHOW9b5V7fUTmJIQQQgghhBDtkaCbEEKIqNbSvTQRIwCZShoDlb4AbHbswOFyRGxuQgghhBBCCHE4ukhPQAghhDgct+qmCRvgqenW4pn37yD9OT2GHzU4v7Chn6iP1BSFEEIIIYQQok2S6SaEECJqNTYvLQUwKb6g21GVg9F/D2qjm8aVdZGYmhBCCCGEEEIckWS6dZDS1wwlLlBVUBQwaqHpkG1ove+QbSXLhP6Egsj+MEIIESNaOpdCYKZb4pQU723rynq4IazTEkIIIYQQYaAZkoZ7bx043G1fg3d2G7o/howpYxq1KOl6KGr/NSxBtw4yr70Ys9kc6WkIIUSP0tK5FMDUXNMNIGF0IopRQTFpcFU7IzE1IYQQQggRYinrL430FIRok2KxQOr17R4ny0uFEEJErYBMN7/lpRqDhqRZqbirXdQvqsFZLs0UhBBCCCGEENFFgm5CCCGiln9Nt0S/TDeAhMG+IJx1VX3Y5iSEEEIIIYQQHSFBNyGEEFHLf3lpol9NNwCTX103aaYghBBCCCGEiDZS062DavOeQ3Um+HYogErgNm3sO3Rbp0E7Oovk5ReEaKZCCBEfnnK+wn9di7zbicohQbdJSRgGG9Hl6HEWy/JSIYQQQoh4U5v2LDQ21+9t6/q6s9sEYQwZU8ZUwKK10RESdOsoh9v3jwWBT3hb24c7xuHGXdoQ1KkJIUQ8ecz5Il+4l1LiLsdIAqMYwnDNAM7RzA44Tl+QgLveReP2Jpo2NJL/7AAUjXKYUYUQQgghRMxpcvlut3cN3tltGVPG7M62w93GwK3J8lIhhBBRZb17K4vdK9jCTtIUM4WafCZqRjNUMyDgOEVRME32LDF1W1zYtlrbGk4IIYQQQgghIkIy3YQQQkSVGize268ZHiVLST/ssYmTk6n7oAoA64p6jMMTQz4/IYQQQgghhOgIyXQTQogIaaiq59NHP8LWYOPnrzdFejpRo1qt9d5OI+UIR4LpmGQSp5kxjknEuk46mAohhBBCCCGih2S6CSFEBNRXWHjp2hco3VbM4ue+oqm+id8uuoOCowojPbWIq27OdDOTjE458p8p09hkGn+wgAvUjpVVEEIIIYQQQoiwkEw3IYQIs7pyC/+6/B+4XW5sVjv2Jjt5Q/L5z22v4bQ7Iz29iGvJdEtXUts9VpOkxTjKs6TUtqkRV52rnUcIIYQQQgghRHhI0E0IIcLsk0f+h8PqYN/6PQw6ejB5g3tRtb+ShGQj3zz3VaSnF1Gqqnoz3TJoP+gGeJspKMkarGtliakQQgghhBAiOkjQTQghwmjNwlXs37Qfe6ONgtF9Ofv+87joscswJRvZuXIHW5f8TNnOslaPc7t7xtrJOhpw4clWS1PMHXpM4rQU9P0SUC1urCsk6CaEEEIIIYSIDhJ0E0KIMPrp47XsXbubyr2VTPvVDLL759B3bCFTLp5KzsBctn+/lZVvL/Me77Q7+eLpRbx248uoqhr3wbdqv86lHc50G5OMY7cNAOuKupDMSwghhBBCCCE6SxopdJD+smEoqy3gVkGjoMlJxF3WGLANtNp36LZmYCq6mX0i/NMIISLB5XThtDnQGnSYUoyMPWOC974Tb5zNuv+toc/oAhb/6yuOvXQa5uwU/nX539m7dg/2RjvrPvqRU35zOrNvOTWCP0VoBXQu7WCmm2GIEU2aFneNC+uqelRVRVGUUE1RCCGEEEKEif7Xo3BvqMBd2dTm9XVnt6H9a3YZU8bsyLa+QAcvt/8alqBbByU+OROzuWMXgEII0Zaa4ho2fbkRgL5j+6HR+pKNExITmHj2ZD555H8AbPpiPXlDemEyJ5GclULFrnJwQUN1Q0TmHi5VfkG3dDr2nqtoFEyTk7Fvb0LXS49jrw1DoTFUUxRCCCGEEGGS+LeZkZ6CEG1yWywdCrrJ8lIhhAiTunLf0snMwqxW9486+SgAUvNSObDpAO/c9RY/ffSjJ+DWrLGmMfQTjZAm1cYBtcS73ZHupS0SJ6fg2GXD+kM91lVS100IIYQQQggReTEddHvooYeYNGkSKSkp5OTkMGfOHLZu3drquGXLljFr1iySkpIwm81Mnz4dq9UagRkLIXqyujJf0C0lK6XV/fnDezPw6EHUltSy8u1lWJqPT8tP9x7TWBO/mW5L3Cu5xvlH0kjhROUY5mrP7vBjTROTvbelmYIQQgghhBAiGsT08tIlS5Ywb948Jk2ahNPp5K677mL27Nls3ryZpKQkwBNwO+WUU7jzzjt5+umn0el0/PTTT2g0nYs3Oj7bTeMWK7hUFK2CkpuIu7QxYBtote/QbU3vZLSD0tAOTW/njEKIeOOf6ZaS3XrppKIo9B7Zh6LlO3A5XN4AmznHTM3BagAaquI36LZa9Sy9raGObCWTTCWtw481TfYF3RpXSjMFIYQQQoh44Fi0G9euWtSKpjavrzu7De1fs8uYMmZHtu3paodewzEddFu0aFHA9ssvv0xOTg5r1qxh+vTpANx6663cfPPN3HHHHd7jhg4d2ulzNV68CJ1i6t6Emym9kzDvujIoYwkhYkdduS8YlJLdOtMNYNTso9jxw3b0JgN7ftwFgDk3lYSkBGwNtrjOdPvRvcl7+w+66zv1WF2mnuST03A3ulGb3LjtbjSGmE7mFkIIIYTo8RrnfOQpXi9ElLGqHVs9GVdXJLW1ngLcGRkZAJSVlbFixQpycnI49thjyc3NZcaMGXz//feHHcNms2GxWAL+E0KIYKirOHKmG8CgY4ZQfaDKG3ADSMkyk5jmyd6N55pudWoDCgppmBmo9O3047WZOhq/s2BdVY9tffw+T0IIIYQQQojYEDdBN7fbzfz585k6dSqjRo0CYOfOnQD86U9/4pprrmHRokWMHz+eE044ge3bt7c5zkMPPURqaqr3v4KCgrD9DEKI+GYpaz/optVrGX7CyIB9KVnJJKZ70qIbqutR1fj7tk9VVb5VV6FFwwClAEVROj2GabIve7BxhSwxFUIIIYQQQkRW3ATd5s2bx8aNG3nzzTe9+9xuNwDXXnstv/rVrxg3bhxPPPEEQ4cO5cUXX2xznDvvvJPa2lrvf/v27QvL/IUQ8a9yb4X3dluNFFqM/cX4gO6mKdlmktI9mW5upxtbgy10k4wQOw4AnLhIpGtL+RP967qtlmYKQgghhBBCiMiK6ZpuLW688UY++ugjvv32W/r06ePd36tXLwBGjBgRcPzw4cPZu3dvm2MlJCSQkJAQuskKIXqkTV9tRFXBZDahS9BjMBkOe+yQ44ZRta/Su52cleJdXgrQWN2AMdkY0vmGWxO+QKJROfxzcyTGoxJJnGnGud9O0yoJugkhhBBCCCEiK6aDbqqqctNNN7Fw4UIWL15M//79A+7v168f+fn5bN26NWD/tm3bOPXUU8M5VREjVFVFVdVOd7cV4kjcbjdvzH+V+oo6EtOTuP+nh494vMlsIndQHmU7y9An6EhMT2La3BmMOW0sienJJGcePksuVgUE3ejaFx+KXgN2FfuOJgCc5Q502fqgzE8IIYQQQgghOiumg27z5s3jjTfe4IMPPiAlJYWSkhIAUlNTMZlMKIrC7bffzr333suYMWMYO3Ysr7zyClu2bOGdd96J8OxFNFn59nKqD1ZRc6AavcnAL//v3C7VlBLiUFaLlf0b91Ff4akx1ntknw69tm5691YSM5K8AeDV765k7YercTndJGcm02dUfNWbbMLuvW2ka5luAKbJyTT+4HmurSvrSTk9vdtzE0IIIYQQQoiuiOmg27PPPgvAzJkzA/a/9NJLzJ07F4D58+fT1NTErbfeSlVVFWPGjOGLL75g4MCBYZ6tiGY/frCan7/eBApk988hoyCTmdfMivS0Yk7D9xb0/Q08mbMAO3au1V1EtpIR6WlF1Iq3lrHwnv+CAqYUE2N/Ma5Dj0s+pOZbWVEpGz/fABCXr02b6st0S+hiphu0NFMo5j/3fMOGkS+h2hSmaMZyne4iMpW07k80ijWqVorVct5xLWKlez0OHGQrmfxLfx86Jab/3AshhBBCCBGTYvpTeEc7+N1xxx3ccccdIZ6NiFXFWw9SfbCapIxkmuqt6Aw6Fj32MWn56Yw9vWMBEgGqW2Xv2VvYk1HMPeueAmC7updXDH+J8Mwia9eqIs8NFeb9dz69huV3aRyNzrfk2eVyB2NqUcV/ealJ6XrQLeWUNIYemEhC6o80uu18r67hc9dSPnB/ycqEd4Mx1ai1yr2Bkx1XApBCEnU0gApXqedyrDI+wrMTQgghhBCi55HCVaLHa6xppGTLQRqq6uk3YQClRSXkD8/n9ZtfxlJuifT0YoZ9qxV3rYvEel+B/wYaIzijyFNV1Rt0S0hKIH9Eb3SGrn3XodVpvbfdDldQ5hdNApeXdj3opknSosvSY1aSMSvJaPAs5XURf4HKQ1VQ7b2dRKL39iLXd5GYjhBCCCGEED1eTGe6hVPSV+dgPOgEtwqKgpJpRK1qCtgGWu07dFuTZULTK6mds4lwsjf6LvYHThlE4bh+LHnua0adchTr/vcj06+cGbnJxZDGFZ5ukYkNvoBJfQ8PulXtqySzbxbpfTJJy0sLCJx1llbve6zLGX9BN6va5L3dnaBbi1t0V3ALV5DTdDQW6nHi7PaY0a5C9QXdbtP+igfrnuWypadz/Maj4M4ITkwIIYQQoouSll+Au7gBtcbW5vV1Z7eh/Wt2GVPG7Mi2y+iEGb9v9zUsQbcO0o3NJmG6OdLTECFgb/SrJZWUwAk3zObrf3zBTx+tpba4RoJuHWTbbiVxWgqGBpN3X6NqjeCMIm/Xqp3sXOnJdDvlN6d3ayyNX8DOFYeZbja/TLeEbjRSOJS2OaG7J2S6lVPlvT1I05elv/wXTcsbAHBcYUefH7znVQghhBAiHHRjs2FsdqSnIUQrOkvHVsXJ8lLR4xnNJgZMHkifUQWk5qVhTDFizk0FoHxnWVxmFYVC/afVNH5Xh/0nK0mqJ/DW0zPddrbUcwP6T+pe85aATLc4DLr513QzdqOm26F0zd8tuYi/5+xQ/pluWUoGycenebfrP68J/4SEEEIIIYTo4STTTfRIqqqiKJ5aT0OnDWPotGEB92f2zcRSWktDdQO3978FbYKOP3x7L2n56ZGYbtRzWZzYNnuy2oyjk0hWEmnASr3as4NuZTtKAVA0Cv0m9O/WWFqt7zsSd5w3UgjG8tIWLZluTrUnBN18mW5ZpJN8cip1H1WhTdNhXVlH+tycCM5OCCGEEEKInkeCbh3U8KsvYJ3Fs4ZXo6BkmVArrAHbQKt9h25rBpjRn9AXw9WjIvwT9Wxv/f4Ntn+/lbwhvTjhhpMYMHlQwP0ZfTLZtWon4Kmf5XK6qCmpkaDbYVjX1ENzM2HTlGSSlERQK2mk5y4vtVqs7PhhG8mZyQw6dgjGZGP7DzoCTbxnuqn+jRSCubzU87y5e8TyUl+mW7aSQeLkRJwHHNg2WGla30ivp/qj6CXBXQghhBCxo3Hu57g2VHhqurVxfd3ZbWj/ml3GlDE7st1Q0LFwmgTdOsj5YRGq4qtVpe6rD7j/0O3DHeNeW45reYkE3SLI7XKz7n8/Yq1ppGJXOQMmDWwddCvIaPW4moPVML572UrxqnFZHbpeevR9E0iabiYJWV66e80uVFWlvrKelOzu14P0b8IQj0uebX6ZbglBzXTzPG89qZFCAgaSSUTRKiSflErtW5W4a100LKsjeXpqhGcphBBCCNFxjje3eQIdtH8N3tltGVPG7M6288eOJZhI0E30ONuWbiU5IxlrjScgpEto/WuQkm1Go9UELOOrKa4J1xRjjnVFPc5iB85iB8axSSSRCHiWDLpUF1ql6107Y9XOlTu8twdMGtDt8XIG5TL18mlo9Vryh+V3e7xo0+TXSMGoBDHTTdGA2jMaKbQsL80i3bt8PvkX6TgO2nFVOqn/rEaCbkIIIYQQQoSRBN1Ej7PyzWWU7yzzbv/8zSZWvbOShEQD5z9yMbmD8jhu7gymX3U86z76kZd//W8AaourDzdkj6aqKtaVnsi/NkuHYaCRZEeid7lpA1bMJEdwhpFhtVgZeMxg6sosFE7oftCtcGw/Csf26/7EolSoarr1lEYKrzrfZ7DSj0J600vxdfhKPj6NA5fv8Pw+ahR4oDBykxRCCCGEEKKHkaCb6FGsFiuWMgvm3FQspbUA1JXXs3/DXsC3bK9lKV/vkQXexx7cepDdP+6inywxDWDf0YS+MAHVoZI4JQVFUbzLS8GzxLQnBt3Wf7qO2uIaEtOTyOjTermyCNSkhriRQhwH3eyqgxud/4cdB0OU/nxreMN7ny5bj2liMtZV9dh3WXHst6HvE7znVwghhBBCCHF4UlFZ9ChrP1jN9qVbvQE3AKfN4b2dkBh4MZqWl+a9ve3brbwx/1XWffQjlXsrQj7XWGFdXkfT2gbcdS4Sj0sB8C4vBWjogR1Mm+qs1DYvR84dlOdd6icOzxawvDT4Nd3ieXnpJnU7djzvY+OVEa3uTz0/E+OYRFQ71H1WE+bZCSGEEEII0XNJ0E30KDuWbye1V1rAPv+gmyExsJaUIdHAUaeNJW9oL4zJCZRuL+Gla57n5282h2O6MaFxua+opGm8J6MtWfELuvXADqYl20u8t/OG9Ar6+KqqBn3MSLPS5L0d3OWl8d9IYbV7o/f2RE3rJj2mY1Jo+qkRHCr1EnQTQgghhBAibCToJnqM/Rv3sea9VdQW1zB46hDvfqfDdzFuMLUu4H7VC9dy9n3nUei3rLRqX2VoJxtDrCvrPDc0YJzoCbodury0pynZVuy9nTckLyhjFi3fzm/63cT83jfwvwffD8qY0SSgkQJBbKTQ/GcuXjPdtriLOKCWMpC+ZJLGhLaCbhOS0WbpQA/OMgdue3w+F0IIIYQQQkQbCbqJHuOnT9aSO9gTAOk3wRdAc9p9tZ70bQTdAIZOH865D1zg3a7cI8tLAVz1LpREDYnHpZB8chraZE9WUZLSs5eXWkprGXj0IArH9ydvaHAy3RSNBqfNiepWcTnirz5ZqGq6+TdSiMcMwf+5v+Fh178oYi/Ha47mGM24VscoGoXUi7NQ9Bqsy+poXFoXgZkKIYQQQgjR80gjhTj2tWs5O9V9rHP/zC73fuqVBnoruVypPZcTtcdGenph1VTfxJLnvsbWYKP3qAKOOnUsX/ztMwBvAENv1KPRHD4Ond47A0WjoLpVqenWzLqqHmvz8tL0a3K9+5P9arr1xEy3Xat3UrR8B+Cp6RYMWr3We9vtjL+gm82ve2lCEGu6afy+W3Lj9tZ4ixcW1be8Ow3zYY9LnJhC1d88y57rP6sm+fhUADa5tvGKeyFWtYkJmqOYq/tlaCcshBBCCCFEDyJBt45K1BFQmkqjgFsN3IbW+w7dNmrRDE4P6VRbvO76kNfdHwIwnAH8rO4EFQzoe1zQraG6gQFTBrHlm830HVNIal4a/Sb0R2fQcfDng0DbS0v9afVa0vPTqdpfJUG3Zt6lpUDiFF+HUv/lpQ1qz6vpVtpc0y0hKYG0/OD8vrd01AXiM9MtZMtL/Z63OAy6+Qe1rzhCwCzpxFTQgWGoCcdeX4DzI/cS/uZaAMD36o8SdBNCCCFEdDEboNYGKm1fX3d2G7o/howpY2oUSNCBhXZJ0K2DUvddjdl8+CyCaLRT3ee93Yc8fmYnALvU/ZGaUsRkFmRy3es3Urm3AkVRSM1L49aPfgfA3WN+D4Ahsf3smszCLCzlFnQJempKagK6m/ZE1jUN3tumKSne20OU/pyvOY3d6n4ed77I5+7vOVFzLHN1Z0dimmFlb7RTtddT8y93cPA6l2p0fhlbzvirydVEiJaXKlrPhzQ8zRQM6IM2djSoU32/gyl+GaaH0mXqSTrOTMNiC/ZNVux7bBgKE6hVfZ8UDqilqKoq3XaFEEIIETVSy34d6SkI0SbFYoHU37R7nNR0i2O7moNueWTxP+Nz5JMDBAbjeprMvllkFGQG7LM1eC72D+1c2pYJZ09Gq9NiKa1l8xcbQjLHWKGqKg0/WND3TyDppFQMg43e+2ZoJ/Oq4RFO0kxlF/t5x72Iu51PRm6yYVRWVOqtHRbMzqUBmW5xuLy0SfXPdAte0E3r92cuHpsp1OMLuiUrSUc8Nmlmqu9xn1UDsAvflzAW6tmjHgzyDIUQQgghhOi5JNMtTjWojZTgWQLZXynw/v9BtYxyqqhTG0hp5wKtJ9j2/RacNidDZwxn+PEj2j2+z6gCb5Buy5KfOfayaaGeYlRxW13s+XsR9576T7R1Cr8tPxd3uZOEoaY2s2PMSjIJGLBhpxpLj8iiSclO4ax7z6F0ezGDjx0atHH9a7rFw/JSu+rgL87n2KwWUaqWU4OFvuSTrWQENRtN5/dnzkXsP2+HqsM/0+3I7+nJp6RR8skBHn3kLcqH1HKl67yAL2FOVI5lr3qAfvQO2XyFEEIIIYToSSTTLU75LyEd0Bx0G6Ap8O7radlulfsqqdhdTn1lPW63L9slZ2AeI04YxdYlP5Oam3qEETz6jC5g3FkTyCjI5KeP11K2syyU0446zmIH25/bwtsDP6d2S613f+LRKW0ef4vuCsZrRnoei7NHNFVIzUtj1nUnctFjlzHxnMlBG1cTZ5luJVTwgOtZFro/Z6u6i0zSKVTyOUUzLaiBWf9MN2ccBt3q/boDJx9heSmAaVwyCUtyeGvc53ydtII3nR8H/C34Uv2BbeqekM1VCCGEEEKInkYy3TrIMuJV1ArwFAdSwKABuztwG1rvO2RbSUtAN7MPia+eHPQ5znc8gAsXSZjY4N7GEKU/ZpI5XjsFgOM1U1CAYnc519nvJleTxRhlOP+nvznoc4k2/73jP/z89SYAHtz8KEnpSTx11qPYGm1kFWZz/Zs3M2Ra+1lJiqLQd0whaz9YA8A7d73JDW/G//PXwlnuIHd/BhqXgs1oZ9vE/Qz5qQDT5OTDPiYDXzCzGku72Tiibdo4q+l2UC313k4hCbPieQ21/H+wBDZSiL+gmwVP99JETGiV9ptEDFIKvdmni9Rvma05DqvaxDfqCgAqqArpfIUQQgghOsMy+GXU4gZwqm1fg3d2G7o/howpYxo01Jk7dk0mQbcOUksbQWnpyKhCk//F26Hbhz9GLWnE+d2BoM+vUq3hJde72LBjxMAEZRS5ZDJdM4lLtWcBcLH2DC7WnsH9jr/zqOsF1rp/5jtWc49uXocu1mJZU12T97YxxVN7bP+GfditdlwOF8NmDO/wWBPPmcy+DXvZuaqIouXb2blyB1n9czBnx1ajja5wljnQubT03p3NV3N+5Ks5P2JuSmJX4jeHfUya4nteqtVa+irBq3PWk8RbTbditdx7+yrdedyuuzok59H5Bd3iMdOtpZHCkZoo+NMoGo7RjGOxewVOXHziXsKpmuneZhPlqgTdhBBCCBE91H31vq6RR7wG7+x2MMaQMXvymKrVSkfI8tI4sdO9jzM0sxii9GOEMpg0xYxZSW4za8SsJJPenH3UgJUt6s5wTzdsVFWlsaaBugpPhz6DyeANXugSPDFnp93ZqTHNOakMPnYoBqMBp83JU2c9xsbP1gd34lHKWeYAoNceXzOKXqYckgyHv+APyHTz65QYr+or6zn48wFKt5fQVN/U/gM6yGg2cdWL13LNqzdw6m9OD9q4kVKs+pZm91KyQ3aewEy32M8QPFTLku2UTmQInqmZxcWaMxilDCGDNC7TzvHeV65WB3uKQgghhBBC9FiS6RYn1qk/8457EQD/0P6JK/XnHvbYW3RX4MDJH51PALDGvYmRmsFhmWe4uV1u7hp5O2rztyMtWW4AWoPn5W+1WCnZVtypTpPHXnociWmJvHTN8wDUV9QFcdbRy1XuCbolNvi6Sw5SCo/4mIBMN2qPcGR8WP3eShbe818ALv/HlUz45aSgjKsz6Djq1LFBGSsaHPQLuuWTG7LzBATdVBfEUR8PVVW9jRQ6s2z7Bt0lANzv+DuqqnK8MsV7nywvFUIIIYQQIngk0y1O1Pt1sEvVtF3U3t9EZTTHKGOZqoxnu7o7hDOLLK1Oi9mvQYIxxeS7r7kbZENlPQvvfafTY/s3Xqiv7BlBt5ZMtxkfj2VG3USmKGM4QzPriI9J98t0q1LjP+jm9lv66d9xVAQKCLqFNNPN92cu3mq6NWHz/kztNVFoi1lJJlWTQppiRt/8HVyFZLoJIYQQh6WqaqSnIISIMZLpFida6vpAxzIexmqGsUxdB4Dd7QjVtCKufFcZbpdvSVlCsi9DS6v1BURMZhOdlZTpC27W9bCg25n/mcpv7rkRQ7axnUdAul+mWw3xv7zU5dfkQKOV7zUO9ZTzFb51r2K5e513Xy8lJ2Tni+dGCnV+X7akKJ1vUHKL7grv7SzSKaZcgm5CCCFEG3Ys207u4Fyev+JZRp40mqmXTyc5I7jNn4QQ8UmCbnGipa4PQLLSfsZDmmJmsNKP7epuflK3YFcdGBR9KKcYEaU7Sqkr8wV6dAm+n1Hj1w3SmNx+8OhQKVm+oFtPW14KoM3p2OslPaCmWw/IdHOELtOtaPl2nA4XBpOB/hMHBHXsUKtSa7nFcT8H1DIsah15ZGEmmVwlEzOh+9CqU+K3ppv/ly3J3ewKnKWkU6yWU04VqqqiKHG0DlcIIYRox4bPfiJnYC671+xi1OyjSEr3/V21lFt44cp/4nK6SclOYfNXG9n23RamXj6d8WdNjOCshRCxQIJucSIg46GDF18TlJFsV3djx8FGdRvjlZGhml7EWGsbA7Y1Gt+FpOJ327/WW0cZU4xoDTpcdif1lfVdn2QMUYwa9AUG3E1utMkdCyj5Z7q95fqUn9UiAKZrJgVk2sQL/86i/h1Hg+EfF/4Np81J75F9+N2Xfwjq2KG2Q93Df5vrTvYln9GaIYDndRDKAI82oHtp55qmRLvuZrr5y1IyQAUHTizUk0r7ZQqEEEKIeGBraOLla/+N0+b5nHDmH3/JCfNme+//8L73SM1Lo6a4mrpyC6pbRXW5qSmpYfePu+g3vn+kpi6EiAExvfbpoYceYtKkSaSkpJCTk8OcOXPYunVrm8eqqsqpp56Koii8//774Z1oGNR3IeNhqmY8xykTmKSM5if3llBNLaKslkPb+Pou7jUa38vfkJRAZymKQnKmJ0Onp2S6WdfU49hnR5PY8WBSgdKLP+lu4hRlGumksMm9nR/dm3nP9XkIZxo5/kE3/2zKYNA0L4n2P0es2Knu896+Tnch7xqe4V3DMyEPvOritHtpvdrIQ45/0Y/ejFQGM0dzYrfGm6ZMZKYyhRHKIHa59wdplkIIIUT027NuD0lpnuunhKQE7I02733blm6lal8lVfsq0Wg1zHv7VgZOGUjV/io++NO7LHv9+0hNWwgRI2I66LZkyRLmzZvH8uXL+eKLL3A4HMyePZuGhoZWxz755JNxvVzG0oWMh5GawXyvrmGVuoGV6vpQTS2iDs10U91+F91+r36DydCl8VOa67rVV9XjdsfPBX1bVKeKq8LzDaCug0tLATKVNO7QXcvx2qMp0PSinCqKKWO92naAPNa5Q5jpptVrWp0jVvgH3QYoBWE7r38jBWcc1XQrVSv4QP2S3RxAh4aTtFO7NV6CYmCxuoLN6o64/d0UQggh2vLjwtXUltai0WqwNdj44unPUFUVp93J9y8toWjFDnQJes669xwKxxVy3kMXe79Y3bVqZ4RnL4SIdjG9vHTRokUB2y+//DI5OTmsWbOG6dOne/evW7eOxx57jNWrV9OrV68unUs7MRe2WUEFFFDMBlSLPWAbaLXv0G1Nn2R0swu79gMfQWcbKQCMVYajQYMbN2vcG4M+p2jgn+l2zv3nMerkMd7tvmMKKdlSDIAptfOd/wBvppvb6cZaaw2o/xBvXJUOz2sZ0GZ3vv7fLboruIUrmGw7h/XqVtxxlHXkzxXCmm4tQTz/c8SKne5IBd3is5FCBb6GB8dqJnR7vAnKKO/tNepGLmdOt8cUQgghYsGBTZ7PKC3N11wOFw1VDaz7+Ed++ngtvYblk9Uvm0nnTgHAkGigYHRf9qzdTen2EhqqG+L6GiDStMfl495WjdrgaPP6urPb0P41u4wpY3ZkW5uXAsvbfw3HdNDtULW1niLtGRkZ3n2NjY1cfPHF/P3vfycvL6/dMWw2GzabL6XYYvEU4U/+7JeYzebDPSzi6psz3QzoSVA6lrWVqJgYoQxko7qdjep26tz1pGjiqwtPk1/QbdDUoWQUZHq3cwf5Xg9d7T7Ud2w/nA4X9kYbtaU1cf0H1+nXREGX0/W3DhOe+nk27LhVNxolphNuW/Hvlhv8TLeW5aWxF7D0z3TrH8agW7wuL/XvMpqlpHd7vHGa4d7bP7o3dXs8IYQQIha4nC6KtxwEICHZiK2+CYCS7cV88bdF9BldQPmuci59em5AaZqRs0ej1WupLa1l1+oiRp10VETm3xMkf3l2pKcgRNssFkj9VbuHxc3VrtvtZv78+UydOpVRo3zf2N96660ce+yxnHXWWR0a56GHHiI1NdX7X0FB+C4Ou6OloHZHs9xaXKI5kxOUYzGTzCfuJaGYWkT5Z7qZzKaA+5rqmry3u9JIAUDRKuz4YRt71+2ham9l1yYZI5yl/kG3ri3HBTApvufaStMRjoxN/llomiAH3VpqusXi8tLH9Hfwkv5h/qy7tdtF/zsjoJGCGj+NFMrVKu/tbLofdEtVUjhVM52jlbG4UXGr8ROgFEIIIQ6nrKgUR5PnM25arzTv/qd/+Tg1B6rZv2Efw2YOp8+owGvC3EF57FxZROWeChb+6V2evfhp3v79f8I5dSFEjIibTLd58+axceNGvv/eV8zyww8/5Ouvv2bt2rUdHufOO+/ktttu825bLJaYCLzVq57aZcmdvJgdoxnOna7HAPiL6zlKqIirjpKNFl9Nt0OXkLpdbrR6LS6HC+MhAbmOyirM9t6u2F3etUnGiIBMty4sL21hwte0opEmkuja0t5odebdZ3PyrafhcrpIzU0N6tjeTLcYXF6aeb6GaYlDSBgxFu4I33m18Zrphn+mW8YRjuyc5eo6AIoppze5QRtXCCGEiEYHfz5A7qA8EtOTMOeYKd1eEnB/Wq80pl42rdXj+k8c4L1dsbOMip1lJCQlcN7DF8Z1HXEhROd1KejmcDgoKSmhsbGR7OzsgOWckXDjjTfy0Ucf8e2339KnTx/v/q+//pqioiLS0tICjj/nnHOYNm0aixcvbjVWQkICCQmd72QZab5Mt84FMI7XTOF8zWkcoxnLy673eN75NvU08gfd9aGYZthZazxBN0WjkHBIh9Iz//hLzvjDHBxNji7X3sru33OCbq4yX5aQthvLSxPxBTit2I5wZGwymU2tsiqDxVvTLcYy3dx2N3X/8wSJEqfayb6jTzuPCB7/RgpxVdPNL9MtGMtLIbDW3k51H70VCboJIYSIbwc3H6B0hyfQdsKNJwfcl9orjT+tebDNx6XmpZFRkEljdQNNzUtSbQ02qvZXkelXzkYIITp85VxXV8drr73Gm2++ycqVK7Hb7aiqiqIo9OnTh9mzZ/PrX/+aSZMmhXK+AVRV5aabbmLhwoUsXryY/v37B9x/xx13cPXVVwfsGz16NE888QRnnHFGp85Vm/lPVCU4F9JK7yTMu64MylgADtVBU3PwIrmTy0sVReFVwyNUqNXc6vT8UVnh/iloc4skd4MLRVUwmU1kD8hp81snRVG63LkUILNfzwm6Ocvs3tvdyXQz+mW6WVUryJeBHaaJ0Uw3V5VfwDY9vAnWWiU+GymU+9V0yyY4X3wNVPp6b+9072OaZmJQxhVCCCGiVUs9N4C+Y/oG3Nd7ZJ8jZq0NmTaM5W8s9W5r9VrKdpRK0C3Iao3PgFuN9DSEaMWiWts/iA4G3R5//HEeeOABBg4cyBlnnMFdd91Ffn4+JpOJqqoqNm7cyHfffcfs2bOZMmUKTz/9NIMHD+7WD9AR8+bN44033uCDDz4gJSWFkhLPtxSpqamYTCby8vLabJ7Qt2/fVgG6WFaHbwllV2slZZKGAT12HBxUS4M1tYhSEjWk983gqpevJS0/OJkgh0rJSsGQmIC90cbBLQe9geh4FLC8NLfrQbfEgJpu8ZfpFkra5vb0sZbpFhB0ywxv0C1eGylU+i0vzQ7S8tJDM92EEEKIeFf88wHAU9+5t1/dtsy+mUy9fPoRH1twVAHL3/Bt600GDm7ez/DjR4RkrkKI2NShq59Vq1bx7bffMnLkyDbvnzx5MldeeSX//Oc/eemll/juu+/CEnR79tlnAZg5c2bA/pdeeom5c+eG/PzR4CnnKyxyfefd7mwjhRaKotBLyWGPeoBiNT4ythRF4cp//zrk5zjzD3NY8/4qdq3ayaYvNzLqpNEhPWekuKqd6Hrp0Zi1aLO6EXTzW17aSMe+HYgl6z76kar9VWi0Go695DgMiV3PpDzU/A9vR6PVoNHFVg+ciGa6+TdSIH4aKbR0L9WgIYPg1A6UoJsQQoiepKmuCVNqIgnVDfQamk9G7wxu++T37N+wlx9e+77d4Fn/iQMDx7NYaaxpPMzRQoieqkNXP//5T8c6sSQkJHDdddd1a0KdoaqdTzPtymOi0QvOd/iX6z/YVDsJGBjDMEZoBnGT7rIuj9mLbPZwgEpqPOMqwQsWxLO03unsXbeH4bNGUlZUCnEadHMesOMsdkCJA103gm6By0vjL9NtxZvL2PzVRgAmnTM5qEE3vbHrz3skuSr9gm4Z4Q66+dd0i59MNyMJjFaGkqmkolGCE4QtpDdTlfHUUk8VNUEZUwghhIhWFXvKObBpPwDZA3PR6rUUjutH4bh+HH3xVG8t3cPpNSyf0aeOwe10s+mLDQDYGppCPm8hRGzp9tWPxWLh66+/ZujQoQwfPjwYcxLtUFWVjeo21qtbAThGGUeGkspYzXDGa9rORuyI3kouNMcki9Vy+im9gzHdiLGua8BtcYJWIfHoFBRtaJZ9jj55DFqdlp+/3kTVvkpmXXdiSM4Tac5yT+BEm6lD0XX9uQxcXhp/H0z86611tUFHvHFV+wfdwhs41Pn9mYunTLcN6jZqqWMQhUEbM0FjYK9azD6KOagGt/OuEEIIEW2q9/uaEmUUBJZqaC/gBqDRarj6xeso3VHiDbq1NFUQQogWnQ66nX/++UyfPp0bb7wRq9XKxIkT2b17N6qq8uabb3LOOeeEYp4CuNA+n6/dy7HSxEjFt3z3DcPj9FKyj/DIjvEf4yCl9CO2g24lt++m8VsLAMMtU0IWdANIykjGfqCKhuqGkJ0jklRVxVnmqemmy+le0MREnAfd/OqtaTrwga0zqvZV0ljbiNvppveoPh36QBgNApaXSqZbt7lUF7XUAQRtaWmLAZoC9rmLqaKWGtVCmmIO6vhCCCFEtKjaX+m9ndGn680PjMm+z7ZNdfH32VYI0T2dXpPy7bffMm3aNAAWLlyIqqrU1NTwt7/9jT//+c9Bn6DwKVL3YaEeB072qcWAJ4CRR1ZQxu+l5Hhv/9bxF86x38hTzleCMnZEOH1LiUMZcANISvfU0musaYibJcz+3PVuVKsnYBHMoFujGn8fTNx+QbdgB8XevuM//PWkB3ns1Idj6kOdq8rXhCPcQbfARgqx1YDicGqaA25A0INiUtdNCCFET1Hln+nWp+tNiRL8gm6yvFQIcahOB91qa2vJyPC8KS1atIhzzjmHxMRETj/9dLZv3x70CQofneq7eKymFoD+ypFbWXfGOZqT+Uz/ItdrLkajKixxr+Qx54vc43gqKOOHm+ryC36FOCEoMcMTdHM73TEVDOkoV5lf0CS7m0E3xVfTrSkOu5cGZroFt+GB/3LVWOpgGslMN41/IwU1dp6zI6lWa72304Oc6dZf6eO9LUE3IYQQ8cx/eWl6N4JuhkSD93rMVh9/n22FEN3T6SvCgoICli1bRkNDA4sWLWL27NkAVFdXYzQa23m06A7/ekTu5uJr/lkJ3dVP05sZ2sn00/QmRUminkbKqGSPejBo5wgntSXTTUPQApOHk5yR7L3dUF0f0nNFgrPcF3TrbqZbvHcvbanpptFpgv6602h9b9luZ+wslUyamUr6tbmYz8tEnxfemm7xuLy0Gov3dnoIM90WuD4I6thCCCFENGnJdFMUhbRe6V0eR6PRYEjyfKkcj1++CyG6p9MpB/Pnz+eSSy4hOTmZwsJCZs6cCXiWnY4eHZ9dG6OFRWkAFdIxc4Xml9RSz3W6i4J+nlt0VzBHexJDbZ6AqitWi483J7V0p+h/R7UsLwVoqG4gq7D7NfaiibM0mEE3/5pu8fdtoNvlCeyEot5arGa6qXaVhGEmtBm6bmdKdpZO8f2Zi9n3skOEMtNthmYyd2vn8Q/XG6xw/8R/XZ9ynvbUoJ5DCCGEiDRVVTEmJzBgyiASEhPQGbqXiW9MTsBW30STLC8VQhyi0+8uN9xwA5MnT2bfvn2cdNJJaDSeLIIBAwbEdU23hHunoF1tAZcbdBo0vZJwH2wI2AZa7Tt0WzMgFd2k3C7NwaI2F85W0uilyaEXOYzRDAvaz+gvsA5SbGaHeDPdQlzPDSDRP+hWGd+Zbt0NmhgDarrFc6ZbCIJufmO6YyjoVvnUQZrWN6IYFFIvCE4Nyo6K90y3DCW4QbdsJYN+mt5UuqoBqFCrgzq+EEIIEQ3qyi1sX7oNgCHTu389ZUw2UUstNuleGnTGR6bi2liJu9za5vV1Z7eh/Wt2GVPG7Mh2Qr4W7m7/NdylkP7EiROZOHFiwL7TTz+9K0PFDOPN40g2R66Lm6qq1OIJ5qSSzC26K0J6Pq1/HaRYLT7eXNMtEplu8Ua1ujAdk4KiBV1+NzPdFL8OT3GY6daSgeaflRYs/oG8luBeLHA213TTZupCvtT7UPHYSME/0y0U3UWTSfTerqcx6OMLIYQQkXbwZ1/5nPxhvbs93mm/PwOH1YHRLOWWgi3h5nGRnoIQbXJaLKEJul155ZVHvP/FF1/s7JCiA+ppxN2cpWFWUkJ+vni4UPVluoX+XEnp/jXd4i/oZi+yYV3mybTMfbC73Ut9jRQaib9vA7P756DT6zCaTe0f3EkBmW6u2MnaammkoE0PbxMFiJMvEA4RkOkW5OWlAEl+QbeGOMxGFUIIIYp/PuC93Wt4frfHG/uL8d0eI5aoqspi90rWuTejoHCd7iKMfs3ShBA+nb4Cqq4OXGricDjYuHEjNTU1zJo1q8Pj7Nixg6KiIqZPn47JZEJV1bBnQMSSWuq8t1NJPsKRweG/JCtmL1TDmOmWlp9On1EFOJ0u9m/ah73RjiHREPLzhktAI4VuLi/1b6RgVeMv6Hbd6zeGbGz/bqixkunmbnKjNjbXuQtz51KI0+WlIc50S1J8v6MNkukmhBAiDpVsK/beDkamW0+zWt3IqY6r0DT/7wt1KR8bno/0tISISp2+Alq4cGGrfW63m+uvv56BAwe2+/jKykouuOACvv76axRFYfv27QwYMICrrrqK9PR0Hnvssc5OKSya/rYWTRBruulm9OnU+S2qr05YeDLd/IuPx8bF/aHUlkYKYajpNuiYwcz/3+08NPM+9qzexY5l2xhxwqiQnzdcAoJuud2s6eb3Ldg37uU85Xwl5Mul44V/plusNFJoyXKDyATd/N/LnHHSSOEH94/e26HIdJPlpUIIIeJdWVEp6X0ySExLJGdQ1+pt9zS1ah0vu97jW/cq9qslaNDgbv7fLnV/yM5r+9taqekmY0blmE35HVtSF5QrII1Gw2233cbMmTP53e9+d8Rjb731VnQ6HXv37mX48OHe/RdccAG33XZb1AbdbP+3ggS/b/8Pvdxt6/L3cMfYeydh3nXkZbqHkky3zhu8aaxniWmYklt2/7gLVJWm+iaW/PsbsgfkkN0/JzwnDzFXmSfopiRq0CR1b71uHlnsTljMNfY/8I26nD84n6BA6cXZ2tnBmGpc8890cztjI2vLVR3ZoFs8ZrrNVo7DoOoZrxnJIKVv0MfvqctLV7z1A/s37Ofs+88DkOx7IYSIY2VFpdRX1uN2ujAmd78OW12FhdriWprqm8gf0ZvE1MT2HxRD6tQGcm3HYMRAKmaGKP2Ywhg2so06GtirFuNUnQFd44Ol6XdLwe1ZwdTeNXhnt2VMGbM727YOfk4O2m9FUVERTmf7WQSff/45n332GX36BGZ6DR48mD179gRrOnEnINMtLEE3v4waNTYvVBW9BqV7SVmdMvjYIfSfNJDV767EUlpLY038ZIi0ZLp1d2kpgFbRkkcWSYoJZ3M6YiM958K+O06+9TRmXX8SWp0WUwhqxoWCq9Kv820EaroFZO2qbf3JjT2pmhTSSaVA0wt9CN7ketryUrfbTe3BGt64bQFarZYVby1jwpyJXPDXSyI9NSGEECHQVN9EfaXn2iqrMDsoY276YgNr3l9NQ2U9J958CuPPnBCUcaPFLnUfAE3YyUSLWUkGBQrV3mxUt+HEyV61mAFKQYRnKkT06fQV0G233RawraoqxcXFfPzxx1xxRftLxBoaGkhMbB35r6qqIiFBii8eTkCmW5gbKcTLkqxwMOf46is5bY4jHBk7VKeKq9LzGuju0lJ/p2pm8L77SyC+ars9e9HTqG6VnIE5nPvghUEdOzE1kRCsJgypgEy3zDBGwZtp4iBrt0XVv0upePQAv0gfx1UPziH5+NC8GPyXlzb0gID4S1c/z8+LN6FP0OOwOnA5XFTtr4z0tIQQQoRIxe5y7+3MfsEJuiUkG9n27RYA9v20J+6Cbjubg24AV+nO4y7ddQD8wfE4G13bvMcMQIJuQhyq00G3tWvXBmxrNBqys7N57LHH2u1sCjBt2jReffVV7r//fsCzfMPtdvPII49w/PHHd3Y6PYK7yY3V3oTWoMWFKyyZbv4Xqu44WZIVDlq9X/2oGCl03x5nhQOaG8EGI9OtRaLiS+W3YgvauJG27bstuF1uGmvir4ttV7QEbCHy3UtjtT5lC2exHccuG45dNlRb6N6XTRhRUFBRaVDjP9OtrqIOh9XzJYlWr8XlcFFTXBPZSQkhhAgZ/6BbVmFWUMYcfMwQ7+3tS7cFZcxo4h90889m699820wyZap8YSVEWzp9BfTNN99064SPPPIIJ5xwAqtXr8Zut/O73/2OTZs2UVVVxdKlS7s1drxq+KaWiXN6cdUfTiNhVjIXTz0j5OdUFAUtniBfrGa6lf3fXlQn6PL0ZM7rFZZz6hL8lrLZY/N5O5TLr4mCNid4QTcTvqBbvCwvVVUVt8sTDPGvv9aTaZK1GI9KxFXtRBfE109H6ZT4CboFZA2GMICpUTQkYqQBa49opFBf6ckkN5lNJGUmU7GrnFoJugkhRNyylPq6gGcFKdMtOSuF3MF5gEpmQQaOJjt6oyEoY0eDwwXd8pQsEjBgoZ4idW8kpiZE1At72sGoUaPYtm0bzzzzDCkpKdTX13P22Wczb948evUKT2Ak1jibi9gn1Rgxq6kkKOF5A9eiwYUrZouPVzxZjNroJmFUYtiCbgGZbnESdHNWOjAdk4xqUzEUBm8JuH/QzarGR6abf3MD/06jwbJ33R62L92Ky+HiqFPHkjc0+t8zjeOTyH9uINp0Hfre4f/wGU+NFFw1fkG31ND++U4mkQasPaKRQn2FJ+iWnJVCal4aFbvKsVqsvHv327jsThprrcz951URnqUQQohgqdhdjjHFiDHFRHrv9KCNmzs4j/WfrKN0eylz/nQu6b0zgjZ2pFnUepJIpIHGgKBbtpKBDTsA1dQe7uFC9Ggd+tQ+fvx4vvrqK9LT0xk3btwRO3r9+OOPh73P4XBwyimn8M9//pM//OEPnZ9tD+Us9QTdLv37bAqmD2nn6ODRocOOI3brIDk9ayKV4Mc+Dkun98uqiZflpcUOrMs8xWbTLg7Ot4EAJsUXwLMSHzXd/P/Ntfrgv/B2rtzBh39eCEBW/+yYCLpVPHaQmhfLABi4+iiMo5PCev6ARgqx+l7WzFXt9/pKD+0bW5KSCGpl3DdScNocWC2ewGJyZjJpvdK89+1aUYTepKe2tJY3bltAdv8cTrrp5AjNVAghRLDUVzXQVNdEU10TyVnm9h/QQSa/jqVN9fHx2bbFSnUDDTRSSD6ZpHn3p+N7/qpVSwRmJkT061DQ7ayzzvI2OZgzZ06XT6bX61m/fn2XH99TOUvt3tvhXJ7VkiESqxeqqqulENnhg8TB5r+8NG4y3cp8y0uD+fpLxNchMV6Cbm6X73dFow1+UESji72grqsq0jXd4qeRgrvW91xqQvxctjRTiPflpS3d6wCSM1MwmX0XTMVbD9JnVAGVeyuo3FNBaq80pl85k4QkafokhBCxrKHK770/I3hfBppSfJ9tmyzxkynuUB3sU4sBSFdSAxJw0hVfUyfJdBOibR361H7vvfe2ebsrLr30Ul544QUefvjhbo3Tk7RkugHocsO3PKulg2ksLslSVZWW62tFG76gWzwuLw1dTTffhWtjnHQvDXWmm/+S1ZbacdEuoA5ZhjRS6I6W51JJ1KAxhLZmYEtQ3IYdp+pEp4T/3y4c6ip8ncFTslIYceIoakpqOLBpH/0m9OeX/3ce//vzQir3VlCytZiVby9j2q9mRmy+Qgghuq+llqdGq8FoNrVzdMcZzX6lU+Io6LZXLfZ+hvJfWgqBmW41kukmRJs6/Sl61apVuN1upkyZErB/xYoVaLVaJk6ceMTHO51OXnzxRb788ksmTJhAUlLgtwuPP/54Z6cU9/wzjbS54cx081ysxmQjBb94hBLOTDeDfyZSDD5vbQhVpptJ8fs2ME66l7qcfkG3ENR082/OEDOZbs3dSxWjgiYxjGu9mxmcOoaVFqJ36slKSoO8sE8haFpqumnTQv88JiuJ3q7FDVhJJSXk54yEer+gW3JWCiNmjWTErJGA5/dZq9My89cn8MiJDwCw6cuNHHvZtJD8fgshhAiPhipPh/nE9CQ0muB9iWVM9vtsWxc/QbfDNVEA0Ck6UkiijgaqkKCbEG3pdNBt3rx5/O53v2sVdDtw4AB/+ctfWLFixREfv3HjRsaPHw/Atm2B7ZSPVCsu0lIrr8NsDt6a/85wlniCHpokDdrk8H3Q92a6qbGRUeNPba7nBkAYr41yB/di6hXT0em19BrWO3wnDqGAoFt2MJeXxl/30rpy3wV8KLqX+l/o+wf4ollLdlYkstwABhTl8/rYPwKQdnk2PB+RaQSFq8bzb65NC/1z2bK8FDxLTOM16Fayvdh7OyUr8Gds+X3rPbIPx1xyHDt+2MbPX2/ip49+ZPycSWGdpxBCiOBpWV6anJEc1HFNfllzVkt8rOKAIwfdANJJpY4GatTQLC9NbboxJOMK0V2KxQKpv2/3uE5/ct+8ebM3aOZv3LhxbN68ud3Hf/PNN509ZY/XUtMtmEv7OkLrXV4aGxf3AVy+oFs4l5cWjutH4bh+YTtfOHiXl2pAmxm8i/2A5aUxXtPtk7/+j7pyCz99ss67LxTLS/0Dee5YCbo113SLRD03IKCmo+r3vhBr3HY3aqPnC5BwPJd5Sjb55GLDxgOOZ/mH4U8hP2e4Ve6twNHkwGg2MX7ORPqM7nvYY8fPmcCy178ns28m6xf9xLizJkb1F4VCCCHaZm+0Y7d6rq2SM4MbdDOm+L5QjqdMt1q1jkFKX/arpW0H3RQze9WDVGFBVVX5+yjEITqdipGQkEBpaWmr/cXFxeh08VnzJZLcNheGQUYMw00kDA1ezYGOiOWgW2Cmm7zxd0dLpps2Sx/UAKbJL9OtSY3d5aWOJgeLn/uKHxZ8T0NzUfYBUwYx/PiRQT+XfyDP5Yz+DFS31YVqbQ4UZYb3S4MWAa9ZZ+wG3QDynx9I7iOFpF+TG/JzPan/AwVKHpXU8KL7HVxq7P0daM+mLzfy8cMf0mSxYkw2MmDywMMeO3jqUMadOYHKvZWs/WAN277bEsaZCiFExx3ccoCF977Dvp/2sOyNpZGeTtRpqPY1UUgKaaZb/ATd1qtb2KHupQkbvWn9GaSlmYITJw1xsnpFiGDqdJRs9uzZ3HnnnXzwwQekpnp+wWpqarjrrrs46aST2n388ccff8To99dff93ZKcU1Z6mTptWeugMJQ8IcdFM0oMZoxz+/KYezplu8UVXVG3TTZQc3qK5RNCRgwIY9ppeX7vlxF72G5rP7x12gQsGYQvau283cf14V9HMFNFKIgUy3SHcu9ZzYP9MtMlMIBo1BQ/rlOWE9Z4qS5K3rFo9LTPdv2Ou9Peb0cUc8VlEUxvxiHD8v3kzfo/qyYdFPDJ0+PNRTFEKITrFb7Wz7bivrPlrDsjeWctItp2BrtJGQKF2XW/h3rQ520M2/KUM8ZbodVMu9t/toWhfH9W+mUEVtQIkKIUQXgm6PPvoo06dPp7CwkHHjPB9S161bR25uLgsWLGj38WPHjg3YdjgcrFu3jo0bN3LFFVd0djphU3/yQtRtVs8FiAKK2YBqsQdsA632Hbqt6ZOMbnYhxrunHOFsPi7/elphbKIAoGt+ecRiphsaSJxhBpdKwojwBivBE6xSVTWoxVkjwV3nQpumw1XlDGo9txaJGLFhxxrDjRQ2frGB3Wt2odFpOP13Z3LiTSdzYPN+UvPSgn4ujX9NtxhopBAQdAvi0uTO8G+6qcZwppt9VxPVr5ShTdOReEwKiVNCHwBLwdfoyEJ93AXd9q7bA3i61+UPb78G5+hTxvDuH95m2/db2bmqCFNqInqjHlNqItPmzgj1dIUQol27VhWx8J7/erc/euB9jMlGeY/y01LPDSA5I+kIR3aeKcVzzaHRamJiRUJHHaQMgAxSMSnGVve3ZLoBVKu19FV6BfX89Se+h3tbNWqDo83r685uQ/vX7DKmjNmR7fq8jl3rd/oqqHfv3qxfv57XX3+dn376CZPJxK9+9Ssuuugi9Pr2L8qfeOKJNvf/6U9/or6+vs37ooFrdSn4dVtU6xwB9x+6fbhjXAcacO+v73DQzVli997W5YW7ppvnRRSLmW7aVB39Pw/+8r727Fm7m7/98jFcdhfTrz6es+87L+xzCCZXudPbyEOXbwj6+CaMVGPBqsZuTbc9P+4CwO10M+WiYwDoPaJPSM5lMpvoNbw3Wq2mVdH3aNTSRAGiI9ONGK7pZttqpeKhAwBk/7FPWIJuyYrvYqRebYQ4Shp2u93UV9ah1WvJGZSLwdT++5tOr2PcmeP59oXFpPVK5/MnPwVA0Sgcd8V0qWEjhIi4bd9tbbXPUlIT/olEscbaRvqMLsBgMpDRNyuoY2f1y+aRoicxmAxx8zdBVVWKVU/QrZfSdsZ9IfkMph8aNBSrZYxhWFDn4Pr+ILg9n+Hauwbv7LaMKWN2Z9u1v2MZrV26CkpKSuLXv/51Vx56WJdeeimTJ0/m0UcfDeq4sS6gc2RO8IMeR+LtXkr8fFMTahqtBqfNE2hwOZztHB39/F9/oeg+aVKMoII1RhspuBwu9q33LFHLKMgkJSu0HY4HThnEHV//MaTnCKbE48wMq56Mu8qJkhCZrE8loJFCRKYQFO5a3+S1qeEJYKb4LQ+poyEs5wyXmgPV9B5ZwJX//jVOe8ffq8fPmcSmLzZSsdu31EZ1q9jqmzCmhD+rWggh/JVsKyY5K4X6Cl839drS0HSUjFU1xTXs3+DpxjntV8HNANRoNXG3lLcaCzY8SSC9lOw2j8lTstnObgC2qbs5henhmp4QMaFDn9w//PDDDg945plndmkiy5Ytw2hsna7a0zlLI7e8tKWRgpPYDx6Fi9bgW/7XmQu5aBUY9A3N8lKI3e6l5bvLGHj0YOor68gbEtxU+nhQ/VIZJfN3oc3Qkfd4f1LPyQz7HOKlkUJg1mDwO+O2JdlveWmdGl9Bt4yCTK7/z00AJCR1/AKpcHw/XG3UU6wtrZWgmxAiokq2FbPx8/UAHHX6ONZ/vBaA2uKaCM4q+tSV+YKQKTmpRzhSABxUfQ0UD5fpNlbjq3G62r0x5HMSItZ0KOg2Z86cDg2mKAou15FTCc4+++yAbVVVKS4uZvXq1dx9990dOk+Lhx56iPfee48tW7ZgMpk49thj+ctf/sLQoUMBqKqq4t577+Xzzz9n7969ZGdnM2fOHO6//35vE4hoF8mgm2S6dZ5O7/uVctljOK2mmbM8tEG3lg6mTdhwq240SmzVwCvbUcqWxZsBT70nEchV5US1qzhLHCjhiRO15ndeNYaXl7pqfEE3TVqYMt38l5fGWaZbV2k0Go69dCor3lpO5Z4K735LaS25g1oXlxZCiHDZt34vugQdTpuTAZMGsPnLDThtTsl0O4SlzOK9bc4O/gqF/Rv3UbK1GEu5hVnXnRj08cOt2K+JQi/aznQboQzESAJN2FijStBNiEN16JO72x28oIvZbA5Y467RaBg6dCj33Xcfs2fP7tRYS5YsYd68eUyaNAmn08ldd93F7Nmz2bx5M0lJSRw8eJCDBw/y6KOPMmLECPbs2cN1113HwYMHeeedd4L2M4WSs9SvpluEMt1cuFBVNaZqE9j32Nh37hbQKqScnk7O3QVhOa/W4PuVcsbZ8tJQNFJoWV4KnsBbIrGVKVK5t9J7O7MguHVB4kE0dC8N6F4cy0E3/0y3MAXdzPi6usXT8tLGmgaWvPANxmQT+SN6M3Ra52rPjDhhNJ888lHAPrmoFUJE2pqFq0hITCAly8yo2Ufx3UtLqNxTQa3UdAtgKfcF3VJygh90e/O3r7Pvpz0oisK0uTPQG8N7/RYsqlOl9j/lfHjcF+TmZGLQGhiq6d/msXpFz9GasTSpNrRoOL3pGhqURoYpA7lbP4/eSm6YZy9EdOnWJ/empqZOLwl9+eWXu3PKAIsWLWo1dk5ODmvWrGH69OmMGjWKd99913v/wIEDeeCBB7j00ktxOp3odBEq7N0Jzgh2L9Xgyzpy4/YG4WKB2uiiaX0jAMajwte2WucfdLPFftDNv3uuNiSZbr5lXY00xWDQzZfpktE39EsnK3aX8+btr+N2uhk1ezSzrj8p5OfsjoBAUaS6lxo1DFh5FIpOQZMcO+9hh3L513QL1/JSxffeWa82huWc4WAptbDo0Y8BmHLhMZ0OuvUZXYA5NxV7o52mOk8BXf/MCSGEiITqA1U0VDdga7SR1S+b1NxUKvdU0FjTiN1q71DDmJ6grvn9Wpegw2QO/ufOnIG57PtpD6qqUrGnnF5D84N+jnBwFts5cHURyh02+s7JZfaoGVyiPXwZqU/1/0ZRFO53/J3/uD5ip7qP5epPzHRP4ULt6WGcuRDRp9NruVwuF/fffz+9e/cmOTmZnTt3AnD33XfzwgsvtPv4AQMGUFlZ2Wp/TU0NAwYM6Ox0AtTWer5pzsjIOOIxZrP5sAE3m82GxWIJ+C+StNl6EqelkDjTjMYU3gtGnV9MNtY6mPovIwuo6RRiOr3v38jliK3nrC2hXl46kL5MUEYxThkRUzWjVr2zgrd+9wbr/vejd19WYegz3exNdrZ/v5Wi5dsp3VES8vN1l6vSL2gbqUw3jYJpTBLGkYkYCmO3uHEkMt1S/Gq6WYje7uKd1VTv6zRlTO58LVlFUbh3xf1c8/J13n0WyXQTQkSQqqpU768CIL13BoqikFmYRVp+GqbURPas24Wqxm62dzC1fElizjaHZBVPzkBf3bOyHaVHODK62ffaAEiqM5KqJmNWko94fMtzaVaSA760i6XP90KESqeDbg888AAvv/wyjzzyCAaD7xuTUaNG8e9//7vdx+/evbvNum82m40DBw50djpebreb+fPnM3XqVEaNGtXmMRUVFdx///1H7Lz60EMPkZqa6v2voCA8yxIPp+GrWhq/q8N5wN7+wUGm9auv5Yq1oJt/klkYg26yvLST4ysu1qgbWatuppLqoI8fKp8/9Sk/LPiOunLft6WhWKJwKK3WF9R1O6O/1mJAoCgE3W97EncEarrFayMFq8XXuKWrzQ90CXrMuZ7asInpSdRXxk9QUggRe6wWK7YGT5AkLT8dgGMvnUZ9ZQPW2kb+cf7feGj6fZGcYlRwOVw0VHner1vew4MtZ6BvKWVZUewG3Rz7PK+nS/8+m5e//TO36K7o0ONu0V3BHbprvdtSE1aILiwvffXVV3nuuec44YQTuO4637e8Y8aMYcuWLYd9nH8H1M8++yygkYHL5eKrr76iX79+nZ2O17x589i4cSPff/99m/dbLBZOP/10RowYwZ/+9KfDjnPnnXdy2223BTwuUoE3t9WF2+IJdoV7aSn4GilA7GW6+dduCqjpFGL+y0tdcbS8VJOkQZMU/ExL/9bjB9WyoI8fKqrb9/oyJBrIKMhEowl9EwhtjGVSttR0U0yasGfqxhtvAFOnoEkKT8ORwEYK8bO8NCDTrRtLizL6ZpLeO53qA9XsXbc7CDMTQoiuqT5Q5b2d3tuz4qfPqAIyCzOxlNRitVgp21mK0+4M+Kza09RVWEjtlUZ9ZT0pIWiiAL6gmy5BF9P19Bx7fQkf+r6dWymQEqdf2gnRVZ1+1z1w4ACDBg1qtd/tduNwONp4hEdLB1RFUbjiisBIuV6vp1+/fjz22GOdnQ4AN954Ix999BHffvstffr0aXV/XV0dp5xyCikpKSxcuBC9/vABrISEBBISWr+xKLmJUAGequ8KGDRgdwduQ+t9h2wraQnopvXu0M8V2Lk0/HUY/Gu4xV6mm18KfRiv9f2DIvGQ6fabt/5OZqmZ4Q0DGc6UoI/fC18Kvn93pGhnq/dlytitdmbffEpYzqvR+b2+7E4ObNpP2c5SCo7qS1Zh2x2lIqkl6BbpLLeaN8pRbW606TrMc0Jfey8UEkYlgk5B0Shha2qTQnwuD2mq88t068Ly0hY6vY7kLDPVB6op21GK1WINSX0gIYRoT/UB32qB9N6eTDdDooE7F9/Dq/Ne5MeFq1HdKuW7ymK2xlgw1FfUU1tcA0BqbmiCbtn9c0jLT6fmYDX71u8NyTnCwdG8vBTA0MmgW8Dy0iBkuikFyajFDeBU274G7+w2dH8MGVPGNGhQzInQgcWanb4SGjFiBN999x2FhYUB+9955x3GjRt32Me1dEDt378/q1atIiur+/WPVFXlpptuYuHChSxevJj+/Vt3VLFYLJx88skkJCTw4YcfdrrxQwvz5ssxm0O/fMxfQNAtBPW02iOZbp2nKApXv3QdGr2WpPSk9h8QxRyqg8/6LYN+MEUZw+3cEPRz5Cu+oFusZLq5XW7vUrKk9CQS05PoP2lgWM6t1fkynCr2VPDIiQ8AcO5DFzJt7oywzKGjVFWNmqDbwRt2olrdJIxKjNmgW58XB4f9nCl+9VviaXlIQNAtpetBN4B+4/t5C2bvXbebodOHd3d6QgjRaQc37Uer1+JyuLyZbuD5XJo3qJd3u2RbMSmZKVTsraBgdF80Ok3YvsiJBvVVvlIAptTQfE5PSErwPqel20tQVTUmn2P/oJu+oHPJHwGZbkH4/GDePrfbYwgRCorFAqk3tXtcp6+E7rnnHq644goOHDiA2+3mvffeY+vWrbz66qt89NFH7T5+165dnT3lYc2bN4833niDDz74gJSUFEpKPIXFU1NTMZlMWCwWZs+eTWNjI6+99lpAY4Ts7OyA+kjRKCDolhf+oFtgplv014/y55/pFs6gG8DoU8aE9XyhUkGN93a2cvjmJN0REHQjNoJuDdX1uF2e34fC8f359YIbwvZhSuuX6eZ/ypKtxWE5f2eoVjeqzfN7GOmgm6JTUCEgGB9LVLeKfasVTboObboOTUKYlpcG+UNztGjpOArdy3QDKBxXyJYlOZhzzJTvLJOgmxAiIrYv24bL4aJgbCGDjx0ScF/ukDzv7f/e+SZ5Q3rhtDkZe8Z4Dmzcy5w/nUtKVngTCyKlwS/olpRx5MYA3ZE7OI/qA1VYLVYsZRZSQ1Q/LpQUo0LicSmgUdB2MvnDvyZsfRxlygvRVZ2+EjrrrLP43//+x3333UdSUhL33HMP48eP53//+x8nnXRSh8ZoaGhgyZIl7N27F7s9sEHAzTff3OG5PPvsswDMnDkzYP9LL73E3Llz+fHHH1mxYgVAqyWxu3bt6lYNuXAIXF4a2Uy32Fte6rcRxkYK8aRc9XUZDlXQrZfiv7w0NoJullJfR2Nzbmg6Xx2Oxi/Tra68znt7/8Z9YZtDRyl6hcJPhuOqdqI1R7h+TPNbWcCy8xjirnWxY+xPACTPTqPwf+EJ7CSTyNnKyWxQt1KiVvBf16ecpz01LOcOpcBMt+4tBy04qh/lO8so31mGOTeV46Is4zRUakpq+M+tC9Al6Mjun82ce8+N9JSE6LGa6qzsXbsbgMbqBjIP6aY+YMogrvjnVbz/f++iT9DjcjhR3W4WPfYRqblpvDH/VY6/9kSGTBvGN899RfHPB7DWNnLOAxeS1ist/D9QCPkH3ZJDHHTbsngzAKXbi2Mu6KaqKg1f1eKud2MYZOz0Z13/mrB1cVQTVoiu6tKV0LRp0/jiiy+6dMK1a9dy2mmn0djYSENDAxkZGVRUVJCYmEhOTk6ngm7ttb6eOXNmTLfHdpb6ApK6nEjUdPNd4Mvy0p6n1C/olkNoluSlYyYBAzbsMVPTzVJa671tDlER3sPxrxmoqr7s05qD0df51b7TRvlfDqDL0JFyRmiCth2ltATeYzTTzb8LrCYtfBnaGkXDU4Y/UGCbDiq87HovPoJuAY0Uupfplj0gB61Bh8vu5ODmrndgjyWqqnJg4z7vBaUxxShBNyEiaMuSnzEmm0jvncGIE0a1CpCYs80UjuvHMRdPZfeaXSSlJ6I16NAadLgdLoq3FPPK9S/wm8/v5KunP6OuwvOl3uQLj427oFt9QKZb6MrA5A32ZBcqGoWSrcUMOW5YyM4VCq5qJ+56z+fMzjZRAGmkIMShOhx0q66u5rXXXuOKK65oVdustraWV199tc37DnXrrbdyxhln8M9//pPU1FSWL1+OXq/n0ksv5ZZbbunaTxEGtQX/RrX6ZZtpFPDrYIim+Q/cofsO3TZq0U7OI/nzX7Z7zsgvL/XrxKm6IIZiV4aBRnL+3BdcKonHpoT13HvW7sZqsaIoxPRSo3J8nbByQpTppigKszRHU6c2kEj3Ln7Dpa6yDp1Bh9PuDFm7+cPR+C2JV/0CSLUlNThsDvQJ4X+fOBxnsZ3GJZ6sQMPAyP7btgTe1Rj77qCFq8YXdNOmhTdrMIt0b2B8pxp9GZWd9emjH7H6vVWgQGpeGonmxPYfdARavZa8wXkc2LSf8p1lOJoc6I3R83sYbI21DTxz7pMB7zVNdU001Vm7nTUohOia0m0l1BRXU1NczSm/Ob3NYzL7ZnHqb38RsM9SbuGdu96kvqqenEF5PH7KX7DbfNceBzfuZ/Tso0I693ALyHTLDN31QcFRfckb0ouyolL2bYi9v50BnUsLOx90Myh672eHYNSErc15Dmptnvr1bV1fd3Ybuj+GjCljahQsCYGrNg+nw4VhnnnmGb799ts2g2qpqal89913PP300+2Os27dOn7zm9+g0WjQarXYbDYKCgp45JFHuOuuuzo6nfBrPKQTpf8T3rLd1r5DtxuduLd3MCvFqWKckIRpagranPAvz/LPdIu15aWGAUayb+9N9h19SJoe3sDIghtf4tkL/8bL1/47rOcNtnLVF3QL1fJSgFq1nu/VNXyuLsWqNrX/gAirLanFaXeSkJyAOSe8ry2tQcus60/kxBtPJq25Oxl4Mk0q91SEdS7tcVb5BYoiXNPNu7w0DjLdtOnhfS4VRWGYMgCAvWoxDvXwXcpjQfWBKpxNDlDhutdvJC0/vf0HtaPXME8nQLfLTen2km6PF81qimso2VbC7jWB9Xlf+vXzLH7uKxqqJaNBiHAr3eF738kdnHeEIwOZs83M/dfVZPfPYeeKHdSVW7D5Lb+P5c6bh9NQ5XuPSsoM3fLSvKH5lO8ux+1ys3t1UcjOEyoBTRS6kOkGvmy3oNSEtdg9ATfo2PV2e9vBGEPGlDGbYzsd0eGg27vvvst111132PuvvfZa3nnnnXbH0ev1aDSe0+bk5LB3r+cNPTU1lX37Yu+bgFBq+tlK05oGrEvrIrK8VKfEbk23SGpZAui0x/ZzVuZf0y1Ey0sB8pVs7+1YWGJaV+7J3rLV20gJ8/JSjUbDWfecwxl/mENqXpp3v7XWSvmu6KqJ54qioJt3iXmsBt1qfO8l2tTwNwAaoBR45oGLvWr0Ne3oDP9aiCnZwclyKBzfnz6jC0jLTw+4+I1H+cN6k5af1mr/lsU/s/Ded+I+6ChENGp531E0Ctn9sts5OpBGo+GcP59P/8kDA7qemlJNmNLiL3u1PqCmW+iWl+qNegqO6gtAWVGZt+t9rPAPuhk62bm0RXJzXTdZXipEJ5aXFhUVMXjw4MPeP3jwYIqK2o/kjxs3jlWrVjF48GBmzJjBPffcQ0VFBQsWLGDUqFEdnU6P4CzxpCtqM8LXrc6ff/fSmKvpFkE6gw6NXouiIWbbhAOUhWF5KRzSTIFyBlAQsnMFQ0vQDYJ30d4VzqbAjKPyndEcdIvwcrvmlPJYbaQQsLw0zJlu4Au6AexU9zGQvmGfQ7C0/P4qGoWk9OBkOaTnp7O/eflQWVFpUMaMZmf+4ZeYzCbSeqWz9buf+fypRdSVeZ7Xqn2VDJg8MMIzFKLncLvdlO3wvO9kFmah60KZiZyBuZjMJnat9F3HWWut/PTRWi558oqgzTUatCwv1SXoMCR2LYOrowZMHojD5iApNZEDm/czdFrs1HULTqabp3xDPHU/F6KrOvzpXavVcvDgQfr2bfvD9sGDB70ZbEfy4IMPUlfn+ab5gQce4PLLL+f6669n8ODBvPjiix2dTo/QUtNN18k2zcES2L3UfYQjo4/b6sJtcYFOQZOsDWvQcuDRgynechBbvY3KPRVkdfJbx0i61fEg29XdVKm1aNEwROlHFun0VnJDds58v6DbQTX6L1gDg27hzXTz57QHpjOXFUVb0M0XFIx4ppu3kQJc/ufrMKxRMdXqefrrZyI6r45yR3B5KcAMzWQaaWKfWsxfHM/zG+dDFNCLq3TncbZ2dtjn0x2W5t/flKwUNNrg/F3IHuB7DyvbGf3vYV21f8M+SneUYDKb6DOqgKSMZHIH5+GwOvjwzwsBKC0qYceybez9aS8DJg+k3/j+EZ61EPGtvryO/JG9URSFnIEdX1p6qOOvO5GyojIq/LLmbQ02XE4XWl34M6xDpSXolpSRHPIvxXuP6MPX//A0Hhw2c0RMBd2cFQ4Mg41oUrXouprp1ry81IYdh+pAr8RvvVMh2tPhT+/jxo3j/fff5+ijj27z/oULFzJu3LgjjqGqKjk5Od6MtpycHBYtWtSJ6fYcrnoXaqMn0BWJJgpwaKZbx9YrRwvL+1UcmLsDgLzH+5E5r1fYzp2UnoTL4ckM3LV6Z8wE3erVRp51vQGAmWTGKMMwksB0zSTSlNAFlwIy3WJieannSwO9UU9CUmi/JW2L2+XG5XBhtwYW7iyPsov9gEy3zMgG3XS5etyNLrRpOmyr6khfaQZcNNY2kpjavUL64eCf6aZJDf9zOVt7HLO1x3G/4+98xvdsU3ezjd1kuTJiKuimqir1zV35ghkwzyrMQtEoqG6V8igLfgfT2g/X8OUznwFw4zvzGTx1KABDZwyH5qDbdy8uZt2Ha9CbEihavp3MvlmcdffZAZ2XhRDBYym3sHu1p8Zi3pD8Lo8z+NghOGyta3Y2WawkZYSu9lm43fz+b6ivrMdpC/11Td5Q37VH8daDIT9fMNm3WrFvbwIF9H26mOmmJHnrsD3qfJE79dcGcYZCxJYOf81744038thjj/HMM8/gcvmWGrpcLp5++mmeeOIJ5s2bd8QxVFVl0KBBUrutA1qWlgJoJdOt8/xWw3rrOYVJvwm+b/b3/LjrCEdGl2LVd7GYTCJmJdn7Xyj1wr+mW/RfsLZkuplzzBFZOvzH0b/jt/1v5sDm/d59/ScOoKm+yRvsjQYBQbcIZGf56//NKIbunsigdWOpHtTo3R8r9adc1X413dIjF7zwvB/4auC4YuzLmMaaRu/vSEpW8JaG6xL03lpIxduKqa+sa+cRsamx1ve7Y/Lr+ppR4Kv56XK6QVEo31nKxs/Ws+T5r9m/UT7zCREqLUu7wfO5pKsUReHK56/hnpV/Zvycid79Vou1W/OLNlmF2fQb359Bxxy+ZFKw5AzMRWkub1GyNbbqodqbu5fq8g1oDF3LCr9I+wsu1ZxFf/qwwPU+rlhtIS9EEHT4t+icc87hd7/7HTfffDMZGRmMGzeOcePGkZGRwfz587nttts499xzj3wyjYbBgwdTWVl5xOMEuMp83zbpcsPfRAFiO9MtoHaTNryBkcJx/cjun0P/iQMojaH6Pgf9Al7na0/lXcMzvGt4hlt0oa3n4b+89ECUB91cDpe3O1+klpa2fOPc0olTq9Oya/VO9m/Yx7bvt0ZkTm2JpkYKLVRVpWqQr7ZIzATdav2ey7TIPZe36K7g34YHvduxVuszYGl4Ny5O2zJ02jB0Bh3OJgf3Tbk7qGNHC6vFL+iW5gu6JaYmojd6vhy0N9jI6pcdcNG+Y9m28E1SiB7GEsQ6s/3G9yezIJNEv9/vxprGIzxCHInBZCCzMAuAkm3FAUkr0cxtdXmvQ7tazw08QbcGGtnFfnayj61q7CQiCBFsnQpdP/DAAyxfvpy5c+eSn59Pr169+NWvfsWyZct4+OGHOzTGww8/zO23387GjRu7NOGeoqWeG0RueWksZ7qpfl0Kw53pZkwxYc4xs2v1TrZ9uyVmUsqL8S3tzA9hDbdD5ZPDTGUKU5XxuKP8dVZX4df5MCsyQbeWOlRag44HNjzCuQ9dCIAxxcj2pdEXdNMkaSLSCKYtTpzUDPTPdIuNb57znxnAoI1jGbB0NLrekfkSpoX/3wVHjH0ZU1duQWvwzD/YQfMLH7uU/BG9AbA32lHV2GzacSTWWl/Gi8kc2NXwt5/dyV3f3cspv/0FV790Hcf/+kTvceW7or9sgBCxKhR1Zv0zWf2D7aLzJp4zmaEzhmE0m9i1ov2Gg9HAsc+32krfxXpuLcZrRnpvr1E3dWssIWJZp78ynzx5MpMnT+7yCS+//HIaGxsZM2YMBoMBkynwg1tVVdVhHtmzOPyWl0aqkYLGLybrjLWUYL9MNyUCq7HG/GIcRSt2kJieyM/fbKbX0K7X2QgX/6WdvZTw1aFL0iSyWd1OGVXkqzntPyCC6iospOWn01DdELHOpcbmi12H1Y4pLZGJ50xm9bsr2LV6Jz8s+I7Tbv9Fl7qXBVv6lbnY99ogioIPDpxUDWqkeGIt6ZYUKvfFRta1Nk0X0Qw3fzq/jw2xmOnmsrswphhJz08P+vgJyUbAk1Fpb7SRkGQM+jkiydq8vFRRFIwpgT9b3hBP7aJTf3M6ALlD8igc3489P+5m3YdrOP/hi4LWuEII4WMJWF6aGpQx/TPd4ml5qaWslp8+Xosx2USv4fn0GVXQ/oO6KatvNose/RiA5f/5gUHHDgn5ObvLv3OpoRuZbgATlFHe26tdG7hMe1a3xhMiVnXoU/zevXsP27W0LQcOHKB3795t3vfkk092eJxoojtzIMo6C7hV0CgoWSbUCmvANtBq36HbmgFm9Ce0/1w6S+0oKRp06Tp0+ZFvpOCKsYsr/0w3wpzpBjD29PGs/O9yDmzcz7LXvuP4a0+ISP2vzvBvYuDf3CAcBigFlKlVHKQMq9qESYnOi9W6Mgs1B6sBSMmNTKabMdn33DTVNZGUnkR67wyKlu/AarHy85LNjJ49JiJza6GqKs5KB/reBhIGR/7fsuz+fdi2WKkz1NP4DzuZW5Iw1GvY37Q30lPrkL3nbsFd50LXJ4E+LwyK6Fz0AUG32Mp0qy31XJw21TWRmJ7UztGdF/C7WR+HQbfmjBdjirHdbvWKopCal9b8OCvFWw7Se2SfUE9RiB7HP9OtOzXd/Plnslpr4yfTrayojHfueguAWTecFJag25hfjOOjhz8goyCThOTwN9/qCkeJHW2WDleFs1vLSwHGa0ZwsmYaVWotP6g/dnkc/YVDcG2oQK2xtXl93dltaP+aXcaUMTuyrSvQwbvtv4Y7FHSbNGkSc+bM4eqrr2bSpEltHlNbW8vbb7/NU089xa9//WtuvvnmNo+74orQ1ocKlaSXTsJsDt9FtqvUiVrnxlFnR5cVmeVEOiV2g27+14JKmGu6AaT2SsOYZER1q5QVlXFg4376jA79H/fu8M90yye8Qbf+SgHL1Z8A2KXuZ4QS2cDC4UTD8lL/D8NN9Z6g2/hfTqJqfyVNdU2s/WBNxINu7gY3FQ8fACBpppmUX2REdD4N39TSuLSO6ow6UKBmgJWc9SlU7avCbrVjMEV2yWZ7GpfVeT78Fkb+A7suoNZnbPxd+OG179i5soht323x7gvWxam/wIC4ldTc4GSdRIvG5uWlhy4tPZxBxwxm/SfrANjxwzYJugkRAv6ZbsHKwDelxmemW1N9k/e2//t1KBlMBowpRnau2MH+9Xs576GLwnLe7nAUNeGqcIKBbn/uSFPM1KuNrFLXA/Czu4jhmoGdHifx5djplC56FtViCV7QbfPmzTzwwAOcdNJJGI1GJkyYQH5+PkajkerqajZv3symTZsYP348jzzyCKeddtoRxysqKuKll16iqKiIp556ipycHD799FP69u3LyJEjj/jYnsIZ0EhBMt06K9KZbgATzpmM261irW1k7f/WRH3QDWCKMhYDOvLICut5Byi+52anuo8RRGfQLeDDbRC7H3aGMcV3wbv4X1/Rb0J/xpw+jtdufInGmkYq91REPJDkqoyyJgrNgXen3vM+Vj24kZz1KaiqSllRaVi+7e4qVVVxVXuez0h3gYVDarqpsZHptujxT6gtrgnYF6xlWP78l1za6m1HODL2qKrqvfj2b6JwJIOPHcLAKYOor6xj58oiZlwzK5RTFKJHspTVAmBITAhadm1LYN1kNsVVfcqmOl8A8dAl8qHU8nnMbvXU+4z2lS8tnUuxg76g+1/2na09iZVNP3HZ8tNotFvgyGECIeJShwpsZGZm8vjjj1NcXMwzzzzD4MGDqaioYPv27QBccsklrFmzhmXLlrUbcFuyZAmjR49mxYoVvPfee9TX1wPw008/ce+993bzx4kf3kYKCuiyI99IIVYyGgCecr7CAtv73u1I1HQDGH3yUexaVUTxloOs/WB11H9wWa1uZIW6jo3qNhI1HctkCJYBGl/Q4x7nk5xjv5GnnK+EdQ4dEYqCxZ1lMvs+KH77wjd8//ISdAYdo08dizknld6jC9iyeHNE5taiJUgEoM2IfH055dCg2yDfcpmSbdHdTMFd76bl7VebFqE3Mz/+Nd1i5cuYUbOParUvFJlu/he8TfXxkx0C4LA6cNk9v9f+RdaPJG9oPge3HKB0Ryk7lm2L+r+BQsQat9tN1b5KkrNSGDJtWNDGHTx1KE/s/zsPb32cE26Inwyjpjq/TLeU8H3O9f8S1NHkOMKR0cG/plt3l5cCXNR4OiuGP8e8088g9Y/RHXAUIlQ69bW5yWTi3HPP5dxzz+3yCe+44w7+/Oc/c9ttt5GS4ssUmTVrFs8880yXxw0157pybAeLPWt4FQUl04ha1RSwDbTad+i2JsuEplcSml5HrifTkummzdKFvftmC61fTDaWupda1HoUp++iOhLLS8Gz/HDwcUMp2XKQtPx09q7bQ+G4fhGZS3tUVfXWdAtn59IWxyjjeEx3Byvd69mtHmCVez1F7r2UqOU8pP9t2OdzOHUVkQ+6GZMDPyjqjJ6g1oRfTmTFf37AUlaLOdvMUaeOjcDsPFo6l0K0ZLp5/q8l6FY1uAHnWA19rLlUH4ju5j3uGr/nMgoy3RRFQYsWF66Yqel29n3nUbR8O1X7KrE32tEl6AKWTwWLf72eeMt0a2qwom9+r+no8lKNVsOAyYPY9MUG6ivrKd1e4m24IITovuoD1ThtTuptdQTzk268Nj0JyHQL0/JS8GQhtnDEQEmLlqCbNl2LNqX7X/ZlmNOpGWDCWlaPbZMV25ZGEoZ17m+wc1057uIGT023Nq6vO7sN7V+zy5gyZke2ncaOfRYO+yf4DRs28MYbb7Tan5OTQ0VFRbin02ENJ7yLVgnOtyJK7yTMu6487P2qquJs7l6qy43cG7MuxgpmOw7aQVVJTjbx2uWfsW32QZ5V/g/joOBfXHXUxLMn88b8V7GUWVj74ZqoDbpVY6EJzx/ZcHYubTFAU8A8zaU4na9Q7/bUfiijigR3dH0wqSv31XQLRaZMRxj9Mt0A9M2dSgcdM4SkjGQaqurZv2EfDTUNJKUFv1h8R7iqfN/kRkPQreWLC6fOE3Sr72NDt85NCcWUbiuJ5NTa5fILummipoNpS9AtNjLddAYdGX0yKdnqyWpMTEsKyfIe/8wJ/9pBsU5VVe6fcg9avZbcwb248oVfd/ixg6cOwVJmwWDSs3vNLgm6CRFEpX6Z2rmD84I2rqqqrP1wDdu+3UJTQxNz/3l10MaOpMBMt/AvLwXPEtPIfDLrGNWl4tjvuQYNxtLSFmkXZ6PoNTh2N2F5v4rsOzp3bdZw9FueQIcQUaZB7djKhrB/lZGWlkZxcevlPGvXrj1sx9Oexl3rQrV53lh0OZFbmhVrmW77ztvCtgE/Mjt3OD/0eYdXJj1O0iRzRLNDRs0+Co3O8zzuXLEDtzs6n0f/Jgrh7lzq7xbdFbxreIZEPBevdqIrDb+uuaab3qgnISkyRe0PzTJpCbppdVpOmDebXsPyqdhdzvLXl0ZiekD0Zbodury0rsD3wbtyb/R+2QOHLNWNguWl4Cs94IiBL2NaDD5uqPe2Vhea59Hol+kWT0G3hqoG7FY7TXVNaLRKu51L/Q2YPIh9P+2haPkOtn73cwhnKUTPU7qj1Hs7d3DwVikoisKnf/2IZW8s5aeP18bN+1lAI4UOZuwGg97ku5azW+1hO29XOIvt4PRcgwZjaWmL5FPSafzOgmOfHct7lUEbV4hYEfag24UXXsjvf/97SkpKUBQFt9vN0qVL+e1vf8vll18e7ulEJW89N0CXF7mgW6zV7nE3ByqVBIUEjSEqCpUmpSdx7GXTyBmYy561u9m5oijSU2rTwQh2Lm1LAp5vBW1E14eTlppuKdnmiL2+Bk8dygWPXuLd1hp8v6ejTz6Kkq3FpOWns+OHbThtkQlaRlvQraWZSkvQzZnoRs3y/PmL/qCb7703GpaXgu9vQyxkuqmqiqqqDDluKJl9M+k/aQDjzpoQknMNnT6cG966mds++T3jzgjNOSKhtrTGeztnUOeyafqMKvAurSpatl3qugkRRKXbfZnauYODm0U6dLqnRpzb6aZo+fagjh0pEVte6l/TzRpdXyYfyn7AjumYZBKOSsQwNHiBSUNhAqaJSeh6G9CYtdh2xFfdUyHaE/ag24MPPsiwYcMoKCigvr6eESNGMH36dI499lj++Mc/hns6UclZ4cAwyIg2SxfRoJvG7+XhVGPg4qrJk0WmGKOrFkX/iQMoK/J8G7n6nRURnk3bAoJuEcx0a2HA87q3q9Hz4cRhd5CWn05GQSaZfTMjNo/03hn0nzjAu603+gIxOQNzOe5XM6gtqWHz15tYFaHXW7QF3VqaqbQsLwVQ+nrmVVtSG9WFjf2Xl2qjZHmp3ht0i/5MN1t9E7f2nsff5jxG37H9mP/h7Zx199khOVdqXhpDpw+ncFw/kjOTQ3KOSLCU+mpZpuZ2ruurVq+l/8T+6I160vtkUtfcaVEI0X21pTVk9c+h4KgCsvoHtzRI4fj+5A/vzbCZI6irqGv/ATEgUo0U9IcsL41mzt02rMvqsa1vRJcV3GvQ1IuycR6w0/hdHZb3o7uerhDB1qnohMPh4Morr2TXrl1dPqHBYOD555+nqKiIjz76iNdee40tW7awYMECtNroWDoTac5iO/YdTbgqnGgzI3eR5d+9NBYy3VSbJ+imibKg2+hTxlA4vj/9Jw1k8zebovICvxj/5aXhr+l2KIPS3F49ijLdGqsaOLBpP1X7Kls1Mwg3p99rqGV5aYtJ504hISmBgUcPZtkbS3G7wr+kOdqCbhyyvBRAW+B73qr2Re9SB1eUNVIA39+GWPgyxtZgQ1VVbA02nPboDxJGI/9Mt9S8zgXdALL65+BocrB79U7Kisraf4AQokNKtxVTsauMij0VQa/hmjsoj4M/H2DL4s3s+2lPUMeOFEWjkNorDVNqYkA5gFA7tKZbNLP7dy4tDO5zlHJauvd2/aKaoI4tRLTr1Cd4vV7Pu+++y913393tE/ft25eCggKAqFgGGE2cJX4X1L0iUzcKQBtjQTd3U8vy0ugKuiUkJpAzIMebdbT5q42MOX1chGflU/NaOSc9P5JNt5+Ac5zClPwxkZ6Sd3mpPYoyafybKKRkpxzhyNBz2PwCMYbAt/HCcf3oN2EAWxZvBmDTlxsYfXJ4/00rCi0oEzXoqhU0GZH/MiVpuhmNSYNxmG8pjnakiX5l+bidLqoOVAW1CHUwJR6dQvY9fXBVu0gYHtlgb4uWvw2xkOkWUMMnDMuJbI02aotryBkY/i7QoWIp8WWnmXM6H3TL6JPhvd1Q3RCUOYme5efFmxk2Y7hcL/hxOV1UH6wGILMgK+jjJ6b5Ct031jYGffxIKNtRSm1xDXqjPqCjaKhl989h8HFDMZgMmFKj4+/44Tj2+AXd+ga3mZlhgBHz+ZnYt1pp/MGCfXcThn7hW+YrRCR1+mvzOXPm8P7773Prrbd2+aQvvPACTzzxBNu3e2oEDB48mPnz53P11fHRHae7Amq65UawppviH3SLzgYA/qJ1eSnAxHMm8/M3m8gdnMfPX2+KqqCbbZsV43Itfb7OIL1/Drm9g//hrbMMzW9N0VTTzeK3LColOzKdS1ssXfDtEe+fec0smuqbqK+s44unFjFq9lFhvViZ/7snWHb7WgAsCWvDdt7Dyfh1HvwaUl2ltPTm0KcZKFrm+RtUsasMZo6I4AwPL3FKColTIhvkPZRO0YEaG0E3e4PvAsIQ4uYnTruTt3//H9Z+uJrBxw7luLnTwx7wDgX/977UvLROPz4pw7fUtqGqPhhTEj3E2g/XUF9Vzzt3vsmo2Ucx8OhBzLr+pEhPKyrUFtfgdno+92YUBL/kRUDQrTo+gm61JTUApPZKC+tnosnnH83k848O2/m6w7HPL+gWxO6lLYyjk7C87VldYFlYRdat+UE/hxDRqNNBt8GDB3PfffexdOlSJkyYQFJSYDrzzTfffMTH33PPPTz++OPcdNNNHHPMMQAsW7aMW2+9lb1793Lfffd1dkpxx1nmCzREMuiW6U5jyv5RJO3UY8rXwqiITaVDvMtLE6Lvm9BBxw1Bq9dRtHwHu3/czRl//CVJ6dHRNLzlD+ylf5/NoGui4wIxGhsp+Nc0iXSmm73RDgokpia2WTtq2PEj+PCBhVTsKseR52DlW8uYcuGxYZtfFTUApJCEQYnce9ih/INEhkITLTk3lXujd3lp3SfVOIrtaNN1pJyShiYx8pmD+hhqpNDkF3QLdaab6lZJyTHjsrvYsngz6b3T4yLoVuuX6dbZmm5AwN+6egm6iQ5yu9y8+8e3PQ2MFNj4+XqKVuyQoFsz/7IIoQi6Gc0mFEVBVVUaa2I/Q7WpvgmrxVO8P61XejtH91yO5uWlSoKCLif4n9/MczIof2gfxtFJWNfK3wPRc3Q66PbCCy+QlpbGmjVrWLNmTcB9iqK0G3R79tlnef7557nooou8+84880yOOuoobrrpJgm6Ebi8VJcb3NTezhiwMoex53r+MKVcTVQH3VRVRW3pXhqFmW46nY5xZ05g8XNfkTe0F5u+3MDk86LjWy+Hf/2GILYH7w59cyMFN25cqgutEvlAQ0vnUoh8ptu5D17IOfefT1p+2x8cFUXhzD+ezfL/LOWnj9ey6t2V9BrWm75jC8Myv2rVc5GeTucv0EPJ4Rd0SyjwLfGo3BO9HUyrniuh/tMaAIbumxgVQTdvTbcYCLrZ/IJuCSFeTqQ36jnusml8848vPOdutLXziNiQnJnM0BnD0Rl0JHfhC4eATDdZXio6YO+6Pbx5+2vev7um1ESsNY1YaxuxN9oxJEbus3G0qNrvH3TLOMKRXaPRaDClmmisaYyL5aW1xTXe213J2O0JVFX1XhPoCxJQNMFPYkgYYiJheCLWFfVYV9TjeMAWkow6IaJNp6MTu3btOux/O3fubPfxDoeDiRMntto/YcIEnM7oX6oSDs6y5qCbhog2UvCvSdPSfTNatQTcIDqDbgCTzptCSlYKBzbsY/nrSyM9Ha+WP7DaTB2apMhf0AMkKL4P1NGS7RZQ0y0rspluqbmphw24tRg2czgms4neI/uwf8M+Prj/PaoPhL5blKqqVOG5UMpQojfoZuyViEbrea+o3Be9QTdXjV/zh/To+P1sCbo5YmJ5qa+mW6iXlwKYzL5grrXWGvLzhcOOZdvYuuRnipZvR6fv/GeSZFleKjqpdHsJBzbuB2D8nIn0GVXgva/6oHQ9BMjql8PUK6YzfNZI8of3Dsk5TKmeJaaNNbEfdKtpXloKkJafFrF5RDNXjZOEUYkkTkshcVroPuem/KI5SKwBy6LqkJ1HiGgS9ojOZZddxrPPPsvjjz8esP+5557jkksuCfd0OizxjVPQb7GCS0XRKii5ibhLGwO2gVb7Dt3W9E5GOyjtiOdqqemmy9GjaCO3VNKcm0pCUgK2Blv0B92afDXnonF5KUDvkX1IykimrqKO8t1lWMotmCOcMaU6VRwHPEGtaMlyA9/yUgA7DhKJfOFZS3n01HTrCEVROPeBC3h13ovUV9ZTW1rDaze9zOX/uDKk3/LW0eBdxhktQbfSP+yh6vlS9pyxBf7u2WfQ6Unvk0Hlngoq91SgqmpUFul2N3cv1SRpUPTR8YWCzru8NPqDbk31/stLQ/8eZ0zxvVc11cVH0K2+ypOd5p+x1hn+y0sbqiTTTbTPP4tr3JkT2P3jLrZ/vxWAmoPV5A6KzsY34TRg8kAGTB4Y0nMkpiVRuacCa20jbrcbjSY6/gZ1RW2xL7gT7uWlu3/cxdu/ewNbo43jLp/O8dedGNbzd5Rjrx3rcs8XI4aBoSvHYP5lBvWf12D7uRHLGxVkXtP+73Pi+7/AtasWtaKpzevrzm5D+9fsMqaM2ZFtU7oK5/++3ddwp4NuV1555RHvf/HFF9sd44UXXuDzzz/n6KM9y+tWrFjB3r17ufzyy7ntttu8xx0amIsk/cn9SDwv9BfaqlsNCLpFkqIo5AzMZd/6vVTtq8LR5EBvjJ76TP40KVoGbRiLanNHXffSFoqiMP6Xk1jz7goq9lSw+auNHB3GOlttcRTb0WbpcZU50BdEz3INA77XWVRmusVA0A1Al6Dn/L9cwuvzX2H70m1oFA3/+c1rTL/qeEbMGhmSc1aqNd7bGVGyvNTd5MZd68Lu8gWJ9OjoN2EAKdlmtDoNjTUNJKV3LagQSq6WoFt65LKeDxVLNd0ClpeGIdNNq9diMBmwW+3e+kGxzOV0YW3OcknuYtDNlJborQ3VUzPd3G43K99azoRfToraz1HRJHDpZCa1pb4vvXat3klW/xyS0pPC0pG4J0tsznRT3SpNdU3e7VhUc7DGezvcy0tddicHNnkyNy1+pUqiTWDn0tD9vTQOT8Rd48Rd46LxhzocB2zoex/5fPpT+iHvnCIa2S0d+53u9Kf46urANFCHw8HGjRupqalh1qxZ7T5+48aNjB8/HoCioiIAsrKyyMrKYuPGjd7jojHjIByc1U4Sj05GtasYBkf+w0RL0A0FSrcX02d030hPqU2KViFhSOSzodozcMogPvnLhwDsXrUz8kG3PTZcpQ7QgiGKnr9DM92iQWJqIr1H9sFpc2JMifzvZkclZyYz555z+PbFxaz/dB371u/hrdtfZ/TJR3HKb37RZiOG7qjGd3GUHiWZbi0Zw069L0ikQ4fBZGD3ak9ZhKq9ldEZdKv2BN20qdGxtBRA27y8VEXFrbrRKNH5RQcELosyJIXn99aUasJutdNU19T+wVHOWtOIqnrKN3Q1002r02JKS6SxuqFH1nR77JSHObjlAE6bE61By6RzpkR6SlEvoElAnwxqDvquPT7960d8+tePuOLZqxg/p3W5GhE8iem+IJu1tjGmg262hv9n77zD2yrPPnwfSZbkvfeecYaz9yYhCYGw96ZQ6AAKZbSMlkJLS0vLaJn9oGWvQtgjzCRkb2fHe++9LWuc7w9FspQ4sWVrHNnnvi5f6EjnvO+DI0vn/b2/53l6SZ6egkqtIjTevU43tW//Pa2+RxobyQPh6s6ltgReFIb4cTOqUBXtX7QQfovsXpUZ3Tgsun300UcnPWcymfjFL35BevrgNuf169c7OuUpeeyxx/jwww85duwYvr6+zJ8/n7/97W+MGzfOek5vby9333037777LjqdjlWrVvH8888THR19mpE9h7FOT/dms6NGCiJIxvxMyveX0VjSQPXRasmKbt5C0pRkFCoFJoOJkt2D10B0NdYmCkbPOytt8bH5aOoT9SABDb5wWwFdzZ2EJYR53aZAdGYMy365AoNOT0NpPaJRpGR3Mc9e+hSr717DlHOmOW2uZrFfdAsjxGnjjgjVyaKbj+BDeFK/iNBY3kjiFPc0mhgqpl4TYq9Z8FBKyOmmsvn71GOwE8mlRtm+EkITwkiblU50pntu6rWBvrTVttHV2sXdKb9C468mNjue29f+2i3zOxNbkcw/bPgdt/1D/c2i2xh0ujVXNpkFNx8le9bulEW3Qag+WkVDSQNgdqf6BvsRkxXLrEvmsu/T3Rj6zBsRdUW1ngzT43zwwLvUFtTiG+jLdc/f6BIHZXRmDCkzUvELGf7fvlSoza+hbG8p4H6nm4+N6NYnZdHNprGa2sUlZ4IuCqfxz1XmXBYBWXSTGfU45S5eoVBw1113sXTpUn7zm984Y8ghsXHjRm699VZmzZqFwWDggQceYOXKlRw5cgR/f/MXxK9//Wu++OIL3n//fYKDg7ntttu46KKL2LLFsUL23XdugN3tYBJBIaCI8sNU3213DJz03InHivRgVEsTUF85bsB5LKmlAKpoz4sgkalRNBTXA2ZL/+zLpNFx01tR+6lJnZWGrkOHJlBLV0uXXb0bd2O7q+XqL1hHkFojBaPeaF0sektq6YmEJ4ZzxRPXsOuDHXzz9Ff0desIiAhk48s/ULqnhBV3nOWUXexmWq2PpVLTzep0U9mIbqgIT46wHjeXN510naexpJYCKEMkJLoJSjjeu8YgYdGtu7WLwm0FGPsMFPQZuCbxBrfMa2mmoO82f3YZdHpq82vcMrez6bQRyYbrdAOYumYadYV19HX3YegzoFJL5/3sSkwmk7Xzo1Fv5Oj6I/R29sppkafAaDDyxFl/xdBnQFAIRKZGIQgCESmRnP3bc6nJq6LyYAUAdfljW3Qr21dKeW4ZgiCgVLvGCb367jWsvnsNgNXx6q1Y0ksVSoXbm2GpvVB0c7XTTTvRD3WWlr78Xv575qeE9e7iTs0Np9zU7v7VBkwHGzE19Q64vnb0GAZfs8tjymMO5bg7cWj3M0676ykqKhpS99He3l6eeeYZ1q9fT319PSaTye71vXv3DnnOdevW2R2/+uqrREVFsWfPHhYvXkxbWxv/+c9/ePvtt62pr6+88grjx49n+/bt1ppyQ0H/xjFEod95Zjxmn2Z74vGpzjH+WIXhm7LTiG79H8ZScB4lTU1GoVRgMkrDmXUq9LV9dHzWgqAR0E7yw3e69NLELCRMTGTjy2bHZ+neEiYun+SxWNxVv8FRpJZe2tlkW8/Ns51LR4IgCMy+dC7ZS8bzzT/XUbStgIaSBuoKaonJjmXGBbNGvBhuEftrG4RKpKabcPx/yc7phorwpH7RrbFMeh1MTS02opuEnG62TlQp13Xb/0UuSVOS0PfqyZifZe1W62psmylYULppbmdj60wbbk03gJpj1Rz65iBgFkODoqTx2eBqulu6MRns73Nr86pJmZHmoYikTW1ejdXJlrN6Cje+dIv1tbCEMH710d3cl32XOVtgTzEvXf881z77kwH/5kY7lkYt2kCtyxoc1BfXs/nVjRRsyWPh9UtYcN0il8zjDlqPN1IIig5223eBBVvRzR1d5IeLVXQTQJXg2s00QRCI/WcaP895hC8Cf0RHHz/nSnwZeENC/3+HzEIHg6/BHT2Wx5THHMmxXhxa/V6H7+JtGx2AeeejpqaGL774guuvv37Q62+66Sa++eYbLrnkEmbPnu3UNK22NnNaU1iYuRXxnj170Ov1nHlmf5eY7OxskpKS2LZt24Cim06nQ6frFyLah1gcz1nYOd1iPC+6afy1pMxKQ9+tQ+PvS7dEazr0FfRSc5tZFAy/K07SolvqrPR+0W1XkWdFt3Jpim5Sa6Rg10QhwjudbrYERQVz8aOXsXvtTta/+B26bh1v3/E6+p4+Fl6/xOHxSkyVxAvRvGB8m1eMa63PhwshTox6BAxQ0+1E0a25XHqim7GtP16FhGq6qeiPRcqi264PdlCyy/y9cPnjV7lt3pisWPI3H7MXW7wsJd1Cl5OcbrbXdjZ3jhnRzbbrtYXqo7LodirK9pZYH6fOTD9pjaDx1xCZFk1jcT2tVS34aHz44MH3uPqf13td2YeR0tNurhnpSsGxp72bjS/9AED+5mNeK7oZdHo6m8yfZSFx7q3nBuAX5s+8qxew+8NdVB+pkqzb9doPHiWuIoLp9eOZqJnn8vkClgXT09dHj8n8Xm6j85Sim4yMt+Ow6LZv3z67Y4VCQWRkJE888cSgnU0BPv/8c7788ksWLFjg6NSnxWQyceedd7JgwQImTTKLGLW1tajVakJCQuzOjY6OprZ2YFv6Y489xiOPPOLU2BzBPr1UGik78ePj2fTKRgDK95WSvXSChyM6GbG3f3Gj0Er7xit1Zv/Ndskez7oH9RVmQUvwVaCMkI6TRmpOtw6bblOBUd4vuoF5l3HWJXPwC/Hj/659nsTJiexeu4vZl85D7efYZ8+qvhupo5EYIkkSYgknhFmKHJYppJGOfqr0Uv8wf0JiQ1D7a1BppPP+tyKCOkuLsdUoCeezBZWd021wh7snaKowi6gBEYH4h/i7tV7fOfedx4aXvrd7zltTs2wdoM4S3bqbx04zBdsNGzCXmGivP1mIkzHT2dxB0rQUGkvqSZo6cA3h3373II1lDfzftc/RWNqAf1gA61/8jmW/WOHmaD2LrdPNVSRMSsQ3yJee9h4Kt+ZjMplc5qpzJbbdb0PcXM8NzGtlQRDQ9/ThG+xLzdEqUmcNXgfdnfSKOvaEHmFPKNQLbdzP7W6ZN4j+74YOsZMYIeI0Z8vIeC8OrzJG2gghPj6ewEDnp2fdeuutHDp0iM2bN49onPvvv9/Ozdfe3k5iYuJIwxsyxnpp1XQDSJmZZhXdSnYXS1N00/WLboJW2jcEIXGhTFo1mebyJqoOV2E0GFGq3O9iEUURZYwPWq2AIkApqV1iH1unmygBp1ujjejmpTXdTsXEM3OYd80Ctr1prnO543/bWHTD0N1uDWIz5VQDICAQJASAALGKKHwFiexYDtBIQYUKQRDwC/Wn+kgVTWWNmIwmt6ednA6/eYFkHnRekwtnYet000tUdNv70W6KtheAAGfeutKtn291BbXWmneaAC26zl5rypw30dvRw+FvDhCWGE7KjFQiUyOHPVbACU63sUJHff93h0qjoq+7z9wRXmZA8jYeo3xfKQCx2fEDnqP0URKdEcOFf7yUH57/lqLthajUShJyEslamO3GaD2Hoc+Avte8XnCl002pUpJ9xkRaq5tR+6ppqWohPDHcZfO5Ctvut8GxIR6JIWtJNge+ykUURQ59c1Byolul2G9GSRJi3TZvsNCvCbTRcZozZWS8G7evLp544gl++9vfUlZW5rQxb7vtNj7//HPWr19PQkKC9fmYmBj6+vpobW21O7+uro6YmIG7pGg0GoKCgux+3Imh1qamm0REN9svhpJdRR6M5NSYdP0uAkEtnUXzqVD7qqk+WkV3SxfVhys9EoOxyUD3hnZ6c7slJ1TaNlLQS8Dp1l5vK7p5b023U7H4pjNInp5CeHIEXz3+mXUHfSjsNR22Pj5fuZy16mdZq36WO1SDlxtwF8Lxt7d9eqn58zU80byratQbaa1pdXdop8XUbcTUbZScS8rO6SZKL71UFEVK95SYhTbRXBvKnbTVtlo7CWqOu0YNvZ7/HHOUDx54D73OLBaq1Crixg8sggwFP5uGQV1jxOlWsruYXWt3WI+Nfea/lbZa2el2KhpKzV1LA8ID8B+kY+akFZPJWpRN4pRkincVU3mwEqNeep9HrqC3o9f62NK4xVWEJYZRsquYvB+P0VBU59K5XEVnUyfRWbEERgR6JL0UICo1ms6mTrqau+y6QkuFMrHa+jjRjaKbrdOtTRw7GzIyYw+HV9qpqamkpaWd8mcwZs6cSW9vL2lpaQQGBhIWFmb34wiiKHLbbbfx0Ucf8cMPP5Cammr3+owZM/Dx8eH77/vTPPLy8igvL2fePNfnqg8Hg8XpphIkUzg7LCGMiWdOIm5CPNVHqzEZTYNf5GZs00ulJiANhF2KqYcaVEi1cymARq7p5lbisuOJTI2iuaKJ6MwYNr3645CuM+j0NOqaCcBc53GGYqIrwxw2gWeHkvBGJr4X9P/b+RzvrmDfwVRadd0an67haOhOjgbtoPObVk+HY8XW6WaUYE23qsOVHPrmAAERAcy+bC4RycN3aA2HSSsn83jh0zy45RFrOrq+Vy858fR09LT3EJEWSV+3ju7WLlbccdaIxrN1unW1jI2F1f4v9nFs/RHA7M7yCzV/TrbVtnowKunS191H2/GNj4jUqCFds/KO1QiAj8aHT/64luqjVa4LUELYboxpg1zrKI+wqX3aJMEu30OhqbyRuvwaOho7CInxTD1JTUD/fbauq/c0Z3qGCrG/w3aSEOe2eW2dbu2Mje8GmbGJw6rOnXfeaXes1+vZt28f69at49577x30+iuvvJKqqir+8pe/EB0dPaKUj1tvvZW3336bTz75hMDAQGudtuDgYHx9fQkODuamm27irrvuIiwsjKCgIG6//XbmzZvnUOdSd6KM9MFvYSCKYCWCQhrpfoIgoNL4UH3EfDNTm18zoh1vV2DyoppuYBbdVBoVUenR1tpD7kaqTRTgxEYKnneIKJQCqTPT0Ov0o9LpBnDWPedQuqeY4p1F1OTXMOWcaUSlnX7hs2vtTnbevY6sO8JJO3suZ+UsdlO0jqEZ74dmvB8KvQqLRmQRjsKT+lNlGssbyZif5YkQB8TUanYZiX0igr90NhNUgrRruuV+Zu6C3tHQQfL01EHOdg0KpYKotCi0/uYFsSiKGPXGEXcHdheNJfV89fjnAEw+eypRadEjGs+2pttYcbo1FPe7gn635RH+e/P/0dXcRUdDu8fKSkiZxvIG6+PIlKEJ5QqlgukXzOTjR8wNfCoOlJM4eeBacKOJnvZ+0c3XxZ1bw+xEN2ltTA0V+/RSzzjdLN8FAL2d0hPdym2cbu5ML7V3usnppTKjF4fv/u64444Bn3/uuefYvXv3oNdv3bqVbdu2MWXKyNM9XnjhBQCWLl1q9/wrr7zCDTfcAMBTTz2FQqHg4osvRqfTsWrVKp5//vkRz+0KRKNI1/o2MIJ2+ult9e4mdWYa+78wN9Eo2VUsOdHN25xusRPirUJmT1sPFz58qdtj0Jf1O8ikJrpJrZFC5eFKqyNxtNV0sxCZEsWE5Tk0VTSSt/Eon/35Iy7965UEneb/16Az/9toOlVE6yPM9dwkjG39MR8GcrpJaxff2Nofr1SczyD9mm5NZQ0kz0ilt72HqWs8WxNPpenfQDDo9F4juum6+jdlIofoOjod/nbppWPDzVBbYN4IVvuqCYkPJTgmhIr95YgmkY6GDkI8VFtKiphMJqpsSm1EOFA/0LZJylipl2fvdHOt6BZh8x3ZVOadopttSren0ks1Nt1KdZ2605zpGTrpJpwQmmh1s9Ot/75RdrrJjGacpk6sXr2atWvXDnpednY2PT1Drxd0OkRRHPDHIrgBaLVannvuOZqbm+nq6uLDDz88ZT03T2NsMvS7MCTUqQ7MzRQUKgUx42IkudMl2tZ000hfdFP5qEjMMTfoaKlqttuFcxe26aVSE90k10jheHqpUq1yef0UT3LBwxfTXNFE0tQUCrbk885db5y26LmlkPPk/yRwbc0ad4U5bAYU3Y7v4mv8NZKr6WZssRHdgqXjirEV3QwSTC899uMxyvaU0NfdR0C4Z52pk8+eytJblnPm7asQJNSkY1AEgfCkcALCA/AN9hvxcP5jrJGCvldvFSiiM2NQKBQER/entbXVtXooMmmy4d/f88Pz3+If5s/CnywhfW7mkK9NyEm0Zs1IbePEVXQ0dpI8PYXMheOcIoqfjtD4MGvmjRTv/4dCa42N0y3aM+mlKo0Khcr8HaCToNPtqFhEE60ICETjvg6iwdg0UpCdbjKjGKfdAX7wwQdDqsn217/+lbvvvpsNGzbQ1NREe3u73Y9k8TnhV3ViBqNwiudOPPZRoIge2MVmqLdpohAjLdEtflICal8NtXm1HPgq19PhnIRt91KFF4hucEJdtz3ur+vWZ5temqg+zZnuR2qNFDobzTcCgRGBkury6myUKiW3vH4ruq5e/EL8aKtp5b8//b9Tdl7U2xSHt3X0SA1Do57unR301vdv+FhFt5QIItOi0HXpKPXA3+HpMLb2C1pScrr5IN300u62brqPF6m2dTF6ioXXL+bCRy7h3AcuQOMnrc2N05ExL5OHdjzKnw/9nRW3rxrxeH4hfmSfMYHJ50wjboK0nPKuoLmqmayF40iYlEj8RHODr+CYEOvrbRIT+D1N6sw0dJ299LT1MO+qBWQ6kOavDdAyfvlEfIN8KdiW75Wdgh2lsaSesr2lFGzOQxvg2ppuSh8lE8/MIXVWGl3NnZJsAjAYlg21gIhAj7mNBUGw/lv1SrCmW6NoFiYVKAgXQtw275BrumltNh6Hst4e7NgZY8hjymMe13aGgsOfPNOmTbNbdIqiSG1tLQ0NDUNK2zzrLHMx3uXLl9s9L4oigiBgNEpv1xwguPYWl3cyNdTaLGCjpCWCqLVqYrNjKdlVTENxPZ2NHQRESKe2VbefDiFRCTow+Uuv0cNApM3NJH1HEb2dPZTnljHt3BlunV/wEfBbGAgC+MRL6/1mm17q6UYKJpOJzqZ+0W20E5YQxg0v/pT3H3iXom0FTL9gJoe/PciUc05O07OklwLWbo1SpOPLFqpvLqLlpUa4zPycxU3po/axuhfrCmrpbuvGzwnOHmdgqekmqAUEX+lsJth1L5WY083W6SIF0U3GjEKpoCK3jK6WLsKTIzjvwQs9HZJLaa1qJu/HYwBknzEBMDuGgmND0AZoPeJulzKps9L5zfe/48gPh0iYlOjw9b6BvtY6Z7V5NSTkOD6GN1Fv00U0KmNk9RaHQvzEBL5+6kvAXDNzwXWLXD6nszAZTbTXmdNLPZ3SrfHX0t3aLcn00gaxGYBwglEI7rvfsHO6cWqnW3DrL9wRjoyMwwjt7RA8eF8Dh0W3888/3050UygUREZGsnTpUrKzswe9fv369Y5OOWawdi4FVNHSW8CmzkyjZJfZCVKyp5icVSOvy+csXvjlhzz9s9cA+F79OgsIH+QKz5M0JZmi7QWAOd3U3XStb8PYaMAnUY0wRJXeXdg2UvB0Tbfu5i5Ekzl9WUpCsyuJSo9m9d3n8OwlT7Pr/R1UH6kaUHTrs3G6+UjY6aYMVGLMgObk/hs622YAydNTKc8tA6A8t4zsJePdHuNAWGq6KUNVknJYSrmmW2NZfzF22657Mp7HPyyArpauMVHTraPRtuO1+XsjOiuGtppW2oCqI5WnuHLsUZtfwys3v4RfiB/Tzp85rDESpySz56NdAJTvLxv1oltdobleoCAILk8vBZh9xTx2vr+d4OhgCrbme5Xo1tHQjslo3oz3uOh2vIOp1NJLRVGkEfNGQKTg3vWTbS3gdnH0fzfIjF0cXuk//PDDI5pwyZIlI7p+NGPndJNYeimYnVnluWX09egpzy2TlOhm2+FSi7RcW6fCP9SfqPRo6ovqqDxUgb5X7za3kKnbiLHRvFj2SZReypOd083DNd06mmwWT6O0icJApM3OIH5iAuW5ZVQdrqSxrIGIZPvi1t7idDt6fiXLVv8co40ryzZFMnlqCocTwwmOCaYuv0Y6oluLOV6FhOq5AShta7qJ0nK62dYckorTTRRFDDoDSh8lCm+q6+Zk/MP8oQh6O3ox9Bm8pqnEcLDUAYX+743YrDgUSgUmo8kq8suYyzfU5tcA5vrBw8G2Y2lNXvVpzvR+RFGkrtDsdAtLDEPt6/p73oikCESTSOmeEjuXnTfQWttK3IR41H5q4id6Voy1pJf29fRJqoNxFz30YnbfRQjubTRh73STRTeZ0YvDd39KpZL6+vqTnm9qakKpHNqHx6ZNm7jmmmuYP38+VVVVALzxxhts3rzZ0XBGFXY13STWSAEgeVoKhdsKKM8tpWBLnqfDscPyZQH2go3UsdxghsSFUnmowm3z6sul27kU7BspeNrp1tHQX2tyLKSX2jLt/Jmkz80kJiuWQ98cOOl1vZc43cYJqXaCG5wgus1IobmiiZJdxRz78ai7wxsQ0SBi6jDHLKV6biDtmm5dLV2kzEwjfW4mESlD74DoKj5/7BPujPsl96T+iuIdhZ4OZ8jseG8bL//kRV6/9RXqjnfhHCm2zRS8sS6UI3TaON0sDmm1n5rYbHNXwJpj1ei6pZdi5gm6Wrutj/1CBq55PBgJkxJJyElEG+RrzcgYrbTVthE3IZ7Y8XHE5yQNfoGTiEwzO+q6W7u9yq3aWt1K9ZEqSneXoNJ49rt0+a0rufKpa/nJSzd7NI4TsaSWAkTiXtHNH1/iiSacEOpMjRSYSt06v4yMu3D400cUxQGf1+l0qNWDix1r167l2muv5eqrr2bv3r3odOabjra2Nv7yl7/w5ZdfOhqSW2if9jZirRFEEQTBXNCx94RjOPm5E46FCF98lifi+/yyk+Yw1Nmml0pPOAqKDCIyLYqG4vrjjrc+t+ywDYVesf/mVYv0RKRTkTk/i/1f7KOprJGSXUV2zRVcib5cup1LATSCdES3zgHShMYK48+YwCePmLtSH1x3gKU329fi1Ns43VRaaQlDtoQIQWQKKRSIpdbnbIWjyNQo/EP96WrpomxvqbXGqCcxttl0Lg2R1u/WNjX3RDHT01QdrKB0t3nRHZ7o+TIDSh+bVFydtATK01F1qIKD6/YDsPhG52Qo2ItunR7rIugO7BzSNt8b8RMT0PfqCUsMp6mskbjxo7+pxGB0t/YLsP4hw6unqQ3Uou/R09veQ/XRKgx9BkxGE33dfRj69Og6dURnxjgrZI9SX1RLyc4iALIWDl7Wx1lEpkZRsNm84d5QUm/39yxl2mw6l3o6vXTy6qkenf9UWFJLASKEwZsiOhNBEFiveZMs3QqaaOUPhn/xtvrJk87rmPwmpvIO0JsGXoM7egwjH0MeUx5Tq6RjiDr1kO/k//Wvf1n/OF5++WUCAvo/bI1GIz/++OOQaro9+uijvPjii1x33XW8++671ucXLFjAo48+OtRw3I5Y3g6Cr+XI/Eff/+oJx6c+R+zQo/+qFF9OxthlxCdDiyJQgTJKWossC2lzMuhs6iQyNZKKA+Wkz8nwdEiAfbF9286XUidhcqK1tkPJbvftzvZVSLdzKUCYGMyq8rkE7PMh2tcfzvNcLD0dvUSkRtLT1jNmarpZiMmKJSIlksayBnrazbvbtjfaUWnRpM5KR9/bh8ZfeuKtLdOFidSI9RgwEoi/Xd1AQRBImpbC0R8O09XcSVN540mptO6mMrCeh398g+i2MGYFTuZ6pJHyChKv6XY8vVQToMU/3POLQtu0a32vZ1PlHcHWhaV20t92gK3o1jy6nW62Dmnb742IlEh2/m879UV1LLxhsSy6AT1t/U4332GKbgAJk5OoK6zF2Geg5lg1NXnVvPUrc63f6MwYHvjxDyOOVQrYpndGZ7hPSLQ43QAaihtImeGeTeKR0lrban0cHOteF5e30GjjdHN3eilAGP0bMC20D3iOKb8VjtdXPv0a3NFjZ4whjzmWxxSPN/EZjCErO0899ZR5eFHkxRdftEslVavVpKSk8OKLLw46Tl5eHosXLz7p+eDgYFpbW4cazqhEX6RDX9iLoBEk52ywkDEvkx3vbKU8t4yi7QWSEd1s00u9yekWkxWLNlBLb0cvpbuL3eawkbrTLbEjmpQlxxer0zo8Krq1VDbTWGIuzj6WarqBWYyafflcNvz7e6oOVXLk+8PMunSO9fXV96xh9T1rPBjh0HnJ51HUgg9/0j8HgJ9gv/WRtXAcfd06DH0GynPLPC66Nala+GzKjwAolVqu92g09tiKblLqXmoymmiuMHcvjUiO8LhbEUBlk3ZtWwNR6vR122xk+TnnO8I/tD910JvS04aDxSEtCILd/7efjajU0za0G/XRjm2q8XDTS8Fc123PhzsBqDxUgcnQ/9nUXNGEyWgaFTUV6wpsRTfXdy61EJlq/k4UBIEj6w+TMDmR2HFxbpt/uLRWt1ofh8SEeCwOKdMg9jvdInGv0w3MKaYqVBgw0CK2uX1+GRl3MORvn5KSEkpKSliyZAn79++3HpeUlJCXl8fXX3/NnDlzBh0nJiaGwsKT65ps3ryZtDTv2DVxFYY6802uKtpHEouFgbDd2So+bm+XArZON28S3RQKBeOXTSJ1djrhKZF2RcBdiaG2D590DdoZ/vgkS+/35RfiT1S6eVe18nClRxerYzm9FCBjXhbdx2vuHFiX69lgRoD6eMpykBBg1y3LQmx2PEXbCynbWyqJmkAtYv9ubwjSEnttay5KqaZba3ULJoN5FzJcIp1LbWsdelN6qa7Lpk6qs0S3MeR0s3xv+If52xVL9w3uF926bRxeY5lum5pu/iMQ3ZKnpRA/MQFtoJby3DLabdyG+l491UerRhSnVLB1ukW5MWV2/NIJXPb4VYiiyN6PdlG03TtqVLbZOd1CPBYHmAXm6qNVlOwqktTGQz1NTBQyyRJSSMD9adiCIBB6/D6nWRbdZEYpDm/5rF+/ntDQ4VtPb775Zu644w527NiBIAhUV1fz1ltvcc899/CLX/xi2ON6O6JBtHaTlGI9NwuRqZFWt0/JriKMRmm4HHptOlx6UyMFMO9UluwsomRnEaV7StwyZ19RL/oiHb17uiTZvRQgeVoqAMY+A1VHPHez3NFo00ghcuyJbqkz04jKiCZtdjod9e309XhPitxA3KG6njtUJ/vGkqclWx+X7XPP3+HpaLVJsQgVpCW6SdXp1ljWYH0slc6lPja1Dr0pvbTPNr3UaaLb2HC66Xv16HUGNP6ak0oS2IpuPbLoBtjXdBtJemn8xHiqj1TR29FLxf4y2uv6P0OjMqLdtqnpaox6A9pALb7Bvm7dCFRpfOxcm7quXrfNPRJaj9d00wZqrd1DPcXWNzfzt2WP8swlT5G36ZhHY7Flv+kYh8UC8sVSkhSxHokhVDCnmLaeIr1URsbbGVYOY2VlJZ9++inl5eX09dnfRD755MnFD2257777MJlMLF++nO7ubhYvXoxGo+Gee+7h9ttvH044owJDgx6Op6qroqXbBVAQBKZfMIOSXcU0ljZQe6yG+IkJng4L3fH0UgHBrkC6N2DbPKF0TwkzL5rt8jkt3UuVYSqUAdJoWX4iaXMzaKpoxGQUqTxYQfK0FI/E0WGbJuQlhYOdiUKpIHVWOjve2QpA/uY8Jq3I8XBUzsfirqwvqqfqcCX6Xr1dPS53Y+t0C0ZaYq9dTTdROu6ttpo20uZkICgEYrKkUTTdNr1U3yud39VgWJxugiDg4+ucvwP/0P7Pz1ab4uajjR3vbaOjoR2Nv4Zlv1hh95qfrdOtVRbdwN7xN9xGCgAafy1R6dHUFdZSfayaIJtGHfWFddYyEd5MX3cfBVvyAXNJBHdnxdi6XnWd0u++K4oiQZHBCIJgJ3h7ioikcDQBWnSdvXQ2SWfjYa94GDBnCmULnsk6szjd2unEIBrsGjbJyIwGHHa6ff/994wbN44XXniBJ554gvXr1/PKK6/w3//+l9zc3EGvFwSBBx98kObmZg4dOsT27dtpaGjgT3/603DiHzXYdS6Nkq7oBhCWGEF5bhndrd0U7ZCGvdxS002LRrKpuacieXqqNeaK/WUun080iugrzb8vKdZzs5AwMZHiHUWU7i726Puso8EsuvmF2qcJjSUmnzXF+vjYhiPWxy9d/zxPrP4r/772OU+E5XRyzppC3IR4BEGg6kilR2Npoz+tWWpON6Wd0006QlJtQQ3FOwop2lZAcHSIp8MB7NNLvbGmm9rfed+pcRPiWXP/+SROTqJsn7lL8GikYEs+aXMyMPQZTmqU4Cc73U6i+3hNN4VSgWaETqSEyUmAxSFv/xlum27qrdQX96eWhsS5v+C97b9Pb6f0nW69Hb0U7yykobgebYDn73cDI4OszdMaS6UhAreIbRSJ5QBMFbLxETyzBrW9z2m1uf+RkRktOCy63X///dxzzz0cPHgQrVbL2rVrqaioYMmSJVx66aWDXn/jjTfS0dGBWq1mwoQJzJ49m4CAALq6urjxxhuH9T8xGrDUcwNQxUhbdEufnW59XLxTKqKb+fen9bLUUgDfIF+mrJlGZGoUFQcr7LrGuQJDdR+WjDApdi61EDchHpXGvNPlyXQ/S22esVjPzULWomyyFmcTmhDGvk92YzKa62ZVHa6iPLeMyoMVHo7QOYTGh1F9pAp9r56yvZ5NMW21q+kWfJoz3Y/tTblRQumltulj0kkvta3p5j2im8XppvFz3neENkDL/i/2UXGgnKpDlXa1qUYL1ceqyP1sD8U7CkmakkzicRHIgm36ZE+7LLoBKFVK0udmMvXc6SMWeJfevIzlt63EL8yftppWu9c66keB6GZbz82NnUstaGyEK29IL7XtIhwY4fnNq4jU/g6wUhHdysRqVioWkCmkMFGR5bE4bGvXys0UZEYjDotuR48e5brrrgNApVLR09NDQEAAf/zjH/nb3/426PWvvfYaPT0nd2zq6enh9ddfdzScUYOt000ZJV0hBCBuYgIhsSEkTUumr6tPErvVOtEiunl+J2s4+Ab50VBSj7HPQEWua91u+gppdy61oFKrSMgxL1gaSxroaHL/zpeuq9daw2ws1nOzoPZVo/XX0lLZTGdTJyW7zY0GLCKCj2Z0pAFY6ggClO0t9VwgQItNXZMQQVrvPanWdGsqM4tugiAQluD+DmwDYZ9e6kWi2/HNH7W/c78jpp03g5isWJKmpVg/R0YTDcX11rpX0y+YedLrcnqpPW21rZTtK6VoewGdTviOT5qaTHdLF4HhgSfdm44Gp1tdYa31cVS6+zqXWrCtiWbbbEWq2IluUZ4X3YKig6wbMVJJdy4VK/nGtIUCsZQ0IdFjcYQJ/ZuLLXJdN5lRiMOim7+/v7WOW2xsLEVF/R0sGxtPXaS0vb2dtrY2RFGko6OD9vZ2609LSwtffvklUVFRp7x+tGNsMaAINC9kfCTudFOqlERnxlC+r4zD3x2kuaLJ0yFZa7qpBWkLlqciZWb/Yr/Exc0U9DV9KI+nMEu1iYKFCcsnkTglGf9Qf5eLkQPRYdO59MSC2GONyaunovZTkzIjlcJt5poyFhHBVljwZuImxOOj9UHjr6GhpN7q6PMErRLuXjq+KJmHf3sNv738QmJf83ydHAsW0S04NkQy78mwxHAWXLeIrEXZ6L2kCYnJZCIyJZK0ORmkzUof/AIHSJmRSm1+DWV7S6g5Wu3UsaXAgS9z6W7rRu2nJnl6ykmvq9Qq1L7m+xS5eylUHCi3Pk6cnHyaM4fO5X+/mjlXzEPjr+XyJ662OuZHg9OtsbhfqInOcL/opvG3Ed28oKab7T1cUKTnv0cVCoXVhd1Y3ujRewwLXfQbYQLw3Pe57HSTGe04bE+YO3cumzdvZvz48Zx99tncfffdHDx4kA8//JC5c+ee8rqQkBAEQUAQBLKyTravCoLAI4884mg4bkMxIQxK+8AECECAD3Tp7Y/h5OdOOFbE+KNamXTS+PqKPkwdRlBLu5GChbQ5GeT9aO68U7yjiPAkz6byeHN6KUDqjDR8tD5EpkXR7OIOW31FOoz1elCBT4q0RbfIlAhrnbuyfaVMWD7JrfNb6rmBNFITPMmEMychiuZmH51Nnay8Y7W1RpUnGw44E5VaxZm3r+K7Z76mPLeMA1/lMnXNdI/EIuXupRG6EGr+Z/677E6TxkK2p72HruO1oSIkkloKEBAewLa3t2AymGiv946FRGtVC2X7SgHwG0Fh+4EIjgmxPm6ra3Xq2FJgxa/OYubFc9B19RIzLm7Ac3xD/BBFEZXP6HAIjwR70e3ke+PhIAgCy3+5klmXziUoMojv/vU1TWWNo8LpVp1XRUBEICGxIUSkRLp9ftu6aDovqOnWXi+97vNx2XGIRhO+wX60VjcTlujZ76susV/89xN8PRbHYE43xbRITEVt0GsYeA3u6DGMfAx5THnMAB8Ukb5w4KS37Ek4/I3/5JNP0tlp7rjyyCOP0NnZyXvvvUdmZuZpO5euX78eURRZtmwZa9euJSysP/VDrVaTnJxMXNzANyhSIHDTZQQFuW7hY63p1ofVhSRl0udkWB+X7i1m1qVzPBiNfSMFbyQyPYqA8ACqj1TRXNHEJY9d4bKi/fry47uTBvBJkLZImTzdNt3P/TW2Ohs7EJQC/qEBhMa7v2ixlPAP9SdlRioFm/NoLG2g6lAlRr05tXC0iG5gTjE1Gk2kzU5n5/+2M+WcaR5pzmJxugkIBOLv9vlPR0RK/yJBKiky7Q3tZC+dgK6zl9hs6dxLqH3VxI2Pp/JgBXX5tfR29KAN9NzCZig0lNRbH0elOTcDISiqf2HVXusdIqQjxGTFEpMVe9pzHtr+J1RqWXADcxfb9LkZGPVGEnKcm9pmcTYFRgbRVNZId0sXBp1eMi5YRzGZTDQU1aPv1eMX7OuR95BK44PSR4lRb6RXruk2LIJjQ9n7yR4AGkobPS66ddIvunnS6TZOSGO5MI8aGthtOsgVynPsXg/cdrmHIpOROT1CezsE3zzoeQ59YhuNRiorK5k8eTJgTjV98cUXh3TtkiVLACgpKSEpKcnrOky6GmO9TffSGGkLIQBJU1PIWpRNxYFyDn1zkEv+coXH/k1Nook+zL8/bxXdFAoFKTPTaKnaQ29HLxX7y0iZ4Zq23VbRDVBLuKYbmFOzAsID6GzupKu5E1EU3fo+62hoRzSKdDZ24Bsk7YWyO5h+wUxEo4nWmlZyv9hrfX40iW7ZS8eTNiudwq3mFNqibflkzB/n9jgsO70hBKIQHK4E4VK0gb4ERATS2dhBg0SKQXe3dFk76yZNS/FsMCeQMiOVyoMViKJIWW4Z4xZlezqk02IrukWmOld0U/up8Q32paeth7a60Se6DQWVWoXJZKK7pRu/UD8UCmn9fbuTI98dor2+Hd9gX5c5t4IigxCUAhp/LTX5NSTmOMdR525aq1qsJR08Uc/NQkhcKEa9URLpmoNhl60gkXht3+eNJQ0e/z7oEqWRXjpZMY4N4k6MGGk3dvI31b0oBdeYD2RkPIFD3/RKpZKVK1fS0tIy7AmTk5Oti+acnBwqKkZH17uRYqg1f5EKfgqUAdL/kNH4a1AoFfS0ddNa3UL1kSqPxWIR3AA0XlrTDSBrYTYIEJMVQ5kL65dZRDdBI0jeVSkIApNWTsZH40P5/nIa3OyqkWu62TN+6QQKtxXQWNrAoa/7vdTe6hwYCEEQmHf1AhImJRI/KYFvn/3GLfPWio383fAy1/X9hlW6n6AUFcwUcrhEeZZb5neUyFTzwqG9rs3lHZeHgm1Rb42Ti/+PlIx5WSTkJKIN8vV4V9yh0GBTNyrSyU436E8xbattlUQjJnfz1h2vcXfS7Tw46V7a67w/5XG4tNW2WtP/Eie7bjN+yU/PIDg6hN72Hra/vcUlc7gDT3cutfDQ9j/xyJ6/8PO3b/dYDEOlo1F66aWW706AxtL605zpHrqQRnpptBDBKsVCFgozWayYybm6nzFHdwlX9N3JbtNBj8UlI+MsHN5emzRpEsXFzuk4VVpail7vPd28XInhuNPNG+q5WZi0MgcfrQ9JU1Mo2JLvsTgsqaUAGi+t6QYwbvE4NH4aavNrOfhVrkvmEEXR2r3UJ1HjFY7TsMRw6+6uuxestqKbVHZJPUlofBiJU5JRaVQIyv6vD59RJLoBTD13Ot1t3VQdqqTqUAVVRypdPudRUxG/NzzN/0xfUiSWEyNEskqxkGd8HnL53MPBsluvUCmoza/xcDRg6DNYC6ar/aQlusVNMKeX9rb3WGulSZnGUlvRzfmOmuDoEMDciKWn/eRu9t7M4e8OcnT9EWst0oFQqVXWAuqdje7vyi0VXNFEYSBixsXR09ZNyow0FEqF1wq9tp1Loz0ounkTGn8NCZMSiUyLIiBcGqJbhI172N0byQMhlfRSgLd9nuQ7zaukConU08R+8Rgfm77jS+NGj8YlI+MMHC4I8Oijj3LPPffwpz/9iRkzZuDvb19rxpV1zzxJW+SLiKITdgAUoMgIIfDQtdanTDoTxmYD4B2ppRYmrsjh44fXUp5bCogsvWWZR+KwNFEA700vBQhPisQ/LABdl46S3cX09fRZu5w5C2OLAVOn+WbfR+KppRbs6rrtK2XWJe6rH2i7IAqUnW4AzLxoFp8/Vk314X4hajSllwKofFSsuH0lO9/fSXluKd8/9y3XPfcTl85ZQ/+Od5AQYP2RKpkLx1G8s4imskaqD1eSPDXFo/FMWpHDE6XPYDQYEU3SWlRHpkVZUyrL9pa6PU3eUeqL6giKDiYsIYzgmODBL3AQ2zHba9vwC5ZOB9yR8vov/0tvRy9R6dE8uPnhAc+xdU13jGHRra6wzlrPLWmq60S3gPAAEiYnUbStgNI9xZzz2/MkX1dxILpbu0mcmoxSqSAi1TWpuKONkl3FNFc04R8WgNJHGllEoXGh1rp4jWWubZw2FKSSXgqgFczrkiAhgEDBH45/lffQS5v/c6D3fLdXGZkTaReGtnnosNPt7LPPZv/+/Zx33nkkJCQQGhpKaGgoISEhhIY6Vmh80aJF+Pp6yRefs/7OTSB22bv77Oq5STzdz5awhHCijrcsL88t81h9ll6x3+nmrd1LLVhqO4TGh1K2z/murtq+Bhqu7Ua3FIyzvKOOTNLUZNT+GmLHx1OeW4rJ5L4vXdsivHJ6qZnsJROszkOFUsGcK+eTc9YUD0flfGZcPIf6wloEhUDFgTKKdxa6dL4asX/H+3eqW1mrfpY7VNe7dM6REJUaRdPxBUPhtgIPR9OPUqWUXJF6hUJB8rRUVBoVAeEBNFc0eTqkU2I0GGksa6C9rg19r94l4mBMdhzxExMIiQuluUq6vwtHEUXRmuasCdCe8jxb13THKOioOVyKthdQtL2Q0j0lJExybhOFEwmx6Zpr29HSm6jNq6Eit4zSPSWExocNfsEYRxRF69+XVFJLwXzfNP6MCaTPy8Q/1N/jzkuppJfacofqep70ecB63EUPGKW1mSYjY2WIy1KH70zXr1/v6CWn5Msvv3TaWN6MwVZ086L0UoCpa6ajCdBi7DNw9IfDzL1yvttj0Nmll3qHe+tUZC+byP6vcmkobuDY+qNkOrmA+77IY1z67B0APKS6jQeQdkFvAL9gP2ZeNIutb2wG4ODXB5iyeqpb5ra4ENR+GjQSS1nzFNFZMUxamYPJJNJY2kBbTStT10z3dFhOR+On4dLHr+KLxz6hs7mTLx//jOteuMllxaOrxf56PbGC9F0MiVOS8dH6oO/VU7itQPLuLU+TMT+T/E3HqDlWTdm+UsKTPNux7lQ0VzRhMpjvIJ3dRMGC1l9L1XGnbGvV8GsES42+nj6ry1IbcOrvC1vXdGfT2HW6WdJLfYN9CU927d9DULSNu7KuzaONCIaL7cZ2cJTnsoo2vbKBrW9uRhAEfv7O7ZJtqKDr7LVuEEqtPIjJKFJ0fLOqva7NWufSnXQ2duDjq6bV1A7Hl56edrrZ4k+/ANgtSr9TrozMYDgsulm6kI6E6upqNm/eTH19/UmulV/96lcjHt/bMDTp0c7wR+wy4ZPoXU6t7KUT+PLxzwAIit7vIdHNJr3UixspAKTNTqe7pQuA/M3HnD5+uVhtfZwoxDp9fFcx+aypFG4vROuv5Zunv2LyWVPcssC3iG5S2iX1NIIgcPNrv8RkMrHxpfXMvXKep0NyGZPPmsKBL3Mp2HSMpvIm1j74Htc9fyNKlfPTVGydbrG4RuxwJiq1iunnz6ShtJ622jaaKpqIkKiQJAXiJiRY63iV7S1l+vkzPRzRwDQU96c5uyqFLSyh36XTXNnskjk8ga6zf2F4OqebnF56vInCcRHJlU0ULATZiFTt9d7ZNbe9rhUA/1B/jzYvEk0ifd06Oho7effuN7j5tV9KcsOl3a5zqbTu4Ww7mDaUNHhEdPvrskfpaGjn2No8OL5v6sepP7fcja/QH0s3o6v2p8zYZFg5GJs2beLf//43xcXFvP/++8THx/PGG2+QmprKwoULT3vtq6++ys9+9jPUajXh4eF2H9SCIIxN0a2qj949ZqFFGepdTrfEKUkERQXRXt9OeW4Zfd06txextq3p5s2NFMDc2j42O46aY9V0NXfR1dqFf4j/4BcOkXKxv+B5Et4juo1bOh6Nn5ry3FKCooPJ+/Eo2UsmuHROo95oFUDlem4no1AoOONnyz0dhktRqpRc+MglvPWr1yjeVURdQS1fPv4Z5z5wgdPnqhb7xQ5vcLoBhCWFs+O9bQAUby/0qOi279M9FGzNR+OvYdENSwhLDPdYLANhW/OuVMIdTBtK+t+HrnIDhY5S0a2307aD7mnSS20Kuo/V9NKqwxWkzc3AZDCSNjvD5fMFRdk43bwwvVQURavTLcgDAo0ti286g32f7aWxtJHD3x7CoDNIsq6r7d9WYIS0nG72HUwbyJiX6fYY9L3mtZPBzwiAL1qUgjTq3gH427juZNFNZjTgcFGntWvXsmrVKnx9fdm7dy86nfkmo62tjb/85S+DXv/73/+ehx56iLa2NkpLSykpKbH+OKsrqrdhqPPOmm5gXnjPuXI+sePj6Khvp2Cr+7uY2nYv9eZGChamnjuDwKggmsobrfZzZ2HrdEsS4pw6titRKBSs+vXZpM5Ko7Oxg3VPfOHyOhgdTR1EZ0STMDmJhBzX1puRkS5BkUGcddfZJE1Jpq6gll0f7ODDh96npdq5aXEW0S2CUDRe4thNn9u/UCjc7tm6boXb8tny2o/88Py3dDV3ejSWgQgIDyBxarK5RqXWB0OfwdMhDUh3Wzeps9KIzY4jMs01jktb0a2lcvTUdLN1up02vdTGdTNWu5eW7SujeHshpbtLiBnn+g3AoGhbp5v3iW7drd0YdObPjOBo5zc3cRRtYL+obKljKDXsRDeJpZfaOt1su0W7C1EU6es2i256P7MDW0qppWDvurNt9iAj4604LLo9+uijvPjii7z00kv4+PQLRAsWLGDv3r2DXt/d3c0VV1yBQuEdRdzdgZ3oFuNdohuYd/BrjlYjiiKHvjno9vl14uhxugEkTEqg4/hNYf7mPKeOXXHc6SYgEC94V02TiSty6GnvQRugRaFUUuhigbezsYO6wjoqD5RjlDsmjWlSZ6Uz9dzpzL1yPmpfNbmf7+VfFz7Bxpd/cMr4Txj+y0Qhg+WKefxSeZVTxnQHydNSCIoOJmlaCj2t3YNf4EIsCwjA7W7roRKVFk15bhn5m/OoPlLl6XAGpHRXMSW7iqk5Vm3nxnAmGj8N/qFmB3fLKKrpNtT0Ut8QPxRK8z1wR8PYFN3K95dZHydOTnL5fEGR/UJVa433vefajqeWAi7pKOwoGv/+z1hdt0RFt0YJp5fa1Mv0hOjW3dJlLXegP+508xekJbppUKM4LlP0INd0k/F+HFa+8vLyWLx48UnPBwcH09raOuj1N910E++//76j045q7EQ3L2ukAJC1OBuVRkVofBhN5Y3WD3J38E/DazxseMZ6bGk37c1kzMu03pCX5ZY6dWyL0y2OKNSCd73XFAoFq+9Zg16np2h7Ad89941L57N1IARGBLh0Lhnps+iGJWQvnUBgRCAhsSGExoVSfayaPR/tGvHYrxs/4ivxR3aY9vOAzy+cEK17UPuqiUiJpHxfKQe+yqWtttVjsdiLbtLcfEmZnmJ97Iru1M6g/nhNN98gXwLCXbdQDU0IQ6lWIigF9H36wS/wAnptHD/a06SXKhQKspeOJ25CPEivFJZbqDzeRMEvxM8tTUUsTjeFUkGBkzcz3UF7bX8dOttUWU9h+/62FZulREe9dJ1uYQlhZMzLJCEnie42929Y2TblsKSXBiCNzqUWBEGwut265PRSmVGAw6JbTEwMhYWFJz2/efNm0tLSBr3+scceY+PGjSxdupTbb7+du+66y+7HEX788UfOPfdc4uLiEASBjz/+2O71zs5ObrvtNhISEvD19WXChAm8+OKLDs3hDgx1/YsFbxTdNH4a5l4xn5aqZvI2HnW6O2sg3jF+zq/1f+ET43cYRANpJLJMmMsSxWyXz+1qtIG+zLtmIWGJ4ZTvLaU2v2bwi4ZAX2kv9/7mSu5f/xN+3nq5U8Z0NzlnTSE8KYK0ORnUF9ZRk1c9+EXDpMOuCK+0bthkPMOUc6bx01d/QdrsDCoPVbLjna28c9cbdi6E4dAumtMhg5HWbvxQyJjbX4+pyIMpprouG5eRvzQ3X5Knp1ofl+6Rnuhm0OlpqTLXWItIjXJpcfTEyUmY9Caay5toqRgddd3snW6nfw92NHZSfaSKqsOVGA1GV4cmKdrr2ojOjCVlRhqZC8e5pQi/b7Af935zP5oALePPmMjO/213+ZzOpKOxg/icRFJnpbmswYkjqG2dbhJNLxVFkZSZaSRMSpRch1WVWkVLdQuVB8sp21syrHIpDaX1fPDgexRuL+Cdu9+gsWzojrm2mlYATAoRw/H0Un+JpZdCfwfTbtnpJjMKcFh0u/nmm7njjjvYsWMHgiBQXV3NW2+9xT333MMvfjH4Dv1jjz3G119/TV1dHQcPHmTfvn3Wn9zcXIdi6erqYsqUKTz33HMDvn7XXXexbt063nzzTY4ePcqdd97JbbfdxqeffurQPK7G4nRTBClR+EqniKUjZC4cB4CP1odjG464fL7vjdt4wfg2W8V9hAhBjFeks0q5iDmKKS6f2x1EpkbRXGGudbPv0z1OGbPtvUaW/Xsql1wwnxteO9spY7obpUrJvGsWULyjkOaKJra8vsllc3U09YtuAXIjBZnj+If6c8EfLmbWpXMIT44kNjuOb55eN6Ix2zCLbkGC9zkqLXXdfIP9qD7quZRJb0gvjZ+YQPaS8aTOSqfqcKXL61I6SmNZI6LJHFNkmmsX9sExIdb/f2dtLHma7rZuVGpzf7LTpZdCf4qgaBLHXIppTV41BVvyKN1TTGh82OAXOAFBEBBF6GnrZsd728j9fPByOFKipaqZqoMVlOwqxjfI8+KIxgtEt5qj1ZTuLqbyUIUkm2FFHq/r1tvRS1dzl0PXHv7+EM9f/i8KtuTxys0vUXmggrd//QY/vPDtkP49LE43g2+/4O8vSMvpBuB7PKZuuaabzCjA4e6l9913HyaTieXLl9Pd3c3ixYvRaDTcc8893H777YNe/8QTT/Df//6XG264YTjx2rF69WpWr159yte3bt3K9ddfz9KlSwG45ZZb+Pe//83OnTs577zzHJpL86upKHa1gUkEhYAi1h9TTZfdMXDScyceK9KDUS2wL2BvEd28rYmCLZNW5DBu8XiKdxWx5bUfWX3POaft3jVSOun/gvqP+i8kCDEum8sTTDt3Olvf2ERgZBAFW/M5SxRHtBssiiLdOzvxnR1A74Eugi/3XJfBkTLrkrls+s8GguNCObbhCH09fah9nZ9OZt/5Sno3bDKe5axfn8Ou93fQWFKPaBJpLG8gIslxoUIv6q2duYLxPtEtZWYaURnR1BfWceCr/ay5/wKPxGFZaCh9lFbhQ2qo1CoEhUDJriIAqg5XkjBJOk1aGor7O5dGprqmiYKFmKz+4vm1+TVMXj3VpfO5g86mDgx9BjQBGkLiQk57brBNB8q2ulZCYk9//miiJq9fZLV9H7ia+EkJKH2UGPVGq6PTW7Bt/iCFmm7aAC9IL23s/51JceM0PCUSNh4FoLG0noDwoX3/b35tI3s+3EVAWAANpQ2IJhG9Tk9PRw8bXvqBPR/u4sxfrWLqmumnXDf0dvQQnRlDQ0MD045m4hcTwM1R0suA6Xe69aC5bybGg42YGnoGXF87egyDr9nlMeUxh3KsTlDBk4O/nx2+MxUEgQcffJB7772XwsJCOjs7mTBhAgEBQ/uw0Gg0LFiwwNFph8X8+fP59NNPufHGG4mLi2PDhg3k5+fz1FNPnfIanU5n7cgK0N5u/tDW/mEugUHOtyebeoyY2s07Dd7YRMGCSuNDeHIEeT+av0AOfn2QmRfNctl8HTaiWyD+LpvHU4TEhRIQHmBN16o5Vk3c+Phhj9eb20Xn5+biwf7LglGnuE4QdTX+of6kzEpj9wc7Adj/xT5mXTLH6fPY13STVmqCjOcJjAxkxR1nkfvpHioOlLPuH19wzb9ucHicdpvPsiBBeguDwdAGaPENNN8Y1xXU0tHY7pG/l74e8/e2VOu5WZi4Ioej64+g8FFSsDlPWqJbSb31uyc2e/jfN0MhOqt/o6w2v9alc7mLprJGAHSdOoKjQ057boit6FbTClNdFpbkqLUR3WLd0LnUgkKhICQulKayRq8T3WzrZUqhe6k3pJdaNk79Qv0luRETadPBtKGkgZQZg5doKtpRSENpI9VHqwiOCWHWxbNZfutKtr+zlcPfHkShVKD0UbLplY0cW3+EM29fNeAGSn1RHXUF5s/dVWGLCY0M40LlCuf9zzkJS023bnrR/GGOW1LRZWQcxdjePiTRbdgtRNVqNYGBgcTGxg5ZcAO44447eOaZZwY/0Qk888wzTJgwgYSEBNRqNWeddRbPPffcgI0gLDz22GMEBwdbfxITXXtDbKjX47coEL+FgWineLd4NPvSOaTPzSAkLpQd72116VydYn/hUam1uXYW086fCUBMVgxH148sZbfj61Z8ks03SUGXhI84Nk8z/5pFhCeba7vt+XDkhewHwtbpJsVdUhnPs+DaRTSVN5I4OZHy3LJhpcm1if3irjc63QDS52VaHxdtP7nmqzuwOEGkmlpqYeKKHJKmpaBUKdn7yW5Ph2NHQ3E9rdUtVB6sICzBtWl/UalRKFRmEUQ0jY7u0M3lTdbH4Umn/54NsnErebIBiSeoze+vxepOpxtgTWftaeuht8N7Utba66TVSEHj5wXdS4+nbUs1U8G2Nl/VkcohXbP+he/Y8OJ39PX0MW7xeC7602WExIZy1l3ncM0zNxCRHEFjaQN1BbUc+eEQh745OKDAbNtI4U71T7hDdf3I/4dcgN/x9FIRUe5gKuP1OCy6GQwGfv/73xMcHExKSgopKSkEBwfzu9/9Dr1+8A5UO3fu5LXXXiMtLY1zzz2Xiy66yO7HmTzzzDNs376dTz/9lD179vDEE09w66238t13353ymvvvv5+2tjbrT0VFhVNjOhFDrZ7uTR10b+4AL7/vTJmZRlttG63VLRRsynPpTqLF6eaPL0rBO+vgDcaUNdMIiQulNr+WrW9uGnb9H9Eg0vJCLfoyHZocP4Iuck8NFVeSOisNH40PxTsKObr+sEtqAlnazSuUCvxCR6ewKzMy/IL9OOvuNVQcqKCuoJZ9nzleJ6j9eD038E6nG0DmgnGkzU4nKj2akt3Fbp37/fvf4fdT7qO3w3xD7qORtmM8LCEcg06PvqeP8twyu8WPp6m3Sy91bU03lcaHkNhQWqtbyDueYuXtNJabnW4B4QGDltewc7rVSuc94GpEUUQUIW1OBhPPzEEb6N46UqHxodbHzV7kdrO8RwIiAlH6eP6eNzI1kqnnTmfOlfOJSo/2dDgnoevqpa/HXOdTqo2wUqankDY7HYVKQfGOwTerWqqa6WnvJiwpnMCIQC54+GI751d0RgzXPPsTLvv71cSOj0MQFHz88Ad8+ffPTxrL0khBUAgERkr3vsPidAO5mYKM9+Ow3/b222/nww8/5PHHH2fevHkAbNu2jYcffpimpiZeeOGF014fEhLidHFtIHp6enjggQf46KOPOOeccwCYPHkyubm5/OMf/+DMM88c8DqNRoNGc/JOue7tY3Tv70A0iqAUUB7P6bU9Bk567sRjRXIQypwIlNPNdl9LPTfwzs6ltgiCwOzL53Lk+8MYdHr2fryb5beudMlclm5/ozG11EJwVDCRqZG0VrfQWNJA5cEKEicnOTxO149tGFsMAKjTtahCvft9BuY0kblXL2D725vxDfJnx7vbOP8h536uBEYEkj43A02AFoVi2KZgmVHO/KsXsvfj3XQ2dfDtP79iyU1L8QsZ+ufSaHC6JU9LoXinuU6ZNtC9qetVhytprzcvSEPiQ8lckOXW+YfDpBU5tFQ2E50VS/7mY8y62Pnp8cOhocQsuvmHBTj0Hh4uwTEhNFc00dXShb5Xj4/We7+b9L1660I2PHnwmqlWp5uAVzmuRkpbbRulx4X58WdMcPv8YQn9DsTt727lzF+ulIRz7HSYTCbrZ5wUUksBUmelkzor3dNhnBL77vPSFJUCI4Pp7ezFZDBRtreUlqrm0zYW2frmZgq3mUvOnPfQRShVJ4uvgiAw6cwcEiYl8vcVfyF9biYH1+VStm8xydNSrOdZNnsCI4MGHEcqWGq6AfS9fYyePDA1dA+4vnb0GAZfs8tjymMO5bgvamhrRIdFt7fffpt3333XroHB5MmTSUxM5MorrxxUdHvllVccnXJY6PV69Hr9SYtlpVKJaRipDL23b0Bt09nFcMLrJx6f7hwh3p+gkhvNz9WPHtENYMaFs/jyb58BYNAZWPbLFS7Jwe/EnF4aIIxe0Q1g1qVzMBlN1BfWse/TPcMS3VrfbAAfAd8Z/oRc6/lW885i9qVz+PwvH2PQ1VJzrIplvzjTaTuaJpOJvB+PYTKaJFVzSUZ6qP3UpM5MY8P/fQ+YawzOu3rhkK+3d7p5p+jmH+pPTFYstfk1VB6qoK+7z2211SxCh4/Whz/seBSFUvoC+cRVk/n2ma8p3V1MQHiAJEQ3XbfO+ruMTHNtEwULtgXh2+vbCE/y3gY/zZU2qaVDEN38QwPQBGjo6+rzuvpiI6E2zya1dFzcac50DZNWTqZsXynHNhxh479/IHNeFjmrpN31vru5C6PeXPs5SCKim9Sxb4QlTacbwNRzp6P0UaHSqDj4zQEW/2TpgOcZ+gyU7i4mcXIS1UermHnh6Wtmh8SEsPruc3j//ncJTQhl48s/cO2zP0EQBIwGo/X3Y9vQRYr42qy7/W7aTd/x5ftga3BHj+Ux5TFHctwzxO66Dt+dajQaUlJSTno+NTUVtdq9BYw7OzvJzc0lNzcXgJKSEnJzcykvLycoKIglS5Zw7733smHDBkpKSnj11Vd5/fXXufDCC90a5+kw1PVZH3tz91ILEcmRpM5KIyY7Dr9QPyoPljt9DlEUremlo9npBjDxzMmU7Cqmo7GDfZ/ucTjF1NhpoOPjZsROE7ojPQSsCHFNoB7APzSAqWumkzIrDVEU+d9979Bc0TT4hUOgq7kTk9H87S7f5MoMxvQLZhI7Po60ORkc/vagQ9e2Yet0k+aO/FBInZmGX6gfCTlJVLjgc38gTEYTrcfrYUWlR3uF4AaQNCWZgHDzv3XexqPWNChP0ljaQMqMVKIzY4jNdo8YYrvgK9ia79W1zZrKGvHxVROREkn8hIRBz/cL9kPXqUMURWtq9FjArnOpG5soWEiamszMi2ZbjxtLG90eg6O01bURNzGBlBmpxE8c/L0lA+1e4HQDmLJ6GhX7yyjZWUTuJ3tOed7BdfvJ35xHxYFypl84a0hi2byrFzJlzXTaatvY8+EuDq7LBcwuQNFkXktIoRPu6bB1usnIeDsO36Hedttt/OlPf7Lr8KnT6fjzn//Mbbfddtprv/zyS37605/ym9/8hqNH7Wt4tLS0sGzZModi2b17N9OmTWPatGkA3HXXXUybNo2HHnoIgHfffZdZs2Zx9dVXM2HCBP7617/y5z//mZ///OcOzeNK7NJLY6TddW2ozLliPrXHqineUcSu93c4ffxedBgx7/qN1iYKFgLCA8hanE38pERzN9Pj1vKh0v5pM6oENX4LAwm5JhKFxjsWpUPlyqeuRUAgISeJqsOVPH/FvyjbVzLicdvr+ndJg6Klu0sqIw2Spiaj79VTvKOQQ98cdKhOlyVVHiDYS2u6AaTPzaS7pZvyfaVDqk/jDDoa2jEZzOJ4SFzoIGdLB4VCwfQLZpI+J4OojBjyN+d5OiTqC+so3VNCXUEtYadJcXImtgu+d379Bmsf/J9b5nUFTeWN6Hv6aCxtwD9scMeqSqOy1uYaS6KbJ5soWIhI6XcifvG3T/jn+f/wSBxDpb2ujerDlZTuKZF0KqCUMPYZyFyQRdK0FElvnMaMiyU6w9zJubOl05pGfCK5X+wjbXYGPr5q5lw2d0hjK32UzLl8LtEZMURnxvDRH9aa0+DrWq3nSCVd+VTY1nQTGV5daxkZqeDwCnzfvn18/vnnJCQkcOaZZ3LmmWeSkJDAZ599xv79+0/ZFOHtt9/mvPPOo7a2lm3btjF9+nTeeust6+t9fX1s3LjRoViWLl16vCir/c+rr74KQExMDK+88gpVVVX09PRw7Ngx7rrrLkm1HLYV3ZSjwOkGMOXsqag0KgIjA2koabDa4p2FxeUGEDjK00sB5l21gKpDFZTnlrHlzU0OXdv+ThN9eb10b+4g6ELv71p6IiofFVc9fR363j4MfQYCI4P4+OG1NJQ2jGhcqXUKk5E2giAw44JZqDQqkqYlc+ibA0O+ts0mvdSbnW7J01Osj4t3FbllzpbqFutjbxLdADLnZ1G0o5CqQxUOuyNdQX1hnfVxVIZ7CqOf7Nbw3kVVk03n0oghpJcKgoA2wLyg7O0cO6JbU1kjMVkxpM5OJzorxiMxhKf0l9nQ9+ipPOTahmkjxXYTRyoCUndrFw9Nv5/7xt3FSzecvqyQJ2irbaVgSz7l+0pR+0rb0DDnqvkEx4ZQl1/Lga9yT3q9+lgVuZ/uoXhnITGZMWTMH3rd0gnLJxEUFURjWQNR6dHkfr6XzsYOUmenk5CTaPe3IEWuUZ7Phz7PcrXiPE+HIiMzYhwW3UJCQrj44otZs2YNiYmJJCYmsmbNGi666CKCg4Ptfmz5+9//zpNPPsnnn3/Opk2beO211/jZz37Gf/7zH6f9z3gjxlFW0w3AL8SfuVcuoLOxkyPfH+Lo+sNOHb9DtBHdvLTwuCNMPDOHwKggUmak0lBUT0dj++AXYU5dNnUZ0UzxwydZg998713Qn46otCh+9uZtjFucTV1BLS1VLfznxn9j0A+UvT802uqld5MrI21mXDgThVJB2d5SdryzdcjXtds0UvDWmm5grgNmcfiU7i4eVu1UR2iqaOLbZ9ZZj0O9THTLWpyNSmMuq1u2t2TY3amdRX2xjejmpm6EJ3626nXD/8z2NE1l/WmKQ61NZ2k6MlYaKYiiSMWBcmrza2mtasE3wDOpY4ERgShsHGOGPoPH//5Oh23atVScST5aNW01rfS099DZ2Dn4BW5Gr+tfW0m9Qcu4hdnWepr7v9h30uvrX/iOlJmpBMcEM+vSOQ4ZRwRBYPVvzkXpo+LYhiN898zXNFc0UbKziMqDFfi7oWHOSJigyOBs5VImK8YB0jHMyMgMB4cbKQy3EUJBQQHnnnuu9fiyyy4jMjKS8847D71eL6k6a+7EUGuu5aIIUY6q1L8Jyyey+dWNKHyUHNt4lEkrJzttbEsTBYBAYXSnl4L5hmHO5fP47pmvAdj+zjZW3L5q0Ova3m+ie4t5QR/xQDyCYvR+YQWEBXDpX6+k8sDjdDS2o/ELZvOrP7L0ZsdS1i3ITjcZR4nOjCUyNYqqw5U0lTfSUFpPZMrpC9K/bviYr42biSeabCGNSUKmm6J1PoIgMPXc6dQcq6a9vo26wlpis1xXG6yxpJ5D68yOwnFLshm/bKLL5nIFGj8Ncy6fT8GWPKoOV1J1qJKEHM81bakvMotugiAQ4Sb3Q0hsCCHxobRWmR2LHY0dg1whXZrKzaKbQqUYsutSG2gWncaK062tptWaSuuJem4WBEEgZUYK5bllGHQGTAYTui6d1XkoNeycbhKpwaXSqJhyzjSKdxbRVNaAKIqSyiLS99qIbhppi27xkxJImZmKUqWko6GDzqZOAsLNG1h1hXXkb86jtbqF4NgQ5l453+HxU2ekkTAxgZaqZvxD/Snd01+CReqNFCzcobqeNp7Fm93QMjJuU3mCgoKoq6uze+6MM87g888/59577+WZZ55xVyiS4rH/vs3b72xk+1PuqYHjLrKXTGD88omotT5se2sz3a1dg180RGy7/Y32RgoW5l21AL9gP9LnZnL42wNDcpHsEQ8hRJl3c4Mv896ucENFrVVzxZPX0NfdR+meEo58f4j2hqG5Ak/EtvNVsFzTTWaIzLt6IfETE+hq7mLvR7sHPb9ALOUIhVRRR6qQQKggjQXVcAlPDKd4RyGNJQ2U7ip26Vy6rv66slkLs72yy3Ds+Dir2HX4O8+lmIqiSHu9+TMvNCHMbelYUWnRPLL7LwREmF3Y9UW1rHvyC3o7vcv5JYoijcedbmEJ4UNu6GEReQw6AwYbZ85oxbaJQqwHRTeAOz6+x65raVeL8+5RnU17bb/oFhwd4rlAbBAEAV2Xjo6GdjoaO6yis1QweJHTTRAE0mZnULS9kJpj1Rw43vAAYN0Tn9Pe0E7anAyW3rwMjf/whOElNy+jpaqFoh2FFO/sL/8g9UYKMjKjCYdFt6amJm699VYmTJhAREQEYWFhdj+nYvbs2Xz11VcnPb9kyRI+++wznn76aUdD8Xq6xG7enraOJ85+k7cv/sbT4TgVpY+SqLRoejt6MegMHPhqv9PG7rRJLw0YAzXdACJSIkmZmUbR9gJKdhVzbP2R056fbyrhvJt/zZyjt/DFun1ox49+RyBA8tQUFly3iKj0aPI2HuXbp0/+zBkqsdlxhMaHERgli24yQ2PiihyqDlciiiJ7Pto1qDheLdZbH9+qusbV4bmclJlp1sclu10ruk1aNZm/FTzFH3P/yoLrFrt0LlcxcfkkAAKjgmgoqR/kbNfR0dBOa3ULfqHmjR13Exhp/ozVder46u+fWwUsb6GruZOAsAASpySTuWDo9ZY0gf0L6N5O3WnOHB201bZaBcmYce7pkHs6/EL77x+7mqSXImnBUvheEARJdeJMm5VufVy8wz11PIeKbaq6SuKiG8CUc8wNAdV+ar55+itaqpqpPlpFS3ULgRGB1BfWsuC6RcMef9LKyQRGBZE4OdHOBCGVdGUZmbGAw+ml1157LYWFhdx0001ER0cP2U7861//mq1bB65zs3TpUj777DNef/11R8PxaurE/sK7McLocyLNunQOlYcqaK1uYfs7W4dlix4Iu0YKY8TpBjD/moXU5FURlhDBrve3M+H4gm0gtpj2IiCgVxnQLBo7vyOA5b9cyd5P95A+N4PNr//I9AtnkWojBgyFigMV1Bwzd1kLltNLZYZIWEIYU8+dTldzJzXHOzhnzDu1iFFDv9ASK0i7oPFQSJychNJHiW+wH10t3YNfMAIUCgXaAK1kU8KGQlhiONlLxnNs41F2f7CTCx662Or6cieWJgrdLd34Brn/9+kXYr8p1FHXDl6ULdxU0URTeSNN5Y0kTk4a8nVaO9Gtx5pSNlqpL65DqVah1fpIIq3N31Z0k7DTzZJeGhARKKnupamz04nJisE/LJC6glpPh2OHvrfP+ljqTjeA5GkpXPnUdXz66IeExofy+q2v4B/qT8nOIgSlwKWPXTlslxuASq1i4fWL+ervn/c/p1HZCc8yMjKuxWHRbdOmTWzevJkpU6YMfrINS5YsYcmSJad8/YwzzuCMM85wNByvpo7+3dzoUSi6JUxKpLuli6ayRprKGqkvriMqbWQFmg+a8nhY/wzhhJBGIpcoz3JStNJn/JkT4XdQtL0AQSFw7u+aCUsY2F3q/6COOwvP4cjKKs65dAmc2oQ66giICOTMW1fywQPvkTozjdzP9josulnatvuF+KGSeD0QGWkxaeVk3rz9VQB2/m/76UU30dxl1xetV3cutaD2VZO1cBxH1x/h0Nf77WrTyAxMfE4ixzYeRRRFjq4/wqxL57g9hvrifvHXXU0UbFEo7YWE4l2FBEYFeU3KsH0ThaF3CdfaNBKw1DoDyN98DIVSSXhKBCExIZKqlTUSdJ296Hv60Pf04R/iefe9pfELwI73thISG0JstucdeCcSnhRBSGwIQZHS2gBMnp5CfVE9pvxaupo7OffBCzwdkhV9b7/TTeo13cDsYsyYm0H67AxK95ag7+2jp62H2PFxqNQ+zLpk5N8Lc6+Yz4b/+wFdVy8mg4mgqOBR89kiI+MNOCy6ZWdn09PjXfU2nEHgwWvw71aBKIIAgr8asUtvdwyc9NyJx0KAD0KQ+dw6sf9GLUoY+o2atyAIArMvn8v+L3Ix9hnYvXYXZ9+7ZkRjttBOMeb27pOETOKE0xcqH02oVCrmXrWA/V/sQ+2rZvvbmzn7NwO30W4qa6R7axspWwOIu2Ls/I4szL92EVte30TJ7mJK95Sw5OZlpxQoT0QURWsjBbmJgoyjTD9/JrvX7qS1poUd725l+S9XEJ0Zc9J5+l491cedbnFC1Ki5+Y3OiuXo8fT30j3FTm2iMxqZuHwSu97fQURKJGW5pZ4R3Yrc37nUFrWffQ25b55ex4Z//8Clf72CrMXZhMRIuzNtU3l/1kJ48tA3UBdcu4iJK3LQ+muISImkrbaV1tpWPv7jh/R19uIXFsDE5ZNY9euzXRG22+nr7ncfqf00HozEjK3Tbd8ne9D6a7niCWml+ZuMJop3mGs+pzi4eehqNH4aEnISKc8toza/hq6WLrvfqSexc7p5gegG5jIyl/7tSt759Ru01rSg66qh5mg1lzx2hVPqbIbEhZK5MIsDX+QCZvebNxFYfANihx6xq2/A9bWjxzD4ml0eUx5zSMdiD4z/7aDvYYf/4p5//nnuu+8+HnroISZNmoSPj/2HWVDQ6Kx/pIgLQOXk/7d6m/TSaEaf0w1gxgWz+PRPHyGaRDqbOjnr7rNRKIbfv6Nb7Bd8FytnOyNEr2LuVfP5+qkvMRlMNJU3seKO1QPeUPT19N9waCRwc+tulCol086dQc2xaiLSIjn09X4W33R6J21LVTNv3PYKBp3B2vkqSG6iIOMgSh8l45aM55NH1hIYFcSutTtZc5+9OF55qIInr/k7bdvN3RpjTKPn8z91Zhob/v09AMU7i1wmuh365gAVB8rR+GuYefFsrxXIU2amYdDpKd5RSM3RKi58+BKUPu5NIfO06PaTf/+Umvxqnlj1V+tzfT19vHXH66y5/3xW/ErajnZbp1tE0tD/lhNyEu061m55/Uc+/dNHIJjFu87GDvK35NFS1cIV/7jaqTF7AnvRzT3NOk5HQJi9C9cvTBqCkS16iTcESJ2VTnluGSqNirK9Jacte+JODDY13aT4ezsVQZFBXPfCjbx795tc/c/raSiuJ2eV875D5145n+LthcRmxzFuyQSnjesOFHGya15Gmijah3bP5rDoFhISQnt7O8uWLbN73tIu2mg0OjrkmKVWtE0vHX1ONzC3o84+YwLtdW34aNUUbMlj3KLxwx6vk/46Qf74nubM0UlITChT10ynpbKZno4eDq7bz/TzZ550nkV0U6gUbl/ASYWZl81h94c7qC+qZ9MrG1h049LTuok6Gjso2m7fRdhbF/IynmX+1Qs4+sNhCrfls/7Fb1l801KCIvsF3J3/20aztr9Dbkh7AKPl4yxtTgZZi7Lp69ZRtL3AZfMc/u4QW9/YBEDWomyv/VtVqpRkL53A3o9309PeQ8muIjLmD70YvzMw6g2kzk7HR+NDcGyIW+cG86I4LO4UpRLCpL/QaipvsD4Oc0B0O5G8jcfMD0SYuGwSO/63jaayRir2l3P536/yejfsijvOYuYls+nr7pPEv2tQbAjaQK01tddWqJEK+h5pi26ZC7I4tvEIDcX1FG0vlIzotuqus5l75Xz0Oj3aQO/6cvUN9OUn/3czgNNT7Ccsm8SjBx/3+s8SGRlvxGHR7eqrr8bHx4e3337boUYKMidTj43TbRTWdLMw94r5vHLzSwDseHf7yEQ30VZ083xNEE8w7+oFPHfpPwHY/NqPA4tux3eUnWFJ91bCE8IJig6hvqierpZuyveVkjw99ZTnC5z8WRYkd3aSGQbaQF8SchIp3F5A0pRkdryzhRW/Wg1AXWEtP768gbjQCH577gVc+O5VBEZ6fgHqLIIig+hp76FifxkADSX1RKY6P8Vd19Xf7VHj791u3pxVk2mtbaWvS8fR9UfcKroZ+gzkb8rDZDQRPylhRE70keAfHgACINo/bzRIfyNXoVSQNicdH636pKYQQ6Wvp4/ejh6UPkoCI4O46NHLaCxr5Mj3h9B19tJW00pInLTTbAcjYVKipOr0xY+P51cf383jy/8MQF+X9DrI2qZJqrXSu59LnpZCXb65iULxzsJBznYfKae51xvLyGt2GRnP4bDodujQIfbt28e4ceNcEY9k6bz4c8TDXWASQSEghGoRW3rtjoGTnjvxWJEciM/KZDR3TqNRbLGOP5pFt0krcvAN9iUoMoj2ujZ62nvwDRrezlM3/emlAcLYFN0yF4wjeXoqKrWSxtIGavNqiBkXa3fOlHOm0VrTMmZdbhbmX7MQXWcvlYcq2PHettOKboY+/UnP2bqTZGQcYfFNZ7D7gx0U7yyi+mgVMy6aTVhCOFvf3EzilGTKc0s59xcrmBruXSkeQ2HaudOpOFBG/MQEjq0/4hLRrW8UiW5Zi8bz+i9fQRRFDDqDWwuSN5U1YjKaAM+klloQBIGfvHQLez/ayf7jNYcAa6q/VDEajFbRMmFSokOL2u7WLmryauhp7aK1rp2yfaWoNCqmnTcDQRCIGRfLke8PAVCTV+P1opsUse1+rOuWnuhmWypEik63oKhgIlIiaSxtoHx/GQadXm4+JeMSui76HOPhJsSOvgHX144ew+BrdnlMecyhHHfGuSi9dObMmVRUVIw50c24oRKEfqFIbOy1e/3E41OdYyxoxXS0Gc2d02gTOwgmEC0awsQgBjDajApUGh/mXbOQH577lrrCOvZ9uof51ywc1lhjPb0UzIuT6RfM5KOH3gdgy+sbufjPV9ids+b+8z0RmuSYuCKHd+9+E9EkcmDdfi54+JJTuv9sb24tyE43meESGhfKuMXjqS+up66ghvfve5fFNy3lx/+sx2QwkZCTyILrFnk6TJcwZc10vnvuG6oOVbL9na0sunGp0+fQdfd/v3q76BYQHkDyjFRKdxfTWN5I1aEK4t3kCKovtqnnNsLu4iNl6jnTGLcom0krJvPWna8DoB/gc1lKtFa3WEXLMAc6lwLUHKvmmYueQhRFkqYmA+YUx8TJSQDEZPVvptXm1zD+jNEn0Hsa25q3Okk63aSdXgowbul4Ag4FoFAqqDhYTurMdE+HJDMKMXxZahY6GHwN7uixPKY85kiOjflDazDqcB7B7bffzh133MGrr77Knj17OHDggN2PzNBppYM2OmiiFa1CO/gFXsz0c2cAEBofSsnOomGPI6eXmpl92Vxis+NIm5NB7he56LpO/iCRMe9iz7tmAamz0+nr0nH424OnPPdE0S00IZTgmBAXRygzmrniiWvwC/EjfmIijaUNvHzjvwmNDyM2O46JZ+bgGzQ6P8MikiMIP17bqvJQBQ0l9U6fw3aB7DMK0uiX3LSUzAXjMOoMbPzPerfN6+kmCifiG+RLSHy/o0vqTrdG2yYKDnQuBQiICEQUzYvI9oYOq3ictci8qR0zLpa0OenETUywqxvnreRvPkbB1nyqDld6OhQran9ZdBspCRMSKN1dQvGOIopHcH/vTIp2FFK0o1BS7zUZGZmxjcNOt8svvxyAG2+80fqcIAhyI4VhYHFtBYwB8ShhchKTVk3m0NcH2Pn+ds68fRXRmTEOjyOnl5rxC/YjaVoKO97ZCkDu53uZc/l8D0clTSaumMzGl8yL2B3vbWPaeTMGPO/ExV1LZQuBkYEuj09m9KJSq7j8H1fx9h1v0N3WjYA5nc/HV82im5Z6OjyXMvuyOfhofWgorif3832suH2VU8e3LJDVfhqP1SFzJtlLJ/C/+94hMiOa6iNV1ObX2DmdXIXJJJI8I5X2ujaHnVquwsemdtVADmQp0VzeL7qFOyi62W7qtFY1IygEJq2aTGCEuaxBdEYMxTvMIsZoqM/6yi0v093SRURKJL/f9kdPhwOYhSxBISCaREmKbmGJ4Vzyl8vR9+rtOt1KibTZGdbHxTuLWP5LDwZznFdufomOhnbCEsL4w64/ezocGRkZGcedbiUlJSf9FBcXW/8rM3S6RbOANBbSJAVBIGOeuTi0b7Af6576Yljj2KaXjgWx8nQsuGYhcePjSZmRSu5n+zwdjmTJXJBFysxUMuZlUnGgnCabRZItE5ZNJGtxtt1zwXJ6qcwICY0N4+bXfsHsS+cQEhfK5Y9fxZr7zycwfHQLuhPPzKF4RyEdDe3kfrbH6eNbarp5e2qpBb8Qf1bfey71BbVUHChn0ysb3TJv5YFyyvaU0FLZTIhEnL22jh5vcrqFJzomumkDtHbvX9Ek2rkNtQFaQuPNXV3r8musrjhvpe94zTQpOVMFQbDWddN1Si9jIDg6mEU/WcqyX6wga2H2oOd7gqjMaGsDkcbSBkwmk4cj6m9A4SPB5hMyMjJjE4edbsnJya6IY0xiEZD8x4hja9bFs2kqa2TrW5upL6xj1/vbmXXpXIfG6BL7nW5+Y0CsPB1J01Lo6+2j+mgVCqWCrpYu/EP96Wzs4OFZD6L2VTNx5WSufvo6T4fqURQKBROX5/DF3z4FYNtbWwaseacN9LUucMC88NMEjO60bxn3oPZVc97vL+LM21bhHzZ6OpWejvCkCBJyEunr7kPjr6WhtJ7IFOc1VNCNMtENYO6V89n/+V66W7vZ/OpG5lw+z1rry1VYOl2DdH6Xtq4u2+6NUqSzsYPU2ekoFAIRqZEOXx8UHUxDcX/69bjF9t3dY7JiaKlqpqe9h7baNkJiQ04a48DX+6k8WI5CUDD9gpmSSBM+EZPRhEFnAEDjJy0hRO2vwag3SjZ9U+ooFArmXb2Qnf/bRm1eDaW7S0ib7dm6bvrj7zWV1uFlroyMjIxLGFZOxhtvvMGCBQuIi4ujrKwMgKeffppPPvnEqcGNZkRRtEkvHRviUUBEIAmTE0mZkWousP3eNqqOOFZvocvW6TZGxMpTIQgCOaumAObfbf7mY4A5HUffq6erpUvyRajdxfxrF5EyM424CfFsemUDvR0DF7207arrF+Ivt1eXcRqCIIwZwc3CjItmU19UR9H2AvZ/7lw3rqXToFSEImeg8dMw9dwZ1ByrJnl6Khv+73uXz2mbUqf2k8bv0lb8sAg1UuXohiOU7Cyi8lCltY6hIwRF9XfIjs6MIXVWmt3r0TYpxjV51QOOse7vn/P1E1/y1T8+58OH3mfPx7scjsPV2KYJqyUmuj28+8/8vfif/Oa7Bz0ditcSkxVLR0MHAPu/8Gzmhclkwthn/tzwkTupysjISASHRbcXXniBu+66i7PPPpvW1lZrDbeQkBCefvppZ8c3aulDjxHz724sNQSYe8V8YrPMN5aFW/JZ98QX9LQPresHyOmlJzLl7KlEpkXRXtfGvk/MKVxSvrn1FAHhAcSOi6P6SBUmk8jeT3YPeF5YYn9No4CIsSWQyMg4m8mrp1gfH1y332lpR13Gbnym+xExJZroLMdrg0qZ+dcsJHNBFmV7S9j32R4qDpS7dL5bXv8Fj+x9jAc2/QGVRhqukODYEP6W/yRPlj/LDf/+qafDOSUtVc201bQCkDwtGYXS8X1sWze1X7CfXTdNgMTJScRPSiQgPIC6ghq6mjtPGsP2HuroD4d561evORyHq7GkloJ0xF0LUq4J2dXSRUNJPa01rZJOtZ60MoeItCjS52VSvr/Uo6nQht5+oV52L8rIyEgFh79pnnnmGV566SUefPBBlEql9fmZM2dy8OCpOwPK2GMrHvkLY8PpZuGChy9FoVSSODmJQ98c4JunvxzyF7SlDp6AgBZp3bh5guTpqXS3mt9LR9cfQd+rt0sXGg3Fl53F0puXkT43EwH47pmvMRntBYCSXUV2v7vIVOelwsnIjEUikiNZfusKotKjKd1Twu61O50y7k4O8vTbX/Dnjz9g3z9rnTKmVFCpVcy8eDaJU5IIiQ3l6ye/dOl82kBfQmJDiM6IkYyzV6FQoA30RemjHPxkD1K6t9T6OGVG2qlPPA22AlTC5KSTXo9IjqDqUAWdTZ188sePeGDSvXYdZ00mE+31bXbXSLH2m919ibwZOGR2fbCDR+f/gT9Mv5/9X0q3dq9fiD+RyREUbSugeEcR5fvLPBaLXtcvTqpkp5uMjIxEGFYjhWnTpp30vEajoauryylBjQXGsmPLR+vDlU9fi65bR2RKFD+8+J3VpTUYth1fpbJA8CQKpYKclZOJmxBPQk4iBVvz7JxuUipY7GlixsXio/VB16VDE6DlyPeH7F7f+8luPv/Lx9bjoCi5iYKMzEjJWjSe9vo20udm8NmfP3bI2XwqNph2WB/PVUwd8XhSY9alc2mva6O5oomCrXk0VzZ5OiSZASjZVURQVBApM1JJm5Mx+AUDcNVT1/Jk+bP8fvsfWfXr1Se9btvB1mQwgoj1fqn6WBW/m/zbk1JwTQaT5IQ3nY3TTeMrb5gOFVt3m9SbAkw5x7w29AvxI3/TMY/FYdDZ/s5k0U1GRkYaOCy6paamkpube9Lz69atY/z48SdfMFoI1oBF4xEAleLk44GeO/E4RINyahRdoq3TbWyJbgARSRGcc9956Lp1xGbF8d5v3jplV0lbOsV+0U3GzMSVOVQfqaJ4RyEHv9pvV8dNdrrZc8YvziQyLYrqI1V8/9w3dq/pe/pv1JbftpLJZ091c3QyMqOP7CXjmbRyMkXbCwmNCz3p7244qExKYjDXz1qimD3i8aSGUqVkyU+XkTYnA5NJZMvrmzwdkswAlO0rpb2+ndI9JSQN4FIbCho/DUofJRHJkQRGBJ30ujbQF/8wf+txSFwIHY3m2lktVS10NZ2cbgrS6/oqZafb7rU7ee83b/P6ra+c5Br0NLaNRKR+Pzdp1RQSchLpae9h+9tbPSb82gmVstNt1CBE+IJSOPX62tFjZ4whjymPqVKYNaIhMOQCHn/84x+55557uOuuu7j11lvp7e1FFEV27tzJO++8w2OPPcbLL7881OG8juDinxAUdPIN0XDpMvWn4vqPkUYKJzL1nOkc++EIh78/RFhiOG/d8Rq3fnCnXdryiXRjdkn4jbGU3NMxbsl4fLQ+6Hv1HNt4lMxF46yvSe3m1tOMW5SNQqnAL8wfhUpJxYEyEiebuwPaOgTnXbVATi+VkXESZ//mXBpLGyjdU0JrbSvTL5xFXHbcsMczzK/ikpbJqJYEEPuK4x0jvYGZl8zh879+gslg4uj6I5x119kucbp88/RX+Gh9CEsMtzpVpMD3z31DV0sXGj8Nq+4629PhnIRBp7fW24tMi3JpkxT/sAC6ms2ZJK3VrWx/ZwsX/elS2qpbrOf4+PrYbRz1dekkJdJIuaZb4dZ8tr29BYAzb1spKZe7vdNN2gJSYEQgvsF+iCaRxtIGqg5XkjAp0e1x2KaX+vhK+3cmM3SCKm/ydAgyMgMitLdD8J2Dnjdkp9sjjzxCZ2cnP/3pT/nb3/7G7373O7q7u7nqqqt44YUX+Oc//8kVV1wxkpjHFJ22Trcx7No6/w8X4RfiR3t9O7ouHRv+fepubQdNeUQKYcQTTQyjc6E1HDR+GmZfPo+kqcl0NLRTm99f40hKN91SQBAElv9yBbqOXgq35rPplY3W12xvbuXfm4yMnVDJmAAAZFhJREFU8whPimDCmZNIn5dJd0sXH/3h/RGN19Xcib5HT0jp6N18CY4OZuH1i0nISaTqUAX7v8x1+hyGPgNf/O1TPn5krVs6pTrChpd+4PvnvmHrW5s9HcqAVB2pJDYrFrW/hpQZqS6d66f//TkP/PgHMuZlAubvqsbSBlpsRLeL/3QZE8/MsR7rJNS5vDa/hkPf9m80S20zMGl6ClmLxhGTFWtXL08K2IluXiAgTTtvBknTUkiZmcqhr/d7JAZdZ7/AKzvdZGRkpMKQRTdbm/DVV19NQUEBnZ2d1NbWUllZyU03yQq0I3TZ1nQbg+mlFnyD/Ljs8aswGYw0VzVz5PtD1ObXWF+3TUm4RP8r8sQSeujle430unN5ksScRMpzy9D36u1udOSabicz9dzpqDQqYrJiaCxtpKvF7CCQa+HJyLiOM352Ji2VTYQnhaPr1JH349FhjdPX3WddiLrSXSQFppwzncqDFQAc/tb5japs3Ucaf2m5jyyuHr2ExCNbSnYVU3mogr4uHenDrOc2VKIzY4jOjCFzYb+Lfe3v3mP7O1utx8nTUwmIDLQe67p6XRrTUDEZTTy25I/8+PJ6AGLHxzHr4jkejsoe30Bf8jflUZtfQ+G2Ak+HY4dteqnUnW4AOasmU5FbRunuEvYOsVazs7G897VBWoJiQjwSg4yMjMyJOFTT7cTC9X5+fkRFySlYw6GL/mLSY70+WfrsDBb/dBmiwUTxrmK+f/5bTCYTRTsKeTDnXp6/4l9888w6asR6AGIF+T13IhNXTkYQBPyC/WiubLY+Lzu2Tkbjr2XRjWdQm19L0fYCdry3DbBf3Km94OZWRsabUPuqWX3PudTm11K2t8TOZeoInc39NawCRrnolj43g2nnzSA0IYy9H++m8lCFU8YVRRFRFE+osyUt0c3y3SW12mQWSveUWB8nTkl2y5xx4+Otjwu25NNe119/LCQ2BI3Nv6Htv60nsf179Qv1Q6FQEBwb4rmABmD8GRNQqs3Vdgq35UuqCYVtyrBa4o0UwNyAKnWWuZOvoBCoPlrl9hgsNQ9723vlezkZGRnJMOSabgBZWVmDdoxsbm4+7eveSlvaK4gdChAxF85TKsBosj+Gk5878TjAB9WCODrf79+F9BujNd1sWf7LFZTuLqK+qJ6d720jfV4GBZvy6OvuI2/jUUpqSum72XzzESvIqaUnEhQZxAOb/sA3//yK4p1F+Gh8OO/BC0me7tq0F29l9qVzWP/ityRNSeboD4dZessy+o4v7gSFYL0Bl5GRcR4zL57N9ne2YjKaOPL9ISoOlJPoYAH6LptFvG2B+dGIIAhkzM9k36d7UPuq2fjSD1z9z+tHNGZbbSuHvjvI+795B0HVfz8ntZQ/i6unr6cPURQl163cIrqp/TTEjqA+oSNkzMvkiieu4YMH3rXrWKpQKfAN9rP7N7R1MXqSzuMCCEDOqilc9tcrUSgd2u93OdpAX+ZeMZ/iXYXUHquh8mCFw59LrsKbarpZmHf1QhrLGqnNq2HPh7uIezB+8IuciO17LjDSebW4ZTxLe8J/EJt6wCQOvL529BhGPoY8pjymUkG7n30H8VPh0MrykUceIThYOgVG3UqbDizF+0XAYOp/7cTj053TqsOYW0+Xza9+LKeXWlD7qll+60reuuM1EiYl8sF979rdbLSFdlkfx8lOtwGJSo9m3lULiMuOw2gUmXWptFI4pER0Rgzjz5jIoa8PAHBs/RGr003tq5bcAk9GZjSgUCqYfsFM3r/vHVQaFbvX7hih6Da6nW4Asy6ZQ+meEg58tZ99n+5h1iVzyFqUPezx3r7zdY5tNKf2ivp+R4/00kv7BSSDziApwaG3s4eEyYmExIXgG+SLUnXq5k/OxC/En5QZqXaCmzbIl8x5mQiCYP03VCgV6HVDWwS4mg5bASQiCJVEa2wlTEpgy+s/AnBw3X4JiW7elV4KMH7ZBN65+w0A8jcfw2Q0uVVo7Wjof88FRASe5kwZb0JsPC64wenX4I4eO2MMecyxPWbb0Da5HBLdrrjiCjmd1EnI6aUnk7Uwm+ylE9nz8S5EUUQb7Iu+pw9jn5FG3/40iljk9+CpSJ+bSfrcTE+H4RXMuXweZftKiUqLZts7W6y13bzlxlZGxhuZfdlcDn97gJLdJWx8eT2LfrKUiJShu5c7x5jopvHXkjYrneqjVXQ1dfLOPW9y3w+/Q+OvHdZ4dYUDF4qXWnqp7eewvrdPUp/L3S3dHPzKXDt12nkz3Dp3ZGoUgkJAPL74XHDtIs773YUALPv5mSz7+Zko1SrJbBzZuo6kLIBMXDkZ4b53iBkXS11h7eAXuAlvbPAUGBHEvGsWUry9kPLcMgq25DFu8Xi3zd/RZCv0Svc9JyMjM7YY8taDVL7ARwOdYjcfGr8hlCBiiSRcCPV0SJLhvN9dQFh8GAadgd62HmuNkq7IfhVZdrrJOIOJK3Lw0fpQtL2AA1/kouvqxTfIV05HkJFxIWpfNakz0+lp6yZxSjLb3t7i0PVdY6imm4W5Vy/AL9gPpY8Sta+aLx//fNhjGfQDO6Ck53TrF9lshVYpYNAbCYoKQuOvQRswPPFzuKjUKgLC+4WEkLj++0eVxgeVxkcy9+tf/uMzvn/+G+uxlAWQ4OhgMhdkUXO0mtzP9tJQUu/pkACz6BYaH0pCTpJXlb3IWjCOmmPVAOz6YIdb5/YWoVdGRmZsMazupVLhxx9/5NxzzyUuLg5BEPj4449POufo0aOcd955BAcH4+/vz6xZsygvL3d/sDaIiIQQyCQhixuVlzBbMdmj8UgJ/9AALnzkUu768rfc+ek9pMw0F2Ttju632Muim4wzUKqUzLtqAWmz0gmICCQ8KZycs6Zw3/rfezo0GZlRzfzrFxGbHUf5vlI2vvQDHY3tQ762q7m/1MBYcLoBKBQKLv/HNXS1dNNe10bZ3hJK95YMfuEA6DoH7mopNafbjItmWx2QxTuLPByNPVFpUfxp/994vPBprnjiGrfPbyte+QZJsyawKIr8+NJ6qg5VWp8LjJS2AGLrxjq4bv9pznQfrbWttFS10NHQJhkxdShMPDOH1FnppMxM48j3h93aTdciugmCMGY2ZmRkZKTPkEU3k8kkudTSrq4upkyZwnPPPTfg60VFRSxcuJDs7Gw2bNjAgQMH+P3vf49W696dyRMREAgSAqw/MvaMP2MCydNSSJ2VTmRqFHVT2+mK0hGviyKaCBKFWE+HKDNKOPP2Vdzx6T1MXTON8WdMYtr57k0VkpEZiwSEBpC1OJuI1EiSpqWwe+3OIV9rl14aOrobKdgSmRLJmvvPQxSh/EAZHzzwHs1VjjWuMvQZrF0tI1IiUdu42xRKaS3oQ+NDaSxtALDW3pQxc8sbv+TRQ4/zx9y/MuXsaZ4OZ0Dq8mvpae+xe07qrqOcs6aQNjudxMlJHP7ukKfDQRRFq4Bk6270Bny0PsRmx1G6u5iu5k72f7HPbXN3NJg3cfzD/CXXtENGRmbs4j1e5QFYvXo1q1evPuXrDz74IGeffTaPP/649bn09HR3hHZaAgQ/1qqf9XQYXkFAWAB5l9Zx9CpzjY1rFeczVeG+2hAyoxuFwnxDduljV3o4EhmZscXC6xaz8f9+oLGkgfa6NpbesnxITg5dl464iQn4BmoJjBpbqeDzr11E+f5yKg6UIYoiL171DD9/8zbCEsOHdH13a79LMGZcLBEpkeT9eBS1n9qucYEUSJ6WwpRzplJfVM/BdftpLG1wqPbfaCY0PmzA55srmtjy+ib6enSkz81k6prpbo6sn6IdhUSkRtJY0mB9TsrppWBusNTV0kVdQS2CINDR2E5ghOc+Y3raezDqjYD3iW5g7hJ/bMNhQhPCOfj1AWZfNs/lc4qiaG3eIXWRV0ZGZmwxarcATCYTX3zxBVlZWaxatYqoqCjmzJkzYAqqLTqdjvb2drsfGc8REB5AQ85xZ4MImUKKR+ORkZGRkRk5UenRZC7IIiIlkqDIIEp2Fw/putq8aqoPV1K8s4igMSa6KVVKzvnteYTFh1GbV41voC9v3PYKjWUNg18M1mYxYO6Eef0LN/JE2TM8XvA0C65d5Kqwh4UgCCRPS7XWhdr5/nYPRyR9Oho7+O7Zr/nxPxso3Fbg0ViqjlRaBbez7jmHX7xzu1cIRzlnTQEgPCWCg+s867DsbLKpXxnufVkxyTNSUaiUFG0r4OBX+2lx0Jk7HDoa2/EPCyBlZirZS+UNehkZGekwakW3+vp6Ojs7+etf/8pZZ53FN998w4UXXshFF13Exo0bT3ndY489RnBwsPUnMTHRjVHLnIgqQk1ztnmhkNgazW98bvZwRDIyMjIyzmDe1QtpLG2gaEchO97dOqRrWqpaAAiOCUGpUroyPEkSEhvC5X+/mgnLJtFe30ZdYR1fP/XlkOridduIbv6h/viF+Ev6dzjz4tkkT08haWoyu9fuxGQyeTokAI58f4jXfvEf3r3nLcr2lXo6HCsam7p8fd2605zpeuoK+juALv7JUrKXTvCKVL+ZF88mKj2axpIGtr6xyaOxeHtDAIVCwexL5qIJ0JAyM429n+5x+ZzVR6pprW6hdHcJiNJKmZeRkRnbSP8bcJhYbs7OP/98fv3rXzN16lTuu+8+1qxZw4svvnjK6+6//37a2tqsPxUVFe4KWWYA/BL8WfTtJDIL45nTmePpcGRkZGRknETOqiloArQERQfTUtWCbhChQNets3YvDUsYOMVuLBAcE8Klf72CkNhQwpPC2fnedj5/7BNMxtOLUvZONz9XhzligmNC8Avxpzy3jKayRgq35nskjp72Hg5+vZ/utm7aalupza9h78e72fbWZpormzwS00Bog3yJSo8mIiWShpKhuR9dhUV0CwgP8KqGJ7Hj4tD4axAUAgqlgrLcUo/F0tlkI7p5odMNYPblc0GEkl1FbP7vBpcL51WH+tds8RMTXDqXjIyMjCN4dU230xEREYFKpWLChAl2z48fP57Nmzef8jqNRoNGc3IXL+XSBDjcBSYRFAJCqBaxpdfuGDjpuROPFcmB+KxMdu7/7ChmUs4kvs55x9NhyMjIyMg4GbWfmgXXLuKHF76lva6NA1/kMuvSOac8v6WyPz3pVHWtxgpBUcFc/a/ree7Sf5I6K43tb28lOjOWZT8/85TXdLd2Wx/7h3rHIn72ZXNpq2lFE6Blz4e7yFqY7fYYtr65iU//9BFgroVnSUEEe3eZpwmJDSE8OYKjPxymsbSB6qNVxI2Pd3sc3a1d1mL20Zne1/hqyS3L+PjhtZTtK2XrG5tInprikThsnW5Sr4d3KkLjw0ibnU7ZvlJCE8PJ33SM7CUTBr9wmFQethHdJsmi22hCdXYKxsNNiB19A66vHT2Gwdfs8pjymEM5VsaFw3dDeA879S9CQqjVambNmkVeXp7d8/n5+SQnOy56BaxdQ1DQ2KofIyMjIyMj40pyzprCDy98i2+QL4Xb8k8vuh1PLQUIHcNONwsRyZFc/c/r+e9N/yZxShKf/eVj4ifEM27xwLWMulu7iM6Mwag3EhwT7OZoh0fOqim8f987dLd2U3mwnAsevhjfINe79ERRpK6wjh//s56D6/Zbn6/Nq6E2r8Z6rPGXjugGkL1kPK3VLSh9lHz7r3Vc/8JNbo+hrrCOyPQo/EP9SZ+X4fb5R8rk1VP54P53UftraK5oorutG79g9ztDO2zTS72gHt6pWHjDEvI351G0rYAtIf4uFd38gvxIm5NOe3070RkxLptHxv34f7jG0yHIyAxMezsM4ZbKq9NLOzs7yc3NJTc3F4CSkhJyc3MpLy8H4N577+W9997jpZdeorCwkGeffZbPPvuMX/7ylx6MWkZGRkZGRgYgdVYak1ZNpq+nj+3vbKWp4tTpevu/3IugMNfpGetONwsZ8zI581dn0VrTSnRaNO/c9SaGPsOA59YX1lFXUEtjaQOBkd6xieij9WH6BTOJSIkkMjWK9S8OYTvZCXz7r3V8/eTnFGzJO57mOrDoovHXuiWeoTLvmoV0NLRTebCC8n2l1BXWuT2GuoJaGorqKd1d4jWOSls0fhqW3rIc0SSSvymP3R/s8Egcfb19JE5OIjY7jqBo7xDJB2L8GRPxD/UnKDqYnrZu2uraXDbX4e8OUbyjiL4uHSr1qPWVyMjIeCFeLbrt3r2badOmMW3aNADuuusupk2bxkMPPQTAhRdeyIsvvsjjjz9OTk4OL7/8MmvXrmXhwoWeDFtGRkZGRkYGS5fKFIx6Iyq1iu+eWTfgeSW7i2kobkA0iSy+6QymnTfDzZFKl6W3LCNtdjrd7d2EJYbz9VNfDnhebUG/Qys603tcICvuWE1HYwfVR6so3lXs8i6I297ewva3t1K4tZCOxg4USoGgqIFFD02AtJxuGj8NK351FsnTU2kqb+L75752ewx1Nu+zGC96n9kyZc009D19BEUFUbSjEFEU3R5D1aFKKg6UU3OsmpDYELfP7yyUPkoW/3QZHfXtFGzNZ+d721w2l1Fv3nBQS8yBKiMjI+PVotvSpUsRRfGkn1dffdV6zo033khBQQE9PT3k5uZy/vnney5gGRkZGRkZGTtmXzaP+dcuQqlWkb85j2Mbj9q93lbXxjf//IrinYWkzEhF6aPEP9TfQ9FKD4VCwTn3nU9HfTtF2wvY8e5WjAaj3TmiKFKbbxZDQuJC0QZIy6F1OkJiQlhy8zKiMqIp2JzHuicHFhWdQe4Xe/nggXetxf+X/2IFv/78N2QtGbiWnNTSSwHmXjmf+qJaAiODaCprPK171BXU2nQu9SZx15a47HhmXjybjsYOcj/bS/GOQrfH0FBSD4DaT+PVTjeA6eebN0nCk8Ip21vqsoYKf9r/N54oe4Z7v77fJePLyMjIDBevFt1kZGRkZGRkvBtzAfhw4ibE01rdytdPfmFNQdJ16/joD+9TtL2Q6IwYAiICOfeBCzwbsASJTo9m4oocEnISCY0P49iGI3avt9e309PWA0BMlvcVtz/jlmUY+gykz81k5/+2UeCCTqYH1+3n/d++Q9KUZCoPlbP45jNY8auzEAQBjVY94DVSFN20gb6suvNsOps7KNxWwKs/e4mu1q7BL3QSls6lGn8NIXGhbpvX2YxfNhHRJBKVEU3xriK3zm3UG2kuN4ulkamRCILg1vmdTXhSBDMvmUNTeRMHv95P/qa8wS8aJiq1Cm2gr8vGl5GRkRkOsugmIyMjIyMj41GW/WIF2kAtydNSKN1bwgcPvsuGl37g5Rte5NiGo/gF+6IN8uWKf1yN0kfp6XAlyZwr5lF5sILSPSXseNc+hau+qI6UmWlEpUcTmx3noQiHj1+IPyvvWE3R9gLiJiTw9VNfYtAPXLtuOOz/ch8/vPgtGj8NDaUNLPvlSs68daX19cU/PYPb1v6aOVfOs7vOx3dgMc7TzL58HiGxoWQuyEJQKHj1lpfZ/t42TEbXOIws9PX04aPxOV6rcYpXi0VTzp5KSHwo9YV1bHxpvVtTTJsqmqz/VpFpUW6b15XkrJoMmN2P+7/Y5+FoZGRkZNyLLLrJyMjIyMjIeBSFQsHVT19PU3kjKTPSOPBFLl8/8QX1RXX4hfoROz6eix65lMAI72gA4AkmLJtEYGQgsePj6GzqpLOp0/pazbFqSncXU19UR3RGtAejHD5zrpjHtPNnUHmgnNI9xfznxn+z5+Pd6Hv1Ixp3/5f7+P65byjPLSMgMoipa6Zzzm/OtROMgqKCyZyfxbRzZ1qfU6gUKBTSvI32D/Xntz/8jubKZpormqgrrOXbf37F/+57h4biepfN21BcT21+DSW7ilEovFdwA/DRqomfkABAR0M71Uer3DZ3Y0n/v1Fk6ugQ3SatnEzmwnHUFdSy7c3NNJY1eDokGRkZGbchzbsFGRkZGRkZmTFFYEQg171wIxX7y8heOoHY8XGEJYaTvWg81/zzepKmJns6REmj9FEy7+qF1Bytpmh7Abs/3Gl9zVLPDSA60/vSS8EszC69eRkLf7IE/5AAqg5X8umf1vLcZf8cdkfEbW9t5t2736KnrYe48fFEZ8Vw0R8vRaEc+PY4Y14m2gAtYYlhpM/OGMn/jsvRBmi5/YM7mXHhLMKTIvAL9iP/x2M8d9k/2eWijpx1Xtqs41SMW5yNoBSIGx9Pya5it83b095D0tQUEicnEZYY7rZ5XYnSR8m4Rdn4BvuRNieDbW9ucer4rTWtvH//O3z654849M0Bp44tIyMjM1LkfsoyMjIyMjIykiB9dgZ/2PUoxj4j29/dyqyLZxOeHOnpsLyGGRfM4punvyIqPZrS3cWIPz0DQRCoyx8dYkjKjDT8wwLoaeumtboVERGVSsmj8x7izs/uJX5iwpDGMRqMfPm3zzj83UFix8VSfbSK8csmcsEfLj6l4Abgo/Xhr/lPek3aZGhCOBc+fAkFW/P55JG1KJQKgqKD2fLGJmryqll99xp8tD5Om280NFGwJXvJeHw0PlQfreLgV7ksvH6xW+Ztq2ujPLcUAN+g0VOfbP41C/nhxe8o2l5A5cFylt+2Er9gP6eM3VbbyuZXfwSg78alTFo52SnjysjIyDgD2ekmIyMjIyMjIxkCI4IIiQvlrLvOkQU3B4kZF0vOWVOoL6pj36d7qDxYAfQ73YKigry+82tkahTXPvsTzn3wAkSDiaKdhcTnJPKfn/6b7rbuQa/vbOrgf795m/wteXQ0tFNfXM/KX6/mgodPL7hZ8BbBzZbM+VncuvZOJq+eSmtNC3X5NeRtOMr797+DQdefnmvoG1mdvILN/QXyR4PoFpURg1+I+e+laEfhiFOZh4poNKFUm30Ragk26xgu/mEBTD13OolTkohIjWT7O1udNrauq9f6WOM3en5nMjIyowNZdJORkZGRkZGRGSVMWD4JgJC4UL579hs6GjuIzowhISeJ5OmpHo7OOQiCQOrMNG59/07GnzGRmqNV+AX78c7db5yy4L0oiuz9ZDfPXPQUuZ/vpaetm9jsOM6571zO+NmZkq3P5ix8A3w57/cXct7vLyQoKhijwcjeT/fw8SMf0tfTx5bXN/H3FX/h2MYjPHvZ07TWtjo0/pY3fqShpJ6EnEQW33QGEaNAMBcEgXGLs1H7a4jNjqNkj3tSTJffupIny57hyfJnyV4y3i1zuoslPz2Div3lVB2qZPvbW5zWEEXXpbM+lmJXYRkZmbGNnF4qIyMjIyMjIzNKmH7+DMr3lbL9na1UH61ky+s/UrS9EIDUWWkejs65+Gh9uOiPl/LSdS/QVtNGT1sPL179LJNXT8UvyBffED8EhUBzRTMFm4/RVNGMf1gAwbEhdDa0c9Y9a8iYm+np/w23Mv28mQRHBfOfm/5NYk4Su9Zu5+j6QwTHhODjp+blG14kaWoK//3p/3H109cRnXGyY00URerya/EN8SU4OoRt72xh1wc7EUXobu0mdVbaqOkyPP6Miex6fwfluWUcW3+ErAXj3Db3aPkd2hKTGcuMC2fRWtNC5cEKDq7bz7RzZ4x4XFvRbTS5A2VkZEYHsugmIyMjIyMjIzNK0Ab6krkgi/qSekp2FrHt7f6C5TFZ3p/ydyLhSRGc/4eLeP3WV1D0Kehu6WL7O1vpau7EL8Qfta8PHY0d9PX0YTKYMBlMZJ8xgetfuBH/0ABPh+8R0udm8pOXbuGtX72KNsCXluoWert0KBQKAqOCqMmrQuOn5aOH3mfpz860c1ttf3crR384TEdjBy1Vzaj9NOi6emmvbSN5egqZC8Yx/fyZp5ndu8icn4XJaAIgb+NR+N2FHo7I+5lzxTyev/xfABz4MtcpolufjeimDdCOeDwZGRkZZyKLbjIyMjIyMjIyo4jpF87iwNf7SZ2VRvHOIuvzMV7auXQwxp8xkcsfv4qm8kYOfn2ArpYuVFaXkIA2wJeo9GgUCoF51y5iwhkTPRqvFMicn8UVT1zLzve2EZkWRW1eNUt+uozwlEjeu/ctulu7KdlbQuVtrzDtvBks/9Uqtr+1lR9e/JagyCA6GtqJSI5E4aOkq7mT2HFxJE1NYfU9azz9v+ZUAiICSZiUSFt9Gz5+ajoa2wmMCPJ0WF5N1qJsJp89ldq8GvZ+vJtlv1hB4uSkEY0pp5fKyMhIGVl0k5GRkZGRkZEZRQiCwCV/uYK/LXsUbYCWnvYeAGKyRqfoBjB1zXQ6mzpJnZlGc3UL+u4+ulu7USgFRBEmnzWFoOhg1L5qT4cqGbKXjCd7yXgMfQYEQbCmM1777A28eftrpExNQd+rp+poFf9Y+RgqHyXx4+OpL6ojISeRsMRwGksauPaZG6g4UM7yW1d6ZaOJwZi0Mod1T35JR307BZvzmH7BLJfO98ML39Jc0YTaX8PZ96xBpXFeh1kpIAgC2UsmcODLXJRqJbmf7R226NbZ1En10UrKjnd7BTm9VEZGRnrIopuMjIyMjIyMzCgjMDyQq5++jhevepbw5AhCYkMJiAj0dFguJSA8gIDwDEZX5TrXo1LbLwd8g/z46as/Z8NLP7D1jc30tHWh1xkw6Ay01rRy3kMXMeeyeQDoe/UofZSMWzy6Cv7bkmZT9+/YxqMuF90OfJVLyS5z04ZzfnueS+fyFDMvnsWBr/ZRtq+MjS//wLJfrhhWZ+W9H+9i7e/+Z/ec3L1URkZGasiim4yMjIyMjIzMKGT8GRO595sHSMhJ9HQoMl6GIAiccctyZlw4ix//uwGlUoGP1of4ifGMP2OS9Twf7ehyYQ1E2qx0VBoVIbGhdDZ1IoqiSx19llRJH60PStXoa6YAoPHXEp0Rw7ENRwmKDmbfZ3tYeN1ih8fR6/QDjC2LbjIyMtJCFt1kZGRkZGRkZEYpsuAmMxKCIoNY89vzXC40SRkfrQ8Tlk3iwFe5NJY2UFdQ69JUbYvoph7ljq2FP1lCye4SKvaX8cPz3zL/moUoFAqHxmitbrU7TpqWgt8wHHMyMjIyrsSxTzYZGRkZGRkZGRkZmTHFWBXcLKTNTrc+PrbxqEvnsohuo92xFZUWjW+QL6Ioog3Ukvej47/X1uoW62NBIZAwKZHwxHBnhikjIyMzYmSnm4yMjIyMjIyMjIyMzCkYt2Q8Ch8lseNiqS+qc+lcfWNEdANYcssyGksbqDpUyY8vb2D8Usc6C7ccF90EhcAdn9yDX4ifK8KUkZGRGRGy001GRkZGRkZGRkZGRuYUxGbHERobStWhSnb9bzuGAWqJOQOTyURfTx8wNkS38UsnYDKa8PFV093aRW1+jUPXW5xuQdHBpM5MIzojxhVhysjIyIwIWXSTkZGRkZGRkZGRkZE5BYIgkDbHnGLa19NHyZ4Sl8yjPy64AajHgOimUCo46+6z8dGoKN1TwnfPfj3ka22bKITGhboiPBkZGRmnIItuMjIyMjIyMjIyMjIypyF7yQT8gv1ImZlK2V7XiG6Wem4AmlHeSMHC1HNnoFSrSJuTQcGWfBrLGoZ0XVttKx0N7QhKgaiMaBdHKSMjIzN8ZNFNRkZGRkZGRkZGRkbmNGQtzqanvYfS3SXkfr7PJXPYim6jvXupBW2AlsU/WUrxjkJaq1vY9ubmIV3XWmVOLRWNIn4hcsdSGRkZ6SKLbjIyMjIyMjIyMjIyMqchKDKIuAnxAFQeKKerudPpc7RUNROTFfv/7d17fM/1///x+3vsaLOZwzZsc14mZ9HIMQwlfPShkkMfHURRDqESUh/kXJ8OfiUkUSIppXKYUM5McxhmGiJhxja22Z6/P3z3ztv23iFvm3G7Xi7vy2Xv1+v5er4fr9f78X5t78eez9dLlRpWVoX/e607wX1PtFT1ZiHyDSytdbPX6Nzxc7luE3/NnUuZXgrgVkbRDQAAAAByUaN5iEoHlVGVJlV1+NdDDu//6I5YnTp4Ukd3xMrV083h/d+qPLw9VPmeKjp37KzKh1bQLws25LrN+WuKbj4U3QDcwii6AQAAAEAu7moVqrNxZxSz+bD2rY1yeP8HIvb//Votazq8/1tZy6faqOLdgToWGac17/+k07Gnc2wfT9ENQBFB0Q0AAAAAclGlcTU5uzlLulogM8Y4rO/zJ6/eGKBK46qq1LCyylQq67C+iwJPX0+FtKypirUDVbpiaX03aUWO7c8zvRRAEUHRDQAAAABy4eLuourNQlQhtIJ8K/rqVPRJh/X9y4INOh3zp45sjVGttrUd1m9R0v6Fjko4laCk84mKPxGvfWvsjyaM/78bKTgVd5JX2ZIFFSIA5BtFNwAAAADIg5CWd+nEvhM6sjUmx6JQfqVeSlH1ZiHyLOOlJo+EOazfosTN003dXv+3TLrR77tjtWnBRqUkp2TbNvHcRZWqUErVmlaXUzG+0gK4dXGGAgAAAIA8CL3/71Fov/0Q6bB+ty3ZokObouXsWlze/j4O67eoadCloWq1ry3fiqUV9UOkIv7fmixtUpNTdeFUguJPxOvK5SuFECUA5B1FNwAAAADIg3JVyim0bS1VaVJN8SfilRSfdMN9pqelK+nc1X5K+nnfcH9FmcViUfiLDygjI0NB9YK1aupK/b77qE2b+D/OWX/2qcD13ADc2op00e3nn39W586dVb58eVksFi1fvtxu2wEDBshisWjmzJkFFh8AAACA24tftQAd2XJY5/+I1/61e2+4v4tnLlpvylCy7J1ddJOuFjab9rpPf+w/oUoNK2vR0E+VeinVut72Jgq+hREiAORZkS66JSUlqW7dunr33XdzbPfVV19p8+bNKl++fAFFBgAAAOB2VKvd31NMY7fH3HB/F08nWH/2KsdNASSpzbPtFNKipmJ3HJGHj4e+n/KtdV38NUU3H+5cCuAWV6SLbh07dtQbb7yhbt262W1z4sQJPf/881q4cKGcnZ0LMDoAAAAAt5sq91RVSIu75OHjoR1fbVN6WvoN9XfhrwvWn0tSdJMkFXcprgdGPST/GldHFcZFHtWhXw5KkhL+OG9tV4qiG4BbXJEuuuUmIyNDvXv31ogRI1SrVq08bZOSkqILFy7YPAAAAABAkoo5F1MJX08ln0/WpYRLit12Y6PdLpy+tujG9NJMFUIrKqzXfSpXzU+Hfz2k79/6VqtmfKetSzZb2/gE+BRegACQB7d10W3y5MkqXry4Bg8enOdtJk6cKG9vb+sjMDDwJkYIAAAAoKip1ba2nJyLqWLtIB25waLbxdOMdLOn+RMt5V+jvAJCyitmyyFtmLNOqSmp8qsRoEemPa6yVcoVdogAkKPbtui2Y8cOzZo1S/PmzZPFYsnzdqNHj1ZCQoL1cezYsZsYJQAAAICi5q7WoXJ2ddbx3+K0/cutupx0WacOnfpHU00TzyZaf+aabracnJzUbVx3WZwsatqnucpV85ePXymVCS6jex5uIjcv98IOEQByVLywA7hZNmzYoNOnTysoKMi6LD09XcOGDdPMmTN19OjRbLdzdXWVq6trAUUJAAAAoKjx9PVUxVoVFbPlsP48fErvPjxTFicnPTr9cbmX9MjXtMeEU+dVzKWYPH095VXW6+YFXUSVquCrl1a/onPHz+nwpmhVb3GXfLlrKYAi4rYtuvXu3Vtt27a1WRYeHq7evXvriSeeKKSoAAAAANwO6j3UUB6lSujojlgZSfHHzmhm5ykqW8VPw1eNynM/CX8mKD01XQmnElSyLNd0y47FYlHpwNIq/UjTwg4FAPKlSBfdEhMTdfjwYevz2NhY7d69W76+vgoKClLp0qVt2js7O8vf318hISEFHSoAAACA20iL/7RSi/+00ns9Z6mEr6fij53V5YuXdSzyd8WfOKdSFfI2Guvi/9291N3bXc5uzjczZABAASvS13Tbvn276tevr/r160uShg4dqvr16+u1114r5MgAAAAA3AkGfj5Efd/vr/ueaCnPMl6q0qSaDqzfn+ftM+9eyig3ALj9FOmRbq1atZIxJs/t7V3HDQAAAABuRJ0O9bRq6kolnrmo4i7FFPZYs1y3SUm6rNTkFElSST9uogAAt5siPdINAAAAAG4F5UMrqHTQ1cvbHP71kJLOJeayxd+j3CTuXAoAtyOKbgAAAABwgywWixr3CFOVJtVUwqeE9q3dm+s21xbdmF4KALcfim4AAAAA4ADVm9XQkS2HdfHMRf22KjLX9pk3UZCkkox0A4DbTpG+phsAAAAA3Coq31NVnqU9lZGeoeSEZKVeSpWLu4vd9pcvXFKVJtWUnnpFPuV9Ci5QAECBYKQbAAAAADiAUzEn3fPve3Up4ZIObYzWwQ0Hcmx/5vczOrLlsH7fdVQlSnkWUJQAgIJC0Q0AAAAAHKRa0xoyxkiSIr/fnWPbC39xIwUAuJ0xvRQAAAAAHCSk+V0Krl9JxVyK68jmw7qSekXFXbL/2nXxNNd0A4DbGSPdAAAAAMBBnN2cVaZSWR3Zclhnjv6lfWui7La9cDpB0tVpqUwvBYDbD0U3AAAAAHCgex5uIldPV1VuXFUH1u+z2y7z7qWeZbzkVIyvZgBwu+HMDgAAAAAOVKPFXfLwLqHYrTHavOhXJZ9PytImIyNDF/+6KEkqWZappQBwO6LoBgAAAAAOVKx4MdXpVE+SVLZyGe1dnXWKafK5JGWkZ0jiJgoAcLui6AYAAAAADnbPw01UqoKvTkWf0q8LN2VZ/+fhU9afuYkCANyeKLoBAAAAgINVrB0oF3cXSdLJ/Sd09thZm/X71kTJ4mTRXS1rqn6XRoURIgDgJqPoBgAAAAAOZrFY1KxvCwXVC1ZKcop2LNtqXXf54iUdjzouF3cXHfrloAJqBBRipACAm4WiGwAAAADcBHeH11Hc7t+VnpauXz7dqPS0dEnSL59u1IGIfZJFav3M/fIpX6qQIwUA3AwU3QAAAADgJigdWFqNe4YptO3div8jXt9P/UZpl1MVuXKXKjWqoispV9S4R1hhhwkAuEmKF3YAAAAAAHC76jC0kybf/4Yq1a+kDXPX68zvZ3R0R6wkqVH3JvKr7l/IEQIAbhZGugEAAADATVI6qIwem9FH8X/Ey8OnhCJX7lKpQF+VD62g5v9pWdjhAQBuIopuAAAAAHAT1XuwgVo91UYuHs7KSM9Q/LFzKlGqhCo1qFzYoQEAbiKmlwIAAADATdZ6QFudjTurug80UKnypVSuGtNKAeB2R9ENAAAAAG4yi8Wih//bUxaLpbBDAQAUEKaXAgAAAEABoOAGAHcWim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAej6AYAAAAAAAA4GEU3AAAAAAAAwMGKdNHt559/VufOnVW+fHlZLBYtX77cui4tLU0jR45U7dq1VaJECZUvX159+vTRH3/8UXgBAwAAAAAA4I5QpItuSUlJqlu3rt59990s65KTk7Vz506NGTNGO3fu1LJlyxQdHa2HHnqoECIFAAAAAADAncRijDGFHYQjWCwWffXVV+ratavdNtu2bVPjxo31+++/KygoKE/9XrhwQd7e3kpISFDJkiUdFC0AAAAAAACKorzWiooXYEyFLiEhQRaLRT4+PnbbpKSkKCUlxfr8woULBRAZAAAAAAAAbidFenppfly+fFkjR47Uo48+mmMVcuLEifL29rY+AgMDCzBKAAAAAAAA3A7uiJFuaWlp6tGjh4wxev/993NsO3r0aA0dOtT6PCEhQUFBQYx4AwAAAAAAgLVGlNsV2277oltmwe3333/X2rVrc70um6urq1xdXa3Pz5w5I0mMeAMAAAAAAIDVxYsX5e3tbXf9bV10yyy4HTp0SOvWrVPp0qXz3Yevr68kKS4uLscDCdyoCxcuKDAwUMeOHeOmHbipyDUUJPINBYVcQ0Eh11BQyDUUFHIt/4wxunjxosqXL59juyJddEtMTNThw4etz2NjY7V79275+voqICBADz/8sHbu3Klvv/1W6enpOnXqlKSrhTQXF5c8vYaT09XL3nl7e5N8KBAlS5Yk11AgyDUUJPINBYVcQ0Eh11BQyDUUFHItf/IyMKtIF922b9+u1q1bW59nXoutb9++GjdunFasWCFJqlevns1269atU6tWrQoqTAAAAAAAANxhinTRrVWrVjletC63C9oBAAAAAAAAN4NTYQdwq3N1ddXYsWNtbq4A3AzkGgoKuYaCRL6hoJBrKCjkGgoKuYaCQq7dPBbDcDAAAAAAAADAoRjpBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwsFum6DZx4kTdc8898vLyUrly5dS1a1dFR0fbtLl8+bIGDRqk0qVLy9PTU927d9eff/5pXR8ZGalHH31UgYGBcnd3V82aNTVr1iybPpYtW6Z27dqpbNmyKlmypMLCwvTDDz/kGp8xRq+99poCAgLk7u6utm3b6tChQzZtdu7cqXbt2snHx0elS5fW008/rcTExFz73rNnj5o3by43NzcFBgbqrbfeslm/d+9ede/eXZUqVZLFYtHMmTNz7RP2kWv2c23ZsmVq1KiRfHx8VKJECdWrV08LFizItV/YR77Zz7d58+bJYrHYPNzc3HLtF9kj1+znWqtWrbLkmsVi0QMPPJBr38iKXLOfa2lpaXr99ddVtWpVubm5qW7dulq1alWu/SJ7d2quXb58Wf369VPt2rVVvHhxde3aNUubkydP6rHHHlONGjXk5OSkF154Idd4YR+5Zj/XNm7cqGbNmql06dJyd3fXXXfdpRkzZuQaM7JHrtnPtYiIiGz/Xjt16lSucd/SzC0iPDzczJ0710RFRZndu3ebTp06maCgIJOYmGhtM2DAABMYGGjWrFljtm/fbu69917TtGlT6/o5c+aYwYMHm4iICBMTE2MWLFhg3N3dzTvvvGNtM2TIEDN58mSzdetWc/DgQTN69Gjj7Oxsdu7cmWN8kyZNMt7e3mb58uUmMjLSPPTQQ6Zy5crm0qVLxhhjTpw4YUqVKmUGDBhgDhw4YLZu3WqaNm1qunfvnmO/CQkJxs/Pz/Tq1ctERUWZRYsWGXd3dzN79mxrm61bt5rhw4ebRYsWGX9/fzNjxoz8HFpch1yzn2vr1q0zy5YtM/v27TOHDx82M2fONMWKFTOrVq3K1zHG38g3+/k2d+5cU7JkSXPy5Enr49SpU/k6vvgbuWY/186ePWuTZ1FRUaZYsWJm7ty5+TnE+D/kmv1ce+mll0z58uXNypUrTUxMjHnvvfeMm5tbrjEje3dqriUmJpoBAwaY//f//p8JDw83Xbp0ydImNjbWDB482MyfP9/Uq1fPDBkyJA9HFPaQa/ZzbefOneazzz4zUVFRJjY21ixYsMB4eHjYnPuQd+Sa/Vxbt26dkWSio6Nt/m5LT0/Py6G9Zd0yRbfrnT592kgy69evN8YYc/78eePs7GyWLFlibbN//34jyfz66692+xk4cKBp3bp1jq8VGhpqxo8fb3d9RkaG8ff3N1OmTLEuO3/+vHF1dTWLFi0yxhgze/ZsU65cOZuE2LNnj5FkDh06ZLfv9957z5QqVcqkpKRYl40cOdKEhIRk2z44OJiim4ORa9nnWqb69eubV199Ncc2yDvy7e98mzt3rvH29s5xH/DPkWv2z20zZswwXl5eNn/g4p8j1/7OtYCAAPO///3PZrt//etfplevXjnuF/LmTsm1a/Xt2zfbL6fXatmyJUU3ByPXctatWzfz+OOP56ktckau/S2z6BYfH5+nfoqKW2Z66fUSEhIkSb6+vpKkHTt2KC0tTW3btrW2ueuuuxQUFKRff/01x34y+8hORkaGLl68mGOb2NhYnTp1yua1vb291aRJE+trp6SkyMXFRU5Ofx9Sd3d3SVeH5Nrz66+/qkWLFnJxcbEuCw8PV3R0tOLj4+1uB8ch17LPNWOM1qxZo+joaLVo0cJuv8gf8s023xITExUcHKzAwEB16dJFe/futdsn8odcs/97dM6cOXrkkUdUokQJu/0i78i1v3MtJSUlyzR5d3f3HPtF3t0puYbCR67Zt2vXLv3yyy9q2bKlQ/u9U5FrWdWrV08BAQFq166dNm3a5JA+C9MtWXTLyMjQCy+8oGbNmunuu++WJJ06dUouLi7y8fGxaevn52d3ju8vv/yizz//XE8//bTd15o6daoSExPVo0cPu20y+/fz87P72m3atNGpU6c0ZcoUpaamKj4+XqNGjZJ09ZoLOfWdXb/Xvi5uHnIta64lJCTI09NTLi4ueuCBB/TOO++oXbt2dvtF3pFvtvkWEhKijz/+WF9//bU+/fRTZWRkqGnTpjp+/LjdfpE35Jr936Nbt25VVFSUnnzySbt9Iu/INdtcCw8P1/Tp03Xo0CFlZGTop59+0rJly3LsF3lzJ+UaChe5lr2KFSvK1dVVjRo10qBBg/g96gDkmq2AgAB98MEHWrp0qZYuXarAwEC1atVKO3fuvKF+C9stWXQbNGiQoqKitHjx4n/cR1RUlLp06aKxY8eqffv22bb57LPPNH78eH3xxRcqV66cJGnhwoXy9PS0PjZs2JCn16tVq5bmz5+vadOmycPDQ/7+/qpcubL8/PysVeBatWpZ++3YseM/3jc4DrmWlZeXl3bv3q1t27bpzTff1NChQxUREZGvPpA98s1WWFiY+vTpo3r16qlly5ZatmyZypYtq9mzZ+e5D2SPXLNvzpw5ql27tho3bvyPtoctcs3WrFmzVL16dd11111ycXHRc889pyeeeMJmRAD+GXINBYVcy96GDRu0fft2ffDBB5o5c6YWLVqU7z5gi1yzFRISomeeeUYNGzZU06ZN9fHHH6tp06ZF/8YdhT2/9XqDBg0yFStWNEeOHLFZvmbNmmzn9wYFBZnp06fbLNu7d68pV66cefnll+2+TubFb7/99lub5RcuXDCHDh2yPpKTk01MTIyRZHbt2mXTtkWLFmbw4MFZ+j516pS5ePGiSUxMNE5OTuaLL74wxhhz9OhRa7/Hjx83xhjTu3fvLPOZ165daySZc+fOZemba7o5DrmWc65l6t+/v2nfvr3d9cgb8i1v+fbwww+bRx55xO565I5cs59riYmJpmTJkmbmzJl29wt5R67Zz7VLly6Z48ePm4yMDPPSSy+Z0NBQu/uH3N1puXYtrulWsMi1LnZjvtaECRNMjRo18tQW2SPXutiN+VrDhw839957b57a3qpumaJbRkaGGTRokClfvrw5ePBglvWZFxT88ssvrcsOHDiQ5YKCUVFRply5cmbEiBF2X+uzzz4zbm5uZvny5XmOzd/f30ydOtW6LCEhweaCgtmZM2eO8fDwyPFCgJkX5U1NTbUuGz16NDdSuInItbzlWqYnnnjCtGzZMk/xIyvyLe/5duXKFRMSEmJefPHFPMUPW+Ra7rk2d+5c4+rqas6cOZOnuJE9ci3v57XU1FRTtWpVM3r06DzFD1t3aq5di6JbwSDX8lcIGT9+vAkODs5TW9gi1/KXa23btjXdunXLU9tb1S1TdHv22WeNt7e3iYiIsLk9bHJysrXNgAEDTFBQkFm7dq3Zvn27CQsLM2FhYdb1v/32mylbtqx5/PHHbfo4ffq0tc3ChQtN8eLFzbvvvmvT5vz58znGN2nSJOPj42O+/vprs2fPHtOlSxebW+caY8w777xjduzYYaKjo83//vc/4+7ubmbNmpVjv+fPnzd+fn6md+/eJioqyixevDjLLZhTUlLMrl27zK5du0xAQIAZPny42bVrV57vDgJb5Jr9XPvvf/9rfvzxRxMTE2P27dtnpk6daooXL24+/PDDPB9f2CLf7Ofb+PHjzQ8//GBiYmLMjh07zCOPPGLc3NzM3r1783x88TdyzX6uZbrvvvtMz549cz2WyBm5Zj/XNm/ebJYuXWpiYmLMzz//bNq0aWMqV658292JraDcqblmzNURLLt27TKdO3c2rVq1sn4XuFbmsoYNG5rHHnvM7Nq1i9+h/xC5Zj/X/ve//5kVK1aYgwcPmoMHD5qPPvrIeHl5mVdeeSUvhxbXIdfs59qMGTPM8uXLzaFDh8xvv/1mhgwZYpycnMzq1avzcmhvWbdM0U1Sto+5c+da21y6dMkMHDjQlCpVynh4eJhu3bqZkydPWtePHTs22z6urcK3bNky2zZ9+/bNMb6MjAwzZswY4+fnZ1xdXc39999voqOjbdr07t3b+Pr6GhcXF1OnTh3zySef5GnfIyMjzX333WdcXV1NhQoVzKRJk2zWx8bGZhszo4/+GXLNfq698sorplq1asbNzc2UKlXKhIWFmcWLF+epb2SPfLOfby+88IIJCgoyLi4uxs/Pz3Tq1Mns3LkzT30jK3LNfq4Z8/d/iX/88cc89Qn7yDX7uRYREWFq1qxpXF1dTenSpU3v3r3NiRMn8tQ3srqTcy04ODjbmHI7Pow++mfINfu59vbbb5tatWoZDw8PU7JkSVO/fn3z3nvvmfT09Dz1D1vkmv1cmzx5sqlatapxc3Mzvr6+plWrVmbt2rV56vtWZjHGGAEAAAAAAABwGG6lBAAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAABwm2jVqpVeeOGFO+61AQAAbkUU3QAAAO5AERERslgsOn/+vEO2W7ZsmSZMmOC4AAEAAIq44oUdAAAAAIo+X1/fwg4BAADglsJINwAAgCIoKSlJffr0kaenpwICAjRt2jSb9QsWLFCjRo3k5eUlf39/PfbYYzp9+rQk6ejRo2rdurUkqVSpUrJYLOrXr58kKSMjQxMnTlTlypXl7u6uunXr6ssvv8x1u+unl1aqVElvvPGGNcbg4GCtWLFCf/31l7p06SJPT0/VqVNH27dvt4l748aNat68udzd3RUYGKjBgwcrKSnJ0YcPAADgpqPoBgAAUASNGDFC69ev19dff60ff/xRERER2rlzp3V9WlqaJkyYoMjISC1fvlxHjx61FsgCAwO1dOlSSVJ0dLROnjypWbNmSZImTpyoTz75RB988IH27t2rF198UY8//rjWr1+f43bZmTFjhpo1a6Zdu3bpgQceUO/evdWnTx89/vjj2rlzp6pWrao+ffrIGCNJiomJUYcOHdS9e3ft2bNHn3/+uTZu3KjnnnvuZhxCAACAm8piMv/KAQAAQJGQmJio0qVL69NPP9W///1vSdK5c+dUsWJFPf3005o5c2aWbbZv36577rlHFy9elKenpyIiItS6dWvFx8fLx8dHkpSSkiJfX1+tXr1aYWFh1m2ffPJJJScn67PPPst2O+nqSLd69epZX7tSpUpq3ry5FixYIEk6deqUAgICNGbMGL3++uuSpM2bNyssLEwnT56Uv7+/nnzySRUrVkyzZ8+29rtx40a1bNlSSUlJcnNzc+BRBAAAuLm4phsAAEARExMTo9TUVDVp0sS6zNfXVyEhIdbnO3bs0Lhx4xQZGan4+HhlZGRIkuLi4hQaGpptv4cPH1ZycrLatWtnszw1NVX169fPd5x16tSx/uzn5ydJql27dpZlp0+flr+/vyIjI7Vnzx4tXLjQ2sYYo4yMDMXGxqpmzZr5jgEAAKCwUHQDAAC4zSQlJSk8PFzh4eFauHChypYtq7i4OIWHhys1NdXudomJiZKklStXqkKFCjbrXF1d8x2Hs7Oz9WeLxWJ3WWZBMDExUc8884wGDx6cpa+goKB8vz4AAEBhougGAABQxFStWlXOzs7asmWLtRgVHx+vgwcPqmXLljpw4IDOnj2rSZMmKTAwUJKy3LDAxcVFkpSenm5dFhoaKldXV8XFxally5bZvnZ22zlKgwYNtG/fPlWrVs3hfQMAABQ0bqQAAABQxHh6eqp///4aMWKE1q5dq6ioKPXr109OTlf/tAsKCpKLi4veeecdHTlyRCtWrNCECRNs+ggODpbFYtG3336rv/76S4mJifLy8tLw4cP14osvav78+YqJidHOnTv1zjvvaP78+Xa3c5SRI0fql19+0XPPPafdu3fr0KFD+vrrr7mRAgAAKJIougEAABRBU6ZMUfPmzdW5c2e1bdtW9913nxo2bChJKlu2rObNm6clS5YoNDRUkyZN0tSpU222r1ChgsaPH69Ro0bJz8/PWtiaMGGCxowZo4kTJ6pmzZrq0KGDVq5cqcqVK+e4nSPUqVNH69ev18GDB9W8eXPVr19fr732msqXL++w1wAAACgo3L0UAAAAAAAAcDBGugEAAAAAAAAORtENAAAAAAAAcDCKbgAAAAAAAICDUXQDAAAAAAAAHIyiGwAAAAAAAOBgFN0AAAAAAAAAB6PoBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAAAAAAAAOBhFNwAAAAAAAMDBKLoBAAAAAAAADkbRDQAAAAAAAHAwim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAej6AYAAAAAAAA4GEU3AAAAAAAAwMEougEAAAAAAAAORtENAAAAAAAAcDCKbgAAAAAAAICDUXQDAAAAAAAAHIyiGwAAAAAAAOBgFN0AAAAAAAAAB6PoBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAAAAAAAAOBhFNwAAAAAAAMDBKLoBAAAAAAAADkbRDQAAAAAAAHAwim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAcrXtgBALh1XLlyRampqYUdBgAAAIAiys3NTU5OjO8BJIpuACQZYxQXF6czZ84UdigAAAAAijAnJyeFhobK1dW1sEMBCp3FGGMKOwgAhev333/XmTNnVKFCBXl6evKfKQAAAAD5lpGRoSNHjqh48eKqXr26nJ2dCzskoFBRdAPucFeuXFFkZKQqVKggf3//wg4HAAAAQBF27tw5xcbGKjIyUk2aNFGtWrUKOySg0DCcBbjDZV7DzdPTs5AjAQAAAFDUZU4rTUtL008//aT9+/cXckRA4aHoBkCSmFIKAAAA4IZZLBZJUpkyZZSSkqJ9+/YVckRA4eFbNgAAAAAAcDh3d3dduHChsMMACg1FNwC3rYiICFksFp0/f76wQ7nlGWP09NNPy9fXVxaLRbt371arVq30wgsvWNtUqlRJM2fOtD63WCxavnz5Db1uv3791LVr1xvqIzfjxo1TvXr1buprZFqzZo1q1qyp9PT0G+rHEcdWyvqe3QpuZky34v7m19GjR62fwVuhn2ulpqaqUqVK2r59u8P6vN1wLnUMR51Lb7Z/8jm7Ph+ycyucy/IS561g3759qlixopKSkgo7FOSAy8jjTla8sAMAABS+VatWad68eYqIiFCVKlVUpkwZLVu2jDtO5dNLL72kV199VcWKFbuhfk6ePKlSpUrdcDzbtm1TiRIlbrifoiK/+xsREaHWrVsrPj5ePj4+Ny+wm6xfv346f/68TeEmMDBQJ0+eVJkyZRz2Oi4uLho+fLhGjhypNWvWOKzf2wnnUsdw1Lm0qLrTzt05adWqldavX2+z7JlnntEHH3wgSQoNDdW9996r6dOna8yYMYURIgDkiKIbABvPpo3VvozDhRpDqFM1ve88vlBjuNPExMQoICBATZs2tS7z9fUtxIiKno0bNyomJkbdu3e/4b4cdSfhsmXLOqSfoqKw9tcYo/T0dBUvfuv8WVWsWLGbckfqXr16adiwYdq7dy93o8sG59Ib58hzaVF1u5+709PTZbFY8nw94aeeekqvv/669bmHh4fN+ieeeEJPPfWURo8efUudhwFAYnopgOvsyzisLSayUB/5KfqlpKRo8ODBKleunNzc3HTfffdp27Zt2bZNTk5Wx44d1axZM6acXqNfv356/vnnFRcXJ4vFokqVKknK/9SSY8eOqUePHvLx8ZGvr6+6dOmio0ePWtenp6dr6NCh8vHxUenSpfXSSy/lON3gwoULcnd31/fff2+z/KuvvpKXl5eSk5MlSSNHjlSNGjXk4eGhKlWqaMyYMUpLS7Pbb3b71bVrV/Xr18/6PCUlRcOHD1eFChVUokQJNWnSRBERETnu/+LFi9WuXTu5ublZl2VOx/r4448VFBQkT09PDRw4UOnp6Xrrrbfk7++vcuXK6c0337Tp69rpZqmpqXruuecUEBAgNzc3BQcHa+LEiZKuFnvGjRunoKAgubq6qnz58ho8eLC1n+ymsX300Ufq1q2bPDw8VL16da1YscLmtVesWKHq1avLzc1NrVu31vz58/M1TXvp0qWqVauWXF1dValSJU2bNi1Lm4sXL+rRRx9ViRIlVKFCBb377rvWdbntU07ys79Hjx5V69atJUmlSpWSxWKx5kBGRoYmTpyoypUry93dXXXr1tWXX35p7Tdz6vr333+vhg0bytXVVRs3brS+37Nnz1ZgYKA8PDzUo0cPJSQkWLfNyMjQ66+/rooVK8rV1VX16tXTqlWr7O5Tenq6+vfvb40lJCREs2bNsq4fN26c5s+fr6+//loWi0UWi0URERHZTntbv369GjduLFdXVwUEBGjUqFG6cuWKdX2rVq00ePBgvfTSS/L19ZW/v7/GjRtnE0+pUqXUrFkzLV68OE/vyZ2Ec+nNO5dK0htvvKFy5crJy8tLTz75pEaNGmUz3XXbtm1q166dypQpI29vb7Vs2VI7d+606cNisej9999Xx44d5e7uripVqth8tnOzdetW1a9fX25ubmrUqJF27dqVpU1UVJQ6duwoT09P+fn5qXfv3jpz5oxNmytXrui5556Tt7e3ypQpozFjxti8h9efy6ZPn67atWurRIkSCgwM1MCBA5WYmGhd//vvv6tz584qVaqUSpQooVq1aum7777Lc0xJSUnq06ePPD09FRAQkO15Oye5vc/z5s2Tj4+PVqxYodDQULm6uiouLi5P75l0tcjm7+9vfZQsWdJmfbt27XTu3LksI+Jw1cWLF9WrVy+VKFFCAQEBmjFjhs3nd8GCBWrUqJG8vLzk7++vxx57TKdPn7Zun/k7b+XKlapTp47c3Nx07733KioqqpD2CChaKLoBKNJeeuklLV26VPPnz9fOnTtVrVo1hYeH69y5czbtzp8/r3bt2ikjI0M//fRTgU8lSzuZqku7Em0eqbGXJUkZlzOyrLu06+8/plOiL2VZd+Xc1S9CV/5Ky7Iu5dClfMU2a9YsaxHg5MmTdouWOe5fWprCw8Pl5eWlDRs2aNOmTfL09FSHDh2UmpoqSZo2bZrmzZunjz/+WBs3btS5c+f01Vdf2e2zZMmSevDBB/XZZ5/ZLF+4cKG6du1q/U+3l5eX5s2bp3379mnWrFn68MMPNWPGjHzvw7Wee+45/frrr1q8eLH27Nmjf//73+rQoYMOHTpkd5sNGzaoUaNGWZbHxMTo+++/16pVq7Ro0SLNmTNHDzzwgI4fP67169dr8uTJevXVV7Vly5Zs+3377be1YsUKffHFF4qOjtbChQutX+aXLl2qGTNmaPbs2Tp06JCWL1+u2rVr57hv48ePV48ePbRnzx516tRJvXr1sn5eYmNj9fDDD6tr166KjIzUM888o1deeSWPR03asWOHevTooUceeUS//fabxo0bpzFjxmjevHk27aZMmaK6detq165dGjVqlIYMGaKffvrpH+/TP9nfwMBALV26VJIUHR2tkydPWotZEydO1CeffKIPPvhAe/fu1YsvvqjHH388yxe6UaNGadKkSdq/f7/q1KkjSTp8+LC++OILffPNN1q1apV27dqlgQMHWreZNWuWpk2bpqlTp2rPnj0KDw/XQw89ZDe3MjIyVLFiRS1ZskT79u3Ta6+9ppdffllffPGFJGn48OHq0aOHOnTooJMnT+rkyZM2o6wynThxQp06ddI999yjyMhIvf/++5ozZ47eeOMNm3bz589XiRIltGXLFr311lt6/fXXre9NpsaNG2vDhg35eRscJuHPBB3bE2fzOBt3tXiQdjkty7pje+Ks2/55+FSWdUnxV68DlXjmYpZ1p4+czjYGeziXZuWoc+nChQv15ptvavLkydqxY4eCgoL0/vvv27S5ePGi+vbtq40bN2rz5s2qXr26OnXqpIsXL9q0GzNmjLp3767IyEj16tVLjzzyiPbv35/rviQmJurBBx9UaGioduzYoXHjxmn48OE2bc6fP682bdqofv362r59u1atWqU///xTPXr0sGk3f/58FS9eXFu3btWsWbM0ffp0ffTRR3Zf28nJSW+//bb27t2r+fPna+3atXrppZes6wcNGqSUlBT9/PPP+u233zR58mR5enrmOaYRI0Zo/fr1+vrrr/Xjjz8qIiIi2+KXPXl5n5OTkzV58mR99NFH2rt3r8qVK5fn92zhwoUqU6aM7r77bo0ePdpaKM7k4uKievXqFdp5KeNkktJ3nbZ5ZMRe/WeLuXwly7r0XX+fW9Kj47Nue+7//j7861LWdSfzf+26oUOHatOmTVqxYoV++uknbdiwweb9TUtL04QJExQZGanly5fr6NGjNsXzTCNGjNC0adO0bds2lS1bVp07d86xMA/g/xgAd7SkpCSzfft2k5SUZIwxpsXlx4zrpVqF+mhx+bE8xZ6YmGicnZ3NwoULrctSU1NN+fLlzVtvvWXWrVtnJJn9+/ebOnXqmO7du5uUlJSbchxz8+frcSbK5Rebx7G+B40xxlw+lJxlXZTLL9ZtY5rvybIufuFpY4wxZ947mWVdbKe9+Y5vxowZJjg42GZZy5YtzZAhQ6zPg4ODzYwZM6zPJZmvvvrKGGPMggULTEhIiMnIyLCuT0lJMe7u7uaHH34wxhgTEBBg3nrrLev6tLQ0U7FiRdOlSxe7cX311VfG09PTmp8JCQnGzc3NfP/993a3mTJlimnYsKH1+dixY03dunXt7pcxxnTp0sX07dvXGGPM77//booVK2ZOnDhh0+b+++83o0ePtvu63t7e5pNPPrFZNnbsWOPh4WEuXLhgXRYeHm4qVapk0tPTrctCQkLMxIkTrc+vPbbPP/+8adOmjc2xzTRt2jRTo0YNk5qamm1M2b1nr776qvV5YmKikWQ9niNHjjR33323TR+vvPKKkWTi4+Pt7numxx57zLRr185m2YgRI0xoaKhNTB06dLBp07NnT9OxY8c87VNO8ru/meeIa/ft8uXLxsPDw/zyy9+fQWOM6d+/v3n00Udttlu+fLlNm7Fjx5pixYqZ48ePW5d9//33xsnJyZw8edIYY0z58uXNm2++abPdPffcYwYOHGiMMSY2NtZIMrt27bK7n4MGDTLdu3e3Pu/bt2+Wz9H1/bz88stZPqPvvvuu8fT0tOZiy5YtzX333ZcltpEjR9osmzVrlqlUqZLd+G6m76Z8Ywb7D7B5zB/4sTHGmNNH/syybrD/AOu20x+YnGXd1iWbjTHG/Pzxuizr3us5K9/xcS69OefSJk2amEGDBtksa9asmU0810tPTzdeXl7mm2++sS6TZAYMGGDTrkmTJubZZ5+120+m2bNnm9KlS5tLly5Zl73//vs2n7MJEyaY9u3b22x37NgxI8lER0cbY64et5o1a9q8xyNHjjQ1a9a0Pr8+R663ZMkSU7p0aevz2rVrm3HjxmXbNreYLl68aFxcXMwXX3xhXX/27Fnj7u6e5f3NTl7e57lz5xpJZvfu3Tn2ld17Nnv2bLNq1SqzZ88e8+mnn5oKFSqYbt26Zdm2W7dupl+/frnGezNcGr/ZnHd+2+aR1Ofq5/XKofgs6847v23d9uJ9X2RZl/LpfmOMMZffi8yy7tL4zfmK7cKFC8bZ2dksWbLEuuz8+fPGw8PD7vu7bds2I8lcvHjRGPP377zFixdb22TmyOeff55tH5nfL7788ksza9YsM2fOnHzFDdxOmPQOoMiKiYlRWlqamjVrZl3m7Oysxo0ba//+/brnnnskXZ120LhxY33++eeFdlHmUk/6yetB2wvjF/O5egp2ruiqKpvtj+Sp8GE1ZSTb3sHNOdhVkuT9cGl53Otps87Js+D3MTIyUocPH5aXl5fN8suXLysmJkYJCQk6efKkmjRpYl1XvHhxNWrUKMdpUZ06dZKzs7NWrFihRx55REuXLlXJkiXVtm1ba5vPP/9cb7/9tmJiYpSYmKgrV65kmXqSH7/99pvS09NVo0YNm+UpKSkqXbq03e0uXbqUZTqUdHWa0LXHxc/PT8WKFbO5lo2fn5/NVI5r9evXT+3atVNISIg6dOigBx98UO3bt5ck/fvf/9bMmTNVpUoVdejQQZ06dVLnzp1zvKZN5ogsSSpRooRKlixpfe3o6Gjr5yZT48aN7fZ1vf3796tLly42y5o1a6aZM2cqPT3d+vkLCwuzaRMWFmadSvVP9iknOe1vdg4fPqzk5GS1a9fOZnlqaqrq169vsyy7kY1BQUGqUKGC9XlYWJgyMjIUHR0tDw8P/fHHHzbnLOnqMYqMjLQb07vvvquPP/5YcXFxunTpklJTU/N9F8n9+/crLCxMFovF5nUTExN1/PhxBQUFSbI9XpIUEBCQ5Xi5u7tnGWlSUJr2bq6729vG6OFzdaSWT0ApDf9htN1tH5vZR6nJqTbLfAOvfqbrd26oSg2r2Kxz9cz6eb7ZOJdmfy6Njo62GTEqXT03rV271vr8zz//1KuvvqqIiAidPn1a6enpSk5OVlxcnM122Z1/8nL30cwRrdfGdn1fkZGRWrdunXWU2bViYmKsx+Lee++1+SyGhYVp2rRpNufJa61evVoTJ07UgQMHdOHCBV25ckWXL19WcnKyPDw8NHjwYD377LP68ccf1bZtW3Xv3t36Wc4tpsxzyrU55evrq5CQkFyPiZT399nFxSXL+SUv79nTTz9t/bl27doKCAjQ/fffr5iYGFWtWtW6rjDPSy5P3S3nzpVtlll8rv6d5lTRU55betrd1v2jtlKy7WgxS/DVz53zw9VV/F7ba3Na/PN3g40jR44oLS3N5ne5t7e3zfubOXIzMjJS8fHxysjIkCTFxcUpNDTU2u7afM/MkbyMEgXudBTdANgIdaomZdwCMTjQAw88oKVLl2rfvn03NE3tRjgHuMg5wCXbdU5uTnKvn/WP4UyuIe521xUv66ziZQv/rniJiYlq2LChFi5cmGXdjVwQ2sXFRQ8//LA+++wzPfLII/rss8/Us2dPawHm119/Va9evTR+/HiFh4fL29tbixcvzvF6NE5OTlm+nF47PSIxMVHFihXTjh07snz5ye5LS6YyZcooPj4+y/Lr71posViyXZb5R+71GjRooNjYWH3//fdavXq1evToobZt2+rLL79UYGCgoqOjtXr1av30008aOHCgpkyZovXr19u9W2J+Xrsw/JN9ykl+9zfzOkkrV660KZ5Jkqurq83zgri74OLFizV8+HBNmzZNYWFh8vLy0pQpU+xOR75ReTle586dK7QLvXv7ecvbzzvbdc5uzgqsE2R3W79q9m8s4VnGS55lvOyuLyicS+2fS3PTt29fnT17VrNmzVJwcLBcXV0VFhZmnZZbEBITE9W5c2dNnjw5y7qAgIB/1OfRo0f14IMP6tlnn9Wbb74pX19fbdy4Uf3791dqaqo8PDz05JNPKjw8XCtXrtSPP/6oiRMnatq0aXr++edzjenw4Ru7eVZe32d3d3ebQqP0z96zzOLg4cOHbYpu586ds3lekJwCSkgB2f8+sLgVV7H65exuWyzE/p3Kncq6S2Xt/w3oCElJSQoPD1d4eLgWLlyosmXLKi4uTuHh4QX62QFuZxTdANgoSncNrVq1qlxcXLRp0yYFBwdLuvoH/7Zt22wu7jxp0iR5enrq/vvvV0REhM1/7eAYDRo00Oeff65y5crZHRkREBCgLVu2qEWLFpKuXkh6x44datCgQY599+rVS+3atdPevXu1du1am2tQ/fLLLwoODra57tjvv/+eY39ly5bVyZMnrc/T09MVFRVlvah+/fr1lZ6ertOnT6t58+Y57/g16tevr3379uW5fX6ULFlSPXv2VM+ePfXwww+rQ4cOOnfunHx9feXu7q7OnTurc+fOGjRokO666y799ttvuR7X7ISEhNhcfFtSvq5LVbNmTW3atMlm2aZNm1SjRg2bL2ObN2+2abN582bVrFnT+tyR+5QTF5erhfD09L9Hkl57ke+WLVvmu8+4uDj98ccfKl++vKSr++bk5KSQkBCVLFlS5cuX16ZNm2z63rRpk90RhZs2bVLTpk1tRvnExMRk2Y9r9yE7NWvW1NKlS2WMsX7x3bRpk7y8vFSxYsV87WNUVFSWUX9wDM6l2Z9LQ0JCtG3bNvXp08e67Ppz06ZNm/Tee++pU6dOkq7ekOL6GxhIVz+T1/azefPmPOVzzZo1tWDBAl2+fNk62u36c1mDBg20dOlSVapUKcfRudcXzTOvZ5bdKLcdO3YoIyND06ZNs46Qzrym47UCAwM1YMAADRgwQKNHj9aHH36o559/PteYqlatKmdnZ23ZssU64jU+Pl4HDx7M0znwn77PUt7fs2tljkq8vogZFRWlhx9+OF+vfyeoUqWKnJ2dtW3bNuv7m5CQoIMHD6pFixY6cOCAzp49q0mTJikwMFCStH379mz72rx5c5YcufZ3N4DscSMFAEVWiRIl9Oyzz2rEiBFatWqV9u3bp6eeekrJycnq37+/TdupU6eqV69eatOmjQ4cOFBIEd++evXqpTJlyqhLly7asGGDYmNjFRERocGDB+v48eOSpCFDhmjSpElavny5Dhw4oIEDB+bpjpgtWrSQv7+/evXqpcqVK9tMgalevbri4uK0ePFixcTE6O23387xguKS1KZNG61cuVIrV67UgQMH9Oyzz9rEUaNGDfXq1Ut9+vTRsmXLFBsbq61bt2rixIlauXKl3X7Dw8O1cePGXPcnv6ZPn65FixbpwIEDOnjwoJYsWSJ/f3/5+Pho3rx5mjNnjqKionTkyBF9+umncnd3txah8+uZZ57RgQMHNHLkSB08eFBffPGF9SYI149QyM6wYcO0Zs0aTZgwQQcPHtT8+fP1v//9L8vFxjdt2qS33npLBw8e1LvvvqslS5ZoyJAhkuTwfcpJcHCwLBaLvv32W/31119KTEyUl5eXhg8frhdffFHz589XTEyMdu7cqXfeeUfz58/PtU83Nzf17dtXkZGR2rBhgwYPHqwePXrI3//qKKsRI0Zo8uTJ+vzzzxUdHa1Ro0Zp9+7d1v2/XvXq1bV9+3b98MMPOnjwoMaMGZOl2FCpUiXt2bNH0dHROnPmTLYXth44cKCOHTum559/XgcOHNDXX3+tsWPHaujQoTZTnfNiw4YN1inOcCzOpdmfS59//nnNmTNH8+fP16FDh/TGG29oz549Nuel6tWra8GCBdq/f7+2bNmiXr16yd096yihJUuW6OOPP9bBgwc1duxYbd26Vc8991xuh0+PPfaYLBaLnnrqKe3bt0/fffedpk6datNm0KBBOnfunB599FFt27ZNMTEx+uGHH/TEE0/YFMbj4uI0dOhQRUdHa9GiRXrnnXfsngOqVaumtLQ0vfPOOzpy5IgWLFigDz74wKbNCy+8oB9++EGxsbHauXOn1q1bZy2G5BaTp6en+vfvrxEjRmjt2rWKiopSv3798nxe+Kfvs5T7exYTE6MJEyZox44dOnr0qFasWKE+ffqoRYsWNlNVjx49qhMnTthMl8ZVXl5e6tu3r0aMGKF169Zp79696t+/v5ycnGSxWBQUFCQXFxdrfq1YsUITJkzItq/XX39da9asseZImTJl1LVr14LdIaAIougGoEibNGmSunfvrt69e6tBgwY6fPiwfvjhB5UqlXW4/owZM9SjRw+1adNGBw8eLIRob18eHh76+eefFRQUpH/961+qWbOm+vfvr8uXL1tHawwbNky9e/dW3759rdPkunXrlmvfFotFjz76qPVOc9d66KGH9OKLL+q5555TvXr19Msvv2jMmDE59vef//xHffv2VZ8+fdSyZUtVqVLFOjIj09y5c9WnTx8NGzZMISEh6tq1q81/ibPTq1cv7d27V9HR0bnuU354eXnprbfeUqNGjXTPPffo6NGj+u677+Tk5CQfHx99+OGHatasmerUqaPVq1frm2++yfF6STmpXLmyvvzySy1btkx16tTR+++/bx35cv3Uyuw0aNBAX3zxhRYvXqy7775br732ml5//fUsd0EbNmyYtm/frvr16+uNN97Q9OnTFR4eLkkO36ecVKhQQePHj9eoUaPk5+dn/eI9YcIEjRkzRhMnTlTNmjXVoUMHrVy5UpUrV86lx6tfkP/1r3+pU6dOat++verUqaP33nvPun7w4MEaOnSohg0bptq1a2vVqlVasWKFqlevnm1/zzzzjP71r3+pZ8+eatKkic6ePZvl2lZPPfWUQkJC1KhRI5UtWzbLaMPMff3uu++0detW1a1bVwMGDFD//v316quv5ueQ6ddff1VCQgIjSm4SzqXZn0t79eql0aNHa/jw4dYp9/369bO5vtqcOXMUHx+vBg0aqHfv3ho8eLDKlcs6rW/8+PFavHix6tSpo08++USLFi3K0wh4T09PffPNN/rtt99Uv359vfLKK1mmbGaOZE1PT1f79u1Vu3ZtvfDCC/Lx8bEpYvXp00eXLl1S48aNNWjQIA0ZMsTm2mXXqlu3rqZPn67Jkyfr7rvv1sKFCzVx4kSbNunp6Ro0aJD1fFWjRg3reScvMU2ZMkXNmzdX586d1bZtW913331q2LBhrsck0z95n6Xc3zMXFxetXr1a7du311133aVhw4ape/fu+uabb2z6WbRokdq3b39T/jlzO5g+fbrCwsL04IMPqm3btmrWrJlq1qwpNzc3lS1bVvPmzdOSJUsUGhqqSZMmZSkmZ5o0aZKGDBmihg0b6tSpU/rmm2+sI8YB2GcxOV11FcBtLzk5Wfv371fNmjXl4eFR2OEARdqIESN04cIFzZ49u7BDcZg333xTH3zwgY4dO1bYodzyxo0bp+XLl+fpouxFVc+ePVW3bl29/PLLhR0KbmN5OZe2a9dO/v7+WrBgQZ77tVgs+uqrrxidcxtJTU1V9erV9dlnn2W5SQ2yl5SUpAoVKmjatGlZZoZkJyIiQq1bt1Z8fLx8fHzy9BqZ3y8yRyF6enrqP//5zw1GDhRNjHQDAMBBXnnlFQUHB99SNybIr/fee0/btm2zTmOaMmWK+vbtW9hh4RaQmpqq2rVr68UXXyzsUHCbu/5cmpycrOnTp2vv3r06cOCAxo4dq9WrV3NuguLi4vTyyy9TcMvBrl27tGjRIuvlEjJHul5/t3EANwdFNwAAHMTHx0cvv/xyvq+RdSs5dOiQunTpotDQUE2YMEHDhg3TuHHjJEkdO3aUp6dnto///ve/NzWuDRs22H3tnO6ECMdxcXHRq6++mu11sgBHuv5carFY9N1336lFixZq2LChvvnmGy1dutSh1/D673//a/f80rFjR4e9TlFzq597q1Wrpmeeeaaww7jlTZ06VXXr1lXbtm2VlJSkDRs2qEyZMoUdFnBHYHopcIdjeimAvDpx4oQuXbqU7TpfX1/5+vretNe+dOmSTpw4YXd9tWrVbtprA7j9nTt3TufOnct2nbu7uypUqFDAEd0aOPfin2B6KfA3+/eyBgAAuEZhful0d3fnyx2Am+Zm/+OgqOLcCwA3pujOfwHgUEX5GlQAAAAAbg1MpgP+RtENuMNl3uo7MTGxkCMBAAAAUNSlpKRIkq5cuVLIkQCFj+mlwB2uePHiKlOmjPV6HZ6enkX6IvAAAAAACkdGRoaOHTum5ORkpaenF3Y4QKGj6AZAQUFBkpTjhXIBAAAAIDcZGRk6deqUpKuj3bjrNe5kFN0AyGKxKDg4WJ6envr+++914cIFlStXThaLpbBDAwAAAFBEGGOUlpYmY4wSExOVkpKiihUrFnZYQKGxGK5yCOAaJ06c0HfffaezZ88WdigAAAAAiiBjjJydnVWnTh21adNGxYsz3gd3JopuALKIj4/XmTNnlJqaWtihAAAAAChiLBaLPD09Vb58eQpuuKNRdAMAAAAAAAAcjFsUAgAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GD/H/IE86oTTGSqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_station.make_plot(colorby='label')\n" + ] + }, + { + "cell_type": "markdown", + "id": "37e4da59-953b-4fed-ab7a-a33325f31e66", + "metadata": {}, + "source": [ + "If you want more details you can inspect the DataFrame with the gapfill values, or print out the information." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1fd0c99f-4d86-4dbb-936c-226d949f1d30", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
temp_final_labeltemp
namedatetime
vlinder052022-09-01 19:45:00+00:00gap_debiased_era520.470136
2022-09-01 20:00:00+00:00gap_debiased_era520.200433
2022-09-01 20:15:00+00:00gap_debiased_era520.018491
2022-09-01 20:30:00+00:00gap_debiased_era519.836549
2022-09-01 20:45:00+00:00gap_debiased_era519.654607
\n", + "
" + ], + "text/plain": [ + " temp_final_label temp\n", + "name datetime \n", + "vlinder05 2022-09-01 19:45:00+00:00 gap_debiased_era5 20.470136\n", + " 2022-09-01 20:00:00+00:00 gap_debiased_era5 20.200433\n", + " 2022-09-01 20:15:00+00:00 gap_debiased_era5 20.018491\n", + " 2022-09-01 20:30:00+00:00 gap_debiased_era5 19.836549\n", + " 2022-09-01 20:45:00+00:00 gap_debiased_era5 19.654607" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#inspect the gapfilldf attribute direct\n", + "your_station.gapfilldf.head()\n", + "\n", + "#or print out info\n", + "#your_station.get_gaps_info()" + ] + }, + { + "cell_type": "markdown", + "id": "5f753cb4-eb5b-4479-a949-a58c3a18928a", + "metadata": {}, + "source": [ + "## Filling gaps exercise\n", + "\n", + "For a more detailed reference you can use this [Filling gaps exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Gap_filling_excercise_03.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/examples/gee_example.ipynb.txt b/docs/_build/_sources/examples/gee_example.ipynb.txt new file mode 100644 index 00000000..873b202c --- /dev/null +++ b/docs/_build/_sources/examples/gee_example.ipynb.txt @@ -0,0 +1,1594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b1600459-c400-47fa-a3a2-b3114f4a5a34", + "metadata": {}, + "source": [ + "# Demo example: Using a Google Earth engine\n", + "\n", + "This example is the continuation of the previous example: [Using a Dataset](https://vergauwenthomas.github.io/MetObs_toolkit/examples/doc_example.html). This example serves as a demonstration on how to get meta-data from the Google Earth Engine (GEE). \n", + "\n", + "Before proceeding, make sure you have **set up a Google developers account and a GEE project**. See [Using Google Earth Engine](https://vergauwenthomas.github.io/MetObs_toolkit/gee_authentication.html) for a detailed description of this." + ] + }, + { + "cell_type": "markdown", + "id": "b8ed4367-693b-4692-bba4-aee9ceb8c311", + "metadata": {}, + "source": [ + "## Create your Dataset\n", + "\n", + "Create a dataset with the demo data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8ec045a4-be37-4c1b-bed4-df4dbf27dc51", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "\n", + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "87479c13-6a41-4c53-ae7f-4c4eaaceef08", + "metadata": {}, + "source": [ + "## Extracting LCZ from GEE\n", + "\n", + "Here is an example of how to extract the Local Climate Zone (LCZ) information of your stations. First, we take a look at what is present in the metadata of the dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "0f94ec85-b403-41f2-bc4b-e256c93d9516", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networklatloncall_namelocationgeometrylczassumed_import_frequencydataset_resolution
name
vlinder01Vlinder50.9804383.815763ProefhoeveMellePOINT (3.81576 50.98044)NaN0 days 00:05:000 days 00:05:00
vlinder02Vlinder51.0223793.709695SterreGentPOINT (3.70969 51.02238)NaN0 days 00:05:000 days 00:05:00
vlinder03Vlinder51.3245834.952109CentrumTurnhoutPOINT (4.95211 51.32458)NaN0 days 00:05:000 days 00:05:00
vlinder04Vlinder51.3355224.934732StadsboerderijTurnhoutPOINT (4.93473 51.33552)NaN0 days 00:05:000 days 00:05:00
vlinder05Vlinder51.0526553.675183WatersportbaanGentPOINT (3.67518 51.05266)NaN0 days 00:05:000 days 00:05:00
\n", + "
" + ], + "text/plain": [ + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry lcz assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) NaN 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) NaN 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) NaN 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) NaN 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) NaN 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.metadf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "86003003-5fd8-4b6e-a613-073efc27cf4c", + "metadata": {}, + "source": [ + "To extract geospatial information for your stations, the **lat** and **lon** (latitude and longitude)\n", + "of your stations must be present in the metadf. If so, than geospatial\n", + "information will be extracted from GEE at these locations.\n", + "\n", + "To extract the Local Climate Zones (LCZs) of your stations:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "48431035-f130-44dc-9f35-5bfdd84fcff3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

To authorize access needed by Earth Engine, open the following\n", + " URL in a web browser and follow the instructions:

\n", + "

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=EilDDu9N_IN7ZxxlE8vHRyOhvajPnAULh-m6NKErDfA&tc=6gnXS_wEbNaFrF2IbPoa4ClUF8zPJXCu5eV4Z-p7mIE&cc=g2TqjaVuDM_wFOuJbQqeoAvDR8bLFGxRCM7W-4wlKJo

\n", + "

The authorization workflow will generate a code, which you should paste in the box below.

\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter verification code: 4/1AfJohXk4_ehQtiIn6aGEgF_Pv9ImRjoTVbH17orBc6cNf-eI4_kuuJ_0kLY\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Successfully saved authorization token.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 Low plants (LCZ D)\n", + "vlinder02 Open midrise\n", + "vlinder03 Open midrise\n", + "vlinder04 Sparsely built\n", + "vlinder05 Water (LCZ G)\n", + "vlinder06 Scattered Trees (LCZ B)\n", + "vlinder07 Compact midrise\n", + "vlinder08 Compact midrise\n", + "vlinder09 Scattered Trees (LCZ B)\n", + "vlinder10 Compact midrise\n", + "vlinder11 Open lowrise\n", + "vlinder12 Open highrise\n", + "vlinder13 Compact midrise\n", + "vlinder14 Low plants (LCZ D)\n", + "vlinder15 Sparsely built\n", + "vlinder16 Water (LCZ G)\n", + "vlinder17 Scattered Trees (LCZ B)\n", + "vlinder18 Low plants (LCZ D)\n", + "vlinder19 Compact midrise\n", + "vlinder20 Compact midrise\n", + "vlinder21 Sparsely built\n", + "vlinder22 Low plants (LCZ D)\n", + "vlinder23 Low plants (LCZ D)\n", + "vlinder24 Dense Trees (LCZ A)\n", + "vlinder25 Water (LCZ G)\n", + "vlinder26 Open midrise\n", + "vlinder27 Compact midrise\n", + "vlinder28 Open lowrise\n", + "Name: lcz, dtype: object\n" + ] + } + ], + "source": [ + "lcz_values = your_dataset.get_lcz()\n", + "# The LCZs for all your stations are extracted\n", + "print(lcz_values)" + ] + }, + { + "cell_type": "markdown", + "id": "35933b04-cd3f-4f5e-a557-596701a4125e", + "metadata": { + "tags": [] + }, + "source": [ + "The first time, in each session, you are asked to authenticated by Google.\n", + "Select your Google account and billing project that you have set up and accept the terms of the condition.\n", + "\n", + "*NOTE: For small data-requests the read-only scopes are sufficient, for large data-requests this is insufficient because the data will be written directly to your Google Drive.*" + ] + }, + { + "cell_type": "markdown", + "id": "9d055961-92bb-4f5e-b9e6-3ac26f2271ac", + "metadata": {}, + "source": [ + "The metadata of your dataset is also updated" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c90d4a3f-11f9-44e2-9e53-cc145569e984", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 Low plants (LCZ D)\n", + "vlinder02 Open midrise\n", + "vlinder03 Open midrise\n", + "vlinder04 Sparsely built\n", + "vlinder05 Water (LCZ G)\n", + "Name: lcz, dtype: object\n" + ] + } + ], + "source": [ + "print(your_dataset.metadf['lcz'].head())" + ] + }, + { + "cell_type": "markdown", + "id": "1c35c91a-2bc8-485c-92df-47ed68927667", + "metadata": {}, + "source": [ + "To make a geospatial plot you can use the following method:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d5afd195-1aae-4254-a742-e917fb429d6a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:48: ShapelyDeprecationWarning: The 'type' attribute is deprecated, and will be removed in the future. You can use the 'geom_type' attribute instead.\n", + " if geom is not None and geom.type.startswith(prefix) and not geom.is_empty:\n", + "/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:715: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead\n", + " if pd.api.types.is_categorical_dtype(values.dtype):\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAQhCAYAAADvW1QwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zM9x/A8dddLnsJGUQSJLFJ7L1H7Vl7VUu1ZqnS+hWlFNUatWtXbUpprdp7xt4zZBAikT3v7vdH2tOryHJxSbyfj0ce3Pf7Ge/vGbl3Pkuh1Wq1CCGEEEIIIcQ7RmnsAIQQQgghhBDCGCQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIkSOtXLkShULBuXPn0iwXGRnJxIkT8fX1xcbGBktLS8qVK8eXX35JcHAwAIcOHUKhUKT7dejQobfwZEIIIXIKlbEDEEIIIbLq/v37NGnShEePHtG5c2cGDBiAmZkZly9fZtmyZWzdupXbt29TunRpfv3111TbiI6OZvjw4VhaWlKiRIm3/ARCCCGMSZIhIYQQuVJycjIdO3YkJCSEQ4cOUadOHb373333Hd9//z0ALi4u9OrVK9V2evXqRUJCAmvXrsXV1TXb4xZCCJFzyDQ5IYQQudJvv/3GpUuX+Prrr19JhADs7Oz47rvv0mxj+fLlrFmzhoEDB9KxY8fsClUIIUQOJcmQEEKIXGn79u0A9O7dO0v1b9y4wdChQ/Hx8WHmzJmGDE0IIUQuIcmQEEKIXOnGjRvY29vj7u6e6bpxcXF06dIFgA0bNmBhYWHo8IQQQuQCsmZICCFErhQZGYmtrW2W6n722WdcvXqVZcuWUapUKQNHJoQQIreQkSEhhBC5kp2dHVFRUZmut2HDBpYsWUL37t356KOPsiEyIYQQuYUkQ0IIIXKlUqVKERERQUBAQIbr3Lt3jwEDBuDl5cXPP/+cjdEJIYTIDSQZEkIIkSu1adMGgNWrV2eofGJiIl27diU+Pp7169dneYqdEEKIvEOSISGEELlSp06dKF++PN999x0nT5585X5UVBRff/217vXo0aPx8/Nj6tSpVKlS5W2GKoQQIodSaLVarbGDEEIIIf5r5cqVfPjhhwwcODDVw1A/++wzQkJCaNKkCUFBQXTp0oXatWtjamrKtWvXWLt2LQ4ODty6dYtdu3bRsmVLXF1dmTZtGgqFItU+a9WqhaenZ3Y/mhBCiBxCdpMTQgiRoy1cuDDV63379sXb25uLFy8ya9Ystm7dyu+//45Go8Hb25v+/fszbNgwAE6fPg1AcHAwffr0eW1fK1askGRICCHeITIyJIQQQgghhHgnyZohIYQQQgghxDtJkiEhhBBCCCHEO0mSISGEEEIIIcQ7SZIhIYQQQgghxDtJkiEhhBBCCCHEOylPbK2t0WgIDg7G1tb2tWdHCCGEEEIIIfI+rVZLVFQUrq6uKJVpj/3kiWQoODgYd3d3Y4chhBBCCCGEyCECAgJwc3NLs0yeSIZsbW2BlAe2s7MzcjRCCCGEcXVZdJLrjyONHYYQQhiFJiGWoIV9dTlCWvJEMvTP1Dg7OztJhoQQQrzT7j+L5mZYMkpzK2OHIoQQRpWR5TOygYIQQgiRh2y/FGzsEIQQIteQZEgIIYTII7RarSRDQgiRCZIMCSGEEHnE/htPuf8sxthhCCFErpEn1gwJIYQQ77oktYYpO28YOwyRDguVAgcLJUo5CUSILNNoITxeQ3yy9o3bkmRICCGEyANWn3rI/VAZFcqpFEDH0tY09rTB1ETx9xUhRNZoSVJr2X8/mi03YniTlEiSISGEECKXexGbyOx9d4wdhkhDx9LWtC5lj0N+RxQqM5BD4oXIOq0WbXIirc1MAPjtRtZ/ECTJkBBCCJHLzT1wl4i4JGOHIV7DUqWgsacNDvkdUVqmf+6JECJ9ClNzHPJDY081O+7EZnnKnGygIIQQQuRiD0JjWHXS39hhiDTks1BiaqJIGRESQhiMQmWGqUnKOryskmRICCGEyMWm7bpBkvrNFxGL7JOyWYJCpsYJYWiKlPV3b7IhiSRDQgghRC516v5z9lwLMXYYQgiRa0kyJIQQQuRCGo2WyTuuGzsMIYTI1SQZEkIIIXKhrReCuBoUaewwhBAiV5Pd5IQQQohcJjYxmel7bho7DCFyhXEjBhEVGcHsZWtSvX/j6mWWzZuJ3+kTREdFUrBQYarUrMMHnw6lqKc3/Tq35typ469tf9nGP6lSs3Z2hS+ymSRDQgghRC6z+Mh9QiITjB2GELne4X27GfnJB9Sq14ipcxbjVqQYYc+fsffPbcz/YQo/LFzOzMW/kpSUqFcvKSmRIR90xdzcgvIVKxspemEIkgwJIYQQuciTiHh+Pnzf2GEIkevFxcXyzcgh1GnYlNlLV+uuu3kUwadiFSIjIgCwd3B4pe7E0Z/xIjyMtX/ux9zC4q3FLAxPkiEhhBAiF/nxr1vEJamNHYYQud6JQwcID3vOhwOHpXrfzt4+1esbflnKH7+tZ+mG7bgUKpydIYq3QJIhIYQQIpe4GhTBb+cDjR2GEHnCI/97ABTzKpHhOn6njjN94v/4+rsfqVClenaFJt4i2U1OCCGEyAW02pSttLVyvqoQBqHN5D+mx0EBjPy0L+/3+ICO3ftkU1TibZNkSAghhMgF9l4P4dT9MGOHIUSeUaSYNwAP7t1Ot2x8XBwjPu6NV4lSjJ4wNbtDE2+RJENCCCFEDpeYrGHqLtlKWwhDqlm/IQ75C7Bi4ZxU7/+zgQLAxNHDiHgRzo+LVqJSySqTvET+NIUQQogc7tdTD3kQGmPsMITItaKiIrl57YretXwODnwzfQ5fDOzLsA+70+OjT3Av6smLsOf89edWHgcFMn3BclYumsNfO7YxZ/k61MnJhD4N0WvHxtYOC0vLt/k4woAkGRJCCCFysBexiczZf8fYYQiRq507eYyuzevpXevQrTcTfpjDqq17WDZ/Fl8N/ZiY6CgKFipM1dp1GTJqLAAbVi0jOSmJQb07pdr2tzPm065Lj2x/BpE9JBkSQgghcrCf9t8hIi7J2GEIkWtNmrWASbMWvPZ+Wd+KzFy86rX3d524lB1hiRxC1gwJIYQQOdT9Z9H8evKhscMQQog8S5IhIYQQIoeauusmyRrZS1sIIbKLJENCCCFEDnTiXih7r4ekX1AIIUSWSTIkhBBC5DBqjZbJf94wdhhCCJHnSTIkhBBC5DBbzgdy/XGkscMQQog8T5IhIYQQIgeJSUjmhz23jB2GEEK8EyQZEkIIIXKQn4/c52lUgrHDEEKId4KcMySEEELkEI8j4lh85J6xwxA5mEoZj43FM5TKZDQaFdHxTiRrLIwdlhC5liRDQgghRA7xw55bxCdpjB2GyIEsTF/gZHcXW4unKBQvt1vXahVExTvzLNKb+KR8xgtQiFxKpskJIYQQOcDlwBdsOR9k7DBEDmRr8YRiziexswzRS4QAFAotdpYhFHM+ia3FEyNFKF5n4cxpdGlWN80y40YMYni/num25evuwIHdOwwVmvibJENCCCGEkWm1WibvkK20xassTF/gVuACSkXaI4ZKhQa3AhewMH1h8BhCn4YwddxoWtauQBUvF96rVpahH3bj9LHDBu/LGFrU9GH10oXZ0vYHnwxh8fptBmlrv99N6jRsYpC2xEsyTU4IIYQwsj3XQjjzIMzYYYgcyMnubrqJ0D+UCg1OtvcICKtssP6DAh7xQYfm2Nrb8/nX3+JdqgzJSUmcOHyAKWNHse3QGYP1lRdZWdtgZf1mbSQlJmJqZoajs4thghJ6ZGRICCGEMKLEZA1Td8mokHiVShmPrcXTTNWxtQxBpYw3WAxTvh6JQqFgzR/7aNKyLUU9vfEuWZo+Awbz67a9unKPgwL47KMe1CjpRq3SHowa+CHPn72M/Z/pYlvXr6ZZ9XLUKOnGd/8biVqtZsXCn2hUqSQNKhRnyZwf9fr3dXdg46plDOrdiWrehWhZuwJ7d+iPtMya8g1t6lWhenFXWtauwLwfviMpKUmvzKG9u+jRqhFVvQtS38eL4f17AdCvc2uCAwP4YeL/8HV3wNfd4bXvha+7A5tWr2BI365UL+5K+4bVueR3hkcP7tOvc2uqlyhMn/bvEeD/4JXn/odareaHiV9Tp2wR6pX3ZNZ349GiP/WxX+fWTBk7iukTxlDfx4tPe72v6/+faXJJiYlMGTuKxpVLUdW7IM1rlGfZvJm6NiIjIpgwahgNfL2pVdqD/l3bcuv6ldc+27tMkiEhhBDCiFad9Ofh81hjhyFyIBuLZ6+sEUqPQqHF2iLUIP1HhIdz/NB+un3QD6tUhjfs7O0B0Gg0fNavJxEvwlm+6U8Wrd1C4EN/Rg/6SK98wEN/jh/ax4JfNzNt3hK2bljNkA+6EvI4mOWb/mT4mAnM++E7Ll84p1dv/o9TaNKyLRv/OkrL9p35cnA/7t95eRaXtbUtk2bOZ8uBU4yeMJUt61axeukC3f0j+/fw+ce9qdOoKRt2HWbx+t8pX6ESADMX/4pLIVcGjfwf+/1ust/vZprvyeKffqTN+93YsOcIRb2K89XQj5k0ZgQfDR7Buh0H0Gph6rhRr62/avE8tm9ay4Qf57Fyyy4iXrxIdR3QH5vXY2pqyi9bdzNu6sxX7q9d/jOH9+7ihwXL2XboDFPmLMbVzUN3f9TAvoSFPmP+qk2s23mQ0uV8GdCtPRHh4Wk+37tIpskJIYQQRhIWk8hP++8YOwyRQymVyVmqZ6JISr9QBjzyv49Wq6WoV4k0y50+dpi7N6+z88RFCrq6ATB59kI6Nq7J1YvnKfd34qHRaJj441ysbWzxKlGKqjXr4n//DvNXbUSpVFLUqzgrFv7E2RNH8alYRdd+01bt6Ni9DwBDRn3NqaOHWLdiMV9PmQHAgM++0JUt7O7Bw3t32b19Cx8O/AyApXNn0KxtRwaNHKMrV7JMeQDsHRwwMTHB2sYmQ9PQ2nXpQbM2HQD4aNBn9G73HgOGjaJ2g8YA9PjoE74ZOeS19dcsXUS/ISNo0qINAGOnzuTE4f2vlPMo5smIr799bTuPgwPxKOZFxWo1USgUeonQ+TMnuXrRj4MX7mBmbg7AyHGTOLhnB3t3bqNTz77pPue7RJIhIYQQwkim7LxBVHzWPvCKvE+jydrHNLXW1CD9/3f61uvcv3sbF9fCukQIwKtEKWzt7Xlw97YuGXJ198DaxlZXpoCTEyYmSpTKlxOVCjg6ERaqP7LlW7ma/utKVbn5rylfu7dvYd2Knwl46E9sTAxqdbJeP7euXaVj9w8y9CzpKVG6rO73+R2dASheqsy/nsmZhIR4oqMisbG106sbFRnBs6dPKF/h5ZoulUpFGZ+KoNV/r8uUr5BmHO069+CTHh1oW78qtRs0pl7jZtSq3wiA29evEhsTQz0fL706CfFxBDx8kFpz7zRJhoQQQggj2H31MZv9Ao0dhsjBouOd0GoVmZoqp9UqiIl3NEj/RYp6oVAo8L932yDtmar0P3YqUKBS6SduCoUCrTbjZ21d8jvD/4YNYODnX1GrfmNs7OzYvW0Lvy6ZpytjbmG4Q2n/Ha9CoUi5ZvrqNY0mc9Mb/8vSyirN+6XL+7LzxEWOHdzH6WOHGT3oQ6rXacCMn38hNjYGR+eCLNv4xyv1bP+e2ihekjVDQgghxFv2NCqeMVtkMbNIW7LGgqh450zViYpzIVljmA//9g4O1KrfiPW/LCM2NuaV+5EREQB4epcgJDiIJ8Evk/t7t28SFRGBZ/GSbxzH5fNn9V9fOIend8rUvYvnzlCosDsfD/uCsr4VKVLMi8dBAXrli5cuy+njr98GXGVqhlqtfuM402NrZ4+Tc0GuXPTTXUtOTubGlYtZas/G1o7mbTvyzfSf+H7+cvbt3E5EeDily/ny/FkIJioVHsU89b4c8hcw0NPkHZIMCSGEEG+RVqvlq9+uEB5rmHUdIm97FumNRpuxj2sarZJnUV7pF8yE/03+EY1GTc82Tdi3czsPH9zj/p1brFn+M33avwdAjboN8C5VhjFDB3DjyiWuXPBj7PCBVKlRm7K+Fd84hr07trF1/Wr8799lwYypXL3oR7e+HwNQpJgnT4ID2bXtNwL8H7Bm+c8c2P2nXv1PR3zJ7m2/sWDGVO7fucWdG9dYvmC27r6rmwfnT58g5HEw4WHP3zjetPTo9wnL58/mwO4dPLh7mylff0FUZGSm21m1eD67ft/Mg7u38b9/l707tuHo7IKtvT016jbAp1JVRvTvyYnDBwgKeMTFc6eZ+/0krl26kA1PlbvJNDkhhBDiLVp3JoADNzO3XbJ4d8Un5SPwecV0D17VaJUEPq9IfFI+g/bvVqQo63ceYsncGcyYNJZnT0NwyO9ImfK+ug0MFAoFPy1bw7RxX/Jhp1YolUpqN2jMV99+b5AYBn7+Fbu3b2HK2C9wdHZh2ryleJUoBUCD91rSq/9Apo0bTWJiInUbNWXAZ6NYNGuarn7VmnX4YdFKFv/0A8sXzMbGxpZK1Wvp7g/+YgyTvhpB67qVSExI4FJA9u241mfAEEKfhjDu84EolErad+lFo+atiM5kQmRtY8OKRXN49OA+JiZKyvpWYt4vG3Xrr+av2sjc6ZMZP3II4WGhODo5U6l6LQo4OWXHY+VqCq1W+2aTGnOAyMhI7O3tiYiIwM7OLv0KQgghhBH4h8bQ4qejxCVl/5QckXMUtjVhQkNnnF3dUKjMstSGhekLnGzvYWsZoreGSKtVEBXnwrMoL4MnQjmBr7sDs5asplHzVsYOReRA2uREngYHMuHgU4KiXv6/qkmIJWB2lwzlBjIyJIQQQrwFyWoNIzZelERIZEl8Uj4CwiqjUsZjbRGKiSIJtdaUmHhHg60REuJdJMmQEEII8RYsPHSPC49eGDsMkcslayyIiHVLv6AQIkMkGRJCCCGy2ZXACDlcVYgsyM71O0KA7CYnhBBCZKv4JDXDN1wg+Q3PHRFCCGF4kgwJIYQQ2Wjarpvce/bqGS1CCCGMT5IhIYQQIpscvfOMlSf8jR2GEEKI15BkSAghhMgGL2IT+WLTJWOHIYQQIg2ygYIQQgiRDcZtu0ZIZIKxwxB5jEr9DOsEP5SaWDRKK2LMK5NsIgdpCpFVkgwJIYQQBrbtYhB/XAo2dhgiD7FIvEWB6LXYxJ9EwcuzqrSYEG1Rk+c2PYg3K2nECIXInWSanBBCCGFAjyPiGPf7VWOHIfIQm7hjeIR+hm38Mb1ECECBGtv4lPs2cceMFKF4U/N++I5vvxxu7DAypVfbpuzbud3YYbwxGRkSQgghDESj0fLFpktExicbOxSRR1gk3sI1fDJKktIspyQJ1/DJPDL5yaAjRONGDGL75nUAqFQq7PI5UKJ0WZq3fZ92XXqgVObcn6v7ujukef/TEV8y8POv3lI0rxf6NIS1y39m896Xyey4EYOIioxg9rI1r6134+plls2bid/pE0RHRVKwUGGq1KzDB58OpainN/06t+bcqeOvrb9s459UqVk7zdjaNahGUMBDdp+8jKOzi969j4eN5MeJX9Ooeesc/fcgPbk3ciGEECKH+eWkP8fvPjd2GCIPKRC9Nt1E6B9KkigQvc7gMdRu0Jj9fjfZeeISC1ZtomrNOkyfMIahfbuSnJxzE//9fjd1X6MnTMXG1lbv2gefDNGV1Wq1RnuWLet+xbdyNVzdPDJc5/C+3fRu15TEhASmzlnM1gOn+W7Oz9jY2jH/hykAzFz8q97z7ve7ye5Tl/EuWZqyPhUpX7Fymn2cP3OShPg4mrZsq0uI/61Ow6bExERz7ODezD1wDiPJkBBCCGEAd0KimLbrprHDEHmISv0Mm/gTmapjE38ClfqZQeMwMzPH0dkFl0KulC7vS/+hI5m9bA3HDu5j+6a1unKRERFMGDWMBr7e1CrtQf+ubbl1/Yru/sKZ0+jSrC5//LaeFjV9qF3Gg9GDPiImOkpXZu+ObbzfpBbVvAtRr7wnA7q3Jzb25TldW9aton3D6lT1Lki7BtXY8MvS18bt6Oyi+7KxtUOhUOheP7h3h5ql3Dl2cC/dWjagipcLF86eQqPRsGzeTFrU8qWadyE6v1eHvTu26bV75+Z1BvXuRI2SbjSsWIL/ffYJ4WEvfwiS3jP81+7tv1G/SbOM/WEAcXGxfDNyCHUaNmXOinXUqNsAN48i+FSswshxkxg3bRYA9g4Oeu+Bo7MLi3/6kRfhYcxa+ivmFhZp9rN1/WpatO9E645d+X3DqyNUJiYm1GnYlN3bt2Q49pxIkiEhhBDiDSUmaxix8SIJyRpjhyLyEOsEPxRk7u+UAjVWCeezKaKXqteuR8ky5di/6w/dtVED+xIW+oz5qzaxbudBSpfzZUC39kSEh+vKBDz05+CencxZsZ65K9bjd/oEy+fPBuBZyBO+GtKf9l17sfXgaZZt/IPGzVuDVgvAjq0bWfDjVIaMHsvWA6cZ+uU45v84he2bsj4a9tPUiXz21Tf8fuA0JUqVZdm8mfzx2wbGTpnJlv0n6dV/EP/77BPOnUyZbhYZEcHH3dpRqqwP63YcYMGvm3n+7BmjBn6YoWf4r4jwcO7fuUUZ34oZjvnEoQOEhz3nw4HDUr1vZ2+f6vUNvyzlj9/WM+PnX3ApVDjNPmKio9i7YxutOnShRr2GREdFcv70q4l5uQqVuHDmZIZjz4lkzZAQQgjxhuYeuMPVoEhjhyHyGKUmNkv1TLJYL7OKehXnzs3rQMqUqqsX/Th44Q5m5uYAjBw3iYN7drB35zY69ewLgEajYdLM+Vjb2ALQumMXTh8/wlBS1s4kJyfTuEVr3ZSx4qXL6vpbOGMaI8dNokmLNgC4eRTh/u1bbF6zgradu2fpGQaN/B816zUEIDEhgaXzZrF43VZ8K1dL6aNIUS6cPcXmNSuoUrM261cuoVRZH4Z9NV7Xxrcz5vJetXL4379LXExMms/wX4+DA9FqtTi7FMxwzI/87wFQzKtEhuv4nTrO9In/4+vvfqRClerplt+9fQsexTzxLlkagOZtO7J1/WoqVa+lV87ZpSBPgoPQaDS5dt2QJENCCCHEG/B7GM78g3eNHYbIgzRKqyzVU2exXmZptYBCAcDt61eJjYmhno+XXpmE+DgCHj7QvXZ199AlQgCOzgUJe54yra9EmXJUr1OfTk3rUKt+I2rWa0jTlu2wy5eP2NgYAh4+YMKoYUz8165ranUyNrZ2WX6GMj4VdL9/5H+f+LhYPunRUa9MUlIipcr6pDznjaucPXmUGiXdXmkr8OEDatZr9NpnSE1CfBwAZuZpT1n7N+1rRple53FQACM/7cv7PT6gY/c+Garz+4Y1tOrQRfe6VYcufNS5NV9N+l7vz8/cwhKNRkNiQgIWlpaZiiunkGRICCGEyKKYhGQ+33gRTeY+mwiRITHmldFi8sp22mnRYkKseaVsjOqlB3dvUdg9ZfQjNjYGR+eCLNv4xyvlbP81bctUpf/RU6FQoNWkTAU0MTHh57VbuXjuNCePHGTdisXMnT6Z1dv3Yfn3B+3x02dTvkIVvTaUJiZZfgZLK2vd7/9Z1zNv5QacCxbSK2dmbpZSJiaa+k2aM3zMhFfacnRxSfMZ3DyKvFInX/4CAERGvCB/AccMxVykmDcAD+7d1o1gvU58XBwjPu6NV4lSjJ4wNUPt37t9k8vnz3L1oh8/TZ2gu65Wq9m9fQvv9/hAdy3iRTiWVta5NhECSYaEEEKILJu84wYPn7+dKUni3ZNs4kS0RU1s4zN+flC0RS2STZyyMaoUp48f4c7N6/TqPwiA0uV8ef4sBBOVSpcgZYVCoaBi1RpUrFqDT4aPpnkNHw7s/pM+Awbj5FKIwIcP9UYsDMmreEnMzM15HBzw2i2nS5fzZd+uP3B190ClSv1jdFrP8F/uRYphY2vL/du3KOrpnaE4a9ZviEP+AqxYOIfZS1e/cj8yIkK3bmji6GFEvAhn4erfXhvvf21dv5rK1WsxZvIPete3bVzL1vWr9ZKhu7duUKps+Qy1m1NJMiSEEEJkwf4bIaw788jYYYg87rlND6zjT2doe20NZjy3ydrambQkJiYQ+jQEtVpNWOgzjh/ax7L5s6nXpBltOnUDoEbdBvhUqsqI/j0Z/r+JFPH05lnIY47u/4tGzVtTNgMbBFy+cI4zxw5Ts14j8js6cuWCH+FhoXgWT1kbM2jkV3w//its7Oyo3aAxSQkJXLt8kciIF6kmGpllbWPLBwOG8OPEr9FqtFSsWoPoqEgunDuNjY0tbTt3p+sH/flt3Sq+GtKfvp8Owz6fA4/877N7+xYm/DCHa5cvpPkM/6VUKqlepwEXzp6iUfNWeveioiK5ee2K3rV8Dg4UdHXjm+lz+GJgX4Z92J0eH32Ce1FPXoQ9568/t/I4KJDpC5azctEc/tqxjTnL16FOTib0aYheWza2dq+M6CQlJfHnlg0MGjmG4qXK6N3r2L03vy6Zz91bN3RriS6cOUnNeo2y9H7nFJIMCSGEEJn0PDqBL3+7kn5BId5QvFlJgh3GpnvwqgZTgh2+NuiBq/84fmg/jSuXQqVSYWufj5JlyvHlxGm07dxdt2heoVAwf9VG5k6fzPiRQwgPC8XRyZlK1WtRwCljI1U2Nrb4nT7J6mWLiImOolBhd0aOm0Sdhk0B6Ni9DxYWlqz8eS6zvhuPpaUVxUuVoWe/gQZ71sGjvsahgCPL5s8i8JE/tnb2lC7nS/8hIwBwLliIX7buZvaUCXzaqyNJCYkUcnOndv3GKJXKdJ8hNR2792bi6OGM+Hqi3iYE504eo2vzenplO3TrzYQf5tCwWUtWbd3Dsvmz+Grox8RER1GwUGGq1q7LkFFjAdiwahnJSUkM6t0p1X6/nTGfdl166F07vHcXEeFhKTvg/Ydn8ZJ4Fi/J1vWrGfXNd4Q8Duai3xmmzPk5Y29uDqXQZnYVVg4UGRmJvb09ERER2NllfRGdEEIIkR6tVssnv/rx1/WQ9AsLARS2NWFCQ2ecXd1QqMyy1IZF4i0KRK/DJv6E3hoiLSZEW9TiuU33bEmERPbTarX0bNOE3v0H0qJ96olLTjRryjdERUQw/vvZRotBm5zI0+BAJhx8SlDUy38XmoRYAmZ3yVBuICNDQgghRCZs9guUREi8dfFmJQnKPwGV+hlWCecx0cSiVloRa17prawREtlHoVAw/vvZ3Ll5zdihZEr+Ak70+fjNpycamyRDQgghRAYFhMUy8Y/rxg5DvMOSTZyItGpm7DCEgZUqWz7XbUTwwSdDjB2CQeTO05GEEEKIt0yt0TJy4yWiE5KNHYoQQggDkWRICCGEyIClR+9zxj/M2GEIIYQwIEmGhBBCiHRcD47kx79uGTsMIYQQBibJkBBCCJGG+CQ1n2+8SJI612++KoQQ4j8kGRJCCCHSMHPvbW4+iTJ2GEIIIbKB7CYnhBBCvMbJe89ZcvS+scMQQkcV+xjrkCMok6LRmNoQ41KPZKtCxg5LiFxLkiEhhBAiFWExiXyx6RK5/2hykRdYhF2iwPW52ATvRaF9uaOhVqEi2rUpz8sMJT6/rxEjFCJ3kmlyQgghxH8kJmv4dLUfQS/ijB2KENgE7sJjfwdsg3bpJUIACm0ytkEp920CdxspQuMJCniEr7sDN69dMXYoqfK/d4dGlUoSE527ptreu32TplXLEhsbY+xQsp0kQ0IIIcS/aLVaxv5+hTMPZBttYXwWYZdwPTkYpSYhzXJKTQKuJwdhEXbJoP2PGzGI4f16GrTN3KBFTR9WL134xu38NO1buvf9GGsbWwDOnjyGr7sDkRERr60THRXJ3O8n0a5BNap6F6RRpZIM6N6efbv+QKvVsm3jWnzdHV77Ne7zwWk+1z/lqnkXokVNH0YN/JDTx4/olfMqUQqfSlX4dfGCN34PcjpJhoQQQoh/WXbsARvPBRo7DCEAKHB9brqJ0D+UmgQK3JiXzRGJjHocFMCR/Xto27lHhutERkTQp30z/vhtPf0Gj2D9zkMs37yDZm06MPu7b4iKjKRZmw7s97v5yteAz0ZhambG+z36pNnHoJH/Y7/fTbYdPsPkWQuxtbPnk+7tWTLnR71y7br0YNOvy0lOztsHTUsyJIQQQvxt/40Qvtt5w9hhCAGkbJZgE/xXpurYBP2FKvZxNkX0qnMnj9OjdWOqeLnQuHIpZk+doPvwfHjfbuqULYJarQbg5rUr+Lo7MHvqBF39CaOGMWbYgNe27+vuwMZVyxjUuxPVvAvRsnYF9u7Y9tryarWab74YSotavlTzLkTb+lVZs2yRXpl/Rrt+WTSXxpVLUa+8J1O+/oKkpCQA+nVuTXBgAD9M/J9uFAUgOPARQz/sRp1yRaleojAdGtfk6IHX//n89cfvlCxdDpdCrmm/if8y9/tvCQ4MYPX2fbTt3B2vEqUo6unN+z0+YOOeI1hZW2NhaYmjs4vel/+9uyyfP4v/Tf6BClWqp9mHtY0Njs4uFCrsTuUatRn//WwGfDaKBTOm4n/vjq5czboNiYgIx+/U8QzHnxtJMiSEEEIAt55EMWzdBdkwQeQY1iFHUGjVmaqj0CZjFXI0myLSF/I4mMEfdKGcb0U27TnK19/N4Pf1q3UjDJWq1SQmOpqbVy8D4HfqOA75C3Du5MsP136njlO1Zp00+5n/4xSatGzLxr+O0rJ9Z74c3I/7d1I/BFmj0eBSyJUfF65ky4FTfDJ8FHO+n8SeP7bqlTt78igBDx+wdMN2Js1awLZN69i+aS0AMxf/ikshV90Iyn6/mwBMGTuKxIREVmzawW97jzN8zDdYWVm/Nu7zZ05SxqdC2m/if2LfvX0LLTt0wrngqzsEWlnboFK9uvdZcOAjvhjYl/d79qVj97RHhV6n50efotVqOfjXTt01UzMzSpYpz/kzJ7PUZm4hyZAQQoh33vPoBPr9cpaYxMx98BQiOymTorNUzySL9TJr46plFHQtzJjJP1DMuwSNmrdi4OdfsWrxfDQaDbZ29pQsW55zJ48BKetlevUfyM1rl4mNiSbkcTCP/O9TuUbtNPtp2qodHbv3oainN0NGfU0Zn4qsW7E41bKmpqYMGjmGsr4VcfMoQqsOXWjXpQd//fm7Xjk7+3y6uOs3aU69xu9x+thhAOwdHDAxMdGNoDg6uwDwJCiQilWrU7x0WdyKFKV+k+Zpxv44KAAnl4xvex4e9pzIiBcU8yqR4TpxcbEM798LrxKlGD1haobr/Ze9gwP5HZ0IDnikd93JpSDBgQFZbjc3kGRICCHEOy0hWc2nq/0IDJed40TOojG1yVI9dRbrZdb9u7fxqVQVhUKhu1ahavW/E50gACpXr83ZU8fQarVcOHOSxi3a4OldggtnTuF36jhOLoUoUswrzX58K1fTf12pKvfv3n5t+fUrl9CtZQMa+HpTo6Qbv639hcdB+usAvUqUwsTERPfa0dmFsOehacbR46NPWDLnRz7o0IwFM6Zy+8bVNMvHx8djbmGeZhk9WRiWnvDFUKIiI/hx0cpUR40yQ6vV6v1ZAlhYWBAfl7f/b5RkSAghxDtLq9Xy9darnPUPN3YoQrwixqUeWkXmPuBqFSpiXepmU0SZV7VmbS6ePcWt61dRmZpSzLsEVWrW4eypY5w7fZwqNWoZtL9d235j5uTxdOjai4VrtrBx9xHadelBclKiXjmVylTvtUKhQKvRpNl2x+592HH8Aq06duXOzet0b9WIta8ZoQJwyJ+fyBcvMhy7QwFHbO3teXDv9Ynevy1fMJvD+/Ywe+lqHPIXyHA/qXkRHkb481AKuxfRux7xIhyHAm/Wdk4nyZAQQoh31uIj99nsJzvHiZwp2aoQ0a5NM1UnuvB7JFtlfGrWm/D0LsHl82fR/mtE4+LZ01jb2OJSqDAAlarVIiY6mtVLF1C5ekriU6VGHc6dPM65k8epks56IYDL58/qv75wDk/v1KeSXTx3Gt8q1ej6QX9Kl/PBo5gngQ/9M/1sKlMz3cYP/1bQ1Y0uvT9i1pJf6TNgMFvW/vLaNkqW9Xnt2qbUKJVKmrfpyM6tm3n65NVNMGJjonWbUxw7uJd50yfz7Yx5lCxTPsN9vM6aZYtQKpU0bNZK7/rdWzcoVc7njdvPySQZEkII8U7aez2EabtvGjsMIdL0vMxQNMqMTbXSmFjwvPQQg8cQFRXJzWtX9L6eBAfSpU8/ngQHMXXcaB7cvc3BPTtZOHMavT8ehFKZ8hHTLl8+ipcuy86tm3SJT+Xqtbhx9RIP79+lSjrrhQD27tjG1vWr8b9/lwUzpnL1oh/d+n6calmPYl5cv3yB44f243//LvN++I5rl85n+pld3Tw4f/oEIY+DCQ97DsD0CWM4fmg/gY8ecuPKJc6eOEYx75KvbaNW/UZcOn821aTq7s1reu/nresph8YOHT2Ogq6F6dW2CX9sXs+92zd5+OAeW9evpmvz+sTGxPDwwT2+GvoxHbr3plK1moQ+DdH7ighPe6Q7Jjqa0KchPAkOxO/Ucb79cjhL5vzIkNFj8SjmqSsXFPCIp08eU6NO/Uy/f7nJm00uFEIIIXKhG48j+Wy97Bwncr74/L4E11yA68lBaZ43pFGaE1xjPvH5fQ0ew7mTx+javJ7etQ7dejPhhznM/2UjM78bT+dmdbHP50D7br34eNgXemWr1KjNrWtXdLvG2Ts44FW8JM9Dn1HUq3i6/Q/8/Ct2b9/ClLFf4OjswrR5S/EqUSrVsp179uXm1ct8OfgjUCho0fZ9uvTpx/GD+zL1zIO/GMOkr0bQum4lEhMSuBQQjlqtZurYUYQ8CcbaxpbaDRoz6pspr22jTsOmmJioOHX0ELUbNNa792En/REYExMTzvuHYu/gwK/b/mL5gtksnvMjj4MCsLPPR/FSZRjx9bfY2tmxdvkioiIi2Lx6JZtXr3yl3yo1arNs05+vjWvBjCksmDEFUzMzHJ2cKV+xKovXb6NaLf3plbu3baZmvUa4unmk/4blYgqtNvd/K4iMjMTe3p6IiAjs7OyMHY4QQogc7FlUAu3nHyfoRd5eFCxyjsK2Jkxo6IyzqxsKlVmW2rAIu0SBG/OwCfoLhfblIZhahYrowu/xvPSQbEmEjM3X3YFZS1bTqHmr9AvnQOtXLuHQ3t0sWvObsUPJlKTERNrUq8zUuUuoWLWGscN5LW1yIk+DA5lw8ClBUS9H4DQJsQTM7pKh3EBGhoQQQrwz4pPUfPLrOUmERK4Tn9+XoNpLUMU+xirkKCZJ0ahNbYh1qfvW1giJzOvU60OiIiOIiY7C2sbW2OFk2OOgQPoN+TxHJ0KGIsmQEEKId4JWq2XMliucf/TC2KEIkWXJVoWILNbF2GGIDFKpVK9MG8wNPIp56q0fysskGRJCCPFOWHDoHlsvBBk7DCFEJlwKkG3vRfaS3eSEEELkebuvPuaHPRnf4lYIIcS7QZIhIYQQedrVoAhGbLhk7DCEEELkQJIMCSGEyLOeRsbz8apzxCW9es6HEEIIIcmQEEKIPCk+Sc3Hv/rxOCLe2KEIIYTIoWQDBSGEEHmOVqtl1ObLXAp4YexQhDAoRUQopnf8UMTHorWwIql4ZbT2jsYOS4hcS5IhIYQQec7cA3f541KwscMQwmBMAm5heXAdptdPotC8nPapVZqQVKYmcQ27o3YvacQIhcidZJqcEEKIPGXH5cfM3Hvb2GEIYTCmV49ht3A4ZleP6SVCAAqNGrO/75tePW6kCI1r28a11ClbJM0y40YMYni/nplqt0VNH1YvXZgt8YicQ0aGhBBC5BmXA18wctNFY4chhMGYBNzCZu13KJKT0iynSE7CZu1kIgfONvgI0ZPgQBbMmMaJQ/sJD3+Ok7MLDZu14pPho8nnkN+gfWWX0ROnotW+nb6atelAnUZN305n4o3JyJAQQog84UlEys5x8UkaY4cihMFYHlyXbiL0D0VyEpYH1xm0/8CH/nRv1YhHD+4xbd5S/jzqx9ipMzl97DC9271HRHjuOBTV1s4eO3v7bO8nKSkJC0tLCjg6ZXtfwjAkGRJCCJHrxSWq+XjVOUIiE4wdihAGo4gIxfT6iUzVMb1+EkVEqMFimDL2C0xNTVm0ZgtVatamUGF36jRsyuJ1v/P0yWPmTp+kK9uipg8/z/6BLwf3o3qJwjSpUob1K5fotRcZEcGEUcNo4OtNrdIe9O/allvXr+juL5w5jS7N6vLHb+tpUdOH2mU8GD3oI2Kio9KN9fih/bRvWJ0aJd0Y2KsTz0Ke6O79d5pcTHQUY4Z+TPUShWlcuRS/LllAv86tmT5hjF6b8XGxjB85hJql3GlWvRyb16zU3QsKeISvuwO7t2/ho06tqOpdkJ1bN70yTe7W9Sv069KGmqXcqVXag24tG3Dt0gXd/fNnTtK3YwuqeRfivWplmTb+S2JjY9J9XmEYkgwJIYTI1TQaLV9susSVoAhjhyKEQZne8UOhydxIp0KjxvTOeYP0HxEezonDB+japx8WlpZ69xydXWjVoTN7/tiK9l/zz375eS4lypRjw+7DfDR4ONMnjOHkkYO6+6MG9iUs9BnzV21i3c6DlC7ny4Bu7fVGmAIe+nNwz07mrFjP3BXr8Tt9guXzZ6cZa1xcHKsWz+O72YtYsXkHT4IDmTl53GvL//jtWC6eO82c5WtZtGYL58+c5MbVy6+UW7V4PmV9KrBh12G69OnHd/8bif+9O3plfpo2kR79PmXrgdPUqt/olTbGDB2ASyFX1v65n3U7D/LRoOGoTFNWqgT4P2BQ7840admWTXuPMX3Bci6cPcXUsaPTfF5hOLJmSAghRK720/477Ljy2NhhCGFwivjYrNVLMMyowkP/e2i1Wop5p74GqZh3CSIjXhD2PFQ3LaxClWr0GzwCgKKe3lw8e4rVSxdQs15Dzp85ydWLfhy8cAczc3MARo6bxME9O9i7cxudevYFQKPRMGnmfKxtbAFo3bELp48fYWgasSYnJTF2ykzcixYDoNsH/fn5px9SLRsTHcX2zeuYNncJ1evUB+DbGfNoUqXMK2XrNGpK1w/6A/DRoOGsXrqQMyeOUtSruK5Mr34DadKizWtjexIcRN9Ph1HMuwQARYp56e4tmz+Llh060av/QN29LydOo1/n1oydMgNzC4s0nloYgiRDQgghcq3tl4L5af+d9AsKkQtpLayyVs/c2rBxZGLnAZ/K1fRe+1auxuplKTuy3b5+ldiYGOr5eOmVSYiPI+DhA91rV3cPXSIE4OhckLDnz9Ls18LSSpcI6eqEpl4n8JE/yUlJlKtQSXfN1s6eol7er5QtUbqs7vcKhQJHJ2fCnutPQyzjUyHN2Hp/PIiJo4fx55YNVK9Tn/datdfFevv6VW7fvMbOrZt15bVaLRqNhqCAh3gWl+3Ss5skQ0IIIXKliwEvGLXpkrHDECLbJBWvjFZp8sp22mnRKk1IKl4p/YIZ4FHUE4VCwYO7t4DWr9x/cPc2dvb5yF8gY4e+xsbG4OhckGUb/3jlnu2/NjcwVel/PFUoFGjTmS5oappKHQNsH6dSmaYbi6VV2snnwM+/okX7Thzd/xfHDu5j4cxpfD9vGY1btCY2NoZOPfvS48NPXqlXqLDbG8cv0idrhoQQQuQ6jyPi+HjVORKSZec4kXdp7R1JKlMzU3WSytREa5+x5CQ9+RzyU6NuQzasWk58XJzevdCnIezYuolmbTqgUCh016+cP6tX7vL5s3j+PT2sdDlfnj8LwUSlwqOYp96XQ/4CBok5I9w8iqIyNdXbxCAqMoKH9+9lW59FPb3p/fEgfl67hcbNW7Nt4xoASpfz4f6dW6+8Hx7FPDE1M8u2eMRLkgwJIYTIVWITk+n/yzmeRcnOcSLvi2vYHe1/RideR6syI65hd4P2P2bydJISExjY6338Th3nSXAgxw/u45MeHXAuWIiho/U3Kbh47jQrFv6E//27rF+5hL07ttHjo08BqFG3AT6VqjKif09OHD5AUMAjLp47zdzvJ+klJtnN2saWtp26M/O78Zw5cZS7t24wYdQwlEolChTpN5AJ8XFxTBk7irMnjxEc+IgLZ09x7dIFihVPSRA/HPQZl86dYcrYUdy8doWHD+5xcM9OpowdZdA4xOvJNDkhhBC5hkaj5fMNl7gWHGnsUIR4K9TuJYnuMRabtZPTPG9IqzIlusfXBj9wtUgxL9buOMDCGdMYNegjIl6E4+jkTMNmrfh0xJfYOzjole89YAjXL19k0azp2NjaMnL8d9Ru0BhImWI2f9VG5k6fzPiRQwgPC8XRyZlK1WtRwOntnsvzxfjJTB7zOUP7dsPG1pa+nw7jSXAQZhbmBu3HxMSEiPAwxg7/lOehz8jnUIDGLVoz6POULbxLlC7Hsk1/Mnf6ZD58vyVarRb3IkVp1qaDQeMQr6fQZmJC5YQJE5g4caLetZIlS3Lz5k3CwsL45ptv+Ouvv3j06BFOTk60b9+eSZMmYZ/GIVdarZZvvvmGJUuW8OLFC2rXrs3ChQspXrz4a+v8V2RkJPb29kRERGBnZ5fhekIIIXKXH/fcYt7Bu8YOQ4hMKWxrwoSGzji7uqFQZW3qk0nALSwPrks5R+hfa4i0ShOSytQkrmF3gydCmdWipg89+w3U7YyWm8TGxvBe1TJ8Pm4yHbv1NnY4IoO0yYk8DQ5kwsGnBEW9/HehSYglYHaXDOUGmR4ZKlu2LPv27XvZwN+L3IKDgwkODubHH3+kTJkyPHz4kE8//ZTg4GA2b978uuaYPn06c+bM4ZdffqFYsWKMGzeOZs2acf36dSxkO0EhhBB/2+wXKImQeGep3UsS3WdCykGsd86jSIhBa25NUvFKBlsj9C65cfUy/ndvU65CZaKjIvl59nQAGr7X0siRibct08mQSqWiYMGCr1wvV64cv/32m+61l5cX3333Hb169SI5OVmXNP2bVqtl9uzZjB07lnbt2gGwatUqXFxc+P333+nWrVtmwxNCCJHHhMckMmnHdbacDzJ2KEIYndbekcQq7xk7jDzhl8Xz8L93F1NTU8r4VGDF5p1vdSMHkTNkOhm6c+cOrq6uWFhYULNmTaZOnYqHh0eqZf8ZmkotEQJ48OABT548oUmTJrpr9vb2VK9enZMnT742GUpISCAh4eXC2chImTsuhBB5jVarZfulYCb+cZ2wmERjhyOESMeuk5eNHUKGlS7nw/qdh4wdhsgBMrWbXPXq1Vm5ciW7d+9m4cKFPHjwgLp16xIVFfVK2dDQUCZNmsSAAQNe296TJ08AcHFx0bvu4uKiu5eaqVOnYm9vr/tyd3fPzGMIIYTI4QLDY/lw5Vk+W39REiEhhBDZJlMjQy1atND93sfHh+rVq1OkSBE2btxIv379dPciIyNp1aoVZcqUYcKECQYL9h9jxozh888/1+tPEiIhhDCuZcceYGehoqKHA56O1iiVmd+iVq3R8ssJf3786xaxiRk/aFIIIYTIijfaWjtfvnyUKFGCu3dfLmiNioqiefPm2NrasnXrVkxNX783/j9rj0JCQihUqJDuekhICBUqVHhtPXNzc8zNDbv1oRBCiKzbfyOESX9e1722tzSlgns+Knrko6KHAxXc82Fvqf/9IDFZw8PnMdx9Gs2dv7+uBL7A/3ns2w5fCCHEO+qNkqHo6Gju3btH794pWxBGRkbSrFkzzM3N2b59e7q7wRUrVoyCBQuyf/9+XfITGRnJ6dOnGTgw923LKIQQ76L4JDVjf7+qdy0iLonDt59x+PYz3TVvZxt83OyJTVBz52kUD5/HkqzJ8OkOQgghhMFlKhn64osvaNOmDUWKFCE4OJhvvvkGExMTunfvTmRkJO+99x6xsbGsXr2ayMhI3cYGTk5OmJiYAFCqVCmmTp1Khw4dUCgUDB8+nMmTJ1O8eHHd1tqurq60b9/e4A8rhBDC8Db5BfI4Ij7dcnefRnP3afRbiEiIvEv9PJzESzfQxsWhsLTEzLc0JgUc0q8ohEhVppKhwMBAunfvzvPnz3FycqJOnTqcOnUKJycnDh06xOnTpwHw9vbWq/fgwQOKFi0KwK1bt4iIiNDdGz16NDExMQwYMIAXL15Qp04ddu/eLWcMCSFELqDWaFl85J6xwxAiz0u660/Mll0knLsEas3LGyZKzKv4Yt2xBabeRY0WnxC5VaaSofXr17/2XoMGDdBq05/u8N8yCoWCb7/9lm+//TYzoQghhMgBFIBKmamNSYUQmRR/+gIRs5ZAUvKrN9UaEk5fIOH8FexHfIxF9YpvP0Aj27ZxLT9MHMOxaw/far8tavrQs99AevWXpR25mXwHE0IIkWVKpYJeNYoYOwwh8qyku/6vT4T0CiYTMWsJSXf9DR7Dk+BAxo8cQpPKpans6UzzGuX5/puveBEeZvC+cpM1fx7g/Z4fGDsM8YYkGRJCCPFGOlV2w9LUxNhhCJEnxWzZlX4i9I+k5JTyBhT40J/urRrx6ME9ps1byp9H/Rg7dSanjx2md7v3iAgPN2h/uUFSYsrZZ/kLOGJpaWXkaMSbkmRICCHEG7G3NKV9RVdjhyFEnqN+Hk7C2UuZqpNw7hLq54ZLUKaM/QJTU1MWrdlClZq1KVTYnToNm7J43e88ffKYudMn6cq2qOnDz7N/4MvB/aheojBNqpRh/coleu1FRkQwYdQwGvh6U6u0B/27tuXW9Su6+wtnTqNLs7r88dt6WtT0oXYZD0YP+oiY6KhMxb1x1TJa1a5IZU9n2tavyh+/vVzqMWPSOIb07ap7vXrpQnzdHTh+cJ/uWus6ldiybhUA40YMYni/niyZ8yNNKpembYOquuddvXQhkLIMZOHMaTSrXo4qXi40qVyaaeO/1LWXmJDAjEnjaFKlDNVLFKZnmyacPXksU88ksockQ0IIId6YTJUTwvASL90AjSb9gv+m1pB4+YZB+o8ID+fE4QN07dMPC0tLvXuOzi606tCZPX9s1VsP/svPcylRphwbdh/mo8HDmT5hDCePHNTdHzWwL2Ghz5i/ahPrdh6kdDlfBnRrrzfCFPDQn4N7djJnxXrmrliP3+kTLJ8/O8Nx79/1J99PGEOfAYP5bd8JOvXsyzcjh3DmxFEAKteoxcWzp1CrUw52PnfqOA75C3D2VEpyEvI4mICHD6hSo46uzdPHj+B//y6L1m5h7opX19Dv27md1UsXMG7aLP44co5ZS1dTvFQZ3f2p40Zz+fwZps9fyua/jvFeq3YM6t2Jhw9kAxpje6NzhoQQQgiAsq72+LjZczkwIv3CQogM0cbFZbFe+lvdZ8RD/3totVqKeZdM9X4x7xJERrwg7HkoBRydAKhQpRr9Bo8AoKinNxfPnmL10gXUrNeQ82dOcvWiHwcv3MHM3ByAkeMmcXDPDvbu3Eannn0B0Gg0TJo5H2sbWwBad+zC6eNHGJrBuFctnku7zj3o+kH/lDgGeHPlwjlW/TyXarXqUqlaLWKio7l59TJlfCpw/vQJPvh0KAf37ATg3KljOBd0xaOYp65NSysrJkyfg6mZWap9Pg4KpICTC9XrNMDU1JRChd0pX7Hy3/cC2LZxDbtPXcG5YCEAPvh0KMcP72fbhjUM+2p8Bp9MZAdJhoQQQhhE09IukgwJYUCK/4zGZLyeYY8nychuwf/wqVxN77Vv5WqsXpYylez29avExsRQz8dLr0xCfBwBDx/oXru6e+gSIQBH54KEPX9GRt2/c5v3e/TVu1ahSnXWLF8EgJ29PSXKlOPcyWOYmpliamZGpx59WThzGrEx0fidOkGVGrX06hcvVea1iRDAe63bsWbZQlrVrkDtBk2o07Ap9Zs2R6VScefmddRqNW3rV9Wrk5SYgH2+/Bl+LpE9JBkSQghhEE3KuDBj721jhyFEnmHmWxpMlPrnCqXHRImZT2mD9O9R1BOFQsGDu7eA1q/cf3D3Nnb2+chfwDFD7cXGxuDoXJBlG/945Z6tvb3u96Yq/Y+nCoUCbWanC6ajSo06nD11DFNzcypXr4W9gwOe3iW4cOYU504dp8+AwXrl09sooaCrG9sOneXUsUOcOnqIKWO/4Jef57Bs0w5iY2IwMTFh/c6DKJX6m81YWVsb9LlE5kkyJIQQwiBKFbSlcD5Lgl5kbWqPEEKfSQEHzKv4knD6QobrmFfxxaSAg0H6z+eQnxp1G7Jh1XJ69R+kt24o9GkIO7Zuos37XVEoFLrrV86f1Wvj8vmzeHqXAKB0OV+ePwvBRKWisLuHQWJMjWfxElw8d5q2nbvrrl08dxrP4i+n+1WpUZttG1ejMlFRq0HjlGs167Br+288vH+XKjXrvNJueiwsLWnQtAUNmrag2wf9adegGndvXqdUOR/UajVhoc+oVL1W+g2Jt0o2UBBCCGEQCoWCpmVcjB2GEHmKdccWYJrBn12bmaaUN6Axk6eTlJjAwF7v43fqOE+CAzl+cB+f9OiAc8FCDB09Tq/8xXOnWbHwJ/zv32X9yiXs3bGNHh99CkCNug3wqVSVEf17cuLwAYICHnHx3Gnmfj+Ja5cynvCl54NPhrFt01o2rlrGwwf3WLV4Pvt3/cEHn7xcdVS5esq6oSP791D178SnSo067Ny6CSfnghT19M5Un9s2rmXL+l+5c/M6gQ/9+XPLRiwsLCnk5k5RT29adujM1yMGsm/XHwQ+esiVC34smzeTI/v3GOy5RdbIyJAQQgiDaVLahZUn/I0dhhB5hql3UexHfJz+waumKuyH98fUu6hB+y9SzIu1Ow6wcMY0Rg36iIgX4Tg6OdOwWSs+HfEl9g76o1C9Bwzh+uWLLJo1HRtbW0aO/47af4+8KBQK5q/ayNzpkxk/cgjhYaE4OjlTqXotCjg5GSzmRs1b8eWEqfzy8zy+nzCGwu5FmDhjni7pAbDLl4/ipcrwPPQZxf4euapcvRYajYbKNTI/emNrZ8/yBbOZ8e3XqNUaipcqw5wV68jnkLIm6NsZ81ky50dmTBrL0yePcXAoQPlKVajXuJlhHlpkmUKbmVVxOVRkZCT29vZERERgZ2dn7HCEEOKdlZisofKkvUQlZPCQSCHeAYVtTZjQ0BlnVzcUqtcvwk9L0l1/YrbsIuHcJf01RCZKzKv4Yt2xhcETocxqUdOHnv0G0qv/QKPGId4d2uREngYHMuHgU4Ki1LrrmoRYAmZ3yVBuICNDQgghDMZMpaR+SSf+vPzY2KEIkaeYehcl3+iBqJ+Hk3j5Btq4eBSWFpj5lDbYGiEh3kWSDAkhhDCopmVcJBkSIpuYFHDAsqEswhfCUCQZEkIIYVANSjhjolSg1uT6WdhCiEzYdfKysUMQItNkNzkhhBAGZW9lSrWicpCgEEKInE+SISGEEAbXRLbYFkIIkQtIMiSEEMLgmpR2NnYIQgghRLokGRJCCGFwHvmtsLWQZalCCCFyNvlOJYQQwuAUCgUe+a24Fhxp7FCEyFPin0UQeu4eyTHxqKwtcKzihYWTvbHDEiLXkmRICCFEtpBkSAjDibgZyL3Vh3l64ibafx26qjBR4lyrFF696mNfys2IEQqRO8k0OSGEENnCI7+VsUMQIk94cuQap4YuIeTodb1ECECr1hBy9Lruvsi4FjV9WL10YZplfN0dOLB7R5pltm1cS52yRQwZmniLJBkSQgiRLQo7WBo7BCFyvYibgVyatBFNYnKa5TSJyVz8dgMRNwMNHsOT4EDGjxxCk8qlqezpTPMa5fn+m694ER5m8L7epjV/HuD9nh+8cTvN2nRg2+FzBohIGIMkQ0IIIbLFibvPjR2CELnevdWH002E/qFJTObemiMG7T/woT/dWzXi0YN7TJu3lD+P+jF26kxOHztM73bvEREebtD+3qb8BRyxtHyzEeykpCQsLC0p4OhkoKjE2ybJkBBCCIPbffUJu689MXYYQuRq8c8ieHriZqbqPD1+g/hnEQaLYcrYLzA1NWXRmi1UqVmbQoXdqdOwKYvX/c7TJ4+ZO32SrmyLmj78PPsHvhzcj+olCtOkShnWr1yi115kRAQTRg2jga83tUp70L9rW25dv6K7v3DmNLo0q8sfv62nRU0fapfxYPSgj4iJjnptjP9MUzu8bzdt61elenFXRn7yAXFxsWzftI4WNX2oU64o08Z/iVqt1ov339PkHj64x4fvt6Sqd0E6NKrBySMH9foJCniEr7sDu7dv4aNOrajqXZCdWze9Mk3u1vUr9OvShpql3KlV2oNuLRtw7dIF3f3zZ07St2MLqnkX4r1qZZk2/ktiY2My8aciDEmSISGEEAYVnZDM11uvpF9QCJGm0HP3XlkjlB6tWkOo3z2D9B8RHs6Jwwfo2qcfFpb6014dnV1o1aEze/7Yilar1V3/5ee5lChTjg27D/PR4OFMnzBGL6kYNbAvYaHPmL9qE+t2HqR0OV8GdGuvN8IU8NCfg3t2MmfFeuauWI/f6RMsnz87zVjj4uJYu3wx389fxoJfN3Hu5DFG9O/N0QN7mffLRr6bvYjNa1ayd8e2VOtrNBo+/7g3pmZmrN6+l7FTZjB76oRUy/40bSI9+n3K1gOnqVW/0Sv3xwwdgEshV9b+uZ91Ow/y0aDhqExT9iwL8H/AoN6dadKyLZv2HmP6guVcOHuKqWNHp/l8IvvIbnJCCCEMavmxBzyPSTR2GELkeskx8Vmsl2CQ/h/630Or1VLMu2Sq94t5lyAy4gVhz0N108QqVKlGv8EjACjq6c3Fs6dYvXQBNes15PyZk1y96MfBC3cwMzcHYOS4SRzcs4O9O7fRqWdfICUxmTRzPtY2tgC07tiF08ePMDStZ05KYuyUGbgXLQZAk1Zt+fO3jRy8cAsraxu8SpSias26nD15lOZtO75S/9TRQ/jfu8PC1b/hXLAQAMNGj2NQn86vlO3VbyBNWrR5bSxPgoPo++kwinmXAKBIMS/dvWXzZ9GyQyd69R+ou/flxGn069yasVNmYG5hkcZTiuwgyZAQQgiD2n8jxNghCJEnqKyz9sFYZW1u0Dj+PfKTHp/K1fRe+1auxuplKVPRbl+/SmxMDPV8vPTKJMTHEfDwge61q7uHLhECcHQuSNjzZ2n2a2FppUuEAAo4OuPq7oGVtc3La05OhIWGplr/wd3buLgW1iVCKc9SNdWyZXwqpBlL748HMXH0MP7csoHqderzXqv2uthuX7/K7ZvX2Ll1s668VqtFo9EQFPAQz+KpJ54ic8xUGZ/8JsmQEEIIg9FotNwOiTZ2GELkCY5VvFCYKDM1VU5hosSxslf6BTPAo6gnCoWCB3dvAa1fuf/g7m3s7PORv4BjhtqLjY3B0bkgyzb+8co9W/uXB8eaqvQ/nioUCrSatN8DU9NX67zSDum3kxGWVtZp3h/4+Ve0aN+Jo/v/4tjBfSycOY3v5y2jcYvWxMbG0KlnX3p8+Mkr9QoVlnOi3pRSAZU8HLgX9DTDdSQZEkIIYTAxicnEJanTLyiESJeFkz3OtUpl6vwg59qlsXCyT79gBuRzyE+Nug3ZsGo5vfoP0ls3FPo0hB1bN9Hm/a4oFArd9Svnz+q1cfn8WTz/ni5Wupwvz5+FYKJSUdjdwyAxGkox7xKEBAfxLOQJTi4FAbh8PuvbZRf19Kaopze9Px7El4P7sW3jGhq3aE3pcj7cv3MLj2Kehgpd/K2Cez5CoxI49zAcTUJShuvJBgpCCCEMxtbCFE+ntH9qKoTIOK9e9VGaZexn10ozFV496xm0/zGTp5OUmMDAXu/jd+o4T4IDOX5wH5/06IBzwUIMHT1Or/zFc6dZsfAn/O/fZf3KJezdsY0eH30KQI26DfCpVJUR/Xty4vABggIecfHcaeZ+P0lvtzVjqFG3AR6e3owdMYhb169w/vQJ5k2fnOl24uPimDJ2FGdPHiM48BEXzp7i2qULFCuekhB+OOgzLp07w5Sxo7h57QoPH9zj4J6dTBk7ytCP9E4p5mjNjccRBL6Iy3RdSYaEEEIYVKfKMtVDCEOxL+VGhfFd002IlGYqKozvin0pw/77K1LMi7U7DuDmUZRRgz6iVZ1KfPvVcKrWqsuv2/7C3sFBr3zvAUO4fvkiXZvXZ8ncGYwc/x21GzQGUqauzV+1kUrVazF+5BDa1q/Cl4P7ERwUQAEn457To1QqmbXkVxLi4+jZpgkTRn/GkNFjM92OiYkJEeFhjB3+KW3rV2XUwI+o3bAJgz4fA0CJ0uVYtulPHt5P2ca7a/P6LJgxBee/R6NE1jwIjcHFzhKP/Jk/7FuhzcyquBwqMjISe3t7IiIisLOzM3Y4QgjxTtNqtYz9/SprTj8ydihC5AiFbU2Y0NAZZ1c3FCqzLLURcTOQe2uO8PT4Db01RAoTJc61S+PVs57BE6HMalHTh579Bup2ShMiu2mTE3kaHMiEg08JilJjYaqkaAFrrj8MIWB2lwzlBrJmSAghhEEpFAomty9HMUdrJu+4YexwhMgT7Eu5UWlSD+KfRRDqd4/kmARU1uY4VvYy2BohIXK7+CQND8Ni8XK2JiCDdSQZEkIIYXAKhYL+dT0JCIvll5MPjR2OEHmGhZM9bs0rGTsMIXKsuEQ1TxIzftaWJENCCCGyzZiWpTnrH871x5HGDkUIkc12nbxs7BCEACAmIeO7msoGCkIIIbKNhakJc3tUxMrMxNihCCGEEK+QZEgIIUS28nKyYVK7csYOQwghhHiFJENCCCGy3fuV3ehYsbCxwxBCCCH0SDIkhBDirfj27x3mhBBCiJxCkiEhhBBvhY25irndK2KiVBg7FCFyrciQSC79foEzq09x6fcLRIbI5iTi3WOiUGBlpsLSzARzlRJ7y6zvCSe7yQkhhHhryhW2p3NlN9afzegJEEIIgOCrQRxfcoQ7h2+hSX556KpSpaR4/ZLU/rgeruVkKqrImxQKBRYqJUqlgmS1loRkNbGJyWiT1SQka4iIS6ZIfktc7C2IT9RwKzA+w21LMiSEEOIVWq2WuQfucvNJJGExibyITUKt0eLrno9KHg5ULuJAcWcblFkY5RnauDhbzgeRqNakX1gIwc1919k6ejPqxORX7mmSNdzaf4O7R+/Q8YfOlGxc2ggR5k1nTx6jf5c2HL3qj5197j7Y9sP3W9K514e07NDZ2KFkSFJiIm3rV2H+stWU9a1IQrKGuKS0t8t+GBbHw7C4vxvI+PcXSYaEEEK8Ys3pR8zce/uV63eeRrPZLxAAWwsVFdzzUbmIA219XfF0sslQ24XzWdKgpBN/XQ8xaMxC5EXBV4Nemwj9mzoxmS2jNvHBqn4GHSEKex7Kgh+ncPTAXzwPfYadfT5KlC7HJ8NHUbFqDYP00a9za0qWLc/oCVN113J6IvJPfGlZuvEPqtas85Yier1Df+3keegzmrd7X3etRU0fevYbSK/+A19bb9/O7axbsZib1y6jVmtw8yhCk1bt6P7Bx9g7OODr7pBmv5cCwlO9vnDmNBbN+l732sbWluKlyjJk1Fiq1KyNQqEgn40VfT8dytRvx7Fk/bZMPjFotBkvK8mQEEIIHbVGy7G7oXz75/V0y0bFJ3P0TihH74Qy98BdulRxZ3iT4rjYWby2jkaj5Ye/bkkiJEQGHV9yJN1E6B/qxGROLD1Kp9ndDNb/yAF9SEpKYtKshbh5FOH5s2ecOX6YiPAwg/WRnbRaLWq1GpXKsB95K1Suxn6/m7rX338zhpjoSL6dMV93zT7fy2QhKTERUzMzg8aQUWtXLKZdlx4olRnfKmDu95NYsfAnevUfyNAvx+HkUohHD+6xafUK/tyygZ79PtV7/n8EBz7ikx4dadMp7b+DXiVKsXjd7wBEvAjnl5/nMfTDbhw+fwMbWztiEpNp0a4zP3w7lru3buBdMvtGPGUDBSGEeMfFJCSz++pjvth0iWrf7eOD5WdITM7cFDa1Rsu6M4+o/8NBpu++SURc0itlnkUlMGjNeRYeumeo0IXI0yJDIrl96Fam6tw+dNNgmypERkRw/sxJho+ZQLVadXF186B8xcr0G/I5Dd5rqVfu26+G07BiCap6F6Rj45oc3rcbgBfhYXw5uB9NqpShenFX3m9Si12/b9bVHTdiEOdOHWfNskX4uqeMNgQFPNKNutQtVxRfdwfGjRgEgEajYdm8mbSo5Us170J0fq8Oe3e8HDk4e/IYvu4OHDu4l24tG1DFy4ULZ0+lWw/g6IG/aFOvCtW8C9GvSxuCAx699r0xNTPD0dlF92VhYYGZmbnu9abVK+jZpjFb1q2iRS1fqnoX1L1XE0YNo4GvN7VKe9C/a1tuXb+i1/bBPTvp2qI+Vb0L0rJ2BRbN+p7k5JSEWKvVsnDmNJpVL0cVLxeaVC7NtPFfvjbOsOehnDl+hPpNmr/+D/o/rlzwY+m8mYwcN5nPx06iQpXqFHb3oGa9hsxcvIo2nboD6D2/o7ML1ra2TB7zOWV8KuiN8qVGpVLp6nmVKMXgL8YQGxPNndu3dVOo7fLlo0KV6uzeviXDsWeFjAwJIcQ7KOhFHAduhLD3xlNO3XtusPU78UkaFhy6x5rTjxhQz5OKHvkIj0ni4K2nbL8YLOuEhMiEByfvoc3kvxlNsoYHp+7h267iG/dvZW2NlbUNB/fswKdSFczMzV/tT6NhcJ/OxERHMeWnn3EvUox7d25iYmICQEJ8PGXKV+DDQcOxsbHlyIG/+Hr4p7gVKUb5ipUZPXEqDx/cxbtkGQaNHAOAQwFHZixexcgBfdh2+Cw2NraYW6SMOC+bN5MdWzcxdspMihTzwu/0Cf732Sc45HekSs3aurh+mjqRz8dOws2jKHb2+dKt9yQ4kM8H9KFrn/506vkB1y5fYMakcW/0/j3yf8C+nduZufhXTExSxh9GDeyLubkF81dtwsbOjs2rVzKgW3u2Hz6HvYMD50+fYOyIT/ly4vdUqlaTgIcP+Par4QB8OuJL9u3czuqlC/h+/jK8SpQi9OlTbt+4+toYLpw5hYWlFZ7FS2Y47p2/b8LK2oYuffqlev910xbHfz6EqKhIfl73e6ZG4tRJiez4bR229vYU8fLWu1euQiUunDmZ4bayQpIhIYR4B2g0Wi4HRbD/Rgj7bjzlxuPs3Y43Ii6JH/Zk7ifaQgh9CdEJWaqXmMV6/6VSqZg0cz4TR3/GptUrKF3eh8rVa9O8XUdKlC4HwKmjh7h60Y+tB09T1DPlg6xbkaK6NlwKufLBp0N1r3t8OIATh/fz15+/U75iZWzt7DE1NcPC0hJHZxdduX+mmOUv4KT78J2YkMDSebNYvG4rvpWr6fq6cPYUm9es0EuGBo38HzXrNcxwvY2rluNWpBhfjJ8MQFGv4ty5eZ0VC37K8vuXlJTI5NmLyF/AEYDzZ05y9aIfBy/c0SWWI8dN4uCeHezduY1OPfuyaPZ0Pho0nLadu+viHPzF/5j93QQ+HfElj4MCKeDkQvU6DTA1NaVQYXfKV6z82hgeBwVQwNEpU1PkHj24h5tHEUxNTTNcZ9m8mRw98Be/bN2FQ/4C6Za/c/M6NUq6oQDi4mKxtrFh+vzl2Nja6ZVzcilEcFD27j4qyZAQQuRhD5/HsPDQPfbffMqzKMN8QBJCvB3mNq+OxGSEWRbrpaZJy7bUbfQe58+c5PL5cxw/tJeVi+bwzfQ5tOvSg1vXr+BSyFWXCP2XWq1m6dyZ/PXnVp4+eUxSUhJJiQlYWlplOpZH/veJj4vlkx4d9a4nJSVSqqyP3rUyPhUyVe/+3duUr6CfVPhWqpbpGP/NtbC7LhECuH39KrExMdTz8dIrlxAfR8DDB7oyF8+eZsncmbr7GrWahIR44uJiea91O9YsW0ir2hWo3aAJdRo2pX7T5q8diUmIj8PM4vXrOFOj1WZi9wFSphfO/3EK0+YtpWSZ8mmWVSoUqJQKinkX56ela9ECMTHR7PljC18M/JClG7ZT1vflqKaFhQXxcXGZiiezJBkSQog8SKPRsuqkP9/vvpXudqRCiJypWE0vlCql3rlC6VGqlBSr4ZV+wUwwt7CgZr2G1KzXkE+Gj2LCqGEsnDmVdl16YG5hmWbdlYvmsHb5IkZNmELxUmWwtLRm+sQxJCUmZjqO2NgYAOat3IBzwUJ698zM9TcnsLSyzlI9Q7K00k/4YmNjcHQuyLKNf7xS1vbv0a/YmBgGjvyKxs1f3anO3NyCgq5ubDt0llPHDnHq6CGmjP2CX36ew7JNO1IdycmXvwBRL15kKu4int5cOHuapKSkdEeH/O/fZczQj/lo0HDea91ed12BAlOVApVSiUKR8j0pWaMlSa0hWaNFpTLFvZinrnzpcj4c3LOT1csWMnXOYt31iBfhGRppehOSDAkhRB7z6HksozZf4vSD3LHbkxAidXYudhSvX5Jb+29kuE6JBqWwc7FLv+Ab8CxekoN7dqT0V6osIY+D8b9/N9XRoYvnTtPgvZa07tgVSFlj9PD+Pbz+tYZFZWqGWq3/Q5t/PoRrNC+vexUviZm5OY+DA/SmxKUnI/U8vUtwaO8uvWuXL5zNcB8ZUbqcL8+fhWCiUlHY3SP1MuV98L93F49/JQr/ZWFpSYOmLWjQtAXdPuhPuwbVuHvzOqXL+75StlRZH0KfhRD54gV2+fJlKM4W7TuxdvnPbFy1jJ79Pn3lfmREBHb29kRHRTK8X08qVavF4FFfp8RmaoJWC4nJahKTtSSSiUTexISEeP3DUu/eukGpcj6vqWEYkgwJIUQeodFoWX36IdN23SQ2UUaDhMgLan9cj7tH72Roe22VuYpa/esarO8X4WF88Wlf2nftSYnSZbGytuX65QusXDRHt5tclZq1qVS9FiMH9OGL8d/hXtQT/3u3UaCgdsMmeBT1Yt/ObVw8dxo7+3z8umQBYaFP9ZKhwu4eXLngR1DAI6ysrbHP50Chwu4oFAqO7NtDnUZNsbCwwNrGlg8GDOHHiV+j1WipWLUG0VGRXDh3GhsbW906m//KSL3OvT9k1ZL5zJw8jo7d+3D98kW2b1pnsPcSoEbdBvhUqsqI/j0Z/r+JFPH05lnIY47u/4tGzVtT1rciAz4bzbAPu1GosBtNWrZFqVRy6/pV7t26wZDRY9m2cS1qjZryFSpjaWnFn1s2YmFhSSE391T7LFXOh3z5C3Dh3KlXdpR7+iSYm9f0d7JzLeyOT8Uq9B04jBmTxvL0STCNmrfGyaUgAf4P2LR6BRWr1qDHR58wZtgA4uNiGTl+MmGhz7A0NSH0X39PHQo46jbS+K/k5GRCn6YcsRATE82e7Vu5f/smHw38TK/chTMnGfTF/zL9XmeGJENCCJFHjN9+ldWnXr8VrBAi93EtV5iOP3Rmy6hNaSZEJmYqOkzvbNADV62srClfsTKrly4k8OEDkpKSKehamI7d+9B/yOe6cjN/XsWMyeP4akh/4mJjcS9ajM/GfAPAgGFfEPTIn4G9OmFhacn7PT6gYbNWREe+3MSlzydDGDdiEB0b1SA+Po6dJy5R2N2DgZ+P4adpExk/cjBt3u/GpFkLGDzqaxwKOLJs/iwCH/lja2dP6XK+9B8yIs1nSa9eocLuzPj5F36c+DXrVi6hnG8lho4exzdfDDHY+6lQKJi/aiNzp09m/MghhIeF4ujkTKXqtSjg5ARA7QaNmbNiPYt/ms6KBT+hMlVR1KsEHbv3BsDWzp7lC2Yz49uvUas1FC9Vhjkr1pHPIX+qfZqYmNCuSw92bt30SjL0y8/z+OXneXrXvvtpEa07dmXE/yZSpnwFNvyylE2rV6LRaHAvUpQmLdvRplN3HgcFcGTfHgDa1quSat///Dmm5t7tmzSuXAoAC0sr3IsU5espM/TOJ7rkd4aoqEiatmyX3lv7RhTazK6SyoEiIyOxt7cnIiICO7vsHRoWQoicatqumyw6LGf4CJHTFLY1YUJDZ5xd3VCosrZGJfhqECeWHuX2oZt6a4iUKiUlGpSiVv+6Bk2ERN4R+jSEjo1rsn7XIVzdUk9O3oSlmQlx2TAbYdTAjyhZpiz9h458bRltciJPgwOZcPApQVEvY9AkxBIwu0uGcgMZGRJCiDyignvqZz8YQnFnGyp5OLDhXPZucSqESJ1rucJ0mt2NyJBIHpy6R2J0AmY25hSr4ZXta4RE7ubo7MKEH+byJCgwW5IhpUJh8DaTEhMpXqoMvfoPMnjb/yXJkBBC5BE+bvmypd2uVdyZ0LYslmYmtPYtxOjNl3kcEZ9+RSGEwdm52BnkQFXxbmnUvJWxQ8gUUzMzBnz2xVvpK+MnMAkhhMjRCtlb4GRruPNFrM1MmN21At938sHSLGURbN3iTuweXo9Old0M1o8QQojcKyYhGSszVbaMEL0NMjIkhBB5hEKhwNctH/tuhGS5DaUCqhTNT9PSLrT0KUThfK+eIWJvacqPnX1pVrYgY7ZcIdRAp90LIYTInWITkzFTKUGrIFGd8e20cwJJhoQQIg/xdbNPMxlysTOnuLOt7rWWlD108lmZ0aikM41KOeNgnbEF3k3LuFC5iAMDVp3j3MPwNwtcCCFErpaYrEGpUGBlpiI2A1vB5xSSDAkhRB7i657vlWvVi+WncWln6pdwpoSLDQoDTmXIb23G6v7VGbL2whuNSAkhhMj9NFotcUlqVEolyZrcMUIkyZAQQuQhPm72r7xe93ENlMrsm8ttYWrCol6VGLftKuvOyG5zQgjxLtNqtZibmZCcIMmQEEKItyyflRlL+lQhKj4Je0tTKno4ZGsi9A+ViZIpHcrjZGvBnP13sr0/Id5Vz0PCuHjiCrHRcVjZWFKhVnkKuKR+4KYQxpKQpEaBQjcVOyeTZEgIIfKYpmVcjNKvQqHg86YlsLNQMXnHDaPEIERedefqPTb9vI2zh86jTn55uKSJyoSqDSrR+ZN2FC/nZcQIc56ggEe0rOXLht1HKFW2fJbaGDdiEFGREcxetuaNYvF1d2DWktU0at7KIHHldMkaba5ZOyRbawshhDCoj2oXo1RB2/QLCiEy5OTes3zVcyKn9p3VS4QA1MlqTu17ed/Qwp6HMnnM5zSrXo4qXi40qlSST3u+z4WzpwzeV1623+8mdRo2SfXe2ZPH8HV3IDIi4i1Hlb3Umpw/KgSSDAkhhDAwpVLBiKYljB2GEHnCnav3+PGLuSQlJqVZLikxiR9GzuXO1XsG7X/kgD7cvHaFSbMWsv3wWX5atpaqNWsTER5m0H7+KykxMVvbf9scnV0wMzfcOXC5QUKyGgtTE2OHkS5JhoQQQhjce2VcKFfYzthhCJHrbfp5W7qJ0D+SEpPYvHi7wfqOjIjg/JmTDB8zgWq16uLq5kH5ipXpN+RzGrzXUlfO192BjauWMah3J6p5F6Jl7Qrs3bFNr61ZU76hTb0qVC/uSsvaFZj3w3ckJb18roUzp9GlWV22rFtFi1q+VPUuCMDeHdt4v0ktqnkXol55TwZ0b09sbIyu3pZ1q2jfsDpVvQvSrkE1NvyyNNVn0Wq1tK5TiV8WzdW7fvPaFXzdHXj04H6a78WiWd/TwNebWqU9mDRmhF6y1qKmD6uXLtQr36VZXRbOnKb3Hh3YveOVdoMCHtG/SxsA6pYriq+7A+NGDEozltzE5C2sWX1TkgwJIYQwuH/WDwkhsu55SBhnDvplqs6Zg348DzHMqI2VtTVW1jYc3LODxIS0D1ee/+MUmrRsy8a/jtKyfWe+HNyP+3du6e5bW9syaeZ8thw4xegJU9mybhWrly7Qa+OR/wP27dzOzMW/snHPEZ6FPOGrIf1p37UXWw+eZtnGP2jcvDVoU6Zf7di6kQU/TmXI6LFsPXCaoV+OY/6PU9i+ad0r8SkUCtp37cnvm9bqXd+2cQ2Vq9fCo5jna5/t9PEj3L9zi6Ub/2DavCXs3/Uni2Z9n+77lxEFXQszY/GqlFgOn2W/301GT5xqkLZzhFwwU06SISGEENmiYUlnKqRy7pEQImMunriCRp257YnVyWounrxikP5VKhWTZs5n++Z11ClblA86NGPOtG+5fePqK2WbtmpHx+59KOrpzZBRX1PGpyLrVizW3R/w2RdUqFKdwu4eNGjagg8GDOGvP37XayMpKZHJsxdRupwPJUqXI/RpCMnJyTRu0ZrC7h4UL12Wrh/0x8raBoCFM6YxctwkmrRog5tHEZq0aEOv/oPYvGZFqs/TtnMPHt67w5ULfn/3l8Su3zfTvmuvNN8HU1NTJs6Yh3fJ0tRr3IxBI8ewdsViNAY4R8fExAT7fA4A5C/ghKOzC7Z29unUyj1yQS4ku8kJIYTIHv+MDvVZfsbYoQiRK8VGx2WpXlwW66WmScu21G30HufPnOTy+XMcP7SXlYvm8M30ObTr0kNXzrdyNb16vpWqcvP6y6Rs9/YtrFvxMwEP/YmNiUGtTsbaRn+jFdfC7uQv4Kh7XaJMOarXqU+npnWoVb8RNes1pGnLdtjly0dsbAwBDx8wYdQwJn45XFdHrU7Gxjb1KbrOBQtRt9F7/L5xNeUrVubwvt0kJibStHW7NN+DEmXKYWlp9a9nrUpsTDRPggNxdfNIs+67LjdsrS0jQ0IIIbJN3eKOFM5naewwhMiVrGyy9m/HMov1XsfcwoKa9RryyfBRrPr9L9p27sHCmRmfynXJ7wz/GzaAOg2bMnfFejbsPkz/ISNJTtLfJMHSykrvtYmJCT+v3cr8VRvxLF6SdSsW07ZBVQIfPSQuJmXd0Pjps9m4+4ju67e9J/h1297XxtKhe2/2bN9CfFwc2zauoVmbDnqJTlYolEq0Wv0P/UnJOX9L6bdBm/NzIUmGhBBCZB+FQoFH/jf7oCHEu6pCrfKYqDK3G5eJyoQKNbP37BrP4iWJi43Vu3b5vP623pcvnMPTO2Xd4MVzZyhU2J2Ph31BWd+KFCnmxeOggAz1pVAoqFi1BoNGjmHD7iOYmppxYPefFHByxsmlEIEPH+JRzFPvy82jyGvbq9voPSwsrdn463JOHNpP+649043h9vWrxMe9HG27fP4cVtY2FHR1A8AhvyOhT5/o7kdHRRL86GGGng9SpuEBaDTqdErmPrkhGZJpckIIIbJVYQcZGRIiKwq45Kdqg0qZOj+oWsPKFHDJb5D+X4SH8cWnfWnftSclSpfFytqW65cvsHLRHL3d5CBl17cyPhWpWK0GO7du4upFPyb8MAeAIsU8eRIcyK5tv1HOtxJHDvzFgd1/ptv/5QvnOHPsMDXrNSK/oyNXLvgRHhaKZ/GUJGvQyK/4fvxX2NjZUbtBY5ISErh2+SKRES/oM2Bwqm2amJjQrnN35nz/LR7FvF6Z3peapKQkJowaysfDviA48BELZ06jW9/+KJUpYwrVatdl+6Z11G/SHFs7e+bPmIrSJONJbKHC7igUCo7s20OdRk2xsLDQrYvKzUwUCpINsK4qu0kyJIQQIlu5yjQ5IbKs8yft8DtyMUPba5uZm9JpQFuD9W1lZU35ipVZvXQhgQ8fkJSUTEHXwnTs3of+Qz7XKzvw86/YvX0LU8Z+gaOzC9PmLcWrRCkAGrzXkl79BzJt3GgSExOp26gpAz4bxaJZ01LrVsfGxha/0ydZvWwRMdFRFCrszshxk6jTsCkAHbv3wcLCkpU/z2XWd+OxtLSieKky9Ow3MM12O3TrzdJ5M/XWPKWleu16eBTz4qNOrUhMTKRFu/cZOOIr3f1+g0cQ9OghQz/sho2tHYO/+JrggIyPDLkUcmXg52P4adpExo8cTJv3uzFp1oL0K+ZgJgoFKhMlCck5f7RLof3vJMdcKDIyEnt7eyIiIrCzk3MthBAiJ9l4NoDRv102dhhCGE1hWxMmNHTG2dUNhcos0/VP7TvLDyPTPnjV1MyUUTOGUqNJ1TcJNUt83R2YtWQ1jZq3eut9Z8X50yf4uHt7/jp9lQJOzsYOJ88xUSpQKd9OIqRNTuRpcCATDj4lKOplf5qEWAJmd8lQbiAjQ0IIkYNoNFqeRMbj/zwG/9BYHoRGc/zuc1QmChxtzHGyMef9ym5UK2aYaTBvg0yTE+LN1GhSlWlrvmHz4u2cOeiH+l8fMk1UJlRrWJlOA9pSvJyXEaPM+RITEggPC2XhrO95r1U7SYSywdtMhAxFkiEhhHjL/pvwpPwag//zGB4+jyUhOe051hvOBdCktDODG3rjZGuOmUqJuYkJZiolZipljjvxW3aTE+LNFS/nxZg5I3geEsbFk1eIi47D0saSCjXLG2yNUF63a9tvTBg1lJJlyzN51kJjh5PnmCgVmCgVuSoRAkmGhBAi20QnJHM58EWWEp707LvxlH03nqZ6T6VU6BIjMxOl3u/NVUrMVSav3LcwVeLtbENFDwfKF7bHwjRzO1ilpVA+C4O1JcS7roBLfhq3r2/sMPRcCgg3dggZ0q5LjwyvExKZZ64yITYx920pLsmQEEJkg7+uPWHctquERCa89b6TNVqSE9XEJmbtp3MqpYIyrnZ0ruJOr+oeKBRvNtJkrjLBydacZ1Fv/70QQgjxduSsOQkZJ8mQEEIY0LOoBCZsv8aOK4+NHUqWJWu0XA6M4HJgBKfuP+f7932wMX+zbxeF81lKMiSEEHlZLs2G5NBVIYQwAK1Wy8ZzATSZeThXJ0L/tePyY9rOPcatJ1Fv1I6bbKIghBB5mlqjNegU67dFkiEhhHhDj57H0nvZGUZvvkxEXPpngeQ290Nj6Ln0NI8j4tIv/Bqf1PNClcM2dhBCCGE48Ulq4pPUqJRKTE2UqEyUqP7eVEGpUGBqosTaTPXGU68NTZIhIYR4A3uvh/De7MMcuxtq7FCyVWh0Ah+vOkdcFtchlXezZ1jj4gaOSgghRE6TrNGQpNaQrNaQrNGi1mjRaLUkqTXEJCZjolDkqBEkSYaEEOINnHsYRnzSm+0Ml1tcDYpk1OZLZPWs7kENvPB1z2fYoIR4x4Q8fsy2jetYs3wx2zauI+Rx3pmWK94NyRoNCUlqrN9wLaqh5IwohBAil4pJyH3biL6JPy8/pnQhOwY39M50XZWJklldfGk55+g7k0AKYSjXLl1k6bzZHNm3h+Tkl//vqFQq6jVpRv8hwynrW8F4AQqRCVpSvn9ampqQqNag1mTth2yGICNDQgjxBqLj361kCOCHPbf469qTLNX1dLJh3+f1mdCmDHW8HWUdkRAZsH/XDvq+35oDu3foJUIAycnJHNj9z/2dRoowZ9qy/lc+6dHR2GFk2sZflzP0w27GDuOtiEtSo0CBucp40+YkGRJCiDcQ/Y6NDP1jxIaLWd5hzs3Bir61i7G6f3XOj2/KvB4VaV/BFXtLUwNHKUTud+3SRb4a+gmJCWlvTZ+YkMCXQwZw7dJFg/W98dfl1CzlrpeAxcZEU7mYE/06t9Yre/bkMXzdHQjwf5Buu/+UjYyIMFis/5UQH8+CH6bw6YjRumsLZ06jS7O6adZ79OA+4z4fTNOqZani5UKLWr58Obgf1y5dAGDciEH4uju89mv7pnVptr9v53b6d21LnXJFqeZdiLb1qzJ+5BBuXL2sK9Ohay9uXLnM+dMn3uAdyD2SNRqSNRqjJUSSDAkhxBuIegdHhgBiEtX0X3WW8JjEN2rHzsKU1j6uzO5WEb+xTVg/oAb96xSjSAErA0UqRO62dN7sdBOhfyQmJLBs/myD9V2tVl1iY6K5fvmC7tr5Mycp4OTMlQt+JMTH666fPXGUQoXdcC9azGD9p0er1b4yUvaPvTu3YW1rS8WqNTLc3rVLF+jeqgGPHtxl3LSZbN1/illLVlPMuwQzJo0FYPTEqez3u/nKV426DXB196Bu4/de2/6sKd8wetBHlCxTnjnL1rLt8BmmzV2Cm0dR5kz7VlfO1MyMlu3fZ+2KxRmOPbdTa7QkazQojHBYkSRDQgjxBmIS381kCCAgLI6Ba/xIUhtm/Y/KREkNzwKMbV2GQ180YN/n9fiqRSmqFHEgh+3EKsRbEfL4MYf37s5UncN79xhsU4WiXsVxci7I2ZPHdNfOnjxGg/daUtijCJcvnNNdP3fyGFVrpoy6/PHberq3bEjNUu40qlSSr4b053noMwCCAh7Rv0sbAOqWK4qvuwPjRgwCQKPRsGzeTFrU8qWadyE6v1eHvTu26fXt6+7AsYN76dayAVW8XLhw9lSqse/evoX6TZpl+Fm1Wi3jPh+ER1EvVvy2i3qNm+FetBilypbn0xFfMnvZWgBs7exxdHbR+9q6/lcu+Z1l9tLVOOQvkGr7l8+fZeXCOYwc/x2jvvmOStVrUaiwO2V8KjDgsy9Y8OsmvfL1mzTn0N5dxMdl/UiD3EalVKDl7a8dkmRICCHewLu4ZujfTt0P49s/rhu8XYVCgbezLZ/W92LzwFqc+7oJnzctIWuMxDvl1NFDqNWZ284+OTmZ08cOGyyGqrXqcPbEv5KhE8eoWrMOlavX4uyJowDEx8Vx5aIfVWulJEPJSckMHvU/Nu05yuylqwkOfMT4z1MSnoKuhZmxeBUA2w6fZb/fTUZPnArAsnkz+eO3DYydMpMt+0/Sq/8g/vfZJ5w7eVwvpp+mTuSzr77h9wOnKVGqbKpxXzx7ijI+FTP8nDevXeHe7Zv0GTAYpfLVj8d29vap1ju8bzcLZkzl2xnzKFmm/Gvb37XtN6ysbejap1+q9/979k4Z34qok5O5ctEvw8+Q26lMjJOWyG5yQgjxBrJjzVDRAlY0Lu1CeGwij57Hcu5huMH7MKRfTz2kUSlnGpZyzrY+CtiYM6xxcRqUdOKz9Rd5EBqTbX0JkVNER2dtXV5W66Wmaq26TJ/wP5KTk0mIj+PWtctUrlGb5KQkNq1eAcCl82dJTEigaq06AHTo1ktX361IUb6c+D09WjciNiYaK2sb7PM5AJC/gJMuyUhMSGDpvFksXrcV38rVdHUvnD3F5jUrqFKztq7NQSP/R816DV8bc2REBFGRkTi7FMzwcz56cA+Aot4lMlznwd3b/G/YAPoNHsF7rdunWfbh/bu4eRRBpXr50XvV4vksmDFV93rv2WvY2qW8H5aWVtjY2vE4MCDD8eR2xtpRTpIhIYR4A4ZeM5TPypQVH1ajmKM1kDJ1Y+nRB0zddQMj7jyarm//vE5NrwLZfpCej1s+dgyrw6Q/b7DuzKNs7UsIY7OxsX2r9VJTpUYd4mJjuHbpPJERL/Dw9CZ/AUcq16jN+C+GkBAfz7mTx3DzKEqhwu4AXL98kYWzpnH7+lUiIyLQaFKm0j4OCsSrRKlU+3nkf5/4uNhXdn9LSkqkVFkfvWtlfCqkGXNCfMrUMjNziww/Z2bPT4uKjGB4/15Url6bwaO+zlTdf7Tv2osGTVtw5eI5/jfsE/4bgrmFJfFxsVlqO7cxUSqIT8raod5vSpIhIYTIomS1hoRkw52XY2qiYFGvyrpECFKmTnxczxNzUyXjt10zWF+G9iA0hsk7rjO5/euniRiKlZmKqR3L07CkE1/+dpnw2KRs71MIY6hRtwEqleq1mwSkRqVSUb1OfYPF4FHME5dCrpw9cZTIiBdUqV4LAOeChShYqDAX/c5w9sRRqtWuB0BsbAwDe71PrfqNmDpnMQ4FHHkcFMjAXu+TlPT6f6uxsSmjvfNWbsC5YCG9e2bmZnqvLa2sSUs+h/woFAoiI15k+DmLeKacneZ/9zaly/mkWVaj0TBm6McolUqmzl38yhS31HgU8+LC2dMkJSVhapqyc6advT129vaEPAlOtU7ki3AcCjhm+BlyM3OVCbFGWoMra4aEECKLVCZKOld2M1h733UoTw3P1Bff9q5RhOZlMz7lwxhWn3rEryf931p/75UtyIZPapLf2iz9wkLkQi6FClEvE5sAANRv2gyXQoXSL5gJVWvV5ezJ45w7eZwqNevorleqXovjB/dy9dJ5qv593f/uHV6Eh/HZmG+oVL0WxbxLEPb8mV57/yQDGs3LkQCv4iUxMzfncXAAHsU89b4Kumbu/1lTMzM8i5fk/p1bGa5Tqmx5PEuUYtXi+bqRrH/79zbg86ZP5qLfGWYvW4N1BkfhWrR7n9iYaDauWpah8gH+D0hIiH9lVEwYniRDQgjxBsa3KYObg+Ubt/NpfS+6VHF/7X2FQsHsbhVolI3rcgxh3LZrTPzjGskG2mEuPSVcbPm1XzU5o0jkWf2HDMfM3DxDZc3NLeg3eLjBY6hasy4Xz57i1vUrVKnxcu1OlRq12bzmF5ISE3WbJxQs7IapmRnrViwm8KE/h/7ayeKfftRrr1BhdxQKBUf27SHseSixMdFY29jywYAh/Djxa7ZvWkeA/wNuXLnE2hWL0z27JzW16jdOdae5+Ph4bl67ovcV4P8AhULBtz/O4+GDe3z4fguOHviLwIf+3L5xlSVzfmR4vx4A7PljK8sXzGb0N1OxtrYh9GmI3ldsTHSq8fhWrkafAUOYMWksP0z8mvNnThIc+IjL58+ydf2vKBQKlP/aIOb8mZO4eRR9q1uVG4sC402RA5kmJ4QQb8TWwpSZXSrQdfHJV+Z7Z1Szsi6MblYy3XIWpib83Lsye6+HsO7MI47eCc1ah9lsxXF/9t0IoX4JJ+oVd6KWtyM25m/27SZJreHQrWf4h8YQFptIWHRiyq8xiYTHJJKQbLxvpEJkp7K+Ffh+3mK+HDIgzfOGzMzNmTbvZ8r6VjB4DFVr1SU+Po5i3iUo4PTyBzKVa9QiJjoqZQvuvzcryF/AkUkz5jNn+iTWrlhM6XI+fD72Wz77qIeunkshVwZ+Poafpk1k/MjBtHm/G5NmLWDwqK9xKODIsvmzCHzkj62dPaXL+dJ/yIhMx9yhWy96tGpEVGSEblMCSNnIoGvzenplq9epz+J1v1O+YmXW7jjA0rkzmDh6OC/Cn+Pk7IJv5WqMmpCy0cHGX5frtuFOzacjvmTg51+lem/kuEmUq1CJjb8uZ9vG1cTFxVHA0YnK1Wuxattf2Nja6cru2vYbHXv0yfRz50YWpkrijJgMKbSZXTGWA0VGRmJvb09ERAR2dnbpVxBCCAObs/8O8w7eJTGTa4iqFcvPyg+rYmWW+WQhICyWDWcD2HgugKdRGTuU0RhUSgWVijhQr7gj9Uo4Uc7VXu8noGl5GhnP2jOPWHfmESGROfcZhUhLYVsTJjR0xtnVDYUqa9M6r126yLL5szm8d4/eGiKVSkX9ps3oN3h4tiRCudkXn/aldDkf+g353NihZMrdWzf4uFs7th8+q5fI5VXW5ipisrgzqzY5kafBgUw4+JSgqJcJlSYhloDZXTKUG0gyJIQQBhKbmMyJu8/Zf/Mph289JTZJjY25ClsLU2zNVdhaqLCxUOmuOViZ8kGtom+8A1uyWsOBm09Zd+YRh24/y/II1dviYGVKo1IufNmiJM62r9/t6cjtZ/T/5RyJb2nKnRDZxRDJ0D9CHj/m9LHDREdHYWNjS/U69Q2+RiivCAp4xOF9u+nx4QBjh5Ip/5wvVbtBY2OH8lYoFQpMTRRZ2pBIkqG/STIkhBApAsJiGb7hIn45/GwigPzWZkzrWJ73UtkYwu9hOL2Wnjbq1AkhDMWQyZAQeZGpiRKNVpvps4YMkQzJBgpCCJGHuOe3Yt3HNehbq6ixQ0lXWEwiA371Y8yWy3pbqt4OieKjlWclERJCiHdEklqDmYlx0hJJhoQQIo8xUymZ0LYss7r6GjuUDFl3JoAlRx7oXq84/oCIODk7SOQdKT/s1pLj57AKYURxSWqsM7vZjlYLaN/oUHJJhoQQIo/qUNGNEi42xg4jQ8JiXm6OcP7hC+MFIkQ2eBGvIUmtRZucaOxQhMjRYhKSsTLL+DpabXIiSWot4fFZX1sqW2sLIUQe9l6ZgtwOuWvsMNIVFpsyEhSXqOb20ygjRyOEYcUla9l/P5rWZiY45Cdl3ZAiYzsqCvGuiVUrsFApiU/W8NqtDbQpP1wIDwtl//1o4pOzPjQkyZAQQuRhTcu4MO9gzk+GwmNSfmKeqNbITCKRJ225EQNAY081piYKQJIhIdKiVKRsrJCsSW1jBS1J6pQfMvzzbyurJBkSQog8rHxhewraWfAkMt7YoaTp+d/JkCqD5w8Jkdtogd9uxLDjTiwOFkrkr7oQGaNUKijpYktcYjL+z2OBlHV44fGaNxoR+ockQ0IIkYcplQp6VPdg5t7bxg4lTR75LQEwkU+IIo+LT9byOFp2ShQiMwIiUo6L8Ha2wc5CxaWAF6gNNItANlAQQog8rmd1D8xVOfe/extzFRPalgXAzERptO1VhRBC5Gx3n0Zz/tELHKzNqF4sP/aWbz6uI99xhBAijytgY07HSm7GDuO1vmxRikL2KSNDSqUCTydrI0ckhBAiJwuNTuT0gzDikjRUKeJAkb9nF2SFJENCCPEO6FenmLFDSFW7Cq70rOahd61kQVsjRSOEECI3SUzWcO5hOA/D4qhWNH+W2pBkSAgh3gHezjbM6OyLdSbOb8hOdhYqfupWgdldK6D8zzqhEi6SDAkhhMicrB7WLcmQEEK8I96v7Mauz+pRuYiDUeNoUtqZPSPq0a5CYRSpnLVSr7iTEaISQgiRWznamHErJGtn1MluckII8Q7xKGDFhgE1WHT4HrP33SH5lbMbskfhfJZ0quxGp8puuOe3SrNsucJ2eDvbcPdp9FuJTQghRO7m6WhDaHRYlupKMiSEEO8YlYmSIY2K07xcQTadC2TrhSCeRiUYrH0rMxNKF7KjnKsdZQvbU9bVjtIF7V6ZDvc6CoWCzpXdmLrrpsFiEkIIkXdFxWdtihyAQqvN/Wd9R0ZGYm9vT0REBHZ2dsYORwghcpVktYbj957zm18ge649ISFZk+G69pamlHW1o9zfSU9ZV3uKOVq/8XlBSWoNH644y7G7oW/UjhBCiLzNwcqU8Fj9ZEiTEEvA7C4Zyg1kZEgIId5xKhMl9Us4Ub+EE5HxSey68pjf/IK48TiS6MRk/vmRmZOtOeX+k/i4OVimuu7nTZmaKJnfsxI9l57ialCkwdsXQgiRN3g723DWPzzL9SUZEkIIoWNnYUrXqh50rZqy3bVGoyUuSU2yWou9lelbjcXe0pQtA2sz98AdFhy6h/otrW8SQgiRe8Qmqt+oviRDQgghXkupVGBtbrxvFWYqJSPfK0nXqu785hfE7mtPiIxLIi5JTWxiMvFJGZ/SJ4QQIm9RKuD+szfbbEeSISGEEDmem4MVnzUpzmdNiutd/2fkKjZRTVyimpjEZJYde8Bmv0AjRSqEEOJt8XS05u6zmDdqQ5IhIYTIodQaLaHRCTyOiOdJRDxPIuIIi02ioJ0FRQtYUcTRmkJ2FhnepS0v+mfk6t+jV9Pf98HGXMXKE/7GC0wIIUS2y29tBpIMCSFE7hOfpCYk8u8k5+9fH0fEExL58tenUQnprpMxUylp5+vKqGYlcbazeEvRZ05UfBIn7j3nyO1nnPUPQ6lQYGVmgrW5ChtzFVZmKmzMTbD6+7W12b9+//frlF9VWJun/N5cpXztxg1KpYJv2pRBrdHy66mHb/lphRBCvC0J6jefKi3JkBBCGJBWqyUyPvllUvN3kpOS8MTxJDKBJxFxr2wDmlWJyRo2+QWy88pjBjX0ZkA9T0xNlAZp+008jYxnk18gh28/4/zDcIMf7mptZkKd4o40Ke1Co1LOFLAx17uvUChoWb6QJENCCJGHaQzwvUWSISGEyCCNRktoTMLfU9Zejujo/T4y/o13tsmKmEQ1P+y5xTn/MBb0rIylmclbjwHg4fMYfj5yn81+gSRm4ryizIpJVLPnWgh7roWgUEBF93w0L1eQD2sX0yWDXk7W2da/EEII47Mye/NURpIhIYQAEpLVPI1M4Ml/RnRSRnjiCIlMICQy3uAjHIZ28NYzei87zbIPqr7VrbBvPI5k4aF7/Hk5mLf9Fmm1cP7RC84/esHBm89Y2KsS+azMcLI1x9ZcRVRC8tsNSAghxFsRFf/m/79LMiSEyPOi4pN009ZSG8l5EhHP85hEY4dpMOcehtN18Ul+7VcdJ1vz9Cu8gbP+YSw8dI8DN59maz8ZdfL+czosOMGyD6rg6WSDp5M1lwIjjB2WEEKIbOD/PAYF8CY/g5NkSAiR5wS9iGP67ptcDYogJDKB6HdwZODmkyiGrbvA6v7VMTHwbnNarZZDt56x4NDdNzr1O7s8CI2h/fzjLOxVGS8nG0mGhBAij4pNVFOtaH7O+IdluQ1JhoQQeUaSWsOyYw/4ad8d4pLe/rqdnObk/ecsOHiXoY2Lp184g+4+jWLouovceBxpsDazQ2R8Mh8sP0MJF1tjhyKEECIbnX8UjpeTNfeyuMW28bccEkIIAzh9/zktfzrKtF03JRH6l9n773D2DX5i9l+ejjZUL5bfYO1lp2SNlus5PGkTQgjxZpI1WuIS1ViZZi2tkWRICJGrPY9OYOTGS3RdfIo7T6ONHU6Oo9Zo+WzdBSLjDbOV9z9n+AxvYrjRJiGEEOJNBEfEU6qQXZbqSjIkhMiVNBota04/pNGMw/x2PtDY4eRowRHxbD0fZLD2FAoFw5uUYHzrMgZrUwghhHgT5x+9oHIRh0zXk2RICJHrXA2KoMPCE3y99SoRcYYZ8cjr1p5+hFZr2D2vP6pTjBmdfQ2+QYMQQgiRFdeDI3FzsMxUHdlAQQiRa0TFJzHjr9usOun/1s+yye1uhURl+admaXm/shu2FiqGrLuQrYesCiGEEOmJS1JjaqLANBM/pJORISFEjqfVavnjUjCNZxxm5QlJhLJq3ZlH2dLue2ULsvLDqlibmWRL+0IIIURGPQiNxcctX4bLSzIkhMjRHoTG0Gf5GYauu8DTqARjh5Nr2VqoKGBjlm3t1/JyZO3HNXCwMs22PoQQQoiM8HuU8TPwZJqcECJHik9Ss+DQPRYdukeiWqZfZZWpiYLPGhenXx1PLLN55MbXPR8bP6lJr2WnCYmUxFUIIUTOJ8mQECLHOXz7GeO3XeXh81hjh5KrlXW1Y0YXX0oVzNp2o1lR3MWWzZ/Wotey0/LnJ4QQIseTZEgIkWM8iYjn2z+vsfPKE2OHkusNauDFiKYlMDV5+7Oh3fNbsenTmvRZdoabT6Leev9CCCFERsmaISGE0ak12v+zd9/xkZX1/sA/Z870PpPek+29F0B6R4oCiiKKIuLVq9frtdefetGLXaxYUEEFFBEUKUtf6u5mW7ZlW7LpyaRN7+38/shu2GWTzSSZmTPl834ZWTIz53zDJpPzOc/zfB/c++oxXPKjzQxCafDNa5fgC1cukiUInVBu0uJvHz077d3riIiI0olhiIhk97MXjuLbTx5EIJqQu5SCcMWySrlLAABY9Cr8+fYNOH9BmdylEBERTYhhiIhk1dzhxM9fPCp3GQVlX68HPc5gTuz7o1crce+t63D18iq5SyEiIjoN1wwRkWx84Rg+/dfd3DcozT76553jfy4xqFFu1qLSrEGlRYtykxaVFi0qzVqUmzWoNGthN6ghCKlvUDddaqUCP7t5Ncw6JR5q7snYeYiIiKaLYYiIZBONJ9HvCctdRkEbDUQxGoji4MDkz1GLCpSbNagwj4WkCrMWFcfD04IKExZXzb4bnagQ8H/XL0etTY+fvnA0J0atiIiIGIaISDZ2gxoWnQqeUEzuUopaNJFEryuEXldowseX11hwy8Z6XLuyGgbNzH9tCIKAT1w0D9euqMadT7biudbBGR+LiIgoHbhmiIhkIwgC5pYZ5C6DprCvz4MvPboPG//vBXztn/vQ2u+d1fHqS/T43a3rcN9t69FUyr9/IiKSD0eGiEhWc8qM2NXtlrsMSoE/EsdftnbjL1u7sarOivdtrMe1K6qhU4szOt6FC8tx9twSPHNgEIcdXhwZ9GPEH0G1RYdqqxY1Vh2qj39UmLUIRRMYDUQw5Ivg8ZZ+PL1/gOvNiIhoVhiGiEhWc8uMcpdAM9DS40ZLjxt3PtGKG1bX4BMXzUO5WTvt42iUIq5bWQ2srE7p+fUlegDAFUsr0eMM4v43OvG37T3wReLTPjcRERGnyRGRrK5ZUQWdamYjCyQ/XziO+7d04Z2/fB2HHLObPjdddXY9vnbNErzx5Yvx/65Zgjq7LqvnJyKi/McwRESyqrPr8dnLF8hdBs1SvyeMd9+zBa8dHcn6uU1aFT58bhM2f+4i/Pr9a7C+0Zb1GoiIKD8JkiTl/Yxrr9cLi8UCj8cDs3n2LWCJKLviiSRuuOcN7O31yF0KzZLyeAvtm9bXyVqHMxDFIYcXhwZ8OOTw4rDDh8ODPoRjbOlNRFTokpEgeu6+KaVswDBERDnhsMOH9/52C1xBttkuBJ+8aB4+e/mCjG7mOl2JpISu0QAODvhw2OHFE3sHcGwkIHdZRESUZgxDRJSXOkYC+NAfm9E1GpS7FEqDd6yqxvfftQIaZW6uCYvGk/jTlk789PmjbMBARFRAphOGuGaIiHJGU6kBj378HKyqs8pdCqXBv1r68YHfN8MdjMpdyoTUSgU+ct4cvPi5C/He9XXIoUEsIiLKkmmFoW9+85sQBOGUj0WLFo0//tvf/hYXXnghzGYzBEGA2+2e9TGJqLiUGDV46I6zcMXSCrlLoTRo7nDihnveQI8zd0f7ykwafPfGFXj8E+diTb1V7nKIiCiLpj0ytHTpUgwMDIx/vPbaa+OPBYNBXHnllfjKV76StmMSUfHRqUX86pa1+NA5jXKXQmlwbDiArzy2T+4yprS81oKHPnoWRyaJiIrItDddVSqVqKysnPCxT3/60wCAzZs3p+2YRFScRIWAb163FHV2Pb79ZCvyf3VjcXv16AjeaBvBOfNK5S7ljDRKEb/5wFpc+/PXMOSLyF0OERFl2LRHho4ePYrq6mrMmTMHt9xyC7q7u2ddxHSPGYlE4PV6T/kgosJ0+7lN+H/XLJG7DEqD7z1zGPnQs6fCrMVvPrAWapHLaomICt203uk3btyI++67D5s2bcI999yDjo4OnHfeefD5fDMuYCbHvOuuu2CxWMY/6urk3c+CiDLrg2c3YkOjXe4yaJb29LjxzIFBuctIyep6G759/TK5yyh6c8sMqLPrYNJOeyILEVFKZtVa2+12o6GhAT/+8Y9x++23j39+8+bNuOiii+ByuWC1WtNyzJNFIhFEIm9OX/B6vairq2NrbaICdmzYj6t++ioicW6amc/mlRvxzKfPh6jIj9Zt33z8AO57o1PuMorOsmozwvEE2obe3AfKrldjXoURA54QepwhGasjolyXtdbaVqsVCxYsQFtb22wOM+1jajQamM3mUz6IqLDNKTPiM5ctkLsMmqW2IT+2tI/KXUbKvnjlIqjE/AhuhWBxlQkLK0zY3+89JQgBgDMYRXOHEz3OEOaXG7Gkir/7iWj2ZhWG/H4/2tvbUVVVla56MnJMIioMHz63CQ0lernLoFn6Z0uf3CWkTKcWsazGIncZBW9BxVi4OTjgw+HBqafeHx3yo3XAi/WNNhjUubmpLxHlh2mFoc997nN4+eWX0dnZiTfeeAPXX389RFHEzTffDABwOBxoaWkZH9XZt28fWlpa4HQ6x49xySWX4Be/+EXKxyQiOkElKjg6VAA27XcgFE3IXUbK1nO9WkZtbLLjyOBYuJmu7Z0u6NVKLKwwZaAyIioG0wpDvb29uPnmm7Fw4ULcdNNNKCkpwdatW1FWVgYA+PWvf43Vq1fjjjvuAACcf/75WL16NR5//PHxY7S3t2NkZCTlYxIRnezaFdVYVMkLn3zmj8Tx/MH8aKQAMAxl0qo6C7Z1OKd+4hkM+yNweEMoM2nSVBURFZNZNVDIFV6vFxaLhQ0UiIrE862D+MifdshdBs3CJYvK8fsPrZe7jJS4AlGsvvM5uctIiVIhoNqqQziWyPl9khpL9HB4wginqSnKggojjg0HEE/m/WUNEc1S1hooEBHJ4ZLF5VhTb5W7DJqFl48MwxmIyl1GSmwGNeaXG+Uu4zQlBjXW1FuxscmOVXVW1Nl0SEoSup1BDPkiMGlEbGzKzVEti06FUDSRtiAEAEcG/ViVo+8Ly2ss2NBoQ71dj6XVZmiUvPwiyhX8aSSivCMIAr513bK8ac9Mp4snJTy5t1/uMlK2LkemymlVCqxtsGJZtRmjgSh2dbuxrcOJlh43elwhnDwo4osk0NzhRFOpQb6CJyAqBFRZtBjMwMiVQsi994RFlSbs6/OgudOFbmcQB/q9KDVquM6JKEcwDBFRXlpea8EnLpwrdxk0C4/tzp+uciN++aacCQKwpMqMtQ02CAB2drmxvz+1ZgMSkHOtwdfUW3HIMfPN2s8kmYNT5AKR+Gmf63OHcHjQhw1NNmhVvBQjkhN/Aokob33y4vncaySP7ep2o3s0KHcZUxr1R/DSoaGsn7fOpsPGJjvKjBq0Dnixs8uFUGz608qODvozUN3MrGu0YXunK2PHD8dyq0thnV2HHtfkG8Q2d7hg06vZFIZIRgxDRJS31EoFfnTTypy7802py4c9h/7V0p+1RfkapQLrG22YV25AjyuEbR3OWTdCMGhyYx+eRZUm7O7KXBACgGCOtWyvMGmnfM6AJ4xDDh/WN9qyUBERvRXDEBHltcVVZvy/a5dCzQXJeemfu/uQ601N/7GrNyvnWV1nhVWnwvZOF9qGAmk7rl6tTNuxZqrcpIHDG0Yiw3/VuXZjRELqX/D2ThdW52gDCKJCxqsHIsp7HzirAZs/dyHevbYW2Vg/3Viih02vyvyJZKJUCDhvfimW11hQbtIgk30qjo0E8IfXOzN3glk65PDiQIrrc2aqsUQ/NmrS485IUwG5O5dpVQro1SLcwVjGz2XVqzN+jlSpRAFHprk2atgbyejPGxGdTv7bRUREaVBt1eEH716Jj5w3B/e90YmdXU4cSeNaiWqLFjesqcUNa2owp2yszXI4lsCBfi8+9pedGM7xPV1Sta7Bhm9fvwyLKt9cixVPJDEaiMLhCWPQG8agL4I+VwhP7utHj3Py9RCp+u7TB7GuwYaVddZZHyvd/rEzc6NCFp0KCyqM2NHpmsb4wfTJHYYWV5qwu8eTlXO5grnTrn1JlRl7eqf3dfe6Q1jXaMOODK6rIqJTcdNVIipYnmAMu3tc2NXlws5uF1q63QhMY02BTiXiqmWVuHFtLc6eUwLFJLdsO0YCuOV3W9HvCaerdFn818Xz8D+XLpj063yrZFLCq20j+MvWLjzXOjirc9fZdXjyU+fBrM2dEbd4Iomz7nox7Z3kRIUw1lFtwAtfJPNrXNbWW7Gz253x80xkY5Md2zqcWTmXUSMiGE0gVxrKra6zYnePe9qvKzdp4ApGEcv0nEKiAjadTVcZhoioaMQTSRwe9I2Fo+MB6eSRDbWogE4tYlGlCTeurcXbl1fBqEltAL3XFcQt925DVx50R5tIrU2HFz57ATTKmS22/+fuPnzhkb2IJma+iebbl1fiZ+9dDaU4/ZEMX3hsCpYpDWGq1xXEa0dH8PzBQTx/ML1d5JZUmeGPxNCdhhG1VM0rN6JtKPsd5VbWWqY9MpJP5zsTs1aJcCyB6AwDzYZGG5o5OkQ0YwxDREQpcgejECBApxZn3YRh0BvGLfduk+XCc7Z+fNNK3LCmdlbH2HpsFP/x553whGa+NsSsVeL8BWW4aGE5LlhYhlKjBgAgSRJGA1F0jQbQNRo8/hFAl3Psz85AFEaNEref24Tbz2s6ZYRJkiTs6/Ogtd8LnVqEUaOEQaOEQa2EQSNCqxKxv8+D19pG8NrRERwbSV/zghMsOhUaS/RZv1ifV2ZA23D6v56pNJToMeQNz6gV+ExlcxRqKutn2ULcqlchEk8ilGPd8YjyBcMQEZFMRv0RfOD3zWgdyOyi+3RaWGHCU/99HsQ0rNxuH/bjtj9uR7dz9iNkggAsrTYjkQS6RwMpT3G06FT46PlzsK7BhmdbB7FpvwN97uyNxExEIQDLa7I/crG2wYqdXe6sntOiU0GvVmDAk911dMtrzNjXJ//P3fxyI46m4YZILoU7onzDMEREJCNPMIYP/rEZLTNYLyCHe29dh0uXVKTteKP+CD7ypx3YLdM6lVylEgXMLTPi0DQ7jM2GWqlANJ690RlRIWBhhUmWmwGlRjVG/PI2UBAEoKnEkJbRxTml6TkOUTGaThhia20iojSz6FX4y0c2YkOTXe5SprS2wYZLFpen9ZglRg0euuMsXLWsMq3HzXexhIQeZxCqLPVOLjWqsxqEgLFmDXIEIbNOKXsQAsa6MaYrwJh1bPhLlA0MQ0REGWDUKHH/bRtw9fIquUs5oy9euQhCBjZn0qpE/PJ9a/DR8+ek/dj5TKMSEctSuzObIbt77qxrkG/Rf4VJK8t5T2Y3qHAwjUFQLc6smQkRTQ/DEBFRhujUIn55yxr8+5Pn4rI0TkNLl4sWlmV09EqhEPCVty/Gne9cxo0kj6ux6rJ2rmAkjnKTJivnWlhhQkuPfN3P+lzBtKx5m40qiw7+tLZKz/tVDER5gWGIiCjDltda8Ltb1+HJT52bU1PHPn/Foqyc5wNnNeD3H1wPvZp3urN5edvnDiMYjWN1hjezXVFjQb8nhEzNyFvXYMPcMgPq7DpsaLRBozw99ARjScwtM2SmgBRsbLLjQH96pwdmsxMfUTHjhFQioixZWm3BPe9fi8MOH37+4lE8uW8AcrWweceqaiypzl7DmYsWlePh/zgbH75vO4Z82e0ylisWVZqwvy+73eT8kQR297ixtsGG1gHvaa2aLToVaqw6GLVKJJISRAGIJiR0jASmbJFu06swv9yY0alxjXY9dnS9efweZwgWnQor60w45PDCG4qfVE92pwWesLDChO2d6e/6NuTL702cifIFu8kREcmkbciHX7zYhsf39CNLy0gAAEqFgBc+ewEaSrJ/J73fHcJnH96DLcdGs37uE0qNaswtM2a9bfHaBht2dsk3lcykEVFq0sKgEQEJcHjDZ2w60FiiR7lZi2g8AYc3Ao1SAZ1KhE4tIpmUsL/PgxnuKZqyM7WX1qlELK+xoHM0gCFfBIsqTVnt1AeM7YulVYlpD/jLaixZD85EhWQ63eQ4MkREeWvTfge2tI+g3xPGkC+CD53TgHeuqslIQ4BMmFduwt3vXY1PXTIfv3ypHf9s6UMiC6nolo31sgQhAKi26vDgHRvxr5Z+fPvJgxjxZ3eUSCEAP795DTY22fG7V4/h+88czsp/cwCIJ+Sd9uSLJOCLpN7prHM0iM7R2e8XNRvu4OSjU6FYAs2dTogKAWvqrfCEYtAoFYhksYNeY4kBezMSWvL+PjVR3uDIEBHlnURSwvc2HcJvXzl22mMXLizDt9+5DLU2vQyVzU7XaADf23QIT+1zZOwctTYdNn36fBg18t8L84Ri+PGzh/GXbd1ZCyRfumoRPnbB3PF/v/pnr6Z9rcdkllabs3auQrGh0YZuZwgOb2pTxhQCsjbKuqHJjuYMjC7W2XToccm7STBRvuOmq0RUsLzhGD710G5sPjw86XP0ahFfvHIRPnBWAxR51sYsmZTwub/vwaO7+9J+bEEA/nrHWdg4p2RGr79nczue3j8AvVqEUaOEXq3E8hoLrl9Tg1LjzLuWOQNRPHvAgSf3DeCN9tGMBKM5pQZcs7Ia/3Pp/FNGDj/10G48vqc/7eebyIpaC/b2curTTKystSCWSKJ1ILvT4Cazus6KPb3ujASvdY027JCpRTlRoWAYIqKCEojE8fKRYTy934GXDg3BH4lP/SKMrdH43o3LMa/clOEK0yueSOKTD+7GpgPpHSH66Plz8JW3L57Ra/f3efCOX74+YVBRKgRcvKgcN62rw4ULy6AUZ96o1BWIYnePC+FYEpF4AtF4EtF4EpHjH9GT/hlNJBCJJRFNJMf/Ofb42OsMGiUuWliOSxaXY06ZccLzfW/TIdyzuX3G9U7H/HIjjg75s3KuQmXSKqFTiVCLCihFAarj/1QqBCgUAkRBgEIQxlq5CwIEjE04SyYl9LpSH2E6k7X1NuzqdmVkIptOpUBSQlan+hEVIoYhIsp7nlAMLxwcxKb9Drx8ZHjGFwdqUYH/unge/uOCuVAr82c3gUg8gY/+aSdePjL5CFiqmkoN+NzlC3HVssoZjZRF4glc9/PXcXhw6rvyFWYNvvL2xbhuZXVerN36v6cOTjjdMlNW1VnR0uPO2vnoVNVWLWqsOnhCMRwZnH4wXddgO6W7Xbo1luhlX6dFVAjYQIGI8tKoP4JnW8cC0BvtI4iloVVVNJHEj547gif3DeB7N67AygzvuZIuGqWIX79/LT74x+ZprUtQiwpUWDSoMutQYdHinLkleNfaWqhmMVqz9ZgzpSAEAIPeCP77ry34x64+fOedy1Bnz+21W5FYOjfJnNqgNwyjRkzz5pyUqn53GP3usdGhBRVG6FQi9qQ4dXF9ow3bMzx9zahVZfT4RHQ6hiEiktWAJ4Rn9jvw9H4Htnc6M7b4+ZDDh+t/9TpuP7cJn7lsIXR5sAGoTi3i9x9ch/ffu23SC7brV9fg6uVVqLRoUWXRwm5Qp31E5miKQehkrxwZxg33vIHn/ud8WGXa/yUVsWz2NAcw4AljabUZBwe8WW2nTqc7MTJUa9Wh0qLFnl73pDdgNjTa0ZyBvYTeSptHo9dEhYJhiIiyrms0gE3HA1A2pwwlJeB3r3bgmQOD+O4Ny3HOvNKsnXumTFoV7v/wBtz5xEE8vqdv/GKt3q7Hd65fhvPml2W8hsMz3Ltl2BfB/z7Rih/ftCq9BaVRhUmb9XMe6PdmZZSBUtPrDqHXHYJdr8L8ChNaB7xQiQKaSsfWmXUMB7IShABAzLOGL0SFgGGIiDJOkiQcHfLj6X0ObDrgwMEBedsLdzuDeN+923DNiipctawK584vhUWXu9NTrHo1fnTTSnzhyoXY3e3G/AojGksMWbtwOjKLRf+P7urD7ec2YWm1JY0VpU9DiTzT+LZ3urI22kCpcQZj2NbhhEohwJeU4AxkP6xytJAo+xiGiCgjJEnC/j4vnt4/gE0HHDg2nPpmj9nyxN4BPLF3YHzTxgsXluOCBWVYWm3OycX/FWYtrlxWmdVzJpPSjKbJnezeVzvwk/esSk9BaVYvUxgCgB1dTiyrNmM/9x7KKdmeOnmyaJxryYiyjWGIiNImmZSws9uFTfsd2LTfgT53fmwcmEhK2N7pwvZOF37wzGGUmTS4YEEZLlxYhvPmlcGiz91Ro0zrc4cQjM7uAu3fe/rx+SsWotqqS1NV6TO31AhRIWRt09eTJSWgYySAWqsOvXnys0KZlY6mMUQ0PQxDRDQrsUQS24458fT+ATzbOohhX0TukmZt2BfBIzt78cjOXogKAavrrLhwYRkuXFiOJVXmvNvIdTZePDQ062PEkxLue6NzxnscZZJFr8IVSyvw1L707umUqkA0gcXVWoYhAgAYNLnf2IWo0HCfISKatnAsgdfbRvD0fgeePzgIdzAmd0lZU2o8adRofmlOd0qbrS3to7j1D9vScrfaqFHijS9fDHOGWgdH40m0DnhRZdGizKiZVmDd3unEu3+9JSN1pUKvFpFMSghzo82ip1MpIAjCrEdjiYod9xkiorQLROLYfHgYW9pH8M+WfvgjcblLksWIP4J/7OrFP3b1QiEAq+ttuHBBGS5YWIZl1ZaCGTU6NuzHx/6yM23TdvyROL7w97345S1r0t74IRRN4OMP7MTmw2Mb1CoVAirMWrxjVTU+cdE8GDRn/lW3rsGGZTVm7O+TZ+1OMJrA2gYrdna5ZTk/5Y5QLMnGGkRZxpEhIpqUJxTDCwfHNkF9+cgwIvEk1tbbsLObLYEncu3Kavzw3SugUebvVBdJkrCr243PPtyCztFg2o9/84Z6fOedy9IaGr/62D48sK17wscqzBp8+arFeMeq6jM2xXjp0BBuu2972mqaLrbaphOUCmBhpRkH2FiDaMamMzLEMEREpxj1R/Bc6yCe3u/AG+0jp40MbGyyY1sH71pO5qw5dvzmA+tyulX3RCLxBJ7YM4D7t3Ri7yQbvKZLtUWLq1dU4YIF5Wgo0aPaqpvxaNHrbSO45d5tUz5vbYMNd75jKZacocX3va8ew1P7BqAQBAgCxj4gIBRLZPy/ybxyI9pm0cKcCotepUCVVYf2HOzCSZQPGIaIaFocnjCeOeDA0/sH0NzhPONeF2sbbNjZxTvYZ7KwwoQ/3rY+J7unvdWgN4wHtnbhweZujPijstSgVAiotelQZ9fjlo0NKbcP90fiuOInr6TctXBjkx0fv3AuLlxYPuHjyaSEj/1lJ55tHTztsYUVJkiQsH/vXgTbtkGKR6EunwP9grMgiLMLvoIAaEQF1wzRKWx6FXRqEf3usNylEOUdhiEimlL3aBCbDgzg6f0O7O52p/y6BRVGHBnkHeypVJq1uO/D67GoMvfekyRJwu4eN+57vRNP7RtAPMd2evz0pfPxqYvnTzmV7iuP7cODk0yPm8i8MgO6nEHc/Z7VuHpF1YTP8UfiuOFXr5/2PZ4I++F6/LsIdLTArBNh1Ajod8ehNphhvfaL0DWsTLmOt6qx6vKmDT1lV5VFg0g8CWegeJrUEKUDwxARTahtyIen9znw9H4HWgdmNh/dqlcVVfe42TBplPjNrWtxztxSuUsBMDYV7ql9A7jv9U7syfC0r9maW2bANSuqUWnRosSgRolRDbtBA7tBDbNWidfbRvH+3089Pe4EUSFAIYzt46IQgO/esAI3ra+b8LldowFc94vX4QmNfZ9LkoSRh74A1cgR/PpdIq5bJkIpCjjoSOLT/4rj1Q4B5R/4MdTlTTP6WlfXWbG7xz2j11Lhayo1YMgbRoAd5ohSxjBERADGLuIO9Huxaf/YFLh0zT83apRF201uulSigG9dtwzvXlcLlaiQpYYhbxh/2daNB7d1yTYVLp1UogABAqKJ1KeVNZUa0DFy6vf/z29ejWtXVk/4/L9t78YX/7EPABDqbMHQ376GJ+7Q4LKFpzbHCMUkrPhBDKOVb0PptZ+f5lcyNoJYYlThQL9v2q+l4rG4yoS2IT83ZSVKEVtrExWxZHJsCtSm/QPYdMCBHmf6p99UmDXwDzMMpSKWkPCVx/bh7ueP4JaNDXjfxnqUmTRZOffubhfue6MTT+7NvalwszF2QTi9r6fEoD4tDH3/mUO4clnlhCH1XWvr8OetXdjf50Xw0GtoKlXi0gWnP0+nEnDHRgHfePY1bPjkd+AOxxGIJOCPxOGPxJGY5L+7Ta/C/HIjdnW74PByTQid2cEBH1bXWdDS60H+38Imyi0MQ0QFIJ5IornTiWf2O/DMgcGMX1yZ86xTWi4Y8kXwk+eP4BcvHcVVy6rQUKI/4/PnV5hw/gw2dY3Gk3hq3wD++EYn9nDq1biJumr3OEN4dFcv3rO+/rTHRIWAz1+xCB/8QzOSkQBqLZi0NXetVUAykcDWtkEoVKcGXZ1KAZNWBZ1KhE4tQq1UQBQEHHJ40cxW2jkvNtoD355nEHf2QaExQL/oXOjmroegyH77/N09HmxosqG5g983ROnEMESUp6LxJN5oH8Gm/Q482zoIZyB705/UMk33KgSxhITH9/Sn9FyFAKyqs+LCheW4cIpNXYd8YTy4rRsPbOvGsC+SzpILgis48c/HL15qw03r6iYMOmsbbAAAlb0Gu3YmEYhIMGhOf96rxxJQm6wQlKcH11AsiVCMfx/5RpIkeF57EJ43HoJCoYFGMCOGKIZbN0NdPgfl77kTon7yNu2Z0utiow2idGMYIsoj4VgCLx8Zxqb9Djx/cBC+sDxT1QppylUuS0rArm43dnW78ePnjqDUqMb5C8qwsckOZyCGzpEAOkYD6BwJYIgBaFJKhYCukYk3kO1xhtA+HMC8cuNpjxk1SjSU6BFfcRn6t/wN33sxhv+96tTAs7c/iQd2SdBtvPqMm7pSfgnsfwGeNx6CRT0fFlUTBGHsBlA44cLwyB4MP/Z/qHjfd7P+d97vDmNRpQmHHFxjRpQuDENEOc4fiePFQ0PYtH8ALx0aRigmf0chv0whrNiN+KN4dFcfHt3VJ3cpeaWx1HDGDU23dYxOGIYAYHGlGV2jFbCc/0F874X7sHdAwoc3iLDrBTxzKIFfvp6EoqQB5nXvyFT5lGWSJMG75e/QKStgVc895TGtaEOJegmGe3ch3L0PuoYVWa/PpOWlG1E68SeKKAe5g1E81zqITfsdeLVtBNEc24xx2M9RCMofJQY12s7weHOHE7dsbJjwMYNm7Nek5ax3QWkuxUtb/4an7+sBACg1WuiWXQ77ee+HQnPmNWCUP+KeQcRcfbBq10z4uE4sgwAlhv72NRhXXg7rBR+CqJ04TGdC9+jEo5xENDMMQ0Q5YsgXxrMHBvHMAQe2tI/m9FQ0jZLTgSh/vLWL3FttO+aEJEkTTnmKndS+27DkQugXX4CEdwhSPArRXH5awwQqAImxkW8FJm6SIAgClIIKNRorBvZtxnDvQZS//wdZC8SDvgga7Hp0ORmKiNKBYYhIRn3uEJ7Z78Cm/Q5s73LmTctUi06FAQ9Hhyj3LakyoXXgzOsrHN4wup1BNJQYTnssnjx1VFYQBCgtFWmtkXKL0lIBhcaAUGIYWmXJaY9HEz7EpBDeZj4f5Wobft7/D3i3/xPWc9+XtRorLFqGIaI0YUsoIhn4I3F89bF9eNt3X8T/PtGK5s78CUIAoFPzPgrlPp1KhDeU2vq2f0/S4S8az6MfTEoLQamCcdWV8MV7EUm4T3ksKcXhirbCKOqxxNCICrUdawzzEWzZlNUafaFYVs9HVMh4RUOUZS8fGcZXHt2HPnf+tkhVKXgfhXLfkmozdnaltifLj587gpV1Vpw3v+yUz791ZIiKg+WcmxHpOQDHQDP0YgW0og2JZATBeB+AOD5UdS1EYWwaXYO2Es3DrZASMQhidvZgOzzog1GjhD/CZjZEs8UrGqIs8YRi+MIje/DBPzTndRAiygdr6q0pByFgrI35Jx7Yddr6opPXDFHxUKi1KH/vd2C78DaEFV44I60IxXuw2jgHn6p5Nxq1VePPdcV9UCjVgCJ795eTEjB/kg6IRDQ9DENEWfDCwUFc/pOX8fCOXrlLSYsY75ZTDqu2anFowDvt13nDcXzk/u3wht+cgpTI4UYmlFkKlQbmDdej9PovAwBuqbgMN5RdiDK1bfw5kWQMzf5D0C2+IOt7DiXyaW41UQ5jGCLKIFcgik//dTduv38HBr2F03AgGJV/ryOiiahEATqViGBsZoG9fTiATzywC8Ho2PSjpdWWdJZHeUjbsBLauuV4YPh57PIdRlwae//rjQzh94NPwo8YLBtvyHpde3s9qLPrsn5eokIjSFL+31rwer2wWCzweDwwm81yl0MEAHh63wC+/q/9GPFH5S4l7aosWgx4wnKXQXSaDY12NHc6Z32cFbUW3PvBdTg44MMH/9CchsoonyUjQYw+8SME27ZBpVBBpVAhGA9CZSpDyTu+AE3NYlnqmlNqgKgQcPQMmwoTFaNkJIieu29KKRuwgQJRmg37IvjG4/vx1D6H3KVkTCTHNoElAoDlNZa0BCFg7K779b98A7/5wFpUW7ToZ/gvagqNHmU3fh2xkR4E27dDSkRRVj4HujlrISgm3o8oG44dX+O2ut6KAU8YjuPfpxadChadCgaNCK1ShEoUxqfxxRMSQrE4HN4wnAF2pSPiyBBRmkiShMf39OObjx+AK1jYv2AsOhU8bO1KOaTUqEYskYQnxVbaqTJrlfjhu1fi9691YFtHeoIWUSYoFYBZp4Y7GEUqS93KTRpE4km+l1NB4sgQUZYNesP46mP78PzBIblLyYo4O2xRDhEEoNSowSHHmTdXnQlvOI6vPLYfT37qXHSMBHDf6514ttWR0sUmUTbFk4AzkPq07CFfBEuqTPCFY/x+pqLGMEQ0C5Ik4e87e3HnE63whYtnv4c4f3NSDtnQaM/oqM2IP4L/fGAXHrrjLJw1pwS9riD+srUbf93eDXeBjwJTYWsd8GFjU2Z/fohyHbvJEc1QnzuED/5xO77wyN6iCkIAwxDljhW1FjRn4UJuZ5cL3336EACg1qbHl65ahC1fugTfvWE5yk2ajJ+fKFO2dTixqs4qdxlEsmEYIpqmZFLCA9u6cMVPXsErR4blLkcW3HuFcsHGJjv29nqQre/GP2/thDv45jQknVrE1SuqEI6x1Tzlt/ah9E8xJcoXnCZHNA3do0F88R97seXYqNylyEYUgESeZqEKswZGjRIapQiVUoBSoYAgAMFIAkO+cEG2QS9EJo0STaWGrE/tiSUkPLlvALdsbBj/3EPN3fAW2cgwFR7uHUfFjGGIKAXJpIT7t3Ti+5sOI1Tkd4ETElBiUGN0Ggt15aBVKdBUaoBJq0IklkCXM4hBbwSDmHzzW6NGRLVVB4tOhUg8iYMDXsTyNfkVqMYSPaKJJPb2eWQ5f0u3ezwMReIJ3Ptqhyx1EKVTIb3NNZboUWrSjE19EgTEE0n4I3EcHfIj//snUyYwDBFN4diwH194ZC92dLnkLiVnzC03YjQHFtwqBKDGpoNepYRaKUCtFCEKwGggio6RAA4OTG/qhz+SwJHBNzcvNKpFrKgxIZaQcNDBYCS3NfVWHOj3IBKX7++hazQ4/udHd/VhyDd5uCai7JlXboRBLWJPrwedJ/2cjj9eZkA8KU34GBU3hiGiSSSSEu599Rh+/NwRbjL6FqN+eS8A1zfaEIomcGzYjx5nKGPn8UcT2NntBnAiGJkRS3LEKNtEhYC19ba0baiaqrhnEL6WpxEdOAqIKujnrkfF4vcDGHt/+M3L7VmthyiTBAF5OXJiN6hQa9Njb++ZR4vbhgNQCMCGJjv29Lj5e73AmbWpRxxuuko0gSODPnz+kb3Y0+OWu5ScVWPToc+VuSAymQ2NNjR3yjtKZ1CLWFhpQjwpMRhlmN2gRrlJjUMO/9RPTiPfnmfhfObnAE5cIQoAkjDbSvDq5hfRjVJ88sHdWa2JKJOUCiHvOoWuqLWg2xmcdov7KosGNr0ardOcPUD5Y1WFGv/6zOXcdJUoVZIk4ZVXXsFfHngAOw73oDNigH75pVCV1MldWs6qtWY/DE13PwxJkhDpa4V/7/NI+oYg6K0wLrkI2jlrIAgzb6YZiCaw6/iIkUEtYnmNCYmkhFYGo7RaUGHEiD+a9SAU7tkP56afYazhqoA3G68KCHg9uPjSS1H7H/cCELNaF1EmCYLcFaROq1JgeY0F22d4Y2zAE8GoP4rGEj2nzRWgSosWe3tTv1ZgGKKi5/f7ceMNN+LZ556FSmmECC2iSR/c2/4B84YbYL3wNgj59FsiS3pc2f8F0tqf+qJ5KZnA6JM/RqD1ZTSUKLG2RsLBIQEHH3kZ+oYVKLnh61CodbOu6eRgpD/+CzqRlHDQ4UOU0zBmxKRRYkm1GTs6nbIs7PY2PwYIIsZ6dp/8sy8gkZAwOjwMacfzMK28IvvFEWWIQhCArDWqn7l55UaEookZB6ETogkJsYQEvVpkN70CU23Ron8o9eczDFHRu+22D+P5F15CmXYNdGIZBEGAJCXhjXXB3fwoRHMZzGuvlbvMnNPvDmNeuRFtQ9m5a69WKuCLpP4Ly/3aAwgfegV/uFmNm1eLUCgESJKE546IuOn+/XA9+wuUXPP5tNYYjCVPCUZL661ISsDBAS+DUQqMx0NQa58n622zTxbq2Hl8atxEo4djI0XhYzsZhqigKBS5fdNPIQDrG+3Y3ulEumbz9blDWF1nwe4eebpTUvrNKTOM/x5OFTddpaL25GsteOSRR2BVLYBeWT4+AiQICljUTTAoa+Dd+gikJO8aTcSuV2ftXCWG1M+VjIYR3PU4/vt8EbesVY7/khcEAZcvFHHX1SICra8g7h3JVLkIxpLY3e3Gnh43lAKwut6KlXUWqJV8230ro0aJDU12ABKaO5zwy3iXVpIkIDlVcJX4nkAFJ5ffmSotWswvN2FbR/qC0Am7ezzY0GhP70FJNjrV9L+Tc/l7nyhjwrEEvvv0Idz6rV8DggCDsnrC5xlVNUj4RxEd4l4iE2nt96Ders/KuQya1AeyIwOHEY+E8YF1E7/m/WuVkCQJ4c7sLIB/Mxh5IArA6jor5pcbs3LuXGZQi9jYZIdwIgRNY+QvUwRBgLpy7qmz404hAQKgrpqfzbKIMk6R4nTwMpMGS6rMWFBhRFOpHtVWLUqNahg1SohpHl2aX27E+kYbvMEoDg9mrtnBzi4nmkoNGTs+ZcfSajMO9E//+4TT5Kjo7Oxy4vOP7MWx4QCS8RgEQYQwyX0BBVQAACk+vU41xcIfTUAXTaDcpMn4fiue0DT+DhJxAMBkA1c61fE2ssl4GiqbnlAsid3HuxQWa4tXvVrE8hoLWvvlnQ43GdPa6zD6xI+O/9vJ7w3S2IcgwrSCU+SosFRbdRMGjjKTBvV2HQQI6PeE0O8OY/gM7/dKBaBTidCoRGiUItRKBdSiAipRgKgY+1AoBCgEASdWKUmSBAljLesTSQk6lYheVwhHszQNOyEB5SYNOkYCWTkfpZ+oEGa89othiIpGKJrAD545jD++0TG+l4K6Yg6kZAyRpBta0Xb6axLDgEIJVUltlqvNH8P+CGptOlh0qukFlmka8UegVACp5AZ1+RwICgWeOJDAJ887Peg+eTABSQI0VQsyUGnqmjucqLZqYdaqcMhR+C1edWoRK2osaB3w5mQIOsGw5EKEu/chsPdZjF+tQQKOdyAsveazEI2nv18Q5bPDgz5YdEo0lRqhViqQTEophZ+3iicBXyQxrTWeucAXzv7NMUqfNfXWGTfVYBiiorClfRRfenTvKbvHA4C2YQWU1iq4fIdRoV0HhfDmj0QsGYA33gXD4vMh6kzZLjmv9LpCmFdmQDSeRCiWmV+AkgSUW7Tod4enfK5otEG/8G349vNv4NKFSSwqfzMQ9XuS+OITSehrFkBdMTcjtU5HvzuMfoRh0ioL9pex7vhI0CFHboegEwRBQMmV/wVd42r4dj6O6GA7oBChm7cR5vXvhKZyntwlEmWEJxRHS5Hur3ds2A9RISCRZ3st0dhG7LPpLshNV6mg+SNxfO/pQ/jz1q5JnxMZOIrBh74CRRIwKqqhVOgRSXoQiA9AaS1Hxfu/D1FvyWLV+WtZtRmHHL6Mbdy3qNKU8ghKIujByENfRNLdj5tWKrC6VsDRYQl/3plETG1G6c0/gMpWlZE6Z2JlrQV7pthBPd/oVCKW11pw2OGFJ1SYQY+ICsfcMgPahzlVLp8sqjTh6KDvtG0YkpEgeu6+KaVswDBEBWvz4SF89bH96HNPvTFozNkH77ZHEWjdDCkegai3wrjyCpg2XA9Ry4Xu07Gy1oJ+z/SmVaSq1KjGiD+a8vOTkQB8u59CeO/TiHqdUBlM0Cy9DOa110I05NY0pw2NdjR35v6oSSq0KgVW1FpxZNA37Z3hiYjkUkjvw8Wg0qxFKBaf8GYbwxAVte7RIP73iVY8f3Bw2q+VJAlIxCEoVRmorHiIArCqzophfxTdzvRszmrVqwr6wnpOqQHH8nzx7okQdHTQB1cB/10RUWHinkP5Q6cSUWHWoHN04muM6YQhrhmighGKJvCrzW34zSvHZrzBpSAIAIPQrCUkYOfxTc+W15gRS0gzbhCgU4nHW7dq8mK9yUz1udMTGuWgUSqwstaKtiEfmgv474iICpub03nzxvJaS9p+3zAMUd6TJAlP7XPgO0+2ot8z9eJ6yq59fV4AwLwyA+xGDQQA0XgS/kgczkAUo4GxaW9lRg3KzRoY1CIAIBBNYNgXwZAvgvbhQMHP47bq1BjMcHvydFMrFVhVa0HbUIBTS84gGQkgcPBVxD2DEHVm6BefB6WpVO6yiOgtfGGOaOeDaqsWu7rS9zuHYYjy2pFBH775+AG80T4qdyk0hbbhADBBoFEqAJWowLA/gmF/foWBdDLrVHkThlSigNV1NrQN+9E8iw4+xcC360m4X/o9kIjDrjHAEw3BvfmPMK65BraLb4egEOUukYiOcwVSX5NK8ik1aFLqLJsqhiHKS55QDHc/fwR/2tLFNph5Lp4E4sni2nR0Ijp1flwUl5s0MOuUHAlKQaB1M5zP3YNryufilurFKFHrEEjE8MRgO/6w898QRBVsF90GKR5F4NCriPQcAAQB2voV0C88B4LIKbtE2ZSQALNWCW+BbnNQCOaXG7G3L73ruhiGKK8kkxIe2dmL7206ND69iqgQ5EOoX1JlRr8nhLahwp6ymA6SlITvlb/gHFsN/qth9dh6RAAGUYWryprQE/biuR3/hLpuKTybfopYwINFNiMSkoSje56BerMdJe/6FtTlTTJ/JUTFxapXMQzlMLtBnfZjMgxR3mjpceMb/9pfcHuxEAGAP8fnqm9ssqO5w4ncj2y5ITp4DBGPA+9cdMF4EPLFo/hN9x5sdvUgmhjbnNj9r2+jTK3EQ1cvwVyzDgBwxBPCJ7d0oe1vX0XFR34NUccuqUTZolfz0jiXZeJGuGLqpxDJa9gXwef/vgfv/OXrDEJUsFyh3AxDerWIlXUWbGMQmhYpMtYdsEytBwAEEzF84egr2B4bwv/e9W7sP/h9bNtxJz728UsxGI7h14cGcWKniwUWHf5ywVwg4od/77OyfQ1ExUinyo8py8XIpFWibcif9uMy/lLOiiWS+NOWLtz93BH4IhyypsLmDcWxotaCvTkU+OtsOkgA9nDfjWlT2ioBAPt9w6jRGvHvwXb0RnzYtvNOLFtWN/68tWubsHxFHf7jjt/jfXPKsLrUAAAo16lwebUFLx55A9j4Llm+BqJiFIwmuG4oR80tM6Klx53243JkiHLSG20juPpnr+LOJ1oZhKhoHB30obFEL3cZAMY2zR31R9DrCsldSl5Smsuha1yDBx1H4I1H8YyrE+9+z1mnBKETPnTbBWioK8Hfjo2c8vkSrRJCjNsFEGXT4UEfTFolaqw6uUuht1CKQkaOyzBEOaXPHcJ/PrAT77t3G44Mpn8olCiXhWJJBKMJ2A3ydRFTCMCGJjtaetwIxtjlbzZsl34Uw1IS/9n6AgZCAazfMGfC54miAmvWz0Fv8M258ElJwmaHH0IZGygQZVufOwxfJIZFlSa5S6GT9GXo5hzDEOWEcCyBn71wFJf8aDOe2ueQuxwi2Qz5IrAbNCjJQMecM1lYYcKGRjvKTZq07epd7FQltSj/wI8QaFgJQSGgvW1wwudJkoS2IwOwnbRw+w+Hh9DtC8G4+u3ZKpeITuINxdE25MPaepvcpRAAQQAGPJkZKRekEys285jX64XFYoHH44HZzK47+USSJDzXOog7n2xFj5PTcYhOUCqAlbU2hGJxxBISFIIAQRgbuRGO/1nA8X8KgAICjv9v7PHjxzneyAzjnzn1H0hIEo4NB+Bkq/qMGn3u11C0v4RDR76P8nLLKY89//x+XHnZd/Efiyqw2KrDP7vd2NzvhnnDDbBd9GGZKiaiE+aWGVBq1GDYF8GxEW4tIAerTgX3NBoNJSNB9Nx9U0rZgGGIZNM+7Me3/t2KV44My10KEVFGxX0jGP7zp9FUa8SPf/I+XHbZMoTDMfz1oS34zP88gHBUQjwydtdTV9EE/fobYFhy4XhbbiLKDeUmDRpK9AjFEjjs8CGWyPvL6LxQZ9OhZxrT5KYThthNjrLOF47h5y+24Q+vdSCeBxtNEhHNltJUitKb7kL3Uz/A1Vd+Hyq1ColEAsmkBOPCc1B5xaeOj+IJUGhyo4kGEZ1uyBfBkC8CANCpFFhabYaoUKB92A93MDe3SCgEBk3mIgvDEGWNJEl4bHcf7nr6EIaPv5EQERULVWkdyj7wU0T6DiHqOAJBVEHbtAYqa6XcpRHRDIRiSbSctPXAggojzFoVdnS5ZKyqMGlVmWtzwDBEWbG/z4NvPH4AO/kGQURFTBAEaGsXQ1u7WO5SiCjNTnTBXV5jRq8rBBdHitJGKTIMUZ5yBqL44bOH8VBzN/J/dRoRERHRme3r88KmV2FumQHtw2y4kA5iBtdPMgxRRsQTSTzY3I0fPXsEnml0/yAiIiLKd65gDAIEVJg1GPRyacBsZXKNOcMQpV1zhxPfePwADg545S6FiIiISBbOYBR1dh1KDGqMprh9gUEtoqFED6N2bPNtSZIQiiWwv6+4r6n63ZnbfoVhiNLG4Qnj/546iMf39MtdChFio73w7X4KiYFWQKGAqn4NjCuvhNJcKndpRERUJHqcIVh0SqyotWBvr+eUxzRKBRpK9LDq1IgnkxjyRtDrDqF1wHfacRZUGBFLSOgo0n2OBjxhlJs045380olhiGYtEk/g96914BcvtiEYTchdDhH8+56Hc9PPYDEp8c5zjYjGJDz+6iNwbH8UJe/8KnRz1spdIhEVsGTYj2Q0CFFvhaBUy10OycwTimNvrwcNdh0AARIkJJISBjzh8aYLUzky6IcAYH2jDTu7XCjGnUlqbTqGIco9Lx0awv8+0Vq0dyoo90QcbXA+/VPcdl0J7v5cLTTqsQ40Xn8Ct3ytEy/88zuovON3UJpKZK6UiApNuLcV3tcfQqhzNwBAodLCsPxSWN52M0S9RebqSG5dztlN9ZIAbO90YWOTHds6nOkpKo8oFKk1UdCrFJhfbkVPqsedeUlUzDpHArj9vu247b7tDEKUU3w7/4XaSg1+8cW68SAEAGajiL98uxFqMQH/nk0yVkhEhSh4dBuGHvwyLAO9uKH0QtxWeQ0uMCxFbM/zGPrz55AIuOUukQpEc4cTiypNcpeRdQPuMMQp8tCiSiPMejV297hTPi5HhmhaJEnC7149hh8+cwTRRFLucohOE+9uwXvfaYE4wTumxSji6nNNePLwbgC3pO2cybAf/r3Pwr//JSTDPiht1TCtuhL6hW+DoBDTdh4iyk1SPArnUz/BIl093l9xOURh7Od+ob4e60yL8IuBx+B++X6UvP2/Za6UCoGEsa1LTFolfOG43OVkTZ87hBqbDqUGNfa8Zf2VSiFgTYMNzZ3OaW/lwjBEKfMEY/js3/fg+YODcpdCNDkpCeUZbh2plAKENG56FXM7MPjgl5DwjQIQAEhI+J2IdO+Fds5alF//NQhKVdrOR0S5J3D4dSTCflxdd914EDqhRGXBuaZleKH1ZdguuQMKjV6mKqmQDPkiWFVrRUuvW+5SsqrPFUKfK4RFlSbEEkm0DwfQVGpAUpJmPHWQ0+QoJXt73bj6568yCFHOU1YvxSMveSFNEHiC4SSefM0PZfXStJxLkiQM//P/kPC7MPZ2qgAgAtLYn8Mdu+B+/cG0nIuIcldstBcmlQmlKuuEj8/T1SKZiCLuHcpuYVTQWnrdWNdgk7sMWRxy+NA+HMDSajN6XUF0jQZnfCyGITojSZLwpy2deNc9W9DrylyPd6J0Ma69Dkc7g/jWbwZOCUSxuIRPfq8bvmACxtVvT8u5ov2HEBs8hrEx+beORikACfDtehLJGDfcIypkCrUW4UQEseTEU5Z8icDx5+myWRYVgX19biyoMMpdhmwO9HsRS8xutgenydGk/JE4vvSPvXhi74DcpRClTFu3DNYLPoS7/ngfHn7egxsvNiMak/DX5zwYHI2h5OrPQGWtTMu5wj0HAEEBSJNNy1NAigYRG+2BpnJeWs5JRLlHP/9suF++Hy3+I1hvXnLKY5IkYYu3FZryuRDN5TJVSIUqEpfQMRzAmnordnW7xz+vVAiYU2aATa+GLxxDOJaEXi1CrVQglpCwr88z+UGLDMMQTejggBefeGAXjrFTHOUhy1nvgqZ2MRw7H8dP/9kKQVBAWX8+Kq+5DurypvSdKLUun0RU4FQltTAsOg//OvI6REHESuM8iIIIfyKIZ53NaA/1oOzKr0IQ+KZB6RdLStjV7cbGJjskAMFoHO1D/kn3MKqzc4TyZAxDdJqHt/fg6//aj0ic3eIof2lrl0Jbm561QZOeo245ICUxNuN4ooucJBQaA9SlDRmtg4jkZ3/7f2M0mcDDR17Av11bYBT1GI26AIUC9is+Cf2Cs+UukbJMSiYQ2P8Cgi1PIjbaA4VKA/WC82Be9w6o7DVpP1+qDQR6nCEsqzZjf7837TXkI4YhGheKJvD1f+3HIzt75S6FKC+oqxZAXbUAUUf7BOuGxm4mmNZex25yREVAodKi7PqvIDrUgcCh1xCOBGCxVcGw9CKIOrPc5VGWSYk4Rv75HYTat+PyRUpcvE7AkC+E+3c+g6EDz6Pkxm9BW79ctvo4SPkmQZqo5VKe8Xq9sFgs8Hg8MJv5hjMTbUN+fOKBXTg86JO7FKK8EvcOY/ChLyPudmBshEg6vo4oAd38s1D2ji9BEHnfiYiomHi2PgLfq/fj0dvUuHLxm+3WAxEJ7/xjDFv6taj82P1QqDSy1Vht1aLfHZbt/JmUjATRc/dNKWUD/oYm/KulD19+dB+C0YTcpRDlHaW5DFW3/RyB/S/Cf+AlJEPe45uuXgXdvPUQBDbtJCIqJpKURGj347hlrXhKEAIAg0bAr25UYtn3/Agefg3GZZfIVCVQZ9MXbBiaDoahIhaOJfDtJ1vxl63dcpdClNcUah1Ma66Gac3VcpdCREQySwY8iHiduHapesLH55cpML9CBcfAEUCmMKRXKeAOxmQ5d65hGCpS3aNB/OeDO7G/j4vniIiIiNJGMTYjIDRJ1pAkCaGYBCjkuQzXqxSotesLemlEY6kePSk+l/M3itCm/Q5c/fNXGYSIiIiI0kyhM0NX0Yg/7Zi4K++WziR6nXHomtZkuTJAqxwLQpO13c53lRYtVtdb0TkSTPk1DENFJJZI4ttPtOJjf9kJX3jiXbKJiIiIaOYEQYBhw7vx/OE4vvNsDNH4m73KDjqSuPWhOLRlddA2rc56bfMrjAUZhCw6FTY02TDiC2P3SZvPpoLT5IpEvzuETz6465TdiYmIiIgo/QxLLkDM2Yf/ffZB/GpLEhfOAQZ8wOvHEtDYKlB64zdlabCjUxfWpb9GqcCqOisO9HnQ3OGa0TEK678ITeilw0P4zN9a4OJCOSIiIqKssJ77PugXngN/yyY8OdoFQaVDydvfBsPi8yAoJ26ukGnxxMRT9/KNIABr623oHA2kvNnsZBiGClg8kcTdzx/FL15qk7sUIiIioqKjLmuE/bKPyV3GuGTe7y4KWPUqVFt02NE1s5Ggt2IYKlBD3jA+9dfd2HpsdmmZiIiIiApD25APTaV6dEyjwUAumVduhDcUQ+tA+pqAMQwVoDfaR/Cph1ow4o/IXQoRERER5Qh/JAG1GEO1VZt3G66ub7ShpduNWJqHtxiGCkgyKeFXm9vw4+eOFMQwKBERERGllzMYQ4WoQKlRjRF/VO5ypqQSBaystWJ7Z3qmxb0Vw1CBcAai+J+/teDlI8Nyl0JEREREOWzQF0GdXQeLTgXPZLvD5oBykwYmrTJt64MmwjCUx/yROF44OIin9g1g8+FhROKF0SGEiIiIiDKrxxnC+kZbxkZcZmtJlRl97iCGhjO77INhKM8wABERERHRbDSVGqBVKXI2CG1osmN7hxPZWPXBMJQnDg54cffzRxiAiIiIiCgljSV6WPVqBKNx6FQiNCoRrmAURwf9cpc2Ib1axPwKI5pnuXfQdDAM5ThJkvCXbd2484lWRBmCiIiIiChFJq0SLT1uuctISZ1NBwnAnh5PVs/LMJTDPMEYvvToXjy93yF3KURERESUZ7qc+bGf0Ko6C444fAjGsn/jn2EoR+3ocuLzf9+LjpGA3KUQERERUR7yhuKYW2ZA+3BuXk8qBGB9ox3bsjgt7rQaZDszTSieSOLu54/gPb/ZCrtBLXc5RERERJTHcvV60qJTYVGlSdYgBHBkKKcccnjx1cf2Y+fxXureUO5vhEVERERUrJKxMKKDHQCSUJc1QaHRy13SaXzhuNwlnGZumQG+cBytAz65S2EYygU7Op24Z3M7Xjg0dMrnjw4Fcnpok4iIiKgYSYkY3K89AP+up5CMjq3LUSg1MKy4DNYLPwSFSitzhW8yaXPrcn9dgw17etyIJbPROHtqufVfp4hIkoSXDg/hns3tZ+zxbtWrATAMEREREeUCSUpi5J/fQ6h9OxaoVqLeuAACBPTG2nB49zOIDXWi/L13QhBVcpcKAUDbUO600c7FTV4ZhrIsnkjiib0D+PXL7TjkmHpocG+vG2atEt4cHOIkoonFnH3w7ngc0bbXkYyGoSqphW75lTAuvxSCyLddIqJ8FmrfgWDbVpyjvxo1qjnjn7eIpahQ1uOl3n8gcGAzjCsuk7HKMYurTDkxFQ0ANjbJ2yhhMvytnAWJpIT9fR681jaCh5q70esKpfzaWELC6npzVjefIqLJJQIuxD1DUGgMUNprIAjCKY+Hew9g9JFvwGLW4D8+di4qKy146cWDePqpXyLSthUl1381J+4WEhHRzAT2PAursuKUIHRCqbIaFaoGePY8mxNhSK/OjUv9dQ22nAxCAMNQRkiShPbhAN5oH8HrbSPY0j46q5GdHienyRHJLeYagOvFexFqawYwNs9ZVdoA6wW3Qj9vIwBAisfgevy7OGtDI5546nMwGsfmjP/PZ96O557bh2uv/hG82x6F5Zz3yPVlEBHRLMXdDlQpyid93K4ox6inPYsVTazUqMaeXrfcZWBJlRm7unNratzJGIbSxOEJ4/W2EbzePoI32kbh8IbTduwBTwQlBjVGA+wuRySHmGsAjj/9D5KREMZmYCsASIiN9GD4H3ei5JrPwrj0IgSPvI6oz4Xf/O7L40HohMsuW44PfvA8/PnvT8F81rsgKEQ5vhQiIpolhd4Cn3vyi3t/0gOFzpLFisYoFUD8pD1Lm0oNObE+JxRLIEd6JUyo6MJQMinh2dZB7Oh0YtgfQaVZixqbDjVW3fg/Tdqpp7B4gjFsOTaKN9pH8FrbCI5luONbmUnDMEQkE9fmP4wFIQl4c3s2AWOfUMD57K+gX3A2IgNHMWdeFRYurJ7wONe9cw1+f+9LSPidUJrLslM8ERGllWHZRRjq/inciWFYxVPfywNJL3rj7bAs+2DW6tEoBaystaFt2IcyowaHB/1YWGEc36pFTstrLNjX55G7jDMqmjCUSEp49egwfvTskSn/UsxaJWpsetRYdag9KSjpVCKaO514o20E+/o8WU25xhxri0hULBJBD0JHtwLSiRGhk42tF5KiIQQPvw5BISIUikGSpNPWEgFAKDh2Q0NQ8OeZiChfGRafD1/zY3jF+W+s0pyLWtVcAAIG4p1oibwGpakUppWXZ62elbVWNHeOrcfxheNY32hD12gwJ0ZjovGE3CVMqaB/I8cTSWw95sRT+wfw7AEHRvypjax4w3F4B7w4OODNcIWpU0xwYUVEmRf3DgPS2AjQxARAISLudkDbtAYDzY/ilVcO4YILFp/2zPvvfw26yiYoDNZMlkxERBkkKNUof+93MPrvH2Fb1zNoDosQACSlBDTVi1B+3Reg0BqzVo8v8ua69FhCStvUOINaRCA68zCzsNKEwyl0TpZbwYWhWCKJN9pH8dTeATzb6oArGJO7pLSInjwJlIiy5s1faBJOjASdSgKkJBRaE7QNK6GrmoNbP/AbPPHkZ7F8eR0AIBaL4wfffxJPP7kbJdd8FoIgIOYagH/vs4i7HVBoDTAsOh+a+uUTjigREVFuEQ1WlL/3TkSHuxDu3gtIEjS1S6CpnJfVOmx6VUpbtUyHRafCwgoTdve4sKzGAm8ohm5ncNrHUYv58fusoMLQVx/bh1c6A/CECiMAncwd5HohIjmorJVQV85DdPDY8RGit765j31Ov/BtEAQB9nd+HaOPfB2rV3wZ55y7EDXVVry0+TBGhtywnPNeGJZcCPdrD8Dz+kMwKDWYr7diMBaCo2UTdPUrUHrD16DQ6GX4SilfJKNhRIfaAUmCunwOv1+IZKQua4C6rEG289fadGm78a9Ti1hRY8H+Ps/4tLv9fR4ImP4eQU2lBuzry50ZVmdSUGHoXy39BftLweFJX3c6Ipoe6/m3Yujhb5z0mRPNE8Y+TGuuhdJUAgBQmstQfuvPEDj8OloOv4aW3jDE2nNRdc2VUJc1wrfnGXhefwi31izFu6sWQqMQIUkStnsc+M6xZjif+BFKb/y6DF8l5TopHoP71T8j0PIUEtGx3wmiWgP98sthveBDUKg0Y8+TJEjxCASlGoIw2fROIioEWlV6OpOub7Shbcg/YeCRAGzrcGJlnQV7elJrhmDV589+egUVhgpZOJ5ke20imeia1qD0HV+Ec9MvkIz4AYUIJJOAIMC05lrYLr79lOcLSjWMSy+CcelFp3xekpIIbPk7zrfX4f01S958viBgg7UK/1W/Ct9v2wbLSA9UpXVZ+dooP0jJBIb//nXE+g8icdKCZIUUR7DlKcRHOmG/9ovw7XwcgZZnkAh5IIgq6BefB8vGd/P7iahApWtNucMbnnKEqX3Qj2qLFv1T3KCvserQ0u1OS13ZwDCUR9hem0g+hkXnQj9vA4JHt46t89EYoF9wDkSjDQCQCPsRPPgK4p4hKHRmGBafd1r77PhoHyIeB65ceN6E5zjfXou7u3Yj2N4MCy9e6ST+vc8h2teKufMq8J3/uwlXXrUSLlcAf/j9Znznzn8i3L0Pjj/8FxAOoEm5CHZdJYJJL9oP7oDj8Bsof8+3oalZJPeXQURpFk9Tyzi7Xo0eZ+iMz/FHEyg1aWDSKuELxyd8jkmjhFIhIAca2aWMYSiPGDX86yKSk6BUw7D4/NM+7935b3he+iOkZBwWlRn+eACel++Dcc01sF18+/gGq1Ji7GaGSVRPeHy1QoRGoYQU500POpV3699gseiw+ZWvobx8bDNHnU6Nr339etTXl+DDH/otEPbiMv3NMIm28dfNl1bileC/Mfr4D1D1H7/lZr9EBUapSM/IkCbF6Xado0E02HXQKBWndWlWKxWosWlxyOFPS03ZwsnEeUSRpm94Ikof//4X4Xr+N9hoWICv1N2KL9W+D1+v/yCutG2Ef+e/4X7lz+PPVVqrICrV2O5xTHisI34nfLEQ1OVzslU+5QFJkiAFnLjjPy4eD0Ine98tb0NVlRUCcEoQAgCloMZKzdsQ8w4i3LE7SxUTUbY0dzixsNI06+MkpjHC1OUMQRQE1Nv1qLJosajShNX1ViwoN+ZdEAIYhvIK22sT5RZJSsL76gNYZpiL60rOg0k51sBFo1DjAutqXGxdC/+OfyERGuuoo9DooVt6MR4ZbENn8NRFqKFEHL/q2Qu1qRS6ueuy/rVQ7pLiUSTiCSxZUjPh40qliAULqyBg4ju7drECKoUW0eGOTJZJRDKQALgCUZi0s5s95AtPryPdoC+CbmcQA54wDjl82N3txv7+/Oge91YMQ3mE7bWJckvU0Y6YdxDnmJdNuD/Q2ZblSCZiCLU1j3/OeuGHkLBW4pMHX8TPOnfi+ZEuPNDXig/vfxaHw17YrvsCpzLRKQSlGkqNFnv39kz4eCwWx4H9vdBj4rvDSSSQkOIQJpmeSUT5bcgXwZxSw6yOUcxdixmG8kgxf6MS5aJkJAAAsCgn3mncKOogCkokI29uVidqjSh//w+gO+vdeCbgwvePNePPjiMIz9+IilvvhrZ2yYTHouIlCAK0Sy/B7377Evr6Tm97+8c/vIyRER80wsRbS3THDiMpxaGbtyHTpRKRTEKxxNRPOgNvOA6LrjjXphfnV52nwvEk5pUZ0DYckLsUIgKgslUDADrCAyhRnb6Woyc8iIQUH3/eCQqNHtZzb4Hlbe8DEjFAVHI/GDojy9nvwXDbFpx7zrfwrf+9EVe9fRVcrgB+f+9m/PhHT0FdOQ9DjjYcDG/HAs1qiIISkiShP96B3ZHXoF94LlS2Krm/DCLKEJN29vv61Nr08ITyc6rbbDAM5Rm7UQMwDBHlBKWlHLrG1XixfxcW6xthELXjj8WlBDa5mqEylUHbtHrC1wuCACg5dYmmpjTaUfa+H2D02V+OdY478XmNFuaNN8H8tpvhff0h7N/yNxyO7YFVUYKA5EMw4YGucQ1K3v7fMlZPRJlk0ojY15faZqhnokvTBq75RpAkKZ9agU/I6/XCYrGg7tMPQ6GZeJpAoaix6tDnPnMfeCLKnthoL4b+8nkYEgLOMy9HraYcIzEPXvfugyPmQtm7vgHdJGGIaCZirn7EhjshiGpo6pZBodae8ph/73Nje2HpTDAsuQCamiUTrmkjosKwodGO5s7Tp9BOl1mrhD8SR5q2LpJVMhJEz903wePxwGw2n/G505qX8c1vfhOCIJzysWjRm5u4/fa3v8WFF14Is9kMQRDgdrtTOu4vf/lLNDY2QqvVYuPGjWhubp76RUWqzx1CQ0lhBz6ifKIqqUX5rT9CbO5KPOncil/3P4ZHhl+Eu7IGFe+7i0GI0k5lq4Z+wTnQzV13ShA68Zjtgg+i7B1fRMnl/wlt7VIGIaIC1+9Jz01ybziOJdWnT/kudNOeJrd06VI8//zzbx5A+eYhgsEgrrzySlx55ZX48pe/nNLx/va3v+Ezn/kMfv3rX2Pjxo24++67ccUVV+Dw4cMoLy+fbnlFodKsRddocOonFghJkgApyQ5blLNUtmqUveOLSIT9SPidEHUmiAbb1C8kIiKahSVVZrQOpG+dj1ZZfOtXpx2GlEolKisrJ3zs05/+NABg8+bNKR/vxz/+Me644w7cdtttAIBf//rXePLJJ/GHP/wBX/rSlyZ8TSQSQSQSGf93r7e4FnsNeoujq1y4ey98zY8i1LELUjIJXWUT9Kuvg2H5JVxsTjlJ1BohaifuLEdERJRuGlV6r4cOD/ogCkCiAKbKpWra/wWPHj2K6upqzJkzB7fccgu6u7tnfPJoNIqdO3fi0ksvfbMghQKXXnoptmzZMunr7rrrLlgslvGPurq6GdeQjzpHg1jbUNh3nX0tmzD40FcwJ9SC710j4pfvUuMCWw+cm34K55M/hiRxA1oiIiIqXnaDGvt6Z9844WS+cBxLqs+8xqbQTCsMbdy4Effddx82bdqEe+65Bx0dHTjvvPPg8/lmdPKRkREkEglUVFSc8vmKigo4HI5JX/flL38ZHo9n/KOnZ+KN6ArZ7m4XltUU5jdr3DMI17O/xEfPVmL7p1X47/NV+MhZSvzrdjX+9D41/Ac2I9D6stxlEmWFlEwg7htFIuBGAfS7ISKiNGks0SOegW4HamVxLUuY1jS5q666avzPK1aswMaNG9HQ0ICHH34Yt99+e9qLm4xGo4FGo8na+XJRUgLaBv2YV25E25Bf7nLSyrfnGRg0Ar57jQoKxakLf29arcQfmpPYuvvfMC69SKYKiTJPSsThbX4Uod3/RsTnAgDoyhtg2PhuGJZcKG9xREQkq6XVJuzqdmfk2EccPigVQLxIJuHMaqKh1WrFggUL0NbWNqPXl5aWQhRFDA4OnvL5wcHBSdcl0ZvC8SRG/BFUW7VTPzmPxBxtuGiuAINm4g5IVy8REHEcy3JVRNkjJRMYfezb8L/+Z9y82Id/3KbGX96vxnn2Poz8+4dwv/qA3CUSEZFMVAoB7mA8Y8f3ReJYUFGYs48mMqsw5Pf70d7ejqqqme1qrVarsXbtWrzwwgvjn0smk3jhhRdw9tlnz6a0ouEOxiBJEuyG2e88nDOUarjP0CPCGwIUSu4XTIXLv+8FBI/twKO3qfGbm9S4ZqkS716lxL8/osY3r1TB88ZDiA53yl0mERHJYE2DLeN7TqqVxdOSf1ph6HOf+xxefvlldHZ24o033sD1118PURRx8803AwAcDgdaWlrGR4r27duHlpYWOJ1vbgR1ySWX4Be/+MX4v3/mM5/B7373O9x///04ePAgPv7xjyMQCIx3l6OpDXgisOnV0KkLY46nbu56vHYsgfaR08dnYwkJ9+2UoJm7UYbKiLIjtOdJXL5IiSsWnf4z/bmLlCg1ifC3PC1DZUREJKdamw67ul0ZP48AhqEJ9fb24uabb8bChQtx0003oaSkBFu3bkVZWRmAsbbYq1evxh133AEAOP/887F69Wo8/vjj48dob2/HyMjI+L+/5z3vwQ9/+EP8v//3/7Bq1Sq0tLRg06ZNpzVVoDNrHw5gbqkBSkX+f/MaFl8AtcmOG+6L4/DQm4FoNCDhQw/F0ONKwrT+ehkrJMqs2GgPLp438c+yShRw4RwgPjrzTp5ERJSfTFolYlnoe60ooh1MBKkA2hN5vd6xFtuffhgKjV7ucmS1pt6asQV12RQd6Ybz719DxOvEunolTBoJr3dIiEMB+9Wfg2HRuXKXSJQxjl+8D59YH8Rd16gnfPyiX0XQoliLshv/X5YrIyIiuaxtsGJnlzsr51rfaMP2zqlHoJpKDbDoVPCFYxj0huGPJLJQ3dSSkSB67r4JHo8HZvOZ1z9x4UWB2dXtxoYmO5o7nFM/OYepS+tRcce9CBx6Da3HdgCJOPRvWwDjissg6i1yl0eUUaoF5+H+HZvw1cskGN/SSKTVkcQbxxIoufptMlVHRETZZtYp0TYUkLsMAEC1VYsaqw4dIwF0jJxaU2OJHhVmLfpcIfROsa5JFACVqEBY5rZ1DEMFqKXbhWqrFv1n6kKQBwSlGsZlF8O47GK5SyHKKvO66zB04Hm84w8x3PMuJRaUKSBJEl7vSOJDf01Aa6+EYdF5cpdJRERZsqDchB1dmV8rdMJEa4ZqrFpUWnTY3e2a9BqzczSIztEggDeDUTAah1YlQiEIiCWSCEQScAajGPFHsLzWiu2d8t7AZxgqQNGEBLNWhX7kdxgiKlYqew1K3vUtbPvnd7D8ez7MLVchHJPQ54pDV16Pkhu+CUE58RQ6IiIqLIsqsxuEAODkLFRj1aHSrMXuHhf6pnGj/eRgNBlvKDbTCtOGYahAHXL4Up7vSUS5R1u3DFUfvx+Bw69jaOAIIChQPmcttI2rIAhFtLKViKiIKRVAIJq5PYUm4wvHsKbeCoc3jD53KGOtvC06+beGYRgqYPv7PKg0a+HwcoSIKB8JSjWMSy8Cll4kdylERCSDtQ127OxyYVGl6XijgrFgZNCIODrkhzuYmZGVgwO+jBz3ZBadCnt65b9pzzBUwEKxJJbV6BmGiIiIiPKQLxyDShRwyHF6ODFpRNgNajgDURkqm72FlaacaPjFuRYFrgC2HSIiIiIqSq0DPoRiE3dbm1tuytsgBAD+cPan/02EYajAJZJ5v40UEREREZ1EoxTQn6F1PNmgU4s4MuiVuwwAnCZX8MLx3Nj8ioiKQzIaQqB1M8JHtwDxCMTSRhhXXQV1WWPGzx0d7oJ/33NIeIag0JlgWHIhNHXLIAgcIieiwrKqzoZtOTDFbKaMaiWGo7lxjcowVOByZQiSiApfbLQXo498HTHvCC66ZBnKyyx47vnXMbDrSVjPvxWWs2/KyHklSYLrxXvh2/EvKBRaqAUjogjDv+cZaBvXoOz6r0Ch1mbk3ERE2VZqVGN3j1vuMmbFH8md61OGoQLnyYH+7URU+KREHKOPfhP1FSo8ufNHmDOnHAAQi8Xx7Tv/ie/c+SeoSmqhX3AOktEQpGQCCo0hLaM2vu3/hG/Hv2BTL4JJVQ9BGNukNpQYwkjXXjg3/Ryl131+1uchIsoFc8uMeT0qBAChWAKiACRyYDUHw1CBM2mVcGWo7SIR0QnBtm2IOB3464vfGQ9CAKBSKfHNb92IV145gubX/gzvtscQ6T849pilEsa118K09hoICnFG55UScXi3/QNGZS3M6sbxzwuCAL2yAjYpAufBV2C94FYoLRWz+hqJiORm0ojY2+eRu4y0MOlUGWsNPh1soFDg9GrmXSLKvHDHLixaUoeVKxtOe0wQBNx669sQGe6BcdCNdbpLcJbuClQGLXC9+HuM/PO7kJIzmzseHWxHIuiGUVU74eMGZTUAAaFjO2d0fCKiXLKk2oJQjqy1mS2TJjeuURmGCtiGJvuEfemJiNJNSiagPcNO4rrjj52rvwZN6iWoUy/AWfrL8Tb9VQge3YrA/hdndt7E2F1FhTDxL1UBIgRBgBSX/+4jEdFsqEUBRwYL57quzKSRuwQADEMFa2OTPSc2siKi4qCpXoS9uzvQ3T0y4eOP/mM7LGobVMKpv/yqVXNQoaqHf9dTMzqvqqQOUIgIxYcnfDyScEKSElBXzJnR8YmIcsXKOmtBLX1QibkRQ3KjCkqrjU32vF9YR0T5xbDkAohaA+74yO8RDEZOeewfjzTjsUd3YI5ixYQNEyrFekRHumZ0XlFvgWHRefDEOxFLBk55LCHF4IodgcpeC03dshkdn4goFwgAelz5u6/QRA45fKixyt/pMzcm61HabGAQIiIZKNQ62K79EjY/dieaGj+DW299G8rKTHj66X149eVWaBV6zFVPHEgiUggK5cynS9guuQPRgaMYcG+BQayCRrQglgwikOiHpBRRcd0XuNcQEeW1VfVW7O52y11GWnlCMehUIspNGgz5IlO/IEMYhgoIR4SISE66xlWo+ODP4N3xOH517xYkY1GoShtgXHUl/C2b4Eu6YRbtp7wmIcXRGT8M3dKzZ3xeUW9Bxa0/gq/5Mfj3PAt/sAeCSgfDyoth3nADVNbK2X5pRESyMapF9DiDcpeREQ5vGAa1iA2NNjR3umSpQZAkKQc6fM+O1+uFxWJB3acfhkKjl7scWdj1anjCMSSSef/XSUQFJhmLwHHvf0IdiOAs7eWwK8daXAeTPuwIv4ShZD8qP3g31GWnd6KbCSkRBxQiR4OIqCCsa7BhR5c8QSGb5pcbEY0n0OWc/XTAZCSInrtvgsfjgdlsPuNzOTJUIOZVGNkwgYhykkKlQdnN38Hww9/AC66HYVSWQAkl3PEhKNQ6lN3wtbQFIQAQRP5qI6LCsLTaXBRBCACODvmhVAjY2GRH64AXvnA8K+flb4wC0Vdgi+qIqLCorJWo+sivEGrfjtCxnYgnE7BXzYdh8QVFO6JPRHQmJq0SI3751tLIIZ6UsK3DCaVCwIoaC5SigNZ+L8LxZMbOyTBUIPTqme3eTkSULYJChH7+WdDPP0vuUoiIcpZKIWBptQVDvjD6PWG5y5FFPClhb58HAKBTiVhTb0U8IeFAvweJNK8IYRgqEHaDWu4SiIiIiGiGmkoNKDWqcWjAh5Zet9zl5IxQLIFdxzvpram3jv85XRiGCsRoICp3CUREREQ0TQa1iPoSPQ4O+NAxEpj6BUXKrFXiyKAv7cflpqsFom3ID4tOJXcZRERERJQipQJoKDHg4ED6L/ILzcJKE/yRRNqPyzBUQOaWGeQugYiIiIhStKLWitYBr9xl5DyNUoHtGdqHiGGogAjgnhpERERE+WBDkz3t618KVZ09c11HGYYKyLERv9wlEBEREdEUNjTauD/kNCgVmbvhzzBUQFzBGKfKEREREeWwlXUWbC+SjVTTpX3YD7WYmUDEMFRgSo0auUsgIiIiogksrDDi4IAPUpr3yil0sYSE+RXGjBybYajAuINssU1ERESUa+psOvR7wojGk3KXkpeMmsx0TWYYKjBHBv0wabh9FBEREVGusBvUiCaS8IXjcpeSt5wZ2lOTYajASADmlWdmGJGIiIiIpsegFmHRKTHojchdSl5rH/bDoBbTflyGoQIkZrDjBhERERGlRhSAxlIDOkaCcpeS95ISMCcDjcIYhgpQ1yh/4IiIiIjktrLOigP93FQ1XVRi+qMLw1ABSiTZooSIiIhIThu5qWraZeIKlyvtC5DNoIKTXeWIiLJOkiREeg8gOngMglIF3Zy1UJrL5S6LiLJsfaMN27ipatoFIulvQMEwVIBKjRq0DwfkLoOIqKhEB4/B9dQPER7qhlqtQjyRgCsJGJZeCNvl/wmFSit3iUSUBStrLdjBTVXTrtKixZFBf9qPy2lyBUalEHB40Cd3GURERSXmdmDk4a9gQbUCz734FQTCf8Co6zf46c8/gHjbaxj9112QuMsiUcFbWGHCQQc3Vc2EBrs+I8dlGCowK+uscAdjcpdBRFRUvFsfgdWkxIsvfRkXXbQEgiDAZNLhPz9xGf70l48h2L4T/r3PyV0mEWWQVa/CgCfETVUzQK1UoHMkM7OeGIYKjCfEIERElE2SJCF8aDM++tELYbWe3vb1ndevQ319CdzP34NE0CNDhUSUDRpRAS83Vc2IZdVmDPoys08Tw1CB6XOH5C6BiKi4JOKIR8KYN69iwocVCgXmL6iElIjDv/fZLBdHRNkSjDIIzZZGeXo0yXRXPoahArOwwiR3CURExUVUQm2yYsf2YxM+HInEsG9vD+bNq0C0fVuWiyOibPFFEnKXkLfsBhXWNdgQiSehVABlRg3mlhmwtNqc8a58DEMF5kC/Bxua7LDoVHKXQkRUFARBgHbZ5fjjH15GW5vjtMd/9cvnMDTkxarVDUCC2x4QFTKDWpS7hLyzut6KSCw53oEvngSG/RG0DweysmEtw1CBiSYkNHc4EYsnsKzaLHc5RERFwbz+esQkJc49+1v46d2bcOTIALZta8PHPvp7fP6zD+JT/30Ftmw9BkVpk9ylElEGGbXctWY6TBol2ob8CETlG1VjGCpQwVgSx4b9sOo5QkRElGmizgTLpZ/AyIgPX/jcg1iy8PN421nfxBP/3oXv//B9KC0zobd7GMZVb5e7VCLKIJ2KI0PTsbjaDJ/MTScYXwtYMJbE8lord0AmIsoC/eLzYeo/CN/OJ7B2/Rxcduky1NbZ8de/bsNrrxyE5W03Q1O9UO4yiSiD9GpeWqfKblBjdw5sTsu/sQJ3bDgAUSEgkeTuX0REmSQIAmyX/AfUVQvRuutx7LzrcQCAvm4Jyt75FegXniNzhUSUaRJ4vZUqg1qEMyD/OkqGoQI37I9gVZ0VLT1uuUshIip4giDAuPQiGJdeBCkeAwRAEDldmahYHBzwYX2jDds75R/xyHX+SG60IueaoSLgD3MjViKibBOUKgYhoiK0r9eDSotW7jJyXq5sUMswVATahgNY22CTuwwiIiKigheOJ2HlFidTSiQlVJo1cpfBMFQsDju82NhkR5lJ/m86IiIiokJ2yOHDhia73GXkvFKT/CNoXDNUJPyRxHhXuVKjGrU2HdRKEQLGFvuFY0k4A1EM+8Iwa9WosGgQi0s4POiTt3AiIiKiPNTc4cTqOgvahgOyt4/OVWpRkLsEhqFiNOKPYsQ/efeOYX8Ew/4IAGBFjQVdziA8Ia47IiIiIpqO3T0elBrVqKsyo3XAK3c5OafXFZK7BE6TozPb2+fBggqj3GUQERER5aURfxStA15saLRDo+Sl9wn1dj2GfBG5y2AYoqnt7HKhnGuNiIiIiGasudMJvVrExiY7dGpR7nJkV5UjHfcYhmhKSQloKNHLXQYRERFRXnMFY9jW4YRSIWBjkx0mbXGuWCk1qtHrCspdBgCuGaIUBaMJuUsgIiIiKgi+cBzbOpwQBWBptQkGtQrHRvxnXNNdKCotWgiQ0OcOy10KAIYhStGBfi8WVBhxZNAvdylEREREBSEhAQf6xzr3bmyyY8TvlLmi9FvbYIOoEBCOJhCMJeAKRDEayJ3QxzBEKZPkLoCIiIioQMWThXmlFUsksbPLI3cZk+KaIUrZ0UE/NjRyAzEiIiKidAvHCnNJQl8OtM8+E4YhmpbmTifWN9rkLiPvWHQqrKm3YmGFCYL8+4sRERFRjinUjVlHA1GUGtVylzEpTpOjadve6cK6Bht2drsgFeaIblqUmTRoLNEjEEngkMOLXd1uAIBNr8LcMiOiiSQOO3yIxJPyFkpERESysulV6HbmRne1TGgqNeRscwiODNGM7OhyYXWdFQqOcpyizqbDxiY75pUbMOyLYHunC60DXpw8DdgVjGFHlwt7ez0AJKypt8pVLhEREeWAOWWFvcF925AfxhzdW4lhiGZsV7cbK2qtUBZ5IppbZsCGJjvqbDr0uELY1uFE21AgpddG4hJ2dbuxroFTD4mIiIpWgc+0cQVjWFJtkbuMCTEM0ay09LixpMoMlVg8gUghAEuqTNjQaEO5SYP24QCaO5zomcUCwR1dLmzgWiwiIqKi1Dac2tYlRo0SK2otqLXpsKHJnlfXX82dTmxozL2aGYZo1vb2ebCgwgSNsnC/ndRKBVbUWrC2wQaTVonWAR+aO10Y8kXSdo7m42uxiIiIqHjMLzfAE4pN+Ty9WoRVr8LeXg96XSE0dzixLEdHWybT3OlErU0PjTJ3AlHhXr1SVh3o92JJtVnuMtLKqFFiTb0Vq+qsEAVgb68HO7tc8IQy1+3lyJAPRg37mhARERULu0GT0vOWVpvR+5ZZKLt73Hm37UnHSAAra3Pn5i/DEKXN7m435pfn9wJAu0GFdY02LKsxIxyLY1e3Gy09boRi2en45g3FCy5UEhER0eRcwam7rC2pMmF7p2vCx5o7ndjYlF+BqLnTmTMNFRiGKK3UOTTsmapKixYbmmxYWGGCMxDDjk4X9vd5IVfH693dLpSbUrtLRERERPlvbplh0sd0KhHOwJkD07YOJ9bW585oy1RUogB/NDc2mWUYorQ60O9DnV0ndxkp0atFbGi0weEJo7nDhcODPrlLAgDEEhLqbHq5yyAiIqIsODLoR/twAOsabLAbTt+cdHmNGQ7v1GuUW3pcWJcnzZgm+jrlwsUJlHaVZi16nDPvrJYNK2st6HeH0TzJkLPcdna70FRqQMdIai26iYiIKL/t6HJBoxSwqNIEs04FSBLcoVjK1yoJCdjR6cKKWgviiSQEQYCoEKAQBCgEQCEIwIl/Ajgxl0c6/n8SJEjS2L8nj2+QKIoCjg76U2rwMB0WnQqDKQS8bGAYorRr7fdCpxYRypHhz5PZDWrU23Vo6fHIXcqU9GoO3BIRERWTSFzCIcfsZqqMbeqePgKAxVUmmDQqeEIxxJNJxBMSookkYokkovEkIsc/plJh1qDSrIVNr8aRwdTaiWcawxClXSCawPpGO7Z3OuUu5RQ2vQo6lSIvghAwNuVwWY0Z+/u8cpdCRERERUoCcHAgtYCmUgjQKBVQK0WoRAFqpQJKUQFRAQx6whj0RjDojWBJlSmzRU8DwxBlxJA3t6bJGdQibHo1juXZtDNfKAaFACQLfGdqIiIiyn+xpIRYNAFMMTtIn0PbiHAeDmVElzOERZW5kfpVooA6uz7vghAw9t9xTR51hyEiIiKayo5OF1bXWVFrlb/pFsMQZYyQA122BQFYUmWe9fxbOXWMBKBV8UeViIiICsfuHjf6PSHZN43lFRZlzMEBH5bXWGStYW29DXvSvJAw20YDUaystcpdBhEREVFaJSXg2Ii8jRQYhiijjg76sKJWnkCkU4s4Npx/U+Mm0jESgCIHRtqIiIiI0imVLnSZxDBEGRWOJ7G31yPLEOiKGgucwTPv2JwvhnwR2UfZiIiIiNItLnOXKIYhyormTifWN9ogZml4o9Ksxa7u3NxQdaaSElvKERERUWGRu4kCwxBlzfZOF8pNaqxvtEGjzOy3XpVFi1iisMLDvj4vKs1aucsgIiIiShubXi3r+RmGKKsGPBFs73RBpxaxsckOszb9feYXVpqwu8ed9uPmgoYSvdwlEBEREaVNLMk1Q1SE3MEYtnU4EY0nsaHRhnKTJm3Hjifk/aHKpKODPhjUotxlEBEREaXFdBZQVJg0KDNqIKZx1QXDEMkqHE+iudOFEX8Ea+ttsx75WNtgQ3uBdJCbiDMYQ1OZgZ3liIiIqOAZ1CJW1lqwvtGGCrMGg74Ihv0RJCTAolNhdb111udI/xwlohlISsDO4w0PlteYEU9KODgwvY1SdSoRHSOFG4RO2N/nxao6K0SFAH8kjgF3CN5wXO6yiIiIiKbt6KAfCytMcAWjGPVH0FhqQKlRA3cohrYh/6T7RXpCMezpcWN1vRW7u90zPj/DEOWcfX1eAMC8ciMMGhF7ez1IpZHailoLtnU4M1xdbmg5aU2UAGBJlRlGjYiWXg+iMvfrJyIiIkqVLxLH4cE3b4C3DwdSnuWTlIC9vR6sqrOecm00HZwmRzmrbciPPT0e1Fh0WNdgg+oME0QXVBgLrpV2qiQArQNeNHe6sLrOKnc5RERERFmTSErY1+fByrqZ7cfIMEQ5r9cdwo4uF0xaFTY02WE3qE55fEOjHe1D/oJrpT0T+/s8sOhUUz+RiIiIqEAkkhJa+72os01/zyJOk6O84QxE0Xx8GlyFSYNqmw6JpITmzuKYGpeKQDSBDY0W/jchIiKiohJLSNDNoOMuwxDlpUFfBIO+iNxl5KQjQz4IAlJaZ0VERERUKI4M+rGh0Yath4Mpv4bT5IgKjDsYw/xyo9xlEBEREWXdvn4vyo3qlJ/PMERUgKz61N8EiIiIiApFKJpAiUmT8vMZhogK0JA3LHcJRERERLKYzl6VDENEBahzNIjyadwVISIiIipGDENEBaqhRC93CUREREQ5jWGIqECFYkm5SyAiIiLKaQxDRAXKFWDrcSIiIqIzYRgiKlBVlunvwkxERERUTBiGiApQrVWHXd0uucsgIiIiymkMQ0QFqMysQVKSuwoiIiKi3MYwRFRgmkoN2N3tlrsMIiIiopzHMERUYMw6pdwlEBEREeUFhiGigiPIXQARERFRXmAYIiowWiV/rImIiIhSwasmogITjSfkLoGIiIgoLzAMERWYYX9U7hKIiIiI8gLDEFGB6XOFoBK5boiIiIhoKgxDRAVGAlBr08tdBhEREVHOYxgiKkB2vVruEoiIiIhyHsMQUQESOU2OiIiIaEoMQ0QFKBiNy10CERERUc5jGCIqQJ0jAYgKjg4RERERnQnDEFEB8kcSWFBhlLsMIiIiopzGMERUoExapdwlEBEREeU0hiGiAjXgDstdAhEREVFOYxgiKlA9rhCqLFq5yyAiIiLKWQxDRAWszs7NV4mIiIgmwzBEVMCCEbbYJiIiIpoMwxBRATvk8EKnFuUug4iIiCgnMQwRFbB4ElhQYZK7DCIiIqKcxDBEVOBU3HyViIiIaEIMQ0QF7thIQO4SiIiIiHISwxBRgXMGophXZpC7DCIiIqKcwzBEVATsRo3cJRARERHlHIYhoiLgDETkLoGIiIgo5zAMERWBtqEA7Aa13GUQERER5RSGIaIiMaeU64aIiIiITsYwRFQk4smk3CUQERER5RSGIaIicdjhg0rknkNEREREJzAMERWJUCyJUnaVIyIiIhrHMERURJQKjgwRERERncAwRFRElCJ/5ImIiIhO4JURURFRcs0QERER0TiGIaIiwmlyRERERG9iGCIqIiLDEBEREdE4hiGiIiIKDENEREREJzAMERURjgwRERERvYlhiKiICBwZIiIiIhrHMERURDgwRERERPQmhiGiIsKRISIiIqI3MQwRFZFhX0TuEoiIiIhyBsMQURHpGAnAblDLXQYRERFRTmAYIioyc0oNcpdARERElBMYhoiKzLFhjg4RERERAQxDREXHGYyi3KRhZzkiIiIqekq5CyCi7Dvk8GFjkx3bOpxylzJubYMNwWgcwUgcvkgClWYtjBolOkcDGGLjByIiIsoAhiGiIrWtw4kVtRbs7fXIWodZq0RjiQE7u1ynfN4ZiAIAVAoBc8sMaB8OyFEeERERFTBOkyMqYgcHvFjbYJPt/CatEiVGDfb2TR7IYkkJvnCc0/qIiIgo7aYVhr75zW9CEIRTPhYtWjT+eDgcxic+8QmUlJTAaDTixhtvxODg4BmP+aEPfei0Y1555ZUz+2qIaFpiCQk7u1xY32iDmOW0YdYqUW7SoGNk6hEfXziGpJSFooiIiKioTHtkaOnSpRgYGBj/eO2118Yf+5//+R/8+9//xt///ne8/PLL6O/vxw033DDlMa+88spTjvnQQw9NtywimoXtnS7UWLVYWWvJyvnmlBmgU4kpT30rM2kyXBEREREVo2mvGVIqlaisrDzt8x6PB7///e/x4IMP4uKLLwYA/PGPf8TixYuxdetWnHXWWZMeU6PRTHjMyUQiEUQiby6o9nq90/gKiGgi3c4Qup0hzC83QikKODjgS/s5BAFYW2/Dnl43YonUh3oqzFp0O0Npr4eIiIiK27RHho4ePYrq6mrMmTMHt9xyC7q7uwEAO3fuRCwWw6WXXjr+3EWLFqG+vh5btmw54zE3b96M8vJyLFy4EB//+McxOjp6xuffddddsFgs4x91dXXT/TKIaBJHh/w4OODDsmoz5pSlZ4PWOpsOG5vsKDNqsKPLNa0gpFcp0DbkT0sdRERERCebVhjauHEj7rvvPmzatAn33HMPOjo6cN5558Hn88HhcECtVsNqtZ7ymoqKCjgcjkmPeeWVV+JPf/oTXnjhBXzve9/Dyy+/jKuuugqJRGLS13z5y1+Gx+MZ/+jp6ZnOl0FEKdjf78Wx4QBW11lQY9NN+/VmrRLrG22YX25AjyuEbR3OGbXIXl5rhSsYm/briIiIiKYyrWlyV1111fifV6xYgY0bN6KhoQEPP/wwdLrpXywBwHvf+97xPy9fvhwrVqzA3LlzsXnzZlxyySUTvkaj0UCj4RoComzY3eOBQgDWNdgwGoieseGBUiFgabUZggDs7/Nge6dr0uemQq9SyN76m4iIiArXrPYZslqtWLBgAdra2nDZZZchGo3C7XafMjo0ODg4rfVAc+bMQWlpKdra2iYNQ0SUXUkJ2HF8H6ASgxpNpQZIAERhrANdNJGELxzDoCeMPWkML8FYEitqLOgcDcAbjqftuERERETALMOQ3+9He3s7PvCBD2Dt2rVQqVR44YUXcOONNwIADh8+jO7ubpx99tkpH7O3txejo6OoqqqaTWlElCGjgShGj2+Img17+zyoMGmwoMKEpDS21kgCcPyPkCCNfeLE54Sxf0qQEIkl0eUMIhpPZq1eIiIiyh/TCkOf+9zncO2116KhoQH9/f34xje+AVEUcfPNN8NiseD222/HZz7zGdjtdpjNZvzXf/0Xzj777FM6yS1atAh33XUXrr/+evj9fnzrW9/CjTfeiMrKSrS3t+MLX/gC5s2bhyuuuCLtXywR5adBXwSDM1hvBACiAMwtM8BuUCORlNA64EU4xnBERERE0wxDvb29uPnmmzE6OoqysjKce+652Lp1K8rKygAAP/nJT6BQKHDjjTciEongiiuuwK9+9atTjnH48GF4PGPTaERRxN69e3H//ffD7Xajuroal19+Oe68806uCSKitEhIQPtwYHxPI7tehRW1VrT0uDliREREVOQESZLyfl93r9c71mL70w9DodHLXQ4R5QG7QY25ZQa09ExvzyMiIiLKbclIED133wSPxwOz2XzG5057nyEiokLgDESxvdOFeeVG6FSi3OUQERGRDBiGiKioHRzwod6ug17NQERERFRsGIaIqOgdHvSjxqqDUTOrBptERESUZxiGiIgAHB3yo8KsgYmBiIiIqGgwDBERHdc+HMCiKpPcZRAREVGWMAwREZ1kd7cLlRat3GUQERFRFjAMERGdJJ4EqhmGiIiIigLDEBHRW+zqdmNOqUHuMoiIiCjDGIaIiCagY6ttIiKigscwREQ0gQP9XiytPvOu1URERJTfGIaIiCZhULPNNhERUSFjGCIimkQknpC7BCIiIsoghiEiokm4gzG5SyAiIqIMYhgiIprEoDcsdwlERESUQQxDRESTCMeTKDGo5S6DiIiIMoRhiIjoDEpNGrlLICIiogxhGCIiOgOjhh3liIiIChXDEBHRGSgVgtwlEBERUYYwDBERnUEskZS7BCIiIsoQhiEiojPwhuNyl0BEREQZwjBERHQGwz621yYiIipUDENERGfgCcXZRIGIiKhAMQwREU3BplfJXQIRERFlAMMQEdEUBDaUIyIiKkgMQ0REU5DkLoCIiIgygmGIiGgKAjg0REREVIgYhoiIiIiIqCgxDBERERERUVFiGCIimgInyRERERUmhiEioimwgQIREVFhYhgiIpoCW2sTEREVJoYhIiIiIiIqSgxDRERERERUlBiGiIimwFlyREREhYlhiIiIiIiIihLDEBERERERFSWGISIiIiIiKkoMQ0REU9AoRblLICIiogxgGCIimoJRo5S7BCIiIsoAhiEioikoRfaTIyIiKkQMQ0REU4gnpKyeTyUKsOhUWT0nERFRMeLcDyKiKfgj8bQdS6NUYEmVGWqlApIExJNJRONJhGIJ+MNxeMMxhGJJeEIxqEQBFSYtrHoVdGoRCkFALJFEIBLHsD8KZyCatrqIiIiKEcMQEdEUhn2RWR/DolNhQYURB/u92N3jTuk1sYSEXncIve7QhI+vqLXAF46jYyQw6/qmohCABRUmGDRKKBUCkpKERFJCMJrAIYcv4+cnIiLKBIYhIqIpOINR6FQiQrHEjF6vEgVUmrXY3ulKa117ez0AgNX1Voz4I+hxThyaZsOkVWJJlRmdI4FJQ8+iSiNEhQIH+r1pPz8REVEmcc0QEVEKKsyaGb92Ra0VhwczN3qyu9uNHmcIG5vsUCrS0+yh3q7H+kYbovEEtnU4MXiG0bFDDj8O9HuxotYCMU3nJyIiygaGISKiFMy0ocHCShN2dqV3RGgy2zqcaCzVo9qqndHrBQFYWWvBkiozup1BbO90IRJPvXnE3l4PVtdZZ3RuIiIiOTAMERGlQKua/sarggDE4skMVDO5tqEAXIEo1jfaoEqxJbhJo8TGJjsqTBrs6fWgdWDm0912dLmwsck+49cTERFlE8MQEVEKktL022uvbbDhWBaaG7xVKJbE9k4XrDo11jfaoFZO/FZfZ9dhfaMNsUQS2zqccHhn3ygCGBuhWtdgS8uxiIiIMokNFIiIUjDd5gkGtYhjQ/4MVZOaYX8Ew/4I7Ho1ait1SCbHAl1SkhBNJNE2FMhI0wUA2NXtwvIaC/b1eTJyfCIionRgGCIiSoErEJvW85fVWLCtw5mhaqbHGYzCGczunkRJCTg66MPcMgPah7M/OkZERJQKTpMjIkrBgCeEZdXmlJ5bZdFiZ1duBCE5heNJuAJRVFpm1tCBiIgo0xiGiIhSkJSAQw4vVtZapnxuvV2PLPdNyFnOYAyiIKDUqJa7FCIiotMwDBERpSieBPb1ebCm3nrG5w14MrMOJ1/1uUMIRuLY0GRL2z5IRERE6cAwREQ0DUkJ2NXtnrRb2twyA7oz1JQgnwVjSTR3uFBp0WJpitMNiYiIMo1hiIhoBnZ0ubCh8c39dDRKBRpL9DJWlB96XSEc6PdibYOVo0RERCQ7hiEiohlq7nSObzC6staKztEgO6elaGeXGwsrTdDNYDNbIiKidGEYIiKahW0dTmxosmPIF5a7lLxzoN+LGpsOFp1K7lKIiKhIcZ8hIqJZas6R/YTyUduQH7U2HTRKBYZ8EbnLISKiIsORISIiklWvKwSbnq23iYgo+xiGiIhIdocHfVhQYZS7DCIiKjIMQ0RElBPYTIGIiLKNYYiIiHLCnl4Paqw6ucsgIqIiwjBEREQ5o8qqlbsEIiIqIgxDRESUM/b0uGHTs9U2ERFlB8MQERHljFhCwoIKk9xlEBFRkeA+Q0RElFMOOrzQqhQIx5ITPm7RqbCo0oQ+VwgVFi28oRiODvmzXCURERUCjgwREVFO8YbiWF5jmfRxURCwrcOJXncIO7tcODrkx/pGGwxqdqMjIqLpYRgiIqKc0+sKQiFM/JgnFD3tc9s7XdCpRSys5BQ7IiJKHcMQERHlnAFPBCtrrRM+phAmTkkj/iiODfuxqm7yUSUiIqKTcL6Y3AAAN65JREFUMQwREVFO8kViE36+1KSe9DWxhISWHg/WNdgyVRYRERUQhiEiIspJbUMBrKi1YF65cfxzJq0S8cTUr93b60aFWZPB6oiIqBCwmxwREeWsvb0eAMDSahMUggLBaBztw4EpXxdNSKi26DDojWS6RCIiymMMQ0RElPMO9Pum/ZpoYuLW3ERERCdwmhwRERUkttomIqKpMAwREVGBmqQ3NxER0XEMQ0REVHBKDGocG/HLXQYREeU4hiEiIiooWqUCFr0KI/7TN2clIiI6GcMQEREVDJ1KgfkVJhxLoeMcERERu8kREVFBqLFqISoU2NfnkbsUIiLKExwZIiKivLe8xgxPKI5uZ1DuUoiIKI9wZIiIiPLaxiY7tnU45S6DiIjyEEeGiIgob21oZBAiIqKZYxgiIqK8tLjKhOZOBiEiIpo5hiEiIso7BrUIZ4Cts4mIaHYYhoiIKO8srbFg0BuRuwwiIspzDENERJR3jg375S6BiIgKAMMQERHllcVVJoz4OUWOiIhmj2GIiIjyilmrkrsEIiIqEAxDRESUV0KxhNwlEBFRgWAYIiKivOLwhOUugYiICgTDEBER5Q2TVokhH7vIERFRejAMERFR3qiz6eUugYiICgjDEBER5Q2jRil3CUREVEAYhoiIKG+weQIREaUTwxAREeUFrVKBQw6v3GUQEVEBYRgiIqK8sLDShFhCkrsMIiIqIAxDRESUF1Qif2URERUCk0aJVXVWucsAwDBERER5on3YL3cJREQ0S7U2Hcw6FVp63Fhdb5W7HIYhIiLKffPLjXAFY3KXQUREM6QQgBW1FrgDUfS5QwAAf1j+93X2KCUiopxnN6jlLoGIiKah3KRBtVUHfyQOdzCKUX8Ue3s9pzynYyQAlSjIuh6UI0NERJTzBr1huUugHGbW8t4uUa6psenQ0uNG25AfI/4oJoo78STQVGrIem0n47sHERHltAqTBp2jQbnLoBw0p9QAi06FfncI3nBc7nKI6LiFlSbs7nan9FzTDG5m6NQilldbAAHY3e2a1cgSwxAREeW0+hI9Bn0RucugHLKkygSFIGB//5v7Tll0KnhC8q8/ICJApRBSfu6uLjfq7Dr0OEMpPV+pEDCn1IDmTicAYEWNBQcd3hkHIk6TIyKinBaMJuQugXKESaPEokoTWgd8pwQhYKxDFRHlhs7RQMrPlQAoIGB5jWXK5zaW6NFYoseBk37+9/Z5sKjSBJWYegA7GUeGiIgoZ+lVChwZ9MldBuUAnVpEpUWLQ46Jvx8MGl7SEOWCSrMWjmmu8+xyjk2FnldmgNWgRiAShy8ch02vhk4lIilJ8IZjaB/yY6IBoH19XqxtsGFnl2va9fKdg4iIcta8CtNp3Yeo+GhVCjTY9ZMGIQBwBaOotGjh8Lx5EWbSKFFfoodRo0QomoBWLaK5w5mNkomKVoVl+mHohLbhADD85qhSryu1qXMAkJRmNk2OYYiIiHKWVsnZ3MVOJQqYW2Y8ZVrMRI4Ojm3Ku6LWApVCgUFvGL3u0CmvUwjAggojjgxyA1+iTJHrffuowwdRISCRnF4oYhgiIqKcJQgzmwNOhUGpELC40oy9famPDp5pJDEpAe5gDEqFgPg0L5iIKDVybYXgjyagViqmHYZ4y42IiHLWTKc9UP5TCMCyasu0glAqhtiZkChj6u162bZC0CoViMaT034dwxAREeUsOXclJ/kIArCqzoqWXnfaj63iqBBRxlRZtLKd26xTzeh1DENERJSzwrHJ22qXGtVYWm3G3DJ5dy+n9Ftbb8OuFDdsnC6dRszIcYkI6HbKt0G2PzyzfcYYhoiIKGeZdSpoVW/+qhobMbBgXpkBI/4oDvR70T4cwIpaCywzvCtIuWV9ow07ZtAeN1U6JcMQUSasrrdiwCPPeiEACMaSMxqZYgMFIiLKWc0dTtj1aqyoNSKZlODwhNHSc/oakr29HqxryOxFNGXehkb7+K7ymaJV8z4wUbotqzFjXwamtU5XnU0PbyiG6SwNZBgiIqKc5gxGU9obhqtA8tvGJju2ZWEPIJ2Klz5E6bSw0oSjgz7MoHdB2jV3OmFUi1jXYENPiq/h7REiIioIfS755qrT7GQrCAGAScswRJQuK+ss6HMGEYnnzu0ofzQxrVkCDENERFQQHN4Iyk0aucugadqQxSAEAAK4dxXRbK2staCp1IA9PR74o5M3upFLU6k+5efy9ggRERWMWpuO+8jkkfWN/7+9ew+Oq7zPOP7sfVfai1ZXS5YsycFgMLZj4wsEmLaBwmQYGmimaTyUTjv0EgZSoKUBWlpoJ62ZTjtNmKY0k7SQTsow4Q/SSxooEwodCBffsI0BY4ys+8WWdle7q9Xuavf0D2MT44u0knbP7jnfz4xmYH3O7k86eu199n3P740uaAnkckpl5yr6eoCVbOyMKDk7p/0X2Ny4GjTVL/yDMcIQAMAyXE4+9a8VW7qj2nWs8g0vxqbN63YF1KoNKyNK56o/BJ1yPLXwD8UIQwAAyxiJ80a3Fmxa1WBK57+Qz6WpdK7irwvUqkjAo/aITweGayMESVJTvVf9k/EFH889QwAAyxiOZ9RY7zW7DFzAxq6I9g/GTXnt9oaAKa8L1KLmoFfhgFvvj6XMLqUkXY0Lv19IIgwBACymu6m0fwhROetXRnRoOKGiSY2n6n0siAEWoiPil9vp0OBUxuxSSuZ1lRZv+FsBAGApbu4bqkqXtYf1/ti0qXuR8LsBzM/ndio7V9RkjS4pjWdKq5uZIQCApYxzg3zVuWRFSEePJ5UvmLsXidNBGALmc1lHuGaDkNvpUN/xdEnnEIYAAJYyMJVRJOAxuwx87KLWoAYn06ZsytjdWKfPtNRre2+jJKloVM/GkEC1quWPDDoaAsqXuA6XMAQAsJxSNtxD+fQ212s8kdFM3py1cc0hr44eT+vNvilt6Y6aPjMF1IJMvvo2UV2oaF3pH4RxzxAAwHI8Jd5Ai+XXEvJpKp1VMmvOG6vmoFf7Bz9pB7x3IKaGRbxRAuxmxqQxuxz8HlfJ5/CvBQDAct4bnZbPzT9xZuptqlciM2fa669uCWru55bLFA1pKp03rR6gVqSy5o3bpVrMUlj+pQAAWE4qW9DlKyNml2FbIb9bB4fjpr2+3+3Ue6PTpr0+UMumM7X7oUEmV/qsFmEIAGBJiRLbq2L5XNQaVMak+4QkaUNng5KztfvpNmCWoM9dcgOCajKZzpZ8DmEIAGBJH06k9dkuZofMUOqmh8ttOF57G0UC1aCWN612Ox0aSxCGAAA47XgyJxcbbVacmd2oNnZGCEPAItX7are32oqIX4uZ0yIMAQAsazieUVvYZ3YZtlMwcZlNvmDe8jygljUHvXp3JDH/gVVqsfvLEYYAAJbG3jKVFzTx0+WPTpS2+zwAyeNyqC3sV6qG22ofGjnZRXRTicujCUMAAEtqrPdqa09Uk6nS15BjaYZMWqbmczs0a2LjBqAW1XtdWtMa0qGR2u/AuKYtqH2Dpc1uEYYAAJbSUOfRtp5GpbNz2nUsphpujFSzhmMZbeisfPOKsN9b8dcEallTvVctIZ/etUgr+sV8GEIYAgBYgsfp0PbeRmXzRb11bErZOWYIzBRYxE7wS5XO1u7+KECleVwOBTwuHZucMbuUZbF+ZUQfTqRKPo8wBACoeZ3RgDobA3qzb8rUTmb4xGJ2gl+qmXxRIX/tdsMCKmnzqqhpS1rLYa64uA/ACEMAgJq2pTuqyVROfSes8emmVTgc5rQ0X2xHKcBu+izWbOREKqdNqxpKPo8wBACoSfVelzavatDu/hizQVWoaNLNWjmWRwIL4vdYKwYcT2a1byCurT3Rks5jLhkAUHOidR5FAh7tHYibXQrOIzlrzv07MzmCMbAQAY81Y8BHx9PyuBY+M22tSAgAsLzmoFf1Prdlbvq1qomkOS3N07k5U14XqDVetzlLWcttMp3T+pUL72ZJGAIA1Iy2kE8el1NDMevc9GtFIZ9bsZnKzwxd3hGWCX0bgJrkclozDEkqqZsoYQgAUBNaQz4VJY0mZs0uBfNoi/hNeV2Pm7c1AKTjyYX/O8HfGgCAqudxORTyu3XcpKVXKI0ZHd0iAbfeGS5t53nAzqw8izqRzC34WMIQAKDqbVoV1dHj1moDa2VuE5bfXLIirHzBwu/ugGWWynJ/nUQYAgBUuYDHqUN84l9TzGhvPcbySWDBPC6H+if5gEkiDAEAqtzlKyNK0y65psRmFr5EZTlc3BbUwBTdBYGFuqw9LLbkOokwBACoamyiWVv8HqeGK9ztL+yv/D1KQK26qDWoD8aTZpdRNQhDAICqNkgb7ZqypjWofLFy9+7UeZw6NDJdsdcDatXKhoC29kQ1MJlWJs+HTKeUFIYeffRRORyOM77Wrl17+s9nZ2d11113qampScFgUF/60pc0Pj5+wec0DEN//ud/rvb2dgUCAV1//fU6cuTI4r4bAICltIV8mkpXdskVlibgreyu9utWRpTJs4wSOJ+LWoPa2BnRcDyjXcdiytFo5AwlzwytW7dOo6Ojp79effXV039233336T//8z/17LPP6pVXXtHIyIh+9Vd/9YLP9zd/8zd6/PHH9U//9E968803VV9frxtvvFGzs9wICQB25/c4tSJszp41WJxKL5GLm7C5K1ArVjfX69iJlPYP0YTmfEr++MbtdmvFihVnPZ5IJPTP//zPevrpp/X5z39ekvTkk0/q0ksv1RtvvKErr7zyrHMMw9A3v/lNPfzww/riF78oSfrXf/1XtbW16Uc/+pG+8pWvnLOGbDarbPaTvSamp5keBwAr6p/KaF1HSGPTfEBWC1aE/RqOVy4M9TTV6chEqmKvB9SafLFIo4R5lDwzdOTIEXV0dGj16tW67bbbNDAwIEnas2eP8vm8rr/++tPHrl27VqtWrdLrr79+zufq6+vT2NjYGedEIhFt3779vOdI0s6dOxWJRE5/dXV1lfptAABqRN/xtByV37YGi9DdVFfR12sJ+Sr6ekCtGZzinsv5lBSGtm/frqeeekrPP/+8nnjiCfX19enaa69VMpnU2NiYvF6vGhoazjinra1NY2Nj53y+U4+3tbUt+BxJeuihh5RIJE5/DQ4OlvJtAABqyEy+qJ6merPLwDzqvC69O1q5lRoel0Pvj9ERCzifgNdldgk1oaRlcl/4whdO//eGDRu0fft2dXd364c//KECgcCyF3c+Pp9PPh+fBgGAXTQHveo7wQaB1Wz9yoje7Juq6OvtHYhX7PWAWlPncSnDHm3zWlJr7YaGBl188cX68MMPtWLFCuVyOcXj8TOOGR8fP+c9RpJOP/7pjnMXOgcAYD/FCrZqRulCfrfeHansDdqzdJADLsjPzNCCLCkMpVIpHT16VO3t7briiivk8Xj005/+9PSfHz58WAMDA7rqqqvOeX5vb69WrFhxxjnT09N68803z3sOAMB+2BOjel3WHlKdx6VktnLhpKPBr3dHWSIHXMhYYlZrV4TMLqPqlbRM7v7779fNN9+s7u5ujYyM6JFHHpHL5dKOHTsUiUR0xx136A//8A/V2NiocDisr33ta7rqqqvO6CS3du1a7dy5U7feeqscDofuvfdefeMb39CaNWvU29urP/uzP1NHR4duueWW5f5eAQA1KjvHLEA1cDkdWtngV2O9Tz63U7P5gikte7uidRqJ02EQuJBC0dD49Kya6r2aZL+28yopDA0NDWnHjh2anJxUS0uLrrnmGr3xxhtqaWmRJP393/+9nE6nvvSlLymbzerGG2/UP/7jP57xHIcPH1Yi8clfnF//+teVTqf1e7/3e4rH47rmmmv0/PPPy+9nXwkAwElZZoYqzuNyaF1HRD63U7lCUZOprIZjGQ1Mnfwyi9MhfUg7bWBBYjN5betp1GS6cvfz1RqHYRg1vxB7enr6ZIvte38op6+ybT0BAOXXWO/VFJ9sVoTb6dCmVQ3qn5zRRDI7/wkVtqEzogNsIAksWCTgUSJjr82Ji9kZDX7zy0okEgqHwxc8dkn3DAEAUG6NdV6taQ2aXYblOR3Slu6omoNe7ToWq8ogJIk9p4ASXcJ9QxdEGAIAVLWpmZzeHUloe2+jPC7eCS83h0PavKpB7RG/dvfHNDZdnSHoFO4VAhbO53ayrHQehCEAQNVLZgt6s29KTfVebVrVYHY5lrFpVYM6GwLaOxDXcA2EjKDPpeNVOmMFVKONnRGWGM+jpAYKAACYaWw6q7HprC5qDcrldOjwGO2VF+OzXQ2KpbPaV2Oblq5sqNPhca45sBAnZ4XYrHo+hCEAQM05tezjs10RHU/mNBw3r7tZLdnYGdH07JzeHoybXcqihAO8bQEWwut2ak1rUO+MTJtdStXjbxUAQM16ezAhl0Pa1tuow2PJkjsmORxSW8iv5qBXdV635JBmcgXFZ3JqCfnkcjjUdyJd83t0rF8ZUSY/Z8qeQMvJQfcE4IJCfrd6m+qVKxQJQgtEGAIA1LSCIb3VN6Wg16XtvY0ajM2cdZN9tM6j1rBfIZ9bLqdD2bmCYjM5jcRnNTZ98uvThmKfzDb1NterNeTT9GxeR8ZTmivWxq4U6zrCyhWKOjhc2yHolJF4Rm6no2Z+/kClXNYeViZfUN+JtA5YZLxXCmEIAGAJqdzJJguStLIhoNaQT6lsXqOJWcVm8orNLH6fjb4TafWdOLn2vt7r0rrWoLxuZ9XuxbP241a6hyz2yfBQLKNtvY16q48NJIFTtnRHtbs/ZnYZNYswBACwnOF4pmz3EaVzhTOWm3VFA2qPBDSTm9Ph8aTyBfNmLS5uC8rtdOrdUWuFoJ93cCiu5qBXJ1K1vXQRWA6rGut0YChudhk1jTAEAMASDMYyGvx4SZ3P7dD6lWEFvG4Nx8oXyD7totagfG6n5WaCziWTL2ptex1hCJDkcjqUM/EDGCsgDAEAsEyyc4YODn8SSNojfnVF6zQ7V9CR8ZQy+cKyvt7qlnoFfW4dqPHGCKXaNxDX5lUNmp6dY0NJ2NblK8N6Z9j6H4CUG2EIAIAyGU3MajRxsjmDx+nQuo6Qgj6PxqZn1T85s+jn7WmqUyTgqfnucEux9+M9kta01isc8OrAUNzUJYpApXlcTrNLsATCEAAAFZAvGjo08smGoS1Bn7qb6jRXNPThREqp7Ny8z7GqsU5N9R7tG7RvCPq0IxNpSWk11Hl0SVtIfSfSVdnUAlhObqdDR9iAeFkQhgAAMMHxVFbHUyfftDsd0toVQUUCXh1PZTU4NaOVDQE1Bb1yOZ2ayc5pJDGrgakZDdBI7ZziM3m92Tclh05uxpubMyzdSAL2tr4zon0fz45iaQhDAACYrGhI74+dee/LsckZHVvCUjq7MnRyM15J2rAywp4rsKRsvmh2CZbBYkMAAGBJB4YTWtcRNrsMYFld1h5m1nMZEYYAAIBlzS5zBz/ATA6HNJOb//5CLBxhCAAAWNbR42ltWtVgdhnAsrhiVZTls8uMMAQAACxtYjorl9NhdhnAkgQ8Ln10Im12GZZDGAIAAJY2HM8wO4Sat6Ezoql0zuwyLIcwBAAALC81y30WqF3NQa/eHoyZXYYlEYYAAIDlcdM5all3U72yc4bZZVgSYQgAAFjeNDNDqFGrm+u1p59ZoXIhDAEAAMuLz+TloIcCapDPw9v1cuKnCwAALM8hyU1HOdSYjZ0RvTeaNLsMSyMMAQAAy+tqDChf4J4L1A6X06HJFN3jyo0wBAAALK856DO7BKAkV6xq0FA8Y3YZlkcYAgAAlucQS+RQWwamZswuwRYIQwAAwNLqvS69M5IwuwxgwToifo1NZ80uwxYIQwAAwNIubQ8rO1c0uwxgwVZGA2aXYBuEIQAAYGn5AkEItWV8OquNnRGzy7AFt9kFAAAAlIvLIR2ZSJldBlCSgakZDUxJvc31KhSLGpiikUK5MDMEAAAsa01bSDO5gtllAIvSdyKt48mcNnU1mF2KZRGGAACAZYUDHrNLAJYkky9o32Bc23oaxb7By48wBAAALMkh6aPjLJGDNbx1bEqXrAgpHOAul+VEGAIAAJa0pSeqE6mc2WUAy+a90aRWNwfNLsNSCEMAAMBy1q4Iad9A3OwygGX39mCcTnPLiHk2AABgKR6XQ6OJWc0VDbNLAZasPeJXyO9Wvdctj8spOQydXASK5UAYAgAAlrKqsU5Hj6fNLgNYFm6nQx+Mc+9bubBMDgAAWEq9j896YR3ROq/ZJVgaYQgAAFjKwNSM2SUAqBGEIQAAYCnxmbw2rWowuwxgyYI+tw4OJ8wuw9IIQwAAwHKGpjIKeFxmlwEsSSo7p229jWaXYWmEIQAAYDnHU1mtp/0wLODNvilt7YmaXYZlEYYAAIAl7euPKeSnmQJq29aeqA4OsVSuXAhDAADAkvJFQ6tb6s0uA1i0rT1R7ToW0+xc0exSLIswBAAALMvv5r4h1CaX06H3RqbNLsPyCEMAAABAlbm4LahUrmB2GZZHGAIAAACqTNjvMbsEWyAMAQAAyzLMLgBYJH53K4MwBAAAAFSZuQJNEyqBMAQAACzLYXYBwCLlC8wNVQJhCAAAAKgyk+ms2SXYAmEIAAAAqDIj8Vl1NgTMLsPyCEMAAABAFVoZJQyVG2EIAAAAqEKJTN7sEiyPMAQAAABUocPjSZbKlZnb7AIAAABqQSTg0Zq2oJxyyJChuaKhQsGQz+PUnv6YijT/wjIzDCla79VQPGN2KZZFGAIAAJY1k5tb0vkel0PrOsIyDOmd4YR2H4ud87hVjQGF/B4dGple0usBn3ZwOKH1K8M6OMzvVjmwTA4AAFjWweFpbetpLPm8S9pC2tITld/t1NuDCe0fSuhC274MTGV0aGRam7oa5HGxuxGW11Q6z+9VmTAzBAAALG3vwJS2dEc1mc5pNJHRbL541jGRgEcdDX6F/B4NTs3o8HhyUa+1bzCuDSsjend0WnOsm8MyGY5n1Bb2qStap/2DceX53Vo2hCEAAGBpc0Vpd/8ny9tagj41h7yq87g0kytodHpW8Zn8snXuOjCc0MbOiN4ZmVaBN61YJuPTWY1PZ+VyOtTdWKe2iE8HhxLKnCPcY+EIQwAAwFaOp7I6nsqW9TX2DyW0qSui/UMJGitgWRWKhvqnZtQ/NaPWkE9rWv06MJwwu6yaxT1DAAAAZbBvMKGNXQ1ycqsHymQimdWB4YTWrgiZXUrNIgwBAACUyb6BuD7b1SAHgQhllJydk5cGC4tCGAIAACijvQNxbV4VNbsMWNhwPKPPrmowu4yaRBgCAAAosz39MW3pJhChfD6cSDE7tAiEIQAAgArY3R/TxW1BrW6pN7sUWNBUOq+NXQ1ml1FzCEMAAAAV8sF4Sh8dT2trT1QNdR6zy4HF9J1Iy0PHjpIQhgAAACps17GY5gpFbetp1GXtIbl4A4tlcCKV496hErHPEAAAgAlS2YLeOjYlSQr6XFrTFpLTIR0ZT2l6ds7k6lCr+idn5Hae3GwY8yMMAQAAmCyVLWjfQFyS5JB0SVtIXrdDB4enTa0LtWcimdXWnqh2HYuZXUpNYJkcAABAFTEkHR5P6t2RaX22K2J2OahBg7EMm/0uEGEIAACgChUM6cBQQp+lQxhKNJaYZW+rBSIMAQAAVKmiIb0/Oq32iN/sUlBjRqdnzS6hJhCGAAAAqtjsXFGRAG24UZrhWEbNQa/ZZVQ9whAAAECVe38sqa09LHtCadrCzCjOhzAEAABQAw4MxdXBcjmUwO/hrf58+AkBAADUgOycoTDL5VACl5O3+vPhJwQAAFAj3h9LaltPo9lloFYYZhdQ/QhDAAAANWT/UEwdDSyXw/zmikWzS6h6hCEAAIAakp0zFPK55WBTTcwjnskr6HOZXUZVIwwBAADUmMPjKW3tprscLuyj42lF6rza2hNVYx1tts/FbXYBAAAAKN3bg3GtbAhoOJ4xuxRUseFYRsOxk78jl6wIyaGT9555XA71NNUrkclrIpk1t0gTEYYAAABqUK5gKPjxcjmDG+WxAIfHkpKkxnqPZvNFHZlIKex3KxJwK5GZM7k6c7BMDgAAoEYdHk9qK93lUKKpdF4zuYIkaXp2TmvaQiZXZB7CEAAAQA17eyCm7qY6s8tADRtNzJpdgmkIQwAAADUsVzCUzOTV1RgwuxTUqKlUzuwSTEMYAgAAqHFTM3mlZ+cIRFiU5qB9O80RhgAAACzgVCDqbWbJHBbO4ZDCAY/ZZZiGMAQAAGARUzN5DccyuoI9iLBA23oadWhk2uwyTENrbQAAAAvJFQzt6Y9pS3dUB4YTys0VF3zuZ1rq1Rz0KZHJKztX1FyhqLliUYWi1Bb26+BwooyVwwwjNt+nijAEAABgQbv7Y+ptrldTvVcfHk8pPpM/65iQz62L2oJyOhzqO57W0Y+/ziWWzmldR9jWswhW43DI9pv2EoYAAAAsqu9EWn0nToabi9uCitZ5lcjkFQ54NJ3J64PxpPYNxBf0XPmioSPjSV3WHta7owQiK6jzuJT+eL8huyIMAQAA2MAH46klP0euYOij4ymtXRHS+2PJZagKZmoK+pSemjG7DFPRQAEAAAALNjtXVP9kWr3N9WaXgiVqsnFL7VMIQwAAAChJJl9UJjensJ9FRrXs6PGlzxbWOsIQAAAASjY2nVVXY50cDrMrwWJ1RNiklzAEAACARTk0Mq1tPY1ml4FFCvvtu9nqKYQhAAAALNqbfVPa2Bkxuwwswv6huDavajC7DFOx0BMAAABLcnQiJb/Hqdn8wjd4hfmyc0XtHYiro8GvaJ1XAY9LLqdDQ7GMbfYfIgwBAABgSVK5gjZ0RnRgKGF2KViEkfisRuKzp/8/7Hfr4rbgsrRjr3YskwMAAMCS+dy8rbSK6dk5eV32uJ72+C4BAABQVgOT9t6802qOnkjLaYNOgYQhAAAALNl4Mqvuxjqzy8AyyeQKWt0SNLuMsiMMAQAAYMkiAbcy+YLZZWAZNdV7zS6h7AhDAAAAWJKOBr9aQn5NJLNml4JlVDQMs0soO7rJAQAAYNE6owEdT2Y1Mjc7/8GoKdOZObNLKDtmhgAAALBoLSGfsnPsL2Q1qxrrdHg8aXYZZUcYAgAAwKLZpQWznQQ8LtV5XWaXUREskwMAAMCiFYrWv6/ETuq9LnVG6/T+mPVnhSRmhgAAALAEqaz17yuxC7fToS6bLI87hTAEAACARfO4Lrwz58bOiNojfm3tiSrsZ1FSNdu0qsE2M0KnEIYAAACwaHXe8wccv8epgakZjSZmtetYTE6nQ1u6o/K6eQtabXqb67XrWMzsMiqO30QAAAAs2lzx/J3kNqxsUGwmf/r/4zN57e6PyedyaGtPVJ9pqa9EiViAlpDP7BJMQRgCAADAou0fjGtNa/Csx1tDPr0zHD/nOclsQbuOxXT0eFrdjQFt62lUtM5T5kpxIcdOpM0uwRQs3AQAAMCizRWlgam0Ll0RUjjgUa5QlNvp0PFkVhPJ7Lzn909l1D+Vkdspbepq0L7BePmLxhnWrgjZ7l6hUwhDAAAAWJLsnKH3lvhmeq4o7RuMa0t3VLv77XfviplCNm5swTI5AAAAVI3d/TFt6200uwzbcDkd+sBGrbQ/jTAEAACAqvJW35S2E4gq4rL2sBIZ++4VRRgCAABA1dnbH1OrTTucVZLdu5zb/NsHAABANcoXDa1qrDO7DEvragxo32DC7DJMRRgCAABAVdrTHyMQlVFLkJk3whAAAACqkiGx/1CZrG6p196BuNllmI4wBAAAgKq1fyihi9vO3tQVi9fbXKfJ1Px7QNmBfZuKAwAAoCY4HQ6zS7CMrmhAJ1I5JWft20Hu5zEzBAAAgKr2/lhS61dGzC7DEobiGV3SFlJjvdfsUqoCYQgAAABVLzmbN7sESzCMkxvbZvIFNrcVYQgAAAA14NjkjK5YFTW7DMvI5AqaKxTNLsN0hCEAAADUhJHEjNxO7h9aLrk5whBhCAAAADVhNJHVplUNZpdhCa0hn94ZmTa7DNMRhgAAAFAzPpxIKeB1mV1Gzettrje7hKpAGAIAAEDNiM3ktYHOckvidjrUP5k2u4yqQBgCAABATXlnOKFIwGN2GTVrQ2dEY9NsuioRhgAAAFBj0rmCLmkLmV1GTdrWG9XegbjZZVQNwhAAAABqzr6BmFpDPrPLqCnbehr1Vl/M7DKqitvsAgAAAIBS5YuGuhrrNJG0x3Ivh0Pa1NUgp8OhZHZOH4wnZRgLP3/zqga9dWyqfAXWKMIQAAAAatKe/pi6ogENxjJml1JWa1qDyheKZyxvW9MaVK5QVP/kzLznX74yrP2D8XmPsyPCEAAAAGpWR0N1hqHLO8LyeVxyOqQTqZyOTaZLmsk5pTno1URyVonM3BmPH5lIyeWQtvc2au9ATPnC2U/e21yvsN+t/UOJxX4blkcYAgAAQM2Kz+TNLuEMF7cF5XQ4ztrQNOhzfby3j0MHhxcWThwOqSXk03ujyXP+ecGQ3uybUmdDQC0hn44eT2l6dk6rW+oV9Ll1gBA0L8IQAAAAatYH40kFPC5l8gVT6+huqlMk4DlvAEllCzo4fDIgrWkLyuN06t3R6XMee8q2nka92Tf/fT5D8YyG4idnxy5rD+mD8aTmiiV+AzZFGAIAAEDNMiS5XQ7JxAmijga/xhOzC7p/R5KOjKckSWtXhFTndWkqndNQLKO54smlbi0hn3qb67RrEQ0P3h1NaltvlK5xC0QYAgAAQE0rFhdxM84ycTkdqvO6NTI3W/K57499svzN7ZR6muoU9Lv17si0ji+hS95bfTGtXxk+PROF8yMMAQAAoKaZmIW0pTu6oKVs85krSscWOLO0EIOxjBrrvZpK55btOa2ITVcBAABQsxrqPMt2v1DI75bDsfDjm4NevbUMQagc4jN5tUf8ZpdR9QhDAAAAqFmronVLfo72iF9be6LK5gtaGQnoiu6oXM75U1FnNCATJ6XmdWhkWtt7G80uo6oRhgAAAFCzAl7Xos9tDnq1aVWDxhKz2nUsplzB0FA8oz39MTXXe7W1JyqP6/yhyOte/GtXyu5jU7qoNWh2GVWLMAQAAICalS8srof0mtagioa0byB+ztmd8WRWu47FFPZ7tK23UfWfCl0NdR69N1L9+/gUDGkmN6e6JYRGK6OBAgAAAGpWbhEb6lzRHdWBwbjyC+i8MJnOabJvSk6HdElbSJJ0PJnV1EztNCYYic9q86oG7R2Im11K1VnSzNBjjz0mh8Ohe++99/RjR48e1a233qqWlhaFw2F9+ctf1vj4+AWf59FHH5XD4Tjja+3atUspDQAAADaQLSEMOR3Stt6o9vTHFhSEfl7RkA6PJ3V4PFlTQeiUvQNxbeP+obMsOgzt2rVL3/nOd7Rhw4bTj6XTad1www1yOBx66aWX9NprrymXy+nmm29WsXjhX9R169ZpdHT09Nerr7662NIAAABgE4313gUe59Gl7SFbb0b6Vt+UtvVEzS6jqixqmVwqldJtt92m7373u/rGN75x+vHXXntNx44d0759+xQOhyVJ3//+9xWNRvXSSy/p+uuvP38hbrdWrFixoNfPZrPKZj/ZiGp6mg2lAAAA7OjIeEoel0P5wrlnepyOk3sBvTsyrUMjyXMeYydvHYtpa09Uu47ZNxT+vEXNDN1111266aabzgo32WxWDodDPp/v9GN+v19Op3PemZ4jR46oo6NDq1ev1m233aaBgYHzHrtz505FIpHTX11dXYv5NgAAAFDjpmZy2rQqqrD/7M/417QG1d1Ur7eOxZTKLc9eRFaw61hMGzsj6ooGzC7FdCWHoWeeeUZ79+7Vzp07z/qzK6+8UvX19XrggQc0MzOjdDqt+++/X4VCQaOjo+d9zu3bt+upp57S888/ryeeeEJ9fX269tprlUyeO70/9NBDSiQSp78GBwdL/TYAAABgEW/1TWl6dk5rWuu1vbdRl7WHtaU7qiMTKfWdSJtdXlXaP5TQYCyjTV0N6mla+l5NtaqkZXKDg4O655579OKLL8rvP3tH25aWFj377LO688479fjjj8vpdGrHjh3avHmznM7z564vfOELp/97w4YN2r59u7q7u/XDH/5Qd9xxx1nH+3y+M2afAAAAgCMTaUmEn1LsG4xLkjZ2RpTJF3RkIiWjmneSXWYlhaE9e/ZoYmJCmzdvPv1YoVDQ//3f/+kf/uEflM1mdcMNN+jo0aM6ceKE3G63GhoatGLFCq1evXrBr9PQ0KCLL75YH374YSnlAQAAAFiE/UMn90wK+lxa3RyU3+vUZCqnvhNpldh4r6aUFIauu+46HTx48IzHfvu3f1tr167VAw88IJfrk82cmpubJUkvvfSSJiYm9Cu/8isLfp1UKqWjR4/q9ttvL6U8AAAAAEuQyhZ0YPiTzWTrvS6tbqlXndetyXROHx1PWSoclRSGQqGQLr/88jMeq6+vV1NT0+nHn3zySV166aVqaWnR66+/rnvuuUf33XefLrnkktPnXHfddbr11lt19913S5Luv/9+3Xzzzeru7tbIyIgeeeQRuVwu7dixY6nfHwAAAIBFSucKOjj8SefmOo9Tq1uDqve6NZXO6aMTaRWqKB2tbqlXyOHVQjsKLKq19oUcPnxYDz30kKamptTT06M//dM/1X333XfGMaeW0Z0yNDSkHTt2aHJyUi0tLbrmmmv0xhtvqKWlZbnLAwAAALBIM/mi3vm5cLSuI6QPxlPnbW1eSa0hnwanZpSdWfh9Yw7DqP1bpKanp0+22L73h3L67NsNAwAAAKi0DSsjend0WnMmzxBd0R3Vnv6YitkZDX7zy0okEqf3Pj2fRe0zBAAAAACSdGA4ofUrw3I6zK1jKp0r+RzCEAAAAIAl2TeY0KauBlNrWEwWIwwBAAAAWLI9A3Fd1Bo05bWdDml8erb088pQCwAAAAAbaqr3Vvw1HQ5p06qo0rlCyecShgAAAAAsi8XMzizFtp6oWoI+7emPLep8whAAAACAZXFsckatIV9FXmtdR1hvHYtpIpld9HMQhgAAAAAsm+6m8m914/c4NZVefAg6hTAEAAAAYNnMLOLenVLUe11avzKi0cTSw5B7GeoBAAAAAEnSB2NJBbwuZZYhFHlcDoX8HtV5XYoEPPJ7nHpnOKFdxxZ3j9CnEYYAAAAALJt80dC6tpDeHoyffqw94lfQ55bP7ZTH7ZTb6ZDTcXJnoKJhqFA0lC8UNTtX1GyuoHSuoNRsXrmCoal0TlNpaSiWWfZaCUMAAAAAlpXLKa1qrFN7xK+BqRmNJirbZW6hCEMAAAAAltWe/rgkaWBqxtxC5kEDBQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC25Da7gOVgGIYkqZidMbkSAAAAAGY6lQlOZYQLcRgLOarKDQ0Nqaury+wyAAAAAFSJwcFBdXZ2XvAYS4ShYrGokZERhUIhORwOs8tZlOnpaXV1dWlwcFDhcNjscmyP61FduB7Vh2tSXbge1YdrUl24HtWnnNfEMAwlk0l1dHTI6bzwXUGWWCbndDrnTX21IhwOM0irCNejunA9qg/XpLpwPaoP16S6cD2qT7muSSQSWdBxNFAAAAAAYEuEIQAAAAC2RBiqEj6fT4888oh8Pp/ZpUBcj2rD9ag+XJPqwvWoPlyT6sL1qD7Vck0s0UABAAAAAErFzBAAAAAAWyIMAQAAALAlwhAAAAAAWyIMAQAAALAlwhAAAAAAWyIMVcDOnTu1detWhUIhtba26pZbbtHhw4cveM5TTz0lh8Nxxpff769Qxdb2xBNPaMOGDad3PL7qqqv0k5/85ILnPPvss1q7dq38fr/Wr1+v//7v/65QtfZQ6jVhfFTWY489JofDoXvvvfeCxzFOKmMh14MxUl6PPvroWT/ftWvXXvAcxkf5lHo9GB+VMTw8rN/4jd9QU1OTAoGA1q9fr927d1/wnJdfflmbN2+Wz+fTRRddpKeeeqrsdRKGKuCVV17RXXfdpTfeeEMvvvii8vm8brjhBqXT6QueFw6HNTo6evqrv7+/QhVbW2dnpx577DHt2bNHu3fv1uc//3l98Ytf1KFDh855/M9+9jPt2LFDd9xxh/bt26dbbrlFt9xyi955550KV25dpV4TifFRKbt27dJ3vvMdbdiw4YLHMU4qY6HXQ2KMlNu6devO+Pm++uqr5z2W8VF+pVwPifFRbrFYTFdffbU8Ho9+8pOf6N1339Xf/d3fKRqNnvecvr4+3XTTTfqlX/olvf3227r33nv1O7/zO3rhhRfKW6yBipuYmDAkGa+88sp5j3nyySeNSCRSuaJsLhqNGt/73vfO+Wdf/vKXjZtuuumMx7Zv3278/u//fiVKs60LXRPGR2Ukk0ljzZo1xosvvmj8wi/8gnHPPfec91jGSfmVcj0YI+X1yCOPGBs3blzw8YyP8ir1ejA+yu+BBx4wrrnmmpLO+frXv26sW7fujMd+/dd/3bjxxhuXs7SzMDNkgkQiIUlqbGy84HGpVErd3d3q6uqa91NyLE6hUNAzzzyjdDqtq6666pzHvP7667r++uvPeOzGG2/U66+/XokSbWch10RifFTCXXfdpZtuuums3/9zYZyUXynXQ2KMlNuRI0fU0dGh1atX67bbbtPAwMB5j2V8lF8p10NifJTbf/zHf2jLli36tV/7NbW2tmrTpk367ne/e8FzzBonhKEKKxaLuvfee3X11Vfr8ssvP+9xl1xyif7lX/5F//7v/64f/OAHKhaL+tznPqehoaEKVmtdBw8eVDAYlM/n01e/+lU999xzuuyyy8557NjYmNra2s54rK2tTWNjY5Uo1TZKuSaMj/J75plntHfvXu3cuXNBxzNOyqvU68EYKa/t27frqaee0vPPP68nnnhCfX19uvbaa5VMJs95POOjvEq9HoyP8vvoo4/0xBNPaM2aNXrhhRd055136g/+4A/0/e9//7znnG+cTE9PK5PJlK/Yss474Sxf/epXje7ubmNwcLCk83K5nPGZz3zGePjhh8tUmb1ks1njyJEjxu7du40HH3zQaG5uNg4dOnTOYz0ej/H000+f8di3v/1to7W1tRKl2kYp1+TTGB/La2BgwGhtbTX2799/+rH5lmUxTspnMdfj0xgj5RWLxYxwOHzepb2Mj8qa73p8GuNj+Xk8HuOqq64647Gvfe1rxpVXXnnec9asWWP89V//9RmP/fjHPzYkGTMzM2Wp0zBYJldRd999t/7rv/5L//u//6vOzs6SzvV4PNq0aZM+/PDDMlVnL16vVxdddJGuuOIK7dy5Uxs3btS3vvWtcx67YsUKjY+Pn/HY+Pi4VqxYUYlSbaOUa/JpjI/ltWfPHk1MTGjz5s1yu91yu9165ZVX9Pjjj8vtdqtQKJx1DuOkfBZzPT6NMVJeDQ0Nuvjii8/782V8VNZ81+PTGB/Lr729/azVHZdeeukFly+eb5yEw2EFAoGy1CmxTK4iDMPQ3Xffreeee04vvfSSent7S36OQqGggwcPqr29vQwVolgsKpvNnvPPrrrqKv30pz8947EXX3zxgvezYOkudE0+jfGxvK677jodPHhQb7/99umvLVu26LbbbtPbb78tl8t11jmMk/JZzPX4NMZIeaVSKR09evS8P1/GR2XNdz0+jfGx/K6++uqztpH54IMP1N3dfd5zTBsnZZtzwml33nmnEYlEjJdfftkYHR09/fXzU36333678eCDD57+/7/4i78wXnjhBePo0aPGnj17jK985SuG3+9f8LIhnN+DDz5ovPLKK0ZfX59x4MAB48EHHzQcDofxP//zP4ZhnH0tXnvtNcPtdht/+7d/a7z33nvGI488Yng8HuPgwYNmfQuWU+o1YXxU3qeXZTFOzDXf9WCMlNcf/dEfGS+//LLR19dnvPbaa8b1119vNDc3GxMTE4ZhMD4qrdTrwfgov7feestwu93GX/3VXxlHjhwx/u3f/s2oq6szfvCDH5w+5sEHHzRuv/320///0UcfGXV1dcYf//EfG++9957x7W9/23C5XMbzzz9f1lrd5Y1akE5uKClJv/iLv3jG408++aR+67d+S5I0MDAgp/OTibpYLKbf/d3f1djYmKLRqK644gr97Gc/O+8N5Vi4iYkJ/eZv/qZGR0cViUS0YcMGvfDCC/rlX/5lSWdfi8997nN6+umn9fDDD+tP/uRPtGbNGv3oRz+6YAMMlKbUa8L4MB/jpLowRipraGhIO3bs0OTkpFpaWnTNNdfojTfeUEtLiyTGR6WVej0YH+W3detWPffcc3rooYf0l3/5l+rt7dU3v/lN3XbbbaePGR0dPWPZXG9vr3784x/rvvvu07e+9S11dnbqe9/7nm688cay1uowDMMo6ysAAAAAQBXiniEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtvT/nSyDIACkbKwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_geo_plot(variable=\"lcz\")" + ] + }, + { + "cell_type": "markdown", + "id": "276baaf0-f20a-49ee-b2ac-ca9d2e6daf5e", + "metadata": {}, + "source": [ + "## Extracting other Geospatial information\n", + "\n", + "Similar as LCZ extraction you can extract the altitude of the stations (from a digital elevation model):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bd5fb85d-dd74-4af4-98cd-67c9ac721a70", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 12\n", + "vlinder02 7\n", + "vlinder03 30\n", + "vlinder04 25\n", + "vlinder05 0\n", + "vlinder06 0\n", + "vlinder07 7\n", + "vlinder08 7\n", + "vlinder09 19\n", + "vlinder10 14\n", + "vlinder11 6\n", + "vlinder12 9\n", + "vlinder13 10\n", + "vlinder14 4\n", + "vlinder15 41\n", + "vlinder16 4\n", + "vlinder17 83\n", + "vlinder18 35\n", + "vlinder19 75\n", + "vlinder20 44\n", + "vlinder21 19\n", + "vlinder22 3\n", + "vlinder23 1\n", + "vlinder24 12\n", + "vlinder25 12\n", + "vlinder26 24\n", + "vlinder27 12\n", + "vlinder28 7\n", + "Name: altitude, dtype: int64\n" + ] + } + ], + "source": [ + "altitudes = your_dataset.get_altitude() #The altitudes are in meters above sea level.\n", + "print(altitudes)" + ] + }, + { + "cell_type": "markdown", + "id": "9b6f3e83-1dff-4a0a-991a-aa258a484d8e", + "metadata": {}, + "source": [ + "A more detailed description of the landcover/land use in the microenvironment can be extracted in the form of landcover fractions in a circular buffer for each station.\n", + "\n", + "You can select to aggregate the landcover classes to water - pervious and impervious, or set aggregation to false to extract the landcover classes as present in the worldcover_10m dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "66ddba0d-52c7-40f3-9c9c-4d6aa88c932b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " water pervious impervious\n", + "name buffer_radius \n", + "vlinder01 100 0.000000 0.981781 0.018219\n", + " 250 0.000000 0.963635 0.036365\n", + "vlinder02 100 0.000000 0.428769 0.571231\n", + " 250 0.000000 0.535944 0.464056\n", + "vlinder03 100 0.000000 0.245454 0.754546\n", + " 250 0.000000 0.160831 0.839169\n", + "vlinder04 100 0.000000 0.979569 0.020431\n", + " 250 0.000000 0.881948 0.118052\n", + "vlinder05 100 0.446604 0.224871 0.328525\n", + " 250 0.242406 0.526977 0.230617\n", + "vlinder06 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 0.995819 0.004181\n", + "vlinder07 100 0.000000 0.433034 0.566966\n", + " 250 0.002911 0.149681 0.847407\n", + "vlinder08 100 0.000000 0.029552 0.970448\n", + " 250 0.002911 0.030423 0.966666\n", + "vlinder09 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 0.974895 0.025105\n", + "vlinder10 100 0.000000 0.129686 0.870314\n", + " 250 0.000000 0.125173 0.874827\n", + "vlinder11 100 0.000000 0.273457 0.726543\n", + " 250 0.000000 0.204337 0.795663\n", + "vlinder12 100 0.000000 0.803321 0.196679\n", + " 250 0.004188 0.313829 0.681983\n", + "vlinder13 100 0.000000 0.006042 0.993958\n", + " 250 0.000000 0.044648 0.955352\n", + "vlinder14 100 0.000000 0.803469 0.196531\n", + " 250 0.000000 0.835386 0.164614\n", + "vlinder15 100 0.000000 0.798196 0.201804\n", + " 250 0.000000 0.918644 0.081356\n", + "vlinder16 100 0.367579 0.232926 0.399495\n", + " 250 0.448841 0.217178 0.333981\n", + "vlinder17 100 0.000000 0.989899 0.010101\n", + " 250 0.000000 0.980923 0.019077\n", + "vlinder18 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 1.000000 0.000000\n", + "vlinder19 100 0.000000 0.447270 0.552730\n", + " 250 0.000000 0.343485 0.656515\n", + "vlinder20 100 0.000000 0.129964 0.870036\n", + " 250 0.000000 0.039639 0.960361\n", + "vlinder21 100 0.000000 1.000000 0.000000\n", + " 250 0.000487 0.962068 0.037445\n", + "vlinder22 100 0.973231 0.026769 0.000000\n", + " 250 0.884010 0.115990 0.000000\n", + "vlinder23 100 0.399503 0.600497 0.000000\n", + " 250 0.272793 0.712724 0.014483\n", + "vlinder24 100 0.000000 0.960773 0.039227\n", + " 250 0.000000 0.946138 0.053862\n", + "vlinder25 100 0.790001 0.152027 0.057972\n", + " 250 0.899936 0.063972 0.036092\n", + "vlinder26 100 0.000000 0.148975 0.851025\n", + " 250 0.000000 0.174383 0.825617\n", + "vlinder27 100 0.000000 0.011601 0.988399\n", + " 250 0.018481 0.084840 0.896679\n", + "vlinder28 100 0.000000 0.489951 0.510049\n", + " 250 0.000000 0.721950 0.278050\n" + ] + } + ], + "source": [ + "aggregated_landcover = your_dataset.get_landcover(\n", + " buffers=[100, 250], # a list of buffer radii in meters\n", + " aggregate=True #if True, aggregate landcover classes to the water, pervious and impervious.\n", + " )\n", + "\n", + "print(aggregated_landcover)" + ] + }, + { + "cell_type": "markdown", + "id": "10e19c71-322c-4508-879c-8d70ca7b873f", + "metadata": {}, + "source": [ + "## Extracting ERA5 timeseries\n", + "\n", + "The toolkit has built-in functionality to extract ERA5 time series at the station locations. The ERA5 data will be stored in a [Modeldata](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#modeldata) instance. Here an example on how to get the ERA5 time series by using the [get_modeldata()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.get_modeldata) method.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "21f6430d-8d3b-49cf-8d63-8f909b72085d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n", + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['temp'] \n", + " * Data has these units: {'temp': 'Celsius'} \n", + " * From 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAGUCAYAAACLEs3JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8E/2bpruvVltQZClbBAZogiKingVFBUVVO5VUbwOUK9c53Ur3p+CA1wg6kUFFQFFBFkyZBa690rS7HV+f6Q9PWna0pGkSXnerxcvmpOTk2/2Oc95vs/DYxiGASGEEEIIIYQQQgghpEfxe3oAhBBCCCGEEEIIIYQQCtQRQgghhBBCCCGEEBIUKFBHCCGEEEIIIYQQQkgQoEAdIYQQQgghhBBCCCFBgAJ1hBBCCCGEEEIIIYQEAQrUEUIIIYQQQgghhBASBChQRwghhBBCCCGEEEJIEKBAHSGEEEIIIYQQQgghQYACdYQQQgghhBBCCCGEBAEK1BFCCCHtSEtLw5VXXtnTw/AyYcIETJgwoaeHQUhQW7FiBXg8Xk8PgwSBtWvXgsfjYf/+/T09lIBreuwFBQU9PRRCCCEdQIE6QgghPtV0QNDWvz179rDrtrwuLCwM48ePx7ffftvm9rVaLaRSKXg8Hk6cONHqOk0H5y3/SaVSnz/eC43JZMKKFSuwY8eOnh5K0Dl+/DhWrFgR9AfDxcXFWLlyJUaMGAGNRoOoqChMmDABP/30U08PLeB27NjR7vcV99+Fij7zoePZZ5/FV1991dPDIIQQ0k3Cnh4AIYSQ3umpp55Cenq61/KsrCyPy5dffjluueUWMAyDwsJCvP3227jqqqvw/fffY+rUqV63/+KLL8Dj8RAXF4d169bhmWeeaXMMb7/9NpRKJXtZIBB04xERwH3QvnLlSgCgjL4Wjh8/jpUrV2LChAlIS0vr6eG06euvv8Zzzz2HWbNmYf78+XA4HPjwww9x+eWX4/3338ett97a00MMmAEDBuCjjz7yWLZ8+XIolUr885//7KFRBRf6zIeOZ599FnPmzMGsWbM8lt98882YO3cuJBJJzwyMEEJIp1CgjhBCiF9Mnz4dw4YNO+96ffv2xd/+9jf28rXXXovs7Gy8+uqrrQbqPv74Y1xxxRVITU3F+vXr2w3UzZkzB1FRUV17AEHKZDJBLpf39DAuCEajEQqFoqeH4fNxTJw4EUVFRR6fjbvuuguDBw/GE088cUEF6mJjYz2+fwDg3//+N6KioryW9xYOhwMulwtisbinh9JhwfJZ9AWGYWCxWCCTyQJ2nwKBgE5UEUJICKGpr4QQQoLKgAEDEBUVhbNnz3pdV1RUhF9//RVz587F3LlzkZ+fj927d7e5LYZhoNfrwTBMt8e1a9cujBgxAlKpFBkZGfjwww+91jl37hyuu+46REREQC6X45JLLvGaxttWraCmKXjc6WUTJkxAbm4uDhw4gHHjxkEul+PRRx/1ul+DwQCFQoH777/f67qSkhIIBAKsWrWq3cdXXl6OkydPwm63t7lOQUEBoqOjAQArV65kpwSuWLGCXefkyZOYM2cOIiIiIJVKMWzYMHzzzTetPge7du3Cfffdh+joaISHh2PRokWw2WzQarW45ZZboNFooNFosGzZMo/XsKCgADweDy+++CL+85//IDU1FTKZDOPHj8exY8e8xt2ZMe3cuRP33HMPYmJikJSUBAAoLCzEPffcg379+kEmkyEyMhLXXXedx2u4du1aXHfddQDcgbCm56bp9Wz5PDVJS0vDggULOjQOAPj+++8xduxYKBQKqFQqzJgxA3/99Vebr1lrcnJyvALYEokEV1xxBUpKStDQ0MAuX7BgAZRKJYqKinDllVdCqVQiMTERb775JgDg6NGjmDRpEhQKBRs874gXX3wRo0aNQmRkJGQyGYYOHYoNGzZ4rcfj8bBkyRJ89dVXyM3NhUQiQU5ODrZs2eK17q5duzB8+HBIpVJkZmZi9erVnXla2qXVarF06VIkJydDIpEgKysLzz33HFwuF7sO93355ptvIiMjA3K5HFOmTEFxcTEYhsHTTz+NpKQkyGQyXH311airq/O4n6aamD/88AMGDx4MqVSK7OxsfPnll90e0yuvvILMzExIJBIcP34cNpsNTzzxBIYOHQq1Wg2FQoGxY8di+/btHrdv7zPfVq3MBQsWeGSVtvb9xh3f2rVrPW6rVCpx9uxZXHHFFVCpVLjpppvafX0OHTqE6dOnIywsDEqlEpdddplHmQUuk8mERYsWITIyEmFhYbjllltQX1/vsc7+/fsxdepUREVFQSaTIT09HbfddpvHOi6XC6+88gpycnIglUoRGxuLRYsWeW2r6TXdunUrhg0bBplMhtWrVyM3NxcTJ070Gp/L5UJiYiLmzJnDLuvI54XH48FoNOKDDz5gX6em75a2fnfeeust5OTkQCKRICEhAYsXL4ZWq/VYp+l36Pjx45g4cSLkcjkSExPx/PPPe4399ddfR05ODuRyOTQaDYYNG9bh7wRCCCHNKKOOEEKIX+h0OtTU1Hgs4/F4iIyMPO/t6uvrkZmZ6XXdJ598AoVCgSuvvBIymQyZmZlYt24dRo0a1eq2MjIy2CDWrFmz8NJLLyE2NrbTjyUvLw9z5szBwoULMX/+fLz//vtYsGABhg4dipycHABAZWUlRo0aBZPJhPvuuw+RkZH44IMPMHPmTGzYsAGzZ8/u9P0CQG1tLaZPn465c+fib3/7W6vjVyqVmD17Nj777DO8/PLLHpkTn3zyCRiGOe+B7vLly/HBBx8gPz+/zWmb0dHRePvtt3H33Xdj9uzZuOaaawAAgwYNAgD89ddfGD16NBITE/HII49AoVDg888/x6xZs7Bx40av5+Dee+9FXFwcVq5ciT179uDdd99FeHg4du/ejZSUFDz77LP47rvv8MILLyA3Nxe33HKLx+0//PBDNDQ0YPHixbBYLHj11VcxadIkHD16lH2eOjume+65B9HR0XjiiSdgNBoBAPv27cPu3bsxd+5cJCUloaCgAG+//TYmTJiA48ePQy6XY9y4cbjvvvvw2muv4dFHH8WAAQMAgP2/s1obx0cffYT58+dj6tSpeO6552AymfD2229jzJgxOHToULen21ZUVEAul3tlbDqdTkyfPh3jxo3D888/j3Xr1mHJkiVQKBT45z//iZtuugnXXHMN3nnnHdxyyy249NJLW532zvXqq69i5syZuOmmm2Cz2fDpp5/iuuuuw+bNmzFjxgyPdXft2oUvv/wS99xzD1QqFV577TVce+21KCoqYr9Pjh49iilTpiA6OhorVqyAw+HAk08+2aXPe0smkwnjx49HaWkpFi1ahJSUFOzevRvLly9HeXk5XnnlFY/1161bB5vNhnvvvRd1dXV4/vnncf3112PSpEnYsWMHHn74YeTl5eH111/Hgw8+iPfff9/j9mfOnMENN9yAu+66C/Pnz8eaNWtw3XXXYcuWLbj88su7NKY1a9bAYrHgzjvvhEQiQUREBPR6Pf7v//4PN954I+644w40NDTgvffew9SpU/HHH39g8ODB5/3M+4vD4cDUqVMxZswYvPjii+1mEf/1118YO3YswsLCsGzZMohEIqxevRoTJkzAzp07MXLkSI/1lyxZgvDwcKxYsQKnTp3C22+/jcLCQjaYWFVVxb6XHnnkEYSHh6OgoMArWLpo0SKsXbsWt956K+677z7k5+fjjTfewKFDh/Dbb79BJBKx6546dQo33ngjFi1ahDvuuAP9+vXDDTfcgBUrVqCiogJxcXHsurt27UJZWRnmzp3LLuvI5+Wjjz7C7bffjhEjRuDOO+8EgFZ/R5usWLECK1euxOTJk3H33Xezz8W+ffu8xl9fX49p06bhmmuuwfXXX48NGzbg4YcfxsCBAzF9+nQAwH//+1/cd999mDNnDu6//35YLBYcOXIEe/fuxbx589ocByGEkFYwhBBCiA+tWbOGAdDqP4lE4rEuAGbhwoVMdXU1U1VVxezfv5+ZNm0aA4B54YUXvLY9cOBA5qabbmIvP/roo0xUVBRjt9s91nvllVeYJUuWMOvWrWM2bNjA3H///YxQKGT69OnD6HS6Tj2e1NRUBgDzyy+/sMuqqqoYiUTCPPDAA+yypUuXMgCYX3/9lV3W0NDApKenM2lpaYzT6fR4fvLz8z3uZ/v27QwAZvv27eyy8ePHMwCYd955x2tc48ePZ8aPH89e3rp1KwOA+f777z3WGzRokMd6bZk/f36r42qpurqaAcA8+eSTXtdddtllzMCBAxmLxcIuc7lczKhRo5g+ffqwy5qeg6lTpzIul4tdfumllzI8Ho+566672GUOh4NJSkryeAz5+fkMAEYmkzElJSXs8r179zIAmL///e9dHtOYMWMYh8Ph8bhMJpPXY/39998ZAMyHH37ILvviiy+8XsMmbT1nqampzPz58887joaGBiY8PJy54447PG5fUVHBqNVqr+WddebMGUYqlTI333yzx/Km98Wzzz7LLquvr2dkMhnD4/GYTz/9lF1+8uTJNh9nSy2fU5vNxuTm5jKTJk3yWA6AEYvFTF5eHrvs8OHDDADm9ddfZ5fNmjWLkUqlTGFhIbvs+PHjjEAgYDq7u5uTk+Pxfnv66acZhULBnD592mO9Rx55hBEIBExRURHDMM3vy+joaEar1bLrLV++nAHAXHTRRR7fVTfeeCMjFos93ptN3zcbN25kl+l0OiY+Pp4ZMmRIl8cUFhbGVFVVeazrcDgYq9Xqsay+vp6JjY1lbrvtNnZZe5/5lt9DTebPn8+kpqayl1v7fuOOb82aNR63BcA88sgjXtttzaxZsxixWMycPXuWXVZWVsaoVCpm3Lhx7LKmz9bQoUMZm83GLn/++ecZAMzXX3/NMAzDbNq0iQHA7Nu3r837/PXXXxkAzLp16zyWb9myxWt502u6ZcsWj3VPnTrl9T5mGIa55557GKVS6fEZ6ejnRaFQeHyftHzsTd/vVVVVjFgsZqZMmcL+NjEMw7zxxhsMAOb9999nlzX9DnG/66xWKxMXF8dce+217LKrr76aycnJ8bpvQgghnUdTXwkhhPjFm2++iR9//NHj3/fff++13nvvvYfo6GjExMRg2LBh2LZtG5YtW4Z//OMfHusdOXIER48exY033sguu/HGG1FTU4OtW7d6rHv//ffj9ddfx7x583DttdfilVdewQcffIAzZ87grbfe6vRjyc7OxtixY9nL0dHR6NevH86dO8cu++677zBixAiMGTOGXaZUKnHnnXeioKAAx48f7/T9Au4piR2pGTZ58mQkJCRg3bp17LJjx47hyJEjHaq1tXbtWjAM0+WsrLq6Ovz888+4/vrr0dDQgJqaGtTU1KC2thZTp07FmTNnUFpa6nGbhQsXenTTHDlyJBiGwcKFC9llAoEAw4YN83ium8yaNQuJiYns5REjRmDkyJH47rvvujymO+64w6uWE7eWlN1uR21tLbKyshAeHo6DBw924dk6v5bj+PHHH6HVatn3fNM/gUCAkSNHekxX7CyTyYTrrrsOMpkM//73v1td5/bbb2f/Dg8PR79+/aBQKHD99dezy/v164fw8PBWX6uWuM9pfX09dDodxo4d2+rzOXnyZI/MoEGDBiEsLIy9H6fTia1bt2LWrFlISUlh1xswYECrdS4764svvsDYsWOh0Wg8nvvJkyfD6XTil19+8Vj/uuuug1qtZi83ZXT97W9/g1Ao9Fhus9m83oMJCQkemZ5N0zMPHTqEioqKLo3p2muvZaewNhEIBGydOpfLhbq6OjgcDgwbNsxv7+vOuPvuu8+7jtPpxA8//IBZs2YhIyODXR4fH4958+Zh165d0Ov1Hre58847PbLF7r77bgiFQvZ7Izw8HACwefPmNksBfPHFF1Cr1bj88ss9nv+hQ4dCqVR6fR7T09O93ot9+/bF4MGD8dlnn3k8ng0bNuCqq67y+Ix05vPSET/99BNsNhuWLl0KPr/5cPCOO+5AWFiYV8kGpVLp8TsiFosxYsQIj896eHg4SkpKsG/fvi6NiRBCSDOa+koIIcQvRowY0aFmEldffTWWLFkCm82Gffv24dlnn4XJZPI4eADcTSQUCgUyMjKQl5cHAJBKpUhLS8O6deu8psu1NG/ePDzwwAP46aef8Mgjj3TqsXAP/ptoNBqPWkSFhYVeU6yA5qmPhYWFyM3N7dT9AkBiYmKHir7z+XzcdNNNePvtt9mGE+vWrYNUKmVrp/lTXl4eGIbB448/jscff7zVdaqqqjwCay2f16bgRnJystfylnWfAKBPnz5ey/r27YvPP/+8y2Nqbcqm2WzGqlWrsGbNGpSWlnrUy9PpdK1ut7tajuPMmTMAgEmTJrW6flhYWJfux+l0Yu7cuTh+/Di+//57JCQkeK0jlUq9gjxqtRpJSUkegdam5a29Vi1t3rwZzzzzDP78809YrVZ2ecvtAef//FVXV8NsNrf6fujXrx8bgOmqM2fO4MiRI17PQZOqqqp2x9ve+xqA1/OVlZXl9Tz07dsXgLumW1xcXKfH1NZU5A8++AAvvfSSV33K801d9jehUOhRm7Et1dXVMJlM6Nevn9d1AwYMgMvlQnFxMVuiAPD+3lAqlYiPj2frt40fPx7XXnstVq5cif/85z+YMGECZs2ahXnz5rFdU8+cOQOdToeYmJhWx9XR5/+GG27Ao48+itLSUiQmJmLHjh2oqqrCDTfc4LFeZz4vHVFYWAgAXs+bWCxGRkYGe32T1j7rGo0GR44cYS8//PDD+OmnnzBixAhkZWVhypQpmDdvHkaPHt2lMRJCyIWMAnWEEEJ6VFJSEiZPngwAuOKKKxAVFYUlS5Zg4sSJbD0khmHwySefwGg0Ijs722sbVVVVMBgMUCqV7d5XcnKyV/H2jmirWx43YNNRbR1YOZ3OVpd3pjPgLbfcghdeeAFfffUVbrzxRqxfvx5XXnmlR3aPvzQVsH/wwQfbzGLKysryuNzW89ra8q48110ZU2vP97333os1a9Zg6dKluPTSS6FWq8Hj8TB37lyPwv1d0dHXvel+PvroI496Vk24mVqdcccdd2Dz5s1Yt25dm0HAzrxOwPlfq19//RUzZ87EuHHj8NZbbyE+Ph4ikQhr1qxptfC8Lz9/XeFyuXD55Zdj2bJlrV7fFERr4uvnyxdjau19/fHHH2PBggWYNWsWHnroIcTExLCNZ1pr5tMaHo/X6vhbvq87+70nkUi8TtYECo/Hw4YNG7Bnzx7873//w9atW3HbbbfhpZdewp49e6BUKuFyuRATE+ORwczVMoDa1vf4DTfcgOXLl+OLL77A0qVL8fnnn0OtVmPatGnsOp39vPhDR967AwYMwKlTp7B582Zs2bIFGzduxFtvvYUnnngCK1euDMg4CSGkt6BAHSGEkKCyaNEi/Oc//8Fjjz2G2bNnsx0wS0pK8NRTT3kV56+vr8edd96Jr776qt0pngzDoKCgAEOGDPHLuFNTU3Hq1Cmv5SdPnmSvB9xZCAC8Ouu1zGDoitzcXAwZMgTr1q1DUlISioqK8Prrr3d7u1xtHXA3TTsTiURs4NXfmrLMuE6fPs1O3/XVmDZs2ID58+fjpZdeYpdZLBav17C97BaNRuO1vs1mQ3l5eYfG0DT1MyYmxmfP70MPPYQ1a9bglVde8ZhS7m8bN26EVCrF1q1b2QwlwN3woCuio6Mhk8lafT+09pnsrMzMTBgMhoC9r5syQbnvp9OnTwMA+972xZg2bNiAjIwMfPnllx739eSTT3qsd773dWtTnVt+n/nrey86OhpyubzN714+n++VyXjmzBmPbqsGgwHl5eW44oorPNa75JJLcMkll+Bf//oX1q9fj5tuugmffvopbr/9dmRmZuKnn37C6NGjO3UypaX09HSMGDECn332GZYsWYIvv/wSs2bN8vhcdObz0tEMu6bfo1OnTnlMGbbZbMjPz+/y+0qhUOCGG27ADTfcAJvNhmuuuQb/+te/sHz5ckil0i5tkxBCLkRUo44QQkhQEQqFeOCBB3DixAl8/fXXAJqnvT700EOYM2eOx7877rgDffr08chsqK6u9tru22+/jerqao9MBV+64oor8Mcff+D3339nlxmNRrz77rtIS0tjMwGbAi7cGlJOpxPvvvuuT8Zx880344cffsArr7yCyMhItiPf+ZSXl3tNf2tNU/fFlgfcMTExmDBhAlavXt1q8Km116S7vvrqK4/6Xn/88Qf27t3LPmZfjUkgEHhlDb3++ute2UAKhQKA93MDuF/3lnXD3n333TYzilqaOnUqwsLC8Oyzz7b6GnX2+X3hhRfw4osv4tFHH8X999/fqdt2l0AgAI/H83jsBQUF+Oqrr7q8valTp+Krr75CUVERu/zEiRNe9Su74vrrr8fvv//e6ra0Wi0cDke374OrrKwMmzZtYi/r9Xp8+OGHGDx4MJtN6YsxNWVJcd/be/fu9fgOA9r+zAPu9/XJkyc93n+HDx/Gb7/95rFeamoqBAKB12egKzVDWz6GKVOm4Ouvv2anrgLuLtzr16/HmDFjvKaFv/vuux6fobfffhsOh4P93qivr/f6vA8ePBgA2Gmn119/PZxOJ55++mmvMTkcjlafq7bccMMN2LNnD95//33U1NR4TXvtzOdFoVB06L4nT54MsViM1157zeOxvvfee9DpdOctJdGa2tpaj8tisRjZ2dlgGIZ9vk0mE06ePOnVEZ4QQognyqgjhBDiF99//z2bTcY1atQojzP4rVmwYAGeeOIJPPfcc5g+fTo2btyIyy+/vM0z8jNnzsSrr76KqqoqxMTEIDU1FTfccAMGDhwIqVSKXbt24dNPP8XgwYOxaNEinzy+lh555BF88sknmD59Ou677z5ERETggw8+QH5+PjZu3MhO48rJycEll1yC5cuXo66uDhEREfj00099drA/b948LFu2DJs2bcLdd9/tUTS9PcuXL2fH215DCZlMhuzsbHz22Wfo27cvIiIikJubi9zcXLz55psYM2YMBg4ciDvuuAMZGRmorKzE77//jpKSEhw+fNgnj7FJVlYWxowZg7vvvhtWq5UNTnKnA/piTFdeeSU++ugjqNVqZGdn4/fff8dPP/2EyMhIj/UGDx4MgUCA5557DjqdDhKJBJMmTUJMTAxuv/123HXXXbj22mtx+eWX4/Dhw9i6dSuioqI69FjDwsLw9ttv4+abb8bFF1+MuXPnIjo6GkVFRfj2228xevRovPHGGx3a1qZNm7Bs2TL06dMHAwYMwMcff+xx/eWXX47Y2NgObasrZsyYgZdffhnTpk3DvHnzUFVVhTfffBNZWVkeNa86Y+XKldiyZQvGjh2Le+65Bw6HA6+//jpycnK6vM0mDz30EL755htceeWVWLBgAYYOHQqj0YijR49iw4YNKCgo6PDr2BF9+/bFwoULsW/fPsTGxuL9999HZWWlRwaVL8Z05ZVX4ssvv8Ts2bMxY8YM5Ofn45133kF2djYMBgO7Xnuf+dtuuw0vv/wypk6dioULF6KqqgrvvPMOcnJyPJo4qNVqXHfddXj99dfB4/GQmZmJzZs3e9Vy64pnnnkGP/74I8aMGYN77rkHQqEQq1evhtVqxfPPP++1vs1mw2WXXYbrr78ep06dwltvvYUxY8Zg5syZANx1+9566y3Mnj0bmZmZaGhowH//+1+EhYWxWXfjx4/HokWLsGrVKvz555+YMmUKRCIRzpw5gy+++AKvvvoq5syZ06HxX3/99XjwwQfx4IMPIiIiwiubrTOfl6FDh+Knn37Cyy+/jISEBKSnp7daOzU6OhrLly/HypUrMW3aNMycOZN9LoYPH96hBkQtTZkyBXFxcRg9ejRiY2Nx4sQJvPHGG5gxYwZUKhUA98mUiRMn4sknn8SKFSs6fR+EEHLBCGyTWUIIIb3dmjVrGABt/luzZg27LgBm8eLFrW5nxYoVDABm48aNDADmvffea/M+d+zYwQBgXn31VYZhGOb2229nsrOzGZVKxYhEIiYrK4t5+OGHGb1e3+nHk5qaysyYMcNr+fjx45nx48d7LDt79iwzZ84cJjw8nJFKpcyIESOYzZs3e9327NmzzOTJkxmJRMLExsYyjz76KPPjjz8yAJjt27d73EdOTk6r42rt/ptcccUVDABm9+7dHX6c8+fPZwAw+fn551139+7dzNChQxmxWMwAYJ588kmPx3bLLbcwcXFxjEgkYhITE5krr7yS2bBhA7tO03tk3759Htt98sknGQBMdXW119gUCgV7OT8/nwHAvPDCC8xLL73EJCcnMxKJhBk7dixz+PBhr/F2Z0wMwzD19fXMrbfeykRFRTFKpZKZOnUqc/LkSSY1NZWZP3++x7r//e9/mYyMDEYgEHi8nk6nk3n44YeZqKgoRi6XM1OnTmXy8vK8ttHeOBiGYbZv385MnTqVUavVjFQqZTIzM5kFCxYw+/fvb3X91jQ9z239474HWz73Tdp6b7b1eWnpvffeY/r06cNIJBKmf//+zJo1a9hxcbX1HdHac79z5072fZmRkcG88847rW7zfHJycrw+Ww0NDczy5cuZrKwsRiwWM1FRUcyoUaOYF198kbHZbAzDeL4vubZv384AYL744guP5a291k3P39atW5lBgwaxz0/L23Z3TAzDMC6Xi3n22WeZ1NRURiKRMEOGDGE2b97MzJ8/n0lNTfVYt73P/Mcff8xkZGQwYrGYGTx4MLN169ZWt1FdXc1ce+21jFwuZzQaDbNo0SLm2LFjXr8Lbb3n2nPw4EFm6tSpjFKpZORyOTNx4kSv77+m53vnzp3MnXfeyWg0GkapVDI33XQTU1tb67GtG2+8kUlJSWEkEgkTExPDXHnlla1+xt59911m6NChjEwmY1QqFTNw4EBm2bJlTFlZGbtORz4To0ePZgAwt99+e6vXd/TzcvLkSWbcuHGMTCZjALCfkabH3vL7/Y033mD69+/PiEQiJjY2lrn77ruZ+vp6j3Xa+qy3fI1Xr17NjBs3jomMjGQkEgmTmZnJPPTQQ4xOp2PXafoscN8/hBBCvPEYJkCVeAkhhBASELNnz8bRo0fZ7ri9TUFBAdLT0/HCCy/gwQcf7OnhEOIzaWlpyM3NxebNm3t6KIQQQgjpIVSjjhBCCOlFysvL8e233+Lmm2/u6aEQQgghhBBCOolq1BFCCLkgVVdXt1vIXywWIyIiIoAj6p78/Hz89ttv+L//+z+IRCK/1eIjwctms6Gurq7dddRqdbe6VBJCCCGEEP+iQB0hhJAL0vDhw1FYWNjm9ePHj8eOHTsCN6Bu2rlzJ2699VakpKTggw8+YLtDkgvH7t27MXHixHbXWbNmDRYsWBCYARFCCCGEkE6jGnWEEEIuSL/99hvMZnOb12s0GgwdOjSAIyKke+rr63HgwIF218nJyUF8fHyARkQIIYQQQjqLAnWEEEIIIYQQQgghhAQBmvrqBy6XC2VlZVCpVODxeD09HEIIIYQQQgghhBDSgxiGQUNDAxISEsDnt93blQJ1flBWVobk5OSeHgYhhBBCCCGEEEIICSLFxcVISkpq83oK1PmBSqUC4H7yw8LCeng0hBBCCCGEEEIIIaQn6fV6JCcnszGjtlCgzg+apruGhYVRoI4QQgghhBBCCCGEAMB5S6S1PSmWEEIIIYQQQgghhBASMBSoI4QQQgghhBBCCCEkCFCgjhBCCCGEEEIIIYSQIEA16gghhBBCCCGEEELOw2azwWw29/QwSJCSyWQQi8Xd3g4F6gghhBBCCCGEEELa4HK5kJeXB7PZfN5GAOTCxTAMZDIZsrKywOd3fQIrBeoIIYQQQgghhBBC2pCXlwer1Yr4+HgoFAoK1hEvDMPAaDSisrISeXl56Nu3b5e3RYE6QgghhBBCCCGEkFY0TXeNj49HTExMTw+HBDGFQgEAKC8vh81m6/I0WGomQQghhBBCCCGEENKKpumuTUEYQtrTlHHZnVqGFKgjhBBCCCGEEEIIaQdNdyUd4Yv3CQXqCCGEEEIIIYQQQggJAhSoI4QQQgghhBBCCCEkCFCgjhBCCCGEEEIIIYR0yYgRI7Bw4cIOr//6669DpVL5cUShjbq+EkIIIedRpjWj3mjDpkOlYMDg8StzenpIhBBCCCGEkF6IAnWEEELIebz+8xl88kcxe/nRK7Ih4FNBYUIIIYQQQohv0dRXQggh5Dy0JrvH5ce+Oor9BXU9NBpCCCGEEBIM9Hp9m/9MJlOH1zUajR1at7NGjBiBBQsWYOHChQgLC0NkZCRefvll6PV6zJkzBwqFAikpKdiwYQN7m++//x6DBg2CWCxGdHQ0Fi9eDLu9eV9Yr9fjmmuugVwuR3R0NFasWOF1v2azGYsWLUJMTAxkMhkGDRqE7777rtPjv1BRoI4QQgg5D53ZM1D3yR/FeH7rqR4aDSGEEEIICQZqtbrNf1dccYXHurGxsW2uO3HiRI91U1NTW12vKzZs2IDIyEjs3r0bCxcuxLJly3DVVVdh1KhR2Lt3L8aPH4877rgDDQ0NyM/PxzXXXIPBgwfjjz/+wH/+8x+sX78ejzzyCLu9xYsXY8+ePfj000/x7bff4pdffsHx48c97vPWW2/Fvn378NFHH+HAgQOYPXs2Zs+ejWPHjnXpMVxoaOorIYQQch4RcjESw6Uo1VoAAAI+UK4zg2EY8Hg0BZYQQgghhASn/v374/nnnwcAPPvss3jjjTcQGRmJf/zjH+yyjz/+GPv27cNXX32FuLg4rF27Fnw+H4MHD0ZpaSmeeuopPP/88zAYDPjss8+wevVqzJw5EwDw6aefIiUlhb2/M2fOYMOGDcjLy0NaWhoAYOXKlfjxxx/xzjvv4I033gjsExCCKFBHCCGEnMehYi0bpAMApwsorjNDa7JDoxD34MgIIYQQQkhP0el0bV4nFHqGWyorK9tcVyAQeFwuLCzs3sA4srOzPcYUHh6O3NxcdlliYiIAoKKiAidPnsTQoUPB5zdPvhw/fjxMJhPOnTuH2tpa2O12jBkzhr0+JiYG6enp7OWDBw/C6XR63C8A2Gw2aDQanz2u3owCdYQQQsh5NE19jVKIcHGqBqcrDTDZnCioNVKgjhBCCCHkAhUWFtbj656PSCTyuMzj8TyWNQXlXC6XT+7PYDBAIBBgz549XgFIXz6u3oxq1BFCCCHtsDucaJrdmhKpwNDUCBTUmmC2O1GiNffs4AghhBBCCPGR/v3748CBAx5Bu507d0KhUCAjIwMDBgyAUCjErl272Ourq6tRUFDAXh4xYgScTifKy8uRk5Pj8S85OTmQDydkUaCOEEIIaYfJ5kKDxQEA0MhFSI9WQCUVosHiQH618Ty3JoQQQgghJDT8/e9/R0VFBW699Vb8+eefWL9+Pf79739j0aJFEAgEUKvVuOGGG/DYY4/hf//7H/bv348bb7zRY6rswIEDcfXVV+O2227Dhx9+iJMnT2Lnzp149NFH8dlnn/XgowsdNPWVEEIIaYfR5mD/logESNLIIGv8n3sdIYQQQgghoSw9PR1ffvklHn74YYwYMQJqtRrz5s3Dv//9b3adN998EwsWLMD1118PhUKBe+65B3q93mM7n332GR555BEsX74cVVVV0Gg0GDx4MGbNmhXgRxSaeAzDMD09iN5Gr9dDrVZDp9PRHGxCCAlxeVUNmPzyLwCAOUOTsHJmDnKe3AoAGJ6mwRd3jerJ4RFCCCGEED/S6XQoLCxEVlYW5HJ5Tw+HBDmTyYS8vDykpqZCrVZ7XNfRWBFl1BFCCCGteGHrSZypNKBS39ztVSEWQCERYlRmJBxOFxQS+hklhBBCCCGE+A4dYRBCCCGtWLenCNrGbq9N5I2BOavDhQOF9QAAk80BuZh+TgkhhBBCCCHdR0cWhBBCSAu78qqh4wTp0qPkiFfLMGNgPABgeKoGAGCwOlBYa8KAeCpzQAghhBBCCOk+CtQRQgghLVTqrOAWcM2vMaHeZEduorvOhEwsZDPqiuqMFKgjhBBCCCGE+AT//KsQQgghFw6GYfDgF4e9lofLROzfU3Nj0S9WhXC5CF/sLwnk8AghhBBCCCG9GAXqCCGEEI4Gq8Mjm44HQMDnIVIhZpf1jVGhoNYIu8OJ/BojzDZnwMdJCCGEEEII6X0oUEcIIYRw6EzNtemiVRIwAJwuBmp5c6COz+fhhuHJMNpcOFttxMkKfQ+MlBBCCCGEENLbUKCOEEII4TBYHRiepsHARDXi1VLEhkkQGyZB31ilx3oD4sOQFC5DpEKEl388jRPlFKwjhBBCCCGEdA81kyCEEEI4DFYH9hW4G0XcMTYd/5yR3ep6N45IgVIixL2fHMKvZ2qw41Q1NZUghBBCCCGEdAtl1BFCCCEcVruL/VsqErS7blqUAskRMiRrZNCZbf4eGiGEEEIIIT7z3XffgcfjoaampqeH4jNz5szB5Zdf3tPD6BbKqCOEEEI4LPbmxhASYfvns1Ii5CiuMwMADhfr/DouQgghhBBCiNupU6fQv39/7N69G5deeim7fPXq1WAYpp1bBr+QzqhbtWoVhg8fDpVKhZiYGMyaNQunTp1iry8oKACPx2v13xdffNHmdhcsWOC1/rRp0wLxkAghhPQwi6M5UHe+jDq1TISxWVHoF6uC1mxvd11CCCGEEEIudBaLxa/bj4yMRFRUlF/vw99COlC3c+dOLF68GHv27MGPP/4Iu92OKVOmwGg0AgCSk5NRXl7u8W/lypVQKpWYPn16u9ueNm2ax+0++eSTQDwkQgghPczCmfoqOU+gDgD0FjtOVTagSm+Bxebw59AIIYQQQkgQcLlc0Ov1PfLP5XKdf4AcZrMZt956KyIiIiCRSDB06FD88ssvHuts27YNffv2hUQiwUUXXYT9+/ez150+fRqTJk1CWFgYZDIZsrKyPBKf9u/fj3HjxkEulyMyMhKzZ89GeXk5e/2IESMwf/58LFy4EBqNBuPHj8fMmTMxY8YMjzFYrVZoNBq8+eabAICNGzdi6NChUKlUCA8Px8SJE3H8+HF2/f79+wMARo0aBR6PhxEjRgDwnvp6vsffNP33m2++QW5uLqRSKYYMGYIjR46w6+zZswcjR46EQqGAUqlETk4Ofv311069Dp0R0lNft2zZ4nF57dq1iImJwYEDBzBu3DgIBALExcV5rLNp0yZcf/31UCo9u/e1JJFIvG5LCCGk9+vM1FcAyE1U43SVAbVGG0p1FmRGt//7QgghhBBCQpvBYIBare6R+9bpdAgL63gDs8WLF+Pbb7/Fu+++i4yMDDz77LO46qqrcObMGXadRx99FC+99BISEhLwyCOP4Oqrr8a5c+cgkUiwaNEi2O12/PTTT1CpVDh8+DBUKhUAoKamBlOmTMG8efPw2muvwWQyYdmyZZg9ezb27NnDbn/Dhg245ZZbsHPnTgDAiRMnMH/+fOh0OvZ53LRpE8xmM2666SYA7uf4/vvvx9ChQ6HX6/HYY49h1qxZOHHiBAQCAXbu3Inx48fj66+/xpAhQyCRSDr9+GNiYtj1Hn/8cbzwwguIjY3FnXfeiQULFuDgwYMAgJtvvhm5ublYvXo1hEIh9u3bB5FI1OHXoLNCOlDXkk7nrg8UERHR6vUHDhzAn3/+yUZo27Njxw7ExMRAo9Fg0qRJeOaZZxAZGdnqularFVarlb2s1+u7MHpCCCHBIitGCYfTBYXk/D+TYTIh1FIR+sQoUaW3UqCOEEIIIYQEBb1ej48++ghvvPEG5syZAwBYt24dkpOT8cYbb+CSSy4B4A7UzZo1CwDw6aefIiUlBevWrcNtt92G0tJSzJw5k81YGzBgALv9559/Hjk5OXjjjTfYZR9++CEyMzNx9OhRDBw4EACQmpqKt99+m11nwIABuOuuu7B+/XrcfffdAID169dj8uTJCA8PBwDMnz/f47F8/PHHSEhIwKFDhzBs2DDExsYCAKKjo5GcnNylx//UU0+x6z799NPszMuHH34Y119/PUwmE+RyOcrLy3H//fdj8ODBAIDc3NyOPP1d1msCdS6XC0uXLsXo0aPbfNLee+89DBgwAKNGjWp3W9OmTcM111yD9PR0nD17Fo8++iimT5+O33//HQKB9zSoVatWYeXKlT55HIQQQnqWzmxHXpUBACDi8867foJahgq9BRV6C0q1Zn8PjxBCCCGE9DClUskmCvXEfXfUiRMn4HA4MHHiRHaZRCLB4MGDcfLkSTZQN27cOPb6mJgYpKens9NM7777bjz00EP4+eefMX78eMydOxcjR44EABw9ehR79uyBXC73uu9Tp06xgbpBgwZ5XCcSiXDVVVexgTq9Xo8ff/wR77//PrvOsWPHsHz5chw6dAharZad8pufn49hw4b55PFzcbeZmJgIACgtLUWfPn2waNEiLF26FOvXr8eECRPwt7/9DdnZ2R0aQ1f0mkDd4sWLcezYMezatavV681mM9avX4/HH3/8vNuaO3cu+/fAgQMxaNAgZGZmYseOHbjsssu81l++fDn+8Y9/sJf1en2bEV1CeorJ6sA/vzoGi92JGJUUK6/O6ekhERKUrPaON5MAALVczP6tu4AaSqz9LR978+sg4POweEIWBiR0fAoGIYQQQkgo4/P5nZp+Gsr+/ve/Y+bMmfjyyy/x448/YsyYMVixYgX++c9/wmg0YtKkSXj55Ze9bseNiSgUCq/rb7nlFkybNg2lpaX43//+B6lUimuuuYa9/qqrrkJSUhLeeustJCcnw+VyYdiwYR6zGX1JLG7ep+fx3Cfrm4KDL730EhYsWIBNmzbhhx9+wIsvvoj33nsPN998s1/GEtLNJJosWbIEmzdvxvbt25GUlNTqOhs2bIDJZMItt9zS6e1nZGQgKioKeXl5rV4vkUgQFhbm8Y+QYFNrtGLToVJ8f6wCn+8v7unhEBK0LI7mAr0dCtTJmutT6Ew2v4wpGH22rxjfH6vA5iPl+LNE29PDIYQQQgghLQwYMAAikQjbt29nl1mtVhw+fNhjCiu3MUJ1dTUKCgo8MsYyMzPx0EMP4YcffsCiRYvwwQcfAAAGDx6M06dPo2/fvsjJyfH4d764yOTJkxEXF4e1a9fik08+wYwZM9g6c5WVlSgoKMBjjz2GmTNnYsiQIaitrfW4fdO6TqfTa9udffwdMXDgQDzxxBPYtWsXpk6dirVr13bq9p0R0hl1DMPg3nvvxaZNm7Bjxw6kp6e3ue57772HmTNnIjo6utP3U1JSgtraWsTHx3dnuIT43QOf/4k/Cupgc7iw+m9DMThFAwA4UFiHez4+yK4nEfJhd7ogEvSKWD0hPtXZZhIRChGGp2ngcDFwMYw/hxZU7K7mx9qBGcKEEEIIISTAwsLCcPPNN+Pxxx9HVFQU0tPT8eyzz8JisWDJkiXYt28fAHc5r6ioKLaZhEajwbx58wAACxcuxIwZM5CdnY3a2lr8+uuv6NOnDwDgH//4Bz7++GPMnDkTy5cvR1RUFE6ePIn169fj008/hVDYfsjp2muvxZo1a1BQUIDvvvuOXR4VFYXw8HC88847SEpKwrlz5/DPf/7T47aJiYmQSCTYvHkz0tLSIJPJvPoKnO/xd4TRaMQ999yDG264AVlZWSgsLMThw4dx5ZVXduj2XRHSR+mLFy/Gxx9/jPXr10OlUqGiogIVFRUwmz1rBOXl5eGXX37B7bff3up2+vfvj02bNgFwdxZ56KGHsGfPHhQUFGDbtm24+uqrkZWVhalTp/r9MRHSHfsL61FcZ0al3orCWhO7vLjOjMqG5hRhrdmOknpTa5sg5ILHDdRVNVix/VQVdGY7zlQ2tLq+SiLCvoJ6HCrSorj+wqlRZ3e6zr8SIYQQQgjpUa+//jpmzJiB22+/HZdeeiny8/Pxv//9zyOJ6emnn8YDDzyAUaNGoaqqCps2bYJUKgXgzlhbunQpLrroIlx11VXIzMxka8mlpaXhl19+gdPpxJVXXomLL74YDz74IMLDw8Hnnz/ctGDBApw9exaxsbGYPHkyu1wgEGDt2rU4cuQIu83nnnvO47YikQirVq3CBx98gNTUVLYRRFcef3sEAgHq6uqwcOFC5Obm4qabbsKkSZPw4osvduj2XcFjmNA9/d80b7ilNWvWYMGCBezlRx99FB9//DEKCgpafbPweDz2NmazGbNmzWILFiYkJGDKlCl4+umn2a4i56PX66FWqzvdNpmQ7hr9720o1VoAAC9fNwjXDHXXBVj7Wz5W/O84u55IwMP/zR+O8X07n2FKSG/2xs9n8NIPp9H0w5gZrcDZaiOEfB76xqnw7b1jvH57tCYbBj/1IwBgfN9ofHDbiACPumdMenE7ztW4A/5Pz8rFzZek9vCICCGEEEJ8T6fTobCwEFlZWa02TSCEy2QyIS8vD6mpqVCr1R7XdTRWFPJTXzvi2WefxbPPPtuh7chkMmzdurXbYyOkJ4g50/QKao0orjMiOUIBm9MFHg9oeqsrxELUGvxThJOQUNZgcYD7y3K22ggAcLgYHC/T4/eztRiVFeVxG5VUBCEfUEpFcDIXTpYZt3EGtwEHIYQQQgghpOtCeuorIcRTjaG5kP1rP5/FlP+4i4LWGmzgxrW1ZjsKamnqKyEtOVs5ASTgJNCt/uWc9/V8HpI0cmhNdpyqMPhzeEGFG5vTmi6cbreEEEIIIYT4EwXqCOlFrHbPbB6L3YlXfjyNc9XewQO9mQ6sCWmp5WcIAJZN7Y8kjQwAsPN0NU5VeNeqy4xWIjchDGmRchgtDr+PMxhYHc2ROh19nxBCCCGEEOITFKgjpJdwuhjYWhR3ZwC8su0MjpTqvNbXmmxeywi50BltzUG2frFKXJIegTvGZWDhmOau4u+2klWnlotwrEyPfQX1KLoAGrW4XAysjubvmwNF9T04GkIIIYQQQnqPkK5RRwhpZm5RI4oHsLW2HM7m6XwXJakhEQmgkNDHn5CWlGIBRAIe7E4GpyoN2Lp0LPh8Hq4floxXfjoDndmOLw+VoFJvQUyYBM/MyoVcLER2fBhK081wMQxK680YEN+7GwnpzDYMiFehQmeB3emC3myHy8WAz2+9yRMhhBBCSKhzOqkmLzk/X7xP6EidkF7CZPOcbsettGXnZNodLtF5LSOkLYeLtbgoORynKhrQL04FAPi/X89hz7laXJIRidvHZvTwCH1rT3497I2B7Qn9otEvzh1wU0iE+NslKfj2SDkq9BbsyqsBAIxMj0BKhAJRSgn25tcBAC7PNgDoWJfwUFWqteBEefMUYIPVjAq9BQnhsh4cFSGEEEKI7ykUCjAMg7KyMkRHR0MikYDHo5OTxBPDMLBaraiqqgLDMFAoFF3eFgXqCOkljFYnUiJkKKozeywXC3keBfKVEiEMVgd0VPydnMdn+4rw8MajGJaqwf7CerwwZxBWfXcCdY3vnd1na1FjsOGR6f17eKS+4XIxKKozspfvHp/pcf2SiX2w9LK+6Pv49+yyhzcexZTsWKyYmYMxWVGoM9nw04kq3DnO87a9zS+nq5Adr0KtwQaJSAAe3J2mKVBHCCGEkN5GKBQiKysLBQUFKC4upiAdaRPDMOz7RSjseriNAnWE9BImm8MrSAcANgcDp6s5/VYtE7kDdVT8nbRjy7EKLP/yKABgf6G7/tijm46y2WYAYLI5sfN0FR6e1q9X7LBsO1kFS2MzCR6AkRmRHtfLxAIAwMmnp6HeaMf0V39BvcmOnaeroZaJUKG3IK/KgBilBE6nCwJB7y0Dm19jwnFORp2QD5TUe3//EEIIIYT0BgqFAgMGDIDVaoXNRrW+SevEYjEkEgn4/O4dB1CgjpBewmxrey580yzX/nFKpEcpUW+yodZog8XuhFQkCNAISag4Ua7HfZ8cgqsxJtcvToVTFQ1skG54ihrg83GoSIsT5Q3QWxxQy0Q9OGLfWL3zLPu3XNL250IiFCBOLcAVA+Oxbm8RrA4XdpyqxuDkcFTqLKgyWFFlsCJe3Xuzy7ScQH+UUoxaow35NcZ2bkEIIYQQEtr4fD5kMhlkst67j0eCAwXqCOkljO0E6gBAJOBByOdDJhYgUilGLI+POz7cD4kwMFk/BosDg5LUuHFkKtKjuj5fn/jfp/uKMCxNg91na3HNkESsumYgLnt5J5sx5WB4SFLL4HC5M+10JnvIB+oq9WakRipwrEwHh5NBRgfeo9Nz3YE6APj+WDliwySQiwVIjpCjuM7UawN1JfUm1JtsiFaKYXW4YLY7kRGlgJPqXhJCCCGEENJtFKgjpJcwWR1ey46tmIKhz/wEq8MFu5PBv2bnYlBSOHg8Hv7z42nsOVcLmyMwB9d/5NdhT34dfjtbi2/vGxuQ+ySdV1BjxAe7CwEA6ZFyPDdnEEQCPi7NiMQXB0oAAIeKtUiOaA5Cac02pEDeI+P1lVMVBmw8WMJe5k7xbcvIjAiEy0XQmuzYfrIKSyf3QWWDFZUNVhTUmDAiPfK82whF//nxNPYXuIO0fAAuAGerjYhR6Xt0XIQQQgghhPQGFKgjpJdwMQxGpGnwV5keMrEAEQoxlFIRRqRFoERrhothkBapYGuJqaRCqKQB/ArgwbMVbRB5YetJlGktCJeLcO3FSchNVPf0kHrM1r8q2L/njkiBqLHOmljIR1K4DCVad1ZdvcmO4WkaOF0M6gyhX6ejqM7kcbkjGYIiAR+XD4jFFwdKYLQ5YXcxGJKshlQkxKnKhvPePlRxS+/lJIbhVIUBNqfLYzosIYQQQgghpGsoUEdIL6EzO/BHY5bLk1fl4PrhyQCAj24f2er6t4/NwO1jMwI2vr7//B42pwtMkAXrGIbBu7+cYzOoopSSCzpQt4UTqJuaE8f+fbhEywbpAOCvMj3qjO4AXbE29JsIFHchUAcA0wfGsZmGeVUGlGgtqG6wIq/agMevzPb5OIOBgzPL/tW5Q3DDu3tQ3WCFzhT6AVtCCCGEEEJ6Wu9tSUfIBcbGOXoWB6juXKcEaVNQrdmOjGgle9lqb7/WX29WobPgUJEWANA/ToW0xjptDMNAxOdjWKoGEQoxAKDOaEOfWCWGp2lgtnlPuw41hbXNgbqBiWHIilG2s3az0VlRUEnc57x+Ol6JsVlRGJamQYxKAmMr09FD3a68ao+sS4VEiHF9ohAhF6HaYMW453/Gn0X1PThCQgghhBBCQlsQHs0TQrrCxinkHpSBukZBllAHo9WBUxXN0xQtAarZF4x+ON4cgJmW25xNpzPbcahYi/2F9YhqDNQBwJlKA/YV1PeKbp/cqa9HS/Wwd7AxgkQowKQBMZAIeegXp0KdyYr9BfX4q0yPwtrQf15aKq41eTSukYsFqDfaUGeyw+5kUFRn7hXvB0IIIYQQQnpK8B7NE0I6hdsUQiwIvo92kCbUwdSiW67lAs6o23Ks9UBdpd6K2DAJUiPlGJ6ugUwk8LidLsRrkzEM4zX1NVwubmNtb5dmRMLqYLCvoB488NAnRgm1TORV96434IYvh6aGQyEWIknT3FhEwOfhf0fKAz8wQgghhBBCeongO5onpIt0JjuK64w4XFSPfQV10F5g9ZI8AnVBnFEXbFpOT7xQA3V1Rhv25tcBANIi5egXq/K4rlJvRWGtCUqJyCOIJxXyYbWHdhaixe5CZowSCokAQj4PQj6vwzXqAGBYmob9u9Zow5kqA0QCHir1Fn8Mt8dU6i0orDEhTCoED0BapAJ8Pg9CzokBl4vpcDYiIYQQQgghxBsdzZNeY/UvZzH2+R24+q3duO6d3zH91V97ekgBZQ2Vqa9B1k2iZUad9QKd+vrTiUo4Xe7XZmpuHNsdGPDMmFPLRZg9JJG9bHG4cLbaELiB+oFMLMBXi0fjjrEZcLgY8AAkc7LEzic9Sgm52J1lWK6zQCLko8Zgw+nK0H5eWrr/0z/x7q/noLc4wOMBt1yaBgB4cGo/nHx6GtKjFGAA/Fms7clhEkIIIYQQEtKC92iekE5qOf2uKehwIfjw9wLsz28u4B6MgTpekM59PVPVgOx4JSRCPhLCpVCIL8xm2GFSEYakhAMApnG6vQJAYa0RFyWpkZMQhmSNHKOzopAWKQcPgEjAQ0K4zGvqaKj5bF8Rtp2oRJhUCKVUiITwjgfqBHwesuPDAADVDVZEyMUYmBjW676DpJzvFYVEiLgwKQBALhZCKhIgXO7OQmywOHrdYyeEEEIIISRQLswjUtIraVsE6i6k6VdP/e84HJwD42CsURes3t9VwNYSK9NaLthC+NNy4zAtNw7lOjNiVVKP6346UYnDJToAwKT+MRDweVDLxWBqTbA7Gew+W4s952qRHCHviaH7xHNbTqLO6P4OyYhSoA9n6m9H5Caqsb/QHSzXmm0o11u8vpNCXUm9mf27weJAtEricT13urDebIdG0fE6f4QQQgghhBA3CtSRXiNMKkRiuBRlWgsYwGPqXm/n5EwnHZGmYafhBRNekLaTaJmJub+gDtev/h3PzMpB39iwHhpVz7DanVj+5VGYbU5EKMSQCPk4WqpDrdGG9Eg5wmQiKCTun43MKAUON05xHJgYhjpjaNeEjFFKYHO4YHcybHZcZwxMVLN/p0QooJaLwDDuem2iXhI459ZvlAj54PM9P9N9YpQw25xgAGhNNgrUEUIIIYQQ0gUUqCO9xrFSPUq1zcXbXUFWC81fLHYnuA/1j4J6KCX00e4Il4vxCtTZXQz+yK/DmUrjBROoq9Rb2CzMHaeqAbintDIAHE73m0trsuP2sensbTJjlOzfR0v1SI9qvhxqFq87iJON9eQuSlLjjZsu7vQ2BiY1B+p0ZjtOVTYAAErrzUiLUvhmoD2MW8+R30rc3eZwsQ1Jels2ISGEEEIIIYFCR/OkV/jb/+3BX2XuqXk8HsAwCPlOlB1VoTdDJRXCaHWgafZrWCc6VgZaMMVPjVYHopRi1Bi8s8FOluswY1B8D4wq8F7bdgbr9hYhOaK5LptMxEeDxbPRRpSyOUMqgxN8ilZJvAKewe6FLSfx2f5i8Hg86Bo7RAv4PIxIj+jS9jKjlZCJBDDbnTDZHBiYqIbTxaDaYOkVgTqGYRATJgafB0QoxLhjXIbXOmp58/sj1N4PhBBCCCGEBIveMR+HXNBMNgfyqgxskKop0cNsd0JnsvbYuAKlSm+FwdIcpBML+ZCKgnDqa5DNfDVaHfizWNtqkA4APtlXDNcFUhD/UJEWgDv7q4ne4p7C2EQi5OOu8Vns5Yzo5gy66gYr8qoa/D1MnzpXY0SNwYbqBitsjVmDThcDWRc/OwI+D9kJ7gxMvcWBo6U6HC/Xo6YhtKcENzHbnThZYUCN0YZIpQTXDUv2Wiecc4KguqH3f/cSQggJPQ0W+wWzf0cICV0UqCMh74HPD6NC7z4oTFCLMTi5eQrahBd39tSwAuaRjUchEjRHwdIjPbN3DFYHAGDbicqgaLDBIDh2jhZ+sA83v/8HezktUo4PbhvKfilKRQL8UVDXM4MLIKPVgZMVegBASjvNIGJaNA5IjZSz0x8FPB7KdRbYHD3//uqo/BojBC2Cx1IhH1kxXZ/COzBRDT7P87nqLZll3MfR1N21peQIORLCpRDweagN8ZqFhBBCeqepr/yCjEe/Q/oj3+JYqa6nh0MIIa2iqa8kJFnsThwr1eGjPQXYfrKKXV5ncqDe1JzZI+TzoLfYESYN3qmg3VVvsrEZQUI+DwJO8SityYbL//MLsuPDsPN0NS7NiMSbN10MiZCPr/4sxZUDE6Bu46Db14IsoQ4Gi2cAZUiKBiPSotEUaiqpN2Pn6WpckhEZ+MEF0OESLZuNmRmtRKXeAnMr08ZtLYK8UpEASRo5iupMbDMTndnu1Qk0WGlNdjhbxIwdLgbx4bLWb9AB913WB8um9cOvp6vx+Fd/QSYWQG/pHYG63WdqEBvmbrgRGyZtdZ1olQT1RhtSIuTQNwb2XC4GO05XYcfJaogEPNw6Jh1JmtDtDkwIISTEMdz/guPkMSGEtESBOhKS8muMmPPO717LLS0CDNUGGw4U1mNiv5hADS2guM0QBiaq8b97x3ik8z/73QlUN1ixs8HdIOD3c7UY/8J2uBgGRqsTh4rqIeDx8a/ZuRD2ks6UHVVQa/K4rJAIIBXxIRLwYG+M4ORXG3tiaAHVNO0VABI1slaDdIA7a66ljGgFiuqan8eQCtSZvTO+wuUiDE3RdHmbEY1dTqPDpKgyuLN8uc9PKHtgwxH27/A2amCmRshhtruQX2PE4RItAKBCb8Fta/c3r8Tj4fErs/05VEIIIaRVdqcL5brmxnMmW+jMBCCEXFgoUEdC0sd7Cr2WqaRCmG1OOFrUndD3kqlnrdGZ7RiUFA4Bn4d+se4pe/zGjLrdZ2vw+f4SAIBcJIBULECd0QaGAYxWd5OADQdKAQBXXZSAMX2iAjLmYGgm4XIxHh0sAUAqFIDH42F832hsO1EFBkBetaFnBhhABwvr2b8PF2u9rucB0CjEGN5Kk4XMaCXbJTYrWoEag7VbU0cDxWJzYlBiOGqNVhTWmdjOtgMT1eznpztSIuTIjg+DXCxAbyiD4+BkU0qEfPSPV7W6nkYhxuDkcAj4gKKx83RJvQkDE9U42ji9qLdMBSaEEBI6Nh4swW9nanCsVIcwmYj9LTLaHD08MkIIad2FlUJDeo0vGgNQXGOyorB4YpbXcq2p9x4YlmrN+LNYiwOF9eDOTLTYnfjnpmPs5UdnDMC3943BqMxIvHz9RZAI+bg0oznw8u3RMr+PlRdE3SSOluq8AihNDTgyo5XsRIiiWlOvLjjMMAwONQbnwqRCHC5prtUSoXBnTTEAHpjSF6/OHeJ1+7nDk3HTyBQAQF610aMZRTDTW+z4o6AOZ6uNbJAOAC7rH+uT7UcqxCisNWJ/YT1+y6vxyTZ7ksneHNQekR6Babme3ZCdLgbv7cqH1eGEweLAgUItfvyrEu/sPIv8GiMbpAN69/cxIYSQ4PTuL+fw5aFSnK4yeJwwMlmd7dyKEEJ6DmXUkZDE49SUEPCAJI0MaZFyLJ6Yha1/VeBkRQOUEgGilBKv2lq9yef7izE6KxIuFzBtYBy7fMuxCtQ0Tr0blqrBvBEp4PN5WH/HJQCA/Y9NhoDPw9Cnf4LZ7sT3xyrw1NW5EF0g019/+KuC/ZvHAyLkYkSp3NMW+8apEC4TQWu2w+Z0obLBgnh11+uWBbPCWhPqGov+Z8UoUWe0oUJngUomxNUXJaKqwQonw2BoauvTQfvEqjB5QCzyqgywO12oNoRGp0/uTrpYyIPNwYDPA0ZndT+rdOepKvxyphpKiRApETLEhIX+e8fMyT5ViD13G6wOJ+7/5E9s+asC//3lHCr0Flx7cSKOluiw6WApkiNkGJYajlMVBsSESYKu+zMhhJDebcOBYhRwSpmEy4QQCwVI0shgc1CgjhASnChQR0KOy8XAysmCcTJAYZ0ZVgcDsZCPVdcMxJL1h1CqNcNgNaG4tnfUiGrNthNVKNWaEaUUs3X4LHYnntp8HCI+H/3jVFh1zUCv6XyqxuYalw2IweYj5dCa7PgtrwYTAlDLLxjy0348Ucn+zTBArdEGV2M8N1YlhZYTyMmvNvbaQN3BouZpr8kRchxsrFe35NI0LJnUp0PbSNLIsDff3R23va6xwYT7+ja97mmRCqRHK9q4Rcfl1xjx3q4CAEBlgxUnKgxwuhiPJi+hxmhtnhoklwjYvw1WBxZ9tB+/5dUCcNejA4A95+pQqnVnV+rMdnZ5Q7WDMuoIIYQE1OFiLayck/YT+sfgq0NlqGqwYnqLDHFCCAkWF0b6DOlVLG2c/VI0HkAOSdEgk3PA/eGeQqQ98i0yH/0Ozl42jbEpM0jNKe7+v8NlqDPaUGeyoU+sCn1iW68nBQBXDmreQfn2SLn/Borg6fpaXGfC6Urv2nNysfv9kxopR4K6uatlfm3vbShRUGNkA0iJnG6nMnHHz+EkaWS4KEmNlAg5yjgFmoOZ1mRHYrgUmdEKXDEwDvdd1gc3DE/2ybaTWwlWWkP8jL3Z7kSyRoaMKAViOM1CbA4XKhpfc6nQfWIAcE/JTwx3ZzkbOEG+JI0MNqfLYxkhhBDiT0I+Hxq5CAqxAOP7RmHOxc2/9//36zn0f+x75DyxBc9tOdmDoySEEE8UqCMhR292QCTwDvtwl9w5PsPresbFoKohNAIJHWG0OiAR8iHk89hAHcMw+OD3AnadBaPS2t3GhH4xUDQGqLb+VQGbw//ThJke7iaxjZNNx9UUqItXS1HJeZ8U1PTeQN2ec3UQ8oGUCBkYNL/2Te+JjsirMiK/xoiSOhPMIVKUWWe2o1RrwdlqI4anReAfl/fFovGZPtl2a4G6lt2oQ43F7kRxvRnnaoxsR2TA3eX2o4UjkR0fhnV3XII3b7oY4sbp86VaMwprTXBxPu8l9WbIxQIU9eLgNyGEkOBSZbCi3mSH0eZEbqKa3WeWi/iwOFywOFww2pwhU2eXEHJhoEAdCTk1BqvHwWITCyfINCzFu6aWC0ClPjRqaHXEztPVqDXa4HAxmJrjrk93sKgex0r1ANwdLC9OCW93G1KRAJdnuwvo6y0O/Hqm2n8DDpKUuu+PVbS63NkYUBAK+OgXG8Yuz+/FgbpzNQZYHe4OuG/vyGeXyyUdz6h7/7d86C0OuAAcLdWHRNaq1mRj/1bLxT7ddpLGe5q0xR7aGXXcQKNU5N5tOFRUj6te34UPfi/Ac3MGYmiqBpnRStwz0R3wlIn44PHg0V1ZyOehUm9FYS8uR0AIISS46DglF+4an4nYMAnCpEKY7C6PmrXUlZwQEkwoUEdCzpESLVuQXCzgQS4WIFwm8piSJRG1nhHUm36EuY+l6ezgmt8K2GXzR6V1qNPqjEEJ7N9tBbF6C5PVgUONddiaiAQ8hMtFCJM2Tx9O1sgg5POglAiQFtn9umXBSGeyo8bgDljFhUnRVEKNByBCLmr7hi1kRHk+P/oQ+IyZbE5kx4ehb6wSUUrfBurkYqHXNq0ByFT1J26gUSp0f7f+lleDo6U6rN55Dn81nhwAgLsnZOLSzEi4GMDFAEqJANEqCWJUEsSGSTAkWQ29JfjfI4QQQkLfF/uLUaW3IEYlQZ8YJZQSIaKUEijEAmjkQkiEPAh4QLhMhDAplW4nhASPkA7UrVq1CsOHD4dKpUJMTAxmzZqFU6dOeawzYcIE8Hg8j3933XVXu9tlGAZPPPEE4uPjIZPJMHnyZJw5c8afD4V0wuf7S9A0m2pydiyOPzUNfz45BbePbZ7uyuPxIG8lWMfNpAl13KLsapkIlXoLtjQG2iIVYo/6c+0Z1zcKA+JUuDglHLVG/2cc9mS+lcXhwryRKR7L7r+sD/58YgouGxDLLotVS+FwMTBYnZiWG9dyM73C2ZrmOn1hMhGaEuEYeNY8PJ/MGKXHZW0IBOrOVRtwvFyP05UGPLP5BO5ZdwCnKxt8tv0kjef011DPqOMGGiWNGXVNDSQAz265EqEAVw1KYG9jsDpR3WBFjcGKUq0Fh4p1OFfde7NUCSGEBI9HNx3D6SoDqhqsaLA4wOPxwOfz4AJQb3LA6mDgZNz7LsfK9OfdHiGEBEpIB+p27tyJxYsXY8+ePfjxxx9ht9sxZcoUGI2eBwF33HEHysvL2X/PP/98u9t9/vnn8dprr+Gdd97B3r17oVAoMHXqVFgsvae+WaiqM9o8gm1j+0S3uW7LOnYCPg9vbs/z29gCjmEwMj0Cw9M00CjE+Oj3AqgazwbeOCIF0jayCluSCAUQCvg4WKTFzlPVfqtTFwwzX3eeqsK+gjqPZRKh9/PUJ0YBjVwEqZCPxesPotbQe6ZMA8C/vz+BhzcegVjIg1jAw9ESLUR8HiRCPpLCZa3WWWtLBqdxS5RSHBJZqyqZCJdkREAjF+F4uR7fHfVtfUbu8zcoUR2Q2o/+5JFRJxLAYnfiQGPH4CSN9/tl9pBEhLcI9io5mQqh8B4hhBAS2ix2B2KVIvB5gIAP9ItrPrF4RW4cxAIe+Lzm/dPedDKfEBL6QjrHd8uWLR6X165di5iYGBw4cADjxo1jl8vlcsTFdSwrhmEYvPLKK3jsscdw9dVXAwA+/PBDxMbG4quvvsLcuXO9bmO1WmG1Nh/I6/V0RsZfzlYbUMCpbzQyPaLNdZu6WTZxuhicrjTAYHVA2YkaXMGqqN6EvfnuoJPJ6sS7v+bD5XLh8uxY/O2S1E5tKyVCjqOlOrgYoExrRlqUH6d79mBK3ffHKvBXizOmDpd3EEUpEaG+MWPRorfibLURkUqJ13qhau3uAo+6YzZnYyDGxWD1LUMR3om6bYnhMoTLRNCa3VNpQ2FHd19+HU5WNIA7MzwmzHevbzKnTt2RUp1HnbZQ5FGjTijAgcJ6Nvg4OjPKa32ZWIB5I1Pw1o6z7LIwiRB6s7vZCDcbmBBCCPEHo9WJEl3j8RkDmDm/ZU/OzMWmQ2UeswB0ZjtcLgZ8fjCcWiaEXOhCOqOuJZ1OBwCIiPAM3qxbtw5RUVHIzc3F8uXLYTK1Xcg6Pz8fFRUVmDx5MrtMrVZj5MiR+P3331u9zapVq6BWq9l/ycnJra5Huq+w1sjW0hIL+UhvJ6D0+FXZWDq5D3ITVOwylVSIb/4s9fcwA4J7sPvhngLYHC44XO4Mpzi1tFPbSolszogpqvNPofeO1MsLtMkDYjAl2zuIPyI9AtMHxiJMKoRaJsKWY+U9MDr/sDtdbXYh1chFSOlENh0AKCVCNFibu72GQraUuTFDrOkHUMDnIVLhw0Bdi+fQ4gjtQJ3N4UROQhguTglHuEKE3/Jq2OtGZUW2epubL00F91gnMVyG0VmRyE0MC/nngxBCSPDjniTLjFbg7vEZHtc/OLUf7pmQidzEMAxKVCM5Qt7rZlAQQkJX6KcVNXK5XFi6dClGjx6N3Nxcdvm8efOQmpqKhIQEHDlyBA8//DBOnTqFL7/8stXtVFS4a3zFxsZ6LI+NjWWva2n58uX4xz/+wV7W6/UUrPOT42V6tpbWJekR7QZ/Zg9JAgBcPTgRE1/cAQBosDhwtsrQ5m1CSb2xOXNpxyl3t9YopQRLJmZ1elvc4Iy/AnU9zWRzoKZFDb7ZQ5K8aqwBQKJGjiUT++D7o5UA3Jl4T1yVE5Bx+ludse2MtwaLAyppx+vTAe4ArEwkgMEaOtlSRqt7570puTNaKfHKwO2OZI0cMpGADQhaQ7xGXZ3RxmaiSoQC7D7bXJ/u0ozWA3XxahmyE8LYLtTF9WbYXQyqG6xIDO/ciQRCCCGks7j7O0NTNZjY3/PYrmn2id5ix8d7isADUKI1IzqMfqMIIT2v1wTqFi9ejGPHjmHXrl0ey++8807274EDByI+Ph6XXXYZzp49i8zMTJ/ct0QigUTSe6bFBbMzVc0F3xPDZe2s2Sw9SoGchDD2QPNIqc4vYwu0Sr0FKqkAdifDZkgtm9qv04EWILCBup6a+br7bA0OFmrZy1IRH3Ht7IxFc6a61rYT3Ao1Vfq2a22+OW9Il7apkDQH6oyc7LpgZbK5x9gU9I/tZAbq+YzOisSyaf2w8n/HAYR+11fu1CARn4cjJVoAQJ8YJWLa+Qw9Mm0Abn5vL/rFKtEvPgz1JhucLgY1Bvf/vgyOEkIIIVw3vruH/VsibHsSWb9YFRLDZajUW1BYa8KQFE0ghkcIIe3qFVNflyxZgs2bN2P79u1ISkpqd92RI0cCAPLyWm8q0FTLrrKy0mN5ZWVlh+vcEf+p0DVnRGUnhHX4dnOGNr8vKtsJVIQKp9MFjUIMIY8Pu9MdbchNDPN4nJ3hEair9dfUV79stsP2nvNsImG1u9qtSxatkjRP3WMAsy34A1AdUa6zICXCO8gtEfK7vHPKrfnYYAnujDqXy4VolcQjEBur8u2JFh6P59HMJdS7vtocLiSGS6GWiVBQa2QDnKMyW8+mazKmTxT6xqpwstKAbw6XweFkUGe0wepwBf37hBBCSOg6V23w6GLWXoO1KKUENQYLkjXykCjfQQi5MIR0oI5hGCxZsgSbNm3Czz//jPT09PPe5s8//wQAxMfHt3p9eno64uLisG3bNnaZXq/H3r17cemll/pk3KTrXExzPtagpPAO3+6qixLYv4vqzLCHeIaL2eHCwSIt6s128MAgNkyCuydkdrkAbrxayma3+D2jjumZnDpuJmX/OCWWTMpCkqbtrEwejwdFYwDK5nShuqF31C05W21EUZ3Za7nN4Q7+dgU3UKczB3dA02BzorDWhGpOHZpYP0xz4Z69b6smYKg4U2VAqdaCBosdJyuas5pHZXk3kmhpQn93Z26G8QxYhsIUaUIIIaHp3V/OedSoEwvaPuSNU0thdTDIrzXibHXvKI9DCAl9IR2oW7x4MT7++GOsX78eKpUKFRUVqKiogNnsPgg9e/Ysnn76aRw4cAAFBQX45ptvcMstt2DcuHEYNGgQu53+/ftj06ZNANwH50uXLsUzzzyDb775BkePHsUtt9yChIQEzJo1qyceJuEYEO8uaH5RshqDktQdvl2UUsJOcxTygX0Ftee5RXAzcaYXOlxApd6KMVnRXd6eUMBnpxIX15n8EkzryYS6tbvzcbhIy16OUbmzg87X4EIjb55GfKqyd+y8Ga0OrwAlnwdkRCkgamdHtj1qWfPzpDMH7zRhp4vBM5v/8loe68OOr02UEiEGJ6sxNFUT8h3k1FIRhqSEY0iKBrUGK4Y0fv+213W7yYS+MezfJpsTFyeHY0hyOGqoYDchhBA/YQDEqCQQ8nmIVorRJ9a7HnETDafTPZ1EIoQEi5CuUff2228DACZMmOCxfM2aNViwYAHEYjF++uknvPLKKzAajUhOTsa1116Lxx57zGP9U6dOsR1jAWDZsmUwGo248847odVqMWbMGGzZsgVSKRUX7WkHC+tRprMgWiXpdBfR9Cg5KvQWOFzA98cqMaobga2exj1LCLi72XKDJV2RGilHUZ0JDVYHtCZ7l7OrgtHr2/Jg4WRRXp4di5svTTvv7aKVUjb77ExVAy7Pjj3PLYLfwaJ6lNQ3Z9TdMCwZcWop/n553y5vU80JaOotwZtRV64z4/P93l2f26uz1lV782vxZ7H7dyUnvuPT9ION0erAz6eqAADDUsOxK68WOrMdCWopwuXn/44YlqaBUiKEwepAYa2JbbBRqjVjmF9HTggh5EK160wNqhqsCJeLsO+xy9tdN1zOPdlIgTpCSHAI6UDd+bJ+kpOTsXPnzk5vh8fj4amnnsJTTz3VrfER33p6818ob6wvJxJ0PkNlbJ9o/N5Yp6ypGHqoMraol5askbexZsdd1j8GaZEKpETI/ZoBFOiJr4W1RkhFzZliMSoJLk7tWC22rFglDhTVAwBOV/SOjDq1TASVVIiGxoBacoSs3dotHcE9G91eweaeVt1gRUaUHGVaC6QiPib2i0G4QoycTtS77CjuWfmW3YZDSVGtEYOTwyEW8tE/VoX9jQ1ZWuuW3BqRgI/RWZHY+lclzHYncuLDIBULUNVLppITQggJLlaHE1FKCRLDZUjoQJdxlVSEkekRYBh0+6Q3IYT4SkgH6siFZfuJKjTFVAVd6EwwNTcOz289BQAo8FPDhEBpmVGX3EpzgM5aMPr8NR67o7MZkL5yutJdX6vJJRkRyEno2LRpbgD0XE3vCNT9llfDBumilGIsmdSn29uM4GRf+qsZiS9UNVhxrsY9vnsv64PFE7P8dl/xnE6y9SHcNbiwzoQ/i7UAgLTI5s9DZnTHAnUAMKFfDLb+5W7Q9Fe5u/t2epTCd4MkhBBCGpXUm3G48YQ8t0Z1E4ZhPPZJBXweTpTrobc46LeJEBI0Ah6oy8/Px6+//orCwkKYTCZER0djyJAhuPTSS2lqKWnTZ/uKcK4xAMDnAYvGZXR6G6mczqah3MGzwWLHPE7LeQBI8kFGXaAEupfEr6eroRALYGwMbnYmMDU8vTnzrkLXC7oFuxiPqakZUR0PtrRnfN9ovLrtDBim5wKyHaHjZLlxp7r4Q0J4c/C8PoRr3hTVmZEQLkWEQoLcBDUSJstwttqI4Wnnr0/XZEK/5jIDcrEAsWGSXtF9mxBCSPBgGAa5K7bCZneBzwOyopXIaAy8mWwO7D1XB6eLwUd7CrFyZg7SOEG5cLkYeosDWlPonlgjhPQuAQvUrVu3Dq+++ir279+P2NhYJCQkQCaToa6uDmfPnoVUKsVNN92Ehx9+GKmpqYEaFgkRdYbmH04XAwxKDu/0NoQCPsRCPmwOF+wuBkarg+3qGUrKtBav6aPJ7XQvDRY9Fb7JrzWyQTqpkM/utHXEAE5tsVqjDU4Xw3bHDUU6sw0ykYCtE5YR7Zszx0NS3HXIGiwO2F3B2+G0zmSDWMCHzeny+/QWbsMOvSV0A3XVDRbUGW0o01rw9NU5GJLSsWnjXPFqGfrFqnCqsgEmmxMFNaaQ/O4lhBASvMx2J4zW5hknp6sMuFbsLu3x+s95eHvHWchEfJjtLkx55Rfcz8msb9oncLoYuFwu8PnBW8aDEHJhCMi30JAhQ/Daa69hwYIFKCwsRHl5OQ4cOIBdu3bh+PHj0Ov1+Prrr+FyuTBs2DB88cUXgRgWCSEta6Z1ZtoVV5jUfXDIMEB+jbHb4+oJ5TozHC7PUJ0vM+p0JjvO9aL29LWcWljZCWEQdqKzaZhUhCile1qn08XgVEWDz8cXSBU6KxukA7r+OWqNQuz+bJlbTMsOJpV6C2xOF8KkQjhdDOqNNr90OAaAWE6DCkMQN9g4nxPlDbDYXYiQiz2ykjuLm1UHHnCsVB/U7xVCCCGhpbVGEOFyEc5UNuC/v5wDAJjt7pOJNocLtQYbTjSWY+gXp4KQz4Pe4kC1gbLqCCE9LyCntP/9739j6tSpbV4vkUgwYcIETJgwAf/6179QUFAQiGGRELEvvxb782vBg7sRQaRS3OVsDLVMhJrGH+C8qgbkJnasVlkw4e6IjMmKQuR52s53xvgXtqOw1oTEcBl+e2SST7bZEhPgdhKCxsYjfB5wcReygWLDpOx75n+HS5Hth8YDgVJQY2ycdugOXvoqow5wd1UOkwkRJg3eQswiAR/Z8WGo1Jtx/6d/AnDXLPz0zkt9fl/cBh1Gm9OrJk4oKKk3IUwqRP84Fcw2Z7c6QU/sH4PfztbA7nRBa7QjLlyK4noT+saqfDhiQgghF6pagw0qibvUCY/HQ0qEHFFKMR7/+hh7gvuucRmwuVz4YHch3v8tH38W1+PLe0ZDKREiMVyGSKUYlTqLx8k2QgjpCQEJ1LUXpGspMjISkZGRfhwNCTXPfHuSLQoLAKkRXQ8uRColOFvtzqTLD+Ki9+3hdpOcPSQR1w5N8tm2m1L/y3Vm2BwuiH3YwbMnYhQOpwt/lbnPlroYIE7d+R2v2UMS2W2s21uEh6cP8OkYA+mH4xVskG5QohpZHezceT5OF4M6kw2nKw0Q8LwLNQeLP4u1ON549rxJpFLil/vifnacLgY1BhuiVf65L3/54a9KfHesAgDw0nWDkFdlQGqkokvfCyPSImCwONhGPpUNVhTUGClQRwghxCfKtGY0NE19ZRjk1xhxrKwBe87VAXA3Xlt6eV9IRQJsO1GFwloTjpXpYXU4ERsmRWGdCYV1JpTpLBiU3IMPhBBCEKCpr1wHDx7E0aNH2ctff/01Zs2ahUcffRQ2G6UaE082hwuAy6O+WVZM1wN13K6FxSEaqOPzgEszIjE0VYNwhW+zl5Ibp7a5GPcOjz8EspnEb3m1HkX9UyM7/97hZp0pJUKYrKE7jVHLycbsF6fy6GrbHdUNVpyqcE+XdjKAzRmcdeqsdu+plrEq/5w1Fwv4iAuTQCkRIEYlQXVD6DVP4L5fTDYnLv/PLxjwxBb869vjnd4Wn89jg7fu77AIGKyhW7uPEEJIcDHbHYhVNWd+x6rEyK82sCeXVs7MYbPdm2ZY2BwuHC/Te9St1Zl7z/HoC1tOYuHafbhn3UH8WVzf08MhhHRCwAN1ixYtwunTpwEA586dw9y5cyGXy/HFF19g2bJlgR4OCXKlWjMOl+g9JktyC/x3ViInaFNQG6o16iz4/VwtDhTWQyYUnP8GnZDCqUFVVOfrQGbgM6z2F9ahpL454MgN1HYUtzNqmc6C4nr/BDAD4Uxlc429f187yKv2Y1eFyTyTs03W4Kw9ZnW4A4giQfPjjg3zT5abSMhHhd4Kg9WJqgZrSNa80XG63+nM7gC108UgXN61KbBNnz8XA/x+rg4FNaF5soQQQkjwKao1o7Kh+XfL6nDhqz/LoBALcOWgeEzqH8ted3FKOPv3wSKtRyd4bQh3am9p48FSbDtZhe+OluNIsa6nh0MI6YSAB+pOnz6NwYMHAwC++OILjBs3DuvXr8fatWuxcePGQA+HBLktx8qRkxAGISegkJvQ9bpyl2ZGIS1SjrRIOdI70f0zmFjszdlKvu5A6t9AXeDVGdxdTgF3mDC5C8XwkzQy8HmAkM9DmFSI4rrQC/DqzHZc9tIOVOgs4POA0ZmRPn3vyEQCjzCsqZXMtWBgaRwX97F3ZTp0R4hadIzTmkIvUMcDcFGSGsNSNagxNDdlyexibcP0KM+p1tpWCn8TQgghXWHkNCjqF6eCuPFkdr3JjrnDUzzW5XYwP1RUjwiFGENTNbgoSQ2HM7C1lP3leJke3PP5odyBnpALUcADdQzjbnsNAD/99BOuuOIKAEBycjJqamoCPRwS5E6UN+CvMr1Hl9Pu1DTKTQxDQa0JBbWmkA1EWR3NOyI3/ncP3tye57NtByJQF8iprycq9GyX0zi11KPAf0cJBXw8MysXDhcDvcXhkaEXKuqNNpytNsLJuLOZzvm44zGPx4OIU7csWKcHNwW5+Zz6eTF+mvoqFHgGQkPxDH1BnQmHS3TYX1iPCl3z1N2u1jZMj/IMlLfWoY8QQgjpCpOted/joSn9UN14gilJI8OoTM/65/3jVJCL3fuEh4q0UEqEOFBYj8MlOpTqQm8/rzVnqw0oqW/+7a4zht4JQ0IuZAEP1A0bNgzPPPMMPvroI+zcuRMzZswAAOTn5yM2NvY8tyYXmhqDBZEKMZoSYKJVEqjlXa/LJhcLcUlGBKKUYraoeajhZtS5GHjU1eguj0Cdj5+fnugtcK7aAJVEgOQIGW6+NLXL20mPUiIxXAaNXIQKvfX8NwgyLTOXbA7fZ7xxMxcNwRqoa+Vx+2vqq5Af+oE67piL693fBwI+DyldbOiTxslilor4MFiC831CCCEk9Jg4GXW/nKlmTwxfPyzZq9SHUMDHoCT3DJ1SrRl2R/O+tS4Ef69bU1hrhETgLvchEwnYZmKEkNAQ8EDdK6+8goMHD2LJkiX45z//iaysLADAhg0bMGrUqEAPhwS5qgYbao02MIy7S+XYPlHd3qbD6YLd6UK4TARDCKaBtww2JGlkbazZefFqKYamaDA0VQORMPi6dnZGcZ0RMWFS8Pl8JIbLcM+ErC5vK0IhRqnWjHqTHbWG0NvRqTfaEM1pPFJrtLPTQH2lqVgzA8AYpIG6cJkIUcrmwD8AxIb5J6OOx+OBm1RXH4JTX6UiPqKUYkQqxDjX2C07NULe5W7QaZxmLha7CzV0dp8QQoiP8ADEqCRQSQXY+pe7YzmfB8wZmtTq+tzpr+dqDJCJ+IhRSeDjqjI9psZghVgkhN3JAGBwrsYAe5A2+yKEeBOefxXfGjRokEfX1yYvvPACBALfFsYnoa8po4MBcKRUh75xXZ/22iRRI8f+Qi10ZgMOl+gwOqv7wb9Aatm5sit119oiFPBRUGtErdGGCp3vAoBA4FtJbP2rEqcr3Z1Irx+W3K1teRQZDsHpemU6M6qNzePuE6Ps0jTg9sg526s3Bt9z5HIxKKwzgWEASWOgSSURQiHx38+gQMCD0+E+pR+KNepOVxpQZ7QhTi2B2ej+3smI7tq0VwBICJdBLOCzXYH1IfhZIoQQEpzKdRZUNbhPpjZY3L9Z4/pGIyG89f3ZizmBupMVDbA5GVQ1WJEfos3muOxOFz7aUwSni4FEyIPZ7sKJ8gZU6i1I0vjuuIEQ4j8Bz6hri1QqhUjkuyl8JPQxDIOsaIVHXaO2fmw7o7qhuV7DH/m13d5eoKllIrauBuDZydYXIhTujo6hXsvCYLVjaIoG/WJVSOlCt1cuu9OFCIUYSokA+TUGH40wcHQmOwbENwe5sxO63jm5LXJJ83uyxhh8WYcWh5OdBtN0RjnGT9Nem3AbSoRagJdhGLaGnIRTjTozputNeAR8HvtZ5AGIVnateywhhBDSUtNvFvfE8NzhbZ+oHdLY+VUi5MPqcLGlZHpD/dTvjpbj0owIJIZLESbtnR1tCentAp5Rx+fzwWunWJXTGZzdAkngme1O7Mmv81iW5IOgVHKEAjjr3u7J8oZuby/QzlQZ2DocMSqJzzOjNI2BOrPdCbPNCZnYt9tnAtRN4mCRDgeK6gEAcd2c3qiUCNnAZVFt6BUZPlKiwwnOez073veBOiUnMy0Ys8eM1ubflnF9ovHYldk+n/7bkogz97U+xHaODVYHnI1NfASc3+zMbmTUAUB6lAJ5VQYwAP4oqIfeYvc4iCCEEEK6Qmt273uopELMHJyA3Xm1mNS/7frnUUoJvrtvLPrEKiES8LHrTA3qjLZeEcz66PdC7C907wPfPjYd//drPgDKZCcklAQ8ULdp0yaPy3a7HYcOHcIHH3yAlStXBno4JIi1dkbLFxl1Q1PC8dm+YgBAXnXoZUdxM918Oe21SaSiOculzmRDotg3GXuBbCahM9sh4AFiIQ82B4Oxz2/HsRVTuzzNMVwuhljIh83hggsMLHanzwOk/hYbJmELCfsjoy6c09TEZAu+GijcbnBquajLnUs7QyQUAHDfry4Ig5ftqW6wYmCiGkqJEAZr83dxdwN1903qA6VEgMJaE8AARbVG5CaGd3O0hBBCLnSpEXIkqGXQKMR4ZtZAuFyMVxOJlrj7QwOT1IhSScAH4HQxEIRwsTqJSIARaRGQSwToG6vEqMxImG1O1IRgnWVCLlQBD9RdffXVXsvmzJmDnJwcfPbZZ1i4cGGgh0SCVGtntBJ90DhheHpzi/b8GmPI/Rhzn5dkHzaSaKLhBOrqjTafT60NRD5ddYMV209Vs5cjFZJu1yJTSoSoc9jgcDI4Wa7HYE5tk2DGMAx+PVMNI6cb2gA/ZNRNHxiPH09UAQCUkuALYnIz6uTiwPz0iRq/VyRCPqbkxAXkPn2lpN6Mo6U6AEBiuBQRcjE0ChFSI7v3fTAwSY2sGBU2HSoDABTWmilQRwghpFucLga78tzlbLJilF06oVpjsOKPxpk8ZrvTY6ZAKDHZHPgtrwYAMCxVA6VEhN1n3c/N5PrQmxVCyIUqaGrUXXLJJdi2bVtPD4MEEYPVjqxoJWSi5rdpvLr7HRq52xDweSjXhc6PltPFeNSn80dBWG5GXa0P69TxAthOQmf2HHdaN2vUAUBC4/tGyOfhrzJdt7cXKL/l1SBeLWW7mMWGSRCl9H1ttnh1cwDH4gjOjLrMaAUGxKkQ5+fadE2EAvd3l0IixKNXDAjIffpKcZ0RyRoZBiWqYXcyqDPZUKa1IFLR/ecuK0aJQUlqpETIUVxv8sFoCSGEXMi4UzrzqgwYtOKHDu3fl2rNuPm9vZj00g4U1TX/HnGz8EPNlwdLkRIhw+DkcFx1UQLSIuUYnByO9CgFyrShc8xDyIUuKE4VmM1mvPbaa0hMTOzpoZAgYrA6PaamRinFPpluKBUJIBcLYLI54XAyKK4zhUwHpAaLne1oBQDJEb7PqItokVEXimoMNgh4gLMxfS81susF8JvEh8twrEwPh4vBqcrQmTJdobcir7q5g5k/6tMBgIKTRWeyBt8OrsnmxNnG50FntuN0lQH3TMhEToLab/cpbKxRZ3OEXu3VWqMdlXoriuvNEDcGHBM1snZrzHZUvFqKIyU6CPlALU3DIYQQ0g2VegsKaozg84DG0qoIk4k6VJ9YJhLg1zPu7LMYVfOJKJPVCajaulVwK9OaUa6zoKjOjEem90dyhBx/FmvBA5AR3f39YUJIYAQ8UKfRaDx29BmGQUNDA+RyOT7++ONAD4cEMZPV8+DWl1Mwo5QSFNWZwMB95u3SzCifbdufuHX7lGIBEsN9H2CM8FNGXZNA9JKobrCyQTrANxl13EYmhbWhkwXUsrGDP+rTAfDI9OROsw0W3LPjZToLyo6U49ZRaX69T6lIAAGfxx44hJKz1QbYnC7IxXy25qAvaoQCQH6tke2yd44TRCaEEEI6w+VicMmz27zKqoxI13ToxJJGLoJMJHA3UOM0mDIF4X5MR52qaIDdySBGJUFKhBwqqQjZ8WE4XdmAv0r1PT08QkgHBTxQ95///Mfji5PP5yM6OhojR46ERhMaNZ9IYLRMO/fVQSLg7gLalOIeSlNfdWY7MqMV0Jvt6BOjQt843xfE91dGXSCbSdgcTsSoJGz2YWpU988g9o9rPrVaoQ+d9wzDuHfW6ow2OBkG2fH+ySCzOJzQyEXg8XioMVj8ch/dYbR673THdrMb8PkwjHu6uqMxUscwjE8y0gKh6aQAtzGIr06WvL39LKyN06PrQ6zJBiGEkOBR2WCBSipEg8XhEawbnhbRodvzeDwkaWQ4U2WAyeZEWqQcEqEAZnvwzQzoCKPVAT6fhyilGEabg80qVMtESNLIEC4Xw2xzQBagWr2EkK4L+Kd0wYIFgb5LEqK4Z7OuG5aEK3LjfbbtlEgZ/ihw/32ivMFn2/W3epOdnb43d4QGMSrfBxoSw2WYmhOLCIUEA5N8H9RhAtBO4nSlwWOKcKoPuuP25QbqdKEzXa9MZ/F4LpL80IAEAKw2BvWNjU5Olgff1ODW6s1Eq/xbq07Ib5r66sKAx7fgrZsuxsT+MX69T19ptZlPuG++b9KjFDhZ4f7erTVQoI4QQkjXFNWaoLe4f99TI+QobDwJ39FAHeAu63CmygCni0FB44wJQysn90LBqcoG/Hi8EgAwMDGM7XobGybB7+dqgVoTSurN6BMbovN6CbmABCRQd+TIEeTm5oLP5+PIkSPtrjto0KBADImEAD6Ph5HpEXC6GEzNifPpAW4ypyZdKB0ocqe+qmUiv9xHRrQSq28e5vPtBjKPqOWUhTQf1KhLj1Kw0/UaLPaQ6RZsbvFc+DIzlSua06DBGoQ12VwMg+FpGhwp0cHqcCFcLvJJzcv2cN8fZrszZLLHtp+qQkm9CRq5CCIBnw30+qLrNgCkcTJcZeLg6xBMCCEkNFToLBiRHgGH08nWD1ZJhJ3qbt/aCUxziDaTqDfaMDozEvm1Ro9ZAwPiwlCcYoJQwEdJvYkCdYSEgC4F6vbt24ft27ejqqoKLpdnd7+XX37Za/3BgwejoqICMTExGDx4MHg8HphWClXxeDw4ncF3gEd6RrXBir2NbdJFAt82KOb+KHODX8FOxznQ91egrjfgZk+pZSKo5d1/rsLlYrgav7dcDFBSb/JJkwp/49aL+9fsXI+pzb4UpWzeri0Iu75W6K3YV1DPXo71QzZqSy0Dua1lqQWjLcfKUdN4AkPIeQwJat8E6tI5gbqTFQ0wWB1QSmgaDiGEkM45U2XAH43HCk2Gpmk6dSK1tXrPrZXLCAUl9Wb8drYWAPDA5f3Y5VEqCQ4UaQEAl2fHYmL/nhgdIaQzOr1n/Oyzz+Kxxx5Dv379EBsb61Fvp63aO/n5+YiOjmb/JqQjrJyirlKhbwN18ZwDTrsz+IIKbbE01s+QiQUeB9ChJBDNJPSc4Ksvpr02SYmQs1OPz1QaQiJQxz0rPDUnzm9ZgDJOdprdGXzdE1oG5GPC/DvtFWgtUBcaGXU8HhAhF0PI50EmEbDNU3yVUccN1EUrxajQWZAV4/t6m4QQ0pv9frYGD288CrvThRFpEXj1xiE9PaSA21dYh2GpGhisdpyscGfUdWbaK9B6Rl1r5TJCAXdfJ5xzkjoxXIbByeHg84Jz1gMhxFunA3Wvvvoq3n///U7VmktNTW31b0LaY+EE6nRmu08LsUcqmw/SK/UWuFwu8Pm+DQb6w7kaI1s/Y/0fRZh9cZJf78/mcEHsoyBpIIvo13Myl4am+q5JjZCT2Xm8XI/J2bE+27a/cM8KK/xYPJjH44HPc2cbOlzBF/zWtmiM4u9GEgAgaPGe14ZI9m5BjRl1jUHFnDD39CE+z3fPWbJGhkiFGLVGG6oNtpCZEkwIIcGkUmdlG6P9WaLt2cH0AIvdiT/y68AwQCRntsCI9M4F6lo7CRWM3es7QtvGzJsolRh/FmsBAOlRdGKMkFDQ6aM2Pp+P0aNHd/kOV61ahdjYWNx2220ey99//31UV1fj4Ycf7vK2Se9i5Uyfu/eTQzj59DSfbTuSM03PxQBVDTbEqf1/4N5d3KYA/gw0LPpoP37Lq4XJ5sCZf13h0yysQORaVRuan6coHzYMiFVJcKqxCP6pytBoQmJ3OhEXJkGYVASJ0L/BUrGAD0sQTnsFgAq9BWFSIVt0OjYAGXVCgefzXR8iU1+Lao2IVUmQFqXAO38bilKtGdUNVp+VIIhWSVHHCZyGypRgQggJJnbOSbEQnWTRLVV6K8JlIijEQvB4gEwsQ1WDFYM62QiNm1EnFfGhlok8ZvWEknKdBRq5GHFqiUfDObWs+bhHZ6aTY4SEgk7vdf/973/Hm2++2eU7XL16Nfr3954Yn5OTg3feeafL2yW9D3fKXlyY1KcZWRp58w+WSMhHuc7ss237E7ddfLwfA4s2hwsGqwMuJrRq+AGNWYCcgEJfHxbMTeB0vazSW3y2XX8q01lQobeiTGdBYZ2f3+eNH1EXA7hcwTX9VSzge0zJDURGHb9lRl0IZI5Z7U4opUIYbU5YHU5oFGLkJqp92sxHwOdB0ViTjs8DDJbQ+o7piqMlOo/gJCGEdJfZ7mQbdRksoRlY6o56kw31JjtKtGYU15tRUm9GTrwKEmHnmhRFKyW4b1IW7hqfAYvdhUq9FQ2W0Jz66nQx4PEYnK40eCQgqGUiCPlAhFyEAE5wIYR0Q6cz6h588EHMmDEDmZmZyM7OhkjkWaT9yy+/bPf2FRUViI+P91oeHR2N8vLyzg6H9GINnJ0OXwelBHweZCIBzHYnbA4XyrQWDEnx6V34RZm2OTjUWk0NX9FwphDUGW1+a0DgD3VGG5t5ODorEqMyI3227Shl8/vw3kl9fLZdf6pvDA4YrA58uq8Iy6cP8Nt9iQR8WOzuM/x6ix3h8uB437hcDP4oqIOLcWdFTh8Yj4GJnTvj3hUt60iGQuaY1mzH6cbOedwSAb4WLhexJwNqOBmwvc22E5Wo0Fvw7i/nUKGz4NqhSbh7fCaSfVg7kxByYappsLKzFJxBWHLC31orJ9GVbqY8Hg//mNIPx8v0eGfnOQChO/V1z7la6C0OZEYrPErXiIV8iIUC1JnsKKgx9eAICSEd1elA3X333Yft27dj4sSJiIyM7HSWU3JyMn777Tekp6d7LP/tt9+QkJDQ2eGQXox7jOurIuZcKqkQ5sbU9lDJGuOe4WutS5WvRLYI1PmSv5tJcF/LxHAZm7njC9zCvKHwnrE5nIhWSVDUmEkX7cfAC+DZnbnGYA2aQJ3B5g4IAUDfOBVWzMwJyP3yWwbqQmC6idHa/B0TJvVfZ+kIhRgl9e73ZaW+dwbqGIbBf346jWOlenbZ+r1FGJMVBQAUrCOEdAt3P8QeZFnsgaA12TAoSQ1j40kfrcnWrVkUCklzJl4oNpOoM1rRL04Fs92JlFZ+X8JlIphszpDYfyWEdCFQ98EHH2Djxo2YMWNGl+7wjjvuwNKlS2G32zFp0iQAwLZt27Bs2TI88MADXdom6Z3O1hjYv33ZubOJWiZiM6+qDaExjZG74+DPrpWeGXW+OYgOVKo9d3qhrwNF3MK8odAYoExrYYN0ABDtw3p9rVFKBKhzN8WF1R48Z/d1nEw27mvob14Zdcbgf8+YOFkERqsD//3lHBI1MgxL03jUu+muGJVnQ5/e6GCRlg3SRSrEMNkckAgFWLz+IGYPScTL1w/u2QESQkIadz/EHqT1Yf2puM6EIyU6AMBbN12M6blxcHYjYCkTNwfquI24QkVRnRn7CuoBAAMTw72uD5OJUKazQOvjBn2EEP/odKAuIiICmZmZXb7Dhx56CLW1tbjnnntgs7kPqKVSKR5++GEsX768y9slvY/e3ByUSvJDoI47nTMUfpCLak2QiQUwNwZAfHnQ3JJnRl3wBxe4DFYHhqdpwOfxkBju2+coWiXByMZuYg5n8O8Uf/1nKZI0MjZzyd+BupwENRsYjFAGRzYdAOjNdrYLXEaUImD3y82oe/KqbGREB3+nNW6grsZgxb++OwEAeH/BMEzq77vPE7d2jr2XTtn68PcC9u9HpvfH2L5RuPzlX8AwwDd/lmHZ1P4h0cSIEBKcFGIhFGJBY01R1wUXfGmwuPf3eADSIuXg8XheTZw6yuZwoabBiv5xKkiFfI+mc6GiTGtyPx88HgbEe2cWjkiPQLjcnVXXYHEgLIAnLgkhndfpQN2KFSvw5JNPYs2aNZDLOx884fF4eO655/D444/jxIkTkMlk6NOnDyQS/3fgI6HFaONO8/T91Ne7xmdib34dAEAXAkXeC2qNHkEzf+5EcJtt+Cqjrpl/p2f8cqaaPaM4PC3Cp9uWi4XN7xmzHSIBH3+7JNWn9+FL3x+rYIN0gP+nvkpFzWejLUGUUVdvsuOPxtdtYGJYwA5muBl1k/rHIDUycEHCruJ+75o5Xe98PdU+ifOdnl/d++rlVDVY8N1Rd91djVyEqy5KgFQkwPxL0/DG9jw4XAzW7i7AI9O9m2sRQkhHHC/Xs7XUGAA2p6vTjRRC2aFiLbu/191SAt8eLcPfPzvcvCAEA55nq4zs83Hb6DSv6802J/acc+8LFdebkCPzf61eQkjXdbrr62uvvYbvv/8esbGxGDhwIC6++GKPfx2lVCoxfPhw5ObmdjlIt2rVKgwfPhwqlQoxMTGYNWsWTp06xV5fV1eHe++9F/369YNMJkNKSgruu+8+6HS6dre7YMEC8Hg8j3/Tpk3r0hhJ1zAMAwHnIDfBD4G6fnHNZ5t05uCvRcGd4iAXCzzqgfkaNwjoq4y6QO3znKlsnjJt93HWG7dG3cmKBmw/WeXT7ftay+YF/s6oS1BLkZMQhj6xSo+uzT2NWxvuvV0FmPXmbwG5XwHnTd+d6TiBZLI6kBWjxMBEtcf05QQfZ6dyD6p0vbDr6yd7i9kuw3NHpLBB7FtGpbJdqdftLYTBGjyfE0JI8Hts01EMXvkDBq/8Aeeq3fs7fB7QJ0YJc4sGCMOe+RGDVmzFkKd+AOPvAsE9wGBxoF+sEuP7RkHVzZqqLU9GhWKNugq9BVnRClycEo7UCO8TgxnRCuQkhKFfrAq1huBPUCDkQtfpjLpZs2Z1+k6uueaaDq97vq6xXDt37sTixYsxfPhwOBwOPProo5gyZQqOHz8OhUKBsrIylJWV4cUXX0R2djYKCwtx1113oaysDBs2bGh329OmTcOaNWvYy5TxF1gmm9NjOqo/pgdxgy4N1uA/UNRymjr4O13dnxl1/t5XLNM2Z5D1jet6UeHWtKxvdrba0MaawYGbHSUS8Pxen83icOGvMndNLm42Vk/Tt6gnGKgmF9yTDaESqKs32ZFX5X5fN5UHCJMKu30Q1FJsWPN3uslqR63B6tcus4Fkc7iwbm8hAPcBNDfrNkYlxawhCfh8fwkaLA58vq8Yt41Jb2tThBDi4XRVA3viVtQ4zdPFAGeqDDDbnQhvXE9rsqHeZIfTxYDPA2oNNkT5+WRdIJmsDpRpzdCa7ThbbcTcd3/HjSNScPXgxC5tr2XTulAoicNVZ7ShtN6MvGp3oeDkSO8MQ4VEyO6jVTf0ziZOhPQmnQ7UPfnkk52+E7XaP6m1W7Zs8bi8du1axMTE4MCBAxg3bhxyc3OxceNG9vrMzEz861//wt/+9jc4HA4IhW0/fIlEgri4OL+Mm5wfN3tMKuL7JXtMJhIgXi1FrdEWEnXYfjxRCSEfUElF+PC24X69r0hF885crY+6vvIQmJS6aoO18f6A3IQwn25bKREiTCZk6ycW1ZlgdTiDcqqJxe706BIcrZT4fbqnkRPw/vpQGYam+nbqcVfVt8gsjPVjIxYubq2ck5UNqNBb0CdGFdR1ybjd4Jr+9kdGc2qkAtFKMaoNNugtTox8dhvO/Gt6r6ivZHe6cMPwZHzyRxGGpmq8SjfcPjYDn+8vAQC8tysft1yaCqEfM6QJIb0HtzO33clAwAMak3c9aowW15nZE0QuBvj2aDnmj0oL5FD9qrQxSCcV8mBxMNhzrg6TB8R2eXuxKgmEfB4cjc9ZMJ1s7Igxz/3Mvv45CWFQSryPcbkna6nzKyHBr9OBuq7gZqb5U9OU1oiItg8OdTodwsLC2g3SAcCOHTsQExMDjUaDSZMm4ZlnnkFkZGSr61qtVlitzWcm9Hp9F0ZPuOoMNsSFSWGxOzAg3j+B3nqTHXqLAzaHCxU68/lv0MN0ZjscLvf/WdG+zRRrSSUV4sXrLkKkQux1ljGYmTmZmDwekKTxbV0tuVjABr8kQj4uTglHudaMtKjgaxLQMossEGfSBfzmYEOpNng+Uy13SLnZXP6klIiQGiGHwerAvesPAQBemDMI1w1LDsj9d4XJ5kBmtAJGqxMVjd1Yk/zwHRCtkiBMJkJ14/QbhViIs9UGZMX497stEBQSIR6Y0g9LJmW1ejDUN1aF8X2jUFRnQpJGjt/P1mJs3+geGCkhJNQoJSII+e7gm1wshIth2ACNyerZDCglQsY2eGpZCiPUVTVYkZsQhrPVRgDux903tuu/H0IBH3FqKUrqzeDzgLgA7Sf4gtXuhJgPmOA+Sd3W6a4ohRiJ4TJIhHwqu0BICOjUKdy33noLkydPxvXXX49t27Z5XFdTU4OMjIwObcfhcOCnn37C6tWr0dDQAAAoKyuDwdD1aWQulwtLly7F6NGjkZub2+o6NTU1ePrpp3HnnXe2u61p06bhww8/xLZt2/Dcc89h586dmD59OpzO1s+urFq1Cmq1mv2XnBy8B2GhokxnRoXeAq3ZgZEZ/snKqTFY2TOT3MyjYNW0k6WWiTy6SfoDn8/DnKFJmNg/pls7Pq3x5wRA7lRUkYAPRStnFLuDx+NB3lhryupw4fdzdajUB+f0AW5WqkTI92uX4CYaznRyvTl46p/oWhygxARoB9zqcKKwzuSRlRrsB0vnqo04W21kg3SAfzLqAHfh8yY6ix0/Hg/umo+dJREK2vzcXTc0Gfk1Jvx6pgZf/VkW4JERQkKRw+nCgcJ6OFzuQJ3B6vDIouOWuyiuN7FBOsCzVmtvUFpvxrEyvUfmW3f3V5tOSrkYd6OOUClZUaI1Q2tpbirCbezFFamSoFRrxrkaIwpqjAEcISGkKzocqHvttdfw0EMPoX///pBIJLjiiiuwatUq9nqn04nCwsLzbqewsBADBw7E1VdfjcWLF6O6uhoA8Nxzz+HBBx/swkNwW7x4MY4dO4ZPP/201ev1ej1mzJiB7OxsrFixot1tzZ07FzNnzsTAgQMxa9YsbN68Gfv27cOOHTtaXX/58uXQ6XTsv+Li4i4/DuJWY7BiRHoEBieHIzPaP9lKkYrmOlVKiRA2R3CnuWdGKzAsTYPByeE9PZQuCcSMtr/KmhvFpHazA1hb5C2Cf9ognT6gN9sxIi0Cw1I1WDwxC/+9Zajf7zNBLYNSIoREyIc2iBq0yMUCJHKaIcQGqE4Pv5U3fbAfLIkEPIxI0yCZk0Xnj67bADA6MwpJGilEAh5yEsJgCIFaob4yOTuWnZr0w/EK2BzB0yWZEBKcqhqsuCQjErIWgZikcCmGp2lg4QStuCeFsqIVcIVI0KmjWv6WqqTCbpe1CMWGEha7Ex/8VoCYxqm7UUoxLs1sfQZYXpWBbTbhdNFvDiHBrsPpJqtXr8Z///tfzJs3DwBw9913Y9asWTCbzXjqqac6fIf3338/hg0bhsOHD3tMJZ09ezbuuOOOTgy92ZIlS7B582b88ssvSEpK8rq+oaEB06ZNg0qlwqZNmyASda4odkZGBqKiopCXl4fLLrvM63qJRELNJnzsRLkef+S7W4j7a+olt6C81uyeBhulDL5aY012nq6GiwGilGLk1xiRHuXd0SkU+LPz2LHS5mnnSql/ZvbLxZ7vkZbZWsGi3mTHHwXuz9CEftEBqf2lkgnZ6RTlOst51g6cExV6lGqbxxOoqa+CVjJfW9bLCyYMw+Dnk9UwWB0I59Sy8VdG3dOzcnGu2oCpr/yKv8r0fm92EghFtSa89vMZXJQcjtGZkcho40STVCTA5AEx+OrPMjRYHNiVV41J/bteX4kQ0vvVGmzYlVfjtbxEa0GJ1oJ6U3PwijvtPq/a6PcmZIHWMju9b6yq2/s5Lcs8mGxOnzdS8rWSehM+3ONOlOkbq8QPfx/f6nrnqg144PPDsDaeFDpV0RCwMRJCuqbDR7L5+fkYNWoUe3nUqFH4+eefMXnyZNjtdixdurRD2/n111+xe/duiMWeXffS0tJQWlra0eEAcB9U3Hvvvdi0aRN27NiB9HTvzml6vR5Tp06FRCLBN998A6m08wdoJSUlqK2tRXx8fKdvS7qmUmdBv1gl5GIhEsL9c1At4PMgEfLZHy2tyY6oIO06aHO40HQytMZgQ5Xe4vdAXUm9CUV1JtQZbRjXNxph3dxZCUSJ+NOVzTse8X4q2D8kJRwCHg/nGqcNBGuGlJazwx6oAIhU1PyTYrA6oDXZAtZhtT0td+h7MlAXrIFdwJ2F2T9OCQY8GKx2RIdJUGew+S2j7oHPD+Obw+5pnzkJYX6dFh8o+wvrsOFACTYcKMFDU/th8cSsNte9YmA8O+312yMVFKgjhLSLu78xMj0CVocTZpsTpyrdZT+afute/vEUPt9fDImQDwYM+saoWv09CmVGqwNZ0Qq2y2nf2O7PvvHu/Bq8GXXPbzmJzUfKYbI5kBQuA48HJLeoy3ykRIt4tQxhMiHu/eQQe7wDuEvcGK0On5eIIYT4Toc/nVFRUSguLkZaWhq7LDc3Fz///DMmTZqEsrKO1VhxuVyt1norKSmBStW52gKLFy/G+vXr8fXXX0OlUqGiogKAu8usTCaDXq/HlClTYDKZ8PHHH0Ov17ONHqKjoyEQuDNj+vfvj1WrVmH27NkwGAxYuXIlrr32WsTFxeHs2bNYtmwZsrKyMHXq1E6Nj3TdH/l10DXWjTtZ1oC4MP8cKMpEAvaHSxekARfAO/0+EDW23tl5Fh/vKQIAfLNkNAYlhfv9Prsrn1Nzw19ZQJU6KxukA4K35hj3bLo6QMEyqcizmsLpSgNGpPd851fuc8HjubNSA6G1qa/cjIdgozM7sL9QCwCIUUlQ1eCuv+iPZhKAu6FEk7/K9ODz3CclxMLQ7YD6Z7GW/fui83xnjusbDaXEnYX64/EK2BwDQ/qxE0L8i/tbNnlALHg893TG5kCd+/fl97O1HrWXj5W5j30MFjuUQZ4h1hEMw+B0pYEN0gFAHx80IkoIl0IlEaKhMUDHrf8XbPYX1KOozuSx7P7JfQEAe8/VoqDWiLd3nEWZzn1iv2UGXYPFgcJaI7IT/NOwjxDSfR3eIxwzZgy+/PJLr+XZ2dnYtm0bvv/++w5tZ8qUKXjllVfYyzweDwaDAU8++SSuuOKKjg4HAPD2229Dp9NhwoQJiI+PZ/999tlnAICDBw9i7969OHr0KLKysjzW4daRO3XqFNsxViAQ4MiRI5g5cyb69u2LhQsXYujQofj1119pemuA2J0uGDk/jv4MSnEzjar0wTNVryVji52FmADU2IrgBHe4xfC7y19ZMxa7Exq5CCIBDzKRwG/ZkS2z04K1Rp3N4UKYVAipiI/P9xWhpN50/ht1U8sCxtwMx57E5/HYbIIopQRCQWCCIdwEhqb7D9bALuCZrdF0AkMs5Pvts8T9HotWipGskePVbaf9cl+BcpgTqBuY1P4BUNP0VwDQWxz4rZUpbYQQ0kRvtiNWJUF6lAKRKjFuH5uBW0alITchDNFKMVtyokxrRqRchP5xStx8SSr6x6mgkYuw4UBJDz8C39h4sBQnynWQck5s+KLxWZRSwgbpZCJBUNeoE4t4EDbuV0iEPPSPUyE9yp1R98HvBXh441EU1Jpgc7jYIJ1YyPeo18s9sUQICT4dzqh75JFHcODAgVavy8nJwc8//4yNGzeedzsvvfQSpk6diuzsbFgsFsybNw9nzpxBVFQUPvnkk46PHOevdTVhwoQO1cPiriOTybB169ZOjYP4VqXeAqGAB0fjXM/uFodtDzflm1vDKtgYrXbwee5OVEI+LyCp6hGcZhv1PgjU+btGWkm9iT2rbHc6/RaMCZeLIBYATbHTYJ3KWG+yQd94Rn1XXi0cTv9PLJQKgy9QZ3U4Uap1d77LTQjDU7Na7wruD9ypRkqJEDqz3WNKcrDRm+2IVIiht9jZA5SkcJnfukxzM+qqDTYANlTogrOLckdYHU4cL3dnrmRGKzo05Zw7/XXzkXJM7B/j1zESQkJXvcmOygYr0GCFQuzeD0xQS3GsTA+JkIcjpTo0mO0QCvgw2GxIFQtx1UUJ+GhPISI5gbxQ12CxQyQUeDSt8sXU10hF82+S2e70OkkeTPRmB3ucZHcyOFnRgGSNHBa7E9tPuhs1SoV8CPg8ZEQrMDIjEikRcvx6poY93jlQWI95I1N77DEQQtrX4aP9QYMGYdCgQW1en5ubi9zc5gOge+65B0899RSioqI81ktKSsLhw4fx2Wef4fDhwzAYDFi4cCFuuukmyGT+mV5DQkul3gqL3Z3N8f/snXeYG+W59u9R7217717b695NLwZDDh0SE0IIHAgphJxAOCmkQRICpCcfCSehpEASSCBAaKYYTHHvfdfe3pt6LzPz/THS6NV27Uqjka3fde3lXa9GMyuNZt73fu/nfigKMKexbI8UowZF7KhzB2g+o25sM4N0YSFcNLZUOurSpBeNLQHQpul1qsrTghy7iTWjbuwAs0AAF+b40tfMC3VkqVCxUYUVlWbB9k2WvmqVUk6oE6kDE+AmgWPds+lq5gMAhfrxbumAyLtvT8XxfhfCUUF86Qy7c+fKX3PkyDFTyPtZrOGPSaPAlUtL8OqhATQPuHGw14EuKzceaijUY3mlCU2lBhzrd+HZnV341uXzBWkulU7aRjwYiUYzzCvSIV+rTMkYx6xJXFzxBcV7PwqG43lzDMsde75OgS3NI/BHu/9evawM9//XAoy4A6iPlgY7fCG8c3wIAHfPypEjh3hJmy3n2WefxX333TdOqAMAmUyGz3zmM/jMZz6Trt3nyGLIrDitQpY2NweAhJIut4gn0CPuuIiYrm6mYyFLX1Mh1KV7WNhj8yf8rEmT6zBPJ0dNngYd0YGwWEsZ/YRQp5JLBHFhquRSLCzR4+SQBxGGy5DJNC5/GMsrTAjRDMrHBC2nm7GOOgCgGVa0OWwTiYjpfM0KJ3BLB8PinRhNB1n2umyGQp1KLsUlCwvROeqDSi5By6ALi7MgDzRHjhzCI5dKsLTcCH+Y5ru4Hul1okivQoFOAYVcgmN9TqysMsHlj6DCooZcKkGZSQ2aYWHWyGH3hWDRZneUDymgnRzyQF4qSYn4KJNKoFVI+YVOr4hLX33h+LFplVLMK9JDIpFg89FB/v83LiqCUS1PcHcvLTfxFTodVi8Yhk3rPCtHjhyzJ20zt7Elp/v27cN9992HV155BQaDIeF3TqcT11xzDX79619j6dKl6TqkHFmC1SNct8oKS9wtImanC5kvZlILE4RPug1T6ahLF0I56ooMal6kk1ATNwwQA2S3MqG6GasVUhwfiLvobN4QRj3BjHZTdvjCOBAVUNbW5Am6b1Ko+/IF9diwoBAjnhCYdNlK54hrQqEunY668edFgHAJZBuHep389zMV6rjHmvHSAa789UhfTqjLkSPHxHRavfx1pn3UA6s7iK+/cAh2bxghmrt2vnZkAEf7OKdUzBGtU8nQHM0ps3lPA6FuTMVAKjuT61VyXqjzibjra0ysrLCo8dE3LgLAZXy/e4Jzy+mUMpxVN94sU6BX8RU6gTCD5kE3FpYaxj0uR44cmUewJf1f/OIXuOiii8aJdADXpfWSSy7Bz372M6EOJ4eIIfPQ8tLcnfHa5WX89xqFeFuUk+KlEI0kgLhQp5FLYPWmLjdqJrmRs4EU6pZXGmFIU2czEyEef2ZtJV69+5y07Geu6AkHnVBCmXaCz9DJwcyWv5KlQq8f6ccHJ0cE2zcp4r5zfAjLf/QOLvz5Vhzrd06xVQZhWaytsSQsYKRTqDOq5VCMyZIMnAaOOoVUgvnFM5/4kCHoYigXz5EjhzghhaO/bu/CzU/vxpAryIt0AHC0z8W56BVS7Gq3gWbYhAVep4gXpWfKWKdbKp3fJqL8NSxAtu9smV+ix9oaS0J38d0dNv79vaCxYFyDLwCoytOgJl/L//xxq3Bjohw5ciSHYELdrl27cPXVV0/6+yuvvBLbt28X6nByiJj20Xi79TxteoU6E1HeKeaQ9x57vKwz3eJljAKdAksrjPCFGRzqcc5dYEuz8ayHEOoOdDuhUabHUUcO4px+8a62HiHEoOI0NmQhUckliGlTpSY1/nbH2mk7X6YbsjR5yBUEzQjn2CI1KLVCyg/620a8k2yRWbpsPuzqsCWUkadTqKMoalyuUKzbbLbh9IX5e9fCUkNSpc1kCHpLhoXtHDlyiBcye3ZPpw0A55waW0EQCDPwhmg8t6cHtzy9C3JpfAAm1riOZPCPddSl8D5FVvKMrdQQCzTDYlurFbs6bHyzLAAJZa+XLSqecFutUoZywoGYy6nLkUO8CCbU9fX1Qa+fvHW2TqfDwMCAUIeTQ8TEAmIBoMgwPmw8lRhUMqyoNGFRkhMroXEQLsN0hruTSKUSfhV22B1MmbiQjvVJlmUThDogUYRNJRatAuvr8rCgRA+PiMsiyMF4wQSh/emAoihooiu4WoUUZ9fnQ58mZ+NMGXEHoCdyHSdqYJAuSEddPiGwt4tUqCPPmRWVJpSb1WnP9SOFuqYSvWCO4VRzYtCJs2rzsLTChDXVlqS2zdMpeddrzlGXI0eOyYgJVFQ0YwwAPndWFXZ8+2JcMK8AuugCpZIYz25rtcIfjmBFhQm1BVpRN06bKRGGRQFxT01l6Su5GG7zibMLuZ9wnscqGSIRBm8c4ebRCpkEFzRO3kH8rPo8mDVymDVyXLu8PL0HmyNHjlkjWK1fQUEBWlpaUFNTM+Hvm5ubJ2w8kePMY9QTvzGWpvDmOxEyqQSnhjxwByPwibjkykq4/YrTLF6SnFWXx5cK7mgbRX2hbpotJiedhjqKorDz/otx0xM7cSSazWJKU76hXiXHiQEXHL6wqBsDkCKiEB1fY2iUMnhD9LgMmUwx6ArAHYi/FukW/0nIjDryPWgfyXyTjYkgX6e/f37dhGUzqeYXn1oKhVSC//rtRzg24IYvSzPqjva5sL3dCoAriU+WxmIdRluDsIog1zFHjhziwROMQC2XIhim+S7zEgCxO+yVS0thUMtRoFfCE80tC0YYzC/WYcgVhE4pwzM7uxErihh0+sfvJItgWRZdVi/sxMJSKp3f5L3a5RPnYixZAi2TUPjVOyfx/J4evuz13Pp8voHVRFi0Cv71e3F/D2rytajME7bZVo4cOaYnbbPLm2++OSGPbsOGDXjooYcmfCzLsnjooYewYcOGdB1OjixCJZdALgFKTSpct6Js+g3mAMuyfLbHWEeWmCBD3kuNwjjqACQE0e6ITkLFil4lhycQgVouQVOpAZo0NZMAgJvXVsGokuHkkAe3/Wk3TonMBcOybEL3TCEn/aVGFXRKGYIRcQh1p4Y9vEgspai0l9OTkEKdUSXnBV2yvF9MeIJhaBVSFBmUgoh0AFBXoEOFRQOFjNtfKEtLX0c9Ib7su7Fo8uqBycjl1OXIkWMivvfSEdTd/wYW/uAtPpYgFp02r0jH52F+7ZJ52P6ti/CVC+tw29nV+PNta/HzTy5Fj90PluVcdnIpJdrohZnyzvEheIIRyIj7ayqFunPrC/jvVWkcR84FciFUKZPgt++dwqArgAjD4uc3LMH/XtY45faXLCziXf7/OTSArSeH03q8OXLkmB2zEuo++ugj3HzzzVi/fj36+voAAM888ww+/vhj/jGPP/54gkPuu9/9Lo4cOYK1a9fin//8Jw4dOoRDhw7h+eefx9q1a3H06FF85zvfmeOfk+N0QKeUo9ioRijCpL3siqIo0NH6AZZNX6ODuULelMmg93SzsNQAQ7RscEebFQyTgtcnTS8xTTPI0ylh1ipAMyyoNHZjLTaqEIwKvNvarKLLMQmEGX4gr1fKBMuoA4AQzcITjMDpD2Nvpw1/39Wd0CBGaGSSeG5eoUEJiUS4Lr1k6SsLoDq6Yt1l9fLXHTHhCdLwhuiM5MQpohlKYTo7hbpvXT4fxx+8DK9+5Rw0Ficv1JHiXqYbsOTIkUMcfHxqBP1TOOCuXFLKf19mUqPUpIZJo0CZSY1iowoXzS9EVfS+E4wwUCuk6Bz1ZXUumS9EI0yziETvoVqFNCFXbq4sqzSh2KBChUWd0JRLTPhCEdTka2HRKPBu8zDUcikoCriwsQC1hbppmxlZtEooiLHQvi57ug85R44csyBpoe7FF1/Exo0boVarceDAAQSDXJmi0+nET37yk0m3q6urw7vvvguv14sbb7wRK1aswIoVK/DpT38aPp8P77zzDurr62f/l+Q4bfi4dRQ9dr9gzhd5NPE9wrCizRwjOyEWCFy6t7Y2DwBg94XRMgenRzqFM4ATGfZ22dHvCKS91POGFWUIECV6YgtnJjuiuYMRmAR0kcVCrcM0ixv+bwfuf+kIjvRlpstpKMLgw5MjfJZPoYCfHWCMUMcCtflc6XiYZtFrF5e4CwDe6PVPI5CbjkQedRtmq1AHcA1DFpcbZ+VGnEeIey1D4iyNTiddVm9Wv/c5cqSDLzyzD7s6JhdRrlxaOu7/7ji3FnecWwuAG3fdsCKeQebyR3B8wIXfbjmV+oMVCHJ8U1egxapqS0rHl3qVDIOuAHpsfvSI8D4NcE1FOka9sPlCoBkWvhCNB65ciD/dtgYrKs0zeo6qgnjn15xQlyOHOElaqPvxj3+M//u//8MTTzwBuTy+gnH22Wdj//79U267atUqHD16FPv378dzzz2Hf/zjH9i/fz+OHj2K1atXJ3/0OU47AuG4myNdzQDGoias7WIM2bV6gnwJHQUIvsK3PirUAcD2trmXv6bDR/Tivl78bmt84Jnuc0elkKGOGOQ4/OIS6nzBxLLTfK1wjjr1BKUimSrl67X7sLTCxP9cJHCjArLrK82yqCXOGTE2lIg5d4fcQVz3+20JHeTSxbA7gGd2dvHl/bHOuGcaDUT+55lU+vrrd0/iwp9vxfk/24pd7YkdDHPkOJMJRWiUmzVQSClIKG4RzKKNz7uWlBtRna+d4hk4rltZzrvKpRRQZlIldIHNNsjxzb2XNOIv/70mpc+vlEmhji62OEU2tovhncBUsLRiZgJdjHPqC2DWcOdTr92PW57ahV0ij7jJkeNMI+kZf0tLC84777xx/280GuFwOGb0HMuWLcOyZcuS3XWOMwDypugLCeNu0yllsEVL87qtPjQUJl+2lE46rT4+IFgll6bdmTaWs+rjQt2ONituP2fihjDTkc6jfmFfb0KGXroaSZCQ+SjDIhN4vWM+O/l6IR118dvKuloL/CEauzps/Aq/kHTZfDjY4+B/FrKRBJDoqKMZFrUFcTGmbcSDC+dP3pVNaFiW5c8bmmGxv9uR4ORNF4POAP6+q4vf15nqqtKr5Lh8UTEsWgWWlpsyfThpJ0Iz+O2WUzgx6EZHNLPx1j/thkkjx57vbBD8Ppcjh9hw+ONVDBsWFOLJz63GL99uQb8zAI1CioUlU5c3xigzqXF2XT4+bh0FzQJ9jgDsvmGwbHojQtIFOb7RKFPv/mZZFjqVFP4wjRG3OLu+TtSsq8qSXFTQXRfWw+UP4w8ftgMAPjw1inlFer6KJkeOHJknaUddcXExWltbx/3/xx9/jNraiSdijzzyCPz+ma2S7tq1C6+//nqyh5XjNMFBdDcdcAojfsRcNlJKnN0YHUR7eG0aBiXTMa9QD0u0dHJXuxUREU6kYxlxUgmFcxvysa7WkvZ9rqmJ76NZZJlS/jCN2nwNykxqrKg0QaMQzoVZna/BmmozVlSacHLIg0O9TnzQMgJnBsqDnf4wGggXW5GAWX1AYjMJZoyjTmy5hr4gjaXlRhQSrsNUBnRPRoFeiRMDbvijpeTBCINH3jyR9v2mkn/u7cE9zx/E41vbMDQH0f7xm1fioWsX41OrK1J4dOLk9SMD+O17rdhyYggUBRhUMkQYFqOeEIZFOjnOkUNIyCZiRjU3BjOo5ZhfrMcPr16EG9fMvLv0DSvj5a8FeiXmF+vx4cmR1B2swKysMmNtjQUGVXoWZa0ebi4ixGLVbBgr1BlUMpg0yb8Wy4kyWZ1SJtr4nxw5zlSSFuo+//nP43/+53+wa9cuUBSF/v5+/O1vf8N9992HL33pSxNuc/z4cVRWVuLLX/4y3nzzTYyMxG8OkUgEhw8fxu9//3ucddZZ2LRpE/R6cTmacghHvyM+yRGq62CxkXPZ0Kw4S47IFvTTBcSmA4mEwvraPMgkFOaX6Hn34WxJdcOOUITBQDRsmWZYfHRqFIvKjCndx0SQq9mDAonKM8UbjKB91Ic+hx9n1+dPv0FK901jd6cd+7sdOCe67xDNYPOxAUGPAwD67H6cipaYfmpVOc5tKJhmi9RCCnU0w2JBsQF///xa7Lr/Yjx4VZOgxzIdzkAYB3ucCSJJupv5AEDeBGXZ21uzq/zm41OjeOlAHx7d3CzaUikxwbIsHt/aBgBgWOCJz67Cp9fGRYdj/ZnJtMyRQ0yQ2bcxEYbMn0uGjU3F0ClloACMuIPY3+3IWHbsXOmz+7Gvy45dHTbo0hAFQ1EUZBJueuwPM6IU68ZWHFXna2fljlxRZeK/9wQj2HJiCE9+1C7axno5cpxpJH2F+9a3vgWGYXDxxRfD5/PhvPPOg1KpxH333Ye77757wm3++te/4tChQ3jsscdw0003weVyQSqVQqlUwufjXAXLly/HHXfcgVtvvRUqlbDlSTnEwwCRT6NXCeMCqieygdpHRZgbFaRRZlJDo5Di02sy47T43hUL8bNPLoFGIZv1DTxdFRb9Dj/fLECjkHKdz4zpv4aUEm4jsa1CeokMl4ky49KJhtjf2hoL/nOoHwDwysF+bFo9cwdAKiBFk+tXlCfk1QmBQipBbb4WNMtCQlFQK6Q4q05Y4XSmjBWY5FIqwV2XLhQyCUwaeWJDliyrxoot8MilFKrzps+MOtPZ2jLCu5CXVZhw8YJC+IjJ8LE+Fy6aX5Spw8uRQxQ4/WGUmlTQKqQoMarAMCwoanaNudQKKc6pz8eW5iGEaRalRhVeOzyAr1zUkIYjTy/kverefx7E725aMaOsvmRQKSQI+TmXt80bQqkp/e7yZPAGIygzqhBmWCyrMGFVdXL5dDEK9Vx32x6bH3IpBZmEwq/fPQWZhMKtZ88u5iZHjhypIyklhKZpbNu2DXfddRf+93//F62trfB4PFi4cCF0Ot2U2y5duhRPPPEE/vCHP+Dw4cPo6uqC3+9Hfn4+li1bhvx8cU5ecggL2cxBqGYS5ORdjAHvVm+ID9gWsoSRpFCvxNvHB/Ha4QF4ghH8+bbZh/emep2OLCH0hWgMOgOQy9IvTpUQYqBfoDzFmeIPx49HK/A5Q56jJUYVavK16Bj1Yke7FYPOAO9gFYJAmIZGIYUvRMM4i7KQuUJRcfHfL8JVeRKXPwyjSgZngDt3ykxqSCTCKGYFOmWCUJdNQedhmkFbNDKhNl8HhSzpQoVx2L0h2Hwh1BVMPa7KVn6/NR6f8uUL6kBRFJpK4w7lozlHXY4ccPjCfJWJXCrBR62juOf5g1habsTnzqrGBY3JZZw2FOmw+RjXIGjQxeXc0TQDqXTu1yyhYBgWgTANCtxY8li/Ky05dVqFDC4/dy/stnpFJ9TZfWH0RSs5/vucGqybQ67cikozemx+hGkWA64gVDKJYNFDOXLkmJqkrs5SqRSXXnop7HY7FAoFFi5ciDVr1kwr0iXsUCLBsmXLcPXVV+PGG2/Ehg0bciJdDh6y7Moi0MR6VVV8JcruC4suzJxcPcyE2ABwgsPP3mrBa4cH8MHJkVmVelJpssn02BOzvoR6jUoMav4vmijYN5OQ5clqubCDcDJH0RemcdXSUgAAywKvHe4X9FgGnQH4QjQkFGAUoMHIWKSS+GtPM+IuJbH7wrxIBwhT9hojX5fo3PMExfV5moqOUS/fqXZe8dxiOyI0g/UPb8HyH72Dr/7jQCoOT3Ts6bRhT6cdAOdm37CAc87V5Gl5N+6xflfGji9HDrFAjv1MGjkO9Thg84bwfsvIrErsK4hrOsMCrSNe0XWsn45BVwAfnhrlF3yVMgkKdKl3fhuI8UKvXXydqJ0TlEXPlhWVZli0Clw0vxANhVoEIgye2dmVK3/NkUMEJD2DW7RoEdrb29NxLDlyJHRYKhNoBUunkkNJuCDEljEkk1BoKtGjrkALg0DlwGOhKAr/tSQuuLx5VPi8sckgHXVVeZoEZ0Y60avl0Cpl0KtkKBS4ScF0dFnjr8nWk6OC7tsUDbtuKjUgGGZw1bJS/nevHBRWqIt9lhk2M91EZYQzLBIVc/ocfjy7sws/fPU4trcJ+95MhWvMdU+IRhIxCsaU2AZF7j4kaSEaycyfo1Ank0r4UvVTwx7Ri7vJMuIO4rsvHUXMqPnF8+t416ZEQmFBNPez1+7PSPOZHDnEBMuyWFxmRH2hDgaVDIeIDuaz6QxdMUFXULGNd6ej1+7D8op4BnGZSZ2WzrXkwl6/Q3xCnUYhxaJSA2oLtNDPMafvprWV2PfdDXj61tVYWGpEU6kByytMeOlAX4qONkeOHLMlaaHuxz/+Me677z689tprGBgYgMvlSvjKkWMukKWvQpbIkXl4vTZx3ZQ/OjWCYwNutI14cagncyVBVywp4b9/7fDshbpUL9L1EEJdl9WHVVXp7/gao65AC3cggh67H8GIeMQF0vFoFtiFqVJI0TzoxrF+F2xernxvcbS5x5E+J18mKATkJOSmJ3YJtt8YMqJ0NMJwQuGJfhe++/JRPL2tAzvaxNM0weFPbBKTSaEuEBaXq3kqSKFuXtHcG2GtrDRjZZUZa6otopwgzpaWQTeu+d02tAy5UVegw+3nVONqQsQHkLDIcmwgV/6a48xmwBnAkT4nWoc90KtkONTrAMCJSFV5yTueKyfYJtscdR2jXhwgxsFlabpP5Wnj0TuDIuxC3TbqxdF+F9pHvNDOUaiTSyW82PmbG5fDH6Kxrc2K77x0NOeqy5EjwyQt1H3iE5/AoUOHcNVVV6G8vBxmsxlmsxkmkwlm8+zCLHPkiEGWEC4oEa7DKeneO9rvEGy/M8FLvCaGDJTvxZhXpMe8Iq7MfV+XPelJZLqaSZCOutXVZiytSH/H1xiXNhXh3Pp8nNuQj2d2dAm23+kgBaqxIki6IVeiY8exuNwICoBSSuHGP+4QrIsa2VSkyCB8kyIZUfoaibqjagvioddiysT0hegEcS6Tpa8BEYne09FCdApvTIFQZ1DLsa/Ljo9bR0+bnKBhdwA3PL6dz1p1ByL4zNoqyMdkYy0qjV+7j+fKX88YaIbFnc/sxZqH3sXC72/GTU/sxJ+2dWT6sDIOOfZzB2iMerjFlKUVplm5yIoNKj7/U6OQYkWlKSEmIxvwh2gsLo9fJ9K1oERmEIvR3UuOoS7+xQcpEdQ8wQj+tbcHGxYU4eL5hVhfZ8Gjm5vn/Lw5cuSYPUnL8O+//346jiNHDgDAqCe+ctWQgknPTCEniicG3FM8UnjIEPriDIgNJFcsKcUv3zkJAHjjyADuOLc26edgU9xOIl+rhExCIcKwODnkwZqa2YfqJsvt59Ti52+fBMsCrcOeWb0e6cAViA8shRaoSKEu5tKSUlzwc5BmMeIOoW3Eg6bS9Auq2wjHWlEGypMTS185l1iFRcOfr0K6C6fj5JCbz+L54nm1WCZgh9zxpa/Z46iLdXzVKKQpmTSS5+mQ6/QQ6l7c14fV1Wa81zKCxWVGPPm5VRNelxYSjro2EYnYOdKLLxTB28eG+J+3t1nRbfOBZljR3FMzgY9oUtVli38elpXP7t4plVAoM6nRafXBF6Kxv9uRUJGQDbSOeHCkl3DUpSkiJ18v7utwgDg3Cg3KOZf/bj46gHuePwR/mMY3L5uPzmYv2ka82NZqxTc2zhessVSOHDkSSVqoO//882e9s3A4DLVajYMHD2LRokWzfp4cpy/krcAiUNdXAJhXpMOW5mEA4Ff9xQI5ac3XC/eaTMQnFpfwQt1rh2cn1KWSUITB1pMjALiJ8oWNBYLuXyWXYtOqCnxwcgSBMNf9UQydGj1EU4ASAUvIAU6oW1lpRojIhBsrzb55ZCDtQl0wQiMYiR9DoT4Tjjqy9JV7FeRSCSotGrSPetFp9YJhWFEMgqUSCkuizsd7L50HhQCdk2MU6JVQSCVgwSJMswhEaLAsm5bsoVTiC0V4R29DkT4l7yMpYIlxgjgb9nfbcbDHgTytAs9/Yd2k3cvnFenxxC2rsKjMkPFFqRzCMVEzpgGHH3/8sD3jY4xM4iWa6rQOE0JdpWnWz1lh0aAzmmHbVKLHBy0juO3smlk/n9A4/ZGEn9Pl/C4nBEB3UHyOOncgfm5U52mneOTMWFhi5E0BL+7vxT0b5uGVg/2w+0L477/swZ9vWzPnfeTIkSN5khbqPvzwwyl/f9555036O7lcjsrKStB09pS15BAOlmXhjgoMEgqCTl5J916fyDo8kSH4ZgHFy4moL9RhfrEezYNuHOzhVmMnCigWCrsvXrbhC9GgBY7TeGZHJ14/MsCft702nyiEOh/hwhSqKUsMk0aBfd326Pecu27sROyNI4O4b+P8tB6H3Zs4uM546Stxcq6rzYNGKYXTF8aQK4ASgd+jiTjW50L7qBcGlUxQkQ4Azq3PR8uPL8OmP+7E7g4bWBYI0QyUAh9HstAMi+98YgGaB92onkVm1ESQgvKwCLORZsMTt6wCy7LwBCOTinQsy0Ihk+CShUUCH12OTDORUEez3PkfCNNQycV9HUgXnmBclGoeiJeCL5lFI4kY5Hjt2IAbFmcADMNAIhG2O/xssXkSr4npyqgjFxLnFQkXwzNTSLflRNmDyVKZp8Gaagt2d9rQOuxBhUWDLpsXJ4e4fERfMALNHLPwcuTIkTxJf+ouuOCCcf9HrnpPJ8J95zvfwf33349nnnkGFotwoe85xI83RPPOm7mGoyYLmS0UC74XC7EJvoSCKAasVy4tRfNgC+QSCjvaR1FhqUxq+1Rm05L5KkqZBBUCBuADQIiOi8sKKYU+hzgcMKQLs1DgjDq9UgaK4t7nWEadL5h4X2gf9eLEgCutOZQjY0SOTJS+Sidw1AGAQibB0T5u4tXr8ItCqIuFihsFbj4CxBdl8nUKWLQKBMM0AiFa9EKdXiVPueOHPE+HTxNHHcCNE/WqxHPrg5Zh3PbnPWBZoKFIh7fvmX3FRo7sxRuMTPo7hy+MYqO4rwPpYsQdgE4pRXWeBseimY3lZvW4TM9kqCSEOr1SCpsvDKs3LHiW7WwZdgcglQCx9et0LUSatXIU6ZUIRBj4JxCSMw0ZiZMKRx0AXL+yDLs7bQA4V91jN63AN188jLZhD674fx/jvfsuSMl+cuTIMXOSXkKx2+0JX8PDw9i8eTNWr16Nt99+e9rtH3vsMXz44YcoLS1FY2MjVqxYkfCV48xlhJiUSAUueSowKGFQSZGvVeBwrwPff/mIKNrWMwwLOqpsSUVQHgcAlywsxMISA5RyKV49NPPur+koYyOFumCEGTcRTDcmIo8tRLPjOmdmCrIDrU7g10QioVBmVKPEqIJWwU2wVHIJLGMEoGd2prf5xognkNDxNhOldHIio45m4uIpmWXWa898RhDDMLBo5KDAdQz+n+cOZOQ4wjQLmzcEbyixbFmsfOelI7j/pSP4z6F+0ExqViAKE0pfTw9H3WRIJBQYliuN9wbFNxnOIQyBMA3dBIuzVRYNHD5x3FOFhmFY6FVyaJUyuAIRXphZOsfs0E8sKsHf7liLq5eWgqIozC/WY9ApriqSyWBZFka1Aia1HMUGJb59+fy0OeV1SjmG3EE4/WG4RDAXGIuMaMQzmw7AE3H54hIoZdzz/udQP6rztAiEOEerVinlc3Zz5MghHEnblozG8W6jSy65BAqFAvfeey/27ds35fbXXHNNsrvMcYbQS5ScapTCrqDmaZXwBhm4WBqj3hBaR7y4cEERLmwsFPQ4xuIkmgKIxV3SUKiH3ReCJxjB3k47QhEGCtnMNf9UVqdax3QsMwrcFdc0RnwSi7gbjrowKWRG4JVJKfRa/XxJU5/DD9uYzmkvH+jDty6fD0OahMQemx92Yp+FGRDqEhx1ROkrWX7UY8v8JMkTotEaDe8P02zC6yYkpGM4IPKGEmGawcsH+uAN0Xjn+BCuXFKSkufVKWXQKWXwBCMYcp8+jrqJIMWZWKalLxTB5qODONbvQolRdUZnlJ0puIORhDLPGF02H+/0PdMYcgdwsMcBAFhYokdtvhYGtRyrqsxzet7KPA0q8zTY323HK4f64Rp0o98ZwOLyFBx0mvEEI9jbxcVqnFVnwRfOr0vbvhQyCeRSCmGahTc0ueMzU5CxL6ly1BlUcmxsKsZ/DvXD4QvjveZhVOVpcWLQjWF3EAPOQEajbnLkOBNJWX1hUVERWlpapn3cD37wg1TtMsdpht0XglImQZhmUCRw8LtUQmF5pRGdVh8cvjAsWgV+/c5J/PLtFhTolfj5J5fBohU+H66T6HxnEliEmgyKorC+Ng//PtAHf5jG4V4HVlVPX8aeDrnITgh1VXkaFAtc3kgKdYV6ZYIYkylIsZDsOiokMcHUFQiDYdgJRZdSkxo/3dyMH1+zOC3HMFY0zUTpq5xY9SZLX8XmqHOOEeaE/hwBwP990IYD0WxDAAhExO2wOtrnhDcqRK+rzUupY7jQoIRnJILhLHfUsSyLi37xAQp0SqyrteDeSxsTfk9mOGqi7tsIzeLpbR1QSCVwF2Y+7zNH+hkbjUAihsWvTLC304b1dXkIhGjIpBSOD3DXxv/Z0JCS5yfzjrPlNSaP06xJ/z1KJuGEui6rT1RZiRGa4SNkKKS2WuD6leX4z6F+AFz564JiPfodRqjkEvQ6MptJnSPHmUjSQt3hw4cTfmZZFgMDA3jkkUewbNmyVB1XjjOQ6nwtX+7UVCp8eOuvNi3H1pMj6Bz1wuELYVvrKAajE6WWQTfW1+UJfkynRtz89yqFOAYJADcx/feBPgDAjjbrjIS6dFBqUqPcrEav3Y8uqw+WOWS3zAajOj7YHXYHcazfKej+J8KolsOikcMWFZwzgSEq1LEs4A5EEAgnTsTydQq0DnvQOuzBOfX5uGxRatxIJA5CfFLJJBOWVqWbxIw6svRVXI668aKm8O7Dba2jCa7qoMgddbs6bPz3a2tSe/0r0qvQPuKFJ+o0ysS5mwpG3EF0jHrRMeqFUj7edc0S/urRaKakQS1H67AHgTAzocsqx+mHbwrHUraISKnm/ZYR7GizAgDW1cavL/UpalZFVh+IsbRzIshzoXXEgy0nhnDxgvQ1n4ldnTzBCEY9wbR1mE0W8rqoUkhT2njvnPp8btGZYcGyLPQqGQ73cePajhEf1ucMzjlyCErSo79ly5aBoiiwYxLh161bh6effnra7SUSyZQrz7mOsGcu5MTalIHups2Dbnzv5aMAgHMb8mHWKhAIM9AqZeh3ZGYyHYqwmFeoAwvgskXi6YZHipY72q24++IkVnlTaDq7ZGER3jwygBKjDxRFoVLgZhKko86klme8Ky/A5T7NKzaAYVkUCCxcxlhaYUSYZuAJRDDiDvACvExCYXmlCcEwg1EP54b8338dRmOxATX5qSnfiBGM0JBKKNAMi8o8TVoyEqdDJqGwtsYChmWRp42/F0a1HAYVlz3U68i8o87tD6M6T4NOK3csmSgTHhuQLnZH3a52K//9utrULuLMK9LBHQyjSK+aNL8rGzhGdKpcOEHjGHIYSTpOLRoF+p0B2LzZISCkG6c/hBse3wGphEJ9oQ6P3XR65TlP1PV1Xa0FgTBzRmbUhSIMemw+lJtVkEslKDOpUWpUweEPp6R5wuFeBw73OlBqVKHEpEpZvma68QYjWFCsx4lBN1oG3fjo1Ghahboykxpt0aqWEbd4hLoeW3zMkOp7g1RCYWNTMZ7Z2YV3TwxjWYUJa2ssiDAsrJ7sdnjnyJGNJP0J7+joSPhZIpGgoKAAKtXMBvYvvfRSws/hcBgHDhzAX/7yFzz44IPJHk6O0whytWxs9pcQ1OTHb8JmjQK3n1ODW/+0Bw5/GC/u78X1K4UP8ei2+XBy2AMAeKC2SfD9T0aFRYMykxp9Dj/2ddkRjEzfoTFdOsnuTht67X4YVDKYBXaQkavSDn8Y21pHBd3/RNAMi51REWHZHIOnZw1LYWc75zjqcfh5Rx3NsNjTaUd9gRZXLCnBa4cH4A5G8N9/2o1/3LkOxcbUCa1H+5z8BESdoZIVhUzCO680isTbbblZg+MDLgw4AojQTEI4tNDYfGFepAOAogx0ABzbdXCsC1NMRGgGezu5UrR8nRJ1BakVmR+8elFKny9THO+PC3UTdXgm5YEwEVRu1nJCnd0XAsuyGRHZxYTTH8ap6Dhg8DTqBBxjogyw2P1jQYle6MPJOH0OP/ZEry8LSvT4xaeWAQD8ITol7qn/+6ANbxwZBAD0OwNYWDI+e1yMuPwRnBiMV5mk2/lNCpjtI14sr5xbPmCq6LDGI3HM6tQv4pxVl8c3++qz+/kxTGGWdAbOkeN0IulP+AcffIBNmzZBqUz8wIZCITz33HO45ZZbptz+6quvHvd/N9xwA5qamvD888/j9ttvT/aQcpwmeIJhVFrU0CikGWkVX27WgKK4Vf5OqxdLy024aU0l3jk+iAM9DrSNeFCXorKDmeILRlCTr4VcSmWka+VUrK/Lwwv7ehGMMDjY7cDaFLtKZgLLspBJKNQXaFFhEd41JZdK+OB3AHAFIqAZNqMdev2EwKEVuClLjIvmF+Lj1lE4fCG8fKCPF10kUYebMxDBo9cvQfOgG4MOP/xhBpf95iP84MqFuGZZ2Zzfx3/s7sagMz6hHevWEgqyyUpoTBfTcrMaxwdciDAsBl2BjK7Wj+1WXGwU/lpDuj8L9MoE4UZsHB9wwR39zK+tsZzxQtJkHCcdddPEWTAsJ9bJpRK+ZJ9mWLgCEcGbBIkNl//0LgFmGRaFeiWGo+XPVRY1TBoFnP4wBpynnzA5HZ1WLwr1Sli0Cly9tJT/f3WK4k8qxtxrsqVhx1hBt9iY3vt6mVnNL2B1jnqnebRw9Nvin4m8NIxt1hBRDscGXFhZaYLNF8bQabhIkCOH2El6Cf+2226D0zk+h8ntduO2226b9YGsW7cOW7ZsmfX2ObKfF/b1odvmR/OgB/IMCB0quRSlUUdPx6gXJo0cZq0cI54QwLIJdnOh6Lb70THqxckhT8bEhskgy712EGVg08GmsPbVF6LRafWhdcTLl1cKDTmJ1CtlCQ0uMsGWE0P892RYu5AsLjfiSJ8TfXY/XP4wKIoCRXGloBQAsCy0Shn+8NmVuGFVBQZdATh8Ydzz/CH87K0WuAJzmzgMOgMJuTtCOy1jKAiXXGiM8ESGMpPZbELDsiyGXYGEZi+ZyKjL18ffoxF3UNRdX3e1x/PpyPyoHImciDrqFDIJaicobScjVKRUPHuJjBA4E0sfx5KQIZYdVYpJ4fCHeZEOALzR+3qPzTdtTqHTH8aQyw+rJ3jalObZPEG4AmE0D7rTcu8i7z0SiispzQb8Y0qk032fIuMqejMUfzMRVUT1T20azAN5OiXmFXHPe6zfhWFPEF1WL5z+yLjYqxw5cqSXpGdxk5Uh9Pb2wmicnX3a7/fjt7/9LcrKyma1fY7Tgw5ixSpTIfixnCx3IAK7L4y6Ah3UCin8YSYjK2oDRH5VBivjJiQhp65teqEuHaaTy379If99plwX37x8Pi6YVwCpBHAHIxhyZ3bV8Z3jcaEuUz4fuVSCcpMaYYbF0T4nnP4wWBZQyiRgAYx4QgiEadQV6PCVi+pxxRKumYRBJcN/DvXjs0/uGteJNBlODLjgJ4TbvAxdT2RSCe+uHOuoO29eAb5yYT0evX5xyvP5ksHhC+M3W1r5+b+EyszrVaBLnHSNfb3ExK6O+PUuE07ibMAXivAlWvOL9ROWdpNTPpqNCwbk/d+W4YUPMUDGgqRyoUsskItsL35pPd746rkoNqpAs4nl0xPxu/dOYe1P3sPKH7+Lb714JN2HKgjfePEIAmEGBXoF/mtJ6fQbJEklIdQxLBexkg14BRbqyO7nfRlcTBtLmCjJTdfYYW0Nd1+jGRbFBhUoikLbiAfW3PU4Rw5BmXHp6/Lly6OuCAoXX3wxZLL4pjRNo6OjA5dddtm0z2M2mxOEPpZl4Xa7odFo8OyzzyZ5+DlOJ2KrZVIJlbCSJSRn1+chGKHR7wjgeL8TlRYNzBo5Ggp16HMIL8B4gvGBSb8zgHkq8ZQAlZnUqLRo0G3zYcAZmHHJZ6oW5BiGRV90lVMpk2SsbfxVS0vRa/OifdQDk0aBfocfTaWZy3wZJVwFZebMlUvHynTIsho5MVl3+MIoNkqRr1PisZtW4MolA/jpWy1oG/Gi1+7Hp5/YiWduX5NUaUe31YfjAy6MeoLQKCTwhbgJYKYcdQDnqvMz9Djh6fx5BTh/XkGGjipOj82HZRUmHOp1gGW5stNM5OWNjTsQq1AXoRnsjmb2WLQKNBSm3tFg9QTxP88dxKArgJWVZjx6w5KU7yPdNA+6+Wv9RI0kgPH3AocvjHJzoqPOnnPUJVxDRVwRPmvIPEq9So5Cg4rPFfWFaDAMO2k2W4RhIZMAoCioFSJbzZwFYZrhs9GUMil+/NpxNA+60VCow3evWJiSBUlyrKRTylBsUGZFFiTDMtAopHzzkXTHwZAi2IiI3JrBMI2mUgP8YTptpoa1tRY+p84folFuUiNfr8CgKyC66p4cOU5nZizUXXPNNQCAgwcPYuPGjdDp4oNThUKB6upqXH/99dM+z69+9auEm0GsGcXatWthNicX1Pnwww/j3//+N5qbm6FWq3HWWWfh0UcfRWNjI/+YQCCAr3/963juuecQDAaxceNG/P73v0dR0eSdgliWxQ9+8AM88cQTcDgcOPvss/H444+joSGJzpY5koJhWD5bi2ZYFGYgIwngsqxiIb5H+lz40gV1kEkkONzrRPuIF/d/Yr6gg5lYZ0wAougoOpaf3rAEhXolavK1074uVIr9Xa5AGLGFxWCEgVaRmc6IfQ4/htxBdNv86Lb50TbixSUZORIO0oGilGYmow6IOxzDdHw2rpITQp0/lJCFtnFRCarzdfjMkzsx6gnh+IALP93cjB9dszgh620q3msewgOvHgcA5GnlvFCXKYcuwJX9+cP0uNJXsdBh9eJgjwMAcPWyUlzYWJiR48jXJb5HQZG+Xnu77DCq5WgqM2JBsT4t9wONQoaPo41pLCK87s8E0gk1eT5dolIXc45ZtHExItf5lRMwY0RE+rmYC2SZuyralIrMV/WHaWij3S1jglLs345RLzhNn0V/BhZTUw0pWlbnaXGg24GWITeO9Tvx8HWLU7KPMpOaz2P2BCP4uNUKb0j83aWHXUFepFMrpPw5kS7y9fHxyYhbPELdkCuAY9Hrqz5Ni/dkTp3VG8KAM4Aumw+DjgAWZXAhOkeOM40ZX+V+8IMfAACqq6uxadOmGXd5Hcutt946q+0m4oMPPsBdd92F1atXIxKJ4P7778ell16K48ePQ6vlVkLuuecevP766/jXv/4Fo9GIr3zlK7juuuuwbdu2SZ/3pz/9KX7729/iL3/5C2pqavC9730PGzduxPHjx2f9d+eYGrK0w6CSZayMcXmlif/+UHTyenZ9HoqHlVArZDja58TictOE26YDmokPYDPRCXc61tZY0GPz4/UjA9Cr5II6hEgLvkWrSHnnxZnyj13d+Mt2buWxoVAH9xzz1eaKnZjY6jIYwr64jBvMufxhvlObQSVHWQ23mu+eICC9sViP5+5cj5ue2AGlXIrdnXb8dUcn7ji3dtr9eYIR7O20ozZfC4c/jOp8LT65yoyL5hehOi9zjRpiIqNYHWJWTwhrayyIMCyuWFKCSxYWZ+Q4zBoFJBR48V2sr9cbRwbQY/ejx+7Hp1alpxO4WiGFQSWDK5D5UvrZQjaSmKjjK5DoqCvUK/lFBtIBm+nMTzHgD9OwaOQIMywqzZqscD8lQzASF6eU0cUctTw+PfGGItAqZWgf8eALz+zFhfOLsL1tFM/fuT5h8Yfs0pmtkGXAChmF9lGu229NvjZlTmeFTIJSo5qvSAC4LEixC3XktaBAAFcXOQ/xBCMIhGmoMtRBniQ2NwHSF/lSqFehrkCLthFvQhOJbGk8kiPH6ULSV+XPfe5zc9rhhx9+OOXvzzvvvBk/1+bNmxN+/vOf/4zCwkLs27cP5513HpxOJ5566in8/e9/x0UXXQQA+NOf/oQFCxZg586dWLdu3bjnZFkWv/71r/Hd736X71D717/+FUVFRXj55Zdx4403jtsmGAwiGIyvtrhcU2dq5BgPKbpkcrBVm6/ju3ge6nUAABaXmfCP3T0AgMsXFQsm1DEMy09apRIqoWxQLPTa/TjvZ+8DAC5onFkpX6reXXLQZvOGUGpWp+iZk4OchJ4a9iBMM/jfjfMzciwAEhoxaFPUJW42MCywq8OW8H8KmYQvG7RNUtJWX6jDLz61DJ99ajcA4OmPO/C5s6qnPf87R7147cgAAGBhiR4vfumsuf4JKSHWUGIiR12YZjDgCGDIHcDq6sw0JTg+4OLfpzJT5gRNiYTCWXX5vJNMjEJdhGbwRvQcU8gk2LBgcmf+XCkyqOAKeDDkCmSlMDPqDmBZhQlyKYXGoonLg8l7wbA7yGdl1eRrcd3yMpi1CjSVTd0t9kzg5KAbtqir7tiACyGagVKWecEgVUznqPMFabA6Ft956ShODXtxargdAPCrd0/i/ZaR+OPGZJhlI6SjjmbjjvT6FJfYr6kx48OTND/2dvq5snMxQ84T0l32CoxfHO9z+FGXhuYNybKNyIRO5wL+2to8tI14QU7JnDmhLkcOQUlaqKNpGr/61a/wz3/+E93d3QiFEidbNpttki05LrjggnH/Rw5AaXr2N9pYN1qLhZvw7Nu3D+FwGBs2bOAfM3/+fFRWVmLHjh0TCnUdHR0YHBxM2MZoNGLt2rXYsWPHhELdww8/jAcffHDWx50DCd26lDMsc0sHEgmFJeVGbG+zYsAZwJArkHAjFPImFSBWmeVScU7Sys1qmDVy2H1hHOl1TjmhTPU8kxy0lZtVqMpQRt2CEj3/vUomgTsQwYDTjxKj8MKhLxRJWJHXZHCFfEGJHquqzBhxBxBmWJQY1MjTKQBw1+mpmkWc21CAi+cXYkvzMPqdAbx2uB/XLp/avdRr92F+sR6eYATl5swJTmNZUm5EoV45YX7jDY9vx6FeJyQU0Pyjy2dc4ptKKApYVmEEy2Y20xAAbj+nRtRC3a4OGx9HcFFjYdrKjgBOqDs17EEgzMAViGTMZT4bWJbFjnYb3IEISo0qGNTTl+8W6JX8e95UasQvNy1L81FmD75wBHqVDO4A50L2h+jTSqjTKqVYWm6ESi7lHXLVeVqsqDQhGGHgCUbw4v6+cd3l//RxJ0pNKgw4A4gwLFqH3Tj7kffw7B1rM9qgZy6QomWQEO3qC/UTPXzWhGmWH0PF7ptiJxRhkKdVgIUw3bbztAqUm9R8x9dumy/jQh3LsryYq5JLoFelb4y3tsaCf+/vRV2BDmGagUouRTiS/WJ4jhzZRNKzggcffBC//OUvsWnTJjidTtx777247rrrIJFI8MADD0y7vd1uT/gaHh7G5s2bsXr1arz99tuz+RsAAAzD4Gtf+xrOPvtsLFq0CAAwODgIhUIBk8mU8NiioiIMDg5O+Dyx/x+bYTfVNt/+9rfhdDr5r56enln/HWcqw0R5jzpDWWMxllaY+O8P9jhgIiZIQnY8IoUMsQ7KKYriHYZWbwj9zunLtFLV3p3MYhtxhzKWQ1aVp+WDrwMRBlZvKKGDsZCMuhPPT00GyzQK9Ers7bKjy+ZHvyOAfd12vqwJAEY9U58rd54XL3f944cd0543XVYfmgfd6LX7ccXS1HfKmy09dh8O9DhwsMcx7m8oi7pAGRYYnMFnJx0c63PhYI8TR/qc6Lb64AtlbsJGCpWhOSzapYvXDvfz31+xtCSt+yokOg4Ou7Kr/HXYHeRFpfqiyQUG8uMw4g6ibcST7kPLOkIRGod7nPzrCYzvfpnttA57cKjXiUO9Diij96wQzWB/twPH+l3otfvw0OvH+cdfu7wMAECzLHrsfkSilh+ajWbGZtnnhYR01PlDpFCXWoGIbN7TPOiGJyB+oa412nVULqVw76WN028wRyxaRUL0QK8IuuO6AhHe4RYIM2ktV75sUTEO/2AjHrp2MU4OeXC414mBDI1TcuQ4U0laqPvb3/6GJ554Al//+tchk8nw6U9/Gk8++SS+//3vY+fOndNubzQaE77y8/NxySWX4NFHH8U3vvGNWf0RAHDXXXfh6NGjeO6552b9HLNFqVTCYDAkfOVIDvLir8lguR4ALCVKWw/1OFBkVKK+UAetUirohKmXyA9J56rZXFlSFg+WPRItF56IVHsCSaGuOm/6ZhbpQiqh0Fgcn4zKpRS6rZkZ0I16485UrUKa0VzDYoMKZSZVwue51KhGXYEWGoUUI56pRe81NRZeND8x4OKdVpPRafVCq5CiJl+L6jwN/rmnB8/v6cb7zcNz/lvmgia68BBh2HHlr6Tzr8eemXMm5hJmWODKx7bxpcmZQKOQotSkgkUjT3CGioEwzeDNo9xinUYhxUXz09t0o4go7RpyiSfIfCZQAL5wfi0uml84pfNlrHCdK6sazzvHh+ENRhKuo74scD/NlLv/vh8nhziBlnQdkw7S/xzqhz26cHnFkhI8cv1i1BKZtKoxTmTHFG5tseMJRqBVSFFsUCZcA1PdXXpsl22xi7+eYARDriAK9cqERgfphKIo1OXHX/duEQh1Y5taaNJobFDKpKAZFp3EwnMuoy5HDmFJWqgbHBzE4sVc5yGdTseXm15xxRV4/fXXZ30gRUVFaGlpmdW2X/nKV/Daa6/h/fffR3l5vDyquLgYoVAIDocj4fFDQ0MoLp44MDv2/0NDQzPeJsfcId0kZm1mS3wSGkr0OlBiVKNt2AOdQsav3ApBHzFxF0OA7WQsLo8LdYd7nYLtl3RhSjIc30eWv5o0cox6MjOxHiUGcd4QnfauaFNh0SnQ5wjAF6KhkklgVMtRZlKjfcQLo1qW4BaYCIqi8AXCVfeHD9omfWznqBcRmoVMKkHnqBdVFi1++c5JfPPFI/jWvw+n7G+aDVpFYtYSSTmRq9ibAaHOG4zAoJYlTHSLM9RxG+Cuc/2OAGy+MJyTZBhmio9bR3kBYMOCorROkACgiJhID2dZQ4lCgwrfvnwBnr51Nb58Qf2kjyPvphqFZFwOJcOwGW/Ok2lG3AGUmNTwh2jolFKUGlXwBsUtqiQDWXJJuoMsGgWMahkK9QpsPjqIxiI98rQKfPOy+VDKpPjRVU384h9ZJq+USTLqCp4rLn8Y3hCNQVcQ9ug1UEIh5aW8Y5sx+EX+mg04/JhXpIMvRPO5r0IgJYbeXSIT6qQUJozUSCUP/OcYvvb8QQCAWS1HmneXI0eOMSR9tSsvL8fAABemXFdXx5er7tmzB0rl9F14Dh8+nPB16NAhbN68GV/84hexbNmypI6FZVl85StfwUsvvYT33nsPNTU1Cb9fuXIl5HI5tmzZwv9fS0sLuru7sX79+gmfs6amBsXFxQnbuFwu7Nq1a9JtcsydBiJs2qTJTAljjCKDig+qPdzjhEomRalJjSF3EDvbhXObkC5DMecTLSGEuiN90wt1qZI6SZeJJcPnDNlQYsQdSuh4KCTuQBgGwn2ZSUcdec4GIgyc/jCq8tTQKKQYcAaxr8s+7XNsbCpGpUUDtVyCHrsfrxOlhySPb23Dv/b1wukPY9PqChjUMt5xadGmvzvcVJA5gd4xk6EK0lFn80NoDvU4cGLAjQAx0S3SZ06o20oEw7eOZKZ8fDJePUSUvS5Jb9krkN2OuplCGup8IQatw/HS16se+xgN330TF/xsq/AHJiJODLjRbfOBBeAJ0uh3BuAOnj7ipY64Xz1/Z3yMXWJSwemPYNgdAsMCLUNuWL0hflH37IaC+FiCAh779HIAXNfUTC2UpQLSsRS7h1VaNClfrC0c04xB7OLvgDOAk0MeeIIRFAp4jyog9vXNjekvt52OEeLcVgiwgL+yKt5hxO4Po2M082JljhxnEkkvCV977bXYsmUL1q5di7vvvhs333wznnrqKXR3d+Oee+6Zdvtly5aBoqhxJQ/r1q3D008/ndSx3HXXXfj73/+OV155BXq9ns+QMxqNUKvVMBqNuP3223HvvffCYrHAYDDg7rvvxvr16xMaScyfPx8PP/wwrr32WlAUha997Wv48Y9/jIaGBtTU1OB73/seSktLcc011yR1fDlmDhmUWymCIPilFUYMHgvAHYygfdSLpjID8nQKqGRSeAJh6NIYIh7D5g1BKqFAMywKdJkVoqai2KBCvk6JUU8Qh6dqKJHi0tRLFxbheL8TEZrFwpLMlpuTQl2eTgFZhpYd+x0BuKJZMxVmNQwCnKeToZRJsarKhM5RH0Z50UyFpRUmjLqD8IVpfOaJnZBJJfjLf6+Z8DmkEgqPXrcE3//PUZwa9uC+fx1GTb4OC0sT328WLFZUmtBl86HMrIY3RPNlppYMO3Tr8rlQ9DDNwulL7KyXaUfd2DIWhUySUXHXoI4PScSUmUQzLGzeECiKc/2c3zh9d+u5Upgg1GWXo26msGOWbRxjXJQ0w8LuC4FhWEjOUCuHRinFikoTOq1e2Lzc5zWbSztJfv9+K3a326BTSlFu1iQsMlWYNWgo1KF12MOfJRq5hI938IdoGFQyPrNLQowvsvn1idAMVlaZ4Q1G0DzoBpD6fDog0VHHNWgQrlpkNpD3quf39uAL59cKsqhfk6+F3RuCXCoRRedtsmqiVoCGKauqE1sB5+IJzkz2dtrwerTj/bn1+bgojR3vcySStFD3yCOP8N9v2rQJVVVV2L59OxoaGnDllVdOu31HR0fCzxKJBAUFBVCpkl8hefzxxwGM7yT7pz/9CbfeeisA4Fe/+hUkEgmuv/56BINBbNy4Eb///e8THt/S0sKX8ALAN77xDXi9Xtx5551wOBw455xzsHnz5lkdY46ZQQ6sxOAeu35FOVZWmbGswoxysxp6pRxv93Ll0N02PxaWpv8YB5wB0NFSW2OGHWNTQVFcp9z3mofh9IfRY/OjMm9ysTVFvSSgV8nRHXUhZbK7KcB1TYth9YTwfvPIlB1w0wXZ7KTH7k9wK2QCuy/Mi3QA99lWyaU4GXXO9Nq598/pD0/6uV9XZ8GiMiNODXvgD9P4/F/34j9fORt5xETjo1OjGHAGYNbIcfdFDQkZgZl21AHA/m4HAO4z3URkOpIZdbHXQkjGDrqLDMqMTkaqic7N/rB4hLpumw9bW0aglktwdl2eIM19qvM0+J+LG1BsVGFRqXH6DUQCy7Loc/hRalRPL66NuRe4gxFelDNH73kMC7gC4Yw77dPBTO4RezvtONLnTMh4PR1yoliWxc/eauFPgeZBd8J9vDpfC3+YTjhFfGEGrUMeYBF3TrgIMd/hDxHfZ+/r0+8I8G7zugIt8rSKhNzkVEFm1JFORbFC3qscvlBaO26TsCxwKBrpIobzqp/Iro7Q6c9xrcnnzsHY2NLuzV63ao7Z89KBPvxtVzcAoG3EmxPqBCSpWVw4HMYXvvAFfO973+PLTNetW5fgTpuODz74AJs2bRpXJhsKhfDcc8/hlltumfFzzaR7pEqlwu9+9zv87ne/m/HzUBSFH/7wh/jhD38442PJMTf8oQhWV5shoaiMZiTFuLQpMY+wqdSAXrsFEYZFn8M3ztGTDmxE2H6hPvNiw1QsLuOEOgA43OeYUKhL9fR/yBXAqiozpBIqLSvOyaBXybGk3IhBZwAyCYUigwo2byhBTBKCsV2JM9n1FeCyvIbd3QiGaeTrlMjTKXDV0lKUmVR488ggXIEwzFoFum1eLC4zTfgcFEXh4esWo32E6wzY5/Djl++cxEPXclmpgTCNIoMKlRYNf+2wesmy6MwK/1V5WqysNEEhk8A1Jm9LrZAiX6fAqCeUkWYS4QiDVZVm7O3mJoaZLHsFgCrCIRARUSVWTzSbyB9mUJ0vzLUmT6fEPZfME2RfqWTUE8I5j74PjUKKG1aW44dXL5r0seTIq9SoQqlJDYc/BItWmdDF2+YNnZZC3e/eb8UzO7tgVMtx7fIyfGmCPL9YubxSJsHSChMYlkVEZI1WZkMwwiS8/xS4vzFGhGYSFnCVMk68jUTH62NdcyPuINbUWHC8z4m3jg7i1JAb//riWen8E9ICKUi1jXjRNuLFtSvKp9hidli0Ckgo8B1Exe5CjEQYyCQUIgwLo1qe9my2GOQColMErxE5TpgvwDyEoiisrDLj7eOcUaFAr0KYZsblieY4fXm/eRhvHx0ARQEyCZXgfM6RfpL6pMnlcrz44otz2uFtt92W4F6L4Xa7cdttt83puXNkL102H/Z02rGrwwaFTHw3gDydArs6bNjXZUe7QNlJ5OpdiQjEy6lYUm6EXinD+to8wbr2tgy6sbeLO2dKTZl/ff7zlXNwaVMR+p0BHOhxZCR42EYIVAopBVmGB1OVFjXcgQhCNItghIFWKcM1y8vwo2sWY3G5ESGaxZAriM5pck9Ucin+8NlVyNMq0Fikx7F+F+866LX7cLDHgV1Et1I7UUKXaUedWSvHvm4HdrTbJsyhu3RhMdbVWGBQyccJeemm3xngRTogMRctE5Qa46XANq94mkmQk6MKi3qKR+Y4NcyV6/lCdFKT6X5nAHu77HBHXVJmQpizi6yxSKrY2jKCIVcQJ4c8k+bfxpruqBVS7OqwYU+nHf1O4d23qcY3ppnQ2NLCt44NJTSaCEZYDLqCaBngzq+xbuABZwC7O2zwhGhYvSHs6bRP27BIjEzk2qqaokJhtkglVIIYLvaSxl67j2/mJuQCKBkF8crBPhydQQ5zOgnTcXlbn+aGRjHI8tdTwx70ZcD9nyNzHO13YsQbBsty51+XNZdTKCRJz+KuueYavPzyy7Pe4WRW/97eXhiN2VPekSN1RGgGv3j7JP+z2FbOgxEalRYNllYYUZ2nSbCepxOy9KvMJO7J4fnzCnDoB5fiH3euw0Xz02+JDkUY9Ni8qLSo0VCkQ4lRHK/PgmIDFpcZUWZWJ5RfCoWVcGFmsuNrjIsXFOOHVzXhR1c34Tc3Lkv43U1rKrGk3IhKi2ZGbrJiowpfPL8OLUNuHOxx4J3oCm+X1YdSkwqLSg1oiq4wk6+DJcP5juSKPFmeFUMmpbCzw4ZTwx4c7hF2EuAcczyFhsyKmhIJBWl0fBCiGTACdtmeClJgrRBBhqqYOTUUbwjRQGTPTsRERRExZw+ZLRnLZjud8AYjONTj4H+2TtIAwRsVq7TEpFzsospM8AYTS9tl0vi8gGVZvHa4P6ELbIzYNXTA6UvojNxl9fGufQqASS3PymxHpZTCvCIddMr4gmdVXnqyyK5eVoo8rQL5OkXqSx5SzCDxXhYJeJ+qsGh4ofTlg/346NSoYPueiE+vqeS/F+p1WFVt4b/XKaUYybIu5DnmhnqM+WJsU7Qc6SXpmVxDQwN++MMfYtu2bVi5ciW02sQbyFe/+tUJt1u+fDkoigJFUbj44oshk8V3TdM0Ojo6cNlllyV7ODkEJBih4fSHU95xyTZmtdwkgow6gFs9+9O2Thzvd+GPt6zEoR4uJ2Znu1WQcGunnxDqRD45nIlzK5XRV8PuALaejA+YyJXhTJKvV+JInxNKGYXBDLgefnbDUtz81E44/RFRCHXFRhVuOat6wt+VmNQ43OuEXEJheIb5ONetKMPDb54AwwLvHB/Ety6fjwFHAHZfGP2OAG49m4tkSHDUZVj4N6q5/VOYuHRmRaUZf93RBQDY323HOQ35gh3bWFdLcYYddQDX0MIf5o5r0BVAqQgWKRIddcJdiztGvfjw5Ah2dVjxgyubMu54nAkxRx2Q2M19IsYG2MulFN+xk1yws4vIXZkqPjo1gjAhRLePevmF7H6HHwU6JQIRms+p1arikyWHN4RhVwB6lQyeIJ2QN5Yt+EJ0Qukl6b585/gQ3jw6iImKK0LRst9hdygho+7UsAcapRTeIJdr5/CHYfeFUI30B+6nkl6HHycJsVshlaTtuvy9K5rw7M5uBCMMukTezZMszS0VcGE2T6tIcBBlIqKCxOoJ8iXAJoGqBRaVGvl9eoI0rKfhwkmOyRm7YBqJMHD6wjBmOFbmTCHpmdxTTz0Fk8mEffv2Yd++fQm/oyhqUqEu1jH14MGD2LhxI3S6+ABOoVCguroa119/fbKHk0MAIjSD83+2Ff1OP5aWm/DyXWen9PnJEicx1b97ghEcjK54tw57cM2yMrx6uB8tQx4MuAJpd7kFwvFJdLkIJqupZK6NFshzRiqhoMpwFluM6jwNLBo5bL5wwmBbKBqL9XAHIpBJgPlFU7tZMk2lRYNCvRIjniBODLqn3wBcycvKKjP2dNrRNuJF+4gHp4bd8IdoWDRyvhkBmdWXaRG3yKBEkUGJYXcQAxMIkssrTfz3B4gyVCEYcSe6eMQgBKkVUl6o67R6RSHU9UbL2CkKgpbZv7ivF4+93woA2NhUjKuXlQm279mS6KibRqgjxv8KqQQhmuHPyYSMutOw9PXdE8MJP/tCNAZdAVi0Cpz1yHsAuFy2YISFhAKK9Sp4AjT6nX6cGvZgzU+2AOC6e3/0zYsEP/654gtFQM7/Yk5ahmHxy3e4CosIA/z0+iXosXnx9PZO+EI0RqNu6VNDbvjDNC8gjHqCqDCp4Q3GF8iy0XkYHJM/WG5RpzWPzaSRY8gVFP1rNUTcqyrMwt0TCg1KaBQS+ELc+9KTgUgTkmF3kBPp1DJUCHRvVMgkKDer0RkVLDP9GuQQFm8wPhfVKqXotvvx1LYO3JuFGbrZSNKKyNiurTPlBz/4AQCguroamzZtynVQzSJkUgnUcilq87VpcemQZWoRhoVZJO6oZRUm/vuDPQ6UmdXQK2XQKKQ42utMu1DHRGcxEgpQCZT7lgoYhkEgzIzrxJrKoSYpxORnuLSR5GdvtcDuC0NCcQ6JD06O4Px5BYLtf8jlx7IKE0Y9IdGfMwa1HAqpBAU6BTpGvbjn+QP41abl0253ycIi7OnkBK0tJ4YRplk0Fukx4gny+WEGlRy1BdpoQ4/Mnh96lRwKmQT1hTqo5JJxK5GVFg3fVe1Aj0PQbsExl4JMQuHwDy5Nu0t4JhRHG7EAQNuwB2fVCecwnIyeaCZPsUElSMfXGGtrLXjsfe773R22rBDqWqMdnQv0ymljLMh1epmUQl2hHo6oKGc+jR11NMPi/WjzpZjQBABtw174TDSUMgmCEQaRaB4Vw3JjAK1ShmqLJqFsVKhM2FRDunllEooX5F87MoDm6MLN0goTPrmqHE993AEpRYFl4wuYKrkUjUV6dIx6ETuTlAopZBJO4Ku0qMeV12YDgXCiUFeVZgdvlUULnVLGO7/FiosQEssFdDXnaZW8SAdwHcAzCcuyWFBiwLArgDy9cO/ZwhID+hx+qBXScZEZOU5vQjSDhkId/KEIXIEIFhTrx3Vsz5E+Zp00HgqF0NLSgkgkuRvh5z73uZxIl4Xk6RRoG/FiW+toygPPR8dkswjVdn06Gov0UEedWge6HbhueTkc/jD6nQG8dWww7fsPRgdsEoEm7XOl2+rFbX/ajZU/fhc/faslrfsaJvJKZBLxNB+RSSVYUWkCy3Li7rdePCzo/ofdQezvdqDb5kt5iXo6UMmlGHaHMOwO4qUD/QjT03cz3EC0hX/n+BB2tlvRMsS56gqjjrC7LqzHe1+/AAe/fynmicBZePmiEpwa8uD9lhEc7U/MoaMoinfVOXzh6MRTGGIuCpNGDo1SJgpnqpbIZjo+4MrgkXB4gxFeOBQ6n25FpZl305DNUsSK1RPkF1Gmc9MB3KQzhi9E48SAG0f6uPd8bNfX04mDPQ7+dZpHlAe3j3rQZfXyrioiNx4mtQIFegU6rD4ME4ubnVka7E0KdfdcMg9v/M+5iNAMfv1OPK/4fy9tBEVRuOPcWr6BQOy12d9tR8uQGxGGwcamInzlwno8ecsqPHr9UgBAt80/rgt6NhCMCpEahRRPfW4V7jyvLq37C9M02ka82N9t58usxQgpugoZ0aCSS6GSx8eYfXZ/xl6njlEvnt3ZhRMDLli9IUG7tN92Tg3CNAuXP5IQy5Pj9Kdz1ItTwx70OgJwBSI4MegeN47NkT6SnuH6fD7cfvvt0Gg0aGpqQnd3NwDg7rvvxiOPPDLt9jRN4+c//znWrFmD4uJiWCyWhK8c4mRtjQVrayw4uy4PH6c4TJV01C0o1gvWdn06ZFIJFpdzDU76HH6o5VKsrjajKk+DI31OBCPp6yjGMAwv0AnZ4WouGNUKvN8yArsvjANESPZETBQingykmFFXKJ4MmmKDCvu6HWABFOoVqC3Q4sSAMDe0IVcAW4hyKlMW5EdcML8AZrUccimFPK0C/TPoJlZboENtAfee7+2yoUCvxLpaCy5eUCiYEy1Z6gt1yNcpoJZL8e1/H8aR3sRzYnllvKva/m6HYMdVW6BFY5EOVXlatI8IX6o9EUvLTfz3MXdWJtEopNh1/8V44Yvr8c3LGwXdt1Ypw+Iy7h7UOuwZt6glNk4Nz7zsFUhclC/QKbG2xgJ9NPqiwqLG/928As/fuQ7/s6Eh1YeaUd49McR/fx7huG4b9sAbpKPldlKUmFRYXmnC6mozKiwarKm2oC5fCznReCEYYWa0wCE2fKHxrsDn9/SgPXpvX1tjwdn1efxjlNHAupijLraQqVHI8IfPrsJ9GxtRna9NbN4zQSao2In9fVqlDBcvKML6urxptpg9W04M4SBxL/KJNCSeZdkEJ3ORUdhFyHMb8mGOjqciDIuBDHVd7rH5MELMl8ZWraSTmnwtlpYbsbbGggiTfdebHLNHJqWwpsaCJWUG/v/Eeq04HUlaqPv2t7+NQ4cOYevWrQnOuA0bNuD555+fdvsHH3wQv/zlL7Fp0yY4nU7ce++9uO666yCRSPDAAw8kezg5BOK8eQXY1WHDtjYrnv54duXPk0FOPjyh9Ilfs2E5Uf7aPOhCsVGNLquPW11IY4vyYIQFHVWzavPFI0RNhVEjR11UQDne70zI2AOQUhGF7Kia6WYBJLGuowAXdr2t1SqY8LKvy47fb23jf84Goe67/7UQN66tRJhmYfWG0DnDspJLFnKuOoblnEY7220Jpepiw6yRY9QTgj9Mo9vmx64Oa8LvM5FTF6YZfHRqFC1DHuzrsuPq320TZL/TUU1c77ptmZkQkVAUhSKDCquqLVhZJfxi4tqa+D73iNxVRwp19TNxshJKnTsYxq4OG7a3cZ8NjUKGyxaVYG1tHspF3kwpWbZEhTqKAq5bUc7/f/uoFz12H4ZdQfhCNAYcARzodmBPpx0UBZw7rwBto16E6cSVLrHni01EQu6RQoZBZwC/fOckVlaZoZBKcN/GxoQxQ8ztG4wwYFkWgehCqXJMxwnyvpeNr0sg6hgkXVzpQq+SJyyajm0uJBaG3UE+p9KgkqFA4MVrqycEOyH69mTovjQ2U1YtoAM+T6vAiQEXdnXY8O/9fYhk4eJAjuRhWRbvN49gd4eNj/UBxHutOB1J+k7w8ssv47HHHsM555yTcBNtampCW1vbFFty/O1vf8MTTzyBr3/965DJZPj0pz+NJ598Et///vexc+fOZA8nh0A0FOqxYUEhSo0q9Nh8CSUrc4XMfFghssk2OYE+2OPAhY0FqLJoUGpS4e00lr+6AmEsqzBhRaUJ9TNwJoiFmDMoTLM41j952dpczx7SUbe6WjxO3JgDE+DKxVdWmrGtNbUO1Mkgy3yq8zSCD2Zny7wiHVZXm7Go1IC+GXZUu4QofzWoZFhTbRb156Sp1IgLG+NZa64xE8il5SZ+ACSUsDv2GMTQ8RXg3IdGtRx6pQzlZnEcUyZZWxu/vom9/LWNEOrmJfl5jAkx2SiuJMOwK4BhFzfhXlZhQkOhjm+g1T7ihS848QTIpJGjKo9rwKOWS6CSSbCwxIAlZcbsfM1YFssrTVhZaYJOJcW9/zwIqzeEfV123H5O9bj7OilcBSMMn+U2tlw/X6fE2XV5WFxmhCcLM+oqLRqsqDQlLBKni7HdgsU6+e6yenlB1huiedetUKyptqDaooFaLsXCEn3GHHUjhKlBLqUErT6iKCqh/DzTWX05hGF/tx0LS/RYWWnCpU3F0Ci4z55YrxWnI0lf7UZGRlBYWDju/71e74wcM4ODg1i8eDEAQKfTwenkbNdXXHEFvve97yV7ODkEwqiRI8Kw6I92LRxyBVGcIvt5vyN+09OrxdHxNcayinhJ2oFuB25cXYmu6A3qcF/6Shq9RMfZ6rzscNQBnLD5wr5eAJwzaGVV/PVL5ZCC7ABGTmQzTX2Bjg8Cd/jC2OexI08rB82waR9UWYlBXKfVB3WWhIwXGVR8c4j2GeazLa808w0YXIEIdnfa8VA0jDwUYXDjH3fAolVgRZUZX76gPm3HPlNKTWp8bUMj3m/hRFvHmIm1VilDY7EBJwZcaBl0wRuMpKVxD4l9TCfNVF3P50q5Wc0LD3na7BCb08nKKgsoiosLELtQ12PzotSogkEt58vTp4IllmxUMimAMFyBsCDXy0yxs8MGbyiC6jwNLmzkyvWvW1EOlmVRV6ibtATdqJbDolHA6gny2XWxDMdsLPG0+8M4EF2UqDoxzDspiw2qCXPZyNLHQJjmHfvKqIBHMyy6bT7kaRXY3m4Fy3LdKrOJYITmx312XwgHuu0JsQipZqxQJ9bmG712P59NqFPKBI+4UCmkvNv/+IAbbRmKiSAddUK66WKoiM/g/m47agvEuziaIzX02v3YHR2f/9eSUmgUUniCEfhEeq04HUn6LrZq1Sq8/vrr/M+xC+aTTz6J9evXT7t9eXk5BgYGAAB1dXV4++23AQB79uyBUpkblIuZJeVGVFk0UMok6Jmh82UmkKtES8qMUzxSeIqNKpREJ7CHex0o1CuwqNSAAr0yofwy1Qw6480S1IrsGWwuJ4XNaXLq5gJZVltuFqZF/UyQSSVYUMKVv9IMiyqLBr4Qg/eah6fZcu6MDVwns3rETHWeFo1Feli0cnTOUKiTSihcs7yUn8xXWtR8eZzdF8L+bgfePTHMTwTFgFEt55yOeuWETo/rlpfhjnNq8NhNKwQRKQadAZDzWLE46ooNKiwpM6JAr+QXRTLJP/f24K87OvFe81BGyn2MajkWRq8pzYMuOEUsynRYfeh3BtBl9SF/Bo5e0phv1spRalJBr5TBFe0q2DzowrvHh/CvvT2iDrpPhpZBF8I0i06rj39fH7iqCQ9evQi3rK+GP5R4jpnVcpSZ1NCrOIHiH3euw3N3rsX1K+IdgMe6Y7OBIHEPf+VAPwCuFPhXm5bBrB0fZ1GgV6LUqEKBTolgmOEz6pQyKX71zkks+P5mXPjzregY9eK5z6/DR9+4EP/8wvRzEjFBOiM7Rn348t/2p3V/WoUUsui9RkKJ1806SDQPM2VgXFNfqEsYZ3ZlqIHLiDv+OiwtF36uROZBT1Uxk+P0gXTOaZVSlJvVKDaq0r6QnCNO0q/0T37yE1x++eU4fvw4IpEIfvOb3+D48ePYvn07Pvjgg2m3v/baa7FlyxasXbsWd999N26++WY89dRT6O7uxj333DOrPyKHMBjVCvQ5fCg2qDHgCEy/wQzZsKAIrxzsh90bQpkIs2iWVZgw4ByEN0Sj1+GHKxBGMEJDQnH1++lY3XuXaArQZ0/da51u5hXpoFFI4QvRODiFSMKVTs/+dYtN2igAKrm4bhiLygz8qniPzYcSkwpDrvSXSpBNWRRSKmuEumKDCu2jHuiVsqQm4wtLjPzjrZ4Q7yAkBUsx5ReaNHK+QyP5XsX4/Hm1gh6P3ReGSaPAaPRYxOKok0klcAe5a6yMotJ2jZ0pT3/cgeZBNxRSCZp/dFlGjmFNjQXH+l1gWWBPpw0bFhZNv5HAsCyLvmhua7lZPaP3jBTqWBboj44rnP4IzFolHn2zGe+3jAAALppfmDWNlabing3zcO3yMjQPurGiarxbiqLA30NVMgns/jDs/jDvZllTwzUXON7vxuajg9Cr5KJ1Qk1FLIsN4O6Zh3qd+NL5dZM2TwiEab6iIxCOwKyVIxhhYFDJoFfJEIo+36lhD25YWT7hc4gdlz+MYoMSg9HS6EpLesfDFEVBp5TB4Q+DYQF3QJxCHdlkyqIT/p5eYlQnZFL3ZGgBqZ+Yd2UiIa6COB/F0nwqR3ohhTq1grtWDDoD8Apcfn4mk/Qrfc455+DgwYN45JFHsHjxYrz99ttYsWIFduzYwZe0TgXZGXbTpk2oqqrC9u3b0dDQgCuvvDLZw8khIFV5GtAs0Ovwo3XYnbLn7bP7YfOGIKU4Z4zYuO3sGly/ohzLKk3I1ynRUKTHlhPDONLHtUifiXMgWWy+uMvQmAVNAWLIpBIsKTdiZ7sNfQ4/hlwBFEWdOqmaa9MMy5dBaERY3rmYcIWyAPocAZwcSv+ghmzKEqLZrBHqJBIKDYV6HB9wYUe7FQzDQjIDR9kSYkWZdKAlCHUZGNRPhl4l50sYx5a+ZoIuq5cX6QDwn1MxMK9Ij7eODeGY34Uemw+VGSr/Z1mWn5SVmdUzOi/TwQWNhRhyBbCm2oKFRMMaMTHiDvLX5YoZCgykLE+WcsWcPaSzyu4LnRZCnUwqQX2hHvWFEzfbGHEH+ckRKWaNzWLTq2Twhmh4Q7QorifJQrriD/U6oZFL8LUpuvuSpa+uII2hqJgloaiEfNKfv9WM7W2juPWsaiwhOkhnA3ZfmBfpAG7MnW6Majl//lhF2lU6SHwOHriqSfD9V1nUkEspvolLppzeQ4SzsMQg/LWQrHgSg9s9R/ohS1y1CinkknjUQA5hmJUkWldXhyeeeCLp7cLhML7whS/ge9/7HmpqagAA69atw7p162ZzGDkEpsqiQW2+Fga1HL5w6oIkzRo5llWYYPeFUGoSn6NuTU1iBlpNvhYLSwzQKqXotc2sxCdZXER5U6E+uyYnyyvN2NnOZSkd6HbgskXF4x4zl0v8gNOP1dVm+EI0GovEl5HRVBofzGiVMpjUcuzrtKfdGZStpa8A0FCkg4QC1AophlwBlJimFuyHXAG81zzMD549wQh8oQg0CllCUw0xOeqkEgqrqswIRpgpy3f2dtrwzM4uXNBYwK/iLyjWY8PC8Z+juTC2zEkspa8Ad81TySQI0Qy+9e8j+PvnMzNGsPvC8EZFk0yW2J8/rwDnzyvI2P5nQg/hOJnpa0U2pdKrZFhUZoRcSvHOHvLza/Nmnxg1Uz5oGcFfd3RgwBnAABF7EcvhBOJZbDFI4W5sh/VsgDzm28+pgVEth0I2+cIbmTfnDcQnjyo511Tj02sqsbvDirYRL/69vw95WjneOT6ElVVmXNA4PldbjIwta68SYIEiT6fgRZexYwixIKEoLC03gmGBkgzcp/J0SjQU6tE67EGI5vKHnf6w4GMssvNsnl7412FFddwBTMbz5Dh9CdEMlpQbQVEUTBo5vygeyQl1gjEroY6mabz00ks4ceIEAGDhwoW4+uqrIZNN/XRyuRwvvvhirmlEllJh0aB91AuWBVL1GXX6w3ivZRgj7hDytPKsCJAuNqj4EOcOqxfL0hD2ayNuyEJ3uJorZLeyI31xoY5KUTuJLquPbz5w1iRlMplkXpEeCiknMjAsi16HH70OP4bdwbS6lkiBSq+UQSbNnmxDs0aBo9HMk26bb1qh7lCPAw+/2cz/zLDA3k47zptXADsp1E2QdZRJ3IEImgfdkEupCQPzf/PuKfzq3ZMAuMYBscHw+tq8lAt1YwPoxVL6CgCVFi3vJspUHhCQWOJUnuFYhtZhN3Z12HCox4EHr1okumYxvURubcUMXytyGCGVUjgabdAUu5aRjjqxigip4LH3T2JPp2Pc/5PXdNUYEYsU6kjHUbYQ69oKALesr5pWlFISQp0nRAp1UhQaVHj4usW47vfb+P9/4qNOAJzInS1C3VhnpBCOOtKl2pHBa+1UHOp18PfNTLhqKYrCmhoLP+4HuHuDUcBM7WCETsi2NamFH9tUWbR8s7RAmIHDF4JJRIuhOVJP+4gXh3u5+7JFq4RMGhXqMpDXe6aStAJw7NgxXHXVVRgcHERjYyMA4NFHH0VBQQFeffVVLFq0aMrtr7nmGrz88su5PLosRCWX4uy6PIRTWFZ3sMeBETc3GI3ZysVImGZwoNuBj06NYF6RDmuqLWDB8seeashw6HQ49tLJ6moLfnr9EqyoMqE2P/WOt0FnAKurzaAoCo1FE5cPZRKFTIJ1dXlgWa5Ed8DhAwsK3TZf2oQ6mmH5Lp5ahXTSnB+xMr9Yj7U1FtAsm+AomQx3IIL1tXloGXTxovb2NivOm1eQ6KgTUekrwOVsWbQKMAyLD1qGcdGCxKyxS5uKeKHO4QtBr5SCoiio5KkXXdVyKYxqOe+sE5NQt7razE8IhlyBjOXUkU2TKjIcy/DkRx14bk8PAOBTqyqwqlo83a4BJGQ4zdxRF/9eTWSNxu5/ljGlr9nOhydHsLfLjvnFeqyvzYNZq0Cf3TejYPaxpa+kcJWNjjqLRo61NRawSPxbJiPBUUcIFuS2//7y2fAGI/jEbz8iBH7xjivHQjMMCnRKvsFalSX9jroiooRy1C3O0tcKiwYGtRwqmSRji/nzi/UwqmVw+rlzr8vqwyIBhTqaYXHR/AIc7nVCJZMmvG9CUmJU8Vm7/znUh1vW12TkOHIIBctVlbFAmUnNN59hWMw4pibH3EhaqLvjjjvQ1NSEvXv3wmzmnER2ux233nor7rzzTmzfvn3K7RsaGvDDH/4Q27Ztw8qVK6HVJt6IvvrVryZ7SDkExOYN4/iAC3JpakK+ycwFsTkESH66uRlPfNQBAPjeFQuxu5Mr7UyXy4JcMRabK2g6zFoFPrW6YsrHsHMYO58cdvOOursvqp/9E6WRv/73GgBcEP0PXzsOAOgc9WJ1mibX7kAYFq0CVk8I3hCNPkf6m1ekkiKDCrs6uM/UuprpRcZumw872q0J/7ejbRQAEh11IlvtXVFpxu+3tgHgrn3to17ccW68icSCEgPOn1eAD06OIBBmELs6fnByBKEIkzBZnSvNQ25epJNLKVG9VssqzWCiF4kIw6YtC3Q6emzxz9FMXWLpYmmFiRfqDvY4RCjUkaJm8q+VmhCj+Yw6zenlqHvn+BCe2dkFAPjnF9ZjTY0FHVYvfKHp3Qljxfpsd9R1WH38NV89g4ZQCikp1MWFybECplYpw7kN+eiydgMAPm4dndC9LEZG3EFepAOASgEcdVcsLsWzO7nXSiPCTo4sy+Ld40NgAeTrFOix+WZ1fZkrRQYVL9IBQJdtZh3qU4VGIcPamjy818w11xl73gtFY7GeF+q2t9pyQt1pwpMftQNAwniUZVl8eGoU7kAEFRY1FDIJZJL4dZhmWUhSVCmVY3KSviofPHgwQaQDALPZjIceegirV6+edvunnnoKJpMJ+/btw759+xJ+R1FUTqgTOaZoY4MwzcIXoufcopnsHqtViG+QEOOs+nxeqDsx4EJTqQE0w4JJU52+jxiI6pTZkzU2JSm6nu/vtEMjl0KtkCIYEbeToK5Ai2UVJrj84bSKZyaNAh/874VY9IO3oj9n1zlTlafBikoT3IHIjBx1ZL5ahUWNHpsfR/qccAXCic0kRCZyL60w4Tc3LsOWE8P46NQI/vhhOwadAXz3ioX8Y75wfi0+ODnC/6xVSFGgV+LVQ/24PoXdDGN5SEoZhZ3f3iC6ldEKMxe1AAAnB93Ir8+AUDdH8SmVLCWC8WNdpcVEY5Ee588rQI/dl0SeX/z+qVZIsbjMiGCE5oWnBEfdaSDUNQ/GnXMxN7jLH0G+TgFXIIxQhHs9zBo5JBSFQJhGmGaxsNQAlWysUJfdjjrymNkZuN4SHHWh+PV/IsFidbWFF59uWlOVNVNJb4gc98kEyUBrKjNgSbkRoQgDucjuAQAnQsfOjlFPCK4MdaatytOgsUiHlmhjMKE7v4YiTIKreKqc23RyYWMB9nXZARbwhbKv23SORJ7f041fv3MKDn8YUgmF9XV5fM72znYrSk1qyCUUzm3IB5DYuC1Cs8iQXnxGkbQyMm/ePAwNDaGpKbHzzvDwMOrrp3e3dHR0JLvLHCIiNnCQUlzG0VyFuj5H/GYn5iy2dTV5UMgkCEUY7GizYtgVQJhJXzkWOYgVs9NwMgJhGrs6bPjw5AiWlBtx9bKyhN/PZGA+GX0OP3xhGr4wnbC6I0bKzBoc7HGAArC1eRhfPL8ubSuhDm8IMgmFCJM9HV9jlJnVONDjAMvOrHkKOWBdVWVBj60PDAvsbLPiBDEZFptQV6BX4uplZei2+fCfQ/0AgM4xK/Pra/Mwv1iP5kGus7Y3RCNg86E7xRMDf/QaY9IoErLAxAJ5bznQbcdZ9fmCHwM5GavIYDMJAJhXpINKLkEgzOBQryOjxzIRt55dg1vPTs5dkVD6KpPiSDSjbmk5J9ZbtPHr2IhIO1LOFJZl+c90iVHFd3MfcgUSui8DXGi8SibhcxqbB11QjVnITGgmEco+oc5PjHGuf3w7tnz9gikfP1kzibFNNoDEBmAnh9yw+UIwaxSid9W5iQWoEoGiCHRKGY71u0AzLCgAT3zYhjDN4rPrq6BXZX4cQZY5A5mLgikzq3mRrkivxPq66e9HgTCNYJiBXiWDzTc3V/gzO7vwxw/b+Z8NGRrjbVpdiR+9dgLeEH1axBGc6XRZfRhyB8CwgIQCOka8vFA36AqgJXrPuiG6SBzLqAOACMMAyL75abaR9Cz34Ycfxle/+lW88MIL6O3tRW9vL1544QV87Wtfw6OPPgqXy8V/TUUoFEJLSwsikZwinw3QDIt9XXZIJRTUCilodnzXwNnQTzjqyqYJkM8kaoUUa6KlRn0OP3RqbtDsTMONyh+i+Y46UglgELGAORkdo1587undeOrjDrx8oA9Aagx1LMtimMhRKTGK95wBgEqzGresq4RCJsHBXidf6pMOPKEIIgwLlUwiqjLGmaCUSbGiwgSFTMI3lZiKQWcAEoq7ZlwQ7YapU8rw8JvNaB/xYmm5EZ9eUwGNSEXuuy9qwIISPeRSCif63Qm/oygKn1gcbxwhpbg8kNZhT0qPweoJQi6lRNtVenGpEbG5+b5uR0aOIZa7plFIMy76yqQSLI5mIvXY/LBmuXAFJKaHkQtSsVD9Qr0K84p00KtkGHZl99874AzAHRWY5hfHs1XHNnWJoVfJ+HumboIFUYVUAo1CCrmUQjALg73dhDOqsXj6rFmdUgaNQgqKAnxRYVIlk0xYiVFiVPOuzl0dNqz68bsJpdliZZT4TJeahBHqKIriF/ZODLrx0BvN+OlbLfjL9k5B9j8dvjEidKauw0qZFCsruTFKIMLgqqWl026zs92KpT98G7X3v4ELf7Z1TvsfcgX4Jn5apTRjjjqKorCq2gKVXIITA+5cU4Es5+SQhxfpKAAv7O/lf0fem2JNQ2RjHHU50k/SQt0VV1yB48eP41Of+hSqqqpQVVWFT33qUzh69CiuvPJKmM1mmEymhNJYEp/Ph9tvvx0ajQZNTU3o7ubs6XfffTceeeSRuf01OdJCt9WHFT96B9c/vh3H+l3wR2+cqRDqyIw6ncgFqfPmxVfQDEo5qvM0sGgVYOcSuDYB5CoVzSDr3FEANxGJCQA7220pK1G1ekIJToICkYoMAPDszk588dl9eGF/H6QU14n16Y/bp99wlsRyewIRBgqZOAWqqdAoZCjUK1GVp4HdN/WkXCWXoipPCxYsNiwswit3nQW9SoaOaKnk0X4XvnxBfUYaEMwUrVyGYqMK+XoFgmNK16rytDCoZJBQAM1y2TyphGVZ+KJldRKRvkYNxVrEordODrmnfnCaWFhqwPxiPRaUGERxLpHlr7FObNlMYjMJKQr1StTma3nxxaCWY9gdhDsQSbmjVGgSyl6LDfz3FID6Qh1MqsRrtlohg0LGiXETlV0rZBL4QtxnOJSFGXUewhU3n3g9JiP297Is4AnF73XySbqbryEyHGvyNQnVG2KFnPiWCtjcJ0+rgF4lQ8wso1FIE96fTOINRviSXKVMMun7LQTK2DWqQAuXf+pF+lNDbmw5MQS5lAIFzh18aA6RBWQkiDdIw5TBhSOtUoY8rRLzi/Xoz7I85ByJyCRATZ4GDMtlYiYIcQyLhkIdykwqGKLmFClRxRRJU/RTjkSSVkbef//9Oe3w29/+Ng4dOoStW7fisssu4/9/w4YNeOCBB/Ctb31rTs+fI/WUm9V8yUAf0dnNOc2NaiaQK4hmkbuAzm0oANAMAHAFwrBHVxvsvnBKV/mKDSosrzDhQPSmnimL+1ygKArnNhTgxf298Idp7I02f4gxW22zy+bjW9RLKC7LR6yEIizea+GyxiwaOWy+MD44OQpfKAJNivMYXzrQixf39fE/a5XZJ9SVmtX4qHUUvXY/emx+mDUTi7CBMM1nuC0pN0KrlGFphRnfuKwR9zx/CBUWNR69bknGM8Wmo9ikwt5uO3psfvQ6/KgriHdIbhvxwkVMlEY8IWxtGU5Z99NAmOE/g8OuIA73OrCEEIHEQENh3GXT5/DDG4zMOWohGWzeEMwaOa5cWooVlRMvPArNskoT//3BHgcunF+YuYMhmO15SUYgyGUS2LwhDLuD0BDXryqLBg6fE/1OP4IRGsosXIQAwJe9AsCCksRzeyK3bFOpHh9+48JJn48sBc1GoY50Ss2fgaOOdM75Jun6SrK6xoJ/R938HaM+tI34cFbdbI9WGPqd8fF1qUm4+1fHqDdh0u0L0dgvkhxMdzCCcPTYMtVAIUaBXontbVb02v2wesMwqCcf9/9lRyefkwgAXTY//vhRO35304pZ7XuIEOokFJddmykqzGq8cWQAfQ4/umw+VOalvztxjtTDsiy2RhuXyaUUOkZ96LX7+eY7w64ATkXvTYZotl8S+wAAtZpJREFUGbycKH2lc0KdICQ96j3//PPntMOXX34Zzz//PNatW5cwsGtqakJbW9ucnjtHepBEgyRfOdiPEM1gfrEOWoV80pKNmRKhGb7ERaPIXLvxmRJzicVW+JdVGKGQSdFt9aZUqJNIKFi0CqyuNkMulWR8cDJbzm/khDqA61qZCkPKwW47n8NmUMlF4XKZjBvXVOCx91th84Zg84VRbFRCJZNiW+soLllYPP0TJMHeTjs+bh3lf061ECgEjUV6LK80QSGVoN/hn1Q46rH5sLbGggjDYlFp3IlxzbIy+EI0rllWJqigM1sWlHCr0XKpBL12X4JQ5w/RWFNtxskhD3GNlOE/h/rH5T3OBi8RAj3gCqDT6hOdUGciFm5YFtjfbY8ulghDl9XLT7RuXleJ9XXTdyNON2JtKPHSgT488J9jqLBocM+GediwsGhG241dsFHJpfAEIwiE48JTVZ4Wh3qdYFmu5Le+UIdspIUQ6hqL9QiEafx2yym8fXxo3GOlEgrziqZ2mSUIdVlYfqaQSfjmCQtKpnfUkeLtVF1fY5Ad1k1qeVpiSlKNjHCLrRPwelOTr0WX1YtQ1NFXX6CFXiT3ULLqJtPHRJoJdndY8bv3T6F12AMJReG5O9fjN1tO4o3DA6BZFuEIA41CikCYhoTiyrHbhj043u/CwtLpz/exDLg4EVcqobCuNi+jY19yrPn/3juFYVcwpY2ucgjDnk4bVlSaEWFY2DxBGDVyyCQSDDj9KDdrEprbxKIpyJzPcBbed7KRWV31AoEADh8+jOHhYTBM4ht11VVXTbntyMgICgvHrwJ7vV5RT7rPdC5oLMArB7nw8+ZBTmFfTQT2zgarN8QP1H0hOmGQIkZIl1iEYXGwhys96rT6sCyFjguGYbGtbRSBMJO1kxIAOLc+HxTFTcY+PDmSkk6kbx8f4ld+Z95ZMDNoFDLceV4tHnmTc2EOOjn36B8/bE+5UGcb0xFRrNlsU1FsVOFANItMLZfiskUlE7aM77L6+Ky/s4kGAxRF4TNrq4Q74DlSoFdhf/TvvWxRMc6fF//d3i4b/1oYVDK4AhGMeIL44avHUiLU+cfk/hQbhCuzmiljS/73dNgEFerIUiOxZGGWm9XI0ypg9YZwqNeRMoflXOm1++EKRHCs3wVmlnZpiqKglEngCSY2U6rOizuLuqzerL0nNg9wQp1MQqE2XweHL4Tfb01cnI7dL2mGnXYSpCDGS8Esc9QxDMtXJEiomd3LNYQg5wvHFxpUEzSTALiO6yYNt6Ds8Ifxn0P9+MpFDXM88vQS++zIJFSC0JhuJBKKF+kAoHXEi9YRLwJhOuMLxWSOtTHDFRRkdcs3XzyS8Lsuqxe/e3+82YQCcH5jIbY0DwMA3jo2gOp8TVKLqSzLYig6fqQZFgMZLjdtLNLjWDRLeHeHHTSDnFCXhexqt2F7mxUAcMmCQrxzgjtHu6w+lJs1Cc7lmKOZLI3NOeqEIWmhbvPmzbjlllswOjo67ncURYGmp86iWrVqFV5//XXcfffd/DYA8OSTT2L9+vXJHk4OgSAnSBqFFI1FerjmmFE36gmCQjxQOhtcQOfNy+ddYqUmFUqNamxrHcU1y+c+eY5h94XQFF1hri3IzkkJAJi1CiwpM+JQrxPNg26sTIGYSU5eSkTcfCTGZ9dV4Y8ftvNCWoFegV67P+UTbKuH7IJqRp4Iu3hOx5JyI75xWSNePtCHI31OrPjRO5BSXC7MknIT38lv0BnAknIjVDIpGrJ00g5w79O5Dfl8h+Tboh0z3zgyAClFocKiRr5Wic+sq8R9/zoMuYSC1RvGvf88iJ/dsHROHQw9wTCMahmcfm4gJlahbmmFEYeiCyK7O9PXiGUiyOwdsTQ6oigKFy8ohNMfxtIKE0I0I4pSULI7brl55iV7Y4f5MVGAFJ6qiLKqTqv4c8YmIhRh0DbCLXDWF+oS3GQkFg0nwsqlFC5onFqUJoW6bCt9JUs8dUrZjO6FBpUca2ssCNNMwgRxMiGJoii89bXz8INXjuJInxMOXxhOXzjjYs9U+KJOQaEX2uYX63nHp0omQW2BDmqFFEPOAKryM1vWaPPG43FSndWaLDV5GiwsMeD4ACdSqeUSMCz3ft385E5UmtWw+ULI0yohoYCaAi0oUNAopCjQKzHiDuI3W1rROuLFZ9ZWYv0MnXE2byjBNZvpc7iSWDzJ0yog8mbKOSbB7gtjeaUJcqkE84r0GPGEIJdK+EY/5D0qdk0qMamxqsoMhp1+MSlHakjawnT33Xfjk5/8JAYGBsAwTMLXdCIdAPzkJz/B/fffjy996UuIRCL4zW9+g0svvRR/+tOf8NBDD83qj8iRfvJ1Siwp5zrO+UI0DvQ4sOXE4JwaKTSVchPzGJnMXJgp5zYUoNysxqfXVMDuCWJvlx072kfBpHBl4d0TQ9jX7cC+bkdCiVo2cv68+GTDMcdMw0CI5l1GAETbrZJEq5Th84QbbMQdwoAzMM4BN1dGicHs3i47lFlYLl1u1uDLF9TD5g3B6g3B5g1hxBNCr92P4wPx4PzWEQ8O9zqxu9OGEgEDt1NNbYEO3TYf9nTase3UKOjooOdgjwN7u7jsugUlBly/ohy3rKvic3r+vb8Pn3lyZ4LrKFkcvggv0gFAoQhjB/QqGY72xQP4D3Q7BBUkSCeHmM6zn96wFH/47Cp8+YJ6UYh0QLw7LgCUW2YuapLjBwqAMuqOIs/tKmJS2G31zuEoM0e3zYvV1WbML9ajqZQbR3mDifd2CQXUFnCiSJhmpy1Fl0goXqzLNqGOvI+bZ7iopFPJsKvDhv3djoT752SOOgAoMqhg1irQ5whg2B3Eb7ecSulYLdXExntCRzc0EaWYgQiD4wMu7OuywyaCcmEyF9uizex9yqCW8yIdAPjDDKQSCnZfGEPuELrtflzWVIIPvnEhPrOuCmfV5eOhaxfjrWNDGHXHx2inhty46Yld+OOHM2suRrq7gcw3mCOvyVZvCHs67fAG595cMIewHO1z4kC3A7s7bCi3aHCwx4E9nTYMRTus+4j5pyZ6TXL4wtjbZcf+bkeumYRAJC3UDQ0N4d5770VR0cwySMZyzjnn4ODBg4hEIli8eDHefvttFBYWYseOHVi5cuWsnjOHMJCii0Yhhc0XTrhpzQYyi0YjkkyMqbBoFfjNjcsRDDOIsEClRQ27L4ydHdaU7eP9aAMCAKLtyDhTziOFOiLTcDb67r8P9EGtiF+yCvXimTxPxS3rq1Cbr0WpUQUJxU0sulLcwXCs8Jfpgdxc+PG1i6CScee9VMKJJP8mGmX4wxGUmVSotGhE3fV3Jvzik0uwptoCo0aOq363DQAnRhTquY5qX7qgFhRF4a6L6hImU1KKwi/ebpn1QgnZCEgtl2a8vGkiKIpKOI+DEQZH+oTrdDqQEOwuDkedWOmxc9czo1rOh04nC0UBqqjwGAyfXo669hEvdrTb0DzoRkVUyPSPEdoL9Srk6+LXM7LR1mTEcuqyLaOO/BxXzbDpD+ki8gUjKNIrUTdNllqPzYfWYQ8qLRrolTL8a18Pro5eZ8WIXCpBsV6JiiRcqamAHKfpiCxAxxyrZlIBWUo/k6Yj6WRllRm/3bSM/1lCAU98dhU2f+1cfG59Fa5fUYbv/NcCAFxcxx3n1uKJj9oRohmwAN8B9uQQ56796Vst2NU+/dyBzOkzqeUJ2byZoNISvybrVTKoFVJ0WXPdX7ONXrsPZSYVzqqzJOSsxxr9RGgWZSYVGot1UEfvNQqimUTOUScMSQt1N9xwA7Zu3TqnndbV1eGJJ57A7t27cfz4cTz77LNYvHjxnJ4zR/ohSzF8IRpquRRtw3Nb4Y4wDEwaOZQyCdRTrIyKib2dNvz7QB/CNItumx86hSxhUjdX7IToUqDLbiFiWYUJehU3kHbOcdA34PTzDpLzGvKxtMI45+MTAq1ShiuXlqDfGQDDcmGs7SOpc4aEaYYXQaUSClIJBaNa/KL3ZKyvyUcgwg3OGQZw+kIIhhkc6XOgZcCFPnsAfY4Aum0+mKboupYNrKrOw4gnCJsnCJZlwbIsghEG/jCN1mEPn41WZODKDQDOebStzYonPurAh6fGR1DMBCshAqQiOzJdGFUyKGXxgeEeActf+6MuBori8hNzTEyEZnjHR7K5oaTOTIETCbRyCZQyCXqsXrSNeJCvU/Bu+64sddT1EK6gmAjjC9IwquLX6QjDjBHqpnczGVQy6JXShMYS2QDZwTJ/hmMcvVIGmYQ7RwIRBkPuINpGvNAqJ79+KWUS7Om0o9vmQyBMwx+iwTDMnCpB0kmv3Y9BdxD7u+2C7rehUM93z2VYTlCyaBWwzeAcTDcGtRwmjRwSistyzSQmjQIXEY1yGBY4qz4P84sNqLBosKDEkOAQtXlD+PsuriGRlKLAMCwqLRpcsaQEAJfx9ZV/HMCwO9ExNxbSUecMhKHIsJOadNS5AxGY1PKEcvYc4icQpqFRyGD1hOAPMYldtaNOuiEXN9YedAYhjbq35UTkQk6oE4akZ3OPPfYYPvnJT+Kjjz7C4sWLIZcn3iS/+tWvTvscNE3jpZdewokTJwAACxcuxNVXXw2ZLHsnl2cCS8tNfLA5ALgCEbx0oBdXLSud9XPafWFeZMiGTo0AcPWyMjyyuZmfZAy5g2ido2BJYifKDfL12S1EyKQSbFpVAYYFPjo1jFPR14kdl040PX/b1Q27L4y6Ai2e/NzqrJqc3LyuGo9v5VZWvUEaL+zrwQ0pCt8lz5dYdo8uSz5LE2HUyHH4gUuhV8rw63dP4rfvtaJl2I0r/x/nhKghMnPUWVAuPx2NRXp0jHpxfMCNEXcQuzps8IVoLCwxJDTY+cZl8/HWsSEMEqvrj77ZjHPr8yFJMiSmYzTuTBJzCblZq0AH4aLa02HDF8+vE2TfsYy6Qr0yYXAqBvZ12fD28SHsbLfhuc+vy+jnYMAZ4K87yTqByPsARVGQyyTwhhkADM792VYUG1TYef/FqMrT4viAC712PyI0I/rGU2MhM/wqog4ybygCZ3Qs9a3LGvGZdVV4/fAAzp9XgHydMsHZNBXuII0R9/TuOzFxtD9eiVGdP7NzhnPYchl+HqLr61QLDXk6Jd8lXhntKHxswA2bN4Q8kS2CRojyZaGvN1IJhYYiHY72ueAP06DAiUxD0whIQtDvCPBzBIMq8+ManVKGs+vzsK2Vc8KNekIo0CsTGl7F+NO2Dt45u2l1Bd45MYQumw8SCfjnsHuD+OGrx/HzTy6d1Nl++aJinBhw4m+7egA2scFOJsjTKjgnK8UJdQPOANpHPMCC2VXa5RAepz+M1mhuqkUrTxhDxLpqxxy15DVWTnYbj4hzweN0I+mr3j/+8Q+8/fbbUKlU2Lp1a0IQJkVR0wp1x44dw1VXXYXBwUE0NnL5ZI8++igKCgrw6quvYtGiRckeUg6BkEklOHdeAfZ22uANRFBmVs+pZOr/PmjDno64Q0KbBc0kAM5dcVZd/EZdX6CdU17UWNyBeC6ARZPdQh0A3LK+Gg+8eowX6WbDySE35hXq4AlGUG7WZJVIBwAFeiWuWV6Kf+7lGpE4fWEc73dhYQpKGKwTrHrrpnAZZAOx8rn6Qj2q8zQYcPgRirCQSCi+E5VcSmXdeTARJUYV5hXqYNYq8OzOTqysMsMdCKOuILHMR6uUYWGJHsUGBVpHfPAEIzg+4MKrh/uT7gTrJvJkxNyURU+UUf70+iW4cP74jvHpIBiJix9i6fhK8sK+Xvxjdw8ArskGGUshNAn5dHNx1FGJDaXkEgomjRwsy+LeS+aBBTdBzcY4iF47KdRxrxGZUadVyaFXyXHjmkrcuKZyxs8biwvxBbMryzZWgSChgMbimd8DDWo5rGPy6aYS6qQSCkUGFfocfoRpBo1FOuhUcnTbfKIT6oYIsVWZgfvavCI9jva5wLJAkUGJEqMKETrzE/GYWEBRgEEkDvq6Ah0//t/dYcV/LRlvVnAFwvjz9k4AXKfMr1xUjy6bF8UGFQxqGb65cT6+6z+CYITFa4cHAAC/vXH5hItunOAswcoqE+y+MGryM9tEi6IorKox4/1mLqanqVQPTyC7rkFnOuScVauUQ6uQYn6xHgqZBGq5FAzDoq5Ah2CERgnRbEwuyZW+Ck3Sd4PvfOc7ePDBB+F0OtHZ2YmOjg7+q719+mDMO+64A01NTejt7cX+/fuxf/9+9PT0YMmSJbjzzjtn9UfkEI77L5+PT66sgD/CoGXIgy0nhmfdovml/X04Nezhfxa609VcuIaYGLeOeLG7I3UlWZ4xA/hsx6iRY1trYonen7d14smPZhakCwAfnRrFzg4bjva7cMnC7Fy1++9zavjvTwy68ZM3jqfkeSdqTHE6OM0AoNKiQceoD4EICwZAhGFhj66uZ0OX6JmQp1Pg5LAHuzps+L8POvDRqVG4AhH84lNLxz32qVtXo23Ul3CN+MXbJ5MOkyebNNRkeHV+KshJ+Joai2CZhEPO+KRZLB1fSc6pjwtzH58ameKR6afHPt4tNlPGlr6SY4Aww6J5kHOZblhYhEsWFqGhSJ+0e1QM9Ng4YUohlaAomq1KZtTNtpFWbDtfmBZtOedYRt1BPgNJKqGwsWnm5YyGMdmr5zUUTHsfiDWCCUbHrPu67OgUYQl1H/E5ykRmaGNRfGFo0BXEgR4njvULlwk6GY5ooyy9UjanTuep5LrlZTi3IR8A8PLB/gkf89qhfl6Mv25FGUpNalzYWIgjfU5sa7Xi1LAHD127GN1Rt+1rhwfw6FvNEz4Xw7D4x54e7OtyQEpRWFye+diXaiI79Fi/G/uJBjE5xA+ZD6+SS6CSS9E86MbhXif6HD64gxHs67LjaJ8LgUncvjmhThiSFupCoRA2bdoEiWR2Kz4HDx7Eww8/DLPZzP+f2WzGQw89hAMHDszqOXMIh0Etx9PbOkAzLCQU1y1qtvlsZAkXkB3NJGJctqiYX/WUSSjoVbKUDJRZluUHsUB2dMKdDqNanjAY18ileGZnF17c15uwqvPaoX5s+sMO3PjHHfj1uycTnsPpC2FNtQXLKowoNWdnXtT8YgOfMwZwgcKDzrmXlrj8YayqMvPd7xRSyWnhNAOA6nwtFhTroYjmlJnUMijlEqypseC86EA52yEbJpRb1DirLg8XNU7sHKMoCpcvKsb6WgtfBtRt82FL81BS+yRdmEsrTMkftEDML9ZjfW0elpQb8fGpUfzu/VZsOZHc3zobKAq4amkpVlebU+J6TTVn1+chZiz7aJY5haliLo66BChqnOiypMzIT2SzFZZleTGzzKzmhUYvUb4520WH2HYsmzjxEjNvHIkLG+YkKwZWVppQZVFDq5CizKRCnm767UnH8OIyA9ZUmzHiznz22lgGiPFwJhba5hWNb9RANgDLFKPeEKQUBZphRSNGNxYbcHLIDQB45/gQ9nUlLtRHaAb/771WlBhVWFZh4uMaagu0WF1txppqM6zeEBaXm/DYTcsR0x//8EE73pvgXj7g8mNJmRFrayxYU2NJ7x83Q5ZXxseyZSbVaTPmPFMIRuL3H5VcyndcB7h7iZP47JuI6zRZ+poT6oQh6U/W5z73OTz//POz3uG8efMwNDT+QjQ8PIz6+vpZP28OYdCr5LhmOecmY1jgQI8D3bPoxBYI0+OaC6hF2HlwMvQqOe/sijAsdrbbeKfPXPCF6ASH4unijCLz2HxhGgPOAE4MuhMmeTvardjVYcPOdhv+trM7YftDvU7s7rThYI8Tn/7jLlzyyw8EO/ZUctdF8WvcsDuIn26eeAU1GfqdAeztsvMTtdPlnAE4ESvMsHwWhsMfgTsQwe6OeAv5bMdIDILaR7zY3mbFSkLQHcuiMiN2tNvgCkSgUUixtNyI37/fltQ+yVzD+sLMdtKbCplEgh3tVhzudeK7rxzFz95qwb/3902/4RypsGjw208vx7++eBbuulB84xKTRoElZZyronnQjWFX5rKkRj1BLC4zYG2NBZVJujPHTrvHLkwd7nPy5WPZis0b4hffSCHTH4q7YieqJpiJKEFu5wtlR+nZni4H//1ZdXlJbRuiGXTZ/PCGaPQ5AjPKeS0lGsEc6XNhd6cdJwZcU2yRGcjOnjPNJ0wlC0oMuHh+Ib50QR1f3jbXBmBzhWFYeIM06GiTJUokZe9qhRRf2zCP//mRN5sTPq/vNQ9jwMkF8edpFagt4EpVK8wa7Om0Y3enHf85yN3HLl5QhB9dw0U+rau14L5/HR5nfvjr9i7s7bJjV4eNb6iWaVZUmvjv+xwBbG0ZTtrZnyNzJDrqpHzHdQAIRGg4/PExItmcjnTUhURQGn8mkLRQR9M0fvrTn+L888/H3XffjXvvvTfhazoefvhhfPWrX8ULL7yA3t5e9Pb24oUXXsDXvvY1PProo3C5XPzXdHz44Ye48sorUVpaCoqi8PLLLyf8nqKoCb9+9rOfTfqcDzzwwLjHz58/f9pjOZO4eW0V/71SJsEbRwaSfo5hYpJtUMlw8fxC0djaZ8q1y+PlrxqFFF2jcy+nICfQRrUcutOkvO/s+ny+gy0FoMKsRmORHq8e4lbXWZbFrnYrVHIKUopb7emMvp5vHRtEv8OPEkO87E1s4e4z5fyGAnxmbSW00YH4Kwf7cLjHMafnHCU6eFbnabBMxA6p2fDNjfNx36XzsGF+IeoLtJBJKJQaVVhZPbmYlU2srjbj/25eiSuXlKChUIdLFxZhxRRC3bkNBbh6aSmKDUoEwjQO9TpxpM+JthHPpNuQ2LwhBKMDao1CivrCzObdTEVdoQ4rKk2oK9DyDuad7VbROCsyybkNRPlra+Zcdcf6XVEBxJZ8MwnifaQAFBpUMKplkEspaBRSFBuU+PjUKIJhGod6HHjlYB9/z8gWnP4wavO1UEglKCdeH5s3hPpCLdbVxku6gxEaG3/1IVb+6B3c/NSuaZ+7tkCLxWVG1BfqMi6qzBS9Kj4hXEZM9mfCghIDLEQ5vHEGmWVkx+bqPA0WlOjh8InPUUe66zNRbl9sVOGpW1fjm5fNx4aFRWgqNcw61iZVuALxc5p0/IiBT64sR20BV/65p9OO95qH+d89uyu+0Hzz+vh8qcKiwa3rq1Bi5HITd7RxOXefWVuFT60qx852G2zeEB55M76A6wlG8IcPuZgYnVKGxmJxLKyVmdT8dUsmobCkzIhPP7Ezw0eVY6aQ1UwqmSSh3D4QpjHkCqDSosaSciMsWgVODbkRoRkopERGXU6YFYSkVYAjR45g+fLlAICjR48m/G4mqx1XXHEFAOBTn/oU//jYYO3KK6/kf6YoCjQ9dUC/1+vF0qVL8d///d+47rrrxv1+YCBRQHrzzTdx++234/rrr5/yeZuamvDuu+/yP+e60SaysNSA5ZUmHOh2IBhh8O6JITx49aKkhDay7NUViKA/BSWAQnPevAIU6BUYcXMr5icGXVg+xQR7Jti98YGJ0x+GJgMrq+lAKqHwyVXl+P3WNrAAeqJOOpmUwt0X1WPQFUCXzYdwdIXGE4ygy+ZFVZ4GHSNetA57EtwXhQZxBUHPFImEwh3n1uLlA9xqKs0CX/rbfrx819mzzt8aJUKoO62+rOuIOB2XNBXhkqYiHOxx4JrfcZ1f+50BaLLIgTsVJUY1Soxq9Np98IdprKmxoMgweXl3Tb4WDLgcIfKK+9qhAfzPhoZp9/fu8bijXey5oGUmNZ99U2ZSoc8RgNUbQuuwBw0TlGqdSZzTkI/H3m8FAHx8ahTXrUhNF+lkYFkWHVGBuNSYfHMp8ppOUQDDsnD6OWdYhKbhC9GQUkCfw49P/mEHQhEGDYU6XLl09p3mhaa2QIf37rsADMPyAjnAOapbh71oHfbynZeVMim6bdx1YCaO4UCYwZE+LkfMnS1h7sSbvqY6OUddvk4JW0JJ1vQZvmQzmBFPEN4gDX+YRjBCi8adBCQ2k5Bn+Lis3hCO9bugkUvg9oehV2cmK7nPFneWaeTimofJpBJ8Y2MjvvjsfgDAj187gbPq8jDsDuLDk1xuaIVFjfOJBRWVXIqGYj3+vKMLAPDXHZ1YH3WV3v+JBXjn+BDsvjBeOdiPz66rwqpqS4KA6wlGUCSSsS9FUVhRacJbx4YQYVgc7HVCr5QiFKGhENHnKsfEkPcipVya0MAmEGbQ5/Cj1+5Ht82Pw71ObDs1Cn+YSYhqCRMaDc2wkEooRGgG/jCd0Agsx9xI+sr3/vvvz2mHc92e5PLLL8fll18+6e+LixNDal955RVceOGFqK0d30abRCaTjds2RyK3rK/CgegEatAVRMeoJ6kSKtLmr5BSqM0Xb6D5ZMilEpzXUIAXo6VYT2/rwE2E23A2WL1B6JRSeKL5NadLYD7Alb/+fitXoqdTyhCK0DjW78LeLjtu/ONOqGQUyvI0cAcjsHlD6LL6MFQUxCObm6GQUigzqdERLbMuFChUPh3U5Gvx1Ysb8OjmZjAsV87z3J5u3H3R9CLLRDx4dRPuurAOF/ycKwc+HXINJ2J+sR7v3nseXtzfi0CISao7YjZwx7m1uOPcqe9NMeYX67G9VZHQAfHVw/346sX10y6YvXk0voAlxkYJJOVmNaosGgy4Agl/1452a1qFuthioZhZUWmGRiGFL0Tjo9bRjByzzRuCKyoQxdwlSZHQTIJKuHZJJRSM0S6fvXY/qiwanBr2oMvmA8OwWddUQiKhEmIJmgfdUMkkqCnQwqKNO8Py9Qr02Py8U7rP4YdcSuHFfX1YWmHEWXXxbE5SqHJkiaPO6Q9DJZNArZBCr0pufHNWXR623Hse/rm3F2GagWUGGXclhKOuNl+LAWcAnaM+bGsdxUXzxdOYilxwy/T4ZkmZEaeG3LD7wui2+9Ckzkzzgm6iwYYxQ2LhVGxsKsayChMCYRr9Dj/ufGYfGgiH+k1rqsZdpz6xqAQfnxrFluZhvHl0EP4QDbVCCpNGgXsvbcT3XuYMMA+8egyv3HVOglCnU8pQJaLmT8srzXjrGLfwp5RJ4AnRsHpDouyUniORQDgCuZSCSiaBRiGFREJBIZMgFGEQCNP4285ukIba9lFvQryTTErBF4qLfZ/47Uc4OegGC+DTayrw8HVLBPxrTm9mrQK0traira0N5513HtRq9YwHieeff/5sdzknhoaG8Prrr+Mvf/nLtI89deoUSktLoVKpsH79ejz88MOorJx8UhgMBhEMxm+yMynbzXYuX1SCb//7CF/nvrfTPmuhLkSzUGapO+aW9dW8UJeKgOI+h58X6QBAexoJdbUFOqysMmN/lx0yCQVGQkGrkOHhN47DqJbDH4rApFHA6gmiNl8LuzeE3R1WLCo1oNPqTQgxLdRnZ0OJGIvLjFDLJQjRLKyeIH7x9kmsqrLwq6vJoFHIUEwMjE4ncZdEJZeivlCPPK0S0EKwDqBiJF+nAMOyaCjSIRxh0Gn1oXXYg5YhN+YXT978wB+isT1abiOhgHlF4i17BQCtUoYIw6BQr0SeVsFnWu5st+KW9dVp2+8V/+9j2L0hVOdr8ffPr0vbfuaCQibButo8vNc8jBF3cNr3Ph10EHEPNfnJC3UsodRRVOK1Sxad4JYYlfj7rm6+8UAowmDIHcjqyWCEZlCgV3IuhGjESox8nRI9Nj8cvjDCNIM3Dvfjl++chD/MIE+rwNv3nIe8aIxEgV6JEqMKKrlElOWcE+EPMwhEuC9tkg3E9Co59Co5f+2fiVhblafBVy6sR7FRhWFXAM/s7EJjsS7h3BUDZPf2qrzMndsMwwJgwbBAY5EOfXY/mkozI9T1ERnGOpX45ggUReGPt6zEjX/cCVcggo9OjfLlrAqpBJ9aNd7lbNYqoFZIoZRRUMlkuP+lI3jgyiYYNXLctKYSf9vZheZBN472ufDCvl4wRDyAP0SjzCQeoW4F0VAi5tBy+MJZfW0+UwiEGYRpFmGa5qOEKi0ahCIMDGoZ9hFZohsWFCIQobGv08F3K4/QLFqG4lqHNxAGCy7CQiLyRc5sI+kaKavViosvvhjz5s3DJz7xCb689Pbbb8fXv/71GT1HIBDA7t278dprr+E///lPwle6+Mtf/gK9Xj9hiSzJ2rVr8ec//xmbN2/G448/jo6ODpx77rlwu92TbvPwww/DaDTyXxUVFak+fNGhkktxFVF+8uzOzqS2HxoTfm2aQdaIGFlSbuQtw05/GO0zzImajB5bYojs6dQYAAA+f24tSkwqOPxhnN9YiFvOqoZKLsP8Yj2+dEE9fnfTMriDNNpGvDjS58TP3m7B0X4XKIrCHefU8M+TraWvMSrzNPCGuBtlbNXqV++enHX2ljc4dTD56UQyzrPTleo8Ley+ME4NeRLKZF87NHVe6EenRvgBNcPOLOMp05Sa1Oi1+3Go18k7cHa229KaU9dt86HfGUCfY3YdzYXinPq4u+rjDHR/Narl+Nz6KpzbkI+l5aakt2cTHHWJ1y6VXIJt37oIA84gNh8bRKc1Lqx0jmZ3J1inP4x9XXb0OfzjFhzydfGfbd4Qbj+nFiuruE6PVm8IX//XoaiYAli0Cgw4A+gY9Yn+XAW4hhf9xHHO9l6VzD3ApFHgvo2NuHldFe6+qB7uQAQtgx68sC/9TWmSYcOCuLuvPENizKEeB5p+8Bae/LgTTn8YLUMetI1kTtAccMXPFYtGnGO+Qr0KP71+CfRR0TkS/Wx+YnExL6iP5RefXIrPra+BKxDBSwf6sL/HDoBzET9wVROUMgprayz43futONLr5LcrNihF1V11cZmRX1CJIYZOwTmmJxBJbCYBAO5AGN02H5oH3Hw+pZQC/vjZlXj29nX44BsXJDQ623JimH+cO5onyQJ8XEmO1JD0J/6ee+6BXC5Hd3c3NJr4zWTTpk3YvHnztNtv3rwZlZWVWLduHa666ipcc801/Ne1116b7OHMmKeffhqf+cxnoFJN7cS5/PLL8clPfhJLlizBxo0b8cYbb8DhcOCf//znpNt8+9vfhtPp5L96enpSffiiZNOquCBp9SZ3cR4k8leWVRgxvyQ784YoisLisvhq4++imUGzpYew+i8qNYjqppwK/j979x3eRmH+Afx72nva8t4riZM4eyckkBDC3qO0hF0oFFraH93QQQe0ZRRoyyZQ9iqUFSBk773jvbetvdf9/pB8luKd2JZsv5/n8fPY1ul0lk/S3XvvWF6UyPWh+/J4C7z+AJQSAfeVopZhapoKc7K0sLh8yEtUYGGuHudNMqDd3n3FOdalIWcrRS3FzEw1MjRSCMPNWfdUG7lsp6FyePyYk6XF7Cwtss8gs4WMLTmJcpSkq5Gpk8Lk8KDrWPnTI039BrC+iuhPl6WXDnlKZywUJalQkqHG4nw9poYzO4wOL8rbzu6iSF9sbh/X7yuybC4erZhkwNqFWXjxpjmDmoA53AqSlPjdZVPx+m3zcdUZPP7pPer0ChG6LsYL+LxwFq0cmTppVECrtjO+sqH6c+dr+3DX6/vx+Fel3O8iy1S1p5VvRgbq2m0e8HgMHr+uBAmK0HKbStvx8vZqAECWTo6paSrMzdZGXayJV6dabDjVErrozQBRfZFGg1DAx/xcHWZnaaCXC+NqKI2Az2Bejg6TkpVI18XmfTldK+UyZmQiPubn6LigcCxEVqmkauM3S2tOtg5v3bkAWpkQC3P1WDM1Gd9b2HcbHIZhMCVVhTSNBNl6WVQwbkGuHmumpmB3tRF1RifWH2/hbsuOsxZBUhEfk1NUEPIZKMUCzMxQw+QYuLcmiT1P5DCJ8KCWrgoue8RnybQ0DXi80O0GpQQ/X9M9XLPD7sUHBxqwuawdk1PV3LmMdYy0YRgrhvwp+dVXX+HRRx9Fenr0QVlBQQFqa2sHvP8Pf/hDXHPNNWhubkYwGIz6Gmh4xJnaunUrSktLcfvttw/5vhqNBoWFhaio6DsAIxaLoVKpor4mghmZWu4Esdnihs8/+P9fSboaicrQgeehegsW5g695C9efGd+d1n0Nyfbzurgr97YHairM47trIHeSIR83Lo4lBnHsqETlhfXzsWLa+fi9qW54PEYuH1B7Ks1YX+tCZtK27GzqhN3L89He0QPl8QxXvrK5zGYlKxCvdnFBS4B4PGvh5ZV5/D48dQ35XhnXz33nEVOcyLjk0EpgUoqRJ3RhbI2B3eVs6bTieNNvbde8AeC2HCyO1BX2+mKCgrEK7mEj8P1Fmyv6EReYnep7q6qMwtqD6Q5oidQapyX8OQkyFGcqsa6nTVY/rdNY/q1z4CBVibksuy6MlPe+/4i1BldUft1WWvfFQ7xJBhksam0HV8eb+F6OQGImtCqOq33VldADuie6G1QSvD4tTMAhErWO+xeODx+ZOpkONZoxd4aEw5ElCrFq5qIclMRnxeTPpB8Hg/7a83YVtEZ1eMz1g43WLCn2ohTLTYkxej4Rq8QY1lBAmZkaOD0BrC72ojjzZaB7zhCGiIuXMf7RZOpaWp8cu8SvHbbPPzru7O5LNi+rJqShBarBzWdTryxuxYvbq3ibrt/ZSGXqRa5jz5+3cyR2fiz8PxNs/HoVdNh8/hxsN7CDYoj8S3yWKFrqE7X8MLI2LxUFB0mOr2v6N/Wl+KvX57Criojdy4zVtowjBVDDtQ5HI6oTLouRqMRYvHAB/2tra144IEHkJQ0ek1cX3rpJcyePRslJSVDvq/dbkdlZSVSUlJGYMvGNj6PiepL89rOgQO1XW5fmovpaRrMztJiYZ4eqXHe1Lw/S/ITuKbOFpcPB+vNZ7yuyEDdUPu3jBU3LsjkygQ+2N+IttPKoC+cmoxklQQKsQDJKjHmZmuRqZNFBerGekYdAExOUSFTJ0WKSswdhO6vNWHLEErYmi1uPPFNGZ7dWMn9bjCT8MjYd95kA7L1MqRrpVyplEEpxieHey/p2lHZCQEv+iM/Hht0ny5yGzN13Z8TO88w+3QgkaV5Y+FzaW+NEVvLO2B2hsopx5LTr0mkaWRYOdmAK2el4a5z8gBEB7Jk4QEEpS1jI1DXanPDGwiVGGVE7Ls7KjowI0ODpQUJWJATfUJ/ekZdl2WFiVg1xQA+j8G/N1diZ2Un1DIhzilMxJwsLcZCW6DIQN3k1NG7oO0LBFFvdGJPtRFTUhSYl6PD9DQ16jrj52KoJXxyyzA9T4ZHE4/H4FDEMWwsSxkjM3OKxsCU7wydjOv3NRAhn4cHVhXishmpkIkEeHN3HXdbToI8KgEACGWgxuOFtRS1FLOztFhWkID5Obox9xk0UXX1lwe6M+p662+tlUdnfCtEAizI1XHHZW02D1qsbmRopUiQizArU4PCZCW8Q0jcIf0bcqBu6dKleO2117ifGYZBMBjEY489hhUrVgx4/6uvvhqbNm0a6sP2ym6349ChQzh06BAAoLq6GocOHUJdXfcbntVqxXvvvddnNt15552HZ555hvv5pz/9KTZv3oyamhrs2LEDV1xxBfh8Pm644YZh2ebxZn5Odybc67tqB50NFAwGsbOqE/trTWixuMEfYxPcIhlUkqjyld//78QZZdXZ3L6oqTrjtdeYSiLEdxaEDkK8gSBeCpfxdJmSqkaL1Q2r248Ouxeri5MhFfHRZusO6I2HQQKJCjHqjC40Wz2YnaUBAMzK1GBbefug19GVcRFprPZ7JEMzK1OLmk4nGkwulLZasawgAW02D/6zqy6qMXmXd/fVo93ugUbafTA2FgJ1kfuzQsLHlBQVrpmdHtUjdTg1mbvfZ1I08Z3FAQBLCrr71G0dxT51wWBoEM7ZZJCz0WNfIRML8OLauXj82hlcoI7PY6AKBy48/iBsbj8O1JnhCwR7W2Vciew5m64NBdNZlsXhBgsO1ZuxtbwD0zI0UfeJPBl/a28dzn9iM378ziG0Wt1YMzWFy1roGoZgdnqxr9aEnVWdcHnju/y1KiJQZxnFANDfvyrD0sc24trndsLmDmBPtRFHGi2o7hiZ8vmhajA5uf+nPDyBMVZmnLY/xjI7JrLdSWFyfA8+OhP3rMhHq9WN6g4HqjocUc/1vSvyopZNUIjj9jwpSy9Hi9WN3dVGbCprR2AMvDdPdB5/ZOlr6FxTKuwZEjq9j7FSKsSuKmNUVniH3Qu9XAytXIQDdWYcrDNz0+DJ2RtyoO6xxx7D888/jzVr1sDr9eLBBx/E1KlTsWXLFjz66KMD3v+ZZ57Bhx9+iJtvvhl///vf8Y9//CPqayj27duHmTNnYubMUDrwAw88gJkzZ+Khhx7ilnn77bfBsmyfgbbKykp0dHQf3DY0NOCGG25AUVERrr32Wuj1euzatQuJiYlD2raJIvKqT73RiYc/OT7gfSrabHjg3cNQSQSYnq7Gj1cWjuQmjoo/Xj4VCXIRhHwGhxvMWLezZsjrOH2QxHjNqAOA2xbnQBS+8vjl0ZaoK6dzs7V4/nuz8dJNc/DKzXO5ptEdNg/yE+VYUZTIfbCMZdl6GYpTVUhWSyATCpCTIMeBOjNe3l4z6IPjzogDWbVUgNxEObSUUTchFBiUWF2cBI1MiMp2B7L0oexmpzeAV04LfrfZ3PjyWKjXjcMbQIpKHNV+IJ5l6KQoTlUhUSlGi9WDz+9fir9eU4I101JGpMdUs2VsZdRFDpTYOoQg/9lqsbox+5FvUPK7r/DHz06c0TpOHybRl+/Mz0RBkoJbxuUL4EQfJd7xJDJDPiPcd2z98VbsrzEiQS7EnCwtklXRweDI0td6owtlrXZ8dLARMhE/qoKhK+h133n5KElXI1Utxa/+e2wk/5yzFhmo0ytG770nsmwyXStFSboaGVop/nuoadS2oT+V7Q7uxDbWF08iA3VKsSCqn+JoqmizRwWeDWO83Ulffr5mMlYXJyEvUY4LntzK/X5vjRkSQegdjwGglcfvcd0/NpTD7PSBxwAKER//O9L/UCsSe8EgkKGVIt8g5wJ0/gALflePWB6DomQFCgzRPa+VYgHX8krIY7jP5MmpSkxL7+7XTkNFhs+QIwFTp05FWVkZnnnmGSiVStjtdlx55ZW45557BlUe+tZbb+Grr76CRCLBpk2bonpUMAyD++67b9Dbsnz58gEP1O+8807ceeedfd5eU1MT9fPbb7896Mcnob4M2XoZajqdCLDA/lojajoc/Ta0f+bbCu4AqcXqwaL8sdufrsui/AQUJCmxM9w36UCtGTcvGto6JEIerp6Vxj030nEQjOqLQSXBjfMzcaTBgmNNFnx4oAE3h3vX6RVinF+cHLW8w+NHdbhM5fSePmNVhl6O401WyEV82Dw+rJxswAtbqxEIsvjmZNugmsNHZtRZXH5YXH6IxvF+Q7pJRfxQn0enD3IRDwvzdHhrTx38QRavbq/B7UtzuZO+t/fUcz2/kpQSdDq86HTakKiI/5OfBIWYe520WT2obLPh1R21OFRvwpL8RKikAgSCLC6enjosg1Qip2fGe486IPR+WZyqwvEmK443WdFp9/Q5bXA4dWUAWd3+M+41Fj1Mou91KCVClLfaoRALuEbXe2uMKDkt+yfeRA6Hygg3w2+zuQGGQYfDi8UF0h5ZMvkGBR65fCp0MhF+/O4hAKGLOkqJELkJ3VlFXRPmF+cn4rZ1+yHkAccaLTA7vdDI4i8Az7Isqtu7M9hOL6kaSckRgTp/gEWt0QmX1x830+MjS5z9gdgOuIgM1Nk8fmjlQjg8PsjFo3vcZXR44Q0/F0I+My4uzvZmRoYGNrcftZ1OqKRC3PzybhSnqsHjMeAxDAAWT10/E+cXj167qKEqbbWhLbwP+4PBqN6CJD6ZnF6un6BMJIDbF8ChejO63n7EAh5KW+xQnPa65/EYqKVCODx+sGx3TvwH+xtx+cw08JhQ1VSn3YN8w/jLgo2FIWfU1dXVQaVS4Ve/+hXeffddfP7553jkkUeQkpISVXLal1/96lf43e9+B4vFgpqaGlRXV3NfVVVVA96fxJ/lRQbu++NNNty6bm+/y0eObk5WiaEfxQO2kXTpjO5A9d4a45Dvn5uowK8umgJ/kIU/yHJ9A8arG+ZnYn+dCR5/cMCy6eqIK/GRDeXHMoVYgNwEORzeAA7UmXHB1O7gZFf200B6K32Vj9OSadJTYbhvj8MbxA/eOIi0cDDA5vHjtR01AEJDJLr63/CYUN8sly+AKSnKmJZYDVamVgqlRACHN4C399bjvMe34PVdtTjaaMW/Nlfi0S9L8bevyrD2lT3D8njNY6z0FQCWFnRn/G+rGJ3y18jsqGz9GQZII97z+9sTcxLkEAl4UdPo9lQP/TN2tEVmyXdl1JW22GB0eCER8LB2YXaP++gVYnx3QRYKkhTw+EMlZFPC/dzUMiF3vNT1mSgR8vGnK6YiwAJlrfa4zWZpt3vgCvdF4jPAHy4rHrXHjgy4N1ncKE5VweNncaDOHFUCFiuRbT26GrrHikYmisrcrDO60Gkf/eyYyNK63npnjSf/vHEWTv3hAszL1mFzWQee3VSJp7+tgNMXRIFBgfOLk+I6ULkorzvZwuoO4K099THcGjIYjohsVblYgBe2VMHhDUTcHoBYwCBb33MmQV6iAt4AC18QUITfr7yBICrb7eAxDMwuHxe4JWdvyJGAnJwctLf3LK/o7OxETk7OgPf3er247rrruHG/ZOxbVthdeiMT8ZGpk+HrE629Ltth93DTTKVCPtK1sphM/hoJl81I4xo6t9k8cHmHfgDojjholArH98FJYZIS88ONtCvbHdjRT3P4yogr8Xnj6CpNbqIC09JUKDAo0Wx2c733tpS3w+EZuMdDb4G68X5QS7pl6WXcPsMAEPJ4XFnCC9uqYLR78M3JVrSEB7YsyU/ArEwtCpIUSBkD2WIAIJcIkaKWQCnmg8eEgo1CfvdnBg+ATMhHqkaCeqOj7xUNUlfpq1IsgEoyNrJ3l8agT111e/dznXOGmYzRGXV9L5eqliBRIcL0NBXEgtCx475a04iUPg+nyIy69HAQPciymJqmgk4hQlYvJ0FdIqfcFqd2lxTlJoae6zabBzZ3KJiRpZdBJREgRS2JaiMRTyL3F6lIgCTV6AXBIzPqWiwupGqkKDAoMCtDgwZj7KdURl4cUMbBe06PPnWu0e9TZ4po/6GK4XCN0aCRiSDg85CoFEMm4kMrE0IjFUIlEcCgFMd1kA4AFuZ2B+rkIj4ytFLUdZ79ZzEZOc6I81OLy4d/buoeSKeSCELDIRQSZPbyGZWulUInE0Iq5CFDJ+OGAx6sM8GgDLVV6a1PMjkzQ46WsSzba2DFbrdDIhn4g3ft2rV45513hvqwJI7Nz9FzJ04ubwCbStvxp89P9rrswYhsOpcvMK76sMlEAijCQZJAkMWGU70HK/vj6WUSz3h2U0RGwWv99PVLUklwxcw0lKSrMSk5/qd/DdaLa+eg2eLBtooO/O7TE1gdLm/w+oPYVDpwv6l2W88PQ3mMr8iT0XPNnAzs/dVKXDQtBSyAinY7l2UXCLBY+tjGqL6h509Jxu5qI8pb7WNqOvCUFBVsngCCbCh7Kz8iqzYIwOkLYGelETurzj7L6u/XzsBT18/ALy+afNbrGi2zs7Tc58W28o5RCWBFNuLvCh4NVVSPun4CdclqKRrNbhxptHITMY0OLyrb4/tksCF8UVIjE3IBmO0VnTjWaIXN5Yeun2qC400W7vspERNSI8tfazpC68/UyWF2+dFscePwWUydH0mRGZhSEW9UL9Dq5SKuJ26zxY0kpQTlbXbsrzOjdhiC+2er1dodqIuHoNTpgTpLDIK/Za3dk521cVjKPRL+cPlUHP/9BbhpYTaKkpW4ZXEO3rhjQaw3a0A5CXKu16bDG8CuaiO2j9BUdjI8IgN1z3xbDpev+2er2496kwsddk+vvSGfvH4mDjx0Pk7+YQ2+uH8Z10c8yIYylg83WKI+v8jZGfQnwgMPPAAg1EfkN7/5DWSy7ihrIBDA7t27MWPGjAHXEwgE8Nhjj2H9+vWYPn06hMLok4XHH398sJtE4oRcLMAPlucjWS3B9vJ2uP1B1JtcuOLZ7fjg7kVR5VUH6qJHd8e6ce5wm52t5QIs7+9vwMXTBz+Z0O0LRGXUxftVtOFwfnESDEox2mwefH2iFU1mV68N3Bfk6rEgd+z3MuzN+VMMqOl0ggVQEJEt+OXxFlw0vf++n5EZdXOytBDwmXEV/CaDk6WXQS8XgQXg9gXxqwsn4fGvQwdfXeUMOQly5EQEVMZSr8elhYmoMzrRanVjUrISSqkAJ1tCJ3ISAQ/FaWqIBTwcbbTg2jkZZ/w4nXYPfvreYaSoJTh3kmHgO8QJiZCP+Tl6bC5rR4vVjYo2OwqSRvaCRlfppUzEh2GEp3BHBpUje7furTHGbR8crz+I5nAAJiM88fV3nxyH2emFSiJAcaqqz2BVs8WFnREnusURgbrI13BVhx3T0tVI1UixcrIBVe12VHc4cKDOhFmZ2pH4s85YWYsNoY5bwKQk1UCLDysej0GSWox6owvNFjfyDQrMzdaCYRi0WmJfotUe8TleOMKv28GIDNTpZEIY7aOfHcPnAVk6GZy+AM6bPHbei4eDUiLgvsYChmGwKE+PDw82AgCmpqpwrJECNfEsSSnG/Bwd/AEWpS2hi25KSSjZxOUPQCUR4NxJSYNqj3Lrkmy8tK0K6Vopms1u5BoUCATjO9t9LBn0u8DBgwcBhDLqjh49CpGo+wqHSCRCSUkJfvrTnw64nqNHj3JTWo8di55QNV5KICeiq2al40+fn8RXJ1qQrpVx5a1tNk9U2cGB2uhA3VjK6hiMTF13AHt7RQesbt+gyqdYlkXJ776KCs5NhECdkM/DDfMy8dSGcgRZ4M3ddfjp6qJYb9aoKsnQ4M1wT49Vk5Oglgphcfnw7clWuH2BfveDrkCdkM9gX/i1NVYO7sjwefCCSfD6g3hxWzWMDi9S1VKsmZaML4+1gM8AT39nFgJBliuVAwCNdOxkKVw1Kx1XzeoeruL2BfDJoWa4fAHweAxqOuzodPhwpMGMLJ2Mu8I7VE1mN6o7HKjucPRblhiPlhYkYHNZ6CLRwTrziAbqfIEg14iaxzC447V9Z7SeuoipqEw/XeokQj7EAh48/mDUceLeGiNumJfZ5/1iKciy+M1FU1BvcnJlnh8caOCme5r6mYr3iw+O4Fi49FWvEEVlNeRGTn4NZxTyeQwump6CH79zGACwvyb+AnUzMjVgd4S+18TgIkGKWop6owsWlw86uQh7a0Kfl1NSRjdo2JuOiH5O8XCCOzlFBQGPgT/Iwuj0Rb1OR0t5qwO14cf97oKsUX/8WLp9ae4Zf4bFysKIQN2xJisqOxzISZCPub9jojhYb0azxQ2pkAevP9QL8eLpKXjim3IAgNXlw8OXTBnUupQSIVZPTcZ7+xoAAPtrTWg0xb6lwHgx6DO6jRs3AgBuueUWPPXUU1CpzuzDrWs9ZHyRiHjYcKoVQTbUGDdVLYHHH0Rtp4ML1PkDQRxpCF1lEfAYlGRoojKIxoNzJxmw/ngLWq0e+AIsvjreOqjpne02Dzz+INc8GgDEE6D0FQC+Mz8Tz2ysQCDI4rMjTfjRygII+BPjbwdCJ15zsrRweP1os7mxcnISPjjQAIc3gB2VHTh3Ut/TvoqSlJCJ+Ggyu+ELhE4Ax1uWKhmcS0pSsbmsHU6vH6/urMF7dy3CI5f7UdZq5zIk1u2oQb5BDp1M3GuT4LFCIuRjcb4e35xsg9MbwN3L86CWCvHq9hq8vK0aAM7oBKHJ0n1wOVZ6+HVZXZwMpUSA4jQ1NpxoQzDIjtiwkN9/eoILKAh4DGzugftp9kYq5KMwSYGiJCXm5+r6XXZejg4Wlw9yMR+tVjc8/mBcl75KhHzcuiTUt3npo9/inxsrYHf7kawSI0UtwffPye/zvpF9RnNP6/8XWWZcG9EHam62DjkJMrh9QWwua8cdy+LrBDk5oiddqnb0X1spEReMxQIe5mRr4fIG4qKXUmTQNh4m9ooEPCwrTMShejOkQh6c3jN7fZ+NyHLbsZT9PVEtjBgokagUQ8zn4V+bKnHj/CxIacBZ3Ol6fXkDLAIsUGt04tYlOfCzLMCGht0NJXlqfo6eC9SlaSSQiQTYVdU5biuhRtOQUy9eeeWVYXngiooKVFZWYtmyZZBKpX32viNjg0EpwcXTU/HRwUa4fUE0WUIlH3VGJ+aHX6inWmxcHbw/yGJ/rSlur4afqTnZOrRaQ1dHGQAf7K/HlTPTBjxh6u2KpUQwMT7cklQSXFaSiqoOB2o6HdhVZcSSiOboXn8QQZYdtxmG6ToZlw0HAPedW4APDjQgVS3B9orOfgN1L908FwBw/hObUdZqh1TIh3iC7DckWkmGBjKxAOVtdnTavTA7vdDIRFFlTB12DyraHAAc+NHKgpht63BYMcmAb062AQhloSzM1eOhj0P9+D451MQF6lzeAEQCHl7ZXo1AkMXaRdl9vpdEvg9/eawZRxrMI/tHDDOT04tjHx+Hxx/Ep0eaRiwrMHKquUp65iVaXfcrydAMGBhtMLlQ3eGAWirEP2+cFSrlPsMhFqOh65g2MvsQAFqsHtyzIj9qyvfpAhHN+1JPe16y9HK8dus85CTIkRbRJiJdKwOPYdBsccPl9cPt80MSRwOpzJHDAWKUUQeEsg9ZAMcaLXD7QscWseQLBKOmGcfLhbY/XD4Vi//yLQBwmW2jqWt/kYv4EE6gC7djVbpWhiy9DLWdTnTaPQiyoXOgv311Cr+5ePQmPJOBeXwBrkdd1wW35YWJUEqE+MmqM6toijzObAwPx6los1GgbhiM+qd4Z2cnrr32WmzcuBEMw6C8vBy5ubm47bbboNVq8fe//320N4kMk7WLsvFROPVZyGfAsixqO7s/4A9G9KfjMUCaRoqcMZzV0RuFWIBfrJmEv31VCl+Axc4qI97YU4fvDZC6Hzkdjs8AWrmo30bT482KSQZ8+FaovP7bU21RgbpdVZ1Y+8oepGuluHdFPq6bO76Cu0lKCR5YVYjnt1ThVLMNXn8AszO12F9nwlt76vDAqsIB+87ZXD6opAJk6+L3xJWMvF9cMAm//OgomiwuPPTxcfzjhplRt9cZnVCI+JCJBUhSj2xfsZG2oqi7b9HGU234wfJ8nD8lCVvK23Gk0cKVjT+7sQL/3lyJIMuCZUONya+d23sfuy+ONnPfOzz+M84UixWHJ8BlZVe02SES8KAYgZ6VofL80HNz/3mFuGoQWeNnq6s3ncsbwHmT+754ES8uf3Y7VFIhpqd3T2zN1ElxTqEBF07rv/fozYuykaWXw+Ly4uJp0X1uhfxQtlNvrp+biZe3V6PV6sb64624bEba2f8hw8Ts9EEsYKCSiJCgGP1jm9uW5GDtoiwkKsQQ8HlYkKvHwTozKtscCARZ8Eco+3QgLl8AhUkKlLfaIRbyoI+T477I8mRzP2XaI8Xi9EIp4SNHT8c0Y8XCXD1qO51gwGBpgR77akx4aVsNHlhVRL2T44jF7QOfAQR8Hne8cHHJ4Pup9yY3QQ6lRACb2w8+j4FYwOC9fQ347oLsYdjiiW3UXzk//vGPIRQKUVdXh8mTu6eqXXfddXjggQcoUDeGzcjQoCRDg8P1ZvgCLAxKEeye7g/4ww0Wrv9WolKMFqsbGeMsUAcAhcnKqD4jf/n8JM6dZIi6+n26emP3FfcAC3TYvRNi6muXZYWJ4PMYBIIsvj3ViocieiNUttvBsqHnqL8+RmMVj8cgO0EOl88PpYSPd/c1wBLuJeb0BvD50WZcM0CDfKPTB48/CG8g2O9yZHybkalBg9kFuYiPfTVG/PaTY/jBinyux5XZ6YPdG4DdG0CCfOAp7fEsVSPFpGQlTrXYcKLJik6HB1IRH3wGUIj5uP+tg7h7RT6ONJjB5zHw+1nIRHy8vL0aZa02XD8vM2oQgdXtQ2dEGZxWLhpz/R6VEgHcvgA3nKaq3Y75ObphbyUgFymQppEiXSvD4vyEge8wHI8ZnmbtDQTh8gZwsM6ETw43QSYSRH1exAOjw4vD4TYfHXYPsvWhklS9XBwa/KLoP0i+MC8BC/OG/rxm6KSwOL3I1sujjili7VijBWVtdnj8LNrtnpictOvlIuyq6sTf1pchWS2GiM+DkM8gzaBAaYstarLuaFJJhLh4eioe/7oMbl8QSml8vOfIRHzo5CJIhTyMdgyTZUO98YIscKTRiqMNFkyLCHiT+PTdBVlYPTUZc7N1ePjj4+DxAJWEjz99fgLXz82i/2GcsLp8CLBAIBykkwh5OO8sh2fxeAxmZGiwtbwDgSALuVgEiZDPVXaQMzfqnwhfffUV1q9fj/T06CuwBQUFqK2tHe3NIcPs5kVZ+PE7ZgBAm82LA3Wh761uHz47Emr+LRXy0Gr1QCbkISFOrh4OpyydDJH9gB3eAH754VG8esvcPsu7eyt9jZcSiNGglgoxO0uLPdVG1HQ6UdVuR25i6CS6st3OLRfZn2c8ydTJEAgCVnegx1j79/Y39Buoc/u6s2gm0j5DepII+Tj5+wtwx7p9+La0Da/uqMWkZBWuD7cYMIf7kjDM+Bg6cvc5edha3oEt5e14Z289Hr92Bq5/fif21piw/kQr1p9oBQAUGOS4oDgZnQ4v3txTj1MtNlhcPvz1mhJuXYfrzVEZ4G/evgCyMZgF4AsEcd1zO3Ggzgy5WIDzJifhewuzY71ZZ00a0bfN6vLhztf3w+7xQykW4MELiuKqNcL+iFYG2Xo5vjjWAgC4clbaiDZXXzUlGSIBH1UdDry9tw73ntt3H7zR9OQ3ZVyZOhCbQTY2jx83v7oXXn8QerkIf7xiKr460YoOuxfrj7fELFAHRGesxctnOMMw8PhCPfyazG44vf6o3okjyekNRB1Dj7ehc+PV1DQ1TA4vPjrYCIYBDv7mfBT9+gu8sbsex5ps+PiexbHeRIKeGbLnTUoalosnM8OBOiDUd73d5sHuaiNWF/fd5oEMbNRTdhwOB2SynllURqMRYvHYLsUhwIXTUriyBomQB4kgtIv973AT159OLRViZqYG83L14PHGX9ZYulaGSclKzMhQc1lxm8va8f6Bhj7vUx8RqJuZoUFJhnrCXYWIvKLz7anug/qqiIbheYnja/hIl2ydDClqCRRiPkR8BhkaCdLDDbf3VBujmoZ3+fhQIy5+eitufmUP8hMVmJ2pjYsJdiS2+DwGSWoxlGI+MrTSqN5QaRoJZmdpMTtLO2KDBkbTrCwtPjrUiDabBy9vq4bT68eCXD2KkpRIVIiQrJJAKxMiUSGGWiZCmlYKtUQArUyIUy02bAlPSQWANqsbIn7oORHxeWMySAeESiP/ccNMFCUr4fYF8ftPT6DN6h629XfaPXhvXz1qOhxgR7G/V1GSAnOytJierobLH8D5xaHyV5vHj02l7QPce3Ttq+3u4ZemkWJhrh7FqSruPf1stVndeHdvPf78xUlu0i8Qeu0vzNVjTpYW2XpZ1EWuWDraGMou5DMMZmVooJOPfuBFLRVi1ZTQPtPp8KLV6saUFBXmhodKxMqm0jZ8dLABCrEAOQky6GTxcx7U9RnBAlHvlSOt3ebhMmiB0ORjMjbc/to+/Oa/x/D+/gbUdDpQkKRAUbICLMviztf2RV3EILHh8Pij2g9cPL3/VgyDNSNTw32foBBhQa4Op5qtw7LuiWzUoyRLly7Fa6+9xv3MMAyCwSAee+wxrFixYrQ3hwwzsYCPH60shFTIh9sXxJ4aEyxOH97ZW88t02L14GCdGaJx2iBWJODB5vbjUL0FPIaBUszHrEwNfvfJiV4DLkB3oE4k4OFgvRmH6y1xc2V1tJwbEajbWNodqOs62dDJRdCOwwxMANDIRdj5i/Nwz4oCeAMs6s1uzM7Ucre/v79nkLe6w4FjjVbsqjKiot2O/XUmjMPKYHIGvr8sDzZPAPUmFz4+1MT9fl+NCftrTWg2D1/gJpYydDJcMTPUh8vq9uO1nbX4yflFWP/jZfjO/Cxk6WW4aWE23rxzIW5fmot7VhTg7e8vhMnpw9FGC/66vpRb18kWG7yBUOApVTO2y4LTtTKcN8kAu8cPX4DFup01w7buHZWd+L/3j2D53zbhmW8rhm29AwkEgX21JhxpsKDF4salET11/ne4qZ97jr79Nd0no0I+g51VnTjeZEWicnj2q4p2Ox784Aie21yFzacFKRfm67Gv1oRtFZ3YW23sYw2jp83m5gZsBVgWB+rNSFLF5vV19azuSp4dlZ040WzF3hpTVGB1tLVa3TA5fbB7/KjucMZV79AkZfe2fH60ZdQet8nigsMTCp7yecyoZfKRs3dJRNDno4ON+OrH5+CXF07BkQYLvjrRir9/VdrPvcloaLG60WEPXcAV8XlYcZZlr11K0jXc9512L3ZVGfHpkea+70AGZdQiJbm5uejs7MRjjz2G559/HmvWrIHX68WDDz6IqVOnYsuWLXj00UdHa3PICLp0RmrUJK3Xd9bgSLhfS06CHDMyNJiXo4tqsjzeXDQ9GYvy9JicosLi/AQcqDPD7vHjvrcOwuuP7iPm9QfRHM54kEaU70y0dP98gwIZulDGwe4qI2zu0MFr10F+bhxP+BsueYlyzM/RITdBHnXy8M7e+qi+h0Co91GXKSkqLM7TYyFNWCIA0rRSrJqShHSNFGaXj5sq2DXpSyaKnzLBs3XPinyuh9JL4aw6IFTa2/UVKUsvw6xMDbQyIawuH94NX0TqiMg6S9eO/d6paxdlQxjOEHxjdx33vJytfRETX0ez59DCPB0W5+kxL0eHLWXtWJyfwDXe/+ZkK2zu0W943xuPP4Aj4QyyLL0M/oj37eG6+BaZWV7dEZ01l5ugwLwcHWZnaqM+I2LleFN3RkWySoyl+QkxG5S1tCCByyTZeKodywoSMC9bG9OpopFlaIVJirgKSnX1DgaADada4fGPTuahxemDIPy4IzEMh4yci0tSuX3m44ONCAZZTEpWYmZG6DO30ezC+uOjF/QlPXXYuqsspqWrh61thF4hRqYudOzEMMCcLA0UEgGCwdhO1h7rRu3TqaamBoFAAFOnTkVZWRmWLFmCyy67DA6HA1deeSUOHjyIvLy80docMoJUEmFUg+mXtldz309PV+NQvRl7qo3jurRzSooaOyo7sb/WBJc3gOzw0IzDDRY8/nVZ1LKlrVZ0xTUFEeVoEy2jjmEYnBue5OgPsthW3oGqiNKd8Vr2GilVI8XuaiOqOhzciHMAaLN5sKOyI2rZTnv3h+2JZiu2V3aOWmN3Et+EfB7UUiEazC40W9yo7QyVKTrCwZrxFKjLSZDjknB2ldHhxRu76gAAty/NxYtr5/boCSYTCfDnK6fD5PSh1ujEa7tqAADHm20AQhPJr5oVP9Myz1SSSoJLpoeeF7PThw96yco9E/vCpUsMEyo9Hi2L8xOwvbITe6qN+ORwE4R8Hjc91eMP4utwP8JYO9Zo5S7Gzc7Sjkj/MYNSDHn4NVzVEZ2ln66VYk+1EfvrTDgZ3qdj6Vj4Ii0QqqYwOr199uodaQI+j5uE6w0EUWd0Yk+NCburjdzFjNHW1TcUwLAF04dLIMhyFwgdngB2nNY/d6Q0mJxcgFsVJ8M1yOAkKMRYVhA6Dm2yuLGnxogklQQPnF8Y+sztdOLViHNCMvpqIiq7bl2cPazrPqcwEecUJiJLJ8O+WjMO1pnRZov9BaOxLCaXkdRqNX71q1/h3Xffxeeff45HHnkEKSnDUyNN4sPVs9O4q/mm8IGqJDx6PlUjQXGqCjnjOENqUZ4eV89KR4JChN01RjxyxTTu+fj35krsj8iW+uJoC0QCBudNMiBRIUJOghzT09VR2XUTRWQK9oaTrVH96cbrIIlIeYkK3LYkh+uV1RW4zdBJ8eWx6KuQkdkSWXoZlhYkxGSaHolPxakqTE5RwqAUo67TCbcvyF0QiKesjeFw74p8dJ37v7K9Gl5f/5kfWXoZLpyaDJ1chIpWO/bXGtHp8GJyshI3LczGFbPS+73/WHHb0hzu+5e2VZ/1lW2b24eT4Z4zRUlKqCSjdzFJJhLggVWFSFKJYXb68M7eOlw6o7v8NbLEO5YiP9vnZOnQbvcgUyvFrEwNEgeY9jpYDMMgJ/x5WNfphDMiyJSqkWBWpgbZehlahrE34Zk61tQdqMvSyzB3FIO7vbkyIgjv8gVQlKSETi5CbUfvbUlGmjHic1w9iq+nwShKUUb1VfxylMpfu6ooAEA7ji/oj1eXz+x+jf33YCMAYHqaBg+uLkKySoxjTVa8ubsuVps34XX1ABfwGC4rfbj84fKpWHfrPPzwvAJMT1MjTSPF+/vrB74j6dOoBurWr1+PTz75pN8vMj5k6uTwBaJPCi6algq7JwCTw4fjTVZkjIPyor4YVBKIhDx02L3gMwzAsnhw9STIhDzMzdbi/rcPwen1w+Ly4fWdtfD6WWwua4fJ6UN1hwNNZnfMrjrH0oJcPReg/O+hJrywtYq7bSJk1ElFoQEAXb2yuq4q1xtdeHdfPYyO7iy6rh4TDEI9Dp0xbIhN4o9OLsLJZhtcvgBarG5YXD7IRHwwDKIadY8HBUlKrJmajNmZWjAMg8+O9d8XRSLkg8/nwejwgs9nsK/WBJZlcbLFBoMqfnpEna3iVDUW5YXK4Ws6nfjs6Nn1izlYZ+amMc7N1p3t5g1ZSYYGrVYPXL4A1h9vhUEpRpomFEjYVtGBzjgo9dwX0Z9uTrYWnnBri1MtNmiHcYjClTPTsbo4CUIBD098052lLxLw0W73oN7ohN3jgyNGmWJdjjV2l77WdjohifFFgikpKkxKVgIIBYRKW21we/14fktVj7Yko6EtYp/VyuPrvcegkKDB5OJ+/vpkK/yBkX+O2m3dAebhDiSQkXf+lGQu4/ezo81w+wJQy4QoydCgxeqB0xvAy9uq8Nf1p0ZlfyLdOu0edIbPI/xBdsTecyYlq3Ck0QKjIzT9lZy5UQ3UrV27FpdffnmfX1dcccVobg4ZQVl6GTThlHWFmI/iVBWun5eBo40WuHwBGJRipKjHdsPugfzf+YXI0Erh8Abw0CfHcduSHMzP1WNvjQkNJhee+qYcr2yvhi18IH317HSu/GKi9afrIhHy8ejV03HfufnwB9mo/jYTIaMOAK6anY4jvz0f9yzPQ3Fq9xRXX4DFhxGTgzvCH34sQsG6rpMPQgAgO0EOpUQAm9uPslY7OuyhA2QegJyE8Rf0vnlRNvbXmdBoduHtPQNfwb1yVhrkYj4cngC+OdEKk9MHmZA37jK9b1+aA5mQhxkZajz65SlYXGfey21fbXQQarTNz9HhwG9WQSsT4ttTbbj2uZ24uCRUjZGbKMfW8o4B1jCygsEg9oZ7+KkkAuQnKnC0wQJfgEWGTjqsF99WTUnChpNt8PqDeGFrdVTp7w3zMsHn81DaYsfW8thNxDU6vGg0dwd6JAIe8mL8Oc4wDK6YmYapaSrMzNBgTrYWbn8QHx9uQmnL6JcKR7awKEyKr/fl7AQZVBE9Po0OL/bUjPzgjcjgYMoYH+wzEUlFfKyemgwAsLn92BjO4JqdpcWB36zCtFQVKtsdeHZjJWrDg/TI6Di9fH2k2qBk6qTQyIRw+YJR53Fk6EY1UNfS0oJgMNjnVyBAGSHjhVIihF4uRoFBgbnZOnx231LMydJCKxOiMEmBJJUEQsH4nPraRSsXI1ktweQUJVLVEhxrsuA3F0+BKPx3v7C1issYE/AY3L4kB1l6GYqSlSgwxNcB22i6tCQVYiEfEiGP+/mxq6cjQzd+MzAjKSVCqCRCaOUipGmk0ET0NXpzTx1YloXbF+ACvGIBD8lqybhogE+GT6ZWCqmQj8kpSgSDQTRbXChJVyNdJxvWzJ54MTdbxwXzd1cbo/pb9iY/UQGpgA+VhI/D9WbIxXzIxQIYhqk8MV4sLzTgqtkZOFRvQYPJhf977zBY9sxKYCMHScQio04i5EMnF0EpFkAtFUAm4qO0yQKxgIfyVjs+ODA8ffjO1I7KTji8fszP0eF7C7MRYFnu4ptCPLyvuQydDD9fM4n7+YF3D6EmXL6ZrZcjRS1BmkaC13bWnvH/+2wdjyh7TVCEprbHauJrpItLUnGs0YqD9WbUdjqhlgiRqpag2eIa+M7DLDJLPjmOJr4CoaE6MhEf6og+ceuPjXz5K4/XfW6QrqHjmrHoypnpYJjQBeSXt4faLnS9f6tlIsjFfCQqRPjlh0dww/M78bP3D+NIg/msH9cVriyp7nDQEINebK+Ivpg1Eu1y3t/fgO++tAdmpw8FBgU0UiFOtVCw7kyNWqRkIpbxTXQqmRDlbXZsLG2H2xdAp8OLHZWdKGu1QztB0tkfurgYJ5tt2FbRiTd31yE3UYF7V+QDAIIsuBH0V85KA4/H4ESzDaUtNvB4E/v1cs+KfBz4zSo8+51ZuO+8Alw7JyOmk9li4faluXj+pjlcxggAVLU7sL/WFNWfzuMPwuT04e7lNIyHdNPKxXD7Atz7T0WbA4cbLKjtdI7LtgMMw+D6uRncz+/u6z9ok6GTQSriw+oOwBtg4fAE0G734trndo2rchwej8Fdy/O4LO2vTrTipW1Db+btCwRxqN4MAEhVS5CqkfZ/hxE0I1MLi8uP6g4nNpV3whMuWdxV1QlrDKe/rgu3sdhdbcTkFCWsruEfJBHptiU5uHBad+bKBU9uwT1vHIDd40eWXo5Gsxs7Kju5UqfRVt3u4Pryddi9aLa4Y7rfdEnTSDEjQwMAaLd5YHL50GRxo7yt/+D+SIgs175oenwNsZEI+bh/ZSEsrlCwOVklwZfHWnpMoB9uXRdZEhQiXDYzvp4TMjgL8/S4bk4GTrXYsLfGhNd31XK3rbt1Ho797gJ8Z34WHJ4AdlYZ8c6+Bm4Q1JnyB4JY9cQmnPf3TVj5+Ga8sbt24DtNMNtPG0o3Ehl1TWYXd6xQ3mbHN6fa4qaH7Fg0ame+sbqiR2JnZoYGc7O1mJetRV2nE21WN5bk6zE7SzthyvSyEmQ4pzABuQlyHKwzoazVhu+fk4vchO4TZR4TCkw1ml2Yl6PF3GwtpqSo+lnrxCATCXDR9BTkT+DsQiDUtF0bUQr91p56bIso8RLwGJwbMYSDkC6XlKRiaUECEpVifHuqFfmJchQmKTA5ZXy+/145K50b2vP+/gb4Bgi4rZySBKVEAD4TKh8HAINKDME4uyiQppHi8WtLuJ///PlJfHKocUjrONls5fpgzolBNl2kOVla6BUiyER88HmhrGIg1B5gc2lsSj3rjU5sOBkqP01WSbC6OBnbKzqwJD8Bc7O1IzKRm2EYPHrVdBQlKXHZjFS4/UF8drQZr++shdXlQ5pGArVEgB+8sR+XPr0N1z23c9i3oT97a01ot3sQWTwRL9PsuwKcQOj1MS9HB7t79Pv5ef3d50bx8txEytbLka6RQirkocXqRmsvE+iHE8uyXLDdoJRwPSjJ2MLnMVFDJR778lRUGTwAKCUCJChESFSIoJeLcLTRjPXHzzxj88vjLWgwuVHZ7kAgyOLPX5xCPZXWcuo6nag3hv4HKokAC3J13GfncIo8H1FJBJifo+MyHcnQjdrR6Nq1ayGV0hvuRKKQCLG3xoQ9NSbUGp1otXmwraIT+2tNE2aiqUoixLJCA6o6HChtteNIgwViAR9/uaoEF09PwSOXF+O+8wqQpZejqt2BPdUm7K0xIUExMTIOycAMKgk3ORkAPjrYgJ9/eJT7WSsX4pnvzIrFppE4d9PCbGwt78ChejP21phQ0e5AfqIC+YbxGahLUIixakoSgNBU5K7pZn15+JJiHP3tapz4wwXoOl0er71Tz52UhLuX50Eh4iM/SYkfvXMIL2ypGvRF1OoOB0oy1JCL+Zgd48md5xQlotPuhdMbQDAILqMOCE1Vj4X/7KrlBm3cOD8TQj4P35xsw7aKDuytMWHV5KQReVylRIhP71uCknQN10+sw+7BoXozGs1uWNx+7Kk24UijBburjbCNYsbhTQuz8LMLJkEl7T6eiZdg1Jqp3ZnqjWYX9lQb8fnR0c36YFmWG17DY8A14I8nGTopGswuuHzdr7H/Hhy558npDXCD6CZqr+bxYkGuHjfMywQAOLwB/Oqjo1GfN7cvzcWrt87HK7fMQ6fDixPNNvxzY8UZPRbLsnhha3SmuNMbwM8+OEKJQmHbIsperW4/SltsI1LtWJyqgkEp5h5nd7UR+2pHvrfleDVqgbpXXnkFSuX4PDkgvVtWkICFuXqUpKvxzclWWJwjWwYSrxbn6ZGllyFVI8Gm0tCJ47wcHZ75zix8d0E2frSyEADQanWjOFWFudnacdfQnJy5knQN7liaA0V4Umdk1UmiUjxiJ4Bk7MvSy3BuUSIEvFDGWKJChLxxnqF63dxM7vt39g48VAIAWizdUwZTxnEGx09WFeKec/NR2mJDkAX++PlJ/PidQ4M6kdlXY8LhegscnkDMm96nqKW4bUk27lyag2vmpOOi6cno6hZxotmKB98/PKrb4/IG8HZ4XxPxebhhfmgfDEY8r7wRPNoW8nm4dUkODj50Pl5aOweR/061VIBCgxyJ4Qm5j60vHbkNOc3cbB3uXp6HHL0M09PUWDnZwPXojbUMnQxT07orF5JVYrh8QXx+lpORh4JhGCQoRJiersb5xclx2SIoRS3Fojw9pqapwA+/yNYfb4HbNzIZMmaXF8WpSszM0KAoic4Zx7pfXDiJC9psLm3Hazt7lqPmJsqxKE8PjVSIVqsHr+2sGfLjHKgz4XC43LLAoEBq+ILbjspOvLnn7Epqx4vT+9ON1Hk4w0RX+UxKVoIHBu/vj20P2bEqPj4xybg0M1OLfbVGHG6w4GijGZ2O7l4cE+lK2aQUFWxuP5rMbhyqN/W5XGW7HcebrNhbY5owgxPIwJLVEszL0cMe7mc4OVnJfcC22zwTvp8h6ZtEyIc3wMIfDE0HTlZL8JPzi2K9WSNqSX4C0jRSSAQ8WF0+NAyi9KXJ3B2oG8+lVgI+D3cuy8MPz83nfucLsPjd/04MeN+aTgf3fWGMT6D5PAa/ubgYv7xoCh67ugTPfmc21y6CZYFt5R2j0mfQ4vKh3ujEi1uruGm6F09PQUK4L1tkwIw3CkEYPo/BeZOT8MYd87l2CRaXH5OSVTCFJ7B+fXzke4xF8vmDONFsw5FGCxojXmfxIDKrrsXqQZvNg9Lm0Wt67vYFcKrFhiMNFrRZ4+u56cLnMWixuHGs0cq1B7B7/Nhwsv9s5TNlcfpxvMmGg/VmlLfZaCDAGKeSCPGHy6ciL0GOLL0cf/j0BDaXRbcnkIkE+PVFU2B2+dBideOjA41DDgS/sKU7m+6uc/Lw56umAwhlyP/vcFPcvr5GSzDI9ihZV8tGrnJrRUSg7lRL6P3/3X11o/rZM15QoI6MGD6PwaK8BCQoRKjpcKLV6oZEwENugjwuGgqPpgW5eiQqxWgyu/v8AKpos0MjE6I4VYkk5fgsvyJnZl6ODkXJSiQoRPAFg/jZBUUQ8hika6V01Zn06w+XT8WX9y/F5/ctxT9vnB3rzRlxfB6DO5flQsjnYV+taVBX05sieueM19LXLnweg5+cX4TnvjcbOQlyfHa0Ga/uqMFnR/rPJKrtDAU8lWIBdHE4DOru5d3Bx2aLGwfqzCP2WCzLYv3xFjzxdRmWPrYRf/+6jLtt7aJs7vuojLpRzJbKS1Tg5ZvnQirkY0aGBt+casMVs9KgFAvQavPgRNPoBaOaLaFjniSlGDPDAxzixZqp3X3q5KLQRMp3BhhCM5zarB4IeAwMyvjOdJ6TrUWSSgx/xEn2f4fY43KwzK7uwSc7K42IwyRDMkSri5OxZloKajod8AdZ3P2f/Vz2W5c8gxzv3LkAiQoxTjRbccsrewe9/tpOB9afCPW2MyjFuKQkFecUJuKOpTnodHixq8qIP35+cjj/pDGnot2OnAQ55CI+eAyQqBAjewQTQpbkJ0AU7vUrF/GhEPOxt8aEk6N4IWS8oEAdGVE8BggEWaRrpWg2u6FTiFBrdCJZNb5Phk4n4jPw+gPIT1T0+kbFsixUEiH4DAO3j6UsKRJFLRXC4fGjw+6FyeGDw+NHikaKNpsHSRPstUSGJidBjkkpKkxJVU2YTN0105Lh9ocuiLy9t37Aq/PNlshA3cS4iLS6OJmbQA4Av/jwSI9m3128/iAaTKFAXVaCLC5L9M4pSuRK83g8Bk2mkWsi/tyWKnz/9f3YXNadVXTr4mzcuSwXJRHBqMjsgdH+SJ+ZqcXNi7JxqN4MpzeAZrMbLp+fa9o+0g7UmXCkwYzKdhtyEuVweANQhnvoxYvcRAU32MzhDcDvD4Q/a0enj1+j2QmXL4g2mxcifvy9prrIRAI4PH7kJsi4TM1NpW1R7WyGi8MT4F4rMjE/Lt9ryND9eFUhLigOBcad3gBuW7eXy0IGALGAj/m5eji8fgj5DIQCXp+fR6cra7Vxk+zXLsrmyuvvXp7PTTX9+FDTiA5BiXcZWhn+b/UkfG9BFoIs0G73YCRz2+RiAebnhoZOObwBuL0B6GRClLfZRvBRxycK1JERdc2cDJicPpS12rG72ogmsxs8gOsfMFFcPTsdFpcfZW32Xnug2D1+HKw3o9PhRVK4uTAhkbrKxc0uH443WVFndMLrDyJLPzGCL4QMlkEpwYXTQmVtRocX/zvcf/PzpogedamaifPZdOWsNFxSkgog1PT5gXcO9Vqa0mh2cb0xs/Tx2T9VIRZw04wDQRabykemNG9XVSf+Gu7zVt3hxIJcPa6clYaVk5PwywsnRy0b+VTG4uLbjQu6+zXWm5zITZCjw+7F7z89MeIN1v/yxSlc+sx23LZuH6raHbB7/MiOw33nyllpmJ+jg1IigNUTQGmrbdRKdDdFTCiuMw4uKBEL2XoZ7J4AqjqcmJamBhAqmf/82PD38zM6PNzrRimOr8AuOXN8HoMnr5+BeTk6CHjAlFQ17n/7YI/3oX9cPxN2TwBbytoH3WP29V11qDM6oRALcPH07nJ2nVyEn10wifv5oY+P40SzBX/6/CTarG54/BNnEqlUxMfCPD3WTOt+fka6BVVknzo/C3Q6fPj40OgO7BkPKFBHRlS+QYEpKUrMzdKAxzCYkaHBrCwtRBNk6muXLL0chUkKzM7Uwuvv2TvHHHFlUhuHZUUk9hblJWBpfgIytFLsqTZiZoYGuQlyZOri7+SHkFiLLEFct7Om38BEs3niZdQBoabPj1w+levLxzDAwbqefVRrI/rTZcfxhYHLSlIhF/Eh5DM4UGsZ9vW3Wd344VsHuWDmfefm4+07F+Dxa2dgUX5Cj+XZGJW+dknXyrAoTw8gVLqcpVdgdpYGc7J0+OJoy4g9LsuyXOWAVMjH/BwdilNVKIjxEJLeXDQ9FXtrjLC5/RDwGMzO0qBxBLMxI0WWeXY13I9HmToZJiUrMSdLizyDAklKMebl6LCxdPiD4SZn93OinEBD5yYCiZCP5783G1l6ObaUtWNTaTu+Oa3XYZZehqIkJWZnauDy+ge13q7WFf5gEJmnVQ1cNyeDy3KuaLPjwqe24fktVfjFh0ex9NGNUW0vJgK72485WVqUpKtHvM1HV6COxwBqiQDpWgmazC6YI17jZGAUqCMjqjBJCYZhsLfWjBarG4fqzXEz9Ws0pWqkqO5wYH+dCbuqeo6pjkwBn0gTccng/fLCyUhQilHT6USTxY2D9Wa02TyQiiZW0JuQwZiZocH09FD2x7FGKw70EoACQg3djzSEgjoiPg/6CXahRC0V4uFLpiBBIcKuKiOe/raixzJLCxKx7Wcr8Mbt83HlrPQYbOXgXDs3Aw5vAL4AizqjE1vL2we+0yC5fQE8/Mlx2N2hk8elBQm4PzyxvS/RPeqGbVOG5OrZ3f8vhUSA/bVmbKvowK8/Pobb1+3lvl7cWjVsj9lodsEWfp48/iB2VxthdvowJ1s3bI8xXNI0UqwOl+T5gyz215pR2e4Y4F7Do8MeEZSSxO9xX6ZehlMtNuyrNaHD5oFaJsSeaiO+Ot6Kmo7hfa46bN3PiYaOhccdjUwUNdDqkc9ORGW2ZehkKG21YX+dGXtr+h6+14VlWS7YlqqR9iiV5vEYPHLZVDAMolp/bDjVhjabB498NvAgpfGk0+nFvloTDjdYIOSP7Ll4ll6OO5fmIjdRAYvbjwaTG2WtdpS32Uf0ccebiRcxIaPuvMlJmJqqglzER4FBgRlx1lB4NPB5DC6bkYZFeXqopUKUt0bX6bfb3JiersbCXD0K4ripMImt1cVJyEuUcyd9FNQlpHcMw2Dtwmzu51e21/RYJhhk8cC7h9Dp8CJTJ8O/vjtrQvYHXTUlCQJe6HBwZ2UnHJ7oTAY+j0G6VobF+QnIS4zfzye1VIQpKd3DdX73vxPwDcP012CQxU/eO4wvjrUgMZxN9OR1M7ieeH3eLyKJM1a9ti6YmgxFuITw6xOtWLswC8sKEmBQimFz+9FsceNEsxXv7qvHodMavJ+pk83dxzd6uQjzc3RcZl88umVxDve9TMSH0TE6GR/WiAu0Onn8fpana2WYn6PD3GwtgiwbFax/f//wDt+IzKjTjnBpHomNNVOTMT8nFLSv7XRGfTZLhHzcvTwPl0xPgUEpxgPvHOp3XWanD05vKNDX18T2aelqfPrDJVh3y1xMSVHhwdVF3L71+dEWbCnr+4JOMMjC5Q3A6vZhb03PJIuxoMHkxGs7a7C/1oT2iOm3mhGc+tolUSlGRTgwp5YKkZMgw3921o74444nFKgjI25mpgbHmqxweAMob7PHXUPh0ZKXqMCOyk7sqTHiVEt0oK7B5MKRBgt2VnVCOsHKgsngXTA1BS5vgDsBHOkeE4SMZRdNT4FOLoJBKcaBOhN2VnZG3f7Xr0rxebgEsNPumXDTyLswDINzJ4fKVLyBILZXjN2m26qIzKSKNjteH4aTgke/PMVNxW23efCbi6ZArxi4VDEeMupkIgEuCvclsnv8mJmpxbLCRKRrpVBKBAgEWTSZQ5kOz22uHJbHjByY1WrzYHe1ccCgZizNzdZy09Od3gC2n/Y+MVK6sjMBQC+P39JXiZCPeqMTe2tM2FHZiStnpnH/zw8ONPTa1/JMmSLawAzmNUbGHoZh8NAlU7j3xGe+rUCbrTuA9LMLJqHR7MJXJ1rx4cFGuLx995KLHDjRV6AOAIpT1chNVODz+5fiByvy8auLpnC3/faT4332q/vgQANW/G0jrvrnDnznhV34eISmHY+knZWdeOjj47jqXzuwOSIoORoX+q+enc5V0dncPlR3OPHZ0Wb4h+EC2kRBgToy4krSNfjH9TNw0bQUXDg1GedPSY71JsVEvkGB6elqZGilqD+tB0qDyYlMnRTT09XISaCeY6Rvj1wxFX+/Zjr+/d3Z+N2lxbHeHELilkTIx+PXlsAfDkbc8+YBNJicCARZ/Omzk/jXplBggscAz3xnFianqGK8xbGzcnJ34+cNJ0dmEMNouKQkFQWG7s/Qv31Vio8PNSJ4hsGE13fW4LktobJQHgM8e+NMTAuXVA8kMlAXy0DV1XO6M6Ce/rYcV81Kx4tr54a/5uDGeRkAgC+OtWDRXzac9eNFBurSNBLMzNBg1ZSks17vSGEYBncs7c6qq24fndIse0QPrsQ4D0otLkjApGQl+DwGYiEfywsTAQDNFvewBvYj+5LFc98+cnaKU9W4bm4mJAIeZmdp8N+D0QGwn64uwuopSZiSosKlz2zrcz2RPeaGcqHtyplpmJOlBQBUdTjwwpaepf82tw+PflmKFqsH5W12+AIs7n/7EJ7bXNlvz1t/IIh399bj21Otg96ekXSssbtfq1jIQ6ZOipmZGiSrR/71pZWLuAEfQRZI10qRrJbQUIkhoEAdGXE6uQiXzkjDzMzQIInsCRqIStVIcKTBgkazC9+ebIPb130Fp93mRbPFjSMNFqTr4rdZN4m9cycl4arZGbhganJc9vwhJJ4sLUjE1PCkQqPDi5tf2YOr/7UDz2+twpwsLRgG+O2lxVgRMaFsIlqUlwCJMHRI+G1pGxfYCgRZ/OWLU3hrTx0OD1Np5EialKJCeZsDPAZIUUvgD59cXfz0NhxpMA9pXW/vqcNvPj6OOVla8BjgD5dPxbmTBh9wCkYkDcRimESXOVla/GhlASanKFHZ7sBV/96BhvDFwnStLGqAVYfNgye/Los6PhmqrkAdnwGazKF+qiVx3vLkkhmpXDDV5vajrMU6wD3OntPT/Rzr4zwoxQODUy22cAamC9dEBH/fG8by13a7h/t+Ig32mYjuXZEPhmGwuawDz2+pimpTsCgvAUanFyearWgyO/HYlyd7zcI600Adj8fgD5dPhV4uxOwsLZ7aUB4V0AKAp7+tQEd4f0zXdq97a3k7dlT0nnXbYfdg5eOb8eAHR/DIZ71v82g71tT9XsaAQYPJhYN1ZiSrRuf1deP8LO77BpML7TY36o2jM7BnPKBAHRk1ty/Nxe1Lc2O9GTFTmKTEXefkgscwoWaeESc9x5os8AXY0NWGOD9gI4SQsYLPY/D09TO5aaUVbQ4cDL/3Hqw34+W1c3FTRC+7iUoi5GNJeHJpu82DY02hk5Ymswv/3lyJX3x4FM9u7DloIt5k6aVIUIgQZAGJkAdv+ETpZLMV7+ytx/rjg5t2+v7+Bvzio6MAgH21JvzmoilRJxyDEZlRF8M4HRiGwaUlqdzwgqp2B6785w5Ud4Qyx75/Th4+/eES3H9ePoIs8OSGcuwbRCP33jg8ftSGT8ICLMDnAYvz9HE/pEUs4OPymaFgHQvgwQ+OjPhjusLBUAYYleyWs5GslkDIZ2By+tBicePcSUnQhf+n64+3wBJRsno2fIHu10xmHE+YJmcvTSvFikmhzMwOuxcbT0Vncj/znVm4dXE23H4W/9xUhZrOnoNLBlv62pvJKSrcvCgH+2tN8AVY3PfWQTjDGZ2V7Xa8sr0aACAS8PDm7fPxwMoCGJRi7K0x4f53DvXo5QqEenIalKFpqlXtDvw3xpljgSCLE+FAXapGgq9OtIJlgUKDAgmK0XlPnpWpiapW8PpZvLmnblQeezygQB0ho0TI5yFdK4NCzIdaKsTzW6tQ0WZHm9WNBIUYBQYF9HIR+CM8iYcQQiYStUyI52+aA7mIj3PCJVvZehneumPBhM+kixSZLfZNuPy1trP7yvdYyIbXy8UQ8nnINyiQlyDHKzfPRXGKColKMd7YXYefvnsY1f1MqgwGWTz7bQV+/sERdMXZ7liag5sXZw95W6J71MW2R1tuogIf3r0IueH/YapGipte2oPaTgeUEiGmpqmRqpFCLuZDJRHgha1n1q/uZLOVe97kIj4EPB5SepnGGI++Oz+L67fWaHYPsPTZ8fgD8EcEpZLCJ/fxSisTckE0s8sLkYCHy2akAgC8/mCP0sUzVZSkRIFBgZwEORbkxu8AEjI8rpmTwX3/7r76qNuSVBJoZSKoJQJopEI8/nVZj4E3TRGv06EG6oDQRYpp4Yz7qg4HfvvJCaw/3oLvvbSb29/vWpaLTL0c960sxKxMLTz+IDrsHi6QF4lhGPzk/O5p4E9tKBuWgUZnqrrDzl0QSFFJMSNDA41MCK1cNGrvyQzD4LsLMrmfVVIhshNkOFB7ZheDJpoxHRHYsmULLrnkEqSmpoJhGPz3v/+Nuv3mm28GwzBRXxdccMGA63322WeRnZ0NiUSC+fPnY8+ePSP0F5CJ5rsLsvDY1SWwuHzYcLINnx5pws6qTuyo7ER5mx1rwk2fCSGEDJ/CJCW+fuAcvHrLXDx21XR8cf8yzMuh0vFI50YELbv660RmMWSNgQwXhmGgkYlQ0WbHprIOLC1IwP9+uBizw/2IbB4/7np9P5c5Eane6MSNL+7GX78qxbQ0NXgMcPOibPzywslndFIT2RYv1oE6AMjQyfDeXQtx7qREHG20oN7kwk0v70G7LVTedd3cTOQmKmB1+7G5rGNQ5a+Rvf/sHj/+9PlJLnvQ6Qvg++fk4m/XlIzI3zPcZmRouAb37TYPrO7hyRLrTbPZzWV7igQ8COL8Aq06YnBVV/bcNbPTMS9Hh8IkBd7YXdtv367BOtpoQXmbvddsJTL+LCtIRIo6FKTeWNqONmt0gPyH5xXg/bsXwezy4fOjLXhxa3Qvua6MOoYBks4gK1Uk4OHJ62dwQ/ze3VeP77++H01mN+bn6JCqluCu5Xnc8v93QRFXIv/c5iqYIiZE76814YInt+C/hxq54F+90YX39g3vZOShOBpRzuvxB3Co3gyT04eHLpnSz72G32Uz0jA5WYniVBUsLh/2VJvw0raegU7SU3x/MgzA4XCgpKQEzz77bJ/LXHDBBWhubua+3nrrrX7X+c477+CBBx7Aww8/jAMHDqCkpASrV69GW9vYba5M4kthkhI5ehl0ciHWH2/F3hojFuXpMTdbi+lpg2tSTQghZGhSw5k9187NgFRE07VPl6yWYGpaqETlWKMVLRY36iJ6yWTp4j+jDgCW5OkxP0eHeTk67KjsBI/Hw9+uKUG+QQEAKG214YInt+KXHx3Fbz85hvveOohLn9mGS5/Zhp1Vod5DB+vN+OvVJXj4kilnnHkQD1NfT6dXiPH4tTOQlxj6X9Z2OnHzK3tgCwelVk1JwswMDfINctz8yh5c+NQW3PjiLuyrMUatp6zVhiMNZvzwrYO4+ZU9eGFLJS59ZhsO1JnBsqFBANPS1FBKxs5kcoZhMCm5u0Tr8me3w+sfmWwYi6v7BD8vUTEijzGckpQSLMjVYU6WlhuCMSVVjWCQRVmrHWVtdmwbhqES5nAQcDQmUpLY4/MYXD071O8wEGTx/oGeQa10rQyFSQokKUXYX2vCtc/t5C4ivHLzXHz6wyV4ae0ciAV9f6ZvONmK29ftxR3r9uLD0x4jL1GBhy+ZAiGfweRkZffvDQp8cf8yyESCqGWvnhXaXpvHj39HTMo+UGvCqRYb3tpTjyUFCdzvn/62vM+psiPtWGN3fzohj0GWXoYMrRRZ+tH9LFeIBUjVSHE8XIabppGios3Woy8g6Ukw8CLxa82aNVizZk2/y4jFYiQnD37K6OOPP4477rgDt9xyCwDg3//+Nz777DO8/PLL+PnPf97rfTweDzye7gaoVuvIN6ElY1d2ghyripPx/JYqGB0+dNg9aLd5oBQLsDCPUv0JIYTExrmTklDRakemXobXd9agpmNsZdQBwMJ8PV4IX62flanFssJEyMUC/Pu7s3HZM9sgEfJQZ3Tizd11yEmQc6Ww09LUMDktSNNI8ehV06NOts5EV7IZwyCuSj81MhHW3ToPV/1zB5osblicXtzx2j489905+MHyfFw2Iw2//PAoKtvtaDCFMlYEvAqsu3UegFAfurv+sx/1nU4EWSDAsthU2t7jcT65d8mo/l3D4VcXTcaNL+4GEOox1WByIncEAmlWd3fG2HmT47/8PkEpxq6qULDW7Qvg3hUFAIBbl+RgX7iE7eVt1VhakHjGj+H2+bkyva7BNmT8u2Z2Bp7+NtT/9L19Dbj7nLyo90uRgIevfnwOzn9iM8pa7Wi2uHHLK3tw3uQk3L40NzwMp/8kh398W47D9aGg0IE6M4wRmXC3L83FdXMzsCBXj+pOB/53uAmXlqRicX4ChL1kut6/sgAfHWqE1x/EqztqcPPibKSopVFluZeWpOJUsxWV7Q7kJcqxvbwD504e/cnXkYGwgw2h7/MNcijEox/+WZCrx4ZwH8KuTMi9NUZu2Bfp3bh/J9y0aRMMBgOKiopw9913o7Oz90ktAOD1erF//36sXLmS+x2Px8PKlSuxc+fOPu/35z//GWq1mvvKyMjoc1lCAGBJfgKy9TKopQKAZbEkX487l+XG1cE8IYSQieV7C7KQqZehrNWOV3bUoKI9NHBAyGeGNFUvlqamqnHupETMydJiT0QmWL5BgRdumoPHr53J/S4yc0cq4uPJ62bgyx8tPesgHQCuFDAeyl5Pl6KW4rXb5mF+jg52bwC7qoy47vmd+OZkCy57Zhs2l3WXofEZ4ESTBU9+UwaWZfHLj46iqt0BX5AFEz6LkIv4kIn4of1ELcbyojMP2MTSvBwdl23LMMAT35SNyON8sL8Bc7K0WJKvx/lTBp9MECuZOhnWTE1GqlqCFquby2g6f0oS1xtsY2k7KtrsZ/wYVW3dFwVMwzScgsS/TL0MC8P9CKs7HHhjd++DBmZnaTE5WYmiJAX21Jjw5y9OoeR3X3F9JU/3ly9OYvYfvkLRr79AbacDaqkACQoRnF4/HvnsJB757CT+ur4U9UYnGIZBdoIcK4oMePzaGVheZOg1SAeEMvPXLsyCRhqaGPtWeHsP1oUC1jIRH4VJStwwLxN1Ric2lrbj48OjP1QiGDFIQicXYXKKEulaKTK0sbngFtlzUibiI10rxc7KvmMyJGRMZ9QN5IILLsCVV16JnJwcVFZW4pe//CXWrFmDnTt3gs/vmSLb0dGBQCCApKToqHdSUhJOnTrV5+P84he/wAMPPMD9bLVaKVhH+jUvR4eaiCbd7RWd+PXFo9szgBBCCImUqBRjQa4eZa12OL0B1HSEPqcydDKuN0+8M6gkMDt9OFBnBgPA7vZBES7BXJSfAI8/gI0/XQ6n1w8+w0DA5yFdK4VEOLzl0F0nkPH6tOUblHj4kmLc9HIog+xUiw23r9vP3e4NN1MPsEC73Yunv63AJ4eaUBXOQBQJePj0h0vQYfPgX5sqsLUidNK1emoKHr6keJT/muEh5PNw3iQDPj3SDJYFtvSSKTgcdlR2os3mQYpagmnp8Z9RIhHyIeTz0GQJBW/rjU4UJCkh4PNw86Js/PHzkwCAV3dU45HLp53RY5xosXHfS4f5tUji261LcpCuleDzYy34w6cnkK2X97hY8ucrpwMAHvnsOEpbQwFhi8uHtS/vhkTIx4JcPW5elA0Bnwd/IIijjRZ0OkIBX48/iGlpKiSpJFHTZT3+IOqMTmTohha8un1pLt7cXYcdlZ042mDB5TPTuNdGSboGfB6DFZMMUEoEsLn92HiqDb5AsM/g30hweP1YVpiIY00WyIR8nGwOvb7uWZE/atsQaUqqins+3L4AGkwuWJxe+PwBCPspW57oxnVG3fXXX49LL70U06ZNw+WXX45PP/0Ue/fuxaZNm4b1ccRiMVQqVdQXIf2RCPl49/sLcfOiLMxIV+PqWenIHuWeAYQQQsjpHlhVCJ1cBKC7z9pY+3y6clY68hLlkIr4+Oi0iZRiAR85CXIUp6oxKUWFfINi2IN0QHfpazxm1HWZkqrCu99fyGVFqSSh6/cLc/V4+44FKE5VQS7iQyzgIRBkuSAdAPj8QTSZXRAL+dhVbYRaKsDMDA0eXD0pJn/LcFk1pftivdXth30EBhuYnKHSO5ZFVHl5PCtOVSFLL4NYwIvqXXndvAzIw1mIH+xvhNnp7WsV/aqLGFxjUA19MAAZu1ZNSUKQZeDwBODxB3Hbur3YWt57kPz/Vk/Co1dNw33n5qMkXYUmsws7Kjvw96/KcPcbBwAAf/j0BI7Um6EU85GmkeCaWel47db5eHHtXLx95wKsnmKASiKAVibk+iIORZJKgktKQlOPbR4/novoVTczUwMgFPRfURQqa7e6/dhTbeyxnpEk4PHw2NXTsfn/VkDAZ5CgEKE4VYVzi2JTas/nMZgfHuAVZEN96vxB4OuTNAOgP+M6UHe63NxcJCQkoKKiotfbExISwOfz0draGvX71tbWIfW5I2Qw5uXokK6VIUEpxqQU5YicKBBCCCFDoZGJ8ODqoqjfZerGRtlrl9xEOaraQ+VOnY4zCxycrXgufY2Um6jA+3cvxP3nFeDDHyzCncty8dpt87AgT4+P71mMl26eA42sZ3N/PgM8+XUZNp1qhUIsgNXth14hGvODWpYXGtD1H+PzGNR2nHk5Z29c3gDXI6rF6sbemtE9gT9TOrkIjSYnEhRitERM51RJhLhmTqiKSCkR4LMjzWe0/mZL9zr1cgrUTTR/vnIaVheHguQefxDPfFvR62tDLODjurmZ4PN4ONxgRVWHE05vEIFgEEcbzLh93V5sKmuHN8DC5gkgN1GBohRluJcdMDdHj3MnJ8Hq9sPk9J3xdOebF2dz339xrIX7fkaGhvs+Muj/9Yno2MJI+/RIE4ofXo/pv10PuycAf5CF2elDUnjKbixElr82mV3Qy4Woi6guIz1NqEBdQ0MDOjs7kZKS0uvtIpEIs2fPxoYNG7jfBYNBbNiwAQsXLhytzSQTyO1Lc/Hi2rm4fWlurDeFEEIIAQBcOycD+Yly8BhAJxMhJyH+J1NGygqX6jZbPNykudEWZOO79DVSilqKH68qRL5BiV9eOJkr0RLweViQm4BdvzgPWx5cjstmpGJuthbpWin8LHCowYKnN1bC5PThoqnJePbGWTH+S86eWiZEejgw7Q+y2DXMmTBOrz+qB5tGJhrW9Y+UbL0cATbUCL68NTp4edPCLMzI0KDT4cU/N1X22TesPx327qF8icqx8ZyQ4SMS8PD0DbOwujgJxakqHKgz4fZ1+1DRZut1+abwQAIA+PDuRbh7eT6y9HLY3H4kqySYkaHBPcvz8Nqt83qcY0VOiPX4zmwi66RkFRbnhwJPkcNhZoQz6gDgnKJECPmhD4CvT7RyF29GQ1fg2+r2o7rDAbPTB4MytgHwyECdgMegwezGu/vqY7hF8W9MB+rsdjsOHTqEQ4cOAQCqq6tx6NAh1NXVwW634//+7/+wa9cu1NTUYMOGDbjsssuQn5+P1atXc+s477zz8Mwzz3A/P/DAA3jhhRewbt06nDx5EnfffTccDgc3BZYQQgghZDzj8Rj8+3uzsf3n5+LAQ6uwdlF2rDdpSFLUUhQkKZCulaDB6ERpS+8neyNpLJS+DhbDMMjUyTEtTQ21VIhMnYwrd2QQGiaRopVGnQCPZUvyErgA646K4W147vYHo37uLVsxHmUlyJBvkCNdI8HeGmNU0CE3UQGNTIhAkEWj2YVvTw29nM0UUTKbpIpd1g+JnVCwbib0ChF8ATbcg24vN9gmUmNEoC43UQ6lRNDjSysX9TqkL3Kq8Omvxy4vbavCPzaU4akNZTjSYO51mVsX50T9nK6VwqDs3ndVEiEXnGo0u7g+caOh2eLq8buulhaxMjlFxbVXAAMsyNFCyGdwx2v7RjWIOZaM6WES+/btw4oVK7ifuwY6rF27Fv/6179w5MgRrFu3DmazGampqTj//PPxhz/8AWJxd0S5srISHR0d3M/XXXcd2tvb8dBDD6GlpQUzZszAl19+2WPABCGEEELIeJVvUMZ6E84Yj8fgrnPycP/bhwC4sbmsDUXJo/v3BMORunEQp+PcvjQ3Kjvlia/LsKuqEwty9fjxqsIYbtnwOneSAW/tDWV67A9Pcxwu7tMyeDTSsRGoMyglSFXLsLmsHQ1mNzrsXiRGZOjctDALm8LDN17bWRNV9jcYFld3VlJKDMvzSGyJBHz888bZuO65nTjeZEWj2YV73zyAl26eC6Wk+7XSlVEnE/Ghlgp7vDf1RxzRauj01+OLW6uwo7IDG0+1oyt0tLvKiDfvWNBjPSuKugdGdK3r9nV7sSBXz23LqilJ2FoeijN8faIVU1JHp499k7lncFMd44sCfB6DeTl6fHOyFb4AiwALlLbaUdpqR5vNQwH6XozpQN3y5cv7jcCuX79+wHXU1NT0+N29996Le++992w2jRBCCCGExEhxqho5ehlYAEcbR7/8tav0daxMyz0Tkdkr48nsbB3kIj4c3gDMTh/qOp3I1A9tMmRfTg8MxPrkeSiWFiSgttOBIAtsPNWKa+dmcredU2hApk6GOqMTW8s7UNluR17i4Evmnd7uQF2GdmwNryHDSyEW4JWb5+KKf+4ACxa1RidufXUv1t06DzKRACzLchl1qRppr1lz/ZEIIgN1QeyvNeJHbx+CxeWF3RMAywJ8HiAXCxFk2aj+iZvL2vG39aUIBoOwefxwe/3g8YBEuRhCPg8nm62oN7mwZloK0jRSrJychIc+Pg4A+OZkK+5fWTAMz9DAujLqhHwGM9I14PEYZOti/7q6fm4GFubpsSBXh52VnWi3ecCywLen2nDDvMyBVzDBjOnSV0IIIYQQQk6Xb1BAwOehptOJ9cdbuAy30TKeSl/7Ml777OrkIvgj9pcvjp3ZgITeeE4rtVOPkYw6INRjqqbTiTqjE/trzVG38XkMvrcgi/v59Z21Q1q3xdXdt28sBS/JyDCoJFh361zIRQK0Wj3YW2PC91/fD48/AKPDy72OuiZWD4U4svTVF8CRBgvqTS5Y3QEEWYAF4A+G9klbuMfbsxtDgygP1plwtNGC48021Bld8AWBYBBw+QLg8xk0mt0obbGhoi3UxzFVI0VxOIuuvM2GXVXDW0rfl+ZwRp1WJsLeWhN2VxsRD8WlK6ck4bYlOShMUiJTJ0NNpxO1Rife2lMX602LSxSoI4QQQggh487dy/MwL1uHbL0Mf/z85Kg+dldG3VCzPUh8WFKQwH3/+dHhC9RFZtQJeMyY6uuXqZNiVqYGBQYF2iOGP3S5Zk46xILQqeUH+xvg8Ph7LNMblmWjAtpjpRyYjKx8gxJPXDcDyvCU5K3lHbjvrYOobO8eZpJ6BoE6hViAknQ1CpMUqDc6sW5nDdRSAZIUIkxNVeHKmWlYmKvDnCwNvjM/AylqCZ7bXImHPzmGz480QyrkcZOh0zQSfG9+Fv52TQnuP68AJelqZOllqOt0cI/309VFuHh6Cty+IO598+CITzq1uX2whV97kdnO8dIP86fvHcbM33+N/3v/CB69aioydVK0WNz4wRv7Y71pcWd85aoTQgghhBAC4LxJSXjg3cMAALPTC6VYgHtW5MHi9uOjAw3YPcwTPSN12EKBjNNLHcnYII3oY3W4wYLqDvuwTD92ebv3h8jHGAtUUhGqOxwwOX29lnRrZCJcPiMN7+yrh0IiwEcHGvHdhVm9rCkawzAoTlVhb40p/DjxEVAgsTc1TY1Xb52L7764B2qpEDurOnGo3szdnqYZel8zlUSIww0WAACfYdBkdsPrD+KcklT844aZAEK96gDA6vKh2eIGnwHKWmwob7NHZaY1mt34yepCaGQi7KjswOEGC/gM0GjqHuawMFePZ78NZeR12D246eXd+ODuRdArRmYKa0tEqa5MJADDACwbP9m7Do8f9nAgcVKyGm02D9y+IBpMLhgd3pgPvYgnlFFHCCGEEELGHbVMiA0/OQfT0lTosHvx5IZy7K81Yc4j3+Cx9aU43mSFze0fka/p6WrMzdZi7SACFST+/PqiKVicp+d+fmlrzbCs1x6RZSYXj718iVlZWkiEPJS22noNQt+6JBtzsrVotrjxz00V8PgHF6jusHvBZ4BMnWxc93UkQzc7S4dXb5mLnEQ5rC4/Wq3d2ZxnklEXmVlmdHrh9QeRqBBj7aLu9+qu4RRrF4X2Z4ZhsLPKCCGfwcwMNfb+aiXuWZGHmxZkQSMLBZZmZWoxN1sLPp+HN/bUcX30JUI+Xlw7B/mGUKC/ptOJp7+tGLFJp00RgTo+jwHLAolK0RkFNUdCZLbytooOfHzPYqRrpTjeZKWsutNQoI4QQgghhIxLeYkKyIR8iPg8GJRivL+/AelaKfgMA6mIHzUQYTi/VFIh1FIhtJQdMCYlqyWYm6Pjfv7fkSZYnL5+7jE47bbuIMNYzBxRSYRIkItRnKJCg6lnCV9Rsgqq8HTOJosbt766Fw99fAx7Bshetbh8CLAAGxedtEi8mZ+rxx8vn4opKaF+b3yGgV4uQrp26ENeJEI+shNk0MkEcLj9SFCIYPP4kKHruS69QgyFWACDShwqeWUYZOjkSFSKoZWJoobMSIR8yEUCJKnEyNHLYXR4uds0MhHW3ToPCQoRCgwK7Kzs5KbBDrdmc3c2n1jAQ4FBAV+AjZupqkvzE7nvt5V3oChZBZZlka2XQy4SoCqitHmiG3uXcgghhBBCCBmkt7+/ENN/+xXabB68f6ARALBysgEvrp0b4y0j8exHKwvx6o4amJ0+WFw+bCxtxeUz089qnXXG7uBWvPSMGooMrRQfHXShwexCbacT+QZlj2XuP68A355qAwBsr+jE9opOHKwz438/XNLrOlmW5YZJxEt5Hok/uYkKfPiDRfjjZyextCAB5xcnn/G65mbp8N7+BgCA3RtAll4Gg7L3QNart8wDADzxdRkA4MerCgGg1yE6KRopNpW1ox4u1JtcUeWtaRopfrSyEL/+7zEAwBfHWrCsMLHHOs7WJSWpmJauRrPZjT99fhJVHQ4I+QzSziCoORIy9TJuQvT+WhNc3gB+f9lU3LZuHyrb7ZiSqsJPzi+K9WbGBcqoI4QQQggh4xbDMDi/OBlJKjE0MiH0chEye8meIOR0qyYnoasS8+9fl2H3WU5tNEdk5WXp5We1rliYkanByskGFBoU+NfmSuyo6JkVVJKhQYq6O+gh4jOo7rDjmn/v6HWd63bUQCURwKAUIyNOggkkPkmEfPzh8qlnFaQDgHk5OhQlKaCRCpGoEKEwqWfA+XRd2dL9mZmhwdRUFQxKMX7wn/244tntsLm7X/NXzkqDJDx19usTLQiMwDRyuViA4lQ1zptsQIpGijnZWizOS4irkvLF+aHyV28giN3VnSgwKLG0IAF5iXJsLm0bMAN3oqBAHSGEEEIIGdduW5KNVqsHZqcPLl8AD11SHOtNImPA98/JRde5dL3RhU1l7We1vqqO7rKu3ISxF6g7d1ISbl2Sg7I2O/bVmPDUhvJelwtE9N/yBljYPQHsrTHh2Y0VPZbdX2uCyelDm80Dm3twk2IJORvXzMnA+h+fg7WLsvGd+Vl44aY5A96nq29df1ZOScKxJivabB40Wdw4WG9GTUd3Fq1MJMA54Sy6DrsX+2pGLiDVbvdge0UH9tWY4q6gfGlkn7ryDmTqZbh1SQ4q2x040mjFU9+UxXDr4gcF6gghhBBCyLiWpZfhmtnpuH5uBr6/rP+TLUK65BuUKDB0T3utNzrOan2Rk16LkgfO4olHRUlK5BsUUEkEqDf27FMHRE+3lYn4UEn40MqE+PBAAx798lTUss0Rze8NqpGZhElIbwaTJTcUWpkQdy3LRZpGAhE/1Eev/rRejmumpnDff3GsZdge+3T/+KYc87J1WFaQgGvmnF3J/nBblKcHE07w2xbOyi1OUWFJvh46uQgNJhf+/lVpDLcwPlCgjhBCCCGEjGtysRB/vaYEf7lqOu5fWRjrzSFjyJWz0rjvN5W2I3gW5WpaWfcAiUljNFCnV4hhUIphdfvRZHHDFNE0HwC8vgCXGScT8uH0BgAwMDl9qGx3YPtp5bKRAzYMSgrUkdEzmCy5oWAYBj+/cDLm5+jhDbDodHhR3RE9HGHFJAOE/FCUav3xln7fT7481oLKNjv+tr4UXn9wwMdnWRYvbq3CJ4ebsOFUG/bUGLG/1oSLpqUMeN/RpJGJMC1NDQA41WJDm80Ng0qCF26aC6PDi1qjEx8eaBixybhjBQXqCCGEEEIIIaQXl8/sDtQ5PAG8uqP6jNfljMw0E4/dmX5XzExDYZISGpkQ7+2vj7rtoqe3IlUjwcI8PRbl6wEAVrcfCXIR0rVSuH2BqOU7w4E+AY9BfkT2IiFj1a1LcjApWYkEhQh1RlfUbWqpkOvR1mxx43CDudd1NJicuOs/+3He45vxzMYKvL6rdsDHtbr8eOSzk7jvrYNotbqRrpFiaUEiGCZ++tN1WRJ+DlLVEjSYQs+RVMTHd+ZlQiMVotXqQWX72WUwj3UUqCOEEEIIIYSQXqSopZiSogIAsAhlgJwpHhM6URcJeFFlsGNNvkGBslYbfP4ANpe2o7YzdEJtcnjA5/FgdvpgtHvxpyumQREOSHY4vGgwhabFdvEFgrB7Qtl3/iALtVTU88EIGWMy9TKcarHBH2Th9PTsu7hmavcwjC+P917++sXR6N8/9U1Zj+zV0zVZuoOCUiEf7XZPP0vH1ncXZOHbn5yDL3+0FGJBd0hKJxfB4vJBJuKjwdR7af1EQYE6QgghhBBCCOnDpSXdpWM7K89s8qvLG0Cj2QWLywchj4mrKYxDNS1Nje0/OxduP4vtlZ347SfHAQAbS9txqsUGpzeA6+amw6CS4EcrC6Lu6/EHuay6Nlt0ICFBQYE6MvapJEKkaSQwO33YV2vqcfuqKcnc6//dvfVo7CUg9enR5qifrW5/n8NbujRHBOoc3gA8/iDyEuMzSzVFLcEvPzqKmX/4Brev28eVueYmysEwob+3uoMy6gghhBBCCCGE9OK6uRnc961WD+xu35DXsW5nDVfKJRnD2XQAIODzkKqRIEEhgkYmRLvdgxe2VOFksxVZehmSVGLkhgMEaxdlozAp9L1UyEOySoyOcKZPq9Udtd4EBfWoI+NDvkGJ4lQVMrRSuL3RWXU6uQiXTE/BykkGmJw+rHx8C/6xoZwLYNcbnThcbwYAFBgUXPbtaztrcKShZ+CvS5O5+/WUqZOiwKBAhk46zH/Z8GAYBgIeD4Egi2aLGzXhTNvsBDnyDQpkaKX43+EmOHrJSJwoKFBHCCGEEEIIIX3QysXQyYQAAG8giB+/e3jIQyUq2rpLZpVS4bBuXywwDIPdv1wJADjWaMVj60/hha3VqO10oihJieVFBgCAkM/Dn6+cBp1MCJcviBarB7uqQlmJbacF6tSysf+8EAKEStyPN1mxp8aEBrOrx+1PXj8TlnDA3+UL4NmN5Xh+SxVsbh8+i8imu3xmGu5engcAYABc8exOfOeFXfjoYM9hCy0RE5TrjC6Ut9mRrpWNwF83PLp6WALAjsrQkJlZmVrMyNCg3uTCgTrzhM6qo0AdIYQQQgghhPRjWrqa+/7rE604528b8afPTg76/uWt3dMfZ0Ssa6yblalBvkEOlUQApZgPnUzEZdN1mZ2lQ1HElNvHvy6Dy+vH1vLuCbCFSQooRGN3wAYhkYpTVZifo8OcbC0ajD0DdQDw4k1zccvibPAYIFuvwONfl+G+tw7i08NN3DIXT0/BHUtzccO8DKyYZECAZbGjshObS9tx6TPb0RgRBIzsUTctTYU52Vpk6uMzow4AFuUlcN/vqOhuKTA5RYVMnRQZOikazBO3Tx0F6gghhBBCCCGkH4HTMujqjS6s21nTI6ulNyzLRk0wtI+jcq6Xb54Hn59Fp8MHmyeARKUYv720uMdyV81O575vMrux5NGNeGN3Hfc7i8sH3hju20dIJL1CjN3VRuyrMaGqj6wwtUyIhy8pxqs3z0VLOLt0Y2k7jjVZAYR6QWbp5ZCK+PjzldMxOUWFdG0o8PbNyTYcbbTg6n/tQHlrKFu3OaL09WijFYfrzUjTxG9G3bQ0NZSSUHB+Z1Unl6WcqBSjzuhCvdGFqgk8+ZUuWxBCCCGEEEJIP+47txBycRX215jQ4fCCxwBCPoN6owOZ+v4btrfbPFHBOdk4yxz72QVF4cEQDCalKHtdRn9a/7nOiAmWWToZZmRqRnALCRldqRoJpqapEAgCDm//gfllRQb8+7uz8b2XdsMfcUHgoukpUcv95PwiPLCqENsrOvHr/x6F3eNHs8WNK/+1Az85vwhN4ew6HhPKStPLRXE9tIbPY7AgV4+vT7TC6PDiVIsNU1JVyNbLMCtTA7vHj1aLe+AVjVOUUUcIIYQQQggh/ZiXq8Nz35uD75+TC5VEgCAL2D0BvLmnDv5AEC9sqcTTfUxlrGizR/0sF4/tYRKnu3B6Km5enIObF2djQa6+12U0EX35luTrUWBQoCgpFNSrNTrhDwyt5x8h8UwvF+NYoxUnm62oNw5cvrkwT48/XjEVQGjYhFTIx0XTUnosxzAMlhQk4P27F2FqmgoAkJMgx28/OY7a8OMEWeB4kxUW19CH3oy2RXk9+9Rl6OQ4UGdGWasd9X2UDU8E4+tyDiGEEEIIIYSMkDuW5SFZLcUP3zoIAHhhazWe21wNlrs9t8dU14r26ECdVDjxTsGSVGJk6KRosbghFwvw5h0z0WJx4ZJntgOgQRJkfNFE7M9m5+ACZtfNzYRSIsTKyUkIsmy/06ETFGK8dccCvLu3Hn/7qoz7vUIs4LJ31TLRGW796FmcH9GnrrITty/NhVoqxLQ0FSraHChttfVz7/GNMuoIIYQQQgghZJDWTE3mSsoCwdA0RgDQSAT44ZsH8PMPDkctH5lRZ1CKkaiMLgOdCAxKCUwOL1LVUvAYBolKMcwuH/IS5UjXSpGsksR6EwkZNmqpEAalGNl6GXjM4MtPL5yWApGA12+QrotSIsStS3Lw5h3zceWsNGhkQrx5x3zkJsiQoZUiTR3/r6kCgwIJ4bL43VWd8AWCAELTonVyEfRyIdzeQCw3MWYm3uUcQgghhBBCCDlDAj4P185Jx1t76gEAyWoJmixumN1+fH2yDQDwu8umQiwInWxHBurabJ5xV/o6GAI+D4lKCao7HGi3e8CyLJrMLm7IhlpKGXVk/JAI+fAGgmjr9MA3gmXdDMNgZqYWMzO1cPsC2F9rQlVHqARWIYn/UA/DMFiUp8f/jjQhJ1GOdpsHqRopMrQyHKgzo9HsQoPZhXxD/31Ax6P4/+8RQgghhBBCSBy5aFoqF6jzBoJIUUlgcfvg9QeRpBLj/Mc3wxdkoZYI0WAK9VkS8JhQs/QEeSw3PWZmZWqglQkh5PPQaHJhb40ROQky+AMspqSqYr15hAyrWZkamJ0+KCUC+PwBCAUjG6CXCPlotboxL0cHrz+AvMSxEdx68IIi/P6yYkiEfJxotiJVI0VhshIzjWoIBXw0mJwUqCOEEEIIIYQQ0r8FuTpoZUKYnD44PAEc+M25+PfmSu72f3xbDpYFmhCaWigR8uD2BXGkwYIMrSxWmx1TcrEAB+rMAID9dSa8v78RQKj8bW62LoZbRsjwY1lw+7vV7YdeMfKZtKWtNuypNgIAfnK+dMQfbzika2U43mTBj985hEaTC1/cvwwGpRgH6y0AQq0GlhfFeCNjgHrUEUIIIYQQQsgQCPg8rC5OBgC4fAFsKm2DUiLgvtI1EiQqRAi3soPbF4RWKkRuohxpmrFxAj3cJierMD9Hh5J0NTacbMWcLC2y9TIUJStjvWmEDDtNxDCH0ZrAanP7MCtTg/k5OmTqxs4Fgf/sqkVZqx0ObwA/ee8QMvUyzM/RYWamBh12T6w3LyYoo44QQgghhBBChujCaSl4e2+o/PWjg414/qY53G23L83F6ztr8JuPj3O/M7l8yNDLIBJMzFyJRKUYu8PZPnaPn+tPt+7WebHcLEJGRGTfRZPTO+KPx7IsDtZZcLLZCh6DMXVB4FcXTcG2ig7UG13YW2PC1rIO7r1CPQZ67Y2EifkpQQghhBBCCCFnYWGeHolKMaanq7GlvB1fHG3mbnN4/HhqQzn38wXFSbh2Thoeu3p6LDY1LmTrZShOVSFZLUGn3YN0jRQz0jVIHQPTKQkZqgKDAkVJSqilQjSZ3SP+eMebrGgwOqCTCTE1TQ0Bf+yEehRiAf5+zQx0Dch9bkslpqWpkKGVosU6MTPqxs5/jxBCCCGEEELihJDPw4s3zcapZhvcviDue/sgtpS1o8PuwV3/2Y8OeyiL5qJpKZiTrUNhkgqTkifu0IR0nQzHm6ywOr3wB1m02z0wubwj3mSfkFhQSAQobbVBwGfQYhm5QJ3XH0RFmw0vbq1EkAWMTh90ctHAd4wz83J0+P6yPKilQjx+7Qx4/SxarG54/UH4A8FYb96om5h5hIQQQgghhBBylqalaXDpjFS8v78BvgCLW17ZC4YB/EEWU1JUKGu14aeri5AzQSe9RpII+SgwKFDeZud+V5RE/enI+HT+lCQYlGK02Tx4e28d7liWOyKPU9Fmx4X/2Mr9zAC4dk76iDzWSPvxqgLcsjgbSSoJvj7RitJWG6o6HGixupE+wYbwUKCOEEIIIYQQQs4Aj8fgL1dOg83tw/rjrVBJBTA5Q43jBXwGG3+6HBljqKn7SMtNkMPjC8Dk8kEnE9FzQ8YtqUiALL0MeoUIaokQwSALXtd0mTMUDLJ4d1899lQbUdZmg0IkwMopBqRrpGg0u8BjAJlIgEzd2LwwIBbwkaQKZdjmJspRkqFBlk4Glo3xhsUABeoIIYQQQggh5AwJ+Dz844aZePKbcizNT8B9bx/E1bMzcP3cDApEnWZVcTLWn2gFANjcfqyakhTjLSJk5KilIuytMQEAWqxupJ7lgIc2mwc///Bo1O92hYcu3LIoG6rwAIupaeqzepx48KOVhfjRysJYb0bMUKCOEEIIIYQQQs6CWMDHzy6YBJZlsePn503Yya4DmZqm4soBgejJmISMN9PSVKjtsKPF6sEdr+3DNXMycPOi7CGv55lvy7G3xohTzTYkKkRwePzoSjLL0sth9/iRopGAx5xdxh6JHxSoI4QQQgghhJBhwDAMRAI6We7LpGQV7B4/97NaSqejZPzSykUob3cACE1lVR5rPqNA3Ss7atAZHk4DAHqFiPv5VIsNOQly3Lksb1i2mcSHMX2pZ8uWLbjkkkuQmpoKhmHw3//+l7vN5/PhZz/7GaZNmwa5XI7U1FTcdNNNaGpq6nedv/3tb8EwTNTXpEmTRvgvIYQQQgghhJDx7yfnF+KH5+bjwdVFY3I6JSGDtSQ/AT9bXQSVRAC5iA8Rf2jhl9IWG9Y8tRVyIR8ZGgkKkxTITZRjYY4OszM1EPEZKCUCLMrTj9BfQGJlTF/CcDgcKCkpwa233oorr7wy6jan04kDBw7gN7/5DUpKSmAymXD//ffj0ksvxb59+/pdb3FxMb755hvuZ4FgTD9NhBBCCCGEEBIXblsyMtMvCYk3uYkK3L0iH//4tgIuXwD1Rueg7mf3+CEX8fHK9mqcbLYCAM4pTMTSggQAwO1LczH3kW/gDbDwBvzgn+WQChJ/xnQEas2aNVizZk2vt6nVanz99ddRv3vmmWcwb9481NXVITMzs8/1CgQCJCcnD+u2EkIIIYQQQgghZGI5pzARO6s6UWN0wu0LQCLk97v88r9uhMcfhE4uwtxsLaakqHDPufkwKCXcMm/cMR9KiQA+fxCCIWbqkfg3of6jFosFDMNAo9H0u1x5eTlSU1ORm5uLG2+8EXV1df0u7/F4YLVao74IIYQQQgghhBAysYkFDIR8BkVJStSb+s+qa7W6kaaRQibiIxhkoZYKkaGTRQXpAKAwSYkUtRSZevlZT5Ml8WfCBOrcbjd+9rOf4YYbboBKpepzufnz5+PVV1/Fl19+iX/961+orq7G0qVLYbPZ+rzPn//8Z6jVau4rIyNjJP4EQgghhBBCCCGEjCFZejk67F6carGhrrP/QN2WsnYcbrCg1erB7cty8eLaubh9KZWLTzRjuvR1sHw+H6699lqwLIt//etf/S4bWUo7ffp0zJ8/H1lZWXj33Xdx22239XqfX/ziF3jggQe4n61WKwXrCCGEEEIIIYSQCS43UY5paSpIhXy0Wt39Lmtx+bjvtTIatjJRjftAXVeQrra2Ft9++22/2XS90Wg0KCwsREVFRZ/LiMViiMXis91UQgghhBBCCCGEjCPpWhmONobaY01O6T8eERmo00iFI7pdJH6N69LXriBdeXk5vvnmG+j1Qx9bbLfbUVlZiZSUlBHYQkIIIYQQQgghhIxXmToZ5uXoMCdbC4c30O+yDo8fMzM0WJKfAIOSkoEmqjGdUWe326My3aqrq3Ho0CHodDqkpKTg6quvxoEDB/Dpp58iEAigpaUFAKDT6SAShdJIzzvvPFxxxRW49957AQA//elPcckllyArKwtNTU14+OGHwefzccMNN4z+H0gIIYQQQgghhJAxK1EpxtEGC1y+AIx2b7/LlrbacLDeDABIUkn6XZaMX2M6ULdv3z6sWLGC+7mrT9zatWvx29/+Fp988gkAYMaMGVH327hxI5YvXw4AqKysREdHB3dbQ0MDbrjhBnR2diIxMRFLlizBrl27kJiYOLJ/DCGEEEIIIYQQQsYVhmGwvCgRZa02GB1eBIIs+Dymx3JNZheON1qgkwuRpJJAI6PS14lqTAfqli9fDpZl+7y9v9u61NTURP389ttvn+1mEUIIIYQQQgghhAAAgiyLynYHkpRiNJldyNDJ0GByQi0Vgs9j0GHzoqbTAaGAj3abBwUGJRimZzCPTAxjOlBHCCGEEEIIIYQQEs8Kk5T49lQbWm0e1BmdyNDJcPd/DuBoowUAkKQSY1FeAtptHijEfPz6oskx3mISSxSoI4QQQgghhBBCCBkhCUoxktUSJMjFMDlDferUUgFkIh78ASBDK0MwGMSUFBU6HR7kG5Qx3mISSxSoI4QQQgghhBBCCBkhySoJ6o0u1BtdqO10wuz0YltFJ3f7vloTKtqFMDt9SFKJIRXxY7i1JNYoUEcIIYQQQgghhBAyQjTS7sEQFpcP/9lVi2UFCajrdCLAshDyGchEAkxNVaMwibLpJjoK1BFCCCGEEEIIIYSMEHXEBFez04tvT7Whos0OPo9BIBg9BPNPV0wb7c0jcYYCdYQQQgghhBBCCCEjRC8XYVGeHlaXDyebbZAKeViUp0NRkgp5BgU2l7Whss2BNK0UqRpJrDeXxBgF6gghhBBCCCGEEEJGSIJCjAN1Jrh9QWikQphdPgDAzy6YjJIMDdy+AFgWWJCrh4DPi/HWklijQB0hhBBCCCGEEELICGEYBgtz9dhfa4LZ5YNCzEdhkgJFyaF+dLcvzcXtS3NjvJUkXlColhBCCCGEEEIIIWQE8Xmh8IuQz8DlDUInF0MipOmupCfKqCOEEEIIIYQQQggZQf/67iwI+Tw88XUZWJbFfecVxHqTSJyiQB0hhBBCCCGEEELICBKGe88pJaEwDPWiI32hQB0hhBBCCCGEEELIKKBedGQgFMIlhBBCCCGEEEIIISQOUKCOEEIIIYQQQgghhJA4QIE6QgghhBBCCCGEEELiAAXqCCGEEEIIIYQQQgiJAxSoI4QQQgghhBBCCCEkDlCgjhBCCCGEEEIIIYSQOECBOkIIIYQQQgghhBBC4gAF6gghhBBCCCGEEEIIiQMUqCOEEEIIIYQQQgghJA5QoI4QQgghhBBCCCGEkDhAgTpCCCGEEEIIIYQQQuKAINYbMB6xLAsAsFqtMd4SQgghhBBCCCGEEBJrXTGirphRXyhQNwJsNhsAICMjI8ZbQgghhBBCCCGEEELihc1mg1qt7vN2hh0olEeGLBgMoqmpCUqlEgzDxHpzhoXVakVGRgbq6+uhUqlivTlkDKB9hgwV7TNkqGifIUNF+wwZKtpnyFDRPkOGivaZiYNlWdhsNqSmpoLH67sTHWXUjQAej4f09PRYb8aIUKlU9OZBhoT2GTJUtM+QoaJ9hgwV7TNkqGifIUNF+wwZKtpnJob+Mum60DAJQgghhBBCCCGEEELiAAXqCCGEEEIIIYQQQgiJAxSoI4MiFovx8MMPQywWx3pTyBhB+wwZKtpnyFDRPkOGivYZMlS0z5Chon2GDBXtM+R0NEyCEEIIIYQQQgghhJA4QBl1hBBCCCGEEEIIIYTEAQrUEUIIIYQQQgghhBASByhQRwghhBBCCCGEEEJIHKBAHSGEEEIIIYQQQgghcYACdYQQQgghhBBCCCGExAEK1MWZP//5z5g7dy6USiUMBgMuv/xylJaWRi3jdrtxzz33QK/XQ6FQ4KqrrkJrayt3++HDh3HDDTcgIyMDUqkUkydPxlNPPRW1jg8//BCrVq1CYmIiVCoVFi5ciPXr1w+4fSzL4qGHHkJKSgqkUilWrlyJ8vLyqGUOHDiAVatWQaPRQK/X484774Tdbh9w3UeOHMHSpUshkUiQkZGBxx57LOr248eP46qrrkJ2djYYhsGTTz454DonAtpn+t5nPvzwQ8yZMwcajQZyuRwzZszA66+/PuB6xzvaZ/reZ1599VUwDBP1JZFIBlzveEf7TN/7zPLly3vsMwzD4KKLLhpw3eMZ7TN97zM+nw+///3vkZeXB4lEgpKSEnz55ZcDrne8m6j7jNvtxs0334xp06ZBIBDg8ssv77FMc3MzvvOd76CwsBA8Hg8/+tGPBtzeiYD2mb73mW3btmHx4sXQ6/WQSqWYNGkSnnjiiQG3ebyjfabvfWbTpk29Hs+0tLQMuN1kBLAkrqxevZp95ZVX2GPHjrGHDh1iL7zwQjYzM5O12+3cMnfddRebkZHBbtiwgd23bx+7YMECdtGiRdztL730EnvfffexmzZtYisrK9nXX3+dlUql7NNPP80tc//997OPPvoou2fPHrasrIz9xS9+wQqFQvbAgQP9bt9f/vIXVq1Ws//973/Zw4cPs5deeimbk5PDulwulmVZtrGxkdVqtexdd93Fnjp1it2zZw+7aNEi9qqrrup3vRaLhU1KSmJvvPFG9tixY+xbb73FSqVS9rnnnuOW2bNnD/vTn/6Ufeutt9jk5GT2iSeeGMpTO27RPtP3PrNx40b2ww8/ZE+cOMFWVFSwTz75JMvn89kvv/xySM/xeEP7TN/7zCuvvMKqVCq2ubmZ+2ppaRnS8zse0T7T9z7T2dkZtb8cO3aM5fP57CuvvDKUp3jcoX2m733mwQcfZFNTU9nPPvuMraysZP/5z3+yEolkwG0e7ybqPmO329m77rqLff7559nVq1ezl112WY9lqqur2fvuu49dt24dO2PGDPb+++8fxDM6/tE+0/c+c+DAAfbNN99kjx07xlZXV7Ovv/46K5PJot6LJiLaZ/reZzZu3MgCYEtLS6OOawKBwGCeWjLMKFAX59ra2lgA7ObNm1mWZVmz2cwKhUL2vffe45Y5efIkC4DduXNnn+v5wQ9+wK5YsaLfx5oyZQr7u9/9rs/bg8Egm5yczP71r3/lfmc2m1mxWMy+9dZbLMuy7HPPPccaDIaoF/SRI0dYAGx5eXmf6/7nP//JarVa1uPxcL/72c9+xhYVFfW6fFZWFgXq+kD7TO/7TJeZM2eyv/71r/tdZqKhfaZ7n3nllVdYtVrd799AaJ/p733miSeeYJVKZdRBP6F9JnKfSUlJYZ955pmo+1155ZXsjTfe2O/fNdFMlH0m0tq1a3s9gY50zjnnUKCuD7TP9O+KK65gv/vd7w5q2YmC9pluXYE6k8k0qPWQkUWlr3HOYrEAAHQ6HQBg//798Pl8WLlyJbfMpEmTkJmZiZ07d/a7nq519CYYDMJms/W7THV1NVpaWqIeW61WY/78+dxjezweiEQi8Hjdu5ZUKgUQSsHuy86dO7Fs2TKIRCLud6tXr0ZpaSlMJlOf9yM90T7T+z7Dsiw2bNiA0tJSLFu2rM/1TkS0z0TvM3a7HVlZWcjIyMBll12G48eP97nOiYr2mb4/m1566SVcf/31kMvlfa53IqJ9pnuf8Xg8PUrqpVJpv+udiCbKPkOGD+0zfTt48CB27NiBc845Z1jXO9bRPtPTjBkzkJKSglWrVmH79u3Dsk4ydBSoi2PBYBA/+tGPsHjxYkydOhUA0NLSApFIBI1GE7VsUlJSn/XjO3bswDvvvIM777yzz8f629/+BrvdjmuvvbbPZbrWn5SU1Odjn3vuuWhpacFf//pXeL1emEwm/PznPwcQ6q/R37p7W2/k45KB0T7Tc5+xWCxQKBQQiUS46KKL8PTTT2PVqlV9rneioX0mep8pKirCyy+/jI8//hj/+c9/EAwGsWjRIjQ0NPS53omG9pm+P5v27NmDY8eO4fbbb+9znRMR7TPR+8zq1avx+OOPo7y8HMFgEF9//TU+/PDDftc70UykfYYMD9pnepeeng6xWIw5c+bgnnvuoc+nCLTPREtJScG///1vfPDBB/jggw+QkZGB5cuX48CBA2e1XnJmKFAXx+655x4cO3YMb7/99hmv49ixY7jsssvw8MMP4/zzz+91mTfffBO/+93v8O6778JgMAAA3njjDSgUCu5r69atg3q84uJirFu3Dn//+98hk8mQnJyMnJwcJCUlcZH/4uJibr1r1qw547+N9ET7TE9KpRKHDh3C3r178cc//hEPPPAANm3aNKR1jGe0z0RbuHAhbrrpJsyYMQPnnHMOPvzwQyQmJuK5554b9DrGO9pn+vbSSy9h2rRpmDdv3hndf7yifSbaU089hYKCAkyaNAkikQj33nsvbrnllqgMiYmO9hkyVLTP9G7r1q3Yt28f/v3vf+PJJ5/EW2+9NeR1jFe0z0QrKirC97//fcyePRuLFi3Cyy+/jEWLFtEQkliJde0t6d0999zDpqens1VVVVG/37BhQ6+145mZmezjjz8e9bvjx4+zBoOB/eUvf9nn43Q1Of7000+jfm+1Wtny8nLuy+l0spWVlSwA9uDBg1HLLlu2jL3vvvt6rLulpYW12Wys3W5neTwe++6777Isy7I1NTXcehsaGliWZdnvfe97PWrlv/32WxYAazQae6ybetT1RPtM//tMl9tuu409//zz+7x9IqF9ZnD7zNVXX81ef/31fd4+kdA+0/c+Y7fbWZVKxT755JN9/l0TEe0zfe8zLpeLbWhoYIPBIPvggw/+f3v3D9LWGodx3FvEpIHWf7SxCkpRLLYgFBcDgmKdCiJOijSIW7WDFXQIIiIFURCK1rqoCILFwYK6KUXEqYN6aP1DjQQnKYiDXSpK9bnDxVyDHn29CPdw8v1AlnNeXn95eUjkl8P76unTp7bvL57EW2bOY4+6/4bMVNnWfN67d++Un59vNNbtyEyVbc3ntba2qri42GgsbheNOoc5PT3VmzdvlJmZqXA4fOH+2QaXU1NT0Ws/fvy4sMHl+vq6Hj58qLa2Ntu/9enTJ3m9Xk1PTxvXlpGRob6+vui1X79+xWxweZnR0VH5fL4rN6Y823z5+Pg4ei0UCnGYhAEyY5aZMw0NDSotLTWq363IjHlm/vz5oydPnqilpcWofrciM9dnZmxsTB6PR/v7+0Z1ux2ZMf+cOT4+Vm5urkKhkFH9bhWvmTmPRt3NkJmbNV26urqUk5NjNNatyMzNMlNRUaHq6mqjsbhdNOocprGxUcnJyVpcXIw5Fvn379/RMa9fv1Z2drYWFha0vLysQCCgQCAQvb+2tqYHDx7o1atXMXPs7e1Fx0xMTCgxMVEfP36MGXNwcHBlfT09PUpJSdHMzIy+f/+uqqqqmCOjJenDhw9aWVnR1taWBgcHdffuXfX3918578HBgfx+v4LBoNbX1zU5OXnhCPGjoyNZliXLsvTo0SO1trbKsizjE27ciszYZ6a7u1vz8/OKRCLa3NxUX1+fEhMTNTw8bLy+bkRm7DPT1dWlubk5RSIRraysqLa2Vl6vVxsbG8br60Zkxj4zZ0pKSlRTU3PtWsYLMmOfma9fv+rz58+KRCJaWlpSeXm5Hj9+HPcn7cVrZqR/nsyxLEuVlZUqKyuL/r973tm1oqIi1dXVybIsvpvIjG1mBgcHNTs7q3A4rHA4rJGREd27d0/t7e0mS+taZMY+M+/fv9f09LS2t7e1tram5uZm3blzR1++fDFZWtwyGnUOk5CQcOlrbGwsOubw8FBNTU1KTU2Vz+dTdXW1fv78Gb3f2dl56Rznf0EpLS29dEx9ff2V9Z2enqqjo0N+v18ej0cvXrzQ1tZWzJhgMKi0tDQlJSWpsLBQ4+PjRu/927dvKikpkcfjUVZWlnp6emLu7+zsXFpzvD8dRWbsM9Pe3q68vDx5vV6lpqYqEAhocnLSaG43IzP2mXn79q2ys7OVlJQkv9+vly9fanV11WhuNyMz9pmR/v21fX5+3mjOeEBm7DOzuLiogoICeTwepaenKxgMand312huN4vnzOTk5Fxa03XrE+9PR5EZ+8wMDAzo2bNn8vl8un//vp4/f66hoSGdnJwYze9WZMY+M729vcrNzZXX61VaWprKysq0sLBgNDdu31+SlAAAAAAAAADgf8XxUgAAAAAAAIAD0KgDAAAAAAAAHIBGHQAAAAAAAOAANOoAAAAAAAAAB6BRBwAAAAAAADgAjToAAAAAAADAAWjUAQAAAAAAAA5Aow4AAAAAAABwABp1AAAAAAAAgAPQqAMAAAAAAAAcgEYdAAAAAAAA4AB/A7v5APRFgYpCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Get the ERA5 data for a single station (to reduce data transfer)\n", + "your_station = your_dataset.get_station('vlinder02')\n", + "\n", + "#Extract time series at the location of the station\n", + "ERA5_data = your_station.get_modeldata(modelname='ERA5_hourly', \n", + " obstype='temp', \n", + " startdt=None, #if None, the start of the observations is used \n", + " enddt=None, #if None, the end of the observations is used \n", + " )\n", + "\n", + "#Get info\n", + "print(ERA5_data)\n", + "ERA5_data.make_plot(obstype_model='temp', \n", + " dataset=your_station, #add the observations to the same plot \n", + " obstype_dataset='temp')\n" + ] + }, + { + "cell_type": "markdown", + "id": "bf1fae3e-b969-4f82-b63b-3bde86da9257", + "metadata": {}, + "source": [ + "### GEE data transfer\n", + "\n", + "There is a limit to the amount of data that can be transfered directly from GEE. When the data cannot be transferred directly, **it will be written to a file on your Google Drive**. The location of the file will be printed out. When the writing to the file is done, you must download the file and import it to an empty *Modeldata* instance using the [set_model_from_csv()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.modeldata.Modeldata.html#metobs_toolkit.modeldata.Modeldata.set_model_from_csv) method. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "77647240-3ba4-4fa3-90b8-eb1ef783c172", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!\n", + "The timeseries will be writen to your Drive in era5_timeseries/era5_data \n", + "The data is transfered! Open the following link in your browser: \n", + "\n", + "\n", + "https://drive.google.com/#folders/1iSjU6u-kFeRS_YikiyaPoc09SNbmvvO1 \n", + "\n", + "\n", + "To upload the data to the model, use the Modeldata.set_model_from_csv() method\n", + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n", + "Empty Modeldata instance.\n" + ] + } + ], + "source": [ + "#Illustration\n", + "#Extract time series at the locations all the station\n", + "ERA5_data = your_dataset.get_modeldata(modelname='ERA5_hourly', \n", + " obstype='temp', \n", + " startdt=None, #if None, the start of the observations is used \n", + " enddt=None, #if None, the end of the observations is used \n", + " )\n", + "\n", + "#Because the data amount is too large, it will be written to a file on your Google Drive! The returned Modeldata is empty.\n", + "print(ERA5_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fd658a15-06cc-4841-852f-e1bb29809bdf", + "metadata": {}, + "outputs": [], + "source": [ + "#See the output to find the modeldata in your Google Drive, and download the file.\n", + "#Update the empty Modeldata with the data from the file\n", + "\n", + "#ERA5_data.set_model_from_csv(csvpath='/home/..../era5_data.csv') #The path to the downloaded file\n", + "#print(ERA5_data)" + ] + }, + { + "cell_type": "markdown", + "id": "cec4bea4-bdb7-4298-b7ff-f9547403e7ea", + "metadata": {}, + "source": [ + "## Interactive plotting of a GEE dataset\n", + "\n", + "You can make an interactive spatial plot to visualize the stations spatially by using the [make_gee_plot()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_gee_plot)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "bc8d896c-bba7-490c-b173-1f501c44e08f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spatial_map = your_dataset.make_gee_plot(gee_map='worldcover')\n", + "spatial_map" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/examples/index.rst.txt b/docs/_build/_sources/examples/index.rst.txt new file mode 100644 index 00000000..e8311580 --- /dev/null +++ b/docs/_build/_sources/examples/index.rst.txt @@ -0,0 +1,13 @@ +#################### + Examples +#################### + +.. toctree:: + :maxdepth: 2 + + doc_example.ipynb + gee_example.ipynb + qc_example.ipynb + filling_example.ipynb + analysis_example.ipynb + using_obstypes.ipynb diff --git a/docs/_build/_sources/examples/qc_example.ipynb.txt b/docs/_build/_sources/examples/qc_example.ipynb.txt new file mode 100644 index 00000000..02d5a24b --- /dev/null +++ b/docs/_build/_sources/examples/qc_example.ipynb.txt @@ -0,0 +1,687 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f1af75bf-618b-4e94-b957-220ebdfc6b21", + "metadata": {}, + "source": [ + "# Demo example: Applying Quality Control.\n", + "\n", + "In this example we apply Quality Control (QC) on the demo data. \n", + "## Create your dataset\n", + "We start by creating a dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "62021dd4-8466-4287-80f7-112ad5c692a0", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "\n", + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "324eab20-b913-4e76-9ad5-638cfeaa89d3", + "metadata": {}, + "source": [ + "A number of quality control methods are available in the toolkit. We can classify them into two groups:\n", + "1. **Quality control for missing/duplicated or invalid timestamps**. This is applied to the raw data and is not based on the observational value but merely on the presence of a record. \n", + "2. **Quality control for bad observations**. These are not automatically executed. These checks are performed in a sequence of specific checks, that are looking for signatures of typically bad observations.\n", + "\n", + "## Quality control for missing/duplicated and invalid timestamps\n", + "Since this is applied to the raw data, the following quality control checks are automatically performed when reading the data:\n", + "* Nan check: Test if the value of an observation can be converted to a numeric value.\n", + "* Missing check: Test if there are missing records. These missing records are labeled as *missing observation* or as *gap* (if there are consecutive missing records).\n", + "* Duplicate check: Test if each observation (station name, timestamp, observation type) is unique.\n", + "\n", + "As an example you can see that there is a missing timestamp in the time series of some stations:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e1a0b0f7-817d-40bd-888d-98d2b215e367", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dfn3Huz9yYkEMLeewkoLnC06rdaR2sFtU5cta2/aqu2atXaOvqt36pt3aNDK7a1ihtUZChTQAIJkEBC9t6593x+f4Rc7oVA1t28n3346L3nnnvOJyHJvfd93kNprTVCCCGEEEIIIYQQQgi/Mvy9ACGEEEIIIYQQQgghhATqhBBCCCGEEEIIIYQICBKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIACCBOiGEEEIIIYQQQgghAoAE6oQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIUTAa2xs5Ic//CEZGRkopbjtttsGfEylFL/85S+d91944QWUUuzbt2/Ax/bmMYUQQggRuiRQJ4QQQoigpZTq1X8rV67091L95o9//CMvvPCCv5cxYA8++CAvvPACN9xwAy+//DI/+MEP/L0kvysuLubiiy8mISGBuLg4zj//fPbs2eO2z/79+/nVr37FrFmzSExMJCUlhYULF/Lhhx/6adVCCCGEOB6rvxcghBBCCNFfL7/8stv9l156iQ8++OCo7WPHjvXlsgLKH//4R1JSUli6dKm/lzIgH3/8MXPmzOHee+/12jl+8IMfcOmllxIeHu61c3hKY2Mjp556KnV1ddx1113YbDYef/xxTjnlFDZv3kxycjIA//rXv/jNb37DBRdcwJIlS7Db7bz00kuceeaZPPfcc1x55ZV+/kqEEEII4UoCdUIIIYQIWpdffrnb/bVr1/LBBx8ctT1UaK1pbW0lMjLS30vptaamJqKjowd8nPLycsaNG+eBFR2bxWLBYrF49RwD1fX9/OMf/8ju3btZv349M2fOBODss89mwoQJPProozz44IMAnHrqqRQVFZGSkuI8xvXXX8+UKVO45557JFAnhBBCBBgpfRVCCCFESDNNkyeeeILx48cTERFBeno61113HTU1NW775eTk8K1vfYuVK1cyY8YMIiMjmThxorNs9s0332TixIlEREQwffp0Nm3a5Pb8pUuXEhMTw549e1i8eDHR0dFkZmZy3333obUe0Jree+8955qeeeYZAJ5//nlOO+000tLSCA8PZ9y4cTz11FNHPX/79u2sWrXKWQa8cOFCAH75y1+ilDrq+9VdT7Uje7m5Ht81U6/ruatWreLGG28kLS2NrKyso57nqry8nKuvvpr09HQiIiKYPHkyL774ovPxlStXopRi7969/Pe//3V+Hcfq+TZhwgROPfXUo7abpsngwYO56KKLjrmW7r72rn+Dzz//nFmzZhEREUFubi4vvfTSUc/fvn07p512GpGRkWRlZfHAAw9gmma353r33XdZsGAB0dHRxMbGcu6557J9+3a3fbp+pgoKCjjnnHOIjY3l+9//PgBvvPEGM2fOdAbpAMaMGcPpp5/OP/7xD+e28ePHuwXpAMLDwznnnHM4cOAADQ0Nx/x+CCGEEML3JKNOCCGEECHtuuuu44UXXuDKK6/klltuYe/evTz55JNs2rSJ1atXY7PZnPvm5+fzve99j+uuu47LL7+c3/3ud3z729/m6aef5q677uLGG28E4KGHHuLiiy8mLy8Pwzh83dPhcHDWWWcxZ84cHnnkEVasWMG9996L3W7nvvvu69ea8vLyuOyyy7juuuu45pprGD16NABPPfUU48eP57zzzsNqtfKf//yHG2+8EdM0WbZsGQBPPPEEN998MzExMfz85z8HID093Xvf7ENuvPFGUlNTueeee2hqajrmfi0tLSxcuJD8/Hxuuukmhg0bxuuvv87SpUupra3l1ltvZezYsbz88sv86Ec/Iisrix//+McApKamdnvMSy65hF/+8peUlpaSkZHh3P75559TUlLCpZde2uevJz8/n4suuoirr76aJUuW8Nxzz7F06VKmT5/O+PHjASgtLeXUU0/Fbrfzs5/9jOjoaP70pz91m/348ssvs2TJEhYvXsxvfvMbmpubeeqpp5g/fz6bNm0iJyfHua/dbmfx4sXMnz+f3/3ud0RFRWGaJlu3buWqq6466tizZs3i/fffp6GhgdjY2GN+TaWlpURFRREVFdXn74cQQgghvEgLIYQQQoSIZcuWade3N5999pkG9Kuvvuq234oVK47aPnToUA3oL774wrntvffe04COjIzUhYWFzu3PPPOMBvQnn3zi3LZkyRIN6Jtvvtm5zTRNfe655+qwsDBdUVHR7zWtWLHiqK+1ubn5qG2LFy/Wubm5btvGjx+vTznllKP2vffee3V3bwWff/55Dei9e/c6twH63nvvPWrfoUOH6iVLlhz13Pnz52u73X7U/kd64oknNKBfeeUV57b29nY9d+5cHRMTo+vr693Ode655/Z4zLy8PA3oP/zhD27bb7zxRh0TE+P2fTvy6+rua+/6N/j000+d28rLy3V4eLj+8Y9/7Nx22223aUCvW7fObb/4+Hi3YzY0NOiEhAR9zTXXuK2vtLRUx8fHu23v+pn62c9+5rZvRUWFBvR999131Nf/f//3fxrQO3fuPOb3aPfu3ToiIkL/4Ac/OOY+QgghhPAPKX0VQgghRMh6/fXXiY+P58wzz6SystL53/Tp04mJieGTTz5x23/cuHHMnTvXeX/27NkAnHbaaQwZMuSo7UdO2AS46aabnLeVUtx00020t7c7p2z2dU3Dhg1j8eLFR53HNVOrrq6OyspKTjnlFPbs2UNdXV2vv0fecM011/Sq19s777xDRkYGl112mXObzWbjlltuobGxkVWrVvX53KNGjWLKlCn8/e9/d25zOBy88cYbfPvb3+5Xf79x48axYMEC5/3U1FRGjx7t9u//zjvvMGfOHGbNmuW2X1epapcPPviA2tpaLrvsMrd/f4vFwuzZs4/69we44YYb3O63tLQAdDv0IiIiwm2fIzU3N/Pd736XyMhIHn744Z6+dCGEEEL4mJS+CiGEECJk7d69m7q6OtLS0rp9vLy83O2+azAOID4+HoDs7Oxutx/ZU84wDHJzc922jRo1CsDZ96yvaxo2bFi3+61evZp7772XNWvW0Nzc7PZYXV2dc43+cKw1H6mwsJCRI0e6lQ/D4Sm9hYWF/Tr/JZdcwl133UVxcTGDBw9m5cqVlJeXc8kll/TreEf+XAAkJia6/fsXFhY6A7iuukqVu+zevRvoDP52Jy4uzu2+1Wo9qs9fV7Cxra3tqOe3tra67ePK4XBw6aWXsmPHDt59910yMzO7XYMQQggh/EcCdUIIIYQIWaZpkpaWxquvvtrt40f2OTtWFtixtusjhkR4Y03dBVwKCgo4/fTTGTNmDI899hjZ2dmEhYXxzjvv8Pjjjx9zgIGr7gZJQGcwp7eOta+/p9Jecskl3Hnnnbz++uvcdttt/OMf/yA+Pp6zzjqrX8fz9L8/dPapc+2h18VqdX97Hh4eflQgMykpifDwcA4ePHjU87u2dReEu+aaa3j77bd59dVXjxkoFEIIIYR/SaBOCCGEECFr+PDhfPjhh8ybN88nwSPTNNmzZ48ziw5g165dAM4BAZ5Y03/+8x/a2tr497//7Zbt1V3Z5LECcomJiQDU1taSkJDg3N5dFltiYiK1tbVu29rb27sNFPXF0KFD2bp1K6ZpugWjdu7c6Xy8P4YNG8asWbP4+9//zk033cSbb77JBRdc0G2pqKcMHTrUmS3nKi8vz+3+8OHDAUhLS+OMM87o17kMw2DixIl89dVXRz22bt06cnNzjxok8dOf/pTnn3+eJ554wq3UWAghhBCBRXrUCSGEECJkXXzxxTgcDu6///6jHrPb7UcFnzzhySefdN7WWvPkk09is9k4/fTTPbamrgwv14yuuro6nn/++aP2jY6O7vaYXQGjTz/91LmtqamJF198sdt9XfcD+NOf/tSn7LvunHPOOZSWlrr1k7Pb7fzhD38gJiaGU045pd/HvuSSS1i7di3PPfcclZWV/S577a1zzjmHtWvXsn79eue2ioqKozInFy9eTFxcHA8++CAdHR1HHaeioqJX57vooov48ssv3YJ1eXl5fPzxx3z3u9912/e3v/0tv/vd77jrrru49dZb+/JlCSGEEMLHJKNOCCGEECHrlFNO4brrruOhhx5i8+bNLFq0CJvNxu7du3n99df5/e9/z0UXXeSx80VERLBixQqWLFnC7Nmzeffdd/nvf//LXXfd5Sxp9cSaFi1aRFhYGN/+9re57rrraGxs5M9//jNpaWlHZblNnz6dp556igceeIARI0aQlpbGaaedxqJFixgyZAhXX301P/3pT7FYLDz33HOkpqZSVFTkdowf/vCHXH/99Vx44YWceeaZbNmyhffee4+UlJQBfb+uvfZannnmGZYuXcqGDRvIycnhjTfeYPXq1TzxxBNHZYX1xcUXX8xPfvITfvKTn5CUlNTv7LXeuuOOO3j55Zc566yzuPXWW4mOjuZPf/qTM2uwS1xcHE899RQ/+MEPmDZtGpdeeqnze/7f//6XefPmuQV7j+XGG2/kz3/+M+eeey4/+clPsNlsPPbYY6Snp/PjH//Yud/y5cu54447GDlyJGPHjuWVV15xO86ZZ55Jenq6574RQgghhBgQCdQJIYQQIqQ9/fTTTJ8+nWeeeYa77roLq9VKTk4Ol19+OfPmzfPouSwWCytWrOCGG27gpz/9KbGxsdx7773cc889Hl3T6NGjeeONN/jFL37BT37yEzIyMrjhhhtITU3lqquuctv3nnvuobCwkEceeYSGhgZOOeUUTjvtNGw2G8uXL+fGG2/k7rvvJiMjg9tuu43ExESuvPJKt2Ncc8017N27l2effZYVK1awYMECPvjgA2eWYH9FRkaycuVKfvazn/Hiiy9SX1/P6NGjef7551m6dOmAjp2VlcVJJ53E6tWr+eEPf4jNZhvQ8XoyaNAgPvnkE26++WYefvhhkpOTuf7668nMzOTqq6922/d73/semZmZPPzww/z2t7+lra2NwYMHs2DBgqO+98cSGxvLypUr+dGPfsQDDzyAaZosXLiQxx9/3K3P4ZYtW4DOIRY/+MEPjjrOJ598IoE6IYQQIoAo3Z8uuEIIIYQQws3SpUt54403aGxs9PdShBBCCCFEkJIedUIIIYQQQgghhBBCBAAJ1AkhhBBCCCGEEEIIEQAkUCeEEEIIIYQQQgghRACQHnVCCCGEEEIIIYQQQgQAyagTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAYPX3AkKRaZqUlJQQGxuLUsrfyxFCCCGEEEIIIYQQfqS1pqGhgczMTAzj2HlzEqjzgpKSErKzs/29DCGEEEIIIYQQQggRQPbv309WVtYxH5dAnRfExsYCnd/8uLg4P69GCCGEEEIIIYQQQvhTfX092dnZzpjRsUigzgu6yl3j4uIkUCeEEEIIIYQQQgghAHpskSbDJIQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIYQQQgghhAgAEqgTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAIIE6IYQQQgghhBBCCCECgATqhBBCCCGEEEIIIYQIABKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIAGD19wKEEEIIT6rUNXziWMNb5sfYsHCv9WaGGVn+XpYQQgghhBBC9EgCdUIIIULKRnM7P7Df4bzfbG9hnjGdW61L/LgqIYQQgc6+4Q84Cj9C1xWi4oZgyTkD6/Sb/b0sIYQQJxgJ1AkhhAgpldS43V9prudrcxc3WL5HmLL5aVVCCCECnX3jk9BYAoCuzcdevVMCdUIIIXxOetQJIYQIKVW61u1+PY3s5QD5ZqF/FiSEEEIIIYQQvSQZdUIIIUJKvW4ki3RKqcKOHYBUkviT4+88Yfm5n1cnhBAiUIUv+Qrd1oDuaESFxaDCYv29JCGEECcgCdQJIYQIKQcp5wBlbts6sFNPg59WJIQQIhiosFgJzgkhhPA7KX0VQggRUlxLX3eHf0AOg6mlnk/Mdf5blBBCCCGEEEL0gmTUCSGECClJxHOSmkorbSTrBKYYY0nXyYQRRp3ZQLwh2RJCCCGEEEKIwCSBOiGEECFlg97OZv0NNqxEqgiSVAJvmR8CsIt9zGSin1cohBAiENk3/AFH4UfoukJU3BAsOWfI1FchhBA+J4E6IYQQIaWeRgBiiUYpxTQ1nl1qLw00k28WMtOQQJ0QQoij2Tc+CY0lAOjafOzVOyVQJ4QQwuckUCeEECLoObQDi7JQpxto0E0AxBANQJZK53O9AYB8Xei3NQohhBBCCCFETyRQJ4QQIuiNaTuLA5Si0UQQBkCs6gzUjVLDGKGGckCXsk3v8ucyhRBCCCGEEOK4JFAnhBAiqJWbVdRQh0YDMIg0IlQ4o9UwAIaqTGp0HTkMBpQfVyqEEEIIIYQQxyeBOiGEEEHtdfNdGml23t/LAdDwmu0xACzKwiCVyja9mwKziA7dgU3Z/LVcIYQQQgghhDgmCdQJIYQIWnVmA3+xv+68b8WCHQcAKSrRuf1s4xRSzWRA87ZjJf9jPdPXSxVCCCGEEEKIHkmgTgghRNAq11V8Q4HzfleQTqFIJM65fbFlAb91/AWAVke7BOqEEEIIIYQQAcnw9wKEEEKI/qpStc7bOQwmDBsWLMxX07Gqw9eiJqnRfMdYRDopbNV5tOsOP6xWCCGEEEIIIY5PAnVCCCGCVr1uJJUkLFjIJZt2OnDgoJo6t/3iVAwWLFRQhcbkjo7fUKVr/bNoIYQQQgghhDgGCdQJIYQIWlXUUkE1DhwsNGZTFb6exvDNvBf23FH7PmH7Oc9YH6CNdp42/8a/HB/6YcVCCCEClZE2GcITwLBCeELnfSGEEMLHpEedEEKIoNWsW523U40kolUUACkkHrVvskogU6WRQhKRhFOhq322TiGEEIEv7Px/+HsJQgghhATqhBBCBK8WWpy3o1Rkj/uPNoZRRiUAa/Vmby1LCCGEEEIIIfolqEtfH3roIWbOnElsbCxpaWlccMEF5OXlOR/ft28fSqlu/3v99dePedylS5cetf9ZZ53liy9JCCFEHzRzOKMump4DdYNJ5zQ1h5PUVFp1uzeXJoQQQgghhBB9FtSBulWrVrFs2TLWrl3LBx98QEdHB4sWLaKpqQmA7OxsDh486Pbfr371K2JiYjj77LOPe+yzzjrL7Xl//etfffElCSGE6APX0tdIInrcXylFLfV8oTfxhd5Ii9na43OEEEIIIYQQwleCuvR1xYoVbvdfeOEF0tLS2LBhAyeffDIWi4WMjAy3fZYvX87FF19MTEzMcY8dHh5+1HOFEEIElhaXjLoo1XOgDmCeMZ1KRy0HKKWAIiYwylvLE0IIEUTa/3UxZvEa6GgEWwzG4LnSt04IIYTPBXVG3ZHq6uoASEpK6vbxDRs2sHnzZq6++uoej7Vy5UrS0tIYPXo0N9xwA1VVVcfct62tjfr6erf/hBBCeJ8FCyPUELIZRKTuXaAujhiaaGYSoyjWZV5eoRBCiGBhlm+Btlow7dBW23lfCCGE8LGQCdSZpsltt93GvHnzmDBhQrf7PPvss4wdO5aTTjrpuMc666yzeOmll/joo4/4zW9+w6pVqzj77LNxOBzd7v/QQw8RHx/v/C87O3vAX48QQoielelK8nUR+zlIdC+GSQAMU1lUUctmdrJH7/fyCoUQQgghhBCi94K69NXVsmXL2LZtG59//nm3j7e0tPDaa69x991393isSy+91Hl74sSJTJo0ieHDh7Ny5UpOP/30o/a/8847uf3225336+vrJVh3gvmb/b+8ab5Pk27mOutlnGc5zd9LEuKE4Fr6GtnL0tdUdTjrulLXeHxNweZ9x2f8n+M1rFj4H2MRl1vP8/eShBBCCCGEOGGFRKDupptu4u233+bTTz8lKyur233eeOMNmpubueKKK/p8/NzcXFJSUsjPz+82UBceHk54eHifjytCxz8c7/COXgXAEDNTAnVC+EgzLc7bUb2Y+gqQrBKct6uo9fCKgs/7ji94z/wMAIc2JVAnhBBCCCGEHwV1oE5rzc0338zy5ctZuXIlw4YNO+a+zz77LOeddx6pqal9Ps+BAweoqqpi0KBBA1muCGIz2v6HYl1OOx0cCP/ULXNnftulbNbfOO/XaOlRKISvNLsOk+jF1FeAZBKZpSbRShvtdHhraUGjTbU5byvlx4UIIYQQQgghgrtH3bJly3jllVd47bXXiI2NpbS0lNLSUlpaWtz2y8/P59NPP+WHP/xht8cZM2YMy5cvB6CxsZGf/vSnrF27ln379vHRRx9x/vnnM2LECBYvXuz1r0kEpt26kBrqaKGFYtO9+fxOXYCdw/0L63WDr5cnxAmpUTfTpDv/3isU4YT16nkpKpH1eitbdR579QFvLjEomNo8fBvtx5UIIYQQQgghgjpQ99RTT1FXV8fChQsZNGiQ87+///3vbvs999xzZGVlsWjRom6Pk5eX55wYa7FY2Lp1K+eddx6jRo3i6quvZvr06Xz22WdS3nqCMrVJG+2dt9EcoMztsSaXjB6AL/XXaC0fdoXwttPar2CD3gaADSuql+lgMUQRhg2AKulRRy2Hs4A7tGQYCiGEEEII4U9BX/raGw8++CAPPvhgr44TGRnJe++9N+C1idBRrxvJJoP9lALwsmM5u/U+rrFeTL1uZCy5fEMBGlDADDWBcl1Fukrx67qFCHXtLkGlwaT3+nlKKeaoKTTSTCzR3lhaUGkzD38fE1WcH1cihBBCCCGECOqMOiF8oU41OoN0AK+a/+EO+28AaFBN7DgUpAPQwCd6HaVU+n6hQpxgOg5lugI00tSn57bTwUa9nVV6PQ26b88NNa0uPep26UI/rkQIIYQQQggR1Bl1QvhCg248alsLbcxqu5DhDHFuiyWahkPBgkoppxPC69oODYKwYeUKy//06bnzjenYTCuttLHL3Mt0ywRvLDEouAY5a2UYjhDiBGaddhOOwo/QdYWouCFYcs7w95KEEEKcgCRQJ0QPGo6RqbNV53GQcuf9cWoE6/QWAKqQQJ0Q3tZKZybYYJXBr2239+m5ySqBz/RXAOzSe5nOiRuoq3f5G1dJDXZtx6rk7YEQ4sRjnX4z1uk3+3sZQgghTnBS+ipEDxp1s9t9xeGG9S0cLhlLJI6RKod0UqjWdT5bnxAnqnDCGEImo8jp83PHqZFMUCNJJJ48vc/jawsWWmvKdCXxxBJLNAaK5eYH/l6WEEIIIYQQJywJ1AnRg2ZaSSXJeV/jMnyECOftWBXDbr2PMiqp0NU+XaM4sa1yrOe5jn/ycsdbrHNsYbW50d9L8rp23UExZRRRcsys1+MZoYbwjd6DAj4yvzhhJzUX6mJy1GBMTBppYhCpFOuynp8ohBBCCCGE8AqpbRGiBzW6jgq6D7y5bnedllhFrbeXJQQApjY5t+Ma7Dg6NzggmQSKIz7378K8zDU4F6di+vz8YSqLxcZ83jFXUa2/powqMjjxJjX/y/yIDXo70JktnE8RG8ztfl6VEEL4h25vQLc1oDsaUWExqLBYVFisv5clhBDiBCOBOiF6cLxsnSgiCcPKFDWWUQxjvpqBiYMObffhCsWJ6lPzS9Y7tjKYdEqpRAOxRDHTmMhGxzamhfCABNdJrbFE9fn5hjKYrMawjd1YMNhl7iXDcuIF6lwH3wxnCBkqBTgxswuFEKLtxRnQWHJ4Q0wmEdfk+W9BQgghTkgSqBOiB8cL1DXTQjOwUq/nevU91urN2LGzR++ntL3Cd4s8wsnGTG61LvHb+YVvvOtYxeOOFwD4gXE+Cy2zubrjLlaYn7HYWMC0EB6Q4DqpNEZF9+sYmSqNIjo/kO3UBZzMTI+sLZhUugy+6aCDz/UGInQ4pjYxlHTHEEIIIYQQwtckUCdEDxq1e6AuhkhGkkMee2mjA43JGIYz2zKZx7mTdJXCx461bNe7/bLWQg52ZgepVC6xnOPzNQjfqXQpsU5VyaSQePgxHdqTh2t1AxPUKKKJIJfsfh1jnBrBPDWNBprYp4s9vMLA97T9r/zV8TYWDFJJYraaTCpJOHBQrqvIUKn+XqIQQgghhBAnHAnUCdGDZt3qdt+ByaXWb/GK/V98zS4A4lUsg1Qq11gvAWCvPsB+86DP19pKG9W6lmpq2R3gkyybdQvNtPKq49+YWnObdQlKqZ6fKJyqXIJxt1mXUKQPl+uU6yp/LMlnqqhhm+78/TtXndqvY4wwhrJadw7eMB2a+623YVEWj60x0O0x99N6aHJ1BdVEqgi+MrcBnZl2GUigTgghhBBCCF+TQJ0QPainEYUinDDeszxHsiWBEcZQLrWci0ObOHAQqSLcnnOrdQm34vvS0/cdn3Nex/UAAT/F8iNzDd/tuMV5/zvWRQwl048rCj77dDEWLIwih2SdgIlmKIPZz0H24/tAsS9V6lrn7WSXTMK+SCOZpcZ3eM38D9vYxR69n5EqxzMLDAKtqs15+1XbY3xpbnXed/3+CiGEEEIIIXxHAnVC9KCNdjSaVtrItKaRrQYBkK5SIMASwFSgLeg46nUjqSQ5J+e26JaA+34GMru2k0wCY1UuMURjMSyk62RMTCaokcTR90mowaSNNqapcTTTSppK6tcxlFIMVunEEUMUEezRRYwkx7MLDVBF5kE2ukx3naBGUkYFY8iljgZedLxJua7iYuvZflylEEIIIYQQJx4J1AnRg67SMIAIwv24kr7RAT658Rtd4AzSATTTepy9xZEKdQmf6a8A+B/jTKAz8BSlItiq89ij9/tzeV5XqEvYqHcAkKji+32ckUYOlY7OEuJtOp/FnOyR9QW6N8x3+Upvc96PUdGkGEnsdOwB4K/m26wwP5VAnRBCCCGEED4mgTohehCsgbpA10iz230J1PVNiS5noZpNG+1MUKOc2zvLQPfSSDOtuo0IFZo/s67DMlJI6PdxxpLLfDUdCP2+fq5s2ua8nUUGCcQyimFkkUEplVgwyCCVjeZ2phnj/bhSIYQQQgghTiwSqBNufm9/Ea01t0pjf6dW3e68HU6YH1fSN4GdT9dZ+uqqRUugri/2c5CVeh0A31VnObenqATnP36lriFLZfhhdd5XxeFAXbLqX486gOHGUD7XGwDocHSArYcnhACtNXU0OO+fYZxEhApnpDGUA5QCYAe+oYAN5jYJ1AkhhBBCCOFDEqgTAOSZezit/QqqqAXgl44/8HbYn5hvTPfvwgJA26GMOoXCFuC/MsHUo66RJrf7zbT4aSXBqcp1mIJLoGq6msAetZ/9+iCFupgsQjNQV2yWkUMWQ9UgEnVcv/sbxqgozjIWkK8LKdQlaK1D/iLFrPYL2aZ3AzCW4dxkvRyACBXOq9ZH2WJ+w6vmfwjD5pa5KIQQQgghhPC+wI46CJ8pp9oZpIPOcs8aXee/BQWABrOJvfoAtdQDnWWvof4B3lfqdAMKgzCstGMnnWSaJaOuT0p0OZmkUUsDyS6ln1Eqkp16D0MZzE69l3mEVrC9Rbfylv1DtIIqXUMEYViNgb2UdWCnVFeSzSDKdTXpKtlDqw1MrbrN2cPyGwoYqgY7H7vQuphRZg6PtP8FgKIQnx4shBCuws77G2bFNnR9ESpuCEbqBH8vSQghxAlIAnUC6PzAe6QTvWfYK+a/+JH9Qef9iCAqe4XAHibxnvkZ/zI/dN4vo8oZEBU901rzguOf1FDPKDWM0425zseWGv/Dr/gDBRTxF8c/uNp6kR9X6nmbzG+40vEz5/3XbI8P+JgT1Wg+Yg3fUMAu9pJOaAfqXINv0UQSq6LdHnfN0OzutUEIIUKVkT4VI32qv5chhBDiBCeBOgFAk25hOhPZzHYcmAA06xO7FNGO3Xk7igjmGFP8t5heCpbSV9eyzS4v2N9kg7mNZ2z3Y1EW3y8qQP2f/RW2m/nUUMePjat42XyLDeYOwgkjl2xOMWa6ZXrGGjHMVJNooZUoIjC1iaEMP34FnlVMKdFE0oGDWKIYrXIGfMxRKodpahzRRFFklkDofLuO0q47aONw381ooo7aJ0nHM11NIAwb8cT6cnlCCCGEEEKc8CRQJwA4QCkb+NptW8sJnlHXpjuct5tppVCX+HE1fRfIGXXd9b3awk62mDu5U1/PcDXED6sKTA/Zn6Hy0OCE0QzjGfPvzsdSSeIPtnuOek6UiuATcy0AxZSRzSDfLNaLfm9/Eej82Wk61M/wWdsTHgnq5qohbNQ7AJiqx/F9zhvwMQOVa4sDAKOb4H6EEc4uvZcGmqg+Yn8hhBBCCCGEd0mgTvDrjqd4wvHCUdtP9NLXauqIJtIZFHDtAxaogiWjzsBgtppMm26nnkaKKEGhSCSe3Xofw5FAXZeuf1EDg0aa3R47smSxy2w1hRpVTwON7DL3kW0J3kDd8/Z/8rjjeSp1DTZsLDLmMUNNIJIIRnkgmw4gV2UxQ03AgoV2Onp+QhCrMmuYwChKqWCIyuSHlu92u1+ySqRBN3Wb/SqEEKHKseddzOI16No9qIRcjMFzseSe7e9lCSGEOMFIoO4E16xb+NrMo+GICZwANY46mizNRKujS6NCnUM7KNOVziAdQIpL36ZgEIgZdW26nXY6KNIlrNNbALBgOMutK6iiyDwIUvnq1H6oBNvEZKW53u2xqWpct89JU0l8oTdiYHSWcgbx9zNP72GX3geAFQtbdR5b9E7CCXMbgjAQ6SqFr/Q2AAwzhOtegUpq2cYuAJYY/8NVx+hhmEIC+zhADfXYTfuAB3YIIUQw6PjoNmg8XEHh2Pl3CdSJAWvSzRgYRKqIE2K6vBBi4EL7E4no0f/aX+Yt3dnU34qF77CY8ENDEx7Vz/Gg/Wl/Ls9v/mm+x9/Nd9zy0yYyym/r6a1Az6j7r2MlqW2zedFc7tz2D+v/8jfr4ySTQBhh7Gaf/xYYgFz7iXUFWLocq6R1iMoknWTCsJFPoVfX5207dAFWLBgo7DjYpncTRyynqjke62UYrsKIIwY4ujQ01FRxuOz8eBcfZhgTSSYBBw4OUOaLpQkhhBAh6Z6O35PYNoPI1on8sOMufy9HCBEE5BL5CahcV/G5YwONNLPesQWFQqMJJ4zhlmzaHIcDAy36xCx/rdK1zmESVqzYsBBnxPh5VX0TmBl1bVixYMfh3DbDMoF63egMkHTXv+5EZWqTDFLYR3G3jx/r3zhdJVNGFYCzv12wqtI1zp+XEQxF03klOkF5dsjBeEZSSx3xxHn0uIGkyqzlA8dqBpGGAgaTfsx9o3UUMUQzTGWxRxeRQ2f24r/sH9Km2oknjlgVxUnGNB+tXgghhAhO9TQCne/bXIfVCSHEsUig7gS01tzM9+y3A539rzQwiFT2RnxCja7jt46/OPf9q/k2j3HiXfmp0NXO2/+0/YHFlgV+XE3vBXpG3S4K3YJ0AFFEYlM25/1gDyx5Uh0NxwzSAWjVfaAu2SVTKtgDn5UuGW7O7EANT9vu8+h5wgwb35h7QHcG6pNVgkePHwjeNj/hBfNN5/00lXLMfUcbwyg0iynUxWzX+ZzGXLTWXG2/y9krcZwawcbwt7y9bCGEECKo5em9ztthhPtxJUKIYCGBuhNMk27mN/Y/uWzpDNV1fSiNJ5Yz1Ems01tooKmzP5G2Y1Un1o9KI82cpKYSQTiDVJq/l9MvgZhRV9VNEC6ScKKJ5ALjTL7WeeSbhSEbKOmra9t/cdQ2KxasWJitpnCyMbPb5yUTz+nqJFppwxLkHQ6Gk80gUsmnkCaaseNgCJmMVcM9ep45agqmMnFgstvcR7JlikePHwgiXT4cJJPAWCP3mPuOUbmcpKZiwaBcVwJQrMuYqEazUW+njXaqgjwILIQQQnjLE/YXeNf+KdvYTTSRzu2SUSeE6I0TK/oiqKaODXq7835XMKcrA8dQBm+H/4nvtC/jHXOV8zlpJPt+sX60ydzBF3oTAENU8EzMDOx8Oo6aIBmGzRkEzlApvGV+AMBOvYd56sQuqbNrO//VK533pzOeDWzHjoMIwnkv/LljPtemOnvTFepi4nRM0DYubtVtfKzXApBAHC20OR/zdCA3TSXxmf4K6Pz5m8MUjx4/ELhO8p6lJpF+nIy6kcZQ59/A7Y58UlQSE9Vo1hzaBp3ZjsH6syWEEEJ40xuOFXxF56Aq1wvVXVnpQghxPBKoO8E06sMvDlYsaDRppDBSDXXbb4zKZb86SKNupsKsJs1y4gTqXnX8mypdQwapDFfZJKjQ7VnlawpFEvHUUI8Fg/GMcD42RY0li3QaaSbP3MO8E7z3VZWuZQiZNNPCMLL4reX/sVHtwIqFROJ7fP6Z6iTWsYWDuoISXc5gdex+ZIHKdbDDBEYySKWxi71eCeIOJoOxajgKRbPLtOdQ0ugy3Tu+hx5/iSqe520P82/7R6zU63jE/mdOVjMZy3DKqCSCcFppC9qfLSGEEMJb7u34vVtixDiGU0gJ0UQFZMWLECLwSKDuBNPVzBRw9go7SDntdLjtp9F8rTsnTP6y4w9kdKRwie1c5lum+26xflKoS9hBAQBnqfl+Xk1oKdTFVFMHdP78uU6TzFaDOEAZaSRxUJf7a4kBw7U/3RnGPGbZJjOLyb1+fqSKYJu5m2wGsUcXHXdwQKCqMmtIJ4Ua6hhpyeEp26+8dq5EFcc3uvP3viREf/7adAeJxNNIExcZZ/W4/2WWb/GNmc9yxwdEEcFBKvjm0N9GgCFkBu3PlhBCCOEttbreLSB3heV/+JXjScqposAs4mszj7ftn9Cu7Nxh/SGRKsKPqxVCBKLgbl4k+qxBH86oSOVww/kYot32c21G/x8+5s/8g8UdV6J16F8Fcu27dKX1Ij+upO8CvQStwSWjByCcMOft0WoYMURRTrXbVcgTlev3Kk71feLweDUSKxaKKHEGoIJNJbWUUUk7HaToxJ6fMABR6nD/mFDNqKuhjhrq6MBONFG9es69lptJJ4VmWinQRc7tlkM/Wzv1Hm8tVwghhAhKrhf8rleXcZttKckkAFBOFTPbL+RX5pM85Hia1eZGP61SCBHIJKPuBFOj65iuxmPDSp1uoOJQzwRTu0/izCCFcQx3ZpYBpJBEta4L+Sb/jbqZoQzGxBG0gyQg8IZJ3N3xOPv1QbdtVizO24NVOjlkEa0isMmfJh62P+O8HdPLoIqrISqTXIaQqhJp0q09PyEAufZ0STYSvHquKA5fzXbt5RZKXAOQMUbvfqYshoXJagwNNFKiK5zbs8kgU6VR7jIhWwghgp2yRaMxABMwULbonp4ixFGqqXfezjIyAJhtTCZTp1Gl64gl2lk14drmQwghusin4RPMHvY7s5Wmqwl0xXKO/GAapSLdgnQAZVRSRqXzilAoMrXJy+a/MDEZRGpQDZKAzh5wgUhrzWOOF3DgHhB2YDpvK6UIU1bW6a0Y2qBVtxGhTswR9o26mf+Ynzjvx6q+f1AYqjLJYw95GgbrDE8uz2dch4+kKO9m1EW6BuqCNLDZE9e/866ByZ6cZzmdm+zuZcf7KGafLiZKRx7jWUIIEXzCl0p2kxi4rguNMUTxE9vVADhwsF5vPXpfmaAuhOhGUJe+PvTQQ8ycOZPY2FjS0tK44IILyMvLc9tn4cKFKKXc/rv++uuPe1ytNffccw+DBg0iMjKSM844g927d3vzS/GZjxxrWKBmcLZxMkuM/+Ei4yyuMS7me5Zvu+0X61IKG+dyuyLEsydqqMc8FDyK7Ue5YSAJpIy6Ot1AIoeHcgwilSstF3KH9Ydu+51izGaemsZENYp8s9DXywwY+eY+wrA572fT94Cxa+ZrJcH5e1umK5mmxnGamsMQMr16LtfS15ZQzahzCUBG9iFQN04NZ4GaQRrJZJLKAmYwnfGcpKYSjQTqhBBCCIA23c7o1sXs0fuJIYpzjVOdj81Sk0kgFoXCQBFDNJPVGFp023GOKIQ4UQV1Rt2qVatYtmwZM2fOxG63c9ddd7Fo0SJ27NhBdPTh4NI111zDfffd57wfFXX8kp9HHnmE//3f/+XFF19k2LBh3H333SxevJgdO3YQERG8zT4rzGrW6s2008F8ZnBt2CVcyyXd7uuawVPv0itrr3mAUyyzvL5Wf6k0Dwc0pqvxflxJ/wRiRp3WmloaqHQpY8xWmd0OBohXMazWnVezvzHzGWUMI0zZjtovlGitUUrxRMcLdGDnJsvl7NR73Ae89OOfNZ5YLFhw4KDCDM5A3T5dzEa9A4A/qHu8ei730tfQ7FHnGoB0DUz2ZKSRw2f6K+f9EirIVdns0ftJ0DIVWwghhAAo0iUUHippbafDLVsuw0ih1tEAdBY0NdLEFr2TOUzxw0qFEIEuqAN1K1ascLv/wgsvkJaWxoYNGzj55JOd26OiosjI6F3pl9aaJ554gl/84hecf/75ALz00kukp6fz1ltvcemll3ruC/Cxv5ivo1CMIoerLBced984DmeTRRBOK51Xe25w3Mvl1vOwqqD+0TmmSmqIIoIE4hiqvJvB422BklH3I/uDPOP4m9u2sGP86RmvRqJQaDQ/cNzBcuP/ONtyii+W6Tdvm5/w/Y4fOwNzdzuecD4WRyw/tlzJuWphn4+rlGKaGsc+XewWbA8mJbqcVBIJI4wh/cgq7ItIHU4WGbTRjhmiQ3NcA5B9KX1NIZGT1FTW663YcWDBQipJ7GE/tdTToTuwhXhAXQghhOjJAV2GFQv2Q61eRqqhzscWGfO5U13LQ/pPbs+R0lchRHeCuvT1SHV1dQAkJSW5bX/11VdJSUlhwoQJ3HnnnTQ3Nx/zGHv37qW0tJQzzjjDuS0+Pp7Zs2ezZs2abp/T1tZGfX2923+BqFbXk6uyKaGcycaY4+4br2KJJxYrFto4nJIdQTjrzaP7K4SKaupoppUSyoOyP1ogZtTVm01uQUMLFjJUarf7ZnE4oB6Oje1maJScH0+lrnHPnnPRQgvfsSwi3ojt17GbaKGCasqoHMgS/aaCaiqooZZ6bIZ3A0E2w0YZlVRQTQ11Xj2Xv8QQxQg1lKFqMJH0/u+bUgq0woKFcMLIYTA5DGYYWYwhl3Jd5cVVCyGE73R8+nPaXp5N61M5tL00m45Pf+7vJYkgUke9M0hnwSBeHc46T1GJzLJOwYqFMGxYsTCCoZgBcmFdCBFYQiZQZ5omt912G/PmzWPChAnO7d/73vd45ZVX+OSTT7jzzjt5+eWXufzyy495nNLSUgDS09PdtqenpzsfO9JDDz1EfHy887/s7GwPfEWe95n5Jd/oAppoYThDjrvvYJVOWcQa/p/lWn6mruN96/NAZ+nUG+aK4z43mFW6XNVKxrvN670tUDLqzCMGSPw/yzW8Eva7bvedYoylwbaJBOJoo4M/Of7hiyX61fGmfXVgJ4fB/T521+CXFlpp1sFXzlmvGwH3npneFHWo31qoTn3dpfeRrwup1NV9zoC7ynIhbbTTRjuttJFsJLCXA+xkD/so8dKKhRDCtxx5b6Ard0BrFbpqB468N/y9JBFE6vXhCobHrXdxj3WZ2+OLjfk0hG+mPmITccSQT2FIJ0AIIfovZOoXly1bxrZt2/j888/dtl977bXO2xMnTmTQoEGcfvrpFBQUMHz4cI+c+8477+T222933q+vrw/IYF0m6USpSGxYiTB6l00Rp2LAAqONYcxSkwgnLGQnIgJU61rmqClEqDCGBGHpa6Dl02mt3QYZxBJNrnHsILFSCqvFyhmOuZTqys4eHmYTMYZvAjX+UK8bGcFQ8jl6eMYCNWNAmWTj1Ag0GgsWqnVtn/qSBYJGOrOffTXYJYoI6mgIyqBmb3SV1/TnIsR4YyRTzLEYGMwwJjBK5TBLTSKGKMrNqhC67CeEEEL0XaVZzcP2Z5z3Y1UMhnJ/cXS9f7oxl4O64oR4ryuE6LuQCNTddNNNvP3223z66adkZWUdd9/Zs2cDkJ+f322grquXXVlZGYMGHe6JVFZWxpQpU7o9Znh4OOHhgV0m2abbeVt/AsBcNbXXz7vVugToDLjs1vuooZ69+oBX1hgIdugC1urNoOER6x3+Xk7QO0ApH+rDJeMNNBHL8Ye5AEQQwed6AwAF7Gcyxy/VDmZb9M5ug3QAy8P+OKBjt6hWPjc7v4/B1qdOa009XRl1Pf/MeEKkigAdmlNfTW1SdaikN8VlInBvTbWMY63ldef9Nx3vs153ZgGczkkeWaMQQggRrHbrQvaw33m/p2qASBXhfI+2m0KmMs6r6xNCBJegvgauteamm25i+fLlfPzxxwwbNqzH52zevBnALQjnatiwYWRkZPDRRx85t9XX17Nu3Trmzp3rkXX7g2t5XarqezaFUopzjYVMUWMxMWnUx+7zF8wUMFmNYaIaxdABlBwGgkAofC0xyxnPCBKJYwRD+aXlZmYbU3p83jhjOFPUWCaokZTqCu8v1I/KzSrGkHvUsIRhZPep4X93XN8kNgRZoK5JNzOcIUxRY5nUQ09NT+n6fodi6etBXUEqSUxT45mvZgz4eCkuryPSCFsIIcSJ7saOXzlvW7EyWKUfZ28Yq06c97pCiL4L6kDdsmXLeOWVV3jttdeIjY2ltLSU0tJSWlo6y5YKCgq4//772bBhA/v27ePf//43V1xxBSeffDKTJk1yHmfMmDEsX74c6AxI3XbbbTzwwAP8+9//5uuvv+aKK64gMzOTCy64wB9fpkdUmTUk0NmQPrkfgToAi7KwWX+DiWa3uc+DqwscO3Q+W/ROduiCzrLfIBNIwyTyzULydSHbyaeGeq6wXsDPbNeRoVJ6fG48cWzW37BN7+aALvPBav2jxWyhhjp2sc9t0jJAPQ1HlUz0VazLMRt08ATq2nUHG/R2drOPzfobn609ikgUCgsGDtPR8xOCyB5dhEazUW/3SI18yqHy2XDCqNahOXxDCCGE6I1Ks4bGQ1UAAHbsZKmM4zwDElze6xbrcm8vUQgRZIK69PWpp54CYOHChW7bn3/+eZYuXUpYWBgffvghTzzxBE1NTWRnZ3PhhRfyi1/8wm3/vLw858RYgDvuuIOmpiauvfZaamtrmT9/PitWrCAiYmDZLf5USS21NKBQpJPcr2NMVKOJJJxSKshjb0imaHeVB8YS3TnpMIj5c5iE1pqp7efTgd25rS99sVxL86oI3WydfIrYRzFWLMxVU/nc9jd+0fE4Vm3h5vArBnz8WBWcGXXb9W4Wd1zlvH9kENNboohEo2mkmXbVQSQWn5zXF77RBZRRSTSRjFMjBny8LNJJJ5kyqijQRR5YoRBCCBGcdrGX/ZRixcKN6vssC7vceUHrWNwy00P4va4Qon+COlCn9fEDEdnZ2axatarPx1FKcd9993HfffcNaH2Bol138H/2V4DO4E2Cy6jwvhithpFDFkkqgW3mLrCc68llBoRGfThQF4wCJaPuK/Nr0kmhkhocOMgkjWHq+P0jXQ0ilamMxVAWmkK0zBo6yxEXqBlUUEOmkUaEEU62pbMEtqeSid5IIYEpaiw2rLTTMeDj+UqpriCNZCqoJgwbI44zgMSTwpTNWTPeShuRAyw9DiRVupbZajI11JGrBj7sKM6IJZ0UBqsMopVveggKIYQQgajQLGGumkod9eRashjai4F0KSQygVFEqnAc2vTBKoUQwSSoA3Wid/boIucgCeh/6euZlnk0djTzjS5gu2M391tvC/qssyN1ZR25ZiIFK39m1L1jfsoBSgG42DibkSqH0yxzev38TCOdTXwDGtJ1/zJAg8EevZ/P9FcAZBmdAbquAS6eEKbC2Ky/AYKrj1i+LqKcKgCesd3PpT66KBBBmPN2K+0+OaevrNYbWae3ADDGyPXIMeNVbOfPr4YaXUeiivfIcYUQQohgslXvZI3eBMAIldOr5ySpeLaxCzSM1L17jhDixCGBuhPAle0/w4KBRjNFjWM64/t9rDONeezSe2mmlTJdSYZK9eBK/evbrdfhwEE0kYxWPQ8mCUSBklG3UxcwlMEoYLga2ud+f4NJ5zQ1hzbagyoTrK8qXUodUkjw+PFdM0PrXXqnBLoqXeu8neyF78uxhHN4enerbvNIL7dAYWoH89Q0IokglSSPHPMkYxqY0EIbu819zLJM9shxhRBCiGDw/9p/y4d6NQd1BRPUKCKJILeXFSTJbqWvtV5aoRAiWPUrUNfR0UFpaSnNzc2kpqaSlOSZN/3CO7aSh4POlOrvG+cxztL//kSRKtw5SryA/WQQGoE6h3bwMWtx0NlAvjgEBhj4K6PO1Cb/Mj/CxCSLDO613dTnYyilqKWejXoHVm2hyWwm2gi98roKs8p5u7+ZrsfjGqgLpknNFfrw9yXFC9+XY4lQhwN1bbT57Lze1mQ2s0p/hQMHc9Rkj2VCp6hEZ0boTr2XWUigTggR3CzDFuMo/ARaKiEyBcvQU/29JBHAPtFr2a7zAZyDlTJ72bokkTgUCo2mwqz22hqFEMGp14G6hoYGXnnlFf72t7+xfv162tvb0VqjlCIrK4tFixZx7bXXMnPmTG+uV/SRqU1nkG4EQ7nYevaAjjdCDWWYyqJRN7NfH/TEEgPCQSqIIRIbYUxiFL+z/czfS+qXQMioq6UB89DP3Dij/0Hhqy3fpc3xGvt1Cc+ab3CLMfDhCoGmSB8klUSy1CAGM/CedEdyLeEOpoy6Ql3i/L5keuH7ciyhWvq6i30YKHIYwknGdI8dd5wazng1gmJdRp7e47HjCiGEv9jO+F9s/l6ECBquQ9MAYohyu+h3PBZlYbExn6/NXc52MUII0cXozU6PPfYYOTk5PP/885xxxhm89dZbbN68mV27drFmzRruvfde7HY7ixYt4qyzzmL37t3eXrfohRpdxxsd75FNBqkkMdoYRqoaWPZjskpgrz5ABdWUu2S9BLsqXUsdjVRSzTBL9oACTIHCXxl1B3U5wxlCJmkDCj5NNEazW+8jnHD+7fiYGl3X85OCSLNuIUKFY8fBDp3PIC+UkcfoKFJJZCiDMXSv/twHhDgVQwQR7NH7SRvg36y+iHAtfQ2hjLqvzTxSSKSYUpJdJioP1HA1lDy9lyQSgioQLIQQQniCTVudF8kTiGWoGtyn5zfoJuw4yFaDqDfldVQIcVivMuq+/PJLPv30U8aP77632axZs7jqqqt4+umnef755/nss88YOXKkRxcq+u4Dx2quMO9w3o+jb33CupPsMmq8Moia0/fE9WvxZU8sTwuEjLoiXUIBRQBkqrR+H2e6Gs+PLVfxkOMZKnQ1a83NnG05xVPL9LvtOp/l5gcATGM8hvJ8IC3OiKWCGqCGYoKnnPsTcy011DOCoT4dWBPumlGnQyOjTmvNjfZfYcdOGsncYvmBx449hEFEEsEe9mMxLR47rhBCCBHotNbkU+S8MF5LA1PUuD4dY4jKZLXeSJmupIQyj3xWE0KEhl4F6v7617/26mDh4eFcf/31A1qQ8Jyt5k6iiaSJFsAzvZ4ySOFkNRM7DlpoHfDxAkULrSxUs2il3SuZTf7gr4y61eZGTlNzaKGNaar/g0ssysIYlcsQBmHByn4dWmUBrlNYkwzvTMuM5XBfv2DKeGo+9LclWkX69LypKomT1DQsGJiH+lUGuzoasB8qzYlXMdiU54q6DMNgjjGFRt1MnIrBoR1YlATshBBChL4aXc9UNY7VurN3dxrJzFNT+3SMNJXsvF0Z4gMlXre/yxvme8QQxRnGSVxm/Za/lyREQBvw1Nf6+no+/vhjRo8ezdixYz2xJuEhr+v3nEE6cG8s31/ZxiA+1V923jEHfLiAUalrWKnXA3A55/t5Nf3n/3w6+IfjXYooIZ5YzhlgBtxwYwhFdPZC3KR3eGJ5AcN14uu3DO80q44iEgMDE5NG3eSVc3iaQztoO9QfLpIIn567jXa+0BsBuIXQ6InoOkF36gAC58diYLBGbwLdmU0QzBnJQgjR9urJ6MptYNrBsKJSJhD+/U/9vSwRgKqpdQbpAMqp4juWxX06hms7iqoQqlTqznLzA/5lfghAKRVchgTqhDiePgfqLr74Yk4++WRuuukmWlpamDFjBvv27UNrzd/+9jcuvPBCb6xT9NEHjtVE6QhGkkMScZxnOYNFxrwBHzdOxXCusZBSXUE9DR5YaWBwzQ6MUr4NDoSSZt2CgWKGmsholTPgssVRDGO+mk4jzZTqSg+t0v/Oa7ueNXoTBgYjGOK1LE6lFLFEU0cDDQTH1NdmP/4uhrm0EG+nw6fn9pYqXcMERhGpwhmlcjx+fNfAXJWu8WgPPCGE8DXdXAbmob//ZkfnfSG60cDhC6CDSCVHZTFcDenTMbIZxCw1iTbaqdPBU/nQV426mU3mduf9dh0a77GE8KY+N0X69NNPWbBgAQDLly9Ha01tbS3/+7//ywMPPODxBYr+KdTFFFLMbvZxne0yfmy7iomW0R45dhMtbNDbKdNVVJqhcfXHLTjg4yweb/FH4etus5B6GvlKf43q+5+Xo8QZMezR+9msv6HYDJ3S1416Bw00YWKyi33EerEnScyh8tcWHRyl6s0uWcBR+Lb0NRQDdZXUsI1dfKm/9kq/v66WCjasVLpk7wkhhBChzDVQN0rlcIHljF5PfO0SpSJYr7eyRe+klApPLzFg7DYLqXFJ8AiWKg8h/KnPn6Tr6upISuqcwrdixQouvPBCoqKiOPfcc2XaawDJ03tpppU4Ysgiw6PHnq4mEEs0FVSzi70ePba/NGv/BQc8yd/DJPLYQzV1JBDLZMMzgeGxajhh2NhKHm0h0uC/xSUYBZDixSykQSoVK1ZqCI6puc3aNWju299Fm0ugrkPbfXpub3ENnqUw8D6lR8pQKUQTSQd2qgiNCzdCCCFETxpcgk0LLXO41bqkz8dIdukfXhXCF7t2UkAt9VixYMFgN4Vo7Z9e2kIEiz4H6rKzs1mzZg1NTU2sWLGCRYsWAVBTU0NERGhkIoWCrimm9TR6vKwuiwzSSWG2mkShWezRY/uLa+lrZIiUvvpjmMQ2czdz1BSSVWKf0/+PJVpFOrObqkKg0W6T2cxIlUM4YdiwkkwCSXhnmAR09hCzY6eRZkwd+I0lm2lhmhrPJDWGTB8PdrG5dIMIlYy6NtqYrsYzVg0nlSSPHz+OWGcv1FCaBC6EEEIcT4tuZaoaxwQ1qt+vryk6kdEMY6oahxEQnaa9Y4eZz1w1hXDCGEwGM42JbDN3+XtZQgS0Pveou+222/j+979PTEwMQ4cOZeHChUBnSezEiRM9vT7RT64BjWQPTHt1NdIYSr6jkHwNJ+lpXMa3PXp8fwiV0ld/ZtRprfmz4+/UUM9g0jnHstAjx3W/2lhDpkrzyHH9ZQ+dpbwAlxnf4vmwh716vhgV5ayDbqSZOC+W2XpCI81s1J19TBYw3afnDnOZiNoRIoG6Ql3ChkPfzyQvZG66ZoOGQiBdCCGE6I1yqpyDzvrbUzfFSCSPvaAhXSf3/IQgpLXmGcffqKeRFBIpooQis4T3jdVMxDPVN0KEoj4H6m688UZmzZrF/v37OfPMMzGMzqS83Nxc6VEXQBKIZYGagUKRQKxHjz1a5TJPTUcBtTo0BkrYtJV5aho2ZfPIdNxA4OuMugpd7cwUy/VQNh3ARDWKU405NOhGinVZ0L+oF5j7maOmYMPKdMPzUziP5BqYa6Ap4AN1rqUk3uzd1x3XHnUdhEjpq0s5qjdKrLMZxOlqLk20UKODo7xaCCGEGCjXLPL+tpZIJA6FQqNDtvT1EfufmWVMwoqFNJJ5yXwLCP0pt0IMVJ8DdQAzZsxgxowZbtvOPfdcjyxIeMZacwtFlJBKEoYaeFN/V1kqnc16B020UKLLMbXp8XP4Wj6FrNYbQUOCivP3cvrNnxl1uylkvd4KwERjlMeOG00Un5hrO89hFnKWxWOH9ovtejdr9WYAlqnve/18MS6B5wbdCCrd6+ccCNfmzLHKt0HzkBwm4fJG2NPZ1QCDjQw+0msAiDVD4yKHEEII0RP36qWEfh3DoiwkEU8VtW4X1kLJv82P2aC3oVB8Yfu7M1BXoav9uzAhAlyfA3VXXXXVcR9/7rnn+r0Y4TldTb37+8JxPEopbrb8gHfMVRTpg3xofsEiy3yPn8eXXK9iebNfmC/5OqPudfu75DKECML4lnGax4471hjOVDWOMl3Jbr3PY8f1lzxzL5mkk66SGa1yvX6+LJXOKJVDi26lQTd7/XwD5Z5RF+XTc4dij7oD5kGGkEm2yiBFJ+DpWH46yZyiZlKkD7KXA549uBBCCBGgmnQLOQwmmqgBfXaYZIyhSJe4vQcJFVpr9ukDDGcIo40cctRg5qgpFOsyivRBfy9PiIDW578INTXu0f6Ojg62bdtGbW0tp53W+w/n+fn5FBQUcPLJJxMZGYnWGqVCt4mmL7WarWSoVOp0g1eahwMMN4ayw5HPEDJD4g9tOGGk0dkbwqqC94XSnxl1+zjAHooAz2bUjVBD2aR3kEFq0PcNa9PtaKVp0I2U6nJyVbbXz2mi2XUowOmarRao2mgnk3SaaXbLBvQF16mv7Tq4f9YATG1iUzaadDNlVGEzbD0/qY+UUrTQRjW1ZOtMms0WoozgnZwthBBC9MYBStlH51C9VNX//nK1up4CXYQFS8h9Ht5m7maQSqVIlzCSoSQa8ezSe7FgCeHRGUJ4Rp8jEsuXLz9qm2ma3HDDDQwfPrzH51dVVXHJJZfw8ccfo5Ri9+7d5ObmcvXVV5OYmMijjz7a1yWJI9SpRgp0Z8DEW/3WRjMMTVdj/B1eOYcvbdV51NHAcDzXW83ffJ1R15WVqFAk4rny4SQVTzRRlFLBF3qTx47rD/m6kNfNdwGYwEjCVZjXz+laPtpAo9fPN1BV1FBCGQBxysc96lyGSdhDoEfdAcr4Un8NwMnM6GHv/huvRrJeb6WOXeRTyCTGeO1cQgjhTbYF9+PY/ym6dg9GQi5G9sn+XpIIUF091sIJI5r+X6CKOVQ94MBBK21EBvFQuyP93fwv2/RuAK43vgfAJDWGlXodK/V6GnSTz9ucCBEsPJI6ZBgGt99+OwsXLuSOO+447r4/+tGPsFqtFBUVMXbsWOf2Sy65hNtvv10CdR7Q6FLe5q0PuiPVUMYxnDgVE/SZJx26gzo6h2KkeqGHky/5M6MuXsUyl6lEq0iPZyWmqESadHPQN9r1RD+TvjpymESgc/375evBLuE6jLlqCgrD+cY5mJWYZZyu5lJLAyONHK+dJ1dlMU2NI4E4DpqVTArulqVCiBOYZczFWMZc7O9liAB2Z8ejrDY3UKVrOUOdRIZKGVAWXJyKoevaej2NIRWoa9ItzFfTqaeJMcYwACYZo2kxWwnDRr7ex1Tl/cFqQgQjj32aLigowG7vOQPh/fff57333iMrK8tt+8iRIyksLPTUck5o9S5ZM966SpFoxFNOFV/rXeTr4P53q+LwpEJvNFs/EbTqNj4y16DRzGCCx4+fQgKFFFNNHQ7twKKCc6KEa6BxkWWBT84Zow4HnFz7vwUqX/z9OhaLMlhzaNDHlBDICiukxDno4VLlvYFPGUYaGx2dmdXnc4bXziOEEEL4k9aaJx0vOyfD1+oGqsLWD+iYrm0+GnUz6SFUE/qxXkOe3ksE4QxRmQAMUqms01sA2Kn3MhUJ1AnRnT4H6m6//Xa3+1prDh48yH//+1+WLFnS4/ObmpqIijo6U6G6uprw8PC+Lkd0w21qohczUk42ZlKoSzDRNJnNRBvBmYFSZdYwVY0ljHDGqRH+Xo7H+LL09aCuYLaajAMHk5XnAxwLjJmEm+GUU8VBXUGWyvD4OXyhRbcwU01EocggxSfnTNIJzFFTsGPHoR0+OedAuA+T8G2gzurykmgn8L9XPalym/ia4LXzpHD42KE6tU4IIYQo1ZWkk4KJSbpK4fuW8wbcUy5XZTFHTaGDDreqgmD3mfkVYdrGAjWDSWo0hupMt5+gRjJfTaeRZvaaByA4r70L4XV9DtRt2uTeI8owDFJTU3n00Ud7nAgLsGDBAl566SXuv/9+oLMRtWmaPPLII5x66ql9XY7oRqPrB10v9nhyYLJebwWgStURHaSlYpXUsEl/A8B8pvl5NQPjr4twNdSx9lAm0jTD81fGTEy+0BsJJ4zdupAsgjNQV061s2fYrarnCxueEKHCnf82pzLHJ+ccCPeMOt/2qLO6vFsM9kCdQzvYqw9PYU3Be9nCrpnIpWaF184jhBDeZlbvQtfswWwsRsVkYiQOx0jy3IAsEdx2631UUkMrbXzHWMRN1ssHfMw22p3v0+pV4PcS7q09ZhHfsAe7tvM9y7ed23PVED7XGwAYp0MnQUIIT+tzoO6TTz4Z0AkfeeQRTj/9dL766iva29u544472L59O9XV1axevXpAxxadGmkmnDAiCSdWey8jxTVDo0rXMEQN8tq5vMkffcN8wZejJOq9nAU1UY0ik3RKKGOX3supzPb4OXyhXrsEoXyULRbrWvoaBD3qas0GIggnkTjidLRPo8/ugbrgHiax3cznD46XAbBgOEtOvCGbQYxQQynUxRQfGgQihBDBqP2f34bGksMbYjKJuCbPfwsSAWWnLqCVNjJJY5Ia7ZFjxrgO/dKhE6jbpfcBmlQSyXb5jDiUTMarkezRRWw+lCghhDiaZzu+98KECRPYtWsXTz75JLGxsTQ2NvKd73yHZcuWMWhQcAZ6Ak2zbqWNdtpoJ0J5r5x4KIMZzTDClI1SHbxZFE26mclqDE20kEb/x6sHAn8Nk2h0Lbf2Ql+xLDUIO3amqnE0ErxlAa5r91X/NbdhEkHQo65a1dKq26ijkSij/1PU+sOt9DUIyoSPZ78+iBUrDhwoFEO9GKhLV8k06EZGkTOgyXdCCCH8b7VjA7v0Pmp1PZdbzifVSPL3kgJGgd7PdDWBEl1OjpHV8xN6Ic7lwm1DEL/HPVIlNdhxUEENGepwuxerYcWmrQxhEINUKqY2nWWxQojDehWomzZtGh999BGJiYlMnTr1uLX4GzduPOZjHR0dnHXWWTz99NP8/Oc/7/tqRa+00Oq8HaW8NzkoScWTx17QsE8Xe+083naAMrbonQAkqng/r8ZzfNmjztt9EXPUYMqpolxXMcIc4vHj+4qv+ke6cr1S2xgEGXVdfdWSXfqe+YolhEpfvybPmRX4ou0RIr34WmAog3gVx3adz36z1GvnEUII4X1XddxFIZ3v63ONIZzP6X5eUWCwazt/dLxKB3YmqJGcbMz0yHFdh0kEwwXV3nIdoHbksL40I5n3zc/JM/dRSwNJhM7nLyE8pVeBuvPPP9856OGCCy7o98lsNhtbt27t9/NF7zS7Buq8OOJ7rBrOSWoaBooyXeW183ibrxqu+4K/MuqqdS2z1CRiiXZLb/eUFJcX+EqXUuVgE6HDma+mY8Fwy3TzphgdxTw1DQPDq33KPKFDd5CtMhnDcIYpz1yp7guryzRhR5AH6qp1HQvUdByYjFbDvH6+rsBqPY206w7ClM3r5xRCCOF5Jubh20GeXe5JJbqcBWoGrbR79HU1WSUwX01HoXx6kd3bDAzmqWlEqoijLr663q/SNSSFUKKEEJ7Sq0Ddvffe2+3t/rj88st59tlnefjhhwd0HHFszbrFeTvKi2VII40cvtCdGZRW7fMqao+pdAnUBXogoy98+WK/Wxc6B4vcpW7w+PFjiCIMG+10uAVWg803FDgb6PoqezNKRbD60O9pR4D3Xduj97NBbwM6yyl9zX3qa2B/r3qy2tzABr0dhWKEGur186WoRGdjzCpqGUSq188phBDC81ppc94+IH1Hncqo4mO9FoDJxhiPHTeCcOd7wwV6hseO609aa1aZ66mjgSE686iLd+4X4GsYSY6PVyhE4OtzdOXLL7/ENE1mz3Zv5r5u3TosFgszZhz/D4zdbue5557jww8/ZPr06URHu5d/PfbYY31dkjiCe+mr9wJ1KSqR2Woy9TRi18H7obZddzCaYUSpiKBPvfZbjzrdzBhysSoLwxjs8eMrpZivZnCQcgyCt49FV5AxDBsxPpqSbFVWZ5DT9W9DICoxyxnOECIIZ6zy/SSwUJr6atFWxjKcRBXv1V6lXUapHCaokTTqZirNKgZZJFAnhBDBKIzDQZVmWo6z54nFWxU4MUE29Ks3SqnEQDGekcw2Jh/1+FCVyUQ1miaa3UpkhRCH9TlQt2zZMu64446jAnXFxcX85je/Yd26dcd9/rZt25g2bRoAu3btcnvseL3vRO+100ECcbTS5tXSV+jMnMjXhSQQ59XzeNM+DpDHXizaQoIK3q/jSL7NqNvHTvaAhjQvZUJVUMU3uoBwwtBaB+nfC0UcMcQS7dP1RxFJOx1uZfGBqFRVUkARAFepC31+/lAK1H1NHi20Mg7fBDwVim16NwBV1PvknEIIITyrXXe4Te9u1oH9vsGXynUVaSRTS71HK3Bi3YZJhEagbre5j3hi2ckeTlWzj3o8nHC+1p3TlCuDuFJGCG/qc6Bux44dzkCbq6lTp7Jjx44en//JJ5/09ZSijyp0DbWHPijFE+vVc6WQQD6F1FJPh+7AFoR9iSoPXclJIj7opw75K6OugmoAEonDqrxTBp18qLSujXYaafbZMAZPadYtzjcls9UUn547ighqqXcriw9ElW5Xq31fhh4qpa92bXdmT8b56PfENbug8tDfAyGEEMGlEvegSaBn4vvSPl1MOVXYsDIcz7WUiFWHexY3hsgwiZ26gH0UY8HCuG4qJI4sfRVCHK3Pn6jDw8MpKysjNzfXbfvBgwexWoO3T1koqcJ3wxHGqOGYaKxYqdQ1DFJpXj2fpx3QpYxQQ8kkzW10uOibXLJJUYlezUgcrYbRpJoJw0alriFWBVeg7k3H+yw2FlCla5lojPTpuSNVBOjAf8PdgZ25airttJNGks/PHyoZda5X5GN89HsyiFRmqAnYsAV8QFgIIUT3qnUtkxnDFnYCUvrqqpFm5qqp1NHAUMNzg9NidRQz1AQsWEgI8hY8XSp1DSepadTTyMhu+uQOIpVZahIQOsFJITytz5G1RYsWceedd/Kvf/2L+PjOPya1tbXcddddnHnmmT0+/9RTTz1uydfHH3/c1yWJI3TV+luweD2jzlQm683OIQLV1DGI4ArUbTF38rFeA8A9lpv8vBrP8lXpa4fu4EP9BQBzOLoPhSd9qb8GOoPRw/D9VNCBeNLxCpv1N1iw8Jn1NZ+eu6sEPtBLX/foItboTYDvhm24cgvUBfGkuwaanbd9lXkap2L46tAgkDM4ySfnFEII4Tm/t79IvlnoDNKBlL66+sRcy9d6F1asHp1MH6uina+fwdyH2dUXepNz4OAo4+gJuYONdOcQuhQdOoP8hPCkPgfqfve733HyySczdOhQpk6dCsDmzZtJT0/n5Zdf7vH5U6ZMcbvf0dHB5s2b2bZtG0uWLOnTWh566CHefPNNdu7cSWRkJCeddBK/+c1vGD16NADV1dXce++9vP/++xQVFZGamsoFF1zA/fff7wwydmfp0qW8+OKLbtsWL17MihUr+rQ+f0kmgblqCvEqzut9sFx7NARjjwH3ia8J/luIh/ij9LWKOudtb5Yruo9yr/Xaebyl62cthQSf99ebosYSQzR27Ni13WvlyQPl+u/qj9JXi0ugzhHEpa91ZgPT1XgiCGeMyu35CR7g+u8VzJOZhRAntvDLVqGbDqKbK1GRKagYz2VOBap/OT7kPvv/cVBXYHN5HRxCJtHdDKW7pv3nfG5uwMTkKduvOM0y15fL9QuHdqC0wVw1lQyV4tFWPzZlI4JwWmmjMUR61LXpduaoKcQSRRpH967OIoO5qjOOEE6Yr5cnRFDo86e1wYMHs3XrVl599VW2bNlCZGQkV155JZdddhk2W89/tB5//PFut//yl7+ksbGxT2tZtWoVy5YtY+bMmdjtdu666y4WLVrEjh07iI6OpqSkhJKSEn73u98xbtw4CgsLuf766ykpKeGNN9447rHPOussnn/+eef98HDvT83zlC/0Jppp8UkTcdcPZ8EeqPNHYMCbfJVRV2pWOG97s9Q62PtZVFEL+Ofn7CAVzky1RpoDdviLvwPnhjIwMDAxg7r0tZpaNujtAMxhik/O6XrRptxRTYO1KejK04UQQsVkoGIy/L0Mn9ps7mT7oWFArooooUAXHbV9nbmFvRwAYK9ZjEtsL2QV6YPspIB23cF56jSPHz+WaFppoz7IA3XtuoMGs5ENehvNtDJbTe724rRSimJdRhElpGnftzoRIhj0K60iOjqaa6+91qMLufzyy5k1axa/+93vev2cIzPcXnjhBdLS0tiwYQMnn3wyEyZM4J///Kfz8eHDh/PrX/+ayy+/HLvdftyeeuHh4WRkBN8LdbNucfaTSPbBB91BpJJFBrXUOwMRweSfjhUkk0AS8Zyhgr9cyx+jJEp0GQpFFhlMUKO8dp4kEhhEGs200BBk/SyadQsddJBGEqPV0SUA3nbkRLFADdTV6DqSSSCVZKK6uYrvC1YstAd5oM71b7G3+5Q6z0MC2WSwn1LeYAUft62hJGK1T84thBCi/6qOuPhpw0rHoazyRt181P5lVGIc+t8r5r+4mot8sk5/2qX30oGdbDKYriZ6/PixKpoKXR30/drednzC9+y3A50/R3ONKcfcN0UlUKRLqKIOU5tBP9BPCE/rVaDu3//+d68PeN555/VrIWvWrCEiIqJfz+1SV9dZgpeUdOzIfF1dHXFxcT0Ovli5ciVpaWkkJiZy2mmn8cADD5CcfHTqLkBbWxttbW3O+/X19f1YvWeU6SrGqRG00U6uyvb6+eJUDAcoBQjKQF051VRRixUL8YZ3+/n5mm/y6aCYMiaqUZTocq8Gh2NUFAcpB3BONQ4WldRix0G5n6Zhug4UaNBN/ono9kLFod/HSAb2WjAQIxhCB3a/DLPwlEpdwxiVSwttPusbGq9iKT70+wmdpSz7zGJyjME+Ob8QQoj+aaeDOGJoopk4YkkingI6M+nqca92qjHrGKtGsF5vwY6dcqr8sWSfq9A1TFZj2K9LSVOef38whEwUihgV5fFj+1KNPtwOR6NJ5thVJLkMoY5G55C4NNX952whTlS9CtRdcMEFvTqYUgqH4/hZCN/5znfc7mutOXjwIF999RV33313r87THdM0ue2225g3bx4TJkzodp/Kykruv//+HrMBzzrrLL7zne8wbNgwCgoKuOuuuzj77LNZs2YNFsvR+d0PPfQQv/rVr/q9dk/ap4vZofMBONdY6PXzpQR5X6Ku4GKKF150/cEfPeo26O1s1XkAjFI5XjtPjEtWWHdXeAOZ6+9Gih9KX+OOyKgLRFprKg/9Pqb68fdxP6U00OTWry7Y5OtCduo9AKT7aJq1UgobVtpoBzrLrf9rfsIy43KfnF8IITzBvvU5zKJP0HX7UPE5GENOxTrpKn8vy6s2mtudAbka6qhx6T18ZAXDQSpYqzc77wdjz+D+2KkL2Ky/ASDHC8PMOrB3Bkd1Z3+3cBWcfdu2kue8bcfBCIYcc994I5YCR2dAeB/F3fayE+JE1qtAnWmaHjthXJz7gAPDMBg9ejT33XcfixYt6vdxly1bxrZt2/j888+7fby+vp5zzz2XcePG8ctf/vK4x7r00kudtydOnMikSZMYPnw4K1eu5PTTTz9q/zvvvJPbb7/d7VzZ2d7PZutOkS5mgZqBA4dXyxC7JJPIPDUNhYGtf5XUftNstjBLTcKBgyEq09/L8TitfZNTF6HDOVnNpIEmRnmxrDNOBX6w6VjqdAML1Aw02qOTwnorkzTmq+kYGLTqdp+fvzdqdQMnqamAZoQXA7496Zr8Gsylr020sEDNoJ0On5Zaf8s4lR1mPoUUM02Np0L7J4NUCCH6y77uN9BYAoAu34x5cH3IB+qyyKCOBgopcW6zYWWOmoL1iPf2rn/Xs8ggQ6XQbLYQZfinXYWvVLhURKQanr/gGqeinaUwDTQF5YCFlx3/okbXk0AsbbQzUuUw1nLsfumT1GhOUtMwUOzV+5nFJB+uVojAN6DISmtra5/LVV944YWBnLJbN910E2+//TaffvopWVlHfwhuaGjgrLPOIjY2luXLl/dq6IWr3NxcUlJSyM/P7zZQFx4eHjDDJrbonXymvwLgPuM2r58vRSWw+tD47UgdGN+D3qpXTazS6wE4V4VG2as/MupW6fV8owuIJtKr5cOufdbqdd8Gz/hbKZXO38sLOMPn53cok8/1BgBupsHn5++Namqd36NM5b/+oF2ZdI4gDtR9bK5hrz5ALNFkKt+UvgK8GvYoVbqWwW3z+VxvwKKDNytRCCFOBM26hXf0qqO2W7A4X5M7dIdzyqlrm5sDlHJAl1JAERMZ7ZP1+ou3p9LHHPEe1x/VFwP1puM93jU/BeBmyw/4re3/HXf/HDWYLw59hpxjTuESy7leX6MQwaTPXRsdDgf3338/gwcPJiYmhj17Ostr7r77bp599tken5+bm0tV1dH9DGpra8nNze3TWrTW3HTTTSxfvpyPP/6YYcOOzhyor69n0aJFhIWF8e9//7tfffAOHDhAVVUVgwYF/oj2/eZBxjGcuWoqo8jx+vniiXV+sA220lfXhq2uQaBQ4aupr13/7sfrQ+EJccQwS01ivBqJieeyfH2hys/ThaNcer410+rz8/eG6yTfFB8NQOiO5dDLokMH189YF1ObROgwJqnRnKJmdjttzZuSVQKL1HwmqtGU6xOjd5EQQgQr18DbHDWF89TpXGScxWQ1xmWfzlLYh+zPcE3HzzFQWDAYwRByGEyeudfXy/a5Kl3DOEZwmjGXZB3v8ePHqRjn7cYgqhp53f4uKa2zSGudw2pzAxMYxXCGMJj0Hp87WuUyV01hrBpOoS7pcX8hTjR9DtT9+te/5oUXXuCRRx4hLOxwWu6ECRP4y1/+0uPz9+3b120fu7a2NoqLi/u0lmXLlvHKK6/w2muvERsbS2lpKaWlpbS0dE497QrSNTU18eyzz1JfX+/cx3UNY8aMYfny5QA0Njby05/+lLVr17Jv3z4++ugjzj//fEaMGMHixYv7tD5/qKSGAvazUxf4pM+ToQySiceKBTPIPti6lk/GqtAI1Pk6o840TQwsWLB4PbiSpOJZr7eyXe9mn+7b3wp/a9QtzqulKV4OaHYnksMlKc26xefn741qXUsCnRmZ/ghmdukq8wnWjLpaGviGPWzVebSpDr+soYkWtuvdtOsOKs3guoAjhBAnkiqzlkTiUSgmGCOZZ5nGTGMiY4zO5IkEYik1OwcF7TcP0kwrJhoHJvkU0UAT+brIn1+C1+3XnV/3bvZRqIsJMzxflhpL1KH/j6Y+iCa/1ukGGmmmnkZaaecbCohXMdxmW9rjc7NVBpv0N+zR+6nTgVntIYQ/9bn09aWXXuJPf/oTp59+Otdff71z++TJk9m5c+cxn+c6Ofa9994jPv7w1QiHw8FHH31ETk5On9by1FNPAbBw4UK37c8//zxLly5l48aNrFu3DoARI9xr5Pfu3es8X15ennNirMViYevWrbz44ovU1taSmZnJokWLuP/++wOmvPVYGnUzaw41eD1VzfZZJkWmSqdcV5NPcL1Qu5ZPhmJGnS80qRZKqQAgAc9fYXRlUzYSiKOWerfsq2BQRoXzCmnXmzFfilKHM+paAjSjrkLXUEsDCkWq9l+gzujKqAvSQJ1b9qYXpzAfz6O2nzGn/bsUUMQt9vt5Lewxv6xDCCHE8VVS4xwekUYKt1qXAPB7+wuEE0YtDRygjCmMY53egkYziDQ+sD7H9x0/YYveyZOOl/mZ7fiD+oLZzzseZ4veSSJxPGd92CvniDt0obKBpqDKqHPta9hOBxYsTFPje/Vci7KQq7LZofPdBpQIITr1OVBXXFx8VNALOjNrOjqOffW+a3KsUoolS5a4PWaz2cjJyeHRRx/t01p6apa/cOHCXjXUd90nMjKS9957r0/rCBT7dQkLjdlU6RoyVc8px54SfSjw0EgzrbqNCBXYAc0uzbqVmWoiDkwG+bCPk6/4ovTVPSvR+wGoOWoyldQQRhhaa5+X9fVXA4en1CaoOJ+fPxhKX6sOBV81miQjwW/rsCgLaHAEWXl1lxrqmaOm0EY7OWqwX9bgOpynmcDM4BRCCOFe+pro8v5kCJmMZCgJKp6N5nbONk4mlSSmq/FEEckIaw4jHEOxKSuxRPOV42tmWCb64SvwvjiimaUmUaarmGqM9co5YlzeQwfTwLRGl/e30USSQQo5fRiaFn8oQFlPI+26gzDVtz7yQoSyPpe+jhs3js8+++yo7W+88QZTp0495vNM08Q0TYYMGUJ5ebnzvmmatLW1kZeXx7e+9a2+Lke4OKDLWGmu42u9izTluxHXriWPri/4ga6Car7UX7NRbyeM0Hhh8HXpa4NLVmKMD7ISO5Sdr/Q2vtAb3SZwBTq375MfyqyjgqD01a1Rsx/Kg7scnvpq99saBqJcV7FWb2aT3kG4ny6aBENgWAghxJE9dBOcty+wnEkJ5Xyuv+JFx3L26WJW6nVs0Nudgw4usZ7DV3obn+h1ziECoehDvYb1eitNNHstkBTjUm0RTKWvrtVJTbRQwH5yjexeP991aEYwfYYUwhf6nFF3zz33sGTJEoqLizFNkzfffJO8vDxeeukl3n777R6fv3dv6Dcc9RfXcsBUH/Z4GqtGUKVqsePonPjnw2y+gahya14ffNOVeuL7jDrvB6CmqLE0qxasWDlglpJm8V1AeiDcvk9+KLOOUdEsUDOw43D2YAtEJ6mph/od+u/30TlMIkgz6lwDnv7ohwgQThgKhUbToiVQJ4QQgcqBg5PUNBTurxlKKc42TqFQF9NEC1vNPGaoiUQSzkyjM3MuVw1hlppEGDba8U9PVF/oGj7nzQutru+hg6n01XWt4xhBOGG9Ln0FmKEmUK8aqaWeYrOUQZZUbyxTiKDU509s559/Pv/5z3+47777iI6O5p577mHatGn85z//4cwzz+zVMZqamli1ahVFRUW0t7e7PXbLLbf0dUniEH9NlnTg4HO9AYAKHTxZToGSweNJvs+oO5zy7osAVIyKdvZhPHioN14waHT5PsX4o0cdEXymvwJgPEe3LggEeXovX+hNgPtVfV/rmmIdtD3qAuAChFKKKCJookUy6oQQIoAd0GV8oTcC7uWXAFZl4XOz8/39F+ZGvtJfA3CluhCATJXGer0VgEgdQajqutga58X3uXEcnvoaTKWvrmu91HIu4SqMHKP3bTesysoqvR6AAl3EDEKzfFqI/uhXasWCBQv44IMP+nXCTZs2cc4559Dc3ExTUxNJSUlUVlYSFRVFWlqaBOoGoFrXkUoSccSQhvcnvnZxT1sOnib/NbqOdJKJJYZkLw9C8AdfZNRV61qSiCeeGJ9kUqa4NMev1MHzs9asW8kkjUEqtbMHmo8FQ0lFZQAMQQDX0tfgDNRVm3WkHXod8FdGHXSWWzfRQpP0qBNCBBEjcQRmay04WsESgZEYmBe3PKWeYw9Wm67Gs0ZtYr8+yGb9DQnEMph0xqjDE2ENDExMt2SBUNKuO2ijM6nEmy1e4ohhGFk00xpUmegObTKIVKKJ5MeWq7AYfXuP+x1jEf9U71Gsy/ij4zUusZ7rpZUKEXx6HairqanhlVdeYcmSJcTFuTdDr6ur46WXXur2sSP96Ec/4tvf/jZPP/008fHxrF27FpvNxuWXX86tt97av69CAJ0917r+S1S+Czwlk3go4BVNQ4AGAbpTTjVlVFFGFSmG7wKboaSaOud/EXi/H1a6SiGdZGKIojqIelmUUEYVtYQT5pfzx6nDV2oDtaQiDBtDGYzG9Gsz4cMZdcFZ+lqhqimn878kH74OHGkwaUQSQWqIZCsLIU4MYRf9199L8KlG7dqaI8btsSyVwQFdyhAyqdI1WLCwkz2MUsMAMJRBLtm00+GT94D+UK1rGUYWdhxkefGCdIyKYi8HgM6hUMGijEoOUkEs0X0O0gEMM7Ko0rXYsBKGLagGxQnhbb0eJvHkk0/y6aefdhuIi4+P57PPPuMPf/hDj8fZvHkzP/7xjzEMA4vFQltbG9nZ2TzyyCPcddddfVu9cONWyunDkqcUlUAZVeRTRIku99l5BypQMni8xfv5dL4vs8tSGZRRRQH7yddFXj+fJzi0g2rqAP/1DHO9Sh6IwXS7trNGb6KQYr9MxXVlDfbSVz+9DhypWbVRRAm79D6/rUEIIcTxHa/X8GJjARmkksdedlBAFbWMZ6RbiWyiiqOIEtbqLbRp93ZGoeAApezlAPs5SLyK9dp5YgL8fdqxdK11IO1vxhjDOEApn+mvKKfKU0sTIuj1OqPun//8J48++ugxH7/uuuv4yU9+ws9//vPjHsdms2EYnfHBtLQ0ioqKGDt2LPHx8ezfv7+3yxHdMDCYp6ZhxUKyjsdX7cqSg3RiT4ZKZT7TsWAJmXHgvu5R16ibmaumYsPKILzfAHa4GsJJairluoovHBtpsbYSqQK7L0qtbuBkNRM7dkaoHL+sIZww5qvpQGdPmUCzTxczW03Ggcl45d8yo65hEhqNqU0M1efh6H6VQiLz1XTa6SBRx/nsdeBI4YcmaXeVDAkhhAgMv+34M9/oPRw0K9jANpKIJ+1QZYwri7JwgeUMDugyNusdNOpmxhi5bvvMNCZhM60YGOTrQsarkb78Urxui7mTRcZ8anQd09UEr53HNUja4FKOHOi6Ar0DGbQxT82gWbViU1becaziSuuFnlqeEEGt14G6goICRo489h/fkSNHUlBQ0ONxpk6dypdffsnIkSM55ZRTuOeee6isrOTll19mwgTv/QE8EXxqrqecajJIIdrwXcN612y0YOpR8am5nipqGaay/L0Ur/BFj7oteidrDg0AyDIyvH6+eBVLjspyDh3I14VMVKO9ft6BqKfR2Sg3008TkZVS7ND5VFPHcIb4ZQ3Hs0vvdQ67WGDM8OtaDA6XbjhwYPQ+8TwgfKm/ZrveTRSRhBv+KbUGnGXeoTwJUAghgtFvHc+69aYDaKS524vWD9p+DMD9Hf8HwN22ZW6Pp6ok53uyx+0v8JewX3tjyX7zvvk575ufA/B3y++9dh73yofm4+wZOLTWHhm0caFlEfc4ngAN8cRyJRKoEwL6EKizWCyUlJQwZEj3H/JKSkqcmXLH8+CDD9LQ0ADAr3/9a6644gpuuOEGRo4cyXPPPdfb5YgjNOsWMkglS2WQq3z7QTyFROaoKbTSht/SN/ooEMoRvcHXGXWGNpimxhOOjTSSfXLO8y1nsNbcTAttvOh4i98Z/88n5+0v1yujR5aV+FIM0VRTR4MOvCu1+WYRYxlOgoplohrl17VYlcVZN+7AJNhybesP/fvG+mG6sCvboe+ciYld27Gqfs2uEkIIn2p/92rMolXQVgcR8RjZpxB29rP+XpZHFOmDzGr7jvN9SRg2HDgYRBqXWo7fxN+1162rbxkLqTcaecv8gPfNz/nAsZozLfM8vnZ/qXctDfbiMIlwFcYpahb1NBIV4JUiXZp0M+MZSbiyMW4A1RBDVSanqFnU0UC5ltJXIbr0+p3z1KlTeeutt5gzZ063jy9fvpypU6ce9xhaa9LS0pyZc2lpaaxYsaIPyxXHUkktW8kDDTk+zhCLVdFs1NtppwMzSBqwl+lKoomkkWaSVYK/lxO0vtRbqaaOXJXts+avpxqz2cN+DAz2mgd8cs6BaODwlVFvvsnrSayKBu2+nkBRSAl72E+bbud3xs/8uhaLS0ZdME5+bfRAGYonhKswZ8CzjXas/RsyL4QQPmUe+ByayzrvNLV23g8RRWYxDTQ76y26Mp4PUMqd1uuO+9xbrUu63T7RGM14y04eN5/HhpXdeh9nEjqBOtdhG9FEevVc+bqQYsrI1IHXoqQ7DaqZbewCPbCKEauyUkE1O3Q+ySRwYdtNzDQmcbX1IlKVDPsTJ65e1/TcdNNNPProozz55JM4HIc/vDgcDv7whz/w+OOPs2zZsuMcoTNQN2LECOlF5wWuJae+DjwppZxZaa6NzAPZW+aHNNJMFBF81zjb38vxCm+Xvtq13TmZypdZiXEqhplqIgYGaw+VWwQyt4lqfgyedAUJW2jFru1+W0d3NpjbaKOdwWQwkhy/rsXi8rIYbAMlOstQOgOxcXSf/eArrhOOpfxVCCH8L18X4cBBOGHcZiyhIOwjfmZcy/XGZUSr/mdhj2U46STTgZ2v9S4Prtj/uko7Y4n2es/ars9vldSgtS9Gwg2M+8Tggb2//aftSarC1/M/xpl8oFfzS8f/8rD9mYEuUYig1utL3BdeeCF33HEHt9xyCz//+c/Jze1sJrpnzx4aGxv56U9/ykUXXXTcYxiGwciRI6mqqjpuvzvRdw26idlqMo00k+GDpv5HmqLGkkoSYdiCogF718TXZlpD6mqNL0tfN5rbma4mYOLweZ+4dFIYQy5pRhLfmAWMNYb79Px90UIb09V42rH7dbpwrsqmmRbCCKNeN5IUQJmkqSqJSYzBjp04w78BJqtbj7rgyBDu0qpbmaRG48DBSDXUr2sxzMN/i95yfCjNoYUQws+6Br610c4sy2QGG+kkGvEkEj+g4440crBhI5sMNprbaNGBP+irtwaTToQKJ8YH7SRGqWGAIpJwGnTTMcuNA0W9B1u7DDM6q8HSScFAkUUGLbptQMcUItj1KZry61//mrVr17J06VIyMzMZNGgQV155JWvWrOHhhx/u1TEefvhhfvrTn7Jt27Z+LVh0r5Ia1uktbNe7iVThPj+/oQy26J18qb9mP6U+P39fuU6nDd3SV+9ejVthfsZX+ms26h2cZVng1XMd6ULrYraxi4/NtXxsrvHpufuqWteyQW/na51HGP5r7t9KG1t1Hl/pr2lULX5bx5Hs2s5/zI/Zqnf6tTS4i3vpa2BlHvakWtWzUW9ni97p92mr7S7nv8t+7InxQgghfMOt+ubQhcNbrUuOWdbaW3EqhoXGbPZTyhadxy69b0DHCyRf6E1s1t84K0i8SQFb9U7W6S1un1MClevQC0+9f/uF7UYiiOAApbxpvsfv7S965LhCBKM+N42ZNWsWs2bN6vcJr7jiCpqbm5k8eTJhYWFERrrX+1dXV/f72CeyBrf0Y99fgZllTKJON9BOB7vNvQy1ZPp8DX1hxcJ8NR2FIjmUhkn4qE8cdJYFnqxm0kqbzyfnupbaVgZ4uXWjS0+4OH+Wvrqcu1E3Bczcl66hLhAYQfMcNZj5ajoa3VkiHCDfp95wb4Hg379rroFCX0ygFkII0RPlfO+b4uFqktONuaw1N2Ni8h/Hx0w2xnj0+P7QrFtooRXwzfsT19ftKmoYhm/fW/dVI83MVVOxYWWI8sznPqUUt1ivAA3/Mj/kb47/0kxrjz0UhQhFvQrUFRUVHXPaa3eKi4sZPHhwt4898cQTvT6O6D1/T5ZMJ4XP9FcA5Om9nBHgjWS363w+1xsASPHzB1pv8faH4w16O5/qLwEYPIAmsv3h+oapUgd2cN+tNMCfwyRczu26Jn9z7Wvp7+ASQKmudP5tsKvgKn11DVr7s8wa6MzaPPQnqAUpXxFCCH/L03ucr2+eDjx923IaV9o7h0F9bK7lF9zo0eP7Q4XL+0tf9GJ2fd0Ohp7fFbqKNYd6RV/MOR477l3W62nXHTzQ9n+YaLRd8/8s1wR8WyUhPK1XgbqZM2dywQUX8MMf/pCZM2d2u09dXR3/+Mc/+P3vf8+1117LLbfc0u1+S5YMLL1adM91kmOcH4IBZ1rmMcUxlnoaecvxIcusl/t8DX3RlXkSTpjXpzj5ki971HW9ibBgIZ5Yn50XIJM0ZqlJFOsyiijx6bn7yn2YhP/6jbhm2rpm4Ppbpa4mnRTiiCGH7i/w+JLrdNIO3RFUGXXVuoZBpBJHDNlqkF/X8jfbEyzpuIM9uggbNhzagUVZen6iEEIIr3AvfR1YX7ojxago5qjJlOkq5wCGYPe8/Z+kkki2GsSllnO9fr4slcFolUuDbgr4ahFwbyOU4uHAb5iycbPlB3xofkGBLmKt3sxJappHzyFEoOtVoG7Hjh38+te/5swzzyQiIoLp06eTmZlJREQENTU17Nixg+3btzNt2jQeeeQRzjnn+FH1goICnn/+eQoKCvj9739PWloa7777LkOGDGH8+PEe+cJONI26iUzSaKWdOOXboAlApkqjQldTTJkzTTyQxRBNOilEEO7TclFf8mY+XZ1uIAwbg0jFgsXnV7nSVQrb9W5iiSbQB2NpOgOLzbQSq73fjPhYEokjhQQiiAioQF0VtZRRSRmVhCv/9fDrYnN5WQy2HnWV1HKQCg5SQZSfG3nnGIOJUpFUHPpg2EKbT5pxCyGE6F4UkWSQigMHNmXz+PEbaWYvB4jQ4Witg/79da1qIIIINuudjFG5Xj9ftIokT+8BOktfA51d28lmELXUk0Ccx48/VA0mXxcRTyxPdLzIqLBhIVsFJUR3evXpOjk5mccee4yDBw/y5JNPMnLkSCorK9m9ezcA3//+99mwYQNr1qzpMUi3atUqJk6cyLp163jzzTdpbOwswdqyZQv33nvvAL+cE9defYASyqmjgcH4tgyxS9cfz2AYK75F76SMSqJV6GTTge+Sf9aYm1int3CQCpZav+Ojsx6mlGKiGk0plXyov6A1gCdDlehySiinlnpi/NyjrpJaDlDq1hfO3wKpXBPAplwy6oIuUHf4jb0vynR6EsXhYGEzgTPARAghTkRf612UUkEk3rmQ09W+opW2kPib/7n5Ffs5SARhPukXl+zWfznwA3UHKGU/B2mgiSTl2QxNgKst3+XX1h9RThX/1h/xofmFx88hRCDr0zCJyMhILrroIi666KJ+n/BnP/sZDzzwALfffjuxsYczv0477TSefPLJfh/3RBdLNPPUNOpoJFtl+GUNM9Ukoomigw6qdI3HG9V6ikM7nG8g/FEm7Cve7FG3xtzMqWoOTbQwgVFeO8/xnKJmEYaNSBXB046/cpt1qV/W0ZNGlxKQOD+WvqYc0aQYoFW38X/2V3jHXIUDk1utS/gfy5k+XVc77cxX0+nATppK9um5u+OaURdsgbom3cJcNRUDRQap/l6Oe6BOtwZVGbEQIrDtcOTzqOM5inQJTbQwWg3j+5Zvc4ZlYD2SrROW4ij8AN1QgooZjCXnDA+t2P+6SlK9NdhqqhqLXdnpwE6JrmCkGuqV8/iC1pohajCxRBNGGDbD8xmIR0olidlqMlYsGL3LpfGrZn24girKC22EwlUY49UoRjCEehp52v5XRqghzDAmevxcQgSiPk99Haivv/6a11577ajtaWlpVFZW+no5IeN983MOUsFg0rEqn/+zdlKaL8yNAOzhACkEZqDOtXeGPzOcvMFXPer+br7DPn2AOGI433K6T855pF/abiatbQ4Nuok8vTdgA3X1bhOZ/ffz5to4ulp3ZtRVU8fPHY87t6c4En0eqNurDzibWycqz5dO9FUwB+o26R3Oxs7Zhn971AFEupTfBkNLBCFE8Fint/Kq+W/n/Y16O/m6kO06n1ut/e+HbZ17J9a5d3piiQHFru20HhrsE+Ol9yJWrKzWnZ8D9ur9jCR4A3WNNPOOuRKAhcZsn5wzyYhnnd4CQIr2f1Z8T1xf1yO91G7jVMtsfsktXN7xE8p1Nffb/8i/wp7yyrmECDQ+D9cnJCRw8ODBo7Zv2rTpmJNixfFprZ0lT/6s3R+jhjNTTWKmmkiZrvDbOnriGqiLw38ZTt7mrYy6Ft2KTVuYrSbxLWOh33qQKKW4ynIRJ6uZxBLFR441fllHT7oy6sKw+bUHWwqJzFVTmaEm4MDRuTaXIGIUEVjwfbN/1/KOQCjXDOZAXYQOY5aaxAI1w+MT/frD9Qp7k8vAIyGEGKjWI4L/is62Jr+3vxjw7Vf8ocEH2f1nGSdzqprDLDWJfzje8co5fMX9vUmCT87p2v4jGIZJNOOaUee9vrizjMmcomaRTALbzF08b/+n184lRCDxeaDu0ksv5f/9v/9HaWkpSilM02T16tX85Cc/4YorrvD1ckJCvW7EPBSUSfLjh7MkFc+Xeitf6q/Zr0v9to6e1JuNztsxSpqb91WhWcxBKlint6L8nJo/yRjNp/pLvtEF7DGL/LqWY2k8FKDwZzYddP5tWKM38ZXeRr4uBNzfuDfTynpzi8/X5dpXLTkAmgS7T30NrkDdar2R9Xor5VT5eymA+xv3Jh38/YqE9zi0A3uQ/b4J/zpysqgG2umghPKQmTrqSV2Z9OC99yPzjGl8qbeyXm9lh5nvlXP4SqmucFap+Oq9SaSKIPrQBa46Xe+Tcw5Es8vrujdKX7sMUYO4z3YrVdRSTBl/tb9NbRB8f4QYKJ9/yn7wwQcZM2YM2dnZNDY2Mm7cOE4++WROOukkfvGLX/h6OSGhilocOIgjhqH4r9wpJUiaoNapBgDiiWUQaX5ejWf5ovR1LwdopJkEYhmmvN9c93iyGXToCqRiF/v8upZjqdcNRBFBNv7pHdklkTjnz0fVoSu19UdMf/XHIJj9+iBh2JjEaBK07ydWH8nG4T40HXT4cSV906bbnR9OkwMgMxE6/8bGEYMNKy1aSl/F0b7TvoyI1glEt03mt/Zn/b0cEUSON708kN+D+kspne2FkklggvJOb2GlFAuN2cQQxSa+CehBXz05SAUaTTrJjFMjfHbeHJVFFBFUUuuzc/ZXV+mrgUEY3u3hN1mN4W/WJ0gglk/5kgftT3v1fEIEgj41M+vo6OC6667j7rvvZtiwYf06YVhYGH/+85+5++672bZtG42NjUydOpWRI0f263iiM1AHUE8jEV7qEdAbaSQxlEwcaN5yfMgecz8Phv2YTBVYwbCuIEUdDUSqcP8uxou8Vfra9fNWS4Pfx6RnqBTnegL1jXkDzbTShkOZfl2HRVmYyCgcmM6yyDbamaLGkq8LiSKSbJVBnW4gwUe94hza0TmlWnVmslkM35feHsl16qs9iEpfq3Ut09V4mmn1ewC9i01Zqaczg7lFBe8HNuE9Du1w3q4JoGnUIvBZsRCGjXaXCyoKxRTGUqVrySW7X8dt/fNoaCw5vCEmk4hr8ga6XL8rMouZriZQqatJUN67KBZDFOkkk6FSKdIljFL9+7zob7W6nhlqIgd1OUl4fqLpsZiYNNPqs57TA5GmkhnPSCwYXm+DE6HCmWVMogM7g0h1y+YTIlT1KVBns9n45z//yd133z3gEw8ZMoTs7M4XUX/1uAoVVS4BimQf9VHozmAjg0IOv7nZofPJa99LpkrjZGPmgJr7elKl2/crMDJPPMUXL+xVLn0z/N0HK9ltkmmt/xZyDB26w+vNm/uiVbWzS+9lv9nZJ7SOBjbrb4DOEt1yXUU1dSTgm0BdNXV8pDt7C55tnOyTc/YkWHvUVVLDBr0dgDnGFP8u5hDXUpiuSdtCuIpQEXRdUzpehpQQRyrSB92CdOGE0UY7m9jhnGwuDtuid7JBbwPwavAsWw3ib/yXAr2fA7qMUQRnoO5rvYuv9NcA5Bi+u/jVVZbcRAumNjFU4E5/3WrmcYBSMkjxyfkGqVQsWDhIBR/oL3xyTiH8qc+//RdccAFvvfXWgE767LPPMmHCBCIiIoiIiGDChAn85S9/GdAxT2QNNDFfzWCBmsEQlem3daSQyLeN08gkjXDCGEYWDu3gG7OAfzje4XXHu35bm6tKapijpnCamkOOCt0BJt7KqKvR9cxVUzhdzSXbj6XW0FnOeaaaxzw1DasfBiH0pMGlgX5sAEwY7grk19NIu+7o9oqkLwOeVQEYNHf9OQqqQJ1rAN2PF2xcRbr0qGuW0lfRjUh9OKtdLtmKvmg8og+d60WWSgnUuXFoB1+bu8lhMMPIYrzhvSqmFLcLqMH771DppyQI197ZjQE+hKlrfTE+en+rlOIsYwEL1AwGkSJZdSLk9SmjDmDkyJHcd999rF69munTpxMd7f7Lecsttxz3+ffccw+PPfYYN998M3PnzgVgzZo1/OhHP6KoqIj77ruvr0s64ZXocj7XXwFwrbrEb+tQSvF62P/ye/uLzm3/cXzMVp0HGlbYP+O7lrP9tr4uO8x81urNAPxG/dS/i/EwX2TUfa3zWHPo+/eU4d/fV0MZ7OUA+bqQSB0RcFcf3ScM+z9Ql6ISndkrFbra2V/EVaWu9tl6KlynqgXAlFII5oy6w/9u/i5J7xLl0oqhu581IWzK6vybVBYgQ1BEcDhyYIRrj6wKs5oAvHbnN0W6hI8OZSCNVyPIUN7LgHKttAjUliS94Rpk9OVrahyHJ/LW6QavTegdKK2183fQl+9vbdj47NBn3l3mPqZYxvrs3EL4Wp8Ddc8++ywJCQls2LCBDRs2uD2mlOoxUPfUU0/x5z//mcsuu8y57bzzzmPSpEncfPPNEqjrh0Ar5XQtcf2h8V3O6biGSmoopNiPqzpsj3mAEQwhRSUynCH+Xo7XeCujrtAsZiRDGaTSyCLdK+foi1lqIjasNOtWqqgllSR/L8mp0WxkGFlEEE62H7Ndu8xQEyhUxRzQZRTpEppdgidDyMSC4TYZztv26gOkkcxgle7TZs3HE0cs49QIOujA1P7tK9gXtWYDw8gimqiAGZIjpa+iJ2GEOW9L1mX/aK1JbpsJQCpJ5EW87+cV+caRpdIRhDFbTaZEl1Pk0oZFwDP2vzGUTNJVCrdZlnr1XOmkMEmNpolm6nSDV8/lTVZtZTTDiFDhXpuS251pajx71QH264MU6zK/V64cSwutOOjsMeqrjDqAGcYEtundlOoKdul9TEECdSJ09TlQt3fv3gGdsKOjgxkzZhy1ffr06djtwZO9EEhaaSeFRGqoD5islC7RRhQlupxa6slQqewx95Nr9K/BrydorVFKU6arcGiTKMN748T9wdsZdR1mBxZloeT/s3fecXKV1f9/P3dmtveeTbYlm03vIT2EoiIgIqKIUgXBryKCCCo/BZEiVlQQQUURUUQRFFFEEQKkh/SebO+9952Ze35/zO5kJtnN7uxOubOZN6+82J255czszL3Pc55zPh9pJIYoQ1SvaZg4KsWAI2mdqoyTqOtQ3ZRSBcAHWBPgaCBSRXBQTpBDJsekhG6XtoGhiU0j/qmo65N+KqWGAazslSNueoOB5ogUAQ6NmGChXjU5P2txBmizBgiXcKKJJIJw7EGU9AzhP8JchqGhqsvx0T5oWQRnV1ViGGFYsDjduWOJZYfsJ4VEusTYLYP+poV2euhjpxxgtWmJT8+VoOIcnTScdJoNRkqopIhyEiTOr1rqYcrCQTlBNlNoEON+nzukiwxS6KGPeHxnTnIqmSqN/XKUTNKpps5v5w0RIhD4fZZ93XXX8dRTT532+K9+9SuuueYaf4czKaiQappoxY6dRD86E42VFyw/ZgArW2R3wO20u+llu+ynk26mqoyAxuJrfFFP16Ba2C/H6KbHMFU7rslpo+nSuE4WjGAmcb32MeKIpoxqfm3/M73DJKL81apyWAp5yP4L2uhgOQv4gBb4RCZAhDpZ4dNP8DiVupu8GCPpGa1F0E0vzbQ53V9DhHDFHErUTRjX776vKumNSLlUO5N0ABkkM40MmmjlvcHWuBAO3pNdNNJCJmk+F/531XNrDuLW167Bik1/VtMBZJCKjk4Z1RRS7tdze0I7ndTRRAddfk3UzVJ5RBBODfXs0Y/47bwhQgQCjyvqbrrppjM+/9vf/nbUY/zmN7/hv//9L6tWrQJgx44dVFRUcP3113PXXXc5t3vsscc8De+sxFVE3EjVREPM1wqYzjTiVRw6ga2qcE1CZKjkAEbiG3y95uc66MrQUn18trGRr3JYpRahIzTozQFYfhgZ1+SEEaqcErQ45qp8dHTSVArhhLNKLaZLurFjJ0HFYfLTG1gm1axTyyiVKqZoKYS7JMgCSQQnxe37GAhgJGOnTK+mSVqYQTYKxRRljO+m+3sZPEnPEP7D9XrjL7fpyUYL7UQRQQ99AR9j+ZOhxK4ZMxkkM99UgFm3kEEKKSQxoA8Qpo18XynRK/mx/TeYMDFPzeTz5qv9Fbpf2WLfzQI1c1BmIs3n1WEpJLJSLUKh0Iw0IPOQjkH9NX8bgWVqJxfBjZzobHIxHkv2YzfXdJXNdLKIUzF+0eUOESKQeJyoa211v2hYrVYOHTpEW1sbF1xwwaj7Hzp0iKVLlwJQXOxoV0tJSSElJYVDhw45t/NnmXGwMyR4GkMUESp8lK39T6SKoJs+jkoJR6V4sP00MH9fV3FYo1Sd+ApfrKwb0VkyQcWxXfYDUGSw1UdXDR0jVNSBo1V4m+wDgUgt3GmsAoBAqvgn2f8b20tsFofO6ROm+/xyzrEQjMmlnbKfl/Q3ADhfrSJLGUPTxvW9DFVLhRgWl6HAMSkJXBxBTKM0O1tfrdgCOsbyJ0OvebbKY1f43wD4+MBt7NIdc4l21XVGzdod+n5+Y/8rANlMmbSJuj/o/+A1fSMA71te9vn54rQYiqScZtqolFqfn88X2MXu1FX1txFYiovWuNG6RFxxTSL6M1EXpixYlY3tso/9csxwJnIhQngTjxN1f/vb3057TNd1vvCFLzBjxoxR99+4caOnpxyRRx99lFdeeYVjx44RGRnJmjVr+P73v8+sWbOc2/T19fHVr36VF198kf7+fi666CJ+8YtfkJ4+sgi+iPDtb3+bX//617S1tbF27VqeeuopZs70nZ35eBERLFhYpRaTq6YGOpwR+YzpMrbr++iim7/b/8cV5g8GJI5O6Xau9GUbVKB1Ivh6dala6lioZpFEPLPVdJ+ea6zMVjNYr5bTRz+10hDocNywYWeFWogZk2H0I1NUgrMvutllRXQI12SsL3jXvpPv2X9Fo7SQQya5ahqLtbk+PacnhLuI2/dJcCTqyvVqlql5tEg7OQa6D7i/l8FRnRjCv7guJ7UTvMLzgeTUa3Y/A25J8smIiDiT/66mNa4LYh3SdcYukzppIpooNBRpk7DDYghXkxbX98qXnKetpFrqAeiXAcNUzI+VdulkiZpLJBEsUAV+PXcSCaxVS7FhxyzGtS7ulC7OUQsIw+J3Y7nVaomzWKBBmskwSBdBiBDexispaE3TuOuuu/jJT37ijcONmXfffZfbbruN7du38+abb2K1WvnQhz5Ed/fJKpavfOUrvPbaa7z00ku8++671NTU8PGPf/yMx/3BD37A448/ztNPP82OHTuIjo7moosuoq/PeBUBzbRRKGVsl33DTrqNwkptIe/IDnbJIY4HcNW8hXZ2yH62y76zYsXZ25RJNQfkOO/ITpKUMfQQZ6gsNstu3peDHNILAx2OGw00s1MOsFX2urkbBpIUl4lLq4vD69AEp0l8Zyahi84hOcE7+nYOcYIEFcclpg1kKmPoHQJuVcn9QdL6elxK2S2HKaWKu8w3BjocJ+7vZXAkPUP4F9fK7z766dZDJgCeUiuNbr/3nAXVq67VzpEqwvmza5tiF2f+LBVKGd300Ek3R13GpZYPP4Np3UNo82/CtO4hLB9+xouR+x9XLdoo5Z9EnRUr22Wf4ecmI9FKB3vlCFtlD21+XkBIVvFskT3skP1OYysjUkMj78tBtsgeolWUX8+tKeX8fBm56jBEiInicUXdSBQXF4/JtbWvr48nnniCjRs30tDQgK6762ns2bNnzOd844033H7/3e9+R1paGrt37+bcc8+lvb2d3/zmN7zwwgvOttxnn32WOXPmsH37dqdGnisiwk9/+lO+9a1vcfnllwPw+9//nvT0dP7+979z9dXGKo2vlFo0FCkkMp3AuamOxhptKcvUfMqkil/b/8I3LJ8PSByurYixxAQkBn/hi9bXQ3KCSCLIIoMClef144+HSBXBBdoq9uhH2C/HDNX20+X6eTOARh3APDWTLKZQRZ2zgkVDY4Eq4LiU+HRQWipVfNX2PWKIYia5vBb2S1IM1oIejK2v++UYsUSTw1TymBbocJwEo95fCP9y6n2qijpmYYxq7WChRurRUCgUZsx0SY9hFtJ8hWsyMoqTiTrXNsVOujkTB+QYGho6Oj30OscOpqz1mLLWez/oADHSe+VLXKVlmqXVUItxY8E1+ePvbgiLspBAHG10uOnAGQ331lf/juPc2oN93AUSIkQg8ThR52r2AI7EVm1tLf/617+44YYbRt3/5ptv5r///S+f+MQnWLFihVcn1O3tjuqQpCRHxcju3buxWq184AMfcG4ze/ZssrOz2bZt27CJutLSUurq6tz2iY+PZ+XKlWzbtm3YRF1/fz/9/ScndB0dHV57TaPRIV300EcPfcT4eUXDE+JVLHbsNNOGGXPAkimdLuL+RkmceBPfC6sqstUUGqXFUK3WkRJBInGkqST26kdYapoX6JAA94mCv53DRiKZePrpZ4GaRT8DFKhcTJiwYqWFdjQ07GLHpLzfclEkFSxVcymSChJVnOGSdADhEkY+OZjQCMMS6HBGRURIJYle5RCSt2jGiTnCtfU1SJKeIfyLa6JuDjOolvpQos5D+hkgjhja6MTOAF2jJKgmA13SzRw1Azt2tyRQConMIJswLG4Ls6ciIkQTRThh9NKHIPzB9irLtPnMNeX74yX4DffWV/8k6tJIJpdpxBJNmwRfS3u93sRcNYM+GSArADI5s5lBC63EGbigQMPEHDWDTukmUfxrBJROMrlMJYZo2vHfnDtECH/jcaJu7969br9rmkZqaio//vGPR3WEBfjnP//J66+/ztq1az099RnRdZ0777yTtWvXMn/+fADq6uoICwsjISHBbdv09HTq6uqGPc7Q46dq2J1pn0cffZTvfOc7E3wF48O1tD/G4Imn5EFtLBs2v9t5D9Hp8n75WyDW33i7os4qVl7X38GKjbnk+ySRM15uMV/F5dYvUCKVvKL/1ziJOpeJglEGXLPUdBpooUFaCCeMfgbIUVPJVpkgoKPTRqdPzEKOSCF75Ajg0K00ItFapNOUZK4Yf8LWTidvy3YALlCnLz4FEleNuv4g0fsL4V9cXUqPUkyxVHIBqwMYUfDxpr7FrRJ6tEqyyUAbnRwVhyHdOpY7H49UERRTAUDLGaqRamnkXdnp9tgt9m/xGbmM35oe9X7AAcTVHdei/LOQE6OiKKMKOPPfwaiUUsWRwc9Xiub/BcVILZwTehkINEmrIRc1C6XM+R1M1PxbwRuv4iijGnBoTYYIMVnxOFE3UTOIqVOnEhvr/QTNbbfdxqFDh9i8ebPXjz0a9957r1ulYUdHB1lZ/mlDda/YMW5FHcAyNQ+bstFDH9VST7zyf6JOCaxVyzChkcjkaw3xZUVdjTSwQa2gh14KNGO0vQ5RoPJYqRYRhoUOl6rJQBNDNOvUMjQ0w7i+zlQ5LFZziJVoNrMLgBQSWKrm0af66aWPKqnziYtXs7SyXi3Hio05BjEjORXXhGowTHibXdo+Us4gnB4ITMrE+WolNuykq5RAhxPCgJy6nNQc0hvyiK32PRSoXCxidk5cz1RJNln4qvVkMs11Ucm95bJtxP2fs73Ch7VzOaoX0UAzvYMVv730Ya/chF63G2krRSXkoWUsC+pW2GkqnWgiifbjHCHY7qOn0jQ4VrFhY3YAKnwXqVn0qj6iiaRKag2ZqHP9u/p7Idq1HTmkURdiMuM1jbqx8uMf/5ivf/3rPP300+Tk5HjlmF/60pf45z//yXvvvce0aSf1eTIyMhgYGKCtrc2tqq6+vp6MjIxhjzX0eH19PVOmTHHbZ/HixcPuEx4eTnh4YBy2OuVkUsIoiYCRMGHmXXkfgBKpZC7+r1YpoZItshsgIIlCf+Ltirp6mvmfbAVgMXO8euyJkqMy2S/H6KOfBr050OE4OSTH2S77AUhS/m0NGIloLYpSqXJzWExWiZiVyVlhUCqVLGK218+9Rd/LNnFUZRdoxkzUxbhMZoJhwhtILZ2xsE+O0kqHoTVUQwSOU+9TZ0quhDidLbKHjbLD7bFgTIx4glWsbB4cxwEkcPLe6pq0a5KRJ/C/1/9OqVQRSYQzSQeOLhXrG5+DrhrnY/aYTEy3HPdS9P5nm+4Q3M9V/tMvdZXiCYb76Kls1fc65woztVy/nz9OxbJd9gFwm1zDYub6PYbRGNJgViii/eQmPMSpGoghQkxWPE7U5eXlnVFbrKTkzI6ey5cvp6+vj+nTpxMVFYXF4l6G3dIydsdBEeH222/nb3/7G++88w55ee5VPsuWLcNisfDWW29x5ZVXAnD8+HEqKipYvXr41oq8vDwyMjJ46623nIm5jo4OduzYwRe+8IUxx+YvuqSXWeQRraJIM1g1xaksVAWsUAtpopUTeimYzvd7DK6TAF9UDAUaX1bUBVI4djQ0pfER7XxOSBmN0oxVrH5r8TgTQ0LACcQZIp4hklUC7dKJhmKBmsUcNYMFOL6fzbRSqJeDlzubrx64kx7pJY9pzFX5htWINCkT0UTSTW9QTHj/Y9/EXPKJUhF8UHlXUsIbxBJDKx1uxiohQgzhmqjLIytkOuIhJXolBeRiw064CkNHpyMINcE8oYWTbuULmcXHTCc1pbNUBuvVMupoZpN9Fyn2FSgU52sr+UvY487thsaCaSRzu3YtD+tPoaNjQvPb6/AHdrE7368UH8hZjESwV9QJwnwKSFCxAVnUT3FLOLf5/fxjoWPw7xpLtN81x1NIZJmaTy999GP167lDhPAnHifq7rzzTrffrVYre/fu5Y033uCee+4Zdf9Pf/rTVFdX893vfpf09PQJfblvu+02XnjhBV599VViY2OdGnLx8fFERkYSHx/PzTffzF133UVSUhJxcXHcfvvtrF692s1IYvbs2Tz66KNcccUVKKW48847efjhh5k5cyZ5eXncd999ZGZm8rGPfWzcsfqKBpo4TimI8TXqcrVp7LQdII5YagmMpoAVG1FE0EMfSZOw9dUVr1fUSTMJxNJGp5vjknEQDspxppFBsVQy2wCtldqgIYHRksIpJFJONXZ09ssxzuUc8ga/nzFEUyTldOrdVFPHbG2GV87ZIM0cpxSF4vOasdyzTyWWaKzYsIs90KGMSrFUcoQikMCs/I9GrIoGcdcHDRFiCNf7VCmVlEt1AKMJPrrooZp6uul19hE3TuJWsE7pptxeQzIJtNHBYm0OM7Rs5/NZagqbZQ8mNNrocOo410qjc5sBfYBIwumlj0yVxpfCruP+vsfpoZdjUur31+RLWqWdZBJopcOvC6xDHT7RRNItvX47r7fYK0fopS8gnT9wcjE8nljaDZp4F4RwwgJilJasEtgthwCYIql+P3+I4KRcarCIiW7pJUNLNWzBgCseJ+ruuOOOYR9/8skn2bVr16j7b926lW3btrFo0SJPT30aTz31FADnnXee2+PPPvssN954IwA/+clP0DSNK6+8kv7+fi666CJ+8YtfuG1//Phxp2MswNe+9jW6u7u59dZbaWtrY926dbzxxhtERPjHLckTXK27UzF2Rd1MckghkSZaeV/fH5AYSqSSHvpIJ9lQFU7ewpcVdRVSQxudRBHBdLJH38HPLNRm86r+FpXUckJKA6Ir4oqIUCTl6Oh+d8QajfmqgPfloPP3FJVIPtmkkkQjLTyn/43nBv5GFJE0h++c8Gppp3SzdbDl9cNqPXdabpzQ8XzNAjWLN2ULRVQwIFbCDHytaHZrfTVeAn1IO7WXPmxiw6z8rrgRwsCc3vo6eZNMvmCnHKCbXuKJoX1Qn3Uyv4e3WL/J3/X/OX8/VfIlSkXyRdNn+IX9BRo52aFTLBXOn5tVO/U4JDKm4NDOzFIZHJdSWgxavTReWmh3vg9pJPvtvMnEY8ZMN71BpzvZI71OA45A3VOTScCEiXY6qQ9QYcOZ6JN+iqQcQVigZvn9/PHEYsaMDVtILiHEmLly4DYOSSEAvzI/xPXmKwIc0eh4bcR88cUXc++99/Lss8+ecbvZs2fT2+ud1RWR0SuGIiIiePLJJ3nyySfHfBylFA8++CAPPvjghGP0NZESzgq1kD4GSMRYyYBTidGiyVPTyGUqsSoGEfF7ufTQANbo1YfewLv1dNBFN6vUYlpoJ1sNr/EYSKYzjQJyiVOxVEt9oMOhh16no2GMZqzPW66aSjop9NBLMgnMJIdILZL5WgGt0s5RKcaOnQWqgFppIFOlj37QM1Ckl7NOLaOLHvI0/+nkjJc0lcQiZpNMAlVSx3RlXH21ZBKc94BAOGmPxkyVixU7Fkx0SjeJanJXMofwDNdE3TzyySBUHeEJQy3lscSQo6YRSTjaJGvfdMV2SpWzqxbaENPJJp0UuuhBx44NOwvVbDr1LmK1GLdEZpzmuGbOVzPRReiim3apmDT9Fq4apol+1MlN1OKxYQOCT3eyWdpYrZYwwAAzyQ1IDCkqETuOz7oRzRIqpJbztVU0SyupAZBdUkqxTi2jm56AVPSFCD7+Zn+TVulAQ8Pif4uGceO1SP/617+SlDT6l/V73/seX/3qV3nkkUdYsGDBaRp1cXHGTjYZjf1yjJ1yADBmNcWpxKtY/qdvBYFGWvy6wmcVK610ABi0dXPi+DLtuVHfwUE5gQUz0zXjJS5mankcHmwBnKEHvuKvw82R2VgDiRvMV3C//WeAQz/mMtMFAPw77BkAzu3/DDvlADtkPyeknEwmlqg7RolT/PtT6pIJHcsfpKok9uvHAKihwdBGCFv1vVRSSzrJfl/4GAvd9DpbVDpVz6R02w4xflwXlA5TRLnUjLhtiNMZcjmPI4YD4rhmJUtCACPyLdZT9Kii1OmdLvlaNnX2RrfH3pEdNNBCLDE0uiTqhsaCA9gopAxwtBNPlqtUk5u2cILfzjtWUw8j0kSr0/RqqTYvIDG4tikb8f2rkQbe1rcB8EEtMNq4ffQ5O0O6pYfoYZL2IUIM8f+sP6YaRxFHPwMckzN7KhgFjxN1S5YscZsMiAh1dXU0Njae1lI6HB/+8IcBuPDCC90eH6qustuNrwlkJIZWWhKJC4qWotVqCf2qnx76OKGXkmbyX6KuRTpYqRZixsJ8babfzjtZSCGJNWop8SrGkG3D+WSzXi3Hht0Q4sWu4vlGS9SlkczV2qUIjoqEU/+euUyjkRZSVRKlUsl5rJjQ+Sr1GlaqhVgIY44KjOaLJwSTo1jzoPyB0QxehnDVAOmSbt+uJoQIOk5tfe2ihz7pJ0KFByii4KFfBrAOVi25JsCDrYLJE3rF3Wwkahi3yQKVx3q1nK2y11mVBI7x8gyyqZF6lqi5JBDr1LJ1TWJpk+gi1S9W1qql6Ajpg22+/iBKRXKBtpo+6Q+6Kmq35GaAFvWTJZ6LtPV0SCc2jDcvdm1nDpQG8zJtAUrXMGOiUuoMoUsdwriYT0l5GbFSdTg8zuxcfvnlbok6TdNITU3lvPPOY/bs2aPuv3HjRk9PGbT0i+/dy4YGZEadpJ1Kqkpk02BlzXG9jHWm5X47dzOt7BisPjRyhYy38KaZRK/0sVG2A7AO//3NPCFai6JcaqighhRJRNd1NC1wLUCtclL30miCpUopfhf2/RGfv8VyFX8ZeJ1SqWKlPnE90YNS6PzuPa2+M+Hj+RrXaoBavcnrDrjeokd66cEhJZHsR0c/T3BNUhshgR7CWAx3n2qQZrJVZgCiMT4DYsWMCU1pbt+nOC2aRD2OVjpoklb6ZYBwFYZVrGhomJRBL2Ie0qt63cowIzm9oi5bTWGnHHBL0sHJRZcSqWSvHAHgS+o6wL3LQve6cEjgaKKFLbIHgFvUVX49d6Fe5qj2Fv8tyHuDZhft75QAJaHCtDCOSyllUkWyJAREKuhM1MlJ3bxAJTMjCHNWPtZJU8B1qUMYm1PvBzvtB7CarYYsPHHF40TdAw88MKETbtiwYUL7BxOz+i+iSd5HU75JFljFig0bmaQzV3nHmdHXfES7gD+q1yiTan6h/5Gb+YTfzu2aPfenTb0/8ZWZhBEGLmPhAm0Vb+vbqaKOBtVChh9XkE+lRhoIw0I2mcwLgioyVwrIY4EqoEYaOCrFEz7eYb2QNJLIUlPIwfgT8Bkqm3lqJuVSTTV1gQ5nRJqklViiiSeWApUb6HCGxVXsvUO6AhhJCCPimqibRgb1NFEl9WQHwXUiEHzL9hOesD+PCY2PciExRJNALLlMI1KLYIe+nxrqWdF/JUU4zIzetPzOr4uivsQuOgrl/NwM1/pqUiZes/ySROL4h/4Wv7a/hKDTJQ4H2KNSTCJxZJJOgcoDHBX5k5GeQVMEgKhhkpq+JEUlUim1NNFmuETTmWjR20ginjhi/FqFeCpL1FxsYqWdLtrpJMFAOuTVeh3RRJFLJnkqMLrDrpV8wWZYEsL/DGmGh2EhmkiKKOdl/b9cbbo0wJGdGY8zSCaTiYaGhtMeb25uxmQa24rdpk2buPbaa1mzZg3V1dUAPP/882zevNnTcAzNdJVFlfhuktdCO130UEM99sEPoNHJ1NLokm7CsBBPDJV6rd/O3SGdzFJ5ZJJGqh+18QKFNyvq6qSJApVLFhlMM6CRxBAxKop++skig69bf0CJXhmwWFrpYKbKpY5GYggu7Yw0lUSNNKChcVRKuHXgW+gyvmuMXezEqmjCCaOXfiyasVevAKapDIqknEjC2ahvH5NxUSBooZ1OuqmizrCToHSSyWYK08mixaXKNEQIcL9PtdFJAblUENKpG4k26UAQbNhpUe10DX7/NaWwiQ0bdjJJo40O7OhoaJPqe1dPk/MzE04YCSM4qp9rOocFpllMVRnU0Ug9zU7d2EjCSSSOUirJU1MBR6umaXBKZMwr6fjokZPmfcO1CfuSKaQyjQxmM5126fTruSdCI6200E4Z1ST40YDjVCyYqaKeTrqN186uIFOlUUg50yZoNjZeMlQqGaSST47x3p8QhiNJxZPLVLLIoJtekkgIisVjjxN1I01Y+vv7CQsLG3X/l19+mYsuuojIyEj27NlDf38/AO3t7Xz3u9/1NBxDc1COc1xKfXZ81wtToDQCxsMXzJ+hklq2yl7+rb/rt/PWShPHpZQaGvzqfuVPfFVRVy7VnJAyKqkjTRk3yfl98z08brmPcmr4s/46f9ZfD1gsR6SIw1JIFz1kBVkbl1KKaWTQSAvV1PF7/e9UMT4n3TKpZofsp5I6ZpHn5Uh9w3SVxfnaKhppZZccopbG0XcKAEbQ0hmNFC2RCmopoZIqA1cnhggMrom6Lro5TBH79aMBjMjYuI4pBzgpr5KsEpmjzaCeJoqppJ5mAOzoFFPh9zh9xZB5xiyVR3vEHi41n3fG7V0r7noHq8ve0XdSQhUJLtrOV5ouoit8PwtUAXOvn0baF/IJv7ODiK90EnHLcd+8GD/Q61JRFzlM9aEviVIRVFHHYQppI3gSdUbQXwP37hXXrhYjsF3fT6GUMYB1wmZj42Uq6dTRSBHlFMvkucaF8D6d0s0eOUIZ1UQRxQBWGmjmkJwIdGijMubW18cffxxwTOCeeeYZYmJinM/Z7Xbee++9MWnUPfzwwzz99NNcf/31vPjii87H165dy8MPP+xJ7IbnXG0Fm/T3+aDJN444tdLASrWIcMKYS/C01i3R5rJWLSOcMHbrh/12XtebbzA45E4Ub1bU1Ug969VyBrAaWrDVpEzMVfnkMpVOevib/b/ca/58QGJxTaJkqMC1T4yXD5nW0WBvopk2YomhSC8j2zTF4+O8ob/HBdpqrGJlrWmZDyL1PkopFjOLTbzPAFYu7f8cz4X9gIXa6Pc4f9JJN+vUcgSdLOX538Yf5JPDOWoBEYTTElr1DnEKrnepWUwnXSX7bMFpMjBN0jlCNIIQJZGsV8vR0ckkjRSVyGoWc5Dj9NDvbPWZLNUmIkIXjvbVsRo0uVaRDel5DiWvotTJ54Y0/FJUEggMYKWLHsMZQXlKL/3On/3d+hrjaiQURPqkNrGxRi3Fgpk0kgIWR4HK41x1Dv0MUKs3jqO0xncM/T3DsBCujV6k4wtmqGyWqwVEEk73YFt7iBDDUaxXsE4tQ0dnpsrhoO5YfOkU41+Xxpyo+8lPfgI4bpRPP/20W5trWFgYubm5PP3006Me5/jx45x77rmnPR4fH09bW9tYwwkK3tN3UqM38iB3+uT4xVLBDtkPwCfVxT45hy9Yps2njQ4OSyEWMfNzud8vYo6u7R/BVIHoCb6a4OzSD7NJdgGQr3J8cg5vMVPLJUtNYZPsollaaZF2kgLgOua6AhosZi+uPGS5k+kqiy/Yvk0zbRyVYi5gtcfH+bf+Hm/r2wB43vQjb4fpM0zKQvfgxO4oJezQDxguUVcj9Wwe/F7erD4Z4GiGp0DL5X05CIBVtwY4mhBGw7VL4zglHJcSBkKfkxF5i21OE4lCyikXh3zMF9U1XKqdx/W2rzkTUkMEi7vdaHTT61yAjFUxo2ztwNVsokccCboh3bbhEleu+sVN0mo4IyhPcf0s+Lv1NY6Tf6NgMhLaJvs4KsWEYSFDpQYsjngVy3vyPgBFlAcsjuEY+nu6/o39zVSVznEpccp/hAgxEkcpZvOgkeUGbYXz8aGFHyMz5kRdaamj3P7888/nlVdeITFxfBPPjIwMioqKyM3NdXt88+bNTJ9u3Eqd8bBCLaSNbt6yb+NCk+cT3NEo0auYwwwSVBxzteCpqAO41vRR/mV/h2baeN7+KjeZ/WMqsUjNwYxGIsFlFz8evFVR1yO9HNeLmUIaMUQxQxlfdPlq06VU2erooY9nbX/lq5ab/R6DRcwsVnOIIJx4iQlK4Zu5Kp/VagntdFIqVeM6RrPexmI1mxSSSA8ibchPaBdRKKX8Rf83YEyx4iaXSpkUg7a+RqsoPqKdT7XU00pnUImKh/A9rvepGKLoosdwbV5GQUTodJlYuCZhkklEKcUy5rKTA9gGq+ySVMK49UWNRqd0s5BZmJWZ/DGOQ05tfdVFp2+wymy4RN0SbR4VUksdTZRLNXkERijfa4iwUM0ihihi/ayV66rNGwyVK+CopuuVPpaoucxQWc7W6EAwR81gjVpCO13OhLxRGPp7xgQwka2U4iPa+ZyQUhqkhT7pJ0KFByyeEMZls30Xy9V8dHQuVufyKL8ETkopGBmPC2k3btw47iQdwC233MIdd9zBjh07UEpRU1PDH//4R+6++26+8IUvjPu4RmSnHKBOGikS36yE1FBPEeVsk73MNHiV06mcoy1ks+ymVKrGnQDwlHKpZr8cZbccJm6Mq7HBhi8q6ppoYx/HqKWBCBVGuApMmbsnrNGWUkoVjbTwqv1/AYnhEIXsk6MUSTkmbWxGO0YjX8thm+zlhJRSLZ5r1HXpPTTQzD45RifdQZWgmWOawf+ZPw2AGRPtuvFu6M20Ysbx2TJylXAf/eyVI7RJBw3SHOhwQhgI10TdkKvhgAyMtPlZTR/92LE7f++nH/PgevuQnpVV2enHih07ldSyX45S6KMxqL/ppY8DHGePHKZjjIkf1yqyPhk4RbPt9AqzKCI4b+e7/PblvSz67afo/9OF2LY9OvHgA0Qp1RyQ42yVvST5+R4xNM42Y6IjSMwkqqWePgbYK0fQvSgfMx7yVQ5bZS/HpIQq3TgVYyKCFRsAcQFuDVcodsth+umnUJ8c17kQ3mevHGGXHGKfHGO5tgBtMP1l0+2j7Bl4xrVUUFVVxT/+8Q8qKioYGHAfUD322GNn3Pcb3/gGuq5z4YUX0tPTw7nnnkt4eDh33303t99++3jCMSwpJNJMBwfFN0K02/R92LAzj3xSA6ijMB4KyGUKqdTSyB7xj06da+l9IMu1/YW3KuqaXbTWVmmLvXJMXzNT5fBx7UO8qv+PnRykWdr8nsgYet+MnEAZjWSVwGI1hwNynO36Po/3L6KcauqJIJylap73A/QxKSQ6q3zqDGgoUS41TpfHLIypUQewVM1jK3upp4kTlJFO8Gk2hvANrvepTJVGjTRQQS02sQW0msWInNo+2McANmyEYSFmcML8p7CfECFh9Kp+FvVf5nCMnCQViq5JtqgxGiNESBgWzFix0U2Ps+0Vhq+o+5TpEsKP3Y/W1Q70Il3N2LqqMK++d8LxB4IhfcJIItw0+fxBColEEE4f/bQFQeUKOMyv6mjEjInsAJuAxagozlEL2SOH2SZ7DVON3jjoN2/BzCI1J6CxLNJm85r+Ng20cIJSFlAQ0HhCGJOhSvQ4YtA0jViiaaeTVmV8R3SPR0FvvfUWH/3oR5k+fTrHjh1j/vz5lJWVISIsXbp01P2VUnzzm9/knnvuoaioiK6uLubOnetmTjFZCCeMZWoeVrF5/dhdejc5KpNE4h3iywa4eHtCqkoijhgyVAoR+KdU2bX0PtrPWh3+whcVdfXSxFI1Dzt28lSW14/vC8zKzFTSBweKERRJuV8TZv16P/PUTProJ08Fd+tMBinYsROnYmjXO4nXYse8b7lUs0otppV2sg1qdnAmklWiU8PCiJPdBGJZoubSTiepyriLNdlMYRrpJKp4yvVq1mvLAx1SCIPgmqiLINxpgNBKR9AtQPqaTunmHLWAE1KKBTMD2BjAygBWp5baFJUKChKBBWoWPfQa2qndE0ZLsg1HhBbhrP7pp58e6WO5mo8NO9OGcatMVPH0GUm1f4JkqjTCsLhp9fmLOBXjbDM2onTEcAzd523YDXFPnUIqc8knTkXTIC2kG+C7XCG1nKvOoZGWgGs4ZpNJOinMVTOo0RsgOJtXQviYTnEsFMSc0v4/dG8wMh7fje69917uvvtuDh48SEREBC+//DKVlZVs2LCBT35ydDHrm266ic7OTsLCwpg7dy4rVqwgJiaG7u5ubrrppnG9CKNixcpuOcwb+nteP3YRFWyW3RyQY46BWZChlCJRxbNXjvIv/R26/ODYM7QaHUs0mpo8AzFfUyKV7JHD7JdjJA62JgUDedo06mmmnGqO6sV+PXezameH7Ge/HHNOPIOVTC2dg5xgi+zhBGUe7XtAP8522cdxKSVfC672fHAkwoZK5F0rS43CP/WN7JUjhBNm6MWafC2XE5SxQ/ZzwEcV5iGCE9e67wR18v5ixO9boOmkm/flIO100USbm77OcImrLrrZJ0d5V9/pzzB9Ro+c1OQba+IpgpNSHX0M0EvvYAvUUXpV/xn2DH5EhI36DvbKkdMMRvyBq4lWsDgPu153kl2MRQLFNC2dgxwfHH+VBjocACqllvfkfY5KMVPV6clufzJLy6OIcnbIAf6o/yOgsYQwLk7zk8F2fMtgnVowJOo8rqg7evQof/rTnxw7m8309vYSExPDgw8+yOWXXz6qztxzzz3H9773PWJj3asyent7+f3vf89vf/tbT0MyLBdqa6hSDfTRT4veRpKW4LVjN0kr56uV9NBHgcrz2nH9yVptGRbdTD8DnNBLWWrybWtcHtNIUYmTVp/uVLylrlErjaxRSzChMUcFj+HLGm0pH1CrsWLnbX0bN/Jxv53bbbAXhI6vrixRc1ivlmPFRolewTnagjHt9w3rD6mSOuYwg1gVzSItsC0S48GkTFyuXUijtIy5lfxJ2x/4i91hQJGvcvhN2Hd9Eluv9DldaZMNaiQxRIHKZZ1ahiC0ivFbDUL4D9fvVR7TWKeWoaO7ubSfzfzHtpmv2B6hmnrCXZJOmaTRSbdzAjJcZ8JQ8q6fAexix6SCu9zEvfV1bF0Rru9LH/2nVOUNfwwrNizjjNFIdNCFbXAimqT8b6CWQiLr1XIEQQsSN61GaWWFWkisiiZHTQ10OFygVnNMlWBXOv+ybzRENXqTgZKZM1Q2F2sbOKoX0SxtAZG5CWFseqWPPJVFEnHM0xyt0c5EnRjfYd7jRF10dLRTl27KlCkUFxczb54jwdLU1DTifh0dHYiIw7Wqs5OIiJOrYXa7nddff520tDRPwzE0YcrstAMuooIVXrygVUkdG2UHANdyudeO60+SVTybZBcAx6WUpfg2UbdF9tBBFwUEZ2JzLPhiKPS+fpCtsheAmVrwvHeLtTlUUMcJKSVSIrDrdr+ZOri6cQZ6IDNRstQU5/d0vb6cT41xv5fsb1BNPVFE8G3T7UHZ+gqORPV22Qcwptbf/+pb2CH7ATggx/iV/pBPPneurbgpBh+YTlGp7B80FKmW+kmRNAjhHVwTdSalsVl3jJkaaQlUSIZir36EEioBR8JtiBoanD9HETlsRW2kinSu2PXSf1rbT7AxrtZX10SdDIzpGFaxTopEnXtCxf+LOSkq0Tl2iJbg+OwdkxJ2ygEQeMwceF3CD5vW82nbV7CKzdE+bIAPpmsbc0qAF6LDVRhZKoN/8y4Ax/QS1ppGl+EKcfZwQi/jkJwAIEscupNDJky2yVhRt2rVKjZv3sycOXO45JJL+OpXv8rBgwd55ZVXWLVq1Yj7JSQkoJRCKUVBwelij0opvvOd73gajqGZoXLIVzl0Sy8143BMPBNdrsYIQVohNo+ZLFCzqJF6jkuJT88lIidLXwPsUuQvvGUmUShlZJPJdJUVdCtV52sr0XWdKqmjkjpy8c8KabO0kk4KccQwTWX45Zy+YpbKY7GaQ500jbn1wiY2rFjJYxpztXzuMN/g4yh9x42mj9Nr76NK6vil/iJf02454/bteicxRDGAFQGqVD05eF+UullvJQ2H1ucMle3143sTpRS3m67jVf0tKqSG/+ibuMR0XqDDCmEITt6nEjlZ9dMUJK1yvsQmNr6jPzHqdiMlnFwf76E36BN1fdLPNDIIJ4z4McpwhLlkNvrpp1dcXF9HeN8sk8TEpF06mUIaUUQEZKFsSDpCRw+aVvZe6SWHqZjRfHLf9hSzMnOxtoGD+nHKqDbEIleb3slUMoglihQDVPN/SruEXfohaqSBp+1/CiXqQrhxglLHXIx0lmqOgiCLMoNM0tbXxx57jK4uhy7Gd77zHbq6uvjzn//MzJkzz+j4unHjRkSECy64gJdffpmkpJMinWFhYeTk5JCZGfiLojdJVPEUicMuuk5GrjYcDx0uibrYIB18TVdZHJITZDPFKTjrK7rpdSauYgIsfupLvG0m0a53kqTiqZEGrBi/RPhUYommVhrIZSrFUu63RF0TrdTTRD1NRKvg/H4Oka0yOSYlJBI35ptaM2000AK0MIcZvg3QxyzV5nLIVkgicfzJ9hrd0sOHTeeyWlsy7PbFVDgNKOYyg732w+SYvX9vaxp8jxtowRQECsr5Wg6F9jKymUKl1AU6nBAGwXVBKYE4Eoglnji68b1urdGpkYZB0wjHvTeWaOzomDFhxYYNGxGEj6hT7Jaokz7flNz7kS66qcJx7TCPMVmhlHI6jzpaX09qtY3UPmv2fGpkSNrponaw8tIXRmOjYVImppCKjh4QM4vxUEY15VQTThgRmjFiNqHRQhs5ZFIm1QFfmKujkerB76ERFu9XaAs5IMdII9l5rQxx9nBQP45JTPzZ/i9aaOdxy31uFeY1egPpKoUiqWDaoKbipNWos9vtVFVVsXDhQsDRBvv000+Pad8NGzYAUFpaSnZ2tqGFr71FsuvqsJcdj7pcHExjg7SibprKQBDKqWGnftCn5+p0rUAMVdSNmROUcXCwZHiumjnh4/mb2Wo63fRyjBKOSDEXssYv53X9vqcEeeurSZmYp/LZLYdp0rc42oLUmfsvXIWjg12jb56aSWv4Lr5v+xWP2Z/l+/Zf87T9RerCt552H9NFd2tJPUIxz+l/42N80OtxubafGGGwPBqzyMOKjSIq2CtHAh1OCIPgepdK0hJos3fSRifVXu5CCEYqqXNOPBXKbRwzxJkmGpHqZKLBVd8tWBlP6yvgkqgbW+trIJJavsC18yZQ7pwxKorjUuoXwzhv0Dm4QBBroHnCHDWDv/Em7RRxQkqZQWATda5jHCOM7yzKwmw1g0Nygv/qm9FFDxkGnkV8w/Yj3tK3OX+/j9tI46Q78i/1FymRShKJ4xLNkYuatIk6k8nEhz70IY4ePUpCQsK4TpiTc9L5b8GCBbz++utkZWWN61hGJ4kEVqqFWLCAeEva34EFM2vVUgSI58yaSUYlUosglmg66fa5dXuHdLJGLUUB+SrXp+cKJN4eYJZJNevVcvroZ44WPEYSQyzQZrFOLaNBWnjB/hpXmi4iU/leC9MkJtar5fQzQFKQJ+oAlqi5WDBjwUKpVI1qYFMnjaxUizBjDioDkuEwKRMmTMSpGBKJI40kslUmddLIlFM+Sw3SzDI1D4tYKKSMApXruP77gAGxsl4tZwAraSrFJ+fwJgVaHgtUAbHEYBN7oMMJYRBcF5SSXNoZm4KkVc6XuLYLRhPprNQFyGUqZVQDI0+Wp5LO6kEjKF93LfiD8SbqVmmL6JRu4ohBRGetWoqOkDDG9tlO6QqSejB33BeoA7Og79DGK6WTbu6yfhdEkazi+abliwGJZzSGiiACldgcjjlqOsvVAiIJp8qDavTt9n382v4XTGjM0LL5uvlWr8STTAJr1VKs2EgwyPxzuZpHDFFYMFMptYYwAgnhHyIknGymUEcT2UzhDfsmrjd/zPn8UOFAikpyFhkMjcsnXaIOYP78+ZSUlJCXN3FR+bKyMqzWyVummqji2SEHAJgi3k0OFEo5W2QPAPHKGBfK8ZCsEumUbp9bt7fQztbB92sJc316LqPgjYq6A/oxpxjwN9WZHZ2NyCJtNqu1JfzQ/gwIPGR9kqfCfK+FWSTlzvctIYi/n0OkqWS26w6DhBNSNqohS7FUOA0VruYSn8fnD+4w30Cl1PJz+x8olxpOSBlTcL+ul1DJ++KoDk4hkS2yB000+qSfCHW6K+NEqKbe+Rm7m5u9emxfEKuiaZY2DnCcY1Ic6HBCGAS3RJ1LZaivF++CAddkZSzRbok6159HMizqpY9tg0ZQPZOhok5Otq1GjuDYOhyFUk6xVJBIHBey2jl2/oL69LDba9PWoVe8S39/I63h8F6mjSulJ+hkLDpdOm8CJfmSohKcZbO/sL8AgIbG3ebPEa7CRt4xQHTgkHYyUkVdnpbFLptjXJEvOaNsfZK39G38Uf8HAKl6ktcSdVv1vVRQQypJhqlcS1FJbNf/BjjGqDl+krkJEVi6pId/yTvO34uo4A39Pa7nY4DDGKidTsD9PjmkXWrHjogYusvT40Tdww8/zN13381DDz3EsmXLiI52v5jFxY1thepsINmHg87J0lr3AW01B/UTNNBMr/S5tWp4k8nUincmvF1RVysNLFFziCZq1Coqo3K56UL+q2+mXGr4p76RJ+Q+zD4Wi3ZvOQnO1nRXFmizWKsvpYNuiqVi1O3LpIZFajYxRDNbBbdGnSuL1GzWqCV00EWRlLOBFW7PF+kVzCWfBBVLNFF00k0r7RTqZSwwzfJqLK6TsNgAVUt4yjptOSVSgR07HXoXcVpwxB3Cd7hp1Eksy9UCFIy52mky04+V5Wo+GhrJJGAX+6D2J3xeuxqbshFDNCu0hcPuH+7meBr8FXWu7btRHowVh6rJOulxaPUNHWOEZF/Yxb8B4GHrT9is76aVDhbq5Sw2zRlP2AHDho1lah5mzG5SPP5kmZpPI63s5pDTzCRVJVGklzPPZCw5lV69jwJyiVKRzDXQuGUGOSxT89FQ2BhbNfonBm7nbX07CodpSrpK5mHbL/iWeeKVjEPzWSNJbixUs1ijltJJF0VSwQdZG+iQQviBE3ops8gjgVhqaCRNJbvN91ulg6VqHmZMzHeRb3LVIbViczMdMhoez1YvucRRHfHRj37ULQM5lJG028fe0rJ+/XoiI8e+KhZsxBGDBTNWbLTo7V499tAkLYLwEQcbwUCP9LFD9hNHDIV6OQu9PJkdolYanD8Hc2LTE2SC7dZ90k+pVLNXjhJOGDkqOM1elmsLmK6y2C/HiCCMY1LCfHW687Q3cTd7Mc7K7HjJVVMd1WFolOpVo25fKlUckOMIwkwt1/cB+olslclW2YsJE6VSfdrzpVLJCcqwiY1rtct5U9+CGRM/tv2W35m+79VYOt2SwcFR6aFjd1YcNtMWsHasEMbBNVFn0SwckhP00U8/AwGMKrCICDo6/7C/xS45BMDF2rk0SItzm+vMHyNXO3PViGsVb/8kaH111TmL9mDcO5QgsmFzVkzByK6vQySoOLbLPiIIp0jKWUxwJerqpZndchhwT9r6k3AVxjYcVZ0tOOZBvdJPkZQzD2Ml6lpUO4coBGFEg5ZAkKBiOSjHGcBKvz5Al/Rgx86ztpfppJtvmb9IGx30ywBRRNJIC0f0QqdxSg99HJJCNJvGHaYbJtTW26v3OXUzkw3g+DpEjjaVrbY9KBQ/tz1Pk7TwLfMXDV0pFWLiHJMSKqjlOKWkkcxuOUQmaVh1KxbNQifd7Bm8BuapkzJrQ66vAFashk7UeVyzunHjRue/t99+2/lv6HdPeP3115kyxf+W4f5CKcVabRkRhFNG9YQTJ640SDPhhJFLZlBfiBZrc0ghkQ66OE6Jz85TPZioyyQt4I5JvsSbFXVb9b1skd0kk8AdpusDbgk/ET5r+gRZZNCPlWftL/v8fK5mL55MKIzKTHLIYxoa2piMAHbpB7FgZhGzSXcRdQ12Zqk8Z0vFvmHeh/1yDB2dbDK5zXQNH9M+iELxovzLrW3LG7hX1AVHMti1mjnU2hgC3BN1CuXUHpsMrZrjpZ5movsXsVG2Ox+bq/Kd7s5pJI/puhrBydbCvkmQ+OyUbkyYSCXRoypi18TEUBsUjF6VN1flM4VU+ujniBR5HnCAMYKZxFyVTypJzt8jiaCXPo5gPPkDV01II3XeKKVIGUyKNUsbf7W/QXr/ar5h/xGP2J+iijp+aHuG3IHzSRtYxbyBSyihigjCmE4Wq1lCDFEc4Dh/tP9jQrE0qzas2IgmklwDLd4vUrPZF/YqS9U8yqjiEftT1NEU6LBC+Jin7X/CipV8sjlfW0kcMdTQQAW1AG4LM64L2pZTKuqMjMcVdUPurROhpqaGzZs309DQgK7rbs99+ctfnvDxjUSMRJHLVBJUHPXSTIaXRL876aafAfTgzdEBkKemEU0k09U0DutFfNJHuSA7dpaoudRIA5n43kxgMlAldSxXC2iSFnLVtECHMyEWabOwYSeTNLboe8fkXDoRUlQi8ynAhGYYDY+JEKNFE6diWCpz6Zd+Luy/nk9rl/G+HKCbXn5v+YHzdXbrPUxV6UQTSSJxQb2QcCrpKgUNxTxmEi5hNEgzacoxYd6vHyOScKaQSifdLNJmk2yPJ4l4ooniFft/udZ8uddiiVQRLFCzsGINmkRdJmnMZjpRKpJW6Qh0OCEMgOvypUINVjm10ytnb6LOdaFniBkqm2gi0dCIJpJIbfTWzwjX1tdJUFHXrNqwi51GWklWY2/lzGYK88jHoiy0i0uibpRFtJkqB1BMI53/6pu5T24LqvtZp4uOYVyA7hEzyMaKnQjCsWBGEJaquVjFePrkQ21yvfQZbp6wQM0iSeLpx0ql1JJAHG10kEYy9w38lDoa0dDQccypY4gijhjSVDKLtdkctRcxjQyKxiBdciaG2gq76SXCR1JF4yFChTNbzSBKIggnjGQSKdLLmWIyTmVkCO8iIsQSzaxBw7qpKp1kEpivCqiVBmaQPaKhTiapzKcApRzGbEY2+h6XUNOmTZv45S9/SUlJCS+99BJTp07l+eefJy8vj3Xr1p1x39/97nd8/vOfJywsjOTkZLebnlJq0iXqcrWp/NO+EQROUEoGE0/UiYjzwxeom6+3uMx0AXdaH2GnHKTYXskDltt9cp5t+j5nJVC2ZpxVIF8y0frNvXKEXYNtarOC0PHVlXSVwhptKS/r/6Fa6imTamb60P13t36IBlrIYvJUDO8I/yu/t/2dW23fAoEt9j3O5x6Wr5A76LJVRIVTwHy5aUFAYvUVSimuNn2ER+1Pc0COcZ/1p/wy7CEAXrC/xsv6fwG4RvsomtL4ueXbvNz/X+qp5EHbk15N1B3TSzgoxwFHi1YwEKuiOUYJCNSHVrtDcGpFHUSpSBCcbVtnI65VAEN8yLSOm8yf8Og44a4VdZNAo26o4slTyRelNA5TBOIYCwwxknPswF8vRa/dRZa9j70mxc40Mx+9PIPv2p4yrFvpcHTKyc9RoMwkcrWpdNGFDbszWbxHjpAogdHMOxP1NDnb5Izk+gqOVr1DUgjAI/anAEgingaaeVH+BTgqbW8xXQXAe/r7nKudw32W2wBHh8x+OcbT9j/xqPmucS9UuxrcjGRiE0iuMl/CJtsueqjlqBSxnuWBDimEj6inmbdkGwAf1NYyTWVQShWlUkU5NazDfdErxq2yuotDnAABq5pkFXUvv/wy1113Hddccw179uyhv99x4W1vb+e73/0ur7/++hn3v++++7j//vu599570bTgrzQZjQ3qHA6rIkB4w76Jc7VzJnzMbnqdg9tA3Xy9yRWmD3JEL8KGnbfsW7nQtMbr5xhqs4oi0jERmKR4q/XVKlaO6cXkMg0NxWwV3Ik6gGXaPPbohxGEIilnJrk+OY8uOs2DWiwpBmqf8AbLtfnMIIcyqpwixWkk86r+P+7QbgCgUVq4QK2mmx4KfJgMDRQbtBWUSiV79MPskP3s0g+yXFtAh3SxTi2nSmqdeo5KKW7QruCYlKArnV/aXuTz5qu9EsfQNS2aSJ+Z8HgbN4MlHzt9hwgOQq2vp9N5SkVdBikkSKzHq/6u14XJoPk3jQwSVTyxRHtU2eYmei+wVi3FgmVEWQq9tQhsjmq0CBvMbQ9jKun8R99MjbWRJy3fnsjL8BupJLFeLUcQYiQqIFUjJmXiWu2j1NGEXey8Lduxoxvy+u9uOpcQsDiG43LTB0iVJF6Uf6FQJBHPAq2AfHLZJDtplnZSVRJxg+ZlcSrG+TPAem05sXo0NuwUS8W4Tb5qpYEVaiHRRDHLgAZzc9QM1qplKKBOQouBk5kivYzVaglmTKxUC4lxKVwa0jPtoY81ailmTEx1qZINc1nE6peByVVR9/DDD/P0009z/fXX8+KLLzofX7t2LQ8//PCo+/f09HD11VefFUk6gEtM53GN7W4GsFKnN/GIfGXCpfOdk0yofoO2gp/b/wDAWvtS3yTqBleBjLgC5CtkAjV1xXoFG2UHAIvULMMNWsZDpkqnFIcRwiG9kItNE2/jH452OrEPOnNNhvfNlblaPgu0mRTr5YDjWtRJN8/Y/sKXTdejlKJa6nh7cJXrWrxXQWYUzjOtoEQqeFH/FwjssO9nubaAd/QdlFJFLNHcZ77Nuf1XLTeR3b8BxGGycavpU15pnxqaVBhJ0Hk0XGN1XZkPcfZyaqJuSOC/nwF+Yn0WheJOy40Bii4wdLm0LILDeCVG83ysN5laX0WEt2QbVmwsUrM92jfF5bpTShUnpBQYeyXy0ILbTjnA+/aD/Nj0DSK0wJgzeMJhKWKrOCrfowO4QP30YNU5QE7fBuppptHFGMUouN6TUgx2X73OdDkm0XjW5tBYTiOZv4X9AoCf2Z4D4A7zDc7t7+AGt/0TVBybZTcAP7L+hmfCvzuuOAqljJ1yAIDb1bXjOoYvmanlsGXwdYbrYaNsHSKYOSrFzu6dq9TFxLkULg3lSeqlyXkN/Ky60vm8q3mEFeO14bvicaLu+PHjnHvuuac9Hh8fT1tb26j733zzzbz00kt84xvf8PTUQYlJmfiS6Vre1rdTJXW8q7/PeaYVEzpmu95JLlOJIJwcdWbXr2BglspjuZpPo7RSQqXXjz/Ux55IPPlajtePbyS8tSjwS/uLZJNJhkrhHtPnvHTUwLJBW8GHtLWUSw3P6a9wD755Xa3SQS7TiMDC9EloXHKf6TYu0y5AEF6zv8022UcxFST0L0MQrtQucm5rtPYRbzFHm8EyNY8GaaaIcvqkn2bamM10Fmmz3RJxqSRxv+lLPGP/C/XSxC/tL/J/5k9P6Pw90ksf/cxmOitNiyb6cvxGqkpkoZpFNz10n5KMCHF2cmqiLl9lUyuNlFPN/fafAYrbzdcFtZmRp3RLL3lMYwArF2qrOV9bNa7jxBLNPDWTPvoZEGO394xGJ91O0W9PF8AyVArzVQHlUu1M0lkwe9Rd8UnTxbypb6Fa6imhkrnkexRDIOgdrEo1Y/apJq8nXKitYbccpl4afa4V7Cmd0k0e04ghys0Awyh8UFvLM+ZH0NCYpjKcj7sm6EbiKu1iCrVyNurb+Ku8wZPyAOHK80RWkV5ODlNJVYkUGLCiLo1kzlcrqaTOaSgQYnLSK33MJAeFRqZKc3O2HqpKb3KpknVNvrt+9o1ebe5xoi4jI4OioiJyc3PdHt+8eTPTp4/eHvfoo4/ykY98hDfeeIMFCxZgsbhfpB977DFPQzI8eSqLA/IcWUyhXKonfLxu1UMZjuNsYGJJPyOQp6axV46SSOxpK8neoJ8BigcTgKkyeRwoR2O8FXVWsdJMO620UyE1rDEt9XJkgWGKSqVDuqmSOvKYxkH7MRaYPFuZHwuddFM2WLm3dhLqY8wzzWQeMwE4LqX8w/4WGprzZlcvzc5tg11DcyRmqlx2y2HSSKZH7+NNfQuRRFBEBUuY67atUooNphU8aP85EYTxD/tbXGza4GyPHQ8VUkumSqdMqlgm8yf6cvxGkkrgwKCuXs2gE3eIs5tTE3Vd9FA+OL4ZchcslSry1eReZHOlnQ5n9fc6bTmfNn9kXMeJUOEcHtS1ahuUYwhWdukHySaTdjo9riKOI5ZDcsLtMU807gDiVSzHpIRsplAk5UGRqBvSeRxJiy8Q9Es/5VJNLlOpknryDGRUVkuD83uX6IFZib9I1ZK4Vhtfl0KBlocgNNNOEnHskcOsVks8OkaX9NCr+mmSFqqkzqlLbCSUUvTQR500ksUUuvUeorWo0XcMEXTU0EAhju6eRBWPJhqRRBBDlLOrqY9+0kmmhXa3BZ5wl4q6foNX1Hncf3rLLbdwxx13sGPHDpRS1NTU8Mc//pG7776bL3zhC6Pu/+ijj/Kf//yH+vp6Dh48yN69e53/9u3bN57XYHjmqOloaJRTzX45OuHjdcjkan21KAuL1GyaaOMtfRt2sXv1+G6twmpyX7C9oVFXJBX8RX+dTrpZyORoex3iecsP0REOUcg99h/65BxuduBM7s/bXJUPKOycdO8eMiCByaGhORwpKpFoomigmc2yi09av0w9TcxhOo9b7jtt+xVqAf+y/IoBbLwt23na9sKEzl8hNRyXEvoY8IpBkb9IcWt9bQtcICEMw6murzGnjGm66XVWQZ0tdLiNWcZ/DXUdH7oeMxj5hu1HVFADwG/Mj3i0b8owY5itlj97dIw5OAoRSqnisBR5tG+g6Bl0TjZSoi5Ty6CPfo5RQoXUBDocN5poc/482fSFAT5vuhoNRSOt/NH+D4/336Uf4nX9Xbrp5RwWYFbj8qP0OQu1WXTRw1GKnYmcEJMPVx3bKCKJUzH00kcjLTTiaK2vkBrqacaKjSQX6SvX1tcBgyfqPP6WfeMb30DXdS688EJ6eno499xzCQ8P5+677+b220d37Pzxj3/Mb3/7W2688cbxxBuUzFS5zCKPeBXjEC2cIF24uphMjkTAfDUTMybCCaNCashTWV47tqsw86mTgMmGQnEJG9jKHvbKYRb0XUqelsU/wp522+4+68/oohsdna+YPkuudnJlrEQqWK+WUSpVTNXS/f0SfEqWNoXlaj4mNBKIZaN9B+ebVnr1HCO5DE1G5mr55JBJK+100k08sUQRSYHKJZxwUmTyDXaHSCaBbnqop5kL1CoKpYIsNWXYibVFWZitzSCDFPoY4C37NnSzjqbGp9XaxEktnWD6jkaocM5VyxnANmnuXSEmxqmur6d+f+armVRJvZ+jCizuY5bxf09c9z3VoCKYqJBactVUookikgjCNM9a9lJJYpVaRLFUooAsNYVU5VlrY77KYS75xKloOqTTo30DxVDrq5HMhqa4uO42uyTGjEAKiaxSi7FjnxRFEKcyR02ngFziVSzWcbTCV0gN6wbnBtMMPO7IJ5elap6jGluvZLE2J9AhhfABQwsR4FiMsLgk34aecx0rp7ok308zkzAwHifqlFJ885vf5J577qGoqIiuri7mzp1LTEzM6DsD4eHhrF271uNAg5k0lUw19RyWQipk4j3zrhVicYztfTc6aSqZ3+t/B+CElJGHFxN1ru+Xmhzv10iYlIkIFU7b4ECykHIK9XKapc1ZGdcn/fzI/oxzgrROW0YuJxN1h6SQTYNirN8z3ePfF+AHHrLcyXkD14JArTRyvumPXj3+ZPx+jsQibTb9DNA+WEXYSgetdFA9OLHO0FIDGZ5PSVEJVEgNXfTwtmwHYHPYyJVyU1U6y7T5vKa/TQttzsnneHB3pwuuZGgL7RySQixiNpxGUQj/c2rr66kT5ENSyPP2v3Or+VP+Di1gdHlpzOK6b1cQV9Tt04/wD/1tAB403+Hx/mkqmX1yzGmo0S5dHlcqztRyOUwhuuj06sHhSDxUceJpm68vcW1bbjaYodBWfQ/V1JNJmlcMn4xGkpZAIy0cliKKpcLj/ffLUachxa1ecq/3BdO1aeyxHwYgzG7hCvOHAhxRCF/Q61JRF6ki3Krkhp4busZEEO52HXTVqBswuEbduK1Xw8LCiI2NZcqUKWNO0gHccccdPPHEE+M9rRvvvfcel112GZmZmSil+Pvf/+72vFJq2H8//OHILW8PPPDAadvPnj0xHSulFDeaPs55aiVpKpn/2bdO6Hj1ejML1SwuUKsMpe8wERZqs1inlrFEzaVEvGso0S09nKMWsEotJpspXj22EbnG9FHWqqUkEU8MUWQxhRdcytxfsP2TWeSRSBw5ZPIP+1vO547rJfzD9ja5TGOhmsU52sJAvASfMlflc5fpJmaSQ5008kPbM149/oBYWaEWslotMZxzmC+423wzt2hXcb5ayWq1hGgimUIaH9bWk2RAnRdvcY/5Fp6xPMJFaj0F5HGuOoc0zqyBeaPp48xRM5hOFl+3/WDc5+6VXs5RC1irlpI+yjmNxvnaKtaoJcxSeZRKVaDDCRFgTk3UTVGpZJBKFBHEEUM2U6iRhgmPm4KJDuliqZrHh9TaUa8pZyJOolmvzmGlWmSoZI2nuLpxjsfl2qRMXKZd4Ky4SCbB40RMuArjMu2CwYorHZHxaQD7C5vYmKlyWKUWs1zNC3Q4TvLUVM5Xq1is5lArTYEOx4mIOKtvJpPcy6l8xXQjH1LrmKGyecj6pEf7Nkkr56gFrFfLmYXxjCSGWKrN407TDeSTQ6GU84ztpUCHFMIHDGlwgmMxwvUeN/ScCRMr1WI+ql3gds0Pc9OoM3aizuOKOpvNxne+8x0ef/xxurocVRQxMTHcfvvtfPvb3z7NHOJUdu7cydtvv80///lP5s2bd9r2r7zyyphj6e7uZtGiRdx00018/OMfP+352lr36rV///vf3HzzzVx55ZWnbevKvHnz+N///uf83WyeeB/+Em0uP7X/DoBD+gk+YFoz7mM10OQU5H5AfXnCsRmBXDXNuVITaQvnC+bPeO3YHXTx/qBu1gfU+N/3YOFS83lcaj6PY3oxiwcup4seXrS9zu3m62mTDgop4xglgKMCCv3kxeuQXsheDqMjfEitm5DgvVGJUzF8yXwtj9l/C8Au+6FxXAlHpolWp339F5X3PsdG5TbztYCjtSq139FG3E0v+TL5HG9ducL0QcBR3fae/j7naueMOvm71HQe37Q9RgmVtOud2HQbZs3zD185tc5rWoKK8zz4ABJLNFtlLyZMFOrlFGjGHfCH8D2nJuoUijoanY8NaX4e1gsnNG4KJkqkkj1yGBMmMlXauI8TroWzVw7TRQ9tdHgxQv/S4mKEMZze3FjQxY51UItovFWKAwywXfYRQTilUmloV/cW2tkvxwBINNA9IlOls3GwAn2uGMeQo0t6nBP2YKtS94SbzJ/k3n6HaWOLvZ27zJ8leowyFAfkOEelmETiSFPGXSCcqtL5tOkyfmp/DoDD+olR9ggRjLhr1EVgcZnI9UgfjXoLhVJGD31En9L+H45rRd1JjTpddBSKx+2/p0/6udt8c8Ad5z2eIdx+++288sor/OAHP2D16tUAbNu2jQceeIDm5maeeuqpM+6fkJAwbFJtPFx88cVcfPHFIz6fkZHh9vurr77K+eefP6o7rdlsPm3fifJBbS1r1BIOSSFP2J/nTsuN4z7WUSkmlmhiiSZrklSILVAFXK5dyJv6Frayl17p85quxtnUiujKDJXNp7RLeE3fyG4O0SStfGjgs1RKLZmkEUkE7XRSTjVN0ko0kVxru5sIwshlGk9bHgz0S/AZU0hlmZrPCSllP8e8emxXLaCz6fMWq6LZFPYnXrH9Bxt2bjZ/ItAh+YU7zDdwBzeMeft1ahkt0k4DzVRQy/RxtPm7tgwF2+r/PG0mOfapVFHHMUq4lPMCHVKIAHJa6+spLYnTyXJIh1Do79ACgi46e+QICcSyTM13a9EZD8kqkS7pcWuXDzba9A5iiCKKSOKJHdcxvmO5gwfkDmJUJAPqzPpc5pVfR6/YiLSXoeJz0bLPB+Cz2pWckDIqpIbf2P/KI9pd44rFH7jJIxiosj+HTBaoWZRKJQfEu2OvidBMGxoaicSN654cLMSrWH5m/hYP2B7nOKX82v4X7jTfOOp+3dLDUSkmmQQ2aCsM3xqczRSmkk4n3Rzj7DIjOluw6jbiiSWScMIlDE3TCMPCAFZ66eMEjiRdBqmsUO7dYfHEkkoS3fS6zdne1rfzUev/IYP/fdR0IXPUDH+/NDc8TtS98MILvPjii24JsoULF5KVlcWnP/3pURN1zz77rOdReoH6+nr+9a9/8dxzz426bWFhIZmZmURERLB69WoeffRRsrNHXjnr7++nv7/f+XtHx+krl0kqHgsW0kkhVSVy3F7CLNOZE4Yj0SxtdNJNFz2keSiIa1QiVQSxRBNOOEkkUCTlLFCzvHLsDi8JMwcbFmUhRSUSSTgxRHHdwD20SycxRKGhkU4yA1hZruZTJOWU6zWsUUs4JiVEq8gJreQbHaUUFrGQTjIpJNKj9xKleac1qIse58+T3UziVM7RFrBV2wPAbC2wNzejkkg8YVhYquZRLOXjmhRoaMxRM+iRXpJdnKyCgTym0UU3c5hBi94W6HBCBJhTXV9P1ahroY1UknjX/j63yDf5vuVrk7qlvl6aWaRmUyeNhE0wSQcwmzzCCSNcWcZdwRtoOlQXXfTQRc+4q+HytZwxb2teeBMsvOm0xxeZ5tBsayWFRN7Rd6DL+A2BfE2dNDJPzaSfgXFrofoCi2bBJIoppBJPHHaxB7xiBaCZVnR0mmnDYlA3U2+xTJuHFRvxxPBf+2bmq4JRq5W36ntZqRbRQDMJ40yW+5MEFUcjLQxgNZwWYgjv0KE6aZdOrNjQNMd1eDbTGcBKKklU6NUsUXOplybSXUxsAMKUxekM69pC20wbOjrgSOZVSz1zCOxcxuM7THh4OLm5uac9npeXR1jYxAcVvuK5554jNjZ21Gq+lStX8rvf/Y433niDp556itLSUtavX09n58guT48++ijx8fHOf1lZw0+8bjZ9kkLK2Cp7+Ye8Pe7XMqSjkES8IW5w3mKmyqWVdqqo47h4bwXEW8LMwciPzN+gOmIzt5iuwoaN6SqLm0yfoDD8TT5h/jCV1LJLDnFUL+Y+20/ZInuwYec9y8ii+JOF6do0iqhgu+ynGM+FdUfCvYLz7ErUwWCFmXnsFWZnG7O0PKqoY48c5ogUj+sY2/S9HJViuuklSgWX9lSByqWZNg5xgi2Dcgchzl5Oc311qUK2YKY2fCtZKoNyqnlef5Xd+qEAROk/aqhnm+yllCqymHhnR5SK5ASlHJQTlFPjhQj9j1Gq1LOZwlptGbU0slsOU4Vx3YjLpJrDUkiRlBuq9RUgR5tGIeVskd2UizE+k+4ViAkBi8MfLFPzaQjf7jTC+qrt0VH3eUn/NztkP6VSxedMV/khyomhlHJqRAdzNXGIkTlplnOy+66ZNo5RwhEpYr8cY68coYYGZpLrtq/rfaTTpbjCNanbTue4TFe8jcfLBl/60pd46KGHePbZZwkPDwccFWWPPPIIX/rSl8647+uvv84rr7xCUlISn/3sZ5kz56RlcmtrK1deeSVvvz3+BNaZ+O1vf8s111xDRMSZ2ylPrRRcuXIlOTk5/OUvf+Hmm28edp97772Xu+46WQLf0dExbLJutspjtVqMCdO4LxyH9UKmkEaeypo0RhJDrNaWcK5+DmZMvGd/n0+YPuyV42qiWKeWoxASMdaAxdcMlafHqRhnkjJOxaCUYo6awRq1BBMa/7K/wxw1ndlMJ1/Lca5OTGbO01ZSI/VoaPxbf48FmncqOCMknHVqGSa0s6r1NcTYWKrNY4NagUlpvK8f9Hj/Hr2XeWom08kOyorqGC2aDWoFOjqJk7gyKsTYOLX1NZVEIginj37MmByGXmoGJVKJIDxse5I8Nc2jCqlgwnVsmOIFraylah6NylE5UCTlzMC4umoj4br4FcgqdaUUy9V8jlAEQKFeRrbJmPIzPfRyvlpJNz3kK2N9V+armTSoZqKIoEYaDNFqWiuNrFSLiCRi0l5bhlDKoQW6gNl00kWmSmePfpil2vCmI7+2/YUe6WOuyseExqwg0ZU9X1tFhdTQRz82sWGe5JWSZxu94kjURbok6mJVNIhD21ah2KBW0EU3BVqu276u3XWd4tDBbZdO3tS3MoVUagd1cptp8+2LGAMef2r37t3LW2+9xbRp01i0aBEA+/fvZ2BggAsvvNCtYs3VGOKFF17g+uuv58Mf/jDHjx/niSee4JlnnuGaa64BYGBggHfffXeir2dYNm3axPHjx/nzn//s8b4JCQkUFBRQVFQ04jbh4eHOpOWZyNdy2C77EYRyezXfs9ztcTy79ENsFUdr2Y9MX/d4fyNzrukciqzl1NDAfjnG49znleNWUc9m2QXAA17SvQs2htPRmqnlslX2Ao7KBSsO3ZZnzI/4Pb5A8DHTB7jV9i0A+uwDfM18i1eOe5RipzFKUpDph4XwPXO1fHro5X39IArFr+Qhj6riGlUr/xOHA+aV6iJfhelTuulhlxxCE80wrU8hAsNprq9aGn04pET0weeeCvsO37P9kgdsT9AgLRyTEvKZnJPpoY4J8E6ibqqWzma74350qZzHRayf8DH9jWuiLtYP8iXSVYd01yI9TajIFFTMFFSMo7pxikqjFIdb9VEp4kJW+zye8XBQTrBRdgAOcX0jkaTi2TY49ryWywMcjYNCKWOH7AfgK9wY2GD8xC3mT/JF2wMU6eV83/Yr/hz2s2G3+6v+Bu/qOwG4yzR284lA000PmwbnfuVSwwwDm7+E8BxnRZ3LvH5IOqOLHrbp+9gu+wCYolLd9nXVwh26vzxo+zn/1t3zUEZom/Y4UZeQkHCaa+pIrZ6u/PCHP+Sxxx7jy192uJT+5S9/4aabbqKvr2/ESjVv8Zvf/IZly5Y5E4ue0NXVRXFxMdddd92E44hSkXzedDWv2t+ijU526QdZri3w6BhFegXTySJFJTJXzZxwTEbjc6areEN/j3pp4iXbv/mkeWSzkLFytrcijsRU0rlWfZQ/yT+xYiOZBNaoJaQSfFU64yFOxXCxdi4VUuvmMjhRhi7sYVjOKk3EEGPnWtPlmOwmGmjmN7a/crtl7PeXYDaSGCJZJYKAjk4bnZO+1SjEyIi4J+qSVQL3m28jiQQ313FXQfwmAwyefcWfba8zmzzSVSof1NZN+Hiz1XRWqkU000axHvg2nvFgEo155BOnYojC963+/X/aAF0uLZkxmUTcchxwLLSsUAtpoc0QbVEj4dbKaTAXU9d4jDARBijVqyggl0QVT4EKjoqxiXKhaQ1P8yA/tP2abfo+brV+i19ZHnbb5pe2F6nS68giAzPm07S+jMwnTRdTL8000coz9r/wqOZ5cUwI4zKkLed6TxiqqAOcGnTxxGJRFrd9E4lnuZpPN71USi2z+i9CE8UMsrBgppl2UlQifYNO0IHE40TdeM0gCgsLueyyy5y/X3XVVaSmpvLRj34Uq9XKFVdc4fExu7q63CrdSktL2bdvH0lJSU7zh46ODl566SV+/OMfD3uMCy+8kCuuuMLZtnv33Xdz2WWXkZOTQ01NDd/+9rcxmUx8+tOf9ji+4chVU6mlgXDC+Ln1DzwUdidZamyl8y3SThMt1NBAiVQyQ5t8qwPztZk8aP85sUTzPduv2C2Hx1V56MpQWStATChR50QpRbyKxS4O4UwdnXWm5YZ3c/ImvfRzTErIZgpNegsp2sSTlBoaUUQQT9xZ9V6GGDvLtfncYXuYSML5m/4mtzP2RF2dNJFMwmCCy1gTsLGSTAImTCQRR63eQLIpIdAhhQgQp5pJAPw/8xdO226ouiyBOKrEuNpgE6FSaumhl3JqaZZ2ZnqhBW+mymWH7CcMCzvlAA3STJpK9kK0/uOElFFFHRmSEvB7ar7KYaccIAwLW+x7sJqtp00CjYAdO9FE0U2P4RZChuKJJ8YQ+mH9MkCP6qVK6qiQWrLHOCcLdnJUJp8xXcYXbd9GodhtP0SRqdyt9bdEKqilkR56+aLpM0GlP7xWW8Y18lXCCWOjfQc2c6j9dbIwoA8QQxR99Ltp1MUSPVgkEY1ddCIIH3ZBO0nFs0scerciQh/91NPEfFXAJ7SLeMD+BI3SwlQJfDWy34So4uLiqK93H1ydf/75/POf/+See+7hiSee8PiYu3btYsmSJSxZsgSAu+66iyVLlnD//fc7t3nxxRcRkRETbcXFxTQ1NTl/r6qq4tOf/jSzZs3iqquuIjk5me3bt5Oamjrs/p5yk+kTbLL8CUF4Uf7F92y/GvO+r9r/x7P6y/QzwIfUOq8IDRuND2prqQvfSipJHKaQn9mfY0CsEzqmW9vEWebCORr3WW6jJfx9OsL3cjD8X0F1E/YGS5RDJ7OUKk5Q5pVjForDEjwYnLFCBIaFahYXaevopZ+tsodu6Rl9p0EqpZZm2jChUWAw7aGxMlflo1A00koVdYEOJ0QAObX1dSQu084nX2XTRgd/0F/1R2h+5/u2X7FJdqGheN7yQ68cM1ZF84z5u+joHOA4z9uD770b0gkyQmVYkornJtMnsGLjAMcplPJAhzQsZVJNNz1EE0mYwRKJeWoaccTQThfFUhnocNgvx/i3/h499HGtdvlZJcUQpiwcDfsP4YRxmCJutv4/53N90s8T9j/QQy+5TOV75nsCGKnnpJPMtdrl9DPAPo5SJtWBDimEl+hWvbTSQS/9RLt0LqWSxABWWmijjCr66Gchs0/bP44YzIO1ak20Uk8TUUTwE/P/4+vmWzHhuAYYYSHB49Ryc3Mz999/Pxs3bqShoQFd192eb2lpGXa/FStW8O9//5tVq1a5Pb5hwwZee+01PvKRj3gaCuedd55b28Rw3Hrrrdx6660jPl9WVub2+4svvuhxHJ4Qp2Io0HJJJgErdg7rhTxt+xP/Zx69Yq9RWlitllAiFWSrKYa1hZ8IkSqCSCJIJpFmWkkigRKpYLYavz1yGsmcoxZixUqsRHOGucBZR4KLG1hKkFbnTIQ8sphLPnEqmgq9hjXa0gkdzy52ugfLsc82h+EQY8eiLEwni1SS6KOfL1kf5MPaej5lvnTUfZuljdVqCe10MC1IV/4zVRqzmU4//Txre5lDUki4WLjdcj2v2d+mUup4R9+OLsJ3LXdRECTi1SE851TX15EwKzMzyCFBxRFFJD16L1FacDkej4ZVbKxUi2ilnYXKO+ZGAIu0Wc4JzN/tb3K16VLD6ZaNxKu2/7FMOUTu56r8AEfjYAZZZJBCOOGU6JXM1YwRlytDTrmxBuwiyVaZpJDIHDWDaD+0Mo9Gi8tkPEMLntZOb5GjZTJFpRFBGDFEcl7/NUxRacwgmwu11RzXS5mmphgu4TsaQ6Z5U0knnDDe1XdOeqOQswVXp1bXApx4dbJAYj4FmJWJLO30oialFOvUMkqlEht2Zqk8OsVhOqGUYr1aTjc9hrh+epyou+666ygqKuLmm28mPT19zGXoX/nKV9i6deuwz5133nm89tpr/P73v/c0nKAkXsVSGrGRrL5z2S772Gk7QK/08RXLZ8+433bZ5xRg/bpl5OTjZOAi8zretx2gnS6OSymzGX+i7pCcYI8cwYyZcC3Mi1GGCHZmaNkctB8HAZPdxNVmzxcMXOlyuXnEBIngbojAMFXLoFF3LGz9Sf8nb+vbxpSo2yp7nPeBYHFfO5WZWi6HOAFAoZTzqu0tAN7Wt3OCMjftp4v0daFE3SRmrBV14NBk/I++CYBiKliA95JZRuAN/T3qaSadZJK0BK8dd4E2i5tMn+AR+1M0Sxu79UNMNQVHou6X+otOc6Y/hf0kwNE4yNOyqLU7dG0PcYKPcH6AIzqdoU6SQLrkjkSYstBDLztkP9UGaGN3M3A5CxesAQ6Hvw7AdQP38Ja+HQTMmLFhI5Zojof9J8ARjo/rzJfzTftjAPzU/jtuNn8ywBGF8AZuklYucy3XNtdDnACBa9RHhz1Gr/RSjkOLNEHiuM10jVODsY8+3peDAHRLT0ANVDxO1G3atInNmzd7bMywYcMGNmzYMOLz559/Puefb7ybnS9Zry2nRCrplG5+aX+RO803njHxGUkEa9VSdISpBMcga7zMVwWsV8vpZ2DC5cpOZxjOTsfXECOzQCvgC9pn+J++lSqp45e2F/m8+epxH8/duCRUURdiZC7QVnGndiN/0v9JO51YMHOf9ac8ZLnzjPtFEckatRQNLWiNX2apPNawlF0cxI7OOWoBeWoam/RdNNNKOGEIwjQy+I++mVv4VKBDDuEjPEnUzVP5rFKLMWGiThonVaKuVW8nXaWST45P3AnnawXk2adhw06pVHn9+L7CKjbWqCXEEGWYJMosNZ31ajkDWKnTm0bfwc+IiHMsYlQDtWSVSJ00OduaA0md3sRSNZd44shjWqDDCSgzVQ755BBOGDZs5KlpbDCtCLg25HhJJYlPahfzvn6AbumlWK+YlPruZxsjzbXyVQ4XqFUclSIshJGjMkesxL7Z/EkW6nNQQB1Nbl1Q67TlmHUz3fRyQi9jiWmuz17LaHicqJs9eza9vb2+iOWs44Wwx7hi4Ivsk6Mo4CHrk3zD8vkRy4vf09+nkRayyZyUba+uTFfTnLbas/XxV9MB9EgoURdieNJUMl80f4anBl4A4Le2v3Kr6VPjHpQMtZuAMVeyQxiHpdo8lobNI82axDftP6GKejbat9Nn7idChY+43zv6DjroYqbKDdrBc5yKwapsTv3Ri7VziVDh/EN/i176AYgmkhIqqdMbJ2WbY4ghxp6oS1DxbJd9AFTIZWfcNpiwi50jejEH5RgCzNEmNuYZjukqi1IcCbqXbf/hi6bPGNIEwZUe6WW77MOKjVVqsWGudzNUFltkDzq6uxuKQeilDzt2wLjjkGSVAOKItUvvJkYLXJzlVLNHjgDwvbPcGfR+y5e43/IlfmZ7jvf09zlXOyeotauVUsxUObzEvwE4oheFEnWTALe5lstiRKpK4m3Z7vy9Qmr4tXpk2GNcb76C6xneyDRBxTkruU9IGUsIXKLO42zPL37xC775zW/y7rvv0tzcTEdHh9u/EJ7xkPlOfmz+Bikk8X39V/xdf3PY7XTRnStPqQYQ1PU1+eSwUM0imQSOSNHoO5yB3sGKukgVStSFOJ08NY3PaB8hnhj2c4x6msd9rGZpI4ZoppFBNsGpHxbCv9xluYlfmB9gnprJUYrPaDBkFSsdOEr+jebk5ynPWB5mo+V5/mf5HZ81X8kd5ht4K+z37LC8xCbLC3zVdDOzVB46wvOT1DwgxPCuryPhOvZpdmlXC3YOSyEX2q53vhfzmOn1c8xW0/mW+Yskk8BuDvEv/R2vn8PbVEot4YQxlXTmGUSfDiBChfMBbQ0ZpHKEolG1sv1Nq3QQTSSZpJGPMZMS56gFjqIDNCqkNqCxlOnVpJJELtNC47ZB7jDfwMthPw/qJN0QV2mXsFDNIol4ntT/GOhwQniBVmknjhiymUKGOqkrWUAu8YNGfhbMfFz70LhcnOepfGapPKKI5JiUeC3u8eBxRV1CQgIdHR1ccMEFbo+LCEop7Ha714I7G5ivFVAsFXTQRQqJ1EjDsNs1SSsFKpc+6SdXTfVzlP4nSoukS3qIJYYYoqiVRqao8Tnv9gyK+0cZQLQ2hPEwKzMJxGFHZwppFOnlZJjGJyjcRgdddNNFN5aQDXyIMbJOW8ZdtkeJI5p39O3UyafdBh9D1Eszs1QefTIQ9PeBWdr00x5brM1x/tynBviJ/VmSSeBp2584oB/nfsttTg2REIFhi76HKCJ4076FHbJ/wserlFpiiCKKyFErphKJJ51k4onFLsE/1iyyl1NMBa/a3yKSCHrpQwGJWrzXzxWuwpitptNND6kkc1wvAYObWzbRRhc9dNFjuMowk2hoKPJVDlVSR5aBjH1aaKObXrrpRYxRhHgaZsx008NCCqihgbkELhFbTxONtNBOp5vBWojJwWzTdBqszaSQSLPeyucH7uMpy3cmfWfaZKaVDjroooMuotTJuX2ylogNO2FYsGFjuZo/rr/zDJVNhdQSSxT/07dwv9wWsIpuj2eS11xzDRaLhRdeeMEjM4kQIzOLPPoZoJ5mduuHht2mjGpnVvcDao0/wwsY/2f6NF+z/4AyqeItfSvXmi73+BgiEtKoCzEqc7QZdOmOCcFRKWYdy8Z1nEY56XqdbBA9nRDGJ1/l8IDpdr5u/yH10sxb+lauMZ0ugFtGNcelFICPqPP8G6SfWauW0hC+nUsHbuFt2c5RvZgN+jlcZbok0KGd1dxhfYhDUoiGxhq1ZNQquNEY0mM7Vztn1G0TVRz1NFNPs1MEOpi51fYttg4awwxRa9lKnOYbfdMrtA9yN9+jjkaesv+Jr1s+75PzeIsm1/upi0i4EZilTeff9veokQZOSBlZBqrEapST1aZGrbzOU9Nopo1m2iiRCiBw85qmwfcrhcTQnHaSUhz+FtdYv8rf9f9xUD/BvfJ/Qb/YeTbTyMl7Q8op17iG8G2YlAm72DGp8a1GzVS5rFPLeFO20CAtNNBMOoFZJPY4UXfo0CH27t3LrFmTR8Q30MzQsjlHLSCCcPQRBC/K9GrWq+XYsDNfFfg5wsCw3DSfD+hrqKSWx22/5yPa+R6vdvVIL6vUIsyYKVAh58AQw7NUm8cH1RoqpJZf2//M5aYLSVPJHh+nX6ysV8vR0YetiAoRYjiUUiw3LaDAnksrHTxue47LtAvcxG3BMXG9QFtFl3QzU+UGJlg/MbQKmq9y2CtHSVYJbNP3ORN1DdLM92y/ZLd+CBNmPmhay73mkRMPNrFxl+1RaqWBZmkjUXm/aulsQKGxVi1lACvxKtZrxz31sz4crlo0XS4aNcFKGCc14uaRz3xtFgkm31X0mJSJi7UNlEoVGoot9t2sNY1vUcofdEsv69RyBJ1MPxqohV35GtJagt5VjYrJREs8XTNwgSpglVqMGROVYqykcSddznFItsoMdDjDkqZOGiE1BdBQQkQoUHlMJ2tcY74QwYFJmbhQW8MJvYxmWrnOejd/C/sFKWeBlNRkRAmsV8uxo59mMjSUnBtvkg4cY/IN2jkU2yvQ0PiX/V1uMl85oZjHi8eJuuXLl1NZWRlK1HkRi7LQThfvy0EiJBxd9NNKNQ/IMae5wjfUrYEI0++s0ZaSq03lf/atAByXUlYqz9yGW1Q72wbFp0MX5BAjsUybzxwtnzftW0HgIesvyNeyPdbnqKDa+T39trrdF6GGmKSs1Zay3nQOv7G/RKO0cMXAF/mo6UK3z2CRVPC27hDK/Yq6KVCh+pXHw+7jX33vUCTlNNtbecx8L0opHrI+ya/1vzi322c7wi794Iji16VSxa/sfwYclRNz8L5g/9lAArGcq53DfZbb/H5u12ReJz1+P7/XUcop0nep6TweHMXx2Rt80LSWz1jvAmC9nMPacVaP+4Mq6tg8eD/9srreb+fVkgogqeCMncG52jS22/YBYLfr3BigSdxw1EqjcxxyozJOXK4ku+pNSuD0Jrvo4R3ZAcB5amXA4gjhe24xX8UxKeZJ+x+pl2Y+MXA7V5g+OCl0+M42jkmp8xqX5KNq6ytMH+Jb9p8C8Av7H4MnUXf77bdzxx13cM8997BgwQIsFnfXqIULF3otuLOJC7VVxOrRNEoLFVJDrnK3CK+QWuaRT7yKPasqw5aoeWSzhR56KdTLWKl5lqhrljbnz0ZrnQhhLBYyCwtm7Oj8UX+VMN3CLaar3PQPRqPJReD81FWeECFG4zrT5fRKH5v0XRyWQo7YirnNdA3mQb1D1wnN2XQ9+77lHv5mf5MqqWNB/0cIUxZsYmMG2QwwwCJtDnaxs13fx3Z9Hyu1RazSFrsd4/MD97NMzaObXhKIG1MFV4jhCdR7F0uU8+cO6QpIDN6kXe9ioZrFgFhJ8lOL4iptMZeoDdTRxMv2N85YhRpo3MdvxrqfzlczuUL7EDv0fRyRIgbESphBXHTdxyEJgQvkDCSTwAq1kD76GcAWsDiaxPjvVQjv8WnTR2iRdrbouzkmJTxq+yWfN11NhAoPdGghPMDVTMpXRTg5KpOrtUt5T99FpdRSJ00B6ZTyOFH3qU99CoCbbjq5mq+UCplJTJBootgth0ghkSKpIBf3RF29NHGcMsxiGpeDSbCSpTKooIYYoiiXao/3d7hwRtFFT0gzLMQZSdESsdodA8Ye+tDQKNLLWWiaPeZjtEsnZkzYsJ9ViZQQ3mGVtphVYYtZ3v9xKqWWWKIpk2ryVQ7g+FxaMGPFdlYlgj9h+jBP2v7ITjlAJBEMyAA27CxWc/i06VPcYb6BTw3cQbO0YcbEz61/YG5YvjOhNKAPUEcjZVLNfDWTd8L/EOBXFGI8WJSFCMLpo59e6Qt0OBPCpttoVx2UShWL1GzutNzol/NmqjS6VA979MNMI4MKvYZszZjtkS20u1zvEgIdjhvxKhYzJmpoIJZoiqWSOep0g5xA0CxthGFhAKvhEpxDpKhEdsoBANIkcC2nddJ4co5g0PcqhPdYri3g2bDvsbr/KiqklgjCecj6JDeZP8EMzZgOySFOZ0CsmDChUMThm4VDszKTqpKooZ4YojigHyPDtM4n5zoTHlthlJaWnvavpKTE+f8Q42OemkkcMTTRylEpdnvOKla2yh50dFarxRPquw42ClQuaSTTRQ/75JjH+zfRShc9mDGRRkh/IsTInKetpDj8LR423UkkEXTRw3FKPTpGkVRgw04eWaRIaNAXYnx8wvRhooigk25OyMnPYI00YMVGGBbifTQ4MSp/CPsRLeHv8xXTjaxiMXdoN/Bm2O+cbSu/tDzEY+Z70dD4q7zB6/q7zn1LqaKESkxoLFcLAvUSQniBZWoeGhplVCMyvKZvMFCnmiiRSgDyTlmY9TW3mj5FAnFUUcfz+qt+PbcnlOiVWLExhVSmkeG389qP/YWBN79E/0uXYH3zS9iP/WXY7RZps4kicvA6bZz5T7lUM4CVdFIMZXLhSjyxmAabi10rJ/1NNfV00UMUEczi7OlWOtv5e9gvaAzfQTrJPKY/y6qBTwb1/eRso1SqsGMnh0yfGsDcYLrCmYP4rf2vPjvPmfC4oi4nJ8cXcZz15KlppJDIbDX9tJtWqVRzjlpIJ11MU/4brBiBbJVJHDGEY6FEKmmSVo/KXIdaxWzYSdRCtushRiZChTOVdGaqXKaRThzRvGR9g1ds/0WA2y3XsVZbOuL+xXoFU0glQoURTRQm7exJqIfwLvlkk00mySqBvfoRLjGdB0AnDgF9h5D/2XU9m6ocYvJxKoZ4LZZMLY1YddJcIEHFMUNlk0g8Nuw8a/sr89VM5msFlEglq9US2ukg6yyqSJ+MTCGNhWoW8cTyvn6QFabglFsZGucJQpKW4NdzzyOfROKYqXIM3UIcQxRL1Fxs2InRokffwUtYN90HXQ6DCHvVJuxlb2KafdVp2+Uylamkk6TiqZZ6v8U3GvHEsFTNo40Ow5paKaVYrRbTQx8JeM+UxlPapYs1agn1NIfMJM4i0ge/F8kqAREhkgiuGvgyL4U/EeDIQoyGiNA8aEAT6eOW5TlqBtFEsnRwgTAQjOuszz//PGvXriUzM5Py8nIAfvrTn/Lqq8ZdmTM6s7Q8Sqhkpxxgs77b7bnjUsJW2cNBOXHWTTI0pXGZ6XwqqeOwFPJt68882t9dfyJU4RRidGZpeRRSzm6O8A/e4m/yJn+XN/m9/W9n3O8tfSv/k63slsN80nSxn6INMRm50nQRdTSxRfbwO5fP3ZDTpUIRzdi1EycTd5hv4OWwnw8rAH2RaT0/snydZlp5V97nX/o7AByUE2yTvRyRYmZoWX6OOIQ3ucZ8GfvkKO/KTr5t82w8YCRcxybJfm7rnK5lU0Et78tB3tV3+vXcY6VJWvmPbGKvHCHJoA7NBVouhZSxQ/azWz8c6HCcvK6/xx45jBmzT6tNJsoAVvbIYd6W7fRIb0BiOCQn2Cp7KZYKcrSpAYkhRODYGv4XcrVpHKeU12Qjj1p/GeiQQoxCD7300Q/4XrvUpExEq0j2yGFe09/GKlafnm84PK6oe+qpp7j//vu58847eeSRR5yadAkJCfz0pz/l8ssv93qQZwOJKp6L1Hq66eHU22q51LBKLcKChQXa2ee2+yFtPW/at1JDA2/r24d1xR0JHZ21aikaWsj1NcSYmK6y+ZR2KW/p22inHVDEE0u3nNllsEYaWa2WYMbEHBVylAwxfpRSXKKdS4XU0ksf3dJDtIqiY7CiLpZoQ0/AAslSNY9Z5GHDzlZ9DwBb7bs5T60kXFlYpuYHOMIQE2GhNpurtIvZrR+iVKo4qB8PynFRrTSwXM0nlmhm+dkgLFyFcak6jxbasGLzaEzlLwr1Ms5RC4ggnDVqSaDDGZaZKpd1ahmC0ENgEk2nMiBW2ukE/J8A9pR12nLCdAv9DFCol7PIAz1gb9EkLc6fjf5+hfAN12qX0yldVEodz9v/zh3m6z0ykQvhX1qknbVqKaD8Mtf6mPZB0iSFARngFfubfMp8ic/P6YrHd+YnnniCX//613zzm9/EZDrZ2rV8+XIOHjzo1eDONnpVH5tlN5tkF616u/Pxg/pxtst+NskupquzrxrgfNNK8rRptNBGKVWUS82Y9y2ScrbIHjbJLr+5qoUIbsKUhU+YLqKJFqzYsWKjiVbe1d/HJiO7k+2RQ2yTvWySXczUQhIBISaGWZnZLLvZLYc5oTt06joH29Ri8V8bWLAxQ8smVSVTTAX/0TdTYavmP7KFd2QHXdIbEowOcqaqdJZrCyimkjKq+ZHtN2e8LhuVYqlklxxio+wISMWYrnQ2y252yH4qpNbv5x+NE1LK+3KQTbKLVJUU6HCGJVJFUEU9W2QP7+g7sOr+r7Y4lUbXxJPBDa2SVDybZTfvy0GOB0jjr1F87x4Zwthcb/4Y81QBTbRSQiUP2n4elPeUs4UOutgie9giu+nF96ZS55lW8ra+zXG/1Pf5/HynMi4ziSVLTl/dCg8Pp7u72ytBna2sUUsoULlEEs4JypyPH9OLmUIqS9Rc8jk7Jxn/z/R/rFPLyWYKV1vvHPN+TYN97BC6CYcYO2u0pfzT/Cs+q13JWpayRM1FQ+MLtgdG3OeYXso0MlivloeMS0JMmKVqHnPUDGKI4gTlWMVKKx3kMpVztXMCHZ6hudF0BQvULBKJ44fyG8IJYyY5rNaMWZkTwjM+Zvog/wt7jlkqj//om1kw8JFAh+Qx9dLEVDKYSU5AJE2uNV3OIjWbFBL5pf1Pfj//aBzTS0gmgfkUMNfAFerPWB7hI9r5JBDHrIGLAh0OlYNOlgXksUzNC3Q4Z2QeM5mvZpJIPMfFM+Mub1EpdUwlgw1qRWgB7CzmK+Yb2RT2JxarOfze/nem9q9HFz3QYYUYhiGtZvDPonUBuSxWc8ggNSDXKY8TdXl5eezbt++0x9944w3mzJnjjZjOWlJUIlVSRzaZlEk14BBNNCtHh3KLtBGtRQUyxICxxDSXJlocosJEcUg/Mab9NBTTyCCFxLNW0ymE5ySrBD5gXsNsbTofNq3ngBxnACtH7IXs04+6bVusV/Cs9a9Eq0h66WMAa6gtMcSEmaYyKJYKMkilRuoplWryVQ4ddDFA4Cs3jMwSbS6HpRAbNv5i/zcRhFFDA6mhxZpJQbaawjptGd3SSz/9mMXM/f0/5WvWH3BcN4775pmooo5q6iiknCkqze/nX67N55AUoqOzRd9DrTT6PYYzYVU2YonmKMVMV8atUF+nLaNN76CLHlJUIi0u3TCBoFyqma6yqKKOaIw9X5ihZXFMStFQvKVvc6sG9AdW3UqKSsCKlVbaQ+O2s5h52kzO0RbQzwADWEkino8NfJGP9X+Re60/Zo+BNCjPdjrlZKIuxg+JulSVRKXUYsaEBbOzw8VfjDlR9+CDD9LT08Ndd93Fbbfdxp///GdEhJ07d/LII49w77338rWvfc2XsU56Zqnp9NDHcUo5qB8HoIFmtsgeamlktoFXFf3Bny0/o5ZGtsgevmt7etTtddHZru+nijpSVVLoJhzCY+4w38A9llsoCXubNjrYzWG+bvuh2za/sP2RL9gf4KgU00wbf7L8JEDRhphMzFJ5WLFRRDm79UMclxIOyQlaaD/r7wWjMUfNYCY5dNJDO5200Uk3vRTgXy2wEL7lQm01vfRTSBk/kGd43P57fmp/LtBhjYkhR3oNLSCul1NJ5yfm/0cL7eyUA7xuf9fvMZyJbfpeyqhGR2cq/k9kesI800waaeGAHKfQpRsmEPxO/xtHpIgeernG9NGAxjIa+SqHh0130kwb22Ufb+nb/Hr+RtXKDtlPA81kcXYZ9YUYnu1hL9EUsZPPmC6jS7p5Q97jJ/Znucv6aKBDCzGIa0VdnPJ9ok4pxUuWx6mijjdkE0/a/+jzc7oyZjOJ73znO/zf//0fn/vc54iMjORb3/oWPT09fOYznyEzM5Of/exnXH311b6MddJToHJZouYSTSRdg8L1lXotF2qr6ZAu5mpn9+RshspirVpCvTRTKGVs1nezTls24vZVUscyNQ8bdmYaeEU2hPFJ15LJIROASHG3A7ejE00kNuzkMpUpKjUQIYaYZOSqqc7r3T79GH0ywFzysWHjHC1kiHAmNKWxwbSCans9PfQRSQTpJDPXlB/o0EJ4kXPUAt5kC9300EkP8cSw236I3aZDLDPwd+SQfoIslUmLtBOlIjEp0+g7eRmlFAu1WWSTiR07v7K9yIv2f2LGzOfNn+Jjpg/6PSZXhmRLUkjEpPn//fGEuSqfFWoh4YRRqlexUlsUsFiGEsBhWAzrljuEpjRmqjymkYEFM7XS4NfzN7vo06VpIbmSEA6jHYA4FUOiFk+6nkw8cUxV6Txhe57bzdcFOMIQfdLPGrUUBaSrFL+cs0DlaB9D+wAAWRRJREFUsVjNIYYoBvzs/DrmRJ2IOH++5ppruOaaa+jp6aGrq4u0NGOvdgULWWoKx6SEXvqopxlwtEcMrTJdrj4QyPACjlmZ+ar5Zq6w3gYCj1h/wb/DfzPi9sellE2yC4BVARw4hZgcTFUZbJHdlEk137f+iq9bbgXgf7KVbnqJIpK94a+GKjdDeAWLsvAV801caf0S4DDGAbhUnceHTecGMLLg4HHLfTxuuQ+Ah6xPApCjMgMZUggv8ynzpXzJ/qDz91Y6aKWDm63/jxkqm3O1c7jDfEMAIxyeTfou/q6/CcBH1YUBi2OVtpgoFcExKaGaehgc5jfaWgKeqBtKohjdEAEgT01jpxwAQLNrXG2+NGCxNEsb4EhwBsNYpEDLoYo6AN7X/WtI2DT4XkHI8TWEO3eYb+AOHPeOqX3reFn/D9v1faFEnQGoo5GtsgeA27jWL+dM0RzSZE20UiKVfjnnEGNO1AGnXfSjoqKIijK2BkIwoSmNW7Sr2COHaaGdd+w7QzeSU1iqzWOuyqda6jkshYjIiIORIr2ceeQTr2JZpPxv+x5icnGn+QZm2LN4V3+fJ+zPc4f5BjQ0EEdlx3SVhaY8lv0MEWJElmnzySeHYiocq4ekMFcLVYV5SpyKCXQIIXxArIrmG6ZbsaPTK31UUkulXkufDPC+HGSPfoQ5agYfMq0LdKhu2LE7fw60du7/M/8fHdLFa7aNbGcf4HAOfcX+Xz5u+lBAYmqXTpJJZK7KZ2kADBFUVDrS0wi6DTQzKir9jNsv1ubwOe2TvKlv4agUsVM/wAptoZ+iPYlVrIRh4Ry1gLkqOO4TeWoaG9QKuuim2cX8zR+0STuL1BwiCCNHTfXruUMED981f5U39PdolBYuHvgc/w57JtAhndU0Bygv8g3T53lD3qNNOrjf+jMetNzhl/N6lKgrKCgYdYWmpcW/YqCTjblaPo/bfk84YZyQEhqlFYVCkJBrKY4y1yw1hSNSRBQR1EgDU9Xwg6hyqjlOGTax8bD2FT9HGmKycZnpAl6x/5dyqokgnBK9Ek0pmmihSMrJU1mBDjHEJCNDpZCo4hARBJiusnjIcmegwwo6jFhVFcI7PGD5stvvP7M9x5/s/6RBmjGhcUg/YbhEnc7JDpVLTecFLhDgKtMlAHTTyxQ9ld/pr9BJN0f0ooAl6gr1Mlppp1yqma8V+P384de859H2aSqZOdoMntFfwoyZo3pRQBJ1lVJLKx2USlXQVA+blZl6mjgmJUyVDGy6DbPm0dR03NTTzH5xmIN9Tl3ll3OGCD5uMF/BU/0vsE+OEivRPDTwJF+z3OJskw3hX9qk0/mzP/Mi15gv4+7+76FQ9Nn7+ar5JuKV7/VlPboafuc73yE+3tiaB8HObDWdTNKpoZ5DUogVG4IwlXRyCa34ACxT89nBftro4ISUMZXhE3V75Sg6OtlkMiskIh7CC3zS9GHe0DfRRgfP6X9jtbaYNjpJIp7FKuR6HcL7PG/5kUMXQ1kdFZwhQoQYkTvMN3Cj6eNcOnArB+QYT9r/yF2WmwIdlhuuFXVG+U7fYb6BLumhdKCS7bKfn9mf45vmLwSkffIYJXTQRQoJQdMNcZV2Cb9Sf6ZYKvmF/QVuMH/c7zGUSQ1tdBBNVFAtHK5WS6gShwtyOTXMINsv523ipEZdSqhjKcQZ+KPlx7xk/zffs/+KR/Sn2CArOFedE+iwzkrqaUJDI4k4kvz4vU1U8Txhvp97bT/iEIU8Z/8bXzZf7/PzepSou/rqq0N6dD6mQMtD0JlKOjv0A8xT+SxWc6iVRnK0UKIOIIdMkohntvr/7d13fFRV3sfxz7mTThoJIQmQhNCL9CYdFAR0rbh2imUtK4L6WNbdtaCuYgXXsvrs2te6i+1Rd20Iiii9Iy2U0CIEEkISSJl7nj+QkUgCAZLMJPm+feX1mpl77zm/GX5OZn45pQWL7UqG0qfc8+KIoaNpTSH7iXc0GlFOXkuTSg57Aci2OWy3O+lpOpFt95BqtGuYVL3met8XOS4xJopYomhFGjEmijx3H9FOze+sWpHDR9R5AqRQBxBpIkggnrakE2di+cj7FecG1fzayD/Z3fQ0p7DL7qk1I8MSnDgibQPakk4s0bjWrfGlMHb/XHgqoLBWzcBJNgkkkUC8iSHDZtZYoc6xhm6mA/kUEocGoUjFWjqpNHbjiSSCCMJ4uOQFBob0rBXrQNY12TYHF5dscmlUw2uYdnXaE4SHWKJ43/tFjRTqKv1bRMlYM+JMDIOc3mzjJ5baH/nUncUS+yMeHK2z87MxQeeynZ38YJfwqvf9cs+x1vKRO4Pldg1RVP/2zVI/xB/24XeBXc4CdwUL7HI2sY22jkZtiogEgmZOEqtYz/d2MevY7O9wygjEEXWH/CPkL6xgHTPtXB7x/q9fYpjnLmWBXcFmttPG1J7fq02cxqxkHbPsPLb8vEFCTSqzdlMt2ITjkJZOKuvZzFy7jFV2fY31m2G3sNiuYp3dRKyJrrF+pXa6KuhCujsd2cNevrY/+DZ9lJp1aC3LGKIINsE12ncvpxOtTBq57ON7u5j99kC193lCu75K9Trd6ctCdwUllODFpZNpQ3PTzN9hBQzHOJzpDGaX3UMxJZTYkiP+Z93LPt+H4dr0gUUCW0OiudVzJZ95v6XUeplvlzPQ9KSQ/TX2V2ARETm6bqY9GaYnpXjZYLfQg1P8HZKPi+u7HUgj6gDCTChXOaPZShYuLv/0fsgVnnNrrP8sm02uzSOdZnhw/DKiruTLiXg3fw37syG8EZ60oQQP++sxr+vpnEKuzaMUL+vdTaR5ajZ2F5eBpicuLgk2rkb7PhntacEA0wOAnbbm1jnPp8B3O0oDIaQSepvOrGMTLi7r3E0keRr5O6R6J40mP6/f7J9RsGc5Q8j17sPF5X3vF1wWdHa19lfpQp3rusc+SarE2Z6hXFv6Z9/9rTZLO/39ioPhW7sAgAw3k3aelmWOZ9tf1p6Ip/ZMAZDA5jEeHgr+H/7t/S+Z7AA4+NdYoolw/Lt7n4iIHJRikn2fEQZ4e/Bbzyg/R/QL72GFukAbUQdwY9AVdCs+WJxb4a7jfe8XvmODnF5M9Iyttlk2q9x1zLLzARhoeuIxnmrp52i8Gz+D/O0H75Tk4934GZUZt5FMY1/OrXTXc7qnX/UFWY5Mu93XfwMnokb7PhmtnObMtgsB8HpdKvViV4G8wwt1mnkjlZBoGrGRrQA86/0nA5wemnFYg0ptKV/Z77FYelPzG/YADPf0Z7L3GQD+5n2TSz2/qdYcCLxPCEJDE8PvPBcRycEv/m1oroXqf+USz1n0Mp1oRhLPe98+4vhGdyuxRHEKbejm6LWTqvW34Mn0N919X7I0alNEJHC0NS3oYU4hlSZkkOnvcMpw7eEj6mq+EHUsLU0qbwVP5VrnYtJNM/JsPtluDt+7i5lS+gJXlvyh2vpe424kkXi6mHaM99T8hgwno73Tgu6mI81IYr2t+enW+yj03a5NhadoE8kIZwCtTBqZbK+xfvPtL4W6BugPrXJsIz0DeTXoEdJowix3HleX/NHfIdUrOeRhf17j1V/fuzqYVtzmuZokElhp1/GpO6ta+1OhLkA1NYkUcACDYS2bSNFC9WWc6nRjvl1OKaXkse+I49vZSUNiWM0GImvRBxapHU5z+rLKrscAIQSTQO2ZZiIiUtelmSYst2vYTQ4/uuvJt4XHvqiGHD6izhB4ozFCTDDne4bT0kkl1kQTbSJpaGLIYS/5FLLIXcnbpR+Ta/OqvO9MdlBECcvs6lq3gVork8Yiu5ISSsgjv8b732dr7wixIkrIsruIogHZbs6xL6gCoYTQiIYkEFfjG39I7ZRikjnXM4xMdlDAfla661jprvN3WPVGls0mhSRiiKKR8c/3rggTTkenNT+xi1BCWWs3VGt/emcKUBM9Y9kXupg/eq7nTud3DHK0DfThGpmGpNKELLKZ6c474vhS+yMb2YqLSzvTwg8RSl1mjGFN6OcUhC0jL2wxX4e87u+QRETkZ0EmiAmeMRSwnx/ZwAJ3hb9D8im7Rl3gjag7ZFLQOKaHPMP0kGf4IPQ5NoXMpIRS1rKJ8aV/4APvl1XaX7Et4a/e18gljyYk0sf4Z2rTiWpoYkg3zfiJ3Xzt/lDj/e87rDgYZWpXoa6TaUs+haxmA2vZWCN9rrUbySaHMEJrpD+pG8JMKBtDvsbFspTV3FTygL9Dqje22O1sIYu97KM1aX6L43xnOM1IIoe9PFv6ZrX2Vek16qRmRZiDw7CjTSSYg3/hlLIGOT3JtDuIMGG8W/opFwWd6TtWZIvpZ7qzj3zamOb+C1LqrMN3YdYaFSIigaWNaU5TEgkmmC225qbUHYtbZo262vO7I9FpRCzRFPw8xfJf3v+QSx43B42vkvb/Ufouw0w/1tqNpJjkGt/RryoMND1JIZlwwnir9GMuDfpNjfUdRih9TBeCCSbKNqAWpRbppildTTtiiWGnu7vah5G41mU3e4GDf/gXOR5JTiNamVSMNRygiDOLfseHIc/Vyves2mSuu5Shpg/5FNLetDz2BdUkzITSx3QlhZ2EmVAWeVfS3dOxWvpSoS7ATQoa5+8QAtajwXfSpKg/WJjnLmcHu3yv1+fud2xhBw2JprGJ93OkIiIiUpNaOqls4ycAltgfGcN5/g3oZ2VG1Plhs4STkRU2B4CmBwbwlf2e70oXMdEztkqmDj7kfZ5scmhAOCtDPj3p9vzhseA7SSzqC0C+t7BGC3Wz3YXsYg/JJBDm1K5RYsmmMUvsagCG07/a+9vLPrx4Aa0xLCdmSehHXFH8P/zb/QyAyaXP8GDwLX6Oqm570/ux77v9bzxD/RrL2UGnMa7kDrDwAMG873muWvqp1VNfv/nmG84++2yaNGmCMYYPPvigzPHx48djjCnzM3LkyGO2++yzz9K8eXPCwsLo06cP8+YdObVS/C/OxPBA0M10Ne2xWJ4qfRWv9fKldw5xxDLI9Ga85wKNdhIREaln2pDOANODnqYTO+0ef4fj462lI+oON8j0oi3pdDcduaP00ZNq6yPvV5xRfCWNiGWQ6cWDQbfU2jXDYkwUZzqD6WO6cICiGut3lncerU0a/Uz3gNrhuLIOL5btttW/Rl22zaW76cippiunmNbV3p/UTWM85/EbM5TGxPO+9wvuLHnM3yHVWYH23b6P6cJY5zya05TF7o+sczdVSz+18zfhzwoKCujSpQvPPvtsheeMHDmSHTt2+H7eeuuto7b5zjvvcOutt3LvvfeyaNEiunTpwogRI9i5c2dVhy9V4PagayihlBz2spM9rLYbWGHXspw1fGPn0dXp4O8QRUREpIY1NnGstOtYYJfzo7ueA7bmCidHU1vWqDua10IeZQNbmGMX8Yl3JqOLJzC6eAJPlLx4XBt35Ni9rHc38607n9VsJN0044agy6ox8upXwH7m2qUst6t5oPjZGsm79TaTOXYxc+wi2tbCdZkb8cv00x12V7X3t4dcFtmV/GCXUEJptfcnddMIz0DeCnmSbHLIIJPXvR/yWMnfT/j/+Vybh9d6ybeFFNniKo62djv8u30Xp72/w6G505RUpwmb2EYWu3ik5H+rpZ9aXagbNWoUDz74IOeff36F54SGhpKUlOT7adjw6GsRPPnkk/zud7/jyiuvpEOHDjz//PNERETw0ksvVXX4UkXeCZpGd9OBUIIZU3I7T5e+TgRhnGq6coZT/UPoRUREJLAYY7jJM5amJLKCdXzpzvF3SAC+KXcATi39GB5sgvkm5E22hc7mMs/ZbHF3MMP9nj97p/Gc941Kt3NJyS084H2ORsRxlTOax4LvrMaoa8Zfg/7Mo0F3EEYYf3H/xlfu99Xe525+GYXWqBZO5WxKIu1MC8IJZbut/oERh4/ai9cadXISgk0w34W8zUgzkAIKudv7FJ+7s0+orZHFV9GgqAuNinrzf+6MKo60div73X6Av8MB4ErPaM53hhNGKG/Y/6uW4mrt/IRwHGbOnEnjxo1p27YtN9xwA7t3767w3OLiYhYuXMiwYcN8jzmOw7Bhw/j++4p/0RYVFZGXl1fmR2pOK08aWEMzkvBYD01NIs1MEmGE0tDE+Ds8ERER8YOWTioulh6mI8vdtf4OBwAX67vtqcUfw7s5HYg3sUSbSGJMFC4uMUQxw/sDn3m/Peq1m+12/s87g322gDhi8OLS1mlRZpMmf/G0vRDTqAOExWPiO+Bpe+FxXd/WaUFjE4/BEEsUz5T+kxJbUk3RQqHdz26bQxMaE08sSSah2vqqLjFOFAdsEek0I8KE8ZPNrtb+sm0OHU1rWpk0mpJYrX1J3dfN6UCcicVgaERDJpc8TccDoxh04DIWeivecTzfFvJa6fuMKLqSUQeuJt/ux/z830Mlz9P9wHmMOnA1Dxe/UCMF7EC1z82nmUkiySQQQjBxAfLdvqlJJMKG04BwUklmjruoyvuovZ8QKmHkyJG89tprfPXVVzzyyCPMmjWLUaNG4fV6yz0/Ozsbr9dLYmLZN+3ExESysrIq7Ofhhx8mJibG95OSklKlz0OO7cqgC1jDRpazhnl2GavtBl4P1loBIiIi9dVFziiKKGKhXck/vO/6OxygboyoO9ykoHF8HvIyuaGLKGQ/M+1cJpX+5ajXfO79lt+WTGSRXUkn04Ztod8GzOZpwYP+QuiYuYTdsInQsXMJHnT051Kei50zGe70I5d9fG1/YIPdUg2RHrTZbucp72tsZydNTSJ9nC7V1ld1Gus5j1Vk8B/3G76rhi+8h1tnN7PSrmO93UxjE1etfUn98GLwQ+SGLeQ6zyWsZRMZbGEey7iztOLvoivsWq4tvZtZdj5fM5fNbGOA6UF/urOaDFaxnq+Zy2T3ab5x59fgswksa9nEXLuU9XYzaaaJv8Mp43dBF7GbXDaznek/byxSler0rq+XXHKJ73anTp3o3LkzLVu2ZObMmZx++ulV1s9dd93Frbfe6rufl5enYl0N6+V0ZrznApa7a9hlc2hs4khw9MtXRESkvjLGcL5zBhvtFlzjMtu7kAGeHn6Nqa6MqDvcoYW9TzVd8eBQQimdi35Dvi2kj9MFL16SacxTIX9mp93NZ+53tDXp5Ng82jjpfl8YvKoZY+junMJCdyVwcA25tlTP2nHZh017jSW6WvqoCR1Na/qb7hgMW90sqnP5xiCCGGL6sJd9tDSp1deR1BuH3sOiTSRNSGQHO3FwyLX7OLvoOrLYRQxRXBk0mss957De3cyzpW+QTAK7yaURDUk3zQ6OKjaQ5DbmJ3ZhgXhiOWAP+PcJ+tFn3m8ZavrgYhnqnOrvcMpo57TgNHMqmexgljufA7aIMFN1u27X6ULdr7Vo0YJGjRqxfv36cgt1jRo1wuPx8NNPP5V5/KeffiIpKanCdkNDQwkNrV1bodc1XZ32PO/czwMlz/KNO59BTi9/hyQiIiJ+NsTTmxdL/gUWTnP6MgD/Furq2oi6w30e+jIAbQ6cQSbbAXjf/QIAg2GKvY1VbgYf/7z+Um/TmUeD7/BPsNWsmUlkI1sBWGXXcxZDqqWfw9dbO8MTGGs3nYhWThrflR4cSdfMVvydqyossMuZaecCkKARdVKFJgWN840OPvSdNMfuZTkHl15YX5LJe97P2W53stiuAmCo6cN/Ql88oq1v3PmcUXwlu9jDeptZc08iwPzH/Yb5djkGw/ueijcQ9YdYE02iacQM9wcA1tvNnGLaVFn79apQt3XrVnbv3k1ycnK5x0NCQujRowdfffUV5513HgCu6/LVV18xYcKEGoxUTlS0ifT9iIiISP3WzrSkt+nMbnLJcP3/Zafsrq91q1B3yEhnIEvtj1gLEYSxy+Swxm4grqgXFksqSYQTTl+nm79DrTZtTYsaybv99gDtaIEHDwnU3o0RWpJKP9ON3eSSaXdUa1/7bIHvdhQNqrUvqb8OfR+NJIIutCOEYIIIIs/mE2HD6MEplJgSejinlHt9BGG+24Xsr6mwA461Lh1pRbxpSIQJ93c4R7jQM5I57mIKKOTvpe/wVMjdVdZ2rS7U5efns379et/9jRs3smTJEuLi4oiLi2Py5MmMHj2apKQkMjIyuOOOO2jVqhUjRozwXXP66adz/vnn+wpxt956K+PGjaNnz5707t2badOmUVBQwJVXXlnjz0+O36SgcUwiMNY5EREREf9qaVKYb5cTTBCL7EqybDZJppHf4vHaXwp1dW1E3SF//fmLylOlr2Kt5SHv85QeNpIwkyxu9VzJQ8H/468QK1T0SndsTgbgAg6mYUtCxx//mmmtTRrz7DKiaMAes7fK4zwkhzxWswGAEBNSbf1UtzAnlCyy2W53EkE4e+zeals0fh8HC3XhhBFkavVXYQlgv/5O+lTpq7+sNffzbP9BTq8K1+eM4JeiVCEVT31d4a6lKYnkmQI8ODQz1TsitSZZa1nMarx46UYHf4dTrgFODzazjTBCWeCuZLm7hk5O2yppu1a/Oy1YsIChQ4f67h9aJ27cuHH87W9/Y9myZbz66qvk5ubSpEkTzjjjDB544IEy01QzMjLIzv5ld6GLL76YXbt2cc8995CVlUXXrl3573//e8QGEyIiIiIS2CJMOK8ET+Gqkj+ynLW86n2PO4Ou9Vs8ZUfUVeNCXAHg0BfQy4LOJsh6CCOUB7zPgoX7gyb5Obry2ZIC8P0buT/fP34RJpwuph1L7WpmufOw1lbLWnyHf4E/fARObTTBcwV3lj7GYlbxf94ZjAs6v1r6OTSiLlqj6aQGHe9gkvDDR9RVsEada136FV9MMQd3lp7oGVunlhPYyz7fchHxJta/wVQgxkSRGTqLQUWXsZAV9Cu+mJzQBVXyR4BaXagbMmQI1toKj3/22bF339i0adMRj02YMEFTXUVERETqgM6mHQnEUUwxH3ln+LVQ5z2sUGeoW5soVKSxifeNIElyE8BQL0YytTHNCcJDBOFk2WySTUKV91Fof5kSd/gInNqoo2lNO1oSa6JYYddWWz8tTQpJNCLe1N6pwlL3RZhfCnX7fy7Iv1D6Nu95PyPDbiGPfCIIowmNySKbIDzMdOfhtV485uAfgV4pnc4Kdz157KMBEcxwvyeIIPo53ci029lLPskmgRuCLgvI9d2zbS79TDeKKaW1SfN3OBVqbOJJpBFeXFqZNL525zLc0/+k2637vyVFREREpN5q77SklUljtl3AHruXXJtHrPHPDpn28BF1pm6PqCtPRdO86qJE04h/uf8FYK3dSDJVX6jbf9iIunBTu0fUDfb0Zn/pAZbbNSz0ruSRoNtxTNVOD/daLzPtPCyWXnSq0rZFqlLZqa8HC/IPlD5bZqfnPPLLXLPMrua+0qd5IPhmAO4qfYIc8o5oO9PdTgtSWMpqsBDnjQ3IQt1ucphjFwPQh85+juboHgy5heHF49lid1BUWqRCnYiIiIjIsVzlGU22dzcl1sudJY/xQsgDfonj8BF1Tj0ZUVdfdTHtGWh6sp8DbLBbGEzvKu+jLk19BTjd9CWRRuRTwFabRappUqXt55CH5eBsrECdSicCEG5DGWpO5QBFxBDF2OI7aE0a4YSSRwFFFBFLNIk0opgSYogig0ymez+jh+nIc+6bNCCCAvbj4tKAcCyWZiST7jSj2C0hjhiiaECuPbKYFwgO39U60EfAdjSt+YPnOj5yvyLb5nBl8R94OWTKSbWpQp2IiIiI1GmXBZ3NH0ufIItsdrs5tC1pwe+DLsNiCSGYZ7z//GWh72q00F3hu13X16ir71JNMt/aBQBEeiO4yDOKBiaiSvuoa4W6Biac79yFAKy1m0ilagt1Zb741+JdcqXuC3KCWGxXkUseLWwK2eSQRz7tTAvWhX7pO++p0lcBaGvSOa/k9+xiD9NKX2EBKymlFAeDi2Uv+TQmjkVhH/iuTTswmM1sx3UtxbaEEBNc00/zqHbYXb7bjYj1XyCVEGdiuC/4Jv5x4F2yyWG3m0u+W0Ckc+JrYapQJyIiIiJ13r9Cnma93cztJY9wt3cqDUw4e9jLI6X/SzQNSKYx0SayWmNoTjNSaUIfpwuJxFdrX+JfPZxTmBH8GmNK7mCuXcbw4vHMCX23SvvIc/cRTywxRBFF9eZuTehs2tHSpLLF7mCN3cAw+lVp+zvtHhoQTgzRpFXxaD2RqhZvYsm1eb4iXRMSj5iiemg5gb12H7d4ruRl73R+YCnRRNLetGSCcwU9PZ1wMOxkT5lrbwwawyve6WTaHfyfO4PRnhE19twqY7vdSSghNKcpLU2qv8OplI9CnufB0udY6K6kTfEZbAudfcIbCalQJyIiIiJ1Xi+nE0Vu8c+LcIfzj9J3GeL0IY4YfiKbdqYlUaaad4L8+fN6MyepXq5RV59Emgj6ebpTXFJMA8JJII4vvXMY5qm64lM2uez++SfOxFRZu/7S3GnKztLdtCSVXYeNfivPPlvAbHcB33kXsdBdQQsnlbuCr6OZSarwmj3kUsB+CthPmAmt6vBFqlQrDhaniigm1SSTbXOIpfz1VWNMFE1NY0opJYRgDIYDFPHb4FG+c9JoWuaaNiaN3TaHtjRnm/2p+p7ICcojn3TTjC0266j/XweS7k5HSigljBDSTTNmunMZ6jn1hNpSoU5ERERE6oV+phu/91zONO8rLGcty921hBLCnc613B184wn/5VukIptDZ9K6aDif2dksLFnJVs+3Vdb27p8Xlm9AeK3fTAKgNc3ZRwE/kkFje/QRp0vsj5xfcqPv/tfuXLp7O3J10IUVXpNtc323NfVVAt15nuHcUHovAFttFgDXey6t8Pzfey5nQtAYHih5FoA/Bd1w1PbbkM5e8tnLeha6K6so6qrzjTuf1XYDHjyk08zf4VTaW0FPklB8Kpvtdu4rffqEC3VVu5WOiIiIiEiAcozDAKcHKSQTTBCRRNDRtCbGiVKRTqqFYxwu9pzJRc6ZNDGNOa1oDJl2R5W03dKkMsD0YIDTo0ra87d4J5bfOqP4rTOSPJvP4KLL8Vpvuedm2z0MdU6lEQ3x4BBBOM96/8nzpW9V2H6RLWag6Ul/050k06i6noZIlejmdOC3zig6mTY0JZFOpi3JpuLdow/tkhxtIok2kcfcNbmVk8ZA05N4YvnE/ZrfFt/EEyUvVelzOFGudYklmgGmB8Od/oQ4If4OqdIinQZcan7Dmc4QmphEHi39+wm1o0KdiIiIiNQbv/EMpYEJp4RS8inkUs9vfOv8SP0WfPo0PD1vwWl1Lp6etxB8+rQqafeh4P+hpUllmV3DHLuYZe7qKmn3S3cOs+3CgJy2dqJeD3mMYkpYbFcx1y5ls91e7nnrbSZfuz+QTQ5eXArZzyq7nvtK/+pbYP/XNrONb+0CvrOLiDFR1fk0RE5aV6c9r4c8xjnO6bQwKZzjnFapPyhNChpXqd9pISaY9k5LdpNLPoX8n/s1r7jvVUXoJ20LWcyy85htFxJUCzdeein0Yea7y3jf/ZzHS1+s8D3paDT1VURERETqlb94buUf3nexWH7jDPF3OBIgPC1G4Wkx6tgnnoDOpg2pNKGQ/axzN3Gy3z1LbAlFFAMQSTWvrVjDLnRGssxdQyH7ecn7bx50bjninMN3cL3KuZBcm8c6u5nt/MTU0lfYY/cyOXhimWuyD7sm0HeRFDnk0Ai56tjsaIznPHa5e5hvl2Fw2G8PUGJLCPbzDrC/K/4z3ehAghPHBM8Yv8Zyop4MvosF7nI+8H7Jw6UvcLZzGi2clEpfrxF1IiIiIlKvnBU0hPdDn+OD0L+RfhwfnEVOVHOnGZlsZy/7+Nj7NftswUm1t49C3+3q3q24pg3w9GQjW8kmly+93x0x/TXLZrOPQt9Im4lBY3gz9EnO8ZzGbnLJZg8/2ewj2s0jnxAOFiAambjqfyIiVWBS0DimhzxTLSO/ezmdeCt0Kn2dbmxhB168rLeZVd7P8Sh1S8liJ8tYw2a7jSGe3n6N50T91jOKYILZzHZKKWWFXXtc16tQJyIiIiIiUo1OMa25P2gSFviORcxwvz+p9vJsvu92VB0bUZdEI8Y452GxLGE1m+y2MscfK/07L3r/hQcPY815tDbNAfhz0O9pSAyleFloVxzR7lq7kWJKaEEKcbb275IrUlW6OO0JJ5Qd7GKd3eTXWDLZwdqfY+hlOvs1lpM13jOaxsSTTyH/8P7ruK7V1FcREREREan33J8W4+5agc3LxESn4iScgpPYrUraDjbBtCCFhkQTQRjb7c6Tam8fBfQ0nXDxkmqaVEmMgcIYQzunBU3dxhygmNtKHuHPwTfQwzmFUlvKLptDGk3JZg+pThM8xuO7LoIwctjL7sN2eAXwWi/NTVMiCCecMBxH41VEDmlOU1JpQkMT4/c1LzfYLfQz3cgjn7Ra/t7W0qQQRwwpJolQjm9DDBXqRERERESk3iv+6BLIP2zzgsgmhP1uTZW138Zpzi72ALDAPXLE1/HYY3NZYJcDMIQ+Jx1boPmfoKvoZNpwTsn1/MfOYn/Jfv4b+hIb7VbedT8FoD0t+XPw78tcF29i2WZ/Yje5WGt9i+/nkMdn7mwARjgDa/bJiAS4Nk5z1rARLLRy0/way0q7jjl2MQA3O+P9GsvJMsYQZRow3y5nkV1Fod1f6WtVqBMREREREalmrUhjoOmJ+/MupSdjN7m+2/Gm4UlGFpg6OW0ZSE/WsJEsm83viv/EDruLVqSRTyHdnY5HXDPI9CKWaHLIY4/dS7yJBcpuPhGvjSREyjj8vangsPUv/SHLZtPXdCMID+1o4ddYqsIY5zzibUNKbAn3lP6Ve7ihUtepUCciIiIiIlLNIpxwNtvtZLKdWBtFkbeI5+3beK2XW4OvOq626kPhKdkk8EXYKzQ+cCqr2UCWu4tc9gEHC3Ivhjx0xDXFpoRv3PkAbGCL77X5ye72ndOojhY2RU5UhBNOJjvYbLfR0Ebjuq7fpocvdFfw/c8j6lo7zf0SQ1X6XdBF3FP0FLnkkeHNrHShTpPzRUREREREakBz0xSAXPbRsKQnfyqdyp+9U9lr9x1XOwW2kCQSSKcZcaZub4zwXsizjDAD2Es+HhzOdU7nueD7yj23FWm0MCk0Jp4tdofv8S12BxGE054WdDCtaihykdrjNOdU0mlGPoXsNHv8Fscau4FmJHGa6UuMifJbHFXFGMMZTn/SaMo2fqr09FcV6kRERERERGpAJBG+2y6WUkppTDzr3M3H1c5u9pLFLjaylcg6tuvrrw1werDb5hJMEB48lFBKK6f8dbQaOjFssFvYyW52HjaKLo98UkwSG9lGHHW7sClyIsJsCHvIpR0t2OJuP/YF1WCvu49mJpliSiihxC8xVIcQQsingLa0IMNuqdQ1KtSJiIiIiIjUgLdDprE3ZBF/8txAOs0AyCKbH8k4rnbyD1tHKtrU7UIdwIzQ18kLW0xe2GLeDp5W4XkJ/DKtNZtfpgcvt2tZYzdygCKamaTqDFWkVkoxTdhLPstZy0a2+iWG7exkoV3BTnaTUst3fD1cB9OK3eSygrWstZsqdY3WqBMREREREakBISYYDES7kSSZRjjWwYOHp0te43vvIlba9Tg4XBt0MZd6flNhO3k233c7qo6PqIOfX7dybv9aEgkMND0pxUvBYVPMsu0vU/kSnUbVE6RILZboxIP34O3sw9bArEmHF9cTTZxfYqgO7Uw6vUwnwgjlJ7urUteoUCciIiIiIlKDJgWNY1LQOG4quZ+/e98FYJm7xnc8uzTnqIW6fAp8tyPrwYi6ykpxkvnWLgAg1Ib4Hs+2ub7bdXXzDZGT0ejw0ah+KtSV2SSnDm360tppzvzS5QDEuZGVukaFOhERERERET+41PMb9tp9ZLiZFFNCJjvIp5D1djPNDwyhl9OZf4X89Yjr8m0hXU07GhNPnI0B44fgA1C8iWWEM4Bsm1Nmg44DFNHNdKApSYSZUD9GKBKYmplkhjh9yLY5ZJHtlxi2uDtoRwsSTBytTfnrUNZGzU1TBpve7COfbHIrdY0KdSIiIiIiIn7Qz+lOv5DuPFX6Kt+482ls4/nKfg8cXLtuobuCc4uux2tdOjvtuDX4ShqZhmxnJz/aDJqSSLgT5udnEVj22UIW2pUkEMdedx/7KOAnm802fsJjtES7SHlSTTIz3bkYDK3cFL/EsJ1dbGALq+0G7jeT/BJDdQg2wWSxizV2I03dhEpdo0KdiIiIiIjUe6HjFmCL9mFL8jEhkZiQqBrre1LQOCYxjp12N15cHir+G15ckp0EpnpfoZD9fOnOYWnxKl4NeYwfbQbhhNHP6VZjMdYWvZxOLPeuYRd7WMcm7i99lu3sJI0mPBt8n7/DEwlIUaYBLU0qm+12FrPaLzEstqsooZQUkmhDc7/EUF36mm5ssVlsJatS56tQJyIiIiIi9Z4JiarR4lx5Gpt4AFp5fpn2FU4YhRzcGGGFXcclRTfTzXSgSDuYlqspiSTSiA6mJUu9qwmxwXQ17dlHPp1NW3+HJxKwggmilNIya8XVpHAbSifTliKKiHfqzhp1AEmmEc1IJMqkM6cShVAV6kRERERERALIpKBxR9y+ovg2/u3+l5/YDfbgsXc8T/kjvIDW2kljvXcz6y00sYl8bL8G4E7PtRijxfxEKhL/84YS+RRywBbV6HqOe+0+/mO/AaC/6VFj/daUlk4aa72bsNZbqfNVqBMREREREQlwrUwqaTTF/fm/BBNHc9PU32EFnDYmnQE/f9HPcrPpZ7rhweEUp42fIxMJbKc6XQlyPeSRzzb7Ey1Nao31Pd37GYNML4LwcLqnX431W1PacfB9qcQU8Y1G1ImIiIiIiBxb6cKn8W7+Crt3MyY6FU/zYQT1uMnfYfncFzyR+4In+jaeGOT0ItgE+zusgNPcNGW+XU4RxUQTSZ7NB2CKud3PkYkEOsssOw+A9e5mWjrVX6iz1mKM4e/ed1lsVwHwiFP3/l9t46Qz2y7UiDoREREREZHKKl30DORvB8Dmrqd0z+qAKtQdcmjjCSmfx3g40xnMCruODLuZVJrQ2MTRmrRjXyxSj13ojOBbdyE/2V38r/sOIxhY7X1eXvI/zHB/IJc8AHqYjrSqg/+vxpgohjv9WWc2sEYj6kRERERERKQ+cXDYZrMII5S97MNrvUQ7/t0oRCTQdXU6sNKuJYJwimxxlbZtreU7u4hZ3nnM9S6hmZPMpZ7fsMluJY+Do14dDDvtHsKdsCrtO1AUU8Jum1upc1WoExERERERkTrjOs8lvO9+gYsLHOA6zyX+Dkkk4Blj6GLaM8cuYob9oUo3lNjBLoYVHzYS2IWX3H8D0JymXGhG8mDoLeTbwirpLxBND34Gb2gJscQe81wV6kRERERERKTOaO+0JIVkNrMNgEQT7+eIRGqHzqYte+0+drGbMSW3c5YzhPFBF5xQW9Za7ih5jHnuUjLZTnOakk0OJZTSgHDiaUgh+2lkGpLgiQMg0kRU5dMJKJEmgjyTV6lzVagTERERERGROiPBxBFjIsEevO+1rn8DEqklkpxGrHTXAfB/7gwy7fYTLtRtZydPu6+Veaw1aaxjM0UUs4e9AHwc/L+0d1qeXOB1jOPvAE7GN998w9lnn02TJk0wxvDBBx/4jpWUlHDnnXfSqVMnGjRoQJMmTRg7dizbt28/apv33XcfxpgyP+3atavmZyIiIiIiIiJVZaJnLKeargw2vTjD09/f4YjUCiOdQdzrTCCWaKJoQCghJ9TO3SXTuL74HlqTRjyxJNKIlqTS1+nOOc7phBJCEB4GmZ60MClV/Cxqv1o9oq6goIAuXbpw1VVXccEFZau8hYWFLFq0iLvvvpsuXbqQk5PDpEmTOOecc1iwYMFR2+3YsSNffvml735QUK1+mUREREREROqVK4LO5Yqgc/0dhkit0tVpT9eQ9rxw4G2yyGaj3UKJW0KwE3zMa3NtHg0I5znvm7zmfZ+f2A3A/Z5JhJqDBb9JQeO4uGgSRRzcrCKTHb5j8otaXYEaNWoUo0aNKvdYTEwMX3zxRZnHnnnmGXr37k1mZiapqakVthsUFERSUlKVxioiIiIiIiIiEujOcU7j3+5n7CKHTWyjNc2Pec0dpY/ypvdjoomkBSm0IJUOTkvuCP5dmfMeDr6NJ80fCbHBZJNTTc+gdqvVhbrjtXfvXowxxMbGHvW8devW0aRJE8LCwujbty8PP/zwUQt7RUVFFBUV+e7n5VVugUARERERERERkUDSyMQRRSQtTAoZdssxC3VFthgsJNCQXeQQb2IJMh7aOOlHnNvC+Xmqq4EE4qoh+tqv3hTqDhw4wJ133smll15KdHR0hef16dOHV155hbZt27Jjxw4mT57MwIEDWbFiBVFRUeVe8/DDDzN58uTqCl1ERERERKqZ07gLbkkhlORDcCRO4y7+DklExC/aOOls9m5js93GSruOkQw86vnb7U5ecz8AoAMt+TD0bzUQZd1VLwp1JSUlXHTRRVhr+dvfjp4wh0+l7dy5M3369CEtLY13332Xq6++utxr7rrrLm699Vbf/by8PFJStCCiiIiIiEhtEXLuu/4OQUQkILQlnX6mGx4cdttjT0/dfdgU1hhT8cAoqZw6X6g7VKTbvHkzM2bMOOpouvLExsbSpk0b1q9fX+E5oaGhhIaGnmyoIiIiIiIiIiJ+1dppzhy7GIAS13vM83fbXN/t05xTqyusesPxdwDV6VCRbt26dXz55ZfEx8cfdxv5+flkZGSQnJxcDRGKiIiIiIiIiASOSBPBmc5g2puWbLM/Ya096vkb3a0k05ie5hTaOi1qKMq6q1YX6vLz81myZAlLliwBYOPGjSxZsoTMzExKSkq48MILWbBgAW+88QZer5esrCyysrIoLi72tXH66afzzDPP+O7fdtttzJo1i02bNjFnzhzOP/98PB4Pl156aU0/PRERERERERGRGldEMRk2k1BC2HWM6a/b2QlYFtgV2iCiCtTqqa8LFixg6NChvvuH1okbN24c9913Hx999BEAXbt2LXPd119/zZAhQwDIyMggOzvbd2zr1q1ceuml7N69m4SEBAYMGMAPP/xAQkJC9T4ZERERERHxm+IPL8Ld9v0vm0k07at160Sk3upi2jGDH1jPZtawgcYVFOC81ss07ysUU0IfutLP6VbDkdY9tbpQN2TIkKMOwTzW8EyATZs2lbn/9ttvn2xYIiIiIiJSy7g7l0JR7sE7RbkH74uI1FMtTSqdTVsiaUCmux2cg0W5h0tfYK67FAeH8UEXEEUk/U0PCijkFNOKUBPi79BrvVpdqBMRERERERERkarV0qSx1K4GoIftyOWcwya7jQe9z/nO2e89QGfTlq/tDwA8EHSzP0Ktc1SoExERERERERERnxamGb1MJ4IJwsvBnV/XuZvpZtqz2m4klBBKbCnZ5NLHdCGEYNqY5v4Nuo5QoU5ERERERERERHySTALz7XIArAuudVnHRhbbHwHYzwEW2OXstjmsZRMxRJFktLZ/VVChTkREREREREREfEJMMNFEkkc+u8llg93C7aWPEkUDIgjHg8N2drKJbXSgJXcFXY8xxt9h1wmOvwMQEREREREREZHA0pZ0WpFKDJF84X5Hb9MZgyGaBgDEEUswwawnk8Ge3n6Otu7QiDoRERERERERESkjwglnvrscLCwuXUUpXjqZNswN/jeO4/BAybN8485noOlJAnH+DrfOUKFORERERERERETK6G06U2pK2WKzSDYJRJkG9DVdcZyDkzOjTSTRJpIYJ0rTXquQCnUiIiIiIiIiIlJGoonnO7sIgEy7nQgbzkehz/uOTwoaxyTG+Su8OkuFOhERERERqfeCuk/Au/kr7N7NmOhUPM2H+TskERG/GukMIiE4nv+UzsI1ljM9g3GMtjqobirUiYiIiIhIvRfU4yaCetzk7zBERAJGKyeNVqSRZXcBcInnLD9HVD+oUCciIiIiIiIiIuWaFKTprTVJYxZFREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAEOTvAOoiay0AeXl5fo5ERERERERERET87VCN6FDNqCIq1FWD3bt3A5CSkuLnSEREREREREREJFDs27ePmJiYCo+rUFcN4uLiAMjMzDzqiy9ysvLy8khJSWHLli1ER0f7Oxypw5RrUlOUa1JTlGtSU5RrUlOUa1JTlGsnxlrLvn37aNKkyVHPU6GuGjjOwaX/YmJilLRSI6Kjo5VrUiOUa1JTlGtSU5RrUlOUa1JTlGtSU5Rrx68yg7m0mYSIiIiIiIiIiEgAUKFOREREREREREQkAKhQVw1CQ0O59957CQ0N9XcoUscp16SmKNekpijXpKYo16SmKNekpijXpKYo16qXscfaF1ZERERERERERESqnUbUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAFCrC3UPP/wwvXr1IioqisaNG3PeeeexZs2aMuccOHCAG2+8kfj4eCIjIxk9ejQ//fST7/jSpUu59NJLSUlJITw8nPbt2/PUU0+VaeO9995j+PDhJCQkEB0dTd++ffnss8+OGZ+1lnvuuYfk5GTCw8MZNmwY69atK3POokWLGD58OLGxscTHx3PttdeSn59/zLaXLVvGwIEDCQsLIyUlhUcffbTM8ZUrVzJ69GiaN2+OMYZp06Yds02pmHKt4lx777336NmzJ7GxsTRo0ICuXbvy+uuvH7NdKZ9yreJce+WVVzDGlPkJCws7ZrtSPuVaxbk2ZMiQI3LNGMNZZ511zLblSMq1inOtpKSE+++/n5YtWxIWFkaXLl3473//e8x2pXz1NdcOHDjA+PHj6dSpE0FBQZx33nlHnLNjxw4uu+wy2rRpg+M43HzzzceMVyqmXKs412bPnk3//v2Jj48nPDycdu3aMXXq1GPGLOVTrlWcazNnziz381pWVtYx4w54thYbMWKEffnll+2KFSvskiVL7JlnnmlTU1Ntfn6+75zrr7/epqSk2K+++souWLDAnnrqqbZfv36+4y+++KKdOHGinTlzps3IyLCvv/66DQ8Pt08//bTvnEmTJtlHHnnEzps3z65du9beddddNjg42C5atOio8U2ZMsXGxMTYDz74wC5dutSec845Nj093e7fv99aa+22bdtsw4YN7fXXX29Xr15t582bZ/v162dHjx591Hb37t1rExMT7eWXX25XrFhh33rrLRseHm5feOEF3znz5s2zt912m33rrbdsUlKSnTp16vG8tPIryrWKc+3rr7+27733nl21apVdv369nTZtmvV4PPa///3vcb3GcpByreJce/nll210dLTdsWOH7ycrK+u4Xl/5hXKt4lzbvXt3mTxbsWKF9Xg89uWXXz6el1h+plyrONfuuOMO26RJE/vJJ5/YjIwM+9xzz9mwsLBjxizlq6+5lp+fb6+//nr7v//7v3bEiBH23HPPPeKcjRs32okTJ9pXX33Vdu3a1U6aNKkSr6hURLlWca4tWrTIvvnmm3bFihV248aN9vXXX7cRERFl3vuk8pRrFefa119/bQG7Zs2aMp/bvF5vZV7agFarC3W/tnPnTgvYWbNmWWutzc3NtcHBwfZf//qX75wff/zRAvb777+vsJ3f//73dujQoUftq0OHDnby5MkVHndd1yYlJdnHHnvM91hubq4NDQ21b731lrXW2hdeeME2bty4TCItW7bMAnbdunUVtv3cc8/Zhg0b2qKiIt9jd955p23btm2556elpalQV8WUa+Xn2iHdunWzf/7zn496jlSOcu2XXHv55ZdtTEzMUZ+DnDjlWsXva1OnTrVRUVFlPhTLiVOu/ZJrycnJ9plnnilz3QUXXGAvv/zyoz4vqZz6kmuHGzduXLlfaA83ePBgFeqqmHLt6M4//3x7xRVXVOpcOTrl2i8OFepycnIq1U5tUqunvv7a3r17AYiLiwNg4cKFlJSUMGzYMN857dq1IzU1le+///6o7Rxqozyu67Jv376jnrNx40aysrLK9B0TE0OfPn18fRcVFRESEoLj/PLPEB4eDhwcMlyR77//nkGDBhESEuJ7bMSIEaxZs4acnJwKr5Oqo1wrP9estXz11VesWbOGQYMGVdiuVJ5yrWyu5efnk5aWRkpKCueeey4rV66ssE05Psq1in+Hvvjii1xyySU0aNCgwnal8pRrv+RaUVHREVP4w8PDj9quVF59yTXxP+VaxRYvXsycOXMYPHhwlbZbXynXjtS1a1eSk5MZPnw43333XZW06W91plDnui4333wz/fv355RTTgEgKyuLkJAQYmNjy5ybmJhY4bzlOXPm8M4773DttddW2Nfjjz9Ofn4+F110UYXnHGo/MTGxwr5PO+00srKyeOyxxyguLiYnJ4c//OEPwMF1JI7WdnntHt6vVB/l2pG5tnfvXiIjIwkJCeGss87i6aefZvjw4RW2K5WjXCuba23btuWll17iww8/5J///Ceu69KvXz+2bt1aYbtSOcq1in+Hzps3jxUrVnDNNddU2KZUnnKtbK6NGDGCJ598knXr1uG6Ll988QXvvffeUduVyqlPuSb+pVwrX7NmzQgNDaVnz57ceOON+j1aBZRrZSUnJ/P8888zffp0pk+fTkpKCkOGDGHRokUn1W4gqDOFuhtvvJEVK1bw9ttvn3AbK1as4Nxzz+Xee+/ljDPOKPecN998k8mTJ/Puu+/SuHFjAN544w0iIyN9P99++22l+uvYsSOvvvoqTzzxBBERESQlJZGenk5iYqKv4tyxY0dfu6NGjTrh5yZVR7l2pKioKJYsWcL8+fP5y1/+wq233srMmTOPqw05knKtrL59+zJ27Fi6du3K4MGDee+990hISOCFF16odBtSPuVaxV588UU6depE7969T+h6KUu5VtZTTz1F69atadeuHSEhIUyYMIErr7yyzMgDOTHKNakpyrXyffvttyxYsIDnn3+eadOm8dZbbx13G1KWcq2stm3bct1119GjRw/69evHSy+9RL9+/erG5iX+nntbFW688UbbrFkzu2HDhjKPf/XVV+XOWU5NTbVPPvlkmcdWrlxpGzdubP/4xz9W2M+hRYA//vjjMo/n5eXZdevW+X4KCwttRkaGBezixYvLnDto0CA7ceLEI9rOysqy+/bts/n5+dZxHPvuu+9aa63dtGmTr92tW7daa60dM2bMEXO0Z8yYYQG7Z8+eI9rWGnVVR7l29Fw75Oqrr7ZnnHFGhcfl2JRrlcu1Cy+80F5yySUVHpdjU65VnGv5+fk2OjraTps2rcLnJZWnXKs41/bv32+3bt1qXde1d9xxh+3QoUOFz0+Orb7l2uG0Rl3NUq6dW2HMh3vggQdsmzZtKnWulE+5dm6FMR/utttus6eeemqlzg1ktbpQ57quvfHGG22TJk3s2rVrjzh+aGHFf//7377HVq9efcTCiitWrLCNGze2t99+e4V9vfnmmzYsLMx+8MEHlY4tKSnJPv74477H9u7dW2ZhxfK8+OKLNiIi4qgLIh5anLi4uNj32F133aXNJKqRcq1yuXbIlVdeaQcPHlyp+KUs5Vrlc620tNS2bdvW3nLLLZWKX8pSrh07115++WUbGhpqs7OzKxW3lE+5Vvn3teLiYtuyZUt71113VSp+Kau+5trhVKirGcq14yueTJ482aalpVXqXClLuXZ8uTZs2DB7/vnnV+rcQFarC3U33HCDjYmJsTNnziyzHW9hYaHvnOuvv96mpqbaGTNm2AULFti+ffvavn37+o4vX77cJiQk2CuuuKJMGzt37vSd88Ybb9igoCD77LPPljknNzf3qPFNmTLFxsbG2g8//NAuW7bMnnvuuWW2KrbW2qefftouXLjQrlmzxj7zzDM2PDzcPvXUU0dtNzc31yYmJtoxY8bYFStW2LfffvuILa+Liors4sWL7eLFi21ycrK97bbb7OLFiyu9s4qUpVyrONceeugh+/nnn9uMjAy7atUq+/jjj9ugoCD797//vdKvr/xCuVZxrk2ePNl+9tlnNiMjwy5cuNBecsklNiwszK5cubLSr6/8QrlWca4dMmDAAHvxxRcf87WUo1OuVZxrP/zwg50+fbrNyMiw33zzjT3ttNNsenp6ndzBribU11yz9uBImcWLF9uzzz7bDhkyxPc94HCHHuvRo4e97LLL7OLFi/U79AQp1yrOtWeeecZ+9NFHdu3atXbt2rX2H//4h42KirJ/+tOfKvPSyq8o1yrOtalTp9oPPvjArlu3zi5fvtxOmjTJOo5jv/zyy8q8tAGtVhfqgHJ/Xn75Zd85+/fvt7///e9tw4YNbUREhD3//PPtjh07fMfvvffects4vOI/ePDgcs8ZN27cUeNzXdfefffdNjEx0YaGhtrTTz/drlmzpsw5Y8aMsXFxcTYkJMR27tzZvvbaa5V67kuXLrUDBgywoaGhtmnTpnbKlClljm/cuLHcmDXK6cQo1yrOtT/96U+2VatWNiwszDZs2ND27dvXvv3225VqW46kXKs4126++WabmppqQ0JCbGJioj3zzDPtokWLKtW2HEm5VnGuWfvLX6M///zzSrUpFVOuVZxrM2fOtO3bt7ehoaE2Pj7ejhkzxm7btq1SbcuR6nOupaWllRvTsV4fjXI6Mcq1inPtr3/9q+3YsaONiIiw0dHRtlu3bva5556zXq+3Uu1LWcq1inPtkUcesS1btrRhYWE2Li7ODhkyxM6YMaNSbQc6Y621iIiIiIiIiIiIiF9pSykREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERkXpsyJAh3HzzzfWubxEREZFApEKdiIiIiFTKzJkzMcaQm5tbJde99957PPDAA1UXoIiIiEgtF+TvAERERESkfoqLi/N3CCIiIiIBRSPqREREROqJgoICxo4dS2RkJMnJyTzxxBNljr/++uv07NmTqKgokpKSuOyyy9i5cycAmzZtYujQoQA0bNgQYwzjx48HwHVdHn74YdLT0wkPD6dLly78+9//PuZ1v5762rx5cx588EFfjGlpaXz00Ufs2rWLc889l8jISDp37syCBQvKxD179mwGDhxIeHg4KSkpTJw4kYKCgqp++URERESqnQp1IiIiIvXE7bffzqxZs/jwww/5/PPPmTlzJosWLfIdLykp4YEHHmDp0qV88MEHbNq0yVdUS0lJYfr06QCsWbOGHTt28NRTTwHw8MMP89prr/H888+zcuVKbrnlFq644gpmzZp11OvKM3XqVPr378/ixYs566yzGDNmDGPHjuWKK65g0aJFtGzZkrFjx2KtBSAjI4ORI0cyevRoli1bxjvvvMPs2bOZMGFCdbyEIiIiItXK2EOfckRERESkzsrPzyc+Pp5//vOf/Pa3vwVgz549NGvWjGuvvZZp06Ydcc2CBQvo1asX+/btIzIykpkzZzJ06FBycnKIjY0FoKioiLi4OL788kv69u3ru/aaa66hsLCQN998s9zr4OCIuq5du/r6bt68OQMHDuT1118HICsri+TkZO6++27uv/9+AH744Qf69u3Ljh07SEpK4pprrsHj8fDCCy/42p09ezaDBw+moKCAsLCwKnwVRURERKqX1qgTERERqQcyMjIoLi6mT58+vsfi4uJo27at7/7ChQu57777WLp0KTk5ObiuC0BmZiYdOnQot93169dTWFjI8OHDyzxeXFxMt27djjvOzp07+24nJiYC0KlTpyMe27lzJ0lJSSxdupRly5bxxhtv+M6x1uK6Lhs3bqR9+/bHHYOIiIiIv6hQJyIiIiIUFBQwYsQIRowYwRtvvEFCQgKZmZmMGDGC4uLiCq/Lz88H4JNPPqFp06ZljoWGhh53HMHBwb7bxpgKHztURMzPz+e6665j4sSJR7SVmpp63P2LiIiI+JMKdSIiIiL1QMuWLQkODmbu3Lm+AlZOTg5r165l8ODBrF69mt27dzNlyhRSUlIAjti0ISQkBACv1+t7rEOHDoSGhpKZmcngwYPL7bu866pK9+7dWbVqFa1atarytkVERERqmjaTEBEREakHIiMjufrqq7n99tuZMWMGK1asYPz48TjOwY+DqamphISE8PTTT7NhwwY++ugjHnjggTJtpKWlYYzh448/ZteuXeTn5xMVFcVtt93GLbfcwquvvkpGRgaLFi3i6aef5tVXX63wuqpy5513MmfOHCZMmMCSJUtYt24dH374oTaTEBERkVpJhToRERGReuKxxx5j4MCBnH322QwbNowBAwbQo0cPABISEnjllVf417/+RYcOHZgyZQqPP/54meubNm3K5MmT+cMf/kBiYqKvGPbAAw9w99138/DDD9O+fXtGjhzJJ598Qnp6+lGvqwqdO3dm1qxZrF27loEDB9KtWzfuuecemjRpUmV9iIiIiNQU7foqIiIiIiIiIiISADSiTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgEgyN8BiIiISN3jui4HDhzwdxgiEmDCwsJwHI0VEBERqYgKdSIiIlKlioqKWLVqFa7r+jsUEQkwjuPQoUMHQkND/R2KiIhIQDLWWuvvIERERKRusNaydu1aiouLSU9P18gZEfFxXZeNGzcSEhJCmzZtMMb4OyQREZGAo0KdiIiIVJni4mKWL19Oeno6cXFx/g5HRALMnj172LhxI5s3b6Zv374kJyf7OyQREZGAoj9zi4iISJUpLS0F0LQ2ESnXofeG7du388knn5CVleXniERERAKLCnUiIiJS5TSlTUTKc+i9ISkpiaysLFauXOnniERERAKLCnUiIiIiIlKjjDGEh4eTm5vr71BEREQCigp1IiIiIscwc+ZMjDEqKlSTqnp9N23ahDGGJUuWVElcx2vIkCHcfPPNfum7ttJy2SIiImUF+TsAEREREanf+vXrx44dO4iJiTmpdlJSUtixYweNGjWqosjKN3PmTIYOHUpOTg6xsbG+x9977z2Cg4Orte9jGTJkCF27dmXatGl+jUNEREROjAp1IiIiIuJXISEhJCUlnXQ7Ho+nSto5UdrpWERERE6Wpr6KiIhItbih5F4GF13u158bSu6tdLxFRUVMnDiRxo0bExYWxoABA5g/f3655xYWFjJq1Cj69++v6bC/MmTIEG666SZuvvlmGjZsSGJiIn//+98pKCjgyiuvJCoqilatWvGf//zHd82vp75u3ryZs88+m4YNG9KgQQM6duzIp59+CkBOTg6XX345CQkJhIeH07p1a15++WXgyKmvh9r96quv6NmzJxEREfTr1481a9aUifnBBx+kcePGREVFcc011/CHP/yBrl27lvv8Nm3axNChQwFo2LAhxhjGjx/ve+6HT31t3rw5Dz74IGPHjiUyMpK0tDQ++ugjdu3axbnnnktkZCSdO3dmwYIFZfqYPXs2AwcOJDw8nJSUFCZOnEhBQYHv+HPPPUfr1q0JCwsjMTGRCy+8EIDx48cza9YsnnrqKYwxGGPYtGkTXq+Xq6++mvT0dMLDw2nbti1PPfVUmT7Hjx/Peeedx0MPPURiYiKxsbHcf//9lJaWcvvttxMXF0ezZs18r/Xhr/fbb79Nv379CAsL45RTTmHWrFkVpYeIiIgcg0bUiYiISLVY5a5nrl3q3yDcyp96xx13MH36dF599VXS0tJ49NFHGTFiBOvXry9zXm5uLmeddRaRkZF88cUXREREVHHQtd+rr77KHXfcwbx583jnnXe44YYbeP/99zn//PP54x//yNSpUxkzZgyZmZnlvn433ngjxcXFfPPNNzRo0IBVq1YRGRkJwN13382qVav4z3/+Q6NGjVi/fj379+8/ajx/+tOfeOKJJ0hISOD666/nqquu4rvvvgPgjTfe4C9/+QvPPfcc/fv35+233+aJJ54gPT293LZSUlKYPn06o0ePZs2aNURHRxMeHl5h31OnTuWhhx7i7rvv9j3vfv36cdVVV/HYY49x5513MnbsWFauXIkxhoyMDEaOHMmDDz7ISy+9xK5du5gwYQITJkzg5ZdfZsGCBUycOJHXX3+dfv36sWfPHr799lsAnnrqKdauXcspp5zC/fffD0BCQgKu69KsWTP+9a9/ER8fz5w5c7j22mtJTk7moosu8sU6Y8YMmjVrxjfffMN3333H1VdfzZw5cxg0aBBz587lnXfe4brrrmP48OE0a9bMd93tt9/OtGnT6NChA08++SRnn302GzduJD4+/qj/LiIiInIkY7WCq4iIiFSRwsJCfvzxR9q3b88oz+/8XqjrY7owK/SNY55XUFBAw4YNeeWVV7jssssAKCkpoXnz5tx888306tWLoUOH8uOPP3LxxRfTunVr3nzzTUJCQqr7KRzB5mdhC7LKPhgWixPTHFt6ALt79RHXOIldAXD3rIWSwjLHTEwqJiwOW7gLu29b2QtDInEatjqu+IYMGYLX6/UVj7xeLzExMVxwwQW89tprAGRlZZGcnMz333/PqaeeesSab507d2b06NHce++RIyLPOeccGjVqxEsvvXTEsU2bNpGens7ixYvp2rWrr90vv/yS008/HYBPP/2Us846i/379xMWFsapp55Kz549eeaZZ3ztDBgwgPz8/Ao3pahojbpfrw/XvHlzBg4cyOuvv17med99992+QtoPP/xA37592bFjB0lJSVxzzTV4PB5eeOEFX7uzZ89m8ODBFBQU8Omnn3LllVeydetWoqKiyn39K7NG3YQJE8jKyuLf//43cHBE3cyZM9mwYQOOc3DSTbt27WjcuDHffPMN8Mu/5T/+8Q8uueQS3+s9ZcoU7rzzTgBKS0tJT0/npptu4o477jii30PvEZs2bWLTpk2kpaX5RgSKiIiIRtSJiIiIkJGRQUlJCf379/c9FhwcTO/evfnxxx/p1asXAMOHD6d379688847eDwev8RauvwlvD88XOYxp93FhIz6BzZ/G8VvDjzimrBb9gFQ8vn12B1lp/MGj/w7nvaX4F37PqVf/0/ZdtNOJ+SCD447xs6dO/tuezwe4uPj6dSpk++xxMREAHbu3Fnu9RMnTuSGG27g888/Z9iwYYwePdrX5g033MDo0aNZtGgRZ5xxBueddx79+vWrdDzJycm+vlNTU1mzZg2///3vy5zfu3dvZsyYcRzPuHJ9H3reFb0WSUlJLF26lGXLlvHGG78UmK21uK7Lxo0bGT58OGlpabRo0YKRI0cycuRIzj///GOO7Hz22Wd56aWXyMzMZP/+/RQXFx8xvbdjx46+It2h2E455RTf/UP/lr/+d+vbt6/vdlBQED179uTHH3881ksjIiIi5VChTkRERKSSzjrrLKZPn86qVavKFFtqUlCnq/C0OLPsg2GxAJjIpoRc9m2F1waf8Xy5I+oAPG3Ox0nuXfaCkMgTivHXO58aY8o8ZowBwHXLn5t8zTXXMGLECD755BM+//xzHn74YZ544gluuukmRo0axebNm/n000/54osvOP3007nxxht5/PHHKxXPsfquauX1fbR48vPzue6665g4ceIRbaWmphISEsKiRYuYOXMmn3/+Offccw/33Xcf8+fPLzO673Bvv/02t912G0888QR9+/YlKiqKxx57jLlz51YY66HYynuspl47ERGR+kiFOhEREakWHZxWx7VGXLXFUAktW7YkJCSE7777jrS0NODg1Nf58+eX2RxgypQpREZGcvrppzNz5kw6dOhQHWEflYlMwkSWv7OpCQrD/DzNtTxOXJuK241IwEQknGx4VSYlJYXrr7+e66+/nrvuuou///3v3HTTTcDBddfGjRvHuHHjGDhwILfffvtRC3VH07ZtW+bPn8/YsWN9j1W0icghh6Y8e73eE+rzaLp3786qVato1ari3A0KCmLYsGEMGzaMe++9l9jYWGbMmMEFF1xASEjIEXF999139OvXr8zIwYyMjCqL+YcffmDQoEHAwamvCxcuZMKECVXWvoiISH2iQp2IiIhUi78FT/Z3CJXWoEEDbrjhBt/ulqmpqTz66KMUFhZy9dVXs3TpL2vtPf7443i9Xk477TRmzpxJu3bt/Bh53XTzzTczatQo2rRpQ05ODl9//TXt27cH4J577qFHjx507NiRoqIiPv74Y9+xE3HTTTfxu9/9jp49e9KvXz/eeecdli1bRosWLSq8Ji0tDWMMH3/8MWeeeSbh4eG+zS5O1p133smpp57KhAkTuOaaa3ybaXzxxRc888wzfPzxx2zYsIFBgwbRsGFDPv30U1zXpW3btsDBdfHmzp3Lpk2biIyMJC4ujtatW/Paa6/x2WefkZ6ezuuvv878+fMr3DDjeD377LO0bt2a9u3bM3XqVHJycrjqqquqpG0REZH6xjn2KSIiIiJ135QpUxg9ejRjxoyhe/furF+/ns8++4yGDRsece7UqVO56KKLOO2001i7dq0foq3bvF4vN954I+3bt2fkyJG0adOG5557Djg4mu2uu+6ic+fODBo0CI/Hw9tvv33CfV1++eXcdddd3HbbbXTv3p2NGzcyfvx4wsLCKrymadOmTJ48mT/84Q8kJiZW6eixzp07M2vWLNauXcvAgQPp1q0b99xzD02aNAEgNjaW9957j9NOO4327dvz/PPP89Zbb9GxY0cAbrvtNjweDx06dCAhIYHMzEyuu+46LrjgAi6++GL69OnD7t27j1iX72RMmTKFKVOm0KVLF2bPns1HH31Eo0aNqqx9ERGR+kS7voqIiEiVOXzX12Mtbi8SqIYPH05SUpJvt1Yp36932a0M7foqIiJydJr6KiIiIiL1VmFhIc8//zwjRozA4/Hw1ltv8eWXX/LFF1/4OzQRERGph1SoExEREZF6yxjDp59+yl/+8hcOHDhA27ZtmT59OsOGDfN3aCIiIlIPqVAnIiIiIvVWeHg4X375pb/DqJWaN2+OVtERERGpWtpMQkREREREREREJACoUCciIiJVTqNsRKQ8em8QERE5OhXqREREpMoEBR1cVaOoqMjPkYhIIDr03lBaWurnSERERAKT1qgTERGRKhMcHExkZCTbtm0jJCQEx9HfBEXkINd12bJlC4WFhXi9Xn+HIyIiEpBUqBMREZEqY4yhefPmrFy5kjVr1vg7HBEJMK7rkpWVBYDX6yU8PNzPEYmIiAQWFepERESkSoWGhtKmTRs+/vhjsrOzSUxM1Mg6EcFaS0lJCa7rkpeXh7WW5ORkf4clIiISUIzViq4iIiJSDXbt2sUnn3ziGz0jIgIHC3ahoaH06tWL/v37q5AvIiJyGBXqREREpNrk5eWxa9cuDhw44O9QRCRAOI5DZGQkTZs2VZFORETkV1SoExERERERERERCQD6E5aIiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEgP8HUVKE05Gal5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder02').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "9c0be11b-8d68-4597-9cf4-676c10d3aa1a", + "metadata": {}, + "source": [ + "\n", + "## Quality control for bad observations\n", + "The following checks are available:\n", + "* [Gross value check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html#metobs_toolkit.qc_checks.gross_value_check): A threshold check that observations should be between the thresholds\n", + "* [Persistence check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.persistance_check.html#metobs_toolkit.qc_checks.persistance_check): Test observations to change over a specific period.\n", + "* [Repetitions check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html#metobs_toolkit.qc_checks.repetitions_check): Test if an observation changes after several records.\n", + "* [Spike check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.step_check.html#metobs_toolkit.qc_checks.step_check): Test if observations do not produce spikes in time series.\n", + "* [Window variation check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html#metobs_toolkit.qc_checks.window_variation_check): Test if the variation exceeds the threshold in moving time windows.\n", + "* [Toolkit Buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.html#metobs_toolkit.qc_checks.toolkit_buddy_check): Spatial buddy check.\n", + "* [TITAN Buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.html#metobs_toolkit.qc_checks.titan_buddy_check): The [Titanlib version of the buddy check](https://github.com/metno/titanlib/wiki/Buddy-check).\n", + "* [TITAN Spatial consistency test](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.html#metobs_toolkit.qc_checks.titan_sct_resistant_check): Apply the Titanlib (robust) [Spatial-Consistency-Test](https://github.com/metno/titanlib/wiki/Spatial-consistency-test-resistant) (SCT).\n", + "\n", + "Each check requires a set of specific settings, often stored per specific observation type. A set of default settings, for temperature observations, are stored in the settings of each dataset. Use the *show()* method, and scroll to the QC section to see all QC settings.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "02c8f1d9-c0da-470f-9730-112a89a77f67", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All settings:\n", + " \n", + " ---------------------------------------\n", + "\n", + " ---------------- IO (settings) ----------------------\n", + "\n", + "* output_folder: \n", + "\n", + " -None \n", + "\n", + "* input_data_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_datafile.csv \n", + "\n", + "* input_metadata_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_metadatafile.csv \n", + "\n", + " ---------------- db (settings) ----------------------\n", + "\n", + " ---------------- time_settings (settings) ----------------------\n", + "\n", + "* target_time_res: \n", + "\n", + " -60T \n", + "\n", + "* resample_method: \n", + "\n", + " -nearest \n", + "\n", + "* resample_limit: \n", + "\n", + " -1 \n", + "\n", + "* timezone: \n", + "\n", + " -UTC \n", + "\n", + "* freq_estimation_method: \n", + "\n", + " -highest \n", + "\n", + "* freq_estimation_simplify: \n", + "\n", + " -True \n", + "\n", + "* freq_estimation_simplify_error: \n", + "\n", + " -2T \n", + "\n", + " ---------------- app (settings) ----------------------\n", + "\n", + "* print_fmt_datetime: \n", + "\n", + " -%d/%m/%Y %H:%M:%S \n", + "\n", + "* print_max_n: \n", + "\n", + " -40 \n", + "\n", + "* plot_settings: \n", + "\n", + " - time_series: \n", + "\n", + " -{'figsize': (15, 5), 'colormap': 'tab20', 'linewidth': 2, 'linestyle_ok': '-', 'linestyle_fill': '--', 'linezorder': 1, 'scattersize': 4, 'scatterzorder': 3, 'dashedzorder': 2, 'legend_n_columns': 5} \n", + "\n", + " - spatial_geo: \n", + "\n", + " -{'extent': [2.260609, 49.25, 6.118359, 52.350618], 'cmap': 'inferno_r', 'n_for_categorical': 5, 'figsize': (10, 15), 'fmt': '%d/%m/%Y %H:%M:%S UTC'} \n", + "\n", + " - pie_charts: \n", + "\n", + " -{'figsize': (10, 10), 'anchor_legend_big': (-0.25, 0.75), 'anchor_legend_small': (-3.5, 2.2), 'radius_big': 2.0, 'radius_small': 5.0} \n", + "\n", + " - color_mapper: \n", + "\n", + " -{'duplicated_timestamp': '#a32a1f', 'invalid_input': '#900357', 'gross_value': '#f1ff2b', 'persistance': '#f0051c', 'repetitions': '#056ff0', 'step': '#05d4f0', 'window_variation': '#05f0c9', 'buddy_check': '#8300c4', 'titan_buddy_check': '#8300c4', 'titan_sct_resistant_check': '#c17fe1', 'gap': '#f00592', 'missing_timestamp': '#f78e0c', 'linear': '#d406c6', 'model_debias': '#6e1868', 'ok': '#07f72b', 'not checked': '#f7cf07', 'outlier': '#f20000'} \n", + "\n", + " - diurnal: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - anual: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - correlation_heatmap: \n", + "\n", + " -{'figsize': (10, 10), 'vmin': -1, 'vmax': 1, 'cmap': 'cool', 'x_tick_rot': 65, 'y_tick_rot': 0} \n", + "\n", + " - correlation_scatter: \n", + "\n", + " -{'figsize': (10, 10), 'p_bins': [0, 0.001, 0.01, 0.05, 999], 'bins_markers': ['*', 's', '^', 'X'], 'scatter_size': 40, 'scatter_edge_col': 'black', 'scatter_edge_line_width': 0.1, 'ymin': -1.1, 'ymax': 1.1, 'cmap': 'tab20', 'legend_ncols': 3, 'legend_text_size': 7} \n", + "\n", + "* world_boundary_map: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp \n", + "\n", + "* display_name_mapper: \n", + "\n", + " - network: \n", + "\n", + " -network \n", + "\n", + " - name: \n", + "\n", + " -station name \n", + "\n", + " - call_name: \n", + "\n", + " -pseudo name \n", + "\n", + " - location: \n", + "\n", + " -region \n", + "\n", + " - lat: \n", + "\n", + " -latitude \n", + "\n", + " - lon: \n", + "\n", + " -longtitude \n", + "\n", + " - temp: \n", + "\n", + " -temperature \n", + "\n", + " - radiation_temp: \n", + "\n", + " -radiation temperature \n", + "\n", + " - humidity: \n", + "\n", + " -humidity \n", + "\n", + " - precip: \n", + "\n", + " -precipitation intensity \n", + "\n", + " - precip_sum: \n", + "\n", + " -cummulated precipitation \n", + "\n", + " - wind_speed: \n", + "\n", + " -wind speed \n", + "\n", + " - wind_gust: \n", + "\n", + " -wind gust speed \n", + "\n", + " - wind_direction: \n", + "\n", + " -wind direction \n", + "\n", + " - pressure: \n", + "\n", + " -air pressure \n", + "\n", + " - pressure_at_sea_level: \n", + "\n", + " -corrected pressure at sea level \n", + "\n", + " - lcz: \n", + "\n", + " -LCZ \n", + "\n", + "* static_fields: \n", + "\n", + " -['network', 'name', 'lat', 'lon', 'call_name', 'location', 'lcz'] \n", + "\n", + "* categorical_fields: \n", + "\n", + " -['wind_direction', 'lcz'] \n", + "\n", + "* location_info: \n", + "\n", + " -['network', 'lat', 'lon', 'lcz', 'call_name', 'location'] \n", + "\n", + "* default_name: \n", + "\n", + " -unknown_name \n", + "\n", + " ---------------- qc (settings) ----------------------\n", + "\n", + "* qc_check_settings: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'keep': False} \n", + "\n", + " - persistance: \n", + "\n", + " -{'temp': {'time_window_to_check': '1h', 'min_num_obs': 5}} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'temp': {'max_valid_repetitions': 5}} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'temp': {'min_value': -15.0, 'max_value': 39.0}} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': 0.002777777777777778, 'time_window_to_check': '1h', 'min_window_members': 3}} \n", + "\n", + " - step: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': -0.002777777777777778}} \n", + "\n", + " - buddy_check: \n", + "\n", + " -{'temp': {'radius': 15000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0}} \n", + "\n", + "* qc_checks_info: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'outlier_flag': 'duplicated timestamp outlier', 'numeric_flag': 1, 'apply_on': 'record'} \n", + "\n", + " - invalid_input: \n", + "\n", + " -{'outlier_flag': 'invalid input', 'numeric_flag': 2, 'apply_on': 'obstype'} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'outlier_flag': 'gross value outlier', 'numeric_flag': 4, 'apply_on': 'obstype'} \n", + "\n", + " - persistance: \n", + "\n", + " -{'outlier_flag': 'persistance outlier', 'numeric_flag': 5, 'apply_on': 'obstype'} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'outlier_flag': 'repetitions outlier', 'numeric_flag': 6, 'apply_on': 'obstype'} \n", + "\n", + " - step: \n", + "\n", + " -{'outlier_flag': 'in step outlier group', 'numeric_flag': 7, 'apply_on': 'obstype'} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'outlier_flag': 'in window variation outlier group', 'numeric_flag': 8, 'apply_on': 'obstype'} \n", + "\n", + " - buddy_check: \n", + "\n", + " -{'outlier_flag': 'buddy check outlier', 'numeric_flag': 11, 'apply_on': 'obstype'} \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'outlier_flag': 'titan buddy check outlier', 'numeric_flag': 9, 'apply_on': 'obstype'} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'outlier_flag': 'sct resistant check outlier', 'numeric_flag': 10, 'apply_on': 'obstype'} \n", + "\n", + "* titan_check_settings: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'temp': {'radius': 50000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0, 'num_iterations': 1}} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'temp': {'num_min_outer': 3, 'num_max_outer': 10, 'inner_radius': 20000, 'outer_radius': 50000, 'num_iterations': 10, 'num_min_prof': 5, 'min_elev_diff': 100, 'min_horizontal_scale': 250, 'max_horizontal_scale': 100000, 'kth_closest_obs_horizontal_scale': 2, 'vertical_scale': 200, 'mina_deviation': 10, 'maxa_deviation': 10, 'minv_deviation': 1, 'maxv_deviation': 1, 'eps2': 0.5, 'tpos': 5, 'tneg': 8, 'basic': True, 'debug': False}} \n", + "\n", + "* titan_specific_labeler: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'ok': [0], 'outl': [1]} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'ok': [0, -999, 11, 12], 'outl': [1]} \n", + "\n", + " ---------------- gap (settings) ----------------------\n", + "\n", + "* gaps_settings: \n", + "\n", + " - gaps_finder: \n", + "\n", + " -{'gapsize_n': 40} \n", + "\n", + "* gaps_info: \n", + "\n", + " - gap: \n", + "\n", + " -{'label_columnname': 'is_gap', 'outlier_flag': 'gap', 'negative_flag': 'no gap', 'numeric_flag': 12, 'apply_on': 'record'} \n", + "\n", + " - missing_timestamp: \n", + "\n", + " -{'label_columnname': 'is_missing_timestamp', 'outlier_flag': 'missing timestamp', 'negative flag': 'not missing', 'numeric_flag': 13, 'apply_on': 'record'} \n", + "\n", + "* gaps_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time', 'max_consec_fill': 100} \n", + "\n", + " - model_debias: \n", + "\n", + " -{'debias_period': {'prefered_leading_sample_duration_hours': 48, 'prefered_trailing_sample_duration_hours': 48, 'minimum_leading_sample_duration_hours': 24, 'minimum_trailing_sample_duration_hours': 24}} \n", + "\n", + " - automatic: \n", + "\n", + " -{'max_interpolation_duration_str': '5H'} \n", + "\n", + "* gaps_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'gap_interpolation', 'model_debias': 'gap_debiased_era5'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -21 \n", + "\n", + " ---------------- missing_obs (settings) ----------------------\n", + "\n", + "* missing_obs_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time'} \n", + "\n", + "* missing_obs_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'missing_obs_interpolation'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -23 \n", + "\n", + " ---------------- templates (settings) ----------------------\n", + "\n", + "* template_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_templatefile.csv \n", + "\n", + " ---------------- gee (settings) ----------------------\n", + "\n", + "* gee_dataset_info: \n", + "\n", + " - global_lcz_map: \n", + "\n", + " -{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'} \n", + "\n", + " - DEM: \n", + "\n", + " -{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'} \n", + "\n", + " - ERA5_hourly: \n", + "\n", + " -{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'band_of_use': {'temp': {'name': 'temperature_2m', 'units': 'K'}}, 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''} \n", + "\n", + " - worldcover: \n", + "\n", + " -{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'} \n", + "\n" + ] + } + ], + "source": [ + "your_dataset.settings.show()" + ] + }, + { + "cell_type": "markdown", + "id": "95401842-6906-48bb-b449-2b4df52a9282", + "metadata": {}, + "source": [ + "Use the [update_qc_settings()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings) method to update the default settings." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5f30dd72-b67c-4425-a49e-21d248d244fc", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_qc_settings(obstype='temp',\n", + " gross_value_max_value=26.3,\n", + " persis_time_win_to_check='30T' #30 minutes\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "0769efa4-576c-4e9c-b5f9-536fb23543f3", + "metadata": {}, + "source": [ + "To apply the quality control on the full dataset use the [apply_quality_control()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control) method. Spatial quality control checks can be applied by using the [apply_buddy_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_buddy_check), [apply_titan_buddy_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_buddy_check) and [apply_titan_sct_resistant_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check) methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c3ce19c5-6ccd-44a4-8f67-3efd4f59621f", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.apply_quality_control(\n", + " obstype=\"temp\", # which observations to check\n", + " gross_value=True, # apply gross_value check?\n", + " persistance=True, # apply persistence check?\n", + " step=True, # apply the step check?\n", + " window_variation=True, # apply internal consistency check?\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "05ed9aaf-0998-4a50-b724-f95b5240eca9", + "metadata": {}, + "source": [ + "Use the dataset.show() or the time series plot methods to see the effect of the quality control." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "31918e79-d527-484a-b870-ceb678f8719e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAH4CAYAAAB+C5upAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVdrA8d+5U9ILCb13kKqACCqoIDZU7GUtoGvFsva1d9ey1tcCuipid2XFhoIFFVRElA7SewklvU675/1j0iYzk0ySSWaSPN/PB2XuPffcM8Mkc+e55zyP0lprhBBCCCGEEEIIIYQQYWNEegBCCCGEEEIIIYQQQjQ3EnQTQgghhBBCCCGEECLMJOgmhBBCCCGEEEIIIUSYSdBNCCGEEEIIIYQQQogwk6CbEEIIIYQQQgghhBBhJkE3IYQQQgghhBBCCCHCTIJuQgghhBBCCCGEEEKEmQTdhBBCCCGEEEIIIYQIMwm6CSGEEEIIIYQQQggRZhJ0E0IIIYQQ5fbt28c555xDeno6Simef/75SA8JgO7duzNlypTyxz/++CNKKX788ceIjSkUDz74IEqpSA9DCCGEEBEgQTchhBBChI1SKqQ/0R4oaUivvPIKb731VqSHEdTNN9/MvHnzuOuuu3jnnXc46aSTIj2kBvf+++/XK7hYVFTEgw8+2KLf10IIIYTwZ430AIQQQgjRfLzzzjs+j99++22+/fZbv+2HHHJIYw4rqrzyyiu0bt3aZ9ZWNJk/fz6TJk3itttui/RQGs3777/P6tWruemmm+p0fFFREQ899BAAxx57rM++e++9lzvvvLOeIxRCCCFEUyRBNyGEEEKEzcUXX+zz+LfffuPbb7/1295caK0pKSkhLi4u0kMJWWFhIQkJCUH379+/n9TU1LCdr6SkBLvdjmG0zAUWVqsVq1UuuYUQQoiWqGVe/QghhBAiYkzT5Pnnn2fgwIHExsbSrl07rr76arKzs33ade/enVNPPZUff/yRESNGEBcXx+DBg8uX8H3yyScMHjyY2NhYhg8fzrJly3yOnzJlComJiWzZsoUTTzyRhIQEOnbsyMMPP4zWul5jmjdvXvmYXn31VQBmzJjBuHHjaNu2LTExMQwYMIBp06b5Hb9mzRp++umn8qW2ZTOjguX+euutt1BKsW3btvJtSikefPBBv7ZV856VHfvTTz8xdepU2rZtS+fOnf2Oq9xWa83LL79cPr4yW7Zs4dxzzyUtLY34+HhGjRrFnDlzfPooy7P24Ycfcu+999KpUyfi4+PJy8sLeE6Ap59+miOPPJL09HTi4uIYPnw4s2bNCtq+tvLz87npppvo3r07MTExtG3blgkTJrB06VLAOzNtzpw5bN++vfw5d+/eHQCn08n999/P8OHDSUlJISEhgTFjxvDDDz+U979t2zbatGkDwEMPPVTeR9m/T6B/V7fbzSOPPEKvXr2IiYmhe/fu3H333TgcDp92Ze+3n3/+mZEjRxIbG0vPnj15++23fdq5XC4eeugh+vTpQ2xsLOnp6Rx99NF8++23YXsdhRBCCFF7cttNCCGEEI3q6quv5q233uKyyy7jxhtvZOvWrbz00kssW7aMX375BZvNVt5206ZN/O1vf+Pqq6/m4osv5umnn+a0005j+vTp3H333UydOhWAxx9/nPPOO4/169f7zKjyeDycdNJJjBo1iqeeeoq5c+fywAMP4Ha7efjhh+s0pvXr13PhhRdy9dVXc+WVV9KvXz8Apk2bxsCBAzn99NOxWq188cUXTJ06FdM0ue666wB4/vnnueGGG0hMTOSee+4BoF27dg33YpeaOnUqbdq04f7776ewsDBgm7Fjx/LOO+9wySWXMGHCBC699NLyffv27ePII4+kqKiIG2+8kfT0dGbOnMnpp5/OrFmzOPPMM336euSRR7Db7dx22204HA7sdnvQsb3wwgucfvrpXHTRRTidTj788EPOPfdcvvzySyZOnFjv537NNdcwa9Ysrr/+egYMGEBmZiY///wzf/31F8OGDeOee+4hNzeXXbt28dxzzwGQmJgIQF5eHq+//joXXnghV155Jfn5+bzxxhuceOKJ/P777xx66KG0adOGadOmce2113LmmWdy1llnATBkyJCgY7riiiuYOXMm55xzDrfeeiuLFy/m8ccf56+//mL27Nk+bTdt2sQ555zD3//+dyZPnsybb77JlClTGD58OAMHDgS8gb3HH3+cK664gpEjR5KXl8cff/zB0qVLmTBhQr1fQyGEEELUkRZCCCGEaCDXXXedrny5sXDhQg3o9957z6fd3Llz/bZ369ZNA/rXX38t3zZv3jwN6Li4OL19+/by7a+++qoG9A8//FC+bfLkyRrQN9xwQ/k20zT1xIkTtd1u1wcOHKjzmObOnev3XIuKivy2nXjiibpnz54+2wYOHKiPOeYYv7YPPPCADnRpNmPGDA3orVu3lm8D9AMPPODXtlu3bnry5Ml+xx599NHa7Xb7tQ8E0Nddd53PtptuukkDeuHCheXb8vPzdY8ePXT37t21x+PRWmv9ww8/aED37Nkz4OsRSNV2TqdTDxo0SI8bN67a51Z2rsr/5oGkpKT4PZ+qJk6cqLt16+a33e12a4fD4bMtOztbt2vXTl9++eXl2w4cOBD036Tqv+vy5cs1oK+44gqfdrfddpsG9Pz588u3lb3fFixYUL5t//79OiYmRt96663l24YOHaonTpxY7XMUQgghROOT5aVCCCGEaDQff/wxKSkpTJgwgYMHD5b/GT58OImJiT7L9gAGDBjA6NGjyx8fccQRAIwbN46uXbv6bd+yZYvfOa+//vryvyuluP7663E6nXz33Xd1GlOPHj048cQT/c5TOa9bbm4uBw8e5JhjjmHLli3k5uaG/Bo1hCuvvBKLxVLn47/66itGjhzJ0UcfXb4tMTGRq666im3btrF27Vqf9pMnTw45z13ldtnZ2eTm5jJmzJjy5Z/1lZqayuLFi9mzZ0+tj7VYLOWz9EzTJCsrC7fbzYgRI+o8vq+++gqAW265xWf7rbfeCuC3ZHfAgAGMGTOm/HGbNm3o16+fz3s9NTWVNWvWsHHjxjqNSQghhBANQ4JuQgghhGg0GzduJDc3l7Zt29KmTRufPwUFBezfv9+nfeXAGkBKSgoAXbp0Cbi9ag42wzDo2bOnz7a+ffsClOdIq+2YevToEfC5/fLLLxx//PEkJCSQmppKmzZtuPvuuwEiHnQLNuZQbd++vXwZbWVlVWi3b99e5/N9+eWXjBo1itjYWNLS0sqXa4brNXvqqadYvXo1Xbp0YeTIkTz44IMBg7PBzJw5kyFDhpTnSmvTpg1z5syp8/i2b9+OYRj07t3bZ3v79u1JTU31ey2r/gwAtGrVyue9/vDDD5OTk0Pfvn0ZPHgwt99+OytXrqzT+IQQQggRPpLTTQghhBCNxjRN2rZty3vvvRdwf1lC+jLBZmcF266rFEhoiDEFmsG1efNmxo8fT//+/Xn22Wfp0qULdrudr776iueeew7TNGscR6AiCuDNSxeqYG0bu7pqqOdbuHAhp59+OmPHjuWVV16hQ4cO2Gw2ZsyYwfvvvx+WsZx33nmMGTOG2bNn88033/Dvf/+bJ598kk8++YSTTz652mPfffddpkyZwhlnnMHtt99O27ZtsVgsPP7442zevLle4wr2711VKO/1sWPHsnnzZj777DO++eYbXn/9dZ577jmmT5/OFVdcUa9xCiGEEKLuJOgmhBBCiEbTq1cvvvvuO4466qhGCQSZpsmWLVvKZ7cBbNiwAaC8QmU4xvTFF1/gcDj4/PPPfWYmVV2aCsGDLa1atQIgJyeH1NTU8u1VZz6Vtc3JyfHZ5nQ62bt3bx1GX7Nu3bqxfv16v+3r1q0r318X//vf/4iNjWXevHnExMSUb58xY0bdBhpEhw4dmDp1KlOnTmX//v0MGzaMxx57rDzoFuzfZNasWfTs2ZNPPvnEp80DDzzg0y7UABp4XyvTNNm4cWP5TEHwFqvIycmp82uZlpbGZZddxmWXXUZBQQFjx47lwQcflKCbEEIIEUGyvFQIIYQQjea8887D4/HwyCOP+O1zu91+gaRweOmll8r/rrXmpZdewmazMX78+LCNqWw2UuXZR7m5uQGDRwkJCQH77NWrFwALFiwo31ZYWMjMmTMDtq3cDuC1116r1ay42jjllFP4/fffWbRokc/YXnvtNbp3786AAQPq1K/FYkEp5TPubdu28emnn9Z3yIB35l/VZaBt27alY8eOOByO8m0JCQkBl4sG+nddvHixz+sAEB8fDxDSe+WUU04BvJVsK3v22WcB6lSxNTMz0+dxYmIivXv39nmOubm5rFu3LuJLnYUQQoiWRGa6CSGEEKLRHHPMMVx99dU8/vjjLF++nBNOOAGbzcbGjRv5+OOPeeGFFzjnnHPCdr7Y2Fjmzp3L5MmTOeKII/j666+ZM2cOd999d/my0XCM6YQTTsBut3Paaadx9dVXU1BQwH/+8x/atm3rN/ts+PDhTJs2jUcffZTevXvTtm1bxo0bxwknnEDXrl35+9//zu23347FYuHNN9+kTZs27Nixw6ePK664gmuuuYazzz6bCRMmsGLFCubNm0fr1q3D9tpVduedd/LBBx9w8sknc+ONN5KWlsbMmTPZunUr//vf/zCMut3HnThxIs8++ywnnXQSf/vb39i/fz8vv/wyvXv3DktOsvz8fDp37sw555zD0KFDSUxM5LvvvmPJkiU888wz5e2GDx/ORx99xC233MLhhx9OYmIip512GqeeeiqffPIJZ555JhMnTmTr1q1Mnz6dAQMGUFBQUH58XFwcAwYM4KOPPqJv376kpaUxaNAgBg0a5DemoUOHMnnyZF577TVycnI45phj+P3335k5cyZnnHEGxx13XK2f54ABAzj22GMZPnw4aWlp/PHHH8yaNcuniMjs2bO57LLLmDFjBlOmTKn1OYQQQghRexJ0E0IIIUSjmj59OsOHD+fVV1/l7rvvxmq10r17dy6++GKOOuqosJ7LYrEwd+5crr32Wm6//XaSkpJ44IEHuP/++8M6pn79+jFr1izuvfdebrvtNtq3b8+1115LmzZtuPzyy33a3n///Wzfvp2nnnqK/Px8jjnmGMaNG4fNZmP27NlMnTqV++67j/bt23PTTTfRqlUrLrvsMp8+rrzySrZu3cobb7zB3LlzGTNmDN9++2357L1wa9euHb/++iv//Oc/efHFFykpKWHIkCF88cUXdZqZVWbcuHG88cYbPPHEE9x000306NGDJ598km3btoUl6BYfH8/UqVP55ptv+OSTTzBNk969e/PKK69w7bXXlrebOnUqy5cvZ8aMGTz33HN069aN0047jSlTppCRkcGrr77KvHnzGDBgAO+++y4ff/wxP/74o8+5Xn/9dW644QZuvvlmnE4nDzzwQMCgW1nbnj178tZbbzF79mzat2/PXXfd5bdsNVQ33ngjn3/+Od988w0Oh4Nu3brx6KOPcvvtt9epPyGEEEKEh9J1yTgshBBCCBHlpkyZwqxZs3xmJAkhhBBCCNFYJKebEEIIIYQQQgghhBBhJkE3IYQQQgghhBBCCCHCTIJuQgghhBBCCCGEEEKEmeR0E0IIIYQQQgghhBAizGSmmxBCCCGEEEIIIYQQYSZBNyGEEEIIIYQQQgghwswa6QFEO9M02bNnD0lJSSilIj0cIYQQQgghhBBCCBFBWmvy8/Pp2LEjhhF8PpsE3WqwZ88eunTpEulhCCGEEEIIIYQQQogosnPnTjp37hx0vwTdapCUlAR4X8jk5OQIj0YIIYQQQgghhBBCRFJeXh5dunQpjxkFI0G3GpQtKU1OTpagmxBCCCGEEEIIIYQAqDENmRRSEEIIIYQQQgghhBAizCToJoQQQgghhBBCCCFEmEnQTQghhBBCCCGEEEKIMJOgmxBCCCGEEEIIIYQQYSZBNyGEEEIIIYQQQgghwkyCbkIIIYQQQgghhBBChJkE3YQQQgghhBBCCCGECDMJugkhhBBCCCGEEEIIEWYSdBNCCCGEEEIIIYQQIsyskR6AEEIIEQqNxmQdoDE4BIWK9JCEEEIIIYQQIigJugkhhGgSSngSF+8CYOMC4rg3wiMSQgghhBBCiOBkeakQQoiopykuD7gBuPgQk/wIjkgIIYQQQgghqidBNyGEEE2ADbD4bPGwPCIjEUIIIYQQQohQSNBNCCFE1FNYMehVZasZkbEIIYQQQgghRCgk6CaEEKJJiOF2IBYAC2OxcmRkBySEEEIIIYQQ1ZCgmxBCiKinKcLBv4ASAGycjMIW2UEJIYQQQgghRDUk6CaEECLqufkNk63lj528E8HRCCGEEEIIIUTNJOgmhBAi6hm083lk0CFiYxFCCCGEEEKIUFgjPQAhhBAiGAfv4uJTDPph5UzczAXisUg+NyGEEEIIIUSUk6CbEEKIqFTM/+HiNQBM1vnscfAIBgnYODUygxNCCCGEEEKIGsjyUiGEEFGnhOnlAbdg3CxppNEIIYQQQgghRO1J0E0IIURU8bAJJy/V2E6R2vCDEUIIIYQQQog6kqCbEEKIqFLIIyG1c/IWJnkNPBohhBBCCCGEqBsJugkhhIgya0Js56GIWxp0JEIIIYQQQghRVxJ0E0IIETVcLARKQm5v8mfDDUYIIYQQQggh6kGCbkIIIaKGg3dqeYQLF381yFiEEEIIIYQQoj4k6CaEECIqaFyYLK71ccVMQeNugBEJIYQQQgghRN1J0E0IIURUKOEdwFOHIwtx1yFYJ4QQQgghhBANyRrpAQghhGjZNC6cvIGLl+vRS0zYxiOEEEIIIYQQ4SAz3YQQQkSUgxdx8BKg69yHye7wDUgIIYQQQgghwkCCbkIIISIqHEtD3fw3DCMRQgghhBBCiPCRoJsQQoiI0bgx2VLvfkz2hmE0QgghhBBCCBE+EnQTQggRMW7+BIrD0FNcGPoQQgghhBBCiPCRoJsQQogISghLL5odaIrC0pcQQgghhBBChIME3YQQQkSMDsPS0rKeNI4w9SWEEEIIIYQQ9SdBNyGEEBFjsiFMPRkYtApTX0IIIYQQQghRfxJ0E0IIETFWxoetJ01hmPoSQgghhBBCiPqToJsQQoiIUSQAKgw9OXHzUxj6EUIIIYQQQojwsEZ6AEIIIVquYh4FdFj60vKRVi2TbBw8i0kGdi7CxrGRHpIQQgghhBDNmsx0E0II0eg0Dpx8gMmOsPXp4a+w9dUcFXM3Lj7FwyKKuRGTnZEekhBCCCGEEM1akw66TZs2jSFDhpCcnExycjKjR4/m66+/Lt9fUlLCddddR3p6OomJiZx99tns27cvgiMWQggBUMStlPAYcDBsfZpsCltfzY3Gg4ffqJhVaErQTQghhBBCiAbWpNfidO7cmSeeeII+ffqgtWbmzJlMmjSJZcuWMXDgQG6++WbmzJnDxx9/TEpKCtdffz1nnXUWv/zyS6SHLqKc1pr8Yg9ujwmmBqUwDDBNQGswSnNQBdmnAF3DPq0UlhD2JcRaiLFbIvRKCBF+Gjcefgx7vx5Whb3P5sAbcNsDuKrsSYnEcIQQQgghhGgxlNY6PMl0okRaWhr//ve/Oeecc2jTpg3vv/8+55xzDgDr1q3jkEMOYdGiRYwaNSqk/vLy8khJSSE3N5fk5OSGHLqIEmv2ujnsyeiqgjiii8EvtySiVDgSzgsRWW6WU8TFDdJ3MqsbpN+mysEnOHgQMP32WZlEPI81+piEEEIIIYRo6kKNFTXp5aWVeTwePvzwQwoLCxk9ejR//vknLpeL448/vrxN//796dq1K4sWLQraj8PhIC8vz+ePaFkufntPpIfg54+dJj9sdEd6GEKEhaJVg/VtEn0/v5GiKQkacAPw8HujjkcIIYQQQoiWpskH3VatWkViYiIxMTFcc801zJ49mwEDBpCRkYHdbic1NdWnfbt27cjIyAja3+OPP05KSkr5ny5dujTwMxDRxGQXTk9WpIcRkEtibqKZ8LCywfrWROfPb2SYBAu4AWjyG28oQgghhBBCtEBNPujWr18/li9fzuLFi7n22muZPHkya9eurXN/d911F7m5ueV/du6URNMtiYfdvHDh41T3RTUSeqQpju/fpFMwClEunBVLq/Kwq8H6bmo0OTW0KEZH2e86IYQQQgghmpMm/y3ebrfTu3dvAIYPH86SJUt44YUXOP/883E6neTk5PjMdtu3bx/t27cP2l9MTAwxMTENPWwRpUzyGNljDbueGseP64eRmd+ZGP6JAWg0oPBWO/D+zwS/fQrvfhOwKG9RBl3TPry1GbT21hY0Svcpw2B4FyuDOtka/bUQoqFYGY+TaQ3St5s/sXNSg/Td1Lj4soYWHjQ5KNIaZTxCCCGEEEK0NE0+6FaVaZo4HA6GDx+OzWbj+++/5+yzzwZg/fr17Nixg9GjR0d4lCIaecjAwc0AxNpdnDR4MbCTZOIjOzAhmhkPyxqwb8lTVsZN8PylFaQ4ixBCCCGEEA2lSQfd7rrrLk4++WS6du1Kfn4+77//Pj/++CPz5s0jJSWFv//979xyyy2kpaWRnJzMDTfcwOjRo0OuXCpaFgdPBNh6oNHHIURz52igWW4AmtwG67up8VBTqgULioRGGYsQQgghhBAtUZMOuu3fv59LL72UvXv3kpKSwpAhQ5g3bx4TJkwA4LnnnsMwDM4++2wcDgcnnngir7zySoRHLaKVh2wATFNxzTv3MnvZeDQWiPCX+NQ4ePfSOE44xB7RcQgRDhoPNGixg4MN2HfT4WEPUFhjKw9rsXJoI4xICCGEEEKIlkdprXWkBxHN8vLySElJITc3l+Tk5EgPRzSgAu7A5Cv+8cE/eW/xaUTbsquN9yfSLc0S6WGIMHGzAs1+rBzZomYbudlMEZMa9BwJ/ISF9AY9R7TLYyyhBDdjuIMYLm34AQkhhBBCCNGMhBoravLVS4WoD40LkwNoTEw2AfDThhFEW8AN4PdtnkgPQYSJg3cp4iKKuZkCzkNTFOkhNRoPyxv8HE6+afBzRDM3Gwl1NqGSnJVCCCGEEEI0GAm6iRbLZAcFnEgBx1HIBcBeAE4Y8GtkBxbE6B4yy625cPJu+d8123GzIIKjaWwNP7naw88Nfo5o5uDFkNsadG+4gQghhBBCCNHCSdBNtFglvIBmPwAmawEXAE+e8xyXHTULm2FGcHReCmibCD/eGE/nVhJ0ay40JT6P3fwZoZE0PoNeDX4Oky0Nfo5o5mFryG2LuI58TsTBOw04IiGEEEIIIVqmJl1IQYj6cLO4yhZvIEQp+Pe5z/H0uR9hZQyx3IOS+LQIE+9S0qpL/1IiMZSIcDZg5dIKO9G4UNga4VzRxc1vQF4tjihEU4iDJ7EyDAsDG2poQgghhBBCtDgSSRAtWPU50jR7cPERJfy7kcYjWgJv0M13FqWb33DxA5rIz65saJrMRjlPWY7GlsTDBoq4Aur4GptS+VUIIYQQQoiwkpluosWycDQevg66f3dWa/679HjyClOIUfko7ZuNqvyxUenvGlDex2bpPqPKvrJOtAHKrLQtwL6OqVYuHGEnPVGWljYXilYoeqHZXL5Ns5xibsBgIrFcgIVDUMRGcJQNx6A3Jusb/Dwu5mPhkAY/TzRxsybSQxBCCCGEEEJUIkE30SJpNOAIuv/5by/i0TnXUlHFNFIzkJzc8qmTjy+PY9IQe4TGIMLFJJcCjgOcQfbPoYg5QAwJfISF3o06vsbgZmEjnWcRcF2jnCtamPUMurn5BRvHhGk0QgghhBBCCFleKlokkx14mB90/xNfX0FFwC3y/jGrpOZGIuo5eYdgATdfDhyNkvssEgob5SwmGxrlPNHCwz5cfFivPiz0DNNohBBCCCGEECAz3UQLpYipdr/VcOM2o2dmWWwU54PXaFx8jJvFWDkcG+ejoihgGWkaN05m4GEdEPp7ys0CPOzEQpeGG1xEWKgpn2J4FKHJRbWQIhVFIc/qSwVyAmxPw8rJYRuPEEIIIYQQQma6NXsaNyW8RBF34GlhMz+qY9Aeg8FB9/9n8oN4l5TqoG0ai8WAjy+Pj/QwgnLzNSU8jJtvKOFRXHwe6SFFFSdv4OAF3MzDzRdAYohHFlPI+Q05tEZnUkBoM/3Cw1u0omWonCOwOgo73sBnVdmU8HBYxySEEEIIIURLJzPdmrlCLsNkGeANjiTwJRa6RXhUkacpwcJITFYF3H/y4F84+PwYAJJYiZL4dFAe1lBRBcLAZC0wKbKDiiIe1lbZUlD6/1BmfOXh4SAWWod/YBHg5rdGPJuicWbURZ43R6UrxNadsHESLt7268Ud5PehEEIIIYQQom4kktDMmSyv9Ejj4stIDSVqmOwjn/G4eCOk9o2V+L2psjCWihmBJrSQ5XyhsjI+yJ7QAkKFnIqmeeT0M8lsxLNpnMxqxPNFjkJV8z7zpVlWGnDzXwJuyM+uEEIIIYQQYSVBt2Yv1ueR0cITZXtYRwFnAbkhH+NNfi+CqZq/zc03ERpJdFJ0IFCAY/vBtuzJTsftAV3tKuYCXMxtqOE1KoMOdT5Wa1i8pT9PfX0pd3x8M498eRWFjuqTHbr5tc7na0ocvIeb72t5lP+bzuQvTA6GZ1BCCCGEEEIIWV7anGg0JTyCi+8x6EwsdwDFPm08LIYWnCy7iFuoTcANwCNLrqqlSK70yECRFLGxRKNibiZQgOP576awLy+N9668M4RemscMJGeIs0sD+WXTobz962lYLSaXjv6cQ7uuo8hhJyEm+LJKk211Pl9ToXHi4PEw9aZqLDIjhBBCCCGECJ3MdGtGHMzExX+BTExWUMStfm10eT6plsXNckqYjmZHnY4WwRn0w8IJeGP4qdi4DAczcPFNaa6pli5wMv9CZyxJsQUoBaqGYq9ufm+AcTU+0y+/Xehyi5ModsUyefSnjOq1ihiri7TEwjCOrqmqz++nqsFcjYet9RmMEEIIIYQQohKZ6daMuJldZUtGlcc2YpjSSKOJHm4WU8QV1LYS6Z9b+zD13fvYk5MOOhetS4MjBmgTLKWBElMTcJ/Gu11rMAzQqso+vI+D7UNDSgLcOcHO1LFx4XtBwsTNJlzMQZOFp3xJaRYl/IOy19rO9cRyTcTGGB0SCFSx88KRc1AqtPekh4XAP8M7rIhw1PnICQMWkRSTz2Hd1gAVgcryn72AbGiKUERv9d/68j63HlCnYJkZYMtGYEg9RyWEEEIIIYQACbo1K2aQGTUVXLj5AwuDGmU80cLBDGobcHttwVnc/ckt+OXi0gT6nlrzvupy5lezrzgfbvrEyX9+dbHszuTgDRtZCf/DyQNB9la81k7ebdFBN+9Mv+yA+47r/ydOd01BIy9FevgHFxGJQF6djrRb3Yzpu9xve/WvXS4eNmFt5kGkeP5FERcR/BdQMPl+WxRpYRmTEEIIIYQQQpaXNisGHWts42BaI4wkuphsqPUxj35xDYGS30fKmgxNiSt6lmo6eSrEljloWt4SQI1JMQ+QX0Owx26tOeAGYNA2TCOLtG71OjqUpbi+4jDoWq9zRjsHH9Qx4AaBLgHczKv3mIQQQgghhBBeEnRrJjTFmPxZYztFasMPJurU/kt3Qmz05b6zWSI9Ai+NC0IOpFkBewOOJjq5mY+L/1HbGZbB+2v6FWFNdkEdipIs39GH4Y+8zxkvPsOSbf3ZmRn6TCw756CaSRGKQEwycfAYdQu4EeS4lvfzKoQQQgghREORoFsz4WF1CK0SiOWuBh9LtInhglof8/nU6/F+IdWV/kTOhcMUFiOyM+80RZTwJoVcGfIxNk5GYWvAUUUnJ1+FuUcPOsBSwKZE1yGfm9Yw8YVpZBak8fPmUUx84VUu+M9zIR/v5B3cfFvr8zYV4Smw0dvnkYd1YehTCCGEEEIIARJ0azbcrA+hVRHF3E0J0/GwraGHFBU0JiX8u1bHFDvtHPfMW3h/PFSlP5HzwVLN8l2RraJaxA04eRaTP0I8QmFjcoOOKXq5wt6jmyVh77Mx6RpzTvrzmBa6pGVgNbyJD01t5T+XPliLHhRmM67G6ebHMPSy3eeRWacKz0IIIYQQQohAJOjWDHgowB3SF0sN5OHkJQo5FTe/NPTQIk5zENhXq2O2HOxCiTv6qoW+87t/BczGYlKMh8W1PEpTzA11CrY0dXbOD3ufHnaHvc/G5GZRrY+xWjw8POlFrj3mA1olZGE13BzSoTZBNAMrE2p93qbCU4fluv58A8Q2xoWhTyGEEKL5MSnBbIAbq0KI5k2qlzZhHrIoZCKBKtCFooTpJHJUeAcVdWqfz6lr2l4S7fkUOKMrF9SkIZH7cTVZUafjNHtx8wu2Zhz4CKwhZkY27XskmroFjScMXMyx/f/gxgkfMHfV6FoWUkjCQs86nbcp0OwKe59mHavLCiGEEM2VRlPEVDwsBMDGpcRxR4RHJYRoKpr2t7gWrpibqWvADWjWCcbLeGoxm8/tAacLkmKL+P7Wy4mmnG7xNjiyR8PnRnPxNQVcQBE3YXIAAA/bKeLGOvepmk3lzdCU8B+KubpWxxSWWHF7qm/jYnY9RhV5Lr6s03FKgd3qwWbxcNqhP9fy6Jw6nbMpcLOZuhdQCM7Dj7LEVAghhKjEzfLygBuAi7fR5EZwREKIpkSCbk1UqNVKq+8jI0yjiV6akpDa5ZfEsXDDMHbmeANEx/37LaIpp1uRC67+oGGXaXrYRjG3Y7IaN99RxJ0AFHIJ1HGJqJVJWBkaxlFGN5OdOHmh1sct3jqEDfs6o7U3+KsDxHg16zDZG4ZRNj6NhiY69mjlqUc+N63hzv/dSIdbvmfqu3f776eGCLAQQgjRgrj4zm+bky/RDXDzSwjR/EjQrYnSYZjBYTbxHFGhULQJqV1uURIlLjtxNm+FRRNLQw6rTlbtbdgPdl0lKGLyZ2neiqw69+nmM1xhr+QZvZx1rJS5K7sdecXJbNzXie//OiLoEsqmGnTzzsiqbSDnkGr37slO85kdaJrBgpUFtTxv06DrkVPmgc+n8vrC83CZsRzeY02V160zBt3rOzwhhBCi2fAEKCLm4HGcvBmB0QghmhoJujVRGjv1/+dLaPYzGpy8F1K7Tq32M7LHauLt3plxx/ZdRKSXlFb10MTYBu3fYHCVLW5KeLyevVpw17oAQ9PlZH6djjuu36/0a7eFN38+g4//PDFg8AhAkVyP0UVS7QNEisyg++asPIq/Mnpyzbv3MWfFkVw1837mrhrF6t09/F47Z6XlIM2JjZPrfOyy7f0BxU3Hv8VlR31WJci7zy8AL4QQQrRkwSY7uPi1cQcSJTT5aNyRHoYQTYYUUmiiPCyg/vl8MvCwFqtfsKX58IT4YagUpCVWzIhZt68XkV5SWtWhnRo6Ru4GYgDvbD9FB9x8Us8+PVg5vL4Da0KW1+moLum5aA3j+/2GiTXoTDcX32Chd92HFyEeltX6GF1NvspX5l/AMX3/4Lu1Y3C5Y/hl06FYDDdbD3bl65uu8Wnr4gNi6hGgilYuvqjzsVeN/ZhFW4Zx1diP0Zoq7zcXLuYRw2X1HqMQQgjR1BVzJwRZHWSyFJNsDFo17qAiROOhmDtwMw9IIYHpWJrx90ghwkVmujVRivSw9FPX5XBNR+gzbJSq+PK5LbNzA42n7m6ZHVp+urpy8QH4VJhMgHrfxUqnmPvJ40hc1DYJftPiZk29jlcKjh/0J8cPCD4zMNQchdFG0T6s/R3VdynZxSkUOGLp2XoHk4/8nEO7rqNDyj6/gKXJyrCeOxpo3DiZXufjTx26kE+mXk+hIy5ggNegYz1GJ4QQQjQPRTxZQyEoNw6eb6zhRJybhaUBN4BcinkwksMRosmQmW5NVKDcAnXT3JcRWajL0rakmELyHdFV3dXS4BPvygpGeNfnaTaFoc+yJYJOirkRK3+iomwGYbgUcXNI7bQGU4MlwC0PpcBSTTpBF78Qxy11HGHkWOgBpFK7aqLFQffcOO59MguSmTjkJw7r8hcebWBVJpOP/CxA6+a3hN7DhnodrxSM7bs82F4MDqtX/0IIIURTZ7IbN++E0C54OozmxsU3Po9NNqBxo0pDChoXxTyIyRpsnIida5rtdb8QtSEz3ZooD3vC0o+F/mHpJxppivCduRWgTWkApKoTB0XfrKybjrM3aP92LkTRrQHP4KT+M+ei2cGQWv28cQg/rTvUP/eYWwXN5VZhQ2kl0KbFxXxCDbh5TINX5p+N1pCRm8pDn13F+7+dzOb9vSlb8p0Y66Bb6wMc3WcFCbFOkuNKiI91EmsLFGBrfh9z7gadoaypT/EUIYQQojlwhZin18OPmOxo4NFEB+03X0djshUAN0vI51TcfIbJJhy8jDOEoKUQLUHz+zbSAmg8aHLD0pfJzrD0E41MdlFd3jut4dfNA/lzWz+/ffNWH92AI6ubrZkNG2xx8TW69IOzYXRGYWvA/iPHWzI+tH+fFTv7syWzm8+yviKnjQc/u459ualoHbgKZ9mZqpsBFq08LA257Zin3uKd387gxvfvYORjH3PzCe/yt1Ff06vtJrIK0onjWxL4CUJeYu/BDEO152iiyWvQ/ltS8RMhhBAiEEctKpM6+bgBRxI9YrnAb5uHNTj5kCIuo2ruOycfNdLIhIhuEnRrYkwOUsjpmCwKS3+uZpzTraa8d/vz0yhyxvH+794k6y4PuD2wJ7sVRY6YxhhirYzo3LA/rg6mNWj/Bu2abbVczW5CXcbcLukgqfG5/LFtQHmAbcPebqzd3Qu71Y3HhGJn8Kn4ZhOcLagYHlK7QkcsGzJ64fJY+WDJ6Rx/yM8kxxWV709LPEgxp2MQSwLvh3x+N3/WeszRzMqYBu3fydsN2r8QQggRzUwKgQMht2/O36cqszAAGxeVPlKAlRLupYRHA7bXZDTa2ISIZhJ0a2IcvI7J9jD2GH3BpXCp6QMwJa6A9IQcRvVcBcDvWweyZk8Pflw/Ag/VJNaKkJm/V79Utj40BegGzklh8mcYcxFGDyffUsBEn215xXEczE8IOGPt3JHzOX3oAtbt6cybP5+KUuD0WImLKWH2smPZdrAtsbbgs+ZqM2ssesSH1CrO5sBuKeGuk/8DaEb1WBngNSzGwaso2oR8drOZLZe0MhpCeP5Ol0FWYVyt+9dNcDalEEIIES5ufq9Ve12LAF1T5mE7HlYBqRgcQc1pYxyYIaZfEaI5k6BbE6LRuJgV5l6b54eEyV4cvFFtm1ibk+7pezjz0O8BSIkrYnd2W3q22UU0/mh8t77hZji5WdFgfftqXstLNZoSbqHqMubnvr2Eg/npAStDejzw9arRZBWnEWvzHtc6MYeJg3/i543DyCpKDnhcGVcTXPoX6kwzw9AsuvtCJg2bz2uX3M/ZI77D4fKv9+PkG3QN+RorM1kXctumoJjHCeV39+NfXcFXK4+pwxlCC5IKIYQQzZHbL59bTbUHHWFL/RPNSrgHk9VADia/hXCEgiicyCBEY4u+yIIIysHbQInPthKXgcMZSgL2YDRmNXnPmiKNSSGXE0pl1rTEIuylcaABHbYyoMNmWifmEo0/GsmxDTmmggbsG0Bh42Iszawqojcnov8PX2pcAdlFyQGPmbtmFDN+Pou0hDyS47yve482GZw5/DueO/9pYg13tdnhPCwIw8gbl6cWyy66pe/HasBZw38gPTGfWHugYPMuHDwUcp/usFTijR5uPg+pXWZhKit39Q34+aA1eDyK+WuG43JXzSMoy0GEEEK0XG6WVdlSc+CoofOtRgOT/VSXL7uqGO7EoFXDDUiIJiL6IgsiII0HJ8/6bPt2zSi2H+zETxuOqHZmTM2a19IrKEDXoUCEYUD3Ngfp1XYPoSbFb0yPnRbbYH1bGYOiU4P1H8f/iOWWZlc23M33AbefP/Ir8orjAwY71mf0YtGW4Zw08Cc6pXiDG0pBQoyb1IQihnTbhlHty7Sr/gNvdOGfUVu7ZbbNZ6abm33UVJW5zJ0nv8Ex/Zb4bfeYsGJnLx6bcwWZxSm4PRa/zxBXC6nEJoQQQvgrqvLYUUN7A93MrnGr8hYNq13owMapDTMYIZqYOgXdXC4XO3fuZP369WRlNbeATXTylqL2TUL/9q+nsmDjcA7rtrpefTv5sF7HR58k6pOrTilQtVi61lgO61LT1Pa6U8RjUJdlaKEp5iwKOAkzhNmHTYmDzwJub5+SwwmDfg8YDB/ZYyUxVicHC9IY1n1DHc7aFItRNMSFaG1+xgsb4PyR4eQ/Ibft2CqTUwYv8nsf7s5px/d/jSa3OIn1GT2Ii/F/T5l8U9+hCiGEEE1SbfLGepm4mnkFU80edC1v/BZxJdovgClEyxNy0C0/P59p06ZxzDHHkJycTPfu3TnkkENo06YN3bp148orr2TJEv876iI8DNr6bbv9xDdJtBfTOrF+SwM1++p1fLTxzqZqXa8+Lho1NzyDCZPR3Rv+7plu4BmPmsxmGODdHHRPsNmnR/VexSfX3chjX11V52XhbuoSrIukQvbnpVDksJNTFI/TbeHnjUPYm5OOWfoaZBYk0/+eT/GYob3XNTuxcHrIIzDJqcO4o4+nlhe8gd6HaQm5pCfmsjunNZ1TA//+t3BoHUYnhBBCNG0mmWjW1Po4b4GB5kuRBiTiDR8oFGnE8hiKLvjeXK1YimuytsVUdhWiOiEF3Z599lm6d+/OjBkzOP744/n0009Zvnw5GzZsYNGiRTzwwAO43W5OOOEETjrpJDZu3NjQ4255dDyF5mO4dUX+tkGdtzDpMG+iz1p/ea/U3qBneMYYTfTokJu6PYqsggQ8HnB74Js1R7AvvzXJsTnUJm9BQ+nTRvHF1YkNfh4rY2p9jGlCUUmoM/A0itpXUoxuoc8+LPsZVQpGdF/HO3+/r/bLwrW3H4OEWh4YWdpM5u5PbuKRL6/h3d8m8Z8FZ3Pzf+9k3NMz2JjRDYBr3rmfnOJWON12tK7yO01X+ajSoLVBPI/hN4suyO9C1UyKeCjd2ec51iVwmxhTwgWHf83PG4fx8+ZhfvsLPZOwMqIeoxRCCCGaJoUNtFFxLRLi56zRgGlaooEingT+g5VjsHISCbyPnUkYui+Vr8UsDKdyiEFJcSYhQvvGuGTJEhYsWMDAgQMD7h85ciSXX34506dPZ8aMGSxcuJA+ffqEdaAt3Ra9k4HOe4gH3rXBkYb3y3uc3VXepjZfvrboWHopEyujsHNB+AccYYMcXzHPDh1LPwOCZSEwNUx49jV2Z7ehX/ttHMhPZ9OB7jTMcri62XhA0/aufO+QdMXINJX+XmmfYUBiDNw+3s5tx4ce5BpY8n98bYd2AZ56MQQMlz30+TX8b+kJ3DPxP1ww8uugfStlwcJI7FwS8niaglgepFjfU2M7jfc1jK/yM6rUALRe67Ot8nvVpcFW5d/jaw9cYG1aF3azXMczd/UYbBYPKBjVczk7DnbEo22c8Nzr/HD7FDILU3GbVq55935evPAxEmO8yxGKsbLFvIROxgxSK/V5pyuBaXZFpvlPWqknyn8WPIBR+rPgDWoqYrgR1cQClcHMM3uTpuAwvO+rPRo616GfGJubWJuHuavHMv3H87jqmP8C8ObPZ3L34bPJUvcQb8iFshBCiJalRNu51WXhAZuJgYGBSVzlm11AET1ppcbj4g3AxKAnMdwQqSE3GguDiedFn21/c27lLptJTwU5+lh6GfdQzI2YbMbGqVgZF6HRChE9lNZ1r3vZEuTl5ZGSkkJubi7JyYGrETaG11wfcbPnX3jClM/JgsF5xinEKDvTbQ+Hpc9oklYygqIqlV4D0W4b+t4fG35AEXLDWDvPnFVz4M3UJvGOIbXu33xlOuwY7LvRVozxyPE+m+zY6EhbpljO4k7b1bU+T7T60DOH/7g+4pdaJfX36qW6cqkxiRc973KQbMA7WV/XcEtVociNWYpdNZ2ZW+NKLuHn906DVSdW2lo5bAz0/wnWjaVyWNl65tOcMjqX8cZobnb/C4AE4rBixYaV9+3P0oUOHOI8CaD00rhidqpCYcPKUPqzMPaDBn2OjeV511s84XmVHPJrbGvu6Au/nQFFid7IvAGk7oOxH6JSD6I/vQkWn4NPKP/oDzFOfYkvrNOZYD264Z6IEEIIEYU2mzsY6DwFgHRSyawhPYVC0ZfuPGS7kTMsExphhJHjNDVrHSZdbIo0i+JC183MNRdSUlpoogNt2BIzH1W/Cn9CNBmhxorqnZk9Ly+P+fPn069fPw455JD6dieCWGKuIo4YCijCQGHWs7qmB5MPzC9JIK7ZBd1c2hVSwA1AWV3o1N2Q07RmDoXqwz+dIQXdSgJUZVIoEkkgn2pyBh7+mX/Qrf8vfs2cuNjGbrLIrXEsTcl/PV/VKeAGkKmzedDzos9Pck0Bt7I22/Vu+qjudTpvJGxmB8ZFD2NumQ2LJkFCAYyaBSvHQ1YnGD0bo9tfmHmt4Me/gSsWxn6I2WY3dk6gSJdwlBpOsS5haWmelUTiWWWu5wjLUA6hF5vZgROXz3k1Gicu1rIpEk+7QczwfBJawO3Tm+C3cwPvXHRB6e+9ynPkNIz2BtwAlut1TECCbkKIpqvkxbbgcXiXgiR2QMW3I+aiBZEelohym/R2RqjBaDR79f4a22s0meSy2tzYrINueR7N2K0FrHWYxCrNPzr/yaf273za7OUAhRSTKEtKhfBR66Dbeeedx9ixY7n++uspLi5mxIgRbNu2Da01H374IWeffXZDjLPFW8JKCkqrv9Q34FZZIcXkmvmkGElh6zPSahvYUbddhH7/flh3BJhWvD8WFvxm4jRBgzqGViulOEDQTaPpTVeWsTbAEV7G4V9jGm746nrw2OGIT1EnvRq0/Q/m4pDG0xRordli7vSbXRWqUAInwfzs+ZM+Rvc6H9+YtNbklgZujZ6roGelRMPtZ5b/NZ1UMpOz4fSXfY5PUyms0uv5Rf8JQFvS2U8mxZQw0/MpV1suYBcZfgG3yqrb19RsZGtoDX87s5qdqkrArXTbn5Ngkjfo9r7nC263XVGnMQohRFTwOECXfj4X7Anj1bNortabW/jYM5dteleNM9wqyySLDWaIn89N1Kd5LtY6vD9PDq15MrMIo4N/u288C2mj0umiOrCbfRypDpOZb6LFq3XQbcGCBdxzjzeH0ezZs9Fak5OTw8yZM3n00Ucl6NYAnKaTDXpbg/X/p7macUbohQei3V7zQK3aK6sLdel9xBFDMQ7vktPHPoLitjTlwNvQTgazrwytAEMRxQG3VxdwK2MM/xaGf4v2WNDT/w9910I0CuxFcMWNGF3XlbfdpfeGNvgmYJPezga2hjUIHqrfzBVcRtP4XZuhDwacSVlVsItbm7ays9L75hbjMu40n8aDyWq9nuXmX6STSj6FaJcdPe1l2NOfyj+3DuDwTvksvCmR2KpJ8poQj/YEfb9plx398nTI6BtibwF+t9kqfg/8xWZKtINYFVO3wQohhBBNiKlNLnLdympd+4KAGvhG/0KJWUKsERv+wUWBFEuVawZL4JvHf3Pf6rMsd1fMQlrTqoFHJ0R0q3XQLTc3l7S0NADmzp3L2WefTXx8PBMnTuT2228P+wAFbNI76jSTJlTb9O4G6zsSNpvb63ScEydQGoR74CwALjAm8pb9ybCNLVqV6JqDIjXRn9wOOw+l/Mu8MwGmT0c/Og5leN+/JTgwtYmhQpuBF81+1yvDEnAztwyGDx+AolTovopel7zC1pjqL/gW6xX1Pm9jWa03VLvfXHQ6fH01uBIg+SBcdG95oLYjbZlmVuRi609PhlsH0c3Zke3swURzrOtibKWVSfWH98OeAQQKKK3YbXLRzCL+d0XTLahwUGcH3afffxgy+gXag1/5FeWGI2bDb+dUNFMemOL7Gb7W3MQwS+ACSkIIIURz8oe5uk4BtzI55LGSDYyk9jmSm4LTkqxcn2bn3RwnfWMU/2jTh3c4im/wTSujgOJKaX526320VhJ0Ey1brYNuXbp0YdGiRaSlpTF37lw+/PBDALKzs4mNbZ6R/Uj7zVwedJ92dQBPGsSsQ6m6FVmYZy7kcs6puWETsV3vqdNxBhY8uMsfJxLPLp0RrmFFtSIdeKZbdbS7LbjbQsx6lHLBrv6leyoFO0wbOOIhzru8sBgHhRST1MQrSe7Ue/mXaxoWLFgxcNRx+aK5rxu8No3y12zTSPb+qwt32U6n6yYXL98cw+qh/r+md9N03pfV/QyZv50On/2zYkNuB3jldczbzwXTIOvb67Fqk6TjPyau3R4ONwZzqDqEoao/B3UOhRThxlNxU2Jv79KOAs9mW7knPIVoIqXaLwN7ewXZofz/npyBccbzcMbz1Z7vaffrvG95rhYjFEIIES2ucN7Nj+ZiNPCG7V8cazki0kOKagfIqlV7bRroX86A9UdCv1+xHfUFf5irGGk0z6CboRTPdojj2Q5luaIPJ9+5nW9M36Cbt7prCd3oiE3ZWGNuZKjR368/IVqSWgfdbrrpJi666CISExPp1q0bxx57LOBddjp48ODqDxZ1siNIEEnnn4Tefw9gQOwK6HhDeeBNa9AOS0VjuwcjyOSitbr5JBn/yD2Hl8z36nRsIvFkk+ezLVkl4dEeLMoS5Kjmobb5xXTh0eiMxwAr2DdCp2vgyFkw+058vuSn7IVY30IMB3U2SappB922m7tpSzq72IeuzyzUleOo/HolOgtYO+1k4rQ3+HvmJ24eeCyGV2/wvaHhrhQcjnYFuij4zj8nBtio4PvJsPRUikpfm8xVx/D389czbbT3C0NXoyPxnlgKK+W5NDAwj5gNX98Y9HRXHWmv8/OIBp94vgm+01ZNwZOqcjtjvv0YxqX3VNtsof6TPF1AsgptmboQQojo8Ye5ml3sA2BnC7mJXFce7eEp92vEExtSMTbtsaAf+x8UtfFu2DQa14LJbLz34zCUKYxuGeYBJrv+yQa9lXwKA7axoCigiEPozVa9q5FHKET0qfWvhalTpzJy5Eh27tzJhAkTMEojOT179uTRRx8N+wAFLDT/CLhdZ0+m/At7yVAoGQxxyzGXHQcfPUzV2R7mEbMxznzGr5/9tbyzE83eN79kT+kFRm1VDbgVUMRX5o/sI5OOtA3H8KLWPp1Zq/Y6+yK8xSYAZx8oOgLjiC8xY/Nhzg3gSIABP6POfoqquVOXmWvoYVRN4t60bNDbWMTy+nfUayl8X7b8T3PO+i/KA26Ubr3lKYdf0K0EBwVmIYlG9Acv/2Jz8J29/oCdg6ps1Kgth3vzApZTfP31IVCaerKb6uR3R9rExDjmI8zELO9y1aIUvEspgfg8/nGyg9uPbNo3hraZgS9ctQYO9A6wxw3HvQ2/nQXFqb671h6DNo3ypd+B5JLPcvMvxloOr/OYhRBCRIZLuSnLguFqQjfrGtsacyO/epayUW8PKeAGwO5+FQG3MvmtWbAjD/qEf4zRZLfex0/692rbeNBkksN+nVnrGYRCNEd1isWPGDGCESNG+GybODHQjAURDqsJsqTIkgWuTpQHPyw53v/PuhcIMK1t8Zno499EJfnmBcqtRxXFaFOsQ/ywDJGBwRZzBx0tzTvolonve8IbAqqGNQscJhXvPe/xxtCfYOhP1Z5rhvsTTrYcQ5xqusvRqwZo68rouQLz5P+Dr68F7GQk+L/P8lL8l0pqYLVnA6OMw8Iyjoa0x7M/6D514n+IyepOycqjAQtYnHDqC+iVx0NOe5+26YkVr0OaSvHvC4VGlxf2qKqb5Z9A0w66LWJZ8J3KDbrKTL5OGzBOfANz0+GwM9V3n+EBVf0sTScu/vSskqCbEEI0QU7tLP97SajBpBboSte9LNVrandQQi7++WM1a+L/YIu5k55GlzCOMHoU6iK2mDtDamtgsIGtFHqKeN5W/cx6IZq7WgfdLr/88mr3v/nmm3UejAisbAlVVarN4+j994G7NarVuyj7Nu8OM1iSegVm4H/yA2YWbYy0+g82woItZTN/nQRzrwWPHfouRl10H8pa/V0/c/6lmN9fzDhPHJDbAKOtWYwFLhlp46Vz4zCMhqu6eND0vQtlw4qzmruiqvXzaE8yuDqjUj5Bxa0M2lZr0J/dCH+cDsC8UbO5+rQHeDum6RaoyNI5YevLOOa/mN3WwPTXmNtjHN90PooJu7z5MUpsFs6fHRfwuAX6D0YR/UG3TWwLui9OxVDyt3sw/ua73Rz8E/z7fXAkA4oEO8y+Ir58fxr+QTddQ1GL+iRHjgZaa4qDVIHV2weCvRActoqNMUVw6V3ev196Fzz1PriSvI+VCRfd4zcLNZDZ+jtupvrPfSGEENEnF2/aAQNFHrVIQdDCuHXtZwGq9N3oIz+EXy+o2Hj0B5C+h5c97/KMcVcYRxg9PvF8y5WemgNoFgw8pelXMjiIW7uxqma+7laIatT63Z+d7TsjxuVysXr1anJychg3blzI/WzatInNmzczduxY4uLi0FqjQvkGUMnjjz/OJ598wrp164iLi+PII4/kySefpF+/igpuxx57LD/95Dvz5uqrr2b69Om1OlckBfsyqey7UJ2v9t9xwusw71r8kon3WoxKORCwrxtdj/BBTNNPmJ1IvN82c/nx8PkdFRv+Gou+dy66VekyVAUkZ8H4GST0WUM88agfL2L/Nxc2zqCr4fDA64tcFLngrYv9n1u47KqyJLe6gBuAsh5AdbohpL717Fvh97MqNvz8NxboH+Hc2o4yenjwkEJS2GaJqq5r0enbILM7F53+qnejtQTunoQRH/hCeaW5Liznbmg7CF7YpHJuOgXEEIMDJ0ZiDjx0CiPUIH6O+dDvuJ6qKycaY/jDXEURxbjx1Lh05i+zaeeuzKMg4GeBmd0Opr+Kz+97WzGd7r+EDEsmGjCSsuGRk+t03jV6Y50+n4UQQkSOU7vKA20muvr8qi1cYh2LexmnvwSnv+S3faW5vr5DilprPTVfS9mwYsNKLDEUUERn2vO652OusUb+e5UQkVLroNvs2bP9tpmmybXXXkuvXsGqp1XIzMzk/PPPZ/78+Sil2LhxIz179uTvf/87rVq14pln/HOOBfPTTz9x3XXXcfjhh+N2u7n77rs54YQTWLt2LQkJFb9Ar7zySh5++OHyx/HxDRe8CLffXSvL7xSEyjjuPcwRc2DVGHDGeJcR9f0Do33w6cAL9BJecb/HVOtF9R1yRK1mg//G5RMCtIyD7O4VD7O6wxuHUXj8fyg+fiaWFSMbaIR1M++vulXHDNV+s3Y53WrlrzF+m3LWDm248zWCrXpXWJdlK0Mz8vYn2LezDTu3tCWu/V7i+qwm1ygOGkrawd6wnb+hFJnFxBOHs/S10tq7HLms4IuqFCjSeO+MxmLHg0l3OnKm5YSA/XZXndivM4kjlkxyALDXMDuzqeeuPKCzSSCOQqpUGt48HL8bLK44VG57EtLyKQgyUzpUHkw+93zPJOvx9epHCCEam2XI39HOAnRhBpa+Z6FsTef6v7726H0MpT8r8N6g8/vsEIB3FvmfrA5rn7k6nxLtIFbFhLXfSDu+ZDJLqXkZrgs3SSSQVbpKKE2lsklvb+jhCRHVgq1DrF0nhsEtt9zCc8/VPFPq5ptvxmq1smPHDp/g1/nnn8/cuXNrdd65c+cyZcoUBg4cyNChQ3nrrbfYsWMHf/75p0+7+Ph42rdvX/4nOTm5VueJpB89i+t0nJGUg3HkFxjHzsIYO7vagBtAFrnM9HxCrm66+d201uVT6X30/zXEHhQs9K5zs/VbEr6BhcHoHg07JTurIZfP9lheZYPG1SO6Xt/aOmCGP4DTX/ViQ5//47BjVtKh31Y8hhM3nqDtt1czgyxa7OVAeWVcnT8evfVb9Jb56JxzAPyenxULXVQH4onjXMsp3GoNvKwxRtlBQ36ln/eaZmfmhCkPX6TsZX/gL03dVlKRgbH0/4aLpJSiegfcwJvX7Tdzeb37EUKIxmYb9yz2k14j5uzPsQ6egqX/eZEeUqPZw/7ygBtUpKr5wj2fN92z+NA9h71m4NUvLclBnc0h9MIWxpKjezjASt18Zrvl6DwedbzCYlaEXGjCg5tUklAo9uuD5OvAVU6FaCnC9htm8+bNuN01r4n/5ptvmDdvHp07+1Yv7NOnD9u31y8KnptbGlFP881N9t577/Huu+/Svn17TjvtNO67776gs90cDgcOR0XenLy8yH5Rm8+iavebBSnwzNtQnO7d0GoP/GMyFCXD82+BM6nKERqOfg82jYCM/t5NMYVww2VsbL2dBeYSTrOEvkw4muTpAgyUX5jCGPUZZlZ7WHAJfjNCqkrIAcB24gwuK76Ytxa7a8gU1bAMBSf0t/DRZQ17d7Yhc32o8x9BO+2w/ijvhgELcJ/zCB59FhZlabDzNqSDVQpP1JW5qw9MmwaeWGYCM8kFXoOjfoZhCYAFlf4KKtb/LuwBMsk3C0gyEsMyloawydwBgNYKfeCu0kT/Cp35D2KTfsBlyfL5+TLRbNDbGEp/klX1z2uQ6ssyvTbksYRckSxKBUtcbLTZhXnRXfDfe8EVD0kH4YobyLCE6T2KyS/m0rD0JYQQonFkmAeIwY4DbzGFIu29aXOD+2EyOAjADOsTHM5g2pHOHvbTQ3XBrmxB+2xu3NrNLp3Bcv4Ka78HyWKFuY6RxpCw9hspv5sreVS/UqtjcvEG2RSKHexltvktr/JIQwxPiCah1kG3W265xeex1pq9e/cyZ84cJk+eXOPxhYWFAQNeWVlZxMTUfRquaZrcdNNNHHXUUQwaNKh8+9/+9je6detGx44dWblyJf/85z9Zv349n3zyScB+Hn/8cR566KE6jyPctlBDhZg3n4Xi1hWPszvBhw/Ant7gDDSjT8HPF+MTfHIkwquvUHzPmTzjerPJBt0OkBU0r5NxyquYAxbCqy/5V/grYy+CK/4BgEM5ePXCBF5tIekHghXrqMrc0wNmPAMF6RCfC5f+E6Ob78WKNg30/56AtUdAcelkWmV6C1hccnd5AYts8mhNq7A+j8bg1C421/RzGapXXwZP1UIJCrqPgWITFOi9z0D3iSjl+9420WxgG8MZRLRaqisHCxWVf++U4ERVCrkNojer2UQi8ZxhmcA/rNV/nnQwWlPNREA/sTTtZR7V5fAzBi+EwSeWP04kHkcIL4759RWw8ELQNkjdC1feiJG2z6/dH6yWvG5CCNGE7GBvecANvMtLq64IKaCIcc5L2Y83xciPtncZZTm0sYcaMc96ZnC/+4WQ2mqPBf3uI7B+NCgNoz5BnfpS0IJEC8zfuZLmMbPyoK79TTwbVly4y3PR5lGAS7uwtaCgrhCV1TrotmzZMp/HhmHQpk0bnnnmmRormwKMGTOGt99+m0ce8Ua7lVKYpslTTz3FcccdV9vhlLvuuutYvXo1P//8s8/2q666qvzvgwcPpkOHDowfP57NmzcHzEF31113+QQW8/Ly6NIlcmWf86hhOm5uW/9tmZ0hP72agwJ8QhSlMFj1Y5Pe3mR/Ke7S/l8WKzO6r4XHvQHFOGIpDjDzxY4NJ94lVaY2MVRYVmBHvWBVESvTjjj4v7fw/trQUJgO015D33saKjGnot1Hj8GGo/BZCacVrD8K/eYzqKv+gUKRqXNorZpe0G273k0aKWSTW+3yz5C4AlQmNcBbD6T0vWcmghkPFv9Zt7v1vqgOum0yvbOXldLo9P+Dg7cCCpU2HTxOzNm3wvpR4LazwWLHbLWNvNNeoGuvDjX23YWa21TmpGHzIja0383gFYKrakUyO8kAvHeZAxZgWHAe/HRZxYbszvDsB+iHJqAsvu9rE5NMcppkkFwI0XJ5tn6D9jih6ABGx1FgWDDS+kZ6WI1id6Vr4p50IcM8SKJjqE+e6P36IHnkE0csNqzs0HsZxaERGG1kFGrflA3mrj7w2U2Q2x66rIUznsFIygFAz3zce21b5pcL0fZi1IlvBOz7gG7aeWQrW21uJI1UssmtsVJ8mVhi/CZCZJNHW6r7fipE81XroNsPP/xQrxM+9dRTjB8/nj/++AOn08kdd9zBmjVryMrK4pdffqlTn9dffz1ffvklCxYs8Fu2WtURRxwBeKunBgq6xcTE1GvGXbgV1LTsb/TH8N1VVATSNLgJPpsLACdgwyf4Nvwr4nQMPVUXVpkbGGYZWJ9hR8QmvY2OtGUP+2tsO94YzZdmxXu57Itp5S/mDpzEEdsgY40mNzof8cvp5v1wzfH9aD3QlYpfGWXvHQOd0RPVu9Lys5zD8E89Vdp+p/d9pdGs0uvpR4+wPIfGtF3v4UC4kvL3+wXWVyk0YQLrNfQrfc0S5qMCBNwA1nm2cnoUr9DdwDYAtBkDuecA3sFq7YBHPgdXxRLSEoCCIfDK6+ydcoCarvvbqzY+jw0MzNIvE6YjFrb3h1gTOv2FYXGV72uqzFosdI8jhlFqKAd1Dvs4SH6gmzdrjvHf5o6B/NaQ6v2yZhYkw64+GLEOVvfYzLExI+o6fCGEaHSuz84FXel3f2JHYq9sPrm2qmPHzhhG8DN/soWddKCNX2G27eZe+tKDlaynGNhEy0p2X1TpYtXcMNK7eqjsenVNe1h7DObdp3sDb1sDFAD74VL0hBkow//64ncd+o2yaBej7CSTQFZp4aqaKLxFmBKIo5gSrFg5TA0gR+fRVknQTbRMjT6NZ9CgQWzYsIGjjz6aSZMmUVhYyFlnncWyZctCqn5amdaa66+/ntmzZzN//nx69Kj5C/zy5csB6NChdrMkIkFrTXX/ROby4/wDbijIrul1sPsec/Q7GGf9m/VsxkCxqokm/9ypM0K+A9Nf9fR5HOi4khBmfzV1WmtmmrPxVJmx1YNO/q9Imx1QfteqbK+J6rDZt13qMggwgQuALhVVjz5wfVm3QUdYps4hhaq5EutGTbkTJv0b0rbSJh5Sk0uIGfgLw46+A1uHm1Edbka1eyDo8evMzUH3RQNDl/6eKRkMrko/cxsv9Am4+VL89/sAM3irqFoVrDzg9vup8MB3sPllcE2DDT9gHhzr9x5vSvJ0Qa2qq2WTz296BZvYHnB2mnbZYWeA2R5WhzcnHGDOug0e/Qre+j/M6a9y4p29WJfRdF9DIYRoSVbrDSzkj/Lr28o3lTvTnqGqP5lksxLvNX8n2tVpGWFT5lOcaP6l+K0E0hZYXlpFPS1QWhEremf/gH3HEUuhWf9iRtHgZ/MPtrE75PYa0JgUUoxZOqFhsV7RoPmjhYh2Ic10GzZsGN9//z2tWrXisMMOqzavy9KlwRMuu1wuTjrpJKZPn84999xT+9FWcd111/H+++/z2WefkZSUREaGdzlNSkoKcXFxbN68mffff59TTjmF9PR0Vq5cyc0338zYsWMZMiT6k1seJBt3dRX5Pvknvh8Qdcm3o2DRuXDqdHIo4C+9hS16Vx36ibxNejv7SvNS1ORC41Se9gSeEq5QxBFDkS6hlUoJ5xCjzkGdTTxxPnk/AJYTIH+UrQTar4eMAaUbvEFe/cgc3wBdSgb0/w3WjfDP6XbpXeXNlrAqnE+l0WxmB7mEp8qvUtB39HLOPao999sPZYdZRF/nHWwkjniMwDOUKgmldHskrWaj9y/W/Xin8Cnv/1N2A+0I9jvrkLY1fzRVDbqV++xmaKegLKZkU7DnTtytT6nd4KPIVr2LWGJCvhHgwSxfQn8Kx/Ay75Xva5vh4fKLTuBfh1fNrarhxktQFg/aGQt/nEHlfx+tDa75qJgf/xG9hTuEEEJ45WnfAEflz49dZLBLZ2BikkwieRSwn0z264ONPcyI8lle2mYbbDvMv9GcGzHn3AhGgOrhAGuOhW7+RZ0yyWEP++lD93AMNaJquhYNJFDamjypYCpasJCCbpMmTSpfcnnGGWfU+WQ2m42VK8M33XbatGkAHHvssT7bZ8yYwZQpU7Db7Xz33Xc8//zzFBYW0qVLF84++2zuvffesI2hIe3RNSyTVNUsl0oHigiwzC8ATyzm1sEYPVaRSz4/mb/XYpTRQWvN1+aCkJaQWbEwwOhNrv1PUpzD/ftCU0SJXyCqOVqjN5JdZWkpEHBWkF58BmSEsOw4twO412A8EGD5WiXhqgDa2Haae8Pa31CjHymGd+ZcF9WeI9RQftcrMUIIoq9jC07tispqY1rr8ryJyr4D2j6EzrkQrPtQbZ5Fn3gazLucqoG31DbZTD+/e439By2MUPX3oi7/T5PN07hBbw054JZCUvkSkNEcxh22q3jZVRF0e+/sQn7XgX9PqvSM0r9pymdOV2IYkazlLIQQIhRu7Sa/dFZRWfqUkgDXtPvIJI8CFAoXbr42F7SoojmFlYJJatIL6G2D4EDvsi2+/zf9iwACEBN89tYOz176GN3rPc5IcWs3Fizk6ppvNFux1JjnOF9muokWLKSg2wMPPBDw73Vx8cUX88Ybb/DEE0/Uqx8oW34ZXJcuXfjpp5/qfZ5I+dj9VfUNzn8U3n6S8iWoSnsT1gMkAKOBUFfwZXeEHt6ZR7trKEgQjXLI88nNEEwMNs5VJ6OUIkbF0IPObCXwzL5QK3o2ZUv0KlJJJofAOcN8ZHYKvePsmpdvm5gU6iISVJALmSi1xtxU52NTSEKjy6fYf2R9nsMtQ+iovMsplVJMsozH8ChW6vW+Sx+C2KP3013V4t+mkRSVLisooy2/wffHwbYhaM87cFI8/F2BYYIlm5Suk2ljJPGK7UHiLDWnCoglSN7Ks5+EjAdhrYIBgFNDZ29F6mydR7pKrf+Ta2RbzV1Bi79UZav0sd5KpdDWSPPZ33af5tKDH/P8YZezL6ns51TDsTPLCygouwN95Ifw64WUf+Ew3Iw691vggjA8IyGEEA2lv+NEdpfmNy5bXqoq3UQ5Th3BXg6wRe/0aVNIMXkUhC2FRrTbYu4qDxYpqwt16xQAzJ/PhS9vqrkD5Ya2WzAf/S8UtIYYBwz9HnX68yirm+X8xXhGN+hzaEiPuV/hGc+bOKtbdVUqmUS//NBV1VgcUIhmrNaFFJYsWYJpmuUFCcosXrwYi8XCiBHVJ1p2u928+eabfPfddwwfPpyEhASf/c8++2xth9RsLdN/VbvfGPAr5mNjIS8NSIDcF8HZGvKBVq+AmgjHdYMf/Gcs+LA6UAMXAtCB1iSpBIp0MfEqWGKu6JOhMxmjRrBQ/xG0jQJs2PiHdXL5toNVEuInEk9BabAtlIBHU+fWHgaq3vyigy8LL3fUx/DzeZQlww9Ow4TXfbaY2W1gzZHgjAVMiC+CQQuYaZnNVNtFdR1+RCSpBGpKHWju7APbB0PPZRgdtxJPLGmk0FG1Z4fegwWDbqoTp1vG+91RPtk4hu/NRfSkC6v0hmrPY6BYr7fQnegLumXrfFqRTDZ53sq3j3wOutLstDaU3i+wgKc1ce5uxMTkc4wxMqT+k0hkAL3YywHceDAxceOhZPCf6GTl/TcqAWIVqpX3/Z2lc0gnNbxPtBFsZLtfwM10W+CvUZDdHvosweiwA4DTjHEcIAuN5lbL5SilsGEtryL27B0xPHmbg9XvTCDLlkh2bAKn/V7iF1M3Tn8Z8+RXIbcVWNwYqTksUkORoJsQQkSvPF2AB49fruLK6WpSVBJFZgkWLHQijWJKOET1wkSzW2eQopp/0O0Hz2JSVRIB528cNhfmTK2hKJ2GkZ/Ae09Q/h3LEQO/n4ledxTcdSZ/6brfpI0GOTo/pIAbBK8Qb6CwYiWOWPJlealowWoddLvuuuu44447/IJuu3fv5sknn2Tx4sXVHr969WqGDRsGwIYNvl8oW8p05lDt0hk1tjEsGlplovMPRXtae+MhqRrsR6M6ToF2Q5g04HR2fXsEK92bofNqnOuGQ24biHHBgIVw8jRUjHfpUia59KI7K8x1jLYEyG0QpQ6SVW3ADbzfwZ24GGD0Lt9mrfIjUPlDo2op8ebod70itIAbYLTah3nP6d4LkV39IX03rD8a/2IfCtVhS/kj87MbYdF5+AV+P72LF858n6nVr0KNKnm6gO/1r0H3a1Ohn3kbMiuKBpid1lB0/dXYVTF/6U3EE4sVK61ICfg77xCjF3Zto0AXEUdMwLwYlW3S2zmRMdW2iYRCCskunUGptw32DbgB7AK6Uhocc5BlW8/FxoUhfw6kq1TW4i0kUblyKRYX2DeBswfEKohdiVLei8ZNnu30sXSv/5NrZDZt8Qmcmdlt4cn/4q1C7WX2+JOUq+/kXttUOql2Psf3ogvr2ArAzKtiWTXEwm2PO9jXycGDjypy0wIvuTVsbmh9oPxxbRIpCyGEaHwbzG20Jp29+OZns2GlJ11JUvF0pWNpkQWTA2SRREL5teBuvZ8B9InE0BvV7+YKbNoaMJ2KsjvQ9iJwVBd0c8Dicwg4qSGvLeS1ZldKzd/jotnn5vyQ2zqCXKuWFVJw4mKrDlSMQoiWodZBt7Vr15YHzSo77LDDWLvWP5FkVT/88ENtT9li7a8yCwvAXDwRZv8Tn0DHuBmosb+UPtCACfbtKMNJXPwqeiQN5O1rJ9LGMRELBu5TXvH2tX4kzPg3/HaO9+tq+w04briS7ZbdrNLrGU3TCbpl6+qnNJdJIQmLqpipZakya8uOvTzwFspy1aautklNjaQcuOBf5Y/NRz+FgjaVWmjvMue40mCLaXgLdQScaanY+uVZmGObTp6tffog7WlNBoGTDeudA3wCbgDsHoje342cdtuAioS0H9mfD3qePkZ3vvYsqHE8JpoVZoCiF1Gg8kxRlb679K57pffB98AhgFVD0lxaDY7nX7ZbQ+4/SSWQRAJFlPhcNNuVFWfH6yFvEigPJH9Wvm8xKzmZJhTlLfWLXloecAPg6+uoHHADYOtwLs2dSqd2vgE3gFHqMNbpreWPl46y8bfPap8HMJMcdph76WpEf/VvIYRoidaxmVWlFUkrc+FmPVvoSw+Otgzn/8y3y/fZsGLBQhtascbcyATLUY055Ih41fMhewicO1svPREcqdUcrUFZQAe6di29Do7PYwtNO8i0m9DSDZn/vRPH0lN9N7bZirppSkXaCuCA6f+9VoiWotbfdGNiYti3z/+HcO/evVittY7hiWrkVsmzpV12mH0n3ulsquLP/MvAeRDV9mGIXcHJKfn83H408cRSjIOvzQXEqhjutFyNu3KhgbefwBt3Le0nox964QXsZC+LzOWN9CzDI1PnhNTuKuN8n8eVc1wss33KvZZryx+3hOWldU1qqt02zFdehoI0KtZaau8so8m3oYsTMR//L/run6h2abPh4S/P5jqNIRL2k8WeA7GYD3+KeedCzDt/9v7/tRfQbitYgxTfsHoDuRYsXGdcxHXGRSSr4FUgy3K8haIs8XG08fn5Sd8Nx36Ht4JpaZJ+j4bVGrJWoU56hi50rPU5etLFJ+CmtQVn9rnogzeBfQsq9QOUUZGb8T3zswC9RDfTNP1nPdsC55tMsQZOCXCo0T8sY3Hi4j+5XzD48VzsN+USd3MuV39QFJXvPyGEaIm2mdXPSE7QsXTE9xrDiYuudCCDg7zj+bQBRxcd3Nod9OYpANaaChcp0MFuXCno+wvK5uRgaVGjpsilAy8XrczcOgjznnmw9DR8vpei4EBP9PyKdD4a+Iumc70vRLjVOkp2wgkncNddd/HZZ5+RkpICQE5ODnfffTcTJkyo8fjjjjuu2uVD8+eHPpW1uTOrJo5y2wkcJ1VQnIRqN4+uSSuZFfMVNmVjkvN4vjV/YbfOYLW5gRHGIIaYfVmqS2ckegJ8YCw+jZQj57ElpmndndmnD5JAfI3FD8YbvglNP7I9zz4ycWs3PVQXuhudGWz25aDOZr/ObMghR4U8CtGeJCgcC5ZsiP+Vmlb3Wcx47K/PpHCHb5Ck+8g/2XHWPwAwH/4CisoSuOsq/6fi8YX3MY8xDGwiSxlyPQXw/FvgqRLc2DIC/f7DGJfejdn3V9hQ8T7rN2QLm9P3YgLJJNDVqDm4NET1Z6QawhK9yi8vS1UHyGKb3k0P1bkOz6jhFOpKP4uF46DPBOjjAQxU24dQSd+U77Zh4VCjX63PYa8y20tlT8HMvgzQ6IITodOVYMmC4iPAto1dcSvZYu6kp9Gljs+q8e0kw7/q3CmvguU0+L3ih3XoiK3cn34+gZxmHc8uvY83zI/Ll/zW1dMvHYmn9FejR8OMxS76tjW4dXxsvfoVQghRf+vMLSQQh4kZMD3FFnZysutKn20KxUhjCDZtZb3eRqbOaZJFh0KVoQ+SSFzAxP7mT+fBgr8BTnxnlAe4OLYVgCvBf19ppe+SEIofRavNeke1+7UjHl59hWrzPOf4zrzfqw8EaShE81froNvTTz/N2LFj6datG4cd5l1+uHz5ctq1a8c777xT4/GHHnqoz2OXy8Xy5ctZvXo1kydPDnxQCxRo5oCKK0B3XQE7hvruaLUH2mwDoJ/qgU15PyS6qU4cJBvwViQ9zBjAMGMg2zx7OLi9EwE/QLK7kP3Um6y75+JwPp0Gt4f9fgE302WDP06CPb1AG9h0DJ+k9KL9aDc923jf+kdafJdKJ3sSy5PXP+l+DScubrP+vXGeRAR01t3Ys/s2Slyldz1TZ6LSXwvaXmuFdc/LFO7xDxwd3Nqt4kFRaqU9pe+zwz6HSc+UbzJiPCgU77tzuMV6Wf2eSCPZ5yj2D7iVPb+dAwAwLr8d06PAZfB1/H94i4/ZaHpnmHowfQp5BNNHdcOGlThiKKrhos1AsUXvoAdRFnSrNNNNlxwCePBenLnRjkN8gm4uPEGXeVTnSut5LHWvwVM6g9fMO5WKO62gi0ZA7sVgemcVmm0fYnnaX/Sk6QTdNuvtHK4G8ZteUb7NSMjBPOZdGHIJuIHUT3m+y6CgfXRS7TjaMpyPzDkUUOS7VDVEpiMGfj8FMv1/9n/Y6ObW8bXuUgghGpT9bwvBdKEduRhp/bxLApuxo0suYBUb8ODBCLKYKY8C0kkjv9K2THJIJJ5WpDBGtWeHuYd0S2qjjDkS9rA/cMBt9i2w+OxKWzSc/i847Ad47HNwx1fssjhQ95yF/u5S+PkiKr5TVRQTM9E4tQu7qn06h0jbpoPPmDS3DILfTqf6wmomHPe2z5ZkEjF100kpI0Q41Tro1qlTJ1auXMl7773HihUriIuL47LLLuPCCy/EZqv5l8pzzz0XcPuDDz5IQUHdlro1R5+7vw+4XV07Fb18nPfLj7bC0PmoI75Ald5VOcoyvLxtD9WZYWogscSQpXNpq9J5yfYAn3q+h98nEXTZX0E6XQoGkhWTQ5qRGuZn1jBiiPFNNJ7TBp6YReW3uAv4P+D/5hfy8Ckx3HmC/8yMDrQhnVQyySGTHH72/Nlsg26mNvm5OB/TVWmZQf4pWNJfLw9i+HG3pdjRF7oDVQprdjlsZUUWkdbb4GDl3GYaRs7DiPVNWKvRZJJDhnmA9kYbop07Jg/isyrN4qtkcEW+SsOiMSya2Xou3+qfy7dXrUAZTBejA9k6jwTiceAM/u+B96JurbmZ8ZYjQ38ijcBjVvxbq4Rf0bkX4F1eaqDiK4pRKBQjGERaHaqKXmo9k4/cX/M9pf15qvy7mKnlATfQ6PwT2Zy6o+YCvFFkk97uE3ArY6RPRyd+A1jAvpGPPOeToOI41BgQsJ8+qjs7qVtSZ/NAJ3jmA4K9cJeOrC7ZtBBCRIbRdkikh9BonNrFH6wGwIKBFWvAipIKFTC1yFzzZ3aXfkbsYA+HEfizpDkImtB/2QlVNihYci7GkV+hHpiI8eNkWm8Zh6f7UkqOe4MCeyHq1GmYAxfCT3+D5Ew4/k2M5OzyHnaZGfS0NJ0bfWUO6uyA281pL8J2/9zuXhrStkK/JXD8WxgJvjPrN7Gdg2TTlvQwj1aI6FenJGwJCQlcddVVYR3IxRdfzMiRI3n66afD2m9T9ZteHnC7UqC7r4GP7wYzFraNQH92R/kCtJ/Gr+Ou07x/b6vSWKrXAHCcrqg2e6jRn2+6rIY/J5ZuqZLgXHnQcbls1jvq9EU4EhZ5lvnO3vj2cqp7ez82zxEw6NbWSCezcg6GZlxQN4d8tG03KKc3gIsG++ZqAzxYskk0PBSMVRCj4S9QlmL+dUI6y8b8yjp3HHrfA3BGW5i/D3YkQ2whnP04Rg//wAF477qu0OtoT/QH3ZzKibrjPPTMx2HbENAWsJfA0R+hJrzp09bE5HX9X59tbUnHZbqwGTXfoGhjpLHWDK3c/DTP+1xmPZtEFV9z40aSoSqWEai4ZdDpWig+DGJXoOJW+rRdwir2mLWf6QZgUQqlFQYG2r4d7ewOKFAlEP8L5F5AeR45+xY26F11fk6RsE9nkkRCeQGOylRMRZXg18yPaONJCxp066jaYmAQTywFNSzD9/P1tfgH3Ezs8cVMm5TOecMk6CaEEJG0Tx+kr+rBfp3JWONwlplrAxYEK6smWdXuSjdlskIsTtZULXUHKfzXehfsOcR3Wydvsaq9CT+SeloyAEd9uYcl93/u285eBLde4BNwA1itNzSp2fVltpr+10o6t3WQgFvpt1BlwsUPYXQMfO0ag50M8wBtLRJ0Ey1PSEG3zz//vOZGpU4//fQ6DWTRokXExkpOmDIL9BJ0ySHe2SFGPqrV6yhrjnfn24+DGThh9vzv+3PwOJPWiQadVMVa+sqJuIfSn2+PeBO9bQgsPwFvnrjSX5jWErjsVtZY17JSb+BwmsZdwr1Vl6bF5QduWMoWZKZLKklod1t01uWgY8hNWwPN9Ptkls5BWTOhw63onPPBko1Kn17tMcpw8kq3TP6xbxfZxx9EnfcaFts+zrR+y5v7x6ILLgFXV1AGjI9Hpb+ISv1vtX0WUsQScxUnWsaE8+k1iPXuLajYYtTVN9XY9lrjQqaZH/hs280+clQ+bQgwU66KTvhXoQxmCztZZC5lguXokI9paFmm70W7il0Nsav92qWSRDZ5ZFG3i/wZ9idJIRGrsjKkwxWsyzzBe0Mi9X0oOgpi1nqDo/F/oFq9zkFG19xpFHnTMytgwC0QVc1dgjgVy6HqEJbqNShUea7AZBICLrPxPTjA79OYIk5/8BkusT8b0tiEEEI0nExy2FBapbqNbhUw4Famplyxdf08bio+1HMC77jyH/DiG5BVmoKn2wrUmd7JIKmGN+CWV6JZ8t0o/2OdCfDhQ3D1DT6b1+pNnE7Ty7+wnwB5ra1O/CZqQMVjbYG3/g13nxmwTwdO/tCrGUJ4ijsJ0ZSEFHQ744wzQupMKYXH46m2zVlnneXzWGvN3r17+eOPP7jvvvtCOk9LkOF2oPdMAx0DgHZ2RXumwYcPQFZ1idgVhU5oDXSgLQNULzJ1LhlUzDoZbPRHmaAueBQueLR8u/nT+TD/UvjP85jA9RaDD7vn89/LE2iVEN3r77OrXCCoE19Hrzge8qtWgfR+Lf3o8sBBS4uyoPf+G5w9APi96ChK+mlijeY35S1DHyCBeIy4deTH/TPk44bH2PB0uBMLRWg0GsVt+3PYmD0G3w9ijTaTQpos+Iv5Z22HHxFr1Eb/ehBVpJPCe9ZnWWyuJJ4YiqokMs7WubRRNQfdjjSGschcxlZCm5l1g+tR1lnmhtS2MSwzg9xJrmQQfXHjIZs8iinhadfr3Ga7olbnqZzsOVnZUbFrwZKFLjge8s6m7D2p2j6OMpzk66aTxsClXdVXWKvCXUOutv6qJ5k6m93sJ4FYcilgBINZyB/V53k79UVYczSUtCrdoOHiu8gn8O9RIYSIBs6vrwBnPrpoP5a+Z4EtAeuQyyM9rAaRV2nJ6Jt6Vp37SSSeXF39jeumzKVdgQNKgBFXCHdc4Lf9KCpmdxU5q7kILEr22/SXuSVAw+jnU/RAa+56sJiLZ+by8BFv8EGPsrQ7Aa7wHdVfF9zrfp7LreeEb6BCNBEhBd1Ms5rlZrWUnJzsU73UMAz69evHww8/zAknVF1L33JluxNAV1oqtvcQmPUfalrvmNJxN7OTf+cmptBatWKz3okDJ0vM1fQqGU88cVxhnEs7WrOfg+XxA/Ora2DBJT59eTzw02aT3g/ns+9fyVgt0Rl40lr73bVTNifqnooA7xg1gi/srxKrYmrsSzl7oksT0LrMBDLcmu726Hzu9fGse0aN1V6rOlwNxq7sFFSaGZNKEhtKYqhaWddiyUEnf1FjnwrFOr0Vj/ZgifIkx6FUtL3EOINjrUew0PVHecCtM+3ZVbp0IzPEEvJdVQdaq1ZsDXE55E724tZurKpOWQPCLpPA+UDAm2+mFcmkqiQ66DZsZScuXPzb8wY3Wy+r0/sg36NZueufaHcK3t+TDiq/J7WjFypmIy7tv6wmWu3XWRzKISyj5gBmOqnYqH7ZcopKYjt7AGhHawarfpxhmcBa96by4J42FfrP42HjaOj7G2rYt96728e9DVsOw9J2N55j3sVIzGW52YpLnLfzkPXGJlURVgjRMpjrPwbt/Q7jzvgDEjs226Bbvq64LtOAFQtuqp8IEUgBRRwgK4wjiy7bzN3EEhNyjl2AXezjaMcFmGhsdhv29rfizOhZpZWGU//P79ig+eOiXIauuOH38t+LOGeWmwJrHF0yChln/sD8QztDfh+q3mznxFer7TeeGP7r/przrCc3zMCFiFL1+nZWUlJS6yWhb731Vn1O2WJY7TvBtgNcXQAFm4PkarJnQc/lHBLTjb+GTCdvwK/M8YzgJusUlFKcoI4mk2zW6I3sLv2yv43deDB9w1TLTww6lnwHbMsy6d0mOgMiDpwBy6KXMVDEqdgaA27gna15drKdWXluQBMXs42utqE1HtcUHdBZGKiq74Sg4ojhHMtJJKp4/mFM5gVzJgDZ5DEsaQ0bio/Ge6lXyCEd3mJd7GyUUfNFjUazjwP8ZW5mkKVvPZ5Rw8uh5ru/ZcVMKi/t+JvldP4wV1FMMQs8SxhtHFZjP8OMgWTrvBrblfHg4QTn5Txt+yfDjIEhH9dQqnutPJiU4GS73k1blYZNW3HjxoLBOr2FgapPrc+3tNhNiTu10pYqP+92793mXXUsJhAJWeSEFHADbzB3G8GrjQEMVn05Ug0jR+eyls1s0NsYpPvSnc5kcNAbcHv8v5BfOpt65Ynob66BwuTyqr2e9cDCC1HXXcWBLmv52Pya67ioSeasEUKI5iKvSnGE2gbcKl8PBkui3xxsZ0+tAm4A+zjIbp1BAvF0oT2H3fRv1i/vTvH3F+BwA/1+g3Hv+OVzA1jHFh5wvcBDtn+E6Rk0vPfcX7CRreWPT/zKzd641hx66beYltKbe2WXeEYOJOdC91Uw/h2MNtXfKI4lxj8lkBAtQK2Dbh6Ph3/9619Mnz6dffv2sWHDBnr27Ml9991H9+7d+fvfq6/02LNnT5YsWUJ6um8SxZycHIYNG8aWLU1zGm44mdokT2WhOl2FzroC8s6B9kEaO9NQZz/Lmannst7jreBXebmVoRRrzU3ly47Kcvm0I52Dle9kdVwPeW0JtFbfUNAxJXqXl4YyDb636hpyfzM7x/PdwYfI1Q7SE1dhqC/rM7yotZVdQQNuWoP+z/OwZUT5tkLgdhS3A4d1vhqmvgOG9w5yj9Q/OMy6huXOIoj/mSRba1Q1FzVmQQo8+V9wJXgfA0fY3Wy510O75OgM7gLV5kgpMxbva1ZYqe0E40j+7fkP3enIbvaFdK7WqhUePChqXNFa7i+9mUWeZVERdKvporaAIgoowqXd3GO9lofdLxNPHHe5nuEz+zSfGdGhKDArv0q60h8FRg4qZjNAzfnLokhtk1kX6erfn51UOxbrFXSjIkVBls4lTaV4X6o9/SoCbmXyAuUWVHi+vhrjKu+XiGId/KaHEEKIhlegi2hFMtmEfrOusrLrQYVik7mdzeYOehmhXzs3FYs9gYt6Vaek9MZ+MSXkkE8WuTgOXccFwxQfmF9WG+DMo4CvPQu533p91K/mKPOlZz65lYK4m/oa/C/+8oqAW2VmCuqWs1H20AKZm9jBr+ZS/sHkcA1XiCah1pGUxx57jLfeeounnnoKu70iw/ygQYN4/fXXazx+27ZtAfO+ORwOdu+u/i59S3FAe4NhypKPSvrGu7EzkBLoq7cGu4M/c3pg7nkOM3MqyboiX9RRxnByyKew9AuwRrNF76RjlSTt6uL7oPNKvOGPii+s8XaT76+PJz6Kl1duNndUu99EM0rVPLOojE0pOiUvQyV/QbaRgdahhjyaDq11tcnZ9dZDYcvheAOwlf94Ldulsa6aUP44TxeSEv8XKmUWOPvw154bMA/chvYkBD7B/+4EV6JP3y6njSs/qDmoFUlFNQSSUkgixeLN6VFYKQDSVqXRhjS2spsPPXN43vVWSOcbaxwecsANvLkNfzGX1uKIhlP1rnsw8SqOqy0XcJpxHLvIYL5exDpzMx7twdShpzboFVP5YlaDbSskzYHEeahO16GU93Ontne4I2m3Di1AW6am5eIj1GBsWNlCxXKXvXo/R5b9fqyhAI2PLcMx71yI+ca/KTKbzmsqhBDNSdk16ha9s84BN5/+0PzFZma7v613X9HoC3N+rY/pS3fuUddgw8ouMtjDfty4Od0YH9I12krWsb8JLdldon0rzJ/9ZQIkBMsvq8FSu7QdO8y9OJtQqg8hwqHWM93efvttXnvtNcaPH88111xTvn3o0KGsW7cu6HGVK6DOmzePlJSU8scej4fvv/+e7t2713Y4zdKeStNuVewaSHsVnXMenLcf3m0HxRWvHSe/DJ5DmLd/LKCheAT7je3Qwbv7TMsEjjCGMsf9I5+b35NJDvP1b/zLejO/uv8sn42jrC7U9df6jeV560McZT27IZ9uva3Qwd93AG1JZ3gtZ/6M02PY9O4VFK4ZSYzOoQ7x6XpTQJwNrj7KxhOT4mo986c6u8jAgRMAXTIAig+HmNWo+NKCBiVBljNXYitJKU+9nqcL2FNwCGbxaMg9l3wUFB+CNuNQ7R7xOU677LBtcMA+Mx3R/SFcU8WvDqpN+d8rz4qLV3HE412Kn0cB93me5ybblBrPN9o4jPfML2pMkF/Zl/oHnne9FVL/DSk/xHyBicQTr+I4whjKd+YissjhMNcZAPxq+4hhlup/dp2m5okDDn4v9nBo0naWFyaBNQvV9kFUzFa/9h7Cl6O0oW0zfZdpmAc6wVtPQXZHb4DsnH+Resjq8gBnQQ0z3dKNVMYbo/nNXE4WuSQRzza9m7l6IQAqfTd65Cz4vdLv/MM/hYNdYeuwKr2VBsw3juadb3YzcWI9n6wQQohaO9l1BQvMJZhh/mybZy7gNqpfvdQUrWZDrdqnksTztnsYZxmNw+niWXMGJib96cVJxhgOV4P5TS+vsZ/dOsPnGjFaFesSdlVZkVGYbPDqR5/Co1MqFVQqlboXXZyISgx9Zv4y1vKruZRjLUfUf8BCNBG1Drrt3r2b3r17+203TROXK/gX5rIKqEopJk/2nVJqs9no3r07zzzzTG2H0yztMn1zDqlWb6Nave198ID3f5cYk2ilUpjr+Q0j95zSrD/eoEyhs2ItahfVgS6qA78Zy+lBZ9aVVtFJJIHWtPJZAhfIL56lTInioNtOvZe7PMHfNxYMutCenqp2+YbmvHQBjl1J9R1evWigyAXP/egiuxheu7DmQFiodpoZpJFCZkln9O5peN87BrS7C5W4ANVvMTr+ABQFvkBIiYXEYYsoBmxYycgZz4aDx+OdKVkWoLSAs2qiWdDPz4DiVn7bwWTFxKs4YL5KG6Pm6p7RxoaVY9UR/J/7bR50/x8OXKSQxBFqKK1p5ROuc+FmaMlpvG7/F4cbgQOQAENUP2Kw+wTdTJcVfrwItgyDwT+gRn2GMip6d+LiCc+rHG0Zzohq+m5INd3BHEQfVrMRgPjSCpiDVV8SiPW5Fxyswlhl5+8sYk5B2evTDVJfR8Uv9b7exUMgdi1KVbx+Gt0kinYAfGv+Uv53XZwIz7xP+cd2YTrMfJqO1/yb/O6fo9EUhRDo7EsPslUuq/QGutCRfAp8KuwaZz0HZz3nc4wVKwqFCxfm3T+Aaa+0V7Fxh1QxFUKISCgyi8MecAPYyPaw9xlJs9zzmOy+vVY33iwYdKNjecqOiZZjMZWJFSvpKhWbYaODaoNFG9X225MuPoUJolnQYl9f3AglAa7NczrBk/9DP3giyhJ6HsGl5hoJuokWpdZBtwEDBrBw4UK6devms33WrFkcdljwJXxlFVB79OjBkiVLaN26dW1P3WJk6hy/bVqDLokBqxuLzeQI41AWm8tpq9I4kPArCVmTKDS9Mw+uSU33O/4f1sm0dbcmU+cQTxx2bCQRZOlfJet0dOfY227uwVLNLDQNHGOMrPUssW0RDrhV9eXq8M4A28lesshFF5WV7TYAD7roSG/QzeKB+85A/3UEbB4GHoOTLMfSx9qFo3rYOGOInYvc/Zlt7sSFmw0FnSv1U0ElfVXxd0pzk2UGyBFiy4d7zsAdW8I6vYU2RF/QLcdT/V08F27SVavy5c4GCicujjKGEadimWg5lpme2eVLANezlZ16L4cTPDA2yOhL5Yxu2mWHhz8HV+n7c+sI9C/nw20XUvkt7nHE8L7zW4YnDQrrDMlQZVH9a1UWcANIUN6AzaHGAJ+lMWmkkqdrXqL6XWGVWYA5l6NzrsAbXlMQsxY6XocynOVN8ikkleQQnklkVS5GoXf1x/8jW+FccSzH9diHAydtlP/v/qoGGr35zbOMNFI4SBZDjP5kmTnVHmNBVeSs6f8zrB1Xaa9m7NFbAf8AuxBCiIbVUAlQMjiIqU0MFb05nWtjq95R65nuCsUIYwipynu9MNpyGKMtvt91Y7DX2O8WdrJT763dgCPkoBlkGeyaY4Mf5IqDnHaQviekc6SQxB4txRREy1LroNv999/P5MmT2b17N6Zp8sknn7B+/Xrefvttvvyy5oTzW7f6L/cRvlZ4fJdLmt9fAt9eTVnYwkzN4NJ7+zKXBexmHw6rixW9kvm+0M2gGIPD4wP/s6aqRH4vXac/hhEMUH1YrTcGbFtmCzvRWkfki3soNupt1c7WUygetd1c6367toJtUVS8aViX8M7KySoN7KqYtWgsgAeweJczl1IK1IDFMGAxbWjF57G+y4936IoPV3vseiipCBBZW82kQ9xe9sXNw41vVSzic6CoLKhWmui+9zKMWG9eqP955jLGUlHAIVqsoPplzABJKp6DZJJIAgfI4mbLZfzTdhUAz9ruolAX8aE5p3xpb01BJbuyEUds+Xtcbzy8IuBWJrMrZHaC1rsxd/eBF98gFwsvoXmJPKadH8vfR9dcuTecdpvVVwjtQWd2sJfOtKdzaZWYZJVIPHGU4MSNmyxy2I7/BZxLu5jn+Zk8ClDAkJhjWVJSdsFbuRBM6f8dA6DkUIj/vbyPjXobh6sh9XqODc2lXfzFZrS2oPc9ACXH4fv8vH8/sq+bH/RWdrOPFJ3Ih+45dFbtGGj0oZVK8ev3Isvp3Ol+GgOD/WTyrfkLvehSXmQnEA8ahQGYqEvuQ8/fAIvOgdgCbGe8QIe+o4HxDfNCiCZDa80e9pd/mapuFq8QIjziVAztdRsyOBD2vteYmxgc5VXlQ2XUIU1MX3rwsv2Batt0pSN2bDgJfnM8laRq8yhHkw3mtsA7uq6GtccSqOAehhuSQ5/Jl0s+P+nfa24oRDNS66DbpEmT+OKLL3j44YdJSEjg/vvvZ9iwYXzxxRdMmDCh5g6AwsJCfvrpJ3bs2IHT6fTZd+ONN9Z2SM3OFioKA2iPBb69ispfJHVOB/5vUR5fHv4DAOPUKLraDS6z2/07qyRJJZb/vUAXcollEv91f1XNEd5pxkvNNQy3DKrTc2lo2TXMqDmJMXW6S7f4tiTGPJ/PhvBfw9SKAo7uZfDJFTXPSqyNshxQKmERtL0fXTQaFbsakr4I2L4vPfy2JanE8lussWnvYBgZmK4uqMRvMOOXsNa+lEOcf7CH/b5VUm+aDK+84p2SDtDzT9RF92FuPhTeeIZXzBheIZfLj7AxPYxLautrpa45D8j/PN+UJ6Ado0b4VBIGeNX+COM8o5nsugMgpIuww9UQvtY/eR8EvKjRFQnw33sEKAvQen9n3PBxSaMH3ZaYq4LuUyi24s1Vtp3dHF0pwLox5lsW6xWc4LwMgOwA1Tt36/2c474BgGQSWddtItfuKWa1w4OpnGx2WKh4Dbx01pXonHPgBw+sOpqjUChyeeBkO3efGJ1LI8vzuRUcB4XjIR440QPfmmBawPDAuBmcNXgkf3gSQHt/rqe4/wnAbNvLnGw5xq9fpRR3Wq/mNvcT5dt2sc8v4KZNhX7jadg8EicKlAfOehLj8K9Q49+B8e8A3nD9FjojRAkOejm8wdcj1TDmx7wd4REJ0bw5TAfb9W4yOEAM9vIbehaqX+4Yqlmeuc0m6LaBbbU+ZpCq+bm3N1rjNKtfjZJDPmvNTbU+fySs0YHHqS6633tNsGU4FataFJa4fDxXXI+yOQMeF8xB3XQKSwgRDrUOugGMGTOGb7+tW1WbZcuWccopp1BUVERhYSFpaWkcPHiQ+Ph42rZtK0E3KP9CCoAOPMNsn7NiGVYXo0NI/SZXWk6aRyHJlYJw1bnL9QzfWGaE1LaxHTSrn452pFE1+XdoWiUYrL7Hf5ZIc/FP61W84J5JFrmopO9RSd9X236W/UW/bZXfT0UqDx27HMx47x8gR+WRgH/QzEjOgjsv8NmmTQWvPw+6ohz5m4tdnDbYxcRBAUqUR8CeGipJ9qYbTu3NjaVQTDSO5R9W/5Lovj+H3uBn2WzSQLNKRxlD+drjDboZnddjDvsSllbKWn/yK6iE0t8Hbv/Xymzk4rv5upCbPI8F3V++zLhUAhVBrxhlJ12nlj8+qP1/vvdUSvCbRwFZxk4+6upNd/C7cxtH714LJf1Aub1n87QCR3/YrGFVRTBOAw9+7eTMoTYOaV+nj8IG9aSntBp4pZ8JugI3LsBof3/5ph7GWSSVVgmu/LpWNwP4bMuJfOD5kqV6DRqNAydWLBVLSAH900WweVTFQdoK/7sbfcivqMQcn/426+orSIuWIU7FkkYKWeSym9pV3hWiQdiTwF0MpgfVqg8qoW2kRxRW29jNdvaQTCIufHOX1sRcPBHm3ACeGOi+AibfgWH3DZysqWE1TFOSFeAmXmXmmqPgv3eDMxESszEuuo/H+ta8UqaTahfS+RebK0JqF2nrg6QVUhYP6qqK1+Mi4zTesD/OHa5X+T9P7QOKezlItplLK6P5ftcSorKQpwBlZ2fz4osvkpfnX446Nzc36L6qbr75Zk477TSys7OJi4vjt99+Y/v27QwfPpynn366dqNvpg5Q8UVTWd1w+GdU/jqVEOvhqFE7GEAvRqohDMC/sEUgSVQE2d72zOZHc3FIx60nevO6/WVurnb/OEnSGVQxJSG3TVT+wbPK76eCkh7oPS9Bzt/Q+/6FzjuZbJ3LocYh5W3SqOaD1R3jG1wotWJ36ElZG9qaGi4qOqv25CrvzLU0UoJWD22lUjhCDWWI6o9LuyjSxbR1jKJzyRi6OY5Fa9+L5VFqKEalqfzGeY9jPHF0xZ9j3i/fl3j2i+Bzd1tz14TqZ8CGW03BSQODDlQU6KgcdAPoSFtONsYyUPVmq95V9XAyzAO0oRXxxNGFDuwuPd9ul8mmkkRUm8cxekzC6H42dLgDsAMGZAZeor35QHRWMy17XiTOh1jv7EmMfFSrmYA3j0xfutOVDiQp/5mwBTp4UYUOqg2DVV860pYY7PSiK+2okmd1b6DPFQV5/sVVckPIvSdahiONYQxTA6MyL6doeWKn7iL2xkxib8ohZvIS7OfMifSQwqosf2oeBT7XdGYNQTdz7VEw+y5wJoHHDpsPhxff9GljoCo+h5qBQPmyy5i7+8A7T4Ij1XuDKb8N5vRpWPJqDtJ2Vu3pQ7ca27lw85h7Wi1G3Pj26P38qpf5bTczumO+/jTmy9Mw1x8OVOT8Hm0chi3IHB6zOAHz49sxn3oX85l3ML+Z4l3BhTev2596dQM9EyGiT8i391966SVWrlzJDTfc4LcvJSWFhQsXkpeXxz333FNtP8uXL+fVV1/FMAwsFgsOh4OePXvy1FNPMXnyZM4666zaP4tmxoXvnSbj7Kcxx78FG4djS9/Pvv5v8La5l7XuzaBhsgrtNWutWnEEQ1nGWjSaAyFO7XXj4SX3O1xvvaS2T6XBZau8oFlkrVjopWr+IGyJtNZ0MruzWW1Aq+ovzgwUNuUfEOuuOtONjuRSgK14PPvKKqDiQRcfzlq9hdaVlldWt5RS2UvQbbfA/srJ2E36Hb4WqNtsxXDbzu5q9+/jIL3pSi/VhX5G8KTyKSSxWHvveO717GeRZxkWDEpwkEISe/UBOqqKC73hxuAaL6DBO7supd8abA+djXPdcFwOK7H9lxLb6mzgqtCeZBj8bq4ijhiKK1XErMyNh72Vcs/EK9+gWysjhWydRytSypMXV7aTjPIbE0UUs4O9LCv2cOzWAoq1DUN9jL3TDTiMLNj9QsWB/YAVvrlILBYPx/aNjpmUVZVVo1OGAzpeC57WYMlFKe8ylhjsJKkEEox4hqj+5JLPn1TkZCyqoTJ1N9WRrqojNm0llSRsqpXvF6yj/gsrj8cnd0tsPrTzvwlzkOpnHIuWI1PnsFR734cu7Qr42SFEQzjbeT3FuoRUlcxbtiext4D3Xk2zt4JaOQ6/vFwHfK+XTTR7aR7J7nfovWwLcBOv3P+zd97xUVTrH37OzNb0HkIg9CJSREAEG2LB3hV7F6+9X7E37AX1Z+/t2gt2VBBBEBDpvZNACul1s23m/P6YzWY32d0UklDMcz9cd6ee2ezOnPOe9/1+Vx9Bo88DwfytGmcOj6yp3FWkN8vpdQcFLNPXNt3Y3ch2md/INV7fMAremYr/83n3efTx77Dp2M8A6ElXVNSgTEsA6YiFR74DGTDx+3tv5D+nwuQzsCtWVslNHM0h7XlJnXSyx9DsTLevvvqK//znP2HXX3311Xz55ZdNHsdsNqMoxmnT0tLIyTHKUuLj49m+fXtzm7NPE6osSEkoRhn1C2f1zsCiWMiXhQwRA+gjsugpMpt13FgRzefWF9DRSSKeEllORsPshhBUUs0srXlZcR3JGm0jLhleQ0BDJ05pXgntvwmHLjlmWzUbtr6DlvMJ0hM5Nd6OLeRyDx6yyaOcSgptf2DcTrwYhgwrWK9tIU0mBWzvDXmcOsTNl8ChH0JcPvT5m2F33U127LIWXVt7kh9BpDgaO1JKZsi/mCnnc756UthtA8XtiyhlNosop4pqHOSyk5wG5gExSlREh94Y6koLJSVU0N/aBdew6XgP+p6auDy+1yKXDrc1f8klYQNuYHxWgVmPMSFKkC3CzFy5mO/13/nN+xfveL/iCc/rrNDWsUbfTDIJ/m1LZTnvlbtx++KSurTh3PEGcuf9IOvOIyF9Edx+NvT8B6JLYdAfmO85nRjrnmkSE1jWIwQIU7E/4AZGpmo/0RMAF+6ggBtELi8FGKIMYL3cQrJI4FT1GI5XxmHyaeHp5Wnw2ksEmTb0+gfuOtVwNm6AswVZs53s2wTKVlQRPtuyk07aEk1q/KOv4ne5gK/1XymhfHc3qUOolg4GiF7YaaFu637zfC8CJvQSGhsgOWmZTteeykZ9a2QN6P7zCTWDP7JH0yZmaSSRTtPO4YDfvX5PpVSWE0uDzPkZV9AoIDlvIl1IYaW2nsFKf7wh+vdy+VHBAbc6KtOguDtV1LClU5qik38Rzc5027x5M/369Qu7vl+/fmzeHLnUD2D48OEsWrSIfv36ccQRR3D//fdTXFzMhx9+yODBe6ZYf0cTKaelt5LFCn09W+UO1shNaGj0V3o2+9jpIoU4YtlJCWvkJrLoSj6RHWc8eFkkV5Kr7yRTaZ52QUfwnfydpawJu75h2VonBh+Wu5nj8JXUebsiyy9GpD4ddvtQumwQPLgS9uXQ5Tak4xCEdR3E/ohTXIWFyKWN+qZhhpYbDWak95/Lmvh5LJexoXbbLUTKHKqhFrMwoUjDpTVTdAm7baQyWxWF1zyfkGlJp7uo12q0Y6M6TGctjiiqfVmEbtwsZiXppJBPERLJUtZRrJWSonZMuVepXh5xfQ21qAFGB6F+p5kY95k4YrnB+xDbfFmGv2jz2MQ2/4BKQSFbK2GhI1CNTBj/XAcEHFGAWoWSkg//ucmvO+UGHLK2UbbdnkBTQTMPXvYXxjM5lKZMqV5OmV5BJdVIJIWylEFKX3+p+CgxhFIqqJI19JTdGK+Mqdd0++Y2kIGDOAH5/VGsoYOpjs6gWyc+gjQrZTVJIRx0O+mkrSmlgp0BfdkyWUGGaFwKvy+xXt9Cjsxlvdza5Lb6l3fCPydBnSnOeffDMa/A71eAboL0TXD19Y32K6cypNbs3sZyuS7iZKDSczX66Y/Bd7eAZsNq9fLFxfH0SGo66KYKtVnVCGD0N/ZkdsiCxlUpibmQ08CJOqqcHRSyUK5giBhAFhlsoUEmYXK4zEIJ0RXUUMsSffU+8f3qpJPm0Oygm6qq5OXlkZWVFXJ9Xl6eP4MtEo899hhVVYbT3qOPPsrFF1/MNddcQ79+/XjnnXea2Hvfp1oPPwuiolJFNQe5z/QvO04cTjfCD/BDcaRyEN/rs1jOOsaLMZGjfD4KKWGS515+tL7ZonO1Jzv0xrNygWTRPIOJfxvS//8+SfswZh11DCR0qWRcg9kwEb0AEb3A/75CVkcsO5MSeOsFGgXcAOafjeeAX/mpx2y8uheTsvuF7gPDOg0xY2Kl3IAJlSM5KOKsp0WY2U/0ZW0IhygrFj6VP7LVvYPZ1v/5l8cSHTboNoyB5AVk4QkEBRSjYAQANTSu8TzIZ8rzfidfXeqtcvVtDnmyvhxF6lFQPhEpbYi4rxFmo3yxLqDUlTT6iMbPlL4iiyhsVFJFAvWB1/ksASAKOyoKVdQwvbgfm53BOnb1s7I6/oTu6Nn+LQI7yMWyjKw9MOjWHM3Fbopx788iAzu2oH2m6u+xyLOSuXKxf9kNykU8bTHcTdOVFMaJg5gnl/CTPpvTxNEBRw51Twh/n3Diolo6Qmo/dvLvIjYo061T66+TjqG0gV5X3cSM8+39wV0NXidK5hiwJ2M5/u2Ob2A7cKrnWrJlaNkLvSQDXn8RqtLB5ARPQH9NqvDxFMQjRyGO+l/I/QPZLvPJEl3bqtm7heZo0ymjf4LRP2HFwibrDFJF8/Vwk0VCsyR7mppM292EyhAVZz6FzN4fyn0u5RYHXHUjNThYKJdzJWczUhnCFj04yKb0/wd92HRYfixBWfMnP4+INrIO/5Gr2KRn00/t2W7X1EknewrNHskOHz6cadOmcfDBB4dc/8033zB8+PCIx5BSkpaW5s9oS0tLY/r06S1o7r7PCtaHXWfDQrEspwspmFDZT/RhuDKoxTME6SIFN0aZkkWYmhV0U1CYJ5fglp49RidjrdxMFPawGUgpolPIORQXxlt4r7yaJbUmMBUiEj8EQDoHg5YA9r8RSn1JQZQSurw0NoT7rQh49bX+K8PFoLDtkJUpRLwFlXRD67GFc723hHRP7Ug0GdnQoa501otGupLcZEDrRvUiymUl6/QtfCS/RUNHAMkkolLJFrk9SA8pifiw5a3Vjb7/gniiiSGaXHYikXzP7wxyHU85VejoXKtewIPmxvqcu0qeLAwqj5UFj0LtCON11THQYyKZIpE8n06MBQuqaDyTnCwS/dlTXjTiZCzl84+CeWezX1wSp525lAWp0yimjM1etZEjqvGuFlQnaEkQ9SciZpZ/bQ0ODhJD2Siz2SSzyWLPGlDosmlzBzMmBgojIN5FSQ0ZpHM2mNn3iOASkGHKflTqNWyTO6gUAQGS056FJw+iPiAu4YzHI7YnT+6kv+jVZLs72bfpL3pyoNifciqbrRvbSSe7SmlA6WA8sRTqJcZ8S9UO8N1P9eyZELNn3etby1x9MYkyjiqqGwVKpNcEz/zPl60sgwNuQH02eBSYmy4fXa1vIkvZuz83l3SH6CeEpjtdSG3h+CGZxGZtVyXDaxvvCZTJxoaIwuJCTD7X/z5w3LV+fRIjf6ogu+p29N4j4bRnUez1E8TKeY/AeY/43+uOWPjqdvTZ50HXjdjPeJFFSSvpR8/2u6hOOtlDaHbQ7frrr+fcc8+lW7duXHPNNaiqMVDSNI1XXnmFqVOn8vHHH0c8hpSSvn37snr16oilqv9m1mvhS3SjsLOCdRRQjBULGy2vtyol9wCxH+PFwVRQhVtG1tmqw4yJOGL4UJvGFaazW3zO9iBexOKRnrDrx4gDOq4xexExquCtHqWMcF4MSjVCSGTZRchSn2ajZT10m4QQXqKwM0iEdsdNIYHDxSiWyNX+LCyJERwGQTe6kCfrA0VmTMG6bnn9CJs9o7oRg+YikazRN7FK38Bgpf+uX3wr2SlLmtxmJEPIUFL4r+mqJre9zFSfrbrVtYM8WYhd2EgnmRnyL6qooYxK0nwZc33IYjWh3VNdDTRXdHT60AMPXoooxY0bSb0RhA0bO2R+k21sDTtkATsDRXhrh0NdKamWDvkHcEjJmXzW9TmU5EKGhvmb9hBdOUyMRJMaf7EU/YMpsPZIANaWwNpnjuDoG9eRkLmKgfErWVE91he2hPrvVBSk3wimAhRzcMalBy8mX9BqtdzEeMa03YfQBuTpTc/KxxFDf5+mWybp9KY7WwjWRQ0sExklhvg12+roI7L4h5UMEL0pkMUcwShmswglcSfysSORBVngtkPmJhRz42eF7lVh0zBEbSKretXQv2VJ153sg5hQ/UYKkXQwO+mkLamU1fSnFxvYSgVV/omdfZV8WchS1qC7bKibx6JZqhC9VyMUHSrSAuQBwvSxUrZhU0sZ/ZuHoi4Kaweb0D0W2DIU3Fbouxwlynh+zNIXcDyHd8yFtROb2d7MAlDo3oqsvgPF/qySG6igKuJ2puYPu3cLK7XgxA+pC2TOAChNh5QCRLcNOBQj4KYvPJkF31zu29IGy4+D5Uein/UoKF6jisbqgt7LUaIcSGd0sLFCZQa1jx/K5nt/oZmSeJ10slfT7F//mWeeyX//+19uvPFG7rnnHnr3NmbYt2zZQnV1NXfccQdnnXVWxGMoikK/fv0oKSnpDLqFYVWAeHZDrFjIEKmYMRONrdU18BmksVZuprvIQJEKNqyNMiIa4sKNghIk7r07qZTV/KTPjrjNQNGng1qz91ErnAi1vnMgKwJ+u+4B4BoAttU4GuhvBRIlopgjFwUtEwi/8G4hJeygvgS4oZGC6LYOGVj+V4fqgHtPRdiMubRcdnKC+yoeMt0YFKzqSCK5Xqko2LHhoJYKWc1ApWXfu1+t7/pfX+G+2z8VWyYrSBNGTyRKsUGY5Kd1bMaKxR98k0jWsQkLFp+frIqG5u9wSiSFlLa5jsYqfQN/6UtJII5yfLOl9sVQe5BRS/yljix/HsPv6jCi+qxhv/8sCnmsNJHMn/IfwMiy1dc27vBv+/Nwtkz8AGxLOCrhJH4rrzOUkcY/4YK8t0A4kBn/RdiX+vcVCNbKTfQTPRuVJe0JzNQjG9coCG5VLyfaV87ZVaQFBdyyyCBFJOLGwzAGspx1LJIrydeKuF69iJ6K8VntL/qxQW6lt8jCI73Mpv7vIRSJ6BrekU3fNhheexVQkMC5wP5dKllyZ2ynPsu/mK6kMYBexIsYavZw/aJO9g0WaMt4x/slGzC0zbrRhZ1y3w74Vsoa9MXHwhf3o/kCa1LxIm+fiEjYCcID0kyQlMjA2VCSBUNnMF5/m0/Sa/y9rx8HjuDS8e9S3x+T6Ee/jXL0u6zQ13X49bU1LXnOH6QMbfHx3cLdZMANYBPZuKQbawtKVzuSNQGTu3pNLDz2DWj18hvS4oC7Tsdqd+GZfYn/u1ePFb58uMEyiX7CSxBT2thYQSp8tgjuO65tr6OTTvZEWiTq8+ijj7JgwQIuvfRSunbtSkZGBpdddhnz58/niSeeaNYxnnjiCe644w5WrVrVqgbv60QKapkxM1Ofz3K5NmwgpDmMUoaQVy5YcN9T/Dr5SRyTZ6JP+Ra9tmEKejA7KWaFtp5iGV6nq6MokMWkN+G8Ok4d3UGt2fuolU5E4MPSvAPQMCI7XjDVzxIni4SQx0gOYQggfaEdM6aggFsoRGwZXDsJooqMcwsNuq2G+04NSk934aaQEp70vkH+bupIb5Thgw8aOtU4WMMmblUv26XzJIsEBIJE4igK+J1lRXAoduHB2sCwogYnZVTixI3SoFPkxMVmPSfiNbWGr7Rfmex9uj7gBogu9yKSXoeaX6A8uCy9evMgPCWhjVkCjSh0dLA21obqlWFMFCR5e/BbeTfqZ/S9EPMLSJ++mLQhi4NLaSWScqr4W67gN30eexq/a/Mjrh/BYG4zX+5/bxe2IPe6HPJZIteQI/NZTv2AaQcFzNTrj72/6EsRZSyUy1kol2FrhgOent8b/e6Z8NprNOxCrC6QLNjWvOzpTvZN0pQU1rOVv+VK/tZXUCAjGzV10smu8rb2Bd/KepfunRSxUtvI9nbK6N4TqKIapt1OUCabboLvbwYZB+eYIdq32qrDldejXHoPym0XwZDZPHpFIgI4/eQ3SL1mJZce+R7B93MBM41nzCb2fofJWtl8s597Tde0+PihzIzCsUlv275XW1JEgCTAb1cFBdwAcEcxYvYTmDGhJTf3OgT8dB18fn/ItVUJG1rX2E462ctocZ7rQQcdxEEHHdTqE1588cU4HA6GDRuGxWLBbg/+QZeW/rs1QDbIbWHXFQY4M7XkBt+QBCWO3u99zmZ3wCC4OgU+eQguvz3sfhLJXBbznfd3LjfvnoyjOgooCnKqakgX0shQ9m3nql3BQa0/QAYg0h5GFt8CWiIi8UOEqT64lRjGbTMxwJUuGjs11GLCRDrJ5NJ0eRyAkrUW7j+tWdtuI5fr3A/ypeX/2s0EIBw5el6T26STwuHqqF06T3fRBYGgjMogQ4KBhNfKcuEmJozDLBgZhonEU0ElOhITKpvJYYrnZd63PNVmWUl5If7mQqmFxI+QlfsDJzRaP0LdL+Sx0klmqeVbPLqXt7TPqbruF7568WycXqOtR/RVOG1cIb/rghJRTpB5guKGuGlQXXc+CaJxICiJeEooZ4eMHBzeHaxhI1K3QMV5SG8aIvZ7hK0+eHa0OrbRPluts4gnFpd0k+IejRevX+ctnhhUTJRSznK51r9PDFHEEEU1DnIp5GhlLD/osxodO4g3XgA9tM4jgEnpzHL7NxPozvyR/i2x3mimmu/ejS3qZF9npR48aPeg8Qt/8qjnFZ7fPU1qd8plJSgh0t8VLwgJcTqcrwASlBpEz2X127z5Am8P+Zn9Sjcxt3vjZ0k9Rh9xBwV4pReT2LNLI8NRrleyESNApDvt8Mb/QV5/4/M7+GvEyS9S1w2KI9avpdsSsuiKioIWriQhgCmelzlYDucm0yUtPk974606Clk7AmFfAmroCbR/lGVYcMMF98HUd6GiblI40rM/fJ89f9mB6KPbz9yrk072FJp1B83JyQnrWhqK3NxcMjNDZ2Y8//zzzT7Ov5FCwmtH1VBLD7oSTRR9RY9dOk9FdYiHSkVaxH3MmFBReFp7c7cH3cpkRcT140TrA8P/BpbWgqw9zjBNMJUizDsRGZMbbTdKDOUoJbR5SjIJnKiMY42+iW3sIJ1kvGjU4iSJ+CBh46bQ1xwMP9wAugXGv4ty0E/+dXXfOxceZsi/WCRXMloMa/lF7wJb9O1NbhMnYojaRRdMCxYjswu42nsvZ6vHIYQw9OwieDlEynw1Sn5djGQIa9mCisCOjS/ldHp7s9rMUKFMr6APWWwOMSsuslYjs5ZBzjDqSl26DF7F8SkjQrdZCPYTfUCBF033QRa8+0zwNt9qiUhdItQKopPforrkMoTwQupjYFuNjPsCKs8EUQvxXzQ6RwnlKAhqcbarm2tr2EkJsvg2qDoBkMiq4yBrIsJkTDQMEwMb7ZMg4gCwCStHKWPIlrmsl0a5VTopWISZFBKCgoy/yXlU40AgyJF53KBcyAz+iiw34A6XES1Re6zigO6dGcb/ZpIaZEa7ZdNC7Z100loOc53LMuonEkyoJBGPBBxNyKbszazXt2Kd+CSuDx7GH9AwOeHUZxFqOSS/hCy5BoQXkfoYQXNrjljeHXQ26Y5IWrUSTnzR/+4z/ScuUE9phytpf/6Rq7BiNqRPXn4divqQUFvGizPvYb/3N/G/6X148eVNCKFwkjKuVefoIlKbFXAD+IYZzPDOZ6J6Ihe772CxXIUEnjLdwZWmc1p1/rbgqwoPsvBBQENWnQxjHoFFleCOq98oqgwx7kO8aCg2B9w1kViiUVEwvTeVwnUDiRx8C0FFOmv0TQxWd59ucyeddATNCrqNGjWK0047jSuvvJJRo0JnclRUVPD555/zwgsvMGnSJG688caQ211yyZ4X2d9TcEoXehipTysWetCVDWwD4Dxx0i6d655jrdzydWCHRMIxb0bcp067yoTKn9oiDtvFrJ5doaQJfYZhyoCOacheyMflbh7IHQYMA6Ucul+EMIXOMF0nN9NNyQi5ziRM2LHiwEm0zy2zLuDSh+7NDrrpi46Dr+7F/6D++h704h4oJ7wKgBcvXelKISV0IZX3tW8YrXRs0G0z4dPoBcbv81r1/F0+z2gxlCwyqKQGK2a2ywKyRAZZTQj7ahEichJJKonkspPE2gwKlg/FrESRNGwmn1h/4CL1VPoozZ9UCcdGskMG3ACEAHHtdaiuaK5wX0JWTAxmsyRKHNrq8wVmWkbF/czA6AKsajHzFUMLjvivkVUngYyBwvuQagUi6u+gY+hIKqimgqqwGZ27gzLKoXYY/sGUVMHdG0zFqKgMUxoH3QKpkFWsk1sAOFyMYrQyjLe1LyilAhf15jOFujHokkicuDhEHYFdi6zxqR78Hdq8xmY6ato2jrj2HbaTRW92/fvUyd5JrB5LnKc/FaatCOGhiN0vR9HJvolXelkhg4XfvWgUUYZEslU2PVm2N3K351k8wku3QRvZ9vjhaJVxoGooMfUyDCLhM4j/EpAIUR8MkpoKGZvQ8vYnLz7T0FsNme0uYN7ZcOiXAMzVFu+1Qbff9fmkk2qYSRV3J8rjYMV7R2L3Gcnd81EeowpVLv8ygYnKia06R6ZI5wCxH8sCMskjUUUNubKALXI7NT4n0N2ddf+nwwl4MUIDXqA/ysPHo9dEg8cCFidKVLBOp4pCN7qQLBJQL32dKvdaamvMUNQD3nm5GWeVcMT7zNYO7gy6dbLP06yg25o1a3j00Uc55phjsNlsjBgxgq5du2Kz2SgrK2PNmjWsXr2aAw88kKeeeooTTmhcRhTI5s2beffdd9m8eTMvvPACaWlp/Pzzz2RlZbH//vu3yYXtjWzX8/1ZLg1x4fYH3ACSSNilc113uI2RWSoP/ejkD3Uu3uNeRumyLeI+bjw4cVNGJfP1Zbs16ObBy2D6sYrQGni9le4d3KK9hw/K3fjL8fQEcBwMcT+F3PZAMSjisTJkGtXUIBBBtvWDxQC2yh1hg8hBzD2XRjNji04BX9ANBNkY5Z2xRLNTFrNZz2mTQFFzqaCxplgdEuP7OF6EzghsCQeog7hQP41vtF9JEvEsk2vIIoN4ERtxP3dAICUUZVSSuPY4tr1/CyCMosOvr6brNffyfu9veFi5aZfarUudeGIYRN8gId6GaNYanom7Cksryjca0lWmMUoMYacrjpzceyjU40mxFiG7no9QHFBzeICDG8iqYxsF3eoolRW87/2aGmpx4eFs9TiG7KbAfYVeZdheRP8JFecDGijVYDUGlyZUeopuEY8xQuxPntxJDvnMkYs4X5zMoWKE39HPIz2YhTlIzsCKBYkkhSTKAnT5GmI5+RVqd/SF7OFBy7UDf+IP+TfbZF5n0O1fyvfuf7hqWwrlnndBLYbMa/FYI9+bOumktRRQHDSJUMdIBiMFpJC0G1rV/lRQTYEsIp8ipJAo8aEnOIUInowzhPGngWYL3Cj8icrqK5b+lst3pcm7lZ/02X73drqvYeQ8hz/gVsf4GRoCwTEhpBuaQ6ZIa3bALQobXUnjFs/juPFgw4IZc4uqQ9qDEdFVUBqNUVZhQkQZhk5KdA1QgwUzDfOWNXTcPimLBBHPXdbLeNDyf8iYGqRwBfXBDAKkQMB4/ekUvo/6jOta7l/RSSd7Fc2qp0lOTua5554jPz+fl156iX79+lFcXMzGjUbA44ILLmDx4sXMnz+/yYDb7NmzGTJkCAsXLuTrr7+mutoYzC5fvpwHHnhgFy9n76apG3YUdqKxY8FMktj1rIzRPc38dF0sfS59qcmAG+APoAhgkb5yl8+/K+TIvLABN4Cuu6B5p0nJLfm1dFtXyanZNZRpzTUa3zsYaFXxOzwCWEJnccUQxS8Bzpqh6Kf2pIZaqnEQTwwA0jGSn7Ovw5v9KdIxOkjgPSQZmxsvS8z1v6zTnosnlhWsZ42+ib/0pY33aUcKiGzgcIoyngFq7zY510hlf9aymWyZzzZpfA5CiIgJ+7U4I66vooZt31xIw86Od9ptmNvAwj5PFuLEzXqfe1w4VNQ2CbgBdFO6sESuYUfZUei68d0rdqVA1bHGBuYc6h9xAoQLPecj9OwvkdXj/MdRUCjUinlJ+4hHtFd4WnuL77UmdM3akWVyLTo6IvlVoywo8V1EtysRqtEhH82wJnX4kpVEcshHQUEgyBTp2IWdZXIdebKQqz3345JufxAOjImdPFnIYBHZWVxDg0m3wsHZYNHB7IVj3kQd9wldSaNQRipZ6mRf5qmyAko9vr6JloAsn0i17oi8UyedNMEWfTv3u1/gfvcLaLI+kFSpV9PwySgATej8I1fyi/yzg1vaMXyl/cI/chUWWuiAOfvC4IBbUwQE7fZmQ5Q6iRIAcfWNbBuZ02g6uDwRskTXVstMRAk7CUSeHK3DiZtN5PC3XE4hJThx46CWXNk8LeT2ol90IaLrDZD4PiLjBn/QrY5wk7tDlH4slqtZLFf5HdCF2Q13ToSUzYAHw6StYcCtDsHszzrtSzvZ92nR3cVut3PWWWfx/PPP88033zB9+nQ++ugjbrvtNgYPHtysY0yePJkpU6bw22+/YbHUPzDGjx/PggULWtb6fYzlMrItt4NaaqjFjYcuTTh3toQraFwqFAkJ/CxnU6E3bY/dXgTOCOk1cehPfoI++U/0u+Ygv7qTAbJnq4/9RaWHl0vdFGqSX6u9TClsvuvR3sCUNBtq3HdgW4pInYKwrQ65XTrJTR7rfPVkdlj/pMK6hGvVC5BSRRY8htOTAt6uyPynqCm6DqklhD2GOOsJyFiLPxAYnw9X3txouwqqUBBsZQd/6Uuad7FtRJ0gfTi6idAluK1hgOiNisoO8pmnL6ZGGoNWa4TgpdacnEJTcMlgZmUeM588nRtinqAieSDuWa138dwsc1gm10YscwWa5Y7ZXGzCygDRC68SWO4gQLiREqQWD5b1RvAt/mNwHAKeHuBNR+58CKkZHWQdncWsZofPCEIi+bEpM4F2pK5cSggdEfcjIuldhLneyON8cXKTx/iPeh6F1gXcpV7NZGUSRyqjecp8Bzerl5BPER/r3zNb+5vP9Z+D9tusZzNMCW1uUYcXDVF1GgzpDpcocKmCOFBHIsmjkG3saPlFd7JPkE9uwDvjt1i+m7M3Otm70aTGIPfxPKW/yVP6mxT7ypVrpAMTpiBDqDpcvvJ4HR1X15GItGGIuCzUA6/DNPjSjmx+myOlpNKXee9plHfUBJbaEAvrXOtlg38aXDPJv1UJ5Ti9e19fuFJWs1Ju8OutCVVjxy3/xz1PWPAoxpWWJcAJM2O4Wjl3l87VSzSvwiZURZOGzq/6XEr13Xe/zNHzEPYlKElvI6JC97FjiGK56TsuEacF7feD+Q0c1DJLLiCBWPRpN8ITX0Jxb4yiOkEkrTetJp6oW8t5bHqo72gnnewbdLgVzcqVK/n4448bLU9LS6O4eO+dSWkLtoYRa1dQOJ7D+JHZ/mUZIrLpQUs4znw4kz3PNL2hry0KAh2dCzy38YP1jTZrR0soDdR0+783oTwTECBBLjqFD7tbuO7w1h272Ct9Uu8GRftYpptd6MjUpxtF3HW3BT6/B9aNBq+ZLarKwIRKXp9o44j+oWdUY0SU3zkzQ0k1tKeknfp4vgKVpyHdfRCZ14V0dxImD+KmK5tsdxQ2HDhJJZF5cnELr3rXcBPaxQnAgpk+tF05c5bI8AevvtVnkuIaTZ51LnbCa22FGng04sJ74MV3wGe6MOuzM0j0VPN172N54JDbKf4iEb41OnyqCl3iBS+dbWPCfk3PpjtouqOkoHAgkcuVW0oGqaxOfBfpHAjufpwRa+Wb2F+h+mgonowxmFAQ1s3IyjgCv5eKHo1UjYmDFXqwLtDu1FZZrYfP4AU4WD2gyWPUZULHiRgQhv5iOil0FWmkkIgTFz/LOZhQERiBNIDlcj0XcVrwwXQF/cf/wD8ngtuXJTFKhaHC14fWQavPvA503e3k34WI/R4c3cAxBqxrEYkfsZJy1ugbGaREzqDspJNQ1DR4ttTIWhBwtPsSlnt3IGtOwqI4cUfPRAjjSbhWGtnzKgoLznyQCephu6Hl7UOJ7kCrOhbQqI35vUWa9eKIj5ELT4GqgPHDGU+iHPRjs/b/gT84i70rIylc9tjb19p5+9p646tYopkoIldqNUWaSKY5XTGAAfRiJ8WUU4WKSje6UEARi+UqjuGQXWpHa1mqr2lym2OUsQww9eZ59V7KPJX8qf/DOrYwiiFkkEoZlWh/nwALJgbsFS7DLRivDg9OdzOqp4ljBrZNRUQnnexJdHjQLSEhgfz8fHr16hW0fOnSpWEdT/8tLJGhb3hR2LjHfC1d9XT+1ldglma6tmHQrU8zZ2fAuG3asOLGwwq5Hrf0tFm5WEuIJsqnL+CB8i40vKHP2ujlusNbl1VzTryZ50tc5HgkVgHXJ7UwhX8PZ6O+jWjsQZ1ZKYGnP4eqVP8yTYMtJZJjXqnl1+sUxvWLfLuwY0MobmT8pz4tqjpUcBnC7xYsEbPGBCJkAMkIDgiisSMQqKiUyYogMf32QpeRHanceOipRNbYaglmYeYh9Sbe1j43tNiI51XvJ6SQGFFrqw47Ftx4MWPGhAld6lRvGAwrjyDuxHfpMWopiaqZhFeq+WDgGdx25EONdF28GmSXSk5+vZZvroQTB0f+DTQcGOk7s2DBSeCIBSFBAT1zA9aDy1v8eUTiYvU0uokFVHf/imy3iShLFAIvumsggYLA0jkYkfgOsvQaY8eY6WCq74w3FNwupgwpZZNlnO1BoM5aKLLCGJuE4iZTsHFRd5FBEYZpymp9A0PFAHbIAsqowISJMlnBEHN/AhMo9Defg60N9DvXAv0BO4ALGfMLXUmlm8joDLr9iznHNJ5nM+5spM1epde2sK6ik04MGj5b6iZ4VN2Klvsq0tPLmIqKG4JInQrUS6Fo6FzouZ2r9XOZYr6lI5vdLkgpOT3HjXTcZ7yvORKly93N3l+Y3Yh7zkDXgVo7LDwZCruhF2dAVTIsOQYQMOQPRL8ljeTePtN+5CzT3hV0W6dvYX/Rj9Uy/GSWBTPJJJJmarq6IxIHiP2YzULDJbUJJJKJykmUUc5mfTtWYUGTGld77iPDm4oZE7MsH3VoH2QLkY1HYonmGMUwv7ILG7W4/H3Swz0XYMbMENGfJVsaGp015xrqt/ljo7cz6NbJPkmHB93OPfdc7rzzTr744guEEOi6zrx587j99tu5+OKLO7o5exTlhC7X7EoaB6r7c6C6Py943wdo00CXWWn+sTR0vHh9gQ+FVfoGDlQ73vxihVxXry+QtRJyAkW9JZcc1PrPJ82ksLxvLCudGn0sCqmmfWu0sIy1jTqyOOKDAm4NeesvV5NBt1iiGS2GIlLnsTD2N7SCR8HbBVAg2sjSVJp4+IbL2FJQ0NBIII4aHKSQyBJ9DUepYyIery0I97sMZIBoGz23Ou40X4UXD69on2BG5SttOgnENb0jUIsbFRUbVpzSjWPqG1DYB4BKYOVPOofc/gS5vWy8O/jcyELKwGtz3U0H3WT990n/eRLMvphGHa0l8NuPGvkPaGTEq826lqaYaDqRE7UTGJtTyjqXib+FA1PXNcjoeciKiRgzrCaoOg4yr0ZEzzGEfS0bkQHNKw4wAQFIJoFiWUaq6Hgh7hpZE3adikKUYg+7vin6iCzGigNREGyTuXQTXXDg9A0S3PwtVxCrRAfvtHV44wNVAdOAk4DYaMh/kYqut5FlE9RKJ7rUW62N08neS5RiB73xLWW1tp7Rpk6V7E5ajkM2yHSjFq/0ssRdi/QETN5XTwBf0C2ZBL+xUy3OJt3u9xaKNMlCR8B9teYIpDQhRPhM/JAU9oTnP6Au6525FxH0vF50JjJjPdx4edBveXGYxIA9mc1kEydjmtxuiLLrzplmYWpWwA2gCgcT1RMYqw5nkXcFx3uvxIUHLx6KZAljxIEUyKI2rWpqikJZGnadwAhOXm46y7/sUGUEpXo5S1nDBraSSBxR0k7XEYvZuOxwWpSG6Udy0gEefDN6nXSyT9HhveLHHnuMgQMH0r17d6qrqxk0aBCHH344Y8eO5d577+3o5uxRlIfJYglMjb/JdEmj7IWOxokbF248NLZr7yhKZb3ugfjPjTD8BzDXQHQJH19i5+Qhu5adFq0IDo4y7XMBN4BsmYfS8KdvqwYRvrMwumfT8XmLMLNQrmCBXEaqtZj0bnewX8qPPNqlFpH2KGBkKLYGNx40dMqopAoHO2QB2TK36R3bgNJmdNgzRPiAZWu5x3wtp6lHs408yqhoVJYbDgtmNDQqqcJblOkPuPmRChUzJjLmbwtptsg6kgCjezYdIAsqL51zPuE6W1JXeWpGC3VomuCbKg/rXL7vp7TjzX0e9GiI+zLgxDZkxUSEJQdh3YgQwS1smEFYSCn5dHzGVoVeRSHhjQhaLJzdgEFKXxQUlsv1lFDOWrkZ1TfwUnwTKY2ILgtxJAk9gBhfkFyPwlVxFivkOgpkMdkyL8Q+nezrmPXQz4nVERyNO+kkEjUEG3FUSwfbZQFZJgWEE9AR6GCpN2QqoRyBYdzjReMXfd8wVEhUBWmqQKnTXDPtgAjSF2H56Vr8ATcg5PM6fwCUBFcflVAW1PfeG9igZ7OhCYMnNx6eN9+zy+fKJB0FgdSj0POfQt/yK3rBFKTe+LldRCmzvPMpkxUsYx3VOPDgQQIeNObIRWztYH3UnUSSeBKstU4PWnKnaRLzbJ8xRAxAIimlglVsQO23GC66k6ZrbUOtFxzxrI7l5goe/rlT362TfYsWZbp5PB6uvvpq7rvvvkbloc3FYrHw5ptvct9997Fq1Sqqq6sZPnw4/frtuXofphtLSblfQhsIApsVeHWijYtHB5c+1khH2CyfsYTINGhjAjXMmksxZfytL+dSzmiPJkUk0EhBKDpi4uMw8XEAzrKt6vD27E0sdZfiLbkLpBmR8D7CuhWhasj/XAtvPQ+eukwXoyN27oEmrj+86cF+YEDtFPUoXrI9gB6lU4uT+1yGZlQVNWFLSJvCE9C53MoO5stlXM5ZEfZoG5qaJY8mCptoO4OAQB413cIM7S+yyaWoQTZWOLxoCAQ6Es1STSg9jZKobMyV+/F76pHgCq+3ccpglbuPbdrtrDpwYKR6wRs+0zQpum3LJeKUhsezIHc+BMkvEnRdSnAGWeA30BVCKy9PFjKUgW3WzuawiWzyI3R8u7Hrs96HKyOZq/0DGFkjJ3EkPzILHcl2CqiVThQUv9hzwo23UP7iVKhJJujz9HpB1HchPEoFGi5Ws5H1cgu9aLuS6072Do5Wx3K//kKj5WvlZlzSjVXsW1INnbQ/VTI46OaglmyZx3Z1A6LrjQwsv5/epnh+zPkZ/aWZRiYzgK0K7eprKfv2D1SZjbPOWTKmK7ards9k8a5iFoJfekZzVMEsSkUpIuntphLVQ2NvjgmaBEuwFIgLN794/+Q880mtOGnH49W9zNDn+bMewxFDFJkifZfPN0wMBASUTzR0LVGg5gioPB0SPgtuG16myz8ZrA/gZu+jIY+3Qy/o0NSYEncCetnlgGZ8t8z5/nUjGIxA8IL3fRyylrvM//GvSyHR/1pFYQPbSNi/iHKzI2A8EUhT/X/jSz3lFzc3HmEjIarjZT466aQ9aFHQzWw289VXX3Hfffft8omzsrLo3t3QEtsdujkto+3a59Hhyk+cHNHPTI+k+rtpw/KmQHopbSfSHg4TpqCgRlPUBU5+1xc2vXEb45C1mDGFFJVvaB/fSWN+yT0DPIb7rXSMhJ6nI4QHpcdaeGQCAL3JYo3tpxYdNzogHbyu3FARClGyfrkHDybUsN81BQUTalhr8jSSKPRpUuV2kNh9U1k7cYTqVLQNCSKOs9QJfKP/xhYZWW+jji6kMJDezGIhJOyE0d8gF55ev0FsMQUTpmCZ8iu4gx8BH19i56zhFp7zvsPb2pfMk+Us5Q1GENmdepa2gDSSjSyt836H/51geBg0COdnJGrceXTzymSby8mxJi5PUHmn3Iv/Xi0tEPM7OIdBzeFgXYNIfD/sMRrqDJowURSh1KK9CCf6XMcIZcgun+M89SR+1+ezQC4HYJQylFn6An/JeQnlxBDld8hzxOdgv+8cXA3KZqRUkYV3Qc04sK5DJL7nX7ejievoZN+k4Xekjt9ZwA/aLM40TejgFnWyt3Om5zr/62iicEgn28knkTjstlJu7baBsiqVHz+fTP3zRoAzDl5+G5lpZHo3T8p9z2d/m4qtyxSUiFlJoZES5O8XwpoxGK6lCqE/FQlmBzK3HyIuOPP6e/k757F3BN3WsYU8Cn3mb+EDPX3IapPz9RU9SCCWYj2G+n6PRGqxyJ8mwYIzDLOxoTMQZz7NYmU1j3tfI4FYanHi8PVDBIIUEvlY/55z2DVzh+bikZKyvMf8pkjSNRi6n+sP6lowkeoajYKCRHKL6TL/ZPNU891c7bmfJXI1AkECcUb/4aK74Z3nCP6eNfwl1n0PIdR30eGRJOwTv9xOOmmFpttpp53GtGnTuOWW1ouSvv3220ydOpWNGw1hy379+nHzzTdz5ZVNOxjuDtojKLihUAsKulXK8DNP3ZQubX7+hkQKVqko6Mig7CSBwIyJaGzc6XmaJ813tHsb6yilgiqCs1b07AHw53lQHcvRogJVFYzMMvHfY2zE2/e9EtHWoklJjScN/8NNTwQtAUxF/m2sWBittFx/J0oEBN0CMp+EEPWmF4Ada6Ogm+4xw58T0TcNxaubQJXQfQ2M+xjFZgQDBAIXbpKIR0HpMJ2WLXp22HV2bJyptu9A8gjlIHJkHg5ZS0ETHW09rzf5f1xEbHQy2pHrUeLKEKc/izj9WbrRhZ0Uo6MTrcdQ7m5cNjp/q8ZZw43sgs0yB6BZ5SQ7Kakvi0yxwhUSoyOlI5JfQSR8Yhzf+juWNr6fKkLwWmYM74sX0MouNRYmfIiiViHTHgF3X6SoRdaMRMpoRNTfCLMRFDKhGhmB6BzEUP5mBWDMQhcTqqyyfSmWZX6HX91jgrlnwaYRoAmQCkvVvtzWzcHkY22kxrTuvtZP6cn56ilomnFXP049lMf0V/3ry2QFfcliCYZ+jxfN724aiBAaIn0KMCVouR0bG2Tkcp5O9k3e0b4Mu67OUbKTTprLT9of/uA/GP2KahwUylL//bmrSGNRyU7qB+yB2bhWnNJGjAhv3rQ3UtWg5DYQvSYGZl0IRVkw9HfE8JkIxei7yx+uh3nnNeMMwshQev8Z9CtuQum3GN1ph1nn81PBMN4a6uSyMVbURlnmexb/6CsZRF/WEv7eo6IwVjmwTc4Xp8TgxoOI/xpZNcHoX6ul8EsvWDGufsPFpyCLeqBcewPFsoz+oidu6cVBLeVUkk8RRZSyvQNd1Es1CVqAhq2nO3VGVGBUqXQhlQoqsWPjFe//uNV8OQD9RE96iK7ky0LyKSJDpKJKlfP7Z/HRE0fimvw79eGGht8ZFZBwzgPw+YMEpvaZslZjj9sfaH/DtE466QhaHHTr168fDz/8MPPmzWPEiBFERwdnedx4440R97///vt57rnnuOGGGxgzxhBBnz9/Prfccgs5OTk8/PDDLW3SXodJaayRVUl48eyEurT4diRSdlE6yRRQ3GCeSGLGRCGl/K4tYKYyv0NE7aGxxpb+43/gzwupu5nP8bVv1iYPz87ysO6eGHqmtI1w+96OKgQJ0YsprxlpLLCuAjU4kOPCzSGi5Z2QoEy3BkYNFixGZwSB2uC2I53R8PB3oDcoY9x8MMy+BP3OM1ASilFQqMaBho4VC6kkMUP7i6PVsS1ua0tYq4cPINTi5AAGtev5j1UP5Uftj8Y6fA3Q/zgPpl+HhmAtwPzv0a+7CnP39XQlHScuzJiMbBRFw5y6A09RYBatxD7id+BEkgJcYZsqzYDgv7eI/h1ZfbTvjRui/gKgJ5kkyrh2Szc4MnkVM2PPAgTCnIeUAlnwODgOI3B2VSIhbQoidro/mCSR/oBbHbtDfHuL3I6GjnRFGb8JLVhMeC2wdouHl+Z4WHRHNEMzW+eFNMk0kUmmif73IzyDWM82PHh53PM6Z3CsP+jWUiSSYtnxActOdj+/6/PDrvtAm8YKuY4L1FM4VT26A1vVyd7ATO0v/qd9x3p9CyZhppvIIIm4RhlKDmopDXgmJYl41qW/D+LQ+tLSOhJzsSvOlmun7OGEk+fQC7Pguf/hD1ysPwI563K47XwjY2n5MY13itkJg+ZCWTpsPLTBSgFLjkdPy4bHvwJMOIBr17u4afpOVj1goZep+W7aHc0mmYMLd0Q5ExMmTlfa7n40VAzkL/MS6HEWeDLBvB35zveNN9w+GC8aLlx40RitDiOVRH7U/8ApXaSRTNcONFFIUjSEbRnSeYCxIGpOkEGHF43udKGUcnqKbmwmx79OCME4ZTRz9L+Jxk6prKCf6MEJpnGc6zmdY5oMNQjIGQYPHAdzz0Ap74YybCbJ/TazRH+iw8aWnXTS3rS4x/7222+TkJDA4sWLWbx4cdA6IUSTQbdXX32VN998k/POq59tOeWUUxg6dCg33HDDHhl002vLMNsT/YnrijD+K6UvmV2AkE2vs5hgaKbCp5dFEWcLHnnmaaFnNAQCk2jdwKolWDD7U5sbUk2tLyhXfwPWkdiwUkQptTh50vsGQ5UBHeL2VyLLySSdXHwlTPMmEm4kr0t4YoaL185tnYD/vkhM+hNUVA8BaYKY3xGicYdkiDKgxceNxk5X0rBgxtpA8D2dZKqpQUUlGhtlAZp8ctFJjQNu/pUqzLkATnkBDQ0TKikkUkwZO2QBf+lL2z3otpLIZgPD1fYNugH8x3Qer1esRd/5JugxiKQ3EA00Qph5GcG/AwE/X4M26UaqqMGOFQeGXlcVDrrcfAu9v36F5avTqIzJJv7sqcxMr+ZcvR9pJJFBKtHYqZLVNIUjQHdHxMwG09Xg6g/2RQiLURabTxF2pWl9uNayle1BGiS4+/gCbtDwc5GlVyJi60WB9dJLkOUXg1KO6HI3Ftsmv6ZZR+KVxj1WLj2mUcAtEAnc94OTb69u2pWtOVxuOpsrvfdgQmWZXMt1ygU0dflSmpA77zc0a6wbEF3uRDGVoaNTSgU7ZTHpIqVN2tfJ3kEcMeSGMSDJIY8cPY9M0aUz6NZJI77XZvGx/oPxRsICbQMpBS+j114HtuWILncj1Goj20066CW64ZBO5nuXssm8AXH3mciPHoYdA41M+f3mIs5+HN7avdfV1mhSCzYuCuS3K2gkAlbcA4qzIDUHMtfB+kOpj0IK6LMC8xnPk1rTi7xHxhrLAp+XvZfC7PNpOFz0VCXw9ra/mdJ3zw26FcoSiogsE+HGw0h112Ub6lB9n51QnGA1Muxk+lbYHngOCYoHffJcdgI7gYWAzebGc+f72O0e1rOV9fpWqqWDGNH+45et7EDJuBW9+igQXkOeI4ACivyGU0WyhGw9DymlvxLsIvVUrvM+hIZGKRXEyRjW6Vu4xnwemCt82m6hirx9y3ovQbHXwDEfAkb3oxob8/TFnUG3TvYZWhzN2bp118pGPB4PI0eObLR8xIgReL2tcOHpALQ3elFaUUFcXNtqEQWyRt8ScrlKx2RoWbECoUtcK6kmmqigoBsYGTDR2KnGwTy5mN+1BUw0tb/+QAHF9QE3AJML3OEFmjPiOstL66jQqygUhYjYXyNulyISI64PhUmYqMVJHoUIGfxgtWHMQDtxYadB4CW2CW2SuPr1XjR/Wck6tvCPvgKndLWbkQHAZiJrqfXuAMH4/vREFN7nS/9XkCU3QvSc4CCTJYRobYxR8llOJYovRb8umJSv5pN89p3kX/gZf+oOTvAsYilwi+cx7jRNIh+j5DhH5tMUNdQidYF8/zFfp16A4oWJDyOGGZ9fHG0TIApHMgnBbl9KFUbXreHvX4Jan4klXb2RZVcZb7QUZNGdeLpfxlbZsc5hAEv1tciy88FzbJPbZsS33X1tgOgNGL+vbPJwi6afxbL8XKg5ynjjGoAsuxSZ+hxuPEzX5/CrPo+L1FPbrI2d7PkcoxzC2jB9mTo26ttwSw8WEd5spZN/H40CSRWnU1TbD1DAeQCy4lxE0ltUaNVsJoetcgfxxPKQ/pJh0BQL4pobyCDV/+za1/BIyX93VqDXvIiI/hPivzBWVJyHrBkD5lD9IIl8/1FkcZ35nRf/M7HXYsQ5j6ChMyg6hbzLboMPpoAWBUKH0d+gjPoR/Y8LQrbnd9uvQIjsuT2Eb/TfgqRopMeCfPlVKPBNKiftIOOGO4myhZ/gailpIqVxZuWVN8Orr0CBzzAwrggqGxs3OJ1W+OF6HGc/7l+2Td/BYLV/m7UvHOvkFqTiQsSF1nKuK2m2YWU7BRTJMu7zPM8d5iuJF7GoQqULKf6x2Ro28Yn2AzeZLsF00xV4X3kJHGGSMmwV0L9eH9yOlVpc1OLkLe1zJquTsCidJjyd7P10eDTioosu4tVXX220/I033uCCC0Lf2P8NrJUbQy5Pov0CfYHEhhGD1x2x6M+8Q9Xk6eiT/zT+vfZ/6L4gVw21ZJCKispT2psd0tZGYuOX3gF48OUYBq3qlyq469j2C8jsbfwjVwXpM0kJ+rc3oN87A/3+X9FnXEI/epIlWjd72dXnAJUnC5Gy/m8RmAFpahDrF8NmQs8l1P/9Av7ZSuHXS9Enz0GfPBt98mzklO/QNx1IFDZ+lfOYoy9qVVubSzhx8DraM3urDlVRschYgmYJfaU0/sD8FbcDbvyfXVQJqC70u2egT55N8SMfoa+pnzG0YGYVG1gsVzNaGcoB7IcZM3/Kf4JKhWfof0Vsmy51HDiRc86D9YfjF83VzfDJw0iHUR6fLpJ3+XMIx0qnRknpmcjqcdR97YR5JyL1SVCLQKnECMBJUAsQaQFuYTLw7yf870vbwK26pWyoGogsvQ4y+kHXEL8HH13jBM+e3nYDhZ5Kpv+1hsZSsbrpncrPDWiTAnrwbHxHGZ10sucwRy5ucpsZ8i9GuTve8byTPZuaBi6lUtoI6s/pxvMun0IWyuWkkMjhykiqqMEUMDl9lDLWP8m3r/F8sZtXShRwjkCW3GxkGVcfgyy5HpwjYNj+EFtO0DMjaTsU96Y+g80EJg/i8cNQrr4JoRr9wf5KbywDlqA8eizKE4eiPH44ymlTARCHfQppG4OOazvoJ5amTKeyGZnwu4NKWd1I+1l+dh8U+BxGEVDaHfneM2163kTReMymWJ0oN1+O8sRhJDxxPOLiu8MfYPEJ6PfORP/mVqQu2MC2Nm1fOJrS3PTiJZkEhtCPt0yPEkMUz+hv86E2zb/NHaYr6CMMyRI7Vtawif96n2JMairK/aeiPHEYnPQ89d9F3z9nPHxYH2isxeX/DRdSymo2tem1dtLJ7qLFmW6XX355xPXvvPNOk8d4++23+fXXXzn44IMBWLhwITk5OVx88cXceuut/u2ee+65ljZvr2VTQH18IG3lqtMUiSKu0eyM1AU88SW4G2SobDsQnvoU7j2DROLpQVe6iwxy5U4qZTVxon0zWlzSRTLxlPgGxUrvlfDEOABO5xg+sU1t1/PvzRyqjKAHGWRjZC/JL++CxQFOVDMm4ZY9MJ/cuiyEscqBxOhRVOOgWJb5g21pIsn//WqoryEEiP/cQBS2oBJn+c2tyIVnNjqHrE6Gt17EdfOl9Oji4CXtQ45VG2qRdAwxdFzZ8qlpa/g0/0DABLE/gHkbYATPnOgoXTfBE0cC0I8e5PzvGmqXnlx/gJok+OBp9GuuRumxGjceMkjlRe8HfGx5jitMZ/Gi9wOqqWWaNoPb1cv5WvuNHJnHt9qMsCVh8/Wl9CWL9Tv2C7FWQEUaalQNI0XblXAEssGlMWZLJW55NHAsppTnkfFfGEULcT8g4n6IuL+wrkNGz/RlbWmI5FeAxtqRHUG5OwnQQShwIoCO6H4+wrKD8RzMT7b2qZVKIZGRDGEdmxEIlunrgnxnpRTg2g+EB2HdaLzX4wkSL4/90X+8IaI/Lhk5WN3JvsdwsR/LZNNagA4Zpjyuk38tVmFFSOHvH4i4b5FVx4E3E9RiRLxh0lEpqxnOIFShgoS+9CCXnXjRiCGKLiLF72y/Z8v8t5x1bi3gvqyDpwdSWjEcIFUwaTDpD5TUp/376E9+1vhAXivoKqjG8frRi0FKX3roGRRQEmSEBSBUDXHrpcZrBPvRmwyRRhH9mep9lwfMN7TL9e4KuXoBA+nNZnLqjbsKejfarqa4bSUQRomhvMUXYddbMUPX9ZCyFfzZh4Eo4LXBwjOx16bxygX/4wy16cz3XWWuN/yESSxRVOGghHKGKAMYKgYQQxRlVHC/90We8b7NO+YnGKMcyHT9T8zSQg65JBLHp9qPHMKI+oNtD9VPBIp6+F+aUEknhUJK8ODhRs8j/Gn9pK0utZNOdhstDrqVlQULJHs8HlatWkV5eTnjx49vcv9Vq1Zx4IGGSPvmzUZkPSUlhZSUFFatWuXfrj0cQ/dkwukOJAQImrcnId1LHfGNA251VKeh/3Yu1aN/RRHJ6MJNT5J5peZHJplPR1FA1wEpkUIYIq660Z0SijA075q5zmpSiLbXf1U3y+3+gFtD+otQD7FO6rAKCwPp6w+6seaQRtu4Vx4BJzda3Cw8eFgolwOQRyGpGEG3AaI38cSiI8MaAggE8cRQTS0qAufqwyOcSaCtPpyiLh+TIhN3W7mS1oG6X+fFWfnMehJIO8JUr5vk8RlUBAYzN5KNvv6AEEcRKMuPhR6rUVFIFgkAZMs8zlAn8J73awB+lrN5VLmVL5hOkkjgB21W2KBbLjvZSDaM/RJWHUnQUMdaDWnb0NCDXOjakjk1Gm5Z/53y1hyMEh++09sIoSPS7wfvy9gVL07VKMntTsdr1cTF/E1NeV2gWQAqOIeDZQeK0n6J6UIISiijGgcKCsv0NZgw+QcrsvBeqD7OeJ3wAUry68iYX6D6eOMA1qUI+1L/8VbKDewn+7ZbezvZM+lD9ya3SSWJdJGCV3o7RK92b2GS+17KqMSJi0/NU4nuAB2nPYm1cnPQM0yYSiDrPPB2AVMhQhhGX9vIZQ2bQEJvulPu+8wMHVlJLNH0pQcFFEUU0N8bOTfezEflvskM4Ybo2QhpRpafZ+jfIhAxvwXvNPZL+PHm4GXpm/wZbhLYwFYSRCypIplSWUEtopGBRR0SiYJKEWXEEUO2zGvTa2wrdrCTdTQodR/7JXx3G4F9lHMPbltZo3BVQ3XoSFRFoN12IXLr/rBhJMw7HzyNx1q1G4ZTq3/EOSWT2UEhpmgXl5nO4DJT48noXaXEJ9uiu83gMhuz4RJA4rWaqZNpjiOaQUpf7NgwYcaJiziiyZUFjFcPxiRNJIt4qmQ18cRQSTVLWFl/orFfw/IJNAqJj/7G/9KLhgc3HjyYMLFN5qLrerv2gTrppCNocY/nm2++abRM13WuueYa+vTp0+T+s2bNaukp/xU0nFmqo7/oEXJ5WxNYTgZ1LkgfRNhDwMwbcM28gbkBS/8E7g8n8roLJNhh8wNxxNpEkHNVQ3qp7a+v1ZHkyyIW6SvoKTIZqgxsk2POp35wTPc1sOEQ6gVOJSf0bb1bbh+RRS+6ESXsbJU7GIbRZrMwUeHTDAznkuvB63fB1AB6roRV4wPaFohE9vkbJy6KZCmr5AYOFPu3ut3hKJQlEdc3/N20JyPVwQi1iobai9HYqWgQ0MogjfJuO6jZ0nhWMb7/aqpRSSGBVXIjq+RGLtZP4zj1cEaog/lY+55EGUetcJIg4qiVTspEJf/zfscFplMaHW+WZmhxKL2Xo18zCb64E6pToc8SOPtRf+c+qZ0mEEbYVV/I0dBvE7ZVTe7TECEA807MRPtzLX+XC9qymU3ilV52Wv+CuK+g8iyMclgBVsPII4PUdj3/fqIPlbKaUsrJpwhvXcDNm+wPuAFQfj4y6U1E2mMQMxukBaL+pOE8WaT7dCf7JoHSBeEop4ooWco1ngd5zfyQkbH0L2WDto13ta+olFVMkzOpohozJp70vskg0Ycs0ZWxasudxPdGQrlFC6GBOTdoWQ0Ohoj+FMlStgTorbpw4wJW6RvYRDYAascr6LQrx8SY+U+PX3jNsRjsyxBmX8Cr28XgHArWtQhrsO62ctgX6LFF8PM14ImCYTMQJ73kX2/BTCLxdBcZXK6exU3eR8IG3OrIpxBVquykiBJZxuueTznfdDKxInLAqSMpkeVk0ZUc6oOCythv0GNL4MdrQJqIOupTXjrswTY970ClcTZdIF686OhGhUfv1dB7NXpJb1h5NA37ujIhl0V3vcIif/m0pOK8D8gaOb/NzQVW6lvQn/vQl30X/DCvQULGBsQNVxCrxGASJmzYEEh0dAooZolcw0WcRg+lK4u1VfQXPcmkC1/K6dgCjNWUHqvRr70CvpgM5V0hqgomvIFyYLDOdKnPtMGNGycmvtVmcLrS/hl/nXTSnrTJNKOiKNx6662MGzeO//73v21xyH8ddWV1emkGPP8OuI3Ax1Rgqi+rKzUGlv43hrS4tu+kRjcsk/v0fmDPETour4UHf3Ly7Bl2qmXoACXQIe6pHcWvnr846RUHbB0BCBRRwcvn2LhiTOv1St4rc1Fe8hyYcxApLyAuvhv5zjOw5UAQkthBS3jxrNY7y/UXPdnKDmzSSp6+k7q+QiL1AZcgE4wAGg7YlPMeRH/XDptGQaChiOqGk15A9FyFDuSQz5OeN/jY8lybD+DmaJH14hqZQrQjqSKpUUYbQHWIgH0+hcjLrmXAW9NYnx0DKKB64Og3qRhodG52YgQUFRTWya0cx+FMVifxhvYZ1TiYps3gT8snHOu+jB/0WSzV13CiMo4EpV6zJF8v5Dt9pv+90mMN3H5JyPYHfgfakuF2lde7VzOpfDbCsrVeXBqQNQcjyy8BpQKRMhVhDv3dqyNQv8+Ji1rpxC465m9c5wwmUv4PzAVIdy9EzEyE1dD77CPaV2qgp5LJT9psgGAtHMUBwgXS9zxQK8A3aCD6z7DHq9L3TK2fTtqPXD3y7wuMzNxs8vhQn8Zj3OrPhv438rz2Pu/owVm5bjx+fdwupLBN/aPD27U7CDfx3JAqaiJmV30h612pNXTuHZOI3avTt8bCJf3fAHXv1nurMC9pJHYvLDvAEt74RzngDzjgD//7WKL993g3HlQUxijDSSSOWl9pbiRKKCeOWCqpYicl3KRNob/oyZGmg1t1Te3BFrYHBdzqUIbMgSFzABgvjmjzqqpM0dggIRAvjTPrxLkPI5122Dgao68roedyKMwiqO+LYO0XEzlv2KkUqm03KVjrrcW1cqxP+y8UAvIHIDeMJm5/IyNvtvUjdlJMP5dhpDFPW4w0SR433c5CfTmz5SK6k4Hbl7NmDsicV7LWY71tEq4wE/Bg9L/qSqmrqOFB7f843dwZdOskmCJZikAQRwxevESJjkuEaA1tltu/efPmZrmPOp1O/u///o9Zs2ZRWFiIrgeXZy1ZsqStmrRX4Z9ZeuVVcIc2TyiqhgmvOlh6Z+szkcIRJ6KROlBzFNLVP2Sq8+7GrRmfUWEEC/B42v6z2V3MnzUEttb/PnQJ13zm5JrPjABtjAWeOc3G5WOb14n8p9bLpDwnMAhcg5C1wyDrApRJN/u3+dj0GqrS+k5IX9GDNJIpoZwFcjnXYpij1JUxAtTiDNKL0nd2h3eeQ69IA4sLjn8ZZcy3nKQezm9X3hXxwVx3nG/lTNbomxis9G/TTtQWGdm5dJhom+zD5mJCrdcn8aGhN9LDAxBmNzfc8Bf7ib4c77miUVBTRUFDR0XhLe/n3Gy6hK5KOkcqB7NQX8Yv+p8oUnCkMppNWja57OQe71ReMt/v/4yfr/iGoteehZ19QdXg4K8RJ73UKOsphih6iK5t/4H4ODk2BsXyeNAy6U1CFjxBXSdW7kxEdLs64nHqBiB1ZcOlVJDZQYHVMmlMrgihQcKnQXPNCgpdRVq7nr+f6EkS8ZRSwZ3qJLZqOXzOdIRSC+n3IEuuMzTdUp8O+vvq60bDZ/eDKxpSsmHSTVhiqikVle3a3k72PD7flov+4TRwJEJiPlx5C0pSePfjMlmxT02UtZTsJh2SBVLKfV5uRZMaJZSHnFRqSFMGNyoqOpovZ0jw6jCjP23FwuW21k8o7imsDmO61hKqqMGGBY/U8Hx7AzsWnUosFZw3Ip3M0zLIVZp2LK+kimvF+UyTM8ijkL9ZwZHsOUG3RoZrDTChcrXpvDY/bxwxqKhoYbJ+axr008CnmXfSy+jv9IKKNFB0w+G0oGfjA0iFSqqp0KuIV5oe70gpeWqGk8d+dePV4OgBKl9cEY3FVH9P+UmfDVrT4YBT9eN40DQBAIsw01WmcZpyDD/pf7CC9VRQRYKI4yX1IR77Xyo/rVARwoMY8xXuE/4Pu7D69RYtWPCiRZRoCbwTrGcrBXoRXZT2zfjvZO/ibs+zfKh/C8Dl6lm8Yn5w9zaoCVocdAs0OgDjB52fn8+PP/7IJZeEznAI5IorruDXX3/lrLPO4qCDDtqlzsTjjz/O119/zbp167Db7YwdO5Ynn3ySAQMG+LdxOp3cdtttfPrpp7hcLiZMmMArr7xCenrk2YjdhiNyNsiOsvbRkIolBqpORhZNBjQYC3xrlGvtCVhN8MDxRnCpKoJbUijnoL2Vxbm1EMaFK8ZVxSMzn6DbJ9uYf+e1jLn+hCaPt8Vd993xhaq0DNjxJmTV/24PVoftUpt7ikwKfRlUebJed6yLSGV/+rGZHOKIoZRyvGhIlx2mfog/q9Jtgm//i1w2Ac/FP+OKNgJugYGQQFRMRrp+aRojvt1ITIGdRBHPoC4KU8+00zd11+YV5mr/RFzfVWnfQEhD7NjwNCglNWMmhmhqcfkHLP3piVmYKZZljFEPIJUk8iny75NIPF68uHCTShLlVFIqK0gS8UxUjseKhY2b48icvopMcTbjj09gcY+P+UqfTpdVJ/HjL33ZWQW5FWfhf4xoJph3HlLVECcEO1RX4yApIPDa1iQQ23jApqUSlK3rabr0PLCz3JNMCvUSMtWOeVbsjFDKrKO3u0FNT5HpH9CaUHnX+iSfu3xZI1ELEcIFwgNWQyhf6hZkzgR470785SiFfeHpz/E8MIEapXmZK53sG+RV6JS99gRGn0FCaXd49mPkQ8ciTPUTJzFEU+3Lsin5l5cgR8raB0M/60j3RayVm7Fh5RPzc/tkuWld1pVEYsXcaKJNz+0D398AFenQazmc/CKKPfRnp6GhomLBTG1AgMOFu0Mzl9uLwJLa1hKNnQPEfqz79lSKFhiBSBfw3t8aVu1qOPvBJo8RhR0hFNJJIZUkimT4yfDdgSa1kJORddiwcrgyss3PK4Tw9VfDl9r3oht5FPoz662ueGqnfoC/L6UDK44F4SC45FRiOf4NkkhmrdzMwRzQZHsGzn6NrT+e73//81qNY16qZvbN9QG7z/SfEUNnI3+8FmpCB7USEmoYs7+DeFG/nypUYojyS8bkyUISRByPfdCNaSvqJofN8Oe5mM1eUo79Bhdu3wSwxOOIgu9ugLyBcMCviHEfIxSjD2eUPcf5g/EAz2hv84wyuclr7mTf5hzXjXwvDamywESbClkVbpc9hhaPSJcuXRr0XlEUUlNTefbZZ5t0NgX44Ycf+OmnnzjkkMYC7i1l9uzZXHfddYwaNQqv18vdd9/Nsccey5o1a4iONrQFbrnlFn788Ue++OIL4uPjuf766znjjDOYN2/eLp+/rSjTA2buDpgBS8IHUCYdYgm7bleIF7FIxyCMu70KaRJufxWKNkBVEiBRMKH/fTLsGNpo/x6H/4pM3oFZmDChcqvpEgSiTpUIXUoUVYBuBGoVEXqd7lsX+Jjpl2ZibG8zii8DK5Ige3sO7Duai8Y5mL7cQkN9hVhXFWvePhRb3UP91qt5d1s3Ln56bsTyyqOjTcQInWqp1B/T09O/XvGl6O4K0SKKE5VxVMhq9IAgWRpJrMaYoXXiwoIZ0HyORY3LmGX2MH6eMhju/hMlthyBAg2CbgKBGRPe/B7wwnuAQjVQDWwv1xn0aA3zbolmVI/WB95WsD7sOitm+tOxxh2hNGo8eCihLCh7cAPbQMIBcj9MwkR3Miik1N8RrMaBDQvpJOPGS3/Rkz8dq8ksHsn4mFN4aVUVG785DRCUAatePZnoQ53I2gQeWRwokB/is108Dn3Ib9BlG4rZ6HiNEkPIpP2CV2vkJvpjlDb7NQMtm8CyFtw+Xbu4aUjdglDCu2paMePwfUbbyCWPQoYzqN3aHUi2zI24vr3vbZmkc4g4EAXFyPgTKvHEUi6rkDunQM0RxoZxn0Hya8jc12FJ/8YHckVDbRw10Z0Olf8m/trqpX6Szvd80SxQmgFp9e7s1dSQQCy3mC6jaxOlWPs6TQUdq6mhVjqpoIoKqvzZsPsalYHl7A36O/rqsfDhU/XLy7Jg+QTkvScj7KH7ghoaLl8GeC0uFARWrOzQC+in9myXa2hP1mqbudJ7D0nE+XVvW0LghJSCQEHBiQv7+saZf67VI0kaOZrS5LUoceGzlU2oVFHDUp9bcay+Z1XHrJdbwwbcABKIa7cAbBIJFARMcjakkmp/wC2OGKKKhlAbqi8l62R/qmH8h3QdtBlX5hqsRHF2xT10LxqFPdrNwWmpPGq5pdHuNdJByarhjZYv3h7cl/6LxSgmDf3e05C5fSCvj68zKUDovNXrMi7qNgQhLm50rBHK/uyQBVRTw3q5lUH05Y8NjaveTKvGs+NYYzLWhpUMR29KHnm1Xrbi177IZRMQtxrnENRLoNixYsLEdr3pDMxO9n02yRz//ayc+nvU3pA13+LR6K4aIWRmZhIb2zYlgNOnTw96/95775GWlsbixYs5/PDDqaio4O233+bjjz/2O6u+++677LfffixYsICDD94zUqE3ym3+18o5j6JnLYfZF0JNDIlKIlJAWozg/uOtnHNg++hRpJCAsC9H1hwFGJ1nEbMMkbKaGKJw4UFDw2Tz4P64QdBN6HDkx/SLSiJfFtFFpDLANIaxauOb/a6iSS1ipyOpnXSjdgdn9+qJ8/aVXPG6GarqnRRP3DKjPuDm47g3d1D4dGlEsfUkk8Jz3UuZlJNcv9BUX95iw9YmZSy10kmRLCFDpDFPW8Ih6oF0FWl0I51CSonCjo5uBEdScvDb3TdEqrDoZBj/YUgdjLqbrj53IuEyMp+a4eKLK1ofdAu8oTfEhYfuSsc6XNrCZD6mk0Ie9ZmFFswMFH0w+T7XI9SD+Ftb4V/v8f0vlmhKKafmx0s5e84g8P22BKc3OIOgZu45zWtkTTd4+X1Aop/+BMroH1gkV5KptN8A+299JesJFpAWQoPMa8FxMNI5GMovRJZfCClTEfHTQh4nUEB6AL2opONmziKZdmSRQbJMaNfzZypdmCcNeQebNL5ndqyUa9b6gBtA5VnI6L/A3R8yA4/gmyox14K9kppQv+lO9lkOyvJpEfnD/wIULyQWNNo2hmjuNE3q4BbueegRSqvq1q8PcGAsF3v+TH5rCKxeaPSZzLyMRkZKmgW56nDEqGBts0B0JA6cXLO8ErtXp0uNRl6fT+ltOQS1+2Ft2Pr2Z4Vcy2LZcoOgOiQSMyZ0dGzYsGDGhImj+5t4Z0GDvpUzkdLXnwNAz1qBuOaaRnIRADXUUkYF/emJBYu/r7Gn0JSRTzrJEdfvCvHEhA26GXdHSV+y2EwO1Tgwp24BIlUWxcDv15D3O2CvoCRrOaw/jJ2+38WfJhfld73IrYmn0Uep1359y/sFXQZC5aZgQ60eGbVAPDkyn+neOZRThUQa5g7dNkO3zUHbj7bcEHZskC5SWC030FN0Y6tPjmVML5Wf1waPUbwD5mLFQhdSyCaPzcsH1gfc6ijsg6yJR0RXoCAYRF8KKKLc1w8rkmW4dTcWpX2STzrZOwiXRbpMW7MnSdGHpMNrB5999lnuvPNOsrOz2/zYFRXGLGBSkhHtXLx4MR6Ph6OPrp/NGThwIFlZWcyfPz/kMVwuF5WVlUH/2pvV+qag98rBP6DceS5xD5/DzifiKXw8nlX3xLVbwA0gRsRA3FeI1Echbhoi4xaEbTVgZMV0IRkdHe/Q3+D4F0F1AjpEl8J1V5Bn38wkZSLr2MJfcgkPeF9ol3ZWyZqwgQcAq9i3bsaHdU1C3H0WjP4afBk8W+MbC6qXpijk6o0HNw3pF10B6XeDZSPY50P3q/zrUkhskzbfaZrEerbyj1zJe9pXlOuVbJHbceDEjYdyKv0dNGFzwA2XgbUs9MF+vRp98lz0yX+gT/7T93ou+uNfojvthj5cSvhyix5prbeD9+ieJtRloDcd65bbyPDER11ZoP7d9eiT/8Q5eRbL7nyTH+cbf9OjlbEh98ujEK8GlXNOJcg1q01aK+C72wBDk6wLKW1y1FCEc0YVihui50PFORhzTCZk8S1IPfR9IibAjXY9W5nvXcYmPZtnPe9wp+epdmh5Pevl1rDrcsgnUWnfCYUk4rH6XMbW6VuokQ7GcAAoVYAT41shQVQjTIWADikSxmtg8hjvk3bAbechFIkXL24ZXo+xk32LrCSVnlc8BdZyjAGkB0wqctbv6P/MRV/1gH/bHRSgyaadTvd1ygL0yaQnEz1vKvr295DV4wCoxYUzwNylJLAqYh+iTFb47z0NNUtJDpMBHG55A6bML+P+vyu4anU1o797FM/0K3elqbuFNXJzI//2lnKLehlV1mWU2P4m1zaXWZYPeeWcKM4brmBSGvvDA5AzFPJCZDNjDHzn6v8gkaxiAztkARX6nhMUrpWRDSEOE6Pa7dw9g2ejgpAY2rGbyEFiBJlLrHn0v+FBUqPqtohAbTysP5ygv5jXypuPXMyRs6Zxk3sKDlmLU3fxnv41mw59mvjDv8KsaiC80HMZtkk3s1Rbza/aXO7UnmrSdToxgvP8QWIoRZSxQq5nhW44rX95ZTTH76egChCKBqOm4T3hBVy4ya4zt0hu2G83Pg0sxsRvLW7WsplSKtDRqcXFXywhXxRH/nw62ecJlyEeSe99T6HFKSC9evWKmA2zZcuWsOsARo4cidPppHfv3kRFRWE2B4clS0tb96Hpus7NN9/MIYccwuDBgwEoKCjAYrGQkJAQtG16ejoFBaEDFI8//jgPPfRQq9rQWpbJtSGXt1UQpDkkEWfMZsX9hKDx7OF2CrBgxo0H5YjP4IjPgtZrQKVew5nKBKbpM/hT/kORXkqq0rbpnpWixi/E2RBll7slex7dSOcAZSArTn+OXqd/zhrbz8B4aq4+F++7nyKB6hg4/YconmYnIxkS8XilWjlKzByImdNoXXe6tEmbDxSD6Cuy2CRz+FD/lg/d32JCZaDoQ6mvPCZQDFnJ3Izy0Ml4p90EC84kuPtX97rB9EVFBjz4G7qlBs58FLovg+0N9Oi6riPu2GXAf1p1HZWiJsjNMhRpov0CSaGIIzrkcicu9Ly+8FegMLCg8JvLKRmh0T0qI6y+iR6mkxdthpqIMZPA/SL/9o4RYzGJNvPtaURbZbjGEkNxwAP9DfkZb7jr73WTTVdH7IDuCpE03aD9s3iFENxrupYp3lfYTj5ztcUMVQfwDTOQlq3g9pmGSEM3U6Q9giy/AAYXIsY/7QvEBVODA8s+lH3cSWSS+m0g56ET0b+8A/45DQ4CeuGb3j0WvfJXlDhjwrNElpMm2i/bZG+gBgdSqlBxBrLsItATAIHc+TDYzkCYggeYheybA84SysM+a8XZjyO3DwStG/7E45Hfo/Re3nEN3M3M1Ofv8kRYskhAEfV5FoowIm3vXxLL+8B939fy5MzI/Z2GlFFJOilYMLOJbNazlYNoLD/T0Xikh+1ELkW8ytTMzP1WsL/oxy9ybtj1gY7zdaW/mzJnMuORi3hqzSqmv30SwcPz5oxtBAXfX8xrw07ihPjDSVQSWCs3o6JQdcJzcMJzqAgEgtXojPFMbNa1pJNMkowP24RuShcOEQcyXy7jB/0PNF1DEfDNpGgUoXC/5wW/G3MgSv9/sA2fhWPpEdSVsXLe/Qhz/XfwKs7mXb4OCsRv1/PoobafKVcnezZu6QkbdKsKkinYM2nxKOjmm28Oeu/xeFi6dCnTp0/njjvuaHL/8847j9zcXB577DHS09PbzJXpuuuuY9WqVcydG/5G1xzuuuuuILOIyspKunfvvqvNi8hqfUPI5al0XH1yoohHSsA5HPQYsC8M0j6KI4ZanCiIsIP0G+TDvKw+wFJ9NfkUc57nFmZY32/TdlbL8D8qy56eV9oKTIqJoWIAEtgicyiSpaSKJKJffxpef5oPtW+5ynMPEGxcEI46XbVQZLSRO2KsEsPxYhy/yDlsYBtWLAhghNifDXJrveZWACYU9NOeh9OeB0B++Bhy9RGNtgtGgDsGPnkMy82Xkdalkmpq+Nb8Kkd6LgJgp3J2q6+jOdopye0UgAnHAKU3S/Q1oVeWhip1FayqKWR0dJo/4NbQcEBVJd7D/wdzLsTfs4ouwTr5MoqjZjH8ySrWNfpqSdTeS9C2jIjQWgmnPIsFM/spfZp5ha0jUcQzmH5sJ59qagGJQOBFQwgPpD6HLDKy7kTK1LC6bhVhykktmIkjho0ym4NE+wwqiiPM0kVhxybaL9O5jv6iJ+mkUEEVf8sVHCiMCSxkNMEz66mI2F8Rsb+GPE40djJFOlWyut2ClJ3seZixIh2jYafvexND8GCttjv4gm5feqdzreWCDm/jnoQHr+EKvPU8sAPlwkgq7Q54U6BB0K0pR8a9kQK9iEs8dwKg/3MszLoYbE44+TmUnmsQFhdc/7qhK4kXMCG67Fo/f29CSkmlrCYae6v03AD6kEVKE+OJO4+18cqfbqoCH41ZK6Br6PEJ1GvM1gvp7xnfzwKKI7rgmjDRR21cMdJW9Fd600TymB8LZjx4URA8530XreIYSMgDzY6y/1zM9lpcs86nuYE3+ex7nCZtRvDL+i22oX/BCS+jqR7MmNDQImrdNcSECZMSOVQwXBnEMm0t1TiIdg/DjIkPzE9zunoM56knUSCL+E2fRz5FKD6jHR1J8sT/I3bisxQRutLlXb4mi65sIxcdHQXBarmRQ2l7A4xO9g5y5U5sWKgNkXzTVJLEnkCLg2433XRTyOUvv/wy//wT2ekP4K+//mL+/PkMG7ZrLomBXH/99fzwww/MmTOHbt3qy726dOmC2+2mvLw8KNtt586ddOkSOqvHarVitbb/4CaQLYS2jd9PtO9ANZAoYUeWXg3lPqFM60qUzOsQQhKNHQVBFHaqqcHi04bQ0IMebB48RBNFlshEStgmc6mU1W3quhfJRKEbbauvVVajMWOdmyqXRAE0n8kDBBs+KBI0wq/TkQjfexmwTvUdUwiBLgEar0uJNdG1T3e2mnawv+jHEn01E9R6PZIsMjhMjEAClRFcXevYEKAf2JB0pe2yDg5RhvOx/h02X8nIQNGH7XoB/XOOZUWBBgmF0Hs5isnomQjjiv37yyPfg9UNUujDIhCbR+Hu8jOHKAfyuudTjhGHUI2D4l1w1HI04SxnxdKu2Vuh6EePsOtE/0VItRa0+hJJ4grZlrSaI8RpnK4cwyJ9BbkER9CSSSDmhB/YOf5zqosSIaYCkVCMXaTylZzOirtPIL/cS06Zl1+98/lAfkl22t9oHz0auiHn3AVpOyA9B8XsxYydPiJ8u9uCOGJY1SCg3JNMtpGL1O0Q/QcixtAAjWSkkE6KPwszcILBjYdiysiWue02k++VoUuhTagcqYxul3M2ZKgYSIZIJYsMtskdXOkLWov4z5DFvkk1y0awrYx4nBpq2SC3+QKgnfxb2F54BbJqBAwBtktYIwzdPwE4vNDjF/+2b+tfcC3/7qCbBMgZC18JSAfqYhYJGvL2LUFPPzMmv7bRvkQuO41M7Wk3wYKA7KPX3kC/5A6U/eYjaw+gLuAGGrL2AER0a83Q2kY8oaMoo9IwRtoFNpNDVBOmATFWQfGTcWwr1bi15DVmJnyNOy7yRK6GTgHFHCXGUEk1m/SckPK8HU2+XkgmaY36OnW0d1VMDyUjYtBNIFBR/Q7yKgpCV5j+wYl419WbDOoLzsATU0qwg2kgIZbXpvpPrbuhat4psGYk4r9n4xQuv6KfBy9SgtzeH3b2gMwtiIzNQfp9g+jLMGVgk9fbi+6GJpzvfykk8qU2ndPVY9hP6YOGTgJxOHHhxoOGTizRZImuzJdLwx7Xg5ckEU+xLKOKGqxYWaltaEXkopN9hUJKQgbcANz7YtAtHMcffzx33XUX7777bsTtBg4cSG1t23TEpZTccMMNfPPNN/zxxx/06hXsJDhixAjMZjMzZ87kzDPPBGD9+vXk5OQwZsyYNmlDW1AZJiUy0Aq3vYnCBhVn1C9wDUF390BYt1BFDb3pTjUOKqhCD5PrJoFp3pnsr/RlrdxEDNF8q83kItOpbdbOqgiZbqltWI77f7Od3PZNZE2IjsELnEvqZZvoOzCftXIzE6gPumWIVP6UiwHoJpsuD92hh5+JjArQs9pVRqiDcXpdRGGnkmqiPfHMnvIwHmeAJpnwot9+LkpyPl40FBS/iHJ0t2zE7Zfg+f56qEohacxvFG/rjmfJUSAbBsUlsv98qqlhpb6RviKLHbKAaGHMDOtSDyqraC5NzSpn0fEp7ibF1NDEFfB1uyxO5P0nwvfXQ/ZQGDIb01Ef8bY2EKdwslHPDjn7q6IihSTTFsfG7vUCuoWU8IL2PueYTiAjwURGgonRHInXtYIn5Wz0Ib/DpgbBINWNGDofYarPZnTh5gAlWMi3rQkV2LdgRlaPR+68HzBD/CcoKS+FPUYUNiaqJ/K49hou3EF3uSQSSCaBt71fEoWdE9VxbX4N2WHKYbxobJcd49rVU2RSLMtIELGUU4VD+LIj46cZgTYtBWxLIwYuA4k0SdLJvoVTl+RV+TJfM4EzBSz5G2ZmwJBVMPoFFFN90Ki4CaHzfZ2nXW8ZL1b77pWBj+ZyFZHfG7qv8y8yY8IpnbilB4vYN7L6f9Jm8513Bnas1PxzUoO1Av64CPabj4hahKw8izrTJRG1qNXn9Egv7eNZ2T7kyZ0cLIaxSeZQQlmrQ4axYaQpAhFC0CvZxJg4K3O1mmYNYQWGe7gdGx9q09ghC0gWCYxXDuYQNVImfPuxnYKwATdoXxMFgO4icgKA6sv2qsNTa4Mp34DWuB+jVyeRmFhFWdkujAfLukJ1EkpsOQJhBNw8FuSjX4Ozftwk4/PhvxMRqhG2W8MmBtAr3FH9DFB6oWoqicThxkMKiRTJUqr1GmKUaJJFAmsx+pZ1AT8nLopkKX3IIpeCIO3KQDTp9Y8NNDTWycgSVp3s25ToYfS/Ca95vSfRZkG3L7/80m9gEIknnniC2267jUcffZQhQ4Y00nSLi4tr9jmvu+46Pv74Y7799ltiY2P9Om3x8fHY7Xbi4+O54ooruPXWW0lKSiIuLo4bbriBMWPGtNi5dKm+hiNoH7fTGkJn1HRV2qbcrznYsII5F9x9MerrvUGlDZVUY/d1VSI99P/gL6Ypr/Gy/j/KqeIV70ecrR7XZqVRDlkbFJwJZIgY0CbnALjruz0h4FaHoOirSVTffS4er4dr1Qv8ne6uwnCEjMZOrYycMl6jSxYWnI7ueBSQRvZP6jP+AXS0aLugWze6UGz9GyEEmqaROOeZ4IAbgDTB01+g44sjxRXCrRei2Bw4cSFTNhN/2f1UUMVOYOhBA1l++lPI9x6HTSMAE0RVwrkP4E3dihfYQT6qVMgU6cyXS+kve7JAX94qJ90KvYmAwW6QEIwJ03E25jsFitUFZz3rX64Df7OCv70r6EpakMNpHQUU0Y+enCTGMVW+51+uobNYrmau9g+HqvXp/ONMB/Ox5we2j/4BvTYGZlwOmg2ScuGKm4MCbgBdSWNkXZliOxHb4GEbQxRpJLGu+BYu/+RzHnvqcRRAF3DtmzamndP4fuTGS5KIC5mifowYy2fyJ7JlLn21rHYJulVFCFAliYQ2P18ohBBcazqf27xPkCBjudPzFDFEUY0DYd0MBLuaSVcvZNFdoMciEt9CxM4MWh9pkqSTfQurAKEWIzXfIC6lGjHpdqTTCs/+D77/uf6pPWQGNRc8iSY1VLEHpMZ0ACVenUl5tSx3apwfr/JK3BvGM6THdFjdr8HWEuKD3Q8dOMmWeczVFzNebZ++aEdzt+dZ1tW5s8aWQJmdoAdrF+N+I6LnQpfbkc4DEPbFiKi/W33OUPIWezK5cicL5K7r17Wk4mSUMoQqrXn37kqqOVecxKvyY0yorNcNQ6AftT/4WXlrt8gLZOt5qChoYdyBu9C+Y6uuTUi1eNEYRB/WsBn9owdh1dEEfu/Tqwr4dtqlnHHK2+TFdaWsLAZjAl4CiqF/Jk00rxNqjNjko9/h9R2lngb7V2Qg1x6CGGxoPisoTV4LwFHKGIpsCwG4xv0A7+lf00/24Fd9LmcoE4KMrgL12RKJw4MHJ26k24p87kMoD57MXmyrQd56HkqcMYG7gW1U6JXEK82PFXSy77BSXx92XQnlSF/12J5Ki4Nuw4cPD7ogKSUFBQUUFRXxyiuvNLn/cccdB8BRRx0VtLzug9K05jtavfrqqwCMGzcuaPm7777LpZdeCsDUqVNRFIUzzzwTl8vFhAkTmtXOhlzi/i9b5ex2+WOG0x6IbcOyzKawCxuiy73I4htBj0MkvotQ651biyljAL38Zgp1SE1Fvvs4bDoYUChQvJx32J9ce+IFvK5/wlLWslhfzSHqgW3SzjIqQwbcAPqIttPe29N+sjGqDSdelrCG5fpaRqlGiVuMiCKTdHLZyUrCa28APFBUSm3NofhNi6tPAMs2SPzYOFYbzhIIIZBS8mapi4W1GgmLryK0dUnAJ12ZDl9NhgvuR/tnAnx9B2W61b/NslC7O+LhneeDvhFbff8A1gLjAAKMG5rPQKBOO6ZxGv96wNKq4+4KJ/j+tZzQRewG633/oLGz23gg+PMbAHwR8F7C2Q+jjPgt5LGHMqDdH4JmYcaOjVqfVkk1DqqEg5iqSh73Bdw0ReH18y/EsqMfSuUc9LjggZvuy7YMRZIST7wWSwVV/KK3vZ6QlDKig1h7mygEcr56MhtlNq+7ZvFd+QEkcCgy4bVGou4AcudD4OkJKMjCB8C+PGi7zky3fw9CCKIz7qW65HKQCiL5VYTQkF/cA9XGwO32hS9x09K3UKXkl88TWPPdeoZYB+3mlncM9xe6+KnK+JU/UexFmA5ARP+FOPQz5PqRsHk0xjNGh1OfQ8Q1NlbZwnZe936yzwTdthDgYPif62Hqe5CRYGjauQrgpBf8q0X0fET0/BafI9uTyfF5X5EvuwKCGFHF1xs8jOu/d2QL7mgjnbRwJkyhGCEGk0IixWG0tgLR0JkjFzWa1FvGWmZof3G26fhWtXdX2MDWsAE3MMy+2hN7M3Ipt5FH/IbxlK06Jmh5z4ocZn16JrePu5+8+EAXVBPEF6DcdSbSZUc+EKq/pdN49NLCvpcaML5DNquiI7B/d7/5enZ4Cpih/8WV3nuZoBwW1H8JDIaWUYlbk+jvPOO7/zXuf0lnDOb3n8N7zVXIN5+jIHsY6ULnjGE1fHRxFIqyp43WOmkvpJQ8oP9fxG3cePxO2HsiLQ66nXrqqUE/MEVRSE1NZdy4cQwc2HTt96xZs1p6yrBI2XSitc1m4+WXX+bll1/epXOVUsE2mUsv0a3pjVuB1OKhZiyY8xH2ZQDEieY/JHcVu7QSYy6jJmNyo3XR2HHgZAPbOIyR/LEwDX6/DBQNYkph+1D8QQndzNbZ46lIT6bHgXMoo4LHtdf4QX2jTdpZRQ1SCnCMQXpTAYmwZCPsy0lT285J8q3zbVz0YfPFRtsXnZrzb0NBInXBvd+7WLGwAocbrGaQ+92KPOM+cs07I0b5V3tKgcDPSCK1ZAQwkN4k0rYzR2+Vubku32motXnCZDPU/Ybr2lyejp7fG768j90f+gzlorq72RPaEaJT98UDyH5LQg4UrzQ3zyVrV/nR8gZ2bBzpvsivHZJYm+/vxl1651SmjxoP2RKWnIoYcyXCWj9rpiP5SZsd8tgWaaGnyGS5XEcuO3ne8x43my9ts7Y7ZPhS5t50p6fIDLu+rUkU8exHX8g9E7xpRhGgYyB0v5BGtxYtmXoRHxW0OH+GdE8ym6Uz2cm+g9u6FpH6DNQOA+FBurtDqZHFdfKmX7hz8Wv+6YsTZ5Ww8IbrGfLG77u1zR1FvkdHC5y80ZKRrgHg6oO49GmEuengigmVhXLFHj+b31y8AVkvSnwx8r8PI/OnYpSRZiBqTwDzd60+vpRwSO5Maoihro9aLWOZ8IqDvEdjSY5uuexER1MhK+lNN2pxkx+hZDIcEziMeCWWHi14hsQpMYwQ+0d04AxkNRs5hOGUUoHTp7dkwczr2qe7Jei2TYs0xQhjlbZJAgiHECKi6RwYjvOjK49kZoPlKbWlxGi1bI8JUaJakUJUwSAcXdYgD/kY5tUZLEiMgJtK/QRxOB24cEjI2IAYsCBgiaSLktqCYxiSN1cp56ChsVXmcprnWt4xP84EZTYr9HWUUO6vVkoigdL/TYbNY4hUQ+WpjkO88wxkG383XcKXy7x0iXPy3BltV6HTyZ5Nc4xkanHuW0G3Bx98cJdOeMQRTTkS7plIJIv11fRS2jbo5tW9SC0Guf1d0IxSQZKfx5bwLcltqFHWFFEitDNSLNFIdCyYUVEo//kCmD2qfoOyugd58M197noz40ceRBU1uHBzjecBXjU/tMvtrJBVRjZeZb3grgRIeZrklIRdPn4dE0dYOedACxU1XnRNRygCIUDXfVfqu1ypy7Dr6p55rVkngWX6Bs7SrqUmqhS5fSDa9IuI/Ws8s9z1pSi1GrD0UMTGrxh2772UyHJShPG9+c47kwe0F1FRGa8cTK/47lAxHupm4YQTEfcDAOvYgqmNdWIW1GooSDQEjNThV0Hg9+TO+c8jhcpTo6/3XbeOLX0hzs3D2TOCS500H4HM7x0y6BbbQZMHY8RwZqxzw4bL0bsvp2pgNjuSD2Bdz1582uU0pnc5CmYYbWUjyDWTkbZsqE6G6ApIz2a+Go+u9wMhjRGbBIGFJepInHIQsAUvGvdJN6vVHFJINH7HSN7RvvF9awWXqacbv2MBiq//6+8C+94LITi4t5kTBlkoFeEzJoOyQTqIgfIANG+ARqSnl6GlKILL7kXiB8iSG4039gVg2epft43cZmVKdLLv4HV3R+5426e7qQESDjDBdMn4HGMAL4Dy2DiqYqJJn7ttN7a2Y7k+2coPpS7YqIK7HHmwHVxvYZSLOaD7pQhzLnpVPCw5FpxRMHABSo/6iQEvGvvRhzn6Io5QD9p9F9NGKFJF86aBWo5QHODcnzrdNtCQzv0Rca0PuuGx+gJuUN+nMMyqNhTqjOm15wfd8igMa7bWHMaqw7EJK/YmjBQa0l/0Cht0qwvp1GFCZT3b6C2604+eLJNrURBsljltbqbWHFazKeL6kUr7yl0YNPyUgonBzuhhpcz82g16fZBgadpgiizx3Pv3i5xy2vsEz3SZqH7+Dbj1fJSTX0E/4TVw2BBYkY/+EHDeuv/W/ZaaQsKozxFnvOg/nQUTR4jREc27wnGK6SjecX9JJmlU4yBDpNJP9AAhWSiX4cCFFStFlKJn1yXrhOvzS4jPQW5vrAs8a2No86lO9k1KmqEDW4uLhHZvSetpcdBNVVXy8/NJSwuu8y4pKSEtLa1Z5aF//vknr7/+Olu2bOGLL74gMzOTDz/8kF69enHooYe2tEkdggcPC7QlnGWa0KbH3U4+OA+oD7gBsuokXAlfECM6ThTQQuiAixkz1dSgoBBPLOv/HtJgi9COOkXDP+EV8wuMdZ1DtIjChMp32kxOUY8KsX3zKdJLoOqqxmesPJmklLb9vIQQJMTsvhKEQ7X+1LhLkS+9iSmnH/98eCwHXHxVqAxsZHUSCyvyyEvdaQQCgJVyPZtkNgoKmXoa6dZKRI9Xka5BICXCvhqhlvuPEd2GRgoAx8eY+bDcA2jQA1Kvn0r5zFHE1fSgZOQHXP3Ol7hlNM+OnIRmsoJQcP5zBfXaFc0PvB2xZQ5ChT96HN6m19BJc5GIANHvQDqiNNKjSXrdX0lhDcCFwIXkWBx0/c9mDv9qGua3PdRJB/nJ6Q/0r3+/ERqHDI1vYn3+m/F8cgHvA8GuFqf5Xz0TobQliN81Yq1OPr0vN+LTOKYDs54BDjf3p5t1GztcCcYC2wqE0ljnUiR8BlF/GwLQttUIETzIKJMdXX7dye5ElJ8Hsm4AqYBTwi8Agq/6ncgF677hh6OOZtLjT+M1m9lv28984F3PMFPb6bHuqZgLgPfrHt4JEH8j9MI3NrdBzSHomyqCs7xnTULvvgpx7dX+wfAsFnCSHMcR7N1BtwqtFnfec+AcAaIWMm437iVll1FvmNDyctJAhMVFsiikWAaPV4SiMThj79ASLN2Fe2gm6fzXdFWrsiIHib5h1zUMJelInLg4QhzEVMvd3OZ+jK/0X4knlj/0hbvc728JNbqDJBIopjRkyEsg2jx5IhQ2zDjCuCwCeNBwWcs59qFHWP7rWGo27k+aksrRPWNJfmQxmS+/xqK/H2BUz4doWHUR889EHCc8jaLqEOtASgdElYKjga766Gmw8AwiBrTwTYYvmohcezRMPgNh8iKBVXID/ZSerbr+LiKVjfo2dpBPlusIepLJDnZS7pOcMNeNOfefDX+f0WDvwP6/gJxRhApgnntgp43pv4kKWUUcMRFlS97wfsoD5hs6sFUto8XTPOFKOl0uFxZL0yl9X331FRMmTMBut7NkyRJcLuOmVFFRwWOPPdbS5nQYEnhHfk21DG160Fq2ylwwb8cYvElAA4sxOkzuwHitEAJTiBmRUsoxoeDERT5FKCl5jXdO3gKqA6OjZAw2q997GNutFVy75UXmysXM0P/iSe8buOWuidhWiGowZ+OfRQ/4zHaHYGt7YlEt9CgaA7mDGLf9LzIdRcS6fe5vQb9DCUIjLUplizRmRJ3SxRa5HS8atSUp/HzXQ7z339uR934HUx6DHd6ggBu0rXspwFnxZiZkfm3oA2b+h9Ju3zDi0k/Iv3Uol4yxkdNL56XhVxgBtyBMMGAOxBRQH4BriO5bZ3wPPpt+LZ//eC0P//k40c5K0L0B6+v+28xAiJ/AY2gN3ntbcby2QA/TlrrXNHivB/wL/Cxa83mEweSE6y9GRFWFXJ3UAb/Ln1d7fAG3ANxR7LfFBWnP4e5Szp6qn13lgpf/jjywaokeT1sghGBpr570T/4BJfklRMbt4be1bEXYVyJE8PcpnhgcTZi7dLKP4dyfoMHSSsV/+57b/WAuP+ZZ7r/lv3hVo6+xtufx3Fnz7W5pakdz/RcOgga/5QGvHQryf9eGllXYPhhKgksDS2R5ezWzw3i7KtcIuAFIK7L0CoRtNSLzGqPPkHELIuaPZh1Lair6Mx+iT57b6F/x0V9BjyWAG+P550bqCsmTK7HfUsEfG/bQB4MPLxqpJIXsnze9r7fVZcij1WHN3lZHx0Ety/S17JTFXGmaSAHFrGcr07QZrTp/a9lGrmHEFWa9itIqN/uWYiGyeVwtTqbpvzHJfipFJ05Bveo2tpVovPGXl/QHnMQXXsqong+H3Lc68x/A972f+i7yrrngSAR0EB6w1GA55h2Gn/4z31+rkuZLNFQAswKK4gV7BY3uNdXJyLWHAIbhgYLS6kqF18wPc6ZpAkWUUUoFy1lPvIghxjfOqDMQFKc/C4d8AiYHWGqM/4YMEvoy90y1mBSjr3vfj24sN1eQeU8FFbW7oz/eSUdSQVWTOsEva//roNa0jmaHiV988UXA6Iy/9dZbxMTUpwtrmsacOXOapek2ZcoUXnvtNS6++GI+/fRT//JDDjmEKVOmtKTtHY6DWo51XcJfti+a3riZrNc2IyzZkH4PsvJ0MOchkl4D6PAgkhlzSDHvwNmamsuvxvziR3jKfDOHGesR116DMLvRn/4YSupTkaWE696N4qrHzuFN7XMWy9Xc65nKg+YbiGqlU+Z2WYDocjey5BrwZAE62NYhkl4lSbROYH5PxSXdlJoN+4Fqs5HF98tX5zPhjP9RZYtn7PYFvDZzMqm1pezoYuGEW01ssxtBtyX6Gj7RfzRMOt57CvSA0gKpwkePw5TxQedrS/fSOgZGF/Kb7UMABAr9RE8AblYv4YQfv+f0y8LcQFPzUS67GwD9gZ/A1eC3YKtBefA4pK4g33gOHQUVnWtW/o9rVho33dFLY9jWR0UgkEiO4CB+sb3T/LY7J7CN3LDrF1m+YojSsRkaG/StDHWfHHJdTzJZYf2Bsa6JrPKZagykd707XABvq4/x39oXKXrxaajoBZ7QHfOhBSt4Yu7jnHDWJ2FaJBH3noKwhXc6S5Lx7V4tHGMNfQLNVo6In4a8+jd4/j2oyGBPLF3OtW6LuD6WmIjr2wOPUs7mhKcA2apPrIJqtu1CWVQnex+qqRDNk4V/PjdmDVAvWv5Dvwlgl6BIqAS+hd+dV2FXKrjtSDNTTu647P6OpFo6iLI0KDdbilH5Nfof+KcnbI+gSWsOdlQuozLMhnsPuWIbUKcXJUExAvTCthpsq1t0LPnHhVDcO/TK3/4DWSsRU45BTp8Ecy8gpaaYn786j+7VBbhfs+D+cCqWs0I/V3c3G+RWiijF3MRwTWqxyLLLQYtHxH+OsK2jK10i7hOJAfRq9rbCp182n6VM1/7kdLXeHCCUY3p7skFuIztCvy2hjbWLw58nlvImfqdb2YFEcpxyGL99eBK6wxaiGjTwviH/n73zjo+ieP/4e3avpVcgoSX03kFABRVUxAL2XvGLHbGgYhexYEHEXlERFRuCoNhAaSJK772GkIT0em13fn/s5XKXu0uBkKA/Pr7y/XKzM3Oze7NTnnmezwf6zkPpYXCjy2WXQWZ7/7xCQ3n6bNzAOsDWZitpzxiUQMWylD/11Yxw3QYrh8M3jwU2ylJBM9RcHHn/AbhevYi/9gkgngABAABJREFUtDV8I39GQ0OVKsWVaIyEAHHBG3DBGwDoz82CwhDzgMnNWOtQphYv9VvGHS6B274s44sb6/dw8gTqF1VxH5ejhNLjmvO0xka3KVOmAIan2zvvvIOqVowMFouF1NRU3nnnnWrr2bZtG4MHB4aAxcTEkJ+fX9PmNBhWs4VsPY9EpW741pbpqwEQkYsRkYu96Uk0IlZG1ev+0ILZq/4XCkpYKaaHrkTDGXjRHhWQ5HTDTeol5MlCftP/5E19BptdO5lnOTJhha1yFygaInw1KH9AxCJvSFMMgd//b4ZVWBga35rves/lL3keS5r249T0f5j450u83/UqZs/9n3c6Tjlk57dBCpO378AlXZznGk0qzSimlMyy6MBTPy0wbLauw0vB33uuHSlMMhseM51FW7o17s/b330HL14OhT6Te0Qe4uz3KlSOrn0UPpxKhWOuhGseBUAoOuK2e7gv0szUOxze1+Xby0zsbaN6ckvMmFjCSoplaY3Dtqvjo4oXsTWqpy5RlbF6LwdZqC9noNKTnfo+7DhQUOhDF9ayBTMm3GiEYWM7e3k0fBTP3X8/WXs/hO9j4ZA/516fQ2v54btrUYELtv/E3Hae0HrfMem0T6s0uKmomJVjH6J9RnsTp7RSWLan3GMYaLSXbv12skwqEFaCvO9B5KxxsC7YCb7vTVUv0FMz1Gzw7pwkyO/1Vcjr7Un18jTWJ+KJwYwJJy6v4bq2OFhHynsn8O9AVNy35DjbgBYDEYtg4AZYnwCFPuF9Yjqo58C3jcFtjDmaLnlxgYt+KS5Gdv93qErWBgMdl7PzShe8/GlF+K0OrHJAjgZBCf0971u/2YiYw97UMKw4ZJD1178MVtt6iN4DhRcaAmIJxsG+vuQyWHidwXPV/TfEhVMQajW0NUVViWgJ2N8d+cVTYDIOkH/9+nKalRrGILPu5vZ3DvH933kkRKl8eHUYp7Tx74OlDp0bZpTw21adaBu8MNLGlX2r9mSqK6R7xtA4YsgKSoBgQGY+CWVGyLEsGQQpl9DC3CRk/uqgKlV71unLR8BvN4PLhtplGeZLXwTVzbPut7nBdBH9RQ8OycNky9wjbsORoDrxnrNE/VAYNRLx7JWhjX8AZky8on3ERPM9lC49xMrEEorVYM4WPmuJ4jikphrvRGFCYFbdhJACszBjwcRjad9R+EV7dmWBW7ggIYqkq/ojeq/h4KJdcNjHWJ2yDtHeUHVPJI4eSiCPWm0QKcKZbHmEZu4kPtfmso091Re6djy8VX447r8uO7PZLdz2pMrUUYHjZVZhXa3bTuB4RU2EFFRU8mRBg+zPaoIaG9327DFeljPOOINZs2YRF3dkm4CkpCR27txJamqqX/rSpUtp3TrESdVxhptdDzPHWr2BsSZYy5ag6UUUVzvp1TWCKX5EEY6OpAwHuiccLYoIBAInLm8aAOe8Dd8+gu9AeflAB72VLjxvvp+Nju0IYIO+Dad0YTkC4v4yXSLT3gd3c+N7or9ENHqNtqTUi8t4fWOr3I1y+QK4fBKXvgDNFz3F/vmXcvr+pd6nvCWuDR91vpxmJYf4oXQ5A22GWmQO+fQQHSk450PKvnkAvwksdi/6jCdASqKsFlr13UBkx7r3Mgj3kU534qKRMDgnhBD0EJ1YYPoT+cilQcuWL7OVdmsQkwZzquhLusyihFJyKfA4vwt0dGZfG8X318bgxu311vQ1FGjoNCGBt92f84D5fzVqu0tXka62YD6IUPwH+66ifb14cFVGVYZRK2bW6lsYogzgS/1HVBQKKSJexBAvY3DgQuCmjWjJdrmHu03X86r9R9Dj4XyMPd430hv2NODQKu+h67TfxsFv49iXEEXfd29G3d+FSNVGQeRhdJcZxRw8RCemnjy0hBD8PtYwur/mms4U7SMKKUZwCY1JIN2egDz4LpxkgpN0RPJ9iPB/ANAn/AhlvgtdAdY8GDMaJfGQN1VqKqwaTse0kUzt24cHUq6iyEMSPUD05D39SwC6iw4MUHrymvnxGrc/yR76RHw7e4mk/j2AFKFwpXIeu/T9/MVaj/KiAampyNVnwc7e0Ho99JmPYvLfGDcmgZh68io4gYZHrlsnL3M8aLGAgJIhwFC4woVoPgph3W5ok6wfDH82Ane5qmHFILpop/s/Z3RzSRfFlGJKyEU+PwRZFomcMA8wg2aDXf3BZodICcU+E0qXRSjXPRpQXxmOKo0v/wZ8ry3gdTkdpZEbGk31puvz7oSlV1dk/OciZHpHxJhq5uzTPoW/RlDlliatE/xvLKw7i6TSw95eN+ziz1jfpCs4oSBHcsbrpfS+YwolLVfiwMmv5k84ZWI4WR5bTokLrp9h52/7Dl459dgS8rukizaiJW1JJQwrv+n/gDMFTBkItdJhl6MTXjcpGQ6uZnS1tA+oszawYcEe5IBdX3A9/Hqr97O2Zhgc6ErkuJuwYuFb988UUMR+0gmXYfXqeVJUTfhZe6VlvbSjCUEMYpVgQqWQYvqLHjyz+D7+SurNuDMmECgTXg4BWwchH52PjMxDqAKJji9TlOjxC0kikexcG+G/jWXF6gE+5c2QlUr61Mk0HzeG08e9zmL5T9BvyiYPawiu79qgkYinl+jCbBbQBEELktlDmt+hdvkBu4JAmrUQvvWCQbu3k2gvok/6alY19VWglXQ4bz5w2VG39wSOX6zQ1lebx4mLfTKd+ONUTqHWLIS///77UX3h6NGjGTt2LNOmTUMIQXp6OsuXL2fcuHE8/njNNykNBQEskn/zt7aek9TuR11fOsE9ARrCaytFJJMl/RdzLjTMmLzGNYHwDo5mVBw+Rjel34/oKeth4bXgDoOTv+af1vnAT7QQyQxW+jFXX4gdB6c4riBRxDPedEutVLiczpbgblGRUHw2NHoNLUhY7H8BSiXaxUP/nAzA6ibdcSF4/qQxvN5ndMUkPUGjcNzVyAQHOhqNZQLOvt9Dyirjd9k2AEobQV5r4w8oAtavHsJtnSQ/3UqdIpmKk9bKRtaL1DOZqn0cNKTZF+X9L0vmEi9i2CX3A6AgEJ7/deHGhgWBIIFYTKhk+mxMdHTyKORz7XuGqAPoU4161QGnm7L9nxgCJ0oeNLsNYakIlUuThwhTaqcGVheIqML4IlD4WpvPHMs7OHFhQsWFG4d0YsVCGQ5MqOTKfOKJIZYoWqpm9lq2grM9CIWwG1YyMlOybW0bfoxuyhN/VSznNiR2ZMhlX8FCBQ0oANjWC366G/3hESiRgYajyv23PrBbpnEIwzNkiVxJe9GKg6U98JUHliWne41udPkDVo70r8QRBy9/jT7yZZSBs5FOK3LiHHBFsQU4++8yzG3uJnX0JGKIwoGTgfRiOWtYL7cRpte8bxTIIpzVEM4lNNCpXRORyHRm+6VJl8V4Fk6PQW3deTBvLPKxEQhrhXE6ixyyZA5l0l5r5bwT+PfhzzINXfM9jC1/31Rkyalg3oF86QvIaxGsOCAp6Pk1cP2xbWg9Y7o2mw6ilXdtJfd2g8qbWbsNbhoHG8+DIhMM/Aalw8qQdVbHa3O8Y5PciYsgyoNrzglMO1g9bY0Sl4X+5HD44yo43BJym0JGZ788o8zf0m77ejIvOIVVPzeh/y6DumN9o84B9W3/pxu0nIeKyuTCr8kqviEgz4d/6jxxSiGx4tgdLORRyHK5FoDOWk/kwengSgFRAs3GIKwVyrZELoTCiwEdTBmolr20JbDdtYEVW1CjGyvPD0jSspvh1qBYLWGT3EEP0ZFoIgknjAJZdEyfky+KqJp3u4cI/L2PBZJpXG0eJ26aiSSedb/NRW0KuG7VLCKdxdx2zivVlIyA4ojgQhF7+pC9/HQcc8aSEfJUWBCz/hIKhswI+Q1daEsrEWqsrh16iU6YUGkjWuKWmmflrnj3lSZUetCBvRwkp9E+wA5UWjNYS/jmIp3b34X5s69nXuoQZrYfSWnbXOyPrMEeG80Jo9t/G4v1FTXKt1Puoxf1857XFkck/ZGWlsb333/P/v37cTr9B+RXXql6sBg/fjy6rjN06FBKS0sZPHgwVquVcePGMWbM8as4UQ4JOHDyqTanToxurhAGh2YcuVv4kaIwiEiE3cfDDYxQvTwKiCWKMnSiCPeb5JTGaXDlJO/nfT6D/p2ma3jP+SUKCnlsxyLNPOt+u8ZGN7d04zIfAGEH6Vm06pHoe7/H2mhWwBj9b4eUkh3s9UtzNd0A2U0ptEZz0rXzSY80wjJnzLuds/cvAUB/S3Dx3DDWDDYhBGjLRsL39+NVKQqBhVsEhXZJtK3uTiTDhBGCYUIlAX/v2L5KNwbSiyWE3lwoKLhwo6Kwk710lm1RUdHQ0JEoSFwZLeHVjyjxbGQOIwm79iladd3OHg5467LjYBcHeMb1Fi+ZH6KtEloK/c28QtA8ISt6FLLwEkRixYl8S9G01s+iLmAR5pChfnYcHCaXTHIwYaKYEnR0okUkm+VOSijDgpmDZBFHDNvkHtqqLVjSbAwUnQ3CzYaEcbRslch7fWfynPsdzjw3nPduLCU+D2664gGQQYxomhmWXgnnBIaMB/OePdZ40HQz7zg/R0Ehh3w2y50ISwQSFWMEVxCWXd784pIXkaoTVlResAn46TYYOBu57kxw+R+EuHb1ZGdJAWERYSyRK9nt09dyyMchnfykLSZexOLCzRB1AMGwR6ZRXBABL84FLdCTUSQcJPLhmCOQPTp6lItgSD0cmfG0obS9c3+Fwa0crnDkk78G3QTEYIcqVNyOFO0bC9Y+FIVJPT65O/6/oYNFwSCqV/CjAih/39LbV2FwA3HNI+xtVkKBfhExyn+HKmKq9gnb5d4KeYkmez3jtw9XU3cJ5qegXx6iyeMI644q6yySoUP6/w2QeohQsCa7YXe5AqPnGYUZhzmKhzcsFJSwUhj+ofez/vtV8POtlG9zpmXfwam/9OS91lfT459mvHSXynk/aES6Cym2xFZ8HyBSNlKCHRs2vrF8DcJXlddom7vlOu5wfcxb5qeOmUEp10cwI6+4v4fHGJA2ZP5ViCZPea+LxClgW2+Edkf9hq6U0U/tdlTfH0MkBcF4yZpuh7xm+KlMmssoU0twUMZcbSFtRQp/S8MzJYf8euNS06SGDSv2EHNOFyW0KmtdopnahGB2ZV9oaPyjr2cNG/ny10bcc2chAxduMAixj9AzUC9MxDFnLNUplu5v8TOmKrjvNrGTxDo67GurpHCYHAplMc1EEodlrl/rHLhYzRYjtPyHu/HnsfO0+Yb72VAwnI7X3c6IvQs5c/8SUuRmfnp2CU61jCjZhr16Gqn1oEx7AscOhbKYLfpOiiglkjCsWPlUm8NmfTubqHpeLMck9zs0JgGLMNNJaVNvBv+aoNZGtwULFjBixAhat27N1q1b6dq1K3v37kVKSe/evastL4Tg0Ucf5YEHHmDnzp0UFxfTuXNnP2GG4x0S+Er/gWf1e4lWjq7dQU/7gEQRHzT9WCJc2ILSGQXzwsinyHMtNLeInpGK/vZbWBz5gKB380T23L2Md/mEd/WZ5GzoyR9fPIVFz8esCN650sZ1J4Xmydio7TAUN5uOReZdCaWDARNocWzLvBFXvMR8nJInHglyyPfzAtMPtoEtAymfNNOijcnlpPRVDPMY3ABUKZl+dSnt08z84F4C3/9ETXfsljqOaB6pDiVb/Tskj1oPpSNL9NBGt3KDr4aOCZUNbKc9rdju4YZwoyE+eRnpZ9wRlM18lPBnAt32nLiYLxfTT+vGI8rtIb9XqkXgXSQKUPw9CxIrGRDrExbMOEK8d1nk8qLrfXrQgWWsphQ7Tumk1MPVWP4ur5fbWO7YwsrX70em3wsISN7O5LumMTXiQZbra8kgm4yeZga+eRPMvRtkFdNFRD4AUrcg8/4HzlRE1E9ERNaAw6OO0VRpggkVNxoHySSScJwRvyMSX0JmDYIvuiBL70VyX6WSvjL1Hlg8HJfhwdRFJZidbGQ7No9SWblBNEfmsUrbyBXuewCDvPmQsixoiM1afQt8+RRowd8RmdOcmX+YGH9mjR9BncHrop9/OZT1BxTYFCpkqX7H3u1ZkjeXOBl7ev1wK51A1WhnVYmO+4rC/PNB+ixyresNfjd7c7ASwv4qod1KlslS9st0ulG/AjXHEmnS8KgqX1qJ+EPIi5+D2eMM3rIEJ/S3gowEVxgyazyixc1V1vlv93QLZRDhhgfh7bchox0gICIX7hwNUKXBLSjisqjsUbjUcQqLi09HM+3kvnci+YlBOHJvhTfehNJ4QId+cynp+zUWzNixY1ftcMdt8P5r4IwABPFtdpB3wcvM0jWu1M7jZLX3MeHdzKVi3rGpTvzG2EprEiF0iPrVL63RUbYplabsJz0gXVw1AflOIqR1MRLCChG334ZuD0d/4z3WZaewDgEpIxG3jCWXAtocVUtqjgwOh+5fQAuS66UdNf2eAs9eKsdUwL3vRvKEehMzNoRx02d2XJqxJk9pk86O7TUXgVJdThCgmULNjRpFHz7nqU+Hk79BGfFaQK5mRymkUA4hBGcoA/hO/5UCWcQg0Y8llcJapdvsMbgF26sI+OJpKIojN8rMx92u4uNuVwHQf2lvVp02nkXyH2ZrC7hHOTrvzhNoWPym/cnVbmNt3pqW7GZ/revYxC6GuUcB8KX5VUaqDbB4DoFan50//PDDjBs3jg0bNmCz2fj22285cOAAp512GpddVr1r56hRoygqKsJisdC5c2dOOukkIiMjKSkpYdSoUUd0E/UNBYUCirnR9dAx+44WSt0MdrVBMN6gYIpJCoJwbFixEEeMVwI6AG+871GdNCaK1WmSMdNNxCkxXFh2KXz2HOjGpODS4ebP7aTlh5Z9/ll6DEumNLBtwei+AlDQpAnXf4xHM1HEscL8DWAcfPHWe+CKpvIpUIwj0CBgcwhsWCmRlRZqfcv/IQP+Jl9oxWau242zRZirFC5oXot+bsVCUxqzoxLHlXQG8abSTGxjt18+3R6O/var6I8u4KknzuPtZaE3LifF7IaI340wjvAViFh/9c6GCvcDaEJo0ugIwpkjf/MaxQGWs4auoj0CgcnD+WLBzLOfNGN9Onjfo0Md+GC6ITJQhOFJoWe1hLn3YWxeKqlolf812o04+VsjNfc2yL8SSk9GZk7EbD96b+AjQbSHS04isWB4fBI9D77sBKWRVIwdXv8TKu7P86e44cYHsTgkHzw/n74Z/3heROMvafhXmC2GyED5It+GlaY0pogShrivx4IZC2byKeQAGUHbOkl7F8qq5mzLL2kYvsoL1CGss3xPpN4Iyj2eFU8fOA6ot3JKQs8XJ1C/2O7QKMy7wjAeIQE3WNcjkh41FOoS06D3L+CnY+J5n856D2EzPOb/kuvqv/HHCGXSHkCfICWQ2QpMLggrgDN8RVQE6NUf5GbIw9XmOZ5R4DM/+UKxOlDuGYUyaRDKpFNRHr8AJd4YN99Tnq62Xqkr6N88gP7ELzAr+Pq8UItBair6F4/y02NPIl+dTmTfJYjnB6FMGoxyyUs0IZGLlLN4R53ACIYwpmU/bn3mQ156eQ7OV2P4/Y54wlVjbXyFeyzdHOdxifMupro/OcInEhyFejGxegzWWY+y66VrYIcDpANs6xFxH1RbPoqjU3PsItoFTRcmF8pdt3l/J658EvneVHjqZ8huhXdrua8XctYDfh57xxqF1XiBKkr9zKWtqFlo5in0pjNtGMpAZiiTSf/uOkZ/Ycesws0DzBS8FM2mOzrR5/apGK5zldfuBi7ZOofYUkO0Ytov99E6v8Lz3hh0fKHiu3/izyvQN/oLHKbSrEa8dDXFtepIeonOHkIY/PaNAkG4HkGVRkWXjSDSrhwoKaGbaE8E4SyTq+qsvSdQv7jIeQeR9h5c4644DD8QxOBfW+TU49hTE9Ta023Lli188YWxATWZTJSVlREZGcnTTz/NyJEjuf320N4jAJ988gmTJk0iKso/fKCsrIzp06czbdq0ECWPH0QTgR0HC+RyVukbq+WHCoWPnN8GTbdhpaOof1GJGBEV1NOtMpmqjqQVzdnEThw4ia3EPycQ6JoC7sCN5Pp0jW9MN7CqyM2HlHhLlGPnYY3mscEnxX+0DUjdikz7GLQEv3JDEjYTrpxc43v9tyBe8RC8uy0G6bIXFfcuL+7A4b+hkYfCTAJzHu6ASj6qyYW76wLY6LH0pwC9Ksrbkh6jd2QeLUVTxlhePMZ3E4hWojmtaM4e0oJeL/dYAsOrrbVoYSwkpWA/B3HgxHLee9i/Go8vZ5f51G+wYCEMKxo6pboDJn0Dds/zLLMx9msNRTq49dTA08AcmYWSNDFkuxtSGScUT5qCgkTSkmQ/qXo3Oj1FR8qknTQy0NEJw0bWocBTcFdGKiu1jRWeFBlt8F8IVTxjZdKgwEY42lCxmAPpSq3t7dUJ2oiW5MoNAMQTRw4FhrpbcbnR2hdB7i95K8pYw9vk176FtN8OasonTOwfiyo1Ent3JDezO6bDPchptBENnRYkYcPKFozQ1V6iEwdlFmZUkkVjXndP5yWz/0bwL30th2UOjJgK775JsHMwobi5f0jDeILHixjiRQwdYl9nZdFpoMfBKfnwTSxEetpatcjvMYNFhbGnnfByO16w3anjvylSEElPIEwV6oXKyAnoWaVw0oWAjkicgoiZ5VfPRn0b/xXkUhAQKSA/nwAbfE7ev70OrtsJ1raAjkh4t9p6S6tRmT/e8Zn+fbV5wrHhwu2NBnlCD/TEAcOeINcOgbVnQ2Yq5PsaO/y9l2NFHmdH/8SDb8+CNGPd7gaKF19EbFFjUq/4kIFKT1orLRlrMjxmbjRfEvCdndQ23Kxdxj9yA9kyl32k86O+iMX6P9ypXoNJHBFzTwAKRDG5Hz8C2z2Km394/i6bi2iWX2XZCMJQxdGFLnRV2lMV5W4c0eTsSYGPphBqXrWl9SJH7gooe6yQp+eHvKbWI0dDK1GzMMflrOEm5VLaK6mM/SCaw1srHviHf7nYnaNxbmcTcvsNXHDp35T0+Ran4mC65SVOeSqMQwVw0fYfeHvho/yQcjo3nfs6FreDvDAfcSgRbA1X6fP+LtB1sTd1Lwfr1HtziDKA1/iELqIddumkN11Zwkqk578ySz50WgRbTg9SWsK5b0JaB/j74oqWK25aD15COPHYhJW98mC9inacQN2hQBYFHFCFigQEkLoNnG3AdBBhyg+ZLy9YeHwDotYzQ0REhJfHLTk5mV27dtGli+FinJ2dHbJcYWEhUkqklBQVFWGzVRgQNE3jxx9/pHHj6oknjweUeRY8KiZmab8esdHtgDwUNN2Og2hR/5us6CCnYjp60I6voxNNJCmiKUWyhDIc3pA3iUSoGjJxN2T7Gw+79d/C5+5Mvk9YCuo40Co2TUJ106RFNoRwy97JPuTh+0BrVJEoChAtbuKG8HuP4I6Pf6zRNhNPLJpZIy8uDfIqT+SS0afE0H1XDMPn2Om+Vsd100jWtCpCl7no6CjXPol+4DNYPQxsjYChRlE1G4dtJX/JoqAejfWBRiI+pMENqBiEpUBzK5QpLiQKh/RspFDRhEDv/hNhrdcQvex6DuulxJ20kOImW3FjbE4iCcdZHIXLHhNQ/8d/Bze6rdQ3hGxTLFG0ruEp5rFAgohhrwx8Zjo6KgITJnK1fHQJQjXWWwnEEUc0BziEgoITFxH9fsX52xX+lfScx032RUSoxjMxt12LCxcBbk0ttgSwbgCIqF+Rdo87pVJEu/CsOrnn2qIlzdjCLgSigpOmZDA0FdTo8OxQRQhlo71R3HTWk/zYroLke8cB4EAnWP0alqufIKr7Spy4OFX0IUKGsZP9uNBoQTJOXOTLQuY7lnEvOTQ1G6fHTuniNdenlGBHabUe/fHhsPxCyGkGujTsby23MuSkPBpFvF1nz+ZIUCbdlC8XlAQTFz8yk29W5EGT6yAnGvYAhwqgyPcd06DLAtpZmtJf6VZO72UcuuugmEBqRv+UIa554dkrSQ1Us2BAqpnr+lmwmv97itX/VpwcpmKYMMrnEgXKekLUb375RKOXIO5zEA6EKTuAqysUz+2/ERu0IAbErZUOByWwwIW49SpQCqvcQFQUkUesAN/QyNZzcVdHdkWgYbE4BEG+fP0DSO8UopbyzbebybGPMCp6JhmKgLRAcYaCzT1x4uJZ8/1VeueX42XLeACed73DC9r76LgAwenOa1lo+RSLMKPrOpqmoarqEXlYFcpi2HV64IVV50Gfn0OWiyaStuLoVTrbiAre22A0Y2XYYc0wqvJQsg/8nAOE5s+ta+SF8KIEMNeje3ZjpWYUQTqSpjTiZKU3h7c2C7j++w6d33c4gThWbzkZ68I2nP3A6yRpidzQz8Gk39xcs2UWAjh/3x+s++g0IlxlnLVnIV90vSKgvuCQ0OdHvxQVtU4F/cKEjRgikRgRMMk0YonPAlJFof8NX7Jv36+kr+oOTpuxDoougFO+Q4k7DCfNQ+8/y+j/jfYj+/7IMpObke6zyRclRKsR7JfppIjA53gCxzecsvo5oRxSi0WmfQDuZIPjvekYhG1zQL5YopmrLeQ85TQ6KvUV4F41ar3THjBgAEuXLqVTp06ce+653H///WzYsIFZs2YxYEBwomiA2NhYhBAIIWjfPpATRgjBhAkTatucBoETFxKDnmSltgFpOjLL+u/yr6DpNqw0ryfeAV+Ei8AwUY3A8B0bFnZxAAWFNJlBPDFBOabEvTcivx0Hm04Hi4OIMz9jVf8/WOdWSVMz4NElRHw6GdehtjiTNhN1zSQeFq2ZzVsBdUkpOSwLoHh4pcZsQ5gzieHfwwlYG7ykfUAu+QCY778e1zfjYNOpBhdMXCapl35Cdmp/pFvww0U2frgIOrOHCBlGmQ+vhdJiO7TYbmxqy34AdxMIX0KCqhJJMq2VhjEiJdOYWKIpoiSkAq3+/Rj48wqcQDBxcwmUAeKiqbTtv8JjWBI4cOLEhR0H7ggBwhlAhhzZajvQL6DOAwQ3iIPBZ1guENEQqGohVOhyUzDpDSgxDDsSkJc+w4d9v2a+5QMGO69GR+KmjLAz34XI3fDbzaCboDQGFt3MtkU3g+om5f57CU/IZ8v4y+HTpyGzNZg06PkzYsRrwZWzoueB+SA4UyB8Oa1Nw4PkOvboo3ThW+0nTKgVY5N1G5zbEVYAWyEpbz+j13zFxFMfDEJaXPF5au//8WObs0N8k8D5+dM4luzh9jF/0lJJ5kv3j15D2xOmu9i8M5Kv3jkXUEgFIJ9JN2XRqeshdssKvgolohjODFQTS1Qa5hn6Ir9gCOhhoIP+RSTfFBt8KpiB9nYY+SK89FilUirmSDvdL/6WadZT6rvJJ1DPiDcp2KJ+xV40zJMiwbozIJ8QGGOEB5W5utbLrcewlfWLdcHupclur5eVAQmtVyMsteOuyZLZNBf1v048UmzTd7NPHuQvfV1wRcxqUIYjQERIFsVXYXDzhYkDegqq8HhjRh+GwiT8IgaSdlJECT/rS7lEDTXeB+Jh8208bL6NG50PMUdfwEGZxVr3dq59rjl786D8aCq21S7Oue1LPrZMQhE1M8AVUQwJByCrEvl/69VVliumpE6ECxKUGKQWgcx4Huw9kbY1iOSHEYphALXjhDar4O+LCOBEtRXAyFeI6bWcw/pFR92WmsJahWEtvB7V1mrjZTjj0HomTLmSYOGTleHIbcLch58mnGLKn/eSZv057aCh7NjUbngWR7lr6g0r4YonUZrs86ZEEk6yaFznHmPXmS7iGtf9NCERE6rfu6yhs4L1RKaEI4o05Ixyzjlg1YXoD16KElaK0mwPNHsDAH31WcivnmC2J58popCNjx0gJeyE0e3fBkdtxLaKzzT2sADSjCy4DGELtB/lU8hfci0r9PX/XqPbK6+8QnGxEXo0YcIEiouL+fLLL2nXrl2VyqW///47UkqGDBnCt99+S3x8xSmAxWIhJSWFpk0bRhGwtigfJgzFlY1skbvoLGqviJNFbtB0B856U9jxRVgNJyTfBZMdR0j3TaFqiMtfAF7wqCAVU+ZzXQkvglvvZrX5ay53vcJW0vhDHmajvoOuij+XxHp9G9nkGOSxziiYIzAeXz90lnIhEGMr4M/7ImnXuI7VABoQzUUS/3jC5DA5Ua581u/6fuB7d7Hf5HWAQxQTyGsxaWwJ13/sRpG/sC9FMHRpJEUxFnLJp5NomAEpSST6hUJWhiyJhj+voCYEsqXfjWX7dwASuv+G+apn0YQbDR2hgrzrZnjjXZDlxmXJ2uTvSNdTaKr4e9lupupwiLoimD0SRIcIAweQC26Akkqcb7MepqjvT+S5C4kgnELNjnzndUoOdANFwMllsF7Fb8Gnmdn3xW10v3MySmwWjLmtxu0TYWsgbA0ALZSG2RRer4xkgva6x+BmGHNF0kPIvJvgLCviss+55+JwZra7O7hKmKliAfBhz8urURITFB9ozTMPtjI+RnWDsTeiRBbQjCa8Pn1IQIlHZsRw+bPvs5Yt1d5LQ/IHliPc5IAMBeaCXwisC9hkA0s/UJ2VQuDBFXOI1TK01+g+mc537l8opoRxpv9hq6Ex+889Loa9UYrjv+MU1WCwqjDnlnCGdDh6L5Cujeex0pQOrhaIqPkIy95a12GXda9021DIDhZ7PXosvP0mZLQHIaHzIsTw2nuyrte3Ee9OYsDLhWz1OBS3SRCsGBdJdNjx5wE6xjWRxTLYsVnNEPRQzmLH4JqsfL+BojjJqkfQQgItNsCmJLwTaXQmjLqXgzh40fUeZyj9vcrNNcXJSi9m6j9gx86kpZns9UYlGO3I39OWr3cf5NEO++ggWtWozgJZDLffDm+9DYdbG/2lx6+IoR9XWU5H0r6G31EV4kUsFFxmqFajgr238TmugrtO6fE7evp0WHQVYAKhwcnfYLvgHZy4KAIW6H9il44aj+9Hg+3sDXktup4P5ytT84TCrs9uIaTBTUpS8/cxb/YNJJTl0OzWNeiq/1g9tc9o2uTv4dIdPyCA70eCKMusWSOtxSi9FvglFVPqYV6rWwxTBpFKc7azxxt1oVdy7HDgRM58AlDokbGe2XNGEaHZWfJFby658F0I2KdWtNNdEsOUnzM478I6b/oJHCPoUkcRSkiez6BQ8vAb89X8gCzd6ch6jEMvOw4j0hJZ4wOPY4VaGd00TSMtLY3u3Q1y7IiICN55550alT3ttNMA2LNnDy1btvzPxFyXYGeq9gnvKqH5n0Ihg+ChVyk0pVEDqJcmEBt0EKwJutCGTVUYKgooJopwiihFAI1JoIhSyrDzgf41n5hf4CrXvaSRyeWuu9lsne9X/ld9mbHvTXoU+dkkyA2cPAvscOqrxWQ+V7vF0vGMF8wPstCxnAKK0UJYWn5lmd/nokoGN/3PCxn2ZmdumlvBJ5W6T/L5pSWM+FWhHan0FDU5La57hAkbYdi8IdsB0MoJ/GsCH1L89WfjWn8mmJxwypeIc94Ds8tjcKvIVzDzQVJn6jSOLOCT68IY2sHwhCv3LgyGZBrTnCY1bFPdI0mEFlLAGUTURBr3O1p/jHOV05n5fTs44GEz7wF0DIPVQZ6x28KWIBLdusMGn7wAu7sbRrvUdXDDgyjWwM1yTXlN6hqJajx369fzqvaxNzxemPIQjSoOhkzOLhSaK4XUS2l0j6sfBUBfdjFOk+LREAiibuoHz7WixsS/N4Orx81khDqEcUH2irou+Fb/xY+zMOh9EEdTGp52oUvManbMq8L7w2WD6x+Gj17Cu3lovBtx2mfsQyNNZtC8kqG6SJbQwXG2N0w5Q+bwhuWJkF9h/3gmjoee4aWO1/Jir9uob7XU/yocGpz7dilFk6Mxq0f3TPewGyV+bUC6vqsHfD4BymIgeQeMuh8lIvgiu6w2J97HOQpk4D0qVjvcU7U6aU2QJjO46qMSr8ENYFeO5OIPSvhtTN2FhdUVampMFcDD4jael+/6HSYGzWstRZ73mkf10NN3Oy2B3j/CZ89SvjHraV7P6KhPWFHWiwv3fQJUWl8XNkGUxIP1EOvYyg2uB5lrqZ5bzxd9le50FK3ZKnczz/430Ccgj/blw3QrjKJpVCFf3RTGSalVG7oLZBERYTrm+++slWJtMxrzrOnoKVfiiUFKX0OZROqWgJFXGf4uDPd/Xk4MKo58itjBPka4buMXy0dH3abqUOJ3tO+PqkSojgWsNTS64Q4iBubB5Vvn8NLiiYRrxvujB9s7C8HdZz7P3Wc+D+iI5weBnAtTR0BmuRJ0iLHdEY7+2G/Q6yfERZMRHqGk+DrwlKwMizDzkeV5nna9yXK5JmifduEGXQUpmfvdDYRJF8/1vYMp/W4PfQ8+yHPU3ov2BBoOXRznso+DNVKnlpqK/OJx2DgYeuoGrUkp0FdFjvA/G3f6vHdj3c9wj/sZ5pnfZ6g6sO5vohaolclPVVXOPvts8vKOnDk5JSXFa3Dr1q0bBw4cqKZEw0O5eB7y+8fRi2L90vX1p8Hbb/L95yeTWVQ7Q5WUkpIQhoZwGiZ0zSzM1RrczJgwoZJIHKk0JYoI2tASBdXrKSc8//lCQZBMY55Q7+QBdTTfmN6gj+hCD9GRDfp2eqiduNN0LZcqw2ghkhngqFDC3S8PMUUzJmsRtgaKQp/gFISeb/+VaCmSGaT086pQqahYMKN4nq9I64A+7SWip72L2NcF/dcb0V/9AP2Dyej7O6KvGgbfP0CP9D0BdbfaLelBR5JEYoMZ3cBY2AGYPGcA+qFW6NMmoX/4MrIgEdour0EtwQZsBdw2WHQD8oc7Iac5wUlkVbKKYfjbZSzd5SRfL6ySwPMQWTRVGs7oZgpyIlr+vqlDpoPiS9wt4bQZmFDJIoe5+m/Igz5epLEYRrlTPHl9y3X6A9frb6FPno7++ePo+QlGaOvkGbC7L2AB3Wz8+5XPg7a1VQOFLQOcq5xGR1rThASsBC5qpz+7la45lcK/hKFiKpL2of99Hsy9H7yqWjU3SBTnR5GiNCVOxDDlksrjuYRh76Kjk0yjoOXLkU0e4aL+QmJCobEeBzLESbzQYPibKB3+hifOg77fQeOdEJ6H3N0dkZfEwGlb6fZMAT2eL2DUjBIyi3R26ftoQwo2jxL2V/qPlMnAOTGvVOf1+77FfssDvJpyCS/2qtni+wRqDh3IrQMl2GAGMz2rObz/JpQ0gggLyC7wyteBgnoelITg7vo3Ik8WHLO618ltbM0K/M12HK54sOvS3FzwbhFN31pB0x03k2I/nWdd9c8P+Y77C1YTyLlTGadzEuPV2xhmGsSgvBFYp7+I/t5U9F+vQX/7NWMeym2M/sfl6G++gz57DBxsA4m7jL/Ov8N5r6F0W4IyaTB3v/AOeaktWNz0PA66kzgraw4lemyQbxZwsD0mVKKIYIO+nefcNXMoKEdX0Y6LlbMZSE+iT/4ZTJWjDaQh8qCbSS+QnPpqKQfyqnbVzaOQMuy1MriBwWkaoVTPS1cdwoQNJWYWmDxrblMmIuY7vzyV1/oCgQ0rZkxEetatbjTS5bHnd5VSYq9CZKRFPdP2NKqp+ueArwkVvtAje7PX4AZwx9pPKqmRVvr3KV8aatGKTo97X0BR3VQ9X6rgDoN/LkLOfNKbGldLT8+aoo/SlXYihdIQxlEVBYa9j1l3ESZdvND3dqacdEc10QYGhOqi0ZA5dd3kEziGKMVeI4MbgHzvVdh4FmCFtQoUKOBSYfklyNn3G3ncJvSfRrH9jUfQF1yH1Ix1qwTyOHbzcU1R6/DSrl27snv3blq1OnrX5b179+JyuarP2MBQW5wKG4GNw9HvvwqlURr6Z0/ChrNxAzn7oOWaIjY+UvPQxsreSL4Y0kAqnMGEFHyhoqKjY8ZMISUkEodOHo1FAvkU+G2YVBQ/Dw6JYVR5xFyhbmvWTEQQhhMnTuniTtO13OmaQIyMYofcRwv7YDqIVmyVu4gmklwKjJPPU76E7x8Gi6Dy+nxIu/9OaGk5Ook2bGOPl/esMfEUUETZqjPQvn4UEIZf1vZ38Ztcd/aHRoaxbWbHkdy/6h0/K/v0URYvYXCsUvenWjXFKUofDsoM1sotONcOhplP472PHQPgohfg/Ndg08lYouxMUR7h/byF7A3bijssl+ISi0Hmm94p9MS8+hzEWR8hA3jd/DHk9TJOfvDpgIPwckQQRg/RiUTqTtWptogKEiJR7hGgRhbTZeLtrN8SD3lJ0HUxStxhdI+yqQM3DJoJ+3oAAnYAbYBU4IYyyPsYzNmw7kxYeIu3fuvBpkT92Yvk8e+SVxhk4VrQBKkL7ylpORrSS2ug2otm7iY0Ip4Mstkp9+L0MaZu7Kex/d3XYPIw/KZCcy4yLBfWDgustIbo2meXV/3u2pNsDO9s5ss1TjRNUtDtez6MWEgxETUK6T9Wi9/aINJihsa7IMs3DF2H8ydD/3koZrdxKPXsHPye5Yd90IBMBOVHJVsy3cxYWUCHe99gl4dHJoFYmogEnnC/ykvm8d7iGYUaqU8U8978eQjgu/bnHdsbPYGjQhMS2cdB/8QtpwLCGGOGYhz15kchi5MQURkBdRwJ39fxiAK9iD/lGqQ0A66a7Bm9MPbUZoSoWB/rThMURYMjDCJK+DryF5wDrTDvdr+yF59SCETzxUoHN8woX5N1hO2TCb/4VUoH1K/y6bPut/nGPb9a8QSB4EXTQ3Q3dWDJLjd/vP4A3nXA7r4VGdf7EPcf6OZfSXZb2HwG+q13ktoqi35qd9IiVSJdkvklZxBblk+0vYD9cYH7F6m4CcOKRBKGjT167RwCLMLME+a7iBFRtFd2kvfMi0RvH0rcob6clBjHNZ8GGqR/365xff/Qa9aqPO6rQpO6jJQxHUa0vBLcjcGUhRD+hsJAb0SJ3WN8zyKHeGKwYaUFycdcWdKBs8oNfH3TXTQhgZ3sqz5jXgtCGcY+6XwZ/9vwOQrgUkx83vGiIGqkLu4/zUxm57n8HrWAkrxWpEZEsTTqE27r7WTGPzUkqd/RH4CT6U1H0bqazEeOnkonmulN2BdE1UpDRzntC1y9fmLTTzHMaVOzdVjiJW8S0XsxuimJjfp2Q3n3BI57VGULCcCBLqGvbR6EvGAqcuL34IgxZpu0Tsjll8IjFyEUnRw9rya0iccUtTa6PfPMM4wbN46JEyfSp08fIiL8DTXR0Q23eT/2UGDx1XDJi/6S7xhGpVd+d/D2FTU7XcqVBUFDiwQQEUTQoD4QVY1iqoaGQGDHgYLCbg7gwsVBmUmECCOBWK9hrLLHnESymwPkaHkkqIbBoolIZKm+ihTRjJ/0JYxQh/Cm+UlGOm8nnwIcOFkqV2HBTAEVvGXKST+gRyWD6SZYBuyWqKrgkcFmHjunYZ7dsUKBLEIgOMAhrFgwoZLBYZJpTPGvo/CfqIN4ceUbRo/9MS046aofeGPBIyS6s5j8fB6zrrKCXM35yhn1dTtBUUARy6SHGPjX/xFwTwtGoTxyESTtR0fgUDvSVF/GQbmBDqIlq+RGbtj4Gd+V/EhuZAgjj9uCsJZifvQynF8+CDsGEsrRd+XS7jAiuDJYCWUcIqtBw+OjRWjjuBs3W9StKF39F57l76OGhtJ1CeJ/96DNGQtFYZDzK6LzfrCtRjFnoesgv/WQ4kvJL19fTs9sj1rpdGh61924K3sLhBcEGNyAGqnAHUtcajqHca5JtBYtiSOGTHL8rjsbFWN+9DJcX4yHPd1B2sAVDxMWQHSgQSA4/MNOI0+aT9MLl7BXb06qYhD6JkSq3DGofGy6kse4EoDu9vND1ppEAlEikuTjILw0jmjE2JuQ82435r74dLj8GZREn0Xz3xcSuKQI9Z4obJvyHKL/bBpd9CEmVFxSY6H2Fw/Jlxis9OM80+m8t8yJDvze8lRG7vmNwWnL2ZzYIUSdJ3CkUAUkRh4914ktGIl521WAhG7C4KRCGB62dAYC3zHnf8TotlfL5nD6k1B2Epj3QNN7EKbsastJZwoy/RXQkpCRvyAaT0R+/jhsOAvf9ykfCVc+CVc/DPNvBxQ4+z169TsDaM7T8ysbeQSlv13NvJPuJ9YVRZrMIEKE0Ud05RLTkR8wVIct+k52UL1IhETSTjVULif8aCf02FHd3Cvgl/9x3R2b6ai0ZsC1bSnDjp61n3uv+JxFLU8N0hqJaLGVYsqwYMaESrrM8vIN1Qblhy0AdDf+nG6JOsOBVmmKHJha9Q4wighUlKCCZlWhHUfvFFEOBQVdaGAOLS7lC99bdOKihFJyKSBdZpFPIXEcu0OkIlmCBTNOgjtzNFLq97A0QYkj1E/np9rc4S9YflmlHMZYuT2hLadeMZtPfh1NnqUZ+eHBDKpmJi8CFo0ARgCwFsmlnRzMuSWCnk0dPD3fQaETQMNkchtGcHeE33fR3PBG/ZPV9KEKA8dR4lrTSK41jeR3bQUXum4PEOJTUTBHF3HmWknvR/8G2aZqTzeTk5w+M8lVdCKkhZX6hhNGt38BivUSWopk9sn00BRDvmi0DzJD/K6p65H7u4Cj0vhSnAiH2kCzHeTXhjfuGKHWRrdzzz0XgBEjRvhtPMtPMDSt5szGgwYNIizsX2YkifdsMkx2cPtvKGPji4CabTLzKAjK5SOBTkcgylAXqM7TDSpOtXR0nJ7ZZD/pNJNNyPE5lQt22mTHwWztN25WjcllvOkWejhHcEhm0VprwQjVIBz/xvwab2mf87N7KRIdVajslPvY63OCLlotQx68CQYBg3RGRFl5vGXDbvDrGg7ppIVjMC6ME9hSH32XdLIgKhfyDfGRSHshAiiyVTJ6uyIoXwbti2vBBXc/BrfehWK1epXAmoqG3dSXf78NK1pMAY6cShkiDcER/UAH9Hfe4j7NCpwPUdlk33sd4eFmnnkkj9wz/ua7DiGMGE23IzUV5ydPe07HQ0/gzj9HwprTEY9eiDAFLt6aNiCfGwT3dPNFMO4/qanIt96Cg50BAdYSGHMTSmI6AsFwBrOMUgrwcJoJN0gLg9KW0yu7guxfAMu/uIQzb51FQb6HNyj+INx2R9C2NDRp6UmiO/kUsUZupj2pZJKD/t09sOIS8LCJ6b5cgF4IKEw2wpU2n4r/8Vgw0m4JqhvO/IDimEzmPfQ081CBAno3Fyy5NyqAL6tAFpHm9f8KRBZ5ZMgcUkXDKXFJKXkp28F7BecgrRbEBa8hRr4RkE//aTT8cV3QOkwuB26TJahCrFxxIVkrLqxI6v4zG1zhTNnSAyigfDPwWZdLSSnczyN/vUaGLYHZ7YeDUuvlywmEgCYh7L7QgjY1RsIM6A8oOnR6ECXhL5RmO9AveQbyHjZClD3dIJQBqiqOw38TPi/QocyjjO1qicy73o9TMhRkzu2gecLOi89GaithQzA+RYHp2yd46NnPSe21g1s1gw/RgREpkRijsyun0jsXnUM6mTyuvepNakVzLlbPrvODJF3qbNC38Y1uHGC1oCl9RGdmy9+C5m9GEmGeUPqmcUfXB0RcBtEikh5KR1JpxhZ2oTTej6WjHVfZaUFKSIjKQWKsbXewl0JZxFa5+4hE0irDYhKsfDCCs18vIbsUws3w3tVW2jWp2ui2Rm6utcENoKVadx5dFsxez7UjgcNjADNjZrd+gD7qsTO6FVMa0uAGBpd0faKraMf3LAh6zXePpHT8C/2c1+CXWw3KDjS8aw7VxY6T07nT/QpTFz7p4Z0N/a5aNCc/f3U5XfIM5ejDH/dmzJJvufsM492a6v4Et3Tznutr9sy80eNAokCrNYgbKnif4+tBwGmw0pcrxLlMl7P90jV0o9+rgn+eewu+SIQNQ4x2Vl67W0ow3T0aXTHek+3s4VP3HEaqZx4XUQInEBob5Q6yZV7NDG4Ad9wO702Fg53wUr4IHdr/hbhyAuQ29dgofPuIhEiDEm2ltglpOrbettWh1qvW33//vc6+/Mcff6yzuo4lDIMigIRfRqNv6w9XPA6fvYh3AxZ7iCWnTkTKz2r0g+bI/JDXUpSGUXGNI7bGaju+MGPiIJn0E91YJTdW6d49Vf+YmzGMbu1EKv1FD9bIzczX/0DXdRRFwSzM3tNCKSVL5Eoy5GG/eoRtCyS8iiy4lDhzEVOST6rl3R7/sAoL54hB/CgXUYqdoQxkAT78Zinr4EBXAG7a+CU3bP6Svtf8BKrva12pL2a3hO39odsiJJJkGnGS6H7sb6YKtBEtiSGKAoq4/Lo/mPlSMyj1nObZiuDGcca/333DXx2xqBHWT6ZSdvso0GHKogn8ndSLg9Ge96f81sPz4bpHkL/dCAe6E2hwqzxICyiLRU5/FjHqQb+cYViPqdt9TZBILGZMfrxzfqemPijPJ38aDQe74L1PRyS8+xY8eiESyQKWY/F4qQgB8saH4KMXMcnAzU+zslxuemQmr+nTA67JkgHIsj6IsLWYI1bUzQ0fBdqKFG6UVzBtWl+27OoLSNB9OdaqGatPngVDP4aPXuL0TZtZ0uxkNFPl8GQB4y7HmpiF02FBPvkzvoa51WmS8XPKmHyx/6HAHO23kLwm5S3rL3o0mBgFwJwiN49lOYAYcIxEKgUoCR+gFcXCu1MhJ8U4gHKV8975o3P2VmbMu50zrphFQVgwL4NKZdafE+S60a+fG3gfzw28j9EDzfTJKmbVrhNGt+MO5wiPuJwKWS8h489ACDdKv5+Q7r+RWQ+DqyUi5jtE2PqgVVQXhvhvQYFeisFTUN6HaxrXUimfHrqf65ogVokmXISVizR712/Drv+BFS+cDGXGe2ex2TFd/zhFlKIgiCAcDZ09pLFHptFa1Ix/U3r4pF51fcxSuYpBSl/Gmm4IWPfulPvo76rw3umvdKODaM1sLbjR7Xp1pPffjS+aBjvPhvzyAwefOToiy6PQHWQDDqC4EBe+zFjTKuN7RQ/2yoOUYeeVqZmo46v2AnPhJo5oMslhhbaOzkrdHIJ3STZx8LkYTndcwxq5hdtQuYyq1Vzz5JEZwuvS2BBLFBlHYXQr7/0uXGyVu+lD1zprW2VUxwdZ317jg+gb8pqKwnmczvcsBEA5/Us4/Uvv9ViiuEwZzs8Fm9n77DusaSK4Zvib1RrdJi16hq4egxuAZdVq7E9PJuxpw6A21nQDf2vreVSZgnL1M8AzQeuJP4YeieVQhco9phuZ4ZoTfN9YGoN8awpkt6OiJ1W6d2cEbh1iiaSQYsyYWcZqbnc+xReWV/4zoo3/RSzX15JNHo2IJ5u8aoVzFKsdxtwaOkOjA8hBM2DJNVT0Ex055x645knmqgsolMXEiIYTGqr1qrVchfRokJ6eztKlS8nKykLX/U9x7r777qOuv87hKARbDCBAKrC3N+zrht/iKD+ZfZtTeaL7VCaa76m2ylCEfvHE0KyBPGliRVSVBjcFJeipV/nm/ySlB021xnzPgpCvTjoVxjNFKHQTHdDQ2CPT2M8hUqnw6rhFvYLWjqG4cAVtl4j9GhH7NcOUc2lqHlCLO/33wIHLe/K/mJWoqEgksjgGllzpHVfi7Xk0L87EJPUqtiwCnBHw2bPod/6PhBaHSBKJDe7plkCsVy46IUIl+omrKA4W5+8O5L+y729L/KrLmDJ+BuMmlbH2MyNMRhvYg7m/juI+/XmvmpWe2ZbgRhY3BAuLOhy4OC/DQUw1YdjHGtEiKkDowexpvwOnj5mi4t0ksw0B914Ui/7By1CUSNkpX+I8ab63rNLhb5h0Oks0yc5e0HavUUQCz7wUy4f6F14C5fKJUpYMQGZMBjRkwdWIpMcD1d3rGYpQ+PPtm2F/9V68gdAgaRc8M5e2ufv4bP49NLt1TZB8Ar55hLjbnqSkJJaiIGHL36RvZzI9/dKmuj/x+60qo5voQKpo1qCLxj1O3aeNEtxNsepWyl78CunyGBFdod+HVgX72ZzYiQLb0SzgBQ/csp5nOw/yprScWDti8ROoB6j4O/pbFGTxGWDZibDuQZhyEU0fAEAv7YSc/whs6ApOqyHm4lEO1k0ad3ct4YWRYYRZGtZT9mhgi/oNCgeAozOo2YjYGTUqJ+LfR9q7gB4D5q0QEQ2t1hvh75UgpcIt+vX8plYchpevz7aEraHTkzNJFHFMNT/GWn0rU93RbCaLMGw0Jp5oEYUTJ7vlflpTM6Nba8cQDvms4xZr//CTXMJPlg/98n3unkdzkhAIhimDuNp0PtO12UHrjCScVJ/DhUxzOsr4K6pshz7vLlh6VeAFsx1hcXoVk1uoyZS5DU8KzSJwnfktLL6eivlQwhmfYhEVB1ml2GknUlgpN3ITl1T9QGoJF24cOHEiquQ4c0s3+dTe6Kag0CgUKe0RII5oMqg+LNqMiiuIl6qCioqKGRNTtU+4xjSiztpWGVUplwI0EvUbXtpcTSKU424E4SiKQks9mXSycHvoe8rXU6cqfXnd8gTDiiax19NXD8T6vKO6DroGJv+1a4fcnUhgV0xLbh3yHLviWtP4cClRLxSQXQIt4gQ7z30NS0rwMNwwbHQXHWgh6of/rrPaFpvLSmklbyeBQHvpM++hQXlqIATkNqWwsRE0Hkc0dpz8IpeyQ+6lvai7UOsTqFus1DfSgVaEYeMwuQHX9d3dYf5thprt8HdQ2gZbf/tDOe8d9G0DIKtcME6FzWcgP7Yhbh6HXTgMQbgGwhGtaJYsWcK1117LySefzMGDRsjfp59+ytKlS6st+/HHH9OqVStuvvlmXn75ZaZMmeL9e/XVV4+kOcccItiGQQZy12QuO53Zh7bxhqv6xVVZCPn0XApIFlUr2h0rVHc6pqMTSzQ2LCgIVBTCsRFLNCeJ7iSTSGe1LYpPt1IqDZLFlDLR9ab3cyfRhkgi6CE6MV3zV0Vaq2+lBUl+5OfB0KWBwnHrA01FY6+qpxsX5vxkLKvPpMX7F5FUXBGa9k+T7mxI6MAl2+fVoFYBW04ljwLWyC20Fi2PUetrhvaiFUPFQPqLHggEllBnAa1XBqZJldyv7+HFthPosC+Ka2eGc/761qxY+ADXmkeS5KMOKQbPINDEIaHRpuDpZ73rl6KicLLo7bc5aAjEB3lPdZ8gSYmx8A7HRgxRnEJvok//jsB7NMHOgZDZDmY9hvbRc6i7+qAWVSzYdVVwyvoYTlkZSdicj/gm6xnWX98VFYV4YvzedVnWh4qwCDeW0oaV5i7H7oNHYnADovfAkgsBldPS/sSiu+mdsTZ43r1tyP3tPIrWdgZbXqWLEvX0z3nd/ak35Sf3YsJFOJYgqqrlWCu3ENHAnHgXRZuJ8f7EEhH1A9FlyRUGt2rwR4tTeHLgfXAUYcbhZnis7akA/KQtpov9XApP+pjQ5soTaBBowDafz7obsp5Cpk1HFp3pSVLRd4+B1z6ARedBbgoUJ0FJEyhNgpIkKGjGO8vctHyiCKf73/cbv+H6lN72C3lffIRoNhqRch4i5XJEDTmxhHU7pIwA20pwdYTc2+DMbqAGHjxKKdiVo2PzUby3SwcLtb8QQqIjyZQ5dBJtGKEOIVHE0U6k0kw0Ybh6GmvkZjbJneyWhmjA19p8LnbeRR/HhXS0D6O7/Xya2k+hsb0/sfY+NLL3J5McD+uZ4lkHqkgpWaGv82vberaSRgYHOMSj5tsZKHpRKIuDbpuLKfWG0efLQvbKg9iqGBsBGDCLoIRZA2cRSTifumcDcPd7E8h69wDZ7+xn+cx05rmehsfPgWvGweUPw41joM0yrEUVh48uXEQTiS6OXtG3MsIwKHUksspQyByZzwDRk0bEe9XrawIdvU49OVpSPb2BiooJNQirsMCMCYmOgsAsTeTo+XXWtsookVUb3aLr2cOlmWgSoO4KhumoFc1x4qKZSPK8SUbOcMJoRwq3qIbR2dFkC9gCja9LvjqXJvZAQ8XUvrfwXJ87GHj1D6xP7kmJLZo91iTWH4L0QlixT5Lz9ss41w0O2uYy7KyQ64gT9cfPfo0ykkH080vT3Wolg1so6IjWa1BR6Es3WpBMArE0pTGfanOOTYP/n8Kt6aw+4GLB1jI2pbvQ9aObn/PIp7FICGos1/8ZDu+9BQd6wMGu8MHr6MtqeACSFcTQus84tAple6kv1Hol/O233zJs2DDCwsJYvXo1DodxAwUFBTz33HPVln/88cd54oknKCgoYO/evezZs8f7t3v37trfQT1AOoKR7wUxBO3uz7ZXJjHu8SGk26sm7EuTwUm6m9IYswjidVMPiCeGlComWBWFAoqwexSCNHRKsVNEMXbpIJ0sblAv9ptkgrmLzvAZCG8yXcxauZltcjdz9YW87/6KGe45fOqew1vaDKKIqJZYuaNoU+X1fzPuM91keJroAu2lTymd9CWlXz3JPZ/t5pb1n3mlw39sdw6PDbyfkw6t5qqNX2INskCvgIQOf5JIHInENbinW1ulJSvkOpw4URD0DRF+IEbfC+e8BqYgXnBrh1EQp7DgXAuHUk285P6QIkr40PRsRfnUTTD2WmixBiy5eF3VD/ckgANgyPsovf3DYDR0/pSriW5gT7d4YmhBkl+aRKIhvUYc3fNfAUUsYzUD2oD57ptRWm6ERnuh2UYCTg23nYbz/ddwPfs9+vRn/S4dah+JZfiZbIvIwIGDMGzMt3xAiqgIhRdhayg3uIGJiLCtdX7vR4IeTQMXveZG+4iIz0H0+AViQpB8F7aFRYaC66LmA1nYrD/R9iLvO+ePaJy/3Qq/jAd7+UJR0ikJzGNGo7f9mzX6Zm/uX/WlFMniAALhclgw00G08vP8bQikWhTWt41iRnMLosV1iPCVZIftJzxgipLQ9k+IzISwHDDlAg5KLOHsSmgb4plJMBWCOY/gBjRJp07ppE2MIswiWKtv4VftT3azn9LDyVRPqH4C9Y7FwI/A5iIfzj2BLLgUfVcPeOwPyL2SmogyFthhTdq/i9/NKV1skNvYzE40dIQAYcoPUHysDkJLAHul0LSk8rHC511R3ETHFWIVFQYqB06W6Cv5Rv+ZHeylr9IVVahEi0jmWz/kEmUYlyrnMEwMog0taUwC87XFjHNNYrO+k8X632ySOzlIJtvZSy4FFFKCEydFlCCR9BZdKLGt513zM0QQxjq5lYucdzDMPoqv3AZtTDhhdBcdaU0LGhOPHQez9F+CvukJxNJMGBEea/UtZMgsLxdYKCiJ6fDgpdB2OUQchka74KpHUc55j1LsfKJ9x+XOsZicZVh0HVVKOuW5aFPgRokoNlTMv3oOPn4DPniPwme/Qv/UmPd0JKvkJn7UFtXqd6sJwkSFgbQqLqNDHOYvuZbD5NZO4Y+65eOqiQek5mGeCzy6lDhx4kajFDuHOMzVrvu41DHGG6ZclyiWVT+n+l67hYuwkLPUQTIpkEX0oYtvIBxWLGSSQyvRnBXaOpxqGTwyEvp9C5EZEJNOfJ836JibxmlpywPm1l9ST+fV/ndULTyAQF94Q9ArzWhCO5FCc5EU9PqxQH+1OzvZ67d3FCY32PJrUFqA6kZDJ4PDNBYJ5JBPGXbm64s5VIma6ASODGsOuAm/v4gBk0sZ/o6TXi+WEv5ALudnP4wua384ka5n4cRFFjnBx7ffbySA9mfRtTWrvNG+wLQWm4Cqx9z6wBGpl77zzjtcf/31zJw505t+yimn8MwzwWPDfVFaWsqVV16Jovx7wgbc0/thHvczFHg8XFpshsK4is+VoNsjeGjhQT49t2PIOg/pWUHTI2g4YQmLMJNNZS+NCmjoQTusjmQTO4jUI2ihJBFNJLme8Nlg02o2+WzQttNNbU+4COM8hvLpG+dwIK0rd5aXOvtdIof8gb1SuJz+/V3w5xV44/sveJU+px87lZ2GRluRwlBO5sedpZBTwSV2ILoZD6x8i2hHEY+d8hB2s40VLfqzolczuGUMI6I38v2rV0NmkD7Yey5KymaygT6iK5YGMvKWo4lIxIKZNXILuRRyvXIhv+jLAvIJAeL0L9Ht0fDHDfgNyDYj3ExHkkYmBbKExfo/nKMM8qtDSd4Ld96FPvE7cIZalAhYeDPy9JkIS+CpSH1wXVSFxiKBA5VU/4wQZP+NnW9Idj6FxDTNJPeOW7Fhxv7btf4cb34QsPl0ZEEiIsYIK4knhkJZzDa5h/VyGyoqUXoEYbIiflRE/AlJDxmcbra1tI2sA2L2OsDCsVFc8G4xS3bqSMWNPmgGSefMpQtt+YWlCEBffBn8dCvoNio/k3v/fpPXeo/mihEfGAk1DvcUbMmQ8Pr7pHf9g/XXTOegnokDJ7/Jv9hG6EMmJy62yT00FvVL/BwMSWaFy2PCuNGehg7oisbqR2z0eG0fjvxEsJTBpc+idFscUFZ/7htDkCLoMxOghxH53DmUPvwLuqzEZWUuJfyGJ7BaP6dY2vlB+4Np+jek7tS44u1tPNcvSJUn0PA4CDijDHFSAHQwp8OMxwAFahEZnBzz71knAhyUmXyizz76itQiwAE+Hmxc/Df8bIXtJwEKRGfDqHv5XlzJSfTwZsuR+SgIr4pjUqXIiXLDQzOlCbs8Op7z5WLQwIQJCyYSifOuBWOJoo/oipQSRShYsTBIMQyC1ygX4DQ5udM9AYBF/E26O4suSjsW6X9zmFxakIwqVApl6LVlDvl+RreDZFXL7wOgxGfC/8YFpGto7OUguXpwGhc9rR18/iwBm7pN/vOeHQezXL+wTx4kVxRwt+l6GomjC90Mw9fo5jCEfIMgS+YQ6exM4eE7QI9CxL+PiKg+mgjqdo3SW+0cMkTSF2HYgh4ilXN1aWikk0W6zCKKcDbJHXQVdasweVgP9PzyRVQNhe7qEmHYAjx5JJBNHopUuE29ine0mago6EjyKMCESmtaMEl7j9VsRrEAl7wCvIKKQqlDQwNeW/g437Q7F12t7BWq4yWaD4XMVuhbT0Lp+LdfcgbZhEtbvdIcXa1cwNO8GfjOj7sa3nwD8lKpuJfAe0q6+0vu/edtPut8GXObGIf2uQIOACkAIeicTqA6VB6D/Z+9rpn45ZmHsFEYcK16WICptStS2Ah9fM3GwIC27+qHPn6pZ6ZsuP5Q6xXNtm3bGDw40C01JiaG/Pz8asvffPPNfP3117X92oZFaQbcfhV0+R2QcKALFFTtgbBCX1vl9X3yYND05vUURx8KCSGXAKFRPlD+KVdzUGRypji5yvwllHKFaywA2Xoeny6MgrRyRUkBKPDLbZQURDGAniSRCIB+qBX8eRVeAt02CuTey4LDtW/zvwVCCB4yjUapNJ5N6XsrKxt347qts9j/YX/WzhtMxJOnojxwFUpMNnOL13oMbiLwb/UFyNIoBIL2IrWe7yg4yhfch2QWF6pDq8wrzpoGTctDQiWYy+DWO73XTSgUUcxU13RMwsQQgvD9VTs/qMhZDwa9Eiy8sz5hE1YaEeh27xuqGF6JTC1b5tHGQ5TtxIUY8gk034D3GQZBuKio4wAZdHOczy/6Uly4seOgk3s429njV0ZELEVJnIqIXESrGnIEHWtYTYJf7oyibEoMS186RMtz5nKQDH6hYvJWBn+N8tyZhPVe6Fc2tWA/D6982xCUEKIWBrdyeN65jWew/uFptLrPSqf7I9jy2bVE6NWHDJW/F8cDGvvwBJlichj58Lsozw9GmTAsqMFNSiClvI+FgK5SPP4XdBlkKWLSWMMW1uvbWKKvZKL2Ji5czDm3jLH/TKd53l7jS2ToPnwCDYTDgPgMLDshYhHEvwXl/f3XYAVkwN8z51loGffvMrql43+Yqh/ogD5hLvr4xehP/Whw1NQAQimFpAdAyQVcYN6JaDIZZdSDKJNOR5k0GOWRi1GS9jFdzsbqM/bP1Ofxof4NTlxEEs6D6v/86h5ruoGxphuCji0Kgi6iHf9TL+MJ9U7OFqfQS3ThbPVUhpkGcZZ6Ct9a3+Ae841GfqFwqXoO/1Mu4yYuoQOt2Mk+Lnbe6eXoKfekL6rCCymBWMKEDV3qzNcXoR+BYmcX2gWkFYay8L7/OiEXAT7JBRRxtXYfD+uTeUn7wOvFdzSw+czNZTK018VBmUlhxsNg7w7O1siMZ5FabLX1JxBXp4f3NVVvLaCo2mWVBTMqCkWU8q42s5rctccOEcTDxQcNEUVUlWJqFjmslptYYfma4cpp3n7flMYgYK/PPrH82Wro2HPacM2FzzE/5TQSi7N95kBpCKxd/RjVz4kKfPwKenZl4T7Jucpp9ao8rwiF8abR2LCg7+6G/tgP6OOXwDM/QF4rKkRTgh/ePfj3m+yJTWVdUjefdZqooswJ1AxVPEcpUdyu4NeOqO5gf0dSJvBPcbtRNbfnlWjY/lBrT7ekpCR27txJamqqX/rSpUtp3bp6Vb/nn3+e888/n59++olu3bphNvsPgq+8Ur2keoNg3sOwaSg1+sFshRwe/DqavAxVBFes6kArfmEZ+saT4afboTABpGSJaqFHTCEvjrQxrHM1nBbHAPEihv0yPeg1Eyo6ukHk75NuxYwVK2ZM/CM3MMp0GQtcy8nWC5C/3ARrzoX4dLjkeZREg9dkNwdIl1msl1uxZLcKJpPA0JLzKI5dTW65glPGmRWX2wJnALpgdI6DpAiVYVEN67F1rHCS2p12bXLZ1ng7ZBkng7qicv6lXxgZhB3FVoY+azVc/AJKeAkUlaumBYOAsmiejRzNFebz6uUeqsNJogcSKJCFiEpnAVbMOHDRboubyWPKCC+TPP30TSy+20JLkskmDycuL6uZipneogOb5A6W6CsZpPZlh7aXNDK8/dZ80yO4Xn+PKs8dcv0XI8k0oolIJK6BPd0ABii9mKv7G4h8NyrRRBFOGLkUoCAopNgglPU8gDDFhP2u2z0FBfqr07x9CyTE7aXkzalGKOplz6HE5JDpIVPWSyPgm4dgb08c4YUw/C2ULn8GtLGT0rAqr8HQW3Sms2jnDe83efhmNHQSiKX03LewrjsDh2b0i6SSwwjg5UUTGDP0+SMwuvlCYNGc3L3yXYZ9uYhlszrwzJer0NXAOpuQQCelLW1FylF8X91ghjaHj9yzKKAIC2Y0dFbpm1ivb/fm0Uui4avxsK8rWF3Q6wdYPwRyPdwaUhrEz4ri8wwN9sHgkBCdjj5xDje30Ai/5HPaR6WiIYnLL2Bu6zNJi0utVsntBBoKEhJnEh79PnZc6FnjYXAUzJOgBfm9zHaUiRXze1ta8qDt36Fu74t8vZB2pLCDfUh7BLz5PkbIvQR7NLz3JvKxCxCR+dVXpjUGPR7QwNUOHB3B9FdAtvVswyYt9BAdvR6y5XDgDMnVG00kjyi38b7+lddAFk8M5ylnMN58S43vOUZE8YblSQDud03CqllY70PuV05kHsoA1pwkr0f6Brmdv+S6Gn93OUyo3Kxeyn3a84BxQJBNvpdmIWAV7ghhlFLLkN/dh7x0EkqEse7sR1e2sJswbEzWpnGH6ZqjErfxPcyqKtQplwJwN6ZCsE1BHm6LnH09HE6BlI1w6fMo4f7P9VSlT52K76QoNaM4sGAmDCsFFPntD3yV1nV0wgmjhUimUNa9GE6mDC34YK79drdOcIroxR6Z5v2sohih5xjrtH/kBp5XxnFwfUf0n0eBlDgbO4jddwiHe6I3fFQ1C8I6rKLkvBfgtWksaGpmQdPKohQSDraGeXeDtQQc1XHYCZgyA/n0WQjVcGfsRnt6iNBRWscKZ6qn0qPgZJa/N5HaGnIsbgebEjscs7adQCDO3rOQEksEy5of3yKGZs3J9Rtm8mXnCym21h9PYSjUehQaPXo0Y8eOZdq0aQghSE9PZ/ny5YwbN47HH3+82vLPP/88P//8Mx06GC+I7+RwXEv77utLjQaBmDTU8VcihJXN+g66qcEHr70yE33xjTD/f371Ol2wxS654L0y3rlCMmqgNWj5Y4WeohPr5bagJ40qqldJU0F43caFrmLf1YWEgh6s6LSfFxOGcbbrVD57cyQc9MSYFCTDy1+hP3AFSkI6YVi51jmOa9UR9Dx9DX+vPgvfDZg5opgnWgzjaX1rhRhD4+agSNAFJGF4UCvGkmRZqfafNbot1VeRo+Sg3jcKvSSKlKyTGFt0D8/sXEnO32eCtKGX2WDjUNh4KnqHBWCzg6kI3EEm3dh0iD/IfZZR9X8zISCFZKNnE3+z6xG/aw5cdFvr5tfBJQhgZ1QLzh3fl6Jrwth0Vin2DotRTEa/jCQcgcAhnfRSOvO5NpdzlMHEEkMOBZR63PwtzXbT4rmrafHrIyz6PZj3gYQzp/mlHOIwh+RhEuqQL+VIEYwDIRwr0SSSQz4FbjPNlHjylELcaORSwAXiDMIVG9v0PWxhF2AILkQoYcj77qS0xIq7MAqmv+g5XQQKkmDSbPSHR6BE54EzDJ6ZC7pnXCpNgE9fRD//VZRTv/FrT1sl9Vg+giOCIhQuUM9gt3s/eRTSgiT2kU4pZSQSR3RUJNc8/xN3574LhZGsKraQ9ytcuX0el+yYz4u9RvNq/zuPyNAjpM6kRRO5dut3lJjC2LUzhQdGDOb5metQovxDcVNphiY1P868hsIheZhlcpVf2kxtnpf6WbeHwTNzDI4kADvwx81++d/8+QF+aDuMH9ue5ZMa5BlasukRm8i6LOkNjd+8FXj2OdqeNxez08aU81bxcvz9niqO4zXD/2sIlEPtsUd7jERlvSFZgf8BO4BFHj7NcrT7E/3PC6DZdkTLbajCRJ4sqFbc6XjDIbLYru9H7ukKWwdQYTCpCI2SGa0RbVdXWY+UQO6tRljfARVKdaR+MqKd8Tz1zBawqztIFcJKebnTTNb5cGgKBE1pzIXKWSHX1UIInrDcxUrHBn6RBp1DBtkkicQjvv+uoh1vYgiJmVCJIJwBihHQs0nfQbyMJXtvMmSlQrtVKPFZNKUxsR7S9unu2cQRTXqRE1YMh8xW0GEl9P6NqhhprFhpo7RkkN4XHR2XdFNESYDKtxc9f4a1QQ4ctTDYcho8czLyyXNRbXYai0SkBJuwUUoZe+SBoxKfSqEpg4TRzjJCk3rnyQJE3OfIXI8B1LEW3p+Cd528+XR49mTkE+cirGUIBFbMXKmce8RtC4aarnccOGlMPIWUIH32D76/gQUzxZSyWe4MEFmrCxyWocNLqxXmOEZoI1L8nM40z7MpT7LjYPLCElZ+fzXl40R6ENuh5oSS1UNgTX8g1F5HGGv+wvJ1f6VxNhg0K5TEQnQOZsyEi3A6KvXPk91SJJOaMYjlNQnAK+ex84xtfyf3wl2PnnknAHevmUaeNYZlzfobv0Ol3+R4QbPiDO5Z+wHJZdk8M/DeBm9frY1u48ePR9d1hg4dSmlpKYMHD8ZqtTJu3DjGjBlTbfnJkyczbdo0brzxxiNpb8Oh3RJYfXkVGTQ4/WPE2R8jhcSBi7e1L3hLnRCQc49TZ96+O2Fx1SqlU3531rvRrYCikK79DpwetULpNbjppZGUPvsdaOHsAl5FIocUct2wi/nsYGW+BgX+HgHD38GBky1yJ8u1NaxsPBceWs7gH2bwT1YRkZ1X0vGsP/hOdjRcqcv94BQTXC9gBQYRswICHR2FIZENc4pVH9gl91OGA4lEjSjC3mo1Hc2H0H88lcAJ1QrbKi+6XBCdYXig9PgVccZnND5KXpK6Rmfa0INOZJHDbgKJ7W9524UALrzgA5a18JysZACfAkJHv+c6lCZ7KaYUFYW9HMQizRwWucSIKLI8Xlrlqp4u3JgUgeucd5nY7Ta+mJvC5oNu0C3QbDtc9DJKUmCogoJCNA0rpADBOVucuDggM5CHx0PRBWwXTpQmT6BGLCOGKNqIlryqfeKnmKZ7eBojCad1RBS5QpKdVyksVCqw7iwY9BX6nq4VBjcvBCy9EioZ3ZKVhlFhrg6jTZcz2mSM5fPdi7jTPYEEYsghnySRyHfyN9rFhrMrdi8a0H1PFA9OLKPfPzr7b/4Yem+BLx+B4nggkAOuMqJLsimxRtO8JJP2ubuZn3I6N5z7esXk/6xEH/Y2yhmfecuUCjtxIrZeQzxCwTdUyYwJgWCh/ItWNDe8nrf3qzC4hUBeRDy/pJ5W/Zc5E1mXBYEecCo7f7gQgC1NzqlV+0+gISDRk7dhw2IIIYX/CYWXgtChYwn0vB/m3wAFjQz15M1DjT9ARh1GG38fq/XNDFWPDwXk6vCm6zNyyeerst+RE+eDKwr/qDLP5lfoiKY7qq/QnQR5jeDL8gQFll2C3j7J2CAf9Oex/QQJl+Sj9PvR822SnkonJlvGV/tVSaKR1wJgQg3ggKsN2iopdKMDaRxCAk+b7uZm02V87p7LO/ZvyX52ho8ioUTv8Ss5V02jo8crOpd8Dv96MSy4Hu+4uuEC+PZx9AlnoViCC8+cq5xGE5HIEmkonA+kJ9FEkROCo1i58jn0Dsvhj6vAHQE5qf4ZpBm5diimAT/hRmO4ehoztXk0Fgms1bfSWjlyo1sZDm87q/L2MqGSEPct+eF/o2lhyEX9gJ7+mTQLcldvROdlSCR2nPRW6pbjuDbOECbMVYYGO3GhouBGI6sKA9mR4pAMzpUN+Cn81ieaK0kBIrsCgYKglDLyZSET/siGmlL7yAhqZEzzfJOnUOj8llKINN4TBcFOuY++SnAxs2ONySmX8gUFEOib6kX73F3c+/eb3HHWC0jVMD5+0v0KOuavDOL5riOislAVQSxRRIhw75Pw/UnKVxvlxau65ktm4b3m+bde6XPla+XfW9tytblWniBF8HK+0CWowv9aIYWUUIZLugjDRmORSJqeiYYbhE6kiCROxrGm3ckkZuwFIYhwlbLy46Hoqoln+93N8mZ90JOTkWFhxvP2abAQBt1NqbQjcWMTYdhlqcH962dMdhv71pI40IJQsUQeAtUFJfHgDr0nS4tMJtpexN1rp9Hj8Cae73s7mRGNUFNSvL+1qPycfPpBwDUC+48qICUO/KX3gqPWlgohBI8++igPPPAAO3fupLi4mM6dOxMZWbONqNVq5ZRTTqnt1zY8hr0CVgnLLyf44KXCH6OQ/1yIHHcVhJUwX19CtswjUcT55Zya40DT4iEaqhIl6tik/jdcUaJqnqGACXXRNaD5kpMKXluo8+S5XUAtMU5RfJG8w1OPJI9C1smtxBJFflw2n95sZbJ7Bm9oM0inOb/o2ezmgDeYVYT/gyw9DU71PP/obznT1JMHortzesR/1+j2vbbAG4bwyGMl3PVaPnA5XUZ8wNIaufaaYchnKAPmelMa6tQvFJopSazTtmDDGpSMd0NXQf+oZhUGN19IBWbfD7caRn/NEwL9j9xAIxnHH3IFTlw4cKKjU0wpNizsZD97ZBrOpq8xe8wrpCqtGON4mvflV0HbGEk4NqzHhSEkmAeICzc420HRBUaCNKFnj4GIJeRSwBK5kk5Ka+bpf/iVc6ORTxFlOGhjbU0uAWtESN4JgEhI97yPlcbAxAMB7alPIt4jRWelnZeHyYKZZfpqwgmjhFIA9Nwk7JOn87QWDr2BNcDmEhhzE7w/1fDgrQYtiw9ht+dxKKopByKTufeMpyotDAX8cgt4jG5mTGyQ2xkuamCkqgeEe4xuUlNxvP4uZHTADqxFg8R9kN2a6jYBjUsOE2vPIzvy+O8TJ1AXELD0Mpznvmd8SnwdqSVA6UlgTkMk5iBGPYT+9psEGFiLGnFgYwf+6b3+X2F0k1LysvYBhziMvuxaw+AG0BeIBH4CSgVE5sOouxDhVSvbA6AWwHJDBdoP20OtnQXMvRf6VYTkHgkNwg3qxZyjDqo+YwgMUvryj+1bJrreBGC0egUAr2nTWb26jY/BzdPmdWdRctHHXGMdgVu6+VL/EfeC3wnkDzLBEwsr5iXFBXfeitLM8I6PFzFejroYIkkkji3s9kZmBIPS63fo9TvSHoF86ufA75z9EPbZDzEf+D2mAMf9H5JhyeZdbSYXm84+oucD/gqaRVWoiuyU+8glH6z5xsavaWyQXBIS/OfeFseAF7p841kd4ojysrxKtxk5eTqUH+IpbvTb70BvYah4F1KEruteUb0/9dW0oSUHOEQb0fKIvFwzyAl5LaIBRBQgkJdVuizokz9FyzfCdrcDhNdWYbPyL1KdAa6KX9BtRqZ1QLTcghMXNqwNJuCUGKkycOyrLJ92FRQ1oWJuqLi/FxZPZMLA+7wGNwMqW/so0P8R+GY8uCIgKhfl+oeg+XYECql04gvrlOMieuB4xh2uKczWfiWXAlaa59FOjUHKaK/xXUqJEAIpH+av8R+AXfK/dTNIdBWBC6YuMRyNREpzoncsD6g/XWbR2nE+AmhPCk7c7NnRBD58vVJOEwz4AdwmWDgK/z4uEffdhAgvQuoC+d39sGq4xyHA/11wq2YGXjefL+f8jwGH1vDCqie4fGkec5t8wUlqjzp7boWFhcSMrT7fEe8eLRYLUVFRJCcn19jgBjB27Fhef73ywz3+IQQoI18DtayqXFCSAF8/BhihBvPcfwTkspT3ibOAyEACYYAOjQWfXFf/k0StvXjMQdzjhSRCDaf5LRM9z8tzXz1+hlVnGaTC45egPzeLtXl55FNEJOE0lvGMUa8jmUbsIY0t7MLlKxsf/T3EfQzWjRD3ESLxVR5uJP+zBjeHdNLGPpSf5BIAUvbo3PWaiyJzOK1vWsLSZv1rTiKeler3sTFHHkJyLNBfdCeGKOwej77KeP9OK8tPqUJCy1RhqNM3nkr+o7PQxy8h85FZTPqjmDwK0XwW4HacNCIO97Z+rHx0Cu3vi8RyTwHvPnQ3+sS56JmBJ9nFlDJI9D26G60jBBM80dCJEpXeBVHx/qzSNzJYOQk1yLBvwYwbN5vVrQwb9RUmBYx+pYNSBh9MRR+/FDn5C0jchRH35Ol78Wlw7aMBdcaJhudPqA5NRSNkdjP0id9hH78Q5/g/yB//A67xi9AfXgyvfuI5VPAhZnVEwpvvQUFTKk/wHbI2Y3F55giPjLoAmhVnUmIO494zJmC3BDnY8FHudOGmOcncbrrqWNxyrREhPEa3xVdBhq84iwmy2/h8roDVWUyvg6vA6QApeaXfbdy48auKEIQT+O9j8fXGxlsXyO9eNDj+FkXC5k7INW8bXcHkClq0zFTEy9qHOPTQ4XfHC6Zp33AIz6bZ7HNgpGM4r1wN/A/EPc+jJO8JrCAIhFIGEWtq1xClYn7LsfzNa+bHalTsefM4DlmXUWxdy2RT9Z5xNUG0iCRaRHo3ajvkvuBrRWCoqT9OXEx0veU51K0YI4Tm8hkzfMZg3QIfTPHmay9akUgcPURHCihmLVt5XL3Dy+OV5U6g2/7FRO/bT6fNe9HHL0V/dCH6XxcgbCWgBGtbxffZC2KJnP0ERZSwWP5Dtp6HQwb3uqv22VAx/hdWceqeL/2Ns6L7QujxI3ifkQ5nv4fSpCIyoAvtjsmhoFKF55Ev1rENkyev/PF2yGtJxW9mxj1tsnf9YcfJL5ohZlSm2znbOYoU5+mc6ryKBVrgZr0mKK7CiFmX4hK1QTKN/T7LeXdBfnP8+nNpdd6lweZNn/JARb8INceK4H+6GaZN8XyLZJhyanW3dEzxVMvzGHLmNWz7rAeKrlF5bfF3k56oepC9gMmJ0n0xytPnojx/GsojF0FzwyivobOaTdzmqJ4C6/8zpJT8pC0mlwK60Z62isEpHIwGTAjBwBdGM/5sC3aTLbAui38ItJSSe74pofV9ZmP/P3kGUWVJpJPpP2/6wuxAnPkxpK7C27+FG675Flk0Fll4AQiJcsnLiAnDCdX30yOTGHTNXFo8Opuz1zooiFd42fVRbR9PnUBIWbtVsNvtZsKECbz22msUFxsDXGRkJGPGjOHJJ58MEEaojIsuuoiFCxeSkJBAly5dAvLPmjWrlrdwbFFYWEhMTAyWzI7Iwk7wxjRAYHWU4FZNaKYgLsvNtqCMMRSj2pPKets8v8tbHDn02L8DnJ0gbAUi6RGEYieJRNZZ5hKjVEd+eezwlOt1Jmnv1ji/dFmQk742jI0ehI14k9wzxnOP61k+07+n1OOlpX/5qCGqYJQEBFiLUSYMozlJ7LQZzpn3OZ/nXf0LNHTDC47QJ8NpliUkKnEhr//bcU3ORL7+vD+kdaJXyRJ+ee8h2t2wiPyIWp5EnT/Fj3PrAnEGX1uPL+P3DG0Of7hXsF5uYw9pFFPqZ4BTELhnPgxrz8XPbd7kpPEDt+OKSacgPwx90iwqTvaMfOqo+2jSfhcZVJBlxBSlkvfspwQ9e1CdiKfP9JLLAnSlPSPVoTxuvjMwfz1jivsjHnZPDkjvSUfW5w7GnXcNKEWIpEcRYesAw/PsZ8s0NujbuNp9v/fZWjDjwk1furKOrYa6KYKztNP56dEJBLr6S0S/7zFfMpkedGQVm4K2sdS6/rjwCqwKUkoiH8jD5a7ZpsILxREQZhtrL+DajV/yRp/RNCrLoXvmBha0OoNwewFvLHiUUcOnghLkewSQqiOufgoiFxMvwjlLOYXplheP+L7qEj9qf3Cx6y707+6HFRfXqMz9f73GTylD2JTUpXoOjcohIW4nMc5iyizhOFWr5xX2P+U0cHxxh5xAECilxqauiQnMAoZgxGBkAroT0ECWn06Xj9k6KHYQArO0oqIae0MJiqj49aX0jNxHcK28S0nPNTzf7HcN/5CSUNdcONF0t+eiBN1mXI0R0FbCRsDlhvIDxPJ8+MSveMNPy/+NR3DCRs3OxiXgAFUDXWBVwr2p+N6/j0NqwLVKtSGDvHq1uCZ86nXIEiPeSVqpUCKUgBtFlejSw/ulC8AKuiS5MIOzDixmerdQhw86qHZjCYAFkzBhl3bKDQ8mYcGtuTC8BcsPoyqPGRKE3ROLFegl4Q+3Ec6kS293tcjwWvcft3ChSRcIUDFhwhK0nB27cY/ePuJ7C8H7jyJMWLDUrC0+7a7qGhKcwmMc1AVGrJjPsyz/7O1EnnTdQmAwlefd9mYVWAlDouGUdsofrIKKRVj8+mVA3wrSl52UGu3x69DlD0/BJmx+YYL4PKfyOitfO9Ixxveat10I0II9l5rA54aDQdhB6KAfibOGC2XS6XSiDWNM1zHKdOkR1FE3KC3MxpHYC7diotmtawLWD9FlBaQU7mdHXGufA0wdEvZD8jbY0c8YZ5pvhqsm0Lwgh7dGFdMiDT4abeXph9YTrjSMAfZ4R7bMo7djJLFE00PpyKeWl2tUTjqdFHY4BXkwAwFoCkxYehpT+87w5rl80WJmf+fvWdY0wYn+wKVkuArh+W8MjujyuUF1wIOXosTk+X9XyanIjBcwDv5VRKNnEdGGh7f+8yj4vbJXnA/UUrCVwakzMZ0+k9Kw9TW6v5qg3FZUUFBAdHRoh4Nav/ljxoxh1qxZvPjiiwwcaLj+L1++nKeeeoqcnBzefvvtKsvHxsZy8cU1W7gfd9jdCxB0ydrMD7OvRxMqHW9chMvsa+WVMOwd76eDZHJY5tLIh0NrqbIApcXTSKkgREUgVwmlDWpwA2ghkmhBMgc4VGU+gUAiEWYnyuMXorlUcCsk2MKIEZF8onXgfOUMZuu/4cBpkIfu7e5XAwCOSFq4W3K1dZj3yjDlVLLIxoSJHyqFwlXG8UBqf6xQZJd888ydXi+Y9cowMmwvkB9WSyOjcCL6/OSXFHMceiFdq44kR+bTjQ58pc1ng9zm5R9TUQ0+qSsn4brseXCYaaw0wiVcaNYSwolBJYa8Q+Unq+A78Fp2nkxEy3war76QjCwbNErDFq8RckOjWaA0GqKMAT+SMOJEFO2VVsfuAdQC8UE83QSCUhxEx39BWdynJBJDrIhic2Yq2rohlCYWsb1PGruVNMyYMXnuvdzoFk4Y7UhhO3sxoXK4CIJzawjknp4oKF6DejAc7wY3gCIHNTC4BVnsNtsEB3r5pbcu2Ed2eCIIQfvcXTy97CWWNOuPyxzOufsX0ytjPWua9gqsfgjQWkFmPQ1F/5Cc/CapomaKcfWBTqItt6hX8MNpCzmwYiT+fcKXoQRAIqRkX3RLNjdqX63BrXFhBr0y1/Fz27NBCEyai9HrpjN83yIuHDktRPkTxrZ/Dco3gFlADwwOTu+GOBjFgQBU0I3NlAsI7gt3PMFi/FW2XBUAq8r7qpmQ5Od14vzpMdB5zogcVTiFNwyC0ZYIwIzhtFLRF4Su0aToEFdu+55Ye26gUd4LxUtt4vb8GUZKvGnVb3EEyJpuwE2geerz/GZH5utW0Rc0qCIA1mdfUVUf8bmmQxUz8tHA5/c7qv6qBBiFDB9D1e87jvw+qjY4HZtnUxPURdRSdYdXtiP/bRSJ1FTi1Gi6icpc3PUL697DuIBxgx4P+t4XhsWwIaybMS7oGigqYS471v1R5OdU7CPZ3Y+Exz/gn2lnYgJ2RLekYP6VDNq7jMFnDeCGAVZ6Nv9viu8dKQ7KTLLIJYtcThF9alxOWCzE7PmHnfYdPOCYxBbrQVwcYorUvfuAtdsCo+gy88zoMgeemxdIPaDZ4MVvkU8OR1gqPJGlvQvlBjfQkI7OCAyjmzJsGvKsj5CvvwuHgnBbauFQEg4/34k7oy0trxrMYsvnpCrNa3yvR4taG90+//xzZs6cyfDhw71p3bt3p0WLFlx11VXVGt0++qhhXPrqBJ2Xwo9juGv1B6xq3I3/DZtcyeAGIODHO5HtbvKOF6+5pzPRfI83xwLNUIryNbgBnCR6Hru21xAKSrUGN8DPA0kiUcxuMEMeTiQ6m+UuRpkvRborJLLpsQD+uMG/ougs0kz76UVnb9Iw0yCGMQhd14lzVv3iH9eKt0eJFfvcSJ+wM00x0fPGhURqhylWasGNJM3IZZcabrpAH7rQ8jjlNRhrMvrHMn01q+RGb7pu0HiioaOooIa7KSOXZjRhD7mYMRFNJD1SNNZ5B+RySFzJm9nx1Af4GggOoUNAXg9sRRCR7/0oUEiTmfT26acNiSTRiI60Ziu7vWkSSRllhmeoAIVYDnx3LdqKoYAgB7joWxetH52KM9yJE0gikSJKUFEpw8Eb5ie53fUkRZQQEVOMxeLC6QyyMOnxK05cZIXgUPm3vJVRVkiMgOwquDWD3k0lgxvA1vg2DN31B5GOIjY06kSrwv24VTO6amZ6hwvJiAryzipAa5/PZf0o06x0NLcOzNtAaKU0J1GLQ4s/QMrjo2n/6/OsyM4h7OTZRLbahfjlFnZmAQNnQWwmctrz/JPUExnMq68Srtv8NXPanUOrvD3sj0wmteQQ7fL3khneCF09sSD+z0AC+6gjA9MJ/JfRvDiD0/cv5qNul2OoZf1bZpMTOIF/KXQL6uFUDiZl0V3p2KBNUTq0BrOJ2e2qEUzyuCe2y93F4pkjSb59Q0CWM/f8hQl4cNAjfNT1Ku9YsmGpxptLSzm/i8qs0Q0vjHa8IIIwRqmXclBm0lvUfq/T1taOeKUJqn4IF5IRztt40fwgnZW2tOyzjr2bW+O7bm7f3MGWqdMqGdx8oFkhrRO0XutNEuF/IfOvxTDNq4jwP/2KCEUiD3WovrGbTieLp3nUPYXPLIFRQ8cKtXZFsFqtpKamBqS3atUKi+X4ImevayiJB+Gc1/m082W82WsUeWEhFCAz2sNhIxa6hDJ+1P6gUK8IkdzIzqDFYmlYLzeoG8+xYsrYLvcAcLd6HU7PmaNyznsw9D0wFeONzy5shPbwYhbs9OfKG/t1Cbb7Cikb/7vBv/FN3XCN/JvQNlGl8i5FU0wUmxtTwd1Q/qeD1FFcdgJ5kwQsvNH7aRWbjnujSA/hP/EbgSgVZ8LlYgn7SMeMiYNkkEs+G8JXwD3XQvw+g2w58jDcPBb33+cTONwp0GwrJO7BOLN2g+KEluvgwUsRSsVzdOCkgCIvx0FDI0HE+BncypFDgfff++Uh8lcMwXeSk5qZvYsHA0a4bnORRAllFFLMbvazSP+b89UzyCSHXWIP7R+6D7XZVrzPx1IMw95COcs4PAmtVHa89zADQgi2PR7FoNYCk2JEwMXawKRCjA0eHxZqTgu8v1JzBJ93vZQb139O+9zddLl+IbrnlO/BMyZwKDIpsBpdAofx+jwoeZSp2VxtuqCubrFO0EfpSgbZKBHFDLrkd2679S9yOs/ncNh+rCPfJGL0I8R2XYvSfAfirrvYH9McBRlkLPJHemQSOgqnpK0gpSidbFs8h62xpObvrbbsCfzL4BclUkPXnf8kjvz+hOamdbZn/fiveT9q91sfDotnU3wH8sMSyLfFhrjPI+0/9X2tKtR3ubrCf/35HgvU9/3V9ppEjz5ME5GAVTTsPl5YrUTuWE5zZ3XqtkYo8mPLp2BXbUHHiU0J7dCBj7pcCUIQaS/wyzdvo5uCsuOpn1SPHJnPIu1vduj7jpj7MBTaKim8ZX6KOZa3GW264ojq+NDyHPeZRnGQLFbLTfykLUFKiaXrMsIvewnC8gkzweW9TIy+chtkBDOQeQO1kTMmIh0V3sgibB2i2W2I+A8QTccgIv4MLB6RF5hWOVjdbUEfv5RvJt7BXntthUyOHLX2dLvrrruYOHEiH330EVarwWnjcDh49tlnueuuu6os++OPPzJr1izi4+O56aab6NSpk/daXl4el1xyCQsXLqxtk+oXLbbwZ7M7UaqQxQbAXOHIvImd/CM3MJSTkVKyh0ClP4BOSsN7NxyJYlBluHHzu/4Xh/TD3K5ezRTtY/I8xgDlrE/QS2Nguc8LLVXe/bgvjz5/mIMHYjnrjVKKXeC3sV15AXLwF4jG+4wiWiTk3cy1spQ7EiycHP7fE1NYWLIelCaglw84gWGTj/05mTvWTWdqz5vYHt8WpMZ3HUYEVqb4BzHE18HvfCwxRr2W57S3DQ/JECjFTgRhlFCGCZV9pAOgJO2n+YP3kUaGN6++9PLglUTloYy5pdr2OHHRQbQ+bjwrm4rgno6lVBZ6qRz+B5qt0KPeLUnyEdTIJo/PtO9ZYJnOFrmLH/Q/yIjIRo65OeTpTFEIImjxLzG6AUTZFBbcHTrcunms4PYvHZ6eWDWvysHoprzR79bAC0KELtf0Hii4GaSKiJ/G2WpNFInrF/1EN2KIYh8HWaKvZIblZbbqu5gn/2ALu1AQXoVlEZ+BfvEryDn3VlGjsQD6ovMlmNx2OofFkBMWS4Hnr0fudp748yWeHnh/cB68E/gXovLmxvezz7sRKaA4yMHRcYsQ9+G9FqztNdzoWfDEMBp13Ln2Yx5dMZUJA+7lnZ43gKjq3aiGA6peICv9f/Wwm8NY3bS38UGpyi+gErdY0GtVlfNFsPG5qv5am7ZUlb+q30gav78r2FeHasux+r2P5Fkci2tV3Z9PeRueWNLjaRyp6b1X0R/88ojg16TO+dvmowqY0/48EIJzts9nW3x79iR49pjCJ7/qgiufhPBCHjD9ryY3csyhNk1i0ZRG9HqhmMzQ2hiAYHabYXzbbjiK1NE1CWrFmLixcRcmnvo/FHRszjKu2DKHz7teSpmpwojT6OFCejVX+OPuSMIsDT1eVo/ftRVc674fMKhh9oo/iFeOr/3cFeq5THS/SQaHeUP7lDPFQJbIlbj6uLmsr53PrIZn2XM5mQQfA332uqXxyDn3Ii5/ruKqbRPYgnNJA3DXLfDaB1AW71N/ADEmALIokfbjJXhsFFFW+OG2cAa0OjaRFrW2VKxZs4YFCxbQvHlzevQwSPHWrVuH0+lk6NChfnxtvqIIn3/+Oddffz3nnHMO27Zt4/XXX+eDDz7gmmuuAcDpdLJo0aKjvZ9jDtF6PTRKQ89tSchBtM88RFym96MFM3e5nuY2eRXnK2eENCS0OQ68aNrQkl6iM2vk5irzXctI/mYd29kb9LpE8o9czwh1KD1FR/6Qf1eEpBYHEQFwW+haNoLSV+fjDvFYZWkCFHYH3MiSwVB6Ct/g4vsiF9vaRZFsPv45pGoKTZfc+WoK6KHvafju3xi79iN2RrfghQFjGbvqfW5dP52s8ASWtTilIqMArvJX7Yk/zrnwopUoRipDma8v8W7mg6EL7TjAIQ5xmDCsOHAigTAqCZxc9jxM+grcPtwallLiLn0DJzZKDyUjP3sKcpobBhJbCZz5IcrJs73Zjyep8cYynh6iI+vk1oBrUYRTRClCgPmSV3B+Ow7vJBN3EDHoS2/e5no7Uoq6kCZ2okb+wQ6xj2fcb3GZOpwVuzWyvrwTihKhyW64/hGUGEOIYiC92MA2iikN2j7zEREFH5+4aaCNmwYaNAKtnyogLb+6EuXep8He3UqD27mvo4TthbD/Y++s46So/z/+/MxsXXdzHF1HN9IKCIKgYoLdhWKD3WICttiJih2ISId0h3QfXHdtzef3x+zt7d7uHgcKHPy+Lx6rtzOf+cxnZmc+n3e+3tXvZzdRP6qWeiJeiaGv0pUN2jYWylV87PieFwz3s8m+k/1koCHRdneAbx+GojidVTo8H0a+Cn9fDHu6VXcm7CBNgARFwWEK5rdGZyNcCnaYvQwBjNvwGRWGEF7uUbNwSW3393+oP/B41oOK4cFL9FSRD6cS0NgQBVzk2iUkSvhP/JzcjHPVvidlxMeD3pWXs6rwCEz6Dl+eOg3id0N2c3ycZl1+RblkUsB+pRTIAzPAFg8f6sUHEipyMSB5ZvlrPLzqLbqOmUl2aLyfWykhdSNkNaNFZBhfXh1MhwYnf07+yfkXl2dMRvviKchPhahMuOJxlOQ9Oi/wng5o097yPfAozi1DUDnXPvUesSKap413e+3Ll0XcbnuCBXIF5VQyMa83u5y7Kak8Ql5MHGZhYWnwYVQE5VSivT8Zdnf3OUfQ2KewtvvLa5sJIxqSH4xvUimtfOj4nj9+6gBrh6PaQwgyCa7samTK6CAUJfA1XGK7iw2aXrRom3kWFuEtr2TKXBpZB6BlvAmVLi5kUYFodCFC8b/mDhF9+MX8rt99/xaX2Mbxqza/Tm2lU0XOeAh160CUkBK48EXsH72MD43HoGkogz5FILBgYpjSn48ML3Cv8wV+ds4hj0Kv5k8axjHB4Meh5cKv9vlc4hyHzL8OWXC9a6uCSL4dEbSBR9TbTlkRrLutz/Ke/NprWxWXridVj/boX94yqidC8yBhB+zugV9KlEbr4KqHefy5bG6bZ2d+am9+bjGcpvl7+GzOA+7SJQLY19xIjzXe52lCKn2Vrv/qOv9LxIapHHw2gms+L2X6mqqggRrRSij81OxcDJrG+XtmMyttAFYlqHr+kJI3u94MI18g+LNbeWjVWyxP7sqWhDbu/QDrDmmMnFbKX3ee+myzo2GZXIsZEwoKduxcab+fmeb3/5O+cxwa3xfbiTcoXBhmOO4gg1ARzGTDw7zl/IJ/5G5ucT6OE414YuihdHC32xe+AXqU1CjQpaeNeqG07jzmCgpEZcMT1cEn2iNzdY64OqDECv2mlvPC+WbuO6duxxwLjnkVjoyMZPTo0V7bUlNTj3rcyy+/zGuvvcZdd90FwLfffsv1119PZWUlN9xww7EO45RBCDjrwZdZ+fp4bIeb+W+UUq0ICyCcUMzSzHOb1vHJhvZokTdA32/1BcmFICyk4if96CQjScQRQSgGDDhcaaE1EUIQFxmGEKSZ2adluMnudVuygopCe1ryifMHRqrn0F1pzwbnNgoo0qfMwR/ApoFUv1gSEbWH7s+2Y04gZ1BYDhhuRua007+LSkDVCVcl7LRpZ5TRrahC4qzF4AZw1uHVSGBjnF4h8JP0S9GALbE1KwZKSNJTEZOIpYVo4lPGvD7iHKU3K7VNXhFrNbGZne4S9BVUk21WelAcq6iI0CLUZ4fRiAYMU/rxsfYDNqwk0ZAWxRfw09Q7cCvxEig3wy8PoFWEo5zzGQNED3p6LBanGgbFQJ4s9LvPgoUSlzHM2e0XlG4/19hvohInUhr5/uAlZNmDAYGo7ERi3AfM0f6mMiON7HdfwK3NZaTDi98T/vildAxqyCgxiIPaEcoo9+t6MAUiDT/N8cJIC1d9VkGtHvOwXMSE0chHZ4GsIUC3Woxy7URa0Mivw8KCmR5q/XnOPHGO0otoIlmmrWWq8zNuN4yltWjCfpmBtq8tvP8W7vuiAcUJ8MWLcNUElJv1qDfpVJEfvgJ7uuN1D40W93M0s/E53Lb+U0I0Gzdu/pLJXW7E4VklvM1CaLQeZt5Nrb/D/3BKIUJzsDx6GVaPuVjbV/VsB4gIi6K67N8RgbZgAPcZSpimFJOeaGD82RaiQ+rXOj/U2Z9Vky7HrxG4549YLniDyqd+hopI730H27r/VFGwYMaGHXuV3CWDwJGkd9se2AhvdrqeGzZ+hRGNIKeVzZ+fw9hvg5g7tNrYJyXI53+Egx0B2JEt6fZKGf88EkrTuJMXNerYdxBlytdofIFb1stpDK9/htZmHjRfC11mQnAOlMcdQ8+S84fu4G3TU373RosIphof5Szb5UQSzt0zPkOR0vWE7SY3xMKYawZzWGZTTiZc8BK8OgPvZ9KO3SEIl2GUiTK3o9yGnT6iCx86Z/CNaSrPv9cSduqKuhMotcK7S+1syXQyd1xgBd6GnQOuyPwyKrDUcBLmaYWEEUKRtUX1vZOhYE8Esy+tBECEOHEGg1j8U+kIdCVXRXXrAXLqh5DdXCdMsAXDR6/ib54W+zoRzDeoqFgw01m0waKYOVvryRKxGkUq2FxO1BgisUv/+kgVNmh6oIC0NXdtcb2PtuaEBe0iJUB2wMlAb7Uz7zlqGt1MmDDixIkTjWAslJ7zBbY/b8Lv/FgZArvPCnAGAfs6wzO/Ej7vKX5vXMqNQyeDELTP/ccnRyZ5vwMzRqweZWqaizQi62GBtU+vCuXTq/S/P3DM4GPHd6xjK451g+CbJ5AGE3YpGb9mGqP/+YXtsS2Y1GMcThcnrMFZiOPvC8gd9ht7NzvJDvWYazz0pM1HjpK9Vk+wWztIG5qynwxiiWKT3I5V2v51WnCpU9JzTykH7bokdl+MiRcSj7/K6yj1HD5wfks0keyQe2lOI0IIopfayd1mj3YQ5cKf4MLX3Nu0eVfB7FuoflolDK27M6Eqps0dS6wpHC0x0d/8NPFXK7tyHbxz2X/L+XfMRrfjLYSwc+dOzj+/mqfm0ksvJS4ujpEjR2K327nwwguPq9+TDSNGcinAdriWVNBVo8AVIaOg4MDJ7ncmYD3QxuW7aQILrkMbdx1Kyk4AKqgkSZx6Q4gQglgRXWskdBkVxCvRpMlkt6AIVfEHGhoapZQTI52s1jYxWO3Du86vUVFwoKHEH0R74jxiFtxC3sqzUcrCmDf1ft7sdAO0lr5ezg4zCRn9CWUHv63eJnULtABSDIJOljMrBSkqWBAXCjm1hFZ/3XIUVmHg69YXAFAUFMkbXW7y4yUWsKU/at/vOEIuR2Qur4r6z5GXKGJ9DG4KAs3j4fRNp9SR40HwH4yFUspw4mQPB5mvrSCGCMyYMGOi4T8BFCaANcNRzvmCXApI4FgUgxOPHkoH8rQCL2OjgqCcCowYsOPAgIqK4mWErMRGCEE0sg9kk726Ypiz9Bwcce9SQhm/r9INcV7QDBQeaMi6FluZYXqd96zTMWHCis1rkQPd0XAm4rLOZjqkOjl79mxyM6PhYDt8np2OsxGqE54bgvzjelg7BELKYOi7KG1WArCT/X77V1BOOZFxINxmGMME+8t64RwEl9nGE0UYjUghc/Voyv0awASsuADSlyBtZuSzP4OtduVwU0JbOl/5J9dvno4Mz8MyYQhlGy/HkN0CrcvPyOZrANCaroZvH4KChkSJiOrnT0BVjSINPejumPYJnWrPcxoVrn2yxj7p6kNobmZNfZ/U29Z1n6w6vwRNuARH11ik61xCevxd2z7XBUlXPwTYV1g9bZwQGCw2wgj2MrrR4S+Yex0B00kqDgFRMDcY9gggmh1EswPJr1vsTJprZ8V9IXRKrT+RtHtWdsP/+uFAuWAyEiO0n1fDmw9q15nuZ8+JRplrLVNQdK5MUQ6W1VDZFXpAdOvDaDv202zgndy09UNii228c5eJzJoRbNYQKPGVJWestzNh8MmRk6zf/EzlVXdyqOUFcE7NcwrYeo7++f12cJj9deEXccEw7+5QWiYMqLVdvIihkCLKqPCKJAKdG9aIgW604xCZKHFH0B4fAi99A5VVxiUjjm+eoGjufqLvu40CUeQ+fq88xAF5mH6VY1i76w2/5/97T+1aXqhHNcsyKoipUY28QBTp1A2h86DkfECC8QCYDvj0FUwQKgotRKNaz/lvEIv/SBMJboOkgsApJWTXDEYQ6DmyRq8jRfdfEAjsOGgvWhIn9AyYC9XBPO94h1CC2YvO61VMKTvkvlrHuFnqXIciZAGyrL8+OmGFoBWUUIZRnDpHYKpIwoTRrSsBlLqoOcIJRUXjLvVq3hr4JTmtF6AuvpJrTSOQmsCgCKI7rWLS250Cde8BIx+0HUu4o8y9SC1q0JMFyT1oWbiHhPIcFGBunziseC8Ab5me/I+u9sThRsMlHJKZ7HdmkNvpL7SGm+GrCZDRhY9bXcTwfQu5feNnvNXxGgqDY0AIHM5kOJwMh9txbreraR43m5zcYT59m9ovRMrz6w2FjD9Md/6GWRiJEhFka/kIBJEinO+csxhr8EMrdAxYX+l0G9wAphfZ/5XRTREKcUSzjT0YMZJFDpcoQ+mmtHO3sfupTa6c/Tlam8Ww6FIILYT+070ClHzaoyBd/0Cfj8IJxYyJHPKhIMltLzhWfLjMSccUK7f0qfsadTScNMklPDycrKwsGjdu7N42cOBAfvvtN0aMGMGhQ4dO1lD+Feyuin3moEqsFcH4pklIaFhdddGJhqMkHOuBmpVABLzxsb5cNVuJ4Yb7Sa4HRjeA1kpTvtNmBdwvEMTLaDqKNpTgaxUSwHb2YpQGZjkX8ajxDt1rR/WLowSVUnbWdFh4EZ2z13MwIpUfWp7nP61gwzDKNg+B6wuhqtiE4RCxMd/yiHiMiyOMhKn1d6I8Hggh2PFYGGkfLaF4R3Pd611DUdkS15otsa28QqndWpbPM7kFJ04SiaWQEpJPg0i3YHwnfK2GAA368yiRGFGxu4otVBmZggnShdfSCLQXvwF7KBtdPZGyHTJas87v2V33MGUbBlQ2yx10U9v5bXkqUVFDcNKQbuWtCmoNhVBFoYwKNquLCRIalVJPB7eYD3CTehkvOt/H0Hgp/D0Yby4ViYjfT7SIJEKEsdHyG4mVZ7lTej0RSf3zmP5XaBUXTMzFH+CUeRQUmuGzFyCzCZisMOBzlAHTARCKRAz/EIZ/CID2zQS0z17z7dBYCfdfihKR76N81TdMMj5AM9GIOx1PcUTm8JbhST4xvMQnzSu5ebX+LDYq2MevP17DS91v5/tmw7j189Ws+WsSCxv28T+/K+WgOFzKty6S5EcF88q4VMSFMxCKhjj7C48yKq7DUvbCPbfyqmEidxjGntgLPwORMLGIAv8+i/8E8R3WUlpDqDbGH8J+xw3w1ZNQkIyPCHokBRZshT2BK6fd92MF8+6qP2lAG1Y297NVgpBITcGu2BEXvIoMzYW/LwVFg0HTkL1+dbcOIwQVBSv2am5EASQ9AKXnAlDQ+E9EJxsmjLx+oQE57U140yMdrP/nKMPeA1M5KFbQzHjKAmraFqC6GvwfW22Mmub9ADx1npn7zzHT4YViduVWX8sTl5TySO8Gtd4Hu1O6j1v/ydOkAB1ztrjkEs/kNg84Qvz0VBMaQSbJFZ0tvHVpEGotaZtVEEKQRgqFFIMfB8dSuRbAbQgRQkFW+kZzydw08rOjEAnVRrcMsjBi4ABHICILCpOpKW9Fh9ecrbwRLKplm3JZ7nNb8l1R7CLuJQhaC1oIhM5BCN9oryrHYwulUa3n/DeIFbWnd1UZ3uQRT4Obx+990Uuwboge3WkphZGTof1CNyPsNrmHldoGruFCFBQyPpxAwc5qzm96f0P+qNW1jmG1S7ITYbNBzQVbMwhejjDpHNrRnDreqzZKMy+DWxVMGCmjnA6iFbcbxjJLW4wlMYuoS2fwjrmaZuKOsmVAO7znS/8p+mO3/ciBsAasTNbnhrzgGC4Z+T5GpxW7wWV8EECV373BFsx33EkDceozreqCJ43j+Nk5h1wKUWKOwLi70T55ls/kVfzdoBePLZ+sG9w8MP2XG1E0eLjvQ+xkKPr8XL1fpM/DMPJtftNCOV89++ReUB2xS9vPIucqlmpryaWABaYvGGC7kiYylRXaBsby74xuTU0KFgE2163p/B8EstxsvIyvbb+joqLh5Hnj/e59uVoBuQGydZTEfXDpS0ftX0XBiYYB1avQnr00jMIXPgFn1fpSF85E/xj3XSXjvtPX5FcvNDOu/79LOT1mo1teXh6PP/448+fPJzs7G03z9ujk5/uvONK9e3f++OMPevb0Jonu378/v/76KyNGjDjWoZwyFFJC3F13kfXmC1Dm+XJLaLYKMXKKV/sSYz61kgXu6kHwvh4Etf7v84ePBz1Fx1r3SyQOqdFSaew3IE4CIQSzmZ3kO4u4Sb2MXkpHZtQw5FmNJYCkyBSGyWlDUwI9jgKcBvjTCqNXgHAgoj5kuLknd5j+Owt0fUOIWWHQDT/wkzYHbX8b+OA1sFdFEFWFLtQIx6hJXCycMGQaStpmBIJMcjGgnhZGkRCXYCo1gfz4JdjZE/26Nej3Fcp5esixbnAzVKflAFp+IrwxjdIqIs2wXLB7KmoqZPhT7Dye6LQNiMuewYaD5qTVO6GkLkZ6Ow6v+wLVArJQS/ggrZg38xwsF4spj/oAlTH0pQsL2/0FfVrAkksAA6g2GP0cIjKbaKrvW2UAvr0QcfwestMB/ZSufOj8DiWyBO66Ca0sXCdunXU72qw76FC8hB9+uI3Qcqi0wNiP2rJkXYCKpPYg+PZxuGk851J/uauqkOLx3O2WukJ7bQ8LM/fm8NPyYH74+XrsBhOft72My7Z8T4S9nBXJXXhyyUs82fehGr1JvVCMpxihOOCW21Ea+K/yre3sBB+/DJq+Xt4D3ONRtfd/OPWIDoZLh2QzVVYXWjmbnsxjOUrqdnjoCrTFl8Lvd9c4UsDOdGoLtd+dV7tB42QjXysFn8heAdKIfOF75P1XoJgrEYM/hcGf+u3DX0Ea6YxA5t0CzlhExLcIRXck2bAjd3WBvd28D1h4FdrCqzx7qP6/Yuf1+Ee4UvucJCWObW//yIX/9AXVO/rniZlWnphZMwRS8NSMUJ6aUUSnBgoL7w7FYhSUVmr0mlzC9ix8UGIKgXJIz9/Jc4uf5/Gz7sdpcPE4HmtKuOoka1IoFuXY5ONOShu+1H7x2e5ZcTuUYPIpAoMNf0WHQOr8rjXQgVYUUsKOO2/S5/3ipOqdEVkk3vEyTvkeaoBCFyEeDsWaTjKAHE3Xo4TQIGx24Iv0QHdx4mgJUpQEfLwe/vCpByWFx+8smq1DdJ/p01xFwf7breQsuYz3UXnfPY/XkM2WXsaclRewZpyDLg396wmHqa5AKILXQvBar/1RpzB1Uo9mU3z4vKsMcc1EIxZpq1gpdcPhzYpeaK5QFhOEhW/UH+GWDfDhq9WGauGEyMNQ0NCrz4t2zuSFHuO8B6Ao2JUAMtmhtqRsvgy6+d9dHzHP9Bkptr7V73JsBgjBrugmPNxnIjjt7rmtTc42emesZkK/R9gd489BAnLL2RyclM4j457l/Nj6aXT7zjmLT7QfkEguFIPpITqQRrIre2c5Usp/FaWXZFT4Iy2EN/NtJBgET8T/e3tEN9GOXPNKJjs+plJaCRPVTpZtcjf7yPhX/VfxxGV7ZDYBlH17DziPI9vG6dT16AAFfO770cp9P1qJsMCCu0NJTzp2w+QxG92uuuoqdu3axQ033EBCQkKdf+R77rmHv//2U9oVGDBgAL/++iufffbZsQ7nlCEn6h+Uxy5wf6+KtvEHYSlHxu+B7KYB+4urbBhw38lGG9GUICy1EtgfUXLoJToG5H4zotJDdGCL3MnVjgd5TrmHWdpiL+FSBJcgz/mAnXNv5HBIImhOUGvha8k3oCQ87f4aUQ/5B/5r9BFdWMBKCtO2wjNDATBURGJ76UuoqOm588xmF9D+L5QxT7r3GjFgw04MkSi1VgWrH6gSTOXsG2BnL6qFOAUWXYXWbA1Ki1UA7lRKt7fjjQ+gIgo34bqfdBu/GDEVpc8Mr00RhHGOGohL49QhVSQRRTgFFLu3Sc0MJcMBBcJm+pAu10wD7RccwtnBBm61r2WFpvKy8wO3kU4Z8RaMeMtrLjBg4E5VV+yklD4GvSpEnQZG3X+DHqIDi8RqdlalvLz3OhSlAKBoTn7/4k43S09QJTx1t51zLqmlw0pdQOhhqJ98bp5oJZrSWbRho9zBLPsyDnxZyk+bnEgZTqvGBQSbsvm64dUAmDUrFkclb8x9hBF75/JWp2vICXFx6/hUdHXNW5oR3v4A+dwAFOG9rkq7yUXEr3gcWwsXwv9wSpBfDiy5lPDeMyimlGAsdFBaM09b7m4jzvoeuXwk5DUO3JG/vqM3A33+2wEfJ3JLNQ5n1SLcl8TDZ5PgpvF17jOYIFrTlFXZV0G5vu7J8u6QdgnC4DIsVPo7p593qepvzUTWk9NJA/rv/51mhRlo7Y8i/kuNqPI8CkLiqFo51h3SCH+g2G/blKIMMiJ1fuerznuThV9fQJBm56bN0+nOdwxbHIRj0Vj487bqsTVZDVlpUBZofZZcMnYJFuWC2sfqB+erZ7NMrsNfpFsz0sghH5tr/RJGG3LEVPitBk9kn+mIiByf41ezmbNFL16KeoC7Hx5HBtm0EU3pLtrzvTabLZSwTe4hXfhX8o9mdNsvD9f5OgWCVJJowInjLGsq66if2AMo6rYgH9kDIGT7AAqXjKXqee1z4G8u3/4Tdw6uGeUikHYL/aeWUfJKuI/eWS4rvIypNRFNBAkeldpPNoQQ9BFdWChXeW2/hgtxKk6eN97H784F7u0yP4kGHx4gOzsYsIPxZ+j0B+LpoYQrQSgoFFGKNvM2WHSlV583nDuZpLLAPMj+MMA26Hgv7ZQgSolgkOjFbLkUAHHuh8jlw8ERiV01cPm2n/m6zWgQglB7GUtSenAkON5FeKn5qYguoCiBbe8+wKFHMk+pg32qQ3fM3G24xr3NKm0873yXOKKIE9G0U1oihGCQ0ptZ2iJ2sp+98hBNxNH59WtD7xADvUP+uwRIozBixEi4CCVceK9Za+VWnHWy5NeOoUpfvtP+9KIaUq3htfTsQOfJ9LVdffPrTVx93ltYTbUHDRRVQu/XSil8+dijZ4/57i5evJglS5a4K5fWFf3796d///4B9w8cOJCBAwce63BOCQTVvBuKy3sRyOBWheirXiT/1XcAFRoCWeDODAspolVL34X9VCFRxHnzsNRAJOFs0XbS29CZy5TzmKH94RU6LRBYsRFNJG1EMw7LLDqpbQh2WNxGtyqvjzL4Exj8CY9ghnkf1iBQ9ISEEVO9tpzKcPGThVSR5JUeGEk4hUGFKE8MJwgzFVjRVg6HHx72OMp1/zJaevVVZZCq75VLq+BOLz2Ujvcz4fr7YGtoUS3EeIYXUxHu3RbwUUSM5eDBaYapHNHtN59xpIgEWolaOBxPEcII8TK4AcgjL0FlZ/1LyRDMKXdiFzbPmAe0SgvqvOuwZLZlYa8gLukYTFPRkFVsclH6eguvnsZ3E0a6KLoXeqa2KGAl5pijpKOc7mghGhNOKLFEkkshFKS49wU7KjB7PIsCaJezHTVyD85Cf8+R1NNtgHYBlLT6hDSRTFPRkDxZxNa3HmBzhn6tLXJ3cNcf77Mi8iwyQnWhdU5af+LK8xm5+y9Gnz+NnNDahFmPd1UzgsOEMNoJI5RCuxUWjIHdXfCt3HZmUQucKdh/IJqr+o5CColTanQV6XSkNev5BwChOhEPXIk2bYp3ddtaoWFXK1h4OJf+yadOia7CgYI6GHyzvN/52hy0AJGE0ViksNnWlgr3s66APQVcRjfReinSku/BQVYTftZLFBJKs/n691u5e+Az/lO9XUguOkTPw6v5oZVnylKA9lLSI2MVceV5bqPbvsg00m6tJm4Qjw5HqIXQ+zuwWWBXJzA4oeNfejGFNz6ETG95RQ0q4+xHn+eeoMAVK2tDFyWdPfKgz3YjRhJFLC1EI9ZpW9zcWkqf76DPd377qmkwMqCyTK7lLfE4UURQSjmHZTZJShxRRGDBxCptE+mK//k8UcTRU3TAiUal9CVX3Otn3P6gotCFtowyDMKonDjOshQl0YdPt+r8TjRXJU47xhFvY//2Ebyelfg9BCVkUInvs198sJHrL0HHrE388NvNOBQDT/W6j5xQXyOizQmLKjbTP9ib6uOwzK51/PkUkSROLSdvskjwsTpqQqOd0pJ4EaNHXALSGszjL/TCiwPPboCVo5GlsZRc/TDj1WvYJHfyd78fKFt8KXo1cB3LG3QmODYLcqkbFDsPdKk9dbw+Il1pwQrnBoooRRhtiGdHEEowHd5uSIe1jfjaNb+tTOzIuAFPk1SeTe8Dy1iaFrgYhShM4nXHx7xkfPDkXQjwpP0N3nd+SwmlaGhEEk5XpR29FV2Wf8vxJa1pSqyIYqDak/sNevHJ3kon9ssMkojjdednTFEeOanjris8DYhVyJB+QqSPAykiwW1wCyGIVjTl8MjPyXhjEv65Vg1gKgFbKDXXtL6HVzNx5es82fvBWtdHgHI7ODVZJ7qDGmc/NrRq1YqKihNIBFJPoS8qLt4C1zYFtc6W2qK4rRifGoZj9VCk8UKISoODCuCEDjPoZGxxYgZ+HBBCkEgsh/G/kAVh5oDLE2fC4MMZBRIFhT3yAHEihjRS+M75J2mkUIGVSqw+yroTJyFnf0tF+3moK0chy8JoqCYyUPTg85CPsPX8HiW8wOuYQOSuZxK6qG2xOmxugaeEMiIIo4VoxGq5ydUqgACfPtf9ZyxRmDHRSDSgiTg9FthQgjlLdGJPryUc3tUNHwNaR9+0CwMqRgyUpW2E/Z282idf/zyHM4OhMgy6/4IIz0du7o1pdy9sqeuh9UKk4qihruhCYiCP9alETA3jqdRMOul2FazpSC0Mg1rkjkjTSsPhuZ9xShNlwJU7HHyyvIx2N0rs2AMa0aoQQZjbwL7IucKv9xogLkC1szMFTZWGrJHV3J20nwNrdAW11BTKvpAkGpUdce8uiAblgavR5l6PnFeDSL7NApS0LYBuzKvvUIRCf6UH67VtaBn6e3H51u95fcET7qtKKcnh/Y5XcTg8hbe63Mj4tR+wMqlz3U8ScQRhtKEBTqsJnv4JnGd2yvKZhlv7mBlgmuj+vsC5kvXOf3zaiWsfQj4+r+bWAL0qaLu6M/glybhLN/PqWW0DtDs5SE9SMKgOHM5aROmu1dxtKgohBFHsMvQYUDFgoCkN2cleQgnBgpnmSmMahK1hZ8E5+oGGDDBvc/cjDA54fCRyc2/Y2R1Wja7TeAcc/BsDEF+SCZoWMI2mR+Z6EstyQBw9Ij7MWkyLgj382vTcAC3sSFOxXn3x6V/caeGAniK7aCzcOwZ2dyR8y3Da0YbKpn8T03YDoWoQXZV2AfqtHUnE0V20p2akmw07oSKYDC3rqOsdgGZX9eAIk4ai6qudw+We6mAbSQyRRBFOKRV865xFOKE0EAnskr4RdlVw4mS53AD4Ty121GFcVQglmPsM19e5/fEgQoT65dMF4eLSdaCiYuw8D5quRiy/AEdFCFqbxYjma4gUceRRgBOn7vhzCrArhLZfQumc6wHBhTtnIgCj5mDzZ4O4r++jfNHuMu/TRR8k33QEnd+sGju1fbWOvzVNvXj0TgV605nvmOWVHVAki90GiSNaDq1owt7DMVQEqP4udvagu2jPWXThd20BFaFZ8PRgWDcI1pwH+zsDKuW5yXUfmGKnsfnUVXY9XrQRTWklmrJWbnHf0zIqWH3RIbpOT6/mklRU7KqBO9Z9QuPSQwxt0B3UAPN1yyX8VvY348z5JBoiMBpPbOEZKSVWq4PdzkNoqhMHTgR6Fft19m10ke1QTbBErqGcCrbJAl5XHnMff5F6Lq87PqeUMuY7l3PYkF1vuOGPhnx5fJQg0lV1SriqQtmlg550ZDt7MGFCRSUhJZ+gJ2+kYPnZ5M0ai488YQuDey6Hd9+GimpdZWFKD+7Y+Dnr49L5qWXtlGfhsbmoyrEH/hxzjtnbb7/NI488wsKFC8nLy6O4uNjrc6aiJgmmE003FPkhe/cHicRpLkP0/h7R8jtd2ElzQpqKsGyj8b8MC/2vodTyaJRQxl6pF75oqTRxk9dXQQLlVFJMGcvlOjJkFqulXsW02FV4oaax0o6DCqxEx5Zyx4hSJl5ezLYxg3n+colxyOc+BjeAWOXMN7qVamWMFOe4BR4nTkooZbXcXC0CNVmPD5cbEhZdi/bOW0gJhRSTQRZL5Zpa04brE8JECH/LdWSmfw/X3QMRB/XotKRtcM8YlBjfEHoHTiqxIm4ZB72/hOB8iN0Ht95KZouZxPb7i4ZD/kCJzEMoEqX9Emw2Fb57Ap6ZB48tQnvyD7QKPQJOItktD9BZCUzsfaoQQxQpeEQOCRsY96GTrzjAkIlNKfBK/1ZXXuTlFQWYs91BpCMWOw4kEhU1oMqrIXnI/jJ2aWej3B4wXiNOnNlGt1iiSCCGBq77Ly5+EYa+ia6dSc66ciZfNz+fI0Gx/NymO523hKGpIIZ8CNfeB5GHICQXBr2HuOpRd7/BgXhX6hluNFzCLYbLICIbkDyy4nWvZ6ZD3k7eDVkESCoNFtpfM5e4srq43jVouRjxYLWyVbKpx/8MbqcZOjUQ9G/mrbCkikQiCMWIkSAsGDEgNQU59QOOPUVY8O4fYWTKuoZznBiYDYJeE59CT1uQ3h9jOYyahDL0fXf7pqIhR8zVNCsOnEQQyhrLjxRb1nObOoYr1BE8YbyTIbHbCE18DBH3PKLBDQjFe92uWr/EBVP1ub8WmByVGCuLWZ3Qjt9T+/NNm4sItpUTWllEctFBwsrzXalX+u+wJyyFbdHN3N9rQ4k5DKtqodIQiF/XCI8vQj73o7fBrQq5aQTnN8XUfDPPXyxoftEMjrT7hvnib94zPu3bvo4wCAOHZLWMUDU/qSjs0Q7SU+noKrTgH9JmRnvqV3hsITy1EB5ZjPbZc9X7kdiwk0shwQRTiZU8CtnMdjbK7fzqnMcr9g/41VnToOydXloqy332b5Lb63SNTjRuNlxep7b/BmZhQviRCpwu46NE6lF72HBG5JBw7i+EXPAehhZrMQsjmeQg0dCQaF8/DI8shicXUvraR+iVTSWLGuh833o+gmTy4meYlvs5yeGApQQ6/4b53utYpq33GccWzT//ZxX8GTZPNnqoHXzoOFazxf33z9octrGHyridEMDoKuP3sl7+w0rnBjJdoWyK0YHSfRbkNuZ4or4NiYdQ6mBcr2+4Uh3FbnnAK+NJIikobcbL3W/V00hd89flO3/j3P0LOGyJ9pNaqh8JErllILue/ISmExVCHiilxdPF2J0nhr7ivh/KMd9TTPiEcr55ZCL5j/1IQnELpKZw6OXJ3PvQeYRPKCfk3jL+ntWJ/RwmjBCaKtWp3hZhZojah0NkUkQpa51bajlj/cFhmU2u9NXpjwZZmY7c/zNyz3y0/BsB2M9hlrOeAorJIpdkJY4OaiuyLAdQBnyFOVTnjveCoRIRfxDaLvLad8XIaUzpeD29jqypOmOgkVCcG0PIA3l8VrDwmK7hmCPdIiMjKS4u5uyzvckGq0j8nM76RXJ7ImHEQMmuVjq5ZZUiay6FcTegxHoTBGpbe8LnL4B0eTB6Z0C3zYiQZYiQZXQWJzec9WhoJtK8BBZPlFLOUm0NJVoZPURHv5xuEskRsgnCzD/sJtwZyjPKeJ5DN2D6IxUFKKKEudoyrlCGkyGzWOhY4VWhUdoaIfNuB6mSH5/oy198huEnbQ5fSd1Tru1rA9NeR/MUXCMyYfw1cPnj8PWTVKdeuRbf/R2RezrhaFqd6pFSzwoCBIIZk7tAgtJyFUz0Fi5rFk+ogsRVOfL8t+H8t732FVNKPkWk05xNZZkw+XMorZF2UBkOM++A0TqvSAdaESKC/9Nr+y8QL6LJwEOpEEDyeGTBVYCKiPwcIbz9084IP++00PhwjpHCuTMBxfutDMmHu69FCc8nlGCOzLyQI4uuJIQy4FVdGL7zRp/5Llqc2anfQgiCRBD75CFdiVg/DHeRDwR21ci4wS/ojSOO0HnrKH4YXkJwJdgNs7lz2mJ+vtjb+KmcZmmSN6mXUTh+Bi+90Z18SySJFd5ktmNb2fgjdQO//tKWguBoCCoAy0GPVFx/gr6E7X2Qjyx0Pbf+yM1d7bxwet27Mx3rDkneXWzltn7Va1UjkYIVu/sfgNwwGPKOL3XfHpzHXOdGxhoCFCg5SSja0BPwY3CyByHaLfba1Eg0QBV6IaMqg48n3YMn780LxvtYEXo1a6V/RUorC4Opn0BxVZRK4AptI3fOYn9EKquSu3Dt8DdAUbhqw1esTWxPy7yd/NBqlFc6zdjtv/Bj02qeJ8VeiWYw+0+5EQqzUvvgqFLcNQ2hOZAGz/lNeFM5eEFSEZRLI+I5JDP5UvsFJxqXiGFEiH9XpTZF+EbwONHYRwZDlb58r/1JLv6VPzn3Wq8oCAC2DkBmN0TEHwBA2zAA6/Qn2eipSllKKLzzeopj9/Kocwptnc0ZoQz04iHzql7qh9Ot4BgKwwwQJ4cBv4oT2BOeKaeeaaMZZNGKJmxjj/sYBxqyMAHWD6/Rs/6czG3Un2e73cn9a97DjBO1Xy+u+ehmrjWZ+MKxgBsdL2AHvtF+50X5gNf9rKpGGwinks+tCm1EMzctURUOk80Bx2GyM+LY//pn1c6l0GyoCAVnldwpUJJ3ot18JzbsvMKHXn1rP42HsroEIdRYN01l9LzhI06rKgouCCGYaLiF+xyTUBA4Fo+G3+8CFBxG73mqwBLBlC438XrXm0FKjI5KvZKr+xnyLz/sy5dEPFDMX3cG07tJ3dO3J8+r4KFfvB0hQ1qp/HJzCOsPOeg/tRyrl6lE5yzMeP4DCCqCikivffnzRsOmzsTf/Z7PuXoqHXjJaSOTHN52fskIw/HRdEkpeSnXyh8lDnqHGHgq3ozhXxRmqA3znMuYJ5cd83Ey5wFwRgMKFFyHDJlPhtlbp0kRCTxruAchhV544u4xRLz9JUUFLsqh0Dxo8Tdy4iK9H/c7IUgrOsDVW78lylbKodBE3uh6c4CR6PfFbjdw41MduJEiYuuoIh6zeXvs2LEYjUa++uor5s6dy7x585g3bx7z589n3jxfj86ZjKbOxvDBFJBm3CT21jB4e5pXO2k3wWcvuQxurnZLU2BFCSLsLwBaiEYnd/BHwdEIGTPJZY3cQrpoRiyRAdulkEhDkljBBvaKg+7IkEBh/RLJFnbyqDaFS213857z2+p9EuSRV6G8J1R04/aDUTSqGMwSbY3fvs4ELJZ6mXQpgWlv6ZX+3AUTBBQlwUevonScB4m7/XdirxZ+G5FCV3F86RonG0IIwmuxqgYi8fdMdzbVCNN34KQzbXjVMAHjh2/6GtzcnetKlILCQLWn/zanGP7CyIUhByXuNZS4lxFG78WoAy0RnWdB4zVUR2RoMORtDswdQTW5qMenLFoPwQaS9veHRdd4t6sMh7d9BYGYWuaEMwUpJKBtONulRFQR+/vxojpVfhpaTnAlvND9Tppcu4IfVy5Hm7AI7Zlf0bbrAm9do6brC8zCxKNRY3nm4b/Z8veFEFw9frVvD0xXjmbGgP5UvhbDkBcfRHnifJSHLkeZ1BceHwbBeXhHB2n4PoP+CW99ntP/od7hnh+tXlECqlBpJqq99K1oEph43Q3p/2Msh2se4CXntFqPPhkIsdXCq6Z5+7WHiN4AtBfV/GVRHpEadxuucaebWYSZqYZaOHo+nAzFidR8F0Iqi2mWvV0vTOUiDo8vy6FMdRkGXSmlWUFRNMjfj1mzexvTNA2nELQo2AdAfGk2P/94Xa1Rb8VhcTiM+vt/w7pPGXxgccC2XQ6tpk3OPyiaE6E5MQ35gOvDBvGxcRIvO3VjQhzRtA3Ah3YsGKhUr93VtDAKNuy8rX1FOi3Rvr8X7ZG5aI/NQZt1U/Vl2gI8mw79PsrKEJj+DDr3lsdvUBkO70yjIUmEEsxmdvpwrx6tkEKRKyPkaIgjikj15Di4aspSoEe+15x9q7JktrOX55X7CMVDG3XUHucxtdutpN66ljmFHxM6+2uESZddR4lB7oimLPI46OFslFKySK6std+4epAVoyoqzfAtSPG9nM3A18tdBjbXM1SaANIAt96CMqkPyqTecNe1KGY92tUz6lDb3g2WX8LR18Fq44L7Ywuh7d+P1XJM/UZ3pQNJxOHMT4Tfx+NPXhBSY0bz4bzX/koQCoP2L+ScfYuOytlVBYcGQ94qR9Yh6hdgT67mY3ADmL3NSf9v1tHztZoGN6/R1jC4eWzPaYLl2+d99vRRunKBMhgzJubLFZT5iZytC6YX2Xks28rfFU5eybXyRl7t0dP/Bt84Z9bKGw86f7kPamTpqDKIDLLc70MYITQWqQQJC5OM99NGNCMorJyyh0bwxEtfkTTpArjicVg7kmqZvboo18zvryTaVspHbS5jWtsxOgWDW+4IBP3Y3Dre9mOOdNu8eTPr1q2jZcuWR298BsOEkXKrwO8trPD2zsmcBvhVxo40A3QP0okkQT0exB2FCD2JeFZrmxhg7O5NYI836Ww+hbQRzQglmPVsY7RyLm9pX7q4HaTHMYJQggkmCDt2JFAmy9nOHo+eVXB4RGlp4RxxVmLG+0U8k/Cc4V522e5mnyMXtADXma9HjhhHv4r9rXfxWnQijyCaryaWKGKJJFZE07SepTLXhmCCyKMwYGRkTehTqIJA6IU6rMFoM6+BPV0hMhNx3rukpiQzwNADc0FuDb+tC4oDhnyDLO9OmPkwbQ31j88NIEQEc7FyLjO1RX695Z5QUThEFo1FCvtuuQsV1XWXFOwb+7iYJPxBQFEsRow0yu6P36SXinDCCXWnjgOEikBRDWcOBim92HM45ihFzyXGES8R9BK80O0OJne91Xt3WTR8PBlt/FVEJ/oSap8OuNtwDTQFCu8O2Ga4OoD1++1k/3E52I16WmpoHsYWa2l5/m8cCtlG4ePf6Vwb/8MZAU1CcaUkJqR6brlNHctObR/RIoIQGURu11Kem1kElYEMBwJCs2D8dZhCy3DiIJE4cshHQ3JQszB5cRHTl0FsmMIL5wfRocF/V32tLnh/YAfa/mmHGkYJc/N12MOr0189U4NssnrlaSsC8/lO137DjIlKpxM5/wrY2h+lyQbkkGmQ67uOG5x2rt70Ne90vcnNx6Y67BwOjmVrZDOvtrObnM0VW3+iICjSvc1SUYwByaTud2BV9UiQ5oV7KbKE10lJ7XZoJWcfWsYmawGzG59dfYyLX+ni7b/wztyHvY75ukl78geP5Er7/TQiBRt2+indeMgYKMqg7mgoknnivJ6Ua0VcXNmVNg2uYI62mLasZru2l4Kv74L1ffXGTmDBtUgEYug0OOdjWDHSOyU2aTsk7dT/LokhYNxCWQQHZ16E859uYHDSpdeH7Ol7jzs6K8TDEFUmvddup3Qi68jpNlicvCq+TWnIJnb4FFqKJpI8CgFd9lIRGDASQyQd1JbEaLouUUo5sjAWjCVg95znnVTrRxLR5Xdmi38o/Pss3ltsRVUFdw8w065dC1bKTVixcaHtdtaYfwTgI4f/4hdVUFFoTdP/4A78e6SIBHbLA16y7If277E6L8DHaKaZ4d330B4ajTEq28WGp/NodyQdM0YWsxqO1JUP3L/zKuPw6Vtpvp1owbXqaD7J30dGABn28i3f8WOL4VSadQd+mLWEIvOxXbPdCRV2CA6ggu3NdfDgjxVsPqJR5lep0LFixb8ryLY309dOEC5CaSWasI4tFFHKGm0z/dTux9z3TpuGiv42Kq7vJwrlsnZ9BfBJ/df2tYa1Vp3OUQEldDZO82byCHbbEkooI9Zlu4gU4TxguJEl2hrmOZcxRfuUXnTiyJEkV4++z0uUtYhvW4xgwgB/hmjPQnzHj2OWTrp27crBgwf/3xndzJiweRiXnDgxB9uwRGVTWVAj4qRFddikVhgHr3/ip0cJfb8CdKNbfUOboxDHG1DZh87rNlwZwI/aHLfiL6lKlRIEY+GQzKSUcqY7fyOcEL+lvSUSE0a6Ke2QUrJV7qaAIu+ECeFEhs6C0qH6hqBloBac0VVM40UMlRUqsjgKYvb4T8Xp+SNmTCSlFjDhub+ZsmEvW4vzoPFmRMOtbrk3TsRQQBFtlfpTtONouFwdzhptM1kyj+3s9ZvK7AmJHs1mxICt3EL5Mz+6IlGBnKbIqWfx45iHCUoeQvOOD7BtWXfvo3t/BefMg8y3kTKIAqWE6MbaccyUJwdONMIJoYJKNx9bEGZKqel2EThwss9lInLiJIII8ilCtlihcwLJABKFZqZLRS/S0vfA92fh40BotdTL4Aa+RR7ORKSIBJK6LyFj4SC8lK+EHTDgMz1ast0inEHlbEoX/NpkcICeBGztQ6PEuvH4nI6I3Xgx2Z+dR02hxZ7dgs0bziHtwTup6D4b6+KL6uyB/h/qNxrHCGJCvI0SNxgu9m5kggVPXsXSnRp89DJIP8b60gR49jdsd1yFMDmQajR2DIiwfMo/fI2HDlQ11JizvYyvr7VwUcdA/GL/PVpYkrBOlny6vJyZWxwUxW2hS9fDRMTl84ymoiEJxkIzkUYnoXODtlIas9zFTZUXIL0RYI62jErNjnzxO1dUG2iH28DKkRCRBTnekeANSo+QGZroVQDBCcxOGwCmGvfEYGZeWh/sqj7vx5Rk0evQSg5EJLMxuQsAwZVFLEvsQHSrUTTJ3cmeuACyg8uo1rxoP+91vJK1cW3d73Fk0REKw/WxX7Rzpt4cyDOFoyDp/N0BLrl1OmZMlFNJZ6UNH5sm1XrP64r2oiUfp8UQTAp/Ko0429iXm+jLG5UjKKCYou1+ov43D4Ch01BCi5HPDkZu7wo5DaDxRpTUXUgJWlEkSBtYCqEy0s+ZVZyLxri/ZfzQisEbypgzTv+9Igmjn+iKEw0VlRcc7zHPuYw4Ec1Y5fw6ORgBPjA+d/RG/xHKRSWa9B1XBKHkU1jFioVAwYhBj/KTO3nD+Bgv299nycJW8MdtVK8BEs6dCv2+Q9nTha4557Gy1XuI6Cy+eOcdPtlndbe75otK0tveT/yV95BPEXvL87gn52NaGNP4O2wNmhL4fjnRcIj6QXvUWKQyX67w2paj5BCUspeKDH8GGUHUrnOwd/uBchcXc0/RkdnmT/jL+Tc77HvJ6zQX26xb8BvYcVRI7hpwtGjj+guLMPOE8U6KG03mDcWqGyprQCBpWrCPLQnpAMxp1B+jo0aUVVUUm/B4Nj1klbj4QoJN3nqmZrVSdmg/g8s/ZO2HEzm6QebfGm0kw/plAK2QUpJd7KTUppEUrtJebckSsYrmWPhBm31cRrfR4UZey7VSIfVRjon47wOB/nAu5HvnbJazvtZ2+vwR4k6z15aNhJ8fBASsA4wS8/lraJfYlj3yICkkUEo5TUQqqR4811eoI9gvMzBipIFIJEvmYmm/k8rf7sSfUjc7rR8/Nh0aYFQCWi5AaboRzamgbOuLtr/DMd+DY1Ylx40bx913380DDzxAu3btMBq9f5j27dsf8yBOB1ixITwmNSeaHpF1/xWYfrsT24Z+YLBDrx8QA76sPnDmrfhOhhLS1qKkLwWoNYXuVKENulc0UIRRKWUUyGKWamuxS71yURWqj5EcQi8LXMW/VUoZwVj8GAUgj0KWa+toKJJ50HATdzie8Gkj4p+D0LmASpvgLCpFgzPW6Cal5LIpFo7sn071ZK2BuRCkCqHFMPh9lE5zkRiJEhGsNq4movN2FDZ49VVAMYvlapqLRphE/YqqrA3PGMcDoEmNcGunOh0jkdhWDIcf78d3kRPw1fM4EWwDDEYrjpAcMFphxJsoLVei5dxXzb2oBfN3cTCD6qlckiBi3YS6oBvTSin3qSpaFVmqelRcTiaeAopRLOU4HrkAvngK9vnh9pAKe9amI3ovo+cjO1n39WishxqDuRLO+o7o/jOxE+SVJhPJmR+xdKU6iokxr9L8vofYOeNKKEqADrMRQ99H1FAChiwJo+Mjy4FmfnqS0HwlCeLfeUHrM56eVUlAgVMqZCzrT/hZr/DFgz9xycjP69irE4xlhAqX17pKpq1JbSX9/H2s+/D+LqTr63+4z/Nvid625j4hXKyBR9tXo3+ffQIvrm4pvPcJrXo4x7rPYoJLOhl5+cK6pUunKAkozWehydraK/DWl0jgsPvS/CsxT/1hO6lGN9CpEK7tFcK1vQDOAmChcyUOTZ9rjRgoppRERaczCBOhmDBixkSaCFxpMJpwPaKtuAYPqy0EWi+FnCZ4KnOHQxOxRFXPMdHleTTO282aBv45m7IiUtwK572r3mVZg67sj2zs3n/vmml81uYSbMLAoyuncv15b/oaxZ12ECphFQVsjmjM7qhGlAXp0QZhpTm0zd/BEpfRbXbDfkSXF3DZ+e9R5IqwCyGbCselGA2SziKdH03ePKz/Bu2VlmyTu1FQ2O08QGvRjGsNF9FT7chPzjmQthG29cNLIW622n28UDRE65XQeiUmjFTmJsMrX1Ed1SjRi2gc/XlbtNvBteWP8lHQ04SKEBa5qEOa0JAjzmydSkRCuFY3fUAgUAJUnz0RiJER7PSz/XxxDlPlp4BL9sKBDQf7OMybji9oRRNCRQjO+WPwfl8FbDwPZeAMRPPViOZWIimjyGHEsc/XGLp1cwOeVS7jkcnpcKQ1b7n3dIbzzSi9vw849qh6wjHbRUnnI807Mq+IUoLuuBn+uBoWX0k1z5R+r5a0eIjpaji/aPMop4KHDLcAsExbSxZ5EAHqQ5fg/HYi7O1EndV6Yxmf3lFB/0aR/9XlnTK8FHIXXzw6lMLp9yN3etPBCAnn75nDlvg2IAQllgg9bdDlKDDYKwiyWykJjvQ8CpBgKcLcdQ7J5/3BJPsQLlGH0lRpSPn9T2F//QMAYoa9AY0DGdM8OWn9t1EiM9CsRrB5cvhVQer8fpZyDMPfYVXrcl7Kv4Cnnx2EZyDaFV16c+CSV4gknBgZyXTnb1yh1l59sybaWlQ2NAtjabmDLkEqrcz/feXWVdomlmprjupUsOOggCJCXQVqbPOuw33/7IBd4JxzHZmd7kCgUEAR5VSyTm4lqQbtzgTDLcxwzkJKjUgRhi18G0wcDd9MhNwmYMmFbN0ZdsPQyTy55CUWp/TAavKUR/T3Uek8D7XDfEBDDpiOeenlBC2+nnAlhHG9YfzUo9+DYza6XXaZXlXs+uurS1QLIf5fFlLYz2GkKmHUK4SOeoNy/KQH/dPbz5EC9ndG2iwIUyVdST/hYz1WtBF6OHagl6OAYn7U/uKA7QjD1f586/zDvc/fMVX8Wz3oQH+1O7Oci1nrUbmnCrkUUiltNCWVCMJ8uDCE0CBEr/71D3qab2SV0nWGYdV+Byv211QsFAgvQrnvSq+21tIQ1rz6PGsqXISxkYdh/DUoFt0QohtCnX6JhU8HKELhGXU8E52v1qm99vPdeN43s8PKrBmXMfCyH9ycNgAOuxkKU6D31ygtdV4QYchBuhdKlRRD/a3sFOj39MdAUDMa7Wx6soeDlH57D6ytikLyr8hm/jqW7E3tUW4eh3bTfPrShaXoXIqFQBDeVsl/S4B9OkARCvep1/Nw3Gsot/9da1tNFax5/l34NhrWD8btiDFaYeSrKKnbSRI9TvygTxEaRClszw4sG1jMdiYMP5s94WbQNCyOCipNR0tRVkm9ZyK7k7/4bwf7P5xU3KBczHfaLDBUgiMAG7GUCM2JVD1FVv/zVWzkieOiORY08ChYVEAxg6mWBV8w3MdLhge9yOD9IVpEQsg+/M7Lnf7UNy8eQxUvjU01sS2uJUi9oEu5KYTE8lxdwVQUnefNo3qf2VqK1ZV2lR0aj021UGSuNlBkBceRHRyHM96AqSb3GxBdnk+z3O1khiaRUprJslTXHCYE8eW5GO3lZERWp8F+0n4Mn6VfiubxO5YRz6AVL6H0mcE5Sq9a78exwiLMXCiG8IX8mRLKeMDxItvlXt5UH2ea8VkqbrTTZtomMnam6be37VzEyMl++7JhhxmP4J1GLKiLwQ0Axcl08RMPatcSo0S6Nx/SMtkh97q/Z5JTp+4GnOT1IkGJ9VtUc45cSoxHimkV7Ng5yBEOckR/TkNvdqWRezxDUUcAffcaNtOHbixUVqHHZ3qrp6rBQePd58ORmvdbwG93QS1Gt/rCMdtD8R8ZU6FUoAx/D63LH/D+61AWTYhJ5eOxQTRPUMmy57Fd7sGOgxZKIwA2yG3u49OiDOy7ZTza+1Ngdx2LIthD6GAJwGl8mkEVKl1C0ph71cPw+Bw8Mw++bXMRw3b+4T13eegAt6//hHxzFF+kXww115fKCKxLRrNhyQVsUKw8rgUTZM9k3/sfuM/QuOgAgRFofq+W0LWSWLhpHEqjLWh/3gjzrwQMYLDB0LdR+uhGWg1YBiz9aZTPezh9jYPd5//GuUGj+EabyTZtNz1FBxorx0Yl1Mik0Mh0YuiaNKnxivNDbNgRCC96qUBwB+eE50GJtzEtIrKcQx7cjlXwx3U90/g+abYBCLkHCyYqI3Lh5vv0cT06293uwl1/cOuW6SSU53Lzua+4I8bDrMUs+ulcUt7Wdai/zjVw1bfB2Pt8zci+BXxpfpXi4mLG1+E+HLPRbe/evUdv9P8Emt2I/PhF2NuJUtWJacB0HIM+8G5kcOCfOArdTQw0E40DNDh1UFUVg90QMJ3PghkNjVVs5EIG+W3jD6OUQUghGa2ei9Qk6+RWALQlo2HWreAwU2wpZhAGsP4K4blww3iU+IN++0sRCUcVXE9XaIHmJM3bCBROCDEff8vuCg8ltTAFpj8J1z0E6AJjEBZakHZiBnsS0EPpSLwzmmzyARhKX2YRgLBZej8TL89/ktaFewKsgQKWXoG2qxvcfgsi4muwJ0NFJ5qFHOLaqCH/7YX8h+gs2hBLlE8FtkCVXT3RTG3ExO2f8MhafwtzzTAfgbavPdr8sYwdnOdOjaqCE2+DiidnzZmMHkpHGjqTOeCOvwkMoUjE5c/B5f5TglJJ8bv9TMBXVwfT/oUSskq9J7V7Vr3L3eun0bX8L/6JFHTN3kCfg8swSo35jfoetd9m1L+18384NnRUWutEyDfcA9Ner5Hmrs8/g/ctoEI1szSlO1JR8a06pz9XXQoXcN+U12m4+i0yQxK8DEwnEiYV7uhnZNLIILc8kkoiDUjgEFkoKPT3SPkxiLqJ3k1EKsEhyykb/jr8fiduZbLXDJSkvTD8XRj+LhMcd/D8o5cCBi/FsdJgocgYTLuMtSTbCompKOCrtpcAcNahFfQ4tJrJPW4HIXizy42EVRYRWl5AaVgsSMnOyMZUGs1kmBuQEVptRBQOG1I1YpQOWhTsJSskgRJziJdiK6SGUTrZG9FQNwIK/bfQVN9rN8tgBqi93UUk/ku8vCSPqyqDMJTl8kWzcg4a3mR3+iha04wgg5FxN67nCe36gOulltsApk12VYmt4YBzOnUF3ksGDSC4Xfw0QsBMx0LGGa9yb14pN1LmkfmxkNqLAlThFeNDdWr3X6ERDfxu38IuHuFWnuNdv/vb05K9HKL4xnuRr33qzdu5tTfahIXoVdMlC+L3E33zI+R3mAUbPKqcCieO68exX04EP8UIakvbU1HqjdEtXTQnCDMV/gI0ACXxADx2AQ1JZoel2hgwT1uGE42mpNKARI5oOfyuLXDvv169GCMGJo+dQuYrU6E8prrT+J2Q7T8tXJP116F8rHjNMJGbeJQVFz8H3z1M1btqVw380sqjwrWm6e+r6529cdN0Qu1l/NZsMIXBMd6dSslFW35iZotz3U7AKnNRoSmMC8//gM2xtVBtSdd/fHRUj+9OF3efuQz6fAFBxXoxBcUB5jIAogivDkDR/P9mTZ+sIMTyJcmXTGZj+k/cbn+SP8wf+m17KpAj892VjOticPPCtQ/AK5+DNRKAsBAb310bzjUkcYAj7maDRW8swtcJkqDEcrd6De85v6bS493TKoPAUR0woEq9FvNtg1/0kh0+mXUPyfmlTOpyG5O73oxUVEIfO0TpA+OYE1G7w70mjvmNS0tLq/VzMrFo0SLOP/98kpOTEULw008/ee2/9tprEUJ4fYYODZSvWzu8g6L1f/Ltt2FPdz0VzWHBNuc6tOUjvQ8c+xi+i7CE5ssRZj0KKVVNoj6ig2jlt6KeARUHDhKIJZxQKmQlA4R3DrlO1K4/XtretmhvvoM25SNWb43kbsM13Ge8nicMdzKaIRg3DYLf7gVHMK1zd0J5BFSG6SmURYkw5QukzfdF6iha0Vt0OTEXXw/Qo5GB9kk1J2sNLn3Wa4sFM8VFfqJC8r2FpAoqiTiNowI7Kq3oJTphxIhA1F48YNjbeL53zYr2kRMU7f0qSlnN5SAlZDWD1z9GKDaU+EkoaZcxKH4Faj026jYXjUgViT7bHTgIcnngk4hDQcFQI809WFgw5QTibhSAn8ikOVcxd/It7P+nEaALtD1FB59iKqdTCvO/QQfRkkYihVSS3PPd8SJOjfxvBlUPERWicPDZCD5+ZRGNJ11K9KTzmNbiVh5e9RZCU8i1RPF5m4vZHdGQh1e+yVVbvnG/m+GVRXQ5vNa3emKzFSTG1o+opv/h+BGlRGDBhNJ4M8oLZ7uq9fWBFtXCbMfcf3h+0fMs/HoUkZWFfnoRxJbn8+23D3LBkG/JDEs+aQY3AJsTJs+38/zsSvc2k2LiAfVmXjc8yiTD/fRT6hiB4oEwQqnAitL3W5pNGsttL71JxeQwOo3607UO6nzDmB20vPAHv30saTKATaldaVWwhwdWv61Hu6FHqUXaqzMJnKqRwpBY3eAGGDUHqSUZhFldEdIuY1lsSRYdsnVnaVZwHF+kj2Z/VCO2RHsr9lkh8ZS4K6YG/i2ig+GrfmedEIMbQNCm6fTYsY3OGblMXpjDs8uLeMX5kXv/JcZhfnmGAaTdBK98AcXJ1KSJMTpsjF8zjZE7f/eSI5SOczCf9TPVedwu+eGHBwF4TE6htW0ol4ihtBUtqKCCCA86hkAGGU/0E91odZLpCBKICbgvXIT7pXmp4mkOJZiUSAh7dCy6XFF1XwyujwKokN2E/EkfwYaq1DhXO6kSppp5u9G9ELOvxlkkDPGtoF4FJ1q9yYYRQhDncR+13e3R3ngPbeqHsK0nRlQ6i3TOV852t5FSkiGz0NCwCAtCCF50TCOWSIwYiCaCdKU5VxpGMSH8Cm548jMefvkzbFMi2fhaHi/d9w9hUYU+YzmriUJ64pljdGulNuUSZSgDuuUhOsx3ba3xDkrJoL3zvI67dcjLlJnDCLHVoDySkvN3zCIYB5XGaidyuTGYIRd9Rbexv7M5Ib1GdFw1VM3BlD8fBK1257d7nNZQmHsLVMQQU17IBz8/ws9j/qHhs0+R99wnaE/9iPbcD5AZOHqtrFLl0Of30TRzANvkHr8cjKcKW+UuYoikI62O6bggzDQMM6M+dT7GSf1ImXQhfz6TTY/QxsSKKBd/PKSQQEslsBO2s5JOAjFEEl6tC039BM95/Yfmw9kfkoDT4B3tV2608EH6pbzW/XakagShUOpoCK98jaKp/O5cUOfrOS568M8//5x3332XvXv3smzZMtLS0pgyZQqNGzdm1KhRx9PlcaGsrIwOHTpw/fXXc9FFF/ltM3ToUD7++GP3d7P5+Lg+agb3mzFSnuVbEUfZMhCl52/uRVxptg7tmf6wZgDsbqevLS3XQttqMs2mfj03px6hBPstZ27BhEAhiVhaisaslVsoo4IQgiinAoke+WLEgGNDf1dZdf3uff1JS1oOreCRoUEMVfsxVO1H6y3L2A0M3ruAq7bO4OrhVWwNrjuuGZB5yYgk7yjL9XIbLUX9qEp0IiCEYPVD4ezPdbD5sINnjS+xJvV7FIO3gSOHAtS+78EfN+Pl+R/wqbtNJ9IJETqZ8+mKYBFER6U1vzrnIZFsZXdAzkGl37co7RfimPQ1YGJKl5u5cut37rDy9lmbiK4sZEGaK5qmyrBWw1DZQKmfBvEqpIokggnCghkbNjSXVVFSLbznUQRIHK77pKLQlIaki+akdDXwwM+evBMuhOVA0j+wo5/3dhmEdU8lPZ4ZyZFLm1JxwW840XS+G9f5lFq8zmcaQpUQEkUcRgyUy0oKKAqowB0Nfkukn2HoqrSlq2jLXjJo+MsWbIqBNtfMB0XFoai81u0O9oc2INJeAkJw2T8/8sb8xxBApWJkVXxb7nwznMzuGQyLas1A5ZxTfUn/w38AC2bKpRV5uAkUxEFkDuRVz8Wft76Ie1e9jQHoe3AZvzYf5hM9MHLnH/zQdCiop87gP321nUfOrXZU3mK87F/11060oBvtWMUm9nAQq7ChCpVs8rG7ogYMGJjh/IPCyvOojaz7r4Z9uXP9x24D2Jy0fhwJjSc9Zytb4n0pTuyqkT8aDUDVqlM1giuKGLXzNwos0ewLS6IwNB4MukxttDuQFQ7sQdUOwLyIwNG7Alh+bzAdUw0nJVuh6gwGDGST596+xrmFhiSz11UYzBNy8SX4ppPqSCs+yDX/zKBBWTa5i55nc0xL2ubv4JyDERyeXDPCRIAjFO3bBwm6dAoOnMyVy+hAK6KIwIgRMwaKKaOSozsSIkQYqjh5RmWAWCXab3qpQLCS9XQinbl4R33YsBNMEIPV3nzm/AmZ15Sjqp2OqvfHO9TB/k9PitM+IuSBGyjPjULNakK6MY3dqX9SHpTnryc3ousJpxtAS9GYA/Iw2upz4bvHqLpO7ZNXSDjve4L7LyLSg54jXxbRS3TCiZMiWcI11gf5TS6ggko0NPIpIkqEEyeiud0wlqmOarm/ldKUVuamjH8CdufY2ZbpRFUE7VJUUiLraXWwf4GbDJcx37YSdnWh5jzY7dAqxmz7kdygGOY0qZYb/m7Qg3t6T6TQXM2l2Dx3BzujmmDESYE5zGet2Zh4dO76hLIcGpcf8VmPLt3yA9tjmrIh0V+qsSC2LJdNnw7Eqai0vHYRZaU15MKSo1EECco3nEVqUh7b7Dtptq4MYVAxdGqHOIkckDXxvXM2HUVrCmRxre08dToFQQVWDpGJiooJI6WU87NjLt/xBzkyHwN6Rl4lVpqIwLaU9rQkQcSSShIb5TaKKYMCbz5Vu2qk29VzMNgrcRirI+Am9J5AmSnYN2LRHkR+OawwbqQvnet0H475rXvnnXd4/PHHGT9+PM8995ybwy0yMpIpU6acVKPbsGHDGDZsWK1tzGYziYm+kSDHighCKaHSxSKik4WSsBuOtPZqJ9IX+ipdBSnw0+O4b/eGS+BbiTb6eZRuM2ley4NyKpEumrFQ+oa6l7oMccWUUSrLiRaR2KUdBdUrkCiMEKzzrqHm5PfaIt3oVoVnOnZizHor96yZRmrpYT38t+bk8NYHaBMvQAkpAfRIupaiEU2E/5D3MwlpsQbSYg1stzdgi1PB7jJoxhBFJjlIJM7+n0H8dvjzFjA4SB7+NZmNdY+OgsI6toCE8eLaU3sx/xKtRVOquHz0ggEByElR0CKz4PER8NN9zI5oy8E2/aBcA6Hw2PIpRFYWsSD1LF0JcZGqEl0teJswklbPU/6EEMQTgx272+BWE3bsXuHcKipvGp+gk9oGwmDyk39zz7dW2J+OahCIdgvpMGw+6/5ujVbD6PbKvMe4etuP+i/wG/x2STD3fFiJEYOH0e3M8Z7WBRepg7nf/iIRhBGEmcNkBfwtakMs0SdgdPULLZUmfGl+jeTK3vwyUkHbkk6ZxUOoFILv21xA85wdICV3r/3A/YZbNDt9M9dx3+9mXhqSzEK5kleUCafkOv6H/xbx5Y3Ie/4VcPhGbEeV5iA0jeSb1zL/m4tYk9jBT7oOtM7fxbLkridjuAFRVHns731tSFOS2cIuggkihCBaozsZ29GCI2QDYMVKLvkULBlGbWl2gw8sJsJWQmhlCaWWMCrNIaxJ6kyY1VcJCi/Lo9QcSm6Yt9OpTf4ulid3x+R0MOjQcr5rVZ3ZccX2n9gX1pCFjQOnhRuB+Ag4p6WBKRcFEWo5+WuFhoZTOlnp3EB3tQNL5RqCCVApac1w/9sN5RyOjiGuTDf2xNiK6X9kFQVRkGURiNACZJEfh93aUViLk8m78V6iiWQVm9y8RderF/O28Ulusj3C59rPtV5D4wCpnicSCcQGpK3YLQ8yQh3IXKdvqtVybT0XqoNJpzlqbDDrcVCr6mmocBnevCvCWFvPQ2IljBAqYo+gxOZQzH6c1K7ExxFdb9JLAYaqfZnj+BsWXE1Nw2LGokGU9PuA25Wx7q35FLr1sBQSmC2XutORjRhoIlJpIKqftUARo03jjDSNO7MzEIKEhW9MU4ho9gvODefgeX+fXfYKnXO28FtqP3e6e9OcHZhwMqfZEK815fw9s5nTsC+FhmAOhR2fDpAVEsf66NY++uz4dR9SbrQw6NLv/Kxjkot2ziQ7OJaMsGRv2egYcGj+eYQtjSbx9UFUVJkjTEZCdy5DTTq5vN4/Ov7iT20xK+VGDKgcIadWTrdQQiijgiDMmDC6uSKdOKnASRBmXtbex4CBs+jEQTIRCEopp4MSOIqupdKYg/IIcSKaaCJ1o1vUYSioMZcK4WVwA8iIbOibaQFgsEJwEa87P2G7bVed7scxr3hvvPEG77//Po888giqWu1p6dq1K5s2bTrW7k44FixYQHx8PC1btuS2224jL692j4jVaqW4uNjrA9BWtEAi0VyPioaGuP12aLIChF0nAR40jaCeswDQ/r4QbcIitAlL4LWv8F1kBPxyLwDxSux/fNX/DRop1Q+jdqA12sR5aBOW6J/XPyDYGcpWdrNPZjBA6UFJDaJ2MyZErC/XkSP8iNf3izta6Hf+UnZGNyCxPJezDq3wOQaHBf66yf3ViZOtcjexIupfXuXpg+5KB2zYMWOmp+jE3eo1DEAn05WAsfVqBt/zPmeNe4uixkvRDrZAmzgPh+s51KZ+SIJ2ehZSqEJ3pYPbqF2J1SetsQruSNPgMpQxT6NMvJTtT7wOt94GQXnsiGpMx7xtzPj5JnC6hEgpoTwCrVh/pmzYiTsNDCFdlLa1VgNqRkOvNOybxWX0VaqVU0NoCWpoCZTF4yyKx7HkEtZMegYt0vs9DbGXc/n2X5jboBcNbl5N/G2beNo4g6AjqrucPeBVyfj/A0YpgxilnsMeDvjMgceCZMWXAPZMRYpI4N3rncy7zuFXmNmZ0ARx3pvsC/dVLre3FOSQTxopNBHHRhT8P9RP9Fnwpl+DG8DAQ8tJKs1EGkwMuPwnjgT7l5cOhiSiovkXjk8ShrX+b+e+drSgEivlVJBDPlcZLgAgVFSnOzlwUkQp1JivdUj3Z0dUEz26bPoIQsry3fepxI9iN3b7z6iaw4v7CCA7KJrMkHiOhMThUFRiynJomKdnIGyKa8NV/3zn01fVOOLbbKL4tXD2PhXBB2NCTonBDfSiXgsPFNPn/mRM4wuZ+sAtbJr4Edr6gb6NY/xwdZpLEE8Oo3LScB5c25OK1BjsRvintaD3mjAkEtnn64Dn13Z1w5GXRB6FGD30gmTicGpONkt/NUK90VVpW6dr/S8Ro0T4NbhJJHs4wG1coX+3tkA7NA3t4KfI8h6sZQuxRLGFnWz7awB6Opf0+GiujxPid8OEi6Hfp95tzKXIiCysz08nd8LvaBOWYJuwgL0TvqZiwny0N99DBuC6yiGfeBE4NfZk40p1lK5FRvu+r87IDJqLNC5UBru35VGINm8s2oTFHJzwPXkTfkd7/QOkU8WOg0MykxT+/8gOR4NJGHluTAlx7deAYqcqPHN3hJ7ls7pBVxAKQfZyHl71Bv/EtNSrmDqsdMpYDZpGdEURmcFxzGtyNjvi/PPhHQ1OxcAT/R/2MaxN7nIjieW53LfSu0pz7/1LuXzz9yxN6cpHbS9nW2Tjf7WWPfndh6ieaoHNTtYDDxx3fzu0vWRoWWzRdlJ4lGi1PeX5pDyWj2l8EZfd342PHruZzfnFbJTb6S0618rpVkQJI8RAciwrGKF4z8kqCg1IRCAwoLLGVYyxFx25T7mes0SngP0qQiFdNGej3E4FVrR/ekFBItXzTG3Q/BpIcZiQz/9MebmJn7S/jtKHaxx1auWBvXv30qmT74WZzWbKysqOtbsTiqFDh/LZZ58xd+5cXnzxRRYuXMiwYcNqrbD6wgsvEBER4f6kpupC/dnCuwyxAQPCaEO5+V7avHAdyrPnoAz6lGCCkeVhLoOailc+uQ/0Hzq0npKOe5Wy/2AKSDPu6znciowF5xJFBIfIZLvmW2DjCDn0uvwXiNqP+8EOzqfi+ts44sjGIasX8M/7d+WJRSvZ2gL+DlDeHsV3wT9dq3EeDzqLNjQhlUqsFMgixhuvZab5A9aYfiTftIp1pp8YovZhvzyspxZ+8Lr3b3akFb/+dfqml4JumPBn1KlrdJXSeDPKEyN5esFMNraF17rdAqqBRkUHWP/p2Rx5rS/r2hSTtkefI2I9qozVV1ytXlCrcfAgR0gXzdzfF8pVXuk8Ww4JnCsvoKoCHggoicWy8lLo9Bu60CKRSN5ufzVXn/cWVoMFhGBfZBqZU3/DPrvau2o6PtaC0xZCCG5TxxBJOEWU1rp8a1Yz2hvvuhwyi9Ge+xktS490jpChtRx5ZuEN4xMkE89rDx8i/TxvYUUoDpTr7kX0/5pblm0kM9XkFovmD1T58FYTYYRwttrzjC2i8/8NwWpg2o9iUyg7Il38VaoBafBt2z1jNbHWfEZu+5W4okxvvs6TBIsBpo35b99hk2JirWt9X2v6yZ0m10Cpzt5Qq9a+ax8Ac0GNHqo5jf5oOogZzc/j18bnUBYc5WFQ81OtOjgWTfiuqQeiGpEXEktmZAP2hSay4NuLaVWsy35rEzvyUo9xjP7nZz2SRLreWuEk7aJPWXJjY1Tl1L+vMURi/+A1V8GOKs4wBb55GumosXaNeRwiDuGWX0Nz4dp7kC98hzZhEV999CaPTZpH49wYBq4IJz9Wv2ei41xIn0sgZU6++iWOn8dRKEvc25qIhmSJPHdxsUAIxsJQtV+tbU4EUvxwx1ahmDLmyGUAyCOTwNoKbE2QmS/g0CwUOIvpmTeCykWX4M2zJQAFxl+FMqkfyr1Xo4QWwpoReMkj1jCY9JOLW6/m8QIOtUUuusLv2MIIIUgEiGQ8BYgQYTqlkN9n635SSEAimer4lNfsH7OrsAxm34bX/TjcCjn/agBa0OSkpxrXd9xrvpYHrz7Eyy/9jhpapG87+2m2RzRC1ZwgBBLB0uRubmNKj8OrsRssoCg83Ws82cExrjnyGMwk/tadGjLKjOYjuHjk+zQrrNaZjU4bPTLX8leTgWyJa8M7Ha7m3oFP+43oriucfp6JOcJPQEsdcYX9XprazqGL7UK+d/xZa9uLP88lp6Tq/Pr7a/74TbqQzk9yzlHPtV9moGkaf2iLvLb3oCO9lE5IJJVYKaOczqQzUj2HCCXsqPLgAKUHIQSTKXPh0xfQg6Fqs9G4EJyPL8e167jSGPjqmaNeUxWOWTtq3Lgx69ev9ymaMGvWLFq3bh3gqFODyy+/3P13u3btaN++PU2bNmXBggWcc45/LpiJEydy7733ur8XFxeTmppKc7UxEYRRQikaEs3jBzhMNqEEY8Wmk7tXRHN0e6aEi58HqLeKQ6pIIoEYssgDW81FS1CeG0Nb0YQjMpsd7MOMCasHH4UJI+1Mqex+6A5yalRXbOI4h5d4kHEGvYpTkiGegcH9uGjFOnjEzwKi2mCwd2XYtrSgAfWbc+u/RLASRHelPRZpZrc8QLEsJVyEki50MvwWNCZRxPGk4w2CMFNm9S2Csbdu1ejrNSIIJZ8ir21mjAEJiE0YsONEIlEQaEisZQmcM+ZtONQeVXOw8OsLCdZsSKBBcT6LekDjzHCiReSJv6B/iXglhr6iKz/JOT6p7QKBFTuNlBSitHCKKWUX+3FKp1tQO5LvfxmIKGqG7YY74bIX+MD4HMOtI+lw5xXYfTiTFJh3A1rMYZQuszBxYkqO12c0U9IYr17Dx84f2E9G4PD5d96FTA/PaUksTP0M8fQQgsz1RzE40egm2tJKNCGUECr7f4jt3Evc++6xPc+32m7ygLJwhb+2P0k4YdzjeI4yKlBQ6C7a87Lh5Fbv+x9OHB4bEsTUpRlg8426WpPQFqvRUk0BAPrfTgcY9LkoqrKQA+GpPN5n4r9SVP4NKh2wMcNB+5T/1unQStFTSttQ7ThpLhoR7OLQdaKhoqBt6c/R5M7bB7+k/1GlHAa4V3nmCJoX7mVbXBvvHUK4q5CuT+lKXGU+ryx4ms4pPXAYg9kR04wdMc0AqWd/jHqV8G4LuVa9jkZK/aBqMAsTWGs6ugVIQZg9mkpDnkvG11As5TCxmpdPOgzIx/4CaSLEWsqUeY/S7rNtxP7WlMnvbgMh0JaOgsVjwFyBOO915MxxeP4uodYSJs97jHafbeObP5oz9Z3t3KFeRT+lKxky66jjb00zwsXJd9DEE00CsWSR63f/LLmIOBlDljMGNzm5NIMWypvK51xT8gx/B1Jui+IhcR8A2t8XQNlxRKbl+X++BtP72Ps6wRis9Oaw5QcqJl7mIkupRj+lG1FWPRPBgZN7i5/H1yggiMhtzWBlCDeoF5+kUZ9eqEqzLR27gqfei6DSYKHP2N9AODCKXEx2he9ajHDPg02K9vN7Yz3C0GbyH3XtgxpzaHrWJsJsJSxPPYtGBbspMIVTFFojCtFgZFtMC2479xX3piB7BaCQb4nUz2/01d2OFfcNeIKVnw/D4opOLbcIJrygcMj+Lg8bbz2mvjSpcUhmEkwQAnhH+4obuCRg+z0FvryUWmkkm9lJCEF+ueKrIBAUUsJeDlFKGY1JoYloyHBlIL2Vznyp/eJu25RUuqrtGG+8tk7XMUzpxzy5jAP2HHYci/mrPIZao+EK4wkhuA5snMcQ6fb0009TXl7Ovffeyx133ME333yDlJKVK1fy3HPPMXHiRB588MG6dndK0KRJE2JjY9m1K3DurdlsJjw83OsDECnCKKIEDYkZk5uzR0UhmQQqsWLHgRMn3aKjITIjwBmc8MAoeK4vSof5RFB/oxuSRLxucAPoWDN0UqL2n44FMw1EIsWUeBncACIJwyxMhBGKCW9FXQCznUu8tt1vuJEYNRSarK5xLic8cAlKkHd1mc3sOONTsv5yLuVh+6uMsN2MUzpJF81JIo6uoh0fOmb4tF+rbaYNTXWus85/+Ox/cPDxFRKpT7jfcCOxRHmJIa1oyghlIK3wrehlw4FEYsSAU0q0LT3hxe/hUEdAIaaiAOHyTrn5o6xwdm4LomX9IeCtDQPU7n4J/KXrX6GzhCCCCCOESML41Pmju01Mi21gKPc59tJzq+ewAllMVLAgrJW/1C7XXdt2FkBgfpwzHFcbLkSgOxsChs9n+4k01YwEF6fWW+fLiYAqVBJFHPHEECnCydCqlc3njffSTbSnFU3oQCt6Kh3pKTq4jepmTHRW0lGOxQP9P9RrhAcpBD99ATxwEQhv50lBSBwdMjfS2VXBttfBZYxbM82rIub8tD7MTBtwygxuVbjta9959EQgSoS7q3cbMSB+uh9+mAhW13pVS9U6g9PG4N1zMNsDKD5S0jN7A48tmxK4H5fRblZqPxIrctn1SX+MDs/fTei8XN8/iv3XOxiqBuZ5O9kQCK7s6isHWVL2UhqUjRONIMzVEYSeKIkBacLssLLl435csHcOEdYSEtY14Kqrz0f7/Gn49UEobABZzZEz78J49aMw/nIQdswOK5s/7u8+LnltA+4Z2419jkwaKEns0wLpDdVoKQJX6DuRUIWKLYBaacDARrmdHJEHkdOrd4QsADWbw2STmTYfg9nPM2cqI7TJtupshW2BjGS1vdsa9PvK755wpf7pWCOVc9zUKBI9UyOScGKIZLW2mQYkoqISU5LGZ/t2gtk3nW/huUP4yvQa56hnneTRn154pHUPHp30FcaHRqM8NIrgJwaw44MB7PqkH9dvmq6vGVKSGxRLsL3u87fBVoZwer8P/TNW0qgkC4QgsrKEyJoVUT3hERVXbIlgS3Qzwv3wax4vjoQlkXrbOlpfM58W18wnbW0X8mNVXnd+pkd61cAubT+jbLfxrONt1mne0bY7tL00FQ0JxkI4oSSTwCrNP52YlBLn4GnUNFLddbags0iv1eAGus4SIUJ5xv4WbUULUkQig5Xe3G4cQwe1FVEeRVHMmGl6DBQj6WpzWoumdDa2QGm8zreBuQgGTfVzpCsiN8CIGfw+0XXkjayz1PrUU09RWlrKjTfeyIsvvsijjz5KeXk5Y8aM4Z133mHq1KlekWX1EYcOHSIvL4+kpGOPjvIshy2RCNc/Jxp27BgxYMSAGSP5ohDx4OXQ/nd8raMKFDZAUU8d70hdEU806S7vqnL5szDmYSwNdkDbOTDhAsoTtxBJmDtEvgkNvJbFCqxkk08CMbQRTekoqiMhJVBOBbladQRcN6Udl6sjCL5pAoaLXoQGm6Hzb/Do+SiRvpNEK9Gk1jLmZwI+c/zIbOdSKqWV7XIvY9Tz2Si3Y8Xm1+O4Ve5GQ8OBE+XSSTD2YZIbZjG6vcruJ0Jol3z6p/7da7iOwUpvrzfrPuP1fGd6g4vVoV48KaCnb6soaJpATvoaPn8Vz6kvOziGxanV3HgAJaGwJi6TYOXfe5xOBlqKJtVlsGtARSWfQhw4KKOCSqxsldWOh73G3fD4cDhrOsTtoVmLw6y6P4ShHR20Ey3oITq4jUiv3ruNpuf9jG8ZMwkd9LDxkHqaLn+ikSziaak0wYY9cKNUP6lDhkpaR9TRs3oGIZ5osmQOUYSzS+53bw8SFn4yv811htGMMZxPV6UdyUqC26icLOJ5xjj+FI36fzhRCMKEEpMF915FzfmlV9Z60gt2gxA8/ferGJxOL3Jqm8HC4YhTX1RpXcbJkeuaiFSSiUeg89va1gxy75v+y02EVwZW3jplbuLZZa9ywc6Z4KE0CqedZnk7uXTrD2yLbEKYo5ztH55F05xtXilTt637hH3vdSWx5AgbE9shgLXx7bAb/Ttb7KuH0uUUcJDVho+uDGH6NRa6pED7JMGUi0xccdcPpJKEEQMVWP1TVoTnglpBh5wthGg23m97Oa2vX8KDZz/NpykTYUvNDBqB/c8bYMpXII10dB03re0VtL5+CQ+c/QyvNpzKr48+xq3ZbzHd8YvvOWvgHLXXf3MTjgPNSPNbvMqBg/3oBkMR/S5qyk2I5NsRCY8hBDjR2KZsJ/eZWO4baKBlHITFZaL0nU7Io5egGStJIk7vzMfB7w+StChoHgsJ7dfCxAtQ4nyrzwI0JNnv9lOJPkpnL368MEKIIZI4oskkhwYikcql55P53Gcc+ek6sIYDTojdy6gOsOeJENoknf6y/MnC45Y7MEYVEBxVRvomB6GV8EmbS5jS/XZ3mv2l23/hhk3T/R5vqSwGe6XXtu6ZG+icvcVr22+NB7ExtgUphQfJsUTpZlU/NAcmh5XIigIvJ9Gfzc+lyBXpVhNGWxk4bAhbBWgOQisK60afIAS5IXEUhMTBygsAqKCSddoWn6Zr5RZKZRkznH8wp0ZBlA1sJwgLCgpHyGG2XMIGbZvfU2bJPNq1zaTN3U+S1HwX/ZoqzLkzmIEDd7NM+jF0eaCKOsghnWyRu1BROSgzSVeau9s0pSFJxBNCEJnkuDO96opXjRPJkflYbr4fLnoOkrZC/C7o/ynisZGIHnPwW6bZH4Qd7rwWpcMCCmtkXwVCnd9a6fEDjx07lrFjx1JeXk5paSnx8acm2qi0tNQram3v3r2sX7+e6OhooqOjeeqppxg9ejSJiYns3r2bBx98kGbNmnHuuece87kiPayrdlfkTBV2cxADKg6c2HGgoKAoEudZv8DGmtWPBPzwEDyg8w9EcnzVSU4GVKF6Rc8o7Rdia7/QLYrYETRUkvnR+RdmTD58RiWUsU3bQ2clnU+1H2lBI3f1I4lkrzzEDrmXWKqLIXRwtqf8pU+qK4ocSoet/dDuHYMS7p2iWirLz3gug05qG2Y4ZpEmU9gg/+EK9XwqsbJCbiBfK2ISOjFmuaxgjbaZDxzf8g+73b+Dud1SxnXqwn2G60/dRZwANBfeEUNBruiq9qKlD9lvVXUwbXcnKPLjFREKVw97g9fnPcKQ/YvZG9GAK5YfIkGJ80rDrM9oqjT0KSpRleLoxMlMuZCmIpVlMo8CilniXM0OdS8tlMZkyCwUkw1GvkkaP7DVMhuAZVowm+QOALpLvUT6P+xib/9Xoe0XxH30KXn5IYSaoGz4i8i2Ov9CqPj/Z0CqQopI8EkX8YS4+W7kV4/Dlr56mlb8PrjhHkyG05tr8XiQrrZgivYpO+V+zpdn05/uXvs9q7DlyQISiaOYEjqIwBWq/ofTF6GEUEAJ/HIXNf3BKhr7XFXkvm51AQuTu/t2UA8iRaNPkr+hs5JOKMEuNigJEdmQ25iEshwGHVpGWskhNgVFVo+rPJcyQzBWUzB7IxvyQdsxmDQHBk3icC1vnbI2cfvGz9ke1ZSXe9zJnEYDWfbFMJbNuJjZqX25csTbIAQPL5/C8pSuZIYnszFOd6Q2LDkcMF01Oap+OphHdzIzulN1xNvD9ggOOqvJ7atkX60yCF75Ckrj3PsOhiUhgad63XeU506iFibhdD3PLXO2u4671/s4zcBHz491H8PFz6F0neW3x0vVYcdymf8pYkWUly7oiVLKCSWYclGJZtnqY5rbKLeRZTzCC6NSeWEUrND20d/2JhXoabsHp7wGuVXrYNU5qnsJtZaw/IvziLfqekBxo0RSNy1hmPyCHPKQZb2RuXeBsCPiXkQE6ZE4TdT6V2zHpJhIJp58CqnEhhEDuzmAgsIOuY9YIlFnTq4hyaqEJWcy47qOp2bQpzkuV4bzifYDB5MM7A1J5JHeD7nfwajKQkbsX8AfqX295zGnAxSVXofXsDkunRwPx0JUZQGNSw6zJrmze9uB6EZ0OLKex1ZMRRPwwFkPkliUQV5IrE7LEloAlWGM3vELzQv28XyPu3EYPOhY/JH1Ixh0YAmHQxOxKgYsTgdX/PMjDw184thuwMpRaEm7kL1+42PHDySIWGJFNAVaEXe/G8vfO88CzgIkqy9dyU0dn+CHNy6l5EiKvl30hCsfgpUjYXtfbgdupwiDAnPHBdOrsZ7NtlnuoJhS9iTN486bk3nJ2AUpJU/a17rpffwhhkhXUaASdrMfC2Y0KSmmlO5Ke3e7BBHjrtxdRgXdlHbHdh+AuwxXM9++AqX7TOg+03tnWD7yzuvh7XdAqxl0YYfgIqiMgITdcOM9KCG6g6uEutU0OKb8jJrpL8HBwafM4AawevVqOnXq5C7scO+999KpUycef/xxVFVl48aNjBw5khYtWnDDDTfQpUsXFi9ejNl87Cl2MTLCrdjXTB0KIchL4S2kRG+jBoh4MFRvT6B+Vi6twi/m9xinXO21TXEthBLJcudGgrFgxYYNO8l4FzbYyHbOohMxRLId72ILh8lmlbaJqY5PmWz/hGdnlzB6QlsoSMWLJLUyHL581mds/x+KKPQUHQknlP1ksMypewmShf7OHZKZaJqGXdpZrW1msP06tnoY3EA3EEcQdgpGfmLRHm/F24L+Tg9We7PTNJt++CnGYfLP+QYSp2rgjsEv0vzWeQxZEE5BnMI29jDR8ep/PPITgwYi0SuFW0XxmqcOk003Ub1wrWcbk2zTANwLGEA61V6jEKoXnKqQ8Kr/KzFH+ODhnVROjiD3xQiU7r+724ZyekQHngiMU6+stXqrUJ0oVz2BMulslBf6o9xzDUp4Pk1Fw5M4yvqBZI+Ka0fjMsoij0xyKKeSBpz58/7/RwxUXMWqTL7pJ+91uIYguy7Uftj2cnZF+9II1AeczDoBI5Sz0X69E23CAshtBEjsiooEvv/1ZpKKdUOY0Jw8smwKzQr3AZAbEseXbS5CkRpBzup77VAM2FUjIQ5928MrppJszUcA5x5czI8/XovirMQpFMyuVNI5jQawNzSZtJIMUor9p0a+c9EpTu9TzS4ydAGhyYhg//NHc9HI//E/PACl8XjKpEdCk7hjwNM4FH9zvUfVTUsBTquuN6iag5eWPIcAVOmvmJtHYYHvHkX762o/LQRGUZNT9eThaNWiSylHQ/PJNgC92MImbYf7e2fRhl3mOVgwI+dc73qGaxZJqMYbcx8mwVrAT02H0OCmlTQbNhvzQxXMf/EBtKJkZNaz4EgGexoy83l3IFBKPV0vJhpucVedz6WAEILQXP96iU4Y/GjnKcbIkzvIMwhPGO7kLuVqMjfeQo8r/8DuUZDHIVQqUbl+6BS34avd4Q0MPLAUgO2RjTA7PfQHzcHvzYbxTsdrqIlyYwhD9s7nvgFPUhYaT2ZkAz0KWFGhPBqar8I+/EOu3jKDn36+DpO9opaoNX0sMeX5hNjKyTLH41BVVid1PI47IODn+6icMI+fHnqKnvem0O0ZjW5LPuHvnUY8558fv+3Op4uMlBxpUL1dqvDFi7C9H57vp0OD/lPL6Tu5hEq7ZIW2gV3yABZM9HJVE90rD/GiNi2gwQ2gkGKKKCGFRCqwUuD63kd0IUJU67A9lY7sNs/lYeVW7lDGeu2rKwYoPXhIuRltRxe0x/7Ui5o9/hfaNj3jSWmwE/HUeRC/E5AM3jufPdO6kvlOJ5b/MJCY+/qh3H2D2+AGNWerwDgmo1uLFi3cUWSBPicTAwYMQErp8/nkk08ICgrizz//JDs7G5vNxr59+5g2bRoJCcc3ARsUA1E1otJiiCKeGM4VfUj1IPQ3u5Rf0WA7NF2O1yKsOGDMY+62yfW81HOqSCLFgzctnmgvovQVrHO/RiFYGKj08Fpw44nmae0titBTUO04sHgc/5DzZR6vfIuH3kni6ZkaAR/dMt9nq5PSxk/DMwsdRCvaihakksjfrtDc85T+tBJNsGPnAIeZr61gpP1W9301oHjxakUex6RU35GqVr9vI8QAOou2fF9k57sihWiSuMgwxOcY0XAzNFqD9/toh/suR5nUh1aTrkJ5dhBKanXYdPBpZEDyFC7jidErZHkggyzGi2vd7+evzAOg0qMAxRT1YfffnmmiZVJXxMpltZIWIvT9Ukq38Aj135FwItFcNOIF9X6a0wj2tkN76Uu0p39D++12pCaI8cP7oKLQ5P+h0S1VJNJetKIhyWT54RjxhKdRLk45sykF/r8iVrgi3i9+CbDiOU9XGC3MbjZY/66qoLpkDClB80gFOckVS2sir27O7v8EIWtHw9IrgCqFCfKDotk2+kKirMVs/GIIOe+0ozDuUy7Z+TvNC/a470+5OZT9YSmojmoH8MaEdsxP7sl5e+aSXJRBcqm3IbxP5hr+2NiHRz+JpHvmOnocWgFSMvSir7CiYPBrSAJFnloeWcu4bCzji7DcU4zlpu2Yxy7y287ToJRGMqFV619JnN/2M9pchFM14SVPIKHPVyiT+sCAT6GyuqiaUXO4o6Cv2vLdUSrsCph7M9re9l5bW9Cobhd9gtBKaeIOPqgNNWWPKnzrrOYZNgojDUQil4ihRBQdzYguSSzLYX9YMjcPeRWbMRgk3L/ibdZPHsNn58a4qtEq+kcLp+q+11fn/EClJ31FV0IJRkG4igTptEVtlZZ8enUQVZXjQYK5lDtH5Z3iUZ++SFLiudpwAZb8JkjV6BVVVmIKpeeYX3G4ioQ1ydvFufsXkFiaCcDhiFQyQ/R5oFHBXtKKDoKiuN5/b+yMacY5l86gwugv7FmB7X34IfI2jjQup3vWBg69342p8x7207YaX7e+kNUJ7SkIjWJzXDozmo+oW2S3z/xSxU2mG80K8kPgt7v8jjO+yA8lgAxsMlqxX+P890r5W1vrSpeOopOiR0K/7Pwg4HHVZ1RIpzmDlV4MEN3d27oL7znQLEykiAQilDAaKseXOh4kLJxrHQ4fTQF7CCDAFgyfvIr25O9or32GzGoEYx4nIWQ5X/4xjjBHJYqEJnskc3uX+vRZV8njmJLCn3rqKSIiTg9i8ROBAUp3tmt72cl+IgjjIHooeryIJVyGuKt3Wl2cPkKAuOk+NKcAu0H/bvaOfuug1K+Kr/7QW3RmhDKQv7SlZO5Ngg1nowgFrd0clCZbsGPHgpkBoidjlfP5VZvrTvETCIooJYYIMslDIKj0IGMVCCpe+RQKa3t5JJz7js9Wf960Mw0hSjBJIg4FQQFFlMgy4kUMsUQRLCys1jazVx6krWjOJrmDOKJpI5ohgAVyJUCdCR5PJzQkiXNFXwopxik07j+i8nmhnkb6br6NSQ1b0pl01vOPO01ECBC33uV6HxVaiqbsNOue10akuImpPREiTh+j24XqYD5yfo8VKyoKuzkA6O+YgiBH5vOO8Sk+sH2LAQMhBPOQ7WUv71Oqofo9rDKqAe5740mCWhUJVyLLUFHchjeLOP2LdRwvDMLAOONVrN9rYPt7w3A7EZaMRWa0xn7Lw8QQSR6F7mOcaASL/3/FJ5JEPBulbuDeJ2snEC+VZfQWnZHg5eD6H84cJLo4nZSgcph0NlqlClt6wYxJeDvj7OBybAbZSt3KTVxpNpFluexMOHXOuJOZ4bpjZxx48UfqJ//yokm8/tVUHFYrBrMZIQSbVn3PlohWXgNc0Li/d4dC8G36RXzbehSK5qDne/fCuXPdu50I7r9xKFbnhbT8KA+7NR+DbSGvfvQuZjQeWz6FG899zescUUHQt+npIaeliET6iq44cdJQJLNW28ou9qOd+x68+y6BYxk8tvf4DsOgz/UVdZd3tH2lwcLF572DABY18iwsIQP0LWB3Z2i80b1ljDLyeC7tP0OUiKCCyqO2a0EjtrHHZ/t8udxn2/vm53hgmJO264rxGwdiLqT7A88yPfUs+k/b7X6+Ppo1nhH75pEdHIuoUBg8fx5/DTzbNdDPEULDjKmaK66eoZmSRjQRWLG6ZTALFiSSac6vSWjxF61fcLDdloFQJKnGWAaYpp3iUZ/eaKu0YGrXKG7ZXP3ONcvbyQU7ZvFKr3Hudu1yd5AfFMV3rUbqz5tqwOFy9PQ+vJqLtv/O6As+9Crm44YQ7D1KJLa2uyt9n3oQEbsPY7vZ2A2r4JlycPjnJ3AYLcQVHyHHmKCPx3D0OTWmLId7V73LY30noKmBomMF2H3PaQjL5+/Bw2m2rBTPd/KC9gZ+3ugMaGBamVFJDxwkEodZC2LJ6hjGHFqI2l4gGgQ2TCkIOok2qKiMUgezVttCikzEiZNeSke/x3jSjxwP1Lw08EkJFVAZqX/e/AiAFgeXu2fnhQmdeafTdfTMXIVm+0On5TlGHNNqePnll5/SdNJTjTIqWINOQBhDBOGE0k60IEHEUkyZu3pnFOEYMFBIsc7xpgZONT0d+Gm6qe3JsGdhf28quDxvGsCyS9HS1uO47Q4SieNZ43haK80Id4RR7HqY8ygkjBDMrvQ/EwYcON2LjMEaijOgwc0KHebBoI9R4ryVMjOmo4a6nylIIo5dHCCKCNZpW2lOI47IHFJEAodlNuvkVrJlPk40EoghTISQTDxlVGDEUG+Fjn+DKCWCLJlDBlkckiYyCq1ULQ6rKpxUOCJZiy9ZKECIaiJBjeV2w8Xc43gegH1kEISvsSjkNIp0C3alJ6ioGDDQlbas5x9XTWVJrizAIsyYMZFHIXbs/K7N90pD9aQQ8E4v1Q2aZdLX6HaEbK9IN3fEyv9j2JePhBqMLOzriBMng5Xe/KktcnMNAkTx/8+ZFSZC6CbaoyCIFpG1tt0nM1gq1wLwoLjxJIzufzjZaCmauDlfARSLE239BfgaJHQFwmKvoPORDSxN06sd9jmwlIzwU1tMweY/2OuE4MpuRqav8ZUrr+hiQgiB0VJtyN/4/XgOPBhTJ3d8fJjKhomRxITGox1aS8Uzk1lh3cJ5kW+grfGdpwZtHA/AqD1/kf7lcF7qehvZ3Xozon8Sdw00Y1RPPddeXZAi4lksV7u+CdJFM/bIAyiNNqNNGAWzb4DDjSEzHQJRCKy4GMeK0XDnDdBurs5J7IHFXsa2KgS6PxLazffaEq2c2nWiAYlEEUEJZThqrm/oynMUEZyr9uMX5zyf/SWU8pXjF8YYvI2HLeJVjjwbQdKjxfjcD2sEK599kZWozOqTqUe2KgqNig/xffPzuG34izBSQBSojnKcKU+jhC4GwIadIKX+OrRSRCLI6uutxIoRlVwKKJTFmIQRzDYkcLk6ghbKqalceyZh5bYQPJ0Vgw8sZuTuP3mlxx3u4jzLkjvTKWsjdmHw4aqc27AvLXJ2YnBYcZiOk8SzOAWWXI0EbL9OgIdHwhPnwdtvwxH/TqP7Vr/LpK63Uxhet8jN4XvnccM/M3ik/6PHPDzVFkrDaCPZz0fw7KxyduTAbX1MDEs3EfVAEWUBmLNMrVeQIbM4Yi2h8tmPuN5uAzrCoo6Q3hHlKv9j0ZCslBsxYWSo0pdhar9jHvOxom2S+n/snXWcHEX6h5+qHll3983uZmMb94SEQNDD3R0OuDsOd9fgzg8OlzsOO9wJGhJC3N02su4+M931+2NmZ2d2Z5MQkqz1w2c/zHRXVVdPWqreet/vixQKQ+18MWVJwmBWRWZx5UF3szBpBAjB9/2mwR3XYlx3MjKm+A8dd7fDS9vrufVFUkgggnCCsLODUmqp51e1kGpqGSeGecvVUU+Vx+Dmi6o8D2PTFxhbX0E53IPDPREB7AoObzweVztXdwC2DEfVxBNBKIv0VSzT1/hNul3oVFPLFnYwTAygBSc6BtIj8h5qle4QPy/uUaFMXc19931N4unPdTC4AbTg6DOT+2HaQJaq1RSrclaodQySuWygkJ/VPL7Wf2ad2sI2itEQrGETA0UOjTRRqHYwVy0lQ/ZOz5AUkUAZVWynBGHbgob7gRYpocAaFzDLFriz6jbTQrpo+13CCQmoN9CTwktHycHUUk89jZRRSRW1flqTlVTzozGXdJFMKCG40Fnv8YYDOvxeIQQRSThJxBGk3G70DhyEE0owQV5PuE1qu1/dePavzEB3ZFyW76TMc10F19BIEz8Yc2j08RawYiGqF+ou7g4NNDJXLeFr4xevQLehDL7Qf+QexzPc5HyEecYyqnwyQ+3KQGfSM8mR6R3GTGS0XzhpDeMDXUhO3PCVN4RmdXy+ewGhNaSmC0JNw/aj3NYhA6y8e34QcSGgSUgMF3xySTAT+3VcSx9TejwtaufjJSHgzNEWNt8dQWyYe2ogE+IJffp+yi97D8MR2OBTFJbofXPm1hbyr+9v4tvTHVwzPajHGNzAHXIURzQJxKCjM1jL874/ZVQF8pSHYNw3dGpw8yLgkyuxTP4QfN6/Zy//rztj4W5hwMV/QyZu8ds6WObu9vnsC1JkIlXUBDS4gXvyXEUtGSKZKML9dGYBHLiY4XqR34zFHerGhkniwwPds4LW37w0PMljGFHcM/6f3DnhGsiF1mAOXQZDQ5sHZ3ePhnnQdh3nyxO9361YvJFSOnqbhi6StG4aJtvTGJftf01sjMzkjsnX+2XDHlC5nqvnv0B63bYO7svF4UncMfWmPTS46XRY+dBt8P052O58m7BNgRaN3O+82enjOGrrT7tov+39uDR+ECVBMf7yCwFpPb+2fkUkVHL8q5Uk3FzHUz/rfLVK58d17mdZQmx7T1cFGHDAf6g/+SY2spWweafhcrZzYlhxIMqx8yiYSML3m60p1C5Ye1s4WuIm0Jppe1b7//vU2sOZdtr/vAY3L0rCo29jNP2xxHG7bXTrLGNNXyJNJFNLHc20eB+MABWqmidtt3of8C6MDi8l1TwIVXUxGJHgyEWVXwNAbA+ZQGRYYwi8TKrA4mAlG3hd/4gxzhNZrFb5lThETOJaeSEnyDadrVbPmGpZA5ddQqjN0xYGTHmTE654hx22rZRR6T5KSz5GyZ0YZdehXO5JfXfVatjbjBNDCcbOerYwW1/kTaQAsIntLFNrMTC81+QEOYKPjO8ooYIsUv3CBHsTL9ru50J5MgAy6XoODW/m6HALX2eFkSTD2zRZAhAjIrH7aAvW0ej1VPWlJ4WXtmqEgNsrd4OPQQ2gmHLudD3NCDHQ67nmi9Y+Y6DQcOKimHK2UESzauFd40vqaCCWKK/RslDt8POWSxJ9V9OtlcsPsHPKcA1v6vHQSvj7RSgUldT4ZYV24iK6iz0YuorWZ3gzLZQot15NoSriVOeV3Gc8z+P6a9ztfIYKVe2tE0gXz6TnkyMyiPdkMldOG8Yzz8PMC/DXzGpFYUiN49Z9yaByd4jyqriBLEga0VakCxaKO10030ccN8zOjvsjaXoskq33RHD4oI4aQwBhu4j4H5wkqXowglfPCsUSwFAWFdz5iR15wr/ZERKPATiFhv2h27AMyv8jp7FPaXl9FM0v5tP8XBqOz87G+V0gDSM34+VwSqlkqVpDnsrq8E4kqG73DurSMDQHXHwZoIhoqeWBXx/gp/8eh2WnwukeLC0In7DSVlJF0u4dfx+RvBt6rQpFOZVUU4cDZ4ffcC2buN7xMLWqoy7Sof94BV9DZecIfsiYTFVQlNtpqfXyFApk29jGd4zXXbnb+k8OFhMA9293M5cx7IOXcd34M8aNszDu+xhXVRzDRPeXIuoJnDvWytlj2gznX/c7mN+S2zKQxjRV8crXVzOycg0nrwucQbiDluhu4zMm9JBau51D/xPHtDXLOWXtJwHqGIDOJzmH8U7+sTtv3eWg9WZYnFjAqLO+cmugAkIZxNWX7aS2R3HSXk3Z1jg+X+K/uPD4jw7WVNfSfPFFYKnD/30sYO1Y9B9OR7/xe4o/O5OAyM7v7QH0Y5Oto3fsviQjRuPF67Zgve8QuOossLcu7how5iOY/G9AR2+nAehFt8FrD/yhY+620c0wjD4dWgqQIgOffxU1xIooxovhfh4fSfgIPhu+ngwCdHdSBil3+5+gSzkmbBz9pv5Ae9FYbcrbiFD3hVpDbcC6LTiJlzGMl8M7hNMavx0FLz+KQzdITWxEu/psBh35NePlcBYZKwFQRghq+1NQfxDUHo0qvo8Qgrp9Eoq9Ra7IZKwYRiJx/KLmYcfGRDGCFBIpp4p4ognCThjBDBX55JHlDV1L76VebuA2WOfLbPqJdMKt9Zya+juTU97nF+tbCCGIo+PKvlGZBI+/zsqbX+bCe/tjbB4coGU36SQTzh9bxehKgoSdQTKXJOLRkB0GnHZsbFCFvGl8HNAHMJD2X4Tn/GtVPTtUW5bTGNFmJFqo/L1RolXfNCD5IoTgrfPCeOThT5EzJiNvO3qnbug9KYx5b3KgGEt/kY1EstaT3XqZWkMwQViwYMfGr2ohJUY5icQxmLyA97VJz0cIwSQ5CgD1n7tgW9mUkY0AAK3vSURBVAE+s+kOn3WhMWPcP7j/5/tBdw/mDUsng+P9RFMnYTddTU6cxtljOnr9RAdD6f3hLLoxnBBb57/bIfkWDsgJPFYtD41j+Hk/kHj5cr6bvYagKy/Za/3eG6iq9VC/A1pqMNZ9hL7p607LnqQdzkgxGIlgDos4WEz02y+GzYSkVXRInuCdgHo+7xiIagpDZLsXoINdLazo359LD3kYlzXYfY0qfyOyH64g1Df+YfSxRJGsunZByyqsjKWgozHSQwhBaEhm6G3aYxmkINuNOOaxlOMdl3eoXxu1CS67FLc0QyeL/K1IDYfFDusFrANcCmwrENGveIv0hDlClIhgkjaKbNJx4OS+eYUsnJePd3peF4ft6bcYLPN22o7J7iGE4OUzw3A8Een9e+pvVlqTVoS4GglzuedP1y58geCmGs+96r72whorOWjLT0R26rXafoGoHaM/wzdBxnfvn0ijjMCmXFy85K0ACVY095/U/DKutie6oZyBFet8uqFwWdtCq6+a9wLffHAah6//rlOj/wkTa6Elis68eQvudFF0z2vgCqfDu7kkF765HDoYuj2/x5FPISyBPWRjieJAOQ6L3P+eqdO1SZwtj0MmFiLvOhI5YzJ5M84g7MSnkUc9h5wxlbjrLiaglyLAlpGolhCGs3tG8e7te9vNyCCFyWIUDaqJGuoopQILmnfCNFYO5Xd9KS6Palkx7pV7DQ1X8AIIWgzNwwEDEfPqbqeY7Q7EiijOOaqEhX+5lRpVzwK1gkaafDKXhlCMfwY66bkZ40QU/7ScS42qI10ks05tppFmjFknw2dXAu7Fqu0lofDYW4TfcjuDYnJ5sPXF7UwE5ZN23pFLI82k9BFPNykk2SINJ05KqWSL2kEDTeygBIGg1vOvMJERZIk0Kqgil0xSRAIHyrFd3Pt9S7pIZqPaCsD3+m8sV2vZoUo5WzuOqyzn85n+Pd8od9pv1RgOD72DgQWbq4XjZv6bzI/SeeHxChzjXR2u360U7Vamru5EvIihGPdqVgJR1NNAHQ0IBC50oo0oHAum41g9ApI2wAHvIIPc7uLDA6ykhoswilU5dTSwQ5UySgzGjp1D5CRvma2qyL+O1nMMlfuaEXIQKXoCOyjdabm+anQrEPlkiBTiiOJF17tMsY1huyqhFrcXRAbpJIhYtqgdlFBOPQ1EiLBdtGrSUzlCTOV7fqN6e3/PlvajpLbvR6/7gqiWWo478c0uNbT5Et+NL82Xzwzl5U4cEHaFEIKZ/+j9IfDTxURe5j0Gizy2qO1MEMP4Xs3xhpkKqRBXuo1hNmw4cGCsHgevPeZpwWciWp2ISN6AGPYdJUsO4c4rrmP17z6GE79rNsB1vsVfzkVHxya73nMrWSagG8u834VHKgbc77EEYqlUNRwoxtFEE9WqDjt2vwQMAsEGtZXP9B84SpsGwFXO+6lRdaRkllI74zDq1w+Cl57C/7cJcJ8r4EfgR4G4+58IS1s29p6S1GmyHMV3zGIz2zA2D/PZ4z5fR2MIYb00YqU7cO6QBGIe/Z5HXC+xRm2m6V0Ia4FGzc6lS99kSdwgSsdOYXmFxoCqDRSUrmRHaBI1oYEyqfuGa7a7Xi0NiGOfQJz0kHdTzHP13DnnUc457HHeHHxyJ++yXb/fBlesweVrtGrXzriiBUS31PJt1pTAxxDNzFzTOqPv7Hi7EVrfob7nc1lWp7XGyqEcqHXNXDVJxDFeDuc1438AyG0D2fTrybiitsOU/2ILbiYotoIvH13NsTMicJS115IXUBPHkqBVHRsPQM9ws+omJIk4ZqkFLGIl1dTSSDPV1LHIcP/Yo+QQWnCgY2DFQhJxpJOMjo4QLmTKFYi0cxCZxyFCZ2HrAa7PvlxnuZANRiEu5SIIK/3IIMgjPt9AIyXtjBYGCgODclWNUopIEU6+yEZDc3sEzguUiUmyel00+WS3hazZCsG6Ea+VOWwmicS6RUb7CIkiljoayRQpbFCFTBQjmShGEkGoxyMrjHqamCrHUEQpmSKFSmp6lCbZnpBKAqNFAZPESNaojZSqCqJEOOuMzVxiOZWzLG3u2GpLAWAhvKWOdS+O457fHuOiFe/w+6FrOOjNooDt96TwUoCB5DBRjGSMKMCFi2zh1ohQKFyGYuMDT9DwwbWw4mCYeQnc9Q1GVQIa0s97rZVWT7ca6rjd+QQL1Apmq4VYfV6+ie1CTkJ3Etbb14gT0X4GN7c6TcfXbm8NAd8Vh1omU2XUoIByqjCUQaNqYrIYRRLxbGQrv6nF2IXbu/cQOcnUl+3FTNHGuA2uo77YZVknGj+nj+82BjeAs8f2nTFJbyRORtNEMxKJBQvj5HA/XVRoe34L3B4aEVkb6RgSqVBlqQDYTr8P7ZLLmJMZRV3B7j7nFYz7yG/LGBFAU7kL6KfSCcbu9V5TKAQCCxphhFJDHRLBGrUBBQyQOYS1ixhQKCqo4mbno5SpSgpVEVvUdopUGZVU00gzMnchkUe+EqAHnRBVhLC1+G3qKVIEU+QY+st+bg280Z/S3qNmVPqujB0mf5ajtYM4V57AHf+sIKwFNoWnknvBrzw+7u98n3MQyyssgGBlbH++y5pCg2UncwPNAaffQkcP1hDUj/4rH0uGCYaVr+LH905hdtJIAtPew6qjx9XK2P6sjeo8a2q5PZJ/FZyJbglgdwipABVETUVUp/X/NPOPDLjZjo1QQjhOO2TfHXsXjJKDCScU4/PLcD3zIq5Fh8EPF8BdXyHLMrFjowUnpx6+g0D/Fiqodme+jX6YRrc/QIpIIJRgskglCLtXl2cHJd79rUaoVi2krbRN5oUwEPYNCIvbLVXt9j9T98AqrESLKNaxhUpq2UghDh9tu87Op1Dt8HrDDJMDaKLZXTZjWYDSirTUWu52PkOlRzxbCB2Rehki7mFEwh2I+IfQdmlx7130l9ksVav5zpjNKrWecBHKIrUCJy5KKKeRJpaxhtGygMXGamaqOSxXaxkocrq66/uUFJnIfLWMX9VCmmlhB6WsVZtZozZRrMpZaazH4rlWRKLbcHv2yvcJUW1uzgK4+Y6OGmfQ8wxIGTKF39RitqjtNNLENlXStnN7f6hrpwmjNPjxLHQMztGO79BeInGkk0Q6SSxjLeD+vcJ9vI1+Mn73q9NXvbYC0d6QqcAv02srffk3SxHxrFIbqDCqeM31P742ZjFLLaCYMqKJIJtUGlUzK9WGPvfc72tkiGQiCEMb/sMuy/6UPpFV0blg7MeUobvg+zWBw2dMeg6xIprf1GI+Nb4nVfpHU4QQzJFiKhGEIZGki2TqbBUE9FT7yh0+6cCJ6rcUbdKFuE69E6b8BPZqfDMoekkFzgTOU4h+/mOP7pIUYLw2nCZavImn3EpQChc6xZRRRS0lVFBONb+rpXxsfEdkAKObExdb2MEM57/4VJ/JCmM9m9hGjI98QE3mHAA03cm1s5/gsA3f+oTG+YTxZS5CXHNGh772JCmC5213c53lImKyN2O96GqI2o7N3sL546z8cmU3dqHtRZxnOYFTXmukUVq54YCbQet4zzUGRbIifiBbozM7byhtOfxyJgGfCz+c67flLz+E89ZZGkZYLUc0vuHZGmgurQMGMSGw4LpQ3j43yMeAo6gMjacyNC5g6GhiQynVwZH8a+hZARINKWgM5LHX1vZeQVlQjsCRQ/mia7PyFsh8dyj6rFPx/zeTNH93NsWU85u+iBPsBxLw33Tecbt9rO7xFO8hBIsggrCzme1+Wk8NNFGilzNI5O7UkNZ+X08Q+WzPjZZLONZ5mfe7EWAC2Z5NbGOBsYIMmcIx8mDu1K7gVv1xxHGPoioTYcMYQILmhKMfJyvRyZt87NeG0Oohsm1bZB/L9pdK2+BvvVHIYdpkHtJf9CtzhJjCQJFDkY/2Vm9PNpFEHBKJgUGTagtf2K5K+NY1i0f1V9pCQ2KKUafcQ8naIR3aqYsI7C0R0sM83UaIgfxFHsinxvdoSqPuzVtg5VRAQFBgzUXC3clKfnb9zjA5gDBCsAv3s0kTGluVvxbZYWIKl2iner/X4C8u3dN+s31JNLunb9fTjLt7k/4ym0/1H6imlsv1O/32VVFLFbWtEr9MECMCNWHSS9CExkXyZB4N+oyA4TneMZSgyR7KgRtn8nvyCCpC4/dvRzthXWnPWkg16YjvmKneaOIMeTT/MT4FoJEmlqq1xBPLBrawTK0lQgRTg0EHH4YQ//etEgYy/Gc48mc40iPd9PxTsMXHu+VAIBgQElV2PYT+jNDci8/dRZ83Q6b4ffe94ptwe5opVywtFZeBEYGI+g/5wZF+mdIBjOZgmp55kafLszxbjgJgh8UJ51yH7D8fkboehcG0wl9JayzlkX7/9GnB81ZIXY687O8B+5osusdzYXe5RbuMN10fU537O/LGU/iv5WmOskzr6m71GaSQWKxWLp76AD+kT9pJwcCmk8T6Er599xSSmis48ajn+SUjQCHDgvHcM7B1ECgbhtC56pzHuOa5j4Hf4Ys34efT8TfPuGMknjhZ4/JJbgNsQSqcOMLt5FOw/a+seeJWcAaeFzdaglkRk0+t3We/EIABp90B/72bzkNKO2Y37ZydeZ0r9xy/HS04GCeH70bb+5ZpYjyrLA5wtvNWD6ukiWZeMd5ncug5BAyxDS/vuK0TTE+3P0jrC7mRZoYz0Otqfol+KxEyjPPliR0uu85ER8N74ERrtChgmBjglzBid5il5gNujYXj5CEEYUdoOvLia4ia4RYvtNx3EHL8J2xhW4f67Y+WKHZmme99jJZDOFkeQSxRvGp8QAH5xPhM6KOJZKQcjBSSQlVEJOHkkEEyPWvQ8UexCAvjxDBiiaKOBq+n6V3609ytP4sVi98KsRz5NR+9/wjzxmreddJmO5z5XmAdsp7mgWQRFibJkcQQifOXk2DlNNyPeQHNkSCb8F0h1uK2o017C4AZ6l+ktkzmR2Out71AiSROshzmDfEzlOFN2tFKT/vN9iU2YWWEGBRwn0AQhJ1s0vpUqHx7skV7jQz3O/MwMdm7uKJwh06Plh0N5ia9i/MtJ3JF9OGMOmApgUWpPaMBKbnp92cYW7x4/3ZwJ+zv7KUme5+T5OH0I50wQvi3+pjBwl/AvpAdvGt7gnetT5JILPWiEU67G19xdKyNcNYtOz2OECAvuwI5YzLWGVORMyZDaJNPuLQE5Vn8QjK2m4SX5pBB1C4WvVXJXTD7UHhmAuqup/n0jpsxfj3Br4x4/WEoz8Z7Pyu47rdnWPd/U1h2wBKu+CKPBEs48tjHCdJbKApNdP827cPJtw/BmHtUwH6ki5SA27srQgjetD3Mb9b3+NL6ElO0MV3dpT5H8Lv/os4WFtDLrXPc9/0XH5xJUnMFAnjwl86yWgooHAHK7v6sLPDRdahKdxSKPPJ5OPfGgDUbmwP36ZD4LOQ9R7ifISfej9+zCKizh/Nh/8Dhnbx3C9hqfMr7v29jGisZUL6GjsmMQNxytDtR2IzJMOG/fvWsjiaGlizj4iVv8tfFrxN66L0IraNX+jAxgNGi84R2+4urbOdz5/lbaUvioiCyCHH4CwBUUsvctLcZU1CG32+VuhIx+vPdnveYnm5/kPFyBCFGMA00kkcWi5Vbz229sQWlFMfJ6bxgvI1RlgZfXQTViRgDfocD30Ja/a287XUOegIxMpKD5ASK9DLKcXvIRHr0xByB3OVxTy5/N9rSn+dqGWQ5U9nENhw4CCGIRpqwY0MiWMcWr2dDK+2H3QkiZu+eWDcnVIQQSRg5IgMdnUaaGMFAFrEKHYPJYiS3Wf8GQBGl1FCHCxdRIqKLe77vceGigmoEAulj4K7y6C62R0nBUd/t3F2/P1lEi0hClH13NEy7FVPkGH6QvzF320TPHeqDsmGdMQUFxBCJhqQEd0iURBBFBF8Zv3CYdgBAQNF6X2NvA01+++zYCFXBPe4325f4at4JwI6dZlpQKJpp8SYN6KsMFrmMZgjLWYcLnQySucRyGnashBmhfGX8goFBvIhhmByw6wZNejR5MouHbTfAicCJkHJLDeUNrXv9BZpnjPs744oW8l36ZJy2rjf228xl7B5PrsxkI+7kTNtVCeO04X6SbXZsVKkaDpITCMJONBFUDp8Jw2d6yyhdQ/18MsbyA6ApHCwGYsBc0qd/SZOtmuqVBTh/Ph7QYMLH2IbOQhc6IvZZVPk1gISI9xAWd1KkLFIDLk50BREyjDSSaMZBM20aaha0Nv27+QNgro9HSEsYfHoNhlDIiR+6t5X6hucJ7pj9MH9f8rr7q7Oem08rZ/Y3oZRN+B8/3bieTc/+LUBvPM+DD29ADfseEeS/AJgouzbb654wVnYP42pfxXbkdJ4c4WL4gw27LgyAAedfBa8+QWJDufcNlVezhSlbZvFz5uTdaEOgytMRngz3ov/vqNAyaGhzmgixwV8nBU4MMl4M5W0+pY4G9DFfYhvzLToGjvnT4f3bcHuGBzKUS8IaWqgPimq33e1lrhku5r9xKKPO/davr94+v3ML6oSHERGVMOdEbwnNcLH2lcmEGS1ef/UrL4TBGyP8jOa5ZJIt0oiR7Y+//8kUKdw8KAXLwy9yl/40OgYHfu0g/4KD+SL1OAoTonnSbiVk6NeI019ASP8ov6DdTLpnDhH+IAY6v6nFLFNriRPRxBNDNBHEiRgecb3EgZZxhK44DB79L6w4BLYPhZkXwT2fo5z+4aTxPdRw9E/LOTTRjI6BjkE6yV6Dm69XnwUN4fl/parBodqMcv1Iw4kLgaCCalzoNHgMd27No7Yb047VT7gd8NN96CvEiCh+V0uZ17yO1S07GKYNZLDII1ukcbXlQgCUUqSSxGQxigPluD4hOn6knMoRcgoHynF+qenjiCKdZJKIJ6hdKHcB/Rkvhnn13tqzls3MVUsI7oGhkiPlYOzKRuaEOXQwV+csQMdwJzihiircITBuR3NFJTXMNhZ6i/t6ukUSzhhRQAJtXqZ1qp4h9Pd+d+DskrTf3Zl02nT0EojzTlRavYXD+3g2zlyZSRFlNNOCCxeXWc7gSsu5XGY5gypVSwONXh3QYNGzsgmb/HnOG9e5F+gXOYfy0OjLcVq7x3Vherr1fJKJY6oYyyQxkhacDBI5xNM2Vnfi4krnffxH/5RckdHBGKZ0DXXvh/D1P2D7cKjMgdI81M9nUXj7q5S9chPON2bA5nGweTS8fQ/N/7ofABH5ESLzGETGCcj4J7xtCiTDu9GCQzyxXr8XCxoWNG9CBQGwIbBGLosOB9zvPvuYr/x2HbvhG7/vAjj9ffcN1TB6KSsu/DygXpUbiSrK67C1J2m6mXQfBiVbqJoRzk0H71pD1jblPVg6HRB8kzXFb987X11K6OkXE1C/0Q8F29rG0ULTOfm2/+PDC+1cNdXCv88OomJGBOFBgV8w47QROHB6kzPasSN1K1S3j3RSELvJ++2Nzy7HbgTqmwBDJ6V+O/W2UE5b9WG7Zjz34foJ8NAHqJ+OBJ85VlpdEWFG6zjXTVwFhLdTuMmUKeSKnWjjdQEHaxOIJYon/tpA6lPX8H8p97OF8ajSfGq39qP487NQM95HGf7/Fmo3pLbANLr9YdJJJp0khtAfFy7KqKSKWrapYtaozXyqf4/r64vo4OrhCEWtGe+3KZmE/dfxvUiiiCPRZ+K9hk0kebw5dAxPdlJwoaNoTSpRxjJjjbdOvujnmfq7BVUtaNiw0oLTs1V5PN8kVqy42l3QSaLnrWD9abYOwLjxZ7jjB066eTCP3HAeG8oM1qhNjJADAailnu/VHGapBR28kHorN1guYbaxkM3GNpy0CVkXUsRWiiimjGYcfnVWsp4aVU8oIR1CUFsJJqjHGi3PshzL+uyP6X/pDKLiyyG0HA58DXnh1X7l8unn0RNzn2ccUUQSwW/GYgDSRJLXMFlDHfPUMuJl273fQBPLPQkWoPNQ+r7MENk2mHLi9Oq3tWp8RvRAj+e9SbyIQUcnCDthhJAh2rSLknzeM1ZhGnP7IvcfE8Kzp9hJCAMpdNCaQDbTuqDQGBQOQjB2xwIe+OHOLu3rtDwz0UdPxyqslKtKtqkSDHSiiOBcnyRDOjrLWccbrg/JkClsVv5yKGL7AGjqTP7EBmsDeL5smoBxy/cY1fEISxXCWuK3O1QEdyut1HFyKE24vVhc6FixehbLPW+1/C8DV8xZAJ5SjsOfJen4f5EYDkEazE/uqNf5zbS2cb+c/AmcfT0EtfrvtyZRUHCuAuMJVM1xfvXjTaObyR4SGiS56+gw5l8XSkES2H2GtpqA5Ah49uQgpv9lEdb+7oXqC454gnvH/J2toYn8kj6MESvDaBq2Em4/ChLWdnIkAAG/nOX9Nk4M5d9Bj/KXgiAePD6Uk0fZ0WTnc5EMkYyO7o2gqH71dppv+Q6+u5T23uFIj7SM4eKwwp85yic5SUxDBcl1Rcx892S+f+8UikOTeXzUxSQ2VaC5HGAYBDfXEtFc45OQAfj2enwX+IvCEnF6sxu7aQqCeh9nO4lgg1HIvdardvK77H9GySEMFnmM/zyBZfEDQQSY09QmQrF/ksLWxI+7wpwh/UGSRDxbKWY5a/0m8tXU8pbxMQ86XyQsomNIGwARpX5fe7IuWaKP0asFJ8W0CQnqHmObLw008bnxo/f7nbYrGFN8DMZtX2HcOAvHjT/R/Mr9GNWxGHd/gnHjLJpu/B7XjT9T+99rOixwJfTg325PeeffE2gTcRRgWNj230sZSj5Bwu12vN0o8RqQfJMv9GakkOSKLDa10wLcWZKPIIJYxQaaaMaJy89Y1xqbH0xgV+6ewBFyCnkii/VZnxF5zaXI245FHv4iCP8baRlraKCRo8U0Fls/ppxqflHzuM3xBI2qiSjC20JGPPjqBLY37FpMxYIOnKb9xfu7+IaathJO3/Z0A1hj/4bqoAWUB/3Osdp07/Y42TZpCuuBGqgme4eLJwax7d5IGh6L5K77PoFbj4PQUnw1aF78+hqKw5J21sw+p7Su+2RSNXEjEoYjonMhJAFtyDlo+Sftss6lljPYwna+MX7lS+MnottloQb3u2+8GE4F1X7b80Nj2C3RccPA5mjkmrlPU/TcUEqfHsXmnEKGLOroeTJJjAzQQNcxsV1/mjwyHgq3d7w44nko+AavPpLQCR/+C+Kwf/nVKx/3Jq/cuYzaRyM5d8mzyEOngiZx2SQP3GLju7/YOUseyzDyAZBDZiPvPBoOermt7QMBK4ANVX4tRsmtKMP9rkiQfW+eYLJ3GZpqYcGNkdQ9FonjCfdf0+ORbLk7kosn2cmW6ejDvoEDXwHp4skxlzDyqtc54bcaSpPd8zUZUg/HPLPzAwXXEEIQ+fTjGDl952XbIYQgiXi3w0pxNqyZhL8Gmw9l2YBCFxr1WhAXLX0LdPd76/bfHuXWuU8yqGIN9dYQnJqNV4eczp0Tr0XXrCAEJ677AlCk1G4D3eUTLtqWcMGh2TjkpHcpt0diICgOj2Tqb2EoH8OhgWK8GP6HznN/cbPlUuzUsz2ss+Q1CkKr96ht0+j2B/HNbNSo2iacY8VQ0klmPssYccbbEFyFn9jeiM+RGav92ooVPXcV5hjtYO9n36ysNjoPBXlKfwPlsZ7ZsLLi/671ZFvxPBzWToRH3obGmLZtCFh8OMaSg/zayqRnCaTuDRyujgO5OD2Rp2y3eb9vpwQnLmKJIq+bue3uS9JFx8lW6E5i7OOq8zAefovmG7/DuO1bjB9PA/yz4gbvZox+d8QqrBwsJxBPDFspCpgQwZcIEU6ezOJ160OEE8osFnCl6z4OkZP4THuBH6xvco44nsvk6X6i/+2Nbju7//sqkTKc5yx3EkMUq9iAy8fAG0YI/fvQfdoZrdly23Ol5XzmWt9jg20mz1jv2M+9MuluaELjpqBLGKplImpjPLYN90D+o5zDeD/vL13avzmbdl3GZP9iP+Mn7OctIuivG7Ae8izWKfftsk6WSPV+3moUE0sU9nYSFWvZxJv6x8QS5d0WQhBrY2fB5LfxFybvOHYbWryUaYVzuHLBS5SExHHYCf9h8qmfcsbfD/MrJ4AJWvfK2txP66gv55aBsaCjM04rwH7mfXD7kZCyAjCoWzOU8BVH+NUxMHjY+TIAwmIh/LO3+L5kPXeuX8BvV16GFQtvGR/7LeoDhB76byJn/AXLA1PA3uI/8a8/FFVxGeCvP2tisi8YijvsWx7+MlEPHIU24wDk9aciw6sA9xgvnmhk7gIYPJOOzwUF1ia44GoulqewJOgTrrFe8If7kSI8kXOuwGOpNjzzaiEYedY3TD31f2BxLwoPL1vJQYWzEEBMi8dzS9PaEpgIQX7lBrKrt/D3hS8T6agL0L77nFYkDGDCGZ+yND6PqJYa3jylkeRtbYtSsURzgDb6D5/n/mC0LODVtwcS29RBFdtN/18RkbufsdQX0y3hD5InMjlETmKbKqZUVTBJjKSWBpJEPEHCTqKKZXnIPOQdbdl0jM0D4atLMR5+C/LnwuEvIG0OYgKsnvUUxovhRBJGLQ0olEfXwYpAMZR8trCDZlow0HFhoCFpoImcFrex7gztaOpbAjxYXJ0YB4py/YRqU2Xf8OLy5YXTgjnqBV8jh+KMk5czTB7r3bJducMSKqju0dfXH2WyHM1aYzOr2OA1AjcESKIAMEDvz5qHngbD4zXotMBX/8AIbqBm3Kde/beerh91kJzAYmMV5VRRrNyCzA00YgSYAESIUDShcaic5BX2f0P/iH/rn5Ivsllo/Yjf1dIO9XwXHsDUUOmM6XIiwdhJJZFKH8+Iehqxi57rUbmvSREJpGg9U4bBZN9x/5N5XNxQTlFE20r0c8PPpSK4a58/xm44OJl0f3JFBtPlRLarEtaymWFiAC3tJCp0DH5Sv/tJU1ixEEUEO456Fo561rvd2JEDT70KPhqyaXU7CFIuFiYO5dRjXqDZGgJKcePku2F5C3LIr4A74Vq+6LdvT/gPkkoiA+jHJrbS4tWrEhwkxlNMGfWqkQRi2ProS9Dg8TZriqT2rVsIvbyEpow23dh5LENXOprQeLPawYXbm9CworiICWlONtq/9nrStdJECzEEkSji2BH3BKrsetp8SCQ4M8ggGYspSWCyj5mmjeN6LmKhsZJYEUWpqmC12kg5VcQQyWCRh1CSmcxGnn07cDsAGhqDyWMpq7FgIZYoHrRdv8f9GCEGsVytozF1A86k9aji3MAFlfIaqWtC/XXlr5l6J59+eDbrorK5deK1BDvqabKF+dX9JHs6iY3lTCxazCM/3sXFhz/eLqOw+z4cULKKLz88ixCjBQH0X2swZ0Q9uTsicFkFA0Q2BSJ/j893XxIsghgw7TT+b+C98Mhr+JnKQqoRZ9/WWdVdYj6R/iDpIplaVU8sURgY/KrcL480kUgKCSih0JAEKzs2bGyeN5LGD67E63o5OxvmH4267ShiLFFddRp/mlSZSI1nci4RGCisaNixsZ0SaqhDQ/OE6Dlxel7M5VQRjJ3PjR+xWc/F4dy1BooAGPup93sMkUT1wRWsQwfaqHrQwhcrHFg0wZGDrNitx/qVqaOByWI0CqPHpUv/MyQRS7NHbN1/ezwllPltXVXdgDICXHdLp8O4T3F6wil7cngpwEFyPE/zBqkkUkUNJVR0WrY1xDGKCAaRy0rWA+5Q8U1qGye3XME4OYxrrRf61WvAXzC5fSiqiZtkEU8F1TTT4pdhd5gYwDDRfQSyTUx6AuM/nsvf9WZumXqLd8BfEpHinlD4TCr2N4cPNINHegOZItU7zq9XDTv1FPeVpqiniQg6ZgmUKRsw7jkIVoyD7y6C8v7MTh+PTXewJTzNbXCDtut22XTwGN3qaCCnm2QubSVYBhFPDIUUIXB6x1ez1HxGisGEiRBqXbFsbWgf3ilQKw7AmrHU+7sZ6GS1TGOjfSbf1ruQuJPFCgSHOv7JW/ZfaPTxqLd4NHhTSaKIUkTEp6ighbD9BTDcRncR/okpdWGyX8iSqdwtr/R+z22eThFl2LAyWPQnRSTwT+s5XOtw8gvzvYveOjrr2IRAYKD7JSjbEzJlKrVGPQgIu/IycosPpHJjJls+adOKs+hOzlj+Hp/kHU51SMdEjguSh5Ny6WK3jlm7d2hEYyUHb5nFjtBEZqWM4fuUMbQEzIgKB236gTBHA8VhCWTXbkN6zjm4BVK2Kgr7CZpoYajsnkY3gAlyBM64O+HegwhfeyBjag5iRdLXVGX9iku45zmtto8/gjlC+INIIQknlCJVhoFBCvEMJo9wQnnMejOzjUVsUtvYxHYkgsaZpxEwqcLmAqJE4Au2J5BEHBm4V5ndaQ8UdTRQThXZpBFFBDo69TR6DW7gnpTX0Ui1qmXo+FU7OYJCWFqYkiP57pZGROwO755KaojtQ15cvoTaJSePDOL4YXbs1o637yq1gVlqPr+qhX0q2cRIOYStFBOEnSDshHhCQ4vbGdwAiCxFCzAnCx2wkDyy3Pe0yCVLpO3zfu9LhBA8ZL2en9U8HJ5MwYGwYSXTY6AVQlCGv0t1E818pX5moVrRoW6zchBCm8BzaDcSe+5OCCEYwSAGkYMFDYlEIlirNvlJFpiYmOway2EHktxU7jcxuO+n+1j10iROW/YOuJxg7F42sb3FZZMtfPzXnjumM2lDCkkYIRSpMppooUm1BCwXhN0ve7fCoJiywG1aXcjhv8KJjwGK6pAYSsMSWJAy3EeU3PP/gb966yUTT6jofnqWl1pP9yx0umnBQQNN/KLmM08t47uQl8DeXlxcYcuf72eobMFJDbUc3HIu44LdOQA13EFqB4TYeNl2vzfjN4AFiQ0rSiiqqSOKcKRtOyLjLETC7Yi0CxDhMxkth+zjX8DEpCMRnmz0LlwsVCs4TfsLBTKfr4Ne5SbtUj9N5CZP4gMDxfnaiX/quANFDjasHokXRW3SUvpNXgBB1d4yI0qX88iv93PHnEfaZQJ2J0EBQGoBF62GVKwhubEMXUpSGkq5e+rNPDj+HwHLHrR1Nr8njeCBsVfwe9JwdCFxCY0doQnsCE0ihGAsaF4t8u5ICgmEEozdIggbtJj+k5ZiZC/FLmzemZThydj8RzCXAvaAsXIo3+mzqaUeHYMVrKPaqMUubPxNO5MH9BcAWMkGRGQZqrq9GJ9CRJZ1q2xEfxRNaISLMO992uphZEUDAdWqNmC9VnH7IsqwHHknNJwDC4+io/1XgMvO138LYxnb8PXst2PDKkztqEDUKLeHoY7epybzWaRixUJjgJDS0/gL7/EVuscLy2pRzLs+lMOebaC4XoF0wcT3aZz8OutaKymI7wXJOnLJxI6NUirIJZN1bO5QxoHTz3AWLkIpU27D2+eWF7lTf4p5ahlLjFVsNraTJdv0bsqp9FuFjjCTAnRKvIxmjrEIDel9DjbRwigxuIt7ZmLSswi+7yayKx/zfg91NnLxireptkfwfb8DQWsd2ioCiknvA75drdPkUATbembG695K85MxYHgWfm3hiNAk7Oct3HklYIws4Hv9N4pVGa/o7wcs48DJirZRAwYKw8egFAiRtQyVsAZK8z0TVp/rRQjAQAz7zrspkohd9rUrGCsKOvXyqKQGhUJecw7G/z0FVWlgcSCOforafr/6lVUuK813f8hvjih+wwnxAr0CMOAgGoBsMge9ROHZ5yEENOPAgYvlai0hBFGNW1dKaNUQ3iZBc6p25D46cxOTzmn1ijVQVFPLaNFm/I0QYYwXw/lQfetXR0NyrjzuTx03V2Ti8Di4OHCyiW0UGWVYrjkH1/89CZUZlHjCSW+acmvAkNCdUW8Lw244OG/le8xKG8f6uLxOy85NHkmEs54v+x3E7LSxXLz0LYJdzbw49Eyckefjosnvd+mORIgwXOi0fPgPiuaewPMI4B8QvR1x1bkIW2vyGNPTbZ+TL/sRQRhlVGLxaDS0ZjC6QDuJRB83Ue2cmyCkAj/RxClvIRIKCVE9WzNqmBiA5nMJWbHgRPcLn2plBIO4lNNIIt5rGd4qipCnPAg3HQ8BBiqtl3KJ7i9YGN0HQ0t3l7Vqk9vgRhJxqu/oa0kp+dn2H4pss3nL8ojfvjgtmmifgasNCwOTLRTeG0nTY+GMeeDvaEc922HBJpSeaxRvRUrJ69aHyBSpHQxurVo0F4lTOFKb6t3+o+0tymy/Mc/2AZO0kVytnU8qiWxgKxc7bvFro0L5r2RHddMJQnfgAcu15JON7jG43SIvY47tXWJl37lPTUz2BkIIJj1/DZdO9l98O+fwpygNS2oTft5PBjeA9eWKS99p3HVBk/2L8pE8cNShnA27Ve2vltM5Qx5NCw6+UbNYaf2Sm+Rf/RaWDAwO+9LF6rQatsbW8Pbx9Vgd7pGrUZKOcd8HGDf+jHHTTxgvP4ZyWVCLDoHSAXSaXRBQjjYx9AzZWQa9riVNJHf6vjcwmOH8F0kRIG84AzljCvLe6Yhxn/iVC601mHDpLeCIxvt7lEH7xPNbVuahlrQlb2tdtArqRALkWA7mQDluT0/NxGSP8Z03TBPjiZJt98g/LedynuVEvzJJJDDb9i6h2p/zZs0SqX5h8Llk4MSFEV6BvP4s5IwpbHvuDB65/g86rBju5+fShCGU2aOJaygn2BVYL7uVT/tNp0Va0HQn5cExPDDuCm6ffB1bz30LEdRIKolcajn9D5/j/kQIQejmMTD3JNymMs/zqSoN9e7NfmUtWJjI7iW7MT3d9oB+It0rNt5qdGqmhSbVTLpMZqocxw/Gb1RSjRbagHH7MQHbCeuGLuN/hCQR551ARhCKAxf9RRZB2BhMLhsopAUnCkWVqOUJ+600OxzMNOawlSJvOzKyHOMfF8HTL9MmNKu4/mA7mhSsdWz2O67pGdI5rYkUrMKClH3Lpj5EusM8jhRTeYn7+J/+DTZh5XztRNYbW/hK/QL4645pUmOIyGOL2k45VX7thfQCoxvANDmOy7TT+a/+GcvUWnQMrFgYzkAqRQ2FYrvXJR4gQcSCgALcegtTtLFMMIbzq7GQ31lKvWr0Pruq8De6mYkUOidHZnCt5UIcOHHg5AA52nvNmpiY/HGeOimEp04CiKTBOIOtjq7VMV1Xtn9DWk32HSkigQGiH8nEU0Utq9lAlIwgwgjzjv8L1tl47VR3OOkTw87nrcSTSL6mkc2XvQxvPACt2bwVsG4c6uUnwLGr7IISHnwfbj+GUII5UIzdV6f4pxBCEEow1QSOarnfeN7PCKAh0THcsou/HQ0/n84PT5/PoccN363jaR9fh65L5Kg2LyHfsFNfTpV/6ZYhuSa9n7us/+RC42S2soM0kjrsTxHxNHiiQ/qRxmPWmxkm/7yurxCCcEKpowEBZJJKoohjvlrulwTmkVtDMOY9Ch/cyq4WpQaWreaen+/n3COfpiE4kreGnsZ/Bh5HWt2OnWunala2xOT4bxswCznOrc3eX2TRX2b/ibPdPwRVdJKMoqJNYzOYIIKxM1QbwI+70aZpdNsDMkjmEDGJBhopVZVMEWNw4KBUVZApUkkXSdixE0wQKSTgQmcjWzu005PDS8HtzjpZjGa2Wkgt7tXDFWo9A0U/VrERcLvaCgRhKoRm1UKmSCGOaOqop54GXB6jXV5qC+vuOxCKs6EpmPxUA2vYFODvLGKl33ErfLL/mbTRaDQxQOSgIcn0SXnf1wgRwZxlOdZ7nQyWeWSIFK/rpAsXW1UR6cK9gpwpUgPG5fcWfTJNaFxhOYcPXF8TQjA6Olmkud3fVS1zVQUTWk7hQet1TJFjOtSPFVFkiBQWsIJEYllorGCK5i4nFN5wZsCrDWcSmLMtx3V1F0xMeiWh//cg139Xwz8/238hpe255bDuq1Fj8sfpL7JJE8mkk8JytY7rLRfzkf4d21QxAMf8HIagjCOPfY15qaPbKr7xMAGvwW0DILiq4/b2NLoXr+zYyRGZe+FM9g2jGUots3Gh0+zRpxKAFSsGyi/RUusCvfrPHbDsUADSa0uJb66kMqxN58qtNaXcYu4+6E3h8N6dGPOnw+gvAUWTsmJoTrA3Qc5SpN3tgTPROnJfnraJSaeMkQWMkQWd7k8nmcPkATSqJuJENIdrU/basSeKkXyjZuFCJwg7LnTCCOmQeVmO+Qpj2Ex49nko6dzgd+iWnxlZuYYWa9tcyLAGURizB9mU147AaAxFhjSQ0kOkj6YOaeLf7ztA+S6UKMRBr3u/teBgghju9b7dFabRbQ9IELGsU5uJEGG04OBnNQ9w65Rlkkp/smmgkXoaWcvmTj1menr4WrSIZJaaD+DNkJhBCkEqiHyyKaacZlrcRjdCWK8KGShyeJH3yBf9mK+Wedsqp4pwzY4rdSsOnLhIYYcq4S39Yxay3O+4IaJnh+XuK3ZQymxPNt0kEb+L0r2ff1rO9X4+z3ICbzg+pBkHVqws0leSbnEb3QaIfjTQ5BbNxEalx3urp9+f7TlWm84G/WWaaKaJJvJFFivUWppoYY3axCJjZUCjG0C+6OfxkLPykOtFJsoRWISFJWqN1+AGYDO1Fk1MTLqIy6ZHMjDTyc0fN7KtxrMY79mnhHuRANqkK9rvEwIMFXgfok17WrS2IdyBJznxkkePD2ZEujmk7k2M0gazzuUew3+gf80V2jkMFfk000IjTVw6/W5c4jjmpYxqV7MTo2/6CkjaALNP3fmBw9yaqgqDY7SD/vyJ7COiZTh1hn+4rgWrV1vKl36kU0I5dcvazmdzeCrnrnyfm6e4ZSve/egCRpUuR6C4adINvDP4BDqoIG2a7P6DdrnSFcZpd2Ad/kOfSiJm0rOIkhF8bPu/fdJ2ikigXjUShJ1KqrFg7dQYJG1O1JUXon45GX47FlpCoCEaaDMwfZM1lWah4bLsyjt3NzDC4O6vMQ5/lryDe8b92RhcAbcfBR/9k6Qth1EeuZqwv7xIbYbb7uFW4DTYrkqIUrunZ22OEPYAIQRDZB6fGT96w6liiaLIKAMJ4+RQqnT3xL01vXUgQunZ7s+tQv1B2NhOCRY0VrORPDJZxxa/sr+xmLVqE+PlcHZQQqkqx3dg0kILGprXIl/a5ODVR87l1YY4YCoIA06/HTn0R4IxjW6B2KS2Ekc0FVST1kNWEvYXI+Vg/mN5nBNcfyOcUBao5RyDWyNkrBzqTQbQanxrxtFrwktbGSuHUq5XA1BIMdPEeBZaP2aA4zA0JMuMtZ3WPUc7jk+MmXxu/MgGVch6Veg2Vip/DaN40TENuYmJicn+4sA8K7OvNXVfTf48aSRxuDyAt4xPqFF1LDXWYAiDRcZKcshgba7B6E/fwPqJA6dlF16O/eYjLrwapI7SNZh7HN4pmOb5cwAoyFkAQDZpiM5CuLoB6TK5g/6aM4DBDWAjWxkrhvJbUB00u+dN0079H29/9leunvscn+QewrQdv7MyOoepp34AQvuDeVAEfHg99uGz9/h8TEx6MhPkCJ4y3qCRJlaxkTyVSVUn4d/gXmTSpnyAmvIexvb+qKdf9du/Ki6fVbGdJ0xoT0Z1IZ9/eDZhzgZOOfL/mJcy0p0Nte2I8M2lTDtk2x89tS4hRkQhgxvg9Pv53DaKIWIieS13eH/R1sW7NWxitbF+t9rsW6JPe5EBIgeJpJwqLGhUUO3VKesvs+kv3PHKLlwBdY4kssd7heSTRTrJXu+hVq0sX4Obb6KF7aqEFJnA37QzMVB+HjLN9ZNJKXscVXskSkHOu69AQzxe8UIl4e27UbpGcCfiqX2d1Woj5VQRRgijRefuzX2VA7WxHCmnUkkNj+ivUGe4dVnSZBIWH8N4A02EENTrtANHikFkkwa4B8ZfGD+RQTKjxRDqaOBL4ycchiNgXSEENarO+/10x5VUGTUsYbVfuRii9ln/TUxMTExM9hdCCA6QY7Bjo4Y6fjeWcJPlUnJEOhso5Azn1dgPnco3V0djldCWMC1AW8c9htB0hAB5/OMw+vO2ndnQFgEmYMlhGJsKOFhO3Kfn92cZKQb9ofJhKoTcv80ASz2gaLSFcOxJr/LYcxuZfNtzABx2wlsgLT7JUHYDKzAaGGcj3NG7xm0mJrvLODmMMI8zTzW1zGPZLmq4vWkVgNQDFxC7byb64JOLSGqqIMzVzBefnM9fl/47QHuKYeLPa9jtD2J8kjZWqhqEEAwQbaG1ymXFeP5JjBt/Rj0wa7faNI1ue0imSPW6bbYam3Z4ROylkBwvp3vLbqfE+1kAFjSyPJPfnkykjKCfSPdchP4DjcEilxwysGLF5vkrUe4spKdpR3GWPIb+ZKKhoTUcgFFyD2trB6PKbiG47njKq9t7BwpQGrhsBJmebgH5TV9MGkkMErnkyayu7k63I0QEM1wMpEDkE4ydhcpXK7Dt+o0knGgiyJS9SxcvRAYzTg4jiggEggqq2SZK+Jt2JgfJ8ShgnPPkTuvH+2RlbqCZ+Wp5BwO4b0IGExMTExOTnsyB2jgOkZMYIPrxiP4yycQT5kkQUEkNSikm9bPS8Fgkcx7bxuAZ50LO77SNKRTk/4pIcC9GC0PD+PIiWDURcLmLBJiJWavSOViO3+fn92cYIQdzMod3mkXUFwsWNovt3JFyDKff/yRDH7yA6BlHEHL/oWgD5/BuxhKKjhtBs2UPxvfTgGEK+muUbX+AGj2w4dPEpDeTIhMYIQaRQgIaGjasHfSq23/33ilJGyBnLn7PrcS1dLaIEIiY5mq/7zfMewaLn6edYuRxXxAke4bjTJpIYrDII5s0qpT7PP5qOZXBuL3/1CsPwebRgAZq9wJHzfDSPSRLpHKAGE2jaqKOBmJEJDtUqXf/cfIQntX/QxNNfhl2FG4jXc1OXD57EjoGq5U7acJAcimilHiiKVNVlFKBQKA8N+1GoxDwCE3aCjjV8U/WGlswmgcAOgoN0AlvGc+ow+aw7bXD/A+WsQRhbzI13TqhlEqyPAkUBomcXZTum/QXWfzMPAaLPL7Uf+ZK133YlAUrVkIJpp5GbFixYGGI2H236p7CODmMb41ZCAQuXDzlfJ2HrTfwnv4VkYRRq+pZaaxnkOyYtSdJxHjfv9XUssRYRQJxbGE7ADasRIuIDvVMTExMTEx6Iq3Jv6qpI0jY2ai2Ei0iQYETF/U0erN0jpJDOFhMYOPFN9DUAjSGQUgd0t4Wcqk//yQUjvA5goLGMrAkeG1wWFoIGjyH0dqd++s094gkEccDtmv53vEbCoUDR8ApejB2rFgJUyFME+NYJTYAgkyRwnfGbOzYMTC46I0QEt+dQ8nCA9ituNKQUvj7xVD9b1BhgIbLCGGjw2BEsLbL6iYmvY1BMhdlKJzKRTB2mmmhlErv/ghCqfFkX25FILALC4kXP0xRSz0tTRYIrkfancTrcZTU69AQCpYWqEqDV58i0ErB0yMv4Obfn/HeuTbRSOhNh1NjCQOXFWtYA1fb79uHZ793sWNjhVoHuHXnAYaKAUSIMKxKo2X7wD/cpunptockilh+UfNZwAp2UIoLHenzc47QBiFoy9jTnp6u59bKQNGPEWIQuWSyivVUU4sTnQRiGCkGE08MNmyEEUKZ8s/aNFGOZAD9sIYswH3bG4BGZMhyggfNZ/GNoRw5EEhbBsffj7jsckIJJldkdMWpdmsW66sIF2HU00iICMYiTHt6IIaLgWxRbiPRGmMTG9VWlrKWJpo9LyJBI03kikysPTz8OxCXWc5A4Rb/1DFYqFYghGCaHOcxOFpYZLg9AJVS3OJ8lFudj/O481U0nzUaHZ1So4Jmmr3bHDiJJHx/n5KJiYmJick+I0ukUq4qCSWExcYqcshgpBjMBDGCKlXjV/Yh6/UYGGh2JzK60s/gBkDhsHatC0TyHDjiOei3ASZ9gLj9CGLtwYSJ7j9PSJNJWLGgvMvrHWmihVrqiSCcdWoLd1r/QYtqYasqIo5ommnBhc5iVqGd8iiWU+4BH2eFTmlMwGo3IHQW7hVBnRhLC/l2c2pr0jfJIZ0yVUl/kYUFC/UevepWAmmixxDJKDGEyy1nMjgoHRlV5X1uVWlVyMgqZMo2ZEIZWv4iuOF4KPga4teDcHnbeWL0pRx9zKt8mz6J5y+1MnBTBHWRAhnagIysxtBcnGI5ct/+AHuRWBHl/VzlSbCXIVIoV5VYsEL/3/9wm+bMfA9pTXkbSxQ6BvPVchaoFbyo7vVO1k/RjuRl/b2A9cN7idEtQoR5J+mtXm2b2UYsUVSoam85Bw62U4LLcGGR7stutdrIajZCMNhSriS+6VCMoKVsD5lJlMojOKGIZy+2keO41NtOA02Mk8P35yn2CL5Vv/KF8SMAb1se79rOdGP6y2xqaaBGbSCB2A6ptHV0mmjmHdsTXdPB/cCPtrcY6jgagG2qGIDRWgFleiVWEij0GCXLqeJR3S2sGoSNM7RjvG004+BN9XEHkdYYYQqYm5iYmJh0D7Sx14GzAVVfhJZ3LOxB+OIoOYQ79aeJVGH8S3+HfjKdhcYKAGrbeY1IKTlSHMjH6rvAjdkaweEvw6Dmtb1biVuKsLXwre1VegqZIpVij3xMIFrnBrOYzyq1gUmMZKg2gI9c35FDBhMYzhwWYwDFlMPIrxEjvuas7z7ivR/jadZd7mRqyoZvdgVNgCuoBhHyAAQtAyOCd2JOJkQm7JfzNjHpbozSCrhef5ha5X4uNbYzupX5eL21UkE1i9Uqyl1VaPh7iLroqPUmo8vhzLvdn595Bde2fO++uWljOCM3H3nnER3qWXqYySlaRGJBI5oI6pQ7S7MQgmSZwDpjC+L0O1C2Olh8OJoUnaSQ8cdcDthDYomiQPSngmrvxF2h2OqZxEJbds9ARIje4RHie45XyfO8n30n463JFDaylR2irK2MzwqhPXgVRTEPEBKyBAHMV8v4j/4Z69TmDseMNcXaO7BdtekG7uy66+tIIbnVchnNtLDeJ+HHaeIorpYXUGWdz2r7NwT34hDm/jLbK7ZaSBH1rnoGkIMFjR2U8oNyr974XlMtOKn1SaSgo3cwuAmE6elmYmJiYtJtsE68FevUB7D95TW0/sej9es4GdwVB8jRHCGnUEM9v6h5WI02L/j2RjeAR6w3dN7Y5X8FWx3+SRdE29/vx2Mtze1RmrI5dB598rr2oJ8P3CbDnblwghhOKCFsoBAnro7aUwLGHTGf2kcjWf+4gycf+g4m/wd3ulSF0By8fyme5BQuRORHiOg3GG0zx78mfZcRDCSZeIooo46GDvsDRd8dwmQaaWYtm1nFhp227+vNqiFxXXAFMrKkba+9Dv52ScC6oT1Mjz1JxWGgKKOKQrXDuz0V9zNGSIU8+WHkfQdjXDd1t9o0jW57iBCC/iKbHJEBKAaKHOzYWGNs9JYZwSBGiSF+YacCsGIhh/T93+l9wFCRzxhRQARhNNJMDJGeQFGDPDJJIMZPZHW7j1HS1xOun0gjlii2UsRAckgkltlqoXc10ZcYH5dPEzelRgVpJFFAPinEd3V3ujWjRQEFoj922gbOV1vP437b1QRrQWSI5C7s3f4hX/TD5jn/y4y7iJYRhBAMtBnbthlF2D0Kd0HYOoSHtyeZeOQfyHRkYmJiYmLS3QkSdkaLAhKJQyKpE22GtlYPCF/SZTIh7SaYScQRQjAyaTOHpl7smb0G1i1LbOhZmryTtZGkE3jc1E+2GeTs2FiDe440WhZwlDyQWKJYwAqOFQd3CH3b5hmLZIhkxmpDGXv0T1hmHEjQjGmE3ncEg3I7amO3jmNMTPoiITKYA+QYckSGVzJmV3xLW+ZNozkE46WHMW77GuPBdzDWju60XjhhyJB6rDedgpwxCTljMvKuw5HxWwOWT6FnGcSTZYI3YaavE8IkOYqhIh8NSQoJCARxRO9Wmz3L16+bESqC2eBJDqApyRhRQBFtnlzpIgmXchJCEAKBExfNtODEhbWXaG5li3R0DApEfxSKAfRjIStwYbDO40nUOvjQkKw2NjJBukVkQ0UIExlBqHCLq36vfqNBNdKsnIyRBdSoej4y/F30+5FOJGaGxPZsYTvbKGYHpSQJ0+i2M4bJAQQTTAjB2LAzRY4mqY8ZKseKoRSpUsqp4kPjGzKaf8eOlcliFKVU0KIc7KDU68XrxIUFjXBCvatndmwe8WS3U3XLbjlXm5iYmJiY9CwGiBz6iywaSaLSJ0ojkKcbQCzRNFIEgFEXRfHs47E2R3LpkufI/GIQ3xzYSaKA0Couzh681/u/L4kTMSQS6x47eMYMaSSRIGJJEW2hnqEEU2KUM7zlaEDQqJppohmB4DP1I7onlM2KhRQSWK7WeusWiP4MFv3ZrLbTQBMRhDHD+a8OfRFiNxIwmJj0YrJFGkWqlG0U04IDY3sOzDsSXEGQPxs5ZDaIjgqMStfgvg/B6ZljV4XBK09gnH8NMn9uh/L9RBoAy9U6NGSnGvYA4YQyRY7ZOye4nwgXoRwvD6FYlft5DaaJRCIII51kdAwSiWWMGMz7zNllm73D8tNFjBFD2SqKqVG1LGQlKChQbbHNuTKTJazxfrdh835OIG6/9nVfkSISWKnW00wLVdRylDaN2foiwD0pHyYGsF2VYKDQ0Fijb/JedXOMRdRQRw4ZPG+9m9dbPsJAxyosLDXWYMXq1nfwoZQKNGFmJfJFKUUQdsaL4YQRYiZR2AUhIpgwEUwmKRgoilQZ8SKmq7u1XzlTO5ovjB9x4cJAUUoFYYRQqWrIEqlsUIXsUKWkk0wl1WSLdFapjdTRgECQRJzfAgO4syKZmJiYmJh0F1yr/gvOJlRjKVrGgaDZkIkjdlmvPSPkQIpcZZRSwQrWEk0Ewdh5wPkC8/Rl1NFAukjmZqtbg3isGMZWVYSxYiK8+RAGghbgnLf+RZD+EzcoA/w8wxVMewkx/U0OsPQcPTeAXJHJfJb7bYsnhlO1I4kT0UwSI1moVtBIMwrFarUJwOMpkuhJRufybNMwMNjCDgqNIpzKiVVYsQkrz1pv55OW73DgpAUHC/GPhNHM4C0TE/JFFp+qmdiw4njnBlh0eNvO+cdhRBYjbjgZIdsZySrS2gxuXgTMOQHaGd1ao1+2ehYWdkUdDdTTuAdn07XoSseJkzBC2GYUkSaTGSEGsUXtIJoICtnBIJFHitw9Lz5zdv4nuNhyCq/pH7COzQCkEO+nUxYk7EQRTh2NgCKMEGpwoVB+WTF6MkIIMkQKtaoODckA0c9r8W7BwWa1jTBCaaYFCxoLlPvFXGc0kCzisSkraSSRKhK50XoJ5ztvJEKFY8NCOUUdXqKmZlRHtqgdNNDEBlXIeDPJxG7xke3/uroLXcpQOYAdlLbLNyZYyXpWqvUcoI+hlnoqqaaBJpartYR6wjYUqoPBDSCql+hUmpiYmJj0Dlxf/xWUe3Kpz7kXwlIIunjNLmp1pJ9MZ4DIYb1yR3C04KAGQTMOnjLeAGAgOV6jm0s43SGkn12JbxjpsrgBHLfxW7575yTOP+wxisOTsQWX0vDX25Bp6wAYIwv2/IS7gFSRiBULEun1dCtkB/+0nAtAsoinSbmzkZZR4TYG4CScMBbbPiZUhvAPx928aLxLDFFY0WigiWDsHN5yEUNEHi2iBU1pWLGio1NHA5vZ7teP9iLwJiZ9kdGygJVswGLY0Bcd2rFATRLq4ytQc0/E+2zKXALnXQfouJXHfDxGM5Z1aKIZB9so7rBd6Rrq0TehsqPO4xvA7LhaltwUjlXrGR6pA2QOX+m/kEcmi9Qq0kgmUcZRR4PX4LhBFRKq7LtoyY25LPAnmSrHeoxqsIMylhir/fZnilR0dHQMqqhBx8BAESN7T5a/MWIIxZSzVm0mRkX6TeNLqaQQtwChC53fWUqxUc4OSlitNlJGJcme0L5j5cGEEUItdZTj1o9q764abWZH7MA8YylL1RrqaGCyGNXV3THpAdiElWlyvN+9Wu/jPv2m/hHP6f+hkWbvNt/PraT5aDREEbFP+mpiYmJiYtLVvGi7h7vlP4nBPc41UFTSttC+xccI9Lz1burti0mwh7Q1kA5/m/Eg87IHU1C1lgXvHM1LzYfTdM9pXoObhsQq2/RmewIRhHGxdopfNvgKqlnpXEe1qiVVJHm3b6HIK0lRTS0P6y/xpOt1skknmCDKqGAHpdRRTzHl/MoCXlD/5TXjQ15W77ujXdBweQxvvrQmiDIx6cvkiSziicEpHNBZyOfcE2kzrgnYMhw2jIbzrgHZDJ4nHIN/QBz474BN+C/ae7b9fDpUZuKXHMbnb3254tGZLX/uBPcjE+RwDBQrWM9zrrbfIdlHkqiEcn4x5u1We6bR7U+SJ7LIFmlYsRBNBKvY4Ce45zsR9b1AY+g9xqMRchD5IhsXOmVU0o80Pw81FzqjGYINKy04ONVxhVcgFSBNul/IISKYD6zP8LrlQQaTF/BYO8uS1Fe5X3+eGCKZLEZxknb4riuYmAA3aX/tYChLIg4LFtaymXBCySaNNNz3p0TQj3RiPYKhYYSQ6dF0AEgQsfuv8yYmJiYmJvuRaBHJ9baLmWG5lgH067Df6dEkay1rERbevEBDCBdEKjhU4ci1cuQHb5O4bgY/1L/Elc/4e0j0xEQAQgiGigF+SeMARurHc7HzVsbIArJJC1j3If0lbnM9wVXW83jX+iRXiHMAt0EzEEHYsWP1et4DKD0CVXMStrpjcKnA9UxM+gpCCF61zuA32ztcfWoJbZmSPX9hRQQ0/zREIQfMQ94/3Z0UYcYByLNvRcjA91QCMYQRgh0bdmxkkUpsQ+Yu+1dW33Pu0QlyBMfKg4kgjB/V79Qrt5NVjvS3RezuGZnhpX+STJHKJuVOgR2EnXFiGBuNQlI1tweIXVgD/mv0pgycg0Ue8cQQIoJZwXqySaOEShppJJ4YwkQo6SSzQd+B8/epLFoziVcGNzFgZB4pWixZpHG64ypCCOYAOZrzLCeQKVK51jWDNWqT32qWNEVS/ahRdbQoB3kikxSR2OFBYGLSGRO0EZylH8Onxvdsoxgdg2LKEQhEUwSOmRfg2DGBYsowUpdjHPQmG4O3MphcBohsnLhoUW0rVgNFbheejYmJiYmJyb5nmpzAa+JDQlQQLTgRuBeXnThxKZefru60hHR+e3Ql51R+zpqSSzxbBVrLQG5x3cJQkc8var63vKWHTsvGy2EczERmMZ8mH694p3KRTSpxIpoyVQngp+1kYODAoJZ6DtEmkUkKi5wrWcAKGmnyO4YAmmkhCDtJxNJMES6lobb9C1yp7EByuaOJf6WaHm8mfZvp2kQARkyA+8brnOj4BzPVbFoeexlKA4zVLQ1QlI3xwmPuGy2qBKa9iYzf0ekxSqn0+76Z7dw5zcLts5xAYG9di4TrDrYF3NcdiRIRJBFPFOFEEcEGo5Bh2gBOkIfSZDQziwW04KCZ3fPeMz3d/iSZpDBJjCSbdIooY65awnpV6N0fotpWY4KwE0YI6ST7uSb2dEbIQZSrSkIJZocqZZDMw+kZiFRSQzzRoGtU3Pcq+kfX0rxqAu+9P4oNDz1KiVFFGMF8aHzLv41PmKPcSRjGa8OZZf8v0+R4v2P1NcH7XfFf/XP6yXRAkC1Su7o7Jj2MR2w38qp1htvQ5tFw0MtS0O/6jKZZJ1O4MQ3HxhHwy9lw11eo8jTiRSzHaAdzonaYn/duuk8IiYmJiYmJSW8kTSTixEkzLejouHw83BraGYrAPUb+Ieoa4n10jFT4V2xmm5/BDdwJCHoiA2QOH9if7jD5/EXNp0AOoE41Uk9jp2LqFaoagP5aNs9a7yCDZEIIIpIwwgihv8j2GiSdOIkknFBCwJEFrnRap7P/qzWzqJuY+KIJjTMsR+HEBaUdPXRJXgGuYPjtFNg0DjaOg4XHwKPvYiyaHrDNFBIYJ4aRTRoRtCVfOCd6KrF3n4z9L/+HdcgPZBasYPCQQk4ZLnn4WBsVM8JJiuxZ2ovxMppCiihkB5txO1mdYTmaz+z/IoUEwgklfDcTyfXMJZVuRKZMYZFaSSghWLGQSap/eKmIAAUS6X0ZNdPil0a7pxMlIjBQbFCFGCgOlZNw4MTAAAx2qFLs20ZBg3/G1pbqWNbu0EjLSqZ1zOLrMr7QWEGJUeFXJ6kXGSv/LOuMzSw2VrLUWEMZlbxtebyru2TSA5mojcTmtLZptn13PgQUJJaEfHc5G097mh9cv3GR5RS20LYKNkjk7Jf+mpiYmJiYdBVCCFJFojcxmC8NNAVM+BVnkczLCeNv1d/zhfY2KnguBhBLFBVUe8sl9OCFZZuwkkYiW30E1kMIokU5iBJhSNXq56H8wkf7k02lqqYf6QDkySxKKCeGKKIIZ6IYSYNoJJcMVqoN2LDwkvU+LnLezGLLNhD1oIKRSEYEmdNaE5P2pJBINBFUBNVCcxTuEDzPIoDSCOyDJeDzv2N8eC04/LOabvP8tScLAXzk/b7F8/8VGLy72MF1Hzv8ymsCZl8dyoj07nvfppJIPDHEEEmlT7JMIQQpJLCJbdh2M4mL6en2J7EICxPlSMqoxImL9Wxhndri3d/qZm34iBlmkIJV9Cyh1F1xgBxDEWUsUavIEqmEbzgA4+bvMG6cxaYb/8vi+dkBainSg8Pd1ncPvnoWr+ofMJfFfjUiRft0xn2XD41vecP4mFIqOE5MJ0nE7bqSiUkAJoiRAAgEIyOSOy03MDKSQor4il84yfUPqqn17tvdlNkmJiYmJiY9mQlyBAYKKxbGMdS7/SHHi17dn/akWCVvxx3AOaFJtCqlVFCNzScU6yJ58j7t975mjf0bThZt2sJlVLLKWM8kOQrD+5+/5s5aNlFMufe7EIID5Gi2Ucxy1vEv9Q7/Nj5FVzqb2cY6tnCv/hyV1CK0BkTq3yHsG86MdvJ2uhlaamLSnjSRRBW1cOV5EO7ReRMumPwfSFvbeUWnHRzhdJYYoePfH0NXcPIrgZ+X3YVUkUQZlaxhExt8IhkBDhbuMF7fJDI7wzS67QUOEKNJxz1RDSGYmcZslEfMM5Ar9eBeqH00QQ4nR2TQSDPzXKupevFeMIJx34Qalb9Pg4E/4ifmOOkdcuIsNPj8RqGi7YU505iDtZ0zZthuunD2BX425mFBI5E48mUgo6aJye5xkBxPOskoFHceFURWdMcy2TGCl/6SxWWcTiJxBGHzC6uJ7kXJYUxMTExMTDpjjCwgbe2xtNzzAb/d8iTGC09jNAfzvHqbj4xvAXjS9TpPul73qxck7JxtORYAY95hGHd+QfOtX2G8dQ8heihHigP385nsXaSQXGg5CZvP2P1V43/ki34dEshdr13i/ewbIQRwgXaSd/wfhI0QgvmGWWSSShghfGH8RA11AAj7OmTivTybFEGcxZzWmpi0pzW6TkaVEX/LBdhnTEM+MBV51LOIY56EsFI6JFywNEHa6n3etxZX906skOoTmbhNFfvtm2AZgWU3vdzADC/dKwySuWQaKdSpBkJxuzhvVFvJERnUqnpvuSTikEjGyWFd2Nt9w1CRTwoJhIoQ5jVsIpA915q3BM69Dd3j9WdBI4bDuNx5p7dMqEcD7339K6zKQjwx7KDUuz/C9HQDwFAGm4ytDBX5xBHNHZZ/dHWXTHowGTKFTCOFMEJYJpex9o5xHNlyEevVFhpp5lnrHRyrTQcieJxb0Jwan+rfe8NL7Vix9TLvXRMTExMTk0CI7f0pfOU6QLj9tjaNhEf/i7jlOO53Ps+/XO+wVm3ChU6yiOcU7Uhv3UlyFGnLTqXwg3/g9Q5ZfhD6c9lEXNfzx7iT5WgGkMNS1gDwpvERC9RyKnGHZqWSSL7IZrIcyQd6OpvZzm2uJ1iiVvGc9S4ApsqxXChPJkQEYVM2ZhqzWVPmYssXZ2JUpIBUtGQthcNeQga7k60FSXvgDpmY9HFswspBYjx1NNCCg0mMYoPawmo2otuaUSffD68+jp+3WkwRHPcIPPo2gSVn9g5PnBi0z9reG6SSyCQxkmYcOPHXjBwhBpJDBk00so5dGyhNo9teYJgYQDlVRBNBE81kizQWqZXkkOH1dBMIr/v0cDmoK7u7Txgkc6mnkQhCaQjdQWokbK/xKSAMnEO+Q2IgcNvRHU0WdhjNlIRUIARkk0aBzANglbGeeBFLpUdctZXdFSvs7awxNpEo4lEo4kQMwszqavInGCkG0YIDl3Lxb+MTrlbnM1ctpYFGgrDzmf6Dx+jm5nA5hfnGckpUBQYGB4gxXdh7ExMTExOT/ccXizXw8fQGoC4OuzMUYYXf1VLArVP8hf4TK40NrFDrsGPjBu1ihi+5isJ29Zt3ZO6n3u9bLMLCREZ4jW4udBpUI5MZjSF0WnBymHYAsSKKDWwFoJZ65hnLvG0EiyCesN3i/b58RSRzXzwGP6NA8QCYewLGzcdiC6/bL+dmYtJT2U4Ja9Qmwgnl96APeNL1Ov91fc4iVsLiw+gQHlqahYzfjnHPwbB4GpRnYMVCOim0KHc45WnaXxCAFO7aSrnDwxUKw+PA1rrfd58CkiIsnDHaRmxY906sECZDWa7WUUMdVdT47YuSEQyR/QnXgljH97tsyzS67QXSRTKb1DZacCCAROKYqc/GrqwYGCQTjwOnVyy1N3prWYSFUBVMIUWkiAR+uMXBee+WMXtVMMRthdPuwh5RSxgRVDQacP8H4ArjJwDuJua0x7ht9BimaRMA2KS2U0EV5T4Cs3ZsptHNwzK1BgcONqltHKlN7erumPRwcmQG6SSzmo1EqDAW6CsYKHJYolYBsMBYzsvO95BCMl2byHRtIpPlKKJaRgFQT0NXdt/ExMTExKQDtotWgzJQzkZkaCLspQXK6QMsPDizVcfHI0pub6DZWk+xj4azExeFRhEzmUMZlQAcKidx2MAsPlnub3SLj/HP/NmTOdw6leed//V+L2QHG9lKnspigMjhZO0I78S9FYsKPCX9Vv+VX78cQ0DNKGWBucfD9Df2ZvdNTHodMUQBUEcDDuXkn5Zzma8vY53aTG3+b7DoCNoSLCiIcDsKSasTxnwDQK7IZqsqppEmBolcHrCf1iXnsr/JI4saakkgFqWUn6PLv22PUmut5QXu32U7ptFtL9CayWij2ooClqjV1Kg6XjX+5y3jayyK6KWGownaCGbpC6hVdSyyLOL7M6eT2DKBOhowvryElp/OogUJGPi7qgoq3v8bCWM2AFBqVDBPLWWd2oINKw6PO2cLDsKEKZJapxpYqtawSK1CR2esGLrrSiYmu2CCNoL/ub6hBQez1QLmK/eqsxMXq9nE33R32MdT+m0cZB2PFQsWNFzopIqkruy6iYmJiYlJB2RY54mB/gxT86w8cqyNmz914DQEqVEC7a/XsxX8dIodOJnNQr8kYXU08LdJdtaU6jz1cxMoAQmb+eKK3pOMaIIYjob0ysk4PV59a9nMZrWdmfo0jtEO9quznMCC7i/o/6Ui6mDYlhL4YNFF2LHtvc6bmPRCYkQkKJBI1qstDBK5DJZ5vKd/hRz+HcbaEbDwmLYKCRs83mltmxpVM400AX1LxzlUBjPfWMY6tYUGmghjz2wRpuLkXuJQOZkI3B5sQdjZzHakz6qM7uNGHt4LPd0AztNOpED0p54mHnK+iBSSo+RBqG158NO5uA1tgoCx4UoQQyRKKV423med2oIVi9fg1koQpmbDZ/oPPKK/TDB2poqxjJWm0c3kzzNWDqWfSMeBk9f1D73b7dj8si9foe5hhONYdqhSXOiEE0oqvWeyYGJiYmJisiuumBZM/WORtDwRycY7Izg6bhBaJ9pHrRNVcBvdAB481k70A0cRPGM6U695ioLQToxKPZBIGc7V2gUBjWEOnNzvep5wFeo3eXXi4qGWfwGglMIwDBzKyTfGLIJPehTCyugg9p4zDzHyK0L3cBJsYtJX+Jt2Fv1EOgYGVzvvRylFhvR55iw7FLdZyJOJdP0E1Nzj/NrYSpH3c6zoO0a3WI+XIODVptwTTE+3vUQ2qQwSuaxQ64gknG0UY6BIJI6/W87iK9fP1ItGgrETocL2JLNutydHppMvsrFiZZsqokk1c5J2GF+WWT1O9Z2h4MhnaOI4flULedn1HpmkUkYFKSSyhe3ekiEieCft9A0WGCvIIwsnTvJEJsGie4tQmvQMhop8RonB1KtGVrHRu93uyVLaunAgkUQQxlq1GXBPICJk71xIMDExMTEx2R2OkgcRqUfwKC93WDD25Rd9Pjda/sp6tmDHSp7IpED273XavKPlEKTedk4S6V3AC8LG8c7LySSF9RRioGOguF09xR3NT6NQTGcij1lvIpdMgoJtJN32OBEqjHf50m8hUDnSSXAeTI1VEan1rt/QxGRvUSD7M11O5Bt9FovUSr4xZjFZjuYpy21UU8utzgDz63UjMRYfCK4gOOQlovJXkUgc4SKUHJGx38+hq4j2MTBWqmoyxJ55UJtGt71EtkinhRbSSaacKsIJI4JQbrBcwiWWU3lf/4olajVWLL06RDJFJFKkysgRmSw2VvEX7UAmDvyCz4QDVCfu37IJbdKHvKbraEgSRRw7VAmRRHRw4Qw2Pd3YQQmJIo5GmrjHemVXd8eklxAsgpgoR/KrsdC7LY8sbFhpoJFtlODChYFBBdVsVFu95XxXgUxMTExMTLoDjo9PRbXUQlM5sv/xCFs4llH7Jtv7Qdp4DtLG83Hzd5RRQTV1OHF59+eRRbgIIVHEAbBRuTPQ11BPEvH7pE9dyXA5iDSSKWQHOjpWLLjQ3YkVaGKxWk2JJ8FcJOE00ewxvbkV2GupZws7WMl6UHCddhHnyRNY49rEJrWVaupQDZNRxfezFI0R5XX8nhNGnMUM4jIxaU+8iGGMKOAzfiSROMqpIkMkc4nlVAC+y63jx/WGTw0FKw7C6yX06hNUH/oCtQe9CQomMnK/n0NX0V9kMUWMxolOhara43bMJ9NeYoDsxyK1ipWsp5paLEiqqSVZuF+kFZ4snLFE9brVLF/yyGK9KkRHZ4VaB8ATkVcx6tabIGp74EqZbmPkPGMpi9QqlqrVHC6nUEQpK1jnVzSYvu3VtcrYQD2NVFGDA4ef9d3E5M9ymeUMYokmglBiiOQ6y0UsCPqQM7VjCCEIOzYkkhwyqFRVjBCD6C+yTaObiYmJiUm3w9j0FWr7LFTlavTfHsC18Jl9fsyFQR+xNegXDhOTEZ7/oghnWdBnzLa/yyu2BwBYqTbwnZrDPLWMfjJ9n/drf5MpUvjK/jIGBnFEE0wQTlxY0NhGMfU0kkAsMUSio3fwDvydpVznfIhg7MQTQ57IIkfLYI79Xb6xvoYVK6rmeFqNAttcis/rXAF6YmJiApAt09lBCWvZzFJjjd++r/8Wxj1H2kmKcaBlLYW4zfiH5Qn45XTvt3D6ToSLHRs/q/nMUYvYrkr3uB3T020vkSLcmkYaGpMZxRdBL6GU8q7YtIZm9XYjyXg5jBK93G0JdsGF2snMM5ayJnQJ4vpTUe/ejFh8uPtXEQbkLkCcez0OXG4Xc6WIIAwLGhGEUUu9t22BwIa1y86tO/CNPovfjaVUU8srlge6ujsmvZC5dneWUl8iRBg3aZeSJhM523kdGygki1QWqZXe/SYmJiYmJiZuLtRO5jPXj9iwUkB+h/2Vqho7NlpwkCISuqCH+55UkUgowZRQQT7ZVFLj9f5roJEmmjEwOIIpfMnPHeqvxp1gLZQQDpOTmanPpkU5WWAsx4kTrMXQpLzlM6ymL4mJSWfsTJusBQd/O8RAm/oJ36hf+PGN46E827+B8ArvxwjRO5NCBqL1+RyEnTJVsYvSnWMa3fYSYSKEKWIMv6qFLGQFhmEgpUQgaFEOiihDIHq94Pggmcu58nj+bXzK7yxlnbGZR10v00gTQoI47T4eOKuZBpq41/UcAJmksIUdOOYeBp9cRaUexAsIsF2IdvIDqIIfAbCg9WovwV1hKIOf1TyqqSWKcDOBgsk+ob3BDeCflnMBmO0TelputLlY99bkMCYmJiYmJnvCGFlANmlsYhuF7Oiwf4MqpAUHUYST0ovnBh9an+MC182sVhv9MpoCGBhMFCO4yXIpXzo7Gt1aqaOeTMeBHbaLmOfR9EjyXAdzXpSNaWHmtNbEpDN8HX8qDP8wyY+NmZzrvN773X7qWloey4WaVM8WB5SlY9z8Ewz6mdBz+o5XaRpJRBJODXVsYtset9OjlwR+/vlnjj76aFJSUhBC8NFHH/ntV0px++23k5ycTHBwMNOnT2fdunWBG9sLDJZ5DBX5GCjWsdm7vdWarFC9XvReExrDxACSiSOMEH5nKTvauWJ+rv9IjE+q4WzSMDYOgw9vBj0Eb/YURxj6v+/FKMkEYDgD9+OZdD8e119jibGGTE/Sjr4kYmnSPehHOgeJ8eSIDErxWfGi76x4mZiYmJiY7Io4GcMwOYAhoj+11ONQ/uGTrWPjGup7racbwHg5nKliDCkkoFBYPf4eAkEOGVxuOZNhcgDXigsZQn9C6SjoHkKwN9LFgkR6wt6EVkd80uMsyQ3nqjhT89nEZGfEEcVRchr5IpuNbPXbV6X8Pd+c9lrkTaeSNeMURoxbC9hBWcGwwPKD+PI/B+3HnnctKTKRGuoAOtg0/gg92ujW0NDAsGHDePbZZwPuf+ihh3jqqad4/vnnmTt3LqGhoRx22GE0Nzfvk/5kizRCCWaQyGWhscK7vdKj5wYQLSL2ybG7EwNlLqkk02/7Qbw9r4XwmmzGi+FkkUoWqWxS2xjOQI4WBzFJjMSBk5DVBxM4pauA9WMACO3jmUs3GIVkiRRAMU4M79NefyZdQ6KIw0CRQgItOLzb+5K2g4mJiYmJye6QKhKJIpxckckyHw0lpRQ6BpPFKI6Xh2ATvVc6RQjBgXIcwQQRRQQuj9yOQiERnCgPwy5s3Gu/irMtx9KPjvp2VdTiwIkFC1mkY/EJ1BovRuy3czEx6clYhIUKo4qtqpitqph7nc9591VQ3aH8ZDGKQ7SJVK8f0GHf/A19x6s0gRimiDFMFqM6aMvf4XyKu527pxXao3+xI444giOOOCLgPqUUTzzxBLfeeivHHnssAG+88QaJiYl89NFHnHbaaXu9PwXk84R6nXSRyDpV6N1ereoYI4bSQgtpJO3143Y3CoxBzL7nTmiI82w5lPBhc0g+/RnqaSCMUCpENevYTBih5Mssjhw2iJsDepYrQvovQSOYY7Xp++8kuiEllNNAEzoG91mv6urumPRBhBCEEcx6VUgwdoaIPEAQTu/NyGxiYmJiYrIn5JDJF+onQPCM6y3GqmEkiTiGinyCsVNJDdH0/sX4U7QjuNX1BJGEU00trSpsW9jBUS2XECUiOMVyBP+0nMss13yWsdavvoZkADkg4BztOO51PedNvDBGK9jPZ2Ni0nOJEVE0qiYAPjW+51YuB8CldEaJwaxXW4gmks1sZ5ZaQJKK46hBFp7+xd9T95ABvXehoD1SSDar7RSygzgV7bfvNf0DivXd837r0Z5uO2PTpk0UFxczfXqboSYyMpJx48YxZ86cTuu1tLRQW1vr97e7jJKD3Rk31XpWqLYXRjmVzFNLWarWECR6v/vzN0vsPgY3AEHdkgkc33w8xZSzjWIedr3IAuuHbFSF/Nv4lJfS7uQ/5wYRbmutAeEhTrjgSprj19FAE1F9wEswEHWqgS9cP7JJbWOpWkOuyAyou2Visj8YIHNYzUa2U8pytY7laq2p6WZiYmJiYtKOMbKATWxjM1t5W33GVa77uNv5DG+4PmKz2sZKtZ5hovdLp0ghyRdZFFLEIHJJIBYAB05mMof/qW+43vkQlzvupFLUdKivY7CCdQwR/fmHPBvhExmTKnqvHp6Jyd7mP9bHALCiUa8aaVYtAKxRG1mgVlBDPZvZ7i0fIoJ55IRgLjvAgt0Cdg3OHWvhpdP7VvRZikjAgoYFC/VGAwAOw4EN624neezRnm47o7i4GIDERP+HcWJiondfIB544AHuuuuuPTpmhAzjIDGe79VvfGH8RIPRSKgMocI3vJTenb0UwKYF3n6MdRolcjNvGh/zu1rGWrWZVJFIpaphuyrm6GGCk0a4fx+ncvKa/iH/cM331g+k89DbOddxA+8aXwB4M+EOErld2SWTPk6a8PfWDcLeq0NjTExMTExM9oThcgBjRAHz1DLArWO2ig2sMtxZOW1YuVg7pSu7uN94znoXJzgvZ7laRygh3qQKoYQQrIew6fUreGntRPeqe+7viPNuQGi6XxtpIpFaUU8t9QBYsDA0QGZYExOTwNiljZu0v/KQ/iIbKGS+sZzJ2ii2qqKA5UMJQQjBkyeG8uSJ+7mz3YgpcgwL9OUUU8YKtZ5xDGMHZWylGIW+6wboxZ5ue8pNN91ETU2N92/r1q27ruTDGFlAgeiPFQuLWAW4tQhaiRVRe7O73ZLjh1nJj/fdosia9CujQrI5TjuETFIJws75rhu5VDudcWIYoYTwmvE/b4239c+51fU44T4C7SF90OjWX2QxVOT7WdGzZOpOapiY7FuGyP5MECO8K81mEgUTExMTE5OOWIWVey1Xcao4kulM9Lw73WSQzF3aFSTKuJ220VvIlCmMFgUMEjk4cXKkmEYowTTSROh798PaAwANlIR1E0j471N+9QWCkWIQlT6C79FEkCsz9/OZmJj0bPqLbJJJwIqFx/RXMJTBOrWZXDKYLEb7le2LDi+BaJ2PRxPJ72opANsp+UNt9FpPt6QktzdGSUkJycnJ3u0lJSUMHz6803p2ux27fc9DQPNEFhEsYIjozyJjJZPlKFy4mChGIhHEEb3rRno4mhQsuyWSZodOU7POq/a30TS3e/khciL5IhuhoFRVkC6SQbldzG92Pcb/Nm9hyvp/8HnaGkbkDmKxx3AJfTORwgDRjx/4jViiAMEgmcNAkdPV3TLpw+SLbMJECEKBAsKEaXQzMTExMemGBMeBswEMJyJhGCJ4/xu4pmpjmaqNBeBH11yucT2IRUgmy1FcZT1/v/enKxkvh1OhV5MuU9hkbCWDVHR0tmxO8SnlNktqW0YwTYzjZzUPHQOFIk0ksVm1hb5FEIZd2PbzWZiY9GzGyAKmyDEsMlayxtjENY77GSeHU68aiBfReEUXcYeXmrh/s3eMSCKJ4CP9W/6unUWpUcEEMQKEzo+s3mUbvdbolp2dTVJSEjNnzvQa2Wpra5k7dy6XXXbZPjvucDmQ7S635fMt18f8TTuTzWo7s9VCAKJE+D47dncjyKYRZNO4mnO926zCylg5lMX6SkIIZqY+mw0U0qCaUM89zw9bC/gBJ3ApQVFVJFx3CdWa21MwrA+KtQ8XA9msttNMC05cLDRW0M/SMbOTicn+Il7EkC+ymcMigrAxUYzs6i6ZmJiYmJh0IOivG7q6C34caBnHAsv/dl2wl3K+5UQ+0L+hRtUSKcJYp7YAIIf8CLOO9yt73FAr65CEEEQDzYQTiiYsfO76gQjCcOIiRSR0wVmYmPRscmUmN2gXc4BxBjFEspIN/GTMA+BReSPzWU4l1YQTRg4ZXdzb7kG+7EeoCmUTW4kgjA2qkC1sZ45ahFK7F17ao41u9fX1rF+/3vt906ZNLF68mJiYGDIyMrjyyiu59957ycvLIzs7m9tuu42UlBSOO+64fdanwTKPAtmfz4wfiSeaOcZiKn003WL6QHjprhgjC7hHf5Z0knnT+IRKqqEyFbb6ZyBqro4md9PxVOW+ghNXnwwv7SfTqaeRWuoxMBhMLjnSfACadC2PWG/kEeuNXd0NExMTExMTkx7E3y1ncpzzcqKJpAp3qKj6yyOg1cDsk0EIwsZ/yYSjkvmH5Tbur/iANx88hSpXKBMBuMz9lz+HKRduYp3h1oc2PXJMTHafXJlJA03UUk+javZuzxApbMWt79ZAEwdp47uqi92OoVo+H7u+I5cMlqjVNKlmkkmghN3LXtqjjW7z589n2rRp3u9XX301AOeeey6vvfYa119/PQ0NDVxyySVUV1czefJkvvrqK4KCgvZpv67WLuAr4xdKqOBV/QM//YGYPpBIYVeMFkMIXnQ0W967Egw72BoJPfFxGgKU/dH6E9BEKol90tgkhCBfZDNXLQEgTSTvooaJiYmJiYmJiYlJ92O0KCCKCK/BDUAIEEe8CEe8CEAjcK4BOIDXXwJXgAzpayaycE0p9+UdBcDzlrs5z3LCvj8BE5NegCY0kohjOyXUUOfdnilSEAgUCgF9QhZrdxkvhhGMnXVsYa6+hEpqKKJ0txMp9Gij24EHHohSqtP9Qgjuvvtu7r777v3YKxglBzNODGOD2sqvxgISiCWdZGKINFdigLrqCBreuQG3boMCRwiNb99C7MhZVCyc1FYw73dUxnIEENmHwnLb85D1espVFU7lZKQ2pKu7Y2JiYmJiYmJiYvKHiZPR3GT5K3e4nqQZR+tMICDRRFLR2Pn4v7a2zYkiSfSNhBQmJnuLqyzn86b+EUvUasIJZbgYSKZI5VPr87jQ0dAQQuy6oT7CSDGYISKfLR7ZsAyRsutKPvRoo1t3xSqspItkFIpyqtistlNCOfpuWkJ7O8t2uMCbv8n9fwV8OX06J59yFKVUYMeKBQvhpJAt0jlcO6CrutvljJPDuroLJiYmJiYmJiY9iuYXcjokUrAd+25Xd6vPc6r2F/7r+pwSynHiRKJRThUSgQ0rTlw4cdFMM/KI5zD+fR9t8wYPtkb6D9uILoZjxUKqSOqSczEx6amMk8N4x/UFoQRjwUKqSCRShjOdSbuu3AeJkhGMFkNIENHUqHqWqjV/qL5pdNtHpIkkVqn1xBPDRrYCECPM0FKAidmWDitbwVYYlGBjneVbznJcy1xjKXXUUUoFzcrB+eLEruquiYmJiYmJiYlJT6OpHJQBgCqahwr7Y54JJvuGJBHHnKB3edL1OgCz9AV8qr5HB5KIR6EoohQHLmTBzxjXnwwzz4KqRJAK8uYRO/F7Cq15/KYWA5AqErvuhExMeiBjZAGhIpgUlYgLF4fKyV3dpW7PTda/cnDLOejoFFH2h+qaRrd9xHA5kEf0l8klg2CCiCWKFPOFAEBMqGTVLWGc+FI9myqhIEXyv4tCsVncq1hv2R7hEefL3Ko/DkAyCZyqHdmVXTYxMTExMTExMTEx2Uv803IuANtVCUIHDY1pchz/st3LhJZTWKbWEE8sjTF11J78sF/dE+TJFFNGqkqkjgaiieiKUzAx6dF8ZX+5q7vQo4gXMUzRxvCa/j+Ex/tWInerrml020ccKacyUgxmvloGQA11nCpMw1Er/eI1Ft3Uueff5ZYzAJhtLDTDK01MTExMTExMTEx6IXdY/s49liuxC5tXqztPZLFYraSYcgDCCaXOJ+VaFql8YsykjEoySDG1p0xMTPYL91mu5lv9V7awA4AQgmneRR1gN01zJn+YIGHnfO1EknALe4YSTIHI7+Je9RxCRDDXWi/kf/ZnucF6SVd3x8TExMTExMTExMRkLxMqQrALG4DXeHaL5VIGk+ctM1TkM5LB3u8XW06h0pMBNVZE7b/OmpiY9GkiRTjXahd6v2eSvFv1TE+3fcgh2iTWGBtZpFbgwMV4Obyru2RiYmJiYmJiYmJiYtJtyRNZBGH3JlY7WE5AQyPMCGGrKmKesdyboM7UzDYxMdmfHKpN5jx1AjaspFjiWMRnu6xjGt32IRkimYds13uFQnNkRhf3yMTExMTExMTExMTEpPsihSRLptGsHBjoJIl4dAzqaSBVJLHAWM4EMQKJYIjI23WDJiYmJnuJTJnK87a7Aai11HITl++yjml02w+0CoWamJiYmJiYmJiYmJiY7Jy3bI/4fV9gLOcq1xpiiaZCVbKKjQCMYkhXdM/ExMRktzE13UxMTExMTExMTExMTEy6LcPFQI6QUymhnNUegxtAqkjswl6ZmJiY7BrT6GZiYmJiYmJiYmJiYmLSbdGExu2WvzFFjEF4prDRRDBcDOzinpmYmJjsHDO81MTExMTExMTExMSkVyGzD0e11EJTObL/8QhbeFd3yeRPUiDzudpyPhGuUNarQhJELANlTld3y8TExGSnmEY3ExMTExMTExMTE5Nehe3Yd7q6Cyb7gMO1KRz+/+3deXhMZ/8/8Pdk31fZkEUtESpCUUmQ2Brqq7aultBSSyUprfVRYqmi9oeipVU8lJY8ravULkqqtkQiaEQIrcZDSTAJ2ebz+8MvpyaZycJkUe/XdeW6zDn3uc8993zOOTMf59y3cQdlojpXlXM1t4iIqHRMuhEREREREdFTgxPVEdHTgmO6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBMelGRERERERERERkYEy6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBMelGRERERERERERkYEy6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBmVR3A2o6EQEA3L17t5pbQkRERERERERE1a0oR1SUM9KHSbcy3Lp1CwDg6elZzS0hIiIiIiIiIqKa4t69e7C3t9e7nkm3Mjg5OQEArl69WmpHEj2pu3fvwtPTE7///jvs7Oyquzn0D8ZYo6rCWKOqwlijqsJYo6rCWKOqwlh7PCKCe/fuoXbt2qWWY9KtDEZGD4e9s7e3ZwBSlbCzs2OsUZVgrFFVYaxRVWGsUVVhrFFVYaxRVWGsVVx5bsziRApEREREREREREQGxqQbERERERERERGRgTHpVgZzc3NER0fD3Ny8uptC/3CMNaoqjDWqKow1qiqMNaoqjDWqKow1qiqMtcqlkrLmNyUiIiIiIiIiIqIK4Z1uREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZWI1Jus2ZMwetW7eGra0tXF1d0bt3b6SkpGiVefDgAUaPHg1nZ2fY2NigX79++N///qesT0xMxFtvvQVPT09YWlrCz88PS5cu1aojJiYGXbt2hYuLC+zs7BAYGIjdu3eX2T4RwbRp0+Dh4QFLS0t06dIFqampWmXi4+PRtWtXODg4wNnZGcOHD4darS6z7qSkJLRv3x4WFhbw9PTEp59+qrX+7Nmz6NevH3x8fKBSqbBkyZIy6yT9GGv6Yy0mJgatWrWCg4MDrK2tERAQgA0bNpRZL+nGWNMfa19//TVUKpXWn4WFRZn1km6MNf2xFhoaWiLWVCoVevToUWbdVBJjTX+s5efnY+bMmahfvz4sLCzQvHlz7Nq1q8x6SbdnNdYePHiAIUOGoFmzZjAxMUHv3r1LlMnIyED//v3RqFEjGBkZYcyYMWW2l/RjrOmPtSNHjiA4OBjOzs6wtLRE48aNsXjx4jLbTLox1vTHWmxsrM7va9evXy+z3TWe1BBhYWGydu1aSU5OltOnT8vLL78sXl5eolarlTIjR44UT09P2b9/v5w8eVLatm0rQUFByvovv/xSoqKiJDY2VtLS0mTDhg1iaWkpy5YtU8q8//77Mm/ePDl+/LhcuHBBJk+eLKamphIfH19q++bOnSv29vby/fffS2JiorzyyitSr149uX//voiIXLt2TRwdHWXkyJHy22+/yfHjxyUoKEj69etXar137twRNzc3GTBggCQnJ8s333wjlpaW8vnnnytljh8/LuPGjZNvvvlG3N3dZfHixRXpWiqGsaY/1g4ePCgxMTFy7tw5uXjxoixZskSMjY1l165dFepjeoixpj/W1q5dK3Z2dpKRkaH8Xb9+vUL9S39jrOmPtVu3bmnFWXJyshgbG8vatWsr0sX0/zHW9MfahAkTpHbt2rJjxw5JS0uTFStWiIWFRZltJt2e1VhTq9UycuRI+eKLLyQsLEx69epVoszly5clKipK1q1bJwEBAfL++++Xo0dJH8aa/liLj4+XTZs2SXJysly+fFk2bNggVlZWWuc+Kj/Gmv5YO3jwoACQlJQUre9thYWF5enaGq3GJN2Ku3HjhgCQQ4cOiYhIVlaWmJqaynfffaeUOX/+vACQo0eP6q3nvffek44dO5a6ryZNmsiMGTP0rtdoNOLu7i7z589XlmVlZYm5ubl88803IiLy+eefi6urq1ZQJCUlCQBJTU3VW/eKFSvE0dFRcnNzlWUTJ04UX19fneW9vb2ZdDMwxpruWCvSokUL+eijj0otQ+XDWPs71tauXSv29valvgd6fIw1/ee1xYsXi62trdYXXHp8jLW/Y83Dw0OWL1+utV3fvn1lwIABpb4vKp9nJdYeNXjwYJ0/Th8VEhLCpJuBMdZK16dPHxk4cGC5ylLpGGt/K0q6ZWZmlquep0mNeby0uDt37gAAnJycAACnTp1Cfn4+unTpopRp3LgxvLy8cPTo0VLrKapDF41Gg3v37pVa5vLly7h+/brWvu3t7fHiiy8q+87NzYWZmRmMjP7uUktLSwAPb8vV5+jRo+jQoQPMzMyUZWFhYUhJSUFmZqbe7chwGGu6Y01EsH//fqSkpKBDhw5666XyY6xpx5parYa3tzc8PT3Rq1cvnD17Vm+dVDGMNf3X0C+//BJvvvkmrK2t9dZL5cdY+zvWcnNzSzwmb2lpWWq9VH7PSqxR9WOs6ZeQkIBffvkFISEhBq33WcVYKykgIAAeHh7o2rUr4uLiDFJndauRSTeNRoMxY8YgODgYzz//PADg+vXrMDMzg4ODg1ZZNzc3vc/5/vLLL9iyZQuGDx+ud18LFiyAWq3G66+/rrdMUf1ubm56992pUydcv34d8+fPR15eHjIzMzFp0iQAD8ddKK1uXfU+ul+qPIy1krF2584d2NjYwMzMDD169MCyZcvQtWtXvfVS+TDWtGPN19cXX331FX744Qf85z//gUajQVBQEP744w+99VL5MNb0X0OPHz+O5ORkDBs2TG+dVH6MNe1YCwsLw6JFi5CamgqNRoO9e/ciJiam1HqpfJ6lWKPqxVjTrW7dujA3N0erVq0wevRoXkcNgLGmzcPDA6tWrcK2bduwbds2eHp6IjQ0FPHx8U9Ub01QI5Nuo0ePRnJyMjZv3vzYdSQnJ6NXr16Ijo7GSy+9pLPMpk2bMGPGDHz77bdwdXUFAGzcuBE2NjbK3+HDh8u1v6ZNm2LdunVYuHAhrKys4O7ujnr16sHNzU3JBDdt2lSpt3v37o/93shwGGsl2dra4vTp0zhx4gRmz56NDz74ALGxsRWqg0pirGkLDAxEeHg4AgICEBISgpiYGLi4uODzzz8vdx2kG2NNvy+//BLNmjVDmzZtHmt70sZY07Z06VI0bNgQjRs3hpmZGSIiIvD2229r3RFAj4exRlWFsabb4cOHcfLkSaxatQpLlizBN998U+E6SBtjTZuvry9GjBiBF154AUFBQfjqq68QFBT0z5i4o7qfby1u9OjRUrduXbl06ZLW8v379+t8xtfLy0sWLVqktezs2bPi6uoq//rXv/Tup2gA3B9//FFr+d27dyU1NVX5y8nJkbS0NAEgCQkJWmU7dOggUVFRJeq+fv263Lt3T9RqtRgZGcm3334rIiLp6elKvX/88YeIiAwaNKjEM80HDhwQAHL79u0SdXNMN8NhrJUea0WGDh0qL730kt71VDbGWvli7dVXX5U333xT73oqG2NNf6yp1Wqxs7OTJUuW6H1fVH6MNf2xdv/+ffnjjz9Eo9HIhAkTpEmTJnrfH5XtWYu1R3FMt6rFWOult82PmjVrljRq1KhcZUk3xlovvW1+1Lhx46Rt27blKluT1Zikm0ajkdGjR0vt2rXlwoULJdYXDSq4detWZdlvv/1WYlDB5ORkcXV1lfHjx+vd16ZNm8TCwkK+//77crfN3d1dFixYoCy7c+eO1qCCunz55ZdiZWVV6mCARQPz5uXlKcsmT57MiRQqEWOtfLFW5O2335aQkJBytZ+0MdbKH2sFBQXi6+srY8eOLVf7SRtjrexYW7t2rZibm8tff/1VrnaTboy18p/X8vLypH79+jJ58uRytZ+0Paux9igm3aoGY61iiZAZM2aIt7d3ucqSNsZaxWKtS5cu0qdPn3KVrclqTNJt1KhRYm9vL7GxsVpTxObk5ChlRo4cKV5eXnLgwAE5efKkBAYGSmBgoLL+zJkz4uLiIgMHDtSq48aNG0qZjRs3iomJiXz22WdaZbKyskpt39y5c8XBwUF++OEHSUpKkl69emlNnysismzZMjl16pSkpKTI8uXLxdLSUpYuXVpqvVlZWeLm5iaDBg2S5ORk2bx5c4lpmHNzcyUhIUESEhLEw8NDxo0bJwkJCeWeIYS0Mdb0x9onn3wie/bskbS0NDl37pwsWLBATExMZPXq1eXuX/obY01/rM2YMUN2794taWlpcurUKXnzzTfFwsJCzp49W+7+pb8x1vTHWpF27drJG2+8UWZfUukYa/pj7ddff5Vt27ZJWlqa/Pzzz9KpUyepV6/eP3ImtqrwrMaayMM7WBISEqRnz54SGhqq/A54VNGyF154Qfr37y8JCQm8hj4mxpr+WFu+fLls375dLly4IBcuXJA1a9aIra2tTJkypTxdS8Uw1vTH2uLFi+X777+X1NRUOXPmjLz//vtiZGQk+/btK0/X1mg1JukGQOff2rVrlTL379+X9957TxwdHcXKykr69OkjGRkZyvro6GiddTyaiQ8JCdFZZvDgwaW2T6PRyNSpU8XNzU3Mzc2lc+fOkpKSolVm0KBB4uTkJGZmZuLv7y/r168v13tPTEyUdu3aibm5udSpU0fmzp2rtf7y5cs628y7jx4PY01/rE2ZMkUaNGggFhYW4ujoKIGBgbJ58+Zy1U0lMdb0x9qYMWPEy8tLzMzMxM3NTV5++WWJj48vV91UEmNNf6yJ/P2/xHv27ClXnaQfY01/rMXGxoqfn5+Ym5uLs7OzDBo0SK5du1auuqmkZznWvL29dbaprP7h3UePh7GmP9b+/e9/S9OmTcXKykrs7OykRYsWsmLFCiksLCxX/aSNsaY/1ubNmyf169cXCwsLcXJyktDQUDlw4EC56q7pVCIiICIiIiIiIiIiIoPhdEpEREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhERERERERERERkYk25ERERE/xChoaEYM2bMM7dvIiIiopqISTciIiKiZ1BsbCxUKhWysrIMsl1MTAxmzZpluAYSERERPeVMqrsBRERERPT0c3Jyqu4mEBEREdUovNONiIiI6CmUnZ2N8PBw2NjYwMPDAwsXLtRav2HDBrRq1Qq2trZwd3dH//79cePGDQBAeno6OnbsCABwdHSESqXCkCFDAAAajQZz5sxBvXr1YGlpiebNm2Pr1q1lblf88VIfHx98/PHHShu9vb2xfft23Lx5E7169YKNjQ38/f1x8uRJrXYfOXIE7du3h6WlJTw9PREVFYXs7GxDdx8RERFRpWPSjYiIiOgpNH78eBw6dAg//PAD9uzZg9jYWMTHxyvr8/PzMWvWLCQmJuL7779Henq6kiDz9PTEtm3bAAApKSnIyMjA0qVLAQBz5szB+vXrsWrVKpw9exZjx47FwIEDcejQoVK302Xx4sUIDg5GQkICevTogUGDBiE8PBwDBw5EfHw86tevj/DwcIgIACAtLQ3dunVDv379kJSUhC1btuDIkSOIiIiojC4kIiIiqlQqKfqWQ0RERERPBbVaDWdnZ/znP//Ba6+9BgC4ffs26tati+HDh2PJkiUltjl58iRat26Ne/fuwcbGBrGxsejYsSMyMzPh4OAAAMjNzYWTkxP27duHwMBAZdthw4YhJycHmzZt0rkd8PBOt4CAAGXfPj4+aN++PTZs2AAAuH79Ojw8PDB16lTMnDkTAPDrr78iMDAQGRkZcHd3x7Bhw2BsbIzPP/9cqffIkSMICQlBdnY2LCwsDNiLRERERJWLY7oRERERPWXS0tKQl5eHF198UVnm5OQEX19f5fWpU6cwffp0JCYmIjMzExqNBgBw9epVNGnSRGe9Fy9eRE5ODrp27aq1PC8vDy1atKhwO/39/ZV/u7m5AQCaNWtWYtmNGzfg7u6OxMREJCUlYePGjUoZEYFGo8Hly5fh5+dX4TYQERERVRcm3YiIiIj+YbKzsxEWFoawsDBs3LgRLi4uuHr1KsLCwpCXl6d3O7VaDQDYsWMH6tSpo7XO3Ny8wu0wNTVV/q1SqfQuK0oIqtVqjBgxAlFRUSXq8vLyqvD+iYiIiKoTk25ERERET5n69evD1NQUx44dU5JRmZmZuHDhAkJCQvDbb7/h1q1bmDt3Ljw9PQGgxIQFZmZmAIDCwkJlWZMmTWBubo6rV68iJCRE5751bWcoLVu2xLlz59CgQQOD101ERERU1TiRAhEREdFTxsbGBkOHDsX48eNx4MABJCcnY8iQITAyevjVzsvLC2ZmZli2bBkuXbqE7du3Y9asWVp1eHt7Q6VS4ccff8TNmzehVqtha2uLcePGYezYsVi3bh3S0tIQHx+PZcuWYd26dXq3M5SJEyfil19+QUREBE6fPo3U1FT88MMPnEiBiIiInkpMuhERERE9hebPn4/27dujZ8+e6NKlC9q1a4cXXngBAODi4oKvv/4a3333HZo0aYK5c+diwYIFWtvXqVMHM2bMwKRJk+Dm5qYktmbNmoWpU6dizpw58PPzQ7du3bBjxw7Uq1ev1O0Mwd/fH4cOHcKFCxfQvn17tGjRAtOmTUPt2rUNtg8iIiKiqsLZS4mIiIiIiIiIiAyMd7oREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBmZS3Q0gKo+CggLk5eVVdzOIiIiIiIiIqpWZmRlMTJjOeRrwU6IaTURw9epV/PXXX9XdFCIiIiIiIqIaoVatWvDy8oJKparuplApmHSjGq0o4VanTh3Y2NjAyIhPRBMREREREdGzSaPRQK1W49q1awAAb2/vam4RlYZJN6qxCgoKlISbu7t7dTeHiIiIiIiIqNrZ2NgAAK5du4azZ8+iXbt2sLOzq+ZWkS68bYhqrKIx3IpOKERERERERET09+/kixcv4scff8Tdu3eruUWkC5NuVOPxkVIiIiIiIiKivxX9TnZ3d0d6ejpSUlKquUWkC7MZRERERERERERPIWNjY6hUKqjV6upuCunApBtRNYiNjYVKpUJWVlZ1N4Xomefj44MlS5aUWmb69OkICAiokvZUtfT0dKhUKpw+fRoAz0//JP/kuK0sX3/9NRwcHJTX7EPDCw0NxZgxY6q7GTXekCFD0Lt3b+U1+42eJcXPxU+b6vhupVKpoNFoKq1+enxMuhER0TNB3xe4EydOYPjw4cprlUqF77//XqvMuHHjsH///kpuYeUr/iNOl6CgIGRkZMDe3r5qGkWVpiJx+ywml8qTcP+nHPs1SUxMDGbNmlVp9ZfnPFeTFP9xrk9l9xsRPR5+t6KycPZSIqJnWH6hwNRYpfd1ZcvLy4OZmVmV7U8XFxeXMsvY2Ng8M5O6mJmZPfGM0TXhcy2N5BdAZWqi9/XToLCwECqVqtRxT5+luK0shujD/Px8mJqaGqhFhpcvAlOVSu9rQ3Nycqq0uv/JnrTfynPOqI66nnaCAqge+Uld/HVNUNOvyc+CZ+G7FenHMyU9NUblRyMkd0C1/o3Kjy53e3NzcxEVFQVXV1dYWFigXbt2OHHihM6yOTk56N69O4KDg/lIF1UZEcHu8wVot1gNxwl30G6xGnvOF0BEKm2foaGhiIiIwJgxY1CrVi2EhYUBAJKTk9G9e3fY2NjAzc0NgwYNwl9//VViu4iICNjb26NWrVqYOnWqVltzc3Mxbtw41KlTB9bW1njxxRcRGxsL4OFt/W+//Tbu3LkDlUoFlUqF6dOnA9C+28XHxwcA0KdPH6hUKuV18buANBoNZs6cibp168Lc3BwBAQHYtWuXsr7ozoWYmBh07NgRVlZWaN68OY4ePaqUuXLlCnr27AlHR0dYW1ujadOm2Llzp96+y8zMRHh4OBwdHWFlZYXu3bsjNTVVWa/rTqUlS5ZovYd169bhhx9+UPqgqH8epesRiCNHjqB9+/awtLSEp6cnoqKikJ2draz38fHBrFmzEB4eDjs7O607B2saEUHB7oNQt3sFdxx9oW73Cgr2xFZJ3D9u/AJ/36m5fft2NGnSBObm5rh69SpiY2PRpk0bWFtbw8HBAcHBwbhy5QqAkjGhr+zXX3+NGTNmIDExUYmNr7/+GgCwaNEiNGvWDNbW1vD09MR7772nNWZMUbt2794NPz8/2NjYoFu3bsjIyNDqg6+++gpNmzaFubk5PDw8EBERoazLysrCsGHD4OLiAjs7O3Tq1AmJiYml9umZM2fQqVMnWFpawtnZGcOHD9dql65H8Xr37o0hQ4Yo669cuYKxY8cq71kXXcfVmjVr4OfnBwsLCzRu3BgrVqxQ1hUd+1u2bEFISAgsLCywcePGUt9LdRIR7L5XgHaX1HA8fwftLqmx517lXwce/Wx8fHzwySef4J133oGtrS28vLzwxRdflFrH1q1b0axZM+Xz79KlC7Kzs0s9z/3+++94/fXX4eDgACcnJ/Tq1Qvp6elKnUV3q8yYMUOJxZEjRyIvL6/Utmzbtk2JbR8fHyxcuFBrva67px0cHJRjrF69egCAFi1aQKVSITQ0tFz99rjnDF22b9+Ohg0bwsLCAh07dsS6deu0rgP66nrS6xLw+P1eEwgEBTiCbPTHXbRGNvqjAEcgqLzj5969exgwYACsra3h4eGBxYsX6zymdF2Ty4rVFStWKHHg5uaGV199VVmn75grTqPRoG7duli5cqXW8oSEBBgZGSnXp7KuLcXpuptszJgxWseLRqPBnDlzUK9ePVhaWqJ58+bYunVrqf3J71ZUFZh0o6fGOc1FHJPEav07p7lY7vZOmDAB27Ztw7p16xAfH48GDRogLCwMt2/f1iqXlZWFrl27QqPRYO/evU/1+AX09MgvFOw4W4B+X+bg+JVCZOcBx68Uou+XOdh5tgD5hZX3hXHdunUwMzNDXFwcVq1ahaysLHTq1AktWrTAyZMnsWvXLvzvf//D66+/XmI7ExMTHD9+HEuXLsWiRYuwZs0aZX1ERASOHj2KzZs3IykpCa+99hq6deuG1NRUBAUFYcmSJbCzs0NGRgYyMjIwbty4Em0rSoyvXbsWGRkZehPlS5cuxcKFC7FgwQIkJSUhLCwMr7zyitYXNQCYMmUKxo0bh9OnT6NRo0Z46623UFBQAAAYPXo0cnNz8fPPP+PMmTOYN29eqXfUDBkyBCdPnsT27dtx9OhRiAhefvll5Ofnl6vfx40bh9dff11JiGRkZCAoKKjM7dLS0tCtWzf069cPSUlJ2LJlC44cOaKVNAGABQsWoHnz5khISMDUqVPL1aaqJvkFKNixDzn9hqLweAKQnYPC4wnI6fsOCnbuh+QXVNq+nyR+i+Tk5GDevHlYs2YNzp49CycnJ/Tu3RshISFISkrC0aNHMXz4cJ0JpIKCAr1l33jjDXz44Ydo2rSpEhtvvPEGgIczo/373//G2bNnsW7dOhw4cAATJkzQqjsnJwcLFizAhg0b8PPPP+Pq1atax9fKlSsxevRoDB8+HGfOnMH27dvRoEEDZf1rr72GGzdu4KeffsKpU6fQsmVLdO7cucT1skh2djbCwsLg6OiIEydO4LvvvsO+fftKxGRpYmJiULduXcycOVN5z+WxceNGTJs2DbNnz8b58+fxySefYOrUqVi3bp1WuUmTJuH999/H+fPnlf9cqGnyRbDjXgH6/Z6D4/cLka0Bjt8vRN/fc7DzXgHyKzHxVtzChQvRqlUrJCQk4L333sOoUaP0zsKXkZGBt956C++88w7Onz+P2NhY9O3bFyKi9zyXn5+PsLAw2Nra4vDhw4iLi1MSxI8md/bv36/U+c033yAmJgYzZszQ2+5Tp07h9ddfx5tvvokzZ85g+vTpmDp1qpJQK4/jx48DAPbt24eMjAzExMSUa7vHOWe4urqWqOfy5ct49dVX0bt3byQmJmLEiBGYMmVKiXK66nrS61KRivZ7TSAoQAEO4T4iUYgkAPdRiCTcRyQKcAiCyrmefPDBB4iLi8P27duxd+9eHD58GPHx8SXKFb8mlxWrJ0+eRFRUFGbOnImUlBTs2rULHTp0AFD6MVeckZER3nrrLWzatElr+caNGxEcHAxvb2+lXFnXloqaM2cO1q9fj1WrVuHs2bMYO3YsBg4ciEOHDundht+tqEoIUQ2VnZ0tJ0+elOzsbBER6fCgv5jfb1qtfx0e9C9X29VqtZiamsrGjRuVZXl5eVK7dm359NNP5eDBgwJAzp8/L/7+/tKvXz/Jzc2tlH4k0id40T0xfT+rxF+7xfcqbZ8hISHSokULrWWzZs2Sl156SWvZ77//LgAkJSVF2c7Pz080Go1SZuLEieLn5yciIleuXBFjY2O5du2aVj2dO3eWyZMni4jI2rVrxd7evkSbvL29ZfHixcprAPLf//5Xq0x0dLQ0b95ceV27dm2ZPXu2VpnWrVvLe++9JyIily9fFgCyZs0aZf3Zs2eV415EpFmzZjJ9+vQS7dHlwoULAkDi4uKUZX/99ZdYWlrKt99+q7ONIiKLFy8Wb29v5fXgwYOlV69eWmWK2pqQkCAiopyfMjMzRURk6NChMnz4cK1tDh8+LEZGRnL//n0RediHvXv3Ltd7qW73gntKlmndEn/32r1Safs0VPwCkNOnTyvrb926JQAkNjZW534fjYmKlC3Nd999J87OzsrronZdvHhRWfbZZ5+Jm5ub8rp27doyZcoUnfUdPnxY7Ozs5MGDB1rL69evL59//rnObb744gtxdHQUtVqtLNuxY4cYGRnJ9evXReRhn7///vta2/Xq1UsGDx6svC5+7Be9n0fPE8X7pX79+rJp0yatbWbNmiWBgYEi8vfxtGTJEp1tr2mC0+6JaXJWib92aZV7HXj0s/H29paBAwcqrzUajbi6usrKlSt1bn/q1CkBIOnp6TrX6zrPbdiwQXx9fbWOwdzcXLG0tJTdu3cr2zk5OSnfO0VEVq5cKTY2NlJYWKhzX/3795euXbtqLRs/frw0adJEea3rmmJvby9r164VkZLnYH3v49F+e9xzhi4TJ06U559/XmvZlClTtK4Duuoy5HWpov1eU6jlLbkjTUv8qaV8vxcq6u7du2JqairfffedsiwrK0usrKxKHFPFr8llxeq2bdvEzs5O7t69W2K/ZR1zxSUkJIhKpZIrV66IiEhhYaHUqVNH7zEtovva8ui5WNdx/f7770tISIiIiDx48ECsrKzkl19+0SozdOhQeeutt3Tu85/w3aro9/LWrVtlzpw5sm/fvlLLU/XgnW5ElSAtLQ35+fkIDg5WlpmamqJNmzY4f/68sqxr165o0KABtmzZwmf0qcqdzSis0HJDeeGFF7ReJyYm4uDBg8rYSTY2NmjcuDGAh8dSkbZt22rdwRMYGIjU1FQUFhbizJkzKCwsRKNGjbTqOXTokFYdhnD37l38+eefWsc3AAQHB2sd3wDg7++v/NvDwwMAcOPGDQBAVFQUPv74YwQHByM6OhpJSUl693n+/HmYmJjgxRdfVJY5OzvD19e3xD4NLTExEV9//bVWv4aFhUGj0eDy5ctKuVatWlVqOwyl8Kzuu2f0LTcUQ8SvmZmZVkw5OTlhyJAhCAsLQ8+ePbF06VK9d2xVpOyj9u3bh86dO6NOnTqwtbXFoEGDcOvWLeTk5ChlrKysUL9+feW1h4eHEuc3btzAn3/+ic6dO+usPzExEWq1Gs7Ozlrv/fLly3qP3fPnz6N58+awtrZWlgUHB0Oj0ei9O8oQsrOzkZaWhqFDh2q19eOPPy7R1qfleDibq+c6oGd5ZXk0rlUqFdzd3ZUYKq558+bo3LkzmjVrhtdeew2rV69GZmZmqfUnJibi4sWLsLW1VT43JycnPHjwQOuza968OaysrJTXgYGBUKvV+P3333XWe/78eZ3XgqJju7I87jlDl5SUFLRu3VprWZs2bUqUK16XIa9LFe33mqIQqRVa/qQuXbqE/Px8rc/H3t4evr6+JcoWPweVFatdu3aFt7c3nnvuOQwaNAgbN25UzvMVPeYCAgLg5+en3O126NAh3LhxA6+99ppSpjzXloq4ePEicnJy0LVrV61jYv369aVeS/jdiqpCzRrlkegZ06NHD2zbtg3nzp1Ds2bNqrs59Ixp6mGM41dK/iho6mFcqft99IcyAKjVavTs2RPz5s0rUbYoUVUWtVoNY2NjnDp1CsbG2u2vzoHkHx08vSjhUjSd+7BhwxAWFoYdO3Zgz549mDNnDhYuXIjIyMjH2peRkVGJRz0q+oiPLmq1GiNGjEBUVFSJdV5eXsq/i3+uNZVxU9+Hj5bqWF5dyhu/lpaWJR4dXbt2LaKiorBr1y5s2bIFH330Efbu3Yu2bduW2E9FygIPxyf7v//7P4waNQqzZ8+Gk5MTjhw5gqFDhyIvL0/5kVx8kgCVSqXEoqWlZZnv3cPDQ+cYOE8y3EJlHA9F4w2tXr1a60cagBKf29NyPDQ1N8bx+zquA+aVex0oTlcMFZ0rizM2NsbevXvxyy+/YM+ePVi2bBmmTJmCY8eOKeOjFadWq/HCCy/oHF+vPJPpPIlHj4cihojFxz1nPK7Hqauyrks1hTEa/v9HS0sur24VPQfZ2toiPj4esbGx2LNnD6ZNm4bp06fjxIkTcHBwqPAxN2DAAGzatAmTJk3Cpk2b0K1bNzg7OwMo/7XlUWXFUtH5eceOHahTp45WOXNz8wr1RUX2+7j+ad+tqHRMutFTo4lRA0D396+qbUM51K9fXxmzqmjsgvz8fJw4cUJroNO5c+fCxsYGnTt3RmxsLJo0aVIZzSYqIb9QMLmrOfp+mYNHv0uoVMCkLuZVOotpy5YtsW3bNvj4+MDERP9l6dixY1qvf/31VzRs2BDGxsZo0aIFCgsLcePGDbRv317n9mZmZuW688DU1LTUcnZ2dqhduzbi4uIQEhKiLI+Li9N5d0BpPD09MXLkSIwcORKTJ0/G6tWrdSbd/Pz8UFBQgGPHjiljhdy6dQspKSnKecPFxQXXr1+HiCg/jE6fPq1VT3n74FEtW7bEuXPntMbgelpJfgHMJ0chp+87KB745pMiK3UW0yeN39K0aNECLVq0wOTJkxEYGIhNmzbpTaTpK6srNk6dOgWNRoOFCxcqsxR+++23FWqbra0tfHx8sH//fnTs2LHE+pYtW+L69eswMTHRGly9NH5+fvj666+RnZ2t/CCJi4uDkZGRcseHi4uL1p18hYWFSE5O1mpDRY8HNzc31K5dG5cuXcKAAQPKvV1NlS+CybXM0ff3HK1h31UAJtUyr/RZTJ+ESqVCcHAwgoODMW3aNHh7e+O///0vPvjgA52fa8uWLbFlyxa4urrCzs5Ob72JiYm4f/++kiz+9ddfYWNjA09PT53l/fz8EBcXp7UsLi4OjRo1UpJhxWMxNTVV626eoicdKhKLT3rOeJSvr2+JSXz0jWf6KENdl4CK93tNICiAGYbjPiKBYkeQGd6tlFlMn3vuOZiamuLEiRNKYubOnTu4cOGCMv6aPuWJVRMTE3Tp0gVdunRBdHQ0HBwccODAAfTt27fUY06X/v3746OPPsKpU6ewdetWrFq1Sln3ONcWFxcXJCcnay07ffq0krB/dIKPR7+bldUn/G5FVYFJN3pqrDSt2QOqPsra2hqjRo3C+PHj4eTkBC8vL3z66afIycnB0KFDtWZlW7BgAQoLC9GpUyfExsYqj9URVSZTYxVebmqCmKFWmLsvF2czCtHUwxiTupjj5aYmBvuf8fIYPXo0Vq9ejbfeegsTJkyAk5MTLl68iM2bN2PNmjXKl8GrV6/igw8+wIgRIxAfH49ly5YpM281atQIAwYMQHh4OBYuXIgWLVrg5s2b2L9/P/z9/dGjRw/4+PhArVZj//79yqMsuv43tShBEBwcDHNzczg6OpYoM378eERHR6N+/foICAjA2rVrcfr06QrNUjhmzBh0794djRo1QmZmJg4ePAg/Pz+dZRs2bIhevXrh3Xffxeeffw5bW1tMmjQJderUQa9evQA8nNnu5s2b+PTTT/Hqq69i165d+Omnn7R+YPr4+GD37t1ISUmBs7Mz7O3ty2znxIkT0bZtW0RERGDYsGGwtrbGuXPnsHfvXixfvrzc77cmUJmawOTlzrCK+Qq5c5eh8GwKjJv6wnxSJExe7lypcf+k8avL5cuX8cUXX+CVV15B7dq1kZKSgtTUVISHh1e4rI+PDy5fvozTp0+jbt26sLW1RYMGDZCfn49ly5ahZ8+eyuQnFTV9+nSMHDkSrq6u6N69O+7du4e4uDhERkaiS5cuCAwMRO/evfHpp5+iUaNG+PPPP7Fjxw706dNH56M1AwYMQHR0NAYPHozp06fj5s2biIyMxKBBg+Dm5gYA6NSpEz744APs2LED9evXx6JFi0rMDu7j44Off/4Zb775JszNzVGrVq0y38uMGTMQFRUFe3t7dOvWDbm5uTh58iQyMzP1/visqUxVKrxsa4IYTyvM/SsXZ3ML0dTcGJNqmeNl26q9DlTEsWPHsH//frz00ktwdXXFsWPHcPPmTeX8qes8N2DAAMyfPx+9evVSZp6+cuUKYmJiMGHCBNStWxcAkJeXh6FDh+Kjjz5Ceno6oqOjERERoSQGivvwww/RunVrzJo1C2+88QaOHj2K5cuXa81o26lTJyxfvhyBgYEoLCzExIkTte7sc3V1haWlJXbt2oW6devCwsKizHPz454zdBkxYgQWLVqEiRMnYujQoTh9+rQyuH5pMWCo6xJQ8X6vCVQwgQlCYIllyMNqFCIVxmgIM7wLE4RABcMfP7a2thg8eLDy+8LV1RXR0dEwMjIq83gtK1Z//PFHXLp0CR06dICjoyN27twJjUYDX1/fMo85XXx8fBAUFIShQ4eisLAQr7zyirLuca4tnTp1wvz587F+/XoEBgbiP//5D5KTk9GiRQulb8aNG4exY8dCo9GgXbt2uHPnDuLi4mBnZ4fBgweXqJPfrajKVNdgckRlKT6RwtPm/v37EhkZKbVq1RJzc3MJDg6W48ePi0jJwTRFRCIjI8XDw0MZOJ6oKuQVaEp9bWi6BjcXeTiYbZ8+fcTBwUEsLS2lcePGMmbMGGXQ65CQEHnvvfdk5MiRYmdnJ46OjvKvf/1La1DsvLw8mTZtmvj4+Iipqal4eHhInz59JCkpSSkzcuRIcXZ2FgASHR0tIiUHU9++fbs0aNBATExMlIFyiw+kW1hYKNOnT5c6deqIqampNG/eXH766Sdlva6BsTMzMwWAHDx4UEREIiIipH79+mJubi4uLi4yaNAg+euvv/T23e3bt2XQoEFib28vlpaWEhYWJhcuXNAqs3LlSvH09BRra2sJDw+X2bNnaw32e+PGDenatavY2NgobSlrsF8RkePHjyvbWVtbi7+/v9ZEEroGpK/JNHn5pb42NEPEr66JQK5fvy69e/cWDw8PMTMzE29vb5k2bZoy+PijcVtW2QcPHki/fv3EwcFBACiDvC9atEg8PDyUmFu/fn2JAdaLt+u///2vFP+KuWrVKvH19VXeW2RkpLLu7t27EhkZKbVr1xZTU1Px9PSUAQMGyNWrV/X2aVJSknTs2FEsLCzEyclJ3n33Xbl37+/B//Py8mTUqFHi5OQkrq6uMmfOnBITKRw9elT8/f3F3NxcaW9ZEymIiGzcuFECAgLEzMxMHB0dpUOHDhITEyMi+gfFr8nyNJpSXxuarokUip8/mjdvrpyjizt37pyEhYWJi4uLmJubS6NGjWTZsmXKel3nORGRjIwMCQ8PV76XPffcc/Luu+/KnTt3ROTvwdCnTZsmzs7OYmNjI++++26JST6K27p1qzRp0kRMTU3Fy8tL5s+fr7X+2rVr8tJLL4m1tbU0bNhQdu7cqTWRgojI6tWrxdPTU4yMjJSB4UubSEHk8c4Z+vzwww/SoEEDMTc3l9DQUFm5cqUAUAZ011eXIa5Lj9vvNYVG8kt9bWh3796V/v37i5WVlbi7u8uiRYukTZs2MmnSJKWMvmtyabF6+PBhCQkJEUdHR7G0tBR/f3/ZsmWLiJR9zOmzYsUKASDh4eEl1j3OtWXatGni5uYm9vb2MnbsWImIiFCOF5GHk7AsWbJEuda4uLhIWFiYHDp0SG8bn/bvVpxI4emgEqnC+cCJKiAnJwfnz5+Hn5+fzrtRiOjZERoaioCAACxZsqS6m0JUYYxfoppvyJAhyMrKwvfff1/dTal2s2fPxqpVq6pkIgP2+5PJzs5GnTp1sHDhQgwdOrS6m0NVrOj3cnp6OlJTU9G6dWu9ExdR9eHjpURERERERM+oFStWoHXr1nB2dkZcXBzmz5+PiIiI6m4W6ZCQkIDffvsNbdq0wZ07dzBz5kwAUB6HJKKah0k3IiIiIiKiZ1Rqaio+/vhj3L59G15eXvjwww8xefLk6m4W6bFgwQKkpKTAzMwML7zwAg4fPlyuMSmJqHrw8VKqsfh4KREREREREVFJfLz06VBzp4QhIiIiIiIiIiJ6SjHpRkREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhHVELGxsVCpVMjKynqietLT06FSqXD69GmDtKuiQkNDMWbMmGrZNxEREREREVFNYVLdDSCih4KCgpCRkQF7e/snqsfT0xMZGRmoVauWgVqmW2xsLDp27IjMzEw4ODgoy2NiYmBqalqp+y5LaGgoAgICsGTJkmptBxERERERET27mHQjqiHMzMzg7u7+xPUYGxsbpJ7H5eTkVG37JiIiIiIiIqop+HgpUSUIDQ1FZGQkxowZA0dHR7i5uWH16tXIzs7G22+/DVtbWzRo0AA//fSTsk3xx0uvXLmCnj17wtHREdbW1mjatCl27twJAMjMzMSAAQPg4uICS0tLNGzYEGvXrgVQ8vHSonr379+PVq1awcrKCkFBQUhJSdFq88cffwxXV1fY2tpi2LBhmDRpEgICAnS+v/T0dHTs2BEA4OjoCJVKhSFDhijv/dHHS318fPDxxx8jPDwcNjY28Pb2xvbt23Hz5k306tULNjY28Pf3x8mTJ7X2ceTIEbRv3x6Wlpbw9PREVFQUsrOzlfUrVqxAw4YNYWFhATc3N7z66qsAgCFDhuDQoUNYunQpVCoVVCoV0tPTUVhYiKFDh6JevXqwtLSEr68vli5dqrXPIUOGoHfv3vjkk0/g5uYGBwcHzJw5EwUFBRg/fjycnJxQt25dpa8f7e/NmzcjKCgIFhYWeP7553Ho0CF94UFERERERETPACbdiCrJunXrUKtWLRw/fhyRkZEYNWoUXnvtNQQFBSE+Ph4vvfQSBg0ahJycHJ3bjx49Grm5ufj5559x5swZzJs3DzY2NgCAqVOn4ty5c/jpp59w/vx5rFy5sszHSadMmYKFCxfi5MmTMDExwTvvvKOs27hxI2bPno158+bh1KlT8PLywsqVK/XW5enpiW3btgEAUlJSkJGRUSKB9ajFixcjODgYCQkJ6NGjBwYNGoTw8HAMHDgQ8fHxqF+/PsLDwyEiAIC0tDR069YN/fr1Q1JSErZs2YIjR44gIiICAHDy5ElERUVh5syZSElJwa5du9ChQwcAwNKlSxEYGIh3330XGRkZyMjIgKenJzQaDerWrYvvvvsO586dw7Rp0/Cvf/0L3377rVZbDxw4gD///BM///wzFi1ahOjoaPzf//0fHB0dcezYMYwcORIjRozAH3/8obXd+PHj8eGHHyIhIQGBgYHo2bMnbt26VepnQkRERERERP9cKin6lUtUw+Tk5OD8+fPw8/ODlZWV1jpRX4dkX9fewMIBRvY+kIIHkFu/lajPyC0AAKC5fQHI1050qey9oLJwguTchNy7pr2hmQ2MHBtUqO2hoaEoLCzE4cOHAQCFhYWwt7dH3759sX79egDA9evX4eHhgaNHj6Jt27Ylxkjz9/dHv379EB0dXaL+V155BbVq1cJXX31VYl16ejrq1auHhIQEBAQEKPXu27cPnTt3BgDs3LkTPXr0wP3792FhYYG2bduiVatWWL58uVJPu3btoFar9U7IoG9Mt+Ljqfn4+KB9+/bYsGGD1vueOnUqZs6cCQD49ddfERgYiIyMDLi7u2PYsGEwNjbG559/rtR75MgRhISEIDs7Gzt37sTbb7+NP/74A7a2tjr7vzxjukVEROD69evYunUrgId3usXGxuLSpUswMnr4fxKNGzeGq6srfv75ZwB/f5Zr1qzBm2++qfT33LlzMXHiRABAQUEB6tWrh8jISEyYMKHUNhAREREREVVU0e/l9PR0pKamonXr1srvPao5OKYbPZUKznyFwl/naC0zavwGzLqvgaivIW9T+xLbWIy9BwDI3zMSknFCa51pt9Uw9nsThRf+i4KDH2rX690ZZn2/r3Ab/f39lX8bGxvD2dkZzZo1U5a5ubkBAG7cuKFz+6ioKIwaNQp79uxBly5d0K9fP6XOUaNGoV+/fsodc71790ZQUFC52+Ph4aHs28vLCykpKXjvvfe0yrdp0wYHDhyowDsu376L3re+vnB3d0diYiKSkpKwceNGpYyIQKPR4PLly+jatSu8vb3x3HPPoVu3bujWrRv69OlTIjlb3GeffYavvvoKV69exf3795GXl1fiEdqmTZsqCbeitj3//PPK66LPsvjnFhgYqPzbxMQErVq1wvnz58vqGiIiIiIiIvqHYtKNnkomzd6B8XMvay+0cAAAqGzqwKz/Yb3bmr60SuedbgBg3KgPjDzaaG9gZvNYbSw+g6dKpdJaplKpAAAajUbn9sOGDUNYWBh27NiBPXv2YM6cOVi4cCEiIyPRvXt3XLlyBTt37sTevXvRuXNnjB49GgsWLChXe8rat6Hp2ndp7VGr1RgxYgSioqJK1OXl5QUzMzPEx8cjNjYWe/bswbRp0zB9+nScOHFC6667R23evBnjxo3DwoULERgYCFtbW8yfPx/Hjh3T29aitulaVlV9R0RERERERE8nJt3oqaSycYfKRvcMnSoTC6j+/6Okuhg5NdJfr5ULVFYuT9o8g/H09MTIkSMxcuRITJ48GatXr0ZkZCQAwMXFBYMHD8bgwYPRvn17jB8/vtSkW2l8fX1x4sQJhIeHK8tOnDhRyhYPZ1sFHj5uaWgtW7bEuXPn0KCB/sd6TUxM0KVLF3Tp0gXR0dFwcHDAgQMH0LdvX5iZmZVoV1xcHIKCgrTu6EtLSzNYm3/99VdlXLmCggKcOnVKGYOOiIiIiIiInj1MuhHVUGPGjEH37t3RqFEjZGZm4uDBg/Dz8wMATJs2DS+88AKaNm2K3Nxc/Pjjj8q6xxEZGYl3330XrVq1QlBQELZs2YKkpCQ899xzerfx9vaGSqXCjz/+iJdffhmWlpbKRA9PauLEiWjbti0iIiIwbNgwWFtb49y5c9i7dy+WL1+OH3/8EZcuXUKHDh3g6OiInTt3QqPRwNfXF8DDceSOHTuG9PR02NjYwMnJCQ0bNsT69euxe/du1KtXDxs2bMCJEydQr149g7T5s88+Q8OGDeHn54fFixcjMzNTa7IKIiIiIiIierZw9lKiGqqwsBCjR4+Gn58funXrhkaNGmHFihUAHt5lNnnyZPj7+6NDhw4wNjbG5s2bH3tfAwYMwOTJkzFu3Di0bNkSly9fxpAhQ2BhYaF3mzp16mDGjBmYNGkS3NzcDHpXl7+/Pw4dOoQLFy6gffv2aNGiBaZNm4batWsDABwcHBATE4NOnTrBz88Pq1atwjfffIOmTZsCAMaNGwdjY2M0adIELi4uuHr1KkaMGIG+ffvijTfewIsvvohbt26VGMfuScydOxdz585F8+bNceTIEWzfvr3MGWWJiIiIiIjon4uzl1KNVdrspVT5unbtCnd3d2XWUdKt+GyxRERERERElY2zlz4d+HgpESEnJwerVq1CWFgYjI2N8c0332Dfvn3Yu3dvdTeNiIiIiIiI6KnEpBsRQaVSYefOnZg9ezYePHgAX19fbNu2DV26dKnuphERERERERE9lZh0IyJYWlpi37591d2Mp5KPjw/4lD4REREREREVx4kUiIiIiIiIiIiIDIxJN6rxNBpNdTeBiIiIiIiIqMbg7+SnA5NuVGOZmZkBANRqdTW3hIiIiIiIiKjmKPqdnJ+fX80todJwTDeqsUxMTFCrVi1cu3YNAGBjYwMjI+aJiYiIiIiI6Nmk0WigVqtx7do1ZGVl8Y63Go5JN6rRvLy8AEBJvBERERERERE967KysvC///0PACAiMDc3r+YWkS5MulGNplKp4O3tDWtra/z0009Qq9VwcXGBSqWq7qYRERERERERVbn8/HxoNBqICG7fvg1zc3O4uLhUd7NIB5WISHU3gqg8/vjjD+zcuRO3b9+u7qYQERERERERVTtLS0u0b98eLVq04M0pNRCTbvRUuX37Nm7duoW8vLzqbgoRERERERFRtTE2NoadnR08PDyYcKuhmHQjIiIiIiIiIiIyME4FSUREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGD/D3rykYqFLQpGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_plot(obstype='temp', colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "a00c0384-0115-4c7d-ab9f-a0bb963922db", + "metadata": {}, + "source": [ + "If you are interested in the performance of the applied QC, you can use the [get_qc_stats()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check) method to get an overview of the frequency statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a9707e22-b29a-4e79-9e8d-e321d4dba651", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBwAAANoCAYAAABjj/lcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU+f8H8NfsEkuHoCAqGIDdZwcmdpytZ3frmXd2n54YZydYZ+eZWJzY2N2gZ4uCCkjtzu8Pv8yPpSQWhng9ffCQnf3MzHtmh5nZ93xCEEVRBBERERERERGRDinkDoCIiIiIiIiIsh8mHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIgoUQEBARAEAfPnz9fZMn18fCAIAnx8fH5Y1s/PD9WqVYOJiQkEQcCNGzd0FgfJz8nJCT169NDZ8gRBwNSpU3W2vKwkob+rHj16wMnJSbaYkkvXx4Gubdq0CUWLFoW+vj4sLS3lDoeIiChLYcKBKJvx8vKCIAi4cuWK3KGkSVRUFNq1a4dPnz5h4cKF2LRpExwdHeUOK0cJCwvD1KlTk5UcSsz58+cxdepUBAcH6ySmw4cP59ikglwy43GQUR48eIAePXqgcOHCWLNmDVavXp0u64lJ7ibnJyAgIF1iyApmz56Nffv2yR0GERGlgJ7cARARJeTp06d4/vw51qxZgz59+sgdTo4UFhaGadOmAQDc3NxStYzz589j2rRp6NGjR7ynww8fPoRCkbK89+HDh7Fs2bIEkw7fvn2Dnh4va7qWGY+DjOLj4wONRoPFixejSJEi6bYeW1tbbNq0SWuah4cHXr58iYULF8Yrm1PNnj0bbdu2RatWreQOhYiIkol3ZkSUKb1//x4AklWFOTQ0FCYmJukcEemaoaGhTpenUql0ujzKGLo+DnQpJeeh5AoLC4OxsbHWNBMTE/zyyy9a07Zt24agoKB407MLjUaDyMjILPV3y2sNEVHKZc5HCkSUriIjIzF58mRUqFABFhYWMDExQc2aNXH69OlE51m4cCEcHR1hZGSE2rVr486dO/HKPHjwAG3btoW1tTVUKhUqVqyIAwcOpDi+Hj16oHbt2gCAdu3aQRAE6clqjx49YGpqiqdPn6JJkyYwMzNDly5dAHy/gV20aBFKlCgBlUqFPHnyoH///ggKCtJaviiKmDlzJvLlywdjY2PUqVMHd+/ejdeWfOrUqRAEIV58Mc1W4lZtPnLkCGrWrAkTExOYmZmhadOmuHv3brxtMzU1xatXr9CqVSuYmprC1tYWo0ePhlqt1iob82S1VKlSUKlUsLW1RaNGjaTmMrVr10aZMmUS3Ieurq5wd3dPcj9fuXIF7u7usLGxgZGREQoWLIhevXoB+F7FO+ZJ6rRp06Tq3DE1C27duoUePXqgUKFCUKlUsLOzQ69evfDx40et/TdmzBgAQMGCBeNVCY+7v6OiojBt2jQ4OztDpVIhV65cqFGjBo4fPy7tu2XLlgGAVhXzGAn14fDq1Sv07t0befPmhaGhIQoWLIiBAwciMjIyWetMyrNnz9CuXTtYW1vD2NgYVapUwaFDh7TKxPStsGPHDsyaNQv58uWDSqVCvXr18OTJkx+u4/nz5xg0aBBcXV1hZGSEXLlyoV27djqtVp/ZjgNA9/v28ePHaNOmDezs7KBSqZAvXz507NgRnz9/TnS/ODk5YcqUKQC+1yqIe3wtX74cJUqUgKGhIfLmzYvBgwfHazLi5uaGkiVL4urVq6hVqxaMjY3x+++/J/5h/EBERASmTJmCIkWKwNDQEPnz58fYsWMRERGhVU4QBAwZMgQ7d+5E8eLFYWRkhKpVq+L27dsAgFWrVqFIkSJQqVRwc3OLdzzFjrtatWrScbFy5co0x7RlyxZpvx09ehQAMH/+fFSrVg25cuWCkZERKlSogF27dsWbPzQ0FBs2bJCOoZjjJrH+SuKew2Oarnh5ecUrG/fzjZn33r176Ny5M6ysrFCjRo148xERUdJYw4EoB/ry5QvWrl2LTp06oW/fvvj69SvWrVsHd3d3XL58GWXLltUqv3HjRnz9+hWDBw9GeHg4Fi9ejLp16+L27dvIkycPAODu3buoXr06HBwcMH78eJiYmGDHjh1o1aoVdu/ejdatWyc7vv79+8PBwQGzZ8/GsGHD8NNPP0nrAYDo6Gi4u7ujRo0amD9/vvS0sH///vDy8kLPnj0xbNgw+Pv7Y+nSpbh+/TrOnTsHfX19AMDkyZMxc+ZMNGnSBE2aNMG1a9fQsGFD6UtoamzatAndu3eHu7s75s6di7CwMKxYsQI1atTA9evXtW6G1Wo13N3dUblyZcyfPx8nTpyAh4cHChcujIEDB0rlevfuDS8vLzRu3Bh9+vRBdHQ0fH19cfHiRVSsWBFdu3ZF3759cefOHZQsWVKaz8/PD48ePcLEiRMTjff9+/do2LAhbG1tMX78eFhaWiIgIAB79uwB8P0L1ooVKzBw4EC0bt0aP//8MwCgdOnSAIDjx4/j2bNn6NmzJ+zs7HD37l2sXr0ad+/excWLFyEIAn7++Wc8evQIW7duxcKFC2FjYyMtOyFTp07FnDlz0KdPH1SqVAlfvnzBlStXcO3aNTRo0AD9+/fH69evcfz48XjVzxPy+vVrVKpUCcHBwejXrx+KFi2KV69eYdeuXQgLC4OBgcEP15mYd+/eoVq1aggLC8OwYcOQK1cubNiwAS1atMCuXbviHe9//PEHFAoFRo8ejc+fP2PevHno0qULLl26lOQ2+Pn54fz58+jYsSPy5cuHgIAArFixAm5ubrh37168J+UplRmPA13v28jISLi7uyMiIgJDhw6FnZ0dXr16hYMHDyI4OBgWFhYJxrFo0SJs3LgRe/fuxYoVK2Bqaipt99SpUzFt2jTUr18fAwcOxMOHD7FixQr4+flpnWsA4OPHj2jcuDE6duyIX375RetclhIajQYtWrTA2bNn0a9fPxQrVgy3b9/GwoUL8ejRo3h9G/j6+uLAgQMYPHgwAGDOnDlo1qwZxo4di+XLl2PQoEEICgrCvHnz0KtXL5w6dUpr/qCgIDRp0gTt27dHp06dsGPHDgwcOBAGBgZSQiqlMZ06dQo7duzAkCFDYGNjI50XFy9ejBYtWqBLly6IjIzEtm3b0K5dOxw8eBBNmzYF8P0cG/N32q9fPwBA4cKFU7UvU6Jdu3ZwdnbG7NmzIYpiuq+PiCjbEYkoW/H09BQBiH5+fomWiY6OFiMiIrSmBQUFiXny5BF79eolTfP39xcBiEZGRuLLly+l6ZcuXRIBiCNHjpSm1atXTyxVqpQYHh4uTdNoNGK1atVEZ2dnadrp06dFAOLp06eT3I6Ycjt37tSa3r17dxGAOH78eK3pvr6+IgBxy5YtWtOPHj2qNf39+/eigYGB2LRpU1Gj0Ujlfv/9dxGA2L17d2nalClTxIROkzH72N/fXxRFUfz69atoaWkp9u3bV6vc27dvRQsLC63pMfFPnz5dq2y5cuXEChUqSK9PnTolAhCHDRsWb/0xcQcHB4sqlUocN26c1vvDhg0TTUxMxJCQkHjzxti7d+8Pj5MPHz6IAMQpU6bEey8sLCzetK1bt4oAxDNnzkjT/vzzT619FZujo6PW/i5TpozYtGnTROMRRVEcPHhwgp+JKIrxYu3WrZuoUCgS3MaYfZicdSZkxIgRIgDR19dXmvb161exYMGCopOTk6hWq0VR/P/juFixYlp/c4sXLxYBiLdv305yPQnt5wsXLogAxI0bN0rTEvq76t69u+jo6Jjk8jPjcaDrfXv9+vUEzyXJEXMO+PDhgzQt5hzSsGFDKRZRFMWlS5eKAMT169dL02rXri0CEFeuXJnidTdt2lTr89u0aZOoUCi09osoiuLKlStFAOK5c+ekaQBEQ0NDrf29atUqEYBoZ2cnfvnyRZr+22+/xftsYuL28PCQpkVERIhly5YVc+fOLUZGRqYqJoVCId69ezfetsY9jiIjI8WSJUuKdevW1ZpuYmKidazESOxYj3sOj7mmeXp6xisb9xiPmbdTp07xyhIRUfKxSQVRDqRUKmFgYADg+xOqT58+ITo6GhUrVsS1a9filW/VqhUcHByk15UqVULlypVx+PBhAMCnT59w6tQptG/fHl+/fkVgYCACAwPx8eNHuLu74/Hjx3j16pVOtyF2TQAA2LlzJywsLNCgQQNp/YGBgahQoQJMTU2l5iInTpxAZGQkhg4dqlXVdsSIEamO5fjx4wgODkanTp201q1UKlG5cuUEm6oMGDBA63XNmjXx7Nkz6fXu3bshCIJUpTu2mLgtLCzQsmVLbN26VXryplarsX37drRq1SrJtsYxbdIPHjyIqKioFG+zkZGR9Ht4eDgCAwNRpUoVAEjwGEoOS0tL3L17F48fP07V/LFpNBrs27cPzZs3R8WKFeO9H7MPU7vOw4cPo1KlSlpVrE1NTdGvXz8EBATg3r17WuV79uwp/c0B3z9vAFqfeUJi7+eoqCh8/PgRRYoUgaWlZar3c2yZ8TjQ9b6NqcFw7NgxhIWFpSqm2GLOISNGjNDq7LJv374wNzeP1/TD0NAQPXv2TPN6d+7ciWLFiqFo0aJa55m6desCQLzzTL169bRqVlWuXBkA0KZNG5iZmcWbHvdY1NPTQ//+/aXXBgYG6N+/P96/f4+rV6+mKqbatWujePHi8bYt9nEUFBSEz58/o2bNmjo5xtMq7rmaiIhShgkHohxqw4YNKF26tNRu3dbWFocOHUqwTbOzs3O8aS4uLlK73ydPnkAURUyaNAm2trZaPzFfmGM6X9MFPT095MuXT2va48eP8fnzZ+TOnTteDCEhIdL6nz9/nuA22drawsrKKlXxxHxZrVu3brx1e3t7x9v2mP4YYrOystLqa+Lp06fImzcvrK2tk1x3t27d8OLFC/j6+gL4/mXo3bt36Nq1a5Lz1a5dG23atMG0adNgY2ODli1bwtPTM16768R8+vQJw4cPR548eWBkZARbW1sULFgQAJJsF5+U6dOnIzg4GC4uLihVqhTGjBmDW7dupWpZHz58wJcvX7Samuhync+fP4erq2u86cWKFZPej61AgQJar2OOtbj9i8T17ds3TJ48Gfnz54ehoSFsbGxga2uL4ODgVO/n2DLjcaDrfVuwYEH8+uuvWLt2LWxsbODu7o5ly5alKT4A8WI0MDBAoUKF4sXn4OCglRBJrcePH+Pu3bvxzjEuLi4A4p9j4+6XmMRL/vz5E5we91jMmzdvvKRlzLpizv0pjSnm2Ijr4MGDqFKlClQqFaytraWmPLo4xtMqsZiJiCh52IcDUQ60efNm9OjRA61atcKYMWOQO3duKJVKzJkzB0+fPk3x8jQaDQBg9OjRiXZUqMsh5QwNDeMNo6fRaJA7d25s2bIlwXlSM5RcQh1GAkiwc0fgextjOzu7eOXjDtWoVCpTHEti3N3dkSdPHmzevBm1atXC5s2bYWdnh/r16yc5nyAI2LVrFy5evIh//vkHx44dQ69eveDh4YGLFy/C1NQ0yfnbt2+P8+fPY8yYMShbtixMTU2h0WjQqFEjaX+kVK1atfD06VPs378f3t7eWLt2LRYuXIiVK1em29CoGbXOxD5z8QdtwocOHQpPT0+MGDECVatWhYWFBQRBQMeOHVO9n2PLjMdBSiVn33p4eKBHjx7S5zxs2DDMmTMHFy9ejJe81LXYT+/TQqPRoFSpUliwYEGC78dNJCS2X1J7LOoipoT2ha+vL1q0aIFatWph+fLlsLe3h76+Pjw9PfH3338nK47knquTW+5HMRMRUfIx4UCUA+3atQuFChXCnj17tG7AEqq+DyDB6uaPHj2SqusWKlQIAKCvr//DL7rppXDhwjhx4gSqV6+e5A2io6MjgO/bFBM38P2JeNwnfDFPSoODg7WGxYv7BDOm47LcuXPrbPsLFy6MY8eO4dOnT0nWclAqlejcuTO8vLwwd+5c7Nu3D3379k12UqNKlSqoUqUKZs2ahb///htdunTBtm3b0KdPn0RvzoOCgnDy5ElMmzYNkydPlqYndJwktozEWFtbo2fPnujZsydCQkJQq1YtTJ06Vfryn9zl2drawtzcPMHRVFK6zoQ4Ojri4cOH8aY/ePBAel8Xdu3ahe7du8PDw0OaFh4eHm80hLTKTMdBeu3bUqVKoVSpUpg4cSLOnz+P6tWrY+XKlZg5c2aKlhOz/ocPH2qdQyIjI+Hv759u58DChQvj5s2bqFevXor/rlLj9evX8YaBfPToEQBI535dxLR7926oVCocO3ZMa4hUT0/PeGUTW4eVlVWCfxNxz9Wxz+lJlSMiIt1hkwqiHCjmy2jsJ1qXLl3ChQsXEiy/b98+rT4YLl++jEuXLqFx48YAvn/RdnNzw6pVq/DmzZt483/48EGX4Seoffv2UKvVmDFjRrz3oqOjpRvM+vXrQ19fH0uWLNHa/kWLFsWbLyaRcObMGWlazLBssbm7u8Pc3ByzZ89OsB18ara/TZs2EEUR06ZNi/de3CeRXbt2RVBQEPr374+QkBD88ssvP1x+UFBQvOXEjE4SU50+ZgSEuDfnCR0/QML7MObLSnK+IMceShH43m6/SJEiWtX7k7s8hUKBVq1a4Z9//pGGEY0tJvbkrDMhTZo0weXLl7X+ZkJDQ7F69Wo4OTkl2E49NZRKZbz9vGTJkiSfyKZEZjwOdL1vv3z5gujoaK1ppUqVgkKhSHbTkdjq168PAwMD/PXXX1rbvm7dOnz+/FkaVUHX2rdvj1evXmHNmjXx3vv27RtCQ0N1ur7o6GisWrVKeh0ZGYlVq1bB1tYWFSpU0FlMSqUSgiBoHdMBAQHxRrgAvh9HCR1DhQsXxufPn7WaQ7158wZ79+7VKmdubg4bGxutczrwfYjT5Hr69GmqagISEeVUrOFAlE2tX79eGuM8tuHDh6NZs2bYs2cPWrdujaZNm8Lf3x8rV65E8eLFERISEm+eIkWKoEaNGhg4cCAiIiKwaNEi5MqVC2PHjpXKLFu2DDVq1ECpUqXQt29fFCpUCO/evcOFCxfw8uVL3Lx5M123t3bt2ujfvz/mzJmDGzduoGHDhtDX18fjx4+xc+dOLF68GG3btoWtrS1Gjx4tDRHXpEkTXL9+HUeOHJGG64vRsGFDFChQAL1798aYMWOgVCqxfv162Nra4sWLF1I5c3NzrFixAl27dkX58uXRsWNHqcyhQ4dQvXp1LF26NEXbU6dOHXTt2hV//fUXHj9+LFVR9/X1RZ06dTBkyBCpbLly5VCyZEmpA7fy5cv/cPkbNmzA8uXL0bp1axQuXBhfv37FmjVrYG5ujiZNmgD4XpW4ePHi2L59O1xcXGBtbY2SJUuiZMmSqFWrFubNm4eoqCg4ODjA29sb/v7+8dYT88VkwoQJ6NixI/T19dG8efMEO7QsXrw43NzcUKFCBVhbW+PKlSvYtWuX1rbGLG/YsGFwd3eHUqlEx44dE9zG2bNnw9vbG7Vr15aG7Hvz5g127tyJs2fPwtLSMlnrTMj48eOxdetWNG7cGMOGDYO1tTU2bNgAf39/7N69O16Tn9Rq1qwZNm3aBAsLCxQvXhwXLlzAiRMnkCtXLp0sPzMeB7ret6dOncKQIUPQrl07uLi4IDo6Gps2bYJSqUSbNm1SvM9sbW3x22+/Ydq0aWjUqBFatGiBhw8fYvny5fjpp5+SlfBLja5du2LHjh0YMGAATp8+jerVq0OtVuPBgwfYsWMHjh07lmAHqamVN29ezJ07FwEBAXBxccH27dtx48YNrF69Whr2UxcxNW3aFAsWLECjRo3QuXNnvH//HsuWLUORIkXi9adSoUIFnDhxAgsWLEDevHlRsGBBVK5cGR07dsS4cePQunVrDBs2TBqW2MXFJV7Hk3369MEff/yBPn36oGLFijhz5oxUcyM56tWrB+D/+7EgIqIfyPiBMYgoPcUM2ZjYz3///SdqNBpx9uzZoqOjo2hoaCiWK1dOPHjwYLyhxWKGEPvzzz9FDw8PMX/+/KKhoaFYs2ZN8ebNm/HW/fTpU7Fbt26inZ2dqK+vLzo4OIjNmjUTd+3aJZXRxbCYJiYmic63evVqsUKFCqKRkZFoZmYmlipVShw7dqz4+vVrqYxarRanTZsm2tvbi0ZGRqKbm5t4586deMPziaIoXr16VaxcubJoYGAgFihQQFywYEG8YTFjx+zu7i5aWFiIKpVKLFy4sNijRw/xypUrP4w/oSE4o6OjxT///FMsWrSoaGBgINra2oqNGzcWr169Gm/+efPmiQDE2bNnJ7pvYrt27ZrYqVMnsUCBAqKhoaGYO3dusVmzZlqxiqIonj9/XqxQoYJoYGCgNWzcy5cvxdatW4uWlpaihYWF2K5dO/H169cJDp84Y8YM0cHBQVQoFFr7Le7+njlzplipUiXR0tJSNDIyEosWLSrOmjVLGoIvZp8MHTpUtLW1FQVB0NpnCa37+fPnYrdu3URbW1vR0NBQLFSokDh48GBpGMXkrDMxT58+Fdu2bStaWlqKKpVKrFSpknjw4EGtMokdx0kNzxdbUFCQ2LNnT9HGxkY0NTUV3d3dxQcPHsTbd6kdFjMzHgeiqNt9++zZM7FXr15i4cKFRZVKJVpbW4t16tQRT5w4keS+EcWEh8WMsXTpUrFo0aKivr6+mCdPHnHgwIFiUFCQVpnatWuLJUqU+OF6EhJ3WExR/D5c5Ny5c8USJUqIhoaGopWVlVihQgVx2rRp4ufPn6VyAMTBgwdrzRv7fB5bQvsxJu4rV66IVatWFVUqlejo6CguXbo0XpxpiSnGunXrRGdnZ9HQ0FAsWrSo6OnpmeA58cGDB2KtWrVEIyOjeMMYe3t7iyVLlhQNDAxEV1dXcfPmzQkuIywsTOzdu7doYWEhmpmZie3btxffv3+f6LCYcT97R0fHH/5dERHR/xNEMRW9BBERZUNOTk5wc3ODl5eX3KGk2OLFizFy5EgEBATE652eiCgl3NzcEBgYmKw+UIiIiJLCPhyIiLI4URSxbt061K5dm8kGIiIiIso02IcDEVEWFRoaigMHDuD06dO4ffs29u/fL3dIREREREQSJhyIiLKoDx8+oHPnzrC0tMTvv/+OFi1ayB0SEREREZGEfTgQERERERERkc6xDwciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQdKNz4+PhAEAYIgoEePHhmyTjc3N2mdAQEBSZb18vKSyk6dOjVV6+vRo4e0DB8fn1QtQ5fxeXt7o3LlyjAzM5PmDQ4O1mlcOcHUqVOl/efl5SV3OERE9D+JXXdjpjk5OckWm1y+fPmCIUOGwNHREUqlEoIgYMSIEXKHRUQEgAkHSqHYX8QS+rG0tJQ7xBwrICAALVu2xOXLlxESEiJ3OERElA29e/cOv/32G8qUKQMzMzMYGRmhUKFC6NmzJ27evJnm5QcEBGDq1KmYOnUq9u3bl/aAc4CxY8di2bJlePHiBTQajdzhEBFp0ZM7AMq+ypUrB19fXwBAnjx5ZI4m+ztx4gTCw8MBAK1atcKIESOgVCphZmYmc2RZT69evVC/fn0AgIuLi8zREBFlDmfOnEHr1q3x6dMnren+/v7w9/fHxo0bsXDhQgwbNizV6wgICMC0adMAAN27d0erVq2SNV/M/YZKpUr1urOqgwcPAgD09fWxefNm5M2bFw4ODjJHRUT0HRMOlGqNGzfG77//rjVNT+//DykLCwvUqFEjo8PKsV6/fi393qJFC9SuXfuH84SGhsLExCQ9w8qSChQogAIFCsgdBhFRpvHy5Uu0atUKQUFBAICaNWti+PDhMDU1xY4dO7B+/XpoNBqMGDECRYoUQZMmTTI0vvS838iM18rYMcVc/+3t7dG+fft0XRcRUUqxSQWlWu7cuVGjRg2tnypVqkjvJ9aHQ+z2l97e3pg8eTLy5csHlUqF6tWrx6uSuW7dOri7u6NAgQIwMTGBSqWCs7Mzhg4disDAQJ1v1759+9CiRQsULFgQZmZmMDAwgKOjI3r27JlkvxDR0dGYNm0a8ufPDyMjI9SqVQvXrl2LV87f3x99+/aFo6MjDA0NkTt3bnTo0AH3799PdcyCIGDKlCnS6169emm1ZY3dt8W1a9fQq1cv2NjYwNTUVJonJCQEU6dORcmSJWFkZARzc3O4ubnhyJEj8dYXGhqKoUOHwtbWFqampmjRogUCAgLg5OQkrSdGYn1RBAQESNPd3Ny0lp/cWOIuw8/PD3Xq1IGxsTHs7OwwceLEeNVL1Wo1li9fjqpVq8LCwgJGRkZwdnZG//79pTJJ9eFw69YtdOrUCfb29jAwMICDgwP69OmDly9fapX79u0bxowZA2dnZxgaGsLExAQFCxbEzz//jL1798b/EImIMrF58+ZJyQZXV1ccP34cbdq0gbu7O9atWydd50VRxPjx46X5EjufJnSP4Obmhjp16khlNmzYkOy+oBLrwyEqKgoLFixAhQoVYGJiAhMTE1SuXBmbN29Ochm3b99GgwYNYGpqiqZNmyZ73Y8fP0azZs1gamoKGxsbDB48GKGhofHm2b9/P+rXrw8rKysYGhrC1dUV06ZNw7dv37TKJXX9jtm3oigCAF68eBFvX4uiiNWrV6NKlSowMzODSqVC0aJF8fvvv+Pz58/JXheg/VmuW7cO06ZNg729PczNzdGpUycEBwfj06dP6Nq1KywsLGBtbY0BAwZItS9jjBo1CtWqVYO9vT0MDQ1hamqK8uXLY/78+YiOjk5y37Zo0QKmpqaJLhsAtm7dijp16kj71snJCV27dtXa3pQcF0SURiJRCkyZMkUEIAIQu3fvnmTZ06dPJ1i2e/fu0vRChQpJv8f8ODk5iVFRUVJ5d3f3eGVifooVKyZ++/ZNKlu7dm3pPX9//yTj8/T0lMpOmTJFmt6/f/9E15cnTx7x3bt3CW5L6dKl45U3NzcXHz58KJW/evWqaGlpmeCyTU1NxUuXLv0wvoQkFq+jo2O8/RJ3n4uiKAYHB4ulSpVKdDnLli3TWl/jxo3jlcmfP79obW2ttdyktsPf31+aXrt2bWl6SmKJvQx7e3vRyMgoXvk1a9ZI5SMjI5M8nmLEPs49PT2l6YcPHxYNDQ0TnNfOzk589uyZVLZXr16JrqdLly5Jfp5ERJlNvnz5pHPY0qVL471/+/ZtrfPc06dPRVFM/Hya0D1C7GtV3J+YMrGvu6dPn5aWF/e6J4rfz/n16tVLdJljx47V2oaY6RYWFmKuXLkSvEYlJKacpaWlmCdPnnjradSokVb5SZMmJRpTzZo1xYiICKlsUtfv2Ps27o+np6eo0WjEjh07JlqmaNGi4qdPn5K1rrifZeHChRPczkqVKsWbPmHCBK3tT+w6CkDs2bNngvvW3Nxc6zNJbNlJXXtj7gtTelwQUdqwhgOlWuwnD6kdjeK///7D3LlzsWfPHuTPnx/A96fWx44dk8p06NAB69evx6FDh+Dj44NDhw6hW7duAID79+9jz549OtsmAGjYsCFWrVqFf/75Bz4+Pjh69ChGjRoF4HtnWWvXrk1wvidPnmDx4sXYt28fKlasCOB7z9G//fYbAEAURXTv3l0aNWLUqFHw9vbG3LlzoVQqERISgp49e0pPKlLC19cXPXv2lF7//vvv8PX1xa5du+KVffHiBaZMmYJjx45h4cKFAIAJEybg9u3bAIAmTZrg0KFD2LhxI+zs7AAAI0eOxH///QcAOHr0qFTTwMjICIsWLcK+ffuQJ0+eeO16UyMlscT25s0blC9fHvv379dqP7xq1Srp97/++ks6toyNjTFjxgwcPXoUa9aswU8//ZRkXGFhYejevTsiIiKgp6eHWbNmwdvbG2PHjgUAvH37FoMGDZLK79+/HwDg6OiIXbt2wdvbG+vWrUO3bt1gZWWVml1DRCSLr1+/atXiKlu2bLwyJUqUgL6+vvT63r17KV7PkiVL8Ndff0mvGzduDF9fX/j6+mLChAkpXt7ixYtx8uRJAECVKlWwd+9e7Nq1C66urgC+19q4dOlSvPk+f/4MpVKJ1atX49ixY+jTp0+y1hccHIx8+fJh3759WLJkCYyNjQF8v27+888/AAA/Pz/MmDEDwPcmEOvWrcPRo0elWhS+vr7StTmuuNfvXr16SX1XAICdnZ20v5o0aYIdO3Zg27ZtAAArKyusXr0ae/fuRenSpQEADx48iNc0NrF1xRUQEIB58+Zh+/btUl9RR48exb1797B27VqsWLFCKhv7Ogx8v85v3boVR48ehY+PD/bs2YPKlSsD+F4rMm6NQeD7/ZStrS12794t7b+4y969ezfWr18PAFAqlRg9ejQOHz6MjRs3okGDBlLty9QeF0SUSnJnPChrSSqbDmjXZEhODYfhw4dL0//44w9p+qJFi6TpL168EPv27SsWLFgwwaz4yJEjpbK6qOHw8eNH8ddffxVdXV0TfGLeunXrBLcldpb90aNH0nSVSiVGRkaK169fl6aVLVtW9PX1lX6qVq0qvXflypUk40vOZxP7KVLc/fL7779rvadWq0UrKysRgGhgYCCeOHFCimvQoEHSfPPnzxdFURQHDhwoTRszZkyC2xz71JKSGg4pjSX2MgwMDMS3b99KyzE2NpaeOMUoU6aMVH7VqlUp2pd79+6VpjVu3Fjr83NychIBiIIgiB8+fBBFURTt7OxEAGKZMmXE69evi+Hh4T/8DImIMqOXL19qnd9j19yLLea8B0DcvHmzKIopq+GQ1PQYKanhEPucv2PHDumcPX36dGn6kCFD4i0DgOjt7Z3s/RN7vsePH0vTJ0yYIE3v1auXKIqiOHz4cK3rcUxM//zzjzS9ZMmS0jKSun4nte2iKIotWrSQ3luyZIk0PXZtFCsrK1Gj0SRrXbE/y86dO0vTmzZtKk2fNGmSNL1EiRLS9ODgYGn62bNnxZYtW4p2dnainp5evPus/fv3J7hvr1+/Lk0vWrRovGW3bNlSmvbbb78luK9EMeXHBRGlDTuNpFRLqNPIlI5GEbtjw1y5ckm/x9QC+Pr1K6pVq5ZgtjtuWV1Qq9WoX78+rl+/nuL1xWTnAcDZ2RlWVlYICgpCeHg4Xr9+jUePHknv37hxAzVr1kxwOffv30eFChVStwHJ0Lx5c63XgYGBUrvcyMhIaXSGhOICgGfPnknTYtcKiL3NqZXSWGIrWrSodPwpFApYWVkhLCxM6/OK/Rk0a9YsRbHFnvfIkSMJ9m0hiiIePHiAGjVqoHfv3pg1axZu3ryJcuXKQalUwsXFBY0aNcKYMWNgb2+fovUTEcnF3Nxc6/WHDx/ijeAjiiI+fvwovbawsMiQ2JIS+7ydWGeKCV1PVCoVGjRokOL1WVtbo0iRItLrSpUqSb/HXDtjxzR79mzMnj073nIePHiQ4PLjXr9/JPa6Yt+jlCxZEsbGxggLC0NQUBA+fPiA3Llzp2hdsbfN2tpa+j2mhicA2NjYSL8HBwfDwsICly9fRp06dRAVFZXoshO6zzI3N9eqWRP3ntHCwiLZ1/jUHhdElDpsUkGpllCnkc7OzilaRuyq5bFHuBD/16xg7969UrKhaNGi2L59e7zqhrocc/rcuXNSssHe3h4bNmzAmTNnsHXr1hSvL3bHiSmRUOdSupTaIUqTE1dC2xx7mlqtln5PS4efCcUSt5lC7OMpI8XENmPGDGzduhXt2rWDq6srBEHA/fv3sXDhQjRs2DBex1hERJmVmZkZ8uXLJ72+ceNGvDL37t3T+hJZvHhxAOlzDdClhK4ncb98p1Zq7wOio6MRERERb3pGDjH+o3XFTigpFP//dSJucipGzH3dypUrpeOkWbNmOHz4MHx9faWmskDC91lJXeNjlq1L6X0vRpSTMOFAmdqrV6+k3wcPHoz27dujRo0aCfZKrOv1de7cGd26dUu0JkJcly9fln5/8uSJ1J+BSqVC3rx5tZ4G1a5dG6IoxvsJDQ3VGi0hPcS9AbKxsZEu5Kampvj69Wu8uNRqNTw9PQEAhQoVkua9cuWK9HvsbY4t9k3J27dvpd+PHj0ar2xKY0mp2J/BoUOHUj1v9+7dE/383N3dpXIdO3bEjh078ODBA3z9+hVt27YFANy5c0frCQsRUWbXqlUr6fdly5YhMjJS6/0FCxZIv5cqVUq6VqTkGgBof3lN6wOF2OftZ8+eJXjejmnLH1tqEwWfPn3CkydPpNex+wGI2R+xY/L09Ez0WmJoaJjmuGKvK/Y9yp07dxAWFgbg+xd5W1vbNK8ruWLfZ82ZMweNGzdGjRo18O7duzQvO7nX+NQeF0SUOmxSQZmao6Oj9Pv69etRqFAhPHnyBDNnzkz39e3evRs1atRAUFCQ1hBfiVm4cCHy5MmDAgUKYNasWdL0xo0bQ19fH2XKlEHJkiVx584d/Pvvv+jWrRvatWsHfX19BAQE4PLly9i7d2+amiSkhkKhQKdOnbB8+XKEhISgYcOGGDZsGGxsbPDy5UvcuXMHe/bswfr16+Hm5oYWLVpInUEtXboU+fLlg6Ojo9Y2xxa7eunmzZtRuHBhhISEYN68eWmOJaV++eUXadjVkSNH4v379/jpp5/w6tUrrF69GhcuXEh03gYNGsDW1hYfPnzAxo0bYW1tjQYNGkCtViMgIADnzp3DzZs3pY7SqlevjnLlyqFSpUpwcHDA169ftTpRS+jpFRFRZjV27Fhs3rwZwcHBuH//Pho0aIDhw4fDxMQEu3btkjrrA6DVTCD2NWDBggUwNTXFkydPtMrHFvtJ9tmzZ3HkyBGYmZnBxcUlxTUPunTpIp3zmzVrhrFjxyJfvnx48+YNHjx4gP3792PUqFEp7vA6KZ07d8bEiRPx8uVLLFq0SJresmVL6f3FixcD+H4d+vTpE0qXLo3g4GA8ffoU3t7ecHR0THT/pDSWAwcOAAAmT54MQ0ND2NjYYNq0aVKZDh06pFtyISGx77PmzJmD7t2748iRI1qdhafWL7/8InXYPG/ePERHR6NOnTr4+PEjNm/ejJUrV8LR0VGW44IoR0vPDiIo+9H1sJixO3xKqHPBL1++iPb29vE6FKpevXqCy05rp5HR0dEJDm8Ze32xh8eKvS3Ozs7x5jM1NRXv378vlU9qWMyYn6TiS0pyO41MaL8EBQUlORRl3M8qoWExHRwcEhwWUxRFrU4xY36KFSuW4D5NSSyJDa0piqLo6OgYL5bIyEixfv36P9z3ie3LQ4cOJTmcV+wOuxIaMizmp3jx4mJ0dHSSnycRUWZz6tSpJK9hCoVCXLBggdY8kZGRYoECBZK8BsS+jkdFRWl1Phn3XJySTiMjIiKSHP4w7jk+oWUkR8x81tbWWsOHxvw0aNBA6phRFJMeFjM19zWJxa3RaMQOHTokup6khsVMaF2JXRsT+0wSWt6lS5dEQRC04hAEQes+ITmfSWKxxo4l7k9MuZQeF0SUNmxSQZmamZkZjh8/jrp168LU1BQODg6YPn06pk+fni7rUyqVOHToEFq2bAkLCwvY2tpi+PDhiQ6FGdvSpUsxbtw42Nvbw9DQEDVq1MDp06dRtGhRqUz58uVx48YNDBgwAIUKFYKBgQEsLS1RsmRJDBgwQLYqfJaWlrhw4QJmzJiBMmXKwMjICMbGxnB2dkbbtm2xdetWVKlSRSq/c+dODB48GLly5YKxsTGaNm2KM2fOSENjxbVlyxa4u7tDpVJJ+3Tnzp06iSUl9PX1ceTIEfz111+oVKkSTE1NoVKpUKRIEfTt2/eH8zdp0gRXrlxB165dkS9fPujr68PGxgZly5bFr7/+qrVNv/32G1q2bAlHR0cYGxtDX18fTk5OGDBgAE6dOgWlUpmqbSAikkudOnVw//59jBs3DiVLloSJiQkMDQ3h5OSE7t2748qVKxg5cqTWPPr6+ti3bx+qVq0KAwMD5MuXD9OmTdMa/jI2PT09HDhwADVq1Ej0mpJcBgYGOHr0qHTONzMzg0qlQsGCBdG0aVOsW7cOrVu3TtM6YjMzM4Ovry+aN28OExMTWFtbY8CAAdizZ49WLYLp06fj4MGDaNSoEXLlygV9fX04ODigRo0a+OOPP7RqIKSFIAj4+++/sXLlSlSqVEn6vFxcXDB+/HhcvHgxw4dprlSpEvbu3YtSpUpBpVKhRIkS2LlzJxo2bKiT5Xt5eWHTpk2oXbs2LCwsYGBggAIFCqBLly7Stmb0cUGU0wmimA49rRBRjuTk5ITnz58DQLp04kRERJTZxCQTHB0dERAQIG8wRESZDGs4EBEREREREZHOMeFARERERERERDrHhAMRERERERER6Rz7cCAiIiIiIiIinWMNByIiIiIiIiLSOSYciIiIiIiIiEjnmHAgIiIiIiIiIp1jwoGIiIiIiIiIdI4JByIiIiIiIiLSOSYciIiIiIiIiEjnmHAgIiIiIiIiIp1jwoGIiIiIiIiIdI4JByIiIiIiIiLSOSYciIiIiIiIiEjnmHCgH/Lx8YEgCAgODpY7FCIiIiIiIsoimHCgDCOKIubPnw8XFxcYGhrCwcEBs2bNSrDsuXPnoKenh7Jlyya5zIcPH6JOnTrIkycPVCoVChUqhIkTJyIqKkoqc/z4cbi4uMDc3Bxdu3ZFZGSk9N7nz5/h4uKC58+f62QbiYiIiIiI6Ds9uQOgnGP48OHw9vbG/PnzUapUKXz69AmfPn2KVy44OBjdunVDvXr18O7duySXqa+vj27duqF8+fKwtLTEzZs30bdvX2g0GsyePRsajQadO3fGb7/9Bnd3d7Rt2xarV6/GkCFDAADjx4/HgAED4OjomC7bTERERERElFMx4UCIiIjAmDFjsG3bNnz58gUVK1bEwoUL8dNPPyVYPiwsDG3atMGXL19w6NAhWFpa/nAd9+/fx4oVK3Dnzh24uroCAAoWLJhg2QEDBqBz585QKpXYt29fksstVKgQChUqJL12dHSEj48PfH19AQCBgYEIDAzEoEGDoFKp0KJFC9y/fx8AcP78efj5+WHp0qU/jJ+IiIiIiIhShk0qCGPHjsXu3buxYcMGXLt2DUWKFIG7u3uitQ8aNGgAjUaD48ePJyvZAAD//PMPChUqhIMHD6JgwYJwcnJCnz594q3D09MTz549w5QpU1K1LU+ePMHRo0dRu3ZtAICtrS3s7e3h7e2NsLAw+Pr6onTp0oiKisLAgQOxatUqKJXKVK2LiIiIiIiIEscaDjlcaGgoVqxYAS8vLzRu3BgAsGbNGhw/fhzr1q3DmDFjpLJv375Fhw4d4OzsjL///hsGBgbJXs+zZ8/w/Plz7Ny5Exs3boRarcbIkSPRtm1bnDp1CgDw+PFjjB8/Hr6+vtDTS9mhWa1aNVy7dg0RERHo168fpk+fDgAQBAE7duzAyJEjMXz4cDRp0gS9evXCH3/8gTp16kClUqF69eoIDAzE0KFDpaYWmVmEGImPCEaQ+Bmf8BnfxHCooYYGIjTSPxECAGMYwVgwghlMYA5TWAnmsIAZBEGQezOIiIhyvCi1iI+hIoLCRIREiAiJAEIiRXyLFKFQCNBXAAZ6gL4SMFAK//sf0NcTYGMiII+ZAKWC13QiyryYcMjhnj59iqioKFSvXl2apq+vj0qVKklND2I0aNAAlSpVwvbt21NcK0Cj0SAiIgIbN26Ei4sLAGDdunWoUKECHj58iCJFiqBz586YNm2a9H5KbN++HV+/fsXNmzcxZswYzJ8/H2PHjgUA1KhRA35+flLZR48eYePGjbh+/Tpq1aqF4cOHo3HjxihZsiRq1aqF0qVLp3j9uhItRuOF+Ab+4ks8E/9DgPgS/uJLBIgv8U78+D3BgPA0rUMBBfIgFwoIeVFAsEcBIS/yC/YoINijiOCIIoIjFAIrPxEREaXVt0gRTz9q8OSDBk8DNXj6QYMngWo8/6RBYIiIrxFpW75SAeQxE5DXQgF7cwEOlv/730IB59wKlMqrhKkhExJEJB8mHCjZmjZtit27d+PevXsoVapUiua1t7eHnp6eVjKhWLFiAIAXL14gT548uHLlCq5fvy7VMtBoNBBFEXp6evD29kbdunUTXX7+/PkBAMWLF4darUa/fv0watSoBBMj/fv3h4eHBzQaDa5fv4527drB2NgYtWvXxr///pthCYcIMRK3xYe4rrmHa+I9XNfcw13xMaIQna7r1UCDN/iAN+IHXBJvxnvfGEYoIRRBKYUrSguu0v9mgkm6xkVERJSVvf2iwQV/NS4GROP6SzWefNDg1WcRoph+61RrgNefRbz+rE7wfYUAFLJRoHReBco4KKUfB0s+WCCijMGEQw5XuHBhGBgY4Ny5c9JIDVFRUfDz88OIESO0yv7xxx8wNTVFvXr14OPjg+LFiyd7PdWrV0d0dDSePn2KwoULA/he0wD43tGjubk5bt++rTXP8uXLcerUKezatSvRDiYTotFoEBUVBY1GEy/hsG7dOlhbW6NFixYICgqStjfmf7U64Qu2LnwVQ3FG44dTmgs4p7mWIcmF1AjDN/iJt+Gn/v/PQwklygiuqKX4CbUVlVBdUQHmgqmMURIREclHoxFx67UGFwOipSSD/8d0zCykkkYEnnz4XsNiz83/v+ewMRFQyUkJtyJ6cHPWQxkHBZtbElG6EEQxPfOulBWMGDECO3fuxLp161CgQAHMmzcPBw4cwNOnT2FlZQUfHx/UqVMHQUFBsLS0xMiRI7F161b4+PigaNGiyVqHRqPBTz/9BFNTUyxatAgajQaDBw+Gubk5vL29E5xn6tSp2LdvH27cuCFNW7p0Kfbu3YuTJ08CALZs2QJ9fX2UKlUKhoaGuHLlCkaOHIk6depg8+bNWst7//49KleujHPnziFv3rwAvteI6NChAxo2bIiGDRvi1KlTiY7OkVJqUY2L4k2cVJ/HKc1FXBHvIDoTJhhSQwklygpF4aaojCZKN1QVyrIZBhERZWtBYSIO3Y3CgdtROPkwOs3NITKTXCYC6rrowb2YHhoV00NuM17TiUg3WMOB8Mcff0Cj0aBr1674+vUrKlasiGPHjsHKyirB8gsXLoRarUbdunXh4+MDFxcXuLm5wcnJCV5eXgnOo1Ao8M8//2Do0KGoVasWTExM0LhxY3h4eKQo1sDAQDx9+lR6raenh7lz5+LRo0cQRRGOjo4YMmQIRo4cGW/e4cOHY9SoUVKyAQC8vLzQvXt3/PXXXxgzZkyakw1qUQ0fzWXs0XjjgPokPiD+SB/ZgRpqXBXv4qr6LjzU62EHGzRT1kFLRX24KSpBX9CXO0QiIqI0exWswYHbUdh/OwpnnqgRrZE7ovTxMVTEzutR2Hk9CoIAlM+nROsyeuhUwQD5rZh8IKLUYw0H0glHR0dMmzYNPXr0kDuUDKcRNfDRXMZuzbFsnWRILkuYo7GiFn5RtkRdRRVW0SQioizlZbAGf1+JxL5b0bj6nzpd+2DI7AQBqF1Eic4VDPBzWX2Yq3hNJ6KUYcKB0uzu3bvo1KkTbty4AYUi52TBX4vv4aXeA8/o3fgPb+QOJ1NyEvKhu7I1uilbwUHII3c4RERECYpWizh4NxrrL0TC+0E0NLw7jsdIH2hWUh9dKuqjYVE96CmZfCCiH2PCgSgFRFHECc15rFXvwCHNv9mmT4b0poQSDRTV0FvZDk0VbuzvgYiIMoU3nzVYfT4S6y5E4u0X3hInV25TAf2qG2BQTQPYmPKaTkSJY8KBKBm+ieHwUu/BUvVmPBVfyB1OluYsOGGEsgd+UbaAoWAgdzhERJQDXQqIxmKfSOy/HYWo9BugKtsz0ge6VzbAcDcDFLaJPxQ5ERETDkRJ+Cx+xQr131gWvSXH982ga3awwWC9X9BP2QEWgpnc4RARUQ5wOSAa049GwPsBayjqkkIAWpXWw6i6hvjJkX3SE9H/Y8KBKAFB4mcsid6EZeot+IyvcoeTrZnDFP2VHTFKrxcsBXO5wyEiomzoyotoTD8SgaP3mWhIbzULKzHBXYW6Lkw8EBETDkRaIsRILFVvxrzoNUw0ZDBrWGCcXj8MUHZiUwsiItKJ6/+pMe1oOA7fZaIhozUuroc/WqhQzI5NLYhyMiYciP5nt/oYJkQvRID4Uu5QcrQCyIup+kPRSdGMQ2oSEVGqPAvUYOz+bzhwm4kGOekpgN5VDTC5sSFs2bkkUY7EhAPleH6a2xgbNQ8XxOtyh0KxlBGKYr7+eNRUVJQ7FCIiyiIio0XMPxWBuccj8C1K7mgohrkKGFdfhWFuBjDU48MEopyECQfKsYLEzxgX/Sc2qfdDBP8MMqtfFC0xR38UbAVruUMhIqJM7NSjaAzd+Q2PP2jkDoUS4Wgl4I+WRmhTVl/uUIgogzDhQDnSXvVxjIyahbcIlDsUSgZrWOAPvTHoptdK7lCIiCiTeftFgzH7wrH9Gqs0ZBUtSulhaTsj2JmzmQVRdseEA+Uob8VAjIiaiX2aE3KHQqlQV1EFy/SmoqAin9yhEBGRzERRxMqzkZh8KByfw+WOhlLKyljAny1V6FaZHUUTZWdMOFCOsUm9H2Oj5iIIX+QOhdLADCZYpD8BXZQt5A6FiIhk8v6rBr23fMOxB+wUMqtrVlIPKzsYIbcZazsQZUdMOFC291UMxZCo6diuOSR3KKRDHRVN8Zf+JJgLpnKHQkREGejkw2j03BKGt194C5td2JoKWN7eCC1Ls28HouyGCQfK1m5o7uOXqNF4Ij6XOxRKBwWFfNigPw+VFKXlDoWIiNJZtFrElMMRmH8qArx7zZ76VTPAgp9VMOBIFkTZBhMOlG2tiP4b46PnIwKRcodC6UgPepisNxhjlH0gCLxBISLKjgI+atB1YxguPVfLHQqls6oFldje05gdShJlE0w4ULYTKoahT9QE7NUclzsUykBtFO5Yoz8TxoKR3KEQEZEO7b0ZhX5bw9gxZA6S10LAth7GqFJQT+5QiCiNmHCgbOWl+BZtIofgpvhA7lBIBmWEothpsAQFBHu5QyEiIh2Y7R2OaUfYhCInMlACi9oYoU81jmJBlJUx4UDZxlXNHbSNHIo3+CB3KCSj3LDGNoNFqKYoL3coRESUShHRIvpt/YatV6PkDoVk1ruqPha3MWK/DkRZFBMOlC3sVR9Hr6jf8A2sb0mAAfSxRG8yuuu1ljsUIiJKoU+hGvy8Ngzn/dlfA31XtaAS+/qawMqYSQeirIYJB8ryPKLXY2L0QojgoUzaZuv9il/1eskdBhERJVPARw2arwrFw/cauUOhTKZUXgUODzRBHjN2JkmUlTDhQFna5KjFmKdeI3cYlImNVvbGTP2RcodBREQ/cP2lGi1Xh+LtF96aUsKK2CpwdJAJClgx6UCUVTDhQFnW6Kg/sFS9We4wKAvoq2yPxXoToRB4g0JElBldfRGNRstDORIF/VB+SwFHBpnAJbdS7lCIKBmYcKAsRyNqMCR6Otard8kdCmUh7RVNsE5/FvQFfblDISKiWK6/VKPR8lAEhfGWlJInt6mAQwNNUMaBSQeizI4JB8pS1KIafaImYKvmoNyhUBbURuGOjfrzoBR4g0JElBncfKWG+7JQfGKygVLI0gg40M8EVQrqyR0KESWB9YspyxBFEf2jJjPZQKm2W3MMA6OngHlWIiL53XmjRuPlTDZQ6gR/A5qtCsWNlxzNhCgzY8KBsozx0fOxWbNf7jAoi9uo3ofR0X/IHQYRUY52/60ajZaFIjCUyQZKvS/hQIvVofD/yFFNiDIrJhwoS/gzei0WqzfIHQZlE8vUWzAl6i+5wyAiypEevVfDfXko3ocw2UBp9/aLiKYrQ/EhhEkHosyICQfK9NZH78Kk6EVyh0HZzFz1aiyK9pI7DCKiHOVjqAYtVoVx6EvSqScfvh9XoRE8rogyGyYcKFM7oD6JodEz5A6Dsqnfoj3wj/qU3GEQEeUIUWoRHdaH4Rmrv1M6uPqfGh08wxClZtKBKDNhwoEyrduah+gZNR5qsDMgSh8iRPSMGo9bmgdyh0JElO0N2fkNZ57ymk7px/tBNPpu/cbOoYkyESYcKFP6KAajXdRwhOKb3KFQNheCMLSJHIp3YqDcoRARZVuLfSLgeTFK7jAoB/j7ShRmHouQOwwi+h8mHCjTiRaj0SVqFALEl3KHQjnEf3iDDpHDESFGyh0KEVG2c+ReFMYfCJc7DMpBZh6LwOG7THARZQZMOFCmMz56Pnw0l+QOg3KYi+JNDImeLncYRBnKyckJixYtSrLM1KlTUbZs2QyJJ6MFBARAEATcuHEDAODj4wNBEBAcHCxrXNnJ3TdqdN0YBjW7baAMJIpAj81heBrIJjxEcmPCgTKVzer9WKreLHcYlENtUu/DFvUBucMg0jkvLy9YWlrGm+7n54d+/fpJrwVBwL59+7TKjB49GidPnkznCNNfjx490KpVqyTLVKtWDW/evIGFhUW6x+Pj44OWLVvC3t4eJiYmKFu2LLZs2aJVJioqCtOnT0fhwoWhUqlQpkwZHD16NMnlTp06FYIgxPsxMTGRyhw/fhwuLi4wNzdH165dERn5/7W7Pn/+DBcXFzx//jzN2xgaIaLd+jB8YeUGkkHwN6D9+jCER7E/ByI5MeFAmcYjjT+GR82UOwzK4YZHzcQTTdpvtIl+JPaXPLnY2trC2Ng4yTKmpqbIlStXBkUkLwMDA9jZ2UEQhFQvI7mf6/nz51G6dGns3r0bt27dQs+ePdGtWzccPHhQKjNx4kSsWrUKS5Yswb179zBgwAC0bt0a169fT3S5o0ePxps3b7R+ihcvjnbt2gEANBoNOnfujAEDBuDChQu4cuUKVq9eLc0/fvx4DBgwAI6OjqncA/9v1N5vePKBVRtIPrdfazBqLzNeRHJiwoEyhUgxCt2ixrKTSJJdCMLQNWoMIkW2/STdcnNzw5AhQzBixAjY2NjA3d0dAHDnzh00btwYpqamyJMnD7p27YrAwMB48w0ZMgQWFhawsbHBpEmTtHphj4iIwOjRo+Hg4AATExNUrlwZPj4+AL4/Se/Zsyc+f/4sPe2eOnUqAO0mFU5OTgCA1q1bQxAE6XXcJhUajQbTp09Hvnz5YGhoiLJly2o9dY9pprBnzx7UqVMHxsbGKFOmDC5cuCCVef78OZo3bw4rKyuYmJigRIkSOHz4cKL7LigoCN26dYOVlRWMjY3RuHFjPH78WHo/oWYfixYt0tqGDRs2YP/+/dI+iNk/sSXUpOLs2bOoWbMmjIyMkD9/fgwbNgyhoaHS+05OTpgxYwa6desGc3NzrRojSfn9998xY8YMVKtWDYULF8bw4cPRqFEj7NmzRyqzadMm/P7772jSpAkKFSqEgQMHokmTJvDw8Eh0uaamprCzs5N+3r17h3v37qF3794AgMDAQAQGBmLQoEEoUaIEWrRogfv37wP4ngTx8/PD8OHDk7UNSdl/Kwrr2UkkZQJrzkdi53X5E7xEORUTDpQpTIlejBvifbnDIAIAXBfvYUL0ArnDoGxow4YNMDAwwLlz57By5UoEBwejbt26KFeuHK5cuYKjR4/i3bt3aN++fbz59PT0cPnyZSxevBgLFizA2rVrpfeHDBmCCxcuYNu2bbh16xbatWuHRo0a4fHjx6hWrRoWLVoEc3Nz6Yn36NGj48Xm5+cHAPD09MSbN2+k13EtXrwYHh4emD9/Pm7dugV3d3e0aNFCKwEAABMmTMDo0aNx48YNuLi4oFOnToiOjgYADB48GBEREThz5gxu376NuXPnwtTUNNH91qNHD1y5cgUHDhzAhQsXIIoimjRpgqio5H2hHT16NNq3b49GjRpJ+6BatWo/nO/p06do1KgR2rRpg1u3bmH79u04e/YshgwZolVu/vz5KFOmDK5fv45JkyYlK6aEfP78GdbW1tLriIgIqFQqrTJGRkY4e/Zsspe5du1auLi4oGbNmgC+12qxt7eHt7c3wsLC4Ovri9KlSyMqKgoDBw7EqlWroFQqU70NAPD2iwYDt/MBAmUeA7d/g/9H1rYhkoOe3AEQ/au+jMXqjXKHQaRliXoT6imqopGyltyhUDbi7OyMefPmSa9nzpyJcuXKYfbs2dK09evXI3/+/Hj06BFcXFwAAPnz58fChQshCAJcXV1x+/ZtLFy4EH379sWLFy/g6emJFy9eIG/evAC+f8E+evQoPD09MXv2bFhYWEAQBNjZ2SUam62tLQDA0tIyyXLz58/HuHHj0LFjRwDA3Llzcfr0aSxatAjLli2Tyo0ePRpNmzYFAEybNg0lSpTAkydPULRoUbx48QJt2rRBqVKlAACFChVKdH2PHz/GgQMHcO7cOSlJsGXLFuTPnx/79u2TmgokxdTUFEZGRoiIiEhy2+KaM2cOunTpghEjRgD4/vn99ddfqF27NlasWCElA+rWrYtRo0Yle7kJ2bFjB/z8/LBq1Sppmru7OxYsWIBatWqhcOHCOHnyJPbs2QO1Onkd4YWHh2PLli0YP368NE0QBOzYsQMjR47E8OHD0aRJE/Tq1Qt//PEH6tSpA5VKherVqyMwMBBDhw6Nl1xJjr5/f0NgKNvNU+bxJRwYuD0MRwclntgkovTBhAPJ6osYgj5RE6ABs86U+QyOmoYbigMwE0x+XJgoGSpUqKD1+ubNmzh9+nSCT/efPn0qJRyqVKmi1a9A1apV4eHhAbVajdu3b0OtVktlY0REROi874UvX77g9evXqF69utb06tWr4+bNm1rTSpcuLf1ub28PAHj//j2KFi2KYcOGYeDAgfD29kb9+vXRpk0brfKx3b9/H3p6eqhcubI0LVeuXHB1dZWaAqSXmzdv4tatW1qdOYqiCI1GA39/fxQrVgwAULFixTSt5/Tp0+jZsyfWrFmDEiVKSNMXL16Mvn37omjRohAEAYULF0bPnj2xfv36ZC137969+Pr1K7p37641vUaNGlo1WB49eoSNGzfi+vXrqFWrFoYPH47GjRujZMmSqFWrVqKfTUKW+0bg2IPoZJcnyiinHqmx4VIkulc2kDsUohyFCQeS1aToRfgPb+QOgyhBr/AOk6IXYZH+BLlDoWwi9kgBABASEoLmzZtj7ty58crGfEn/kZCQECiVSly9ejVeVfikmimkN319fen3mGSJRvM9udynTx+4u7vj0KFD8Pb2xpw5c+Dh4YGhQ4emal0KhUKrTwsAyW5ukZSQkBD0798fw4YNi/degQIFpN/jfq4p8e+//6J58+ZYuHAhunXrpvWera0t9u3bh/DwcHz8+BF58+bF+PHjk6wREtvatWvRrFkz5MmTJ8ly/fv3h4eHBzQaDa5fv4527drB2NgYtWvXxr///pvshMP9t2r8doAd9FHmNW5/OBoV10MeM7YqJ8oo/Gsj2VzR3MYa9Q65wyBK0mr1dlzU3JA7DMqmypcvj7t378LJyQlFihTR+on9JfbSpUta8128eBHOzs5QKpUoV64c1Go13r9/H28ZMc0HDAwMklUNX19fP8ly5ubmyJs3L86dO6c1/dy5cyhevHhKNh358+fHgAEDsGfPHowaNQpr1qxJsFyxYsUQHR2ttQ8+fvyIhw8fSuu0tbXF27dvtZION27c0FpOcvdBbOXLl8e9e/fi7dciRYrAwCDtT0l9fHzQtGlTzJ07N8nOJlUqFRwcHBAdHY3du3ejZcuWP1y2v78/Tp8+LXUWmZh169bB2toaLVq0kPZPTLImKioq2ftMFEUM3P4N39hPJGVin8JEjNzNpBhRRmLCgWShFtUYGjWDTSko09NAg0FRUzlqBaWLwYMH49OnT+jUqRP8/Pzw9OlTHDt2DD179tT6ovfixQv8+uuvePjwIbZu3YolS5ZIIwm4uLigS5cu6NatG/bs2QN/f39cvnwZc+bMwaFDhwB8H0khJCQEJ0+eRGBgIMLCwhKMx8nJCSdPnsTbt28RFBSUYJkxY8Zg7ty52L59Ox4+fIjx48fjxo0bKRrZYMSIETh27Bj8/f1x7do1nD59WmqeEJezszNatmyJvn374uzZs7h58yZ++eUXODg4SF+83dzc8OHDB8ybNw9Pnz7FsmXLcOTIkXjbduvWLTx8+BCBgYHJqgExbtw4nD9/HkOGDMGNGzfw+PFj7N+/P1X9GsR1+vRpNG3aFMOGDUObNm3w9u1bvH37Fp8+fZLKXLp0CXv27MGzZ8/g6+uLRo0aQaPRYOzYsVKZpUuXol69evGWv379etjb26Nx48aJxvD+/XvMnDkTS5YsAQBYWVmhWLFiWLRoES5cuICTJ0/Gaz6TmI2Xo3DeP2UJHSI57LoRhX/u8JpOlFGYcCBZrFD/jeviPbnDIEqWe+IT/Kle++OCRCkUU1tArVajYcOGKFWqFEaMGAFLS0soFP9/ie7WrRu+ffuGSpUqYfDgwRg+fLjWE3FPT09069YNo0aNgqurK1q1agU/Pz+p2n+1atUwYMAAdOjQAba2tlodV8bm4eGB48ePI3/+/ChXrlyCZYYNG4Zff/0Vo0aNQqlSpXD06FEcOHAAzs7Oyd5utVqNwYMHo1ixYmjUqBFcXFywfPnyRMt7enqiQoUKaNasGapWrQpRFHH48GGp2UaxYsWwfPlyLFu2DGXKlMHly5fjjcTRt29fuLq6omLFirC1tY1XSyMhpUuXxr///otHjx6hZs2aKFeuHCZPnix1zpkUNzc39OjRI9H3N2zYgLCwMMyZMwf29vbSz88//yyVCQ8Px8SJE1G8eHG0bt0aDg4OOHv2LCwtLaUygYGBePr0qdayNRoNvLy80KNHjyRHnBg+fDhGjRqltT1eXl7Ytm0bmjVrhjFjxuCnn3764bZ+CtWwKQVlKcN2fsOXcHZsSpQRBDFuo0eidPZKfIeyES3wFaE/LkyUSRjCADcN/oGTwkHuUCiHcXNzQ9myZbFo0SK5Q6EUcHR0xLRp05JMOmQXQ3d+w6pzkXKHQZQiA2sYYHFbI7nDIMr2WMOBMtxvUR5MNlCWE4FITIxeIHcYRJQF3L17FxYWFvE6gcyO7rxRY+0FJhso61lzPhKPP7AZEFF6Y8KBMtQNzX3s1Bz5cUGiTGiX5hjOa67JHQYRZXIlSpTArVu3tJrFZFdj9oZDze6YKAuK1gBTDkXIHQZRtscmFZShmkf2x3HNj9vNEmVWVYQy8DHcIncYRESyO3Q3Cq3XJNwBKVFWIAjAxV9NUS5/4n2dEFHaZP/UO2UaPurLTDZQlndRvIkD6pNyh0FEJCtRFDHpIDuKpKxNFIEJPI6J0hUTDpRhJkUvlDsEIp2YHL0YGpF1iIko5zpwOxp33vA8SFnfiYfROP0oWu4wiLItJhwoQ+xTH4efeFvuMIh04oH4DHs1x+UOg4hINn8cZ9t3yj4mspYDUbphwoEyxJzoVXKHQKRTf0avlTsEIiJZeN+PwtX/2Ls/ZR9+L9TYezNK7jCIsiUmHCjdnVRfwE3xgdxhEOnUDfE+jqvZJwkR5TxzWLuBsqH5J3lcE6UHJhwo3S1Ue8odAlG6mBe9Ru4QiIgy1Jkn0Tj3jLUbKPvxe6HGpQD25UCka0w4ULq6rXmIE5rzcodBlC58xSu4qLkhdxhERBlmjjefAlP2teTfSLlDIMp2mHCgdLUw2kvuEIjS1YLo9XKHQESUIa7/p8ZJ9uZP2djeW1F4/ZmjrxDpEhMOlG5ei++xU3NE7jCI0tVhzRm8Ft/LHQYRUbpbd4FPfyl7i1IDK8/yOCfSJSYcKN1sUO9FFPgkhLK3aERjg3qv3GEQEaWrb5Eitl/jFzHK/taej0R4lCh3GETZBhMOlC5EUcQm9T65wyDKEF7qPRBF3pwQUfa1+2YUPofLHQVR+gsMFbH9GofIJNIVJhwoXfiKV/BM/E/uMIgyxHPxFTtHJaJszesiazdQzrGCzSqIdIYJB0oXG6P3yR0CUYZap94pdwhEROniyQc1zjzlUJiUc1z7T40H73jME+kCEw6kc1/FUOzVeMsdBlGGOqjxwUcxWO4wiIh0zusSq5dTzrP1Ko97Il1gwoF0brf6GELxTe4wiDJUNKLxj/qU3GEQEemUWiNisx+rl1POs4P9OBDpBBMOpHN7NcflDoFIFjz2iSi7OfNEjdef2Sku5TxPAzXwe87R1ojSigkH0qkQMQw+mktyh0Eki9Oai/gsfpU7DCIinTl8l095Kefac5PHP1FaMeFAOnVM44sIsOol5UyRiMJBzWm5wyAi0plD9/iEl3Ku/bd4/BOlFRMOpFNsw0453T71CblDICLSiUfv1XjyQSN3GESyeRKowa3XHK2CKC2YcCCdiRajcVTjK3cYRLI6rjmHb2K43GEQEaXZ4bt8ukt06A6bVRClBRMOpDO+mqsIxhe5wyCSVTgicF5zXe4wiIjS7Mg9ftEi+vcJE29EacGEA+nMac1FuUMgyhTYcSoRZXVfwkWcfcaq5EQXA9SIjOZILUSpxYQD6Yyv5orcIRBlCv9qLssdAhFRmhx/EI0o5huIEBYJ+L3gHwNRajHhQDoRLkbgqnhH7jCIMoWr4l18EUPkDoOIKNV8HrMaOVEMNqsgSj0mHEgnLmluIhJs60kEAGqocZY1fogoC7sYwC9YRDF8n7CGA1FqMeFAOuEr8ssVUWxnNH5yh0BElCohESLuvOFwmEQxLgREI0rNfhyIUoMJB9KJc5prcodAlKlcE+/JHQIRUapceaGGmvkGIklYJOD3nLUciFKDCQfSiWuau3KHQJSp3NI8lDsEIqJU4RcrovguBvDvgig1mHCgNHshvsFnfJU7DKJMJRhf4K95KXcYREQpdv0lv1gRxXX/Lf8uiFKDCQdKs7uaR3KHQJQp3RTvyx0CEVGK3WDCgSiee2/ZzogoNZhwoDS7LTLhQJSQ6xomHIgoa/kSLuLpR36xIorrwTsm4ohSgwkHSrM7msdyh0CUKbGGAxFlNQ/fqSGyM36ieL5GAP8FMRlHlFJMOFCa3WENB6IEPRFfyB0CEVGKBHziFyqixLAfB6KUY8KB0kQjavBEfC53GESZ0n/iG4h8VEhEWcjzTzxnESXm/jsm5IhSigkHSpPXeI9IRMkdBlGmFIFIvMZ7ucMgIkq256zhQJQo1nAgSjkmHChNXoiv5Q6BKFN7Lr6SOwQiomRjwoEocU8+8O+DKKWYcKA0+U98K3cIRJnacybliCgLYR8ORIl7H8ImR0QpxYQDpclr8Z3cIRBlagGs4UBEWcgL9sJPlKhAJhyIUowJB0qTN+IHuUMgytTe8m+EiLKI9181CIuUOwqizOtTmAiNhkkHopRgwoHS5K0YKHcIRJlakPhF7hCIiJLlzRd+kSJKikYEPobx74QoJZhwoDT5gq9yh0CUqX3m3wgRZRFhkfwiRfQjH9isgihFmHCgNPkqhskdAlGm9jkDajj4+PhAEAQEBwenaTkBAQEQBAE3btzQSVw/MmnSJPTr10967ebmhhEjRqRpmXG3IaX7Jjn7QFf7Oy5BELBv3z4AQGBgIHLnzo2XL1/qdB1ESQmJ4Bcpoh9hPw5EKcOEA6VJKJhwIEpKENI/4VCtWjW8efMGFhYWaVpO/vz58ebNG5QsWVJHkSXu7du3WLx4MSZMmCBN27NnD2bMmKHT9aR032TkPkiKjY0NunXrhilTpqR43vDwcAwePBi5cuWCqakp2rRpg3fvku7gVxRFTJ48Gfb29jAyMkL9+vXx+PFj6f2IiAh07doV5ubmcHFxwYkTJ7Tm//PPPzF06NAUx0qZSyj7byD6IdZwIEoZJhwoTb4iVO4QiDK1z2L6N6kwMDCAnZ0dBEFI03KUSiXs7Oygp6eno8gSt3btWlSrVg2Ojo7SNGtra5iZmel0PSndNxm5D36kZ8+e2LJlCz59+pSi+UaOHIl//vkHO3fuxL///ovXr1/j559/TnKeefPm4a+//sLKlStx6dIlmJiYwN3dHeHh4QCA1atX4+rVq7hw4QL69euHzp07QxS/33T7+/tjzZo1mDVrVuo2lDKNUDapIPqhT6EpG8lFF7X3coIePXqgVatW0mvut+yDCQdKk1A2qSBK0pcUJuXc3NwwdOhQjBgxAlZWVsiTJw/WrFmD0NBQ9OzZE2ZmZihSpAiOHDkizRO3iv/z58/RvHlzWFlZwcTEBCVKlMDhw4cBAEFBQejSpQtsbW1hZGQEZ2dneHp6Aki8OcLJkydRsWJFGBsbo1q1anj48KFWzDNnzkTu3LlhZmaGPn36YPz48ShbtmyS27lt2zY0b9483rbHvrlwcnLC7Nmz0atXL5iZmaFAgQJYvXq11jyXL19GuXLloFKpULFiRVy/fl3r/dj75suXLzAyMtLadwCwd+9emJmZISwsLMEmFYcPH4aLiwuMjIxQp04dBAQEaM0/derUeNu7aNEiODk5Sa/9/PzQoEED2NjYwMLCArVr18a1a9eS3EclSpRA3rx5sXfv3iTLxfb582esW7cOCxYsQN26dVGhQgV4enri/PnzuHjxYoLziKKIRYsWYeLEiWjZsiVKly6NjRs34vXr11ITj/v376NFixYoUaIEBg8ejA8fPiAw8HunwQMHDsTcuXNhbm6e7DgpcwpjkwqiH4pUp6x8etTeiy3uF/XMLrnNN9N7v2V1Ka3NGBUVhXHjxqFUqVIwMTFB3rx50a1bN7x+/Voqk161GZlwoDQJYZMKoiRFIzrF82zYsAE2Nja4fPkyhg4dioEDB6Jdu3aoVq0arl27hoYNG6Jr164IC0v472/w4MGIiIjAmTNncPv2bcydOxempqYAvvebcO/ePRw5cgT379/HihUrYGNjk2Q8EyZMgIeHB65cuQI9PT306tVLem/Lli2YNWsW5s6di6tXr6JAgQJYsWJFksv79OkT7t27h4oVK/5wX3h4eEiJhEGDBmHgwIFSwiMkJATNmjVD8eLFcfXqVUydOhWjR49OdFnm5uZo1qwZ/v77b63pW7ZsQatWrWBsbBxvnv/++w8///wzmjdvjhs3bkgJlZT6+vUrunfvjrNnz+LixYtwdnZGkyZN8PVr0jVgKlWqBF9f32Sv5+rVq4iKikL9+vWlaUWLFkWBAgVw4cKFBOfx9/fH27dvteaxsLBA5cqVpXnKlCmDs2fP4tu3bzh27Bjs7e1hY2ODLVu2QKVSoXXr1smOkTIvNqkg+jF1yio4pEvtvZwgrftNrVZDo0nhh5UBy9KVlNZmDAsLw7Vr1zBp0iRcu3YNe/bswcOHD9GiRQupTHrVZmTCgdIkGilM8xLlMGqk/AJVpkwZTJw4Ec7Ozvjtt9+gUqlgY2ODvn37wtnZGZMnT8bHjx9x69atBOd/8eIFqlevjlKlSqFQoUJo1qwZatWqJb1Xrlw5VKxYEU5OTqhfv368mgZxzZo1C7Vr10bx4sUxfvx4nD9/Xqpqv2TJEvTu3Rs9e/aEi4sLJk+ejFKlSiW5vBcvXkAUReTNm/eH+6JJkyYYNGgQihQpgnHjxsHGxganT58GAPz999/QaDRYt24dSpQogWbNmmHMmDFJLq9Lly7Yt2+flKz58uULDh06hC5duiRYfsWKFShcuDA8PDzg6uqKLl26oEePHj+MO666devil19+QdGiRVGsWDGsXr0aYWFh+Pfff5OcL2/evHj+/Hmy1/P27VsYGBjA0tJSa3qePHnw9u3bROeJKZPYPL169UKZMmVQvHhxzJo1Czt27EBQUBAmT56MJUuWYOLEiShSpAjc3d3x6tWrZMdLmQubVBD9mDqFfyapqb0X165du1CqVCkYGRkhV65cqF+/PkJDQzF16lRs2LAB+/fvhyAIEAQBPj4+AL4nzNu3bw9LS0tYW1ujZcuWWjX0YmpGTJs2Dba2tjA3N8eAAQMQGZl05nH37t0oUaIEDA0N4eTkBA8PD633Y3eAHMPS0hJeXl4AgIIFCwIAypUrB0EQ4Obmlqz9FhERgdGjR8PBwQEmJiaoXLmytK0A4OXlBUtLSxw4cADFixeHoaEhXrx4keCyDxw4AGdnZ6hUKtSpUwcbNmzQqima2LKCgoLQrVs3WFlZwdjYGI0bN9bq7yg5NR5Tu99jS01tRgsLCxw/fhzt27eHq6srqlSpgqVLl+Lq1avSfkqv2ozyN1KlLE0PSrlDoFhyhxhi7CF7IL3vGQUAYvquRExjfwTJInzflPRdhwB0TdkspUuXln5XKpXIlSuX1pf4mC+G79+/T3D+YcOGYeDAgfD29kb9+vXRpk0baZkDBw5EmzZtpJoSrVq1QrVq1ZIdj729vbTuAgUK4OHDhxg0aJBW+UqVKuHUqVOJLu/bt28AAJVKleR6465bEATY2dlJ233//n2ULl1aazlVq1ZNcnlNmjSBvr4+Dhw4gI4dO2L37t0wNzfXerof2/3791G5cmWtaT9aR0LevXuHiRMnwsfHB+/fv4darUZYWFiiN0MxjIyMEq3JkpH09fWxbNkyrWk9e/bEsGHDcP36dezbtw83b97EvHnzMGzYMOzevVumSCktIlJeIYvSWR3Hl3BTBCDyrRIRhoYIN1QhwsAQEYYGCDcwQKSBISL19RFhoI8ofX1E6elBzIDLZ05mlDvty/Dw8MCMGTPw+++/Y9euXRg4cCBq164NV1fXeGXfvHmDTp06Yd68eWjdujW+fv0KX19fiKKI0aNH4/79+/jy5YvUPNLa2hpRUVFwd3dH1apV4evrCz09PcycORONGjXCrVu3YGBgAAA4efIkVCoVfHx8EBAQgJ49eyJXrlyJPsW+evUq2rdvj6lTp6JDhw44f/48Bg0ahFy5ciU7GX/58mVUqlQJJ06cQIkSJaRYfmTIkCG4d+8etm3bJjU3bNSoEW7fvg1nZ2cA35/iz507F2vXrkWuXLmQO3f8D8vf3x9t27bF8OHD0adPH1y/fj3B2pEJLatTp054/PgxDhw4AHNzc4wbNw5NmjTBvXv3oK+vn6ztAFK+3+P6UW3GKlWqJGs5nz9/hiAI0kOKMmXKYNOmTTqvzciEA6WJkgmHTOXUABPk2X1I7jAoNqUyxQmHuBctQRC0psV0gJhY9b4+ffrA3d0dhw4dgre3N+bMmQMPDw8MHToUjRs3xvPnz3H48GEcP34c9erVw+DBgzF//vxkxfOjdSdHTBOOoKAg2NraJlk2oX2RlnUbGBigbdu2+Pvvv9GxY0f8/fff6NChQ5o6iVQoFFKVwxhRUVFar7t3746PHz9i8eLFcHR0hKGhIapWrfrDJxqfPn364T6Kzc7ODpGRkQgODtaq5fDu3TvY2dklOk9MmZiEUszrxPriOH36NO7evYu1a9dizJgxaNKkCUxMTNC+fXssXbo02fFS5mLIu8JM512ECQaPmw4xWIDiij0EPxVwNhSaKy8gvvsYr7woCIgwNUWEuRkiTU0RYWqCCBNTRJoaI8LYGBEmJogwMUaEyggRRt9/IlUqRKgMEW5oiAhDw+8JDQMDROgbIEJfHxF6egjX+/5/hFKJCKUS4QolIhUKhAvffyIgIAICwgFEiOn/3ENOzXMn/4tlYmJq7wHAuHHjsHDhQpw+fTrRhEN0dDR+/vlnqaPl2A8hjIyMEBERoXWO37x5MzQaDdauXStdtz09PWFpaQkfHx80bNgQwPdr4vr162FsbIwSJUpg+vTpGDNmDGbMmAGFIn5F+AULFqBevXqYNGkSAMDFxQX37t3Dn3/+meyEQ8w1LVeuXIlel+J68eIFPD098eLFC6l25OjRo3H06FF4enpi9uzZAL5fe5cvX44yZcokuqxVq1bB1dUVf/75JwDA1dUVd+7cifdlP+6yYhIN586dkx7UbNmyBfnz58e+ffvQrl27ZG0LkPL9HldqajPGFR4ejnHjxqFTp05SrYVevXrh1q1bKF68OGxsbLRqM/r4+GDixInYtm0bChcujPXr18PBwSFZ6+KlhdKENRwyj50eTkw2ZEZKef5G8ufPjwEDBmDAgAH47bffsGbNGqmjH1tbW3Tv3h3du3dHzZo1MWbMmCQTDklxdXWFn58funXrJk3z8/NLcp7ChQvD3Nwc9+7dg4uLS6rWCwDFihXDpk2bEB4eLtVySKwqYWxdunRBgwYNcPfuXZw6dQozZ85Mch0HDhzQmhZ3Hba2tnj79i1EUZRu7OJ2hnXu3DksX74cTZo0AfC9qmtMNcWk3LlzJ9HqpgmpUKEC9PX1cfLkSbRp0wYA8PDhQ7x48SLRmhkFCxaEnZ0dTp48KSUYvnz5gkuXLmHgwIHxysd0VLVlyxYolUqo1Wop4RIVFQW1mk3tsipjAz4az2zuvbXC2UddUcN1JcQGjyE2+P/3hBeFoPDLDfgpIV4JhuaaP4SQMKi+foXqB/3DpLcIExNEmpkiwswUEaamiDQx+Z7sMP2e8Ig0NkF4TMLDSIVwlQqRKhXCDQ0RaWiI8P8lPSL1DRCur48IfX2E6+khUk8P4UolIpR6iFAoESEoEP6/xEfk/xIe4RAQISIVDRqTR08HfyZJ1d6Lq0yZMqhXrx5KlSoFd3d3NGzYEG3btoWVlVWiy7958yaePHkSrw+E8PBwPH36VGvZsfsvqlq1KkJCQvDff/9pjSIV4/79+2jZsqXWtOrVq2PRokVQq9VQptM9z+3bt6FWq+PdM0RERCBXrlzSawMDA619m5CHDx/ip59+0ppWqVKleOXiLuv+/fvQ09PTqvWYK1cuuLq64v79+ynanpTud12LiopC+/btIYqiVr9b6VWbkQkHShMmHDKHUScKwG3ykR8XpIwnQ8JhxIgRaNy4MVxcXBAUFITTp0+jWLFiAIDJkyejQoUKKFGiBCIiInDw4EHpvdQYOnQo+vbti4oVK6JatWrYvn07bt26hUKFCiU6j0KhQP369XH27Nk09azduXNnTJgwAX379sVvv/2GgICAZCVOatWqBTs7O3Tp0gUFCxaM12QitgEDBsDDwwNjxoxBnz59cPXqVakdagw3Nzd8+PAB8+bNQ9u2bXH06FEcOXJEq52js7MzNm3ahIoVK+LLly8YM2YMjIyMkowzLCwMV69elZ7cJIeFhQV69+6NX3/9FdbW1jA3N8fQoUNRtWpVrSqWRYsWxZw5c9C6dWsIgoARI0Zg5syZcHZ2RsGCBTFp0iTkzZs3wc9nxowZaNKkCcqVKwfg+83mmDFj0LNnTyxduhTVq1dPdryUuRin/cEtpYNeG9vhwYw9UCjifCEt8BGaAh+BNv97rTGA4r4ThCuWgJ8Gol8gNHeeA3FqXGUEw9BQGIaGwuxt4r3mp7coQxUizM0QYW6qXdvDxBjhMbU9jI0QqTJChJEK4f/7P/J/tTzCDQ0RafC9lke4gQEi/lfLw9XABLBJ3pPdxKSk9p5SqcTx48dx/vx5eHt7Y8mSJZgwYQIuXbok9YcQV0hICCpUqIAtW7bEey8lteZSQxCEH9b6S6mQkBAolUpcvXo1XlIjplNs4Httj7QOEZ6WZSWnxqMupKY2Y+x42rdvj+fPn+PUqVNJ9smgq9qMTDhQmujxEJJddX9rjOt2AchkvefS/xgaZvgq1Wo1Bg8ejJcvX8Lc3ByNGjXCwoULAXzP2Md8OTcyMkLNmjWxbdu2VK+rS5cuePbsGUaPHo3w8HC0b98ePXr0wOXLl5Ocr0+fPujbty/mzZuXrOqDCTE1NcU///yDAQMGoFy5cihevDjmzp0rPdlPjCAIUnvYyZMnJ1m2QIEC2L17N0aOHIklS5agUqVKUmdfMYoVK4bly5dj9uzZmDFjBtq0aYPRo0drdQK2bt069OvXD+XLl0f+/Pkxe/bsJEfUAID9+/ejQIECqFmzpjTNy8sLPXv2jHdDE9vChQuhUCjQpk0bREREwN3dHcuXL9cq8/DhQ3z+/Fl6PXbsWISGhqJfv34IDg5GjRo1cPTo0Xj9bNy5cwc7duzQqsHRtm1b+Pj4oGbNmnB1dY03CghlHUas4ZApfQpVYfvl/uhUJekhAgWFCLHEK4glXgHd/zcx3BLKGw6AnwngFwnNlTcQn7xM/6AzAf2IcOh/CIfphw86Xa7R6j8B5446XeaPCIKA6tWro3r16pg8eTIcHR2xd+9e/PrrrzAwMIhXs6x8+fLYvn07cufOneQXyps3b+Lbt29SAvzixYswNTVF/vz5EyxfrFgxnDt3TmvauXPn4OLiIiUCbG1t8ebNG+n9x48fa/VFFNNnQ0pqw5UrVw5qtRrv37/XuiamhqurqzRUeIwf1cwEvm97dHQ0Ll26JDWp+PjxIx4+fIjixYsDSF6NRyDl+z2u1NRmBP4/2fD48WOcPn1aq3ZIXLqszSiISd21EP1A8YjGeCb+J3cYOZZ1mAFu1wmDwa2HcodCiRAKFYJprOqLOUGDBg1gZ2eHTZs2JVpGFEVUrlwZI0eORKdOnTIwuqyjSpUqGDZsGDp37ixNmzJlCv7991+tnrmJdGXXjSh09pK/k1KKT6nQ4MUffWBooIPr/SdTCDH9QVxJvD8ISpjRluUwaJf06E6xubm5oWzZsli0aBGA76NUjBgxQmsEhrJly6JVq1aYOnVqvPkvXbqEkydPomHDhsidOzcuXbqEX375Bfv27UPjxo0xe/ZsrFq1Ct7e3siVKxcsLCwQFRWFsmXLwsHBAdOnT0e+fPnw/Plz7NmzB2PHjkW+fPnQo0cP7N69G82bN8fEiRMREBCAXr16oWfPnpgzZ06C23Lt2jX89NNPUqeRFy5cwMCBA7F8+XKpD4dOnTrh5s2b2LJlC9RqNcaNGwdfX1+sXr0aPXr0QHR0NMzNzTFhwgT06dMHKpUKFhYW6NGjB4KDg6URLuLut19++QXnzp2Dh4cHypUrhw8fPuDkyZMoXbo0mjZtCi8vL4wYMUIaaSIx/v7+cHV1xciRI9G7d2/cuHEDo0aNwsuXLxEcHAwLC4tEl9WqVSs8fvwYq1atgpmZGcaPH48nT55InUbev38fJUqUwJw5c6Qaj5MmTYK5ubk0Qkhq9ntCBg4ciMOHD8PLy0uqzQgA58+fl8rErs0YFRWFtm3b4tq1azh48KDWyFTW1tbxOu+cMGECIiIipJqjO3bswJgxY/DPP//gr7/+wps3b3DoUPKacnNYTEqTXLCUO4Qc7fQgMyYbMjnB2lruENJVWFgYFixYgLt37+LBgweYMmUKTpw4ge7duyc5nyAIWL16NaKj2S1+QgIDA/Hzzz/HS8YcOXIE8+bNkykqyu7YpCLzUmsU+PPoEN0szDoEYsPH0Ey4Dc3eZ8B/0RCeFIJyaxUof60ORa0SgKnxj5eTQwkmGbtvzM3NcebMGTRp0gQuLi6YOHEiPDw80LhxYwBA37594erqiooVK8LW1hbnzp2DsbExzpw5gwIFCuDnn39GsWLF0Lt3b4SHh2vVeKhXrx6cnZ1Rq1YtdOjQAS1atEgw6RGjfPny2LFjB7Zt24aSJUti8uTJmD59ulaHkR4eHsifPz9q1qyJzp07Y/To0Vr9Fejp6eGvv/7CqlWrkDdv3nh9QiTG09MT3bp1w6hRo+Dq6opWrVrBz88PBQoUSNH+LFiwIHbt2oU9e/agdOnSWLFiBSZMmAAAMPxBrVRPT09UqFABzZo1Q9WqVSGKIg4fPiw1kYmp8bhs2TKUKVMGly9fTrA244/2u5eX1w+bcyxcuBDNmjVDmzZtpKaie/bs0SoTuzbjq1evcODAAbx8+RJly5aFvb299BM7SQH8f23GadOmSdPatm2Lpk2bombNmrh16xYWL16cZHyxsYYDpUmryIE4qvGVO4wcaetiJ9Qfz04iMztlw4YwPnZM7jDSzbdv39C8eXNcv34d4eHhcHV1xcSJE/Hzzz/LHRoRpZDP42g0XBYqdxiUhMczx8DK9PyPC6aRqBGguJc3Tn8QAQCTxDA5vgN6tVM+PHJGmjp1Kvbt25dgdf4YcWsU5GSzZs2Ch4cHNBqNVKshOfswNZKz37NbbUbWcKA0sWYNB1kM9SmA+hOOyh0GJUN2r+FgZGSEEydO4OPHjwgNDcW1a9eYbCDKokwzvssZSqHh2wYDYvp3RiwoRIglX0HT4y40y+5DvPwB+GQF5ZmyUHpUh7LjTxCK5Ev3ODIjwdJC7hB+aPTo0Th58mSyyk6dOjXRIZCzq1y5cuHXX3/Fs2fPsGnTJvz555/xOjxOyT5Mq7t376JNmzZwcnKCIAjw8vJKVm3GW7duoWbNmlCpVMifP3+8eY4fPw4XFxeYm5uja9euWkNxf/78GS4uLnj+/LnOtycuJhwoTWyExIfkofRR5bk1Jv1yCeDQc1lCdk84EFH2kduMt4WZ3eE7Tnj2voUs6xZUkdBU8Ydm6B1oNj4C7n2F8NYBioMVoZxSA4omZSHkSbwTuuxCcEh6FID0plarEx3RIoapqWmSHQLmdFFRUVi3bh2KFy+OGTNmYNSoUfFGZdLFPkzuCBVhYWEoVKgQ/vjjD9jZ2WHkyJEJDtUZ25cvX9CwYUM4Ojri6tWr+PPPPzF16lSpw2qNRoPOnTtjwIABuHDhAq5cuaLVmfX48eMxYMCADBmGk1cWSpNcgqXcIeQolt8MsKtTIISPn+QOhZKJCQciyirymgtQcKCKTK/nhl6AmPSwuhkmVn8Q4j7/7/1BPC4M5d9VoPy1WvbrD8LAAAqb5F/X3dzcMGTIEAwZMgQWFhawsbHBpEmTtEYaioiIwOjRo+Hg4AATExNUrlxZqyq9l5cXLC0tceDAARQvXhyGhoZ48eIFfHx8UKlSJZiYmMDS0hLVq1eXnlbHrbWQUNlp06ahVatWmDZtGm7evAlBEKSn6wCwYMEClCpVCiYmJsifPz8GDRqEkJCQeHEdO3YMxYoVg6mpKRo1aqQ1QgUArF+/HiVKlIChoSHs7e0xZMj/90USHByMPn36wNbWFubm5qhbty5u3ryZ5D69ffs26tatCyMjI+TKlQv9+vXTisvNzU2rQ07ge2ePMf1MuLm54evXr/jy5QsiIiLw+PFjTJo0Kd5wmwnV/Fi7di2KFSsGlUqFokWLao0AFRAQAEEQsH37dtSuXRsqlSrBYUm9vLziNaf46aef8Oeff6Jjx44/7EcixpYtWxAZGSnt344dO2LYsGFYsGABgO99QQUGBmLQoEEoUaIEWrRogfv37wP43rGkn58fhg8fnqx1pRUTDpQmtuCXqYx0eqgFDK/flzsMSgEhVi/ARESZmZ5SQG4zZhwyu7uvrXHhSVe5w0icYyA0be9D88ddiCdeAoEGUFwrDuXqalD2rQJF2SKAXtYcVl3Im/Jr+oYNG6Cnp4fLly9j8eLFWLBgAdauXSu9P2TIEFy4cAHbtm3DrVu30K5dOzRq1AiPHz+WyoSFhWHu3LlYu3Yt7t69C2tra7Rq1Qq1a9fGrVu3cOHCBfTr1y/Bjgajo6MTLduhQweMGjUKJUqUwJs3b/DmzRt06NABAKBQKPDXX3/h7t272LBhA06dOoWxY8dqLTssLAzz58/Hpk2bcObMGbx48UKrk8QVK1Zg8ODB6NevH27fvo0DBw6gSJEi0vvt2rXD+/fvceTIEVy9ehXly5dHvXr18OlTwg/WQkND4e7uDisrK/j5+WHnzp04ceKEVhLjR/bs2YN8+fJh+vTp0jYnx5YtWzB58mTMmjUL9+/fx+zZszFp0iRs2LBBq9z48eMxfPhw3L9/H+7u7smOK6UuXLiAWrVqaY0u4e7ujocPHyIoKAi2trawt7eHt7c3wsLC4Ovri9KlSyMqKgoDBw7EqlWr4iVZ0kvW/GunTMNRcJA7hBxj0zIn5NvCTiKzGkXhwnKHQESUbA4WCrz9wiZ7mV13rw54MGMfFIr3cofyQzH9QYglXwE9/jfxmzWUN+wBPzPALwKaK68hPn0lZ5jJosib8uYU+fPnx8KFCyEIAlxdXXH79m0sXLgQffv2xYsXL+Dp6YkXL14gb968AL73HXD06FF4enpi9uzZAL5XzV++fDnKlCkDAPj06RM+f/6MZs2aofD/7jOKFSuW4Pq/fPmSZFlTU1Po6enBzk5722LXEnBycsLMmTMxYMAAraf6UVFRWLlypbTcIUOGYPr06dL7M2fOxKhRo7SepP/0008AgLNnz+Ly5ct4//699FR//vz52LdvH3bt2oV+/frF25a///4b4eHh2LhxI0xMTAAAS5cuRfPmzTF37lytoR4TY21tDaVSCTMzs3jbnJQpU6bAw8ND6qeqYMGCuHfvHlatWqU1MteIESMypC+rt2/fomDBglrTYrb/7du3sLKywo4dOzBy5EgMHz4cTZo0Qa9evfDHH3+gTp06UKlUqF69OgIDAzF06NAUJW1SigkHSpPCQsqGoqHUGeibD43GZ9+RDrIzhbOz3CEQESWbo7WAq//JHQX9yKdQFXb59UX7yrPkDiVVBKMIaKoGALEGexA+OUDwywvhiiFEvxCIV15AfJ+5mpAqnPKneJ4qVapo1TyoWrUqPDw8oFarcfv2bajVari4uGjNExERodV/gIGBAUqXLi29tra2Ro8ePeDu7o4GDRqgfv36aN++Pezt7eOtPyVlYztx4gTmzJmDBw8e4MuXL4iOjkZ4eDjCwsKkYS6NjY2lZAMA2Nvb4/3770mw9+/f4/Xr16hXr16Cy7958yZCQkLi9ZPw7ds3PH36NMF57t+/jzJlykjJBgCoXr06NBoNHj58mKyEQ2qEhobi6dOn6N27N/r27StNj46OhoWFdieiFStWTJcYUqNGjRrw8/OTXj969AgbN27E9evXUatWLQwfPhyNGzdGyZIlUatWLa1jTJeYcKA0KSDYwxAGiEDkjwtTqlT4zxLTulzlUFRZkZ4eBCcnuaMgIkq2grnY2jarGLq9EVqV3wED/cc/LpwVWIdAdH8EMVYtdOF5YSj8bIErCoh+wdBcCwBCw2QLUVFItx3shYSEQKlU4urVq/Gqt5uamkq/GxkZxWsu4enpiWHDhuHo0aPYvn07Jk6ciOPHj6NKlSrx1pOSssD3/giaNWuGgQMHYtasWbC2tsbZs2fRu3dvREZGSgkHfX19rfkEQZD6pzAySrqfkZCQENjb2yc49KOlpWWS8yZFoVBo9ZEBJL/zxsTE9BGxZs0aVK5cWeu9uJ9b7GRIerKzs8O7d++0psW8TqzmRv/+/aXhP69fv4527drB2NgYtWvXxr///ptuCQdeVShNFIICTmxWkW4swvWxr3MwhA+BcodCqSA4OkLIou1UiShnKmyTMW16Ke3UGgU8jqVfNehMIXZ/ECdfAYGGUFwtDuWqalD2qQJFmcIZ2h+EomDKa/ZeunRJ6/XFixfh7OwMpVKJcuXKQa1W4/379yhSpIjWT3Kq+5crVw6//fYbzp8/j5IlS+Lvv/9OcVkDAwOo44x8dvXqVWg0Gnh4eKBKlSpwcXHB69evU7TdZmZmcHJySnRoyfLly+Pt27fQ09OLt+02NjYJzlOsWDHcvHkToaGh0rRz585BoVDA1dUVAGBra6vVL4NarcadO3e0lpPQNiclT548yJs3L549exYv1rjNGjJK1apVcebMGa1kyvHjx+Hq6gorq/ijCK5btw7W1tZo0aKFtO0x80ZFRaVof6QUEw6UZmxWkX5ODbeC6spducOgVFLE6hiJiCgrKGTDW8OsxONERQSHVP1xwWxCUGoglnoFTc+70Cy/D9EvEPhoDeW/ZaGcXwPKDj9BKJx+D8IUhVNew+HFixf49ddf8fDhQ2zduhVLliyR+jRwcXFBly5d0K1bN+zZswf+/v64fPky5syZg0OHEu+3y9/fH7/99hsuXLiA58+fw9vbG48fP06wH4cflXVycoK/vz9u3LiBwMBAREREoEiRIoiKisKSJUvw7NkzbNq0CStXrkzxtk+dOhUeHh7466+/8PjxY1y7dg1LliwBANSvXx9Vq1ZFq1at4O3tjYCAAJw/fx4TJkzAlStXElxely5doFKp0L17d9y5cwenT5/G0KFD0bVrV6k5Rd26dXHo0CEcOnQIDx48wMCBAxEcHKy1HCcnJ5w5cwavXr1CYGDyHupNmzYNc+bMwV9//YVHjx7h9u3b8PT0lEaFSIvIyEjcuHEDN27cQGRkJF69eoUbN27gyZMnUpmlS5dqNU/p3LkzDAwM0Lt3b9y9exfbt2/H4sWL8euvv8Zb/vv37zFz5kxp31tZWaFYsWJYtGgRLly4gJMnT6J69epp3o7E8KpCaVZESP/xW3Mir5UFUWDjabnDoDRg/w1ElNWUystbw6xm5PZBgJhzP7fv/UH4QzPsNjSbHgH3QyC8dYDin5+gnFwDiiZlIeTWzahqiqIpf5DQrVs3fPv2DZUqVcLgwYMxfPhwrQ4RPT090a1bN4waNQqurq5o1aoV/Pz8UKBA4g/0jI2N8eDBA7Rp0wYuLi7o168fBg8ejP79+6e4bJs2bdCoUSPUqVMHtra22Lp1K8qUKYMFCxZg7ty5KFmyJLZs2YI5c+akeNu7d++ORYsWYfny5ShRogSaNWsmjb4hCAIOHz6MWrVqoWfPnnBxcUHHjh3x/PnzRPtiMDY2xrFjx/Dp0yf89NNPaNu2LerVq4elS5dKZXr16oXu3bujW7duqF27NgoVKoQ6depoLWf69OkICAhA4cKFYWtrm6xt6dOnD9auXQtPT0+UKlUKtWvXhpeXV7JqOMQebjQhr1+/Rrly5VCuXDm8efMG8+fPR7ly5dCnTx+pTGBgoFbfFhYWFvD29oa/vz8qVKiAUaNGYfLkyQl2tjl8+HCMGjVK6pgU+D4857Zt29CsWTOMGTNG6swzPQhi3EYuRCm0IXov+kdPkjuMbKXf2XyY1fgk+23I4gyXLYPBoEFyh0FElCJFpn3BiyDeHmYlfr/PQ8Hc++UOI3MLsIHCLzdwVQHRLyjF/UEIjvlg/vhCilbp5uaGsmXLYtGiRSmLlbINf39/uLi44N69e3DOoQ+i2LiY0qyioqTcIWQr5V5aYGaXa0w2ZAPKSpXkDoGIKMXK51fiRRCvQVlJn429cHKUNyB8kzuUzMspEBqnQKDd/16rDaG45wThiiXgp4Ho9wGau88Tvf9SluX9LqXc4cOH0a9fvxybbACYcCAdKCoUggmMEApe5NLKLEIP+7t8gfD+g9yhUFqpVFD8b7xsIqKspGIBJfbdYsIhK7n50gaXnv6CykXWyB1KlhHTH4RY6hXQ838Tv1lDeT0v4GcK+EVAc+UVxGffO0tUlmPCgVJu8ODBcocgOyYcKM2UghJlheI4J16VO5Qs7+SIXDC6fEruMEgHFOXKQYgzXBQRUVZQIb8egAi5w6AU6u7ZAfdn7IWg4MhWqSUYRUBTzR+oFmvax3wQrthDr1DFFC8voSEfiXKanNvDDOkUm1Wk3dq1TijoxWRDdqGMM04zEVFWUSE/h8bMigJDjbD7SvwO4yiNcn2F6P4YSudSckdClCUx4UA6UV5RQu4QsrReFxzQ8ldvucMgHWL/DUSUVVkaCyjM4TGzpKHbGyEyikMy65oChSHAXO4wiLIkXk1IJ6opyskdQpZV5rUF5nS+AURFyR0K6RBrOBBRVsZaDllTlFqJRd5sM65rSpSVOwSiLIsJB9KJ/II9XIQfj0NL2kwilTjwSwgUb9/LHQrpkJA3LxSFCskdBhFRqtVxYTdfWdW845XwObSK3GFkK0rwwRpRajHhQDpTX1FV7hCynBOjbGF84ZbcYZCO6TVuLHcIRERp0qgYEw5Z2agdgwCRt/m6oseEA1Gq8UxEOlNPUe3HhUiy0qsgiqw9KXcYlA6UTZrIHQIRUZo4WCpQKi9vE7OqfTcL43lgU7nDyBYUKAgFCsgdBlGWxSsJ6UxtRSXoc6TVZOl22QFthrOTyGxJXx96DRrIHQURUZo1Ls6hfbOyPhv6AKKR3GFkeXrgNZ0oLZhwIJ0xFYxRWSgrdxiZXom35viz0y0gMlLuUCgdKKtXh2BmJncYRERp1rg4HyJkZddf2uDys85yh5Hl6aOh3CEQZWlMOJBONVbWkjuETM0oSolDXb9B8fqt3KFQOtFjcwoiyiaqOClhbSzIHQalQQ+vjhA1ueQOI8sSkB9KFJU7DKIsjQkH0qk2Cne5Q8jUTozNA5OzN+QOg9IR+28gouxCqRBQ35W1HLKy91+NsfdaP7nDyLL02ZyCKM2YcCCdclI4oJJQWu4wMqUlmwvCZeVxucOgdKQoWhTKEiXkDoOISGealGDCIasbvLUxoqI4VHNqMOFAlHZMOJDOtVU2kjuETKfzVXt0HMJkQ3an17Wr3CEQEelU85L6MDGQOwpKiyi1EotPDJY7jCxHgD2UKCV3GERZHhMOpHNtlO4QwDafMYq+N8XCjveAiAi5Q6H0JAjQZ8KBiLIZM5WAn8twtIqs7o9jVfAltLLcYWQp+qgvdwhE2QITDqRzDkIeVBPKyx1GpmAYrcThblFQvHwtdyiUzpRublDkzy93GEREOtejCqs4ZAejdw0CRN76JxeHwyTSDZ51KF10UjaTO4RMwfs3O5j9e03uMCgDsHYDEWVXNQvroYgtbxmzuj3Xi+DFR3ZsnBwCbKFEWbnDIMoWePWgdNFB2QSmMJY7DFkt2FoQxZd6yx0GZQRjY+i1bSt3FERE6aZbJTaryA76bOwDiCq5w8j09NESAr8mEekE/5IoXZgJJuigbCp3GLJpd8MeXQeflDsMyiB6rVtDMDOTOwwionTT9ScDKNg9U5Z37YUtrvh3kjuMTE4fBugidxBE2QYTDpRu+irbyx2CLIoEmmJJxwfAt29yh0IZxGD4cLlDICJKVw6WCjRw5RCZ2UEPz04QNdZyh5Fp6aMJFLCVOwyibIMJB0o3ZRXFUFUoJ3cYGUpfrcCxbmoon7+UOxTKIMoaNaD86Se5wyAiSne9qrLzyOzg7VcTHLjeV+4wMi0DdJM7BKJshQkHSleD9XJWlTTvCXlhfvqK3GFQBtL/9Ve5QyAiyhAtS+mhiA1vHbODQVubICq6kNxhZDpKVIUSrnKHQZSt8KpB6aqVoj4cBQe5w8gQf+4oiJKLj8kdBmUgoUgR6LVsKXcYREQZQqEQMKIOazlkBxHRelhycpDcYWQ6hughdwhE2Q4TDpSu9AQ9jFb2ljuMdPfzLTv0GMBOInMag+HDISh4GiWinKNbJQPkNmXvkdnB7CNV8TWMTQJjKOAMPVSXOwyibId3ypTuuitbwwF55A4j3RT+aILlHR6xk8icxsoK+j17yh0FEVGGUukLGObGWg7ZxdhdgwGRCSSAfTcQpRcmHCjdGQj6GK2XPWs56KsVONZdhDLgP7lDoQxmMHIkBBMTucMgIspwA2sYwtqYX1Kzg53XnPHfx8ZyhyE7ATbQRzO5wyDKlphwoAzRU9kG9tlwiKEjUxxgcdJP7jAogwm5c8OAnUUSUQ5lpmIth+yk78a+gGgodxiyMkAnCNCXOwyibIkJB8oQKsEQI/WyV/Xz2XucUMbjqNxhkAwMJk1i7QYiytGG1DKEFWs5ZAtXXuTGtYBOcochGwG2MEBXucMgyraYcKAM00/ZAQWQV+4wdKL53dzo289H7jBIBkKhQtDv31/uMIiIZGWuEvB7w5z9VDw76eHVGaLGSu4wZGGIkRBgLHcYRNkWEw6UYVSCIWbrZ/1q6I5Bxljd4RkQGip3KCQDwxkzIOiz2iUR0aCaBnDNzVvJ7OD1ZxMcvNlH7jAynBJloI/mcodBlK3xKkEZqq2yEaoJ5eUOI9WUGgHHeyqg9/S53KGQDBRly0KvU86tdkpEFJu+UoBHa5XcYZCODNjSDNHRTnKHkYEEqPAbBLBpEFF6YsKBMtx8/XFZ9uR+aHo+WB27JHcYJBPDP/+EIGTNY5eIKD00LKaPpiX05A6DdCAiWg/LTg2SO4wMo49WUKKk3GEQZXtMOFCGK68ogV+ULeUOI8Vm7HdChbnsJDKn0mvfHnr168sdBhFRpjO/tQqGzDlkCzMOV0fItwpyh5EBzGCIEXIHQZQjMOFAspiuNxwWMJM7jGRr9CA3BvT5V+4wSC5mZjBcuFDuKIiIMqXCNkoMq80OJLOL8buHAGL2rs1niIFQIJfcYRDlCEw4kCzsBVvM0RsldxjJ4vDZCJ7tA4CQELlDIZkYzpwJRd7sMcIKEVF6+K2hIfJaZO8vqTnFtisuePWpkdxhpBsFCsEA7I+JKKMw4UCy6aXXFnUVVeQOI0mCCJzqpQe9x/5yh0IyUVSpAv0hQ+QOg4goUzM1FPBXWyO5wyAd6bepDyBmz1orKoyDAI42RZRRmHAgWa3Qnw7TTDz28T+zCsD68EW5wyC5GBhAtW4dBAVPlUREP9KilD56VuEXuezgUoAdbjzvKHcYOqeHJtBDdbnDIMpReBdNsnIU8mKm3ki5w0jQpINOqDybnUTmZAZTpkBZvLjcYRARZRkerY1Q2Ia3l9lBd8/OEEUrucPQGQF5YYRJcodBlOPwikCy66/siJpCRbnD0NLgkS2G9vYFRFHuUEgmyjp1YDB+vNxhEBFlKaaGAtZ3MYKSd5hZ3qvPpjh8s7fcYeiIAkaYAyELdVhOlF3wckCyEwQBngZ/IBcs5Q4FAJD3iwob2r+A8OWL3KGQTAQbG6g2b2ZTCiKiVKhaUA9j6mXP9v85zYAtzREd7Sh3GGlmgN7QQ04Y7pMo8+HdNGUK+QQ7rNefAwHy9nAtiMDJvobQf/hM1jhIRoIAlZcXR6UgIkqDSY0MUT6/Uu4wKI2+Relhpc8gucNIEwVKwRCD5Q4j0/Dy8oKlpaXcYaRaQEAABEHAjRs3AAA+Pj4QBAHBwcGyxkWJY8KBMg13ZU2MUvaSNYZ9fzjC5sB5WWMgeekPHw69pk3lDoOIKEvTVwrw+sUIxgZyR0JpNfVgDYR8Ky93GKkiwALG8IAAPblDoVTo0aMHWrVqlWSZatWq4c2bN7CwsMiYoP7nyZMnMDMzS1by5uTJk6hWrRrMzMxgZ2eHcePGITo6Wno/ICAAtWrVgomJCWrVqoWAgACt+Zs1a4bdu3freAsyDhMOlKlM0xuG6oI8Vd7GH3VEtRlHZFk3ZQ6K8uVhOHeu3GEQEWULRfMosa6zMQR5Ky+SDkzYOxgQs9oHKUCFOVAg/WosRkZGptuyKXkMDAxgZ2cHIQ0nmpR+jlFRUejUqRNq1qz5w7I3b95EkyZN0KhRI1y/fh3bt2/HgQMHMD5WP2GjRo2Cg4MDbty4AXt7e4wePVp6b/v27VAoFGjTpk2KYsxMmHCgTEUpKLHJ4E/YwjpD11v3iQ1+7XHu/9i77/AoqreN49/ZlkYn9JLQe28iRUREQUCUIogUFRQ79leKgtjAgj9AxYKCCIgUka60IIIiCAEpSgelSW+BJLs77x+RNSE9bDJJuD/XxcVm9syZZ3Z3ZneeOUWDRF7HjNBQgmbNwnDpdpyIiL90qetkSFuN55DTTf21KodPt7U6jHRx0R8nLdNc/vz58/Tq1YuQkBBKlCjBmDFjaNWqFYMGDfKVCQ8PZ+TIkfTp04d8+fLx0EMPATB79mxq1KhBQEAA4eHhvPvuuwnq/vDDD6lUqRKBgYEUK1aMrl27+p6bNWsWtWrVIigoiMKFC9OmTRsuXryYKD6v10vp0qX56KOPEizftGkTNpuNAwcOAPDee+9Rq1YtQkJCKFOmDI8++igXLlxIdr+TakUwaNAgWrVqlWDbb775JuXKlSMoKIg6deowa9asFF/P06dP06dPHwoWLEhwcDDt2rVj165dvueHDx9O3bp1E6zz/vvvEx4e7nt+8uTJfPfddxiGgWEYREREJNpOUl0qfvrpJ1q0aEFQUBBlypThySefTPCaJvc+ptXQoUOpWrUq3bt3T7XsjBkzqF27Ni+//DIVK1bkpptuYvTo0XzwwQecP38egB07dtC3b18qVapEv3792LFjBwBnzpxh6NChfPDBB+mKL7tRwkGynZJGUb52vU8AWXPhV/x8IF91/xvj7Nks2Z5kQwEBBM6di61cOasjERHJdYbdHsDdddSkPad7eMpDYOaMpLydJgTweLrWeeaZZ1izZg3z5s1j6dKlrF69mo0bNyYq984771CnTh02bdrEsGHD+O233+jevTs9evTg999/Z/jw4QwbNoxJkyYBsGHDBp588kleffVV/vzzT5YsWULLlnGJkCNHjtCzZ08eeOABduzYQUREBHfffTdmEjfAbDYbPXv2ZNq0aQmWT506lWbNmhEWFuYrN3bsWLZt28bkyZNZsWIFL7zwQrpei6u9+eabfPnll0yYMIFt27bx9NNPc99997Fq1apk1+nXrx8bNmxg3rx5/Pzzz5imSfv27YmNjU3TNp977jm6d+/O7bffzpEjRzhy5Ag33nhjquvt2bOH22+/nS5durBlyxZmzJjBTz/9xOOPJ/w8XP0+ptWKFSuYOXNmmpMA0dHRBAYGJlgWFBTE5cuX+e233wCoU6cOy5Ytw+v18sMPP1C7dm0Ann/+eR577DHKlCmT5viyI539JVtqZqvPBOer3B+budMSGiYsfygQ5449mbodyd4CP/sMR7NmVochIpIrGYbB572C2XvyApF/e60ORzLo533F2XzwHuqETbE6lBTZqEgw72GQ9kFLz58/z+TJk5k2bRq33HILAF988QUlkxhAunXr1jz77LO+v3v16sUtt9ziu2itXLky27dv5+2336Zfv34cPHiQkJAQOnToQN68eQkLC6NevXpAXMLB7XZz9913+xIGtWrVSjbOXr168e6773Lw4EHKli2L1+vl66+/ZujQob4yV7fIeO211xg4cCAffvhhml+P+KKjo3njjTdYtmwZTZs2BaB8+fL89NNPfPzxx9x0002J1tm1axfz5s1jzZo1viTB1KlTKVOmDHPnzqVbt26pbjdPnjwEBQURHR1N8eLF0xzvm2++Sa9evXyvQ6VKlRg7diw33XQTH330ke/i/+r3MS1OnjxJv379+Oqrr8iXL1+a1rntttt4//33mT59Ot27d+fo0aO8+uqrQNz7D3HJj4cffpjw8HBq167Nxx9/zI8//khkZCSjRo2ie/fubNiwgbZt2zJ27FhcOaw1rlo4SLbV096BoY7MHRl59tthFJ27JlO3Idmba8gQnPfdZ3UYIiK5WrDLYPaDIRTLm9PGAZD4+k3qhWlm7eB86WFQimA+wSB9Me7du5fY2FgaN27sW5Y/f36qVKmSqGzDhg0T/L1jxw6aXXXTolmzZuzatQuPx8Ott95KWFgY5cuXp3fv3kydOpWoqCgg7s72LbfcQq1atejWrRuffvopp0+fTjbOunXrUq1aNV8rh1WrVvHPP/8kuIBftmwZt9xyC6VKlSJv3rz07t2bkydP+raZXrt37yYqKopbb72VPHny+P59+eWX7NmT9A27HTt24HA4aNKkiW9Z4cKFqVKliq+7QGbZvHkzkyZNShDrbbfdhtfrZd++fb5yV7+PaTFgwADuvfdeXwuVtGjbti1vv/02AwcOJCAggMqVK9O+fXsgrjUKQKlSpViwYAEHDx5kwYIFhIaG8uijjzJhwgRee+018ubNy59//smuXbv4+OOP0x231ZRwkGxtqONR7rV1zJS6n/8hjBYjlmRK3ZIzOLp1wzVypNVhiIhcF8oUtDHzgWAC1L42x/rrdF6+32LtjGLJMShEMJ9go2imbickJCRd5fPmzcvGjRuZPn06JUqU4OWXX6ZOnTqcOXMGu93O0qVLWbx4MdWrV2fcuHFUqVIlwYXx1Xr16uVLOEybNo3bb7+dwoULA3GzHXTo0IHatWsze/ZsfvvtN1/T/+QGRrTZbIm6cMTv9nBl/IeFCxcSGRnp+7d9+/ZUx3FISWrbzagLFy7w8MMPJ4h18+bN7Nq1iwoVKvjKpfd9hLjuFO+88w4OhwOHw8GDDz7I2bNncTgcfP7558mu98wzz3DmzBkOHjzIiRMnuPPOO4G4liJJeeONN2jbti0NGjQgIiKCLl264HQ6ufvuu5McxyK7U8JBsr0JzldpYaQ/C5mSFnsL83zfNeBV087rla1pUwInT76mUY1FRCR9bijnYNJ9wdj1CzTHGvBVZ9zuslaHcZU8BDMBO2EZWrt8+fI4nU7Wr1/vW3b27Fl27tyZ6rrVqlVjzZqErWXXrFlD5cqVsdvjunU4HA7atGnD6NGj2bJlC/v372fFihVAXJejZs2aMWLECDZt2oTL5eLbb79Ndnv33nsvW7du5bfffmPWrFn06tXL99xvv/2G1+vl3Xff5YYbbqBy5cocPnw4xfiLFCnia9p/RWRkpO9x9erVCQgI4ODBg1SsWDHBv+TGFqhWrRput5t169b5lp08eZI///yT6tWr+7Z79OjRBEmH+NuFuBkoPB5PivFfrX79+mzfvj1RrBUrVrzmrgg///xzgkTGq6++St68eYmMjOSuu+5KcV3DMChZsiRBQUFMnz6dMmXKUL9+4ulmd+zYwbRp0xj57w0xj8fjS8TExsam+/XIDnS6l2zPZTiZ4/qAxkZtv9QXetHF1/ccxTijQSKvV7aGDQlevBgjKMjqUERErjtd6jqZcE+QpsvMoS7FOvj0x4FWhxGPi2DGYqd6hmvImzcvffv25fnnn2flypVs27aNBx98EJvNluqNiWeffZbly5czcuRIdu7cyeTJkxk/frxvasMFCxYwduxYIiMjOXDgAF9++SVer5cqVaqwbt063njjDTZs2MDBgweZM2cOx48fp1q1asluLzw8nBtvvJEHH3wQj8dDp06dfM9VrFiR2NhYxo0bx969e5kyZQoTJkxIMf7WrVuzYcMGvvzyS3bt2sUrr7zC1q1bE7w2zz33HE8//TSTJ09mz549bNy4kXHjxjF58uQk66xUqRJ33nknAwYM4KeffmLz5s3cd999lCpVynd3v1WrVhw/fpzRo0ezZ88ePvjgAxYvTjg9fXh4OFu2bOHPP//kxIkTaWoB8eKLL7J27Voef/xxIiMj2bVrF999912iQSMzolq1atSsWdP3r1SpUthsNmrWrEnBggUB+Pbbb6latWqC9d5++21+//13tm3bxsiRI3nrrbcYO3asLyF1hWmaPPTQQ4wZM8bXAqNZs2Z8+umn7Nixgy+//DJR952cQAkHyRHyGiHMc02gnpHxL5MrVg7Mg2tr6hlryZ1sdesS/MMPGPmzbx9UEZHcrm8TF+/dFZh6QcmWhs27iajLdawOA7ATxNs4aJx60VS89957NG3alA4dOtCmTRuaNWtGtWrVEs0wcLX69evzzTff8PXXX1OzZk1efvllXn31Vfr16wdAgQIFmDNnDq1bt6ZatWpMmDCB6dOnU6NGDfLly8ePP/5I+/btqVy5MkOHDuXdd9+lXbt2KW6zV69ebN68mbvuuougeDdP6tSpw3vvvceoUaOoWbMmU6dO5c0330yxrttuu41hw4bxwgsv0KhRI86fP0+fPn0SlBk5ciTDhg3jzTffpFq1atx+++0sXLiQcinM7vXFF1/QoEEDOnToQNOmTTFNk0WLFuF0OoG4i/cPP/yQDz74gDp16vDrr7/6kjRXDBgwgCpVqtCwYUOKFCmSqCVJUmrXrs2qVavYuXMnLVq0oF69erz88stJDgB6tVatWvnet4w6e/Ysf/75Z4JlixcvpkWLFjRs2JCFCxfy3XffJZqKFOCTTz6hWLFidOjQwbds+PDhXL58mSZNmlCxYkUee+yxa4rPCoaZ1LwrItnUKfMst8Xcz+9mxhIG37wXzs1DFvo5KskpbDVrErRyJbbQUKtDERER4N0V0bw077LVYUgG9Gmyg/d69rc0hkBexcXdmVL3xYsXKVWqFO+++y4PPvhgpmxDspewsDBGjBhxzUkHSUgtHCRHKWTkZ5HrM6oZFVIvfJWnl5fl5mGLUy8ouZKtShWCli1TskFEJBt5tnUAb3ZSS4ec6Mt11Th6+lbLth/AM35NNmzatInp06f7ugxcGRvhShcAyd22bdtG/vz5E7XukGunhIPkOEWMQix2TaSWUTnN69y4vxAv9flFg0Rep2xVqhC0YgW2YsWsDkVERK6ipEPONfCrh8F0ZvFWbQQylAD8P1vGO++8Q506dWjTpg0XL15k9erVhOpGxXWhRo0abNmyxTdVpfiPulRIjnXWPE+XmCf4ydyQYrlCUS62tL5EwOY/sigyyU5sTZsSPH8+xr9TRomISPb02doYnph1CY/uDeQoEc9+SM0yU7Noa0EEMRonN2fR9kTkWimFIzlWfiMvC1wfc6ftlhTLrXwsn5IN1ylHp04EL1+uZIOISA7Q/0YX3/YPJk+A1ZFIevT9ojemmS/Tt2NQiBA+V7JBJIdRwkFytEAjgGnO9+hv75bk89PGhlPy61VZHJVkB86HHiJwzhxNfSkikoPcXt3J8ifyUDK/5szMKQ6cysvSrf7v3hCfjTBC+Ao7tTJ1OyLif0o4SI5nN+yMd77CUMejGPz3A+WJiLLcOniJhZGJVVyvvkrgxx9jXDW/sYiIZH/1SttZPSgPNUroZ2pOMWBKZzye0plSt506BPMVNspmSv0ikrl0JpdcY6jjUaY63yWEIBofKMiw3r+Cx2N1WJKVgoIInDKFgGHDrI5ERESuQZmCNlY9lYdbKjusDkXS4GKMk4mrH/F7vQ7aEMxEbBT0e90ikjU0aKTkOlu8f1C0yxOEzF1mdSiShYyKFQmaPRt77dpWhyIiIn4S6zF5evZlPlkbY3UokgYH33qE4MAtfqnLxX0E8AKG7o+K5Gg6giXXqW2rSrHPv8Herp3VoUgWcXTqRMiGDUo2iIjkMk67wfjuQUztG0R+zZyZ7b0y73E/1JKXQN4kkP9TskEkF9BRLLmSUbAgQQsX4ho+HDSfbu5lt+N6800C587FyJ/f6mhERCSTdKvn4tfn89KorMbmyc6+WFuDY2dSnj0sJXYakofZuOjox6hExErqUiG5nnvNGi737Yu5Z4/VoYgfGSVLEjhlCo7Wra0ORUREskisx2TYgsuMiYhBv2Czp5aVDjPn0Z5guNOxloMAHsPFg2rVIJLL6IiWXM/RrBkhmzfjfPhhq0MRP3H06UPItm1KNoiIXGecdoO37gxi7oBgQkM0dWZ29OOukmw/lPR05UmxUY4QphLAACUbRHIhtXCQ64p78WIuP/gg5pEjVociGWCUKEHgJ5/g6NDB6lBERMRih896eWLmJeZvTc+ddMkK5Qqf59eh3TCM8ymWc3IPgTyHQVAWRSYiWU1pRLmuONq1I2TrVhw9elgdiqSTo3fvuFYNSjaIiAhQMr+N2f1DmPVgMGULqrVDdrLvZF6Wb7s/2ecNChHEBwQxTMkGkVxOLRzkuuVeupTop57Cu2OH1aFICozwcAL/9z8cnTpZHYqIiGRTF6NNRi65zNhVMbi9VkcjAHkDYtj9xn3Y7YfiLTVwcicBPIONQpbFJiJZRy0c5LrluPVWgjdvJuDddyFfPqvDkavlyYPr9dcJ2bFDyQYREUlRSEDc2A6/PJeHG8I1k0V2cD7axaSfHvH9bacuIUwniNeUbBC5jqiFgwjgPXqU6P/7P9xffomGvbaYYeDo25eAN97AVqKE1dGIiEgOY5omE3+O5ZVFlzl+Qd/pVtv3+isUDbkVJ3dYHYqIWEAJB5F4PL/8QvTgwXhWrrQ6lOuSvXlzAt5/H3uDBlaHIiIiOdyFaJP/RUQzZmU05y5bHc31p0AQPH9LII+3dBHk0hgbItcrJRxEkuD+8UdiRozAs2KF1aFcF2yNGhHwyis47tDdDxER8a+TF728vTyaCT/FEBVjdTS5X6ATHm3h4sU2gRQMVqJB5HqnhINICtyrVxMzfLgSD5nE1rQpAUOH4mjf3upQREQklzt+wcuYlTFM+CmaC9FWR5P7hIYYDGzu4pEWLork0TBxIhJHCQeRNHD/9BMxb72FZ/Fi8Gr462tlb98e14sv4mjZ0upQRETkOnPyopcPV8cw8ecYDp/Vz+BrVamIjadauejdSF0nRCQxJRxE0sG7fz+xEyYQO3Ei5okTVoeTsxQsiLN3b5wPPYS9Rg2roxERkeuc22Myb6ubT9ZEs3KXR2NGp9ON5ew8fXMAHWs6sNmUaBCRpCnhIJIBZnQ07pkzifnwQ7w//2x1ONmavXlznA89hKNbN4zAQKvDyRKGYfDtt9/SuXNn9u/fT7ly5di0aRN169a1OjQREUnCzn88fLImhinrYzkdpZ/GySkUbNC1rpO+TZw0CnNYHY6I5ADqYCWSAUZAAM777iNk7VqCIyNxvfACRrlyVoeVbRjFi+N8+mmCt28nePVqnL17pzvZ8Ndff/HAAw9QsmRJXC4XYWFhPPXUU5w8eTJR2d27d3P//fdTunRpAgICKFeuHD179mTDhg3+2qUkDR8+PNUkQpkyZThy5Ag1a9bM1FjSolOnTpQtW5bAwEBKlChB7969OXz4sO/5/fv3YxhGon+//PJLsnVOmjQpyXUMw+Cff/4BYNOmTdSrV488efLQsWNHTp065Vvf7XbToEEDfv3118zbcRGRVFQuauedu4LYPzwvn/YMonVlOw79SgYgyAld6zqZ3T+Yv0bmZXz3ICUbRCTN1MJBxI88GzYQ+803uGfOxNy/3+pwspRRvjyOu+7Ccddd2Js2xbBl/Jfa3r17adq0KZUrV+a1116jXLlybNu2jeeff56YmBh++eUXChUqBMCGDRu45ZZbqFmzJoMHD6Zq1aqcP3+e7777jhUrVrBq1Sp/7WIiw4cPZ+7cuURGRiZYHr+Fgz/ExMTgcrmuuZ4xY8bQtGlTSpQowaFDh3juuecAWLt2LYCvNcayZcuoEa/bS+HChXE6nUnWeenSJc6ePZtgWb9+/bh8+TIREREANGjQgFatWvHwww/Tv39/GjduzDvvvAPAqFGjOHToEGPHjr3m/RMR8adTF70s2Opm7u+xLPvTzeVYqyPKOjYDbq7koGcDJ53rOMkXqC4TIpIxSjiIZBLP+vW4v/0W97JleDduBI/H6pD8zlar1n9JBj92F2jXrh1bt25l586dBAUF+ZYfPXqUChUq0KdPHz766CNM06RWrVoEBgby66+/YrsqyXHmzBkKFCiQ5Daio6N5/vnn+frrrzl37hwNGzZkzJgxNGrUCIi7cz9o0CDOnDnjW2fu3LncddddmKbJpEmTuP/++xPU+cUXX9CvX79Uu1Rs3bqV559/ntWrVxMSEkLbtm0ZM2YMoaGhALRq1YqaNWvicDj46quvqFWrFitWrGDEiBF8/vnnHDt2jMKFC9O1a9drulCfN28enTt3Jjo6GqfT6ZfuH8ePH6dUqVJMnDiR3r17AxAcHMzGjRupWrUqH330EQsWLGDhwoXs3buX22+/nd9++428efNmeD9ERDLbhWiTJTvczN0cy+LtsZzPhbNclC5gcEtlB62rOLilsoOiedXEQ0SundpDiWQSe6NG2Bs1IuCNNzDPnsWzahXuFSvwrFiBd+tWctzoVDYbtlq1sLdsif2mm7C3aIGtaFG/b+bUqVN8//33vP766wmSDQDFixenV69ezJgxgw8//JDIyEi2bdvGtGnTEiUbgGSTDQAvvPACs2fPZvLkyYSFhTF69Ghuu+02du/e7Ws9kZJ77rmHrVu3smTJEpYtWwZA/vz5U13vzJkztG7dmv79+zNmzBguXbrEiy++SPfu3VkRb/rVyZMn88gjj7BmzRoAZs+ezZgxY/j666+pUaMGR48eZfPmzaluLzmnTp1i6tSp3HjjjYlaL3Tq1InLly9TuXJlXnjhBTp16pTmer/88kuCg4Pp2rWrb1mdOnVYunQpFStWZPny5dSuXRuAgQMHMnr0aCUbRCTbyxMQN3ZB17pOYtwmm/72sHafhzV73fy8z8PxCznsOx3IFwgtKzpoU8VB68oOqhazWx2SiORCSjiIZAEjf34cnTrh+PfCzXv8OJ41a/BGRuLdvBnP5s2Y+/ZZHGVCRunS2GrWxF6nDvbmzbE3b46RwgW8v+zatQvTNKlWrVqSz1erVo3Tp09z/Phxdu3aBUDVqlXTtY2LFy/y0UcfMWnSJNq1awfAp59+ytKlS5k4cSLPP/98qnUEBQWRJ08eHA4HxYsXT/O2x48fT7169XjjjTd8yz7//HPKlCnDzp07qVy5MgCVKlVi9OjRvjILFy6kePHitGnTBqfTSdmyZWncuHGat3vFiy++yPjx44mKiuKGG25gwYIFvufy5MnDu+++S7NmzbDZbMyePZvOnTszd+7cNCcdJk6cyL333psgWfTZZ5/x6KOP8s4779CsWTNeeuklpkyZQnBwMI0aNeK2225jz5499OjRg9deey3d+yQikpVcDoMm4Q6ahDt4+uYAAHYd9/DzXg9r97lZu8/DruNePNloFm2nHaoXt1G/jJ16pe3UL22nfhk7Dru6SohI5lLCQcQCtiJFsHXuDPH6+JvnzuHZsgXv5s14t23Du38/5v79eA8cgKiozAkkf35sJUvGJReqVYtLMNSoga1GDYw03K3PTKn19nK5XKmWSc6ePXuIjY2lWbNmvmVOp5PGjRuzY8eODNWZVps3b2blypXkyZMnybiuJBwaNGiQ4Llu3brx/vvvU758eW6//Xbat29Px44dcTjSdxp//vnnefDBBzlw4AAjRoygT58+LFiwAMMwCA0N5ZlnnvGVbdSoEYcPH+btt99OU8Lh559/ZseOHUyZMiXB8ho1aiQYS+PkyZO88sor/PjjjzzxxBPceOONzJkzh0aNGtGkSRM6duyYrn0SEbFapSJ2KhWx06dJ3Hg70W6Tnf942XHUwx/HvOw54WXfybh/x85nTmuIQCeUyGdQPJ+NkvltVC1mo3pxG9WL26lc1IZTyQURsYASDiLZhJEvH47mzaF580TPmadP4z18GPPwYczjxzEvXoSLF//7Pyoq7v/oaAyXCwIDISAAIyDgv8fBwRjFi2OUKBGXZChRAuOqLgvZQcWKFTEMgx07dnDXXXclen7Hjh0UKVKEAgUK+C7O//jjD+rVq+fXOGw2W6KERmzstY8YduHCBTp27MioUaMSPVeiRAnf45CQkATPlSlThj///JNly5axdOlSHn30Ud5++21WrVqV7ICOSQkNDSU0NJTKlStTrVo1ypQpwy+//ELTpk2TLN+kSROWLl2apro/++wz6tatmyhZcrVnnnmGQYMGUbp0aSIiInjttdcICQnhjjvuICIiQgkHEcnxAhwGtUraqVUycTeFi9Em/1wwORNlcuaSyelLCR+fvWRyKcbEaTdw2MFpA4cd7DYDpx0cNghyGhTPZ1Ain43i+QxK5rdRMFgJBRHJfpRwEMkBjIIFsRcsCPFmDsitChcuzK233sqHH37I008/nWjQyKlTp/LYY48BULduXapXr867777LPffck+ZBIytUqIDL5WLNmjWEhYUBccmE9evXM2jQIACKFCnC+fPnuXjxou/i/+rZKFwuF550DgZav359Zs+eTXh4eLpbJwQFBdGxY0c6duzIY489RtWqVfn999+pX79+uuq5wuuNa+8bHZ386GeRkZEJEiHJuXDhAt988w1vvvlmiuWWL1/Ojh07+OKLLwDweDy+RI4/EjoiItldSIBBuQADClsdiYhI5tPwsyKS7YwfP57o6Ghuu+02fvzxR/766y+WLFnCrbfeSuXKlXn55ZeBuOknv/jiC3bu3EmLFi1YtGgRe/fuZcuWLbz++uvceeedSdYfEhLCI488wvPPP8+SJUvYvn07AwYMICoqigcffBCIu7MfHBzM4MGD2bNnD9OmTWPSpEkJ6gkPD2ffvn1ERkZy4sSJFC/cr3jsscc4deoUPXv2ZP369ezZs4fvv/+e+++/P8XkxaRJk5g4cSJbt25l7969fPXVVwQFBfkSJqlZt24d48ePJzIykgMHDrBixQp69uxJhQoVfK0bJk+ezPTp0/njjz/4448/eOONN/j888954oknfPV8++23SY6ZMWPGDNxuN/fdd1+yMVy+fJnHH3+cTz75xJccatasGR988AGbN29m9uzZCbq5iIiIiEjOpoSDiGQ7lSpVYv369ZQvX57u3bsTFhZGu3btqFy5MmvWrEkw/kHjxo3ZsGEDFStWZMCAAVSrVo1OnTqxbds23n///WS38dZbb9GlSxd69+5N/fr12b17N99//z0FCxYEoFChQnz11VcsWrSIWrVqMX36dIYPH56gji5dunD77bdz8803U6RIEaZPn57qvpUsWZI1a9bg8Xho27YttWrVYtCgQRQoUCDJmTauKFCgAJ9++inNmjWjdu3aLFu2jPnz51O4cNwtsuHDhxMeHp7s+sHBwcyZM4dbbrmFKlWq8OCDD1K7dm1WrVpFQECAr9zIkSNp0KABTZo04bvvvmPGjBkJpv88e/Ysf/75Z6L6J06cyN13353izCAjRozgjjvuSDDl5tixY4mMjKRly5Z07NiRLl26JLu+iIiIiOQshpnRUddERLLQK6+8wnvvvcfSpUu54YYbrA4n2+nbty+GYSRqhSEiIiIiYhUlHEQkx/jiiy84e/YsTz75ZIqtAa43pmkSHh7OTz/9RJkyZawOR0REREQEUMJBRERERERERDKBbhGKiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3mZ5wmDRpEoZhYBgGw4cPz+zNAbB//37fNlu1auVbPnz4cN/ySZMmZUksmSkiIsK3P/369bvm+sLDw331ieQW/fr1832uIyIirA4ngeSO4fTG3KpVK1/5/fv3p1jWinOyiPhHeo71K5L7TSQiktuujSR7clgdQG4VERHhu1Do3LkzdevWtTQeyJ4xXYv9+/f7To5169alc+fOlsYjIv5zJRlSoEABBg0aZGksIlklMjKSuXPnAnHJhbQmCCZNmuRLQAwaNIgCBQpkSnwiIiLpdV0lHB544AHatGkDQOXKlTN1WxEREYwYMQKIazmQHS7uU4tp1qxZXL582YLIMmb//v2+/enbt68SDpKkIUOG0L9/fwBq1aplcTRpk5kxt2/fntWrVwNQtmxZv9btT1eO7bCwMCUc5LoRGRnp++wDiRIO48aN4+zZswCUKFHCt3zSpEmsWrUKiGshFT/hUKJECd8xnz9//kyKXEREJGnXVcKhbNmy2foHttUaNmxodQgiflepUiUqVapkdRjpkpkxFy1alKJFi2ZK3SI5TUxMDDabDYcjZ/wcykgCMiAggObNm2dCNCK5y8WLFwkJCbE6DJFcx69jOKxYsYJGjRoRGBhIhQoV+OCDD5Itm9x4Acn1Xb6yLDw8nF27dtGhQwfy5MlDaGgojz32GBcvXkw1vpT6Ke3YsYN+/foRFhZGQEAARYoUoXXr1ixfvtxX5q233qJVq1aULl2aoKAggoODqV69OkOHDiUqKipBrPHvUNx///1JbnfLli307NmTEiVK4HK5KFWqFP379+fvv/9OFHtkZCStWrUiKCiI0qVLM2LECNxud6r7nJ6YknpPru5jPnPmTKpVq0ZwcDAtWrTg999/x+v18uqrr1KqVCmCg4Np164dBw4cSBRDWvf30qVLPP/881SqVImAgABCQkIoV64cd999N99++y0Qd9fn5ptv9q0zefLkRH3hf/zxR7p160alSpUoUKAALpeLkiVL0r17d7Zs2ZJgm/E/GxMnTmTEiBGUKFGCfPny0bNnT86cOcOpU6fo3bs3+fPnp1ChQgwcODBBi5Cr+8muX7+em266ieDgYEqWLMmwYcPS9Z6Jf6T1nNKpUyfy5MmT6L3duHGjr+ydd96ZoO5Dhw5hs9kwDIPGjRv7lj3wwAPUqVOH0NBQnE4nhQoVonXr1r6m0hmN2ePxMHz4cN+xdvPNN7N58+Z0vR7JjeEQv2/4li1beOKJJyhatChBQUFJHtPpOSenNN5M/Hrgv2PxigMHDiQqI5Je8Y+pxYsX8+yzz1KiRAkCAwP5+++/iY2N5b333qNBgwaEhIQQEhJCkyZN+OqrrxLVlZHfI9999x1t2rShYMGCBAQEUKVKFUaMGMGlS5d8ZcLDw7n//vt9f48YMSLRsXr1GA5Xjq0rrRsAypUrl6BMSmM4nDt3jiFDhlCtWjWCgoLImzcvTZo04eOPP8Y0zRT3O7lz5hUff/wxDRs2JE+ePAQEBFCqVCnatGnD6NGj0/y+iaTVqlWrElyDjB8/Pk3fdxs3buSBBx4gNDSUPHny+Mqk59iIiIigTZs2FCpUCKfTSZEiRWjcuDFPPfWUr0USwOzZs2nevDn58+fH5XJRvHhxmjdvzosvvpiozvjee+89X7xjxoxJ8Ny0adN8z73wwgtA+n7/Jie5792UxpFJy3lOrlOmn6xZs8Z0uVwmkOBf7dq1fY9feeUVX/mwsDDf8vj69u3rW75y5Urf8ivLChQoYBYrVizRdm6//XZf2X379vmW33TTTb7lr7zyim/5F1984Vu+ZMkSMygoKFGdV8dcpUqVJMsA5s0335wo1qT+XdnuokWLzICAgCTLFC9e3Ny7d6+vvl27dpn58+dP8bXt27dviu9PWmJK6j1ZuXKlb1m5cuVMwzASxTpgwIBEdTZr1izB9tOzvw888ECysfbq1cs0TdO86aabki1z5bV48803ky0THBxsbt++PcnPRoUKFZL8fDVu3DjR8iFDhiT5uStdurQZEhKSqPzDDz+c4vsk/pfaOSVfvnxm4cKFU3xvq1WrZgJmYGCgee7cOd/y//3vf77y//vf/0zTNM2ff/45xeNt8uTJvvXjH1/xj+HkYn7ssccS1ZcvXz4zPDzc9/e+fftSfD2++OKLJM9v8Y+p8uXLp3pMX1melnNycvsZv56wsDDTNBMei1f/u1JGJL3iH1NXf7537txp3nLLLcl+7l544YUEdaXns2+apjls2LBk627RooUZHR1tmmbC7+Cr/105VuMfp/v27UtwbCX1b9++fcn+Jjp16pRZtWrVZNft0aNHkvudlnPml19+mWy9pUqV8uM7KxL3vZvUb8w6deqk+/vONNN3bPzxxx/JXkMA5q5du0zTNM2IiAjTZrMlWy42NjbZ/Tt8+LBv3RtvvDHBc3fddZevjs2bN5ummfHfv/GvjZL73r36HHRFWs9zcn3yWwuHZ599lpiYGADatGnD/PnzGTlyJNu2bfPXJgA4c+YMpUuXZu7cuYwbN47g4GAAlixZwvz589NdX1RUFH369PFl31q0aMGMGTOYN28ezzzzTIKmVQMHDmTKlCksWrSIiIgI5s2bR/v27QFYuXIla9euBWD16tUJ7lIMHjyY1atXs3r1atq3b09UVBR9+/YlOjoah8PB66+/zg8//ODLTB49epRHH33Ut/6wYcN8GdJ69er59n337t1p3s/UYkqLffv20a9fPxYuXOhr1nn06FE+/fRTXnrpJb799luKFSsGwJo1a3zvfXr397vvvgPi+m7PmjWLH374gYkTJ9KnTx8KFiwIxPVjHTt2rG+ddu3a+fZnyJAhADRu3Jhx48Yxb948Vq5cydKlSxk1apQvpquzxFfs37+f0aNHM2PGDPLmzQvEfb62b9/OZ599xkcffeQr+/HHHydZx99//02zZs18x4HdbveVT2t2WbLGuXPnKFKkCLNnz2bkyJG+5fHf2169egFw+fJlFixY4Fs+a9YsAOx2Oz169ACgePHivPXWW8yePZtly5axcuVKJk+eTJEiRQB47bXXMhTnH3/8wYcffgiAzWZj+PDhLFiwgKZNm6Z5tPq0On78OBMmTOCrr77y9QWPf0zH5+9z8gMPPODrbw5xr+eVY/vK6y1yLfbu3cuTTz7JkiVL+Pjjj5kzZ46vNeMNN9zAt99+y6xZs6hSpQoAo0ePZt26dYnqSctnf/369b7zSokSJZg4cSJLlizhjjvuAOK+m698F82aNYvBgwf76r///vt9n/0HHnggyX2pV68eq1evTjAm08yZM33rxR/n4WqDBw/mjz/+AOK6asyZM4fPPvvM9z379ddfM2PGjETrpeWceeV73OFwMGHCBJYvX87UqVN59tlnKVeuXLIxiWTEM888Q3R0NAA333wz8+fPZ8SIEfz++++prnvw4EFeeeUVvv/+e9+xmJ5jY+nSpb5riKeeeorly5cza9YsXnvtNRo2bOhrsTd//ny8Xi8Ab7zxBsuXL+frr79m6NChVK9ePcUZ4kqUKEHr1q0B+Pnnnzl8+DAQ1wVkyZIlvjhr164NZPz3b0al5zwn1yl/ZC2OHTvmy2IFBASYJ0+e9D3Xq1evJLOLGW3hQLxsoWma5pAhQ3zLH3jgAdM009fC4dtvv/UtK1eunHn58uVk93Pr1q1mjx49zNKlS5tOpzNRBu/KHc7ktnVF/G22a9fOXL16te/flTuVhmGYx48fNz0ej5knTx5f+W3btiW576m1cEgtJtNMvYVDmTJlTI/HY5qmab799tsJMpdXxL8DO3fu3HTvr2maZvHixX2Z6U2bNiX7nqR019Q0TfPixYvm8OHDzVq1apnBwcGJ3q969eol+drce++9vuV33HGHb/mwYcN8y2vUqOFbfubMGdM0E37ugoODfctNM+Fx8Oqrryb7Hon/peWcsmnTJt/y+Hc1rryHe/fu9bXuufvuu03TNM0jR4747jhcfUdz0qRJZosWLcwCBQokahUEmGfPnjVNM30tHEaNGuVb1q1bN1/ZM2fOJPh8+6OFw5gxY3zLBw4cmOiYvvr1S+2cnJ4WDqktF8mI+MdU/HO8aZoJ7oJ+8803vu+nV1991bf88ccf95VPz2f/qaee8i0bPHiwr+758+f7ltesWdNXR3LH5xXJ3V1MbrlpJv2byOPxmAULFvQt//33333lx40b51t+5513JrnfqZ0ze/To4fsuXLZsme+cJ+JvV1+DnDhxwvfclc9hSt93gwcPTlBfeo+NCRMm+Ja9//775pEjR5KM8//+7/985WbOnJkgzrSIf24YO3asaZqmOWPGDN+yt956y1c2o79/M9rCIb3nObn++KWFw969e32PK1SoQKFChXx/X+nX7C+FChWiYsWKSdYfP4602rlzp+9xmzZtCAgISLLcgQMHuPHGG/n66699/T2vdubMmXRvc/HixbRo0cL378qdStM0+eOPP/jnn3+4cOECACEhIVSvXt23rr9f29Q0aNAAmy3uIxP/PY4/2GRoaKjv8ZXXIz37C/Dggw8CsHnzZurVq+fb72eeeYYjR46kOd6ePXsyfPhwfv/99wRjbFwd39Xiv67p2c/4qlatmmA08Gv9nErmyZcvX4K7g4ULF/Y9vvLelitXjhtvvBGIu3t58eJF5syZ47tbcd999/nWGTNmDP369WP16tWcOXMmyX6ZaT1XxBf/c9OoUSPf4/z58/vuxPrLTTfd5Huc1OsRn7/PySKZrWPHjgn+jv8d1b17d9/308svv+xbvmPHjkT1pOWzH7/uN954w1d3/BiufPdlpePHj3P69GkAgoODqVmzpu+5+PsRP/4r0nLOvDJOVFRUFG3atCF//vyUKVOG++67jw0bNvh5b+R6dvU1SPzPY9OmTVNd/+rzQXqPjTvvvNO3zUGDBlGiRAkKFSpEu3btmDlzpq98r169fNcY3bp1IzQ0lGLFinH33XezbNmyVOPs0qULQUFBwH+tK6/8bxgG9957r69sRn//ZlR2Pc9J9uHXQSOTklwTofjLPR6P7/GJEyf8Ur+/TZ48mXPnzgFxJ7C5c+eyevVqX7cAwHfx4S+pDYSZVft+RfwL6CuJB4j78ZGUpC60UnJlf0eOHMn06dPp1q0bVapUwTAMduzYwZgxY2jbtm2aBl48ePAg8+bNAyBPnjx8+OGHREREJBiAL7n3KzP2M6vfK0m7K00kr4g/Wn389/ZKUiEqKopFixb5vuhDQkISTMk6btw43+MXXniB5cuXs3r16gSjy/v7XOHvz1f81yS51yM9sfjrfC/iD1e6/qVHWgamzuhx6Ha7fc3BrXB13KntR1rOmW3btmXNmjUMGDCAevXqERwczN9//83UqVO56aablIyUTJGRYzCl80Fajo3ixYvz22+/8eKLL9K8eXMKFy7M6dOnWbJkCd27d+frr78GoGbNmvz22288+eSTNGnShPz58/PPP//w7bffctttt/m6ZScnb968dOrUCYCffvqJffv2sWjRIgBatmxJmTJlgGv7/ZuU+N/ZkPHvbavPc2ItvyQc4vfH27t3ry8zCCTZ7xESXtQdPXoUgPPnz7NmzZoUt3Xq1KkEYxfEr798+fLpCxyoXLmy7/GyZct841Bc7dChQ77HgwcP5s4776R58+YJRp+NL/6F6tUHdvxt9u3bF9M0E/27ePEit912G0WLFvWNI3Hx4sUEd1mSe22Tk1JMmSk9+3tFjx49+Oabb/jjjz84f/48Xbt2BWDr1q2+TGpK+xP//brtttt45JFHuOmmm5JtweJvf/75py9BBdf+ORXrdevWDafTCcBHH33Ejz/+CEDnzp0TjPVy5bNXuHBhRo0aRevWralXr16Cz2RGxP/cxL9DePbsWf78889rqvtapOWcnNT5HvD1PU3KlR92WXmukuvD1RcN8b+j9u7dm+R3VPwZq65Iy2c/ft1ffPFFst9/V76bMvo9nd71ihQp4huf5eLFiwnGZ4m/H/HjTw/TNGnatCmffPIJGzdu5Pz587z77rtAXNI2pWNfJD0qVKjge7xnz54E1yA///xzqutffT5I77FhmiZhYWG89dZbrF69mhMnTrB+/XpfuTlz5vjK1ahRg//973/88ssvnDlzxnfjwuv1pmkWqyvjSXm9Xh5++GFfIjR+K0t//f698r198uRJX6vu/fv3J9lSIb3nObn++GXi6WLFitGkSRPWrVvH5cuX6dGjB08++SSbN2/2ZfauVrFiRd90bn369KFLly5MmTIlTc187r33XoYOHcrff//N+++/71t+9ZR1adG2bVuKFi3KP//8w759+2jbti2PP/44gYGB/PTTTxQuXJjnn3+esLAw3zpjx47F5XKxbt06Jk6cmGS98e8AzJ49m3LlyuF0OmnUqBG33norRYoU4fjx43z55ZcUKlSIW2+9FY/Hw/79+1mzZg2bN29m+/bt2Gw2OnTo4Bucpnfv3gwbNoxDhw4l2Pe0SCmmzDwJpGd/AZo1a0a9evVo3LgxpUqV4vz5877nAF+GNP7+/PTTTyxevJi8efNSuXLlBO/XihUrmD59Ona7PcGAXJnp4sWL3HPPPTz++OOJjoOMfE7FeoULF6Zdu3a+QZiuiP9FD3GDne7atYuTJ0/y1ltvUbt2bf73v/9x6tSpa9p+x44defHFFwF8g7U1aNCA8ePHp+nua2ZK7Zxcrlw5bDYbXq+XFStWMHjwYPLmzctbb72VbJ0FCxbk1KlTHD58mKlTpxIWFkaxYsWoVKlSZu+OXGd69erl+z3SoUMHXnjhBUqXLs2RI0f4448/+O6773j22WcTTekKqX/27733Xv73v/8B8PTTT3Pq1Clq167NmTNn2LNnDz/88ANhYWF8/vnnQMLvtSVLltCyZUsCAwOpVatWgsTd1eKv9+mnn9K+fXuCgoISdAWMz2az0aNHDyZMmOB7DV555RVOnz7NK6+84ivXs2fPlF66ZD355JMcOXKEW2+9lTJlyuBwOBIMBqs7neIvRYoU4cYbb2Tt2rUJrkE2btzIN998k+760ntsTJ8+nQkTJtC5c2fKlStH/vz5WbFiha/clc/66NGjiYiI4I477qBs2bKEhITw/fffJyqXkttvv53ChQtz8uRJli5dCkBAQIDvphzgt9+/FStW5LfffuPSpUvce++9tGzZkg8//DBRiwdI/3lOrkP+Ggzixx9/THIgxUqVKiU5YMv333+fqKzD4TArVqyYaLA00/xv8JJChQqZpUuXTrTurbfeanq9XtM00z8tZkpTNl6J+cCBA0kOvNKsWbMk92/Lli1JDhZ3ZYCVhQsXJrtNrhqkZefOnWa+fPlSfG3TMmhkajGlNmhk/G0kN7BVcq9xevY3qWkpr/yrXr266Xa7TdM0zdjYWN8Ak/H/Xdlu/AEfk3q/4m8zubiTG3AwqUFz4n/uwsLCknzP+vfvn+r7JP6V2qCRaZ3yyTQTDtAEmEWLFk00lVX8AVWv/AsNDU0wre6VetM7LWb8ARyv/AsKCjJLlSqVbMxXS8ugkfHrSG1AqbSck03TNHv27JmozJXpRpN6H7p06ZKofFrOcyJJSe6YMk3TjI6OTnFazGv97Kc0XdzVn+vjx48n+V15JebkjtP4g9ldfUwl95vo5MmTqU79F38/0nPOfPDBB5OtNygoyNyzZ09630KRZP3888+my+VK9FmLP318Wr7vrkjPsTFlypQUj+/p06ebpmmaI0eOTLaMzWYzf/rppzTt6yOPPJJg3SsDWcfnj9+/H3/8caI68uTJk+Ccl9ZpMfX9LX4bw6FFixYsWrSI+vXr43K5CAsLY9SoUbz00ktJlm/bti3vv/8+pUuXJiAggMaNG/P999/TrFmzFLeTN29eVq9eTceOHQkJCaFQoUIMHDiQOXPmZLj/ZLt27fjtt9/o3bs3pUuXxul0UrhwYVq1akWLFi0AKFu2LD/88AONGzcmKCiIChUq8OGHH9K/f/8k66xVqxZffvkl1apVS7L1QPv27dmwYUOCbYaGhlK3bl2eeeaZBAPNVKpUiZUrV9KyZUsCAgIoXrw4L774YoK+4mmRWkyZKT37+9JLL3HnnXcSFhZGcHAwTqeT8PBwBg4cyIoVK3xTTDocDubNm0fz5s1901fGN2XKFPr27UtoaCgFChSgd+/eGZqmLyPCw8NZtWoVrVq1IigoiOLFizN48OAEU2pKztOpU6cEY3n06NEjQf9liMvuv/baa77Pb6tWrVixYgXFixe/5u2PGzeOYcOGUaJECQIDA2nWrBnLly9PMHBdVkvrOXncuHF069aNkJAQ8ufPT58+fXzdUpIyfvx4unfv7ptOVCSzuFwulixZwtixY2ncuDF58+YlMDCQcuXKcccddzBx4kTuuuuuROul9bP/6quvsmDBAt/dSafTSalSpWjevDlvvfUWI0aM8JUNDQ1l7ty51KtXzzdAXFo8/PDDvPjii5QtWzZB94qUFCpUiF9++YWXXnqJKlWqEBAQQEhICI0aNeKjjz5i2rRpGf5d1atXL/r27UuVKlXInz8/drudokWL0rlzZ1avXq2uheJXN9xwA99//z0NGzbE5XIRHh7O+++/n2A62SvT1qZFeo6Npk2b8tRTT1G/fn1CQ0Ox2+3kz5+fFi1aMGPGDN+U2e3bt+fhhx+mZs2aFCxYELvdTqFChWjbtm2arn+uuLpV5dV/g39+//bv35+XXnqJokWLEhQUROvWrVm9enWCLizxpec8J9cfwzTTObKfRa4c2GFhYX6fc17EH/bv3+8bz+Smm25KMECPSG6jc7Jcr/TZF8leTNNMMjnWo0cPX5fkOXPmJJk4FJHM55cxHERERERERLLagQMHeOSRRxg4cCC1atXi8uXLzJw50zeGQ6FChWjTpo3FUYpcv5RwEBERERGRHGvJkiVJzn7icrmYOHFikl1vRSRr+G0MBxERERERkaxUqFAh+vfvT9WqVcmTJ49vLLk+ffqwfv16OnfubHWIIte1HDOGg4iIiIiIiIjkHGrhICIiIiIiIiJ+p4SDiIiIiIiIiPidBo3MJS6ZlzliHucoxzlhniaaGDx4sWHgxEl+8lLCKEIJowgFjHxWhysiGXTGPMdR8zhHzBOc4RyxxOLFxI4NF05CjUIUJ5QSRhGCjSCrwxWRDPCYHg7zD8fME5w2z3GW81wimhCCyEsIeY0Q8pGHPEYIBchLPiOP1SGLSAaYnvOY7hPgOQfes5ies3GPDSfY82PY8sb9b88LjmIYtgCrQxZJNyUccphYM5at5i42erezydzGJu92dpsHOcv5NNcRSABljZLUMapS31adekYN6tmqkd/QCL4i2cV58yKbzO1s8m5no3c7keZ2DppHuMTlNNeRjzxUNMpSz1aDekZ16tuqU9OojMtwZmLkIrlHREQE48ePZ9asWZm2jQtmFL96t/CLGcnP3k1s9+7mKCfw4ElzHaUoRl1bNeoYVeP+t1UjzCiZaTGLSPqYpol5eTvmpc14L2/DvPQ73svbIPZQOmqxYbjCMAKrYgTWxBZcD1twEwxXqUyLOy1Gjx7NCy+8kOby/fr1o2vXrnTo0OGathsaGsqJEyfSvV5WnNclISUccoB/zJMs8qxikTeC5d6fucila6rvMtHsNPex09zHTO9iAGzYaGzUor29FR1sN1PdVtEfoYtIOvzh3cNC7yoWeFayztyMF+811XeOC2w0t7PRs923LJggbrY14Q5bK+6wt6KYEXqtYYtIOnhNL8u8a1ni/ZGfvZFsMf9MV3IhKYc4xiHvMRYSwZWqClOA22wt6Ga/nTa2G3Eq0SiSpc6ZF9gc8xNNjk7He34FuI9fY41ezJh9mDH74Nxi31nDCKyNLX877PnaYwQ3wjCytsd8ehMOcv3RGA7Z1HnzIp+5Z9Iq+j7Co29moPtl5nlXXHOyITlevPxibuZl9/+oH9OZatG380rsWPZ705N5FZH0Omge4dXY8dSMvoO6MXcyxP0eP5ubrjnZkJwoLrHQG8Gj7uGER99My+h7+cT9NefMC5myPZGcZNSoUdSsWZNatWoxderUBM+tXLmSpk2bcvx4xi4adnsPMCz2fSpF30qn2IF86JnGJnP7NScbknOSM0zzzueu2McoG30TD8cOY6lnDW7TnSnbE5G47lBzPD9wV8yjlI5uwd3my1w+860fkg3JMy9vwXNsFDG7biJ6Wzixfz2G99LWDNW1f/9+6tSpQ9++falWrRr33HMPVyY0/OGHH6hbty41a9bkmWeewTRNhgwZwpkzZ6hbty4DBw5MVN/ChQupV68ederU4d577/UtX7p0KTfccAOVKlVi1apVAHg8Hp599lkaNWpEnTp1fOdgt9vNU089Ra1atahduzbffPNNgm0cOnSIxo0b8+uvv7Jnzx5uu+02GjZsSOvWrdm/fz8Av/76KzVr1qRu3brMnDkzQ6+NZJymxcxmdnr38YFnKlM987hAlNXhYGDQ1tacx+33cau9mdXhiOQaKzy/8IHnKxZ7f8y05EJ6BBPEvfYOPGa/j2q2ClaHI5Ll1q9fz8CBA1mzZg1RUVE0atSIkSNHMmfOHB555BGGDh3K/PnzCQ1Ne6ugy2Y0X3sWMtnzLT+bmzIx+rQrQiEedvTgMXsvChr5rQ5HJFe4YEYxyTOb8Z6p7Df/TvDctyeKcfOJNVkeky1PS+yhj2HL3wHDsKdpnf3791O5cmUiIyOpVq0aN998MyNHjqRhw4ZUrVqVVatWUbZsWTp27MiDDz7I3XffnWzXhn/++YcbbriB1atXU6pUKU6dOkWhQoXo168fHo+HKVOmsGLFCl5//XWWL1/OJ598wrlz53juuee4dOkSN9xwAytWrGDGjBn8/PPPTJ48GZvNxunTpylYsCChoaFs2rSJu+66i48++ohGjRpx22238fHHHxMeHs6KFSv46KOPmDlzJrVq1eKLL76gYcOG3HPPPXg8HnWpyELqUpFN7PEeZIR7PDO9izHJPjkgE5Pvvav53ruaeu7qvOp4SokHkWsQ4fmVYe4xrDd/tzqUBKK4xGeemUz0zOJuW1tGOJ6koi3M6rBEssyaNWvo0qULgYGBBAYGcssttxASEsLmzZt59tlnWb58OYULF05TXV7Ty1TvfEbEjuNvjmZy5OlznFO85v6Q992TeMh+D886HqSwUcDqsERypEPmMT5wf8Xnntmc4VySZZbkK8rN6R9q4Jp5L/yI98KPGK4w7EWexh7aH8NI/dKvSpUqVK9eHYB69eqxf/9+8ubNS5UqVQgPDwegV69erF69mrvvvjvZen755Rdat25NqVJxY0wUKlTI91znzp0BaNCgga8Vwg8//MDWrVv56quvADh79ix79+5l2bJlPPPMM9hscQ3zCxYsCMDly5e5/fbbmTRpEo0aNeLChQusXr3aV7dpmoSEhHDmzBmio6Np2LChL/Yvv/wyDa+g+Iu6VFjsmHmCQbGvUzemE994F2WrZMPVNpnb6Rj7MO1i+vObN2NNtUSuV5HeHXSIeYjbYx/IdsmG+ExMZnu/p27MnTweO4IjZuY1AxXJCUqVKoVhGGzbti1N5Zd61nBDTDcGxA7JdsmG+C4QxXueL6gWfTtvuCdw0bS+VaVIThFrxvK2+zNqRXfgPc8XySYbABa7jmVhZImZMQdwHxpEzJ+N8Jxbmmr5gID/ZsKw2+14PP7v9nVlG/Hr93q9fPzxx0RGRhIZGcn+/ftp1KhRsnW4XC5q1qzJypUrfesXK1bMt/7mzZtZu3YtAIZh+H0fJO2UcLCIaZpMcE+nRnR7JnimE0vO6VO50vsLzWJ68HDsMM6aaZ8dQ+R6dN68yOOxI2ga051l3rVWh5Nmbtx85plJjej2jHNPwWta3+1DJDM1b96cOXPmEB0dzenTp1mxYgVRUVGEhoYyb948HnvsMTZtSr5bxO/eP7kjZgAdYx9mi/lnFkZ+bc5xgVfd46kbfScRnl+tDkck2/vRu57GMV0Z5n6fqDSMrXaQf9iet3oWRJYy8/IOYvd2JGZvF7zRu9O1bpUqVdi5cycHDhzA6/Uyffp0WrZsCSSflLjSJeLQobjx4E6dOpXiNtq2bcuHH37oq2vr1q14PB7atGnDJ598gtcb9zvk9OnTANhsNl+3jM8++4x8+fJRrFgx5s+fD8SNCbF161YKFChAQEAAGzduBGD69Onp2ne5dko4WGCf929uj32QQe7Xs8U4DRk12fMt9aM7s9ST9f3SRHKCFZ5faBB9F595Zmbr1kspieISz7tHcWvM/ezxHrQ6HJFM07BhQ7p160aDBg1o2bIlI0aMoESJEgCUKVOGWbNm0bt3b3bu3JlgPa/pZZT7E26MuYfl3p+tCN0v/uII7WIf5IXY0Vw2o60ORyTbOW6e4sGYwbSNuZ8d5p50rbukUPaZ/c17biExf9THfexd0jqUX1BQEJ988gl33nkntWvXplKlSr6uC3379qVWrVqJBo0sWrQoY8eO5Y477qBOnTo8+eSTKW5jwIABhIeHU69ePWrWrMnTTz+NaZo89NBDFChQgFq1alGnTh2WLVvmW8flcjF79mwmTZrE7NmzmTZtGuPGjaNOnTrUqlWL5cuXA/Dpp5/Sp08f6tWrl+auceI/GjQyi33mnsmL7tGZNtuEVe63d+E9x0sEGYFWhyJiuWgzhufdo/jU802OTTQkJZgg3nA8w0BHT6tDEckW/jaP0i/m//jJ3GB1KH5V3ajI5843qWurZnUoItnCOu9mesQM4ggZ62bYyCzP0j9/8HNU186WpxXOsC8wnCWsDkVyMSUcskisGcsg9xtM9OTeqVjqG9X5xjWW0kZxq0MRscwR8zj3xDzFr+YWq0PJNH3snRnveAWX4bQ6FBHLrPSso0/s8xwn5WbCOZUTB8MdT/Ks4wGrQxGx1Bfu2Tzlfo0YYjNch4HBn/vOUzQ6G47r4iiOK3wKtjwtrI5Ecil1qcgCJ8zTtIsZkKuTDQAbze00j+7BOu9mq0MRscQG7+80i74nVycbAL70zKVtzP0cMy0YdlskG/ifezIdYh/KtckGgFjcDHG/x6DY1zWGi1yXYs1YnowdySPuV64p2QBxAzIvLVzXP4H5m/soMbtvx33iM6sjkVxKCYdMttO7j2YxPXJdc8vkHOUEbWPu5xvPIqtDEclS33qW0iamH4f5x+pQssQvZiTNonuww5u+fqwiOd1r7g950f02Hvw/cnt2NMEznb6xLxJrXtsFl0hOcso8S7uYAXzimeG3OpeEuPxWl/95cP/9OO5/3rM6EMmF1KUiE2337qZdzIMc46TVoWQ5GzY+coygr+Muq0MRyXTTPQvoHzvkurkAia8IhVjo+oTatqpWhyKS6UbEjudNzwSrw7BEG9uNzHC+T4gRbHUoIpnqlHmW9jH9iTR3+LXeEILYu3MnAd7sPSirvdiLOEuMsDoMyUXUwiGT/OHdw20xD1yXyQYAL14Gul/mS/dcq0MRyVQzPIt4MHbwdZlsADjOKdrF9Gerd2fqhUVysGGx71+3yQaAZd61tIvpz2nzrNWhiGSa05mUbAC4yCVWF2rk93r9zXNsFLF/P5vmGSxEUqOEQybY6/2LdjH9c3XfzrQwMRnofpnZnu+tDkUkU8zzLOfB2MF4ub77N5/kDO1j+rPLu9/qUEQyxeDYd3nbo/7Nv5pbuCd2kLpXSK50ybzMXTGPZUqy4YrF+YtkWt3+5DnxAe6jI60OQ3IJJRz87Lx5ka6xT2R42pzcxouXB2MH85t3q9WhiPjVZu8f9Iv9P9y4rQ4lW/iHU9wd+zhnzHNWhyLiV+PcU3jP84XVYWQbP3rX87T7DavDEPErt+nm3thn+MWMzNTtLHEeydT6/clz7A08p/03hoVcv5Rw8COv6aVf7ItsN3dbHUq2cplousc8xRFTSRjJHf4xT9I15gmiuGR1KNnKLnM/fWJfwGNen91LJPf52buJwe53rQ4j2/nMM5MJ7ulWhyHiN8Pd41js/THTt3OIE2zJVyvTt+MvsQcfxntxndVhSA6nhIMfveIey0JvhNVhZEuHOMY9MU9x2czeA+WIpCbGjOWemEH8Rc65S5GVfvD+xGC3RrmWnO+4eYr7Yp4jVq2YkvScexQrPL9YHYbINVvmWcu7ns+zbHvfFyyfZdu6ZuZlYvZ1x4w5YHUkkoMp4eAnP3h+Uv/OVPxqbmGILkQkhxvuHsvP5iarw8jW/ueZzEJPhNVhiGSY1/TSJ/YFDnHM6lCyLTduesU+w17vX1aHIpJhx8wTPBj7EiZZN0Di4sCoLNuWX7iPEXPgfkzz+h6vSjJOCQc/OGue55HYV6wOI0f40DON1d4NVochkiG/eCN53zPZ6jByhMdjR3BKo9lLDjXCPZ6V3qTv3nt3RhPTZI/vX3TB7XjmncPcG0NMsz1E19hF7BOHkxzh3f3iUWIa7Sam0W5i7/0LMyruB7x77AliGuwmtu/fvrKeyafxfHk6c3bQT05zjoHulzWaveRIpmnyQOxLWT6j3CZjP0cDSqap7F9HTdr2j6He3TE06h7D7KVxXRaX/+KlyT0x1O8Sw/PvJN0K674XY2lyTwxN7omhfNtouj0dN9jrrB881O8SQ8dHY4iOiTt2I3718tqE5FtzmRfX4jnxUXp2U8RHCQc/eME9WndB0sjE5OHYYUSZ6vsuOctlM5qHYodd9zNSpNURjvNMrAaWk5xns/ePFFss2ioH4FpXAde6CjiXh0OIDdsteXAPOYZ9SFECtlWCEx68iy8kWtc+pAiu9RVxra+IUcaJ57O42ay8U8/i3FABHOD9/TJmlBfvt+ew3Vcgk/bSf370rmeiZ5bVYYik2/ueSSz3/pzl2zUx+SG0TprKOuzw9vMONs1xMf9DJ8+/7ebiJZNHRsTyzRgnG2e7uBhlsuznxL9NvhrlZN0MF+tmuLipkY1ON8dd9o2f6mH1V04a1bSxdK0X0zT53xQPg/rYU4zFfeRlvNF707/Dct1TwuEaLfWsYbLnW6vDyFH2mn8xzP2+1WGIpMsI9zh2mvusDiNH+dq7kPmeFVaHIZIuz7tHpTmx6F1wHlurEAg28P4Sha1dHgBsPfPjXXQ+UXkjX9wPetM0MaO9YBhxTwQY4AZMwAGesSexP14Yw2b4Y5cy3RD3exwzT1gdhkiaHTNP8Lrbujv2i4MdaSpXoohBnSpxl2vFQw1CCxicOA15gg3CSsadH25qZOO75ckP1hwdY7JsrZeO/yYcAlzgdoNpxiU0vl7kpUMrG3mCUznfeC/i/utRtWiSdFPC4Rp4TA/Pud+yOowcaYLna/70KksqOcMe70HGe76yOowc6UX328SasVaHIZImcz1L+dG7Ps3lvbPPYeuaH056MArZMf5NIBglnXA46c+9+5kjxJTfibk9Gnv/ggDYBxQktvleyGfHKOzA3HIZW5s8175DWeQs53UjQXKUV90fcAHrxlKIsO/lki0oXets3O7F44WyJeDiJZOtu7x4PCYLV3k5nMJEcN+v8dKkto0CeePOT8/2c3D7Q7HsOmjSrL6NGYu99OuctktC74UIPKe+TFfcIko4XIMvPXP5U3c8M8SDh1fcY60OQyRNhrvHaaT6DNpr/sXnntlWhyGSqhgzNl0zrJjnPHjXRWG7PX2JAcd7JXDtqYytTiDemXHjnNh7F4zrovF+CdxvHsc+uAieT04R2/MvPJ+eSlf9Vpni+Y4N3t+tDkMkVdu9u5nkmWNpDJeI5sfCjdNc/tRZk/7D3Iwf6sAwDD5/3ckTr7tp1S+WkkUNbClc0c3+wUuX2/4r0LaZjZ+nu/hqlJNPZnp4+B4b8yO89Hwultc/Tv23jvvoq5jey2mOXUQJhwy6bEbzmvtDq8PI0eZ6l/Grd4vVYYikaJN3O7O8S6wOI0d7w/0RF80cNiq3XHfGe6aw10z7jAveBeex3ZIHI9AGhe2Ypzy+psbm4Vgo4Ux2XcNmYOueH+/ccwnr3BkNsSZGOReeBedxTi+DZ/55zIvZf+wYE5MR7vFWhyGSqpfc7+Ih+S4IWWVxvoJpKhcdY9L96Vieu99O07pxl27N6tlYOcnF6iku6lQxqFg26e4Qly6brPjFS4ebEl/ynTxjsv53k3Yt7HwwzcPU0Q7+OmKy60Aq55vYQ3hOfJym2EVACYcM+8gzTQNF+oGaYEp297L7f1k6XVZudIyTjPNMsToMkWSdMc8xyv1putbxzj4b150CMAwDW+Mg30CR3q/PYmufN/E6u6P/e7zwPEblgATPe944jmNwEYgx4d8ZLLjojfs7B1jqXcMO7x6rwxBJ1krPOr73rrY6DACWOA9jkvK4CaZpMuBlN60a27i3w3+DOv5zKu6ccCHK5MOvPcl2iVjyk5dm9W3kDUm8nVGfefi/AXF1njkfN6RMjBui0tB4wf3PGLVykDRTwiEDYs1Yxrn149kfVnl/5TfvVqvDEEnSFu8fLPWusTqMXOFD91SizRirwxBJ0peeuZwl8SCPyTHPevBuuITt1hDfMvvrxfC89g/R1XdCQbtvAEn3q//gWRDXksH97FFiGsZNi2nui8U+uIhvfe9PFzHKuzBKOjEK2rHVCSSmwW5s9QIxCqY8enx2ovFuJDsbn42S30c5RWT+2imWWRtpMusHL/NXen1TXG7d5eXtzz3UvTuG5vfF8sg9dqqUi7uke/VDNwsi/mu9MXuply5tE1/u7f3L5PxFk7pV4567t4ONBl1juRwNtSunYbBa91E8JyelfWflumaYGmo03WZ4FtE39gWrw8g1eto68IVLg29K9jMw9mXL+3nmJp84XqOPo7PVYYgk4DW91Iy5I13dKSR5QQSyO2AZhY0CVociksAh8xiVo9tmi+4UV/zf5Zr83/65VoeRIUZARQKq6aahpE4tHDLgU/c3VoeQq8zx/sBJ84zVYYgkcNY8zzeexVaHkatM9My0OgSRRJZ51yrZ4EeXuMxnHv1OkuxnsufbbJVsAFgckPaWVdmNGb0b78V1VochOYASDum007uPn8wNVoeRq0QTwzTPfKvDEElghmchUVyyOoxcZZ25mW3eXVaHIZLAFM9cq0PIdT52f43b1Mw+kn14TS+T3NmvxeJm4wCHAktZHUaGeU5PszoEyQGUcEinWd7vrQ4hV5rl0SwAkr3M1GcyU+h1lezkjHmO+d6VVoeR6xzmH9aam6wOQ8RnqXcNBzlsdRhJ+qFwHatDyDDP6VmYZqzVYUg2p4RDOi306IdJZlhv/s4x84TVYYgAcMo8y89mpNVh5EoLdXEn2ch870ouE516QUm3Hzw/WR2CiM/XnoVWh5CsxSE5+HLMcxLvOd1IkJTl4E941jtiHmejud3qMHIlL14We360OgwRAJZ4f8SNmgNnht/NnRw0j1gdhggAqzy/Wh1CrpVdph4UMU2T5d61VoeRrFW2vVy057E6jAzznJlrdQiSzSnhkA4LPRGYaFKPzLLQG2F1CCJA3LEumUctxSS7WK0xmTLN7+ZODpv/WB2GCJvNP/iHU1aHkaxoYlhVuKHVYWSYeVHTh0vKlHBIhwjvL1aHkKtFeNehWVolO1ipYz1TrdDrK9nAQfMIB8xDVoeRq6lbhWQHq7zZvyXTkrwFrA4hw8yY/Zix2XN8DMkelHBIh9/MbVaHkKud5yK7zP1WhyHXuX3evznFWavDyNU2enUuFeut9q63OoRcb6lXdz7Femu9G60OIVXfOw9hYlgdRoZ5L+hYl+Qp4ZBGZ8xz7DP/tjqMXE9jZIjVNukzmOkOcYx/zJNWhyHXudVedafIbJHmDqtDEOEXb6TVIaTqGKf5rUA9q8PIMK+6VUgKlHBIo01efWlmhUivLvbEWpv0GcwSep3Fauu8m60OIdc7aB7GbWoAXrHOKfMsx8gZCe4lBcpaHUKGeaN+szoEycaUcEijLeYfVodwXYjU6ywW22L+aXUI1wXd+RSr/aXZUjJdLG7NSiOWOmjmnLEFlgScszqEDDNjDlgdgmRjSjikkX6YZI2/zaNWhyDXOX0Gs8Yh85jVIch17Lx5kQtEWR3GdWGPedDqEOQ6lpMSDluNgxwMyqGtHNzHMb2XrY5CsiklHNLoqHnc6hCuC3qdxWr6DGYNvc5ipcNKeGWZfeZfVocg17GcdsPwh8K1rA4hg0zMWI11J0m77hMOERERdO3aNdVyR8wTxHY/SHSJHcT2/O/L07s+ipj6u4musQv3G//NN23ujSGm2R6ia+wi9onDSU73aJ5wE3PbPmJq7iL2noOYl70AuMeeIKbBbmL7/nfgeiafxvPl6WvZ1QyJffUfovNtIzrfNmL7Jz6RuCefJjr/dqLzbiPm9n0AeL1eoiv9SXSB7cT0+O/ORnStXXiWnk9xexeI4oKpu07iX2k9zmPMWE5yRsd6FhzrR5RwEAsdvo4/f55F54mpvYuYmrvwfJH4XJPUuc40TWJ7/0VMg924P/ivP3zswEN4d0WnuL09SjiIhXJal57FwVZHkHFmjFozSdKu+4RDWh3lOPbHC+P4rHSC5e5BR3BMLo1rS0W8Sy7g3RrXnMg95Bj2IUUJ2FYJTnjwLr6QqE7POyewd86Ha2sljHIuvP9+8XunnsW5oQI4wPv7ZcwoL95vz2G7r0Cm72d83stevO8cx7myHM6dlfF+cxbv7oQ/LDzPHMHxRSmcJ6thbriEZ+5ZzDnnwWHgPFUV8/u4/fbMOIMRZGC/NW+q2z1i/pNqGZHMcIS4ixAd65l/rCvhIFY6wvX5PWO6TTwvHsW5OBznL+XxjDmBeTLhoI5JnevM36PBZeDcUAHvlDMAeCMvYYTYsFUKSHGbx8wTmbU7IqnKad0kV9v2ct6ez+owMib2kNURSDZ13SUcRo0aRc2aNalVqxZTp05N8NzKlStp2rQpx48n/iF81jyPrWUIRt7/XjLzcCx4wFYrEMNuYOuWH+/i85imifeXKGzt8gBg65kf76LEd/u8C89ju7eAr4znSpkAA9yACTjAM/Yk9scLY9iydn5e75QzUNiBrUEwtuJOjGoBeD449d/zmy6BF+x358fmsmG0zoNn4mkI+jfOy4A97qH7pWM4viqdaBtJOUvKd0ZFUpPR4/ycGffZ07Ge+cf6ORInZkSyyvV6EWyuv4RRLQCjlBMjjx1b2zx4l1387/lkznU4iTtPuQFX3HHvees49peKpLrNWDRLhVgnhlirQ0iXGGJZGdrQ6jAyRGM4SHKuq4TD+vXr+eabb9iwYQOrVq3i5Zdf5vDhuMFkli9fzuDBg5k/fz5FiiT+AnXjSbTMPOLGKOnw/W2UdGAecsNJD0YhO4Zh/LvcCYcTn/DMcx6M/PZ4ZeK+lO0DChLbfC/ks2MUdmBuuYytTZ5rfwHSydwdDYXt/y0o6cQ8EOP707s9GuJdlBnhTswjbux35IMQG7Gl/sDWLT+xb/yDUSMAW+XANG03qddaJK38fZyDjvXMONZ1nItkPfNILJR0/regpDMuyeB7Pulzna1aIOSzE9t8L/YBBfF8fx6jQRBGqIPU5LQLPsldbGRtAt8fluTNoS0cNAWuJCP1b4pcZM2aNXTp0oXAwEACAwO55ZZbCAkJYfPmzTz77LMsX76cwoULWx0m9t4FsfcuCEDs00ewDy6C55NTeFdexNY6BPuAQhZHmLqADRUB8Lq9xJbfiXNDRWIa78Y84cH+QiiOgcm/ziaJ+8CLpNW1HOdZ/dm7no91HedipSDSlgDPToJi7Wzr6MAWm/Fk3YITdtaeM3jj97iffx8eirsce2RB3N+RF+y8+5fBlFvi/p5/ws7PvvJlIA94vzDps2Mfn1QJ440Pj3IkJpaHSobSJF/SyVJvs2gYneGQRa6JLQfeW/3OsYfqF+6k07woSq79C8PtzVA9UR4vDbbs5K5C+XkjrESC52acOM07h4/jNaF3kYIMKlkE0zTpt/svtl+6zP1FC/Fo8VAAHt37N0+XKEKloJS7T9kHOaBHhkKVXO66Sjgkp1SpUpw9e5Zt27bRsmXLJMvYkzhhGSUcmIf/y+aZh/+9M1DYjnnKg2maGIYRd/eghDPx+vnsmGfj7nzGlUn4dnh3RkOsiVHOhXvwMVzzwojpdADbvQUwQjL/BGpUDIBv4s0JfDgW44b/RrOxVQ/Ac/6/k6C5PxajeMJ98DxyGFunfHgnnYbCdpyLwomtszvFhINDH0vJBGk7zu1JLtex7v9j3ZHMay2SFQJJ+YdzdvTQTyXJu2rJNdURDnwHhByNG/jxBNAACDkQN7BeeeAfIGTtZgBOAmXilQf4EugObFm3leLA68C9p84yN5ltOopXuKaYRa5FTkw4XOQSQxtuY2hDqHgiD08tKcKt352i8LKNcDnt3RZGA40A8+gJvEf/60Z2EhgJrALyAd3+Okq7v45ymbjeU78ALQ4cYeCBI2wGgoEKx0+TWtrDPKOWi5K0nHcUXoPmzZszZ84coqOjOX36NCtWrCAqKorQ0FDmzZvHY489xqZNm5JcNwBXomVGSSfY/x3szWPinXkWW/u8GIaBrXGQb/A479dxy69ma5cX77QzcWWmn8V+VRnPG8dxDC4CMSZE/XuYX/TG/Z0FbL0LwEk33t+i8B6NxdwRjf2J/y4ebPWCwAaeOWfxxngxV1zA3r+g73nvCTfeHy5gH1sc87wnLm4vEJ3yKSuAxBdsIml1Lcd5YBLHOehYz4xjPalzqkhWCTJyXguHLosydpczvgbAduAwcAFYCtwS7/kSxA3HshXwALOBdvGejwIWEHcT8xIQQ9zQDvHSlYk59Z0u1smJXSri2x16gSfu20fVmWep8Vd1Pp5+B4d63oSZP3/K6wE7gVuTeG4fUBkoSNzx3gyYz1VDtfxb9m3gxTTGagTkvESuZI3rKuHQsGFDunXrRoMGDWjZsiUjRoygRIm4JkZlypRh1qxZ9O7dm507dyZat6hRmJj2+4nt9Rfe788TXeFPvL9E4XivBO6+fxNTaxe2tnmw1Yz7EWN/vRie1/4huvpOKGj3DSrnfvUfPAvivprtz4fimXOO6Bq7MPfEYLs/3g/4ny5ilHdhlHRiFLRjqxNITIPd2OoFYhTMmjuDtkAbtqdDib15H7GVdmLrkh9bxQCiy/wRN4gcYH+7OO77DxFbeAdG/SDsnf87Abp7/4X96cLYbDbsT4dibo+Oq6dPweQ2CUBRIzRT90tyt2s9zgEd61lwrF95rUWsEJQDWzhUXvjHNdfhAN4A7iDuIuMJoDDQBbgyeeDbwANAPaANUCPe+uOAxwCDuETFr0Ar4NEUtmmE6jtdrOPKRcntf/JEM7Tzfup+foKwv8J4Y0E7dj3UBm+JYonKDgVeSaae8sAO4hKPl4lLPB4GqhLX4qEV8CDwA1CfuHNEmvgh4TB69H/9r/bv30/DhnEDaM6bN48xY8Zcc/1iDcNMatJ4SaRzzCMs8a62Ooxcz46d8wGbsBnXVS5MspEClxtwmZTnlZdr19p2A4tcn1kdhlynlnrW0DH2YavDSLP2O4oyuf5Kq8PIENeoUQS88ILVYch1anjsON7yfGx1GJnKMKHPryXpPd9Oje/+4Pvd+/kZeA2YSlyrptevWmcBccnFAKAmca0bRsV73ktc16nJwHDiEpKPAU1TiCNo5UocrVpd076EhoZy4kRc94/9+/fTtWtXNmzYkO56PB4Pdru6bmYXuqpLoxJGUatDuC4Uo7CSDWKpYmphkyWKk/p0eiKZpXgOO84fWBhkdQgZZitb1uoQ5DpW3ihjdQiZzjRgcpPDtHntL0r8HsIr/coyLV8gNVxOhhCXNHjrqnU6EDeGww9AceDqkVa+Iq7l0y9AKPAJCRMSSbGVK5fk8qunKo+IiKBr166+57t27UpERARDhgzhzJkz1K1bl4EDByaoY9KkSTz33HMAHD9+nLvvvpuGDRvStGlTXzfZfv368cgjj9C4cWPeeuvqPRYraXS+NCqhH8dZIqf9CJTcpwRFOMAhq8PI9UoYOqeKdSoaYRgYOWa2lEaL/rY6hAxTwkGsVN6W+xMOVzvwUV74KC/ngbAxMVT+3sNjFICfNoMnbmDH40AR4BgwB1gUb/0rY7XMABaSxrFaHA6M0qUTLY4/VXlUVBSNGjVi5MiRSVbx+uuv8/HHHxMZGQnEtXBIyqBBg3jppZdo1KgRu3bt4r777mPdunUAnDx5knXr1vmmK5fsQQmHNKpsK4emjc98lY2ks6MiWaWyLZxfPJFWh5Hr6VgXKwUZgZSmOH/5Ri7Iviofz0PwuvVWh5FhhhIOYqHroYVDSvaGXmRP3WjKvxWEs30eXmnXkK4/XuLZRb+ww+vFTlzXi/iTcF89VsvHxI3rkNLgkUb58hhJdGFIbqrya7Fs2TK2bdvm+/v06dO+x127dlWyIRtSwiGN6hvVrQ7hulDfViP1QiKZqL5Rgy+TneBN/KW+TedUsVYNW0X+8mb/hMPjPxQB77XPUGGJfPkwSpa0Ogq5jpWgCEEEcom0TyeZm9h7/zd4c+yi0gzlKEOfgKIX6vLkshJ0mHeBkosi4exZX7n4iYUg4mawSHU7tWunOabIyEi88c5p0dHpHzdrw4YNOByJL2ODg4OTKC1WU2f5NKpkhJOXa8vISerq6SJELKbPYOYLIpDqRkWrw5DrXD0jZyS4b1l4xuoQMsx+440YNv3UFOsYhkFVo7zVYWQ7V8948db8duwe0AZv8YyNWWdLJuGQ1FTl/fr1Y/v27bjdbo4dO8batWt95e12Ox5Pyk3Kb775Zj766CPf35s3b85QzJJ19C2QRoZhUMeoZnUYuZqBQV29xmKx2kYV7Ghk48xU26iC3dBrLNbKCa1s8kY7KLo00uowMszeooXVIYjQ3NbA6hCytUtOD++2OUjTsUcovrcIz0XcyuZnb8ddMTzNddjr1UtyeVJTlYeFhdG+fXuqV69O//79qRdv3b59+1KrVq1Eg0bGN27cOCIiIqhTpw7VqlVj2rRpaY5TrKFpMdNhaOwY3vFMtDqMXKumUYkNAd9aHYYIN0Z3Z6O53eowcq0n7X0Y7dQ0eWKt4+YpwqJb4SX7dld4dllZ/q/jYqvDyLCgVatwtGxpdRhynZvnWU732KesDiNH6rC9GP3nBdJg/n4CNybzu8jpJM/Jkxh582ZtcJJjqIVDOrSz32R1CLlaO5teX8ke9FnMXHp9JTsoYhSimVHf6jBSdPdCt9UhZJzLhb1xY6ujEKGlrREODVuXIQuqH6Pz/x2gzBqDO/5ozpJ3O3D+pvoQb4BIe/PmSjZIipRwSIemRl1CKZh6QcmQDvabrQ5BBNBnMTMVIB8t1LxVsonO9jZWh5CiCotybksre/PmGIGBVochQgEjHzcYda0OI8f7New0vR/dR/kl0TTd35AZn9zByQ43QueOVocm2ZwSDulgM2zcZlN/xMxQjMI0MmpZHYYIEDdwZCmKWR1GrnSrrRkOQ3eaJHu4094Gg+w5hVrn34thP3jI6jAyzHnffVaHIOLTzq6uPf60O/QCj/feT9WZZznyeBerw5FsTgmHdOpkb211CLlSe3srbIY+jpJ9dNSxnil0DpXspLRRnIZGTavDSFLfRUFWh5BxQUE4una1OgoRn272dmkeENrcH0PMbfuIqbebmIa7MS96iWm7j5g6u4hpsoeYJnswLyUe+8X92j9EV/jTV8b700UAPLPOElN/NzEd92NGx63njbiA+7V//LeDFqlnVKeCrazVYUg2pyu8dGpnu4kiFLI6jFynj72z1SGIJKDPpP8VJB8dbUo4SPbS2X6r1SEkqcGiA1aHkGGOO+9Un27JVsoaJWifxvGDYgccwjGsKK5NFXH+EA4Bca2gHNPK4FpXAde6ChhBSV9COZ4L9ZWxNQ8BwDP+JM7V5bE1Csa79AKmaeL530nsgwr7Zd+s1M1+u9UhSA6ghEM6uQwnve13Wh1GrlLdqEhTW9LT6YhYpb6tBvWM7D9tXk5yr70jgUaA1WGIJNDDfgcunFaHkUCNo/kIWr/N6jAyzNmnj9UhiCTykP2eVMt4t18Gp+FLFhiFHBiOa+x2FWCA2wTTBIeB9+uz2DrkxciTs6eHDiGIfnZ1p5DUKeGQAQ/Ze6S5WZak7hH7vVaHIJKkgfaeVoeQaxgYej0lWyplFKOXvZPVYSTw6A+F4y5OkvE30B5oBDQFrkwovQJoBjQG/i+Zdfv9W6YZUAW4clTO+Xe9zkD0v8tWAW+kM3ajbFnst2bPViNyfWtju5GKRliKZczdMRghNmK7HCCm6R7co4/7nnP3+5uYG/bg/t+JZNd3jz1JTKPdxD55GPOCBwDHs6HE3r4fc1cMtmbBeGecxdYv5w9Cf7+9C4WM/FaHITmAEg4ZEG4rRUebRrH3h0Lkp5ddo9tK9tTDfgdF1YXKL263taCSLdzqMESS9Jz9wWx1I6H1glMpPu8A3gLWA3OJSy5cBJ4ApgG//vv38iTWnQSs+fdfC6DDv8s/BFYCDf9dzwTGAU+mM3bXc89hODQwrGQ/hmGk3srBbeJdG4Xj/ZI4I8rhXX4B7/ILOL8ojWt9RZzfh+NdcB7P4vOJVrUPKIRrayWcv8R1ufC8HpessLXNi+vnCji/KoPnk9PYHi6Ed/55Ynv+hfv1nDmOgwMHTzr6Wh2G5BBKOGTQUMej2PTyXbPnHA8SbOTggbEkVwswXLzgGGB1GDmegcEwx2NWhyGSrAq2snSzZY++yPkvOwldHplimeJA7X8fFwMKAyeBEODK/duWwPwU6ogmLrFwx79/BwBu4hINdmDGv8/lSUfsRrFiOPv3T8caIlmrj70zBcmX7PNGSSdG/UCMMk6MABu22/Li3XwZo1Rctysjvx17l3yYv11KvG4xB4bdwLAb2PoWwHtVGfOkG3N9FPZ2efF8cBLH1NKYf8Xi3RWdqK7srrutHWWNElaHITmErpgzqKatMj1sd6ReUJJVimI8au9ldRgiKXrI3oMwo5TVYeRoXWxtqW+rYXUYIil60fFQtpgi85GIkhAVlebymwAPUAaIArb9+/ci4HAK6y0lrgtFgX//HkRca4c9wI3ATCC9IzG4hgzBCNJNBMm+Chj5GOJ4JNnnjYZBcNyDedqD6TUx11zEqBqAecINgBnjxfvDBYxqiccjMo/E+h57F5zHqJ6wjGfUCez/VyTujzMeMIAYE6ISz3iRnRkYPOt4wOowJAdRwuEavOx4PNsNNJWTDHE8ogHkJNtzGU6GOR61Oowcy4GD4Y70NsoWyXrVbBXobGtjdRjcuSgmzWVPAQ8DY4m7dvmUuMRBG6AkpNhJZA5wd7y/bwVWE9flYiIwAFgI9AbeTEMsRng4zocfTnPsIlYZaO9JVaN8ks8ZDgP7iKLE3rqP2EZ7MCoEYLsphNhOB+LGZrhhL0b1QGx3x7WScL/6D54F5+IeDzlGTMPdxDTajbnpMo6Xi/rqNffGYJ73YKsbl5Cz3VuA2AZ74LKJUTswk/fYv+61daSGrZLVYUgOYphmCqMSSaqejx3FOM8Uq8PIcaoZFdjgmoPdyD59ZkWS4zW93BDTjS3mn1aHkuM8ZL+Hsc5hVochkiYHzMM0iO7MBdLewsDfjlU8he3QkVTLRQN3An35b+DH+L4GtgKvJfHcJaA6sAW4evLKk8BTwFdAO+KSDk8Ql8hI6RIjcM4cnHfdlWrcItnBD56f6BQ70OowcpxQChIZMI9QI+cPeilZRy0crtErjifU3DqdbNj4yDlCyQbJMWxG3GfWgQZCS49SFGOkY5DVYYikWZhRkjcdz1q2/W6RJdKUbDCBgcSN0xA/2XBlPP0LwMck3yXiB+Jmqbg62QDwDvD8v4/P8G+rb+KSFMlx3HOPkg2So7S1N+d2Wwurw8hx3nI+p2SDpJsSDtcojxHMBMer2aLfZ07xlL0PN9jqWh2GSLo0sNXkWbv6LKbHR84R5DeSuqQRyb7627tzs+0GS7bde5ErTeV+Ia5LxEL+m+JyG/AucbNMtAIeAir/W/414sZ0uOJbIKn0wF7gPFDn3797Ak2Ia01RK5lYjCJFCBg/Pk1xi2QnbzteJBiNOZJWN9tu4D77nVaHITmQulT4yZOxI/nEM8PqMLK9KkY51rlmaewGyZFizFhujOnOVnOX1aFke/3sdzPB+arVYYhkyH7vIRrG3JXlXSv+am4S+Nv2LN3mtQqcMQNn9+5WhyGSIVM983gwdrDVYWR7QQSywTWHCrayVociOZBaOPjJG45nqWKUszqMbC0AFxOdbyjZIDmWy3Ay0fkmQeSsAZ6yWgWjLKMdL1gdhkiGhdtK8YbjmSzdZr1DBQjcuCNLt3mtHPfco2SD5Gi97J24397F6jCyvfcdQ5RskAxTwsFP8hjBzHaOp0AKc/te7z5wvkJDW3KNMkVyhjq2qnysO/fJykceZjvHkc/IY3UoItdkgP0eutpuy7LtPfJ9QchBjU5tDRoQ+PnnVochcs3GOAZTx6hqdRjZ1lP2vvR1aIwWyTglHPyooi2MKc63sac4EdX16Sl7X/X7klyju709z9kftDqMbMeGjUnOt6hqq2B1KCLXzDAMPnW+TiMjaxLlNy08kSXb8QejZEmC5s3DCA62OhSRaxZoBDDN+R75UKL8arfZWlg6kK7kDko4+Nmt9ma85XjO6jCylba25lneNFUks73qeIo7bK2sDiNbedXxFO3trawOQ8RvgoxAZrnGEW6UztTtFIpyUWhFZKZuw2+CgwmaNw9byZJWRyLiNxVsZZnqfBcXTqtDyTaqGuWZ4nwbm6HLRbk2+gRlgiccvXne3t/qMLKFpkY9pjvf0xSYkuvYDBtTnG/TwmhodSjZwlP2vjznUKsPyX2KGaEsdH5CcUIzbRuPriwJly9nWv1+43AQ+NVX2Bs0sDoSkQyJiIiga9euST53q70ZXzpHq6UyUJxQZjvHq3uk+IUSDplkpHMQg+x9rQ7DUo2N2nzn+ogQQ00uJXcKNoL41vUhNxr1rQ7FUo/a72WU83mrwxDJNBVsZVng+oRC5M+U+jsuygHJhsBAgr79Fudd6sstuVdn+61MdL5xXScdSlGMpa5JGiRS/EYJh0z0lvN5XrAPsDoMSzQzGrDQ9akyo5Lr5TGCme+awE22xlaHYolB9r6859SUYpL71bRVJsL1FeWNMn6t1zAhfNHvfq3T7/LkIWjRIhwdOlgdiUi6jBo1ipo1a1KrVi2mTp2a4LmVK1fStGlTjh8/nmB5D/sdTHG+jRNHVoaaLYQbpfnB9QWVbOFWhyK5iBIOmexV51O87xiC4zo6aXWztWOB62PyGiFWhyKSJUKMYOY5J3CvraPVoWQZO3ZGO17gLbVskOtIZVs5Vrum+7VVU8/fSmA7+o/f6vO7ggUJXrYMx803Wx2JSLqsX7+eb775hg0bNrBq1SpefvllDh8+DMDy5csZPHgw8+fPp0iRIonWvdveltnO8RS8jmafq2tUI8L1lVo2iN8p4ZAFBjp6ssD5CYUpYHUomcrAYITjSaa43ibICLQ6HJEsFWC4+Nz1Jm86nsWWy0+tBcnHXOeHPOnoY3UoIlmusFGAxa7P6GG7wy/13bfY5Zd6MoOtShWCf/oJe5MmVocikm5r1qyhS5cuBAYGUqhQIW655RZCQkLYvHkzzz77LAsWLCA0NPmxWdram7PGNeO6mDKzve0mlromUdzIvLFq5PqVu38VZyOt7I1Z7ZpODaOS1aFkiryEMNM5lhcdD1kdioilnnbcz7fODyiQS++KVDXKs9o1nVvtzawORcQyAYaLSa5RDHU8ioFxTXXVXrjXT1H5l6NrV4LXr8devXqG1h89erTv8f79+2nYMG6A3Xnz5jFmzBi/xCiSEaVKlcIwDLZt25Zq2fK2MkS4vqKXrVMWRJb1AglgjGMwc1wfqGWyZBolHLJQeVsZ1ri+5ml7v1x1B7S17QY2BHxLB7uaW4oA3GZvwYaAObS1Nbc6FL+xYeMJe29+dn1DRVuY1eGIZAtDHY+y1DWJyka5DK3f6GBBAjb/4eeorlFwMAGffELQzJkYefNmuJr4CYf4OnXqxNNPP53mejweT4ZjkOtb8+bNmTNnDtHR0Zw+fZoVK1YQFRVFaGgo8+bN47HHHmPTpk2p1hNkBDLR9QZjHUNz1bSZNYxKrHF9zSOOe60ORXK53HPVm0MEGgG86XyOFa4vM/wDJbvIQzDjHMNY5PqMMEPzcYvEV9oozjzXBD5yjCAfOXvw1ApGWZa6JvG280V1lxK5SnNbA9a7ZvOi/aF0DzI38PsCmRNUBtlvuYWQjRtxDUh6wOurB+C7eorBrl27EhERwZAhQzhz5gx169Zl4MCBCeqYNGkSzz33HADHjx/n7rvvpmHDhjRt2tR38devXz8eeeQRGjduzFtvvZVJeyu5XcOGDenWrRsNGjSgZcuWjBgxghIlSgBQpkwZZs2aRe/evdm5c2ea6nvI0YPfXN/mGaLYSQAAuR9JREFUipsJj9jvZY3ra2rYcmfLa8leDNM0TauDuF5dNqMZ7f6UsZ4vuUCU1eGkmYHB3ba2vO54hnBbKavDEcn2/jKPMCR2DDO9izHJOafcYIJ43H4f/+d4iGAjyOpwRLK9rd6dPBo7nF/NLWkqv7NzHgp+vy6To0qdUaECAe+8g7Nz52TLrF+/noEDB7JmzRqioqJo1KgRI0eOZM6cOcyaNQuISzg8/vjjtGrVitDQUE6cOAHEdano2rUrGzZsYNKkSWzdupV33nmHXr16MWjQIBo1asSuXbu47777WLduHf369SMqKooZM2ZgGNfWZUUkM8z3rOB592j2m39bHUq63GRrzOuOp2loq2V1KHIdUQsHCwUaAbzsfJztAYt5xH5vjph+p7XtBn5yTWeq610lG0TSqIxRgi9do/nFNTNH3Blx4GCAvTvbAhbxqvMpJRtE0ujK1JkfO0ZSJZVWjEUvBFAwIjJrAktO3ry4Ro0iZPv2FJMNkPwAfNdi2bJlDBgwgLp169KtWzeOHj3qe65r165KNki21dHemkjXdwxzPEYw2f87srZRhXnOCXzv+lzJBslySjhkA0WNwoxxDmazaz7327sQSIDVISVys+0GFjo/ZZHrMxrYalodjkiOVMdWlXmuCSxxfk4b241Wh5NIAC562zsT6fqOcc6XKWEknipMRFJmM2z0ddxFpGses5zjaGrUS7LcYyuKQ3R0FkcXxyhbFtdbb5Fn/34CXngBw5WxmTIiIyPxer2+v6MzsD8bNmwgMjKSyMhIDhw44FseHBycoZhEskqgEcAQxyPsDljG645nKEMJq0NKpIpRjs+db7LONYu29ux/w0NyJyUcspHytjJ85BzBnoDlvO54hgqGtfPg5icvD9vj+qstdn3GLfamlsYjklu0sjdmgesTIl3f8aj9Xsvn+Q43SjPC8SS7A5bxqfM1DQop4geGYdDBfjMrA6aw0jWFTrbW2LH7nr9j4eUsj8l+000Ezp5NyN69BLz4IkahQmleN6kB+Pr168f27dtxu90cO3aMtWvX/rctuz3VAR9vvvlmPvroI9/fmzdvTv9OiViskJGfZx0P8EfAEqY7x9DcaGhpPHkJ4X57FyJcX7E5YD732juqtZBYKvu34b8OFTYK8KzjAZ6x389acxMLPStZ4I1gp7kv07cdSkFus7XgDnsrbre1UFNqkUxU1VaB92yDecPxLN97V7PAG8ESz48c51Smb7uiEcYdtlZ0sN9Mc6OBfoyIZKKmtno0ddXjH/Mk8zwrmOtdStnlCzJ/w3Y79mbNcHTogKNTJ2xVqmS4qvgD8BmGwYgRIwgLC6N9+/ZUr16dKlWqUK/ef605+vbtS61atWjZsiX/93//l2Sd48aNY+DAgXz22WfExMTQqVMn6tSpk+EYRaxkN+zcZb+Vu+y3ss27i2+9S1ngWUmkuSPTt+3AQTNbfXrb7+RuW1v9fpdsRYNG5iC7vQdY7P2RX71b2GRuZ4958JoHoCtKIerZalDPqM6t9mbcYNTBbthTX1FEMoXX9LLO3MxSzxo2mtvY5N3OMU5ec73ljTLUN6rTyFab220tqGIr74doRSSjzPPnca9YgWfZMjwbN+LduhXOnbu2Sm02bFWqYGvYEMftt+No1w6jYEH/BCwiGXLIPMZK7y+s9KzjFzOS/eYhPFzbdK8BuKhnVKOJrS6tbI1pYWtEHkPdkCR7UsIhBztrnifSu4Pd5kGOcpyj5nGOmic4bp4khljceLBjx4GdAkY+ihtFKEERShhFKGOUoK6tGqWN4lbvhoik4pB5jEjvDg6ahzliHv/3eD/BafMsbjx48ODAjgsnoUYhihuhFDeKUJwiVDDKUs9WjQKGtd02RCR13v378f7+O57ff8c8ehTz7Fk4exbzzJm4x14vRv78kC8fRr58GPnzY4SGYqtcGVvVqtiqV8e4xoEcRSRzxZix7DUPsss8wE5zP7vM/Rw3TxGLm1jcxJixuHETSyz5jXyUohgljaKUNopRyihOaaM41YwKuAyn1bsikiZKOIiIiIiIiIiI32nQSBERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JhxwkIiICwzAwDIN+/fpZHY6IiEiWyuzvwX79+vnqj4iI8Hv9Oc3+/ft9r0erVq0yZRuTJk3ybWP48OGZsg3JPaw6Rlu1auXb7v79+1MtHx4e7itvhfTGm1tjkOzBYXUAknUiIyOZO3cuEHcSyKwfDyLiPzpuRSSnu5JIKFCgAIMGDbI0FhERyVpKOOQg9erVY/Xq1QAUK1Ys3etHRkYyYsQI39+6cBHJ/nTcivznWr8HJX1KlCjhe73z58+f4XqunMPCwsISJRzat2/v20bZsmUzvA0REcmelHCwWFRUFMHBwWkqmz9/fpo3b57JEYmIiGRP+h7MOld+n2T26120aFGKFi2aqdsQERHraAyHeOL3C1u6dCnDhg2jVKlSBAUF0bJlSzZu3Jig/L59+xgwYABhYWEEBARQtGhR7rnnHnbs2JGg3NX9EydMmECVKlVwOp188803AMyePZvmzZuTP39+XC4XxYsXp3nz5rz44ouYpgkk33f15MmTDBw4kLCwMFwuF3nz5qVy5cr07NmTVatWAXF9ye6//37fOiNGjEjUZ3Lu3Ll06tSJcuXKkTdvXlwuF2FhYdx///2J+l7Ff61++OEHXn75ZUqXLk1gYCDNmjVj8+bNiV7fHTt20K9fP9/rVaRIEVq3bs3y5csTlFu9ejWdOnWiSJEiuFwuypUrxzPPPMPp06fT/maK5ACpHbtpOW4h4+eir776iho1ahAYGEj16tWZNm1aVu26XKfmz5/v+wwOHTrUt/y+++7DMAwCAgKIjo4G4r4zrpS95557gOS/BzPynTR+/HgqVKhAUFAQjRs3ZsWKFSnGvmLFCu644w5CQ0NxuVyUKVOGfv36sWvXLl+Z33//3RfHfffd51s+dOjQRH2ZL1y4gMPhwDAMmjRpkux258yZ41v3qaeeSvDc2rVrfc91794dgK1bt9KrVy+qV69OoUKFcDqdFC1alDvuuIMff/wxwfqp/T5JbgyHtG5j+PDhCfqwHzhwwFdfeHh4kjHEt3v3bu6//37KlCmDy+WicOHCtG/fPtHvhqs/F99//z2NGjUiMDCQsmXLMnbs2GRfX8m53G43I0aMoEyZMsn+Vk9uLIXkxoLweDwMHz6cUqVKERwczM0335zk+eOKqKgonnzySYoUKUKePHno1KlTkuMVLF++3Le9vn37Jnhu8+bNvuc6duyY6n6fOnWKl156ierVqxMcHEy+fPmoX78+48ePT7L8xYsXefrppylWrBhBQUG0a9eOAwcOJCqXnt/f6Y3hikOHDhEWFoZhGNjtdr788stU91dyAVN8+vbtawImYFapUsX3+Mq/fPnymX/++adpmqb522+/mQUKFEhUBjDz5Mljrlu3zlfvF1984XuufPnyCcp+8cUXZkREhGmz2ZKsCzBjY2NN0zTNlStX+pb17dvXV3/r1q2TXXfIkCGmaZpmWFhYsmVeeeUV0zRN8+GHH062TLFixcxjx44l+VpdvU+AGR4e7ovbNE1zyZIlZlBQUIrbN03T/PTTT5N9LapUqWKeOnXK32+7iGVSO3bTctxm9FyU1DkOMKdNm2bRqyHXg1OnTpmGYZiAecstt/iWx/8eWbt2rWmapjlx4kTfsvHjx/8/e/cdHkXVtgH8ntnd9JCEBEIIvUgLBKQI0otUBT6p0hURrDQBFRQFC2BBijQLKCBIEaRIL4IoTYp0BEKvgSQEUnZn5nx/5M2wIT3ZZJLN/buuXITZMzPPbObMnn3mzDlCiNQ/BzP7mfT5558nK2OxWESVKlX0/+/YsUMv/8033+hxP/7j7e0t9u/fL4QQQtM04efnJwCI8uXL6+vb1/XEOrZt2zZ92dtvv53qexYXF6fX8RIlSghN0/TXhg8frm/jt99+E0IIsWTJklSvG7Isi+3bt+vrp9c+CQsL0//ftGlTfb2M7mP8+PGplitdunSyGOzbA/v27RPe3t4pritJkpg1a5Ze1v68KF26dIrtiC1btqT6HlP+YV/Xa9SokezvbN9WFyJp+ze17djX9ddffz3FbZYpU0b/f1hYmF6+Q4cOycqXKFFCFC5cOMl+NU0TZcuW1a8ZMTEx+jYmTJiQ4c/gy5cvi1KlSqVYL+zraNOmTfXl9te1xJ+GDRsm2W5m2t9ZiSEsLEzcu3dPVKtWTa/D8+bNS/NYyXmwh0Mqrly5gmnTpmH16tWoU6cOAOD+/ft49913IYRA//79ERkZCQAYOXIkNm/ejMmTJ8NkMuHBgwd48cUX9Z4J9i5cuIA2bdpg9erVWLZsGapVq4a1a9dC0zQAwKeffopt27Zh6dKlGDduHKpWrZrmCLfR0dHYsWMHgIRnW9esWYMNGzZgzpw56NKlCzw9PQEAK1aswHvvvaev9+KLL2L37t3YvXs3XnrpJQBA69atMXfuXKxduxY7d+7Exo0bMXLkSADArVu38N1336X6Xk2ePBm//vorSpYsCSBhZOtNmzYBSMj+9uvXD7GxsQCAxo0b45dffsGaNWswYsQIPcZr167hjTfegKZp8Pb2xowZM7Bp0yb9Du+ZM2eSHANRfpaRuptevc3OtejMmTMYOnQo1q9fn+RO7IgRI2Cz2XL24KnA8vPzQ0hICABg//790DQNt2/fxoULF/Qyf/31V5J/gYTPjYxK7zMpIiICH3zwgV7+zTffxPr161PsFZS4veHDh0MIAVmWMW7cOKxfvx7dunUDkFCXBwwYACEEJEnSH0E4f/487ty5A1VVsX///iwfn6urK7p27QoAuHr1Kvbu3au/tnLlSgCAv78/2rVrBwCoVKkSvvzyS6xevRrbt2/Htm3bMHv2bLi6ukLTNHz22Wcp7iel9klqMrqPl156SR+fAQCKFSumX8NWrFiR6vaFEHjxxRcRHR0NAOjatSvWr1+P999/H7IsQwiBYcOG4cqVK8nWvXTpEp577jmsXbsWPXv21JfPnTs31f1R/nTu3LlU2+pZcfr0acyaNQsAIMsyPvzwQ6xbtw4NGjRIsdfCpk2bsH79egCAu7s7vv76a6xevRrFihXDvXv3kpSVJElvz0ZHR2PNmjX6a4m/e3h4oGPHjmnG+Nprr+Hy5csAEsY8mTdvHjZu3IgpU6bo17vHXb16FXPmzMGiRYvg6+sLANizZw9OnDgBIPPt76zEEBsbi2effVbf59dff41BgwaleazkRIzLdeQ99tnOxJ4BQghx9uxZfbmbm5vYv3+//v+aNWuK3bt36z8NGjTQXzt48KAQImn2vnTp0knusgghxDvvvKO/vnz5chEeHp5ifCnd2YmJidEzks8884w4efJksu0nSu0uQqK7d++KESNGiEqVKqXYG+H//u//Unyvhg4dqi+fNGmSvvzrr78WQgixatUqfVnZsmVFXFxcivFNnTpVL/fiiy/q7+muXbuEh4eHACB8fHyEqqoprk+Un2S07qZVbw8fPpzla5H93Q1FUZLcrdi1a1eOHjsVbK+99pp+rh09elSsXr1aANDvfHXp0kUIIUTVqlUFAOHr66tf9zPSwyG9z6RffvlFX1a3bl297OP1IPGu51dffaUvS4xNCCGsVqsoVqyY/trhw4eFEEJMmTJFX/bbb7+JI0eOJDm+2rVrCyGEaN++vX6n7+7du2m+Z/bHPWLECCFEQg+AxGVDhgxJchxff/21qFu3rvD29k7WM8PPz08vm177JLUeDpnZhxAiyT4el9I17tChQ/qyYsWKCavVqpfv0qWL/trUqVOTvT9FixbV2xk3b95Mco2k/C+jbfXEcyYzPRwmT56sL+vWrZteNjIyUm+HAo96OLz66qv6slGjRqUYi/1+L1++rH/uP/fcc0IIIa5fv67Xn549e6Z57Hfv3tXXN5lM4uTJk6mWte9dkFhPhBBiyJAh+vLVq1cLITLX/s5qDHXq1NF/nzx5cprHSc6HPRxSYf88ZcWKFeHn5wcAiIuLw8mTJ/XXjhw5gsaNG+s/f//9t/5aSndK2rZtC7M56VidvXv3hqurKwCgW7duCAgIQGBgIJ5//nls3bo1zTjd3d3xwgsvAAC2bNmiP0tVq1YtfPDBB4iKisrQ8aqqilatWuGrr77CmTNn9N4I9hLvoj6uadOm+u/+/v7Jyp89e1Zf1qpVK/1YH2dfbv78+fp72qRJE8TExAAAoqKicP369QwdE1Fe5oi6a19nMnstsr/GmUwm1K5dW/+//d1mIkdr0qSJ/vvff/+tn6uvv/46LBYL/v77b0RGRurnbcOGDSHLGW+upPeZZH9+161bV//98XqQyL6e2dcbi8WCWrVqJSuX2vF16dIFJUuWxNGjR/Hw4UO9p0LiOAjpHVPincPEXg32PQQe76U0bNgwHDhwANHR0cl6OKX2WZ5S+yQ1Wd1HRtm/508++SQsFov+/3r16qVYLlH9+vX1dkZKf39yHmm11bPSVkzt2uDj44NKlSpluLx9LPZKliyJ1q1bAwA2btyIu3fvYu3atXr9SWwTpObcuXN6j+hy5cqhSpUqGTmsTLXT02t/ZzWGgwcPAkg4xtGjR2doHXIeTDhkUFqPNaTm4cOHyZalNI1XSEgI/vnnH7z11lt46qmn4OPjg9u3b2PVqlVo06ZNkm6XKZk/fz7mzp2Ljh07onz58lBVFUeOHMHEiRP1gbbSs2fPHhw+fBhAwjRYP/74I3bt2oUlS5boZRIvMI+zv6jaN1Yeb4A4SkrvK1F+5Ii6mxEZqTNZucYRZUVqX8ibN2+OWrVq4fr161i6dKn+GZKZxymA7H0mZbYepFS+du3a+qOC9sfXoEEDNGjQAIqiYOHChXqX64wcnyRJ6NWrF4CERwYOHDigJx7Kli2Lp59+GgBgtVoxb948AAnHPmnSJOzYsQO7d+9GQEAAgNTfh4xOM5qdfThCen+j3G6TUN6R0rlhv0xVVf338PDwbG87K+UHDhwIALDZbFi2bJn+OIWfnx/atm2bqX1klKPqRHba3yaTCUDCILj2j1lRwcCEQyrsn7c8d+6c3jBIHM09UdOmTSGESPbz8OFDDB48ONl2U7oACSFQrVo1TJs2DXv37kVkZKR+50LTNKxevTrNWM1mM1555RX89ttvOHfuHCIiIvTGx+bNm/ULhP0doseTB9euXdN/79WrF/r165fpRl5qnnjiCf33rVu3wmq1pltu/Pjxqb6vKWWZifKjjNTdtOqtfZ3J7LXI/hqnqqp+9wFIuGtBlFOCgoJQvnx5AAmjoh88eBB+fn6oVKkSGjRoACDh+d5E9gkKR7A/v+3P+8frQSL7emZfb2w2m56oty9nNptRv359AMCBAwfw559/6jNRZOf4evfurf8+duxY/e5qr1699LbF3bt3ERcXBwAIDQ3FmDFj0KxZM5QrVy7ZM+WPy+gXqqzsI3Hbqd24eJz9e3748GEoiqL/f9++fSmWo4InrbZ68eLFAST0Tkh08+ZNAAljKOzZsyfZ9lK7NkRFReHMmTMZLm8fy+M6duyoJ+a+//57fcaVLl26wMXFJbVDBQBUqFBBbxNcuHABp0+fTrN8RmWm/Z3VGL744gvIsoz4+Hh06tQpxZ6X5Lwy1neuAJo6dSoCAwNRqlQpfPLJJ/rydu3aoU6dOggJCcHx48fxxx9/oF+/fujWrRssFgsuXryI/fv3Y9WqVRmexnHKlCnYuXMnOnTogFKlSsHT01Mf3AqAPkVYasqXL48uXbogNDQUxYsXx+3btxEWFgYgIZkRHx8PT0/PJBnOjRs3okmTJnBzc0P16tVRunRp/bXEKTojIiLwzjvvZOgY0tK6dWsULVpUj6t169Z444034Obmhj///BP+/v4YNWoUunbtinfeeQfx8fGYNGkSJElCgwYNEBMTg7CwMOzYsQOxsbHYsmVLtmMiygsyUnfTqrehoaFZvhb9+eefGDFiBJ555hksXbpUHwAqMDBQ/7JElFOaNGmC8+fP61+amzZtql/zp02bpjfu3d3dU3zMITueeeYZuLm5IS4uDvv378ewYcPQpk2bJPXAXteuXTFmzBjYbDb8+uuvGD9+POrXr48ff/wRN27cAJDwWERoaGiS49u2bRtiYmJw4cIFVKlSBX5+fnrCwf7LS0aT+9WrV0eNGjXw77//JvkctH+cIjAwUD+2Y8eOYd68eQgMDMTEiRMz/GU/PVnZh5+fH+7du4fr169j8eLFKF26NAIDA1GxYsUUy9esWRNVqlTBqVOncOPGDfTu3RsDBgzAvn37sGrVKgCAi4sLunTp4pBjovwprbZ64mM4FSpU0Ke17NevH7p06YKFCxem+IjNc889hzFjxgBIaAtPnDgRtWvXxsyZM1O8u9+xY0fMnj0bQMI0uyVKlEDp0qWTxPI4FxcX9O3bF1OnTsU///yjL0/vcQoAKFy4MNq1a4f169dDVVW0a9cO48aNQ8mSJXHixAkcOnQICxcuTHc7j8tM+zurMXTu3BmKomDUqFGIiIhA27ZtsXfvXgQFBWU6XsqHcnyUiHwkval2vLy8xKlTp4QQaU9Fl/iTKL3BGidOnJjqNmRZFn/++acQIvXBskwmU6rrt2nTRi93584d4erqmqzMjh07hKIoKR5zw4YNUxwwKrXphFI71t9//z3FfT9eLq1peR6PgSi/y0jdTaveCpH1a1H16tVTLLtw4UIj3goqYH744Yck592ECROEEEJcunQpyfJmzZolWS8jg0Zm5DPJfjBJ+89b+6khszItZqLt27cnKfPSSy8JIYSIj49PUp/LlCmTqffNflA7AOLJJ59MVialaf0qVqwoihYtmun2SWqDRmZmH0IkHejx8b+fo6fFtD8vhEh7wErKf+zresWKFZOdG/ZtdSGE2LRpU7IyZrNZVKhQIcW6bj+oYuKPu7u7CA4O1v9vPy1mu3btkpUvUqSI8PHxSbEuCCHE8ePHk5QPCgrK8IDoly5dEiVKlEi3jfz4lJSJ7KeqnT9/vr48M+3v7MTw8ssv68tCQ0NFVFRUho6b8jc+UpGKL7/8Eh9++CGCg4Ph6uqKRo0aYceOHahcuTKAhEGMjhw5giFDhqBcuXJwcXGBr68vQkJCMGTIEL2LVEa0b98egwcPRkhICPz8/GAymVC4cGG0bt0amzZtQsOGDdNc/9NPP0WbNm1QokQJuLq6wtXVFZUqVcKoUaOwfPlyvVxAQABWr16NWrVqwd3dPck2TCYT1q9fj06dOsHHxwdFihTB0KFDU50KM7PatWuHf/75B3379kWJEiVgsVjg7++PZs2aJbm78/LLL2PXrl14/vnnERgYCLPZjMDAQNSrVw/vv/++Pl0RkTPISN1Nq94CWb8WPf/88/jll19QrVo1uLi4oFKlSli4cGGSu6VEOeXxxwgS7/yXKlUKwcHB+nJHPdr3uDFjxmDatGkoU6YMXF1dUbNmTfz222+p7u+1117Dli1b0K5dOxQuXBhmsxnFixdHv3798M8//yQZMA5IGLjQvnt04vG5uLgk6bGR2ePr1atXksesUqqvX3zxBYYNG4agoCB4eXmhY8eO2LZtW4rXj6zK7D5mzpyJ7t27o0iRIhneR7169fDPP/+gf//+CA4Ohtls1p9z37x5M1599VVHHQ7lUzNnzsSYMWMQFBSUYlsdSOhl+/XXX+ufs/Xq1UuzbT1jxgy8//77CAoKgpubGxo2bIht27ahQoUKKZZfvnw5Xn/9dfj7+8PDwwNt2rTBrl279OknU1KtWrUkA1527949wwPjlipVCocPH8bo0aNRuXJluLm5wcvLCzVr1tSnz82KzLS/sxPD7Nmz0bJlSwDA0aNH0aVLF07FXQBIQnAUnUQDBgzAjz/+CADYsWMHmjVrZmxAREQOtGDBAn1e7fHjx+PDDz80NiAiIqICaMKECRg/fjyAhHFJ7GdfIXI2HMOBiIiIiIgohz148AA3b97E0qVLAQCVK1dmsoGcHhMOREREREREOczb2zvJ/99//32DIiHKPRzDgYiIiIiIKBdIkoTSpUtj2rRp6NWrl9HhEOU4JhzsLFiwQJ9vluM3EJGzGTBggH6Ny6nxG6ZMmZLpmNatW5ft/SbOa55ZO3fuzNZAW0QFFes6UeYJIaBpGi5evIi33nrL6HCIcgUTDpSr2EAhcm6ZreNElD+xrhMRUUYw4UC5ig0Uovzj4sWLCA0NRf/+/VGlShX06NEDiRMbbd68GTVr1kRISAhGjBgBIQTGjh2LyMhI1KxZE0OGDEm2vfXr16NWrVoIDQ1N0o10y5YtqF+/PipWrIg//vgDAKCqKkaOHIm6desiNDQUixcvBgAoioKhQ4eievXqqFGjBpYtW5ZkH9euXUO9evWwf/9+nD9/Hm3atEGdOnXQokULXLx4EQCwf/9+hISEoGbNmkmmDiYqqFjXiYgoxwiiLAoLCxM1atQQ/fr1E5UrVxbdu3cXmqYJIYTYtGmTCA0NFdWqVRPDhw8XmqaJ9957T5hMJhEaGioGDx6cbHvr1q0TNWvWFDVq1BAvvPCCEEKI/v37i7feeks89dRTokKFCmLnzp1CCCEURREjRowQderUETVq1BCLFi0SQghhs9nEW2+9JUJCQkT16tXFL7/8IoQQwt/fXwghxNWrV0XdunXFvn37xLlz50Tr1q1F7dq1RfPmzUVYWJgQQoh9+/aJatWqidDQUPHaa6+JLl265Oj7SJRXhYWFCYvFIk6cOCE0TRNNmzYVu3btEjExMaJUqVIiLCxMqKoq2rdvL1auXCmEeFTXHnfr1i1RtmxZcfXqVSGEEHfv3hVCJNTxPn36CCGE2LZtm2jRooUQQoi5c+eKzz//XAghRExMjKhRo4YIDw8X33zzjejTp49QVVUIIcS9e/f0/V6+fFnUrl1b7N+/XwghROvWrfV6vW3bNtG1a1chhBAhISHiwIEDQgghunfvzjpOBR7rOhER5RTOUpGPCaFBxJ+FiD0CEX8eQrkLoYQD2n1Ai4XQ4gBJgmTyh2QOAMwBkMz+gCkAkkswZPfakMy+2Yrh1KlTWLJkCapUqYLmzZvjzz//RJ06dTBo0CD88ccfKFWqFJ577jmsWrUKn3zyCebOnYsjR44k287t27fx5ptvYvfu3QgODsa9e/f01+7du4e9e/di+/btmDBhArZt24bvv/8eQUFBOHDgAGJjY1G/fn20bdsWv/zyC+7du4ejR49ClmVERETo27ly5Qr+7//+D7Nnz0bdunXRpk0bzJ07F2XKlMH27dsxatQoLF++HAMHDsSCBQtQp04d9OjRI1vvD5EjCNt1iPhz0OIvArbLELZbEMpdQA2HEBok2R2QPQDZDZLkDsjukMxFILlVg+QeAsmlHCRJytK+K1WqhKpVqwIAatWqhYsXL8Lb2xuVKlVCmTJlAAC9e/fG7t278fzzz6e6nb1796JFixYIDg4GABQuXFh/rXPnzgCA2rVr63cmN2/ejOPHj2PRokUAgKioKFy4cAFbt27FiBEjIMsJHfT8/PwAAHFxcWjbti0WLFiAunXr4sGDB9i9e7e+bSEEPD09ERkZifj4eNSpU0eP/aeffsrSe0PkSEKoENaLEPEXIKxhENYrgHIbQrkNoUZDklwA2Q2QXAHZBZLkBsgekFzLQ3KrCtmtGiRLYJb3z7pOlDv09nvcaQjbDQjbdUC5CWG7DYhYCKECACTJDMjekCzFIFmCAEsxSJaSkN2rJ/yfKJ9gwiEf0eIvQnuwEyL2CLSYIxBxxwDtYbrriVRfkSC5PgHZsx4kj3qQPZ9K+IIimTIcExsoRI6XUNd36T+wXU6zfOp1/H9kz0dfSDxqw+TTAZKleIZicXV11X83mUxQVTVD62VG4j7st69pGubOnYumTZtmaBsuLi4ICQnBjh07ULduXWiahsDAwGQJzsjIyCwnX4gcSQgBEfsvtAc7//ezJ+GGQWrlM7JRUwAktyqQ3atB9moGuVBrSLJHhuJhXSfKGUK9Dy16C7QHf0OLPQQR+y+gPUh/vbReNBeD7FELknstmLybQfJsmKn2O1Fu4hgOeZywXoVyexrizzaG9VRlKFeGQA2fAxGzN0PJhnS2DhF/Buq9hVCuvgnrmXqIP14atqvDoD08kKEtGN1AOXLkCI4cOYKLFy+ibt26qW7DvoGSuH5iA+XIkSM4evQo/vrrLwBgA4UMoUbvhO3yK4g78cT/6vor0CIWpZtsyBDtIUTMAaj3FkC5+ibiT5RH/NlmUG5Pg7BeyvTmKlWqhLNnz+LSpUvQNA1LlixBkyZNAKR+Hahfvz62b9+Oa9euAUCSXkwpad26NWbNmqVv6/jx41BVFa1atcK8efOgaRoA6L2YZFnGwoULsX37dnz33XcoVKgQAgMDsXbtWgAJz4kfP34cvr6+cHV1xaFDhwAAS5YsyfTxE2WV0GKg3P0R1rAXEH+8BKxnn4JyfQy0+xvSTDZkmBoO8XA31PA5sF3sifhjwbCGdYd6bzGEEpnpzbGuE2WNsF6GcucbWM+1R/zxYNgu9oYaPhPi4V8ZSjakS7kJ7f4GqLc+hfVca8QfLwnrpQFQI1ZAqNHZ3z6RAzHhkAcJNQrKndmI/6854k9WhHJ9DERMxhIA2aaGQw2fA+t/jRF/qgaUm5My/YWEDRSijBHKXSi3v0b8qeqwnW8L9d5PjkkwpL9niJi9UK6PQfzJSog/8zSU21Mz/IXE3d0d8+bNQ6dOnVCjRg1UrFhR7y3Uv39/VK9ePdlAckWLFsX06dPRoUMHhIaGpjsd2KBBg1CmTBnUqlULISEhGD58OIQQeOWVV+Dr64vq1asjNDQUW7du1ddxcXHBypUrsWDBAqxcuRI///wzZsyYgdDQUFSvXh3btm0DAHz77bfo168fatWqBX9//4y/bURZpMX9B9vVtxF/ohyUK4OhRa0C1Ls5v2MRCy1qDWyXByL+RElYz3eAGrFc77KdHtZ1oowTQoEa+WtCkuFkJSjXRkJ7sB0QtpzfuXoPWsRS2C71QfyJMrBdHgwt5p+c3y9RBkhCiAz10qOcJ9QoqHdmQLkzE1AjjQ7HjgS5UBuYA8dC9nzUi+DixYvo2rUrDh48CAB4++23ERISggEDBmDz5s0YPXo0FEVB69at8eWXX0KSJIwePRrr1q1DkyZNMGfOnCR7WbduHcaNGwchBKpXr45FixZhwIAB6Nq1K5599lk8ePAAISEhuHjxIlRVxXvvvYcNGzZA0zQEBQVhw4YNAIARI0Zg27ZtMJvNGDduHLp164aAgACEh4fj4cOHaNOmDYYPH45atWphyJAhuHXrFmw2GwYPHoyhQ4di3759GDhwICwWCxo2bIibN29ixYoVufd2k9PTHu6FEj4HWuQqQMQbHc4jsjdM/i/BXORNSC4ljI6GKF8TQoUWtRZq+FxoD3Yigw9F5ArJpTRMRd6Cyf+lhDFgiCjLhPoQavgcKOGzANs1o8NJQvKoD3PR4TD5djI6FCrAmHDIA4QSCeXODKjh3+SxRENysncbmIMmQPYINToUonxHiw+Dcv1daFGrjQ4lbZIrTP4vwxw4OluD0BEVVGr0NihXR0LEnzY6lLSZi8EcOAom/5chya7plycinRA2qHd/gHLzM0C5aXQ4aZI86sIcNBEm72ZGh0IFEBMOBhLCBvX2V1BufQVoUUaHkwkyTIX7wBz0YYYHniMqyIT6AMqtyVDvTM9bPRrSI3vAXHQUTIGjEkbLJqI0Cesl2K6NyftJxcdZSsBSYgZMPu2MjoQoX1AjV0K5/j6E9YLRoWSK7N0K5uKTILuHGB0KFSBMOBhEi/kHtsuDIeKOGx1K1snesJSYClPhPkZHQpQnCSESBmW9MR5QbhgdTpZJ7rVhKf0dZLcqRodClCcJLRbKrS+g3v4KELFGh5Nlsl8fWIK/yPaU2UTOSthuwnblDWj31xkdStZJFpgD34EpcAxvJlCuYMIhlylCwcfKbLS5tgS1Ig8ZHY5DyL7dYSk5A5LJx+hQiPIMYbsN2+WB0KK3GB2KY0iuMBf7AKaiwyFJHG+YKJH2cD9sl/pBWC8aHYpjWIJhKTkLpkJtjI6EKE9R7y2B7dpIQE17YPP8QnKvCUupbyG7Vzc6FHJyTDjkogvaFQywjcF+8S8qowR2nt0LNy3O6LAcQnIpDUup+ZC9njY6FCLDWR/shnaxX77u1ZAayaN+Qm8H1wpGh0JkOOX2DCg33sudUehzmalwP5iDv4Jk8jI6FCJDCS02YdaHyGVGh+J4kgXm4p/DXGRI+mWJsoi3qXLJPu0oGltfwH7xLwDgNK7ik9JtDY7KcYT1EqznnoFy81OjQyEy1HTlJzQxTUasFml0KDlCxOyF9WwjaA/+NDoUIsPEijgMj38fN8M/d8pkAwCo936C9dwzELZbRodCZBhhvQrrfy2cM9kAAMIG5dow2K68AeGk1zIyHns45IK16nb0s41GLJL2ZpAhY91tXzx9b79BkeUMk/8gmEtMY7drKlAUoeBV5UMsVFcDAF5QQjD73GpDY8pRkhsspX/kVFtU4FwXt9Hd+hYOiuNoolXEr2e3wAzF6LByjORSBpby69iriQoc7eFeWMN65vkZKBxF8mwMl7JLIJkDjA6FnAy/Eeawb5Vf0NM2PFmyAQA0aHitqAUPTN4GRJZz1Lvfwnb5JQjhvA0wInuKUNDH9raebACAJebjmB/c3rigcpqIg+3iC1DCvzU6EqJcc0XcQAtrPxwUCQM+75L/wwdlnzU4qpwlrBdhPdsM2kPnujlClBY1agOs59oWmGQDAIiHu2H9rxmE9arRoZCTYcIhB31km4k3lYlQoaZa5iJu4f0yLXMxqtyhRSyFLewFCC0fTQFIlAWKUNDPNhqrta3JXhvjHYZ/fJ80IKrcokG5+iZsNyYYHQhRjrsubqOtdSAuiqSN8Vmux7Es6BmDosolajis59tCjdpgdCREOU6NXAPbxR6AcI5x1jJDxJ+D9VxLCOslo0MhJ8JHKnLIdOUnjFamZLj8yvBiaBnufM9Ey14tYCm3ApLsYXQoRA6nCAX9bWOwUtuUaplgBOCPCxcQYL2di5HlPlPgO7AEfWh0GEQ54pYIR2vrizgjwlJ83R2u2HRdRo37x3I5slwmWWAptwYm7+ZGR0KUI9T7G2EL6w4Iq9GhGEpyKQuXClshuQQbHQo5AfZwyAGr1C14R/kiU+u8EWBDpKVwDkVkHO3BdtguvWx0GEQOpwkNL9reSTPZAADXEI6BZepAhSmXIjOGemsS1IilRodB5HDhIgLtrYNSTTYAQCzi0ae4N+5ZnPzZZ2GD7WIvaHH/GR0JkcNpD/fBFtazwCcbAEBYw2C98CyEet/oUMgJMOHgYH9rh/Gi7R1o0DK13g3cxejSjXMoKmNpUb9CuTXZ6DCIHOpjZRaWaxszVPYP+Sw+LfNcDkdkPNvlIdAe7jM6DCKHsQkbulrfwAmR/hfsy7iNl8rWc/rkItQI2C50hlDuGR0JkcMI6zVYwwrmYxSpEXGnYLvUH0Jk7jsN0eOYcHCgc9oldLW+iThkbdyCZeYTWBvYwiGxREYLNOxlxVM9rKjd1Yoffn00joSmCTTua8ULb6c8/c2gD2yo8mw8nuqRsP6FKwlP3UxfpKB2Vyv6v/tovR9Xq/jpt9THqEik3PgI6v2MfTkjyus2q3/iM3Vuptb5yu0Efi/azKFxpFbPW79sRej/WfU6HBuX/Mm5j+coKN/mUT3/81BCg2LFZhVPdrHiudesiLcmrLdzv4aP52RgEFgRB2tYdwjrZccdJJGBxilfY684muHyO+Wz+KisY5OL2annfcbY9NfLtY5Ht+EJn9/ZqucAhPU8rGE9OI0eOQWhxcIa1r1ADRCZUdr9DVBuvG90GJTPcQwHB7EKG562dsfxDNwFSUsAfPBX2DUUjc/eRU9VBeKtgIe7hIexArW7WrFnsQv8fSX88KuK7fs0qCqw5AtLsnUHfWDD/7WS0b5J0rs0T/WwYu9SC15+X8GwfiaULymh1ygFv043Q5al9IOSfeDyxJ+Q3Spm69iIjHRZ3ECD+G64i8hMr1sInth55SHKPTznkFhSq+cvvG3D1HfMqFYh9Zzyx3MU+PtKeLVn0nrerL8V6+dY8OV8FU9WldChqYzn31KwcLIZXh4ZqOcAJLcQuFTcCcnkla3jIzLSOnUHutrezNK6P0SWwfM3kw8kmxXZqef2XhxrQ4unZPTtaHJIPQcAU+H+sJTKXPKVKK+xXhoAjY8EpslSegFMfj2NDoPyKfZwcJCPlVnZTjYAQDiiMKJUvWxvx2SS4OGe0GiItwJCJPzcixJYvknFwOcz3+XT1RVQFEAAMJuA6YtUvNHblLFkAwBoUbCFdYVQH2Z630R5gVXY0Ns6IkvJBgC4j4foW6IkYkyeDokntXqeHa4u/6vnIqGeL/1dw7PN5Ex9CRFxx6FcG5G9QIgMdFG7hkG2sVle/w3fmzjhXc0hsTiinsdbBbb+peG55gnNPkfUcwBQ7/0INeKXzAVDlIeoEcuYbMgA25WhnC6TsowJBwf4RzuOL9UfHLa9daaTWBLUJtvbiYwWqNfdigptrRje34wAPwkfzlTw7iAzTOnkG96dqqJedyven65AVRNaNoO6mtCojw2FvAB/Pwn/nhVo1SBzp5CIPwPl5kdZPSQiQ32kzMABkb1R6E9IVzCsbCsHRZRyPQeAAe8pqN/TimkLU+8iPX2RgrrdrXjrExsexCTU85EDzGj7ig3/XRZo+KSMXzZoGNA58x8V6r2foN7fkrWDIjKQIhT0tb2NCGR9sLQYxKFPsB8iLP4OiSk79RwANu3R8FQNGb7eCes5qp4DgO3qCAibc8/CQ85J2G7BdnW40WHkD1oUbFdeMzoKyqf4SEU2xQsr6lu74ZQ479Dt+sALey6Go0Rc9rOJt+4K9Bxpw+SRZsxYpGLhZAt2HdQwe6ma4iMVN+4IFAtIuJPy8gcKGj0pY0iPpBmK4ZNsGNjFhL8OC+zYr6HFUzIGdctorwkTXJ7YBdmjdraPjSi3nNXCUNv6f7AhY884p+fzB5Uw6Op6h2wLeFTPl35pgaICwUUlREULdB1mw4gBJrRrbEpWPsA34ff3vlYhy8Bnw81Jyny5QEHV8hLircAvGzSEVJQwdnDSMmmylIRr5cN8tILyldnKzxiufOqQbbXUKmH52Q2QMzmQdGoyW88T9X/XhraNZbzQPvnr2a7nAGSf5+FS9ucsHRORUaxhPaBF/WZ0GPmKueQcmP0HGB0G5TPs4ZBNE5VvHJ5sAIAoPMAbpWpAIHPdG1MS6C+hxhMStv2tYc9hDZXax6PfOzZs3qPh9YnJB3wKKiJBkiS4uUro/ayMf04kbSidvajBpgBlS0hY90dC0mLtThUPYzOau1Jhu/IGR72lfGWkMslhyQYAeM/rPPb7OS7plljP9xzSEFw04brh4y2hS2sT/jmRvG4G+kswmRJ++ndOXs/vRgocOCbQrrEJ3/ysYvEUM67cEPjvUibqre0KlFufZeu4iHJThIjCROUbh21vm3wGH5fp6LDtZbaeA0BsnMD2vRqebZq8yeeQeo6E2ajYo4nyEzVyNZMNWaBcG8MeTZRpTDhkQ5h2FdPUH3Ns+zvls/ihRPssrXvrrkD0w4TGR1S0wJ+HBJ5rLuPCZlec+d0VP02yoHVDGd+8n3IPByBhNov1f2ioUj5p0uPTeSree8UMqw2IiU1Y9jAWsGZisGoRexjqvZ+ydGxEuW2tuh1btD0O3aYNCgYEWnDbtViWt5FSPX+ijITwiIRlVpvA5j3J6zDwqJ4DwLqdGqo+VmbydyreGZRwNzQyGpAkwKoAMZmcMUy9MwNa3NnMrURkkI+VWbiHKIdu8yu34/gtsGWW189OPQeAjX9qaPikDG/P5K87qp4DgHJtJGetoHxBCIUzL2SVFgXl1iSjo6B8JnN95iiJCcpMh97xTMn7XpfQ3KM8ysVkrhfF5RsCb0xUEgaXAvBqTxNCKqaeX3r1Ixte7mpC7WoyXhxrw91IQNOAetUlvP7Coy6Yfx7SUK6EhOL/u7MSWllG7a5WNH9Khl+hzPXGUG58CJNvF0gm70ytR5Sb4oUVo5UpObLt6wjHwDK1sOrMFpizcC1JqZ6XLSHhmYE22BRAVYH2TWQ83yqh7k+YpeDJqhKebWbC2GkK/j0jIElAhVISvnn/0cfBhSsJX3BqVk5Yr9ezMmp3taFyuYS7q5kirFCuvwuXciszfXxEuemMdgFz1ZwZAPE1v9t4IqYKqkSfyvS62annALByi4YurZN//ju0ngMQ8Wehhn8LcxE+5015m3p3AUR89gd6L6jUu9/BVORNyK5ljQ6F8gmO4ZBFp7XzeNL6f9Ac9FxmWuqL8vj9zBaHPQOal5iLfwZzUQ7YQ3nXdOWnHEs4JBoaXx0fha3K0X0YS4JL5cOQ3SobHQhRqv7P+ho2aLtybPvlEYRt54/D1xaRY/swmuRSGi5VTkKSMj8TFlFuEFos4k9VA2zXjQ4lX5P9XoBL6flGh0H5BB+pyKIpyne5kmwAgL3Secwo9Wyu7Cu3qeFzOJYD5VmKUDBdyflHf6a5HsPawBY5vh/jCKh3ZhgdBFGqjmlncjTZAADncQODyzaE5sRNL2G9BC1qtdFhEKVKDZ/HZIMDaBG/QIs7bXQYlE8476deDrqoXcMybUOu7vMTj/9wyrtKru4zNyQ0TtYZHQZRilZom3AVN3NlX6/5heM/rydyZV9GUO/9DKGEGx0GUYpmqAtzZT+b5NP4rMxzubIvoyi3pxsdAlGKhFCh3HHcoLAFmwaV7yVlEBMOWfCDugJKDo/d8DgrbBhcvDhsUvJBHvM7NXym0SEQpWi2knvTvEUjBv1KFMcDZx3TRMQm3FkiymPuikj8ov6ea/v7wu0k1hdtnmv7y20iZh+0h38bHQZRMlrUesB22egwnIYasRhCdewgu+ScmHDIgtzu3ZDoX+kSPi/dwZB95yTtwS5osceNDoMoiWPaGewTR3N1n6dwFUPLOu+jFUr4XAgt3ugwiJL4WV2LeFhzbX8CAkMK38VZr0q5ts/cxl4OlBepd783OgTnosVAjVhqdBSUDzDhkEl/a4dxUVw1bP9fup3CId9ahu0/p6jhc4wOgSiJ+aoxsyqsNJ/A7JLOOWYLlFvQ7vMRKspbFqi/5vo+oxGD3iUCcd/sk+v7zg1a1Bo+QkV5irBdhxa9xegwnI5690ejQ6B8gAmHTMrNbpcpUaHi1WKFECe7GRqHo6lR68AJUygvWafuNGzf73uew99+dQ3bf07S7m80OgQi3SntPE4IY6bH+w/XMaRsEwhkfgrKvE+Fdp9f7ijvUKPWA04425vRROwhCKtxN2Ipf2DCIRMUoWClusnoMHAG1zCxdDujw3As5SZE3DGjoyACkDDt7WUYN4q1AgUvBkq46RpkWAw5Rb2/hclFyjO2aHsM3f/vplOYUrqjoTHkFDXa+PYSUSLt/nqjQ3Ba6n1jb8ZS3seEQybs1v7BHdwzOgwAwCzX49jj/5TRYTgU74ZQXrFJ+9PoEHAT9/BSmVAoMBsdimMpNyFijxgdBREAYKv2l9EhYJL7SWwq0tToMBxOu7+V015TniDUh9CidxodhtPibHOUHiYcMmGvOGJ0CDoBgdeKmBFtKmR0KA6jRW82OgQiAMAmbbfRIQAA/pLOYXxZ5xvPQbvPO59kvHhhxZ/aP0aHAQGBQf6ROOdV0ehQHEsNh4g5YHQURNAebAdEnNFhOC3twR8Q6kOjw6A8jAmHTDig/Wt0CElcwi28X8Z5RrTXHv7NCxYZ7qGIyRNfQhJ943ocq4q1MjoMh2JXa8oL/tIOIwaxRocBALiPh+hTItipbiIAgMrkIuUBnKY1h4l4iNhDRkdBeRgTDplwQMt7YwwssBzHliKNjQ7DMYQV2kPju7JTwfaPOAErbEaHkcSbvrdxxruy0WE4jHi4H0LLG1/0qODaoe01OoQkTuMqXi/XzKkGkdQe7DI6BCKImMNGh+D0tJgjRodAeRgTDhl0QbuSZ8ZveNyb/vGIsPgbHYZDiLhTRodABdwZLczoEJJ5gBj0DQ50orufKkT8BaODoALulDhvdAjJrDGdxFelnzM6DIcR8eeMDoEIGscNynEaezhQGphwyKADIu/1bkh0E/cwqnQjo8NwCH4JIaP9Jy4aHUKKzuIa3izXzOgwHEbE570ve1SwnBeXjQ4hRZ+4n3aenovKTQj1gdFRUAGmxV8A1Aijw3B67EVCaWHCIYPO5sG7nvZWmE/gt8CWRoeRbcKat99ncn5nRd49B1ebTmJmSeeYQk9YmXAg4wghECby5tzxGjQM8o/GBY/yRofiEEwukpFE3BmjQygQRPx/EEI1OgzKo5hwyKDbuGt0COka4ReJW65BRoeRLezhQEY7m0d7OCQa73nGKabE5ZcQMtJV3EQs8u6o9ZF4gD4lS+GBydvoULKNyUUyklCuGx1CAaECym2jg6A8igmHDLot8n7C4S6iMLxUHaPDyBZhu8wMKRnGKmy4JPJ240SFipeKaLjhFuzQ7f6+S0WNzlaEdLRi/q9J62BMrECn160I/T8rnuxixawlj14f/YWCOt2seHeqoi+bMEvBHwe0NPfHhAMZ6bx2xegQ0nVSuoI3yzl+Jqq06joAHDiu4ckuVlTrGI9P5ybUayEE+o6xoXZXK775+VFdH/KhDf9dYl13NlOmTMlU+QEDBmDdunXZ3m9AQECW1tu5cye6du2a8ou2m+g+woagJvF44e1HA0KndJ4DwIUrAg17JSx/82MbhBDJNhkeIdBmUEId6jHShrj4hDLTFymo3dWK/u8+2s+Pq1X89Jsx7doJs2woVDceherG4+X3kw+G/eNvCnzqxcO7bjzaDrICADRNQ8V28fCtF4+eI6162eqd4rHlr7SPQ9huOvYAyGkw4ZBBt0XeHDDycb+bTuHn4m0ctr2ULtL2HN0wgbBBWPN+Q5Cc0308gIq8n/C6hQi8WDoENsnikO0pisCYL1VsmGfB3qUWTP1Jxd3IpI2st1804+gqF+xaaMHcZSrOXxaIjBY4fErDweUuOHhcQ1S0wPXbAv9dEmhaN+2PF0c9PmXfML548SLq1ElIuq5ZswZTp051yD7I+VzHLaNDyJBVphP4upTjHqPKSF0f9pmCHz8z499VLti4R8Px/zQcOyvgYgEOLrdg4ZqEz/EjpzV4ekioWDp36jrlnswmHPIyYbuBN3qZ8N1Ec5LlKZ3nADB2moKxQ0w4scYV4ZHAht3J261fzFfRuaUJx9e4oGywhPmrEsosXqvh4HILzCbg2FkNMbECq7Zq6PNc7n/diovT8MV8DTt+tODsBguWbdRw7rE2+IhJKuZ/YsbdPRYcPCGwepuKX7cKmE3Avb0WbNqTcG34ZYMKdzcJzzxtSnOfwnYjx46H8jcmHDIor85QkZJ3Ct3EZfdSDtlWShdpe45umAAAtOhsx80vIZQVeW06zLTslc7j/bLPOmRbB44LVCkvIbioBC8PCa0bytj696OGiYe7hMZ1Euqul4eEJ0pLuBEuYJIBWQY0TUD+3++fzVMwdnDajRIAENpDh8SeWsO4Y8eOGD58eIa3o6p5P9FEjmMV+aeuT/A4je0BDR2yrfTq+vXbAqoKVH9ChskkoVsbGRt2abCYAQFAUQAXl4Syk75V8e6gDNR1DhppqIsXLyI0NBT9+/dHlSpV0KNHD/2u/ebNm1GzZk2EhIRgxIgREEJg7NixiIyMRM2aNTFkyJBk21u/fj1q1aqF0NBQ9OrVS1++ZcsW1K9fHxUrVsQff/wBIOG6OnLkSNStWxehoaFYvHgxAEBRFAwdOhTVq1dHjRo1sGzZsiT7uHbtGurVq4f9+/fj/PnzaNOmDerUqYMWLVrg4sWLAID9+/cjJCQENWvWxPLly1M9fqHcRpM6Mrw9H003m9p5LoTA3qMa2jVO+Lx7oYOM33clTzis/0NDrw72ZRI+P1xdE+qIAGA2AdMXqXijtwmynPtT3S5cq8HfF6hdVUaxABlVykv4xq534uFTGjQBPP+MCS4uMlrUl/D9ChXu/6vfcfGA6X9N9nenKlg0OfXvAomEkj8SuZT7mHDIoHCRf0a4vY+HeLNkiEPm8n78Im0vJxomAABhTb9MOvglhLIi3gHnXm6a43IMK4KeyfZ2btwRKF700f+LFwWu30nejRQArtwUOPafhlpVJHh7SmhZX0b9nja0rC/j8g0BkwmoXC4jicXU3+vJkycjJCQE1atXx+LFi5N1l+3atSt27tyZZsN4wYIFePvttwEAd+7cwfPPP486deqgQYMGOHw4YTTtAQMG4NVXX0W9evUwadKk9GMmp6Hkg55MiTRoGBgQg4seZbO9rfTqesLrkt3rEq7dEahSXkYhL6BRHxsGdTVh058qaleTEOCXgXZGPkruOKtTp05hzJgxOHnyJG7duoU///wTsbGxGDRoEFavXo1///0XZ86cwapVq/DJJ5/A19cXR44cwZw5c5Js5/bt23jzzTexbt06HD16FDNnztRfu3fvHvbu3Yu5c+diwoQJAIDvv/8eQUFBOHDgAPbu3YspU6bg7t27mDdvHu7du4ejR4/i33//xTPPPPocu3LlCjp16oRvvvkG9erVw2uvvYa5c+fi4MGDGDduHEaNGgUAGDhwIBYsWIAjR44gPDw89YPXko/Vktp5fjcSKOwjQZIkffn1FIYluP9AwMf7f2WKPCozqKsJjfrYUMgL8PeT8O9ZgVYNjPmqde6ygL/vo/8XLwJcuv6orp88p8Hb89HrZYITbiR0aGaCpzsQ3NyGbm1kfDrXhmoVJDxRJiOf6/GOOwByKumnqwgA8kU3a3t/yGcxtXRHdL10Gr5RGryj1IQsQBaImw+BmAiISyWSLL9+LhZB3uEQl0oCAIpL97H7QgwqtyqGQuImGnaPwRvPFcPGX82oHRwH//sBEPczsL+SCuCRfPnkyZOxcOFCSJKEd955B8HBwZg5cyZWrFgBIOFLyBtvvIEtW7boX0Lq16+Pd955R9/GggULcPz4cXzxxRe4c+cOBg8ejMuXL8NisWDWrFmoVasWBgwYAHd3d/zzzz/o1KkTxo4dm7U3jvIdWz7q4ZDoLZ8bCLA1RLHYezCpgKwKmDTApAqYVCQs08SjfxVA0v5XRhGQNQERfh+IjoG4VCxhoxF3AQkQl/yT7CvepqHvuMv4tE8wPG4XggAwqlXCDwD0/fwqvhhUDB9PjsCJS/Ho0bQQOtUvlHLgJjegRvLFBw4cwLJly3Dw4EHExMSgbt26mDhxYoqb+OSTTzB37lwcOXIEAPQ7X48bNmwY3n33XdStWxf//fcf+vTpg3379gEA7t69i3379ukNTCoY8ttnegSi0bdkWcy64QlZpPNoYhquuEfgnuUBTngnfG7fcr0FSQJOeAcCAC54xiDafAMnvBNmyLjq9qj8oE+AQUjo0TT8lQuYNL0MBnxxA7dvWdH7xaKoWccrxX36uPqiQpYjJkeoVKkSqlatCgCoVasWLl68CG9vb1SqVAllypQBAPTu3Ru7d+/G888/n+p29u7dixYtWiA4OGEMocKFC+uvde7cGQBQu3Zt/Vq8efNmHD9+HIsWLQIAREVF4cKFC9i6dStGjBgBWU74Euvn5wcAiIuLQ9u2bbFgwQLUrVsXDx48wO7du/VtCyHg6emJyMhIxMfH671Xe/fujZ9++imVqHOvrvftaELfjgk314ZPsuG9V0yYt0zFjv0aWjwlY1C3DN54M9jB5a4AAEXRUK61DQdXWFCvuxXhkQKjB5owpEdqXx+VVJZTQceEQwZZ8uFbNcH9BCZUTvjdpJkQdN8NwVFuCI5yRbFIM4pEmeAfJcM/EvCJVFEoUoFXlA0ekVa4RsbAJTIG5shoqOEREHFxUDqfSrJ9Ff/ryfC/5SoADYDyewQ+/18ZbcYNdAfwI4DhC+/gBoDXATRII26XPSrwdNJl/BJCuSEe+auHAwDEIA6dA7I62r4EQILm4QL11H0sbmWGiyohboMG11qe+LaBByyqDIsqw6wIXH7jPDzbBWDOS6XxvSbBLKSE11QJ9/6+h4iQAAx1D8Cp6Ido8mlNjBj6D/a0CoFZA8yqDLMqYNIkmFUJbjYXvJNCRHv27EGXLl3g5uYGNzc3tGzZEp6enimUzLitW7fixIkT+v8jIh71WOvatSvreQGk5MOG8THpMhoXz942tGoS1M3xWBOccK1THsRBquOOOf/7v5AEbPesaJj4elwcUFHWywOAuiAC6OuNFpeioJUBTFOLY2ePy3DpVCbFfT4rm7Eie2FTNrm6uuq/m0ymHOm9mbgP++1rmoa5c+eiadOmGdqGi4sLQkJCsGPHDtStWxeapiEwMFBvzyWKjIzM1nU7qIiE67cf3YW7flugeBEJ/r7AvSgBIQQkKaFMUJHk6xfykhAVndDL4fqd5GXOXtRgU4CyJSS897WCNd+4oOPrVvR6Voane+583lQoJWHZxkf/v34HqB/6aN9VK8iIfvjoPLh4TaBYQNLYXp2gomMLGQtWJTye8ftcC0L/z5ZGwoGfpZSy/Pct2iAucMzgbEZRZYGrvrG46hubibUsAApD2+UKMSsC9WdWQvB9VxSPdEVgpBkuF2049dkBbH+9MXwiVRzddQGeD6yICA6Ea2QMLJExWHz9NrrExmGvzYYAAB8B6AVgdVq7tftgTMQvIZQbVGT9zmF+JtV1hzgZD+vNeFh9ZNi234fyvj9iCj1KZCjjbkEUVhHzWSHcQdJHzIQQUMZehnlhSZz57xbUQg9x6anrsGkx+Lbh1RT3WRg+KSYcUnLkyBFo2qO/TXx85rttHjx4EGZz8o88D48UulOR0yvodV1cswE+MrTND2B599G3Jam4BTAB2rE4SFVdoS2PgnnWoyyHiNGgrb0P84pS0NZGA1aRcOchKvX3M7+3n5xVpUqVcPbsWVy6dAklS5bEkiVL8NJLLwF4lDQwmZLeka9fvz6GDRuGa9euITg4GPfu3UvSy+FxrVu3xqxZs9CoUSOYTCYcP34cVapUQatWrTBv3jw8/fTTkGUZERER8PPzgyzLWLhwITp27IjChQvj5ZdfRmBgINauXYvnnnsOqqri1KlTCAkJgaurKw4dOoQnn3wSS5YsSeNIk1/3ixeVYJITBnasWl7C8k0aZr1vhiRJqFdDxobdGto3MWHp7xp6P5v8UYJ2jWX8vF7Dqz1NWLI+oay9T+ep+HSYGVYbEPO/ZvfDWMBqAzzd0wjVgfo+J2PkFBX/nNQQXBQ4dV5gsd04DLWqyJAl4NctKp5tKmH7XpFkzLbwCA2b92gI22LB+JkqrDZAE0B8WvdlJH6tpJTxzMggL8kTEGk8I+bkNEngfMBDnA9IOtCb9XsrurU8DamqK2zNr8D8Q3HMDkkYIErEuEDpK2BeURFuv8bAfa8NB3uXw7GB/2LypKdRJFKGfxTgGyngE6XBO8IGzygrihcphIykEvglhBzNB/l/zvuskMwSTJMCYWt7EUIDzCP8IfmbYet8KeHLhgaoX4ZDquIK61MJU9yZPw6E/ExCF2ptSRTkjoUgechADTcgTsBW+zzkvr6p7tMNyROLANCoUSMMGTIEI0eORExMDLZv345t27ahTZs2UBQFd+/exV9//YWRI0cCSL1hbK958+aYPXs23nzzTQDA0aNHERoampW3ipyEeyrnn7NLr65LxS0wfxUEpf9ViDgNpl6+kEPc9PXVaeEwvekPSZIgP+MF2+x70BpdgOndFG4D/w8TDnmTu7s75s2bh06dOkFRFLRu3Vp/dKF///6oXr06mjRpkmQch6JFi2L69Ono0KEDhBCoXr26/rhESgYNGoSwsDDUqlULmqYhKCgIGzZswCuvvILTp0+jevXqMJvNGDduHLp16wYgoZfDypUr0aZNG/j5+eHnn3/GkCFDMG7cONhsNgwePBghISH49ttv0a9fP1gsFjRs2BA3b6YyJaOpENoPtuLYWYGHcUD5NvFYPMWCr94xo/+7CuKsAr06mBBSMSGx8MlbJvR7V8HbnytoXk/WB5CcMEvBk1UlPNvMhFEvmdBrlA0zf1ZQtbyM8a89+vz585CGciUkfYyI0Moyane1ovlTMvwK5d6NLDc3GcP7y2je3wYBoGtrGRVKyyjZIh5rvrGgVhUZn48y4cWxCjQNaFBTQueWj46j7xgFw/ubIMsyhvcDvltpQ8W2NgzskvpYDpJcMNtQlD5JpDTBLCXTML4H/hEn0i/oZKztL0IciwMeaoCfCZbFJaFOuqM3TLR9MVBeva43TMzjHo1GpXx2G3IDD8jNvCBiNdievwzcVGB6twhM3X1S3ec11z/hL/kmWXbw4EEMGTIEe/bs0R+pSPwScvz4cdy9exdVq1bFypUr0axZMwQGBuL69eswmUy4ePEiunbtioMHDyYZw6Fnz55o2LBhsi8hAwYMQNeuXfHss46ZAYDyjwciBgHx9YwOo0CoKlXAIdfVKb72+HgtvXv3xogRI7Bu3TpUqlQJsbGxGDduHJo1a4bRo0dj3bp1aNKkCd55550U6/qdO3cwZMgQnDt3DlarFR07dsTkyZNZ1wuw39St6GEbZnQYBcII04v41DLS6DCogLJdGwX1zgyjwygQLOV/h8m7hdFhUB7EHg4ZVFjyzfKgi/mZy+9lki2TV5d+9PtTHnA5lPJwUOZ3HyUfJHcZLhuSbyvZOjCjMJInI+rUqYNu3bqhdu3akCQJH330EUqXLo327dujatWqqFSpEmrVqqWXt8/O2w8aaW/GjBkYMmQIvvvuO/1LCO96Fmxekgc84I4YZObRI8qKclLJVF8bM2YMxowZk2TZV199ha+++ipZ2SlTpiSZlebgwYMAEmagSFSkSBGsXLky2boLFizIZNTkLIpJqd+RJ8cqLQUbHQIVYJIlyOgQCgzJks1BZshpsYdDBo20fYZv1MVGh+H0iqMoLrhtNzoMKsBC45/DGRFmdBhO7y1TP0yxjDY6DCqgrolbKB/f0ugwCoTfLLPRxtTY6DCogFLv/Qzb5ZeMDqNAcA25Ccnsa3QYlAcZMzlsPlRF4qROuaGaXNHoEKiAKyUxQ58b0urhQJTTiqNoquOIkGOV5jWVDCS5lEi/EGWf7MVkA6WKCYcMqiqXNzqEAiFUqmx0CFTAPSGVMTqEAqG8VMroEKgAkyQJZdjVP1fwkQoykuRW3egQCgTJne8zpY4Jhwyqyh4OuaKmXMXoEKiAe0rmOB65gT0cyGi1pRCjQ3B6JVAM7pJb+gWJcohk9oPkUtboMJye7P6k0SFQHsaEQwb5SoUQjECjw3B6NSUmHMhYT8v80MxpRVCYCQcyXGO5jtEhOD2+x5QXSB78XM9psket9AtRgcWEQybUlqsZHYJTKwQvdrMmw5WQiqEkOKp1TmomPwVJyr35yIlSwi/DOa+Z/JTRIRBBdueX4ZwmsYcDpYEJh0xoJzc1OgSnVk+uwS8hlCc0kNk4yUkt5QZGh0CE8nIpFEfR9AtSljUzMeFAxpO9mxkdgnMzF4Pkxh7KlDomHDKhvakpJPALcU7pLD9jdAhEAICGfKwiR7U0MeFAeQPres4pK5XgDBWUJ0jutQEzey7mFFOhdrxhSGliwiETAqUA1JU4CmtOMMGETibOiU55QwdTM8i8POaIJ6SyKCmx4Ud5Q0v5aaNDcFp8nILyCkmSYPJpZ3QYTkv26WB0CJTHsUWdSR1MzYwOwSk1kmujiFTY6DCIACSM49BUrmd0GE6pndzE6BCIdF1MbeABd6PDcErPy62NDoFIJxd61ugQnJPkDtmbNwwpbUw4ZNJzcgujQ3BKbJhQXtPH1NHoEJzSi6bnjQ6BSOcteaKz3MroMJxOGakEWrH3COUhsndLwORndBhORy7UDpLMpC2ljQmHTKoqV0ADiQPKOVLC4xRs8FHe0lluBS94GB2GU2ki10VlubzRYRAl0d/0f0aH4HReND3PZ7opT5FkV5j8XjA6DKdj8n/R6BAoH2DCIQuGmvsZHYJT6Sq3RTEpwOgwiJLwlDw4kKmDvWLqYXQIRMk0keuinFTS6DCchhlm9GdPJsqDTAGDjA7BqUgu5SB784YhpY8JhyzoKLdEWamE0WE4BQkSRpkHGh0GUYpeMfMLsqMUQwA6yXzOk/IeSZLYy8GB2stNeBOB8iTZrQpkLz4a7SimIq+xJxNlCBMOWSBLMt409c3SuuKiFdY2YbDWOgdrnXMQD7WE5ZqAtfEF2F64kuJ6tkHXEF/lLKxPnYf1qfMQF6wAAGV6OKy1z8HW/6peVv0xAupPEVmKL7e1k5sgRH7C6DCIUlRPrsFBDh2kv+l5WCSL0WEQpWiI6QUUho/RYTiF10x9jA6BKFWmwBFGh+AcTP4wFe5vdBSUTzDhkEX9Tf8HXxTK9Hq2Qddgfr8oXA5XgGVzGcA1ITOoLYiAVDrtxrj5yyC47CsPl33lIZVzSVhvcRQsB8sDZkA7FgcRo0FbdR9yH99Mx2aE0WZ2b6O87SPzW5CQ9Qx+lpOM/a7AWu9cQkLxresQmgAAKKNvwlrnHJR3b+pllQm3of3xMMsx5jQfeOMtPopGeZiP5I1R5peztQ3WdaC5XB/NTJzhh/Iuk3cryF5NjQ4j3zMHjoZk8jY6DMonmHDIIk/JAyPNL2VqHe1kHGCRIDfyBABIhc2QzBLEPQXq8vswDczC6LmuEqAAEADMgDr9Lkxv+EOS834Xp8ZSHdSXaxodBlGaasiV0SUbs6hkNclonlkcLvsrJCQUw1Voa6MhIlVoh2PhcrACtIOxEFEqxHUbxH/xkJt6ZjnGnDbC/CL8JV+jwyBK06umXiiBYllen3UdmGAeanQIROkyB31sdAj5m6UkTAFDjI6C8hEmHLLhLVO/TA00Jc5ZIXnKsHW5BGuD81Cm3AEAKB/ehvndIoAp7SSB+u5NWOudg/L+LQg14Q6IaZAfbI0uAIVMkPzNEP/GQW7llfWDyiUyZHxmGWl0GEQZ8oH5DZhgyvR62UkySoX+tz8VgFUAEgATADnhjinkhN+Vz+7ANLZopmPLLSVQLMuPoBHlJjfJFWPNr2ZpXdZ1oJvcDnXl6kaHQZQu2bMuZB+O25JV5mLvQ5JdjQ6D8hEmHLLBVXLBFPPojK+gCGh/xcD8dXFYdpaFtu0BlK/CgQgVcpO071iYJxSF5UgFWHaVgwizQvv2HgDA1NcPLvvKw/J1UEJj5L0iUOfdg+2FK1D/VyYvGmjqijpsmFA+8YRcFi+ZumR6vewmGW0vXIG19BnAU4b8rDckbxPkll6w1T8PuaUXxGUbYALkynn3g/9zyxh4SJyjm/KHfqbOqCyVy/R6Bb2ue8CdNxEoXzEX/xjgZ1OmSe5PwlSY47RQ5jDhkE3Pmpqjs5yxKWGk4hZIT7pBKmmB5CpDbuMNxGvQ9sQgvtJZ2PpdhbY5GrbXrydfN8gCSZIgucmQe/tC+ycuyeva2XjAJiCVdYG6LhqWJSWhro3WnyHNS4JQhN0uKd/5xDwi892ts5FkBADLkpJwCXsCEAJiR8Jz2+bRReCyvwLMo4tA/ewOzO8WhfLJ7YQk42/3s3JoOaaV/DT+z8SpRSn/MEkmzLZ8BDmzzaMCXtfHml9FCSnrj6MQ5TbZtTzMQR8ZHUb+IrnAUupbSBK/PlLm8IxxgKmWsRkaQFKq4w7cUSEiVAhNQOx5CCnUHa4XKsH1zBOw/FQCcmtvWL4pnmxdccOW8K8moK2PhlQl6V0O9dM7ML9XJKE7Zsz/kgwPtYT/5zEzLePhJ3E0cMpfCklemGX5MFPrZCfJqG/DRYbcsRDUtdFJlms7HkCq5gpxX4W4YoN5cQmoM+9m5dByRAD8MNcy0egwiDKtgVwLw0yZG329INf1FnJ9jDC9aHQYRJlmKvIGJM+njQ4j3zAXGwvZvZrRYVA+xISDAwRJRTDXMiHdkewlswTTR0VheyYMtrrnIZV3hal96iO82l69Bu2f2ITfX7wGa91zsNU9D6gCptcL6+W0Px9CKueS0ODxM0EOdYO19jnItdwg+WX+ufOc1FvuiA6mZkaHQZQlrU2N8KqpV4bLZzXJKGwC4lLC1LdCFdA2REOu5PLodSGgzrwL09CAhARj4nPfkapDjjO7JEj4wfIZgqVAo0MhypLx5jcRKlXOcPmCWteLojB+sEyCJOX9gaqJHidJMiyl5vHRigyQ3GvDVPRto8OgfEoSQuS9W+D51HjbdExW5xkdRp5VU6qC7S4/8XluytfihRWNrD1xTJzNUHl1UzTUsbcAAcgtvWCe8qjbsbbrIdTZ92BZkjD4rO3VazC9XBhSFVfY2l1M6KUkAKmxJ8xfFINkTmjUqz9HAjYBU38/CCGg9L4KcToecl9fmIcHOPqQM+1t00B8bBludBhE2fKfdhENrN3xADEZKl/Q6roECb9ZZqO1qZGhcRBll3pvMWyXBxodRt5lKgyXJ3ZDdi1vdCSUTzHh4ECa0PC87XVs1HYbHUqeE4Qi2O26hM94klM4r11GM2sf3EHeHZjVKA2kWtjiMh9myWx0KETZtlzdgH620RBgU+lxw0z9MckyyugwiBzCdv09qLe/MjqMPMgMS/m1MHk3NzoQysf4SIUDyZKMHy1TUEEqbXQoeYo73LDcZTqTDeQ0ysulsNplFjzB3jr2SqAYFrp8zmQDOY1upnaZm42qgHhWbo6PzezFRM7DHPQx5EJtjQ4jzzEHf85kA2UbEw4O5iN5Y7llOvzha3QoecY8y0ROgUlOp7YcgqWWr2EBv1wDCb2YNrp8z8QiOZ03zX0x2jTI6DDyjOZyfSy2fMnEIjkVSZJhKf0TJDe2VxOZAobAXORVo8MgJ8CEQw6oIpfHZpf5KIrC6Rd2YhIkfGEeg26mdkaHQpQjnjE1xFzLxHQHjHV2RVAYG1y+QwWZvbvIOU2wDMVAUzejwzBcfSkUKyzT4Sq5pF+YKJ+RTIXgUuF3SK4ZHzDWWZkK94M5eKrRYZCT4BgOOeiMdgHtrC/jOm4bHUquM8GEOZYJ6GvqZHQoRDlutvIzRiqToEEzOpRcVxg+2OTyA6rLlYwOhShHaUJDX9sorNQ2GR2KIUKlytjk8gN8pfSnASfKz4TtJqzn20PEnTQ6FEOYCveDueQcSBLvS5Nj8EzKQZXkctjisgAlULC6GLvCBUstU5lsoALjVXMvLLVMhUcBG9OhKApjrctcJhuoQJAlGQstn+MtUz+jQ8l1DaXaWO/yLZMNVCBIlmJwqbAZkvuTRoeS60wBr8Jcci6TDeRQ7OGQCy5q1/C87XWcFOeMDiXHecMTyy0z0MxUz+hQiHLdQe0YuljfwC3cNTqUHFdbqoZfXKZxzAYqkL5VlmG48ikUKEaHkuNeMnXFNPNYWCSL0aEQ5SqhxcJ2+RVokcuNDiUXmGEu8SXMAYONDoScEBMOuSRGxGKo8gkWqquNDiXHVJHK4yfLFN7tpALtonYN/2d7DafEeaNDyTG95Y74xjIebpKr0aEQGWa7uhe9bCMQiftGh5IjzDDjc/NovGruZXQoRIZSbk6CcvMjwFmnxzX5w1JmMUzezYyOhJwUEw65bKH6G4baPkYMYo0OxaFeMfXAZPMouEtuRodCZLgoEY23lclOl2A0w4xJ5pF4w9zX6FCI8oSzWhj62UbjiDhldCgO5Q9fLLJ8ieamp4wOhShPUKPWw3ZlCKDcMToUh5I86sJS+kfIruWMDoWcGBMOBjilnUcv2winuAMaAD/MsUzAsybO0Uv0uE3qbrxm+xDXcMvoULKtilQecywT8JQcanQoRHmKIhR8pc7Hp8ocxCHe6HCyrbPcCtMs4xAoBRgdClGeIpQ7sF0dBi1ypdGhZJ/kCnOx92EqOhySZDI6GnJyTDgYJF5Y8ZU6H1OUbxGLOKPDyZLn5BaYbnkfQVIRo0MhyrOiRDRGK1Pwo7rK6FCyxA2ueNs8EKNNg+DCZ7iJUnVWC8MQ23j8JQ4ZHUqWBCMQUyyj0cXUxuhQiPI0NXIlbFeH5dveDpJHXVhKzYPsVsXoUKiAYMIhF+zcuRMzZ87EihUrkr12SVzHONtXWKFtgsgnz4bVkCphinkMB4YkyoSt6l8Yp0zNV12vO8otMNk8GmXlEkaHQpQvCCHwrfoLJiqzcAf3jA4nQyww4w1TH4w1vwYvycPocIjyBaFGQbn1BdTwbwAtxuhwMkRyKQ1zsQ8g+73AWSgoV/FsM1hpqTgWunyBP12WoLlc3+hw0vSEVBY/WaZgr8tyJhuI0rBz50507do1ybJWpqfxt8syLLZ8iSpSeYMiS58MGc/JLbDN5Scsc5nOZANRGh6v65Ik4RVzT5x23YiJ5mHwh69xwaXDG54YauqPU64b8ZnlbSYbiDJBMvnAUnwiXKucgMl/EACz0SGlzlwE5uAv4VL5GEyFezPZQLmOZ1wOmDx5MkJCQlC9enUsXrw4yWs7duxAgwYNcOdO0m5YteUQbHD5Dv+4rMJgU094wzM3Q06VBAkt5QZYZPkCh11Wo7upPWReqIiyRJIkdDG1wSGX1VhhmYH6Uk2jQ9K5ww2DTN1x1GUNlrtMR0O54M0/TuQonpIHRplfxn+uWzDV/B7KSHkncVcUhfGR+S3857oFky2jOLUtUTZIliBYSs6Aa9UTMBUZDph8jQ5JJ7k+AXOJaXCtchrmIq9Dkl2MDokKKH5zdLADBw5g2bJlOHjwIP744w988MEHuH79OgBg27ZteO+997B27VoUKZLyuAfV5IqYZhmHMNcdmGF+H9WlJ3IzfF0pFMdY06s47boJ612+RVdTW5g4qAxRijKbZJQkCc+ammOn6yL867IWY02voqJUJpejTlBLqqp/+Zhh+QAVZWPiIMoPMlvXPSR3vGruhRMu67HOMg8vmboiAH65HTZc4YL2clN8a/kEZ123YIz5FfhKhXI9DiJnJbmUhiX4M7hWuwBLqW8heTaCIV+zZC/Ivt1hKb8RLpWPwhwwGJIpb9zEpIKLYzg42Ndff42YmBi89957AIBXXnkFHTp0wNtvvw1PT09s27YN/v7+mdrmWS0MW7W/sE37G7u0A4jGQ4fHbYYZtaQqaCzXQSu5IZrJ9diTgSgDDhw4gCFDhmDPnj2IiYlB3bp1MXHiRPz666949dVXMW7cOKxduxYBAemP+H5EO4Vl6u9Yr+3EWXExR8Z1cYEFTeS6eE5ugQ6mZry7SZRBjqrrilCwU9uPldomrFN35NhYD97wRFu5MTqaWqKt3ATeEr90EOUmoYRDu78BatR6aNFbAe1BzuzIUgImnw6QC3WA7NUUkuyaM/shyqI8/MCRcwkODkZUVBROnDiBJk2aZGrdJ+SyeEIui9fQGzZhwz7xL/7Q9uOMFoYL4jLOi8uIwP0Mb88VLighFUNJKQh1pBA0leuhgVyLz28SZcGePXvQpUsXuLm5wc3NDS1btoSnpyeOHj2KkSNHZirJWFOugppyFXyKkYgS0TioHcdBcQz/aMfxj3Yi09NresAdVaXyqCpXQDWpIqpJFVFProFCkldWDpWoQHNUXTdLZrQyPY1Wpqcx2/IRLmrXcFicxCHtBA6LkzisncRdRGYqNh94o7pUCTXkJ1BDqowaciWESE9wZhkiA0nmAJgK94WpcF8IzQoRdwxazCGI2MPQYg5DxJ0GRGzmNmoqDNm9OiT3JyF71ILk8SRk1wo5cwBEDsKEg4M1atQIQ4YMwciRIxETE4Pt27ejefPmCAgIwMKFC9G+fXv89NNPqFWrVpa2b5EsaCTVRiO5dpLl90QULojLuCZuIRbxiBPxUKBChgQZMnwlb5SUglBCKoai8IckSY44XCJKRXaSjADgI3mjpakBWqKBvswmbAhHJMLFPdwREQjHPdwTUTBBhgUWuEmu8IU3fKVCKAp/lJGC2VOJKIdlt66XkYNRBsH4P9Mz+rIIEYV7IgoRiEKEuI97iEKkuA8JgBvc4C65wheFECD5oajkj2Ap0IFHRESOJskukDxqQ/ZI2n4XSiSEchPCdgNQbkFocYCwAZIMwAzJ5A3JXAywFINkCYIkuxtzAETZwISDg9WpUwfdunVD7dq1IUkSPvroIwQFBQEASpYsiRUrVqBLly749ddf8cQTjhufobDkg8JSddRBdYdtk4jSl9NJRnsWyYIgFEGQlPIYMESUc3KzrvtJPvCTfBwQNRHlZZLZF5LZF3CrbHQoRDmGYzgQEWXT5MmTsXDhQkiShHfeeQfBwcGYOXMmVqxYgTNnzuRIkpGIch/rOhERUeYw4UBEREREREREDseHe4mIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHy5cJhwEDBkCSJEiShJ07dxodTqoWLFigx/nhhx/m2n4//PBDfb8LFixIt7zR72dm43XWGPIyo88RSp9R15u8Li+8L3khBso5vD6Ss8jL53JiXGXKlMmxfeTl439cfoqVyGx0ACm5ePGi/qWvZs2a6Ny5c4bWW716NY4cOQIgoSLm5EWJyJmwzqUsq+9LfrRz50690dK5c2fUrFkz1/bt7OcRERFRZjhj+yMx4e7r64thw4YZGgvlrjybcPjoo48AAP37909WycaOHYuXX34ZAFC9enV9+erVq/Hjjz8CAJo1a8ZGK1EGsc6lLL33JS9p3749du/eDQAoVapUptffuXOnfqxlypTJ9YSDM59H5NxSuz4S5Td5+VxO/Hxzc3PLsX3kpePParssL0s8ntKlSzPhUMDkyYRDeipWrIiKFSsaHQZRgcE65xgPHz6Ep6dnjmy7aNGiKFq0aI5sm4hSx+sjOYu8fC43atQox/eRl4//cfkpVqI8N4ZDs2bN0Lx5c/3/P/74o/6M0oABAwAkf27p4sWLkCRJv0MGAM2bN0/2bNOkSZPQrFkzlChRAu7u7vDw8EDVqlUxbtw4xMTEJImjTJky+vo3b95E37594efnB29vb/To0QP37t3L9LEtW7YM1atXh5ubG6pWrYqff/45yeupPY+V1vO/y5YtQ7Vq1eDm5oaQkBAsW7YszRhmzpyJ8uXLw93dHfXq1cP27duTlYmOjoanp6f+rJwQQn9NVVUUKVIEkiTB398fNpstzf2pqopZs2ahQYMG8PHxgbu7OypWrIjBgwenus6sWbNQsWJFuLq6IjQ0NMUYw8LCMGjQIJQuXRqurq4oWrQoevTogVOnTjkkBgCw2Wxo166d/t6/8sorSd4LZ+FMdU7TNHzyyScICQmBu7s73NzcUKpUKXTo0AHff/99krKxsbH49NNP8eSTT8LLywuenp6oVq0aPvjggwy/L6mxP5bLly+jS5cu8PHxQUhIiF7mzp07GDFihH6u+/n5oUOHDti7d2+y7c2dOxd16tSBl5cXXF1dERwcjFatWmHKlCl6mdSuExcvXkSvXr1QvHhxWCwW+Pr6omrVqnjxxRfx77//Akh4NjbxzgMAvPjii8nGNPn+++/Rpk0blCpVCp6ennBzc0PFihXx5ptvIjw8PEm8zZo109f/999/8eabb6Jo0aJwd3dHu3btcOnSJT22jJxHaVmyZAmaN28OPz8/uLq6okyZMujbty+ioqJSLL98+XLUqFEDrq6ueOKJJ1K8Zmbmb5OVGBK9/PLL+rF26NABVqs13eOlvCe1z+6dO3eiVatWKFy4MCwWC4oUKYJ69eph6NCh6Z4bAHDp0iV07twZXl5eKFq0KIYOHYqTJ0/q+2rWrJle9vjx4+jduzeqVq2q769o0aLo0KEDdu3alWS7j18rFi1apLcjUmqbUMGRE+fy4+fbN998gzJlysDT0xPt27fHlStXEBcXh6FDhyIgICDVz/yUxnDI6Gd+bGwsRo0apV/TPT09UbZsWTz//PNYtWpVusdvv+///vsPHTt2hJeXFwoXLowhQ4YgLi4uSax3795F//794ePjA19fX/Tr1w/h4eEZHociK+2ylGL9999/0aRJE3h4eKBy5cpYsWIFAGDFihWoVq1amu1sR7ZREsdJS3Tp0qVk78W1a9fw0ksvITQ0FAEBAbBYLChcuDBatGiB1atXJ9nfzp07k7wfy5cvR5UqVeDh4YHGjRvj2LFj0DQNEyZMQHBwMDw8PJK0PRLZt9Vu3bqF3r17w9fXFz4+Pujduzdu376d5t+JMkHkMU2bNhUAUvzp37+/EEKI/v3768t27NghwsLCUl0nsYwQQlSqVCnVMs2bN08SR+nSpfXXypUrl6x879690z2W+fPn6+WrV6+e4n5//vlnvfzjx5XSdsaPH68vX7ZsmZAkKdk2a9Soof8+f/58vfznn3+erKzFYhFVqlRJtl/7WHbv3q1vY9euXfryV155Jc3jt1qtok2bNqm+54nGjx+vL7OPJfHH29tb3Lt3Ty//zz//CF9f3xS36eXlJfbt25etGObPny80TRO9e/fWl/Xt21eoqpru3zw/cqY6N2HChFT317BhQ71cVFSUqFmzZorlSpcuneH3JTWpHUviti9duiRKlCiR4rYtFov47bff9G399NNPqcYRHBysl0vpOmGz2cQTTzyR6vrffvutEEKk+bdMvIakVY+qVKkiYmNjUzynUvpbJv4tMnoepeall15Kdd2wsLBk70vlypWTlZNlWZw+fVrfZmb+NlmJIfFv8+677+rLWrZsmeT9o/wlpc/u06dPC3d391TPjf/++y/NbUZERCS5jiT+hIaG6r83bdpUL79kyZJU9yXLsti+fbte1v58TO0abd82oYIjJ85l+/OtfPnyydavUaOG6Ny5c7Llj3/mP/45KkTGP/PTuk7b7ye1dnjiskKFCgl/f/9k2xg7dqxe1mq1ijp16qRZd+2PISVZaZc9Hquvr2+yWCVJEuPGjUu2zcfb2Y5uo9i3sR//SXwv/v7771TLABA//vijvs8dO3boy8uWLZvsu1CxYsXEoEGD0jwnhEjaVkvpWlijRg0RFxeX5t+KMibP9XCYMWMGpk+frv+/Xbt22L17N3bv3o2xY8emuE5QUBB2796Ndu3a6cumT5+ur1erVi0AwJAhQ7Bw4UL8/vvv2LlzJ9asWYP27dsDAHbs2IG//vorxe3HxsZi0aJFmDVrFlxcXAAAS5cuzdAdikTHjh3D0KFDsX79evTp00dfPmLEiHR7CaREVVUMHz5cv+Pes2dPrF+/HsOHD9fvWtqLiIjQ79wCwJtvvon169en2itg4MCB+u+LFy/Wf1+zZo3++wsvvJBmjNOnT8emTZsAAB4eHpg4cSI2btyIb7/9FnXr1k1xnVOnTmHMmDFYs2YNQkNDAST0uEi84yKEQP/+/REZGQkAGDlyJDZv3ozJkyfDZDLhwYMHePHFF/X3JSsxAAl/l8Tj7tatG+bPnw9ZznPVxSGcqc799ttvABIGJFq0aBG2bt2Kn376CUOGDEFQUJBebuzYsfoghYULF8bUqVOxceNGzJgxA5UrV87y+5KSW7du4auvvsLmzZvx3nvvAQBee+01XL16FQDQr18/bNy4EbNnz4aXlxdsNhteeuklPHz4MMkxmc1mzJkzB9u2bcPixYsxcuRIlC1bNs19nz59GmfPngUAtGrVChs3bsS6deswY8YMtGvXDq6urgASno198cUX9fXee+89/VgT/149evTADz/8gPXr12Pnzp1Yv349+vXrByCh3v76668pxnDnzh3MmTMHixYtgq+vLwBgz549OHHiRIbPo5SsXLkSP/zwAwDAZDLh7bffxu+//46ffvoJzzzzTJK7Kfbvx8CBA7Fu3Tq0bNkSQMIdsu+++04vk5m/TVZiAIBp06bhs88+AwA0btwYa9asydHnkin3bdmyBbGxsQCAoUOHYtu2bVixYgU+/vhj1KlTJ9VzI9GUKVP0u3GlSpXC0qVLMX/+fP3cfFylSpXw5ZdfYvXq1di+fTu2bduG2bNnw9XVFZqm6efb486cOePQtgk5n+yey/bOnz+P0aNH47fffkNwcDAA4N9//8W6devwxRdf4Oeff4a7uzsAx37mJ5YrXbo0VqxYgc2bN+P7779Hv3794Ofnl+H479+/jyJFimDlypWYOHGivnzu3Ln67/Pnz8fBgwcBAH5+fvjuu++wbNmyTH1ncET7IzIyEhUrVsSaNWvQs2dPAAlt6I8//hidOnXCunXr9MdU7NvZgOPbKC+99JI+BgcAFCtWTD+exF4XxYoVw6RJk7By5Ups3boVO3bswI8//ogiRYoAAD7++OMUjzMsLAwDBgzA+vXr9bEsbt68iW+//RbvvvsuVq1ahcDAQACP2h4psdls+OWXX7BgwQIEBAQASDg3582bl6H3m9JhbL4jZfaZq5TuJKaW1UtteaLjx4+Lnj17ihIlSgiLxZIskzVt2jS9rH3Wa9WqVfrytm3b6suPHDmS5nHYZ3Xts2qKoohSpUrpr+3atSvN+FO6O7Zv3z59WfHixYXNZtPLN2zYUH8t8e7kL7/8oi+rW7duqrHY7zfxzqi/v7+wWq1CiEd3rIsXL57uHX/7bO7cuXNTLWef+ezUqZO+fOnSpfryYcOGCSGEOHz4sL6sZs2aYvfu3fpPgwYN9NcOHjyY5RjsM9MdO3bUj92ZOUudq1+/vp5V//vvv8XDhw+TlVFVVRQuXFjf5qZNm7L8vqTG/ljmzZuX5LW7d+/q2fhixYolOYf/7//+T19vxYoVQgghevbsKQAIDw8PsXXrVhEVFZXiPlO6Tpw+fVpf1rdvX3H+/PlU6+3jvXwed/nyZTFo0CBRtmxZ4erqmuxvOXz4cL2s/d2ZqVOn6suHDBmiL1+9erW+PL3zKCWdOnXS13n33XdTLWf/voSGhurL9+7dqy/v3LmzECLzf5usxPDkk0/q+3jqqafE/fv3M3S8lHeldP7OmTNHX/b111+LGzduZGqb9r391q5dqy+33659DwdFUcTXX38t6tatK7y9vZPd8fPz89PLZrZtQgVHTpzL9ufb008/rS9//fXXk3w+JerQoUOKn/mJy+x7B2TkM18IIYoVK6Z/Bhw+fDjVu9bp9RoAIA4fPqwvt+81FxkZKYQQol27dvqyGTNm6GU3btyY4jGkJqvtMvtYz549K4QQ4sCBA/oyDw8P/XNn+fLlydrZOdVGsY8tteNfsGCBaNy4sfD19U2xB3fitu3fm5IlS+rtGvue3I0bN9a3a3+u2bc97NtqW7Zs0Zd/++23+vIWLVqkejyUcc55yzYFly5dwtNPP42lS5fi6tWrKWbuE++aP65p06b67/7+/umWT8lTTz2l/24ymVC7dm39/xcuXMjwdlJap2bNmjCbH43/Wa9evTTL29/ZfzwWey+99BKAhGfRNm7ciP/++w9nzpwBkHC3M707/ol3VgHg2WefTbNsovTea/ttHjlyBI0bN9Z//v77b/21xF4bWYkhMTNdpkwZLF++HBaLJUPrUVJG1LnEnjnXrl1DgwYN4OXlhQoVKmDw4MH6uRAeHq4/G+rq6opWrVpl5rAy7bnnnkvy/3Pnzuk9cG7evJnkHLZ/ljTxHE4cTyEmJgatWrWCj48PSpYsiT59+ujnamoqVqyIxo0bAwAWLlyI8uXLw8vLCw0aNMDnn3+O+Pj4DB1DdHQ0nn76aXz77bcICwtLcb2cvH6mJCeuL5n922QlhkOHDkEIAW9vb6xfvx7e3t4ZWo/yl06dOunn2LBhwxAUFITChQujXbt2WL58ebrr239m27cfGjRokGL5ESNGYNiwYThw4ACio6OTjTeUWn1zdNuEnE92z2V79u3TwoUL67/XqVNH/z3x7jLgmM98+3JHjx5FrVq14OnpiapVq2LEiBG4ceNGhuMvVKhQkhmcUvocyWzdzSm+vr76oJL273WlSpX0z52U3uvcbKPYmzp1KgYMGIDdu3cjMjIyxTHTUjofateurX8fyc45Zf+3sj9PeR10jAKTcPjxxx9x//59AAmVfvXq1di9ezdGjx6tl9E0LcV17btb2X+xT6kyZFRKXdDsl6mqqv/++IBsWdl2Vsr3799fP95Fixbp3aYAoFevXpnaR0Y56r1O7OqVFSaTCUDCgHbTpk3L8nYKOiPq3Msvv4wNGzagb9++CAkJgYuLC86fP4958+ahadOmyT5oEgcLykmJXfkyK/Ecbt26Nfbs2YNBgwahVq1a8PDwwNWrV7F48WI0bdo0zQ9DWZbx+++/48svv0Tbtm1RqlQpxMbGYu/evRg9ejSGDh2aoVhWrVqld6+sXLkyfvnlF+zevRtTp07Vy+Tm9TOr8tL1JTo6OsljbuRcihUrhn/++QdjxoxBo0aN4O/vj4iICGzcuBHdu3fH0qVLM7yt9K5RVqtV7/ZrNpsxadIk7NixA7t379Yb2hk9x3P6ekj5jyPPZR8fH/13+5tWhQoVSrG8oz7zJ06ciCVLlqBbt26oVKkSJEnCqVOnMHXqVLRu3RqKomQo/scfv0jvc8TI+uTo9/pxjmij2JsxY4b+++jRo7Ft2zbs3r07yZSfKbUzcuI4eR10vDyZcLA/YVJrxGZ2vWvXrum/v/fee+jUqRMaNWqUqWeqsmP//v3676qqJsn6lStXDkDSSnPz5k39940bNybbXuI6QMKdfvsExb59+9Isb7/vx2OxV6xYMf357bVr12LJkiUAgAoVKiTJHKbmiSee0H9fv359uuUzwn6bTZs2hRAi2c/Dhw/1GSiyEsN7772nN9LGjBmjH7czc5Y6J4RA27Zt8dNPP+HYsWN48OCBPtfzzZs38ddffyEgIEBvNMTFxWHr1q2pbi+r74u9xz+4KlSooC8rX748FEVJdg5brVZMmDBBP6YGDRpg3rx5OHToEKKjo/Hll18CAGJiYlK8PiQSQsDLywsjRozAhg0bcOnSJdy+fVt/rtJ+3IWM/i1ff/11dO/eHY0aNUo2MndWZeV9zonrS2b/NlmJ4dVXX0WFChUAJMzIM2nSJIfETnmLEAKlS5fGpEmTsHv3boSHh+PAgQP666mNeZKofPny+u/269n35Et09+5dvS6GhoZizJgxaNasGcqVK5fu7D4ZaZtQwZbdczmnY0vvMz9Rz549sWzZMpw+fRrR0dHo2rUrgIQZXux7Q2RXZupuWhzR/siKnGyjJG43peNJbGf4+/tj8uTJaNGiBWrVqpWk/ZGT7K+F9t+jeB10DHP6RXKffQbxzz//xIYNG+Dt7Y0nnngizXnm7ddbtGgRTCYTTCYTGjVqhNKlS+uvTZ8+HS4uLti3b1+yqfJyyp9//okRI0bgmWeewdKlS3H58mUACXc/69evDwB6IxQAxo0bh8jISPz111/Ytm1bsu3Vrl0bwcHBuHbtGq5fv45+/fqhT58+2LZtG/bs2ZOs/DPPPAM3NzfExcVh//79GDZsGNq0aZMklpQMHDgQa9asQWxsLA4dOgQg/cEiE/Xp0wdHjx4FAAwfPhy3b99G3bp1ce3aNcybNy/TF18goTEVEhKC48eP448//kC/fv3QrVs3WCwWXLx4Efv378eqVasQERGR5RjKlSuH1atXo2XLloiPj8eAAQNQrFixJFMUORtnqXNdu3aFt7c3GjdujBIlSkBRlCQN6Pj4eMiyjF69euGbb74BkNBb5/3330flypVx4cIFrFmzBr///nuy48vM+5KWxK6ov//+O86fP4+OHTti4MCB8Pb2xqVLl3D48GH8+uuv+Pvvv1GmTBm89dZbuHHjBp555hmULFkSZrM5yeBLaT0Wce3aNbRq1Qrdu3dH1apVERgYiLCwMNy5cyfZuvbHunLlSpQtWxYWiwV169ZN8rf84YcfUK5cOZw7dy7VQZwyK63zKDV9+vTRe11NmTIFiqKgefPmuHv3LhYtWoQ5c+YkiTsjMvu3yUoM/v7+WL9+PerXr4+IiAi89957KFGiRJIB+yj/W7JkCebMmYPOnTujbNmy8PHxSTL1XHqPM3Xu3BknT54EALzxxhuYNGkSYmJiUhwwLjAwUP98P3bsGObNm4fAwEBMnDgx3S8qGWmbUMGW3XM5J2XkMx8AGjZsiFq1aqFevXoIDg5GdHS0Xr/syzlC586d9TbEBx98AHd3d3h6emLMmDGZ2k5OtD8yIifbKH5+frh37x6uX7+OxYsXo3Tp0ggMDETFihVRunRp/Pfff7h79y4mTZqEGjVqYNq0aRmaEt0RBg8ejM8++wxxcXFJrrOdOnXKlf07vZwbHiLrbDabPsCL/U/iQGapDZSydu3aZOskHuKlS5eEh4dHstfsB1i0n3LSfiARe5kZ3Mx+oJwKFSqkGNvChQv18uHh4cLLyytZGfvBo+xjTG0aLPt92Q/+NmnSpGRlZVlOMm3d48eU0t/i5MmT6f4NhUiYGqhVq1Ypxmj/vqY2WF1qA+akNS3m49vOTgyLFi3Sl/n4+Ih///03Q8edHzlLnWvZsmWqf+vAwEB9UKfIyMgk08fa/9gPZpTe+5Ka1I4lUVpTTiX+JE6pOHDgwFTLuLu7i/PnzwshUh408sqVK2nuY/DgwXpM//77b4qDNIWFhYn79++LoKCgNP+W9nXUftDIxOMQIvW6ntZ5lBb7cyO19y+1aYXtp+S0H3wvM3+b7MSwY8cOfSBVi8WSZMAqyl9SukYtXLgwzXNoyZIlaW4ztWkx7a9b9uet/aBoiT8VK1YURYsWTVafMjJlt33bhAqOnDiXU7sGp/Z5kN5giPaf0Rn9zE9pOs7En6pVqwpFUTK9byFS/qxLbVpM+7qbkUEjs9ouS2kfqX3epdbOzok2ihBCdOnSJVmZxP3aD/iY+BMQEJBkusrEfaYWd2bPNftrbEptwpCQEE5Z7SB58pEKs9mMNWvWoFGjRpkaUOvZZ5/FF198gfLlyyd5rgpImFZq8+bNqFevHtzd3VG+fHnMmjULL7/8sqPDT1Hv3r0xf/58VK5cGS4uLqhUqRIWLlyY5K6Wv78/Vq9ejRo1asDFxQXly5fHN998k+SZd3s9e/bEkiVLUKVKFX2bP/zwA3r37p1i+TFjxmDatGkoU6YMXF1dUbNmTfz222/6oHIpMZvN6N+/v/7/0NBQVKlSJUPHbLFYsGHDBkyfPh316tWDl5cX3NzcUKFCBQwaNChD20jJk08+iSNHjmDIkCEoV64cXFxc4Ovri5CQEAwZMiRJj5DsxNC7d2/9GeuoqCi0a9cOV65cyXLceZmz1LnXXnsNPXr00AdHNJvNCA4ORu/evfHnn3/qjy35+Pjg77//xsSJExEaGgp3d3d4eHigSpUq+lSPQNbfl/SUKlUKhw8fxqhRo1C5cmW4ubnB29sblStXRr9+/bBmzRqULFkSQMJ52L9/f1SqVAk+Pj4wmUwoWrQoOnfujN27d6fZ3a9w4cIYP348mjZtiqCgIFgsFri7u6NGjRr4+OOPkzwzWb16dfz000+oUqWKPl1mIm9vb2zZsgUtWrSAl5cXgoODMWHCBL1LZXaldR6lZcGCBVi4cCGaNm0KHx8fuLi4oFSpUujdu3empjqzl5m/TXZiaNasmT6Vms1mQ5cuXfTeWJT/NWjQAEOHDsWTTz6JgIAAmEwm+Pj4oHHjxvjll1/0aepS4+vriz/++AMdO3aEh4cH/P398dprr2H27Nl6GQ8PD/33L774Qh/Qz8vLCx07dsS2bdv0KQZT8/zzz+OXX35BtWrVUm2bUMGW3XM5J2X0M//dd99Fp06dULp0aXh4eMBisaBMmTIYMmQItm/fro+t4wgWiwUbN25E3759UahQIRQqVAgvvPACVq5cqZexr7upyan2R0bkVBtl5syZ6N69uz7Vpb3hw4fj448/1v9GzZo1w/bt21GsWLFcOeZt27ahb9++8PHxgbe3N3r27ImtW7dyymoHkYQwYOQuyld27dqlj+4+efLkVBMgRERE5BhCiGRjwMyZMwevvvoqAOCtt97K0sDGCxYswIsvvggAGD9+PD788MNsx0pEj6RUdzdu3Ih27doBADp27JhkIHYyRpkyZXDp0iUAMGQg64IkT47hQHlDbGws7t+/r99RMZlMOTY7BRERET3SoUMHdO3aFU899RTc3d3x559/Yty4cfrrPXr0MDA6IkpN//79UbduXTRu3Bh+fn44dOgQhg8frr/OuksFDRMOlKp27drhjz/+0P//0ksvoUSJEgZGREREVDCcPHkSAwcOTPG1UaNG4emnn87liIgoIy5fvoyFCxem+FqPHj0yPPg6kbNgwoHSFRAQgC5duuCrr74yOhQiIqIC4eWXX8Zvv/2G8+fPIzo6Gn5+fqhTpw6GDBmCjh07Gh0eEaXihRdegKIoOHPmDCIjI+Ht7Y3Q0FAMGDAA/fr1S/a4BZGz4xgORERERERERORweXKWCiIiIiIiIiLK35hwICIiIiIiIiKH4xgOTkao0RDKHUBYAaECkgxIFkgmH8AUwOfGiJyAEAJQ70KokYCwAUIDJFNCXTcXgWQqZHSIROQAqlBxC3fxQDyEAhUAYIIMN8kNxRAAV8nF4AiJyBHiRDxu4S7iRBxUaAAAM0zwkjwRCH+YJJPBERJlHRMO+ZDQ4iBij0GLPQwRcwha/DlAuQlhuwloD1JfUbIA5kBIliBILqUhu4dC8qgF2f1JSObCuXcARJQhQomAFnsIIuYwtNijENZLELYbgHIrIamYGtkTkrkYYCkG2bUCJPdakD1qQXKvAUl2z70DIKIMuSxu4LB2Aoe0kzguzuKquImb4g7uIALa/758pMQPhRAkFUWQVARVpPKoJVfFk1I1VJLKQpbYiZUoL1GFitPiAg6JkziincQpcR43xB3cEHcQifupridDRlEURjGpCEpIxRAiPYEn5aqoJVdFSSkoF4+AKGs4aGQ+IISAiD0ENWo9tPsbIWL/BaA4dB+SSxnI3q0gF+oA2bs5JNnNodsnovQJLR7agz+gRa2DFr0Fwhrm4D2YIbmHQC7UBqZCz0LyqMNeT0QGuCeisEH7A7+rf+APbT/CEeHQ7XvCHfXkUHSQm6KD3BxlZU5pTWSE89plrNd2Yr22Ewe0Y4hBrEO3XxSF0VSuh/amZmgrN4af5OPQ7RM5AhMOeZj2cB/Ue4ug3l8P2K7n3o5lT8jeLWHy7Q7ZpyMkmV02iXKKEDZoUeugRvwCLXpr2r2UHM0cBJNPO5j8+kD2ejr39ktUAEWIKCxR12Gluhl7xRGo/3tEIjdUlSqgo9wS/UydUU4umWv7JSqIzmuX8aO6Cmu0bTgtLuTafs0wo4FUE11NbdHT1AE+kneu7ZsoLUw45DFCi4F6bzHU8LkQcceNDgcwF4GpcH+YAwZDcmEjhchRhO06lPC5UO/OB5TbRocDya0KTAFDYPLrA8nkaXQ4RE7jkHYC3yiLsVLbhDjEGxqLBAkt5Pp4zdQb7eWm7OFE5CCa0LBW247Z6hL8oe2HgLFfr9zhhm6mtnjd1AehcmVDYyFiwiGPEFos1DszodyeCqj3jA4nBWbIfj1hCfoAkkspo4MhyreE9SqUmx9DjVicMOBjXmPyhbnIUJiKvMXEA1E27NOO4n3la+zSDhgdSooqSmXwvvk1dJPbMfFAlEWa0LBEW4ePlVkIE1eNDidFLeT6mGAeijpydaNDoQKKCQeDCaFAvbsAyq1Pc/exiaySXGEKeAXmwHcgmf2NjoYo3xDKPSi3PocaPhsQcUaHkz5zMZiLvQuT/0uQJIvR0RDlG6e18/hAmYY12najQ8mQWlJVTDAPxTOmhkaHQpSvbFD/wAfKNBwTZ40OJUOel1vjI/NbqCiXMToUKmCYcDCQ9mA3bFdeh4jPHxeqJORCMAd9AFPA67wzQpQGIQTUu/Og3BgPqJFGh5Npkkt5mEvOgMm7hdGhEOVpD0QMxipf4Tt1ea6Oz+AoreSnMdM8HmXkYKNDIcrTzmuX8aoyPs/2XkqLGWYMNvXARPMweEictYpyBxMOBhBaDJTr4xLudBr8jFd2SZ4NYSk1D7JreaNDIcpztPiLUK4MhvbgD6NDySYJJv9BMBf/FJLJy+hgiPKc7epeDLF9gMvIBz0V0+AFD3xqHoFBph68mUD0GCEEvlEX4QNlusNnm8ht5aSSmGuZiMZyHaNDoQKACYdcpj3YA9vlQRDW3Bu1NsfJHjAHfQxzkdeMjoQoz1DCv4Vy/d3cnXUih0kupWEuOQ8m76ZGh0KUJ8SIWIxRPsd36nLDB4lzpGbyU5hn+RilpCCjQyHKE8K0qxhkG4c/xUGjQ3EYCRJeNb2AT80j4Sa5Gh0OOTEmHHKRcmc2lGujAChGh5IjZN9usJSaB0lmFy0quIQWD9uVV6FF/Gx0KDnEBHPxz2Au+pbRgRAZ6rK4gW7WN3FUnDY6lBxRBIXxs8tXvANKBd52dS/62EbiHqKMDiVH1JaqYZnLdARLgUaHQk6KCYdcIIQNytVhUO9+b3QoOU5yfxIuZZdBcilhdChEuU7YbsAa1gMiZr/RoeQ4U+F+MJeYCUl2MToUoly3RzuEF6zDcBt5cVYpx7HAjKnmsXjZ3M3oUIgM8Y2yCGOUL6A46c3CREEogl9cpqGeXMPoUMgJMeGQw4QSAWtYd4iHu40OJfeYi8Gl3ArIHrwrQgWHFnME1rDn88dsMw4iedaHS9kVkMwBRodClGt+UlbjDeUjWJEHp7XNIa+aeuFL8zuQJdnoUIhyhSpUvKlMxA/qCqNDyTVucMVcy0T0MLU3OhRyMkw45CChhMN6vgNE7FGjQ8l9sjdcyq2G7MVptsj5aQ/3wXq+I6A5Z3fLtEhu1eBS/ndIFnbFJOc3S1mMkcokpxqvIaNekJ/Fd5ZPYJJMRodClKNswob+tjH4VdtsdCi5ToKEmebxGGjuanQo5ESYcMghQrkL67nWEHEnjA7FOLInXMqtYdKBnFpCsuFZQIs2OhTDSK6V4FJhCyRLUaNDIcox3yiLMFKZZHQYhuomt8OPlsns6UBOSxEKettG4jdtm9GhGEaChOnm9zHI3N3oUMhJ8BMjBwg1KqFnQ0FONgCA9hDWC52hPcx/8xQTZYQWc+R/PRsKbrIBAET8GVjPt4dQnPt5diq4vlOWF/hkAwAs1zbgFdv74L0qckaa0PCi7d0CnWwAAAGBt5SJWKj+ZnQo5CSYcHAwIVTYLvaGiD1idCh5gxYNa1hXCOsVoyMhcihhu54wZkMBfIwiJSLuOGwXX4AQzj2wFhU8W9Q9GKp8bHQYecYi7Td8os42Ogwih/tAmYbl2gajw8gTBARes43HH6rzD4JNOY8JBwdTrr8LLXqr0WHkLcotWMO6QWgxRkdC5BBCi4M1rEeBGiAyI7QHf0C5NtLoMIgc5j/tIvraRkGFanQoeconymysVrcYHQaRw/yi/o4vVOefTS4zbEh4vCRMu2p0KJTPMeHgQMrdH6HemW50GHmSiD0C2+VXjA6DyCFsV16FiOGjQilRw+dCCf/W6DCIsi1KRKOL7U1E4r7RoeQ5AgIDbe/hmHbG6FCIsu0f7TiG2D4wOow8KRwR6GZ7Ew8EbxpS1jHh4CBa7DEoV98yOow8TYtcAeU2EzKUvynhc6FFLDE6jDxNuTYCWswho8MgypZXbONwVoQZHUae9RCx6G4byi8ilK9FiWj0sA5DLOKMDiXPOi7+w2u2D40Og/IxJhwcQAgFtsuDABFvdCh5nnJjPLS4/4wOgyhLtPgLUK6/Z3QYeZ+wwXZ5EIRmNToSoixZoq4r8APHZUSYuIr3lC+NDoMoy0Ypk3EVN40OI89bpv3Ox6goy5hwcAD11mQOEplRIha2K4MghGZ0JESZIoSA7fJgQHtodCj5gog7AeUWB9qj/OemCMdI22dGh5FvfKsuww51n9FhEGXaRnUXflJXGx1GvvGWbSLCRYTRYVA+xIRDNmmxx6Dc4lRZmSEe7uVYF5TvqOGzIR7uNjqMfEW99SW0mH+MDoMoU96wfYR74OwzGSUgMNj2Ph+toHwlSkTjddtHRoeRr9zGPQy3fWJ0GJQPMeGQTbarwwBhMzqMfEe5ORHCxi5slD8IJRzKjfFGh5EPqbBdHW50EEQZtlHdhXXaDqPDyHcu4zqmKBwslvKPT5U5uIZbRoeR7yzXNmInp8qkTGLCIRvUqA0QD/cYHUb+pD2EcotdVil/UG5NBrRoo8PIl0TMfqiRq40OgyhdmtDwvvK10WHkWzPVRbgh7hgdBlG6LosbmKNy8Oesel+ZanQIlM8w4ZBFQmhQbrxvdBj5mnr3B2jx540OgyhNwnoJavg8o8PI15Qb4yGEanQYRGlaqq3HMXHW6DDyrRjE4lNlttFhEKVrovIN4sFBjbPqgDiGVRxAkjKBCYcs0iKWQsQdNzqM/E3YoNzg83OUt9luTOQMNNkk4s9AvfeT0WEQpcoqbJigfGN0GPnefPVXnNcuGx0GUapOaefxs7rW6DDyvfHKdKi8kUAZxIRDFim3Pzc6BKegRa6AFn/B6DCIUiSsl6FFsNulI6i3vuDsNJRnLdN+x0Vx1egw8j0FCr5S5xsdBlGqvlC+hwp+Uc6usyIMq7WtRodB+QQTDlmgRm+FiDtldBhOQoMazi6YlDcp4fMANkwcQljPQ7u/0egwiFI0S1lsdAhO42d1Le4JzvJBec8tEY7l2gajw3AaM5VFRodA+QQTDlnA57kdS723EEKLNToMoiSEZoV6d4HRYTgV9S6vnZT3HNCO4ZA4aXQYTiMWcVik/mZ0GETJLFB/hRWcWc5R/haHcUw7Y3QYlA8w4ZBJwnYTWtTvRofhXNRIaJErjY6CKAkt6jdADTc6DKei3d8MYb1idBhESfygrjA6BKfD95TyGiEEFqi/Gh2G0/lBZfud0seEQyapkSsBKEaH4XTUiKVGh0CUhBrxi9EhOCENauRyo4Mg0tmEDb+qm40Ow+mcFhdwROOjp5R37BNHEcZxWhxuuboBGsdnonQw4ZBJWhRHts0J2oNdEGq00WEQAQCEFgstepvRYTglNWqd0SEQ6XZpBxEFfvbkhP9v786jo6jSPo5/763qTkJIk5CwJAEBAREkxrANrqO4oKDiAuMoIrjguCuoM6+izisuo86MjuKooB5xgxHXV0FHZR2XwygjyyAoioMw7DuBQKe76r5/BBMwCSQk3bfTeT7neI7pVFf/ulJPUfVU1a2p/izbEYQoN9WT9TEWNrGVuWaB7RgiwUnDoRaMtx1/12e2YyQnU4pfLM/0FYnBL54BRsYViQWz65+Y6GbbMYQA4H1/tu0ISWuaN9t2BCHKTZNajxmpdXEw0nCoBX/Hh2BksJlYkTOfIlH4si7GkIe/Q0YJF4lhmj/HdoSkNd8sYbVZbzuGECz3V7LULLcdI2lJM0ccjDQcakHOwMeWXyzP8xWJwZNajylvh9wzL+z7zl/BCrmnO6Y+9uSqUGHfdP9z2xGS2jfmB1aatbZjiAQmDYda8Eu+sh0huUU3yAj2wjoTWQ+R1bZjJDWzW7alwr55ZrHtCEnvK/O17QhC8C+p9Zj7ypdlLKonDYcaMn4JZs83tmMkPb9kvu0IopHzd8s6GGsmvBzj7bAdQzRy8/0ltiMkPVnGIhHIehh7X8kyFgcgDYcaMrsXAZ7tGEnPlzOfwjIjVzLFgZHmorBOdpBj799mGVEjjxIX9uwxYZaaH2zHSHrzjWxPRfWk4VBDfskC2xEaBbN7ge0IopHzZR2MC6l1YdtCs9R2hKS3h7AM1ies+rdZRhRpesXaAl+2p6J60nCoIVP6o+0IjYIsZ2GbrIPxIctZ2LTZbKOYXbZjNAo/mjW2I4hG7EcjYzLFw0a2UCKPExfVkIZDDZmojL4aDyayznYE0cjJOhgfspyFTevMRtsRGo21sqyFRbL+xY8sa1GdmDYcHnnkkVpNP2LECKZOnVrnz83JyTmk982ePZvBgwdX/cvIWn41OkLuSWEuvi1S/vKXi316XFjKUeeGeXB8xSVbP6wyHH9J2es33h/BGFNplpu2GvqPLKX7uaVcdGuEPeGyaZ54JUrPwaUMv6Pic158x+Ol/4v/GBJjn4oQ6h0m1DvMVXdHKv3+xf+L0qxPmIzeYc4cWQqA7/t0PitMZp8wv761tHzagkFhPv78IN/B24rx99TrdxCxlyy1bowH0Y1S63GodWniilg44L/j+1hrNhL51UrCuUuJXFzxdCT/yxJKe3xP+KjviD64ofx180MppccvJ3zUd0RuXFNlnZtNUUr7/4fS7t8RuWglZo8PQPSJTZT2/J7I8IpHcHovbsV7aWtdvuohi4zdQDj0NeHQ10SuqvxY0OiLWwk3W0I442tKz/wPUFbr4c7fEs5cQumvV5ZPGy74Du/j4gN+njR3RCzUtNbXSa3HrdbXUvda33d/csWKFfTq1QuAd999l8cee6zO8xd2JFTDIZGZyDpuuMThufvc/V6/5Q9RXvyDy6K3g/z9M5/F35VtdMY8HmXMNQ5fv5vCpm3wwSd+pXn+6QWP8051WPxukA75ihfeLpvm1fd85r0ewHXg38t8SnYb3p7uc+k58b0gZc8enz+94DPrxQDLPggw5e8+3/+4//cY/ZDHCw+4bP4swLyvDe/M8HhrusF1YMvcAB9+Vrahfu0Dj7RUxenHOQf9XBORA5GGJmlqPboe8KXW41HrcoWDsGgdG3FuyMZ9rs1+r0dvWYv7YhuCizrh/30n/uKyBnh0zHqcMS1J+bozbPLwP9hZaZ7enzbhnBciuLgzqkMQ/4Wygwz/1e0E5nUEF/x/78GU+Phv70Bfmhnz7/lz/h4f/08bCczqQGDZEfhTtuN/H97/e4xei/tCPoHNXTHzduO9sx3zVjG4isCWIzEfln1377VtqDSFc3rGAT9zHZti9n2EOJi1Rmo9brVeD83F6vYnzz33XEaNGlXj+XieDPSfSGq8V7tixQoKCwsZPnw4Xbt25aKLLirv+n300Uccc8wxdO/endGjR2OMYcyYMWzbto1jjjmGa665ptL8pk2bRlFREYWFhVxyySXlr3/88cf07duXzp07M2fOHKBspbn11lvp3bs3hYWFvPrqqwBEo1FuvvlmCgoKOProo5kyZcp+n7F69Wr69OnDF198wfLly+nfvz+9evWiX79+rFixAoAvvviC7t27c8wxx/D6669X+/2Nt5WTemky0lX5a2s2GDwPCo7QOI5iSH/NB//wMcYwd6HPWSeWLd6LB2re/0flg5Bpc3wuGbjvNGXFkZIC0SgYwHXgiVc8bhjqoLWqNI9Yevk9n+xM6NlN0zpH07Wj4q+TKwp4/lIf38AFpzsEg5p+fRXPv+GRFiz7/Z4wOHvXsDsei/LKw27lD6mKZ6cTLMo05lo30bJ1T2o99rVupM5FPXj44Yfp3r07BQUF5duLn8yaNYtjjz2WjRsr7wRvNTvQJ6WjMip2g8yaCHigC1JRjkIPaYb/QTHGGPy5JeizmgKgL26G/37lM33+tGL0JZnl03g/TZOiIMreQgfvic04N2Sj4lznAP7L2yDbRfdsgm4dQHVNwfvrlorfz98NPjgXNEMHNapfU7znt0La3qx7gL29xOgd63FfaVPpM35uq9le/19ENDqHXOtsl1q3XOs//9v9/OqUwYMHM3v27APuT06cOJHbbrsNgI0bN3LBBRfQq1cvjj32WObPL3vq1YgRI7j22mvp06cPDz30UA2XlIiHWp1GW7p0Kb/73e9YsmQJ69ev59NPP2X37t2MHDmSd955h0WLFvHtt9/y9ttv88ADD5CZmcmCBQt45pln9pvPhg0buPHGG5k6dSoLFy7kySefLP/dli1bmDt3LuPHj2fs2LEAPP/88+Tm5vLll18yd+5cHnnkETZv3syECRPYsmULCxcuZNGiRZx++unl81m1ahWDBg3ir3/9K3369OG6665j/PjxzJs3j7vuuovbb78dgCuvvJKJEyeyYMECNm06QBfeVL7EeO1GQ17Lio1IXkvF6o2GzdugeTOFUqr89TUbKr2dHTsNzTL2TtOiYpqRgx1OuDRCqClkZykWLTOcdmz8h9v4fqUhO7Pi57wW8OOaikvLlnzvk5Fe8fv2+Yq1mwwDT3ZIT4P8UyIM6a95cHyEozopjmhfw+9QxbIW8dVoa72adU9qPQa1LnUu6ujLL79kypQpzJs3jzlz5nDPPfewZk3ZAIUzZszgzjvv5L333qNFixaV3huh8vpn1kZReRXNMpXnYlZHYbOHau6U17nKC8CaKt6/w0M1c/aZpuzWK2dkFpETfoCQg8p2MYv2oE9rWvcFcAjM92HI3ufqo7wA5seK26H8JWHY58BMtQ9g1kZxBoYgXRPJ/wY9pBmRBzegjkpBH5F60M+MyBMCRB3VrdYrr39S6/Gr9QP97X7uQPuT+7rlllu44447mDdvHi+99NJ+zYnNmzfzz3/+kzFjxhw0r4ifGp5yLtOlSxe6desGQFFREStWrCAjI4MuXbrQvn17AIYOHconn3zCBRdcUO185s6dS79+/cjPzwegefPm5b8777zzAOjZs2f5mcmPPvqIxYsX88orrwCwfft2fvjhB6ZPn87o0aPRuqxgsrKyANizZw9nnnkmEydOpHfv3uzcuZNPPvmkfN7GGNLT09m2bRvhcLj8/qChQ4fy0ksvVR3aVD5rGSvDznUYdm7ZRmLUQxHuvNphwhSPWV/49PuFZuSQg9+WYNu811MAiEZ9Dj8jwrw3AvT5VSmbthl+e6XDNRcdaNWL37IWVWu8tR7fS/Aada3HcZsqktNnn33GhRdeSGpqKqmpqZx66qmkp6ezcOFCbr31VmbMmEF2dnaV7/WpfF92rDjDsnCGlW2zIqPW4tzZAm/CFvxZu9D90nFGNj/IHBJDyrxOAPhRn8jhywjM60Rpn+8xmzyc3+bgXlP1svbivF0VyadutR6/f2saTK0bU/bfT///s9+lfNkR+KnWvyMwr+P+tf6bqr9HVcu6ur9dXUyfPp2vv/66/OetWyuumBw8eHB5w0gkjlqdSktJSSn/f8dxYnJ/zE+fse/8fd9n/PjxLFiwgAULFrBixQp69+5d7TyCwSDdu3dn1qxZ5e9v1apV+fsXLlzI559/DlDzlVJV3vHPbaFYs6GiUNdsMOS1UGRnwpbtpvwy9DUbDLmVm66Emiq2F++dZmPlaZat8IlEoUMbxdQ5HpP/FOC92R67dsdnR6nTYYrN2yp+XrMR2uZWLK9unTTF+zxVbMVqQ+uc/ZfntWM9zu2nmfh22SXbX7wW4L6nD7beJP5BVrJrvLVe9cGx1HoMar2KbaoQ9SE/Px+l1H47pD/nVLH7o3JdzJqKM3Rmzd6zoNkOZotXXudmTQRyA5XfH3Iw2719ptl/e+IvC0PEoDoE8aYWE5jcFu+9Ysyu+B0QqU4psHmfulwTQbWt+C66WwoUV+QxKyKo1vt/D+/aNehzQ/gTt0K2Q+CLjnj3VX/vtiv/posYqVmtV17/Gn2tK4U+KrWs1pUCpSpqfe/PKIV33Vr0oBD+i9v2r/V9ptn3P7eG57EXLFiA71csi3A4fICpqzZv3rzyfb0ff6x4zHaTJk1qPS8Re3W+drdLly4sW7aMH3/8Ed/3mTx5MieddBJQ/YFK3759mTlzJqtXlz0bd8uWLZWm2dcZZ5zBU089VT6vxYsX43kep512GhMmTChfaX/qcGmtefnll5k5cybPPfccoVCIVq1a8d577wFl94kvXryYzMxMUlJS+OqrrwCYPHly9SFUsNJLeS0Vji4b7M3zDK9/6DPgJI1Sij5H6/LB4/72ftnrP3fWiZpJ08qmmTzNZ8BJ+28UH5zgcefVLqURKNn7aNtdu6E0TlciDztHs3kb/GuJz7pNPkuXG268pCJjUVeNVvDWxx6lpT4z5xquGlzx+01bfT76zOeJOx2KdxlKI+AbCJdW8WH7UpU37sK+RlHrunKdg9R6TGpd6lzU0QknnMBbb71FOBxm69atzJw5k5KSEnJycnj33Xe5/vrry+/t/bkgVRxE5AXA2TvYm2fwX9+OHpCBUgrdJ6188Dj/b2Wv/5w+KwN/0rayaSZvx/nZNN6DG3HvbAGlBkr27mzv8st+jhM9LBM2R/H/VYK/LoJZGsa5seLMsC5KAw3eW9vxS33MzJ04V2WV/97fFMX/aCfOE60xxV5Zdh8IV38gFahiWQtRG1LrtWej1qtqOFT1txsxYgRLliwhGo2yfv368hNDULOTXKeccgpPP/10+c8LFy6swRIRNtW54ZCWlsaECRMYNGgQRx99NJ07dy6/nHn48OEUFBRUGvijZcuWPPHEEwwcOJDCwkJuuummA37GyJEjad++PUVFRXTv3p1Ro0ZhjOHqq68mMzOTgoICCgsLmT59evl7gsEgb775JhMnTuTNN99k0qRJjBs3jsLCQgoKCpgxYwYAzz77LJdddhlFRUXVXo4FoNxsBvymlKG3R/jwM5+O/cPMXejz6P+4DL8jSsF5pZxxnKZ757JF+sBNDvc/49HtnDBZIcoHlRv7VJSps8sK6fYrHN762OOoc8MsX2W4/PyKP8enX/kc3kaR11KRFVIUHqnpObiUoq6arFB8LhVKTdWMGq45ZXiEzmdFuPAMTad2mrb9wsxfWrbB+ePtDpePiZJ9XIQe3RTnnVpxEDLsd1FGDXfQWjPqMoclPxg6nxnhskEHXu2Ue2iPOhSx1RhqXTllr0utx77Wpc5FXfXq1YshQ4bQs2dPTjrpJO69915yc3MBaNu2LW+88QbDhg1j2bJlld6brbIoHbCCyNBV+B8WE+74Lf7cEtxHc4kO/y+lBd+hz2iK7l5237LzQCu8+zcQ7rYMspzyQeWiYzfgTd1RNs3tOXhv7SB81HeY5aXoy/fZef90F+rwICovgMpy0IWplPb8Hl2UisqK3xUAOlWjR+UQOeU/RDovQ1/YDN0phXDbb8oGkQOcP7YmevlqItlLUT3ScM5rVv7+6LBVOKOy0VrjjMrBLAmXzeeyrOo+khxV/e+EqIm61Xqm1Hqcar1FFbVe1d+uXbt2DBgwgG7dunHVVVdRVFRUPn11+5P7GjduHLNnz6awsJCuXbsyadKkQ1lEIo6UqeoBs6KS0uVn4xdPP/iEoo4UKYU7UHL2U1hgjCG8MANkkLOYU+knktL5Y9sxRCM12/uCMyNX2I7RKPzevZE73N/YjiEaqXsij/OI96ztGI3CnOCr/EIX2o4hElD8h0NvqNzWthM0Dm6ONBuENUopCLSyHaNRUAHZpgp7cpVcYRMvrZFlLezJUy1tR2g0WqsqBrESAmk41JjsHMeHksaOsEwFcm1HaBRUIM92BNGI5cpBSNzIAZ+wqbU0F+MmF2k4iKpJw6GGVEpH2xEaBVnOwjYV7GA7QqOgUg63HUE0YiHVlBYkyCPqktzhqq3tCKIR66gOsx2hUWhDa4JyhbKohjQcakin9bAdoVHQTYoOPpEQMaSbSK3Hg06TWhd2HaO72o6Q9EI0pZNqZzuGaMS6qo6kknLwCUWdFOlutiOIBCYNhxpSad1AyQYr1pQ0doRlSg6E48BFpR1tO4Ro5IqU7CDHWqE6smxsHCEscZXL0aqL7RhJTxoO4kCk4VBDSgVQaQW2YyQ9ucJB2Fa2DsoOciyp1K4onWo7hmjkesgOcsz10EfZjiCEHAzHQQ9p4IoDkIZDLegmvWxHSGoq2B7lyuA+wi7lNEOldLYdI6np9N62IwhBby1X2cRaL93ddgQh6KXlhGEsKRQ9pdbFAUjDoRZ06EzbEZKaLF+RKGRdjC2dIctX2JevWlGgjrAdI2m5uJymj7MdQwj66xPQcsgTM71Ud1ooGYRXVE+qrxZ001NAp9uOkbR0aKDtCEIAsi7GlEpFh06znUIIAAbqU2xHSFrH6SKyVDPbMYSgpcqmt5KrHGJlgHOy7QgiwUnDoRaUTkFnnGo7RnLSGeimv7SdQggAdNPjwZFufSzojJNRuontGEIAMFB2lGPmbGnmiAQitR47Z+uTbUcQCU4aDrWkQ2fbjpCUdOgMlA7ajiEEAEq56FB/2zGSkmxDRSLppbqTR0vbMZLSQDkIEQlEGmCx0U7lU6DlKSDiwKThUEtO5vlyW0UMOFlDbUcQYj9Oc1kn651Kxcm80HYKIcoppbjYkSZYfTtWFdFRH2Y7hhDluulO8ijcGBiqz7EdQTQA0nCoJeVk4GQOth0juQTy5WyySDi66amoYHvbMZKKzjwf5WbZjiHEfi53LkTJo3Dr1RWu7CeJxHOFIw3v+qTRjHBlmYqDk4bDIXByrrEdIam42VehlGM7hhD7UUrh5FxtO0ZScWXbKRJQJ92OU/WxtmMkjRyyGKLlSTQi8VzsnEMzMmzHSBoD9ckcpnJtxxANgDQcDoFuUoRKP952jOSgUnFyRtpOIUSVnOaXyy1U9UQ16Y1O/4XtGEJU6QbnUtsRksYVzmBSVYrtGEJU0lQ1Ybhzvu0YSeN62W6KGpKGwyFyW99pO0JScHKuRrk5tmMIUSXlZuHkXGs7RlJwW8k2UySu/vpEeqqjbMdo8DJI50Z3mO0YQlTrFncEaaTajtHgHad6cLLTx3YM0UBIw+EQORmnopv2sx2jYdMh3Fa/s51CiANyW94Gjow7UBcq/XicZmfZjiFEtZRS3OeOsh2jwbvFHUELJY8UFokrT7XkekcGha6rBwKyvRQ1Jw2HOnDz7gcZaOqQuS1Hodxs2zGEOCDlZpY1HcQhC+Q9YDuCEAfVz+krYznUQUuac7Mz3HYMIQ7qNvdKsgjZjtFgna1P4VhdZDuGaECk4VAHukkPtDzi7dC4rXFa3GQ7hRA14rS4DgL5tmM0SDp0Djq9r+0YQtTI/e4oeWLFIbrDvYamqontGEIcVKYKcbt7le0YDZKDw1j3ZtsxRAMjDYc6CuQ9DE6m7RgNTqDNn1GODMYnGgal0wi0edx2jIZHZxBo82fbKYSosSLdjWudi23HaHB6qwKudi6yHUOIGrvRGcbRqovtGA3Ozc5ldNOdbMcQDYw0HOpIBfNx8x6xHaNB0ZkX4siVIaKBcZqdjc6SA5HacPP+gAoeZjuGELVyvzuKw1Vb2zEajBSCPBu4H0ceby0akIAK8GzgAQK4tqM0GF1UB+5xb7AdQzRA0nCoB272ZeiQPHO6RtwWBNr8xXYKIQ5JIP9RcOWZ0zWhM07FzZFLVkXD00SlMT5wn9xaUUN3u9dzpO5oO4YQtVaoj+S3jjyavSYcHJ4NPCCPvBWHRBoO9STQ9ilwZADEgwm0GYdyW9iOIcQhUW5WWa3LgciBOVkE2j5tO4UQh+xE3YsbHXm848H0VYWMckbYjiHEIfsf92p6qG62YyS80c7l9NFH244hGihpONQTFcgj0H4SqIDtKAnLafVbnMzzbMcQok6cZmfhth5jO0YCcwi0f1lupRAN3oPuaH6p5Tnz1cmnFZODf5FbKUSDFlABXgs+TivkpGF1ztAn8L/ujbZjiAZMGg71yMn4JW6+DJBWFR06G7f1vbZjCFEvnFZj0M0usB0jIbl5D+FknGY7hhB15iqXSYFH6aDa2I6ScFJJYUrwcXKVXLEoGr62Kpe/Bf9CEDlp+HNHqA68HPijNBZFnUjDoZ65OVfjZMv9YPtSqUcRaPcCSsll6CI5KKUItHsOlVZoO0pCcZoPx20pZ0FE8shWmbwZeJIM5KlK+3omMJaeurvtGELUm2N1EePce2zHSCiZhHgzMI5mKsN2FNHAScMhBtw2j6GbDbIdIyGoYDuCh7+DcmRjJZKL0k0IHv42Kni47SgJQYfOwm37pO0YQtS7broTrwUeJxUZLA3gAXc0v3YG2o4hRL0b7p7P3e71tmMkhCak8UZwHJ11e9tRRBKQhkMMKOUSaPcyOnSW7Sh2BfIJdPwAFZTHi4nkpAJ5BDv9HRVsZzuKVTrjNALt/4aSMWxEkurn9OW1wF9IIWg7ilX3uDdwq3uF7RhCxMwY99pG/+SKNFJ5IzCOE3RP21FEkpCGQ4woHSTQ/jV0s3NtR7FCBdsT7DQDnSJnf0VyU8HDCHaajgo2zsfC6dBZBDq8idJy9lckt/7OibwRGEcaqbajWHGfewt3utfYjiFEzI0N3MwY51rbMaxoShPeCTxFP6ev7SgiiShjjLEdIpkZEyX635vxNj9vO0rcqLQeBDu8jgrm244iRNyYyDpK//MrTMkXtqPEjdP8Mtw2T6J04z7rKxqXz/2v+HXpLWxgi+0ocRHA5TF3DFe5Q2xHESKuno5O4vboI0SJ2o4SF7m0YErwCXrrAttRRJKRhkOcRDc+Q3T1bZDkGy2dOYTAYRNQOs12FCHizvh7iKy6Dn/rJNtRYszBzfsDbsubbAcRwoqVZi2DS29gkfnWdpSYyiGLycHHOFH3sh1FCCtmenMZGhnNVnbYjhJTvVR3pgSfIE+1tB1FJCFpOMSRVzyLyIqh4CXjWRGF2/r3uK3/x3YQIayLbniU6Jq7AN92lPrnZBJo9zJO6HTbSYSwapcpYWTkLt7yP7IdJSYK1BG8HhhHey1XK4rGbbm/kgsjN/CN+cF2lJj4tR7IM4GxpCq5NVLEhjQc4syUriKy6lr84um2o9QbFWyH2/YZnIxTbEcRImH4Oz8lsvJqTGny7KDopifjtn0GndLedhQhEoIxhme917gz+ig7KbEdp14oFNc5l3CfewtNlFytKATATlPCndE/86w3BUNyHDqFaMpD7m1c4Q62HUUkOWk4WBLd/DzR1XeA35Av0VI42SNx8x5EOU1thxEi4Ri/hOiau/E2PQUNeQdFN8XNexAneyRKKdtphEg4K/zV/CZ6N3P8hj2Gy+GqLRMC98vo9EJUY5b3T34TuZuVrLEdpU5O08fxdOBe2qpc21FEIyANB4tM6Soiq2/F3/6u7Si1plK74ub/GSejn+0oQiQ8f+cnRP47CrNnse0otaZDA3DzH5WrGoQ4CGMMz3lTuDf6JJvYajtOraQQ5FrnYu5xb5CrGoQ4iJ2mhN9HH2eC9xqRBjY2Wyuy+V/3Ji53L7QdRTQi0nBIAP6uuUTW3IXZ9antKAcXaIvb+m6c5peilDxVVYiaMsbH3zqZ6LqxmNIfbcc5KJXel0DuA+imx9uOIkSDUmx28Vj0BZ7wXkr42yw0mkv0OdwduJ52Ks92HCEalOX+Su6NPsnr/gcJf5tFiKbc4o7gZucy0lUT23FEIyMNhwTi7fg70XX3Y0rm2Y5SWSAPt8XNODnXoLQMKiPEoTJ+Kd7mZ4lueBQiq23HqUSlFeG2HoPT7GzbUYRo0DaYzTwcncBE7y12sdt2nP1oNOfoU7jHvYGjdGfbcYRo0Bb63zA2+iTv+3MSrvHQlCZc6QzhdvcqclSW7TiikZKGQwLyd80luulp/G3vgAlbzaLSj8PNuRqdeSFKBaxmESKZGBPF3/YO0U3jMbs+sRtGBdHNBuHmXCNXNAhRz7aZHbzgvcnz3ht8b+xe3ZRNJpc6g7jGuZgOuo3VLEIkm+X+Sp7xJvOq9y5b2G41SxfVgaucXzHcOZ+QknHWhF3ScEhgJroFb9vr+Nun4u+cA6Y0Lp+r0grRoQE4WRehU4+My2cK0Zj5e77D3/Ya3vZpmN3z4/OhKoBOPxHd7BycrCEoNyc+nytEI2WM4R/+l7ztf8w0bzarWBuXz80kxBn6BAY5p3KO7kdQTh4IEVN7TJj3/Jm8683gI/8ztlMcl89tr9owUP+SC5z+HK97xOUzhagJaTg0EMYrxi+ejr/jA/ySLzF7vgX8+pl5IB+dVoQOnY4TGoAKtq2f+Qohas2Ursbb8T5+8cf4Jf+qx9suNCqlM6pJb5zQmejQGSgnVE/zFkLU1iL/G6b5c5jjf8ECfynbqJ+nVqWSQoE6gmN1EQP0yZyge+Aqt17mLYSonYiJ8A9/Hu/7s5nrL+DfZhmlROpl3lmEOEZ342Tdh7P1KXJ7lEhY0nBooIy3C7N7If7u+Zjw95jIOkxkLUTXYqIbwS8FPECDcsHJQgVyUYHWKLc1KngYqkkROq0IFWhl++sIIaphIhvK6rxkPiaysrzWTWQdeFvARClrPjqgg+Dk7K31vfUe7IhuUoRKO0YeXytEgjLG8INZxXyzhEX+t6w261nHRtaZTawzGylmF1E8DAYXhzRSaaVyaE0OuaoluaoFXVVHeuhudFOdpMEgRIKKmAhfm+/5yv+ab8wPrDUbWWc2so5NrDeb2EOYCFEUCheHDNLJVS1orVrQmhbkq1YU6iMpUt3ktijRYEjDQQghhBBCCCGEEPVOnmsohBBCCCGEEEKIeicNByGEEEIIIYQQQtQ7aTgIIYQQQgghhBCi3knDQQghhBBCCCGEEPVOGg5CCCGEEEIIIYSod9JwEEIIIYQQQgghRL2ThoMQQgghhBBCCCHqnTQchBBCCCGEEEIIUe+k4SCEEEIIIYQQQoh69//GMbbWVyMu8wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "({'ok': 64.28984788359789,\n", + " 'QC outliers': 35.707671957671955,\n", + " 'missing (gaps)': 0.0,\n", + " 'missing (individual)': 0.00248015873015873},\n", + " {'repetitions outlier': 29.658564814814813,\n", + " 'gross value outlier': 4.869378306878307,\n", + " 'persistance outlier': 1.0085978835978835,\n", + " 'in step outlier group': 0.17113095238095238,\n", + " 'duplicated timestamp outlier': 0.0,\n", + " 'invalid input': 0.0,\n", + " 'in window variation outlier group': 0.0,\n", + " 'buddy check outlier': 0.0,\n", + " 'titan buddy check outlier': 0.0,\n", + " 'sct resistant check outlier': 0.0},\n", + " {'duplicated_timestamp': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'invalid_input': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'repetitions': {'not checked': 0.0,\n", + " 'ok': 70.34143518518519,\n", + " 'outlier': 29.658564814814813},\n", + " 'gross_value': {'not checked': 29.658564814814813,\n", + " 'ok': 65.47205687830689,\n", + " 'outlier': 4.869378306878307},\n", + " 'persistance': {'not checked': 34.52794312169312,\n", + " 'ok': 64.46345899470899,\n", + " 'outlier': 1.0085978835978835},\n", + " 'step': {'not checked': 35.53654100529101,\n", + " 'ok': 64.29232804232805,\n", + " 'outlier': 0.17113095238095238},\n", + " 'window_variation': {'not checked': 35.707671957671955,\n", + " 'ok': 64.29232804232805,\n", + " 'outlier': 0.0},\n", + " 'buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},\n", + " 'titan_buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},\n", + " 'titan_sct_resistant_check': {'not checked': 100.0,\n", + " 'ok': 0.0,\n", + " 'outlier': 0.0},\n", + " 'is_gap': {'not checked': 0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'is_missing_timestamp': {'not checked': 0,\n", + " 'ok': 99.99751984126983,\n", + " 'outlier': 0.00248015873015873}})" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.get_qc_stats(obstype='temp', make_plot=True)" + ] + }, + { + "cell_type": "markdown", + "id": "db416ba5-b549-469c-bb45-f5a344f19d52", + "metadata": {}, + "source": [ + "## Quality control exercise\n", + "For a more detailed reference you can use this [Quality control exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Quality_control_excercise_02.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/examples/using_obstypes.ipynb.txt b/docs/_build/_sources/examples/using_obstypes.ipynb.txt new file mode 100644 index 00000000..bdbccb5e --- /dev/null +++ b/docs/_build/_sources/examples/using_obstypes.ipynb.txt @@ -0,0 +1,674 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e4b8a66f-c3df-400b-a1d1-c031ff7d5f1c", + "metadata": {}, + "source": [ + "# Working with specific observation types\n", + "In this demo, you can find a demonstration on how to use Observation types." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "80d48024-5cda-43de-8f32-9b231f1243c7", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "#Initialize an empty Dataset\n", + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "24e53b6d-f2e9-4ac0-b175-b765c16988a6", + "metadata": {}, + "source": [ + "## Default observation types\n", + "\n", + "An observation record must always be linked to an *observation type* which is specified by the [Obstype class](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.obstypes.Obstype.html). \n", + "An Obstype represents one observation type (i.g. temperature), and it handles unit conversions and string representations of an observation type. \n", + "\n", + "By default a set of standard observationtypes are stored in a Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "361a4341-e217-411d-a3b8-9c0829b0de92", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "03a66ed6-de2a-44d6-8f4e-5fb577f0d0d5", + "metadata": {}, + "source": [ + "From the output it is clear that an Obstype holds a **standard unit**. This standard unit is the preferred unit to store and visualize the data in. The toolkit will convert all observations to their standard unit, on all import methods. *(This is also true for the Modeldata, which is converted to the standard units upon import)*.\n", + "\n", + "A **description** (optional) holds a more detailed description of the observation type. \n", + "\n", + "Multiple **known units** can be defined, as long as the conversion to the standard unit is defined. \n", + "\n", + "**Aliases** are equivalent names for the same unit. \n", + "\n", + "At last, each Obstype has a unique **name** for convenions. You can use this name to refer to the Obstype in the Dataset methods.\n", + "\n", + "As an example take a look at the temperature observation and see what the standard unit, other units and aliases looks like:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "14e49af0-77cc-4539-8a59-8374d06c9d18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obstype instance of temp\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "temperature_obstype = your_dataset.obstypes['temp'] #temp is the name of the observationtype\n", + "print(temperature_obstype)\n", + "\n", + "temperature_obstype.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "f6cdac58-d288-4af0-990e-e1e5403fea0c", + "metadata": {}, + "source": [ + "## Creating and Updating observations\n", + "If you want to create a new observationtype you can do this by creating an Obstype and adding it to your (empty) Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b80f7106-f6ec-45f2-a5a5-ef175480fcda", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "co2 observation with: \n", + " * standard unit: ppm \n", + " * data column as None in None \n", + " * known units and aliases: {'ppm': [], 'ppb': []} \n", + " * description: The CO2 concentration measured at 2m above surface \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "co2_concentration = metobs_toolkit.Obstype(obsname='co2',\n", + " std_unit='ppm')\n", + "\n", + "#add other units to it (if needed)\n", + "co2_concentration.add_unit(unit_name='ppb',\n", + " conversion=['x / 1000'], #1 ppb = 0.001 ppm\n", + " )\n", + "\n", + "#Set a description\n", + "co2_concentration.set_description(desc='The CO2 concentration measured at 2m above surface')\n", + "\n", + "#add it to your dataset\n", + "your_dataset.add_new_observationtype(co2_concentration)\n", + "\n", + "#You can see the CO2 concentration is now added to the dataset\n", + "your_dataset.show()\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "caa6522b-f0d7-49ac-96a8-7ace2d564d88", + "metadata": {}, + "source": [ + "You can also update (the units) of the know observationtypes :" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5a9e5569-d917-48a6-8c9c-5b44a70f4a63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit'], 'your_new_unit': []} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "your_dataset.add_new_unit(obstype = 'temp', \n", + " new_unit= 'your_new_unit',\n", + " conversion_expression = ['x+3', 'x * 2'])\n", + "# The conversion means: 1 [your_new_unit] = (1 + 3) * 2 [°C]\n", + "your_dataset.obstypes['temp'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "38f08e3c-88d7-484d-823e-38b324d6a940", + "metadata": {}, + "source": [ + "## Obstypes for Modeldata\n", + "\n", + "Obstypes are also used in Modeldata to interpret and convert the modeldata-data. Similar as with a Dataset, a set of default obstypes is stored in each Modeldata. To add a new band, and thus a new obstype, to your modeldata you can you this method:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ee043b1b-f195-484b-a752-90bb5e501ada", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['cumulated_precip'] \n", + " * Data has these units: ['m'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n", + "\n", + " ------ Known gee datasets -----------\n", + "The following datasets are found: \n", + "\n", + " --------------------------------\n", + "global_lcz_map : \n", + "\n", + " No mapped observation types for global_lcz_map.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'}\n", + "\n", + " --------------------------------\n", + "DEM : \n", + "\n", + " No mapped observation types for DEM.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'}\n", + "\n", + " --------------------------------\n", + "ERA5_hourly : \n", + "\n", + "temp observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'temperature_2m'} \n", + " * standard unit: Celsius \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + "pressure observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'surface_pressure'} \n", + " * standard unit: pa \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + "cumulated_precip observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'total_precipitation'} \n", + " * standard unit: m \n", + " * description: Cumulated total precipitation since midnight per squared meter \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''}\n", + "\n", + " --------------------------------\n", + "worldcover : \n", + "\n", + " No mapped observation types for worldcover.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'}\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "era = metobs_toolkit.Modeldata(modelname='ERA5_hourly')\n", + "era.obstypes\n", + "#Create a new observation type\n", + "precipitation = metobs_toolkit.Obstype(obsname='cumulated_precip',\n", + " std_unit='m',\n", + " description='Cumulated total precipitation since midnight per squared meter')\n", + "\n", + "#Add it to the Modeldata, and specify the corresponding band.\n", + "era.add_obstype(Obstype=precipitation,\n", + " bandname='total_precipitation', #look this up: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands \n", + " band_units='m',\n", + " band_description=\"Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). ...\",\n", + " )\n", + "\n", + "\n", + "# Define locations\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "# Define a time period\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "#Extract the data\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=[precipitation.name]\n", + " )\n", + "era.get_info()\n" + ] + }, + { + "cell_type": "markdown", + "id": "4d97ff9f-940f-4d4d-8052-9e8ad249850e", + "metadata": {}, + "source": [ + "## Special observation types\n", + "### 2D-Vector fields\n", + "At a specific height, the wind can be seen (by approximation) as a 2D vector field. The vector components are often stored in different bands/variables in a model. \n", + "\n", + "A common problem is that observation measures the amplitude and direction of a vectorfield, while the models store the vector components. So we need to transform the vector components to an amplitude and direction. \n", + "\n", + "This can be done in the MetObs toolkit by using the **ModelObstype_Vectorfield**. This class is similar to the ModelObstype class but has the functionality to convert components to amplitude and direction. \n", + "\n", + "By default, the *wind* obstype is stored in each Modeldata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "53e08158-082f-4bb0-957c-ed97f07d8b84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n" + ] + } + ], + "source": [ + "era = metobs_toolkit.Modeldata(modelname='ERA5_HOURLY')\n", + "era.obstypes['wind'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "633d3eb8-78d2-4b68-a198-a0a58d312f4c", + "metadata": {}, + "source": [ + "When extracting the wind data from era5 it will\n", + " 1. Download the u and v wind components for your period and locations.\n", + " 2. Convert each component to its standard units (m/s for the wind components)\n", + " 3. Compute the amplitude and the direction (in degrees from North, clockwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a1c15608-02da-453f-a58c-51695230fdc1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['wind_amplitude', 'wind_direction'] \n", + " * Data has these units: ['m/s', '° from north (CW)'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=['wind']\n", + " )\n", + "era" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e7750ef4-4ff7-4fa5-8458-697eb51981cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8DklEQVR4nOzdd3iT5f7H8Xe696K00FIKLXtTKrKXiDLEBYqiDCduxe1xHReOg6L+FMWFA1BBFBVcIFM2Ze/ZFuigLd07ye+PQqCy2tLm6fi8riuXyZNnfHJOaZNv7vv+mqxWq5Uq5uDgQGJiIkFBQTg4OJxzP5PJhNlsruo4IiIiIiIiIiIiVcpkj6KbiIiIiIiIiIhIXXLuYWdVJD8/396XFBERERERERERsSu7j3Rzc3Oja9eu9O3bl379+tGjRw/c3d3tGUFERERERERERKRK2b3otmLFCpYtW8aSJUtYuXIlxcXFREdH24pwl19+uT3jiIiIiIiIiIiIVDpD13QrLi5m3bp1fPzxx8yYMQOLxaJGCiIiIiIiIiIiUuM5GXHRPXv2sGTJEtutoKCAYcOG0a9fPyPiiIiIiIiIiIiIVCq7j3QLDQ0lLy+Pfv360a9fP/r27UuHDh0wmUz2jCEiIiIiIiIiIlJl7N69tH79+uTm5pKYmEhiYiJJSUnk5eXZO4aIiIiIiIiIiEiVMWRNt/T0dJYtW8bSpUtZunQpO3bsoFOnTvTv359XX33V3nFEREREREREREQqlaGNFFJTU1myZAnz5s1j1qxZaqQgIiIiUs01adKEdu3a8euvvxodpZSTawMvWbLE0BwiIiIiJ9l9euncuXN58MEH6dChA8HBwdxzzz1kZ2czefJkYmJi7B1HREREpMpNnz4dk8l0ztvq1asBztju4+ND3759mT9//jnPnZ6ejpubGyaTiZ07d551nxdffPGs13Vzc6uS1ysiIiIiBnQvnTBhAn369OGuu+6ib9++tG/f3t4RRERERAzx0ksv0bRp0zO2N2vWzHb/8ssvZ8yYMVitVmJjY5k6dSpXXXUVv/32G1dcccUZx86ePRuTyUSDBg2YMWMGr7zyyjmvP3XqVLy8vGyPHR0dL/IViYiIiMi52L3olpycXKb9Xn/9dSZMmICfn1/VBhIRERGxk8GDBxMdHX3efVq0aMEtt9xie3z99dfTpk0b3n333bMW3b755huGDBlCeHg4M2fOPG/RbcSIEQQGBlb8BVRDubm5eHh4GB1DRERE5Ax2n15aVq+99hppaWlGxxARERExVOvWrQkMDGT//v1nPBcXF8fy5csZNWoUo0aN4uDBg6xcufKc57JarWRmZlIZS/quWLGCrl274ubmRkREBF999dUZ+xw4cICRI0cSEBCAh4cH3bp1O2Oq7Mmpt4cOHSq1fcmSJZhMplJrtPXr14927dqxYcMG+vTpg4eHB88888wZ183OzsbT05OHHnrojOcOHz6Mo6MjkyZNqtgLFxERESmjalt0M7C/g4iIiEiVyMjIICUlpdQtNTX1gsccP34cf3//M56bNWsWnp6eDBs2jK5duxIZGcmMGTPOea6IiAh8fX3x9vbmlltuISkpqUKvY9++fYwYMYLLL7+cyZMn4+/vz7hx49i+fbttn6SkJHr06MEff/zBvffey6uvvkp+fj7Dhw/nxx9/rNB1oaQR1+DBg+nUqRNTpkyhf//+Z+zj5eXFtddey3fffXdGk65Zs2ZhtVoZPXp0hTOIiIiIlIXdp5eKiIiI1FUDBw48Y5urqyv5+fm2x/n5+aSkpGC1WomLi+PZZ5/FbDYzYsSIM46dMWMGV199Ne7u7gDceOONTJs2jXfffRcnp1Nv8/z9/bn//vvp3r07rq6uLF++nA8++IC1a9eyfv16fHx8yvU6du/ezbJly+jduzcAN9xwA2FhYXzxxRf873//A0qWCklKSmL58uX06tULgDvvvJMOHTowceJErr76ahwcyv/9b2JiIh999BF33333efcbM2YMM2bM4K+//uLKK6+0bf/mm2/o06cPjRs3Lve1RURERMpDRTcRERERO/nggw9o0aJFqW3/bmbw2Wef8dlnn9keOzs788QTTzBx4sRS+23ZsoWtW7eWmiZ500038dprr/HHH38wdOhQ2/Z/T7O8/vrr6dq1K6NHj+bDDz/kqaeeKtfraNOmja3gBlC/fn1atmzJgQMHbNsWLFhA165dbQU3KBmBdtddd/H000+zY8cO2rVrV67rQkmRcvz48Rfcb+DAgYSEhDBjxgxb0W3btm1s2bKFTz75pNzXFRERESmvaju9VERERKS26dq1KwMHDix1+/f0yKuvvpq//vqL+fPn8+KLL2IymcjNzT1jVNg333yDp6cnERER7Nu3j3379uHm5kaTJk3OO8X0pJtvvpkGDRqwcOHCcr+Os40S8/f35/jx47bHsbGxtGzZ8oz9WrdubXu+IkJDQ3Fxcbngfg4ODowePZqffvqJ3NxcoGRkoJubGyNHjqzQtUVERETKQyPdRERERKqRRo0a2aahDhkyhMDAQO6//3769+/PddddB5SsfTtr1ixycnJo06bNGedITk4mOzsbLy+v814rLCysQo2r/j0676SKrMlrMpnOuv3fa7GddHIqbVmMGTOGt956i59++ombbrqJmTNnMmzYMHx9fcudU0RERKS87DLSbeLEieTk5ACwbNkyiouLL3hM7969y/WmSkRERKQ2uvvuu4mMjOTZZ5+1FbWWLl3K4cOHeemll5g9e3ap27Rp08jNzeWnn34673mtViuHDh2ifv36VZI7PDyc3bt3n7F9165dtucBW4OI9PT0UvtVdCTc6dq1a0fnzp2ZMWMGy5cvJy4ujltvvfWizysiIiJSFnYpur3//vtkZ2cD0L9//zJ9o7pgwQIaNmxY1dFEREREqjUnJyceffRRdu7cybx584BTU0sff/xxRowYUep255130rx581JTTI8dO3bGeadOncqxY8dKNRmoTEOGDGHt2rWsWrXKti0nJ4dp06bRpEkT2wi9yMhIoOSL2ZPMZjPTpk2rlBy33norf/75J1OmTKFevXoMHjy4Us4rIiIiciF2mV7apEkT3nvvPQYNGoTVamXVqlVnbXsP0KdPH3tEEhEREbG73377zTbS63Q9evQgIiLinMeNGzeO559/njfeeIPBgwfzww8/cPnll+Pm5nbW/YcPH867775LcnIyQUFBhIeHc+ONN9K+fXvc3NxYsWIF3377LZ06dbpgF9CKeuqpp5g1axaDBw/mwQcfJCAggC+//JKDBw/yww8/2Naoa9u2Ld26dePpp58mLS2NgIAAvv322zLNjCiLm2++mSeeeIIff/yRe+65B2dn50o5r4iIiMiF2KXo9tZbbzFhwgQmTZqEyWTi2muvPet+JpPpnOt3iIiIiNR0zz///Fm3f/HFF+cturm7u3P//ffz4osvMn/+fNLT07nqqqvOuf9VV13F5MmT+fbbb3nwwQcZPXo0K1eu5IcffiA/P5/w8HCeeOIJ/vOf/+Dh4XHRr+tsgoODWblyJU8++STvv/8++fn5dOjQgV9++aVUZ1UoaXBw99138/rrr+Pn58ftt99O//79ufzyyyslx6BBg1iwYIGmloqIiIhdmawVWfG2grKzs/Hx8WH37t0EBQWddR8tbCsiIiIilenaa69l69at7Nu3z+goIiIiUofYtXupl5cXixcvpmnTpjg5qXGqiIiIiFSthIQE5s+fz3/+8x+jo4iIiEgdY9eRbieZzWZ++ukndu7cCUCbNm24+uqrz9l+XkRERESq1rFjx867zIeLiwsBAQF2THRxDh48yD///MOnn37KunXr2L9/Pw0aNDA6loiIiNQhdh9utm/fPoYOHcrhw4dp2bIlAJMmTSIsLIz58+fbOliJiIiIiP1ccsklxMbGnvP5vn37smTJEvsFukhLly5l/PjxNG7cmC+//FIFNxEREbE7u490GzJkCFarlRkzZti+LU1NTeWWW27BwcGB+fPn2zOOiIiIiAD//PMPeXl553ze39+fLl262DGRiIiISM1m96Kbp6cnq1evpn379qW2b968mZ49e5KdnW3POCIiIiIiIiIiIpXO7tNLXV1dycrKOmN7dnY2Li4u9o5zQRaLhaNHj+Lt7Y3JZDI6joiIiIiIiIiIGMhqtZKVlUVISAgODg7n3M/uRbdhw4Zx11138dlnn9G1a1cA1qxZw4QJExg+fLi941zQ0aNHCQsLMzqGiIiIiIiIiIhUI/Hx8TRq1Oicz9t9eml6ejpjx47ll19+wdnZGYDi4mKGDx/O9OnT8fX1tWecC8rIyMDPz4/4+Hh8fHyMjiMiIiIiIiIiIgbKzMwkLCyM9PT089ax7F50O2nfvn3s3LkTgNatW9OsWTMjYlxQZmYmvr6+ZGRkqOgmIiIiIiIiIlLHlbVWZPfppSc1a9bsvIU2Hx8fNm3aREREhB1TiYiIiIiIiIiIXLxzr/ZmMIMG4ImIiIiIiIiIiFy0alt0ExERERERERERqalUdBMREREREREREalkKrqJiIiIiIiIiIhUsmpbdDOZTEZHEBERERERERERqZBqW3RTIwUREREREREREamp7F50e+mll8jNzT1je15eHi+99JLt8W+//UZoaKg9o4mIiIiIiIiIiFQKk9XOQ8ocHR1JSEggKCio1PbU1FSCgoIwm832jHNBmZmZ+Pr6kpGRgY+Pj9FxRERERERERETEQGWtFdl9pJvVaj3rem2bN28mICDA3nFEREREREREREQqnZO9LuTv74/JZMJkMtGiRYtShTez2Ux2djYTJkywVxwREREREREREZEqY7ei25QpU7Bardx2223897//xdfX1/aci4sLTZo0oXv37vaKI1LliswWnB2rba8SEREREREREalCdiu6jR07FoCmTZvSo0cPnJ2dK+W8y5Yt46233mLDhg0kJCTw448/cs0119iet1qtvPDCC3zyySekp6fTs2dPpk6dSvPmzSvl+iJn88OGw3yy/ABf3taVYB83o+OIiIiIiIiIiJ3ZfRhO3759cXR0ZM+ePaxYsYJly5aVupVXTk4OHTt25IMPPjjr82+++SbvvfceH330EWvWrMHT05MrrriC/Pz8i30pIme1aGcST/ywhV2JWYz8aBVxqWd26xURERERERGR2s3u3UtXr17NzTffTGxsLP++tMlkuqjupSaTqdRIN6vVSkhICI8++iiPPfYYABkZGQQHBzN9+nRGjRp1xjkKCgooKCiwPc7MzCQsLEzdS6VMHvluE4383fkh5jBH00sKu0Hernxzx6W0CPY2OJ2IiIiIiIiIXKxq2710woQJREdHs23bNtLS0jh+/LjtlpaWVqnXOnjwIImJiQwcONC2zdfXl0svvZRVq1ad9ZhJkybh6+tru4WFhVVqJqm9dhzN5MeNR3j/733U83SlWZAXAMlZBdzw8So2x6cbG1BERERERERE7MbuRbe9e/fy2muv0bp1a/z8/EoVuE5vrlAZEhMTAQgODi61PTg42Pbcvz399NNkZGTYbvHx8ZWaSWqvORsO2+7fcEkY39/dnQ6NSn6m03OLuPmT1azcn2JUPBERERERqcGyC4rPmC0mItWb3Ytul156Kfv27bP3ZcvM1dUVHx+fUjeRCykstvDTpiMAuDg5MLxDCAGeLsy441K6RQQAkFNoZtwX6/hrR5KRUUVEREREpAb5fVsif+1IZPQnq3nw201k5RcZHUlEyshu3UtPeuCBB3j00UdJTEykffv2Z3Qx7dChQ6Vdq0GDBgAkJSXRsGFD2/akpCQ6depUadcR+XtXMmk5hQAMahOMr0fJz7W3mzPTx3fl/pkxLNyZTGGxhQnfbODtGzpydadQIyOLiIiIiEg1V2y28PKvOziSngfA5sMZbDmczvs3daZDIz9jw4nIBdm96Hb99dcDcNttt9m2mUwmrFbrRTdS+LemTZvSoEEDFi1aZCuyZWZmsmbNGu65555Ku47I6VNLR0aXXgfQzdmRqbd04bHZm5m36SiuTg6EBXjYO6KIiIiIiNQwC7Yl2gpuTg4mii1WYlNzuX7qSp4a3JrbejbBZDIZnFJEzsXuRbeDBw9W6vmys7NLTVc9ePAgmzZtIiAggMaNG/Pwww/zyiuv0Lx5c5o2bcpzzz1HSEiIrcOpyMU6llXA4t3JADTwcaNXs8Az9nF2dOCdGzoR4OnCZa2CiWrsb++YIiIiIiJSg1itVj5ZdsD2+H8jOzB9ZSyb4tMpMlt5+dcdrNqfwlsjOuLv6WJgUhE5F7sX3cLDwyv1fOvXr6d///62xxMnTgRg7NixTJ8+nSeeeIKcnBzuuusu0tPT6dWrF7///jtubm6VmkPqrnmbjmC2lCxoel1UKI4OZ/+mycHBxAtXtT1j+8nFUPUNlYiIiIiInLTmYBpbj2QA0C7Uh6s7hTK0Qwj/+2M3H58oxi3cmcyQ95bz7qjOdG0aYGRcETkLuzdSAPj666/p2bMnISEhxMbGAjBlyhTmzZtX7nP169cPq9V6xm369OlASSHjpZdeIjExkfz8fBYuXEiLFi0q8+VIHWa1Wpm9/tTU0hFdGpX7+Ffn7+SpH7baCnciIiIiIiKnj3K7s3cEJpMJZ0cHnh7Smi/GX0LAidFtCRn5jJq2iv/7e69RUUXkHOxedJs6dSoTJ05kyJAhpKen29Zw8/PzY8qUKfaOI3JR4tPyOJCSDUCXcH8i6nuV6/gPFu/j0xUH+W59PA/MiqGguPLWNBQRERERkZrr8StbMqJLI5rU82BI+4alnuvfMojfHupNt4iS0W0WK2TkqaupSHVjsp6c22Ynbdq04bXXXuOaa67B29ubzZs3ExERwbZt2+jXrx8pKSn2jHNBmZmZ+Pr6kpGRgY+Pj9FxpBo6nlPIvE1HCPFzZ1DbBuU6dv6WBB7+biNF5pJ/hr2bB/LxrV3wcLH7zG8REREREamGCostuDidfbyM2WLl//7ex9I9yXx7V/dz7icilaustSK7/4s8ePAgnTt3PmO7q6srOTk59o4jctH8PV0Y17NpuQtuAEM7NOSTMdG4OZf8U1y+N4WbP1nD+kNplR1TRERERERqoPMV0hwdTDw0sDnf331mwS0m7jhFZktVxxOR87B70a1p06Zs2rTpjO2///47rVu3tnccEcP1axnE17dfirebE/4ezuxNzmLER6sYMXUlf+1IwqK13kRERERE5DycHEt/tN9xNJNR01Zz48erOHw816BUImL3OWwTJ07kvvvuIz8/H6vVytq1a5k1axaTJk3i008/tXcckQorNlvO+ONWUZc0CeDbu7rx86ajtk5E62OPs/6r9TQL8uKuPhFc0ylUw8VFRERERGqxvEIzoz9dzbVRjRgR1Qh3F8dyn8NisTLx+00UFluIiUtn0DvLGNAqiKaBnvh5uBDg6Yy/hwv+Hi4EeLrg7+mCp4sjJpOpCl6RSN1m9zXdAGbMmMGLL77I/v37AQgJCeG///0vt99+u72jXJDWdJOzScrMZ/C7yxnaviGjuobRNsS3Us5bWGxh3qYjTFt2gL3J2aWea+Djxm29mnBT18Z4uzlXyvVERERERKT6+Hp1LM/9tA2Am7qGMem6DhU6z6b4dB6YFUN8Wh5NAz04mHL+0W7OjiYi63vx+8N9Sm3PzC8iv8hMkLdbhXKI1FZlrRUZUnQ7KTc3l+zsbIKCgoyKcEEqusnZTF2ynzd+3wXAgwOaMXFQy0o9v8ViZfHuZD5aup91h46Xes7bzYn7+jdjQt/ISr2miIiIiIgYx2yxMvDtpRxMKVnr/NcHetEutOJf7mfmFzFpwU783F2YunT/BfdvHuTFXxP7lto2acFOvlkdy4S+kdzRO6JCI+9EaqOy1ooMbZHo4eGBh4eHkRFEys1qtTJnQ7zt8YguYZV+DQcHE5e1Duay1sFsiE3j46UH+HNHEgBZ+cUUFmtBVBERERGR2mThziRbwa1HZL2LKrgB+Lg5M+m6DhzPKWRI+4Yczy3keG4haTmFHM8t4nhO4WnbimgaWPqzeXxaLl/8c4hCs4XJf+1hxpo4HruiJdd1DsXBQVNRRcrC7kW3pKQkHnvsMRYtWkRycjL/HmhnNpvtHUmkXDbGp7P/WMkfw0ubBtC4XtUWjruEBzBtTAD7krP5ZNkBft+eyK3dwkvtk5yVz+HjeUQ19q/SLCIiIiIiUjU+ObG2M8CdfSIq7bz+J9ZtKy9PVyduvCSMmWvjMFusJGbm89jszXy+4iDPDm1Nj2aBlZZRpLaye9Ft3LhxxMXF8dxzz9GwYUMt1ig1zuz1h233R3RpZLfrNgvy4o0RHXhxeNszhnV/tvwgX6w8xPwHetEsyEv/rkREREREapCYuOOsjy1ZVqZ5kBf9WtQ3OBEEeLrw8jXtGNsjnNd/28XCnckA7EjI5OZP13BZqyCeHtKKZkHeBicVqb7sXnRbsWIFy5cvp1OnTva+tMhFyy8y8+vmowB4uDgypH1Du2f4d8EtI6+Ib1bHElnfk6Hvr2Dq6Cguax1s91wiIiIiIlIxny4/bZRb74hq9SV6syBvPh17CSv3pfDqgp1sP5oJwKJdySzZc4y7+0TwxJWtDE4pUj052PuCYWFhZ0wpFakp/tieSFZBMQBD2jfE09XQZREBcHN24LqoUHYmZFFYbOG1BTspNmvNNxERERGRmiA2NYfftyUCEOjlytWdQwxOdHY9mgXyy/29mDyyIw18SrqZmi1WAiowdVWkrrB70W3KlCk89dRTHDp0yN6XFrloczacmlo60o5TS8/H1cmRl65uR5fwkvXc9h/L4bv18Rc4SkREREREqoPPVxzEcmJcyvieTXB1qr4dQh0cTFzfpRGLH+vHY4Na0KahD7d2L73edF6hGYtFA21EwICi24033siSJUuIjIzE29ubgICAUjeR6upIeh4r9qUA0DjAg65Nq8/Pq8lk4pkhrW2P3/lrD9knRuSJiIiIiEj1ZTKZcHF0wN3ZkdGXNjY6Tpm4uzhy/4Dm/PpArzOKhK8u2MHVH/zDpvh0Y8KJVCN2nxs3ZcoUe19SpFLEpebSwMeNhIx8RnRpVK3WWQDoEu7PkPYNWLA1kZTsQj5eup9HB7U0OpaIiIiIiJzHi8Pbcm//SLYezsDPo2ZN1XRwKP2ZaF9yFrPWxmO2WFmw5SjHcwvp3zLIoHQixjNZtcDaeWVmZuLr60tGRgY+Pj5GxxGDmS1W/tmXQssG3gSfWMegOjmUksPl7yylyGzFzdmBJY/1p4Fv9cspIiIiIiK1z5bD6Tw2ezNZ+cUkZOTj5+HMggd7E+LnbnQ0kUpV1lqR3aeXApjNZn744QdeeeUVXnnlFX788UfMZrMRUUTKxdHBRJ8W9atlwQ2gSaAnt3ZrAkB+kYXJf+42NpCIiIiIiNQZHRr5seDB3rRq4A1Aem4R982MobBYjd6kbrJ70W3fvn20bt2aMWPGMHfuXObOncstt9xC27Zt2b9/v73jiNQ6DwxohrdbyczxOTGH2XGipbeIiIiIiFQPVquVuTGHySusfYNPnBwdmHJjZxr5l4xu2xiXzpu/7zI4lYgx7F50e/DBB4mMjCQ+Pp6YmBhiYmKIi4ujadOmPPjgg/aOI3JBeYVmjqTnGR2jzPw9XXhgQDMArFb4bMVBgxOJiIiIiMjplu45xsTvN9Pj9UV8vz7e6DiVztfDmQ9HR+HiWFJy+HTFQX7flmhwKhH7s3vRbenSpbz55pulOpXWq1eP119/naVLl9o7jsgFzd+aQK83/uaWT9cQE3fc6DhlMqZ7E9qG+PDs0Na8dl07o+OIiIiIiMhpPll+AIDjuUX4uDkbnKZqdGjkx7PDWtsePz5nM3GpuQYmErE/uxfdXF1dycrKOmN7dnY2Li41q1OL1A1zNsRjtcKKfSnUlL4jbs6O/PpAL+7oHXFGC28RERERETHO9qMZ/LMvFYAm9Ty4vE2wwYmqzq3dwhnWoSEAWfnF3DtzA/lFtW9Krci52L3oNmzYMO666y7WrFmD1WrFarWyevVqJkyYwPDhw+0dR+S84lJzWX0gDYCIQE+iGvsbnKjsTCbThXcSERERERG7+nT5qeVfbu/VFEeH2vu+3WQy8fr1HYgI9ARg25FMXp2/0+BUIvZj96Lbe++9R2RkJN27d8fNzQ03Nzd69uxJs2bNePfdd+0dR+S8fog5bLt/fZdGNbqQtf9YNrmFxUbHEBERERGpsxIy8vhl81EA/D2cGdElzOBEVc/L1YkPRkfh6lRSfli0M4n03EKDU4nYh5O9L+jn58e8efPYu3cvO3fuxGQy0bp1a5o1a2bvKCLnZbFYmbOhpOjmYILroxoZnKhiUrMLmLJwLzPXxvHQZc158LLmRkcSEREREamTpv9ziGJLyZI1t3YLx92lbiwF07qhDy9f3Y4F2xJ4+4ZO+HloaSmpG+xedDupefPmtkJbTR49JLXX6oOptq6lvZvXp4Gvm8GJKiY9r4iZa+MwW6x8tHQ/o7qGEeRdM1+LiIiIiEhNlZVfxMw1cQC4ODlwa/cmxgays5HRjRjRpREOtXg6rci/2X16KcBnn31Gu3btbNNL27Vrx6effmpEFJFzmrP+1NTSEV1q5ig3gMj6XtzctTEAuYVmpizca3AiEREREZG657t18WQVlCz3cl3nUOp7uxqcyL5MJtMZBTeLpWY0qhOpKLsX3Z5//nkeeughrrrqKmbPns3s2bO56qqreOSRR3j++eftHUfkrLLyi1iwLQEAHzenGt9R6KGBzfFyLRnY+u3aOPYmndlBWEREREREqkZRsZkZJ0a5AdzRu6mBaaqHlOwCxny+lu/XxxsdRaTK2H166dSpU/nkk0+46aabbNuGDx9Ohw4deOCBB3jppZfsHUnkDAu2JpBfZAFgeKcQ3Jxr9loLgV6u3NMvkrf+2I3FCq//tovPxl1idCwRERERkTrhr53JZOYV0bVJAPW9XWkW5G10JEOl5RQy9L3lJGUWsO5QGu1DfWnd0MfoWCKVzu4j3YqKioiOjj5je5cuXSguVmdFqR4a+LrTPaIeACNrSUeh23o2pYFPyVpui3Yls3JfisGJRERERETqhukrD5GaU8jaQ2ncdGLpl7oswNOFy1qXzCYqKLZw34wYsgtUD5Dax+5Ft1tvvZWpU6eesX3atGmMHj3a3nFEzrAvOZtpy0oaDvz9aF86NPI1OlKlcHdx5LErWtoev7pgp9ZQEBERERGpYjsTMll7MA2AyPqe9GxWz+BE1cPzw9rQNqRkdNuBlByenrsVq1WfT6R2MbSRwh133MEdd9xB+/bt+eSTT3BwcGDixIm2m4gRvl8fzz/7Unno200s3XOsVnXXvbZzqG3Y9vajmczbfMTgRCIiIiIitdtXqw7Z7o/t0aRWfb64GG7Ojnw4OgrvE2tP/7L5KN+ctu6dSG1g96Lbtm3biIqKon79+uzfv5/9+/cTGBhIVFQU27ZtY+PGjWzcuJFNmzbZO5oIhcUW5saUdC11djRxdadQgxNVLkcHE/8Z0tr2+MeNRw1MIyIiIiJSu2XkFvHjxpIvur1cnbguqpHBiaqX8HqevDWyg+3xy7/sYOvhDAMTiVQuuzdSWLx4sb0vKVJmf+9KIiW7EIBBbRoQ4OlicKLK16t5INdHNaJLuD83ROuPvoiIiIhIVZm9Id7WoO36qFC8XO3+Ebzau7JdQ27r2ZTP/zlIodnCvTM38Ov9vfH1cDY6mshFM2R6qUh19d26U+2qb7ykdjRQOJvJN3Tk5ksb4+SoXwEiIiIiIlXBbLHy1apY2+NbuzcxLkw199TgVnQK8wMgPi2PD5fsNTaQSCWxe5k9Pz+f999/n8WLF5OcnIzFYin1fExMjL0jiQCQkJHH0j3HAAj1c6dXs0CDE4mIiIiISE11PLeQUD934tJy6d08kGZBXkZHqrZcnBz4YHQUV72/nIj6Xnz+zyG6RwbSr2WQ0dFELordi2633347f/75JyNGjKBr165aRFKqjTnrD3OymeeILo1wcKg7P5vbjmTg5epEk0BPo6OIiIiIiNQKgV6uzLqrG7sTsygyWy58QB0X6ufO04Nb8/icLQC8Mn8nPZsF4qzZOVKD2b3o9uuvv7JgwQJ69uxp70uLnJPFYuX7DSVTS00mGFlH1jpLyynklfk7WHswDXdnR2bd1Y1AL1ejY4mIiIiI1BotG3gbHaHGGNGlETPXxrExLp19ydnMXBPH2B5NjI4lUmF2LxmHhobi7a1fOlK9rDqQSnxaHgC9mgXSyN/D4ET24erkQJC3G8lZBexNzubGj1eRmJFvdCwREREREamDTCYTzw9rY3v8zsI9pOcWGphI5OLYveg2efJknnzySWJjYy+8s4idbIw7brs/6pLGBiaxL09XJ0ZGN6LeiS6t+4/lMPLjlcSn5RqcTERERESkZsopKGbJ7mQsJ9eukXLp3NifazuHApCeW8SUhWqqIDWX3Ytu0dHR5OfnExERgbe3NwEBAaVuIka4f0Bzlj7ej4cHNmdgm7q1WGdkfS++v7s7jQNKRvfFp+Ux8qNV7EvONjiZiIiIiEjN8+PGI4z7Yh2Xvb2UFXtTjI5TIz1xZUvcnR0B+Hp1LPuSswxOJFIxJqvVatfy+8CBA4mLi+P2228nODj4jEYKY8eOtWecC8rMzMTX15eMjAx8fHyMjiNSZZIy8xn96Rpbsa2epwtf334pbUL0cy8iIiIiUhZWq5UrpixjT1LJe+pfH+hFu1Bfg1PVTO8u3Ms7C/cA0L9lfb4Y39XgRCKnlLVWZPeim4eHB6tWraJjx472vGyFqegmdUlqdgFjPl/L9qOZAPi4OfHlbV3p3Njf4GQiIiIiItXfyv0p3PzJGgCiw/2Zc08PgxPVXHmFZgZMXkLCiTWnp4+/hH4t69asJKm+ylorsvv00latWpGXl2fvy4qcVXZBsdZaOE09L1dm3tmNqMZ+AGTmF3PLp2tYtT/V2GAiIiIiIjXAVytPrV2urpsXx93FkacGt7I9nrEmzsA0IhVj96Lb66+/zqOPPsqSJUtITU0lMzOz1E3Enl7/bSe931zMlIV7yMgrMjpOteDr7szXt19Kj8h6ABSaLeQXmQ1OJSIiIiJSvR1Jz+PPHYkABHm7ckXbBgYnqvmGdwyhX8v6PD+sDR+OjjI6jki52X16qYNDSZ3v32u5Wa1WTCYTZnP1+nCv6aW1V16hma6vLSQrvxh3Z0fW/ucyvN2cjY5VbeQXmXlg1kau6xzK4PYNjY4jIiIiIlKtvfXHLj5YvB+Ahwc25+GBLQxOVDucrBWIVCdlrRU52TETAIsXL7b3JUXO6rdtCWTlFwMwtENDFdz+xc3ZkWm3dtEfOBERERGRC8gvMjNrbTwATg4mbu7a2OBEtYc+j0hNZveiW9++fe19SbKysnjuuef48ccfSU5OpnPnzrz77rtccsklds8i1cd36+Jt90ddEmZgkurrbH/gPlq6H09XJ27tFm5AIhERERGR6mf+lgTScgoBGNK+IUE+bgYnqr12JWbi7uxIeD1Po6OIXJDdi24A6enpfPbZZ+zcuROAtm3bctttt+HrWzWtlO+44w62bdvG119/TUhICN988w0DBw5kx44dhIaGVsk1pXo7mJLDmoNpAETU96RLuLpzlsVXqw7x+m+7AMgtKObuvpEGJxIRERERMd5Xqw7Z7o/toS+nq0JGXhFv/r6LWWvj6NcyiM/HaRCNVH92b6Swfv16IiMjeeedd0hLSyMtLY23336byMhIYmJiKv16eXl5/PDDD7z55pv06dOHZs2a8eKLL9KsWTOmTp1a6deTmuH79adGud0YHaYhy2WUlJlvuz/pt128/dce7LwspIiIiIhItfPqte25IboRXcL9iWqsL/SrgrOjiUU7k7FY4e9dySzdc8zoSCIXZPei2yOPPMLw4cM5dOgQc+fOZe7cuRw8eJBhw4bx8MMPV/r1iouLMZvNuLmVHt7r7u7OihUrzti/oKBAHVVruWKzhR82HAZK1lu4LqqRwYlqjsevaMXjV7S0PX5v0V4m/bZLhTcRERERqdPahfry5oiOzL67u77QryIeLk48NbiV7fErv+6g2GwxMJHIhRky0u3JJ5/EyenUzFYnJyeeeOIJ1q9fX+nX8/b2pnv37rz88sscPXoUs9nMN998w6pVq0hISDhj/0mTJuHr62u7hYVpra/aZsnuYyRnFQBwWesg6nu7GpyoZrmvfzNeuKqN7fHOhEwm/7nHwEQiIiIiItWDg4MKblVpeMcQOoX5AbA3OZtZa+OMDSRyAXYvuvn4+BAXd+Y/jPj4eLy9vavkml9//TVWq5XQ0FBcXV157733uOmmm3BwOPPlP/3002RkZNhu8fHxZzmj1GTfntZA4UY1UKiQ8T2b8sZ17Wkf6svyvSn83+J9fH3aOhYiIiIiIiKVzcHBxPOnDQB4+689ZOQWGZhI5PzsXnS78cYbuf322/nuu++Ij48nPj6eb7/9ljvuuIObbrqpSq4ZGRnJ0qVLyc7OJj4+nrVr11JUVERERMQZ+7q6uuLj41PqJrWH1Wol1M8Nb1cnGvi40ad5faMj1Vg3dm3MiC6npuY+//N2ft925uhREREREZHaqMhs4dbP1vD16lhyCoqNjlNnRDX25+pOIQAczy3ivb/3GpxI5NxMVjsvxlRYWMjjjz/ORx99RHFxyS8mZ2dn7rnnHl5//XVcXat+qt/x48dp2rQpb775Jnfdddd5983MzMTX15eMjAwV4GqRvEIzB1KyaRtSNR1z65I3ft/F1CX7AXBxcuCb2y+la9MAg1OJiIiIiFStBVsTuHdGSTPAYR0a8n83RxmcqO44mp7HgMlLyC+y4ORg4s9H+hBR38voWFKHlLVWZPei20m5ubns31/yQT0yMhIPD48qu9Yff/yB1WqlZcuW7Nu3j8cffxw3NzeWL1+Os7PzeY9V0U3k/KxWK4/O3szcmCMA+Lg5MeeeHrQIrprp4iIiIiIi1cGNH69izcE0AL65/VJ6NQ80OFHd8s5fe3h3Uckot8taBfHZuEsMTiR1SVlrRXafXpqRkUFaWhoeHh60b9+e9u3b4+HhQVpaWpV1Cs3IyOC+++6jVatWjBkzhl69evHHH39csOAmIhdmMpl44/oO9GlRMlU3M7+YsZ+v5Wh6nsHJRERERESqxq7ETFvBLbK+Jz2b1TM4Ud1zd98IGvi4AXA0I5/MfK3tJtWP3Ytuo0aN4ttvvz1j+/fff8+oUaOq5Jo33HAD+/fvp6CggISEBP7v//4PX19NK6xrlu89pkU2q4izowNTR0fRoVHJv6uEjHzGfr5W/3uLiIiISK305cpY2/2xPZpgMqlrqb15uDjx4vA2vH5de359oBc+bhpUI9WP3Ytua9asoX///mds79evH2vWrLF3HKkjMvKKuPOr9XR9bSHPz9tmdJxaydPVic/HXUJ4vZKp4nuTs3n+Z/1vLSIiIiK1S0ZuET9tLFlaxcvVieuiGl3gCKkqV7ZryKiujXF0UNFTqie7F90KCgpsDRROV1RURF6epqNJ1fh581HyiywUFFvQr+OqE+jlyle3daWepwutGnjzzJDWRkcSEREREalUszfEk1dkBuD6qFC8XJ0MTiQi1ZXdi25du3Zl2rRpZ2z/6KOP6NKli73jSB3x/bp42/0bLgkzMEntF17Pk5l3duP7Cd0JPrHGgoiIiIhIbWCxWPl69amppbd2b2JcGDnDtsMZ/HiiwZtIdWD3kvwrr7zCwIED2bx5M5dddhkAixYtYt26dfz555/2jiN1wPajGWw9kgFA+1Bf2oZoPb+q1rLBmZ1LLRYrDhr2LSIiIiI12NI9x4hNzQWgd/NAmgV5GZxITnr51x18ty6eQrOFbpEBNPR1NzqSiP1HuvXs2ZNVq1YRFhbG999/zy+//EKzZs3YsmULvXv3tnccqQM0ys142QXFjP1iLbPXx194ZxERERGRamr53mM4O5Z8kTxGo9yqFScHE9kFxRQWW3j/731GxxEBDBjpBtCpUydmzJhx3n1ef/11JkyYgJ+fn31CSa2UX2TmxxOLnLo5OzC8Y4jBieqenIJiRk1bxbYjmazcn0qgtyv9WwYZHUtEREREpFzScgr5clUsXq6OdGjkx4BWek9bnUzoG8mMNXFkFxTz/bp47u4TQXg9T6NjSR1n95FuZfXaa6+RlpZmdAyp4f7YnkhmfknjjiHtGuLrrjbS9ubh4kh0eAAAZouVe7+JYVN8urGhRERERETKyd/DmdkTunN9VBi9mgWqY2Y14+/pwh29mwJQbLEyZeFegxOJVOOim9VqNTqC1ALfaWqp4UwmE88Na8PQ9g0ByCsyc9v0dRxMyTE4mYiIiIhI2ZlMJqIa+/P8VW24u2+k0XHkLG7v1RR/j5KBFj9tOsLuxCyDE0ldV22LbiIXKy41l5X7UwFoUs+DS5sGGJyo7nJ0MDH5ho62/w/ScgoZ8/kakrPyDU4mIiIiIiK1hbebM/f2awaA1QqT/9xtcCKp61R0k1rL18OZZ4e2pkWwFzdcEobJpOHfRnJzdmTamGhanehsGp+Wx/D3/2Hasv1k5BYZnE5ERERERGqDW7uHE+zjCsCfO5LYrKVtxEAmazWdx+nt7c3mzZuJiIgwNEdmZia+vr5kZGTg4+NjaBapGKvVSrHFirOjaszVQWJGPtdPXUn7UB9+354EgLuzI9dFhTK+ZxOaBXkbnFBEREREpLTn522jaaAnQ9s3JMjHzeg4cgHfrI7l2Z+2AdC7eSBf336pwYmktilrrUhVCKn1TCaTCm7VSANfN/6a2KfUm5W8IjMz1sQx8O1l3PrZGv7elYTFUi2/DxARERGROuZoeh5frYrlv7/s4JbP1hgdR8rghugwGgd4ALD1SAZJmVrWRozhZHSAc+nduzfu7u5GxxCRKuDh4sRLV7djbI8mfLnyEHM2HCa30AzA8r0pLN+bQpN6Hozt0YQRXRrh7aausyIiIiJijAVbE2z3h5xoDibVm4uTA09e2Yq9yVnc3qupPk+IYew+vXTgwIHccsstXHfddTViuqaml9Y8xWYL986IoV/LIIa0b4Cfh4vRkeQCMvOL+H5dPF+uOkR8Wl6p5x4b1IL7BzQ3KJmIiIiI1HVXf/CPbV2whRP70izIy9hAImK4staK7D7SrW3btjz99NPce++9DB06lFtuuYUhQ4bg7KzKs1SOVQdS+XNHEn/uSGL53mNMvaWL0ZHkAnzcnLmjdwTjezbl713JTF95kH/2peLi6MCoro1L7ZtfZMbVycHWGMNqtZJdUExGXpHtlnniv00Dvej6r66198+MwWK14uPmjI+7Mz5uTif+64yPu5Nte6ifO56u1XYwsIiIiIjYQXxarq3g1qqBtwpuIlIudv9E+e677/LOO++wcOFCZs6cyZgxY3B0dGTEiBGMHj2avn372juS1DI/bTxquz+8Y4iBSaS8HB1MXN4mmMvbBLM7MYsth9MJ9HIttc87C/fw29ZEHB1MtiKb+Rzrv93SrfEZRbe/dyXbprKez3s3dS7182O1WvlwyX6u6hBC43oeFXh1IiIiIlLT/Lrl1NTSq/TZokZLzswnMTOfDo38jI4idUi5i24HDx5k+fLlxMbGkpubS/369encuTPdu3fHza1sXVwcHBwYNGgQgwYN4qOPPuKXX37h1Vdf5bPPPsNsvvCHYZFzyS8y88f2RAC83Zzo3yrI4ERSUS0beNOyQelOprmFxXy7Np7GAe5sPZJ5wXOk5xaVelxktpSp4Abg41b61+PK/am89cdu3v5rD9d1DuX+Ac0Ir+dZpnOJiIiISM3065ZTX+hf1UFFt5qoyGzhf3/u5suVhwjxdefPR/rgpEZ7YidlLrrNmDGDd999l/Xr1xMcHExISAju7u6kpaWxf/9+3NzcGD16NE8++STh4eFlOmdiYiLffvst33zzDVu2bKFr164VfiEiAIt2JpNdUAzA4HYNcHN2NDiRVKaUrEI6N/ajoa8bh1Jz8XV3xs/DGV/3028utvv/Hv7v5GBi23+vIDOviMz8IjLzik+7X0Rm/qnHYQGlR7N9uvwAAGaLldkbDjN34xGu6RTKAwOa0SRQxTcRERGR2uZgSg7bj5Z80duhka9mO9RQTg4mNsalk19k4UBKDnNjjnDDJWFGx5I6okxFt86dO+Pi4sK4ceP44YcfCAsr/QNaUFDAqlWr+Pbbb4mOjubDDz9k5MiRZz1XZmYmP/zwAzNnzmTJkiVEREQwevRovvvuOyIjIy/+FUmd9tOmI7b7V3cKNTCJVIXG9TyYPr4rVquVSdd1KPfxJpMJL1cnvFydCKF83ZGnjOrMF/8c5PMVB8nML8ZssfJDzGF+3HiYazqH8sCA5jRV8U1ERESk1vh186lRbsM6qGtpTWUymXj8ipaM/GgVAO8u2svVnUNwddIADal6Zepe+scff3DFFVeU6YSpqakcOnSILl3Ovni9u7s7/v7+3HjjjYwePZro6OjyJbYzdS+tOTJyi4h+9S+KzFaCvF1Z9fRlODqYjI4ltUxmfhHT/znEZysOkpF3avqqg6mk0PvIwBb6FlRERESkFhj87nJ2JpSMdPvnqQGE+pXvS1upXsZ9sZYlu48B8OJVbRjXs6nBiaQmK2utqExFt8r0119/cdlll+HgUDPmUKvoVnPMWhvH03O3AnB7r6Y8N6yNwYmkNsvKL+LLlYf4dMXBUmvHzZ7QnUuaBJznSBERERGpCVKyC/htWyL7krL479XtjI4jF2nbkQyGvb8CgEAvF5Y90R8PF7v3lpRaoqy1onJXvmJiYti6davt8bx587jmmmt45plnKCwsvODxl19+eY0puEnN8tPGU1NLr9HUUqli3m7O3D+gOSueHMDjV7TE38OZns3qnVFwKyhWcxgRERGRmijQy5Vbu4Wr4FZLtAv1ZWj7kmnCKdmFfPHPIWMDSZ1Q7urX3XffzZ49ewA4cOAAo0aNwsPDg9mzZ/PEE09UekCRskjLKWR97HEAIup70i5UoxLFPrxcnbivfzOWPzmA1/+1zpzVauWGj1Zx+5fr+GHDYXYlZlJkthiUVERERESkbnvk8hacXIHo46X7Sy0XI1IVyj2Wcs+ePXTq1AmA2bNn06dPH2bOnMk///zDqFGjmDJlSiVHFLmwAE8XVj41gF82H8XHzRmTSWu5iX2dbNBwur93JbP5cAbtQnx4dPZmAFwcHWjRwIs2DX1KbiG+tG7ojbebsxGxRURERETqjGZBXlwX1Yg5Gw6TmV/MJ8sO8NgVLY2OJbVYuYtuVqsVi6VkpMbChQsZNmwYAGFhYaSkpFRuOpFyCPZx447eEUbHELHJLigmxNcNj9OKcYVmC9uOZLLtSGapfRsHeHB9VCMeGtjc3jFFRERE5DTTlu3n8PE8hnUIITrcHwc1Z6tVHrqsOfM2HaHIbGX+1gQeHtgcJ0ctgSVVo9xFt+joaF555RUGDhzI0qVLmTp1KgAHDx4kODi40gOKiNRUV3cKZViHENYdSmNjXDo7EjLZcTSDAyk5/LuFTVxaLjmFxaW2Wa1Wvl4dS0SgFz2b1dMIThEREZEqZrVa+WZ1HHFpuXyzOpY1zwykvrer0bGkEoUFeHBP30i83JwY072JCm5SpcpddJsyZQqjR4/mp59+4j//+Q/NmjUDYM6cOfTo0eOsx7z33ntlPv+DDz5Y3kgiItWWo4OJbhH16BZRz7Ytt7CY3YlZJ4pwmexIyGRXQhZtGpZei/BQag4fLT3A0fQ8OjTy5d5+kQxq00DftoqIiIhUka1HMohLywWge2Q9FdxqqYmDNKVU7MNktf57vMXZHThwgIiIc0/dy8/Px9HREWfnM9clatq0aanHx44dIzc3Fz8/PwDS09Px8PAgKCiIAwcOlCN+1StrG1gxhtVqZeRHq+gU5sc1nUNpF+prdCSRCjFbrJgtVlycTn3TNnXJPt74fXep/SLrezKhbyRXdwotta+IiIiIXLzXFuxk2rKSz6STrmvPTV0bG5xIRKqjstaKyvyJrUOHDrRr145nnnmGtWvXnvG8m5vbWQtuUDL19OTt1VdfpVOnTuzcuZO0tDTS0tLYuXMnUVFRvPzyy2WNIwJATNxx1sce59MVB3nzj90XPkCkmnJ0MJ1RRLurTyT/d3PnUiPg9h/L4fE5W+j31mI+X3GQ3H9NSRURERGRirFYrPy6+SgATg4mrmzbwOBEYi/xabkcSc8zOobUQmUuuqWkpDBp0iSSk5MZPnw4DRs25M477+SXX34hPz+/zBd87rnneP/992nZ8tRwzpYtW/LOO+/w7LPPli+91Hk/bTxqu391xxADk4hUPkcHE8M6hDD/wV5MH38JXZsG2J47mpHPS7/uoNcbi/lo6X4DU4qIiIjUDhvjj3M0o+Szbc9mgfh7uhicSKpaRm4Rz/20jQGTl/DGb7uMjiO1UJmLbm5ublx11VV8+umnJCQk8MMPP1CvXj2efPJJAgMDueaaa/j88885duzYec+TkJBAcfGZIzPMZjNJSUnlfwVSZxWZLczfmgCAm7MDV7TTN1FSO5lMJvq1DOL7u7szZ0J3LmsVZHsuLaeQ2NRcA9OJiIiI1A6/bE6w3R/WoaGBScReHB1NzN+aQJHZysr9KWw7km50JKllKrQgkMlkokePHrz++uvs2LGDjRs30rt3b6ZPn06jRo344IMPznnsZZddxt13301MTIxt24YNG7jnnnsYOHBgReJIHbV87zHScgoBGNg6GC/XcvcFEalxopsE8Nm4S/jtod5c3SkEF0cHJvQtvd5mbmExsak5BiUUERERqXnMFisLTnyh7+LowCBNLa0TvFydeOiy5vSIrEdGXhGvzt9FGZe9FymTMjdSKKvU1FTS0tJo3rz5WZ8/duwYY8eO5ffff7etAVdcXMwVV1zB9OnTCQoKOutxRlEjherroW83Mm9TyfTST8ZEc3mbYIMTidhfanYB9bxKd9X6fMVBXv51By2CvWlcz4Mgb1eCfdwI9nElyMfN9jjAw0WdUEVERESA1QdSGTVtNVDyhf6nY6MNTiT2UlBs5vK3l9m61n58axeuUNFVLqCstaIKDQ06evQoK1asIDk5GYvFYttuMpl44IEHqFev3jmPrV+/PgsWLGDPnj3s2lUyZ7pVq1a0aNGiIlGkjsopKObP7SXTkf08nOnbor7BiUSM8e+CW2GxhU+WH6BFsBe7k7LYnZR1zmOdHEzU93bl94f74Ot+qhGO2WKloNiMh4tGj4qIiEjdsHDHqaWOruqoqaV1iauTI88Mac2EbzYAJR1s+7Wsj6uTo8HJpDYo9yeq6dOnc/fdd+Pi4kK9evUwmU6NkjhZdCuLFi1aqNAmFfbXjiTyiswADGnf8IyujyJ1ldliZfSljSkyW9mbvBfLecYyF1usHMsqwPtfU7OX7E7miTlbePLKVozo0kij4URERKTWe2pwK/q3CmL+1gQua60ZNHXNFW2D6R5Rj1UHUolNzWX6P4e4u2+k0bGkFij39NKwsDAmTJjA008/jYND+QsdZrOZ6dOns2jRojNGygH8/fff5T5nVdL00upp3BdrWbK7pGnHd3d149KIc4+uFKmris0WUnMKScrMJymzgOSsE//NzCc5q4CkzHxMJvj1gd62YwqLLVwxZRkHU0rWhOsY5sdLw9vSMczPoFchIiIiIlL1dhzNZNj7y7FYS9Z6W/xYP+p7u174QKmTqmx6aW5uLqNGjapQwQ3goYceYvr06QwdOpR27dqVGiknUhb5RWa2H80EIMTXjUuaBBicSKR6cnJ0OLGWm1uZj8ktLKZ1A29b0W1zfDrXfPgPN0aH8fgVLc+YzioiIiIiUhu0CfHhxksaM2ttHNkFxbz9124mXdfB6FhSw5V7pNsTTzxBQEAATz31VIUuGBgYyFdffcWQIUMqdLy9aaRb9VRktrB87zGyC8wM7xhidByRWmflvhRe+Hk7e5Ozbdt83Jx47IqW3Ny1MU6OmtItIiIiIrVLSnYB/d9aQlZB8YkZIb1oG+JrdCyphspaKyp30c1sNjNs2DDy8vJo3769rQPpSW+//fZ5jw8JCWHJkiU1Zj03Fd1EpK4qMlv4cuUhpizcS3ZBsW17qwbevHR1O7o21ShTERERqdmW7TnGtGUHGNahIYPbNcTXw/nCB0mtNm3Zfl5bUNL08dKmAXx7VzfN0JMzlLVWVO6hCpMmTeKPP/4gKSmJrVu3snHjRttt06ZNFzz+0Ucf5d1336WctT4REbEzZ0cH7ugdwd+P9eX6qEa27bsSs/hwyT4Dk4mIiIhUjnmbjrJiXwpPzd3KmoOpRseRamBsjyaE1/MAIDEzn2PZBQYnkpqs3CPd/P39eeeddxg3blyFLnjttdeyePFiAgICaNu27Rkj5ebOnVuh81YVjXSrXorNFk1rEzHIhtg0np+3nT1JWfzxcB8i6nsZHUlERESkwgqKzUS/vJCsgmK8XZ1Y/9xAXJ0cjY4l1cDiXcnsScpiXM8m+pmQs6qyRgqurq707NmzwsH8/Py49tprK3y81F1Wq5Wr/u8fGvq6cU3nUK3lJmJnXcID+Pn+Xmw5nH5Gwe2ffSmYLVb6tKhvUDoRERGR8lm6+xhZJ5bQuLxtsIorYtO/VRD9WwUZHUNqgXIX3R566CHef/993nvvvQpd8IsvvqjQcSI7EjLZeeKWlV+kopuIARwdTHRu7F9qW36RmSd/2MLh43nc3qsp9/VvRoCni0EJRURERMrm1y0JtvtXddBnCxGpfOUuuq1du5a///6bX3/9tUZMD5Xa4+dNR233h3cKNTCJiJzux41HOHw8D4CNcce5fupKvhh3CU0CPQ1OJiIiInJ2eYVmFu5MAsDX3ZmezQINTiTV2b7kLFbsTWFcz6ZGR5EaptxFNz8/P6677rqLuuicOXP4/vvviYuLo7CwsNRzMTExF3VuqZ0sFis/by4pujk5mBjavqHBiUTkpFGXhOHq5MCXKw8RE5cOwHVTV/LJmGi6hPuf/2ARERERAyzenUxuoRmAK9s2wMVJ60bL2U3+czcfLtmPxWolukkA7UJ9jY4kNUi5i24XOz30vffe4z//+Q/jxo1j3rx5jB8/nv3797Nu3Truu+++izq31F5rDqaRkJEPQN8W9TV1TaQaMZlMXBfViEsj6jH+i7XsScomLaeQmz9ZzZQbOzFYRXIRERGpZn7dcmoWzbCOeq8i5+br7ozZUtJ/8qVfdvDd3d0wmUwGp5Kawu7l/A8//JBp06bx/vvv4+LiwhNPPMFff/3Fgw8+SEZGhr3jSA0xb9MR2/2rO2tqqUh1FOrnzuwJPegRWQ+AgmIL986M4dPlByhno2wRERGRKpNTUMzfu5IBqOfpQveIegYnkupsTPcmRJxYNmXtoTQWbE00OJHUJGUqul155ZWsXr36gvtlZWXxxhtv8MEHH5xzn7i4OHr06AGAu7s7WVlZANx6663MmjWrLHHKxWw289xzz9G0aVPc3d2JjIzk5Zdf1gfAGqSg2MyCrSWLnHq4ODKwtbrIiFRXvu7OTB/fleuiSorjViu8Mn8nL/683fYNoYiIiIiR1h5MI7/IAsCV7Rrg5KippXJuLk4O/Gdoa9vj1xbsJL/IbGAiqUnKNL105MiRXH/99fj6+nLVVVcRHR1NSEgIbm5uHD9+nB07drBixQoWLFjA0KFDeeutt855rgYNGpCWlkZ4eDiNGzdm9erVdOzYkYMHD1ZJIeyNN95g6tSpfPnll7Rt25b169czfvx4fH19efDBByv9elL5luw+RmZ+SSvvK9o2wMOl3LOiRcSOXJwcmDyyI2H+Hry7aC8AX66K5Uh6Pu/d1En/hkVERMRQv21LIMzfHT8PZwa1aWB0HKkBBrQKonfzQJbvTeFIeh6frTjIff2bGR1LaoAyffK5/fbbueWWW5g9ezbfffcd06ZNs00FNZlMtGnThiuuuIJ169bRunXr855rwIAB/Pzzz3Tu3Jnx48fzyCOPMGfOHNavX3/RDRrOZuXKlVx99dUMHToUgCZNmjBr1izWrl1b6deSqlFqamkntfIWqQlMJhOPXN6CRv7uPD13K8UWKwt3JvF/f+/jiStbGR1PRERE6rANsceJP55HQkY+l0YEGB1HagCTycRzw9pw5ZRlWKzwweJ9jOzSiCAfN6OjSTVX5uEGrq6u3HLLLdxyyy0AZGRkkJeXR7169XB2di7zBadNm4bFUjKU97777qNevXqsXLmS4cOHc/fdd5cz/oX16NGDadOmsWfPHlq0aMHmzZtZsWIFb7/99ln3LygooKCgwPY4MzOz0jNJ2R3Lymd3YskU5HqeLvRSK2+RGmVkdBgNfd2555sNNAv24sHLmhsdSUREROqw9NxC9h/LAaBtqC9uzo4GJ5KaokWwN6MvDefr1bHkFpp584/d/G9kR6NjSTVX4Tk+vr6++PqWv1Wug4MDDg6n5syPGjWKUaNGVTTGBT311FNkZmbSqlUrHB0dMZvNvPrqq4wePfqs+0+aNIn//ve/VZZHyic2NZfM/GKaBXkytnsTrbcgUgP1ah7InHt6UM/LRW9sRURExFAb49Jt96Ma+xmWQ2qmRy5vwbxNR8jML2bOhsOM6R5Oh0Z+RseSaqzWVzC+//57ZsyYwcyZM4mJieHLL7/kf//7H19++eVZ93/66afJyMiw3eLj4+2c2D6sVit5hdV/8cfoJgEsfbwfV3cM5Yq2Wm9BpKZq2cCbQC/XUtvi03L5ZfNRgxKJiIhIXRQTd9x2v0u4v4FJpCYK8HThoYEtAGgR7EWxGoXJBdT61awff/xxnnrqKdtouvbt2xMbG8ukSZMYO3bsGfu7urri6up6xvba5sMl+/l501Gm33YJDX3djY5zXh4uTjygKWkitUpGbhHjvljL/mM5xKbmcF//ZphMJqNjiYiISC23IfZU0S2qsYpuUn5juofj4+bEtZ1DNRNLLqjWF91yc3NLTWcFcHR0tK0rVxfN23SEt/7YDcB1H65k+viutGzgbXAqEalLfog5bFtP5X9/7iE+LY9Xrm2HCcjKLyYrv5jM/CIy84tsj7Pyi8gpKOb+AaWL8Et2J/PzpqM0C/aiRZA3LYK9aeTvjoODingiIiJySrHZwub4dAAa+roR4le9Bx9I9eTs6MDI6DCjY0gNUeuLbldddRWvvvoqjRs3pm3btmzcuJG3336b2267zehohunQyI/weh7EpuaSkJHPiI9W8vGtXegRWT2aFFitVv7v731cGxVKI38Po+OISBUY37MJBcUW3vh9FwDfrY9n7sbDFJkvPET/rj6RuDid+jJl7cE05m48UmofN2cHmgWVFOGaB3vTPMiLVg299TtFRESkDjt8PM82HVCj3ETEHkxWq7Xck5DT09OZM2cO+/fv5/HHHycgIICYmBiCg4MJDQ2tipwVlpWVxXPPPcePP/5IcnIyISEh3HTTTTz//PO4uLhc8PjMzEx8fX3JyMjAx8fHDontIyW7gNumr2PL4QwAXBwd+N8NHRneMcTgZPDXjiTu/Go9Lo4OPDm4Fbf3amp0JBGpIj9vPspj32+mebAX24+WrVv0hmcHUu+09eHu/Go9f+1IuuBxvZoF8s0dl5balpVfhLdb2Ttwi4iISM1WZLawMyETRwcTbUPK3xhQ5HRWq5VtRzLYGJ/ODdFhahpWh5S1VlTuotuWLVsYOHAgvr6+HDp0iN27dxMREcGzzz5LXFwcX3311XmPT01N5fnnn2fx4sUkJyefMc0zLS2tPHGqXG0tugHkFhZz34wYFu8+Ztv2nyGtuaN3U8PWVio2W7hiyjLbtLOPb+2iBgoitdyG2OO4ODow8ftNeLs54ePujLebMz5uTni7Odu2+bg54ePmTPfIeqXe0OQXmTlwLIe9yVnsTcpmT1IWe5OziU3N4fS1bcf1aMKLw9vaHlutVn7YcJisgmLG91RxX0RERETK55m5W5m5Ng6AORO6E90kwOBEYi9lrRWVe3rpxIkTGTduHG+++Sbe3qfWARsyZAg333zzBY+/9dZb2bdvH7fffjvBwcFaONtAHi5OfDImmmd/2sa360q6tL66YCdHM/J4bmgbQ9ZD+n79qXWeosP9GdQm2O4ZRMS+TnYO+2ti3wod7+bsSJsQH9qElP5jd3oxbk9SFpc2rVfq+fcX7eXdRfuwYKVJoCf9WwZV7AWIiIiISJ3UoZEvM9eW3F8fe1xFNzlDuYtu69at4+OPPz5je2hoKImJiRc8fvny5axYsYKOHTuW99JSBZwcHZh0XXsa+rrzzsI9AHzxzyEcTCaeG9bGrllyCoptGQCeHtJaRVkRqbBzFeNOKii2Yj4x2PuhWRv55YFehNfztGdEEREREanBopucWhtw/aHjULHvkKUWK3d/W1dXVzIzz1x3Z8+ePdSvX/+Cx7dq1Yq8vLzyXlaqkMlk4qGBzXnz+g44OpgI8HTh1m7hds/x6fKDHMsqAGBwuwa20S8iIlXh0UEtbKNpM/OLufvrDeQWFhucSkRERKrCsj3HuOPL9Uxdsp9DKTlGx5FaIiLQCz+PkvWBN8SmUYEl86WWK3fRbfjw4bz00ksUFRUBJQWbuLg4nnzySa6//voLHv/hhx/yn//8h6VLl5KamkpmZmapmxjnhkvC+HRsNJ+NjaZJoH1HexzLKuDjZfsBcHIw8fgVLe16fRGpexwcTEy+oSOR9Ut+3+1KzOKJOVv0ZklERKQW+md/Cgt3JvHG77vYlZhldBypJRwcTHQ50Qn3eG6RbakkkZPKXXSbPHky2dnZBAUFkZeXR9++fWnWrBne3t68+uqrFzzez8+PzMxMBgwYQFBQEP7+/vj7++Pn54e/v0Y2Ga1/yyA6/6t9dkGxmX3J2VV63XcX7SG30AzAzZc2JqK+V5VeT0QEwNvNmY9vjcbLtWS1hV+3JPDJ8gMGpxIREZHKtjE23XY/KtzPsBxS+3Q5bYrphtjq1RhSjFfuNd18fX3566+/WLFiBVu2bCE7O5uoqCgGDhxYpuNHjx6Ns7MzM2fOVCOFGsBisTLx+80s3X2Mj2/tQs9mgZV+jf3Hspm1tqSRg6eLIw9e1rzSryEici7Ngrx4+4aO3PX1BgBe/20XbRr60qt55f++ExEREfsrLLaw+XA6AGEB7gR5uxkbSGqVS05rnrD+0HFuvKSxgWmkuil30e2kXr160atXr3Ift23bNjZu3EjLlpo+WBN8ueoQ87ckADDui7W8NaIj13QOrdRrpGQV0NDXjcPH85jQN5JAL9dKPb+IyIUMatuABwc0472/92GxwgOzYvj5/l6EBXgYHU2kUu1MyCQlu4DezS+8Dq+ISG2xMyGTgmILgG0qoEhlaR/qi4ujA4VmCxtijxsdR6qZMhXd3nvvvTKf8MEHHzzv89HR0cTHx6voVkOMuqQx/+xLZeHOJIrMVh7+bhNH0vO4t19kpY1SvDSiHose7cu3a+MZGd2oUs4pIlJeDw9swdYjGSzefYyCYgv7j2Wr6Ca1zg8bDvPr1qPc1TuSTo39iNKHTxGpA04vhESpWZtUMjdnR9qF+hATl86BlBxSswuop4EkckKZim7vvPNOqcfHjh0jNzcXPz8/ANLT0/Hw8CAoKOiCRbcHHniAhx56iMcff5z27dvj7Oxc6vkOHTqUI75UNXcXRz66JYrnf97OzDVxODuYmL0hnm1HMnhjRAd83JwvfJIycHVyZGyPJpVyLhGRinBwMDFlVGcenLWRZ4a0pmUDb6MjiVyUrPySplfep/2tbtnAm09XFPDSrzu4vVdTFd1EpE6IiTut6Kbfe1IFopsEsCsxi86N/UjPK1LRTWxM1nK2aZs5cyYffvghn332mW202u7du7nzzju5++67GT169HmPd3A4s3eDyWTCarViMpkwm83liVPlMjMz8fX1JSMjAx8fH6PjGMZqtfLhkv2sOZDKsr0pADQO8OCDm6No38jX4HQiIiJy0qGUHKavPMScDYeZ0DeC+wecWiv1eE4hnV/+C4DOjf348d6eRsUUEbGbHpMWcTQjHw8XR7a8MAgnx3L3ExQ5r6z8ItydHfWzVYeUtVZU7jXdnnvuOebMmVNqemjLli155513GDFixAWLbgcPHizvJaUaMJlM3Ne/GS2Dvdl8OIOMvCLi0nK5fupK/jO0NWO6h5drummR2cLLv+5gbI8mRKpTqYhUcynZBVpvUqo1q9XKqv2pfP7PIRbtSuLkV6pfr47lrj6RuDiVfAjw93QhItCTAyk5bD+SSUGxGVcnRwOTi4hUrYSMPI5m5APQsZGfiiJSJbwraQaY1D7lLrolJCRQXFx8xnaz2UxSUtIFjw8PDy/vJaUaGdgmmPkP9uL+mRvZFJ9OodnCCz9vZ83BVF6/vuzTTb9dG8dXq2KZsSaO54a2ZlzPplWcXESk/AqLLbz063Z+35bILw/0oqGvu9GRRErJLzLz86ajfP7PQXYlZpV6zs3ZgQGtgskrNNuKbgCdG/tzICWHQrOF7UczNdVKRGq1mNh02/2ocD/DcohI3VTuottll13G3XffzaeffkpUVBQAGzZs4J577mHgwIHnPbawsJCffvqJVatWkZiYCECDBg3o0aMHV199NS4uLhV4CWJvjfw9+P7u7rz5+y4+XVEycnHB1kS2Hcnkw9FRtAs9/3TT7IJipizcC4DZYqWT3uyLSDU1+c/dfLM6DoAJ38Tw3V3dcHPWqCAxXmZ+EZ8uO8CMNXGk5hSWeq6BjxtjeoRz0yWN8fc8871V58Z+/BBzGICY2OMquolIrRYV7sek69qzIfa4OjeLXVgsVgrNFr1nFADKPbb2888/p0GDBkRHR+Pq6oqrqytdu3YlODiYTz/99JzH7du3j9atWzN27Fg2btyIxWLBYrGwceNGxowZQ9u2bdm3b99FvRixHxcnB54d1oZpt3bBx62kdhuXlst1H67k69Wx5z122tL9tg8Iwzo0pFOYX1XHFRGpkHv6RRIWUDK6bXN8Oi/M2045l0IVqXQ7jmby35+38/k/h0oV3Do39uP9mzqz/Mn+3Nuv2VkLblB6EfGNcelVHVdExFANfd25qWtj/jeyI90i6hkdR2qxHUczGf/FWjq99Cef/6NltaREuUe61a9fnwULFrBnzx527doFQKtWrWjRosV5j7vnnnto3749GzduPGORuczMTMaMGcN9993HH3/8Ud5IYqBBbRswv6EP98/ayOYT000TM/LOuX9SZj6fLC/5BeTsaOLxK1qec18REaP5ebjw8S3RXDf1H/KLLHy3Pp4OYb6MvlRLJYgxNsenM+bztWTkFRER6El+kZkh7RsyvmcTOpdxxFrLBt54uDiSW2gu1dFPREREKs7FyYHFu48BsOGQ/r5KiXIX3U5q0aLFBQttp/vnn39Yu3btWbs6+Pj48PLLL3PppZdWNI4YKCzAg9l3d+f133ax7WgGjww898/FlIV7yCsq6VB7S7dwwut52iumiEiFtAnx4Y3rO/DQt5sAePHn7bRq4E2X8ABjg0mds+5QGuO/WEd2Qcnaup6ujvz+cB+aBZWvIZGjg4mOjfxYdSCVhIx8EjLytF6hiIjIRYqs74m/hzPHc4vYEHcci8WKg0PZmw1K7VTuotttt9123uc///zzs2738/Pj0KFDtGvX7qzPHzp0CD8/v/LGkWrCxcmB569qQ2Gx5YyOQLsSM2kZ7M2+5Gy+WxcPgLerEw8MaG5EVBGRcru6UyhbDmfw2YqDFJmtTPgmhvkP9CLIx83oaFJHrNyXwu1frrd9cdUtIoDPxl6Cp2vFvj+NCi8pukHJFNOG7VV0E5HaZ0NsGtkFZjqF+eHrru6SUrVMJhNdwgNYuDOJ9NwiDqRk0yzI2+hYYrByv1M7frz0MMmioiK2bdtGeno6AwYMOOdxd9xxB2PGjOG5557jsssuIzg4GICkpCQWLVrEK6+8wgMPPFDeOFLNnN4dDWDL4XSun7qSQW0bkJNfjOXEUkj39I8k4BxrzYiIVEdPD27F9qMZrD6QxrGsAl6Yt533b+58xhcNUvOs3J/CVytjGdsjnG1HMrmzT4TRkc6QmV9ModkCQJ8W9fn4li64u1R8geaoxv6E+LrRubG//h6LSK01bdkB/tiehMkEiyb2JaJ++UYGi5RXdBN/Fu5MAmD9oeMqugkmayWsCG2xWLjnnnuIjIzkiSeeOOd+b7zxBu+++y6JiYmYTCXDLK1WKw0aNODhhx8+77FGyczMxNfXl4yMjLNOjZVzKyg2c/nby4hLyy21vaGvG4sf66duLiJS46RmFzDsveV4uTmTX2Tm7r6R3NJN67vVZDuOZnLjx6vIOjFl0wT88kCvC3biNsK8TUf4bWsi797UCVeni/sbarVabe/FRERqI6vVStfXFnEsqwBvVyc2vzBIU/2kyq0/lMaIj1YBcH1UIybf0NHgRFJVylorqpSiG8Du3bvp168fCQkJF9z34MGDJCYmAtCgQQOaNm1aGRGqhIpuF+f3bYk8PmczWfnFuDg6UGi28NaIDoyMDjM6mohIhSzelcz46esACPRyYfFj/fB205SVmig+LZfrp64kOaug1Paoxn7MmdCjWn44U7FMRKRs4tNy6f3mYgB6Nw/k69u1frhUvfwiMx1e/JNCs4Um9TxY8nh/oyNJFSlrrajS5sTs37+f4uLiMu3btGlTunfvTvfu3at1wU0u3pXtGrDgwd5c2jSAn+/vyXs3dea6qEZGxxIRqbD+rYIY2r4hACnZhXy0dL/BiaQi0nIKGfv5WlvBrVOYL5H1S5r7xMSlM3fjESPj8f26eKb/c/CM7Sq4iYiUzendmbuEl627s8jFcnN2pEOjktHyh1JzOfavL/ak7in3mm4TJ04s9dhqtZKQkMD8+fMZO3ZshYPEx8fzwgsvnLMRg9RcYQEefHd3dwBaNdRoQRGp+Z68shV/7Uii0Gzh0+UHGX1pOCF+Woi+psgtLOa26es4kJIDQER9Tz4f15UdRzO55bM1ALz+204GtQ3Gx4BRjF+tOsTz87YD4OrsyE1dG1fp9fKLzGTmFxHkrcYgIlJ7bIg9VXSLaqyim9hPlyb+rD/x87ch9jhXtmtgcCIxUrlHum3cuLHUbcuWLQBMnjyZKVOmVDhIWloaX375ZYWPFxERsZfG9TwY26NkLbeCYgtv/bHb4ERSHn/tSGJTfDoAQd6ufHVbVwI8XejVPJDBJ94Yp2QXMuWvvXbPNm3ZflvBDeDAsewqu1ZyZj5X/98K2r/4By/9sqPKriMiYoSTI91MJujU2M/YMFKnRIcH2O5vPZJuXBCpFso90m3x4sUVutDPP/983ucPHDhQofOKiIgY4f7+zZm94TDpuUX8uPEI43s2oUMjP6NjSRlc3SmUrPxi/vfnbr68rSuN/D1sz/1naGsW704mv8jCl6sOceMlYbRsUPWdx6xWK+8t2sc7C/fYtt3fvxmPDmpRZdcM8HRhb3I2RWYrG+PSq+w6IiL2lltYzM6ELABaBHkbMmpZ6q6uTQJ48/oORDfxp2mgp9FxxGDlLroNGDCAuXPn4ufnV2p7ZmYm11xzDX///fdZj7vmmmswmUycr2+D1ikREZGawtfDmYcua85/T4wQemX+Tr67q5v+ltUQt3QL56oOIfh6lP4g1sjfg/v6NWPyX3swW6y88PM2Zt1Ztf+/Wq1W3vxjN1OXnFof8LFBLbh/QPMquyaAk6MDHRr5svpAGkfS80jKzCfYR1NMRaTm2xyfgdlS8rkzSuu5iZ35ejhzwyVqHCglyj29dMmSJRQWFp6xPT8/n+XLl5/zuIYNGzJ37lwsFstZbzExMeWNIiIiYqjRl4bbvsFcezCNP3ckGZxIziU5K/+Mbf8uuJ10Z58IGgeUjH5bfSCNX7dcuDN7RVmtVv77y45SBbdnh7au8oLbSZ1PW+do42mLjouI1GSnN1GI0tRSETFQmYtuW7Zssa3ftmPHDtvjLVu2sHHjRj777DNCQ0PPeXyXLl3YsGHDOZ+/0Cg4ERGR6sbFyYGnBreyPZ785279LauGFmxNoM+bi1mwtWzFMzdnR164qg0AnRv7VdnUEIvFyjM/bmX6ykO2ba9c0447ekdUyfXO5vTFxWM0xVREaglfd2faNPTBwaTOpSJirDJPL+3UqRMmkwmTycSAAQPOeN7d3Z3333//nMc//vjj5OTknPP5Zs2aVXi9OBEREaMMahPMpU0DCPRy5ckrW2l6aTWzan8qD3+7iUKzhftmxjBnQo8yfQC7rHUwX97Wld7NAnFwqPz/T80WK6/8uoP5J0bROZjgzREdGdGlUaVf63w6nzYCJCZWI91EpHa4pVs4t3QLJ7ugGE8XR6PjSB1ktlhZtucY6w6lYaWk873UTWUuuh08eBCr1UpERARr166lfv36tudcXFwICgrC0fHcv9B69+593vN7enrSt29f2+PDhw8TEhKCg0O5Z8CKiIjYjclk4svbuuLmrDf11c3OhEzu+mo9hWYLANdHNSrXNKO+LepfeKcKKDZbeHT2ZuZtOkpkfU8cTCZevqYdV3UMqZLrnU+glyuNAzyIS8tl65EMCostuDjpvZeI1A5eruVewlykUjiY4LHZm0nNKcTHzYnHB7Wski/xpPor82+h8PBwACwWS5WFOV2bNm3YtGkTERH2m2IhIiJSESq4VT+Hj+cy9vO1ZBUUA9C/ZX0mXdf+okYimi1WHEwX1/ipyGzh4e822Ua4xaXl8sHNUQxq26DC57xYUY39iEvLpaDYws6ETDqG+RmWRUREpDYwmUxEhfvz144kMvOL2XcsmxbBVd8NXaqfMhXdfv75ZwYPHoyzszM///zzefcdPnx4pQTTmjgiIlJT5RWayS0spp6Xq9FR6qS0nELGfL6W5KwCADqF+fHB6CicHSs+gmv1gVRe/Hk7Ey9vUeECWZHZwoOzNvLbtkQAXBwd+HB0FAPbBFc4V2WICvfnp01HgZLFx1V0E5GaLK/QjLumlEo1EH2i6Aaw/tBxFd3qqDIV3a655hoSExMJCgrimmuuOed+JpMJs9lcWdlERERqFIvFyk+bjvDWH7uJCvfng5ujjI5U5+QWFnPb9HUcOFayjmxEoCefj7sED5eKTzHaEHucUdNWA/DSrzvo06J+hUY3Lt197FTBzcmBj2/pQv9WQRXOVVlOb6YQm5prYBIRkYt3zQf/kFdkpmvTAN4a0UFrrYphopsE2O6vj03j5ksbG5hGjFKmr3wtFgtBQUG2++e6qeAmIiJ1WW6RmdcW7CQhI5/5WxLYoIXp7aqo2Mz9M2LYFJ8OQH1vV768rSsBni4Xdd6oxn70iKwHwOHjeXy0dH+FzjOwTTDPDm2Nq5MDn4yJrhYFN4CWDbz5dEw0G54dyIvD2xodR0SkwjLzi9iTnEVcWi67EjNVcBNDtQv1sa2Tuv6Q3hPWVVopV0REpJJ4uTrxyOUtbI9fmb9DyyXY0T0zYli2NwUAb1cnvhzflbAAj4s+r8lk4r/D2+J0YgHkqUv2E59WsRFhd/SOYNGjfausSUNFODs6MLBNsKZDi0iNtykunZN/dk8fxStiBFcnRzo28gVK1nBNzso3OJEYoUxzLd57770yn/DBBx+scJjT6VsJERGpiW6MDmP6P4fYm5zNxrh05m9NYFgH+3elrO2KzBYcTaZSncAGtW1ATqGZvUlZvHdTZ9qE+FTa9ZoHezOuRxM+XXGQgmILL/+6g2ljos97TH6RmS2HM+jaNKDU9kb+F18IFBGRM8XEnRpN1CVcRTcxXpfwANadGOW24dBxBrdvaHAisbcyFd3eeeedMp3MZDJVWtFNIwNERKQmcnJ04JkhrRk/fR0Ab/y+i8vbBOPqpEWdK8POhExmrz/MvE1H+L+bo+h+YtonwND2DVmwNYElj/XDy8250q/90MDm/LTpKCnZBfy5I4mle46dc8RaXqGZO79az5qDqUwd3cXwZgkiInXB6cs6aKSbVAfRpxV/18eq6FYXlanodvDgwarOcYYdO3YQEqKRASIiUvP0a1mfXs0CWbEvhfi0PL5ceYi7+kQaHavGSssp5OdNR5i94TDbj2bats/eEF+q6Obp6sT08V2rLIe3mzPPDGnFxO83A/Dfn7fz+8N9bOu1nJRbWMzt09ez6kAqAE/8sIVlkf3xcq14M4eqZrVambPhMBvj0zGbrbwxooPRkUREysVisbIpLh0oWdOzkb+7sYFEKD3icv2hNAOTiFEu6t3fydFoF5oKet1115X5nHPnzgUgLCys4sFEREQMZDKZeGZIa4a+vxyrFd7/ex8juoRd9IL+dUmx2cLSPceYvf4wi3YlUWQuPQLexdEBRwOWori2cygz18SxPvY4B1Jy+Pyfg0zoe6qgmlNQzPjp61h7sOSNtberE5+Mia7WBTco+Zl97++9xKfl4ebswCvXtsPZUUv/ikjNsTc5m6yCYqCkAY6WK5LqwN/ThSHtGxDk7Ua3iIALHyC1ToXeTX322We0a9cONzc33NzcaNeuHZ9++uk59/f19bXdfHx8WLRoEevXr7c9v2HDBhYtWoSvr29F4oiIiFQ7bUJ8GNmlEQBZ+cW8t2ivwYlqBqvVyoKtCXSb9De3f7me37cnliq4dWjky8tXt2Xtfy7jrZEd7Z7PZDLx36vbcnIpuQ8W7yPnxIe87IJixn6+9lTBzc2Jr++4tMasK3RyKlZ+kYVdCVkGp6kcVquVjXHHKTJbjI4iIlVM67lJdfXh6C68OLwtV7bT1NK6qNxfuz7//PO8/fbbPPDAA3Tv3h2AVatW8cgjjxAXF8dLL710xjFffPGF7f6TTz7JDTfcwEcffYSjY8n6NmazmXvvvRcfn8pb8FhERMRojw5qyS+bE8grMvNDzGEmDmqBTxWsNVZbWK1WHp+zBQcTpGQX2LYHerlyXVQo10c1omUDbwMTlmgb4svoS8PZl5zNi8Pb4unqRGZ+EeM+X0vMialNvu7OfHP7pbRvVHO+UOwc5se8TUeBkg+vNSn72SzZnczrv+1iV2IWH93ShSvbNTA6kohUodPXc1PRTUSqi3IX3aZOnconn3zCTTfdZNs2fPhwOnTowAMPPHDWotvpPv/8c1asWGEruAE4OjoyceJEevTowVtvvVXeSCIiItVSsI8bE/pGEn88l8cGtVTB7QJmrz/MnA2HAfBydaJ380BGdGlEnxb1q91Ux2eHtcbF0QGTyURGXhFjPl/L5vh0APw8Sgpu7UJrVtEq6rQPqTFxxxnbo4lxYSqByWRiV2LJiL1Za+NUdBOp5bYezgDA2dFE25Ca9ftXRGqvchfdioqKiI6OPmN7ly5dKC4uvuDxxcXF7Nq1i5YtW5bavmvXLiwWDf0XEZHa5cHLmmldmTLYmZDJc/O22R6/fE07ru0camCi8zvZjdZqtXLHl+tsBbcATxe+uf1S2oTUvNH7rRv64OrkQEGxhY0nRuzVVHuSstiblEWQtyvJWQUs23uM+LRcwgI8jI4mIlXk5wd6su1IJnFpObg5q2O4VD+JGflsiD3O4HYNcHDQe8O6otxfG996661MnTr1jO3Tpk1j9OjRFzx+/Pjx3H777bz99tusWLGCFStWMHnyZO644w7Gjx9f3jgiIiLVmgpuF5ZdUMx9M2IoKC758u2Wbo2rdcHtdCaTiXv7NcPF0YF6ni7MurNbjSy4ATg7OtDhxJTSuLTcUlN8a5q/dyXzyvydJGeVvAarFb5bF29wKhGpSq5OjnQJ9+fazo2MjiJyhqfnbqHbpEXcNzOGvcnZRscRO6pQK63PPvuMP//8k27dugGwZs0a4uLiGDNmDBMnTrTt9/bbb59x7P/+9z8aNGjA5MmTSUhIAKBhw4Y8/vjjPProoxWJIyIiUmNk5RcRm5pb46YeVhWr1crTc7dyICUHgLYhPjw7tI3Bqcqnf6sgPr61C4383WkebPyacxcjqrE/6w6VrIsUE3ucQW1r5pTMLYfTbfcdHUyYLVa+Wx/PQwObV7upyiIiUvtFBHrZ7q87lFYt1qgV+yh30W3btm1ERUUBsH//fgACAwMJDAxk27ZT00LO9c2+g4MDTzzxBE888QSZmZkAaqAgIiK1ntVq5evVsczbdITwAE/+N7KjphYAM9bE8cvmksX7vV2d+HB0VI2cFtS/VZDRESpF58an1nXbGJ9eY4tum+NL1nbycHGkd/NA/tiexLGsAhbtTFL3OBERsbsuTU79fd0Qe5xbuoUbmEbsqdxFt8WLF1faxVVsExGRusJkMrFk9zE2xKazITadkdFhdI+sZ3QsQ207ksFLv+ywPX5zRAfC63kamEiiGvvZ7sec1gmwJjmWVcCR9DwA2oWWdJr9Y3sSADPXxqvoJlLLFJstPPL9ZjqE+tI9sp5Gkku11C7E17Zu6vrYNKPjiB3ZfXx9UlISt956KyEhITg5OeHo6FjqJiIiUltdc9o6ZbPX1+31paxWK//5aRuF5pJ13Mb1aMLg9iqGGC3Ix43rokJ5ZGALHh7Ywug4FXL61NJOYX70ahZIWIA7AMtPNFQQkdpjV2IWv2w+yqsLdvLxsgNGxxE5KxcnBzqG+QEQn5ZHUma+sYHEbso90i0/P5/333+fxYsXk5ycfEbH0ZiYmPMeP27cOOLi4njuuedo2LBhlS8w3aRJE2JjY8/Yfu+99/LBBx9U6bVFRERON6hNML7uzmTkFbFgWwIvXt0WHzdno2MZwmQy8eHoKO6fGYPFCs8MaW10JDnh7Rs6GR3homw+nGG736GRLw4OJkZd0pi3/tiN1Qrfrovj8StaGZhQRCpTTNypUbmnj9YVqW6iw/1Ze7BklNv6Q8cZ2kFfNtYF5S663X777fz555+MGDGCrl27lrtotmLFCpYvX06nTp3Ke+kKWbduHWaz2fZ427ZtXH755YwcOdIu1xcRETnJzdmRazqF8OWqWPKLLPy6OYGbL21sdCzDhPq5891d3cnML8LFSYvbS+XYHJ9uu9+xkR8AI6Mb8X9/72Ngm2AG1JL190SkxOlT4buE+59nTxFjRZ+2rtv62DQV3eqIchfdfv31VxYsWEDPnj0rdMGwsDCsVmuFjq2I+vXrl3r8+uuvExkZSd++fe2WQURE5KSR0WF8uapkBPb36+PrdNENSqZbBHq5Gh1Dagmr1WqbXhrg6UIj/5JppUHebqx/diCeruV+6ysi1dyGEyPd3JwdaN1Qa4ZL9RXVuHQzBakbyv21cmhoKN7eFW9vO2XKFJ566ikOHTpU4XNUVGFhId988w233XbbOUfoFRQUkJmZWeomIiJSWdqF+tLmxIeCTfHp7EnKMjiR/WTkFvHiz9vJLig2OopcgNliZcfRTH7ceNjoKOUSn5bH8dwiADo28i31fk8FN5HaJzkrn/i0ksYpHUL9cHbUqGmpvvw8XGge5AXA9qOZ5Bbq/VBdUO7fSpMnT+bJJ5886zppZXHjjTeyZMkSIiMj8fb2JiAgoNStKv3000+kp6czbty4c+4zadIkfH19bbewsLAqzSQiInXPDdGNbPfrSkMFq9XKo7M3M33lIYa/v4K9dajYWBON+XwNQ95bziPfbSY1u8DoOGVWbLFwdacQmtTzsC1YLSK1V0xsuu1+lKaWSg0Q3SQAVycHuoT7k5pdaHQcsYNyf+UXHR1Nfn4+EREReHh44OxcegHotLTzt7+dMmVKeS9ZaT777DMGDx5MSEjIOfd5+umnmThxou1xZmamCm8iIlKpru4UymsLdlFotjA35ghPXNmq1n87/+nygyzcmQTA8dxCjTqq5to09OGffakAbIxLZ2CbYIMTlU1EfS/eHdUZ4JzLmeQXmVmwNYEis4UbL6nb07tFarqNaqIgNcyTV7bkv8Pbai3bOqTc73hvuukmjhw5wmuvvUZwcHC5GymMHTu2vJesFLGxsSxcuJC5c+eedz9XV1dcXbW2jIiIVB1/TxcubxvM/C0JpOYUsnT3sRpT1KiIDbFpvP77Ltvjt2/sRIifu4GJ5EJK1p05CJR0BqyJP59ne4+aX2Sm1xt/k5JdSKCXK9dFNar1BW+R2uz0dbE00k1qAj8PF6MjiJ2Vu+i2cuVKVq1aRceOHct8TGZmJj4+Prb753Nyv8r2xRdfEBQUxNChQ6vk/CIiIuVx0yWNcTCZuCG6ET0iA42OU2XScgq5f+ZGzJaSUUf39oukf0t1j6zuTv/wGhNXexZ7dnN25JImAfy2LZGU7AIW7khicHt1jxOpiQqLLWw5kgFAeD0PNeURkWqp3EW3Vq1akZeXV65j/P39SUhIICgoCD8/v7N+82i1WjGZTJjN5vJGuiCLxcIXX3zB2LFjcXLSdBYRETFer+aB9Gpee4ttABaLlYnfbyIhIx+Ark0DmHh5C4NTSVkE+7gR4uvG0Yx8thzOoNhswamajwjLLSzGhAl3F8fz7nfzpY35bVsiADPXxqnoJlJDmS1Wnh3ampjY4wT7uhkdR6TcrFYrxRarRlzXcuWuQL3++us8+uijvPrqq7Rv3/6MNd3ONlLt77//tjVJ+Pvvv8s9JfViLVy4kLi4OG677Ta7XldERKQum7p0P0t2HwOgnqcL79/UudoXbuSUzuH+HN2SQG6hmd1JWbQN8TU60nn9ujmBp3/cSvMgL54a3Ip+5xhR2TMykMYBHsSl5bJ8bwpxqbk0rudh57QicrHcXRwZ070JY7o3MTqKSLlsOZzO+3/vIyb2OA9f3oJbu4UbHUmqULmLbldeeSUAl112Want5xup1rdvX9v9fv36lfeSF23QoEHnXExXREREKt+aA6lM/nM3ACYTvDuqM8E+GolQk0Q19mf+lgQAYuLSq33RbfPhdMwWK7sSs3BzPvdoNwcHE6O6hvHm7yU/n7PWxfHkla3sFVNEROo4s8XKXztKmkttOJSmolstV+6i2+LFiy/qgn369KFfv3707duXnj174uamN+AiIlJ35ReZ+WN7It+vj2fi5S3pUgsWgj6ansc7C/dwYhk3HhzQvNZPpa2NTu8EuDHueLX/ULD5cDpQUuRtF3r+AuHILmG8/eceii1WZq+P55GBLdRJTkRE7KJtiC9uzg7kF1lYH1t71k2Vsyt30e30UWsVMWjQIJYtW8bbb79NcXEx0dHRpYpwHh4a3i8iInXHgq0JTPx+MwBh/vE1vuiWkVfEuC/Wsicpm57N6uHk4MCDlzU3OpZUQJsQH1wcHSg0W9gYl250nPPKLzKzKyELgGb1vfByPf9b3PrergxqG8yCrYmkZBeycGcSQ7S2m0iNsvpAKk0DPQnydrX78kUiF8PFyYGOjfxYczCNw8fzSMzIp4HWJay1KvyVXm5uLrt27WLLli2lbhfy7LPP8ueff5Kens7ixYsZNmwY69evZ+jQobZ130REROqKK9s1sBUIftl8lNzCYoMTVVxBsZm7vlrPnqRsAA4fz2PKqE44OujDUE3k6uRIu1AfAr1caRHsRZHZYnSkc9qRkEnxiaGVHcP8ynTMzV1PjdybuSauKmKJSBXJLihm1LTVXPraIsZ8vtboOCLlFt3k1Jes62PTDEwiVa3cI92OHTvG+PHj+e233876fFm7jx44cICtW7eyefNmtmzZgre3N3369ClvHBERkRrNw8WJqzo2ZNbaeHIKzSzYmsiILo2MjlVuFouVx2ZvYc3BkjeOAZ4ufDm+K/4eLgYnk4sx/baueLs6VftRJFvi0233OzYq29pzPSLrEV7Pg9jUXFYdSCU5K58gb400EKkJ9iZl2e438nc3MIlIxUSHBwD7AVh3MI1hHUKMDSRVptwj3R5++GHS09NZs2YN7u7u/P7773z55Zc0b96cn3/++YLH33zzzYSGhtKjRw9+//13unXrxm+//UZKSgo//vhjhV6EiIhITTYyOsx2//v18QYmqbg3ft/FL5uPAuDm7MBnY6NpEuhpcCq5WD5uztW+4Aaw+XCG7X5ZR7o5OJiY0DeSBwc0Y+nj/VRwE6lB9p4YUQ3QPMjbwCQiFdO5sR+9mtWjbYgPG+K0rlttVu6Rbn///Tfz5s0jOjoaBwcHwsPDufzyy/Hx8WHSpEkMHTr0vMd/++23BAYGcscddzBgwAB69eqlddxERKRO6xzmR7MgL/YlZ7P2YBoHU3JoWoMKVl+vjuXjZQcAcDDBBzdH0blxzV6bTmqWk00UXBwdaNXAp8zH3dS1cRUlEpGqtPu0kW4tglV0k5rHz8OFrPxith/NBNBo61qs3CPdcnJyCAoKAsDf359jx44B0L59e2JiYi54fGpqKp9++imFhYU8/fTTBAYG0qNHD5555hn+/PPP8sYRERGp8UwmEzdEn5pSOmdDzRrt1q1pAKF+JdN7Xr6mHZe1DjY4kVSFwmILlpMtacshNjWHt/7YhdVa/mPLIiOviAPHcgBoHeKjLqQidcCeUkU3LwOTiFTc6Z3d/9mXYmASqUrlflfSsmVLdu/eDUDHjh35+OOPOXLkCB999BENG16465O/vz/Dhw/n7bffZsOGDWzZsoUWLVrw1ltvMXjw4PK/AhERkVrgms6htoYDczYcxlyB4oZRmgd7M/feHrx8TTtGXxp+4QOkRvlx42FGTF1J+xf/KDW6pCzi03IZOHkpHyzez03TVnPrZ2sqPd/pH77Lup7buVSkqCgi9ndyeqmvuzP1vV0NTiNSMb2b17fdX75HRbfaqtzTSx966CESEhIAeOGFF7jyyiuZMWMGLi4uTJ8+/YLHp6amsnTpUpYsWcKSJUvYsWMHfn5+XHXVVfTt27fcL0BERKQ2CPJ2o3/LIBbuTCIps4Ble4/Rv2WQ0bHKLNjHjVu7qeBWG6VmF7I+tmS9mZi447RuWPbpm2EBHgxoHcQf25NYfaLJRnxaLmEBlbe0yCVNAtj8/CC2HsmgnlfFGnccSc/ju7VxzN5wmFl3dtN6hCLVWEZeEYmZ+QC0DPauEetOipxNVGN/PFwcyS00s3xfClarVT/PtVC5R7rdcsstjBs3DoAuXboQGxvLunXriI+P58Ybb7zg8UFBQdxzzz0cPXqUO++8k40bN5KSksLcuXN56KGHyv0CREREaovTp5huPq0bY3WTnJXPpAU7KTJbjI4idnD6+nwb49LPu+/OhMwzppE+O7QN3SICbI/nb02o1HwAvh7O9GoeWK6C4Ol+2XyU9/7eR0JGPt+uq1nTu0XqmtM7lzbX1FKpwVycHOgWUQ+AY1kF5R5NLjXDRS964eHhQVRUFIGBgaW2+/j4cODAgTP237JlC0lJScyZM4cHHniA9u3bn/W8//zzDwUFBRcbT0REpMbo3yqIxwa1YPkT/Xl4YAuj45xVdkEx479Yx8fLDnDb9HVkFxQbHUmqWNsQH5wdS755jzlHh7XkzHwmfr+Jwe8u5+cTXWxPCgvw4I3rO9geL6iCotvFGtGlke01ztkQT2GxCsoi1dWe0zqXqomC1HS9mp2qo6zYqymmtVGVrTR7rsVy27ZtW6bjBw8ezJEjRyozkoiISLXm7OjA/QOaV+rUu8pUZLZw74wYW6etA8dyyFXRrdZzc3akbUjJWmkHjuWQnltoe66g2MyHS/bR/39LmBtT8r7t9d92kVtY+ucivJ4n7UJLRqFtOZxBXGqundKXTaCXK4PaNgAgJbuQv3YkGZxIRM4lPa8QF8eSj7Ea6SY1XZ8Wp4puy1R0q5WqbXunqupwJSIiIuVntVp5eu5Wlu0p6Vru6+7Ml7ddQpCP2tvXBVH/mmJqtVr5c3sig95Zxpu/7yan0AyAj5sTd/eJwNnxzLeYQ9qfarhVWVNMV+1P5ck5W5ixJpaj6XkXda7RXRvb7s9cG3ux0USkitzbrxk7XrqCRY/2pXOY/4UPEKnGIut70eDEe6m1B1PJLzIbnEgqW7UtuomIiNR1Fou12kzffOevPczZcBgoWYPk07HRNAvStJ66onNjP9v9hTuTGPP5Wu76egOxJ0asOZjglm6NWfJ4f8b1bHrWotvQ04pulTXF9J99KXy3Pp7//LjtotdB7BZRjyb1PE6cN5VDKTmVkFBEqoKTowOR9b1wd3E0OorIRTGZTPRuXjLaLb/IwtYjGQYnksqmopuIiEg1k5FbxNt/7aH3m4t547ddRsdh1to43vt7HwAmE7x7YycuaRJwgaOkNokKPzWaZMaaOJafNgWmW0QA8x/szSvXtCfA89zdQ0+fYrr1SOVMMd18ON12v2OY30Wdy8HBxE2njXabtS7uos4nIiJSFqO6hvHmiA6senqA3l/VQlVWdFOrWxERkYpxcIBpy/ZzJD2PeZuOGDrV4O9dSTz70zbb4+eGtmHwaSOWpG4I8XUj2McVh9Pe3oX6uTN1dBSz7uxW5q6hQ9uH2O5f7BRTq9VqG90W6OVKQ9+Ln+p8/ekNFdYfVkMFERGpcl3CA7ghOoyGvu5GR5EqYPdGCmWlop2IiNRV3m7OtvWvMvOL+WN7oiE5ftuawH0zNmK2lPxNv7N3U27r1dSQLGIsk8nEt3d1Z8nj/Qj0cuHRy1uw6NG+DG7fsFzv2U6fYrruUNpFZTqUmktmfsn0605hvpXy3jHQy5UrTjRUSM0p5Pft1a/Tqkhd9uuWo9z99Xom/7lbU8BFpEaosqLbb7/9RmhoKAA///wzRUVF5TpejRRERKQuuyE6zHb/5Fpq9pJdUMzz87Zxz4wYQvxKRg8N69CQpwe3tmsOqV6aBnrSOMCTFU8O4IHLmuPmXP61lBrX8+CZIa2Ye28PPh0TfVF5tpw2tbRDI7+LOtfpbu7aGJMJ2jT04b1F+87oxCoixll7MI0/tifx/t/7SMrMNzqOiMgFOZVlp4kTJ5b5hG+//TYAvXr1sm279tprSUxMpH79+jg6OpKQkEBQUNB5z5OVlVXma4qIiNQ2lzYNILyeB7GpuazYl8Lh47k08vewy7VNwMIdSQBk5hVxX/9IHrysOQ4OGoUuVKjYdrq7+kRWSo5NpzVOuNj13E7XPbIed/WO4ONlBwB4Yd523hrZsdLOLyIVtyfp1GfEFsFq5iO1R5HZwoq9KSzfm4K3mxOPXN7C6EhSScpUdNu4cWOpxzExMRQXF9OyZUsA9uzZg6OjI126dDnr8fXr12f16tVcddVVWK1WTR0VERG5AJPJxMgujfjfn3uwWuGHDUd4aGBzu1zb09WJ569qwyPfbeaO3hHc1uvs3ShFjLTl8KkObx1CfSvtvCaTiRsvCePr1bHkFpqZveEw3SPrcV1Uo0q7hohUzN6kbKBkKrj/eRq3iNQ0ZouVe2ZsIL/IQgMfNx4e2Fx1k1qiTO+gFy9ebLtdddVV9O3bl8OHDxMTE0NMTAzx8fH079+foUOHnvX4CRMmcPXVV+Po6IjJZKJBgwY4Ojqe9SYiIiIlru/SiJPvt2ZviMdiqfylF3IKipn0207i00p3kryibQOWPdGfu/tGquAmVaoiS4oUmS1sO1JSdAuv51HpH74j6nvx2rXtbY+f/Wkb+49lV+o1RKR8UrILSM0pBKBFsJfBaUQql5uzI12b1gMgMTNff3NqkTKNdDvd5MmT+fPPP/H3P9U63t/fn1deeYVBgwbx6KOPnnHMiy++yKhRo9i3bx/Dhw/niy++wM/P76KCi4iI1HYNfd3p07w+S/cc4/DxPFYfSKVHs8BKObfVauX3bYm89OsOEjLy2Z+czadjL7E9bzKZqO/tWinXEvm39NxC5sYcYcHWBAa2CWZC3/JNOd2TlEXBic6ilbme2+mu6RzKyv0pfL/+MLmFZu6fuZEf7+1x0dNrRaRiNLVUarvezQJZtucYAMv3ptAsSD/ntUG5i26ZmZkcO3bsjO3Hjh077zpsrVq1olWrVrzwwguMHDkSDw/7rEsjIiJSk90QHcbSE2/Avl8fXylFt0MpOTz/83bbGzuAZXtTOJiSQ9NAz4s+v8iFZOYV89KvOwDILzaXu+gW4OnC41e0ZHN8Or0rqRB9Ni8Ob0tMXDr7krPZmZDJq/N38vI17arseiJybienloKKblI79W4RCAtK7i/fm8L4nuoYXxuUu+h27bXXMn78eCZPnkzXrl0BWLNmDY8//jjXXXfdBY9/4YUXgJIi3e7duwFo2bIl9evXL28UERGRWm9gmyD8PJwxW6y4ODmQnJVPoKdrhZoa5BeZmbpkP1OX7qfwxCghgL4t6vPf4W1pooKb2Enjeh60D/Vl65EMth3JJDY1h/B6Zf/5a+jrzn39m1VhwhIeLk58cHMUw/9vBQXFFr5eHUv3yHoMad+wyq8tIqWVHumm6aVS+7QM9qa+tyvHsgpYfSCVwmILLk5a4qOmK3fR7aOPPuKxxx7j5ptvpqioqOQkTk7cfvvtvPXWWxc8Pjc3l/vvv5+vv/4as9kMgKOjI2PGjOH999/XCDgREZHTuDo58vVtl9I82Isxn62l66uLcHIwEezjRrCPKw193Qn2caOhrxvBviX/jQj0pJ5X6amhi3cn88K87cSdtnZbQ183XriqDVe0baDFesXuhnZoyNYT67LN35rAvf2qvohWES0bePPf4W15au5WAJ6cs4X2ob6EBeg9q4g9nT7SrblGukktZDKZ6N0skLkbj5BbaCYm7jjdIuoZHUsuUrnLph4eHnz44YekpqayceNGNm7cSFpaGh9++CGenhf+hvKRRx5h6dKl/Pzzz6Snp5Oens68efNYunTpWdeDExERqevaN/LFzdmRxMx8AIotVo6k5xETl878rQl8/s9BXl2wkwdnbWTkR6v4dl18qeOfn7eN8V+ssxXcnBxM3N0ngoUT+3Jlu4YquIkhhp42Wmz+lgQDk1zYjZeEMbxjCACuzo4kZ+UbnEikbrFarew+MdIt2McVX3dngxOJVI1ezU8tmbBib4qBSaSylHuk20menp506NCh3Mf98MMPzJkzh379+tm2DRkyBHd3d2644QamTp1a0UgiIiK12oBWQcSn5ZKQkU9SZr6ti9u/NfBxK/W4W0QAX62KBaBr0wBeuaad1sMRw4UFeNChkS9bDmew/WjZp5gmZeaTnFlAywbedpt2YzKZePXadrg7O/LYFS3VZETEzswWK49d0ZK9SVm4q5mJ1GK9TlundPneYzx2RUsD00hlKHfRLScnh9dff51FixaRnJyMxWIp9fyBAwfOe3xubi7BwcFnbA8KCiI3N/csR4iIiAiULOp+uoJiM8mZBSRk5JOYmU9iRh6JGQW0Df3/9u48Luo6/wP4awYYhmtmQG4BQRE5VMD7Fo80r7JLszWPymxXwzyy9GeRbZu2raWl6266oVZ2mO7mZlYeiHceHN4KKCrKrTDcx8z39wcyC4FyOHy/M/B6Ph7zcOY73/l+XtTHL/Lmc6hqnRfRxRVT+nijj58TJoa158g2Mhlju3ngTFrTppj+N/E23tt1EQpLOT55NgyPdhVnfTUHpRU+eLrpv3AmoodnaSHH8/06SB2DqMW5qpQIdHfApYwCnLmVj7zicmhsFVLHoofQ5KLbSy+9hNjYWDz//PPw8Gj6lJT+/fsjKioKW7ZsgVJZ9Zv4kpISLF++HP37929qHCIiojbL2tIC3k62Da4tpbS0wIonWSwg0zOumwdW7r4EoGqKaWOKbtVFuvJKPbwcpV1XTRAEFJRVQqXkVDciIjKOZ3p5Iz2vBIM6O8NGwZGd5q7JRbfdu3dj165dGDhwYLMaXLNmDUaPHg0vLy+EhoYCABITE6FUKvHLL78065pERER0f83Z6ZRIDN5Otgj1UiPx3hTT1JyiBnfRPZOWBwCwtpSji7t006TvFpXj9e8TkV9Sga9n9YOlBXeYIyKih/fiID+pI5ARNflfB46OjnBycmp2g127dkVSUhJWrFiBsLAwhIWFYeXKlUhKSkJISEjDFyAiIiKiVmPsvQ0V5DIg/ubdB56bV1yO1Nyq5UhCPFWwkqjQJQgCXv7iFPZezMLJ1LtYvTdJkhxEbcXZtHzkFJZJHYOIqMmaPNLtz3/+M95++21s3rwZtrbNG9Jva2uLWbNmPfCccePGYePGjfDwEGedDiIiIiIS34RQT9hZW+LRru5wtn/wBgXVU0sBoLuXpoWT3Z9MJsObY4Iw6Z/HoNMLWHcgGf06tqu16xwRGYcgCHhu43EUlFYixFOFXZGDpY5ERNRoTS66rVq1CikpKXBzc4Ovry+srGqvYREXF2eUYAcPHkRJSYlRrkVEREREpslTY4OpjVwgPfFmnuF5mLemZQI1Us8Ojnh9dBes3H0JggC89m0Cfpo3CK4OyoY/TESNlqEtRUFpJQBw52BqU9LuFuNwUg48NTYYEuAidRxqpiYX3SZOnNgCMYiIiIiIHiyx1kg3tYRJqrw8uCOOpeQi9ko2cgrLMP/bBGx5oS8suI4ikdFcySw0PA9wk24dRyIxXc4owOjVBwEAjwS7sehmxppcdIuKimqJHERERERE0OuFejf/EAQBifc2UVApLeHb7sEbLohBLpfho0mhGPvJIWRqy3AkORfrDyRj7vDOUkcjajWSMgsMzzu72kuYhEg8nV3t0c5OgdyichxPyUWFTi/ZOqb0cPh/jYiIiIgkdzYtH2//cA59V+zDtZyiOu9naEuRXVC1kHp3L43J7Mrbzt4aa54NR3Wcj/ZcwYlrd6QNRdSKXKlRdONIN2or5HIZBvpXrRNaUFZZa3kFMi+NKro5OTkhJycHwP92L73fg4iIiIioqY5dzcGWY9eRXVCGn86m13k/Pb8UHuqq9dJCvaWfWlpTv47tEDmianSbXgBe2nwS/4xNwfXcusVDImqamtNL/TnSjdqQmpvzHErKkTAJPYxGTS/9+OOP4eDgYHguk5nGbxaJiIiIqHUY09UD7/90CQDw45l0zBnmX+v9Hj6OOLZkBLIKSqWI16BXh3fG8au5uJ5ThPzSSqzYfQkrdl9CZ1d7jAx2w8ggN4R5a7jeG1ETCIKA5KyqopuXow3srJu8OhKR2Rpcq+iWjfmPBEiYhpqrUXet6dOnG57PmDHjoRo8ePAgBgwYAEvL2k1XVlbi6NGjGDJkCABg6dKlHDlHRERE1EZ4O9ki1FuDxJt5uJiuxdXsQnR0qTuqxVR3B7WQy/DplB44k5aHFzefMhxPyipEUlYh1h9IQTs7BYYHumJksBsGd3aGrYIFBKIHuZ1fisKyqp1Lu3BqKbUxHmob+LvaIzmrEIlp+cgvqYDaxkrqWNRETV7Tbdq0aYiOjkZKSkqzGhw2bBju3Km7zkV+fj6GDRtmeL1kyRJoNJpmtUFERERE5mdcN3fD8/qmmJo6FwdrDA90xd4FQ/DGo4Ho2cERNSeI5BaVY9vpNMz+4jTC3t2DtLvF0oUlMgM113PrzKIbtUHVo910egHHUnIlTkPN0eSim0KhwIoVK9C5c2d4e3tj6tSp2LhxI5KSkhr1eUEQ6p2empubCzs76XehIiIiIiJpjO3mYXi+62yGhEmaTyaTwd/VAX+M6ITtfxyAk/83Eh8+3R2jQ9xgY2VhOM/VwRrtNTa1PnssJRcnruWirFIndmwik5SlLYXlvSnZAW5cz43anppTTA8nZ0uYhJqryWPaN27cCAC4desWDh48iNjYWKxatQqzZ8+Gh4cH0tLS6v3ck08+CaDqHyIzZsyAtbW14T2dToczZ85gwIABzfkaiIiIiKgV8HKsf4rpzsTb+NfhawjzUmNKXx8EuqukjtpozvbWeKaXN57p5Y3SCh2OpeRiz8VMuKuUdX4R/Y/YFMReyYbCQo5gTxXCfTTo4eOIcB8N2mtsuK4ytTmTe/vgiXAvXMspgpvKuuEPELUyff3awcpChgqdwM0UzFSzF5JwdHREu3bt4OjoCI1GA0tLS7i4uNz3fLW6apcpQRDg4OAAG5v//WZPoVCgX79+mDVrVnPjEBEREVErML6bBxJv5gGommI6d3hnnE69g8SbeUi8mYdHgt0B9wdfw1QprSwwLNAVwwJd67yXpS1FpU4PACjX6ZFwMw8JN/MQfSQVQNXU1R4+GoT7OCLcW4M+fk4swlGboLCUo4s7p5ZS22RnbYmB/s7QC8Bgf2fo9AI35DEzMkEQhKZ8YOnSpThw4ADi4+MRFBSEoUOHIiIiAkOGDIGjo2ODn1++fDkWLVpkNlNJtVot1Go18vPzoVKZz29ViYiIiMxR2t1iDPogBgAQ5KHC7nmDMXHdESTcK8QlRo1qlQtJ55dU4OCVbBy4nI34m3dxNbvovue6OFjjxNIRtYpuWdpSqGysoKwxhZWIiMzf/ZboImk1tlbU5JFuK1euhIuLC6KiovDkk08iIKBp29ZGRUU1tUkiIiIiaiO8HG0R5q1Bws08ZGlLkaUtxYXbWgBAR2e7VllwAwC1jRUmhHpiQqgnACCvuBwJN/MQdyMP8TfuIuFmHgpKq3Zx7OGjqfMD2NJ/n8Pei5lQKS3hplLCVWUNNwclXFVKuDpYG455OdrAQ21Tp30iIjJNLLiZtyYX3eLj4xEbG4sDBw5g1apVUCgUhtFuERERDRbhMjMzsWjRIuzbtw9ZWVn4/UA7nY4LxxIRERG1ZYtGdYFcBvTxc8LF9AKU35t22d1LLXEy8WhsFYjo4oqILlVTUfV6AVdzChF3PQ9uamWtc8sr9SgsqwAAaEsroS0tRFJWYb3XHRXshs+m9ap17G5xOaws5LC3bvbKM0RG99vVXGw5dh2d3ewxpqsHp5gSkVlq8nfW0NBQhIaGIjIyEgCQmJiIjz/+GHPmzIFer2+waDZjxgzcuHEDb731Fjw8PFi1JSIiIqJaBtXYrS0hLc/wvLuXRvwwJkIur9oV1d+1buEhr6Qc3b000OkFZGrLkFVQitIKfb3XcVPVLdi9ujUOeSUViJ7RBy4OXKyeTEPcjTzsOpsOnAX8nO1YdKM2r1KnR2JaPtzVyjq7X5PpanLRTRAExMfH48CBAzhw4AAOHz4MrVaL7t27Y+jQoQ1+/vDhwzh06BDCwsKak7dZbt26hTfeeAO7d+9GcXEx/P39ER0djV69ejX8YSIiIiKSzJl7a7kBQKi3RrIcpszVQYmlY4MMrwVBgLa0EtkFpcjUliFTW4qsgqo/+/o51frsO/89j8PJuQCAp9YfxZYX+sDX2TzWXqbW7UpmgeF553qKzURtyaGkbPzpqzgUlFZiwSMBiBzRWepI1EhNLro5OTmhsLAQoaGhGDp0KGbNmoXBgwdDo9E06vPe3t51ppS2pLt372LgwIEYNmwYdu/eDRcXFyQlJTVq0wciIiIiklbivZFulnIZQjy5qVVjyGQyqG2soLaxqndkXE3T+3dAzKUspOeX4sadYjy1/iiiZ/Zu06MKyTRUF93kMqCjCwvB1Lb5OdsZ1vU8nJTDopsZaXLR7csvv8TgwYObvZPn6tWr8eabb+Kf//wnfH19m3WNpvjggw/g7e2N6OhowzE/P78Wb5eIiIiImk8QBGw5moormVVrkwW4OXBnzhbQxV2FHX8agOmfn8CVzELkFpXj2c+O4x9Te2JIgIvU8aiN0ukFJN9bl9C3nR3/7lOb5+VoCz9nO1zLKULcjbsoLKvkOpxmQt7UD4wbN67ZBTcAmDx5Mg4cOIBOnTrBwcEBTk5OtR7GtnPnTvTq1QvPPPMMXF1dER4ejg0bNtz3/LKyMmi12loPIiIiIhKXTCbDF7/dMLz240iXFuOhtsG22QPQx7fq3+LF5Tq8sOkk/h2fJnEyaqtu3ilGWWXVuoQBbpxaSgQAg++td1qpF3A8JVfiNNRYopdGV69eLWp7V69exfr167FgwQIsXboUJ0+eRGRkJBQKBaZPn17n/BUrVmD58uWiZiQiIiKiup7v3wEHL2fD0c4K47t5Sh2nVVPbWmHLi30w75t4/HI+E5V6AfO/TUR2QRleHtJJ6njUxlyusZ5bgJu9hEmITMcgf2dsOXYdAHA4OQcjg90kTkSNIRPEXGBNAgqFAr169cLRo0cNxyIjI3Hy5EkcO3aszvllZWUoKyszvNZqtfD29kZ+fv5DjfAjIiIiIjJ1Or2AqJ3n8OXx/40yXPVMKJ7q6SVhKmpr1u5Pwt9+vQIA+HRKOCaEsuhOVFBagbB390CnF9DRxQ77F0ZIHalN02q1UKvVDdaKmjy91BhSUlKwbNkyTJkyBVlZWQCA3bt34/z580Zvy8PDA8HBwbWOBQUF4caNG/Web21tDZVKVetBRERERNQWWMhl+PPjXbHwkQAAQB8/J4zr7iFxKmprqtdyBDi9lKiag9IK4fd28b6aXYRbeSXSBqJGEb3oFhsbi27duuG3337Djh07UFhYdUNNTExEVFSU0dsbOHAgLl++XOvYlStX0KFDB6O3RURERERk7mQyGV4d0RlrnwvHhud7cRF7El31zqWWchn8nLmeI1G1wZ3/t8HN4aRsCZNQY4ledHvzzTfx3nvvYc+ePVAoFIbjw4cPx/Hjx43e3vz583H8+HG8//77SE5OxtatW/HZZ59hzpw5Rm+LiIiIiKi1GN/dE2pbq1rHbt4pRlZBqUSJqK14vn8HPNfXB+O7e0BhKcnkLCKTNOjeZgoAcCgpR8Ik1Fiib6Rw9uxZbN26tc5xV1dX5OQYv9P07t0b//73v7FkyRK8++678PPzw+rVq/GHP/zB6G0REREREbVWOYVleP5fv0EnCNjyQl+OQKIW84e+nJVEVJ9QLzUclJawt7aEh1opdRxqBNGLbhqNBunp6fDz86t1PD4+Hu3bt2+RNsePH4/x48e3yLWJiIiIiNqCt/5zDqm5xQCAp9cfxeczeiP03vpCRETU8iwt5Ni7YChcHaxx9lY+LqZrEeTBdehNmehjdZ999lm88cYbyMjIgEwmg16vx5EjR7Bo0SJMmzZN7DhERERERNQIURNCEOhetah9blE5pmw4jsOc3kREJCo3lRIp2UWY/vkJTP7nMZxMvSN1JHoA0Ytu77//PgIDA+Ht7Y3CwkIEBwdjyJAhGDBgAJYtWyZ2HCIiIiIiagR3tRLfzu6PPn5OAAC5DNh9Lh1pd4slTkatSXJWIfKKy6WOQWTSVv16GXeLK6AtrcTUjb9h/6VMqSPRfcgEQRCkaPjGjRs4d+4cCgsLER4ejs6dO0sRo0FarRZqtRr5+flQqThsk4iIiIjattIKHV7ecgpn0vKRV1KBx8M8sebZcKljUSsx6uNYXMksRHuNDQ4tHga5XCZ1JCKTU1RWiVe+PG3YTMFCLsOHT3fHkz28JE7WdjS2ViTZVjA+Pj4YO3YsJk2aZLIFNyIiIiIiqk1pZYFPn+sB2b1ayA8Jt5FwM0/STNQ6lFfqcTW7CABgb23JghvRfdhZW2Lj9F4Y390DAKDTC1jwXSI2HroqcTL6PdE3UtDpdNi0aRP27duHrKws6PX6Wu/v379f7EhERERERNQEahsrvDYyAFE7zwMA3t91Ed/O7geZjEUSar7U3CJU6qsmYnV2s5c4DZFps7a0wJpnw+Foq8AXx68DAN7bdRF3isrx+uguvB+bCNFHus2bNw/z5s2DTqdD165dERoaWutBRERERESm77m+PujobAcAOJF6B7+c55pC9HCuZBYYnndxc5AwCZF5sJDL8O7jIXht5P9mD/79QAqW7DiLSp3+AZ8ksYg+0u2bb77Bd999h7Fjx4rdNBERERERGYmVhRxvjgnEy1+cBgCs3H0RwwNdobCUbAUbMnNXMgsNzzuz6EbUKDKZDK+NDEA7OwXe3nkeggB8c/Imxnf3xKDOzlLHa/NE/46oUCjg7+8vdrNERERERGRkjwS7oe+93UxTc4vx1W/XJU5E5iypxki3AE4vJWqS5/v74pNnw2FlIcPSsYEsuJkI0YtuCxcuxJo1ayDRpqlERERERGQkMpkM/zcuyPB6zb4k5BdXSJiIzFn19FKFpRwd2tlJnIbI/EwI9cSv84fi5SGdpI5C94g+vfTw4cOIiYnB7t27ERISAisrq1rv79ixQ+xIRERERETUTN29NHgivD3+HX8LecUVWHcgGUvHBjX8QaIayip1SM0tBgB0crGHBXcuJWoWP+e6Beufz6UjxFMNbyfbZl+3vFIPnV4PSws5rCy4jEBjiV5002g0eOKJJ8RuloiIiIiIWsii0V3w09l0WMplcLZXSB2HzNDV7CLo7u1cyqmlRMYTcykLc7fGw8lOgS0v9kGgu+qB55eU63ApQwu5TIZQb43huIVchk1Hr+ObEzfx5phAPBLsxh1SG0H0olt0dLTYTRIRERERUQtqr7HBp1PCEe7jCBcHa6njkBlKu1sCuQzQC0AAN1EgMgq9XsBHe66gUi8gq6AMk/5xDJ/P6I1evlVrceYUluHCbS0upGtx4bYW52/n41pOEfQCMCLQFf+a0ft/1xIEbD56HbfySvDyF6fRx9cJS8cFIaxGYY7qkgkSLa6WnZ2Ny5cvAwC6dOkCFxcXKWI0SKvVQq1WIz8/HyrVgyvCRERERERE1DylFTqkZBfCyU4BD7WN1HGIWoW7ReWYsekkEm/mAQAs5TKEeKqQoS1Fprbsvp/zUCtxbMkIw+ssbSle/uI0Eu5dp9pjoZ54fXSXh5q6ao4aWysSvehWVFSEV199FVu2bIFerwcAWFhYYNq0afj0009ha2ta/6NYdCMiIiIiIiIic1VUVolXvjyNQ0k5UCktoS2trPc8hYUcAe72CPZQIdhDhWn9fSGvsb6iIAj49UImVu6+hGs5RbU+N2OgL+ZE+ENta1XfpVsdky26zZ49G3v37sXatWsxcOBAAFWbK0RGRuKRRx7B+vXrxYzTIBbdiIiIiIiaJq+4HGv3J6OXryMe7eohdRwiojavvFKPqJ3nMdC/HeZujYdKaYkQTzWCPasKbMGeKvi72jdqk4QKnR5bf7uBNfuScKeo3HBcY2uFyOGdMXOgb6tf781ki27Ozs74/vvvERERUet4TEwMJk2ahOzsbDHjNIhFNyIiIiKixruVV4Kxaw4hv6QCPk622LNgCKwtLaSORUREqCqYZWpL0V5j89CFMW1pBdYfSMG/Dl9DeWXVTMZHQ9zxj+d7GiOqSWtsrUj0fV6Li4vh5uZW57irqyuKi4vFjkNEREREREbkqVYixLPqB5Abd4rxxbHrEiciU5ecVYh538RjXUwyzt3KlzoOUatmZSGHl6OtUUaiqZRWeOPRQMQsisCT4e2hsJDjjTGBRkjZeohedOvfvz+ioqJQWlpqOFZSUoLly5ejf//+YschIiIiIiIjkslk+L9xQaj+ee6TfUnIKy5/8IeoTTt7Kw8/JNzGh79cxuHkHKnjEFETtdfY4KPJYTj0xjD4OdvVeu+HhFv401encT236D6fbt1EL7qtWbMGR44cgZeXF0aMGIERI0bA29sbR48exZo1a8SOQ0RERERERhbiqcaT4V4AAG1pJT7ZlyxxIjJlVzILDc8D3OwlTEJED8NNpaz1urRCh7/+fBk/nc3AnguZEqWSluhFt65duyIpKQkrVqxAWFgYwsLCsHLlSiQlJSEkJETsOERERERE1AIWjQ6A0qrqx40vjqciNadtjnKghiVlFhied3Z1kDAJERlTSnYhyip18HGyxfP9O0gdRxKWUjRqa2uLWbNmSdE0ERERERGJwENtg1mDO+LT/cmo0An44OdLWD+19S+uTU1XPdLNVmGB9hobidMQkbGEeKpx4PVhuHmnuM1uqCP6SDcAuHz5MubOnWuYXjp37lxcunRJiihERERERNRCZg/tBGd7awDA7nMZOJV6R+JEZGpKynW4ebdqQ73Obg6Qyx9+cXciMh321pYI8rj/7p6tnehFt+3bt6Nr1644ffo0QkNDERoairi4OHTr1g3bt28XOw4REREREbUQe2tLLBwVYHj93q6LEARBwkRkapKzClHdJQJcuZ4bEbUuok8vXbx4MZYsWYJ333231vGoqCgsXrwYTz31lNiRiIiIiIiohTzT0wvRR64hq6AMj4d5Qi8AFhzMRPdcrrGeW4Ab13MjotZF9KJbeno6pk2bVuf41KlT8eGHH4odh4iIiIiIWpClhRxrn+sBNwcl1LZWUschE1NrEwXuXEpErYzo00sjIiJw6NChOscPHz6MwYMHix2HiIiIiIhaWICbAwtuVK8zt/INzznSjYhaG9FHuj322GN44403cPr0afTr1w8AcPz4cWzbtg3Lly/Hzp07a51LREREREStjyAIkMk4z7Qt23cxEyeu3kHPDo6wtpTDQ62UOhIRkVHJBJFXMpXLGze4TiaTQafTtXCahmm1WqjVauTn50Olars7bhARERERGUNWQSk+3pME33a2mD20k9RxSCK/Xc3FtM9PoKxSDwDYNLM3Irq4SpyKiKhxGlsrEn2km16vF7tJIiIiIiIyAWWVOsz+4jRKynXYEZeGp3p6wdneWupYJLJzt/Lx0uZThoLbhFBPDO7sInEqIiLjE31NNyIiIiIiapusLS3Q08cRlzIKUFapx6YjqVJHIpGlZBdi+ucnUFBWCQCI6OKCVc+EwkLOqcZE1PqIPtINAE6ePImYmBhkZWXVGfn20UcfSRGJiIiIiIhE8OJgP2w+looKnYAtx1LxSkQn2FtL8mMJiaysUocZ0SeQW1QOAOjVwRHr/9ATCkuOBSGi1kn0727vv/8+li1bhi5dusDNza3W4qlcSJWIiIiIqHXzUNtgYlh7bDudBm1pJb7+7QZmDekodSwSgbWlBZaNC8arW+PRydUe/5rRGzYKC6ljERG1GNE3UnBzc8MHH3yAGTNmiNlss3EjBSIiIiIi40rOKsDIjw4CANxVShxcPIyjndqQ367moqOLPVwcuJ4fEZmnxtaKRP/OJpfLMXDgQLGbJSIiIiIiE+Hv6oBHgt0AABnaUvwn4ZbEiail1DfGo2/Hdiy4EVGbIHrRbf78+Vi3bp3YzRIRERERkQl5ZWgnw/N/xKZArxd1Ag6JoFKnx+wvTmPTkWtSRyEikoToa7otWrQI48aNQ6dOnRAcHAwrK6ta7+/YsUPsSEREREREJLKeHRzRx88JJ67dwdXsIuy5mInRIe5SxyIj0esFLN5+Br9eyMSvFzJRXKHDnyL8pY5FRCQq0Ue6RUZGIiYmBgEBAWjXrh3UanWtBxERERERtQ1/rDHabf2BlHqnIpL5EQQB7/54ATviqqYNKyzkCPXSSBuKiEgCoo9027x5M7Zv345x48aJ3TQREREREZmQiC4uCHR3gLtaWasAR+btk33J2HQ0FQAglwGfTAnHQH9naUMREUlA9KKbk5MTOnXiN1QiIiIiorZOJpNhx58GwFYh+o8l1EI2HbmGj/deMbxe+VR3PNqV04aJqG0SfXrpO++8g6ioKBQXF4vdNBERERERmRgW3FqP/8Tfwjv/vWB4vWxcECb18pYwERGRtET/DvfJJ58gJSUFbm5u8PX1rbORQlxcnNiRiIiIiIiI6CHsvZCJhdsSDa/nDvPHS4M7SpiIiEh6ohfdJk6cKHaTRERERERk4nR6AXsuZGDDoWtYPTkM3k62UkeiRjp/Kx9L/30WOn3VRhhT+/lg4agAiVMREUlPJnCLoAfSarVQq9XIz8+HSqWSOg4RERERUav0r8PX8Ocfq6YmTu/fAcsf7ypxImqMnMIyjPvkEOwUlsgrqcAgf2esnhwGuVwmdTQiohbT2FqR6Gu6VTt9+jS+/PJLfPnll4iPj5cqBhERERERmYAnw9vDxsoCAPDtqZvILSyTOJG0qkeNmTKdXsBr3yQgU1uGqzlFCPFUYdWkUBbciIjuEb3olpWVheHDh6N3796IjIxEZGQkevbsiREjRiA7O1vsOEREREREZAIc7RSY0scHAFBaocfmo6nSBmpBer2ATG0pTqXewb/j0/DJviRkaktrnZNXXI7Ir+OxM/E2THVy0pp9STicnAMAcHGwxqpJobCykGxcBxGRyRF9TbdXX30VBQUFOH/+PIKCggAAFy5cwPTp0xEZGYmvv/5a7EhERERERGQCXhrshy3HUlGpF7D52HXMHtoJdtbmu7upTi/g1/MZuHm3GDfvlNz7sxhpd0tQVqmvdW6otwZuKqXh9Y9n0rEz8TZ2Jt7G9tNpeG9iV5Na5y72SjY+3Z8EAJDLgE+nhMPVQdnAp4iI2hbRv4P9/PPP2Lt3r6HgBgDBwcFYt24dRo0aJXYcIiIiIiIyEZ4aGzwW5okdcbeQX1KBb07exIuD/KSO1SyXMrS4klGAN7afRUmFrsHzb94prvX6TFqe4XnslWyM+vggFjwSgJkDfWEp8Wiy23kleO2beFQPwFs0ugv6dWwnaSYiIlMk+t1ar9fDysqqznErKyvo9fp6PvFw3nnnHchkslqPwMBAo7dDREREREQP75WhnQzPNx66ivJK4/+M0NKKyiox56s4RH6TAIVl7R+5lFZydHa1x/BAV0zv3wHLxgXhH1N7YkSQa63zVk0Kwz+f7wn3e6PfSip0+MtPF/H4uiM4m5Yv2tfye+WVeszdGoe7xRUAgBGBrnhlSKcGPkVE1DaJPtJt+PDhmDdvHr7++mt4enoCAG7duoX58+djxIgRLdJmSEgI9u7da3htaWm+Q9SJiIiIiFqzADcHjAxyxd6LWUjPL8XOxNt4uqeX1LGa5O0fziMluwgAYG9tibfGB6Gjiz28HW3hbK+ATNa4jQZGh7hjQKd2+Nsvl7Hl+HUIAnD+thaPrzuMmQP9sOCRANGn367cfQlxN/IAAO01Ntw4gYjoAUQf6bZ27VpotVr4+vqiU6dO6NSpE/z8/KDVavHpp5+2SJuWlpZwd3c3PJydnVukHSIiIiIieng1R7v9IzYFejPYybPa96fTsD0uDQBgp7DAFy/2wdM9vdHDxxEuDtaNLrhVc1BaYfnjXbHjjwMQ6O4AANALwL8OX8Oojw8iv6TC6F/D/QiCACc7K8hlgMJCjvVTe0BjqxCtfSIicyP6kC9vb2/ExcVh7969uHTpEgAgKCgII0eObLE2k5KS4OnpCaVSif79+2PFihXw8fGp99yysjKUlf1ve3KtVttiuYiIiIiIqK5evk7o1cERp67fhZ+zHQpKK6G2rbtEjalJzirEW/85Z3j9/pPd0NHF3ijXDvdxxH9fHYQNh65izd4klFXq0bejE9Q24v13kclkmDu8M8J9HHE7rwTdvTSitU1EZI5kgqnuP20ku3fvRmFhIbp06YL09HQsX74ct27dwrlz5+Dg4FDn/HfeeQfLly+vczw/Px8qlUqMyEREREREbd65W/mwtpSjs1vdf7ObotIKHSauO4JLGQUAgGd7e2PlU91bpK3ruUX468+X8eeJXeFk97+RZoIgQBDA6Z5ERC1Mq9VCrVY3WCsSvegWGRkJf39/REZG1jq+du1aJCcnY/Xq1S3afl5eHjp06ICPPvoIL774Yp336xvp5u3tzaIbERERERHd15IdZ/H1iRsAgAA3e/wwZxBsFBaiZvju1E1sO3UTK57sBn9X4xUrr2YXGm3EHhFRa9DYopvoa7pt374dAwcOrHN8wIAB+P7771u8fY1Gg4CAACQnJ9f7vrW1NVQqVa0HERERERHR/exMvG0ouNlYWWDdcz1EL7jlFJbh/Z8u4mTqXTy+9gje2XkOWdrSh77ud6du4pGPD+KfsSlo5ZOkiIiMTvSiW25uLtRqdZ3jKpUKOTk5Ld5+YWEhUlJS4OHh0eJtERERERHRw6vU6fHfxNtIziqQOkq9bt4pRvX+CO8+HiLJlNgsbRk099Z369pejU1Hr2PQX2Pw9g/ncCuvpFnXvHBbi7f+cw46vYAVuy/haEquMSMTEbV6ohfd/P398fPPP9c5vnv3bnTs2NHo7S1atAixsbFITU3F0aNH8cQTT8DCwgJTpkwxeltERERERGRclzK0GL4qFq9+HY91MSlSx6nXnGH+2DyzD14Y6Iene3pJkiHYU4WfXxuCJWMCkZJdCAAor9Rjy7HriPgwBm9uP4PruUWNvl5BaQXmbI1DWaUeADCljw8G+ju3SHYiotZK9N1LFyxYgLlz5yI7OxvDhw8HAOzbtw+rVq1qkfXc0tLSMGXKFOTm5sLFxQWDBg3C8ePH4eLiYvS2iIiIiIjIuHycbKEtrQBQNY1z4agAeDnaSpyqriEBLhgSIO3PGEorC8we2glP9vDCxkNX8cXx6ygu16FCJ+Cbkzex7XQaHg/1xJ+G+cPf9f5rtAmCgDe2n8G1nKoiXYinClETgsX6MoiIWg1Jdi9dv349/vKXv+D27dsAAF9fX7zzzjuYNm2a2FEa1NjF8YiIiIiIqGV8tOcKPtmXBACYMcAX7zwWInEioLi8ErYK0ccwNMndonJEH7mG6KOpKCitNByXyYCx3TwQNT4Yriplnc9FH7mG5f+9AABwUFpi16uD4dPO9AqdRERSMdmNFADgj3/8I9LS0pCZmQmtVourV6/WKbgdOXKk1i6iRERERETUNs0Y4AulVdWPLlt/u4GYS1nQ66Vb1P/mnWIM+WsMoo9cM+nNBRztFFgwqgsOvzEci0YFQGNbteabIABHk3NgZ123aBh34y7+suui4fWqZ0JZcCMiaiZJim7VXFxcYG9f/7DmMWPG4NatWyInIiIiIiIiU+Nkp8CzvX1gbSmHnbUFZm46iYEf7Meff7yAuBt3RS18lVfqMffreOQUlmP5fy/gX4evidZ2c6ltrDB3eGcceWM4lowJhLO9Ai8N7lin6HY2LQ9zv4pD5b2C5uwhHTEqxF2KyERErYIk00sbw8HBAYmJiS2yuUJTcHopEREREZH0cgrLkJpThKf/cazOe+01NhjbzR3junsi1EsNWfVWoi3g/Z8u4rODVwFUrTf3Y+QgqJRWLdZeSyit0EEvCLWmx2ZqS9FvxT5U/3TY29cRW2f1g5WFpOM0iIhMUmNrRaa9CAEREREREREAZ3trKK0ssOqZUOw6m45DSdmo0FVViG7llWDDoWvYcOga2mtsML67B2YP7QQnO4VRM+y/lGkouFlZyLD2uXCzK7gBVRsu/N5nB69CEABPtRLlOj3WPteDBTcioofEohsREREREZkFe2tLPNXTC0/19EJ+cQV+vZCBXWfTcTgpxzAl8lZeCaKPpuLVEZ2N2nZ6fgkWfJdoeL1kTBC6e2mM2oaUunupMbmXN96aEIzUnCK41bPBAhERNQ2LbkREREREZHbUtlZ4ppc3nunljbzicvx6PhM/nk3HkeQcDOviAvvfrVf25x8v4E5ROQLdHdDRxR5+znbwcbKFwrLh0VyVOj0iv45HXnEFAOCRYDfMHOjbEl+WZB4Pa4/Hw9oDALq2V0uchoiodTDZoltLrsNARERERESth8ZWgUm9vTGptzfuFJWjoLSi1vulFTocTsrG5czCWsflMsDbyRZ+znbwc7ZDR2c7+Dnbo4+fU61i3Md7r+Bk6l0AVevHffh0d/68QkREDTLZopuJ7u9AREREREQmzMlOUWctt3O38tHJxb5O0U0vANdzi3E9txgHLmcbjp9fPtpQdDt4JRt/j0kBAFjKZfhkSjg0tsZdK46IiFonky26FRQUSB2BiIiIiIhagV6+TgjycMArEZ1wLacIV7OLqv7MKcS17CIUlesM57qrlLCrMTXV0VYBD40St/NK8froLujZwVGKL4GIiMyQ6EU3Pz+/Bw7Fvnr1qohpiIiIiIioLbCztkJ3L02dzQ8EQUB2QRmu5lQV4qo3ZKjWzUuN6Bl9EHM5C7MGdxQxMRERmTvRi26vvfZardcVFRWIj4/Hzz//jNdff13sOERERERE1IbJZDK4qpRwVSnRr2O7es/p0M4WrwztJHIyIiIyd6IX3ebNm1fv8XXr1uHUqVMipyEiIiIiInowpZWF1BGIiMgMNbw/tkjGjBmD7du3Sx2DiIiIiIiIiIjooZlM0e3777+Hk5OT1DGIiIiIiIiIiIgemujTS8PDw2ttpCAIAjIyMpCdnY2///3vYschIiIiIiIiIiIyOtGLbhMnTqz1Wi6Xw8XFBREREQgMDBQ7DhERERERERERkdHJBEEQGj6t7dJqtVCr1cjPz4dKpZI6DhERERERERERSaixtSKTWdONiIiIiIiIiIiotWDRjYiIiIiIiIiIyMhYdCMiIiIiIiIiIjIyFt2IiIiIiIiIiIiMjEU3IiIiIiIiIiIiI5Ok6LZlyxb88MMPtY798MMP2LJlixRxiIiIiIiIiIiIjEomCIIgdqNyuRyBgYG4cOGC4VhgYCCSkpKg0+nEjvNA+fn50Gg0uHnz5gO3gSUiIiIiIiIiotZPq9XC29sbeXl5UKvV9z3PUsRMBnq9vs6xS5cuSZCkYQUFBQAAb29viZMQEREREREREZGpKCgoeGDRTfSRbkOHDsWLL76ISZMmQalUitl0s+j1ety+fRsODg6QyWRSx5FcdTWXI//IHLH/kjlj/yVzxv5L5oz9l8wd+zCZM1Ptv4IgoKCgAJ6enpDL779ym+gj3cLDw7Fo0SK8+uqrmDRpEl588UX069dP7BiNJpfL4eXlJXUMk6NSqUyqwxM1BfsvmTP2XzJn7L9kzth/ydyxD5M5M8X++6ARbtVE30hh9erVuH37NqKjo5GVlYUhQ4YgODgYf/vb35CZmSl2HCIiIiIiIiIiIqOTZPdSS0tLPPnkk/jhhx+QlpaG5557Dm+99Ra8vb0xceJE7N+/X4pYRERERERERERERiFJ0a3aiRMnEBUVhVWrVsHV1RVLliyBs7Mzxo8fj0WLFkkZje7D2toaUVFRsLa2ljoKUZOx/5I5Y/8lc8b+S+aM/ZfMHfswmTNz77+ib6SQlZWFL774AtHR0UhKSsKECRPw0ksvYfTo0YaNCg4fPoxHH30UhYWFYkYjIiIiIiIiIiIyCtE3UvDy8kKnTp3wwgsvYMaMGXBxcalzTvfu3dG7d2+xoxERERERERERERmF6CPdDh06hMGDB4vZJBERERERERERkahEL7oRERERERERERG1dqJMLw0PDzes19aQuLi4Fk5DRERERERERETUskQpuk2cOFGMZoiIiIiIiIiIiEyCXIxGoqKiEBUVhWXLlmHYsGGYN2+e4djvH9Q069atg6+vL5RKJfr27YsTJ07Uev+zzz5DREQEVCoVZDIZ8vLyGnXdyMhI9OzZE9bW1ggLC6vz/oEDB/D444/Dw8MDdnZ2CAsLw1dffdXgdW/cuIFx48bB1tYWrq6ueP3111FZWVnn2j169IC1tTX8/f2xadOmRmUm82Nu/belrkvmSar+e/nyZQwbNgxubm5QKpXo2LEjli1bhoqKigdel/dfqsnc+i/vv1STVP23puTkZDg4OECj0TR4Xd5/6ffMrQ/zHkw1SdV/U1NTIZPJ6jyOHz/+wOtKfQ8WpehWzcLCAqNGjcLdu3fFbLbV+vbbb7FgwQJERUUhLi4OoaGhGD16NLKysgznFBcX49FHH8XSpUubfP0XXngBkydPrve9o0ePonv37ti+fTvOnDmDmTNnYtq0afjxxx/vez2dTodx48ahvLwcR48exebNm7Fp0ya8/fbbhnOuXbuGcePGYdiwYUhISMBrr72Gl156Cb/88kuT85NpM7f+29LXJfMiZf+1srLCtGnT8Ouvv+Ly5ctYvXo1NmzY8MBfXPH+SzWZW/9tzHV5/207pOy/1SoqKjBlypRGbQ7H+y/9nrn14cZcl/fgtsMU+u/evXuRnp5uePTs2fO+55rEPVgQWc+ePYW9e/eK3Wyr1KdPH2HOnDmG1zqdTvD09BRWrFhR59yYmBgBgHD37t0mtREVFSWEhoY26tyxY8cKM2fOvO/7P/30kyCXy4WMjAzDsfXr1wsqlUooKysTBEEQFi9eLISEhNT63OTJk4XRo0c3KTeZPnPrv2Jcl8yHqfXf+fPnC4MGDbrv+7z/Uk3m1n+be13ef1snU+i/ixcvFqZOnSpER0cLarX6gdfi/Zd+z9z6cFOuWxPvwa2TlP332rVrAgAhPj6+0dcyhXuwqCPdAOC9997DokWL8OOPPyI9PR1arbbWgxqnvLwcp0+fxsiRIw3H5HI5Ro4ciWPHjkmSKT8/H05OTvd9/9ixY+jWrRvc3NwMx0aPHg2tVovz588bzqn5NVWfI9XXRC3DHPuvqV2XpGNq/Tc5ORk///wzhg4det9zeP+laubYf5uL99/WxxT67/79+7Ft2zasW7euUefz/ks1mWMfbi7eg1sfU+i/APDYY4/B1dUVgwYNws6dOx94rincg0Uvuo0dOxaJiYl47LHH4OXlBUdHRzg6OkKj0cDR0VHsOGYrJycHOp2uVucBADc3N2RkZIie57vvvsPJkycxc+bM+56TkZFRb97q9x50jlarRUlJiZFTk1TMsf+a0nVJWqbSfwcMGAClUonOnTtj8ODBePfdd+97Lu+/VM0c+29z8P7bOkndf3NzczFjxgxs2rQJKpWqUZ/h/ZdqMsc+3By8B7dOUvdfe3t7rFq1Ctu2bcOuXbswaNAgTJw48YGFN1O4B4tedIuJiTE89u/fb3hUvyZxjRkzBvb29rC3t0dISEizrhETE4OZM2diw4YNzb4GUXOYcv/l3wtqyMP232+//RZxcXHYunUrdu3ahb/97W8tkJKofqbcf3n/pYY0t//OmjULzz33HIYMGdKC6YgaZsp9mPdgakhz+6+zszMWLFiAvn37onfv3li5ciWmTp2KDz/8sAXTPjxLsRtsiekDbZGzszMsLCyQmZlZ63hmZibc3d0bfZ2NGzcaqrdWVlZNzhEbG4sJEybg448/xrRp0x54rru7e52dTarzV2d2d3ev92tSqVSwsbFpcj4yTebYf03humQaTKX/ent7AwCCg4Oh0+nw8ssvY+HChbCwsKhzLu+/VM0c+29T8P7bukndf/fv34+dO3caisSCIECv18PS0hKfffYZXnjhhTqf4f2XajLHPtwUvAe3blL33/r07dsXe/bsue/7pnAPFn2k28GDBx/4oMZRKBTo2bMn9u3bZzim1+uxb98+9O/fv9HXad++Pfz9/eHv748OHTo0KcOBAwcwbtw4fPDBB3j55ZcbPL9///44e/ZsrZ1N9uzZA5VKheDgYMM5Nb+m6nOa8jWR6TPH/iv1dcl0mEL//T29Xo+Kigro9fp63+f9l6qZY/9tLN5/Wz+p+++xY8eQkJBgeLz77rtwcHBAQkICnnjiiXo/w/sv1WSOfbixeA9u/aTuv/VJSEiAh4fHfd83hXuw6CPdIiIi6hyTyWSG5zqdTsQ05m3BggWYPn06evXqhT59+mD16tUoKiqqNXc+IyMDGRkZSE5OBgCcPXsWDg4O8PHxeeDClsnJySgsLERGRgZKSkqQkJAAoOo30gqFAjExMRg/fjzmzZuHp556yjAfWqFQ3Pe6o0aNQnBwMJ5//nn89a9/RUZGBpYtW4Y5c+bA2toaAPDKK69g7dq1WLx4MV544QXs378f3333HXbt2mWM/2RkQsyt/7bkdcn8SNl/v/rqK1hZWaFbt26wtrbGqVOnsGTJEkyePPm+vy3k/ZdqMrf+25jr8v7bdkjZf4OCgmqdf+rUKcjlcnTt2vW+1+T9l37P3PpwY67Le3DbIWX/3bx5MxQKBcLDwwEAO3bswOeff46NGzfe95omcQ82yh6oTZCXl1frkZ2dLfz6669C3759hb1794odx+x9+umngo+Pj6BQKIQ+ffoIx48fr/V+VFSUAKDOIzo6+oHXHTp0aL2fu3btmiAIgjB9+vR63x86dOgDr5uamiqMGTNGsLGxEZydnYWFCxcKFRUVtc6JiYkRwsLCBIVCIXTs2LHBrGS+zK3/ttR1yTxJ1X+/+eYboUePHoK9vb1gZ2cnBAcHC++//75QUlLywOvy/ks1mVv/5f2XapKq//5edHS0oFarG8zL+y/9nrn1Yd6DqSap+u+mTZuEoKAgwdbWVlCpVEKfPn2Ebdu2NZhX6nuwTBAEob5inNhiY2OxYMECnD59WuooRERERERERERED0X0Nd3ux83NDZcvX5Y6BhERERERERER0UMTfU23M2fO1HotCALS09OxcuVKhIWFiR2HiIiIiIiIiIjI6ESfXiqXyyGTyfD7Zvv164fPP/8cgYGBYsYhIiIiIiIiIiIyOtGLbtevX6/1Wi6Xw8XFBUqlUswYRERERERERERELcZkNlIgIiIiIiIiIiJqLSTZSCE2NhYTJkyAv78//P398dhjj+HQoUNSRCEiIiIiIiIiIjI60YtuX375JUaOHAlbW1tERkYiMjISNjY2GDFiBLZu3Sp2HCIiIiIiIiIiIqMTfXppUFAQXn75ZcyfP7/W8Y8++ggbNmzAxYsXxYxDRERERERERERkdKIX3aytrXH+/Hn4+/vXOp6cnIyuXbuitLRUzDhERERERERERERGJ/r0Um9vb+zbt6/O8b1798Lb21vsOEREREREREREREZnKXaDCxcuRGRkJBISEjBgwAAAwJEjR7Bp0yasWbNG7DhERERERERERERG9/+5C7/VEageQgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "era.make_plot(obstype_model='wind_amplitude')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/gee_authentication.rst.txt b/docs/_build/_sources/gee_authentication.rst.txt new file mode 100644 index 00000000..19476c7b --- /dev/null +++ b/docs/_build/_sources/gee_authentication.rst.txt @@ -0,0 +1,127 @@ +*************************** +Using Google Earth Engine +*************************** + +The Google Earth Engine is used to download geospatial information, and model data +to use for your dataset. This is done to avoid downloading/reprojecting/preprocessing large +geospatial datasets and to make it possible to switch easily between different datasets. + +There are two methods that are used to download the GEE data: + +* Directly to your computer --> Only for small data transfers +* To your Google drive --> Only when the direct download is not possible. + + + +This page will help you how to set up your personal Google earth engine authentication. +This is needed because the GEE (Google earth engine) can only be used if you + +* have a Google developers account (free of charge) +* Create a cloud project on your developers account (sufficient free credits for these applications) +* enable the GEE API on your project + + +Here is a step-by-step guide on how to do this. + +.. note:: + + This guide is to obtain a basic working setup. There are a lot of ways on how to + set up a googel cloud project, but we only cover the minimum required steps. + + + +Setup of a Google account +================================== + +If you do not have a Google account, start by creating one. + + + +Setup of a Google developers account +============================================================================= + +A Google developers account is linked to your (regular) Google account. + +#. open a browser, and login to Google with your account. +#. Go to this website, to create a developers account: https://developers.Google.com/ + + #. Click on the three vertical dots --> hit start + #. Fill in your name and (optional) affiliations --> hit next + #. (optional) Select your interests --> hit next + #. (optional) Confirm newsletter subscription --> hit next + + +Done, you have set up a Google developer account + + +Setup a cloud project on your developer account +============================================================================ + +You need a cloud project to make use of the Google API's. The API's that are used by +the toolkit has quite a lot of free credentials, so you do not need to worry about +paying for these services. + +#. Create a cloud project: https://console.cloud.Google.com/projectcreate?pli=1 + + #. Choose a project name and select No organization. --> hit create + #. (It can take a few seconds to create your project, in the "Cloud overview" you should see your project appear.) + + + +Enable API's on your project +============================================================================= +In the last step, you need to enable the use of some API's on your project. + +#. Go to your project platform page: https://console.cloud.Google.com/ +#. Click on "APIs & Services" +#. Click at the top on "+ ENABLE APIS AND SERVICES" + + #. Search for the 'Google Earth Engine API', click on it --> hit ENABLE + #. Register your GEE project: https://code.earthengine.Google.com/register + + #. Hit "Use with a cloud project" --> hit "Unpaid usage" and select 'Academia & Research' + #. Select "Choose an existing Google Cloud Project" --> select your project --> hit "CONTINUE TO SUMMARY" + #. Hit "CONFIRM AND CONTINUE" + + + +Test your GEE access +============================================================================= + +.. code-block:: python + + import metobs_toolkit + + # Use the demo files, and extract LCZ from GEE + + dataset = metobs_toolkit.Dataset() + dataset.update_settings(input_data_file=metobs_toolkit.demo_datafile, + input_metadata_file=metobs_toolkit.demo_metadatafile, + template_file=metobs_toolkit.demo_template) + + dataset.import_data_from_file() + + # Extract LCZ using GEE: + dataset.get_lcz() + + # Selecting your cloud project: + # 1. A link will appear, click on it + # 2. (first time only) hit 'CHOOSE PROJECT' and select your existing cloud project + # 3. do NOT click the read_only scopes! + # 4. hit 'GENERATE TOKEN' --> select your Google account --> hit 'CONTINUE' + # 5. Select both boxes and hit 'Continue' + # 6. An authorization code is generated, copy it. + # 7. In your notebook, paste the code in propted-box and hit Enter + + + # The LCZ are stored in the metadf attribute of your dataset. + print(dataset.metadf) + + + +.. note:: + + If you click on select 'read-only' scopes in the authentication, you can only + extract small data quantities from GEE. For larger data transfers, GEE will write + the data to file on your Google Drive, which will raise an error when you select + 'read-only' scopes. diff --git a/docs/_build/_sources/gui.rst.txt b/docs/_build/_sources/gui.rst.txt new file mode 100644 index 00000000..c848656e --- /dev/null +++ b/docs/_build/_sources/gui.rst.txt @@ -0,0 +1,42 @@ +*************************** +Using the GUI +*************************** + +A GUI (Graphical User Interface) is under construction that helps to build +a data template and explore your dataset. This GUI is made in a seperate package: `MetObs-GUI `_ + + + +The GUI can **only be launched as a local application**, or on a remote that has a graphical backend. This means that the **GUI can not be used in Google Colab notebooks!** + +.. warning:: + The GUI is currently under development and performance can not yet be guaranteed on all OS platforms. + +Why a GUI +================================== + +Building a data/metadata template can sometimes be tricky. The GUI is intended to streamline this process with a visual application. +In addition to building a template, some basic functions are implemented as well. + + +How to launch the GUI +====================== +As explained above, the GUI can best be launched as a local python script or as a local JupyterNotebook. +To do that, make sure you have installed the **Metobs-toolkit** and the **Metobs-GUI** on your machine. + +.. code-block:: console + + #install the metobs-toolkit + pip3 install metobs-toolkit + #install the metobs-gui (currently only on github) + pip3 install git+https://github.com/vergauwenthomas/MetObs_GUI + + + +Launch the GUI by running this code in a Python3 console or in a Jupyter notebook + +.. code-block:: python + + import metobs_gui + + metobs_gui.launch_gui() #the GUI will launch diff --git a/docs/_build/_sources/index.rst.txt b/docs/_build/_sources/index.rst.txt new file mode 100644 index 00000000..ecdd4ead --- /dev/null +++ b/docs/_build/_sources/index.rst.txt @@ -0,0 +1,37 @@ + +Welcome to MetObs-Toolkit's documentation! +------------------------------------------- + +.. toctree:: + :maxdepth: 2 + + intro + examples/index + template_mapping + gee_authentication + special_topics + gui + contributing_link.md + paper/index + +MetObs toolkit Documentation +----------------------------- +.. toctree:: + :maxdepth: 2 + + MetObs_documentation + + +Metobs for developpers +----------------------------- +.. toctree:: + :maxdepth: 2 + + MetObs_documentation_full + +Indices and tables +---------------------- + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/docs/_build/_sources/intro.rst.txt b/docs/_build/_sources/intro.rst.txt new file mode 100644 index 00000000..614a1f91 --- /dev/null +++ b/docs/_build/_sources/intro.rst.txt @@ -0,0 +1,172 @@ + +******************* +Introduction +******************* +This package is designed for handling meteorological observations for urban or non-traditional networks. It includes tools to clean up and analyze your data. + + + +How to install +======================= + +To use the package python 3.9 or higher is required. +To install the package one can use pip: + +.. code-block:: console + + pip3 install metobs-toolkit + +To install the PyPi version of the toolkit. To install the github versions one can use these commands: + +.. code-block:: console + + #main versions + pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit.git + + #development version + pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit.git@dev + + #specific release from github + pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit.git@v0.1.1 + + +For some advanced quality control methods, the `Titanlib `_ package is used. +Since the instalation of titanlib requires a c++ compiler, it is categorized as a *extra-dependency*. This means that +the user must install titanlib manually if this functionallity is required or use the following command: + +.. code-block:: console + + pip3 install metobs-toolkit[titanlib] + + +.. note:: + To install the package in a notebook, one has to add ! in front of the pip install command. + +and import it in Python + +.. code-block:: python + + import metobs_toolkit + + #Check your version + metobs_toolkit.__version__ + + +How to use this toolkit +========================= + +This toolkit is a Python package based on object-oriented programming (OOP). Here you can find a short description of the classes that are directly used by the users: + + +Dataset() +----------- + +The :py:meth:`Dataset` class is at the heart of the toolkit and it holds all observations and metadata. + +.. code-block:: python + + your_dataset = metobs_toolkit.Dataset() + +The dataset class has attributes that serve as 'containers' to hold data: + +Dataset.df + All(*) records will start in the *df-container*. This container contains the observations that we assume to be correct. + + (*): One exception is the observations with a duplicated timestamp, these will be passed to the outliersdf-container directly. + +Dataset.outliersdf + When applying quality control, some observations may be labeled as outliers. When an observation is labeled as an outlier, it is added to the *outliersdf-container*. + The records labeled as outliers are still kept inside the df-container but the observation value is removed (set to Nan). + +Dataset.missing_obs + When importing a datafile, an observation frequency is estimated for each station. A missing observation is a record that is not in the observations but is assumed by the station frequency. + A missing observation is thus a record, without an observation value. These records are stored in the *missing_obs-container*. + +Dataset.gaps + When a sequence of (repeating) missing observations is found, a test is performed to check if the length(*) of the series is larger than a threshold (i.e. the gap definition). + If the series is larger than the threshold, we interpret it as a *gap* and it is removed from the missing_obs-container. + + (*): Note that the definition of a gap is based on a number of consecutive repeating missing records! The minimal gap size is therefore dependent on the observational frequency of each station. + +Dataset.metadf + When metadata is provided, it will be stored in the Dataset.metadf. The metadf is stored as tabular data where each row represents a station. When variables are computed that depend only + on a station (No time evolution and independent of the observation type), it is stored here. All land cover information and observation frequency estimations are stored here. + + +.. note:: + + A **record** refers to a unique combination of timestamp, corresponding station, and observation type. + + +Station() +----------- +A :py:meth:`Station` is a class that has the same attributes and methods as a Dataset, but all the observations are limited to a specific station. + +.. code-block:: python + + your_station = your_dataset.get_station(stationname = 'station_A') + + +Analysis() +----------- +The :py:meth:`Analysis` class is created from a Dataset and holds the observations that are assumed to be correct (the df-container of the Dataset). In contrast to the Dataset, the Analysis methods do not change the observations. +The Analysis methods are based on aggregating the observations to get insight into diurnal/seasonal patterns and landcover effects. + +.. code-block:: python + + your_dataset_analysis = your_dataset.analysis() + +.. note:: + + Creating an Analysis of a Station is not recommended, since there is not much scientific value in it. + + + +Modeldata() +------------- +The :py:meth:`Modeldata` holds time-series of data from a source other than observations (i.g. a model). The time-series are taken at the same coordinates as the stations and the +names of the stations are used as well. + +This class is used for comparing other sources to observations and for filling in missing observations and gaps in the observations. + + +.. code-block:: python + + ERA5_timeseries = your_dataset.get_modeldata(modelname='ERA5_hourly', + obstype='temp') + + +The toolkit makes use of the Google Earth Engine (GEE), to extract these time-series. To use the GEE API, follow these steps on :ref:`Using Google Earth Engine`. + + + + +Settings() +----------- +Each Dataset holds its own set of :py:meth:`Settings`. When creating a Dataset instance, the default settings are attached to it. When another class is created (i.g. Station, Modeldata, ...) from a Dataset, the corresponding settings are inherited. +There are methods to change some of the default settings (like quality control settings, timezone settings, gap fill settings, ...). To list all the settings of a class one can use the :py:meth:`show` method on it: + +.. code-block:: python + + #Create a Dataset, the default settings are attached to it + your_dataset = metobs_toolkit.Dataset() + + #Update the timezone from 'UTC' (default) to Brussels local time + your_dataset.update_timezone(timezonestr='Europe/Brussels') + + #create a Station instance from your dataset + your_station = your_dataset.get_station(stationname = 'station_A') + + #Since the settings are inherited, your_stations has also the timezone set to Brussels local time. + + # print out all settings + your_dataset.settings.show() + your_station.settings.show() + + +Schematic overview +==================== + +.. image:: figures/schematic_overview.png + :width: 700 + :alt: Alternative text diff --git a/docs/_build/_sources/paper/index.rst.txt b/docs/_build/_sources/paper/index.rst.txt new file mode 100644 index 00000000..fd801739 --- /dev/null +++ b/docs/_build/_sources/paper/index.rst.txt @@ -0,0 +1,21 @@ +########################### + JOSS publication +########################### + +About JOSS +----------- +The `Journal of Open Source Software `_ is a developer friendly, open access journal for research software packages. + + +JOSS paper +------------------------- +A `MetObs-toolkit publication `_ has been submitted and is currently under `review `_. A draft version of the paper can be found in ``docs/paper/paper.pdf``. + + +Additionally, we add the script for creating the figures that are used in the publication. + + +.. toctree:: + :maxdepth: 1 + + paper_figures.ipynb diff --git a/docs/_build/_sources/paper/paper.md.txt b/docs/_build/_sources/paper/paper.md.txt new file mode 100644 index 00000000..124fa8c3 --- /dev/null +++ b/docs/_build/_sources/paper/paper.md.txt @@ -0,0 +1,105 @@ +--- +title: 'MetObs - a Python toolkit for using non-traditional meteorological observations' +tags: + - Python + - Meteorology + - Urban climate + - Observations +authors: + - name: Thomas Vergauwen + orcid: 0000-0003-2899-9218 + equal-contrib: false + affiliation: "1, 2" # (Multiple affiliations must be quoted) + - name: Michiel Vieijra + orcid: 0000-0003-0817-2846 + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: 1 + - name: Andrei Covaci + orcid: 0000-0001-5147-2460 + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: 3 + - name: Amber Jacobs + orcid: 0000-0002-4628-3988 + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: 2 + - name: Sara Top + orcid: 0000-0003-1281-790X + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: 2 + - name: Wout Dewettinck + orcid: 0000-0002-0728-5331 + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: 2 + - name: Kobe Vandelanotte + orcid: 0009-0001-1252-7315 + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: "1, 2" + - name: Ian Hellebosch + orcid: 0000-0003-0150-529X + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: "2, 4" + - name: Steven Caluwaerts + orcid: 0000-0001-7456-3891 + equal-contrib: False # (This is how you can denote equal contributions between multiple authors) + affiliation: "1, 2" +affiliations: + - name: Royal Meteorological Institute of Belgium, Brussels, Belgium + index: 1 + - name: Ghent University department of Physics and Astronomy, Ghent, Belgium + index: 2 + - name: Vrije Universiteit Brussel (VUB), Brussels, Belgium + index: 3 + - name: VITO, Mol, Belgium + index: 4 +date: 24 August 2023 +bibliography: paper.bib + +--- + + +# Summary +In-situ meteorological observations are highly important for weather and climate research. The evolution towards more affordable sensor technology and data communication has resulted in the emergence of novel meteorological networks alongside the traditional high-quality measurement networks of meteorological institutions. Examples include urban measurement networks intended to study the impact of cities [@mocca] and networks consisting of devices of weather enthusiasts [@crowdsourcing_status]. However, exploiting the data of such non-traditional networks comes with significant challenges [@crowdsourcing]. Firstly, sensors and data communication protocols are usually low-cost, and this in general results in an increase of measurement errors, biases and data gaps. Secondly, data storage formats and temporal measurement frequencies are often not consistent or compatible. Finally, metadata, such as land use around a station and elevation, are not easily accessible or documented. + +The MetObs-toolkit is a Python package developed to address these issues and facilitate the use of non-traditional observations. The package provides automated quality control (QC) techniques to identify and flag erroneous observations, and includes methods to fill data gaps. Additionally, the package offers tools for analyzing the data, e.g. linkage with popular land-use datasets [@worldcover; @lcz_map] is included such that microclimate effects can be investigated with the MetObs-toolkit. + + +# Statement of need +The primary objective of the MetObs-toolkit is to enable scientists to process meteorological observations into datasets ready for analysis. The data cleaning process involves three steps: + +1. resampling the time resolution if necessary, +2. identifying erroneous and missing records, and +3. filling the missing records. + +Sophisticated software such as TITAN [@titan2020] and CrowdQC+ [@CrowdQC] exists for identifying erroneous observations (QC), which is one aspect of cleaning a dataset. These packages offer a wide range of functionalities for this specific task, while MetObs aims to provide a framework for the entire flow from raw data to analysis. Moreover, researchers often face the challenge of coding scripts that can generate analyses, particularly when using geographical datasets such as landcover datasets. Traditionally, this requires the installation of numerous packages, storage of geographical datasets, and GIS manipulations (often manually done with specific GIS software). The toolkit implements one user-friendly framework for creating various plots, generating analysis statistics, and incorporating GIS data through the use of the Google Earth engine. +By using the toolkit, scientists can set up a pipeline to process raw data into analysis in an easy-to-use (and install) manner. Additionally, the developed pipeline can be directly applied to other datasets without any formatting issues. + +![A schematic overview of the main MetObs-toolkit functionalities.\label{fig:overview_fig}](overview_fig.png) + +# Technical implementation + +The MetObs-toolkit provides a comprehensive framework for scientists to process raw meteorological data for analysis by making intensive use of the pandas [@pandas] and geopandas [@geopandas] functionalities. The process consists of the following steps, visualized in the \autoref{fig:overview_fig}. + +Firstly, the raw data is mapped to the toolkit standards by use of a template. Once the raw data is imported into the Toolkit Dataset, missing observations are identified and methods to resample and synchronize observations can be used. + +Quality control is performed in the form of a series of checks. These checks are designed to examine data types, irregular timestamps, max-min thresholds, repetitions criteria, spike tests, allowed variation in time windows and spatial tests. Advanced quality control methods are available through the implementation of TITAN into the toolkit. The user can choose to keep the outliers or convert them to missing records (which can be filled). + +Gap filling is applied by using interpolation methods and/or importing ERA5 reanalysis [@era5] time series to fill the gaps. The latter is stored as a Toolkit Modeldata, which has a set of methods to directly import the required time series through the use of the Google Earth engine API. +The user obtains a cleaned-up dataset ready for analysis. A set of typical analysis techniques such as filters, aggregation schemes, and landcover correlation estimates are implemented in the Toolkit-Analysis class. + +\autoref{fig:overview_fig} gives an overview of the main framework of the MetObs-toolkit, but it is an evolving project that responds to the community's needs and input. As an example, the development of a graphical user interface (GUI) for the toolkit is planned. A GUI would increase the ease of use by enabling to create templates, adjust QC settings and plot data interactively. + + + +# Acknowledgments + +The authors would like to thank all participants of the [COST FAIRNESS](https://www.fairness-ca20108.eu/) (CA20108) summer school 2023 in Ghent for their role as beta testers. The input, ideas and feedback from these scientists, dealing with microclimate datasets in many European countries, were instrumental in improving the MetObs-toolkit. + +No specific funding has been obtained to build the MetObs-toolkit, but the authors have been supported by different Belgian and Flemish scientific grants. + +FWO: Sara (fellowship 1270723N) and Wout (fellowship 1157523N) + +BELSPO: Kobe (B2/223/P1/CORDEX.be II), Thomas (B2/202/P1/CS-MASK), Michiel (B2/212/P2/CLIMPACTH) and Steven (FED-tWIN Prf-2020-018_AURA) + +Andrei (VUB, SRP74/LSDS, OZR3893, Innoviris-Brussels ILSF-2023-12) and Ian (VITO, UG_PhD_2202) + +# References diff --git a/docs/_build/_sources/paper/paper_figures.ipynb.txt b/docs/_build/_sources/paper/paper_figures.ipynb.txt new file mode 100644 index 00000000..d8c6fcd7 --- /dev/null +++ b/docs/_build/_sources/paper/paper_figures.ipynb.txt @@ -0,0 +1,813 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4e711329-5eb3-44e9-a2c8-8a0ff4d7cf12", + "metadata": {}, + "source": [ + "# JOSS publication figures creator\n", + "This script will create the figures that are used in the JOSS publication of the Metob-toolkit." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "312b112e-0589-4c66-9f7a-65f17191af49", + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "import math\n", + "import os\n", + "import sys\n", + "import time\n", + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import metobs_toolkit\n" + ] + }, + { + "cell_type": "markdown", + "id": "98236314-525a-41c3-81f9-3ce8ce0ec574", + "metadata": {}, + "source": [ + "## Creation of the Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0f4b7767-ecfa-47d8-abc6-05c726e450e3", + "metadata": {}, + "outputs": [], + "source": [ + "datadf = pd.read_csv(metobs_toolkit.demo_datafile, sep=';')\n", + "metadf = pd.read_csv(metobs_toolkit.demo_metadatafile, sep=',')\n", + "\n", + "# Subset to regio ghent\n", + "ghent_stations = [ 'vlinder24', 'vlinder25', 'vlinder05', 'vlinder27',\n", + " 'vlinder02', 'vlinder01', 'vlinder28']\n", + "\n", + "\n", + "datadf = datadf[datadf['Vlinder'].isin(ghent_stations)]\n", + "metadf = metadf[metadf['Vlinder'].isin(ghent_stations)]\n", + "\n", + "# subset period\n", + "datadf['dummy_dt'] = datadf['Datum'] + datadf['Tijd (UTC)']\n", + "datadf['dummy_dt'] = pd.to_datetime(datadf['dummy_dt'], format='%Y-%m-%d%H:%M:%S')\n", + "\n", + "#Subset to period\n", + "from datetime import datetime\n", + "startdt = datetime(2022, 9, 1)\n", + "enddt = datetime(2022, 9, 10)\n", + "datadf = datadf[(datadf['dummy_dt'] >= startdt) & (datadf['dummy_dt'] <= enddt)]\n", + "datadf = datadf.drop(columns=['dummy_dt'])\n", + "\n", + "# Inducing outliers as demo\n", + "datadf = datadf.drop(index=datadf.iloc[180:200, :].index.tolist())\n", + "\n", + "# save in paper folder\n", + "folder = os.path.abspath('')\n", + "datadf.to_csv(os.path.join(folder, 'datafile.csv'))\n", + "metadf.to_csv(os.path.join(folder, 'metadatafile.csv'))\n", + "\n", + "#Importing raw data\n", + "use_dataset = 'paper_dataset'\n", + "dataset = metobs_toolkit.Dataset()\n", + "dataset.update_settings(output_folder=folder,\n", + " input_data_file=os.path.join(folder, 'datafile.csv'),\n", + " input_metadata_file=os.path.join(folder, 'metadatafile.csv'),\n", + " template_file=metobs_toolkit.demo_template,\n", + " )\n", + "\n", + "dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "00d37a3e-804d-47bf-9f24-a1f6f7ad6ef0", + "metadata": {}, + "source": [ + "## Styling settings" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "65472b11-7c51-4fe2-9352-e82b613d44cf", + "metadata": {}, + "outputs": [], + "source": [ + "# change color for printing (avoid yellow!)\n", + "dataset.settings.app['plot_settings']['color_mapper']['gross_value'] = \"#fc0303\"" + ] + }, + { + "cell_type": "markdown", + "id": "591b6a9e-c62f-49cb-be4e-1dd8ced9b54a", + "metadata": {}, + "source": [ + "## Timeseries for each station" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ff3aa9ac-4e8a-452a-a673-35ee0dee7a93", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAGUCAYAAABuqV+MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU9dX48c+9s2/ZFxISAoR9E0REUHHf6l6trT591D62tVXbWtvaandta9XW2uVXtdaidWktVq1WBTfEHZRFWZMAIWTfk8nsc5ffHzfMZEhAUCAI5/16QWbuNt9ZMpk593zPUUzTNBFCCCGEEEIIIYQQQhzS1OEegBBCCCGEEEIIIYQQYv+TQKAQQgghhBBCCCGEEIcBCQQKIYQQQgghhBBCCHEYkECgEEIIIYQQQgghhBCHAQkECiGEEEIIIYQQQghxGJBAoBBCCCGEEEIIIYQQhwEJBAohhBBCCCGEEEIIcRiQQKAQQgghhBBCCCGEEIcBCQQKIYQQQgghhBBCCHEYkECgEEIIIYQY0p133snYsWOx2WzMnDlzuIcDwM9+9jMURclYNnr0aK688srhGdAe2rZtG4qi8OCDDw73UIQQQghxGJNAoBBCCCH2C0VR9ujfa6+9NtxDHTZ//vOfD9rA0IsvvsiNN97Isccey8KFC/nVr3413EPa7zZs2MDPfvYztm3b9rGP8dhjj3H33XfvszEJIYQQQuxL9uEegBBCCCEOTQ8//HDG9b///e+89NJLg5ZPnjz5QA7roPLnP/+ZgoKCgzKb7dVXX0VVVR544AGcTudwD+eA2LBhAz//+c858cQTGT169Mc6xmOPPca6deu4/vrrM5ZXVFQQjUZxOByffKBCCCGEEB+TBAKFEEIIsV988YtfzLj+7rvv8tJLLw1afqgwTZNYLIbH4zkkxtHW1obH49lnQcCD5fEZLoqi4Ha7h3sYQgghhDjMydRgIYQQQgwbwzC4++67mTp1Km63m+LiYq6++mq6u7szths9ejTnnHMOr732GkcddRQej4fp06enphU/+eSTTJ8+HbfbzezZs1m9enXG/ldeeSV+v5+tW7dyxhln4PP5KC0t5ZZbbsE0zU80piVLlqTGdN999wGwcOFCTj75ZIqKinC5XEyZMoV77rln0P7r169n2bJlqWnSJ554IjB0HTyABx98EEVRMqau7m4cPT09XH/99ZSXl+NyuRg3bhy33347hmHs9nlRFIWFCxcSDodTY9sxhVnTNG699VYqKytxuVyMHj2am2++mXg8vsePz1DeeOMNPve5zzFq1ChcLhfl5eV8+9vfJhqN7nase+Of//wns2fPJhAIkJWVxfTp0/n9738PWI/t5z73OQBOOumkQVPX//Of/3D22WdTWlqKy+WisrKSW2+9FV3XU8c/8cQTee6556irq0vtvyOzcFc1Al999VWOP/54fD4fOTk5nH/++WzcuDFjmx2vh82bN3PllVeSk5NDdnY2X/rSl4hEIhnbvvTSSxx33HHk5OTg9/uZOHEiN9988z57DIUQQgjx6SYZgUIIIYQYNldffTUPPvggX/rSl/jmN79JbW0tf/rTn1i9ejVvvfVWxjTKzZs3c9lll3H11VfzxS9+kd/85jece+653Hvvvdx8881cc801ANx2221ccsklVFVVoarpc566rnPmmWdyzDHHcMcdd7B48WJ++tOfomkat9xyy8caU1VVFZdeeilXX301X/nKV5g4cSIA99xzD1OnTuW8887Dbrfz7LPPcs0112AYBtdeey0Ad999N9/4xjfw+/388Ic/BKC4uPhjPY5DjSMSiXDCCSfQ2NjI1VdfzahRo3j77be56aabaG5u3m0du4cffpi//OUvrFixgr/+9a8AzJ8/H4Avf/nLPPTQQ1x88cV85zvfYfny5dx2221s3LiRp5566iPHtSuLFi0iEonw9a9/nfz8fFasWMEf//hHGhoaWLRo0cd6XAZ66aWXuPTSSznllFO4/fbbAdi4cSNvvfUW3/rWt1iwYAHf/OY3+cMf/sDNN9+cmrK+4+eDDz6I3+/nhhtuwO/38+qrr/KTn/yEYDDInXfeCcAPf/hDent7aWho4He/+x0Afr9/l2N6+eWXOeussxg7diw/+9nPiEaj/PGPf+TYY49l1apVg6YnX3LJJYwZM4bbbruNVatW8de//pWioqLU/Vm/fj3nnHMOM2bM4JZbbsHlcrF582beeuutT/z4CSGEEOIQYQohhBBCHADXXnutOfCjxxtvvGEC5qOPPpqx3eLFiwctr6ioMAHz7bffTi1bsmSJCZgej8esq6tLLb/vvvtMwFy6dGlq2RVXXGEC5je+8Y3UMsMwzLPPPtt0Op1me3v7xx7T4sWLB93XSCQyaNkZZ5xhjh07NmPZ1KlTzRNOOGHQtj/96U/NoT6mLVy40ATM2trajxzHrbfeavp8PrO6ujpj+Q9+8APTZrOZ27dvH3T8ga644grT5/NlLFuzZo0JmF/+8pczln/3u981AfPVV1/9yHHtylCP2W233WYqipLx/A712FRUVJhXXHHFbo//rW99y8zKyjI1TdvlNosWLRr02tnd+K6++mrT6/WasVgstezss882KyoqBm1bW1trAubChQtTy2bOnGkWFRWZnZ2dqWUffPCBqaqqefnll6eW7bjP//d//5dxzAsvvNDMz89PXf/d735nAqnXsxBCCCHEzmRqsBBCCCGGxaJFi8jOzua0006jo6Mj9W/27Nn4/X6WLl2asf2UKVOYN29e6vrcuXMBOPnkkxk1atSg5Vu3bh10m9ddd13qsqIoXHfddSQSCV5++eWPNaYxY8ZwxhlnDLqdgXXwent76ejo4IQTTmDr1q309vbu8WO0p4Yax6JFizj++OPJzc3NuC+nnnoquq7z+uuv7/XtPP/88wDccMMNGcu/853vAPDcc8995Lh2ZeBjFg6H6ejoYP78+ZimOWiq98eRk5NDOBzmpZde+lj7DxxfX18fHR0dHH/88UQiETZt2rTXx2tubmbNmjVceeWV5OXlpZbPmDGD0047LfVYD/S1r30t4/rxxx9PZ2cnwWAQsO4jWNOYP2r6txBCCCEOTzI1WAghhBDDoqamht7eXoqKioZc39bWlnF9YLAPIDs7G4Dy8vIhl+9c009VVcaOHZuxbMKECQCpmnt7O6YxY8YMud1bb73FT3/6U955551BNdx6e3tTY9xXhhpHTU0NH374IYWFhUPus/N92RN1dXWoqsq4ceMylo8YMYKcnBzq6uo+cly7sn37dn7yk5/wzDPPDHru9kXw9JprruFf//oXZ511FiNHjuT000/nkksu4cwzz9yj/devX8+PfvQjXn311VTg7ZOMb8djNdR06cmTJ7NkyRLC4TA+ny+1fOffgdzcXMB6rWdlZfH5z3+ev/71r3z5y1/mBz/4Aaeccgqf/exnufjiizOmyQshhBDi8CWBQCGEEEIMC8MwKCoq4tFHHx1y/c4BLJvNNuR2u1pu7tQEZH+MaagOuFu2bOGUU05h0qRJ3HXXXZSXl+N0Onn++ef53e9+t0eZWkM1CgEyGlN81DgMw+C0007jxhtvHHKfHUHQj2NX49uTcQ1F13VOO+00urq6+P73v8+kSZPw+Xw0NjZy5ZVX7pPstqKiItasWcOSJUt44YUXeOGFF1i4cCGXX345Dz300G737enp4YQTTiArK4tbbrmFyspK3G43q1at4vvf//4By777qNe6x+Ph9ddfZ+nSpTz33HMsXryYxx9/nJNPPpkXX3xxl/sLIYQQ4vAhgUAhhBBCDIvKykpefvlljj322D0OGH0ShmGwdevWjABYdXU1QKopw74Y07PPPks8HueZZ57JyODaeVox7DqgtiPTq6enJzXdExiUcbc7lZWVhEIhTj311D3e56NUVFRgGAY1NTWpJhoAra2t9PT0UFFR8bGOu3btWqqrq3nooYe4/PLLU8s/7jTeXXE6nZx77rmce+65GIbBNddcw3333cePf/xjxo0bt8vn47XXXqOzs5Mnn3ySBQsWpJbX1tYO2nZPg6Q7HquqqqpB6zZt2kRBQUFGNuCeUlWVU045hVNOOYW77rqLX/3qV/zwhz9k6dKl+/S1IIQQQohPJ5kjIIQQQohhcckll6DrOrfeeuugdZqm0dPTs89v809/+lPqsmma/OlPf8LhcHDKKafsszHtyLoamJHY29vLwoULB23r8/mGPGZlZSVARh2/cDj8kZlrA11yySW88847LFmyZNC6np4eNE3b42Pt8JnPfAZgUMfhu+66C4Czzz57r48JQz9mpmny+9///mMdbyidnZ0Z11VVZcaMGQDE43GAVOBt5+dkqPElEgn+/Oc/D7odn8+3R1OFS0pKmDlzJg899FDG7a1bt44XX3wx9Vjvja6urkHLZs6cCaTvoxBCCCEOb5IRKIQQQohhccIJJ3D11Vdz2223sWbNGk4//XQcDgc1NTUsWrSI3//+91x88cX77PbcbjeLFy/miiuuYO7cubzwwgs899xz3Hzzzakpv/tiTKeffnoq8+zqq68mFApx//33U1RURHNzc8a2s2fP5p577uEXv/gF48aNo6ioiJNPPpnTTz+dUaNGcdVVV/G9730Pm83G3/72NwoLC9m+ffse3d/vfe97PPPMM5xzzjlceeWVzJ49m3A4zNq1a3niiSfYtm0bBQUFe/UYHnHEEVxxxRX85S9/SU2XXbFiBQ899BAXXHABJ5100l4db4dJkyZRWVnJd7/7XRobG8nKyuLf//73oFqBn8SXv/xlurq6OPnkkykrK6Ouro4//vGPzJw5M5XdOHPmTGw2G7fffju9vb24XC5OPvlk5s+fT25uLldccQXf/OY3URSFhx9+eMjp57Nnz+bxxx/nhhtuYM6cOfj9fs4999whx3TnnXdy1llnMW/ePK666iqi0Sh//OMfyc7O5mc/+9le38dbbrmF119/nbPPPpuKigra2tr485//TFlZGccdd9xeH08IIYQQh6Bh61cshBBCiMPKtddeaw710eMvf/mLOXv2bNPj8ZiBQMCcPn26eeONN5pNTU2pbSoqKsyzzz570L6Aee2112Ysq62tNQHzzjvvTC274oorTJ/PZ27ZssU8/fTTTa/XaxYXF5s//elPTV3X9+mYTNM0n3nmGXPGjBmm2+02R48ebd5+++3m3/72NxMwa2trU9u1tLSYZ599thkIBEzAPOGEE1LrVq5cac6dO9d0Op3mqFGjzLvuustcuHDhoGPsbhx9fX3mTTfdZI4bN850Op1mQUGBOX/+fPM3v/mNmUgkhtxn58dsZ8lk0vz5z39ujhkzxnQ4HGZ5ebl50003mbFYLGO73Y1rKBs2bDBPPfVU0+/3mwUFBeZXvvIV84MPPjABc+HChantfvrTnw56HVVUVJhXXHHFbo//xBNPmKeffrpZVFSUekyvvvpqs7m5OWO7+++/3xw7dqxps9lMwFy6dKlpmqb51ltvmcccc4zp8XjM0tJS88YbbzSXLFmSsY1pmmYoFDIvu+wyMycnxwTMiooK0zTTr8uB98U0TfPll182jz32WNPj8ZhZWVnmueeea27YsCFjmx33ub29PWP5zq+HV155xTz//PPN0tJS0+l0mqWlpeall15qVldX7/axEUIIIcThQzHNj1FJWwghhBDiU+TKK6/kiSeeIBQKDfdQhBBCCCGEGDZSI1AIIYQQQgghhBBCiMOABAKFEEIIIYQQQgghhDgMSCBQCCGEEEIIIYQQQojDgNQIFEIIIYQQQgghhBDiMCAZgUIIIYQQQgghhBBCHAbswz2Ag5FhGDQ1NREIBFAUZbiHI4QQQgghhBBCCCGGkWma9PX1UVpaiqp+evPqJBA4hKamJsrLy4d7GEIIIYQQQgghhBDiIFJfX09ZWdlwD+Njk0DgEAKBAGA9uVlZWcM8GiGEEEIIIYQQQggxnILBIOXl5amY0aeVBAKHsGM6cFZWlgQChRBCCCGEEEIIIQTAp76E3LBOar7nnnuYMWNGKuA2b948XnjhhdT6WCzGtddeS35+Pn6/n4suuojW1tbdHtM0TX7yk59QUlKCx+Ph1FNPpaamZn/fFSGEEEIIIYQQQgghDmrDGggsKyvj17/+NStXruT999/n5JNP5vzzz2f9+vUAfPvb3+bZZ59l0aJFLFu2jKamJj772c/u9ph33HEHf/jDH7j33ntZvnw5Pp+PM844g1gsdiDukhBCCCGEEEIIIYQQByXFNE1zuAcxUF5eHnfeeScXX3wxhYWFPPbYY1x88cUAbNq0icmTJ/POO+9wzDHHDNrXNE1KS0v5zne+w3e/+10Aent7KS4u5sEHH+QLX/jCHo0hGAySnZ1Nb2+vTA0WQgghhBBCCCGEOMwdKrGig6bfsa7r/POf/yQcDjNv3jxWrlxJMpnk1FNPTW0zadIkRo0axTvvvDPkMWpra2lpacnYJzs7m7lz5+5yH4B4PE4wGMz4J4QQQgghhBBCCCHEoWTYA4Fr167F7/fjcrn42te+xlNPPcWUKVNoaWnB6XSSk5OTsX1xcTEtLS1DHmvH8uLi4j3eB+C2224jOzs79a+8vPyT3SkhhBBCCCGEEEIIIQ4ywx4InDhxImvWrGH58uV8/etf54orrmDDhg0HdAw33XQTvb29qX/19fUH9PaFEEIIIYQQQgghhNjf7MM9AKfTybhx4wCYPXs27733Hr///e/5/Oc/TyKRoKenJyMrsLW1lREjRgx5rB3LW1tbKSkpydhn5syZuxyDy+XC5XJ98jsjhBBCCCGEEEIIIcRBatgzAndmGAbxeJzZs2fjcDh45ZVXUuuqqqrYvn078+bNG3LfMWPGMGLEiIx9gsEgy5cv3+U+QgghhBBCCCGEEEIcDoY1I/Cmm27irLPOYtSoUfT19fHYY4/x2muvsWTJErKzs7nqqqu44YYbyMvLIysri2984xvMmzcvo2PwpEmTuO2227jwwgtRFIXrr7+eX/ziF4wfP54xY8bw4x//mNLSUi644ILhu6NCCCGEEEIIIYQQQgyzYQ0EtrW1cfnll9Pc3Ex2djYzZsxgyZIlnHbaaQD87ne/Q1VVLrroIuLxOGeccQZ//vOfM45RVVVFb29v6vqNN95IOBzmq1/9Kj09PRx33HEsXrwYt9t9QO+bEEIIIYQQQgghhBAHE8U0TXO4B3GwCQaDZGdn09vbS1ZW1nAPRwghhBBCCCGEEEIMo0MlVnTQ1QgUQgghhBBCCCGEEELse8PeNVgIIYQQQnw6GTGNeH0fik1Bsau4Rn16z44LIYQQQhwOJBAohBBCCCE+lnhtL50PbQBAzXJSevPcYR6REEIIIYTYHZkaLIQQQgghPhatM5a6nAjGOe03y/jz0s3DOCIhhBBCCLE7EggUQgghhBAfi9YWAaDB2com91ZiPY28sXXb8A5KCCGEEELskkwNFkIIIYQQH0uy1QoE/rXwSZZnrbWWxY8FTh3GUQkhhBBCiF2RjEAhhBBCCLHXTNMk2RrGxGSzZ3tqeV88jmGYwzgyIYQQQgixK5IRKIQQQgghPlK8LojqtZPY3oejxIfN58CM6dQ7W+h09Ka2M9Q+GrqjjMr3DuNohRBCCCHEUCQQKIQQQgghdss0TboWVaF3WM1BnKMCBE4ZBcB7/vUZ2yr2Xqpb+yQQKIQQQghxEJKpwUKIT6TrqRraF66j7d4PMGUqmBBCHJKSDaFUEBAgsb2P6Jo2bEorqwPPZWxrtwepbus70EMUQgghhBB7QDIChRCfSOS9FjCsy1pXDEeBZ3gHJIQQYp8Lv9cyaFlkfSeoG+i0hwAHTsMgoaqY9gh9dSsglAX+ogM/WCGEEEIIsUuSESiE+NhMzUgFAQGSjaHhG4wQQoj9Qo9qRNa0A6A4bfgWjMRekQUJgxrPJrY5HRRoGiWaltrnsvrr4P2/DdeQhRBCCCHELkggUAjxsRnhZMb1RJMEAoUQu9f99GY6H6+i7Z416L3x4R6O2AOhtxqx5ThxlPjwziwk+5RRRDUdgPX93YI77HZK+5cBtNrtmKsfAcMY8phCCCGEEGJ4SCBQCPGx6TsFAiUjUAixO3ooQfjdZqKr20jU9RFe2TrcQxIfQeuNE1rWgNYWpbWrBfdJI1BddlbNLeC3RFnv6kltOz6Z/pvQZrOh9NZD7WsHftBCCCGEEGKXJBAohPjYds4ITDaFME1pGCKEGFqsqjvjevj9VmkydJDrfb4WM2ll9f18/H3MfeZYZv19Fi82LOFZojS4rOnADhMmTrwstV+bzWZdWPX3Az5mIYQQQgixaxIIFELslciH7XQ/vZmeF2pJbA9mrDMimkz1E0LsUqyqK+O63hUjvrV3mEYjPooRSWILOLHlu0l6TbYa2zEx0UyNxmAX5Wo9dQ6r79x4m5eymZ9L7dts99JAJWYsCHHpICyEEEIIcbCQQKAQYrdM00xl+ZlJg9DbTYTfbSa0rIHY5p5B28v0YCHEUEzdIFbdnxHoSH/8GKobrTg4JDuihN5sRO+MsWlcE5qZbgbSEm6j1LMRU1EAmOwtpcib7hDcrBZSxhaULa/AlqUHfOxCCCGEEGJo9uEegBDi4GaEkjT/egWKqqA4VBS3LbXOTOiDtk80hvBMLTiQQxRCfAok6oKYMes9wz0xF0VVSTb2Ef2gnfj8UlwVWcM8QrEzvSed4b3CvRYGVIMIaZ143e2p61Pyp2QEAtvs7vTGNUtgynn7daxCCCGEEGLPSEag2C9M06Tz8U30vrpdisF/yiVbw6CbmEnDmvrblf5iaITT2SGK145jpB+jLzEcwxRCHOSS7RGcY7JQPHY8k/JxjclC64wB0PPMFqkVeBDaEQg0MXkn/l7GOsUeJDkgEDh55HycNie5rlwA2uxJdNNpHWfdYkxj8Ikj8elm6gZt939I70t1BJdux9SkQ7QQQgjxaSCBQLFfJLYFia5up+/FOroXVWMMkTkmPh2SrZFdrjNiAwKBikKyMURkbad8oRdCDBLb1E2iNogZ1XBWBPAdXYJjhBeAZEuYZJOUFTjY7AgEPlTwJI2JZmth/9u74uil02X9fbCZJuNHLQCg2FcMQKcjSJ8xw1qf7EBbu/wAjlwcCKG3m0ls6aXvle0El9SRkNIgQgghxKeCBALFPmNqBkZCx4hphFZk1nySBhKfXtpuAoFmIn3231kRsJbFNLS2Xe8jhDg87TipoDhV7PkeFJtC4LQK1CwnjmIv4fcle/xg09DdwHVjbuPN7DcBWBCOUqBbJ/Zs9h4iqs54TeVkdylul/U3YMf0YAOdZ5Qp9KrWR83ovx/NOHkkPt30UILgy3UZyxLbgrvYWgghhBAHEwkEio8luqmL8OpWOhauQw8l0MNJ2v+6ls5HNtL+wDqia9oyth9YZ0h8uuwuI5D+zD/Fbcc1Jju1OC5fBoQQAxgJHb3bmgZsL/KiqFaDCc/EPIy+BMmmMIkG6Sx7sGkPtbLFXU+jM47HMDg6FqM82Z/hb0vQ5rBTYzewOdL1AEdnjaYyu5KKQAW/G7OcU8pLeTBQjot3iKxpGqZ7Iva14KvbcZT4MpbFt0kHcCGEEOLTQAKB4mPpfHQj3Y9XE6vqpuc/W+h5sobEtiDx6m6S9X2pqUM7SCDw08k0TZI7svv6v7gPxeZ34BqdDgQm5MuAEGIArT2a+rvgKE4HDxS7ii2rv45cf6BQHDy6Ip2py1f1Bjm+x0vhEHXgKstPSF3+3pzv8fQFT3PyqJPR1ChxVeWePJMmZx3mG/cekHGL/StR30f4nWYS24LYS70oHqv3YKIuKKVBhBBCiE8BCQSKvaaHk5BMfxGIru0gur4TR7kfxWMDp4prUi6ucenAkCaBwE8VI6FjmiZGXxIzak3lUvyO1HrFZcvYXvU5cJT6UBzWW4pkBAohBkq2hlOXHUXejHW2XCubzAhrGHGZOnqwMBI63Xr6pE6ervML7YvY9MCgbccVHzFoWZ47D6/dCyaMSST5YmkxSngh8aqt+3XcYv8yDZOeZ7ekAvu+I0fgGm11/DYiGlpHdBhHJ4QQQog9IYFAsde0zp0+5Nn6M8UMKPrGkYz41pEUfHEKOedUpjaRjMBPD607Rtv/W0Pw5Tq6/7M5tdxR4LEuqFYG4ECqz4FiU3GWW18Q9Z64BH+FECkDa43aizMDgfa89LRSrUveNw4Wek+cXltX6rrd8LLCNpuOnFMGbdv2Guh6ZqbgldOuZPn/LKfYPof1bhdBm40l/gLs/zgZ/YlroXHl/r4LYj/QOqLYclygKtiLPPjnlWTMCJDpwUIIIcTBzz7cAxCfPlp7OhDomVVE4MQy+l6tJ/fCcaju9EvKluNKXdZ7ZMrXp0Xv87VorRH6dqoN6J1RQMGVU1EcKtF1HXQ9uim1bkdg0Dk6i/hW60tAoq4Xe07RgRu4EOKgNbDWqGM3gUC9KwY71R0Tw0PvidNnT9f02xYfDaqNWROP4b2qxanlqmGjc7nJC70v0LjxXxSNqaStdkvq53nzpnI/7wHwlN/LRaHtsO4RTGIoFz9woO+W+ISiazuIftgBgHd2sXUSsD8jECD8Xiu+OSNQlF2XExFCCCHE8JKMQLHXBmYEemcU4Cz2kX/ppIwgIIDqtqemkEpG4KdDeGUrRlwHt21QTUBHqR/VaUNRFOwFmV/kVZ8VCHRVZuOszMFR6iO+uedADVsIcZDbUWtUcdoyThJBemowWBnJ4uCg98QJ2jtS1+u0sbgdduaPrszYLidahIqNuo12Qt0REpEIoa5O+jo7CHV1ory2EkfSOin0gSdCtd36e6GtfxEM/cDdIbFPpOoGA55JeQA4R/rxzinGMdJPsr6Prn9WYepSK1AIIYQ4WA1rIPC2225jzpw5BAIBioqKuOCCC6iqqkqt37ZtG4qiDPlv0aJFuzzulVdeOWj7M88880DcpcPCwPov9h3TRXdhxxc+rTcuBaQ/BeK1vcSruyGmk3XqKGthfzxwYF0v+05f5FOBwFFZJOqCJJvCRKu6MU15zoU43BkJ3cr0A+xFnkGZQvb8nTICxUFB64kRtKWneTYkK7h4dhkjAyMytsuLlgBgaBFc2VcQjU7Gl1uBFrdOACbCYeaYUwFQkgG+V1ROp6riMIOYdcsP0L0R+4q2o96nqmDPtz4DKnYV35HFJJtCqe1im7qG2l0IIYQQB4FhDQQuW7aMa6+9lnfffZeXXnqJZDLJ6aefTjhsfcgoLy+nubk549/Pf/5z/H4/Z5111m6PfeaZZ2bs949//ONA3KXDQioQqGZO6RpKKmCkmRjh5H4emfikBtbx8h87kpzPjqP0p/Mo+fExGRmfituWrg1Jemqw4rDhrrRqBRnBBMmmdIMAIcThSWsbOC148LRf+8CMQAkEHjT0njg9Nuvvvd002ayP4fNzysn35GdslxsZgRZdjpGsQ1G8hHvLmXrSt/jMdd9JbXNsZ4D/GfcNcITZ6tK4tSCPPkUh+c5/Duh9Ep+MqZsk+8vD2As8KPb01wjXmGzyLpuM4rET/aCd7qdqMPXBHaaFEEIIMfyGtUbg4sWLM64/+OCDFBUVsXLlShYsWIDNZmPEiMwzz0899RSXXHIJfr9/t8d2uVyD9hWfzI7srh2BQHuuG8W2+1hyZp3AOLaAc/8NUHwipmmmpvzYclyoLhv+o0uG3FZRFBSXDTPS31HYm24e4p6UR6yqG7AyApwjd/+7KoQ4tCWaQjhG+lHcNlwVgzvOqgEn2BXQTJkafBDRe+J025OASrZuMnnaRMYUWIFcj91DVLM+C+RGR6DF38bmnJ7at72+j+M+Nwtvdg6R3h66N2zinCs/z0uNjxMMh6l1JPhFQR63bn15OO6a+Ji0zij0T/ndudYngHd6AdEP2oiu68QIJYlt6sIzteBAD1MIIYQQH+GgqhHY22tNQcnLyxty/cqVK1mzZg1XXXXVRx7rtddeo6ioiIkTJ/L1r3+dzs7OXW4bj8cJBoMZ/0SaaZj0PLuFnme2EHm/FTNhneH9qGnBALacAZkeUifwoKb3JjDjVr2moT7g70ztr/8IoNrT2YHuSenf31iVTA06XGk9cRJNIbSgdJA+3CXq+kg2hkhs6cVeNPi9RVGVVFag3hWTkgIHCS3WQXd/5rdHt3P5vNGpdV67F/qfprx4HphR9PgKfNnW+eX2+hCgMGbmUdax4nH8LUkeOOMBTBtsdTp53u9jlV1Da248kHdLfAK7a/qzg29O+iR8+L3W/T4mIYQQQuy9gyYQaBgG119/PcceeyzTpk0bcpsHHniAyZMnM3/+/N0e68wzz+Tvf/87r7zyCrfffjvLli3jrLPOQteHLkp92223kZ2dnfpXXl7+ie/PoST0RiOht5oIv9NM979rUsv3JBA4sJZcvLZ3N1uK4Zaq+wPYh5i+t7Oi62ZReut8Sn82D2dFNtGE9ftlz3Vj7/+CkNjeR6JVpgcfjoJLt9P2h9W0/GoFPf/ZPNzDEcMosa3/vd+u4CwbnBEI6YYhZtLACEkZieFmmiaR9g9I9tdz9Co+5lWmpwT/87R/8eXlv+GyVT8mL5n+LFA4ynp+tbhOT1uEMbNmo9pHA7D5/XcZnT2az4/7Wmr7P+ZGSSyXrMBPi4HT/IcK6gO4xudiy7Y++8WqutB65USQEEIIcbAZ1qnBA1177bWsW7eON998c8j10WiUxx57jB//+McfeawvfOELqcvTp09nxowZVFZW8tprr3HKKacM2v6mm27ihhtuSF0PBoOHfTDQ1A16nt6CFoyTqA+iZjkwgplfzvYsIzAdCAy/22RND852knv+uH0+ZvHJ7MmZ/oFs/Q1CcMAb1e1c89gqjh6dx/hiP9fMLCRe10diay+dC9dT8KWpQ9YGE4euxPa+1GW9W74IHq70vgRapzXd11kWyKgpNpA9z82OV4nWHZMyEsPMjOlEbFtT18tzijPWG51O7KaDrHgBqNUAuH1+isfksG2tVRqipbaXbR8EcAY+i8PZRtUKk2Mu6uHaoy7jyfX3UUg34xMJmra/xTiuOHB3TnxsyQEn9nb1OUFRFTwzCohVdWPLdZFs6MOe7RpyWyGEEEIMj4MiI/C6667jv//9L0uXLqWsrGzIbZ544gkikQiXX375Xh9/7NixFBQUsHnz0FkpLpeLrKysjH+HO607Tvi9FuJV3ZgRHc+MInIuGp/qIAt7HwjEgNiGTiLvt2LEtP0wavFJDBkI1OJgmtC36+k9Sd3glv9uoC+m8cqmNh56u45AWTX2yAZI9GL0ddH1RA2xmu79fRfEQUIPJtCa018Yk+0RTE2Kxh/K9N44Rlyn740Gmn+1nI6H1hN8dTu9S7altnGN3vXf1lTjKSUz60gMj3hPjJB9e+p6Se6ojPVdA36/E+EmAAIFhRSUpzM+N73bSk+bFd5NJopALealvz6F1+kkhyOodTr4d1aA7ZGNmEl5f/g0SH1OsCm7/QzonpSH1hYhXtVNbHPPgRmcEEIIIfbYsGYEmqbJN77xDZ566ilee+01xowZs8ttH3jgAc477zwKCwv3+nYaGhro7OykpGToxgdisFRnYEBx2bBnO/HPGYEZ13GUeLEFXKmpH7tjy3ZR/J3ZJFvC9Dy1GSOiYSYNIh+0458rz8fBwjRMEvXpDK7UlJ87xkIiZF3+wXZwZw/a9x8rtlPTFkpdV5MhjCe+Q068h1w39Pm/QW/9GXQsXEfxN4/EMUIyAw91g2pD6lYjGmepNI45VPU8t5Xoug5UnwOjL4nijhLf3JMR4HFW7DoQ6CjzYy/0oHVESbZIIHC4dbeFCdpbUtdzc8dmrB8YCDS0NsAKBO6YGgzQVNWNw23D6VZJxKzXQf3GJG3btlJeOJGG3rcACNqaiW/twT1x6PrQ4uBg6ka6WVyBZ7fN4gb+nZfAvhBCCHHwGdZA4LXXXstjjz3Gf/7zHwKBAC0t1ofO7OxsPJ70mcbNmzfz+uuv8/zzzw95nEmTJnHbbbdx4YUXEgqF+PnPf85FF13EiBEj2LJlCzfeeCPjxo3jjDPOOCD361AwMBCYc24lvqOsaUGB40bu1XEUVcFR6MVR6MWW46b9/60BIPxeiwQCDwKmZtD7Qi2J1nDqw7ot14Xq7G8Eog3o4NleDeVzMvc3TZZv7WLumDxW1HZhAt+wP40t3pPaxoE1vcx3dAnR6m56l2wj2Wh1Ed35J7DLdQfTNmrAgdYZwz0+h/z/mbJPn5NDQXTT4CYxycaQBAIPUaZpEt8WBAOMiIaa5URx2gZlebl2Fwgs9qG1W3934nXSsGu49bZH6LKlG0LlBTL/9pu6Qen4HMI9IVp7rGZsWQWF+LJdeLIcRPtLiSRjOsd/fjzvPl1FMq5ic1by5K9vJzA6Dv0fAXptMaoe+xeb3U0011RTNnkq008+g8rZRx+YOyv2SLItgqPUj2JTcJT6YeVDsP0d6NoKx90AE89MbWvzOVD9DoxQMmO2gRBCCCEODsM6Nfiee+6ht7eXE088kZKSktS/xx9/PGO7v/3tb5SVlXH66acPeZyqqqpUx2GbzcaHH37Ieeedx4QJE7jqqquYPXs2b7zxBi6X1CjZUwMDgfbCj54CvCdc5YFUcEXvjZPsin3EHmJ/0zqjhN5qIrE53cglNS04HgIjPYXbaNuAaZr8ZPFz/HbpMmra21i8YQvPrW1meW0X44v8ZNPHEUrmFHyXr46cC8eRc24lZlzHiGnowcSQP3e37mDaJtkWxYzpRDdKV+SdGZqB1v/FT3Gn/8QkmkK72kV8CplJnURTCDOpE6vqwggmAHCNzab05rkUXTsT5/ic1Pa2PDeq17HL49l8DuxF1t+aZGMIIzF0cy9xYMQ6OgjZ61PXc925Geu3b+iiqaaHUI8GpvV5IZBvzdjIHZANllfqY9oJZUw7oQIARTFJJI4mW0sHGbtsKkXJXpSgSTwcYsv7y9n01rL9dt/Ex5PY3keyvo/EtqDVCO6d/wcf/APql8PKBwdt7+ifWWCEkuhhaQAkhBBCHEyGfWrwnvjVr37Fr371qz06jsfjYcmSJZ94bIe7jEBgvnufHdc7q4hwXEfrihFb34Hj+KFrQooDY+CZesVnp+CKqSgO6wua3teGbcC2Gz5czsL6QhZ33IZi72VhHeQmzwBOAuDsGSX0LF3EXHUjzbaRlDijEO1Cad+E/8hcsCmobhuq244tyznkT2CX6w6mbYy4jgmwZ29hh5VkUwitI4otz41rXDaRFVZ9yWSjBAIPJZG1HXT/q9qqGzugAciOrD9FUcg9t5LQu014ZxSC8dG/LK7R2WhtUegvVeCuzNlPoxcfxda1ha4BUz/z3Olpu4ZuEOqyav+5PBo7JglnFViBwOMuHo+u6Wz7sJOKafmoqsK0BWXYHDZWLanF5hyDOxoGVgDQZbPhVeo40riYPlcbHfFGon2SFXqwSWxLPyfOUT54PR0oZvNLEGoHf7p8j73YS3yrdZJRa41gGzu4tIgQQgghhsdB0zVYHFx2BAIVtx3Vt+ssjr3lHpdD73+tqaLxbUECx++zQ4uPYWAgMPe8Slyj0lP36uu3MRqIKAr/LzebdZF3WKW8iepIf6HvMtayIxB4/sxSmt/8EBUo0Rsxy89CqX7Byips2wAjjyRwfBmBQyD42/r7VSSbwxnNcw5HoXebSDSEUFw2vLOKcJUFUl8W9a4YzpFlxPN60btiJJvDmIaJoh7mD9ohIvJ+fwMhExhYB3B0+su+o8hL7nl73iHeWZFFeIVVIiSxLSiBwGHk7quj2z9gavCAQGCoO47RH9i12dKZ/YGCIoBUncARY3NS67IKPBSWB8BUUR0K046YB9H7Aei22XCqW/CW53OSeSnvdywhHJRA4MEmvs0K6ikOFae7FbQBU34NzcoOPPabqUUDuwon28K4JBAohBBCHDQOiq7B4uBiJg30Xutsv73AjaLsuy/u9iIvSn+mVWJbcI+zQsX+obWmC747dqrftq2uFoAPXU7+np3FKr8GSv/z1f9DdTeh2IOMLfQxOgBHsQGABrOAYMn89MGaP9h/d2I47Ahm7UGW06Gs741GIu+3En6rieiadsAK8O/gGp2Fs78cgJk0aP7VcoKvbcc8zB+3TzutI5rK9MmggnNAs4i9NbCr8I6ggxge3vj2jIzAgVODg53p4J9ppH/fd2QE7srYmYUcd8l4jKTBlld7Usu7VRWbcyuJbb2oio3R/um4I/umJInYN7TeOHq39bnQWR5Aaftw8Ea1b2RcdRSlp4hLnUAhhBDi4CKBQDGI1hVNBXocBfv2w7iiKqkve0Y4mTEFWRx4yR3d/OwK9rzM57q12Zr2s9qdrq1ZqGnc1NHNkbH0F0G7fxMnTyyC2mU4sOoALdVnUq1Wpg92iAUCU1ltxp6XODjU6KEE+oCAgNYVwzRNEv0BHNVrx17oxX/8SAq+PA3XxFyMUJLgkjrpIvkpF96RDQjgSn+MsBf50o2G9kSP9R7T2BMFXcPm6EYNWBnoie19EjAeRl69gW7Vei7tio2AIx3gDQ74u63FOwBQVBVfbmYdwaFMPHoEACo23LoVKGqxOXHqbQSmdxI3o+Q4CznSfRJGROrKHSwypgWPzsr8m152NBRMhK2vpn6nwZoavIMmgUAhhBDioCJTg8UgGfUB93EgEKwPkbH+rqKJbUEchd6P2EPsD6ZmoHVYgRxHgRfFlpn52dfRBMCqAYHAe1vamJDUmKqbfNFj1Y70BdZz4sRC2Hgv9XY7r3vc/Ntrp37lUt5DQcU85AKBDJzeanJYThGOVXVnXE82htDaoxgRq8GMsyLLCvz3TzcPvWW9njCtbC/HgIYC4tPDNE20zgiOUh/J1gjeI4qIrGpFddpw7Wk2oGnS9+pvcb9xG2sLz6G0bRmd+RXkx5vwlvyamKcC1W0n0dCXUa5AHDhes5EcXWdKLIGrbA7tdbW0bKmms6Geje+EgRkAaMkucktGEsjPR1U/Ogjs9NjJLvLQ2xbFnfAT84QJ2ayAb3ZgKdtsx5GvWO2Ee16sJe+CCfvtPoo9NzBD1zU6G94e8De9fC6880fr8vZ3IacckM7BQgghxMFMAoFikP0dCMyc/hXEN2fEPr8N8dG0jmhqauvAM/dgZei44p1odvigv9t2kaYxPqlB4WSmuwPk6Y1WkffAVmaXAM++zBseF78uyAM2YLq28Hy0hNOTTfwjvIW/P34CUwqsL48bujYwJW/KoJ+7W3cwbVPpKqN63FY+23UK3zCOzQwMHiZiVZkdk/XeeCrAD5m/5wBZJ48i1t9lOb4tiP+Y0v0/SLHPJZvDRNd2AuCakEvO2WPIPa8Sxa7ueXZsexX6O/fgQGNq239xKRp0WYFlX84zhNq+BNiIV3dLIHAYGHENU23iXW8+ADMw2fzeO7zzxD8AcHjPwtZ/fijHrTFOd5L18tvUN11DbMMGcq+4grzLLkV1D91orHBUgN62KJ6knx5PKxFVJaYouNf9m7acErI7CrCrDqLrOzE+o+9dlqnYLxK1/RmBCjjLfamTe2aglH90jeeyHRtufwdmfC61n6PISzzUa80A6Y1hz953zeeEEEII8fHJ1GAxyI4sMdhPGYEjA9CffZaok4Lgw2XgGXrHToHA97d1UaD0UuV0EFWtt4kjY3Er8e34G1DPvJ3PxA2m6iqKFmPTU1dAsJGWvIrUMRRbnJtLnZw2ciwbnHbaYl2Ewm2EkiHaIkP/3N26g2mbjepmOh09PJfz+mE5fdHUDWLV/RmBAzJJU8vIbBoB4Cj1oTis19LAaWbi02VgsNczOQ/VZUfp7xq8R/VkkzG0B86gI+Egbtp515xKGzk0k0enGSDctpws+z8BiO6UdSoODK21mRZHPHV9pH8krbVbUtdtTqtxiCfSxvTnnsK9YiVaaytaVxdaayudf/4zbXfdtcvjF5ZbmaOeZLoubbeqQiLESFc1W/vWEEx0YqomkZWtuzqMOECS7RGSLWEcpT58x5SgRhsgbr2Hr06O4pcf+NBM6z1Ar3snY1/31HycFQEUp43E9r4DPnYhhBBCDE0CgSKl59kthJY3owXjYFNQnOrHDgTG9TjXvHINj296nCdrnszIFFEcKo5SP7ZcF7ZcF7rUARoWyYGNQnYKBP5nTSPlzhCrB2R0zEoaYPfA5HNh5JGMm/l/rLcZBG02VnVYhcProm0ZxzFVgy6nRqPdRr6u4ouH8Ldtokg3h/y5u3UH0zZx0/oS1OHoOCwbhmjtUZyjslD9DhwlAwrCN4eshkBOW6pJyA6KTcXZHwDQe+JoPTHEp8/AKeHuiXm72XKwxetaWPPyI9jjPYxTm3nFmEXdWX/n+dNe4wuxH5Gv9JGTbMbm2AhAsqEPPZTYp+MXuxbd1EVoRTPBl9+m0Z6eMFIWKKOtPxDo8vrwZltTP0d1r0AB1K5uVL8fW8D6/TZCIULLlu3ydnZ0FXYPCAR22VSa3OMp0LezPbyJLGc+9OpWd3YxrHbUBE02hbHnuWHr61A8jWdzSliak0+icBkLRpXx4/w8aN8I0fR7hD3fQ6KuDzOhDyonIYQQQojhI1ODBQDxumCqhpct1wW6if/EclT3x3uJPLT+Id5oeIM3GqwucseWHkuxrzi13lniI7yiD707jt4Zw+Z1fPI7IfZKdENn6rK9KB0IfHtzB69uauV7ri5WDKgPeOT/vgCqFxxWcHjmqM9A9cMopslqlxvoY6snD8gM8CiGmxMax3Kv/r98vuJtijrfY2K8nirXjEE/gV2uO5i2OX9kCVudDuzomPrhFwhMNIWI92f/eY4oJNkQAsAIaxhhjeyzx6CoJpgmDMgSc47OSnWbTWwLYp8p08QOdqZhpprj6OEkie1WENxe5LWCAnvh7per+VHn36B/pmftmP/ha3MrsKkKeb4zaX76l5TQidPYCGhg2olVdeObXbzb44q9Z8R1FIeabnwE9C6uRWuJ4FU30pCf/ttfaMulqcv6e1FYMY6OlgSKoVPU8La1gd1O5ZLF2PPzqfvfy4m89x7Juu3Ea2txjRkz6LZTGYFaOhD4hjKWr8WqIAY20lOBpbbc8DJ1I52VaVPwziqCJ56A1nXcP7KEWudaXG7oU+DpLD/Xd/eQX/8eTDgdAHdlNopDxUwaxKq6MU1zzzKHhRBCCLFfSUagwDRMep5JT/txlPqxZTlR3R+vLk9LuIW/rv1rxrKNXRszrtty018gtZ444sDpfamO9gfWpqa0OsflYM+3gnsPfPg3vv76Z/FP+Bl/KzB4z+1msg6nV5zO+NwJkGtN/TVNE/NL3+Gvv9f52+90Ih1eWowxNGA1ivAmszghcTYnlZ/ESUWX82vtan588TwMZ4AgHprNvCF/7m7dwbSNalpfZAyUwzIjUB/wO+uqyAL7gC92NgXPlHx44zdwWzn8dhIsvtnadkx6unBcpgcftBJtYRp/9jZNv3iXlrveTy2PV3enOsq7J+1dNmBTT5RQ6xaOs60HoJ4SXOMWYOsPRJ03cyRtObMAcChxHMpWYHAtSvHJdDy4nqZfLafp5+9kTPPWw0m0FivoZlcbMzICvQN+VbNHWM078rvW44haQf3AySdjz7fqCfpPPCG17a6yAt1+B4E8d8bU4OVKuqzE5OwGIpp1o8nWyGHbmf1gENvYhRGyZm14puRjSzTAtjdosNuodVoncFXSJww77DaoTT/visOGqzIHAKMvQbJJMjyFEEKIg4FkBArCq1pRnCrYFOwFHvIvmzyog+zeeLPxTSblTWJ12+rUso2dGzmx/MTUdXtO+oOjLoHAAypR30e8pgcANeDEMzE3lRXyZv0aDFs3CvCa30VMVdkITHEGsA3oCBlbt47k9u3sKOM/cYvG3SOuRVPvBaCor4IpNWdwxSXz8WY5+fbcCKMLfPw1dAXvKuewrjHItNKsQT+BXa47mLYp5XoADLCy3g4zA39n7XluHIVeku0R0Ez8x420Asu1b0Ciz/rXbL0XOEcFQAFbjgsjLCUBDlbJuj7MmI6JDqEkWk8ce46LWG0v9kIPWnsUz6TcvTrm0qo2jlc/ZLVRyUx1K+WnfIUvH1+Zsc34o06Dl18GQLVvwHROQQ8mMJM6ikMaRuwLibogRtQ6YRNe1WoF7YF4zYDpnEo99fZ0kM7Wls7K8/V3hPWGW9CLK7C11pFz8UWp9f4TTqDtzt9Yx3/9dfKvvHLIcRSOChBoT58YWKmOJIEDJ0mmZLeyIdiM156FGdMw+pLYspyf8J6LjyNe34e9yIvWFrEau622ugO/7kmXjRkTmMjWkFUeZLM9n4krF1olREYdA4B7Um4q6Bzb1DWobIQQQgghDjwJBB7mjKhG8IVtGOEkthwXOedX7nUQcOBUj4SW4L4P76Ml3ILf4SeUtKYMDsoIzAgESq2wA0nv7Q/i2BVKbj46Y5pOVee21OVYf5MQTJOLs07ov2g91z2Lnsg45pGbTRZO2pC6nh0txDRMNr3TzOwzRzO6wKoj9+Xjx/Ll48fuh3t1YF30F+unoXDYNAsxdQMUBUVVMrJ4bTkuiq45AuwqsY1dVvZHIgL1K9I7B62yA6rLjrMii8S2INGeOEZUQ/XIn6GDzc7ZmrGqLjzTCqwpgrqJY5QfZ0X2LvYe2tJN7XzTtpQZai263Ydt6kWDtvGOOw6sOCAdrMUfvoBEOEh0fSfemUUf+/4IixHTUkFAgNiGLvRQApvfmQrUqPTgUd+jyVEAOFFR0eo6UvvYXYVAO2VNr2OLd6NmZeGdPz+13llZiWPkSJKNjYRXvEeyvQNHYcGgscw+q4LlfwukrvuzVV7om8P5trfx2jUc6rvARMCqZyuBwAPPTOqE327CTBrYCz24Rrvh2ccAeN2bLidyYsVRbF1vBQLDahQSYXjqajjpxzDj4v7sYWvWSXR9B1mnjDrg90UIIYQQmWRq8GEu+Mr2VGaOszyAe2zOXh/jpbqXOHXRqZy26DQuf+FyWsItAMwomIHfYZ353X0gUDICDyS91yq+b8tyZQQBE5pGn94waPvzN7uxXXIdW848i20Xfw4jHCb43/8CYPZnEpZ1QtKsSe2THSsEYMNbzYdkoEylv2YawCFeI7DzH5to+e37NP383dQ0zdTvrF1F9TlQHDYUxZoSrLpssO0N0Af8XnfXWcFBwFnanw1iQny7TA8+GCW29WZcj23qIrK6LfVad43O3qsTRrGkTvXmGmaotQCoBWMhb/TgDYsmY7qsTNwSdRNK/zzk8IqWj3EvxM4G1dszTCKr2jANM9Xx2+d6DUXRaOifGpznKqJjm/W82V0uYmE7xYUG7ri1vXviRNQB04gVRSH3f7+I/8QTUV0uuh95ZMixFJT5yXWnp5cX2qIs0k5gvT6K5qifXMcHux63OCBiW3sxkwYAzooslPcfgGgPm7KPZrnbygj02fKZVjAttc8HaiGmw2+VEHjyKnjjt9hz3HjnFOMcm02yOUxsQPapEEIIIYaHBAIPY0YkiRHXrILhDpXszwwu6r0r7za/S1VXFY9ufJTXty6mNdJKS6SF9Z3rUtssKF/ApLxJgFU3sCuWrkdky3LSH0tB65VA4IFiJHTMmJURsnOGxYvVm0C1gsI2U0UxTRxJk4tf0cAwSGzbRmz9eroXLcJRYdVzck+ektq/sqGdwh6TGVt05iQU8rrWY3eobFnTfoDu3YGj9sf+TEXB0PThHcx+FqvqRmuPYiZ0K2hgmqlAoD3HNXTh9+olOy0woaMKsBqG7JCQOoEHjURzmERzmK6na9A6+7O0+wP9sZrujGCc76gRe3XsN2vaOd+/PnVdGX/G0BuqNpTyuSRw0GF66VA2AxDf2ovWEd2r2xSDaTsF1NSAg/i2XjoWrsOI66CYeB0vEVQV+mzWx8NiZwF6MonD5aKoYiwtW4Mkq6pSx3BPmcLOAiedROittzDCYboWLiRRXz9oG9WmcvI5M9IL9CDvG1MpUbso8YQY4amF/pqzWpsEAofDwBqSntEGLLsdtCjt8Q9RErmYpsoJ5cdT6C1MbfekciRNE/4HerZZC0wTurfhGptDYmsvmNDz7BYrw1wIIYQQw0YCgYexWE0PkfdaMTUDz8xC7Ll71gEyqSf52ktf4+JnL+bXK37N0sbX0ysHBAUWjFzA5PzJqeubOjelN7OpqUCUZAQeOHowkbpsy3ZlrFtcvSZ1eZ5jLG/UNfDIUyFc3ZnPT/cjjxDfuBF7cTF5V1yRWj69NsZJHxj86F8mc59+hEmbHqGrMcTb/65GTx5aH/p3ZAQCGHpiN1t+uunBRCpwDFanaa3DCgpCZmZvimlCzUvWZWVAXbc26/ffVZEOBErDkINH1z820fb7VUTeTQf87EX9dcA0MxWMcY7OwjGgy/ie+PeqRqaE3k0vmJAOBPbGe3ll+yuYpkk0lICZ/4PqcFOpNtNtW5raLryjc6n42JKt6UYN2WePoeQHc3GU+DE1A3QTo7IGh1aX0SjE3RYh1NWJ3eXmyHMuoaspTKAvHdhzTx0cCHRWVJB/xeUAmIkEbX/4w5DjmTx1NEr/e2ko2ctxCTfL9COsY6hJXOqG/nFLIPBAM00zHQi0Kbg//A7Erffr+z3jSLq7sClOzq48jXBN+u+haQ+xtOwamP0l6/3/1Vvh/YV4jyi0asQCWluU8Jq2A36fhBBCCJEmgcDDWHzH9C8TvNMG1/AZyDRNDNMK5mzo2oBuprOggkZ8x0apZaNNO+VZ5UzOSwcCN3Sla8gB2HKswKMRSqamn4j9Sx+QfWnLzswIXNWcDtSe5skn/G4WyhYP7okVqDnpemDJhkYAwkknr24cQUv+GDaUK4xpgyO3pF8D7kSQ7N4t9HUmeHPRqv11l4aFMiAQqCcP3UBgoimUuUA3Ca9oTl0dMhDYsx0CI2DUPCibk17ebr2+bNkubHnW736ivs8KQohhZZom2hC1Wj3TCvAeWYRrqjWF017owTe3ZK+O3RGK89qGRo5TrWxx05sPI2cD0NDXwBeevpTrX72ec+79HFc98E1+1P4Wlxb6OK28lK7st2m1a9grAsRre6V77CeUHJBZ551ZhGJTUN02VLedhFtF2/5XtlHKUnt6doCx3QoGKYqCaisFwB/anlrvnpz+Gz9Q/te+jr20FM+cOYReepnQm28N2sau2slyWCcGoo4+ZsZsrNBmpdcr1j7SOfjAS7ZE0Lvj5DnuJD/nLyjuLBi9gG5bPqutkr8oik7sjWzefyR98sBj66OmLQQn3Ag7Pic2f4CiKuScW4niteMck01oWeMhWTZECCGE+LSQKu2HsURdfzaOYtV/2RXN0Lh9xe0YpsE5Y8/hxboXh9yuVFdo6n9FzQkFQYunAoFeu5dNXZsytrfluKDOuqz3xrEXeBD7V0ZGYJaLSDLCwvULmZW7gJhzZWrd5LXvYOjWkxmrqqP8wQdpvvkmtKZ0EKguby7NtX14vZVMqbdqSOWkE04AKG1+i57sMWz7sIV1rz+Ly2MFG+JRNy5PbNDP3a07mLZRBsxoW/bIX6lvqKFoTCVttVuG/Ans8brC0WNpq93CrDPPZc55n0VVh69barJxp0CgQyXRmH6S7UMFApvXQEN/o5C5X4P6/kyw9vTvv6sii0hXDDSDRFMI16hdv/+I/U/vTUBicEA2ML8U1eug740GtPoQvqNH4Ju1h007Nr8MuWOoe/Y+TkclaHoJKFGUcaeCaiOmxXh046OE4mFQYLu3CptrK9XbbcRd1kmKF/1J/q/7XbS64wDQ2qN7nY0o0nZk1qleO6rfAUDg+DKiMwuoe/FBTlprnawz3GXsOE+cZ1g1PRf8z5foqLfeE3dkBCpuN84xQ5cUsfl9FH7rmzR//wcAtN52G76nn0JxODK2y/PmEewNois6uFWi0SMxXNasdLf6PiEdbF4bRkTD5nMMdVNiHzMSOt1P1aC6k3jMN1DCBjQWETv6Or6m/Q84fgnAFPd09G4Vu+nApXmJ2yO4bH00dEYgMBV8hRBuh+YPwDRxlgdwlQeIVVk1AmM13Xgm5u1uKEIIIYTYTyQj8DBlxDSSzdYXekexD9U9dExYN3QWrlvIP6v+yb+q/8Xliy9n8bbFQ247t7WcbzeW8Xx9E1/p7oamNYzJHsOpo04lpsd4dfur9MR6UtsPzCbSZHrwAZGREZjl5P6193PvB/dy9WuXkbRbjUJUE9yvROnb7kJx2Cn5xa34j5mL77jjUvuaqo2WYivbq7EoHRXbkSenOK0v8kUdqzjhfBv+XB3woWsKuqakLu/8c3frDqZtBk4NTsSjhLo6SUQiu/y5N+s66moJd3fx5j8eomFDuq7acEgOyAh0jcsGw7TqPPUbMiOwOV3kn9HHg7O/OUjjKkhadd6kTuDBRRswZdQ5NpuSHx5N8fVHonrTwaKSm+cSOL5szw7YuQUeuQjzj0cye9t9/NDxGCPVTmLFM2Hu13i/5X3u+/A+Htn4CDEjikOzMkR1W5I46czEdzxuEq4XUtcH1iwTe8eIahj9J4LsRd6M2p7PrKqn8oPfpK53j093AXZ1a/jyZjH5uBNp3tKDPRnBG7O6CLsnTkSx7/p8cva55+I5wprqm9iyha5/Pj5om/ml87GrdiKuXkJqK+PjuTRp1uvMY2vFrrSgd8Uz/naJ/av3ua0kt/fhSKxHUfpPEEw6m3dHXMrq7vQJw+xNY9i6uh1frhO/bs0aiDn76F3bQTihQ4n13BPtgl7r84Xv6HRGcUSaAAkhhBDDRgKBh6nE9j76GzJmfCkfyDRN/l3zb56ofoJRgVGp5R1R60uA3+GnWHEyOxrj+EiU2tDxVIWnUq5plOg6bH8Hm2qjxF+CYRokjSTP1T6XOo5dOgcfcMaAjMAmRzsPrX9o0Dalmk6ixwrkqQEfORdfDEDg9NNxH3EErmnT6Ciehebwo9qgR19Cly+zvqR3/jxckyeTNe8YxmQ5cXrsQBib3cRmN1OXd/65u3UH0zYDpwY7nC78efk4vd5d/tybdTZHesq2aQzvtNkdU4MVpw3X2JxBHZI/MhBYOhMKJliXw21w/8nw0Hm4CoI4x2TjHBVIdSIWw2dgDTbf7GJsAReOEb492/m9B+C+E+GB02HJDwGIrreCdzt+S4oUK3h8vzvBt6sf5qsvfpUH1j4AQJw4R9UP3TzEVBReCoRQsMYngcCPb0d9wHzHj8ntux7+dDQ0WEEd+7rHaTNzqDLKCJctoNPl44j8GYzsLiePC9HNk1j6WDWt24L4Q+nO8kPVBxxIUVWKf/QjFJ8P75yj6Pzzn9E6OzO2KfAUkDSsJlWN3i0ANMSPoSXqpzM+FodiZZtLCYEDI1bdjZkwUL12XI4BszhGzWN9UxCbP72svNN6/sfNLmZU8UgAdDXJMbEI/7jjLlatSU8hf+3Ob/HHKz/Hf/55O2rAOsEQ3diF3nfoltYQQgghDmYyNfgwlaoPCLh2CgS2RdpQUfnW0m+xtXcroaQVDDi25Hjean4jtd3srEr+sO5NiPYQxcksYzLlyoAC0NutKYGfHfdZHt7wMABPVD/BZZMuQ1GUjGYV+hD1qcS+NzCrokrfjN/hpzvejU0PoNv6AJjakcBIWB/UPTPS9ZoCxx2Hb/6xLH14I7Vr2iGqU1iuUtcRoz4vi7yw9RwqHg85F11E4ze+SRyrhtS537nhwN3JA2DF//tZ6vKMz5zL2UfO2vXGe+ntRY/yzhP/AMAwhq8jsRFJovc3inGU+nBPzif4Yl3GNrrfQVc4QZ6vP3hpmtC0xrroySfoKMKZMwFPU3+NyDZr6qF98usYoVlo7VaGYLI9gqNQpnwOl4GBQEfxXj4P7/8NWvu7xbdtgJN/TPcHzzKw0IMJmCg85bbTvv1lIF1nc1rL8Uxqn8fy0f/FUPTUDmr/BcXRRcRejUebSXxbECOm7TKDXeya1h3Dbm/AY1sNYax/q/6OOfJIjmz/DzNsNQDET/h/vL3iRqJaFL83B78yCYDGTV0Yukl27xZMuwNFSw7ZMXhnnunTyD7/fHoeewyAtrvuovSXv0ytn1WUfu8MljdAO3SZ4zjGEwJCBLUqYsY8qSN8gMRquomstj7HeUduhR1x21HH8NoHz2NzWeVB8rQRZMcL8GQ5OfrsMTz3/ghW9/Qfw50gvNVJg83Gkf0J4d7INhLRUhqrN+C87P+IvdOO4rYRercZe74bR1mA5LYg7om5gxqZCSGEEGLfk4zAw9TA6XjO0dkZ67743Bc5edHJfNjxYSoIWGKbz5I3jsnYbtaWt1Bj3awyxvP15PVgd7HFLKXbtDrDsf0d0HXG5Y7jiEJrisjmns2s67C+NMrU4AMvVSNQgT9s+n+EEiEKPEWc0TCK73Z280R9H9d2pGv27PxFb+UL29j0TgvxqM7ssyooLO8BoDnHB1ddSeWLSyi/5x48M9LThWMbMpvEHAoGTg3WtH2b0aCo6bfl4cwIHNgoxFnqxzHCO6jBzKy7l3HNo+mpYvTUQ8TKGG5wj+eIW17ilFXz+WreQiifm9pMqXkR35wRqeuR96Uj7HAa2ETCvjc1+Jo/SAcBAeJ9mGsXUdj5vrXazOX/KV/g2dkPUn3Ct2lP9ABWzdi7T7qbC3Mv5aj6M3HpHsY4xqUOUxArZXQoH6dp8mRWgAa1P5BsmMSquz/2/Tycaa1RfOxU1mPdEzSse5MZVAOw3VFJTU4+Uc0K0I/oGwuA3Zlk3FHFYJhURNehaEk8s4/EO38+e6Lw2mtQA9bngt5/P0n0ww9T66YVTMOhWieeWrNr8eW66IynZyDYlSaAVKdysX+l68Lq2IL92d2BUlYlOthk3INii5PVM53jN34eT8DBjBNH4vTYKfQUpo4RcQSxOacTdKXf84vd6fID+lgV95Q8zJhG3+v1dD9RTdtdK+l+ciO9z289EHdTCCGEOOxJIPAwZCZ1jISOc0wWzjFZGVN0I8kIzZFmzP55w5MDFXhR+X7TZn5lPokWqcBjFjFBg9k54wFIYGe1MZ4TJxRy9Jh8usacjT56AdicsOFpAC4YdwEj/SOZO2Iubza9Cew0NVjq/xwQOx5nzQfN4WaSZhKPksN12vtcEexjgtaDL++s1PYDp3411fTQ3RzGl+NCUSEr34OetAI4hqqSde65OEeNwnfMXOxFRdjy8wErEHiodXxUzQFdgxP79rU7sDmIoQ/fl9/49j6cowI4K7JwVmShKAruSekgcQiTBNAWjMPS2+DfX4H7jk+t39Yf2HFEwvRWbWBR41GENOt33qx9He90v9URAAivbMXUJeNnOJimidafEWjLc6M696I5zaqHBy2KvfFHHGgArPbM59qf3sd5517I6/np2mDfPPKbnDzqZE7ouRCXbgUeTyg9kdFZoyn3VFDRMR13vIRYf1A8bt+InuPEVZmN1h4ZdJvio22vbcdrexUAY8eJjEQIx7J0dl5dxWdZ1bY6dX1E0AoEjpsVxhtwUqi0YG/dBoCZ1HCWlu7Rbdvz8ym87lrUQADP7Nm0/uq21EkOl83F1PypADTGGggrvfRpReimlfW5IxC4+E+/58HvXsvTd97Kprdf/5iPgtgd0zRTJ4Bc/gaUpBW821Y2kxuWfhctWg5ArmGjKFxBtC/Je8/cxVN33ELNc+kmciFHB92qTpDziRtWiYECRxzVaTWPi+p9VtafASRNfMrz5NrvZoTrKsy1T2TMWBFCCCHE/iGBwMNQbEsvyYYQidog9vzMTr1berakLs8ums3j/iN5rm47p0Te53O2ZbjqLuWHTSP4d/12ZtYu5z31CK5I/oCE3c9dl8zkX1fPo/Lk/8O27XWrJtjLP4NklFNGnUJLuIXlLct5dsuzmKaJ4rGjOK2XoNYlU4P3N9Mw0UNW9lpbbm8q2JsVs1GutgPQUTSf2Nam1D4DMwK3rG6j5v02wj1xjjy9ginHldLX0Z5aHyhIZwQoipLaV+/uRmtOdxs+FAysEajpyX177IMkIzC+qYvE9j4SdUGco6xsHtf43NT6SP/rpy0YwXz7D7D2XzCgGdBqzcrqqQzXcnTHuzRUx9gaKgBA0WLo9W/hmWIFFk3dJLIm/VoSB47eG09lW+1VR14tAa1WMxvT5qbbZQWF1J5t7Ij7+6Z9JrX56w3p4M2J5SdiGCYtW3qsfewK3zju6zx74bM8d/GzLOg9H2e8OLW9y9mA2hMlvqWX6EapE/hxJNvSmZvLdSvwZqIQ6LKWx00HvjmXsXpgILBvLKaZpGCUn5mnjuL4ETWpdTkXXbRXt5972WU4x4whunIl0TVr6H3mmdS6WcXp6cGRsa2Y2Ajq1vPvUJoAAz0Wp7O+ji3vL2fVC8/sfHixD+hdMcyY9V7gym4G1QrG3mHrozPegd27nWTvTE6v+Tw204ZpJol0byMRiaB2Dyg74g2SZ9oxdWhPWsFkj9LLpFwn4CDU0032aRUoHuukg9/2H3z2l7ErnWQ7HiTyQf0hd/JQCCGEONhIIPAwNLA4v2dAhg9YU3d3OHnUyShbXqGgPxhhVwxutC3i7PjzAERx8cesb3PpvEp+/4VZ+HfUbSo/GsaeZF3u3Q5v/YFcd26qFlB9Xz11wToURcEzvRA14EDvimHEtP11lwVghBLWGXigyd+RWj66Nx2kc8y5IjWV15abi31Eevpm3VqrWJCiKsw63QryBPsDgYqq4s/NfC0NDCIeatODBwYCk/t4arBqG5AROEw1AvVQgkS9VTPSXuzFnms1g3FPyCX3cxO4u8zGd/obOJQmt6MkB2dpLQ1agSGvHkFRC3D4PkO9cUlqfc1jD+OdX4prYi5mXCP4ch1mUqb/HWgfuz5g40rY/jZmdjlrck/jO32X8b/aj1mW/wUUBZ4MHM2RJ5wLQHesmw/bremgY7PG4g3lsG5ZAz2tUbIK3Rxz/ljsDut1r6gKFVPz8SdyUjcVtBvE3Nus8baEJXv0YxihvY5CnIRRxIvu0/h58n/5w7Qn+KfyGR7RTuYn+peZPGZUKhDo1NzkRUowtGYCubno4TDB/1rNvhSPh6yzP7O7mxtEcTgo/NY3U9fbfvtbtKD1HnNk0ZGp5e25VnOQHs16/1CUBDY6cXrStYzNYcyUPpQNLAfhtq0Hm5tlRaN5I2zVhjWS2ZiNn8VmWO8Tpt6OPzcXp9dLvjN9kig5QqPapVPvg+1l11OjnYqqGJyR+2emF3gId3eheh3knFtJzgVjsdvSn0fsSge29/40YIqyEEIIIfYHCQQeZkzTTHdetCm4xudkrN/am67PMs6ZnVn/Cfi8fSk15kjCpos/Js+n1cxjVJ6XM6elA0YoCpx1Oyg2GDnbKiCvJ1lQtiC1yY7sEMWhYvQlwezvZCz2G713QMdgdzr7amRco9o+kW41F1/pPPQu6/XhnjIFRbECXj2tEXr7GzuUVGbj8lo1nXZkBPrz8jMCWDv23+FQCwQOnBqsJfZtRqA6ICPQGKaMwFh1d6qr+MDpwKrThm92MSsicWoxsPk24ir+Dz8ozOddtwsT0LNGoRVNY00oBwCfHsbuPQlFUWlMziGk59CUmISfVqJum9WJ2AC9O07f640H/s4eppLtEfqWNRB+txkcKvYCN87ywJ4fYPs7ACi99axIjmOVay5vG1MIKh5+nTuCnxa0cNe6u7n1nVt5p/kdpmUdQX6slJKWSfz7zpW8ucg66RRsjzFiTGad2orpBfgS6WWtNhuKs79bqWaSbIt+sjt/mOkJJ8iiCVWJ41TbeD02hoX6Wfzu/TgtcTt6biVdEy6mPdZEZ8w64VPcNwYVFVNrwpudQ/fDD+MoKcFZWUnWWWdh8/v3ehz+Y48lcNqp2AoKcI4so/PeewGYWTiTMn8ZMwtnEnRbt9+jp6cd29VGik/4LDa7dbJRl0DgfpFsTNfxsxmNJJIh/mCPMbvwCBRslG2Yy49X/JMJ1f9g/ts/ZFbVPzl543Zmb2ni0tfq+e39GoGISULp5T/uBIvsUZRTj6NiglVbtj1RxmkFzzNi89/B0PEdWYx/QhzFtLIJTSBujMdGG+EV8rdACCGE2J8kEHiY0doiqU6grjHZqK7M7osDMwIrO9IdQhsNq96bTYHJaj33aufygP4ZPndUOV+aPxrDMFnz8nYe/MFbPPfnD3jwtx305h5vZY1seBpqXmJBbjow9HqjFQgc2LFY6sLsX9qAzswNtnRzhpPim5mgVbE9/3ii6zamlg8M5G1bmz5jXzHdei0k4zGifVbTmawB04JT+w+oLxhbf2gFAgdmBOr6Pm4WMiCgOlyZL6mTBYBnYmamp6YbNPVYgRhn3ttsy23gOb+PF3xevha/nudPWcLqzzxLtm6jSFMosE1GtY/kvfLnqQmspTOeQ6lzExXuVQQ3ribn3LGpv0Sxqi708L59PMXQ4rW99L5QS2xjFyQNPEcU4ZlWsOcH6O8KD/B420giRhu3f24iXcdX8s9cq+TEE9VP8K/qf/HY8kWsDa6h091EXu1Y4mEN07AizROOLqZkXE7Gocun5OFPpjOM2uw2oolNqeuSLbR3NtZ141KaSAK35uczf24+rhFPorqauF87mz9Gz+Tuz89k8bZ0M5EdjUIMrRG3ptP5l/uJ19SQbGyk4LprP/ZYim68ETOZJLpmDV0PP0y8tpYcdw4BZ4A17Wt4q+N14r4QvVq6pqRdaSIZ11Bt9v4xyeyB/WFgRqAa2cbD2QGqXU5Wtn+ALTqV0zZ0Mbv5Q8qa3sSd6MFj09BaW4nX1EAwRHkHLFhnErKvxpH/Goazg0VrWnB+8VE2B64kz9GKopjkh9ZZnw0B2tK/1+SMxqXW4LO/QvKD9zCkQYwQQgix30gg8DAT25TuuOje6Qs+pGsEBhwBira+lVp+n3YONyS+xuv6dF7Sj+QB/TPEcXLU6Dzq1nZy/7df54NX6gn3xOluCRPuifN+XbruD2/cxdj7z2Bk/wf4la0rCSfDGR2LB3YyFvue1hlD8diwl/hoVFpSy0dpVkZb4VEXElm5EsXjwXPkLLzHpDv+1a3rTF0e3R8s6OtMBwcD+YMDgY6RI1GzrEBvdO3aQ6rmjzLgrVPf11ODhzkj0NRNYtU9AChuO86KrIz1zb0xtP4gzo46kwCNdievmkeysq6bqpYgp0Yd/G/IxaoJm1g45yZWli1h8ZRHedYxIOus+kUcxT58c0twlPhINPQRXiEdhA8ErSN9YkD12lHde9EkxDCg3goEdpoBtpollI5/lt9u/CKvbn8V3dSxq+mTTOujVvdRl+Fhes4MPAEHx148jvFzipn/2XGDDu/y2Jk0bnTqep3NS66Zrk+XbJJA4N7YtrUDu9LM94oK+FeWjyU9t+DMXUFO5V/IyurklxdOQ7UleaL6CVyqi4ndRzG2axJaohpDayL8wN8wItYU8uwLzt/jJiFDcZaXk3vZpdaVZJLWX/8agOPL0o2Geiq3ZmYEKo1ocR3Vbr1Gh7OJ0qHKNM1UgN3mTdAe7+S+HOvzmYJKrP5YTm5cA4Cu2Ig7s3EV5GAvLsZZXp46zoUb/ehGAnfhK3jKHua5tU30xnUCn/0Zb/b9Hwmjv0nI38+HWBDa0ycflVHHpC47tLVEP0x/xhBCCCHEviWBwMOMEddwVgRQnCquibkZ68LJMM1hq15cpb8MpX0jlMyk017Ew8ZpPGks4Orkt7k6eQMR3LgdKlNLs2jf3ocW1wl1x3H57Cj9nUBrIzMxd7zEmlajYHJ8JEpFIsGUrLEsrV+KPceFrb97cKK+T2o/7UdaexQzqqM1h9mesKbdZOsGWYZJAgels84gtGwZZjRKdM2HbGrN4sW/rqNhUxeJmEZBuZ/sIg+5JVZ9oOCARiFDZQQqioJv7lzc06dj9PXR/KMfYyb37TTa4ZIxNVjb181ChrdrcGxzN/ZCD/YiD+6JuSg2JWN9fXe6ppzTlp7OX2Nz8Y2VTxB+bSnu+x/gnA8eZPyW/9Dj7SXhsIJOvqidVQ6TYP97hL9jGQCB48tINofBgPD7LalsMbH/aB3p6bVF180icHzZHu1nmib3P/k8xKwM7rXqZAL+Hjr1DYSSIZpCTRR5i/jCxC+kb0u1fkeO8M7mkhvn8sVb5jHz1FGcftVUfAO6xw9UHChCMa2/H0G7xgiaoL8bcUIyAvdKaPtWqlxQmUigmBDTrd/HKQUTmTz9BeZWunlw3YM0h5uJG3HCSh850XIUTAIOFcXhwFFWhpqVReG3vvWJx1Pwla9gKy7GVlyMPS+PeF1dRumQbVnr0bJGp67blSb0hJ7OCNQlI3Bf07vj2AvcOEp8uEuDfOh0MC8aw4GCGjqGY2vb8CSt101r8VzenHcLY/56L+OXvUbFQw/iPeooALKagkxptoGaxOZuZfrYXlbUdlI8Jpf14SPYHDsOv60bkhFY/yS0V6UHMf7U1EWPv4ZEg5SLEUIIIfYX+0dvIg4l0Q87rC+AThXnTh0iB3YMHtvbCj110FPH3XwdExWHqpAw3ez4jj6rPBeHTaW9Pv1h7ZKb5tBaG+TFB9YTN7MIB2bg71sDpvXB/by+EP/MCkBPNd7N/+GcsefgHJ1FdE07ZtIg2RTeuzpVYo8l26wATlSN0ZGwzrSP6Q/MdRbOJa+xjWTddgCCeeN4/0Ur0BfsjNG2zXqO55wzOlU3MLNjcNGQt1l65x1s/czZmMkkwRdewJabS2LLFmIbNuCeMmXQT2CX6w6mbT7j6ePSTo3/Hq2iH79vv5Sqw9w1OLKqjWT/73T22WMHrW/oilJEN34lSszRwY7f/jHbDU6rfx/q30dTHdiNJCYKaqL/fcaAsFfjvTFB3mwcwWcSzeRp6zAj3djzcnGNyyG+uQe9M0a8thd3Zc6BucOHqVQg0KakTsbsifVNQbatfgUc/QtGzeOCykaetno88H/T/o8rp12JaZo8v/5FutS21L7nH3UWNruKzf7R5yALSrPwVgcIu3pptdmxKwaOrG6SwUKSzSFMw0yddBK75+zcwvNZPhbmWNm9N875Hq83vM67zVZW54/f+jHrO60O0Kpp49htn0VBQY+vpVg36f33kwBkf+5i7Lm5Q9/IXlC9XnLOO5fO+/9K71NP454+nWlf+Dy5rly6491sMj/kqM6LSBa6cKhx7EozesJI1aGVGoH7XqI+SKLOejcPzGjliWSAt7wewCTafjSzW19ObdtUMg+bLYgvJye1LPvii4i8/z4A1/XN5RqsGqJr+17kpQ1TOG3KCFzuetZFzmKK9xUAzJV/RzGszyAR1cbv+zZytctPbjyEI7aGjhXNZJ85GtUtX1WEEEKIfW1YMwJvu+025syZQyAQoKioiAsuuICqqqqMbU488UQURcn497WvfW23xzVNk5/85CeUlJTg8Xg49dRTqamp2e0+hwPTNFN14nZ0AR1oYCBwXLt1uZMcnorNBmBskZ+CQPoL45GjcgBo72/y4fLaCeS7CRSkj93mnJdxG9OSBqP6g0/vNr9LQ18DroqBdQJlevD+YJomWn930JaCdC3Giv7nIm/mOYSWLUstb8uZnL484DkZf1Rx6vJHZQQCqG43hTfcgOJ2M/K3v0F1udBDIbTW1iF/7m7dwbTNiJYk+X1wxkoDXd/HzUKGsWuwHk4SXWcFiVWffchg3PauCDc7HuU55/cJ2dLjO/mDdBZf2Gu9ThRM5tRYASdHPH3i4U27Nb1cVQyiKxYB4JuTbjgUeS89dV3se6ZhonVZz4s937NXAbWlm9qYr6abSHXkz+D1ZquTvF2xc26l1SnYNKG8I10nVEHhuJHH7fHt5JX68PV3Du6yqSQBJct6zzETRkZGo9i1cFwjP7adLlv64968knn88rhf4rVbv5OvNbxGe7Sd00aewczGU8iNjsDUezG07eRF0lPIs04/fZ+NK3D6GanL0ZWrsKm21OsjakRoDtTSq1t1Au1KMyQSqfdG6Rq87w387GV3trDRZTX4cBkuxnvLObqtipCvhO7scSRGuJhybGaDn6wzzsBz5JE4KyspWroWv2q9thxZH7KizpppkpXfR3Ooj/aENZVYaVqJ2b6JJHDVyDIeq1nE2aX5HDdqJAm1G5vZSqymGyGEEELse8MaCFy2bBnXXnst7777Li+99BLJZJLTTz+dcDicsd1XvvIVmpubU//uuOOO3R73jjvu4A9/+AP33nsvy5cvx+fzccYZZxCLxXa736HOCCdBs76s24fIAFnbvhaXUYYn6cKMW4Gd27XPE8JLcZaLaaXZjCv043PZcNgUpo7MJtwbJ9LfjbagPICiKGTle1LHrE8eZXUPdvjAFUCZdDYXxtIBg6c2PW7VCXSo2Et9JNsjiH1P74lj9hfebsnvSS13JwLo2HBNOSsjENiROy11eUdpP6erl3/9/BqeuuMW7vv6FWx+/11sdjueQBZZhUNnBAJkn3M2415+icBJJ6H6/dj8fuzFxUP+3N26g2kbu249KHl97PNAoDKMGYGR1W1WF1/Ae2QxyhCZW47Gd7nA9ja9dtgxQzq3z+TIzdZ+QVc266d8GbO/ocpJHxoopoktms4k+tBtkDSddGsluN76JTStwTM1H9Vrx5bvJtEcRuuUQM/+ovfE038LCjyZK9/8Hay4Hx6+EKI9g/dd8w/mbN5AVXUp9WsKedm5BIBcVy4nlp9IvsdqJtTVFGJkx0QUQ8VpuhiTPYY89+C6tLtiBQKtYIOpKHTYbBiOJtRsJ85RAflbsYfWNPQwztlO94ATDHmePIq8RVx9xNUAqYBgW1MPn1E/j82hoCWsDEF/V/+JI0XBM3PmPhuXe/IkFK91u5FVqwBYULYAj83DBN9kWgPb6NZLCGslxI3JOBMd2GzSNXh/SdVoVqBLr6Vrx+slWoRZsxlvMoo/3EzUU0gkZGfaCVMz9lc9HuxFRSS2bMHo7uEy4ygU040WHkt9aDMdoTiBvGz0xCY2RE9DM+1EbCNQ9ASr3S7GO3MACGEStNmodjpwKRsy6loLIYQQYt8Z1nz7xYsXZ1x/8MEHKSoqYuXKlSxYkK4X4/V6GTFixM67D8k0Te6++25+9KMfcf755wPw97//neLiYp5++mm+8IUvDNonHo8Tj8dT14PBQzMrTe9J38edp4LFtBjP1y4mrvZRYOhcGm/E9BZy+WU3UbKxneum+FB9PtRAACMaI4EDp9fB+mUNqWMUjrKm9HoCDuwuG1pcp76nFH64HdPhRelrIqnbOOvZb/IncyO6ovDfmqf4yvSvY/M50JrC6B1RzPMqhwxAiI8v2Zr+0tzs64T+WPvRWhtxVx5Kc4TIiveshQUjiHgH/745XfV0tHSSU1xCqMv6qWsaM884m4Lyit3evr3AygDL/9KV5H/pyn1yn4bTm/Onk9+lYaig7eN6VRkZgQf4C290QHfogRl6KYbO/JZHAKuT69xNBiEPnLHSxNYfMK4vOYaYt5CuvMnkd22gqBf+8gedLXm9jO7RefZoWDy7j5drv8pZ2X+CJPD6nSife4isz4yh58kaMKDnuVoKLp8yeAziExsYZM0IBHZugZd/lr6+7HY48zaCixdjy8sjkZ3goqYH6VxtZXGHcBB89226xqicXH4yPzzmh6ldmzf3UtY7kaveu50TL5rKuAV7HgQE8PidZJPep9VuY4TRgNGbINGbINkQgql70eX4MPVGdQeXaw2pjEAFhWynFWD94uQvMqtoFnnuPB5d/U+yHp9NhxEiK99GuH0Ndt3A1WkFYlwTJ2IL7LuyHYrdjueIGUTeeRetuZlkYyPzSudhYlId3kh2YSexvgJ89magGZfRnXpvlK7B+5YR1Ui2WB8KHCU+NvZtSU39j0QrmNm1PbVt0FfAjBOS5JcNbhjjX7CAvv7P9bO3wF8qYzgCmzDipTy1qpHxObmYehMfthXgtF/GPN/fAbgnJ5v3jcyA30ank0p1HcGqLikDIIQQQuwHB1W0pbfXOvOcl5f5heHRRx+loKCAadOmcdNNNxGJ7DoToLa2lpaWFk49NV10ODs7m7lz5/LOO+8Muc9tt91GdnZ26l/5gA5oh5LdBQJf2f4KYc2a4js/GsUBKKPmMq0sl+tPHU/j939AzQknUn3MPFru+h0P//BtHvr+m7zxeHrKdeEoP0B/VqA1PbivK47p8FGzso2Fv9zG335WzbrqU7g0FGOuptCa6OGf79+Ja2x/5kfCIF7bi9i3tAGBwKA7glsr4YhYjPKkRtKsZPuVXwJdJ/uzn6Vv3kXQXwdQT2xF4QM8vjb8eUH8efk4vd7Mnx7vrm72kLUjE041wDD27ZfS4coI1INxtGAcR5kf14QcHEVDPK+rHmJ2YgUr9InUV43kO08ZfOdJg97+WFJdsYPe4vkANE4+jXVzy3lhtkJ2BAqDGnkhk0veNCnqNakuzqLdmEDUCGC0VcGLP8Q7vQDVZ30DjW3oJFYt2SD7w8BptfYBpRyoeTFzw+X30XXPXTRe/222X/Vl2r9wFQ1VmX87Prspm4AzwGWTL6PAkw7MNW3uQcWG3XBSMi4bn8O31+MsdKczjVttNmyJ+tT1gSc3xK4t3dRGjtJMd38TohxXDrb+y06bk1lFsyj3lzN55WkohvXeU1ihgBkjJxJDMXdkCB+5z8fmPXJ26nJk1SqyXdlMybeC/72eNhoGnKq261FU+45mIZIRuC/FtwfZ0QDeNTqbjbF0XU8jUsqC9nQpgGSRi3kXf27I4/gXpDs/562qTV1WHR388vmN/OU9a2p/QuugK+84OpLldCQrqPVan/kDznSgeb2nEKe6FSOUlC7hQgghxH5w0FTgNQyD66+/nmOPPZZp09LTEi+77DIqKiooLS3lww8/5Pvf/z5VVVU8+eSTQx6npcWqLVVcXJyxvLi4OLVuZzfddBM33HBD6nowGDwkg4FaRiAws0bgv2v+nbp88cYEfQkXwc1dFJ/WSWTlSqL9RaDNeJyeJ/+DdvQcknFHxjFifXVsfKuKvo52upvCQDmGZvLEbb8mEZ9AJGhNDdzcOYG548/jUV7EVBTu3fo0p0z9Asqq/uNs6sI9/pMXJBdpOxqFANRodcTszXxgd1Oa1NCTOdhywAgGidfUUD/7AuizgsI25Q2uufeh4Rn0Qczsz06wGaDv40CgOkxdgxONIYzuOEZ3HP8JQ3SQjXRhvHIrKjAzsplH4kcy0t6IPwZlnQ66/BprpuTgUDy4DRhz4Rnc27CYorUKnQETxbTulycBkxpMqke08Gz7TVxZ9GXUrhqo1lDP/DXZZ46he1E19iIP0Q0duCfIe8G+NjAQ6BiYEVi9JGO7hGsSxsYlYLdDMomeVDHbTCCdnTN5XZB//WYRZSXpuqKmaRIPaxQ7Osjb8CI8s4GaJ57IaLoTXbsW18SJlP3+99j8QwcJS7NGQP+vQJvdjjtSR8KhYiYNtNbwkPuItMaeKFtau/G4WumyWRlcO0/P1pMGrz6ykd72KHaniifgpGhUL+uB3HC6nIpn9n4IBA44ZmTlSrLPPZcFZQtY1WZ9GFjlj3CWVXnECgTuyAiUrsH7VGJAfUBnic6GhvTfndxeJ7lh6/OAicLMqy7D6fYMOgZYmf/u6dOJrV2LubmWwj4n7QED1WVlmrcb6c+dnhIPTy7/NboaptP8BQAFyQBhQhiYVNmjONUWHIUaoRUt5JVJEzkhhBBiXzpoAoHXXnst69at480338xY/tWvfjV1efr06ZSUlHDKKaewZcsWKisr98ltu1wuXK4975r4aTUwI9Ce7aIt0sabjW/SFGrivRZrWmhO3InnNT8Nugpsw/zlL4mtXZdxHDUWorDjQ9qK0mfzbQ6VD178J221NdgcDhT7sdjdVjC1dWsrpjIadcCrrbXqFC4qfZInsgKETY1nzZc5T50BhhUI5Nx989wKS3LHl2YF6iJWQNxnGDi7bWxb8iEA9rJyAr/+E22/s2pDGXoP/uzDL9tvT5j9GZM2Ewzj0KgRmGxMZ104S/2DN3j7T6jRLuIKbN5SwbxNjdbiSQpPHz+FbQXrgG7OXd/EyOB4Rk/Pp62+i/eOVnnuaJWKNz/LnW8sBKxA4H9LlzOVz9CUmEyZax1010LnZryzxhFZ2Up8ay9aWxTfnBKcI4cYj/jYMjMC+7/Ux0NQ95Z1OWsk9UXj8fznfdrXWtOAFZuJqStkB63X/o5woKrphC+8gqZzzyNw8okk67YTm3os5ov/ZmTHanJ6t9D5lxVWIHHUKLTWVuJOJ3pHB5GODoIvPE/u54bOMBpVMBJarcttNhv+eCuRQhvJJgOtK4aZ1FEctiH3FfDqpjaOVTcQU02i/e8rue5cdN1g7dIGpp9QxtJHNlK93HqQK6bnM/vMCratfgGAvFD6deKdPXvwDXxC7hlHgM0Guk50ZbpO4N2r7gbgg6xe6K9W4DAHBgJ1TNNMdbAXn0x8W3oWhsvflmoU4jZUTm9cSVakE4CIbwSz5k7c7bH8J5xAbO1aAO78q8ai+SZLZrYTwSRiS3+eUNR2vAVT2BLuSi1T63vJyrbTE0hS43SQAGydq4l02gkcW4qjeO+zioUQQggxtINiavB1113Hf//7X5YuXUpZ2RCZKAPMnTsXgM2bNw+5fkctwdbW1ozlra2te1xn8FCl96TP7tfZmrj0uUv56ds/ZXOP9VhqkVFcVA+mnn5Z9D3/Asn6etrzZ9AbGJ1aXtr8NlmFHgL5bqafVMbU47Jpq7WmCXt9fpxuDaU/QOLwlKDYrOYjqk0nt8SHLbeYr+ql5Gk6R8TirGlbgaO/e7DWGSMpHSH3GdMw0fozAtU8F91Ja9pPiaYRbXemttvkP4an/rQJo7+JgKm34cvOOeDj/TQwB9Qr2tfZKZldgw9cIDDRlM6wcuwUeDNb1nHR1kc5payC+aPK6exId4n+1wKVqYXpLO4OXwMF5X4KywN02q3gojNhoypnAlp/sf9p9SoYGk73ZrZFB3yxrF6Coip4jkgfPywdhPe5HYFAxamiBvrfA7a+hqkn+EJJMWcU+PiMtpXWrnQGj1pqvc53/HVIlhTTUTyLjrK5GH19dD++iPovf4XWW2+l46v/y4QtT5DTa3WfV30+7EVF6WY7Rekpv71PpLPRdzamNP15oNVuQ8HEndMfODAh2SZ/J3anbs1r/MHxR7oGZBnnOnP57x8/4K0nNvPao5vw57spqghgc6hMOqaEksocwj3dOJMaWZE4tsmTyDrnHBz74fOTze/Df9JJeGbNAkXBiEYZlzOOEp/VLbjG10OkP9jnNGOotvTZxAPdSOlQZZommCbOUQFcldn0tL5Ja/8UbE8sh7JwFNW0MgSTJZXYHLv/2hA47TRyv/hFAmeegTdmcMG7Jpe+GWPcCAPTk5XaLtTTxcxTy/FOT6SW5USLyO+13o80RWGz04FTXW/VjH12qzVWIYQQQuwTwxoINE2T6667jqeeeopXX32VMWPGfOQ+a9asAaCkpGTI9WPGjGHEiBG88sorqWXBYJDly5czb968fTLuT6sdU4N1Ree17tdx2awsyFWtq3AruWh90/h8Y0fmTg5r+q8n1sHKmd8i4ilAVxwoepIZ01T+99Z5LPj8BJKRFQC4ExrHbm7ilFI3c97/NeX1r1I+5RQUxXqpGXoT3c1hWrcGiduPZXwyyQduF++0r0Ibb30AtBV5iW/pOQCPyOFB741jy3WjuGxEinQMrABtsaYT7Uhnwnb5xpKIWl/2TdPA0NvwSiBwSOaATBRDS+xmy72XmRF44KYG76jDpLhs2PMGlA4wTVoXf5dql5M2h0lSAX/QCs4FPdCUB2fOSk/x68ltYuLcEUT1KCGn9VrzRVwkbQ62F1pNZQq7dULeKL7sRuqS81P7GlVWoXnvEYUo/V84I2vaMBJSE2xfMTQdHCqq144935POqmpaTUveaNa7XTSZMRRM4h3978kunbemZgZeooUz+XDyl+l2jURTXah6ItUp2hG0aoEZihWAKv3Vrxj/+jLK7/kz45e9RsUjD+OaNMk6zgcfEKuuHnKs40ZVgKmQlXCk2pc7vemTfANLHohMWiJOrtmNgYNuW/o9xWsEcHqsQE/1+63oSYPS8S7mX+ilq+F17vv6FWz7cDVlPWEcpom+cROOkv13EtUWCBBdvZp4dTXxrVtRFIUFZQtQDIWchJf/9E8bdxDLOEmiy/TgfcKIaCS29ZHY3geqwqa6pYxJJHGaJmq4kOx4+m+Ba+Lk3RzJ4p44gRE/+iGu8RMwgewILFhncttnCzlm2mh0VMKqm/otW5m6YCRtRnNq3+zYCApC6WDhRqcTt3MTKNZJi2SzlAMQQggh9pVhDQRee+21PPLIIzz22GMEAgFaWlpoaWkhGrXO8m/ZsoVbb72VlStXsm3bNp555hkuv/xyFixYwIwZM1LHmTRpEk899RRgNaq4/vrr+cUvfsEzzzzD2rVrufzyyyktLeWCCy4Yjrt50NgxNXh1QQ1//OBPNPY1MiZrDE+e/yS5nbdS1DUZW/eA2jBf/B9GP/EEXcUzWH3Et1CdLrwXXYrdbSc3uIWCbW+w8vmnefLXP2P1kv+SFYkzs74dtbEJ/bH78EdaGL/l3xhr16SOmQhtTF1esSmfsgHd/zrKI6heO3pbJKN7qfhktPYoWmsEM67Tmp2uBVSS1Ih0WNMCNZuLsG8kpeOymXJcgHjPH9Bjq/Hm5AzTqA9uAzMCzf1ZI/AAZb3o4WTq/cFR6svo0Fj38DVsal2Tuj6yAzwJK8BXVabg0FQCzRoO1TppEB/VwcxTR1HduiG1jyduZRhWFYxNLRvfZHDG92+gOxEjqFkZYkrd2xDpRnXb8cywsgLNmE5E3g/2Ga0titYSwYhoOMr7626ZJqx5lI2xdJCtrB08/dUkmkYUce9kLwNfjfWaVXOuvvwUXj/+N2wvO5lNE79IQ+kCqsZdTEfeVDac/WtKbrsN/0knZoxBURRyLr44db37kUeHHGtuTjYO00HQmaSmf7qiXU0HDjRpGLJLnQ1VXNv6U3KVHtrVdF3AniqdravbQYFzv3EEx140HiO5mpfuu4U3H3+YUFcngdw8yjrT00VzLrpov43TNW5c6nKif6bH/0z+H/ISJXS4w9yfk0VYUXARw1TSH1kNTU4O7At6V3qmiD3bZHVvNbVOBwZgdJeQHUs/ztlHzxjiCEMrvPYaeo61Gr9kR6D71Zc4cVo5bxdOw2PEibbUU/X26zjGp28/zzieSv9JqesbXU4cZhWKXSO2oYvIytZBtyOEEEKIj2dYA4H33HMPvb29nHjiiZSUlKT+Pf744wA4nU5efvllTj/9dCZNmsR3vvMdLrroIp599tmM41RVVaU6DgPceOONfOMb3+CrX/0qc+bMIRQKsXjxYtzuzAYZhxMzaWCErC/vi3OsOlAGBjccdQN2M4vq1hDT1a3EutMNQPKvuooeezHNn/keeRNLGTurkMqrLsSIWR/cuv71D+K9QZKxGEW9IeZtbSZbN7EVFqAErC+YPVljGfPa7wkEtwEwdtYIDN16rtqSM/CF01N9WtRmFJcVBInX9mLE5Yz/vjCwHlgN6YDK6B4Drf97dKx4PN5cD2dfewRlE5KAASTxZUujhqEMzAg09/XU4AEZgQeqWcjAroyp+oDL7mDbH85mS80GNrrS7wuTGtLTszaVK3hjdlqqqhifOx6A2t5aIskIy2qX4o/YKGv1kNtnZRStzRudPk69SUesg9yiPjZFT6I+Pp0whbDpvwB45xRjH+nHUR4gKl8A95mBtSBTjUJaPoS+ZjY606UCJtaln/PFld2YShbLJ/upKRtBe/50erKsOq6Kav23edxFtJQcQ/WEz9NYdhIfzriG0nmTyLnwgiFruWWfew7u6dPxzJpF7zPPkGxsHHK8btOqK9ajuFhnm4rqTv++JaVhyC6FmqpSl1uUKanLaq/1Ocif46JsohUgrF1l1Qg2dR1fTi7ZfRH8cevzgnfOHJyjR++3cbrGpesBx/sDgWOyx5CrWScC2u127s/JwqHsFAiUjMB9QutOB+JcrGGN0/pMpikKExM+PPEk3YEyQsUTGHHC3jWMsZ93Zuqy+/k38GRvYcvs53ju2CaWHdHOskf+xoa6ValtsmMF5PTNYlQ4l4khg3q7HcVM4jCssjPRTV0yPVgIIYTYR4Z9avBQ/6688koAysvLWbZsGZ2dncRiMWpqarjjjjvIysoadJwd+4CVbXDLLbfQ0tJCLBbj5ZdfZsKECQfwnh189F4rtaPL1ss79tUAFHoKOW7kcbxR08GEbINv2Z4g2t0/FSzLh33ECBqrummtDdJaG6Riaj5Rm0qkwmoCYg9HyPr9/6Nk0xZmNLSjGga2aBTPrFmMW7KYpjGnkBPcimpqTNi8iECuk5ETK7DZegBQFDfZsfTU1Kb6t3FP6s9c0E3iNT0H5sE5xA0MBG5KpuutjRrwvbvNWcH4o4txeuxEentSy2Vq8NAypgbv62YhA6a/Hag6WImBwaH++oDBlYsY3fUmJ6prWO1MF2mfVD8gEFim4IvZqH73TUZq1u+uiclf/vR9/rPpSUJenYbiKD7dKuWwKmsUAFEHTGww6ehro3RCIXXR0ZS71uKnBe29hwFwVWRBQidZ30d8ay/Jdsn+2hcSTYOfa6pfBEg1CQCYsLUgdXlTuULU1cfqC09h9E8fYu30r5FwWycJRk9Pb1dQ7ke1p383Rk/L3+U4bNnZ+OYeTXT1asxYjNY77hxyO59qjTFs05mmr0ftWZ+aNi5Tg3ct2VaTutylpps02ENW8De7yPoZ7Ginffs2AEaMm8DX7nuYGU4ftgLrec35XDpzc38YmBEYr0nXfj49+AVshorNNOlUbcTUUGqqORzYjuqHMm1ARiChN/iw/z3AmfRS1GajoGcLuX0N2BMRfCPydnGUoZWedCZt2Vbj73gsxANv/RpUg87sBNtKIxg2aIxZGb6+uB+H4cLocRJzqlT5Vd71uAl6C/EUWB9W9M5YxucZIYQQQnx8B0WzELH/7agP+ELumxj9E7wuGHcBdtXOfz9o5GuRexkXb8aIWy8J97TpKIpC84BafSMqs3n1wfvYSLommj3Yx4jGVpxJncBJJ5F1zjmMvPNO7Hl5zP/HHTgrramA2cFtnDqlmaPOuZCjz0tP/dCCo1KXG1rXpAOBWGd/xSc3sPFKdSwdCMxvTn+p6s2uZEz/VMxwT09quQQCh5YxNVjbjxmBB6hG4M4ZgcGWWrKCVt22jep4PgxYGX0OzcXMWit4n7DD1hHgidswNI3wu+kMpHVqHe1O65hjlZFEy88DoNfuof7SE1GA8c2QeOYFRoytpDGUoDNpNYawNy+H9moURcE3J12bLPy+ZAXuC0N2h65ZAsBGpwN33EQxPMyutzqFJhwqJdELmNw6j28dcT3Tji3n2IvH8aXbj+Xsa2dw7MXjuOTmOXzx1nmc/L+TOee6I/i/O4/jczcdxYhx2bsdS/7VV2PLt4KFfUuWEO3vNjqQ32lll0dVlSSghFqxF1uBLb0rJvUjd0Ht3pq63DmgyYZbs57znCLrMaxd/X5q3dhZc4i89x69T/8HvauLrHPPJXD66ft1nPbSUlSvNZb4li2p5cWOEqZ2TsZmmjyd5We1twvNHNikSZ73fSE9NdhgS/ebqe7SsUgl40OgYJ348Ry5d9mAACX+Ut6ZakOzQ1l1Dzkf1qXWmQpEZ44h5rSex2J7+oTCyKiVXW4oCuuNIJ7+k9cAMflcKIQQQuwTEgg8TOg9cUJqhGdzlzHdPYUx2WO4cNyFtPXFqKx+gGK66OhOZ1q6p07HMExatlo15TxZTrILPXQ3N9Ge5aXX68Y33yryb8/NxV5UhHfOHErvvAPVZQUKPDleim++GdPrxxg7lfD9f0IPhSgoT3ckDfXN/v/svXeYZGd5p32fWLm6OucwOQfNjDISIkoGTDbGrI3lBeNlBV6vvYvB5lvvetfmsz+vvd61AQdswDYGYyQMWhAWEhIKKEzQaHLsns65K8cTvj/e03WqJml6pvOc+7r66lN1Tp16q+qE9/29v+d5ysuDyX78a6Jlt0f+1IwXBjIPuBVCFYYqhEC/1ky6rotkuIN883pa1orfv9IR6FUNvjxVocHznSNwCRyByBL6mhq09jBqY5Af/183Z9uR+lvJWEIUuvdojEDB4EiXxFM7Ze4O38rttXtQfT7aTdf9dTY8UV6+L3grwWCg/NjYvgW/Y6Ks+8r3aWhoxjIGOZF7i9ueQ8IVGNzTBIr4rrMHxrBNr1LojWBbdjnhvlLnRw6okJmEwf1MKjJ2WuELf27ygSdUDjWs53zTWqY638C28Tfwhv6fo3tzI7IssfvNXQRrfPTsaKCmMUhjV4SaxgCNXRE6N9cRiOg0dUdRlKt3MZRIhMZf/SRyLEbonntI/fCJS7ap8VVUGpVl7NQovrUx9LVR9I6IFx58BfwJVwicUdzrVaAkhNUaRwg8f+jl8rqenbcw+j9+TzywLIL79iEvcEoVSZLQHVdgaXAQy8kRrflUNkxvoegIU68G0oAraHqhwfPDbGiwLp3gkN9NByCne2hMu47b5jffPed9K7LCxOYWfM5PdfdkHYrkuo6P2P3l5Vs27SXa6Kd1fQ1dJbeS/Ct+H0r6MDgT2J4Q6OHh4eHhMT94QuBNgpnI8w+N3yOhpjmSP86uxl10Rjt5+MAAH5Cf5G7lOOq0gaSLjmCuvpvnvnWmXEW2bV0NtmWRGBvFliROv+luuv7mS3R8/vOs+fYjbPjx09T/0oOX5IIK3303Nffdg3z+GMb4OJNf+AKNXZHy+oK0G78pxL5hDIifxbcuBoCkSl4y+BvENixMp6Ov1PvRLTE4lE0L82SC8HQ/ilmiY2crsjNorwoN9oqFXBa7srKvPb/OFGkJcgTmT0xT7E1gF0ymsgU6J58pr4veKsR61bB5/3MzaKbBjn6b3fd8kD//wN/ymX//eX7ms7/HQ5/+PyiSgizJFBzdL6gG+ZV3fYawzx3As2Mfz20R14mSJmM9/kMUNcHJ7N2YtoplS9D3LBRSKGGdwBbhEpY0mfzpmUX5PlYrxkQWuyQG1PpsWPCZf4VgPSd0nQ8/aREqwPv2zxAyCsQ793F2488gIdGxqRbNp1xl79dHzXveg10okHnmGRLf/vYlkz81oWohkMwESkSleD5JcSDlVRK9AjVZIbKYdpS46oZ/Bkridz/57Hf44r/7MMOnRAGvYE0M/+EjZYezb+sWYu9fuCIhlZTDg22bwjlxj9L9Ck0pN2z4sD+LTUXVYK9YyLww6wgM6T/kkO2eSx3xJmoSbqh2+La9l7z2WrC3bcByuoUNZyd5b/dHyuvO+eP4FDFx3FPTQ2NnlJGzCcJ9PeVtDvp9SIU4vhrhCDfTJcycJwJ7eHh4eHjcKJ4QeJPQO36e79Q+BYBP9vHvd/17bMvEeP4L9Miig5WaacQqlkiF2vnXH0u8+sRg+fWt62MkJ8bLs/CxVlExMvLGN1QJF5ej8dd/HclJQj/91b9DnR4mWCMeh6QYMScceUhTmXzqS/g31yFHdMyZAvmz8Xn7Dm5GjOk8TmQPuaCBpMYB2DplicQ9QCbUSndFnq9MVY5Ar1jIZak85uc5fLcyNHgxHIFW3sAuiM+gRHW+e+A8G7MigXtaq+egJXI4PXDAoj4phPnpkJ+tb/+F8j7aNm6mvr6Ff3z7P/KTn/sJv7D1F/j5LT/PH9z7BwS1IGG/KwT6pBh//0aZV3skfMks03/xl3TF6siWsryU+iBpqwGGD8KPRc644O2tqM1BzJkCmRddR6vH3CkNuwN9bTYs+JWvQXaSo5ON3H5KXCxm/H6+ueuXiEdeTylvsu3eNu58z7rL7fKGkXWd4C27ATDGxjCGh6vW10di5eWkLCFZBnqdm56iMtTZw6GYocYQrlzDbiOhpACQbAmfIZyAljlNZmaahs5u9r7j3bzjlz/BxB/9T4rnzhHYs4eW3/7tqnylC4lvXWXBEJHbUPMrKEYt64vitz7jMyjY7vXQcwTeOLZlY8QLSGQJSM9w0C9EOdv0syfVQk3SEZMjNahtbdf1Hp+673fQNolQ3+4JiV/e9K7yuoQ5SMEssK1uG69rfx2NXeKaFC7WEsoLJ+phnw8DCHUMIIc0jLEsBa9f6OHh4eHhccN4QuBNwvGZE9yZ2knIDPChDR9g5i/+Lcf/8C18ovglAIyCTGGkgARItklRj1W9vnV9DTMjbnWJ2tb2a35vvaOD+o9+BKWhgcC2bYz9/ufYsLeJzu11aEgESj0AlCSJwbNPoXdHsVKi81/sS1xlzx6vRWVi7WnzGDOqOOXXT7tFWozGTrq2ubkZswnhuvKFQqiaGyrk4WLJC1c1WJIrE+IvvBBoJl1RRYnqpF59lHN2Ky+bG3l07W3885lv0T1Zz7t+IjNR14kpSRxrb7hs2PiW+i0EtSAhLURLqIX7Ou8DIFThCFTtGFNRieNdEophg2my/vwgDW0aZwt3E5TjAFjP/R/+7mM/zfe/+acUE0LAyp+axnAKH3nMncqiMHp7GKbOQZ9wfwZGTA50B8hpEo9seSO3G2GUOjFh4w9q1LeHL7vP+SBwi5t/LHvwYNW6moCbZzDliORaOFV+rjjsOQIvYdoNCxZCoPjdfaUAMjJgEYhIhOvq0YNBwrX1aN9/HDMh7rdaezvBvdfnALsefBtc51/RqRys+1QMW2dPXpzvpgQjuusI9nIE3jhmsgCmTVD5MeNKkc2FIuuMEEZmA+2JSVRL3Bu07dsuW/n7WmgJtRDddzsAkm0TOXMexWgS74/on0wXpllTs4amLuH+lZBozzmFpWSZU7qGbh7ByoicEvlTXniwh4eHh4fHjeIJgTcBtmXzlP0Tnou+QkbJcWcxxtbU82zLHyhvk56qKzvHpuq3s/lON0m/oso0dISZGXWdGrUtc5sdrvvlX0YJh8m98gqZZ55he+0AUwNpZMCX7ShvZ0gD7P/RQSyfODQLfUkvT+ANYEy5QuBY9tnyck/SDbfL17QTCLt5e2ZDgz034FWQFi40WFYqHYELP9g1K4Q1M6Sxc/L/sl2+QL3/PCdiEUzb5B0/GacmZ9I4PcCF+iipoB9/JHLFff7itl/kF7f9YvlxpEIILBkKES3Cd2+XmKoVzwclhbvu20bSbOGVjHCMmLZEszRM7+H9DJlOEQEbsl7RkOvGjLsholpbCA79PQBZJLYeg70XchiyTbDmzdQgY04X2fPWLu5497rrFgKuheDeCiHwwIGqdRHdPc5mhUC5OInaIOLPSyNpL3fkxUy5RTcMq524KoTTgCG+y2hDkPf+5v/Dr3zhK7znU/+F7eu3kDt8GAApGKTpP/3Goja3snJwcVg4kDW/AsjszLm/7aBvvLxszXORppuR2bBgTTrPOV3n+WCAc2oGq1hHc2q0XKW59p655wes5OLzu14XReRmLyn+/B08e3aax4amytu1Z0WeQMW2OatpKPGDFfmjp7Etr1/o4eHh4eFxI3hC4E2AMZ1nVJ0EQEGh4bybHHzIbuTRHZ8nmd5Rfi7duZvXfWAjO+7r4P2f3sfbH9qJrMhVjsDZ0OBrRQkEaPwPv1p+PPGHf8BbP7wBJaxy3o6Vnx/RZJIvPcUpR2ix0iXMqfzFu/O4RiodgUMl9/frnHGdfnpFWFapWKDoJGv3CoVcmcocgcx7jsAKR+AihAZXOgKHUoPcKwlB4HP1LXx7/CV2jYR4/VEx6CqpOueaawmEI8jytYcNVuYITBcMGoINlFSJ796hoLa0UOztRf/J9wCbA5n3MWV0YEsq9zX1ImHTlz4CzqAxs3/UGwReJ4ULKaSggtYRRvEDr4iiMC/nQ0ScS8X55lqaEI7hus4wd7x7YUKCK/Hv3AVOGGruQLUjMKxVFJeaPe/So0LIBDBsjIkcHi7WpJvbbVxqpCgLJ9VsoZDZisEAtm0z9nu/T/7YMfw7d9L4yU+gNTcvanvV1lZ8Gzci19RQOHkSmBUCYXvOFaCH/e4kwGJVVF/NGNMFJPKElMfo87mCu16I0RA/j21DKtRE9K4bEwIrKw7nDhxkXXSju9KGIyc38dA/HOSl4TgJSdzzovEewlkFzYJDfj9S/AKBbnEcW6lSVaV7Dw8PDw8Pj7njCYE3AaXRNKOaEAKblUYah38MQCatMWb+PNu+8R0yB0+JbZUA2rad+AIq935wI809UTqdZP0zI64jsG4OocGzRB54gOCtt6K1taFGo/ie+w7v/eytJCzXeTaoqnTrB8lWuE8Kfcm5f2gPoFoIHFUm2VYosDeXp37M6VBLMpEtrhsjG4+Xl4OeEHhFqoqFzHOIWqUjcHGEQNcRaIw8jCzZjCoKLwVkLCxed7BAqnUrlqJztr2LkqrM+dioDA1OFQwaA40APLvBwBgdBcOgdPokXdsaaFrfwrTRg04BXTFp9GeYnBnAtz6G2hJErQ9QHEhd6a08roBtWFipInbWFFacg18BX5Sz8loOzzSWtxuuXY8hCYP4Gz60CUleOCfgLEo4hH/zZgAKZ86UQ1QBorrrXk7OnnepUbfYCdUhzx5QGD9TXs7IsfKy3ykUUtPsCoGpxx4j+7KYHDTjcWo/9KHFaWQFkiRhGwZWIkFpZATbttGdvKL1JR9riiV25AzCJVessrxiITeMMZ1Dky4gSRYDsuuwbE36qEmcQ8EkWEhUhW5fD1pzM/7t2/Hv3o2k67yufSe61YxqxaDQjWrXYtk2lg3jqpjkqc22kg6a5BWJPi0A3XcTaLhQ3qdXPdjDw8PDw+PG8ITAm4DpkXGyinDVtesxYkWRcP/I1BoC//wN8q++6m5bt4W6jprL7mdWCNQDQQLRy29zNSRJovn/+SzG1BT5Y8eY/OIXqS0k2VjXXd5mUFXo9h1gpEJ0LHh5Aq8bw3FTGrpMbzDHMZ+PQz4f/jGRaykXaKKuK1bevqpisCcEXpkFdQQunMh4OczErCOwRGNa5It7JBzGAuqSNvccyRMZOY4RiNAXFe0JRKOX39kViFQUC8kUDBoCojhNMiQhNYnl/PHjvPnBzUwNpRkpbilv3x7MUszl0DdHMUZFovj8iSk85kZlCLgWKcCPfh+mztBt9uGfdB2W7fX3oNqw6w0dtKyZ+3X+eglUhg++cri8fLnQYNJjbrETvIIhF2NNuqHBw6p77s2GBseaRFi1bRikn3FTRjR/+tPIPjd/7GKitbaKNuVymPF4uUK1Yfvx2zZHAiqnoqfL25tesZAbpjSSQZPFsdKnucfJ7vEivqKYgC12rJuXojF6Vyf5V14h89xzfCC6hgO/9EM+3PElUn2/zNt3tPJPv3InX3rwVurahdPXZwTRDRG5MKZacOE5fLjXhfx5r1/o4eHh4eFxI3hC4E1A/3hfebnTdjvPE2k3D6DVvoZXt32MgY43UjcbclWBUSqRnBT5eWpb2687X5R/40Zi73svAHY2y/gf/U/etH4zZq6NWEliRFUJKgnq1GEMS7S1eMFzBF4Ptm1jmxZKrY9+v8ERMfZj4zTITn6lTKi16veurBjshQZfmSpHoD2/rj15sUODHYEorHyHbvscp6Qevh4Tydzve9VGdjQi35sfKH/uYGRuAlHY54aip/OuIxCgtKETACudRpkZ475/s5lJZXt5fWckDMiUmuxyeLDnBpk7lUJgKP03kBPf4V+ou1k/LMRgQ5ZoufMOQjEfkXr/orYveMcd+LduRQ6FyO3fX37+ckKgnRqtEgKLXphgFUpykCmrkby5k17fFLIFjclGOhLraV1fQ8tacf7mDh0i8fDDaD09hO65h/Ab7luyNmttreVlY3QU3QkNLtl+NCdPsCVZ2E4yY69YyI1hGxaFvgS6LgrL9DtCoG3qbJtwJ1p8u/Zc9vVzxb91a3k5f/w4ICaIWiJhtrfXsL1dHJPvuK8HEAVD/EURjTKqqhiANPoywX3NKHV+iucTlMaz89I2Dw8PDw+PmxFPCLwJGIwPlJcbZB8vmZtI2X7UQqD8/PTbPslk4y6SNWuobb1UCEyMjYDTGa+dY37Ai2n45CeRo1G0ri7MRIL7IxKKniSu2VzQdEaKm1jjP8RIfpi0lEAOqF6l0OvALppYqRLmTIGj0n7yziD6TVPuAD8TauH8/sd55A9/l7/4+C/y8ne+harrxFraqOvoXKqmL38qwneZZ7GuyhG4GMVCkkVkpomqXwdgUh8l6mujTWvj/ledwSES0Xe+ofyawJxDg11xM13hCARIrWkqL+ePH2f93ibu+nfvpGiL61OrfhrVfzuZXBytQ4hCpdEsRtzLHToXjLi4hkqkkaUkNGzknB7i4XCeVqcY63RrI6//hR08+P/eze43dy1q+wLbt5M/fhwrk6mqHBzWK3MECiW4NDmMEtLQ2sNoHWGQJWzTyxsJQDGLPzdCvTyBJJXYHz6OJcNEdIJIvoGJgTT1joiafvppAEp9fdS84+0LWhDmtVBbXSGwNDKC5riIjQohEMBymmh5jsAbInd8CjtnoplnKAFDjnPUKjbQnnCLstS9/nXz8n6XEwI/es9aXvitN/HRe9aW123aUk9ahRHFJJwX9wZDkhhTFRg9itZgl4ucZPaPzkvbPDw8PDw8bkY8IXCVY5s2Q3k3zLZj9Di3KaeQsWhIxgGQNI1Jyx2Ya3oO27bZ/+gjZYHo+5//k/L6GxUC1dpa6j78C5T6+8n8+Mc0PvsDZFPM/E4qEvX6KbYGnmC8MEHYrqHYn6JweuaG3vNmxMq5ItKr/kPl5V0z7sA65Y9w5uVnKWazpKenkGUZo1hky+tez8bbbyxB+GrGriyUMe9Vgxe7WEgBv3wQCTG4+l+RtfSVegn2DhJNicG2svs28n63snTwBkKDZ4uFzDLR4Tq+8sfEALFlXR1S120AhNUUtaEuZkanCGxy84nmT3nXhLlgOkKgXz6INvY9ClOn+ZvIRronXcd11+vuX6rmoTU1oXUJ8TH/6qtYBdHeyhyBcVkcg+aMuKep9X5Kg2nhDhrNLHKLlynx/vJimkZeDYpw2lChhvpsO52ba1Gc6quzQiCSROieexa9qZVoFf2K0vBItSOQCiHQsSh7OQJvjMzLo0AJTbrAoKZiOSKwlo9QmxICmyXJ1L9u77y8n2+Lm+5hVgi8HKEaH6UGnVZToSFfX35+SFWRsAg2XABFtDV7YBzb8CqGe3h4eHh4XA+eELjKMaZzjCqT5cddGREONmLWE5pwcv6tWcP0qBABglGNf/x/fpWv/udPMHDs1bJApGpiALb57nvZdOe9N9yu2p/7OdBEuGDi2/9Cq0+EKduSxLCqElJmCCivlLf3QgHnjp0XIo6NzcmwyAOk2jb1I5Dz1TFds4FkIEjHlu3owSDhunr3fyB4tV17VDoC5z00uKJYyAKHv9mmhZUuEVH/ibTdzlEaORkWBWbedFTDUAIkIt00/Nz7ySbdnEzBaGxO73O10ODBNldgrBwgautdJ0qbfpr+4xn8m+vcbb1rwpwoC4GKKAzxaCjEo6EEO3p1psIy6aYuGt5w11I2kaBTXdQulcgfOwZUhwbHJXEcaaVJirkSvm5XJCx6uWQFcbegwksBf7licFd8KxIS3duFuFIaGqJwRlQXDuzciVpXd+m+FhGtyhE4XM4RWLJ9aBVmT3NWCPSqBl83xnSewpk4mtSPJBlcUN3rc/uERCgnQoMzNV3o0fCVdjMn1NpatDYh9haOn8C+yiRXeEsMG5tooVoIBJDHXiKwTTxvZUrkTnj3AQ8PDw8Pj+tBfe1NPFYyZrzARDRefrymKFwT2VQMzRQDpwlTJ58RgwU9UKCUzzE5cAHV7ycYrSFcV48vFCJcV0/z2g3Uz0PIqFpfT+SNbyT1gx9gTk5y/9g2/saJEBzSVHoMg/WhwxTMLD4lSP5sHNuwkFRPu75WLEcInFITNBd9+KU4zYaBeSFOoFBANfNENnXz+p//4BK3dAUiu5fOqw1orofKxOzzve+LMVNFJDuNJg+jAY9E1oFUAttm32kJXymDZhaoffMbOPfD75dfN9diQReHBreEWlgTXYOmaIwFiyj19ZhTU+SPH8e2bRGi2Hk7hhphMttCRBmj94KG2hpCimjIfhW7ZGGXLCTNuyZcCyI02MQvHwDgqWAYSzFonzapT9uQ7q8K31sKAnv3kPj2twHIHjhAcM8efIoPXdYpWkXijhNXlYoMnhmiqcd1lhYuJAnfPfdq9quOmb7y4rNBN6VG18w2ALq3i+8sNesGBML3vX5x2nYVqnIEjowQdlzEpYtDg8uOQC80+Hop9CbwratBHRD5AS84+QEDeZtfe2qYohrEUIPk2zbO6/v6tm6hNDyMlc1SvHAB35o1l91uw5Z6vvPcMJG8K04POkJg8fSThN78ELkjk2gdEYoDSYI7Gi67Hw8PDw8PD48r4wmBqxxjPMuwMQYKBCQftY6woE0FAUcINDrK2+eSrpvgjQ9+jNb1mxasbbH3v5/UD34AwK2np8pC4Fm5hrvJ0xkYYP/MMTpDt2IXTL71a7+F0hVkvPcce9/+bva94z0L1rbVgJUTA6U+3xDHw1OAyrsHs5ATp32iZi1r9yzc77uqqXDtSSvYEWgmimiSG0r4fEgBSnROQk1GuITz7U4Bh5QbQjrX0OCQXh0a3BZuYyQzQt7Mky1l+ejWrWSeeQZzZoZiby++tWuh7RYUI02LfgZJstk/9bNM9KcIbq0n8+Io5kSOwvk4/k1L62RaKZjxArp0BkVKUgSeD/jBtljrpNlSGhrQmpquuo+FJrjXDUPMHTgIvyyWI3qEqfwUKcXNYTf26mnaf64byadgF0wKfUlXRL6ZmXHv4S8HhbNLthQ6EhupaVQJ14qqwJnnni9vF3790guBaotbvKw0PIJWDg0OXDZHoOkVC7lusocnKJxLEFSPgSwKhciWzR0nLTqnhMNupnYT9rs/Oq/v69+6lfQPnwCE+/tKQuDG5jAv+kq8t8IR2KsI57g6/ipSdxClxkdpIIUxmqHmLT3ehJCHh4eHh8cc8e6cq5xSIs+YJjp2bWrNbNFNSgn3p0/5hBtQop/k2E8AaOjqoWXd/M4GX0zorjsJ3n4b/m3bqDtwlkBBdPaP0c1YcT15qZa1O+Ll7WvNRtJTU6Snp3jlB49y/MdPLmj7VjpWXgyURjW3AuD6IXf9TLielnX1F7/M41pQK1x7C1g1eMEdgckCmiyEwGlZJqMrbK7dwtsH3Xxd9g6Rqy9XGRo8x2IhsiwR9gkxMF0w0GSNbQ3CoTSYHoQ33UXwrruQQyHSzz4rXuSPQv16ABrUXhQpw/HnRvBvcPME5rzw4GvCtm3MeKEcFrzf76co2zQmIJwX113/tqV1A4JIU6HEYgBkDx0qH/+z4cEZ2RWEcsP9SIqE3iXWWcki5oxXVGo2NHhMUbCRact0smZqB3J+kI23xQBxPBT7+vBt3Upg376q/G1LhazrKA3C2VUaGUHTxXXQsH1oFduVHYFesZDrwrZsiheSgIlfPYjdsJG+WBu3nLP5t4/bpIJNlBQ/o90tbHnd/BYMulzBkMvR0xAirUnkSu61vlcOMJILkzX9yDNn8a2Pic9Tsiicj89rOz08PDw8PG4GPCFwlTOWGMWQRYe5SXLzvpkpdzY95dOwrRS+QApZngJJYscb37rgzgpJUfCt30D+2DGkbJ6dvaKD36cFaNbPEpHGaaqfxMYmJ2eIBhqQnRCWxPgYMyNDV9v9TY/tOALHdDdHZMOIKzIlandS1z43Z5eHQ0VosLSAVYMXOg+WmSiiSkI4uKCpzCgZTs6cYMuJbHmb0D0iJ2g2ES8/N9fQYHDDg9NOyPqepj3ldf+iHSf7/PNYmQzD//hVbMcBJLXtBkCRTGLKBGdeHkPujJSTxedPzZS39bgyds7ALppIJCnKXfw4KCoyrxlzv7ulDgsGkCSJwN69KA0N6F2dFE6LQhezQmBRtoib9UyWusiNj2FbNr4e91gseHkCMad7ATij+RjV4wyHBgiX6pC1Djq3CGHFGJ+geO4chePHkf3+ZeOinM0TaIyPg2mg+RRKlh+94hw3vWIhN0RpNINdMPHLh1CYxpo8TbJU5P6DGj4DItlxjrc3EL29jZa1c7/OXw3/1q2gquhr1lA8e+6K22mKzJqGEBcUhWBR9FEm/AqtgTQROcW//t5DnOz/SXl7b0LIw8PDw8Nj7nhC4CpnMD1YXq4z3Z9bTomCAJYkk5bP8LOf3cWWu+owSyX2vO2dbHv9mxelfZW5ifY4/cIRvYhpO0LL0Iv4N9URsEK06mt5/TsfLG9fKnjuj6sxGxo8UuEI9I87VTcllXhAwecIAh5zpDKP3wIIUbOVgxfFEeiEBl9wivfUJyya+51k8YEmXj3yDH/x8V9k+PRJ8SJJwh+eewL5WUdgpiCOy1uabimv+0ruSU456d3U3iHSh18RD1p3lbdp1M5TKpicOzqFr0cMDs3pPMZEbs5tudkQ+QFLhJXH0a1+ngyI32/NqLvNchACQdwTzMlJ8keOknHcoeWCIRLI2jQNWj8Ba4LkVA69omBIofcmFwJtuxwafEZz3VS12RaM3E+INojfvXD2THmdb/36xW3jVSgXDLFtSmPjaH7lMjkCnf+eI/C6EG5ACCr/CogUAWPZPDt7RX8qp/kYiuk0rVk37++tNTURvuceir29pJ9+mkJv7xW33dgc4bxmEnEqBydUk5wjWEetSV5+6V+8CSEPDw8PD48bwBMCVzljuXHW5zrZlltPW16ICrblCEHRNYzFmoi1ddDY1YMeEBVjI3UN+IKLUzU2eNttSH4/AHvPg2TbpH3TjJdEJ1SaPou/3e3wy6OuMGIUi4vSxpWK5QguY9oEALUpCzspOs6paDemNV6uBu0xN6SK0OD5dgSC6wpc6ByBVqqErAwAcEoV5/zbXrYwZJWJ+u0Mtr8eyxDh+NFGkT9u7S37qsKXr5VyaHDRwLZtdjXtQnKSFRTMAk/ucm9H+//6/xULlUKgKhLbn3huuLp6sFc18jUx44VyhdAZWQZLpz7VzdZBV9ANLBMhMHTrreXl9FOioEVl5eCUc24E5CQT/Wn0rgi+DTG0jjDFC6mbWxDIzaCU0gCc0dxJnljKj1l4Bc0n8gMWz7luLN+GZSgEAsbIMLpfvVQIlGZDgz1H4PVQ6EsiM0NAfhGAb9XWc9+rNrNR94N1QZAkmhdACAQI7ttXXk48/PAVt9vQHGZUsQkW3Gv9sHPfrdezGHYRuVUcz96EkIeHh4eHx9zxhMBVjG3bDJhDnA0McCxwllhODBBKGYVAeopYshfsEg0dIg/Mvne8h1/5wlcWtQiH7PMRuuMOAKJpizWjYKg5ThtufsJA5Kz7gsFSedEoeo7Aq2HnxEBpNjT4lhELpc6HJSnEa9YhyxPLJiRsxaFUVA1mARyB8uI4AkuDw+gIIe2kFqJtyuanDoBuGtTNnGKqYR3+sE9MEDQ0Eq6rp3Pbzut6r/qwj8awj45YgHTBIKpH2VC7obz++S0SOR3SARgYPsl3Tj4MLe57NainkBXwhTSsdiFgyUGVxJMXiD96zgsLvQpmooAmC/HngqYy4i8xFblAx4QoCKPU1KC2tV1tF4uG3tOD3t0NiDyBZiJBWHMFy3RZCEww0Z9C1hUwbUqDaYzx7M0tCMy4DqvTFcUTovFBwEJ1hMDCGfeeuqwcgRWVg0sjIyI02PajVVxiZ3MEesVC5o5t2xR7E2jyGUqsZ1KWecqnEs7ZzIQkbGCwTojujT1rF6QNNe9+FzgVgOOPfBu7VLrsdhubIyIVr12HZvioLzUz6ojb9T6RuqLUII4BpSFA+qWRBWmvh4eHh4fHasUTAlcxds5gVHbzw3Vm4wDkU27q7YyuUN85vwmh50pVePBZ0ck/LbuDUiVxEKVGDGCsoTyqJNrvhQZfnUKmSFrOklLEYH93v4U5XUCyTRKRLlTNE06uF0mtKLg+z8VCYHEcgbZhIU2fLj8e1lXe87yF6nyc/s630LR3N+/51H/hV77wlfL/650o8GsyE+kCAzM54lkx+NtS5xYp8IdjFO/cRTgHtx4v8nff/l2GzSx5vRGARq0f2zS5cGSKyUSRlv+0j+CtLVCwSD87TOJ7Vw4zu9kx4gV0SQiBfU4IeCxtE8kJV7V/29ZlNSlQvieYJpnnniOqu+G/yUohcCAFUO0QvZnzhTlhwTbQ7xQBi+RrkXPnUTW9PMFQOOsKgfq6hXF+XQ9qhSOwNDyC7oQGq1wmR6AXGjxnzHgBM1kkqDyLLp3i/4ZDyIbF21+2qc3YJP0hcrpGrLkVf2ju6R+uBbW+nsgb3iDaMzlJ4v9+77LbbWmJIkkS04UIJbXAlDbGeb9wpcf0HIpkEQ9Po6+JYk7myLwwijGdX5A2e3h4eHh4rEY8IXAVYyaLjFYUilifF3m/Ukl3UJXxSdR3LK0QGLr3Xvzbt5PY1EbXuOjkn5fdJNXSwAv4Nzv5jkybpoBwi3iOwKuTSxWrKgZ3O4UBJCAZDKD7tSu80uO1kJTKYiELmCNwAUTGWYypHBqucOCPF9l53uZMq0rWX0/gg7/Apjua5+396kJuGPp0RghQb1v7Nn567U9zd9vd/NyWn2PDfe8sb/OGmWY+9+LnsFt2AKDJJWLKMABDp4ZQGwIoYa18FysOpbFLnkvoshg2vkAfAP1OwaXuUYvJmkbYvIvAbbctYeMuJfx6d3Io/fTTlw0N9stJJvpFKLAnBDpUVAzOKeJcaMjXAiVUJwWHbdtlIVBtbUW5jnyfC4Xa0kLgllsI7N2LbRpoflVUDb5sjkDvXJ8rxmQOfW0Nuk8UWjvs09k53FEeCKT9Ml07drP7/ncsaDtiP/uzBG+/DX3tWqb/5kvYxqWibnd9EF2RiVtuX7BfEn1XWYI6PUs8Pore4VwbDIvE984vaLs9PDw8PDxWE54QuIoxk64QFJOidNrCAZZPurmDsj6lHBq8VOhtbZjJJDWnhtlzzkbNhZjWC0wbHZgIscq/XuQvkyIadbpTWdATAq9KKVtyhWDbpn5cOH6KWpicnELz+ZewdSsctVJEnX8hcDEcgaWxLArjmHYN44rCPa+a1GZhw4jBQPt9TI6W2LBv/oTA+pCvvDwrBN7Vdhe/f8/v88W3fJGHdj9EeJ+bHy50YoCnBp+iuFY8l6aGGkWEf00NxQGI3NNBcI/TRtOmOJCet/auJkrDcZSiEH+Oq0L4WT8q0ZCYgJOH0Ts7l7J5lxDctw85GIRAACOVJlIRGjwmiftXUEmgqBJ/+5vP8sS3zyHXOmGvfUms/E3qFstMMkOEc7p7farLiOv+bH5AY3wCKyWclMspLBhAjcXIHTpE7sABiud7UXUZUw5UhQa7VYNv0t/4BjAmchTPz6CU+ihI8FQohJwbKK9P+zXW7N7L3re/a0HbEbr7Lqx8nuL58xROn2Hm69+4ZBtZltjWVkPWdCeuB0z3uK73ZUmOjxF9Uxdy2HlelTGzlw819vDw8PDw8KjGEwJXMdmZFNOqEP+aZNcxUUq5if6zfh+x1vZFb9vFBPfsAUA3Ye1UmsngCGPFjci2AUMH8MUmUZuD2KkSayLCIeSFBl8dO2cwqgkhsC4Fel6c7qlwB5Y5hub3hMDrRa4UAhcgj9+sI9BawByBpbEsunwcRUpwQopy7xExwDZkidTGW3nHJ3bNa7hofdh1BE6mL3/u6uvWIdcIB8jmARtsmxP+AMgaYRI06sLxkZpyB3u+HtcxUrjghbtfDilxHlkS3/l5TQhCa0ZddWW5VAyeRdJ1gnfcAbkcmSefpCblCuLjshACo8EMdW0hcskS5w5OMFPvTHBZNvkzM0vR7CXHGDpMLSlOqe5kXyQhwiV1v3huuVYMBpAjrvPTTCbxBVUKhg/9MsVCvByBc8dMFFCkcWSpwDHdR0mC1opTxWzrXJQc0ZIk0fKZz5QfT/75n2PlLw3r3dYexSq51/dxxb0f1fuyxMdHkf0qge2isnDulQkKp2/Oc9/Dw8PDw2OueELgKmZoegDb6TTX2aHy81ZaiAuG6qN55y2o2tKHiAb27ikvbx60mQ6NkjBbkJz2y6k+1JgYwAbVCDG90asa/BrIRYtxTYRSrhlzB1KpSBe2Oek5Am+A6hyBC7B/xxFoL+Bg1xhNoUhCWEsP+Yg447CzHZ1sfUuYQGR+K0pfzhF4MZIsE7zlFgCiOWidhhMUwBLCX1QWIW25lPsaX4/rGCn2Jee1zasFOXMCEIfqhCau/+tGxTEmB4Pl4hzLCb2np7wcG3J/8ElZHEdSIUW4xhUG+uJF9I4weneEwrmbUxC2pkQeyHO6e+6GZ8TvXa4YfHZ5FgoBUKLuuWwmE5evGuw4Ahfy2rhaMZNFNKkfgIN+cTy0Trvfrd7atGhtCezeTfRtb0Pv6cG3aSPJRx+9ZJvtbTVgBZAscb+dVt0JoFlHIICv2xULzbTnCPTw8PDw8LgWPCFwFTOUGiwv1zghFZYJOAniM74IpcLySK4c3Lu3vLx5wGbGP0rcdBOHM3W2Kg9Ua2CdFxp8FWzbRjNsxnRxDKytcP+kwu3YVtwTAm8AqdIRaC9AjkB54R2B6YHTaLKosJpJBMg62sH55jpqmuY/b9jlcgRejosnBU7kxsuPo06OQKOkUsyJ0ECl3l8ODStcSGIvQM7GlYxVNFHMQSzbx7iiYMgWkaxNveOy823dUhaelxOVIlVoUKS4sG2YwT33Xv/OeoJRcVz1n0+SGslQvJAid3Ty5jsOiln0jDg/JqQAki1+05q0EFFmr/e54yeQHKHQt375FAoBkBQF2clZaCVTTrGQABqVQqD47zkC546ZKJSFwEOXEQKV1vlLBXEt1D74ixT7+si+8CLJx35wyfrt7TWAhO24AlN6GhMfFhBV8+QzKfKZNHLIvSZYGU8I9PDw8PDwuBaWX+/fY94Yyg6Xl4M50WkupVVmPRQZf2jZhIfqa9agxGIAbBq0sZQc/bLrDmDqPP5NrhDYFlznhQZfDcNCBUZ1kTh/XYUQmAxGAavsEPGYO3KFi1ZaECHQyRG4QEKgbVgkZo6JZRs2HCuil6C/AdJSAl8wOO/v2VAVGnxlIfDiSYET8TMQbAAgorjFjxITQsSUJKnsCrTzJqWx7Ly2e6VjpYr45aNIFDipiArMPWPLNyx4lkqRSr8whib7kSSYqSjUo+Sn2XynmDCyLJszinPepEuUhm+yfJEzomq2DRwOArZNd2ENmim+E83vx8rnSf/oR9iGQei++9A3b1669l4BOSrCg81k0ikWol8+R6BXNXjOmMkiqnwBCzjk3P/bpkWPsKAqaDU1V3n1/BPYsQO1pQWA7EsvYWWrr93rGkP4VBnDENf3oprn5eLbMCUfzYEMLf40ifExN0cgnhDo4eHh4eFxrSypEPi5z32OW2+9lUgkQlNTE+9+97s5depUef309DSf/OQn2bRpE4FAgK6uLn71V3+VROLqYT8PPvggkiRV/T3wwAML/XGWHcOF0fJyKJVmv7WB03F3cJX1+ZaNEChJEgFHAIjkoW0KLugVvf+ps6h1ftQmIVDU+dqQSvOXv2y1YWQMLCwaDZO9uTwbR8R3WVICZJ3QwOXy269EZK0ibHYBnEfSbNVga2FcL8WxLCDCCI28TKBgo9qQ8SmEChK+YOjqO7gOqh2BVxbx/du3o2/YQO+6EJJt05fsI10rChpF1CQKQkSMVwh+vk116GuiaG0hcscmL7vfmxUzmUeTziFJ0O8oKmvdW8PyFQLXufcq+cIwJUu411Oym+OWzARb7molXOujsTvCufE8p/Mmtm3ffNWDp0TI74wsk1UsbNkmKLu5AlWfn9TjP8RKJsGyUGtqUJbhZJASFWKUmUyi+2RsFGTL/c1ncwRahucInAu2bZcdgec0jZQi4y/YxDLi+8z4NPTA/E8AXQ1JksoVwu1ikcwLL1atVxWZza1RbMMVKAeUWjRb3D+2x0ZJjo+hVDgCvdBgDw8PDw+Pa2NJhcCnn36ahx56iBdeeIHHH3+cUqnEW9/6VjKZDADDw8MMDw/zR3/0Rxw9epQvf/nLPPbYY3zkIx95zX0/8MADjIyMlP/+8R//caE/zrJj2HJHe/vyfeyTz9CaHSo/l/Epyyo8dLZgSFGB9cMWE4Fp0qbjApwWosVseLBhFWmQlr7IyXJlajrLtJrkQLDIWVNHc/rG6UgHliUGyMvpt19pKIvlCDQXxhE48eok9arIDziRcgW6kToJCQl/aP5Dg2NBndnaI1NXCQ2WdR0sizXnMtx1ErBtTkUbyusjygQA8XFXCPSvi1HsTVIazpA9NI69AL/JSsUaOYssCffkaaUWqM4ZulyFQDkUQmtrA8DqvVAOwc/IFRNAmSlizUFe/6FNTFwQeQRHSxavZE0yx6cWvc1LipMfsF9zHZNtmpteQ/P5iP/zP5cfx37m/YvXtjlQzhNYKqHJQuyT7QrHl9Nr9RyBc8POm9glA1Ua5ISu4bOrC4VkdA09ELjyDhaIWSEQIP3005es394WxTbc6JBXiz0UbdF32RKdIDXS54UGe3h4eHh4XAdLKgQ+9thjPPjgg2zbto1du3bx5S9/mf7+fg4cOADA9u3b+da3vsVP//RPs27dOt74xjfye7/3e3z3u9/FMK7eCfT5fLS0tJT/amtrF+MjLRtsw2JUEgNm2Za42xR5YZIp93vIaG4lweVA4NZ92Gs6kW3YfgFmgiMkZvMEZiYgnyCws4EEU6iyTldwM/YC5lBbyYyNZxjTBgDYMAy+okROr2Wydiu2KQbInhB4/ch6ZSGNhRMCF+r47j04Rr0mhIPTaXeQlXEcQr7Q/DsCFVmiLii+t6mrhAYDaB1C5NcNiGXgZIVzKaqIBPFTQ64zXK3z41sfA8CcylM4f3MWi7gsI4fLi32q+B57nFQBks+Hb+3aJWnWtaBvEHkC7XSGeqdeSK6y15IR97ju7fXc/s611LWFSFjQX7I5cDaBkbh50kdYk8IR2FcxSdEZakG2LML5Iv5snuyLwnGl9/SUHfjLjdnQYADNcML/rYqJF8ct7eUInBtm0q0YvD/gxwDWjrrfdcan4VtkRyBA6I7byzkr008/fckkzn0bG2nwN5YfJ7U8Z3L3AKArJjXnvoWkykh+J6+uJwR6eHh4eHhcE8sqR+BsyG9dXd1Vt4lGo6iVVTsvw1NPPUVTUxObNm3i4x//OFNTV3YHFAoFkslk1d9Kx0gVGfML51e9FcbvhNPkihHSjeuJh1tJ6waaf/mEBgU2b0YeHke1RJGAqcAocaPN3WDqHHp7GF3yI0syLYEe8mMr/7daCCans0zqYmC4eVD89oHiDLlQM7YpQie9HIHXj1IVGsy8FyaQZouFLMBg10wVKU1ewC+LHGrTKVcQNiQ/SNKCTRDMhgdfrVgIgN7RWV5+vbKFlO46FGeFwJnR6hxwoVtbysvZl0fxEMiTR8rLGfx0TnaTioXw795F8LbbqitgLzMqC4asnXaq3soV4nhWXMskSWLf23rY97YebECRIBDSGPxe72I2d0kpjJ8Bqh2BPVKYO84Oc/u5IcJHjiOHwyj19cR+5v1I0vJMrTEbGgyglkR0SNZwz21bWfiK6qsRM1FEo5+CtY3j/iimBLG023/K+jS0JXAEysEgwbvuEikherop9lafs7s6Y4zNuPeojC/OSPQdZK0wM3Y9a1JPwuGvl8ODzdeYZPLw8PDw8PAQLBsh0LIsfu3Xfo27776b7du3X3abyclJ/vt//+987GMfu+q+HnjgAb761a/yxBNP8Ad/8Ac8/fTT/NRP/dQVZ5A/97nPUVNTU/7r7Oy87HYriemZCVKS6EQ3l2bDDEEaShKeOItu5DEUC20ZOQIlXSewcycAzXHAHCZeMQBg6hySJDHpdwf5mZfHFreRK4TETJ4xXTgCNw9UFAqJrcW2hODu5Qi8fhS94ruz7XmvHCwtoCMwc2AMn3Sh/NgXd9uuGiF8geCCVZGtdwqG5Eom2eKVXd1aR0d5eerccfYXJ8qPI4o4rpNTxSr3SGBbPXJQiCD5vuRN5Qa7GnLyOACTssyZmhGw+9jUmyH/ymHUq0y6LQd86yqEwCnx25bkiuMmU50PcsO+Zm55UyemDSdnigzsH8OYzi9KW5ca2UmfcU4Vri7JtmmbKRLNF/AZFoHjJ7HSaWI/+7PUffjDS9nUq1IODQaUknAERki5GzjXJtMLDZ4TZrKAJp9Fko9xThV94e4JdzJwqRyBAKFbbyV/9CjZF14k+/L+qnVNUT9rat0Qd6mtyKnBTp5JfIxaaQoZC44+jE8T1zk7b2IbXqSIh4eHh4fHa7FshMCHHnqIo0eP8vWvf/2y65PJJG9/+9vZunUr//W//ter7uuDH/wg73znO9mxYwfvfve7efTRR3n55Zd56qmnLrv9Zz7zGRKJRPlvYGDgBj/N0nNm8hSSDR2FZm7NigFxflpHskUHaSYsHDbLLTw0sHdPeXn9SIFjSkXlYGegEw9NYTmfo/DqNLbp5QO7mFSiwJg+jlayy4UBMsFm1LoQ4BQLWWa//UpCqQgNlmx79iudN+RZ14ttzWu+O9u2yb48Slg5T94KMVBqp2laDAqnwxKKpS1IWPAs9SF34Hm18ODZ0GAQkwIjhisERKReLDOOUYDUlCvySKpM9E1d6N1RrHiB5OMXuOmxbZTcSQBe8gnRr6lC+K0UXJcjvg2uENjp1P6w5IrQv8ylhWGa18XKyyXTJv7ouYVq3vIhn8RXEFEPs+HfbdMyNf/zrymoCkVFxrhlF2pzM0okglQRPrzcqAwNVgrC9SvZlaHB4v9CuKVXM2aiiC6f44yuYThu0K5xKGgRZkIhJ0fg0giBwYp+X+7ggUvW37PGvQ5MBeKAxLnCXRxJ302qpGP3PkU09d+REMKxFx7s4eHh4eHx2iwLIfATn/gEjz76KD/60Y/ouMzAJJVK8cADDxCJRHjkkUfQ5tiJXbt2LQ0NDZw9e/ay630+H9FotOpvpXNo+jC2BIO+MXoMoQTNjLv5Aaf8oqO03FxhswVDALb2RplUKtrnJEOXgjLD2bMkS9NIUYX86ZmLd3PTIxdMRrQk60dAdUSqYvtmInVuB9kLDb5+lIpwSsleuNBgmF9XoDGZQ20NE1BG8MsZRpQpwo5xbioiPtNCVAyeZdYRCFcvGKJX3AeaEjajuSksSdyuatRpZCUGwMi56lyAgV2NlEadcMIDYxQHUtzUJAaQLRH+94I+KwS6q5e9ELh2LVpXF4Hdu9Al55xTipQloOylQqAedM9N069iTOfJn13l9whnkswGhnRxLdo+FEaybQIlk776Gnj/e9nw9FPU/9KDS9fOa6AyNFgqiIJAklUx8TIrBL5GnmiPaoQj8BwnfOK7VA2b5pk8vlIK1SxhKfKSFAsBUbBIcvoj2QMHL1n/U1s2YttCvBwuTVDbEsRG4cfp32CyUINkFFDMCSLqNwEwPSHQw8PDw8PjNVlSIdC2bT7xiU/wyCOP8OSTT7JmzZpLtkkmk7z1rW9F13W+853v4L8O4WpwcJCpqSlaW1tfe+NVwivJV8vLtxbEwDg57s60zzj5VJabKyyweze2M1u9YSzOgL9Y7gAyJYRcVdc5nzpMVKvDGi6Q8fKBVVEwTEbHM4xoxXJ+QIARuZNgxHVQLaew8JVGpRCIZYu/eWTWEQjz63wp9qfIHpkgKovq4Rcy7vmf9olrwkI6AmdzBAJMZ64culspUDXGoWgVmY6J56KqK+qMnI1XvU4J60Tf0i0e2JA5NH7jjV7JjLr5AV9xkulXOgL1zuUtBMqhEHapRO6Vw2w65uYzG5Ode1lm4pLX+ALuuVnMGhijWeLfPY+9QBW4lwWTIj/guKJQkMXvu2nMnTBNhHzoy2zS70ooFY5AKesI+VbFpJXz+TxH4NywpkdRpUlOOG72zglQHLd5IiCeWypHYGVamNLgIKWx6pQve7sakCwRxZIxptl892xfXuKpqbdiy+JY98svA6bnCPTw8PDw8LgGllQIfOihh/j7v/97vva1rxGJRBgdHWV0dJRcTtj7Z0XATCbDl770JZLJZHmbynx/mzdv5pFHHgEgnU7zn//zf+aFF16gr6+PJ554gne9612sX7+e+++/f0k+52JjWAZH8icAqDd8hEshRlmPNS06R2YgRMYZ9C+3wYESjWKvFTkae8ZgWh+nr7CXaaMdKzkKto2q+xjN9ZJzwgXzJ6cwU16C6FmODiUJkWBMkdhUkR8w07iRYNQdTC83EXgloaoVoWoL4AiUK3L0zacjsDSepWBDjToCwFTSHfgVZXE8LKwj8NpCg5VIBKVGOIOaHeFqtEbkC/UrJXTEcXyxIxAgfGcrencUtTlI5vlhikPpS7a5WfjJ/oOUrGamrS4uBIS7qivunvfL3REIoHcLYTeQNQhnxbEwLDuu/cylRcD0CiHQdJaNsSzpF0YWuKVLhzl2nDE7xn65p/xcz4R73UgEfKjL7F5/JeSKiAwrlULzKUiVQqAijgEvR+DckGeOAXDSEQLXjFXkDg6I73ephECoTguTO1jtCpRliajWIB4oSaQeP6EaG8ucIa3czVTt7ZiBLmQpRUB+BivtCYEeHsuJ7JEJhn7neQY/+xwTXzry2i/w8PBYFJZUCPzCF75AIpHgvvvuo7W1tfz3jW98A4CDBw/y4osvcuTIEdavX1+1TWUev1OnTpUrDiuKwquvvso73/lONm7cyEc+8hH27t3LM888g+8mCYU8M3OGnC3E1N05jVopSW2iD7kkOkdGVzs4rrvlKAYFdt/CaAyOd4KeGkCRStSpQ8jpYchOofl82Nj0pp2biSUKIHgI9vdNE9JEXjBLgvF6mZyvls57t2E6ydeBZVUxeqWhXCQEzrcjsDI02LLmz/lijGUpWkkCshDR0yWZM60wFZUoLYYQGHrt0OB8yeQ/ffMw8VijeE0KFNNmJNaO3bSN8UKYWvkwANPDGfIXuT8kRSa4pwljTAhfN7NjWJvqRZPHOBscw3Iqx7clhTgmaRpqU9NSNu+a0Hu6y8utjhl0WHKqSBdTUKouBuKrCA2264XrWW0OYkzl5zXf5nIiP/AKzVKc7GwhLdumadyZKFMVipq6LO/1l6MyNNhKJdH8Clhu223HEehVDZ4bSuYkBnBKF/euTUPud5ooC4FLFyVQmRbmcuHBTb41GPkWjFwbp9OjSIqKrNQiKY0M2mtQcv2o0iSaPOSFBnt4LDOsooVdMMGwMGe8Qm4eHsuFJQ8Nvtzfgw8+CMB99913xW16enqq9jP7mkAgwA9+8APGx8cpFov09fXxl3/5lzQ3Ny/+B1wiDo0fKi/f4oQFp8dd0afY4YZIL7ccgQC1u/fSEoft/dA+M0ncaHNXTp1D1cVnOZ9yZ5Wyh8a9oiEOL/fNgO88TTOw75xN05RFOtTOlnvaKRUqQoNXyMBwOaJoFaHBtr2gjkBrPh2BYxmQhgGYUGTWDVhsGIH6pE3GEYYXLzT48kLgD46N8s8HBjlUEu4U2YaGJIyEYkjjx2jypWnX3MqSo5dxBQZ3NSJp4jvMvjKOVbw5RYNAVkyQHJoV/W2bWEJcA7T29gWrDj2f6N095eXWaXGejVAhWFyUJ1D3uyJ6ybbRu6MYY1kyzw9jTOZYddg26phIBXJOFeduYwL0nBhszbq9Vsr1vjI02Ewk0f1qVWiwVXYE3pzn9PVgGxaqcYpeTaPgnPPrRqXy+tQyEAIDu3eXJ6izlykY0hiMofpHUYNDHJ84R1O3EIwlSWVw0j22VWnYcwR6eCwzZF9Fnzbvubk9PJYLy38U4DFnKoXAfXkxEExM1JDxN5Jr3Uy2ubG8fjkODvwbN5aX22cynMZ1rViTZ8pCYMaIU+yx0Xucgd7Lqzf061qxLJsDF6ZJaoOsrQj9kdZsorknSqngzsQtx99+paBqlVWDgXkWoSWloljIPA14rYKJOVNAkUR+wBOaTqejoWRqA5hOXkJfMDwv73c5GiqKhUymLz8r/I2Xhdt7LFRXfq4pbjMScAWC9VG38NPAyelL9iH7VQI7xXXOzptkDt6cjuFIUeRIHFBUGnJtbMp0oxScQlErICwYLnIEOkLgaeqx2m6B+vWQrv5tZUVG84nzp5gz8G9xj6NiX5JVR2q0XDH4mBqiLtvEHb3u5FkiOCsErgwHeGVosJlMovsV7EohcDZHoFcs5JoxkkV09TxndI2OooE/1UGbU3E9F4xiKDKqz4dc4URfbJRolPCb3oh/61bMmTh2sXqiaHP9hvLyucQ5Wta65/XwRATbKSalSkNejkAPj+VGxXy2lTNWrTvfw2Ol4QmBqxAJidZSM0FTZ5MTNlWY1AjlJ/BPnCdb4w6ol2PBCH3d+vJy56TNKdUVJnJ9J6oGNPmmYnlwl/zXCzd9SMj5yTQz2RIJLcua0YqiAJs2I0kSRqUjcBm6QVcKakXlcskC5rlTsxCOQGNchMpqjiPwnOEj5GhxxZb68na+4MLliaoLuefu5RyBF6YyPH9OiBqjwUohEEZLaWjeDkCDPIxfmsYXsjj+zPBlxcDQbSKnoNLgJ/n9PgrnL3UOrnaillB6j/oCTAaGsROD5XVaR/tSNWtOVDoCW5zQ4LxsIw8fEgWkUpeGfs+GBxdyBr4eV1gqrEYhcESEyRvAiYDNdHCc2Izrkiw7AlfI9X42NyiAlUyi+VUky70mWbK4HnrFQq4da3ISw6jnlBZjUFdpzA+gOt9fKizOD98S5gecRfYHyB8/jjEyQqGvr2rd7pZN5eXhbB+NnRX9wlwYOyJyS6vSMOZV8s96eHgsPlURW6btuXY9PJYJnhC4ysgbeb7f931GtDG6i0FUoJSVISsuutK6LZRK7gV4uRULAVDCIfL1opPXOQmHfW4IS2n4NKruuooKoTzB3cL5Y2UNMvtv3nxg4IQFYzOtj7Gm4quou/MWAEr5ytDgleEQWY6oarUjcP5DgytyBM7TgLfkCIE+WQiBUyn3M8jNroNoIUODYwEN2TmdT44kKRrVIud3Dg+Xl0eDrjjZlLAZyYzAhrcCIoKs3f4LChkwShaPf+k4X/70s7zyw/7ya/SuCHUf2ow5U8AumMQfPYdlrOLKsReRzOaIEscCBjRxPG3MxMrr9ZXiCOxoB8chO+sInFIqrl3J4Utf4xQJKWYN9PYIKOKgK/atQjHYEQJP6RoFRRzfW0bd72e2IuxKcYDLPh+Sc4+fdQRaFTkCTWlWCPQcgdeKNXIGv3KM87oQyConCZNOKP1SFgqZxbfenQQunj1bte7Wti3l5XhpgIZOd0JbVpsohcXEhixlsVM3pwPcw2PZYlb3vYyZ/BU29PDwWEw8IXCVMZxxB0WdJXHhzU26A/7Anj3VeeKWoRAIYPaITl2wADNmEtMWnVU5fh61QsAyCgVqfmoNSq0PrTNM6smBmzr/xPmJNG9uLnBKg/Vj4vcvaGFab10H4P72klQOsfaYO5q20MVC5r9qcMkpnhFUxDWimHA/g9bgCoH+BQwNlmWJ33vPdm7pjDGaLPDg375EvuQKnY8eHmZnRw3b26PYTc0cr+3mTIuKXqJKCARYE+zDMvrwBVU6t9SSiRc5/MQAR58WrjdJkvBvrEVfU4OkyyBLzPzTqQX7bMuNieEBZMliTFEoOofThmKFG7yjc4laNjckXUdrF/eD1hnAtpmR3Hva5YTAWUegUbKwJNA7xOc2pvKrrsK8NfwKAIcq7uVROYR/1y4yjfXknXymK0UIBJBrhEtNCIEqWG7kwqwj0MsROAcmewE45xQKaZuUSYY6SNauZ0oV/aWlzA84i2/9uvJy4SIhMOILI5u1ABTlEfSAgh4QbZeUJrKqO3Ekp/sWvrEeHh7XzMU53M1pTwj08FgOeELgKmMw5YZ+dZqiUEh2wh00xe65/SJX2PIcHAQ2uPlg6rLDJExR7CVQGkCtqNhaKhRQanz4N9VRGkhjF0yyhycWvb3LhYP9cbTET8gUNEI54YLJ1/cQjonfeTZHoKb7kCTpivvxuDpKhRCIZc97oRpZmf+qwcZYBrCJyMPEZZnojPv7FyvSBSykIxBgV0ctx0ZEiGbEr/JdxwXYO5nh1FiaVwcTBHWVDVvXsHXmAhtGDbomYDo/Tb5lB/hjFKQQISWPlX6YW9+uEYiIa1x6psBIRfEQ2a/S8IvbQJEpDabJn5rBvklcgTNjFwDoqyhs055yl1dKjkBw8wQGihDLQEKuKNaTujQ37KwjEESewNUcHmw6QuB+n3B0SbZNY/8o+cOHkYvFcgGGlVQlfrZysOU4Ak07gOykXzAcR6BXNXgOzFwgJ0kMquK82DysEc0MEp05S9ovnltujsDCmbOXrA/L4polKXlOTQ1R0+hUQJc0RpNuX1bOXVjglnp4eMyJi/pdhicEengsCzwhcJUxlB4qL3cZItdWakI4fGwkIrfuoZQXlRMVTasSHJYTdVt2l5e7khOM26LSsSYVMOPx8jqjJNwds/nAADIv35zhwbZtc2YshRo+VhX6I69xi6/MOgKXqxN0paBUiNHyCnIESvYMmpzne6EgHZNum7MhdxDoCy6sELi1LcrXPno7dUGNHxwb43e+c4x0weDJk+Plbd64uYmdG9soOoJPTUa0dawwBbf9MrqdoyOUZH1kkvFzB7jzPeuQnfDPif5U1fvJmkxgk3CS2AVz1QlBVyIzKYqu9FeI1nUzFWkhVkiOQLi4cjBkKqsdJ4cu2d5XIQQWsgZ6pRB4Pr4QTVwaMpNo6WFsXEdgfdKH5IhkBZ8QyBVNW9JCEHNFiYiJCSubRdPBsHU0RwicDQ32HIHXjpTqp09TsR1RuH1KfHd2IERBXT6hwVpnJ5IT8VE4d+6S9Y2+rvLyy0PH6drmTmac73Pbr5iDN82Ej4fHSuDiyXJPCPTwWB54QuAqYyjlDoqai40M5jdTiovHxYYulEjEdYUtw0Ihs8S27Cgvd8WTnDNdoa80PFBeNpzPoreF0dqF4FkaTFMcTi9SS5cP46kCybzBaGisSggM73a/y1k3qJcf8MZQlApH4ELkCFTmN0eglS2BLKE1jfAvegd/VFtLp2OctZrryRuuQLTQQiDAvp46fmqHEPezRZNHDw/zo4uEwFu6a8mEhIATE+ZmRjOjsO6NSE4Jun1tKTKJGRRVpt45/2fGspQK1d+Zf7NbeCR/mcIiq5HSjHCHVzoC/UWJwJ5bCL/hDcgVRRmWOxdXDi7JBobiDPyTlzoCq4TAnIGvO4p/Uy1aR1i4Quf5fF0yRl5lLLSJ70ubmFbFZ9oy6Qq8KzEsGNzQYADdzlOy/cxecWcdgV7V4GtHyg1x1pkQCORtapxCTVJnV9kxuhxCgyVFQV+7FoDihQtYF1UO7o6sLS8fmzjD2t0tBIL92FaWqeJt5XV6cHzVpQDw8FjJXHzPNb0cgR4eywJPCFxlDKbd0OAeq4+61DnsaBAbCdaLiptFxxG4nMUg3zo3V0znpMUR3PwvSsIVAmdFTYDQrU6V0Dof+bPxhW/kMuP0WArkPGcCRaJZSDv9+sZ795S3KQuBy1gEXglUhgbLFjDPusJ8OwILF5KY03lm4i9R0GeoT9kEnXFSZNNWChlXOF/o0OBZPnir6+74hxf7ebFXOJjbYwE2NIVZ1xhmXBFtCeegRW9kKjcFXXdCvQgha5aGmT76Y0yj5FaRtGFysHoiwL+xFpxI6Pypm0MIlJzceRecYzWStVFPnCN38BBWKrWiUgPoPT0ATIegNmWjayVy/iax8nKhwcGK0OCsgRzUsC2b0mAaczq/elyBI6/QnDlF1HeB5rw4/renG8ur84q4jqw0B/hsaDCAbuYwbH/ZEWhI4r9XNfjaUUrD5fyAHW5BafQ17jV4OTgCoSI82DQp9vZVrdva4KaMOZ84R1N3lKY13UhykJTZiOXkklbyFzwh0MNjOXFxaPBM4Qobenh4LCZzEgKTySTWZQalpmmSTN4c4VbLndnQYMWWaDZM8tM6ctIpErBzG+CKZ/oyFoPkUIhUvWhf53SJQ6rrELAm3fwvRtG9mQR2NqDU+TGnC2ReGMG2V4nr4xo5PZamLvQKpiSxq9cmnIOSP0rdTiGqWpZZDqVeziLwSkBWXKFBspn3MKT5rhpcdMJh90eO8t8b62mZcted7D3D8Bm3iMZiOAIBtrdH2doqzusjQwlKTujIGzc3iUIfmkIuLAQBGchPjzOQGhAOlj0fLu9nW2SEmeEhGrvcPIeXhAcHNfRu8V7GRA5jKreQH21ZEMiIypn9jits04QrXvu3bV2SNl0vvrVrkQIB6jKwfhRKdpaUzxECi2nIV/c/fAH3sxZywjk2O1EEkHl5lVQVdSoGH/HrjPmF+N1Rcu/rWSdcfqU5AmdDgwE0M0vJ9lUIgRYSslc1+BqxLRPFGuGcMyHQWZESgrbW8qJvGTgCoXoSuHD2TNW6PS2by8ujTh7At/7yXWANgaQRdyJHVGmEx/6/P+KRP/xd9j/6yCK02sPD42pcUiwknp/33NoeHh5z55qFwEceeYR9+/aRz19q583n89x6661897vfndfGecwN27bLxUJaSioqUHSSw0vY1O3dgm3bbp64ZS4GTe7q4lgnjNTCdMGm39zHSHEjwUIvIISSSiFQCWqoteIzmdN5jInVP9iv5MxYigb9HLenczQmxA3WjtShOGGmRoV7cqUNDJcbslpRrMAGc56FwHl3BPYlAYMTAeGG65ywmayrIdPazIRsE4qJHHodW7YvWt5QSZL4N3d0cf+2Zh7YJooBbWwOc/82V7AxamrLyzUZmMw5dpZdP0dOb2IgE6U9mGBqsJ+GSiFwoFoIBPBvqUPviqB3Ryn0JS5Zv9qoKY5TgnKBgN0z7mSKf+vKEgLVlpZyCGPHpI2kFIgrDe4GF1UO1gPuMVx0hMDA1nrkkPguckcnMTMlVjq2IwROyK7w2Yz72TOOe26lXe8rQ4PVUg7D9qE5Y8aiZKHJOpZp3nSTfdeDNTaIJBmcdRyBXePuvcVsdt2jy8YRuKGiYMhFlYM3NNVTSm3CyKyhaIg+r+730blF9PtGi5uIl7ZSsDbjK2aYuNDL6Ree4/Dj31/Uz+Dh4VHNJaKfBWbCcwV6eCw11ywEfuELX+BTn/oUweClnYVQKMRv/uZv8md/9mfz2jiPuZEsJkmXhCugzREmiil3UBDbuUkIZ07nebmHh6o1MbYNwLpRaE7GialDtOqn6dBfxaeJgUJlaDDcnLnAZjkznqYUHqC/4Eexnbw/nW7oT+V3tdJCxZYdFWKZbIFdmmdHYFXV4Bvbt12yKA6m0KTzHHYqRG7rh4bpBKGRMYymBmItrYTr6lm37/Ybeq+58m9u7+YvfmEf+3rqaIn6+cC+Tl63wRV4lHo3JUAsY7tCYLgJO9JGZyhJRzBJ5txLNLSHkeTLFwwB8K2podifonghSeHs6hYCTcumzpxiWFUxHQFt/Zh7u19pQqAkSeWQweY4+Mwsk5J7rSdVLQT6ghWOwKwQAiVVJniLEJyViE7u2CQrmlwcaaYXgBHZFcGzx4+VlwuOC2wlVQwGUCKOEOjzIeeSFzkCbTRZfJ75KqS0mrFGzpGRwJAkJBt6KpzBRr17Di2HHIFQERqs6xiTU1XragIamiKhhnrJymcYywpn7y33v9nZQiamHcevvEpDKEBqcoKRMyc589Lzi/gJPDw8LsGsvlZLAcUrGOLhsQy4ZiHw6NGj3HfffVdcf++993LkyJH5aJPHdVKZH7DTEBfYfEpUDbR8IZRYrJwjDpa/I1De5IaIrIuP0uu/AwBFMukJC1HLuCiZ9M0qBNq2zemxFDk9Seu0O/NWs8PNqVP923tC4I0gVQh1kg3mPCeur3QEWtaNhQYXh1Jg2iTVQ/TpGpJts8mpKVTSND781W/ynk/9F37lC19h3zvec0Pvdb189J61vPBbb+Kj96ytet7X5DpWajIwkZtwV258q7vd4DOoukJti5iomhnOYF4kzuptYVDF97raHYHjyRx10jQXKgqFtAyJFBGS34++Zs1SNe26KQsEQMdMlhEqhMCLCoZUFwtxnX+hW5vRWoKY8QLp54ZXtqNs1O1vTcjuvVxLuWHStVu3ccf7Psj7PvO7i9q0G0Xv6UaORKBQQElPixyBTiLWkmSjyaJfY3rhwa+JPXqO4z4fo6qKbsnlavFyNEqx4vqwXByBans7Wns7lErkXzlUtU6SJJr8buGgk1MidNgfEeJmznIF8Q3b3DDi0mUimTw8PBaPSkegpMvYOfOmSNHi4bHcuWYhcGZmBuMqg91SqcTMzMy8NMrj+pgNCwboNDJYJphZ8RNLrZ1IklQOC4bl7wj0b9tWXl43PcnR8B3lx2vDYia4MjQYQG0IoNQLkavQl8TK3xwDhbFkgXQpTka1aK04DYOb3cFz1W+/zEXgZU+lEGiBbcxvmGGlI/BGXS8FJz/gsaAQDtqmIJR3Eu6v7VnWRSPCLU3l5arQYMC/5/3l5brMcQDaN8ZoXVdDy7oapkczVfuSVBm9UwwUzZkCxioOS5mamsAnFYjLMjszKlsyawiOiePAv2kTUmVo+wqhUgjsnCkwZLhh45eEBl9ULGQWrTmE5BPrjLEspYuKyqwonLBggGmnKIhu+PE71yJTllBiNfiCIVRdX5ImXi9qYyNWSrh67ZFBTLRyaHBJAlUS9y/L8AqGvBb2dB8HHUeoUjKJZkU/wLdhA4W8OxBfLo5AWVWRAn6wbYoX+i+5/9VqneXlAyMnAQiExfGdt9yQclJT5aJelX0fDw+PJaBCCLSL4pw2Jj0h0MNjqbnm0UBPTw/79+9n8+bNl12/f/9+uru7L7tupfI3//FX6N60hfHeczStEe602eUr/Z+Pbfa+/d3X5cyZLRQC0G4YlNLuz+tf1wNAsWJmVF/m4aG1azaS9kM4D+um4vyjfwcfsHxocoHuwHlg5yWhwZIkEdhUR/r5YSRNJnNwjMhd7UvzARaR3sk0/qBwS1U6An1resrL1ULg8v7tlzsXOwKt0vwKznKlI/AGi4UY41mQipwIjAMqmwfc4yN6xx1XfuEyoK7TzRcYy9hMZCewbRtJkpAbN5G0IkTlFM3KOGZ6ikhdgCNPievg9FCaxs5I1f58PVGKvcINWOxLou5qZDWSGh/AtBX6dI1XQwZbL5wrr1tphUJmqcwd1jVVorc17K68ODS40hFYMRk0PZJhsjGAvzdO0ZYIvTxaFodXHBVCYFIV4l/IiBCWk9iAv6OT9/zm7yxR424MvaIvaY0MQFRCddJdmBKoTk5Er2DIayMl+jnkTPx1TNoYsoZqlfCtX0+pSghcHo5AAL27h+LZc9jFIsbIiHAIOmyIreeUEzF8YvI0AAHHEZi3K4TA7CSaz49ZKnlCoIfHEmObl05oe0Kgh8fSc82OwPe+97389m//NmNjl1bbGx0d5bOf/Szve9/75rVxS01mZppiNkt6eopiNlu1fKX/N7LNwLEjpKen+Mk/f+262juUcoXAjpJRLhQCENkiBlErKTy0PtBAb7Po/NdlSySm4oxKtwAQUpI0+7OXOAIBgrc249tUi10wSf94CKu4+l0DZycy+NQ+AFoqHIFaxYCqlPdyBM4bF+cInPfQ4PlxBNqWTe74NBHt2xwJiPNg86ArBDbf/8D1N3IRaOluKy/XZKBoFUkW3dDHqcAWAGQJcj/+c+ra3IrH0yPVjkAQQuAsqzk8uBgfQsZkTBLn+ZqK2/ZKyw84S2U10Y4JOFusuIZdFBqsBy51BNq2zdNfO8mPfjjI95Mmh3Mm2VcmsAor9P7gCIFJVAqqSJFRlwlip8VxrzU1XfGlyx0lGkWpE6HfxsAAQFkIBJAVJ+XJPFRUX+1YmX4OO47ADcN+VKuE0tJKYNdOCtlsebvl4ggEERo+S6Gvr2rdzuaN5eULqfMAKKqMHlCrQoPJTZf7uF5osIfH0lJVLEQV13JPCPTwWHquWQj89Kc/TSQSYcOGDfz7f//v+dM//VP+9E//lI9//ONs3LiRcDjMpz/96YVs66ITqq1DDwYJ19WjB4NVy1f6fyPbzGJep7soa2TZ07SHTfkoHUa1EKj39AAXCYHLPDS43l9Pr2sIYnt2lETt65ksdTNU2EpXqHBJjkAArSWEk04IM14g9fTgJdusNkbiOcK+CwC0OY5AyR9GrXXD54oF96a73EXg5Y4kSczKc8IReOlxeCPI85Qj0BjPIudHKKrfJCNL7MkV2H5BiIyWohDcvv2G27qQNF8kBEJ1eHC+/W7GciFmCn6C+/+MxoKbFH56+FIhUO+OgqMnFPuSl6xfLZjJUSQJEpo4SgMFG23fLfg2bMC3adMSt+76UFtbKTrFbjonbXoLMrbkCOZXcQT2xP8WvvVRin9yBxNnR8vPT5s2UnOA3JEJVhzFDIQaOCRt5hlcYbct4X5utbl5KVo2b8z2WcyJcVQzj2K518TZqu3znZt1NXJWkkk795ONQ8L1Z46OoPesoZirFAKXkyPQFQKLFy5UrdvU3IBVjAEwWRgo5/kMRLSq0GDZThDwCWHQcwR6eCwxFY5AtVaMP4zpPLa1gvP0enisAq45NDgSifDcc8/xmc98hm984xvlfICxWIyf//mf5/d+7/eIRFZoiM0V+Ld/8hdEo9HX3nCe+Opv/ioTfecpq1hzwLZtnh16lnghTq2qELMsRisqBpeFwBWUJ05TNEbbg4AY0OeOHcf+hQ/QEP8DAJRoI6+MXBr2K0kSsXesZex/HQTLJn9qmuDeJrS65S183gjD8RyabxytZNPg6BtKfSv7H32EgeNHGO89RyBaU95+uf/2KwFLFm5A2Zr/XFXzlSOw0JfEJx/mkbCf87pO04xFNCv2J61bi7TMc4dpsRpKsopmGdRkxXVxIjfBuphwh6lb7ufET77Nfc29YMHA9/4XqvSrGHaEviN97H/0fFWaBdmvorWEKI1kKE3nsbIl5IoKs6sFKS0Eryknd9y2fij1i8T7K7FQCIjrerItSsP5aZoSIBkp7LpmpNQwJKonexRNRtVkjJLJluJX4IiFD1jvf5YTubcAYNkwfD6JKkmE9rVc5h2XMaNH4cJz3AK8Kt8FxAFoTrrXDbVlhQuB3d3kDh4EIGLNoNiuECgpoutq32AhpVVPLs4R+TQ4hXXWjjnuWOAfvvg/MSryw/qWkxDo9FcBihc5Atc2hLCKzch6HIMco5lRWsOtBMI6uSm3v65IScK+tYwjoiFmU0p4eHgsPpWOQLXejzGRA9PGnMmj1q/esZmHx3Lnmh2BADU1NXz+859ncnKSsbExRkdHmZqa4vOf/zy1Fc4jj+tDqZjlnms1w9HMKPFCHIAtRRsJLnIEihnWypwwy90RCJBY01Be7pwaoG7zRmYQlUVb/BPoRuqy35XWFCRyXztaZ4TSYJrk93oXrc1LwXA8T1ZPVoUFZ1B58dvfpJDNkJ6eQndcgLvvfztb7nnDErV09TBrUJFsCXuec1VJ85QjsNgbJ6r9DQ9HxCDv9lOgmRZxv07Dz/7sDbdzoZEkiVxIDO5ijsFvIus6uDq2bGf9x7/EjH8DOUNlnXmIXf5/AsC2wzz7j1+75PsL7GpEbQxAwaRwfnWGB6uZcQCmHEG5KSUGwHI0ihIOX/F1y51sh+uc70qNkFnzANR0QnYKUtVpS/SAik9KIUuukL636Wm6d7j7GCvZFPtTlMYudY8uayryAw7h3iMbM+69UFsljkCASHECtUIIlJXZvpInBF4Ne+wEzwTFfV8xbRriYpawEA2TTMSJNQkBfNdb3kawJrZUzbwEvbunvHyxIzAW1NHM1vLjcwmR/zQQ0chVOgJJEtTF5KdtW5il+S3o5eHhce1UC4Hu2NOY8ty6Hh5LyZyEwFkkSaKxsZGmpiZvhm0eUSoqOc518H98+nh5eWPeR7y0kVzKCf+sqS0P/iqLa2j+5e8Ks9tbGKyDU22AZRBtC3E+c0t5fU9o6ooJwyP3dmLOiJtM7ugU+bPxRWjx0jCQnCCrGrTOuDfbnOajmM3gC4YI19XjC4cJ19VT09RCILJ4TtfViuVc+kRo8DxXDa4QAm/EEWj0HuOVQIF+XQHb5v5D4hoTyxeJve51N9zOxaAUjQEQzYJk2VWhwYFwhI6dexlc90sEVAMVkyZfH+CEb9sR8ulU1f601pCYjQZyJ6cX5TMsNsH8BDYwJStItk1tUhxDWmvr1V+4zCmsaaG3CY51QnN2iix+SIgccgy8ULWtL6gSUSarnqspHOP+n5aQnRxFYyUL27bJvHxp7uNlTYUQOCW5kRj12Yrwq6YVLgRWhIfWqXFkuyIvq+JUPfeKhVwR27b50itf5plAgB35AruG/Ci2OD4KjfWE6+rxRyKE6+qJtbRWudCXGrWpESkoJq8udgQCNPrdY+Pk5BkAAhGdoh3EcgRjWUoSVNxzwwsP9vBYQoyKe1NjhRA4kb3c1h4eHovENYcGT05O8tu//dskEgk++9nPsn2Z55ZaiVQJgYZR9fi1ODF1ory8s9RPxMozkheDPq2rIt9KZZW4FeAIrA81kArClkGAE2RnZkjE7oHStwC4vWEAY+gwyqt/B3f9KtS7CeVlv0rNAz3M/LPoKOaOTeBbV7PqxGvTspks9OIHWit0jazPhy8o8Z5P/Zcla9tqZtYRKFssgCPQHZRdryPQiBdQM6+wv1EI/psHoSkuchkaa3uqBtrLmto6GDqPbEMkJ0KDL2bH+z4OZ34fimnaa6ZnIyWRlHpyqWSV28W/tgZJk7FLFvlT09iWjSSvrmtCtDhJWpIoyhKxtI3qHEIrXQi021tYI8yOHI2NMxa7l7Lc1f8CbH1XeVvNrxBSLj1WtOHnad94BwPHp8nZcKFosf7MDFbJRNaWjxhyVRwh0LBl4rI7oRfLu9cKtXnlFgsB0Csq3suTQyiWAogJF1kRg0qvWMiVSZfSPBp/BSSJEz6d/3p0C7AfgA3v/yB3/NKDS9m8qyJJEnp3N4UTJygNDmGXSkiam8KhJ7KWcSct76Fx0fcNhDVAIm9FCSpxZCmJX3aLR5UKeW8C1MNjiajMBag2umkIPEegh8fScs2OwAcffJDm5mbe85738La3vW3Ooaser42iuh2duSbBPjHtCoFbikXycQ1bgmSoneh995TXVecIXP4FI0TBEHeQnjp6DH39neQt0cGr1XPof/9OOPBl+Os3wXR1CHBwTzN6dwS1KUDmhVGMsdU3+zSeyqNrI0RNi7Vxg0IY5Gg7aU3xqgMvIJVCIPM8IJWVG3cEFi8k8MnH+UEoSFexyNsOuBMLNe9//w23cbEItriCRk0GJrOTl24ky9CyEwBfYRifJELgZKWNXLK6KIikKfjWxQCwUiVKw+mFafgSEjOmy2HBDRXRz1rbyhYCA2vciZ62VJwLwYoJyf6fVG9sQ7jSERhuhto1cOwRbnlrF7ve1AnA4ZxF/2Ca/IkV4g4t5WFC3O/P2u3kVPeeHjJB6+jAt3nziq4aDKB3dZWX/elxlApHoKI6QqBXLOSKfOKJT5A18/gsi4/FE0Sn3O9qJVQOL09UmSbFweocoFsbNmCk12MVY5x2+r6BiMh3O1s5WCbJeEWERClfwMPDY2kohwZL1Y7Aklc52MNjSblmIfDgwYP87M/+LB/4wAcYHR1lYmIFVtpb5shVQuDcQg1nHYEhS6PdMMlN6kg2RDND6C1uIvTqqsHLXySqD9TT2+wKgYXjx2ndUEd/YS8pw8n1VHLEvZpO+Nu3wdc+CH+0Cf727UhPf47AzkaM8RzYqzMUcDieo9Z3gaQio6cUfGmwkkNkVGtFiL0rldnQYNme/xC1KkfgdQqBpYkcsn6SXk1jWNbQSjLpYAslVaH9Q/9mvpq64ETb3BDHWMa+rCMQgNZd5cVGTUwIKL4dHH9umuPPVVeV9W+uKy/nV+E1IWrPMKk6QmCyYiZ+hTsC1fY2TOe8a08mGSsFoMkRNUZehYIr6jZ0hKkNVP62Nsz0wvgJOjfVUsiJczYkQ8qw+Ye/OMrf/fbz5NPLPJfY+HGwRNuP2T3kNDf0PZLJURocpHDyJGpj41K1cF6QAwFUp++ix0eQ7YqICVnYwUzPEXhZTMvkxPQJRlSLOtPil6Ytgin3uunfsnkJW3dtzOa1hkvzBG5sqkdScsh6nNH8BRKFBIGI6D/nbeH6k6UCwYohjhca7OGxBBhFeOmvCKX+lrDyCMgSSkRH8on+ieEJgR4eS8o1C4Hvfve7+cxnPsN/+A//gZ07d9K0wmeblyOVocBzcQRO5ibLg+MNRR0JyE661UCDe/eUl1eaI7Ah0MD5CkegceokLetqeCLxCb46+dc8NfMzxH/qr+Du/wAb3gqpYcjHIT0KF56FZ/+EQItriVmNg/6heB4pIGbM61Ozs24yKbnkVQdeQMrFQiyw571qcEWxkOusjFk8cppReQxTklgzCnvP5ghnR4m96U0oK2ASYJbadncioyZDVY7AKiqEwCZdJJCXJJkzBwye/aczVaEp/s1ucavssclV5XA3sgl8Up4pJ89kQ4UhUmttW6JWzQ81oTrGYmK5NZlmJlOAztvFE7YJQ/vL277hF7awY3fF71orikxRSEBmkjf+wmZuf+ca7m4PMW3YFE2b5FSeF797fnE+zPVSkR/wqNlDRnPFTy0jBlVKLLbsK4JfC7OuMDmXwp9zr4khXxgJGdsTAi/LhdQFcoY4FrYVi0wWOginRR5MrasLJbr8Q2QrC4YUzlefk2saQpi52fU2hycOEwjPOgKjWIjKyLWKe3xUFsrz8PBYJPJJ+N5/Ipz/MlH175EUGUmSUBuEK9CcyWMb158H28PD48a4ZiHwz/7sz/jgBz/Ipk2beOKJJxayTTctF+cIvFYq8wNuyRexLcg5QqAZrEGryAW24hyB/nqGGqDofDXS2dOEanwoPjHAO5r/AJnoDnjL70KgFiJt4I+B7lTGNIuoL/63shW92J/Eyi5zx8ccuTAdJ+GPA9DgmEMkfw05K70ixN6Viu3kmlQssOfo4H0tKqsG2+bcO0lW3kCe3E+/c03ZPOgKIpG7777xBi4ielcnA63rGI4p1KZtxrNXcgTuLC+ub71AKfsUtpMcv1QwSUy4A0E15if0una0jjDGSJb88dUzQZCaHALcisGVjsCVHhoc88UYrRPnXcCwyI2OQ9ed7gb91QVDSFSEFDZXhENOn0OSJPa9bQ3Nd7USq0jHe+zHQ0wOVheYWVaMvlpeNGu3lR2BuqEjJYTqu9LdgLME99yCf/s2rLpmYhVhniglYnoTplcs5LJU9QkLReKjtUiWSWDPHmIrJC2Ef/MmgnfcgdbZSeH4iap1axtD7Gt2J7gPjB4kENX4ztb/w89vHGFfTydHfBpROYeEuF5UFsrz8PBYJEz3vJMokCjm+d3vHkNrDYm/lhBmuriEDfTwuLm55moUsizzoQ99aCHbctMjVzkCr11YGMuMsb1+O4PpQbYVBikkVaySEBKstduqimNUCoErolhIoB5LlrjQCBtGQBsewEynqWmEycEcspThX/74Mdo2xAAY772NJnMd04MKH2p+CswCM2fPMpp4mCbtp8CCRz/9+5gdEuO952has+6S/2I/l1+30NvUtnUw2d/Hpjtfx30f/mhV3sgrcXriJLYEqmETntU6/FFM21gRYu9KpapqsDW/A1L5BkODixeSqAxyTm0FzCohMLh373w0cdFQ6+vpHBEOv+a4RNbIkC1lCWrB6g0bNoHqByNPLb2YBRukEFrgVgAmBlLEmt3X+LqjZJ4Voln8/57Hv7EWSbvmubFlS2ZqgFoqhUB33UovFlLjq2HENXMiDfbDu+4FWYeGDZCsDgEvC4HhZmjY6D4/dRa67gAgtLeZLf96AS0ic2yyQFN3lNMvj9HQEWHZYRThwk+YCa1FTw/x4lgTuTohBDalg2CINBmrRQiUI1HyR48hAzWJhvLzplSg0d/hFQu5AvtHjpSXtxSLGH05fLZN7uBB6j/6kSVs2bWjr1tH7tAh7MsIeEFdRSutLT9+qv8lPrb+48wExsgpFiBxVPfxFiVPWKslVZr2QoM9PJYCwz3vJAmQxjg7HoKaWkojGQDsgncd9/BYKlb+qGcVcb2hwa9MvMLRqaPEC3E2GimyE25I0Jii8Bcf/0Ue+cPf5S8+/osMnDhaXrcS3GL1fpEHsLJgSOHkSfY+cAsQwKYBo9hEMZulmM2Snp6imM0Sn0pw3N6NTyrRZp0lwmPl1zfZHVXbXvz/ausWepuJC73kkgle+cH/vaTIwZUYnToFQG1FzQPTJ4qpqCvgN16pzIYGKxZY8+wIlCscgdcz2C30JQkoLzCkx5Fsm02zQmA4ir527dVfvMzQOjrKy01x8f+y4cGKCs3bAFBTA/jlIrbpOsImB6pdXoHt9fjW1gBgTueZebg6fHilkhocAC7jCFSUFS8Q1fhqGKlz7wX66BDEuiDaAuPH4Mg/w6xLzChCatR5YQfUuYVGmDpXXlSiPqJv7mZNySQiw1hfklceHyCTWIYOohe/CBMnqM2c56+Mt1Nn+yioYvanJe7e91f67zyL3tNTXq5JuBMihpSnwd8x77lZVwsvD7tC4Ka4gT4uXNRqYyPhe+9dqmbNCVnXCezYAUBpYIDS2HjV+g/fvgOr6PQPUyeQ/BZFxXV9H/L7kElSq4scs5WT4B4eHouEUX0f1aQhErkSsu5OdttFLzTYw2Op8ITAZYRyncVChtJD5eXOkkGuQghM1dZUCU2ROjGrvv7WO9ADy98RWBcQSf0rhcD88eO0bazFifhADaxHDwbRg0HCdfXl/0OBPRhOgvGeUB/TWh8ZJUVbcD1RX0PVtpX/L/fcYm1zPWJwoiQKI9RV6BwlXQiAXo7AhcOucAReb2XfKyEpFZ2k63EEnh9Fk85zQdNom4KoMz7Sd+yucgivBJTaWnCuVU0zKn6aGUgNXH7jHT8Da+/D1iOsCc9gGe7gcaK/WgiUJInYO9ehtodQm4NkD40z/fWTKz5fYLFfJNafcvJMzlYNVpubkNRrDgJYlmiyxkyjO7kRGh8WNoP2feKJUgbGHBEkNYzIFIYQAusrhcCzVfsN3tKEoim0Oo5Q27I5+ZORhfoYc8MyoZQToubTfyCesiUet/bR4XfFjcaEe16rTatFCHTTmkQT7v3QkAo0+NqxSp4QeDG2bTOUOQ1Ag2EzfnIXknNNq3nPe1bUNSBQ4V7PHTpYte7eDY3ojivQxuBf+57DVNzj4aDfhyQlqPWJHLOeI9DDYwkwqs87TRoWec19FVEvniPQw2PJWNIewec+9zkefvhhTp48SSAQ4K677uIP/uAP2LRpU3mbfD7Pb/zGb/D1r3+dQqHA/fffz+c//3mam5uvuF/btvmd3/kd/uqv/op4PM7dd9/NF77wBTZs2LAYH+u6ka/TETgrBIZtnbBtk5DA9AegaGJ11BKWXKEpXF9PNhmnffM25AqxYbniU3zEtAbO1ecxpDj5hjbqhoapi+o0dUcZ70sCdbz5o58iUncZ99t3U3Dgb9Fkkw3rJ5g62gMS7Gu8nwc+/RvLThT5/p//Mcd//CRw7WJwVu0HoD7lCkZ5TRxLK8H1uVKxZAmwRdXgOZyv10KVI3COxUJsw4Lh/UiKxQVNZVtFWHD4tpUVFgxCsNM7OiieOUNjqkTBGuV7Jw9z/FwL46kCm1uivG+v4xps3QWPfRoJ2B6TOZFsRpLy2Lafif40tm1XnfNaS4iat/Yw9eVjs29G6ulBovd1Lv4HnSfkaSFgTSsKeskui8ArvVDILLnWWkCEwMamHcdf151w7GGx3P8CtN1SnR+wphNi3SCrouLudHXxAbXOT+Tedroe7+d0QVxHjz83wp77u5f2HlFIw7c+ItrduKVcLfjr5hs4ZvdwlxanNttCQc3SnKkQAleLI7CjA2QZLItI0r0flqQ8ATVMJukNIC/mXLwfQxKD723FPEoxR1b3ESwWiL3/fUvcurkR3LuHKWc5e+Ag0QceKK9TFZnb2vbw3MxBfHYr3z35YtVrx1WVCW2CWl0UkfJyBHp4LD5GIVclNBjmEIVkEVNx71d20buOr1Zyp6bBsgEJ37oaZF2hNJWjNJRGDmqotT7U+uVvSlrNLKkj8Omnn+ahhx7ihRde4PHHH6dUKvHWt76VTCZT3uY//sf/yHe/+12++c1v8vTTTzM8PMx73/veq+73D//wD/nf//t/88UvfpEXX3yRUCjE/fffT36ZhwaomusIvFZhoWSWGMuKanBNhoJtQbI/gJLPkQk28d7f+gy/8oWv8J5P/Zeq//ve8Z4F+QwLgV8N0N+aJOuH8MQwqR/9CICeHfXlbS4cnbr8i/d82N1P/jGUmHDIFc7GKfZfW+jtYqJUHANm6bWFwKl0hlRADPzXx10hMKeKU1v3cgQuGLM5AhUL7HnOEXgjjsDiUBqffZS8JDGqqmweqCgUcvut89bGxUTvFMKcZkJdGh45dpC/eqaXv3qml09961USswWAuu6E+vViMZQgpuWQnKFkPlMiPXPpYDCwqY66D29FifnIHZ4g+a8XKI1nF+eDLQA+p4L8lKJQv4ryA85iN9VRdE6PxsSYcHA6+f4A6P+J+F8lBHaI0PHaHvF4+jxcdF5F7uukfmsdjao4sZMTOQ4/cQXn6WJgGvDyX8Hpx+Dko9D3YzDyHKh5C39kfEBsYqeZCY6S1ZPEcu5garUIgZKuo7W3AxBNFsBxthmSSC4vT3ghZRfz/VfdYn6bMhb2uQTBYgE62tG7upawZXMnsHu3k1gMcgcOXLL+pzbuQ5JNisoghycvXX8kMOaGBnuOQA+PRScZr47E8Ekj7CuopCruv54QuHqZ/tpJpr5ynKmvHKM4LPJXpZ8ZYvprJ5n864OMf+eUuK+bq6uI50piSYXAxx57jAcffJBt27axa9cuvvzlL9Pf388B54afSCT40pe+xB//8R/zxje+kb179/K3f/u3PP/887zwwguX3adt2/yv//W/+OxnP8u73vUudu7cyVe/+lWGh4f59re/vYifbu7IytwdgSOZESynMmZLSSGT2VSOWSyFgsjy8nK8XQ91/josVWbQyRVe6u+nND5O93ZXCOx79QqVRNtugTX3QucdSKlhYm/wodT60DrCJB7rW/jGz5G5hgbvP3WG9mwju/J5NsTd7TOqGDB5jsCFYzZHoLwAQuCN5AjMn53B5ztFv6qiGja7ztv0N4bJrd2Mf/u2eW3nYqF1tJeXm+IQDk/SUStmEU3L5ukzzvkvSVXi//bYGGZptPz44vDgWYJb6gnudVzmls3Md8+tyBBho2gSlGewEaHBVRWDV4kQWBOoZdQpGNKamSKRKYjckLpT3KP/BdGxTFSIeDWOY3Q2T2ApC6nq0F9ZVwjubaZHl2nVQJclnn/4LCeev6gAyWJx/Nvw0l+LNvsi4jNG2jirrGNtdzfbWyOkTXfStKbgDqxWixAIbp5AzbCocT5uxpohXpxAXSbR28uJmd7vsbEgsyNnUTu4BckJj1fXrXuNVy4/lGgU30ZR5Cd/8iRmOlO1/oGNu8v93TzjF7+cVwNxdMVPSK3xcgR6eCwBU+kp3tXewts6Wvnl5kZq1GF8NsQNt1/rhQavToxEoaoQjDkuwlOei7/IQ2t+n5/f8B/574UPwR9tgJf+aqmaedNzXULgE088wW/91m/x0Y9+lH/7b/9t1d+NkEiIZEZ1dSIv3IEDByiVSrz5zW8ub7N582a6urr4yU9+ctl99Pb2Mjo6WvWampoabr/99iu+plAokEwmq/6WguvJDzeYdl0Pa4ozKEU35KkUWIZVD6+D+oAQ/E51uKJm7uAhGjsjBKI6qk9m+GyC0y+PXvpiSYKee2DgBUgM4JNeQlJlSoNpir1JShPLy/lTlSfyGhyB5wYHGQiPcdjvJ5J2v5+kLF7rVQ1eOGzHqSBbYJrFed13ZdXguToCCycn0Izj9Gsqt56xiWWhayKNHgsg6/pr72AZolcVDLFRA+P8xze7VWCfOlkxCNz1cyCrFGydGi1HKe+kTqjzMTNaPZCsJPL6DpQa4Rg2J3PE/+UctrmyxMB0vEDQniYrSeRlmVgakrU6qCpa2yoRAvUaRusk8ipMhaJMnjoHsgKdt4kN0mMw0wvJUVEtWJJdIdBxiwIwfe6SfQd2NNCzqZaQLFO0bOGwn8wxNZS+ZNsF5+BXITko2vm2P+Il82563/p1vnGyhh3P/Ck7TnyXrOwWR4jk3WN1VQmB3W6ewNYZ8V9SZWJ6I+qUjJn0Qj4rGcmd47TP4khARh51r5H62jVL2KrrJ7DnFlAUtK4ushf14f2qH7/kTOCo7iSPZNvUmCZ5WRwbtXqL5wj08FgC0tkk53WdAU3jVb+PiDxJ2C4xWXTHuJ4jcHVS7KvWUkpjov99NnOW8/5BplSLF/0yqewkvPL3Zcc/iJDi1PNDFC4kKQ5efgLfY36YsxD43/7bf+Otb30rTzzxBJOTk8zMzFT9XS+WZfFrv/Zr3H333Wzfvh2A0dFRdF0nFotVbdvc3Mzo6GVEH+c1s9tc62s+97nPUVNTU/7r7Fya/FCVQuC1ViGtLBSyppSmlK3I+xdbHYUimoLCCniyQgjMHjyAJEv89Cd2UtscopQ3efxvjnPo8f5LnTwb3lpelM/+kNBtLeXHmZfHFrbxc6QqNPgajoGxadcJGa7IERV3OsCeI3DhsBy3rQxY82xrl64zR6CZKWEPvYos5enTNN74insuKG98/by2cTHROtxrclPcJlVMsbbVIuRUnnvq9ATmbMXfcBNsew+6VGJzzSSN6kn0gEJ6usDgySvfo2RdofZnNhLY3Yg5UyDzwgjpnwyvqErCmXiBoDJTrhjcMmMTnSmCYaC2rBIh0FfDsS5QLWhJzZA64uR37LrT3aj/BRh8UYiCwUZocPIO11dUzJ48fcm+JUmi5oEedjT76dAkVBn2f+8Cryx2iPB0L/Q+LZbr1jIevZVn//GrPPw/fpsNyVOEzQw1BCgqFcVCtHB5edUKgdPiXMxYcQAkWyJz4FIn2M2KXcwyqYjJTdm2qZlxJ5H8yzxH9pWIvv3tKLW1lPr6SH7/e5esbwuK40OS3M/aXTJIKAo/DJewsKj1NXmOQA+PJaBQcM0WRUlCkmxa5TEm8xVCoOcIXJUU+hJVj0vjWayCwVRx2n1Okvh+OARjx2DkFQDsksXMw2dIfOc8E184TOLxC4vZ7JuOOQuBX/ziF/nyl7/Miy++yLe//W0eeeSRqr/r5aGHHuLo0aN8/etfv+59XC+f+cxnSCQS5b+BgaXJCyRXVQ2+RkdgynUEdpoljJwrBCoNq0MIbA6JQc3pdonZrl7ugKggV9ceprFLOB9b19Xw/LfO8sMvH8c0KlxUrbsg7Ih/558muCMKTqLa7MExUVxhmTBXV+hM2r2g+mcdgVqIHKLT61UNXjjsiqj7eXcEXmeOwMLpGTR6yZtbGEvVsatPDJxTfgXfLbfMaxsXk6rQYKdv0Z86zz0bxLVhOlPk8GDcfUH3XeWQuLWhIWYvraO9SUzzyt+nf30M/4ZakEFtCZF8op/soZUjNGTGp0kYTZw017El62dzyU2foLWtjmIhMX+MoXoJ1fkZi6841US7Xyf+2vfB+adExxIg0gR6UCy374XNbxdhtud+dNn9+7qjqLUBdgUVZm84Z/ePUcwtYoXag39XXrRv+TBPfvkvsZ0UIBk1TFoJEfW1UlRcR6A+I1yLciiEHAwuXlsXmNnQYHCFwKztOjQz+0fLYn0uU+Ibv/cS//T7L/HYXx1d1HYuB6ZO/4QBp1BYY0knknEnOgNbtixVs26I4M6d5Xyeqcd/iHGR4WBbw8ZLXlNXEH3CkgRnzJOE1TrPEejhsQTkiu612pAk8pJEmzzCaM7tM1vF5TMG85g/LnUEZimNZJhQp6ue/+dISCwc/CoAqWcGsRLu8VHsTS6rcfpqY85CYLFY5K677prXRnziE5/g0Ucf5Uc/+hEdFSFgLS0tFItF4vF41fZjY2O0tLRwOWafHxurdnpd7TU+n49oNFr1txRUiUDXEBYK1Y7A9pKBkXV/UqkuNm9tW0oagmIwmwlIDNXHAMifOIGZzqAoMvf9m03c+3MbGTkrFIJcssSxZ9zvBUmCDW8Ry0YOZeJFAtvEPqWgSv709TtZ55u5hganC3FAhMJoWaFMScGa8nrVCw1eMOyK/JsL6gicQ47A3MlpfPJx/MoJzKk8486lbLA2ij+yNNe1+UBvr8wRKAb95+LneOPmJgAawjov91V0LjbcX15cG56mtlkIq0bBZGrw6mGeob3N1Pz0OozRDHbOIPH9Xqz8IopAN4A5fpZm/TxWcIATwTyMuUWUVlNo8Jl2qVysRz12RCx07IHhQzC0H059HxzhrMop2LQVLvxEiIRnHodsdYd0ltCtzaiSRIcuzkOjaHFm/yK5x3t/DAe/gq34sCWFA8MhRs8J96Ica+R7zffzt10fprZjL0XVFTfkadHpXk1uQAC9p9IRKP6bsslorg8A2aeWi/tkZvJMDqSZ6E/Tf+wKBcRWMb0nHifj3Dtq87WEMiKJoilJBFdgjkAQBWNq3v1uAOxSicS//EvV+ts7t1Y9DhQjdFTkHzPCJq3BtZTy8ztZ5+Hh8drki9XplwalEI3yKMNZN6WDFxq8+rDyBiUnFY/k9KOsZJFCX5IJzZlcd6L3RlSNL8RqsVPjZA8OknlxpGzWAXF8FHqr3YUe88echcCPfvSjfO1rX5uXN7dtm0984hM88sgjPPnkk6xZU53DZO/evWiaxhNPuFXQTp06RX9/P3feeefFuwNgzZo1tLS0VL0mmUzy4osvXvE1y4XryRE4lBKClwS0GgalCkegVF83r+1bKur9rqvlVGtMLFgW+VcPAyKca8frO3jgV7YTrvMxeHKaZ//pDJOVA/6NrjDA6R8Qur0FtcGPOZ4TF51lwlxDgwtmHIBIFqTZkXHIFQK90OCFw6pyBM6vEFiZI9C6RkegbdrkT8+gyefISRLbjss0JWEmJDFWE8EfDr/2TpYpciiE4uSObY6L587Gz3LfpkbWNoSYTBf5zisVRR1q2skGRDhxSyBNXc1kedXshMHViNzZht+ZLLDSJWYeObsiiodYo2cBGHMcpbPFQuRwGCWyOnLG1vhqyPkk+oQGTGCwFzOVAtUH694gnixUzERXVhRWfSKHJIBZgKc+B4UUFDNV+WkCOxqRfArduttFOvbjoYU/BlJj8A8fgOwkOV8z3+nfyLOPPoZZKrH57teT3PNuLEn8tkrGLDsCfUUbKSdEwdUmBGptbeDcF1tnxPdvyzCYOYWlWJSG0+RPCoUwE3fFHqNorohzdj4ZG3upvBxNthNwKoinAzqqvnKjA2Lvf195eeaf/qnqnri5rjrkOVysJZaPlR+P6+fRZB1ffmXmx/XwWMkUjGohMKUVaVN7GUhXCIFeaPCqo9ifwgnKQal1x6GF3gQTmuiP15kWP5VoJq7IfL42wg8GnyT1zccxE0X07ijBW90Ub/lTy8ews9qYsxCYz+f54z/+Y17/+tfzyU9+kl//9V+v+psLDz30EH//93/P1772NSKRCKOjo4yOjpLLic5tTU0NH/nIR/j1X/91fvSjH3HgwAF+6Zd+iTvvvJM77nA795s3by6HJUuSxK/92q/xP/7H/+A73/kOR44c4cMf/jBtbW2825lVXK5clxDoOALrbB86YFTkCJTq6q/wqpXFbLEQgCOtfgK7dxPYt5fcseNV2627pYnt97Zj22JM98w3TrsDgbX3QctO6LoL+p7B1x3GNsS6/OkZu3DAZgABAABJREFUjPjySDg+l2OgmDOwFOeCWpFL1Qq5A35PCFw4qh2B8+s2qHQE2tfoCCwMJFHrJDS5nzOKxnpH37aRyPo0fMHQvLZxsdE6hVu8Lg2aYXMufo6mqJ+QT5wzx4aTjCVdh1S68dbycqvlJpkfORu/pveLvX0tkk9BXxsld3iCmW+exiot7w6rNCMKYIypCpJtU+/oYaulYjBAzBcD3OJRkm2Te+UVsbIiH2yZzjuqH+/5BXf5pb+Ev/kp+D974cR3yk/LPoXgniaaNtRQ75NpbvCTnM5z4cgCu8y+9xvQLSIuknmZC9kYZrFIMFpD89r1nFXdqIZi2ijnCIxVzHmtNiFQUhRq3vUuJjq7CeYhkrWxFZ1hNnIhK+7hJaeYS6biPm5bkEvN7wTNssYySRd6yw/bxmvL6RFyoZUdKu5bu5bgPa8jePttWDNxUo89Vl63pmYNYipcECnUEiq4A8hxXaTPCRVXriPew2OlkjeqQ/InFIUW7TwXKvpqlucIXHUYMzn09TVo7WG0NnfskRmJM6OK8VKnYdBaFBP264pFng/4KTWJe5ha56fm/p6ySjU72ecx/8xZCHz11VfZvXs3sixz9OhRDh06VP57ZbYzfo184QtfIJFIcN9999Ha2lr++8Y3vlHe5k/+5E94xzvewfve9z7uvfdeWlpaePjhh6v2c+rUqXLFYYBPfepTfPKTn+RjH/sYt956K+l0msceewz/HMMkS+NXrjC5EFTmCLyWYiGZUoaZglDJmw3REZp1BJZkGTWych1AlVQ6Ak+0KOReeYXc/gNknn/ukm13v6mLaGMAgFy6yLlDTjENXwRiXdD/PEycRDr7OKF9TmfRhuyB5VE0pMoR+BqhwfHxLIYWByCas0UINGBW5IfycgQuHFaFEGjb8+wIVObuCCycnIbh40iYXEgG0B0deaRWHFMr2REIoLcLIbCoQNeYzUx+Btu2ecMmV/j4UUX14GLnvQAYFkSzh9EDQjAcPpe4JqeQWuen8WM7KPYKNa04nGbqK8exsstXXPDlRFLlcUUhmgXd6V+rqyQsGFwh8GRnRfGoAwfEwsVCYKwLatqrn2vaAh23uY/HjkBqBH7w21ARxhS5r4Nif4r1CoxN5ilkDJ795hnM0gLlqpk+Dye+C+eewKrfwD+dWUvJUgnV1vHv/vLv2feO93B+QvRJorpKPm9QVMWkaW1FV2W1CYEASk2UxoELNKTg3qM2uhonoAcZcHJLFYeFEJi+aEIvPXMT5YWbOsv5ionEjgn3GpePrXwRrOGjv0z2xZcwZ2YY///+CCsrzlVd0WkJusJfqBDDl3NTDI1qog8YtWsXt8EeHh4YFwuBqkKtMoxpuDctLzR49VHsT1M8m6A0lMbX40apjefdsXabYfDBqbdzt7aRc7rOI5EwA5nDBPc0Ufu+DShhHb1L3Lssw8KYzl3yPh43zpyFwB/96EdX/HvyySfntC/bti/79+CDD5a38fv9/Pmf/znT09NkMhkefvjhS3L9XfwaSZL43d/9XUZHR8nn8/zwhz9k48ZLEwq/Fskf9s/5NTdCdVjoazsCKwuFtBeK2DblYiF5TVk1IlClI3AyVkBxKkLnDr+KfZFYpmgyr/uZ9bSsjTIzkuW5b56hNGs73/OL7oYHv0pwX0t5Ijnz8uiyqA46lxyBifEceU1YAWtTCBukFiDvd0UkzcsRuGDYUoUQaM5vDrkqR+A1Vg3On5xGl4UjLD3phkElAgFUn6/q2FqJRN/+dvQ1a9BNuLVf40LqAtP5ad7g5AkE+NEpVwiUO2/jdLIeC5nG+Et09TjumGSRxMS1dSj09gh1H9os0ggkihTOxpn86nEsY3l2XEO2cIiPqwoNFRHQq8kRWOMTncrKKvKzxaOItkLdenfj1t2X38lbfhc+8kPY/A6IOTnoEgPwwp+XN1Fr/ITvaqNZk6l38tUkJnK88uQCFRM7/a/lxXjTvZSK4vq/Zvc+JEkiXzIZTojj9jZ/gIJhU3IcgfVp97tQm1afEBh73/vLy288bFFCott3AEsW57Q5lcfKG1WOQIDU9M0jBCbPv8SE5orUzRXfRbFu5YtgwdtuJXTvPQAYIyNM/vVfl9fVBdw0OKrpQ8m64cIjurgQxqSmmy5U3MNjqSma1dfgSUVBkmw2Su591AsNXn0YFfde37oKIVB1Q3xbDAvTbuAWY0/5uWH/ILF3r0dyxleBrfXIUR0rXqBwzssTuBDMWQi8mcifmcFMLl7I6FxDg0czo+xt2sstjbewNZ/GKknYpjh58pq6onPCVBJQA8gIQUvSMii7dgNgZ7PkT566ZPueHQ3oASF6pGcKHPyBU3p8/Zsg4lTOPPMDVHkK38ZatPYwclgjf40hgwvJXI6BmbEMOSdZfG3eGQCUcpQ0d1Co+wPz30gPoNoRaNrzKwTO1RFoxPOURrNoksgR5xtzj6O8GsK/wsOC4f9n77zD27jOrP+bhg4C7J2iSIrqXbbc5N57ix3bSeyUTd9sirMpu1/6pjjZVMdZ23GLHce9xHEvsiUXyeq9UBR7J0H0PjPfHwMCoERSlCzZEsXzPHgwwFQAg5l7zz3vOWCZNZN4czMAp22IIeg6Lf4W5le4ybcbxOfbDf3EUiSd1Z2LL2HBJGqIqMzJfYfSWheFVU72buwb935tcwvJvX4GgiSABIIiMviP/a87HzU0TSdHNIjAbslEfiDT6VVKJ0ZiMGSIwEGnwPZSK7uLa41BxHiqPH/GRZBfB4UzoeaskTcy5WSoPAGu+xvc9DiIJiNUZPcrw1SBOedUIToUFk5xIAAlU5xseaNtP8LpsKDh5czkYEa9W7NoCQCtnnDaxrA+VQocTXkEupMmrEuWYF24EHmCpENnw1wzFX+NQfBW9kNOj0i1eR2RLNuERGeQ4OA+ikDP0WH58WEg0LqF5lRisKyJ5EVVPA43XquZZP6xbxMjCALF3/0eKArWxYvxPf4E8XZjMPzk0pOpcdVQ66yjMFRONF5Fburc6JKNc8Ai2lCPI2J4EpM4GhDXh9vm9KXatue5u9BSA2yTisCJh0CP0UgJS/DuQADLzDzkElvaHxCgKOEEJEq8GXFXh2kQUdJ5u/1tvvnmN/me/394TnwNgNg+KcSTODyQD7wIXH311dx///3k5ORw9dVXj7nsvmW7xzJM+i5C62aTc1blh7K/bBJIG4fCaK9vL+t6jZKo67UwiSx/wJgio5gmjjmyWXAR0aOIcgB19jx4xeg0Rdavwzp3zrBlBUHgtI/V8chOD5qqs3NVNwWVDmoXFsHCT8CK20Ayw9r7sJ/wBTwP7QAgvLYba/1HO3J+MGEh/d1hgimvhdyYzpC8MSJmbrwTRRV6NCJbESjE4mixJKJ5XJfUA0I8yNTg6E5jlE0SGonrUNFpHFvQAlHFTL792C4LBkPVZl92GqEVKynywZxmwydwRt4MTq/P5+lNewEHO7r8LKjMxerMYau3hBPyDXLMsfdeurqXAgJ9ra00b3iAvuZGiqYaaZq9Tcb0aM8m0cz0xAJoMI7n9f/5E3va1457/SO9TEl5NVdIfjSgTxZZ6MsQyJvWr2LPl945rMfzUX3mnqY9CEtBF8Cbo3LKrkYiPfDS92+lNeRLrTfHeL73LYqWtx9wXxeV1VDVavhIrv3Np1nXZknPm19yNhWeGmrMIo0thgL70Z89TSL04mH7zKXVlVwSfhNJgKBqZd1a4yQTJZkpcxcA0NRvlFLZNbD7jPZBIjUQVOmViaxdC0Dhf/zHQf2vjhV4zziTnL17SAqw6C2FstM2k1SNQBBBEIh3hI5rRWCydzttNuP+kxPLxTmwDUvMS0IUEYsKPuKjOzww10yl4N8+R/8dfwGg91e/ouJPf+Lri7/O1xd/nVg4wV9fWYkKlCQFBiXok3XiQhxZk4g2eXHkTw6OTmISHxYS2nAisD9FBOYGdpKQLses6mjxI2S3MYmPBHpSQwmrRIUY/1P8ELbNl/GnT16BoAsEnnsGUsK+ooSh5C7pc0NKNNgiAQMNvNryKq+2vApAV+4ULvGeTrxlkgg8EhiXItDlcqVlmi6Xa8zHRIJb+QuhNW0fWsmoeJCKwBZ/S3q6OpFMlwWDURosTyASyCq6ARCkKMFpM9Lvh4dKwvZBbomdk6+qpW5JEUFPlJfu2srWt9rRF30SZl1h+Om9dzvWsgiiwyDfItsGUEMfrf/XwXgE9nX7CEnGuZkTy5yjITI33ol0DhxtGBYWkkzQd89WEofJk0rISg3Wx6EIjO4cAJKYxGYaoxacqcrX1gIZBOGY9wccgvvaTIngOZt0VnasZOnDS3k9egvumntIajrv7DECHcw2O5f+7B68FiON3kUf1fILqbVzCftkgp4B4uEw8XA4PT3qc3yQTQPL0/uvDNYS8niIh8a3/pFexhY2SKpBUSQpZBKDAcKSdNiP56P6zCGPB4tmXCd3ZazAMLV3HvK+dqsz09upim8aNq9D24OqJ6k3iyhCqrw8WETIZ0ovE/FD0OMl7BPT78VCEUJebVzHkRtpQBKM/3mj34W1qJwFF17KJf/xbUxWw/N1iAicE5fTaXxDYSEF2aXBxZlS+YmE5LLTePQ0AZ8D8vpFulbaqbW8Szz1XQQaugl5h19/g8cRERgJNhJLDSCVegqwxLwA+K0mTBNAET6EvM98BqnAIDYDr76G94kn0vMUS6YNXRg3qkh0QaBR34COPpk8OYlJfMhIjKIInCE2EU3dTydLgycWVG8MEfhZxd2sd63j7dCPWfLQEloCLQxYutPLFaiGZU1xIh9JN9owrYoCXZtoD2aszzrMvWhoJPsjqIHDG8w4iXEqAu+7774Rpyc6FLETs+UFEn0LMBUf+dS14WWhByaksonAqkSCZDgz0hlVZJQJUhoM4JDdeFL3is4CJ9McDrRgkPD69WlFwL6Yf04lr91nJAvnlztY8ehu+tvLOMNdhJAwyr+E5T/Gtui/CK5oB1UnvL4X57Ly/bb1YUGSxu8TGbNn1A/OWIbTj+vGFyUrJsQsQmkShxfZpcGgQkKj745NFNw8C1OFc9T1xoODUQQm+yOGWX5+B37/VHb7Y4gVGqaIQJ/TUAUf64nBQ3CeeSbk57JHGcQW1enqMxLGdHSS4gCxpEZDj0GICYJA4ZSpNJWcg9L4IJps5Zy8h3h+sIbuxEwSiWocebswpcJ1HHn5mGy2UZ8Bek2NBCUfQhxC1hBXTPl3hLhIo2Mb3ryuA64/nn0c6jJu0bhn9MrGf74ge/C0IA+HHj+sx3OkP89Yy9j0ASIk2F6VITudHi+O2vJD2lfAOhVPwEmeHKCILsoLZ6XniXaFnkALZaZaZlokNkeSmCw+4AoCvgiW3NMY7DdhyV2Ad8CB1dGDJfdU/IMaZpcZjd049jk39j2OcqmR7kgeDrNKY7yCtb4ozXaV59rCLG1Yx6XzyvCG4yypcjOzMYbbqTAYDKOKxj3CHcgMFijFmeCEiQRnQR4b6kQuWquiAZJLZlHgQbzmCmAW/VtbiYaHD0YfN4rAeIig1s+SiJsAVmZ0ZNqrfqt5QlmESA4HRd/6Fl0/+AHm+nq6f/ozRIeTnAsvQBQFTBaJeFQlN+ECDAuIsK0XKSwTa/Ciq7ph8zCJSUziiENPxPj0KyqiBv05Am+daLRJq8V2NmgxXJgmS4MnGGIDETbadlEVK2GdfTsIOqqu0h5spyvYkV6uUKoBQEaiNOGk3eSnRZHROjaw07czvVxIiNBm6mZKvIx4ix/rnImhcD9acHjq2CYw5L7lxHd/ElPx9CO+r4MJigBo9RthJjm6Caeu0xfJkAcTySMQwKnkQor36o56mLdwIaGVK1E9HuKtrZinTNlvHUEQOPfTs8gttbPh5RZ0DRo39qHWXc3Z1icRIh5oW439Yj/BFcY6scbBj5YIVMZHBmuqxmBbI6Q8su0xCTBupjHN6BzKk0EhRxTZpcGqopHoMhQ7vpeacZxchnX2ofsyZXsEHkgR6H1+L5o/QZJ3yLXsJjlYxKx24zzaUWZ0jC0ToDQYQDCZyDnnXOoeexyAlds62VmbmidFEKQAu1PeJEOY+slfwjul8MZPQYRZjuXE/A6iQi1m1+cxORyUTXNzwRdLseUc2E4h6Y0hORQ8T+wmsrEPdJjnXMa5f/4agvjRdTD3/vJrEIUeyfjt04pAUeTS//czBOXYDovJxsoXPsFA3yZaizUCihVnIoLbH+Lzd9w/4qDQuPBeAbz8fQA+vjgKn/wOyMY9NNowSP89W5liEqmaUURPWQ1rnm8mr7yErj1DjKvxH4uGDCIukRq4li0nY3YtxuRwYHYFKa4r5uQrazPnStQHv5kOpgiaJY/fVXybtoCKHISkHufFrd14wwliSZW+Rj9nhcx4SWA3ZwJvXKlSYTEnB9F25ActPwo4bBb2lgr8+lqRnz6kEdorQkTAUrYakrXIopu0VFJQQZfobx/gzi/dPK7y7LzyOQy0byO/chaSHE3bBhxNpfGLL7mSJZdetf+X07eLFkVhrdUC6FzUmxkk9NnMlE2wc8J1xeVokQg9P/kJAAP33Uu8pZn8z38ek00mHlVxxgoZIgLbpJ0s5jL0qEq8zT8sxXISk5jEkYMeS3DxOuO6HDTrPHuKSAJQBBVVawGmoSc0dE3/SNtPkzg0aOEE3uf24jynksDrbbgunkpvu5+3ctbyUu47w5btCHbQFfUAYNU0bPZ6Iqky4bJEGe0mPxFRZOvup/HnDucvttkamRIvI9Y8SQQebkyGhYyBuDYFs7gdcfsjH8r+DiYoIpwI0xsxEjLL4wIxzYYvmEkLjCryhCoLdZkzqXB94QEcZ5yOeeZMBJMpkxg5AgRBYMlF1Zx+w3RMVgmLTWHnhijro9ejF8+DYB/K1juwzC1ALrQS3TlIoi886vaONMZLBkdDSQRzRjptjWWFQ6TOnUl/wCMLXcpcPpM2EdOUHExVTmJ7vAw8tJ3Ae52HnFKYnRqsjZEaHN3lIbrDuLG6FMMjTPBmSERBN5SA5glSGgzgOuec9PTsXcPTf0VLJ419QdRsOwdJgRM+B1NOg9waZliWc/WMB5h9aikhb4y+1gBrX2jhsZ+vGdfvJbvNCLKIUmaHVMM10RnC/+YRSpMdJ5SIoRDfVxEoFxVNKBIQwG12AwYZvz3f8PBVvV7iTU2HvtF5H4eTvwbOUmh5Bx79BEPpHOZaN9bFxZgKrUhNPoRAHLvbjNmmYHEoKBaJpVfUYHUqVM8rwOYykV9up7zeTeXMPELeGP7+CCFvjA2vtNLZ4M3sd8sTkDTO46cTJ6FLJkySyIVzSodOL3b3+GnoCTIvnvlv51lTTKOu40h54ykTtCwYwJYiZXdVCERMxvUx6jNRIr+AwMPEs5qzgmDcOzXVRNDjHUd59iC9HfNI6jfS27aE4KA9Xd4dHIx+5KXxoUEPQc8Aq59+jHce+/t+302yZwftWYOIpQOZNsxEUwSCcX/MvfYaXFddhammhtiuXfT97vf0/fGPmFNBceZQJjSny5QpR4vu9HzoxzuJSRyv0PVM+zUV8s4evQqfloOsZ+7Xk6rAYw+J/gi9f9lEeEMvvX/aaDz/eSO+Nj/95k37Ld/mb6NbNe5NpUkVLBkBT6WlOj39rh7Zd1V22Q1bnljzZHLw4cYkETgGTGILgqBh6n0q3SE4ksj2CNQOQAS2BlrT03VxH2YxjFkIoLkrCJgVwyNwAoWF5GURgZ7oAOb6emI7dqBHo4TXrzvg+tOXlnDpV+YTDRodhP7ia0n2NhkdsO3PYC7WifeG2RlRWf7ADu799kpevnsr29/pPGKfaSSMNywkGkyAqSf92hLPUoOmicBJReCRRLYiUEel8HNzkQuMDpeUa8H/UjPeZ/agqwdvhDweRaCe1PC/3oppihNBH8QtNtAniRR6jOMKm0WSonFNmSiKQADb0qUkFON8X9CoD7s2S5ZOYkmNNs8+ZL7VDTc9BoKAoCexDKyjOPQKdrcZTdWJR5KEvDH624erCcdCzumVFP7bXACUUjuB11oIrvpwrxfZSCRFeuJ1tAo5KEkdtyFQRSkpGXvFYxBVzipKLLUkw5VsK8yUwobXHfheMCrs+VB3NkS8gADuKthmhJ8JooB1mptkfyqcozPIzT87mUu+PJ/P/mYZt/ziVJZcVM0nfnIyF39pHp/+1Wlc/18ncvGX52GxK9jdZkQ5c40edl9Z/7f05F9Dy2j3RphTnsPtNy1i6VRDVTwQSpCIJKlPGNcFRQCb2SD/HBGQksY1Qi6amGXBAFaTmWRoKmq0nK58496mhkXERJQ8UwfRrMukJGfaT/bcyhHLxLOnbbnzQVcQBON6mYhXYc8tI+A7EYv740Rj07HlLh11/dGeD9cySorIiwYDBPr3TzwPtm2lI6v9WOg1fFJVQSBoVtI+kxMJgslE6c//B9fVV6NHYwhWK5LDiT1hfHY5WMfUuM7UqMYmRwg1RUhMEoGTmMSHh2xrGyl1jVbN3bhEPxYxUyY6SQQeW4g1+ei7YyOi3eizDv1+SpkDc2uQLsUg86xZ/ZcmXxN1SZ1ZsRizEypSeRWi04SgiFTnT00vt9mS4S6UVPt+i82PuTiM5DKjJyfDZQ4nJkuDx0BcnAnsRFab0VvfR5iy9Iju72AUgc3+5vR0TcLonAR77YihdqyiQFyWJpQiLN+aKbP0RD1Y584FRYFEYkxFYDZK69xc853F/Ov2TezZ6KfEeTrz7c9DMopNWE6TOoddMQ32GCMOe9b10tPsZ+YppYdebnaQGK4IHP0ciIbiqEqmQ2DKUopEk4ZSZJIIPLLQhvn4JREUkdyP1SPlWwi/340eUwmt70GLqeReWYdokQmu7kLOtZDoCWOqcGCeOnKJkjAOj8Dgu53EWw0/PEv5TgSPzkbBQkVKCTaQ7zBCcQCzbeIQgaLFgmd2OcUb28gLwtQeaCoZmmc0LHf3BKgu2McX0WSHi26Dv18DQHX0n9zy40+y5T0vKx7ZDUDLlgEKK8fv72ie6iLvphl4Ht0FGgTebCfpieK6cOqHWuaiqxrl0hrMYoB+pYy8LH9Apaz0QzuODwuyKNMdbUS2wY6SebDFeD+8Zi25H/vYoW+49iy4/m/w94/Bmr9C5waYY5wv1vmFmFZ1EW/2k/REGHyygdyP1SOIAiarce8eegaDPDRZZBacW8WCc6tIJlTu/+47xEJJGtf3sez6BJa+1dBr+NgG8uayo9MYIZ9X4QagvtjBe3sHQIdzIwpyKhm+0iQSTQWF5GVx13LJxCUCHSYLomkQUfHSXKhT02W8H/PLmIt3Es3qcBQXFNPRaTDhSy7/FosurEZLasimkT1zn/vTRlq3ZQiiaCSfqllfpnW78V5w0EVO4QyuvPWkj6R8LeDp564v3QJALBzab36ye3uaCLRFdBxhIxTDbzWBIGCyTSxF4BAEQaDgc58l3tyE74kn6f31r3Gd80VgLkJkBlPiSd5MhcH9y/YSV0QuIdETRg3GkRwTZ6B8EpM4WqGPQAT2yRLEwSZ0pedpMZVJR/NjA6ENvYRWdaGFk8Sb/VjmFuBYVkbfQ9uJbh/Aikq3bPzulYkke00KSUGgxd9MmwzIZhZLJtyX1OK+pBZd15neIcLrxvabcoogaTRsZop2NuthuuQwHs972HtsqMEEsnvi8BsfNSYVgWMgXnBZelp798iHpAwjgQ6kCPRnFIFViQS6BnrYWCdsUkAQJpRHYLEt4wngiw8gWq1YZ80CIN7URNIzvlFed5GNpZcbBqU7Iuem3xcbHsGb1UkQUv+MwECUwa4Pr1R4vIExkWCCpCmTgKckjM6JkFUCpFgmzu9/NCI7NXiosSMIAq5zpuC6cCrIAkqRncjGPnr/sgnfqy14n95D/9+24Xt+L31/3UJ098gphuIBUoNVfxz/a6lrgAAKawBoygoMihdkrAImSmrwEJJL56WnF+3RUUTj2ilZDKVVQ+8oyr5p58Kca6HqJGh9D1b+L1PmZAYZWrb2H/SxWGcX4DilHMFq/GbBFR0MPLwD7UNMwku09WAWDVK4WzJT5NPodYEycwbmmTMPsPaxhwJr5n6wp8hKx/SFmKZOJbxq1SGX46cx7Xwomm1Md6yHoDHgIggC7stqMU9zIzlNhDf04nls17g3KysS05cajLWa1Ni9uhve/CUIEmrNebxXdGN62TnlxgDBtGKDlD43ojAzIRNEp7jQzBSTSEgyRtzzs9KhJ2pQCIAii6jhagDaCjOfOeaTEZNeZFdmYMziy3jkvf9cE/d8ayVbV2TUJ9kIeKJpws+U+g+jQ+t2D2XT3IipYAl/X4SOVEl35ENOLswOe4pH9icCzYO706XBszozy/qsRhvAZJl4isBsOM88Mz1tig+VjgksSWRUJv8oe4VgbgzJZSbW5GcSk5jEh4CsihhZA1HT6U1VqjiFjDJej0+qvI4FBN/tZPDRXcQ7AsiFVszT3ORdM412Zx+Xl3+Ja+q/yb/V/Bg11T2qSCYpSfEZPeGMRcPMgvnpaUEQmOLOlAn3asb91WV2sThvFtNicWrjcbpTFg9acDI5+HDikIjANWvWcNttt3HrrbfyzW9+c9hjIsFbdC6abiGhlaIFQqCOTc59UGQTgdoBUoOzE4OnJJLEggpCqgMUMhvbmVBEoKMANZ5LMlJCUjU+p3XRovT8yPrxqQIB6hYXUTbNjZepDEozSJgKEHLKiCmZUts58zMkSvMhkAOHioMpDY4pgcx6CeM7EbJMwScVgUcWepZqD234tcG2sIjCz81FHTRUO6JdIbSq07jiJo3fSnKaiGwfQB2hUzncI3D/BpL/9RbDo04A+5ICklE/nkQ5nkDmN7cWVaSnzROoNBgg58yzSArQVAQ13Ro1LoPcF00eEMPs7gmMvvJZ3zcIHnR473ZyhE5yS43Oc3eTn8hBNjIEUcB98VTcl9ai+g0CQvXF6LtzE2oWIXEkEdy2LT3dI0sUeQWKfJDYsRPJ+cESrI9GFNoy12fVHCaR1IwBod5eYjt3jrHmOFF/fmpChz2vpt82lTtwnFSa/s+KZonwxt5xb3bWqYZvWX6FndB7j0HzSkhGiDRtY+v6aVhTf/W5KSKwvthJXVxER0dDxw6U6JBXZiecKg0epgicwKXBJkmkSDFC29qyvMJjfuOe6XbvSb/n1DSsqY6IrkM8kqRl68CI292zroeSGheySWTmKYZ6dogQjIbinPaxuvSy29/uZNvKDv72X++y8bVW/vXnTSQ/hJI2xWxJ3xNi4X0GJuNh2uRCPCk7iaoeC1L9LDSHw1AEAmbrxFQEDkEuzFwPTLGMh9T0oss4OxRG0nWmRTQ2JrahemMkuvcnUycxiUkcfuxrjVPiLWKbbNzfXEIXQwFP+oc4cDqJQ4Pqj4GuI5glSOpYpudScMtsRIvMhr4NJFEJS1F6TJl7bVlSpTBp3LviWf2kmc6KYdsusZdQYi+hzF6GpmsUWguZUzCHfHsxDWYTjSYT/YoxYKcGDxymOonx46CJwJ///OcsXbqU++67j7Vr17Jhw4b0Y+PGjUfgED86rG2LEdPmoYhdKJ3/hP7dR3R/h1oaXJVM0uOtSr/OEIETp/Sh1FGIZBpEtnYzmDRM+W2LM0RgeJzlwWCMPpx4mTFSvNu7ACXeD7tfwhY1VFWKAFWmjNqrZcvIHYgjgWFE4BhhIZFggoic6RBIqTJiIasEaJIIPMIYRgTu34gxV7so+vICHKeVY67OQQslsc4pwHVFLeY6N6o3RmhVF+EN+xMJYta29X22HWv1E1rdTbzZj1xqJ2dmN/nhVZhNncjezHk74MkQ2BbbPmWyxziq6hezsQam9sIJDXBGJHP9kyyd+yUHD0N+LZz8VWNajcPae6keUgXqsHNV1+jrjgH74mIKPj0H8zQ3ibagESCyog01dOQbLb49GfJrQFYp8mWpxMorRlrlmEa2IlCU/WytmpN+HXzrrQ++g2kXZKZ3vzxslnV2AXk3zABJILS6G/9rreNWIeaXO5h3dgWD7V6qgk+m33/Lcwtmv8QFYYUv+S00PLmXDa+2UJAUOCmmsCiuoAE+q0Z1UiPZEyZRY9wr8gKZfcsTOCzELIt4B41gmLbCzHUu5jPaTXZ/pg1QYRI536Vw+nQXZrsxv7PBSzw6vF2laTqbl7fT3ehDEAXmn1PFad+Yx00/PZk5Z5RzzbeXMOvUciwpH6Q963t48+FdJOMa7zyxh5YtA2x8rZUjDUEQMKd8/vYrDfa2oMS2p1/O7NBQd29HDAbTikBlAnoEZiObCJTD3vR0bt353DwYQAfWulT+mWdcG5K9H10g3CQmcVxBHX5vTIi9rHDIJAGTEEPE6F9pkx6BRz1ie314n9uLHlOxzMjDdUkNgiRC91Y29GTuv7qQ+c3zdRs1yeHhHxZNo7pq2bD3REHk1Wtf5Yq6K0jqSa6tv5Y7zrmDXHtmcNMvGUpu7UNW5E90HDQR+Ic//IF7772XHTt28Oabb7J8+fL044033jgSx/iRYU3TIHFtVuaNrv1TcA4nxIMgAodKgwuSEIhNxePNGMKHzAqiJA8jFo91lDhzQDdGvOO60ck/VEUgQHl9LnllDlrjC9PvFWCoavLtMkprAFehQap1NfqIhT+cEYjxksHRQBTfUPWoriOkfAEFa4b8UyyTROCRhH4AIhBALrDivrQG0Soj5ZgwVTpxnlxG7pUZlUloTfd+RIKQFRaiZY2o6pqO95+N6deOxcVEtz0PwGaziereLP+qYqNzNO3Ek8mrqDz4D3gUo8hWhOOMM9Ovl6zxMa9gHlKyDNHUv39y8L5Y9i0onAHli+H9u5hWH6FuSRE2l4ntKzpRD9GM2DIt1/i93SbkAivhNT34X24+pG0dDBIDRvqeRxSRUaiPuNPzTJUTjwgstGY6/oIcYFVRpvw5+OZhIAIrTgCL25hufAPU4dd/29xCzFNyAEj2R4g3j7/UcMbJpdRaVlGg7KU7Xk9LbCFt2olsV5L0SjoOTSDsi7FleTsv/W4DpapxnfFLOtcN+f4KEE99BXlZ4teJXBosCAL1ebXoqoVBB4RTg3Uxn0HS5SY2U1Dp4MTLpmJyG/e+3J4wdXMN0lhTddp2DLcQad/pIegxlJXtkso5f3mbK+9bzVNbOznjhumYrDKSIrL4oimcem0d88+uNAQsQuoBrHuphYAnesQ/vyk1mLOfInCwZVhQSNWA8Xl0SSSYsgeZ8IrAgszAgBTK2G2IohNHoozyVFtqm20PQTFMomdSETiJSXwo2IcItMVgQNF4N9VXUUSjPHgyLOToR3Iwc5+zLS42vPM71sH/ncr6hn+OuE6+pZSKffzu6+MJ5NJFIy5vV+wU2YqwK3ZEQcTtyKS/+2Xjuj2pCDy8OGimSBRFTj311CNxLEcdcjSBHmoYsvPXOzciLLjhiO0vOyl0rLLQQDxAhbMCs5qgKjJAkamX5mAFQ7RPyGyaUGpAgFybGS1pQ1QCRFSj0yXn5WGaOhUtFEIXBNRgEOkgvNBmnVrKyn/UkNBNKEKcUtMOY19JDT2SpLwyh6AvRk6+he1vd7Lw/CkH2OIHx3CfyNHPAXWwjaCcAMyYE4BuEBe62QwYF+tJReCRhS5lEYH62I0Y57IKnMsyhIxcYMVc4yK210eyL0K8xY+5OhMcIo5SGpzoChphI10h5AIr9pPKCP3CUCxtMFuY5zGWjSoiSkkJjmiYsumzsOWMHEpyrEIURC7/0m00PHw6ejSK682N7JgRQ1UEHM5+chUrWzu8zK/MHXkDZgfMux5e/zEABb3PEBq8mLAvThjY/EY7C8+vGnndA0AptlNwyxz6/rIJPa4RWtON/cQSTBVHpkRX13SkeBdYYKfZRECKYh5SRAoCclnZ2Bs4BpFdGmyxhEgWFmOqqyW+p5HIpk0kBweRc0f57ccDSYa6c2H3K1BQD23vQ/Xwdo/9xBJie40yxNCa7lGDf/Y79konJ5SuwByJUGLazTO+n/LOFJl3+8IsjMmoZpF4VCXgGV5WPt8k4VcErAmwLy1NlwbnZhGB8gRMiM5GfbGLbZ1TkB27aCvUmd4BybBEKOHGLnmZ6rkbWf5vbEuKCbzRiuQy427PkLQtWwaoXZhRTW5/O6P+fU+P0RvQuFJ8m8RLj6KtXI048xIons2Ccz8LwMbXWrG7zUw/qYRkTGXz8nbyyuysfbGZs26acUQ/+xCZF99HERjs2Jn2BzTHddyDxgkRstsQFBmTxZImEScqBJMJye1G9XoRAhkiMB5J4s07kdNCr/APt4Im6Gyw7+TUngU886ufogs6vU2NFE2tHfUZOCqW6dm7h/yKSgqn1DD3rPPJn2CDe5OYoNinaWxL3daedDo4PRJFFjqJMW+yNPgYQHIgQwTKeRbQNHjxO/RIEh3SyLqyyuJ5WBq2D3tvJiaw54+4/M2zb+bm2TenX+e6Mu1wn2goCyc9Ag8vDloR+I1vfIM///nPR+JYjjq4NJHXkpmbrd58cKqzg4UgCGlF2FhqsL5wH1v7t9KTDKVNOMVg5g8aMisTKjEYQJZEJN0g+VQhmFZQOc87l2RvL9GNGwmvXn1Q25x2QjGiYqInXg9AjtSHQ+wnXzaG+qs1DYfLzGBXmPUvtxL9EEr8hikCxygNxrcXbypQoiiSxedn/e6TisAjC32M8t3xwH5Clop3Xc+wedkegdmpa+GNfUS29IOq4zi5FG2wBUfSUAdvwE1+ihSwzpzJVd/5IV/4ywMsufSqgz62YwGS00nOhRcCIATD3PimQYLGhB729oV4YUv3WKvDghtBMP5DwsaHWfaxmrTKZ+PrrYS8h+7vZyqxk3NuqgGjw+DTe9AiR8ZjNtkfwSQYn3V7agCoyGvMk4uLESfYoBAYo8ZWOUWM4GNTuw/llFSpia4TXL78g+9kxqWQCEHHWtj94n6zrbMLEFIpweFNfcS7xihHz4ZnL7mRtQB0S2X8VqxjZb8fVYC1liRFN9Vw/X+diM01/Hebq0gUJ8B5ViU5500hmDD2l58qDRYUBemDkJ/HAOqLHOnAkPaCjPrZO5CHIsZY4niC+er/4ZSfxnWaiOqNkRuII6WCnfas6+W+77zN83dspnPPIHs3poJgLBKNikYJA/zedAef5lnEUDesvQde/i+IeAFYcG4Vt/zyVE6+spYTLp1Keb2b3uYA21d20tkwcvDT4cIQmacmkyTjmY5Qx9ZVdMjGdWxKb/oSRqwgH01VWXTR5eRkBUdNVAyVBws+j2EMCcTCScou/gaLIplz5X3HFkRBRAwJxMNhgp6BMZ+PlmVCgx5at2xi3b+e5vV77vhIvuNJTOJgIeyjCMwPGzYFK2xWfKKILBghTpOlwUc/1CxFoJxrhtZ3oX0NG8YIppxZvRQh4R723izH+Acx3Flegj4p5cE9qQg8rDhoIvDWW29l165d1NbWctlll3H11VcPe0wkiDps0+0kdaOBofdtMRjwI7nPlCJMG4MIHIhmPOvyU2WDSthgABKyREISkScYEQigCClFjZAgnDDKY6wLM6W9B1sSZrYpzDu7EmHqKen36suaKSg2blRKR5CCEmM6Gkrw/r+aPsjhjwuCKKaVoWpi9HPAHG6hLJlkQSTKvECm86dndfonGhl8tCFbEThSsu+BYJ2Tj1LuwDTFSWyPd5ipsiAICKno6mxFYHYJonVuIZ63ngIgCXhDGnuLYXelQu7SzDk9keG+7jqc55+PXFLCJWt1rnpXQzAZ3ohPrm8nPlaJr7ME6g0ikUAnhZF3mHVaGSW1OWiqzqpnG0dfdxxwnFyGUuHAPCOXREeQ3js2khiIHHjFg0Rwrw+7ZBDJ201mzHGdnNRulIryw76/owVD5cGibPwn/EtOxnbKKZimTcP/4ksffAc1ZzBkZM7uV/abLSgiztPKsS4oBB36795CrHUcJcIbHkpP3h89nVZFRwDmV7r497PrOHFqHopZ4rRrp5FfaGGKWWSqRSRsEYm7TNiXFCPZFYJxgwgcKg2Wi4qMUp0JjPpiJ8ngdOK++XQUO9hbaSZaUkuntw5dF/Au/H+IWgxx0704Nn0c2RFCcZmpzzNxwonFTD+pmLAvTvPmfp757UZAp/7EYtqLJDQBlogZH+h4yoqEZAS2PrHfsVjsCtNOyJRir3ikYZiNw+GGOSsIbJhPYO8e2lMDiFO7M53uREkhjrx8TBPcH3AIaZ/ARBw55UkVjySprp1BfqwYa+o+utaxGQ2NHCUfk81mfEdjPB8ty9hz8xiieWORSY/DSRwD0DSEffi9+kANxcESZsfirLOYkYXJ0uBjBclBg4gTLBKiTYG3fw8VJ7LRmZdeJier21qQVLHn1xKWh6vlZxbOZ7zItWT6tz7J2PikR+DhxUGXBn/ta19j+fLlnHXWWeTn50/4hufCeWXEd9UiS31IeoR4XwOm4ulHbH+SLJNg7LLQwWhm5DlPU9FUUKJGByRsNhnlYMrEU4FYJSdDf/+OQD/1+XbsJ52EYDajx2IEV6xA1/WDOidPvqoW9lwID90FQF1hI5aZN+J7oQm52MbC6W5adg2i6zohb4yAJ4oz78gq7SRZQVPVMc8BW6KVtRYzuiDgylKMaSYFUm3EydLgIwwxU8rPGKTtaBAUCbnQSiSlSok1+7HUurM2L6ImNbSU2lCLq8Q7jM6/XGRFsivobe8TUPNotQYo9OjU9AAkPlhZ5DEE26KFRLdtI/CKQdQUenVO3ePhFSFJfxDe2NnDhXNKR9/Aok/BrufBUQrPf5OTr32ah/4YJhZOsvO9bmafXk7JOEs+94UgixR8Zg49v11nvCEK9N+1mbwbZ6b95Q4Herb3UysZgTPbTJa0GhDANIHLxwqsBbQGWhGkGAhx2opqqGtuItnZRbyxkURXF0rp8N8+FEvSF4iyrsWLNxLns6fVjL4DW57hFdi2Gvp3wWAz5FYPW8R5diV9d24GTUcXjPAQOdeC5Bzl/qtpxnaseWgRH0+qpwPwuWU1fOO8adhMRpNM13WKfFHOcClo6OgJDUt9PnlX1xkNcCCQCKAkdJypQXp5AvsDDmFasRMtVopk8tDjCFHTpgGNtOVeya4Fn2PGlRfA3WeDtwUBKKh9hu5tN1EPWETYbc40eUUR1CQEfTGeihhs6umWPZDi8n6S/BQ/U+4zXqz/G5zwuf2OZ+apZWxb2UlfawCrU6F1u4fquQX7LXc4YM4q742Fw9jduWiaRp7moSMVMlbbnWn7nPT1b3PWvHlH5FiORgxLDo77SCo2YpEkgiDQWnkNJ0f+jxU2K+UJjTZTDwtPuhjXeUfe7uVw4s+fvYFoMEB8X5/ISUziaIQaA3V4f6wilk+PYxs9mNkaNbEsaCgC9diRFdlM4oNBV3VUr9HYkPMshkq+8Q3QVXYXV2AXXYRVH/NjYVbKxuBTgaqCqwIt/0RkvQENY2i1bp+gkLFgV+zIOiQF8ErGFiYVgYcXB60IfOCBB3jyySd58cUXuf/++7nvvvuGPSYallbk0ivWpl9vfPP1I7q/8ZQGe6IZw+tcVSPoz0FIKReCqY7ERFSDOeRMh7x50CBPRKsV29ITAUj29BDbtevgN1xxAqTUV4XqVqzzCxAdCsmeMGwdYP45lQiCwN4NfWx/u/ODf5ADYCg5eCwi0EQHeorwzIllfmtNyXR0JonAIww5QwTqSZXmLf1jLDwyrDMyI2nRncON7IUU0TikNoy3BSAVgGGudpHoa6Fw8CWckofXxKmUDmbUIKbq6oM+lmMVuZ+4iYJvfIOQy8y5m3Q+/aqKHeN/+uiatrFXrjsXLv8TRL0Q7MHy0pc4+YLMdWbVM43oY4WOHACSTaHoS/MxTc1BC8RRfXE8f99x2Mpg9KSGZ+deFCGOXxToNAkUe7MSgysmXlDIELJ9AgU5QKsvhvvqa4w3NA3v00/vt86qvQOc+Zu3+Nbjm/j5Cztp8xygQz3t/Mx0w6v7zRYEgYJbZmOqzoGkRnhdD76XmkffXvcm2PokesTDa8JJ9OFGEgX+7fSpGRIwqeF7qZnAa62o/VHkYhu2E4rJv2F6mgQECMaD5GVVIyslE58ILHCYyLWZiHZfRn9OpoM5e47EjKtSSc83PAJmg2iX9j6KYjeuy7FGLydfNpVr/nMxNQsKufRr86ldVIS4rIhowrjGnmraA4CGwLPqqWzUUkRx1yZoWrnf8YiiwNLLp2J1KrTvHGT9yy1H6qMP8/kb8glc9f5mcuRAWhFY15Nq0ksS5vr6I3YsRyPkosz1wBw3vDtjYaMdXXDidcyIaCQFgW3WGDutu0geg4EhQ6rQSUXgJI4JJKMI+xCB+clMcNEeRUEWugF1UhF4lEP1xdKDZHKuJU0CbjcprLGJhFQfpw0WUpUlirDoOjiKMdecxurmNjY1t/FWawdK+eJx71cQBHJTFj6DkohAaNIj8DDjoInAvLw8amtrD7zgBIG3N4y57oT0a7Fh7X4Jn4cTQyTQWKXBwxSBqkrYn+m4hlKdiYlYGuwyZ1RO7b4M6eI444z09CElRlpyYN4NUL0Mgl3IWjeS2/j+Et0hZi4sRE11FHa+14X2AYiB8eBAZLCa1JDljMm5I4sIVKUsInDSI/CIQs9SBAq6xsrHdpM8SMNjS31u2tRpXyJQTJUeaynFZ3ZZsGlKDsE37kUQjHNxvUWiNGt1U/WxpXT4IBAEgcIvfJ7QdIP0cofgCy0rOKE6l/5gnFBsDLWmJEPtOZBfByY7oDGr5Rvkl1sprXPR1xJg56qu0dcfB+R8KwWfnIVcYgMR5EIr/fdt+0DbHEJkhwctaZCeu/bxB4TjozQYQJQDtA2GcV99FaQGSHxPPrVfyX4w61xQNZ2fPT/cxHo/1F+Qmd41crmxaJHJ/8TM9H7D63qINvtG3l6qxFgANktzWDo1j8vmlVLkNK7VaihB3z1bCL7VjmmqQWZZ5xSQe/U0hH3MuIOJIDWdGt15AvZTT8V24oljf5YJAEEQDFVgtIpuYVb6/Y7GzZmFHEWw7FZwVyOUL8btfAwAPaER3eujpMbFRV+cS0V9Hhf822z+9n4rU/JtXFpvoyxm2AGEXNOxOnN5x30FW5R5kDsV3v5d2nsuG1Wz87E4jP9e1x4fg91HhmAaXhpsEEFbVrxMSE4wIxZnvl+irN84v821tYjH2f1/mCIwZtwr4ylf1hOmleOPT0vPb7PsJNFz7JFpQ2Xe8UkicBLHApIxxH2aX05VQlaN6+UOxU5cq0dkAG0yLOSoRtKT8QeU8izQYLRlnnKmAjoFyPHP5oxIhNPCYc4NhrhKNYMoUl03l5XJBbyoLqHZcYZhy3MQcItGH9crSoiCFy2cHGalNIkPhoMmAn/0ox/xwx/+kPBxIk339UYoOMUgmlTdQnmsiYaewAHWOnSMRxGY7RGYp2oEg1YwGX/GkNkgEmXTxCMC87K8ArqC2UTgmQAIdjuxxkP09SqoheaVEB6ADQ8NU2pJXSGmzDESjoKDMdq2e0bbymFBWhE4SlhI1B9GVDLngCOWlTYtZ/7SE1EVelRhWMdcAw1evGsLiYMY2RRtCqYqo8Of7IuQzPKQGwoMGSIzYi0ZItBcZcfa8AgAqi7Sg5ghAkUR0wRWgo2GyBevIy4ZJQTl4QEadzSzpcPHxjbv2Cu6yuHTL4CjGLq3IHSu4/wlW+ja4yMeVXnv6UZiHzDoQ7QpFHx6DlKuhVijj3iTj8RhUKQE3+8iqe8TFOLLUoZWTuzS4CEIsp82TwSlrAz7aacBIDochFe/P2yd4D6ksCgIeEJjhMIUz4GcchBkaH8ftj0z4mKSw0TOeUY4jGCXGXxkF4l9CKHb32ggvO2F9OungrNZ3eThsvlGqnOiP0LfXZvSoTLxtgD5n5xJzpmVI9pdBOIB5rZCiUcn9M47x0VpMMC0IqOt0x86i3hq3Cve2cH/vrKLHV1+fv3yTuKLPg0xH7SvweR/DQFDOrnvYMtzm7tY1zpIy0AYW+8GBN241pps87knZMbaexJ18U4YbILG12H3y/sdjyAIzDo1U4K+450PNnAwGoaVBkeMc8vkbadfktlgteCJJgi5rSAIWGbNGm0zExbZRGBGEZhg9T/38tZ9O8jTMgP6O5U2tvZFSR6hAKcjhSEiUE0kSI4VJjeJSRwF0BOR/YhAJRklN2Lcq3oVDV3egSwMTCoCj3IMDwoxQcOrRASB5+3GfUlWTRT3XsDCqJW/9PTzu74BrrYY/ZD6Uidf0L7D1/VvcVfR/zvofedKqWA4USAuGNWA2mR58GHDQROBf/zjH3nxxRcpLi5m7ty5LFq0aNhjQkHX8faGkWum0mM9H5EEJeIGOp5fRbzryIz6itKBicBsRWCupqJ6JYgHwWYnaDFIJGUCEoGFtgwR2BvKNOhNFeXYzzwTPRrF//zzJAcPIb1vfiZBlA1/x1Kf8fCK7vQw89Sy9OttKzsOfvsHAUkeuzQ43tVIRMx09u3xTCexvSlDhE6WBh9hSFkegSYB/0CU1m0e3n1iD8mDaNRYskjnyNYMwS2mFIeapqKpGvEUESg6TYh9y7EkDQLofW0OHW4/JanSYKW8HGECJsUeCOXTFvKvEwTCFpi1s40LWgwSaE3zOIh7Sw5c+rv0y7ztv6VuvqG0jgQSLH9wxwdWgouKhPOUzHUktKZnjKUPjKQ3infXIBbR8AfcYTZ+82JvZpnjqTR4qMw398YbUMrKiO3ahffxx4atE4xm7quCAC9u7ea17b2j70QQ4Lq/QdWJEPPD4zfD6rvB3wVta+Dd2+F/Z8Lbv8exJA/nWZUIopFW23fvFqK7jXPvjZ093PfKGiy9mwDYqVXSSQHFOWbOqC8kutdL/31bSfZEUH0xlDI7hZ+fh3X26H5zwViAhY2pxGCzGftJJx3cF3iMor7YCA3T4pUM5BjXSJsnzJ/e2MZFf1jJn5c3ct+aPph/AwCCFsemvAlAZKcnHb4UjCa47aWd6e1+pTpzXw+2TSFXg7OxEU58NrPzF26FUGYQbgjTTypBlIz78La3Owj7Dz1xfDTsGxaiqSoFnlb6UxYVVX3g9IRBkjBNqzvs+z/akU0EWlRjsH6gM8TaF5rZu7EPR7ienJS6vsviZ5c3jrdxFOXuUYrsc2BSFTiJox2JWARxn9JgixgjP2YMnGiCQLMiIwkDaNEk8VCC8A4PG19r5f7vvsP6V1pIJiYJwqMB2YpAObkZwv28arcSTAkiagcWYlJtdEYzGQq6ZPRlzbJEVZ6NWFLnnT0Hb6HkNjnT0wHZIAInfQIPHw6aCLzyyiv51re+xa233sq1117LFVdcMewxkVDd+gr+/iiapmOqmIEgqAiCzsK9T9N35yb6H9hGcPXhHf2V0qnBo5/k+3oEEkhJZCNhQqnO4EQsDS5xZjpFA5HhnXtzTQ2oKmgaobffPviN55RmysACnSjh1YgO47eI7fFSNSOX3DIbZdPcDHQECfuPnEfBAUuDexoIi5m/ri2WudEKqXKgsukzcZeU7bfuJA4jxEwZtiCBYpGwu8207x5kzfPN496MdWYepqk5KOUOgqu60FNJt9mKwNheH6JdwVzrwjY/H3X5bfTFp9KTqOUlqRJXCGypU/J48gfMRlVOFa8uFnGkRJUXtLyPoGusbR7nwEDNmTD9EiiYDq5KTp/+HmabTHm9m8b1fbx233aScRVd1w+ZFLQtLAI5VUK6vif9Wx8KIjs8+NwWZCFGR2w2bYKTMrGaqqBxDRBMpmGd44mG4YrAAO2DETRNx3HqqWhRo9EaePW1YQND2YrAoZ+wy5dp4I6IknngTpXaTzkVXrwV/rQI/n4tDLZAoBPe+QPC6ttxnFyG5DKBYKgE++/fhuftNn76rx2cKW5CTJXyL9cWAPCxxZXENvXRf89WBFkEWUDKMZP3iZmYq0YPlIkn45wdryE/VZxgW3oiotU66vITCYuqcrl6YTklORZ6bYY60BqHHGVHepk/vt7AQP116ddO66uYpuYgCAKJVODS/721F0GAWaU5XDDNQVXrc8T0eiLqYuLJWWCRiAI92ikEtDnE9FnowT6451z0vt3DjsliV6g/sZiqOXkkExpP/3YDvr7DmxA+3CMwTFNzO3lm6EsNSKUtAZLJCR0SNBqyr3XF7gQnXFJN2TQXriIrCKDm1FEbN/7/HkUlJoXxN3k/oqM9NGQnQE8GhkziaEcg4sO0TzdGSkZxBTOloXsUBUkYILbHy8qfv8/jf9pI59oeQt4YG15uZd1LR853dRLjRzYRaNp7P2puLf+wFjM1mI87XMySxJkANEZPIuasp0dawurG+bx45xY6dg+SYzX60/5oEvUg7bVyzRn7s6Bs9P3VSZ/Aw4aDTg3+4Q9/eCSO46hESfcqPLOvxtMVouDSL6D/9nYEQcMhv0owej3RHR70uIpj6RiplAeJbBJotARcT4oEs2oaVk1HCxgNArG4BC1FHsgTUBFUmZPp+Hlj3mHzHGecgefeewHDJ9B12WUHv4NFn4JdL4BiR2h8Dcv0zxNe14NgkUm2B6ieW8CGl1sB2Lmqi0XnHxkftgOVBuv9jYSEDBFozVIEmvLzcSQjTDvxFNzFB+fDMImDRJYiUBB1Lv7SXJ774yZCXp2N/a3MPLUUd5FtjA0YUErsiCaJaJOh+Au83UHOmZWIqe1rqkp4XQ+qJ4rqiZJT/C5K32YKTdCXqGGryUdpFtdlmnL8+ANmw2V2oRXmsbGmn0V7dYojgyzsa2C9WSGpasjSOMa9Tr8V7j4LAGs8yBVf/xSP/2ItAAMdQZ7700ac+VbyyxwIImx8rY3CKoOM6GsNMntZGaW1LiqyVJ7ZEG0K1jkFRDb2IcgiofU9OE48tPtHdEs/vd1h5tr3YLXuYLO9AtQmTFHjvFHKytJk8kTEcI9AP1FVozcQo8RlwXXllXjuvRc9kcD/z3+Sd/PNAASi+w+udPsPQATKJrjyL1A6H176rvFeMgqJMOxO+QZGPLDyt0jzb6Tw8/PwvdRM6F3Du3Hb6y1cp4IkthLFhIU4b6gLAbg+KhF6vxtUnWRPGNsJxbgvqUG0jN008yf8WN/PEF/ZPrkTHXMrXFTm2ejeEKPHXAQYqq5SfSvuvFNo9YSxmWTu3Gnm+xUnQPsaRH0Ac+udBNSPE17bQ49N5q6Ve4knNWQxwt+r3kNo60EWerjHPY9lVcW8P6uBhvWzmbHNjyv+/yg0/ReCGkX39pC88yZiM75DYHcl5mlutFCSM66bxhP/uwEtqRP2xWjdNsDsZWVpr9cPin0Vgbt2NlClhNkxRARmWQJMZG/Q0ZBNBLpMEeZdVsPG11oprdUoqspBKbex8QEZUnz5oLULX/uxRZgOOwcmFYGTOMoRDAZGIAIj5McyfZNGk8IZQj+hpM7uQAwNCDYbI1zRUIINr7Qy8+RScgqOj4GuoxVDpcFmcTNi88s0yzJbK8uAAXLDxSybfiIbW9vZo55Ne+/5hH0poq63j/wyO7lZQWe+SII8+/g5CnfWoK9fMvgPLTCpCDxcmLi9hMMAc9xPTucWevb6EVwVNDuN0htZ6MMkGyU+sSY/2gidi0OFKGc6AJo68nb7U6UpuapGIiQZSjhArMqUgU3E0uAp7qL0dCAxvKTDtmghotOQDwfffht9jNLqUVF3XiolUoO192Kt0ZDyLWiBONHtHmZllfXteKfriIXGDKlCdU1D0/aXxYveRkJihvyzxDPHcdrNn+MLf3mAJZdedUSObRJZyCICdU2nYnoeC1I+YVpS590n94x7UzkXVKdDQwJvtJH0x9Ikjqwr6ZJh0aph2vXb9HrveK+gx9VDqef4TAzeF1NypvDGgsx/48Km9wjHVXZ0jdPXtXwRVKRCF3q3Uyg2cOEX5uIusRHwxOhs8LFrVTfvPr2HniY/IW+MeCRJLJwg5I2x5l9NvHTX1jFLw52nlWOuc6H64/hfaz0kk2wtmiTW7GcgqeGU+tlgMa73zgi4vHGwWjHPmnnQ2z2WkE0ECrLx+7YNGp1j97XXpOd5HnwQLWaUao5EBPYciAgEo0T4pC/BNfdA2UK44s9G2vy/vQ4nfsFYJhGGN36KaJJwX1qD4/QKuuwSUyM6l8VFPqW8h0nQ6TdP51dfuYUnp1civNdFvNmPqToH+9IScq+cdkASEMAX87GwMaMmHfLJPV7wlbPquHZxBaU1c9PvVeh7uf2G+Zw+rYBgLMldK5rYNf87sORziAkvLuXv2MTlhDf28d+PbyKeUuPeVj+Ae9P/AfCEM4c/FXi5PvxFfrP2NxTVN/B4scwKTKwXv09cqyGRLEZJ7sa+9QuYgq8R3tBHdKcH7xN7uOiL83DkmhEEgRWP7KZ12+HzEzZbszwCw2Ha9zTjUqL076sIZGJ7g44G0WZDTPlVJfuM8rEF51ax+MJqKmflUZxjxp50p5ePOHYT7D22yLThisBjL/V4EscXAuH9FYF6KMhUZ0369ZAicHtUHQqlpc4sUms22r9qQmP5gzuOeEjjJMaGoQjUcZv/CmSFhADzOIuF51Vz1idnIMtChgRMYbAnjNuWIf4Gwwen5su1Zfr+ftkQTEwqAg8fDooIvOOOOzj33HO57rrreP3114fN6+/vp6amZpQ1j12Udb1LyxajEx5b9Am6xGK2yHMIyG8aC2g60QbvYduflEUEjlQaqmoq/qTxR8jTVGL+rPLE8gxRNRFLg6vzMh2/iOofNk9QFOynngqA5vMR2bTp4HcgyVAyFxIR0FXMgedRvUYHMrLTg6vISnm9GwBvT5iuPUfGX+ZA50A8AR1aZsTfHM90CIcawpP4EJCV0DwU6LH4winYXCaKqp30tQZo2bq/n9RIMJU5sC8tRXSZkIus+F5sSisCy+QaSBqNIHflKnz2qfiSRTRGl7Jbm4rPERtOBB6nikCAMyvPxLLsNHpzRTprypg30ES1r2t8PoFDWPSpzPT6B6hZUMi5t8xCVkQkWcDuNiNKAqJkTJusMmabgqyI6DrEwkkaN/SNunlThRMh5eul+eME3mw76M8Z3T1IPKkR0HQcUl+aCCwYuixGIkh2x+gbmABwmV0oojFoMkQEtg4YHXtzTQ22pUuxLV1KoruH1s/9G6rXSzCWGUWWUoMp3QcqDc7G3Gvhc6/DghvhMy8bCbVnfQ+seVC2CPp2wfZnEe49n2T7N8mTf4OKTrfQgUUfRNQTOMIOLPfuprjRj1xolC1aZuXjvrIOQdq/AmAk+AP9+G2wsxwGawowHWcKMJMs8utr53HeGRlf6uKQSo+6jnNmFhNJ+Up9e7UV3WYEfSXN1dikV5DjDTiaAyyZkssXLXu4svm7qEIBA0IBf8o1lAc6xvX0mZa78Wphvk+Et6Mu+uI/RzcZy8SFmeSbbiNHfhBMgADCtn5O/3g9sbBx397+Tudh+8z7KgL9bT50BFoFwzu52Gscs5iTg5Qzeln5RMaQKnCICMyGIAjYxAxBGrQ3EfLG0dVjh2DIJgJjkcNbej6JSRxuhMJ+lH26MFooSF1ZNbJq3Lv3mhRidDPP9nvOz/0Jl+b+iFqLyMwCM2ZJoLDAQkeDlxf+spn4YRTdTGL8SHgiCIqIraofzT2DeO5UnnYY9xhRkzi/8AJsOSYKK53IJglREsgtyVyrPJ0h3FmKQO8+ROD3ntzMF/62jkv+uJLG3v0H7d2OTNWMXzKsPSbDQg4fxk0E/vGPf+Tb3/42M2bMwGw2c/HFF/OLX/wiPV9VVVpaJl4tvz3YTv+6XSTjKjNO/xgWPcbc5Fam6G8h4gX2T6L7IDgQCdTc2gkpn6FcVSPuyyIjSjNy64lYGpxjtoOW8u3T9r9YpMujZJnQ2rWHtpOFn0hPipv/jnmKoTJUPVGSfZF0aIggQdeeQwglGQeGSoNh5PJgu3ctJqU7/do0SQR+JBCyiEAhRQSaLDLLrptGb3OA4GCMtx9vQB2nD1zOuVWg6STag0Q29JErFeOQc6m1zk8toWMNPoW7dxUuuZf1wavothvneWnWJcg0tfpwfLxjEqeUncKK3nd5eqlO2d5OXPEQX9jyDMt3HEQwx+yr0ins7PwXNK2guDqHa7+7hIu+NI8rvr6AK/5jIed9Zja3/PJULvnyfC758nwu+9qC9CZ2vDs2AeC+tAZSpE94Qy/hzaMThyMhutPDYFLHJgRQhDgbzENEYFZ5YNnhs6w4GiEIQtoncF9FIEDlnf9HvK0Vkkliu3bR9tV/R+nOBEIUOY3v7IClwfsiFeKTfrbmwon/Bp3rjcdbt0H7+xR0vsHU6Ov8glb0uZnzL6bNMpKBkzpaQiPvEzPJOb1iRBuQ0RBsbeLEBpjRAYnS/IM7/gkCQRAwZQ1+5njD/O+6/+WaxUVUVe7CXPI0fcEw/8i5GhbdghxrxiJtxSq9ws2YOadzN1+xbkIkhKx3sTpvPliMzkuxzUi1VDWVE2f2owO3E+PtWaUo3/oX8fqvYNa3AGAv2YNFXUl02wCh97qompWH3W2cW81bBgj5Dk9wyL4egZZAlCrzJkKmIKKmk58aBDgey4KHMEQEaqEQamD/NmKeM6Mg9Vh7iCQ1kv3HjipwMixkEscSwtEQpuRwol0NBimucpEbMfqrfZJEiF5KbW9RbtmI37mDhy2NEEqwzCbiHYiia9DfFsDbM3nOfxQIr+tFHYwhdKzGNPgCtwleIqlwzQrvXC6+3LA6Kaxycu13lnDxl+dxww+W4i42rlfenjC5lmwiMNOv9YUTPLK2jZe3d7Ot08/j6/YP48zNyVQ7+iTjHJhUBB4+jJsIvPPOO7n77ru5/fbbefDBB1m+fDm/+93v+MEPfnAkj+8jRby0FlvMQ1XD03Ts9oJsIjjDMKCWBRWT9AYAke0DaIcp2UiUM38WbQQicN3qjEl1nqoS9WWUf1pxRj47EUuDAUTd6KCrQnC/efZlp2GZPw9BUQi88OKh7SCvBqaebkx7GrGXNKVnRXd6qF1YSGGVA8Uks+XNjiNSHnwgItCU9BDK8v4yZZ17k0TghwddHl4aTNgD3jZqFxVRWmuY23p7wrz3dONomxgGyWEi5+yq9OuZylLOLfsENikHucyOvGAQwWOkXHbFZ9CbnE6XswGA0lRisKAoKKUTmwAaCzPzZ3J25dmsmCvS7TbeW9DfSMFLT7J2vKpAswMu/b0RHBIegAevhi1P4syzMGV2PrkldsqmufdbrbTOlW74dOzy0rnHO+ou5AIrrounYp1fiOqN4Xl4J+Gd41OPagmVyA4PA6qOTeojIghsT4VETY9nSCH5ODgPZufPxmXKRZAiICRp82RUMqLFQsXvfodUWoJSXExk7Vpufvh/cMRCCAKUuoxQFU8oTix56PdvTdNhyWczqfM92zLHIMBM+Q0W2jI2AXFlDrkfq0dymyn4xExsYyQDj4ZoW2t6Wi8rGmPJiY3sa12BDzqCHfx09Y8ZdNyHKXc1gZJv86vVt7G67j+IYvxHbNJyyonzGeFunJEnSUrlxC1L+L+yGEldpcJRwa+W/YrqnGqiapTt0cfS6tHftPaRlGVMN/wPXPALcBQhDW4n3/Q7JKEH1RcjsdfHjJONTq6u6exa1b3/gR8CzFlEYDQUpEwymL8+SSLfD1KqKXI8BoUMwTJ3LnJREQgCye79v/f80sW4UlY6PZYAUQ3iHfu3JY9WTIaFTOJYQiSW8Qgc6inp4TAF5TZKfXUUJiAiimx1xFlaXclJUyr4TGkR55Wt4p8ksEsiJ9gkJAGSCY0nf71uMkX4Q4au6YTXGgOZstDKXe4cHnU5iYkqZV1nU225DNmU6QsNtZMFUaCgwuiva6pOThadMZhFBK5o6CO7G/3EunYS6nDxhNuRGfDzScbA7aQi8PBh3ERgU1MTp5xySvr1KaecwhtvvMFdd93F9773vSNycB81Yv69AJT0bWTvsy8AUHnOF9LzraZXiRVb0BMaAw9sPyxegcNIoBGSg4NkSmLzVI2oP0X4CQLJvNz0PNls+cDHcjTCJKSUOlKIYHT496MUFIAOeiRCbNcuEp2HWJaz6GawF8OUUzHHlqffju70IJskLHaFeCRJyBcnMHCQapJxQJLGUIVqKibdN8wjUBEzV9FJIvBDhJxR3VpjHrj7bLj7bITO9Sy7vh5BFCiuyWHT6228/6+mcZHG9hNLUUrsyMU2/PQjIJHQdd5pCTK48cH0ctsj56LpUfqc/dTECtAsFpT5c7GfcgpClnfh8YhbT7gVXVFYflU1miiwM7eSz2x/ged/+X/jTyubeRmoqRHHskXw5GfgjZ+BNrq6UxAEZp5aSk6BBUeumZfv3kpf2+jehI5TyoykWEAuteN/vumAnVItkqT//m3oCZVBWcQp9bPVbCKZUpPVxzMhJUrpxE8NFwQBX3wQQdCYP0VA3EdUZ50/n+qHHkq/bs6v4hfv3oVbhhJX5h7Z6x+faqvNE+a7T27m1sc3seRnr3L57W/z/ae3gLMYpl+UWso4x4ZOtRtMK5DbVxkvRIWC73wC+6JiSm5dgqnCeUifW+3IjJqLE1z5ORbkkkwVREEALpp6EWX2MsrthipOEDQSchs3PrST1ZZlxjpCCJd8P2Zxq7GMCMEvPkBTsJVQMkSeJY/FJYvJteQSToZpDTRx6nSBmaVOnBaFR9e2G56RJ38Z5lwDiTCCHscl3wNAaE03M08pQ7FIlNa5aNvhOSwDhiaLxdgvEPL5KDYH0IF+SUqXBQMoFRWjbGHiQ7TZSPb2gq4Ta27eb35RzVxOCUeZH4mSp6r0SYPpFOljAaZ9ysMnMYmjGdF4OF0anH0FzM0FW9JJX6q7u85qtKV1QSAqivSGXuNROYwfnZBFoEQWiIWSaEmd3pZx+j1P4rAg1jCImlK1b3G00CnJ5KsqIGA15XHmCSePum5uaaY/aolk2s7ZpcHLd/YOW6c/GOONfd7LtWTatT45ianKiT5JCB82jJsILCgooK1tuJfRnDlzeOONN7jvvvv4z//8z8N+cB81Hjs106tIvvkU619oZG+7i4GCJQBoWh+S711IasSafQz8Y+ewiO1DwVilwbqus23r3vTrXFUl4TOOUS4qI5l1qZ2IpcEAVsnwJRAEjVbv/gofxxmnp6eDK1Yc2k5mXAp6ElreQdz1CHKu8TvEu0KooTglte70ol2Nh98ncEwyONSPiEY4SxEoxVPniSQhTEBvyKMVgpIhEgQtCYNNEOqFTf+g0N7LZV+dR18q/WzPul72bkqVfyai8OxXDeXQu7cbD3+XsR1JIP+W2RR/bREJIY4imtgS7ENIbqba9B4Acc1KY/QUeixr6cmPIfX3Ud0WJbFpC6Lr+PSGykals5JFxYt4uriN2y8RmDHYhqxrLNm0nK0//J+0n+OYUCxwwyOw7Faj3BNg+3PQtXHM1eafXUn13AKCgzHCvjjvPrmH5s39Iy4rCAK5107DdkIxya4Qyb4I3ucaRyUNdE0ntKabRGsANaHhCSdxSn1sybrWl4cy0xO9NBgyJZwAW3vaeHvP/t+1qbycKQ//Hcvcucxp30adr4Or975NcU7m/zve8uA3dvbyyJo2nljXTn8wzuZ2H4+ubWNTm3e4tySwTqsHIFfzQr+h3KVsAYLVGMwaIoEPCZ2ZhrL5OAyGGIJosSDlGyrYGfECbjv9NhRJ4fzq88m3GGWiormXBd1buKd3EZ2rXfhaLPg3rGFgh52GZ4vp3DWLzks/xqdeUyka1FlYZJQ5nV6RaUssmdXN7p4ge/tD/O613fiGFA1nfh/shiLTJDUi00ysJYBdgtIaF117fLTvHKTzMPhIC6KIOaUICwckCk2thASBiCgOCwo5nkuDs4OyEiNYFdWVFmBPWthktbDHAntc2wms6qT/gW10/Xw1vpebiI8xePNRw2ydLA2exLGDWDycUQRmjdJJsQhV1ur0653m4f3V5+wyK6/28ug0Ky5VpzDrXtm5fXyVE5M4PIikvu+EpvOmtY+nchwMSBKu3mVs7lvCWTNGr0jIyyIC5WCGzxgqDVY1nTd3G/0ic9ZvvLJhuFWO2+JOT/vEJPFWH/GWAIn+SZ/Uw4Fxt0RPO+00nnrqqf3enzVrFq+//jovvnjwpZgrVqzgsssuo6ysDEEQeOaZZ4bNFwRhxMevf/3rUbf5ox/9aL/lZ8yYcdDHBrBlYS5rpol0FMlUtO2k5Z57ePH/thCa9nneUOdjIYEiP4hgFVBK7MR2DdJ7x8Z07fqhjAJnE4H7lgbHwknCYmb00ul1o6dIcVNtLcl4hmVXJigh5JBd6ekWb+/+87PSE4NvvnVoO1EsMPdjAAjJKO7KtSjlDvRIksiWAUrrMsdwxInAfUqDVZ9R7hLK8pOSVGMZ0W4/KJ+pSXwwZHsEJgUzuKsgrw7e/yu8cCsVM3I56apazDaZSCDOK3/dhr+lBR7+GGx4EB6+3vCgW/kb+P1ciBkdENltRpAEVEGlMRpGkndxuftHWMUgO8JLWOm9nICwkR2Fxvk9oz1znbEtWvzhfglHKWrdtSAIvDNLoPPCs+jNKaA00Ifp8b/T87P/Gd+1WZLh7P+G839qeAZGBuChayA5unpMkkUWX1RN8dQcSutctO8c5IW/bB6bDLyiDrnACkC82U/w7f09UsBQGvleaELKMeGTRTQdHFI/71stuFWVQq0ElzcxtGHk4uIRtzORUJSVJifIPrr90RHLfCWnk9Kf/Bg1Fc196eYXmaJl7qXjDQzJHqm2pcphdB2+//QWYlPOhDO+Cx9/hLcqvsCvk9dxZ/ISJLKOp+qkg/l4o0LuznSG7FVTD8s2j1UMlQfrff3oiQR2xU6+NZ9Tyw2lQpFP5Yer/satrzyGr8lO53t5+BslfH1lJCMSyYSC1O/l0jU6t7ymsbDYIAKXlS9L72O7bzUXzTHUh55QnN+9lrJoseTAmd+DknlIog+3+ym0QBz/q63MODlDxB+u0JAhRVgy7qZQ2Utfyp6iyJcVFnUcKwKzg7JGUgQW55gRI5n+QFfeOuIJHTWSQPXHCbzVjuexXejj9PX9sJFdHj4ZFjKJox0xNZJRBGZ1TdRgkIvPPzX9uj2r3wuw2mJi2zu38ZWr6vi1EMMkZ65vLW92oCeOzv/nRIMajBNa04PoNtFiDfGezbjfiDq0e8/kzOlFFDhG5xryyjLXK82b6csOpQZvavfiCRnTZ9QXcGpdPuVuK4+taScUy/AfVtmKJWW9MihJyILRRj6c+QzHM8ZNBH73u99l3rx5I86bPXs2b7zxxkH7BYZCIebPn8+f//znEed3dXUNe9x7770IgsA111wz5nZnz549bL233377oI5rCC9e9zL+68+hvNc4IafufgElHmT12imUi14UQaU82UDxmTvQo0ZjXy6y0vOH9fTds4XBx3aPtfkRMZYiMOyPE1Eyo5Xlg4Mo+YWIOeVY588mEct0UOUJ6hHoMmfKn9t8+3euLbNmIhUYnkuhVavQooeo0Fz4yfSkaeCZdPlIaE03xdU5CKnRra4xfMAOFWOdA6HOduM5SxEoJowL6WRZ8IcLIes3aM5ZCl9YCWoM0KHxDYTdL7LwvCpmnFxKNJjApbciP3ABRP1GPVrYAxEvRAZBS8DeN4dtv0Nsxiw9wUXu2/AkDe9ARWpn1UCQ0ilRmsqM8392e+Y4bIsXMQmocBidYV0UCP/7Rbw4+zxMyTgRyUS0swvPvfeOb0OCACd9CerOgVAfRDyw8/kxV7HlmLji6wvSgQEFlU56W/y8/sB23n1yz34kpCCLuC6tAUCpcOB7sZnQuuHhJlo4gf/lZgCSA1EiMw0VlE3sZaPFjFeSCElhxB6DIJILChAnqCo8G8OIQMWPrkOnd+RrvlQ/nZeqTyIqynQVTWHGi4+k542HCAzHk7y31/h+S10WNv7gPOqKHJTkWOjyRvnsgxvxn3wrzLiIP8Sv4H19Fn7djogGihVyq6Fq9DKag4Gl1xiAUgVwVtQclm0eq7AuWoh14ULkggKC777HzbNv5ubZNzMrfxYAn3pdQ9E0lJS6fqicWI0KyEVFSA4nWqqTumSPzqzdxrlQn1ufVpyu6VrDN8+vxiwL1BbZ8YTiGVXgwk+AvxNBi2KOrkDER3hDL2W5Jsx2417euL6PaOiDexoNEUGKYMUtddKfsoEYrgg8fhWipuoMEZho3l8RKAgCdfZ63CmfwGZXEyEbiBbZCG/SINkXIXiAsKePCiarNT09qQicxNGOeDKaVgRqWe1lLRBg4bwZWEVD9OBNXcckIBeRskSSb1mThNb9GsvMPL4nRpBT1+iBmErXbe+nVbzZz333b6XzJ+8x8OhOoruPTJjj8YTw+l7QdLwDMTrVDTSbjN+rLGIDzcb1J4x9r3EVWRFToXjR/kwba0gRuKXdx9KpeRTnmDlrejFTC+x0eCPEVY139qnucEtGBYdXFDGJO4xtThKBhwXjJgKfeeYZrr/++lHnz5kzhx/+8IcHtfOLLrqIn/3sZ1x11VUjzi8pKRn2ePbZZznrrLOoqRm74SvL8rD1CgrGNuOOxWL4/f5hjyEUnXAab841TmQlGaegfwsDPVGetn4xs4Fdj1D0mSnknFuFaUoOWiBBrMFLeEMv0YMkisRsEmgfNVjEHyeiZFQMOQMSiYE+NH8H5pqpJOPZRODE7ATmWd3p6Q7//kmbgijiON0o6dGjUcKHmh5cMgfKDXWV6G3AVmiUdiU6guCJUlhplHd5OkOHpYGfDUkeXREYTaVeZnsEEjMusKLdxiQ+PAjZo5iqClY3XPA/mffeug3+dyYnx/6bywp/ybX538GmdRnlpXXnwWdehPN+kll+98vDtl+U9DHHthxR0HFLrdyfOI+L9NsQb/p/5Fy7FFUGdJ1ZnalRupwcTLW1R+zzHksod2bK49qD7UiXX8UvTjASwSNvLqf/z3eQ6NlfUTwqlnw2M73hwdGXS0Exy5z/mdmcfFUtl3x5HrtWdbPzvW42vNqKr3d/JYd1Rh65108n0RkETSewvBXfK83omo6e0PA8sstImgWsCwrp9xnkf5+tLz0oUKXMJNlnXBPl46AsGIYTgaJskGOtnpE7yKFYkgdmXkCvLY+pHbtxvfkSMzzNwPhKg9/dM0A8pRQ6c3oRJlnirk8upiLXiicc593Gfpbv7MUXjrO1w2hDvJh7E1xxB3z6JfiPTTD94g/ycdNw9Bv+YP0ucNvzDrD0xEbOhRcS2bSJZF8ffb/9LXoySXjtWua+tIdrVqqc0GAQ72JBPnn/9jmmPvsMBV/+MrWvr2Dairco+ssfuePyzD03etcDtH3py+w58yw+tymf6e06cS1Oe2Qrl84ro7E3xD83dbJyT6r9IZtgwQ0ACCSxSW8CEHy+iWkLjPJkNaHx0A/e45V7trJrdTcrHt1N0BulfafHCJoaJ4zUWIFiuxlB0LOIwCyPwKwk5eMNktOZLhWPtTSPuEyibCmnRoz/e1RS+cvCJ/BcrvDE+avRBOP/HVrfQ3KcvqEfJrLDQiY9AidxtCOuxTJEoJShG9RAAFEQqbUagzJDcodaycmVUy+jU5HpVGSea3ia/+m6gZ+ZfsSgyej7JFQdrzeOFk2i+oc/a2HjEdnQR2Bl+4f5USccdN2wotF1na0Rld22Del5jlAZBQ4zZ49RFgwgSWI6QC80EEVMCTmHFIGvbO9mdZOHHn+Mk2vzh21v+a59fQKN67pXEjFbDCIw1uRDiw0Xy0zi4DFuIvDHP/4xweBHZ6rb09PD888/z2c/+9kDLtvQ0EBZWRk1NTXcdNNNtLa2jrn8L37xC1wuV/pRmeW5U+uu5e9ninTkgb/QwbTmZ7DZZRT/XB5NnsH72nSkznWIq/+XnHOnINkUBEvGrH/w2T1osfGbWg4jgfbxhwsH4qimDEuuDLrT0+a6umFE4EQtDa50Faan2/0jl9s5zjkH66JFSHl5BN9YPuIy48IpX4Np54Mg4JIfYsjuNrSmm9Isn8DuvYe3PHgsj8D4gOElFxaMv66iiehRg1iYVAR+uBCzUoPTIRIzL4d5H4dr7oH6CyDQiZQIUFCgYRIjDKqVePQ61It+C6XzYeoykFOj/A2vMhSfpfc3cLb1CTRdJ6GZeSu6lB+pt5BA5mNLKnh016PkmnM5T5iNJWj8720LFw5TKR7PGFIEAnQEOjh7RhHvlM/n9SqD3NfCYXp+Ps4SYYDqZeBOqU0al8Pg/mqTfSGIAosumILdbSY3q0SiecvI1y3bvELsS0sRHQpaVCXwRhuDTzfQd+9WorsHkQusmOtzybmgOm1JsMeeGbRaIGRI4OMhKASgxJYJixBk47toG4UIDESTBMwOnqvJlCR9afMzCLo2LiLwjayG6VCDtabQwX9eOAOnWaKm0MHXH93I3Sv3omoai6rcfPyESlh4E5QtSB3k2NYNyf6Rz41sqD4f5ojRpuh1CTgUxwHXmciwzp+PJWX/Etu1i55f/pKWT38G5c5HmNqTKmOqslHyn/9J8be+hexyUfi1f0dMqau29m9lxUyNt2cJvPOlk7EvW4YaDJLs6WHuiw3892M61QkXb7a/yZULMwMMwwzNF2b8IR221zDXukh0hSje62XxuZXMO6uCWChJw5peXrtvO1uWt/OPH63m2d9vZPf7408VNtvsCHIZRSajk9u3jyJQLipCnKBtv/FiyCdQ7etHDe5PltUvOIWTQpnO49ve5dzy0i3c03w/f5z3BKbqHJK9YfwvH/ga/2EjOyxkUhE4iaMdiSxFoJ6tCExxCTWuauON1H2xzlHBjYu/ylTZSbns4EGHmSfNUU6SdvIV9/dxSUb/p1cUEC0yUo5p2LNoyxLS+DJWWZM4eMRb/CT7InQndPqSOrtdmYyIAuVEPn5CJYp04P5G5cw8CiocmKwyBal+qzecIKFqbGj1AkaFxZR8GyfXFKS9At/Y3ktnV4BgLEk4nmR+6VLq4wlcqkZI2WlsXNWJHQb/3eMd4+41Ho7Usw+CBx54AKfTydVXXz3mckuXLuX+++/npZde4i9/+QtNTU0sW7aMQGB0A+Dvfe97+Hy+9CM7FKXOXYfPIdBaJODuDSDHg4jNO7B4E9yevJa5QhMCOrx/F/TuwLmsgrIfnIxS4QCTCAmNgQe2oYXHpxo7UGmwasoqGfOmzM4FEdPUqcdFaXBtbhlqtAg1UkpXYGRZsH3piUS2bEH1eAi+9dahn7vTL4KBPZCMIg2uw2Z6G6nIRmyvj+JyOxaHTGGVk/adh1eCPtY5oHmN3z+YUgS6oxnDe2mSCPxQke0RKAwRgYIAV98Jc68Fcw44y8Ccg7WwgLBQwI7QGTzR+xM2r0str1iJlaTS2IPdbH/qJQASz/4nkqDiUgbYEjyJn8UuBwQq86yg9LCxbyMD0QHys0x1rYsn/QGHUO7IdNg7gh2cUms0MP4280KCJhtSURGh91bR/ZOfoO+bzD0SRBEWfRJkG1QthW1PH9TxnHJVXXq6ZevIZteCZPgF5pxbhRZKgGiUsiW6jEaz6o2Rc04V/Z4YznwLuUUS262ZQaaFZEixId+0iY5CW2ZgSFAMcrRtcOQOcjA1cvxC9UkMllQhOJzERIXzWtbQM47S4HhCZUaJE4sicmpdfvr9E6fm8V+XzGJPbxBdh0fWtKHqsL7Vy7xK97g/S/Ctt2g8/wK8Tz5J/z330vnf/4/e3/xm/+NoyygdBvMUJPH4TgkXJIni//4vwCAFtaSKlGOEJlX5ZAac8FZ9AtulF424/qrOVcwqmM3fry+i4JLLkRxOJIcDwWpFDEUwxzQuecnDivYVnFCdm/aGfGtXH9qQmq+w3ij7dpYhuW1IfW8AkF9qpzYQw+E2I6fWU1IDxfGUncy7TzUSj45P1WCy2pCUqdhEDz2JWnpEK6aYRncuqNXlmGdMP4RvcGIh2ycwPoIqcPHUQgrCFSiajjNVIhxMBBEQKKgq5V3fatAgvK6HWKt/v/U/SsiKCTHV7oiHJz0CJ3F0I6nGEVOXSE3K3KfUVH+8LmXfMIS6/JmU2Ev4/SUP0ZkMEdVVnnY60IC9WgnV1hU4Cyw0xHXUMyop/f5SCm6enX4uvGUOcr7RJ1KPQkXvsYTAinbkcjvPu94jUNmMJEQpTiYpTyR5u2sqZ80oPPBGALNNpr89SDSYoColdPKG4+zo8hOOq6DD5UGFdS81s/XVVs4qdXNiVGZ+r8Y/fraGW+98n+vvXEUwqbHbpDAgS3TrPYiKD6XCcdBVl5PYHwclH/kogwjuvfdebrrpJiwWy5jLXXTRRXzsYx9j3rx5XHDBBbzwwgt4vV4ee+yxUdcxm83k5OQMewzBZXZRYC1gfW3ms+cPbAMNLPFC7khebrypq/DPf4fIIIIokHfddKzT81C9MWJ7fQw+1UBy4MA3bjGLXNg3LCTijxNPdXZsqoqaUjHIxaWIFgvJ44AInFZQimTpRbJ20RMZWfotORzYUqRIoqOD+N69Iy53QMhmuPCX6Zcu+z8Q+hpI9oTJafMjINDXGmDX6m7Uw2heO1ZpMCFDhTCUGpybzPzOk4rADxfZ/1W0EVS/p3wVvrUDbnwE4cZHCH16Ixsi15DQrWx4pZXuJh/bOnxs7Z6dXqV202dQ770Upc3oSAbVfHbP/DYtFoPYOnt6EU/vyZBQZ/ZkygIn/QEzcJgcuM1uwCACrSaJk2vzCZjs/L+lnyZmdaD5/Xgfe5yuH/wQdTxq9/k3gSRB6ypj4Gek33wU5JbacKYaqJ0N3jE7/o6Tysj/1Cxyr5qG6DShR1VMNS4KvzAP85Qcdr/fTX9bkORAO+ssxv/fpAnUJzL+UccLEWiRLbjMRniTmFIEtntGvs8GUt+5JkpsuvpzCJLIXE8Tn97+At7esb1mAtEET6zvYGd3gOnFTmym4ebmVy0qJ89u2HH0p8LCqvNtLJ06dtmunkig6zr999xL21e+ihYO0/XDHzH44IP4nniCgb/eQ3TXrmHrJNoz971AwaQdBIBt0SKmPPQgU/7xMEp+PjkXX0z+5z7LSz8+ny99VebZE3R2e/b3bFY1lWf3Psv2ge1Ek1HOrjyb/E/fQuVf7qDujdcRU23Bpbt0Zr7XRUugkdPqDKuZgVCcTe3ezMbO/gFEfQh928i1P4BSZia210ds1yB1FpHP/+F0Tr6qliu+vpATL5tK+XQ3YAzw7lnbw3hgttkRlRqmmNdTrDTikVWK/QIzOkBq7kDOzT3wRiY4sonA7OTg2N4mtFAI/9/+huu5MM+/PMgLbZ2cHZnBfy/9b3R0/r7nHzw39Z30Ot5n9qTD/6J7vIQ3GSWHXT9fTf/ftpHo+XDLcwVBSKsCJxWBkzjaoWcFq+lSpl+jBYz2Vm3h8NyB2rITAKhx13BquaHc75RlXnWUMF/azWmORxAH9xKPJFn7QjOqun+/S8wx2kR6VD2oarxJZBDdPUh0u4eOVg9PVz3C3yt+R7MlwdWBEP/XHka25bGgcnz3muzAkBJSgR/hBGubDQHN7IREzkCS1c828f5zTSyKyJwRVZgfl7GoYG4IsaXDR58n09bpkGWs1t0k2oOE1/WgjXMgbRIj46CIwPr6evLy8sZ8HAmsXLmSXbt28bnPfe6g13W73dTX17Nnz55D3n+tu5aNw4jArQDUJCXuUi9lp2k21JwJ7WvgnvPB04RSZMNxWjmiXcFUnUNk6wC9d2wk0T12w2EsNZipZzUWYtRH4LROB6TSYs21htrkeEgNrs6pTk+H9R7C8ZEvAI4zzkhPH3J6MBjlnXOugZmXI0VaKTLfiiLsJbGxj7IpTgCiwQRNo6SCHgrGKg0WY4aaaCg12J20YK6vxzJnDkrVFCbx4SHbzzOtCBwDhVVO5p5ZQc2iQsKBGI/etpZf3raKrZ1zWRu8lu3hczCLYSLeCAIwkKjk3cDNrJOs6dKJ0+rdPNf4HAB2TSFvUyum+mk4Lzgfy5w5R+RzHqsYUgV2h7pJqAluOLGSC2YX015WxytzzgVZxjpvHr6nnqLlhhuJd4yc1puGqwympMpK/R3Q+Ma4j0UQBKrnGCoyTdVp2zE28WSdmY/9hBJEi4SUY8I6Mw9ThZNEXGX3+wZpoDta6E2dg8VROw5/ZpvKceIRCBmfQKM0WB/VIzAYy1xLE7MXYD/ZCO5wx0Ocs+a5jLprBOzpzRDFM0tz9ptvliWuziobBbj+hKoDDp7233kXjedfQOCllyCZRLDZcJ5zDpZZGaWE94knh60Ta8tYnUSKnGNu/3iCbckSBFFEdDhQysoouvVWTq08nRNLTqTAWsC6nnX7rfNe13t0h4zS3CUlS8gxZ35bOTeXwv/4Gt4T69GBL7+g0XDf7cN9jLLLg6ecDKVGx1YY3Ev+tLdIhVTje62VZH+ERRdMobg6hxMumcpZn5iJq8hKQYWDd59qJBk/cKc1EZNRJCd5slG10ivZ9/EHPH4Tg4cwVBoMEE8RgXoiQfu//zuNF1+C/9VXkUMxfJudWDwSn+lUuG76dZTYDUX1htgWtDoL5vpcEp0hev+8keDqLvrv3YrnsV0kukOo/jjR7R5679hEpOHDDSUwp0raJz0CJ3G0Q0tk+qSqYkIum4mpro7kgNFfqsutG7Z8XRYxeM20TCjowwXVmWUKNmO2ywx2h3jnsYb99im5Mv74k6rAg4cWS+L9ZyMAa8RONNG4L5UlE7Sp5fwufiNn1BciieMThuWVZojAfNWgnCIJldVNAyg6nB5Rhi0v9WZ+s7igk6eLXICVDXszdFW7LGN1bgdAT2iEN+6fFzCJ8UM+8CIZ/PjHP8blch2pYxkV99xzD4sXL2b+/PkHvW4wGKSxsZFPfvKTB154FNS6alltX82eUqjrAmeoA3N0kFrRzcu6iW/zDZ7r/o6xsMUNfz0XPv4w5ilLKfzKfAYeME5Y0WEitL4X1wVTEEaprR9OAmWRXGqS0r5fs7vSuMjN8WZmtQb6efFLNyPJCqIkYbbZUcxjKyePVbgtbhQcJAgimvrY0xtkXoV7v+UcZ5xB769+BRglV/mf/cyh7/Squ+DuMwHQbYU41X8QzPsuleg0phbZ/k4ndYvHNk4dL0Yjg+PRJBbNQ1KC2JAiUDMT220oHawLFhyW/U9ifMhWBAojjEyOhGXXTeNvv1qDgEBQ0LBpAr3kEwzexHzbswTVfAZ9Mmj57IicQ5P5bP65t4+KXCv9wRjd2gqK7cVEkhFu7qsH/3ri/gCW6TOOe2+ofVHuKGfbwDZ0dLpCXZxWV8YPn91OMKbyJ6WepT/5HUW/+m8ARIeD5uuvp/KOO7DOmzf6Rhd9CnYb5dusfwCmnTfu45kyt4AtKzooKHfg7RmfmsO5rALnskznfu/6XuKp0BC9up9pUegw6bhjRegDGa8x+ThRBIJBBDYMNiCIKoIUom1w5KCsQNaoscMsU/yf38bz2huEZRNTtSB9TW0U11aNuG5Dl59Pbn+JlpwSLml/Fu2SPyLuU51w/QmV/PXtJkySSFLTuGZx+YjbykbwrbdItLWRaGtDKijA/bGPUfjvX0ULBmlYdjp6LIbvn/+k6NZvpf/fkdbm9PqJouM7KGQk5H/6lvT0jPwZ/Nc7RtnwO53v8KnZnxq27FMNT6Wnr562v+1M3k03Udi8i8T7u4koEFm/gVPnGIPKUwvsbOvyo+u6QfgKAlx0G9x1BjhKkLtex7HoNILrksi5Fvrv30bhZ+Yg5xtEjqvQSslUF7tWG//bvRv7qD+xZL9jyEbAV0SeuBkxFWph1uxU+ATAC4CS5W99vCI7OTje3AzA4MMPE280Wmta1Kik0TWB3vZCcuytfP6+9+mP1ICjm4SWoOEML7MeN75jQRHxvdqCIAvocY14V8hIGFZ1RLuC5+GduC6sxrH0w7nmmlLJ0fFIGE3TePXna6heWISnPUB3sx+PP0FejjLqMzChljlajuNo+sxup4wr10KJQ2H2F+YhyB+Nd3R2VZuumEl2GiEPQwOVpfZSTJIJdNDRh1m6nFFxBnmWPERE/DjwiCJ5mkZF7kY29F9ELJSkWR1g2dD1NwXJlWkHq744SuGkan680CJJ+h/cjq7pJATYbs7YpF0SDHOeP8GF2gJ+coCQkGy4Cq2IsoCW1MmJ6ZD6edY2D1KSFOhXdBxxAUEU0DWdqN8gj812GUJJCpLgC6oMWpzYU44sHXY35p7nMIvziWkLCK3pxnHS8dPmPdw4qKvDxz/+cW6++eYxHweDYDDIxo0b2bhxIwBNTU1s3LhxWLiH3+/n8ccfH1UNeM4553D77benX99666289dZbNDc38+6773LVVVchSRI33HDDQR1bNmrdhgn7+trM11XSsxq7JvBlv4W6TjePDfyKHtNJ6F0bIdwP//wKbHkSJc9K0RfnIxfbSPaECa5oJzqGp1w2CaRlq8Ga3iIsZL6X6j53ejpksxD0DODML0BTVRZccAkWx8Q1EM8zG0b4ouJje9fIflumqdUoVUanLrxuHYnu8Rty7wdJhlueh6pTEKOt2KT3sA3cRU57AKfTuCm3bffQ3zG6D+VB7U4ZuTTY1xvBKvqGJQa79UynV3RO3N/8aMS+isC/rtzLST9/nT+93sBgaGSjYkEQWF0mstGU5Cl7nICos0FO8qI7yWb7dTzQ91f+2fMdHuj7K5vCV7A+GSOW1IgmNB783Dz+uvVOdnp2kmvJ5ayNGQWJ+9prj/jnPdZQ4cwQaO3Bduxmme9dPCP93g+bZBz3PID99NMNT9H+Adq//nUazjiTti99mYYzzqT3939Azy7Pn3Y+OIqN6V0vQuvqcR9PSW0OoijQ3x5kz7qDSCxOIR5NsvbFTKlbj6uJBguERQG7MIVEV1d6nlJ2fISFwP6BId5wAn90f0/eYUSgRUYpK2PHyRfiiIaYv3c9nqdG9330vvMuN+5+je+tfYiCtSsZuOee/ZaZVuzktW+ezq6fXcgr3ziDIufYg3HJ/n6iW7YAYJ4+nfq3V1L0H19DEEWknBxyLrwAAM3no+GMM+i/9z60WIxolu+ZXnZ4Bp8mKqa5p6WVXmu61xBOZAj4Tb2beKPVUPUWWAtYVrFsxG3Ufv/HrDzNhSbCnHUDhH/7S66YXUhTf4jXd/SypSMrLKx0Hiy71WgDtr5HDvfhPKuSZG8YdSCK58kGYs2Z5Wedlum8bH+nc8zPEhyMMtjtpsicafNstsYxDWa2Z6o4MPk80WGqypD5offXEN60mf477zLeEARK/+d/0vO1ngRTTVs4sfVtkoMZEvWVzpUUfWUBtoVFWGblowcTOOp6cc/ZS/Elfspu0bEuKERPauiRJN5/NeJ7tZlok88oq9s9SKxlbH/BjQ/vZLDRy+q7tnDPV5bzzI/eY+NrrQdUhppTycFqMsnO5xrZ0x7iteea2LvdQzyuEVX1MZ8n2jJHy3EcTZ+515dgV1OAt7d4CLz9EabnqlliFtkGisECDSl1BUHg/RvfZ90n17HmpjXD/G4VSeHGGTcyEB1gT3Q3f3cY97pS3zqq6ox+T2AgymD38EFVKSdLEeibVASOF7quE3q/i/heH6oniqfMgceeqaQsi5u5MvYTgqKTM+rH5w8IIEoiuankYHNUS3tGDoTiLIwrVMcNXqWkZnilRfW8AoMMBEo0ES2eGfRs1+MIahSH8mfeCzazcpeX+25dyYZXWkYsF5/E2Bg3EXgk/AHXrl3LwoULWbhwIQDf/OY3WbhwIT/4wQ/SyzzyyCPouj4qkdfY2Eh/VtJee3s7N9xwA9OnT+e6664jPz+fVatWUVg4/hN3X9S5Dfny6ukCbUsqoaiMqd73katN2HUBmyDS58vnn21fpVebjW7JRY+H4MnPwIrfIFokXBdPTW8vtGZ0Ump4anDWRXTNPewQM9so6c/MU4sLceTlY7LZjGfrxB4BqXJmRnw3dI9c8i0IArmf/ASOM89EMJvx/O3BD7ZTiwuuvRdBMm5kdulFTGIz1YJO5YxcLHaF9Vmd9A+CbIIpmwj09gSxir50YjBAjp45XyTHZJnYhwlRyfxOgXCMf27soNsf5c9v7uEXL+7Yb/loQqXbF+GVnb28akugORWcThM15U62kuAtLcp2u8bUE4wGT4ek4itQUCSB82YV8Vr3Q3iiRvnnKUId+tpNAChTqrCdeMKH8ImPLWSPLrcHjMbw5fPLWDatgPNmFtHYF+Lqf7YT+/b/w7ZgAVJhAc5zzyPZ00PS5yPZ08PA3Xcz+I9HMhuVFCNNfN7HjdcPXQNNK8d1PGargjvVIPJ0hg7KVzTojfL0/67H2xOmanYe05YU0ZLMkIl263xijY1Y5s4l55JLkNzucW/7WMdQaTBkBYaMUB48FBYC4DQb/93eMy8Zqt5E/dez6KOU+Oe/9dKw1wN3/5VE5/7ETV2RE0EQqCs68KBMcOXb6elsK4shuK+/HteVV5Jz2aVoXh+eu+6i7/e/J7ljFw2l8Po8AVN+wQH3czxDEAROLz8dgISWYHWXQdy/1/keX3ztiwBcWnMpt8y+BUVURt2G85tfw1duVMNoLW1cvjfz2z2ypm34Cku/CIrxPxe3PYq9oh250IKUK5JoD9L31y2ENxn/3dI6N64iQyHYscuLry+MmtBGDDgzyoc1ChXD8zgB+KQERVk8pFIxWRosWq0U3nor1sWLSXZ10XLDDah+P46zzsJ97bXknHsOplpjcD8yoJCMCXwseSevJu/AnLIHWLn3ZcQcE7ar65DsCjbHBpzNX8TU/J8Ij96I+I+ryJu9Hds8o1+hFNkJvN5G/12b6X9wOwMPbqfv7s1Etu1vGaNrOsv/dx3vrOjkuT9sJDQYJarq+HsjbHmtjYd/vHpMmwJTqjRYFEy8/2qG5HHnmjGZRCySMObzRFvmaDmOo+kzK5JxV1OB3lfbUP0fTYJudhCbIFmQ3MbAR6K9Iz3AOkT+ZZOAeiKBrqqcV30eOsZ/4UmHAx2Q9CSzSjN+ry1bhotBpJwsReBH9LmPRUS3DxB8vxspz4JglemIqgTcGX/97dFTmDK1jmsXV+C2jVx1MRqGyoMFHXI149wsyjFTJRrtMFkRmb6Pom/q3AIKK40+rV0TsCet6Krx2zZLVuKamYRo4qLcH5IUIoSDCdY830zDmvH57U4ig3GXBh+J1OAzzzzzgNv9/Oc/z+c///lR5zenpP9DeOSRR0Ze8ANgSBEYm1KMvjIAvV5EYGbrct4VTiGmaehIxHU7b+g/Y07wPubKT6AD2rZ/IfU3YLn0D0guE6ovTnSXB9UXGyZhHoI4UlloIoq+51UiNgUwtLH53tRIhyBy4U9+eVyVBc4oqGFNqn21a6Bp1OWcZ51F369/gx6P43nwQdwfuxbz1KmjLn9A5JTC6bfC6z9GVSqxJt9minsGuxq8xFWdhrW9zDnDS9k096HvA5BHIYMjvd2IgkYoq8PiTGRunpOKwA8XUlZpsJ5U2dxhKACiCY3H17Vz09Ip5DtM/HVlE1ML7Nz7dhM2s0SR00ynL8r1J1TynQunc8/bTZhf9rE6GQUFwg3dzFVEdksa6/xBfnL5bC6a7+B36/3YZBuarnFzbz16fQex3btxX3PtRxrkdLSiwpHpFHcEDf8/QRC45+YlXPh7g7yzKCJ3bhzgR3+5E6W/h+CbbyEXF2e+T1Wl7/bbybn0EuQhD9xTvgoPXg1aEmQTNL8NxbPBduAyzcJKJ57OEJqq4+kKUVh1YPK+ry3A83dswuY0rvHde/3c+KOl/PapAIhg0zSqIjkku7pIdnUhFxQcV+dDNhEoyn5UoM0TYXbZcBuTYJYi0GkxrqH2KZVsKJrG4t7dSD1dhN9/H/tJJw1bLzk4yLSG9QDEJAWzmsBUW0NozRrcV1xxyMcdfCvjXes4c38i0LZoEbZFi+i7/c8AqF4vg48/gRAMMS0A7YXgsrgPef/HC06vOJ3HdhthcSs6VtAX6ePuzXejiApBPchAZICbZ49dzXLWlLP56tm/4cd7IWSBkl2rKCuvoFOy89zGTv77kpmZABl7Ppz1X/Dit8FehPz8zRSVLkZrb6E3/j10pRD/qy0k+6M4z65k1qllvPd0I858C0/8ai22HDMFlQ7O/sRMJMUY9OtoGCTkjSHJAvkpInAg1Yka8ggUFAW5aFIhCuA88wz6//hHAARZRo/H0ZNJSn7yY8Ag3j2NjaALhLosuKuNzuMJURvvWyy4VZ33fl5LLDGVGcUO8k3b+C9HDkE0Tg9HsFjsXLb3DdyLp6CU1jP4ZIqYEAVIaOiAYJaINfvxPtuIUm60zSJtAdaFVMKpAJJAXCMwEMUiQEyHeKpd37bdw5Q5+YyEoYH+Uuc5CCaBUFIn3y7TcWYB77d42doRY065edRnYEItc7Qcx9H0mS9ImCjqMoi2sEmk54/rMVU6SXQEUcod6Wdgv/cO5zJiMqNuFWQrcqEDta8ZVJV4e/uI/THV76f9P/4DU00NOcUlXBWu5encRgbMcTabTeTFCyhx9QCGIKRlaz8Lz8+ogCc9Ag8N0Z2DqAOGbYL98lriv/0b5gUDXNKpceUqDZ+5lb+c0smVCw5edJAdGHJmWGaVJYmjP4E1ZtzfCiodVM81rndDTdfKmXn0NPtpT1VQFqsSg/F8ktZOemWd7kQtVeJ2kGCO5UneStxEIqay/e1OZkyWCR8Uxq0I1DSNouO0keEyu7i05lJ6I7384fQApPz9itY8x6qiQZ5wxrnfGaVkZi7V80tY0X8j7wY+RWdsNlLPBtj8CMIL38Q+P1UqpENw3cis9XB/uJQarGsjghqnKzVP0HXsXoN0UCoqjisSEGBuYW16uj04ugrPVFFB3mc+bbxIJOj70+2jLjtunPwVKF+CnGzBqTyOabCdmabM3+itf+wiGtq/LO1gMFpYiL/ZKA3PLg12xLO8MZyTisAPE9m/k5ga0Pja2YZ6WNfh+09v4cfPbef+d5v54T+30eIJs6MrQKcvyjfOq+czp1YjCAKfW1bDa988A3PKx2U5Mf5oj6DMcvGXmxbxyZOreav9Lf7Z+E9iyRhX11xB8pFniO3ejVJVieuKyz/8D38MILs0eIgIBDDJEo9+4WTmlrvo8kV5Yl07d7zTinnqVPI/fQvT3nqT6r8/hOvKKwHQ/H4G7rpr+MavfxAqToSYH976JWwePZU+G9nEX1/rga0Emjb38fLdWwkNxvF0hyird3PNtxcj2lQ6Uz5hFXGob8koUEdSl01kDFMEyoY8qn1wbEWgw2LcSwucZl6asjT9vufvD++3Xs9DD6NoxrrrZp2G6HQS27adgb/83yEfs55IEHrbUJVJLhfWMfyPC7/6FZznn2+sl5Vu/fp8kRzT/sElkxiOE0tPxJxS8r+w9wV+uuqndIe7yTXncv6U8/n9Wb8/4DZK7CWcc+6/8dSpApIG4votfLfdKCsOxJK8sLlr+ApLPgNX/gUW3wLhfsTGl5FjOynI/xPWvE6S/VH8r7YQ3dbPrFPLuOGHS5lxUgnRYBJPZ4jdq3t48+FdRIJxNE3n7cca6GzwYrFBvmy0eXrFEtB1ir3GLpWyMgRJYhJgrqtjyt8ewHnhhVTd81dyLrmEij/+IT1AMixMrjPTfj5ZK0aXZNqUCNtsCaxakG09XfzUpvIvu4U37TZ+UpjPr9wOfJv+jvqvb2NfWEjBLXOwLS4m/xMzsS0pxrakmLwbZxDVdFR/nJ2tAVZu8/BCe5iOwRiDCZ1Ch8xJJ5Vw+S9P49LZuSywZX67scrEzTY7FslJXJlBf1hDEuBxwty5splANEG3P0ogmhz1eax5x+IyR8txHE2fuSEcTZ8vgQIrWjCBFk2i+uPDnkd673AuQ1aZplSYi+P0uenX8Zb9+24D991Pw5lnEX5vFd6/P0zfb3/LNf/yIKlG+/pxh4tKvRNLy/O4Cg1lbNceH7FI5t6+r0fgJA4MXdeJ7EqFzckiAySZtvNRfvyQytXv6rjCAlWDvdzUuJzL5h88yZabFRhSo8rcGLJwYThD2BZWOrG7zNz0k5P44p/P5MYfn4TJKg9rL09JiJSFjQoIXdC4K3EjiZSWbZbtOUpko9Kya4+PwQOEsk5iOD4aB9FjENNzpwPQVijQcu4szLNnIzmdfL3xVQD6JZ2WmTasThOSRWZV+EpWRS8mqZvoitehb3wY5+5bMBf6ME1xEtnQiz6C/H/EoIjW9wDoTimQigZ11JxC5NIZOE4/7Uh+7KMSU1yZ0uCA2k0oq4O3Lwo+/3mUykqsJ5xA8PXXCbz55gfbuWw2fMIAAQ27bTlT803kWiTKSmx4OkM8eds6vL3jCwMYCaI8skdgpNsoAwlllQbbsga8xMnS4A8V2YpAUddw2xS+enYdM0tzOHN6Ids6/by63SD8JVEgz6ZQX+wg327itLoCinIyHmKVeTa+eEYtJ1TnUp1vo9Bp5rsXzeDCOcZNd0X7CgBUVC7tqyDZY2zXPK0epbj4w/rIxxRK7aWcXXU28wvn0+xrHjav0GnmTzcsZEiQ/teVTTT3D288FH7zG0jFxVj/P3tnHR9Xlf7h595xzWTiLk2aNE3dvRRaoLQU2kJxl2WBxZZFV5CF3+LL4ru4S5HiUqAu1N3SuHsybvf3x01mkjZJleo8/fRz79x7zplzMzP3nvOe9/2+Q4fS8M67ODdvDp1UG+Ds/wQzt7PmTdgPr/mY1JDX7r4MgRt/LePbFzciBUClURCdZOT0a/KxJhrYXbkaqW1SGxfQk7JjbbCeccL4ffbjRCJOH/r+J0V7yE80s6Gsea9yHXUDjW2hwdFGNSvi+7LJmk5tZh72X3/FtWVLsJy/tZXmd95hZ0QSWyLTqDl1Opos2djvKSrCV9+1Ru2+cBcWounTB+3AgRhOOWWfBhzLeZ01QMuiYEeSvEgZpmd0Sh0X5V7EzYNuZmrG1ODxccnjeGz8Y+hV+yelcmX+lWyckIrY9lllr13AVEUdA1IsfLx6Dx0uhRIGXiRLiuhj5CRy5iRU/l1YbX9CI/6GOtVE/fvbodqONcGAWqdEo1ciKgRi0kxsW17JJ/9azepvi6grlQ3AkbpyVII83qlWJGJygrbtax0OC+6MbuBAkp95Gv2wYSQ9+QRiW0gtgH7wIHRDhqDrl4Oj1cxux2BqvJk4m+/CK8leTD/pTexWaPi/FA+fGw2kOUwIbWFtzQqRZyMjUFStxrbwDbS9I7Ge1xtdnyiss3tjmZmNN1rHF9+VsNYj4QxIeCXwAQaNiFKA/sPiGHJFHoIoYJnei4QoDVql3P7utbW0Nrq6nCOo9XqyI0+nta0vXlFitcpPtFGDSasi3qzFpFV2u+3p3PFY5ljpx7F0zb42o7KAn/JGFwqzGlGr3Gvb1bHDWabj91el03fO6N0hms9TUkLRBRfS+sMPSA4HiuhoaLvPqstquXRzFAYpmzUaLT6Amq30GhhBQlYEUclGKnc1BdtSGNXBbO1hj8D9w1thJ9CepCPTRM0XX6P2ycbkBiO0f4rn7FyAurykm1a6p2Pm4HbUhJxYotsMfpZYPaIoYomVn8ntocEAQ7wqTIQk3j61wDztDLYLmQSUViZEvxU8t3XJHgtzYXrkgLIGn8xM7zWdf6/5Nz7Jx78HV/PMSh+BxkbiKiror89nd0Jv1pQ0skXVwhqrB5/dwxT7CAL1DzHF8gQCEh6fB416Gy3FZkDAvbsJbVZkp/fpaAQKZlwqWQ5ApVK+MSbXg6qxEh+ViKaTy/sDIM0cMgTq9A3srrXRr4vMwQCiXk/MrbdQccefAah+9FEMo0cjqg9M46ATgy6GXx8FJEz6n2mpm81oNfxS5wTA5/Hz1X/WM+nyPiRmdd2vnlB2YQx22b1IrbVgkZMDtKN1dVhxC4cGH1E6hvGLkkR+YoTsbXbdSE57Sg77U4gC/oDE36bnMSLDSqRejdsbIDVq78nnzZOyuPW0bCqbXQQkieRIuYzH72FZpbwYYNVasfywina/IMvsWb/vRR7HqBQqWtwtrK+VtRSLW4o73TvSow1cMy6DF34tID5Cw1cbKrmpzaMTQBUbS9Tll1Hz2OMAVP/zEdLefScUdhubCykjoHQF1GyB8jWQPKTHPkUnd/AILO3eEFi0sY76chuSBC11TvpNTGb0zF4o1fIzoKBiZbCsvtaAetc2QE46oTqJMgZDyBBoUBqpbWqmsKKF8iYn/oCEosO9snNosPzbjTFq8CqULE3sx3WbvkQCqv75CGnvvI0gCNQ9/wJCcxPZNLEgaSBx+bnobYNxrpUNr441azBP3v/M0e24d+7E+dtvcl8mTdpnecPo0SisVvwN8qr9z/3lLLVmTdgjcH+4fejtALy5+U1i9bFMSpnEn4f9+YDa0Cq1XDvhDt777Vau+hGaTSKj1v3A33xWJEFkV41tb23I0TfJ/2018OWfELZ/C6Iaq+U9Wsqr8Pin0zSvgLg/DWbgaakMPC2V6qJmfvjfZnn2JUnUFLWgUAr4fRLRWU3UFkQTQx21YhSxTR0SBKWEDYH7i6BSoYyJofW71QBsc19NWUssRsFIXCCJarGcrVol2rSB2KUNINTTIKo5Y9u1/JjzBn7RwwK9jiSvyPT131C5cjWOFh9lCTdQU2LDaNHgsnvx+SVKHD4Sk4wYYvQ4Smzkj08kY2AMUYmh74omzYx1RhYpr2xip09CoxT46u/LGZtmxNTHSsQZGXJWTUkiui6W7UJo7LHLX8SVJT8QLWaS6NUxrLSAWGWvbrfACVXmWOnHsXTNquhs0nUO8vXfsb0xH5P+e1qLEzF5Kzptgb2OHc4yos9Cu79RdUMhmz/ayqC27+32z+eyccUvxGb0Qli6nJxtssyTT6GgNjme6ngLfTftIiAIpOyy48+pp1QjsE6rYajLTdOGt6mslp+93zz/HgmZTQDUFBYw2XIpajTYy+t5+YbLic3oRU1hAbEZvYJlOh7bc3uslDlS/RgQP4lkMvHi5BnH7Zzxm4t2y8SrZyi4dIWS7J1ufGoVm2fPomLaFMrrqvf7vap37wYuQZKELmVrNv38Pove2bBX/erdBQjCxUiSUtYXbI5sV0djVOtXLKlJY0pSOUqlm2gqSVWvo9TTny2L11G1631qi3b9rn+74u17a8Efj4QNgftJlC6KU1JP4cfiHymjke3nTST7lZ8AeGTbXNTbJIrT83l11EU0ODxM6RuHG9i5Lofmxoe4wHofOlsFZh7CIbyIT0rB/lv1XobAvUKDA4GgIbCizUiYWa0C5JUOTa8sTjYMKgMGRSR2fyNesYbt1d0bAgHMU6fS+P77OFetxltcQvXD/yShTSvmoIhIhqzTYNePCLYyjEmbsJX3Z4xOYJ1RjcsdoLnWyVfPreeUi3PIHha/7zY70FVocF2ZDb3YBIBdDHkEdjQEiuHQ4COKssPnpJQk+ibJk3KzTsWH14/iL5+s5+EZ+SwpqOfSEWmI4t4PwE7ttUkOJFp0nY6vql6F0ycbmae7+2D75Re5fGwsxnFdZ7oMIzM+eTyrqlcBslflpXmXdjp/4ylZLNlVx4byZv49fwcXDk8hyhgKLbFecglNH32Mp6gI55o11P7nOWL/dHOogcGXyYZAgN9egeSXe+yPWqckIlZHc42TujIbAX+A4s0NpPSJZNOCcqSAhDFSy7LPCmhtcGGwaMgeFsvoc7MQOnx/CupDXmvpJaHvy8kWFgyyV1yqKZWS1hK0xkpsQKPDy7rSJoakhZ6vnZKFtIcGt33WX2WMYVb5SqIaq3GuXk3t88+jGzCAhnfeAcAtKnktbypPxZnQDR4CyFmDnasPzhDYMSxKnZ7WQ0kZQaEg+bnnUKWm8Pb3/+LXlm8BwqHBB8jlfS/fpx5gT5yWehofnTmSJWXLGLYzwNCCNZye6OXHlDF8tCqTe6f2CZb122w0ffwJDW+8geW889APvhGDQgPNZSjKVxGp2olIK63Vc2j6ejeRZ8uTjrj0CM65fTA/vb6FCRflsGtVNZZYHZZ4A62bPiSGOgKShlrRQFxDyONGHfYIPCCMEybQ+p2cBCg/opSIPsPYuKCceEMO1YnlSEisEX5B5dcQ6Yqn965rcHus+KrPo3/eLjY0reDpKCUNjkr+1DgftTKAuzWboubBODqEJGqNKqbe0A+Nvm28ULsDAsVQ7gJ9NETKv39932gGzuyFbnkVGwpbcSOxsrCVflV2inY2EdPqpgoBfZOeKl/buE/yMiTwMU0SjFCuJd5RSYS1gmZHYrdb4IQqc6z041i6ZocYRVyEvEigEloxKlw4As69tkC35w5HGa9fhZyyBCQpQJ3HGfxdKBubsGkkLHEJRNaEkur8lh6HIbcXZVs3Ed8rDUthCf222xmdKfLzQIGFOh1DXW6ipG3sRn72+n1WPA45nN7WUI/b4kSNBpWkxt7QiCfOga2hHktcQrCMJS6h2+2xUuZI9cNsicRPM1/EPs46r4OrK+T7S4UVktRQaIhBmakitaQUhc9H0g+/Uh1twrOf72VvrCOx90IqdmzEbphAlLp/8POWJB8BX12X9e2N9RhibPh9FgBMrtB4x6W2ERGQWFSdxtQkWaN1vPlNPqx7DLfTiq3R8Lv/7eyNDZwIhEODD4CZ2TMZGDOQFFMKf7cuxNUrEfPUqUSfeTr+mhqSV/7MJV8/R5oWhmdYefbSIVx+2xDc/jjW2c9Ggfzj0mnlVUjnpjr8e+jJ7RUaXLcdXE1y9qc2j8D02tDHpsk++QyBAAn6FABEpY0tlT1nCRIEgfj77kMwm9ENGkTTRx9R9dDDSH5/j/V6ZMjlkDQE4vIxBT4EAugVAmMzTFjiZU8ua4KBH17dwsqvCg8o2U5XocG1Ja1ohVYq3TnUSaEBv7qDl0s4NPjI0vG3KgYC5HdITpARbeCj60eRk2DmqrEZ+zQCtn8/uvqeLCqTE1tklQc44/lViHo9hvHjsZx/PoIyvJbTE+OTQ2Gy7eHVHTFolIzsFYUkgdcv8dna8k7nBbWauPvuRbRa0fTpQ/0LL1D7wgsE2rPL5p0DMXmQNga2fgn1BfsMEW7XPfF7Ayx4fwffvLCBn9/cisvuZdfqGn54dTOtDXJYRmS8jtEzOxsBAbY1FQX3k206dMOGos3LwzD+5DMMC4KApS1phps6EORFsl+2hbIq2zw2doj/Qpf2AtrED9Cp5GdphE6FUhTwKpR8Ouo8xKgo+XN+7nnKbvgjyqgommOTWDZ8KvE5GWTE6NENGhhs17FmzUH1uWNYlDotfb/q6AcPQhUdTVG6Dpte/j6EQ4OPLIIg8JdRd7NsmBF126P38tWbiIr9Hx9t/xBPm4HGuWEDuyZMxLZgAb7qapo++YSS6/5II1MhQ74nBeKGE6F6jxjzoziW7qLpm0ICbZpaJquWc24fFAwZNkRq6TsuCX3zTgBEwU2DQkVsU6hv4dDgA8PY4V4prVtOch8rSrVIHoM7lfOLXqaVX0NWSgY7szQovYNYUyB786l9vXhT38Kf4qJoFQT6eV7GoPeCAJEJekxWLSNnZKLRtT2nCxfCq6fJyabemQX/OxXKVrV1QiJ2QgoZM3qhVovoRKjzSfxs87NkaxMLK10sL3Pwq03+jmgD9QzQvMRlScs4M3kXRrWERvBhUnl63J5oZY6VfhxL1yyKCio82QA4/FHY/Fr8om6vbVfHDmcZwR8atyh1OjSxsfjborG0NgdGaxRqvZ6oNtkOSRTxJyWi1usxWqNo7ZuLsi28eNJ6+Xu/SC9L6kSr6wFZAkRUxqHSGoP1fEq5PQGBqKjk4HG1Xt9pv7vtsVLmSLyHxRqPRqxlfuxf+Npcw9nrAhTEQ1WsyPJ+oPQYsauicQ/Iw2fQ4xcFBAlGFlYSVVmz3++lNSnRR5rAWIqHkHSLILSg0Wu7rW+MqAOKEBVuItwhw5vLoiA2ysJaVyaF7mjqPYnoxBby9PIiqced+rv/7QyR+04QeDwQnkUeAGOTxrKrcRdPrn4SBPj6ztGclnMWmR//FizTR2rljS1vkfwHWZg4KcWMOlFHUfUQxvI6AHrjOlqd5yAaVLi21GPo4DGm2DNjbMkK0EVS72nB155Np33xRBRRH0oW3OOYrMh0drVuQPJp2VC7A+g5JE/bpw8p/36GkiuvAsBdXEzT558TOesgQytzp8Gv/4LqTSgAg24hdudExHoXp1/Wh7VLqlj9TREAzbVOqgtbiM/cv0mbUrXHdwDZEJij3k2CZjuS0gxYAFA5QobkcGjwkUVUhcLLRUkiP6nz57u/mVtbf/qJhrfeJvLCC2n6+COSnn4aRYTcliRJ7GzcyZitMG15AIXDQ8DrRVAqibnpxsN3MScomRGZJBoSqbBXsKp6FXavHYOqs17J+UNTeHmBnInzg99KuXpsRqfPzjhuHHF/uZPKu+8BwL50Gd7iEuIfehBRY4R+M+Hnh+XC718AiYNg3J/B0yovFuxBTIqJXatqEFUC25fLAsc7V9WQ1i+KmuJQuLAoCoybk9Pl92i3pyGYMTi9uBpnYwOCVou+h6QTJzK9InqxoXYDAKKmhoArhZ+31fDn02Vt31ZPK27lLpRKIFAd/JuKokC0UUNVi4uF1t7cdMPNuB/+h9yoz4evupoN/SfxVMxo/OXNxJt1KEQ96qxeeHYV4NqyhYDDgajfP525djp5BKal9lByb1o8LcH9CHXYEHikyY7M5j93/sraHRdhXb4dt0rizNV+vh5cx9xNK7ig/wiqHv4nAbsdx/LlCBoNvir5d+7ZXYRrwIVoZ+YhzrsJANFVTrT6flp3/5OG95xY5+QgqhXB7+jA00Lfj3iXHD4XkIw0KN30bu6gwZWccqT+BCcEyqgotP364dq4EfeOHWTFejnn9kH8+JYKpU+NT+EBAU5Rn8VfHp6Dy+un5tONbKlsRXBMRnTGIiV+ggAUqU1cmyDylF3BFWnPUz3yJSKSYlCqRcTy5fC/y2Rt6RUvgauFdgMGCjWs/wDev0jWlbzgPZJzBzL73mH88s42Knc1B5W0GtoSJkht/42K7ZiELZQqFSQb6/ioVw6rvGa2+FLIU5q63QInVJljpR/H2jU32nUUKnOJtGVQYlYSocyg2W8gQhHaAnsdO5xlzmwIjWcGTZ/BqTPPoXDOHFzrN6CyO7j26ZcJOBzsfO19APT9+3PtK28H60iSROGOmbi3baN3BaTUSuyKUVOhVJAZp6RPWm6bHpyCkbNuJDFbjgBo/GIX9mWyR+QFd/8fmtSw53x3uLY3UPz2y/w3UsQBDN3kJ9IOfgE+Hvx3ZvTL57a/9EGnVuBvaaH60f+j+bPPAMhqdTNw3Fii/vCH/Z7vAPz63jY2L5Q9ODN7xZK3/guibvgDmvR0lHFxXTo4+H0B3P6JfPDB5/LrXlZuuflR7v98EzevXcg81d8QBYnhxg/Z4RqP02Xlsn++jMmq3autw0VLSwu3vfbB79b+kSLsEXiAXJp3KefnnE+iMZEPiz/ngaUPEHHjdaS+/hrqzEz89fW4Nmyg5OprguLyE87IoNmfSLNPNvgpbetQx0sEWjy0Li7v5AXU0cso4PPBrh/B2chOlewOLgQkohtljwd1aupJlzG4nbHJw8FnQlC6KG7dsV91DKNGkfDIIyjj43AsW0b1Px7o5JlxQAgCTHkw+DJC9TpKawBftQP7jyWMmJ7BiBmZaA1Kdqyo4td3t++3V2Anr9A2j8C60lasylIAbELIAKV0tInhKhQIus4hpWF+X1QdjPYKSSLNKhsDXFu24Gts3K82HBs2UHbzn3CsXEn5HXdgX7qM0htvwlMiC/KurV6D5aul3PK5j15VoMvLQz98OImP/PPwX9AJiCAIjEuWPT98AR/LK5bvVaZXjJHh6fLK3q4aG2tK9v7sImbMIOaO29H2749z9Wqav/iC6scfR/J4YMQNYJLvz9TtgA0fwvPD4Pv7uuxT7qgELv3nKAZPScPvCxARo2Ps+dlMu3EAp17eh4SsCGb9ZQjjLujdpciyw+ugSpQXCAbU+9C0hSfoBgxA6LCIcDLRyxLKJJ8aL08+tlS2UNUse1bavR0SwQidk0tFm+T7ab3Nw6SNBl7PO5PVqf2JvvlmzGedxTv9p+NVKLEaNEHNQf3gNgOvz4dzw8YD7q+nSDYEKhMSELUHNlBtdodW08MagUcHvUrPsIefRz9qJNGtArOXSEQ5f+Xljc/RPO9LXBtko7Q6qxe9VyzHMnsWCquVhjfeoPY/z0L/8+DijyE6B4XGjkbcQUTNn3FtrqXh/W1yxs09aG6sIxb5t+6VUmnW2jt5BKqTk47EpZ9QdJRSaP35Z+LSI5hx0xAubrydV/Pf5xz9Rdx/lqwlqVUpePCcfE7JieFvZ+cxKGoCzpIr8btiqBLUbNZouN4EzsIFxG38K1qjCqWrBvHdmXjKV8kJpZwNONNOwZEygZ2pQ6mb+hgVTiXYq6GlHN6YDju+IzLewJnX9yMhK4JTL+9DXIaZgZNTiEk1ceqVOcSmGRmZ+CkDIqu4JTaOkekpvCbYaI3JoUYhYIvN7Xbb07njscyx0o9j7Zrthhha1A48CieSshl3wI6k6Lzt6tjhLBPhCi1UKfTy/ESdFpLC8JSU4OzgVa8b0tkbVxAELLNDibJOWytHcS3U6ZCqNpGQERofVexqRpIk/N4AAb2KhjbvbF+DizDd49m+lY/jXsYmCgwqkIhsGyptSRvAnCkD+Pv0vujatKkVZjMJD/yDiFkz0Q8bJsvl/PtZmj755IDec8gZ6Zx/3zAue3QUvVe+gGPVKkqvvoZdp57W7ZxcoRTRa3TcOfROjCojBc0FLKyYzwMz8jFlDOdr5akAqEUHw40fgARbFneffT1MiLAh8ABRiAruH3E/iQZ54ldmK+OtzW9hGDWKpGf/jWg0glKJoFBQfMmltP78C5mDYvBpFWzyyDc5QfKhkeTwYF+1A2+ZLdh+xwQEAa8TCmQ9sHqFrK0Q2wTKtvCRkzUsGCDTkglKecLXyq4eMwd3xDLzXCLOngF+P5LXS/Wj/3fwneg1SfYMjMpCMMdicMgrWY51tXiKWxh6ZjoRMbJxqL7cts8soe10Cg32edm6dCm26jpMiloAmoWQ55/okB9yCqPxgFZkwhw6GoOer4cJbE6BPtUtlN94IzvGjKXokkspvuDCfRqZPSUllN3wx+DgR1AqEQwGfNXVFM25APvKlZTfdx9X/yixtS3qS52ZScp/X0Fhsfy+F3cCMTJhJBnmDEYljKLS3nU2sZmDk0iz6hmbHc2qor0NgYIgEH3ttURdfRWCWo0iJgbnb6uo+9//QGOEKQ+BxgzWkEGKkmWyHtQe6M1qzFE6NDolBouGvuMTGTBJ9ubJHZXAubcPJj4zgvzxXU/sq1orGe1wMcDlZmBxKNusfo9B9MlEliX0LEyKaWFAcgRD0yJZtFO+Z9q8oWcsgh+XLzQ5aNcJlAAEgY96n8qjIy4n+o83kPD4Y1Q5pbZyoQUY/ZjR6IYOQZufT+v8nw6or77GRgLNsjFvf/QBOyJJEk6fk8Gxgzkt7TS0it9vtTtMz6iTk9APHoIiIKEMwBU/BnDY11P59JPohg5F0OmIv/deRK2W+H/8I+jlYPvlV3y1tXKI8Jx3EI1mJEGJT0gkUvcSnrJWap5fh7eqcxbzyp2hzODeQCpNGhs+UWJrioh+xAjEiLB36IFinDgRbX4+2n75NL77HpLPh8mq5Y7bL2L40HweOu8eoi2h8C+jRsmrlw/jytEZfHTdaCamjcRZdhlenx4RgQS/xLXJSQQsafBkH/jqNjZqdZyeksSfTUpOTU1hlquRkUIdc5Q2Tln3Oi9uKcbbHpwVnwfvXQDLnkdnVHHu7YPJGZnArDuHMGZWNufdPZScEUnMvtJImr8AD7BbLYsOCYKASW0iVh+LUWXsdtvTueOxzLHSj2PtmiN0ZgzuCNR+HSpvBBrRgODvvO3q2OEso/OExicKnfys0o8ciX7MaNRZWdiXLMWxOmQI1A/ZO4IiYvo0FAnxMDCPsVtEBlQr2ahRI/jdJEXVBstV7mpm1+oa3n1gOT8urmCJ3U+5SoFzQ91ebYYJYS9cQY1CpL/LzeS1IWcVcfoM7pnaZy9ZI0GtJuHhh4MyNOqMDJq/mIezbfFrfzBZtcSkmHD89znUsaEM0QDuXbt6rJtqTg2O555Y9QQKhZf/XTaUlxQX0SrpsftziVftJEldz5ZF5bj2kF8Lszfh0OCDQBAE7hlxD+d9eR4BKcDcnXPJjsxmYtZE0j/6kOr/+xct8+YB4Fi9Ck12FoYUA/XFw0D/DX5EdNZCWquHAmD/rQp1W5rsjqHBEY4CaPNk2Eoy0EBKXQdx6KyT1xCYG5WLiJoAHhT6InbV2BiQYtmvutHXX0fzF1/gq67GU1qKbfFijGPHHlxHpvwTXhiJ4HNiFHZhF07DJyTh2FSHOs1M3thEqovkUK4tiyuITdu3B8eeocEbftpEpCJ0M3OIRkBuU7DLBuJwopAjj95s5M3TFJy3yE/fUh9+mw1/fT0A3ooKGt56m9b589Hm5aFMTMRfU03Co/+HwiivYlb/37/w19fjrK+nZcIAcu9+iKpHHsG7SPZaq3nnLdKXyZ5D2eVgvetOYq+4MmzwPUD6RfejsKWQwpZC1Ao1l+RdsleZKXlx3P3pRoobHLQ4vVw/oVcXLYH59NMRtFrKbrwJf20tnqIiLOecgyp/lrwwIIiyJ+A6OckEa9+C0x6E1a9D3gxZR3DIFSAIwSyhe7KnHuCeFJWsZGmbTs7MKhGQvYd0g3uWRziR6egRKGiqWF8mG9qsBjXnDU2hwdncqXyts5YUk2x8jTbu7VVv90q4vAE8vgCetoW3GFOonHHECCr/fCeS14u3vJy4O+9E2M9M9N5OYcEHZggsbClkc70caTA8fnj4XnCUibrmapo++xRfRSUptRL3f+iH6lqc1bWYz56OYfRoQF7kiZh5LvUvvQx+P02ff070tddCTG+48nuE54eicy9DklQ0t16CXzDT+PkuTKekoMuRDVEtJaGJlldKw+5bwuDdAAECkc7wd+Eg0OX3RWGxYF+8GIDG9z/AeuklPd6D2yfGoigwZ1gK87fV4Cn5I6qMl1imlXVJv3KWcnZrBQFrOo+a1NQpFXyPBAj4JDNKRSFeCSSFkw8N/fnB+TzPxixgRMl78pts+RzqCxDOfAxQBvvTvnWsfAMDsFOtwt/2uY9OHM0j4x457H+jMMcnFTsb+exJefFApVGQlGOhtsRGTKoxuAX2OnY4yyTUfQLICXmEtug1bU4OVffK0RLN33yD0K63DOgGDWJPFBERWM45l/oXX8QEjF/u5pXpeu6pb8FU/SM681icLR4qdjZSW9KCszU0V6pqcqPZUIu5tDU4xw4TQvIF2GpfTo1PR2ZFgAGFsn1BGR/PrD/M7rZe+8K4r6aWxrffhsJCmj6Zi65//27r7EnA4aDpo48I2GzQwQHKvXMXnNF9vQnJExiTNIYl5Utw+Vzc/uvtPD3xaW6YNop3P5rEH5RfYVBAvOoXyltns+LTXUy4tE/3DYYJewQeLL0je3Pb4Ns4NfVUym3l3PLLLaypXoPSaiXhoQcxTpyIIiaGhldfo+6FF8keGEu5py/l7r740KCq/hpB0/ZQX1dLwC27PHcMC412bgvuFyIPBpM7LG5oTmJDoEpUkaiV9Z9EVRO/lRbsd13RYCDurr+gGzwYz+7dVD/0sBzidzBY02G0rPUjSF6sphcQdSL2xRV4y21kDY1FqZFXO3b8Vo3Xve8EJR2zBnvdHmrLTESpQkkMmoS2Cakkgc0hX1PYEHjEEQX59unQCDgidSiMRhTR0ShiYkj458MoIiPxVVfjraujee5cWn/8ifK2jLO2JUuw/fwzAE6LjpuGbGLcwlncNaEcw+hRRN94I5uNTSgD0KqF1TeMI+7Kq8KTvYMgRh+DWpSNNGWtZV2WsRo19I6TB7SbK1p69DA2TZhA5EUXAiC5XFQ//oQsFaC3gs4Ckx+UtZ8A1rwNK1+Br2+HJ3rDV7fKxsBDoHJnKOlJbHXb80IU0Q08OfUBAeL0cRhVbRMSV0nQe2/xrjrcPj9FDZ29AuqcodddGQIBShsd1NrcXZZTWCyYJp8GgL+xkdaff9nvvro7JgpJT9/vehBKHASdE+GEOTqIOh3x9/+VivGTiLJBdpvDsaBWE/OnP3Uqa+mgR9z0ySchqRBzPAyWMxkLeDFal6BOM+MpaqH+jc3YVlUheQPE7QyFoNf2zsdUGzJun8xjwUMl5uabgvs1//43rh37JzUDcEpuLH85I4cYo5XWiunB4481rqXclMCzONmole8bSswEvGZ0CgNiwIxOtCD4rGiiFzBk2Foe81/Cc/5ZbJNSkcrXwqpX4bu7IbDHmNHnRrXpQwA2qkNyMHlReQdz+WFOUGJSzZx/3zAGn56K1+3H4/Rhb3J32nZ17HCWMehDjitBQ2BeHpo+smHGvXEjrs2bUcTGEv2nm1FGRnZ5LVGXXxaMghm3RSKtQmCVVo2w5m3OuDyd5NxIfJ5A0AhosKgxGJSUeSXWOvzUf76rS2kmKbD/SRxPRDwVNirqCvj7ewFmLgNFAAr6TiD+b39D6OCl1x2xt94S1Edu+eorAnb7PmqEaPn+B9kICBgnnRI8vi+PQEEQuGvYXczKnoXH72Fx+WLuXXwvZ/SNZXfaBQTaVFX76H4CAmxaUkl1YXOPbZ7shA2Bh8AleZegEmWjTR9rH15a/xLN7mZEjYbEp55EcsnhRy3ffcfgvia8KHFLBjQ4ERx1GLNqUcbqUSUYcG6UXZw7hgbHeOUMcZKgwOaPJb4lk+yq0INfk5V9pC71mCQ/amBwf2XVgWVvNJ15pjx5RxZub3j77X3U6IGxt4E5CeL7ofJtI9LzVwQc2FdVo9YqyRocgyVeT1y6mdKt9ftsruN3oLlWjyDGBfUBAby+SJJ0eQy29IO2ZCIKYzhRyJFGIcgPyq+Hi3z2+FRSXnyB3osXkf3zfCLOPhvRaEQZFxf8PAW1GnVmJjsnTKThzbcQDAZQiLw63oNLIyAhUeCvhCf+yuLTE1navI7mCCXfjdUz6pI7jualHteIgkiiUZZyqLBXdBoQ2j12bv/1du5ffD/m+AUA+AMS60qbemwz5qabUERGoumTi2vTJuwrV4ZOGqJkyYDEwfIk7oc2rUCpbUL3/X3gdR7cxUgSQuUSAHQuCWutvBCgyc05qe8BgiDIchHIn/GYbNnz2uHxs7KwgYL6zvfdzobArj35Shsc1HUyBHYu11G76EA0cjyH4BHYMfN1u/ZlmKOLadIp9Bo6hADQrBOwaxRIF5+Deo8svuqUFPSjRqLJy0NpicTxWyjJHIMvC7Vn+BmFQX5mqJJNNH2yk8rHVhLtLAqW8cckkVwbuo+FDYEHj27AACLOPRdFdDTKCDOl112Pa9u2fVcEVAqRyX3ikCQIOLKJUwwFn4Vmr5ozIi38T6jHRC8kSaSl+Dzsu+5FrL2KX+f8wpczP8GklxegF1V9g1Ms5AnvLF70TiMgSaCLhJrNsPjpzm+67RsqVSlsDaTwgzokH9EnKuz1EiaESqMgJsWEzqTGYNHI2cf32HZ17HCWUYkhI3a7nr2s+9c5SaO/pgZd377dXovCYiHm1lsJqFWsTxeYtD7AYr0GWsqIK3+dQFsinch4PaJSYPqfBhCRKEfeOAJQ4A1Q9ehK6t7cTN2bm6n453JqXl5P3Wub9lu7/UTEVdCEYadsvDO4wa3SETkkD1MHw1xPiAYD5rPOAmQPv5bvvt/v9+44ZrJedllQ33pfhkCAjIgMpqRNAUCr0GLz2Hh81eNMGjWUxf58ACKU1aSoNxFjUrHwhQ0EOniehulMODT4EFCKSv41/l80uZtYXimH831T+A0X5l7IVsdu1FPGw9yvkZxOvnv7bupMMyl2DyFTK08aDeZ1tG6ODrZnGBof9Ag0K52ofS0gQqUrgcqocmpMxUS2tHmqKBSoM9KP6PUea4xPG8Z35bIBb1fLgQm2C4JA/H33UjhrNkgSLT/+hHnadFRxsQfeEbUBrvgK3jwbIeBGI27FoPge+9qZREzNIGtILNuWVdFU5UAfoSZzYM/voQyGh4s4bfKENrKDIXCnxk6Tsxxbh4lA2CPwyNPRO0+iw8pn2wMt6soriLryCgDcuwvxFBXi2rwFX3U1qtRUJLudbZOzWNy3GDrUf2fH+5S0lrBkuMCXw+Hpif8ix5pzRK7pRCXJlERRSxFOn5N6Vz3ROvm+W9BUwI/FPwKgEfW0Zx//raiBMVnRfLWhgsl94thZY+uUFVphNhN7911U3nU3ANX/fISMuZ+Esp2d8xK8NV3OHNyOIQbsteBsgLnXwOzXQbl/4aRBSpYT8DUAkeSUSfJihiSFklecxGRZsoKZg/ukOvmiTVLt5201FLs6GwJrHSFtoY4hvx0pbXAQ3eHcnp6D+pEjUSUl4S0vx7V1K66dO9Fm73txznOQHoGtnlbWVMsLXsnGZDLMGftdN8zvS/p1V3HTjuXsSFyKTQcX9UumK7OMZfZ5VNwhL+qUvfsB/9ml5IGz+/JbdQRnpIyA0hUIrRVYp1TRmphFyy/ycz/Q6kWrkQ3INsmIMDyR5A87GAJPYr3ow0HcXX8BUaR57lwAqv/1GBHTp2FbuIjoG2+k7oXnif/b31CYzdQ8/gT6USOxL1yEcdIpZI8Zw+c3jmFZQT1bqmN5a+fTqMzyeFQAWinAVXYRfod8b7jnzD5E6tVAHDcMvIHHfnsMAYGhfarZUhTJF4GxxBqjuM/xLyheChXrYMCFENFm9Fv7Fmn2jSDCJvUgQJ7I51pzj+wfLcxxQXcSJEeCiru/orltaiZ0SIoVMW2arM/e5shgGD++U+KeroiYPYva//6XAUXlBIAHRuiQaESx7VPOkd6hsf9wLNe8gt0mYLJqGX9BDh8+vBJJgsIKB9vtXqxNsuG9odVLWo0Tq1LEsKEO/YCY3+X6j3Vatq0jq0Cex7To4YbT/s6iO846oDYss2fR9PHHchvffE3EzHMBqH/5FVQJ8agzMxH0Bjw7tmOcMAHbggUok5Lx7N4NyAm19EOGoM7MxL19O57iYiSPZ59SK6OTRvPfKf/l+h+vZ1nlMlZWreTsM2fytmoy4wMbCUgwzvw6n9T3wiMZ2Pr5bvrODD8nuyLsEXiIiILIX4b9Jfh67o65ePwe7lt8H3+J+DF4XPvNIsrTN1HsDk3YFFW/ooqX3Wo9xS14q+3oTGauePIFxo5IRcRPE5FUuYbhUDcjBCSSa+VMg8YJExD3U5PoRGVi6lCQ5JtYvW87ALtrbT1V6YQ2Lw/rFVegHTAA17p11D711MF3xpoJ57wIWguSOhKL6lV03vnYllaQnGtF1RYeXLK5gcA+3NHbQ4NFZQoSvQj4G4hWypOAgGTAqZLrW3yhz19hOnm9gY4W7R6BAH6p55BvTWYGpkmTgl6CCqMRX1QEKwK7STIlMyg2pI3yyc5PWF29mhhdDBflXsTElIm/1yWcNCQbQ945HcODd7fsDu77JDftBtlVRY38vK2am95bS/4/vmfafxazq6Zzsp+IadPQtq1iu7dvp/aFF0InVRqY9jREpMDpj8KgS2Dm/6DfbFBqYNtXMPdqObz/QFjzFq1tOlEDiiRQKND2y8cw7iA1Tk8gekWEdAIjIuqDGX5/2VZDeUvnBDD7Expc0uCkrrXr0GAAQRSJ+uMf0Q8fjr++ntpn/r1f/XTvkD39USj28hrrsrzfTaWtkq93f41PkidO45LHhWUCjjH6zJxDZZRAq15gXuG6TmMRt89PWaMD02mnBpN6uH76iV9XFTDm/37mD++sZnfva6DXqeBuRfjlYcynpBB5dhaiSY32FBMKQc4YXKJOp8HdSEpYJuawobBYiL31FrT9+6MbOhTHsmVU3nsfrd99R/GcObR++x3Fl15K1QMP0PDGG5TfdDON775L6XXX0/T5F8SZtZwzKIlYQxRG27nE1MXQTz0dhS+ORKYRwWD+c+FALhyeyrmDQl58c3Lm0C+6H4nGRD4reoPeifI44r+1fWjoc7FcyOuAH/8q7+9eiNSWQLAgEItTK4e8pZvTMaj2zjAfJszRJOAOJeUS1B2kNSIiiP/rX0l+8QUs559H3D1377MtUanEep7shS8C+VsF/qy/El/6RARbFdaaeYjLn8cklYPfS5S+juHTM5hyTV/S0024JPC2/XdJsNMt8ZvdT/WXuwh49i3ZdCKy+Ze3UbY5ym3J1fPXC4Zg0ByYf5i2f38sc+agSkvDvmQpzV/Mo/rR/6P2mWeouPseis47n/LbbqP8ttvZPmIk5bfdTtX99+NvbEQ/ciTRf/gDgiCEnmE+Xyf5lJ7oH9Ofq/KvAuQ52JNr/oVl0Az+451BsRRHpLKIc633I+Bj+U8lNJe1ULu1nkAgQO1+ROedLIQNgYeB7Mhs+kfLIpnbG7fz7zX/ZnfzbgriApTEKyiNApsWXIFfqQtYqfCmAyBUrsPQP2RMsP9WjahQEJWcSoxQhVIEC43YGIJD1UpcE2h94Kus3K/4/RMdk8aESchAJ6WiFyO57q0lTH56IW8vL9535TairrsWT2EhAM1ffIFz3bqD71DGODjnBRReWc8vQvMGrT9txbO9gZQ+ssajy+alpi15SHcIogiCgKiSPT40Si0GhTwJcEgpOCX54Wr1hh6sojHsEXikadcIBPbb7TzqyivIXvArUc8+wa23Gvh6uEhpaylX519NnD4OAG/Ai8vvIj8qn3tG3INSDDtuHyodDYHltpDeZkFTSFvUL/mJs8iGltXFDTzw5RYAvG1hJx/+FvLKBRAUCuLul8N+tfn51L/0MvVvvBEKNYnrCzeugFF/hBnPQ6+J0G8OeOwgqkAKwA/377vzkgTzboZ17yNJAUpF2Ut40C4JwevDtWUr+i5Etk82ell6kWHOYFDsINyBVkZkRNInwYRJq6TW3tSpbK0z5BHYk0ZgnS2kHRvdheeg+fTTcRfKxmTb/PnYFi/ptn+SJFH77LN4du9GO2AAhjGjg97DXbG+dj0PLH2Am+ffzKwvZ/HU6qdIM6cRq48N6wMeg8zKDy1Mljl2ctpTC7h77gZG/PMnZr24lLOfW8LaKju1I+WwK7Xfy8Sytbh88rPjz+vjkFoq5PtCxRpY/x6G4fHE39wb9e47caFlszKPxugh1LvqSW5LHOfXqVHGxx+diz6BUMbEkPrmGyijouTXbX/TQJvEjyY7m9af5oNKheT1Bo9V3n8/1Y89jhQIcM24TBaensULHzt5fI2Peb7ZPPfaMuaWfc7Al/7JVf++mfIbb2TH2HHsnjWbllffZGzS2OAzqV92BZF6FaN7RTEv8nLQWSFhAOij4P/S4a3pCG2LVXNNY0CQn1d9rOGw4DDHHpI79PwUtZ2fn5Fzzsd0yikkPPggmoz9826POPdcpLYFvonrRb5RNbKhuoO++y+PwMvj5UXWlycwtE8Z2UPjMOVaMVg0GDLMGDLMKNUiAcAHbHVLODfUdvl+JzKBQIAWZSVbk8GrgI25WUzIOfCIOEEQME06JZgEreqvf6Xlm28QLZbgQrenXXe17b7pbnvtLSnBdJqstdzRq92zH+HB7VzW9zKSjckkGBLQKXXk93bwkzAKq0KW33ESz5mWJxEE+OTRVXz87/X88MhvfPzv9Sx4eg0BXzhkODzDPEzMzJ7Jhjo5LOndre8GjyfNmIPi5fdIqYcNWwup1VdQ4R5KoqoIAL12FU3KXPBJONZUox8ahzreQLRfHhj4BTWFUhIB0R8c+EE4FKSdSb368UXBF6CAn3dvwR9I5L0VJZwzMBGTtvtJVjvKyEhi/vQnqh9+GIDKBx4k5aUXUcXFHVyHcs9CypmKsP0bxEAzVuEJWpc8SlKShd3r5CLFm+qJz4zotglBEFAolIgqWfMqWhHyWqoIpIAoezRZ/CGPQPEk1gc7WnT0CAxwYA+T+SXzaXTJXkrjksYxIWUCv5T+wtydcmiSSlRx14i7Dl9nT3KSTCEvjN1Nu5EkCafPyc7GnZ3K5Sb7qW5S4fQGKK6X9fcEZD/BuWvKufP0XNTKkAFYP2gQyc89R/ltt0EgQOMHH6LplYWx3UNPvYeXRu8pcOln8MHFslegoIBBl0JsD2FdletgzVuw5i385lS2qWKIb6gjsTHUB4V539nIT3RSzakUthRCC0Trojl30Knc+Yn8TNYmOun4NOhsCOzsWa8QBfwBidIGB1EGdbflABRGA3F//jMVbSHije+9i2HE8L0MfAG3m6oHH8K+aCFIEp6dO8n8+qser+fj7R/Lz7YOFLcUc+/wexmdOLrHumGOPPHmCKI1KdR5ShA11QTwMXdNGV6/RHWbZ+lDX23B7u/Fs211zrEXsC16MrvqHOyocbJ03J8ZU3u1fHLtu5BzJuKm9zDWrEbEj8fjobD/7QQafiCrTf/cl5oQ9g49TCh0OpKefoqG117DfO65NH8yF+P4cTh+W4W/uZnWb7/DPG0aEefMwLFqNY3vvgs+H40ffkjLl1+izc/Hvnw5ktNJy5dfYhg3LigF4gd81dX4EhPx19Xhr6ujrrCQ8eOe4sW2928VN9LsTGFpQT21rUauuOp7iOoF394NrpBXs18S+MArGypjmiT6ROZS//obOFauxLVlC9q8vG63wAlV5ljpx7F2zbqhQ9Hm5mAcM+Zw/TwOmHadfOgcGnywqOLi0I8bh3PBQix2P72dq7hKO5TXe89mQ9X3OASBWqWCO7bOwyBJ8Ms/ofkyBp52UafwaEeLh3f/ugyP209ZrYsNXxUyckjcSXUfddW7SN7dSGQT2NVw6ZwrsRoOLsrQOGFCMOxX8nrx19Whyc1Ff84MGt94M1hOjIgg0BxK3BF7912Ibd8Lda9QRMf+6AS2o1FouCr/Kh5c/iCV9koi1BHccfltTH9Nw1uq/yNdtRxU4JWeZIPjLOI12xnonkeyaQjLd/4B9/PrmXRDf5Tqk9e5KuwReJg4I+MMruh7BXNy5uCX/IxPHs/leZeTPePiYJnBBRI7U39jl3MUJe6BBDSRiDs+J+L0DHT9ogk4fNS+uB5vQQE0ydb1pkA2VQp5QhoOBdmb9Ij04H5WkhOtSsTu9nHtW6v2u43IC+ZgnDwZ/YgRuLdupei883Ft3XrQfRJOfwQpawoBdRw6xQrMFX/BuK4meL6gw363bSgiERUWABI1O/BjpDmQw9JALoIor4BFeEJ2/HBo8JGn46AhIO2/IdAb8PLkqieJ1kWTbckOSgvM7j2bv4/6O9f1u44bB95IkjFpHy2F2V86/i3f3/Y+w94dxqj3R7GlfkuncqNyFLx86RCuGyevUPeONTIuW9YTbLB7+Glr9V5tGyedQtS11yAajUgOB2U334y3srL7zqSNhpE3yPuSX84kvGdmyI6seSu42xDRF4cIg3eFFoWME3vW1jlZiDfEB43zZa1lTMmLR9NmtBVEV6eydY7Qw1TW6+rQjlkemJY1OjtlDY7pxnPQPH06xkmT0Pbrh+3nX2h4991O5yVJovS662meOxdBq0M0GuUMiT14cbV6Wvmh+AdAXnAYHj+cIXFDGJUwimm9pnXyRg5z7DAyWY4MEYQAJlMdE3NiiTVpSI/SMyozirFZMew0JrAodTCNCWkkFWzgob4qhqZFolSK3LLCgif/AkgZASVL4aMr4If7qVan0iQZeMR7EfnJlqC+EoDY68ASzoTpGUEUibrmGlRRUURffx3aPn2wXnZpUNZD27cvxrFjib31FmJvv00WzJ86FV9tLX6bDcnpRJWUhH7USPSDBwelQBRt9ZUWC4JOTvonORxYXvuKKK3shbiu7jf6p8iLRztrbJQqkkFUgCUV1CZQ6vgk6S887puDTe0kTpXAo+8KDLvlDWwLF+C32fBVV/e4PdHKHCv9OJau2VNZScPrr1N69TU4Vu3/XOhwE/CEnp+HS8oqcsY5tKbH0KqXMwj79Wu4zFZAiSWdT2OT+Nhs4orUdLyxfaB8NXx+A6z8b6c29GY1o2b2ItWiwgesqXKy8cvCw9K/44XWMhsqjzxv8Wigf69TD6m9uHvuxjR5MlE33IAiKoqEB/5B3F13EXHOOcT99X5Mp08h8dFHME6ZQtzf/krEOedgmjw5WL+jTcO5afMBvffZWWdjVsuL4T8U/0C/ZBUTRgznNc0lwTK9dYuZZn2UOFUhRkUD+YYfydEtZOfWRr54YjWOFnd3zZ/whD0CDxMGlYE7ht7Bm5vfJFYfy/D44Vze93IkSUKRnIS/rJw+pRJeqYk6fzomRS2iuxGKFmE800nNOnmioozR4fjqK9r9xURfHo1KOZS0Y5Y4ddgQCECqKbTKM3OEljfq1ZQ0OKhpdeHxBTp573SHoFSS8I+/UzTnAgBUKckUXXwxSU88ud/ZkzphzUAYfRNi0fkA+HyRRHrnERU5jYBGQUuti4Uf7GDs+dmIYtcrUObYoTjaJIYyTUUosBEhbmeFdBmCKLtXm72hn284NPjI00kjsCdDzh4sLFtIfVvygslpk4PG7PzofPKj8w9rH8PIJJtCocGt3pDWX6O7s3acwdDK6XnxlDY4iDdrOX9YCrnxZpbsqqNfsoVfttcwtV9CpzqCKBLzpz/hq6uj6SNZNLnm8cdJ6klzdPTNsPZt8Lqgbid8cqWcYESt71zOY4eNbdnVVAa+ybiP4m33c2VBaDFhXyLbJwsqUUW8IZ5yWzlltjIi9Cqm9kvgs7XloOhsCOzoESiKAsmROlqcXgKSREa0gfImJza3j+pmuZ4g0O1quSCKRN/wB4rOnwNA3XPPEzFtGspo2YBc/dDDKKyRAPhqa0l6+ilMEyf2eC3fFn6L0yeHtszMnskdQ+8gIAXQKrWoxH17uoc5OuRF5fHVbtnT887pBi7rNxQArz+Ay+vnw99KiTdriRo7isj3ngcgfcVPRPeazqpi+V70ing+N1VeJDdYJGeJTnAXcpnnLtYIfciNN7GlLKRvpM3qfaQu76SmY/KvdiIvvBDTGWfQ/PkXQYOfMi6OiPPOI/rqqxBUKqJv+MNebfmbmig4/QxEkwlRqeLJZ1rYHOXDqbGRLj3DDdlXExBEft1ew6Wj0mHMzfJ/RwPvv7mN1f5GtJp3SdpSjrklAC21+IwW1MnJnfrR1RY4ococK/04lq5ZCATw18mLXVUP/1NOZHYU5KQkV5txRRShBxmMA8E4ZjSmO+pAgj5lbfMndQvf+fvjCmwCIC5lDFMqVpApWhjhF7mutRKe7APx/cEQDa0V5F/wPnUb65CaGlADBSuriMyykJJnPSz9PNZpqbShaouqdmhAoTy0z0ednk7yf55FkiSsl12KMlIe8yT+36MAWC+WnaJMkybJFS7ao35qKqrERASDAfuSJTR/+SUR06fv13trFBqm95rOu1vfxe13833xdzw4Yw5Np2VT/t9fiGzahAYfalpJy/BAlVxvsP4ttjpG4K1XMvdfqznrxgFYE08+rdWwIfAwc3nfy7m87+XB14IgYJ54Co3vvIMiAHE1q2nSnskWx2mMMcsus8LGd4m5/n7q3tiMZ3czeuVvwU+m1Z+HQy0bAlPaQ4MVigPKNngik2YOrYYXtxQzImM4n60tx+UNsLmimUGpkfvVjjIqivSPPqTq4X/S+v334PdT+5//oO3fD1V09L4b2JPMCQiXzEV6exZGfsQv/cYo5VkscgXwewNsXlyO1+Nn3PnZqLV7/wwjk0bh2N4ISEQiey0FJB3zhVja/VKMntCDXQx7BB5xOmkEdvAIlCSpxxCDT3d+GtyflT3r9+lcmE6Y1WZMahOtntYey1XaZU++a8Zlcs04OTQ/EJDITTCzrrSJ9WVN3HJqNsmR+r3qxt5xB60//oS/sZHWBQtxrF6Nfkg32XxVOpjzHnxzB5SugC3zIH0cDL1aHjS3U/ALuNs0RfNnsrk+gM5vJ7dMfhYoExPDi0IdSDImUW4rp9XTSrO7mTnDUvhsbXnQI1BAQEKi0dWIL+AL6m8uvmtSsI17Pg1loK9pC+mM1KtRKrpfVNL160fErJk0fzKXgM1GxV13k/z8c7i2bqXxvfcAOclX8n+eRZe/b2P/z6U/B/fPzzk/nAjgOKGjVluxLSQ7oFKIqBRi8L7it41k5+evIzkctHz1NffOu5lfttfg9gV4e6vEFUNvwrj8iWD9uf7xLJQGkBtnRKtS4CkIaZtG9ul/ZC4uTJcoIyO7NBL2hMJiIeXVV9FkZ1H/yn/RNzrp5QGrXQK2c7p6Jd+mj+TnbW2GwDYkXSQ7quVnmEbbxKQNIeeA2Ntvw3TKQSxchznhkPx+Cmefh3vrVtw7drBz3Hh0AwYc8TDmgK3Nm0GhOGxht4qICDTZ2bh37CCzBnI9s1lbEUerM4VROTMZN6iMwroW6qSF1Om0rBWUTA24SW6tAEGElrZkccufZ9w1t+C6ZwmFTj8VdS4WfbidOX8bgaKHZ/2JQlN5C0ZZYhT3Ycw7KghC0Ah4QPUUCpJfepGi886X599PP4OntJToG27Yr+/OuVnnBmXZvi/8ngtyLyDSqCHy8lf5548lVK//ATtaTh96Jefvuhu2fYVB0chUy7N82XgHAbuSRR/toP+EJIrnlzLkohxWvbedkVf1RWc99LD2Y5kT/9t+DNDRY2NwgUSZuYDtron4pTZDzrp3ERUSUXNyENQiGlE2/EiSQJ03B4dKzhic2LYIrE5LO+kzBreTag55BBa3FDM0PXQDWlXU2FWVblFarSQ++gimyZMRjUYCNhvlN9188J1LH4vQW3Z9VghNGD3L6W3VICggJsXEtqWVfPbkGjwuH35vAG9b5ipbo4uKHY1EpxrJ7+tFhfzB1wZ64xVDnmdGT+jmqDCFPQKPNN1pBJ4771zGvD+Gke+NZHvD9k51quxVLC5fDMihjCMTRh6ZzobplDCkO6rsVXsdE0WB0/vKYZySBJ+sLturDMgD1Ohbb0E3eDCiWk3Vgw8h+Xzdv1lCPxj3Z1DpIb4ffPNnWNc5rJR174I1C5KGwICL2FFjY0CpDbcSCpKVRJwz46TStdkXHT0/y23ljMiwMntwEhEG+b7ZbviTkKh3dp01LtUaMvI2OuQl8670Afck9rbb0A4eLOuELVlC8WWXU/XQw8HzUVdfvV9GwGZ3M9vrt5MXlceIhBHkWnvQjwxzTNHxs9rWsK3bcgqjAfMZZwAQsNkwr1zEVWPS6ZcUgTcg8R/3WfLCwKS/Yosbzv95ZW/TvolyrIimponiaNiRoiAiN+xFfjyiy++LqNEgGo0oYmPxxoc8ka7c+g1Gj4OlBfU4O2Q0rW5x0+qSnykWdx1DdrYtCMXEYBw37sheQJhjFkGhIP7++zCMH4flggvwNzQclTBmVao8PzOffvphvT7dkMHyTiDASzmTiFFnA7BsuwJb1STmrWlCatNQ90o+nmjeAKZEiExDVn0GFj6Bwl3NqKnpRBrkcUFjtZONv3Q9vjvRsFeFxroe9bExhtRkZBAxYwaiyYQE1D37H6r+9rf9qptjzWFK2hT6RfdjXe26kOyPNZOzRg9kXmAM8wNDeHdFMUx5GF/ScALmbJI1yznb+ihmMUD5tka+eXkTm3c18+HDK9myq5mP/7EcZ50j+D4Blw8pIBFw9jC2P84IGwKPAPrhw5B0GiojZWHfMnMBzoCFIvcwAkojGONh3TsoIjSYxxgBCbcUh0dKo9qnx6OTMwar28YDYX3AEDqlLphttbilmGHpVhT6naisv/Bd4Y97GWL2hajRkPjkEyhjY/GWluJct+6AhEv3YnDIO1TPdyTWOjhzdjZN1fKNRalW8O7flzP38dV8/uQa7M1uti2rRJKgrsRGfJurO8CWQC6IIR0DfQdJg3Bo8JFHKSrpHdmbWF0sKytX8tclf2V+8XwKmwtp8bRg99rZ0bijU503N79JTmQOKlHFuVnnohBPXoHaI02iMTG4rxY7G3aEtsFhpa1rbb/ZQ5Jpj+L/eFUZ/oDUZbnI2bORXC78jY24t2+n6eOPe+5U7ykw4zmokpNa8NM/wNkk73tdsPtXaNgFzWXURQ2ivtXN0CIHJhf0KvOhHzCg5/ZPMjpqQZbbyhEEgSfOH4jQFhqsUYR0/uqcdXvVB0iL0hNv1pBu1QczRneXWbgjyqgoEv56P+42/TZBp5Mz6SmVaLKzibxgzn5dw7aGbdS56thSv4XMiMz9qhPm2MCoNpIRkUGKMQW3383W+q38d8N/eXfruzz222OdylpmzwZA3bs3rs1buH5CL7ZXt9Jg9/DR+jrcl3wB4//MvMGvUou8wJmfZMYf8JNU6iStDlJrJVThjMHHNVFXXkHvhQtY/cBMFucJBIDqWAWX7f6FrFgjY//1M5e9toKKJmfQGxDRxZkrbRTFgk8hEDFzJoIyHOAVJoR+yBBSX3kFdUpKt2HEPYUmH44yqvj4oK7mYb22waFIi8D69dw7VfbETrJoeW9FCQrbBGy77iXgMyL5tZQrEtl2xWdw5Tcw7Bq5YuIg2PQJhiFx9FXKgzu9ALtWVuFo8ez1nica/sby4L5XfWyYggSVivgH/kHMrbfia9PZDrg91L/2OiBLKpTdfDPVjz3OjvETqLjvfhrffz9Yf2TiSDbWbcQn+TpFXg1IjiA33oTVoGZ3rZ0LPqni2vKzkFqLAIgQDYwwvYcEtM/I3G2+HUpR4L2/r+Czexbz6o2/8Nk9S3j9ll/57O7FvHPf0t/7T3JECD85jgCiRoNl9myEt98loRHS6mXj1MrW80kw7ERftV5Oe54/C6NhEYIoTyQavNexyyvRLDaHwoIJGwL3JM2cRrWjmiZ3EzFmP/q4H0Bbyg6+57VNu/nX+H8dUHuiQkHkBRdQ/cgjADR9Mpe4uw8yg2uvSWBOgpZytOJqROrQrdNzzo392bSiGp1RyaqCZhzN8oPn57e3Ul/W5k4vQFIHQ+ACKTuYKAQ6GwLDyUKOPEa1kblnz+XJVU/yxuY3+HzX52ys3dgpTHhL/Ram95J1LnY37+aDbR/gk3z0sfbhgpwLjlbXT0rUipDxr3dkbzbVh35bUboo6px1VDn29ggESLTomNA7hl+211Le5GR1cSPDM/bWkhEUCuLuv4/ii2Q9lNoXXkQ3ZAja3iEdr0BAorjBQUZ0W7hn/izY8oX831EHX/wRznsLihaDt20lMmsyj3+/k7JGOwN3yxqhXqWAfvjwQ/qbnGh0MgS2ygNdSZKwe+2AvHBk88r31446gR0Zlx2N2xegqoN49P4YAgG0ffqQ/u47NH36GaLJhHPFCiIvuwzLuefs90R9a30oUVXHUNMwxwczes3gmTXPAPDM6mdYWhmaLExOm8yg2EEA6AYNRJOTg3v7djy7d9P7TzdzRt945q2voNHh5cct1Uzrn8imilCWxfykCOoaSolpO9SYYAp7BJ8gXN//ei4+4zOS6uvJKm2ll7iAprGT2WxXs3BHHZ+sLkPfltkyyVXA1NUSKj80JJnoc+kl+2g9zMnKgYatHw/oBw8K7jvXrmHaTTdi0ChYV9LEsz/vYs6wFFqdXn4on4g27hu2tSzl1fWxPD7pIZhwF2z7GoqXQNUmlMOuJfXUFLK/LmKXO4CjxMbyLwqYdOmJ/ez1OiqC+x7tseOQIAgC1osvQhllperhf9Iybx6tP/yA+YzTqX/1NVp//ClYtnnuXFq+/Rbz9LNRGA2cmX4mj//2OE6fk693f80dQ+9Ap9QhCAJ/OzeWx7+uYZPtGzaKi/BHJ3GaYxqPuBczikVkKQTeioxgYvMYvjFtYGHsfBKdyZxZcQ0Bl4JmmweXH7weP04/6BUSDqf3KP6lDh/Hhhn4JMA8fmJwf9SGJkqtrZSIGZR5ZZdmbNXw8yMI698OltvhHYAYAIe6heQOcxZNdtgQ2JGOOoFra9eApjT4urRl7yyf+0PE2dMR2sKvm7/4goDnIFeIRAUMvRopbQwBhZWIhKX4qh14P97B2CmpaPQqdCYVap2SqGQDpZsbsDfJ75Xax4qmdR0AkiTyZSATQQhNTrWuUMiIGA4NPmpE66KDYcIFzQWdzm1tkCf1kiTx2MrH8EmyO/mElAlYdSeHKPGxwoW5F3J1/tVMy5zG5fmXM6PXDC7KvYhr8q8JGpDqnHV4/F3/1s8dlES/JDP5ieYuswe3ox88mIhzzsF42qn4GxoovuhiHKtXs7O6ldOe/JUhD//IjOcW0+LqMIiY8jDE9JFDgLd9De+dD1u/DJ4uso7ho9Wl9Gopwtq2TlDa24LYln0yjExHQ2CZTQ7xcfgcQeO8URVaMOnOEGjSqshPiuh0bH8NgSAbA+PvuxeFySR7RSQkoO2z/5OKLQ2hTNZ5UXn7XS/MscGIhBHB/RVVKzqde3TFo/gDflw+F4LQwZDv82FfsoQLhqUEy374mzyO2VwuW/0EAfokmKnevDpYxpVyEPrFYY5JjGojV076M7sHyR6eQiDAmQveA0lC7ffy4W+l7Ky2gSRx/fofULUN/2zDegcTE4UJczKgTExE2eYJ7Vi3Hvx+JuXGYdapiDdryY418sIlQzg1aRoKQU6C8V3xtyzaVQbGGNlBA8DdDFvnYZqYQu9EPYq2sI+tSyupLmo5Ktd2pPB7QxERfs2xl4DMfMYZRJw1FQDJ5aLib38Lef+pVAhaWbdPcjho/e5bQL6Hnp4uh6HbvDZ+LP4RAKfPyT9++xMt1sdRaisRVS2Iihbqo4q4IdlAqVLBU1YzXyT8xGMZL1FjseFWtVBo3sLHac8gKR1IooRW8KIQBAQBlAoB3THiSXmonBhXcRxgGD0KZ5Q8CRm0W8LvWo/RC8vqL0NSaEBjlvWgamVdmRWBXN5yxQKyIdDskKi1iHKikF69jtp1HIt0NATOK5gXlIAAKGzefVBtKiwWObW5QoEqJQX7ggUH38F+sxGKl6II1KFpmgcEEDQKWn4uYcCEJK56fBwX/n04Gr0KSQJRIV9A33wJBIEAJpxiFvVooYNHoMbZwRAYDg0+alze93Iuy7usy3PbGrYRkAJsrNuIUlQGM5telX/VEe5lmEGxg7h1yK08Ou5Rzkg/g4fHPsw9I+7hliG3kGAIZQKutndt5DslN5bNFS1sqmhh0c6uw0rbiX/knwRaWsHvR9BqafzwI3Zu3s2uWjuNDi8tLh//mR9KJoAlVQ4RrmwLEfY6QnqBooq16kFkxRoZXrM5WKWif+fsxWE6awS2GwI7JogxqU0YVUaSjEk0uZq6bWdOB4MMQLTpwDV5o668guwFvx6wN0a7R6BKVJFpCYcGH2/0jepL70jZA9gvyc9ok8qEKIhoFBpO+/g0zph7Bs+vex7jhPHBerZfFzAyM4pUqx6jWoEkQUmdnYAka1RmRBkwapQ0bw/dA8jo/D0Nc3xzdubZLJ8YS5UFfCJo1K18/OPDvPX9Qwxf9R1rC2v54/pPSW+sx6OABiN4L5lxtLsdJswRRRAE9IMHI+j1KKOiaP1ZTq51zbhMlt97ajDR2wsXjsLgaQsjFt386cu3+GxtGQzuMF5f/SaiWkHU6ERy27TyzHola38oRupGAuZ4R/IFkHwhDX2/7tjMORB9440orFYEjQbJZoe2zNcxN95I2ttvBcs1ffxJcL89AWOSMYkvC74kIAV4Y9MbVNorqXEXkZpYS6w+lsQoCUlZj18McGliEmvbDIuVmmpQLESQ5M9eq6zgk0F38VvunVRm382bxhpeT/BTNyGGN2JCc/DjmbAh8AghKBQEzpoIgChBZtUyAGz+BH6L+ztYe8mrE2185p1IjleBhIRD1cKAQomYpgCCXo86I+NoXMIxS6oplDBkSfkSQBb1B7D5Gnuc8PWEZc4cFCYTrg0baPzgw4PvYGQa9JKzuSmlKvQxO/DVOnGsqaF1gTxZNVq0TLtpAL1HxDHrL0M4/95hJNV8hcq/G0FysMNwFkCn0GB1m2g0ooho2DuLaZgjx7jkzkLdKlFeYbN77ZS2lvLu1ndZULYAtajm+v7Xo1OGPbmOJToaAtszB++JSasiN94MwLaqls4efXsgiiIpL76AfuRIAg4HLfPmoXn1+U5l3lxaxK/ba0IHkofCpZ9B+ngoWQaBtvbTRvHYLxXsrLYxsjpkPGwYHH4O7EmUNir422oPDbZ5bJ3O27w2ym3lFDYXdtvO5Lw4dKrQ8MioOXAVlV2Nu1hacWAaMnavneKWYkAOX2+/j4Q5fhAEgZnZMzsdu2XILXw07SNGJIygzlVHvauel9a/xNZUEUEvP7ttixYhIDFzcBIOr5/Fu+p4bWkhG8ubqbN5mNJX1kL27Ap5neuyexPmxEEURe4acz/PT1dwxzUKFkfVYXQ0E+FxcM2mr7jo6xeYXrSMGIeL9Rnw7HSRpNiwY0CYk4+oa65BYTbjLS2l7j/PdZmYTaEQeeLM64Kv3YbvuW/pHYxfeg9vJmTiAyhZCnU70A+OI0OvIFEl0GL3UbCmlu0ru5aKOd7x1DshEFoglY7RyBKF2UzSk0/Q65uvMYwZA14vpsmTsV55Bdr8fDQ5OQA416/HsXYtAANiBnBBzgVU2CpYXrmcZ1c/y+ubZY1BpaDkxdOeY/558/nsnE+wauWorHoFbNBqGK6J5e919byjjuWT8iomSzpOV2qpV4os0nuZa/VyT/TTLNHexITKB3Hauk44d7wRNgQeQTIuuobydBMVyXqGbylB6ZFdj1dsy0PKlrPLtvaaxmqxH2rlqaAUiM3To/C7gxmDNampiKrw5KAjaREhj0CX38WklNOQPLHBY7uaDi7Zh37oEESj7MVpX7oUT1n5Pmr0QIcVKEvsQkC2VLYuKMPXJAvZq9QKJl/Zl9g0MzEpRpQFHwEgCH5WGwbKlTskC1G2ZbQUjcawTtBRZmDsQPTKkDG2Y4ba1VWr+alY1rVQKpSc3evsI96/MD0TbwgJ7ndnCAQY1paVXJJgTXHPWclFg4Hkfz8TzPCeuHoRfetkD+X+CQb0GiXXvb2abzd2eL+McTDtaYjMAGMcDL0aT7+LqGx2ofe6MAXcbEmGNZmgSAgnCdgTQRBINMhJYcpt5QSkQFATECDOEBfcL24t7rYdjVLBnGGpjMuO5uqxGYzuFXVA/VhZuZJLvrmEm+bfxMVfX8yL617cr3rbG7YjtT0b+kSd2BpFJzLTMqcxKHYQUzOmMiZxDOf1Po8caw5GlTEYnt7H2oe3dr2PfqQcSuyvr8e1aROTcmNpd0SZvzW0UNA/2QKAWBQah1j69D8yFxTmiNEvph9Z46YRkd0Hv0GLTyuP90svuBYhuzeVcWn4FAIrc0S2pIud5BDChDlZ0OTmBEPi3Tt3duusMSppMKeknEKe5iL8tr7odR4a3bW8b9Tzh/RsiMmBNW+jMKgw5EeT1iHcc+ncXbjsJ4YOXEdaym2IgdC4CKPh6HVmHxhGjUKVlITYloBGN3gwokaDIAhEXnIx+jGjUSYkUP/KfwF5DDglfUpwHPXq5lcRBZFhccO4qM9FwSgLk9rErYNvJc+aR350PiaViWuihzGbCNCY6a2N4Sl1JhaFAX3bA9knCLybZETtqKJP3fd8oH306PxRDjNhQ+ARJCo9h5pYNYllDvSuAFGlnyAh4XVLLKiaTeCqn/gg9UGubb2X6FoFSh8UlJSQVhP6oLR5Yc2gPUkxpiC0/QPY3riVOOGU4Pn11QeWObgdQRSxzJbdjJEkmj/9tOcKPZEzFfRRoNAgViwiMnsVAAqzOugV2BGpaCkKbwkAbvrzqzKurU8hj0BBqUQ0GFCYzQffrzCHBZWoom9UKDNarjU3uP9N0Td4AvLnNj1zeqekFWGODdo9AiM1kZ0yje9o3EFRcxEf7/iYgsYCdJYtCMpGBIWNVUU9GwIBFBERxNx2GwAOtY6/rnyTu1e9w51fPoHQUE8gEGBnjY2iOnuoUnQWXPszXPktTHuKggTZGzi3oZiEhnryyqA6UsCkDssBdEV7eLA34KXWUdspNNiitXTKMt8T/zi7L29fPYK/TssjK3bff2tJkphfPJ+X17/MnQvvxOP34A142VC3gfkl8/er7+2aohBOFHI8E6GJ4K0z3+Jf4//FS5NfQhTkEdwV+Vew7KJlDIkbwtaGrfxa+ivSqMGArHtlW7yE/MSIoCZlWaNTPicKjM2WJ72GMnlV2KGB+LTwePBE5PoB17OtYRtvDWzmnr+nkvbB+5z+91uJiY/GNfZUXrwhhQX95VDzaF1YHzDMyYcgisTff5+8bzDg3LCBgNO5dzlB4NlJz/LBnLvpG5uMzaFEkkTKfS2sENyUNBbA+vfB78UwNJ5YlUiCVr5fK5UiXz23/oQzBrZWOhD9ob+VwnjszyG7klqJmD4dz85d+Corsf3yC7ZFiwAYFj8sqBUoIGD32onRx3DbkNs6tTkjawbvT3ufVya/wjtT32HUaf8Hd2yFiz4Ibi+/9Cd+uWQlsVr5PlsQsPOo1YofSLWeGEk6w1mDjzDOq8/Fse5/6D3Qp3Q1y9OmkkE8mxeWI4hJLKiv5gyHCkWbUStpjI76n0M6Bdq+4YHfnqgUKhZdsIgmVxMPLn+Qh8c8zGPzl/FTk3x+ZflWrh5wcG1HnHsutc/+BwIBGufOJeqPNyDuZ/bHTig1cibQXx6GkmUYiv+BFP9HmqrPwLfMhS4/Gm0vS7B4YMFLwTTmnriZ1NjkB5FSKW/VXgl1aQ0BQDtoEGGOPg+OeRCjyoiERIOrgW+LZAHbNdVrgmX2DBkLc2wwNG4oOZE5bG/czoKyBdw57E4kJOZ8NQdfQA45GRQziLW1azFmg7d5AL8VpXbZVrPTS4Qu5LVtmT0Lr9vNh58sZ86OnxlXvh5RkviP47/gdLB8TR8+uPw67r5wVKgRvVX+D0EjYd/6UCjrtmSBiWFDYJd0yhxsK+/kEWhUGUk3p1PtqKbZ3UyTqwmL1nJY3rewpZBbf701+PqsjLNYVL6IFk8L2xu3U2Wv6uR52hUdMwaHE4WcuGRZslhdLSf9aB6Rg7Ete3DTxx8Tff11nJITw8ery2gf+Q1Lt2LWqvDb7Jga5AiCsmiBAfqYo3QFYX5PMiIyGBE/ghVVKyhuKWZLvI+hgsDUh+5AkiT+9u6H4IdEY2LQyBwmzMmGbuBAImaeS8u339Eybx6G0aOwnHNOl2UFQeCN2Xcy6YlfaXH8iCZOHp9/ZjJwS2Mt7PgOTc40LLOyyP+iAH3AR0Gjm9ZGNz+8tpnxc3pjiQ1F/ThbPdSV2jCKYGv2YPH4sC0qR5VkxFtuQ5UkG4na97vb9lTmUOt3V6bBHUDwhaLLVJEHFvFwrCBqtcTe+Wcq7vwLANVPPol++HBEjYY7htzBKSmnoBJV/FTyEw+OeRCl2Hnu3n7vNKlNPS6s61V6Hhr3T74s+JKvdn/FexFG6swxrJJODKeOo/oEWbhwIdOnTycxMRFBEPj88887nb/iiisQBKHT/zPOOGOf7T7//POkp6ej1WoZMWIEK1eu/J2u4MAZlX8mn44SqDdBQaaZwY2/EQCwqtn0azlDNjpJ8iuo0oE5WktkX5HM6g6GwLBHYJdEaCJIi0jj1dNfJcGYwMSM/OC5nY0HFxoMoIqLwzRlMrohQ1DodDiWHpjmUydSR0J8P3k/bQzGphewKh8H3DTN20XAJ2e2pGYbYvEPuPz98AQyEQfPpM4m37T1WtkoEd/BGUkVFc4+eyyQbErGorUQqY2kl6UX52adyy2Db2Fs0lgGxAxgYvJEsiOzj3Y3w3SBSWPCorEAUNJawqrqVdQ4aoJGQID1tes71JBYV9qEp+03W1Rn5/yXl3H60ws57akFOD0hEWFBoaB+8gya1QYa1Ua8Gh2KqChSTp9ElLOZ04tXMvKJO2nZ1rXn8u52Q2BDyBC4PTnsEdgdA2MHMiZxDL0je7OxbuNeyUJSzSEDbk/hwQfKorJFwX2jykifqD5c3Ofi0PnyRV1V68Tu5t0Mjh3MiIQR4XvFCUy7VypAjcaNKkH2SPZVVmJfupRTcmM7lT8lVzb4eXaH9AHr4vV7TWzCnDh0XDT8dGcoGqXOWYfbL48Hw2HBYU52LLPPQ2rzBGz65JMey5q1Ku6YkoPJOxwk2dXic4NB1gpc8xaCKKDtbSUiRk+iTkSjENAKULOrmbn/Wk35Tnni1VBp45N/reKr59bxxX/W89XrW9i1pQF/i4eAyxfcdtzvbnuw5w6ljBMJ0R+KLtNZj98FJfO0aWgHDUI7YACB+gYa330PgARjAmdlnsWU9Ck8Nv4xNArNIb3P6MTRDI0bilJQMiF5AhkDLqPW3XA4LuGoc1RHEXa7nQEDBnDVVVcxc2bXnjJnnHEGr7/+evC1RtPzh/nhhx9y++2389JLLzFixAieeeYZTj/9dLZv305sbGyPdY8Efax9WDMmlvOXVBO1u4Va3TJeTJvMOc2ghaAXWKxPYNZfhvBW4etkVguAhCSKaHqHxaH3hwlZ6QR+MyIqbdR7Sg6prYjp0ym78SZAzk5kHD9+HzW6QaGEqY9DXD58dSsASnU1McL9NLkeoPHD7VjP7430xZ8RJRdaxUaavFeiy42j4fNNAGjVPjxAQkPIOKxOTz+Eqwvze/HgmAcBeHPzm4CcXTjMscvM7JmsqFoByBOvc7PO7XQ+QCC4LyicGDRK5m+t5sx+CawsamBlYWhQ8OKCAm6fHLpX76hu5bOsCXyWNYH7RsZyaW8DtuUraBUVKAN+9G4Hu2++jewH/4ph1KhO71tUZ0cZ8JHTKN/HaiKgwRw2BHZHRkQGSyrkpFErKlcwNH5o8JxRZeyUZb6kpYQBMQfpLr4HC8sWBvffPetdMiMy2VS3iRfXvxg8f17v87qtX9RcxMa6jYDsoXqoA9cwxy4dtSqrHdWMOG82tl9/BeQxxtjHnkAe9clMajMMNq9aiUMNeg84Uo5PL44w+8epaadiXmGm1dNKaWspze5mIjQR/Fb1G3qlHofP0UmLOEyYkxHdoIGoe/XCU1CAc9Vq3LsL0WR2n0htSulqFD+8zZrMSKZtqqLFDJsjIukfVYxQsx1lbA4xf+iP+utCNMsqWe/0U+v2I3j8LP5oJ6l5Voo21uNq8RAIgL3tLl1S0MIauw9rUSsNrfIWCO53t+2pzKHW766MyhUgyRta5DbGJB7+D+YIIQgC8X+9n6JZs0GSqHv+eSKmT0MZc/iNm7N6zyI9Ip0+1j58vONjYnQxbGXrvise4xxVj8AzzzyThx9+mHPPPbfbMhqNhvj4+OD/yMjIHtt86qmnuPbaa7nyyivJy8vjpZdeQq/X89prrx3u7h8UgiAwPGsCm1Ll0N8YZzNKZznv6V20aAU+NXioVgTIntMLvVnD9qqNJNXKE1AxMxWxLcV1mJ6x6NVoJfnmFhBbKW+pPei2jOPHo4iR9QFaf/kFX13doXVuyOVwwXsQ1xeVWI5G3IrFeR/eTatxvvZ3xDbPEZ8Qj2bOnTSLoSzIapV8807osBChTkvb8x3CHENc3vfysBHwOODUtFMxq2WtlB+Lf2Rb47Zuy+p1TurtHp7/dRf+gMSqos4rgy8tKKCm1RV8vbM6FJ6a3jsVbV4e0VddSevrH7HdkkKtPgJNaSEl115H8xfzOrVVVG+nV1M5Wr8sC7AtWX52hA2BXZMTmUOsXjacrKxaSaMr5D5tVHc2BO5LJ3B/afW0BiUAko3JZJjliUheVB5RWtlgs6JyRdCTpys6GhLHJx/kYlOY44L27yfIhsBOY4yff0Zvb+GTUVpW/3ks710zgl4xcnhX8/wf0Xtgdyy0DA5niz2R0Sg0XJp3KVatlXW16/i28FsCUoB3tr6Dw+egX1Q/5uTMOdrdDBPmqCIIApbZs4OvGz/8YK8y9mXLkLxeHKtWUXPfvfSr3sH4rW6iWiGjHNRbdDQsLoMf/0rA5ULUKLHMyCJuXBKjcy1EK8AiCtSV2ljzfQkNFXY0vgARIqRGqumTbCB+dAIuvwTRuuC2435324M9dyhlTClGRF9oYdsQefx6BALo8vKC34GA3U7Nv//9u73XkLgh6FV6Lu97OV+e++Xv9j5HkmNeXOLXX38lNjaWnJwcbrjhBurru0/X7PF4WL16NaeddlrwmCiKnHbaaSxbtqzbem63m5aWlk7/f09OST6F6gEhl/7hVVupV0i8rHEQnR3B+j5aJo5IwuP3UL5hOcq236sp//B4LpwsZJn7ovVnofNnM3/XpoNuR1CpsJzTZqz2+Wj+4otD71zOmXDOSwjaCCSFHlGwE6u5DV3lf/DQi4BkxG66EXVmDHWtIRfudo3AhMawR2CYMIcTjULD6emnkxOZw+DYwayqWhU8F6mJJD8qH6UgO9H7Bdmwt6m8hY9WlQYThwhAtFHNKTkxLN4ZWjDYUR0KT+0dFxIYHjm8D6+e+2c8UbKHkLLfACruuouaJ59ECsg3/sI6e2d9wJSwIbAnBEFgXNI4ANx+N7ubdwfPmVR7hAYfJkPgsopl+CR5kWZ88vhgFndREBmZMJI8ax6jE0ZT1rp3Yqh2FpaHDYEnCx0NgTWOGnmMMXMWhrFjMZ91FrvPmob+3ltoufE6hlvk77SnpITA6g0AaL1gyAyHjp/onJJyCvUuec7z6c5PmVcwL+g17PQ7SYsILwKHCRMx42yUiYnohgyh5Yt5eGvkbOuSJFH30kuUXHkVVQ8+hGPDBrT95UzrDtGETQMBAYrjIRAQ2P5/69kxcgTOTZsRFAKWs3sRMTiWkUYFkRGyHlxkW1Zho17JGKOCceMSmXDPUDRGFQaLBrVOGdx23O9ue7DnDrWMwhsyBGotx7+8VMxttyKazeiGDMH203yc69fvu1IY4BhPFnLGGWcwc+ZMMjIyKCgo4N577+XMM89k2bJlKBSKvcrX1dXh9/uJi4vrdDwuLo5t27r37nj00Ud54IEHDnv/u2Nk4kieTGnhzPbXNVv4MOdUEGBVUSNf/2ksWpWCpeUrSC514VWAyg+6vL49thumM72sSWxxfgbAkpJNXDb4lH3U6B7LrJnU//e/IAg4Vq/BetVVwcneQZPQH66dj/Dd3ai2hIyLagpoibsH8zV/RFArKSsOeRspFB7wdw4NVqWGB4NhwhwOJqdO5uMdHwOQaAiFS3xw1gckmhKZNW8WOxp3ICjsyIF7AvPWVQR1/HLjjGyttvH95moCEswcLIduVTTLGjZalYjF4MfutePxe3D6nIwbkModDRczRxPPZWu/B8C+dBme0lKMf38QX109Z+9eTEAQECUp6BHY7r0YZm/GJ49n7s65QGdjn1FtJNmYjCiIBKTAYTMEfl/0PSpRhTfg3cuIlxGRwdeFX7OlYQszsmbQy7K3J5fdaw8mj0gyJpEZkXlY+hXm2KSTRqBDnrTG3HoLgiBQ88y/8Tc1AeApKqb0pptIfOghmr/6Oljn54Ei/Y3HbzhXmP0jx5pDflQ+m+o3sbVhK8+tfS5477pr+F2oRNW+GwkT5gRHabVinjqVhv/9D4Dap54m4cEHqPjb3/EWFQHQ9PHHmKdNwzB6NNqLL+Uvy0CT8gYD6rZSHi3wymca8Irg9VD98EOkvf8+giBgGp2EKlpPUoKeLZ/sImJrHXWJRjIGRKNLMaPLlz25B56WysDTuk4gd8wRCLDk/bZdAfSm498QqLRaib3tVqoekCWZqv75COkfvI8gHrq/mxQIUPv00ygsFhAVNLzxBtq8POo2bDjkto8FjmmPwAsuuICzzz6bfv36cc455/DVV1/x22+/8Wublsrh4p577qG5uTn4v7S09LC2vydapZYRg6dTKt8/6N1QwmeX9CU33sRjs/rTNzECkD0E+hVLKPzgzkxCN2xoD62G2ZOxaaGEITsadx5SW+r0dCJmzUIRFYXt559xrlmz70r7gzkRZrwAOVNhzC34osZiEy9AyL8IQS3b6YvqZSNDepQejbotWUibbVAZE4PCaDg8fQkT5iRnQOwAFIK8yFTrlOUENAoN8UY522ukVpam8EleLhoZS2a0gWW7Q17q43rHYNTIv9vN5c0ANDk8bCpvwaxTcmZ+Am9ueYOR741k/IfjeWDpA0zKjSUgiLyfO5kFZ1yOOjMT9+7dtH73PeV/uZt/Ln2FOGcTTqOFry/vTXnbc8OoCnkWhunMyISRwUlypa0yeNykNqFSqIJG3uKWYiRJ6rKN/WVj7UZ+KP4BtajmvN7nddIkBIJJaACa3E1dtrGsYlkwMc24pHGHvsgU5pjGoDIEf7/thsD2z1wREYHCakW0WFDGxOBat57Ciy6maa5s2PaJ0DixP8MThh+dzoc5oszsHdJPr3ZUMyR2CH/o/wdGJow8ir0KE+bYIurqqxDN8uJo8+efU3bbbbR8/jnOTZvQ5PQm5o7b0fbNQxERQcKMaQxJt+Kz5bI5XaTJKLA7N14O6QCc69bT8vU3wba1vSNRmjRkZEWgtmhJSzCgMqqDRsDjDbe9EYUcXIZDIz+PTgQss2ejyc4CwLVhA7XPP79f9bw1NXgrKvY67tywgYDTSdWDD1H/3/9R88STONevx1ddjd9mw9fmeXq8c0wbAvckMzOT6Ohodu3qOgtsdHQ0CoWC6urqTserq6uJj4/vtl2NRoPZbO70//dmVvYs1mRCYSwU9TKQVVXAVzeP5fxhKYDs0rykaAH9CyVEQFffijacKOSAGJUcyrBc6y7B5w/0UHrfGEYMx9+mD9j0cc/ZqQ4IjRHmvAOn/gPlH7/A+LeXMY0PrSz91hZ2WFTvANGDziVhccjnwvqAYcIcPvQqPbnWXAC8AXmklGJKQRTkR6VVG1o5PXeoJejp186wjCjyEuXnR0Wzi3qbm9XF8u+3xekjUq+m1BZaaNpUv4kBKRFY9LLR6vmIQUT95S8IgoBoNNIUEUOUs5kAoFSIFEeDJAiIgohepf99/ggnAHqVnokpExkePzz4OULIeNoeUufwOYKhdwdDQArwfyv/DwC7z05mROZeST4itBHB/RZP17IjFfYKRiaMJMWUEp7gnyS0hwdX26s7GaOjrryC3kuXkPnF54htyfH0gwfj97ipjITV2QK7lY2dtC7DnLicmX4mUdqooCexSqHiyvwrj3KvwoQ5tlBGRhJz882IBgPGU07BuW49gk6HoFAQ/cc/En3ttURdeSVRV14BwOS8OHqbQot2758WT8r4BhAk9HE+mj/7ZK9FQtO4ZBLuHUH05X0xjTt+E/XYGmtQeWSrp0PDCTOWFFQq4u69F1QqtAMHUv/Ci9S//kaPi72u7TsomnMBpddfT91LL7FzwkRKb/gj24ePoOj8Oew6bTIt33yDMiEBBAECAZRxcSiMRpTHQALaw8FxZQgsKyujvr6ehISELs+r1WqGDBnC/Pnzg8cCgQDz589n1B6ZGI82faL60Nw/nYwayNxlo2j+PJSK0MdR3FJM9M5a9G3ycMZx4xG6CIcO0z2RukhUyJMwSVXFtqrWfdToGdOUKcEVp5bvvsPfemjtdUJUgCjKmYU7IEmhRAQWvQo/LhJC2veoM9IPXx/ChAnDoNhBnV53nHB3NASq1A5unJjVqeyQtEjyE0OGn80VLUFDPsCw9Eh2NOwIvm7xtLC1YTMTestiza1uH1tT8kl7/z2S//MsjQGRCK+DxQn9qP3Xi+yOkr3GjCpj0DgZpmv+Ne5flLWWIbVl9VMKyqCRLs0U+kx3NXa9sLg/FDYXBj1He0X0Yk7u3uL9EerQ96E7j8DFZYtZXrmc0tZSBsUN6rJMmBOLdkOgy+/q0kCsiosj7e23iH/wAbT5faGllcV9BZ6ZIXJu1rnh3/9JglFt5MfzfmTu9LncP+J+njv1uRNm4h4mzOEk8sIL6PX9d2jz8vDX12OeOpW0t97EfPrpe5W9ZGQaZbV6/G75PrzTXknT1HPQRXlwVCuxL1mOc+3aI30JRwRHcy2qNtuCUw165YlzPzGMGkXSk0/gWrcOJImmDz9k18RTKPnDDTS89x4A7t27KfvTLdS98grFl16Kr7IS985dtHz3Pb7qarz19QTackX4GxoItLQgGo0kv/Qiyc/+m+wFv5Ly4gv0+vabHnpy/HBURxI2m41169axbt06AAoLC1m3bh0lJSXYbDbuvPNOli9fTlFREfPnz2fGjBlkZWVxeocf9amnnspzzz0XfH377bfz3//+lzfffJOtW7dyww03YLfbufLKY28F7dSpNyC1uSLXrVzcyWq9oGwBedtD3ibGCROOdPdOCBJ08oRPVNpZUFC4j9I9I2q1REyfDoDkctH81VeH3L99UVBrp9Ehe7QMTYvE6XV20gcMJwoJE+bwMjhucKfX3RkCG1wNXDs+k/OGJPH21cN58eLBWA1q8pNCHuWbKpo7ZRTOS9ZS2Nz5PrSwbCGTckMri79sr0Gbk4Nh1CiqfQrqdRHUp+eQlptOq0defAgnCtk3KoWKR8Y9glVr5dGxj/Lh9A+D4ZeD4waTE5mDSlSxo3HHPlrqnjc2v0Gru5VEQyLX9b+uS82u/QkNbtcqNKlNRGoiD7o/YY4f9kwY0hWiXk/k+ecjGgw0mRU4NAKSUsGMrBlHqpthjgFUogqFqGBO7pywLmCYMN0gKJUoo6MRjUaUcXFosrLQDeg6yaZereTqsRl46ibic6Th8Nl4McJE5KhQNFbTGy8eqa4fUVwN1ah88ljIqQGdUneUe3R4MU2eTPSNN6LJzsI4+TR81dXYf/2V6gcfovbllym64EJaf/iBpk8/I9DSgm7oULT9+mE69VSUcXGooqIQzWZEk4m4e+9FmZhA0hNPYBp/YiZxO6rJQlatWsUpp4QSONx+++0AXH755bz44ots2LCBN998k6amJhITE5kyZQoPPfQQGk0o9KagoIC6ulB2xjlz5lBbW8vf/vY3qqqqGDhwIN99991eCUSOBSbknMnC+L+SWOkhtsLBd5s/48x8WQ9kUdki5hS0hbKKIsZxY49iT49f8qJ7U1IqC3ouLd7MjQw8pPYs582m8dNP0eb0pum997HMmoWoVh+GnnZNRyPC0HQrm8sdJIQOhUODw4Q5zPTkEdiuEQjQ6GpEq1Lw+HkDO5XPTwp5gG0obWZDmawVmB6lp9FbHPRQa2dh2UJennQdFp2KXrEGmhyhLOHzek9kvX4QggC3RerIsmTh9ruJ1h2f2jRHmiFxQ/hu1nd7DXTTzelsb9wOwNqatVzW97KDan9r/VZsPhtOv5NJqZO6LNPRENjsbt7rvNvvptIu6ximmdLC+oAnCXsmDMmO7D4LsH32qXzWaxub6jcxzJBIvKF7qZswYcKEOZmJuvKKYAhwT1w3PpMPVg/Apv0SCZhX/D3nTzkX7XcfEvCKtPy8mLjmZhQREfts63jCW1fZLoeIWy2ecGMOQRCIufkmoq65msYPPkQwGJDsdlSpqeD3I/nkyJqAw4EyJgbjpElYL7oQUasl5uabgu0EnE5EnQ7L7FmIuhPLWNqRo+oROHHiRCRJ2uv/G2+8gU6n4/vvv6empgaPx0NRURGvvPLKXga9oqIi/vGPf3Q6dtNNN1FcXIzb7WbFihWMGDHiCF7V/qNSqIgcPhoAUYLV89/D4XVg89go2f4bcU1yOd2ggXK2mjAHzJDE3OD+upptlDY4Dqk9bW4uEWeeiWvdetw7d9LwxpuH2sUe6RhWODTNgsPnIKEx7BEYJszvRbQuulMijiRjUnB/T4/ArsiMNqBVyY/WtaWNeNq0SYemW9lSvyVYLl4vT+Z3Nu5k1tdnYIhdwuriJuauKcfl9SNJEoVt2YgTI3QIoo/fqn9jQ92GbrXmwuxNV6vdWZYsTCrZq3JNzZqDShji9rspaCoA5MzAWqW2y3IRmtAkoitDYGlLadA43K5dGObEp6vMwd2xtWEr3xZ9S2lrKcPih/3eXQsTJkyYEx6tSsGD00bgqpkcPPamwo65j/wsl3wSTQ9fAYeYUOxYw98QyqPg1p64EhOiTkfUlVeQu3oVCY88QspLL4E/gORwoB85kqxvvyF70UKir7oSUbv3+K3d+HciGwHhONMIPBHpNX5acF/asIX/bfwfyyuXM2CnD78ADRlRmM+cehR7eHyTHRnS8PKJVZzz/BIqmpw91Ng31ssulfX8gLqXXsK7R3Kaw8mqYtnYoFaKZMdrCUgB4hskGqM06AYPRpmS8ru9d5gwJysPjHqAh8Y8xOPjH6dvVN/g8f0xBCoVIn0S5PDg6hZ38Piw9Ei2NmwNvr64z8U8N+k5+sX0o9ZZi13/DYgO/AGJ7VWtNDq8tLjklcuMaAM2ry1YN5wx+NBQiAoGxMohQw2uBkpaSw64jV2Nu/BJ8ueTF5XXbTmdUhcM5+sqNLi4tTi431G7MMyJTcfQ4CpHVY9la+whQ2GSKamHkmHChAkTZn85tU8sQ6Om4m3tjd+VwI+lP7Bm9hmY+kQiqqH+h834P/wDeF1dN+BuBWfTEe3zoSI11Qb3PZqjGhh6xLDMPBdNZkYwbNw4YQKi4cTIlnyonBzfgGMY/ZAhwf3cMnh08xucknIKQ3dJaH2gLaxHPyy8AnywZFlChkBRU02iUsc5zy1hVFYUozKjuGB4ag+1u0abm0vkBXNo/Ohj9IMG0TzvS6KvveZwdhuAwlo7BrWS3HgTVoMaP24ESSK1FjQ+N35jPQqNZt8NhQkT5oCYkjGly+MdDYGN7sYuywBEx24jWbEdr1dLY10OCn8UQ9OtfLxMNgQqBAUX5F6AVqnlhfUvAODHhahsJeDRs6miGV8glOU8I9qA3WsPvjaqw4bAQ2Vw7GAWly8GYE31mgPOwrqlIeTd2cfap9tygiBg0VioddZ2bQhs6WAIDGeCPWmINexbI7Cr8x09CcOECRMmzMEjCAL/mN6fs16ZiCr1FQD+4V7MR+YYAp5GQEHd58uIs02HC98HQwdZluYyeG8O6KMg61RY/hIkDIDK9fIWQvvdbXsqc6j1uyljrdTRnurSpzu55pD7GzZ+MhH2CDzKqOLjUSUmApBVLoHbzfLdv5JXIrsiK+Lj0PTuXjsmTM9EaCKCeloGYx1js6Kpsbn5Yl0FT/+046BCwgCi/vAHRL0e+5IlNPzvfwTc7n1XOkDmriljS2UL26pamdY/AYfXQUwTaGQnFNTZWT3WDxMmzOGlo0Zgg7Nrj0CAWtWXNGu/xWH6DEm3kWvHZZAcqeoylHRkwshgPUEph/xuKm+hsC4kY5C+h0egQRVeyTxUOmpBrq058OyAW+tD3p19oro3BEIoPLjFvXdId0lLyBsxbAg8eeho0JtXMI83N3cvM1LtCEUdhA2BYcKECXP46B1n4r/nzQF7fwCc/lau7dUPv1L2lWra7KZl2QZWPXcpxdvWyJUq1sLXd0D1JihcQM2Kj6C1gu3F5cFtx/3utgd77lDKVNtDph9f2CvupCdsCDwGsJx/PupBA1FJAi+ZbuCPvnGo/fI504SJJ5yQ55FmfPJ48qLyMGk1aLV2NEr5a1/d4mZzxcFpbaliYzFOlDM5+5ubaf3pp8PWXwCfP8DHq0sBUIgCp/WJw+FzkFIXMlxqssKGwDBhjiQmlQmlKA8Oe/IIrHOGEliZdArMOhU1jhoyIjLIicyhf3T/4PkYXUxwX1TJ67SbK5oprAsZ/jKjDdg84dDgw0l+dH7wszxUQ2CuNbeHkqGEIS6/C5evc4hRUUtRcD/VfOAe6mGOT6xaK4+Oe5QpaVPw+D28teUtnlr1VJdlO3oEdgwpDhMmTJgwh86EnBguztwnOqwAADs9SURBVL6RgCcas5hMZeIv/DzibNYmZRHwCZQtsdJr41oiPziL8p9fgdenwo7vWOXPpliKY4tmAJWSlRZ0wW3H/e62B3vuUMq4pFDmcaU5bAg82QmHBh8DaPv2pfaZZ1AACT9vwqkOCYobJ0w4eh07QdAqtEGR/lG5fqzaPvz1i80A/LKtplOWzwPBMns2LfO+BKDpk0+IOOusw9NhYMGO2qC+2KTcWGLNWipqHCSH7AtoeoUNgWHCHEkEQcCqsVLjrOnWI7DB1dApKcRFoyK5Zlgm62vXs7NpJwBD44cGz0frQ6EmURFuqpphW2UrSZaQQHF6tIHdjg6GwHBo8CGjVWrJs+ZR56wjUhtJnbNuv7MxewNedjTuAOQMxPvy0OyYMKTJ3US8MpT1td0j0Kq1YlKbDvQywhyniILItMxplLWW8UPxD9Q4atjWsK3Lsu0egWa1udukNGHChAkT5uAQBIG7J49m9/d9WFa1CFEFy8YPZGJ1JUi7QAN1m8z4bFpak3dgDGiIwIFPUHKO+wFyVekUamaRn2hmU3kL+YmyTnT7fnfbnsocav3uypyv+5kz+RQAhTFsCDzZCRsCjwEMo0ehTEzAV1GJbcEC4o1GAoCgVmMYeWxmPD6e6GXpFdzf1bSLU3Lzoc0Q+PP2Gm4+9eBCr/XDhqFKS8VbXIJj+QrcxcVo0g5PaNe89RXB/TlD5YQgDp+DlNoOHoHh0OAwYY44kdpI2RDobkCSpL08trfVd57M17lk631H46BZbQ7ud/QIjDS5qAI8/gDbq2TvQKUokBypY2NzB43AsEfgYWFY/DBe3fQqFfYK1tes59S0U/er3u6m3XgCHqBnfcB22j0CQf4exBtkQ6Dda6fWKQt3h8OCT06u7389r216DafP2WXSEEmSgh6BcYZwWHCYMGHC/F6clj6RZVWLABg/sI7rLv0fNU8/TctPP+ErLILtPtTqDSwZMIYat4dNfe/k2gQrN0zoddxE723790raZ5JC2BB40hMODT4GEBQKLOfODL4O2GyYpkwh+o83IOr1R7FnJwYdE4bsbt5NcqSe3nHyRHpdaRMNds9BtSsIApEXXoh+2DCUMTE0f/bZYemv3e1j4Y5aBiZbGJoWycQc2VDg9DpJrpdv35IooM7IOCzvFyZMmP2nPWGIL+DrpNvXTsckEgB1DtkQ2OIJyRB09BDraAjU6ULGvtJGWSMwxapHpRBp9bQGz4U1Ag8PA2IGBPfX1KzZ73oFTQVkW7IZFDOIgbED91m+4+fd0SAc1gcMIwgCCYYEAKrsVXvpFje6G/EGvEA4LDhMmDBhfk/GJY0L7i8qW4QgisTdcQfRV10FCgW6wYPRbCgl/tsC3lJcRm5yNH+cmHXcGAEBvLbQGERhCi8qn+yEPQKPESwzz6Xu+ecRNBoktxvnhg0kPPLI0e7WCcGeHoEAp+TGUlhnJz8xgs0VzYzLjumueo+Yp06l5vEnwO+n+dPPiLnpJgTlof2sluyqo9HhpdHRxMUjUlEqZHu9w2MjpS002B1vRQxnDA4T5ojTKWGIq2GvcM6O2nFA0OOrO4/ATuGoihZUCgGzVkV92wJFRrRs9OuUNTjsEXhY6GjEOxCdwO2N24Nh3tf2v3af5fcMDW7nl9JfSDAkYPfaw4bAk5gEQwK7m3fj9Dlpdjdj0VqC58IZg8OECRPmyJBgTCA7MpudjTvZVLeJemc9UbooIs87D3VqKmU33QyAJTqel399Em1NHjvv34I2Lw/Xls5bYK9jB1LmUOt3VwaNiE8EjwoU5oOTxgpz4hD2CDxGUCUlkfHpXLJ++RnT6aeT/uEH4dj9w0SEJiLodVPQVIAkSfRLjMDrl1hb2sSK3d1n/9wXctKQiQD4amqwLVp0yP39ZXto4D8pN+QB4CurCGYM9qXF71ktTJgwR4B2j0CARtfeCUO2NsiGQAF5hbjdENgxY2xHw5BepQ96+LmlJp46f0DQCAiQHiWf6+h9GNYIPDxEaiPJjMgEZAOuw+vYRw2Z9uzP0HmhqTs6hga3GwJbPC18uP1DKu2VROmiOC/7vP3veJgTivZQcYBKe2Wnc2FDYJgwYcIcOcYnjQdAQuLsz8/mwWUPsq1hG4YRI0j/4H3MU6dinDARX3U1fput221P5/anzKHW766ML0KPMgBfDxMI9E4/un/sMEedsCHwGEKbl4fSaiX538+gigsP+A4n7ZO1JncT9a568hJDHjmFdbKnTZ2zjjHvj2H6Z9P5409/3O+2LbNnBfcbP/r4kPopSRK/bJMNBxqlyOheIW+h/2/vzsObrNL+gX+fJM3WNOma7gste0F2EARklRcUUXFDX0Bn5uegOC4Mg6KjuIvbDI6i4zCKjIOio4i+iqgDMsgIIpQim1C60IXupUnTpmvO74+Ypw1t2pQWS5rv57pykT7Lec4T7qbN3fucI+Xkyc8dSXFdug4RnZ+U4BSMiRyDQaGDUFTtPqeXtd6KvCrn96lO5Vzso6q+CrWNtW5Dg1tWBALNw4PL7GUYGhuMxFA9IoLUuG96P8wc7PxZUF3PisALYYR5BACgUTTiSNkRr85xJQL1Kr08rLM9LRO/rjj466G/oqLW+UeofsH9YNLyL/P+qmUMnZsIbPkew6HBREQX1szEmbix/42YnTQb1nortpzagkVfLMKuvF3QpKQg9k8vQRkcDFVkJJQGg8d/29vnzTFdPd/TMQ26AJQHATUaCXoVpx/zdxwaTH6hb3Bf7C3cC8A50fsI82goFRKaHEJOBO4u2A1rvRXWeisKbAVtLgTQFsOkSVCZzWi0WGBPS0PFxncReust59XPY4VWFFlrAQDjU8KgUyvlfYrSsyg3KhBidUCRzGFkRD3BoDbgh+IfAEBO+rmctpxGsikZuVW5CNOFoabKWWFWZi9zHxqscU8EhuvCkWPNQU1jDcwmCZ/cfRks9gYkhjVXhVc1NM8RyERg9xkZORIfZXwEwDk8eGz02HaPtzfaUWArAOBMCnvzM8KtIrC2EpY6C2z1NmiUGkiQ8PvRvz//GyCf521FIBOBREQXVmp4KlLDU7Hh6AbsyNuBuqY6qCQVXtj/AvJsebh10K0Iu/02hN1+W0939bxsPL4Rq/etBgBcFsBEoL9jRSD5hXPnCQxQKhAf4qzYySmvhhACu/J3ycc0OBrcPri3R1KpELvmz9APHw6HxYLiJ5+E7bs9nepfWu5ZZJba8MK2E/K2lsOCAUBzMg9hVgccEqDpk9yp9omoeyQZk+Tnp62n3fadqjyFLEsWGh2NMOuav3/L7GWw1De/n5jU7tVfLRcMKbWXIlivdksCAu5zBAaqOW1Ed3FVBALezROYZcmC+HnNPW+GBQPu/9+VdZXYc2YPPj71MRqbGnFlnysRY4jpZK+pN2lZEXhulTGHBhMR/fIWpy7G7pt3Y1bSLPQJ7oMcaw5W71uNg8Xezyd8MWo5BYqeiUC/x0Qg+YWWKwe7hnW5JuGvqW/CGUs19pxxT965qj68oRs+HLqhQ5zPR45E/l13OSdl9cJnh85gwd/24ldv/4DYn5OTyeGBmDrAPRGoLXTOR6YSgLHvAK/7RkTdJyEoQX5+biKwZTVPrCFWfl5qL3WbI7BVRaC+eQqAMntZm9e11beYI5AVgd0mzhCHUeZRGBU5Cg2Ohlartp6r5fyALX+utKfl4g+WOou8QnETmjAzaWbnO029SntDg5kIJCLqGVqVFs9Pfh6XxVwGABgWPgwrvl3h8fc0X1DT2JwIdM1PTf6LQ4PJLyQHOyvo1Aq1/It1UnggcMI5H99XmXvdJuMHgDxbHlLDU71qX1IoYF6+HA67HWc3vgsAKHrqaSRu/KfHoWNCCLy2MxNfHytGXaMDp8trEGW0IcqoxS3jEhAf6v6XGkOxc2hghQEYEtLxvFRE1P30AXqYdWaU2EuQW5Xrtq/lh/gEY3PCsLSmVK4I1Kv0CFAEuJ13bkVgW1wVgWqFGmqlums3QTJJkqBVafHfM/8F4Hz9zXozcq25CFAEwN5kh1FtlFd3dq08D0BeaKQjLSsCLfUWFJU4q74UkgLDIoZ1162Qj4oMbE7wnZsILK4pBuD8vm851yQREV14CkmBe0begwJbAbZmbwUA/P3HvyMlJAXV9dV45/g7GBw6GMcqjrn9C6DVts4c09XzPR2jUWrke+McgcSKQPILRrURl0ZfiibRhO+LvkeDo0GuCASA/57Z1eqcgirvKwJdIh94AOqkJACAPS0Nlq1bPR776aEzeOHLE0jPq8TYPqG4flQc3vn1OOx9aDp+M8n9A2aTxQK9rQEAUBgqsSKIqAe5knwVtRVui4C0HNbn+uMD4Kzyc1UEtvVh3pVkAoCyGg8VgT//oYIrBne/lkN8XRV/q75bhSs+ugLztszDu8fflfdnVWbJz72tCAxQBsi/cFfUVuDk2ZMAgP4h/fn/SVAr1fJ7QJHNfWiwKxFo1pu9mo+SiIi6393D75aff5jxIZ7Y8wQ2HN2AkpoS2Bpsrf5ta1tnjunq+Z6OcVWW3zH0DqSGeVfsQr0XE4HkN0K1oWgSTbA32nGi4oRbIjDHegqjzKMQb4iXt3VmaLCLpFYj8qGVkIKCoBs9GqUvvgRHdXWr4wotdnxxuBD9zM4PgZP7heP5+UOhVrX9LVl/unkIYnm4GkqFss3jiOjCSzQ2L9aTa22uCnQlAgMDAt2GEJfUlMgVgW0lAiP0HVcEuhKBHMrR/dqaOiLbmi1va1kF6HoeGBDotshDR1wLhpTby+EQDgDu8xOSf3MNDy61l6KhyflHv6q6KiQaEzE6cjTGRY/rye4REfm1eGM8xkU534frmuoAAI2iEWa9GYYAQ6t/29rWmWO6en5Hxxg1Rn6WJA4NJv8x0jxSLutOK07D1OjrAQBSQDmKGw+juAQYGj4UeTbnSqDnkwgEAMPkyTBMmICqL78EAJS98TeYl93vdsy+7ApsO+r8S//Vl0Tj7mn92m2zZSLQGslEAFFPapkIzLHmYEj4EAgh5GF90YHRbit8FtcUo9HRCMBZnXyulkOD25p7RgiB6nrnHxRYDdz9WlZvnqo8hUJbIcrt5fK2Q6WHIISAtc4qV3ammLxbMdjFpDHhTPUZtykoRppHdkPvqTeICozC4bLDEBAorilGXFAcsqxZOFJ2BID7ew4REf3yrut3Hb4v+l7++umJT2Ny3OQe7BFR17AikPzGiEj31SFjgnVQqxRQGX6St0+NnyoP4cqvyj/va5mX3Q8pwDkPWMX69W6JPADYn3NWfn796Hh0pDareThaTVTwefeLiLqu5fx/rorAs3Vn5b8SRwVGIVgTDJXC+be2lhP+dzQ0uLSmdUVgXVMdGoUzkcihpN0vxeQ+NNi1mIdLRW0FTltPY3vedlQ1VCEmMAbX9L2mU9f4y7S/YHTkaLdtw83Dz7fL1Mu0tWBIy4VpvF2hmoiILozpidPxxIQnsOnKTbhr2F1MApLPYyKQ/Ebf4L4ICggCAKSVpEEhAYmheqgMJ+RjJsdNRmyQc7XPM9Vn0ORoOq9rqRMTEXrbbVCEhkA7ZAiKn3vebf8PORUAAIUEjEgI7rC9muzmDwT1MeHtHElEF1qSMUl+7lo5uOUk/9GB0ZAkSU7wtazya6si0Kg2YlzUOIw0j4RCav1juWUVGYcGdz+D2iAP882szERacVqrYw6WHMRHGR8BcP5sGBQ2qFPXCAwIlCsIB4UOwqXRl3ZqaDH1bqlhqRgbNRapYak4UeH8nYSJQCKii4dGqcG1/a5Fangq7hx+Z093h6jLmAgkv6GQFHIFhqvCIyFMBaXeWW0XrjWjf0h/xBniAACNjkaP83V5I+y3d0BlNMF+8CBsO3bA9u1uAIDF3oATP68APDjGiCBtQHvNAADqTucAABwApFh+eCTqSXFBcZDgTOq4EoEtJ/l3Vfe4hvy2XFDEqGmdCJQkCdZ6K9JK0vDdme9Q01Djtt9W35wI5NDgC8OVaKlqqMIPxT8AgPx/DAA783bix9IfATgX+ejsJNtB6iC8MeMNrBq/Cu9f9T7WXbGuezpOvUKiMRH7ivbhaPlReehZy0SgtwvTEBEREXmDiUDyKyMjm+dkSitOg9mcC0nhHHLXL2gsJElCrCFWPiavKu+8r6U0GBC+9C756+JnnoGjvh5puWchhHPb6MTQDtsRQsCR6xymXGYCggwdn0NEF45GqUGMIQYAkG3JhsPhcKsIdFV6jYkaIx/nYlK3HhoMAIPDBgMABIS8qqxLdUPzgkNMBF4YfU3NiZYcSw4AYEDoAAQonH+ocSUHAec8QeezgmuAMgDX97+eq79SK4PCBiFMGwYA+L7we9Q11ckL0wSpg9zmESUiIiLqKiYCya+MNI9E3+C+GBw6GB9lfIRj1Z+j0R4LR30YDE1DADirfVzOd8EQF+NVV0E3YgRUkZFQBBlwduNG7P95WDAAjEnqOKnXVFEBqdoOADgTKrU5xxgR/bImxEzA6MjRqGuqw4PfPoh8W/Ocoq5EoCHAgDO2M27nefr+HRTaPNT0eMVxt30thwZzjsALo+XQywBFAEaYR2Bi7ERcFnsZpsRPQbIpGQNCB8AQYMBVyVf1YE+pN1JICkyMnQgAsDfa8W3+tyiucS4o1je4L5PHRERE1K24ajD5lZGRIxGiDcEPRc3VHSod0GSPR2WFc+Ve19BgoGsLhgDOIX+Rj/wRp2+5FY3FxajPzEL24uaKw9FJIR22UXu8eTGTohAgWhPcpT4RUdctH70cV318FZpEE3YX7EZ8UPOiP66hwW3NI9fWHIHnHnu8/JxEYD3nCLzQWiYC6x31UClUuGfEPXIC5rX01wAAvxryK2hV2h7pI/Vuk+Mm45PMTwAAX2R/IW/n/IBERETU3VgRSH5n0eBFrbbVl0/C8TPOefsSghIwOGwwIvWRXU4EAoBu8GCYrr4aAOCorsboT99CUogOE/uFI9LY8QdK+9GjaFKr8FMs8GMfCcFMBBL1OH2AHg9f+jD0Kj2CtcE4VnEMgHNeuUh9JABgYOjAVud5qgjsH9IfSkkJoP2KQNeCR9S9+oX0w5opa7DkkiUw681YMWaFWxVWYEAgAgMCmQSkC2Z8zHioJOff5/cW7pW3t1zVmoiIiKg7MBFIfufyuMsxIXoCNAoNtEot9I5+aKwaikJLLcpsdYgJisHx8uMorilGjjWnW64Zcd+9UAQFQYqLx/DC47jqm3eghcOrc6t37YKyvhEDC4DcCKnNxQaI6Jc3PWE6Hhz7oNtcouG6cAQoA+TnZr3Z7RxPiUCtSos+pj4AgFNnT6G+qV7e57ZqsJoVgReCTqXD9MTpWDpiKbbM29Iqibs4dTEWpy7uod6RPwhSB2FU1Cj0C+7nNi8oKwKJiIiouzERSH5HkiQ8NuExfHXDV/j3Df/GlNB7gJ9Xhzx6xuq2EECuNRfCtbJHF6hCQxH/93VoaGiErqke03P344YdG9BUVdXueU2VlbAfPAgAyA8DSkJYEUh0Mbmm7zUYYR4hfx2kdq/YGxw62O1rT0ODgeZ5AhtFIzIqM+TtXDX4l3Xu/yHRL+UvU/8Ch3CgSTTJ27hiMBEREXU3JgLJL0UbohGqDYVJY8KlCc2/ZB8psABwDg8GgKqGKlTUVrTZRmfphw3DqatuQa1ChdPGaCQc+A9yFixAfb7nBUlsu/8LOJyVgwdTnMlKJgKJLh6SJGHl2JUYEzkGT0x4Ag+Ne8htv2s1YJf2FvvxNE9gy+ogzhFI1HvpA/S4e8Td0Cq1WHLJEjw2/jGE68J7ultERETUy/RoInDXrl2YO3cuYmJiIEkStmzZIu9raGjAAw88gKFDhyIwMBAxMTFYtGgRzpw547lBAI899hgkSXJ7DBzYep4mIpchMc0fzI+dsQIAEowJ8rbcqtxuu9Z3SWPw0GW/RVRNOQBAGRyCnJtugv3QoTaPt/3nP/LzNCYCiS5Kg8IG4a3/eQvX9rsW46LHtdrnIkGCXqX33E7oIASrgzEwdCAyKzPl7W5zBLJajahXm5E4A1/M/wJLRyzF/P7zuWIwERERdbseTQRWV1dj2LBhWLt2bat9NTU1SEtLwyOPPIK0tDRs3rwZJ06cwNU/L7rQntTUVBQWFsqP3bt3X4juUy+RHGGANsD5rXDkjLMiMMmYJO8/bT3dbdc6WWLD8bA+uH/yPdBNmQL7gQNoKi9H0ZNPwvLFF27HOurq5ERgrUaBn+IlqBQq6FS6busPEV1YruG+AKBUKNv9UD80YiiaRBN+qvgJX5/+Wp6WwG2OQFYEEvV6rAIkIiKiC0nVkxefPXs2Zs+e3eY+k8mEr7/+2m3bq6++irFjxyI3NxcJCQltngcAKpUKUVFR3dpX6r2UCglXDo1GVmk1iqy1sNgb3CoCuysRKITAqWLnnICqhHjE3zEP+ffci/rcXNTn5ePM/cvQUHAGYb/+FSRJwtn33oPDZoN+wgT8n+4wmpR2hGuCWR1A5EPMejNu6H8DTGqTPPeoJxqlBpeYL8F/C/6L4ppinDx7EgNCB3COQCIiIiIi6jY+NUegxWKBJEkIDg5u97iMjAzExMQgOTkZt956K3Jz2x/aWVdXB6vV6vYg/xKoUeFgXiUKLbU4dsZ6QSoCCyrtqK53TgDezxwEZXAwEv6+DkEzZ8BhsQABAbBs2YLCh/+IhsJClL26FnA4ULNnD/YnNgLgsGAiXyNJEh4d/yjuHXUvbhhwQ4fHT46dLD/flb8LAGCpsyDWEAuzzsxEIBERERERdYnPJAJra2vxwAMPYMGCBTAaPa+6OG7cOLz99tvYtm0bXn/9dWRnZ2PSpEmoamd11meffRYmk0l+xMfHX4hboItYy3kCj56xIMYQA5XkLJjtrkRgRnFzVU+/SOeHeUmtRuRDDyH83nuhS01F/alTsGzejLw774TD5jzecN01OB7ZAKD9FUeJyPdNipskP9+Vvwu51lz8WPYjCmwFGGYehgBlQA/2joiIiIiIfJ1PJAIbGhpw4403QgiB119/vd1jZ8+ejRtuuAGXXHIJZs2aha1bt6KyshIffPCBx3NWrlwJi8UiP/Ly8rr7FugilxrbnGA7UmCBSqFCXFAcACCvKg8O4ejyNTJKmpPR/c3NE/5LkoSIO5cgdPEiSGo1ghfcjMBp02CYOhXqpCQolyyUj2VFIFHvFh8Ujz6mPgCAQ6WH8O7xd+V9Q8OH9lS3iIiIiIiol7joE4GuJODp06fx9ddft1sN2Jbg4GD0798fp06d8niMRqOB0Wh0e5B/6WcOglrpWjDEfeVge6MdJTUlXb6G1d6IaJMWANA/svXKn8bZs5H0r38h6uGHoQoyQj92LJK3fo6qwOZv02BtcJf7QUQXt8mxkyFBQrAmGB+cdP4RSyWpMDdlbg/3jIiIiIiIfN1FnQh0JQEzMjLw73//G2FhYZ1uw2azITMzE9HR0Regh9RbqFUKDIhyJucyS22oqW9EojFR3p9rbX+eSW8czDuLQkstACA2RNvmMdoB/SGpVAi7/TaE3X4bJIUCljqLvN+kMbV5HhH1HrcNuQ2/GfobnK07iwaHc1qAKfFTuJIoERERERF1WY+uGmyz2dwq9bKzs5Geno7Q0FBER0fj+uuvR1paGj777DM0NTWhqKgIABAaGgq1Wg0AmD59Oq699lrcfffdAIDly5dj7ty5SExMxJkzZ7Bq1SoolUosWLDgl79B8ilDYo04XGCBEMDxQisGhAzA6MjRqHfUI8+Wh7EY26X2S6x1AACNSoEQvdrr8ypqKzA0fCh0Kh0SgxI7PoGIfFq4LhyXRFwCrVKLuKA4RAVGYX7/+T3dLSIiIiIi6gV6NBG4f/9+TJ06Vf562bJlAIDFixfjsccew6effgoAGD58uNt533zzDaZMmQIAyMzMRFlZmbwvPz8fCxYsQHl5OSIiIjBx4kTs3bsXERERF/ZmyOelxpgAOOeHPFJgxeDkGOwv3u/cF5ba5fZLqpyJQLNRA0mSvD4v35aPw2WHAcCrVUeJyPdNiZ+Cf875J6ICo1gJTERERERE3aZHE4FTpkyBEMLj/vb2ueTk5Lh9vWnTpq52i/zUkNjmD9tHCiy4emRf+evMyswutV3b0ASL3TnEzxzU9rBgTwpsBfLzOENcl/pBRL5jQOiAnu4CERERERH1Mj2aCCS6mAyMCsKoxBAoJQklVXUI0YYgVBuKitoKnKr0vNiMN0p/rgYEAHOQplPn5lfly89jDbFd6gcRERERERER+S8mAol+pg1Qor7RgcMFzsU5LDUNSAlOQUVRBSpqK3C29ixCtCHn1XZJFxKBrorAwIBABGuCz+v6REREREREREQX9arBRL+00UnNib4DuRVIMaXIX3dleHBpVa383Gz0fmhwk6MJhbZCAM5qwM7MLUhERERERERE1BITgUQtjEkKlZ//kHMWfYO7Z57AlhWBEZ2oCCyuKUajaATAYcFERERERERE1DVMBBK1MDqxuSJwf04FUoKbKwK7Mk9gifX8hga7LRQSxIVCiIiIiIiIiOj8MRFI1ILZqEVimB4AcCjPgjhDH3lfpqUrFYEthgZ3YtVgLhRCRERERERERN2FiUCic4xOdA4Prm9yIL9MQpg2DED3DQ02G8+zItDAikAiIiIiIiIiOn9MBBKdY0yLBUO+zSiV5wmsqK1ASU3JebXpGhqsUkgI1au9Pi/f1lwRyKHBRERERERERNQVTAQSnWNS/3BMGRABo1aFL48WY2r8VAwMHQilpER6Sfp5temqCAw3aKBQeL/yb0FVc0VgjCHmvK5NRERERERERAQwEUjUSmywHhZ7A6y1jfipqAqiIRw/VfyEJtGEXfm7Ot1eY5MD5dXORGBnhgUDzUODw7Rh0Kl0nb42EREREREREZELE4FEbbh5TLz8/HBmuJyE+7bgWziEo1NtlVfXQwjn886sGFzbWItSeykADgsmIiIiIiIioq5jIpCoDVddEoNAtRIA8Fl6KUaZxwJwzhN4rPxYp9pyzQ8IABGdWDG4uKYYsYZY9A/pj8Fhgzt1TSIiIiIiIiKiczERSNSGQI0Kc4fFwKRTIVCjwsmc5oq8zg4PLqmqlZ93piKwtKYUBbYCnDx7EiqFqlPXJCIiIiIiIiI6FxOBRB6s+J+BmDk4CiVVdcg63TxU+N+n/w3hGuvrhWJri0RgJ+YILLOXyc8jdBFen0dERERERERE1BYmAok8CA1U49ZxCQg3qDEqtg/qyicAtYnIqMzAf/L/43U7PxVWISlMj8n9wjEgMsjr81zzAwJAuC68U30nIiIiIiIiIjoXE4FE7RiREIKPl05AdX0jHPY+gPY0AGD1vudQ11TXwdlOhwosyCmvwa6MMiRHGLy+dstEYISeFYFERERERERE1DVMBBJ1ID4kEO//djz6GsajsToZAFBgy8eO3B0dnmuvb8LRAgsAoK/ZgNBAtdfXLavh0GAiIiIiIiIi6j5MBBJ5wagNwB/npKKu+Go4GgwIFH3x0cmPOjwvPa8SjQ7nfIKjE0M6dU0ODSYiIiIiIiKi7sSlSIm8NCElDDH6PqhoDEZ1wCl8X3QKljoLTBqT23El1lq8+s0pTB9oxl92ZMjbRyeFdup6rsVC1Ao1jGpj12+AiIiIiIiIiPwaE4FEXlIoJNw0Oh6vHkqCUpcPAPjVpg9QUJCMGYPMuO2yPuhrNmD1tp+wOa0A/9hz2u38MUnnVxEYoY+AJEndcxNERERERERE5Lc4NJioE64fHYc+hiHy1+WNJ1FkrcUH+/Nx3Wv/xTt7crA5raDVeREGDRJC9V5fp76pHpY659yCHBZMRERERERERN2BiUCiTog26fDPhTfJX9erMqFRKVDf5ECjQ2D3qTIofi7eiwvRyscNjTN1qqrPNSwYAMx6c9c7TkRERERERER+j0ODiTopXBeOhKAE5FblolaRg+8emowH/nUcN4+Jx+ECC748WoxJ/cKxcvZA5JTXYGLfMFTVNXXqGlwohIiIiIiIiIi6GxOBROdhhHkEcqty0eBoQK7tJNYtGgVJkpBTXo0ooxaX94/A4BgTBsc4FxIx6jrXfllNc0VghC6iO7tORERERERERH6KQ4OJzsPIyJEAgEBVIPYW7pWH/f5mUjL2PjQdv5mU3KX2WRFIRERERERERN2NiUCi8zAxZiKGRwxHTWMNvsj+AkKIbm2/ZSIwQs+KQCIiIiIiIiLqOiYCic6DOdAMlUIFAYFsSzbSS9O7tf1ye7n8nEODiYiIiIiIiKg7MBFIdJ6u63ed/Pyjkx91a9scGkxERERERERE3a1HE4G7du3C3LlzERMTA0mSsGXLFrf9Qgg8+uijiI6Ohk6nw4wZM5CRkdFhu2vXrkVSUhK0Wi3GjRuHffv2XaA7IH82I3EGggKCAABfnf4KljpLt7VdWuNMBKokFUK0Id3WLhERERERERH5rx5NBFZXV2PYsGFYu3Ztm/uff/55/OUvf8Ff//pXfP/99wgMDMSsWbNQW1vrsc33338fy5Ytw6pVq5CWloZhw4Zh1qxZKCkpuVC3QX5Kp9JhTvIcpASnIM4Qhw1HN3Rb2yGaEIyIGIGx0WOhkFi4S0RERERERERdJ4nuXuXgPEmShI8//hjXXHMNAGc1YExMDH7/+99j+fLlAACLxYLIyEi8/fbbuPnmm9tsZ9y4cRgzZgxeffVVAIDD4UB8fDx+97vf4cEHH2zznLq6OtTV1clfW61WxMfHw2KxwGg0duNdUm9TVlOGOR/Pgb3RDo1Sg0+v+RQxhpgutVndUI1L370UADDSPBIbZndfgpGIiIiIiIiIOs9qtcJkMvl8ruiiLTXKzs5GUVERZsyYIW8zmUwYN24c9uzZ0+Y59fX1OHDggNs5CoUCM2bM8HgOADz77LMwmUzyIz4+vvtuhHq1cH04ru9/PQCgrqkOL+5/scttnraelp8nGhO73B4REREREREREXARJwKLiooAAJGRkW7bIyMj5X3nKisrQ1NTU6fOAYCVK1fCYrHIj7y8vC72nvzJncPuRIgmBHFBcahtrMWps6e61F6uNVd+zkQgEREREREREXWXizYR+EvSaDQwGo1uDyJvBamDsGjwIuRX5ePbgm/xUUbXVhDOsebIz5kIJCIiIiIiIqLuctEmAqOiogAAxcXFbtuLi4vlfecKDw+HUqns1DlE3eGGATdArVADAP4v6/9Q31Tf6pgyexkcwtFhWy0rAhOMCd3XSSIiIiIiIiLyaxdtIrBPnz6IiorC9u3b5W1WqxXff/89xo8f3+Y5arUao0aNcjvH4XBg+/btHs8h6g4mjQkzk2YCACx1FuzI3eG2/1DpIcz/dD6e3vs0lm5fiqPlRz221XKOwIQgJgKJiIiIiIiIqHv0aCLQZrMhPT0d6enpAJwLhKSnpyM3NxeSJOG+++7DU089hU8//RSHDx/GokWLEBMTI68sDADTp0+XVwgGgGXLlmHdunXYsGEDjh8/jjvvvBPV1dW4/fbbf+G7I38zv998+XnL4cHbcrbh+X3Po6K2Ah+c/AC78ndh9fer4WnBbtfQ4KjAKGhV2gvaZyIiIiIiIiLyH6qevPj+/fsxdepU+etly5YBABYvXoy3334bK1asQHV1Ne644w5UVlZi4sSJ2LZtG7Ta5uRIZmYmysrK5K9vuukmlJaW4tFHH0VRURGGDx+Obdu2tVpAhKi7jY4cjdlJs5Fny8Pewr3YlbcLWZYsvHTgJehVesQZ4lBmL0NtUy3SS9PxYcaHuKH/DW5tVNZWwlpvBcD5AYmIiIiIiIioe0nCU1mSH7NarTCZTLBYLFw4hDrl86zP8eC3DwIADAEGhGpCUVpbCnujHQsGLMCE2An43Y7fId4Qj/Lacjx52ZO4IukK+fz0knQs/GIhAODG/jfikfGP9Mh9EBEREREREVGz3pIrumjnCCTyRXP6zMEI8wgAgK3BhlxbLpJNybhnxD1YOW4lpsRPwWPjH4Ol3oKaxho8+t9HMe2DaVj9/Wp8k/sNcquaFwphRSARERERERERdScmAom6kSRJWDl2JQaEDMDspNnQKDW4fcjt+H+X/D9IkgQAmJsyF1Pip0Cj1GBW0iyU2kux+dRm3PvNvfgi+wu5LSYCiYiIiIiIiKg79egcgUS90aCwQfjX3H9BQCDHkoPk4GS3/WqlGk9d9hR+NeRX2F2wG3qVHjWNNVApVLDWWaGUlBAQTAQSERERERERUbdiIpDoApAkCRKkVknAlvtTglOQEpyChYMXYm36WiQaE5FflY8fy37Eby/5LRKMCb9wr4mIiIiIiIioN+PQYKIeppAU+N2I3+HqlKsRGBAIs96MIHUQFBK/PYmIiIiIiIio+3DV4Db0lpVgiIiIiIiIiIio63pLroglR0RERERERERERH6AiUAiIiIiIiIiIiI/wEQgERERERERERGRH2AikIiIiIiIiIiIyA8wEUhEREREREREROQHmAgkIiIiIiIiIiLyA0wEEhERERERERER+QEmAomIiIiIiIiIiPwAE4FERERERERERER+gIlAIiIiIiIiIiIiP8BEIBERERERERERkR9Q9XQHLkZCCACA1Wrt4Z4QEREREREREVFPc+WIXDkjX8VEYBvKy8sBAPHx8T3cEyIiIiIiIiIiuliUl5fDZDL1dDfOGxOBbQgNDQUA5Obm+vR/Lp0/q9WK+Ph45OXlwWg09nR3qAcwBghgHBBjgBgDxBggxgAxBsjJYrEgISFBzhn5KiYC26BQOKdONJlM/Cb3c0ajkTHg5xgDBDAOiDFAjAFiDBBjgBgD5OTKGfkq3+49EREREREREREReYWJQCIiIiIiIiIiIj/ARGAbNBoNVq1aBY1G09NdoR7CGCDGAAGMA2IMEGOAGAPEGCDGADn1ljiQhK+ve0xEREREREREREQdYkUgERERERERERGRH2AikIiIiIiIiIiIyA8wEUhEREREREREROQHmAgkIiIiIiIiIiLyA0wEEhERERERERER+YEeTQQ+++yzGDNmDIKCgmA2m3HNNdfgxIkTbsfU1tZi6dKlCAsLg8FgwPz581FcXCzvP3ToEBYsWID4+HjodDoMGjQIL7/8slsbmzdvxsyZMxEREQGj0Yjx48fjyy+/7LB/Qgg8+uijiI6Ohk6nw4wZM5CRkeF2TFpaGmbOnIng4GCEhYXhjjvugM1m67DtH3/8EZMmTYJWq0V8fDyef/55t/1Hjx7F/PnzkZSUBEmSsGbNmg7b9EWMAc8xsG7dOkyaNAkhISEICQnBjBkzsG/fvg7b9TWMAc8xsHnzZowePRrBwcEIDAzE8OHD8c4773TYri9iHHiOg5Y2bdoESZJwzTXXdNiur2EMeI6Bt99+G5IkuT20Wm2H7foaxkD77wOVlZVYunQpoqOjodFo0L9/f2zdurXDtn0JY8BzDEyZMqXV+4AkSbjyyis7bNuXMAbafx9Ys2YNBgwYAJ1Oh/j4eNx///2ora3tsG1fwhjwHAMNDQ144oknkJKSAq1Wi2HDhmHbtm0dtuuL/DUOamtrcdttt2Ho0KFQqVQef+ffuXMnRo4cCY1Gg759++Ltt9/usM/n3kCPmTVrlli/fr04cuSISE9PF3PmzBEJCQnCZrPJxyxZskTEx8eL7du3i/3794tLL71UTJgwQd7/5ptvinvuuUfs3LlTZGZminfeeUfodDrxyiuvyMfce++94rnnnhP79u0TJ0+eFCtXrhQBAQEiLS2t3f6tXr1amEwmsWXLFnHo0CFx9dVXiz59+gi73S6EEKKgoECEhISIJUuWiJ9++kns27dPTJgwQcyfP7/ddi0Wi4iMjBS33nqrOHLkiHjvvfeETqcTb7zxhnzMvn37xPLly8V7770noqKixJ///OfOvLQ+gzHgOQZuueUWsXbtWnHw4EFx/PhxcdtttwmTySTy8/M79Rpf7BgDnmPgm2++EZs3bxbHjh0Tp06dEmvWrBFKpVJs27atU6+xL2AceI4Dl+zsbBEbGysmTZok5s2b583L6lMYA55jYP369cJoNIrCwkL5UVRU1KnX1xcwBjzHQF1dnRg9erSYM2eO2L17t8jOzhY7d+4U6enpnXqNL3aMAc8xUF5e7vYecOTIEaFUKsX69es78xJf9BgDnmNg48aNQqPRiI0bN4rs7Gzx5ZdfiujoaHH//fd36jW+2DEGPMfAihUrRExMjPj8889FZmameO2114RWq+2wz77IX+PAZrOJJUuWiL/97W9i1qxZbf7On5WVJfR6vVi2bJk4duyYeOWVVzr9GbFHE4HnKikpEQDEf/7zHyGEEJWVlSIgIED861//ko85fvy4ACD27NnjsZ277rpLTJ06td1rDR48WDz++OMe9zscDhEVFSVeeOEFeVtlZaXQaDTivffeE0II8cYbbwiz2SyamprkY3788UcBQGRkZHhs+7XXXhMhISGirq5O3vbAAw+IAQMGtHl8YmJir00Enosx0HYMCCFEY2OjCAoKEhs2bGj3vnwdY8BzDAghxIgRI8Qf//jHdo/pDRgH7nHQ2NgoJkyYIP7+97+LxYsX98pE4LkYA80xsH79emEymdq9h96IMdAcA6+//rpITk4W9fX17d5Hb8MY8Pw7wZ///GcRFBTk9qG4N2IMNMfA0qVLxbRp09zOW7ZsmbjsssvavS9fxxhojoHo6Gjx6quvup133XXXiVtvvbXd++oN/CUOWvL0O/+KFStEamqq27abbrpJzJo1y6t2hRDiopoj0GKxAABCQ0MBAAcOHEBDQwNmzJghHzNw4EAkJCRgz5497bbjaqMtDocDVVVV7R6TnZ2NoqIit2ubTCaMGzdOvnZdXR3UajUUiuaXUafTAQB2797tse09e/Zg8uTJUKvV8rZZs2bhxIkTOHv2rMfz/AFjwHMM1NTUoKGhod0+9waMgbZjQAiB7du348SJE5g8ebLHdnsLxoF7HDzxxBMwm8349a9/7bGt3oYx4B4DNpsNiYmJiI+Px7x583D06FGPbfYWjIHmGPj0008xfvx4LF26FJGRkRgyZAieeeYZNDU1eWy3N2AMeP698M0338TNN9+MwMBAj+32BoyB5hiYMGECDhw4IE8VlJWVha1bt2LOnDke2+0NGAPNMVBXV9dqahCdTtduu72Fv8SBN/bs2eN2bcAZK+3d97kumkSgw+HAfffdh8suuwxDhgwBABQVFUGtViM4ONjt2MjISBQVFbXZznfffYf3338fd9xxh8drvfjii7DZbLjxxhs9HuNqPzIy0uO1p02bhqKiIrzwwguor6/H2bNn8eCDDwIACgsL2227rXZbXtcfMQbaj4EHHngAMTExrb7pexPGQOsYsFgsMBgMUKvVuPLKK/HKK69g5syZHtvtDRgH7nGwe/duvPnmm1i3bp3HdnobxoB7DAwYMABvvfUWPvnkE/zzn/+Ew+HAhAkTkJ+f77FdX8cYcI+BrKwsfPjhh2hqasLWrVvxyCOP4KWXXsJTTz3lsV1fxxjw/Hvhvn37cOTIEfzmN7/x2GZvwBhwj4FbbrkFTzzxBCZOnIiAgACkpKRgypQpeOihhzy26+sYA+4xMGvWLPzpT39CRkYGHA4Hvv76a2zevLnddnsDf4oDb3iKFavVCrvd7lUbF00icOnSpThy5Ag2bdp03m0cOXIE8+bNw6pVq3DFFVe0ecy7776Lxx9/HB988AHMZjMAYOPGjTAYDPLj22+/9ep6qamp2LBhA1566SXo9XpERUWhT58+iIyMlDO/qampcruzZ88+73vzB4wBz1avXo1Nmzbh448/7pUTxLswBloLCgpCeno6fvjhBzz99NNYtmwZdu7c2ak2fA3joFlVVRUWLlyIdevWITw83KtzegPGgLvx48dj0aJFGD58OC6//HJs3rwZEREReOONN7xuw9cwBtw5HA6YzWb87W9/w6hRo3DTTTfh4Ycfxl//+lev2/A1jAHP3nzzTQwdOhRjx449r/N9BWPA3c6dO/HMM8/gtddeQ1paGjZv3ozPP/8cTz75pNdt+BrGgLuXX34Z/fr1w8CBA6FWq3H33Xfj9ttvd6s6640YBxeA14OIL6ClS5eKuLg4kZWV5bZ9+/btAoA4e/as2/aEhATxpz/9yW3b0aNHhdlsFg899JDH67gm3Pzss8/ctlutVpGRkSE/ampqRGZmpgAgDh486Hbs5MmTxT333NOq7aKiIlFVVSVsNptQKBTigw8+EEIIkZOTI7frWuRh4cKFrcZ679ixQwAQFRUVrdr2hzkCGQOeY+CFF14QJpNJ/PDDDx7vqzdgDLT/PuDy61//WlxxxRUe9/s6xoF7HBw8eFAAEEqlUn5IkiQkSRJKpVKcOnXK4z36KsaAd+8F119/vbj55ps97vdljIHWMTB58mQxffp0t2O2bt0qALjNJ9VbMAY8vw/YbDZhNBrFmjVrPN5Xb8AYaB0DEydOFMuXL3c7xrX4Qct5yHoLxoDn9wG73S7y8/OFw+EQK1asEIMHD/Z4f77O3+KgJU9zBE6aNEnce++9btveeustYTQaPd7fuXo0EehwOMTSpUtFTEyMOHnyZKv9rgkgP/zwQ3nbTz/91GoCyCNHjgiz2Sz+8Ic/eLzWu+++K7RardiyZYvXfYuKihIvvviivM1isbhNANmWN998U+j1+lYB2ZJrItCWEz6vXLnSLxcLYQy0HwPPPfecMBqN7U546usYA969D7jcfvvt4vLLL/eq/76EcdB2HNjtdnH48GG3x7x588S0adPE4cOHe1UCgDHg/XtBY2OjGDBgQK9bKZIx4DkGVq5cKRITE90+7K9Zs0ZER0d71X9fwRjo+H1g/fr1QqPRiLKyMq/67WsYA55jYOTIkWLFihWt7kGn04nGxkav7sEXMAa8/32gvr5epKSkiJUrV3rVf1/ir3HQUnuLhQwZMsRt24IFCzq1WEiPJgLvvPNOYTKZxM6dO0VhYaH8qKmpkY9ZsmSJSEhIEDt27BD79+8X48ePF+PHj5f3Hz58WERERIj//d//dWujpKREPmbjxo1CpVKJtWvXuh1TWVnZbv9Wr14tgoODxSeffCJ+/PFHMW/ePLcloYUQ4pVXXhEHDhwQJ06cEK+++qrQ6XTi5ZdfbrfdyspKERkZKRYuXCiOHDkiNm3aJPR6vdvS4HV1deLgwYPi4MGDIjo6WixfvlwcPHjQ6xVmfAVjwHMMrF69WqjVavHhhx+69bmqqsrr19cXMAY8x8AzzzwjvvrqK5GZmSmOHTsmXnzxRaFSqcS6deu8fn19BePAcxycq7euGswY8BwDjz/+uPjyyy9FZmamOHDggLj55puFVqsVR48e9fr19QWMAc8xkJubK4KCgsTdd98tTpw4IT777DNhNpvFU0895fXr6wsYAx3/LJg4caK46aabOnwtfRVjwHMMrFq1SgQFBYn33ntPZGVlia+++kqkpKSIG2+80evX1xcwBjzHwN69e8VHH30kMjMzxa5du8S0adNEnz59vE4s+RJ/jQMhnBWMBw8eFHPnzhVTpkyR80IuWVlZQq/Xiz/84Q/i+PHjYu3atUKpVIpt27Z589IKIXo4EQigzcf69evlY+x2u7jrrrtESEiI0Ov14tprrxWFhYXy/lWrVrXZRmJionzM5Zdf3uYxixcvbrd/DodDPPLIIyIyMlJoNBoxffp0ceLECbdjFi5cKEJDQ4VarRaXXHKJ+Mc//uHVvR86dEhMnDhRaDQaERsbK1avXu22Pzs7u80+97ZKIMaA5xhITExss8+rVq3yqn1fwRjwHAMPP/yw6Nu3r9BqtSIkJESMHz9ebNq0yau2fQ3jwHMcnKu3JgIZA55j4L777hMJCQlCrVaLyMhIMWfOHJGWluZV276EMdD++8B3330nxo0bJzQajUhOThZPP/10r6oCEoIx0FEMuKpdvvrqK6/a9EWMAc8x0NDQIB577DGRkpIitFqtiI+PF3fddVevSwIxBjzHwM6dO8WgQYOERqMRYWFhYuHChaKgoMCrtn2NP8eBpzxAS998840YPny4UKvVIjk52e118YYkhBAgIiIiIiIiIiKiXq13Ly9DREREREREREREAJgIJCIiIiIiIiIi8gtMBBIREREREREREfkBJgKJiIiIiIiIiIj8ABOBREREREREREREfoCJQCIiIiIiIiIiIj/ARCAREREREREREZEfYCKQiIiIiIiIiIjIDzARSERERERERERE5AeYCCQiIiIiIiIiIvIDTAQSERERERERERH5gf8PpTr2+lF/OzYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#1. Coarsen resolution and apply quality control with non-defaults as demonstration\n", + "dataset.coarsen_time_resolution(freq='20T')\n", + "\n", + "ax1 = dataset.make_plot()\n", + "\n", + "#translate axes\n", + "ax1.set_title('Temperature for all stations')\n", + "ax1.set_ylabel('T2m in °C')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2f6438a0-aaad-462d-ada1-f9d3f5d38927", + "metadata": {}, + "source": [ + "## Timeseries with quality control labels" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "cf5ac722-8f34-4d71-ae59-38b3520c8764", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "buddy radius for the TITAN buddy check updated: 50000--> 10000.0\n", + "buddy num min for the TITAN buddy check updated: 2--> 3\n", + "buddy threshold for the TITAN buddy check updated: 1.5--> 2.2\n", + "buddy min std for the TITAN buddy check updated: 1.0--> 1.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAH4CAYAAAARn5CtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUZdbA8d9z70wKCQk1CSX03otKL1JF7AW7oKKsvbvqWnbVlbW89hU7VqwrFkCQDtKU3nvvNQmpM3Pv8/4xmZuZzCQEDATJ+e6HdebeZ+48kzKZe+55zlFaa40QQgghhBBCCCGEEOKMZpT1BIQQQgghhBBCCCGEECefBAKFEEIIIYQQQgghhCgHJBAohBBCCCGEEEIIIUQ5IIFAIYQQQgghhBBCCCHKAQkECiGEEEIIIYQQQghRDkggUAghhBBCCCGEEEKIckACgUIIIYQQQgghhBBClAMSCBRCCCGEEEIIIYQQohyQQKAQQgghhBBCCCGEEOWABAKFEEIIIUREL730Eg0aNMA0Tdq1a1fW0wHgn//8J0qpkG316tVj2LBhZTOhEtq6dStKKT7++OOynooQQgghyjEJBAohhBDipFBKlejfjBkzynqqZebtt98+bQNDv/76K4888gjdunVj9OjRPP/882U9pZNu9erV/POf/2Tr1q0nfIwxY8bw2muvldqchBBCCCFKk6usJyCEEEKIM9Nnn30Wcv/TTz9l8uTJYdubN29+Kqd1Wnn77bepVq3aaZnNNm3aNAzD4MMPPyQqKqqsp3NKrF69mn/961/07t2bevXqndAxxowZw8qVK7nvvvtCttetW5ecnBzcbvefn6gQQgghxAmSQKAQQgghTorrr78+5P78+fOZPHly2PYzhdaa3NxcYmNjz4h57N+/n9jY2FILAp4uX5+yopQiJiamrKchhBBCiHJOlgYLIYQQoszYts1rr71Gy5YtiYmJITk5mREjRnDkyJGQcfXq1eOCCy5gxowZnHXWWcTGxtK6dWtnWfH3339P69atiYmJoWPHjixZsiTk8cOGDSM+Pp7NmzczcOBA4uLiqFmzJs888wxa6z81p0mTJjlzevfddwEYPXo0ffr0ISkpiejoaFq0aMGoUaPCHr9q1SpmzpzpLJPu3bs3ELkOHsDHH3+MUipk6Wpx80hLS+O+++4jNTWV6OhoGjVqxAsvvIBt28V+X5RSjB49mqysLGdugSXMPp+PZ599loYNGxIdHU29evV4/PHHycvLK/HXJ5LZs2dz5ZVXUqdOHaKjo0lNTeX+++8nJyen2Lkej6+++oqOHTtSsWJFEhISaN26Na+//jrg/9peeeWVAJx77rlhS9d//PFHBg8eTM2aNYmOjqZhw4Y8++yzWJblHL93796MHz+ebdu2OY8PZBYWVSNw2rRp9OjRg7i4OCpVqsTFF1/MmjVrQsYEfh42btzIsGHDqFSpEomJidx0001kZ2eHjJ08eTLdu3enUqVKxMfH07RpUx5//PFS+xoKIYQQ4q9NMgKFEEIIUWZGjBjBxx9/zE033cQ999zDli1beOutt1iyZAlz5swJWUa5ceNGrr32WkaMGMH111/Pyy+/zIUXXsg777zD448/zh133AHAyJEjGTJkCOvWrcMwCq55WpbFeeedR+fOnXnxxReZOHEiTz/9ND6fj2eeeeaE5rRu3TquueYaRowYwa233krTpk0BGDVqFC1btuSiiy7C5XLx888/c8cdd2DbNnfeeScAr732GnfffTfx8fH84x//ACA5OfmEvo6R5pGdnU2vXr3YtWsXI0aMoE6dOsydO5fHHnuMPXv2FFvH7rPPPuO9997j999/54MPPgCga9euAAwfPpxPPvmEK664ggcffJAFCxYwcuRI1qxZw9ixY485r6J8++23ZGdnc/vtt1O1alV+//133nzzTXbu3Mm33357Ql+XYJMnT+aaa66hb9++vPDCCwCsWbOGOXPmcO+999KzZ0/uuece3njjDR5//HFnyXrgvx9//DHx8fE88MADxMfHM23aNJ566ikyMjJ46aWXAPjHP/5Beno6O3fu5NVXXwUgPj6+yDlNmTKFQYMG0aBBA/75z3+Sk5PDm2++Sbdu3Vi8eHHY8uQhQ4ZQv359Ro4cyeLFi/nggw9ISkpyXs+qVau44IILaNOmDc888wzR0dFs3LiROXPm/OmvnxBCCCHOEFoIIYQQ4hS48847dfBHj9mzZ2tAf/HFFyHjJk6cGLa9bt26GtBz5851tk2aNEkDOjY2Vm/bts3Z/u6772pAT58+3dk2dOhQDei7777b2Wbbth48eLCOiorSBw4cOOE5TZw4Mey1Zmdnh20bOHCgbtCgQci2li1b6l69eoWNffrpp3Wkj2mjR4/WgN6yZcsx5/Hss8/quLg4vX79+pDtjz76qDZNU2/fvj3s+MGGDh2q4+LiQrYtXbpUA3r48OEh2x966CEN6GnTph1zXkWJ9DUbOXKkVkqFfH8jfW3q1q2rhw4dWuzx7733Xp2QkKB9Pl+RY7799tuwn53i5jdixAhdoUIFnZub62wbPHiwrlu3btjYLVu2aECPHj3a2dauXTudlJSkDx065GxbtmyZNgxD33jjjc62wGu++eabQ4556aWX6qpVqzr3X331VQ04P89CCCGEEIXJ0mAhhBBClIlvv/2WxMRE+vfvz8GDB51/HTt2JD4+nunTp4eMb9GiBV26dHHud+rUCYA+ffpQp06dsO2bN28Oe8677rrLua2U4q677sLj8TBlypQTmlP9+vUZOHBg2PME18FLT0/n4MGD9OrVi82bN5Oenl7ir1FJRZrHt99+S48ePahcuXLIa+nXrx+WZTFr1qzjfp4JEyYA8MADD4Rsf/DBBwEYP378MedVlOCvWVZWFgcPHqRr165orcOWep+ISpUqkZWVxeTJk0/o8cHzO3r0KAcPHqRHjx5kZ2ezdu3a4z7enj17WLp0KcOGDaNKlSrO9jZt2tC/f3/nax3sb3/7W8j9Hj16cOjQITIyMgD/awT/MuZjLf8WQgghRPkkS4OFEEIIUSY2bNhAeno6SUlJEffv378/5H5wsA8gMTERgNTU1IjbC9f0MwyDBg0ahGxr0qQJgFNz73jnVL9+/Yjj5syZw9NPP828efPCarilp6c7cywtkeaxYcMGli9fTvXq1SM+pvBrKYlt27ZhGAaNGjUK2Z6SkkKlSpXYtm3bMedVlO3bt/PUU0/x008/hX3vSiN4escdd/DNN98waNAgatWqxYABAxgyZAjnnXdeiR6/atUqnnjiCaZNm+YE3v7M/AJfq0jLpZs3b86kSZPIysoiLi7O2V74d6By5cqA/2c9ISGBq666ig8++IDhw4fz6KOP0rdvXy677DKuuOKKkGXyQgghhCi/JBAohBBCiDJh2zZJSUl88cUXEfcXDmCZphlxXFHbdaEmICdjTpE64G7atIm+ffvSrFkzXnnlFVJTU4mKimLChAm8+uqrJcrUitQoBAhpTHGsedi2Tf/+/XnkkUciPiYQBD0RRc2vJPOKxLIs+vfvz+HDh/n73/9Os2bNiIuLY9euXQwbNqxUstuSkpJYunQpkyZN4pdffuGXX35h9OjR3HjjjXzyySfFPjYtLY1evXqRkJDAM888Q8OGDYmJiWHx4sX8/e9/P2XZd8f6WY+NjWXWrFlMnz6d8ePHM3HiRL7++mv69OnDr7/+WuTjhRBCCFF+SCBQCCGEEGWiYcOGTJkyhW7dupU4YPRn2LbN5s2bQwJg69evB3CaMpTGnH7++Wfy8vL46aefQjK4Ci8rhqIDaoFMr7S0NGe5JxCWcVechg0bkpmZSb9+/Ur8mGOpW7cutm2zYcMGp4kGwL59+0hLS6Nu3bondNwVK1awfv16PvnkE2688UZn+4ku4y1KVFQUF154IRdeeCG2bXPHHXfw7rvv8uSTT9KoUaMivx8zZszg0KFDfP/99/Ts2dPZvmXLlrCxJQ2SBr5W69atC9u3du1aqlWrFpINWFKGYdC3b1/69u3LK6+8wvPPP88//vEPpk+fXqo/C0IIIYT4a5I1AkIIIYQoE0OGDMGyLJ599tmwfT6fj7S0tFJ/zrfeesu5rbXmrbfewu1207dv31KbUyDrKjgjMT09ndGjR4eNjYuLi3jMhg0bAoTU8cvKyjpm5lqwIUOGMG/ePCZNmhS2Ly0tDZ/PV+JjBZx//vkAYR2HX3nlFQAGDx583MeEyF8zrTWvv/76CR0vkkOHDoXcNwyDNm3aAJCXlwfgBN4Kf08izc/j8fD222+HPU9cXFyJlgrXqFGDdu3a8cknn4Q838qVK/n111+dr/XxOHz4cNi2du3aAQWvUQghhBDlm2QECiGEEKJM9OrVixEjRjBy5EiWLl3KgAEDcLvdbNiwgW+//ZbXX3+dK664otSeLyYmhokTJzJ06FA6derEL7/8wvjx43n88cedJb+lMacBAwY4mWcjRowgMzOT999/n6SkJPbs2RMytmPHjowaNYrnnnuORo0akZSURJ8+fRgwYAB16tThlltu4eGHH8Y0TT766COqV6/O9u3bS/R6H374YX766ScuuOAChg0bRseOHcnKymLFihV89913bN26lWrVqh3X17Bt27YMHTqU9957z1ku+/vvv/PJJ59wySWXcO655x7X8QKaNWtGw4YNeeihh9i1axcJCQn873//C6sV+GcMHz6cw4cP06dPH2rXrs22bdt48803adeunZPd2K5dO0zT5IUXXiA9PZ3o6Gj69OlD165dqVy5MkOHDuWee+5BKcVnn30Wcfl5x44d+frrr3nggQc4++yziY+P58ILL4w4p5deeolBgwbRpUsXbrnlFnJycnjzzTdJTEzkn//853G/xmeeeYZZs2YxePBg6taty/79+3n77bepXbs23bt3P+7jCSGEEOIMVGb9ioUQQghRrtx555060keP9957T3fs2FHHxsbqihUr6tatW+tHHnlE79692xlTt25dPXjw4LDHAvrOO+8M2bZlyxYN6JdeesnZNnToUB0XF6c3bdqkBwwYoCtUqKCTk5P1008/rS3LKtU5aa31Tz/9pNu0aaNjYmJ0vXr19AsvvKA/+ugjDegtW7Y44/bu3asHDx6sK1asqAHdq1cvZ9+iRYt0p06ddFRUlK5Tp45+5ZVX9OjRo8OOUdw8jh49qh977DHdqFEjHRUVpatVq6a7du2qX375Ze3xeCI+pvDXrDCv16v/9a9/6fr162u3261TU1P1Y489pnNzc0PGFTevSFavXq379eun4+PjdbVq1fStt96qly1bpgE9evRoZ9zTTz8d9nNUt25dPXTo0GKP/9133+kBAwbopKQk52s6YsQIvWfPnpBx77//vm7QoIE2TVMDevr06VprrefMmaM7d+6sY2Njdc2aNfUjjzyiJ02aFDJGa60zMzP1tddeqytVqqQBXbduXa11wc9l8GvRWuspU6bobt266djYWJ2QkKAvvPBCvXr16pAxgdd84MCBkO2Ffx6mTp2qL774Yl2zZk0dFRWla9asqa+55hq9fv36Yr82QgghhCg/lNYnUElbCCGEEOIvZNiwYXz33XdkZmaW9VSEEEIIIYQoM1IjUAghhBBCCCGEEEKIckACgUIIIYQQQgghhBBClAMSCBRCCCGEEEIIIYQQohyQGoFCCCGEEEIIIYQQQpQDkhEohBBCCCGEEEIIIUQ5IIFAIYQQQgghhBBCCCHKAVdZT+B0ZNs2u3fvpmLFiiilyno6QgghhBBCCCGEEKIMaa05evQoNWvWxDD+unl1EgiMYPfu3aSmppb1NIQQQgghhBBCCCHEaWTHjh3Url27rKdxwiQQGEHFihUB/zc3ISGhjGcjhBBCCCGEEEIIIcpSRkYGqampTszor6pMA4GjRo1i1KhRbN26FYCWLVvy1FNPMWjQIAByc3N58MEH+eqrr8jLy2PgwIG8/fbbJCcnF3lMrTVPP/0077//PmlpaXTr1o1Ro0bRuHHjEs8rsBw4ISFBAoFCCCGEEEIIIYQQAuAvX0KuTBc1165dm//85z8sWrSIhQsX0qdPHy6++GJWrVoFwP3338/PP//Mt99+y8yZM9m9ezeXXXZZscd88cUXeeONN3jnnXdYsGABcXFxDBw4kNzc3FPxkoQQQgghhBBCCCGEOC0prbUu60kEq1KlCi+99BJXXHEF1atXZ8yYMVxxxRUArF27lubNmzNv3jw6d+4c9litNTVr1uTBBx/koYceAiA9PZ3k5GQ+/vhjrr766hLNISMjg8TERNLT0yUjUAghhBBCCCGEEKKcO1NiRadNmxPLsvjqq6/IysqiS5cuLFq0CK/XS79+/ZwxzZo1o06dOsybNy/iMbZs2cLevXtDHpOYmEinTp2KfAxAXl4eGRkZIf+EEEIIIYQQQgghhDiTlHkgcMWKFcTHxxMdHc3f/vY3xo4dS4sWLdi7dy9RUVFUqlQpZHxycjJ79+6NeKzA9sI1BIt7DMDIkSNJTEx0/knHYCGEEEIIIYQQQghxpinzQGDTpk1ZunQpCxYs4Pbbb2fo0KGsXr36lM7hscceIz093fm3Y8eOU/r8QgghhBBCCCGEEEKcbGXaNRggKiqKRo0aAdCxY0f++OMPXn/9da666io8Hg9paWkhWYH79u0jJSUl4rEC2/ft20eNGjVCHtOuXbsi5xAdHU10dPSffzFCCCGEEEIIIYQQQpymyjwjsDDbtsnLy6Njx4643W6mTp3q7Fu3bh3bt2+nS5cuER9bv359UlJSQh6TkZHBggULinyMEEIIIYQQQgghhBDlQZlmBD722GMMGjSIOnXqcPToUcaMGcOMGTOYNGkSiYmJ3HLLLTzwwANUqVKFhIQE7r77brp06RLSMbhZs2aMHDmSSy+9FKUU9913H8899xyNGzemfv36PPnkk9SsWZNLLrmk7F6oEEIIIYQQQgghhBBlrEwDgfv37+fGG29kz549JCYm0qZNGyZNmkT//v0BePXVVzEMg8svv5y8vDwGDhzI22+/HXKMdevWkZ6e7tx/5JFHyMrK4rbbbiMtLY3u3bszceJEYmJiTulrE0IIIYQQQgghhBDidKK01rqsJ3G6ycjIIDExkfT0dBISEsp6OkIIIYQQQgghhBCiDJ0psaLTrkagEEIIIYQQQgghhBCi9JV512AhhBBCCPHXdESnM9GaBSiqqcr0N7uV9ZSEEEIIIUQxJBAoTgrfojfRnqPo/cvQVh5ojXLFoJLaovcvQyW1RUVVxNXx7rKeqhBCCCFO0GxrITf5HgMgmapsM2eW8YyEEEIIIURxJBAoTgrf4rcgczcoA7QNgFYGbJ7g37Z5AsTXlECgEEII8Re2kW3O7X0comZuN240L+U/7ofKcFZCCCGEEKIoUiNQCCGEEEKckFX2xpD7h0lnnr2kjGYjhBBCCCGORQKBQgghhBDihKzSG8K2rdGbymAmQgghhBCiJCQQKIQQQgghjpulrYhBv6Nkkac9ZTAjIYQQQghxLFIjUAhxwmyfZvIDW9gw/jB1eyYyaFRDXDFyfUEIIc5Eb/u+4KjOYrFezaVmfzqqluQRHvDTaNbrLbRWTctglkIIIYQQojgSCBRCnLClH+3jjzf3AJC+dT+VG8XQ/R+pZTwrIYQQpS1Pe3jW9zZHSAdgvr2Eka6iG4Ks0htpjQQChRBCCCFON5K6I4Q4YUd3e1Bm/h3lvy+EEOLM84M9xQkCgr9D8KvWx0WOX2mtPwWzEkIIIYQQx0sCgUKIE9b6hupEJ/gjga5og/bDk8t4RkIIIU6G933fOLejiaIZDVmh1xU5/it7HL/Zi07F1IQQQgghxHGQQKAQ4oRVaRjLHes7cu2vLbljY0dS2seX9ZSEEKe5PfoAWmtW2RuwtV3W0xEl8Ie1nFXan+HXVNVngut9DnGk2MfsZB+jfGNOxfSEEEIIIcRxkBqB4qRwdbgL7TmK3r8MbeWB1ihXDCqpLXr/MlRSW1RUxbKepigFFaq5adC/UllPQwjxF2Brm/Z5F5FDHnl4GO9+n75ml7KeliiG1prHfK+QxlH6q25cZ15EN1dHrtcX86o1utjH/mRPZZ8+SLKqdopmK4QQQgghjkUCgeKkcHW8u6ynIIQQ4jTzh15BGked+x9Y30gg8DT3pT2O3/RCABbqlVSzK7HWuwm3NsPGRhMV0kXYi49PrR942DX8lM1XCCGEEEIUT5YGCyGOS5bOxtIWgCzrE0Icl/HWjJD7P9vT2asPls1kxDFprVlgLXPuW1h8aY/nP9Z7zNR/hIyNws0XrpfDjjHPWozW+qTPVQghhBBClIwEAoUQx2W49x9UzGtHXG5bnve9U9bTEUL8hYy3Z4Tc9+HjI993ZTMZcUyr9UY+tX+gFsl0oCUZZDr7duq9IWNrkkw9o3bYMSboWSwvpqmIEEIIIYQ4tWRpsDgpPOnp/HDDNjZNOkqts2O4/MskYiu7UO44tDcL5Y4DpaRO4F9Ats7hXu9zWFjEUYENehs2GrA4THpZT08I8Rexxd7JKr0BgHY0Zws7aaEa8ZH1HX9zXUMVlVjGMxSFbde7ySGXXeTSRNWHoMS+fYRmcrY0GlFLRe4cP86eTluj2cmcqhBCCCGEKCEJBIqTYuGIx1n/8zWAYsfcLOYMe4meF34C2gZl+P8bX5OYWyVL4HS3Vm/mM/tHABRQgQrOvsM6LWSspS12s59UVeMUzlAI8Vew0F5BBWLIJpdLXf05ojN4zfoYgKd8r/GW++mynaAIs13vcW7vCLoN4MMKud/TOJtKJBBHLFnkhOz7xprAP1y3n7yJijLziW8sF5l9yCCLOtRAKVXWUxJCCCHEMcjSYHHCbCu85o+2NVprvJ4olMrfr8DriTnFsxOlZaW9wbmtgSyynfuBk0StNVd77qNGXjcGem4+1VMUQvwFTLBnYqNpSCq9jU7c7bqB+PwLCx9a37HMXlvGMxSFbde7ndub2V7s2MFGb5RS1FIpABgUBITW6S0ssVefnEmKMjPdWsAI35PUyutB07wBbNLF/4wIIYQQ4vQggUBx3Lw5Fl+ev4rn3XN5v/1SMvf6OwQu+WAvL8TP56WE+cTGHyWxir9+UGxcOh16/FCGMxZ/xmq9och9gZNEpRQH9BEyyGSz3sEuve9UTU8I8RexWm8klzy2spt2qjm1VDKPmrcRRywXGOey1F5T1lMUhWywtzq3FZEzvWKJpgqJNDLqAjjLg21CLxbe6H3EaTQl/vo82st9vucAsPE3DpttLyzLKQkhhBCihCQQKI7b8o/3s2liGmjYvyKLWc/sYN7Luxh/2yZ8OTaeTJvJX9xAx97fMezvI7j1H8OoXH3PMY8rTk+r9MYi9+1mP17tBaCHcZazfY696KTPSwjx1+HTPtbqzQA0VnWJVlEA3GReThY5/GxP43Prx7Kcoohgs97h3LaI3CU+hzwSiHfu18IfCDQKfcTcoLcyyZp9EmYpysL71jd48v/+B/wmf/uFEEKIvwQJBIrj5ssruMqvNWyZksbUh7eGFBHXtsnU/93Dyt/7447ynPpJilKzKn9pcKRsEBubXXo/AN2Njs52yQoQQgTbpLeTh/9vQUvV2Nle1ahMNSoDoUEncXrYRcmyu3sbnZzbz7jvZVv0DB4xhoeNe856u9TmJsrOdr2HJ32vsZ09dKcjUbgB+dsvhBBC/FVIIFAct7bDkkhq7a/rpBQc2ZAbYZQ/aLRl9dmncGaitGjtj+oe1unsxh/oq0olZ38FCmo+bse/PLiz0Q4TE5CsACFEqODM4hZGo5B9DVQq4M8wztV5p3Reomh52sMRMko0tpd5jnO7pkoiWVUjVsU4AaKAxXo1a6xNpTpPceo97P0P2eRgYdHabEoXoz3g/zywLaiupBBCCCFOTxIIFMctppKLW5e0o9kVVUO2KwPc8QozWqEMC7BJbbS8bCYpTtgRnc6F3hF85vuB532jnO0NSHVuBzJ4oKBOYLyqQAfVAoA1ehMH9OFTNGMhxOlupb3eud0qKCMQoJ6qDYBGs03vOqXzEkXbqfdG3F6XmmHbfreXOxeQAv7uvo1D0b+TGLRsGOBs7+U84nmRTbY0lvgr2m3vJxv/BeBkqvK06y66q4IVAVIaRAghhDj9SSBQnBBlKNyxoT8+dc9N5OYF7Rg2pw1te86g5wUfce4l75fRDMWJusf7LFPsudzme5K3rM+d7ZeY/VgUNZatUdN5yHWLsz3QORhClwfPtRefmgkLIU57q4MyAlsWCgQGMgIBtuidp2xOoniRMruaUI/LjYFh20dZYxjqfYSGuX253HOX899meefRSbULGevDxxv2p7zk++BkTV2cRGPsn5lsz6ESFRluDqGSSqB7UI1gqfUphBBCnP4kEChOWPcnUomv4S/4Xrd3Alf93JzqLSpQo2M8/a79gnP6fIfp8pXxLMXx+MGajIlJPBXC9nUy29HSaEyKUZ2zjTbO9u1BJ4u9VWe6qY50Um2ZJbWChBD5AkuDY4mhfn4GYEDwfakTePrYHiEQuJ/D9De7RRw/1p7MLvaRoTPZxT722gfZxT5W6fVO2YhgX9rjsHXkBiTi9BWoG5zGUS42+wLQyWjDQNWds1Qrptnzudv7jHSIFkIIIU5jZRoIHDlyJGeffTYVK1YkKSmJSy65hHXr1jn7t27dilIq4r9vv/22yOMOGzYsbPx55513Kl5SuVK1SSx3bz2LBw934vpprXDHhn/QF38tv9pz+MoeTybZ3G3eELKvhWro3K6jCpaGBZ8sdjXb84dezgK9jB+tKWFLxYQQ5U+OzmWT9i8Dba4aYKrQvxUNDMkIPB1FCgReZ15IA6NOxPFe/Bf+9uj9JFONtPz6grvYTxNVL2x8Hh7m20tLbb7i1Ahk95qYNFUNAKigYnnUPYKFeiXgry882ZpTZnMUQgghRPFcZfnkM2fO5M477+Tss8/G5/Px+OOPM2DAAFavXk1cXBypqans2bMn5DHvvfceL730EoMGDSr22Oeddx6jR4927kdHR5+U11DeGaYitnL4j1HURV+B5cFO3wKW17/RdGMk1sdO34KRWB/MqFM8W3Esq/Ov9AM8Yd5BsqrGdcaF5JBHZZXo7KtCInHEkkVOyNLgiiqOXsY5TLbnsJO9LNfraKuandLXIIQ4vazVm7HxZ361KLQsGCQj8HQV/N4eMNwcQk2qF/u4jWznLvN6rjQH0ctzHQBJVKWb0ZGP7O+cnwWAN3yf0tXsULoTFyeNT/tYqzcD0FjVJVoVfI7rYrTnXdezPOb7P/5nT2KOvYgN5mTcyl3U4YQQQghRRso0EDhx4sSQ+x9//DFJSUksWrSInj17YpomKSkpIWPGjh3LkCFDiI8PLT5dWHR0dNhjxYnTWuPDV+IPdEayv4OcUbNT+L4I20TZ01o7y/fqqlokGPE8aNwccaxSijqqJmv0JnboPdjaxlD+BOMLjHOZbPszAcbZ02lrSCBQiPJssb2KDqoFiVSkqxEe9KlJEtFEkYdHMgJPI4GO8AEXG31pbvgzw+OpQCbZRT52kb2KF12PkEQV9nOY3/VynnDdwTh7Ggc4goV/2eiv+reT9wJEqdukt5OHBwiv9Qkw1HUpE+yZ/GhPYS8HGW/P4BKz/6mephBCCCGO4bSqEZieng5AlSpVIu5ftGgRS5cu5ZZbbom4P9iMGTNISkqiadOm3H777Rw6dKjIsXl5eWRkZIT8K++0rVnw6i7GXreOZd/s4WbvY9zmeZJPfN/zgzW5rKcnToLt7OEoWQC0VI2OOb6OqkksMdRTtcgg09l+vtnLuT3BmlHq8xR/DZvs7cywFrDG2sQGe2tZT0eUod/sRSzWq5muF9DcaBC231AG9VQtwL80WEoKnB6y7JyQ+/e4hjq3KxLn3HYHXVOuRTIAy/RaNJrzzd4A5JBLJllMifqEKAouKHrxsdi38mRMX5wEq4Ka/rQwIn9OGG5e6dx+3/rmpM9JCCGEEMfvtAkE2rbNfffdR7du3WjVqlXEMR9++CHNmzena9euxR7rvPPO49NPP2Xq1Km88MILzJw5k0GDBmFZkQsXjxw5ksTEROdfampqxHHlye+v72byA1tZ/dVBfr5qM/OmbeBLPY4Rvqe4z/tv0vXR4zreVnuXE0D0au/JmLL4k4KXBUe60l/YGPf/cTj6D5ZF/0wiFdml9wGQqmo4y4EX6VXMtqRpSHn0ku8DzvPeQnvvxTzk+09ZT0eUod/sRQDEEE1HFfnve2B5cA657OXgKZubiExrzWIKAnSxxNAtKJtzZtSYkH0BHY2WAGSTwzq9hf6qoLHIT9Y0Ghl1ud8c5mzz4uMd+6uT8RLESbDSXu/cblXE54S+Rhfn93mqPS9i92khhBBClK3TJhB45513snLlSr76KvIHwpycHMaMGVOibMCrr76aiy66iNatW3PJJZcwbtw4/vjjD2bMmBFx/GOPPUZ6errzb8cOqVG06/dMlAHaBhT0XNwLM//HZS8Hecb3VrGPtzb/grV+LN65z7F91u2MndmT5XNu5rFVPRj7W1+s9WOxNv9yCl6JKKmVOigQaBw7EBinKqCUAuAbawJN8wbSKe8KbvI8yi3mFVxnXEg0UVzhvYvZ0kG43JlrL3Zub5UTwXJrm97NDvy15joZbYkqorxEA1VwAU7qBJa9w6QTnJfZVNUP2R/8PQrU/KtGZc4x2jrbZ9sLec36GIDapDDRnkWuzuNR87aQYwVKSYjT3+qgjMCiLhgayuAa4wLaqKb0Uucwx1p0qqYnhBBCiBIq0xqBAXfddRfjxo1j1qxZ1K5dO+KY7777juzsbG688cbjPn6DBg2oVq0aGzdupG/fvmH7o6OjpZlIIU0vrsLqrw6CAsOleOT8q7jC3Z6rvPejUKSqGsU+3jv1PsjcDcogSdvcDlgKTL0US4FX3wjxNTEbFN/0RZw6q0IyAv1LflZbG8lRuRzSaQwwu0d8XIbO5FHfy/jwsUyvZa3eTCejLUvtNeThIVbHMmN2HV5Zn0mOF6JM8FpgKAXKn3niMsBj+fd5LHAZYGvwD1HYNpiGxmNBtAu8lsI0NHb+maqhFJbWuA3I8wXGgGmArRWgMRRYNrhM8Pgg2p0/Rins/KWIhlJYtsadP8btAp8FpqHQaLQNhgE+G2Ldip6NXNzbKwrDUCf1e/NXs8neznq2Ovc36K1k6xwqqNiym5Q4qRbZK1EoZlq/85b1Oe2M5jRTDfjDLsgq62GcVeTj66tUYogmhWqst7eEZJ+JU2+bvSvkfpNCgcDVQReOsvAvIa6jatBBtXS2v+/7mkr5TaZ25B5FTx5O14O7SCGZKPu/5KpcsA12GV76kU6saeKzoVKswZ09ouje8LT4iCqCBJYGxxIT0uSnsAFmd5633gGgka7LtVx4SuYnhBBCiJIp009ZWmvuvvtuxo4dy4wZM6hfv36RYz/88EMuuugiqlcvvltdJDt37uTQoUPUqFF88EoUaHl1dWKrutmzKJOG51UipV08jUjmE16gvdHimIFA8deSoTOZaf8OgAsXTZW/jldX71XkkgfAdmMmSapq2GO/sH5iDwec+3l4eNj3Al58ALRZdjfPjo0GIi/N/ysbv8pHXBTc1k0uJAQbb88IuW9js0yvpYtqXzYTEifdc763+cWeRRRuPHiJtWP4hVkhHWK7q6IDgZ1UGxSKrexikV7JTVx+KqYtirBabwq5XzgjMLhWnM7PHayjatLeaO5sX8kG0P5swO3/uwNW9GYlBivxAYHMQf+FmlloAn8jlLIYv9LLuicrUiPxtFm4Uu7l6Fw26e0ANFcNMJUJ+DsJa3RIM7kWQXWGVwUtJxZCCCHE6aFMP2HdeeedfP7554wZM4aKFSuyd+9e9u7dS05OaIHqjRs3MmvWLIYPHx7xOM2aNWPs2LEAZGZm8vDDDzN//ny2bt3K1KlTufjii2nUqBEDBw486a/pTNKgfyW6PVqblHYFHZovMvuecBDQOH1Woot8mTqbHrnX0D7vYieY11jVJUq50Vrjye8OCLDK9p/4+bSPHJ0L+Os9vu77hM6qHfFUcMYGgoAAu3cnYp6h33rTgOW77GMPLGfG2dPDti22V5XBTMSpYGmLufYSwN84oiZJJKuq6KAgoBsX5xitizxGS6Ox874RqCkoys56e3PI/doqJeR+hs6kk2pLCwoCPnVUTSqrROpSK2Tsf11PE7W7JWDiD/yR/9/g2wW0hlwfbDwo762nk8X2KhpQm57qbAYZPbnP829a511AzbzujLb+FzI2QcVTh5qAP2gsDYCEEEKI00uZnp6PGjWK9PR0evfuTY0aNZx/X3/9dci4jz76iNq1azNgwICIx1m3bp3Tcdg0TZYvX85FF11EkyZNuOWWW+jYsSOzZ8+W5b9lrPDiSWkaUvbW6E38wQp24W/0EUcFZ1nwETKwg6pE/WEv57BOp4PnEnrkXcP9nn/zlO8NtrKL+XopHShYEhYc9M1sORHO0HMAW8MlbWX5WrB0+ygmBlWpTG0KggeLJBB4RtmnD/KS9wPGWdN5xvcW6fgbSA0wurM5ZhpToz/lZuMKAKJw01o1KXZpeJyqQMf8ZaVr9Wb260Mn/0WIIq3RoYHA5ELZ4HPsRSzQy9jJXmdbnfyLhG1VU6cz8CCjJwNdPTi3Q0b+qOA/BjrovypkX2plRfvaZim8ElFa5uolbGQ7s/Qf1FQp/GrPZoPeSgaZfGb9GDa+ZX5X4aNksSPo50QIIYQQZa/MlwaXxPPPP8/zzz9fouPExsYyadKkPz03cfLlkEfFsp5EORdcF7Czasf0qM/w4A/QbrV3hoz9wPqGT60f2Mg2AFbaG0KyAK92XcAs3x+AfyloHWqwnT3srTuVSQ88w/LNMZgG+CyNUir/91aB0igUptL4bH89PsvOHwOgwVD+eoAuU+GztH9M4PH5v/5KAVo7Y5ShsAOFBp1agv5lbC5DOfMI1AdU+GsWGgpsrTGVwmdr/8Odtxh/ONswwLY1Xeq7OLtu+Q0EWtpylocFzNWLmW4vAOAO41ret7/Bi48lenVZTFGcJJ9YY3nKeh2s0MB/d6Ojc/s59/2cZ/dksOpNmjp2p/nuRkcWWMsAf7OZS8z+pT5vUTJbCjVsqa6qOLdzdC672Q9AAvFkkAn4MwIBRkf9hwrEMt1eQGOjLgCfD2rGo7V+58ODvwHQksasYgMo7X9/Nm1irAp0N9sz2NWTIe2jiY+W2qunk+BM3bNUS7ZQUEfyD72C5fZa2hjNnG0tVWN+YRYAq+0N1DGlpIwQQghxuii/Z7CizAUvOxVlY1VQwfcnXXeilCKaKABm2n+EjN2e3/kzWCbZAJiYXGr24z7fc04g8VyjM5/Y/iX73pqruDu160l5DaLs3Oh9hFn277iJ4inXHQxzXR5ystjDPJt5eilL9GrW6s1k6mziVYVijij+Cmxt86H1XcH94DqAQQ1BKqtELjT7AFCFxGMet7vRkf+zPgL8QQcJBJad/YRmZFYPygjcqgsCQFHK7VxoCQQC4/J/x/uYnZ1xiUZFHmrTmJmel0njKLGsxiA0S7i5asY0/TnRRk9ud79Vqq9H/Dn+5f/+TvBJVCGbXKc2ZMAH1re8YTzp3G9pNHZKA6/UGziPnqdsvkIIIYQo3hlauUv8FXjwkqvzynoa5VpwILCV0Thk3wJ7aYmP093oSJo+6gQBgZCOgou1LAs902itmWEv4ABH2M0+Fudn/AUHArsZHehgtKQWyTSjAU3zBnKd50EydXZZTVuUgin2XLbpXWHbK1GRVqpxhEeUTBejvT8zF6kTWNYyyAq5X53Kzu3NQdmCti4IAgcCgUVpaNRhtPs/HCaNxawKKRdSlUqszP97FEcFHvf935+YvShty/U6jub/THQ3zgrJ8HbjojYppOujISVfWoY0DCn4rCGEEEKIsicZgeKUU/m1gDT+5SQ9iukkKU6u1fkNQKpRmSRCa0CtoOSd/s5XvZhQqFPsy9aHaE8MbG3D5OgM2tpeKkYrMvM0sVEKr8+fTeAyIdcLFaMhI4/8MTYxbgOf5f85iXIpcjyaitGKjDxNxWjI8miiTIWtwbIhxq3I8mgSSjImRpGRq4mLUuR4NS7Tv+jXa0Fs0JijuZpYtyLP0hj4m4Pk+aBCFGR5oHVNk5rltKvlUr2GQ6Q595fb68jS2SzKD/o2VfVJUlV51fU4/3U/Te+861ijN/E/exI32ZfTz5QM0b+q76yJzu1G1HXKBbRUTcKWihflsJ3Gw74Xqa9q85r1McOMy0k1UmhNE5azzv/zZR+hqlH52AcTpS44Yz+OWGJVDACv+z7hed87zr7AEuF4KlCZhGMet6PRklhiyCEXheE0lDlEGg+Zt/CdNZHvbP/P10VmX7oaHUrtNYkTF5LpbZzFQnulc7+76sh0vYCv7QncpW/gbOVvCtRUNcDExMJidVCXaSGEEEKUPQkEijI1215ID0MCgWXhoD7CXg4C/iU8ShXkZ3i0N2T5VzADg4aksiH/5D+BeC4y+3Kn75/OGBOTo7mg3xwNh+owE81MzrwssFg3zLgnnvap5a+o/fhCgd/leh1z7SX48ju/BpaIRil/04D6KpX52l//7Td7kQQC/6KO6izG2pPpqPwBnXuMG5moZ1FX1aKN0bRExzii0+nguZS9HHACBaPsL7Bsm86qHd3pyBq9iRn271xuDDzJr0gUZms7pFHUINWTT30/8Lr1CSaG0xgGoB61aGs053yzV8jfkKK4lIu2qhnz9dKQJeXg/zxwn2sY9/n+DcC93ueYF/UNLiUfVcvab/ZC53Z3oyPvW98A/mzA3kYnplv+urCz7T84O787eLSKorGqy1q9mbV6Mz7tk++lEEIIcZoon6ksIqI13x3kg45L+eqC1aRv/3NLdpU7DqIqgjLx/5gZ/ttRFVHKRYZbkeVWIR8uxakVvFQneAkPwCK9EitQ3KeQYcZlTkFwA4ULk6nWXLbZu506YBYWbDgHDtU5SbM/PeR44YN55XN5+3hrRsj9bHL4yZrq3A9uGgH+xhEBsuzzr2uKPZejZLFIr6KV0YSL3H15O+pf/N19G4PMXiU6xove90kjHcB5n7Hyg0IVqcBvehGHSGOCPfPkvAhRrD36QMj9NHWUP/RyVukNLNfrcOd3BAbIJpfdeh//8L7C5Z67qJd7Ljd6HmayNafI43c0WkbcvkAvo5NqSzuaE0M0rVVTWVJ6GsjTHvboAzRXDalOFepSi7X5XaVTqcEL1nvO2NmFPtO1U81pTF2aqQas0OtO6byFEEIIUTS5NCcASNuay/dXrUPboMwsfrxhPTfObH3Cx4setpjZ9kK6qQ4oVEimgNaaVnn92MU+4u3lcpW4jAQv1WmpmoTs+9b6pcjH3em6jmaqAWvzNrOKDRwmnYesF8glz6nvBUDigSKPcSbZdtg+9qAzzEF9hOX5J3U1SXKWB06yf3PGFA4E1lLJNFCpbNY7+EMvJ1fnEaOiT92kRakYZ013bg82eh/XY7N0NtvtPbxqf+xsa0szaqokftH+7qKT9VwnS3CiPUv+PpxCWTqbCsQyzZoXsr2BSmVR/lJQhaKeqskGvQ03Lnayl516LwA17CT2coBv7F9IJ5P+ZreIz9PBaEkR15n41v6Foa5Lud/3PGPsn0lVNWhrNi+9FymO21h7Mr/r5QA8YNzEHL3YyebMIptscp2xv9mLQrrJn2t04it7PGiYas+nfRFBYCGEEEKcWpIRKAA4ustDoOa3tiBtS27xDziGufZi+nuGkZLXlRp53cjRBcdTStHf7EZb1YwUVZ0teuefei5xYoIbhbQ0CjICD+ojfGmNw0XoctfrjQu53byWlkZjTGXyH/eDzr5c/FlxUUGZIqrOKtwXvkF0lBc49pKxv6rochijWGSvpBF1aaOahizt385u2qim3G/eRKqqEfa4QHAwDw8L9cqw/eL0Zml/cA6gInH0NM4+rsff5H2U3t7rnfuVSeCLqP9jVNQznEUrZ3tw3bjAcnJx8t3ieZykvM6MsJ4M2V6HmqzQ/pqxjanLdu3vIO8OupZcjcokq6oY+R8rp9vzi2wK1EFFDgbFEMX71jd0D6obHPx3SpSND3zfOrcHuXox2fqNBOJwYXKAIyFjj5IV8j0L7iIefBFBCCGEEGVLAoGCHXMzmHjXJlyxBcGac+4rvvtfcXzax73e5wDIIJM0MpzsoYBqVGaZXstGva3IWnTi5JhjL2a8NYON9jaiiSKBeFrkLw1eZK/kiry7OUIGvvyUDTcuEqnIS+5HedX9uHOc36yC5Z2BTECdX1fKQJFIPI/2rMLl7aJO1UsrEy7jzA1yFmWD3so6NrNcrwsr5r9cr6OF0Yg51mIe9/4fb3k/Z469GCDkBF/KApy+0nQGz3nf5gXfe7zq/djZPl8vcxrE9De6Ea1K/rudq/OYbM8NqS93j3kjjYy6pKhqTIj6gFj8GaLB9ekmFFqCLv6cn6ypvOX7nJs8j7LZ3u5s92kf0/UCjpIV8vUHMJXpdIRvphqQl99IJJAJ1ljVY0f0LL6P/i/DzSsB8OBlqj034hyaqHrEERu2PRcPR8ligV7q7JdAYNlaa2/iN+1/r26mGtCBFnxh/0wGWfiwwuo8Qmjph4ZGHZqrhoB/6fcBffjUTFwIIYQQxZJAYDmnbc03F61h3/JsfDkaV4xi6JzWdH6g1gkfc469mM16R8i2xfaqkPt1VUGgcZvefcLPJY7fm75Pudx7FzP07+Th4W7zBhJUPACveEczn6Uh47346KM6U1klOtv260O8ZH/o3A8EAAMnizYaN27+7rqNrnXP3OWfCjin3pmdEphz2MvKMQfYMTfD2RbICAL/yWFNkpz7XVR7rjcu4i3rM16xRvOQ9R/+7X0bCF0uPM9aevInL07Ib9YinrPe5mnfGzxpvUq2zgFgnDXNGTPY7H1cx5xhLyAnaAnhdcZFPOb+m3M/wYjnUmNA2OOmWHPRWodtFyfmPu+/ecj3H760x/GBVZDpNV8vCwnSBkvXBdtrGSlh+4ebVzrlP4KXi48r1FAowFQm7VSLIuf4kfWdc3Fqi95JVhGZheLk+zkoi2+4eSX/s38N+zmpTpWQ+2/5Pg/JBg38TGg0v1izTt5khRBCCFFiZ/YZrDgmy6vJOewjkADgy9VUa17hTx3zSd9rPDc3nYQ8H/UOpRNjaSrxOHnudzGqt8I+sJJ+VavxjPsIT3WtzHYJBJ5SgXpO4K/vFggCAizQSyM+5kKzT8j9T60fImYCBDvIEX60p3BLl/PYdlgzfrUH28b/s6aU/z/k38//AdTK+b/wDpTBwQCl0Dp/TODxyv+4ggM7g4Mer0BFCioEP1aFPVfwZHX+U5lK0aeJi7t7nrkZj7lpPt5vt5SMHf4MoEGjGtDxbzVCfmfrqJq84X6SozqLb+wJPOu6D4D59lJnzMH85WP1VW0GG73ZqLcxTy/Bq724VcFycnF6mKMLMnp8WEy3FzDA6MaX1jhqkUxboxnnGT2P65jj7IKAQkNVh2HmZWFjrjMvYoz9s3O/JsksZx0L9DI6q3bH/0JECI/2so9Dzv3PrR/5p+seopSb8cUs29wV9DcjnoLPB9WpQrKqxnXGRc62XsY5xBFLFjn8Ys3EZ/pwGeEfNe8yryfbl8MSVgNQm2QOcIQ8PCzWq/3Bo/y34TV6E2epE69ZLE6M1pp3rC9pQCrVVGWuMy/iIs/tYeP6GV340h4PgInJZnYwIG8YY6JeoZ5Rm8Fmb162/BcOx1vTudF1yal8GUIIIYSIQAKB5Zwr2uCsO1NY+Jb/g36boUnEVj6+H4tl9lrG+H7GVjbROorf9XJGb9xPrSwLS4GpAQ6h1RGsfYtBGdTYZ3N5nCmBwDKwS+8DoAbV2RxTkOGjtWYP4Q0+3Lh51fcxm/R2lFI8bv4tJJOkOB9Y33Jl1CD+fWEM/74wpnRegDhlts1Id4KAAIvf2xcSCDQwqK2SqW/UBuAaLvCPs1eF/Cyt01ucAvJxVGCd3gLAUr2Ws+UE/7RTuKvzOHs6Xrzs5SAAZ9OaqqpSiY+ntWZc0BLfTJ1Ft0JLygE6G21xYTplCXbjf6/6wPctnaPaHd+LEGE26K0h3eD3c5if7Wlcbg5kfBEdmhOIZ2X+8lwDA1tr2tOCJazmAIdJoRrVjMrO+BgVzQCjO+vtLeQpD1/Z47neuDjsuJ3NdqzzbXbuW2hnyXE71RxLF1xoWmlv4CxD3idOtaV6Dbvyfwcbq3r8Ya3giE4nhWrOe4GJSZ+gQGDg5ytKRdHdcw1fRr1KV9WeWiSTrKqxWK9mi73T+ZshhBBCiLIhS4PLMY/2kqNzGfhGA26a34ahc1pz4ehGx34gcFRnAbDK3sBn3rG8bn/Cm9ZnvBy0XLSwohZ3BS8zFCeXVxeczNdSySH75tlLsCJk+cUQxQrW8W9rFP/2jeIne5pT56cWyWHjAVKoDsBqeyNHdHppvgRxClVuFOMkVCoTqudnCwd+Z2tQPWJGX+Gi8Hl4nHIBPYKWB0udwNOHpf0n8D/4JrNY+7O0ArU/f7Fm8r7vG2fsLfl14Epqvl7mZIUCDDbPxVDhHz/iVIWIjSS+syfK+0gpiFRv77++zxmcdysb8oPziVQM2Z9KivO4pqo+8/QSJ4sP8jsAF/KUeScb2c5GvZ2nfK87nxeC1VDVud+8ybmfG7RsfKlew6KgZkLBHe7FqTM+aGn3ANWNB6yRbGSb8xkCoKtqTx0VWlP6XNWZ+XopBznCz75p+LD4p+tuFutV7GAPD/pGnqqXIIQQQogiSCCwHJthLyA5rwt9PUNZetYiUrsmhC/HjMDWNvXzziUxtwMdPZfylZ5Q5FhVTLdYM//HTzICT509HHTq+RUOBH5u/eTcTqKqc/soBSdxGs2LvvewsemqOnCzeUXE59nPIepSk43RU0JqC4q/lqRWcVz6ZRPq9EygzY1JDHyrAVk62wnqFD4BDJgQIbsokFUU3EWycOaZKDv9PMOonHsWV/vud7J6UvF3ft7LQabqeYB/eXdfo8txHfsra1xIJlpwHTlLW6y2/YEeW9sMNS+jIXVCHp9LHl8EvT+JE7PKLgioXW4M5I+o/3Gu0RkPXjRwLp3C6r95lQ8PXrqpDtxnDmOhXhGyv2OEwG1zs5HzM7Kb/Tzn/W/E+dxvDnNuHyEj5PPCAQqaSkjDkLIxPiiLdxf72ai3heyvQAw3m1eQRWgNx0vN/pyj2lCFSnxu/8gr1mguMfs7tWQn2DNDji2EEEKIU0+WBpdjs+2FePAyVy/mDq4t8ePW6E1kBn3wC870CIgU/tPokO2BQOBu9kutsFMkuNZTbRVa9H2aPc+53YomTMN/vyF12ERBd8kleg0azVK9mnZ2s4jPY2Ozxd5Ns9e3sGtreHH5M4XLgCgXRJlg5SdTGgb4LHCb4LX8+7wWuEywtb/8oKHAZ/v3eayC/7pM/36toUaiwSfXx9KxTtm+Tbe8qjotr6ru3F9rF5wM1o0QCNxvHyKJqrRTzTmqM9mEPxNwld7ApfSnmWpANSpzkCPMsRdjaztidpg4tdbpzSHNPAD6ml2Yay+mqk5kGetw4eIW88rj+n5l6my+sH5yLkDEEs25RifA34TiCs/dzNdLaUgdPPi4TPV33m9cmFjYdFbtWGyvLvI5RMkEZ9Y957qf+kZtptnzSVDxVNdVmM1CYokmhzxn3Ib84M8ivYrbuMppCBUQKSMQ4P9cjzHNM5+mqj4/6+ncYF9CK6NJyJh4I444KjiBJAMjJGAcSww55LLKlkDgqbZT72VJfmZwKjXI1Fm0UI1Yozc5v8s55LJHH2C47x8hj92qd/Ku61nae/1LwpfYq6joiuMF98Pc4H2YnupsvrB+4nyjV4kuPgshhBCi9MnZVzkWnI3TLWi5XmFaa970fcYrvo/Yqw/yoz014rhIH+eKzwg0AX/QaJfeX7JJiz8luFFILZWMV3sZY/3MFt8OpxYQwEa2Ore3sINPXC9QlUpAQYfgbHJ5W48p+snmDDmjg4DgD+ZleyAtB47m+f+l50BW/rYsDxzJgcz8+xm5+WNyC/YF/zc9aMzGAzbDPs8p65cYQmvN73ZBRlCkjMCFegW/6t9YqtfQQxVk/wVO5pVSTvfgNDIk2+c0sF8f4jDhS28fN//GsuifOdfsQhY53GFcy53mdSU65hZ7Jzl2Lg95/xNy4aiv0ZUKKhZLW3xgfcPvejlefKxlM5vZzqig9xQfFhrNPL2EMfbPIe9f4vit1OsBiCPWCeLf6xrKJ+4XucwcgA+LHPJwU3BRLvA3/GHXcCeoH+DCRSsVGtwLqG/U5lnXvSzTa9msd3CP97mI3Z9rqIKLDIU/LQSCggc4QprOQJwalrZ4wPs8Rv4pwg728JU9notUHxqQ6oxrRF2m6LkhwVuAZdYamhr1qUgcAIvsVQBcYZxHJ9WWWfoPvrd/ZYFedopekRBCCCEKk0BgOZWjc50lPo1U3ZAP48G01rxtfcHDvhd43PcKDfP68LHv+8hjgaj8E4jAx30Vsj/0JCAQCATYjiwPPhUCjUIAaqkU3rI+52bvY7TyXYAXn7NvO/4acFG4ud24jivNQfRX3SMeM5rwTE4FkFk5bLsoOVvDkZyiKmueem/5PqOVZzC3+Z5wtkUKBAbqywGca3YmGn9X5UX2Krzan03UPejCw2ypE1jmgpeMNqE+P7vf5TP3S6Qa/qXBCSqeWiRTyUggVh276c9OvZfmnvOo7unMx3bB34suqj13mNex3F7L29YY/uF7NeTvAEAWRQe/J8hywhOWpbPZoncC0FI1Dsnq/NQ3lnetr5z7Z6lWzu3KJJBCdR40bw6r6dlKNSZGRRf5nLeaV9FQ+Zd5z9WL+cz6IWzMRUYf6uQvQU8gPuS/HrzEEEMSVdijwxtZiZPjUd/L/GRPwxX0u9lI1eUQ6WwOCgZvZw/z7SUkUdUJGgLMZiFefLQ3WgCwi33s0wdRSjHcNcQZ94GvZE3HhBBCCFH6JBBYTv1uL3cCP92LyQb80h7HJ76xTq0oC9sJ2sUSE3YSV3jZUHGCP2RKncBTIzgQGIWb53xvA4Rc0Q/O4owmipfdf8dQBoPNXqSSQm1SnICvgcEC9/9oo5qGPE8PzqJhr1mY7jzEiVHAM+efPp2WD+l0NuntIdsiLQ1enJ/9AXCW0ZrmqiHgD/Zf7LmdmzyP0kw1pBWN6azaMjVoSbooG6vyM8UA7nMNpb/ZjSvNQc62e11D2RQzlXtdQ8Me+7U1gSGee7nB8zAvet8HYKw1GQBf0MUFgM16B+OsafTx3MijvpcAyC4m8FfYuKDmBeL4rNGbnNuH9BHO9wx3snS/sQvq/DajAakqhXNUG/9Y0tjLAZ7x/pf59tKQYxa1LDggRkXzmusfKBTdVUee970T1vQllhjnwlMgKzX45yaXXPZwIKRWrTh5frMXobUmgfiQ78Ot5hDqG7VCLujm4SGbXM5VnWmpChrNefAxJO+ekL8FA/NuJiW3K1/7xlMpvyGNNAESQgghyo7UCCynftMFy4ILBwLTdAZaa67y3sdKvd75cN5NdWCOXuyMa6Oask5vIY0TW7ITkhEonYNPieBA4H77kPM9MFDY+R/wgz/odzHaOzV8rjDP43JzIPd5n2eM/RMevJxv9KKZ2YBb9RDu9j0LQAzR3Oy6kmEV/o795HlctPZp7qsyiB1pUKeyYle6plo8HM3114xMiFHsz4QaCbAzDVIrKXZnaKpUgDyfxmf7x+w7CrUqKXYe0aRWVuzJ0FSOhVyfxuuDKhUUe45CncoG24/Y1EyAA1mQEA0WmmyPomoF2JMBdSoZbE/zjzmYDbEuMJQm06NIiodd6VC7ksHONJuUBDicZRPrNnAZkJYLKQmw8wi0qWXisaBSDGR5NIYBUaYiMw8qxcKRbKhcwb8sOCHaP1eAaLfiaG7+mByoHOsfEx8FXltj25AQa5Ba+fS5VjPY7MVI652QbbVI5qjOoqKKc7YFTv4SqUgtkmms6rJUrwFgmp4P2v+ek6s8rNQbUFqx2d5BAyMVUTZWBdWOK1zH7Vje8H7KIvwdXqcwh/tcw/jYKipr3OZtu5hyAkUwMbCwmWEvCPt5EyWz2d6BQqHRbGIHm+wdvO/7hlfdj7NIFwRsnjLvZIT1VFjg7Wt7vFM7MHCc9qrFMZ+3v9mNm6zL+Mj+HwBP+97gDfeTzv7uxlkErkMFaodWIJbsoHqVNRbWZd30LKp1TqNB/0on+iUQJTDBmsFb9ucANKYuG/DXiOxhnMUIT8H3zY0bL14qkcBLUY/wsPdFVgRdUJjEbyHH3coucsljip7LLeaVfGh9ixs371pf0VjV42zVmrl6CecanUhW1U7BKxVCCCHKNwkEllPB9QG7B9XxAjgn7wr2sD9kqWgdaoYEAcFfPDz4inEU7hJlBGr82U6mkozAUy04EPiqNRoTg5oksRt/jUYTg2pUZh+HAEJO9JRSvOz7kPds/xKyR8xbucA8F4CrzQvIw0Nn1Y69HKSN0Qx8YER5yGs3ge5RF5+qlwhA11Ia82fVq1qCMSd9FqWjg2pJDaqzh4Ileh28l3Cu0Ylfoj4EYJu9i70cBPwn9ZU8/osMbWmOjcUK/CeK4+0Z3GBezNO+N9BoPrK+4znj/lP8ikTA6qClwYEMzpJYbq91goDg7/z6tTUhpClFDNFcYwzGxOQD+1tn21uup/jM+pGZ+ncAapLM7vw6pSZmSJayhb8TjwcvU+25XGL2P4FXWb6t0hsxMfAFfV3H2D/TyzrH+VsfRyx1jVoctUKDgDFEM8Q8n1et0VSlEukcpac6h/5Gyd5FH3ffztd5E8gih/etbxhmXEoH07/8uJPRBhcufPiIJYY61GRf/nsI+IOAN/X+O9u0xTZ7FZd/25TmV0ig6GQJLu0QeK9PoRoH7SPMoeAzoA8ftUnhevNiklRVakYoL1OReI6SmX+v4ALj+aonB43DTLRn85LvAzx4sbCxsblGXcDo6P+cnBcnhBBCCMfpk24iTplsnUOGPkp31ZFuqgP1jFrOvqM6i+3sdk4Mmqh6mBhBH+b8S3lcuGhDaOZIP6MrXVUHehudWFG3Dr80qERGpRRIqMfRhGpsS4xhbsPaHK5UFaPxJVCv4GROAoGnRqDYfhJV2MZujpBBLAXLTy1sLjDOde53DFr6NdteyAprPTVJwsCgpkriHMO/fKyiiuMu1w2cZbbmAvNcUkmhOlUAf4ZYpCLx4vT2vu8bHvL+h+nWArzai6EMBpm9wsbt1Pt4xvsWN3sepZPnCmd7oM4XwGo2UIVKzrLzafY8hhjn48q/FvWpNRaPLnlZAVF6bG07DVvqqlrHlW33gRVe4+t53ygnq7galUmLWcSoqGeoZRQ0DnrGvJfrXRdTxyhYWn6e0YPGqh51qBHWfAAglRR6G51YbW8K2yeObbb1R0gQECCDTP7le9O539M4O+yCH8C1xoWkqGpUpwqHSMOHRRrp1DNql+i5a6sU/uG6nUTi6arac6/v31jaP5cKKpazlP/vzA72kEMOeXicxzac3BK0AluhTNgw7shxv3ZRMra2WZLfnbsalZ0mP21UU6703eOMMzHRaHaylw+sb7jccxcfWd+FHS87qElQbtD3NEpFUU1VIQ8PWeTgxYedH+z/Uo+TurFCCCHEKSCBwHJour2ARXoVv+lFNDHqh+wLzuToqtpzPr2wsDkStPw3mih8+FjMaioQC/iDg5+4XmBa9Kc867qPq3vZXDMwkc5X18J783yMmxZzzjW1OH+ASZ9rGuMe/Cnx/UYRTwUA9thSCPxk82mfc4W/KpWck/Xgk652qhlb2eXcD64B9b31K9/oCexmPw+bt/A31zVFPpdSynnsIdLYJoHev5xPrO95y/qcQd5b2JOfoTNI9Qwbt0vv5XXrE8bY40jjqLM9TxX8XHnxMZPfnZ+5XDzMsBdwsdEX8Nea/Nz68WS+HFGE7XqPc8LfSjUu8ePytIfNtr9xQAVinA6hOyko8zDEKKgzGNzo42JXPzzayx/2csD/N+VV9+OsiB7H2uhJJBOeSruDvcywF/CzPa3kL044VrExbJsbV8j7/d/Ma8IagoC/eci9rqFOBjjAcHNI2Lji3G3eQHPViDl6MX/oFXxk/c/Z190oWJUQaC4SsPusrRi2gTY12oKa58QjTo7Negfp+e/htUgiLv/z3RZ2coDDzrjgJnAHOUKGziQ96GJxQCCTt7Ddej/PuO6lMokR93/tnSAXD4UQQoiTTAKB5dD4oILrg43eIfsCxcMBLjcH8guzwh4fXBMwlRrcY9zI1+7XqGj4P6CfpVoxyPAHDHazn1d8o6lqVKZH/of9bXoXq/VGlFJcZgwgkYqsZbMUjT7J9nLQueoepyo42w9SkGFxh3G9kxGQTFVqkQz4u0ePs6YD/pPHB123HPP5OqiCIOKSoOVG4vS3W+9nofYv+WyjmlJH+ZsF9TO78q3rDTrR1hmbTW7ETq/7jtHl8y7fv7jbuIH+qht7Ocizvv+SocNPJsXJtVoXvOe3CCr4fyzz7aVM0XOpTmXqUZujZGFg0BT/0uJKJPCoOQKAPfoAf+R3qW+uGrJT7+VF3/us1ZupTQrPux4kWvm7SxvK4Hyzd9jzBS4ardTrydOesP2ieBlBgZoqVALgYtXP6fbqxkUvdQ5z7PCMwFpGMvvsg3xtjQegInEMMc8/rud3KzfPuO917j/le40Dtj+4FFynOCq/y3jA5v6r+f7T9/FcvZ/z3mpAx9tTECfH4qBakShFLh6qUIkNelvIuODM0pokkaDiqUZlZ1stklEoYonhfNXLCSgG7Nb7qaoq8Yb7CUabI53M8IAP9DcRM1OFEEIIUXokEFjO2Np2MjNiiKaP0Tlkf3BGYCUSWKe3FHu8GOWmlpHMALO7s00pxf+5HiOWaLqq9sy1F5Ojc7kgKOg4zvYHlRJVRdI5ikYzz17yJ1+dKE5wfUAj6Fffi48E4qlALF3N9k5zmA5GS6dRyEq9nh35mT69jHNIUMfOyuhgFNQXXGSvLGakON38YhVcABgctFQ8VsVwoauPU1MyktY0pY/qzCGKD+xb2MSqaCcAtIcDPOv775+cuSipZfZaHvSO5G3fGOKoQAfVwrlYUxKBhlMHOEI6GaRQnSjcTjf4NDK4zXqCSz13MMk3i8bUQ6E4qI9wgedW/m2NAvwXi7oa7UOOXfgCFUA00YD//WplUFMCcWz77IMhTaA8+Vng3+mJZJNDM9WA682L2cwODpEW9vhkVY3XfB+TQnU6qbZcZ15EfNDFpJLqaZzNNcYFNCCVWiqFJ6xXAX9TqvY0p7vqSE5Qk5CA1VcuZO9HizjrzhrO3yRR+oK7/ObhwcLiMGl0Ue1CmrsFRBOFQuHVvpCVBRYWGk0OuQwzLmOQEVpS4iPrOzJ1Nleag+hotnJqTaugXMN3vV+V9ssTQgghRBAJBJYzi/Uqp5h/X6MLFVToldqVQdkhW/XOYx7vZvNKbjIvZ5vezWvej2mY25fLPXfRzzOUhtRhrl7CTP0731gTqKaqOI+bYM0EQjMBghuYiNK33d5NTNDJdICFRQaZtKQRi+yVVCYBCG0UMq6YLNKiBC8rDsk0EKe98fmBevB3Cw7m0V52srfIx97rupGHXbeW6HnG2pN52fWoU6dyvd7KVnvXMR4lSsMCeyn/tb5gip5LFtkMMnqFXNA5luD3613s5wCHed31BEPMQUThBmCiPZtf7Fn8x3qPDWxFoznAYaf7LMAI82raG6HdZ/sYnZ1jBAR3sQ0OWIhjK1xz7RLlr88bCLsc1mn8n+tRvrLGk0jF/H0FQZkMncmb9udsZgfL9ToeN/92wnMZ6XqQNI6yUq/nE2ss8+wlJKqKRKtoftOL+EOvCKkvGhBp6akoXYuCfq/26YKGLfP0UuezQ7A4YtnFPtbpzSG/n8HB5E/1D3zmfonOtHO27ecQk605QGjH8qYUlKr5QU/moJZ6kEIIIcTJIl2Dy5lxQXWaIgV0VucvDU6iClPtecc8XnejI7/YsxjqfYRYYsghF5dt8sV3y0jKtqicZ+OyNYpheA1YFW1QOc/mSPROMuO60PXa8c6xJBB4cm1iO7nkkUQVsnR22P573UP51f6NI2TQiDr0y+8IGbwsGIi4bC+SmiSRQjX2cpDFvjXsz7NIjFFkeiDGBT7bf6LpNjQ5PoiPgow8qBgFWV6IdSt8Ntg2RJmabC9UjC4Yk+2FaJfC1mDZEO3SZHmCxkRDjlfhzk9k8FoQ69YczYOEaDiaB3FRkOtTuAxQCjw+TYUowsbk+RSmAYaCPJ+mghuOeqBKBYVpnFkZKll2NtPs+QDUoHrIEm/wL+0Pzi4qbLZeyCErrUTPNcn+jX+67+F+cxifWT8yyZ7NO9YY/mM8fMLzFyWzXm91blejcomyfAM82htWS64yCYzwPUk9auHBS0XinOBAoA6dGxfnq95sZgf/Mu9hoV7BPa4bw45fQcXSR3Vmop7tbPMGZRwtllIDx2WGvSDk/pd6XP4tRV1q8HnU/3GULN61viKdo5gYIfXd3rA+cbK27jeHkWSUoB16EVKM6jzhup0HfCMBeMz7f8yI/pwLzHOZ71sK+JuLBK9OAMjUWYUPJUqRrW2W6jUApFCdvUHd4d24yCL8M0NtlUKsjqGRquvUAY6nglNzFPylaHayl/ejnqO15wLAn214ve8hNppTnEZFAD3Ms1hrbQb8Fys/t37kPtewUn+tQgghhJBAYLlzlCx6qXPYpfdxnhFa+H+/PsT+/ILQtVQKS/UaeqtOrNLrOUD4ldkqJNJcNeRT6wcAcsilKpWooGJJyraolWVhKTA1gMbQONtqZVlkspPqqgrNVUPW6E0s1qvJ1NkntORIHFug/uN+Dod08ANw4eIC1Zv7recB2MZunva+yXbvLh52DWefPkhPdTZxqgJ1Vc3Ch45IKcWN5qVkZLr46Z3LqL0vE0OBrf1Bt0AtcAVowFRgaQrG5G8PHhPYF/hvsMC2wsc50TGRnqvwPBpWM5hyVxy1Kp05ydVj7cnUpSbJqipnGa0xVOhr23KMTOGfrKmoIpLNFSokiLhW+0/67nBdx8vWhwB8Zv3IP133EKPCM1BE6QkOBP4R/T01VPUSPc6jvXTLu9rJKq5EAjFEO4EDjaYWydxoXMpI+52Qx7ZTLfgq6lU02l8LkPAu1AHNVIOQQKCm4OdHMgKPz3x7Wch9NyYWFt1UB5bptcRTgUe9LzuNIoKDgFVIJFd7aK9acEAf5mHX8D89n9vMq3jP9zUuZZKg4vnDXsFgozdP4F8qnE0urWjCSgqWgGdGqEMqSs8aexONVV3iqUBlEvlRTwX8y38jdfEGmOr+xKkNPcRzDz/Z08gkGzcu5/2hJY2ZYS3gBtclROHGg787vIXFJ9b3IXWpz1e9eZ9vAP/P3Sz7D+5j2El6xUIIIUT5VqZnryNHjuTss8+mYsWKJCUlcckll7Bu3bqQMb1790YpFfLvb38rflmK1pqnnnqKGjVqEBsbS79+/diwYUOxjykvfrSmMFP/ThoZ1DSSQvattjc5t7fonWSTywy9wKkZF08FooMKeXczOmIoI+SkbEn0j/zLdU+J5pJNDlprZ3mwDx8LCp2wiNITWILjwgwpHA/QVbVjKWsLOgPuasbMH3qy5etbeOTLKLZ/dRszvunL7q9GcPPn2dz0eTbDPs/iljHZvDgllzxf5AyxZ9z3UmX+LezZ7w/uBgJqwQ0BAzet/BvOGMLH2IXGBAtsK3ycEx0T6bkKz2PrYZs3ZhYsczwTfGyNZR1bmKUXMsgMD9Rs1juKffwRMjgcoc4YEJZJmEMuG+xtVFOVudQYAPiXlY21J5/Y5EWJBQKBFYkjhWolftxseyErKPg73cfoTE/jbOf+k+472RQzlaej7gprEvCo6zaUUmHB5Uhamk3CttXB37Rmld5Irj6zfu9Opi1sD7n/ietFrjMu4je9iKNkcZHnb06Gp1noY2EM0UzRc1miVzPMvIxYFfOn5+NSLv7muoaVegO/2r8xzZ5HM9WABioVgO16d0gQECA7QkaaKD1z9WIW69XM0gtxqYIcgTw8zvtDcG3hisQ5QUAo6CJdhcSQ1SYrWc8E218Kpiahnznf833tZARG4eZR38tUyl+afph0Jtgz2aH3IIQQQojSV6aBwJkzZ3LnnXcyf/58Jk+ejNfrZcCAAWRlhS4BufXWW9mzZ4/z78UXXyz2uC+++CJvvPEG77zzDgsWLCAuLo6BAweSmxtehLo88WqvU+Q/0AU02Eq74OQu0BlYoZzsgJaqMUkULAk6R7XG1rbTEbY2KSSpqtRXtUs2H3zM0YvpHlSgvnAtI1E6PNrrnPinEv69v8W80ln+qzOqkffO6zD/YlhyHpmLesHSgbDoApYsrsPnC718sdDLmIU+Pvvdy5Pj8njkh6KzNUyDYhaS/sXlZzeeKdbYm/hN+38Hm6kGdFcdw8ZssreHbfsz/uF7BYBbXUOcbe94vyzV5xChcnUe27R/uW4TVS9iA4ai6nONDyoTAHCNcQFj7V8B//Lgy42BAGTpbLKDGj+4cXGu0anEc2wZoYNxNeXvTOrDxwppGFIie/QBsgo14GhpNOYt91PUy/9bvYM97GAvvVWnkGxAwOk0D9Df7FZq8+pvFBzrN3sRSikuyG9MZBeaA0CWlozAk2l2UGmWKF1wwdfAYCf+RmOB70sFYnnZ/HvI4/sZXemuOpJOJhPsmdSmoLvzTPt3tNY0UfVDHrOb/SEdidexmbT8rNSAX/LrSQshhBCidJVpIHDixIkMGzaMli1b0rZtWz7++GO2b9/OokWhteIqVKhASkqK8y8hIaHIY2qtee2113jiiSe4+OKLadOmDZ9++im7d+/mhx9+OMmv6PS2S+93PsjVibC8c5w9HVfQanEXJpVJwI2LYcZlXG9exC3mFZyvetFDnUVvozMb9FanHkzH/OYQ9fOv6pfESN87dFMd6KY60FW15w97+Z95iaII6/UWp8ZT1fyT6YDKJHKe2ZPx+Q1B1J5G4I0Bp0ugQWBhHoQHDDQwa1PkpUMAd/SIpmOq/1ju/Hcc0ygIoJn5/w3sc8aogmcrbkzgTcwV2GeG3g+etavQ44PHBEr9RRqjihjToobBA+eeOUtYP7S+dW4PN6+MGCCapueX6nP+ZE/l+fz3gV7qHHqrTqxgndPdXJS+TXq7k53ZWNVztvu0jy65V9It7yoa5PVhmb0WAEtbWNoix87lI/t/zng3Lm7zPYkLkwuMc7nFvNLJGFtgL3eeozYp3GBeEtacqjjNVIOwbW7czt+KNUEZ7KJos6zfcRdqvFJdVSFWxfCq6zFq5HcCNjDYqnfRhPp0CGoUFcger0BsSAOpP6uBSqUG/uXo8+wl+LSPwUZvOqm2NI8QBJaMwJNHa82c/EBgHLHsyQ/8QeSgrEJxidk/ZJuhDFoZTbCw8OClg9GCeOIAf3bfer2FWkZyyGPcuJz3iCSqRvh0EdqoTAghhBCl57SqEZie7l+CWqVKlZDtX3zxBZ9//jkpKSlceOGFPPnkk1SoELmO3JYtW9i7dy/9+vVztiUmJtKpUyfmzZvH1VdfHfaYvLw88vIKlhllZGSUxss57Wxnt3O7cCBwu97DLP0HdlDuVlPqMzN6DEv0ag7ow2TpbM4yWnGu2Zk19iailIuHvP9xxge6xMarChzEgEJ1ZfzLSkI/VK61N3NYp5PGUVbpDSgU+/RBklXJl6qJYwvuzFeJisQQTW5+5854YnnD9ym79D7cuEiqlcaO2AzIicMfDLQJDQaGG9zSHXE7QOUKijkPxJPj0cS4Ic/nD9ZZ+T8KpuFv5BHtglwvzhiXUbAENzAmytTk+VTIGI1/nNsAT9CYaBd4bX+wMHhMns/fWMRjKaJM/xgjP+holWCMzw6da6Rg2V+RT/s4oA8TRwUsLK4zLwobs0cfKFE38eOVqbNYptdyp+s6hnjvBeB+30h6G52OK3gkSia4PmBjo55ze65ewhLWOCm893qf5Qf3KG7yPUoT6rHJ3u68b4A/qzuTLLz48ODlOff9zr7gZiLPuu/jGvOC45pjBRVLJRKc7HSALLKdTMA2uhk3cslxHbM8mmjPxptflw38wdRAV95BZi9WG7+g0Yz0vctL1gcA1NYF2VyBrM5ORluiVNHv88dLKUV34yy+tX8hk2yW6bV0NdqzTm8J+Z4H5BSqaytKzxa9k135wb8uRvuQun2RvOd+lkSjYtj2wUZv3rH82dzZ5JIZ1En4Ae/IkPrC0USRF/Q9LaoT/Qx7gdSOFkIIIU6C0yYQaNs29913H926daNVq1bO9muvvZa6detSs2ZNli9fzt///nfWrVvH999/H/E4e/f6P0wkJ4deeUxOTnb2FTZy5Ej+9a9/ldIrOX1t18GBwNDloaN9/wsJAgI0NxoRryrQisa08AziSP6H846qFYv0yrDjB7qLvu77hAsjXEW2sZ0cs4Bd7GOE70kGG71ZZW1Ao/nFmsUw12Un8hJFEYI/2GeRHXIyX1/V5t/WKAAuUf3Iic9l553D0UsG0t8+l1ZGA7bb+2ho1MbWoUEvpaBJkskNZx/7BDE2yv/YmPyhZlA+cuB2bP6KpJgIh/OPUcWOiSk0JjpCzrN/n8ofGzrGVZIxZuhczxRr9Wa+ticAcKnRn8oqMWzMo96XyMov2m+gwt4zgrd1pT0HOMIGtkZ8vjrUYDv++k+vWKPZqLfxtft1ehnnMNP+nW16F5/6fuBv7mtK6yWKfBuCAoFNgjICxxfKwpyvl3Gz9zF+0bP4hVkRjxVHLJ1UWz52vxCy/TddkNm/3t5CQ29f2hnNWWqvcf57p3k9D7hvKnKeqSqFNF0QFDoSdHvlMYIVwh/cn2iHft+SqRpy8SJWxbDe2sJn+U2/AK42BzvNewICtXxLUw+jI9/avwD+5cEdXa0YYHTnm/z3oWCB5hOi9P0WtCy4q2rPNIrO+u6vunJZfj3XwnoaZztdgxfZoZ8Rp+p5ITVC+qouTND+Zb9u3HjxUptkZxlygAcv31oTuMl1xfG+LCGEEEIU47QJBN55552sXLmS3377LWT7bbfd5txu3bo1NWrUoG/fvmzatImGDRuWynM/9thjPPDAA879jIwMUlNLvrz1r2J7UNHlQEZgjs7Fhclo67uw8d/bk5hoXcTP1nQnCAhEDAICtDf8y4YydOZx1YRbolczRA1y7o+3ZzAMCQSWpkBBbsDpDB2wQW+ng2rBYr2adkZzPrHGoqrtIrb/F/wQfTdu5QbCg0LizLIoqOnP2UbrsP0zrN+dQCEQFgQE8rsF+zOBh7ku50nfa0U+X1ahLqBT7Lnk4eF11z/o5xlGU9WAF633udF1fEtKxbGtt7c6twN1u7TWjLP99f8MDJKpSgVimaRnU43KHIzQOR4gjaM85vob8VTAp3148WFhs8XeRQNS2c5uFtor2cU+GuhUdrGPmnYSu9jHv623Oc/sQQsjfCloYG7BtQAPcJgaVGcPB1itN6C1PmMyck+GeXppyN9ugCTlX3GRo3OJVTHMs5dwmfdOssmlr9GFisRFzMiPVC/0zwquD/ybvYh7GcoFZu+IgUCfBAJPmkBdWIBGRl1sK/xCbsC/XQ8W+TsXraIYYHTne/tXjpBBLDHkELk2dxOjPhOt2djYTsbqfg5jYIQsR06lBv+1vuAG85KQJiZCCCGE+HPKtEZgwF133cW4ceOYPn06tWsX32iiUyd/sfGNGzdG3J+S4l/Ssm9f6FXFffv2OfsKi46OJiEhIeTfmSg4IzCVGoz0vUsXzxD+5X3L6QwczEYzzPt3franRjyemZ/fZ2JSgySnkHuCiscoYglpMBU0xtQGSfhPUKbYc8nR5buxS2kLLA2OpwL79aGQfXvYz2K9mqbUI10fZQv+pZ9tVbP8IKAoDxbrgkBgB9UqZJ9He3na9zoxRE6DDHQTt7BQ+b/Z55k9SC9U+D1YGhkkUtB1MptcZtgLaGY0ZKDRgzl6EbvZz3fWpD/xqkQkwRmBjVQdwF9HdJP2N4JpRWNAsYntWNgRg4CB9/8qVGKw91Y65l1Kx7zLaJTXj1s8j7GD3WxmBz4sJus5VKcKCSqeWiSTpfxB4Cxy+MD6psh5tlPNQ+7n4aGRqgv4647t5eAJfw3Kg5994X+7q6uqTLXm0TzvPBbYy/jV+g0vPvLwoNF86n6Jfbrg65pIRaJwc47RptTn10w1oAqJVCERDx601gwwuuMKWzvgf28RJ0euzqM6VYgmCsu2nE9mqtDnuCjctDbCu3kHOz+/03xNkvAUs5w7i2zON3qFPIcHb1hNwh3sYaXewLvWV8fxioQQQghxLGUaCNRac9dddzF27FimTZtG/fr1j/mYpUuXAlCjRnjnU4D69euTkpLC1KkFH4AzMjJYsGABXbp0KZV5/1UFBwL36oM843uLtXoz39u/4gmqIRQsjaNhGWQBF9OXUa5/kRa1kBn7v2bf8iy0ralMIhWDTvCLEvxh/1Hr/zjP6AlADrlMt0q3IUF5lqmznbpuzWjAUbIijlvHVl61P3buB2o+ivJhib3aud3eCA3AvOIbzQK9jNwiTuzuMm5wbms0txlXU43KIUvQwV8cPsDCphqh9WADDWtGuApquRYXKBLHT2vNer0F8DfxiMuvvfVzUDfg5axjT36H+aLUw59Vfpg0sshhPVtZx2YOkcaPOjQAdYN5CTtiZvG/qLfYFDOVaVGfEou/qcgX1s9kF9ERtovRLmxbsiroXL/Sls7BxfnWnhi2rQqJjPA+yV4OMsRzD5lkc7kxkEuMfvRS59A87zy+ssY54zPI5DbjKqcJTGkylEEXoz2HSWeS/Rs72UsllUB3dVbY2EgZyOLP82gv39mTOMBhWtCIX/Qs5yutC33N61P7mBm4Fxv9WB89mcuMASEdqF90PUILClbxrLDWM9L1YIkzTV/1fYzHljqRQgghRGkp00DgnXfeyeeff86YMWOoWLEie/fuZe/eveTk+E8KNm3axLPPPsuiRYvYunUrP/30EzfeeCM9e/akTZuCq9PNmjVj7NixgL8A9X333cdzzz3HTz/9xIoVK7jxxhupWbMml1xySVm8zNNGYGlwBWIY6nuEjvlZP42Nek5GT7BqVOYKY2DItsokUo3KROGmlasJN7kuZ/Wnh/ms/nreb7uUf144jts8T/JU50Tu7lWFD1vEM6FZKp80i+fDFvHOtrt7VeGDLgUdCG1sOqm2dFcdaauaMdGefRK/EuVLFG4muT/iVdfjXGqG1vYpnLnpwiSVGjxmjuAio++pnKYoQ17tZZn2d4htpOqSqAoKwa+ztzDSerfYxzcP6vAahZsGRipb9a6wcYXfZ+pTK+T+D9YUtNacrVrTRjUF4He93OleK/68PfoA1ahMd9WRC4xzne1T7Dk0I7xTb1FKko1nYlKf2vzbdX/I9koqgSvN8wBI5yjfWuEBK4BzVBun82hAIIAIsFpHXhkgYIO9lWxyiSrUMXit3kRjVRcTk/ZGC6pRmUyy2aJ3Mtmewy72UT0oQK/RdDbbnbR5BneHXm37v5/DzMsiZgXmaQkElbbtereThddA1WayPbfIsV2M9sc8XkUVRx1Vg9oqJSTbz4XJ5fm/8wALWYEbNxVV6O93YqGLyLFE05LGVFYJfGB/ixBCCCFKR5kW3Bg1yt+goHfv3iHbR48ezbBhw4iKimLKlCm89tprZGVlkZqayuWXX84TTzwRMn7dunVOx2GARx55hKysLG677TbS0tLo3r07EydOJCam9K9o/1XY2maHEwiM5SBHWKhXcKs5hFddj5OS1zWkgxvA9+7/kkw1dun9rNTrqamSeNl8lAt9IwAYa/1KHLFkPlUXbP/JhntCFVKWpvJRh+2AP5jg71DrjzmnksLn7M3vPxu63CxJVWGhXkkueRzQh3lN/wNDnRar1//SopSbXuY59OIcPvP9ELIvkGXhwsSHxVfu12ilmlDPqBXhSOJMtVpvcn7/A01/5tiLWWtv4nHfq8Uu8QJYzUZqkcwu9hFNFHebN/COr2ApV+Dnq/BSszejnuZczw3s5QDgzxKcZy+lq9me4eaV3ON7jtY0Yaz1K22NZqX5ksutJXo1G9jGBr2NTkZbAA7ow8zSC8OW5RWncI3HSC40zuUL9/9hqvCgznBzCJ9aP1Cf2nxu/ci15gVhpQiijChygp4nhijiKegeGlz7VIRaYC+LuDR/m97NEtYQQzTfud7EZbi4wnO3cyGgOlWooio5jR2SqHJSLwq1MBoFyoqySm9gID0YbPbG9oVnAKZzlCSqhm0XJ26z3uHcjldxHNEFn6UTiCeDTOf+ZWbkJiGR3OcexjK9li9tf3bpd9ZEnnLd5XyvfVg87HuBozp0hUJVKpMe9Jw55LGKDaBhnD2dO7juuF6fEEIIISIr86XBkf4NGzYMgNTUVGbOnMmhQ4fIzc1lw4YNvPjii2E1/IIfA/6swGeeeYa9e/eSm5vLlClTaNKk+LomZ7r9HHZO9AMf7Fy4eNx1O/PspWSSHTLexKCt0Yypei7z9BKOksXlxgB6G+c4GQYr9Ho+9/1IZqUMbKPgBLJt5cb8x3zIOekPLA+MJZrrjIuKXHayRK+hj9EZgN3sZ4lejShd8/XSiNt9WFygenOBea4EAcuh4A6PHfKb/jzr+y93+v5FOhlhv6uFfWdNdBo+HCWLQZ7hPGe97ewPZHEVLkGwh/30CFoGeJg0p3HR1cYFtFANWcF6/mt9QaYOfY8SJyb0e+0P+k60Z5coCFiTJM6jZ8i2xtR1bidSMWTf+UbviEFAgLNVa+42b2Aru5itF/K2NSbiuBiindu5eNjLQedvSyCDTIRbqiNn0QaahzRTDXAZLnJ0LlPteQCkUI1t0TPoaBTUCL3RvJSok1grtqVq7NwOdIKuqOJIIbxhSYbODNsm/pwt+WVDAA7p0IuzwUHAaKLoq46vvM4ws6Dp2xK9mo99Y0P2j7OnMzuoUQnAZnaEZP2Cf3UKwCx7Iem66LqzQgghhCg5SbcqJ4LrAwZOxi80zqWGqs7P1rSQLAuApqo+0SqK3+xFzrZ+Zjfchpu7zYJ6YCtYz4wP/sfBpnvIrZ7F7Fd/4KGmN3Cfexj/NO8KWZY03BxCZSORuELPFTDT/oPzjd7O/fHWjD/zkkUExdXUutJ1/imciTidhDQKMVpy1M5kpv07EF4wPpLt7GG5vc65v1Pv4QhpgP8Esg7+mq55eOhIQe3J36xFdDbbhhzrG/sX0vVREox4OucvRTtKFl9b4Z1ExfELvsASyP6cUOi9tqjv+DXmBYyK/hfNaMBd5vVcbPTjadfd3GBczK3GEJ5w3cENxiX8zbiGm4zLOc/sUeQ8lFJcZRa85zzr+y+79L6wcYWXBu/Xh2mgUgF/JqutS57FWJ6st7dE3B4I6jdW9QCYbs93OrsOMnuxj0OMssbQnAb0UZ252bzipM6zmWqAkf9RNHipdy2Sw8ZKEKj0BWcEripmqX09amEakYP6RTkrKKDsw+IrPS5kf/BFheCl4MHB/xokOVmgPnz8av92XHMQQgghRGQSCCwnggOByfkfqoabQ8jVeYy2/xeWEdjF6ADgBAJjiHZqCt7vugkXJnHEArChzWp+XjyKhF3bePee++hhnIV9eD0Pp/fk3Z29GbA1m6u3uqm4dT53pp3FN7suotlhD42OhGYHrdIbnI5zUNA4QJSe4LptLkyn86eBwQCjW1lNS5QxC5smqj5RuGmnmvOk73UnYBBHrHOiXlgM0bjzg/37gmrGHSbdySHsqjpQ2yho7lTHqOncfs/6mrYROsN+md+sYLh5pbNdmob8eVprFtv+oG9lEqinapGnPUy254SOy/+vgQqp63i761pqqOosif6Rl92P8nXUa1zhOo/3o/7Nm1FPcbfrBt6Peo7Xov7BqKh/kaSKX8Z5ltGaW/IDTR1VK2ZbC8PGVFGJIff3sp9WNKYWKTRTDZxOxyLUNsJrdAZrkh8IHBf0d/YC41we877MUbJYw2bqGDVpYKSexFlCjIp2OkGv0ZuwtH/taIIR3nDsUNCyVVE6tgQFAr34ihw3xDz+C4VxqgKVSXCOXZVKIfuD/2YMMLpjYlKPWlSh4Hd+D/tJy89iBblALIQQQpQWCQSWE8GBwH0c4ibjcs41OvGDPSViF9kmqh7jrRlsx/+4TkZbopX/hLCaqszCqO/ZGjWDq4zBLIr+kS0x03nEfauzrNTzvwvxfHYOl477iG9+OcA7v2zkwfFT8H3Wma4/v8T8r/fw48+h2R9pZODCpGN+lsoyvZbddvGdK0XJ2drmQKG6jFZ+wZ4exllULnTCLcqP8dZ01ustVKcKMTqKb+1fnH1XG4MjLhvtTkd2Rc8mI3oxT7ru5H3Xc86+zPy6bgrFKPe/SAjK6jpf9XZu72Qv6/TmsKzDj33fY2ubDkZL5/1giV7NYmsV4sTtYh/7OAT4Mz+VUvxq/xZ2ISggiapOSYl2qjm1VQrAMTuHHo/HzNuJJoqZ+ndetj4In0OhYOJufYB2qjm72MtivcqpbSdC7dXFN3MZb8+gQW4fxlg/A/6gfoyO4mfb3z26Cok8V6jJy8nSUvnLCuThcQK7FQtlggIc4vApmU95EsgINFDsZG+R44Iv0h6PpkENiA6TTl/V2bl/hILAbgejJd1UB7ayi02EBvd3s99ZtTLZniPdg4UQQohSIIHAcmKttRkz6Nt9tTkYQxm87P3Q2RZNlFOb5T++d7nce5ezr7vqGHK8ZkZDKhpxfBL1AnVVTUrLe96vudQcQGfVjnqqVlimijhxa+3NIQEdX6BqN4R0DxXlS572sD//BDtV1eAre7xzgmZiUFMlRXzcM+57iVMVUErxD9ft3OC6hJGuB/ne/Ra3GkO4QJ3LfeZQ6hm1qKgKsnsSgzJ94qnAE75XaUK9kGMvZQ2jre8BGGFeQw91FilU5z3769J86eXOEjt8WfA3vl9IjlCPDXCChrcZV3Gva+hJmVMtI4lW+XXiVuoNHC6U9VV4iWgOuTQyCuoSBjIcRQGv9obUd4tI+wMs7WjOxaovj5t/40HrP8QTyzmqDc+67qOaqnxK5tvSKKgTGFieGvyeEbDXPnRK5lNeaK2dGoEq6POhInRJvgvT6eJ+vB5zj6BKfiagQvGgOdzZt5O9VKMyFxl96KO60NloV+RxuqoOdFbt/A2liqh1LIQQQoiSk0BgOfGHXo6VHwS6VPXjDetTeuZex0oKasb5sJxaQUeClmIAdDfOorTooE61EFqDbKw9mS5Ge+brpWzVu/hNL4p4DHH8JlgzndtGyId+xfnGiV3tF399wXXZaqtkPvX96HSTbklj3rA+i1gnsJ5RO2zb/a6bON/sTV2jJj3MsxjpfgggJCMwKmipaSbZHCEDn7LCGk3c53uO1NwezLMWs1ivYi8H+Mb6ReqE/QmL7NBakAf0YX7UU0KW6AULLOvbyV6uMS84afMK/vsy114csi9FhQcpU1R15/YiLYHAwrbqXREb/JhBddiSVVVqkUxVoxJdzQ6YymSt3uwEf4cZl4U9/mQJbhgS6ARdMUIt4bVsOmVzKg/2c8jp/h1YHeDCRAOZQStFmqmGRTb9OZaBZg/n84WNTbQR5Xz+8OLjIEeYYf9OW6MpHY2C+rFuXCHH8Sof8/VS0shggj0TIYQQQvw5EggsB7TWbGCbc7+Vasp4ewa/s8zZ5sLlfBAEOEe1cW6bGHQyCu7/6fnkn6AEggvBJyyr2MA43zSnLtVvdnjNKHFivrbHO7cTKci2SCCehkadspiSOA3soiAQmKKqM58lzv14VYG0IroGBzo5RnKva2hIBllwdo+tLSrk1xcNnBBm6KO8aD4ccgwvPg5whNH6eyejJJscp36gOH6Fm8J8Zv0Q1sk5WDqZXGL05yv3ayd1Xt2Ngozzwu/5lVRC2HgvPidTcIm9WhqGFLJeb3Vuaw3ktEFndcHW/uBKTZL4MfodNsVM5X9Rb3Gp0Z9PLH9HVwOD191PHHdjiD8jsDQYYFWgczDhGYHrdOQGKOLEBHcMDgheKRAwSPUM23Y8Cv9+V6dKyP6mqj4b9XaW2GucbcG1SQF2631OIHucPR2ti+9kL4QQQojiSSCwHNjB3pAPd3/oFSH7B9GTFqqhcz+OWD5zv0xn2vOy6++84nqcCir2T8+jcFZRHBVCMhQCRtlfOkvVtuid7NRF160RJbeFgqLgsRR8P5sHfe9F+ROcEXjEznDeKwwUG/Q2J2gXrDIJRCl32PaiBAeej6psauRndLlw0UjVpbJKZEVQdrJChdQIiw7qPv6B9Y2cBJ6gNPsorWlKN9WR2jqZD63vih1fkyRGu0ce1/f6RHTNb04FhHSqB6hUKFMU/A0EOuRnD2WQGdL5VMA6e7NzWx0Zjr17FHrvy1i7X0Nrg8ZGvZDxf/e9xFa9k+6qI3eY19LeaHFK59tQ1aGzakdr1YQj2r8aoaIKrxEYXOtY/HnBvzcJEQKv4H8vvsD8c6VDegRl/P5mL6Kpqh+y/w+9gis8d7MnqCZ0LnkhY9bpLZyNv2HdJr2d9RIUFkIIIf4UCQSWA6vsghPsisSxQBdkAg5Rg4hWUazQBWPa0Jy6Rk1mxHzGXa4bGOG6ulTmYYQtL9RMj/o0bFwuecQEXQ2eU2ipmCiZbFtz885smq3P4N69Rziqc519nqAP2Wer1mUxPXGaCA60/85y57YGDnCYbHKcYGBgOX/1Y3SDLSw4uydDZ1IDf91BDx426m2s11tZozfRUjWmFf5lgsFNjA6SRifaUItkaqgkVtrrju9FCnzaxyJWsoJ1ZJHNV/Z4YokOW4IX7HXXE8SqmJM+t6qqkrM8dIlew1Fd8L1PjJARuEcfCAlWyfLgUCvzl9cC2OmXF+zIbQOe+jRWBTUWJ1tzGGtPxoOX9XoLT7juOJVTBcBUJvs5xAq9nkV6JVrriM1CIgUHxYkLzggsrqbknw0MN1CppFKDVjTBwKAL7VD5/zNQGBjsYl9Ik5Dgi9cGiq6qA02NgsYjwd2uhRBCCHH8JBBYDgTXhaquqoR0avtG/8IPekrI0r82ZpNTMq8MMqmnatOE+mH7gpcyy/LgE/PCgTzGpHvZ7NWMOmRA5gBnXxoFddZarG7Fis/3s/rbA6z4Yj8rv9rP+p8PY1uSdVUeBGcEbtO7nNvB7wnZ5BBLtHNyVnhp17EkBC0NPkqmkxEIUDV/ifFiexW/uj7iSISlyGlkcKk5gF3sY7I9h7H2lON6fgG72O+Uf6hJEk/4XmWl3oAXX8i4Gvi/NzcYF3O+69TVDg0sH7SwmG8tdbYH6hQG26sPON2kQRqGFLZGB9XSc+0BLMAGvGAeokl+RpalLb6xCjqEP+9+MOJS7FOhTn7TsaNkkUZGxKBfceUIxPFbUYILKlWp9KczgpVSdDRaspL1TLJnc5VrMDkxK3jMGIGN5nzVi+/dbzE56mMaklrwuPyLxzaauXpxyN+FX63Zf2pOQgghRHkngcBy4A+7IMsnVkc7t6OClttVy6/BBaH1ek6G4A93j3tf4ULVO2xM8Ae+wkvFRMns9tlODqbCBl/1/NsFV9sbTmzFro6V+PGGDXw/ZD0/Xr+BH67ZwDcXreGH6yTrqjzYFZQR6MFLDFERs8R6qU7O7SR1fIHA4OyeDJ0VEghspPz1KY+QQYbK4hHXrWH1oQDOMlo5t8dLNshxC15WuZv97OFAxHH9VVdqkUwr49RcEAroY3Smk2pLElVDmkQlqvClwbv1/tCMQAkEhjigDzu3VcqTqNiFuKM3EJvyNH2jmjndWRfoZXxp/0wr1Zge6iyuMy4qoxlDHVXDub1d74mYEZihj9EJWZSYR3v5zV5EXISmLMGCA+5/RoegRiBL8HcvTzQqUotkephncZ7ZE6UU95nDnHGFy8ms0Ou43riYlqoRM/UfbLS3IYQQQogTI4HAcmCNLqgXFFzrL7gmTDdVUMy5pdGE3HQf31yyhleSFvBqyu/Of0c1W8yWqWl/aj6BD3cuTA5ymLNdbSL0JPWLJ5ZE4tkdVDtGlMytlaNw539hlXEU4icDkBBUc6vNF52L/Nqv/voQ3uzwwuHizBKcEQiQi4fqVCWZqiHdpW92FSwxrH6cgcDiMgKDby/WqxjhupofXP8NO4YHn3NSukyvZYfec1xzKO+CA4FK+wv0G4U+AlQghvei/82mmKkhzV5OhbONNizQy9jPoZCLP5EyAjfobSSpqrSlKR1US0wMfNoXNq48ytY57KQguK/cu1A1H8CqfTN5cTOZby+jjWoK+DvJ+7BYqTdwo+tSlCrqr8HJF8gIBP/PaqRmIZlkn8opndF+sqdykCNkHeNreonRv1Ser0OEDN57XUPD3mvOd/V2SlDYhDYBWqbX0lClskpvBOBD69tSmZsQQghRHkkg8Azn0z52BZ0UBHcTDIjCzX59xLlvaoPZz2xnw7jDZB/wkbXP6/z30PocvrtsLbbvxJeNBk41fFhMtGczz1qCm8hLTzLJYb5exkR71gk/X3l1TgUXaxpX5OtUUHWuQbn9AZ8EqwY6YzA6qwt5jSJnWCgD4mu4ccXKW8SZLlIznt3sYx+HnBOx9qpFSJZg0nHWCEwIzggkixoqyblfKSjQEzhBPNfVhW6qoIEE+Jc7Dg4qWj/BmnlccyjvtgcFTpewhnV6C7FEh4y5whh0qqflqKmSaJifHfqHXk6u9tcxjZQRuCW/yUEToz6L9Spm6t9ZpteeusmexrYGLe+PpJ/RhRjl/76Ps6cD/k7B5xk9TvrcilOHQoFAFZ6pJoHA0vO+9U2Jxl1s9i2V5wvOCFxsry5yXC2VTGrQz0IwG00jo56zmuVT6wfnfUIIIYQQx0fO8s9wG/U2rKCrqsEfpA/n1wpsphqwFv8V1pokMcg7nC/3Tgqr0wWAhryjFpbHDt8XJPqamUQPX0vUtbOJunYWUdfMIura2c62rFsWMPByfy2Yz+wfqUVysceTpYAnppbbIKbCUrTp/15rO4ZdO0eiDzyO3vsy625rxjn31qTmOXGkdMj/1zGOhudV5tpJLcs0Q0ScfB7tZR+HIu4LXpZ1t3kD+4OWGyYdZ43Aiiq4WchRpw4dEBJgXKwLThAHmN1DjvGLPZPBRm/nvrwnHJ9IHVezyHFux1OBy0op++dEBeoEevA63e0rRcgIzCSbI3Y63Qt1IxWhDSAiOT//d2ijvY21+asFOqm2x53lW9pCMwL3ROxim01u2DZx/NbbW5hp/37McS5MqhiVSuU5q6hE6qnagD+zr7gM3n5m1yL3LbNXc6nhr3d8iDTG2pNLZX5CCCFEeSOBwDPcdr0nZGlVoFi8ielk++zR+zlCBuBfwpdDLjP+Nh4dFTnYd869NXBXMIt9XhWfgqpYCyOpDUZye4yU9hhJbZxtVRNa0L3i+YA/IHmsk5Bp9nyydU6xY0RkE6wZBXfymuHzpTh393m60v+V+ty8oB3DF+X/W9iOq8e3IKm1dGg80+3WRS+5D1wIUCguNftzgIJA4PF2DQ4+qc8gi1RqcI5qyzmqDbnkOYHBxfYqtPY/b1fVIaQpye/2MlrRmEbU5SzVimydE9JdVhQvUiAwWCbZdDBLpx7YiYoU2ItWUcQS3rl4qj3fCRwGjy/vNudnS0aiUAwyewKhgfQLgjJty0pojcDdxEdoFtKA2qdySmesWfYf9FfdjlkfMJlqpfq8gdIO2eSwTm8pclw/o0uR+36xZzPcdSVxxNJDncU8a0mpzlEIIYQoLyQQeIZbqzc7Qb6YoAL8gYAgwAEKlgUHiozvPnsrgzcnM/S31ty6rC1D57bmloVtuXVpO/q/Et7l90QMdw1xbhu6+B/FHHJplNefyz130TC3L6/7PimVOZQHs3RQ12X3LsCLv4OkRaNoTxnNSpwOdrHvmGOSqEKsiglpQHC82UPxVHAyDI/qTOoYNVitN/C7Xs4Ue66zbCyTbGeJ51lGq5AO59nkMlsvpJ/RlYV6Jb/pRUy15x7XPMqz7ceoqViblONe8l3auqvgwF7B+1YlwpcH/2xPpblqSBUSAZhjL8LWxWeqlwdbigkEnqPakKz8wZ1ldsFS6sHGqesOXZTaKsV5j9iud4eUEwhoZzQ/1dM6I31tTWCynnPM+oClHSAOWR6si14e3FI1LnLfJr2NjnYLqlGZ2Xoho+3/SRMZIYQQ4gRIIPAMt90uOPmLtMQqmBsXh0gDoItqT4eUpqR2SyC5TTypXRKo0TGe5LZxpbZctJvqwECjB3WowQKWRRxzidHPuX2YNDJ0JrvYJx/8Sihb57CBgs56ynUAVeMhqDCP+IrT+W/NyLUZRfkQqT5gHWqQEpQJ0l75u7Pu0wedbce7NFgp5WQFZpCFS7noYrQHYA8H6KM6c45qg4XFz9Y0+H/2zjO8jSptw/eZkdxbnOL03nsvJEBoIRBKCH3pEJZl6fCxCwtLL8uyS+8dduklLAQIJaT3OL336tiJE/cmac75fkgaj5pjJ7EtO3Nfly6P5pwZnbGk0cx73vd5gHgRRy+Lg7kHgzeNz5igjzXXTbVmu9pERCl1WHOVIVr9ZgMCdBRtTJmIhXIFbuUGwusErpQb0ITGaF9W4CEKWK+21t1go5TgjED/r/UpYiR3Oa4DQCrJd3I6bWjJiWIoPUTnOh5lKDHCSWu82qG71D4SiA8xszlc4Mrm8FQoF4vVKgA0BOmk0ZS0kH7tac2t+pXH9LX9vyVQqQcbjk6ibdgsYPCaWa3Ttpq/A248/CrnHdNx2tjY2NjYHA/YgcBGzhaLOUikC6vudERDoyedSSaRVJKZ7Lj4qF7Xs+o9PJkv4/ppMq6pV3kfP00213kyX8ZY/T4DRE92sS9AjzA4zJhKMk1IIQYnySTShowAF1KbyCyUK0Oc90TCUrRWfyG+xfMMdoYX5bY5PthrCQQqTzPk7nfZse1j9u//E8qXpXuW74YrsDS45npiyb4MnyJfEN9a1vm98TtLfDenrxr/NfWjgoNT38nf6S46kuQraZsmZ2Mo29n6cORwkHK8ovqRygEHR0EgUAjBeO1Ehop+9BHdWCS9E0ThJrG2sAuP8tjlwUFsUbsCnvt/WTep7ZyuebXXdqi9FFPKXrJJEylRowXbzlcefIBDlFFunjP8FGPLgxwtS9UaKvBWAkgUh8gP0Ar1c5o+im5ax2P62oO13vSnByPFwAAZiGB0odMrKDht1aw9w3WdeW4A+MGeELKxsbGxsakxdiCwkWN1EAyeXQeIJYZfYz4gJ3YB5+mnUUQJf9b+wCVH6R7pWfQMntl/Q278Ern5W+9j45fmOs/sv+FZ9ExAdo//Qs96abhALme0GEwehbhw8zfnn9gaN507HNcc1fiOF6zldRB4MT1WDI+aG0Cb+mGnRTdOHfojuLqBisVTdBaUeMsFvzJ+okv5aSyR3kCdjnbY7OJw+IP3hfgDgZV6cHNYan7v8ynic+NHoFJTyo+BwadyKmdoowE4aOTz7UeZzH9mDwW7bffISFj1ASNlVQ0W9R8IBBipD2KpWs1itYppcg4AaWEyAj14WK+2BgQCM+WaOhtnNCKVDPhOW3nW+VeSfE68a9Vmc31vS9ZtfWM1DNmt9pkBfz8lys4IPFqCrwkAc5LASm2cD9JECs20JixUK1ikVjJPLYvYt3dQebB1sriMcjLV2oAJoarMR2xsbGxsbGxCsQOBjZwcvOV8GsKcBbYySPQiQ2tGskgkRSTRhgzStBScom5KRoeJflWWGeZwkGFaf/O5XQpYM+aqwAwZ68X0ifqwuh6OTZSx1bBkD8n4wEbpvcmSSrKXHPrRA4AbtIuPKIDs1/wqoQxDGQwVfYkjFiDA2RzgPs+/kEoySOsdsp93PV8xXvMaHpz6wCTWX+tmxt928t7QlZTl2TeD4TicUQgQ9n9dH4zXTjQnLKbKGQCkRgg8Z8q1DBA9OVMbQxrJfCd/N8uJj0ey2I+b0OM/RYzgAosjtDUQ2FeLrMdW1wQahuwLyfy3XYOPnuCsWf85WKnAc3ptSQVcpU80l9/xfBGxX3U+lyO0AYBXFmCOnQ1sY2NjY2NTI+xAYCPGUAb5FAHeEpBiQh0200WauXyH45o6z7bThMZZujfzSBG+TCRexJrLP1qcDm2qRilFsko0b6pjcBBP5f/Smkljc3yymk3mspb2MQhfiVjMJkia4c3+01LMCYI2ZNBFa39Er9VX68FoMZgTxCDyVRGxIoZhol9IvyQSOMAhLnDdQkfaBmQyd6ItQ7W+dBMd6C46MeJbb0BQSSjZ7yZ7ma0dGo7DBQI7iDY0E03qaDRV01ykM1IMBLxmV1vlLpqI8IHAZWotDuEghSTyKSKfQubL49dFdLvaE3b9Hfo1AcH7tXKLuVyVMUNd08GSEbhTZYWUBpfbgcCjwqM8LPB9P2JwkkEzyowY5J43UNtmI/e+hJIJOHHU2ufiAu0MU5NwivyVXJUXtl9/0ZNhoh8pJOHAQSrJZtDSTx/RlcH0oZ/ozr+Nd2tlvDY2NjY2No0VOxDYiMnhYEBwLdxsej/RvS6HFJZzNK8zXbjSZYDVcpMZMFilNkYsfbIJZB8H+EHNND8DLjyU+UqAkkiIqpIwm7onXxWaGcMAetxmRMeJiHaXI9regNBKmaSN4+uYV9gaN938e6QTBcWqhHlqGfPVcg76nMqtpb89RGcu186h2Fe6ukptJIdcWtHc7LOdPUyRv7JJbWdV7Pf0O6EtQgOhgyNeo1mvoKxGGwBy1MEq2weL6MgG9GN1K/1BziQ1jGswwHLpdR492yIx8aOcVatji2a2yVDHYAc64/QxAev8GYFOHHQTHepkbNXBWhp8QB0kWQQFApXtcn80bFW7zWCaC7f3/J9/OVT0BjQoHwQFF9BPdCdWxNTKGOJELFfp5wOQRDxvej4L26+P1pUlajWFFOPBQwFFOHEE9MmgOUWihNVqE7/J+bZWoI2NjY2NTQ2wA4GNmL0qx1wWCFyWkiGlQMlYBohe9TG0AE4RIxggeqKF2IR4masyA270fjKO3xu9mhApOwRgjBiCJuyv//HMWrUl4LmBgdDKEDG7EELyJ3E5jzhuP2av10I0NZf3+4xHbnZewXzn5/zqfJ+XnX9nol7pEn6AQ4x1XcnJYnjIvn6XiwCY8FZXTrivLf2uasFVM/qS3Do2pK8NbFehASI/zUiLuuzgCdrJ5vIPcmZYjUDwBotdys2Z2ono6IC3nDiSCUFjJ9w5v5NoF3Cudyk3m3wmYj1EpzqTAakOGTSjOenEEctOwmUE2oHAo2GZWksueeakq0CgVOD7f6d+I286H6/VcfxRu4zztNMooIR/G++xK4yjeYZoRltaBqxzBZW972Qvf3f82Xx+r+cZ2zzKxsbGxsammtiRgEbMHll5cWW9oFaeZqjd/0Vt/51/7hpEsVG/N01JWiIJxOPBewHn8N3QgXfcXUR7RqoB9KYrJ4qhLJAr6mmkDYttEW7+44jlZH1EHY/GJtpYJyt1wqzfOT+6ptFZtDtmr2cNBB5Q3kBgB9GawXofTtSHcZI2jBO0wWYfDx6KKKGr1oGhoh9NSDXb/G7oMUk6pzzZgfPe70abEeGDRTawW2ZHbMsln56iSx2O5vD0EJ0ZLPpwghhEjHKSqEKdjhOI4wwxmrYVJzK04gKG0heArWoXm9T2uh5yVFBIUch02jgtMBtws9qBB6+WZrAhQ33TVEvjAIcop4J8VUgX0YFBVGaruuxA4FGxx+cSL32arAqFSPsSHPsBSHAe5J70dPppPWp1HJ31drQRGXjwUEoZf3E/E7bf4CDd0mCd621qNxdrZzFM9KM9rTlJDAvQv7SxsbGxsbGJjB0IbMT4Z/0BEi3ueyr/CnB7db6Wl8Xwfn79X1xbM1L8AUGAIkr4XS5A1zSKKWWOWso38mcKla0FdjjClYmB1yFwYBRkgtrUL9aMQOt3DuB27Sr+7bz/mLpKN7eYAh2IUKraXKTTKygo5cLFUrWaPArMdf4bWpvqsZvQjBsrwTfc9Y0Qgh6iE/PVcn5V8yj1a1dacOEhV+VRSDFZ7Cdd8waKm5LGTLm4roccFcyQi0KUdscGZdSusQRK+mjRJQ+Rbgn2H6KACipYzjpzXXBGmE3NsFaJ+BGO/Yj2lyI6XMCTnZbQwlE3twUPO24lA+/kUJ4qYKMMDd4PPoxhyXa1ByEEF+nj2UUWH8hvWHqcO4fb2NjY2NhUFzsQ2IjZoLaZyzFWbRVV+bYLoJ4TAgE4URtaZfsmtZMJvvJgNx5+k/PrYFQNm6rKAaPJKdKmflhmrA27Pp00/uG895i/XgtRGQj0lwaHI7hMNYfQoOFB8u0SsGoileSQJYgaTCfRliYiNWJ7fdFXq9SvPahCx+/Bw3Ct0mxmtdxELzpzkHw+N36skzFGE0qpsKXBwdlday2ZwH2jQCPYSgLxpg5cviokmUDX4OAJC5uaES4QCCCEgXDs5yx9dJ2NJU2kcK9jMm3IYJZawltGqFbgENG3yn3sVFl4lIeOoo257kAVvy02NjY2NjY2ldiBwEZMYGloZWaPSPsEHN6MmoFxOtc1qR1R6JowUhsY0SwEvOVME7Sx5vOpxow6GFXDJpJGYBrJNLcEZWyOP5RSrGRD2LZH9NtqRT/S+pnzlwaHY0zQpMBmuYNYAs9RBpLddlZgtcglzywF1MOcY62GLdFEH4uZUbY6QDc6hvSZ7LiE07RRAOwhm0K8meIL1YqIbqSNlb3kUO4zg/ITg5P2olXAuhlyIcNFf87STqJ/LZeA1hQhBE3wOkTnqUJSgsxC/CXNNkfG3irOmRoaHSwBtbrgKn0i+30TPVPlzBBtz0FhMpVTSTZdhz142KNyqv3bYmNjY2NjY1NJvQYCn376aYYNG0ZycjItWrRg4sSJbNy40Ww/dOgQt912Gz169CA+Pp727dtz++23U1AQObsB4Nprr0UIEfAYP358bR9O1JGl9pvLBRSZy8KZg2h/GaM7/Y0FnRNJ1Y9d+Z8frUlXRHpPiEkGR4L3EZNsrhPpPdGaVN7opYgkBoqeEfe3We3gJG2YqXX4s5yDR9k3BVURKSOwr4iumz+buieb3BC9JT9/cJxbK6/Z3GoWUoWLbXBG4Aq1ng60Dum32SJ9AN7g5gK5nEy7NCyAfeqAuWz4AoJWDld+V1/0tmQt71J72cyOkD77OcSN+iUANCGFQkoArwbaNDm7TsYZLWyWO0PWOXEEBPVXyg0sUatZrFaxV+WEmDFEA2m+7NR8QjMCo6B4oUETKSMQoA0Z6CJUK7Y2SRXJZjXITrWXdUEGVs1Ek5DgpAs3B8k3n29Tu8mgmfl8vx0ItLGxsbGxqRb1GgicNWsWt9xyCwsXLuTXX3/F7XYzbtw4Skq8F/NZWVlkZWXxr3/9izVr1vDBBx8wbdo0brjhhsPue/z48ezbt898fPrpp7V9OFGHtRzMGggEEELS29H8mGqAWYm56Adir1lC3J/3EHdbjvfx5z3muthrlhBz0Q8B2wRnAlnZpHYQI5ym8PlB8pkvl9fK2BsDRaokYvnlQC1ywNXm+OBnY07Y9a1pQZIINWY4FrSwaARWdbPWRmTQU3Q2nxdTGmA04sdqCLFb7WOYaxKnuK7iMc+rx2jEjYPNckeV7YMPU35XX7SjJSm+QNDWCJMaB9QhJmhjecHxACAo8gUCAX4wZtbBKKOHzWEMUloQ+L15x/jCXJ6sX1xrv/9HQ7ovI7CIEhKIC2jz4DluHaGPFpdyh5VZ8DOgionY2uQc7RRzeaoMrfQYLAKzAssoD3i+Te4OzAi0S4NtbGxsbGyqRb0GAqdNm8a1115Lnz59GDBgAB988AG7du0iMzMTgL59+/L1119z7rnn0qVLF0499VSefPJJvv/+ezyeqrPBYmNjadmypflo0qRJXRxS1CCVpJRS87nyzaVbL/v7R1lA6CQxjN6EFy/frvbgUm4maWdwkhjGANGTT42pdTzChsOOoLJga9l1bxFdAvE2dc83np/Drm8lmtfaa8aLODOj93A3a00JPF8HlwYDrJWV2SOtaUGBz0DoFzmXHXLv0Q630bBYrqyyfZAWncZBQgjzXLWH8CWNB9RBnMLJGdpoMkRTEogzz3U/yplUqPo3wqorNgZlyAJ0Ex0BcCs3RarE/M1MJJ7L9HPqcHTVJ02kmMvhStmLLdc1NtUnOBsw+JzaU+tMfXC2RfLlR2NWSPvp2gl0pm3E7WfJRSSTaB5PJCMqGxsbGxsbm0CiSiPQX/Kbnh5Zv6ygoICUlBQcDkfEPgAzZ86kRYsW9OjRg5tvvpmDByNfHFRUVFBYWBjwaOjkqnzzhsgaBNLQzWDgCG1APYwsMiP1gaxjS9g2A4Ptajdn6GPIVGtYqTbwpfyJIlUStv/xzragDBppKQnsYxuFHNdUKBezWBK2bbQYEnb9scKfuXG4m7XOWjtzuRlNwgcCLe6nutC53nER4J30eN/4+lgMt1Gwhs1h18cRS1fRgVSRXMcjqj7Wc5WD0LLFHN/nqIvWntkxn3C5fq55rksikfc8X9XNQKOANXJTyLqRYhAPuV9kgvuPPO1+w3TdvVSfQIpICukfDaRRGQhUYRIW/TqQNjVjL4GBwGBpiO6iU10Ox6Sj1oa+ohtOHCgUB2TgJNFgrQ/bCJzYTCQeAIHgRzWLbWq36UpvawTa2NjY2NhUj6gJBEopufPOOxk9ejR9+4YvVcrNzeXxxx/nj3/8Y5X7Gj9+PB999BHTp0/nmWeeYdasWZx11lkYRnjHuaeffprU1FTz0a5du7D9GhI71R5TD0qz5AEaGCi8ekr9iS6tuGaiSZXZapvUDlJEkpnJUEwpnxk/ROx/PBPJKATsjMDjnSny14j6gBP102v1tf3lwXkU4lLuiP06icoMkFzyyCE3pE9wsPtafRK6L1j0vvE1ZbI8ZJvjke0y/LmgnIoqdVmjgb6iMhAYLhhszSxNEUm85HiQkWIg4JWPeMx4hRJ1fGSQbVDbQtYlEsc/jbeZLZcwQy3ChZsbtUv4P/3w8ir1RbrVwTpMGXCBLApZZ3N4qtIHBOimdaijkYRynnYaAsFitYrZKnCSaqDoRTNLhnhH2pgBbYWihDL+6Pq7aTJzgDzbUd7GxsbGxqYaRE0g8JZbbmHNmjV89tlnYdsLCwuZMGECvXv35pFHHqlyX5dddhnnnXce/fr1Y+LEiUydOpUlS5Ywc+bMsP3vv/9+CgoKzMfu3eH1iBoSS+Vac1mFkdhuRjqaVntvv+unG3B9M5Hyd/tQ/mZXyt/qSvm7fcx1rm8m4vop9GYk2CjAit8cwC8OD/Cu8aWtGRSG4CCJn/a0JjnIidHm+OIdz5dh1wuEGUSpLayGIblEdnXtLAInY4I1TsE73oMq33zeSjTnGu0CThOjKKeCV+XHRz/gRkB2mCCqn7p2Ca0p1kkLPUxGYHD2jy50btGvMJ/nUcjTnjdrb4BRQoVysT/M+/yt/I2+ojsagjYig9a0oKvWISDjNtqwZgS6RWhAp6rzhk1kqnIMHi760536yQgEb3WKP7g3V2YGtAkhOFUbaT6PEU7cQe7Rh0Q+u9gHeKsfrPrYNjY2NjY2NuGJikDgrbfeytSpU5kxYwZt24ZqgRQVFTF+/HiSk5OZMmUKTqezRvvv3LkzzZo1Y8uW8GWnsbGxpKSkBDwaOkvVanM5nFPkJH1crb6+3DMXuXM6FO2B0hwoyYGiPeY6uXM6cs/ckO2qCgRu8gUCB2q9GCr64sRBLDG2S2gYclUegsC6Kh2dvnZZ8HFNjjwY0QykKWm1OjkABJh+VFXCZc0IBMgOU0q8n4PMl8sC1t3quJIZahGFFPOU5w12qX1HOeKGzUGVHyKub6WjiKy9FQ301ryBwJY0D1saHM50poklo8yJg8VyFRvk1tobZBSwVe0Kme4TwAKWs0Zt4hLtbL6KeZltcb9zh+Oa+hhitbG+f64wGo926eeRUVVGYJbaT1Mtre4GE8RIbaApYTNXLg1pv1A701zOU4VmGbCf9WprwGSR/RmxsbGxsbE5PPUaCFRKceuttzJlyhR+//13OnUKnZEsLCxk3LhxxMTE8N133xEXFxdmT1WzZ88eDh48SKtWrY7FsBsEq9TGKtvP1U+psr2+qNI52OJ+eat+FYkksEit5G35RcRtjkcMZTBdLgjJBNXRuFqbWD+DsokK5qglTJOzw7ZZnXpri+YBzsGRdQKDMwKLKSGDUOfg4OyR3lpXbtIvA6CUMl50f3g0w23wLLNkhocj+P8cbTQX6bSjFdkcCDCJ8E9yhDOdSbNoHjrQma2WcIfnyUadOb4pjGOwg0od5XP1U+tyOEeF1SyknIqQdjsj8MiIJBEAMFSrX+fwVJFsuhavUZs5pAIz+s7UTzSXD5LPVfr5Ve6vKld6GxsbGxsbGy/1Ggi85ZZb+O9//8snn3xCcnIy2dnZZGdnU1ZWBlQGAUtKSnj33XcpLCw0+1j1/nr27MmUKVMAKC4u5t5772XhwoXs2LGD6dOnc/7559O1a1fOPPPMsONobCil2KJ2BqxLJN7UCowjloEiOp0iW4sWtKaF+dzqGmi9KThXP8UUhf/SmEaBsnWD/KxRm8OWUhpIRuqD6mFENtGC1Wk3mKqC8MeKFsISCCRyILAZTUgiMHOxJaGOxuGyRx523Ep7WjNKDOI/8lu2yl1HMeKGzVeen0LWWc+pwZmX0Ug74Z3A85cOQqUBVjjTGWtpqb/fLLmYL2To/6KxsN7YGpIBbs2gHCR61/WQjph0KjMCCykhwWcM4SdX2YHAIyH4mtDKYK1PHY4kPP5qEIVigVwe0BYnYkkl2Ww/lZG0sEwM9aJzwCTTgSp+W2xsbOqeLLWfB9zPcbnrLl72/Ke+h2NjY+OjXgOBr7/+OgUFBYwdO5ZWrVqZj88//xyAZcuWsWjRIlavXk3Xrl0D+lh1/DZu3Gg6Duu6zqpVqzjvvPPo3r07N9xwA0OGDGHOnDnExsbWy3HWNRvVtpBysBLKkL4MsZFiIA5RtetyfXKCNthctpY1L1NryfPNFCeKBP6gnwt4M38+NabW7SCjmHDBEYDzxKm0FM3qeDQ20cQ6Fd5BFgjQYaotmlsCgZHKt9zKzVOeN0LKv9JESsi65Wp9iHN4mkjhRv0SFqjlFFLMe8bx4xwbzGKLRIQfJ15pDR2ddqJlXQ+pxnTXOkZsC2c6Y80o6+HLcm1HK9bIzY02K3C2WhqSAe7/7WxCSoMI+Pqxvn/5qpAUAjVt82z9tyNiHwcitg0W0RMIhPDXMH7DEIViH7kBJnhtaBmQHWyXBtvYRBcu5ebfxntMkb8yRy45/AY2NjZ1Qr2XBod7XHvttQCMHTs2Yp+OHTsG7Me/TXx8PD///DP79+/H5XKxY8cO3nrrLTIyMur+AOuJOUHlcsGcoo+oo5EcGWNEVYYhlbPak/WLzeX3PF8hVagW4vFIcLmknxsdl9bxSGyijTVVBAL71IGbdHMOrxH4o5zF48arbCewlK2daBUiAi+RLJQrQvZxrWMSTl9p5IfGFCrCaI0dD4TLuvRnUrcXrXCKmunt1gfdRceQddIyQRRcHpxKkrkcg5MRYgC72cezxttVuqk3ZFaq9SHr/BmUg7U+CCFC2qOVJpaMzkMUkCySAtqDy0ZtDo9buSmiJGL7IK3+M0atE8DhrmGsMgbL1dqALMbg85xdGmxjE120Ey1NuYrG+jtsY9MQiQqzEJtjS6RAEHgvsk8Uw+pwNDVngN4zYptV9L2v1p0rtPMYK4azhs18aEypi+FFNUqpsO9/GzIYqw2vhxHZRAulqiyim3Qi8TTVmtT6GDIsZiH7w+i7AbxjhHc11tEx8EpCxFGZ3f2rMS+kb3ORzkTtDMCrKfaJ8d0Rj7khY73519FIJckMEDWULLFuYQKBCsVIMZD+ogfZMjDTySmcJPrKSfMpZLx+ktlW1W9jQ2WfOhASILeG/RpSWTAcPiOwMIzshU3VZKkDxBA+6J9OKk1FWt0OKAzNRTpni5MZIQZQRElIpq/fOAhgjdrEKFEpc7Kb7IDS+KpkJ2xsbOoeXeh0EK0B2KZ2N9rsfBubhoYdCGyUKPQwDosAhRQzJAr0YKqij4jsbDs3yCX0Kn0iM9ViJJIHPc9zUOXX8uiim01qe1gB/X5aDzRhf92PZzaobSHlg3461ZFpRGBpcOjN2ja5m19laGAPvAGA3r6sRb9eaFPSeEd+ETYY6M8Y7kJ7/uJ5lpnG4qMef0PDbdHVM5AUUGw+j3ajED/hMgIBFqoVrFIbyWJ/SJtfJ7BAFQWWHKrwsgkNmeVhDGGs3/Ih9WwEUVOsGYF5qjAkI7BARc5sswnPJrk9QGPTSncRatJXXyQKrwHcBrWNzWpHQNtoS8bgDrU34HOdR0GAtvR+aQcCbWyiDf81RwllYe9TbGxs6h47MtDIKFPlfC5/NDNngukiOhArYup4VDUjRSSRQlLYtuVqXcDzsfpwLtbOArxucv/x/K/WxxfNRCoLn6CNrduB2EQda2TksuAhdaQRlU6qaeCwXK6jTAVqmX5lTIu47S6VxdnayQHr8iiklHJucv+dzuWn8qKn0iX4JG0Y/3X8iz1kU0QJD3lewCWPnxLhgzIvJOzrF9yHugv+Hi2dRLuIE1sAe1VOyDp/Vlk+RQwT/cxsqMaYEZgZJhBo/X9FgxFETYgXcWbGbz4FIRmBRZZgtk31WM66iG3WQHl901ernAReGyRjcaKoNLM6QB6DtEDDu7YWvdOsMOcEGxub+sVahRCpOsXGxqZusQOBjYwdam+V7aPF4Crbo4WOEcrWdoTRlnjGeS+dacdg0ZtHjZeP66zA9XILXekQsv4c7ZR6GI1NNFGVUYhVn6k20YTGO44nGS76k8NBznBda5aAKaX4yPiW/qInQ0SfEJfgXWof5+iBn2OFoilpjBUjyGI/z3neNx3phBCcoY/mRDGUJBIooYyrPPfWyXFGA8vD6MZZS7MbSkZgjHBWWca8R2WHrPMHPMsoRyAYJvoD3puPcIHDhkymWhOyLoFYhog+jBFDaE+rehjV0eHPCsxThaRYgtcAxZTWx5AaNBvktrDrnTg4VYyq49FExloNEuxw30RLNTXGyignVSXTxOIwbZ08rsoYxcbGpn6wXnPYOoE2NtGBHQhsZBxuluU8/dQ6GYej77Xog29BazMa0WoYouVwtDajzXX64Ftw9L024vb9Rfew64sowSM9AetaixZM0MeyTK2jjHL+axy/WYFL1Gq2sDNgXSLxtNKaR9jC5nhhrdoSsa2fFv77VhsM1HqZ2R4dRVteNryBu/VqK1vYySq1gRSRHKJpeYBD9KErLUg3Az0KxYOOP9NC85Yc55DLIot5SKpIZorzVWKJZa3azK9yfkgWYmNltdwYss6qE9ZQNAIBuonQyQ0/4QJ7Taw6cxQGZD3Na0RZgUoplshQZ+gSyslUaymipEEZhfjxZ3TmUUiKCMwILFVl9TGkBk24CVQANx766pGlWOqa3hbDqnVhfq+sZePLWEdPnys4BLpJB2tm2tjY1D/Waw47EGhjEx3YgcBGxvbDBAJP0urGKMQx6n6cJ/+DmIt/JPay34m9fDoxF/9ornOe/A8co+6PuP0obVDAc6sQ9Ey1KKS/1UH4XeOr41KIVioZUk4D4cX2bY4/1lZRGmy9oaptemtdmen8L81owldyGo94XuKAOsRUOcPsc442lrEi1N08i/38Ub+MAothwBq1mSccd5nlhJkqsFTSqTk515dJWEoZM2Xo+aMxskGFZgFVWAT4G1IgsCods6oyAiFUJzCcnmRDZa/K4SD5Iev9rsptREYdj+jY4M/0KqWMBBUf0FbG8RHIP5ZkqVAdTYAkEmhhyRKubzqKNqbRzxq1KaTdWv47Wy5mvHai+XyVqpz4qMB13Ez42Ng0FKwZgdukXRpsYxMN1CgQWFhYiJQyZL1hGBQWFh6zQdkcOVVlBDYhhUSRUIejOXKGav0CnltNDn4wZob076F1NoOcm9R2ZssltTq+aGSnyqKE0GyJugr+2kQve1Q2BRTRjpYhbW1pSYKID7NV7dFP78FV+vmANyvlP8a3Ad/rs7WxDNf7hzhd7lRZnGvJao4jlkxjDQ7hYKDwuo1vV3vIU4EZIVaNzKlyJscD4bKACiiiL905XzudVJEcZqvoJNxkRgJxAOwlnEZg5bHlU8RIbSAXaOPoKjrwk5wd4kjaUFku15FE4G+6Zrmsa7CBQEtGp1M4AtrKOX50Po8VkTLkeooudTySqtGEZmYFbld7KFGBZeA9LBMCmXItE/XT6YF3ndUMJYE4spVdHmxjE010tDMCbWyijmoHAqdMmcLQoUMpLw+dZSsvL2fYsGF8//33x3RwNjUn3Mk1BicOdPOCqSHQQ3QiUkHTRrU97PrJ+sU4cXCCGMQsefw5hIYrpQFMMxWb45d5chkllLGb0OypIaovv/3fdl7tlsl3127GXRreaOhYc4Mli/cNz2csVqsAr05UJ60t3USHgJu7IfThIPkM0HoyTHgnCsqpYAXrKVGlAaYIy2SgOP6p2kgzY/AnYxZShU5oNTbClczu5yBr2ERpmAmDaKaH6ERbSxA7lSQza2yvygnJAE+zlBDmq0KSRSI6gi1qJ7nk8T/5W90MvJZZptaFaOZZzTWsGVQNCev7pwVdplbYgcAaUxJBV3F40IRrNNBbqywPXq+2BrRZJ4g3qm300DqHVI8AlFLO3jBu4jY2NvVHskikBV4Zl8NVr9nY2NQN1Q4Evv766/zlL38hISE0oywxMZG//vWvvPLKK8d0cDY1J1xGoAs3HoywF0zRSpyIJTmCc/DSMOLoAOeKU0kikflqOW8an+FRnrD9GivhSmkEMEyPvot9m7plrlwasW3ffz0s/HcWeVvKWf2f/Sx4tmrDoWNFV60Dp2ojAdhDtpn163cGdgonCVRmKmayli3Sq385Wb8kYF/r1VYGWQOBQeXBiSKBUzRvqfE+DrBWhn5XGhsHyAt4nmj5Xw6uI5foY0VPrTN7LEHsAorN7PYKXCHlsWlBGoEAk/VLzXVvG1/U4mjrjuDPOUBni1lUs+WtWfPJAYpzGlbwLF2kRmyTSMpVRR2OpmFTJsswCD/x0SeCFnN9YjUMCXa6t5rd7fZJArzqfDjg3ObnItetXOi6NcBJ3sbGpn7p5CsPzmK/Xb5vYxMFVDsQuGbNGsaOHRux/aSTTmL16lDRapu6QypZpWvwWfrJdTaW8rd7UP58MuUvpHr/Wpf9f9/uUeU+ggXi/Rd7hRSTr0JL0eO1OPNm/yD5LFQrj9HRNAyCXfYA0kmr+4HYRB1zIxgkJBCHMysepfkyqgQU7qm7oMHd+vU847iXO/VrADhTnMjl+jlmu1UcHirdIC/Wx9ORNub6lcYGhliCW8uDMgIBztVOZYjoS1PS+Fk1Hp24SBRTEvDcqps3RGtYgcDmIt3MJPATaykbD9YJDNYIBDhZG2aWGM+WS9gYwUm1oaCUYpkMnRRL9gVIe301hH0jmvDtFZt4s+9yirIaTvDMGsi1yoL4KaS4LofToMkk9Fzop68WPUYhfqyBwOAqh+5aR3O5hFLcyo0udK7SJ4bsJ58iClUxhcr+rNjYRAvW8uCq7ldtbGzqhmoHAvPy8vB4ImdYud1u8vLyIrbb1D5Z7K+ybKah3fwFi1hbS4SmGXPCbjNBH2su/xhGS7Axsy6MUUivKNMAsql7DqhDISVWfkopJ/vSzYg0b8aIHqMx6Ma60xU7XT+BOxzXkCGa0YYMTtVHBpSGZYhmAf33+UTvE0Q87UVrc/10tYAeopOZQRhsGAJwojaUTLWGXPKqzJBsDJSripAsIGtAZZDWu66HdNT0Dgpa6OjmcnAZtFVjLs+XESiE4Ab9ItJIZowYwqfGD7U42tpnD9khWZ8AC9RyAAZ+NNosmS7L9bDlx4ZzfdaB1gwWfRgi+uAm9LrTDu5UnxVhJkX8ROP1QW/Rlfa0ZpjoF2IMkygSzMkhDwZb1S4AJunjQvYTRywpIokUEb6yxMbGpu7pLbrSl+6MFAPZpbLqezg2Nsc9jsN38dKxY0eWLl1Kz549w7YvXbqUDh06hG1riIg+V/PRUkVifAWGghgdKjzgdIDHA0Jg3lY5NHAbEOsUuDwKXRMYUnmdboVCKXDo4DEETh3chkLTBNJQoHkdcZVSODWBW8Lwjjr9W+tVji8cVYmvJpLQYIxC/PQTPfiJ2ebzVjSnyJfl8pWcxmVMCNlmvHYSGhoSyVQ5k6e4p87GW5+4lTusS6htFGIzXy6L2BZPHGt7fkvpJjf7Motp3ieBlDaxdTg6L3c4ruEOxzUh69uJlgHlj/ssAvAX6mcy2+M1BVoiV6MLnYGiF/PVMnaqvRyUeTTVmpj9u4oOZNCUHA4yXy7HUAa6qPl5tiGwQ4b+FuT7nJZbkB6gt9dQ6CO6MpNKx2drYHNvNTICAa7UzuMp3mCuymSdsYW/Om4kXsTV4qhrj2UyNNgNlaYJB7tl03l6b/zx4PTudWsIdDSkiRTzez9A9Qppt7qG21RNuEoBgPa0jsogWUvRjEKK2aWyyDZyCfKLIpkkM7i/VK6hp9YlJFsYYKDoxdcxtlyRjU000VbLYI2xCZRX0uVMTjz8RjY2NrVGtQOBkyZN4oEHHuCMM84gIyMwYyQ7O5sHH3yQK6+88pgPsL5wnP4Sd38HUPcaBrqAX25N5MQu1X57gKrt2DuKNhHbopWhIlDbrpVowSa1A4DFclXYbZqKNEaJQcxTmWxS29lkbKe73nBMUo6UzWonHkJNHgaI8IF7m+OHSGXBAP2Ftzw/oamTLuOaROxXX3QNkgewOkFerI3nDp4AIAuvYcRYbTgFspBdah+r1CZOYYTZXwjBGG0oX8ufKaSY1WoTA0VokKExsD5oUiCJeIp9BiGDtT4IEcmKKXqxlgwCVKjK7Pc9QRmBgRqBlUGjpqIJZ4uT+Uz9wCEK+Eb+whX6ebU04tol2BDHj38ibOaj33GCMZSWa9rS/5oWdDgpsu5etNHd4hKdFcb0ocDOCKw2/qy5YPpYMq+jCSEE3UVHFqtV7GYfpaoswNW+q9aeXdKbSTRPZnIl59M8qHoEIMd2DbaxiTq6W5y//fdzNjY29Ue1S4Pvu+8+kpOT6datG3/+85958cUXefHFF7n55pvp3r07SUlJ3HfffbU51uMHAV8tdx++XxBVZQQOEg2vFKybFhgEEErzZlnidb+MVB50jj6WHnSir+jOs8Y7tT7OaGCn2ktvQi/su2uNPwhqUzU5Kpf+hNfjvEA7o45HUzN6icDPdA4HTROgdC3NzPwykCyUK2grWrJWbaGIEtaGMc8Zow0xlxtzefCWoAvsYotL8KAGZhTip09QaXCJ5Ziq0gi06sm+Z3zNasvn4h3Pl8d6mHVGOKMQAIevZLpHcnvue+Nsrp3bn8E3NqwM0E6irVn6vVvtC2kvsjUCq0049/CuokPIRGs00c0SCA4OZFqvZVeqjYBXS9YRlNeQG2QgZGNjU/9Ytd83yx31NxAbGxugBoHA5ORk5s2bx5VXXsnnn3/OXXfdxV133cXnn3/OlVdeydy5c0lOTj78jhoIfm2d+sCQ0Ltltd8aky1qZ8S2gVrDywwL1gfbQxYZVM78fm/8Hna7m7U/UEwpa9QmPpbfhzUOaGysU1tZR2UJkHK1Q+VfzJ7S1iil2DDlIAuf38ui5/ey/N0c3KWh2YM2jY8CVcSXchqr2Bi2/QJHqLZSNDFIC8zYUyhyOGg+72MJFN7teZqeorP5fK0KLYkLDARGzpRs6OyoQnunoWnF+ukdFBQuoDLAt5cqNAJVAUopfjPm84Dn36ylUkt1m9oVsXQymlFKsSGC2Ym/NLiNqDutz2ONUzjp5BOV365CKx3sjMDqs68iHZV/CaqicjJod95+WrzdjUUvZLHwub1s/SW69COtk8DBWUPDxQBz2T/5rQmN5gRmtBdRglvVfELdxsam9kgTKWYp/2Y7I9DGpt6pUe1pamoqr732Gq+++iq5ubkopWjevHmDLDM6HGrvfEaNHo2m6eiawiMFTt9fTfj0iZS3jEEp0DWF29fHkAJf4hrCp2MklcBh6eORAl345XsUGmAoQawDTunu4MYTYmo85vVyCy1oyn7LjbIfazp2Q6EJKWaZE3gzQEaIAfxPTQfgv8b/uMIRWtYVp8Vys+MPPOh5HonkDtcTzIj5D7rWOPXAgADRXeVqi9rzAahYJhx08dxH2eT/MzAwsPo/+7lqRt9G+d21qWShXBHWdRMgjWQ6WAw3opHg0mDwGob4gxzjtZOYb3jNEZardbxtfGH2WxcmwNNHdCONFPIpZK7MRCnVKL8DwYExgOY0JZ2UgOBpQyJZJJJIvJkJWEgJySRSRElI1lMyiV7tXRSz1BJSKgaFNZ3YzyHeMb7gee1vdXIMx4pd7GM3oZlyOpppEtNWNKwswGC6i45sUTsppZxYYgKM0AptjcBqMavYRfGel/DO+UtofTu6YxXXnvIXcjbE8yvbzb5nvdGFITdFx2emqvLBXlrlZE8eBZSpcuJFHM1FeoCGLMA+cmlPq1odq42NTc3oJjqxXx0im1wKVXFUapXa2Bwv1EyEzocQgubNmx/rsUQVxtcTmPpeASkpDeMEVarKWM82M2gWjLXUoqEghCCdVHJ9zogHOMT52ml8b8xAIlmoVuJRHhwi9GN8u341/zX+h0d5KBalfCCncIN2UV0fQp0R4L5VNgKUVwBfANmf5xIsh79rViHl+QbxTY7oFGDTQJhTRfnrWG1kHY7kyIgVMejoGBb9S+vN3qn6SD6XP5jZfwvkcjQEEsVitYoX3B9wp/Nas78mNMaLE9nGLkCwSm5kgN7wsqUPx34VOBkkEBzgIHkUBLgtNzSa0iSgJPgkMYxDFFCBC5dyEyO8zgKa0EglmXwKMSyfnlSSKafCDCopFJ8Y3/Ok464AHbJoJ5JRiBMHhu/Y2jSCQOCPzAIgntiAQGCBXRpcLT4uygd0vFcCClVyEun7c2i+IfQcsO7z3CgKBHY0lzfJ7QFtnURbM8gPXsOBwaIPzUU6wXNee9Q+2gs7EGhjE0101zoyz/BWZGxS26NapsDGprFT7frT3NxcbrrpJi677DLWrFlTm2OyOQJWqg0Rg4BOHA32YsjqbunBYKjezzzOMspZoFaE3S5GOHnF+TDb2cs6tYW/e54nV0VX+cuxZIfcW/kkxp8J5f0/xQ5MDPimCx2S28YQm9J4MyRtvMw0FkVsu1JrGCYJCUFh7H2q0jxgqNaPzNhvGS9OAmAHe5G+u0GFCqsvNlzvz2K1msVqFT+pWbU48vrjkMoPeO7PeWwjMhq0U3IrETgBqYRigVrOMrWW5SpQAsJqGOKnjHL+6/h3wLoCivjSmHbsB1uLZMrw12BxVDp+t6HhlgaDN2vET7D+W74sqOvhNEhKYlbhne+XgAMRs5nCtnm4UsorTwqA0KDV4MR6GmUoXUR7Uw86uHzQKZw0Jc18vkZ6NT+bh3EODqePaGNjU78EBPrt8mAbm3ql2oHAa6+9loyMDC644ALOPvvsetXQswmlKh28tqJlg735a6MF3sykqmTSqLzBe8vzGS7lZq7MxFCBundjtCFcpI0H4BAFPOZ5pfYHXA8opdhJZUagiF+JaPEQrRM38Pfmsdz1YTdG3NGaLmel0fnMNPpe0Zyrfu+Lpje+kkibSkpVGcvxnheUCnyv44nlTH1MfQyrxjQhMKCTFcYN8gRtkLmsWX7WrNljfs7WxprLPxgzj36AUUieRT8PMIOjDb1MroNoE/DcmukerPmYRqhmsQs32RwIKTl/x1JS3hCIZBQSaw0ENmCNQAjUiUsiAaclGHgQOxB4OMpVBT8m3Ido9hwkzkY0ex6Sf8KVUs7an6fR57JmdB6XStcJTTjh/raMfSJUhqG+iBdxtPOdqzarnSH3G379SIBFahUQqikNdiDQxiYasf5ub5aRte1tbGxqn2rXBS5btoxnnnmG3r17c9VVV3HgwAFatGhRm2OzqQGZEUqFAE4Vo+pwJF6c498BowJ5cCNIn2Cz5kRr2gN5cCNa0x6gx1a9E0Iv7paznpPFMFMn8Es5jQJ3Mb/J+YzXTuQD5zMBehP/cP4fP1TMoKfozA61l4Mqn6Yi7ZgdZzSQTyGlQQEPkTyd69O68aDT+96f8VzD04i0OToWy9V4pAOV8xiUjkbFbEa0uhfhOMhZ2sk4fWWU0U5rkcEuS2bfPvaH9PmL80Y+lt+xUW03M0kAOot2IX07am3oJ7qzWm1iiVpNtsqlZZibyIZM8PnAT0MuC4ZQiQurDt5cuZR7uN58Hkugzm48sYwUg8hS+5mkjWORXMEclYkTB4WqmBXGegbqgeY00YhSKuLEXxrJdBMdcOGmbQMPBFp14oooCdB4zFOF4TaxsfCq8TG60BCpXyNSvw5ou2LYGVzwSXgn+Wihu9aRXTKLAorYz0EyqDxHD6AHS1gNVDqPNhehGYHfGr9xp+PauhiujY1NNbFmBG5W2yN3tLGxqXWqHQicOHEi999/Px07dqR///52EDDK8GcIeJVgAukYlEVRF+jtTvT+7Xh6aFuYdZFoYXEJBlgqV3GaPor/eaab636RcwFYJFcyoOJcBmt9WCHXc75+GmdpJ3O5fo7XREDBNDmbK/SGURJZXXaFKX8EGKkNrNuB2EQVy9RaKD4TSscAAlxdUXnXIJo/x0OOW+p7eNWmg2jNQosEQLAgvJ/Bog8b1fYAPcGXjf9wnX4hFcIVEDQ6WxvLasNbUvajMZPrHY1LPzScMQY0/EBgsLmNUzloQTr7OcR8uRxDGWb2uzUgDKCjM0MtZJOxna1x05nouhmpJBW42Mh2TnVfxanGKD53vhDVGfTb1Z6QjE8/5VQwV3kzI1s38EBgBk1JIYlCiimnIqAtO8I5wKaSVz3/pZhS83kcseb/cbCIfufw7qIjvzEf8JYPWieFB2p9wPgKgAVqOS7lDlsavDCCdIyNjU3dIpUknyLSRSqdRFscOPDgsUuDbWzqmWqXBr/yyitcdtll9OjRg+nTpx9+A5s6o1iVskFtA0Aj9AbmRH1oXQ/pmBGcqbNSbWCM5j0e5XGSLtO5yDiXdrI1FxgTyJK5HKooZY+Ry6uuz/lj2aNM4DSUOwYp4bvyuUipKHcr3Ib3UeFRSKkocymklL6/3vX+PuXu0D6GpY/nMH1cHmsfafYpd3v7uHx9DN/YalJ6H2AU4qMdLWmNHaw/nvnJmAUqloCpARXDKDGQnlqXehtXTekV5HIbKQgwRKu8ufUHgQ5wiA6usZxccUVA33P0U8zl743fj9VQo4JyWRGxraFqxfoJdsLNFXnm70EBRaxRm822L2NeYpI2znzuLyfcSw4lqpQXnX+nj+hmZg6WUs5UOYN3jS9r+zCOikhlwQAVeLPvE4knWUSP5tuRIIQwM0eCS/x3kWXL01RBltpPVlDmtO673E8nNerd4iHIOdiX9eenh17Z5sbDcrWOFmEyAsErkWFjY1M/SCUZVXEJTSuGc7ZrMuDV+fT/Hm9WO5EqvL69jY1N7VPtjEBN0/jDH/5Qm2OxOUJWqg2mg1qwYYiO1iBmfyMRXBq8Xm2jp+hM3G83U/rb5eQKxRfKgUODtySg/ZF50gHCACXYi+B8oVBqBmhupkgnSVohHlmpla0AhwYeCU4N3LLyucD7kBH6GL5/txAgVWgfXQMpva+hVaOPLsBQ0CZVMPVPifRpdfjMlB1yT8i63WTTVosOB0Cbusel3CxSKyFpPRROAFd30PMRaZ8wQb+wvodXI7qJDiSRYGa3ZKnQ0mCAwZZAYFfRgQyaMldlIpHsJYcclWueT4aIPoxgALEihnlqGWvkJvpq3Wv/YOqALUTW3GnoGYHNgmQdsuR+xmhD+Eb+AnjLgwdoXhfo5iLddJwH6C26slp5s0C3qF0M0HqyMOYL7vQ8FRD8e8jzEhP1M2ghArPRowWrY3BPOrOBbebzQooAaCUaxyTQSG0QsTKGPSo7QAf3IPlsU7vpItrX4+iil3Cl48kkMVT0o6fWGSGiXx+4r+jOiWIobjwhhiE9RWd60YX1bAVgjrGUsfrwsPvJVXm0b0CO4DY2jQlNaBRSTBnlrFQb+EPF3Vygn8EQ0YdmNCGFRHJVfsRAvo2NTe1S7UCgTfSyRe4kmUSKKEGhUMUno8r7I+KX0NGdw8K39lGc40YIUFKhOzVaDkqk/zUtau2C0Ng9p1oagf4S4khkBN2MbVd72HzQRelvV3pX+JICPP74p/R9pFVlAM00SvC1eaQCREAJtX97twx8ripfImIf72uE72NY+shq9DF8fbILFQ9OLWfKjYfP6lgW5qI/haSwrpk2xwfL1FpcuBG6G9reAJ7m4DiEEG7GaEPqe3g1ormWHlDilkseLuUmJkjjcIDoiYaGRJJIPL/GfMD57ptN6YDlch3jda+7sCY0rnCcy+2eJwC4w/0kv8V80CBukA9HcPaMlYaQCVQV6UGBwJ1qD3/SLgO8moDr5baAdr9sQhop9NG6+Y3U2aS2M4CeOIWTyfrFvGt8aX52kojnK2Maf3YEZpFGA0opZsul5litQUDwZjUCtKJ5uM0bHOkilXlqWdi2OXIpXTQ7EBiOBXJ5yLpsDpCtDnCROLMeRlRz+mrdmKsyUaiQLOfmIt3McAT4Qc7kEsfZYfezQW2jPQ37vGdj05DpLjqyVe1CofhG/UK+LKIVzVmgvOepfApoEaa038bGpvaxA4GNgCVqFUWUkE4qB4uHoHIeBzyogssYf8MCZi/eHSgc6BMSLM/zMOKu2tEPdE+bDMVZIDTwp30LDUPJyr9JrdFv3FjlfqwC0QAGBhvlDmjg7peHQxEYIKyKzDClYg29BNDm6LA6qAohwel1T4zB2eAyhK0OkX6yyQ1xwE0UCfQUnVmntrBGbaZcVXClfp4ZCMxUaxnPSWb/q/ULeNH4iK1qF/NUJg97XuQx5521eix1wfIqSkeDS2sbGk1JC3i+l/30Fd0ZKQaQqdbyP/kbL6u/I4TAUAZ7VDbgPR9aBcqtukSDtN7cqV/DR8a3HKKAfRzg754XuFI/P8B4Khr4Uv7EUrUaHetElxNkDEIvMdc1lozA7kHmMFbmykyuZVLdDaYB8ZucH/BcIFAoEonnUn1CPY2qZqSJFPqLHqxUG1ipNpCvCgMmN/+sX8GfjUcAWKrWkK7CT3wulqsYp4+piyHb2NiEIfh3u0yVk6xVJjkUUYKNjU39UG2NQJvoZbvyloYeogBVNgQwAAfC8NBkUXKoe4jv+Y4ZBXU5zCMiuDQYYH/6am44xT9D7I2W6b5EHi0gocd/4D7zACED/1rwbxd+P4fvI46gj/+vCNOnSYLg0QlxoYMIw16yQ9Y19BJAm6NjtrE47Pq+oltIJl2004YMYqgcczqp7JR7w/adpI3jNDGKdqIlP8u5DBF9zbZlQc7qcSKWFxwPkEoyQ0Qf/mm8w4Pu5xu89tgiuSrs+pY0I04c3qk9mokXcQFuwAdVPprQSBdpuPFwgENs8rkQ7uMAHp9pSnvRukrNsYn6GRzC+3toICmhjM+MqbV8NNVDKYWhDApVMX91PwtgGuI4Sk5EbZ+G2vEL8sCdZmZ6a9E4MgKrDASqzIhtxzNKKdarrYHrfNdCl+oToi64XRX+7HWFCslyvNRxNg5fQNyNmzlG+M/DKrWhdgdpY2NTJbtV4D3KLpVFEgnm82JVGryJjY1NHVGvGYFPP/0033zzDRs2bCA+Pp4TTjiBZ555hh49eph9ysvLueeee/jss8+oqKjgzDPP5LXXXiMjI7IjnlKKhx9+mLfffpv8/HxGjx7N66+/Trdu3erisOqcbWo34HVFVPHLUIUTAQ9Kd+AcGYN7kStsRmCHsan1MNqakSQSiCeWMp/bXQxONqntvH7+xcw7+TI2aJvQ3PFsTv6OOFcTkmKg1A2xDoFUMLniQaaInxDuOM6KHcpPFZmomBImGhN4P/4JFOAxIM6pKK6AlDgoqoDEGCh3Cxy699/lMiDBqSiqgORYKHZBghMqPAJd8wb1KjyKxBhC+rgMgRBebcByd2ifeAd4fOXLDqEo80BKnMCpV69MsZRQMWw7EHj8YiiDuRHK6U7RRtXxaI4eTWh0FG3NAM8hCvhe/s4ytZZSVc5IbSCn6CMAb3bXE8ZrAPxHfstX+sukkkwBRSGBQIAz9NG8ph7hCs89AOxUe/nI+JZrHBfU0dEde4L1tPw0lnNCGinkkAtUZhKM0Ybwo5wFwGy5lB5a5wATpfaiFZ1FOzMzarPvs+RnpDaQ6/QLed/42lz3jvElN+qX1mu5uEu5ucvzFDoaaSQHaB4CGLl3gvIFRgsvhpT/Qez2RpMRWJUG4A61h91qH+3s7PcAdqssKnAFrEsgjlLKmaxfXE+jOjLGaEN51fgY8GaAnqWfbLYligRGiIHMU5noaLxrfBF2H7YrqY1N/ZIiEgPuQbPYTwKViQ5W6RebxsVKuYEMmlJAER1FW2JFDAfUIQqk10FaCWgaJPliU7fUa0bgrFmzuOWWW1i4cCG//vorbrebcePGUVJSmSZ811138f333/Pll18ya9YssrKymDSp6nKQf/7zn7z00ku88cYbLFq0iMTERM4880zKy8tr+5DqHI/ymDpIGhoiaToi4wFI/RrR8h5u+bEfJz3SjsE3t2TIn1sy+E8ZDL21Jee815URdzWMG8M2lnI2F26z1O+8xBFoMS5ILGC6NptmSRpxMRrpiRqJsYLkOMHNSeejxbgQiYUUOfNpnqihOT18F/c/NjjWkhQrSEsQxDk1miVpxDg0miZqxDk10hIESbGCxFhBkwRBrK9PrNPbJz7G2yc5ztsnPVEL2yc1XpASJ0iICd8nIVYjJc7XJ9a7rrpBwDwjPyThExq+FpjNkbNabQobHAY4Qxtdx6M5NnQOKg9+0/iMdz1f8pjxCue7/0SR8v5mnKmNoQ3eSaKf5Gz2kG2aiOzjQFijkUn6OP6t30c7WvKlnMadnifZESHjsCEQHCzy01jkAlpa5CLKqUApZToHQ2VZvP93EbxB0DgRSwfhlcLYpHaEZH4+7riTM7UxZlb2KrWRD4xvaukoDo9Uklc9H/Ou8SVvGZ+zSm7EjYd2VP4eKn+2ux/hPaZWjSQjMFEk0JbI5exzjKV1OJqGwdthXK/LqGCw6B1gqNQQGK0NNpetchd+LtfOQSAwkMxmSdh97FK2w7SNTX3ykvOhgOcKhdvy22UHAhsvZ7luoKPrFAa4zmOl9GZn/9PzFn3dE2jtGsNNrr8D2M7R9cgRBQKnT5/O3/72NyZPnsz1118f8KgJ06ZN49prr6VPnz4MGDCADz74gF27dpGZ6f3BLygo4N133+W5557j1FNPZciQIbz//vvMnz+fhQsXht2nUooXXniBBx98kPPPP5/+/fvz0UcfkZWVxbfffnskhxvV7FbZZpmQ/80USTPRmr1Eu8QdJDWJ46SH2nP2a10469UunP16V8a/1IWB12U0GGH8ZAINMzaobexXB5mgjzXXTTV+D7vtydowhoi+jBaDyaOQ/9NuIINmjBFDeMx4tTaHXScslKsCyib9NJbsH5uaM92YH/KdAegvejBc61cPIzp6Oot2Ac81NBJFAgqFC7epieUQDq5zeF2RJZL3PV8zWPQ2twvnpimE4BbnlZynnw5AGeXc7X6qtg6lVilXFWYZYDCN5ZzQVEsLeJ6vChkkepGA1xl0rlyKUoqdqjKY6z92f6lpMaVk+7IK/TQTTThPO9387+no3OF5gs+MH2rlOA7H/+R0/mN8S2faEUsMqSKZNmSQLtI4UQyll+iC1vxfIEoBSWraN4iYHUDj0QgE6K51DFnXSbRlkOhtukXbVPKDMQONwGs7haKL6FBPIzpyWoim9PCV9GeqtZQElRBeoo83z3eRdMZKKWcX+8K22djY1C6GMvjE8z1aULihnMrEHLs0uHGSrXJNyRXAlKzINCqrc35Ss+lbcTbvhpnAsqkbahwIfPTRRxk3bhzTp08nNzeXvLy8gMfRUFDg/cCkp3vdgzIzM3G73Zx++ulmn549e9K+fXsWLFgQdh/bt28nOzs7YJvU1FRGjBgRcZuKigoKCwsDHg0Ff1kwQAXugLYkcXjH2YZAiyDnYID5chnDRX+ak048ccxUi8PesAkhGK+dyDy1jHVqC4kiniSRwFyVyc9yDlvkzro4hFpjhViPK+h9h8Zz029Tc6YaM8PeFHUVHUgQ8fUwoqOnU1AgMI4YHtFvM5//YMw0l6/TL0RHJ4UkNqsdDBS9AGhFC9aqzRFf42HHrabb6hq1iTtcj+NRnmN4FLXPXpWDJyhLLAYnGlqjOSdYhcc1BJlyDU7hZKQ2AIC95LBD7SVL5Zh9/dmQAYYhMrA8GOA6fRLDRX/Aq8Pnws0WuZO1MvLnprZ4x/iCdWxhG7t5Sr+HgVov3nf+g9VqE3PUUnapfciExYhOZyE6n0qzppWlka1pRIFAi7ajnxx1kOVqHdPkHLJVbpitjl82sxMZZjKgr9YwpXFO9GX7tqcVvxuBCQApWrJZYlhVzt/yMLIQNjY2tY+GxpPG60gCM75KrIFA2yykUTIvKIvbf/29icprLwODLWoX7wQFAn8x5vK2+wsyjTWskOtrf7DHMTUOBL7xxht88MEHLFq0iG+//ZYpU6YEPI4UKSV33nkno0ePpm9fr8B7dnY2MTExpKWlBfTNyMggOzvUIMG/jb9Pdbd5+umnSU1NNR/t2rUL2y8a8RuFhGOIJROmIeMv9bMyRy5FFzrfOl+jr+hOESVMdv+NZzxvhaQYWzMHf1SzAnRyGvosxHq5Nez6xlIGaFMzclUeC1kRtu2GBqYPZSU4IzCPQnpqnU3B6WlyNobyBsDaiAwu1sZTShlfymkkEk8GzdjHfn6X4TPJAVJEEm85n+BK7Tx2sY835ee8YXxm7rchsJeckHX+iYIO1I5DfF3TVDQxlyWKBWoFQGB5sMpkgVzBQfJpR2t60QWAbpZA4Hq5LWTfmtD4h+Ne05FaQ+MJ4zVeMD6shSOJzFa5i+nSO3HZSbRlhNafBzzPM859nXlD5c/6EkKSIDTaWLIAW4Yx2WqohDMM8a/z4OHDeizfjjZKZRluwk9e9BENMxB4mTaBtrRkG7v5TIZO9vrL/asi0w4E2tjUC0KIsL9HharIXLZLgxsnwXIOa9VmilQJueSH9F2pNpAp1wBQqsq42f0wtxmPMdp9GY96Xq6L4R631DgQ6HK5OOGEE475QG655RbWrFnDZ599dsz3fTjuv/9+CgoKzMfu3bsPv1GUsF1FHqv1xqgh01aEagT5TzD9tB7mTPdw0Z+HPS9xqftO3KoyS26Q6G1mSMyQi7hQO9Msp/3I+JZyVUFDJdz7H0csLQjNorRp/EyTs8OWhrajFadoI+phRMeGTkEageDVeTtd8/4W5ZLHIrXSbDtRG2Zmxi1Wq83v+yK5EpcKzaD1c4Y+mhO1YTjQ6S968KjnZd4zvjqWh1KrbDZ2BDxvgTe7XiJpp0XWWmtIpBNocuV/38eK4ZwshjNE9OEXzxxWq00ANBWpJGregPFw0Z+J2un0El2YpmaH3f8J+iDa+iZS/EG3L42fyFMFYfvXBm8Zn5vLN2gXcZfnqZCMCofF660JqWapcyrJJIoEGgvdwgQC29IS4QuEvuv5ygzW58pDDK44n8EVE7nYdXtdDjMqmCpnRmzrLbrW3UCOIcO1Abh9kxn/k9NDMkCHiarlLuKJY4MKP2FqY2NT+7QKk6GeT2XlXbGyMwIbI3NloIbvOrmFFSpydt/bPsOnpzxvBExqz5JLGvR9erRT40Dg5MmT+eSTT47pIG699VamTp3KjBkzaNu28oavZcuWuFwu8vPzA/rn5OTQsmX4mxr/+pycwMyIqraJjY0lJSUl4NFQqCojMLicrqFinU1yoANeIfd8VUiMcPKa4xFedzzKQt8NoULylOdNcxshBGf73ObKqWCl2sAF2jjAa6rhd5tsiOxVoRlA7USrBqP/aHNssZbIWrlRvwRN1Ks31FHRMUzWxzq1hQn6KQB0owPzjEqn5LMt7pI/ypmM0YYAXv2/TLWmyte6xnEBrzgeZpXaSBElPOR5kQPq0LE4jFrHH/zys5/KcTeW0uBmloxAgDXSe8xDtX4sV+vIVGv5Uc0yA+L+9x6gj9aN+XIZ69VWfpPzI5aVTnYEZs+WU8EnxvfH8jAi8qXxE+8bX9OEFJw4KFIlZkmNdYLHGhwfLYawz2eE05iyASF8INCFm3HaGDQ0OorWrPH9f7LYzzq1lXVqCzPlojoeaf3zRQQ9y0Tiw55DGwIxwsnVutfF3YOHj4zAyqNTtJFVbl9GOb/K+VVOANnY2NQercOYV+WqfHPZzghsfBxSBebvsr9yZx8HIhp8OXFQJIv5l/tdPjSmkESCOdlXShmz5OK6GfhxSI3vDMvLy3nuuec4+eSTue2227j77rsDHjVBKcWtt97KlClT+P333+nUKVALZsiQITidTqZPn26u27hxI7t27WLUqFFh99mpUydatmwZsE1hYSGLFi2KuE1Dxq8RKAgN/LQVoSW1DRHrjY3/OBWKBXK5d50QXOe4kO+cb9CJtkyVM3naeIPZstJF7hztFHP5f8Zv3KRfSiuas0yt4zXPsQ1s1yVWh1Dlbo1ytacddlnw8Ui5rOBXOS9s22X6hDoezbElQcSb+n1+1qrNjBcn0paWbGYnH8vvzLZWormZKbJKbaSXJRsmnPtkMNc6JvEH7VzAW4Z8vft+KpTrWBxKrbJKbQi7Po0UUkRSHY+mdkgXaQHPs8nlgDpEjHBypjYGgBKLa7Y1EBgjnFyjTwK8QYU73U+QpfazS+0LKAGfpI0LyTx8x/NFrTvb7ZcHudn9MIUU05ymfON8BYdwUEo512gXMMKngwgEZCj21bqZx9yYjELAK3MRR2zAunxVyLnaKWgIZqul/ODLhLNOjJVQdtw5ES5Rq8Ou7y26NuiJoOv1i8xrv/c8X+OWlUG9gVqvw25fTsVhJ4BsbGxqh3C/STmWSTjbLKTxsUAuNydjrdI+c1R4d3c3Hr5Wv/B34wUOcIi+oju3alea7VPljNod8HFMja8MVq1axcCBA9E0jTVr1rB8+XLzsWLFihrt65ZbbuG///0vn3zyCcnJyWRnZ5OdnU1ZmfeCNjU1lRtuuIG7776bGTNmkJmZyXXXXceoUaMYObJyFrBnz56mPqEQgjvvvJMnnniC7777jtWrV3P11VfTunVrJk6cWNPDjWqUUmYgMJxzbJt6DATG3biRuLuKiLuzwPvXuuz/e+PGau0rwxIINJCMEUMYJHqzUK4M6He6fgJ3O64zn9/hfsIsER6rjeBUMZIRYgDT5BwGiJ6kimQA5qqlEbX2opmDKt/U/1J516B2fYna/SlZuX+o55HZ1Aez5ZIAIwU/icTTXmv42WDBGc5r5Waaa+m085VxblDb2Cp3me1nW7RBrQ511QkEAjztvIdOoi0niWH8Kudxput6cmR0GxNsi5Ah3pg0Q8N9xudLbzao9T33M9oSCITAoMK38jfGVFxG/4pzAspx40Qst+hXMk6MxomD1rRgG3v4oBb16JRSnO2eTH/RE4FgpD6Ak7ThpIgk2pBBb60r+aqynOqQRWfHeqEdHDBv6GhC4yb90oAJrqWs5jnP+2b5v98NfI+q1IGWSPZxoG4HW4+4lDsgA9hKnwZqFOKnk9aWq7WJnKqNIpsDvCkrJYS6ivYhLsnhqO5538bG5tjSKkxG4D72m8t2RmDjY7vcw0gxkGGiH0NEX3P9Khl63289e7fxlZGfqo3k745bzNjGj8YslKrKEsrmSKlxIHDGjBkRH7///nuN9vX6669TUFDA2LFjadWqlfn4/PPKC/Lnn3+ec845hwsvvJCTTjqJli1b8s03gRfjGzduNB2HAf7yl79w22238cc//pFhw4ZRXFzMtGnTiIuLq9H4gh3Koo1DFFBIMUCILlhT0ogXNTveaMUaCJRI5qpMlqt1YUt/rtcvYojoA3i1pF43PgW8N3ZttZYsUivJJY+v5M8BpiHvGF+E7Cva2aS8zktKaahD15vr1+UPJtdzfGVC2MAPaiY7yQpZ73fNbeh0Fu1oQToOdJqRborEn6NXZvv+YNHIOkcbC0An2rFF7STDV1Y5Xy6rlgFIhmjG9843WaxWAd5s5NGuy6LawexQGBFmaDxlwQBNgzICofIm/0ztRDTLZU0v0YXmIj2gbyetLWdoo02ZiSz2U04Fj3heDshSmOy4mPlqOW48ZLGfClz83fMCBy0lTceSlWoDa9Rm5qtlDBf9edPxOLEihjsc17A1bjp3OK5hs9oBeH/fKyxu8VY38NaNLCMQoIlIZTf7AFCeJnj238eWfbcgygYDsMxnBrEnSCpjlwo9HzZW1sktEdsaqlGIlRsdl/C7XEA5FTzqeYV9yhvkdQon7Tn8+c0OBNrY1A/hMgL9kzhgBwIbI0vVahaqFSxRqzlJG2auzyNUa7krHczlPeRwj349DzlvJUVL4hRtJEkk0F60Zp2K/Btnc+Q4Dt+l9qhOdDcuLo5XX32VV199tdr7EULw2GOP8dhjjx3V+P7peZuJjDuqfdQmVqMI60kV6jcb8FgTbHzRTXRgs9pJplpLiSoNEEbXhc7Ljr9zg+cB5qllrPCsZ5I+jraiJZP1S/jI+BbwBv6+i3mDBz0vUE4FXxg/8rh+JwlaPA2FTXKHb0mCVgrSW/rnEBCv2RqBxxNKqYj6gON85ZINncv1CUyRv+DB4CL9TF5wPgB4A34P8BzgLR+4nasB6Cu6c1rJBH47sIutsRsZ6R7HPrGMAk3yHhsYFd+TgnJFWjwUlEFyLJS5FZomcGhQ7oakuLY8V/IZ7zrfZ3HZLtwxifzR+JQHnDfRwZFBmRtS4gT5ZYrUOEFRhSIhBtwGSAmxDihxQWq8t09avKCoXBHnBI8BUkFcDBSXQ2oc5Jfj3U+5JC5GYEgwpCIhRlBUDqnxkF/m7VNcIYlxeL/nLo8iMVajorAXKq4IUZ6Eii0BVxxokjhnPxYqD0lxgoKyymNOioVyyzGXuSHZ3ycOCsohMQZchgIETp0aH7N3rL5jlt4+/mNO8b1GuGOOjxHe/0vQMedq6Uh3dzCcEFOKqEjm5/i9XGB4SI5NokPJOLZq20EYtJRjWZNoUFCuSI2DwnLv+3yd6+/cqSXxmfqWZRXbWBWbSX55Ck8kTuMPnstIjIEKTyrXeB7gZfEewh2Pii0htzyZ+xO/4TrP1SQ4weX72Y11QHFF6DHHOsBQvmN2+vt4jyclTlDiew+lgnfcq5FaZ0RFEmOTLmO+y2BAG52kWO97XKiKTUOQNFI46Av6JpFgTghC+OyLhs41+iQe97yKgUTlPArlAwGBUTYc0X4Sex05ZKvcEM3cXWofoxhUL2Oua36Wc8MaRUHDNQqxMlTrx7X6JD4wvqGIEp71vMNzzvsBaC7S2aH2Vrm9fwJIF3pdDNfGxsZHpCx1gUChbLOQRsgOS3WKVcdVhvmNiqcyacmBg8ccd5jPz9TG8IucywK1nBlyYYPPbo9GqhUInDRpEh988AEpKSlMmjSpyr7B2XoNmUy1hpVyAwO0nvU9lLBsl3voS3dSRRLz1LKAtsYUCIwRTmJwmmWwQ0RfNqudePCwSK7iVD1QLHqw3pcT5VDWG1spoYw7XU/yZcxLDBP9GCB6slJtYIlazS61j+u0SaxWm1ivtvKV/JmrtYn1cIRHhj87RAgg40HUgftBOXiopSRRa1LltjbHljxVQBOReviOtcQqtZE9ZIdtu0Q/q45HUzsM1fqZlxCfGN/zpOMuEkUC3UUnuoj2bFW7mCeXme/Fwh0GM179K8qjA4qFlgKEWwAswZOqaQH8BX8BwwrAm0scjRevr+PNDw+cCPgC+CIqx3skJADv+5a9x7oBxVjz+P5u9pwODA77Pvv1EicG7OdNFG8G/J/GAmN9nztvnw9QfFAr/8szgXEoBE+jeJoS2qYJFtyTREayZp7vwVsN4OcMbTQHVT6DRR/iiaMjoQ7bDZ1WojkjxSDmqUxwdQZfNicqFjytwJHPcrk2wGkQjq+MwIVyRci6rnSgrcigbyPICAR4wnEXc41Mmok0XjM+5jztNMbqw7lNv4p5MhMXHt6XX4fdtogSVqmNDBK963jUNjbHN+Emp9JJpZQyynHZGYGNkJXKWwIsEEwxfuEJx13sUlkBEix+tlEZNDTwUIGLDzzf8C/Pu7hwmxNcc2Umt3JV3RzAcUS1SoNTU1NNF9LU1NQqH42NaC4Z3aC2sYZNIUFAgLYivENyXeFZ8DTuWffh+vJsKj47lYpPT8P15dnmOves+/AseLra+7POGPQV3c3lYHtyP486bqc56SSTyGK1ij+5H8KF2ywH7i968G/Pu1zqmMBclclB8nnX+PIIj7Z+WGNxCBUJmWgdLkLrOJHrUtOr2MrmWPOW5zMGVpzHoiDNyrokkpCujkYnrXG4h6eKZDOoWUgxXxg/AV5TgIH0IpYYRomBLPPphb0y24U0/D9xR5sh2xAybG39lMaD9/O2N1/xeaZ3AmyTJRBoLa9pL1qzTe1imVrLPJVJs0Y6CXS53/Ao5cfKlc4dEOstF8pUa8NkBB4/gcD1YcqmtrCTzWonGVrjcJJuJppwl+NaFirvb+2dnidwKTeXOM7mxZi/86zzr2Zf6xnbiYMBoqdpMGdjY1N3hCsNPkQBui8XqcjOCGxUFCtviBe806fvGF/SV3Tjacc9nK+dFtrfMrGq8CY2LJVryGI/ueSZci9zZaatE1gLVCsj8P333w+7fDzwjfELzznuxylCzTjqG+uNQTD1nRHoWfMBFGeB0MDn3KeEBnvmeNftmQNJrXGMur9a+0smkQKKAGhnCXLOVeF1X5qIVD52/punjTeZIRfyoZyCy+3mIcctnKWdxE9yNqvURq5Vk+gnurNabWKRWskquYH+UZoBGky49z+R+JBSapvaY45cyt2ef/gcSJ/kFv0KrnScX6djUErxjfFL2LYMGscNoJ/J+sWmYcMXxo9M1E+ndcWYyhlDlclMuYjT9FG0SBJBbur+C4ijDeoF70cdg30eC8KN4Vgdc7RS38cV6bNwpJ+JwP0oYFnCXOA0ixREIIO1PnxtTDOf1/dvf21xlnYyACL9NYhbCUYqJM5CCG+g9LOCueza2wYZG49wJaKc5Swz4pkV40bXoMIjSIxVFJV7y9+LKxTxToHbUKDAqQvKPIqkWLx9Yv0l7QKP4T3DxDgEZW5FUqy3xD8pFkpdEKN7y/wNCXExgpIKRXJcYB+nNzEZj4J4p3ffKXGCwnJFUoyg1K28ffCW2SfE+PrECopcigSnwG3ACZ11nHrgZ0spxV6L+L6VwVqf2npL6oXr9Av50JjCYrWKDWobf3Y/zFvOJ9CERiLx6OgYGGhoGHivPSWSlWoD38rf+DNX1PMR2NgcXySLRJJICMn885/FSuyMwEaFVbYMYC2bmej+M/NjPueAqjS0slb6WVkm17JRbTOf+6/vc8ljo9pGT9GllkZ+fFKvGoENgQpczJSLOUMfXd9DCWGL2glU3nZYaVPPGYHHmlSRxB7fQZZTQUfRlh1qD4vlKiqUi1gRE7LNSfow9nGABXI5w0Q/PpVTmevK5Br9An5iNgB3ep7iJu1S7jH+AcA7xpe8pP09ZF/RiK5CE3o7ibZm9q5N7dNLdOEEbRCb5Q52qr1M9jzAVrWbBx0315kW0RT5K2vVZtqQEVIad6IYWidjqCuGiL6cqZ3IIVXAUrWGfFVEO1qxy2KSslZtBuChs+LYcUgyd0c5FaKcCuVB+W4MUQKnppOiUnBoXu06hyYwpELzfX8MqXDoXi0/hy7wSIWuCQplCSgNoSnKZAVoBgkyiWQ93ru9JkCBVApd829f+Rr+/SjlvYHXNK+GnO5rc2jegIImvIEgpRSa8GrNRRqrVIp8UYBHStAkSM37V3nbm4kmoAS68AYiqnvM/uORyhss0TSBYSh0HQxrH8s4NK2yzXs8vmO2HI+uBf4/rMfsH4euRT7mQ+RZjlUHzcAhY2mqp2AoZbqIyjD/O10TSKkQwhsm9h6z4JBRjFsrB6mToiUSq2JQeI+50CilXCsFqaFp4JSxVGhlOFWM15leU+b/XJdODM2NkBpKk8SpeJJI8P5ffMfhlgqn5ZgPqQIMVfm/UpobB048A6Yxr+9X3OVeRIEqpjdd2cBWEog3b6qGiD68pD4EQEOjZSML/vvJEE15Wr+H540P2J84z1yvo+HJbcWmV/8JZclYS+OXAGc0spvMk7ro/HxLIrpFBziHg7jD3FABDNIaVymsJjRedD7Ira7HKBLF/Fd+R4mrlLdiniRZJJJGMgfJDwgEOnFg4AqQjrCxsal9XMrNZPcDYbXhPHgA2yykobNfHaSFaGr+XSe3hu23Te1mt6qUMGpOesg9C8BMz2JWUekubNW+nSOX0lOzA4HHEjsQeBiKKeV74/eoCwQqpUzNoBicAQ6CAG1oXFkBTai8cNujchjNYFy46SBasVyuY6Q+MOx2l+pn040OXOS+DYDWojnPGe/RXXRkp8qii2hHskgigTha0pxsdSBiYDGaKFVlbGZnyPrOonGUgTYUmokm/OB8i0c8L/Nv4z3iiOUr+RPL3Wv5yPksKSLp8Ds5CopUCfe6nwEI+4M6UT+jVl+/rhFCMFobzEOeFwH4Uc5kiNaHXdIaCPSWyDVJEEy5MRFI5A3Pp9zpeRInOnHE4sTBMK0/a+QmBoietBEZ9NN6cJPjssOOQalkhBD8n/sfvGL8FwAHCSyM/b5es7Halp9DLnkh6+OJY2/skkY1QTDOdQez5ZKAdRoONsYuCHDQrQlTjWVc7L6d7qIj2SqXz2NeYYw2BICtMp8+rvPoTRecOLlQP5M3jc8YIHoyXS2gAhdppJBPoe/zFUMhRWgIrtAm8Yucy0CtF0vkarqJjnwd8zJpIgWANXITQ12TEEArWtJDdGK6WkA88ZRQxm68RgflVLARr1O8/8YplWQ6i3ZmSWxLmkVl9cKxoFzqrNt/KU3LLiAn6RVI/QwhII44ipePh/KEw++kWkRLhm94Zm81WLVXMqhd5UTTWrk5Yv8honFlBII3uPmQ8xYmuW8FIIsDnOy6gq+c3u+V19m78uYxhhjKcWFg8LOcy2X+MnMbG5taxYmDr+XPGEGGlgDluABw42kQ9102oXxu/MjN7of5P/0GnjXe4VnHX1mnwv8ebVd7Aq5RW1uSF+KJpYwKAKbye9jAMcAcmcmNXHqMj+L4ploagcc70+Sc+h5CCFnsN28G3GFOsO0aWUZgM1Gpe7dPHeBkfRhZ5LBArWC2WlLFljBY78Pc2M84TzuNlWojpZTjVt6ZqJ/kbF4zPmaiOINt7OY7+Tt3u5+iS/lpvOj5kFJVVqvHdaQcCHPDD9DJDgTWOU7h5Enn3bzoeJBBoheb1U6myTn80f0gW+WuWn3t141PyPKVhIkwN69naCfU6uvXBxO0sebyVDkzJONlp9obojnzJ8flvKg/SApJFFOKRNGLLmSxn1lqCe/IL7nX80y1tGr8AbV/Oe8zNUeLKeVa118pVNU1IDn25PukE4JpJ1o1qiAgQFPSQtb5zaOOlPHaibzrfIpNagcFFPEv9zvm+b+L1p6/6Tezjq2sZAOHyGdr3HS+iX2V/bELuVn/AzOd/+VG/RKWxkxhf9wCPne+wLOOv9BatGAvOayTW9jPQeapTD41ppqv+45Fm3Y/B5muFpBEIitiv6OH6ATAerWVzSp04meg1gsPBjkcBBpvWTDAI/vL+U++m7UVAnXwNigbAXjLyrSUQ6DCZWArqqedeaz61D6agObJgd/npXJ1xP6NLSPQz5n6iXznfIMztNEsUitZp7bwH+N/pJEMBF4XV/gCDgA/GDPreqg2NsctQghSOfyEuJ0V2LCQSvKo+2Uecb9EKWU8ZrxCGeU843mLJUb436NNxg5TOxAgSVRO3nWi8t41XBDQf38zX4Z6ItgcHXYgsBrsZh8FKvxNVn1h1QuS/nI3II5YThLDGl1GYIYlEHiAg4z2ZWqAV0D0cLQWLfjQ+Qzna6eTShIu3Hh8F4or1Hp6ap3Nvl/In9hLDs963uEy913H8CiOHQdV+ECgnRFYf9zkuIy/O26lCSmcKIbyrfyNMa7LmGNUBqrzVAHFqpQstR+PLxh9pKyTW3jM8yrd6Uhn2gWkzwM40EnSEo/qNaKR3qIrHYXXGXWOXEoPOoX0WRdGOP8m52Wco58CQAFFzFZLaEMGzfGaK7hwM13Or9FYHnPcySgGMUIMYI5ayskVV9R68DcS/jKbYNqLVnU8ktqnj+hGpzDuuJHMo6qDQzg4SzuJMWIIaaSwQW3jNvfjZvuV+nnEEQvAS8Z/mGEsBCBWxPC882/01DvzsvMhumjtAThfP51bHVeRIpJoQ0aAgdc7xpcopShRpXxifA94f7v9ejlnaCfQTrQyjbFcuAN+5/0MEX3YxwHzu1/fJmG1yQ530O2Bu/JzHTN0Goz+HNL2Qlo2MamHIG0fpGbTIs1D+yaCtql4/6b5/wraN/E+UtJKzP6kZaOn5pLepNT3fB9aWg7xqQW0byJokxa4n3aW/bRLC36NoD5p4cZR2aedbz9t06B9GrQL6tszQ+Ojq+JpmxZ46b5IhTeqaktLWojGqxl8mj6K5xz3+87j6UyTs3FbzoOJPpO5ClxmMOIXOddbzm9jY1MnpIrkw/axDUMaDsWqlOvc9/G08SZuPKSSRC/RhRicxIlYMlkbdjvrdXkyCTzhvJOXHQ9xu341F1iql3RLaMofAFQoOtOOZJFIviqspSM7PrFLg6ugJc3IIQ+F4i3jc+51TK7vIZlsiWAUUk4FW9UuErQjK4+KVlpR6TqVq/LoLNrRiuamBqBHeXCIqj/O8SKOD5z/4CL3bfwgZwa0bVDbcKDjwaCIEgSCXPKYKRdRpEpIFtEVUMmNEAjsJEJvjm3qjlP1kcwVn5ml6J1FO85238i/1H2coo1gkvtWutKeLeyik2jLf5zPmiWCNUEpxe3uJ/DgYSPb6Se6hySsNKdxukcLIZigncyrxsd48HDI4qDqZ63czAhtQMj6Jx13873xOwkkoCF4P+YfVCgX57pvAmCqMbNG5dTpIpW3Yh7nJNcfAG+p+Imuy/nE+Txj9eFHeIQ1Z58MbxTQlQ70FJ3DtjVkNKGxnT3mcycO+orupm7ukdJEpPKt8zXau05mB3spkiUYykAXOp21dtzrmMzjnlfpK7rxB/c9fMbznHyY9/kOxzXc4bgGgLEVV7JQrWCt2sxCtYIZxiI6i3bsVvvoJbqY5ld+g4feWle+lj8HHjvCnDEfrPVhj0VzpzFnBF6a6uT7Im+QxyHceBLmmjnQbr0c7dyX4NyXAGhLW3b4Ph/N6Mx1+oWM0AcwUhsYsl+3ctO94nyKOWCuU4CLeNqTyh68/1+Jg3mxv5Ehok+Dcb0Kr8k0pJEZhYSjm9aR+x03cavnMQ6oQwwQlWZv5RbJnBictCGD3qIra9RmBonGmSlpYxNtpHL4QKBtGNIw2C73cLH7NnR0NDSy2M9Ljge5SBvPKNclpmRZOLZROUneTrRmiNaXIVpfwGsQ8qTxOgDJJJFPIRoa3enABp8kyjZ2g4IclXtE90024TmijMAlS5bwz3/+k//7v//j7rvvDng0Jk7ShpnL//P8Vo8jCaUqx+DuWmiGTEPHeoOTRyFCCFO/qYgSVqmNkTYNQAjBy86HSMYb2PPPNsyWSwLcdkeLwcCRZQnVBQc4FHa9nRFY/3TR2jMr5mOu1M5jg9qOGw9PeF5jtOsytqidTFNz2KJ28pucz0/GbAwVWtp/OL6Rv7BKbQC87/khFRoMGyh6HfWxRCsTtFNotq4VfT8dztxdK80MQT9rI2iUNBfpPOv4K7kcIlOt5U73k4wSA0nCW6IwTdb8/eimdWRuzGdM1E5njlrKIQp4xPMib3k+O7KDOwKmGeHlK7awMyoDF0dLK5oHPE8kgeVqHV/Jn8N+F2pCopbAmdqJABwkn4WWbKt79Ot50nE3q9RG8ijgTc9nZKnwQdhw3Oi4xFx+zv0B/zTeZoVajweP15DFhz9I0Ud0DdlHM18GK8Bg0Ye9x0kgcH6pYQb+PMqJcHU32ySKIaKv+XyHJUi8gW381XiWj4xvw+73FznPlNoYLvqb60spw4HOSOGdUHDj4SPjW3JULje7H6ZQFvGbUf/XBlJJdqt9Ydsam2NwJLqIDuayNW+0Pz3M5UMUsJccflXzWChX1OXwbGyOa6qTEWiXBjcMfpKzWKM2s1Jt4FQxkv85X2ey4xIWyOUBk7PhyKMyk6+76BjQ1s3yPN/Xr6foTC8t9BooW+Ue+QHYhFDjQOBTTz3FiBEjeP/991m6dCnLly83HytWrKiFIdYf1lr2VWwkJ4o+fFUFArtZLooaC+2oLHkqV15B0TFapSNqdcqD/bQWLfirfiODRG8c6DQhlSKKTaFSgFai8kZzahRqynjFsAPR0GgvWtf9YGxCSBFJvOl8nD/pl9GEFC7SxlNECT3pTCfakkQC3UVHrvfcz69y3uF3aCFfFXK3+ymcOBglBvJX7Y9hjUKsWnqNjbbTu3LT8IeYeP0NtB54MkO2Dg5oXxumNNjP5fo53gxKvKUKb8svOEPzmkHlkndEN4ldtPa86Xyc8dqJdKMDq9RGbvc8wb8876JU7WuLfSsjT1Q1xixh6/kZIMU3seM1Azh6Td+z9ZPN5R+MGeZynIhlsn4xp4qRNCedmWoRd7qfqPZ+J2njmKSNo5voyPdqOuW+35wCiplPpfaNmRFI6EXwfg7RjQ7co19PJ9HWNAqBxh0I3BNcGuxpEdAeTi6jPa3Nyb6fjFlIFVpe/brxCakkMUYM4QH9T/xZv4KnHfcQTxwPO2/jPec/zL5ve75gTMXlvG98TXfXOM5x/5E5R1GOfizIYj9a0KV8a1owXPRnmOhXT6OqW1pZJjusEgkTLN9ja2l9pIkiGxubY091NALt0uDo5xdjLi96PqIlzWlFC553/o0z9NEopZinwmv3OXCE/D4B5jW3n2SRyEfOf3KtNgmAy7VzeMJxJ20IlTvJIXpiMY2BGpcGv/jii7z33ntce+21tTCc6GKGXGQuu3CzXK5jvH5SPY6okk1qe8S24Eh7Y6CdaGMu+2eOxgToBC7ldq6u9v5ucVzJvyrew42HvKDSwgTiOCQLSCKBYkrNLCFdhBMjrx8OqNCMwLa0JKaROkY2RHSh86Tzbm53XM1nxg+0kRlcoZ/LzY4r+Nb4lcmeBwB42/iiRueVxzyvmOYAGaJZxOzQL+RPPF3+Jrc7rjZLExsL6z46BMp7g+8siSHl2zZ0u7sD29mLB0+VLpq60HnR+SCjXZfRX/RgjlzK2dpYFsgVtBTNeMn4iNH6kIjbRyJVJPO18xWe9LzOU8YbNCGVWcZimpPONY4LjvhYq8MKtc5cduAglSQOkg80zizhViIwCOSwXMr8YMzgcv2co9r/eO0kNDQkkh/kTJ7iHrMtVSQzxfkq3V1ncoBD/CBnsVflVCsIFy/iOFEbyjeeX0LaBN6SVB2dya6/kSwS2SLDlzpvZidtRUuEEEGBwMarEfin9Fh+KPKGeVo5IDtxZkB7FvsZLHqjgDVqE248lFDKaWIUv6n57OMAy9RahlqCY1vlLn7zZfyvVZvJVGtZJFdwlfNh/hB7rplNe7p2AjtVFt1FR2bJxUClOc8d7idYFPNlvbk1b1O7TW1J8FY5ZLGfLLWfAVrjzQq3Yj0fWI1B+tIdsbs3xjd/gcJ0QICQvCdj+M5RiMdQODSBRyp0TaCUV3ZD08CQWNpAKtCEAAUyoA94JDh0gWEoNM37uyR923mC+0jl3Q9g+PoYEstfgVQKIbwhbEOqyu01gRAw+YQYHjwzttGZQNk0TlKrUcZplwZHP1vUTnayF4Dn9b/RTetIvirkHNcf2acOhN3Gei1q5URLIo+fS/Sz2acO0EZmMFDrxdn6WLaoXQTLI+eog0d9LDaV1DgjUNM0Ro8effiOjYBiStEsTpyZck09jqYSl3KzU2VFbO8u6r80WGs7Bq3DaZDcFhIyIDEDktua67QOp6G1HVPt/bXSKmd8C/E6c/YSXUgnFYAlcg2GrH5JX7yI40r9vLBtpZQznQUMEd6sjHwKmWrJCokGdsksVEVXVOG5KJdXnL6T1vgyfxoDGaIZdziuYWvcdO513kiSSOAyfYJp6POTnB2xtCuYPFnATN+NaALxPOv8K+9aXEetGMpgLzn16mRbW6R3j0P4AoGa1NjUZQOb2WlmgxzgENtl5DKFIVpfLtMmsEpt5Ec5C10JWovmrFDr+Z+czkxj8RGNSxc6Dzlv5Z+Ov1BKGb+qeTzgee6oy1UPR67FRdyDJ+DC63jICCyimCZ4bzZ+kfNwHaUZQDPRhJFiIAA71F42BwXkYrVYbtAvArxZiB8Y31R733/ULw1xPR4i+pjZbgYGK9UGPpc/hohu+2fWB4pe/FG/FCAgENiYzUJOS3KwrlsyUzsksKprCskOV0C7CzfL1DrO10/jAm0c4L1WsFZ2/GDMCtjmfeNrc7mAYh4zXiVTreVi1+2MqriE59zvs0lu5yPns6yK+Z6BohfFlHICg00tuj0qmw+MKbV12IdlsxE4Kew3joknjuEVF/Ki58P6GFadkkISCXh1sUt8Tt8AhaIE7eOnYV9nKEmHkiZQ3AxPaQrZhYrcEsgu8v7NKVLsL1YcKIGcIoLa4ECxt09OSB/f30L/ekVOkXc5O1yf4so+uZb9VP719tlv6ZNtGc++QsXj0yqYvunozMZsbOqKamUEYmcERjvb1G5zuY/eDYBHPC+zVK0JW5UE0JNQjWoHOl0jVC7675X8yQvhrl+jqTqzMVDjQOBdd93Fq6++WhtjiToc6AF6I/VdAuJnr8ohg6akEX6WpVsUZATGnPUuMZO+Je6GtcTdtIW4P24h7oa15rqYSd8Sc9a71d5fgog3S3xcvhlfTWhcrV9AX9GNbA6wjHVV7SKEyfrFVbY7ieE87TQEgmeMt45Iy622WF4aj9rzHurAfag9H9KxYuxxUwbUGHAIB9c5LgS8JUvve74+zBZe3pZfsFvto7voyM365aSopLC6HBoaaVoKbcggRRz+IqyhccJf2zLiztbkj8zm16e/ZN55lYH6JqSioR22RPRmxx/M5fflN0zWK/Xb7vA8jku6wm1WLW53XM25mtehOJc8bnM/VmslwvvUAYwwjrIATUihiUitldetT5rRxMwCjCWGclxmqUkhxcfkt/oy/WyGiL4IBD8GmUsBXOe40AzMveX5jBJZvYyGEsooxRus0NAQCDJVZcAvhSS6iPbm750VHY0LtDN40fmgmaHuNwsRiBDtxMZGxxiNcUlOUnUR0Q13sOjLbY6ruFO7BgeOgJKlH6T3PLFWbqZAFvGe8RXg/b9aS0f3kE0W+3nKeIOzXJNJIREhhOkAfb7jNF53PsooMQgnDu7zPBtg2lKXfC/DT1ImEt9oJ4KCEUKYkwPWgEIBRVDcBNDx5txav1O1L9lQm+QUNezx2xw/VMssxBLAt4lOtqvKe43Ooh0r5HreMj6vcpuztJND1rWjFZqoXvipE2ECgdgZgceSGgcC/+///o+NGzfSpUsXzj33XCZNmhTwaEx4CAz8LFGr62kkgeznIPs4YApqWoklhvaiVT2MqvaJJQbwikFXKO9NenfRkTVqMwpV46y9nloXxoihAe6qCcST4pu9mqOWsMln9rBMrYuYeVUf7CmuFEZH6Wwr6dooAz6Nmev0C4kjlhFiAOvUlmoFiubKTIooYZPawfX6RbwhPw3b7yrtfL6OeSVgZq0x4YjVOOO5TgyeG8PmO5fQTetotuVRgETytvFFlf/T4aI//YVXTH6xWsUg0ZsRYgAZNCOFJF40PjqqMT7j/AtJJNCX7nwnp3OD+2+mvumxZLGxImJbY8wGBO8kUEu8WeIVuCiihCGiD21pxUgxkKny97DbZZZ56L+5iHYbCnkvr+pA78nacDLVGsqpCPvb0k604iztJHrRhTIqONt9Y7Vmqj8zppp6tAJhZnAlkUA/0Z2vYl7ml9j3fYEsPSAgKJFcop8d4IjtzwjMoOlxIw1RpEpAeSdr/UY/AL1FV1YbG/iH502+lb9RRjkpJNKSZgwSvekk2tKy/ASGuC5ggOtcJIruohNtI1wzFVPCXnKY5ptUsGYrDNb60E/rzkHyKaGMv7qfrZNjD2aRWhV2fVOR1mgngsLRCm95sD/IDpCnCvjrGTH1NaRao3sLjXP6HB/fdZuGj9UsJNGXuRuMbRYS/fgDgbHE0JoW/GDM5HQxKqByMpjBWh/iiQ1ZV11aaqGTm3ZG4LGlxhqBt99+OzNmzOCUU06hadOmjV6jYiQDWIjXNbCEMrLkflprLQ6zVe2yv4r6+C6ifVRp2R1LEogzxdX3qGy6iPacrY/Frw39g5zBo9xeo31OiXmVaXI2V7nvBbwlV4O0XrxqfIxAcIE2jqeNNwCvM+dl+jlRcWHtdm4GzvA90xHO7XQWZ9XnkI5bClQRM+RCJupnHL6zhTYigxPEYH5XC0B5da36iR4R+3uUhwVyOeB1Te0s2vGNEao1BtBBaxN2fWPjIm08Bx353Ot5JqRtrdrMQrWCUWJQ2G2FEEzWL+Z2zxNoaNzieYRnHfdxvvtmlqjVrDW2cKljwhFPrLQRGfzsfI9J7ltx42G6nM8l7jt40/l4SGnr0fCtnB6xrTHqA/ppLVoEZGF1oA2llLJQrWCNsYnHHHeSLBIDtrlmTxlbXN7cr5uzyjgjyUE7Z/j50O6iE11FB7aoncxXyzmkCkgPyq583/EPLnTfynq1lWVqLe96vuIux7XEi7iI455tyVY0fJONY8UI/u28jz5aN7NtlDaI+XIFi1gBwKnaSP7muDlAG9et3OzDq83TmI1CrCilONN1Hdvwlin5byCHi378z/kmZ7qvY5XaCMBpYhTT1QIKKeF0MZpkEswJ1Gyf4PhQ1ZflrAe8WpNWswk/7xhfcI5+Ssj6Rx23M8X4lQMcYoVczyq5kf5a5HN4bRCsceznOcffOE0fVadjqU9aieYhSX4FFPHvM5P4vOctbK7Y79WVdbgQ7gRuT5jE+e6JpMYJiioUcU6vRp8hFbEOQYkLUuOhoAxS4gRF5ZI4p0Aq8EhFfIyguDywT3GFxKl7Q/cuQ5EUKygsh7R4yC+D5DgorVA4dIGmQYUbXx9l7ic5FsrdCqEJHBqUB/UpLIfBbXXiYxr3vZdN48GaEZhKCiWEZv/ZZiHRjVLKDAR2FG3wYPCC8QFFlIStXvDTQWtNdzqxkg3mumCjkKrwy39ZsQOBx5YaBwI//PBDvv76ayZMmFAb44k6rnCcx2LPKrNE+BnPW7wY82C9jml/GKMIP43RKMRPCkkc8l30bpY76KK1p6VoxnDRn8VqFWvUZnbIvXSsQRAkWSQy2nJjlaVyeEH7Gwvkcraq3cyVS7lSO5/lai0/qll8bHwXUFJYXxipXyBkLKq8PyJhISRNp5O4sb6HddzxlTGNe9xPc4A8FogvGKD1rNH25+qn8LtnAQBT5Uz6VXETuUptNMuexmhDOKjyWKk2hO3bmM8DVmKEk2v0C/jNmM8ctYRSix4YeF0+R8WEDwQCXKafw26VzafGVJapdTzoeZ4/iHN4S31OKWX81fVPPo19/ojHN0Tvy/P8jVvdj5ImUvhFzuU019WsiPnumGRvSSX5Rc6N2N6xkWYEQuiNf5bYzyR9HO8YX1JMKZ8ZU7nRcWnANocMZRaAKqDQUBDhbRBCcI42lheMD0034mATkhQtiWec9zLR9WdSRTKPGa/gwcNDzlvD7nOr3MVXchodactB8szv87+cfzWDgEop3jO+4jbP40gkY8RQCijkNcejIb9t2eSaGYXHSyBQCMGtjqu43n2/uS6ReC7Ux9NES2GsNoLVxiYUigVqOQnEUUo50+Rs7tauMzP+73VM5m3PF1zqOJvfPF7DkEjC5j/LuWw1dtFFbx+wvolI5SHHrbxjfMF6tZWnPK/zWcwLtXbswcwK0jK1ZpgO1nrX2TiigdYidII+X3kNXW5tM5q7PE8FtB3UOjAm5qIavEJ1Jtgb5yS8jc3RkGpJnrBmcFuxzUKim2xyTb3dTqIts+US8/pFVSGz0E604mR9OCuNynsV62Tm4dCEhhMHbssEnR0IPLbUuDQ4PT2dLl261MZYopIdai9DRGUZZjitoLrmQBX18dGgDwjg+moCFR8Oo/y1tpS/nOF9vNbWXFfx4TBcX9UsmGzNxthKpWjp2XqlBsGRvD+tRQtGM5hRYhDxIo5WWguKKKWAIuar5VynX8hatQXgsOWGdYFHeZDCg0h/H631XYi0zxGicWf/RCvb1G5yOIhEcof7caQKr9UWibP1sebyj8bMKvvOlZnm8hhtKE8bb0bse7wEAgFSRBJfOl8kicrsr1hiGC76U0ixKSMQadtz9VMpoRQNjVSRzC6RRQZN6UM3VrKBn42qtQYPxyR9HD863zE1cAaKXiE3pUfKTLk4bODCT2M+J7QMyqrcpnYH6DyGO1c/2iLWnLuelOygd2zVl0DW7+cPEaQnBmt9+Mb5ijlb/m/jPbbKXWH7/ii9ZhU72EMqyQwQvRglBtFX6w5AhXJxk+fv3OJ5lEHCG8hpSiq/Oz8KO8G1Sm6gv+jBGDEkYuZrY+Ry7RyGUamJ20t0MSUQ/un8C3/SLyeVZEaLIbTDm9GbSx4jHQPZH7eQrbHTudcxmczYKXxj/EJ/0YNedKHAZ0TWlDRiiaGzaEci8QwQPXnCeC3sWK7VL2C/OogLN9/LGWSp/bV89JVEMgLpJNo2Sm3QqmgpmoWs82d/XqKfHdK2zndNZ2NjU7ukWvTsEwifLW+bhUQ3VqOQzqIdP1TjXjuRBGKEk7MtOoEpJNX4ujQuqLR4P4eiSrO/oVPjQOAjjzzCww8/TGnp8RG936R2cKfjWvP5brKrdKOsCw5UlRGo1b9jMIDM24I6tAFcReAp9T5cReY6dWgDMq9mF2LNRKWW306111w+R6ss2Vksw+vlHI6T9OEsUMtZr7byH+NbztHGAt7SrZ3sNW+y1qktLFDLj+g1jhXhSsPTfKYAxdkuFvxrLys/yEF6bDHp2uZO/VrTpXub2sPNnofxqOq7+XUQreknvEGAJWo1+9SBiH2tBgijxWA+NaZG7BvJkauxEqPFmC6u4A0ELlarmCpnsMxixBCO4Vp/5jg/pQ0tmCZnM03O4Q/aeaxlM9vUbu7yPHXU2n4D9V7MjfmU5qTzjfyF94yv2CH3Hn7Dw3A43dJOjTgQGFxevV3tYaDWyzRNylV5LFVrAvrcmB7L5m7JZHZJ4tN23syEqi4oTxCDAtyI5xqZYfsN1ftxh3414M3Kusx9V4gT+H+N/zHFUsq/h2xWqvWmaVWOyuUC1y3MMbzf841qG4/ot/FpzPMka6FyFD8VuXk2183KcjdzVSatteMjIxC8WYF3Oa4zn29SO3jP8xWHZD7veL7kHu163Hj4Vc1j7GdcugABAABJREFUF1lmvx99rsH+kvGFcgU/qdlmtrW/LLg9rfFgsE3tpoQyVqj1fCqnMl8uIxincHKN7tXHNjD4sA4dhNeoTQHP/UHuIaL6GkyNhVYRMgLf9XzFU57XSQsyLNigtuIyjtwQysbGpnpYMwIjyYmVqOMjptBQ2W4JBHakLT9ESFzQLWGlvqIrAEO0vmb58HCtf7WNQvwkEyjxIpHkklejfdhEpsaBwJdeeomffvqJjIwM+vXrx+DBgwMejY1Najvni9NoRhNz3YOu59gkt9fbmCKVBrchg15hrLobC62pvNDLUpVW5X1EN87RTqEZTfha/nxELnlX6ueZy+8YXzJeO8l8/qMxk8mOSofhtz1f1Hj/x5I1anPIus6iLa4Sg3eHreT3v+7g++u2MO3WrfUwuuOLGOHkRceDXK9fSB4FfGhM4QH3c7iVu9r7mGAJZH/nCa/3JpVkni8jMJ1UDqhDZpl8MO1oRYIIL8jcmBmnjzGXC6k8B1gzKSPRVe/Ak867zeffyF84Ae/vmTcY+ORRj6+l1pxbHFcA3lIKv2PpkZKtcvlW/lZln85aIw4EEnjj75+x/rN+BYNFb/ZxIKyjXfsYjW3OGfRznUN6xTA+kZED6g7h4G3Hk5yjjaWQYsa7r+dzzw8cUgWslhvNfoYyuFefzFXa+bQXrVitNnJ6xTUs8hm5zJWZTHY/wPygSaQmpDBJH8dKYz1nuSbzu1qABw8tacZrzke4z3lT2IvmD/JcnL+rlPm5w1B730V3dWFcDXR3GgOjtIGmSHkhxfzZ8wjtXSdzq+dRflKzuUg/E4AyKsybkKkWh91yWc49nqfN5wNFL3N5A9tM/UYrN7keolCGXl9c57jQfI3XPZ9QFKbPsUZKyS4Cg80KbxCzJmLsjQWrY7buK9HdpfZyi+cRXjU+DilJLMfFHA7/22BjY3N0WDUC44kLCewAFKpiimQxCy3mZ1LJGk2s29Qe22RlIFCiAibYrEhLmXC87z4kWSQyRPSlBU1ZK0PvXw+H1WzGj10efOyocSBw4sSJ3HPPPfzf//0fF110Eeeff37Ao7GxTe0GAT1FZYDta35hnOs6/ux+pMqsnNriAOEDgXvJoYfWeAOB7URLcznbkhUnhKC9aEUued4sADmvxvvuorXnVG0k4H3PXbhMkdKf5VzOEafQihacIAaxRm3moMo/uoM5ClbJUF24feoAJy29nqI9LvzVqRu+sS3W64JT9BGM0YYC0IJ05qpM/mm8U+3tz9HH0psuDBX9eFV+HDaIOE8uI0M0Y4wYwnniNP7meS7i/rppx1c2oB9/ZmYw1QkEAlysncXJYjgdaE1n0Y7T9VE4cXCCGMz7xjfc5n4Ml/RmkBypPMA1+iQcPmnej4wpNQoYBzPNmE0PAo+5GU3MMgoHDtrSeLPEgjXBtqs9KKU4Tz+VrWo3CsVXxjTyVWHItgLBFrWTMsrZazEcCcdp+ihTe3KkGMg1nr/Sq2I857hu4lH3K7QrP4keFWfyoZzCfY6bcPmyylqIppzhvo73XV9zh/uJsPu+Uj+facYcTnFfjRMHGhoGkq+dr4QtZ/TzXZEbb9hHAxVDp/KJx1UpqEu5udJ9b4gykccXvHvI8wIXaePN9ckkMEoMQkNjlU+r6AX5IU7loKvowHD6s0KtMwNIZZSH3KzqaOwhm1PdV7Hd2B3Q1p5WnK2dzAliMEUUc7r72pCM0GONVXzdj/LdoLUXrWv1taMR6/mgk2jLTfpl9BHd6IRXJzWZ0Kza2XJJnY3PxuZ4xRrIkciwZcAz1CKGuy5irPtKxldcb/6uPm98UIcjtYmEX/oE4Dc5LyAmAtASrzSDQtGUNFJIYovcyV3up3yVeor9HCSb3BqX9TYlLWRdThWmqTY1o8ZmIQ8//HBtjCNq0dDYoLbxpuNx+rgrL8yzyeU94yt2qr0hAuK1TaRIeFtahrgkNiaswvcHg9KCJ2in8JrxCQBTjRlc6MsGqAmT9Uv4XS4kjlimGXM4UzuRT+VU4ohhuVrLJfpZvGh4NXk+Nr7jdsfVR3E0R84GFZqNqqOzsesGJiQZaGXem5k2I0JnUWxqhz/o55JMEle472a/OsRazxYu186pVkbWUK0fnbRKzY1XjY8D5AgAPjC+Yb3yZnj21rux3FgXcX+RAmKNnaYijaakhWjmzZfLMJRxWDd1IQQPOP7EOPf17FRZHJL5/Ox8j3Hu6737MZZzrvEnOmpt6a15dXJf8nzEQM2bSbRCrudG/RJG60M40RcYDqaVaM652ilMkb+i8J5HrnVceETH+7n8kXUEyivkkofT97PeQbRutA7yEFoaXE4F+zhAa9GCK/Rzec34hDLK+cT4nj/7MjH9WI019lqyy8MRL+L4zvkGT3ne4B/GWwAUUUwBRXxsfGdOzD3ueZWLYsczN+ZTHvQ8zwfGNwA8KJ833e6DMTB4zfiYUspYqTbwB+1cnnDeFdb4wMqweJ2pRW7AAHTOjD92LtQNgeeM95inQgP8rWjBPvajozPLWMwA0ZOVagNuDFPS4135FXeJ63jG8zZllONUDkZpgwJkRc7lVE52DONnzxx+xWskYiApo5yNajtD3RcyyTiD3+VCTtdOII8C3tKfYILnRsqoYLvaw6/GPK7WJ+IQNb7MrhbT5YKIbZ0asUlQJKyaoW1EBi86H+Rx96v0VF3or/dgjDaU7hVnBGyTKauWjbCxsTl6Ui1BeIlEQ0MSqKftws12vMGmmarSBOlpz5tcqk+gvWhVN4O1CYu1NPg3NT+k/SIxnlfUf3HiII5YDpJPIcW8bnxCC9JpKpqA8gYK8ykKG9yLRIZoFuIIn4OdEXisqHFG4PFGBS4WyOV00dubEW/wBgjBO6N4JKWoR0Okmeb+VTiONga6aR3N5eAsjxO1oaYb4M9yzhGlk5+rncJZ2kk4cfCm/JxTtJH0FJ05QB7fyd+5Xq+8YX/H+LLeTEN2qFCNyiYihfSmSSROz6L/1S0YeXcbzv9v93oY3fHLufop3Kx7HaXLqeA+97PV/oz8zfEns7Tscc+r7JGVwYlDqoCv5DQA0kjmO6PqctDjySgkmHBmSUWUsEptDO0chpP04Qz1mUOtVBtwCidvOB+lI23Yx35msZgP5Tfc7/k3y+U69pJDoSqmUBWzlxyeMF7nYtftlKnyiK9xl34dZ4jR5JDLY55XKVI1F8nOV4UBmpFW3HhII7nR64SF0wTzz1pbTUNe8HxImQx8P9pYssv3HCYjELwlwv/P3nnHR1G0cfw7s3uXBELovffeFZFelSaggIqKKM3yqtgVGzbE3sWGCnZRERVQUZAmoIAUpffeW/rd7c68f+zd5i6NUEQk9+XDJ8nubJkru7PPPM/v94jnFl41H6auqM7L5kM0FLW4yuhFAZzyl2RSedR6jRKiKK+aDzPMGEBJinGIo6SQhgeTGLwUIYGfjPfoJFoyzv6UeXoJF4omXCl78oZn9HGDgAD3loihcvFvIP5nRJn7uLlgo+Nucy5xqzGIy+RFNCbDpd3A4BPjeTqLC0nHxwvqfa41+nKTcZXrdgjwqf09Q/2j3GVtOY+P1bcR+5/GbO62nqGxUZfGOOOqUGlpAIsUUvlIfcsu9vGZmsp3aha32I/xvmcsZShBDF5uth7lp1wcvU+V38NK6DJzLpsE5UQhUdDN4gxp7SaIeMrKklxlXEJFyril5CHWZzOpGiVKlNOLR3gi7pO1qJLnbVNJY7j/oVOqnohy6oTGVmY2+WNVqcAdnut53XyEBOLZReTk6mq9ya2wAzikT0zfL7sxUTQj8PRxQoHAcePG0aVLFy6//HJmzozUsjp48CDVqp2bZamhTJ3hxhXE4KUgcW4JycmWop4strZJzsFmvb6oecbO49+gdtjNI/Nr4BUeVyPpMMdYqJef8P49wkNDUdsVDd+qd7JJO+6PU+3Z1BJVaSfPB5wB5L9VVpKaTZDhGfNeNsXO5M4WV3LJ+zXp/GwVYgv/M5kIUXLmIfNmylKSFqIRv+uVfK9m5Wm75rIBw4wBVKQMtURV7rOeddd9bH2LD6cktZGoTdHjzKSdLc7h/wZ9jM5cLNogEBG6rnktD4bIINI71udcY/ThQ8+zeDCJI5YKlMHEQKMpT2kSRDwJIp44YrGwOEoiX6ufctz/+bIhZjBTbzf7eSLwxgn3c4aa7xobZMdRkigoCuS4/lygGIXx4olYFtIJrCdr0FG2pJO4kN3so2vgenarDDfXUhRzB7THywgMZ5g5gD+8XzHCvIIF3i941HMbG2J+pjhFOF80ZIVawyRrOu18V7FE/R3xHgWw8OHnKIkMsEcyTy+hrqiOQHCJ7MQHnqeJE9k7KmbGj4/Gxf6kdZmptIg/RnVZKc99OBcoKArwsed5bjSvdJcZSLaL3fQ0Orjjgwn2ZDcbJaRTlUQKv/EnrUUzChLHLBZFCJwDbrbKh/Y3JAX3FdpnKCAY+uzZ2BQkDh9+pqhfeNV82M0SHW//c3rCK3KY3AgZh+VHQlmBe4LOzSPNwa6btBCCYpnunbvYFw0wRIlyBgiZ9RzTSVwgGx+3fRlKYGBQkbLM1X/QMzDiX5Vkys9ssrfjwUNzGlCNClQjcqKpq2xDeVmaZrK+O+FZn5pucsMqvYHioojbPnPVzlD/A/T13UxTXx/W2Fm17SuSNRs0qhF4+shzIPDVV1/lnnvuoU6dOsTExNCjRw/Gjs0QWrZtm23btv0jJ/lvM1MtJEWncq8xDIUmhTQCZAweptq/5rL16eVX9XuO6+rLczsQWFhmWNBnV2rVw+gAQAKFXGOFE2WI0d+9eH2ivqetcEr8trObVXqD6/BYmEIsOolg4+lgE9uzLMuPGQBnI4VEQV7yPMAfeiX7OMhdgafz7Ib2mDEShWaZXs3X6id+tn9jsfqLF+z38QQfOrfq3awhd7ft/BwI7CJb8ZOej0a7rmICwTRrdp73McDo5mYXT1dzmGzNoIXRmN9ivmCS5xWmed/hR+97TPQ+y6bYmXztfZ2vva8z3fuuu4/xuRgKCSF4wRzlavl9o2bwlvXZCfVzWtD9NDcqn+M6YUIIypDJOThM0HqK+Qab2I6FzQ69h96BG1mqHBdhKaRrPnUigUBwJozCfxYXRbjZuJrF+i9W6nU8Zb3JctawXK/hCE7mel/RJWIfqaQRwCJNp/OV+Rp3eobk6KaYHVv1LqaqX1mol1Fd5K8gYAgpJFXC7nt+AoyyXuAK0YNyQW3MNO2jIAUYYVzBMZIitl+i/6YATuDVwqY0xd3PU6Xgg0cccbQIe2jtLtqx0fsLl8qu+INjwKbUJ5V0pqs5vGN9zkWyNRVwMk5/VPPYprMXVT9V9pK9w3y1fFgWHCIkF6DRHFNJWdbXzmSmZ2O7khtRokT550gIOgcfI4nzZINc2xYhwdGSw2YHe9Bodql9rFG5j32j/DN8oL5mJ3tZyt+sZyubyRhnCQTPeu4BoJmsz/yYz/nS8yqLY76mdlCmaL3eShEynt8P6wyjwwP6MJ+q7/lRz2WN3sR76sssx68qs97T9kYDgaeNPAcC3377bd59911ef/11PvroI3799VdeeuklHnnkkX/y/P5VigY/uAEsfrEX4JEeLpfds7SbqmZxWB09I+f0np31SxKiftCq+1wmpH8VwMpSdnmxaEMTUZcUUvnE/v6k9l9Fluci6biPbtO7qE7GQ9ZU9St9ZBcailqkksYb1sf/SnlwKmkRf5sYVBDnrinAf4Utaid/qlX0kV1c45kd7OHmwKN5+pwUk4UZbd7q/n1v4Bku8Y9gHwepQSX6ii45OnWFiCUmX2upNJS1uVxGmixoNLP5nR/yEDwDJ9vofXMs3WU7DnGUq6w7edX6kPKUpqvRmtqyGq1ksyzbtRRNaBDMyl6kV/C19WOOx6gmK/KS+QADZDd2sJfbrTFMsX7O0/kdVEci3E/DCZevyA+GAQ1lrYiswHBB6xgZw5eeV6hFFRJEPH/r9fTyj2BXsOw+pBN4iKO5lnLnhtaaJJ3CDeaV7nmsJbLc0EASK2Lcv4uQwKeeF6krqjPZ+wY9zQ4nfNxwvZ6q+XgSKPO1bg8HGGk/ye5gadJGtvGY/RoNqe1O8IXw4ecAR4jBSzlKEUssBzhMJcrymfkS1UUldrKXBWqp+94u0ssRCD7zvsSb5mOUpzTLydBr3ctBftDzGGL2B4Lu4IFTcwfPDktbbiAyM/n589BE1CWegiSTmu29srWR9br9p8pZbzdKlCinh1BGYDKpNBJ1cm1bKVMGmESwk710CwwjOY8T61FOD34dYKL9DUCWeyhAS9E4YnxTQZThIqMNUkgaC0c/2wr+C3EwrDT4RzUPHSYA+LH9XZbxWLYZgVGNwNNGngOBW7ZsoVWrVu7frVq1YtasWbzzzjuMGjXqHzm5f5ujYTPIzwVdQEd7Mh7UDQzOowFp+OgUuJZNdtZMrdONT/uzXS4R+cIkIJRFA1l1AovLohSiIDY2G/RW1quT038ZKvtTl+pcKJqyQ2ToMU6zZxMjvFQQZQhgsZ/DZ1xjJqADBDKVBPaQHf4xQfIox+cVayJV0zvS0X8NnfzX8rX6iVfMhyhEQdqK8/hCTWdw4L6I767SKtt9XWP05kLRlC6yFb2MTu6Ndxu7maKz1wYsSVEKEkcr0ZS+sgtS5G/p12c89xBPHHWpHqEJdW3gXpLtvOnxXWy0ccvI2orzuNd6lmsCd+caMBJCMNy4gtaiOWUowQjrYb6zZubY/jrjMjdY10zU50brEWbaORsAAGxWO+jkH4QPn1vqGE5JUcz9PT8EAgsQ6wZEziNrlkEjWYefvRMoifO6NJF1aeO/kqM6kQphOoG79f4s22bHarWR7v5hDPDfSvn0NtTzdWdw4F5KiKJcJi/KYSvBAuUYVcQSw2bvTHobnVninUw9eXKTd5vDAoF5MSQ6V6koyrrXSInkbmMoDalNfTKqIyxsbrUfz1GcvDDxzDI/ZBu7sLGpJMrT3GxAZVEOG5vt7KGbbEdbcT5xxDLO/gSA681+XG9choUd8SAz3p7EdcZlVKYcbcV5fK9nnfby07/snDVP86NRSIhiojDJQUfS9XprlvXtxflZlv2po4YhUaL80ySEOQdXEuVcnf3sWMVGCgY1BQsQh0Ljw4+Fxe9qxT9+rlEy+Fb94kpdeDLpA5alFLcZg3Pctn7Y+CbcKfpwWGnwdHt2xDZHSeSrTNI6JWXGuFYiaC2ac1gf/dd0+s818vzEWKJECXbs2BGxrEGDBsyaNYsPPviAe++994QPPnfuXC655BLKlSuHEIIpU6ZErBdCZPv/ueeey3Gfjz76aJb2derkPvuQE+GDu9V6I/f7nudD+xvOFw0Bp6xgFRuxsDmiE+lr3cRs+4+cdnfK2NrmBz0323XlKEWM8P5jxz5RzAvuw2z3FLL2AGTNvs7/2gPcZWa7pzAvuO+E9xvS5wHYqLOWovcMlgdDhrbjidJdtiORZBbqZcxQv1EHJ8CapFPYrnbTJswRdN5JliCfLPuDF+RwMrtvRTmzJOpk9nCAvRwkHR/z1VL2cYgZng/4Tf8JOHoW4yznAXKH3kNb/0Cm27N5xZrIM4F33ACQFJIp3nF873kbLx6OkEgpimNj53j8AxwhhTQW6GUUEHH/fIfPcsqKkrSV57OGTaiwa7iNoqt1Pcd01pKxzHiEh/GeMbxkPsiCoNvoQX2En+x5uW43wriC5rI+ezlICmk8Y7/D09bb2Q5YhBCM8dzJ3cZQ/tSrOEoSt1tjcpzsSdGpvGF9QiLJWNhZSh0BvGTcA/JDIDDc/XcJfzMrGyfV0rIEP3jH00G04Ff1O3s4wOPW6xFZ1DvyYBgCTlb4r2oR36tfOcRRtrCT6WoOU+1fGWZenu02Hkw3O6mFbEQB6XxHT8XROTzzMT8HfrzCQ9lgOW9xivCk5w78IkAP2Z6qRL4uIakAEwMPphtArCEq09LKeO/ayOYA9JQd3GXVRUUW6D/ZzX6esd9li3Je/7vNYW5pdkzwu7db72efOkBjWZd5egmr9Uamq7xlI+eVz/S0HNfl54zA8Mnw7AKBjY26WZZ9ZE+hn/8Wqqd35ib/aCbbM/7JU4wSJV8SPnGZRnqW63M4BpJR8gau4RK3AkrbBnruldz3mYchn6Qy7JNUhn2aypBPUhn+aQrXfZzKDZ+lMOTjVG77Ko2l20/cMDJKVmbaC91szsxZ6Ic5Sjsj6+RKiHDfgoNh+o4hrUef9rseCyE5ngTiWWr/FbGfcL1vjeY3vZS/9HpW6LUn3qEoWchzILBNmzZMnjw5y/J69eoxc+ZMfvjhhxM+eEpKCo0bN+aNN7IXS9+zZ0/E//fffx8hBP369cu2fYj69etHbDd//sk5t5WiuCsinUo6r+iJPGmNo724wG1jYdGQ2hQW8WzQ2+gduIGq6R15OTDhtAubHuJoRHAynPry7HKINRsNwWx+K97u4/H2+sj53328u8xsfitmoyEnvN8iYbNK69maZX0v2dH9fWqmmYa84pEerjMuA5wgWzVZiTKUZC2b+Vh95z4oAMzPwbnznyJcAytEvXxQEn42kyDiKUcpGlOXipTlLfszbgk8Rn1Zk0meV6hIGX7TSxllv8Db1udc6b+dpXoVgwP3MdH6hsfs1+kVGOFqXhQWhRBCkCDiiSWG/RxyzUJClCf7UvDwz2Z+pnbYA+EVogceTFJJY5lezd2BZ/Lk9C6E4CZzIF95XqUERZmvl3KddT9HwvRNstvmMfM2rpA9aSOas1Sv4lHrNW4IPMwr1sRst3ncHElL0QSADXortwYezzZwONZ6mzfUxwQIuBpo4cQSQ3rQCdXAoFwm/bxzkXD3X4B9HMq2dChGeHnHO8Z1LnzL/pzwl3gXeQsETgu7p4RMKABuD4yhii7PJ54X2OadTdegcRVE6tm2Eafn+xmREZiPAz+QUR58gMOkqjQSRDwlZFG6GK2ybW9hE8ByHWZtrThKRnXBhcHvYo+wQOBCtYz/GVcDzvs5xnoTgFgRwxjjDqpSAR9+ChDLGr2JO62nXT1hgHdPs2nI7Fy0ovPz56FWmD5udhUhJURR4sKqSgDS8HFUJbKLfXygvubWwONRU4IoUU4zhUXG/TKRZN73jM2xrZ8AT6o3uc97g1sFpn+8ET39f6xcUoOPFwf4cHGAD/8I8PHiABP/sPh0SYAPfrf4eEmAd37z0/HVFLYfiSZJnArr1RYmqMmkkk4pimdZ309eHGECkpnwQODuMC3mkFnIXLXYNeHqJTrSVbYmjXTeVl+wP8wVOEZ4XXmO8JFxThI5UU6MPAcC77//fho1apTtuvr16zNr1qwT1gvs3r07Tz75JJdeemm268uUKRPx/9tvv6Vjx47HdSc2TTNiuxIlSuTaPidWxU7nOnmZ+3coCPexmuJ+KANYtJXnubPC3WV79nCAt+zP6OEfhqVP36xETi45AkFH0eK0HedspljYzEBoVj6cGrKyOyu8UC876QHd9WY/N3V9qVrl6hG8b31FY2q7D5Tz1JIzmp68TK/JsqzBOW4Sc7Yz0hzM5thZLPB+7roWrtWbec3+iF5GR+4xh2MFM/put55kvz5MAvGUEEUpJAqiUGh0Fg27jqJlFlMcLx4kgtpUjVgWIjxbNT8TnhXT3mhBhbDA2Ty1hHusZ/K8r+5Gey43emBjk46PT4+jPxonYvnAHMtF0nEvvlL2RCCYbM+gve9qbB2Z3SmF5FXPQxQlgQtFUz5UUxgSGEWaytAC/ctey8u2E0hMJo2esn2W48bgZY92DATKUzpfyAWUz0YbdavOel8AJ2A0yryBqlSgnqjBNJ0xiMyLYcg+fZA/9ErAGeDujVlIJ9mStuI8DnCYdoGrqCEqU1qWcPcnkcTipSoVGCh70dVondsh8kwoIzCWmAhdyPzIQNmbnrID8RTgI/Wt6xTbiNrZtu8inQBhAs4ETuYHmb/1BsARKA89yPyuV3KDcSWlKcEFojF/6/WuCUgfo4v7XUsNBuIX6mVst/e42Zq/qAVsVjsI6ABa61MuFd6oc5ahyc8ZotVFJTfTc0M2GYEALYh0LC1GYYrIBDfgcIijPGy9/E+eZpQo+Y5ws4ijOokWslFEhRc498uQYVM6PkYEHuYq4xJn5eZmOCGL45tqKQ3pFqzYlXMlTZTj857t6Nv6CXAwm2q0YeaALMvCqSTKuu/xVr3LXX44+Fy+SC2nlWjGeaIhPY0ONBX1HP1/ND/YkdWPoYm7cKadZLJPlEjyHAicMmUKV1xxRY7rGzRowOjRo0/LSWXHvn37mDZtGkOHDj1u2w0bNlCuXDmqVavG1VdfzfbtuWv3+Xw+EhMTI/6HaBUmLmzilPKUpRRVKO8uX6ZX87gxkm89b3KhaIIHk63sYoVeyzv2Fyfa1RzJySVHo6km84dzYBmR8dCzPQc3vl7BmfzqVOJXe9FJHaeCKEN32Q6AoiKB+jhZdzvZyyy9iJZBJ8Fd7PvHXAGzY7XO6poVPusS5d/DkAaveh5CIilAHIvUMqqnd+ZHe66bPaRxDEQukZ2Y7/2c5zwZ5fHh5WNaa+4KPJ3lGH4CvGI8RHejHTVFZSCjNLwS5fK1UUg44Vkxm/UOLjd6un9vZScT7W9YoP7M8/6GGxmlg+/ak44b/JdScq9nONM87/Km5zGW6r/5Xa9w/2emkazDV57XWBgsQ96md9M1MIQ9+gCr1AYuDdxCqaDO3V3GEFZlcx2oSWUO42Qr5oeyYCBC5y9EeLZcZkbKaykg4vhbr2dDmLREXgKBP9hz3cnAHrI9Qgi+NF/FwsaHHz8Bfla/sc7ejIWFFw/NRX1meT9iVsxHfOB9mgtl05PoZSRKKzcQWFVUyPeaoE2NukxTs0kmlcet1zmgDvNI4BUmqG8i2jWhLl+br/Od+RZTPOPYEPMzm2Nn8Y73SbeNRLJYr3RLRWO1U+5bg0osVn8xxOjH73oFy/Uad+JGCMFQo3/EsRKI5zH1mpvpW5ritPUPpL3/avr7b6WxvzffWTO5N/BsnrKTw9ml9mUxDAthYlIxm+9EfiFOxLrC8uv11myv002NehF/CwQXyTbUEJUoSBwSyQa1ld/tqBZZlCini4SIjMAkhBBZspfLUYq+Rhf37516D1/bjl6crB16ltOQQ2VcCCmgUAycV/Hk5TfyO+nax0f2FPdvlek1rydqcKHIfTwjhaSeqIEXT4S+f6hM+Ac1hwX6T5bov+hotMwk7RWZ7RdyhIeMoOAyvZqdeZR1iZIzeR5BPvbYYyQnn9iA5XQyceJEChUqxGWXXZZruwsuuIAJEybw448/8uabb7Jlyxbatm1LUlLOulBjx46lcOHC7v+KFTMuTg1ERsltKKtnGas5REZ52EK9jDssJwPkds91zPB+4K573HqDZfbpcSXLzSXnbAsG6eS96KRdqP0rUfuWofYuQ+1f6S7TSbvQySf+Ba4RDH5ApE5SOJcYnShDSTawlcnq5PVeRhk30EzUZ63ezC4yHhTftD6LyLyak0uZzulmc6bSYAODkqoyG312VDj1LKCprMc481GWx3xHI1GHXewjiRSqknFN8WDykHkzxUURzhMN3JT7X9QCkpRzjZ1sz2Aei91tQjc+gaCn0YGX7Yls0NuoSnn3uhQtC84gPCtmq95JL6Njlja3BB6PcC/LjbqyOq2DZZ1r9WZ+y6M2aCejJXEilpHmde6ynGYxWxvN+czzEueLhvyhV7JE/8Ulvhto6R/ATvaSShr3GcO5SQ5kif4ry/Y1ZRX39/wSEM4uIzCn+wKAV3p53rw/y/K8BAKnh2nOhj5PBWUBvvC+TF1RnVTSeMh6iUfsV1ivt1KQOIYZA2gm60cMYnNCa8371lek6jResSbyijUx24qCPRxwpQLycxloiBaykesUfoij9PQP51n7XZbqv902BSnAG97R9DQ7IKWkm9EOIZzMknl2xnV2qOxHfVGTRJ3MLvaxFMdIYgPbmKx+4lKjq9s2vCzpGqOPqxEYRyzlKM0BDjNZzeBt8wmGGZdziKP8qVczTc9ms97BFdbtvGp/yJPWuBPq7yt29hIDAJVFuVPSnjwXqBW8DiaSzD4OZVk/WPaN+PsQR7ndGsPfegNVRUWqiPLM00u43RqTJXs7SpQoJ0eRMI3Ao0Gd5szPrbVkFZ4176WlaEw8BdjBXlcLWXcZj+g/Btp9Qq12i7ijo5c7g//v7uzljo5e7u7s4Y6OXu7rGsOCO+MpWzh/T5KdChPsye7EcmbiiOV62c+9h+bG+bIhFjYb2EpMMBh4mKMk6mSWBzX+alOVYqIw54uG7oT3T2o+DwSeZ7H6i0VqOY3DnKb9YYaZU61oefCpkudvyb8dZHj//fe5+uqriY2NzbVd9+7dGTBgAI0aNeLiiy9m+vTpHD16lEmTctZoGTVqFMeOHXP/h5ui1BZVMcg6sDpE5APkfL2ED4MW2xfKpgw2LqWNaI6FRdfAdUy3Tl0sep/OOqgBJ7BQRZTPdt2/he+z9vjG18H/aVv8n7bD/1k7/J+2dZf5xtfB91nW8rbj0VzUd3/PKRPvfNGQQFDUdIaan6P4/vE4z2joPsAdIZGylKSdOJ/Z+neKqcJcLNvQSNTm61MINp4omR9Yy6T2pPr6NOptTKbnthQC0WDgv8515mVUEmVJEPGUp7TzU5Z2XdACWIwKPA84M2ahh/k00mnlv4IUncrt1hh3fwWJcx23LhCNWKbXuIFpb5hBUDQQmEG4K91mvYPmor5bQikQdBGtWK030tp/JavsDXna53BjAC1EIxqLuoy3vzyh8+km27rnk5uJ0aVGV14zH6EMJahIWboYrQgEs8uqiooMN69glv6d4hTJ4oAZHhTKLxmBZSiR5f6cW0YgQEfjAvqLbpwnMlyGjzerrLXmqE6itWjG+aKhaxgGUEoU523zCbcs9AfllLQcJYl2Mm+SHUorrg/cz83WowwPPMQatYlP7O+o7++JP1MZaXj/8nMZaDjPeO6hHKV4xryHHrI9TURdJNJ9+EwhNWISMZxJ9g/UEzW4SLbhMuNiEkQ8CSI+iyv3DPUbNaniZpzNUX+42XwlRFGGyH50Ea2IwetqSzcT9bndGoOFRTEK48GkhWhEbJipzxv2J/ylcnYBzsx39qxslzcWtekQpl+dXwnXCcyuPLiOrO4GbUPEU4AE4ilOYZK1c69dplczzvrUbaO1jhhLputI2Y4oUaLkTLhrcGIwuHe+bBjRpoVohFd4mOp5J4ursJAacd50qvb4jo097sbT4y2e7hPH033ieOqSOJ7pE8dTlxTgmT5xPNYjltql8/eEyKmQqtN40fqAulRDIChG4Yj1aaRHZO/lRlVRwa1aKoATvzmsj7JILXeXb2EHDdJ70sTfm7qiOgA+/LxoT+Ai/3Vc5L+eI2E6vj58NKM+zUR9vlDTT7W7+Z4TEhHKS/T3n2DevHmsW7eOL7448TLbIkWKUKtWLTZuzFpKFSImJoaYmJhs18WKGGqISqzTWYWHwylBEe63XiBBFHIf5q4L3EeyTiWBeO6yxrKajdxlDDnp13GXyj5rocnyZnz32kbSD1tIj6B0k4K0ebAiZsy5NxsSnvWyh/1orbO8nqYwuVi25VP1PcmkMlctPmltpufN+5npX4hAkEIac7WTPfCm+pQkUtjNfv7WG9ih91DxDGThZNZpSD48CH8w9vdLis3sFIuu8Z5stoxypglpVYU4rI/RyNeLIyQyW//Blb7bSSCelTrjIXAD2+juG8bhoJguwKWiKx/r7wDoaXTk3TC5gWIUphyl2M1+2kb1AV28wkMFyrCd3WzRO5FC0t1oz0T7G6pQ3nUbk1rQMzCC13kk26zBcPoaXbnLeppDHGWN3sjz+n5KiKK5bhOipChGS9GEBfpP1urNbFLbqZ6DnEMToy6/yc85rI8xQ82nPKXpa3ThCfN2Cog4JqjJ7OGAqwcYIk5k3MPyS0agIQzKUCIiYzu3jMAQz3nupZH/EvfvcP2a7NjFPvfa3022zVKOe75sSBNRl+V6jeus10W2oqrMPVD3l1rHIX2MP9XfbobZ1+onqlGRzTgBv+/VLPoZF2f0L0wbN5oR6FBWlGRtzE94hYdXrIkM0N150RjFF/Z0PrC/pgrl+V2t4CKjTcR2B/URpunZ+AmwVx/gQk9TOoqWjGQwtrZp57+KpdrJCkzHxw9qDr2Mjrxpf0oAi1/UAi4zLgLgFnMQjf29sbBII53uoh0/aCco/LfewO7Y31ih1lJJlGW93soMex5j7LeoRgW+tH+gocxe0zCcdJXONrL/fK/Q67hANjmFV/HcIMI5WG1174vjrE8oLUqwQ+3BJsNEoBTF+Nk7gSb+PszRi6ksyoN2NM2ett+miExggOzGjYFHSCGN1qIZr9gfIoBBRl9Gm7f8q+X5j05P54OFPnw2mBJs5ZRGhgoohRBopRGAwmljhbURwTZKaaQAW4MhQSkQAjQCoTVCCmylMcLb6JBim0CjkSK8jcCQOqyNczxDCKzw/Qjcd0MAOtg+/FwNETyWyDiW0Nm0ydQfEdwuc5/RwefZ4MFUpj6DQGuNzK7PbpvgOefU5+CLq8E915z6HKq6zK3PCo3Mpc+hcw71OcYUdK5l8v41kTp8/xZFSaAQBSlIATcjsKmMLNNvL53JzXhZkKuMS3jL/gxwHIdDmYHbcO7VNjZ/qJW0kNl7F0Q5eZ61xrOdjESbzJmB9UQNqsm8jT3qhWV9huTVDnGMeWFGm34sNrINNFkmadLw4cHEkylctYt9rm/CarWRejJqmnmynFAgsFatWscNYh0+nFVQ8lR57733aN68OY0bNz5+40wkJyezadMmBg0adNLHry9q5hoIrEgZvMLLJr2dEYGH2KS3c5cxhPGeMUi/wSa2sUyv5mHrZdqK87jAOPF+gDMDnZmYY7F0uugaVqUcdO8sG6YewfZpOj9T5aSOczYT/uATwGIPByhHqSztehkd+VQ5ov7T1OyTDgRWlRV4z3yKd9WkCKe+dWzhYtGG3Xo/CsUEazIPe/53UsfIK1prEokszy8iDRKBUAFLvPx3gvVRjk8xUZj3PWN50/qMH/Qcpuhfsm23jV3ug4oHk990hpZdHaoyWr0KONlQi/QKNJpLRdccM17yK1VlBbar3RwhkSP6GCONwSxWf/G3Xk9JitKKpuxgD3s5wLDAA9yvb2CkMTjHe1ysiGGQ0YeX7Yn4CfCRPYU7zOvzfD49jQ4ssJz3cqr6lZFycI5tS4sSlBYlqCurRwSTN6pt/KocrZxiFI4YoB0OczPOLxmB4OgEhmdKHy8jEKCsLMXD5v+413oWgKMkkqrSKCDjsm2/WmVMJFYgqwabEIJhxuXcYj3mLgvXlcyJ1+yP+NCeQgxefPipL2rwiHkL8RSkZ2A4AOPtLyMCgdGMwOzxCmcCLPz7ckwn8an9PevZyky1MEsg8GP7WzdwO8joS2xYMN0QBm94HuWxwGtuQO9p6x0eNG/mTZxMsW+tX9xAYHVZiduMQbxofxB0EI6jDCXYy0Gmqdk8FxjPPZ5hAFwgGtNE1GWmWsQivZxn7fFcZ/Q77sPVS/bEXNWxooHhSPmYDcFx+ya1nVHWC/jwU5wiWGGlZfs5zAPWi3gw8RNgm97FaONWvlI/skpv4KbAI9zJWJKCY6+DHGEP+wF4xn6HozqRMZ47iRdnPuDy9XI/T804XmZiXqpEcmujT7JNTu1PtWrlVPuTlzZ56XN2+/mnKnJOpj+aj5cEKFUojaf7ZH9fO5NUEuVIJZ0kUtyJt8ylwY1kXff3YcYANxAYPiKrRkV2s5+X7Ams01uY7H3jHz/3/MTP9m+8Zn+Ya5ueQR3+vFA/LEAXkjGysLKNZwBsIqung43iWzUzYll4Jch4exIvygfyfE5RIjmhaazHHnuMl156Kdf/J0JycjLLly9n+fLlAGzZsoXly5dHmHskJiby5ZdfMmzYsGz30blzZ15//XX377vvvps5c+awdetWFixYwKWXXophGAwcOPCEzi2c40WaD3KUC4QzK1FTVOYh6yUG+e9Ga81H3me5xOgEwHmiIb0DN7JD7znhc9iktrOKrCVsCTuK4UmKIWyCEzTsWfrv6Tn+k8QIb0TJzt/2+mzbdZGt3BmEafbsUyptv8y4iE6yJQD1hfNZqEll5uglbvr6B/bXp9UhOjt2sS+LYOvIMgep7pXECbinRAwt46Lp8GczFxltiBHeLMtLUtx1/z0QlvUZRyxb2ElncSHXGn35TE2jOEW4SLahrqjhmhc0Mer+axnbZyvhD8Vb9E7qyGquhMIBjlBHVKOlbIJAUEVU4H7reYYGHsj1WjHUyHBJe9eahK3yriHVTbSlmahPS9EkIrB0IrwZHBgDXEgTZHCInEB8xH2lcj4KBGbWCdymd+VJ2+tm4yqKU5hCFMDEYLL6Oce2i9Ry9/f31FcsU1l1f68wetBWnM8g2YfOohU9snF2DsfWtuuMp1GUoxTXGpfSx+hCR3kB1YWTMfqrWsRGlWFsEp7xGA385E5L2cQt2Z6qfo34biulIszcMht+ADSRdRlhZpjk/cV6ZqtFdBIXcoFozM/6N5KCpaQAD5g3UZPKtBHN+VbPZIDRnYbUojLleNh+mdGBV9zPZozwRpRXvR90aMwJrTU/279FuMQDEc6b0cAw1JIZGYGr1SaUUtwWeMLV1SxLhl5n6I65U+1xA8IAsXhpLR2jwF6yI0kkU5uqxBFLZcqRQEEEgjaiOW+rz+nov4ataie2tknVaaTqNJQOH5RnZb86hFK5tzkeczb+s2POKP99ft92duhcVhJlsYOBoFDJfoKIZ6jszyDZh+vkZREO7g1kLXqJjrQVzQmEBe4Pc5SiQQfiWWoRqTp746QoJ85X9o9cFvgfBgbNqJ9ju7yWBYMzqV0yqPsXbnL1p3bGUHHEUImyFKdIsI1zv25OfdcBXhF5nSxKYXazz33+/sT+Pvo5OAVOKCPwyiuvpFSprNlXJ8uSJUvo2DGjHOvOO+8EYPDgwUyYMAGAzz//HK11joG8TZs2cfBghonGzp07GThwIIcOHaJkyZK0adOGRYsWUbLk8cW6c6JBplmLIhQikWQKEEcKaQgcx08PHpbpNQDs5SCdA4P50vsqD5g3slPvdQd6H1hf84jnlhM6h9/Un3jxRAxWAA7V2odVKwVzfaS1dt0BJThXqSjKciyYWr5IL+ci2mRpkyDiaS9bsEgtJ44YflRz6W6cuCYhONke95rD8ekAY2xH2HsDzoNZGUpyiCOUEEX50P6WIWa/k+zV8dkQ9jAYoltsRW6uWSib1lHOFDv0HjaobfyuVvCu/QX1ZU1GGFe4EwDhKK1YEbxGhIinAAqbalRiHZupRHl2sgcLm6IUJpFkFurlvC4fYUhgFABL1d/uTdLEZLCRu4lSfiT8oXiz3kEz6rul/iYm3+lZDBOX85xxL3fbzwBwjCRq+LrQRNZlqVpFZVGOtz2PU0c6uiU1ZRU6yAtYqJaRRApDrFG843ky2+BuZurJGmzWOzhKIlvzUL6amY/sb5lgT6YUxTlKIoVlAko5gY3KlOcwx6hIWQ5w+IzIFJwtZHYODmCxk31UJvdgqClMmosGzNC/AfCh/Q3XmL2zbRvh6I1mZOBJZns/jigJLCQK8nPMB9ltni2L9V9u0L+7bM8X3lfcdVJIhhr9ecB6keqiEh3819BVtmawcRk79R4qUpZ9HHTKGKPkSFFRmNayGXPVYjbp7azXW6gtquHTfm6wHiZJJxNLDBfIxhEBpHC6G+1pEWjEH6xEo3lbfUFv2YlZaiEAX9jTGWY6EwTxogCPmyMZaDlj2W/sn7nVGMR99nMAzFQL+SuwngmeZ0gQ8Vxr9OVx63UCWHxof8Mj5i1uZmNmPlNTWUBWp/NkUt3fo4FhqEBp4ilAIQoyW/9ON/9QNrMDLx5KUowfvO9Ry38RaaS706pr2Byxj/fV1/wVM5VrjD4sVMv4Xa3EQNKEOqRLHy1pylDZnxushwHw4KGNfyA1RGVKUBQlFBLJB56nKSQKkpmZ9gL6Bv5HJ9kSE4Mf1FziKcBA2Yvasio3m1fnqa+DW3h5a37g+A2j5FsOJCk6v5bs1oE7ZdAayxZ4DU1ACaTQoAXgSC3ZGkypCdgCj6GxlAgrQ9agQWlnnT/YxlYioyQ9VKKsMtoUioGiTfpzpMlXrNdbXFmnN7yP5njul5pdGRqIzPQ6ShKd5IVMVjNIx8cstei4si5Rjs82vZttehdevCSSjImkYDDGAY5WeQHiEBChkZwX6skazFF/uJMxAFVFeTbpHaThYzt7uEFeydvqc3f9JWYnUuw01urNjmRA2P6OBCth4ilAIskoFJV9HegsL+RR81Z3vB4lb+Q5EPhPZJt06NDhuJlaI0aMYMSIETmu37p1a8Tfn3/+efYNT4Hw9OVQqQc4wqaz9CJSSXej2F5MQDBfO66SNwVG85B5Mw+aNzHR/gYbmwn2ZB4wb8QUeXv5tdY8Zr2WJQgIoLw21y1oxMEvNFa6DQhKNihA9Yvypl31X6S+qMHf2skEXJyNe2aIh8ybudp/F+vZygPWi06WYA6D7LzwoHkjs9RCFupl7rJ9HKQ4RVip1/GY9SqXGV0pIhJO+hi5sUpFZj/G4KUK0QfBf5vv7VncaY11/96t9rNGbaKjbEkcMWzWO4gTsUyxfyZFp7kZPZ1ES642e7NRbWOs/TaHgrqAZSnJ1qAO1G720V604GnzbkZbGYGCfrIb7wRvmr1lJ8qIczfwf7JkzggEqCLLM9F8hhftD1ikl/OcGs/Hnuf4Qr7Mr8ox4ZjGbEqqYuzlAHv1AUZaY/jR8557D3zNfJinrLf4TE3lCzWdbnY7rjB6HFcnSghBM1mPWWoReznIbr2fcuL4E2u2tnnSepNx9iekkEopijHR8wyPWq+5bSpQhp/UPBSKrqJ1RInjuU62zsFqJ5WN42dFtpRNmGE7gcDf9FL26ANZHH6VVqzWkRmcf+iV/Kb/pK04eV3OqXaG211PmfVB5nqjH71kR962PucN/Qmfqams11tdN9zB8rJ89T6fLL1kR+YqR99xqppNEZHAg4EX+VxNA+AK2YOHzJtz3ccL3vvp6R/hPnQcVhll+OPtSQw1+rvXh75GV7qoVvyiFrCTvYy136aTaMkOvZcl+m/QcHNgNI+bt1NNVqSP7MxX6if2c5iqvo70kO0ZYvbnQtnUPcZRlcgL1vvH7WuVaEYgUkgWe7+mvf9q/ASYi/PeXyYv4kZzICVlMbrIVnyvMkxXMo+tN+itxKY3oCTFaCrqkUa6Ww4cSk5pJurzg2c8o6wXWaz/IoXUDBf64GPN8MCDLFZ/0SRY8rhcraGCKM1i/RcKzU9qHsUpgkKRSDJvq8+RStLL6HRcnde/7Q34jzPZESXK+gOa9QfOjqxA1t6BKLqGI5VXcYijlCD759Rv7V8oJYrTRjSnCIU4GtQHDBEy3gMn0zsaCDx1vrR/4CHrJSSSrkEzvZSwDL4U0kjHzyPGzSfsTF9f1GAOkaXAG3RGYkslynG52YO3/Rnxm16yI+vVVtbqzTkWxoekskJmilPUL5SxS/KyfPCEzi+/859xDf43qSYqMlD2opmo7wqWAlkeDiSC/rI7fgJuts6v6ncu8l/PPHsxPYOlQrvZH5FhcDy26d0RYujhFKIglYuV5ryby9Lyzgq0vLP8OR0EBCLEYdeqzTm3E43cB+01ehOv2R+d0nGlkLzqeYgKlKEK5fFgUopiHAw6SO/jEA8EXjylY+TGchWZSVaaEkh57hnC/Nf4M6xM0BMs29rJXkYHXuEd+wua+PvQ2ncFd1vPMNp+lWIUZqDsxS3mNVxt9KaISHBLHQAWsgwZnI07TzTkI+9zHCGRVXojzUR9zhMNWKc2UYeqXCiaMiysXDVKBuEZgeHllJcYnehrdEEgaCbqMTBwJwWI42XPg67TcxmR4UY7R/3BJPWDu31NWYVeRkdi8NJA1GSk9SS/humH5kazMNfzP9Wq47Y/ppIYELiNsfZbVBUVkEi6GK1oI5uzSWdIaGih3PKJhrJWns7lXCHbQGAedAIByoVta6OYaE/O0uZn9ZsbKPBiUpaStBRNeNXKXUfneITGAAJBN6NtlvVFRWFqyapUFGXdz2IoCAjQPJPQepTsCdcz+tr6ida+K/lYfUdr0Yw4YrnE6BRhQpYdzUUD6pCRMTiPJW7G6XK9JuJ9EULwsvkgtUVVLpfdOUoiy/UaNrAVLx7OpyFfqZ9o47+S5WoNN5gDudboy3XyMg5xlM/UNC72D+FT6zt3n4/br7NV76QVGcHBzJSiWLbZZ/mRUqI4beX5xBLDZfIi4oiln3Ex7YJmBLmV7cfgjZDpmKP/4GiYYyU47pcv2xOYpH7kM++LXCAbUZhCXCRaU5ACFCSO/vJi6oua7GIfiTqZRJ3MLvbxu17pGD8giMFLpUzBPIXiA+vrXPtna5sugcF03j36ZF6eKFH+PfZVA2B9Drr746xPuCJwO739N3Ke/7KIezQ4utmppBEXdKD9wZ5z3DL8KMcnNDGpUNxoXMWu0MRHGDY2F2UzVjke9UXuY9Lmsj4tRWOulr252bia62U/6ouaNJc5lyfnxKf296To1OM3jOKS54zAU9Wy+C9jCAMDgz+D7nEVKMNeDlBDVKacLs2fOMsfNW8jBi/fq1luhNoO/rvXes7VHGlALX6059Hb6Jyn48/XS7JdLhA0EflPGyzchWg3+7G1ne0MhRSSVzwP0dp/JWUpxVT7VwYY3U+pbK6hrE0L2YjJagbgBP9k8F8cMXyjfqZoIIHHzZEnPGtyPMIfNiBDrzDKv0voumBissgziQsDl1OEQnyovsGvLGxs9nHIbXOYY1SXlegR1NkYaQ7mNuNauvivc7NNFYphxuU8bo4kRniZpt5hF/vYpffxjHGPW2pWnUp0kBec+U7/B6gmKhJPAcpQ0nUXA+dB/XbzOnzax2jbyaq73RrDUvlNhNPzdHs2lwVuoTqVGG9NortsR4KIB6CfcTG79D7XbOI9+0s6Gxce95yayfqus89StSrXmexNajv9Are4+ip/6fW8ZT7GtealpOhUdwLCi8fNUgfHWTo/ER4IjCWGSpRjfVCD6HiEZ9IWoRDf27P4n3GNG1DRWkdkYjUR9divD7FILydWx+DT/jyVhWdmrzpIeUqzn0PUEJUpJYrn2PZ2z3Ug4H7reXdZQeK40uh1wsfNj1SXlagjqpGkU/DiYX/wWrxd72GmZyLNjOM/bEghed07mhZ+R0dQo93vX1NRjyn2L5wnM8qlasjKLPN+y2v2R8xQ8znMMQSCGlRiDZsAKEFRnrTGMc7zKO94nuQVayJxKpY00ilGYR6yXmaFXsflsjtv2Z+jUCzl76wnF6RqtCzYpaAowMee51mlN1BbVGWj3k7dsHKxHkZ7sKA0xd17M0BLmrCI5RH7yqxPBRk6Vi/bExgoe/Kd5y026G1UEmXZG7zXlKAoXQPXU4KiHOQIh/RRRPCfQlGX6nznfZvysjTPWO8w2nrV3f879hc8mEvV0AvW+xzZWgW9qBcIC/QJqTxFifKvIIRC/9YPvagP14oSlBCJaARaKA6rRPzCxwFVGyXe4xhOufIxoUBLx3pZC3xCMxmTeIYiSCWJWJqKQ8ToWLc0WQYNoUM4y5zy5ZDbtSTMEkY79sxCaLR2SpzD3a6dfTi11QKN0s5+dLDcOuR27bQSSDQ2IodMq2Cb4DHCz1W4x83UhjB36JDZdfBcXfPrcGvu4LLMfQ5t71R3O6+nkJqAVvyl/wdaEiu8DKcgivHBF0hA2Htwg6iAFEkZx8p0rplOA4AU2qLUe2H7UYS/ugspTWuRgmYUEmeIfCHJJNMVpUPPuUEv8dD2WmAIGTRWDHVKcFQoGnGIUtLOvs+I7F8X97UNe58Rmdy7M/X5HzMHOrNE7x55ZJg5gI/93wKOMLuBwXy9NCJF+TN7KtVExYiLR4j9HOJ7NYvG1GEFa1mlNnCPGkZVefxSjvlqabbLNTpfBoNqhc3e29hs0TtzdExtJuvzoHEjz9vvs1vv477Ac3zqPbWsvWHG5W4gsDLl2MdB0vEDMRzhGK/YEzmkj/Ks5143cHCqBHSADZnclNrKky9Li3J6SNGprNVOVmp9UYP6Rk0+1S/yqP2aW74O0EG2oJVoRi1ZlZ16L3cZQyL2I4TgTc+jpONjmVrDMZK41RiEEAKtNdOC2UMmJtvY5W431Oh/3JLU/EpRUZj6oia/6xVsVbs4ppMoLDL0NO81RzBDLeA3vZRNejtT7F+40uzpru9hdOAmNZB37Els0tt5wnqD5zz3uetvNAbygvUe+zjEd2oWe/XB45ZoR2QE6pwzAnfoPTxtvc1avZm1bKaLbMVdxlA6Gk7Qd2NYNqCfgOtqX5witBQn50r/X6V8mEaghcV6tuBVJmO5K6LdVr9io9/mgjiTQoZzly4d9n4dI4mlehVPWuN4xnMPAF+pH5mrF7ttOssL2aH3slXtIh0fS/XftBLNTvicl+vV/BzUJrxC9Dhu+2uMPjxkveS67l0ue5y2e0t+4Cfv+5SiOE9a41hkL6eeqME077tZysBzo5Gsw2jjFp60x2GjSCGNYhRhmV7NOnsL95jDIq4vUkh3YmGCNZnP7KnM0U55VHGKsJkdrFdbKRJIYLx3DCPNwdxsXMW9gWeZq5ewSm/gDfsTZqmFbjDqfNHIlZ3JTNQoJBIhBA2CmSh1RaRmVGlRgq6yNT8r5zsYi5d0/KxkLQWIJZV0ClGQipR1A7fZodH0DtxEEQpxiKO0kI1YrtbQQV5ADF5W6rWAM/lfQhRlvz7EFbIHFUQZHjNvcyeLbzeuw9CSh+1X0GgOcYTSvgvpKTtwozmQVjLjGrPYXsmzKZ+i3/8U/LGcoOdjlCj/GlpL2Oc8s25HsN1RFAyuLRT8XzJsmcj0O4DGBkLiDMkInFqpvCQr/RPu2KfSJjfOpDs2gFNhkI4OTnOEZGsiQ3vLI96zvJ5HLFAnU/uM93Y3gt3Z7jd8u6whRjtLe2f5DjQ7cvw8nMn38L9B9A6SRy4QjWkYHFSsZiN1hZPenEIa1UQFPvI8RxfR2ikBIIW6orrr5hYq6ylIHGuDosQafVyXuBA5BQIB6suaOa47VylHKbd0w4PJquM4cP7PvIZCOBkek9UMvrR+yLX98eggW7iBx23spkQwYyeJFCSC80UjJqjJtPNdxWaVtxK147Fab8Ii0iGuvRHNBPu3WaHXug9pzYJp7D2NDlxj9EYiGWkMpqmox0ee53nEcwtXGj252xyabRZvLVmVRrIOg81Luc281m2zWm90zSUupAmf2Y62lRcPg4y+Z6CX/13OD2bpWFjMUPMj1gkheMXzINWoSCNRm/usZ/HrSK2okcZ17rXmDfsT5tgZOide4eFa41J3/9mVlWamsijnuqP9qVahtWa/PhTRZp86yE2B0XynZlGZctQR1XjFfMgNAkJkWY1AkBYcunWT7U57JvLZTjlK0lW0pqmoRyyOZt7fegNbVUbAfEZygHobkuixLZUmm5I4ZDnf2fBAYGj+/jX7I+baf7BH7eeewDMRx2ok69BGNnf/zu3enBvhGYtNjOOX+JYQRbnHGM49xjCulX25wbzypI6bXyktSiCEcEv/BxuXnlAQMMTN5tUUo7D79+GgrmsqaXxmT81xu2uM3ow0B1OSYrQUTTjEUTeo+7H6lu+DZVke4eEl74PcaAzExOQl8wEuEZ3oIdrTSjTD1CYm2X+/oxmBJ0b497irbEN30Q6JdLP9kkhhNRsxMj0mmWS8ByYGBYhlCzs5wGH2qAPsYh+fq6m8r5zxvUDQUNZyP3sNRC3uNYdzjGQCwftNjPAyxBxAY1GHOGKJJYYU0pikfuAi//V8an0PwGRrBp0Dg0lKjgF/AaKPcFH+ewjINl2GsOUi0+/ZbZ/bfqKcPP/U6xseXMvufT7e+eS2LvpZOBWid5E8IoRgmHE5JibVqcRyvZYE4ilNcVqIxtwZGMs49TGHOEo5SnGVvIQVMd9zjxzmWqYfIxkfftfy+kP7G3cgkBN79AE2holqZqbeWRoI9Pb7Hu+gP/D0+RJP7y8xe0/C0+dLd5l30B94+31/UvsWQlAOpxwsgOXOuuZEUVGYpzxOdkhdUZ0brEf41v7lpI4NGY6OHkyainoRZV39RTfWamcGubgoShv/lcy2/8hpV3lmqcpaEtSUuqe83yinRrjOWyjbK1R6utL7Pc947mGB9wtKimInfYxparb7+072EoOHwsTTV3Y9pf3mB3qE6YNNs2dnWd9A1qKxrMNKvY59waztcKrI8txnDgegnqjOlYE7mKcypBqGGP0RCOpQjcn2DBJ1cq7n4xiGOJ+TAxzmczWNRr5LeNf6glesiQzxj6KW/yJ+UQs4RhJ+AvzgGU91WSliP8vCdCmLUZjzRUNi8eZL0WxTmOxkL8v0ajcgCjA97Hsz7pA/VJHNjoDm+yRnUqUkRV0937I4gaG6ojoDAiPp6B9EAvFIBAkUpDCFqEu1iEzskw8EZgRya4kqedpmtOcWnvDczjveJ13zgSgnxkhzMJtiZ7rl/ydKYVGI5zz3Z7vuNetDV0t7rz5Ib/+N3Bd4jurpnenmH8rtgTGMN8cQCOpNlsIZN5SmONcF7uUne567r+Hm5Sz3fstw83IKy0K0N1ow0zuR9WxxA4iZqSajgcATIVw7MkWnUl/WJJlU4og04LGwiSOGSpTFg0l5SmEGi6kSKMRmdrhumFvZSRyx2Ch3UmKYMYDnPPfxtfd15sd8zndqJgP9d3Cp/yZ6B27isHZym4qJwszzfsqtxiDS8UWcwwjrYUqmX8DV1l3O+19sF6JyzkZ5UaL898gtkBMN8vz3ySmwG+XfJloafAJcbfQmgMXd1tMAdBWteMK8g8/tqRzgMAAH9CH6Gd24zbyWGOHlcc9IxvsmcSRMbLgsJdnFPvZxiOlqLn1y0QqcY+cuQn+2lgbLYkFx0BLZPLBkt+wEqSOrslU5WVJ/2CvgOGbA18jepJpp3Gc9Rzo+xgTepBylON9olPuGOTBE9ud7MYsFQU03AwMbm0V6BTM8H/Co/Ro/qLkoFM9Yb1NXVKO0PHln18xlhBIRNQo5C1gaFgjMLGxbQzpZo8fT8NyotvGhPYWBshdfqR950Lwpotz3B3uu+/uWoJvwINmHxz23n+rpn/O0lc0pTCGOkcRPah6WtrLoLg03ruAb9TMA4+0v6WdcHLH+DuN6PNrDw/bLKBT3B55niNGfoWZ/qsoKPGDcyBj7TdBwY+AR2ssWDDX6c4TEbAO1zUR9fsYpSRseeBALmzussXQXbflBz4vI/H3Z8yBlZVZn4V9SD6OtVhC3FCU1i/VfmBi0F+ef8mv2X6S+qMEavSmoF+MwVf3KzVwNQHmPdLVnAMp5nO+kR3goThEOcgSJ5EnjDh62X0ajXWOwMpRwNRiriArECC9lKckeDrBA/ZntZ+p4hDvm1cxjIDBE8j4/uxYmUapRQYpWiz2hbaOcOlfIHhQyC3Kj9TAHgjqBAJvYwTx7Me3MFtwfeI4Zaj4/8xsazS7tmL1NVj/zuedlRluv8UswQzmkUXd/4HnWqE2MNAcjhHDvH+FBy/DjZSZaGnxi1Bc1qSzKs03vYq5ewqfGiyQQz1f2j6xknduuKIXZ5Z3HRrbxkjWBD1SGkUcoIzREMqncIK+kAHF0M9siEBSmEPcFnqMMJXjafifCcBANdwaeYq5aTFVRkUneV3jcM5JKohyf2N+xUC9zA79JwfuCRiMktB/2MSWnPcGkRSeuURolypmmYVnBfRfFcn/6i+xkL4YQvCOfwvDYDE17HNtMpYxdnudj7iKYsI8WNrf7xnLMcwgRiEWbPrC8IG3qi5rE6TiWiBVgmzwTdyslrfLEesAX0BhSoLWTf2ZKCNiaWFOQbkOMGdmGYBu/gjgTUgOaGFPgtx1Tn5B2n9cAnw2xJqQFNF5DYNkaKZ3xhFIQ44G0ABTwOPvxmoJAcD9SgmVDnAdSA87P9IDGYwjsYJ8NCZZyzjHdCv4MaDxSYAf17AwDApYmziNJszQxBvgspz/gnKtHgt/WxHqEu5+I10WD14TVge08KV6CQAyYAbDNYKxOg5I09dSgj+5OHW95/vRt5kcxi5XWRpCKhqImF4sONPfWJN3KeF08hsBSTp8NCYHga5Ye/Pli2icslstBCWpTlVpGZdrRkoreYqRZOO+TpTCFIKAUUkh2iZ1ge3lQjEVYMVQ2S3GDGsRPYk4w2UaAtMD2gMdHrJXAGzEPIG2v02dAK/CY4A+9B35NjCHwq4z32VYQ63Fe+9BnwWsE30MR/CwE2xxOTGP4K2fqG/TPEQ0EngDxogB9jS58Yn3LIY6xSK/gTmssvURHClGQVNIpLorylv0Zq9VGPvY8TylZnNuN6xltZ3xaDnGU1jRjCzt5y/4s10DgTLWQCpQhmZQsFurlKU0RkZDDluc2PUUHfmI+Gs3fbDhueyEE1xp9WaCW8YOawyGO0jdwMyvlVIqLIid8/MKyEP2NbiywnEBgMQpTV1Rnnl7Cl+pH3veM5Wr/3SzRf7Feb2WINYpp3ndP+DghMjuMxoVpU0b59wgFaL14qB80sdmrD1KcwnjEcaLTwFq1iQ7+QRwlkfH2JA5zjPVqK+O8j1JIFGS92sJC7bgIKxRtRHPW6y0MMfufVGlbfsMjPFwkW/Ol+pEjJLJAL6NdpmBZB9mC6qISm/R2flWL2Ki2uQ/hECrb6sevehHr1BY26m38z3qUgxzmPnME1xh9eMF+n3R8TFYzmKxm8Lj1Om1kc77wZh0lXGZcRHVRiSXqL95RX5BAPG3leTSmLjvZx3a9mxuMgWzQW+kts94bXj/kY/nee50/vBs4Uv4GkNBQ1KaYLHJaX7//CvVkTVA/Abji/PPUElcX8olSMRywFCvTFYOLeuhaMGPoU1qU4KA+wl4OMMZ+EwOJgaS9bMFmvZM07WQZFiWBWOlk+bSRzflS/UgyqazQa2kuGpzQ+W5QW91zLSYK5944jCOb0xnffDm+ozbSI7hmVgMqtcmfY4B/CyEEPc0OXKYv5j37S2xUUDpccJv9JK+Ih/hcOfINscQQTwE8mCgU09SvmLbBeM+TPGGN4wX7PWLwkkQKG9nG/fbzbNW7eMZzTxYTmsPqqJtNCM49xx/2d7VoafAJIYSgp2zPOPtTLCx+0Qu41zOcerIGVwXu5HzRkJV6PRM8TyOlpBZVGWFewQz/fC4QjZmr/+BgMBDowSSAhUbzmvqIW4xruFA2ZZ8+SCvfFexiH+eJBhwjifqiBnv1ISwsBsqemJjsZj+79X7a+K5ksvcNhpkDqCkqc1XgTnrLTnympmIFFbFaiEas1htZ61nD3KpPwaJH/82XMUqUPGEpweVNvXzj38du9QsaaOW9g216NzowHQn0MvpzuSfyurc2UIzngrIr4VPqe1jMg8aN/Gk7VRwxZnOuMZ2JP0tbHOBIdIycBx4L/Ii052RZbmLQXDTgC+8Drvb1ZdRhiCrIgMBtmBj8rX9lLe/wied5rja65vmY5ewmTFfHKEVxvlEzmKbfZQ4FKEICP3sn5OCd4Mix+QMN+Fr9xBr9M2283elEEy71v8MxkiMqQvxAutmE4eYVJ/R6nAiJiekM/8f2fuaIphSdIBVEGaZ530UKQRIpLNB/UtIoxoHY3/nY4wziAAIEaO2/kpVqLUPN/m75EUA6Pjazg93sdx88s8PWNj+qeexkb+QsYpD8qA8YooasEnQAgr0cxKf9x90mTsQywfM0beV57GIfhzjKI9bJh/NHGFfQWNQhgXgqijLM10vQaF6yP2CfPsg3ntdJoCC72MdMtZBNavvxd5oNc+w/WK7XRCwrTc4uk1HODFprushWVKIcAFcF7qRqekcu8PXnksCNbslPThzUR/if/3FqCKfsM+QsuZFtdPBfw2Z7BzcHHgUynAtTdCrzvZ9xoWz6z3XsHONi2Y5CFKSNaJ7td1AKyTBjAHHE0kFcwNyw0t8QRUVhpnjGcZVxCcdIoiAF+FOtYqL1DVVlBe4zRwC4urCHOMpUNZvden+WfTWWdbjW7Et1WYnylOZ/xjVM8rzCQ96bWeD9goUxX/KI53985H0u22zS1w6FlY35a6J9ToZ1uOZVfqNBmJN8FVGeMpSkhWjEbOXIMhQzJZMqFWRtrUKMKhkb8bqWDko7BLBIIx0LGw8ePvG8yDzvp242f7ieYBt5HmUpSTNRjx/DSjrzQpJOYTfO5+JEswFXf3EQf6KTIaSVZvl7+05o+yinj1c8DzFAdnfHIRrNWr2ZRwKvcL5wKg2eM+9jR+xcFnm/JIkUDnKEL+xppJDGaM8tfOR53s34CmBhIJmtf+di//Wu+2yIn9WCiL9jyHhgrkZFynDyFQf5lZ6yIwWJo4moyzv2F2it6WV05O+Y6fzinciB2EVcbLR12zeV9VgQ8wXve8eyMOZLdwIgEMzWC2AhEdgoqqd35ib/aA4FszhX6nVIBBv1dhJJQqF4T33FW+pTd/8VRBna+a/iB3sO7Y0W/B7zFa97RrMyZhpJMctZE/Mjs7wf8r33bfZxCFVzERTeewZfsShRTo7/tXUmxhvJOtSjOvVEDearJcwPG29lN4YZYvRHIqlO5ETHURKpGiaHMF8tZb5ayqX+m7k58CgX+Ppxvf9+xlhv/kM9Ojf4KaziKJzuoj0/ed/PYoBXTVZktvdjaokq2NiUpgQz1G85xjGy40KjKU94bidWxFA76LeQTCo72ctqnbvmf4KIZ7XeiEYzMvAkjURtvvVmfY8lgnfsL0jXvmz2EiWcaEbgSVBMFuE18xEuCdwAwNjAW9QV1bjU6EpFUYanrLeYHnT5nGh9w/2eG2gsarM8TMuuGhXYwwEA3rO/ZKy8O8txFuu/3JLjSPckh/CHn7MNe+0kdCAVfWAl2vY7YVDDiyjZCH1gJaJkI4SnAEady09q/xfIRkGDb+ffer2FhqL2cbcTQvCa5xHm+haTRArT7TkskX9xntHwhM/BFCavmQ/TL3ALf+rV7gx9AIuP7Ck84bmDEeaVPGS9BMD79leMkXee8HGesd5Fhb332ipKifQrWKZtmsblL2OAswkhBC94RlGEBMbYb5Kok93v9D51kAcCL/Cz+o0msi61RVUsbMaYd7iZgg9bL/MbS0FDE1GXB8wbGWd9ymztyAGMDDzJfDI0yK6QPRnnGU1BUeDMd/Y/zAWyMUmkMF8vpYQqyvX0y9LmEtmZUbzAbP07AdtiiJm1jSlMHvPcRnGK8Lj9Ot+qmcxXS+lldORO43o6yZYUJYEbAo+wUC/DxmaCPZlRxg38ohbQUVzAr/p3uhqtAVxH0XCEEFSibK79KeFJZ0vAxJ0fN53PXH4OBNYPuxd68bCXA+zVB6hkl6OP0RmtnftEdg7bpbMJoKSQRgxeBIJU0px2YQPifvJiHuAF9ugDHFLHGKVvyLN794Ywo5Baskoee+hQuEoMOlT9rKFIlZhc20f5ZxnruZtpvtkkkqEN+jsrQEN/2Y0hhnMdKSWLM9DoxXj7S5JJ5XN7KsPNK+hjdOYn3qNnYARJpADCdaG/KfAIj5i30FQ6ZjLh7tWQMTkETrVK1D3+xGkvz6erbMMU9TNo+FL9wOVGDyqJnK/BoetARcoyzBjAUsvRbw6N/xSaw/oou9hHVV2B9KB+YCh7M6QnGAiTgPDipTLlgpPJ8IQ1jtVqE3ea10fcE0I/v7UcjWtRIIkyt9/FKzu+CZa6QcEYSPE5pY2WcsaNHkOQHtAU9AqS/RDvdcriTEOgtXbKHk1BegAKeiHFHyxbtDSmFCjlhLtjTUFqeBsvpPmdUkDQblldql9EtPEFMsrqLFtTIOw8UvwQ69H47WDZo3DK8OI8gpQAFPRklGo65XlgGgJfIPN+IvtsSoHPyr7PSmu0hhhTkBaA+BhI9jnlnGnBPodelxhDkGZF9jk94LRx+2xCaiCjz7Ee8FthfVaaONPpT7wXkn2aOK9ToigBGeqzV5CSqT8BWyNw+uy3su+zHXx/Qn0u4BU8Oj2dpTvy4qR7Zjjs3EbpIdvzJOOwtc0k9UPEhHmbMP3dEFVlBe43RvCU/VaWdWvVZhKIJ5FkflRz+SuwLkJ24zM1FVOZXC67U/ME77X5AVvbETIIIQoTz0TvM8SK7McXhURBJnqexef3852exfv2VxQmPts4Rk4EdIAx1jj2ctDNqAZYpTfQkw45bneTMZAP7W/4S69nrd7MzYFHGed5lNHmLdxvPe+2U2j+0ut52nqbRz235fm88iPRQOBJ0tVozVA1gCP6GJPVDLr4r+MX7wTOkw153TOaS303c5AjfKimoCxNT9mR5bYTCPTiYQu73A//h/YURpu3ZvnSTQ06yQHurHM49eTZqQ8IEJj3MCTvBiFxn1xCv4d+xpc76UBgARFHBcqwgz0ALFDLaCiPHwgEKCdKMdq4hSnqF/7Uq7jVeoL58rOTcttsYTSml+rEB/bX+Ak42YGU5Tn7Pa42enOt0ZfHrNfc9/kR85YsJT+5YSubeWEPANoqjt4xkUWqKC1J5pMKBehf+PglqFH+OUJugAkinhK6KOn4uMsciqUtdrGPiqosH/A1R0hkq97JJO+r/K5W8IHtaA158bBcr2Fo4AFKU4Kaogrni4bsVQfcYzSgJh94xkYf9k6CqqI8JiYWFpt19i7eNWQlqomKbNY7WKxXkq59OQ6CbvNcy2K9ki/VjxziKA8HXmac91EuEI0BmOB9hjq+i9Fo3rG+oDoVGGzdTzwFSCaV6Yynk9HypPtTv9TnLN5fHWmVJq7IV6R5nCz0VrLZSe/zv04VUZ44Ykkjnb0cjHg4sLTFdr2Hlv4BNJF1uVr2ZrB5qbtt5hlvcO632/Qu19gLIgOGJWRRWsvmzFDz2aZ38YtawEVGmzyda/iDSi1R9YT6Wf/KEhxal8a6yYeo0KoQre6L6sL9m5QRJXjSvJ03rE9Zx2Z3uUBwp3l9xPV6mHE54+0vAXjXnsQw43KEELQwGtNPXcwEezI2NkVIoIGoyQ9qLrP9fzDR8yw9ZDumh5kddeQC5pBhQlb/LJ4UPpsxhckgo48TCATuCTzDhaIpFWXukzEhLje686daxW96KauDJnEAP6q5lKKEq/8IuPegeOJIJT2oK61QKDrLCwkoi23sIoDFBr2VB+0XOUoij5sjIzKYLW25YweAngXPo2+j6BgwSiQPTU0/fqMzhCFh11HnGbahqEUlUZYteicz1UIA6lGDHkb7HAPw1xqX8pI9IaL0UyL4SE3hOfNepqrZfK9muffWgsQhkSSRgoXFbYEnme59N0uFhdb6uBre5zJ/6w1ZzKeKkMCj5q0UELnLT0khecP7KD/65uEnwEf2tzxq3pbn59upararvdxWnMcsvQiAVSr3jEBTmLzieYjnAuNZqv9movoGbWleNx7hU75jJesj2j9jv8tA0YvaZrU8nVd+JPpUeQq8aj7EAe1k7NUWVXnV+pBEnUw5UYpvvW9ymKMkkcIn9ndcKXu42/kJsJv9dBAtKUcp6orqfGfPzLL/UFahIPsLVX4f/J0nM3SZZmYqmzkeN5oDOUoiqaSzTK92B+gnwxPm7RSjMNWoQDo+VgU1C9+zv6KUKE4f0ZmylKKxrMNcdWIOwi+oDyJmjkltBaoo4OSHTjh6/JLoKP8sISfKr72vszN2HqtipnO/McINECqhSCQFiaQkxaie3pknA+MoENR5zBADd3SiPve8xEWyDXNZjImJRPCK9+FoEPAkMYVJZeGUb2/RO11nT4BUlca9gWd5PPC6W27vJ8Binbsj49Oee4inADWoxO96BYtVRvvKohzdZFsqU5400hluPQw4pQ8Ad1hj8B/HLT4ntNb8YkxBlr0PKl5HeiFHi6yuqJ6vHaQNYVBPVAec97izuBDA1YX8U68ikWTmqsVs17sjti2dTSAwtJ/QQBWyBgyHGQPc38fbk/J8rutVhmNwTVE5l5ZZEULQ/tFKjFjZlB5v1cCMjV4T/m1GmFfSXkbqjg6Q3Vx38BBNZF3OFw2pTiUKUZDFaqW7LvyzVEmUde8JdUQ1rgzcTiPfJRGfxdKiRESVQH6WiTlVehod6Ck7EE8BChBHj8BwV8PzeBQUBbje7MfOoBlMCZyxWTKpHOQwG9hKSZzrcsgESmKwzPsts70f4w263M1Q89nJHvwE0GiSSKEgcazSG3jD/jjimD/a8yKcjbsb7U6p/1HOTUZ2iDlr/Fm9Bgxp6QSIpJAMDbveAaxmI3Vl9Ry3ryLLc58Zqcam0KzTW9ih97JeO/fUMpREIPjWfIuKYUHFZFKo4etCP/8t9PPfQrX0TvT138RVgTsjxoP5jbl21ufRrrI1N5oD87R9SVGMvtLRBjzIEaaoX/J87HftL9zfbzWudZ3YV+n1OW3i0ko24xqzD4c4hgeTYzqJJ+03uc0zOEvbYhSmmzUUpc6e7NizjWhG4ClgCIOp3ne42D+ERXo5K/Ra2trnMdy8gr0cpJtsxzfqZxJJ5l7rOQoQS2rYjEZ5UYpf9G/s1vvRNlxuZgQLH/W/xppgrXzWomCQSOqI/B3h7i7bu26fK1XW9ObccGYVHqaz/1oAPrO/51KjK6XEiWvvlRBFmep5m+usUREP+B/aU3jcHMkAsztfBX5ij9pPOVGKrnnMHAnoAJ9bUyMXejIymiRQyxt9EDzbCAUWwks/F6nlrFIb2a33sYt9VKMiqaRRi6qsZ0vE9h9a37CKje7D4GfmS7QSUU3AU6GqqMAmvd3V6Qo9nK3Vm3nV/hBwhP1DzFdLaSvP43t7Ft1EWzayPWKgWl6U5hnzHm61nkBpxW2BJ5jvzcgqHm8+xaDA3e4sJ+C6F+/Qe7g+cD8TPE/nyVAmnD/0SldfDjIyxdtmU1KT36gna7LUXoVG08iozTeWc2+Ybs/GICPbO7O7d06BwM16B6XCtFgzt+sh21OOUuxmPwvUMtarrXkq9V0fXhqci0ag1prNPx0lea+fWn2Ko5Vm/XeHSagQQ9UuhfN1JsPZxqveh/k0/Xs32B/Sjc3MTcZVDLFGsUlv50X7A+LsWF40R7FPHaSJqMtyvYbNegefmi8yTc3mU/U9CsVmIjOZ7zSu53Nrmvt3fXH2Vof8F3jV8zBjrbecCWENdwSe4irjEmao+Txg3shY621e9IyiMIUYbb1KW3EeM/VCusv2dDBaMNf7CdPVHHapfbyhPolwL8+Q93F43BxJbemM3e81h/O49To2Ni1kY9YqJ6u0OhXZy0GmqznMU0u4zLiYcsJxj39XTWJX2D0gP2eCR8mZa8730ryiwc6jNjGG4zjrlG4LUv2a+BhBkk9TKMYpMfYaAqUdx9o4jyDFr0mIFSSlawp6HZdb03CeRwN2RptCMYJkn1OOnG5pJE4GYMiZNcUPDcoalC+S8axyrdGX0dar2MExbhvRnKvkJbn253Z5HR8wmW3silj+qfqeVJ1GA2oyy/MRG8RWmssGvCkfo73fMQ/ZpHdwmKOkKef5+zDH2K2c79C36hf6noDRxblEdvrGr3oeOqF9DDMHMMk/HYCP7ClcLrsD8LI9gbLCSXQqqONYzUYuFm34Sc+nEuVYplYDztj8YqMNtewqrNYbWae3ENCB446N+xkXU0DHMdQaxbdqJiZzmC8/i4izCASHgoZOj9iv8KS844T6ll+IBgJPkRjh5WXPg7T0OzMc79qTGCwv5frA/WwMKwH6Qc+lMuXYRkY2wkq9jtqiKmv1Zn7TS1mjNrkPmyv1WjROinNKUKMoRHUqUU/WIE7E/vMdPIvpLTsxIvh7aGC0Wm3Mc8l0a9mMG+QVrNTrWKiX80DgRcZ7x5zUuTQzGjCGO7gucJ+bkn6MJF6zP+I241r3ffzBnott2nkqQ56jFrOayDRpEbecUiXeo2Ty1bSMK8TjpfL3Z+C/QkvZhJayCa9YE90y4qK6MOvZQh2qUoAC/InjQPym+owYvJSmBF1kK7ob7aIP/adIuKPmFr3TzZ5bFfb9ssIyb+erJfxo12VA4DZiiSEdHyu837kPcACDjUt50/6Uv/UGlunVPGmNY7TnVgCKyyI84rmFVf4N3GAM5G+9nqvkJUy0p/C7Xs7X6idkQPChJ3tDkJzInLlckDgaiTpcLNrmsEX+ITwYUpTCwdI7m6lqNhVEGXdd08yBwBxMFrbonRGSHJkniUxhMsq8kW/Uz/yqFvGQ9SKTvK8e9zz/0s6klYFBtaBRUHbMfWwH8x5zAkBFqu5A2ZrE7U4GeMexlWl9f7Qs+GziNmMQT9lvA/C1msFV6hJ3LJKm09mt99PX6MId1lMcI8nNnvjeP4sU0njMuI0yqiQz9QKetMfxq+cjqqjyPGu9yzWiD6/pjwAoREH2i8jgUn1Z6wz29NyjvCjNXcZQFqrlFKYQv+gF/GI5VSY/+OdyjCRW+tfRWjTjHfUFr/ER6fh4w/6EN/VjDDL7UEdW5xVrIsVUYY6QSF2qs44tlKIYKaTyjHkvs9RChhsZcjh3yOv4TswkhTQ+UlOoSRU2sJVN7OBS2ZVv1M8kkcKowAtM9D7DL/ZvzFDz3e3rUYPiosiZfrmi/EeoW8agbpmzT0e8lCjOWPMuSlGcaepX7jdvOO44KFbGcI3RmzF2hjFEYQrRmQt5l0ns5SDj1Kf0MTrj036KU4S7jCHUEJX5yv6RmXphtvu9I/AUXWXrfKm9bQjDzTKSSF41H6KoKHxC+2grzmOwvJTf9Qp+UQv42P6OlXotr9kfYWCgUdQXNflLryeOGNLw0UjU5ihJdBGtuNzogRSS+qImq/VGAlhs1NupK3LOEA3R3WzHDXogY+23sLC4336ea0Vf3tKfA5GSai/a73O56M42dtNTdmCams0lZqcT6uu5SjQQeBoIlXws1n+xUq/jPvs51gT1QgykOzuYOaD3p17Fw8bNPGGPA5zyohfkKADXdCDzNgCb2E5DogO/IjKBYhTGRmFg0C/9f0xnLk+Zd3K7cV2eHrAf9NxMI58zE/Wx+pbrVT9an+QM6yVGJ97WT3CN5Qimmhg8Yb1BRVGWLrIV36qZHOAwf+iVXJiHDK+3rc+zXX6g8PvMLtmf6rL0SZ1nlH+PUJZgkk6hse8SjgBr2cKX5qvcbo1hF/vwE8BPgFaiGeM9Y6JBwNNAVZERNNmsd9ACx9VztdrgLrewKUMJ9nKQhWoZm5UThEnHcR0bb3/Jc/I+t314VvF5ogFP2+/gFV7uN0YghKClbMKymO8oFjawMoRkRmAeHkxSSecuaywveh7I9dy11gwJjKK9bAFauSZJJgYppPGHXkkrI5oxWpca1KEaxUVRUkmnnTiPIyQitGBJsNS7HKUoK0pGbJedRiA4n5PwLNHsXFkvN7ozxhqHRvOdmsWP9ly65VCqZ2ubB60XWas3c4FoTFGRgDeXWe8V72c4Ah/d4suyLhoIPLu43ujvBgK3sIPm/ksZLC9lhppPSVGM7Xo3H3teoLGoE2H8Ecoi/NqegU/4CGDxh17JBPUNd5jX00t24gr/bQgEBYijjqjGvrAy4Ri8VKQMUU6NqrICv3o+Yrj1IGjHDGQHe4ImLlBP1GCK+gUvHveeUF/U4EbrEZbov3jevI+R5mAaiFpcFbiDurI6PenAp+p7WoqmTFW/slyt4fLASJaqvx3ZGKMLPWUHN7jRWNbhsDpKI1GbeqIGc1lMZVGOkqIoZdNbuQ7mAKUoTmvZnIenpfPOfB9COJlaHsP5aRqglPOcb0iwMq2zbWe51qAAQzjZYKE2HsPZRgYTuZQK7idzGwUyOESxg+v8tlMOGmpjKwgNY5Ryju+eqwJTOsvBMc6wlI44RsB2jDBUsIxTZupPRhunv0pH9id0PlZ4n3UO/TmJPof648302gvhZNDZmfsc1sbpc9ZjZOlzjm2c909nOldbQ6/6Ht6+Mg6vefaNIW8znWqsK+mZ522uN/vxlP2WG+A5RhJ/hZldPG6/zrP2u3SWFzJH/cFHnue42GhLIsmstTbTRNYFYJZa5OoNCgST7B+4PhuDuHOdYyS5vxcglkuNi054H0IIehudmRj4BoCbrdEUJYHiFHGz8f4KlvumBa+bK4OToev0FvoFj1lf1uDL4Pfhb72euhw/EAhwrzmMT+3v0WhitJfzjUa8b32NjcLGRiJdY60LrAFoNDWozEa20cSuw2zPx8TK/J1QE60rPE2Eax68G8zaEAhGyCvc5Qc5ErGNgUFBCrgPG1/Y01lgL3Pa6iNum+yoFy0FAaCX0ZFjJHGYo0xnrvNAZs1ivz50/I1xZqYeMzMchW4NPMY6tTmXLXKnv9mN3rIz4AQWAlh8EviO6mGZH9PCRL9zwqf8/Kizt3WHnMvZovw3mGz/5D4A9pDtucTsRHeZEUCIwcur3oejQcDTRHhG4Aq1Fktb7NMHs0gK1BfOBEsaPrYGS1BCGq0f29+SpiMFuFvLZnzteZ2Veh0azRRrBpPtGe76YplmV7sb7ZnuGU8C8UxTs3nL/pw/1apcz32RXs5naio3Wo/wq/rDHQSHSsdby2YnPIt7LlJbVmUtTnb972o51xh9WK7XsIzV7ncts24bZL2WhrRqNusdEQGX0tnIRhQWhRjryXDKG299meUzAnBMJ3GV/06m2E4W2Cq9gXGex3LtT8kGBbIdoQkDSjbMf9kLZzsVZVnKUcr9W6P5VH3PbvazQq/lCIk8E3iHhXqZ26Y8pamDk2W8h330EB3cdZPs6exS+/ja/pH1bEWjSSGVQbIv21RGeVwlUTZ6nzhNJMh4PvO8xJPmHfzm/ZzHzNtY4P2C5837qCWqsJ9DXCq78q35FvcZI9iqd2FjM8n+gVq+i+jnv4UrAiM5RjJfq5/4S69jF/tII51Encwu9nFYHWMvB1mp1/GcNd4NTgAc0kc4QiK/6t+ZpH5gpnci87yfobSOCAIC7OcQ8Zva8czPPo6kweFUSPJl/DySCsfSITHd+T3zukQfHEmDo6E2aZFtDgfbHE1z/ofaZ2mTntEmtCw5U5tj6ZH7iTjX9IxzPZYOR9J0lmMk+ZzlbpvUrOeRFOpPWtb+JIf1x+1zTv05iT4fydTnI2F9PpJdn32Z+5xTf3Qe2sCxbM71WBp8uiTAewvPHR3xCqIM3TJVPyzTa2iNk7yhUKSSxvdqFokk87z1Hi9ZH3Cbca2r4/2193XWx8ygEAUB2M1+HrZezpcacvvCnpPfNh8/6ezikM4qOG7o+zlMJVGO2+V1Ee2KEbn/Fzz3u5mY4Z4HxzMMCSdOxHKvOYzt7OYnPY8f1BymeN50y85DQUCFdsfOG3GqNf/S6+kQGMRRnZj9zvMJ0UDgaWKA0Y2Hzf9xqzEIC4u+ogujjBu4xRwU0a4AGZFnLyaT1QyeM+/jMnkRBzlCt8AQfrLmuW64iuwvTg2ipSBApOtiXaoTRyzr2cIVgdvzvI9hxgCukX1oI85jtd5EW/9V/GKfmPlIOM977qev6OKaQcxiIRPtyW5A4Sv7J2xt57YLHrFfcU1CMgeDCxJHfD5MYz9XSNPp3G89jweTRqIOL5hOFvAI8wo+N1/iWfNenjLvdA0uopw64RmB79qTKOxrTmVfB/7UqyPadTBa8JPnfe41hqHRNBF16SHbA47xxGQ1g8z0kO152PwfRUlgB3u5zrov18mE1kYz7jSHAM71fYT/YVe7JjvGWxnlwFWy+Uz0kh1z3DY/UUGUdoN4W/ROLjE6UZBI57umsl6W7YqSEGHIFSoj3qJ3sk9HGjRkx5WyJ/1lNxqKWkzVv/KcNT5ivaUsevtv5Fs9Exub4hRhrHmXq/mVE70n1qLh1VmP2WhwKXq9G50IPBvpJC90fy9CAj1lR8pSkrqiOt1kW9oYzQlg4cVDERLYxT5uMAbSVpxHCum8p77kGtmb5qIBc/Qf9A/cyqP2axGZqecZDVirM64vNXPRmYxy4kghudscSilZnPvMETSRdbnFHOSafzWT9bnYbMNjntt4zryP4hRhgOzGHg6QqJNJJpUaVKaHbM+FsqkrBRLavpgsTDzO+C0dHxPsyW4AeYFexvk0BGCD3opEYgiDSqIsCcQTTwE6iBbuub6dNP3Mv0BR/jMIAYdTzy0zjGvMPhFyHj78/MaflKUUCcQDEEcMjajNb/pPRlkv8Io9MWIfxSjMC+Yo1yDuIEe4yxqb74xD1sT8wEzPh9xsXO2afpwsz5v3c43sw9Pm3ZSnNOM8jzLWcxc3GgP50HyOa42+fOR5NvjzOW40BnKJzCjNDQ8ELlBLT+jYg4y+ru73t2omdUQ17jCuoyy5j7EUmuV6DW18V7HB3npCxzyXiJYGnyYKigI8aN7kaoBdaDR1jQJqi6qsC7oaybDYaxo+/tAreUGM4it+BKC5aMBQK6NULLzGPZyoOLRDuNj6pUZXPlfT2KS3k6j/JlWnHdcCHRydhGc899DN7zycNxK16R24kbH6Lm4zrj3h2fZKoiy3e65jtv93UnEuNoc4RnlKU0WU53e9kn6BW/nQ8ywJIj7bfXjCvpoxeEkNKxGPZgP+t/la/eTO7l8s2lJVOkGqRrIOjWSdf/PUzlmqhmUEJgdLvQCOcCyinYlBe6MFy/UaylOagUYvWshG/OZfSkNRm2/tX7ja6B2xjRCCe8xhHNbHeMn+AICR1hh+8IzP8dpxqzGIj+wpKK3Yzm4uClzPJO+rWcpWD+tjfKWce0MREugkWzHf/jOiTWgmNr8TcofepLezWe+gEAW5wujJ+/ZXbpvmImtGoBSS80RDDukj2NjUFlXYqneSSho79V6nDdJ1BM2MEIIHzZs43++UFr1gv8/VRm+qy0porbncGklxUQSpJSmk8bnnJdoZLbLdF0DKfj9fXraWvUtTqNOvOC1uL8sfLzsTg60fqEDHMSfmNBzlzHGebMDH6lsA7jdHcLt5HeCUhafjY7z9JeUpTUvRhK/1TwD8rpdTWZRnnl4CQKpOZ0PQUGZZcKIilNHqxUN9UZMDOkMjsLGI3jPOBOHmXyGuNftyqdGV9+2vKK+cgF95XZrBRl/uNIdgCIP7PCOy7CskDVJBlKG6qMRsfgecoMY6MoK809Rsasmq3O65jts915GkU+juH+quT6kzE8r1g921/6FeR/kvIwWMneHj+Zk+VLAc2pROSXGMCemW8zMQLJlGR5Z3h7cJlUwLgmXZJvgt8Ib9tGxnvQwewxvcd6uqBpOGFKRw3KlnLl8k27gGPCGZFIkkkWS3TR/Zme/VrygUhShIqk6nenpnGonaeISHNXoT87yf8qOa607ufqamcYFqwpVG3kuV/+sIIWhtNKO1ceqGQ1VlBVdjf6gxgELCybh82fMgAJfjmIh0NloBMMDoHrF9FVGeC0VTAljM1Ut4PPA6D5k3I8Xx89W8wsNg41Ket99zqvDUd4z13M0o40ba+geyLsyQsRXNWIAzhg7FV3ayhzaBK/mYF+hqtD6Vl+E/STQQeJrJbrBwiezEOvs9IGNAF86H6humet5mYOBOpqpfj3uMGLwRpab5mfBA4Hq9lXbyfDbZ2x2dHfUXHXJ54AqnuCjCr96Pech6ibfszwD41V5EO3E+TY2sWSTHo6Vsws+eCbQJDMSHk5qfQEE26m1YWCxRf3GZ/3+843mSarJilu1X6LXu72mZdCJzEreP8u9gBxR/fXSA9KMWDQeVomDJ3N2uwjO8hpuX59IyyumikChISYplcXDMzHbtBFzCr+Naa6qKis6DuoZVagP1Zc0s2z5s3sxkNYNtehfb1C6+UT9zWQ6aK17hYYrnTa4J3M16vZW/9QbGW5O42xwaYQL1sz2fGLz48DPI6ONOKIWoI6pRXUbvBSFC7tDJpHKQIwwzBkQEArPLCASYF/Op+/vtgQzDqD3a0eotRbFcDZ7qyuqMNK7lBft9AAYG7mCy9w2Wqr+ZruYAUJly/OAdT7XjvF/zHt/BrkVJaBv+/uQAl3xQg5vWNgUhKF7r+BNbUf49wj9fq3RGeZMhHBmY0HUlXfv41beIwxzjG/Uzf3i/Yqr/V46SyGa9gxuNK3nWHp9l/w1FLWKEN+I60FI2+Uf7FCV3ComC2Y77j7fNL96JVBHlGWO9GaEFfjRMt2uaPYc7zOvdvwsSx+qg/rgXD35vOub/bmL2oQUUL2ByNA0KxzqlqwVjwG9ptIZYryApHYrEwZFUTdECgmPpUNADAaWxFcSFtQntJ8kHcR6NrSFgC+K9Tplq5jaxpvNI7bMECbHOuqJxgiNpmoTYoCutdAJEqQFBQgwcTXPOI7SfFL/GlGAYkOoTFA4/1zSIj8F1pfWYghQfWdpk1+eicU5WXKjPBTxgBftcwCtIzKHPSoM/rM9FCwiOpGoKx0KyH2KMjD4Xiol8XUJ99gT7nJZNnxNiIDXg9Nk0su9PoVhIC2gEEGMKkrNpEx8DflujVOT7fPXEVJbtUFg4Qb0QIbXZ0LJANsVJPvvE2/izaRNaNmejzQuzfDze89S12AqJgjQVdVmqV6HRtKYZv/EnKaTSgJqMMK7gO3um+51KJpUdeg+72IfQsFM72ruPWa/zgedpfvTNI5U0jpLIPYFn6C7bUVgUOuXzzM+EgoAnghSS1zwP08LfH4Dv1a+sD2zhbc8TeTJyGWL05/lgnGWOvZi7jCEkyHh+ivmAZwLv8KZyxni9zU7U1JWZaH/jBpLT8ZGOj2etd/nZ/o1P1Hc8bdzNffbzvO95Kkfd53OFaCDwDNDT6OB+QLPjU/t7HjNGMt4zhsa+S9hH7vp2dUQ1THF2v3WiQGkn1p5+BFTQjVOaEFvUWRZbFFHg1M0uqoqKrhjoRr2NW4xr+MD+GoD5egkdyFsgECBeFOBFcxSFdSHeVp8zR//Btda9rJTfn5QGT0OjNgNVLybYkwFYw2ZqUxUQFBOFma+X0tl/LatipnOERNK1j+qyEn+r9fysfqMspahHdWYS6XaVk7h9lH+HacM2svLDAyBgyRt7uHF1M8yY7Gex/lbrWaSXA04qfEvR5MydaD6nmqgYkUmTHdv17izLhBBca/RlmeVk54y3v+QlmdXgo4CI40VjFC/ZH7BIr+CuwFi6yFY5Zv1WkeV5wzOaPv6biCOGMfabKDSjPbe4bd61v8RPgMaiDtfKvlxv3e+uq0FlrpG9s9t1viVcC3Kz3sEFsjHPm/dxvmhEIsl5yqYOLyMPZe7mZbtR5o3s14f4Xa9gpV5HV991EU7UYz13HzcICOBLCnuiEuBPsileOyoF8V+gkajtulVn1v7064BrDhMrYhhk9OUVeyI+/Pyo5vGAeQMT7Sms0Gupo6ox3LicS2VXXrc/doPJIY3LkN60gUGzbLJco5z9hCaAE0Q85SiFRrsmgSEW6D85pI+62l1bgpnKkKERW8UszfmVYjgbqXr8JmeE03UeVbPKxJ7VnC2qd0JAsu/0ld22keex1Haur7eagzhmJ/G33sDfbOB3vZJfwp6ZNJpf1G+UoxS1RFX26cMECPC2/TlDjf48bd7NI9YrHCWRAxxmTGAcz3rvy+nQUf5B6ouaPGXeyTjrE3boPfyl1+ELBPjE84J77wy/j4ZTTVZkmBzAz2oBv+jfmKkW0tVoTRlRgpvMgbzpdwKBr1sf86v5EbvFPlbodRE6iXP1EuayBCFgmPUQQkBf//9Y751BRelIxqxSGyknS7FKb6CRzpoQ8F8kqhF4BmghGlGdjAcUM0zzrSoVKC9K87I9gSIigVuNaxEIjLC3xkPkh/6/YBQSc/VcYoevI/bW/cSOPOz8v3V/xrLh64i5OmczjDwfR3ipIsoDjqZKa9HcXTfe+pJp1uwT2p8Ukse8t9FQ1CINHxv0VuaoxcffMAeGG5EZX+vYwghxhZuS3Fo2o76vJ+19V9PGfyWzrEWMD5rN7GE/h8WxLPuMlgafXaz9Jngj0XB0s49D67I6fYeoKMrygnk/dUV1hhuXR0XezyAVwpw1Q0LRIULX5OwCgQBXGZe4mp+f2N+RorNmdgP0NDtQWBTCwmIPB3gi8Eau59RY1mGKZxw7cUpQX7Dfc7VKDumjLNTLSMdHKuloodmp97olqhvZRqvTUNJxLhEexNuidwJwizmIC4zGeS75aCrr0VlcSANquoLTpbIxCslMvCjA/eYN+IPBv1ayGWn4KEkxushWXJpHDZ6Wd5UnJsH5PBavHUeDa3LXuYly9hAnYukjOtFGNCdd+5hsz6Cnbzi9/Tdwkf96lM54NB9q9KcohWknzud3tYLhxhXs1vvQaL7RP/OoeRudjAsdt/AgTUU9/NpxlQenNK6kLHbG+xnl9DHSHMzm2FncFdSNBcewqDhF6El76vt60NDXk2VqNavDskxD+uFlKZlln1GiPNojlphc8kXyMvI8XW2KFxDc3Nabh5Z5o43MeM5boJfxiudhTEzaiPOYqRZQnsxJJoJxnkeZHjOe0eYtFCKejuICxlmfMMDohgzrxUfqO1aqtUQ58wghuN28jtc9o1Eo4oghUSdxU2A0AOvUZur4LuYa/11USm9Pd99Qbgw84m7f1WjNtqDJ33h7kru8lqxKJ9mS1qIZ+zlEC6s/P+sFpG6rgX7qW/QDc9APzEY/+Ct61FzUQzPRo+ahHpqJGjWXGvcZxNx5mJi7DtHswTjKLbuPrv7rqO7rfGZfoH+Iszut7BzBEAbdjfa8bn8MOJpxIbazG1srXrYncK3Rl/0cQqOxg20EgkBw0Bciu7K0/EwtUYXNegfJpGJiuDPyeznABHsyPc0OJ7zPEeYVzAs4mj3j7S/yXGKcmeayAU1FPVfrB+AjPYWx5t0cI4kdeg9f8ZO77nHrNZbj3IQKEMf+MLH6ENFA4NlFuRaF2DbbCdh6CxkUqZJ1dj6QZrPsnX34U2wGD72cm0td7QYZopwZComChC6954tGzNIZs8blKc02drulwZkpLAoxwOjGRPsbChDLb+pPLjLaZNv2efN+ZvoXko6PKepnallVGW5ejl8HSCaVJFKYr5a4WoNNjLqMVIN53n4PLx6usG7nGzmO39RS9zPSU7bntsCTEWVjJSjKBaLx6XhpzhkyZwSeDM1EfRboZaSRYeCSVzmG6rIS872f8ZOax2a1g4Mc4X45gps9V+c56F+6UUFu234+iTt8FK0Ri+GJztf+l6hv1GKy5UwAPGmNc4I3wevOBHsyQ0yn9KmWrEo1UYG5ejFoGMvdXGP04TX7I3z4+cT+jtvMa1kallnYXDZgRdhDalESzlzHovyj3GgM5APra1axEQuLQxxlF/s5SiJHdSLj7S9dI6NwVui12NrOVbogSv7j4roetj1WiAPJmgIesDVYCgp6g6XbwVLnInGhcmiC5dAQn02bZD94DUd3MC0AhWKytknxOxqEhoDUgFMifSQNqhSTFPCevknvVjJjAnS+WsKznntZF/MT71tfMd9ewq1yEBVkGUZZL6BQ7GAPo61X6Wa043/yal7jI2bqhRja4CH+xzOeexkecLTsjnCM2wJPMsv7YZ706aKcfi4y2jCTiXQLDGVO8P442L6Up+y32M1+vlLOM/N+fQhpSx40b6KiKEsP2Z6ylGQPB5iqZrNb73dN2a4WlzBGvYWfAP6gNnji17dCUjHcnLhQaMaSgAArJuxncH26iZr0EGJ0N5LC9Mb/y0Q/5WeI641+7u8K5brAhcxD/AQY6n+Aj+xvI7bLziwkahQSSbhz8Hf2zIgAywa2ntQ++8guES5E+7IJyOWVW4xBriNSBcqwlV1cbd1FY1GHBBFPWUpSR1SjrTiPRawgPaji0V9czB6yCQTyH6tPOMfpN6k2LW4rR6NrSzF4bkNiErLOr3xz5Xpm3LGFOQ9vZ0KrlaiAPuvL+881RntuZZVnOr94JvCi536+8rzGSu9U5no/pUrQsOUYSRzTSdluP1D2ooaozAGO8LH9XY7HqSor8Jx5H1fJXuxgL7daj/OV9SNL9d+U87Wmju8ihgceYrXKyO4YZd7AMDmAEqIoq/VGuvmGMtH6xl1fgDi3pDxEN9ku+vCXiewyAk+UeFGA/ka3iGUnIsdQQhTlaqM3CSKeClZZitiF85RRGI433qBE3QLRIOB/kEFGX3dcF57BBfCw9TLJOpX5aikpOpVeRoZr4g/2HIYZA9y/x9tforXmT+0EAmPwUk9UZ36Yo2J5ceryKlHODkxh8rpnNHWp7i7byDb398/tqaxQa7Jsd7FsG70PRMmWYgUltUsbVCxmUKW4QY2SBmULG9QtY1AmQVK3jPN3rVIGFYsaVC5mUDOHNjVLOusrFnXaZ9emRknnOBWLGdQu7SyrV8Y4rUFAcDTdQ89Uy/QaDqmjlBelXWfuCrIMI83BPGPcTRyOLuEKvZYH/S/iFR73edzGZqL9DdfI3lxEG4xgZcgivZxP7O9P6zlHOTEaGrV51LzV/XtE4CFmK8dUqSgJxAerehSKDyxHDswjPAw2LgOc9zakx75Z7eB/9uPsYA8xOJmpJgbCOpksVQGWl3gKUJjsZX/+a0RHmWeI+rImlSnn/u0PGkgEsChJMVqJpixmZRYXy3A8mLQQjSJstqNATZHhovi5mhqxbpPeEVGOk1e8wsO1si+NRG2ainp8YuX84H88ehud3JLDkAZMK9GUSwI30Et2ZEvsryz1fkML2QiAGqIyVShPVcrjwSCB+IiZ/2hG4NlFXDEPXV+syiXv16RUw+xFcjf9dAQ0aOWUDx/dkp5tuyj/HGVFSaoblWhjnEcdWZ1eRkdqySq0kI2oJDKuzTmVB7eWzdij92Nj85taitY5a94MMwa4wZ/Gog53WU/zleXMYmqcwcut/ifcfRQUBbjDvB4DA4EggXjm6D8AKEZhLG3TWV4Y4Trfy+hwKi/HOUm4O/RmdXIZgZBV0uFkrrldvurBsFKPk1q4JkveyD7TNMq5RyVRlm6ybcSyOqIadUQ1LpMXU9fXjW7+oXT0D4rQ95uqfqW2rEY7cT7niwaUpBg/W/OJxUs7cT59ZGc8wsPysOqCmmFmaVH++1xoNOV82dD9uwwliA0+uKaQxly1JMs2/eXFZ+z8okQ5W7jMuIguohVlKck79heAU2a/KXama9xzizmIeiIjsP6Cep/+gVsZYHRDBMuB37O+RKG43tPPTSIpThFGW69wWOf8PB7ln2eI0Z/moj6tRXMukZ1IIB4vHsZ7nmJFzHdu4HaCPRlLO5IsQ8z+lKUUrUQz3rW/YL86xF3WWNLxEcDifNGQ8pSmHjWg52tgWGFH1Mf5CUJoXr+0MA8YN1CQc0O7OZqScga5xujLGHsc4MzupgUzv6pQnm16NwrHHSr0kQuZYIQIYLFRb6OiKHuGz/zECfxyGzr9CPrQarTlBD2F6UUUr4c+tBpRvB4itiieLq+e8rFqhmUErtTrI8+DAFv0zpNyWR5q9ucFv+MCuV8d5nZ93UmlihcSBbnS6Mm79iRsbJqKeszXzqz+7dYYvvO8hSEMxnjupLlsQCfZkgTiaeu/Ch8BfASoRsUw4fpoRuDZSOIuH0vf3IungOT8W8sSUyjj8lr+wkLsmOe8fwVKeEg4S8W98yuVyLimbtd7aEjtLG08wkNL2YSZaiG72McWvTOiFDUcIQRPe+7BwHCdZD9Wkdne29nNTYHRvOZ5GI/wuGWlDwZe4n2V4XR7sWzLW+ozEkkmBi8BLEwMusi8ad7lJ8LdobeeZEYgEBwslmIX+wHyPPO7dvIhts87huVTLB+/HxVw7uY/3baZBleXJLZIdMiVHxhuXO4afAB8YD5NfVmTpwNvu87le/QBaouqVKQsO9jDHPUHiTqZy43u3GI9DsCbKp6/9QYA7pXDASIcg5uKumeqS1HOEGM8d/KtbybHSCINH+nBpAGAY8ExYDgh05EoUfIT1xh9GGO9iULxvD2ea8zeWZ6NhRBM8rxKTX8XV5JrnlpCB/81VKMim9iOFw8z1SJ6yQ6UoQR7OcghjgIw2nqF1zyPZD50lDOEIQy+9b5FcYrwpDWORJK5XV5Hz+AkeE/Znu/ULAwkn9jfM9i8lEqiLP2Mi1wptov9Q0jG0fQuRym+8Y6jkCiI0orODQaz4OGe4CsAhkUVyrHVOkirmFosSN9AzdhipKSb7IrZgrBiQdg0N+swNm4TaSqdI0HTrv860YzAM8hIY5CrNZTmmrjDUv7mGfMeaomqjDXuBjKCgI2oE7GPZrL+f8JgwN7yE2rDFPSRjZC4FRK3oo9sdJepDVOwt/x03P3khVqyivt7Oj56ig54wwxW/lbrs26UB6rJSnSRrQDYqncyUy08zhY5Mywsw+SQPuIKPP+sfuM7e6a77jLjIoqIBJJIidAVrBSWTRrNCDz7sP2Kia3/YsHTO5nz8Pb/s3ff4VEUbxzAv7PX0itJSCAh9N6b9E5AQEAUBaQooigoiIBiARQRVED8YUcFRBAREVEQUJAq0mvooUPoJT25u53fH5dsckkuBRLSvp/nycPd7uzs3DF3t/fezLxY9ugxSCkRf8sMa5KKR+ZVRrPxZdHoxUAM3lobBmdO5SlM0o4IPKdeyrBfSgkpJVoqjbRtaafoOTJFPxrNRH0AtmnHKTqJFriASMxXl+Mj67fayEBv4Yn/Gd7Ci7r+6Ce6Y7dhOZ7RPYYoxAAAEpEEVzjjUaUz3ETx+DUyr6UEZy/hKhJkYjalMyeEwHzjh9huWIoLps3oo8t+1E34T9exrM8x7Jwdib1fXNWCgAAgpe0vOynvGao17zIs0oPXWWmJr/Xv4YjxTywwfIj6uhowCgM8FXf4wxf+8MVPxtkIVcqgu64dANsPvX9Zt6Fb8n0A2CZT32NSvvxclFe0bc2U+g/mAdED4yd88Jb+BVRAMC4gEk4wwh2u+MswH81FA1RFebgkT3cE7EdBE5UU5USQNnI/FvF4x/xppuXKKAH43vARftDPgBtcEIt4RCMWETgPPfQ4jQv4yvojDMKAQbredsfOtS7Fj5Y/Mq03rdhEifgkiTtxEkkWFbdiVZgtKm7HSSSYVUQnSMQkSiSYbWXMyWWSzCruxNm2xyRKRCfYbt+Ok0gyp9ZzJ85Wf2oZW91aPRYVd+NtZWITJaISJBIdlIlLsv3djZdIshT+64xSwhtCCG3ad6CSmhzpVd1QtFWa4gKu4B3LHERL25p9Y/XPwiP5x9ujiMAFROJZ5XF8aphoWysctsSg/zO8hZluL+FDnyHo5FEDQzw7oKyXgI+rHmW9gaquAfDyiYPOJRbC4waE+20cc96HyOS1W4sL/jz9AHko7igrAjKsN6dC4lXLdCzRf4yf5OrkbbaRgDHpFqNMO5WEbALhhwHKIzglz2GHPAAfxQt1rFWxG4cBABvkf+iJjvdU97O6x/G3+i8AWxainGaeTK+uUg3tlYdggB7r1G0IFWXgIV1RS1TBWMsH6KBrbvfFfq51qdYHvOCBBJGoDRX1hy+klHjO8jZCRRk0ErUQpmuV2WnpAbl7IRF3z6UGHc7+cxdf19mP64fjIHSAtAJVevrgsWXVoOgLfyC/pKknquERpQPOyUvYKHfiRQwAADyb9CbOy8s4Jc/hOd0TmJs8BQUAtsrdGIReWdabcrHRLmkgEpAECyzQQcHf8l8oUFAGAVhr2YxKIgR9dQ8DsK0VNcvwhrYA/JZ008GiEYtqSoW8fQKKkVBRFjvkAQC2H3CqpZkalBut0gR9c+Lshrvaa92OANpPKwdn76wvt5JirfixSzgubI2GR4gJT22oCZ+KzrlsNRUGOqHDIH0vAEAFpAZqRukHY5R+sF1yhx6iPfYI27XKz+qf6KMPQyNRC7vlYe0HAH/4oLGoDVWqdsvHVFfurW9T4TZU9zimWr5Mvidw1PgnSik+8LC6wUO4IVqNRRwS4Acf7YstUUkzWf8SllvXooIohx3yAI6rp1E1k2ujlDV/16pbsDDNzAwLbNNC/1Q344KMxDO6x/CLdS0SkYSLuAJPuOM5y1uIlwl4xvBYhnpVqWLWBjPe/N221I+ELZmKKm0JU6wy9T4AbcZfyr7clBEi9cfE9OdI+TctrYwCWFX7c6RwMwG/DHVFuyqFPxSU8tmZVhOlDpytttlVl3ENUy2fY7phHEqLUpisfwkzLN/CRTjjjLyIuko1PJxuOZ3aSlXUVqpCSomRGAid0GGC4flMz/9Y0khcVK/iKCK0bS/rBmEG3sjbB1oACnRE4ObNm9GjRw8EBQVBCIEVK1bY7R8yZAiEEHZ/Xbp0ybyyND777DOEhobCyckJTZs2xc6dO/PpEeTei7oB2m0jUheqvIMovGidnCFZSEqGuRQNlBr528AiSAiBb43vY4Pxeyw2zMLX+ilor3tI279DPXDPdXdT2iIQfhAQuCKv45J69Z7rWq7/DIfVk7as0FKFFRL/yn24gEhM0y76ALM0Y6FlhXb/EaU9riYnDfGBJ0zCiMu4hoXWFZhi+QxfWBffc5sob3gGm+ARYoTQAUIBPEJMuHHUNhw9JTBw4rdbOLnqVgG2khypqlTANnUPDshjWKtuwQ15G3EyHj+ov2Gz3IXLuIYvrT/icvJUUcB+RGC8TMBu9RAOWY9jtmW+Xd21larYblyqXXRaoUJCorqogAuIxA4cxCTL/zKsOZgSKDihns3Q3lZK4zx65MVPyohAb3jgkLy30eD3olxbT7sgoFAAnbPA84fro/lrZR0fmOzQD9dxYZtt1Gj0pURse//epzZT4ZY2uUMrXUOcl5exUx7E7+o/uCyvZfjC0lXXBopQcF5Gwpr8A6EeOngJZg0ujlyEM55KziqfgEQsUVcBAH4xfopFhpna55CjpSmISgJv4YmRuoHYIffjpDyLb63Lsiz/teG9DOu3AqkJJ0KVMvjcMBkXYRt1fRfRMMOCeeovGGuerq1DJ6XEx5Z56HJ3NN74PQESqUt6pQTbUgJzaYNvKTet91Am7eVh+nNkNoFAK6NmPEeKmETgleXxGXcUEUIIzNRPgBNMEBDYqx7BYavtmu953ZM4aPoDfxsXYLVhLobpn8iynuwSLn1nmI7Sip82K+dhpQ1+tv6Zp4+noBRoIDA2NhZ169bFZ5995rBMly5dEBkZqf39+OOPWdb5008/YcyYMZg0aRL27t2LunXrIiwsDNeuXcvyuAelq66NtkhpEpK0DDaucMZRGYHY5LnsnnDHB7px8IGn3fENlFoPtsFFiE7o8KiuM4QQ6KWkjgCMkOfvuU6DMGCUbgj84Ysd8iAWqL9mf5ADTooJvxm/QE1UhoDQ/q8B4BPrAqy22tYUmmNZiONIXQdosO5RXJU3AaROCz6ppmaT44LhBU9nVDBkWx00G1cGrSYFo+aTmU/fLgKz+kskJ2HCU7qeAGzTb3+w/pbhfeNKugzep+UFnEwO0v2r7kPLpH5obO6D1y0z8K+6167seZmaLCIYgRigPIKeIvU96oy8iBfNkzKdynoyzZpggG192UaCnwOOtFeaIhiBuI0o/Kfuf2DnrdXPD48urYrGL5VGg+cD0GR0EJ7ZXhd+NVwQczUJidGWLI8XaRcIBiAUvlmUBOkzHS6w/oruSlu7Mt0V23ThQ+pxbZsXGAQsztJmkJ5rWQpVtX2jP6qmjkgJFdn/wEBUnA3TP6F9j15oXYF46TgRnxACE5ThKAWvDPu+sy5DgpqANrommKOfiPqorn1X3yUP4VPrDxhtnopI9RresszGBMtMbLTsgd2HdhF0+W7uk2kWJhWUYEzSv4RKohw2y10YbXkfUkrohA5uwgWlRSm00TW57/N4CDd8Y5iK1kpjfGeYhvqihpb8s6gr0EBg165d8d5776F3794Oy5hMJpQuXVr78/b2zrLOWbNmYdiwYXj66adRo0YNfPnll3BxccF3332X182/Jz7CEy3QQLufmLwQcPr55pVFOQzX98Nea7iWGccLHghG6QfX2CKsrlJdy7AZjVgkqknZHOHYo/rO2gLf31mWwZph7lfO1VKqYI3xW21R29LJawWaYMST5tH4OGke3rZ+opVvKuqipqiEONh+tdECgWmCA1UYCCwUPMqa0H5aKFpPDEGzsWUQUDd5LYrkqcDV+/qiUjefgmwiZWGoLnX09bfWZTiunnFY1hse8IcvPrcuApBxvcBR5ve0X48B4Ig8pd1+U/8CvjFMhYdwgynNWqbz1OUIS3oGkar9xcUJedbufhNRByZhBGWujlJNu0BbpW7KMrtzXqvxeCmE/a8iHv6yEjrNLA//Oi7447lTmF16F2aV2oljv950eGztgX4I7WD74c8r1Akt3+KX/JLiGf1jdlksa6AS2qAJOist0UTUQXvFNsPhZzV1BEJ5sH8UZ9WUiggTrdBSNEQikrANth+XFlpXwBdeeFTpjEd07Qu4lUQFy0d4ok9y5uzbiMJydV2GMmZpBgBEqOfxjHUCbiQnA0lhG5gRjy/VJQCAYfq++NAwHj7whCfcAdjW7f9W/RnVk7pipvVbGGGAsBoBFO0f7EyFf1Zwtl7Q9dMyPm+Vu7FY/T1fzlNKeGOt4Tv01HWEh3BDEPzz5TwPWqFPFrJx40b4+/ujatWqeOGFF3DzpuML6aSkJOzZswcdO6aOtFAUBR07dsT27Y4TPSQmJiIqKsruLz/10Gf88FYhYYQebsnpqBcbZsEIA9bKrVoHry9qFIlEIYWBTui0xCx66PGXuu2e6woRgQhTWgIALuIK1qlb76ttfooPVhvn4nXdc7iS/IU1FvFIghnvq19o/98CAt8ZpuFGmsxE/rBlDE4bHEibNZkKB2cfA4burovxMQ/h9YSH8FrsQ+jzUzUoOr5+C6sqSnm0UWy/HPrAE1ukfXBPpLngu4NoXMNNfG1disPqCWxNt46fL7xwUKaO3jmcZopqTaUyhBAYbRiCM6aN0CN1SsJdGY32SQOxT01NFHRSpo7+BWCXsIQy8hTuaJ38HJ2VF+2CsPklYs1trBxyEv9+eBFqmgW4rx2Kw/65tuUkrEkSf73iOLhscNbhqb9rYXzMQ3jxZAN4lXNyWJaKl3IiSLvGMAkTKiR1wCmcQ5jSEpuMi+AqXBAn47EqTSbiWkqVgmouPSD99N2xVe7BWVzCN5afcVSNwNfqUtzEHfyh/oOHlHoF3USiAves3jZ6thS88KPlD7vBGsfUCDRMehR/WbfhJ+sq3JJ3MxwvIRGNWLxumYHWif0RJWPQStcYW4w/oolSRysjYZuqDwBJMAPuN+HkF1mkQ4G96hiyL1TIOQkTZuvfBAB4wB0/WVfjjsyfOE5KDGaUfjAOOOVPwPFBK9Sx4C5duuDRRx9F+fLlERERgTfeeANdu3bF9u3bodNlnM9948YNWK1WBAQE2G0PCAjAsWPHHJ5n2rRpeOedd/K8/Y70UcLwJX7EGdivAZQEC0rBB4sNsxCiBOGoast2k6KpUveBtbE4aCxqY6VcDwss+F39B93RLvuDHBim64s/1c0AgG8sP6Orrs19tc0oDJikfwl+wgc/W9fgP7kfABCdPF3YA274Wj8FFZUQu9FGpZNHBKYNBKbNmkyFhxACRlfb+5TCBK9FQl+lK/aoh7FDHkCsmrp2yhz92+ijhKFxUh9cwlUYYUAikmCFFW8mfYydOAgAKAUfxCMeG+VOfG39CV8q7wIAjqipwagaaZJX+AhPDFR64Qf1N5hhwWVcQxRi8GTSaLyvfxWP6NrjtLxg18aWSsP8fAqKhW5KW2xQ/wMArFI3oqZSOd/OFbk3Bj8+fARCAaQKJMVY0fbdcgAAvSnNVwQB6EyZf2WQUuLOmUQ4eeng7FP0L8wp96bqx2AGXsdiy+94X9rWDH7VMh2R8jom6kdimXWt3XIilZVyBdVUekB6K50wFtNxA7exXF2LE+Yz2lqzr+qGoowIyKYGouKvmaiPEboB+M76C/6W/+Jb6894Tv8k1lg24w3rTJyQZzDQPA79lG54TAnDTnkQB2TmMYGd8iDes3yODw3jUUEJxmLDLDxjnoCOSnN8ZPkGF3EF7nBFW9EEd3TR+PhlX6zcbsKdOKkl5NArElYpoKQk+kiuWyYn71BVQKdIWFUBodiOESlrASI1wYdBJ2FRbT9BqzLN0kIS0OkAqxXQ6SSs1uR6kmf5KgJQAegVwGJNbY9WD2x1lfdVMLRZ8Zhd0lnXEi9aB2CJ+gfWqVsx2TIHsw1v5ln9O9QD0EHBNnUv/mf5HvWU6tibcCjP6i9IhToQ+OSTT2q3a9eujTp16qBixYrYuHEjOnTokGfnmTBhAsaMGaPdj4qKQnBw/i3CW1YpjXKiDM5IWyBQBx0eE12wXK5FRRGCBootM/AqdaN2TGWE8gtgLjXX1cdKy3oAwM77SBgCAGFKKzQWdWCCATvkAZyXkQhJnt57r4QQGKF/ClVFeTxlHosg+OMsLiMJSRim9EUvfScAwFH1FGqKyggS/lrfOJkcCHSDCwLh5+gURJQLnXUtMcJi+1HonLwEwDYS8CldTzgLJ5QTZXBJXkUiklAZ5RAgSmGj3KEt8dBRNMPPcg0AYK8aDgBIkmbEyDi0FA0RIHxhhYqvLUuwSt2ExkpttNc9hHnqLwAAZzghEUlwEiYMsLyKEeoAbYSwF9zRRWnNH4Ry4GGlLV7FdADA75YNGK8flm/nitwTA8jUpECXdkRr+3yruqD1O8HY+t5FOHnp0G1upQzHS1Xil77HceyXm1AMAo8uqYpqj/rmW3upcEoJVrsLN7jBBTGwvWfMsH6L7ep+JCB17atWojEeEvUKqKX0oJiEEQN1PfGxdT7MsGCfPIJOogXO4hLG658t6OYRFQpCCPTWdcZnyUu1TLT8D7cRhcmWOSiHILjBBSEiEJ7CHd7CE58ob6G6uat2jQfYkncmJV/HfWr9AYN0vVBLqQJ34Yqlhk8ghEC8TMAc60LUFdXQUtcIL+sGQZgEanUukIdN6bxiGIL5icsBAF9bf0I/pTua6rK/XlalCgusMAr7H2ETZRJMwojFlt8x3DIRvvDC47quuISrqCCD7ZIHFmWFfmpwWhUqVECpUqVw6lTmU31KlSoFnU6Hq1ftM7tevXoVpUs7XlvPZDLBw8PD7i+/PZcmg407XPC84UmsMX6HVca5KCVs6yD+btmglTmDi2is1M73dhUn3dIsuH0GF+9rrSid0KGLrhW2yj24gduYZ/klD1po01HXAluNS/Cb6UusNy7ARdMWTDWmBqZ3yUMIlyfxl7oNZUQAEmUSziZ/gFUWoZwuTpRHgkUgyokyAGxriwJAiAiCs7BN0/QXqWs8vqF/AVvlHi0ICABtdU1RXVQAAITLU4iXCdgrw3EUEdgq98AEExKQiFGWqVirbsFy6zp0VlpCn/ybnAkmjNANwPHkNUDT/mp9B9F4Rv8Y3ASHl2anvFIWtURluMAJR3EaM83f2r3/Xw+Pw2+DTmDVc6cQdSljgpacitwTgxO/39KyhQNAlR72QbzWE0MwIaEZXrnaBOVae2ao4/KuGBz7xbbkiWqW2PD62XtuDxV9rxiG4IbTTizSz8RueRgAcFPeQXiaKe675aF8HeVKhcfQ5KQhhuTPiIPyGDYZftA+k4jINlNigGLLtO0ND8yyzAMgcRaXMED3CDYYF2Ky4WWM0g+GoigZEjKlnamhg4LFltRpnynfsUYbhiDCaT2Wmz7DKP1gfvcqZIJFIN7QDwcAlEEA+ppHYbea9ai9GBmHfuZXMNw8EbPN81ExoQP6JI1ESEIblE1shSeSRmOG5VsAQCSuY7d6CGUQwDUCC8rFixdx8+ZNBAZmPhLLaDSiYcOGWL9+vbZNVVWsX78ezZo1e1DNzJEeSjt4wg2A7QveT5ZVaKE00CLS19Sb2IHUUWytlUbwFO4F0tZ7oav6GHS1BkH414MoVQPCtwaEfz1tm67WIOiqPpZ9RfehogiBLrmLJyBRG4F5r4boHtUStyywLrdLBnC/KinlECwCUV+pAS9hH4hOmRpshAGNRW2clhegwjYGnBmDifJWS2E/8jptMh6/NIHAqkp5PKrY/xTcSmmkjdq1woqD8rjd1P6WSkP4C180FbZfKY/IU7ghb6NV8pp253EJA5RHMF0/FuN0z8KYJpnICN0A1JWNsC/eigS1aGeqexB+0M9EU1EXMYjFW9bZWlDVkqBiYdtDOLz4OvZ/dxU/dT96T/Un3LFgYbvDiFh9G1ICHuVMePzXamg0IuOPjkIRDr80GFyVNOUAg1vGZU+o5OmjD8NfxvnopLRAD107bW0qAHhS161IXQ/SvauklMM64zwcMa5GO+Uh/G1cAB/Fq6CbRVToTDO8inmG6eiv64G7iEZb0RRv6l7Ax/o3MvyA+qJuAOqhunb/mDyNBqgBADDDglnqPESo5x9o++n+vawbhLd1IxCNGFzFDfRJGokKCe0xIukd7EoOCsbIOHxm+QGzzfNRIbE9flPXY7H6O9apW3EJV3FTvYNruIloxOI39W8cwSk0EDUxTOmLtcbvEOG0Hr8YPy02awQWaCAwJiYG+/fvx/79+wEAZ86cwf79+3H+/HnExMRg3Lhx+O+//3D27FmsX78ePXv2RKVKlRAWFqbV0aFDB3z66afa/TFjxmDu3LlYsGABjh49ihdeeAGxsbF4+umnH/TDy5JBGDBMSZ36/Kv6l93+NeoWlEJqhuTuyr2vb1cQDK2nwtDpM5j6b4Jp4A6YBu2Aqf8mbZuh02cwtJ6ar21QhKJl5QWAv63/3ld9ZUQAuim2tQEv4xpWp1m4O79ckle1NcIaizpwEiacSJsxmOsDEuWp9EswVBapa3H5ITUQeF3ewoeG8QhCAAYqPfGc8gQqiGA0FLW0MnvVcLtEIikBv266ttq21eomu1+nV8mNGK0fgimG0TDDAgMMKI+yaGzug4onotD0dAzqnorGdYuaVw+5WKqihKKFzvZ/+b5+DOoptov+mCtJiLthgbTapvNeOxR7T6PF755LRFK01TYlWAUSblpQtZdvrkcJ+NdyRdv3QmBwUeBZzoTumUwfppKpsVIbvxu/QinhrY0IA4Bnk0eJUcnQWmmMYCUIfxq/QWVe8xFlyl/4op+uOzyEG8ogAF10rfG2YQQUkTHUUVEJsXstWWBFQ6UWPJIH6ADAbMv8B9BqyktGYcBz+idQU1SBO1zRU+mIy7iGH9Tf0DFpMH6w/IZ2SU/hVct0rFE3IwoxqIBgeMANoaIsyiAAXsIdzjBBQOARpQN00KGfrjvmGCfCIIrfGs4FGgjcvXs36tevj/r16wOwBfHq16+PiRMnQqfT4eDBg3jkkUdQpUoVDB06FA0bNsSWLVtgMpm0OiIiInDjxg3t/hNPPIEZM2Zg4sSJqFevHvbv3481a9ZkSCBSGIwxPA0leRnRa7iJDdbUzMar1Y122WIfTjeMmXKmtlJVu71Gbr7v+obpbFO6KyIE31iXQpX5+2V8W7rRRIB9FlGOCCTKW63SZeWtkiYrd0Bysh4AuCpvoqwojROmtZhrnIr/Gd+GEEIbEQgAu6yH8a+6z3YsfFEpOaiY9oedVepG7f29HMrgspq67ogKCTPMOIOLWH2rNGKT327OmiV+vGvOmwdcTClCwVv6F7HZuBijdUO07R7BJpSu76rdr9Y798E7APCt5gyfKk7aSuDV+5bK+oAstHwzGK/FNsPI040Q2NAt+wOoRBmu64endD3hCmc0EDXQUKmV/UFERCXQKP1gRDitxyj94CzLfWAYBxc4AwAssGCB+ivCRGtt/wL1VyRJXmcVNX7CB38av8FfxvmoqITAJXntbROMCFdPask2d8gDKA0/DNL1wlbjj/jcOBkRTuuxwvQFbpl2Y7NxMRYbZmKzcRGe1z+Z9UmLsAJNFtK2bdssf4lfu3ZttnWcPXs2w7aRI0di5MiR99O0B8JHeKKRqI2d0pZx8i3zx9ikNIIVKtaqW7RyNUVlhCplCqqZRVob0RhrYAsAblJ34ra8C2+RcZ2mnOqgNMMzusfwnXUZItTzWGj9DYP1vfOquRmkn1YIwH5EIAOBRHmqogiBC5wRh3jtfoq0U4Ov4xYAQC/sP0ZriyrQQw8LLPhP7kMUYgAALZVGWsCpmqiA8qIszsiL2KTuRPukgfCHL87hEuapv+AjOR4GYcDJ5Nd6aZSCv84AJK9HKAF46bg+TU40UerY3Vd0AgM31sLhxdehd1JQq/+9JVvSmxQ8vb0Own+8AZOXDjWfZNImyh8mYcQXhnfwgX4cLsmr2R9ARERZChL++Eg/HuMsHyAOCUiCGQISJhiRiCQkwYyBSa/iJ9P/HNYhpcSBSyqEkEgwA24mgbvxEt7OwJ0EwN0EJJglhBAw6IC4JMDDSeBOvISXs0BUgoSrCUiy2LIKG/VAbBLg5SxwOy61jIsRSLLayjgZgJjE1DKezgIxiRJOBlu2YYsVcDbayng6A3fibGWjE1SYDAIqALNFwt9dh/K+RWqFuBwzCgPqieqop1THC7r+eNUyDd2VdtipHkQiklAFoVhmnIMqSvlMjxdCoLGw5WVIO8unOCrUWYNLgqd1fbDTYgsEHsAxfG5djOqiIuKT14Pxhy+eVLoVZBOLtLpKdSQn3UQs4tEqqT/+Ni5AaXFvozcUoaCPEobvrMsAAG9aZqGHrj187iO4mJWUQKAOOjRTbCNnr6k30UjUghtcUBnlsjqciHJJCIExuqdxRd6Aq3BGXVFN22cXCJQ3Mz3eSZhQU1TCAXkMZ5C6LmnaKcdCCIzWDUEc4vGndTM2y13aL9OJSMJRGYEQBOFacrCxsgjFG34mHE60Yk+8Fb08DOjvWfymKDwoJg89Gg6/v6zvAODsY0CjEfdfD1FOeAg3eAiOGCUiyguDdb3xmWURjsCWjOln+Sd6K2FYr25DDOLwm9yA15NmYKrhFehExvV7hy+Jx7wdRXPUoBDAN/2cMbCJsaCbkq+MwoA5hokAbGtBlkEAhuofdxgELGkYCCxgrZXG2m0rVEyxfIaeSkdt2zXcRBtdk4Jo2n1JnN8AMvYKYEkA1ORInKID9E62bXonCNfSMA3Zm6/tqJUus54RejRLfBzdlXZor2uG3rpOua6zg64ZHrOGYZm6FjVFZfxkXY0X9P3yqsma8+pl6KFDIPxRVgTATbhASomtcg9iEIdyogzcFNfsKyKiXHnL8GKm2/3TrBF4Td5yeHwQ/HEGF6GDgijEQkJFHdkIwy7F4UySiud9jHje0zbVYKn1TwDQRiACwB41HIlK6sVlFaU8fPQK1oQyCEBUHFgSVPzzxjlc3h2DGn1LofFIBpSJiB4kvdDjU+NEtE8aBMA222KD+i984Y27ybM5flR/x1FzBL43fGiXpOlqtFpkg4CAbXThlDUJxT4QmNYo/eBsp4yXNMVzTGgRUkEE26WgjkEcflHXaPf94YNGRXBYqjTHAknR0FZSh2q7nbItKdpWJp/5C19tgX8nmNBFtEYkrmOuuhTjzR/e0yLxADBF/wpKoxQ2yZ2YZvkiX9aRWKj+hoPyOK7hJp7R2TIsn5OXEYM4AEBNwUXliR4kP+Gr3U6ZGpyZc7iMKMTgNqJghRWvKkPx5ZUy+OGOGZvjrHjqYjwOJ9h+IGmnNM1w/F4ZbrcEQNqEJZR3zHFWnFl/B7dOxWdfmCgPbZ16ATs/uYwLW6Kw9qXTOLXa8fsJERHlj+ZKA3yrex8m2AJidxCNq7iZsvwvruIm1qpbUCexB9YnJ508qB7DQuvyAmpx3rkTf2/fgan4YCCwgAkhMFT3OJqLBlAgMFY31G6x0od1bTPNeEQ5111phyaiDkqjFFzhrL3ZX0AkDsnj91RneaWsNtXvGm5hpbo+z9oLABZpwXcW2/RjCYmOuuYAgCPypFamBgOBRA+UNzygTx5Ifz2LEYFXZGoCKw+4oZTijeNJasoqBZAAIpJsmT8ChX+G4/epR3BCPavd51qgeS8pxopvGh7Aoo7h+LzqXhz5+Ub2BxHlkVsn4qF9BRPAzeMMRhMRFYQn9d3wpPIwAMAHXohFHMqgtF2Zq7iB7ubnMM38JdolDcSbSZ8WRFPzlGvJGQxIDjDCVAg0UmrhX7kXKiQOyROIRGrWyLTZJeneuAgn7JQHcRaX0FLXCNP1Y7V9q9RN91zvUF1f7fZc69L7amN6a9WtuATbouBdldYIFrZpQ+HylFamllIlT89JRFkTQmjTgx0FAq/LW7iFO9r9obrHMEo/GEO9U6+4yuoF2rjaAoqBIjXJRCl4AwAOyuM4Lk9r29NmLqa8cXrdHdw8lhx8UYEdMy/l+NjrR+KwqNNhzG95EGc33s2nFlJxVnugP1IigSZ3Har08s36ACIiyhc6ocNXxvfQWjTSrt9CEAgXONmXgx6brTthgQVwvwHnSgcLoLV554VWpoJuAhUwrhFYCHRUmiMEQTiPy1irboE7bOu+OcGE9spDBdy6oq+GSF0nMFyeRDddO7xieR8AsMr6Dybon7+netsqTVBZhOKkPIvt6j6cUM/k2eKjK6x/abef1T2u3Q5XU0cEcmow0YPnJ3xwWV7DNdyElFLLBJxin3rE7v5leR0A8LyPCXWcdDiTpCLMTa9l/U07ItAHXriB20iCGYeTR//qoUeoYNb4vOYWlBqYFTrAvWzOL4iX9jyKO2cSIFXgp25HMPpKY5jcc385JVWJc5vuQqpAaDtPCIWZoEuKyt19MGxfPVw7FItybT3hkYv+R0REea+vrhs2W3YDANrqmuIv/Xy8bZ6NleoGnMI5CABXrrvC5XonxOuvo+tD11A51AizVcJiBdycBKITADcnICZBwskgkGRRoQgBRQBmqy2zcHSiLaNwVIIKZ6MCs0UFkjMLJ5oBVycgJkHAzQTEJKow6hRYpIQAYNQBCRbbaL6YRAFXExCXpMKgKLBKCSkBk0EgPknCPbk9riYgPlGFTicgJaBKoIq/DsNa8HOnpGMgsBDQCR2e0ffBZMscAEA0YtFb6YRmSn24COcCbl3RV1NJDZiFy1N4UQxAbVEFh+QJ7JaHESmv243KySkhBF7U9ccv1rU4LE/iW+syfKCMu+/23pFRWKauRV1RDZ5wR2elZZr224IDOug4SoioAPgJH0ACZlhwB1Hwhn3G8D0y3O5+2hHezVz0aOZiX18gUt97nIVJGyV0TtpGqFUQwdALflTntbIPuaPz7PLY9WkkfCo5IWxOhRwfe/dcom35WwDmOBXxNy33FAj8Y9gpHPjO1j9q9iuF3our5roOKroC6roioC4TfhERFQYP69oAFtvtVepGTBQj8b7xVdSwVsKL5sl4/uQn+N93tSGlbUKlbZXApIJq7n0yI8kKjGjNYGBJxqnBhcRg3aPQQQcfeAEADskTGJqcIILuT9q19FJG1IWJ1igFb7RTHsIB9dg91/24rit2yUO4gygstK5Agky87/auU7ciHgk4II+hjlJVS1lvlmYcT04gUEWEwiS4uAPRg+aXJnNwZtOD96rpAoHJIwIdSfsjhAoVQfBHWZSGOflqlOsD5p8mo4Iw4mRD9PuzJtwDc/5+2vCF1LWDKnT2gme53F9Im+OtWhAQAMJ/vIGEO5Zc10NERET3L0j4o6GoCQA4II/hvIwEADyl64lDplU4vaMhIItP6OR/m4pqEJPySvHpzUVcoPDDCdM6nDCtw3BdP2w2LoarcMn+QMqWh3BDCIIAAEfkKUgp0VRXBzdwG/+o/2GLuksre1dG56ruUsIbvZVOAIBbuItf1b+yOSJ7q6yp6xY+rLTVbp+IO4cKv9ZC6D/VUBOcFkxUEALSZA6+lknm4JRAoJKccy5SXstQJi1n4QQveAAAYmU83jO8gou4ou1nILDw6Ty7PJ7aUBNPrqqOJ/6onmF6eE5E7omB0V0HoQBCAUxeOhhceUlGRERUULrpUtfmb5rYB/2SXsGv1r9QTgQh1EfBPXzcF0o6AYT6FJMHQ/eM840KkTIiAAAw2/BmAbek+KmpVMJ59TKiEIMLuILaInUK1gl5FgAQoZ5HraRucIMLAoUfDpr+yFHdw/RPYEnSKgDAHPNCPKl0u6cvhoBt1N9adQsAwBPuaJWcmVi1SPzZ9jIe2z3cVvC1a8D0ezoFEd2HGqISGopauCKv46x6UcseDtiyBack+fGAG+4gGjGIQ7SMhbtwPAUwUPjhjoxCJK6jo2iOFmiIGMRigv55VFLK5ftjotwRQiC0ndc9H79j9mX89YptdLfeScC/ris6f1weOgMDgURERAXlcaULPPSuOK1exOfqIqxQ/8av6l+YLsdiUtdBuB0vsfOsBbYV+yRE8r+qBIQAZMq/sI22sq32YisDmXoTacoCKd8ZZfrmJBcV6bapdtukBBQhIAFt7WqZ5swZCVT2U/BpXy4/VtIxEEglQk1RGX9iMwAgXD2BMKUVTDAiEUk4kTzddpW6ERIS0YhFvEyAKlUoIvsvZs1FfVQXFSGlxFFEYLB5PL4yTIGzcMr22PT+VffhDqIAAJ2VljAIAwDgengcEnbrtHLKV34MBBIVAG/hiT3yMADgtLxgt88CC4bp+mKvGo54JOJO8gjjK/J6toHAozIC8UiAURjwp+kbRCMWvsIr3x4HFZw9X0Rqty0JEm3eDUHZZh4F2CIiIiKqrISishKKTywL4Ko6IxbxKIPSmG75Grt0hzC3/3twEfy8puKBgUDKF4YOswFLAtQb4YA1eQ0CnRFKqZpQb4RDKVUT0Oc+UHavaiqVgeTF3cPlKXQVbVBJlEO4PInT8gIs0oJV6katvAVWROI6yiAg27qFEPjT8C26mJ9BvEzAanUT5luXY7iuX45GBkopMcs6D+VEEH6w/qZt755meLpbkBGqyQokCUCR8K784J47IkqVdqruyeTRxCnKitKYY5gIAJhgnoEj1lMAgMvyGiojFI4EIjVzcKS8jupKRfgmrxdLxY9vFWfcjkiAtNqmBXuX5/s5ERFRYTFKPxgv6wZhlmUe5qm/4JK8gjXqZmxQ/0M3pS3+PGLBlSgVQggIAaiqhEEnYLYCRj2QaJHQKwIWVUIRtvF7qpQw6gWSLIBBB5itEoqwZfEFAEUAVtWW9ddWRsJsARQFUAFAAjoluYweSLQIWxmr7VjbiEBArwCW5DIJZsCgs7VDpBmYWNZLQadq+nuewUbFAwOBlC90Fbra/q3SO+O+TLblt5qZJAypIkIRLk/CDAsOqMewVd1jd8xpeUGbrp2d0kopTNGPxhDzawgU/njF8j48hTv663pkeVyCTMQb5pn4XF0MZzihv9IdANBJtEBnpYVWztXPgP+W/4qg6bWR6B2PF2YPzlG7iChvlRfB0EEHK6zasgKZCRRpgnvIecKQy/IaqqPifbeTCq/u31bCulfOIOp8IpqMDoJPZU7PISIiKkyEEHjV8AyqWyvgKfM4lBZ+eMz8EgasXYOF/7gXdPPu26SuJrwZxh8iSzIuSEMlQlVRAVURiqaiDqIRCwConGZkzzJ1DawpQwaTnVEv5uocPXTt8ZV+ijZKaIJ5Bu7IKIflI+V1dE56Gr+qf8EHnohHAq7jNsogAB11zeEtPLWyqlTxX/ut+GHdLOxbuhp+5d1y1TYiyhtGYUB5URYAcFKegyrVTMulDe5llzAkyC5omHVZKvpc/Y3ovagqBm+pg+p9ShV0c6iQir2WhIXtD2FmqR1YO+o0pJpx/SgiIspfD+vaYpJ+JCLkeQDAzzt12RxRNMzfwazBJR0DgVQimIQRrsIFO+RBrFI34pa8iypKqLb/X3VfhmPSr/+VE4/pu6Cn0gEAEIM4fGZZlGk5q7Riv3oEe+URROI6yotgLDF8jKXGTxDhtB6j9PYj/i7hKuIQD4BZRIkKWsprMA7xWnKQ9OxGBMrsRgTmvCwVrIg1t7Hr00jcvZCYq+NunYrHrjmXcW7T3XxqGRU3/7x5Huc3RyH+pgW7/heJ4ysyZiknIqL894zuMbjBBQBgDjhR5AMoOgHUCiweAU26d5waTPlCvboPsCZBvXsGsJptG3UGKJ7lod49A8WzvG3NwID6D6xNLZVG2Gs9AgmJ7eo+VBHltX375BGUhh9CEYT/cAAAcEbmbkRgio8Mr+Nm0h2ckGcx1foFuunaop5S3a7MPnkEj5pHogz8EYdEfG6YjLpKNYd1nlDParcZCCQqWFVEKFZjEwDbazNYF5ihTCByPiKwtEgdFZZdWSo4abP9bp50Hs8fqQ+3AGO2x906FY+5dffDHGcbPdrzh8qoPcA/m6OopIu/ZbZLIhl301xwjSEiKsHchSue1HXDN9afoT45EY3XfgH9rRAAKZl6AVUV0CkSFlVAr9gyCSenBYaUKesBCuiEhFUKKEJCJpdJSSasQMKqCuh1tnpsZWx1pGQlVoSEVVsvMLlMmizGUgKKImGx2tYitKoiOZOxbYFAIQSqBiiY2p3Tgks6BgIpXyStfBKIuWxbCT1l6lzK7ZR/3YLgNOz4A2tTS6Uh/mf9HgCwVd2N8fphqe2FGVdwHc1FA0CmBAJzPyIQAEJEIMJ0rbDVYltzcJT5PfxjXGiXgXirugcSEhdxFR/qxmUZBATskxJUThPAJKIHr1K6hCEd0CxDGfupwTeyrC99shAqnA4vTv2/ib9lwflNUajRN/upvRFr7mhBQABYOegkTv5+Cz2/rwKdsaiPK6C8cOTnG1jzYgSETqD7N5VQubsPHnq1DCLW3IElToVPFSfUeJzTyImICsqzur742boGA7zDMHyAM6ooXKaJijZegVKJ0VxpoN3equ6Bt/CEH3zsyvTSd9AyBd/riEAAGKUbjKrJAbvL8iqWqKvs9qdNTNJR1wLZOSHPaLcrK+XuuV1EdP/SLiuQPnNwChfhDC94AMh+3b+0QcPzauR9t4/yR2ADVwgFgLD9nuVX0yVHxwXUtS8nVeDITzexfx5HfxJgjrfit6dOIO6GBbHXzFj+5HGoVong5h54+VwjPLOrDp47WB9OXvztnoiooNRTquOs6R/MMryBKgoHZVDRx0AglRilhDdqJGcP3iuPIEbGoRJSg2p66NBZaYnQ5EQA13EL0TL2ns5lFAbM1r2FlqIRruImxpk/wE15B4At8ce25ECgL7xQTVTItr602UmrcEQgUYFK+xrMOnOwLcAXKa9DSscL/ZuEEd2UtigFb0TgXJZlKf9JKe3+D1Jud5wZiodeLYOqvXzQ97fqOQ4EhrTyRK/FVeAZagJsM3wgFCAp2pr1gVQiWJMkrEnJ/U0ClgQV0mq771LKgKBG7tCbeLlORFTQnAWn01LxwSsLKlFaKg0BAFZY8Z+6H1XT/KJTR1SFl/BABSVY23av04MBoJ2+KYKEP5Jgxk3cwduW2QCAI/IUbsOWTbiF0sBuyrAjKWsEesANAfC95zYR0f0LgC88YJsSclw947DcI0oHPK3rg9G6wRmykqenQsUN3MYdRN9ToiLKG6f/uoNZfjvxgct27Pj4Ev4YdgpT9f9iusu/+MhjByL3xOCR+ZVRubtP9pWlUaufH/qtrgFnH9uoLq/yTqgzmOsEEuDkqUeLN8pq99u8G8Ip40RERJSvOM+ASpSWSkN8bf0JBuixzLrGbvpvueSRgOVF6gX5aXkBdZD1+n1Z+cAwDn8mbkI0YrFfPYqd1gPYK4+kaU+jbOuIlwm4ANt0wSoiFCJ54VkiKhhCCFQRodgtD+MyrmKNdQu66FplKPeO4eUc19lA1MSf2AwA2CvDUREhedZeyp6UEuE/3sDq508hKVYFJPDXmLPafku8bYTWuY13sevTSLR8I9hBTY6Vqu6Cl841wt1zifCp5MRgD2naTS2H+s8FQCgCnsGmgm4OERERFXO8CqUSpaPSAk/r+kCBgkXqSmyX+7R9uuSXQwWRdkTgva8TCNimBk7RjUZjURt7ZThetryHLdZd2v6UEYpZiZDnbZmeAFQSXB+QqDD4Rj8VPZT2sMCKPuaROJHFyMCcaKjU1G7vU49kUZLyw/aPLmHFgBNIilHtMrVmIGxTN++V0VUHvxouDAJSBl7lnOAZbII1SeXyAERERJSvOCKQShQf4QkfeCIRSRn2HZenAQCVEIJmoh500OG2jLrvcz6rfxzfJv0MANgvj8ICC1qJhriDGNQRVbM9fqd6EPVEdXjBI0eBQyLKf6FKWahWW0BolG7QfS8cXT9NIHCPDL+vuij3Tv5xO8O2hi+Wxo0jcTi3Mcq2tp8EPMuZ0PCFwAffQCr2pJRYM/I09nxxBS6l9Hjijxoo08S9oJtFRERExRADgVTiTNAPx4/WP3A5OZOnDjpYYcURGYE4GY8KSgi2y/22fVJ33+fTCz0+MbyF9kmDoEDBYZwEJNBCNIReZP8S/Fv9F/vlUQDA28qI+24PEd0/J2HCUsMnWGT9Hf3QHXu/voLbpxJQs18plK7vluv6AoUfguCPy7iGfeoRqFLN0fqhlDdCWnngwtYopDzlA9bXQmgbT0gpEXUhCSZPBQm3rXAvY4TOwP8XynsXt0djz+dXAABxNyxY2vMousypgOqPlSrglhEREVFxw0AglThuwgWfGybjroyGEUZ8rS7BP+oOWGHFQXkcDyn1UAreuIHbOJmcpON+NVcaYKruFSxX/8IeeRgAoMIKKWWWa/4lyiSsU7cCsGUYfkjUzZP2ENH90wkdBul7YdOk89jy7gUIHbBzzmUMD28A7wq5zyzXQKmJy+o1RCEGp+UFLgXwALV5JwTOvnrcPBaPWgP8UK6NJwDbepCeIbY125w8DQXZRCrmVEua6cASiL1ixi+PH8cj36uoM5CJZYiIiCjv8GdtKpG66FrjCX039NZ3Qi+lk7Y9ZW2ulC/gl3EN0TI2T875kn4Q0ob8tsv9GGQehzg13uExm9VdiEGcrc1Ka+jE/Y9QJKK8dXqtbVqptALWBIlLO6LvqZ4GnB5cYBS9wENjyqDb15W0ICDRgxTS0gO1+vvZbRM64OyGuwXUIiIiIiquCjQQuHnzZvTo0QNBQUEQQmDFihXaPrPZjNdeew21a9eGq6srgoKCMGjQIFy+fDnLOidPngwhhN1ftWr3nvWV7o1p8G6YXrwE47PHYHz2OIzDjsP47DFtm+nFSzAN3l3QzQSQ7su3avvyXUUJ1badlGfz5DxGYUBDUctuW4S8gM7mp3FJXs30mFXqRu12N13bPGkHEeWt0I5eAGxf2nVGgaAmqVODpZQ4vPg6Vr8QgWO/3syynobC9l7kATccUI/mW3uJqPARikCvRVXw+ArbNavQ2X5cKNfGo4BbRkRERMVNgQYCY2NjUbduXXz22WcZ9sXFxWHv3r14++23sXfvXixfvhzHjx/HI488km29NWvWRGRkpPa3devW/Gg+ZUEY3SFMHlDcAqG4B0FxC4LiFqhtEyYPCGPhWAS7tqgCffIs+b3Jo3CqiNSF/0/Kc3l2riPylHa7OirguDyD3fIwnkgajZ3qQbuyqqpipXUDAMAIAzopLfKsHUSUd9q8E4Iun1VA45cCMXhbbfhUdNb2hf94AysGnMC+uVew7NFjOLX6lsN6moq6qCOqIgoxdj8CSFUi6lIirEn3nq2WiIqGqj190W9NDTQeGYhei6ugzmBOCyYiIqK8VaBrBHbt2hVdu3bNdJ+npyf++usvu22ffvopmjRpgvPnzyMkJMRhvXq9HqVLl87TtlLx5SRM6KG0w3V5G/GIR6yMQxURqu0/oZ4B8mBGrpQS4fIkAKAMArDQMAN9LC9BJ3W4Km+gU9IQfKl/B/30PQAAi9XfEY1odBTNESrKwF243n8jiCjPKTqBRi9mnkn2/JYobWSP0AHnt0aj0sM+mZb1UjzgChcAwHF5BqfUcwiJK4sf2h/G5V0xcA0wYODGWihVzSXfHgsRFbyKYd6oGOZd0M0gIiKiYqpIrRF49+5dCCHg5eWVZbmTJ08iKCgIFSpUwIABA3D+/PksyycmJiIqKsruj0oWL+GBrXI39shwHJDHUDltIDCPpgZfwQ3cgm2tnxpKJdTSVcFW44/oprTBBUQiCWb8z7oQb5k/xi31Dt6wzEQ04vC3/BdP6LvlSRuI6MGq0NlLCwJKFSjfMev157rr2mm3V6kbcWjRdVzeFQMAiLthxrZpF/O1vUREREREVLwVmazBCQkJeO2119CvXz94eDheL6Vp06aYP38+qlatisjISLzzzjto1aoVDh8+DHf3zKeiTps2De+8805+Nb1EsuyZA5kUDXntAKQ1EZASQu8E4V8X8toBCP+6EEZ36Bu+VNBNBQA0EDUxD78AAPaq4RimewIKFKhQ82yNwHD1pHa7pqgEAPATPvjKMAUuFmccV09jq9yDfdYjWKduwzXYphD2UjqildIoT9pARA9Wtd6+eOKP6riwLRrlO3qifHuvLMt3U9rgTcwCYAsEtjF2sduvMxap3++IiIiIiKiQKRKBQLPZjL59+0JKiS+++CLLsmmnGtepUwdNmzZFuXLlsHTpUgwdOjTTYyZMmIAxY8Zo96OiohAcHJw3jS+hLHs/BWIuA0KxDYMBIIUCnF5t23Z6NeAWVGgCgQ3TJAzZqx6BSW9EqCiD0/ICTsqzkFJCCJFFDdlLmRYMADVEZe22URjwqX4ivrAuxnbLfjyhPIxyCEIAfHBYnsRHhtfu67xEVLAqd/NB5W6ZTwdOr6qogIoiBBHyPLape1G2nxFVfvPBiZW3UKqaM1pN5GcTERERERHdu0I/tCAlCHju3Dn89ddfWY4GzIyXlxeqVKmCU6dOOSxjMpng4eFh90clS01RGYYMCUNCAQCxiMclZJ7VNzduy7soC9valbWUynb7hBB4UT8Afxvn43PDZHgpHuioa4FjprXwivTB6uGn8NugE7geHnff7SCiwksIgW5KWyhQ0HFHJ6x6+jS8ypsw5noTPH+4ATyDTQXdRCIiIiIiKsIKdSAwJQh48uRJ/P333/D19c11HTExMYiIiEBgYOYLuRMBgEkYUVtUAWBbpD9axtplDj6hnr3vc+yQB3ERVwAAoSiTaZlmSn04CRNG6QdjlH4wTMKIJd2PYt83V3F48XV83+YQLAnMHEpUnL2ifxpH7/yNZl374OLSBOyaE4nfnz6Z/YFERERERETZKNBAYExMDPbv34/9+/cDAM6cOYP9+/fj/PnzMJvNeOyxx7B7924sWrQIVqsVV65cwZUrV5CUlKTV0aFDB3z66afa/bFjx2LTpk04e/Ys/v33X/Tu3Rs6nQ79+vV70A+PipgGydODJST2y6OoJ6qjtWiMBqIGImTWCWdyIlJeAwC4wBneIuuEASmklLh2MBbSass6Gn/TgujIpOwPJKIiK1D4QZxygiVehVRtr/3IPbEF3SwiIiIiIioGCnSNwN27d6Ndu9QMiSnr9A0ePBiTJ0/GypUrAQD16tWzO+6ff/5B27ZtAQARERG4ceOGtu/ixYvo168fbt68CT8/P7Rs2RL//fcf/Pz88vfBUJFXX9QE8DMAYJ96BI2UWths2QUAaCiP3Xf9kfI6gOQv+Tlcb1AIgWqP+uLozzcBAAF1XeAZwqmBRMVd6Xqu8Ag2IupiEiCBmk/kfkQ8ERERERFRegUaCGzbti2klA73Z7UvxdmzZ+3uL1my5H6bRSVU2oQhe9RwDNL10u6Hq47XmMyJWBmHu4gGAATCP1fH9lpUBZUevg5LvIpaA/yg6O4vaQkRFX5GNx2G7q6LIz/dgIu/ATUeL1XQTSIiIiIiomKgSGQNJnoQaopK6Cia4y6icUxGwEt4oCxK4yKu4Ig8dV+Zg6/I1FGrgSJ3o1N1BgV1hwTc03mJqOhy9Tei8UtBBd0MIiIiIiIqRgp1shCiB8kgDEhEEnbJQzggj+GivIKaydl97yDqvjIHX8Y17XaQyN2IQCIiIiIiIiKivMBAIFEaLZVG2u1t6l7UFJW0+0fuY3pwSqIQIPcjAomIiIiIiIiI8gKnBlO+UPzrQrqXgbx7DrAmZ7nVGSE8y0HePQfhWQ7CufCtedVSaQhYbbe3qrvxkFJPu39YnkBntLynetNODS7NQCARERERERERFQAGAilfGHsuLegm3JOHlLrQQw8LLNiq7sFQ3ePavvtJGGI3IhAMBBIRERERERHRg8epwURpuAoXNBA1AABHZQR84AUl+WVyRN57IPCyvK7d5hqBRERERERERFQQGAgkSqel0lC7vU+Go6IIAWALDFql9Z7qjEyTLIRTg4mIiIiIiIioIDAQSJROS6UhSsEbDUQNbFD/Q0PURHVUQDVRAYfliXuqMzJ5RKA7XOEuXPOyuUREREREREREOcI1AilfJP3WFzL+RrbJQgrjWoIdRDOYYMReeQQnrGcxWf8SllhWARL4W92Oukr1XNeZskZgYC6nBV/eFY3bpxNQoZMXnH0MuT4vEREREREREVEKBgIpX6jXDgAxlwGhAFK1bRQKZNw17V/pFlSwjXTApJgQpmuF76zLEIM4RMlYbd8f1n/wqv6ZXNUXLWMRgzgAQGAupgXvn3cVfzxjW5fQvawRzx2sD2dvvmSJiIiIiIiI6N5wajBRJp5Nky14pboeVUV5AMAOeQDX5a1c1XUlTaKQ3GQM3vvlFe129MUknF1/J1fnJSIiIiIiIiJKi4FAokw0UGqioagJwJYkJCWAp0LFGnVLruq6LFMTheQmY7BvVWcIXep9rwpOuTovEREREREREVFaDAQSOfCG/gWMUJ6CGRZslDu17ass/+SqnkikGRGYi0Bg508qoPZTfijTzB2PfF8ZgQ3ccnVeIiIiIiIiIqK0uOAYkQPddG2xTd0DFSrKojQu4Src4Yod8gBOqxdQQQnOUT1lRWk8pfREJK6hmqiQ4/M7e+vxyPwq99p8IiIiIiIiIiI7DAQSZeF9w6sohyD8T10IKSWiEIMoxOBVyzQsN3wGIUS2dbRUGqKlseEDaC0RERERERERkWOcGkyUjecN/TBHPxE+8IIPPAEAf6qbsVrdVMAtIyIiIiIiIiLKOQYCiXKgve4hHDOtwf8Mb0MHHUbpBqO10rigm0VERERERERElGOcGkyUQx7CDX2UMDT/5zoCDlyCwBxYpbRND/bxgRg4EMLZuaCbSURERERERESUKQYCKV/oG4yETIqGvHYA0poISAmhd4Lwrwt57QCEf10Io3tBNzPX5PffI2DoUNvtlG0p/65YAd3q1ZApwUEAUtr25mQtQSIiIiIiIiKi/MRAIOULfcOXCroJ+UL+9pvjnevWwermBiQlAU2bQowbB/n880BUFMS770J59dUH11AiIiIiIiIionS4RiBRLohGjYCsRvclJACqCuzcCTlkCHDjBpCYCPnaa5Bnzz6oZhIRERERERERZcARgUS5IMaPBwwGyN27bSP/FAW4dg3Yvj1jYYsFkDL1fmLig2soEREREREREVE6HBFIlAtCr4cybhyU4cOBLVuA338HWrcGunVLLpA8WrB0aYj33gP0ybH2Z58FqlQpmEYTEREREREREQEQUqYdskQAEBUVBU9PT9y9exceHh4F3RwqhKzVqwOnTmkj/sTBgxBubpAeHhC3bwNlykAYjZB37gBxcRBBQQXbYCIiIiIiIiK6Z8UlVsSpwUT3wmKxuyusVoiQEAgA8PJK3e7lZXefiIiIiIiIiKigcGow0T1QPv4YcHKy3XnhBaBWrYJtEBERERERERFRNgo0ELh582b06NEDQUFBEEJgxYoVdvullJg4cSICAwPh7OyMjh074uTJk9nW+9lnnyE0NBROTk5o2rQpdu7cmU+PgEoq0b07lGvXIA4cgHB2hnzrLcgbN/KsfnXpUqgjR0IuX55ndRIRERERERFRyVaggcDY2FjUrVsXn332Wab7P/zwQ/zvf//Dl19+iR07dsDV1RVhYWFISEhwWOdPP/2EMWPGYNKkSdi7dy/q1q2LsLAwXLt2Lb8eBpVUBgNk796Qn3wCOWMG1O7d86Ra9eefIfv3h5w7F2rfvpC//54n9RIRERERERFRyVaggcCuXbvivffeQ+/evTPsk1Ji9uzZeOutt9CzZ0/UqVMH33//PS5fvpxh5GBas2bNwrBhw/D000+jRo0a+PLLL+Hi4oLvvvsuHx8JlUjXrwOnTwNWq+1v927IdGsH3pNt2wCdzlanTge5dev910lEREREREREJV6hXSPwzJkzuHLlCjp27Kht8/T0RNOmTbF9+/ZMj0lKSsKePXvsjlEUBR07dnR4DAAkJiYiKirK7o8oW/7+QI0agKIAQgABAZDTpkFmMWI1J0SHDloQEFYrRPv2edRgIiIiIiIiIirJCm0g8MqVKwCAgIAAu+0BAQHavvRu3LgBq9Waq2MAYNq0afD09NT+goOD77P1VBIInQ7Khg3ASy/ZgoE3bkBOmQL1lVfur94ePaD8/jvEmDFQVq+GCAvLoxYTERERERERUUlWaAOBD9KECRNw9+5d7e/ChQsF3SQqIkSpUlDatk2dHqyqwL//3n+9XbtCmTYNonPn+28kEREREREREREKcSCwdOnSAICrV6/abb969aq2L71SpUpBp9Pl6hgAMJlM8PDwsPsjyrEmTQAvL9uoQACiZ89Mi8l166D27w/1rbcg4+MfYAOJiIiIiIiIiApxILB8+fIoXbo01q9fr22LiorCjh070KxZs0yPMRqNaNiwod0xqqpi/fr1Do8hul8iIADKjh0Q77wDfPMN0Ls3ZHS0tl9KCfXPP6F27w65bBnkhx9CHTeuAFtMRERERERERCWRviBPHhMTg1OnTmn3z5w5g/3798PHxwchISEYPXo03nvvPVSuXBnly5fH22+/jaCgIPTq1Us7pkOHDujduzdGjhwJABgzZgwGDx6MRo0aoUmTJpg9ezZiY2Px9NNPP+iHRyWIqFgRGDwYskULyAsXIH18oGzeDFGtGtQRI4Cvv7Y/YNeugmkoEREREREREZVYBRoI3L17N9q1a6fdHzNmDABg8ODBmD9/PsaPH4/Y2Fg899xzuHPnDlq2bIk1a9bAyclJOyYiIgI3btzQ7j/xxBO4fv06Jk6ciCtXrqBevXpYs2ZNhgQiRHlNzpsHXLpku3P3LtQZM4C4OGDp0oyFY2KgfvQRxKuvQiiFdmAuERERERERERUjQkopC7oRhU1UVBQ8PT1x9+5drhdIOaZ+9hnk6NGAlIAQgJ8fcOOGLYFICqMRSEpKvT9+PET//hBJSUC9egwKEhERERERERVCxSVWxKgDUR4Rzz4L9O0LODvbAoHXrtkHAUuXBnr1AnS61G0ffghZrx7UJk2gDhgAxuWJiIiIiIiIKL8wEEiUR4TJBN2iRUC7drZRgWnVqAHl9Gkoo0bZgoSZ+flnqA0awNq8OawvvmiXcISIiIiIiIiI6H4xEEiUx4S/P5Bmiq946SUoW7ZAGI0QTZtC2b0baNjQrozm0CFg507gm2+gvvbaA2w1ERERERERERV3DAQS5THx/vu2UYEBARDjx0PMmgXh6Zm6v1YtKL/+CrRuDfj6At7eGStRVeDo0QfYaiIiIiIiIiIq7go0azBRcST8/aFbsybrMkFB0P39NwBAWq1QW7cGduywL/PMM/nWRiIiIiIiIiIqeRgIJCpgQqeD8vffkL//DpjNgKpCVKkC0bRpQTeNiIiIiIiIiIoRBgKJCgHh7AzRt29BN4OIiIiIiIiIijGuEUhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQC6Au6AYWRlBIAEBUVVcAtISIiIiIiIiKigpYSI0qJGRVVDARm4ubNmwCA4ODgAm4JEREREREREREVFjdv3oSnp2dBN+OeMRCYCR8fHwDA+fPni/R/Lt27qKgoBAcH48KFC/Dw8Cjo5lABYB8ggP2A2AeIfYDYB4h9gNgHyObu3bsICQnRYkZFFQOBmVAU29KJnp6efJGXcB4eHuwDJRz7AAHsB8Q+QOwDxD5A7APEPkA2KTGjoqpot56IiIiIiIiIiIhyhIFAIiIiIiIiIiKiEoCBwEyYTCZMmjQJJpOpoJtCBYR9gNgHCGA/IPYBYh8g9gFiHyD2AbIpLv1AyKKe95iIiIiIiIiIiIiyxRGBREREREREREREJQADgURERERERERERCUAA4FEREREREREREQlAAOBREREREREREREJUCBBgKnTZuGxo0bw93dHf7+/ujVqxeOHz9uVyYhIQEjRoyAr68v3Nzc0KdPH1y9elXbf+DAAfTr1w/BwcFwdnZG9erV8cknn9jVsXz5cnTq1Al+fn7w8PBAs2bNsHbt2mzbJ6XExIkTERgYCGdnZ3Ts2BEnT560K7N371506tQJXl5e8PX1xXPPPYeYmJhs6z548CBatWoFJycnBAcH48MPP7TbHx4ejj59+iA0NBRCCMyePTvbOosi9gHHfWDu3Llo1aoVvL294e3tjY4dO2Lnzp3Z1lvUsA847gPLly9Ho0aN4OXlBVdXV9SrVw8LFy7Mtt6iiP3AcT9Ia8mSJRBCoFevXtnWW9SwDzjuA/Pnz4cQwu7Pyckp23qLGvaBrN8H7ty5gxEjRiAwMBAmkwlVqlTB6tWrs627KGEfcNwH2rZtm+F9QAiBbt26ZVt3UcI+kPX7wOzZs1G1alU4OzsjODgYr7zyChISErKtuyhhH3DcB8xmM959911UrFgRTk5OqFu3LtasWZNtvUVRSe0HCQkJGDJkCGrXrg29Xu/wmn/jxo1o0KABTCYTKlWqhPnz52fb5vQPoMCEhYXJefPmycOHD8v9+/fLhx9+WIaEhMiYmBitzPDhw2VwcLBcv3693L17t3zooYdk8+bNtf3ffvutfPnll+XGjRtlRESEXLhwoXR2dpZz5szRyowaNUp+8MEHcufOnfLEiRNywoQJ0mAwyL1792bZvunTp0tPT0+5YsUKeeDAAfnII4/I8uXLy/j4eCmllJcuXZLe3t5y+PDh8tixY3Lnzp2yefPmsk+fPlnWe/fuXRkQECAHDBggDx8+LH/88Ufp7Owsv/rqK63Mzp075dixY+WPP/4oS5cuLT/++OPcPLVFBvuA4z7Qv39/+dlnn8l9+/bJo0ePyiFDhkhPT0958eLFXD3HhR37gOM+8M8//8jly5fLI0eOyFOnTsnZs2dLnU4n16xZk6vnuChgP3DcD1KcOXNGlilTRrZq1Ur27NkzJ09rkcI+4LgPzJs3T3p4eMjIyEjt78qVK7l6fosC9gHHfSAxMVE2atRIPvzww3Lr1q3yzJkzcuPGjXL//v25eo4LO/YBx33g5s2bdu8Bhw8fljqdTs6bNy83T3Ghxz7guA8sWrRImkwmuWjRInnmzBm5du1aGRgYKF955ZVcPceFHfuA4z4wfvx4GRQUJFetWiUjIiLk559/Lp2cnLJtc1FUUvtBTEyMHD58uPz6669lWFhYptf8p0+fli4uLnLMmDHyyJEjcs6cObn+jliggcD0rl27JgHITZs2SSmlvHPnjjQYDPLnn3/Wyhw9elQCkNu3b3dYz4svvijbtWuX5blq1Kgh33nnHYf7VVWVpUuXlh999JG27c6dO9JkMskff/xRSinlV199Jf39/aXVatXKHDx4UAKQJ0+edFj3559/Lr29vWViYqK27bXXXpNVq1bNtHy5cuWKbSAwPfaBzPuAlFJaLBbp7u4uFyxYkOXjKurYBxz3ASmlrF+/vnzrrbeyLFMcsB/Y9wOLxSKbN28uv/nmGzl48OBiGQhMj30gtQ/MmzdPenp6ZvkYiiP2gdQ+8MUXX8gKFSrIpKSkLB9HccM+4Pia4OOPP5bu7u52X4qLI/aB1D4wYsQI2b59e7vjxowZI1u0aJHl4yrq2AdS+0BgYKD89NNP7Y579NFH5YABA7J8XMVBSekHaTm65h8/frysWbOm3bYnnnhChoWF5aheKaUsVGsE3r17FwDg4+MDANizZw/MZjM6duyolalWrRpCQkKwffv2LOtJqSMzqqoiOjo6yzJnzpzBlStX7M7t6emJpk2baudOTEyE0WiEoqQ+jc7OzgCArVu3Oqx7+/btaN26NYxGo7YtLCwMx48fx+3btx0eVxKwDzjuA3FxcTCbzVm2uThgH8i8D0gpsX79ehw/fhytW7d2WG9xwX5g3w/effdd+Pv7Y+jQoQ7rKm7YB+z7QExMDMqVK4fg4GD07NkT4eHhDussLtgHUvvAypUr0axZM4wYMQIBAQGoVasW3n//fVitVof1FgfsA46vC7/99ls8+eSTcHV1dVhvccA+kNoHmjdvjj179mhLBZ0+fRqrV6/Gww8/7LDe4oB9ILUPJCYmZlgaxNnZOct6i4uS0g9yYvv27XbnBmx9JavHnV6hCQSqqorRo0ejRYsWqFWrFgDgypUrMBqN8PLysisbEBCAK1euZFrPv//+i59++gnPPfecw3PNmDEDMTEx6Nu3r8MyKfUHBAQ4PHf79u1x5coVfPTRR0hKSsLt27fx+uuvAwAiIyOzrDuzetOetyRiH8i6D7z22msICgrK8KIvTtgHMvaBu3fvws3NDUajEd26dcOcOXPQqVMnh/UWB+wH9v1g69at+PbbbzF37lyH9RQ37AP2faBq1ar47rvv8Ntvv+GHH36Aqqpo3rw5Ll686LDeoo59wL4PnD59GsuWLYPVasXq1avx9ttvY+bMmXjvvfcc1lvUsQ84vi7cuXMnDh8+jGeffdZhncUB+4B9H+jfvz/effddtGzZEgaDARUrVkTbtm3xxhtvOKy3qGMfsO8DYWFhmDVrFk6ePAlVVfHXX39h+fLlWdZbHJSkfpATjvpKVFQU4uPjc1RHoQkEjhgxAocPH8aSJUvuuY7Dhw+jZ8+emDRpEjp37pxpmcWLF+Odd97B0qVL4e/vDwBYtGgR3NzctL8tW7bk6Hw1a9bEggULMHPmTLi4uKB06dIoX748AgICtMhvzZo1tXq7du16z4+tJGAfcGz69OlYsmQJfv3112K5QHwK9oGM3N3dsX//fuzatQtTp07FmDFjsHHjxlzVUdSwH6SKjo7GwIEDMXfuXJQqVSpHxxQH7AP2mjVrhkGDBqFevXpo06YNli9fDj8/P3z11Vc5rqOoYR+wp6oq/P398fXXX6Nhw4Z44okn8Oabb+LLL7/McR1FDfuAY99++y1q166NJk2a3NPxRQX7gL2NGzfi/fffx+eff469e/di+fLlWLVqFaZMmZLjOooa9gF7n3zyCSpXroxq1arBaDRi5MiRePrpp+1GnRVH7Af5IMeTiPPRiBEjZNmyZeXp06fttq9fv14CkLdv37bbHhISImfNmmW3LTw8XPr7+8s33njD4XlSFtz8448/7LZHRUXJkydPan9xcXEyIiJCApD79u2zK9u6dWv58ssvZ6j7ypUrMjo6WsbExEhFUeTSpUullFKePXtWqzclycPAgQMzzPXesGGDBCBv3bqVoe6SsEYg+4DjPvDRRx9JT09PuWvXLoePqzhgH8j6fSDF0KFDZefOnR3uL+rYD+z7wb59+yQAqdPptD8hhBRCSJ1OJ0+dOuXwMRZV7AM5ey947LHH5JNPPulwf1HGPpCxD7Ru3Vp26NDBrszq1aslALv1pIoL9gHH7wMxMTHSw8NDzp492+HjKg7YBzL2gZYtW8qxY8falUlJfpB2HbLign3A8ftAfHy8vHjxolRVVY4fP17WqFHD4eMr6kpaP0jL0RqBrVq1kqNGjbLb9t1330kPDw+Hjy+9Ag0EqqoqR4wYIYOCguSJEycy7E9ZAHLZsmXatmPHjmVYAPLw4cPS399fjhs3zuG5Fi9eLJ2cnOSKFSty3LbSpUvLGTNmaNvu3r1rtwBkZr799lvp4uKSoUOmlbIQaNoFnydMmFAik4WwD2TdBz744APp4eGR5YKnRR37QM7eB1I8/fTTsk2bNjlqf1HCfpB5P4iPj5eHDh2y++vZs6ds3769PHToULEKALAP5Py9wGKxyKpVqxa7TJHsA477wIQJE2S5cuXsvuzPnj1bBgYG5qj9RQX7QPbvA/PmzZMmk0neuHEjR+0uatgHHPeBBg0ayPHjx2d4DM7OztJiseToMRQF7AM5vx5ISkqSFStWlBMmTMhR+4uSktoP0soqWUitWrXstvXr1y9XyUIKNBD4wgsvSE9PT7lx40YZGRmp/cXFxWllhg8fLkNCQuSGDRvk7t27ZbNmzWSzZs20/YcOHZJ+fn7yqaeesqvj2rVrWplFixZJvV4vP/vsM7syd+7cybJ906dPl15eXvK3336TBw8elD179rRLCS2llHPmzJF79uyRx48fl59++ql0dnaWn3zySZb13rlzRwYEBMiBAwfKw4cPyyVLlkgXFxe71OCJiYly3759ct++fTIwMFCOHTtW7tu3L8cZZooK9gHHfWD69OnSaDTKZcuW2bU5Ojo6x89vUcA+4LgPvP/++3LdunUyIiJCHjlyRM6YMUPq9Xo5d+7cHD+/RQX7geN+kF5xzRrMPuC4D7zzzjty7dq1MiIiQu7Zs0c++eST0snJSYaHh+f4+S0K2Acc94Hz589Ld3d3OXLkSHn8+HH5xx9/SH9/f/nee+/l+PktCtgHsv8saNmypXziiSeyfS6LKvYBx31g0qRJ0t3dXf7444/y9OnTct26dbJixYqyb9++OX5+iwL2Acd94L///pO//PKLjIiIkJs3b5bt27eX5cuXz3FgqSgpqf1AStsIxn379skePXrItm3banGhFKdPn5YuLi5y3Lhx8ujRo/Kzzz6TOp1OrlmzJidPrZSygAOBADL9mzdvnlYmPj5evvjii9Lb21u6uLjI3r17y8jISG3/pEmTMq2jXLlyWpk2bdpkWmbw4MFZtk9VVfn222/LgIAAaTKZZIcOHeTx48ftygwcOFD6+PhIo9Eo69SpI7///vscPfYDBw7Ili1bSpPJJMuUKSOnT59ut//MmTOZtrm4jQRiH3DcB8qVK5dpmydNmpSj+osK9gHHfeDNN9+UlSpVkk5OTtLb21s2a9ZMLlmyJEd1FzXsB477QXrFNRDIPuC4D4wePVqGhIRIo9EoAwIC5MMPPyz37t2bo7qLEvaBrN8H/v33X9m0aVNpMplkhQoV5NSpU4vVKCAp2Qey6wMpo13WrVuXozqLIvYBx33AbDbLyZMny4oVK0onJycZHBwsX3zxxWIXBGIfcNwHNm7cKKtXry5NJpP09fWVAwcOlJcuXcpR3UVNSe4HjuIAaf3zzz+yXr160mg0ygoVKtg9LzkhpJQSREREREREREREVKwV7/QyREREREREREREBICBQCIiIiIiIiIiohKBgUAiIiIiIiIiIqISgIFAIiIiIiIiIiKiEoCBQCIiIiIiIiIiohKAgUAiIiIiIiIiIqISgIFAIiIiIiIiIiKiEoCBQCIiIiIiIiIiohKAgUAiIiKiIqxt27YYPXp0iTs3EREREeUeA4FEREREJcTGjRshhMCdO3fy5Ljly5djypQpeddAIiIiIspX+oJuABEREREVTT4+PgXdBCIiIiLKBY4IJCIiIioiYmNjMWjQILi5uSEwMBAzZ860279w4UI0atQI7u7uKF26NPr3749r164BAM6ePYt27doBALy9vSGEwJAhQwAAqqpi2rRpKF++PJydnVG3bl0sW7Ys2+PSTw0ODQ3Fe++9p7WxXLlyWLlyJa5fv46ePXvCzc0NderUwe7du+3avXXrVrRq1QrOzs4IDg7Gyy+/jNjY2Lx++oiIiIhKPAYCiYiIiIqIcePGYdOmTfjtt9+wbt06bNy4EXv37tX2m81mTJkyBQcOHMCKFStw9uxZLWgXHByMX375BQBw/PhxREZG4pNPPgEATJs2Dd9//z2+/PJLhIeH45VXXsFTTz2FTZs2ZXlcZj7++GO0aNEC+/btQ7du3TBw4EAMGjQITz31FPbu3YuKFSti0KBBkFICACIiItClSxf06dMHBw8exE8//YStW7di5MiR+fEUEhEREZVoQqZchRERERFRoRUTEwNfX1/88MMPePzxxwEAt27dQtmyZfHcc89h9uzZGY7ZvXs3GjdujOjoaLi5uWHjxo1o164dbt++DS8vLwBAYmIifHx88Pfff6NZs2basc8++yzi4uKwePHiTI8DbCMC69Wrp507NDQUrVq1wsKFCwEAV65cQWBgIN5++228++67AID//vsPzZo1Q2RkJEqXLo1nn30WOp0OX331lVbv1q1b0aZNG8TGxsLJySkPn0UiIiKiko1rBBIREREVAREREUhKSkLTpk21bT4+Pqhatap2f8+ePZg8eTIOHDiA27dvQ1VVAMD58+dRo0aNTOs9deoU4uLi0KlTJ7vtSUlJqF+/fq7bWadOHe12QEAAAKB27doZtl27dg2lS5fGgQMHcPDgQSxatEgrI6WEqqo4c+YMqlevnus2EBEREVHmGAgkIiIiKgZiY2MRFhaGsLAwLFq0CH5+fjh//jzCwsKQlJTk8LiYmBgAwKpVq1CmTBm7fSaTKdftMBgM2m0hhMNtKUHKmJgYPP/883j55Zcz1BUSEpLr8xMRERGRYwwEEhERERUBFStWhMFgwI4dO7QA2e3bt3HixAm0adMGx44dw82bNzF9+nQEBwcDQIakHEajEQBgtVq1bTVq1IDJZML58+fRpk2bTM+d2XF5pUGDBjhy5AgqVaqU53UTERERkT0mCyEiIiIqAtzc3DB06FCMGzcOGzZswOHDhzFkyBAoiu1yLiQkBEajEXPmzMHp06excuVKTJkyxa6OcuXKQQiBP/74A9evX0dMTAzc3d0xduxYvPLKK1iwYAEiIiKwd+9ezJkzBwsWLHB4XF557bXX8O+//2LkyJHYv38/Tp48id9++43JQoiIiIjyAQOBREREREXERx99hFatWqFHjx7o2LEjWrZsiYYNGwIA/Pz8MH/+fPz888+oUaMGpk+fjhkzZtgdX6ZMGbzzzjt4/fXXERAQoAXbpkyZgrfffhvTpk1D9erV0aVLF6xatQrly5fP8ri8UKdOHWzatAknTpxAq1atUL9+fUycOBFBQUF5dg4iIiIismHWYCIiIiIiIiIiohKAIwKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAH1BN4CKPovFgqSkpIJuBhERERERERHlktFohF7P8FBJwf9pumdSSpw/fx43btwo6KYQERERERER0T0qVaoUQkJCIIQo6KZQPmMgkO5ZShCwTJkycHNzg6JwpjkRERERERFRUaGqKmJiYnDp0iUAQLly5Qq4RZTfGAike2KxWLQgYOnSpQu6OURERERERER0D9zc3AAAly5dQkxMDGrWrFnALaL8xCFcdE9S1gRMecMgIiIiIiIioqIp5bv9v//+i/Dw8AJuDeUnBgLpvnA6MBEREREREVHRlvLdXlVVbNu2DVartYBbRPmFURwiIiIiIiIiIoKLiwsSEhIQHx9f0E2hfMJAIFEaGzduhBACd+7cKeimEJV4oaGhmD17dpZlJk+ejHr16j2Q9jxoZ8+ehRAC+/fvB8D3pwepIJ/r9P/veSknr5chQ4agV69eeX7u3LThfuX3Y8iN+fPnw8vLS7tfnN+zCkrbtm0xevTogm5GoZf+dcHnjUqK9O/DRU1BXA+mZA1WVTXfzkEFi4FAIiIqUI4u0Hbt2oXnnntOuy+EwIoVK+zKjB07FuvXr8/nFua/nAQumjdvjsjISHh6ej6YRpUQmX0ZTv9cF/UvEfRg5OTHi+LynlWYLF++HFOmTMm3+gtTYDkncvpjQn4/b0SUe7wepAeFgUAiokLIbJVZ3s9vKQmBCpKfnx9cXFyyLOPm5gZfX98H1KKCZTQaUbp0ae1X2ntRGP5fs2M1q1nefxDy4rkmykxevGeZzeY8ak3+MEuZ5f285uPjA3d393w9R3F0v8+b1WrNs9FCeVlXUSbTvbbT3y8MisJ1RHFXUq4HKX8xEEj37QXzJLRJHFCgfy+YJ+W4vYmJiXj55Zfh7+8PJycntGzZErt27cq0bFxcHLp27YoWLVpwOh49MFJKrD1qQcuPY+A9/i5afhyDdUctkPn4Zapt27YYOXIkRo8ejVKlSiEsLAwAcPjwYXTt2hVubm4ICAjAwIEDcePGjQzHjRw5Ep6enihVqhTefvttu7YmJiZi7NixKFOmDFxdXdG0aVNs3LgRgG16w9NPP427d+9CCAEhBCZPngzAfnRNaGgoAKB3794QQmj300+zU1UV7777LsqWLQuTyYR69ephzZo12v6UkRLLly9Hu3bt4OLigrp162L79u1amXPnzqFHjx7w9vaGq6sratasidWrVzt87m7fvo1BgwbB29sbLi4u6Nq1K06ePKntz2wq4OzZs+0ew4IFC/Dbb79pz0HK85NWZlNBtm7dilatWsHZ2RnBwcF4+eWXERsbq+0PDQ3FlClTMGjQIHh4eNiNsCyMpJSIWHMH8x46gA/ctmPeQwcQseZOvvX9IUOGYNOmTfjkk0+05/7s2bN2z3VWfXThwoVo1KgR3N3dUbp0afTv3x/Xrl3T6k+pZ/369WjUqBFcXFzQvHlzHD9+PNu2HTt2DM2bN4eTkxNq1aqFTZs2afsyG6G4YsWKDF8Kpk+fjoCAALi7u2Po0KFISEiw22+1WjFmzBh4eXnB19cX48ePt3uuv//+e/j6+iIxMdHuuF69emHgwIEO237x4kX069cPPj4+cHV1RaNGjbBjxw67MgsXLkRoaCg8PT3x5JNPIjo6WtunqiqmTZuG8uXLw9nZGXXr1sWyZcvsjg8PD0f37t3h4eEBd3d3tGrVChEREZm2Z9euXfDz88MHH3zgsM2HDh1C+/bt4ezsDF9fXzz33HOIiYnR9mc2crRXr14YMmSItv/cuXN45ZVXtH6SmczeD7755htUr14dTk5OqFatGj7//HNtX8p71k8//YQ2bdrAyckJixYtcvg4CpqUEmujLWh5OgbeR++i5ekYrIvO/8+vtP83oaGheP/99/HMM8/A3d0dISEh+Prrr7OsY9myZahdu7b2/9+xY0fExsZm+f584cIF9O3bF15eXvDx8UHPnj1x9uxZrc6UkT3vvPMO/Pz84OHhgeHDh2f7BfyXX35BzZo1YTKZEBoaipkzZ9rtz2x0vJeXF+bPnw8AKF++PACgfv36EEKgbdu2OXresvqsBlLfd1auXIkaNWrAZDLh/Pnzmda9cuVKVK5cGU5OTmjXrh0WLFhg9/nlqK77/TwF7v15L2hSSmDtWlhbtIDV0xPWFi2AtWvz9bUTHR2NAQMGwNXVFYGBgfj4448zfT1ldh2RXT/9/PPPtT4QEBCAxx57TNvn6PWWnqqqKFu2LL744gu77fv27YOiKDh37hwAYNasWahduzZcXV0RHByMF1980e79O73MRt2NHj3a7rWSk8+h9Hg9SEUJA4F0346op7BDHijQvyPqqRy3d/z48fjll1+wYMEC7N27F5UqVUJYWBhu3bplV+7OnTvo1KkTVFXFX3/9xWlh9ECYrRKrwi3o820cdp6zIjYJ2HnOike/jcPqcEu+jgxcsGABjEYjtm3bhi+//BJ37txB+/btUb9+fezevRtr1qzB1atX0bdv3wzH6fV67Ny5E5988glmzZqFb775Rts/cuRIbN++HUuWLMHBgwfx+OOPo0uXLjh58iSaN2+O2bNnw8PDA5GRkYiMjMTYsWMztC0lWD9v3jxERkY6DN5/8sknmDlzJmbMmIGDBw8iLCwMjzzyiN2FGAC8+eabGDt2LPbv348qVaqgX79+sFgsAIARI0YgMTERmzdvxqFDh/DBBx/Azc3N4fM2ZMgQ7N69GytXrsT27dshpcTDDz+c41E7Y8eORd++fdGlSxftOWjevHm2x0VERKBLly7o06cPDh48iJ9++glbt27FyJEj7crNmDEDdevWxb59+/D222/nqE0FwWpWcfKP21ja8ygu7YiBOVbFpR0xWNrzKE7+cTtfRgZ+8sknaNasGYYNG6Y998HBwXZlsuqjZrMZU6ZMwYEDB7BixQqcPXtWCwyl9eabb2LmzJnYvXs39Ho9nnnmmWzbNm7cOLz66qvYt28fmjVrhh49euDmzZs5fmxLly7F5MmT8f7772P37t0IDAy0CzABwMyZMzF//nx899132Lp1K27duoVff/1V2//444/DarVi5cqV2rZr165h1apVDh9DTEwM2rRpg0uXLmHlypU4cOAAxo8fbzfaJyIiAitWrMAff/yBP/74A5s2bcL06dO1/dOmTcP333+PL7/8EuHh4XjllVfw1FNPacHQS5cuoXXr1jCZTNiwYQP27NmDZ555RnsNp7VhwwZ06tQJU6dOxWuvvZZpm2NjYxEWFgZvb2/s2rULP//8M/7+++8Mr6WsLF++HGXLlsW7776r9ZOcWLRoESZOnIipU6fi6NGjeP/99/H2229jwYIFduVef/11jBo1CkePHtV+qClszFJiVbQFfS7EYWe8FbEqsDPeikcvxGF1tCXfRwamNXPmTDRq1Aj79u3Diy++iBdeeMFhAD4yMhL9+vXDM888g6NHj2Ljxo149NFHIaV0+P5sNpsRFhYGd3d3bNmyBdu2bYObmxu6dOliF3Bav369VuePP/6I5cuX45133nHY7j179qBv37548skncejQIUyePBlvv/22FuTLiZ07dwIA/v77b0RGRmL58uU5Oi6rz+oUcXFx+OCDD/DNN98gPDwc/v7+Geo5c+YMHnvsMfTq1QsHDhzA888/jzfffDNDuczqut/P0xS5fd4LmjSbgVWroPbuDezYAcTGAjt22O6vWpVvIwPHjBmDbdu2YeXKlfjrr7+wZcsW7N27N0O59NcR2fXT3bt34+WXX8a7776L48ePY82aNWjdujWArF9v6SmKgn79+mHx4sV22xctWoQWLVqgXLlyWrn//e9/CA8Px4IFC7BhwwaMHz/+vp6b7D6HMsPrQSpSJNE9iI2Nlbt375axsbGydUJ/aYqvWaB/rRP656jdMTEx0mAwyEWLFmnbkpKSZFBQkPzwww/lP//8IwHIo0ePyjp16sg+ffrIxMTE/HoaiTLVYla0NIy6k+Gv5cfR+XbONm3ayPr169ttmzJliuzcubPdtgsXLkgA8vjx49px1atXl6qqamVee+01Wb16dSmllOfOnZM6nU5eunTJrp4OHTrICRMmSCmlnDdvnvT09MzQpnLlysmPP/5Yuw9A/vrrr3ZlJk2aJOvWravdDwoKklOnTrUr07hxY/niiy9KKaU8c+aMBCC/+eYbbX94eLj2updSytq1a8vJkydnaE9mTpw4IQHIbdu2adtu3LghnZ2d5dKlSzNto5RSfvzxx7JcuXLa/cGDB8uePXvalUlp6759+6SUUnt/un37tpRSyqFDh8rnnnvO7pgtW7ZIRVFkfHy8lNL2HPbq1StHj6Uw+K7pfjkFWzP8fffQgXw7Z5s2beSoUaPstqV/rh310fR27dolAcjo6Gi7ev7++2+tzKpVqyQA7f8ovZT/9+nTp2vbzGazLFu2rPzggw8ctufXX3+VaS/rmjVrpvX7FE2bNrXri4GBgfLDDz/McJ60ffGFF16QXbt21e7PnDlTVqhQwe41n9ZXX30l3d3d5c2bNzPdP2nSJOni4iKjoqK0bePGjZNNmzaVUkqZkJAgXVxc5L///mt33NChQ2W/fv2klFJOmDBBli9fXiYlJWV6jpTX0/Lly6Wbm5tcsmRJpuVSfP3119Lb21vGxMRo21atWiUVRZFXrlyRUmbeT3r27CkHDx6s3U//niVlxv+r9O8HFStWlIsXL7Y7ZsqUKbJZs2ZSytT+MHv27CwfQ2HRIiJaGg7fyfDXMiJ/P7/S/t+UK1dOPvXUU9p9VVWlv7+//OKLLzI9fs+ePRKAPHv2bKb7M3t/Xrhwoaxatard6yAxMVE6OzvLtWvXasf5+PjI2NhYrcwXX3wh3dzcpNVqzfRc/fv3l506dbLbNm7cOFmjRg3tfmafhZ6ennLevHlSyoyfHY4eR9rnLaef1QDk/v37M217itdee03WqlXLbtubb76Z4T01fV15+Xma2+e9MLA0by4tOl3GvxYt8uV8UVFR0mAwyJ9//lnbdufOHeni4pLh9ZT+OiK7fvrLL79IDw8Pu/f5FNm93tLbt2+fFELIc+fOSSmltFqtskyZMg5fz1JK+fPPP0tfX1/tfvr34cxe06NGjZJt2rSRUubscyi94nI9mPIdf+HChfKTTz6Rd+/ezfYYKpo4IpBKlIiICJjNZrRo0ULbZjAY0KRJExw9elTb1qlTJ1SqVAk//fQTjEZjQTSVSrDwSGuutueVhg0b2t0/cOAA/vnnH7i5uWl/1apVAwC7KXgPPfSQ3TS4Zs2a4eTJk7BarTh06BCsViuqVKliV8+mTZscTuO7V1FRUbh8+bLd6xsAWrRoYff6BoA6depotwMDAwFAm9L58ssv47333kOLFi0wadIkHDx40OE5jx49Cr1ej6ZNm2rbfH19UbVq1QznzGsHDhzA/Pnz7Z7XsLAwqKqKM2fOaOUaNWqUr+3IS9cOx2W6/bqD7QVtz5496NGjB0JCQuDu7o42bdoAQIbpcln1N0eaNWum3dbr9WjUqFGu+tTRo0ft+mX6Ou/evYvIyEi7MinnSWvYsGFYt24dLl26BMA2pW/IkCEOp77u378f9evXh4+Pj8O2hYaG2q1NFhgYqD0fp06dQlxcHDp16mTXt7///nvtPWP//v1o1aoVDAaDw3Ps2LEDjz/+OBYuXIgnnnjCYTnA9lzVrVsXrq6u2rYWLVpAVdUcTeO+V7GxsYiIiMDQoUPtHut7772X4f2xqLyOwxMdfH452J5f0r7mhBAoXbq0w9dc3bp10aFDB9SuXRuPP/445s6di9u3b2dZ/4EDB3Dq1Cm4u7tr/28+Pj5ISEiw+7+rW7eu3Vq3zZo1Q0xMDC5cuJBpvUePHs30MyzlMzW/5PSz2mg02j23mTl+/DgaN25st61JkyYZyqWvKy8/T3P7vBcKhw/nbvt9On36NMxms93/jaenJ6pWrZqhbPr3n+z6aadOnVCuXDlUqFABAwcOxKJFixAXZ/scz+3rrV69eqhevbo2KnDTpk24du0aHn/8ca3M33//jQ4dOqBMmTJwd3fHwIEDcfPmTe2cuZWTz6H0eD1IRY2+oBtAVBh169YNv/zyC44cOYLatWsXdHOohKkZqMPOcxkv+GsG6vL1vGm/BAO2KX49evTIdF2tlGBGdmJiYqDT6bBnzx7odPbtz2q6bX5LG0BICWikTF189tlnERYWhlWrVmHdunWYNm0aZs6ciZdeeumezqUoSoYpL3mx2H9MTAyef/55vPzyyxn2hYSEaLfT/78WZv61XHBpR8Z1ffxqZZ00piCkTCcNCwvDokWL4Ofnh/PnzyMsLCzDWlRZ9bd7kV99KjP169dH3bp18f3336Nz584IDw/HqlWrHJZ3dnbOts70ATwhhPZ8pKzrtGrVKpQpU8aunMlkyvE5KlasCF9fX3z33Xfo1q1blkHDnMiP5zzlsc6dOzdD0Db9+2VReR3XNOmwMz6Tzy9T/n5+pZdVH0tPp9Phr7/+wr///ot169Zhzpw5ePPNN7Fjxw5tvb30YmJi0LBhw0zXa/Tz87v/B5AFIUS+9MWcfFY7OzvnWRKle6nrQb73PXC1atmmBWe2vYDl9v3H3d0de/fuxcaNG7Fu3TpMnDgRkydPxq5du+Dl5ZXr19uAAQOwePFivP7661i8eDG6dOmiJV06e/YsunfvjhdeeAFTp06Fj48Ptm7diqFDhyIpKSnTpHPZ9aOcfA7dC14PUmHCQCDdtxpKJaCAE33VUCrlqFzFihW1NdBS1pUwm83YtWuX3cK406dPh5ubGzp06ICNGzeiRo0a+dFsogzMVokJnUx49Ns4pL1WEAJ4vaMJZquEQfdgMpk2aNAAv/zyC0JDQ6HXO/64SJ8E4L///kPlypWh0+lQv359WK1WXLt2Da1atcr0eKPRmKORDgaDIctyHh4eCAoKwrZt27SRWQCwbdu2TEcjZCU4OBjDhw/H8OHDMWHCBMydOzfTQGD16tVhsViwY8cObR2Xmzdv4vjx49r7hp+fH65cuQIppfalZ//+/Xb15PQ5SKtBgwY4cuQIKlXK2ftfYWc1q2jxZjCW9jwKpL1OFkCLN8rCalahM+T9RIacPPeZlTl27Bhu3ryJ6dOna+sK7t69O8/a9d9//2lrKlksFuzZs0db78fPzw/R0dGIjY3VLuzT96nq1atjx44dGDRokF2dKTw9PREYGIgdO3ZkOE+DBg3s6nr22Wcxe/ZsXLp0CR07dsywjmJaderUwTfffINbt25lOSrQkbSJA9K+jtOfY8GCBTCbzQ4DfKVKlcLy5cvRtm1b9O3bF0uXLnVYtnr16pg/f77d87lt2zYoiqKNjvHz87Nb989qteLw4cNo166dti23r+OAgAAEBQXh9OnTGDBgQI6PK6zMUmJCKRMevRCX/iWM10uZYJYShkKaiVsIgRYtWqBFixaYOHEiypUrh19//RVjxozJ9P+1QYMG+Omnn+Dv7w8PDw+H9R44cADx8fFa8Pq///6Dm5ubw9dQ9erVsW3bNrtt27ZtQ5UqVbQAXfq+ePLkSbuRTykzWXLTF3PyWZ1TVatWzZBgy9G6vmnl1ecpkPvnvaBJsxnKhAm2NQHTXfwpr78OaTZD3OePGelVqFABBoMBu3bt0oJFd+/exYkTJ7TPBEdy0k/1ej06duyIjh07YtKkSfDy8gZ0KNgAABY/SURBVMKGDRvw6KOPZvl6y0z//v3x1ltvYc+ePVi2bBm+/PJLbd+ePXugqipmzpwJRbFdIyxdujTL9vv5+eFwupGW+/fv1z4jcvI5lNlzwutBKkoYCKT79oWh8C6+m56rqyteeOEFjBs3Dj4+PggJCcGHH36IuLg4DB06FAcOHNDKzpgxA1arFe3bt8fGjRu1KZFE+cmgE3i4ph7Lh7pg+t+JCI+0omagDq93NOHhmvo8+yU+J0aMGIG5c+eiX79+GD9+PHx8fHDq1CksWbIE33zzjXaxd/78eYwZMwbPP/889u7dizlz5mjZ46pUqYIBAwZg0KBBmDlzJurXr4/r169j/fr1qFOnDrp164bQ0FDExMRg/fr12nSezH7BDQ0Nxfr169GiRQuYTCZ4e3tnKDNu3DhMmjQJFStWRL169TBv3jzs378/V1k2R48eja5du6JKlSq4ffs2/vnnH1SvXj3TspUrV0bPnj0xbNgwfPXVV3B3d8frr7+OMmXKoGfPngBsmRmvX7+ODz/8EI899hjWrFmDP//80+7LY2hoKNauXYvjx4/D19cXnp6e2bbztddew0MPPYSRI0fi2WefhaurK44cOYK//voLn376aY4fb2GhMyio3N0bfX+rjm3vX8T1w3Hwq+WCFm+UReXu3vnW90NDQ7Fjxw6cPXtWm96XWZn0fTQkJARGoxFz5szB8OHDcfjwYUyZMiXP2vXZZ5+hcuXKqF69Oj7++GPcvn1bS9DRtGlTuLi44I033sDLL7+MHTt2ZEgmMGrUKAwZMgSNGjVCixYtsGjRIoSHh6NChQp2ZaZPn47KlSujWrVqmDVrll0WwhT9+/fH2LFjMXfuXHz//fdZtrtfv354//330atXL0ybNg2BgYHYt28fgoKC7KYmO+Lu7o6xY8filVdegaqqaNmyJe7evYtt27bBw8MDgwcPxsiRIzFnzhw8+eSTmDBhAjw9PfHff/+hSZMmdtPa/P39sWHDBrRr1w79+vXDkiVLMv1RY8CAAZg0aRIGDx6MyZMn4/r163jppZcwcOBABAQEAADat2+PMWPGYNWqVahYsWKmz1VoaCg2b96MJ598EiaTCaVKlcr28b7zzjt4+eWX4enpiS5duiAxMRG7d+/G7du3HX4pLqwMQuBhdz2WB7tg+o1EhCdaUdOkw+ulTHjY/cF+fuXGjh07sH79enTu3Bn+/v7YsWMHrl+/rr3vZ/b+PGDAAHz00Ufo2bOnlqn+3LlzWL58OcaPH4+yZcsCAJKSkjB06FC89dZbOHv2LCZNmoSRI0dqAYv0Xn31VTRu3BhTpkzBE088ge3bt+PTTz+1S/TTvn17fPrpp2jWrBmsVitee+01uyC3v78/nJ2dsWbNGpQtWxZOTk7Zfqbk5LM6p55//nnMmjULr732GoYOHYr9+/dr709Z9YG8+jwFcv+8FzRhMEB26wbl11+hTp9umw5cqxaU118HunXLl9eOu7s7Bg8erH0n8vf3x6RJk6AoSrbny66f/vHHHzh9+jRat24Nb29vrF69GqqqomrVqtm+3jITGhqK5s2bY+jQobBarXjkkUe0fZUqVYLZbMacOXPQo0cPLeFdVtq3b4+PPvoI33//PZo1a4YffvgBhw8fRv369bXnJrvPofR4PUhFTkEtTkhFW9pkIUVNfHy8fOmll2SpUqWkyWSSLVq0kDt37pRSZlx8VUopX3rpJRkYGKglRyB6EJIsapb381pmC+FLaVv8uHfv3tLLy0s6OzvLatWqydGjR2sLpLdp00a++OKLcvjw4dLDw0N6e3vLN954w24B9aSkJDlx4kQZGhoqDQaDDAwMlL1795YHDx7UygwfPlz6+vpKAHLSpElSyowL769cuVJWqlRJ6vV6bWHl9AsvW61WOXnyZFmmTBlpMBhk3bp15Z9//qntz2wR9du3b0sA8p9//pFSSjly5EhZsWJFaTKZpJ+fnxw4cKC8ceOGw+fu1q1bcuDAgdLT01M6OzvLsLAweeLECbsyX3zxhQwODpaurq5y0KBBcurUqXaLQ1+7dk126tRJurm5aW3JbnFoKaXcuXOndpyrq6usU6eOXbKUzJIXFHaWJGuW9/Pa8ePH5UMPPSSdnZ0lAHnmzJlMn+vM+ujixYtlaGioNJlMslmzZnLlypXZ/p/t27dPO09mUv7fFy9eLJs0aSKNRqOsUaOG3LBhg125X3/9VVaqVEk6OzvL7t27y6+//lqmv6ybOnWqLFWqlHRzc5ODBw+W48ePt3u9mM1mOWrUKOnh4SG9vLzkmDFj5KBBgzIsVC6llAMHDpQ+Pj4yISEh2+f07Nmzsk+fPtLDw0O6uLjIRo0ayR07dkgpc7ZYuqqqcvbs2bJq1arSYDBIPz8/GRYWJjdt2qSVOXDggOzcubN0cXGR7u7uslWrVjIiIkJKmXGx9cuXL8sqVarIvn37SovFkmmbDx48KNu1ayednJykj4+PHDZsmJb0RUrb+9gLL7wgfXx8pL+/v5w2bVqGZCHbt2+XderUkSaTSfu/yC5ZiJRSLlq0SNarV08ajUbp7e0tW7duLZcvXy6ldJz4oTBLSpdIJv39vJZZspD073t169bVXrfpHTlyRIaFhUk/Pz9pMplklSpV5Jw5c7T9mb0/SyllZGSkHDRokHY9WaFCBTls2DBtcf2Ufjhx4kTp6+sr3dzc5LBhw7J9DS1btkzWqFFDGgwGGRISIj/66CO7/ZcuXZKdO3eWrq6usnLlynL16tV2yUKklHLu3LkyODhYKoqiJUDIKlmIlNl/Vuc0aZKUUv7222+yUqVK0mQyybZt28ovvvjCLkmSo7ry4vP0Xp/3wkBNlwAp/f28FhUVJfv37y9dXFxk6dKl5axZs2STJk3k66+/rpVxdB2RVT/dsmWLbNOmjfT29pbOzs6yTp068qeffpJSZv96c+Tzzz+XAOSgQYMy7Js1a5YMDAzU+sz333+fbcKviRMnyoCAAOnp6SlfeeUVOXLkSO21ImXOPofSKw7Xg0wWUnIIKTPJ1U2Ujbi4OBw9ehTVq1fPdOQOEZUMbdu2Rb169TB79uyCbgoR5aMOHTqgZs2a+N///lfQTSEqEoYMGYI7d+5gxYoVBd2UAjd16lR8+eWXDyRZB5/3excbG4syZcpg5syZGDp0aEE3hwpAynf8o0eP4tatWxgyZEiWyx9Q0cWpwURERESUqdu3b2Pjxo3YuHGj3fREIiJHPv/8czRu3Bi+vr7Ytm0bPvroI22NUyo89u3bh2PHjqFJkya4e/cu3n33XQDQprISUfHFQCARERERZap+/fq4ffs2PvjgA7v194iIHDl58iTee+893Lp1CyEhIXj11VcxYcKEgm4WZWLGjBk4fvw4jEYjGjZsiC1btuRofVMiKto4NZjuCacGExERERERERUPnBpcchTO1ElERERERERERESUpxgIJCIiIiIiIiIiKgEYCCQiIqL/t3f/QVHV/x7Hn4dFYnVJQBAs+WUiEkZkTMEWhImJmWVQU3NNxMIBUhjvJKk1QjlaOmXmjL8aG5t0vGql945jWGiGRpOGP8pmIGxUdLS1GoOZL2Agu3v/8LrfVsAfgJd0X4+/4Jz9fD6vc5Z/zpvz+XxERERERMQDqBAoIiIiIiIiIiLiAVQIFBERERERERER8QAqBIqIiIiIiIiIiHgAFQJFrqKiogLDMGhoaOhWP3V1dRiGwQ8//NAjua5XWloaM2fO7JWxRURERERERKT3efd2AJF/OqvVis1mo3///t3qJywsDJvNRlBQUA8l61hFRQWjRo2ivr4ef39/1/GtW7fSp0+fGzr21aSlpZGQkMD777/fqzlEREREREREPJEKgSJX4ePjQ2hoaLf7MZlMPdJPVwUGBvba2CIiIiIiIiLS+zQ1WDxKWloahYWFzJw5k4CAAEJCQlizZg1NTU1MnToVPz8/hg4dyo4dO1xtLp8afPLkSSZMmEBAQAD9+vUjLi6OsrIyAOrr65k0aRLBwcGYzWaio6P56KOPgPZTgy/1+9VXX5GYmEjfvn2xWq3U1ta6ZV6wYAEDBw7Ez8+P3Nxc5syZQ0JCQofXV1dXx6hRowAICAjAMAxycnJc1/73qcGRkZEsWLCA7OxsLBYLERERbNu2jT/++IOnnnoKi8VCfHw8Bw4ccBujsrKSlJQUzGYzYWFhFBUV0dTU5Dq/cuVKoqOj8fX1JSQkhGeeeQaAnJwc9uzZw7JlyzAMA8MwqKurw26389JLLxEVFYXZbCYmJoZly5a5jZmTk8PEiRN56623CAkJwd/fn/nz59PW1kZxcTGBgYEMHjzYda//fr83bdqE1WrF19eXESNGsGfPns7+PERERERERERuaSoEisf5+OOPCQoK4vvvv6ewsJCCggKeffZZrFYrhw4d4rHHHmPy5Mk0Nzd32H769Om0tLSwd+9efvrpJxYvXozFYgFg3rx5VFdXs2PHDmpqali1atVVpwK//vrrLFmyhAMHDuDt7c2LL77oOrdhwwYWLlzI4sWLOXjwIOHh4axatarTvsLCwtiyZQsAtbW12Gy2dkW1v1u6dCkPPfQQhw8fZvz48UyePJns7GxeeOEFDh06xF133UV2djZOpxOAY8eOkZGRQVZWFkeOHGHz5s1UVlYyY8YMAA4cOEBRURHz58+ntraWL774gtTUVACWLVtGcnIy06ZNw2azYbPZCAsLw+FwMHjwYD799FOqq6spKSnhtdde45NPPnHLunv3bn799Vf27t3Le++9R2lpKU888QQBAQHs37+f/Px88vLyOH36tFu74uJiXnnlFQ4fPkxycjITJkzg3LlzV/xORERERERERG5FhvPSE77IdWhubqampobY2Fj69u3rOu5sPIuz6az7h3398eofibPtL5znfm7Xl1dIAgCOP4/CBffim9E/HMM3EGfzHzj/dca9oY8Fr4Ch15U7LS0Nu93ON998A4Ddbqd///5kZmaybt06AM6ePcugQYP47rvvSEpKarfmXnx8PFlZWZSWlrbr/8knnyQoKIi1a9e2O1dXV0dUVBSHDx8mISHB1e+uXbsYPXo0AGVlZYwfP57z58/j6+tLUlISiYmJLF++3NXPww8/TGNjY6ebjnS2RuDl6/NFRkaSkpLC+vXr3a573rx5zJ8/H4B9+/aRnJyMzWYjNDSU3NxcTCYTH3zwgavfyspKHnnkEZqamigrK2Pq1KmcPn0aPz+/Du//tawROGPGDM6ePctnn30GXHwjsKKiguPHj+PldfH/F8OHD2fgwIHs3bsX+Pd3+eGHH/L888+77veiRYuYPXs2AG1tbURFRVFYWMirr756xQwiIiIiIiKe4tIzfk1NDX/++Sc5OTncfvvtvR1LbgCtESg9qu2ntdj3ve12zGv4c/iM+xBn4xla/yulXRvf//wXABfK83HaqtzO9clYgyn2eexH/5u2r19x7zdiND6Z/3PdGePj410/m0wmBgwYwD333OM6FhISAsDvv//eYfuioiIKCgooLy8nPT2drKwsV58FBQVkZWW53iycOHEiVqv1mvMMGjTINXZ4eDi1tbW8/PLLbp9/4IEH2L1793Vc8bWNfem6O7sXoaGh/Pjjjxw5coQNGza4PuN0OnE4HJw4cYIxY8YQERHBkCFDyMjIICMjg6efftqtWNyRFStWsHbtWk6dOsX58+dpbW1tN/05Li7OVQS8lG3EiBGu3y99l5d/b8nJya6fvb29SUxMpKam5mq3RkREREREROSWo0Kg9Cjve17ENORx94O+/gAYljvx+Y9vOm3b57HVHb4RCGAa9jRegx5wb+Bj6VLGy3fONQzD7ZhhGAA4HI4O2+fm5jJ27Fg+//xzysvLefvtt1myZAmFhYWMGzeOkydPUlZWxs6dOxk9ejTTp0/n3XffvaY8Vxu7p3U09pXyNDY2kpeXR1FRUbu+wsPD8fHx4dChQ1RUVFBeXk5JSQlvvPEGVVVVbm8n/t2mTZuYNWsWS5YsITk5GT8/P9555x3279/fadZL2To69v9170RERERERERuNioESo8yLKEYlo53xjW8fTH+bxpwR7wCh3Xeb99gjL7B3Y3XY8LCwsjPzyc/P5+5c+eyZs0aCgsLAQgODmbKlClMmTKFlJQUiouLr1gIvJKYmBiqqqrIzs52HauqqrpCi4u7HMPFqbI9beTIkVRXVzN0aOdTsr29vUlPTyc9PZ3S0lL8/f3ZvXs3mZmZ+Pj4tMv17bffYrVa3d58PHbsWI9l3rdvn2udwra2Ng4ePOha01BERERERETEk6gQKHKdZs6cybhx4xg2bBj19fV8/fXXxMbGAlBSUsL9999PXFwcLS0tbN++3XWuKwoLC5k2bRqJiYlYrVY2b97MkSNHGDJkSKdtIiIiMAyD7du38/jjj2M2m12bmXTX7NmzSUpKYsaMGeTm5tKvXz+qq6vZuXMny5cvZ/v27Rw/fpzU1FQCAgIoKyvD4XAQExMDXFyXcP/+/dTV1WGxWAgMDCQ6Opp169bx5ZdfEhUVxfr166mqqiIqKqpHMq9YsYLo6GhiY2NZunQp9fX1bhuyiIiIiIiIiHgK7Roscp3sdjvTp08nNjaWjIwMhg0bxsqVK4GLb+PNnTuX+Ph4UlNTMZlMbNq0qctjTZo0iblz5zJr1ixGjhzJiRMnyMnJwdfXt9M2d955J2+++SZz5swhJCSkR99+i4+PZ8+ePRw9epSUlBTuu+8+SkpKuOOOOwDw9/dn69atPProo8TGxrJ69Wo2btxIXFwcALNmzcJkMnH33XcTHBzMqVOnyMvLIzMzk+eee44HH3yQc+fOtVsXsTsWLVrEokWLuPfee6msrGTbtm1X3clZRERERERE5FakXYOlSzrbNVhuvDFjxhAaGura7Vc6dvkuzSIiIiIiItIx7RrsOTQ1WOQfrLm5mdWrVzN27FhMJhMbN25k165d7Ny5s7ejiYiIiIiIiMhNRoVAkX8wwzAoKytj4cKF/PXXX8TExLBlyxbS09N7O5qIiIiIiIiI3GRUCBT5BzObzezatau3Y9yUIiMj0coHIiIiIiIiIv+mzUJEREREREREREQ8gAqB0i0Oh6O3I4iIiIiIiIhIN+jZ3nOoEChd4uPjA0BjY2MvJxERERERERGR7rj0bN/a2trLSeRG0xqB0iXe3t4EBQVx5swZACwWC15eqiuLiIiIiIiI3CwcDgeNjY2cOXOGhoYG2traejuS3GAqBEqXhYeH43Q6XcVAEREREREREbn5NDQ08Ntvv2G32zGZTK5ZgHLrUSFQuswwDCIjI/nll1/4+eefGTBgALfddltvxxIRERERERGRa3ThwgUcDgetra3U19czfPhwPdvfwlQIlG5LTU2lpaWF6upq7HY7hmH0diQRERERERERuUZOpxMvLy+io6MZO3asnutvYYbT6XT2dgi5+bW2tmKz2WhqakJ/UiIiIiIiIiI3D8MwMJvNhIaGYjabezuO3EAqBIqIiIiIiIiIiHgAbfMqIiIiIiIiIiLiAVQIFBERERERERER8QAqBIqIiIiIiIiIiHgAFQJFREREREREREQ8gAqBIiIiIiIiIiIiHuB/AUAqEb/ntHEPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#update QC settings\n", + "dataset.update_qc_settings(obstype='temp', gapsize_in_records=None,\n", + " dupl_timestamp_keep=None,\n", + " persis_time_win_to_check=None,\n", + " persis_min_num_obs=None,\n", + " rep_max_valid_repetitions=None,\n", + " gross_value_min_value=10.7,\n", + " gross_value_max_value=None,\n", + " win_var_max_increase_per_sec=None,\n", + " win_var_max_decrease_per_sec=None,\n", + " win_var_time_win_to_check=None,\n", + " win_var_min_num_obs=None,\n", + " step_max_increase_per_sec=5./3600.,\n", + " step_max_decrease_per_sec=None)\n", + "\n", + "dataset.update_titan_qc_settings(obstype='temp', buddy_radius=10000,\n", + " buddy_num_min=3, buddy_threshold=2.2,\n", + " buddy_max_elev_diff=None,\n", + " buddy_elev_gradient=None,\n", + " buddy_min_std=1.0,\n", + " buddy_num_iterations=None,\n", + " buddy_debug=None)\n", + "\n", + "dataset.apply_quality_control()\n", + "dataset.apply_titan_buddy_check(use_constant_altitude=True)\n", + "\n", + "# Create the plot\n", + "ax2 = dataset.make_plot(colorby='label')\n", + "#translate axes\n", + "ax2.set_title('Temperature for all stations')\n", + "ax2.set_ylabel('T2m in °C')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "09b5489a-4207-41e1-94b8-cfe8e7564b7e", + "metadata": {}, + "source": [ + "## Fill gaps and plot timeseries of Vlinder28" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "552e81e9-0e6f-4917-9b43-634a31b079e9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAHjCAYAAAB4jmL1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5fXA8e97J/sKITs7AcIOCggIihviLtW61Fq1ta1VbKtWrdhWq7VSbbXa1q2t4r4ULf5wwwoCIrLLvoR9z0YgCdkzc9/fH5NM7pCQjZncmcn5PM88z83MnXtP9plzz3uO0lprhBBCCCGEEEIIIYQQIc2wOwAhhBBCCCGEEEIIIYT/SSJQCCGEEEIIIYQQQohOQBKBQgghhBBCCCGEEEJ0ApIIFEIIIYQQQgghhBCiE5BEoBBCCCGEEEIIIYQQnYAkAoUQQgghhBBCCCGE6AQkESiEEEIIIYQQQgghRCcgiUAhhBBCCCGEEEIIIToBSQQKIYQQQgghhBBCCNEJSCJQCCGEEEK0yZ///Gf69euHw+Fg1KhRdocDwDnnnMM555zj+Xjv3r0opXj11Vd9dg5/HFMIIYQQoiNJIlAIIYQQHUop1arbokWL7A7VNs8//3zAJpv+97//cf/99zNx4kRmzZrF448/bndIQW/VqlXceeedDB06lNjYWHr16sW1117L9u3bm9z/P//5D+PHj6dLly5069aNyZMn88knn3Rw1EIIIYQIRmF2ByCEEEKIzuWNN97w+vj111/niy++aHT/4MGDOzKsgPL888+TnJzMLbfcYncojXz55ZcYhsHLL79MRESE3eGcVO/evamsrCQ8PNzuUFr0xBNPsHTpUq655hpGjBhBXl4e//jHPzj99NNZvnw5w4YN8+z797//nV/84hdceuml/OlPf6KqqopXX32Vyy67jA8++ICrrrrKxs9ECCGEEIFOEoFCCCGE6FA33nij18fLly/niy++aHR/qNBaU1VVRXR0dEjEUVBQQHR0tM+SgP76+iiliIqK8ukxfa28vJzY2Fjuuece3n77ba+v6XXXXcfw4cP505/+xJtvvum5/+9//ztjx47lo48+QikFwI9+9CO6d+/Oa6+9JolAIYQQQjRLlgYLIYQQIuCYpskzzzzD0KFDiYqKIi0tjdtuu41jx4557denTx8uu+wyFi1axJgxY4iOjmb48OGeZcX//e9/GT58OFFRUYwePZq1a9d6Pf+WW24hLi6O3bt3M3XqVGJjY8nMzOTRRx9Fa31KMX3++eeemF566SUAZs2axXnnnUdqaiqRkZEMGTKEF154odHzN2/ezOLFiz3LpOt73/3+97/3JH+sXn31VZRS7N27t1VxFBcXc9ddd9GzZ08iIyPp378/TzzxBKZpNvt9UUoxa9YsysvLPbHVL2F2Op384Q9/ICsri8jISPr06cODDz5IdXV1q78+J7rzzjuJi4ujoqKi0WPf+973SE9Px+VyNfncpvr51X+/Dx06xLRp04iLiyMlJYV777230XGKi4u55ZZbSExMpEuXLtx8880UFxc3ea5t27bx3e9+l6SkJKKiohgzZgxz58712qf+e7R48WLuuOMOUlNT6dGjBwBnnnlmo8TqgAEDGDp0KFu3bvW6v7S0lNTUVK+fg4SEBOLi4mxPNgshhBAi8EkiUAghhBAB57bbbuO+++5j4sSJPPvss/zwhz/krbfeYurUqdTW1nrtu3PnTm644QYuv/xyZs6cybFjx7j88st56623uPvuu7nxxht55JFH2LVrF9dee22jZJfL5eKiiy4iLS2NJ598ktGjR/Pwww/z8MMPtzumnJwcvve97zFlyhSeffZZz0CNF154gd69e/Pggw/y1FNP0bNnT+644w6ee+45z3OfeeYZevTowaBBg3jjjTd44403+M1vftOur2NTcVRUVDB58mTefPNNbrrpJv72t78xceJEZsyYwT333NPs8d544w3OOussIiMjPbGdffbZAPz4xz/moYce4vTTT+evf/0rkydPZubMmVx//fWtiqsp1113HeXl5Y3631VUVPDRRx/x3e9+F4fD0aavicvlYurUqXTr1o2//OUvTJ48maeeeop//vOfnn201lx55ZW88cYb3HjjjTz22GMcPHiQm2++udHxNm/ezPjx49m6dSsPPPAATz31FLGxsUybNo05c+Y02v+OO+5gy5YtPPTQQzzwwAMnjVNrTX5+PsnJyV73n3POOcybN4+///3v7N27l23btjF9+nRKSkr45S9/2aavhRBCCCE6IS2EEEIIYaPp06dr60uSJUuWaEC/9dZbXvvNmzev0f29e/fWgP7mm288933++eca0NHR0Xrfvn2e+1966SUN6IULF3ruu/nmmzWgf/7zn3vuM01TX3rppToiIkIXFha2O6Z58+Y1+lwrKioa3Td16lTdr18/r/uGDh2qJ0+e3Gjfhx9+WDf18m3WrFka0Hv27Gkxjj/84Q86NjZWb9++3ev+Bx54QDscDr1///5Gx7e6+eabdWxsrNd969at04D+8Y9/7HX/vffeqwH95ZdfthhXU0zT1N27d9dXX3211/3/+c9/NKC/+uorz32TJ0/2+prt2bNHA3rWrFlesQP60Ucf9TreaaedpkePHu35+MMPP9SAfvLJJz33OZ1OfdZZZzU65vnnn6+HDx+uq6qqvOI+88wz9YABAzz31X+PJk2apJ1OZ4uf+xtvvKEB/fLLL3vdn5+fr88//3wNeG7JyclevwNCCCGEECcjFYFCCCGECCizZ88mMTGRKVOmcOTIEc9t9OjRxMXFsXDhQq/9hwwZwoQJEzwfjxs3DoDzzjuPXr16Nbp/9+7djc555513eraVUtx5553U1NQwf/78dsXUt29fpk6d2ug81qWbJSUlHDlyhMmTJ7N7925KSkpa/TVqrabimD17NmeddRZdu3b1+lwuuOACXC4XX331VZvP8+mnnwI0qij81a9+BdCoou9kX58TKaW45ppr+PTTTykrK/Pc/95779G9e3cmTZrU5lgBfvazn3l9fNZZZ3n9XHz66aeEhYVx++23e+5zOBz8/Oc/93re0aNH+fLLL7n22ms5fvy452tZVFTE1KlT2bFjB4cOHfJ6zk9+8pMWqxjrq/wmTJjQqAoxJiaG7Oxsbr75ZmbPns0rr7xCRkYGV111FTt37mzT10EIIYQQnY8MCxFCCCFEQNmxYwclJSWkpqY2+XhBQYHXx9ZkH0BiYiIAPXv2bPL+E3v6GYZBv379vO4bOHAggKfnXltj6tu3b5P7LV26lIcffphly5Y16ntXUlLiidFXmopjx44dbNiwgZSUlCafc+Ln0hr79u3DMAz69+/vdX96ejpdunRh3759LcZ1Mtdddx3PPPMMc+fO5YYbbqCsrIxPP/2U2267rcl+iS2Jiopq9Ll37drV6+di3759ZGRkEBcX57Vfdna218c7d+5Ea83vfvc7fve73zV5voKCArp37+75uKXPPS8vj0svvZTExETef//9RknDa665hrCwMD766CPPfVdeeSUDBgzgN7/5De+9916zxxdCCCFE5yaJQCGEEEIEFNM0SU1N5a233mry8ROTOCerrjrZ/fqEISD+iKmpoQ27du3i/PPPZ9CgQTz99NP07NmTiIgIPv30U/7617+2OKgDOGni62QDM5qKwzRNpkyZwv3339/kc+qToO3R2sRcW4ZajB8/nj59+vCf//yHG264gY8++ojKykquu+66dsXY1p6Czan/nt17770nrXA8MTna3OdeUlLCxRdfTHFxMUuWLCEzM9Pr8d27dzNv3jyvfoYASUlJTJo0iaVLl7bn0xBCCCFEJyKJQCGEEEIElKysLObPn8/EiRM7ZAqqaZrs3r3bKwG2fft2wD3h1lcxffTRR1RXVzN37lyvKsYTlxXDyRNqXbt2BdwTbbt06eK5/8SKu+ZkZWVRVlbGBRdc0OrntKR3796YpsmOHTsYPHiw5/78/HyKi4vp3bv3KR3/2muv5dlnn6W0tJT33nuPPn36MH78+FMN+6R69+7NggULKCsr86oKzMnJ8dqvvpI0PDz8lL+eVVVVXH755Wzfvp358+czZMiQRvvk5+cDTSd+a2trcTqdpxSDEEIIIUKf9AgUQgghREC59tprcblc/OEPf2j0mNPppLi42Ofn/Mc//uHZ1lrzj3/8g/DwcM4//3yfxVRfiWatSCwpKWHWrFmN9o2NjW3ymFlZWQBeffzKy8t57bXXWjx/vWuvvZZly5bx+eefN3qsuLi4XcmkSy65BHBPPLZ6+umnAbj00kvbfEyr6667jurqal577TXmzZvHtddee0rHa8kll1yC0+nkhRde8Nzncrn4+9//7rVfamoq55xzDi+99BK5ubmNjlNYWNiq87lcLq677jqWLVvG7NmzvXpeWvXv3x/DMHjvvfe8fo4OHjzIkiVLOO2001p1PiGEEEJ0XlIRKIQQQoiAMnnyZG677TZmzpzJunXruPDCCwkPD2fHjh3Mnj2bZ599lu9+97s+O19UVBTz5s3j5ptvZty4cXz22Wd88sknPPjgg54lv76I6cILLyQiIoLLL7+c2267jbKyMv71r3+RmpraKIk0evRoXnjhBR577DH69+9Pamoq5513HhdeeCG9evXi1ltv5b777sPhcPDKK6+QkpLC/v37W/X53nfffcydO5fLLruMW265hdGjR1NeXs7GjRt5//332bt3L8nJyW36Go4cOZKbb76Zf/7znxQXFzN58mRWrlzJa6+9xrRp0zj33HPbdLwTnX766fTv35/f/OY3VFdXt3tZcGtdfvnlTJw4kQceeIC9e/cyZMgQ/vvf/zY50OW5555j0qRJDB8+nJ/85Cf069eP/Px8li1bxsGDB1m/fn2L5/vVr37F3Llzufzyyzl69Chvvvmm1+M33ngj4F6C/qMf/Yh///vfnH/++Vx11VUcP36c559/nsrKSmbMmOGbL4AQQgghQpYkAoUQQggRcF588UVGjx7NSy+9xIMPPkhYWBh9+vThxhtvZOLEiT49l8PhYN68edx+++3cd999xMfH8/DDD/PQQw/5NKbs7Gzef/99fvvb33LvvfeSnp7O7bff7knuWD300EPs27ePJ598kuPHjzN58mTOO+88wsPDmTNnDnfccQe/+93vSE9P56677qJr16788Ic/bNXnGxMTw+LFi3n88ceZPXs2r7/+OgkJCQwcOJBHHnmk3QNL/v3vf9OvXz9effVV5syZQ3p6OjNmzODhhx9u1/FOdN111/HHP/6R/v37c/rpp/vkmCdjGAZz587lrrvu4s0330QpxRVXXMFTTz3VqOpuyJAhrF69mkceeYRXX32VoqIiUlNTOe200xr9DJ3MunXrAPfycesQkHr1iUCAF154gZEjR/Lyyy97En9jx47l9ddf5+yzz27nZyyEEEKIzkLp9nTMFkIIIYQIAbfccgvvv/8+ZWVldocihBBCCCGE30mPQCGEEEIIIYQQQgghOgFJBAohhBBCCCGEEEII0QlIIlAIIYQQQgghhBBCiE5AegQKIYQQQgghhBBCCNEJSEWgEEIIIYQQQgghhBCdgK2JwBdeeIERI0aQkJBAQkICEyZM4LPPPvM8XlVVxfTp0+nWrRtxcXFcffXV5OfnN3tMrTUPPfQQGRkZREdHc8EFF7Bjxw5/fypCCCGEEEIIIYQQQgQ0W5cGf/TRRzgcDgYMGIDWmtdee40///nPrF27lqFDh3L77bfzySef8Oqrr5KYmMidd96JYRgsXbr0pMd84oknmDlzJq+99hp9+/bld7/7HRs3bmTLli1ERUW1Ki7TNDl8+DDx8fEopXz16QohhBBCCCGEEEKIIKS15vjx42RmZmIYQbzAVgeYrl276n//+9+6uLhYh4eH69mzZ3se27p1qwb0smXLmnyuaZo6PT1d//nPf/bcV1xcrCMjI/U777zT6hgOHDigAbnJTW5yk5vc5CY3uclNbnKTm9zkJje5yc1zO3DgQPuTXgEgjADhcrmYPXs25eXlTJgwgTVr1lBbW8sFF1zg2WfQoEH06tWLZcuWMX78+EbH2LNnD3l5eV7PSUxMZNy4cSxbtozrr7++yXNXV1dTXV3t+VjXFUkeOHCAhIQEX32KQgghhBBCCCGEECIIlZaW0rNnT+Lj4+0O5ZTYngjcuHEjEyZMoKqqiri4OObMmcOQIUNYt24dERERdOnSxWv/tLQ08vLymjxW/f1paWmtfg7AzJkzeeSRRxrdX9+7UAghhBBCCCGEEEKIYG8hZ/ui5uzsbNatW8eKFSu4/fbbufnmm9myZUuHxjBjxgxKSko8twMHDnTo+YUQQgghhBBCCCGE8DfbKwIjIiLo378/AKNHj2bVqlU8++yzXHfdddTU1FBcXOxVFZifn096enqTx6q/Pz8/n4yMDK/njBo16qQxREZGEhkZeeqfjBBCCCGEEEIIIYQQAcr2isATmaZJdXU1o0ePJjw8nAULFngey8nJYf/+/UyYMKHJ5/bt25f09HSv55SWlrJixYqTPkcIIYQQQgghhBBCiM7A1orAGTNmcPHFF9OrVy+OHz/O22+/zaJFi/j8889JTEzk1ltv5Z577iEpKYmEhAR+/vOfM2HCBK9BIYMGDWLmzJl85zvfQSnFXXfdxWOPPcaAAQPo27cvv/vd78jMzGTatGn2faJCCCGEEEIIIYQQQtjM1kRgQUEBN910E7m5uSQmJjJixAg+//xzpkyZAsBf//pXDMPg6quvprq6mqlTp/L88897HSMnJ4eSkhLPx/fffz/l5eX89Kc/pbi4mEmTJjFv3jyioqI69HMTQgghhBBCCCGEECKQKK21tjuIQFNaWkpiYiIlJSUyNVgIIYQQQgghhBCikwuVXFHA9QgUQgghhBBCCCGEEEL4niQChRBCCCGEEEIIIYToBCQRKIQQQgghhBBCCCFEJyCJQCGEEEIIIYQQQgghOgFJBAohhBBCCCGEEEII0QmE2R2AEEIIIYQIbu84P+ID83MySee7jqmc7Rhrd0hCCCGEEKIJkggUQgghhBCn5FXXHBbrlQAcp1wSgUIIIYQQAUqWBgshhBBCiHYztcl6vc3zsbIxFiGEEEII0TxJBAohhBBCiHZbr7dRTKnn4wKKbIxGCCGEEEI0RxKBQgghhBCi3b4wl3p9nKsLbYpECCGEEEK0RBKBQgghhBCi3b5wnZgILLApEiGEEEII0RJJBAohhBBCiHapMCvYpQ8AEEkEAEcpoUpX2xmWEEIIIYQ4CUkECiGEEEKIdvmWreRSQB+605N0z/15+oiNUQkhhBBCiJORRKAQQgghhGiXjWYOGs1eDtFdNSQCc5HlwUIIIYQQgUgSgUIIIYQQol026BzPdrbR17MtA0OEEEIIIQKTJAKFEEIIIUSLvlvzc/pVnceo6itY6FoOuCsCARSKkWqQZ988SQQKIYQQQgQkSQQKIYQQQohmaa1ZYq7mMAVs07vZow/i1E426R0A9FM96aN6ePY/LJODhRBCCCECkiQChRBCCCFEs7bp3ZRw3PPxEY6xU++jCvd04BEqm0yV6nlclgYLIYQQQgQmSQQKIYQQQohmfWEu9fo4Vxd69QccbmSTrpIbHpdhIUIIIYQQAUkSgUIIIYQQolnzzW+8Ps7ThWwwGxKBI9UgupBAFJF1jx/p0PiEEEIIIUTrhNkdgBBCCCGECFxVupol5mqv+3J1ARVUeT4ebmSjlCJDpbBHHyRXegQKIYQQQgQkqQgUQgghhBCNVOsa1plb+U3t05iYhBNGJBEAHNaFaK3JIIWuJNCTdADSSQHgGKVU6qqTHlsIIYQQQthDEoFCCCGEEKKR3foA42uu4TnzLaqp4R7jh/RTPQF3D8D/6a/JpZBhyl0NCHgNDBlUPZU7an6PS7tsiV8IIYQQQjQmiUAhhBBCCNFIIUc923HEkGR0oYdyV/7V4vQ8NsDo7dm+zHEu9zpu5UI1kXyKeMV8n+/X/ooqXd1xgQshhBBCiJOSRKAQQgghhGikSBd7th8Iu41fht1MhkpptN8g1c+z/T3HZTwWfjdnGCM8960yN/K1ucavsQohhBBCiNaRRKAQQgghhGjkiD7m2U6mKwAZpDbaL1v1bXTfb8OnMzf8RRKJp4ZarqqdzlFd4r9ghRBCCCFEq0giUAghhBBCNFKEJRGo6hKBTVQEDmwiEQhwoWMSP3BcSSFHqaGWD1zz/BOoEEIIIYRoNUkECiGEEEKIRqwVgd1UF6BxIjCKSHqrzJMe4ybHNM/2W665Po1PCCGEEEK0nSQChRBCCCFEI00uDVbeS4MHqj4Y6uQvJ0cYgxiuBgKwXK9nh2uv7wMVQgghhBCtZmsicObMmYwdO5b4+HhSU1OZNm0aOTk5nsf37t2LUqrJ2+zZs0963FtuuaXR/hdddFFHfEpCCCGEECGhiGLPdre6pcHpJ1QENtUf8ETfd1wBQFcS+YnzN1ToSt8FKYQQQggh2sTWRODixYuZPn06y5cv54svvqC2tpYLL7yQ8vJyAHr27Elubq7X7ZFHHiEuLo6LL7642WNfdNFFXs975513OuJTEkIIIYQICUV1FYEOHHQhHoB0kr32yTb6NXreiW5wXM4fHfdQRjnL9Xp+VDsDrbXvAxZCCCGEEC0Ks/Pk8+Z5N41+9dVXSU1NZc2aNZx99tk4HA7S09O99pkzZw7XXnstcXFxzR47MjKy0XOFEEIIIUTrHNHFAHQj0bP8N0KFE0s05bir+lpTEZiqujHaGEaUK5JIIqigioecz/KH8Lv8FboQQgghhDiJgOoRWFJSAkBSUlKTj69Zs4Z169Zx6623tnisRYsWkZqaSnZ2NrfffjtFRUUn3be6uprS0lKvmxBCCCFEZ3akbmpw/bLgeuGEe7YH0KdVxzrHcQYfhr+AieZ/5tf83fUG+3Wuz2IVQgghhBCtEzCJQNM0ueuuu5g4cSLDhg1rcp+XX36ZwYMHc+aZZzZ7rIsuuojXX3+dBQsW8MQTT7B48WIuvvhiXC5Xk/vPnDmTxMREz61nz56n/PkIIYQQQgSrCl1JRV3VXze8E4Evhj3Knx2/5iHHnQxUfVp9zImO07nNcR0AVVTz+9q/+SxeIYQQQgjROkoHSJOW22+/nc8++4yvv/6aHj16NHq8srKSjIwMfve73/GrX/2qTcfevXs3WVlZzJ8/n/PPP7/R49XV1VRXV3s+Li0tpWfPnpSUlJCQkND2T0YIIYQQIogd0LkMqJ4CwDTjAt6NeMYnxz2mSxhcfRHV1HKTYxqPOe4m3oj1ybGFEEIIIfyptLSUxMTEoM8VBURF4J133snHH3/MwoULm0wCArz//vtUVFRw0003tfn4/fr1Izk5mZ07dzb5eGRkJAkJCV43IYQQQojOqqiuPyBA8glLg09FV5XI+caZVFLFS653WcsWnx1bCCGEEEK0zNZEoNaaO++8kzlz5vDll1/St+/JG06//PLLXHHFFaSkpLT5PAcPHqSoqIiMjIxTCVcIIYQQolM4UjcxGBovDT5VpxtDPdvWhKMQQgghhPA/WxOB06dP58033+Ttt98mPj6evLw88vLyqKys9Npv586dfPXVV/z4xz9u8jiDBg1izpw5AJSVlXHfffexfPly9u7dy4IFC7jyyivp378/U6dO9fvnJIQQQggR7OoHhYBvKwIButGl4Tz6qE+PLYQQQgghmmdrIvCFF16gpKSEc845h4yMDM/tvffe89rvlVdeoUePHlx44YVNHicnJ8czcdjhcLBhwwauuOIKBg4cyK233sro0aNZsmQJkZGRfv+chBBCCCGCXZG1IlB18emxrYnFIxT79NhCCCGEEKJ5YXaevLVzSh5//HEef/zxVh0nOjqazz///JRjE0I07a/OWRzSBfRVPRhtDGW8McrukIQQQvjYEWuPQB8vDbYmFq0JRyGEEEII4X+2JgKFEMHjuC5nlvMDHnH9nSpqALjZ+A7jI0bZG5gQQgifK/Lj0uAUkjzbRyQRKIQQQgjRoSQRKIRoVr4+wqXVP+UYJRwi3+uxheYKtNYopWyKTgghhD9Yh3h083WPQGtFoCwNFkIIIYToULb2CBRCBL6V5gY2sd0rCejAAcB+DrND77UpMiGEEP5SSMMQj2TLcA9fSCTe839ElgYLIYQQQnQsSQQKIZq1wlzv2R6rhvNV+Ft812iYwD3f/MaOsIQQQvhRfUVgFJHEEO3TYxvKoBuJABRKIlAIIYQQokPJ0mAhRLOsicB3w5+hu5FGtIrivZpPAfjCXModfB+AHHM3r7nmsE8fIkv14tHwu+wIWQghxClKV8kkEEu8ivNL+4duqisF+qgsDRZCCCGE6GCSCBRCnJRTO1mjNwPQkwy6G2kADFMDSSeZPI7wtbmGWrOWcCOc+a5lPO2aBUA8sfwubDrhKty2+IUQQrRdla5mgbkMgHGM9Ms5utVNIq6gkgpdSYzybdWhEEIIIYRomiwNFkKc1Ca9gwoqARhnjPDcr5Tiu8ZFjFbDiCKSNbiThbkUePY5TrksGxZCiCB0QOd6tnupDL+cI8UygESqAoUQQgghOo4kAoVfuLSLe2oeZ7FrBV+4ltodjminlZZlweOMUV6PZRt9WaM3UchRz/LhXXq/1z5vueb6PUYhhBC+tU8f9mz3Vt39cg6vycGWCcUiOHxlrmK1uZG/1PybPlXncF/tE2it7Q5LCCGEEK0gS4OFX7zpmsvz5ts8b74NwEFjCcmWq/8iOCy3JALPsFQEAowzGpaLrTQ3ALBbH/Da5yNzIcd0CV1Voh+jFEII4Uv7LYlAf1UE1i8NBijUR5vZUwSi39Q+zSq9EQOFiebvrjeYEfYzkpD/90IIIUSgk0Sg8LkKXckjzr973bfBzOE8x3ibIhKtNcf5Ba+Z/+WwLuAydS7rzK1MVKNxoBilBnvtO0T1J5ZoyqlkubkOrbUnERhHLP1UD3qqDDabO5jkGGPHpyOEEKIdOqIiMFmWBgetIl3Mar0JgAgiqKIagHx9hCS58CeEEEIEPFkaLHxukbmSSqq87tuoc2yKRrTF/5nzmWcuYYPO4d/mbLawk6V6DV1UApEqwmvfMBXGGGM4AIfIZ4PexnHKAeijMtmgc/jEXOR5syCEECI4eFcEZvrlHN5Lg4/55RzCP740l6FxLwMepgZ47s/XRXaFJIQQQog2kESg8LnHnS9goulJw3KiDaYkAoNBHkc82wU0vKD/vuOKJvc/QzUsF/7MtcSznaV6e7atlSVCCCEC374OWBqcbFkafER6BAYV6yCwkZbVAvmW1xBCCCGECFyyNFicsu3mHj52LUSjCSOMNXozGk13UnHgwIVLKgKDxHZzT6P7kkjkIuPsJvcfb4wCl3t7mfmt5/5hagD/x3wA9ulDPo9TCCGE/9RXBCbTlVgV45dzeC8NlorAYKG1Zr7LnQiMIpLxxkheNmcDUCAVgUIIIURQkESgOCVO7WS26zP+4HoegGgiPctFLnRMQpuwVe9iq95Fja4lQoXbGa5oRok+zmEKGt3/XeOiRsuC642tWxoMsN6S7B2hsokkgmpq2CuJQCGECBq1utbzv8Bf1YAA3ayJQKkIDBrb9G4OkQ/AWcYYuqt0z2P5WioChRBCiGAgiUDRLhOrr6dEHyeXQoaoLM/9lXUNowEuMCZyWBeyVe+iFic5ejfDVbYd4YpW2K73eraH0p8RxmBKOM4Pwqad9Dmpqhu3GdexWe9kqW6oCBxg9KG36s52vYd9+hBaa5RSfoxeCBGs5O9DYDmo8zExAf/1BwRIpotnuxCZGhws5ruWMpQBdFWJXGacS7pK9jyWj1QECiGEEMFAegSKNsvXR1ijN7GTfZRTwRq9udE+UUQyyRjNCKMh8bdBlgcHtG16t2f7prDvMCtiJv+N+IdX1V9TBhp9+Vqv8VSCAvRVPehd9waynEqOyLIvIUQT5roWcFXtdHLNAjaZ29li7iTfPMISczV5Ul1ki/0dMDEYIIZooogEpCIwmPxPL2UzO/har+ZsYyypqpvnMakIFEIIIYKDVASKVjmmS6imlnSVzEpzg9dj9ZUDEYRTQy0AE9QoolQkIywVgBvNHHB0XMyideqrcXLMhkTgINWv1c//ieM6nnO9xW59AHD3FIxWUZ5EILj7BKaoJN8FLYQIektcq7iu9i40mr415zFKDaZWO9nMDgB+67iD34bfYXOUnc9+cj3b/lwarJSiG104RL5MDQ4SlbqKJeZqALqTxiDVz9Mf2olTegQKIYQQQUISgaJFh3Q+V9T8jBpdw/mOM086/GGiOp0teicRRHCBMRGAEcYgRpJNlIpio7mjI8MWrbDL3M+1Nb9gnDGKD8zPPfcPVH1bfYwIFc6jjl9yk/N+slQvzyThPqqHZ5+9+hBjaL6yUAjReRzQudxV+0dGq6Gs1psAWKe3YlgWKsw2P+M3+nZZNtzBrP/j/VkRCDDZOIM9+iBVVFGta07aj1YEhqXmt1TVtYC5wHEmSikUijS6cYh8qQgUQgghgoQkAkWzSnUZLznfYbN2J/F2uPYRR+MJggYGb4Y/RTejC+CuMgNIV8k4lIMVej0AO8199Dd6d0zwokW/cz7DZnay2dzpuS+KyDZXgVztmMo4x0h6Wp7nXRF4uKmnCSE6kfqBUS863+ELcymb2QkaBtKH7ewFGirMAXL0HlbrTYxVchGhI+03G/5e+7MiEECjWabXAu72IfK9DmzzzaWe7QuMMz3bqaobh3Q+BRzF1CaGks5DQgghRCCT/9TipGp0LX9xvsxTrlkMUf0Jr8sbl1EBQA/SudX4Ln8Ku5c/Oe71JAEBrwqOax2XeLbfcn3UMcGLFi031/Ff83+N7u+neuJQbVvDrZTySgLCiRWBB9sXpBAiZPyw9gH6VJ3LXc4/8om5CICuJPB4+D0nfc5brrkdFJ2ot8XcxWCymKIm0pceLT/hFIw3Rnm2V5jr/Houcer+V5cIVCjOMyZ47k+r6xPowkURxXaEJoQQQog2kESgaGSluYFFrhUMqb6IZ1yv4sLFDr2XO4zve+03wRjFcxG/566wW/hF+E0nPd51jks9y73eNj/C1OZJ9xUdJ8fczQDVB4DTGQpAGA76+GgpmFQECiHqubSLBeY35FEI4Lmw9GDY7UwxJhFNlGffcMKIJIIkulBDrafCXPhfpa5iHVvZyi72c5h4I86v5zvDGOHZXnFC/2ERWP5R+yYHdR5xxDBGDaOb6uJ5TAaGCCGEEMFFEoGikWtqfsFFtbdykHzP8I87HN/nV+E/QtFQ6VffC64lGSrFs4Rknz7EUv2t74MWbfao8zl26L10IZ73Iv7Kx+H/5HjkOt4Kf8onx08hiRiiAdhfdYhdy3cw7+lPcFbLG3shOps1ejPFHAegJ+msCJ/NG+F/5qeO64hUEV5LQkeqwYxUgzhKMa+43qeYUrvC7nTW6i04cQIwzhjp9/MNVwM9SeAV5nq/n0+0zwLXMu51/YlSyhhGNq+GP+H1eBrJnu18GRgihBBCBDzpESi8lOoy8mm4mnu2Gss2vYtfh/2UJJXIVHUWBRQRQxQTjdGtPu61xsUcMHNJUUl86VrOWcYYf4QvWqlSV3GIfMA9GKSnkUlP3BV81sqcU6GUorfKxJhVyfgnMvi/IXPY9+0eqsqqOLz5ED97+04Mh1yLEKIz+MLSW2xG2M8Y4hjAEAZ47rvKmEqlWQUornZcyEZzOyu1u0IsVxfSVSV2dMid0kpLVd4Zyv+JwDAVxmg1jK/1avZzmFxdSIZK8ft5RevlmLu5qfY+JqhRLNPrOMsxmn6qp9c+adaKQKQiUAghhAh0kggUXnL0Hs/2BcaZfBzxT8p1BbHKPSDkw8jn23XcKxzn8zPnw2zVuzhsFvAwd/okXtE+ey1TIU98Qe9L5xsTKEg/RFiVE1X312bhC/MB+OrlhZzz0/P9dm4hROD4wmUZMuCY2Ojxn4Vfz8+43vPxb2v/6tnO1YUMob9/AxSAd1Xe+A6oCKw/z9eu1QCsNNdzpeOCDjmvaJ3fOP9KEcUs0+u4xbiKP4Tf1WifNNVQEVggFYFCCCFEwJNyHOElR+/2bE8x3G/W6pOApyJBxTGurrpgp97HHlOGR9hptz7g2fZnIvAv4Q/wwtkz6do9iZ5DezHlFxd5Hvv4T3MpOiCVA0KEoqO6xLNdrEtZpTcCkK36tmoSrbUqLJcC3wcomlRfERhPLINVVoec07oEeaX0CQwoS8zVfGwuBCCDFJ4Kf6DJ/VKRHoFCCCFEMJGKQOElx2yoCMxWfX167CmOM1nqXAPAfPMbfmJc69Pji9bzSgQa/ksEAsQmxfH71X/0fFxRUsHGz9aTmNGF2Q+8y21vTveaMi2CxwbXNlbrTRzTpUwxzmSEY5DdIYkAMNv1GbfXPszDjp9jKpP+qjdnqBHs1gc8/WJbkqFSPdu5utBfoQqLAzrX0zJijDG8zdPj2+sMYwQxRNFf9eagzuuQc4qWmdrk6dpZjFXDWaU38nDYz096YThdSY9AIYQQIphIRaDwYq0IHOjjRKD1DeB8S78o0fF26f2ebX9WBDblsgevJDIukgPr97H1y818++HqDj2/8J0HnU9zh/P3/Mb1NP8yZze77zzXV+w1DzW7jwheLu0CYGbti9xUez9lVHCf6wl+7fwzs12fsUyvJZ8jTFGTWnU8a0VgniQCfeZ91zyKdDHvuj6hRB/3esy6fLu1w8B8IU0lk6V6s0Hn8IH5P0p1WYedW5zc++Y8PtOLWaU3colxDj9wXHnSfa1Tgz8wP+dZ52uevwlCCCGECDySCBRe6nsERhFJb5Xp02OfpobQjS4ALDRXUKtrfXp80XrWisAs1atDzx2TEMMVv/2O5+PPnvqYsqPyxi84NUx/Pqzzm9zjBefbXFj9Q66uvZPJNTewydzeUcGJDvSj2ge5sOaHrDE3o/GeCv6/ugs/EYRzlqN1Q6bSsSwNlkTgKdNa86TzX9xYey+Tqq/nltpfM6XmFs/XVmvN684P6U0m1xgXcbHj7A6Nb1Ld8DEnThaZKzr03KKxal3D75zPej7+meP6ZitEu5DAo2G/5BImU00NLznf5Tu10zsiVCGEEEK0gyQChUetrmVXXYJogOrt82VBDuXgPGMC4O4/9LX5rU+PL1qvPhEYS7RXb5+OMuLiUYy4ZBR9x/ajrPA4c//w3w6PQZy6cl3l2bZWmVotcq3gK70KFyallLPN3C0XAUJMqS7j/8z5fGWuYoFeRiapXGtc7Hn8KMUAnGmc3uqes9aKwMNaegSeqiqqKdRHAdiDu0dvkS7m387/YGqTT8xFLGcd+zjMWr2VMWpYh8Y3xWvFwDcdem7R2Dq9lTjcv6vnGeM9PaNPRinF/WE/4WzHWBw42M0BvjCXcugkF4iEEEIIYS9JBAqP3foATpwADFL9/HKO641LGaB6c4h8/mt+7pdziOY5tZN9dVOD+6metvXnu/qx68jLyaWytJIV7y5j+9fbbIlDtF++amgKv0Pvo0pXN9qnPukAoIAbnfeyXsv3OpT81/U/qnB/7292fIfdUV/ySvhMEon32q+lZIJVlIokiUQA8pDhA6fqSee/+bvrDcIJ42pjKn3pQTkV/NH1Aq84Z3O/80nPvo+F3UWY6tgW0mcbZxBe17b6C2kdYrvnnG+xWe8gma780nFLq18n3BV+CzPCbgNAo3nX9Umrz7nd0qNaCCGEEP5layJw5syZjB07lvj4eFJTU5k2bRo5OTle+5xzzjkopbxuP/vZz5o9rtaahx56iIyMDKKjo7ngggvYsWOHPz+VkFC/LBh83x+w3tmOsRyqq+6Y7ZpHta7xy3nEyR3QedTWJXw7elmwVZeMLlz+m4Ylwus/WYdpmrbFI9pGa+21ZNOFiy16Z6N96qtPu9GFCtwVhDIZNLS85Zrr2f6+4woAwlQY5xrjvPZr7aCQeul1VYG5ugCtdQt7i+YUcQyAWpz8KuxHPB/+e4px9wi82zWTEl1GX9WDCeo0rjQu6PD44lQME4zTANijD7LLbLrCWHSMjdr9WryE441+j1tyg3G5Z/tN1/+16nf3deeHjKq5kh/VzOCh2mfl910IIYTwM1sTgYsXL2b69OksX76cL774gtraWi688ELKy8u99vvJT35Cbm6u5/bkk0+e5IhuTz75JH/729948cUXWbFiBbGxsUydOpWqqqpmn9fZrTW3erazDf8kAuNVLFca5wNQTCmfmov9ch5xcl4Tgzt4UMiJJtw4kb5j+pE+MINlb33NwQ0HWn6SCAillFGJ99/UDab3hZwCiiijAoD+qrfn/uXmev8HKDrE566vWabXAu5J89YlpeeqCZ7tOGIYrga26dj1y4OrqeEYpT6ItvMq0sWe7W6qK+c6xnORcRbgTg4WcYwU3Y03w/9iW5W4tWL0C5csD7ZLla5mu94LwGCVRYQKb9Pz+xk9OVOdDrgvMJ+sbYT1fH92/RsTk7fNj3jS9S/2ahksJYQQQvhTx679OMG8efO8Pn711VdJTU1lzZo1nH12Q6PqmJgY0tPTW3VMrTXPPPMMv/3tb7nySveEs9dff520tDQ+/PBDrr/+et99AiFmkWsFPUhntDGMsX6cGPh9xxW8Y34MuK8Wf8cxxW/nEo1ZE4F9bU4EGobBmO+OY/YD7wCQs2QbvUb1buFZIhDkNtG3rb6KpJ71Z224ymaDzqGSKlZqqQgMBfNd33B97V24MLnV+C5nOk73SiJdGjaZQ+QRRwzdVBcM1bZrjxmkerbzdCFJKtFnsXc2R+oqAgGS64Z2PR72K3BCH9WD913zeDriAbobaTZFCFPURD5XS8ijkPn6a36GvF6zwxa9Exfuib/DVXa7jnG541yOu8rQaBaZK+lvnPz/+q+cfyJWR+PA4TnvRp1DX3q069xCCCGEaFlA9QgsKSkBICkpyev+t956i+TkZIYNG8aMGTOoqKg46TH27NlDXl4eF1zQsLQlMTGRcePGsWzZsiafU11dTWlpqdets9ljHmQZazlIHlv1Lvqo7n4717nGODJJJY4YDuo89poHW36S8JmjupjeZBKGw/aKQIDsswd5trcv2drMniKQHG5ikuuJFYHWROBAow+nq6EA7NUHydfS9y0Y1ehaflU7k4dqn+VHtTNQKDSaXAq9lgQC9FDpPBr+S+4P/wm3hl3T5nOlq2TPtgwMOTVF2p0IjCbKM7BliNGfDyNe4K9hD7Imcg5jjOF2hsgII5scvYedej+LzJXUyFAhW1j/jo8w2pcIPMMYyUa9nU16B5t18615VpsbWcdWr2njG064qCSEEEII3wqYRKBpmtx1111MnDiRYcMalhbdcMMNvPnmmyxcuJAZM2bwxhtvcOONN570OHl5eQCkpXlf1U5LS/M8dqKZM2eSmJjoufXsaX9ypKPVV+gBfN9xuV+XBjmUg0fCfkEE4azX23jY+Xe/nUs0tlHnsI/DOHHRkwy7wyG5Twpdu7uT/7tX7qKmUvpGBoM8GhKBCcQBsFFv9+rttNv0XoY+3hjp+Vj6BAanf7ne4znXW/zF9W8KKOJa42J+4JjGO+F/9fn/jUzVUBGYS+PEs2i9I3WJwG511YBWSinSLElXuxjK4HzDvZy8jApWaGkhYAdrZXd7KwKtFxmtF4ROZO0j291SAbzRlESgEEII4U8BkwicPn06mzZt4t133/W6/6c//SlTp05l+PDhfP/73+f1119nzpw57Nq1y2fnnjFjBiUlJZ7bgQOdq0+Z1tqr2fv3HJc3s7dvXOE4H6Pux+898xPWmJv8fk7hdlDne7Z7GfYnApVSDKyrCnRWO9mzerfNEYnWsA4KOU0NYZIazWDVjwP6sOd+a2+ofqonZxgNLQdWSJ/AoFOsS3nc+SIAJpoUkhhsZPGv8MeIVBE+P1+G8l4aLNpHa80RigFIVl3tDaYFFzgaBsp84ZLpwXZY74OKwHSSiSEaoNkegYUc5TjuvuADVV9i654jFYFCCCGEfwVEIvDOO+/k448/ZuHChfTo0XxPkHHj3NPLdu7c2eTj9b0E8/Pzve7Pz88/aZ/ByMhIEhISvG6dwSpzI/fUPs7DtX/zXJGdbJxBL+X/5FCiiufBMPf0ZwODpa5v/X5O4XaoLhGYQhJRKtLmaNyyz7IsD/5qm42RiJOp0tVordlsupd5WXsEZqpUvtZrWKbXsdGyDGyPblj231f14AxLReCJE4ZFYKjS1Ti1k7muBY0md/7bOZsq3BW71xuXciDqK34ZdrPfYrEuDW6qJ6VonVLKcNZNiu+mutgbTAsusAwMmW9KIrCjaa09FYGZpLY7cayUop9yv57fpw/h0q4m97NWC/Y3ejOsbqDQHn2QUl3WrnMLIYQQomW2JgK11tx5553MmTOHL7/8kr59W55Uu27dOgAyMppOVvXt25f09HQWLFjgua+0tJQVK1YwYcKEJp/TGa0yNzK15kc873qbxXolGs3VxlQecNzWYTH82HEtA1UfupPGTNeLjd50Ct9zaReHcb+h7q7sawp/ogGT3FUHETERHNkvveMCjalNMqonklB9GqNrvsNOc59Xhdbout5/4F3J0bDkK41oFUWGSmGMGk5PMjxTKUXgqP8+d60ew7W1v/Sa6r5PH+YPrueIIoKz1VgeCf+l3+OxDgvJlYrAdqtfFgzQjcCuCExXyYyoW466Vm+lUB+1OaLOZT+5lHAcgOHtrAasV788uBYnB3TTrXmsicB+qifDjYbJ4pv09lM6vxBCCCFOztZE4PTp03nzzTd5++23iY+PJy8vj7y8PCorKwHYtWsXf/jDH1izZg179+5l7ty53HTTTZx99tmMGNGwxGzQoEHMmTMHcF+FvOuuu3jssceYO3cuGzdu5KabbiIzM5Np06bZ8WkGnBpdy7vOj+lbd7W2kKNkksoZxgjOdYzrsDgiVDi9VXcOkMsxSilEXvD7Wz5Fnql8gZQITEhJYOiU4Tirnaz/6FsqisvtDklY7NWHqKSK2rqqordcH3kNC5lkjPFs1/d2KtVlnt9p63RqFy4OkMsefRBTmx0Rvmil3fqA1/f5QedTOLV7+/e1f6OaGoooZowxjN4q0+/xZKgUepDGMAYSR4zfzxeqiuqWBQMkB3hFIMAUYyKpJDGE/rzmmmN3OJ3KJjOHMWo4venOSDWo5Sc0I0v18myfrE/giYnAEZaehBtNSQQKIYQQ/hJm58lfeOEFAM455xyv+2fNmsUtt9xCREQE8+fP55lnnqG8vJyePXty9dVX89vf/tZr/5ycHM/EYYD777+f8vJyfvrTn1JcXMykSZOYN28eUVFRfv+cgsFn5mKeM98C4HQ1hC8j3rBtiaj1zeR+fZhU1c2WODqLQ5b+gIGUCARI6ZfK5i82ArBj6XZGXnqazRGJehtP6Nf0tvkRhnYPhuhCAsOMAUQRSRXVnorAHeZez/5ZRkMiME11A+1OCBZRTAreU+KFfU7sy5Wj9zDD+RTjjdP4j/kpAEkkcn/YTzoknkgVQTHHOUi+JyEp2u6IpaouWQX+79udjht5w/Uhm9nBM85X+YnjWhJVvN1hdQrLzfWs1u7/w9ZK7/awDgzZpfdzHuPJ10e8BtPsMhv6B2apXl5LkaVPoBBCCOE/tiYCW1oK2rNnTxYvXtzsPk0dRynFo48+yqOPPnpK8YUq62CQR8J+aWufuF6WROA+fZgxDLctls7gkGV5Tg/VdM9Muww8axCLXnIv6c9Zsk0SgQFkwwkTHPfpQ0TiHg6RoVIIU2EMVf1ZozezS++nXFew0FxOLzIYagxgiqXvlzXZn6+PkBIEiYnOwvp97k4qXVQif3e9wfOut0miCwNUH65yTKGL6rg+uonEU0aF9As7BUd0sWc7uYmpwYEmw0hlsnEGs815HOEYf3G+zB/C77I7rE5hpW6Y5j7WMaKZPVvWz1IRuEcf4EvXcq6ovY2Bqi8DVG/ei3iWPZaKwL6qB07t4hw1jiqq2WsebOqwQgghhPCBgBgWIjrOEX2Mz8yvAMgghXONjlsK3JTeqrtne79l2qjwj4OWRGCgVQT2H98fI8z9J2n7EhkYEkhOrAiMJZrquqERGSoFgBGGexmZRrNJ7+C/5v/YTy6fmV8xRPX3PDeNhmqQfF3k79BFG1i/zz933MTmusEvLlwUcpQRKps7HN/v0JjiVSyAp2+ZaLsiLD0CA3xqcL1Hwn5JeN216v36MGW6wuaIQp9TO1ltuqsBe5BOpmVqd3t4VQSa+5nh/AtOXGzRO/nYXESNrvUsDc4klWgVRbwRSwFFLNfrWKxXUaErTykGIYQQQjRNEoGdzH9cn3r6P13vuJQwZWtRqNeE4v0618ZIOgevpcEEVkVgZGwUfUf3A6BwdwFHD0rPyECxoa5pewxRzHT8CoXyPJZOXSLQ0tvpc9cSvtVbAHf7gSGGJRForQhEBsMEkvqKwHhi+UXYTfw57Nd815jKY467ucG4nD+H34+hOvZlQyLuJaHlVMry4HYqslQEBvqwkHr9jJ5cZ1xCFxJ4z/yUReYKu0MKeVv0TspxJ97GWya8t1dPlU5YXTJ3hV7Pet1wgc+FizXmJgqa6CN7huGuRHTi9PwfEUIIIYRvSSKwE6nVtcxyfsAENYpE4vi+4wq7Q/KqCNynD9kYSedw0JII7BFgFYEAA89uaE6+/WupCgwEJfo4e7V7idZwlc1kxxlEEI5CMU6N9Lxps06Y/MRc5Nk+8e+MtT9UgVQEBoxjuoQDuC/GDFMDMZTBz8N+wBvhf+FXYT/i5fDHCVfhHR5XgorzbB9Hhgi1h3UQVzAMC6l3qeNciikFYIW53uZoQp/1a3yGDxKBYSqMPnWv8fI4wlg1wusi0kK93LNt7SM7TjWcW77vQgghhH9IIrATedn1PhvZzjK9jqnqLIYZA+0OiXSSicD95lKWBvtfIA8LARg4aRCRcZH0GtWHvBypEA0EG3XD5MbhxkBON4byVcTbvBP+NIsj3+JnYd9zP6Ya/p5s1jsBCCOMax2XeB0vFe8egSIwWL/PIyxJXaWU52aHRBoSgSXSJ7BdvCoCg2RpMDRUhoG7okz41wqzoT/gOB8kAgH60HCxd5XewN3GLZ6Pl7savqfWZcTjjVGe7ZWSCBRCCCH8QhKBnUSpLuOPzhc8H/88/CYbo2lgKIOedcuD9+nDLQ6QEaemvkdgN7oQrQJvinavUb0xHAb71+1l9Qcr5echAKwzG5Zm1S//7W/0Zppjitd+iSqeZ8N+y0fhL3GbcR3T1AXMCLut0TCQdCU9AgPRRsugkOGWZd52S7BMiy2VPoHtckQ39AgMhmEh9bqrNHrUtbBYY26SpeF+Vp9sjSCcUWqwT455T9iPeC7sYVLpxs3Gd5ge1tBjdIPeRgpJXKImc7Ya67k/W/X1tARYYa6X1wFCCCGEH0gisJPYZG5nkHL3X7vGuJixRuBM562fHHyccs8yIOF7pjY5TAEQmNWAAGERYfQ7w91P7nhhKbk5UiVqp3x9hGedr5GKO5lnXf7blNvCrmeKYyK9jEwmOE7jN2G3N9onVXoEBqSd5n561iVdRrTwfe5IXhWBSEVgexRRDLj7LdqxvPtU1PeqK6eSLXWVxsL3SszjdCGeOGI4TQ0hUkX45LjnOcZza9g1rIz8gBfDH6W7ke75f5JPEYUcZZFe6Rk2Be4LxPWvUfM4wn5kdYAQQgjha5II7CRedr3PEr0agFsc37E5Gm/WgSH7ZHmw3xRwFGfdoJhATQQCDDzL0ifwK+kTaKeba3/NAfIoooS3wv7CGDWsVc/7ZdjN/DLs5iYf60KCpx2A9AgMDFprPjYXcoA8+tKDkQROItCrIlCWBrdLUV1FYLcg6g9Yz9qrTvrF+c82drNKb6SMCoapAT4/frpK9rQXqL+gpHFX+k0zLiBOxXjtf4ayLAs31/k8HiGEEKKzk0RgJ2Htv+eLJtC+ZB0YIn0C/edQ3bJgCPREYEMSImeJJALt8rjzRWJ0FPHEkkEKQ40BPqkmUkp5+gRKj8DAsF3v8QwK6Wf0JNKItDmiBgnEerZLZGlwmzm1k6OUAJAcJBODrcZ5JQI3NLOnOBW79QHP9gCjj1/PNVIN8vq4qcF1o41hnKaGcK4aT65Z6Nd4hBBCiM4ozO4ARMeor7TrSgLxKraFvTuWtSJQEoH+k2Pu8Wz3UOk2RtK8jOxM4lMSOF5Yyq5lO3DVunCEO+wOq1NxaRcvO2dziHwcOJgf8SqDjCyfHT9dJXNQ53GEYlzahUPJ99dO881vPNtTjIk2RtKYVASemvokIARnReAoNZgIwqmhli16h93hhCxrItA6uMMfBqmG/yWJxHOOcUYT+/RjrXb3p+2qE/wajxBCCNEZSSKwE3BqJ4dwT4u1Vt8FCmtMsjTYfzabO4gkgpFqEOPVKLvDOSmlFAPPGsSa/66kuryafWv30u8M3yWhRMsWmSs9fzMuMs5ipOGbxvH1UlU30GBiUsgx0klu+UnCb74wl3q2LzDOtDGSxqw9AkulR2CbeU0MDsKKwEgVwVg1nIM6j6O6pOUniHbZZe73bPs7ETjVMYkPeYHjqhwFTV4I6qkyUCg0Wi4QCyGEEH4gicBO4DCFuHAB3tV3gaIXmWSSShJdZCqgH32pl1NNDSv1BoYY/e0Op1kDJg4kf0cuMYkx5G4/LInADvaWa65nu6llW6cqzTI5uEAf8ZokLDpWta7hK9PdPzaDFIb6oT/YqUhAKgJPxW59gEGqHwYGA4zedofTLiaafbiTQU7tJEzJS1dfs1YE9lU9/HquNJXMRWFnNbtPhAonk1QOkS+JQCGEEMIP5NVUJ7BPH/JsB2JFYHeVSj5FHKaAMC1LBP2hQBd5ltmMUoO9JrcGol6jenNwo/uNSXxqIhNvbP5Ng/Cd42YZH5rzAfdgj0uMyT4/R5qlAjBfBobY6hXXB1RQCcD5xpmehv6BIlFZpwZLj8C2WmVuZJveDUCW6mVzNO0To6KomytBBVUkWKpEhW/s1u6KwAxSiD1hcIddeqlMDul8CjhKha4kRkXbHZIQQggRMmRYSCdgvZraS2XaGEnTwlQY3XEPr5Arv/7xpbncsx1oS/+akpaVhuFw/3nK2y4/Ex3p//QCUklikhrNTY5pRCnfD45IsySi85CBIXb53LWEB51P0ZUEbja+wzWOi+wOqRFr0qdEKgLbbL5l2feZxuk2RtJ+sTQkgCqosjGS0HRcl1PAUQD6+nlZcFtYX68e0Lk2RiKEEEKEHkkEdgL7vBKBgbc0GBpe8B2lhOO63OZoQs8XLmsPsMAaBtCUsMhwUvqmApC/Iw/TZdocUefxlusj9nKIr/UarnJc6JdzeC8NlopAOxTqo2wzd1NJFccoxVAGUx2BV3mbaB0WIhWBbVKki1mjNwMwTA0gU6XaHFH7RFsSgeW6wsZIQtMey7LgLCNwqkatr1elf7QQQgjhW5II7ASsVXaBuDQYoLflyq9UBfqW1poFdVNBY4lmgjHK3oBaKT3b/SbAWe3kyN5Cm6PpHA7oXBaZKwD3MsJxaqRfzmNdmp6vpSLQDu+5PuHXrj/ThQQmqtE8E/Ybu0NqklQEtt+X5jJ03ZraYKgEP5lYy5LQSqkI9LldHTgxuC1kkJwQQgjhP5II7AQCfWkweMcliUDf2qsPMdoYxnA1kIlqNJEqwu6QWiVjUMPPRG6OLAvqCO+6PvEkDr7vuMJv/eK6k8Y4NZIz1AhKtFR52eGLuosDxZTyTNiDAft3IUKFE4V7ebpMDW6b+XXfYwiOSvCTiSHKs11e189S+M7ugE0EyutCIYQQwl9kWEgnUH8lNY4YupJgczRNkyUg/pOjd/OJuQiAi/0w+MFf6isCAfK2HWbkJaPsC6aT+Ni10LP9PeMyv52np0pno95OBZXkSUVgh3NPCl4FuIcDDDMG2hxR8xKJo4pqmRrcRgtd7ureaKKYZIy2OZr2i7H2CNRSEehrgZoIlNeFQgghhP9IRWCIM7XpabLcW3UPuImQ9axLQOTKr29Zv559jMBcGt6UjIGWikAZGOJ3R/QxinQxo9Rgpqgz6Wv08Nu5wlQYo9VQAPZzmFwtS7870lLzW88Sy0CcFHyihLo+gVIR2HqHdD4GBqepIVxunOeXoT8dJUY1VARWSEWgz+2qmxgMgTVZWlaKCCGEEP4jicAQl08RNdQCgTsoBGQJiD/tt0zbC9Sl4U1J6ZeKI9wBQJ4sDfa7XXo/O9nHOr2Vvob/q0LGGQ39B19yvsNi1wqerp3FSnOD38/d2S2wLBmd4gj8JaOJdX0CSynD1DI4qDW2mbvZy0HW6i1kqBS7wzklXhWBkgj0Ka01xbqUbnSlCwkkqUS7Q/KIVlGkkgTI1GAhhBDC1yQRGOL26UOe7UAdFALQQ6WjcFelyBIQ37L+DPQJ4J+BEznCHaRmpQFQsCsfV63L5ohCW0cvD7MmAp93vcXU2lt50PUU99b+Ca2138/fmX1huqeIKxTnGeNtjqZlCcqdCNRoypCpsa2xXe/xbA9UfW2M5NTFeE0NlkSgLy3X61int3KMEm4xrrI7nEbqL14epoAaXWtzNEIIIUTokB6BIS5PFzJJjUajGaT62R3OSUWqCDJI4TAFUhHoY9aKwB4q3cZI2m7AxGy6ZHYlfWAGVccriU2Ka/lJol06OhE41hjh2S6l3LO9Um/g/8z5THNM8XsMndFxXU6mSiWWGMIJI0Ul2R1SixKJ92yXcNxrkrBoWo4lETjICNz//a1hXRosU4N96y3XXABMTIY5BtgcTWO9VXdW601oNAd0bkAtXRZCCCGCmVQEhrgdeh9f6zUs1d+SrLraHU6z6pcu51NEpTQE95n6isB0koOuT9SAiQMpLSjh61cXs/3rHLvDCWm7zY5NBKar5JNWKT/qfI5d5v4mHxOnZpfezzxzCcv0Wr/2gfSleBXr2ZaBIa2zTe/2bGcHeUVgrNfSYHlt4CtVupr3XZ8D7q/xNCPwLr7IwBAhhBDCPyQRGOKs1XWBvDQYoJclPukH4xtVupo83FNZA/373xRtag5tOkhtVS25OfImwJ+sDeP7qo5JEI1hmGc7gnBuNa5hsnEGW/ROzqv5AXvMgx0SR2cSqBNCm3NiRaBo2XbTXRGYTNeAvwjYEu+lwbI03Fc+NRdTTCkA04wpxKkYmyNqrL/qzUDVlxSSyNUFdocjhBBChAxJBIY470ERgTssBOTKrz8c1Hme7UD//jclY1DDcBMZGOJfe+oSRBmkENtBbwhHGYOIJooIwjnXGMcj4b+gQBcB7jeAK8z1HRJHZxKMiUDrUuDjuryZPQW4qyYP406aBHt/QIAY1ZAIlKXBvrPF3MkYNQwDg+87rrA7nCYlqS5s13so5CiHyLc7HCGEECJkSI/AEFe/LDSKSFLpZnM0zbNODpZEoG/stQwKCaaJwfWS+6QQFhmGs9opiUA/KtMV5ONOwPXtwOTQ3WE/5N6wH1OLk2JKSVZdWRDxOkOrL2ap/pZVzo1c7biQcBXeYTGFOmvlZ7AkAhOVVAS2hbU/YLYRAolAGnoElsvUYJ/QWvNv13/I4whdiOdsNcbukJpknXidpwttjEQIIYQILVIRGMK01p6KwF4qE6WUzRE1b4Dqw2R1BmeoEfKCz0e8l4YHXyLQcBik9XcPOCncU4CzWqYG+sNuS3Ioy+i4ZuxhKgylFBEqnFTlvlCRpBI535gAQA21bNd7OyyeziDYKwJLpEdgi3Is/QEDeUhYa3n1CJT+wT6xTx/2tA0ZYwwnzAjMuoAMlerZzpXXhUHBVetiw2fr7A5DCCFECyQRGMKOcIyKuqvnwZAE6qN6sFivZKXewAa9ze5wQoL30vDA/xloSnq2O27TZZK/S5YG+UOgJYeGG9me7Q1ahsT4Uv0QliQS6aoSbY6mdawVgaVIIrAlOaalIjAElgZHW6YGV0hFoE+s1A1tF8apkTZG0rx0kj3b0iMwOMz94xxe/tFLPHTaA/ztO0/ZHY4QQoiTkERgCLNWgwVDEqiXyiAK91TbbZalTaL99lmWBgfjsBCAjOyG3oayPNg/Ai0ROEI1JAI3mpII9JVqXePpsxUI3+fW8q4IlKXBLcnxmhgcChWBDT1LJRHoGyvNDZ7tcUbgJgIjVQTd6AJAbl0Fowhc6z9Zy6KXFgBQklfC7pW7qK2SlRxCCBGIJBEYwvZ5JQIDf1CEoQwGqj6AOzFRq+XFw6kKpmExJ5PulQiU3pH+EHCJQGOQZ1sqAn1nrz6IRgPQT3XcEvBT1YU4RquhjFcjiUD6RbYkggjGqZEMVllB+3ffyqtHoJZEoC9YBzGNNYbbGEnL6vsE5uoCtNY2RyNOJjfnMG/+8jWyxg/w3KdNTd52uYArhBCBSBKBIcy7P1xwVIPVVy84cXolJ0T71P8MdKNLh02C9TXr5ODcbfKC0h/ql4sCZAVAgiiTVE8ViFQE+k4wDgoBiFdxrNGbWa7Xs0cftDucgObSLuaaC1ih16NQOJTD7pBOWSQRKNw9jmVq8Kmr0tWs01sB99LxQG8RUN8nsIZajlJiczSiKZWllbxy60vUlFeza/kOsiY0JAMPbZa/2UIIEYhsTQTOnDmTsWPHEh8fT2pqKtOmTSMnp+FN39GjR/n5z39OdnY20dHR9OrVi1/84heUlDT/QuCWW25BKeV1u+iii/z96QScYKsIBO8Jh9ssy5tE29XqWiIJ53Q1lAuMM+0Op92SenYjIjoCgNztUhHoa1prduuDjFSDuNK4gKQAeFOolPL0CcyniHwtS8J8IdAqP1srTsV6to9Lj8BmHaKAGtzV9MH0PW6OUsozMESmBp+6tXoLtTiBwF4WXC9dJgcHNNM0efe+t4jp4v473X1YD86/Y4rncUkECiFEYLJ1TNjixYuZPn06Y8eOxel08uCDD3LhhReyZcsWYmNjOXz4MIcPH+Yvf/kLQ4YMYd++ffzsZz/j8OHDvP/++80e+6KLLmLWrFmejyMjI/396QSc4KwIbEgE5kifwFNySBewk/2ggycR3BTDMLjyoaupqazG5XRRU1njSQyKU7dXH2Ifh9inIU0lt/yEDjJCZbOIFQBsMHOY4gic2IKVNRHYkdOhT5W1R+BxKmyMJPDtNi3f4wCo7vWVGKIoo4IKqQg8ZdvM3fRXvdml93NGAA8KqZdBQyLwsC5gKAOa2Vt0tAXPfcG6uWsAGHTOYK750/eIimuY9C2JQCGECEy2JgLnzZvn9fGrr75Kamoqa9as4eyzz2bYsGF88MEHnsezsrL44x//yI033ojT6SQs7OThR0ZGkp6e7rfYg0F9IjCcMK8XUoFskKWxuXXyoWg766CQYBgW05x9a/ew8j/LARg0eQg9R4TOG1y7rbBMjzzDGGFjJN6GG9ngcm9v1DlMYaK9AYWAXUFaERhLNAqFRnNcS0Vgc3YH6fLvlsSoGNBHqZQegafsK3MVO/U+IongdDXY7nBalFm3NBggVyoCA0rh3kI2/889eEYpxeQfn0dyb/f7jS6ZXSk+fIzDWw6itUYpZWeoQgghThBQPQLrl/wmJSU1u09CQkKzSUCARYsWkZqaSnZ2NrfffjtFRUUn3be6uprS0lKvWyioXxrcU2VgqID6Vp9Uf9Xb0wsoR5YGn5L9NPTT6x3kicB0mRzsNystTePHBVB1yDD6c5oawmTjDMq0VIH5QjU1TFKjOdcYTzrBU2GplCKubnLsccptjiawBevy75bUDwyRpcGnrn4AkwuTocZAm6NpWYZ1aTCSCAwkH//xQ/Zv2EfawHTOu2MKQ84f5nksc4h7JVJlaSVHDx61K0QhhBAnETDZIdM0ueuuu5g4cSLDhg1rcp8jR47whz/8gZ/+9KfNHuuiiy7i9ddfZ8GCBTzxxBMsXryYiy++GJfL1eT+M2fOJDEx0XPr2TP4XzwfMY9SWtdLKZiqwaJVlGcZc47eIxPiTsF+rx6RwfMz0JT0bMvAEOkT6FOBOj2yn9GLtXoLi82VfKPX2h1O0MvXR1hkruBrvYZqXRN01Rn1y4MlKdy8UE0E1vcIrKBKXhecgmpd42m7kq36EqkCv82GtUegVAQGjqMHilj/6VpcNS4qiyu4+L7LvB7vMbSHZ/uwLA8WQoiAY+vSYKvp06ezadMmvv766yYfLy0t5dJLL2XIkCH8/ve/b/ZY119/vWd7+PDhjBgxgqysLBYtWsT555/faP8ZM2Zwzz33eJ0r2JOBW/QuwnAwkL6cZ4yzO5w2GaT6slcf5Djl5FJIJqktP0k0EkpLgzOsicBtkgj0lUpdxfq66pDBKosuKsHmiBokqnjiieU45RzS+XaHE/RWmRs92+MCaAl4a8WpGNB4LnCJptUnAh04gro37ImiVRRo0GiqqCa6rkJQtM1WvQtn3aCQ4SrwqwGhYWowQK4usDESYbXk1cVo052Un3jz2YRHhns9nlmXCIxLjpOKQCGECEABURF455138vHHH7Nw4UJ69OjR6PHjx49z0UUXER8fz5w5cwgPD2/iKCfXr18/kpOT2blzZ5OPR0ZGkpCQ4HULdqv0Rpy42MJOUuhmdzhtkk0/epPJWDWcXeY+u8MJWvt16CwN7tq9K5Fx7jd+sjTYd77VWzxvCgOpP2C97ioNgIM6T6qATtFyc51nOxgmhZ7IUxFIBaY2bY4mMLkngLsTgb1UBuGqba+VAll9RSAgA0NOwQYzx7M90hhkYyStZ21jIFODA0NVeRXffrgaAEdEGGf+4KxG+6T1TyciOoKyI2XsX7e3gyMUQgjRElsTgVpr7rzzTubMmcOXX35J3759G+1TWlrKhRdeSEREBHPnziUqqu1XgQ8ePEhRUREZGaFzdbwlKyxv+sYbo2yLoz36G73Yx2FW6Y1sk8nB7Va/NDiBuICq9GoPpRTpA93Df44eKKK6XN4I+kKg9gesV58IrKSKY4RG71a7rNQbPNtnBGEiME7FAu6KMOkT17QjHPNUTIbSsmCAGEsiUL7/7bdRNyQCh6tsGyNpvQgVTjJdATgsicCAsPr9lZQfK6ffuP5M/MFZJKQ0fo2Z3DuFmsoawP26TQghRGCxNRE4ffp03nzzTd5++23i4+PJy8sjLy+Pykr3i7z6JGB5eTkvv/wypaWlnn2s/f4GDRrEnDlzACgrK+O+++5j+fLl7N27lwULFnDllVfSv39/pk6dasvn2dG01qw03W/6EoknWzVOsAayfqphIuweS78j0XqmNjlQVxEY7NWA9ax9AvO259kYSejYYx5kghrFeDWKsSpw+gPWq08EAhzS8j1vL6d2strcBEBPMrymcAaLBGI92zIwpGnW/oBZKrQmq8eohkSgTA5uvw2WROAIIzgSgdAwMCSPQqkOt5nWmq9eXkhtZQ27V+xk3HUTmtwvIiaCuOR4AIokESiEEAHH1kTgCy+8QElJCeeccw4ZGRme23vvvQfAt99+y4oVK9i4cSP9+/f32ufAgYYXvDk5OZ6Jww6Hgw0bNnDFFVcwcOBAbr31VkaPHs2SJUuIjIy05fPsaPv0YfI4Arib/wfLxOB61kqG3ZIIbJdcCqmtW/IZ7P0B62UMbKjozc2RPoG+sFCvYJlex1q9hcFGlt3hNNKddM+29Alsv816JxV1VVTB2B8QIM6aCNTSJ7ApoTooBBqmBoNUBLaX1pqNdUuD00kmVQVP25j6PoEKRYGWpJKdchZvJX+H+8Jc1vgB9Bh+8r813Xq5f8ZK80pwVte2eOyDmw7gqnVRU1mD6ZIWEEII4U9tGhZSWlpKXFwchuGdWHK5XJSXl7e5t15LV/XOOeecVl35s+4THR3N559/3qY4Qs1K3bDc7wwVfG/6eqp0wgjDiZNder/d4QSlUBoUUi9jkKUiUPoEnrJyXcFO7e7BOVT1J0wFzOwojx6qIRF4QCoC222FV3/AUbbFcSoSVJxnWyoCm9ZZEoHSI7B9DpHPUdwXzYcHUTUgwGlqCKvYwDFK2cdh0ix9A0XH+mrWIs/25B+f2+y+ST27se/bvWitOXroGKn9Tl6NXlZUxrPT/oJSBqbTxU9ev4Pss4Kjj6UQQgSjVpeKzZkzhzFjxlBV1fgFWFVVFWPHjuWjjz7yaXCifeqXBUPw9QcECFNh9FHdAfcbG1kG0nahNCikXnp2JspQpPRLBVN+Jk7VZr0TjfvrGKhvCnt4LQ2WisD2OqKPMUmNpo/qzmg11O5w2iWOGM92qZZEYFPyzSOcoUYwUg1iAH3sDsenrD0CK2RpcLtsN/dwthrLCJXNaWqI3eG0SZJK9PSJzZHe0bbJ35nH7hW7yBrfn16n9WHY1OaLDbr1bEjYHt1/pNl9P/vLR9SU11BdVkVtVS3rP1nrk5iFEEI0rdWJwBdeeIH777+fmJiYRo/Fxsby61//mn/84x8+DU60zwrLAICxRuD1/WqN+mqGcirJR5aBtFX9oBAInYrAxPRE7v3fDDKyM/lq1iIK9xTYHVJQ85oeqQLzqrtXj0AkEdhe881lfK3XsFcfCtikb0usFYFlUhHYpPn6G1bqDeToPWQZodsjsEKWBrfLBp3DV3oVG3QOA40+dofTJoNUP892jrnbxkg6tyWvLKKypIJdy3dy2uWn4whzNLt/Us+G5efNDQwpLSxl2dvfeN238bN1sjxYCCH8qNWJwE2bNnHOOeec9PGzzz6bjRs3+iImcQq01lTqak5XQ5hiTKSrSrQ7pHbx7hMoy4Pbap9XIjA0pmUrpdjwyTo2fLYOV62LT/401+6QgprX9MgATQ7JsBDfqB+6lEoS8Sq2hb0DU7ylR2D9ZFzRoFAf9SwNPk0NIUKF2xyRb8XK1OBTZq2ksybWgsFAy9A7qQi0R0VJBSveWw5ARHQE4793ZovPqe8RCFC0/+SJwA2frqX/hAF0651Mcl/3YJjSglL2rNp1ilELIYQ4mVYnAo8dO4bT6Tzp47W1tRw7dswnQYn2K+Qom9jOt3oLCmV3OO1mnXgoA0ParlAXkUISAL3rllmHgvPumEJcN3dl0Nq5a9j7rbwhaC9rReBwNdDGSE6uCwmeBIAsDW6fcl1BLoWA90T2YGNNYJbpChsjCUzWliDBOhCmOdHWHoFaegS2xzZLJZ01sRYMeqkMonAP/JNEoD2Wv/MNNRXVAJxx3XhiurR8USmpl2Vp8MGTJwJzvtpGzuKtFO07woQbJnrul+XBQgjhP61OBPbp04fVq1ef9PHVq1fTu3dvnwQl2m9/iFSCWSsCd5mSCGyLGl3Ll+ZyCjnKBE4jma52h+QzUXFRXHTvZYRHR5A1YQCfPvmR9JBsB1ObbNLbAehFJl1U2wY9dRSlFN3rBoYc1HnyvW6HPfqgZzuYB0hIRWDzrC1BgnUgTHNiLUuDK2VYSLtsr0ugZZLqtdQ+GDiUg4GqDwC79H5qdMsTaIXvaK3Z8uUm+k8YSGxSHGff2vyQkHpJ3builLsooaiZHoG529zvXcKjwplww0SMcAfp2ekcO3xM/u8LIYSftDoReNVVV/Gb3/yG/PzGVRl5eXn89re/5eqrr/ZpcKLtrEtCg7kSzHtpsCQC22KZuZYy3BUzfYzunhdhoeLM708ic1Amu5btIGfxVjbP32R3SEFnrz7kmbw6IkCXBderXx5cTiUlHLc5muDjNUnWCOZEoGVqsAwLaWSFbkgEnhGCFYHWqcGyNLjtjuhjFFEMQLYRXMuC62XXVTG6cEnLmA52YP1+dizJYeey7aRnZ5DWP71VzwuLDOeO//yCB5c8zJ3v393kPtUV1RzZ465aT8/OJDYpjiHnDSUvJ48Nn67j8NZDPvs8hBBCNGh1IvCBBx4gPj6eAQMGcMcdd/Dss8/y7LPPcvvttzNw4EDi4uJ44IEH/BmraIVQGRLRx5LE3COJwDaZbzY0XJ7imNjMnsHJEe7g/OkXej7+6LE5uJwuGyMKPs853/JsD1cBnghEJgefCmsiMCuolwY3DCo7LsNCvLi0i9Wmu0dzD9K9emuGihjL1GiZGtx223TDsuDsIFsWXE/6BNpn9QcrPNtjrz6jTc8dOGkQaf3TiYiOaPLxvO25nqq/zMHu9y3ZZzUMMNsiF3uFEMIvWp0IjI+PZ+nSpdx4442899573H333dx9992899573HjjjXz99dfEx8f7M1bRCqEyJCJaRXkSALvkym+bWBOB5xsTbIzEf0ZcMoo+Y9xVDVFxUaz570qbIwoeLznf5TnzTQwMfu/4OTc4LrM7pGb1UA2VB5IIbDvr389gXhqcIBWBJ7VF7/RUyY0zRtocjX/EKEuPQKkIbLMcsyFxFqyJwEGWSkZrYlP4l8vp4tv/WwOAIyKMkZed3uZjlOQV879nPmPV+yv4eOb/kbNkm+ex3K0N71syBrmLAIZcMMxzn6z6EEII/whry86JiYk8//zzPPfccxw5cgStNSkpKSG39DCY7Q+RpcEA2aoPUTqCFJVEqVlGghFcPW3sUKiPslZvAWCkGkSaSm7hGcFJKcW0h67m3XvfZO+3ezh2+CgjLzudyJhIu0MLaPt1LqWUkUAcpZRxnHIGGH3sDqtZ3UmjF5l0VYkU6WK7wwk6oVIRGGcZFnJcegR6Kf2mmKmZZ7ImY2vIJgKtU4MrpEdgm23X1kRgcC8NBu/EpvCv7UtyOF5YCsDQC4YRkxjTwjMaqyqr4pMn5tJndF/2rtnDntW7GTBxIIZhcHhLQx/bzCHu9y3JvVNIzUqjYFc+e9fspvxoGbFJ8h5ACCF8qdUVgVZKKVJSUkhNTZUkYICpTwRGEE46wZ0ESlXJ7OIAy/V68uqmXormLTCXebanGKG3LNiq79h+pPRLBaAkr4TF//zS5ogC3/9cX/M75zOUUsZlxrk8FtZ0z55Akmmksp/DrNdb2cPBlp8gvNQnAhOIoxtd7A3mFHhVBCJTg60yH43j8cE/5PPUJ7n14FV2h+MX1qnB5bI0uM28lgYbwVkROED1QeF+z7FdlgZ3mE3/20DWhAEk901hzFVtWxZcL6VfKlHxURza7P4fXrg7n18PuIfaqloOb2soYKhfGgwNVYHa1GxbvPUUPgMhhBBNaXUi8MiRI9x2221cf/31bNokZdqBSGvtWRrcQ6VjqHbleQNGqurm2S7kmI2RBI9d5j4mqdGMVkM522jfC7ZgcvmD0zAc7p/z1XNWUpwrPyfNsQ4UuDfs1qC4kGP9O5CvTz51UDRWq2vZr3MB97LgYPh+n0ws0Z4kwHEtFYH1avNqqPjKXa0T0TuKmN6xLTwjOMnU4FNT31MvnlgySbU5mvaJVlFcqs5hkhqNA4dMk+0A1RXVrJq9nF3LdlBeVMaQ84e26ziGYfDDf/2Un//3HrLG96ckr4SaimrytudyeIt7GEhccjzxyQme5wytSwR27ZHEkX1SDBBMaipqeO/+tyktLJXfUyECWKszRbfccgtpaWl85zvf4ZJLLpFf7ABUTKmniXqwLwsGSFFJnu1CXWRjJMHjK72ar/Ua1ujNjDba94ItmKQNSOfc2y9gwKRs8rfn8Z9fvyN/m5qx0nQnAsMJY5QabHM0rWNd3l4gfwfaZL/OxYV7kE4wLwsG90qEuLqBETIspEHpnKNQ9ycv4bvdgjrZ25wYy9Lgci0VoW1RblZ4kufZqm9Q/4zUKidf6zWs0Os5TIHd4YS8TZ9voLq8GoBRl51OeFTTAz9aY9DkwfQ+rQ/DLmyYar575S7Kj7p/Nq3VgAB9x2QRFR/FsYNHWffRt+0+r+hYrloXs376L755YwkPnTaD+7LuktflQgSoVicCv/32W6677jquvfZa8vLyKCyUqzOBpr7yA4J7UEi9ZLp6tgv1URsjCR7b6/rmpJBEN9XF3mA6yPm3TyEvx/2zv/mLjayavdzmiALTUV3iqQo5TQ0hSgVHP8VUGi4I5ElFYJtY+wP2VT1sjMQ36pcHl0kiyKP0g4bficSruzWzZ3CLNaP5tt8rfJv2b/5x4S/tDieobCCHIopJpgsXGGfaHc4pGWTpbyh9Av1vtWUQ2+g2Tgs+mfqBIAA7lm6j18je9J8wgAETs732C48Kp0uG+31Awa58XE6XT84v/Mc0Td779dscO+h+z6ZdJrWVNVQdlypuIQJRqxOB06ZNY8aMGfzyl79kxIgRpKYG59KCULZPH/Jsh0JFoCwNbpsSfZzcul6KA4N0KmB7xCbFcd2TNwDupSXL3/mG4sPy83Ki1eZGz/YZxohm9gwsUSqSLriXCxUgFYFtcVSXcJYaw3A1MOgrAgHilLsisFSGhQBQe7ia6m3ufnkRA6OIHNb2Jv7BwnAYUGaiqzS6wrQ7nKCyoq4S/AjF9Ajyi8TW1zY5MjnYr8qKyti2yD18rktmV7LG9/fJca2Vfwc3HWT/+n3sXLaDtP7pjfZNH+j+eXVWOynaL///A5nWmv/+bjYr3vmGwr0FXsNdjh85bmNkQoiTaXUi8B//+AfXX3892dnZLFiwwJ8xiXayTgwOhYpA76XBUhHYkhzrVMAgbQbeXsMvGsl5t0/BWV3LruU7effeN2UpwgmWm+s828E2WTSt7qKA9Ahsm+16D0v0ajbq7WSq4L9456kIpAJTSzKodM5RXEecRI6IoeuPQn94mxHjfslqSiKwTVaaGzzb44LoIlBTrK9tcmRgiF+t/2QtfUb3Iz07g9OnjcEwfNN3PCEtkZiu7l6mJXnFgLv1w4CJAxvtmzawITmYl3O40eMicMx7+hMO1w2DMZ0mfcc0/K7WT50WQgSWVv9VNwyDG264genTp5OYmOjPmEQ7eS8Nzmxmz+DgvTRYrgS2xPqi2Lp8prOY8oupRMa6l7tuXbiFlf+RJcJWK3XDm8EzgiwRmIo7EVhGhfQHa4NCGi6gWC+sBKs45X7zqNGUI5NjSz8oAg3VGyqIu7Bry08IcirWAYBZIUsE26K+IjCOGIYo31R12cVrabAkAv1q5ezl7F6xk7ycXEZfNdZnx1VKkTnI/R7FdLqT+j1G9CKmS+NBR/UVgQB523MbPS7sV1ZUxuwZ7zDvL5+wa8VOsiYM4HtP30if0Q2/q2VSEShEQArusbLCyzFdQkpdP61QWxpcgFQEtiTHbFgmk92JlgbXi+kSy3V/uREjzCBrwgA+/P37HD0oPzcANbqWIl1MPLGkk0wvgqtiON0yMCRfLgq0mrWSOjkEEoEJNLxR7OwDQ2oPVVOx1P3mKnJQNJFDolt4RvAzoqUisK0O6jwOkQ/AGGM4DuWwOaJTk6y60o0ugPdrHuFbR/YVsne1++ubMSiTHkN7+vT4GYO936MMPCu7yf28E4F5Po1BtE9tVS05S7bx+V8/5c8XPs6TU/7I0teX4Ah3/20ZPnUkZ1w7gfiUhgnQx49IRaAQgUgSgSFkmV5HIUfJJJXuOviXgcUSTTRRABzR0vOtJV5LgzthRSDA0POHcdYPz2HXsh1UFFfwzq/ekCXCwOfmEtbqLVRRza2Oa4JuCaH1okA+sjy4tQotfzdTCP6KsThrIlB37j6BpXMakryhPC3YyqirCNTlkghsrfpqQIBxKrgqwU+m/vXNYQoo7eR/B/xlzX9XebZHX+WbISFW9RWB9bLPGtTkfqn9UlGG+29bvlQE2s5V6+KrVxby/LXPkvPVVg5uPEBSz25oUzPlFxdxyX2Xc+5t5wPunt31pEegEIFJEoEholxXsEvvByBDpRBmhNkc0alTSnkqHKVHYMvqE4HRRIVEj8j2uvjey+iS6U56HFi/jy0LNtsckf3ecs0FoBZnUA0KqZdmqQgskIrAViusG64STyzRKsrmaE5dgrI0H+/kFYGlHzT8HiSE8LRgq/oegbpWo2slGdga1v6A44OsJcTJWPsEbpflwT6ntWb1B5Zpwd/x3bLgeplDGioClaHoOzaryf3CIsNJ6ZsCQP7OPEyX/N7b6YUb/s66T9YCUFk3CTghNYHz7pjCaZePZuo9l3j2jU+xJAILJREoRCAK/myRAGCT3oHGXfk03Gi6xD4Ypaiu7NeHOcIxXNoV9Mta/KVG13oSwQNVHwzVeXP80QnRXPfn7/N/j35A+dFyZj/wDtnfPEJYROf8c3dUl/CJuQiAdJI535hgb0DtUN8jEGRgSFvUX0BJVsFfDQjuHmf1SnXnTQTWVtWyoedWUs/uRkJFHFFDQndasJWKbvi/ZlaYOBI77/+51jimS/iP61PPx2OD8CJQU6x9Arfp3YxhuI3RhJ4dS7cTFhFGzxG9iIqPIqmH79tKZAzK5Pw7L6S2spawyDAioiNOum/6wEwKdhVQW1XL0QNFJPdJ8Xk8omVHDxSx4+scwP06+/zpUxg4aRAJliXAVvHdGhKB0iNQiMDUOd8Zh6ANZo5ne4QKpURgEmh3c/ijNPRAFN526/24cDdQH9gJ+wOeaMh5Q1nyyiLyctxLSVa9v4IJN0y0OSp7vO/6jFqcAFzvuJQwFXx/9qVHYNs5tZOjlADeidRgZq0ILOvEFYElecV8+cWXAJx2xWiG4vule4HIiD0xEWhjMAHuuC7ngppbyKWQkQxietiNIXNBwNoDOcfcA3J92Ke+fOELDm89BMCPX/2ZX84RGRvFFb/5Tqv2TR+YzobPIDwqnGOHj0ki0CbWKtHzbp/CmO80/3/Ha2mwTA0WIiC16x3hggULWLBgAQUFBZimd5n2K6+84pPARNts1A2JwNCqCGx4A1uoj4bE5Et/2Gnu4zQ1hAJdxOBO2h/wRFPvvpgtCzYB8MWzn3HGNeM9zYw7k0J9lOFqIBv1dr7vuMLucNpFegS23RGKPduh8ncziUSy6EUk4VToKrvDsdWIS0ZRkldMxgm9tkKZEdPw99ssl8nBzfnG9S0DVR826x0cpoBxIVINCO6LnV2IJ5M06R/tYwc3HWDrl+52Kkk9uzHk/GE2RwRn3nQWg88fRm1VLTGJnaP6OdBorVn1/grPx2OubvniU0R0BNc+cQOxSbF09UNVqRDi1LU5EfjII4/w6KOPMmbMGDIyMjpFg+pgYK0IHK4G2hiJb1kb3BfoowyxMZZAtlZvZa3eAsBg1XSvlc6mz+h+DJo8mJwl20hIS2Tt3NWMuXqc3WF1uJdc71LAUVJICtqLBNIjsO0KLV+nUEkExqhoduFugVBE500AJPdJ4daXb7M7jA6XdHs6CdOSUNEGYeknX0oo4NeuP7NN78bA4IuIWWQboXOBsA/dceBgCzs5ahajtZb3Ij6y8IX5nu3z7piCI8z+i6dlhcd59oq/ADDhholc/9SNNkfU+exfv5+CXe7p4/0nDCCpZ+tWGUy86Sx/hiWEOEVtTgS++OKLvPrqq/zgBz/wRzyiHUxtsklvB6C36k4X1XS/hmBkfQNb3/heNBaqFaGnauqvLiVvRx57Vu2mrKiM064cExAvbDvKcV1OAe4+cQNUH3uDOQWplpYAsjS4dQosA5aSQ2BiMLgrAusdQ5YadTYx4+Nb3klQqavYrvcCMEwNYJARWhcHDcNglDGYBeYy8jjCfnLpTeepjPWXwj0FbFmwiazxAzh+pJRx1wVGP+FulqXAhXsLbYyk81o1ezkJqQmk9Etj/PfOtDscIYSPtLnTck1NDWeeKX8EAskefZAyKoDQ6g8I3olAWQJychvqEsGxRNNP9bQ5msDRb2wWKf1SASjcXcDa/1tjc0Qda7c+4NnOMnrZGMmpCVfhdKMLAPlyQaBVjlgq5qxLq4OZ9SLXMV1iYyRCBK4teicm7rY9I9Qgm6Pxj3GqYQLySnM9AGW6AtM02WMepEbX2hVa0PryhflUlFSwa/kOxn53XLMDPDpSTGIMsUnu/rBHJBHY4Zw1Tr79cDWlBaXsX7eXYVNDY/q4EKIdicAf//jHvP322/6IRbSTVzVYCC0LBu8m99YKF9GgRB9nrz4IwDA1sFNPDG7KRXdf4tn+/JlPcbk6T28payIw2BPE9cmsfH0ErbXN0QS+UFwabK0IPCqJQCGa5DU8LkRXCIwzGpIRK+oSgeNqvktMzQgG11zEN+a3doUWlEryS1jx3jIAIuOimHTLZJsj8pbS110VWHz4GC/f+k/+ctFM/nTeHyjaLz2D/W3rws2UHy0DYNjUEUQnRLf6uWVHjrNv7V42/W+DTA4WIgC1eWlwVVUV//znP5k/fz4jRowgPDzc6/Gnn37aZ8GJ1sk3jzBJjaaAowxVA+wOx6esU+5kaXDTNtZVAwIMN0IrEewL/c8cSNb4/rhqXJQfK2f9x2s5/coxdofVIUIpEZimktmqd1FJFWVUEE+s3SEFtFBcGtxVNSQCizvx0uB/XPMMxw4dpUtGV6bP/iWG0Tku/jgLaqnZVYVZ7iJycDTh3SPtDikgeV8cDs1E4FjL8JOV5gYASnWZ5751eivn0Pl6ArfX8reX4qpxAjDp5rMDbihHt94p7F2zB4DN8zd6Yj2wYT/deiU391Rxila/3zAteOw149v03K9mLeLzpz8F4LY3pwfE8BkhRIM2JwI3bNjAqFGjANi0aZPXY9Ks1x6r9Ca+1u4lj9lGX5uj8S1ZGtyyjdar/yH6ov9UTb3nUp6/9lkAPv/rp4y6/PRO8eZ5l97v2c4K8kSgtTo4Xx8hXkkisDmFNCQCU0OkIrALDT3iOvPS4MLdBRQfPkZVaWWn+DtWr3TuUXKn7wYg86Usut6SanNEgWmD2XBxMFQrApNUIgNVX7brPazVW6g0qyihoeKoPjkoWlZRUsGC578gNSuN2KRYJv/kPLtDaqS+IhDwJAEBDqzfz6jLTrcjpE6hvLicXSt2AhCXHM+gyYPb9Pz4lIZ2HmVFUhEoRKBpcyJw4cKF/ohDnIL9HPZs91Kh1TA5xTIkQJYGN22Dti4DCs1+QKdq4KRs+ozpx97Vu8nLyWXjZ+sZeelpdofld94VgcHbIxBgtDGMAzqXAorYqw/Sn952hxTQrBdOUkKkR2CYCiOBOEop42gnrQg0XSalBe4kaGJGF3uD6WBGbEPS0yzvPC0e2kJr7akI7E4a3VQXewPyo3HGSLa79lCLk6/0Kmpo6AtYv1xYtOzrVxdTXVZFQVkVZ06YRGJaYstP6mDJloEhVvs37OvgSDqX9R99S/mxMnqN6sOQ84e2edhefHLDxbvjhZIIFCLQ2HopeebMmYwdO5b4+HhSU1OZNm0aOTk5XvtUVVUxffp0unXrRlxcHFdffTX5+fnNHldrzUMPPURGRgbR0dFccMEF7Nixw5+fiq32aXcisCsJJKg4m6PxrSgVSTyxdCEeA6k4bUp9RaBCMSzEekT6ilLKq1fghs/Wdoo+c7tNdyKwCwkkqcB7cd8WccSwTK9ll97PTkulo2iatUdgct2glVBQvzy4oysCayprOvR8J3P8yHFMp3sQRGJ6F3uD6WBGjCURWGnaGEng2k+upzIu1FuFnKHcy4P70IPVpvcKpUPkc1Dn2RFWUKmprGHxv74EQBmK8+6YYnNETbNWBFodWL+vU7yWs8vK2SswnaZ7SMiFI1p+wgniulkSgdIjUIiA06pE4FVXXUVpaalnu7lbWyxevJjp06ezfPlyvvjiC2pra7nwwgspLy/37HP33Xfz0UcfMXv2bBYvXszhw4dbPM+TTz7J3/72N1588UVWrFhBbGwsU6dOpaqqqk3xBQOndnJIuxOjoVYNWC9dJVPMcTbp0E3mtpdLu9is3WX7/VRP4lRg9XUJJIPOHcLQKcNJ7Z/G6g9WsX99aF9JrtY1HCAXgH6qh83RnDpr24McvcfGSIJDQd3S4K4kEK7CW9g7eHTFvdToGKUd8gbQ1CblR8t47MyH+OSJuVRXVPv9nM0pyS32bHfJCI3ej61lxDRUo2ipCGySd6uQ0F4hMFINIpII9nKQpXXtcaxkeXDLFv1zgWd71OWnk9I3MJfbJ/duOhFYWVJJ0T4ZGOIPR/YWsmfVLgDSszPoMbzt7WXiU6wVgZ2zil+IQNaqpcGJiYme/n+Jib6rKpk3b57Xx6+++iqpqamsWbOGs88+m5KSEl5++WXefvttzjvP3bNi1qxZDB48mOXLlzN+fOOmpVprnnnmGX77299y5ZVXAvD666+TlpbGhx9+yPXXX++z+APBYQpx4u6X0TtEE4Hd6MIO9lFMKTW6logQelN7qsq2H+fXy25i55hDpGekgfROPymlFCMuHsU797wBwIp3vqH3qD72BuVH+/QhNO5ESVaQLwsGGKT6ebZz9G4bIwkO9UuDQ2VZcL2uKhE0OHF2yNCYq2qnU/FoHoPz0ln53+Ws/WgN33nkGoba1PS8JK/Ys92lk1UEKmtFYIVUBDblkM5nsjqDcipDtj9gvSFGf6pxV+ruMQ82enyFuZ6rHBd2dFhBI297Lp//9VNMl8mIS0Zx4S8vtjukk4rtFkdkXCTVZe4LMeFR4dRWuZeC71+/76RLh0X7rfpghWd77HfHtWsOQFxaHDVPxFGd5mRHqgx8FLDWtYV/uN5kjz7IKGMQT4c/aHdInVqrEoGzZs1qctvXSkrcS32Sktx94dasWUNtbS0XXHCBZ59BgwbRq1cvli1b1mQicM+ePeTl5Xk9JzExkXHjxrFs2bImE4HV1dVUVzdc5a+vfgwG+3Xo9gesl6K6UZfP4AjHyCQwr1jawbWoist/MRYYS9rM3nCP3REFtlGXn84Hv3mPmsoavv1wNdN+/10ioiPsDssvrP0B+wb5oBBwTxDvRheKKCbHlIrA5lTpakpxT9C09lkNBfUVgQBHKfF7ItCpXVR2q8EVZhIVF0Xellw+fWIuy99eytV/uJYumR1blVdsSQR2vh6BDRWBZrkkApuyWm9isXZP+Ryg+tgbjJ/FqRi6k8Yh8smloNHj6/U2G6IKDs5aJ2/+4lWc1e5Cgq7dk8gc3N3mqE5OKcXPP7iHv0ydCUBK/zQOb3Infw+s38fpV46xM7yQo7Vm72r36yylFGOuOqNdx4mJi+Wta+dTQy3D1UAe9WWQIigtNFfwljkXgE2u7TwZdj9hqs0jK4SPBMy4OdM0ueuuu5g4cSLDhrmvtOfl5REREUGXLl289k1LSyMvr+neH/X3p6Wltfo5M2fOJDEx0XPr2TN43jTv04c826GbCGx4I1soA0O8VCxtSFrHnBXfzJ4CICouilFXjAagsrSSjfNCt6G4dWJwvxBIBAIMVO7lwYfI57gub2Hvzss6MThFhdby0a6WXpfF2v8X7WqVk1X37WP2Z98S0yUGR4SDsqIyNny6jk+e+MgzUbGjWJcGd7oegdHSI7Al9X1hIXT+7jdnkOGuFK+ioYfnWDWcLNWLnWZot/84FfP//jnKMIjpEkNqVhqXzbjS7pBaVJLf0Be239gsz/b+9dIz2NcObznEtkVb6NojibHXjGv3BS+lFKm4VyXka1nCLeAYDb/HpZSxwFxmYzQiYBKB06dPZ9OmTbz77rsdfu4ZM2ZQUlLiuR04cKDlJwWI/TrXsx2qS4OTafgHVKCltLye1pryr93Nd41Yg+hR/q2MCRXjrpsAQLde3dixNKeFvYNXgT7KUDWAVLqRZQT/0mBoeNMHsF36BJ7UEX2MESqbfqonPVWG3eH4lFdFYAcMDHFqdy+6kv6V/Gz2L/jBcz/EWeMkpmsMm/63gX/d9DyHtx1q4Si+U5zbMA06MSO4BwC1lXVYiPQIbNruugtAKSQRr0L/NUG26tvovggi2KX3c5C8DrlYEGwOrN/H53/9lP1r9+IId3DjP24JipURST2SOO/2CxgwKZtBZw9m2IUj6DG8J0X7CjFNuTDgS+s/XQvAsYNH6X16n1M6VrpKBuAIxbi0/N3u7OrnGtR70zXXpkgEBEgi8M477+Tjjz9m4cKF9OjR0NQ+PT2dmpoaiouLvfbPz88nPT29yWPV33/iZOHmnhMZGUlCQoLXLVh0horAVEtF4BGONbNn51K7txrnIfdV8Ohx8ajwgPh1DnhZ4/uTPXkwRfuLWP72Nxw9EJrJ5WV6LZv1DgooYrDKavkJQcD6pm+b9Ak8qVxdwAadw259gEQVWpXC1opA65Vlf3HV9eAFCFdhnHbZaH7z9e/pPqQHFcXlVJZWMueh9yk+3DH/mzp1j8BY6RHYnApdSS6FAGR1gmpAgGxL71hwT5e3fu7W9jkCaqtq+fTPH3kmj59541lB0ys5c3B3rnzoau6cfRfDLxqJ4TA4uPEAxw4do3B346Xhov3Wf+JOBCqlGH7RqFM6Vmpdn2ITk0J5D9fpHcR7deaH5nxyTHk9bxdbMwdaa+68807mzJnDl19+Sd++3lf2Ro8eTXh4OAsWNEy1ysnJYf/+/UyYMKHJY/bt25f09HSv55SWlrJixYqTPieYWV/k9FaB29/jVFib3cvS4AYVS497tmPOCp7ktd2UUvQfPwBw/w1aOXu5zRH5ntbaMz0ygxSSQ2R5qDURKH0CT+6wLvRspxNaTdStFYHHOqDax4m7gsHAwFDul0wxiTH85LXb6TmyN31G92XX8h28eONzVJZW+j2eS+67nBueuYlLH7iC6MTONSXea2pwtSQCT7RHNwzMCIW+sK1xYiKwu0qjl9FwUdy6akbAp0/OZevCLWSNH0CvUb258K7AHRDSkp4jG1Y6HJDlwT6TvzOPvBz3702fMX1JTDu1yvO0uopAgAJZHtzp1VcERhDOVcYUDBSX1/yM7fKa3ha2JgKnT5/Om2++ydtvv018fDx5eXnk5eVRWel+MZ2YmMitt97KPffcw8KFC1mzZg0//OEPmTBhgtegkEGDBjFnzhzA/Sb/rrvu4rHHHmPu3Lls3LiRm266iczMTKZNm2bHp+lX9S9y4ojxeoMUSqzN7mVpcIPyrxveBMdODK2qH38be03DBLQV7y4LuWUlB8njGO6fj+EhNDnS+qZPlgafXB4NicBMFVqJwKQOrgisrasIDMPhdX9kbBQ/feMOyorKcNW6yN16iA9//z7O6lq/xWK6TDIGZTLuuglc+MuL2zXFMZipSMWggrEMKRtHn8+H2h1OwLEOiOoM/QEBsg3vAoIeKp1eNCQCratmOrtdy3ew8MUFaFOz99s9fO+pHxAWEbxN+nuN7O3Z3r9e+kH6yobPGnpnj7h41Ckfr75HIEC+vIfr1LTWnkRgP3qyX+dSTQ2FHGWfPixLx23Qrv8Aq1atYuHChRQUFDR6A/3000+3+jgvvPACAOecc47X/bNmzeKWW24B4K9//SuGYXD11VdTXV3N1KlTef755732z8nJ8UwcBrj//vspLy/npz/9KcXFxUyaNIl58+YRFRXVhs8y8Jna9FQE9lbdQ/ZNgbXZvSwNblC7rxoMUA5F9BlxdocTVLp2TyJ78mC2LdrC0QNF7Fq2gwETQydhVl8NCDBChc7n1VtlEkkE1dSwwQzd/o6nKtdSEZihQmvKehcsicCO6BFYVxEY3sTLpYSUBG57607+etmTZGRnsPydb6ipquEH//ghhuH766yFewp4/KxHSEhLZOJNZ3HRPZf6/ByBTCmFIzF4Exf+Zh0QFSp9YVuSTjKxRFOOu4Cgu0rz6pctFYEN9qzeTVxyHMcLj3Ppry8nc0hwryLqOcJaESiJQF85vPUgvUb15vCWQz5JBKZbKgLzkYrAzqyIYqqoBqCnkcG/wv/I+OrvUk4ll9fexuaIT8lSneN/V6Bo8yuqxx9/nN/+9rdkZ2eTlpbmlXxqayJKa93iPlFRUTz33HM899xzrT6OUopHH32URx8N7UHl+RRRg7v6oFeINYS3kqXBjTnzayj/sgQVq4i/NAkj2tHyk4SXcddPIH9nHkk9klg7d01IJQI36IYkWShVBDqUg/ONCRTpYlbrTTzufJEZjttC9iJIe+Xqhn5JoZYITFKWpcF0xNLg+orApl8upfZL5Wdv3cnfr3JfBP12zmqcVU6u+/P3ievm2ws0BbvcV9JL80s8Pb6EqNcZKwKVUnQnje3sBdzVR728EoHSIxDg6MGjfPTHD1GGoueIXpx72wV2h3TKYpPi6NarG0X7izi48QAupwtHmLwWPhXHDh3l2zmrAeg1qjfJfU59RUGqkopA4WYdFNJdpZGukrnRcSV/cb0MuP+HZSGJwI7U5kvWzz77LK+88gpbt25l0aJFLFy40HP78ssv/RGjOAnrkodQ7Q8IkEwXz7YkAt3K6/oD6nJNRK9Im6MJTsOnjqS6vJpdy3ey8j/LO6S/V0fZaG73bIdSRSDAP8IfZqvehQsXLx59i51/yUG7Wr6o1Jnk1VUEGhikEBr9Iet5DQvpgIrAky0Ntup9Wh9ufvFWwqPCyZowgA2freOF7/2N5e9+06oLnq1VnwgESM1K89lxRWjojIlA8P6bEIaDHioNo+7tjSwNdtv5jfvioDY1Qy8cjuEIjeFyPeuWB9dU1pC/M6+FvUVLNs5rWBY8dMpwnxzTu0egJAI7s0O64Xe0O+7XMNb/VdaqdtEx2vyfwDAMJk6c6I9YRBvtN3MZQhbj1SiGqv52h+M3YSqMbnXJwAIkEQhQYekPGDMpNHtD+lt4VDijp40B3JP01v7fapsj8p36isBIIhigerewd3DJVKnMCLuNuOoY/u/GJ6n57TEO3rgdXSsVUvXqlwank4xDhVaFRFfL0uCjHdAj0KlPvjTYavjUkdzz2QMc3uwe2GA6Td65+w3e/Pmr5G33zfJESQTC0X/lk/fgPvLu22t3KAGn/k1UHDFevZVD3T2OH3KP40c86PgZ1xgXE67CycRdCS1Lg922f92wSmBgCK1+sPYJlIEhp279p+s82yMuGeWTY6ZZegTmybCQTuXEnn8nVgQC9LMsBa6/mPV35+v0qDqL7lWTuKPm9/4PtBNrcyLw7rvvbnaZrug4O9nHFnaxXK8jRYX2i776qadHpCIQsCQCFcRMkEEh7TXuuoZJ4iveW2ZjJL5TrivYqd39coaq/oSp0OupdXfYD1m57j0ilio0mtyso2wzZHgIuF945eO+6p4RYoNCAGKJ9iTlijtgarCrrkego5mKwHqZgzKZ8dXDTP7JeRzeeghHhIOdy3bw5AV/ZOPn60+5OrBwV8OS79Ss0Fry3VrFrxVQ9NRhiv6W69Nqy2BXq2s9Sa8s1atTtUu4MuwCHg+/h4fC72SoYwCAZ3nwEY5RrivsDM92Wmt2LHWvEgiPCqf36X1beEbwsE4O3v71NhsjCX5lR46za/kOAFL6pZKRndnCM1rHqyIQqQjsLAp0EZNrvs/bzo/YYu6kRtdywFIR2LOupVmW0VARWJ8I3Ghu5wjHKMLdBkj4T5vfId57771ceumlZGVlMWTIEMLDw70e/+9//+uz4ETzdpudZxlICt3IYQ9lVFChK4lR0XaHZBtXiZOqDe4XtlEjYnB0Cb1ET0fpMaIXmUO6c3jLIfau2cOhLYfoHuQNtDfpHWjcb5BDqT/gifpN7su+uYoxp13L8ZgKprgm8pHjJbvDsl0BRzFxV0emh2AiUClFEonkU8TRDlka7O7D29qEemJaIlc9eg2Dzx3KN28sYcNn64jpGsuSWYuprarl9CvHtDuW/LqKwITUBKLiO+f/QCO24fq1rjRRMaFV8dpe+3WuJ2kd6q8HW6O3yuQb/S3g/toMVlk2R2Sfwt0FFB92D9rLGtc/qCcFn6j3aX0Ye+04Nnyyjo2fraeiuJyYLrF2hxWUNs3fiDbdrx1HXDLKZxcT4oklikiqqCZfKgI7Ba0119XcxWq9iR85ZwCwOuK/TVYEdifNMwSwvqp9l6XNxU69D6d2hmRRQyBoc0XgL37xCxYuXMjAgQPp1q0biYmJXjfRcaz9YPqG+Au/VEvFY2Ennxxcsew4dXkeYibKsuBToZRi0i2TGTApm7hucSx7c4ndIZ2yzeZ2zlSnMUGdxjg10u5w/KrXeb2JiIkAYIMp1QBw4qCQ0EsEAnSpGxhyrCOWBjczNbg5g88dwg+e+yGTfjiZ6rIqchZvZc5Ds6koaV91UkVJBWVH3L1hO+uyYAAV3fCy1ayQdgD1DuhczlZjmaBGMTzE+sK2hwwMaeC1LPisQTZG4nuRsVFEREVQXV5NdXk1S2YttjukoLXh07VkDMoka3x/Rlzku9eOSilPVaD0COwcPjMXM8TIwmFJM+3XhzlE40SgoQz61M052KMP4jJdbLQMPKygks16ZwdF3vm0ORH42muv8cEHH/DZZ5/x6quvMmvWLK+b6Di76zLnaXQjXoX2FTDr0ufOvjxY+gP61mmXn86+b/dSVlTGineXUVFcbndIp2SpuZZv9FqW6bUMNQbYHY5fKaU8VY/5FMnVZhr6A0LoTQyuV98nsIwKanWtX89VnwhsbljIyURER3DN49cz5LxhAJQWlPLJE3PbFYf0B3QzYhu+D2a5JALr7dT7+UqvYpleR4oKrQFB7WFNBHb2gSEFu/Lp1sudiBkQQv0B6513xxTP8JPF//qS6opqmyMKPlXHK9m2eBu52w5TtL+IXqf18enx6/sEHuGY3/9nC/t9ZC7kZdf7uGj4H71PH+Zg3dLgeGJJVA1trbLq+gRWUc0qNlJKmdfxVprrEf7R5kRgUlISWVmdt8Q+UJTrCvJwv+kN9WpA8E4EdvbJwdV7qog5K56o02OJOTPO7nCCXkyXWMZdNx5wT55b9vZSmyM6NSv1BgAiCGeUGmxzNP5nnYq8wcxpZs/OwSsRSGhWBCZZJwfj3z6BrZka3JKrHruWiJhIeo3qzcZ569m3dm+bj1GwUxKBAEaMZWlwhauZPTsXa9VbbxXc7S18obdXRWDnHRhimiarP1hJ0f4jJPdNofuwHnaH5HPJvVM4ra7lQnLfFFbNXmFzRMFny4JNuGrc/+tGXDwSw/DtVGlrn8DOvqqrM2iqCnufecizNLi+GrCetZ3FQrPx7+9ySQT6TZt/03//+9/z8MMPU1HRuZvv2m2PPujZ7gz9YKwT8Ao6cSLQrHRRNvcYFUuOY5a6CM+ItDukkHD2j8/zbC99fQnOWqeN0bRfkS5mh94LwGlqCJEqwt6AOoC1D6J1OUFn1RmWBncnjX70ZCgDKNL+fVPh9CQC29+fJqlHElc+9B32r9tHSW4x793/Fi5n25JYhbsbEoEpkggEZGmwlfWNV6+6JuydWR/VnVSS6E9vlplr7Q7HNrlbD1N+1F1dkzEwE0dYaPbUnPKLqXTrlcy+b/fyv2c/w1kTnK/h7OI1LfjiUT4/fppqmBwsKzdCX/3Fl2ga3qNuN/fSX/UiS/UiW3kPLMqyTA5eYzYMB6m/AFtf4CB8r82JwL/97W989tlnpKWlMXz4cE4//XSvm+gY1v6AWUavZvYMDV4VgXTeRGDlqjJ0jbtBYMxZsizYV1L7pXL6tDFkTRhA1fEqNlheFAWTVWbDP8txRmj3B6wnFYHecgn9pcExKprdHGAzOzhCsV/P1d4egSeacMMkMusGER3adJClr7etH+kFP5/KvZ/P4Kbnf0QfHy/bCibW4SCSCGywzysR6Jtpn8Gsv9Gb84wJ7GQfS/W3fOlabndItrD2BxwwaaCNkfhXRnYmmYPdf19LcotZ9b5UBbZWbVUtWxZsBiC2ayz9xvX3+TlSaUgESp/A0GZq03Nhqg89ULiHzuxiPxv1dnbp/WQ2UxGYY+7xbA9R7p/FHXovRbrYz5F3Tm1+ZTtt2jQ/hCHaqn6yDnSSikDpEQhA+dfHPduxE+Ob2VO01YTvT+S5a54F3H1mTmW6p12s5fNnGCNsjKTjDFL9CCMMJ0426u12h2O7PK8egaFZEWitLvDnmwqXdnkmcDtOYWkwgCPcwbVP3MBz1z5Lr5G9+PSJuYy4aCRdMlvXz61wdyFduyfRc0ToX/hrjldFYLksDa5X/8YrhSRiVOecKH2iKY6JvGt+AsCDzqf4xngPQ/l2yWOg2/51wxCtUBsUcqILfjGVjZ+7XwPN/8fnjLtugqd3oDi53at2kdQzibycXIZdNNIvVaPplqXBeVIRGHL2mYe4pOYnxKpoMkihmhoAehuZlJplHCKfg5ZBIUOVd/9yax7jcN1+MUQzWY0lmijiiGGveZBuji7+/2Q6mTYnAh9++GF/xCHayKsiUIX+G4NUrInAYvsCsZnXoBCZGPz/7N13fFP1+sDxz/cknXTRli5oy957yhJkiKi4cC/0ureX697rivenXvW6994bt8hQkSV7r1IoGwq00J3kfH9/pE0T6ISmaZLn7auv12lyzsm39Ut68pzn+zwNqsPQTqR1bcmO1dvZvCibzYs20bpfW18Pq14W6MpAYLBkBIapUDqrNqzUG1irN1GiSwlXwbtkvqJGoAWLR0mFQOJeb8iby4wqsgHh2JYGV2jTvy1DLhrK72/MBODL+z/jijevqfU40zR59rQnsZXYyOzbmsk/3HnMY/FXHjUCiyUjEKBM29iBsySALAuudIFxKs+r91mq11CsS1mkVzJABccNMgCHzUHW3A0ARCVGk9IxsOdG675t6DCsE3k79tOseRRLv1/slzd0G9vKX5aza91OImIj6T7WO/8+ktxu3q2WDrAB52+9gixyQMMaslyPZ6g08lUB2/VuCqksKdfT8GxalKlaYmBgYlJIMQDdVQeSjRbMtzs/11zJufSjeyP8NMFFbpX4KfdAYDBkBMYTRyotiCScvQRnWrm2a4rnOTMCrS1DCWkTvMEOb1BKMeKqylqBs96Y4cPR1J9DO/jbXAFAGkm0IsXHI2o8PcqXBztwsEZn1bJ3YKuoEZhCYsBmv7gvM/JmdkFFfUCAEHXsgUCAk/51ClGJzmzu5T8uZWP5B/Wa5G0/gK3E2WkxukVw3wAKaR1O5PBoosbFYUlomP8n/m6b3uXKXJVGIZUMZXCH9Spa04oNbOZ5+we+HlKj2rp8C6WFzg66HYd1Qinl4xF537hbT2bvpr1sXpTNtP/9jNba10Nq8iqyRksOFdN+SIda9j46g1RvRhgDsWBhvjR+CDgL3MoS2dyumzJVyyNKVSgU3ZTn8vNQFcKC0C+4zXIFADcZl/ByyMPEU9kYTpYGe0e9PiW89NJLjBkzhnPPPZfp06d7PJebm0vbtv6VPePPssoDgTFEkUCcbwfTCJqrGHaylyJK2K/zfT0cnyhZWohZ6MyAiBwaHRQXdY2t3xkDSOqQQrvBHdj413r2b/OfZehrzWx6qc70VJ0YZvQLqvnRS3WmC+0Yrvqz2dxW+wEBqtQsI12lMkD1COiMUPdlRnu8eGPI/YL2WLoGu4uMa8aZD51NfEYCrXqk8/ndH2M6as5s25MlHYMrxE5MoM1v3cmc2oVmx8fWfkAQcO+KKxmBniYYJ7CfPExMZphzMXXwZJFuWbqF9J4ZhESE0mFop9oPCADth3Qgs7yG6o7V21k9fWXNBwS5g3vy2bXO+f6R0SuTyNhIr7xOikokVx/AgYN5eilZZk7tBwm/UV1wN0OlenRwB2ivMmmmjpxn3Y2OtFDxtCSZVkYK3YwOJKg41/P7vVwPOljVORD4v//9j9tvv53OnTsTFhbGySefzJQpU1zPOxwOtmzZ4pVBCk82bWNr+YVfO5URFB/4rcpKHM5MiH1B+mZQvKgAS1IIAM1kWbBXhISH0Pe0fmTN3cChvYeY/c7vvh5Snc3TS5mtF7Fcr6OP0dXXw2lUnYw2rCGLP/VClgVx5+C1bOJvvYK/9QpCCfH1cLwmqZE6EHouDW64ukl9z+xPdGI021ZsZde6nSz+ZmGN++/ZVNkJOqltYDaAEUdvi97u2pZGIZ5CVAgjjYEA5HKAJXq1j0fUeFb8vIyty3Owl9noOCw4AoFKKcbefJLr+5mvTa9hb+HZTMZ7c0QpxUWWCa7vP3RM9dpricZVqsuqfV/NUGlH/E3qpaqfZ7dYJ5EVPp1brJMAiHcLBB4I0iQgb6tzIPDVV1/l9ddf54UXXuD9999n5syZPPPMMzzwwAPeHJ+owi6dS3c6MkD1oJ8KnvXy8cp5939/kKYHF0zLw7HHhrVVqHQM9qKhk47HEupccjbngz8pLSzx8YjqJhjrA1ZwL4/g3kgp2Cx3C4L2MgK3MHwizTHKL1+82SzEPRB4rF2D3RmGwSl3ne76/qenvsdhq77xhWQEiprkuHUMlqXBRxprDHVt/2bO8eFIGo+txEb2384yGc1Tm5OQmVjLEYGj24k9yOjdmraD2rNz9Q62LpMkleq4BwK93UzmfMuprr/bH5rfBVV2biBbqtdQhq3K5zJVyyMyAnsYdQ84eywNDtIkIG+rcyAwOzubIUOGuL4fMmQIM2bM4LXXXuPuu+/2yuBE1fayn2Ws4W+9giBIBnSpWAKdxyEcOri6BWpTU/SXsz6gLnQQ1kW6AnpLTIsY+p05AIDi/GLmfewfHxwqUvOtWOmjgisjsLVqhcL5ZpjtVj812KwwKy/qe9Rw19XfWZSFFji77XqzRqDN7eK2IZqFuOs0vDMdhnZEGYqYpBj+/nJ+tfvu2egWCGwvgUCAWY4FvGP/ytfDaBJykKXBNRltVH52mebwj7/nx2rzok3YS52lDToESX3ACoZhcNyFQ9g0fyMF+w4x58O/fD2kJklrzYY/nfUBrWFW2vT3bnmvNJXEaGMwAKm0YKOWAG0gcK8P6H7DNIxQkog/IhDYsx7Xpu4ZgcFaFszb6hwITExMZOtWzw9Y3bt3Z8aMGbz99tvccccdDT44UTX3gpkJ5R+GgkHFG4JGk8ch3w6mkZWuLcax33lRFzkkBmUEz0WdL4y8ahTRidG0Hdie31+fQVlRma+HVKMDOp+1ehMAvVVnIlS4j0fUuMJUqKs5yqYgDgS6ZwQe3pUt0FR0Dt7DPq8VhLe73XCyNODS4Aqn3n0GcWnN2bQgi5+e/N7VEORwFRmBEbERRCVEN/g4/ImpTc4ru4WTbP9gsn0KO/Se2g8KcLI0uGZtjXTaqQzAWULjoC7w8Yi8z2PJZ5DUB3TX78wBhEY6G+ot+mqB36zsaEz7tuQSmxJHdGI0bQa0IzQi1OuvOUoNxoqFeXopM8x5Xn894X3zzaWu7fZkurZbqmQMZZB+2M2p+mQEuvdAkGYh3lHnQOCwYcP46qsj77527dqV6dOn89NPPzXowET1cjng2m6hgigQ6JYiHGzLg4tmH3RtRw6TZcHe1rJbKzoM78ymBRvZl7OPWa837TozC83KgtgDjZ4+HInvtDWcy4P3kx+UtUS01q6MwBQSPeroBaKKn8+GnQMcrGXvo+Pw0tLgCq37tSG1szNwk7fjAHM++POIfcqKyziw3dm0KKldclBl9lTFUAYtlTMrsohiHrW/6OMR+V5Fs5A4YohVwR0ors4YNYS+qhsnqEGsMNf7ejhe57HkM0jqA7oLjwp3rewoLSyttQ5rMFo/ex3ZCzdxKPcQXU5onFUkAyw9XCU31unsRnlN4T02bWOd3sww1Y/jVG+P+n8Vn9kjVDjDVD96qc70UB1pSd1XNYSqEKJwNhaRZiHeUedA4F133UXPnlV/wOzWrRszZsyQeoGNZJ+uDAQmBFMgUAVvrQDPQKBc6DeGcbeOx7A43yJ/e/4XDu71TrChIcxzuyM3yOjts3H4UkXGBwRnVuAO9rjeF+tzx9VfJePWOdhLy4M9ugarhs8IBDjlztNc27Pf/YPSwlKP5/dmuzcKkWXBAPdYryOGKAD+cPzNXtN/urs3NId2sE3vAmRZcE36Gt1YrFcxTf/FEr3K18PxqpKCEnKWbAYguX0KsSlxPh2Prwy9ZBgAMUmxbJy7wcejaXrWz17r2m53XIdGec1Oqo1ru2IVi/Bfv5lzWKHXMVsvoqVKJs2ovEZxb1j3W9i7zA/7gr/Dvqr3zcz48qxAWRrsHXUOBH7zzTecd9551T7fvXt3HnzwwQYZlKjZXvdAoFvabKDzrBWQ57NxNDatNYXl9QFVpEFEn2Y+HlFwSOmYyuCLhqIMRavu6fz2/C++HlK1FujKGh0DVZBmBLo1DAnGQKB7fcD61GDxV8luGY+7vNQwxO4eCPRCRiBAq+7pDDj7ONoN7kDejgP8+fYs13NbFmfz0S3vub6XRiFOiao511suoqtqzx728Zb5ha+H5DN79H4SaU4n2tDXCJ7mcfXV2aisfxbomUibF2XTun9bmreKp8PQjr4ejs+k98qk94S+HNp7kIVfLmDbiuC7LqiOaZpsKM8aDY8OJ71nRi1HNIxEmrsyxdabgf3vMBi4d3++yDKBKy3n8or1ET4M+S//s97fIK+RUP7Zfz/5XisDE8zqHAh8+OGHKSgI/Loa/mCf29LgxCDKCPSoFUDw3BmwbSnFvs1Zoy5yUDQqpM7/bMUxOulfp5DSMZWs+Rv5482Z7Fq3s/aDGpmpTUxt0lalk0ILWgdp18hgDwS61wcMioxA5ZYRiHcyAr3VNfhwY246kU3zN1JWVMb0F39l3Z9refmC53n10pfYtcGZ7XXZq1cy8LzBXhuDv5lkOZPVeiOHKAyaBhBV2U0uu9jLOrIxCO5l4zXpqFq7tteagZ2JtP7PtWyav5ED2/bTPogDgQAdh3V2BQ/mfDjbx6NpOnau3UHBPudn+vaDO2Cxeifj/XBKKTopZ1B+O7s5pAsb5XVFwzug8/nOnAlAC+IZawylrZHOZdazmGg5ke6Whnnvaa6c5bAcOMgPsv4AjaHOEQWJwjYdHs1CgigQ6L40OJgyAovmHSJ8QBSRw6KJGhtb+wGiwcQkxdL3jP6As3Pzt482vS6V63U20/VcNumtDFG9g7aGmHsgMEvn+HAkvhFsGYHuNRB3eykj0GNpsBeahVRI6ZhK/4kDASjKK+Klc5/jwPb9FO4rILNPJvHpCUTERhKXGue1MfibNkYrjwYQwfqBco/b3HdfLi88NVexJON8z1gf4BmBG+dU1kBsP7hxlnw2Vf3O7O9qGrLwywWUFpXWckRw2ODeTGZY50Z97U5G5fLgdbI82G996fiFUpxJKudZTiZEhdRyxNFxTwKS5cENr16pRcH6AbOpyXVbGpwYTEuDg7R7UOHvByn5u4Ci2YeI6Bfl6+EEnZFXjyYuzRlwL9hfwPo/19ZyROOaZy5zbfe1BO/SMI+MQHObD0fiG7t1LkNVX05QgzyyXwKVe9Bjt5dqBDbG0uAKJ/3rFAyrQbPmztIPoZGhxKcnMOj8wdz318N0HtHFq6/vj8YaQwHn/6ffzQU+Ho1v7HKb+8kB3iDoWHUqXx68m30B21CqpKCErcudN8JSOqYSnRjczeXCoyPoV34zt7SghCXfStMQOKyZzPDGvXHoXicw0JfpB7LPHT8xSPWij+rKhcYEr72OR1mwIOsP0BjqFQjs2LEj8fHxNX4J76soCB9JBJEqwreDaUQJbm8GB4JoaXDRn84mFSpEETFQAoGNLTQilNPuP5O0Li3JWbKZrx/6AtNh+npYLh71AYO0YzBAjIqiBc6/QdlBtjQ4Vx/gD72Qv/RiiinBqrwbtGoK3IMeu/FWjcDGWRoMkJjZglun3s6dM+8npVMqQy4Zzr2zH2LQeUOwhDTOsi1/M8YY4tqeZv51zOcztcmb9i/YY+7jLfsXfrESZo/b3HdfLi+OFAwBiOy/N7muT9oFeTZgheMuHkp6zwwy+rRm3kfBW0aggsPuwF5mo1WPDOLT40ntlNaor99ZudXrlDqBfinLzOF3/Tfz9TJKKaOP4b2u0/GSEehV9bqyffjhh4mNlaWJvparnR3ygqlRCBzeLCQ43gzsu8so21ACQHi/ZhiR8oHQF/qc1o+ZL/8GwI7V21nw+TyOO39ILUc1jvnlGYEWLPRT3Xw8Gt9qq9LZq/eznd0U6xIiVLivh9QoFrhlhQZL12iPGoHeahaiKwOBFi8uDa6Q2ac1AHfNvF9WYNTBCGMgVqzYsTdIIPAz8ydusD/ETTyCiUmSSuBUywkNMFLvcc+GTZKMwBp5BALNbI4LwPfKjXNlWfDhMnu3xjRNtpdnSm5ftY2W3Vr5eFS+k7N0C+t+d65s6XNGv0b/W9NRydJgf/eR4zvX9kWW07w6hxLcyoLtk4zABlevQOD5559PUlKSt8Yi6sDUpqtRRjA1CoHDm4Xk+WwcjaloTmVh1Mihwb3Ew5cMw+D0ByfywsRnAJj9zh/0GNfLtYzPVw7qAlbrjQD0UB1ppiJ9Oh5fG2z0RpuanXovP5l/cJblRF8PqVHMN4MvKzSeWCxYcOBopKXBjXcTRoKAdROtmjHc6M9+M48CipjtWMgwS/+jOleJLuUB23MAmDgzqu61/5eTjOFNOsPWvT5mitQIrFEn90ykAA1AbJy7wbUtgUAnpRRDLh7G53d9AsCcD/7knCkX+HhUvuNe3qZTI9cHBGitWhJGKKWUBWxmbiDTWvOh6QwEGhhcYDnVq6/nmQSU59XXCkZ1XhosF6ZNQz6HcJQvV3JfKhsMmhHhWp4VLG8GheXLggGaDZNAoC91GNKRwRcPpf3QjmxdtoUPb3kX0/TtEuG/zRVonMvXgiUAVJOJlpNYqFeylZ1Msb+Cwy2jK5DN1+4Zgb18OJLGYyjDVfzfaxmBboHAkCYcDApmd1quYjnryNI53Gd/Bq01a80sPnH8UK/zTDP/IocdAMQSDTiXj850zG/wMTek3UhGYF1V1AiEwFwaXFJYQsmhYpRSJLVLJiZJVnBV6HfmQEIjQgFpGrLhL/f6gI0fCLQoCx1UJuBs7GbTNtdzhbqo0ccj6ucVx8ds1s463KOM40hT3k0Qi8ctIzBIPvs3JukaXAtTN51aYOD5jyCR4MoIVEq5sgKD5c2g6K/yjEAFkUOifTsYwUmTT2XnGueHxVXTVvi83ox7fcBgCQDVpJ/qRh/lbKqwQq/nA8dUH4/I+xzawUJzBQAtSaaVSvHxiBrP8cYABqqeNFexXgn6utcI9HazEHF0hhn9XDWn5ullPGl/g5FlF3OZ7U76lp7hyvKrzWuOT+mvupNOKk8ad9JGtaKv6spT5pveHP4xqwiCRxJBFMGdEV6bViQTibOudiAGArcsymbXup2ERYXR8+Tevh5OkxIRE0Gf8qYhzdPimfPenz4ekW+UFZeRvdCZDZuQkUBChm+yiEcZx3Gc6k1r1Yo/HQtpXzKGViXD6VZ6StDGG/zBZ44fud3+f0QRyeXGRK61eD+z1rNZSHCUBWtMdQ4EmqYZdMuCe5acSo+yU3nN/omvh+Kyl/2u7WBbGgyVbwjB8GZgL7FjhpmoMEVYj0gscfJB1NfiUuO45PnLAGjTvy3F+b69e7nSXE/z8rtlg5QEAg1lMCXkNgDiiGaH3u3jEXnfar2RApzzMNiCwfkcYoFeziq9gb0caPDz23y0NFjUnVVZedw6GYAWxDPfXEYpzgyT1Xojf5mLaj1HqS7jd3MBC/VKwlUYl4aeQQghLNarmW0uIl8fqvUcvlKxLD5JJcjKnVoYyqCTakMYoWhtUmgGVvZRxbLgkkMlpHZu3AYQ/mD09WNJ75nBznU7+PW5nyjcX+DrITW67L+zsJc6/651GNa43YLdNaMZ8/RSNujN/KkXso1d5HKAXez1uMEtmo4deg/b9R4ACijCqiyNUkM3QZqFeFW9ugYHm53sJUvncLP9MX5y/O7r4QCemXAJwRgILH9DKKaEYl3i28F42b6tubyw4VXeiHyfpT1W+Xo4olyXUd1o0TaJ7IWb+OE/vss426P38a05nQPkM0GNop3K8NlYmpLjjQH0VJ3I4xAPO17goA7si333+oDBFghMdVuSskvvbfDzN2bXYHH0TjKO50XrQ6wK+5HeRhfOM04mnDAAVuoNtWaYLNGrKSsPHlbcUBljDAbAgYNZZtNcHlymba6boinIsuC6ONUYiUaTxVbm6qW+Hk6D2jjHvVFIRx+OpGlKbp9CcgdnxnxRXhE/PfW9j0fU+Nb/6bYs2Af1ASt0dlumv1Sv8XjuwyBYyeGPPnf8xN32p7Bi4URjGM9a722U1413axayP0j6AzQmnwYC//jjDyZMmEBaWhpKKb755huP55VSVX49+eST1Z7zoYceOmL/zp2P7s2uWfkyi16qM7+asynVZUd1noaUqyuzHhKDrGswBFf3oMIDhQA4lInRKsTHoxHuYlo46zU6bA7spbZa9vaOzxw/umqYdTLaSDaIm15GF9d2jt7hw5F430a9heGqP71Vl6DLCk2lhWt7Z/md6obk2SxEAoFNlVKKK6xnE6OiiFFRdDHacYIxCHBmjW6p5T1ggUcw3Vlrdawx1PXYb6ZvS0BUZw+VtTGlPmDddDTauIK+vzVAp+mmoqy4jC1LtwCQ2KYFcalxvh1QEzXh3jMJjXTeJNixejvbV2/z8Yga1871O2h3XAdSOqb6NCPQvYP3BnOLx3OfO35qEp+3hadp5e+XJZTyf9bbsajGWSURSzRGebgqWPoDNCafBgILCwvp1asXL774YpXP79y50+PrrbfeQinFxIkTazxvt27dPI6bPXv2UY1vc/hMBqs+LNNrednxMVk656jO05Dcg1+JKt53A/ER91oBBwI8RbjwQGUmk6+70wpPYVHhru2SAt8Unf7Q8Z1r+yLLaT4ZQ1OVQaprO9ADgT+Zv/OnXsgqvYHebgHQYJCiKgOBO7yQEWjTlYFAiywN9gu3WCdxi3USPVTlh9wVel0NR8B888hmO8ONAa4s0GnmnCZZt8q9SU6yko7BdTHKGIzCedOsqQZ4j8aWxdk4ypzvV9ItuHpxqXGcctdpJLVPJmv+Rr5+4PMm+W/bG/J25rHq1xVkzduANczquqHtCx1Va9f2Ljz/dh+kgIfs/2vkEYmaFOsSZpeX2WhFikcHdm8zlEFznHN1XxCUBWtsPg0Ejh8/nscee4wzzzyzyudTUlI8vr799ltOOOEE2rateQJarVaP4xITj/4Caayl8q5wUyguvM8tIzDYugaDZ62AfQEfCCx0bTeLl0BgUxIWFebaLikobvTXX2VuYIleDTgbZHQx2jX6GJqyDFVZH6m2bCB/tl/nu/4u9VZdCFdhtRwRWNy71R3+YaIhyNJg/9XTqAwELq9jILAZEXRTziBKlIpkiNEXgM16W5O4EXy4ivqAAEmyNLhOElQc/VV3wLlsfGN5NpK/dyutqA8I0P44WRZck6GXDMdhc763b/hrPct+WOLjETWO1b+tcG13G9vDhyOBSBVBBs7rtEKc19AtiOeflssIIYRnHO/wtP0tXw5RuJltLqIEZ9LDGMuQRl+B5OoPIBmBDc5vagTu3r2bH374gSuuuKLWfTds2EBaWhpt27bloosuIien5gu40tJSDh486PFVwT19ea3edPQ/QANxL4gebF2DAZoHUa2AIvdAYPMoH45EHC48KsK1XeqDjMDvzZn0U92xYJFswCpkqpau7UDOCKzoFgzBVx8QIFV5d2mww71rcCMtgxENo6d7RqBZfSBwu97NNnYB0N/o4bHcaYwxhAjC6au61anpSGPb7ZYRmCIZgXU22hji2h5ZdjGP2F5gUNk5ZJv+u0w0a15lILCdZATWKCQ8hDMeLF9ZpmDhFwsoKw78pair3AKB3cf29OFInDoZzs/XGmdGZnejI7EqmhJKCSeMXH2AReZKXw5RlJvulj3tXjajsbQlnbakk04aJWZg9wdobH4TCHz33XeJjo7mrLPOqnG/QYMG8c477/Dzzz/z8ssvk52dzfDhwzl0qPqub1OmTCE2Ntb1lZ6e7nrOPRC4zvR9IDDYMwLjcasRGOB3Bgr3VwYCI+MifTgScTjPjMDG/aPk0A5esX/MIr2SRJpzjjG+UV/fH2SoyqXBgZwROM9c6toeaPj+wr6xuTcL2emNpcFU1v+UGoH+pZ3KIAJnCYeaMgLnO9yWBR9WY3OsGoodO4v1KqaaM7wz0GOwm8qMQFkaXHfuK31yOcDjjlfYqLdwrf0BH47q6NlKbGxbuZWW3VvRY3wv4lsFX9mg+upxUi8GnHsciZktWPHLMma+/Juvh+RVZcVlrPtjLQAxSTG06pleyxHe1/mw5aWdVBvusl7DDZaLsOPgGcfbvOL4xEejE+4+cfwAgIHBCcZxjf76kSqcTWxlNRvY6fZ3Txw7vwkEvvXWW1x00UWEh4fXuN/48eM555xz6NmzJ+PGjePHH38kLy+Pzz77rNpj7r77bvLz811fW7dudT3XXmW6ilSubxJLg/Nc2+5BsWCRoVI5wTiOQaoXefpg7Qf4saI8yQhsqsKjK9+HShs5EDjDnMfO8mWQA4wetDDkov9wrVSK6307kDMCF2j3Jge9fTcQH0ki3vX/2dtdg61SI9CvWJSF7uXLfDfprdV2D//enEkv1ZkxxhBGHfYBp6fRyVWb6HdzAWXaN42hquNeI1CahdTdQNWD043RjDOGAxBPHLFEE0YoT9nf9PHo6m/Lks0U5xezfeU2ImLkpnFdKKUYc/2J7N/q/Dc07fmfObB9v49H5T0b/lqHrcT5/tVtTA8Mw/cf/zu6JdpAZWDwMes/iSy/ifO141e/X7bvzy4pu51/2abQUbVhhBrIPywTPbr4NpZgKffjC75/J6iDP//8k3Xr1nHllVfW+9i4uDg6duzIxo0bq90nLCyMmJgYj68K4SqM1uXLzNbpbExt1v8HaEAVzUKaE0OICr5OskkqgZnmPObrZU2iZqM3udcIjJRmIU1KeDP3ZiGNGwj80DHVtS3LgqsWqkJcHWUD9aLB1CZ/ly8NTiHRo0FKsLAoC8nltdG8kREoNQL9W4/yOoERhLPEXHXE80W6mO/MGSzTa5lvLjsiq9ZQBqOMwQAUUMQ8vdTrY64P9xqByUhGYF2FqBA+DX2Ob0JeYkboe0wLfYd8DvGrOZtvHNN8Pbx62zh3vWu7wxBZFlxXKZ1SGXbZCAAcdgczX53u4xF5z8Y562l3XAdSO6fR1cf1ASt0NjwzAisCgxEqnImWcYDzffdbM3D/vzRlB3UBn5s/8aLjQ7L1Nk62jOCFkAd9MpZMt0BgIN/c9wW/CAS++eab9OvXj1696l8DqaCggKysLFJTj/5DUsVdikKK2c7uoz7PsdJas0PvJo5o+qhuPhuHL7VRlensm/TWGvb0f9IspOly7xrcmBmBh3Sh66KoOTGcbIxotNf2NxV3EPeynyLd+A1dvG2dziYfZ8mLQUavRi/e3FRU1AncRS4O7ahl7/qxUdk1WDIC/c8YNYSOqjXFlDC3iiDed+ZMDuH8O3uW5UQiVcQR+7gvI53m+MtrYz0auzy6BktGYH0ppRhi9KWb0d6VPbpIryLXrQSPP3BvFNJusDQKqY/xt51Ch6GdiEuJ4/fXZ7B+9lpfD6nBaa1Z9M1CsuZtYG/2Hjod39nXQwI8S29BZc1A8LzJ7X7zWzSelbryBsOJlmHcYp3ks7F4ZgRu99k4ApFPA4EFBQUsXbqUpUuXApCdnc3SpUs9mnscPHiQzz//vNpswNGjR/PCCy+4vr/tttv4/fff2bx5M3PmzOHMM8/EYrFwwQUXHPU4PesE+i4LLZ9DFFFCHofQKjja3R8uSkW6MkA2NcEufg2p88iu9D2zP11Hdyc0ItTXwxFuohKiiG8VT2rnNMKaNV6n1lfsH9NZtSWdVM6xjCdMybyoTqDfQdTrbEzadBo9CjswqDT4GoVUSCkPBJqYHs20GoJduwcCJSPQ3/QxurJebwZgmmPOEc/XJbt6jFtjCfeC6U1BC9Wc/qoHfVSXKoOYou4qCuBrNDPNeT4eTd3ZS21sXuisX968ZTwJ6RIQro/IuGb0O2sA+7c5lwV/cfen2MvstRzlX7av3Eb+zjwAOgztRFhk412z1qQF8bQkmSQSSKEFaVTW/B2q+tKalnSjAyW6lG16lw9HGpxWmJWBQPfmW77gcT3PTh+OJPD49Mp24cKFnHDCCa7vJ0+eDMCkSZN45513APjkk0/QWlcbyMvKyiI3t3J5xLZt27jgggvYt28fLVq0YNiwYcybN48WLVpUeXxddHIraLpOb2IMQ2rY23u268psxFYqxSdjaAraqgx2633sIpdCXUQzFZg1UcbeNM7XQxDV6Dm+Nz3H927U19yv8/mv4y0OcJAoIrnNUnsH9WCW4REI3Eln2vlwNA0veUYst9x7Orp4AhlfdoJTfT0i3/BsGLKnQbunetYIlECgv2ljtKKdyiBL5zBfL+OgLiBGOevtznEsdgX2MkhjmOpX5TmSVSK9VGeW6bUs1qvJMnNoZ2Q02s9Qk1nmfA5wkLbK94X//d1oYwjPON4BYJr5F+dY/KMJ15alW1y139pLt+CjMuj8wcz76C82L8rm0P5DzP1wNsMvH+nrYTWYldMqawl3P7FpLAsGZ0ZuVnjVy36VUlxmOYuHHM+Dhk8dP/Iv6z8aeYTBbZmuzI7tYfg20zgjwG/s+5JPMwJHjhyJ1vqIr4ogIMDVV19NUVERsbFVF6fcvHkzDz30kOv7Tz75hB07dlBaWsq2bdv45JNPaNfu2D4Auqcr+7IunfsdkZYk+2wcvuZ+0Zutt/lwJEI0nv/YX+MAzgY5ZxhjyTDSajkiuAV6ceGEG1LpcmAgnXb0p9no4GscVaFiaTA4A4ENye6+NFjJ0mB/VJHpZcfO7+YCAP5yLOIs242A4hLjDP5l/QeGqv5y+GrLeZxsjKAZEbzm+LQxhl0rm7a5/h4kIQ2jjtUwox/hODOlpjvmovWRq258XSO8Klluy4LbD5FlwUfDMAzOmXIB7Qa3x1HmYOqjXwdU45BV01a4truNaTqBwNq4B+M/cHxb5b9J4T0rzHWu7R4+zgiMVdHEEg0E5vW8L/lFjUBfq8gIjKYZm0zf1aXb5pYR2FIFcSDQqAwEZgX48mAhAA7ofHbrXEIJIZwwHgq5yddDavIyg6CmiFIKa0IIRkTwBqlScc8IzK1hz/qTrsH+ryIQCPCbOYfvHDO4yfYIJiYOHOSwg6st59V8DsswpptzKaSYlx0fkW36/gZkbnnjOIAWUh/wmIWrMIYb/VEo4ohmjc5yPWdqk7tsT3KN7X6+sf/G946ZPhypp1VjthJ5ZxJRI+PJHNym9gNElVr1SCetc0tKC0ooKy7j6we/8PWQGkT+7nxylm4BoGW3VjRv6T83DdoZGQxWfQBYo7NYqtf4eETBw6EdrNTOmwxtVTrRyvd16iuu6bfpXQ1eDzqYSSCwDuJVLBcYp1JIMTP0PI8luo1pu1tGYKtgDgQ2oYYhWmuPph4NeV65+yUq/Gz+ySfmD1gwuNQ4I6hLA9RV5mFLg0VgSnVbCrwT72UEhhDSoOcWjeN4Y4BrWff3jpmcZ7uV1WSRTiqnGCP5MuSFWhvtZKhUbrJcAkAZNh6yPe/1cddmr1ujkETV3IcjCRynGaOJIpJVbGSa6WwMY9M27rI/xbOOd3nf/Jbz7bdyq+3fFOvGaxJWk087TOOZa7/k2be/JykzqfYDRLVOvvM0ohKcpQN2rt3B2t9X+3hEx27trNW0HdiO9F6Z9DjJ/2oJX2w53bUtTUMaT5bOoRjne5yv6wNWqFjlY8fOTvb6eDSBQwKBddRGtcIs/+8Txw8+GYN7x+JgDgS0U5X1eXwVCMzRO3l02/Pcecld/Ofcx3HYGvbuxPZV2/hX65u5v/dd/PTU9w16bnHsSgtLePMfr/Liec/xzcNfev31fisvdF9MKWdZpHZkXaSrVEaogQxRfdjXwE0kRNPhWSOwYS8OpWuw/4tWzTjDGM2FxgSGqr5ElC//7GF05OOQZ4iqY43h261XkkhzBqmezNGLWGSu9Oawa7VHVy5dbCFLgxvEMKOfq4v0b+YcCnURZ9tu5nXHZ3R2qxW+jV284PjAV8P0sKM8MSGVFlikfMExiYyN5IyHJtJ2UDv2btrDF/d8ir3U5uthHZMVPy1j04Isti7bQpdR3Xw9nHqbaDmRZBIZpvqxQW+WBIlGsly7LQs2mkYgMDPAy/34igQC68i9o5yvahV41AgM4kCge0agr5YGb9bbWHH9XEqnHyR/5X5+/d9PDXr+orxCHGV2Du7Ox14aWB3MAoFhsbD8p6Ws/2Ota9mFt2itXUXtmxHBEKOPV18vUESocPI4yBy9hOnmXPa4ZdD4O8dBOznnrGXnP7PJ/6Jhl8P6G49AoNnQGYGyNDgQfBD6NG+FTqGD0ZpCijlNjeatkCmEqrpnecaqaB603sR8vZyt7OIu21M+/VCa63ZzI0lJILAhdFZtXfW3/zD/5m37V/xuLqCYEvL0IZ623IVR/rHpNfunLHT4NhhcqsvYgzMgHMzlghpS/4mDQDuvu/Zu2sNvL/zq6yEdNVuJjXV/OJfTRiVGk9E708cjqr84FUNvowuz9SJ+MWezSm+o/SBRo28e/oLvp3zL31/O51DuQY/nPnX8yKeOH3nLXpng0NQyAkEahjQkCQTW0eG1CuaaSxp9DBVLkiMIpzkxjf76TUUCccTgTN/f5KNmIXbtYM59mzAtzg8Ccz+YzZ/v/N5gHwzclxs3i/d9bQbhyRpmxRLiDAyUFnh3idBKvZ5dOIM9I4yB9frwGuzc64NNN+f6cCQNy7a1jENTD7D/pV0U/Jzn6+H4VAuaM0INpL3K8MiabwieS4Ola7C/i1FRtCSZoZa+NTYHqc4ky5m0V84P03/qhfxoOv/mF+qihh5qrfa6ZwRKjcAGoZRijGUIAKWUcZvjCTJJI4Yo3g99khtCLuYOy1VMNMaxlZ2Ms13OdIfv/q64Z0BLILBhKKU454kLMCzO94c/357FL//9EXuZ/92Q3/DXOsqKywDoNqY7huGfH/lPdLuOq1iyL47OvpxcZr46nWn/+5kPbnyHLYs3u5570/4Fk2x3cKXtHleW+ZlqLIObSPKBBAK9wz/fFXzkIstpGBi0JZ2r7fc1+DKk2lQEAluq5Fpr2gQypZRreXCO3kGZbvzUfTt2cnsWsOjmHMLOiCV/Vz5f3P0J3z78JSWHio/5/IX7KwOBkXESCGxqlFKERYUDUOLlQKD7hc8YY4hXXyvQjHFvFFC+vDoQ2LaWuratrUJ9OBLfsygLe9jHRp3DGp2FXTfcBzabdl8aLIFAf3eLdRJZ4dO5xTrpqI4PVSE8Zr0VgFYkc63tfs6y3cCQsvMavQ6pe4ZzIlIjsKG43zwCWEc2z1vvZ7jRH4D7rNe5fvdJJHCZ7U4+dfzY6OMEz3JBaUrqAzaUtC4tOe2+MznugiEU7Ctg2vM/8+rFL7Jl6WZfD61eVrp3Cx7b04cjOTaHN3wSR2/6i7+CW77KvhxnksEcczF/mYuIphk27GxnNy1J5jhL7yZTg1aWBnuHBALr4XzLKfzbOplNbGWjzuGWskc5pBu+UURVDuoCV+0SufNXuTzYxPTJnYGK2lGLb84hJMMZEErr0pJZr8/g/8Y+ztYVx7Zkucg9I7C5BAKbovBmzlpTXg8EOioDgYd/SBE1G2z0JpIIAKabcwKmvoxtW5lrO6RlmA9H0jR0Us5umWXYGvQC0X1psEWWBgvgdGMM34a8zKWWM9nLAX4y/2CdzuYG20ON+v6yl8qMQFka3HBGGYM9vh+q+nGu5WTX91Zl5bvQV7nImEAxpexlP1fY7uZ1+2eNPVRXfUCQzwUN7YRrxxDXsjmGxSCjVybr/1zLa5e8xHf//tqVZdeUmabJqvJAoCXUSucRnX08oqPXQbUmnVQAZpuLKNLHnmwRjPJ2HmDeJ54ZzLmbc9Fac7ftaT4yv0OjucZyPtNC3z6mm2be4J4RuMn0TVmwQCSBwHqIUpGcaowkgzSSSWQ9m7nd/p9GeW33+oCtCN76gBUGG70ZqQbRW3VhpV7f6K/vvmSs+e3pXP761dhKbWhTExJm5X9nPM2s12cc9QcD96XBkRIIbJLCop0BJm8uDc7VB1insxmu+nOSMdy1LE3UTZgKZYQxAIBd5LLCrQCyP7Nvr8wIDAnyjECATm6F/NfpTQ12XodbIDBESUagcGaDj7MMJ1ZFk0wi8cQSTywlupQH7f9rtHHI0mDviFexXG6czWnGaFoQzxMhtx2xAidchfFayGOcYhkJQH/Vg5vsj3Cf7ZlGDQZv1+4ZgRIIbGjj/3Uqk3+6k9Ii59/bxMxEfnvhV978xyvkbmnaXUvX/r4Gw2LQ7rgO9Dq5N2HNwn09pKOmlGKsxXkTvJQyZpuLfDwi/zTzlem0aNOC1K6VAbV9Obl8Zf7KfL0McDbZe9p6V5NcdZhAHFcZ5zJY9eZvvaLRV2UGKgkE1lMHozVTQ1+hiGLW6k286/ialab3A1Hb5c6fh1YqhVl6Pkv1Ghb6oHuf7bDaUb1P7cN1H99Eh6GdKD5UQllRGbPfnsVrl7xI3s68ep+/8ECBa1syApum8ChnJpatxIbD3rBdoyt87viJHezhT72Qrqp9k/zj3NRVLKcOJ4xV5kYfj6ZheGQEpksgsJPRxrW9tgEDgZ5dgyUQKCrdYp3ElvBZTA99j4MU8KdeyIeOqTi0d/4WHC5XVzYLSSC2UV4zWLwc+hCfhT7HprDpDDB6VLmPRVl4wfoA/7Hezjy9FIAF5nK+d8z02K9Ul/Gu/Wuesb1Nu5LRTCy7kXYlozml9Cpet396TOPcoSubI8nnAu9I75HB5B/u5KxHz2Hriq0AFB8s4dkJT7Enq2Fr0jYUrTW/PvMT+7fuI2veBvqdOcDXQzpmFddxIViZby7z8Wj8T0HuIf567w92rdvJ3qw9WEOd1zO5W/ay0FzhWvHwuHUy1iZ601MpRaSKYK5eSiHFPGJ/wddDCggSCDwKnY223Gm9GgCNZrJtitfvAnpkBMoffAYavVzbC/TyRn/9wwOBAAkZiVz70Y30O6M/oc3CcNhNVk9fxbvXvsHCLxfUa44U5VUWH5dmIU1TeFTlHVZvZQV+6Jjq2nbvXC7qboDRk1akoAichiG2rW6BwFayNLhiaTDAOp3dYOe1ewQCZWmwOFIXox0nGccDzppts8wFjfK6e3DWqYsnlhBpIOUVtf1elVLcYp3Ec5Z7aUky8/UyrrDf45Gt+arjE66x389TjjfZzm4O6gK2s5vpei432R/lDfvnRz0+j4xApEagt1hCLIy4chR3/nYv7Y5rz5bF2Rzae5APbn6HfVv31X6CRrZxznqy/84CILlDCl1Hd/fxiI7dCWoQA1QPrFj4yvTfTs6+MvO16dhKnPX0h14ynISMRACyzW0843iH5sRwvBrg+lvWVN1uvdLVLPQdx1fMcsz38Yj8nwQCj9INlotIJ5XWtGS5Xsc1tvsbtEj54dyLArdUsjQ4TSW5akYsNFd69XdfFfci8u7dJK2hVk5/YCJXvXsd9jI7oc3CyN2Sy/s3vs2X9356RKv26ngsDZZmIU1SmFsgsKSgtIY9a/a3uYKxpZfxhO1VXrF/7Hp8rZnFQu3Mdu2tutDN6HD0gw1inVVbtrGLYkrZorf7ejgNwrbNOd+MKAMjVgJUHkuDzYYMBLotDZaMQFEN95s07jdvvKki2NRC6gP63DUhF3CiMYxSyjhIAY/bXwHggM5nSvn2PvJoQTwxKooonNd0rUjhS/OXo17q6Lk0WAKB3pbcIYUr3rqWtK4tSchMZN+WXF48+5mjWvXjTfM+rmyoceKt410dkP1ZcyMWA4NiSlmjs9jayM2Z/FlhXiGrZ6wCnEHtUdeNJaG1MxC4vavz70guBxhhGdjkVx0lqubcYb0KKxa6q45Mst3BCjMwSv74iv+/O/hIhArn25CXCFWh5HGQ98xvmO6Y57XX88wIlEAgwCDD2QWriGJW6cZd8ueeKVJVEfmOQztx18z7GXrxMA7uzicyLpLF3yzkiZGPsvaPNTWfu8xObrZzyUd4dDgWq3zQb4o8A4FHV7xYa82dZU/yp17IQ47necD+HA7tcD5uf8q1n2QDHr0YFUVzYgDIwf8vHrXWrqXB1pZhTf7CrTFEqUha4syUX6c3NViGvnsgUDICRXVONkYQV/4e8705k1Lt3WYCxbqEApyrBlog9QGbggdCbqRZeWOqdx1fM83+F9fbHuIAzpu/FxmnsTX8D74MfYHc8PncYrmUHexhpjmPu21PHdV7VkUgMJHmhCvJDG8MzZo347pPbiIqIZqCfQXsy9nHV/d9xsG9dbvJ720b525g4ZcLSOmURtfR3el7en9fD6nBVCwPBpjuCIzVHY1h9lu/s2PVNjL7tGbEVaOIS2tOYqYzELinzyHXfgOVf3SWvsFyEXdZrmGFXsdu9vGA7TmPMgmifiQQeAy6WjrwkPUmrFjoq7pxof2fbDK3euW1TG3SX/VgsOpDColeeQ1/4748eL65tFFf2z0QWN3ykWbNm3HGQ2dz+etX0apHOoUHCjGsFj648R1+/L/vME3ziGNKCkt4fdLLFOwroN2g9kz893le+xnEsek0vDPHX3ECJ946nmZHmbX5vTmTOSx2fX+QAhaZK7nR/gi/mH/SmbacY5zEuZbxDTXsoFTRbWy73u2RPbzH3EfLkmG0LRnF2NLLfDS6+nHst6OLne8d0iikUkWdwAMc9OioeizcM7+lRqCoTpgK5WzLOPqr7mSqNOaYS7z6enuprA/YQjX36muJuklVLbjNeiUTjFFoTM6wX8fX5jR6qy70Vd14KOQmj/0ft/6LLqodAH/rFXxh/lyv1zO1yU6cxfKlPmDjimkRyz/euJqEzETaDmrPsh+X8NJ5/6Ngf0HtB3vZL8/+CMCudTvoc1q/gMgGrFDRMATgN/MvH47Ef5QWljDrjRkAbF2ew9BLhwO4lgbv7uMMYCsUAw3/CARGqHCus17IAHrQkmSW6NVcb3vQ18PyW4HzDuEjZ1lO5GbLpSzWqyikmI/M7wD43jGT7x0zedb2Dm1LRnFV2b3s0UdfS2K5XsdCvYIFerksBSk3yCMQ2Lh1AquqEVid3qf25dKX/kH3E3sSFhnGob0H+e3FX/js9o8ocastV7CvgJfPe56Cfc6LiZxlW2jVPd07P4A4Zv3OHMDEx87llDtPIzYlrt7H27SND+1TiT+s0Pt/7W9zQOcDsJZNnGs5mWQlwf9jkVkeCLRjZweVncbWkc0+8tjBHpbqmjN1mwr79jIih0UTMTCKsO6Rvh5Ok9HZbXlwQzUMsdfjfV4Et0FGbxbqlazQ61miV3n1tfa6XUvK9WDTcbf1GsIJo5hSKvL7Vuj1TLH+i3SV6rGvRVl43DoZgObEsMhcWa+swD3sd70/ybLgxheXGseNn9/C/vIagbs37OS5055i9fTGb15YIfvvLNb/sRaAxNYt6HeW/zcJcddfdSeWaMBZ77mxGjP5s7/e+5Oi8lJT/c4cQGJmCwASMhOxhznY1835XGfVllgV7bNx1leCiuPr0BfRaHaRy8/mn8zw4qrMQCaBwAZwvfUiFM7lWR86plJoFnGL7THOtt3EU4432cEe3je/5RPHD0f9Grt1LgBJxGMo+d8GzrppoTiz8SpanzeW+i4Zi06M4cp3rnXejVGQ3iOTuR/9xTOn/h+5W3LZt3Ufr1z0ApsXbWLX+h1k9m3NdR/fRFqXlt78MYQPve34km/0b5RSxllqrOvx7/QMvjJ/JZ1U3rZOYYJllA9HGRgqMgIBcvQO17Z7PblCijH1kVm6TY1ZaGLbVkbJkkIs0bJctYI36gQ6yt/nFUr+7ooa9VSdXNvLvVyzyL0ZRQskENiUvBHyb843TuED61NMNMbxechzjLAMrHLfE41hnKAGcYhCnnW8S5bOqfPr7NDudcMlI9AX4tMTueHzW0nISKDD0E7sydrNVw9+zhv/eMUnTUTmfjyH1E7Oa52xt5wUcGWFrMrKKOM4wJn5v8Bc4eMRNW17s/cw54PZNIuPQinFmJvGuZ7rMrIr5665AtPqvPngnljjLxKNeB4L+afr+3vsT3u9cWsgklvcDaCVSuEEYxAzzHlk623c4fg/V3OPaJqRW76M40PHVG62Xlrv85vaZE/5UifJDKoUpkIZoQZxiENE0Yx88xCxRuPc0ahPRmAFpRQnXDuGtK6tePuq1wBoFh/Fkyc+jsVqISYpBmtYCJFxkZz/1MUSBAxgB3UBj9pfApwBqFtDLmeFbQMb9GYcOINR4yzDuMA6wZfDDBjugcAtejvD6AfAercOsyYmu9lHKi0afXz1ETk4mo7r+qJNjbbJRU+Fjqo1/VQ3Iolw1eU6VhXv81IfUNSms2qLFSt27KzQ6736WnvcA4GSEdikhKlQ3gn9DwBncWKN+yqlGG0Zwky7s/PlNPMv2huZdXodz0YhEgj0laS2Sdwx/T5ev9R5PWexWljx0zIK9xfS+fgujLp+LCHh3u/qvWXJZuaXNwnpPLIrAyYO8vpr+sJ4YwQ79V4KKeJlx0cMtvT29ZCapKL8Il6/9GX2btpDs/hmnPXYuaR0rMxKtoaFsNi+moqPsv5SH/Bw5xun8BzvUUoZsUQz05zPKMtxvh6WX5Fb3A3EvZj/246vADAw+Cr0RQaoHgAs02uPqrvNPvJcmQkSCPSUZrRgnl7Gb3oOm/BOfcaqHE0gsEKn4zsz+cc76T6uJ5vmbaTkYDGF+wvYuXYHnUd05tbvbpcgoJ/QWlNWVEZZcf2Kw3/rmE5eebDiHOMkBho9GakqL9wiCOM+6w0NOtZglukWCNxgbkFrTbEuYY3p2WRou1tTpqZOGQojTP6EV2hrZLBIr+JPvZBFDZQpULH0LgTvf5AT/i1MhdJZOetUrtPZlOij7yRfm1wkEBgoxhrudc/m1LCnJ/fi+BWNkoRvhEeFc+OX/+Ty166k6EAhIeEh7M3ew49PfscLZz/Dj09+x97Ne2s/0TH45ZkfXdu9TumDJSQwb16dZzmZTTqHFXo9n5s/cWXZPWw2t/Oc/V0et73CP22PU6SPrnlfoHDYHXx5zyeUFjn/BkUnxjDg7CMDw4vN1a7t44zejTW8BmUog5usF7OWLH7XC3jP8bWvh+R35FNEAzndGMPtliu5xjgfE5NT1Ehut1xJF6OdR5DwI8d39T63e23BJCUd4ty1VZU19DbpRgwEaptr+2g+JCa1S+ai5ybReWQXkton0+uUPqT3yuSCpy8hIV3+H/uD1dNXMjn9Rm5vdwszX/mtzsc5tIMH7M+SQgt6qI48bL0FgH9YJ/Kq9VHutVzHI9ZbSZGgf4Nxzwh8xfERzUv7k1g6kGV6rcd+7lkWwr+0JMnVwT1HN0x36IoSEJIRKOqiR/nyYDt21ugsr73OXskIDBg9VEeSyzs//24uoMzt2rIm28xdZJBGH9WV1kpuHPuaUoreE/px7+yHOPHWkyjcV0Dzls3JWbqF31+fwRMjH+XFc59j7kd/edQGbwjbV29j1TTnza+4tOYMPDdwM6LCVCi3WC8DQKP5wJzKBNs1bDV38objM152fMTJZVdSrBv2d+xPvnnoSxZ+9TelhaW0HdiOq967joiYiCP2eztkCgtCv+AF64N0Kr+J5Y/OsYynOTEAfGtO55Au9PGI/IsEAhtIlIrk0ZBbaWuk05JkjrcM4OGQmwHnJLViIYM09ur99V7Dvqu8PiDgumAQTu1Uhmu7PvVVjpV7jUDLUX5IjIyN5Or3b+CmryZz6Uv/4MYvbiUq0X+KtQa7kIhQTIdzGW9pYd2zP2aY89jJXrayk9aqFW0NZzC7j9GVSdYzuT/kBm6yXuKVMQcr90BgHocooRQHlSUXKmzzo4xA4cmqrKThLJq/RW9vkHPK0mBRH72Mzq5tb9YJtGGng2pNMokkaQkE+jNDGYwyBgNQQBFz69hxejPbyGEHS/RqaRbShIRHR3DiLSdz+2/3cNwFQ9Fak9a1JfZSG2XFZXzyrw94/8a3+f2NGZhmw9QkXvbDEjoM60R8RgKjrhuDNTSwq37dYLmIdFJdNeK36O1s1TvZRx4AoYTQrfRkzi27hbfsX/hwpI1v3kezWfGzs2Z+WVEpp9x1uqtByOGsykpPozNXWs/Bovz3GidMhXKu5WQAiinhK8evPh6Rf5FAYAO7xTqJrPDp3GKd5HosQcVxvBpADjv4wJzKFrdi9XWxh8qMQFka7MlXGYEe3STV0f/RNSwGMS1isIZaCY8Kb4ihiUbi/v+rpKAEx0E7B7/bz7YrNrLxkw0MLT2PV7I/IP/zXMq2VQYKP3RMdW1fZJEagI0hnliiqL3Drj9kBG69YB1bL1zPnkca7/3OX2SWZ8bsJ58CXXTM56u44SMdg0Vd9HBrGLJCey8QuEpvZIPezG5ySTGadk1TUbuxlsrlwT84ZtXpGPes58M7EgvfS+vckpP+dQoPL3qc3hP6kdwhBVuJs4TMgW37+er+z3n76tcpyD10TK+jtebvz+ezYfY68nYcoH8VS0ADTbgK48PQp9kQNo37rNczNeRVPg17jj9CP+ImyyUMUr3YwR6mmtO51/5fDuh8Xw+5UayfvZZP7/yYkkPFtOzWinOeuID2gzv4eliNwn3l5QeOb304Ev8jV7eN5Dijt6u19QK9jNbUPZV/t3tGoCwN9uCzpcHHUCNQBIawqHBMQ7P64p3kdvuT7mltCO0UTunKYua33MCiM1ZxyY8nsW3yBiKHR2PbXArnhfPN3b+B1RmcGm+M8PWPERSUUmSoNFbrjTXut62JBwK1qTn0/QF0mSasWwRJD6TXflAQyVCpUJ5wn6N30FW1P6bz2XVFRqC8x4va9TTcOgd7MRBYccOiGRHEIqsI/N0YYwij1HEcopCPze+5X99AtGpW4zE55QkFKSQSrsIaY5jiKMSmxDHiihM4/h8jyVm6mRkv/8ay751Zn3nb8/i/sf/mkhcup8PQTrWcqWq7N+xif3mH4vaDO9AsruZ5EygGGs7mFvdZr3c91svoTC+jM8/Z3yXCDKeYEg5wkP/YX+OJkNt9NVSvKDlUzPbV29m9YRdblmxmz8ZdbF2eg2k3KT5YTIehnRh84dDaTxQgBqgeDFPOJoCb9Ta26B0etcFF9SQjsJG4F+Kcby6r17HuNQKTkYxAd3EqhgTiANhkOgOBW/QONpvbsWt7g2SFVMV9abAsGwtO4VFhGKZi5aQdfHn2H5BkULqyGEtzKxv1FgC6L2gNgCPPgW1rGctWryQs37mc4RzLeMJUqK+GH3TcLwqMav70NfWMQEeuHV3mjHSFtJIPf4fLdKuV1RDLgysyv4+2/IMILi1UvKvreJaZwz4zjxXmOrbqnfxYx0yv2mitXU2NWqoUlFINcl7hO0kqgRYqgb/1Cvayn6ftb9W4f4kuZSfO5hOZUh/QLyilyOzThstfu4prP76JLqO7kbN0M/m78vnhP1P56envXaVm6mP1jFWu7a6jujfkkP3WLdZJLA/7jnCc10hLzbXsMffVcpR/cNgc/PCfqfz45Hf874ynmf/JHOZ99BeFBwqxldhoP6QjXUd35/QHzvL1UBuVUooxliHM1ovYyi4+Pop+DMFKAoGNZIDRw7W9wFxer2N3SUZgjSqyArezmxJdyl22J+lcNo7o0j7cY3vaK69p49iahQj/F5UQzQMLHuPi9DNBwdbLDhB/XQqtPurAY/fdy86wv+h8RTcS7kwjJC2UkIxQuv6YwawLXuLzkP9xneUCX/8IQcU9c6Y9GVU+t42mXSPQ5rbEPKSlBJEPl+G2RK4hGoa4lgYfQ/kHEVyutpxHOqlsZzeP2l5kQNlEOpaeyMW22zxu6h6tfA5RiLMrZisl3WIDxQPWG1yrS55zvFvjTSn3WrYZsizY73Qe0YUL/3sJHYd3ou3AdmT/vYmfn/qBhV8uqHcwcPX0la7trqMlEFghXaVyg+Ui2qtMZun5vGd+4+shHbN9W/fx2qUv8euzP7F2prPjryXE+Z7RLL4ZCZmJnPXIOVz26hUYluAL71zotjz4Q8d39e7HsFPvxaErk3yaemJAQ5Gr20bSXMXSSbVhnc5mqV5DiS6tczr/btwDgZIReLi2KoO/9Qo0mvVmNtPNuYCzo9R2vPMPWZYGC8NikJCewI3mpVzGRLrf39EjO6M5sXA8zi/AtJuUrizGLHDQxRLjm0EHsc6qHckkUkgRo43B7DL3EkooBgZJKp58fYgdejemNjFU07yIsm0tc21b0yUj8HDuTWEaJiNQugaL+ulgtGarwxmE/lz/BDivRYoo4XH7Kzwbcu8xnd89CNRSpRzTuUTT0c7I4BrL+bzh+Jx+qjtP2F/l+ZAHqtx3s9t7W4Ysf/NLMUmxXPfxzUx/6Vc2/Z1FWpeWfH73J5imyXHnD6nTOUoOFbNpvrPcSUJGAknt5caAuyss5/C0w5ld+6FjKv+y/MNvM6iX/7SUj/75HgnpzhjA3s176XFSL7qP68mEe04npXMqEdG118EOZBkqlRHGQH43F7BBb+ZvvYKByrmE/Brb/XRSbTC15mXHR/RSnYlWzdhPPl+HvMgancVpZddyhmUsmaTxpOMN8jnEM9Z7uMp6no9/Mu+SCEYjGmj0Yp0jGxt2FutVDFF963RcxV3kUEKIQwIIh3OvE/i5+RMHKXB9761OwjYtgUDh1MZoVaf9DKtBRO/gqN/SFN0VcjV3hVwNOGu/PcmdWMszvc4su56VegM27Oxlf5MtweCREdhKMgIP19ptmVxOFU25tNb1+iBQ2TVY3uNF3ZxijCSWaPI55OpiaaAw0bzt+JJvHb8xzOjPv0MmH1U2l3uWQkvkg38guctyDT+bfzBbL+QvxyKusZxPd6PjEfu5v7dJHSz/ZVgMxt50EuFR4Xxxz6cA/DDlW3qf2rdOzQM3zFlP6/5tyd+ZR+eRXf02yOUtbY10hqp+/KUXsUZnsUSvpq/q5uth1Yu91Ma3j37N5sXZFOcXsy1/Kz3G92LszSeR2bu1r4fX5FxknMbv5gIA3rB/zsDQnvxlLuZdx9eA82/mdnbj0A7Xast77c+wwFzGTvbysuMjhtPf9bf7dvv/8W/7K9xsuYSzreMDMgO7aaY9BKhBqpdruz7LgyuahSSRIG/0VWhrVAYCf3D87vFcls7Bpm2HH3LM3GsESv0oIfyLVVldQUCAlm5L7Nwzbpoa2/bKjECpEXikVm4ZUlUtDd741QaufvN2Rq28kHt3PVXr+eyuQKC8x4u6iVDhTLSM83jsRGMYkyxnco3lfHayl8/Nnzih9GLWmFn1Pr97Q6OWsjQ4oCQazfmH5WzAmUV6j/2/Ve7n/t4mGYH+b/jlI+k5vjcAB/ccZPqLv9TpuFW/riBr7gZyN++VZcHVuMgywbX9oWOqD0dSf2tnreblC57njzdnkrNkM20Htaf3qX256NlJEgSsxpmWsZyohtFHdeVT8weyHdu4y/ak6/njjF60JNkjgeg5x7us0OtprzIYqHoy0hhIFJFYsXK2Oold7OUpx5tMLLvBY+lwoJBAYCMaVN7lKI5o1unsOh3j0A5yyyPTUh+wau3cOwezlRCsriKxNuxk620N/pp296XBUj9KCL/mvsSuKdcFsUuNwBqFqVBXs4aqlgaXzSzivYt+Yk775cw2Ftd6PleNQMkIFPVwcXmtIoUzG/BV66O8GvIoKSS6gsommg16c73rGG13u1GRLkuDA871lovIwBncK9M2ljhWH7HPFlkaHHBOf+AsQiNDaXdcB+a8P5t9W2uuJ6q1ZvUMZ33AkPAQOgw5MnNUwETLOMIIJZIIlpprmFh2I+1KRnOf7RmmOf7y9fCqtH31Nl6b9BLvXvcmG+duoN3gDljDrPQ7oz+XvXYlETERvh5ikxWtmtHD6MgSvZpSyjjVdg179X4Auqr2vBfyJFnh05kR9j5nGScCoFAUUERv1ZWfQt/g3tDryQ1fwPLQ7+hmdCAEK/vJZ4Vez4cB2IREAoGNqKtqzyDVkzwO8Y1jWp0iy3s5gImzeKzUB6xaW1VZ+L+EUgarPkw0Ku/I1zXoWh+eNQKlWYgQ/sx9iV1TDgTatrllBKZLILAqFUvldrOPEl0ZONVaY/3OTvLWeABWx2Rh6uoLs5vadP3tlYxAUR+DVR+mhrzCztA5/BDyBsmG89ptcsg/2BQ2g5Yks5tczrXdQg71a2rj3tBIMgIDT7gK407rVaSQyCw9n1fMj4/YRzICA09i6xaMvHo0WfM2ULCvgO8e+7rG/Xes3k7+rnwA2g/pSGikXA9UJVZF823IK2wJm8VIYxD55iG2s5unHG9yre2BGq8BGlvezjw++ud7fHDjO6z6dQWpnZ3/tiNiIpj8450Mu2yErAqsg9utV5JAHABZbGEz25lkOZPnQx7Aoiqv5R613sqHIU/zjvU/XGycztshU2imKusstjXS+WfIZXwf8prrsfvtz7DbrOzbEAgkENiILMriyjw5wEEW6VW1HAF7tDQKqU0yCZysRtBJtQGc/3hHG8e5nvdGINA9I1A+JArh37oZ7RmrhtJXdWWhWdmF7z7bM1xcdhuDS8/lLdsXHF96ETeUPeSzO8kVgUBLvBUjUt53qpLu9sF4q9sH5tKVRdh32ei0wplBfohCj6L7h/Ms/yAZgaLulFKcaBlGnBHDCZZBHs8lqQQutpzuCjIvMWu/DnTnUSNQMgID0gWWU12dob9y/EqRLvZ4vqJGYAJxRKngbhAQSEZdN5aohCgAlkxdRFZ5I5CqrJ5R+b4hy4JrNtIykGjVjBgVRawRTRjOoOl2djOrvJ6cr2ityVmymQ9veZc3r3iV+Z/MxXQ4rz3yd+cz6eV/cMVb19Cya91qkQuIUzHcbb2GeGJJpQUGBoNVH4Yann0Z2hkZTLSM4zzrybwR+m9CVNVJPSMsAznZGEEn2uDA5FTb1ezQexrjR2kUEghsZKONym5Qv5lzat1/t65MD09ClgZXRSnFV2Evsij0a94I+TcvWx+mq9HB9fxac1ODv6Z0DRYicHRR7fhLL2axXs0P5ixKdCk2beNpx1t8Yf7MEr2aZxxvs0Av403zC15zfNroY9SmJqR1GJFDo4k8XppGVce9eP5as/ImUMGveQB0WFl5Qb1Cr6v2PFL+QXhLX6Ora3uxeeTSz5pUBAIjCKe5NI8LSJEqwlVn8hCFTDVnuJ6zaRvbcc4BaRQSWCJiIjjlztNQhqLdoPb8+H/fYZpVZ6ytmV55w7LraP9qgOErt1gn8WXoC7wVMsX1mK/qBpYWlbLg83k8NW4Kb175Ggs+m8ferN2ER0eQvzufs6ecz10z7qfvGQMwDAnV1NfVlvNZE/Yzf4V9ytchL3KZ9axjOt8bIY+TrBLJ5QAr9HrusT1Nr5IJtR/oB3w6u/744w8mTJhAWloaSim++eYbj+cvu+wylFIeXyeddFKt533xxRdp3bo14eHhDBo0iAULfBvxdzfWMtS1XZeskt1UZgSmSEZgjazKysWW01FK0UFluh5f7/WlwfIhUQh/FqkiOMMYA0AeB/nR/J0cvRNNZf2uDWxxbVfcUW5M5kEHusSkbHMpOOpXVyyYDDX6Mkz1I4Yoluu1rscLfnMuo+q4srKm7HKz+kCgTbK+hZf0NSo/uC+uw8oQdxWBwJYqWZaJBbCLyutMgmewYrve48omlWXBgee4C4fSaUQXsuZvZOOc9Sz8Yv4R+xTmFeKwOwiNDCWpXTKJmS18MFL/VdHZHeAbcxoFuqhRXtdhc7D2jzV8PPl9/jPqMT68+V1KC0rJ23GAVj3SQcGp95zO/XMeYfhlIwgJl7JTRytUhRCroklTSYyzDD/m88WrWF4MeZAM0njEegvtVAY7CIysQJ8GAgsLC+nVqxcvvvhitfucdNJJ7Ny50/X18cdH1stw9+mnnzJ58mQefPBBFi9eTK9evRg3bhx79jSN/2EZKtW1hHWBXk6+PlTj/pv1dtqRQRpJpKmkxhhiQGimIknH2eZ7nc6ud0Hu2ti0BAKFCCQXW053bX/omMomvbXafXM50BhD8mCJs9L2jx502tSP9M87Nfrr+4vOqh2z9SIOUsAMcx4ARbqYjR23o1pZ6Lq/rWvfmjMCK5cGSyBQNKRWpNACZ63KJebqOl+f5OtDHKLQeQ5ZFhzQhqq+ZKqWJBBHqS5jh+n8DDPDnEcrUmhJMm2ULBcMNIbFYMwNJ7q+n/rvbyjYd9Bjn/V/rGXzomzsZXb6nNG/sYfo98JVGGdbTiKUEHqrLvxxDMuD83fnU5B7CFtJmet9XGuNw+agrKiUgv0FrJm1ih+emMr9ve7k12d/Yt7Hc4hLjQMgukU06b0yOeGa0Tyy+AmGXzaCZvFRDfFjigbWwWjNgrAvuN1yJTEqijQCIybj0wjG+PHjGT9+fI37hIWFkZJS9wue//73v1x11VVcfvnlALzyyiv88MMPvPXWW9x1111VHlNaWkppaWVR8YMHD1a5X0MZYwxhnSMbBw5mOuZxhnVstfvON5eRRQ5hhNLHkPTv+uhstGWruZN8DrGLXFc3yYbg8PiQKIFAIfzdCGMALUlmO7v5xZzNcUbvavfdpxs/EOhOMoGq18ZoRXuVyUa9hfl6GQd1AXPNJZz+n3/CE3Df/mtpRgSFFLNcr6/2PHZpCCW8RClFH6Mrv5qz2UceOewkk9qzuzzqAyKNQgKZoQyuMc7nPscz/KH/5lPzB25Sl/C84z22sYtkErjaON/XwxRe0GFoJ3qc1IsVPy8jLDKMF8/9H1e9cx3x6c7yUKvLlwWbdpN2A9v5cqh+60xjLO85vuYvvZhMR0tOtow8qvO8evELbF+1DTQkd0hhb/Ye2g5ox8a5G8jo3ZqcpZsBiE9PoPBAIXnbndeORfnFDDp/MMMuPZ6MPq0b5ocSXhennOU4brFO4vLwM4kl1scjOnZNfuH5rFmzSEpKolOnTlx33XXs21d9S/WysjIWLVrEmDFjXI8ZhsGYMWOYO3dutcdNmTKF2NhY11d6enq1+zaEk9VIhqv+9FPd+NacXu1+xbqEP82FACTSnHTkDnB9DFK9GK76c5zqxQZzc4Oe24YNAAsW+VAuRACwKAvnWMbTT3VnsOrNXMcS13PtyOBENcy1JHifzvPRKEVdjCmvxWvHzu/mgsp6vAq6pXSiu+oIwGa9jYO6oMpzyNJg4U19ldvy4Do2DPFsFCKBwEB3umW0axnwB46pvOv4mjU6C4DWqhWtjZa+HJ7wojMfPpvRN4wld/Nedqzezmd3fcyGv9ZhmqarUUhoZBjtBrX38Uj90/HGAELLb/BNN+fUe9XYPHMpx5WeQ/ahrRjNnNcH1jArpt10nUsZzs+Gye2T2b91H2ldWpLRO5N/vHE1k7+/gwufuVSCgMLnmnQq00knncRZZ51FmzZtyMrK4p577mH8+PHMnTsXi+XIC/Pc3FwcDgfJyZ4XSMnJyaxdu/aI/SvcfffdTJ482fX9wYMHvRoMHGbpxwr7evI4yBq9iUO6kGjV7Ij9/jIXU4IzU3GMZYgEnOopWSXwp3YGUtfqLI5nQIOdu+JDoiwLFiJwjDOG86zjHQCPDJ2fw94kXaUyoPQsVuj15HIArfVRvSc7DjlQVjgUXkQhxVLywQvGGkN5xeEsIzLN/Is/zL8B542bE4xBTDfmMN+xjOjiZmyy5dA7uusR57BrWRosvKev0ZWKhQWLzVWcaal+ZUiF5WbldWwrCQQGvHZGBsep3szTS1mlN/CE/TXXc1NC/iWfCQJYQkYi/ScOYtkPS4mIjWTNjFWs+30No64fS0Gus6RUp+GdsYZJtvrRCFUhjDAG8qP5O7vZxwq9jp6qc52P36n3slSvIWpYewYc7Erq3kTi0uJQStG8VTxtB7YjsU0SEdHh9J7Qj4jYCLqM6kZYZJgXfyoh6q9JRzHOP78y7b1Hjx707NmTdu3aMWvWLEaPHt1grxMWFkZYWOP94wxToZxjOYnXHZ9RRDHfmL9xiVt9qgq/mZXNRMYaQ494XtSsk1FZC2qtbtjOwRX1o+QDohCBo7/RHQMDE5Nd5Y2awgh1LcNLVPGgoQwbBRQRzZE3cGqz7POlXN/mUVYM2MQF+0/mjYwn6nTczsnZlCwvJKRVGKnPtMHSvEn/+fap440BWLFix873jlnsKO+yOUD1IE7FcPPvF3Ddv8bDegcp/42H6448h5R/EN7Ux+gKGvrldKHlrgQYUfsx8/QyDAyGqj4cbzTcjU3RdF1kOY159qUAbGUnx6v+jDAGMsTo69uBCa9L69KSf/10Jx//6wO2LttCQutEZrw0zfW8dAs+NmONofxo/g7Ab+Ycehp1DwTu187mY7Mf28iF1ov5h/Vsr4xRCG9r8kuD3bVt25bExEQ2btxY5fOJiYlYLBZ2797t8fju3bvrVWewMVTXEczdtPLlTArFCcZxjTKuQFLRlAWcDUMakmQEChF4olUzuinnUptSygBoo1phKOefykTiXPvmHmWdwJh5YazpvQWH1WRm87/rvCSleFEBRX8eIv/jXFSkX/3pbnTRqhlDjb70oCO5VJYTGWNxLhluFZUKax1gQunywirPUVH+AZwd6YVoSK1IYengd3mt52RGnt+51veBXH2An8w/MDHZqHPooFo3zkCFT51tGUc4YSTjrA9nw8FN1kt9PCrRWCLjmnH5a1dx4q3jKSsqw3SYrue6jJJA4LGoKCEClZ+36yqPyl4C8cr/68SJ4OVXnya2bdvGvn37SE1NrfL50NBQ+vXrx/TplXX3TNNk+vTpDB48uLGGWSeDVC/aqQwAfjcXsNbM8nh+u7mbVXoDAP1VdxJUXGMP0e8lkUBznIU915kSCBRC1G6Q0cvj+7aqskxEgmru2j7qzsEL7PSZ0wGA7SG7WVfHbGXbNmdg0pIUghHmV3+6feIL6/8oUEWUudX6q8isD+seCeWr6kpWFFV5vHQNFt6klCIiIxIAx347ti2lNe7/ueMnVwObCyynYlEyJ4NBcxXL5rCZrA+bxn3W6/kx9HVilHQVDSaGxeCUO0/jrEfOoVnzZlz+xlVc/PxlNG8Z7+uh+bX2KpNM5ayzOdtcSK5Z92u6A+UZgQBxAdAwQgQvn36aKCgoYOnSpSxduhSA7Oxsli5dSk5ODgUFBdx+++3MmzePzZs3M336dE4//XTat2/PuHHjXOcYPXo0L7zwguv7yZMn8/rrr/Puu++yZs0arrvuOgoLC11dhJsKpRQ3GZdwohpGHNE863jX4/np5lzaks4w1Y8zjdprx4gjKaVcWYHb2EWBrvoD39Gw64pAoNTnECKQDFQ1BALdMgKPpnOwWeigdF0xx82ovJNflzvR2q6x73AGAkNahdb7dYNRtBHFvdbrsGDhH8ZErrGcT7/yBg2WKAuhbcMBKFlZhHYcmY3lHgiUGz7CG8L7VpYWKFlSdWZqhQ9Kv3Vtu68oEYEvTsUQpkK5z3o9ESrc18MRPtL71L48+Pdj9D6lLwPOHuTr4fg9pRQ3GBcxzhiGFStvOj6v87EHPDICY7wxPCEahU8DgQsXLqRPnz706dMHcAbx+vTpwwMPPIDFYmH58uWcdtppdOzYkSuuuIJ+/frx559/etTzy8rKIjc31/X9eeedx1NPPcUDDzxA7969Wbp0KT///PMRDUSagnOs45mvl3GAg7zr+JqV5nrXc9PMv9jEVmbrRQyy9PbdIP2ce53A9Q24PLjizrxFMkWECCjHHZYRWJG5DZB4jBmBJSuKwITB0ysDgb/VIRBo31lGefNIQlpKILCuLraczvLQ73gp9GGeC7nPY4lveE9nNpYuNinbWHLEsXbpGiy8LKJvZWZX8aKqu1cXryhk7VlLCJ2vUCh6qy50Mzo01hCFEE1IWDMJBDekEy1DmWbOoZgSnnK8yR69r/aDOCwjUJYGCz/m09vcI0eOrLEuyi+//FLrOTZv3nzEYzfeeCM33njjsQytUSSoOO6wXsW99v+i0dxj+y9Tw17B1CYzzLkAxBDFQNXDxyP1X4fXCexLw9TUcC0NltpRQgSUDqo14YRSUlEjkFau59wDgft0Xr3PXbLUmfXTbk0aqYWJ7GyWyx/m35ToUsJV9Q2rKpYFA4S0kq5z9dHOyKjy8bCezeDr/QCUrCgkrFOEx/M2j0CgvM+LhhfhlhFYvNgzI7BsSwl7Ht5K/me5WFNCeWH8LZgvNKPsCikLIIQQDaGz0Y5/WCbyhuNzDlHI47ZXeDb03lqP88gIlKXBwo/JFYWP3WC5iFak0Ed1JYscfnPMYYlezT7yABhpDCREyfLTo9VJuXUONhuuc7DUCBQiMCmlON4YSEfa0E118AgkJeCWEXgUS4OLywOBCsWEolFMMEbRX3Uns3QkE8quoVSXVXmcbXtl/TBZGtwwwntEurZLlh9ZNkKWBgtvs7YMxZLkvL4rWVKI1hr7fhu7H8hhY/ellG0oARuEpIYSkhlGZmJL+hndfTxqIYQIHPdZbyCKSAapXvxozmJ9HWrKV2QEWrHSjIha9hai6ZKrWx8LV2E8EXIbF9tuA+Ae+9MeNQEripuLo9NZeWtpsPNDoiwZEyLwTA19pcrHE92aNlXcrKmK1hql1BGPu+qAGfBswr0YoRZ6l5xGPoeYZv7FLnLJJO2I42xb3TIC0yUjsCGE93Srz1ZF52C7rgwESgkI4Q1KKSL6NqPg5zyKCotZ/8oazIcKCO8eiS7T2HaUYUkKIXpiPPHXpmAJl3kohBANKUUlco/1Ou6xPw3AffZn+Cz0fzUeU5ERGE9Mldd6QvgLyQhsAs4yTqSP6grAcr2Oj83vXc+NdmtvLuovU6URWt7QY10DBgIrMwIlW1OIYOHRNVjvr3a/02zXElfSj8SSgXzk+A4As9SkdJUz8yysUwRGpPNDfXO3+jK7de6RJwNs2yozAq2SEdggQjJCMeKc/w+qzgiUGoHC+yL6NmNV32zOXHQfj6W/ipnnoGj+IULahhF3fiIdlveixa0tJQgohBBeco3lPFJpAcBUcwazzUU17l+RESj1AYW/k0BgE2AogylWZ0ZgB1pjaIMYominMmhrpNdytKiJVVnpSGtakUI0zbCZtmM+p9ba9SFRlowJETzcuwbn1lAjcKO5hRJKKaCIA9p557hkVRHW1BAiBkURNb4yoHiiZZhru7pC1VIjsOEppQjrHoE1NQRrcgi2XM9l2e6BQCnPIbwlvE8U6TuSKI4r5fMx0zl0hp24C1vQ+tduJP87E0tzmXtCCOFNzVQkD1idvQW60YHZjoXV7mvXdg7ibO4Uj3QMFv5NAoFNxEjLQL4MeYHFYV8z0TKOG42LmRn6vq+HFRA6G23Zxi7m62VsYccxn88uReSFCErhKowonLXl9lXTNdjUJjvY4/q+4oKxdGkhtpwyiucXYE2p/HCfRIJre1c1GYEqXBE5PIbIYdGEpElgoKFE9I3GvtNGyeJCSlcUezznXiNQMgKFt0SPj+O4jaO4s/k1nGQMJ/qDFFq+1p5QKQEghBCN5lLLGXRQmaxiA487XqFQH7lSACCPQ67tOCWBQOHfJBDYhJxiGUmICiFGRRFrRJOkEmo/SNSqvWrt2m6I5cEeHxCVfEAUIpgkqnig+q7B2XobpVRml1Vk+VU0CgGI6FNZny5FJVbuS9UZgUa4gVnowJHvQIXIn+2GEt61ssj34XUCbbI0WDQCFWKgQgz+abmMb0JfpltIB18PSQghgo5FWTjeGAhAGTb+NKvOCszTlR2Dm0vHYOHn5BNFE3SLdRK3WCf5ehgBo7Ph1jlYH3vnYPcPiLI0WIjgkli+PHg/+TjcGkpUWK7XeXxfUfevxC0QGN6rMhDofsOnuhqBLV9tT7u5PWm/sNdRj1scyb1hSOkKz7v/dnmfF43IUHI5LoQQvjTWrS7/b+acKvfZT75ru7lkBAo/J1ceIuB1Um1c2+skECiEOAYVDUNMTI8lIhWWm4cHAveh7drVkCK0bRiW2Mr3jWT3jMBqagQK7wjrGuG6Cjo8I9BzabC8zwshhBCBbKQxCEv5CoBp5l9V7iMZgSKQSCBQBLyObkuD15sNsTRYagQKEaw8G4Yc2Tl4uV7r8f1ucildX4wuNgFncwB3ScS7tqurESi8w4iwENbRuTy4dE0x2ma6nrPpyvd5iywNFkIIIQJanIphgOoBOEtJ5eidR+wjGYEikEggUAS8ZiqSdFIBWKuz0VpXu29Nz1WQjEAhgleiquz4m0veEc9XZAQqFODM8itZ4rYs2K0+IDgbkMSVd56rrkag8J6wns7mL7pMU7qusmGIe0agvM8LIYQQgW+sZahre2DpWdxQ9hCLzJWuxzwyApVkBAr/JoFAERQ6Gc7lwXkcrPbD9m6dS4vSQXQsGcu40n9Uey73TBHJCBQiuHRWbRmu+tNDdWSHudvjuQM6n6047yBXdBc+SAGHllTeQY7o7RkIhMo6gVXVCNz3/E42dF/C5pNWU7ywoMF+DuHkXiewYvk2gMM981uaQgkhhBAB7zRjFP+y/IOLjNPI4xDvmd9wYtnlTLM7lwp7ZAQiGYHCv0kgUASFzqqyYUh1nYOnm3MpoIgcdjJPL632XFJEXojgFaOi+FMvZIVez2a2ezy3dccOWpe1BKCFqlzyW7C08g5yeBWBwGScgcACiijUnk0ryjYWU7ahhMKZ+Wh77RnLon7CyzMCwbNOoE1KQAghhBBBpYfRiX+HTKan0YlwwrBhx46D+x3P8qnjR8kIFAFFAoEiKHg0DDGrbhgyzVFZGLaUMo83e3ceReQlU0SIoNJWpbu2s3SOx3Mpb0bxZYuHmN37JQbvruzw+/rN37H+jt2UXKCwtgg54pzJHp2DPTOWbdvKXNshrUKPefzCU0VG4Na2e3iw30v8nb8cbTMPaxYi7/NCCCFEsLjFOomdYX9xhhpDd9WRpXoNk2x3sEZnufaRjEDh7yQQKIJCR4/OwUdmBJraZIY51+OxHL2jynPZsLm2QzjyQ70QInC5BwI36a0ezxVMywMgIjuEds0yXI+/dOLnXHDvfTzx2kdVntOjc/BhpQts28sDgRawpkogsKFZU0KIGhvL/Ic28O6EH9n87AbWtlzI/h/3uvaRzG8hhBAiuESocD4MfZreRhcABqgeLDFXu56XjEDh7yQQKIJCZ6NyafCaKjICV+j17D7sA/iWagOBsjRYiGAVp2JcnYM3mZWBQPt+m6uGX1jXCFJik444tpfRucpzugcCD68TaNtWCjiDgMqijmns4khKKTK/78pfZ64CoPNPrTDzHRSuq6zHKEuDhRBCiOBjURZesD7ACcYg/tYryOWA67nmSCBQ+De5uhVBIYkETjVOYIPezCq9Hq01SlV+qJ5m/nXEMdVlBMqSMSGCW1uVzj6dx3Z2U6JLCVdhFM48CKbz+aixcaS4Bfcq9FFdqzxfEpVLg/e4LQ02S0wce503HmRZsHd9FvIc08vmEtepOaW2Ik59YRBDVvQg5Z02dHKrMSuEEEKI4KGU4iHrzcwsu8j1WDMiCFWyKkz4NwkEiqCglKIMm2tZcLbedkStr/Yqg41uNb8kI1AIUZW2KoO/9Qo0ms16G51VOwp+y3M9HzUmztUJ2F3F8pLDuQcNd7llBFZkAwKEtAprgJGL6sSpGCaGjYN3wSxzkDq3DWaxSbTR3NdDE0IIIYQPDVQ96aBas0FvBiCaIxu/CeFvZGmwCBqDjMri/fP1Mtd2oS7iQ8dUNuocutHe9Xi1NQK1dJMUIpgdXidQa01heX1AFa6IHB7tsdwXIIl40jhyuTDgETTcTWUg0C6NQnzCCLXQbEQs0SdJEFAIIYQIdkopLrJMcH2v0T4cjRANQwKBImgMVD1d2wvM5a7tP8y/KStvAHKc0RtL+XLf6pcGS0agEMGsreEZCFxnbuLZV75k4+S9qMsiMCIsHst9AXobXT3KEbjzaBbitjTYs2OwZAQKIYQQQvjC+capZJLGeON4brJe6uvhCHHMJIohgsZAoycKhUYz31zqety9PuCJlmH8av7FVnZWuzTYPRBoVfJPSIhg41lWYCswh7eGTeWtYVP5j/V2utCLMBVKMyIopBiA3qrqZcHgzBassMPc7dr2WBqcLhmBQgghhBC+0NpoybrwX309DCEajEQxRNCIVdF0Vm1Zo7NYrtdTpIuJVBH8Zs4FwIKFkcYgMlQaW/VO9pFHgS4iSkV6nEdqBAoR3NqpDNf2Jr2VTbqye/AYY4hrO5wwVyCwj1F1oxCAEBXCOGM4C80VbGKbq5nRDyfP4WDCAdK2tSChR1tivPCzCCGEEEIIIYKLRDFEUBlk9GKNIws7dhbr1aSTyvryBiKDVC9iVTSZKo2/9CLAuTy4q2rvcQ4JBAoR3JJJcGX7bTRz2IEziy+NJI/3i66qPav1Roooodth7yOHc+BgH3kAbGc3rUjh286z+KnjHwBsDpvllZ9FCCGEEEIIEVykRqAIKu51An9x/Mnnjp9c34+xODN5MlSa67Gq6gTacbi2reX1BIUQwUMpRRvVCoBsciimBIDRliEedQCnhb3D9vDZHAhfSEejTY3n7Kk6ubZXmOsA2KZ3Ac4bDu7Lh4UQQgghhBDiaEkgUASVkcYgLjBOpS3pfOz4nrftX9KGVpxlnMgE4wQAMt0CgVXVCbSVNxYBCCHE+4MWQjQ5/7JewTnGeEy3znFj3ZYF11dPo7Nre7n2DASmqWQMJX+uhRBCCCGEEMdO1jWKoNLWSGc3uWxiq8fjKboF3VVHoDIjMIYojw6eFWzarVmI/BMSIiidYozkbttTACicWYCjjMFHfb7DMwILdREHOAhAK1KOYaRCCCGEEEIIUUlSDETQmWK97YjH/hNyu2tJX1uVThzRHKSANTrriH3tUiNQiKAXo6KYHvoeQ1RfloVM5Y/Qj0hUzY/6fB1Va8JwdgZerte7sgEBWikJBAohhBBCCCEahkQxRNDpZXTmQjWB3/QcDBRDjX4MNCprB7ZSyRyiCMCjG2gFjxqBSmoEChGs2hkZTA9916Mu4NGyKitdVXuW6NVs1FvI0jmu59IlECiEEEIIIYRoIBIIFEHp6dC7iCQCA+UK+lUIUSFkqFSy9TaydA5aa48P+tI1WAhRoSGCgBV6GB1Z4liNickCc4Xr8ZYqucFeQwghhBBCCBHcZGmwCErNVSxhKpQQFUK8ij3i+XYqA4BDFJLLAY/nJBAohPAGjzqB5Q1DQJYGCyGEEEIIIRqOTwOBf/zxBxMmTCAtLQ2lFN98843rOZvNxp133kmPHj1o1qwZaWlpXHrppezYcWQXV3cPPfQQSimPr86dO9d4jBCHa6vSXduHLw92rxEozUKEEA2lp9GZEKx0IJMtervrcQkECiGEEEIIIRqKTwOBhYWF9OrVixdffPGI54qKili8eDH3338/ixcv5quvvmLdunWcdtpptZ63W7du7Ny50/U1e/ZsbwxfBLCaAoGSESiE8Ib+dCeWaDawxeN9RwKBQgghhBBCiIbi0yjG+PHjGT9+fJXPxcbGMm3aNI/HXnjhBQYOHEhOTg4ZGRnVntdqtZKSIh+cxNGrWBoMeBTtB7BpyQgUQjS8SCOCTqotuXoRRZQAEEYoiRx9N2IhhBBCCCGEcOdXNQLz8/NRShEXF1fjfhs2bCAtLY22bdty0UUXkZOTU+P+paWlHDx40ONLBDePjECz+qXBIUoCgUKIhjPWMsTj+5YquUEbkgghhBBCCCGCm98EAktKSrjzzju54IILiImJqXa/QYMG8c477/Dzzz/z8ssvk52dzfDhwzl06FC1x0yZMoXY2FjXV3p6erX7iuDQRrVybR9ZI9Dh2rZiabQxCSEC31hjqMf3sixYCCGEEEII0ZD8IhBos9k499xz0Vrz8ssv17jv+PHjOeecc+jZsyfjxo3jxx9/JC8vj88++6zaY+6++27y8/NdX1u3bq12XxEcIlUEaSQBsOnwpcHYXNshhDTquIQQga236kIs0a7vW5Lsw9EIIYQQQgghAk2TDwRWBAG3bNnCtGnTaswGrEpcXBwdO3Zk48aN1e4TFhZGTEyMx5cQbcqXB+9hP4d0oetxaRYihPAWi7LQU3VyfW8gy4KFEEIIIYQQDadJBwIrgoAbNmzgt99+IyEhod7nKCgoICsri9TUVC+MUASytkblEvFst+XBsjRYCOFNV1nO5VxjPLdaJnGl5VxfD0cIIYQQQggRQHyazlRQUOCRqZednc3SpUuJj48nNTWVs88+m8WLF/P999/jcDjYtWsXAPHx8YSGhgIwevRozjzzTG688UYAbrvtNiZMmEBmZiY7duzgwQcfxGKxcMEFFzT+Dyj8WkXDkATi2GRuo6fRGfDsGiwZgUKIhnau9WTO5WRfD0MIIYQQQggRgHwaxVi4cCEnnHCC6/vJkycDMGnSJB566CGmTp0KQO/evT2OmzlzJiNHjgQgKyuL3Nxc13Pbtm3jggsuYN++fbRo0YJhw4Yxb948WrRo4d0fRgScbqo90TRjH3msJ9v1uPvSYKsEAoUQQgghhBBCCOEnfBrFGDlyJFrrap+v6bkKmzdv9vj+k08+OdZhCQE4OwcfwlkbcK25yfW43b1GoJJmIUIIIYQQQgghhPAPTbpGoBC+1F5losoL9a/XlRmBdo+MQKkRKIQQQgghhBBCCP8ggUAhqhGhwslULQFYp7NdGarSNVgIIYQQQgghhBD+SAKBQtSgs2oDwCEK2cEeQAKBQgghhBBCCCGE8E8SCBSiBp1UW9d2RZ1AOw7XY9IsRAghhBBCCCGEEP5CAoFC1KBjeUYgVNYJtGnJCBRCCCGEEEIIIYT/kUCgEDXobFRmBK4rDwTasbkek0CgEEIIIYQQQggh/IUEAoWoQSe3jMC12rk0uKJGoIGBoeSfkBBCCCGEEEIIIfyDRDGEqEGiak4izQFYb1ZkBDprBFqx+GxcQgghhBBCCCGEEPUlgUAhalFRJ3AHe8gzD7oyAmVZsBBCCCGEEEIIIfyJRDKEqMXJluMJdVjJ0ltZoJe7BQJDfDwyIYQQQgghhBBCiLqTQKAQtchQaczSCwD43VyAvTwQKEuDhRBCCCGEEEII4U9kabAQtRhlDEahAJhm/oVNy9JgIYQQQgghhBBC+B8JBApRi0TVnL6qKwDL9TpKKQPAKoFAIYQQQgghhBBC+BEJBApRB6ONIa7tYkoACFESCBRCCCGEEEIIIYT/kECgEHUw1jLUtS0ZgUIIIYQQQgghhPBHEggUog4GqV5EEUkyidhxAFIjUAghhBBCCCGEEP5FAoFC1EGoCuFh6y0cIB+NBiQQKIQQQgghhBBCCP8igUAh6ugkY7grCAhgYvpwNEIIIYQQQgghhBD1I4FAIeqonZHB1cZ5ru9LsflwNEIIIYQQQgghhBD1I2sbhaiHu63XUmAv4mrr+aSqFr4ejhBCCCGEEEIIIUSdSSBQiHpINJrzauijvh6GEEIIIYQQQgghRL3J0mAhhBBCCCGEEEIIIYKABAKFEEIIIYQQQgghhAgCEggUQgghhBBCCCGEECIISCBQCCGEEEIIIYQQQoggIIFAIYQQQgghhBBCCCGCgAQChRBCCCGEEEIIIYQIAhIIFEIIIYQQQgghhBAiCEggUAghhBBCCCGEEEKIICCBQCGEEEIIIYQQQgghgoBPA4F//PEHEyZMIC0tDaUU33zzjcfzWmseeOABUlNTiYiIYMyYMWzYsKHW87744ou0bt2a8PBwBg0axIIFC7z0EwghhBBCCCGEEEII4R98GggsLCykV69evPjii1U+/3//93/873//45VXXmH+/Pk0a9aMcePGUVJSUu05P/30UyZPnsyDDz7I4sWL6dWrF+PGjWPPnj3e+jGEEEIIIYQQQgghhGjylNZa+3oQAEopvv76a8444wzAmQ2YlpbGv/71L2677TYA8vPzSU5O5p133uH888+v8jyDBg1iwIABvPDCCwCYpkl6ejo33XQTd911V53GcvDgQWJjY8nPzycmJubYfzghhBBCCCGEEEII4bcCJVZk9fUAqpOdnc2uXbsYM2aM67HY2FgGDRrE3LlzqwwElpWVMvTQRQAAODFJREFUsWjRIu6++27XY4ZhMGbMGObOnVvta5WWllJaWur6Pj8/H3D+TxZCCCGEEEIIIYQQwa0iRtRE8umOWpMNBO7atQuA5ORkj8eTk5Ndzx0uNzcXh8NR5TFr166t9rWmTJnCww8/fMTj6enp9R22EEIIIYQQQgghhAhQ+/btIzY21tfDOGpNNhDYmO6++24mT57s+j4vL4/MzExycnL8+n+uOHoHDx4kPT2drVu3+nXKrzh6MgcEyDwQMgeEzAEhc0DIHBAyB4RTfn4+GRkZxMfH+3oox6TJBgJTUlIA2L17N6mpqa7Hd+/eTe/evas8JjExEYvFwu7duz0e3717t+t8VQkLCyMsLOyIx2NjY+UfeZCLiYmRORDkZA4IkHkgZA4ImQNC5oCQOSBkDggnw/Bp391j1mRH36ZNG1JSUpg+fbrrsYMHDzJ//nwGDx5c5TGhoaH069fP4xjTNJk+fXq1xwghhBBCCCGEEEIIEQx8mhFYUFDAxo0bXd9nZ2ezdOlS4uPjycjI4NZbb+Wxxx6jQ4cOtGnThvvvv5+0tDRXZ2GA0aNHc+aZZ3LjjTcCMHnyZCZNmkT//v0ZOHAgzz77LIWFhVx++eWN/eMJIYQQQgghhBBCCNFk+DQQuHDhQk444QTX9xV1+iZNmsQ777zDHXfcQWFhIVdffTV5eXkMGzaMn3/+mfDwcNcxWVlZ5Obmur4/77zz2Lt3Lw888AC7du2id+/e/Pzzz0c0EKlJWFgYDz74YJXLhUVwkDkgZA4IkHkgZA4ImQNC5oCQOSBkDginQJkHSvt732MhhBBCCCGEEEIIIUStmmyNQCGEEEIIIYQQQgghRMORQKAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEfBoInDJlCgMGDCA6OpqkpCTOOOMM1q1b57FPSUkJN9xwAwkJCURFRTFx4kR2797ten7ZsmVccMEFpKenExERQZcuXXjuuec8zvHVV18xduxYWrRoQUxMDIMHD+aXX36pdXxaax544AFSU1OJiIhgzJgxbNiwwWOfxYsXM3bsWOLi4khISODqq6+moKCg1nMvX76c4cOHEx4eTnp6Ov/3f//n8fyqVauYOHEirVu3RinFs88+W+s5/ZHMgernwOuvv87w4cNp3rw5zZs3Z8yYMSxYsKDW8/obmQPVz4GvvvqK/v37ExcXR7Nmzejduzfvv/9+ref1RzIPqp8H7j755BOUUpxxxhm1ntffyByofg688847KKU8vsLDw2s9r7+ROVDz+0BeXh433HADqamphIWF0bFjR3788cdaz+1PZA5UPwdGjhx5xPuAUopTTjml1nP7E5kDNb8PPPvss3Tq1ImIiAjS09P55z//SUlJSa3n9icyB6qfAzabjUceeYR27doRHh5Or169+Pnnn2s9rz8K1nlQUlLCZZddRo8ePbBardVe88+aNYu+ffsSFhZG+/bteeedd2od8+E/gM+MGzdOv/3223rlypV66dKl+uSTT9YZGRm6oKDAtc+1116r09PT9fTp0/XChQv1cccdp4cMGeJ6/s0339Q333yznjVrls7KytLvv/++joiI0M8//7xrn1tuuUX/5z//0QsWLNDr16/Xd999tw4JCdGLFy+ucXxPPPGEjo2N1d98841etmyZPu2003SbNm10cXGx1lrr7du36+bNm+trr71Wr127Vi9YsEAPGTJET5w4scbz5ufn6+TkZH3RRRfplStX6o8//lhHREToV1991bXPggUL9G233aY//vhjnZKSop955pn6/Gr9hsyB6ufAhRdeqF988UW9ZMkSvWbNGn3ZZZfp2NhYvW3btnr9jps6mQPVz4GZM2fqr776Sq9evVpv3LhRP/vss9piseiff/65Xr9jfyDzoPp5UCE7O1u3bNlSDx8+XJ9++ul1+bX6FZkD1c+Bt99+W8fExOidO3e6vnbt2lWv368/kDlQ/RwoLS3V/fv31yeffLKePXu2zs7O1rNmzdJLly6t1++4qZM5UP0c2Ldvn8d7wMqVK7XFYtFvv/12fX7FTZ7MgernwIcffqjDwsL0hx9+qLOzs/Uvv/yiU1NT9T//+c96/Y6bOpkD1c+BO+64Q6elpekffvhBZ2Vl6ZdeekmHh4fXOmZ/FKzzoKCgQF977bX6tdde0+PGjavymn/Tpk06MjJST548Wa9evVo///zz9f6M6NNA4OH27NmjAf37779rrbXOy8vTISEh+vPPP3fts2bNGg3ouXPnVnue66+/Xp9wwgk1vlbXrl31ww8/XO3zpmnqlJQU/eSTT7oey8vL02FhYfrjjz/WWmv96quv6qSkJO1wOFz7LF++XAN6w4YN1Z77pZde0s2bN9elpaWux+68807dqVOnKvfPzMwM2EDg4WQOVD0HtNbabrfr6Oho/e6779b4c/k7mQPVzwGtte7Tp4++7777atwnEMg88JwHdrtdDxkyRL/xxht60qRJARkIPJzMgco58Pbbb+vY2Ngaf4ZAJHOgcg68/PLLum3btrqsrKzGnyPQyByo/prgmWee0dHR0R4figORzIHKOXDDDTfoUaNGeRw3efJkPXTo0Bp/Ln8nc6ByDqSmpuoXXnjB47izzjpLX3TRRTX+XIEgWOaBu+qu+e+44w7drVs3j8fOO+88PW7cuDqdV2utm1SNwPz8fADi4+MBWLRoETabjTFjxrj26dy5MxkZGcydO7fG81ScoyqmaXLo0KEa98nOzmbXrl0erx0bG8ugQYNcr11aWkpoaCiGUflrjIiIAGD27NnVnnvu3Lkcf/zxhIaGuh4bN24c69at48CBA9UeFwxkDlQ/B4qKirDZbDWOORDIHKh6DmitmT59OuvWreP444+v9ryBQuaB5zx45JFHSEpK4oorrqj2XIFG5oDnHCgoKCAzM5P09HROP/10Vq1aVe05A4XMgco5MHXqVAYPHswNN9xAcnIy3bt35/HHH8fhcFR73kAgc6D668I333yT888/n2bNmlV73kAgc6ByDgwZMoRFixa5SgVt2rSJH3/8kZNPPrna8wYCmQOVc6C0tPSI0iARERE1njdQBMs8qIu5c+d6vDY450pNP/fhmkwg0DRNbr31VoYOHUr37t0B2LVrF6GhocTFxXnsm5yczK5du6o8z5w5c/j000+5+uqrq32tp556ioKCAs4999xq96k4f3JycrWvPWrUKHbt2sWTTz5JWVkZBw4c4K677gJg586dNZ67qvO6v24wkjlQ8xy48847SUtLO+IffSCROXDkHMjPzycqKorQ0FBOOeUUnn/+ecaOHVvteQOBzAPPeTB79mzefPNNXn/99WrPE2hkDnjOgU6dOvHWW2/x7bff8sEHH2CaJkOGDGHbtm3VntffyRzwnAObNm3iiy++wOFw8OOPP3L//ffz9NNP89hjj1V7Xn8nc6D668IFCxawcuVKrrzyymrPGQhkDnjOgQsvvJBHHnmEYcOGERISQrt27Rg5ciT33HNPtef1dzIHPOfAuHHj+O9//8uGDRswTZNp06bx1Vdf1XjeQBBM86AuqpsrBw8epLi4uE7naDKBwBtuuIGVK1fyySefHPU5Vq5cyemnn86DDz7IiSeeWOU+H330EQ8//DCfffYZSUlJAHz44YdERUW5vv788886vV63bt149913efrpp4mMjCQlJYU2bdqQnJzsivx269bNdd7x48cf9c8WDGQOVO+JJ57gk08+4euvvw7IAvEVZA4cKTo6mqVLl/L333/z73//m8mTJzNr1qx6ncPfyDyodOjQIS655BJef/11EhMT63RMIJA54Gnw4MFceuml9O7dmxEjRvDVV1/RokULXn311Tqfw9/IHPBkmiZJSUm89tpr9OvXj/POO497772XV155pc7n8DcyB6r35ptv0qNHDwYOHHhUx/sLmQOeZs2axeOPP85LL73E4sWL+eqrr/jhhx949NFH63wOfyNzwNNzzz1Hhw4d6Ny5M6Ghodx4441cfvnlHllngUjmgRfUeRGxF91www26VatWetOmTR6PT58+XQP6wIEDHo9nZGTo//73vx6PrVq1SiclJel77rmn2tepKLj5/fffezx+8OBBvWHDBtdXUVGRzsrK0oBesmSJx77HH3+8vvnmm484965du/ShQ4d0QUGBNgxDf/bZZ1prrTdv3uw6b0WTh0suueSItd4zZszQgN6/f/8R5w6GGoEyB6qfA08++aSOjY3Vf//9d7U/VyCQOVDz+0CFK664Qp944onVPu/vZB54zoMlS5ZoQFssFteXUkorpbTFYtEbN26s9mf0VzIH6vZecPbZZ+vzzz+/2uf9mcyBI+fA8ccfr0ePHu2xz48//qgBj3pSgULmQPXvAwUFBTomJkY/++yz1f5cgUDmwJFzYNiwYfq2227z2Kei+YF7HbJAIXOg+veB4uJivW3bNm2apr7jjjt0165dq/35/F2wzQN31dUIHD58uL7llls8Hnvrrbd0TExMtT/f4XwaCDRNU99www06LS1Nr1+//ojnKwpAfvHFF67H1q5de0QByJUrV+qkpCR9++23V/taH330kQ4PD9fffPNNnceWkpKin3rqKddj+fn5HgUgq/Lmm2/qyMjIIyaku4pCoO4Fn+++++6gbBYic6DmOfCf//xHx8TE1Fjw1N/JHKjb+0CFyy+/XI8YMaJO4/cnMg+qngfFxcV6xYoVHl+nn366HjVqlF6xYkVABQBkDtT9vcBut+tOnToFXKdImQPVz4G7775bZ2ZmenzYf/bZZ3Vqamqdxu8vZA7U/j7w9ttv67CwMJ2bm1uncfsbmQPVz4G+ffvqO+6444ifISIiQtvt9jr9DP5A5kDdrwfKysp0u3bt9N13312n8fuTYJ0H7mpqFtK9e3ePxy644IJ6NQvxaSDwuuuu07GxsXrWrFl6586drq+ioiLXPtdee63OyMjQM2bM0AsXLtSDBw/WgwcPdj2/YsUK3aJFC33xxRd7nGPPnj2ufT788ENttVr1iy++6LFPXl5ejeN74okndFxcnP7222/18uXL9emnn+7RElprrZ9//nm9aNEivW7dOv3CCy/oiIgI/dxzz9V43ry8PJ2cnKwvueQSvXLlSv3JJ5/oyMhIj9bgpaWlesmSJXrJkiU6NTVV33bbbXrJkiV17jDjL2QOVD8HnnjiCR0aGqq/+OILjzEfOnSozr9ffyBzoPo58Pjjj+tff/1VZ2Vl6dWrV+unnnpKW61W/frrr9f59+svZB5UPw8OF6hdg2UOVD8HHn74Yf3LL7/orKwsvWjRIn3++efr8PBwvWrVqjr/fv2BzIHq50BOTo6Ojo7WN954o163bp3+/vvvdVJSkn7sscfq/Pv1BzIHav9bMGzYMH3eeefV+rv0VzIHqp8DDz74oI6OjtYff/yx3rRpk/711191u3bt9Lnnnlvn368/kDlQ/RyYN2+e/vLLL3VWVpb+448/9KhRo3SbNm3qHFjyJ8E6D7R2ZjAuWbJET5gwQY8cOdIVF6qwadMmHRkZqW+//Xa9Zs0a/eKLL2qLxaJ//vnnuvxqtdY+DgQCVX69/fbbrn2Ki4v19ddfr5s3b64jIyP1mWeeqXfu3Ol6/sEHH6zyHJmZma59RowYUeU+kyZNqnF8pmnq+++/XycnJ+uwsDA9evRovW7dOo99LrnkEh0fH69DQ0N1z5499XvvvVenn33ZsmV62LBhOiwsTLds2VI/8cQTHs9nZ2dXOeZAywSSOVD9HMjMzKxyzA8++GCdzu8vZA5UPwfuvfde3b59ex0eHq6bN2+uBw8erD/55JM6ndvfyDyofh4cLlADgTIHqp8Dt956q87IyNChoaE6OTlZn3zyyXrx4sV1Orc/kTlQ8/vAnDlz9KBBg3RYWJhu27at/ve//x1QWUBayxyobQ5UZLv8+uuvdTqnP5I5UP0csNls+qGHHtLt2rXT4eHhOj09XV9//fUBFwSSOVD9HJg1a5bu0qWLDgsL0wkJCfqSSy7R27dvr9O5/U0wz4Pq4gDuZs6cqXv37q1DQ0N127ZtPX4vdaG01hohhBBCCCGEEEIIIURAC+z2MkIIIYQQQgghhBBCCEACgUIIIYQQQgghhBBCBAUJBAohhBBCCCGEEEIIEQQkECiEEEIIIYQQQgghRBCQQKAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEJBAohBBCCCGEEEIIIUQQkECgEEIIIYQfGzlyJLfeemvQvbYQQgghhKg/CQQKIYQQQgSJWbNmoZQiLy+vQY776quvePTRRxtugEIIIYQQwqusvh6AEEIIIYTwT/Hx8b4eghBCCCGEqAfJCBRCCCGE8BOFhYVceumlREVFkZqaytNPP+3x/Pvvv0///v2Jjo4mJSWFCy+8kD179gCwefNmTjjhBACaN2+OUorLLrsMANM0mTJlCm3atCEiIoJevXrxxRdf1Hrc4UuDW7duzWOPPeYaY2ZmJlOnTmXv3r2cfvrpREVF0bNnTxYuXOgx7tmzZzN8+HAiIiJIT0/n5ptvprCwsKF/fUIIIYQQQU8CgUIIIYQQfuL222/n999/59tvv+XXX39l1qxZLF682PW8zWbj0UcfZdmyZXzzzTds3rzZFbRLT0/nyy+/BGDdunXs3LmT5557DoApU6bw3nvv8corr7Bq1Sr++c9/cvHFF/P777/XeFxVnnnmGYYOHcqSJUs45ZRTuOSSS7j00ku5+OKLWbx4Me3atePSSy9Faw1AVlYWJ510EhMnTmT58uV8+umnzJ49mxtvvNEbv0IhhBBCiKCmdMVVmBBCCCGEaLIKCgpISEjggw8+4JxzzgFg//79tGrViquvvppnn332iGMWLlzIgAEDOHToEFFRUcyaNYsTTjiBAwcOEBcXB0BpaSnx8fH89ttvDB482HXslVdeSVFRER999FGVx4EzI7B3796u127dujXDhw/n/fffB2DXrl2kpqZy//3388gjjwAwb948Bg8ezM6dO0lJSeHKK6/EYrHw6quvus47e/ZsRowYQWFhIeHh4Q34WxRCCCGECG5SI1AIIYQQwg9kZWVRVlbGoEGDXI/Fx8fTqVMn1/eLFi3ioYceYtmyZRw4cADTNAHIycmha9euVZ5348aNFBUVMXbsWI/Hy8rK6NOnT73H2bNnT9d2cnIyAD169DjisT179pCSksKyZctYvnw5H374oWsfrTWmaZKdnU2XLl3qPQYhhBBCCFE1CQQKIYQQQgSAwsJCxo0bx7hx4/jwww9p0aIFOTk5jBs3jrKysmqPKygoAOCHH36gZcuWHs+FhYXVexwhISGubaVUtY9VBCkLCgq45ppruPnmm484V0ZGRr1fXwghhBBCVE8CgUIIIYQQfqBdu3aEhIQwf/58V4DswIEDrF+/nhEjRrB27Vr27dvHE088QXp6OsARTTlCQ0MBcDgcrse6du1KWFgYOTk5jBgxosrXruq4htK3b19Wr15N+/btG/zcQgghhBDCkzQLEUIIIYTwA1FRUVxxxRXcfvvtzJgxg5UrV3LZZZdhGM7LuYyMDEJDQ3n++efZtGkTU6dO5dFHH/U4R2ZmJkopvv/+e/bu3UtBQQHR0dHcdttt/POf/+Tdd98lKyuLxYsX8/zzz/Puu+9We1xDufPOO5kzZw433ngjS5cuZcOGDXz77bfSLEQIIYQQwgskECiEEEII4SeefPJJhg8fzoQJExgzZgzDhg2jX79+ALRo0YJ33nmHzz//nK5du/LEE0/w1FNPeRzfsmVLHn74Ye666y6Sk5NdwbZHH32U+++/nylTptClSxdOOukkfvjhB9q0aVPjcQ2hZ8+e/P7776xfv57hw4fTp08fHnjgAdLS0hrsNYQQQgghhJN0DRZCCCGEEEIIIYQQIghIRqAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEJBAohBBCCCGEEEIIIUQQkECgEEIIIYQQQgghhBBBQAKBQgghhBBCCCGEEEIEAQkECiGEEEIIIYQQQggRBCQQKIQQQgghhBBCCCFEEJBAoBBCCCGEEEIIIYQQQUACgUIIIYQQQgghhBBCBAEJBAohhBBCCCGEEEIIEQQkECiEEEKI/2/v7uNqPv8/gL9O6f6UJClRadIyd7mdtbGZlMYwFtZXtZ8ZQka511fullhZ9jU8NqYZwhrLF9nMMtqQm4VuaYjWl6/lLpXqdP3+8Ojz9emc7iyOnNfz8TiPR5/P9TnXeV+fz+nqnHfXdX2IiIiIiEgHMBFIRERERERERESkA5gIJCIiIiIiIiIi0gFMBBIREREREREREekAJgKJiIiIiIiIiIh0ABOBREREREREREREOoCJQCIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIBTAQSERERERERERHpACYCiYiIiIiIiIiIdAATgURERERERERERDqAiUAiIiIiIiIiIiIdwEQgERERERERERGRDmAikIiIiIiIiIiISAcwEUhERERERERERKQDmAgkIiIiIiIiIiLSAUwEEhERERERERER6QAmAomIiIiIiIiIiHQAE4FEREREREREREQ6gIlAIiIiIiIiIiIiHcBEIBERERERERERkQ5gIpCIiIiIiIiIiEgHMBFIRERERERERESkA5gIJCIiIiIiIiIi0gFMBBIREREREREREekAJgKJiIiIiIiIiIh0ABOBREREREREREREOoCJQCIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIBTbQdABHR4yovL0dpaam2wyAiIiIi+tsMDQ3RpAm/ohPRk8VehogaHSEEcnNzcfPmTW2HQkRERETUYKytreHg4ACFQqHtUIjoOcVEIBE1OpVJQHt7eyiVSujpcZUDIiIiImq8KioqUFhYiLy8PKhUKjg7O2s7JCJ6TimEEELbQRAR1VV5eTlSU1Nhb28PW1tbbYdDRERERNRg/vOf/yAvLw937txB3759OVWYiBoch9EQUaNSuSagUqnUciRERERERA2r8jNueno6kpKSwHE7RNTQmAgkokaJ04GJiIiI6HlT+RlXqVQiMzMT9+/f13JERPS84TdpIiIiIiIiomeIkZERSktLUVxcrO1QiOg5w0QgEdEzICkpCQqFArdv39Z2KI2CEAIffvghrKysoFAo8Pvvv+P111/HRx99JB3j5OSETz/9VNpWKBTYvXv333rdwMBADBs27G/VUZvw8HB07dr1ib5GpZ9++glubm5QqVRP5fUe1+XLl6XrXFdV3w+aVH2PaENd4nwWpKeno3Xr1hyZUg32SQ2jofqkhji3wLPRR1T1JGN6FttbX4/z9+JJ1vOo0tJSODk54eTJkw1WJxHR4+DKo0RE1OgkJiZi06ZNSEpKgrOzM6ytrfHdd9/BwMBA26E1KrNmzcKCBQugr6+v7VC0IiUlBWZmZtoO45nw+uuv4/Dhw7J9EyZMwLp16wAAHTp0wMsvv4zo6GiEhYVpI8RnGvukhtFQfVJ+fj6aNWv2t+PRtT6ivu1NSkrCG2+8gVu3bsHS0vLJBfaEBQYG4vbt27LkcZs2bZCfnw9ra+sGex1DQ0OEhoZi9uzZ+OmnnxqsXiKi+mIikIgarUllC5FecVGrMXTQa4e1Bou0GoMuysnJgZ2dHV555RVpn5WVlRYjanyOHj2KnJwcjBgxQtuhaE2LFi20HcITpVKpoFAo6rym6vjx47F48WJp29TUVFb+/vvvY/z48Zg7dy7vYlkF+6S/ryH7JFtb2waI6PnvI6rSVnuFEFCpVM9Uv6Kvr99g76NH+fn5ISQkBGlpaXjppZcavH4iorrg1GAiarTSKy7iuEjV6qM+icgHDx4gODgYNjY2MDY2xquvvoqUlBSNxxYVFWHQoEHw8PDgdOEqAgMDMXXqVOTm5kKhUMDJyQlA/adYXr16Fb6+vrC0tISVlRWGDh2Ky5cvS+UqlQozZsyApaUlmjdvjlmzZtV45767d+/CxMQE+/fvl+3ftWsXzM3NUVRUBACYPXs22rdvD1NTUzg7OyMsLAxlZWXV1qupXcOGDUNgYKC0/eDBA4SGhsLe3h5mZmbo3bs3kpKSamx/XFwcPD09YWxsLNu/dOlS2NjYwNzcHB988AHmzJkjmxaYkpICT09PWFtbo2nTpujXrx9Onz4tq0OhUGDt2rUYNGgQTExM4OzsjG+//bbGeB514sQJuLu7w9jYGD169MCZM2fUjjl//jwGDRoEpVKJli1bYuzYsbh586bsmPLyckyZMgVNmzaFtbU1wsLCZNew6jS46OhodOrUCWZmZmjTpg2CgoJQWFgolV+5cgVDhgxBs2bNYGZmhpdeegn79u2rc0z379+Hv78/lEol7OzsEBUVVedzAtR+nTdt2gRLS0skJCSgQ4cOMDIyQm5ubp2uGfAw8Wdrays9LCwsZOWenp4oKChQGzmo69gnPbk+qXJa8saNG+Hg4AClUomgoCCoVCqsWLECtra2sLGxwbJly2R1PTo1uLS0FFOmTIGdnR2MjY3h6OiIiIgIAA8TUOHh4XBwcICRkRFatWqF4OBgqR5N07m//PJLDB8+HKampnBxcUFCQoLstRMSEuDi4gJjY2O88cYbiI2NrdfSH/Hx8XjppZdgZGQEJycnjf3EvXv3MGbMGJiZmcHe3h5r1qyRymprU03q097Lly/jjTfeAAA0a9YMCoVCeg9UVFQgIiICbdu2hYmJCbp06SL7G1C5HMr+/fvRvXt3GBkZ4ejRo9L1Xr9+Pdq0aQNTU1P4+vrizp070nMrKiqwePFitG7dGkZGRujatSsSExOrbZNKpcK4ceOkWFxdXRETEyOVh4eHIzY2Ft9//z0UCgUUCgWSkpI0Tg0+fPgwevXqBSMjI9jZ2WHOnDkoLy+Xyl9//XUEBwdj1qxZsLKygq2tLcLDw2XxNGvWDB4eHoiLi6vTNSEiehKYCCQiekpmzZqF+Ph4xMbG4vTp02jXrh28vLxQUFAgO+727dvw9PRERUUFfvzxR61Mt7lz/Q6uns2VPf7KfZjQKCspUyu7ejZXeu71i/9RK7t/6+G6YoU376mV3bl+R2MM1YmJiZG+BOTn51ebTK1JWVkZvLy8YG5ujiNHjiA5ORlKpRLe3t4oLS0FAERFRWHTpk3YuHEjjh49ioKCAuzatavaOi0sLDB48GBs3bpVtn/Lli0YNmyYNLrK3NwcmzZtQnp6OmJiYvDFF19g1apV9W7Do6ZMmYLffvsNcXFxOHv2LN599114e3vjwoUL1T7nyJEj6NGjh1qsy5YtQ2RkJE6dOgUHBwesXbtWdsy9e/cQEBCAo0eP4tixY3BxcYGPjw/u3bsnOy4sLAwjRoxAamoq/Pz8MHr0aGRkZNTalsLCQgwePBgdOnTAqVOnEB4ejtDQUNkxt2/fRv/+/eHu7o6TJ08iMTER169fh6+vr+y42NhYNGnSBCdOnEBMTAyio6Px5ZdfVvvaenp6WL16NdLS0hAbG4tDhw5h1qxZUvnkyZPx4MED/PLLLzh37hwiIyOhVCrrHNPMmTNx+PBhfP/99/jhhx+QlJSkMSFXnbpc56KiIkRGRuLLL79EWloabGxs6nzNtmzZAmtra3Ts2BFz586VEkWVDA0N0bVrVxw5cqTOMTeUsvxSFJ8plD1KL5UAACpKKtTKis/8L4H7IKtYray84GGiq/y/ZWplDy7Ub2F+9knqGqpPAh6Otty/fz8SExOxbds2bNiwAW+99RauXbuGw4cPIzIyEgsWLMDx48c11rt69WokJCRgx44dyMrKwpYtW6RkbXx8PFatWoX169fjwoUL2L17Nzp16lRj2xYtWgRfX1+cPXsWPj4+8PPzk/6OX7p0CSNHjsSwYcOQmpqKCRMmYP78+XU8a8CpU6fg6+uL0aNH49y5cwgPD0dYWBg2bdokO27lypXo0qULzpw5gzlz5mDatGn48ccfH7tNj9PeNm3aID4+HgCQlZWF/Px8KcEWERGBr7/+GuvWrUNaWhqmT5+Of/zjH2r/RJgzZw6WL1+OjIwMdO7cGQBw8eJF7NixA3v27EFiYiLOnDmDoKAg6TkxMTGIiorCJ598grNnz8LLywtvv/12te+tiooKtG7dGjt37kR6ejr++c9/Yt68edixYwcAIDQ0FL6+vvD29kZ+fj7y8/NlI3sr5eXlwcfHBz179kRqairWrl2LDRs2YOnSpbLjYmNjYWZmhuPHj2PFihVYvHixdG0q9erVSyv9KBGRRBARNSL3798XJ0+eFPfv3xd9S94TRsUvafXRt+S9OsVdWFgoDAwMxJYtW6R9paWlolWrVmLFihXi559/FgBERkaG6Ny5sxgxYoR48ODBkzqNtdq3co8Itp0oe8QGbRRCCHHjj+tqZcG2E6XnRr8VqVZ2YucxIYQQv2z8Wa1s38o99Y5v1apVwtHRUbavX79+Ytq0adK2o6OjWLVqlbQNQOzatUsIIcTmzZuFq6urqKiokMofPHggTExMxIEDB4QQQtjZ2YkVK1ZI5WVlZaJ169Zi6NCh1ca1a9cuoVQqxf3794UQQty5c0cYGxuL/fv3V/uclStXiu7du0vbCxcuFF26dKm2XUIIMXToUBEQECCEEOLKlStCX19f5OXlyY558803xdy5c6t93aZNm4qvv/5atq93795i8uTJsn0eHh6yeKpSqVTC3Nxc7Nnzv+sIQEycOFF2XO/evcWkSZOqrafS+vXrRfPmzUVxcbG0b+3atQKAOHPmjBBCiCVLloiBAwfKnnf16lUBQGRlZQkhHp43Nzc32TWePXu2cHNzk7arvkeq2rlzp2jevLm03alTJxEeHq7x2NpiunfvnjA0NBQ7duyQyv/66y9hYmKidn01qct1/uqrrwQA8fvvv9dYl6Zrtn79epGYmCjOnj0rvvnmG2Fvby+GDx+u9tzhw4eLwMDAWuNtaNcX54rzhr/KHlcDsoUQQpRcKFIrO2/4q/TcnNfOqpXd2nJDCCHEzc/z1cou+aTVOz72SU+mT1q4cKEwNTUVd+/elfZ5eXkJJycnoVKppH2urq4iIiJC2n703E6dOlX0799fdm4rRUVFifbt24vS0lKNMWm6ZgsWLJC2CwsLBQDpfM6ePVt07NhRVsf8+fMFAHHr1q1q217pvffeE56enrJ9M2fOFB06dJDF5O3tLTtm1KhRYtCgQXVqU03q297Kzy6Ptq2kpESYmpqKX3/93++gEEKMGzdOjBkzRva83bt3y45ZuHCh0NfXF9euXZP27d+/X+jp6Yn8/HwhhBCtWrUSy5Ytkz2vZ8+eIigoSAghxKVLl2R/LzSZPHmyGDFihLQdEBCg9ntUtZ558+ap/Y6uWbNGKJVK6b3Yr18/8eqrr6rFNnv2bNm+mJgY4eTkVG18lZ91t27dKqKiosSNGzeqPZaI6HE8OwsxEBE9x3JyclBWVgYPDw9pn4GBAXr16oWMjAz07NkTwMOpd7169cL27du1egOHV8a+ho4DO8v2mVo+HD1iadcMoQfmVvvc9z71R2lRqWyfVZvmAAD3Id3h1N1ZVmbRsmlDhFwvqampuHjxIszNzWX7S0pKkJOTgzt37iA/Px+9e/eWypo0aYIePXrUOBXPx8cHBgYGSEhIwOjRoxEfHw8LCwsMGDBAOmb79u1YvXo1cnJyUFhYiPLycrUpmPVx7tw5qFQqtG/fXrb/wYMHaN68ebXPKy4uVpsWnJWVJRt5ATwcuXDo0CFp+/r161iwYAGSkpJw48YNqFQqFBUVITc3V/a8Pn36qG3X5e6LlSNDHo2tal2pqan4+eefpdF4j8rJyZHOxcsvvwyFQiGrJyoqCiqVSuPv18GDBxEREYHMzEzcvXsX5eXlKCkpQVFREUxNTREcHIxJkybhhx9+wIABAzBixAhpFEttMRUXF6O0tFT2nrKysoKrq2ut5wSo+3U2NDSUYqpUl2v24YcfSj936tQJdnZ2ePPNN5GTk4MXXnhBKjMxMVEbKfg0NPugJcwHy2/+oG/58GOsQWsjOB+rfsST/RftUFEkvwutgaMRAKDpyOYwfVl+zfSUT7/vZZ+kuU8CHk5XffS8tGzZEvr6+rK1L1u2bIkbN25orDcwMBCenp5wdXWFt7c3Bg8ejIEDBwIA3n33XXz66adwdnaGt7c3fHx8MGTIkBrXqnv098vMzAwWFhbSa2dlZUl/zyv16tWr2rqqysjIwNChQ2X7PDw88Omnn8r6LU39a+WU3sdpU01qaq8mFy9eRFFRETw9PWX7S0tL4e7uLtunaQSog4MD7O3tpe0+ffqgoqICWVlZMDU1xZ9//in7LAU8PEepqanVxrRmzRps3LgRubm5Ul9c3zthZ2RkoE+fPrK/KR4eHigsLMS1a9fg4OAAAGr9r52dndr50lY/SkRUiYlAImq0Oui1AyqegRga0FtvvYX4+Hikp6f/rak8f1fTlk3RtJoEnYGxAdp0dqj2uS3bVb+4ttLaHEpr82rLn5bCwkJ0794dW7ZsUSv7O4ulGxoaYuTIkdi6dStGjx6NrVu3YtSoUdIXsN9++w1+fn5YtGgRvLy80LRpU8TFxdW4Vpyenp7aF/1H1+8qLCyEvr4+Tp06pZbc0pSUqmRtbY1bt27Vu40BAQH466+/EBMTA0dHRxgZGaFPnz7S9MWnobCwEEOGDEFkZKRamZ2d3WPVefnyZQwePBiTJk3CsmXLYGVlhaNHj2LcuHEoLS2FqakpPvjgA3h5eWHv3r344YcfEBERgaioKEydOrXWmC5e/Hs3NqrrdTYxMZF9UQUe75pVJpwuXrwoSwQWFBTItp8WAztDGNgZaizTM9aDiXv173UjV5Nqy5q0MECTFtq/sy/7pOr7pKp3XlYoFBr3VVRo/kDQrVs3XLp0Cfv378fBgwfh6+uLAQMG4Ntvv0WbNm2QlZWFgwcP4scff0RQUBBWrlyJw4cPV3vH5/q8tjY8TptqUt/2Vq6runfvXllCDwCMjIxk20/jjsxxcXEIDQ1FVFQU+vTpA3Nzc6xcubLaqeR/V13OV0FBgc7diIaIni1MBBJRo9WY7tb7wgsvwNDQEMnJyXB0dATw8ItTSkqKbNH15cuXQ6lU4s0330RSUhI6dOigpYifb926dcP27dthY2NT7cgXOzs7HD9+HH379gXw8MYTp06dQrdu3Wqs28/PD56enkhLS8OhQ4dk6wf9+uuvcHR0lK0ZdeXKlRrra9GiBfLz86VtlUqF8+fPS4u0u7u7Q6VS4caNG3jttddqbvgj3N3dkZ6eLtvn6uqKlJQU+Pv7S/uqrneWnJyMzz//HD4+PgAe3uCg6k06AODYsWOyeo4dO6Y2GkQTNzc3bN68GSUlJdLooGPHjsmO6datG+Lj4+Hk5FTjKJeqX/Qq18fTNBrw1KlTqKioQFRUlDTSqHINqUe1adMGEydOxMSJEzF37lx88cUXmDp1aq0xvfDCCzAwMMDx48elkSO3bt1CdnY2+vXrV8tZefzrDNT9mj2qcvRm1cTq+fPnMXLkyHq9PtWOfZLmPqmhWFhYYNSoURg1ahRGjhwJb29vFBQUwMrKCiYmJhgyZAiGDBmCyZMn48UXX8S5c+dqPa+auLq6ym4gBKj3oTVxc3NDcnKybF9ycjLat28v67eq9onHjh2Dm5ubtN2QbaqJoeHD5LxK9b8Rt4/eqKgufVtVubm5+PPPP9GqVSsAD9ump6cHV1dXWFhYoFWrVkhOTpbVnZycXO3Iy+TkZLzyyiuy0e45OTlq7Xi0DZq4ubkhPj4eQgjpny3JyckwNzdH69at69XG8+fP1+nvIRHRk8KbhRARPQVmZmaYNGkSZs6cicTERKSnp2P8+PEoKirCuHHjZMd+8skn8PPzQ//+/ZGZmamliJ9vfn5+sLa2xtChQ3HkyBFcunQJSUlJCA4OxrVr1wAA06ZNw/Lly7F7925kZmYiKCioTnd97Nu3L2xtbeHn54e2bdvKpvK5uLggNzcXcXFxyMnJwerVq2tc7B8A+vfvj71792Lv3r3IzMzEpEmTZHG0b98efn5+8Pf3x3fffYdLly7hxIkTiIiIwN69e6ut18vLC0ePHpXtmzp1KjZs2IDY2FhcuHABS5cuxdmzZ2UjzFxcXLB582ZkZGTg+PHj8PPzg4mJ+oirnTt3YuPGjcjOzsbChQtx4sQJTJkypbbTh/feew8KhQLjx49Heno69u3bh08++UR2zOTJk1FQUIAxY8YgJSUFOTk5OHDgAN5//33Zl7nc3FzMmDEDWVlZ2LZtGz777DNMmzZN4+u2a9cOZWVl+Oyzz/DHH39g8+bNWLduneyYjz76CAcOHMClS5dw+vRp/Pzzz9KX79piUiqVGDduHGbOnIlDhw7h/PnzCAwMlE1vrMnjXmeg9muWk5ODJUuW4NSpU7h8+TISEhLg7++Pvn37yqa5Xb58GXl5ebJppdQw2Cdp7pMaQnR0NLZt24bMzExkZ2dj586dsLW1haWlJTZt2oQNGzbg/Pnz+OOPP/DNN9/AxMRE+oddfU2YMAGZmZmYPXs2srOzsWPHDulGH1VH6moSEhKCn376CUuWLEF2djZiY2Pxr3/9S+2GScnJyVixYgWys7OxZs0a7Ny5U+rbGrpNNXF0dIRCocC///1v/Pe//0VhYSHMzc0RGhqK6dOnIzY2Fjk5OTh9+jQ+++wzxMbG1lqnsbExAgICkJqaiiNHjiA4OBi+vr6wtX0422DmzJmIjIzE9u3bkZWVhTlz5uD333+vtm93cXHByZMnceDAAWRnZyMsLEwtOevk5ISzZ88iKysLN2/e1HjX7KCgIFy9ehVTp05FZmYmvv/+eyxcuBAzZsyocz9e6ciRI9L0dCIibWAikIjoKVm+fDlGjBiBsWPHolu3brh48SIOHDiAZs2aqR27atUq+Pr6on///sjOztZCtM83U1NT/PLLL3BwcMA777wDNzc3jBs3DiUlJdJonJCQEIwdOxYBAQHSdKLhw4fXWrdCocCYMWOku+U+6u2338b06dMxZcoUdO3aFb/++ivCwsJqrO///u//EBAQAH9/f/Tr1w/Ozs7SyJtKX331Ffz9/RESEgJXV1cMGzYMKSkp0sgzTfz8/JCWloasrCzZvrlz5yI0NFSaThcYGChbt2vDhg24desWunXrhrFjxyI4OBg2NjZq9S9atAhxcXHo3Lkzvv76a2zbtq1OI1yVSiX27NmDc+fOwd3dHfPnz1ebbls5IkSlUmHgwIHo1KkTPvroI1haWsq+kPn7+6O4uBi9evXC5MmTMW3aNNlaeI/q0qULoqOjERkZiY4dO2LLli2IiIiQHaNSqTB58mS4ubnB29sb7du3x+eff17nmFauXInXXnsNQ4YMwYABA/Dqq6+ie/futZ6TSo9znYHar5mhoSEOHjyIgQMH4sUXX0RISAhGjBiBPXv2yOrZtm0bBg4c+EQSCrqOfZLmPqkhmJubY8WKFejRowd69uyJy5cvY9++fdDT04OlpSW++OILeHh4oHPnzjh48CD27NlT41qGNWnbti2+/fZbfPfdd+jcuTPWrl0rjbasOi1Wk27dumHHjh2Ii4tDx44d8c9//hOLFy9GYGCg7LiQkBCcPHkS7u7uWLp0KaKjo+Hl5QUADd6mmtjb22PRokWYM2cOWrZsKf2zZ8mSJQgLC0NERITUX+7duxdt27attc527drhnXfegY+PDwYOHIjOnTtL/SwABAcHY8aMGQgJCUGnTp2QmJiIhIQEuLi4aKxvwoQJeOeddzBq1Cj07t0bf/31l9pauOPHj4erqyt69OiBFi1aqI3KrGzrvn37cOLECXTp0gUTJ07EuHHjsGDBgvqcMvz222+4c+cOR1YTkVYpRE0rDBMRPWOKioqQkZEBNzc3mJqaajscokZt5syZuHv3LtavX1/tMZ6enrC1tcXmzZvrXK9CocCuXbswbNiwBoiSngWlpaVwcXHB1q1b1RbqJ2oodemTGptly5Zh3bp1uHr1qrZDeeaFh4dj9+7ddbqxVGM1atQodOnSBfPmzav2mMrPutnZ2cjPz8fYsWO5piARNSiOCCQiItJR8+fPh6Ojo7SQeVFREaKjo5GWlobMzEwsXLgQBw8eREBAgJYjJW3Lzc3FvHnzmASkJ6pqn9QYff7550hJSZGWGFi5ciX7UALw8B8qnTp1wvTp07UdChHpOCYCiYiIdJSlpSXmzZsnTV1VKBTYt28f+vbti+7du2PPnj2Ij49v0DXhPv74YyiVSo2PQYMGNdjrNDZHjhyp9rzUdKfVp6Vdu3aYMGGCtsOg51zVPqkxunDhAoYOHYoOHTpgyZIlCAkJQXh4OABg0KBB1f6Of/zxx080rme9j9EFhoaGWLBggcZ1dYmIniZODSaiRoVTg4kat4KCAhQUFGgsMzExgb29/VOO6NlQXFyMvLy8asvbtWv3FKMhoichLy8PxcXFGsusrKxgZWX1xF6bfUzjwanBRPSkNdF2AERERKQ7nvSX3cbKxMSEX8SJnnPa/EcH+xgiIqrUeMfdE5FOa8zrBxERERERaVL5GZcT94joSWEikIgaFUNDQwBAYWGhliMhIiIiImpYlZ9xS0tLtRwJET2vODWYiBqVJk2awNraWlrnRqlUNupFxYmIiIiIKioqUFhYiLy8PNy+fZuzX4joiWEikIgaHQcHB6hUqhoXvSYiIiIiamxu376N69evo7y8HPr6+jAwMNB2SET0nGEikIgaHYVCAWdnZyQkJODKlSto0aIFPyQRERERUaNWVlaGiooKlJWV4ebNm2jbti3Mzc21HRYRPWcUgquQElEjVVRUhMTERFy4cAEVFRVQKBTaDomIiIiI6LEJIaBQKODg4IDBgwfDwsJC2yER0XOGiUAiatRKSkqQn5+P4uJi3l2NiIiIiBo9ExMT2NjYQKlUajsUInoOMRFIRERERERERESkA3irTSIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIB/w/V0Y5TgQ+80gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 1. Update gaps and missing from outliers\n", + "dataset.update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=6)\n", + "\n", + "# 2. update settings\n", + "dataset.update_gap_and_missing_fill_settings(gap_interpolation_method=None,\n", + " gap_interpolation_max_consec_fill=None,\n", + " gap_debias_prefered_leading_period_hours=24,\n", + " gap_debias_prefered_trailing_period_hours=4,\n", + " gap_debias_minimum_leading_period_hours=24,\n", + " gap_debias_minimum_trailing_period_hours=4,\n", + " automatic_max_interpolation_duration_str=None,\n", + " missing_obs_interpolation_method=None)\n", + "\n", + "# 3. Get modeldata\n", + "\n", + "era5 = dataset.get_modeldata(modelname='ERA5_hourly',\n", + " modeldata=None, obstype='temp',\n", + " stations=None, startdt=None, enddt=None)\n", + "\n", + "if not os.path.exists(os.path.join(folder, 'era.pkl')):\n", + " era5.save_modeldata(outputfolder=folder, filename='era.pkl')\n", + "\n", + "\n", + "dummy_mod = metobs_toolkit.Modeldata('ERA5_hourly')\n", + "era5 = dummy_mod.import_modeldata(folder_path=folder,\n", + " filename='era.pkl')\n", + "\n", + "# 4. convert units of model\n", + "era5.convert_units_to_tlk('temp')\n", + "\n", + "# 5. fill missing obs\n", + "dataset.fill_missing_obs_linear()\n", + "\n", + "# 6. fill gaps\n", + "dataset.fill_gaps_era5(era5)\n", + "\n", + "# 7. Make plot (of single station for clearity)\n", + "ax3 = dataset.get_station('vlinder28').make_plot(colorby='label')\n", + "\n", + "#translate axes\n", + "ax3.set_title('Temperature for vlinder28')\n", + "ax3.set_ylabel('T2m in °C')\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "8d33fc6f-c278-4cd6-ab09-eb958eb00e6f", + "metadata": {}, + "source": [ + "## Diurnal Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6d2ff2be-c838-44de-a0dc-6ec3fc27440d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7sAAAi6CAYAAADsGGcrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZwcdZ3/8XddXX1M5so5SYBw34pccsl9eSKIKJegKCDqyiorrOxPcXXVXRfFXZBdlXvlUEQWYfHkFiJXkDMhkINM7mQyRx9VXdfvj540EzJnMklPZ17Px2Me9Mx8u/rTVdU9od/1/XyNJEkSAQAAAAAAAAAAAABQR8xaFwAAAAAAAAAAAAAAwEgRdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAADj0FVXXSXDMGQYhq666qpalwMAGIduvvnm6t+i888/v98xjzzySHXM0UcfvVXr21axT0du1qxZ1X22aNGiWpcDAACAPgi7AQAAUJeOPvroTQ5r+wa9fMgLAAAAAAAA1CfCbgAAAADANqvvhTGPPPJIrctBneC8AQAAAID6QNgNAAAAAAAAAAAAAKg7dq0LAAAAAAAAAPpz9NFHK0mSWpcBAAAAYIxiZjcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAADAMs2fP1he/+EXtvffeamlpUTqd1syZM3XyySfr2muvVaFQGHIb559/vgzDkGEYuvnmm4ccf/PNN1fHn3/++cMeE0WR7rzzTp1yyinaaaedlMlkZBiG7r333mE91zlz5lS32dLSIs/zhnW/np4eNTQ0VO/74osvDut+A1m8eLGuv/56nXnmmdpnn33U1NQkx3E0ceJE7bvvvvr85z+v2bNnD7qNH/7wh9V6TjrppGE/9pNPPlm9X2trq3zfH3BsoVDQ9ddfrw9/+MPaYYcdlM1mNWHCBO266676zGc+o4ceemjIx9uc41gqlXTvvffq7/7u73TEEUdo6tSpSqVSamho0KxZs3TqqafqhhtuULlcHvbzl6R169bpO9/5jg488EC1tLSooaFBu+++uz772c/qmWeeqY5bX7dhGMPa7tq1a3X11VfrhBNO0Hbbbad0Oq3m5mbttdde+sIXvqBnn312RHUOZH1Njz76aPVnxxxzzAb1Duf1uKWObxzHuv322/X+979f2223nVzX1dSpU/Wxj31MTz311EbbKJfLuu2223TcccdV99v222+v8847T6+99tqQNRx99NHVGh555BFJ0pIlS/RP//RPeve7363W1lblcjntscce+vu//3u98cYbQ27znf785z/r4osv1t57763W1la5rqvp06frpJNO0rXXXqtSqTTkNvo7n/72t7/py1/+svbZZx+1trbKMAx99KMf3ei+zz33nL73ve/pQx/6kHbaaSc1NDQolUpp6tSpOuyww3TllVfqrbfeGtbjb8p5M9LXQn/HZDhjli9fru9+97s6+OCDNW3aNFmWpebm5n7vHwSBbrvtNp1xxhnaaaedNGHCBOVyOe24444688wz9Zvf/GaLtQh//vnn9bnPfa76/jV58mQdfPDB+rd/+zd1dHQMezuPPPJIdR8cffTRmzzmnYZzvDblfJw1a1b1PosWLZIktbe36//9v/+nd7/73Wpubq6+1r70pS9p8eLFw6q3q6tLd9xxhy666CK9973v1aRJk5RKpdTY2Kidd95ZZ555pn75y18qjuNhbW9LeuKJJ/TlL39Z73nPezRlyhQ5jqPGxkbtu+++Ou+883THHXds8H5QLpc1efLk6n7r7z1wIEcddVT1fv/xH/8x6NgXX3xRV1xxhd773vdq2rRp1b+Vu+++uz7xiU/ohhtuUFdX1yY/775q+doDAAAYdxIAAACgDh111FGJpERS8s1vfnNE9/3mN79Zve9RRx016Nh8Pp984hOfqI4f6KutrS35v//7v0G3dd5551XH33TTTUPWedNNN1XHn3feecMas3Tp0uSII47ot8bf/OY3/e6D/vbfAQccUP39//zP/wxZa5Ikyc9+9rPqfQ466KBh3Wcgl112WWIYxpD7XVLyyU9+MikUCv1uZ9myZYllWYmkxLKsZPny5cN6/M9//vPV7V944YUDjvvlL3+ZTJs2bcgaP/ShDyWdnZ0DbmdTj+Ps2bOThoaGYe2nWbNmJc8///ywnv9DDz2UTJ06dcBtmaaZXHXVVUmSJBv8fCjXXntt0tTUNGidhmEkn/nMZxLf94dV60CGs0+Gej1uqeO7evXq5Nhjjx10H9x4443V+8+fPz/Zc889BxyfSqU2OC/60/c98+GHH07+93//d9Bjkclkkv/+7/8e1r5+6623kqOPPnrI/TR9+vTkscceG3Rb7zyfvvnNb1Zfw32/TjnllA3ud9BBBw3rWDuOk/zrv/7rsB5/pOfNSF4LSbLxMRnOmHvvvTdpaWnZqJampqaN7vvwww8nO++885DP45BDDkna29uHVfNwXXnllf0et/VfM2fOTJ566qlh/Z17+OGHq2MG+ps9nDHvNJzjtSnn4w477FD9+cKFC5Pf/OY3Q77W7r///kFr/fWvf524rjus8/Ld7353smDBgkG3tyn7aziWLFmSnHDCCcOq873vfe8G9/3qV79a/d1nP/vZYT3e66+/Xr2P67rJ2rVr+x23bt265BOf+MSw/l0xderUfrfxzuM6mFq+9gAAAMYjWwAAAAD6VSwWdeyxx+rpp5+u/mz69Ol63/vep4aGBr3xxht64oknFEWRli9fro985CO64447dPrpp9ekXt/39ZGPfETPPfecbNvWYYcdpp133lm+7+v5558f0bYuvPBCXXTRRZKkG264QWefffaQ97nhhhuqtz/72c+OrPh3WLJkiZIkkWEY2n333bX77rtr4sSJchxHa9eu1Zw5c/Tmm29Kku688051d3fr/vvv32iGXltbm4499lj98Y9/rM6UvvTSSwd97CAI9Mtf/rL6/bnnntvvuB/96Ef66le/Wp2Z1djYqEMPPVQzZ85UFEV65ZVX9OyzzypJEt1///06+uij9Ze//EXZbHbQxx/JcVy3bp3y+bwkacqUKdp77701c+ZM5XI5FYtFvfHGG3r66acVhqEWLVqko446Ss8//7x22WWXAR9/9uzZ+tCHPqRisSipMrPxoIMO0t57761yuaynn35a8+fP11VXXaVJkyYN+lz6uvTSS/XjH/+4+v2kSZN06KGHatq0afI8T3PmzNHLL7+sJEl04403atmyZXrggQdkmpvWkOwLX/iCJOk3v/mNli1bJkn66Ec/qhkzZmw0ds8999zoZ1vq+IZhqNNOO02PP/640um0jjrqKG2//fbq6OjQn//8Z3V2dipJEn32s5/Vrrvuqt12203HHnuslixZosbGRh155JFqa2vTypUr9ac//UnFYlHlcllnnXWWXnnlFe24445D7ptnn31WV155pcrlsiZOnKijjz5aLS0tWrRokR599FEFQaBSqaSLLrpIlmXpggsuGHBbr732mo477jgtX75cUuV82X///bXXXnspk8lo6dKleuyxx9TT06Nly5bphBNO0IMPPqhjjjlmyDp/8IMf6Fvf+pYkaeedd9bBBx+sbDarRYsWyXGcDcaun7Htuq723ntv7bLLLmpqalKSJFq+fLn++te/as2aNQqCQJdffrkk6Wtf+9pGj7m5582W9OSTT+qqq65SEASaOHGijjzySE2aNEmrVq3SnDlzNhj7q1/9SmeffbaCIJAkZTIZHXLIIZo1a5ZM09Trr7+up556SmEYavbs2Tr00EP1zDPPaOrUqZtd59e//nV973vfq36fzWZ17LHHqq2tTStWrNBDDz2k9vZ2feADHxjy/XgsGcn5uN6f/vQnXXzxxYqiSNtvv70OPfRQNTY2auHChXrkkUcUhqFKpZLOOOMMvfzyywO+fletWlXtMDJz5kzttddemjZtmrLZrPL5vF577TU9//zzSpJEf/vb33TkkUfqhRde0MSJE7fMzujHK6+8ohNOOKH6XiBV/i4ddthhmjx5sjzP05tvvqk5c+aoVCpt1DXmwgsv1NVXXy1Juuuuu3TNNdcol8sN+pg33nhj9fZpp52m1tbWjcYsW7ZMxx57rObNm1f9WXNzsw4//HC1tbUpCAK99dZbeu6559Td3T3sbjYDqeVrDwAAYNyqWcwOAAAAbIatMbO77+xey7KSa665JomiaIMxr7/++gazoBsbGwec8bOlZ3bbtl19Tv3V4Hle9fZQM7t7enqqM4YNw0jefPPNQWt95ZVXqtvL5XJJd3f3kM9vMP/2b/+W3HTTTcnq1asHHPPYY48lu+yyS/Vxb7vttn7H3XLLLdUxBxxwwJCPfd9991XH77jjjkkcxxuN+dOf/pSYpplIlVm13//+9/udXT5nzpxkr732qm7v85//fL+PuanHcfbs2cnXv/715KWXXhrw+axcuTI599xzq9s/7rjjBhxbKpWSXXfddYPn//TTT2807q677kqy2exGMw0HcsMNN2zwGvnZz36WlMvljcY99NBDyYwZM6pjB5uBO1zDmT37Tlvy+K7fZ6ecckqycuXKDcZ1dHQk73vf+6pjjznmmOSjH/1oIim5+OKLN3pdLVmyZIMZ35/+9KeHtR9SqVQiKbnssss2OJ/Wb7NvDdlsNnnjjTf63WY+n9/g8d///vf3O7arq2uD99O2trYBZ8L3PZ9s206ampr6nbX+zro///nPJw888EBSLBb73W4YhslNN92U5HK5RKrM8B5s9uumnDfDeS2M9DH6jrFtOzEMI/n2t7+90eun7/54+eWXk0wmU33/vuyyy5J169ZttO0333xzgw4S73//+4dV92AeffTRDWbPnn766UlHR8cGYzo7O5NPfvKTG5yLg/2dGyszu4d7PvadAey6bpLL5ZLbbrtto78lL7/88gbvd4O9fu+7777ke9/7XjJ//vwBxyxYsCA56aSTqtu74IILBhw72jO7u7q6NvjbMWnSpOT222/v9+9nPp9PfvGLX/T7fPue7327W/QnDMOkra2tOv7Pf/7zRmOCIEgOP/zw6phMJpNce+21/f798X0/ue+++5KPfvSj/T7ecGZ21/K1BwAAMJ4RdgMAAKAu9f1A9KCDDkq+8IUvDPurb7vbgT7kfeONN6phl6Tk2muvHbCWjo6OZNasWUN+YL2lw25Jyb777jtg2NPXUGF3kiTJ5z73ueqYK6+8ctDtfeUrXxnWB/ajbeHChUk6nU4kJQcffHC/Y3p6epJsNlutb+7cuYNus2/b+n/6p3/a6PdRFG3wof4999wz6PaWL19ebQnuOE6yZMmSjcZs6nEcife///3V7b/66qv9jrn++uuHFXImSZLcc889G9Q8UGDU3d2dNDc3V4Ot2bNnD1rnq6++Wj2mEydOHLBF/XCNNLTcGsf36KOPTsIw7Hd7ixYt2qhN8kCv/yRJkieeeKI6bsKECUkQBP2O67sf1ofnA+np6Un22GOP6thzzz2333H//M//XB1z6qmnbnQx0Dv1fQ/8/ve/3++YvjWappk8+uijg25zpO68887q9r/2ta8NOG4sht2Sku985ztDbrdvi/wf/vCHg47N5/MbXLAx1OtzKIcddlh1W8cdd9yA53kURcmJJ544rPN8rITdwz0f+4aihmEkDz744IBj77///urYhoaGAV+/w1Uul5N3vetdiaQknU5vdKHBeqMddl955ZXV7TU1NQ35d3Ygv/jFL6rbOfzwwwcd2/fCtJ133rnfYL3v8iqO4wy5jMJghhN21/K1BwAAMJ4RdgMAAKAuvTMA2NSvgT7kvfzyy6tj9ttvv34/RO3rrrvuqo53XbffWYtbI+weat3w9YYTdj/99NPVMTNmzBgwtCiXy8nkyZOrY//yl78Mq4bRsj7ENQwj6erq6nfMWWedVa2vvwB7ve7u7uqsLKn/YPzee++t/n6gGWDv9L3vfa96n6uvvnqj32/qcRyJvufof/zHf/Q75sADD6yO+frXvz7kNo855pghA6Nrrrmm+vtLL710WLVedNFF1fv8+te/HtZ9BjLS0HJrHN85c+YMur2+M6td191oBvg7bbfddtXxA83y77sfJkyYMOga40myYZCUTqc3Gl8ul5MpU6YMu8YkSZKlS5dWZ/3uu+++/Y7pu5/OOOOMIbc5UmEYVrtW7L///gOOG4th9/Tp04cMQ1944YXq+Pe85z1D/u1KkiS54447qvf50pe+NKza+/Pqq69usA9eeeWVQcfPmzdvg1ngYz3sHu752DcU/fCHPzzo2DiOk2nTplXHv/jii8N6jMH867/+a3V79913X79jRjPs9jyvekGTpOT666/frG21trYO+jd4vVNOOaU67l/+5V/6HdP3op3LL798k+tKkqHD7lq+9gAAAMY71uwGAAAA+vHQQw9Vb59//vkbrQX9TqeeeqpaW1vV0dEh3/f11FNP6eSTT97SZW6gpaVFJ5544qht76CDDtJ+++2nF154QUuXLtXvf/97feADH9ho3H333afVq1dLkvbaay8ddthho1aDVFmL9+mnn9brr7+uzs5OlUql6jrKkrRw4UJJqq5V+r73vW+jbZxzzjm6/fbbJUm33367vv3tb/f7WPfcc49KpZIk6cADD9Tuu+++0Zj/+7//q94+66yzhvUcjj322OrtJ554Ql/5ylcGHLupx7FYLGr27Nl66aWXtHr1avX09CiKourvly5dWr39wgsvbHT/np6eDdYEP+ecc4Z8zHPOOUcPP/zwoGM2dX/993//t6TK/jrttNOGdb/RsKWP784776z99ttv0O3tu+++evzxxyVJ73vf+zRlypRBx++zzz5asmSJpMrrYZ999hl0/Ec+8hE1NTUNOuYDH/iAJk+erNWrV8vzvI3e05599lmtWrVKknTccccNWaMkTZ8+XXvssYdee+01vfzyy+rq6hq0jk9+8pNDbrM/L774oubMmaNFixapu7u7utbxeuvfz1966SXFcbzJ68Jvbaeffrpse/CPcfqev2eeeeaQf7ukjc/fTdX3veCAAw7QXnvtNej43XbbTYcccoieeuqpTX7MrWlTzsePf/zjg/7eMAy9+93v1ooVKyRJixYt0r777jvofTo7OzV79my98sorWrt2rfL5vOI4rv5+7ty51dsvvPCCPvzhD4+47pGYPXu2Ojs7JUkTJkzQeeedt8nbcl1Xn/rUp3TNNddIkm644Qb927/920bjVq5cqQceeECSZFmWzj///I3GLF68eIN98cUvfnGT6xqOWr72AAAAxjvCbgAAANS9b37zm7rqqquGPf6qq67St771rQF/nyTJBmHgcMJbx3F08MEH63e/+50k6fnnn9/qYfd+++0ny7JGdZsXXnihLrnkEkmVD537C7tvuOGG6u0LLrhg1B77qaee0hVXXKHHH398g3B7MGvWrOn35yeccIKmTJmiVatWacGCBXryySf7Pa7/8z//U7197rnnDljXer/+9a/16KOPDllXV1dX9fb6UHIgIz2OHR0d+sY3vqFbb71VPT09w7pPf/vpxRdfrAYmjY2N2mOPPYbcznvf+94hx/TdXz/96U91yy23DHmf9vb26u2h9tdo29LHd6ggWqpc8LDe3nvvPeT41tbW6u3u7u4hxx966KFDjrEsSwcddFA1wJkzZ84G72l991N7e/uwg6T1oViSJGpvbx807D7ggAOGtc31brnlFn33u9/V66+/PqzxQRCoq6trg/09lg1nf/Q9Lg8//LAWL1485H36vr9uzuttzpw51dvDOcfWj6uXsHuk56OkIYNrSZo4cWL19mCv3/b2dl1xxRW6++67N7qAYyAD/U0cTbNnz67ePuSQQ5TJZDZrexdeeGE17L711lv13e9+d6OLPG655RaFYSipcmHO9OnTB61r11131cyZMzerrqHU8rUHAAAw3hF2AwAAAO/Q1dWlIAiq3++www7Dut+sWbOqt7fGB8zvNHny5FHf5tlnn61/+Id/UKFQ0G9/+1utXr16g8dpb2/X73//e0lSKpXSpz71qVF53BtvvFGf/exnhx1yrzdQ2Gvbtj75yU/qP/7jPyRJv/jFLzYKu5cvX16d0b9+fH+WLVtWvX3XXXeNqD5JWrdu3aC/H8lxXLx4sY488ki99dZbI6qhv/20fna+JM2cOXNYs9KGCg/y+fwGj/Xzn/98BFVWDLW/RtuWPr5DzaiWtEGwM9Lxfd+7BrL99tsPOead4/qeH9KG++nFF1/Uiy++OKxt9jVar4UkSXTBBRfopptuGnENPT09dRN2D2d/9D0uDz744IgfY3Neb33PkU05x8a6TfkbO5zXr+M41dsDvX7nzJmj4447bsTHZ7gXQG2OlStXVm/vtNNOm729PffcU0cccYSeeOIJrVy5Uvfff78++tGPbjDmxhtvrN7+7Gc/u1XqGkotX3sAAADjXX306gIAAAC2onw+v8H3uVxuWPfrO25rfMD8Tps7m6o/jY2N+sQnPiGp8iH8rbfeusHvb7755ups4FNOOUWTJk3a7Md89dVXddFFF1WD7r333ls//vGP9fTTT2vlypXVNubrv/q2TO3byvWd+s7U/uUvf7lRqHDHHXdU73/iiScO2Ja57yzeTbF+NtpARnIczzrrrGrQPWHCBP393/+9fve732nBggXK5/OKoqi6n/q2GO5vP/U977PZ7LAev6GhYdDfb+6+kobeX6NtSx/f4VxEsDnjh2O4x3ew97StcWyH+1r42c9+tkHQffLJJ+uWW27RSy+9pHXr1sn3/Q3eM/pewDTYe8ZYM5z9sbnHpe/SByO1Ke8hw/37OhZsyt/Y0Xj9+r6vj33sY9UwdPLkyfqnf/onPfzww1qyZIkKhYLiOK6e331fC1vj/O773jDU34ThuvDCC6u3+3aPkSrtvufNmydJamtr0wc/+MGtVtdgavnaAwAAGO+Y2Q0AAAC8wzs/FC0UCsP6QL5QKFRvT5gwYbPrGCshzOc+97nqLKobbrhBX/3qVyVpow/VB5pdNVLXXHNNNQQ76aSTdN999ymVSg04frgXFhx44IHaY489NHfuXK1Zs0a///3v9aEPfaj6+1/84hfV24OtV53L5aofaj///PN6z3veM6zHH21PPvmknnzySUmVc3b27NmDrpE71H7qe94Xi8Vh1dD3nO/PO183HR0dY34W7Vg5vlvSphzfd76n9T22f/d3f6cf//jHo1PcJvj3f//36u1vfetb+sY3vjHo+FpcjNSfLfEe3/e43HPPPTr11FNH/TEGsiXeQ7aUsfL3dTh+/etfa+HChZKkGTNm6JlnnlFbW9uA47f2+d33veGdFwtuqtNPP11f/vKXtW7dOj344INatmxZtVV53/D7/PPPH3DZjy1R12Bq+doDAAAY75jZDQAAALxDU1PTBm1Fh9sietGiRdXb/c1w7rvN4cxWHY2Zk6PhkEMO0bve9S5J0muvvVZdl/Lhhx/WggULJFVavR9//PGj8nh//vOfq7e/853vDBp0SxrWupjrnX322dXbfdfnfu211/T8889LqnxA/s6WqX1NnTq1envFihXDfuzR1nc/nXfeeYMG3dLQ+6nvObt06dJh1dB3be3+NDc3y3Xd6ve13F/DNVaO75Y03Pe0vmvIvvM9bazspyVLlmj+/PmSKufbP/7jPw46vru7e4u1C+7bTr5W7/G1PC5923xvyjm2Oer17+tw9H2vv/TSSwcNuqWR/U0cDX3PufWh/ObKZDLVi86iKNItt9wiqRLk/+pXv5JUmTV/wQUXbNW6BjNW3hMBAADGI8JuAAAA4B0Mw9B+++1X/X797NnBhGGoZ555pvr9/vvvv9GYxsbG6u21a9cOuc2XXnppyDFby+c+97nq7fWzqvrOrvr0pz8t0xyd/73ou+7lvvvuO+jYrq6uEa0VfPbZZ1fbyt53333VGXB9Z3Wfdtppg7arfe9731u9/Ze//GXYjz3aRrKfJOmxxx4b9Pfvete7qsewq6tLc+fOHXKbTz/99JBjDj744OrtWuyvkbYRHivHd0uaPXv2kGOiKBr0Pa3vfnryySeryw5sbX1fB3vssccGoWd/nnjiiWHVuintp0fyHl8ul/X666+P+DGGUsvzt28XhOGcY5KqF09trnr++zqU0X6vH22HHHJI9fZTTz2lUqk0Ktvt28p8fXeZO++8s9oN4KijjtLOO+88rLpef/31IS/O2lzj4W8HAADAWEXYDQAAAPTj2GOPrd6+5ZZbhgxH7r333uoH7Ol0WoceeuhGY2bNmlW9/cILLwy6Pc/z9Nvf/nb4BW9h55xzTjUAvuuuu9Te3q577rlHkmSapj7zmc+M2mP1Dc2HaoX785//fKO1twez44476rDDDpMklUol3XPPPUqSRLfffnt1zGAtzCVt0Pr8xhtvlOd5w3780TSS/bRs2TL97//+76BjGhsbNwir+l4AMJC+s+MH0nd/XX/99Vs9FE2n09XbwzlXxsrx3ZLuu+8+dXd3Dzrmd7/7nVatWiWp//e0ww8/XM3NzZIqM/xr9X41kteBVDkHh2Ok5400svf4++67b4ucW33P33vuuUcrV64c9ccYyDHHHFO9/eyzzw55wcwbb7wxamH3DjvsUL1A4Y033hiybfUvf/nLUXncrWEk5/hzzz23wUUqW8MhhxxSXZ6ip6dHt95666hsd5999qm+77zxxht69NFHN7jIbqilU3bYYQftueee1e+vu+66UalrILV87QEAAIx3hN0AAABAPz73uc9VP2B+/vnn9dOf/nTAsZ2dnfra175W/f7MM89UU1PTRuP6zvq5//77tWbNmgG3+Y1vfGPQ329tzc3NOuOMMyRV1r48/fTTq0HNiSeeqO22227UHmunnXaq3r7vvvsGHDd//nx961vfGvH2zz333OrtX/ziF3ryySc3WA+174UO/fnYxz6mXXbZRZK0fPlyXXLJJcMOcPP5/KitUTvc/RRFkS688EKVy+Uht9n3ooVrrrlm0Nav99133wbtdQdy0UUXVUPR559/fkTHbM2aNYqiaNjj+zNx4sTq7eG0Zx8rx3dL6u7u1te//vUBf18oFDZ4Tzv99NM3ek9zXVeXXnpp9ftLLrlk2O3vJY1aELTjjjtWQ86XX365urRCf+666y7df//9w9ruSM8bacP3+JtvvnnAcd3d3briiiuGtc2ROvjgg3X00UdLqlzQc+655w7rtS9VZptvTov3Pffcs3oxkSR9+ctfHnBt7DiO9Xd/93ejdvFLY2Oj9thjD0mVTiuDXawzZ84c/exnPxuVx90ahvteXywWN5gNvbW4rqtLLrmk+v3ll1+uefPmjcq2+z6fyy+/XH/9618lSS0tLfrYxz425P2/8pWvVG9fffXVevzxx0elrv7U8rUHAAAw3hF2AwAAAP3YeeedddFFF1W//+IXv6jrrrtuow/u33jjDZ144onVULCxsVHf+MY3+t3mQQcdVG25mc/ndeaZZ2704WaxWNQ//MM/6Ac/+MEGax2PBX1bma//wFkaenbVSH34wx+u3v7KV76i3//+9xuN+fOf/6yjjz5aPT09yuVyI9r+GWecUV0H/KGHHtK///u/V3935plnDtmO3bIsXX/99bIsS5J000036YMf/KBee+21Ae/zwgsv6PLLL9d22203amuHfvCDH6yGfI888oguu+yyjdrHrlixQh/72Mf0wAMPDGs/ffrTn64Gvfl8Xscff7yee+65jcbdfffdOuuss4Z1jjY1NelHP/pR9ftvfetbOu+88wZc0zdJEv3lL3/RJZdcou23336zW+Lus88+G9Q9VLg2Vo7vlpRKpXTdddfpiiuu2CiMWbp0qT74wQ/q1VdflVRZO/eb3/xmv9v56le/qr333rt6vwMPPFC/+tWvBgw416xZo5/+9Kfaf//99YMf/GBUnsukSZOq7YrjONbpp5++UdAWx7Guu+46nXvuubIsa4NZ2wMZ6XkjSWeddVb19p133qlrr712ozFz587VscceqzfffHOLvcf/53/+pxoaGiRJf/zjH3XkkUdu8J79Tq+//rq+/e1va9asWZvdfvlf/uVfqu9Lf/jDH3TWWWeps7NzgzHd3d0699xz9eCDD1bfi0dD3/1/xRVX6IknnthozIMPPqgTTzxxk9rU10rfv4m33HKLrr766o0uAlr/b5Hnn39+xH8TR8PXvva16r9vurq6dMQRR+jOO+/s93VTLBZ1xx13DKsjzBlnnFG90KbvOXz22WcP63V8/vnnVy/ACIJAJ598sn7yk5/0262hXC7rt7/9rU499dQhtzuQWr72AAAAxjO71gUAAAAAY9W///u/69lnn9UzzzyjMAz1xS9+Ud///vd1xBFHqKGhQW+++aYee+yx6ofOtm3rhhtu2KCVbV+GYeh73/tedYb0n/70J+2444467rjjNGnSJK1YsUKPPfaYOjs7NX36dH3hC1/QlVdeubWe7pAOP/xw7b333nrllVeqP5syZYo+8pGPjOrjXHrppfr5z3+u1atXq6OjQyeffLL2339/7bXXXjIMQ88//3y1hpNOOklTpkzRbbfdNuztt7S06AMf+IDuvfdeRVGke++9t/q7vrO+B3P88cfr+uuv1+c//3lFUaQHH3xQv/vd77TXXnvpXe96lxobG1UsFrV8+XL97W9/0+rVq0e0D4Zjjz320LnnnlttGXv11Vfr9ttv10EHHaQpU6Zo0aJFeuyxx1QulzVhwgT94Ac/0MUXXzzoNjOZjG6++WadcMIJKpVKWrBggQ466CC9973v1V577aVyuaynn366utbwtddeqy9+8YuSBl/j+Pzzz9eCBQv07W9/W5J066236he/+IX2228/7bHHHmpoaFA+n1d7e7teeOEFdXV1jcYuklRZg/3rX/+6kiTRAw88oHe961067LDDNGHChOqYT37ykzrwwAOr34+F47slfec739GVV16pf/3Xf9UNN9ygo48+Wi0tLVq8eLEeeeSRDQLwa665pnoBxDs1NDTovvvu0/HHH6+FCxdqxYoVOuOMM6oB9LRp05QkiTo6OvTqq69q/vz51SB8qA4KI/Htb39bJ554ouI41pw5c7Tvvvvq8MMP10477aR8Pq/HH39cy5cvl1QJY3/6059q8eLFg25zU86bI444Qh/84Af1wAMPSJK+9KUv6brrrtMhhxwiwzA0b948zZ49W3Ec6/zzz9fChQv16KOPjtp+WG+fffbRHXfcoU984hMqFov661//qkMOOUQ777yz9t9/f7W2tsrzPK1atUovvvjiiGbkD+Xoo4/WZZddVr2YYf1s+mOPPVbTpk3TypUr9dBDDymfz6ulpUVf/vKXddVVV43KY3/pS1/S9ddfr2XLlqmzs1NHHnmkDj/8cO2xxx7yPG+D1uo333yzzj///FF53C3txBNP1JFHHqnHHntMSZLosssu03XXXaf9999fTU1Nmj9/vp588klFUaQZM2boy1/+8gadGbaGxsZG3XPPPTrhhBO0atUqrVmzRmeeeaYuvfRSHXbYYZo8ebI8z9Obb76p559/XqVSSe9+97uH3G42m9XZZ5+tn/zkJxv8fLgX2dm2rbvuukvHHnus5s+fr2KxWP231eGHH662tjaFYajFixfrueeeU3d3d7+deYarlq89AACAcS0BAAAA6tBRRx2VSEokJd/85jdHdN9vfvOb1fseddRRg47t6elJzjjjjOr4gb7a2tqS//u//xvW43/rW98adFu777578vLLLyc33XRT9WfnnXdev9sazpih9sFI9t8111yzQa2XXXbZsO87Ek8++WQyadKkQffTRz/60aSzszM577zzqj+76aabhrX9u+++e6Pt7bvvviOu86GHHkp23XXXIc+P9V977713snTp0o22s6nHsVAoJCeeeOKgjzlz5szkiSeeSB5++OFhn/d//OMfk8mTJw+4TdM0k6uuuiopl8vVnzU1NQ1Z71133ZVMnz592Pvr4IMPTjzPG/b+GMg//uM/Dvo4A503tTq+I319Duc10Pc98+GHH07uvffepLGxccDnkk6nk5/85CdDPnaSJMnatWuTj3/844lhGMPaT83NzcnNN9/c77b6jhuJ66+/PrFte9Bz9hvf+EYSx3Gyww47VH++cOHCAbe5KefN2rVrkwMPPHDQ+11wwQWJ53kbHZP+DGfMQF544YXkgAMOGPb5O2vWrGTOnDkjeoyBXHHFFYlpmgM+1vTp05Mnn3xyWK+Nkbx3Pffcc4P+7UilUsl1112XJMnwzrVNOR+He36tN5zX74oVK5L9999/0OO31157Ja+88sqo79ORWLRoUXLkkUcO63w7/PDDh7XNF154YYP7HXjggSOua+3atcmpp546rLpmzJjR7zZGclxr+doDAAAYj5jZDQAAAAyioaFBd911ly699FLddttteuSRR7Rs2TKVSiVNmjRJ++yzjz70oQ/pM5/5zLBbh37jG9/QCSecoP/8z//U448/rlWrVqmxsVG77LKLPvnJT+qCCy5QQ0ODnnnmmS387EbutNNO22Cd3tFuYb7eoYceqldeeUXXXHONfvvb31bX4W1ra9MBBxygc845Z4PWriP1oQ99SM3NzRu01z3nnHNGvJ1jjjlGr732mu6991498MADmj17tlasWKHu7m5ls1lNnTpVe+yxhw477DC9//3v13777bfJNfcnm83qwQcf1O23365bbrlFc+bMUXd3tyZNmqSddtpJH/vYx3T++eerpaVFjzzyyLC3e/zxx2vu3Lm69tprde+992rBggUKgkAzZszQkUceqYsuukgHHXTQBusur1+XezBnnHGGTjnlFN155536/e9/r2eeeUarV69WPp9XLpfTjBkztOeee+p973ufPvCBD2i33XbbhL2yse9+97s64ogjdNNNN+m5557TypUrVSwWh7xfrY/vlnTKKafoxRdf1H/913/pgQce0FtvvaVyuazttttOJ598sr74xS9q1113Hda2Wltb9ctf/lIvv/yy7rjjDj3yyCNauHCh1q5dK9M01dzcrF122UX777+/jj/+eJ1wwgnDakE8EhdffLEOP/xw/ehHP9LDDz+sZcuWKZPJaMaMGTr22GP1mc98Ru95z3tGtM1NOW9aW1v15JNP6uc//7nuuOMOvfLKK8rn82pra9NBBx2kCy+8UCeccMLmPNVhe/e7361nn31Wf/jDH3TvvffqL3/5S3XWs+u6mjx5snbffXe9973v1UknnaRDDz101Np7f+9739Ppp5+un/zkJ3rooYe0fPlyNTQ0aNasWTrttNN04YUXatKkSaO2tvN6+++/v+bOnasf/vCH+u1vf6uFCxcqjmPNnDlTJ5xwgi655BLttddeo/qYW8PUqVOr59Wdd96pl19+WcViUVOmTNHuu++uT3ziEzr77LOVzWb19NNP16zOHXbYQY8++qj+/Oc/61e/+lW1q0J3d7dyuZx22GEHHXDAAfrgBz847K4w7373u7XTTjtV/x2wKf/uaG1t1T333KNnnnlGt99+ux555BG1t7dr3bp1ymQymjlzpvbbbz+dfPLJOv3000e8/f5qrtVrDwAAYDwykmQYC08BAAAAgCrrha5v/XrEEUfo8ccfr21BqKk//vGPOvHEEyVJJ598sh588MEaV4SBHH300dWW2Q8//LCOPvro2hYEAMOwaNEi7bTTTkqSRLlcTsuWLVNjY2OtywIAAMAYYta6AAAAAAD144Ybbqje/tznPlfDSjAW3HXXXdXbBx10UA0rAQBsi2688Uatn6dzxhlnEHQDAABgI4TdAAAAAIZlzpw51Zncra2tOuOMM2pcEWrpr3/9q2699dbq92eddVYNqwEAbGs8z9PPfvaz6vcXX3xxDasBAADAWEXYDQAAAGBInufpS1/6UvX7iy++eNTX3MXY8NZbb+njH/+4nnjiCfW36lUURfqf//kfnXTSSQqCQJL0kY98RHvsscfWLhUAsA37p3/6J61YsUKSdNhhh+nggw+ucUUAAAAYi+xaFwAAAABgbLr22mv1xhtvqLOzU3/+85/V3t4uSZo0aZK++tWv1rg6bClxHOvuu+/W3XffrSlTpuiAAw5QW1ubLMvSypUr9dRTT2n16tXV8W1tbfqv//qvGlYMANgW/O53v9Pvfvc7lUolPf3003rhhRckSYZh6Hvf+15tiwMAAMCYRdgNAAAAoF933323Hn300Q1+ZlmWbrjhBrW2ttaoKmxNq1at0oMPPjjg7w888EDdfffdamtr24pVAQC2RbNnz9aPf/zjjX5+2WWX6cgjj6xBRQAAAKgHhN0AAAAAhtTS0qLDDjtM//iP/6jDDz+81uVgC5o1a5b++te/6re//a1mz56t9vZ2rVmzRp2dnWpoaNDUqVN16KGH6rTTTtOHP/zhWpcLANgGZbNZ7bvvvrrkkkv0qU99qtblAAAAYAwzkv4WYQMAAAAAAAAAAAAAYAwza10AAAAAAAAAAAAAAAAjRdgNAAAAAAAAAAAAAKg7hN0AAAAAAAAAAAAAgLpD2A0AAAAAAAAAAAAAqDuE3QAAAAAAAAAAAACAukPYDQAAAAAAAAAAAACoO3atC8Dm8TxPL730kiRp8uTJsm0OKQAAAAAAAAAAAICxJQxDrV69WpK07777Kp1Ob/Y2SUbr3EsvvaSDDz641mUAAAAAAAAAAAAAwLA8/fTTOuiggzZ7O7QxBwAAAAAAAAAAAADUHWZ217nJkydXbz/99NNqa2urYTUAAAAAAAAAAAAAsLHly5dXO1b3zTg3B2F3neu7RndbW5tmzpxZw2oAAAAAAAAAAAAAYHB9M87NQRtzAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdsWtdAAAAAAAAADZfksTy/RWSJMeZKMtya1wRAAAAAGxZhN0AAAAAAAB1Lgi6lM+/pjDMV35gGLKtCUqlJiqVmijbbpJhGLUtEgAAAABGGWE3AAAAAABAnYrjUMXimyp57YrCokreEiVxINuZINuaoCBYp2JpkUzDlpOaqJRTCb9NM1Xr0gEAAABgsxF2AwAAAAAA1CG/vEaF/DxFUVGet1zlYK1MMy0nNVFh2KMg6JRkyDQzcpxGBUG3fHulJMmxm5RKTZTjTJRtT2DWNwAAAIC6RNgNAAAAAABQR+LYV74wX76/UmHQLc9bqjgJ5brTlEpN7g2u2xTHgcKwR2HYo3J5tfxkhQzZsp0JCuxGlctrZZi2TCNVbXfuOK0yTafWTxEAAAAAhoWwGwAAAAAAoE543jIVCvMVRZ48f6mCoFOWNUENmZ1kmu4GY03TUSrVqlSqVUkSK4qKveF3t4JgnSRDlpmthN9hlzx/uQwZsu1GpVKTetf6nlCbJwoAAAAAw0DYDQAAAAAAMMZFUUn5/FyVgw4F5Q553nLJSJROb69UqmXI+xuGKdtukG03qDLru1yd9e37q+T7K2QYjmx7gmy7UeVyhwzTkmm6vet8T5LjtMg0+SgJAAAAwNjB/6EAAAAAAACMUUmSqFR6S8Xigspsbq9dYdQj225WOj19k1uOm+bbrcsrs74LfWZ9d0gyZFs52XajgqBLnr9Mhkw5TlNv8D1Rtp0b3ScLAAAAACNE2A0AAAAAADAGhWGPenpeUxh2q1xeU2kzbtjKZHaU4zSO2uNUZn1P6G1ZPl1x7FeDb89fLvnLZBqp3uC7U+XyWskwZZnpartzx2mRYVijVhMAAAAADAdhNwAAAAAAwBiSJJGKxYUqld5SGBVVKrUrjotKpSbJdadt8VDZNF2lUq5SqUm9s77zCoJuBWG3ysEaVWZ9N/SG390qee29s75bemeLT5JlZbZojQAAAAAgEXYDAAAAAACMGeVyh/L5uYqignx/pfzyapmmq2x2l5q0Da/M+m6UbVdmkkeRpzDsVhj2yPOXSf5SmaYr25qgIOhSuby6MuvbyvZZ67tZhmFu9doBAAAAbPsIuwEAAAAAAGosjgMVCm/I85cpCvMqee2K47Jcd6pSqcljJiy2rLQsKy3XnaIkiRSG+co632FX76xvU449QZY1QYHdpZK3RIZhKeW0Vtf6tiy31k8DAAAAwDaCsBsAAAAAAKCGfH+V8vl5iqKiPH+FgmCtLCunXG6WLCtd6/IGZBiWHKdJjtMkSYqiUnXWd+Avlfx2mWZajt2oMOiS76+SjEoL9PXtzm27SYZh1PiZAAAAAKhXhN0AAAAAAAA1EEW+CoV58surFQRd8rylSpJI6fQMOc7EuguBLSsjy8rIdacqScLqrO9y0CG/vEqGLNn2+rW+16lYWizTsOU4rb3h90SZJrO+AQAAAAwfYTcAAAAAAMBWlCSJPG+ZCsX5ikJPvr9UQdgl225UOj1DppmqdYmbzTBsOU6zHKdZSZIojksKwx6FYbdK3hJJkmlm5diVtb59f2Vl1rfd2LvW90TZdmPdBf4AAAAAti7CbgAAAAAAgK0kDAvK519TEHYpKHfI85ZJhqFMZgc5TnOty9siDMOQZWVlWVm57lTFcdBn1vca+eWVMmTLdibIticoKHeoWFoo03CUSk2Uk5qolDNRpunU+qkAAAAAGGMIuwEAAAAAALawJIlVKi1WsbhIUVRSyVuiKCrIcVqVTrfJMMbPRzSm6SiValEq1aIkSRRFxd61vrsVBOskGbLMrGxngoKwW5a/QoZ6Z31X1/qeUOunAQAAAGAMGD//JwUAAAAAAFADQdClfP41hWFefnmVfH+lDMNRNrvTuA9tDcOQbedk2zlJbb2zvrsVhj3y/VXy/RUyDEe2XZn1XS53yDAXyDTdartzx2lh1jcAAAAwThF2AwAAAAAAbAFxHKpYXFCZxR0WVfKWKI59pVKT5LrTZBhmrUsccyqzvishdpLEiqJCda3vIOiQVGmJbtuNCoJOef6yyqxvp0kpZ1LvWt8NtX4aAAAAALYSwm4AAAAAAIBRVi6vUT4/T1FUlOctVzlYK9NMK5fbRZaVrXV5dcEwzOqMbmm64tjvDb575Psr5fvLZRop2XajrKBLgd2hQtGUZaaVSk3qXeu7RYZh1fqpAAAAANhCCLsBAAAAAABGSRyXlS+8Lt9fqTDokee1K04Cue40pVKTZRhGrUusW6bpKpVylUpN6p31nVcY9igIulUO1qgkQ7bV0Dvru0um1y5DphynWalUZdY3FxoAAAAA2xbCbgAAAAAAgFHgectVKMxXFJXk+csUBOtkWQ1qyOwk03RrXd42pTLru1G23ah0eobi2FcQVNb69vxlkp9UZ30HQZfK5TWSYcoyM73B9yQ5TgsXHwAAAAB1jrAbAAAAAABgM0RRSfn8XJWDDgXBOnmlZZKRKJ2eqVRqYq3LGxdM05XrTpbrTlaSRArD3lnfYZfKwRpJRqUlulUJv0veEllmWq47Tel0GzO+AQAAgDpF2A0AAAAAALAJkiSR5y1RofCmosiT57UrjHpk281Kp6fLNJ1alzguGYYlx2mS4zRJqlyMsH6tb89fKvmJLDMnx2lRGOZVLC2SYzcpnZ6uVGoyxw0AAACoI4TdAAAAAAAAIxSGPerJz1UYdKlcXivPXy7DsJTJzKqGrBgbLCsjy8rIdacoScLedb7XyfOXyvOXynGaFNotCoJOGYallDtZabdNjtNKm3MAAABgjCPsBgAAAAAAGKYkiVUsLlSptFhhVJRXWqooLshxJiqdbpNhWLUuEYMwDFuO0yLHaVEcBwqCdb1fC2UYjlJOi8KoKN9fKdN0lXanyXXbZNu5WpcOAAAAoB+E3QAAAAAAAMMQBOvU0/Oaoqgg318lv7xKpplSNrsLYWgdMk1HrjtFrjtFUVRUEKxTOVjbe1yzSjktisKCiqXFcuwmuW6bXHcKbc4BAACAMYSwGwAAAAAAYBBxHKhQfFOet1RRWFDJW6I4LiuVqgSlhmHWukRsJsvKyrKyct02hWF3b5vzZfL8ZXLsRgVOq4KgU4XC60qlJimdbpPjTKTNOQAAAFBjhN0AAAAAAAAD8P3VyhfmKQqL8v0VKgdrZFlZ5XK7ybLStS4Po8wwTDlOsxynubfNeaeCoENBaaE82XKcZoVRoTL720jJTU9T2m2TbTfUunQAAABgXCLsBgAAAAAAeIco8lUozJNfXq0g6JbntStJIqXTM5jRO05U2pxPlutOVhSVqut7l4M1Ms2MUk6roqioUukt2dYEpdNtct2pMs1UrUsHAAAAxg3CbgAAAAAAgF5Jksj3l6tQmK8oKsnzlioIu2TbE5ROzyTIHKcsKyPLysh1pykMezZqc247LQrDLhUKbyiVmijXbVMqNZEW9wAAAMAWRtgNAAAAAAAgKYqK6sm/VmldXe6Q5y2TDEOZzPZynJZal4cxoNLmvEmO06Q4DhWGnSqXOxSUFr2jzflqmYYj152mdLpNtj2h1qUDAAAA2yTCbgAAAAAAMK4lSaxSabGKxUW9s7nbFUZ5OU6LXHe6TJOPT7Ax07SVSk1SKjWpnzbn6bfbnHtLZFsNfdqcu7UuHQAAANhm8H9rAAAAAABg3AqCbuXzrykMe+SXV8n3V8owHGWzOzEbF8P2dpvztj5tzpfL85fLtifIcVoUht29bc4n0eYcAAAAGCWE3QAAAAAAYNxJkkiFwpu9s7iLKpWWKI693iByGiEkNolhGHKcRjlOo5IkrLTED9apVFosT1Zv6N23zflUpdPTubACAAAA2ESE3QAAAAAAYFwpl9cqn5+rKCrK81eoXF4j03SVy+0iy8rWujxsIwyjb5tzb6M2547TrDAsquS1y7Zyct02ue40WRZtzgEAAIDhIuwGAAAAAADjQhyXVSjMl+evUBj0yPPaFSeBXHeaUqlJzObGFmNZaVlWJcyOorzK5Q75/kr5/krZVoOcVKvCsEfF4ptynFal021KpSZzTgIAAABDIOwGAAAAAADbPM9foUL+dUVRSZ6/XEHQIctqUENmJ5kmM2mxdRiGIdueINue0NvmvGuDNue206xUmFc5WCvTsOW60+S60+Q4TbUuHQAAABiTCLsBAAAAAMA2K4o85fNzVQ7WKgg65ZWWSkaidHqmHKdVhmHUukSMU5U25xOVSk1UHPsqlzt6W52vlWmkemd7l1Ty2mVZWaXdNrluG23OAQAAgD4IuwEAAAAAwDYnSRJ5XrsKhTcURb58f6mCsEu23aR0eoZM06l1iUCVabpKp99ucx4E6+T7q/q0OW9RFOZVLC6Q47TITbfJTU2WYVi1Lh0AAACoKcJuAAAAAACwTQnDvPL5uQrCLpX9NfL85TIMS5nMLNpBY0zr2+Y8nY4UBJ0Kgk6VSm+pJFNOtc15h/KGJTc1Vel0mxynudalAwAAADVB2A0AAAAAALYJSRKrWFykUmmxwqgor9SuKC7IcSYqnZ4mw+BjENQPw7De0eZ8XW+b845qm/MoLMnzl8kyM70zw9tkWelalw4AAABsNfxfHgAAAAAAqHtB0Kme/GuKwrz88mr5/kqZZkrZ7M6y7YZalwdslkqb82ly3amKokKfNucrZFk5pZxWRVFBheICpZwWuW6bXHcKbc4BAACwzSPsBgAAAAAAdSuOQxWLb6rktSsKCyp57YpjX6nUZLnuVBmGWesSgVFTaXPeINtuUDo9XUHQrSDoUMlbopK3VI7TrCjMqxysU74wT25qitLpNtl2swzDqHX5AAAAwKgj7AYAAAAAAHXJ91crX5inKCzK91eoHKyVZWWUy+0qy8rUujxgi6q0OW9RKtWiOC73tjhfp8L6NudOS2+b8+WyzLTS6ely3Wm8NgAAALBNIewGAAAAAAB1JY595fOvyy+vUhh0y/OWKk5CuW6bUqlJzGDFuGOaKbnuVLnuVIVhQUHQUWnnX14py8wplWpVGFbanDtOs9Jum1KpKTJNPhoEAABAfeNftAAAAAAAoG543jIVCvMVRZ48f6mCoFOWNUENmZ1kmm6tywNqzrZzsu2c0ukZCsMulcvrVPKWSGqX4zQpDHoUlNfJMObJdafIddvkOC1cJAIAAIC6RNgNAAAAAADGvDgO1NPzksrBOgXlDnnecsmQMpnt5TgttS4PGHMMw5TjtMhxWhTHgYKgo7fV+YLeNufNiqKSPH+FLDMt152mdLpNlpWtdekAAADAsBF2AwAAAACAMS1JEvXkX5Xvr1ap9JbCqEeO0yLXnU4bZmAYTNN5R5vzdSoHa+WXV8kyc3KcFoVhXsXSIjl2k9Lp6bQ5BwAAQF3gX6wAAAAAAGBMK5UWq1xeo1LpLUVxSdnsjrLtxlqXBdSl9W3Ok2S6wrBbQdAhz18qz18qx25U6LQqCDplmvOVy+0q122jxTkAAADGLMJuAAAAAAAwZgXBOhWLC+T7KxVGPcpmd5JtT6h1WUDdq7Q5b5bjNPe2OV9X+SotlGE4SrvTFCehPG+ZGhr2kG031LpkAAAAYCOE3QAAAAAAYEyKIl/d3S8rCLrl+yvlutMIuoEtoNLmfIpcd4qiqFhZMsBbonLQoXR6psKwR5nM9spmZ8kwrFqXCwAAAFQRdgMAAAAAgDGnsk73ywrDgkqlt2RZDUqlptS6LGCbZ1lZZbM7KAxb5XlLVSi8Ljc1RUkSyvdXqKFhD6VSE2tdJgAAACCJsBsAAAAAAIxBxeKbCsrrVCotlgxDmcz2rBsMbEW2PUG53G7y/VXyy6sUBOuUTs9UFHty3alqyO0q03RrXSYAAADGOcJuAAAAAAAwpvj+ahVLi+X5yxXFRWWzO8s0+QgD2NoMw1Q6PU2O0yzPW6piaYGcsFlJHCgor1U2u7PS6RlciAIAAICa4f8UAQAAAADAmBFFJeXzryoIulQur5brTpdt52pdFjCuWVZaudzOKpc75PvLlQ/myXXbFFdbm+8u255Q6zIBAAAwDhF2AwAAAACAMSFJYnV3v6QwLMgrLZFtN8l1J9e6LAC9UqlW2XajfH+5PL+90to8M0Nh2K10ZjvlsjvJMKxalwkAAIBxhLAbAAAAAACMCfnC6wrDLhVLi2SYtjKZ7WpdEoB3MHtfm47TIs9rV6EwX25qspIkUtlfpVzD7nJTk2pdJgAAAMYJwm4AAAAAAFBznrdcnrdUJW+p4risXG4XZogCY5htNyiX203l8mr5/koFQafS6RmKYk9uarJyud1lWW6tywQAAMA2jrAbAAAAAADUVBjmlc/PVVDuUBB0KJ3eTpaVqXVZAIZgGKZcd6ocp1ml0lIVSwvlBE2Ko0DloEO57E5Kp7eTYRi1LhUAAADbKMJuAAAAAABQM3EcqrvnJYVRQSWvXY7TqlSqtdZlARgB03SVy+2kIFgnz1umoDBXabdNSRzK81aooWEPOU5jrcsEAADANoiwGwAAAAAA1Ey+MFdh0KNScZFM01U6PaPWJQHYRI7TItueIM9bIc9fqnKwTpnMTEVdeaXTM5TN7izT5ONIAAAAjB7+dQkAAAAAAGqiVGqX76+U5y1RnIRqyO0mwzBrXRaAzWAYtjKZmXKcFnleuwqF+Uo5ExXHofzyajXkdpPrTql1mQAAANhGEHYDAAAAAICtLgi6VSjMV9lfrSDsUiYzS6bp1rosAKPEtnPK5XZVubxGvr9SYdgtNz1dcewr5U9SQ243WVam1mUCAACgzhF2AwAAAACArSqOy+rpeUlh2CPPX65UarIcp6nWZQEYZYZhynWnyHGa5HnLVCotUhg0KY7KCsodymZ3VCazPR0dAAAAsMkIuwEAAAAAwFaTJIl6el5VGOZVLC2WZWXlutNqXRaALcg0XWWzOyoIOuV5yxQU5intTlOSRPL9lWpo2IMLXgAAALBJCLsBAAAAAMBWUyotUrm8RqXSW5ISZTI7MKsTGCccp1m2PUG+v0Kev0zloEOZ9HYKo7zS6RnKZXeWaTq1LhMAAAB1hLAbAAAAAABsFeVyh4rFhfLLqxRGPcpmdyLYAsYZw7CUTs+Q47SoVGpXofiGUs5EJXGksr9auYZdlabbAwAAAIaJsBsAAAAAAGxxUeSrp+cVBUG3fH+lXHeabHtCrcsCUCOWlVUut6vK5TXy/RUKwi6l09MV95Tle8vV0LC7LCtb6zIBAAAwxhF2AwAAAACALSpJYvX0vKQwLKhUeku23aBUakqtywJQY4ZhyHUny3Ga5XlLVSotVlDuUJwuKwg6lc3OYqkDAAAADIqwGwAAAAAAbFGF4psKgnUqlRZLhqF0ensZhlHrsgCMEabpKJudpSDolue1K1+YK9edqiQJ5fkrNKFhDzlOS63LBAAAwBhE2A0AAAAAALYY31+tUukted5yRXFR2ezOMk0+jgCwMcdplG3vLt9fKd9fqSDoVCY9U51RUWm3TbncLjLNVK3LBAAAwBgybnsAPfvss/rnf/5nnXjiiZo5c6Zc11VDQ4N22203ffrTn9YTTzwx7G0tWrRIl19+uQ444AA1NzfLcRy1trbqsMMO0z//8z9r1apVW/CZAAAAAAAwNkVRUT35VxQEnSoHa5ROT5dt52pdFoAxzDAspdPTlcvtKsMwVSi+oVJpiUqlJVq3brY8b1mtSwQAAMAYYiRJktS6iK3tyCOP1OOPPz7kuE996lP62c9+plRq4CtGb7vtNl100UUqlUoDjmltbdWdd96pE044YZPqHUx7e7u22247SdKSJUs0c+bMUX8MAAAAAABGKkkidXY+q3J5rfKF12Xbjcpmd6h1WQDqSJIkCoK18v0VUmIonW6Tk2qV4zSrIbcHF88AAADUmS2Ra47LvmHLllWuAJ0+fbo+/vGP633ve5+23357RVGkp556SldffbWWLl2qW2+9VUEQ6Pbbb+93O3/5y190/vnnK45jmaap8847T6eccoqmT5+ut956S7fccot++9vfqqOjQ6eccopefvll7bTTTlvzqQIAAAAAUBP5/OsKw24VS4tkmo4yGS7OBjAyhmEolZok226S5y1TyVuiIFindHqmwqBbmcwOymZnyTDGbfNKAACAcW9czuz+0Ic+pE996lP62Mc+JsuyNvr9mjVrdPjhh+v111+XJD366KM68sgj+93OAw88IEm67rrrdMkll2w05qtf/ap++MMfSpK+8IUv6Nprrx3Np8LMbgAAAADAmON5y9STf02l0hIFQadyuV1lWelalwWgzoVhj0qldiVJINedKjc1WZaVU0PD7kqlJta6PAAAAAxhS+Sa4/Kyx/vvv19nnHFGv0G3JE2aNElXX3119fu7776733FPPvmkJGnixIn9Bt2S9I1vfKN6+6mnntrUkgEAAAAAqAth2KN8fp6CcoeCoEPp9EyCbgCjwrYn9Abbk+X7K5UvvK5yebW6ul9Qd8/LimO/1iUCAABgKxuXYfdwHHPMMdXbb775Zr9jyuWyJGnHHXcccDtNTU2aNGnSBuMBAAAAANgWxXGo7u6XFEYFlbx2Oc5EpVIttS4LwDbEMEyl023K5XaTYdgqFN9UqfSWvNJSrVs3W6XSUo3DRpYAAADjFmH3AHz/7StBB5oBvvvuu0uSFi5cOOB2uru7tWbNmg3GAwAAAACwLcrnX1MY5lUqLpJpppVOT691SQC2UZaVVja7c2X97rBb+fw8+f4q5Qtz1dX1nMKwp9YlAgAAYCuwa13AWPXoo49Wb++55579jrn44ot14YUXau3atfqv//ovXXzxxRuN+fa3v73B+JFqb28f9PfLly8f8TYBAAAAABhtpdIS+eVV8rwlShQpl91JhsE19gC2HMMwlEpNlG03yfeXqeQtUbncoXSmEoBnMtsrm91RhtH/RBYAAADUP8LufsRxrO9///vV788444x+x33mM5/RE088oVtvvVVf+MIX9Nxzz+kjH/mI2tra9NZbb+m2227TvffeK0m68sordfzxx4+4lvWLtAMAAAAAMFYFQZcKhfkq+6sVhF3KZGbJNN1alwVgnDBNW5nM9nKcFnneUhUKr8tNTVaSRPL9lb3rfE+qdZkAAADYAgi7+/GjH/1ITz/9tCTptNNO0wEHHNDvOMuydMstt+jDH/6wvvvd7+rnP/+5fv7zn28w5phjjtHXv/71TQq6AQAAAAAY6+K4rO6elxSGeXn+cqVSU+Q4TbUuC8A4ZNsTlMvtpnJ5tXx/pYKgU+n0TEWxJzc1Wbnc7rIsLsQBAADYlhB2v8Ojjz6qK664QpI0ZcoUXX/99YOOf+2113TrrbfqpZde6vf3Tz31lG644QbtueeemjFjxojrWbJkyaC/X758uQ4++OARbxcAAAAAgM2VJIl6el5RFBZULC2WZeXkutNqXRaAccwwTLnuVDlOs0qldhVLC+SEzUriQOWgQ7nedb4Nw6h1qQAAABgFhN19vPLKKzr11FMVhqHS6bR+9atfacqUKQOOf/zxx/XhD39YXV1d2mGHHfSd73xHJ5xwglpbW7Vy5Urdd999+n//7//pzjvv1GOPPaY//OEP2nvvvUdU08yZMzf3aQEAAAAAsEWUSotULq9VqfSWpESZzPYESADGBNN0lcvtrHJ5nXx/mfLBPLlum5Ikkuev0ISGPWTbE2pdJgAAADaTkSRJUusixoKFCxfqiCOO0LJly2RZln7961/rlFNOGXC87/vaeeedtXTpUk2bNk1z5szRtGkbX73+yiuv6MADD5TneTrggAP07LPPjmrd7e3t1XW9lyxZQjgOAAAAANgqyuW16up+Qb63Qn55lbLZHQmOAIxJSRLK85YrCDpkmTmlMzNkW1ml0zOVze4k02Q+EAAAwNawJXJNc7O3sA1YtmyZjj/+eC1btkyGYejGG28cNOiWpN/97ndaunSpJOlLX/pSv0G3JO29994655xzJEnPPfec/va3v41u8QAAAAAAbGVR5Kun5xWFQbf88kq57lSCbgBjlmHYymS2Uza7ixJFKhTmq+QtVam0WOs6Z8v3V9e6RAAAAGyicR92r1mzRieccIIWLFggSfrP//xPfepTnxryfq+99lr19v777z/o2AMOOKB6e+7cuZtYKQAAAAAAtZcksXp6XlIYFlQqLZFtT1AqNfASYAAwVth2TrncrnLdqSqX1yifnyffX63unhfV3f2iosirdYkAAAAYoXHdo6erq0snnXSSXn31VUnS97//fX3hC18Y1n1t++1dF4bhoGODIOj3fgAAAAAA1JtC4Q0FwbrKOt2GwTrdAOqKYZhy3alynGZ53lKVSgsVBk2Ko0Dl8lplszvxvgYAAFBHxu3M7mKxqA9+8IN6/vnnJUlXXnmlLr/88mHff8cdd6zefvzxxwcd++ijj/Z7PwAAAAAA6onvr1LJWyLPW64oLiqbnSXD4KJuAPXHNN3eYHsHhVFB+cJc+f5KFQrz1dn5tIKgq9YlAgAAYBjGZdhdLpd16qmn6i9/+Ysk6ctf/rK+853vjGgbxx13nLLZrCTp+uuv10svvdTvuAcffFC/+c1vJEkzZszQfvvtt+mFAwAAAABQI1FUVE/+VQVBp8rBGqXT02VZ2VqXBQCbxXGa1dCwuxynRZ6/TPnCfPnl1erselb5/DzFcTD0RgAAAFAz4/Ly6zPPPFN/+MMfJEnHHnusLrjgAr388ssDjk+lUtptt902+Flzc7OuuOIKfeMb31BPT48OO+wwfelLX9IJJ5yglpYWrVy5Uv/7v/+rn/3sZ4rjWFKlTbppjsvrCwAAAAAAdSxJInV3v6QoLPau092sVGpSrcsCgFFhGLYymZmVwNtrV6EwXylnopI4ku+vUkPDbnLdqbUuEwAAAP0wkiRJal3E1jbSNXd22GEHLVq0aKOfJ0mir3zlK/rxj3+swXaj4zj67ne/q8suu2ykpQ6pvb1d2223nSRpyZIlmjlz5qg/BgAAAABgfOvpeU2e1658Yb6kRLncrjIMq9ZlAcCoS5JE5fIa+f4KGYaldHq6HKdZKWeiGhp2l2Vlal0iAABA3doSuea4nNk9WgzD0I9+9COdc845+vnPf64nnnhCixcvVrFYVENDg3bZZRcdddRRuuiiizaaGQ4AAAAAQD3wvGXy/GUqee2K4zJBN4BtmmEYct3Jcpwmed4ylUqLFQTrFLtlBcE6ZbOzlMnsIMOgeyMAAMBYMC7D7tGezH7AAQfogAMOGNVtAgAAAABQa2HYo3x+noJyh4JgnTKZ7WVZ6VqXBQBbnGmmlM3OUhB0yfOWKl+YK9edpiSJ5Psr1dCwhxynudZlAgAAjHvjMuwGAAAAAACDi+NA3d0vKYwKKnntcpyJcpyWWpcFAFuV4zTJthvk+yvl+ysqF/6kZyqMCsqkZyqX223ESyYCAABg9BB2AwAAAACAjeTzrykMe1QqLpJpppVOT691SQBQE33X7va8pSoU31TKmShJsu0JvD8CAADUEIvLAAAAAACADZRKb8kvr5bntStRpGyW9WkBwLKyymZ3keu2qRysUVDuUKEwX3FcrnVpAAAA4xb/pwoAAAAAAKqCoFOFwhvy/VUKwi6l09vLNN1alwUAY4JhGHLdybLtZnneckWRp0LhjVqXBQAAMG4RdgMAAAAAAElSHJfV3fOywjAv31+hVGqKHKex1mUBwJiTTk+XjESev1yev1xBsK7WJQEAAIxLhN0AAAAAAEBJkqin5xVFYV7F0mJZVk6uO63WZQHAmGSajly3TUHQoSgsqCc/V0kS17osAACAcYewGwAAAAAAqFhcqHJ5rUqltyQlymS2l2EYtS4LAMYsx2mVZWVV8toVhXmVSotrXRIAAMC4Q9gNAAAAAMA4Vy6vVbG0UL6/QmFUUCazg0zTqXVZADCmGYahdHqm4tiXX16tYnGRoqhY67IAAADGFcJuAAAAAADGsSjy1NPzisKgW355lVx3mmy7odZlAUBdsKyMUqlJ8v2ViiJP+fy8WpcEAAAwrhB2AwAAAAAwTiVJrJ6elxWGBZVKb8m2G5VKTa51WQBQV1x3qgzDlucvVTnokO+vrHVJAAAA4wZhNwAAAAAA41Sh8IaCYJ2KpcWSYSmT2Y51ugFghAzDUjo9Q2HYrSDoVD7/uuI4qHVZAAAA4wJhNwAAAAAA45Dvr1TJWyLPW644Limb3UGGYde6LACoS47TJNtukuctUxSVVCwuqHVJAAAA4wJhNwAAAAAA40wYFtSTf01BsE7lYI3S6RmyrGytywKAupZOT1eSRPL9FSp57QqC7lqXBAAAsM0j7AYAAAAAYBxJkkg9PS/1rtPdLttuVio1sdZlAUDdM82UXHeqysFaRVFJ+fxcJUlS67IAAAC2aYTdAAAAAACMI/n8XIVhj0qlxTLNlDKZmbUuCQC2GanUJJmmq1KpXWHYLc9bUuuSAAAAtmmE3QAAAAAAjBOet0xeb3vdOC4rk9lBhmHVuiwA2GYYhql0eqbiuKhyea0KxQWKIr/WZQEAAGyzCLsBAAAAABgHwrBH+fw8lf21CoJ1ymRmyrLStS4LALY5tp2T40yU769QHHkqFObVuiQAAIBtFmE3AAAAAADbuDgO1N39ksKoIM9fKseZKMdpqXVZALDNSqenSYYhz18mv7xafnlNrUsCAADYJhF2AwAAAACwjcvnX6us011cJMvKKJ2eXuuSAGCbZhi2XHe6gqBTYdCjQn6ekiSqdVkAAADbHMJuAAAAAAC2YcXiYvnl1Sp5S5Qo6l2nm48DAGBLS6VaZFkN8rx2RVFRxeLCWpcEAACwzeH/bgEAAAAA2EYFQaeKxTfl+ysVht3KZLaXaaZqXRYAjBvp9AzFSSDfX6lS6S2FYb7WJQEAAGxTCLsBAAAAANgGxbGv7p6XFYY98v2VSqWmyLYba10WUFtRKAUlKSzXuhKME5aVVio1RX55tcKopHx+rpIkqXVZAAAA2wy71gUAAAAAAIDRlSSJenpeURTmVSwulmXl5LrTal0WsHUlcSXcjnwpKlcC7iR8+/emLaVykp2VLD4iw5bjulMUhp3yvHZZVlq+v1zp9PRalwUAALBN4F/yAAAAAABsY4rFBSqXO1QsLZYMQ5nM9jIMo9ZlAVtWFEpxb6gd+VIcSElS+YrD3q9AiiPJMCU7LUWBZHRVbqdylf+ypj1GmWGYSqdnqFhcoKDcoUJhvlKpSSwrAQAAMAoIuwEAAAAA2IaUy2tULC2S769QFBWVze4s03RqXRYwupK4ElRHvcF2WJaSqPd3UW/w3SfcThLJMCqzua1U5Xd+T+VntlvZVuhVgm4nWwm+LYJIjB7bniDbbpbnLZdtN6pQeEMTJuxV67IAAADqHmE3AAAAAADbiCjy1NPzioKgW355lVy3Tbadq3VZwOYbctZ20Gf2dly5j2n1tipPV/5r2FLfBgdJJAW+FHlS4FXG225lW+W8ZDmSk6uE36ZVk6eNbUs6PV2Fwjx5/nIZpq10uk2O01LrsgAAAOoaYTcAAAAAANuAJInV3fOSwrAor/SWbLtJrjul1mUBI9d31nbYu972RrO2e8PtqHcNbsOQTEey0pJjV9bgHqoduWFJqayUZCvbCz0pKEnlomSnJMuthOtep2Rnetucu7Q5xyYzTUeu2ybPa1fKaVVPfq5amt8rg3MKAABgkxF2AwAAAACwDSgU5isMOlUsLZIMS5nMzFqXBAxPFFZma0flt7+kfmZtB1KcVH5nWZVw2x5g1vZIGKrM4racymNGfiX47tvmPA6lsNTb5jzX2+ac5QEwco7TqiDoUMlrl2VlVCotVja7Y63LAgAAqFuE3QAAAAAA1DnPX6GS166St0xx7CmX20WGwf/yYwxK4sps6b4tyZPetuMbzNoOpKh3Nnd11nZm+LO2N5VhVAJ0O11Z6zv0KjUGXiVgt9KV4LvcU1nTu9rmnJm5GB7DMJROz1ShMF9+ebUMw5brTpVlZWtdGgAAQF3i/3wBAAAAAKhjYVhQvuc1BcE6BcFapdMzCU0wdmwwa9uvtCeXemdt911nu79Z25nKfw1r02dt9yNOJHM42zOtygzuJNdbvycFxcqX1dsyPSxLfmelVidbCcmNUSwW2yTLyiiVmiTfXynHblE+P09NTe+pdVkAAAB1ibAbAAAAAIA6lSSRenpeUhgVVCotkeO0KJWaWOuyMF7FcSUU7m/Wdhy9HWpHQeV76e1Z2+uDbdMelbA4TqQgihRGiYIoURDFCuJYYZgoShLZpqGWXEoN7jA+GjNUWcPbTvXOTPcrz83vrqTmVroS6gfFt9cBdxoqM9CBAbjuVAVBpzx/qUwrJd9fKdedWuuyAAAA6g7/6gYAAAAAoE7l83MVhj0qlRbLNF2l06zTja1k/Xra1Rnb5Y1nbUehlISVnyd9Zm1bTm/rb3uzZm3HiRT2hthBWAm0wzhWECWK1s8SlxTHicK4EnJHcawwTpSxLYVxoh4v1KRcSo49zDbkhik5mcpXHFaC79CTglIl3LZ725z7vW3OUw29QT5tzrEhw7CUTs9QqbRIQdCpfP51OU6rTJO14AEAAEaCsBsAAAAAgDpUKi3tXat7ieI4UC63q4wttY4xEMd9Qu3erySWElXW2h5o1rblVILhTZy1nVQD7URhFKscVcLsMKqE1m+XVwmzw/jtQDuOpTCOFcdvb88yK2smrysHcp1IE9KOvCBSU8ZRczY1vPbm65m2lLIr63ZHvbO9ywVJhUrQbbuVGe6m0dviPCs56RE9f2zbHKdJQdAkz1sm25qgYnGBGhp2r3VZAAAAdYWwGwAAAACAOhOGPSoUXlfZX6Mg6FQms4MsixANo+Sds7bDciXIrv6uN9ROordnbRtGZfZy31nbpjXshwvjuLfleNz7tX6mdtJnXGXGdtQ7UzuMY0WxFPX+dz3TkGzLlGUacm1blmnIMgxZpiGzN832g0g9Xqi1eV8511KSJCr4oVobUsqlRvhxmaFKsG27fdqce5LnV/aBlarsz3Khsl+cbCUgp805JKXT05XPz5Pvr5BhWnLdNjlOY63LAgAAqBv8qxoAAAAAgDoSx4G6u19UGObl+cuUSk2S4zTXuizUs0FnbYe9s7bDzZu1nag6O3uDMLt31nZ1WJIoSqSoN+heH2z3F2hblinLkFKpSqBtvyPQHozrWEpZpgrlSAU/lFeONSFtV1qcO6EmNqTkWJvQKaFvm/Mo6L1YoG+b896f+92VludOtjKWrgzjlmmm5LpT5fsr5KRalc/PVXPzQTJGYe16AACA8YCwGwAAAACAOpEkiXryryoM8yqVFsuyMnLdtlqXhXqyfmZ2WJbicmUWchz2/i6urLMdB28H3NVZ233W2rZ619reaNtSGPfOzo7XtxtPFESRgmjoQHv92trrbRBoO70ztE1D9jAD7aEYpqGGtK20Y6nHC7SuGCjtRIrSjkpBpOaMo6aRtjbvy3J691mucgFB6FfW8jaMyizwKKgE4d76gLxBslOb/bxQf1KpSQqCdSqV2mWZaXneEmUy29e6LAAAgLpA2A0AAAAAQJ0olRarXF6jkrdEiSJlMzuzTjcGF0cbtyN/56ztaH243Ttr2zTfbrdt2hvN2g6jRGEUVQPtoE/78fUSJZUW41GscH2r8SRRFFXW1k56M23DkGzTlGVKKceUZZqjGmgPh20Zasml5AWRerygt7W5rSRJlPdDTWpwlUkNryV7v9aH27Zbaf0e+pWvwKtcRGC7leOyvs15KldZ35s25+OGYZhKp2eqWHxD5fJaFYoLlEpNlWW5tS4NAABgzONfzQAAAAAA1IEgWKdicYF8f6XCsFvZ7I4yTWaB4h2ioHfN6N6Ae9iztlOSY1dnbUfrZ2gHsYIo2KDt+Pq514kSxbEURm+vnR0OEGivD7Bd2+wNtw3Z1tYLtIcjvb61uR8q74cqlaNqa/NsytbEXEq2tZn1GlblIgI727v2uV9pcV4uVmZ1W70zvo2uSsvzVLbS7pyLWrZ5tp2T40yU76+QbTepUJinxsZ31bosAACAMY+wGwAAAACAMS6OfXV3v6wg6Jbvr1QqNVW23VjrsjCWRKHkd1aC0yTpDbPD3oC7/1nbkWEpiK3KDO1gfcvxsoI4rgbVAwbave3HBwu0TVOyLVOmobpZf9g0DU3IOMqkbHX3bW0eJyqVQzVnU2rKOIMuTz4shvppc+710+a81LsOeLYy49viApdtWTo9TfmwS76/VKblyC+vkZuaVOuyAAAAxjTCbgAAAAAAxrAkSdTd87LCsKBS6S1ZVk6uO7XWZWGsiGPJ75aCfCXUDkqVmd29s7Yjw1QoS6HhqhybCkOj2nI8TmJJgSRVw+soTirBdpJU249vEGgbhizLkGuZspxK+/H162rXS6A9HLZlqDWXUimIlO/T2jxWorwfaGJuM1ub99W3zXnc2+Y88vq0OU9Xjm05/3Y47mQrv8M2xTBsue50ed5bcoIeFfLzlGppkWFwrAEAAAZC2A0AAAAAwBhWLC5QUF6nUmmxZBjKZLbfpkJFbKIkrqzx7HdXAtKgqDjwVAoieUqpnFgKIlPR23dQHIcKq6F2XLmdVNbVjt8ZaJuGXMuQ6TiyTfWupb1tBdrDkXEsuX1bmwexGtO2gshTLmWrdTRam/dlWpXW5Ulvm/PQk4Ji5Vivb3MeliW/qxKCO7neNufj67hsy1KpFgVBhzyvXbadU7G4ULncLrUuCwAAYMwi7AYAAAAAYIzyy2tULC2S5y9XFBeVze4s03RqXRZqLShJXmelRXnkS0FefhBrXdlUMc4oiNfP1A76DbQlyTYrgbZjGkrb4zvQHkq1tbljq9sP1FEoK50yFceJikGo1mxKE9Kj0Nq8r75tzpOkcpzXtzk3DclKV9qcB6XKOuCpbCX4tnh/2Bak0zNUKLwu318pw7DkutNk2w21LgsAAGBMIuwGAAAAAGAMiqKS8j2vKAi6VC6vlutOl23nal0Waiks94bcfmWN56CgOArVWTbVFaZVjqRuL1AYVVJty5Rs0+wNtO3egJtAe1PZtqEWy5EXxOrxAq0JfDW4juLEV7cXalJDSmlnC7SbNozK7G073dvm3Ou9yKEkWXZv+/OgEoRbqT5tzs3RrwVbhWWllUpNkV9eJdtpUT4/V01NB/C6BQAA6AdhNwAAAAAAY0ySxL3rdBfllZbItpvkupNrXRZqJQorbauDYm/L8oIUllWKTa3xK2tx5/1QxXKklG2qNefIMQ0ZJsHYaDMMQ5mUJdeu7PNuL1ApNDXBTRREsRrcSmtza0vte9OSUjkpyVUueIg8qVyUVOydCZ7ubXPeKdmZSuhNm/O65LpTFIad8rx2WVZavr9c6fT0WpcFAAAw5hB2AwAAAAAwxhQK8xUGnSqWFskwbWUyM2tdEmohjqVyt1TOV9flVuApkqm15ZQKkSUviNTj+UoSqSntKJ0ymf25FZimocaMo4xjqdsP1VEoK5uyKq3Ny6Fasik1pp1KO/ItwVBlDW87VVm/PfQrwbffXZnRbbmViySComTYfdqc81FgvTAMU+n0DBWLCxSUO1QozFcqNUmmmap1aQAAAGMK/8IFAAAAAGAM8fwVKnntKnnLFMeecrldZRj87/u4kiRSuVCZzR1HUliqtKyW1BO7WusbCmOp2yvLD2KlHVONaUcmM7m3Osc21Wo5KpVj5f1AXhCpIe0oSnz19LY2d7dEa/O+DFNyMpWvOKy0OQ+9Pm3O071tzrsrIXgqVxlr0OZ8rLPtCbLtZnnectl2owqFNzRhwl61LgsAAGBM4f+WAQAAAAAYI8Iwr3zPawrKHQqCtUqnZ8qyMrUuC1tTUJK8rko4GfqVluVJorKR0hrPkhfFKvmVYNUwpJass+XDVAzKMAxlXUtpx1SPH6q7FKgUmGpMJyp3bYXW5n2ZtpRqkJyGyrreoV+5cEKFynredlD5ubc+IM9V1vzGmJVOT1ehME+ev1yGaSudbpPjtNS6LAAAgDGDsBsAAAAAgDEgjkN197ykMCqo5LXLcVqVSk2sdVnYWqJyJeQOPSkKKiF3FCq2UuqKHHV6scI4VncpUDmMlU1ZanBtZnOPIaZpqKm3tXmPV2ltnnHebm3emktpgrsFW5v3ZagSYttub5tzrxJ8e12Vdb8tt3JBRbnQG5DnJDtLm/MxyDQduW6bPK9dKadVPfm5aml+rwxm5gMAAEgi7AYAAAAAYEzIF+YqDHpUKi2WabpKp2fUuiRsDVHYuy53oXdd7oIUliXLVsmaoLXFSOUoUsEPVShHskxDrbmUUjZB11iVsk215hwVy7EKfiA/jNTgOoqTsnr8UBNzKbn2VpyNb5iSk618Rb0zu8NSZT1vy6m0OY8Cyeiq3HaytDkfYxynVUHQoZLXLsvKqFRarGx2x1qXBQAAMCYQdgMAAAAAUGOev0K+v1Ket0RxHKihYTdm7W3rkljye6RyT2/IXZQCTzItRU6DOnxDeT9UOazM5o6SRDnXVi5lyTCYzT3WGYahnGsp45jq9gJ1lQKVgkiNaVt+EKsx7ag558ja2sfScipfTq7STSD0K+ehYVRmgUdBZRa4Z1bGuBMqM8FRU4ZhKJ2eqUJhvvzyahmGLdedKsvK1ro0AACAmiPsBgAAAACghuI4VKHwhoKgU0HYpUxmB5kma+hus5KkEmx7XVIcVoLFoFj5XSqnfGSroydQEMXK+6GK5Ugp21RzOiXbIuSuN6ZpqDmbkh9E6vFDrS2Ule1tbV7wQ7U2OGpwna1f2Ppw23alJKqE3qFfveBCtvt2p4FUg5SaIJlcgFNLlpVRKjVJvr9Sjt2ifH6empreU+uyAAAAao6wGwAAAACAGiqVFiuOSvK95bLtRjlOc61LwpYSeJLf2Tt71q+E3Eks2a5CM6M1hUCloCwviNTjBUoSqSntKJ0ymc1d51zHUso2VSxHyvuhvDBSQ9pR1JOo2ws1KefWrjW9YVVal9vZyjreoScFpcqXk62E3uW85DZJqSztzWvIdacqCDrl+UtlWin5/kq57tRalwUAAFBThN0AAAAAANRIFJVUKr0lv7xacRIom96p1iVhS4iCykzusFS5HRQqa3XbKcmeoO5yoo5uT2GcqNsL5Aex0o6pxrQj0yTk3lZUWpvbSjuWerxAXcVAJTtSY8aRH5TUlHHUnHVk1urCBkNvtzlP4t7W+sVK+O1kpTiutN1PN1W+x1ZnGJbS6RkqlRYpCDqVz78ux2mVadagOwAAAMAYQdgNAAAAAECNFArzFUWefH+lUqnJtC/f1sSR5HdXZsUmkVQuVmZ0W7aUbpKfmFrbU5YXRir5sfJ+IMOQWrKOXId1krdVVt/W5l6otXlfuZSlJEmU90O15lJqcGv8kZ1hVtqX25nKxRl+j2QWK+t4x6Fk9VRmejvp2tY5DjlOk4KgSZ63TLY1QcXiAjU07F7rsgAAAGqGsBsAAAAAgBool9fKL6+W7y+TYdhy3Sm1LgmjJYkrAbff07vuce/sWMOQ3AmKrZQ6i4G6Sr2zuUuBymGsbMpSg2szm3ucWN/avFCOVPBDeUGsCWlbUZwo74WamEvJqVVr8/VMS3IbJTuonMd+txQ6lZndUVmy05WZ3laqtnWOM+n0dOXz8+T7K2SYlly3TY7TWOuyAAAAaoKwGwAAAACArSxJ4sqs7jCvIOxSOr29DIOZvHUvSSqBoNddWfs48nrX5ZbkZCQ7o1IQa213SeUoVsEPVShHskxDrblU7dZsRs0YhqGGPq3N1xUDuU6kMO2oFES9rc1Tqvn1D5YjWU1SWJbCQqUtv52qXMwRepUZ325jpWsBtjjTTMl1p8r3V8hJtSqfn6vm5oNk1KoFPgAAQA3xL1AAAAAAALYyz1uqMMyr5C2VZWXlOM21LgmbK/Qlr7My2zUsV1o/J7Fku5KTVZQY6siXlfdDlcNY3aVAUZIo59rKpSxCqnHONg21vLO1uVtpbV7wQ7U2pJRLjYGP8exUZRZ35FfO8dK6SivzJJLCouQ0SO6EyoxwbFGp1CQFwTqVSu2yzLQ8b4kyme1rXRYAAMBWNwb+lQwAAAAAwPgRx2UViwtULncojj3lcrsSdNazKJT8TikoVdYyLhekKKgEgm6jZFrK+6E68mUFUay8H6pYjpSyTTWnU7Itjj3e5jqWUpapQjlUwY/klSutzcM4UcYJNbHBlVPrc8ZQ5SIOy5XCUm+bfr/S0jyOKyG4O6Gy5rdBt4ItxTBMpdMzVSy+oXJ5rQrFBUqlpsqy3FqXBgAAsFURdgMAAAAAsBUVigsURV6l/azTKsvK1rokbIo4rqxfHOR7Q+5SpZ2zZfWuYewojBKt6fJUCiJ5QaQeL1CSSE1pR+mUuUUuckh6/0uEXr8M01BD2lHasautzdNOpKi3tXlLxlFTNqWaXyNjqLc9f7pysUdYqrTut7OV9uZ+vvJacLKqfbHbJtvOyXEmyvOXy7abVCjMU2Pju2pdFgAAwFZF2A0AAAAAwFYShj3yvKXy/ZVKFMt1p9W6JIxUEldmb/vdlUAvKFZCbsOQ3AbJSkuSukuBOgplhXGibi+QH8RKO6Ya047MUVyAOZGhyHAUGSlFZkqR4UiSrLgsK1n/FRB+1yHbMtSSS1UvlKi0NreVJInyfmWWdyY1BtqFG4aUylbamQfFt18TTrbS3tzvltLNlWAcoy6dnqYw7JLvL5VpOfLLa+SmJtW6LAAAgK2GsBsAAAAAgK0kn5+nKCqpHKyV606TaTq1LgkjERQlr6vSujzyetfllmRnKkGeYcgPI63Nl+WFkUp+rLwfyDCklqwj19n8YDKW0SfYTinuDbdjGYoNR7FhyUikyErJTEIZSiQlspKgTwAe9P4c9SC9vrW5HyrvhyoFkSakHQXdnrIpWxNzY6QdvmFWWpfbmcprw+/pXcc7V+l+YKUqobdNm+3RZBi20unpKpXekhP0qJCfp1RLiwxjDFwIAQAAsBUQdgMAAAAAsBV4/goFYZd8b7lMM6UUM+/qR1iWvHVSVK58lQuVWd1OurdFs6k4kToLZXWVgsps7lKgchgrm7LU4NqbPJs7lvmOcNvu/fn6cNtWZNhKVAm2TEVKDEOJ0r3fhzKT3i/DldkbcptJUAm+ewNwk/B7TDNNQxMyjjIpW91eoHWFstKOqShOVCqHas6m1JRxxka3cNOqrFdvB70XiHRLllN5rUTlShje2+ofo8NxWlQud8jz2mXbORWLC5XL7VLrsgAAALYKwm4AAAAAALawJIlUKLyhIOhSGPUok9lRhmHWuiwMJQolv6sS2MVhb3vmciWky0yQzMrHKqVypLV5X+UoVsEPVShHskxDrbmUUvbIjnMsq9qOPDRSSnrD7UimYsPu/XKUqLJdU5GsJJSZlGRVZ3JXQvK+40MjXR1fDb+TlExzffgdviP8jkdlF2J02VblvCqVI+X99a3NHcXylfcDTcyNkdbmUuV1YjVVXjNhodIVwXYrrc3DkpTKSalGyeLjydGQycxUPj9Pvr9ShmHJdafJthtqXRYAAMAWx78mAQAAAADYworFxYqjknxvmWx7ghynsdYlYTBxLJW7pXK+N+QuSYEnWetnrKYkSVGcqKNQVt4PVQ5jdZcCRUminGsrl7JkDGOabVQNtytfSW/r4UhWn7DaViJTRmWF7t5W5GGfNuUbMxXLTMpSUpb09tre67cXGpVW0oZimUlQDb8tsxJyG0lUXfPbjssyFW32bsXoyaQsufb61uaBSoGpxrStIPLU4NpqyY6R1uZS5fVipaTIr7Q3L3X2ht5x5QISp6HyujK5AGhzmKarVGqK/PIq2U6L8vm5amo6YFjvQwAAAPWMsBsAAAAAgC0oikoqlRbLL69WnATKuDvWuiQMJEkqLcr9rkqb8qBUmYEqSW6DZKWl3two74fqyJcVRLHyfqhiOVLKNvX/2fuT5cbybM/v/f67vTcA0ruMzMiIk7ekUzo6ZXZlJpPsmq5MkxrWE2gsU72KXkIDTeoFalDzmpWGmt/KjHPyNJXReIQ3JIDd/Ps7+MPpTXi0ThIEfX3SmPQgSGCRAAgCv73WejT8cMhYgYJ9HW7rjnoYIF6UofBqLLmBQ7itydjqr7qxf21spajYd8LvV8F3VrZ1kaMO4feh85sOXTPKgKrlKvw2JaD59bWI6/FqtPngDDufeDEGhk5TSmUMiSfrjgeD405cUYoWcJuu3afiDMm3kealtBC8P287v2Xqxa/W978jpQuW5S8YM+D91wzD58cuSwghhBDiRknYLYQQQgghhBBC3KBx/IKcPd4/pes+wZjh2CWJ94kzLBdtdPmrDtRawb7ay90Sw5Qrz/aeOWaWmNktkVrh4eAYOv1WF2ULsds48hZuO7gKty2F12EzqBZu14Qrh3D7BgNlRcXUiKkRd1Wrvaor6RUVBRRMPYw+x6HrQGs+L5gSsYcAXNd4JzLVj5GzmsfGsYTCzkeeRc9Z7yjVs10Sn5x1DO6OjDZXqt2f7OqwFmCGPLePlQx+3/Z5v3GfEz+fUpph+Cum6c/E8IJx/IKu+wStu2OXJoQQQghxYyTsFkIIIYQQQgghbkgIL/DhO3z46rBD9XfHLkm8K4c2Vjl7yBHiHnJuXajdmkOyCxW2S+TFGEilsl0iPhYGp3kwOLRuA8VfB9tt7zaH4eOtc9tStCNjeDvcXjA1oshHC4wVYGrC1PTq270K44uyJD1QWQEVQ0aXSDaJVPtDzfWw7ztedYBLVHl7lFKsekPvNHuf2C6ROWnO+0rMhbPe8mTTYfQduVaUaju73dAONPEj6KWF3DWD3x1C79WxKz051p5j7SOW5WusfcA4/h3n5//vY5clhBBCCHFjJOwWQgghhBBCCCFuQK2VcfwTOY3EeMEw/AGl5Gn4nZHTYS/3eBhZPkIKYBwMZ+39gU+Z5/vAkjKzL+x9RCl4tO6w3UB8T7idX3Vu6/YeuBoR3tVwGEl+vHD7pyjAcAi/awu/62GPeFaWpPtD+A2ahC4JY7o39ogfOsdLxFR/CPPfv19cXB+tFQ/eGW2+7gylVKaQeHyXRptDO5ikOzt0eo8t5E4zuA2U2MaeD4/awSfiZxuGzxnHP7L4r1HaMgyf4dzjY5clhBBCCHEj5Fm2EEIIIYQQQghxA5blS1LaMy9fYswa554cuyQBbT9w2LW3ktso5biANm1n8BuhWqlwMQUu50gqlcs546ulX53R9yui6YhAQVGUO3RBm7fCbVMTto6HMeDlSN/0h1OAIqNr2yHe4mx9+J4dWXck2oh+TUK/Gn2uIppN+/irru9yGH0u4feN6azmiXHMoR2csaTMee8oNbBbEp+cd/T2jow2h8P97wHY2ELv5RJs1zq9c2hh+PDwrYNQxA/T2tH3n7Esf6FzT9jt/zOPH/3PKNmHLoQQQoh7SMJuIYQQQgghhBDimpUSmKa/J8aXlDKzXv/NW7ucxRHU2oLt5RJKat2jcW6ndZsWpr1xFc0h890+MlfLPq0Zi0UPjpWzGGOI6vW+7UoLDTUt4LXVn3y4/VNa+F3QNUANAJSr8Psw+lz1h8/NmJraz6T2aN1+Lrqmd8Lv+/vzOgalFOveMDjNbklczpE5Zs4HS7gonA+Wx5sOc5d+NxkH5lGbspDGtmLA9m20eZrbfbV7AEZe0vwpzj0hxhfMy18wZsU8/xPr9V8fuywhhBBCiGsnfxkKIYQQQgghhBDXbJr+gZwXluVrnHuMtZtjl/RxizP4y7aTO/kWetcCdmg7gQ/djrlq5up4NsMuagKGOSYyGjf0ONuRtCPSPl9fhbgz5mp898dLvxN+X41zP3R/vw6/C7rGQ/d3j9G5fbzmq33fpgQM+Wjfy32iteLh2rFK5mrv/NodRpv7zOON47y/Q6PNoXV1mw7y0u6vV6F3af/dnbXQW0un8g9RSjEMf2Acv8CH71DK0vefYsz62KUJIYQQQlwrCbuFEEIIIYQQQohrlNKOZfkS759SKfT9Z8cu6eOVIywXkJb27zi2Xd22A/eApDoCjlgdAccYYbckYlHMWeOLQXeOzlmMgkrGHvZtawm3f5KiYmuEGoGZirrq+s7KklRHRV3tMm/d8B26ZpQBVctb4bcm3ak89tR0VvObTccUCuNhtPnZ4Mi1svOJ32zu2GhzRTsgxfSvJzEk3w5QKQXC2Eafd5urA1bE24xZ0XWf4P1TnH3Mfv9HHj78H49dlhBCCCHEtZKwWwghhBBCCCGEuEb78U+kPBPic/r+92gtO2ZvXcmtkzuMbfxxGKkpkMyKMHxC1GsCjoqmVghVc7FUfDEEVvhSqVQGV+l1wtQFXSRo/VCKiqkRUyMOqNDCbw5jz/WKigLq67HndO3AAgNQMKXt/W4HHUS5Tn4hpRSb3rBymu0SuZwis808WDl8XHgwOB5t3N0aba5U291thxZ4x7mF327TQm+/h+FB+5y7VPcd0fefEuMFy/IXtOnw/il9/+mxyxJCCCGEuDYSdgshhBBCCCGEENfE+2+J8QK/fIXWHV33ybFL+rjUAmEPfkfNmZgiMVeCekDsH1J1RwVSNSQsGcOYFFMoVAoxBnKc6XRm42oL/KR5+8YowNSEIUE9hN+8sfNbD6/DbzK6RLJJ6DoQqO3jNV7t/DY1SPj9M2mteLTu8DGz84nne3812nz0iSdnjrP+jh2oo3Tr4nYDhKmF3HpuIXdNEHbQP2yd3+KKUoZh+Cvm+R+J8YL9/k8490QOxBJCCCHEvSFhtxBCCCGEEEIIcQ1qzYzjF8S4JeUdq9V/jZLRurejVmqYiMtMKBBzR8gFGCi2J5sVCXcVcAPkUljCQk0BFSM+eLSCB87irOZuLTD+OCjAkDD1dfhdMa/HnuueSgsyNen16HPVow9HJegasW+F33K0wo/pnaGzmilk9j6xpMz54Mi7yn7J/O7BgL5rdwVloD9voXaYwO9ed3rn2MaeD4/augIBgHMPifEhy/IV1pwzTX/m7OxfHbssIYQQQohrIWG3EEIIIYQQQghxDeb5n8l5wi9fYsw5zj08dkn3WqkQqyHERPQLsWjIPSV7UnUkM5DMmnJ46UNRsSQsEe9nYoioWpl9JuVC7zSDM2gZg3xnKECR0TVjqwegoK86v4vqSGoAQJOvwu+kurfC77bzu73XlGN9O3dWG21uGZxht0QupkjvMmVwfLfzfHre381jP7Rt48tzhDjCctkCbreGfNjt3T8CIy9/AgzD5+z3f8T7b1Da0Pef4dyDY5clhBBCCPHB5K89IYQQQgghhBDiA+W8ME3/iA/fUWpkM/z1sUu6l0LR+GoJxZAyEEdyiuSqSbmQakdRZ+A6FGBJ9Mytn1sVfCrs5kgqhSVmllQwWnE2OJy5i2meeJemoGuAGoB3w29LUj0AioKuEV0TpvZo3UJuVdPVvm9TIhrZxf6KeWO0+eUcuVwiSsOLSfFkc4e7pI0D8wiShzjBfNH2e9fc9nt3Z9A/AG2OXelRad3R95/i/Te47gn7/X/m0aP/CSUH+AghhBDixEnYLYQQQgghhBBCfKBx/IKcPd5/S9d9gjHDsUu6d+Zi2aaBXAopBnJKJCwlaygZrQrWaqwqWPZo9Xp8da6VyzmxxEzMlTkkcq0MzjBYLWHPCXs3/K6oq7HnRVmi6om8Cr8Pnd+1R5NRpn1FC8TjG+/jRx2A987wELiYI/s5oVA4ozgf7viOZ9u3EeZ5OYTe/hB619b53Z23N/3xrpfouk+I8SXz/BeMHliW/8Jq9S+OXZYQQgghxAeRsFsIIYQQQgghhPgAMb7Eh2/x4WuU0vT9745d0r2Tq2KXenyIzAmoGp0LtuyxZKzRaO1A5e997Rwz+yVddXP7WLBG86C3mDu3jFh8KEXF1IipEXgVfhuKcofO7xUVBdTD6POMqun1vw/n04LxiLl6Hz+q/d+9M5wV2C0RazTP9gFn2qj/O03RAm7Ttz3ecYa0tJHmpUDYty7vbgPq4wu9ldIMwx+Ypr8jhOeM05/puk8xpj92aUIIIYQQv5qE3UIIIYQQQgghxK9Ua2W//xM5jcT4kmH4A0rJU+3rVCtc5oEUZuZocWVilV+ia22BlungPZ3ZqVR2cyTkQkiFOSZqhXVn6aySbu6PRAu/E6YmACpQsBRlqIfu76q69wTgGU16KwBXNV91fr/qBL/PO8A3vSGXwnaJaK34duv57NGAMycQEivVdnfboXV5X4Xem7dDb7d+7++P+8zaDc79hsV/jbUPGcc/8uDBf3/ssoQQQgghfjV5Bi6EEEIIIYQQQvxKy/IVKe+Zl6/QeoVzT45d0r0zFUcMkSmCyp51eoGyrgXd7+vMrDDFxG5po8rnkImp4Kxm3Rn0RxZsibcpwHAIv6sHWgBeMYe93+YQhL8KwGkjz2tC1/JGAN66vFXNb40/N4cu8fvifLDkUrmcAuas5+l24bNHK8yp3I+Ubju77aqF3n4HejqE3umN0Ht17Epv1TD8npQu8f5LtHH48Iy+++TYZQkhhBBC/CoSdgshhBBCCCGEEL9CKZFp+ntieEEpE+v130i38DVLVbGPmiUs5GI5Sy9Rtm+7ed8j5sJ2jsRSCLEyx4RScNZbnD2BblRxFApQh47uV5PKXwfg5tD9bUhvBOCvd4Dn12H41Zjz0kLvEq9CcE0+yT3gSikerhwvpsDFGNCbju+2nt8/GDipb0gb6M9bqB0m8FtItoXeObQO8OFhmxTxEVDKMgyfM8//jIs7xv0f6R4/Rqk7PqZeCCGEEOI9JOwWQgghhBBCCCF+hWn6MzkvLMvXWPsIazfHLuleqRUuY0deRpbS0+dLrFXvDbpLhdFHppDJpTKFTMqF3rUdw9LNLX6ptwPwALwKwPVV+F0wJD28E4C3Tu+kMlrlN8ac13c6wNsY9FO4ZWqteLTqeDF6LuaIUvB89Pzm7AT3PGsLwwPIEeIIyyXYDko+jDlfQ/8QzP1/ydS5x4TwgmX5C9ZumKZ/YLP5m2OXJYQQQgjxi93/v9yEEEIIIYQQQohrltKeZfkSH55SKQzD58cu6d4ZsyXOI2N16Dwz4MF8/4ACnwq7OZJKYYmZJRWMVpwNDmdOIUoUtyolGMc23nq9gV/Q8d8C8IKu4aoDHKCgW/itDAVL0j0VfXWqoRzGoL/aBf6qy/vNAPx1EH4Xb7XWKB6tO15Ogd2SUErhjObByh27tF/HONCPIPs23nx+CW6Amtt/d2dtvLm+353Oq9Uf2O//iPdPUcrQ97/H2rNjlyWEEEII8YtI2C2EEEIIIYQQQvxC4/gncl4I4Rl9/ylan2jgc0fFqhmXyFI0JWXO6h7lVm+NTc61sl8SS8zEXJlD29E9OMNgtYyUF983zbDdQc7ttjROsF7B5uwXhd7v0hSoBVPj1ccq6ir8bqPQHUkNV6fqQ9e4Ouz4bnvAD+dX0+v934cucPVmun4kndU8GByXc8ToVq0zmlV3ooGwok2KMD2kuYXcybeR5rW+Dr27c9D3cw2C1j1d9zt8+BbrHrPf/2cePvz/yO9PIYQQQpwUCbuFEEIIIYQQQohfwPvvCPEly/IlSjm67rfHLuleqRUu50KKEZ8dfdlju7514h7MMbNf0lU3t48FazQPensVwglxpRS42IL34D1qngGofQ+1tBB8s4bNBsz1hJqKiqkJQ3pjD3gLwNsucHsYh/5qD3g97P7Ohz3g6a0AXNX8vRHor0ek355VZ0i5sPcJqxVPdwufP1zRfcDBAkenaLu87QBxbsH3q5HmJUPYt9Hm3fqt30P3Rd//jpQuWJa/YMyA91/LtBIhhBBCnBQJu4UQQgghhBBCiJ+p1sI4/okUt6S8Y7X6r1H3MPw4pn2oJO+Zco/JgcECqnWOplLZzZGQCyEV5pioFdadpbNKuhHF9y0etpeQMowTKkZq14HWqKWF31eh9zjDZnWtofebXgXgkKB64NUe8FfhdxuFnq4CcA4BeELX8kYA3tJzVcsb4fehE5x87XW/62yw5FqvOryfbhc+f7Q6/QNNlGqBthtaV3ec3gi9C4QdDA/bf98jSmmG4a+Ypj8TwwvG8Qu67hO07o5dmhBCCCHEzyJhtxBCCCGEEEII8TPN8z+R88SyfIkxZzj38Ngl3SshVaYlMFdLKZlzE1DGHU4rvJwDuVTmkImp4Kxm3Rm0hNziXbW2keXTDDHAOLf+6c0Guhbi1b4Hv6AWT/Ue+sPO5nGGs0PofcPjq9se8NbN/boD/FUA3t6qsm8F4G1veDp0gL8ahf5qzHlpoXd5HYK/3hF+TTUrxcPB8WKOXEyRJ5vW4f3ZgxX34q6odBtfblct8PY70BO4DZQEZtc6vd3w0+d1Iqw9x9pHLMvXWPuAcfyC8/P/7thlCSGEEEL8LBJ2CyGEEEIIIYQQP0POnmn6R3x4RqmRzfDXxy7pXim5sB0DsShCUgzKYw5Bdy6tizSmyugjSsFZb3GnPDpZ3JwQ4HILMcI0o0IA56jr9dvhtdawWlP7AZYFtcxUv7wdem/W7e0Wdzb/cACuD6PPDQVD0sM7AXhG10RSGa3yG2POK7qm741B/5BcWmnF45Xj+eh5Obf75LO957fn/Qec6x2jDfTnbcR5GMFvIbnW2Z1DG3s+PARzPzqgh+FzxvGPLP5rlLb0/Wd03ZNjlyWEEEII8ZMk7BZCCCGEEEIIIX6GcfqCUjzeP6XrfoMx96er7+hqZT8tpKKYo8GoTG8VqNagezEHYilMIWK0ZtNLN7d4j1phP7a3lGAcUaW2kLv/kRBWa1ivqcObobeHoW87m8fpKKH3m1oAXtA1XAXgAAV9FX4XZUm6p6KvTjWUwxj0wz7wqy7vNwPwdBWC/5J7ldaKR6uOF1Pgco4opXBG82jtruvbvhu0baF2CpBGWC7Bdu22kT2sf9f++8Rp7ej7z1iWv9C5J+zHP/LY/c+yqkMIIYQQd56E3UIIIYQQQgghxE+I8QLvn7L4b1BK0/efHruke8UvI3OyzAkKinObr/Zvb5dITIXRZxRKgm7xfinBxWXr6l48alnAWur5unXo/hxvht7zgppn6vJG6D1NsD5u6P0uTYFaMMQ3usBVG4HOqz3gjqReHZxT0YeucXXY8d32gB/O7yr4TpiyYH5iB7izmocrx8UU2fvYPmYUm/4evuRou9bFnT3EEZYL6B/A9B1sPgVz+t+zc0+I8QXz8heMWTHP/8R6LVNMhBBCCHG3nf5fYUIIIYQQQgghxA2qtbLf/4mcJmJ8wTD8AaXk6fR1KX5i6xUxJ0JdsbIZc0jeppBYYmaKmVwK572ToFu8rdYWQm/3bZ/yOKNSog6rFlL/mtuL1rBZU1fvCb3zq9B7A2frX3f+N0xRW1hNejsAx7QucGUO49Bf7QGvh93f+bAHPKFrQZlz+rylK9OPXt7gDOdDZbckjNZ8t/NYo+jtzzzI4JQowPZg+jbWPGxBP4LpGWx+d2cOgvi1lFIMwx8Yxy/w4TuUsvT9pxizPnZpQgghhBA/SJ6dCyGEEEIIIYQQP8L7r0l5x7J8hdYDzskO02uTArslkrJmKn0LyHTbMxxSYbckfCyEWFj3FmvuXrAojigV2F6CD+AX1LSAVtTzc7DX8JLXVejdvx16r16F3iNsNq3T+w6G3m9S1EP4nd7ZA96C73IIwdNVAA6uzGAgq44hX6LenJ/+jk1vSbmynSNGKZ5uPZ8/XN3f+6yi7fNeLmDZwqBhfg7rT+78beGnGLOi6z7B+6c4+5j9/o88fPg/HrssIYQQQogfJGG3EEIIIYQQQgjxA0qJjOPfEcMLchlZr/+bq/Ha4gPlxDJuWfLAnDVox1qHdlKpXM6RmCtTTPRO09vT7pgU12xZ4HILqYXOKiZq38NqgOveMawNbDavO72nmTr7dlk5wzjC2aaNOD+h3w9tD3jr5n43AM+6I+oVpZrDWHTLkF7+6FjzBytLniqXc8Donm+2C58/Gu7vNAal2hjz5QLCDlDt36vHRy7sw/X9p8R4wbL8BW06vH8q6zuEEEIIcWfJM0UhhBBCCCGEEOIHTNM/kPPC4r/B2kdYe3bsku6HWsjTC7ZlIKREVCtWpqBVpVa4mAOxFKYQcVqzcvdwHLL4dUppu7lfXsLiYbtFpUI9OzuEzT/+UpdGYbR9/aYM+tUbGo1Co67+9/YXH0Lvhw/AWdQ0weUO5kPw/t13LfiuP9wBfdcpQJNxZaYve4pyeHNOVD2T+4So+h/+WqV4tHIoFBdzxMfMd7vAjzSEnz5tWuCdI8Q9hD343bGr+mBKGYbhr0h5R4wX7Pd/opR47LKEEEIIId5LOruFEEIIIYQQQoj3SGlkWf5CCN9Sa2YYPjt2SffHfMEudaQYmHiAtYpOtSBlu0RiKow+o1CseyPd9KLxAS4vISWYZlQI1K6jrlY/uitZK4PWGoW5arxWh13VvySHrfXwFaaCW7Wu7uAhJGoK0HdQZ+roYbOiDgNo/f5LOYGbtKmRPm8J5gxvzunKxGIfk/NIX3bv/Ra0Vjxad7wYPZdLRGl4MSmebLpbr//WGAfdWQu51eHAHG3bbeSEOfeQGB+yLF9hzTnT9GfOzv7VscsSQgghhPgeCbuFEEIIIYQQQoj3GMc/kfOCD9/R95+i9T0Oa26T3zGHhE+OmRXK9ayZAJhCYomZKWZyKZz37v6OQBY/X62w28M4QYqwn1BU6mYD3ffvlxqF0hqlDPrQ6a1QoFrn9g8G4/Xwf290Zr8ZU1dV3/6osmA7WNUWxOdEXRI4B1Ogzqnt9+7674Xb7wvZayv0jct740T1+nN+MKK/gbuKptDnLVFvCHpzGGsORTuGdIGmfO9rrFE8XDku5sh+TigUzijOB3f9Bd4VtoeSIIwt8J5fgP5dC8JP2DB8zn7/R7z/BqUNff8Zzj04dllCCCGEEG+RsFsIIYQQQgghhHiH998R4gsW/xVKWbrut8cu6X6IM3nesktrfFYkd8YGj1aVkAq7JeFjIcTCurdYI0H3Ry/GNrY8RlgW1OLB2hZ0vxFaazTKGPRb3dsapdrboZGbWgu1pEOgffWJV/9+8/9fefUx9eaI9HdvmrZrI9ZjhpIh0l51WxL4Qu1dC8FRr6Nq9Z7Qur4Os98Nv3/4wq++9Psf+xnh+Q/G52/8eLoyolUi6hXVWGreU+xvWOULTP3+eOveGc5Lm9RgjObZPuC0Zuju8UoCt4Ga2/5urWF8Bme/a6POT5TWHX3/Kd5/g+uesN//Zx49+p9k2oYQQggh7hQJu4UQQgghhBBCiDfUWhjHL0hxR0pbVqv/6u2QS/w6OVKnF2zzQEqZ2X6C0wWnErlULudIzJUpJnqn6a38zD9qtcJ+gv3+MLZ8QuXcRpb3PUpptNIo/W73tkKjXwfhtVJrppZK/V4Xcn3r3Tv/fE9N7/vgm5u9FVgFVaNigiW3HeKda12/3rfaD6G3qj8UGL6ZUP90Ka/D8/d8waFb/aon/ReG58nUq5Nt9aicCWaDNw/oyp5JPaHPO7oyfe/r170hl8JuiRiteLpb+PzRCmfu6X1bAd05+EvwWxgUTM9g89uf3CV/l3XdJ8T4knn+C0YPLMt/YbX6F8cuSwghhBDiioTdQgghhBBCCCHEG+b5n8l5ZPFfYswZzj06dkmnrxSYnjEXS0iZ2T5CGceKHbXCxRyIpTCFiNWalTvdTkhxDVKCiy3EALNHLTNYi3r4CG3dYTz5Vb81Sh32uiv1Rvd2hlp+4VbuX+PNS3g13hxqZyFrVAgwearWbeR6ju3fwwr694+4Vm+cnfr+R19/pL55ijr89/uC658Oz989qQJVFWxWFA1FtWIMiSFvCXqD1w9wZQKjyMox5MvvXfrZYEmlcjkFzFnP0+3CZ49WmPvaGawU9A9guWg7vNEwv4T1b45d2a+mlGYY/sA0/R0hPGec/kzXfYox/bFLE0IIIYQAJOwWQgghhBBCCCGu5OyZpn8ghOeUEths/qtjl3T6aoX5OSkVdtHi1UAyZ2yY0IrW0Z0Ko88oFJveyIjcj9k0w+UOSkKNMxpQZw9RwxqlXk0c121E+VX39uuA+/vd20dkNHU1QCqoGGBZqFqjujbyvHoN/fdD7zc7td+/Pfz16e/5qvd61fT9vgHt734OtL3nVI2iokpFo666vBWVruxJekXU69d7vJVllS7Q5Nfnqdr+7hdT4GIM6E3Hd1vPpw8G7u3dXOlD4H3ZRporBYuF4eGxK/vVrN3g3G9Y/NdY+5Bx/CMPHvz3xy5LCCGEEAKQsFsIIYQQQgghhLgyTX9HKR7vn+LcE4xZHbuk07dcUsPCNjlyVczdYzoCTiWmkFhiZoqZXArnvbvq2BUfmVzg8hLtIyplVCyYbk3te5S1oHQLYLU+tB0Xyq11b38gq6l2gJRRh93jVRtU5yAfQu9h1cad35BXTd/1+x992xtt5boqdG3j1rM+dHmb1uWtAFdmlEpEvcEbS5f3jO43rNIltvqrs9Ra8Wjd8WLvuZgjSsHz0fPJ2T3uDNb2MNJ8C2p842Ob49b1AYbh96R0ifdfoo3Dh2f03SfHLksIIYQQQsJuIYQQQgghhBACIMZLFv8Ni/8GFPT9749d0ukLI4QdY6qEopncJ2hgxUJIhd2S8LEQYmHdW6yRoPujU0H7gNqN6AoqVlSu0K9Q/dD2cSve6N5O1HqHurd/CWuo1vxw6L3cfOj9SxRVqVRM1diiW8idK0opsm5d3rZGdN4SzBmLeUBXRmb7mC7v6cr+Kju3h8D75RTYLQmlFJ3RPFjdje/1RtgO6qb9HtQWlpftvT3NkF8pyzB8zjz/My7uGPd/pHv8GKVk7YQQQgghjkvCbiGEEEIIIYQQH71aK/vxT+Q8E+NLhuFztJanzB8kBVheElNmzCu8e0RWHWeMlFrb+PJcmWKid5re6mNXLG5LpXUNl4oaZ1QIqFQhZbRxsDoDo6FUas3UcgLd27/Em6F3eDP07g6ht4FhuBOhd1WQVMG80eWNLqisyAaqqmgK/WGPd9Bn1LJQDYc93hfow3XXWc2DwXE5R4xuMbgzmlV3j8NSt4KaIezbePPpGWw+BXOajy/OPSaEFyzLX7B2wzT9A5vN3xy7LCGEEEJ85E7zLyshhBBCCCGEEOIaef81KW1Z5i/Ruse53xy7pNOWE0zPqCmwjT3Jrlj0GT0eQ+bFHIilMIWI1ZqVu8dhlzjsilboAurV3uiU0dOMKhWVgKLAdlRrqKpQc+an9lCfvLdC7wDL/Ebone9U6J1VRVPR73R5l0OXt1LQl5GoEkmvKFgqiqI+YZUvMDUCsOoMuRT2PmG14ulu4bOHA729x78D3BmUAmEL+tEh8P5dG8l/glarP7Df/xHvn6KUoe9/j7Vnxy5LCCGEEB+x0/yrSgghhBBCCCGEuCalRMbx74nxJbmMDMPnKNkb/evVAvNzKIExVqIemMxjNIUBz85HYiqMPqNQbHojP+/76NC9bbLCZoXNoCuYAmaO2MmjMygfqSlQNGQLhXwYU37Pg+43WUNdr6jDCgWoZYZpRvmAGkfY7iDGY1dJUZB067JvnfkaXcHm18vAXfV0eU9B480Dku6Y7BOCXl2dz6a39Fa36Q6p8O3Wk8s9vr4V0J+3zu5lCzm035H1NL9nrXv6/lN8+I6UZ/b7/0w90e9FCCGEEPeDhN1CCCGEEEIIIT5q0/yPlLKwLF9j7UOsPT92SadtvoDkCX5hVA9Y3GMKhg0Tc0zMITPFTC6FdWfREnTfD7W96aKwSeGywmSwhaudzzaBnhbwnrLMlHFLSZ7SWaqMsX9/6D0vLfTej7Dd34nQO+tKURUN2DcCb11a6G1IDHmLouD1OVENePOQxTygAkopHg4OYzQvp4BPhae75VSz359HKegetIOB/BbiDMvFsav61brut2jdsSx/IaZLvP/62CUJIYQQ4iMmY8yFEEIIIYQQQny0UhpZ5v+C90+pNTEMnx27pNPmdxBHatiz5THRneMZGPDknNgtCR8LIRbWvcUaCbpPWgWNQr05nhyudjurNz6xxkCdZ2pOsHhUKdSuA+dAbgZvs4ZqV2+PNzcW5RzkRDUW1j3Y4403L6q2fd1FY6pGUVGlolEkU1Gq0ucdUa+Iek2phkrb471KF2idebxyPB89F3NEK3i29/z2vD/a93TjtIH+wSHsHlsArm3r+j4xSmmG4a+Ypj8TwwvG8Qu67hO07o5dmhBCCCE+QhJ2CyGEEEIIIYT4aI3jF+Ts8eE7uu53aH2Pg5ab9qpTMU7s8kDqzpjZYMjYuvByjsRcmWKid5peOnlPz6Hzto2wfp1Rq8NO7jcD7sohEK2ZOk6olCDEFt5qRV2twMht4Eddhd7pR0LvAexxXt6rQNal3R4OBzgUVbBZUXS7/rsyo1Um6jXeGLo8MrrfsEoXWB14tOp4MQUu54hSCqcVjzb3ODA1DrqzdmCQOuwp1xbc6se/7g6y9hxrHx2mojxgHL/g/Py/O3ZZQgghhPgISdgthBBCCCGEEOKj5MMzQnyO91+hlKXvf3fskk5XjjC/gBQIITN3v2fW5xQMZ+y5nAOxFKYQsVqzcubYFYuf6xBk6/d0b1PVW/vxKm28dXn1SSHCNKFKad3cOVGdg66Xbu5fwtoWbOd3Qu+ua6G3tbBagT3O/epVl7d5p8tbocimYgnonAlmw2LO6cvEbJ/Q5T2d3fNo5Xg5RfZLPHy7mrP+Hr9kaXsoGcLYAu/5Bejfgjm9kH8YPmcc/8jiv0ZpS99/Rtc9OXZZQgghhPjI3OO/HIUQQgghhBBCiPertTDu/0SKO2K6ZLX6FyglXaa/SikwPYMcKWHPpfucaNYEOlYsTN4TU2H0GYVi0xuU7Om+2+phFPmhe1vxE93bVOqbV2mtMM0tmE0JvEehqMPxAtmTp/h+6D1Pr0PvdNzQuwLpnS5vdEFlRTGAyvR5R9BrvD7DlZlqDmPNueB8qOyWhDGa73YeZxT9fb6tuDXUBGEHWsP4HM5+10adnxCtHX3/GcvyFzr3hP34Rx67/1keT4UQQghxqyTsFkIIIYQQQgjx0Znn/0LOE4v/CmM2OPf42CWdplphft46u/2WnXlMsudMrLAkUpyYQ2aKmVwK571DS9B999RXgfbb48l/uHu7hdzvlSLs59bN7T0qRap11F66ua/Fm6F3Sqh4CL2tQ7nSQm9n4UgHFrTbRUVXjS2aoioqV5RSZF3pykhSmaQHSrWAYlSfsOIlqcxs54hRiqeXns8frbDmnt5oFNCdg79sO7wH1Q4a2vwWTiwodu4JMb5gXv6CMSvm+Z9Yr//62GUJIYQQ4iNyWn89CSGEEEIIIYQQH6gUzzT/AyE8p5SFYfj82CWdruUS4gJ+y1I7FvcJCwMVjcsj+yXhYyHEwrqz9ze4OkWH7m2TFfbwZgqYqjClBZX6EHS30eSFpAtZ1/cH3ZXWzb0bUfEwvjwn6jDAIEH3tVOAs9TVmtoPqJJR89TGxS8BtdvBfg8p33ppRbUu70o97HfX6Ao2K3QFVxe6sqcow2IekHTH5H7Dan2OM5qLORBy4ZvtQqk/cFDFfaAU9A/av/0Okof5ZTuI6IQopRiGP1CKx4fvmKZ/JOfp2GUJIYQQ4iMiYbcQQgghhBBCiI/KOP49JXu8/wbnfoMx62OXdJrC2Ebwxj2lFHb950Q6Ah19ndjOgZgrU0z0TtNbeQniqFrDLboobFK4rDCZq4DbvhFwQwu4s24B91t7uN8nZdhtUYtv3dzLjNKaul6DlaGCN+rd0Du/EXr7N0LvfPuhdzswoqABWzTmEHibrDAl0ecdioLX50TV4+0jhrPfoFC8nCI+Zr7bhXbbva+UboF3yYffp1Pr9j4xxqzouk/w/ik5L+z3fzx2SUIIIYT4iMgzDiGEEEIIIYQQH40Ytyz+axb/DSjo+98fu6TTlAIsL1snYlzY9n9FUh0TKwyJaR6JpTCFiNWalTutPbT3RgXNYfd2/enx5PWnQu33mVu4TS7gF1Sp1K4H56Sb+za9Cr3tYbx5CDC1EfKqFIiJ6lzb6W1u78CTNvK+YIpCV92C68Mu72QKfd4R9ZqoN9RqcRb6h4758imXS0RpeDEpnmy6W6v51mnbRpqHXTuICEA76DbHresX6vtPifGCZfkL2nQs/hsGeYwVQgghxC2QsFsIIYQQQgghxEeh1so4/omcZ2J8wTB8jtbytPgXywmm71rgHfbM7hHePGCqq3ay3xJTYfQZhWLTG5Ts6b49FXThqkO77eIGhUJVdZU/V1r3dgu5f8XllAL7NqqcEFu4qjV1PYCWLv6jeSv0jqgQ3wm9I7Vzbaf3LYbeWVf0YXS+LpqsCjYrigZVJ7RORL2mGEPHHvfgM5bdt+znhELhjOJ8cLdW762zHdR1C7u1bQcTaQu2P3ZlP5tShmH4K+b5H4nxgnH/BZ37DVrf4+tNCCGEEHeCPKsXQgghhBBCCPFR8P5rYrpkmb9E6x7nnhy7pNNTC8zPoUQIW7Lu2dlP8dWRcKi4w4fEHDO5FM57h5ag+1bUWilLQIVEqWCNRWuDVgZlNEopKvXQafuBc6G9R01LG728eFQp1K6Tbu67RAHOUa2DGA971N8IvUNs19kw3FroXVSbHqCLxlSNoqJKRaOAgK6ZYDZ484BOjbiz37MdX2C85xmhTYno7vGUCLeCmiHs23jz6RlsPgVzOi/fOveQGB+yLF9hzTnT9GfOzv7VscsSQgghxD13On8tCSGEEEIIIYQQv1IpiXH8e2K8IJeR9fpfopR0n/5i82F0ud8Cmm33GQnDzIDKnmWZ8bHgY2HdW6yR5PM25BhJ04ytGlLFat0CaF2JRAqFokBrizYGZQ1K61+eS5cK04iKqQWoPoBW1GEAe49DyFOmgM61Eebvht61QAgt9F7dTkd+BbIurcO7tmkDWR+6vE1B5R1Bb/D6HNfN2Fp44Sd03PPtbuHzRyvcLXak3zp31qYm+C3oR22KxubTk5qWMAyfs9//Ee+/QWlD33+Gcw+OXZYQQggh7jEJu4UQQgghhBBC3Hvz/I+UsuCXr7H2IdaeH7uk0+O3EKe2V7YUpuH3BDUw1xW1VsK8I+bKFBO90/T2dMKZU1VKIc4T2QdcNZQUcdqSUiLlSOvfVmijQBuqzpSkIbSYW5sWerf3BqV/JP4OEaapdQUvHpVT6xrue+nmPgXvC73HRLUWVeuth96vRuibqrFFU1RF5YpSQN2T9EDUK8xgyAWeZcfvyp6nlwufPV5h7uvECAX05+AvYNnC8OjQ4f1J6/Y+AVp39P2neP8NrnvCfv//49Gj/6+ssxBCCCHEjZGwWwghhBBCCCHEvZbzxDz/F7z/llIj6+FfHruk0xNnWC4hTJACqX/MTj3EV0fEEueXpJKZQmyjhp10+d6kWivJB+I8UUrGZii50LsebS2FgqmGWkp7q4UaI+Xw9UorlNaUpFuH96tw833d35UWcocAKYEPKKAOK+nmPkXvDb2no4TeVUFSb3d5owsuKzQeTSLoM8z6CXm64LtkqGrk263n9w8G7m12qhT0D2C+OEzRAJYLWJ3O6o2u+4QYX7LMX2LMihif03WfHLssIYQQQtxTEnYLIYQQQgghhLjX9uMX5Lzgw7d03W/Ruj92SaclR5hfQAoQJ2q3Zmt+Q66amRUxTJQUGH1Godj0Rjr4blBOiThN5BQpKaFiQWnH0K/QxhJrAkAphTIGTAukKxVKfR2A50Kp+XCuP9D9nTM6BHQFFRM6Z7RzVOnmPn3fC71D6/R2b4TefQ+r1Y1f122HfEW/0+WtS0bpLcGeYdePCdOW51lT9IIdF357do9/lyvTAm+/hTi2AFy71vV9ApTS9P3vmed/JOeZZflKwm4hhBBC3BgJu4UQQgghhBBC3FshPCOEZ3j/FUpZ+v53xy7ptJTSRujm0MaX257J/oZQHRMrQooUv2eOmVwK571DS9B9I0qtLeT2vo0v9wumKIZ+jet6jLKkGn/w6xUKDh3dr9Raf7j7O2dUztRaKekQilvbmn1TRCuF1hql9P3tsP0YvC/0jonaWVSFmjKcbeDHRtxfg6KgqIIprcubQ5d3lyuKLdqsqauHBD9ykaGmDjdPPFrd4+kCxkF3Bn73eoS5tuBWx63rZ7L2AUpZYnhBMGtK8XKwmRBCCCFuhITdQgghhBBCCCHupVpL6+pOe2K6ZLX6Fyh1j4OR61YrzM9b0O13oDXJPWTPBk+Hz4Y0vyTFgo+FdW+xRlLPm5BCIEwjNRdyCKQQsMawXp9jjcUqS6r5Kqj+ud7b/Z0ydV6oOVFTIpUMKJS1KFrwrVShKAWoNvr8KvhWKG1uOhcVN+Hd0DsEaiqo1UDd7uB8c3U7uUlZV3RtXd66aLIqdFlh6ozWidqtmYNBp5n/wgOUmXnY/dJb/gmxPZTcVkgo034n69+B6Y5d2U9SSuHcE2J4zjB8xrJ8w3r9Xx27LCGEEELcQxJ2CyGEEEIIIYS4l5blL+Q0Mi9fYswG5x4fu6TTslxCXFrQXQu1f8SlekiuhrH2eD9Sc2SKid5penuz+30/RiVlwjyRY6CkTPILtVZs17EZztBKY5Wh1EL5xVH396kQIcQ2xjodzs/1VKNbF3itlJKptZ2ktQKlqCiK1rTENLXub6Wl+/sUvQq9jUEtC3WaUcMA2z11s4bO3XgJr7u8NaZqymEE/1Ai2mSqWzHmM0yZ+adlw/9Lex7bcON1HU23hpoh7EEbGJ/B5ndg7v7Lul33hBC+JaZLFv+VhN1CCCGEuBF3/68iIYQQQgghhBDiFyrFM05/JoTnlLKw2fy3xy7ptISxjS2PeygJ+geM6pxYLSMrZh9QaWQKEas1Kycd89ep1kpaFuI8U0oheU9JCW0tru/pTYdSGqssFUjknzzPH1UKeN8C7hwhJUBD14EyKHgjrK5X+78LLQBPpUDOKNW6OUvR0v196oymrleoeYF5pg49ahypeYDVcCslZF3QVV29tS7vwiM18oKBbd1wXjxfTop61vNI7dGq3kptt647A3/ZdngPD1uH9+a3r8eb31Fa9xhzRgwvcO4xMV7g3KNjlyWEEEKIe0bCbiGEEEIIIYQQ9844/pmSPd5/g3NPMGZ97JJOR/KwvIS0tM7u/oyoV4ysWejZR9Bhx+gzCsWmNyhp2702OUb8NFFzuhpZrpTCrVZoa7DKYpTBHkbyx5o+7AJjguBb4B1je28sWEtr832XOuz/hqtDHExtO7+l+/t+UYq6WoH3rcu761BALQXW6/ffPK5ZUZWqKvrQ5d1uSZXfsPCiWvZloGrLN9NCXj/iMVus+sCDP+4ipaB/AMtFC7zRML+A1W+463cc556wLP9MyZ5l+UrCbiGEEEJcOwm7hRBCCCGEEELcKyntWPxXeP+USqXvf3/skk5HTjA9gxRad7cbqGbgknNSNWyTpfiRGAO5FM57h77jQcupKKUQp4kUPDVnovfUUrCuQ3cOpRQGg1MWqzQaTarxAy6wHrq5c+vej4fQ3HVtVPIvolDKSPf3faSAoacGjQqeWiqqQs0Zzs64jSup8naXt6oKdOETEi/inkmdgdqgl4W6esyDumVQ93CsudLQP2yBd9jR7jSXMDw6cmE/zrmHeG+I8QXer9hs/hat5SVpIYQQQlwf+ctCCCGEEEIIIcS9st//kZxnQnxO33+G1je/Y/ZeqKWNxi0Rwha0A3fGng2pWrZ5YAkBwoSPhXVvsUbSyA9VayV5T5wmSi1k78kxoayhW69Ruo0pViictmgUGkOq+ddv6U6pBd2lHrq5cwu4neN62nV/rPsbai0/0v2tAI10f98xnaNqjfILdS6o1UDd7uBsA/Z21hgU1Q6iMFVji6aoymNd2S6X+P6cC7VpHejDQ2KdOGO8f7cXbaA7P6yZGNvdVTvoNseu7AcppbH2ESG+pO9/j/dPWa3+6thlCSGEEOIekbBbCCGEEEIIIcS9sfhviOmSZfkSrTu67jfHLul0zC/bCPNXI3L7MwKOiTVj7dmFigp7ppjonaa3d3tX7CnIKRHGkZITOSZy8ADY1YC29ip2VkCvOzQKqwylFsqvibprhRAgpBZwx0NnuHNw452Wb3Z/G364+xvp/r6rrKHqtse7TjOq72G3o2420N3OQUVVQVIFc+jydijObWVadiTWvOxWEBPVronK8rBuMfdtj7ftoK7b9A1t29oJZcDdzi71X6PrnhDjc+Jh8oqE3UIIIYS4ThJ2CyGEEEIIIYS4F0pJjOPfEeMFOY+s13+NUhLI/ix+C3Fq3YKlwPCIgmHLObEaXgaNSiNL8FitWbnb6eS8r0qtbWS5X6ilEv1CTRnjLKbvv7cD3SmHQmGVpQKJX7GTOGdYXu3mTm10udaHbu5j3E+k+/skaU1dr1HzDMtC7XvUOFLzAKvbC1uzqmgqump6DBiYlwkoXLAGZTk3kNVjHtYtnfrA3fZ3jVtBzeB3bbz5/Bz0p2Du5ku9xqzRekWKL0juASntsPb82GUJIYQQ4p64m38BCSGEEEIIIYQQv9A8/xMlz/jla6x9gLUPjl3SaYgzLJcQpraru38A2rCvG2I1PAsdJUXCMgGw6c33wljx88VwGFmeCyUEUggoo3HrFdp8/yACqyxGGaxqp8X6C0O7ehhVHg7jykMCKlh3B4Oxa+7+RqGMdH9fOwV1tQLv21jz2qGAWjKsN9czCf9nKAqKKpii6LWBCn5Z6Gphyxl1dcYZEy/VI87rnrVabqew2+LO2sErfgvqEUzfwebTdhDLHdR1T1iWrxhKZFm+4uzsXx27JCGEEELcE3ftWY0QQgghhBBCCPGL5Twxz/+MD99RamQ9/Mtjl3QacoT5RRtfHifo1mA7fO2YWXGRHD5VyrIll8J579ASdP8qOWXiPJJjpKRE8p5aK7bv0F333nzQYHDKYpVGo0k1/rILLaV1c+cMObVd3WjoutYNeuddQ/d3ku7vG6GAoacGjQqBmguqQs2HPd63GLhmXdEVeqOhQvCBdd0y1zPqZsO6elCKWB0P2N2f614B/Tn4i0Pg/RCmZ7D55E7ev517xLJ8RYgvMH7FZvPfyvQVIYQQQlwLCbuFEEIIIYQQQpy8cfw7cl7w/ild91u07o9d0t1XcgtGcoCwB9uDW1OqYssZU9JcBgthT4iJdW+x5r6kRLen1kqcZ9KyUEoheU9JCW0tru9RP9B2rFA4bdEoNIZU8y/b0h0j+NAC7xCB0jq5reXWWm9vxHV1f2uss3LwxofqHFXr1uE9z6hVT93u4OwM7O2tOyiqUhU4qyFCipmOHZnMvN6QMW0FwGGPt1W/YhXAXaRUm8axXLbAGwXLBayeHLuy71HK4twjYnhB33+KD98y9L8/dllCCCGEuAck7BZCCCGEEEIIcdJCeI4P3+H9Vyhl6fvfHbuku68WmJ63oNvvQBvozgDYcYYvhmfBUXMg+JHeaXorHXi/VA4BP03Uksk+kGJAKYVbrdA/EgQqoNcOjcIqQ6mF8nOj7lLAe0jljW5uBa5r1/O988u6v5VWbQy/1oRQsMZgjL0/3b7HYA1Vr1DLQp0WVN/Dbkddb6B3t1ZGBaquaKcgQo0Vw4SiEIZzstFs6swL9YiHdUevwq3VdqOUge68hd1hbAG4dq3r+45x7gkxviSnPX75SsJuIYQQQlwLCbuFEEIIIYQQQpysWgv78U/ktCemS4bhX6DUfQz0rtlyCWlpQTe1dQYqxVJ75jrwnbekAnG+wGrNysnP9JcopRDHkRQDJWfS4qm1YF2H7t8/svxNTjkUGqts60blZ3ahptSC7lJaZ3cpoC24U+/m/qV+ovu7FGIpGK1JtVJKxlqHvqO7jk+C1tTVGjUvsCzUvkdNI7UMsBputRSlQTnIsaKjAjyuZvLwgJ09Y10nLtRDNnVkw3Q/DnQwrh2w5HevR8hrC2513LreYe0ZWvdtlLk9I+cZY+5WjUIIIYQ4PRJ2CyGEEEIIIYQ4WcvyF3IamZcvMWaNc4+OXdLdF8Y2tjyOUNIh6Dbkw/jyFx58saRli6Ky6W3rhBU/qdZK8p44TZRSyMGTY0JZQ9dvfnBk+ZusshhlsIeDNmJNP+eCIQQIqY2nj4fd3ve2m/uXeqf7W7eAO5dCKRVjdDsuwOgWesvN/ddRUFcDeN/GmleHAmrOsNnc6vEWWiuyAZ8Lq6zJPjPoLaFsmOyapD0ViMrxsG7Rqt5ecTfF9lAzhKl1e8/PQf8OTHfsyt7i3BO8/4ah/5xl+YrN5r85dklCCCGEOHFyyKoQQgghhBBCiJNUSmCa/oEQXlDKwjD8lYSyPyV5WF62ru64QLdpHYHAlnP2AXa5J4aFkhY2nZOdxj9TTolluyVMIykEwjRScsauBrrV6mcF3QaNUxarNBpN/jlBdykwL20vd4oQQ+vs7HsJun+QQmuLtW18eUqZnCMlZ2LwpPR67Ln4hRQw9NSuR4UE84IKEXa7dlu9Rc4qlIEpZ2op+DmzSiN9nPGpZ2TNUjue85hY70k/kFu30DvsIQUYn7V1BneIc48BiPGCxX9NlTubEEIIIT6QhN1CCCGEEEIIIU7SOP2ZnBe8/wbnnmDM+tgl3W05wfSsBSB+38bb2jZeeK4DY3I8Dx0xV/KyY91ZrJGg+6eUWvHjyLK9JIdAmCaS9xhnces1xv68EE2hcIc93RpDqvmnt3THBPN8GF8e2nVsXevo/qjGlv86Co0xDmtM68pPkZwzKUVi9JRbDmfvlc5RhwFVMswTKkXY7iD9zJH811WG1Sij2OdMprDMGRc967QnBc2unOGr4wWPmOvtjlu/Md15G2EetlBC6/Cud+e2rLXD2geE+IJSPCE+P3ZJQgghhDhxEnYLIYQQQgghhDg5Ke1Yli/x/imVQt///tgl3W21wPwMSmwBiOnAbQDIVXNZN3y3KEK1xOWSwSl6Ky8Z/JToPcvFBXGZyd4TpgkAt15h++FnTxpQQH8Iuq0ylFooPxZ11wrLAotvQXcI7eNdB+aedKjeIqUN1jqU1uScyTmRSyGESEpRurx/LWuoq1U77GJaUDGhdjvw8dZKUEBvNEopxpQJFJaQsSmxyXtUKuzzGb52bDlnW89O//pWQH8OaPDbNtFjesFd+sace0IpMznP+OWrY5cjhBBCiBMnz4CEEEIIIYQQQpyc/f6P5DwT4nP6/vdo7Y5d0t02vzx0dG8B3YIQ1bKPi3rO8ymzcEYMIx2ZlZPx1z8mp0ScJnKKlJRI3lOp2KFHO/eLe6qdcig0VlkqkPiR7teSYfZtJHSM7b+1AeeQbu4PoTDaolWhlEyKCW00JEMpBaMtxsr94hfTmrpao5YFloXa96hppJYeVqtbKUEpGJxmjpklFaoDHRU9sK4jCwNjWZGspaq2x/tRvcSou9MN/YspDf0DWC4g7AAFyyWsHh25sMbac5RyxPCCYNaU4tG6P3ZZQgghhDhRcpi2EEIIIYQQQoiTsvhviOkSv3yN1h1d98mxS7rb/Bbi1AKPUloAcug4nlnxwivGusLHjE4Tm97I7vMfUGslTBN+uyWFQJxn4rygjKFbbTC/Iui2ymKUwaoWpMYf29MdI0wL5NzGlpfSQm4ZW35tlNIYYzHGUEu5Gm0eUyKESLlD3bEnQ0EdBqq1KL+A96jFw34Pt/TjVAp6a8i14nNhIRNqQZXKKsys8kRIll3e4KvjOY/x9cQPotKm/b7PEeLYHgPCeOyqAFBK4dxjYnxJrZll+frYJQkhhBDihEnYLYQQQgghhBDiZNSaGce/I8ZLUt7R95+jlDy1/UFxbt18YWqd3d15C0CAVA3fhoFttMxZU8OWs86iJeh+rxQC8+UlcZ5J3hOmkVoqbr3CDQNK//Kfm0HjlMUojUaTfyjoLhXmBZZwGFvu28e7ru3mFddMoV+NNleKlDI5R0rJhBBIKd2lidCnQQFDT+16VEwwL6iQYHc4COcWGA2906Rcibkwp0xS7YrsUmAT95QMu3hGqB0XPGJf16d9XRsH3aY9FqQF5hcQl2NXBUDXPaGSifGCRUaZCyGEEOIDyCsCQgghhBBCCCFOxjT9E+Ww49Pac5x7cOyS7q4cWrCRfOvs7tZgO6CNL3+WNlwshbkO5DBx5sAaCbrfVXJh2e3w+x05BMI0kmLAug63WaPNrxttrVC4w55ugyHV/P4t3TnDPLWQOwZIsQXcfddGFYsbpDDGYa2hVogpUnImpUSMnnJLIe290jnqMKBKu12rGGG7g/Qjo/uvkdWK3ih8quRSmUKiaECDKZmzsEeXxC6umVPPvm644AGlnvDvRjuAG8DvD48LzyH/yASJW6J1jzFnhPiCXGZivDh2SUIIIYQ4UfKsSAghhBBCCCHESch5Zp7/CR++o9RI339+7JLurpJhet6CjbAH24NbX528qyu+m2FWa3yMrNRCb+UlgjfVWonLzHJ5QfKeNC/EeQat6dYbTN/96sHhCugPQbdVhlIL5X1Rdwitozu9Oba8k/3ct0wpg7UWozW5tLA750IIkRjjaXf+HoM11NWq3YLnGRUTardrt/Fb4KzGGoWPhVxhDImqAQuKyjqO9GlhLh37tGapPS94TKwnvLPdnYHpwO/aWPPpu/Y4cWRd94ScR0r2LMuXxy5HCCGEECdKnskKIYQQQgghhDgJ4/gFOXu8f0rXfYIxw7FLuptqeR10+10bW96dXZ0ciuHLybHUjjlBVybW7oRDnBuQY2TZbgnTRDp0c5eScauBbrX6VSPL3+SUQ6GxylKBxDuhU6kwz+Bj6+SOhxCw667G0IvbptDaYq1FKQ6Bd9vnHYInpyyh9y+hNXW1RmmDWmaIETVN7XZ/C3qjUUqxxHzo8M5tsbdrAxOGvLD2E6lotnGDz44XPGau/a3Ud+0U0J+D1uC37fFhet4eL47I2ocoZYjxBd5/SynxqPUIIYQQ4jRJ2C2EEEIIIYQQ4s4L4QU+fIcPX6GUoe8/PXZJd9dy2Xaz+i1QoX/QQhza+PK/LCuWrNiXDp1nzruKkj3dAJRa8eOeZbclB38Iuz3WOdx6jbYfvh/bYjHKYJVBAfHdPd3p1djyDNG38eVGxpbfFQqNMRZrDLVWUmqBd0yJGAPlyOHhSVFQh4HqHMp7WDxq8bDfc9NHDigFg2v3pyWWtsPbJ0ChjAIDjshZ2KFKZZc3+NixrQ/Y1rPTPLBBqfZ4QG2PD2mB5eLIJWmsfUSIL6k14/23R61HCCGEEKdJniUJIYQQQgghhLjTaq2M45/IaSTGC/r+M5SS7tb38vs2tjyObURtd/5WQPrU9+yiYldWlJw4NwktQfdhZLlnubggLgtpWQjTDAq69RrT99dyQIBB47TFKI1Gk94Nut8aW+5bh7frwMrY8rtFobTBWofSmpxz6/IumeAjKaXTDEOPQQF9T+0HVEowL6iQYLdrY/tv8qIVDLYdtOBTIeSCj23KgtKty1uryibusSmyryv2cWAqK17yiFxP8GVVZVrgXXJ7rAjj4cCo4+m631BrJKatjDIXQgghxK/y4YckCyGEEEIIIYQQN2hZ/kJKe+blS4xZ49zjY5d0N8UFlpeQ5vbv/hyMuzp5HzXf+o6x9MSiOFMLzkiAmlMiThM5RUpKJO8BsEOPdu7aImaFwmmHBgyGVPPrLd2ltHA75dbJnVMbN+wc0qdwlymMtmhV2i7vmNBGQ6qUkjHGYowcmPOzOEtVCuU9dZ5Qw0Dd7uBsA9cwUeGHaA2908yxEA/3SKMVzmgUqr1ymivrPGFLZHZrStJs9Ewyj3nElk6d2OhtbdtqC79r4ferj7n1UcoxZoXWK1J8SXIPSWmHtedHqUUIIYQQp0meMQkhhBBCCCGEuLNKCUzTn4nxJaXM9P3nMnL7fXKC+TnkCH4EtwL7erdsKpV/ngd80cylY2BhZT/u1tM2snzEb7dtL/c8E+cFbQxutcZca9ANvXZoFFZZSi2UV1F3Sm1PcUptN3dOLdxzHfKyzWlQSmMPwXYt5bDPOxNjIoRI+bjvaj+fNdTV0O5384yKCbXbtwNBbpDRit5qfK7EUhl9IufXV5oyLfTuahtrnrNmmzf46HhZHxKq+5Fzv6NsD90a4gTJw/wCUjhaOV33hJi2lBxZlq+OVocQQgghTpM8axJCCCGEEEIIcWdN0z+Q88KyfI1zj7F2c+yS7p5SYH4GJbZxtKYD9/rnVCv80+jwRbMvA5bMxpxYJ+I1SyGwXF6QloXkPWEcoVTceoUdhjbC+Bo55VBorLJUIJHbFeM9zIeObh9ejy03Mrb89Ci0NlhrUQpSaqPNS8mE4GW0+c+lNXW1RmmDWmYIETXNMM03erHOKJxRhFjIBUafKG9cYUq1seZGF87TFpMy+7rBe8NFeUCqJ9jB79Yt9A77FnRPz9rBNscoxT0CFDG9wPtvqDUfpQ4hhBBCnCYJu4UQQgghhBBC3Ekp7ViWL/H+KZVC33927JLunlphOXTkLdu2n7s/fysnfTpW9nlgm3uq0pyb+aPd011SZtnt8PsdOUTCNJJiwHYdbrNG38DIaYvFKINVBgXEmg4HKCwQIqTYOrq1hr4HfYKhmXiDxhiHPeyCjilScialRIyecsN7qO8FBXUYqJ1DBQ+LRy0e9ntu8oiBzmqMVviUSbUy+kx9M/BGoYxCWViXEZsCk9oQguGiPiTXE/y92p23EeZhCyUcDpy6/duoUhbnHhLDC0pN+PDdrdcghBBCiNMlYbcQQgghhBBCiDtpP/6JlGdCfE7ff4rWJzgq9qb5LcQZwg5qgf4BvBFkXy6J79KGMWkSPWc6YNXH115aayXOM8v2kuQ9cV6I84zSmm69wfTdjfRRGzROW4zSaDSpprfHlvt3x5afYFgm3kspg7UOrXXb550SORdCiKQYpcv7pyig66n9gEoJlgUVEux2NxbGKqC37aXSJWZSLowh8+5VpZRCOViXCZUyI2tCtFzUh6d3vSraAVLodsBUCm2k+RG+EeeeUGogpz1eRpkLIYQQ4heQsFsIIYQQQgghxJ3j/VNivMAvX6F1R9d9cuyS7p44tbA7jC2g6M7f6gr2MfPlPDBnzcyKwRR6dbydrMeSY2TebgnzRAqeMI3UknGrAbdaXfvI8lcUCqcdGjAYUk2UZTmMLU8QDtdF92psubh/FEbbN0abJ3JJpNxGm+eUTy8cvW3OUocBVQrMEyom2O7aRIQboBQMzkAFnwsxF5b4/ZHaihZ4b8pILYp9XROi45IHp3edKt0OlKqlHTgVZ1gub70Ma8/QuifE54T4kpynW69BCCGEEKdJwm4hhBBCCCGEEHdKrZlx/Dti3JLyjr7/DKXk6etb8qH7LvkWTHQbsN3rk0vlL3uY68BYepw1bNT8UfUNl1Lw+z3LbksJnjBNpBCwrsOt12hrb+yyFdBrh0ZhlaXkSBlHiKmNLI/xMLa8AyVjy+87hcYYizWGWgrpMNo8pkSMgVJltPmPsoa6GlCAmmdUTKjd2Hbe3wCtoHeanCshFXzM+B8IvLWtbPKeXDRjXTGnnj2bG6nrRmnTAu8cIe5b6O33t16Gc0+I8ZJaEsvy9a1fvhBCCCFO0809sxNCCCGEEEIIIX6Fef5ncp7wy5cYc45zD49d0t1SMozPWygR9mB7cKurk2uFr3eBHY/ZRwXdwEbNaD6OQK3W2kaVTxOlFrL35JhQ1tCt1yh98wdOOOVQaKyy1JRI89hGL4cIVLAOjLwk83FRKG2wWpNz6+7WtVAxFF+x1mCMfXMLgXiT1tTVGuU9apmpXY8Cai6wWl37BgCjFZ3V+FTQqgIZrTXOvH1BSimMKazzyMSGmR6twJjMWi3XW9RNM64dOOX3LfxeaO/feHy5ac49xvtviPGCxX/Nev0vUXKnEEIIIcRPkGdWQgghhBBCCCHujJwXpukf8eE7So1shr8+dkl3Sy0wPYcSwO9aENGdvfUpL0bPZT5jHyHbDWcm4+rNjPy9a3JKhHGk5ESOiRxa56ddDWhrb6Wz3WIxymAxqBCJfmpjy1MCVBtbLpMKPmIKYxxaZ3IupJTQWkOqlJIxxmKMdPu/l4La96AVKnhqKagKNWc423DdRwo4o6hVEVJBK83sI2Zw6HdWHyitcDUx5JlZrdGpgDrD6BNcHWGHdkCVH9vUifkF6N/d2qoFrR3WPiDEF3T9J4T4nF7WmAghhBDiJ8izKyGEEEIIIYQQd8Y4fkHOHu+/pes+wZjh2CXdLcsFpKXt6qa2sbNvBDy7JfLcW3bZEvSawVn6ev/3npZa8ePIsr0kx0iYZ9KyoI3BrdeYWwq6DRqnLaaADoEUJmoIbb+wNoex5fJSjAClDNZajDaU0kLvnDMxJkKIlFPb+3xbFNB11H5ApQSHsebsdm16wjVzVmOMwsdCqrD3mfqepdzKKHoV6NPCzAofLJf1AbGe4IEL7rAWw+/aBJHpWQvAb+vi3RNKmcl5xi9f3drlCiGEEOJ0yTMsIYQQQgghhBB3Qowv8eFbfPgapTR9/7tjl3S3+D2EEeLYgofu/K3g1KfMt/vEZT1jLo6uH1gxobjfqVkMnuXygrgsZB8I4wi14tYr7DDc2ghchcJph44JEzM5BsrsWwDnXHv7qLami5+m0LqF3kpBSpmcI6VkQvCklHhPrioAnKUOA6pWmKe2x3u7g3i9UywU0BuNUoolZnIpjCG//7eqgaEu2BQY1ZoQDRf1Ibme2Muvivb4onU7sCqHFnjf0m55a89RyhHDC0J4Rik3s5tdCCGEEPfHif21JYQQQgghhBDiPqq1st//iZxGYnxJ3/8epWTz1pW4wPIS0tz+3Z29NVY2l8rTrWfHA6YEuj9jUAlzj8eX55RZdlvCfk8OgTiNpBiwfYdbr9G3PAq6x6HngM1QYiDPYzuh60DLbVn8MIXGGIe1pu2cT5GSMyklYvSUG+hYvhesoa5WKEDNM8SI2o/grzccVQoG115C9bEQc2EO6fufh0I5WJcJkzJjXROj5YKHlHpiB7oo1SaHUFvgnTzMF7d00QrnHhPjS2rNLMvXt3K5QgghhDhdEnYLIYQQQgghhDi6ZfmSlPfMy1dovcK5J8cu6e7ICebnrbvOj+BWYPurk2uFp7uFfRnYJQ3unMEoXLmf48trrYRpwm8vST4Q54U4Lyht6NYbTNfdev90VzRqnnFoaoykZQJjZWy5+EXaaHOH0pqcMyknci6EEEkxSpf3+2hFXa3BWNSyQIioaYZx4jqHWigFgzXkWvGpEFJhid8f7a1QKAvrMlIz7Fnjk+WS89O7/pRpgXfJEPZtqojf3spFd90TKpkYL1hklLkQQgghfoIcWiyEEEIIIYQQ4qhKiUzT3xPDC0qZWK//5tZGT995pcD8DEps+1NN1/apvuHF6JkCvCxriu7o+p6u7O/l+PIcAn6aqCWTfSDF0LoAVyu0Pc5uXOszJmecMpASKcxtZLk+wV294g5QGG3Rulx1d2ujAUOuBast5ki39TtLQe170AoVPLUUVIVaCpxtWlJ9DbRuHd5zLETVuu2NVjjz9gEtSim0qWzynr06Z6wrtIKdOeMB+2up5dZo2yaJ+F0Lv199zK1v9mJ1jzFnhPgC1z0hxpc49/hGL1MIIYQQp0sOLxZCCCGEEEIIcVTT9Gdy9izL11j7CGs3P/1FH4NaYX4BKcCybR3C/flba593S+RySbwoZ6SqcMMDXA2Y+v0Ru6cuhcCy35FjIIxTG1nuOtxmc5ygu1TMOONSxVZQpZJyoHYSdIsP10abW4wx1FLaaPOUiSkRQqCcXJvwDVNA11H7AZUSzDMqRtjuIF/fGHijFb1V+FTJpTL5RMzfvy6UVhhd2KQ9qVrG1DOXFWNdXVstt8b20K0hTodx5ofHpRvWdU/IeaRkL93dQgghhPhREnYLIYQQQgghhDialPYsy5f48JRKYRg+P3ZJd4ffQpwh7KCWNk72jQ5FnzLP9oFtHpiyxQ0Psbrey/HlpVbCNFJSIk4zaEW3XmP62x9ZDkBMqO1IVw06ZzSaXAvFGOSlFnF9FFofRpsrRcqZnCOlZEIIpJRObzT2TXOWOqxQtcI0o2JC7XYQ4/VdhNFYo1hiIZXK6CPxPYG6MgqrM6s04emZomNfz1hqd2213Bq3Bje0ceYpwPRdW7Fxg6x9iFKGGF/g/beUcn3XoRBCCCHuF3kGJoQQQgghhBDiaMbxT+S8EMIz+v53aO2OXdLdEKdD2D1CjtCdv9UtnEvl6dYzZ822rHH9Gm07XJ6OE/7esDiNbaSz92hr6VYrlD7CSxoV1LygdiO9tuiYsKajaEVWwL386YvjUxjjsNZQK8SUKDmRUiJGTynX17l8L1hNXa9QSqHmGWJE7Ufw/touorcacwi8Y6mMPhHS93d4Y6CrkSHOzKzw0XJZHxDrCW6WdGdthHnYttUa87O2auOGKKVx7jEhvKDWjPdPb+yyhBBCCHHaJOwWQgghhBBCCHEU3n9LiC9Zli9RytF1vz12SXdDDocxsb51drs12NedgLXC092CT4UXeYM2DtOf4eqC4f6NL88xkLwnH4Iq2/fHKaRU1H4P80yHQaWE7VZUa0nlPSGXENdMKYO1FqM1uRRSSuScCSESYqRIl/drSlFX7f6plgVCRE0zjBNcw89J0QJvaxQ+FmKuTCGzxPzO5ylwMFRPlwJjXRGj4YKH5HpiL8sq2ioNdFutkQ6PVTc4XsC5J1QSMW1llLkQQgghftCJ/VUlhBBCCCGEEOI+qDUzjl+Q4paUdwzD5yglT1EpGcbnrZs77NuuVPf2jtcXo2cJmRdxoGiHGx6gKdgyH6nom1NqxY8TJWdyTJi+R+kjdE+HiNpuIURsrGjADRuwjpRvfnetEK8ptLZYa1EKUjqMNs+ZGDwpZRlt/ooChp7a9ajgYfEoH2C35zqODHgVeHdG4VMh5sISfyDwtrAqEyZnRtbEZHjJQ0o9sWkQSreVGrW0FRtxhuXyxi7OmBXGrInxBSnvSGl3Y5clhBBCiNMlryQIIYQQQgghhLh18/zP5DyxLF9izBnOPTx2ScdXC0zPoIQ2wlybNr78Dbslsl0Sl17h9YZ+aOPNuzzeywHacZqoOZOWBWUNxt7y6N8KaprbCOQYMSFi3YBdbVC2I5UowaI4CoVuo82NodZKSpGcMylFGW3+rs5RhwGVEswzKkXY7uA9e7Z/1dlbTW8VPlV8aoH3FNJbDeRKKZSBdR4hV/ZlTcyWSx6c3u8QbVrgnSPEfQu9/f7GLs65J6S0o+Qo3d1CCCGEeC8Ju4UQQgghhBBC3KqcPdP0j/jwjFIjw/BXxy7pblgu2uhyv23/3T94awW0T5ln+8AYMjv1gL7rqXaNLQua+zdGO6dE8gs5BGqtuH645QIKareHZQEfUCHgVmfo1YA2HaVECRTF0SltsNahtCbnTM6JXAohRFKSgzGuWEtdrVC1wjSjUkJtdxDitZy9M5reamJugbdPhdm/E3hrhdaVdRrJRbPPK3zt2HF2LTXcKuOg20BcDt3dL9v7G9AOhlPE9ALvv6HW+/d4J4QQQogPI2G3EEIIIYQQQohbNU5fUIrH+6d03W8w5pZDzLsojO0tjm2Uef+gjYs9yKXydOsJqXCRV7iuQ/XnaBK2Lkcs/GbUWgnjSM2FFAK26253fLkPLQiLEeYZUqLbPEb3PdZ0lJpJWQIXcVcozGG0OUCKiVwSKWVi9OQkt1UAjKauV63Lep4hRdQ4wuyv5eydUQxOk14F3rkwvht4G4VRhU3ck6pljANzXTHW1Q+e751lh7ZmI4yv93fn6zl44E1KWZx7RAwvKDXhw3fXfhlCCCGEOG0SdgshhBBCCCGEuDUxXuD9Uxb/DUpp+v7TY5d0fKW87uqOC3RnoF+P664Vnu4WQiq89KC6B9j+jIq+t+PL07JQciL6BWU0uutu54JrRY0Tapxax+fUOhW7h49RrsPqnlohpesPdIT4UEppjLEYY6ilXI02jykRQqRImzcoRV2tqNailgVCRC0zjBNcw4/H6hZ451zxsRDTIfB+82dvwZJZxQlfO6bYs69nLLX/8AJum9uA7doo8xwOqziu/+AK555QaiDFHcvy5bWfvxBCCCFOm4TdQgghhBBCCCFuRa2V/f5P5DQR4wv6/vcodcs7mO8if9HCgbhvoYF9O/B4MXqWkLmYE6l7zND3ZL3ClRnN/RujnVMizjPZB2opuGG4nUA/5za23Pv2FjxYiz1/iDYdzjoAUr6eLlAhboZCvxptrhQpZXKOlJIJIZBSktHmChh6atejgofFo3yA3R7Kh/9wjFYMzlBKZTkE3nufrwJvhQIHXY0McWGmx0fHJeeEemKPiQroztseb/9G4F2v97HJ2g1a98T0ghgvyHm61vMXQgghxGmTsFsIIYQQQgghxK1Ylq9IeceyfIXWA849OXZJxxeX1+PLK62r+w27JbJdErslsehzVv1AsmeYGjH1/oWutVbiNFFKIcWAdR1K38JLF0tAbfetm3ueIWUYesxqjTUD1hiUMqQiO5DFqVAY47DWUCvEFCk5k1IiRi/75gE6Rx0GVEowz6gUYbuDa1hRYDQMzlBrZY6FlAu7JV911ysUWBjqQpcCEwMxGS54SK4n9nKtUm31BhX8tk0pmV9e+8U494QYL6klsSxfX/v5CyGEEOJ0ndhfT0IIIYQQQgghTlEpkWn6e2J4QS4jw/BXKHUfB3D/ArXA8rLtOI0LdJu39nT7lHm2D0whs0+OfvWA6jaAwpXpfo4v956cYhtfrjS6v+Hx5aWi9iNqmiCEFnSjYL1CuQ7nBrTWaO0oJUpAKE6OUgZrLUZrcmlhd86FECIxysEbWEtdrVC1wjSjUnp94MsH0hqGzgCVOWZSKeyXRD50jyulwMAqT+icGcualC0veUipJ/YbXukWeJcMYQ9xguXyWi/CucdAW4eyLF+9PRpeCCGEEB81CbuFEEIIIYQQQty4afoHcl5Y/DdY+whrz376i+47v2tBd9iDsWCGq5NyqTzdekIqbJeM3TzBdh1J9bgy3cvx5SUX4jSRY6SmjB36mw30U0Ztdy3k9kt77xysVqA0nRvQWmG1o9RMuoZuTyGOQ6G1xVqLUhwC77bPOwRPTvnjDr2Npq5XKKVQ8wwposYR5g+fnqEVrJwBYImZVCrjm4G3VigNm9RGqO/yilgtFzw4vetE2zbSPPk2scRv2/vrOnvtsPYBIT6n1EAIz67tvIUQQghx2iTsFkIIIYQQQghxo3KeWJa/EMK31JoZhs+OXdLx5QhhB2luHd7dGa+S3Vrh6W4hpMLlHFDDY/quI+gNpkZsDcet/YaEaWzjy73HdBZtzI1dlpoX1G4HKcI0Qy4wDNC1TvLO9SgMVvdUIKUP7/IU4tgUGmMs1rTx2im1wDumRIyBcs17lk+KUtTVimotamkHv6hlhnFqKyY+7KxZOYNCsYRMLJX9Ekn5EHgbhVKwiXtqVezjmlA7tpxfwzd2y2zXppTEuYXey0tI1/eY1XVPKGUh5xnvZZS5EEIIIRoJu4UQQgghhBBC3Kh5/gulBHz4jr7/HVrf8Gjqu67Wts+0pBYI2KF1xB28GANLyFzOkWxWDOszomnjy7tyfV1yd0n0nhwDyXuUUpiuv5kLKhW128N86OSelzZ+d7WCQ7hubYfWDmcdKEj5/u1GFx8zhdIGax1Ka3LOrcu7ZIKPpJROr6P4uihg6KldjwoBFo/yAXat6/qDzlrB4DRaKfyhw3vvIzEfDjCwoKmsw0iqhjGuWOrAvq4//Pu6bW4FbmhTS1KA6Tu4phUQxpyjlCOE54TwjCy/n4UQQgiBhN1CCCGEEEIIIW5QrRXvnxLjBQBd95vjFnQXxAmyB79vQat7HWbslsh2ieyWRCjQn31C0T1ZdYc93fcvhSq1EqeJkhIlJWw/3Mw+95QOY8sjLEt77xyshpZEAUZbrOmxxqCUIWXZaSzuK9Vu79a26QUxkUsipUSMnvwxj+3vHHUYUCnBPKNShO0O0of9TJSC3mm0USyxkEtl9ImYMwoFFiyZdZzwOKbUM7Jhrjd08M9NcmftIK6wb9NL0nwtZ6uUwrnHpHhBrRnvv7qW8xVCCCHEaZOwWwghhBBCCCHEjbnarRlfYu0DlLI//UX3WcmwXLTxrjkexpe3oNWnzLN9YA6ZKWT6zW/RxhL1ClvDvR1fHseRUjLJe7SzaHvN48vrYWz5dt/Gls9z6zJcvR5bDqC0xrkBrTVaW0qJlGvqRhTirlJKY43FGEMt5bDPOxNjIoSP+GAPa6mrFapWmGZUjG0qRPiwlQZKQW819hB4x1IZfcbH3A7yseBqZBVnltrjk2PLOaG6a/rGbomiHchVcnusi9cTdkMbZV7JxHjBssgocyGEEEJI2C2EEEIIIYQQ4gb55Wtynillxrknxy7n+JaLw/jyPdgeTAswcqk83XpCKmyXSLc6x/Yrot4A4Mp0xKJvTgqBFDzZt1G09rrHl5eK2r8zttxoWK9AvxmqKzo3oLXCakephfQxd7aKj4xCa4O1FqUgpTbavJRMjOHjDbyNpq5XKKXaHu8UUePYfo98AAV0h8Dbx0LMhTlmlleBt4G+eFwKTGUgZssFD0j1mg8EumnagdaQA+Tl2kaZa91jzBkhvCCXmRhfXsv5CiGEEOJ0SdgthBBCCCGEEOJGlBIJ4RkxvkQpi7Vnxy7puOLcRpiHCSrQba5OejEGYipczgFrHXb9mKg6snJ093h8eZhGSsrkmDB9j9LXOL48RNR22zox5xlibJ3c/UCLm15zrkdhMLpvI53Th3VvCnGaNMY4rDXUWsk5UUohRv/xBt5KUVcrqrUt8A6hvR9HPuTXsqJ1ePdG4VMlpsISM3PIoBVoWOUJkxNjXpOq5YKHlHoDKx5uigJM19Z21Hpto8yhdXfnMlKyZ1lklLkQQgjxsZOwWwghhBBCCCHEjfD+W2rNxPAS5x6j1Ef8FLSW1tWdI6SlBd2Hn4dPmb1P7H2i1LanuypL1Gts9Zh6P4PXOE2UXEh+QVmDsdc04r6CmmbUfoTYdu5SK6xWbUf3O6ztMNrhrGtdrdlfTx1CnCil2v2x1krKiVLqRx54A0NP7XpUCLB4lI+w20H5sB+Ks5reanyu+FRYUmYOCYxCKVinEUphF1eEarjg4WldD6ZvHd3XPMrc2ocoZYjxBd5/Syn383FSCCGEED/PR/xKgxBCCCGEEEKIm+T916S0o5Jw7tGxyzkuv20v9od9G11uh/bxCs/3gXQYY9uvH1FNTzQbNPXeji/PMZH8QgmeWiuuH67pjEvbq7ss4EN7b8xhbPn3XwLR2mJNhzUGpQwpf8Q7ioV4g0K3A1BqJaXXgfcHZrunrXPUYYXK7SAalRJsd5A/bDy3M4readIh8PapMPkEpuXsm7inVsUYN4TquOT8dH5PXY0y99c6ylwpjXOPCeEFtWa8f3ot5yuEEEKI0yRhtxBCCCGEEEKIa5fzREyXxPgCrQeMWR+7pOPJAfyujTCvBbrX49x3PuJTYbsklHHo4SFR9WQsLo+c0MDan63Wip9Gas6kELFddz3jy31AbXdtXPnc9uu2seU9744thxaWtD3dBq0tpUTKNQUxQtwHV4E3XAXe6WMPvK2hrlaoWmE6BN67HaT8QWfrtGJwmnwIvEMujCGDAU1lE0YSmjGvWOrAyIk8pipad3cO1z7K3LknVBIxbWWUuRBCCPGRk7BbCCGEEEIIIcS1W5avqaW9CO3c42OXczy1wvwSSm7jy90KtAEg18rLMTLHjE+FbvMJRRmiXmHrgiEdufibEeeZmhNx8Shr0F33YWdYK2qcUOPUgu5pBn54bPkrXTegtcJqR6mFlD8srBLiPlJo7FXg3Q4IaYH3R5x4a01dr1FKoZYZFVObKBE/bJS2eTPwDoWYCmPMVAOGzDpMhGKZc8/Ihrle00SMm2a6GxllbswKY9bE+IKUd6S0u7bzFkIIIcRp+WjD7v/n//l/+D/+j/+Df/Nv/g1/+MMf6Pues7Mz/vZv/5Z/+2//Lf/3//1//+Lz/I//8T/yv//v/zt/8zd/w2az4eHDh/zt3/4t/+v/+r/yf/6f/yf7/f4GvhMhhBBCCCGEuFtqrXj/DTFeAnzcYXcYW0db2LVRrvZ1N97FFIm5sF8ibvUA7V6NLy+4cn2BwF2SUyItC9kHai24vv+w7vWcW8jk/es3a1rQ/Z6x5a84N6AwGN1TaSGeEOKHqBZ4K0VKiVwKKQZK/YgnISioq3bwklraJAm1HyF8eOC9coZSK0tsgfc+ZKoGVyNDWlhKj8+OLWf4+sMH9NwZNzTKHFp3d0o7So7S3S2EEEJ8xOyxCziGf/2v/zX/6T/9p+99PITAF198wRdffMG/+3f/jv/tf/vf+L/+r/+L7ieOMn/58iX/9t/+W/7Df/gP3zttu93yxRdf8O///b/nf/lf/hf+h//hf7iub0MIIYQQQggh7qQYX5LLQowvsfYMrU/gxfibkBP4y9bRnRMMD6+maYdU2M6RKSQSlvXqMUkNVAx93t3b8eVhHA+doQHrOtSPBNI/yQfUNLd9uX6GQhtZbn/8pQ5rO4x2OOtQCmLyv74GIT4aCmssOSdySmAtNURc59DqI+2lUVCHAbxHLQu1H1DjSK2rw/qEX0drGDrDEjNzzKyAfYUzZ+iz//+z999Blp33fef/fp7nhBs6TU9ABkGAOQBgFgUSDGKyGEFKpKlASSZFey3Z1np3LalU9tbPpS1JVauld2WbZVmWKTGIoigKDJLMZAYRpBgFMIAgCYIgB5ie2PGGc86Tfn+cOz1zpyd093S8/X1VsdC8595zn+6eTvdzvp+HoDRdmmgdWVCTTMc5ErWDmymWq8xLCIMq86y9IadO0ymK4gjWzVKWTdrtR6GU2ZBzCyGEEGL32JNh95Ej9ZV+V199NT/90z/Nc5/7XK6//nq893zhC1/g93//93n44Yf50z/9U6y1vOc977nguRYWFnjxi1/MV7/6VQDuuOMOfuqnfoqbbroJYwyHDx/mM5/5DH/5l3+5Je+bEEIIIYQQQmy3sjxK8CU+dGnmj9ju5Wyfch6Cq6e70waYM6H/qW6FC5FO5UnHriTqBKsbpLFEs4NDi8vgypLgHbboo7RG5+usLw8R1evVE5TWQlXV6VCrAerilwlonZCYjMQYlDI4X7GX25iFWBuFOTvwNgm2sqRpir6cC1d2MwXkdUOEKgtirNsqYojQXH/NuFbQSM8E3o0UOlWknSY0XJ+gNB3bZDwNzA0Cb6N28Dczk9UV5sGC7W1Y2K2UIU2nsNUseX4FZXmcRuOqDTm3EEIIIXYPFePe+7PuFa94BW9605t43etehzErr/Y7efIkt912G9/97ncB+MxnPsPtt99+3nO96U1v4p3vfCd5nvO+972PV73qVee9X4wR7/3yPkcb5aGHHuK6664D4PDhw1x77bUben4hhBBCCCGEWIsYPadOfZaiOEJlTzI29gTUXpz6s33onYRyqX5xv7FvOYjtlo7jSyVzvYpStWmOT1MlE4Ai94sjOdUdnKdYXMBVFa4sSVtN9Hn+Hr8k5+uq4ODrynLn6325V7Hvt1KaPGuhtSExKSE42adbiHWJeO+IMWJMgtKabC8H3qdVFlWVxCyDLCPmObSal3XKGKGwgUgkTwyphvaglaKTjoNWjKddclUxzfylrvfZPhEoZuvQOxuD8WsuutXEWjjXpde7n1bzRpqt65iafNqGnFcIIYQQm2Mzcs09+VvoRz7yEV7/+tefN+gGOHDgAL//+7+//P/f//73n/d+n/vc53jnO98JwG//9m9fMOgGUEpteNAthBBCCCGEEDtNWR4nEgYV5pN7M+gOAfrz9V7droS0vRx0hwiz3YrSegqnyVpTeN0kYsh8dySDboCqP6gvr0qSLF1n0O1QS0vgLPT64AI0GqsKugGyrIHWikSnhBgk6BZi3eoJb6UUzjti8FTWEjZwL+ZdKUuJWY6qKihKVFlCt1cHveukFDRSjUJRWo8N0HGWEKBtu8QIXd+iiikLTOzcpoqzq8wjdZX5BkmSNlrnWDeLtfN439uwcwshhBBid9iDrzqszgte8ILlt7///e+f9z7/8T/+RwAmJyf51V/91S1ZlxBCCCGEEELsZGU5g3cdQqxI0+ntXs72KBfrae6qW0+xJWf2bl3oVVgfWCwcqjmNTlKsbpCMcH25LUu8tbiyRCmFXmU4PSRGVKcH3kO/AKXriclVhuZp2kBhMLquG3bOrn0NQoiz1IG3Vgrn/XLg7ff6RSRZWu/d7dwg8K6g29mQwFtrRWE9LkS63hKCp227+KDp+SZFzOmwMfXgm8Jk9RVfp6vMN1CaTmPtAjE4iuLIhp5bCCGEEDufhN0XUJbl8tvnmwCvqooPfvCDALz4xS+m0aj34fHec/jwYR588EGKotiaxQohhBBCCCHEDuB9QWXnqOwcWuckyQ5+0X2z+AqqpfqF/BggP/MxsD4y37f0Ko81bfJGE2vaaAJJ2Lgpt50khIDt9QjOEZwjaTRQ6+jZVf3iTHW5MfVeuKs8T5JkGJ2SDKp/vS8v/SAhxCqcFXi7OvC21uHdHg+804TYOB14F6jKwVKHyxm7VgryVGOMorCBKkT6zhGtpWl7VCGhHxr0aNGL698rfFOZtK4u9yW4om5B2SBpug8Aa+cpihli3OMtA0IIIcQeI73aF/CZz3xm+e3HP/7xK47fc889y2H2k5/8ZBYXF/l3/+7f8Sd/8ifMz88DkGUZt99+O7/1W7/F85///HWt46GHHrro8ZmZmXWdVwghhBBCCCE2WlnOQAxYO0+eH9ru5Wy9GKE/B8HVe3ZnLVBnLp6e7Vb4EOlUkLSniKZJICH3SyNbX267XYL3uLLEpMm668spSigtBKCVX/Ihp2mdkJiMRBu0MjhfEXZqza8Qu1IdeIPHOU9iwLr6iEnW8fU+KhJTB95lQez3Uc0mcakDY2Og1/cdXwF5oqkIlDZAooFAoyppakWfFloHUGOYGMhVtaHv0oYwOfgC4lhdZZ5tzEVxWqckyQSVPUWWH6CqTpHnBzfk3EIIIYTY+STsPo8QAr/7u7+7/P9f//rXr7jPvffeO3T/pz/96Xzve98buk9VVXziE5/gk5/8JL/zO7/Dr//6r695Lac3aRdCCCGEEEKIna4oj2LtPBBI06ltXs02qDrgqvq/xkDSWj7Urzy9yrFYWlw+TTtLKXWDJBYY3DYuevO4qsLZCl/Vk9QmX31IvSxGVLdXT3U7W+/PvcqJbqU0WdpAa4M2CSE42VNYiE2h6lZEBc57DBJ4A3XgrZqooiD2e3XgvbgEE2P1hPM6nA68FYHSBUgiKkJWFGRNQ8820GlgXk0wHedI1Q6bsk/y+mKw01XmGxR2A2TZNL3eD/CuR1EekbBbCCGE2EOkxvw83va2t/GlL30JgNe+9rU87WlPW3Gf2dnZ5bd/7/d+j+9973u87GUv40tf+hJFUXD8+HHe/va3Mzk5SYyR3/iN31iuPRdCCCGEEEKIUWPtAt73sHYeY8bQeh3B5m7mHZQL4Pv12+kYp8e1Y4RT3ZLKBXqhSZ63cMkYmkA6qvXlMVL1ugTn8daR5Pn668v9oL5cG0jTVT82yxpopUh0SowB50fzogIhdgaF0QnaaLz3hOCxzuHcHv+6M5rYbKAi0OujvIPFpfr72mXIEk2eKEoX6QVP5SOq1yUNFT3XwkXDPJP4uMNe+tXJOVXmGxfGGzOOUimVncVWp2TLCiGEEGIPkcnuc3zmM5/hN37jNwA4dOgQb3/72897v263u/x2URS8+MUv5iMf+cjy/t4HDx7kn/2zf8aTnvQknve85xFC4Dd/8zd51atetaY/8A8fPnzR4zMzMzzzmc9c9fmEEEIIIYQQYjOU5VGCtzjfodG4druXs/WK+bq+vOpB2qj3Jh1YKiyVDyxUEdWYQqcN7KjXl/d6g/ryAp0k6GQdLz84X9eXV2uvL0/TBgqDMTkRsM6u/fmFEGtmdILC4b0HIqez7mQ93wNGhdbEVhPV7xP7BarRgKUOcWwMLmPyPTUaiJQu0IuOFgbTW0K1JuioNuOmw7yaZF+cR6sdtH/DUJV5sWHT3Uop0nSaqjpBbFxNWR6h1XrkhpxbCCGEEDvbHv5Nc6Vvfetb3HHHHTjnaDQa/MVf/AWHDp1/n7lGozH0/3/v935vOeg+23Oe8xxe+9rX8v73v59vf/vbfOMb3+Dmm29e9ZquvXYPvkgkhBBCCCGE2FViDJTlUaybBRRpOrndS9patlfvPVp164rt9MwL9z5EZnsVvTJQ6EnaaYbVrZGuL/fW4soCX5ZEIum66stBdbv11J9dW325STKMTkmSFKXAOZnuE2IraV3v4e29J+JAAm9Qithsofp9KPrEvIFaWiK225CtvrHiXKlRaKUpbKCHp41B95Zw7Sm6tFCmy4KaYCourPZb6Obb1CrzfVTVMaydpyiO0GzesK5WESGEEELsLjusy2b7/OAHP+AlL3kJc3NzGGN473vfy+23337B+4+Pjy+/ffDgQZ7ylKdc8L4vfelLl9/+8pe/vDELFkIIIYQQQogdoqpOEqLD2jmSZAKl9tAerSFAf67eq9tVddB91gvrs90K7yOLPiPLG4RstOvLY4yU3S7RD+rLsxyl11Nf3l9XfbnWCanJSLRBK4PzlrCDBhqF2Cu0NhhjCD7gg8M5j3OOuJe/HhXEZhO0QRUFOFdf1FNeXvOE0YpGqnEh0nWe6CO6u4Dzil5oUcaMJcY26J3YADqpv69vQpW51jnGjFNVs/hQYO3chp1bCCGEEDuXhN3AkSNHeNGLXsSRI0dQSvHHf/zHvPrVr77oY6677rrlty81fX32fU+cOHF5ixVCCCGEEEKIHaYoZ/CuRwglWTa93cvZWuX8YPq4A0lWT6ydPmQ9ndKxWEVcOkGStfAkpL43svXlVb9HDB5blKjEoNewx/ayc+vLG6ubDFdKkaUNtDZokxCCI4Sw9ucXQmwIrQ3JUODt8M5K4N1oEJOkDrytRfW69YU9l6EOvA0+RnregQ+o3hKV0/Rp0KdJNzY36J3YACarw+5IHXhvoCybxocu3hcU5ZENPbcQQgghdqY93B9UO3nyJC9+8Yt54IEHAPiDP/gD3vSmN13ycU984hOX3673Ibqws4/v6comIYQQQgghxMgJocRWp7B2DqVSjNlB02ObzZV1dbntQozDVawRTnUrKh/oqAmyNMeZFkksR7e+3Dl8UeLLihgDWd5ee6gfQfV666ovz9ImWikSnRJjwPnR/DiLy6OXeiSzC/iJMfzU2Kr/fYn1UdqQAC54TqfcEZa3GdiTFJDnRAWqLImxvimGCM3GpR59QUZDIzUUzlN4RwOwvQ59NY5K6ycx0dNQ1Ua9J+u3XGVebXiV+emGGWtnqcoWoW3Rev1V8UIIIYTY+fZ08rqwsMBLX/pS7r33XgB+93d/l1/5lV9Z1WMf8YhHcP311/OjH/2IBx98kBjjBfeA+f73v7/89jXXXHP5CxdCCCGEEEKIHaIsjxGjx9o50mz/3tkbMw7qy70FW9Qv1J9V375UWkoXmLcZKs3R+RgQSENv+9a8iWKMVN0uIXhcVZFk2frqywfVvmutL0/TBkoZjMmJgHWXVwssRkyMZD94mLG77qH5rQdQg9DVjzWprr0Ce80hquuuoLr2EGF840I3UVPakChw3sPgIpQYIU0l8I5Ko6qSSBgE3gHarXWfVp8OvCsPzpETqXpduq02Jg0sqAlMnCdV23wx0HKVeXWmylxvzBYoSmnSdBpbzdHIr6Qsj9JsXnfpBwohhBBi19qzYXev1+PlL385X/va1wD4rd/6LX791399Ted43etex9ve9jYWFxf55Cc/yYte9KLz3u8DH/jA8tvPec5z1r9oIYQQQgghhNhhiuIo1i0S8aTpvu1eztapOoOguwMmgeRMPayPkbmupWuh0OM0shZBpeRhaWTry11RELzDFgXKaHSereMkHvrFoL48Qmt19eUmyTA6XZ4Ude7y6oDFCLGO1t3fZeyuu8lmTq44bDp9mvc9SPO+B5dvc5Nj2GsPUV1bh9/2mkOE9g6qf96llDIkZjjwtnaPB94AWUqEOvAOgwlvIrTarPcHhlbQzAyF9WjnyehT9BWLNJlMPfNqkuk4h1HbvM2DycAXEMfqKe9845ph0nSaqjqBdYsUxREJu4UQQogRtyfD7qqquOOOO7jrrrsA+Ff/6l/x27/922s+z6/92q/x9re/naIo+Nf/+l/zuc99jomJiaH7vOtd7+LTn/40AC9/+cuH9u8WQgghhBBCiN3MuSWcX8LZeYxpYcz661d3Fe+gXATXgxCgMTkUSsz3LJUPLIQx0jQlpu26vjyOZq22dx7b7+OrihgCWbO5ZfXlWiekJiPRBq0MzleEvbwfsABAL3YY+8I3aH/xG5ju2vYDThY6JAsdmt96YPk2Nz0xCL+vqIPwaw4SV7mXvDjjdODtvcdL4H1GlhK1QhUlsR9REWLowNjYugNvpeoJ79IGcIGUHiWaBZrsS/vMqUmm4zxabeM3zHOrzDcw7DamgTEtbDVLmk7h3BJJMr5h5xdCCCHEzrInw+43vvGNfOxjHwPghS98IW9+85v55je/ecH7Z1nGYx7zmBW3X3/99fz7f//v+Tf/5t/wjW98g2c+85n8+q//OjfffDOLi4t84AMf4O1vfzsAExMTvO1tb9ucd0gIIYQQQgghtkFRHiUGh3WLNBpXb/dytk5/FoKrX6RPGnUd60DlAot9y6LLcDqn0ZhAEUe6vtz2uoQQ6vryNEOZtVfRrqe+XClFljbQ2qBNQgiOELZ5UlFsq+yHM4x9/h6aX78ftYH/FpLZRZLZRVpf/x4AUYE7sK+e/L7uCqprrsBefYCYyb7Al1JvN6Dw3p0VeEfSNNvbgXeSEBsKVRTEfh9Fk7jUgfH2uveVVwryVFPZQOIiGV0KpZmjwfSg0nwqLmzfx/3sKnNfbmiVOdTT3UXxMMFb+sXDjI89bsPOLYQQQoidRcUY99w1z2vdQ+4Rj3gEDz744AWP/+Zv/ia/93u/x4U+lIcOHeLOO+/k2c9+9pqedzUeeuih5Wnxw4cPc+211274cwghhBBCCCHEuWKMzM5+jqJ4mKKcYWzsCWi9B66nrrp12F0u1oF3Y99QEDGzULBYBo75KZK8jc7GycPSyE5126Kg6nWp+n0IkbTdWvsgovOoxSWoqnrMs9VaVbiTZy2MNiQmJxJkn+69ynma37if8bvuJjt87OJ33T9J58dvofu0x6O7fbKHjpM9dIzsoWOkD59AV+v/NxS1wl6xf2j/b3vlAUg2LrwbJZGAdw6lFMYkaK1I03xvB95Qfz8sC6LS0GwQE1NPeGu97lPGCM4FdFDExFDl4zQbMJ0WtFSfCdXZwHdgjapuXWXe2A/NfRs63R2jZ2npXvL8EI3G1eyffi5KydejEEIIsd02I9fcA69EbL7f+Z3f4VWvehVvf/vb+bu/+ztmZmZoNBo85jGP4VWvehX/4l/8CyYnJ7d7mUIIIYQQQgixYaw9RYgVlZ0jSSb2RtAdPBTz4EpwFeQTQ6Fst3QU1jMXxlE6QWejXV8eQsD2enjriM6TtrauvjxNG4MJ0bpKWoLuvUd3erT//puM/f03MEvdi963eNR1dG67heJxNyyHhr6Z0z8wRf/WQZNfCCQn5pYD8PSh42RHTqCcX9V6VIhkMyfJZk7S/sq9AESjsVcdOLP/97VXYA9Ng1l/cDkqFBqTJHjncN6RkGBtKYF3Yoi6ieoPJrybDeJiBybWH3grBUmiCTaC8ySqQ49xIENloGNgTG1T+8gmVpkrZUjTKWw1S55fQVkep9G4asPOL4QQQoidYw+8GrHSZgyzP/vZz96UyW0hhBBCCCGE2ImKYgbv+4TQJ8+v2O7lbI1yYRDKduoX6JNs+VCIMNut6PiMMqRk7XEUkIb+9q13k1XdQX15WWDSBL1F9eUmSTE6JUnqfX6dq9azfLFLpQ8fZ+yue2jd/R2Uv3BVeUgTek95HJ3bbsFduf/SJ9Yad8V+3BX76T3t8fVt3pMemyV96BjZ4eNkDx8jnTm16op05cMgPD8+tC579cEz+39fewh3YB/ovZfwDgXezpEkdeCdpPle/HCcoTWx2UQVfWKvQDUaxMWlesJ7nU0BSoFOFdFBtA6tluiqcYgG8jYmepqq3OB3ZBW2oMrc2lmcXaIoHpawWwghhBhRezLsFkIIIYQQQgixfiFYquok1s6hVEKSjG/3kjafLeq6VduFCGTtocMLvYrSw0IYQ6dNlMnJwhKK0dw5zFYl3lb4sqxriPN87SdxHooCKltfLdC69Dm0TkhNTqINWhmcrwh7b3e2vccHmvc+wNhdd5P/4MhF7+omx+qq8mc+kdhqXN7zGoO9+iD26oP0njm4zTrSoyfrEPvwMbKHj5Mcm0Wt8t+hto78hzPkP5xZvi3kKdU1p/f/PkR17RX46Yl179W8m5wJvP1y4O0k8Aat6sC7XxCLPipvwFKHON6CZH17wysFKgVlFVSWGHt0aUEsIB/H4MnUNjSRmBxcH9Kxesp7A6e7k6SN1jnWniJJx3GuS5K0L/1AIYQQQuwqEnYLIYQQQgghhFiTsjxOjB5r50nTKZQa8UreGKCYA2/r0Dsfg7PeZ+sj833LfJzAK02Wj412fXmM2G6P4BzeOdJmA7XWUO50fbkPq64vV0qTpQ20NmiTEIIjrHLCVuxOqlfQ/tK3GPvC10nmly563/KRV9P58VvoP/Gmza0JTxPsdVdir7uS7qDgT1WW9OETg/2/j5M+dIz05PyqT6lLS+OBh2k88PDybb7VGN7/+5pD+MmxkQzAFZokUbjlCW8zCLwz9Ai+v6umzgTeFAWx0UAtdYntNmTrC7yhHqZOvSbYAq80HZVD7KEak0wzT6JWV92/YZKsrjDfhCpzgDTdT1nO0AiOspwhSR61oecXQgghxPaTsFsIIYQQQgghxJqU5QzOLRGjJU33bfdyNl+5VAfdVQdMCmZ4WnS2W1HQoOcTTD6O1pD60a0vt70uIXhcWaLTBJ2s/aWFM/XlRb0P7aXqy5UiyxporUh0SowB50fzYgIBybFTdVX51+5D2wt/nqPR9G59LJ3bbsFec2gLV3jOOrKU6pFXUz3y6uXbVL8ke/h4vff3IARP5hZXfU7TKzDf+xGN7/1o+TY/3qK69tCgAr0OwcNYa0Pfl+2j6qluXwfeJknAVhJ4K4jNBqos61rzRgPV7RJjE9bTqAFEVTeFN9CEqodVmqWsCf0eqjnJfubQagsbMza9ynwfZTmDtXMUxQyt1o2jf5GeEEIIscdI2C2EEEIIIYQQYtW872HdAtbNoXUDY0YlaLkAb6FaqqtVY4B8As7KXfqVp1MF5n2LaHJMlpOF7sjWl/uqwpUlvqz3dk2yjagvb178/kqRZ02MMiQ6JwLW2bU/r9jZQqTxnQcZ+9zdNO4/fNG7+vEWnR+7me6znkQY35nfg2Izp3zUdZSPum75Nt3pkT58fHn/7+zwccxSd9XnNEs9mt9+kOa3H1y+zU2N15Pfg/C7uvYKYnN9Iej2UyQmwfu6NYIkIdqKNE3RezmcVBAHwbYqCmKWo6h/JLHOz3VQoI2ijaZTdrFqnKW0Cb0OqjXBfha2tkRgucq8veFV5lonJMkElZ0lyw9SVafI84Mbdn4hhBBCbD8Ju4UQQgghhBBCrFpRHCUGh7UL5PmV272czRUj9GfBu/pF+KQ5NG0WI5zqlnSYoAyapDVOGitMHM0gNsRI2esRvMdbR9JsoNa6qe6a68vroFsrQ2LqUMf5cv3vhNhxVFHS/sq3Gfv8PSSnFi563+raK1h6zi30n/xoSDZu8nOrhLEW5WNvoHzsDcu36cXOmf2/BxXoples+pzJ/FJd8f7N7y/fZvdPDu3/ba85SMyzjXxXNpHCnB14mwQbbR14670deNPIiRWoqiQS68CbAM1LXDB0AUFFjFaMAUvFEhUTLCVt6HXQrTGmVWcj34OLW64yt5tSZZ5l++n1HsC7HkV5RMJuIYQQYsRI2C2EEEIIIYQQYlVijIMK87qKd+QrzG2vrlWtOvUe3elwoLBUWLohZ8mnqGyMVEMaRrm+vEf0HlcUqMTUNcNrdKa+vFxFffmZoDsdBN3Wl8TRHJrfc5KT87Q/fw/tr9yLLi98gUjUmv6TH0XntluoHnHVFq5wa4SJMYonjFE84cb6hhgxc0tD+39nDx1Hl9Wqz5meWiA9tUDr7u/Wp1TgDk4P7f9dXX0Q0p36suBZgbd3QEJlLdleD7wBspyIrgPvMAi8Q4RWa6h1ZLW8jhg04yqwWC5RMkEnaTLT7aNbTabMFv1MO7fK3NcXOmwUY8ZQKqWyp0iqNt6XGLNbGxCEEEIIca6d+lutEEIIIYQQQogdxrl5fCioqlmSZAytL7HP8m4WPBTz4Mq6yrwxOTSB7EPkZM+xGKexpORpgyyOcH25c7iywFcVMUayvHHpB604ydn15ZeeRjx3oluC7hEQI/n3DjN21900vvMgF9sW2LcbdJ/1ZDo/9mTC5MZOee5oSuGnJ+hPT9C/+dH1bSGSnJpfDr6zh46RPnziovuZD50yQnp8lvT4LO2vfhuoLyKwV04P7f9tr9wPZqdMzJ8JvJ13JBgqiwTeAFlKVApVlsSi/vzGGKA9ts7AO5AEzYSJLFQdijiGSgMPdUG3PRNm9RdaXJazq8xdH8z4hp1aKUWaTlNVJ4iNayjLI7Raj9yw8wshhBBie0nYLYQQQgghhBBiVYpihuBLfOjSzK/f7uVsrmIeggPbgSQHMxzsz3YremqCXgW6OUamLCaMZn15jJGq262nuquKJM/WV1/ePau+PE3rye4LyNImShmSJENRV5dL0L17qcrS+tp9jN11N+nxuYvet7rqAJ3bbqF362N38OTxFtMKd3Af7uA++k95XH2bDyQn5ur688H+3+nMCZQPqzqlCoHsyEmyIyfhS98CICYGe9UBqmuvoLruCvqPfySxtY4LWzZMHXjjHc57EuprZdIkweyYUH6bpAlR1dsAxBhRNIihA+PtS2wNcX5eBQyaSROIvkePJiSBH3Uij2g7xpPV/bu6LCuqzDcu7AbIsmmq6hjWzlMUR2g2b0Bt6cbkQgghhNgs8leDEEIIIYQQQohLitFTVsexdg7QJMnkdi9p89h+/UJ71YMIZO2hw6X1zFUJnZAQkjZNo0hDb3vWugVsvyB4hy1LVKLR2dr3/h2uL1f1Xt0XkKUNtE5IkxSFwoWKIEH3rmTmFhn7wtdpf+lb6P6F91qPSlE84UaWnnML1SOvWVdYt+cYjbtyP+7K/fSe8YT6NudJj56qJ79PT4AfO4Va5ReQcr4Ozw8fgy9AaOYsvPTZdJ/1pItenLK5Vgbe1gIRzC7ct31DJQmxoVBlQez3Uc0mcakDY2P199k1iAoCAR01U8oxFywdl4P2/LDb5IZWl7HNLnPRSd0s4KvB/za2ylzrDGPGqapZ0mwaa+fIsukNO78QQgghto+E3UIIIYQQQgghLqksjxOjx9o50nQKpUa0RjaGeqrbV+CKerLs7Pc1womuo6v20Q8JSaNBHnujXV9e9PFlRQyBrNVae0vuGurL07SB1mkddCuN8xVBku7dJUayHxxh7K67aX7rAdRFRvJDM6f7jCfSefbN+OmJLVzkiEoM9tpD2GsPnbnNOrIjJ5bD7+yhYyQn5i5aIX+a7pfsu/PTtL9yL3OveQH2uis2b+0XdTrw9jjnSQycbnCXwNsQVRNVFMR+rw68O0uDwHttP6eDAojoqJlQBTG06NBC0eHBbotHtrq0s02+EEVvXpU51NPd/f4P8b6gKI9I2C2EEEKMCAm7hRBCCCGEEEJcUlkexbsOIVY00hF+cbhcrPforrpgsrrC/CxLpWUxjtG1QNqmoSwmjm59ue31CCHgbEWSZqi1TndGUN0++HjJ+vI0bWCWg24jQfduYx2tu7/L2OfvrquxL3bXg/vqqvKnPZ6Ybfa46B6XJlSPuIrqEVfRHdykyor04eP1/t+Hj5E9fJzk1MIFT5E9dJxD/+nP6T7zSSy87Me3qdpc1dXlCpz3GCTwXmY0sdlA9QcT3o0GcbED42Ng1hp4x3qP96iZVD0ibRZDk0iXH/SaPCJ2GM838eXkJK+bVfzmVJknyQRKJVg7S1W2CO0KrdfeViKEEEKInUXCbiGEEEIIIYQQF+V9QWVnqewcSmUkSfvSD9qNfAXlUv0CewyQD0+a+hg53jN0Y0almzSMIYvdC5xs93NliXcWWxYopdH55dSXFxetL0/THKNTkqGgewv2iBWXTS92GPvCN2h/8ZuYbv+i9+0/7gY6t91C+ejrpap8G8U8o7rxWqobr12+TfWKOvx++Bj5A0dofPeHQ49REca++E2a37yfhX/0HHpPe/yaq7Ivn8LoBHB474E68I5EkmSPv8SpNbHVRPX7xH5RB95LgwnvNV4M4HXEBFUH3vRAt1kKLfBdDveaXBN7TDY26SIVbTa1ylwpTZruw1ZzNPIrKctjNJvXbdj5hRBCCLE99vhvgkIIIYQQQgghLqUsj0IMWDtPnh+69AN2oxihPwfB1/XlabN+0f0ss11PR03Qcwad5TRV76IVzbtZ8AHb6+ErS3SetNVcf325rS5aX14H3RlJkqAl6N41sh8dravKv34/6iKfr5CldJ/+BLq33YI7MLV1CxRrElsNysdcT/mY61l6AeT3H2bqzk+Tnpgbup/pFky//xO0v/wt5l/zfOzVB7d8rUYnqLMCbzeY8N7zgbdSxGYL1e9D0Ye8AUsd4lirbtVYA68DSdCkUTER+kTTYsk1iRFmep4YSqZamxV4D6rM4+ZUmafpNFV1AusWKYojEnYLIYQQI2CP/xYohBBCCCGEEOJSinIG6xaAQJpObfdyNkfVqafIqqW6ZjtpDR92gRO2Sd8pnGkxpt3I1pcDVL1uXV9elZgsRZs11gSfXV9eXbi+PE2yOug2CVolEnTvdM7T/Mb9jN91N9nhYxe/6/5JOj9+C92nPZ7YzC96X7HzlI+6jmO/9jOMf+4fGP/El9CnO8MH8h/OcOj/ey+dH7+FxRc/a8s/x1ongB8E3lEC79MUxGa9h7cqCmIjR3W6xHYb1rhlgFcBEzVpjEzEPgtJi471RAKqcIRY9pv3igABAABJREFUMd3ehArwTa4yN6aBMS1sNUuaTmHtImk6cekHCiGEEGLH2uO/AQohhBBCCCGEuBhrF/G+h63mMGYMrUcwtPKu3qvbFfXbjUnOHWOe6SlKldMnJ0s0jdjZnrVuAVuWeFvhyhKlFOYC1eMXs5r68iTJMCavg24tQfdOpjs92n//Tcb+/huYpYtX9xePuo7Oc26leOwjLrg/u9glEsPS859O75bHMvmRz9L65veHDqsYGb/rblpf/y7zL38u/Vsfs6X19HrQvuG9J+Lg9B7eJtnbLfkKYqMBZVkH3nkD1e0SYxPy1f8MjwoCAR01WfCMm5KlrE2vDBBBF4v4UHJwLF/xM/OybHKVOdTT3UXxMMFXFOURCbuFEEKIXU7CbiGEEEIIIYQQF1SWMwRvcb5Do3HNdi9ncxTzECxUXUgbYIan3xZLz2KcoGs1mJw2fRQjWl8e6vry4BzBOdJmE7XW1Mh7KEqw9oL15SZJSUxOYgxaJ3hvJejegdIjJxj73N207vkuyvkL3i+kCb2nPI7Obbfgrty/hSsUW8HvG2f2519O774HmfrQZ0hOLQwdN0s99r/3oxRf/hbzr34e7oqt+zegtUEBzns4HXjHiEnSPR94k+dEQJUFMeYoIIYIzcaqTxMUQERHRcNXRKPpNMbp9RcIcQzKBWIsOTieb+zH2+RgN7PKfIqiOIJ1c5Rlk7H2o1FqjQ0mQgghhNgxJOwWQgghhBBCCHFeMQbK8ijWzQJqNCvMbb9+Ib3q1ROJaXvocIgwUzQonaLULVrak+AucLLdz/Z6hOBxZYlOE3SyzvryEKCqzltfbkxKahok2qB1SggWHy4cpIot5gPNex9g7K67yX9w5KJ3dZNjdVX5M59IbK0+QBO7U/G4Gzh607WMf+arTHzqKysugGh8/yGu+A9/Rue5T2HxJ55BzDeh4vo8lDYkgAseogUSIpBI4A2NnFgpVFUSiXXgHSO0Vl6EdCFBRVQEHRW57xOVptecpOzPcTJOoMp5Qiw4NNFAb9TH2+T1z+VNqjJXytQV5tUseXaIsjxGo3H1hj6HEEIIIbaOhN1CCCGEEEIIIc6rqk4SosPaOZJkYvSmnkKA/hy4ClxZv5h+TjJyoqcoYk4nNjBa01KjW1/uqgpXlfiyBCBZQ93tacv15cX568uNSUiTBkYbtEkJwQ0mMsV2U72C9pe+xdgXvk4yv3TR+5aPvJrObbfSf8KNYKSqfE9JE5Ze9Cx6T3ksUx/6LM37Hhw6rEJg/DNfpXn3d1h45e30n3TTllSbK21I1GDC29cXJEUg3euBN0CWERkE3uHswLu16vpxryMmKJKoyX2XkIyjmpNU/TmO+wkoFwiLfa6YaGA24gO+XGVegs82rcrc2lmc61AURyTsFkIIIXYxCbuFEEIIIYQQQpxXWR7Fux4hlKNZYV4uQHBgu2AySIbD3dLDcdui5w1eZUzqYnTry2Ok6nUJzuOtI2k2Nry+3Og66NZaY5aD7tGdkt8tkmOnGLvrHlpfuw9tL/z5iEbTu/WxdG67BXvNoS1codiJ/P4pTv3iK2nc+wBTH/rsigskkoUO+9/1NxSPuZ75Vz8fd2Bq09eklCExw4G3jZCmEniTpUSlUGVJLEDFur2F9tgaAu9AEjRJ0DRdh5iOQ2sftjvLcT/GoXKJmfmCqyYbmI0Y8V6uMo+bUmWeJG20bmDtKZJ0HOe6JEn70g8UQgghxI4jYbcQQgghhBBCiBVCqKiqk1g7h1Ipxoxt95I2lqug6tT1qDFAY2LFXR7uN3Bo+jTJlCVTdhsWujVsr0fwAVcW6MRgkrW/XKB6F64vNzohTRtobUgk6N5+IdL4zoOMfe5uGvcfvuhd/XiLzo/dTPfHnkQYa23RAsWuoBTFE2/i2KOvZ/x/fpnxz34N5cPQXRrf/RFX/D/vYun5T2fxBU+HdHNfijwdeHvv8acDbyuBNwBpUgfeRUGMEUWDGDow3l719L1XARM1JiiatkPIxtGtKar+HCdsk4P0mZnvc8Vkk9Rc5gd8k6vMoZ7uLssZGsFRlEcYSx694c8hhBBCiM0nYbcQQgghhBBCiBXK8igxeqydJ82m1z7lu5PFCMXsYKq7D1kLzqlon68MHZ+y5HNQMKaLbVrs5vPW4sqCUJXEGEnzdey9XBRgz19frlcE3UGC7m2iipL2V77N2OfvITm1cNH7VtddwdJtt9J/8qNgrXu3iz0lZimLL/txek99HFMf/MyKCyiUD0x88ku0/uE+5l/1PIrHP3JT16OUwRiF9+6swDuSppkE3okhNhqosiD2+6hmk7jUgbExVrPhdlQQCOioSWKkabv0sjHy5iS2rzhZOvZjmVnoc+VEgyy5jG0OtqTKfB9lOYO1c5TFUdqtm1BKtmYQQgghdhsJu4UQQgghhBBCrFAUR7FuiYgjTfdt93I2VtUBZ+v/GgPJ8LSqD4ojZYMiGCwZbfpc7oDaThVjpOz1iN7jKkvSyFFrrZ/1HtU/u778TFiutSE7O+iOAedHd0J+p0pOztP+/D20v3Ivurzwxz9qTf/mR9H58VuoHnHVFq5QjAJ3aJqTb3kNza9/j6mP/B1msTt0PJld5MA7Pkz/CTcy/8rb8dMrGzU2ilIaY5KzAu8EaysJvKEOvFWznvDu9waB9xKMjw01clxIUAARHRVZ8MSqRy9r0WgGCuBU/xT7G74OvCcb5JdzscwmV5lrnZAkk1R2liw/SFWdJM9lmwYhhBBit5GwWwghhBBCCCHEEOc6OL+Es3MY08KYdUz67lTe1Xt1u379dnNqxX6lR6sGVdB0Y5MES8uM7hSy7feJ3mGLEpUYdJqu+Rwr68vrYENrTZY20VqfCbqdBN1bJkby7x1m7K67aXznQdRFtpv37QbdZz2Zzo89mTA5YlsWiK2lFP1bHkPxuBuY+PgXGbvrblQY/sfXvPcB8u/9iKUXPoOl258C69g2YXVL0Zgkwbt624SEBGtL0jSXwNtoYrOB6hfEXh/VbBAXB4G3uXQ4HVRERQaBd0WwmiJt0WwECgUne8eZbgZmFgquGG/QzNYZeG9BlXmWTdPrPYB3XYriiITdQgghxC4kYbcQQgghhBBCiCFFOUMMDusWaTSu3u7lbKxiblBf3oO0AXr4z+KuTzlVJfRCgxAiE6NcX+4crijwZUWMgSxvnZv7X1pRnlNfXoflddDdGgTdGVGC7i2jKkvra/cxdtc9pMdnL3rf6qoDdG67ld6tj9n0vZTF3hLzjIVXPJfu0x7Pvjs/Tf7gkaHj2jomP/oFWl/9NvOveT7lo6/flHUozgq8nSNJ6sA7SfPVtHaPNq2JrSaq3yf2C1SjAUsd4tjYqrYu8DpigsJETR4KotOUSZsmgSIeYK5/nKkYObZUcN2+FmY9H/AtqDI3ZgylUio7S5KM4X0xWhf5CSGEEHuA/CUjhBBCCCGEEGJZjJGyOIq18wAkydS2rmdD2R64AqouKAVpe+hwiIqZooENCf2Q0lBd0hHdqjjGSNXt1vtn24okzVCrqK8d4gOqX5xTX65QyxPdikRnxBixEnRvPu8Z/59fYfyuu9H98oJ3i0rRf+KNdG67heqR1yAjrmIzuasOcOKfvY7W1+5j8m8+h+n0h46nJ+c5+Ed30rv50cy/4rmb0ixwJvD2y4G3k8C7phSx2UL1+1D0iXkDtbREbLeXL166GK8DSdCYoMnpEdQYNhmrJ7w5wHz/OIdSTa9yjDfW3hwCbHqVuVKKLNtPWR4n5FdTljO0Wpu7r7wQQgghNpaE3UIIIYQQQgghlll7ihCrwYTTBFqPyJ+NIUB/DlwJroJ8YkXId8o16TpFlyYqVLRTz4qO8xHhyoLgHbboo7RG59maz6F6vRX15UqpM9XlOicSsa7ahPdADHGe/e/5W5rfeuCCdwnNnO4znkjn2Tdv6l7JQqygFL2nPZ7+E25k8qNfoP33X19Rq9/6+vdo3Pcgiy9+Fp3bbllVlfaaloAmScAtB95mEHhn6L1+wYeC2Kz38FZFQWzkqG6XGNuQryLwVgET68C76bp09Tg2GSfLAl03TeWW6FWB8fUOSy9XmVebVmWepvsoy6M4t0BRHKHZvAG11/9dCCGEELvIiLxqIYQQQgghhBBiIxTlUbzvE0KfPL9iu5ezccp5CB5sF5Ks/t/Zh0PGiSKhoIH1kTFVjmwAEpzH9vr4yhJ9IG01L6O+vDxTX64UWdbELAfdSNC9FZxj/7v+lua3f3Dew/bQvrqq/KmPI65iUlOIzRKbOfOveT7dpz+BfXd+iuzwsaHjurJM/fXnaH/lXuZe8wKqG6/Z4BVokkThfF1pbpIEBs0Wo/r9ftUUxEYDyrIOvPMc1esSaUKeX/ShUUEgoKOGCM2qQy8bx6fjRGPpEmlUPWJc517py1Xm1eB/G19lrnVGkoxTVbOk2TTWzpJl+zf0OYQQQgixeSTsFkIIIYQQQggBQAiWqjyBtXMolZAkGz89tS1cWVeX225dg5qtrC8/apuUUdMLKWno0kgjozrVXfUG9eVVSZKl6LVOUPp4Vn25r+vLlSbPmhhlloNu5y5cpS02iHXsf9ff0LzvwRWH+o+7gc5tt1I++jqpKhc7ir32EMf/+etpf/lbTPyPz2N6xdDx9Ngsh/7LX9J96uNY+MnnEMZbG/jsisQkeO/wzkGSEG1FmqZotcatHEaNAvKcqECVJTHWN8UQB9tUXFhQABEdFSmRpu3Qy8bQ2Th9p3FUFNbTzNY5sb/JVeYAaTpNv/9DvO9TFEck7BZCCCF2EQm7hRBCCCGEEEIAUFUniNFj7TxpOoUahRf+46C+3FuwRR10q+EX2xdim8Uy0o1Noitpazey9aW2LPHO4soCpRT6EhN756N63UF9uR3UlyfkWROtDImpz+d8SbzEecRlso4Df/rXNL77w6GbQ5Zy8pdeSXXjtdu0MCFWQSu6z3oS/SfdxOTf3kX7y/euuEv7a/fRvPcBFl76bLo/9mTQG/UzSWHODrxNgo22Drw37Dl2qeXAW6OqkkgYBN4B2he/6CCoiIrUgXfwNGyBSxvYskNlMnpVdXlh9yZXmSfJBEol2GqWyrQJoULrtW/xIYQQQoitt8d/gxNCCCGEEEIIcVpRHMG5DjFa0nTfdi9nY1SdQdDdqWtPk+bQ4TKmnCzr+vLKR/LYJ01GM+gOIWB7PYJzBOdJGo3LrC8HsmxF0G19PREoNpF1HPiTD68MuvOUk29+tQTdYtcI7SZzP/Uijv/zn6a6+sCK47qo2PfBz3DoD/6c7IczG/jMdeCtlMJ7V39/tJYQwgY+xy6WpcQsR1UWihJVVdDtcqmrmLyORMBETRIsGRpMSj9k9Cq//vVoU/8MP7vKfIMppUnTfVg7T4yOsjy64c8hhBBCiM0hYbcQQgghhBBCCLzvYd0C1s2idQNjNrI2dpt4B+UiuF49iZyNDTWTh6g45dt0rKIXUpTt0s5GM+gGsN0uwXtcWWLS5PLry/PGUNCtkKB7K6jKcuAdH6bxvcNDt9dB92uobrh6m1YmxPpVj7iK47/6j5l71fMI+cpp2uzICQ79579g6v2fRHf7G/SsZwJv5x0heCoJvM/IUmKjgXIO+gWqtNDprCLwrj9+aQAdA5lpUGKwAUp3GYG3yeqgO8b65/omSNNpIg7rFimKI5vyHEIIIYTYeBJ2CyGEEEIIIYSgKI4Sg8fahdGZ6u7PQnD1Pp9JA/TwTl4d2swXkUK18K6ibRx6ROvLXVXhbIUv6320zQbUl2d5e7C3e4YCnK8k6N5kqrLsf8eHadx/TtDdyDj5ljuoHnHVNq1MiA1gNN3bbuHo//HzdJ/y2PPeZezL3+KK//udtL/4TQgb8Q2nDry1UjjviYPA2/vLCGVHSZLUgbf30O+jrIOlDpf6Zu9VXX+eeo8xOcFDFTP61WVcSGDy+nl9Vf9c3wTGNDCmja1mcb6LtYub8jxCCCGE2FgSdgshhBBCCCHEHhdjpCxncG4BYDTC7qoLvqz/qxSkw5PqVUyZtRm92KB0kdR1yZPR/BM5xEjV6xJcvT9tkudr35O8qOr68rIEBVl7Aq0T0iStpyJDRZCke1OpsuLAH3+QxvcfGro9NHNO/PIdVNdfuU0rE2JjhfE2c//4pRz/p6/FHppecdz0CvZ94H9y8D+/j/Th4xvwjCsDb2udBN6nJaYOvGOoA29nYWmpvvjpAqKq9/BOg0VrjY4JJSk9exn148tV5uWmVZlD/TuQ8x2CryiKhzflOYQQQgixsUbzL3khhBBCCCGEEKvm3Dw+FFTVLMaMoXW63Uu6PMFDMQ+uBFdBOlYH3qcPR8V8HGehrPfsjlWHVqrWHgDvErZ3pr5cJwk6SS79oLP5iOr36/py70nHptA6HQTdGuctYUMmLMWF1EH3h8h/MFyrezrottdesU0rE2LzVDdey7FfeyPzP/kcQrby51J++BiH/uDPmfrgp1H98jKf7azA250VeF9O7fYoSQyx2UTFOAi8HSx2Lhp4BxUx0WEAk+T0Q0ppA/5yfl6YDLzd5CrzKUBh3RxldYwQNidUF0IIIcTGkbBbCCGEEEIIIfa4ojhK8BU+dMmyEZjqLhfqwNt2IMkhGd7/tUObhTLQp4mtKjIs6YhOdXtb4coSX5ZEIsll1penrXFMmg+CbjMIumV/282kipIDf3Qn+YPDQbdvNTjx1tdirzm0TSvbTQKoWUjuQ2V/h8o/BuaB7V6UWA1j6DzvqRz7336O3pMfteKwipGxz3+dK//vP6X11W9fsl774gaBt9E47wnBY50E3su0JjYbKIBeMQi8l+CiH59IEjzKZIRg8CT0qssIj5PNrzJXypCmU9hqlhgcVbUR7QFCCCGE2ExrvJxbCCGEEEIIIcQoidFTVsewdhbQJMnkdi/p8tiiri63XYhA1h46XMWUpZCz4AxViGCXaDXM9qx1k8UYKbs9gvd460gaOUqvcXq9PFNfnmZNTKNFshx0VxJ0bzLVLznw3+4kP3xs6HbfbnDyl1+LverANq1sJ6tAnwRzHKVPgDkO+gRKDQdsKvs60T6GWP4ExPYFziV2Cj81zuzP/STd7/6QqQ9+hvTk/NBx0+kz/b6P0/7yt5h7zQtwV+5f5zMpjK5/JpyuMbeu/nGSJKP5s2JNtK4nvPsFseij8gYsdYjjLUhWTt9HFUmCRZkGOmr6MaNXVYw31vn86uwq87yuMjcb//J2mk5j7SzOdSiKIzQaV2/4cwghhBBi40jYLYQQQgghhBB7WFmdIEaPtXOk6RRK7eIJ5xigmKsrTm0B+Ric9f7ECIuMs1BApXJCsUgjAbPWAHiXqHo9ove4okQlBp2usZ4+RFSvri9PdYpptUmSFC1B95ZQ/ZKDf3Qn2UPnBt1NTrz1tZcR5o2KCKoD+jiYE6jBf1FzrHZHApV+F8zhOvB2jwVG83vBKCkf8wiO/a8/w/hn/4GJT34Jdc5Ucf6DI1zx/76Hzm23svjiZxHz7AJnuhiF0QmKM/t2OwcQSda6DcQoUmo58KYo6v28l7rEdhvOqZsPCkxwaKOIJqUMCX3bI8Z81V+nK5gcbO9MlbmZuPz36RxJ0kbrBtaeIknHca5LkshFMUIIIcROJb+hCSGEEEIIIcQeVhYzeNchxIpGOr3dy7k85WIddFcdMCmY4dGxJcboOcVSbGCrCh0LGmsNgHcJ7xy+LPFVRYyBLG+vOcZT3bq+PIka02iTpDlaJRJ0bwHVK+qg++Hh+lw/1uLEW+/AXbHXgm4Pehb0cZQ5UQfc+gRKX36NsdJ9VPMjRPsdYvkimfLeDZKEpRc+g96tj2HqQ5+l+e0fDB1WITL+d/9A657vMv+K59K/+dGsJ1nVOgH8IPCOg8AbCbwBFHWleVmiioLYyFHdLjE24dztMpQniYGgc7yvCFFRWE8zW+ekfJLVDS6+qkPvfOPDbqinu8tyhkZwFOURxpJHb8rzCCGEEOLyyW9nQgghhBBCCLFHeV9S2VkqO4dS2e6eWjodctt+PeGdTwwNaVYxpRebnCo1LihiuUgrS9DrHi3buWKMVN0uwXtcVZHk2brryxMfSbIGSd5A6wQve3RvOt3tc+CP7iQ7cmLodj/eroPuQ7v8opRLKuoJ7aFg+xRKXf6+yTG0IRwEfWxFUK7S70FymFj8BLjHIVPeO5+fnuTUL76Sxr0PMPWhz5LMLQ4dN4td9r/nf1B86VvMv+b5uIP71vwc+qxK84gDCbzPUBAHwbYqCmKWo6h/BNM8E3gHFTHRoZIUZRUlGb3qMsLuLasy30dZzmDtHGUxQ7t10+5uvxFCCCFGmPxmJoQQQgghhBB7VFnOQAxYO0+WHdzu5axfjNCfrV/wdn1ImqDN0OFFxlmyUJLhyg6phjwZzRetXVEQvMOWBcpodLbGGt8QUf0+JiqSJCNptNAmxXuLD5cfOIoL090+B/7rX5HNnBy63U+06+rydYR1O1cEtXCmgnywv7bSi5d+6KXOHBWEaQiHiOEg+EN1yH16alt1If9EHXCfRakC1fxror2PWL4Y4thlr0VsvuIJN3LsUdcx/qmvMP6Zr6L88AU5jfsPc8Xb3s3S7U9l6YXPIGZra/TQQ3t4DwLvGDFJuv4q7lGhgEZOrEBVJZFYB94EaDaX76ZDhUrGUMpQuZRe1WU/66mYH9iCKnOtE5JkksrOkuUHqaqT5PmhDX8eIYQQQlw+CbuFEEIIIYQQYo8qyhmsWwACWbaLQ7TTdaZVp96jO20OHe7QpgyaOZvhnSXaHs3GqNaXe2y/jy8rYghkrda66ssNhlQpTJqjk4wQJOjebLrTq4Puo6eGbncTbU7+09fhDkxtz8I2hAN9cmWwrarLPnOMGfiD5wTb+4GLfI3HNrF4NdF9B5V/4jxT3t+H5CFi8UJwT0CmvHe+mKUsvvTZ9J72eKbu/DSN7/1o6LjygYlPfYXW3d9h/pW3UzzhxjVVm2ttUIALHrBAQgQSCbxrWU5E14F3GATeIUK7BYDGooFoUmxoYEOHygWy9V50tkVV5lk2Ta/3AN51KYojEnYLIYQQO5SE3UIIIYQQQgixB1m7iPc9bDWHMW20zi/9oJ0oeCgXwJV1lXljcijAqGJCjxazlcGjccUsjVSTmNFLJ2KM2F6XEALOViRphtJrDBLKCuMhRWOMweQNQnA4L0H3ZtJLPQ7+4QdIj88O3e4mxzjxT1+L3z+1PQtbD9Wtw+yhGvJZlIqXfeoYJlYG23GSdYfR7rFEfx3kn0Sl3xl+N1SJav4t0X2HWLwY4vhlr19sPndgipNvfjXNb9zP5Ic/S7LYHTqezC1x4E//mv7jbmD+Vc/D759c9bmVNiSK+vthdMu3p+loXjy1ZllKVApVlsQCVKx/LtFuExWY4AgmJ7oCHw29yq8/7F5RZW7BbPznwZgxlEqp7CwmaeN9gTGNDX8eIYQQQlweCbuFEEIIIYQQYg8qyxmCtzjfodG4ZruXs37FPARXT3Un+dCL3XV9+QQ9B12fEcolVAw0RjSYcGWJd7auL1cana+9vjwpK1KdokPENNqE4HHeXfqxYt30UncQdM8N3e72jXPira/FT68+jNtaAfQc6MG0tjk+eLt76YdeQowawgEIB4mnK8j9IWATQqbYIhavJLrHDqa8e0OHVfIAtN9BLJ4P7knIlPcuoBT9mx9N8dhHMPHJLzH2d3ejwnC1efO+B2ncf5jFFzydpec9DdLVvUSqlCExg8DbO0ChtceYde4/PWrShKhAFSUxDia8YwfGxtCqAtMiorC+Qc/2mbpYA8OlDFWZ9zcl7FZKkWX7KcvjNPKrKcsZWq1HbvjzCCGEEOLySNgthBBCCCGEEHtMjIGyPIp19RRpmu7UMO0SbL9+obsahGtZe+hwhzYuGmarnOgtturRThP0CHbOBh+wvR7eWqLzpK3mmiM50y9JTY62niRvEqIE3ZtNL3Y4+Id/RXrinKB7eoITv/xa/PTmVPOuXXXWntonBsH2SZS6/H8fMTTrMHs52D5U77fNFoeH7jFEfy3kn0Kl3x46VE95f3Qw5f0SiDvl8yIuJuYZCz/5HLpPfTz7Pvhp8gceHjqunGfy41+k9bX7mH/18ygfe8OqzrsceDuP1gHvJewekiTEhkKVBbHfR9Ek9nrotkLTBpNhQ0Zpu/gQMXqdP5O3qMo8TfdRlkdxboGiOEKzeQNqBH+PEEIIIXYzCbuFEEIIIYQQYo+pqlOE6LB2niSZRKld+KdhDNCfr1/kdiXk4/V+3QN1fXmTOZviosIXiyRakyWj+QJ1dbq+vCwxWYJeY/CiS0dGgvaeJM0JCgm6N5le6NQT3Sfnh2530xOceOvr8Pu2ozY7gurU1eNnB9tq/rL3JY4RiPvAHySGQ8t15MQxdsy0dGwRi5cPprw/vmJKXSUP1lPe5fPBPpkds25xUe7K/Zx462tp3v0dpj7yOUxneHo/PbXAwT/+EL0n3cTCK2/HT136a08pjdKBEDxKaUII6LVuGzHKEkOkiSr6xLKsv39og2p7tE5xISUGRd96xvJ1/g6yRVXmWmckyThVNUuaTWPtLFm2f8OfRwghhBDrtwtf0RBCCCGEEEIIcTnKcgbveoRQ0Ghcvd3LWZ9iEYKtp7pMVleYD9T15eNU0bDkEoLt4r1jLE9HchrLViXeVriyRCmFyda2/7oKkHvQARKTEbSSoHuTmfklDv7hB0hOLQzdbvdPcvKtr11V2Hb5POjZwd7ax89Mbqviss8cY7JcPb68t3Y4AKyxWn+7uEcR3TXQ+BQqvXfokFIVqvExYnJ6ynuXNmPsNUrRf8rjKB73SCY+/veMff7rqDi8j3zrm9+n8d0fsfgTz6TznFshudhFQwqjNM57tAk478kk7B6WaGIjRxUFsVIoQGc9fNIm2g7OZ/TKywi7YbjK3PbAbM7XY5pO0+//EO/7FMURCbuFEEKIHUbCbiGEEEIIIYTYQ0KoqKqTWDuHUinGjG33ktbOV1AtDV7gDiuqS+v68oTZKiMGiy07pIkmHcGp7hAjttsjOEdwjrTZXFOgr1DkVUBHRaI1kYg7Z29bsbHM3GIddM8uDt1uD0xx4q2vJUxuxtdkcWZP7dPBtj6JUpf/uY5hbGWwHaeA3R78NYnFTxLtY1GNj6N0Z+ioSn44mPJ+HthbkCnv3SE2cxZe9Tx6T3s8U3d+mvxHR4eO68oy9bd30f7qvcy/5vmUN113wXMprVHBE0JAEQhJHMltMi5LkhCzHFWVRK0xnQX8ZAutEiw5/WqRGPP1N0cMVZn3obE5YXeSTKBUgq1mqUybECq03iUX7wghhBB7gITdQgghhBBCCLGHlOUxYvRYO0+a7dt9k84xQn8Ogqtf2M5aoM9M39lBfXknpBQOfLFEjNDKRnM/VdvtEoLHlSU6TdAXnUQcplDkXmOiJ1GG6D1WRyS02zxmdqEOuueWhm63B/fVQfdE+wKPXK0IamFQQX4czIl6clsvXfqhlzpzVBD2n7W3dr3PNvFy17zD+ZuI3Wug8WlU+s2hQ0pZVOMTxOS7gynvqe1Zo1gze80hTvwvP03rK/cy+bd3YXrDjQbp8TkO/uFf0bv1scy//DkX+NpUaG3wwWN0JDiHTje+RnvXy1JiCKiiRKOgKtE6pfI5BEVhPc31/oxWpq4u9yWEzasyV0qTpvuw1RyNxlWU5VGazes3/HmEEEIIsT4SdgshhBBCCCHEHlIUM1i3RMSRptPbvZy1qzrgqvq/xkDSWj4UIywwjouGeZugQ4/CWZqpGclpO19VuKrElyUAyRrqyxWKnBRTlSQqITqLxQOjeVHATmBODYLu+XOC7kPTnHjrHYTxywmNIyTfRWV3oczs5S0UiDEbVI+fHWwfYO++jNQgFi8j2scMpryHP4cq+RG0/4RY3g72VuSCkV1CK3rPfCLFE29k4n98gfaXv4kabjandfd3aHz7Byy+5MfoPPtmMMONBVprQvD1RUdKYSKXvb/9SMpzCAFVlmjbIyZNAooQUnqXE3ZDvZXJFlWZV9UJrFukKI5I2C2EEELsIHv1rxQhhBBCCCGE2HOc6+D8Es7OoXUTYxrbvaS18Q7KRfBF/XZjcihT6tLCxYQ5nxO8wxZdjFLkyW6vU14pxEjZ6xG8x1tH0myg9OoSFoUi1xm6X5HolGhLrLcgE4mbxpycr4PuheEqbHvlfk788h2EsdYFHrmakx9G5Z9FmZl1PTyGiTPBdjgE/uBgH2pJ7FbwNxK7vwj5p1HZN4YO1VPenxzs5f0ymfLeRUK7yfzrXkj3mU9g3199iuzhE0PHdVkx9eHP0vrKvcy/5gVUN1x11lGF0poQAlpHvHckibzcuoKC2Gyiej10dxE32SLtV1TNlH7Zg/ZlVIIn+ZZUmRvTwJg2tpolTaewdoE03ZznEkIIIcTayG9fQgghhBBCCLFHFOUMMTisW6TRuHq7l7N2xTwEW7+onTaGqkptTOjSok9OrwJVdnAuMJYnu6+qfRXsIOh2RYFKDGaV4UoddKco60kx9UR3VUIue49uluTEHAf+8AMki92h26urDnDyLa9Zf9CtT6Gyz6LS76/q7jGaejrbD0LtcLAOttllF71su5xYvpToHotqfPQ8U94PDfbyfi7YpyIXDewe9rorOf6rb6D9xW8y+dEvoPvl0PFs5iSH3v4XdJ/+BBb+0Y8vf+0abbAhEELAe48xiUx3n4+C2GyQFH2sq1A6oSpKmgasD6RmnRemKb0lVeZQT3cXxUMEX1EURyTsFkIIIXYICbuFEEIIIYQQYg+IMVKWx7B2HoAkmdrW9ayZ7YPr10G3UpCeqXxeUV/uOxS2IjWadASnur11uLIgVCUxRrJ8dWHlctAdFGmAGDyu7A0muiWZ2QzJ8VkO/uFfYZbOCbqvPsDJt9xBaDfXflLVQWWfh/QbqHM7lwdiaEI4t4Z8Gqmp30D+hsGU92dR2T1Dh5RyqManBnt5vwzivu1Zo1g7rek++2b6T34Uk39zF+2vfnvFXdpfuZfmt77Pwst+nO4znwhao5UaTHdrgveYRL7WzktrVJahqoJoEqhAxZLeeMpk6zJ+Xm9ZlfkURfEw1s5Slg3a7Uejtby8LoQQQmw3+WkshBBCCCGEEHuAtbOEUFLZOZJkYne9OBsC9OfqvbpdBfn40Kaop+vLO7GBtZZQdfEx0s530fu4SjFGyl6X6D2usiR5tqr6cgVkOkWhSV1AhYjtd4lag5ZQZjMkx07VQXenN3R7dc1BTrzlDmJrrRPVJSr7MmRfQSl33nvEMFXvG+0ejVzAsBVyYvlionvMYMp7ceioSh4e7OX9nMGU9+hdfDOqwliLude/mO4znsDUnZ8mO3pq6Ljul+z7q0/R+ofvcOrnf5I41sBZRwwBHxw6GpnuvpDEYPB4MrIItmPpL3SZbE1dxjnPrjLvbVqVuVKaNN2HtXPk+RVU1fHd2ZQjhBBCjBj5LVsIIYQQQggh9oCinMH7PiH0SNNdNmVYLkBwYLv19FaSLx86XV9ekNOpFMZ1qGwgTzRmlXtY7ya23yd6hy1LVKLR2erqxzOdodGkAZQPddBNlH26N0ly9BQH//ADK4Puaw+tI+j2kP4Dqv1HqPzvzxt0x9AkFD9B7P4SuMcgQfcW848gdn+RWN264pBSDt34NKr1XtCnVj5W7GjVI6/h+L/8x8y/4rmEbOX3y/zBIxz6T+8jPbGA1ooQAyFACH4bVrt7GB0IRqOiooopfuYUrqrWf8KhKnNXV5lvkiybJsQK55YoiiOb9jxCCCGEWD0Ju4UQQgghhBBixIVgqcoTODuPUglJMr7dS1o9V0HVGdSTBsiH68sXB/XlHZ+C7VJWFUpBIx29aWXvHK4o8GVFDIE0b6wq0szUIOjGoKzDVj1icFJfvkmSmZMc/MO/xHT6Q7eX112xxqA7QvIdVPsd6MYnUbq/8h4xIZY/Ruy+BexTkJry7ZQRyxcReq8nhpVTpcocQbX+FNIvAWHrlyfWzxg6z30KR/+Pn6d3y2NWHE5mFzn0n95H88GjhBCJsd67W1yYDhaMxmcNIhk6QOcHD4O/jK8Nk9Uh9+kq801iTAutG1g7i3ULONfZtOcSQgghxOpI2C2EEEIIIYQQI66qThCjp7JzpOkUSu2SPwVjgGJ2MNXdh7QF6kyY16WFjQk9mhRlRXR9rAs00gQ9Yv2xMUaqbpcQAs5WJGmG0pf+PGYqxShNquqg21Ul0dq6ulzqyzdceuREPdHdLYZuL6+/kpNvfg2xmV/gkecwD6Fa70E3P4zScysOx6iI1c3E7luI1XOAVZ5XbD5/PbH7C8TqqcRztlRXyqMbn0W13gP65PasT6xbmBhj9mdexolfvgM3NXzRmO6XHPxvH2Ts698jBE8IkRDkooYLUYDxFS5vEpMM17NUnYrqyFGIl3z4+SV5HXSfrjLfRFm2H+sWicHJdLcQQgixA+ySVziEEEIIIYQQQqxXURzBuQ4x2t1VYV51wdl6stsYSJrLh2w0y/XlXQvGdyisJzGaPBm9P3VdWRK8w5YFSml0fun68jroNiTKoHzEVX2CHdTESn35hksfPs6B//pXmN45QfcNV3HyLasMuvUpVONOdOu9KDNz3rtEexOx9wvE8iUQxzZi6WLDZcTyhcT+PyaGqRVHlTmKar0Tsi8iU967T/mo6zj+K6+nuubQ0O3KBw6+75NMfPIrxOhxTqa7L8b4imASYp5j0zH8Uh+/2MEeX+eFICuqzC+jFv0S0nQKgMrOUpZHiVG+joUQQojtNHqvAAghhBBCCCGEWOZ9H+sWsG4WrXOMaW33klbHu3qvbteH4CEbX27cruvLJ/DR0IsZvupircOHQGsE68uDD9heD19ZovMkjfyS5eNnB906Kly/S3C2/lhKffmGSx86xsHzBd2PvJqT/+TVxEtdnKA6qPxjqNY7UOn9571L9FcSem8gFndAOLBRSxebyV87mPJ+2vmnvPO/Q7XeDfrE9qxPrFuYaHPin72O/uMfueLYvk9+mX1/8UmCtYRzP/FimQkVEPFJRjVxAO2hmFvCzc7h5xfXedKtqTKvt4SZxNpZQrRUlXwNCyGEENtJwm4hhBBCCCGEGGFFMUMMHmsXSNPp7V7O6hVzg/ryXl1NqpPlQ6fry7s0qaxF+z6FdeSJxpjRC3Gr3qC+vCpJshRtLh7oDwXdaFzZIwQH1kl9+SZIDx/l4H/9K3S/HLq9uPGaVQTdFSr7HKr9R6js6yi1MhiLYYrQfyWx97Pgr9vg1YvNlxLLFxB7bySGlc0ayhwbTHl/AZBJ4N0kZimn3vRylm67ZcWxsa/ex4E//iBxSfZzvhAdAzo4vEkJWQvXbuP6jtDpUc0cx3f7az/pUJX5Oh6/Blk2TQgl3nWlylwIIYTYZhJ2CyGEEEIIIcSIijFSljM4twCweyrMqy64ov6vUpC2lw+5s+rLK6+hXKK0dUDUGMGpbluWeFvhyhKlFDq7+IRwqpLhoNuWhMrWQTdIffkGy344w8H/eie6GK7LLW66llO/9CpidqGPt4f0H1Dt/4rK/x6l3Ip7xNAkFC8kdn8J3GORafxdLlxD7L6JWD2DGIc/l0oFdH7XYMr7+DYtUKyL1iy86nnMv/J2zvm00rj/Iab/4/vg1ML2rG0XML4iDC5ms61pYmsMN7tA6BfYh48QK7u2E25hlbkxYyiVUdlZKjuL98WlHySEEEKITSFhtxBCCCGEEEKMKOcW8KGgsrMYM4bWuyDoDAGKeXAluArSsTrwph7WWmAcHw0lOVXZwXtHaQPNNEGr0QoDQ6jry4NzBOdI8gbqIu9jopLB/wZBd7CEsl+/4B88pAkSmG6c7MEZDvy3O9HlOUH3o6/j1C++8gJBd4Tku6j2O9CNT6L0ysnDGBNi+WPE7lvAPhUYvYs49q6UWD6P2PsZol/ZtKHMcVTrXZB9Hpny3l06z7mVUz//ckKaDN2eHptl39veRfKjo9u0sp3N+Aq0xmmDS9uERguabfypOWJRUR0+An6NXwtJvkVV5oosm8baOWLwMt0thBBCbCMJu4UQQgghhBBiRBXFDMFXeN8ly3bJVHc5XweztgtJVv9voEcTG1O6NLGuri/vW48xmiwZvRDXdrsE73FliU4TdHLh0DMhIVUJidJ10B0doSggxLPqy5MLPl6sTfaDI4Oge3jqsHjM9Zz8hQsE3eYhVOs96OaHUHpuxeEYFbF6MrH7FmL1HCDfpNWLbReuIvbeRCyfdYEp78/Xobc+tk0LFOtRPPEmTvzT1+HHmkO3m6Uek3/wXrJv3r9NK9u5dKhDaa8TrGmC0oTJfWAM9uQcoSioHj4Ka9n63Ax+b9iCKvPT28M4t0BZzhBlj3YhhBBiW0jYLYQQQgghhBAjKEZPWR3DujlAkyST272kS3NlXV1uu/VEVjZ25lA0dGhTkuHQuGKRygW8DzRTc9GJ593IVRXOVviq3gc6yS8cfCYkpDrBKI3G4KInOAvOgx2EsakE3Rsle+AhDvzxB9Hn1Ov2H3cDJ9/0ipUfa30K1bgT3Xovysyc95zR3UTs/QKxfCnEsfPeR4yahFg9l9j7WaI/sOKoMidQrXehss8BK2vuxc5kr7uC47/yBuyh4QvMVGUZ/6M7aXz2a9u0sp1JMagyT1KCAm+auGhIDk5D8NiTc/ilLvbYiTWcVNcXd21BlbnWKUkyRlmdwocCa2c37bmEEEIIcWESdgshhBBCCCHECCqrE8TosdUsaTqFUjv8z78YoD9bV4/aAtJW/YI1w/XlBQ181YPgKKwjTTSpGa2gO8RI1esSnMdbR5LnFwzzTwfddcw9CLqDh7KsJ+SX68t3+Od/l8i/f5gDf/yhlUH342/g1M//5HDQrTqo/OOo1jtQ6fknOqO/ktB7A7F/B4SVgafYA8KVxN7P1dX1K6a8Y72ne+tdoKUGe7fw0xMc/+evp7jp2qHbVYyM/eUnaX/gf9ZbdghgUGVuUjyRKmnjQ0SZnOTANLGq8POLuLl53Owa9j5P8norlBg2tcocIE33E0IP7/sUxcOb+lxCCCGEOD/5a1cIIYQQQgghRlBZzOBdlxAr0nQXVJiXS3XQXXXAJJCcqYE9XV/eo0kIDl92KawnRGhlo7efse31CD7gygKdGHRy/qlsg1kOuhNl8NETCIOgO9ZT3VJfvmHy7/2I/f/9w2g7PGXbf8KNnPq5l8Py56lCZXeh2n+Eyu5BqZW1tjFMEfqvJPZ+Fvx1W7B6sbMlxOo5dejtD644qsxJVOvdqOzvkCnv3SE2c07+k1fTeepjVxxrfuarjP/xB6HcvInj3STxdYOJ1ylV0kArgw0alWeYfZP4The/1MEeO4HvrDK4NhkoNbiAbnOrzJNkHKUSbDVLVZ0iBPm8CiGEEFtNwm4hhBBCCCGEGDHel1g7R2VnUSrDmPZ2L+nivINqCVy/nsLKxupuU4bryz0GVywSYqR0dX25HrH6cm8trizwZUEkkuSN897PoMl0gkaRKEOIHk8A56S+fBPk3/0hB96xMujuPekmTv3sP4LEAB7Su+uQO/8CSq0MJWNoEooXEru/BO6xLP9DFwIgXDGY8n42MQ6/ZFdPeX8R1fpT0Oevwxc7TGKY++kXMfcTz1hxKP/G/Uz+wZ+jFjvbsLCdRRHRwRGTHKsMQWdYD6Ax7RZmYgw/t0ToF9gjM8TVXCSgNOh0S6rMldKk6T6snSdGR1lKC4MQQgix1STsFkIIIYQQQogRU5YzdYW5nSdN9+38/az7s/WL0bYPSWN5EjlGWDyrvjy6PtE7+pXHKEWejNaftDFGyl6P6Af15VmO0is/dwZNqtPlie4QA45QT3NLffmGy7/zIAf+5CMo54du7z35Ucz+zMsg0ZB8F9V+B7rxCZReOXkYY1LXVHffAvapwOg1EoiNYojVbYMp70Mrjiozi2q9B5V/BrArHy52FKUNiz/xdE7+9E8QzfD34/TwUabe9m7M0ZPbtLqdw/iKmKSEEKiSJi4A1L8LmMlxdDPHn5ojFBXV4Zn6oq5LSbItrDKfJuKwbpGiOLKpzyWEEEKIleSvXiGEEEIIIYQYMWV5FOsWgECW7fAK86pbT15V3XoSK20tH+rRpBrUl4PHFh2sC9jBVPeOD/HXyPbrMN8WJSox6DRdcR89CLrN8kR3xDF40V/qyzdc49s/OH/QffOjmX3jyyA7imr9Gbr5IZSeW/H4GBWxejKx+2Zi9Rwg36KVi10vHCL2fpZQ3nb+Ke/sy6jWO0FLsLbTaa1ZuuXRnPgnryI0h78HmNlFJv/De0i/+8NtWt3OYHwJShOMplQ5Shl8GFwUpBTJ/n2QGNyJWUJRUD48U18Rd9GTbl2VuTENjGljq1mc72LtGvYXF0IIIcRlk7BbCCGEEEIIIUaItYv1C63VHMa00XoHh2vBQzEPrqynr9J2/cI0K+vLKZcIIdC3njTRpCM21e2dwxUFvqyIMZDmjRUF1xpNthx0J8NBt9SXb7jGvQ+w/51/jfJh6PberY9l9meegWp/CN36M5Q5f9gY3Y3E3i8Qy5dCHN+KJYuRY6B6NrH380R/xYqjZ6a8P4VMee9cSmmUUvQfeRXH/5efxu+fHDqu+yUTb38/+Ze+uU0r3H46OIiRmDQodYJCY0Pg9HQ3WpEemIYYsCdnCZ0e9ujxi590C6vMoZ7udn6J4CuZ7hZCCCG22Gi9OiCEEEIIIYQQe1xZzhC8xfkOabrDp7qLhUF9eQeSvK4cZWV9uYkFZVVROI+PkWY6ehXQtt8jhICrKpI0W1Ffrs4Nujkr6Jb68g3X+Ob32f+uv1kRdC/ddhNzv6BQ43+CSu8/72Ojv5LQez2x/1oIB7ZiuWLUhYODKe/nEuPw9z+lQGVfRbX/BMxD27RAcXEKrTUhRNwV+zj5q2/APuKq4XuEwPi7/5bW33zu0hPLI0hxuso8x0WoTBPnFYqzLtxKDMmBaaK1+Ll53PwibnZlo8aQLa0ynwI01s5SlkcJwW3q8wkhhBDiDPnrVwghhBBCCCFGRIyBsjyGdfWLv2k6eYlHbCPbB9utX3yOQNZePtSniSWlRwNNwBVdfIyUNtBINOY8+1jvZr6q8NbiyhKlFTrPho4rFPm5QXc8q1Zb6ss3VPMb97P/3X87FHSHPHLqLftY/Jn7UfnXUWplGBXDJKH/CmLvZ8Ffv5VLFnuChupZgynvK1ccVXoe1XwvKv+fwOZOsIq101rXjdrBY1sN5n7lDZQ3P3rF/Vof/QJj7/6buq1jj0l8STQJKEWhE8AQ0Jz98rXKM5J9U/huH7/YwR47iV/qXviky1Xm1aZXmSulSdN9VHaWGD1VdYnJcyGEEEJsGAm7hRBCCCGEEGJEVNUpQrRYO0eSTKLUDg09Y6jry70FW9RBt6r/PHXRsESbMmZ4EozvUjlPv/IoBfmITXXHGKn6faL3BOdI8nyovrwOujP0hYJuqS/fUM17vsv0e/4WFeqgO+pI97meY/9XpHzqMZRaWRUdQ5NQvJDY/SfgHgcrCuiF2EDhALH3M4Ty9gtMeX9tMOV9eJsWKM5PobUhhABEglEs/dKr6b3g6Svu2fjyvUy+/f2oXrH1y9xGZlAzHtOcQmVorbHurCrzAd1uYibH8fOLhF6BPXKUUJTnP+npKnM3qDJ3m3shSJZNE6PFuSWpMhdCCCG2kITdQgghhBBCCDEiynIG7/uEUJBlO7jCvFysg+6qAyYF0wBO15eP4aOmT4OUin6/wPqIdYFGmqDVaAWJrqoI3mHLEpVodHLmRf1zg+4Iw0H3ufXlidSXX47m3d9h+s8+igqRSKR/S+D4v7UsvNETWyunLGNMiOWziN23gH0qMFoXYoidTEP1TGLvTUR/1YqjSi+gW3+Oyj+BTHnvHFprFBCCx3lPVIrea15A56deRDznZ1t6/2Em3/Zu9Mn5bVnrdlDEeu/uJMcqg4sKFzXqPN9bzcQYutXEz84RihL70BGi8+c5K3WVubdbUmVuTAutG1g7i3ULONfZ1OcTQgghRE3+ChZCCCGEEEKIERBCRVWdwlazKJVizPh2L+n8vIVyqa4TjQGyseVB2D4NLBl9mmgCoergYqBvPYnR5Mlo/QkbY6z36naO6ANJli8fOx10q0HQDWDjOYHrufXlRqa616v1tfuYfu/HUDFS3Rg4+b855v6pw1+x8r4xKmL1JGL3zcTquUC+8k5CbIWwn9h7I6F4PjGu/PpX2d2o9jvA/Gjr1ybOQ6G0rqe7Y8T7+nt68dynsPjLdxCzdOjeyfFZpt72bpIH986EsPEVIcmICvoqq7/f1jt6D99RKZLpKUhT3MlThH5J9dDM+fc738Iqc4As2491i8RgZbpbCCGE2CKj9UqBEEIIIYQQQuxRZXmMGB3WzpOmU6idOAEdI/Rn6ylk14ekWYe0gI+aJcYoY4ojIY89eqWjtBEfAq0Rqy8HcEVBDAFXlugkQZv6fTy9R7dCkV4o6Jb68g3T+uq32fe+j+EPBmbfajn5vzvsTecJTIDobqynacuXQdyhF5SIPUaDfTqx+yaiu2bFUaUX0a33ofKPI1Pe289oTQRCCITgl7NZ+8SbmP+Xb8RPtIfurzs9Jv/jn5Pd/Z2tX+w2ML4EpVAmpadTlNK4AIrz/IzTinT/PkBhT80Ruj3skWMr73d2lXnc/CrzNJ0CoLJzlOUMMYZNfT4hhBBCSNgthBBCCCGEECOhKI9i3RIRR5pOb/dyzq/q1pNVVad+8TltAafry8cH9eVNMiqKsiTESGEdeaIxZgeG95chhIDt9/GVJcZIktfTwQoGQbe+cNAt9eUbpvXlbzHx0Y+x8AbH8X9rKW69QMjtryD0Xk/svxbCwS1epRCrEKeJ/X9c7x9/3inve1Dt/w7mwa1fmziLRis1CLsjwZ+p3vbXXcHCv/453FUHhh6hrGP8HR+i8akvn39yeYTo4CBGYtKg0hk+BFxQoAzLNTBnSwzJgWmitbjZedziEu7k7Hnut3VV5kolJMkk1s4SoqOqTmzq8wkhhBBC/hoWQgghhBBCiF3PuQ7OLeLsHFo3MYM9sHcU76BcqCervF1RX14N6ssVEeN7FNbTt3UI0BjBqW7b7xNiwNsKkyYorVBAprOLB90A1dn15Vrqy9ep9ZW7SXsf48T/aendHs675XYMk4T+K4i9nwN//dYvUog1UWCfSuz+AtFdu/KoXkK33o/KPwqUW788AYA2hhgjMQZ8cEP5ddg3wcKv/QzV424YeoyKMHbnp2m//xPgR3dSWAGJL4lpXT1ekBCiHnyMzv+7gMpSkul9hF4fv7CEPXEKv3jOXtlbXmU+TQgl3nWlylwIIYTYAhJ2CyGEEEIIIcQuV5ZHicFh3SJZtkOnussFCK6e6k4bYOq9SX3UdM6qL2/RZ6mwWB+pbKCZJuidWMl+GYLz+LIkDKa6TVpPdWc6Q18q6HYO7Fn15Um68j7iEjz5Q39D9dRPsPQKTzzPtSExNAnFC4jdXwL3OM47USjEThX3EftvIBQ/QYwrv0eo7BuDvbx/sPVrEyg0Wp+e7oYQ/NDx2MhZfOtrKZ5984rHNj93NxN/9FdQjm4lvfEVUScobeiq078rKBQX/nmnWw3M1AR+YYnQ7WOPHCMUZ13QscVV5saMoVRGZWep7Czeb37ALoQQQuxlEnYLIYQQQgghxC4WY6wrzO08AEkyta3rOS/br2tDq279/wf15VDXl7vl+nKLtQU+RPrWY4wmS0YvZLT9HiEEnK1I0gylFZlKB0F3Pbnmzhd0n6++XMmf9asXIfkeRv0X7OPvJUye5x4xIZbPInbfAvZpcL59YoXYFRTYpwymvK9beVQvoVt/iWr8D6DY+uXtcVprQhhMd3u/8g7G0HnDS+i+4vYVh7J7H2Dq//sz9EJn5eNGgPGDIDrJsSYnBE+Iup7MvshL2WZiDN1u4mbnCUVJdfgI0Z71s3RLq8wVWTaNtXPE4CmKmU19PiGEEGKvk7+KhRBCCCGEEGIXs3aWEEoqO0eSTKD1DgznysX6BWZXDurL6z9F+3G4vjyjR6d0lC7gfaCZGtSITXV753C2wlclSil0lpKpFKMMiTIoNC46zrsrq9SXr59+GNX6M3Tzg8Sx84QcEWL1RGL3zcTquUC+5UsUYlPEKWL/9YTiReef8k6/OZjy/v7Wr20PU0qjtKqD3BAJ4TzV5ErRf/GzWPyFVxKT4Qrv5KHjTP4/78IcGb39oBUR7S0hzfEmpQwRHxSDkvOLPjbZN4XKMtzJU8SipHpoBk5/bE0+XGW+yfufp2ndtGPtPEV5hDji+60LIYQQ20nCbiGEEEIIIYTYxYpyBu8LQuiRplPbvZyVbH/wwnIPjKlfbKauL186p768Vzp8iBTWkSaa1IxW0A1gez1iCHjrMFlGelbQrdG4aM8fdEt9+fqoWVTjg+j2n6HM+fdNNUf3EXq/QCz/EcTxLV6gEFtBgb2V2P1FonvEyqO6g279FarxN4DULW8NhVGD6W4Czp1nunugeurjWPiV1xPazaHbzfwSk//hPaT3jV4dvQkVwWRopeipdDAFr1HqEhd5aUV6YAqUwp6YJfT6VDPHIVIH3WdXmXu7qe+D1ilJMk41uCjR2lOb+nxCCCHEXiZhtxBCCCGEEELsUiE4qvIEzs6hlCFJJrZ7ScNihGKhDru9haS9vPXxmfryBhkWQkW/8hTWEyO0MnPxc+9CrqrwzuLKEqU1Wdog1QlG6UHQ7TjPbF/9cZT68rVRXVT+cVT7v6PS7533LukPFY3PPRnbfjOEg1u8QCG2QZwk9n+KULyEGLMVh1V672DK+/6tX9sepLRGKQZ7dwfCRSZ/3Y3XMv9rP4s/MDV0uy4rJv7LX5J//p5NXu3WMq6qw2mTUZkmITp8OP1z7xKBtzEkB6aJ3uNOzeEXl7AnB0Fzkg+qzP2mV5lDPd0dQg/v+xTF+S+4EkIIIcTlk7+OhRBCCCGEEGKXqqrjxOgHFeZTqJ0WgNoeBDuY6k7q/TI5t74cGvRZLCw+RkoXaKQGPWL15TFGqn6f4DzBefJGk0wnaDQGg4uecP6ZbqgqqS9ftQqyz6Paf4TK7kGplR9TcxKm/tiQ3vNcere8dBvWKMR2UmBvHkx537DyqO6iW3eiGn+NTHlvNoXWZlBhHgnOXfTe4dA+5v/Xn8U+8urhs4TI+J9/jNaHP1v/rBgBOjpUDMQ0xyUNKu9wAUCjLhV2AypLSfbvIxQFfn4Rd3IWv7AEJjuryry36VXmSTKOUgm2mqWqThJCuanPJ4QQQuxVO+yVECGEEEIIIYQQq1WUMzjXIUZLlk1v93KGxVDv1e0q8A7SNnC6vrw9VF9eOo/zkV7pMUqRJ6P3p6orS6J3uKokSRPytIFGkyiDj55w/pnuur68cmAHIYjUl19AgPQeVPu/ofPPo9TKelrVgYm/MBz69ynVwdvpvOCZ27BOIXaIOEHsv47QfykxrtyjXqXfRrX/BPTRbVjc3qG1RgEheFwIl8xe41iLhV95A+VTHrfiWOsTX2T8Tz9y5ufFLqYA4ytikoNWFKS44InoQbPJpX9P0M0cMzmBX+wQuj2qI8cIRXlWlbmvQ+/NfD+UJk2nsXaOGD1FIV9PQgghxGYYvVcQhBBCCCGEEGIP8L6PtfNYN4vWOca0tntJw6peHXK7bj1JZeqQtq4vN8v15QZLp3BYF3A+0EwNasSmukOM2H6/ntoLkXZjHIMiUYYQA/5CQfdQfbmT+vLzipDcj2q9A934OEp3V96lgrGPaq74P1PGPmVYeOlz6Tz/aVu/VCF2HAXuyYMp7xtXHtUdVOu9kHxnG9a2VyiU1vV0d4x4v4qgOk1YetMr6L3oWSsO5f9wH5P/6X2ozuZXdG824yuCNmhlKJMmIXh8PP0zcHVbnZiJMfRYCze7QCxLqsMzxKjr30+iB7v57QVZNk3EY90CRSlV5kIIIcRmkL+ShRBCCCGEEGIXKsujxOCxdoE03aFT3b4E7yFtAtCP+aC+vLFcX94tHT4E+taTJpp0FKe6+31iCLiyotVoo7UhUQmBiMNf+IHL9eWuDrnN6O1jfln0EVTzvejmnSgzu/J4gOYXNFf8/1ImPpig+4r5V95O5/anbv1ahdjJ4jixfweh/49WTHkr5dDND0P293ChrRbEZTHaEKn37vber65ZWyt6r7ydpTe8hKiHLxBLf/AwU297N/r43Kasd6uYwdR1TBvYpIELFh8C1JeLrfo8ydQkKs9wJ2brwHvmVH0x2RZVmdcXJI5hq1m872Ht/KY+nxBCCLEXjd6rCEIIIYQQQgixBxTFEZxbACJpum+7lzOs6tbTyLZX79Nt0kF9+digvjylRZ8QA73KUziPj5FmOnphbggBVxT4ytIwOWmSkaiECLh4kaB7qL48QppSF7sK1Cyq8UF0+z2o5OHz3iX/puLg7yTse2eCmas/bnOvfh6d59y6hQsVYjdR4J5I7P4S0V234qjOP4dq/A2w+yuydx6FVvV0d4yR4C/ys+Ec5Y/fwuJbX0fIs6Hbzcl5pv7Du0keeGijF7tlFBHtLSHJiDqligbnPGDqfbdXOd2NVqT794HR2BOzhH5JdXwBXLElVeYAaTqN8x2CrygKme4WQgghNpqE3UIIIYQQQgixy1g7jw8FlZ3FmHG03kH7OIezprqDh7SuV19kDBc1fRqkWFLlWOo7fIwUNtBINEaPXphr+3Won0RNkmakpg4kbLxIYLSivtxIfTmA6qLyT6Da70Cl3zvvXfRsm/3/b8L+/5ySPnzmYzb3mufT/fFbtmqlQuxecYzY/yli9eQVh1T6bVTrfaDOs12AuCzaaGKMxBDwwa1p2Ng+/pEs/Ks34qfGh8/Z7TP5n95H9rX7Nni1W8f4imBylFKUpoHzjhAB1JqmuzGa5MA0eI87NYvvVthjJwdV5ptf+Z6mk4DG2lOU5TFCkItGhBBCiI0kfy0LIYQQQgghxC5TFDMEX+F9d+dNddvOWVPdOeiEImZU5PRpooAmfUoXqHygX3m0gsYITnV75/BlSeLBKE2eNoBLBN1wnvryNbygP6r0UVTrHajsbpRaucd5DBM0vvAorvi3Ffl3hl/qmHvtC+k+++atWqkQI8AQy5cQiuevCF2VOYJqvRv0ie1Z2ohSaLRWhBgIAUJY/XQ3gL/mEAv/+udw1xwaPq/zTPzJh2l+/IubXte9GRJfggKVZFjTIESPG1SZowxraTxRaYLZv49QlPilHm5uEX/qVL1v9yZ/bJTSpOk+KjtHjJ6qOr6pzyeEEELsNRJ2CyGEEEIIIcQuEqOnrI5h3RygB9NCO0QIUC4NqkHD8lR3lxY2GhwpTfooYKlvsS5gXaCRJig1mlPdJmqUhzxvopXGXSrodr6uL3dSX75MdVDNO1G6v+JQjA1C8XzG3/cYpt/5I1Q887GKCmZf9xN0n/WkrVytECNCgX06sX8HMQ63hyi9iGq9B8z3t2lto0lrTQiRGAPer33yN0yOsfAv30j1hBtXHGt/5LOM/fnHYA0V6TuBjh4VAzHNcUkDF8E6h1p+SXttF8rpZo6ZmsQvdQl9S3VkBt/pbEmVeZZNE6PFuiX6xfm34BBCCCHE+kjYLYQQQgghhBC7SFmdIEaPrWZJ0ynUTqq3rhbrqW53eqrbUA326C7J0QQy5ehWDhcCfedJjCZPdtD7sEG8tSgb0D6QmpTEJLjouOjsWIxQFvXH0Et9ec0Ogu7O0K0xGmL5DOLSm5n8yy4Tn/368HEFcz/1InrPfOJWLlaI0eNvIvZ+hhgmhm5Wqv7aJP0KXPw7m1glpUw93R38YLp7ZYvFpcRGxuJb7qB/260rjjW+8HUm/vADqKLcgNVuHeMrvMnRWlOqrK4yp96zW7H2bVzMeBszPoZb6BF6PexDDxN78xu+7hXPa1po3cDZWZxbxLmlTX9OIYQQYq/Y6381CyGEEEIIIcSuUhZH8a5LiNXOqjAPHqoOuH6de6RNoJ7qdlHjSGhQ4kOkWzpKF/Eh0hrB+vIYI75XkKDQUZEmGS56wqUCIakvP0dENT6KMkeHb3XXELtvJha3M/XBv2f8rnuGjyvF3OtfTO/pT9jKxQoxusJBYu9nif7qoZuViujGp1H5x4HdNTG8Uy1PdxNwbp0fU6Pp/vSL6L76+cRzikGy+x5k8j+8Bz23ePmL3SLGV0RtQBtK0yRQT74rNCjFel7eNlPjqGYLP7dI7HWpvv/9+mfvJsuy/Vi3SAyWopjZ9OcTQggh9goJu4UQQgghhBBil/C+xNpZKjuLUinGtLd7SWeUS3WNue3XU93KYGNCRUYxmOpOsXRKR4iRwjryRGPM6FV0h8qSRAUukpoMr7l00D1UXx6kvhwg+yIqvW/ophgmif3XgB9n6s5PMfaFbwwfV4rZN7yE3lMfv4ULFWIPiG1i7/VEu/JrS2VfRzXfD6zcakCsjVIapRT/f/b+M7qy/LzvfL///w4nIBZQoas6B3YzZ4pZogJJMYnBlGRKtCjbM54Zz3jG41njF/fFXXfdN3fdO8GTPOOxPfZQFqlASswKpCRSYk5i7CY7d4WujHzS3v/w3Bf7AIVTAKoAFDKez1pY3bX3CX8AJ+Ds336eJ4ZAjJG42VnSxtD9hVex8Nu/gmSDJ06lF64y9i8+QnLu0hasePsliy3Gsxo+axAjlKF/UhgG2MSJYcaQHT0CaYa7fIXY7VA+8+S2z+7OsnEASjdNUVxAZOPV+0oppZRaScNupZRSSimllNoniuIiIgHv5siyib0z5zp4cC1wnerfy2Z1B7F4MmoUuBDpuUDXVdVq9QNY1Y0IpuchComxRAuRmxzMjte3L0+1fXn6OLb2lYFNIjnSfS/EOuN//FcMf/PHg/utYfoDb6X7sod2cqVKHSIp0ns7sXjDij0mPYsZ+iiY6V1Y10FiqupuEUCI/taqjcuXPsTcf/HrxOHmwPZkrsX4//x7ZA8/dUu3vxMMgg2OkORIkuLE4rzv59IWYzbZBcVa0mPHIAbclWnC7BTu/PmtXPoKxqSk6RjOzRDFU5SXt/X+lFJKqcPikH96VkoppZRSSqn9oygu4PwcQiDP91AL86VZ3T1I62AsXhIKahTkGIQcx3zP4YJQukgjS7F7JazfKgKmG7AiJNGAEeJ6PnUXRb99udP25QD2Mqb+uYFNIiDdd4Kf4Mgf/SXD3354cL81TH/gl+m+5MGdXKlSh5CB8jXE7rsQGXytMnYGM/QRSE7v0toOBmstBggx4GMk3mKxsb/nFLP/9W/ij08MbDelY/Tf/DH1L3/v1u5gByShJCY1LIZu0kAAHzyGxZPmNve+afIaycQY0usSrl7GT00Rpqa2bN2ryfNJYiwIvk2hrcyVUkqpLaFht1JKKaWUUkrtA94v4EMbV86QJENYW9vtJVWCh7JdtS+HparuDg2CGEpyahR0nSdEoesCSWLJ04MXdKcexJXYaIkxEOw6vkfnqxbmzlX/zg95+3LTxjQ+gTGD1YxS/By4ezjysb9g6DuPDO6zlqnffBvdFz9nJ1eq1OHmH0I6fxeJg+M0jCmqlubZD3ZpYQdBVd0tMYIIMdz6LOl4dJy5f/obuAfuHLwnEYY//hc0P/lFbjlV30ZpKKq3xqyGT+tEEVxw/ZndBrPJsBtjsI0GyWiDsNAizExTPvssYWFhK5c/IE2HsbZG2R9LE4K2/1dKKaVulYbdSimllFJKKbUP9HrnicHhQ4ss20NV3cUcSL+qO2uAMQSxdKkvVXWnFLQKT+EjIUQaWbJ3WrBvBYE0GGJZkkhCDB5PxNibfOSOsarqDr6qjM8yDvfHdI9pfApjB0MGcS+E4uUc+cMvMPS3183wTixTH3wbvRc+sJMLVUoBxNuQzgeRcHxgszGCrX8BU/sruNkYB7UqaxMEiDESQtiSUdIy1GDuP3s/vVc+f8W+5he/w8i//xSU7tbvaBtYCRiJSJoTsgYuQhkCIMDi6I9Nvn/ajKSRkww3CVNXiJ0u7swZpNfbwu9gUJYdwbkZJAZ6Wt2tlFJK3bLD/ClaKaWUUkoppfYFkUhRXML5GQCybGyXV9QXympO92JVd9oAqqruKIaSGjklnWKxqtuTp5YsOVhBdxIMRMF4QaKn8AU2vUmVmQj0iirw9h5sUn0dWoKpfx6TDM5LFX870vslxj73VYa+9+jgvsQy9ffeQe8F9+/kQpVSy8lIVeHtVnZWMPnfYhqfAIqdX9e+15/dHQMiQtiC6m4A0pTWB99O562vXbGr9sPHGfvf/gCz0N6a+9piSSgJSQ1rDKWtIdJvZW4WD29v8j3UpmAgGW1gc0u4coXY7VE+c7p6f94GWVa1lHdull5xHtmKsxmUUkqpQ0zDbqWUUkoppZTa48pyiigO52ZI0zGM2SMznXvzVVW361Xty40hiqFDg4KqzXoiPbploHBVZVojP0CBrkASTfXBuvQg0Ct62DS9eVW3cxBCv4rO9Ku6D7Hs25jsuvbkcRTp/QrNbz/KyFe+P7gvTZj6rXfSe969O7hIpdTqcqT3K0jx6hV7TPo0pvlRMLM7v6x9zlqLCEiM/dB7i27YGDpvfwMLv/E25Lr3quz0Bcb/xUdILm3v3OrNSEKB2ASTpJRJHRHBLZ0EkNxSK3NsCsGTToyDBX/5MrHboTh9pjopbYtZm5GmI5RumhgLnNt7P2+llFJqP9GwWymllFJKKaX2uKK4QAhdYuyR53ukhbkvwXeh7IC1kNaBqqpbxFCQV1XdPU8Qoecj9TTBHqD25VYMVsB6gRApXQ9Bbl7V7QMUrl8xFiFLOdRzupMnMbW/GdgkkiHd95I/NceRT3xxcF9iufpb76D33Ht2cJFKqRszSPlGYvdtiAye1GSSKUzzI5A8u0tr258MFmsNIUZihBjClt5+8eoXMv+fvp/YqA1sT6bmGPufPkr6xNktvb9blQQHApLm+KxBEHAhIkQMSX9+92aru7Pq5D2EbHIMYsRdvkJsLeDOn7/p1TcjyyaIsUMIXXq97bkPpZRS6rDQsFsppZRSSiml9rAYS8pyCldOY0xKkozs9pIqxVw1Z9oXS1XdIlXYXZIDBhu6FD7QdQFroJ4dnI+gVgxJBCuW4DwuOLx3JFl243nkUaDoVT+74CFND3f7cnsF0/gsy39kIiC9d5BM1Zj8D5/DhMGqupn3/QLFQ/fs7DqVUuvjX4B0fxWJjYHNxnYxjT+E9OFdWtj+ZG2CiCASCHHrW2q7h+5m7p/+BmFidPB+Oz3G/vc/pPbtvfP7Mgg2OkJawyQZhVhCFCSGftBtqtB7M/qtzIkeCKQnjiNFQZiawk9P469c3cLvpJKmoxiT4sppyvIqIWi7f6WUUmqzDs6RBqWUUkoppZQ6gIriMiIe52bJsiM3DlJ3iuuB74FrV0Ftcq2qO4qlR06Go12UuCA4F6mn6d5Y+xawYkhC9V98wAeH9wXGGEx6kwPtRVEF3s6BsZDskZb0u8F0MI1PYIwb2CzlGzHtu5j88GdJ2t2BfQtvfBmdVz5/J1eplNqocAfS+U0kTA5sNiZgG3+Kyb8M6Izi9TCmqu6Oi9Xd29BSO9x2lNn/+jdxd942eN8hMvK7f0Ljz7/G1vVQvzVpKIg2xxgo0wbCYitzARIwm+yUstTK3AERk1rSo0cJCy3C3BzuwnnC/MKWfi/GGLJsot/K3NHtndnS21dKKaUOEw27lVJKKaWUUmoP6xUXcH4BwZNle6SFeTFXHRD2Zb+qm2VV3RmCRXwHH4SeCySJIU8PRtBtBGxYbGFucK4gREcMsZrVfaOD7M5XLcxdP9zNMg5v+/KAqX8aY+cHtop7HvRexZE//AL5hcFKut6DdzP39tfv5CKVUpsl40jnNxB/74pdpvZNTP3TQLnz69qHrLXEKIhEvN/aVuaLZHSYuX/y6xQvemDFvqE/+SrDH/2z6v1rlyWhrP7mSGv4tEGM/VbmEjBLh7lvsZV5jOAL7PAQyfg4YWaG2Ongzpwhdntb9r0A5PlRQCjdFL3es8TobnodpZRSSq2kYbdSSimllFJK7VHet/F+Hu9msLZBkjRufqXt5roQ+vO6kwSSatZnjxqRhIKcBE+3V+J8xIdII00ORlW3QBIMiVRht/cOHz3BOYy1N57VHWO/qttXLcyzrKrsPpQEU/sLTHpucGs4ifTeyuhffIvmj58c2OeOHWHqN365mg+vlNpiAhKr16bo+yczuWrUwi1VYNeQ7nuR8uUr9pjscUzzD8BsbbXsQWSMxRhDjKGq8Jatr+4GoJaz8A/eTffnXrFiV/1bP2b0X30c09nasHejrASMRCTLCWkdHwUfqhMBqlbmFkO2yRtfbGXuqr9zgGR8HNscIly5Sux1caefQdzWtZO3NiPLjlCWU0h09Ho6114ppZTaDP2UqJRSSimllFJ7VFFcQKLH+fm9UdUtMljVnV6r6m7TpJSUSEIs2wSJdF0gSyxZegA+egqkwWClmtMtCIXrEr1HopBkNwi6RaBXVIG381Xr98M8pzv7W0z+o4FNEkeQ7nto/PBpRv/yWwP7YqPG1G+/C2nUdnKVSu1zUn1JqELssCzEdiWURXUCTtGrvsqi2u5cVcEbYnXZoldtj4HNBd8WKX6B2HszIoMnPZnkEqb5EbAXt+IbPsAMSb+6G4SwnRXW1tJ+3y/Qet8vcN2vi/zxM4z9zx/FTs1t3/2vQxIKgq1hjaGwdQTwMSJINbO7H3pv2FIrcw/E6vliID16FLIMf/kysdulPHO6ej/fIrXacUQczs3S7Z6tgnullFJKbcgBOOKglFJKKaWUUgePiNArLuLcLABZNr6r6wGqau7gqlndSQppFT4W5ARSCmoYPL2yoHRCEKGRHYBQtx90GyARiwClK0AgOo9NLOZG4bVzEAKUDjD99uWHVPI0pvalgU0iKdJ9D9m5Nkf+8AuD+6xh6jfehj86vnNrVGpPE2CxCrsfYntXvc64cjDALnpQltV2vyzERqpgL7GQJtVrUpZDXoNavf9Vq77SFKJcu23vqirwjXIvQbrvR2TwpBVjW5jm70P66Jb8dA4qYy3GQIiBECJxm0do937uFSz8w/ci+eD7VXpxivF/8bukZ3bvBIUklIhNMGlKmdaJIvgQqxM7jKUqz77BCWg3cl0r82qbITt+HATc5cvEVgt3busqsK2tkaZjFMUlYiwoCj35QymllNooDbuVUkoppZRSag9ybpoYC0o3Q5qOYO0uB6Qi0JurWnsGD9nQ0q42TZwkBBJC0SZGoes9tdSSJPu8ffmyoDuN1UdoT8C7kuA9gmDTG/xufIDCge9XimUph3ZOt53CND6DMYMpjfTehp0bZvLDn8Ve1x527p1vpHjwrp1cpVK7ZI1W4q4Ed10VdrFYhd0PsUO4VmlqTTViIu0H2FneD66XhdhZrR9uL4bc/a9a/6teg0at2pZl/evk1RiBEPpV4P2xDBup9g53I+3fROL4wGZjPLbxGci/sbHbO1QM1ibEWJ2sEMPWtdJeS/miB5j7J3+XONIc2G4XOoz9r79P/qPHt30Nq0mCq54uSY2YNQlRcCECixXvtqrw3oxVWpkDkCakx48jpcNfvYqfncFfvnyL38k1tdpxopQ4P0en8wwi+jxQSimlNkLDbqWUUkoppZTag3rFBULoEWNnb7Qwd50q2HAdSLLqCyglw5NRUEPE48qCwgVEoL7fq7oFktiv6O4H3cFGgisREaJz2DTBrDVHOkoVTC1WX6bpIW5f3sU0PoEx5cDWWLwOevcz+TufI51rDexrveoFtF73kp1cpFLb4AYh9g1bifuqClsEMFXQnC4LsfPaKiF2fi3Ezpf9d7FKu1GDRh2GGjDchKEhGGpCo1Ftry0G3Gn1elWrQbPZD76X3dZidwrn+sG767c5X8+PY6IKvP2dK3bZ2lcw9T8Btj/I3Y+stVUOGwM+VO+z283fdRuz/+yD+NuODmw3pWPk//ok9S99d/sXcR2DkMSSkOaQpBQkRIEQBZGwrJX5Jqq7jamqu5damV97zzK1nPToUWKrTZiZxV28SJjbmpbuSdIkSYYpi6uE2KUsr27J7SqllFKHxSZ7uiillFJKKaWU2i4xesriCt7NYExCmo7u7oIkQm++aukZPNTHlna1aeLF4kkJvXmCCD0fqWcJ1uzvCuYkVjO6k1gFDMFGYowE54i+CmNscoOP1UXRb//rqtaqN7rsgRaqim47O7BV3ENQvIYjf/yX1K5riVvce4rZ97ypH1gotdf052Ev9pIW6X+xbPvi1/VM9WXpB2umv6m/3Zhr/7/K1TB22fVM/99U/14MxbeSMVXwnab91s4enK8qYIn91uj9IB8Lqa0qy29YX9NAuu+H2l9g8h8N3l32E7BzSPfdIENrXP+wMhhriTFirRCCJ023/30lTowx9199gJF//ynyx85cW43A8Cf+imRqlvZ7f37rH3s3kISSMh8mtRaXNBBp40IksQFMAmIwJMhmTpywKYRu//FeQpJf2zXUJDlyhDAzg8ky3NmzmDzHNhq3/D3VasfodJ4m+Bbd7mlqtWO3fJtKKaXUYXFYP2krpZRSSiml1J5VlpcRCf0W5uMYs8tNucrlVd35UlW3k5SSnB41Qgh436PrAtZAPd3fjcRsP+i2/aA7mogAviiRGIneY9Ns7apu56sQyLnq31nGYW1fbmpfxKRnBrZJOIH0fpnhL3+foe/+ZGCfPzLC1AffXlWxKrWj5FpwDdWJPkL/3wKxf5mbhdjWXAulF0/YsObaZZaz/esuhdWrhdi2/99dZu21luc+VBXq1kLsB+EhVGG491UXiyTpB6CrrT1BircgcRJT+9LAeS0mOQ/NjyDd90LUwG+5xFpcrE68ijEgku7IOUHSrDP/n7yf4T/8PPVv/nhgX+Nv/hY7Pc/Cb72jaoO/A5LFius0w2cNQtHGBaGeLT4/0yqNF8OGW+OvaGXe766weN/jY4grCVNTmCylfPoZas95AJPd2riZNB3F2jpFcZkkHca5mb3R2UcppZTaB/b30QellFJKKaWUOoB6xQW8byHidv9Ap0Qo5iAUVZva/NrszjZNglg8Gb5s4YPgXKSepph9XJFrxZDE6r+WKuiOBmKIxOD7Vd0Gu1ab9hirdsTRVz+zLKuCq8Mo+x4m//7AJolDSPc91H/6LGN/8tWBfTHPmPrQu4jDgzNildoa/Xbi62olXvZbiYd+pfZqrcRvMg97oJV4vrlW4jbZG0H39dIE6vWqzXm9fm3+d61e/XyiVD/Doqh+1hJXuRED7pVI972IDAaFxs5jmh+F5Mmd+X72DYs1ph92CzGss338VkgTWh/4ZdrveMOKXbUfP8HY//r7mPnWKlfcelYCJgYkrRHTOi5Iv405VSvzpffcrWhl7lZcJJ08ClmGv3wZ6fUonzldjR24RbXacXxYIIQunc7pW749pZRS6rA4pJ+2lVJKKaWUUmpvCqGLc7M4P4O1NdJ0l9u4lu0qHHIdSPN+61rwklBQoyDHhYD4gp4LJIklT/dgMLNORgw29INuMUQjxP63E8qiquoOgSRLMatVK4pAr6gOert+deNhndOdnMbU/mpgk0iKdN9DetEx8dE/w1w3dHb619+COzk4G1apjVsWajvXD7R7/fnSZb/1dgSkCraSfoidLZ+HXYdaY3Aedp5Vl8nzwVnY9X6I3bwuxG42roXYeX/udZpW92XtwWjTb0wVzDca1fde6wf1tVr1PSdJdcLA4kkFwbOi0jbcj3R+A4kj1920wzQ+Cdl3Vl7nELNJgoggEgnR78js7iXG0H3La1n4e+9AksH3tuzsJcb/x4+QXNiZedNJKPE2JzGGMq0B4GKk34IBSDCbbWpqU5BwrZX5iv2G7PhxMBZ3+TKx3aY8d25z97VMmo5hTEZZXqF0U3i/cMu3qZRSSh0GGnYrpZRSSiml1B5SFBeRGHBudverumOEYv5aVXd2LXivqrpNFXb32ngf8SHSSO3+reoWSAIkA0F3lSJE74khEJzDWINZq8W2c/1gxwGm3778EDIz1ZxuM5jCSO+tmNYRJj/8GWwxGCDMveU19F54/06uUu170g+1fVU9vCLU9tXrmDH9MHsxyK4NVmEvhtxL1dr9r8UQe6heVV8PDy0LsZdXYfdD7OQAhdibsdjmfGio+rll/ZMDFk8WsKb6PRW96vcTA0shdjyGdD6IhFMDN2mMYOtfwtS+AOxgFfMeZrBYu1jdDTHu/M+leOXzmfvHv0ps1ge2JzPzjP1PHyF7dPurkpNYIjaBNMUlTUIUnK9OYhEihqT/XNzECWcDrcwLVj3ZIk1Ijx1DnMNfvUKYm8VdvHRL35MxllrtOM7NEkNJt3vm5ldSSimllIbdSimllFJKKbWX9HoX8H4OkN0Pu8uFZVXdtaUK5SCWXr+qu3AeE7p0XSBLLNl+ndUtkIb+nG4x1aHyflC7OKs7hoDESJJmq1d1+wCFqwI2YlXdeCjndPcwjU9gTG9gqxSvgeIhJj/yp2RTcwP7Oi9+Dgu/8KqdXKTaV64Ltd2ytuOurLaF1ULtZVXZWVZVVtfyqu328lbiw/1W4itC7D3eSnwvS9PqZ9lsVicNLJ5QUKtV+1Zrcy5DSOfXEPe8FTdn8h9iGh8Hujv/vexB1lpi7Fd372Qr82X8A3cy909/kzA5Nri2Xsnov/o4tetme2+1JJTVS0NaI2QNQoz4ULUyR0I/6N5k2L3UytwBsmorcwBTy0mPHSO2O4SZWfzlS4TZ2c1/U0CWTWBMQlleoSguEULv5ldSSimlDrl9ehRCKaWUUkoppQ4e52YJsUvppkmSYazNd28xMUDZAt+rWnMvm9XdoUHsV3X7soPzQhChke/Tdt3Lgu5ELAIEe62KK5YOkUj0DpNYTLLK9xmlCt4WA7nFgOzQiZjGZzHJ9MBWcc9Bytcz9tkvU3/i7MC+8vbjzPzqLx3eali1jFQh1VKoXa4eamOqKuosu0movTgfu99WvNHoX+6AtRLfy2y/w0WzUVXIL1bCL1V7L2tzXhYQQXpvIxavX3FTJj2LGfoomOlV7uhwMSbBWEOMoZrdHW99XvRmhBMTzP6zD+LuOTm4vhgZ+eif0vzcV9iuPuuGqro7JDVMklKSVSenRaFqZS5AgjG30so8rt3KfPFizQbJxARhdpbYalOePUvsdDZ3n1TV3Vk2SemmiNFpdbdSSim1Dhp2K6WUUkoppdQe0etdIIaSENpk2cTuLqboV3X7flW3qYLbKIYODQpqdF3Ahh5d76mllmQ/Vj72g27D8qD7WmggAt4VRO+RKCTpGm3Ji6JfqejAWEg2eXB9nzO1L2HSZwa2STiG9N7G0DcfZuRrPxjYF0aaTP3WO5D8kLZ7P7T6oXZcHmr3q7XL5aE2y0LtfOX87Dy/Said9UPtffjadBDZpPq9NJtVm/O8/3tc/F0ZqtfQooT2K4jtdyAy+Fpq7Axm6COQbH+b7L0uMf3qbiLe716LdxluMvef/zrFSx5csa/5+a8z/NE/rd4ft0ESSmKSYRNLmdaJIvh+8C8SMEuHvjfxnryeVuaL6xgbxY6M4KeuIt0u5TOnkXLtgPxm8vwoYCjdFL3es8S4+dtSSimlDgMNu5VSSimllFJqDxAJFOUlnJ8BLFk2dtPrbJvgwbXAdatju9lgVbeIoRszQtmldB4RqGf7sIp5WdCdxurj8fKgGyCWVYgdnMcmCcau8jHa+aqFueu3Oc0yDmX78uyHmPxvBzZJbCLd95I/dYXxT35pcF+aMPX33kEYH9nBRaqdJf3KyDVC7cUZ9wgkdu1Qe/ks7Uataj+uofb+ZcyyNueN6veaZtUM9VqtOsEhRujeg8y9D4lD1129wDT+CLIfrHEHh4OxFmPoz+6OxG2qoF6XPGPht3+FzirjKOrfepj6V7+/LXebhH4InOSEbPncboD+aAMshk2cULXOVuaL0okJTF7DX76C9LqUzzzTf33bOGtT8nyCsriKiKfXe3ZTt6OUUkodFhp2K6WUUkoppdQeUJZXEQm4cposG8eYXfy4Vi7023Z2Ia1Xlcosr+rO6TjBhh49H6lnCXa/tQIWSGK/onuNoFui4J0j+CqMs+kqlWEx9lvv+qoSPkuXfl6HSnIWU/uLgU0iCdJ9N8kUTP7u5zDXtdmd+Tu/QHn3YOtbtV8thtqhCoQGQu1iZaidLs5vrldf2bKZztkqoXazUc3ZzvP+iIBD+Bw7qKytfq9DzSr8XmpDX68eC/E2ZPZXEX904GrGRGz9C5jaX1G1rD6MDNYm/RbmQvR+d5djDZ13v4nWr74Zue5vgqFP/zV2anbr71ICJgZCmiNZHRerIvIYBRAEwZAshd4bv4NsWSvz4iaXNWTHj4O1uEuXiZ0O5dmzm27jnudHEQJlOU23exaR3aveV0oppfY6/XSglFJKKaWUUntAr3eB4NtEKcmy8d1bSPDg2uD68yazxtKuLnWiWNohQ3yXnnNYA/V0/320tNKf0R0tBggmrmhQ6l2BRCF6h03TlVXdItArqnbLzlcteu0hbF9uZjH1T2PMdScL9N6M6R5j8sOfIWn3BvYt/NzL6bz8eTu5SrUlbhZql1WXA5EqxFwr1M5XqdQe7ofaDQ21D600qU5qaDar1vSLVf3ZJNL6daS4b8VVTP63mMYngJsEkQeUtdV7WIwBH+N2jcfekN4bXsrC3/+VgW2mdAx/9M+2pZ15EkqCzbHWUCZ1BMEtjkGQ0D8BzbC5Vub9oDw6CCU3amVeLcaSHj8O3uOvXCXMz+MuXtz4/QLW1kjTMcryCjGW9HoXNnU7Siml1GGgnxqUUkoppZRSapeFUODcNKWbwZiMJBnevcWU8/1Z3T1IG0tVyiJVC/OSjLaPiOviXKSepph9VtVtoyGJYPtBdzQRue5bkBiJzhP7bUtXreperFYtHWD67csPmwLT+ATGdge2SvkqKF/AxO9/nvzi1MC+7nPvYe6XX7eTi1SbslqoXQyG2lGq1uFp2g+1a1WonS8GlZmG2mrjjKm6ZDQa1WOmlkPWQMr3IsXPrLx4+jSm+VEwszu/1l1nsNZW1d0ihLDL1d195UsepPu6Fw9sy584uy3tzJNQIjaBJMFnDUKEMiyG0ovV0Laq8N4oY6qT2NbZyhzA5BnJsWPEbpcwPY2/coUwPb3x+wZqteNEKXF+lm73NLIXzmZQSiml9iD9NKGUUkoppZRSu6woLiIS8G6WLDuye+FxcFCuXtXdo04kYT6k4EtK50gSS57us6Bb+kG3GCwQjRBX+RZ8UVSBtw/YLFv5O/H9kNt7IFbBzKGb0x0xjc9hksEwW/x9SPFGRr/wDRqPPDWwzx0/wvQH3qrh5p5yXahd9iu1i9VC7WQw1K7VqsB6aaZ2rR9q16u21IutqTXUVpu11OZ8CBp1JP48sfc2RAaDS5NMYZofAXOGm1bfHjDWJgjV7O4Qwp6o7gbovPtNhCOjA9u2o515EksQiEmNmDUJIRKiLP0cRMKyVuabqe7eQCvzxas0GyQTE4S5eeLCAuWzzxJb7Q3fdZI0SJIRiuIKIfYoyksbvg2llFLqMNBPGUoppZRSSim1y4riAs7PIwTyfGIXFzJftfz0RRV09wNeEWjTpJCUTgm4Dj5EGqndV1XdRsCGxRbmph90r0wFYgjVl3dgDDa9rhosShUGhlC1fU/TqtXpIWNqX8akg2G2hEmk+w4a33+C0b/69sC+2Khx9UPvQuq1nVymWiL9UNtXXQlWhNq+emybNULtLF9WqV2r2kyvGWonS68fSm2ZNO0/zl6FhN9ApDGw29guZujjwA/AuyqgPBQM1lTV3SJCDHtjtrPUa7Q+8NaBbaZ0DP/en29pO3NDFXiHpIa1CYWpAm0XF3//of96ZDZX3b3RVuZ9yegIyegofnqa2OlSnj6NFOWG775WO0aMXbxboNs5s+HrK6WUUoeBht1KKaWUUkoptYu8X8CHNq6cJkmaWLtLQWAoq4pu1+2HXddChIKcQMKcSyGWFGVJlliy/TSrWyAJhuQmQbcAoSiQGIghkqQp5vqK7aKoDtQ7V7V5Tw7hnO70x5h8MMyW2EC67yU7N8vEx74wuM8apj74dsLR8R1c5GG1LNT2DtxiqN3rh9quqlBcHmrnq4Xa/WC7XoNmHYabS9W1VTW3htpql1gD6X2I+Y8ROTqwy5iIHfkLTO0rUPZnyUfPQa/2tolFRJAYCdHvmepu99A9K9uZP35my9uZJ6EkJhkmsfi0SRDB+cWwW/pfKZiEDXdhub6Vub95K/OldU1MYGp1wpXLSK9H+cwz1YlyG5CmIyRJk7K8jA8LlOXUza+klFJKHTL76MiEUkoppZRSSh08vd4FJDp8aJFlu1jV3ZurAjK3OKv72sHgNkMUYml7g5RdggiNfB9VMgukwWClquoWVg+6AaJ3VStY5zHWYK6v6na+auvs+ge7s4xD177cPoupXxdmi0V6v4Kdy5j88GcxfvBg/uy7fpbigTt3cpWHUwzLKrUdhAgYSJJ+gL1GqF3LoV6vguyhxVC70b9cWl1fQ2215xxBzD9EeGDFHtP8Lmbs82Bc9Xq9+LyIe6PqeasZLNYagkRihLiHvs+daGeehKq9uKQ5IWsQQsSH61qZm8XD4LfYyjysr5U5AAayY8fAJrhLl4idDuWZM2z0bIQ8P4YPLULo0u2e3uDilVJKqYNPw26llFJKKaWU2iUikaK4SOlmAMiysd1ZiC/A96rKbmsHq7olw5MyW2aY6Clcj1pqSew+Cb76QbcBErFV5bZd/SCzCISiJHqPxEiSZYNV3TFeqxKMoQoBzSH7WG3mMI1PYcxgkCLFL0HvJEd/57Ok84NzSVuvfiHt1w5W9qltILEK9axZGWovVmnX+pXaa4XaaVJdX6l9o47wAYRXr9hjsicwY5+Aelk9tqNUgXdR9Kt0D1abc2stEgWRQAh+t5ezROo1Wn93e9uZW4mYGAhJDcnq+MX3+6XbX/xdJ5hNhd2ba2Ve3aUlPXECQsBfuUJYWMBduLChu0/TMaytURaXKN0M3i9sbP1KKaXUAXfIPpUrpZRSSiml1N5RllNEcTg3Q5qOYcwutcPuzVUBri8gaw4UKndoUgRDx1t80UYE6tk+qepeFnSnsfr4G+za4UZ0rpp36j02sZjlc7hFoFdUlbLOVwe+7WFrX15iGp/E2M7AVilfAeWLOPJHf0l+9tLAvuK+25l9989pVfC2EygdVRlhf252rQaNGgw1rgu1Mw211QFjEX6ZyDuQ6zptmOQSZuj3oDZ17eQPa6oOHQPV3nuk7/ctMCbBWkOMi9XdeyfMd89do535176/ZfeRhJJgc5LEUiQ1osiyud2CEKuZ3caw4UPit9DKHMBkKcnx48RejzA1jb96lTC1/nbkxhjy/BjOzxNDQafzzMbWr5RSSh1wGnYrpZRSSiml1C4piguE0CXGHnl+ZHcW4bpVS07XqQLcpL60q5SUkpwZl4J4nOtRzxLsfgguBZLYr+juB93+BkG3CPiyqKq6RbBpNngB56o5m0uBYrbq7Rxcgqn/CSa5MrjV34MUP8fwX/8tQ997dGCfnxhl6oNvr1pgq+3l+gFMnlXdGer16v/TtPq3UofCKxE+iFAf2GpMC1P/fWg8VT0vsrwKvtNssNrbO5C90/57M6y1xFgFu97vre9l1Xbmn9q6duZpKBBrwSbErEGMLJvbTfW7NYbqjL4dbGW+ePVGnWRykjA/T5ifp3z2WUKrte7rZ9kRjEkoyiuU5RVC6Nz8SkoppdQhoZ94lFJKKaWUUmoXxOgoyylcOY0xKUkysjsLKearSiVfrlrV3fXQDSmu7JAYqKf742NkEqsZ3Um0GG5c0Q0QygIRITiHTRLM8oDQ90Nu74FYtXs+ZHO6Tf5VTPbEwDYJE0j3XdR/cpqxP/vqwL6YZ1z90LuIQw3UNguu31Y/g8RWLcq1alsdWvch/EOEiYGtxnhs+sfQ+DYM1auW/lm/A0Jeq07KCQHKxTbnnv1Y7W2MxRhDDKGq8Ja9U9293e3MbXQgQkhqxKxJGSNRIMryVuYCJJvrpHMrrcz7kpFhktFRwvQ0sdvFnT6NFOsLzo2x5PlRnJsmxpJu9+yG718ppZQ6qPbHUQqllFJKKaWUOmCK4hIiAedm+9U6uxBOuW51wNZ1qgP9SW1pl5eEQmrMlAkxBkLRpZ6mu7PODbL9oNv2g+5o4g0PSUuMBOeIvppxatNlB8GjQNGrQpDg+5Wyh6xSOf0JpvaNgU0idaT7XtKLLSZ+788wy37AYmD6A2/F3za5wws9hGKoTsJI+o/LWk0ruZXiaD/wvmfFHssXMfbTkNt+e/9+a/8su67Nuate+/ddm3OzVN0NQthj1d3b2c686uTiCEmOSVO8yRAE56/97kQiZulw+AYD71tsZb4omZjANpqEK1eQXo/y6Wf6J9PdXJ5PAoayvEqvd54YN15hrpRSSh1E+glIKaWUUkoppXZBr7iA8wsInizbhRbmItWs7uCqr3RooFi5TZO2jxSS4YsOaWLJ030QdIshiWDFYqmC7niTZfuyRGJ/VneaDVZ1F0W/za0DY6tQ8TCxFzD1PxvYJGKQ7q9gW3WOfvgz2GLwgP/8W19L7/n37eQqDyeJ1ePSJlU75lq/bflhJ0ImnmHpMSktTsks98pVnhsv8JJ4lp+JT/Mz8Wnuj5dJ93nLanUjzX5L85et2GP4IYbfAdrVc6ZRh2YT6ovB92Kb83SVNud7p1J6LdZajIEQAyHErSia3lLb2c48CSUxyTDG4NMGIYILy39nYWlmt9mFVuYAGEiPHoUkxV26TOx2KM+cWd9VTUqeT1KWU8To6HbPbW4NSiml1AGjn4KUUkoppZRSaod538b7ebybxto6SbILrZ5dp2rF6dpVgJvmS7uCWDpSY65MqgPlrsNQbe9XdRsxJKEKvK1ANHLToDvGSPSe2K/Qsumyqm3nqxbmrh/mZhmHqn25WcA0Pokxg4GgFL8I5e1MfORTpNPzA/s6L32IhTe9cidXeUjJ4Pz4NIE8v+m19jURUiI1PDVc/7+emvhr/9/fvp7KjjF63CGzPMkxnmUc2eOvb2ozEoR3IRzD8PmBV2/DWeDfIHwAOFFVc9t+hXcM/dd/DwnVrGcfr3X4MLbfDSVhb74nLFZ3R7BCDH6wY8kuW2xnPvZ/fGxp22I78/l//Gu3NIYhCQUwjKQ1Yt4ktOfx1iDSz7gRBMGQICaCWKr25us00Mo8oar438R6E0t6/Dj+wgX81auQJIRWi2R4+KZXzfNjlOVVnJum16vRaNyNtXvn96uUUkrtBn0nVEoppZRSSqkdVhQXkehxfp5a7eTOL0BiNavbl9WB+/rYwO42TdplpKCOL9vkiSXb67O6hWVBt+kH3TcvZwtFgcRIDIEky64F+jFCWUD01+Yhmz3+M9hSrgq6bXtgq5QvBfdSxj/zRepPDlaUlXecYPr9v7iYKKht0+80gFQBd5JUFan7lQjJUoi97Evcim3JFreSzgk8Ty5yJzM8xnGmzM2DJrXfGOC1CJPAH2Eol+2ZA/4dwt8BHrx2FZtArX8CSegH3zaApNX7QQhVlbf31fMvTdlrobe1CSFGYoyEEEiSdE+9NC+2M2987YdL2xbbmffesLIaf72sREwMhCTHpjUclhrgYiRP+u/hEsCk1cwNUlj2mLip5a3M01r1OEg3d6KRyVKSiQn8lSvgPHFmZl1ht7UZWXaEorxCnk9SFOdpNO7a1BqUUkqpg0LDbqWUUkoppZTaQSJStTB3swBk2fjOL8J1qxDXtyHJIcmWdkUxtKXGnLP4COK7NOp7/KOjQBoMiVRht7C+oDv6QAyB6B3GGMxiVbcI9Aqq/qe+Cj4OVdWUYOp/ikkuDW71dyHFzzP0jR8x/PUfDewLI0Nc/a13QHaYfk67xC+egJFDYqugey+lWMtYidSXVVznKyqxq33pLs9DHqbg5XKWqzLEY+YEbbOPTx5Qa3gQ4R8Av9cPuStV+P37CG8GXsNAaG1MFWSnaXUClPf994QUiFXnj+Cr94paxt6aFrlY3R2w1hKCJ91D1d1QtTPPf/IMycy1DiFDn/pryufdS5wc3/TtpqHAJXXqicUldYL0cH5Z2E2gOiRuqwrvjd6BzaqwO4aqlfkmw24A22yCtYRWC1PLyU6d6ncMuLE8P4Zz0zg3S6d7hnr9DsyhOiFPKaWUGrS3/spRSimllFJKqQPOuWliLHBuljQdwdrs5lfaShKrWd2+qKrT6oNVRB0atIqAo4Er2zRSQ3ILLUW3XT/otlLN6RaEYG9+6FoAXxRIDMQQSfIcsxhyOFf9bJa3iT5M8q9jsscGNkkcR7rvovbkBcY/9deD+9KEqx96B3FMq2K3XeyHa2laBSK1GtidDzisxCq4HqjEvq69OJ5sI+2Bt5gAJQkFGQXptS+TMiltTrCw4jpHaTMhT3FOjvCUOYozetjsYDmB8B8Bf4DhWmcKg2D4PMJVhLdT9S6/jrVVpXeeVyG3d/125rZ6ryjK6r3C3jyo3CnWWnyoqrtjDIjsreru7WpnnoQSlzXBJsSsQSi7+CDLWpmDSOi3Mg8gCVUAvk5Lrcw9hJJNtzIHsAY7NERst5Aj44T5eZIjR256tSSpk6ajFOUVsnyCorhEvb4LnYKUUkqpPUL/aldKKaWUUkqpHVQUFwmhR4htGrW7d34BZbs/j7RTVSNdV9U9H+rMO0sZBeN71Bt758D9Cv2g2wCJWATWFXQDROcQiQTnMNZiFyupfD/k9h6IVfXsHmtPu63SR7G1rw1sEqkh3feSTJVM/O6fYOJggDn9/l/C3XnbTq7ycJL+/HibVM/bPOu3T946RmTF/OvrK7FzPPlGgqFtUIXY6XUh9mCoXZKuOYf7WXOEI9LmQbnEKMXAPgvcxQwnZY6nOMpZJnSe94EyjPAh4NMYBjtUGP4WmEb4NaCx9k2kSfUVA3R7UDPV+4YrIc0g2RuHWw0Wa00/7E6qcR3p3npPd8+9h95rX0z961vXztxGByKEpIbJm/juFHkCIQppsvhcDmASEIMhRTbymraFrcwBkuFh3MICsdvDT8+sK+wGyPPjdDpP4Nw83e5parXbro1iUUoppQ6ZvfHXl1JKKaWUUkodAjF6iuIy3s1gTEKaju70AqpZ3aGoDtLXRgZ2d6kzX0ScaeJdh6HMYPfqgdNlQXcaq8rWYNdXRSoCviyI3iNRSGv9wD8KFL2qqnuxenYPVeltO3sJU//TgU0iBum+E9MZ5uiHP0bS6Q3sn3/TK+i+7KGdXOUhJVB6ljoNpP15wutkRFapxF45E3u3Q2yHXbUSu/r/xe0JsgXtemfMEN/kXk4xxwNymdp133tG5CG5zB3M8jjHucLwnm0XrzYqRXgvwlEsXxzYY3gG+LcIvwFM3vhmbAKNZvW+galanPsqaN0rc7ytTfDeIxIIEZLVqtZ3Wfs9byL7ydMks9e6LVTtzO8jTo5t+PYMkMSSkObkSYqzGSIBFyPpUotw6X+lYKQ/v3sDDc23sJW5qdcwWYa0W8RGHSlLzDpe39N0iCQZoiwuk2WjlG6KWn500+tQSiml9jMNu5VSSimllFJqh5Tl5eqAq5slTcd3fr6iay2r6q4NzKEWgVlfox0SelFIY5d6be8dFAdAIIn9iu4NBt0AsSxBIDqPTSxmMdAuiirwdovtaQ/RR2bTwjQ+iTF+YLMUbwJ3NxO//zmyS9MD+7rPu5f5t75uBxd5WElVMYpALa/al9dXzpRulfCT84HbbIe7h3rc2Sw5lpc0jSMn7GrsVoXY1yquV6vELkiJO/2aaAznGecSo9wjV7mb6RUTfIcoeamcY5omj3KClqnv7BrVNjHAzxKZxPBJDH7ZnmmqwPvXgHtvfDPWQL0OZVndZjD9wHtvdAYx5lp1tzEJMUbsLow+uBGp12h94K2M/R8fX9pWtTP/s023M09CSZmPYIwhZA2Cb+FCpJFd+7tGJGBMighUh8jd+u9gK1uZA3Z4mDg3RzIRCTMzpCdOrOt6eX6MbvcZgm/T7TyjYbdSSqlD6xB9cldKKaWUUkqp3dUrLuB9iygl9Wx9bSq3TIxQLEDo9Q/CNwfXJnVme5GCJrEsGErtnm2HmcRqRncSLYYq6F5vPZaI4F1J8B5BSBarsZyvWpi7/sHuLGO3Q4qd4zGNT2Hs4AxjKV8E7uWM/vnXaPzk6YF97sQE0x9466ZnqqoN8L56/mZ5NTe4XltRYTw9U/AAV3nvXfM7urSAua7qenkl9rXtYadD7A0KxvKkOc6zcoQH5DInWflznKDDa+RpzssYT5jjlDrP+4B4AcIR4PcwtJa2GnrA7/ZneL/ixjdhDNRqVQBa9P/tXHUCVZ5V7bJ3kbUW7wPWRrwP5Pneez665967RjvzH9B7w0s3fHtJKAGIaQ5ZE1/Ok8aEKLKsY83iSXIJBkE2EnavaGVeVv/dpGRoiDAzQ+x0CDOz6w6703QUa2uU5RWSdAjn5siyjVfDK6WUUvud/mWulFJKKaWUUjsghC7OzeL8DNbWSNOhnV1AOX9dVffy6ia46msUklAEQ0qPPNmbIabtB922H3RHs/6gG8CXJSJCdA6bJhhrqyCxLKoKrRiqoHuPh3NbRzD1P8ckFwa3+juQ4pdofO9RRr/03YF9oVnn6ofehdQ237ZVrVPw/Zb6WVXRXatXgXdfw3c50p3izWMLN7iRTdztUoi9+kzsxepsjz1Qrb17JuPH5nbOygQPyiXG6Q7sN8DtzHFCFniaSc4wsfPV6GobnEL4j6kC74tLWw0Rw2cRriC8hWqi+w1kafV8KHrViUCFq2Z5ZzLQSWWnGWMxJhJjwBhLlIjdg4/b1dqZNz/9Jcrn3bvhduZWIiYGQlIjyep46cfZXqhli69ZghAxJIgJIJZrAfg6JMtbmd9a2E2WYhoNwkKrqvJutbHDN/870RhDnh+n1ztLHnp0u6fJshdvfh1KKaXUPqVht1JKKaWUUkrtgKK4iMSqhXmttr6KnS0TA5Qt8N2q02bWGNjdlRpzPaEnNcSXDCWy8y3W18GKIYnVfy1V0B03kLNJjETniL5qV2vTrEr6ewWEWFV322RXQ4kdl38Lk/1kYJPEUaT3K2RnrzDx8b8c3Gct0x98O2ETc1TVBsVQtUO2SdVSv5ZXs7qBUelyW3mVu7MWbOC8GRcNl4qcy0XO5TJnzqeYNGWobhkfMpg0oSA7cCH2Rs2ZBt/mbm5jngfkMg0G2/unRJ4jV5bmeV9i5FD/vA6GUYS/D3wCw08H9hi+CUwj/B3gJoFmmoBtVO8rtX6Ft3OQ7OYcb0NiLT4EkiQSfMBme+89frV25rbYfDvzNBS4tE5mDS5tEGIPFyK15d+7BDBZf2Z3CpTrvwOz9a3Mw5Ur4DxhdmZdYTdAlo1TFBer6u6kjvftnT+hUimllNplh+gTvFJKKaWUUkrtnl7vAt7PAUK20y3Mi4Wqetl1q8qj61qqXilySrEUwZBLQZbuvYPgRgw29INuMUQjGwq6AXxRVIG399g0q9q0lyWEUFXfYfrtyw+J9Als7csDm0QypPte7Gzk6Ic/h/FhYP/su3+O4v47dnKVh1Tst9S31WMyTyHLGJEu98arnDAtWOOhernM+e78GI/ONzjfq4LtS0XOpaLGjEuRNcIYg3DvmOf5k44XTDruHfMke++lYOcYw0XGuMwIdzPNPXKV9Lo+Eg0cL5ZnmaXBo5xg3jTWuDG1P+T9Od1/heErA3sMjwP/DuEDwPiNb8ZaaNSrwBtTVf96X51ctUsjMoy1VaVzjEAkSffmFIqtbGeehBKXNRGbEvMmodvBW4PI8nNTIlVIbfvzuzcSdm9xK/Nmk2AtodXC1GpkJ0+xnhdhYyx5fpSiuEgtv41u9wwjI8/b9DqUUkqp/UjDbqWUUkoppZTaZs7NEmIX52ZIkmGs3cH2z8GDa1Xty2HFrO5OTJlzVXV3jJ6hLLLnZlULJAGSgaB7I83LIYZQfXkPGGyWVDO6y34IQX8m8l773reLvYKpf25gkwhI951QHOHo73ycZKE9sL/12hfRfs2LdnKVh5RU7Y8BalX78uEscl88xwkW1nyIXuzlfLt3nPr4EOlxy4NHIZ1NWZjKaF/NmXY3PgQkGJ6ay3hqLuOzT0EjjTx3wi2F38eaG2jve4BEY3maozzLGA/IFU4xt+JXME6XV8szXJBRHjfHKcwhOmnmwDEIv4hwFMNnMIRley4D/wbh14G7bnIzpgq8y7IqFja2P8e77M/x3ukzSQzWJoQYSKwQg8eme/Ow8Fa1M7fRgQghybFZA9ep6vJdjOTLQmSRfitzAtWhcr/WTa60la3MrcE2m8R2GzkyTliYJxkfX9dV83ySsrxM6a6QFDWazftIkltYi1JKKbXP7M2/apRSSimllFLqAOkVF4mhxIcW9fpNDpBvtcVZ3b4HaX3FAfbLvRwfE3oxoUGLZK+VegmkoT+nuz9zc6NBtwBhsao7BJIsw0Squaoh9GcipwNzzA8008Y0/hhj3MBmKX4W/H1MfPzPyc9dHtjXu/8OZt/1szu5ysPLOSBCnjOUBO6rz3Eba8/kvlJkfOzSKSZPNJmYuLY9s/DQhOehCc/7ntNloTQ8MpXx8FTGI1M5c8WNw7aut3zvco3vXa4Ck+PN0A++Sx6a8DTSjT0P97vSZDxiTnFWjvCgXGaCzorLnGSe47LAMzLJM2ZS53nvay9BOAL8AWbZ77r6/99BeBfwkpvfTJ5Xld5FUQXgpasC8Czb8fccay0xBmIM+GBIknRPdt+/YTvz//zX1j0ywFBVd4c0J0lTgs0J4nF+MOyGUHW8EYshRTYSdm9DK3PfaiG9HmF6et1htzEJWTZJWV6llh+n2zvD8NBzNr0OpZRSar/RsFsppZRSSimltpFIoCwu4fwMYMmy0Z278+ChbFfty2FlVbe3zLuETswgBhrpHqvqXhZ0J2Kr0NpuPGCL3hFjJDiHsdVcYroFRKmCRWOrmciHgsfUP42xg+GpuBeAexUjX/oOze8/NniNyTGmf/NtkBySkwF2U/AQA83ccF99htvSzprPyKky5d+cvoNWY4w33l3etCXxSC68+mTJq0+WiLQ530p4uB9+Pz6T4W4yF+ByJ+FyJ+FLZ+skRrhvzPP8o1XV992jfk+2RN4OC6bBd7mLYyzwoFymyeBJIwnC/VzldpnlCY5xgTGd571v3YXwHwG/h+HK0lZDwPBJhKsIv8BN3zfTtAq8e/3A2zlwZbU92ckuAAZjLTFGrBVC8KR7tLp7zXbmX91YO/MklJTpCMYYQtYg+Hl8kOtamQuCVNXdJoJYqvbm67DFrcxtvY7JMmKrTajXEecw6xyvkudHKcsrlG4K26vRbNyDtdplQiml1OGwN/+iUUoppZRSSqkDoiyvEsXjymmybAxjdjAwLOZA+lXdWWNF4HKhl+PFUEhGw3ZJ9lIg0w+6DcuD7o23Ua6qukuiD0iMpLUc40LVwtz1Q6pdmqG68wRT/wtM+uzg1nAK6b2Z+iNPM/rnXx/YF2sZVz/0TuKQziLedjHQiD3uHe5yMuuuGR7PupR/ffp2vjh7nA+8oMPJoQ3MmO0zBm4fCdw+EnjLPT3KAE/MZjx8tQq/n23d+HBREMPjsxmPz2Z86gkYyiLPW2x5ftQxUT/gLc+N4QqjXGWYu5jhXrlKdl04VsfzQrnAXczwKCeYNc01bkztbUcQ/gHwRxieGNhTzfWeQXgfcJMq/uvnePv+CI24s3O8E2txMRJjJMaAyN6s7oataWeexOr1MSY5Jm8SijkkgRCFNFn2jUsAk4IYqsPlG3hdHWhlXtxaK3MDdmiIOD9PMjFBmJ4mPXFiXVe1NiPLJiiLq9TyY/R6z9Js3rP5tSillFL7iIbdSimllFJKKbWNer0LBN8mSkk9u2Pn7ji4ak73YlV3OhhWtkpoh4xWzDFEmtaxZwJfgaQfdKexChA2E3QDxNIhIkTvMInFYKDsVS1HY6hChsPSajj7Dib78cAmiSNI992kF2aZ+L0/Z3mHeDEw/YFfxp+Y3OGFHj51Su7NZjk13Fsz5J53Cf/2zO18+OxJ3nSP4796ZYtkix66eQLPn6zC6l8FZnuGR6YzHr6a85OpjAV34ztqO8t3LtX4zqUq5Dk55JdmfT94xFE7oEefxFhOM8l5xrhfrnAHsyteRUfp8So5zSUZ4XFznK7Jd2Wt6lbUET4AfB7DNwf2GB6mCsR/8eY3s3yON1QB+I7P8bZYY/pht61Ge6R7s2vHVrQztxKx0ROSGmlWx2MQEVyMpAPdShbnddv+/O4NGGhlXs0Jv5UzCOzwMGF2ltjpEGZm1x12A9Rqx3BuCudm6XbP0mjchTksf+MopZQ61A7oxw2llFJKKaWU2n0xFjg3TelmMCYjSYZ37s57i1XdRdW+fPmBV4EL3ZwygJOcpu1h90ppl0ASDRZIbjHoFgHvCqL3iAhpmlVVdSGC89W8VHtIPhYnT2Fqfz2wSSRFuu/FtixHP/xZbDnYjnnul19P73n37uQqD52a8dybzXN72loz5G75hH935hT/9sztjNThv3xli7tGw7aua7wuvO5UyetOlUSBcwv9ludXc56YTQly49eLC+2UC+2UvzzTIDXCA0c8z58secGk446RcOBanjuT8lNzkrMywYNyiaO0V1zmBAsckxanZYKnzSRhJ7t8qC1gEX4Z4SiGP8Esi0MNX0G4E3hwfTe1y3O8bZLgnUckEqLHSrJnq7u3op15EkpcWic34LMGQXq4IDSu6/AtEvqtzANIQhWAr4MxYLNrrczDrbUyN1mKqdeJrRZxeIjYbmOHhtZ1XWtrpOkYRXGJLDtCUVykXj+16bUopZRS+8Uh+VSvlFJKKaWUUjuv17uISMC7WbJ8ErNTR5N9Cb4LZbc6CJvWB3bPlYEuNdqSYw00TMleqeq20p/RHS0GCCZurMJqmVAWSBSC89gkwfgAIVTBAqbfOvYQsFcxjc+uCDOk9w4oJ5n83U+SzswP7Gu//Lm0fu7lO7jIwyU3gXuyee5IF0jWeOp1guXDZ0/xr0/fzqxLees9PX7lgQ7ZDYr0ymwYl42Ql7Nkvrsla7UG7hoN3DUaeNu9PQoPj81kS/O+L7ZvfGjJi+Gn0xk/nc7448dhJI/9KvIq/B6rbfYZvve0TY3vmbuYlBYPyiWGr2uFbBHuZWppnvd5xpG9mjKqNbwS4QjwUcyy1vWGTyD8J8D4+m5mcY53twc1U83w3qE53gaLtVV1tzEJMQaSZO+efHGr7cyTUOKyJjFJMVkT3+2QWkMUrjvxJlRV2mIwpMh6w26AJK1C7q1oZU6/unvqKvhAmJldd9gNUKsdp91+HOfn6HSeoVY7uXN/fyqllFK7RMNupZRSSimllNomRXER5+cRAnk+sYN3PFcdcPU9qA0PVHVHgUvdnDIInpxhU+yZqm4bDUkEK1XQHU3kJgWka6pCbkf0ARCstVVVt/dAhCxnrwT828p0MI1PYMxg6BaLN4B7gPFPf5HaU4MzvIs7TzDzvl+4pTasanUZVch9Z9YiMauHvL1g+Q/nbuNfPXMHUy7neDPwz182zwPjftXLC1DUJlgYvYeifu11ptabYrh1jnr36kAV6q2qpfCiY44XHas6AUx1LY/0g++fTGV0/I1b5i6Ulm9eqPHNC1UYdMewX5r1/ZxxR7Z3M7d1mzLDfIMh7mCG++Qq+XWhWU7g+XKRO5nhMY4zbXaw64faAvcjvBnDny9tMfSAjyP8Nus+3GotNBpQ9IC8en/aoTne1lq8D1gbCWFvh91rtjP//T9j/h/fvJ25jVVr8ZDUSPImvi0IgvOR2sDZQ9L/SsBIf373Ol87t7iVedJsEqYtobWAqeVkp05Wj5f1XDdpkiTDFMUVsmycsrxCrXZ802tRSiml9gMNu5VSSimllFJqG3i/gA8tnJshSZpYe2tVPuvmelXI7dpVO9RksKp7thvoMkw7ZiSpoW7dGje0s6wsBt1VZXc0QryF4/zeVVXd0buqqrsoqqru4PsVdXv3wP7WCZj6pzF2bmCruOdC+WqGvv5Dhr85OMPbjw4x9VvvhEwPF2yllMDd2QJ3ZQuka4TcRTR89Nxt/B/P3MHlsnq9+Pk7e/yd57RXnXktQLdxnIXRe3D56Mrbq09S1CdJfI+h9rMMtZ4lieXKG7pFk43IG+8oeOMdBVHg9Hzab3me8dRcSrzJGSvnWinnWimfP90gs8KDR9xS+H1qKOzbcy7EGM4ywQXGuE+ucifTXB9VjVDwCjnLFRnmMXOcjtmh9wm1BV6NcAbDT5a2GJ4FPo/w9vXfjDVV4F0WgKn+7RwUArUMVjxqtoYxCcZGYgwYY4kxVieF7VGrtjN/bH3tzA1VdXdIMtIkISQ1QvS4cH3Y3W9lblJEPJAAq59ktPJOtraVOYnFNpvEVhsZHyfMz5OMj6/76rXaMTqdpwm+Rad7WsNupZRSB55+elVKKaWUUkqpbdDrXUCiw/sF6vXbd+6Oi7nqYKsvoTYyUBgWonClSOkF8LbOiHVbWvG5WUbAhsWg2/SD7s2vS2IkOk/0VZCfhFhVyjkHxlbtRg88wdT+EpOeG9wabkN6b6X2xDnGP/M3g/vShKkPvZM4uv52qerGUiJ3ZfPclS2QrfGYLqPhD8+f4F8+fScXiiocOVIL/PYL2zx/cuXJKIKlPXSShZG7CVnzpmsIaZ35sfuZH72XRvcKQ61z1IqZbakZtQbuHfPcO+Z5531dut7w6HTKw1dzHp7KuNK98UkmLhoensp5eCrnY4/BeC3y/Mmy3/bcMZLv/uvVRnmT8Jg5wTk5wnPkEsdprbjMMVpMSotzcoQnzTG8zvPeBwzCu4FLGKaXbf02wl3ACzd2c3mtOgmrx7U53sX2zvFOjMWHgE0i3gfyfO+G3XBr7cyTUFKmI2AtIW8Silm8NasUYC+2pk8wZMh6w27YllbmvtVCioIwM7OhsDtNR7G2TlFcJkmHcW6GLDtyS+tRSiml9rLD8AlfKaWUUkoppXaUSKxamLtZALLs5jMlt4TrVgdafReSBJLBA60zHUePI3QlJUsNNYqdWdeNCCTBkPSDbrnFoBvAF0UVeIeAxYAPVdAN294ads/IvofJfziwSeIw0n0PydU2k7/7J5g4+HOe/rU34+44sZOrPLASIndlC9ydza8ZcvsIH79wgv/t6Ts517vWgeG1p3r83Yc6NLPB60WT0B6+g4WRu4jJDUKUtdrnGku3eYJu8wSpazPUOsdQ+wJWNhDmbFAjFV563PHS49Xz73JnseV5zqPTKd2btDyfLSxfO1/na+frGIS7RsPSrO/7xz3p3s7mBnRMzg/MnRyRNg/JJUaue/21wF3McFLmeJJjnOOIzvPe82oIvwb8W8yyUNTwGYTbgKMbu7k0haa5Nse7dP053tm2nKRlrMXEUM3uJhJF9sxYk9VIvUbr776VsX+18XbmaSgoGSHaDJs18L1ZaoCLkTwZbGUuRAwJYgKIhWWz2W/IJNUJdVvUytzW65gsI7ZahFoNcQ6TrX+ee612nG73DCF06XROMzamYbdSSqmDS8NupZRSSimllNpipZsmiqN006TpGMbswEcvESjm16zqdj5ytczphkiwdZrWY2SXqyQF0lC1LbdiEIRwi0F39IEYwrKq7lAdeI6hCrrNPkrHNit5BlP74sAmkRTpvgfTyTj64U9gu4NB2/wvvIruSx7cyVUeSJbInVmLe7J5crN6QBIEPnnhOP/L03dyuttY2j6SR/7e81u87PhgNXewOa2RO2kN34HYtYOO1LUZWThNo3OJbuMY7eE7KGvjq17WZ0PMHXmI+bEHaHYuMtQ6R+4WVr3sVjrejBxvFrzpzgIf4Zm5fsvzqYxn5lLkBieiCIbT8ymn51P+9GmoJcJDRxzPP+p4wWTJiWbcFy3PZ8wQ3+BebmeW++UKtevmeWdEniuXluZ5X2X4lgIztd1OILwdw6eXthhK4A8R/iMg39jN2QQazf4cbwPOg+8Hp2nK1p6sZbA2IcRAYoXoPXYDYepucM9bo535135A7/UvXfN6BsFGj09qZHmdgCWI4ML1YTcgAUzWn9mdAusc/2AM2HTrWpkbsENDxIV5kokJwuws6bFj6756mo5jzAXK8gpJ0sD7BdJ0ZPPrUUoppfYwDbuVUkoppZRSaosVvfOE0CXGHrXayZ25U9+v6nbtqgLsugOsUx1HYY7QjSlZnpLL9gdbN9QPug2QiEWAYG8t6BYglAUSAzFE0hghxiossEl1EPqgM9OYxmcw1500IL1fBn+cid//LNnlmYF93Rfcx/ybX7OTqzxwLJE70hb35PPU1gi5o8BnLx3lf37qLp7sDLYff/nxgg8+vz3QptsnDRZG76I9dKqqGFxDVs4zMv8Mje7lpRhsqHORoc5FymyE9vDtdJonkVVaIYtNaA/fTnv4dvJijqHWOZqdS5j1VjLegtTCA0c8DxzxvPuBLm1n+Gk/+H54KmO6d+PWzUUw/PBqzg+v5sAQk/WwNOv7uROOoWwPtzw3hmc5wkVGuVemuItpkutGSgxR8jI5xxRNHuMELVNf48bU7ntZf37395e2GK4An0N4DxsOqK2Beh3KsrpuMFXgHSPk+cZv70Z3ZS0xBkIMYAzJrRUj74hV25l/6kuUz71xO/MklLi0QW4gZg1C7OC9INlqrcwFsP353esMu2FbWpmH2Vliu0OYntlQ2G2MoVY7Tq93nlp+G93uGUZGXnBL61FKKaX2qkPwSV8ppZRSSimldk6MjrKcwpXTGJOSpsPbf6ci0JurDrAGD7XRgd29MjDnM9peIG3QMA4r2x9mrWlZ0J3GqqIq2FtfT/SOGCPBOUwIGKFqA4vpty8/6HqY5icwZrBqW4rXgn8uY3/2FRo/fWZgX3nbJNO//pYqXFEbZhDuSFvcm81Ts2HNy/3l1SP8fx+/h8fag/PQm2nkA89r8+rbyqWwpcyGWRi5h27zxA1Tp1pvipH509SK6TWjr9wtkM/8lLHZx+kMnaI1fAc+W30me1kbo6yNMTf+HJrt8wy3niUN3Rt+/1tpKBNecVvJK24rEYFLHbs06/vR6Ywy3vgxOtVL+PKzCV9+tmp5fu+YXwq/7x31XF+8uRcEk/CEOc45Gec5coXbmF9xmUk6vEae5lkZ50lzjHInOoWoDRPeDlzAcGlpm+GH/fndr9j4DRoDtf4c76L/b+egKCDPbngCzAbvqB94R7BCCJ403duPsc22M09CicuaiE2RvEFot5EEQhTSZPA6Iv1W5gSqw+frHPewxa3MTZZi6nViu0UcHiJ2Othm8+ZX7MuyCYriUr+6u0azeT9JoifOKKWUOnj29l8vSimllFJKKbXPFMUlRALOzZLlRzA70TbbdaoDq64DSQbpsrapAlfbJR05QiEZWZaRSWv717QWgST2K7r7QbffgqBbpJrVHb1HfCAVqWZ1EyHb2kq4vSlUFd12sGpb3INI+Tqa3/0JI3/9t4PXGKoz9aF3IbUNttlVGIRTaYv7snnqNwi5vz8/yv/jkXt5pLWydewLJkt+6wVtJuoRAYraOAsj99Br3GDOrwiN7mVGFk6TlyuD0bVYCQy3zjLUOktRO0J7+A66jWOrtvWPSU5r9B5ao/dQ615luHWOeu/qjj6DjIHbhiK3DfX4xbt7uAhPzaY8PJXz8NWMMws3PpwlGJ6ay3hqLuOzT0EjjTx3wlXh96TjWHMXT/ZZRc/k/Mjczhk5wkNyiTF6A/sNcAez3CbzPM0kZ5ggHoaRDPtKhvCrwL/utzGvGP4U4RSwyS4vWVo9IYpedVJS4aqTuDLZsm4lVSvzWJ0sFgJJku756u7NtDO3sQqfQ1LD5E1CSxARXIykyfUnD4QquBaLIUXWHXZvcStz+tXdU1fBB8LMzIbCbmMsWTZJWV6mVjtBt3uG4WEdWaKUUurg0bBbKaWUUkoppbZQUVzE+QUET5Yd2f47lFjN6vZFVdVdH2zh2SodnZjT8QaTNsiNx8ra4dx2S2I1ozuJFsPWVHQDROdAqv9a7zGY6ueRplVl3AFnal/CpKcHtkk4gfTeRn76Ikf+6C8H91nL1AffQZgY7AKgbswgnEzb3JfN0bhByH22aPL//Ok9fPHKxIp9NRt5/0Mdfu6OAgx060dZGL1nzfnaAEhkqH2B4YXTZL5zC+uHejFDvZgh2LxqYT50OyFdvdKvaBylaBwl8V2GWs8y1D5PEjfQ0neLZBYemvA8NOF533NgoTQ80m93/shUzlxx4+C36y3fu1zje5er0Ol4M/Dmu7v83B3Fngr15kyTb3EPtzHPc+Qy9esCtpTIc+QKtzPL4xznMiN7v+f0oTKJ8G4MH1vaYgjAxxD+EbDJito0AduAXgG1foW3c5Bs1RxvgzVVdbe1lhgCSbr33zfb795YO3NDVd0dkpzMJoSkRhCPC0JjRfMXQRAgARNBLKx3vMMWtzJPmk3ClCG0W5jZnOzkSbDrP9klz49Sllco3RS2l9Ns3oO1epKbUkqpg0XDbqWUUkoppZTaIt63cX4O76axtk6SNLb/TstOFeq6DiR5VdndFwVm2o62jFNKQp5lZNLe/jWtwfaDbtsPuqOJbMVUXRHBl/2qbudIjKkq34ytDjofdNn3Mfn3BjZJHEK67yGZ7TH5O5/DhMGD9LPveRPlfbfv5Cr3OeG2pMP9+RxNu3aF31Vf58PnTvEvnzhJXCWAemC04O+/qM2xIeg0T7Iwejc+W3vUgYmeodY5RlpnSUKx5uU2I4klo/NPMzL/DL3GUVrDd1DUJ1e9bEgbzI8/wPzYfTQ6lxlunSMvZ3etX8JILrz6ZMmrT5aItDnfSpZmfT8+k+Fu0vL8cifhIz8Z5tlWygee295bXfyN4SJjXGaEe5jiHplaMc+7ieMl8iwzNHiME8ybHXivUev0fIRXY/jm0hbDDPAphF9j08G0tdCoV4E3pqoc9r5qa5Jlm7/dxZtPLN55JEZC9FhJ9vx5FNLYeDvzNBQU6ShiLZI38cUsqTVEWWWah4T+zG5DdQh9nSf6bHErcxKLHWoSW21kbIwwP08yPr7uq1ubkucTlMVVavkxer1naTbv3fx6lFJKqT3oEHzqV0oppZRSSqmdURQXkehxfp5abZMtSzdisao7FFUFUWOwVfJ819GNGW1vsVmTzEaSsM5WnFvMiiGJ1X8tVdB9kzxq3UJZIiKEosCKXAt2tyAA2POSM5jaXw1sEkmQ7nswRZ3J3/k4SWuwEnjhdS+h/eoX7uQq9zHhRNLhvnyO4RuE3NOhxrcWJvj//OQOTrdXVvGlRnjP3bP84gNCd/QOLo7cvWY1NYANJcMLZxhuncPK9j5nDUKje4VG9woubfarvU8hdpU598bSHbqN7tBtpK7FcOsczfaFXe0WYQzcPhK4fSTwlnt6lAGemM14+GoVfj/bWvvQ15fO1ikDfOgFeyzwBqKxPMUxnmWcB+QKp5hbcZkjdHm1PMN5GeMJc4zCrPI7UztOeDPwLIZzS9sMP0X4OvC6zd+wMVXgXboqdzW2P8e77M/x3nxre4PFWkOQiInJvqnuds+7l95rXkT9Gz9a2najduZJqALraHPIm4TuDILgfKSWXf/zW5zXbfvzu9dpO1qZDw3jW5eQoiDMzG4o7IbF6u4pynIaa8/SaNyF2bK570oppdTu07BbKaWUUkoppbaAiFQtzF0VSGTZ+Pbfadm+Nqs7zQfmd4YozHZL5uM43iTkeY0s7lJVt4AN/aBbDNHIlgXdEiPBOaIrMWVZVXXHUAXdB32mrZnBND6NMYNV29J7K4TbOPKxPyN/9srAvt4DdzL3zjfu5Cr3KeF40uW+fI4R69a81GzIebwc5w/OHeWTZ47gZeUD+65mwd9/3gKjd9/L5dG7iMna7WMT32Vk4TTN9nms7Pxc6cx3GJ99nNG5J+k2T9AavgOXr2wHDOCzYWaPPJe5sQdodi4y1DpH7lo7vOKV8gSeP1nN5/5VYLZneGQq5+GpjJ9MZSy4wdeFr52v46LhH7ywRboHXzIKk/GwOcVZOcKDcokjdFdc5hRznJB5nmGSZ5jUed67LkF4P/B/Ypb9vgx/gXAHcNet3Xye9ed3F1WwWjooy+p97xbGdlhr8T4gNhAiJOyPMLT9np8n++kzK9uZP+9e4sTg65dBsNHjk5w8qxFMQozgYqTGyueNEKug2wSQhCoAX4ck29JW5rbRwKQpsdUm1GqI85hs/Yf1ra2RpmOU5RXyfJJe7wKNxh23tCallFJqL9GwWymllFJKKaW2gHMzhNjDuRnSdAS7WlXkVorXVXXXBmcvz3ZKypjSCZak1iQ1ERvXDu220+Kc7mtB91Y0L6/4okRiJHa7VdDtQ3Ww3x70j7sFpvEJjOkNbJXi1eCfz8hffYvmDx8f2Ocmx5j6zbdBokHY2oSjSZf7szlGk7WfL3Mh50k3xk/bQ/z7J47y+MLKKm2L8J57O7z6xSfpTryS+Rs8JtOyxejCMzQ6lzBb0tz/1tj+jPCh9gXKfJTW0B10midWDdLEprSH76A9fAd5Mctw6yyNzuU98X0AjNeF191e8LrbC6LAty7m/N8/HiYsOzHh2xdruGD4Ry9ZYEVx5x4xbxp8h7s5zgLPkcs0GXx8Jgj3y1VuZ5YnOM4FRnWe964aQ3gf8JGl/iLVc+LjCP8JMHRrN5+mVWvzXj/wdg5cWW1PNvf3hzEJ1kZijBiTLM3w3uvWbGf+e3/O/D/+1RXPgySUuLSBMRDzBt61SaxZvdu4BDAZiMGQIusNu43d2lbmBuzQELG1QDJxhDA7S3rs6IZuolY7Trv9GM7P0u2epl6/HaOvEUoppQ6Ig/7pXymllFJKKaV2RFFcIIaCENs0andv/x2WC1XI7TpVxdCyEMr5yHzPMxdGEJOQ5XXS2Nmdht4CVsBIdcB8K4PuGCIxeGK3i4mCDQKYfvvygyxiGp/FJNMDW8U9gJRvoP7jJxn7/DcGr1HLmfrtdyHNtVtnH27CZNLj/myOsWTtuazzIeNJN8YV3+BvLo/wsWfGKeLKMOh5xw3v/5lJ7PE76NygyjYvZhmZf5p6b2rPNtzPy3kmykcYn3uMdvMU7eHb8dnqQV1ZG2e6No4dLxlqP8tQ61nS0Fv1srvBGnjNyZJGssC/+sHIQCX+96/k/MvvjfCfvXSB2l4taDWGy4xylWHuZIb75Copgx0A6nheKOe5k2ke5QRzprlLi1XwAPCzwN8sbTEsAH+E8EFYpZJ4Q66f4+37c7zj5ud4L1Z32yTifSDP937YDWu1Mz+9ajvzJBS4rEm0GTZr4ss2NcBHIUuu/5lFQIAEjICY/r9vYjtamQ8PE+bmiJ0OYWZ6w2F3kjRIkhGK4jJZdoSivES9dtstrUkppZTaKzTsVkoppZRSSqlbFKOnKC7j3DTGJKTp6M2vdEt3GKBsge9V1ULZYJgx3XGUktCRjLQ+RIKQyNoB3nZK+v3KqzndW1vpGcoCcZ5YlqQiQIQs56DP6Ta1v8akTw9sk3AM6b2d7MIUE3/w+cF9xjD9G7+MPz6xk8vcJ4QJW3B/Psv4DULuhZjxVDnG5dBgpkj58JMTPDzXWHG5O441eM+rJpk8eeyG91rvXmFk/hlq5co5zHuVjZ6R1hmGW2coahO0hu+g1zi2arViTHIWRu9lYeQe6r2rDLXO7alA/yXHHf/k5Qv8y++NUC6bqfDwVM7/8rej/JOXzVPfw0fMorGcZpLzjPGAXOF2Zlf8bMfo8TNymosywuPmOD2zdvt8tX2EnwPOYXhqaZvhaeCvEX7+1u9gaY53//XL3tocb2MsxkRiCBgsUSJ2n7TFX287cxs9iBCSHFNrEltCFKEMgSxZ+cQXCctmdieAX9+CtriVuckzTK1GbLWJQ0PEbhfbWPk+dCO12jE6nafwboFu57SG3UoppQ6M/fHXilJKKaWUUkrtYWV5GSHi3CxpOo7Z7gPDi1XdfmVVd7cMdErPrK9jrCVJ66Sxt2tV3UbAbkdVt/dE54mdNkYEE2K/reteLcncItmPMPl3BzZJbCDd92BbnskPfwZbDrY3nnv76+k9954dXOT+MG57vKJ+mVc0Lq8ZdLdiyg97k3yjexuXfJNvXBni//WDkyuC7vtvH+EfvuN+/uGvPHftoFsizfYFTlz8Okev/mBfBd3LGaBeTHN06ofcduErjMw9hQ3FGhc29BrHmDr2Mi6efB0LI3cTtnvEwzo9f9LxX718nloy+Lr02EzGv/juKB23V6L5tTmT8hN7km+Ye5laoy32bSzwOnmKB+JlEllnC2a1hSzC+xBGrtv+N8ATW3c3eQ6NGqRJ9f9QBeBxo79zg7WWGAUQgt8/j5nFdubLLbYzR649zw1VK/OQ5BhjiWkNHwUf1vobJfZP6kkwbOD1a6mVubvWyvwW2eFhYrcDIRBmZjZ8/TQdIUmalOVlfGhRllO3vCallFJqL9CwWymllFJKKaVuUVFcxLsFopRk2ZHtvbPgq6pu1606aS6v6haYbpf0vKEnNbLaMMYIiawRRG0zKwZD1cZ8K4NuoT+ru9cjhkASYlXNtkpF1oGSnMPUvjCwScQivfeAG2byd/+EdGZhYH/7Fc+j9caX7eAi974xW/Dy+mVe1bjMRLL6c6MTU37Um+Tr3ZNcCkMsuIR/9dhR/q8njtIJ1aEUY+AF947zj97zEB/85Qe447Y1OjrEwNDCWW678DUmph8mc+3t+tZ2XBoKxuaf4uT5rzBx9YfUetNrXjakTebGn8OFU29keuIFFPnYrk/1fnDC89+8cp5mOtgK/Km5jP/hO6MslHs/8AZomTp/a+7ke+YO2qys4E4Q7mWK18uT3C4zWxK6qY0YQng/suy0MwMY/hjYwpNe0hQaDUgSqOVV335XVkHrBlhrMQZCDIQQifvo4bLYzny5/LHT1L7+w4FtaSiINkWsJeZDhCiIsEbgLQgRg+2H3us8nG5Mv7rbA1JVd9+iZGgIMIR2mzAzCzHe7Cor5PkxfGgRQpdu9/Qtr0kppZTaCw74kQCllFJKKaWU2l4h9CjdDM7PYG2NNF29um7LlAvVwU3fhbQ+0KK0VTrKEJmLDZIkwaQ10ljs3qzuWAXesMVV3c4hZUkoC2yMGGM2PZ903zBzmPqnMGbwwLb03gL+FOOf/CtqT58f2FfcdRsz7/v5VdtMH0ajtuD+bI6j6dozpLsx4Sk3xgU/tBRMfX+6we88NcGCq7oGJInhpQ9M8LoXn2BidO22tCY6hhfOMtw6SxI3FjbtNwah2b1Ms3sZlw7RHr6d9tApxK5y2MlYOkMn6QydJCsXGGqdo9m5iN2lquN7x6rA+198d5SWu/Z6emYh5b//9ij/9SvnGa/tg7TPGK4ywhTD3MEM98sVsuvmedcIPF8uciczPMoJZsw2v1+pZe5C+CUM105YMnSBjyP8NlV77C1gbRV4Fz0gr2Z4b3iO92J1dwQrxOCx6f45hLxaO/OhT34R99x7ltqZJ6Hq5hFtTpI3iZ1pRAQfI2myyu9CApisP7M7BdY5Gsam4It+K/Oy+rvtViQWO9QktlrI6ChhYYFkbOzm11smTcewtkZZXCJJGni/QJpe33lAKaWU2l+0slsppZRSSimlbkFZXgWJODe3M1Xdrg2uU/07u9ZKOQpMtx09JxQ0SGtNDIZ016u6DbKVVd0CvttDuh3EB6wAWbrhuaT7S4lpfAJjuwNbpXwl+Bcy/LUfMPzthwf2+bFhpn7rHVWl3yE3bEteUrvCqxuX1gy6uzHhkWKCr3ZPcd4PIxg63vDvnpjgXz56jAWXUMssr3/xcf7pr72Ad77hrjWDbut7jM0+xsnzX2Fs/qkDH3RfL/Ntxmcf4+T5LzM+/QhZubDmZV0+wuzE87hw6o3MjD+E2+6ThdZw12jgn79qnrHaYDh8vp3y3317jOne/nl9EWM4ayb4inmAMxxhtbrPEQpeKWd4STxLc5feIw6n1yI8d2CL4dxAAL4lrKkC71oOaVaF3DFUc7xXfUSschO2mlEdYySEsK+aAaynnblBsMHhkxzSnGASgoC7USvz6pYwZgPvq9vRynxoGClKpCg31crcGEOeH8P5eWIo6HSeueU1KaWUUrtNP/UqpZRSSiml1C1wfpYQukDc/sqYcr4/q7sHaWMg4J3vOnyIzPo6aW4hrZNKgdmNRsHbWdVdFtDrEXyoqrrTtKqcOrAipvE5THJ1YKv4e5HiZ6k9doaxz3x58BpZytSH3kkcOdxVm0Om5P58jhNpd83LFDHhKTfKs/2Ae9FP5mr8309MMl2mDDVSXvOCY7zyeceo52tXX6bFAiMzT9J0U7vzvNtjrASG2+cZap+nzMdoD99Bp3li1RNTxKa0R+6kPXIneW+G4dZZGt0rO/pzPDkc+OevmuN/+M4o071rv+fLnYT/37dG+WevnOd4c+Mtg3eLNwmPmts4K0d4UC5zjNaKyxynxVFpcVYmeMocxZstqi5WazAI7wYuYZhZtvWbCHcBz9/au8vzqtK7R9Xho3RV4J1lYG/2u16s7g5YawnBk+6jk6cW25nXv/GjpW2L7cyL170EgCSWuLQJBiRv4l2L1BqiVOcLXE8kYEgQAtUhdX/zhSy1MneQxKqV+S1Wd9tGA5MkxFaLUK+B89VJfxuQZUcoiosU5RWSpE4IHZKkefMrKqWUUnvU/jk1VSmllFJKKaX2IO/m8KENWKy9xfaUNxIclKtXdYcozHZL2qXg0iZ5baiq6o5rt2veTpZlVd3IlsVVIoJvt4muRLwjsbbflvXgMvlXMOmTA9skTCLdd5JemWPyo3+Kua5SbObX3oy7/fhOLnNPaRrHi2pXeW3j4ppBdyGWR4txvtI9yTk/shR0F8Hw0aeO8D8+cgKpNXnH6+7gn/7aC3jDS25bM+jOOtNMnPkGJ57+K4aKnQ1o9wMD1Mo5JqYf5uT5LzM2+ziJ76x5+bJ+hOmjL+bCqTcwN3ofPlm7VfxWO96M/PNXzXOsMdhSfaqX8N99e4wL7f13GK1janzf3sl3zV0ssPJnaYG7meb18iR3yvSK1xO11eoIv4pc17bc8ClgauvvLk2hWb82x9sszvG+eVBrrUWkqu6OcX9Vd0PVzjyMD56EOPTJL2KnqznpSSjBGKLNkLxZze1G8GGtk1rC0sxus5H6MZuCxKoVelhn+/MbMWCHh4ntNsSIn5vd+E0YS54fxblpYizpdM/c+rqUUkqpXbT//kpXSimllFJKqT0ihB4h9oj9ihizna20i/nqQKkvqqB72Rzm2U5JCMJCyMnShJjWSaTcvarusD1V3b7TgaIkOoflEMzpTh/G1L41sEliA+m+F9OFyQ9/FtsdbEE8/4s/Q/fFz9nJVe4ZDeN4QT7F6xoXuC3trDqqvBTLY+U4X+mc4owfJS47LPLkQs7/+4e38Yg7zvvedA//xfufzyufd4w0Xf15XVu4xNHHv8jxp75Is30J06ivXg6oliTRMbJwmtsufI3JK9+j3r2yZlvfmNRYGLuPiyffwNXJF9OrTezIK9pkI/LPXzXHyaHBMHC2sPx33xrj7ML+rH6eNkN809zLI+Y2ylXmQ+cEniuXeI08xVFZ2JJ2y2otJxHePrDFUGL4GLANYw9sAo1mFXzneX+OtAPn4AbPKoPFWtMPuyGGsOZl96KbtTO30YMIIcmJeYMIxAhuzbBb+l9Jv0PFOv/mW2pl7quweytamQ8PIyEQu91NtTIHyPNJwFCWVyl6F4hRRxoopZTav/ZP/xmllFJKKaWU2mOcnwXA+zZZPrl9dxTKqqLbdauQO71W1e18ZL7naRWBkB6hmTdx2F2r6jb9qm4jVdQuW5T9iQ9Vy07vIAaSrLaONqz7mD2PqX9+YJOIRXrvgjDK5Ec/Q3Zl8AB354X3M/9Lr97JVe4JdeO5L5vjZNpeM2t2YjjtRjnjRgjXBRQuwmfOjvGTeIpf+tnbeM6do2vfmQiNhfOMXH6UfOEyJGk1E7d+wB+PW8wAjd4Ujd4UPqnTHr6d9tDtxCRf5cKGXvM4veZxUtdhqH2Oofb5KqjaJuN14b991Tz/4rujnF24duhswVn++2+P8k9fMc+9Y/sr+INqnvezHOESo9wjU9zNNPa6sHOYkpfJOa4yxGMcp222sWPJofYyhDMYfrC0xXAJ+JN+q/MtZg3U61CWgIFgqsC7jFUAvsaJY9YmeO8RCYQIySonSuxlN2tnnoaCkNTIbJuY1QmxwAeDCKueMCUSMCbt59UJ65qBvtTKvISktiWtzE2eYWo1YqtFbDaJ3R62sbHbNCYlzycpyyny/Djd7jmGhu6/pXUppZRSu0Uru5VSSimllFJqk7ybI4QegidNt3E+cq9f1e0WZ3VfOwI73XGEKLSkRp5n+KROKiV2PQdgt0ESwEh12FzM1q3Bzy9ACFVVt02qCrWDysxjGp/EmMEwTYpfhHAXY3/yVeqPnR7YV548ysyvv+VQVRbXjOe5+TSvb5zn9mz1oNuJ4clylK90budpN7Yi6D7TzvgP08/j5CtexYfe8eDaQbdEhmae4cSTf8nk2W+RL1ypZuGmKdSyg/143GZp6DE29yQnz3+ZiakfkRdrVyn6rMnc+IOcP/lGpieeT5nf4MSEWzSSC//NK+e5d2yw0rbjLf/jd0Z5fGb//s69SXjCHudr5j4uMbLqZY7S5rXyNM+NF8hk+04sOLwMwtsRjl+39fvA97bpLg3UatXJOWkKWV5VGRdF9TfGqle5rro77p+59Ytu1M48CSXRJoixkDVxsard9nGt6uvFn1OyiVbmsnWtzAE7PETsdiGEW6juPoYQcW6aXu8ccRtPIlJKKaW2k4bdSimllFJKKbVJzs0SQwcwJElze+7El+C7UHb64dq1qu5uGeiUnvmeQ7Jh0qyOkOxaVTf9kNtKVSsYtyh3jd0usSgIZVndfl7j4LYvL6ug2w7ONJby5eBeQvM7jzDy5cEgJAw1mPrQO5H8YM8vX5SbwEP5NG9onOfOrLVqyO3F8FQ5ylc6p3jKjeOvO/zhMXw1PsjUAz/PW372Qe48vvrJKiZ4hq8+zsnHv8CRCz8gK1tQOsBUQdFiW2B1ywxCs3OJ45e/y4mLX2eodRazVvBiEzpDp7h84me4dOJnaA+dIm7DGImhTPhnr5jnwSODgXcvWP6n747yyNT+fs51Tc4P7R1829zNPCurQg1wJ7O8Xp7kbpnCyP4LOve2vD+/e/A1xPAnwMXtu9ssraq80/4cb0z1urbG881aS4yCSMT7/ReG3qideeKr1t3B5sTaECJCFMHfoGW7EDEk/RMP11npbpPrWpnf+nMpGRoGgdBuE2ZnN9Ue3dqMLDtCUV4hxpKiOH/L61JKKaV2g4bdSimllFJKKbUJMTp8aOFDG2vrGLNNrT17s9XBUV9A1ryW8QpMt0tKH+nEGrW8RkjqJOKw7E573SSaLa/qlhgJ8y0kOGIMJFnen5V5EAmm/qeY5PLgVn83UryJ/JkLHPnjvxrcl1imfusdhCPbV+G6V2QEHsxneEPjPHetEXIHMTxTjvCVzimedOP464KIaBKeHXmAJ+9+K3e/8HkcO9JYeSOA9QWjl3/Cycc/z/jlR0h8D5BrM27zrDr5pF7b+m9Ukbk2R2Ye5eT5LzM+/RPSsrXmZV0+yszE87lw6o3Mjj+IS7f2xKN6Cv/ly+d5/uRgNWYZDf/r90b44ZX9HXgDzJom3zT38GNzkt4q1aoZkQflMq+Tpzgu8zrPe0sdRXjXwBaD78/v3sYT19IEGo1qFEMtr17PnKtam1/X2t4YizGGGAMxyr6s7nbPu5feq180sC1/7DT1r/8AGxwhySHJEJvio+DCDR7jEvpBt6lC7/VKMgiuev5sRXV3YrHNJrHVRrwjLKz9OnkjeX4MEYdzs3S6ZxA9qUUppdQ+dFCPECillFJKKaXUtvJ+DoDgW9vXwtx1q9mOrlNVBSXXKu9apaMMkVbhsbVRkjQnku5qVbcVMFJ9zNyqqm6ZmydGTyxLrE0wB7hdtMm/iskeH9gm8QjSfRfJTJvJ//BZTBg8CD3z3p+nvOfUTi5zV4zagtc1L3B3tkBiVoYQQeC0G+Er3VM87o7grgsgQpIxd/Qhzj7wVuTOFzA0tEZIXXQYv/BDbnv8C4xefQwbl1X0eg8xQJZBYqFRX32oq9oyVgLD7Wc5cekbHLv0HRrti2tWRIrNaI3cxaWTr+PKsZfRbRxDtqgDRC2B/+KlC7zk2GBA5aPhf//+CN+9eACq+43hghnnq+Z+nuQoYZWfXRPHS+RZXilnGJHuLizyoHohwqsGthimMXya64PnLWX7r2OLLc3TFIK/dlLPstUk/epuiIQbVD3vZe33rt7OPL98mZDUwEDMm4QoRAG/ZuAdqX4+CZiUdXea2Y5W5kNDSFEgZbnpVuZJUidNR/vV3QVFsY1dBZRSSqltomG3UkoppZRSSm2Cc3NIdEQpSZJtCruL+aoKyJcDVd1RYLrtKFygF/N+VXcDiydhd1qMJv102wJxlTByU7o9QlkgRUkEbN5vt3oQpT/F1L4xsEmkhnTeiykTJn/nMyStwXBp4Q0vpfOqF+zkKndF3XheWrtCvkq3gChwxg3z1e4pHiuPUMpgyO3TOrMnXsiFB97CwvHnkmSrV+F2FlqMnf0utz/5FwzPPI29fn5tDFUIlKbViSe1WhUUqR1hgFo5y+T0jzl5/iuMzj5B4tcOW4v6JFNHX8LFk69nfvRegr31MDpL4D99yQKvPFEMbA9i+D9/OMw3zh+AwBuIxvKUPcZXzf2cZ/WOEUfo8Gp5hhfE89TErXoZtTHCWxBuH9hm+Anwze29Y2OqwLuWQ5pVoXeMUAy22jbWYgyEGAkhsuZI6z1srXbm4x/5FCBEm0He7LdsF/wNKthFAmbpsPrutTK3jQYmSYitFmF+rjopaxPy/Dgx9nBunm73DKLdG5RSSu0z+slMKaWUUkoppTbBuRl8aANsT9jtutXBUNeBJIHkWiXqfNfhQ2Sh57GNUWyWEUjJdnNWt1SzumGLwm4fCK0WsXSEGLBptn2t4nebvYyp/9nAJhGDdH8FwhGO/OEXyM9fHdjfe/Au5t7+hp1c5a5IiLy0foWaHQwFosC5fsj9aDlBIYMV/y4fZvrUy7j4nDfTmry/atW7iguXF3CPfofnnP1LRhbOYVaropRYVTrapGpDW8uq0FvtiiSWjC48w20Xvsrkle9T615ds612SOvMj93PhVNvYGryRfRqR26pTja18B+/uMVrTw2+1gqGf/fjYf7m3MFpa1+YjIft7XzT3MMsK9v9G+AUc7xenuQ+uYLV1se3KEV4P3Ld7HTDF4Cz23/3eVaNZUgTyPsnbpRldaJPfyXWJv0W5kIM+292N6zezrz26DMM/803CElOzOtEqm4hN2xlTux39rAYNjDKYKtbmVuDHRoittoggp+d29TNpOkQSTJEWVzGhzalm7r1tSmllFI7SD+dKaWUUkoppdQGiUS8XyD4NsbkWLvFM1tFoJirDogGB7XRpYLmEIXZbkmnjDiT0ag18KaBJWB3qcLOisFQtTHfkqBbBGm1CK5EnEOsJckO6sfXiKl/HmMGgwMpfgHC3Yz85Tdp/uiJgX3u6DhTv/G2qpX2AWYQXly7yogdfFzPhBoPF5N0ZeVjomgcYWHyOfRGT97wth89M0dx7ml+ceQMteRGj1mB0gGmal++PAhSu8oAjd5VGr2r+KRBa/h2OkOniMkqvx9j6TZP0G2eIHVthlrnGGqfX1nBvw7WwG+/oE3NwpfOXQsmBcN/eGSYMhh+6e5dOvFoG8ybBt/mbk6wwHPkMg0Gn48Jwv1ylduZ5XGOc5FRbe+/aeMI78Pw0aUthgh8HOEfAdvURWZRmlYdK3pF9Tt0DlxZbU8yrLX9ud0BHwxJku7LX3X7vT9P9ugzJLMLS9uOfOxzXHj+czBDFrIGPvRIrUFkrYezIAiGBDERxFK1N78Jm4IvrrUyT+s3v87NbnJ4mDA/T+x0CTMzpEcnN3U7eX6MbvcZgm/T7TxDLT96y2tTSimldsrB/mSslFJKKaWUUtvA+3mEiA/t7ZnX7TpVyO3aVUVqei28me2UhCC0C0daHwObEkxGGnu70+BbwMYq8IYtCrs7XWJZIqUjADZNl7ULPWCyH2CSwfmYUr4E3Etp/OgJxv5isIVtrOdM/fa7kMbBqSBdnfBQPsPRdDA0bMWU7/eODQTdAvSGjnP57tdz5d6fXTPojlH4wRPTfPQzP+b2Z7/O28dP3zzoXpxdW8uqDgv1g/5z35/S0GV87glOnv8KR6Z+TF7MrnlZnw0xd+QhLpx6I3Oj9xE2cbKSNfAbz2vz5rtXtlL/g0eH+NxTKyuh9zVjuGRG+Zq5j8fNMfwqr8d1PC+S8/yMPMOYdHZhkQfFcxDeOLDFMI/hE6wrTL1Vq83x9r4KvanamccYQYSwT6u7pVGj9etvGdhmi5KJ3/0EEYPkDYJUYbYLN/iZi6/akmNYdz3ZYivz4Laslbmp5Zg8J7ZaxG4H6W3uZJs0HcXaOmV5BefncG72ltemlFJK7ZQDerRAKaWUUkoppbaPc7NIDMTY2/oW5hKrWd2+rGYEZ9du3/nIfM/TLjzRpOT1Jt7WsEQS2YJ2mJtwrarbbE3QXTqkKPG9HjEKpAnJGi2o9z3TxtS+PLBJwgRS/DzZ+asc+YPPD+4zhqnffBv+2JGdXOWuuDNtcWfWGthWiuX7veNLQZtg6IzezuX73sTVu19LObR6FZrzkW89fIX/5WOPcOWRh/kndz/Fc8eKVS87wPuqhW+WVQFQvaYVq3ucITLUucjxy9/h+MVvMtQ6h4mrV2+LTVkYu4+LJ1/P7NgDG57rbQz86oMd3nnfymD3k080+cTjjbW6q+9b0VieMUf5qrmfc4yv2hJ+jB4/I6d5UTxHfZfel/Y74U0I9wxsMzwJfHnVy2+5pTneWdV2e9kc76Q/7CHGSIhh3z7G3fPvW9HOvPHI4+TfeISYDyFSfcs3DLuXTj6wGLOBv1OSrJrbLVL9rbcF7MgwsduBEPEzM5u6DWMMeX4M5+cIoUe3e2ZL1qaUUkrthAN6xEAppZRSSimltk91ILADyNaH3a5bHQT17eqAaHKt6nC64whR6LhAPnQUTEIwNfLY2RNV3XKrYXeMmE4HX3T5/7P339FyZPd9L/rZu1L3yQcnIIcBMAiTAEzgDIOYxGCLskgFUpZ9JVvWk64t2ZeWfHXlZa/nde1lryVbV+nKz5atZ0lPtq8okQokRYkih5mTAzB5BhjkeHLqVFU7vD+qAZw6OfSJ2J+1sA7Orqrdu/tUdVfv7/5+f2iNlgLP82Btnt2KI6JvIER+otvGH0JOJHT9/heRad41N/ax9xAf2ruaQ1wTur0qh8P8ZL223HJ0WyEpd+xhousgOpz9+qvGiudeH+SZ1wfwdcxP7B/m2JbpTtwZMSpbbOL7maM7KmSCt2PDEKYThCNv0j76NpXm7ZRadqGC6eeLlT6ltn2UWnbTUr5Ky8RFfL2AxRBkmuDHD1YJPcufnsn3/Zfnm0iM4FOHKptujUQifN4Q27lsOzlk++hiuuC/jQl6bIlLdgvnRRdaeGsw0o2KxPLDwH9BcHvRj+CbWHYBB1ZnGGGYve/F9VjzJIU0rceZG6SRGK3x/I35ty1/4v0Eb57HG7v9Grf92VcZObQTK310Pa599ihzsFZnUeZosmn2BbjdJ0eZmwRYfpS519SMHh5Bl8uIkVGCbduWtDgrCDqI4xskyQCeV0CpFUowcjgcDoejwbhvag6Hw+FwOBwOh8OxCKy1qHQUrcsI4eN5y5+kvN25gdp4NgmqNQRNtzZVE00lUUzUUoT08MNmlCwgMHh2YcJMo5HcdnVngZ/LpFTBpAodJ2ghEJ5Eyo05iT4v3gVE8Gauyab3QLyDrv/+JfyxvKu5/PA9lN5zfBUHuDa0yIT7o8Fpc/Svx12M0Mx4191cv/vDjG4/NqvQPV5O+MozV/mNP3qNb7x4nXuax/jXx64vXOi2GlKVxc16QSb4bFAxxwHSKlpKl9l64ym6+1+gWOlnRjuq9Ci17uHG9ncz0nkEtYj39r95V42/fbg8rf3xi0X+5xvNmA3qfp2PkijwotjDSbGLMtOd8R6Wuxji3fYsO+3IzK+7YxZasPwIdtJiLwEI/hQYX71h+D4Ui/VFPyFIgdQaqxXWGrRRG/bPapsKlP72R3NtshbT+pkvY4Mi2mRlMtScF7Cui8oCsYZR5vgesljElEpYlaJLpfmPmQEhJGHYTZqOYHTq3N0Oh8Ph2DA4Z7fD4XA4HA6Hw+FwLAKtyxir0LrceFd3Us4cpWklq9N909VtYbickChDLTUUWruxUqJESLCWtbr1pFrdcpmz3dUaQivSaqXen8STm9XVrRCFx3Mt1hawtffR+WffJLp4Pbct3redkR98/6aP0I6E4kQ0gD8lIeDtpJ3L/jYG9rwTE8xeC3lwtMaTr/Tx8tsjaGNp9jV//+4RHuleTP1gm7kXEVl8ue9BuPiazo71hwAK8QiFeITUb2aibR+Vphncj0JSbtlFuXkHTZUbtI5fIFDzn0Pfu7dG6Fn+++vNOYHyW1cKJBr+3r1lvM1oORGCQVoZooVdjHDADhBMqS0dobnH3mA3I5xmK8PCOUUXxl4s34vg9ueFoAJ8DsvfA1ZpEY6UmeAd14AQIRQyTTBJgogKGKPrKSwbj5tx5oVnXrnVFr51kfCli6gjWzDWorQhmPX52fo/H4QFK1lQbXUvqAvd9SjzYPkLJ2VLC6q/H5uk6JERvNbWJfUThl0kST9JOoAXRzQ17cfzomWPz+FwOByOlWQz3mYviOeff55/82/+DR/5yEfYtWsXURTR0tLCoUOH+Mmf/Em++93vLrnvSqXC/v37EUIghGDfvn2NG7jD4XA4HA6Hw+FYU9J0DKxF6TKe1zT/AQvlZq1uHdfrBN/uu5SkJNpQihW+5yPDZrSIEIC/xq5u0QhXt9KIWg1dq2GMRkuJEAK5SWOjRfgMQo7m2mz8Xlq+c5rm51/PtauOVoZ+/GOZu24TIzEcjwYoyHx95WuqibdNN4O7H5tV6L42UOGPv3aO//Snb3Dy9DDaWO7vqPJ/Hru+BKG7HisfBZmTseAm+DcjgSqzZfg1tt14kqbS1ZmdlUJSad5B37Z3MrTlPtIZItCn8j27Yv7B/SXklAUbT10v8DuvtKAaYOBcr1ghuCy28F1xkEt0zij3tRLzkL3EcXOZpjX67Np4vAvLoVyL4DKCr63uMKTIBO8oBD9AhiHGaGwco9UCorvXMeVPvB/d3pJra/riE4ixKtrYeep216PMxc37lQWK/tLPhG6rs/u+BiCLRYTnYcol9NgYLPHvIoRHEHSRJEMYk1CtOXe3w+FwONY/m/vb8iy8973v5Tvf+c609iRJOHPmDGfOnOH3f//3+Ymf+Al+53d+hzCcHsU0F//qX/0rzp8/36jhOhwOh8PhcDgcjnWEUqNoXaXh9bqTUiZypxXwo2wiFDAWhsspcapJlKG5tQMrJKmMCGyMWH54+JLIXN2ZW9Isp1a3tVAuY5VGxzFWehjA9ySb0tUthiF8Ntdk9Q7CV9to/9IXc+0m8Bn6e9+PaWngoop1ieX+aIg2L821juiI15IehvY+ig6nvwZnr47zxEt9nL9+O641koYf3TfCe3rLizfCK5WJnkG9Tm0h2vRu+jsdX1XZMvIGbePnmGjdR7llB0ytLS0E1eZtVJu3Uaj00zZ+njCdmLXPx7YnBLLE77zcgra3z58X+iJSLfiHxyYINqYJdkEo4fGW2Fav591PD9PjlHso0WVLXLZbOCe6Ua6e9xwILJ8A/iuC0UmtT2HZDRxd3eHU63iLGghjMUohajWM9JDBxpxmvhln3v5f/uRWm4wTmv7yJLW/8y4CT6KNxZOzfR7cFMM9suV/6Sz7TWJylLn0s88escwFflIgm5sxpRJeZyd6bByva8uSugrDbpJkgCQdQtYimor7kNKlnDgcDodj/bI5l8nPw7Vr1wDYsWMHn/70p/nc5z7Hs88+y1NPPcWv/dqvsXPnTgD+4A/+gL//9//+ovo+efIkv/Ebv0GhUKB1iXExDofD4XA4HA6HY/2S1ut1g8DzZo9UXhTGQDwBulYX224Le+PVFKUNEzVFGHgQtaJElFWHNLXGPP4iEXWRW1iJBcxy9MBKFaENplbFCIERAikFYlOKHxZReBwhbruXrRWI64/S/f98GTGl8Onw3/4I6Y6e1R7kqnN3MEqvn6+nXTE+p2rdDG8/TtLUldt2baDMf/38m/yPL5/NCd2H2mr8n8eu8z1blyB0a5X98+uO7qiQCd6OOwJfx3SOvsX2a0/QMnERYfSM+9Waeunf9iiD3ceJw/ZZ+3toa8LPHZ/An1Le4eXBkN862Uq8sY2wC6IiIk7J3bwg9jDB9IQECexlmHfbs+y2w9Pe/xyTKWL5JHaKa1jweWB49Yfj+9BUQAY+xvewCHSlAunGPbGzOPP7cm3B2et4L5zH2vnc3RaLQeDVF0gt8P7FC7LSNTejzBuAbGnBKo2pVFGjI0vvRwYEwRaSeBBrUmq1qw0Zn8PhcDgcK8Ud+c3tyJEj/NEf/RGXLl3iN37jN/jhH/5hHnnkER577DF+/ud/nlOnTnHoUBYR9Id/+Id8+9vfXlC/Wmt++qd/Gq01/+Jf/Au2bFna6jmHw+FwOBwOh8OxPtE6RpvarXrdYrkunJsk41Nc3dlEqTaW0WpCJTFoayk0tWMRKBnh2WQNXd3iluBtxTJyeZMUkSRZDKrWWN/DWIuUm1HoBvw3EP6UONDkIbZ89mVkLT/RPfbhR6ndd3AVB7c27PRL7AvzLtnUSk7WehjZcohKx57cttFSwv/zlXNcH7wtjgcic3P/s3v66S7MLFLOidGg6u46z4coymp1O+44PJPQMXqGbde/S+v4eYSZWbyrFbsZ2PoIAz0PUos6Z3wnvr8n5X87MU44RfB+YzjkN19so6rujNSAYdHM0+IuXhfbiGcQAUM0R2wfj9lzdNuJTPhzzMAOLH8j1yKIEXwWFuIkbjTSQzQ3Z7HZvkRLianVoBazRrcmy6b8iQ9MizMvPv4yeqRMqud5UlbXhe5FiN0rEGUuohARhphyCVMuY+Ol9xtFPVgUaTpKtXoZO1O5B4fD4XA41gl3pNj9F3/xF3zqU5/C82a++eju7uZXf/VXb/3+uc99bkH9/uZv/iYvvPAChw8f5pd+6ZcaMlaHw+FwOBwOh8OxflBqtP6zgfW6jc4izFU1myCeVJd4pJKgtaUcpxQCHxO0oEQIa+jqxmZfJIXNvk4u2dVtDKLuBNNJjPF9tLF1V/dm/KpaQ0TfzLVY00p0chuFM5dz7ZX7DzLxve9YxbGtDVtklSNh3pVoLLxU62aoeSdjW+/NbUtSzWe+eo5y7bYAua855v997AYf2j7BrAmzc2IgTbP42MCH0M9+Ou5oPJPSPnaW7de/S9vYWYSZWUyMC1sY7H2Igd6HqBW2TNP4jnYpfv6hcYp+XiQ6Mxrw68+3Uk7vDMEbIbgqOnlCHOA8XZgZSlS0kHDCXuFBe5lmu0afb+ueh7Dcn2sR3EDwV2syGiEloqkZI7P3TxN4CKUQ1dqGXLRwM858MiJRBJ9/Dq3NPE/JkN3EeQjhs6AyLJOjzE2aJfs0ANnSgqlUQBvUyHLc3RG+304c92FMTBzfaMj4HA6Hw+FYCTbjDEJD+MAHPnDr/2fPnp13/4sXL/Kv/tW/AuC3f/u3F13n2+FwOBwOh8PhcKx/0nQUo2MsCt9vUL3ueCKLMU+rmau7Ht+dqCy6vFzPu42KrRgkShbxbIpkbRw2Xl3dliyzVnepAkZj4xqqHl9uschZFiVvdET0HYSs5BtL76Pj80/mmnRbMyOf/NCmrxXdLFIeKAxOE6jfSLbQ7/cwvPPhaa/Bn33rIn3DmaPbE5aP7x7ln9/fx/biUqNzLcR1ETMMMje3+y7vmIQ0irbx82y/9l3aRs8g9cxRw0nUyWDPg/T3PkK10J0TvQ92Kn7hoXGag/x79vnxgP/r+TbG4819rU9GC4+3ZS9PiP3cYObSf12Ueac9z1FzncBu3FjslUFg+X4s3VNaTwKn1mRE0vcgCNC+h5ISU4iw1iAqVZgz+nt9kt6zn8pjx3Nt3rl+xAvnSM3cz8dajbg11b52UeZeczNYMOUyZmRkWQsPoqgXYxNSNUalcgG7ARcxOBwOh+POwIndsxBPinmZzQE+mZ/92Z+lXC7z4z/+47z//e9fwZE5HA6Hw+FwOByOtSJNx+r1ummMs1srSEuZ0A25Wt0jlRRtLJVU0xT5KL8FLUIsck1d3cKCvOXqXuKkZ7WG0AqqMdrazBFmNFLKSRPFmwh5DYKXck02PUjrXw/jj5Vy7aMf+x5stLkF1wDNiUI/wZTz53zSxmW7hcE9j2K9ILfta89f482LYwB0RYp/cf8Nvn/XON5ydMI0BUwmdEuZ1ene5IsMHEtDWk3bxEW2Xf8u7SOnkbNEDqdRO0M9x+nf+iiVYu8t0Xtfu+Z/f3ic1jAvll2Z8PmV59sYrd1Z511NhLwid/Gc2MsYhWnbBbCLUd5tz7LXDiFcfPIkQiyfwpJ/jxR8Cehb9dEIIZC+n/maowgtBTQVsUIgqtUNWce7/In3ozrac23yy6dIBidmOeImpv4ZIhFT/j6zsgJR5vgeolBAl0uYNEWXy0vuyvOa8LwW4ngAbaokyUBjxuhwOBwOR4PZhLMIjeFb3/rWrf8fPXp0zn0/85nP8Jd/+Zd0dnbm4s8bwZUrV+b8d/369YY+nsPhcDgcDofD4ZgZYxRal1C6jJSFekzlMrlZq1tVwS9kcZZANdFUEsVELUUKCKMWrPDqtbpTJEuoS9wApBUIQNplCN1KI2o1SBKM1ijfQ9fdUt6mrNVtEIWv5jRUa33k9Ydp/faLuT1rB3ZRPXb3Ko9vdZEYjhcGKMr8OdynipxJOxja9Qg6zKcmvHJ2mO++lIk4kTT848MD7GleZo1anWbXXhBkUbLFAkvMQXfcQUhraC1dYvu1J+gYeRNPzbzwKA1bGe5+gL5t76TctA2LYFer5hcfGaMjygu3N8o+/+G5doaqd94U3aho4lmxj1fFDmpM/0wNMByy/bzLnqPXjm/IaOyVoQfL38q1CFS9fneDBNNFcDORxQIqDDG+D8Ui1vcRcfZ5v5EQxYDhH/+hfFussH/yLMbMdQ5aLBaBd0v0npepUebzuMcXitfSgq3FkCrM8NKjzKHu7jYVtCpRqV5syPgcDofD4Wg0rhDVDBhj+OVf/uVbv3/qU5+add+RkRH+6T/9pwD88i//Mj09PQ0dy+7duxvan8PhcDgcDofD4VgaSo1hsWhVwvNnjl9dFFpBUp7k6q7X6rYwXE5IlKGWGtqKAanfghYBBp/IzOcsWiEsSJMJ3rBEsdtaKJczwTtJUJ4EITE6rQvdm1BsDF5EeHknlI3fRcefvYCYFPFqpWT0B963yZ3FlnujYTq8vPAxpkNeibsY3X6MpDkfz3t1oMwXvnMJyAJ8/193D7FruUK30aAUeH7mqitEmeDgcCwQgaGldIXm0lUqzdsZb92HDqanfaigmZGu+xhv30/b+AW2cZ3/45ExfvX5NoZqt8+5garHf3iujX/28Di9TXeYi1kIrtNOH63sY4h9dghvSvXzJlKO2auMUOQ0WxkXxTUa7HrifiyXEDx/q0UwBHwRyw+zmp+nQkqk52FSlbm8oxCRKoQAm0hEEmOll5WK2CCk9+yj9K6HaHnyhVtt4mwfydNvU3jXHIvSrAbhgxVk0+4LEPq9AHSS3SPpGOTyz2/Z1ISQEl0qIaKQQO+AJZaJ8f1WpCwQx/14fgtpOkIQdC57jA6Hw+FwNJI7b9noAvj1X/91nn32WQB+6Id+iIceemjWfX/xF3+Rvr4+3vnOd/LTP/3TqzVEh8PhcDgcDofDscqk6SjWpBibNKZedzyeTYqqWiZ0113dpSQl0YZSrAh8SRAWMcJHyQIeCo+1iQS97eoWS3d1V6qZwJvEaCkxUqK1yvqVm/DrqRhHRE/kmqzuJnqpk+JbeXdU6d3HUNu6VnN0q86BYIxtfr5uedV4nIp7mOg8QLlzX27beDnhM4+fQ+nsfPvEnjGOb6kubxDWZPHlUoLvQ+RnPx2OJSCwNJevse3GU2wZehU/Lc24n/abGNlyDze2v5ti7w5+8dESW5vy6QbDNY//8Fw710obRxBsJEZIzokenhAHuEb7jPt0UuVRe4F7zTUiu8xFL5sAy0ex7Mi1CV4Dnl31sUjfx2IxSqHTFNvchC0WIQyw0kMkMWwgY76nE4Z/9AfQ7S25dvUXL2BG5ooFv3ldy8zhvRBWIspcCmRLC6ZcwhqDHhtbVndR1IvSE2hdpVJx7m6Hw+FwrD824WzC8vjWt77FP//n/xyA3t5e/vN//s+z7vvtb3+b3/3d38X3fX77t38bsQIr8C9fvjznv5uivMPhcDgcDofD4VhZUjWKulWvu2WevedBp5BOcnX7mYvHWBgup9RSTaIMLaFH4reihYfGX9Na3ZNd3XYpYneSIpIE4hhhLcrzsolxYzetq1tE30CIvCBjyx+k8wt5AVy3NjH+oXes5tBWne1+if3heK5NWcHJWg/jTdsY3XZfbluqDJ95/BylSra44x3dZf7mjvzxi8dCkgICgjBzGYbRMvt0ODLRu6lyg603nmbL4MsEycwJHNovMNp5hPiud/LpD7extz3v4h6LJb/yXBuXxu9MwRsgFgGvyR08I/YxwswO1x2M8W57lv12AHlH1/P2sfwIdkrdc8FXgCurOpLM3S0xWmGtxagUChHW8yGKsnhutXHqd3s6xRaLjP3dfFw8sSL+46exc0TqW6snRZkvYDFVLspcNSzKXLY0Y1OFqVZRI6PL6sv3OxAiIEn6SdIhlFqjlCGHw+FwOGbBid2TeO211/jBH/xBlFIUCgU++9nP0tvbO+O+cRzzMz/zM1hr+fSnP80DDzywImPatWvXnP+2b9++Io/rcDgcDofD4XA4bmOtQaXjaFVGiAApg+V1WBuru7pjCJpuRVePV1OUNpRqiiiQeGERIwKUKCLRyDVyskluu7qzipSLxBhEpQJKIVSKCnyMBaM1QgrEZnR1e2cRwZlck00eoO2r1/BH8qLt6Mfegy1sXtG1Q9a4JxzOtRkLL8fdjAZbGNr1yK1kg5v8+bcvcn0wWwyyrznm7+0fXn7Ce5oCFsIgc3ZHhXkPcTgWgwCaqv309j1D18ApgnhmN6XxIuLuQ/zkD97Pxx7pIQxun/+lVPKrz7dxbvTOThwYF0WeF3t5SeykwvTPXA/LATvIu+1ZttuxO7iedyeWT+RaBKZev7sy4xErhfR9rLFYozFJ/X6lqQiexPpBtuBtg/yZBBZpUsoP3Evt0fxiLH36OuqZt+c4Wtfv68TC3d1ekAndN6PMG4CIIkQQYEqlzOEdL712uhCCKOolTccwOnG1ux0Oh8Ox7tiEMwpL4/z583zkIx9hZGQEz/P4zGc+w3vf+95Z9/93/+7f8dZbb7F7927+9b/+16s4UofD4XA4HA6Hw7HaKDWBxaB0Bd9fpqtbJaCqkFSzyVA/E9y0sYxWEyqJQVtLaxSQyGY0HloE+Ka2Nt5nC1JPqtUtlzBTXalkgnccY/wATeZ8ylzdks3n6k4Qha/lWqwpIm48QOu3Xsi1x3ftoHr88GoOblVpEinHCoPIKX/it5JOBmwbQ7sfxXp5IetbL17n9fOjAHQEip87MkjoLVMh0WlWqzsIwJNQLDBtUA5HgxBAsTZIb/9zdPe/SBiPzLif9UIefmAXv/C37+V9J7ZRCDNhrKIkv/ZCG6eH72zBGyHoF208JfZzWvSiZpjGLKC4z17jHfYC7XZ1xd31w2Es7861CMYR/BmrqS4L6SGkwCiFMQajNfgeNgggCjIhN9048fO+jjEypPSJD2DamnLb4i+8OEecua3/80EsMLlG1l8f08Aoc0C2tGArVTAGNTLz+9BCCYItCOGRJAMkcT9ar1HakMPhcDgcM3CH3zVnXLt2jQ996ENcu3YNIQS/+7u/y8c//vE5j/n3//7fA/ChD32IL37xizPuUy6Xb/38zGc+A2TR6B/84AcbOHqHw+FwOBwOh8Ox0qTpKFiDMVXCcMvyOovHsslMVYOo5Zare6SSoLWlHKcUAw/hB2gZoWSEROPZpTtylsNNV7dYqqs7ThGpgloMCIzvZTU9tUFKgRCbL65XhE8jZN69beP3s+XzzyHU7Tq9VgpGP/5+lm9ZXp/4aI4XBghFPpL1YtrKZdXG0J6HUVF+8cjr50f45skbAATC8LNHBukI87WNF43RWXyu52dxsVGUObsdjhVGAIV4mEL/MHHUwXjbXcSFrmn7RaHP+x/czjvv6+W5NwZ46tUBKjXFb77Yxs8en+De7o0jEK4ERkgu0sU12jloB9jJ6DT5sJ0a77AXuWFbOSN6qYlwTca6Vlg+CFxBcNtxK3gby3eA2c08jUZ6PjpNkcagkwRZLGbu7jTFhj4iTbCBvyE+9zydQAiqtY3yJz9I63/7i9sb45T4j5+m8DMfnLGspbUaIfx64IAPzHMNS5klnJgUjJ9FmTfgc8praUGPjmLKZczoCGztXfJrL4QkDLuJ4z6iaCvV6kVaWjbvYj2Hw+FwbCzueLF7cHCQD3/4w5w7dw6A3/qt3+InfuIn5j0uSbKJpt/7vd/j937v9+Z9jB/7sR8D4H3ve58Tux0Oh8PhcDgcjg2GUmMoVQYsnte89I7SWiZyp+VMdPMyV3eiDBM1RTnO6lm2RD6xbMEg0SIiNJU18z5nru5MtDGLrdVtLFQrkCqEVpiogDIaYwzWWjx/E34llQMQPp9rsmo30StFim+cz7WX3vkA6fbu1RzdqiGwHCsM0izzNVoHVIHTSQdjW+8lbsmXDbs+WOHPv33p1u9/78Awd7Usc5GHNZmTUHrg192Fm/G8c6x7oniUnoGTxGE7E237qBV7pu8Terzn2DYevbeXF94c5IlX+viPJ1v5X49NcLz3zha8AVLh84bYzmXbySHbTxfTnbXbmKDHlrhkt3BedKE34YKqmZFYfhj4L4hJr4vgm1h2A3etyiiE74FSGKUQUmKNyX5GEcKCTRXECWyA0h3SaoQ1GC8kfuAI4bFXiV66cGv7zTjz4LG7Zzj65iIvj2yp4AKuXy8AndyOMpcz16xfFL6HKBTQpTKytRVdLuO1LD2hKAi6iOOsbreshTQ13YWUd9bCEofD4XCsT+7opcxjY2N89KMf5fXXXwfgl3/5l/m5n/u5NR6Vw+FwOBwOh8PhWG+k6SjaVBDCQ8plTNDGY1lNRpXUa3VnzSOVFG0slVTTHPkgfZQsoGQBgcGzjYu0XAyiLnILK7GAWaziXq0ijIUkwfoBWoA1FmN05uredF9JLSJ6HDHJyWytxJY+QOcXvp3bU7cUGf/wY6s9wFXCck84zBYvf96O64BX4m5KHfsodR3IbStVUj7z+DlSlb1237dzjEd7lhtJbCFJAZHFl/sehHfApPwGqYl7pxIlY3QPvkTvjWcoVvpn3CfwJY/d18unP3UvH3nnbv7w7S6eu3EHnLsLpCQKvCh2c1Lsosz018XDchdDvNueZacduYPqebdi+WHspOVxAovgT4CJVRmBQOD5PkZrrDGotL5gqVAvHRGECKUy5/IGwFMxSoaAoPZ9j2Ja8wL07HHmFovJanYLAQup3b1CUeZeSwu2VoNUYZYZZS6lTxhuIYkHsVZRq11t0CgdDofD4Vgem21mYcFUKhU+9rGP8eKLLwLwL//lv+SXfumXFny8tXbef3v37gVg7969t9q++c1vrsTTcTgcDofD4XA4HCuEUmWMTdGqjOc1zxhXuSDSaubYSSvgeeBlonk10VQSxUQtRQpoCjwSrxmDQIkQ38Rr6OoWtwRvKxY5MZ2kiCSBOBu/CQOU1hijsYDnbUK3XfAqwp8y8Zu8g9ZvXMAfzseaj33fe7DF9e9sWwr7gnF2BPnJ/5rxOBX3UG7qYXT7A7ltShk+8/g5xsuZ8+14Z4WP7x5b5ihu1oa1EAbZNbcBnITLoWgijiWH+J7kBI/F93M8OczR9C72q53sUD106XaaTRHfek4QXweE6QRdQy+z9cZTFMs3ZhRkfU/yyNEefvaT93Kj7R6eHWxfg5GuU4RgULTylNjPm2IryQxiYoTmHnuDx+x5ttjZ6itvNu7C8oFci6CM4HPcdhuvLMLP/hZGa0yqsMaCFNioAEGAlQIRr01plsXimQQrPYzwsJ2dVD52Ir9DPc7czrSgwuq60L1QsXtylHnjFgTIpiaQEl0qocfGQS+v3zDsxqJJkmGq1ctYu8xSIw6Hw+FwNIA7MrsrSRJ+8Ad/kCeeeAKAT3/60/zbf/tv13hUDofD4XA4HA6HYz2i1BhYi9Jlomjr0juKx0Gnmas7aq0ryDBUTkiUoZYa2osBVnqksogWBQTgr5GrG5utjhY2WyO9KFe3tVCpglIIlWKjAkZrsBZjDJ6UbLq116KCiL6Va7KmHdF3D23f+MNce7x3O5UTR1ZzdKvGVq/M3WFeqNZWZEK338bwrndkk/mT+OITl7g6kLm4dxYTfuruIeRyV3golbnjghA8mQndG6BG7FLp1h0cUnvw6oJKgE9gfVpt04z7KzSxSIhFQo36T3H7Z4pizVbZ3GEEaZmu4VdJx88x0baPStO2adeIJwUnDndjTBdvDA1wUJ0lUHeKeDs3Vggus4XrtLPfDrKb4WmfLq3EPGQvMWBbOC16qYjNvfAF3oPlMoIzt1oEl4CvYfnwij+6QCB9H6MU0vfRaYIfRVCIsHGMCEOo1UDpLHFjHePpBCxoL0QHRcTB7ajje/FP3a6NPnucuSFbWeQhhMXaBQj8KxFlLgWyuRlTLmM7O9DjY3idnUvvTkb4fjtJMkAYdlGrXadY3LX8cTocDofDsQzuSLH7x37sx/jKV74CwAc/+EF+6qd+ildffXXW/cMw5NChQ6s1PIfD4XA4HA6Hw7GOyCLMa4BZer3utFJ3dZfB82+5uktJSqoNpVgR+JJCIIllMxZJKiMCGyPWyILp1dVtyRJqdVeqCGOyupyej/E9VJygTeb+kXJ9T24vBRF9CyFquTZb+xBbvvgkQt12PVkhGP34+1i+mrv+aJcx90ZDuTZr4ZW4izGaGNz9KMbPRw5/96U+Xn47i1Vt8TU/d2SAgrfMc94o0Cqrze15EEWZY24TIqzgLr2Dnbp3/p0n4ePh2yLNdmYhxWDqQnhaF8BjYpHeFsVJnBjeYAJVYcvw67SNZaJ3uXnHNNFbSkFrTy83bA9N1X5ax88TpqU1GvH6QgmP02IrV2wHd9t+epn+uvRQosuWuGw7OSd6UJu2nrfA8oNk9bvHJrU+iWUPcHjFRyA9D6MURmm0SPHCKFtvVCyCNVjpIZIE6xXX9XuJIHN3Ky8ikFXwQ6ofPkbL2X7ERPXWfvEXXsQ7vAPZmb9PtFYj8Op3cj6g5n5AGYCK6yVvYggaIHaTRZmnExOYag01PLIssRsginopl0+TqlGq1YsUCjuXnnzkcDgcDkcDuCPF7j/90z+99f+vf/3rPPDAA3PsncWQX7hwYYVH5XA4HA6Hw+FwONYjaTqKVmVA4HlLmHS0FmpjmditFURtIMBYGC6n1FJNogydTQEISeo1oUSUubpNbd7uVwSb1euW5qarexHio1KT4sstNoowSgEWo009vnyTTYh6lxHBa7kmmx4mel1QfO1crr382H2kOxcnTG4ECkJxrDCAN+VPezrpoF83Mbz7IVShLbftrYtjfP2FawB4wvKPDg/SU1hmHKrVkCqQXuaQC4NM9N6EhDbgaLqPNtvS8L4lkqItUKQwY+S5xRLXhfCprvC47hRf9CIZBwC+rtE58iat4+eZaNnLRPNO5JSyD0IIqk1bqTZtpVAdoG38PGEyPkuPdxYVEfGS2M0WW+aQ7aOVfDqKBPYywg47xll6uEIndlOKdEUsnwR+FzEpvlzw51h+Blie2DkfQkqknwneXuBjVIoXBBAF2Niru7uzBBiC9f0e7emEJGzJaqFHzWiVoD7+MMH/+M7tneKU+LNPU/jpD04RfQ0IH6xE4GPnFbtvRpkrsPWEkgYsEBSFCBEE2HIJUyxgkyT7GywRzyviea3EcT9B0Emc9FGIti17nA6Hw+FwLJX1fTfhcDgcDofD4XA4HGuIMTHaVNG6hOc1IcQS3KFpJZu0TCuZ+FZ3to5XU5Q2lGqKKJBEgUcsm7AIlIzwbLKmrm7BElzdFqhUQOksvjyMsEKgjcEYjRAgN53DViOir+ZarA2x5e+h4wtfyO/ZXGDsI+9czcGtCj6GE4UBoil13a+kLVxSrYz13kOtNT8J3jdc5U+/deFWmeK/c9cwh9qWG9lvIVGAgCDI4nGXMZm/nukwLRxO9xESTNt2Qw4x4I1QsCGRDXM/QwJEAxabCAQFsj5ne5tKSGcUwm/+rsXq1A/eqPg6pnPsNK3jF3jJ7Kdz+3bCYLroVSv2UCv2EFWHaBs/T5SMrv5g1yHDopmnuYudjHLADhCRX0gTYDhi+9jNCKfpZZCWTVjqYCeWjyL4q1stghrwWSz/gJWeFpaej1Fx5vCWMhO7AZoKoDXWDzJ3t++v6zVwns7ix7UXYoIikhH0we34J/YhTl64tZ9+6zrq2bMEjx6cdLTFYjN3tzBgJfPWTveCLMLcFrKFko2IMgdkSwtmbAxvi0GPjOBvXUZpHiCKeqhUzqHSCaqVi07sdjgcDseackeK3dauzoSRc4M7HA6Hw+FwOBwbmzTN4j+VrhAES3BBWZPV6lZx5uoutAOgjWW0mlBJDNpaOqIQC6ReM0pEgFh7V7fNZp4XJXbXqghlIIkzJ1IQYLTGWosxFiEl63pGeymEzyG84VyTjd9D67fPEAyO5trH/sa7sU2FVRzcyiOw3B8N0iLTXPuQLvBm0km5fQ+l7nwd03I15TNfPUeSZhP+37ttgvduXW79YQtpkv2Mwiy+vLAJ6/Ja2KW3sk9vnyZaGwxv+5fpm3I+TkZYCAlnFMIjGxIRIKdVPF4aIQGhDWi1M5d/UChq9Wj0ySL4zZ+ubniGbxMeEm/y+PNX6Cvs5dF7eihE06fz4mIXA8UuwtpIJnrHw+7lE4KrdHKDNu6yQ+xh+Fag9E2aSThhrzBEM6fppSQ213s0PFKv3327fKPgOvBlLN+/oo8spERIiTUaYwxGG6QnwQ+wgZ+VO6koSNMshWOdIq1GGI32AnRQwBMSZQz+3zxBcLYPOz45zvwFvEPb83HmVtfd3YJsKn6e2t0rFWXe3IweGcFUKuiR0WWL3b7fiuc1kST9+EErSTJEGHY1ZKwOh8PhcCyWO1LsdjgcDofD4XA4HI6FkKajGJ1gbbq0et1JJRO50wp4YebWAUYqCVpbynFKMfDwPUEimzBIlCzg2RQ5n/NnhZC27uq2YpHx5RpRiyFNEMZmoq4AbTTWGqy1eJutVrcYRYRP55qs3orsP0Dr1/5nrj3evZXKw/es5uhWAcuRcIRuP78wo2QCXq51Uyt2MbL9WG6b1oY//vp5RkvZZP897VU+uW9k+UNRCoyBIMxiYAvRpnNp+tbjkNpLl2mftq1KzBvBecqyOsORt7GCWzHjM+8AIf50IZzb//dozHXs49NifVpmqRuu63XDZxLCayIhIb2jxPAP7SrxjUtv8xt/PMA7jnbz2H29NBWmT+slhU4GC52E8Sit4+cp1IbupJdpRrTweFv03qrnvY2Jaft0UeYxe56rtoOzoodEbJYpU1EXta8jGJrU+kK9fvfcpR2Xi/Q8dJoijUGrBOnVFxMUmyBVmeidJtggWNfXs6cTtJclhdioiK6VscUA+UPvQP/+t27vWJspzlyTTcHLSfW750BKEF7Do8wJfESxiJ4oZS7vUhnZsoR720mEYQ/V6kW0qlCtXnRit8PhcDjWjM1y5+ZwOBwOh8PhcDgcDSdNR9G6BIDvNy3u4Juubh1nE5XFVgASZZioKcpxVrexJfKxQCKb0SLEItfU1S3NElzdN+PLtckiScMIpMRYgzEWYwxSCkSDHKPrA4soPI4Qt+tvWiuwtQ/T+aUnkOmkdgGjn3g/yHU8k78E9vgT7ApKubbYSk7WeqgFzQztfse0CfovPXmZSzcyF3dvIeVnDg1Oq/O9aLTK/vlB5uiOCplYsIloNkWOpndRZLpbfUiOcdq/iBLLrHcOICBBkQjFBJXp2y34eHkxnLw7PGjQVJOHpMkWaJqlbrjBkswghN+OTE+xm6xu+Af2xATeGH/wkuLp1wZ4+Eg377q/l5am6a7YJOpgqOcEQTJO2/h5CtWB9awlrgo1EfKK2MUlW+Gw7aOd/GetAHYxyjY7znm6uMQWzFLKl6w7IiyfAn4HMalmtOAvsGwDelfskYXvQZpitEakChvW1yF5EhuGCEu2WCmJIVq/aRyeTlBBESM8TNSEqJXRBvTd2/Ef2Y967tytfWeKM7dW16PMNVgPmOf92vNXLMpcDwxAqtCjI8sWu32/HSkjkqQfz28iTccJgraGjNXhcDgcjsXgxG6Hw+FwOBwOh8PhmAFjFFqXULqMlAXEYl1eSfl2rW4/BJkdP1JJUcZSSTUtkY+UglQUsMKb5OpugGi1BCS3Xd12MfXCazFCa4jjTGSs1+U02gBZhLnnbTJXt38a4V/It6XHid5KaHrl7Vxz+ZH7SHctLy50vdHjVTgUjubatIWXaj1UiBja/SjGzwsXT73az8nTWcR20TP84yMDNPvLFCONBpVmorrnZ2KJv7nOta16CwfV7mnx4hbLRe86l72+1XNEClBolKhSZmYXuWdlFok+gxB+Myq9EUgEBSIKNppRDLdYElReABcJNRJqIqYq4nXtJJ2N9+yMCaTld19t4alX+3nujQEePNzFux/YSlvz9Br1adjGUPcx/LRE2/h5ipW+jfi0G8qYaOJZ9rGNce62/RQmCcAAPoa77QC7GOU0vfTTugmSInqxfD+CP7/VIkjJ6nf/NDD93GkEAoH0PYxSeEGASVO8m5HlxSIkKTYIs4VyQbBuFyp5JgGb1e32/CZ8IdDaoKSg6QceRr91fZ44c525ta1A4GPnu89bqSjzpia0lOhSCRFFBNt3gLf011wIQRj2UKtdJdIx1epFguD+hozV4XA4HI7F4MRuh8PhcDgcDofD4ZgBpcawWLQu43ktizvYTHF1R5mru5poKomiVEuRApqCLM4y8VrQIsDgEZkZ3JSrgQWpJ7m65QJFSGMQtSokKcIYbLEIAqwFrbM6nUKAXKcT2EsjRkTfyLVY04wtv5OOz/9Jrl03FRj/G+9czcGtOK0y4f5oaJr281rcxaiJGN71EGkhH7V95vI4X332KpCF6v7M3YNsL+YFpsVjslqvor7AIvQh2DzTHNIKDqhdbDPd07YlpLwVXGBUlmY4cm3RwlARNSrMnFAhrCAimF4vvP7/kBDZADlWkD1OZAOYoW54SVQ4619hXC63Xvzq8+j2hNCb4L++1IrS8Ozrg7zw5hDH7t7CB0/00tw8ve60CloY7rofv20/reMXaKrcQCxmUdNmQwhu0E4/rexjiH12aFrAdJGUY/YqIxQ5zVbGRWMEx7XjGJZLCF681SIYBL6I5YdYqdUf0vMxSmOUQgt5W+yWAluIENZi0xSRpNjC+nR3CzLBW3kRgawivAClUyJART7Rpx6j9v+ddF8wLc7c1v/5IGy9fvcc19+tKPMUbNC4KHMpkE1NmHIZ29mBnhjH6+hYVpdB0Ekc3yBOBvC8AlpX8LxFpiE5HA6Hw7FMNs+3QIfD4XA4HA6Hw+FoIGk6hjUKY2KiaJGu3GQim5hMK+BHmavbwlA5IVGGWmpoLwYIKUhFhBF+5upG4bFcAXBp3HR1i7qre8ESSKmSCd5Jgg2DWw4hozXWkondUrIhLZSzIKInEFNERht/kJYn3iAYyNefHv/oOzHNG10guU0kFMejAbwp8dBvJ+306WbGe45Qa9ue2zYwWuNPvnEeWz/kk3tHua9zuVH9FuI0+29Yjy8PV8aZuBYUbMjR9C5a7HTBYFyUeCO4QCLSNRjZ8rHC1t3Vc9UNny6GT64d7jWgJEKLbeJYeog+Ocx5/yqpWJv33qVyojfl505M8J9OtZIagTaWF98a4tTpIT5yrJ133b8VHU4X+VXQzEjXvYy3Z6J3c/naHS16GyE5Rw9X6eCgHWAHY9P26aTKo/YC12w7b4seYtGYdIK1wPI3gWsIbtxqE7xar9/9yIo8ppAS4UmM1kjfZD9vpr0UCtg4RoQhxDVQ/rpN5/B0QhK2YBHYQjO2NIK2llQZmo/unDfO3FqNEH79s9AH5nkP9wLQtfrqwcZGmatSCVuroYeHly12CyEJw27iuA8TbaVSvURry5GGjNXhcDgcjoXixG6Hw+FwOBwOh8PhmAGlRlE6c/x53iJqGhoDSQlUfYIyyMSqiTgl1YZSrAh8SSHIxJrM1e2j8YnM2rk0b7q6BYuo1R3HCK2gFmf1qIPbYqM2Gms11lo8sT4nrpeE7IPgZK7Jqn3IoR20Pf4/cu3Jzl7K77h3NUe3ongYjkcDFGQ+fvVa2sz5tI1K204meg7ntlVjxWe+eo44NQC8u6fEh7ZPLH8waQqYTOCWEgrRJogZztii2zik9s5Y+/qq189579qmq0WdQ2TO9UzMn8F1bSHAn1UIL9gAfxHTXVvNFrqSdi7617gmBzfUupz7ulM+/eA4v3WyjVjXUzksfPnUGG9fGORn3tNE3LkPFU5PJ9F+kdEtRxlvu4vWiYs0l68irVntp7BuiEXAa2IHl2wnh20fnTPE9O9gjK12nAu2iwuia4PW8/axfBL4rwjiW62Cv8ayA9i5Io8qpYdOU6wx6DS9LXYLoFgAa7Gply2c89fnAjFPZwt0tBdigiKSEbSxKG2xFqKPzxdnfvP68siWFc4jdksfFKAbG2UuCwVEEGBKZXShkLnqg+Ut4AjDLuK4nyQZRMqI5qa7kHJ9uvQdDofDsTnZiHdlDofD4XA4HA6Hw7GiWGtI0zG0LiNEgJSLcIwm4/U6wjdd3R7GZrW6a6kmUYaW0EMIgRIhRgQoUUCi8ezaODWFZZKrG8xCxB5jEJUapCnCaGwY3RKJjM3qdGeuboHYkILATBhE4SuISUKjtT629iE6vvQEMsn//UY/8f51W3908Vjuj4Zo8/LPcVhHvJ5sISl0MrzjRG6bMZY//tp5hsczQeVga42/u394+Zq0Vtk1FgRZrGuxsDleZwt71XbuVQemCd0azZv+ec75Vze30L0QBKRCUZIVBr1Rrvr9nA2u8HpwjpPhmzwVvcKT4Uu8ELzBa/5ZzvqXueL1MSBHmBBl0hnSM3w8DqjdnEgP02o2Vvzu4S2Kn39onKKfF6rfHg34/3y7SvPlZ+gafIkgGZ/xeOMXGOs8zI3t72aidS9mMy1OWgITosjzYi8viZ1UZqgv72E5wCDvtmfZbke5FVmxodiC5RO5FoFG8FmYQeRvBKLu1jZaYZTCTn7dogjryWzxktGg1mfKgrQaYTTaC9F+Ael5aJ0l4WhjEcWQ6JOP5g+qx5lnz9diMQi8+uKseT63bkaZ2xRs/XOvEQiQzc2YchmMRY+MzH/MfF0KnzDsIkmGMCalWr3SgIE6HA6Hw7FwNsG3QYfD4XA4HA6Hw+FoLEqVsBi0qizS1a3rru5qVoqx7sIZr6YobSjVFFEgiYJs0jeRzWg8tAjwzXJjnZeO1OKW4G3FAp19lQrYeny5H+RiR43WgMVYi9w0QjcQvITw+nJNNnmM6O0Jml46nWsvP3IPyZ5tqzm6FeVQOEqPnxdBysbn5Vo3qV9kcPej0+qJ/tVTV7hwPUsr2BIq/tHhQYLlng5Gg0rB8zPXWxQ1po7pGhNYn/vSg+zR08+ZiqhxKjjNgDe6+gPboGhhqMgaw94417xBzvvXeDO4wKnwNE+Hr3DWv4xiunDUYps4nh7m7nQPgd04YYgHOhT/7OFxWoL8+/fFcZ9ffb6NdHSQ3r5n6Ro4SRiPztiH8SLGOu7mxvZ3M952F0ZsnOffcISgX7TxpNjPadFLOsP0aQHFffY6D9lLeBvSEX8EyztzLYIxBH/OnLWkl4hAIP2sdjfWYtIpgnaxCL6H9XxEkqzEEBqCpxP0zQWQQRPaWqy1pCY7B/x7duE/vD93zM04cwCsrgvdggUFrnoBGFWPMo/n33+ByJYWrDGYSgU9vHyxGyAMe7AY0nSYWu0KxqzPRQsOh8Ph2JxsolkHh8PhcDgcDofD4WgMSo2CNWhTwfcXIXbH41mMeVoFvwDCQxvLaDWhkhi0tbRGmVNMCx8tI5S86eqepX7tSmOzL4bS1mttL8R1G6eItB5fjsgEx5vdWdBaY+oTv3IzOG4BRAkRfSfXZPUWqJ6g48+/lWs3xYixv/Gu1RzdirLLn2BvkI8eT6zkVK2HWIQM7X4UExRy2597fYDn3xwEIJSGnzsyQFuwTEHImiy+XErwfQh9CDa+INdqmjiRHKbTtk7bNiBHOBW8RUWu3WKYTYeAa94gz4ev0yeHZ9xlm+nioeQo23TXuhXdprK3TfO/PzxOW5i/zq6WfH7luXZGapJibYie/ufp7n+BqDbzczdeyHj7Aa7veE9d9N4k7+FLwArJRdHFE+IAl+mY8VTYQoUH7BXEBnR4W763Xqv7NoLTwBMr8ng3o8uN1ug0yb+eQYD1fYjC+n3U2iTdzIevY6yUGOFjomxBozaQ6tvPJvrEw4i2fOR4/IUXMCNlsihzC0jEQhaUSD/bXStQjbtPFIGPKBQwpRImiTOX9zKRMiAIOomTAYxJiONrDRipw+FwOBwL4869Y3U4HA6Hw+FwOByOWUjTUbSuAHbhzm6tIC1DWsl+r7u6RyoJWlvKcUox8PC9TE1OZAsGiRYhvqmtWZlYr65uL7hWt7FQrYBSCK2wUZSrcWu0xlowxtRd3RuoAO4ciOibCJGfaLbxh2h58nWC/rxoNPaRxzAtGysKeTa6vCqHw7zry1h4udZN2QaM7DhBWuzIbT93bYIvP307wvSnDg6xp3mZwoXVkCRAvTa87+UWWWxILOxQPTyQHiIiXyrBYDnrXeFN/wJ6oWkLjkWRCsXp4CIvBacpi+nRzQE+d6s9HE8P0WLWZw3hqexs1fziI2N0RnnX+o2Kx68818ZARSKAQjxCz8CL9PQ9R1QdnLEvK33G2w/Qt+1dVJq2bhTNf0VIhc+bcjtPibsYZPo9QTdljtrrGzDS3MPyw1jyn1eCrwMXGv5oQkqkJzE6izG3akq6QlMRpMT6ASJdn+5uaVKwFuUFqKCIJwTKmKx0S32888WZW1uPMgfmdXevVJQ5mbvb1KqgNHpktCF9hmEP1qak6SiV6iXshkw9cDgcDsdGxIndDofD4ZpjpkkAAQAASURBVHA4HA6HwzGFNB1D6TJCeEhZmP8AmFSruwZ+EYQkUYaJmqIcZ1GOLVE2qWnwULKAkgUEZk1d3cKCNDdd3QuYWa5WEcZCPD2+HEAbjbUGa+3mcXV7FxDBm7kmm96DHOmi7atP59qTHd2UH7t/NUe3YjSLhAeiQeSU9QqvJ1sYMQUmug9Rbd+Z2zY0VuOzXzt/a9L/47tHebBrmTVgjYYkJUsRCMHzIFrgdblOkVZyRO3jgN6FnLIgJCbh5eAM1/yBzbJWZF0zLsucDN7knHd1xmjzVtvM8fQwB9Nd+Hb9R+Zvazb8H+8Yp6eYfy6D1UzwvlG+/b4cJWP0DJ6it+9ZCpX+GfvTfoHhrvsZ6H2YJGxb0bGvd8qiwEmxm5NiNwn5c2EnYxywMy8cWN+01QXv2wgsgs8BE7MdtGSE52ONxRqDnure9jxsGGbv8wBp42K7G4UAPJOivQgrPAgitLFYLKm6LezOHWd+M8pcItYwytxragIh0aUJ9Nho5qhfbp9eAd9vr7u7Y+L4xvIH6nA4HA7HAtgkMw8Oh8PhcDgcDofD0Ri0rmBsglZlPK8JIRagNukUkumu7uFygjKWSqppjnxkXTVMvGYMAiVCfBOvqas7m25doNCdpFktzbg+5miKG9XazN1kNEIKxKaIv00RhcdzLdYWsPH7af/L7yLj/GT96Mc/kDmxNjih0JwoDOBPOS/OJW1cVy1UWrcz3ns0t60WK/7wq+eoJZnI9nBXmY/tHF/eQIyGNAE5SeguFJimwG8giibiRHqIHtM5bduomOBk+BYTcvmRso6FYwVc9ft5IXyDATm9fq1AsN308HBylK16y7p0nE6mu2j4xUfG2daUF7xHYo9fea6dqxN5oTZMxukeepneG09TrNyY0aGcRB30b30Hw1vuuV2z+E5ECAZFC6fEbvSUT+/9DLLTNqb+8eqyH8v7cy2CMoI/IYvdbhzCyxJfjFK3HN45igUQAhuEiEQ1RIBtNJ5OMF6ARWCiYpYybiDV+bFGH39oljjzEhabubuFZN7peRlMijJv4AIATyKbmjClMlZr9PgyP6/rhGEPxtRI03Gq1UvT/8YOh8PhcKwAG/8buMPhcDgcDofD4XA0kDQdBWvRurLwCPN4PItZVnEmdAtBNdFUU02pluIJQVNQr1WJJJVFlCggAN+ukXPppqvbZpP184rd1kKlmsWXqzRzX01ZCGC0BizG2nqE+cZHhM8g5GiuzcbvJTw3QvPJt3Lt5YeOkuzbvoqjWxkkhuPRAEU5JQpZNXE2bScptDOy88HcNmMsn/vGBYbGsvN5T3PC3z8wPPUUWRxa1YVurx5d7mdCyAYWurt1ByfSwzTZ6bHYl7wbvBK8TSrUGozMAZCIlDeDC7wSnKEiptdJDwg4pPbyQHo3zes82ryzYPjFR8bY2ZI/n8YTyf/1fBsXx6e71MO0RNfQq2zte5qoNjRjv5XmHdzY/i7GW/dh7+BpxTFR5BWxc9q6h6P2Bj228Y7olee9WA7kWgQXEXyjoY8iEEjfr5c8sZhkirtbSmyhkNXwFqKe6rG+8Oruau2FmCBbFKm1QRmbWycimqLZ48yNqgvdgvmjzEW9dnea3Ws2OMrcpik2jtEjjVmo4fvNeF4zSdyP0mWSdOb3EofD4XA4Gsmde1fqcDgcDofD4XA4HDOQpmNoU8OiFyZ26zRzdKf1qGa/CBaGygmJMtRSQ3PkI266umUzFomSEb6tIdbIIiht3dVtxQLjy2sIYyBOwPMhyE/OWptFmJu6C2tTRJjLIQifzTVZvQNq99Lx59/MtZtCyNjffPcqDm6lsNwbDdPu5aP1R3XIa/EWtFdgaPejWJn/+3/l2aucvZoJPO2B5ucODxB5yzi3dQoqzSb4gyATugvRtAUWGwVhBfvVTo6qu/CmxB8rFK/5Z7noX3ex5euEUVnixeBNznvX0DNEm7fbFk6kh9mvduLZ9fte1xZZfvGRcfa25QXvUir51efbODs6s8gWpGW6B07SNfAS3s3EkklY6TPecZAb2x+jWuxZ70b3FWNAtPKG2JZrE8D99irtdvrrtr4RWH4IS9uU1u8Cpxv6SNLLrhmrNUol08+fQoSVAsIQoVJQ68vdLa1BGI32QrQX4UmJqj+JdIoTffY485uvqZxUv3uuB/VXJMpcFgqIIMCUSuiJCezUaPklEoa9aFNGqzLVyoWG9OlwOBwOx1ys3ztyh8PhcDgcDofD4VgD0nQErcqAwPOa5j8gKYM1kNYgaAIhmIhTUm0oxYrAlxSC+sQugtRrQoko8/KYtXN1S7MIV7fSiDiux5dbbBRN28UYjTVgjEEKwcZX7Swiehwhbk9cWyuwtQ/T/PSrhDfyTqXxjzyGaV3A+bLOORCMsc3PizRV4/FSrQctfIZ2vwMd5B2tL741yDOvDQDgC8s/OjzAlmgZzjOVglL1RRUBhMGtaNuNSGgD7k8PslP3TttWEhVOhm8x7DUmPtbROKywXPH7eCF8g8Ep6Q6QOVR36l4eTu6hR3eu22jz5sDyCw+Nc7AjL2JVleTXX2jjzeGZBW8BFGsDbLvxFO2jZxBmeuKA9psY6j7GYM+DJEHLSgx/3XNVdHKO7lybh+W4vULTWiW3LJkmLJ+c5tgX/Bkw2rBHEVIiPYnRCixYNeXzQojsPT/wsdLLyqesMzydoOpx/jZqwlqLtnZalDnMHmeuh8frUeYC5hO8VyrKXIBsbsaUy1mq0ehoQ7r1/VakLJAkA6RqLEtNcjgcDodjBXFit8PhcDgcDofD4XDUMSZGmyralPG84vw1p63NHN06ySYr/QhjYaSSUks1iTK0hN6tut+Zq1ugZIRnk3Xh6rbzjcEClXImeKsUG4QzxkhrbbDWYK3dHK5u/w2Efznflj6MHGum/StP5ZqTbV2UHntgFQe3MuzwS+wP86JragUnaz3EeIxsP07StCW3/eKNEl968sqt33/iwBAHWpcqTNgstlyrzMntBxAFMMPiio1Cu2nhRHKYdjtdCLwhh3gpOE1NrD8hx3GbWKS8EZznVf8sVaaLTCEBR9Q+7k8P0mQKazDC+WkKLP/0wXGObsmfa7EW/N8vtvHqYDDrsQJL68RFtl1/kqbS1RnreceFLfRvfZSRziNoOXtfm5WzopurtOfaQjQn7GVCu9HKEuzC8uFci6CG4LNA456L9HyssVij0ekM74FhhPUkhGHmaFbr63X0dQxSYoSPCYsIQBuLUnbaJTJ7nPkT9TswgVh0lHkD/xYtLVhtMOUKergxUeZCCMKwh1SNoXWNavVSQ/p1OBwOh2M2NsEMhMPhcDgcDofD4XA0hjTNhD6lyguMME/AKlC1zHUjJOPVFKUNpZoiCiRRvVa3hVuubhD4Zno92FVhqqtbziN216oIZSCJ67WTpwsZxlqMMRijEUIgxAIiOdc1NUSUr1NqTSs2fiftf/UEsjYl4vvj7wdvY3+97pQ1jobDuTZj4eW4m7INmeg6SKVjd277yETMH3/tPMZk59BHd4zzzp6lRvdaSNOsFmkQZEJ3IcqEjo2IhV1qK/enBwnJXzMGw2n/ImeCSwsrIeBYF4x447wQvsEF7xqa6e7NDtvKifQId6kd6zLaPPLhn5yY4P7u/PtXagT/8WQrL/bNfa15JmHLyBv09j1LGM8giAlBuWUXN7a/i4mWPdgNn+6xCITgDbGdQfL3DU2knLCX8WzjaiyvDo9iuSfXIriG4CuNewhPghAYpbP63WaqQgwUiuB7WM/P3N3r6O1SmhSsRXkhyi8ipUDrbPmgnvpcmC3O/Fo9ztwH4TFvIo4MViTKXAQ+olDAlEuYuIapVhvSbxB0IERAkgwQJwMoVW5Ivw6Hw+FwzMT6u/t2OBwOh8PhcDgcjjUiTUcwOsHadGFid1rJHDZagR+hjWW0klBJNNpaWqPbIlcqmzBIlCzg2RQ5g1iyGkjyru45546VRtRiSBOEsdhCNONcrNEasJhN4uoW0XcQMj/Za2sfIrw4RPMLb+TayycOk+zfuZrDazhNIuVYYXCaYf/NpJNhXaTaso3x3rzwESeaz3z1HJVa5i67v6PKD+0ZXeIILCQJGANBmMWXF6JpdeE3Cr71uEft5y69o3613aZKzKngNH3e8CxHO9YzVlgu+328GL7BkBybtl0i2KW38lBylG7dsa7EOYDAg589PsGDvXmhTFvBf3m5hWeuz7+4JEwn6Ol/gS2Dr+Cp6aKYlQFjnYfo2/YY1UJXw8a+3rFC8LLYxTh5d38bNR6wVxEzOOLXLwLLD2DZMqX1OeCVBj2CQHp+JnRbi5nR3R1gPb/u7jbZgqh1giBbAKK9ECs8RFDAWIu1dlrd7pvMFGde+/wz2NFKvcd5UhFk/TNRK1CNTQSRLS2ZyK00ergxn09CSMKwu35vnVKtXmxIvw6Hw+FwzMTGn4VwOBwOh8PhcDgcjgaRxS2WAOYXu63NxG5VjzD3QkYqCdpYyrGiGHj4XiZ0WbIIcy1CLHLtXN2A1Aus1W2BSgW0QSQJNgxhBiHb2qxet6lP7m54sVteQ4Qv5ZpsehDSu+j482/m2k0UMPZ971nFwTWeAM2JwgCByE/OX0hbuapaSaNWhnc+lKuXba3lT791gf6R7DzeXkz46buni+ULw0CcZCdSEIDvZUK3vzGF7mZT5HhymC7TPm3bkBzjVPgWZdkY15xj7aiJhNeDc7zmn6U2Q7R5RMhRdRf3pQcomvUVw+9L+JkHSjy2PT9uYwX/7ZUWvnt1/vEKoKnax7YbT9E2dhZhpjuXVdDMUM8JBrqPk/pNjRr+ukYLyUmxm8oU0bKbMvfY6zNGwK9fIiyfwk6J1xZ8ERhoyCPIeiKK1Rql0pnXhjQVwZNYP0Ck6bpaQOLpBOMFGAQ2LGaubgupnnmQs8WZ1z77BNYKhPCZ090tBYiViTL3mpoAgS6Xsrrdswj2iyUMuxBCkqQDxHEfuoGOdIfD4XA4JrPBZyEcDofD4XA4HA6HozFYq9FqAqUrSBkh5Txim6qBNVmUpBeQaMtETVGOs8nHluj28UoWscKb5Opem0hTUa/VLWxWLdzOJU7WYoTWEGd1KWeKL4ebQjcYY5BCMG8M57pGIwpfzbVYG2DjD9L8zKuE1/IT/OMfehTTtoAEgHWKwHKsMEiTzE+Y96siZ5IOtBcyuPvRzFk3ia89f43Tl7LI/2Zf80+ODFD0l6BAWANxCtjMued7UCxsWKF7q97CsfQQRfJiocVywbvG6/45lNhoccaOuRiuR5tf8m5gZkjr6LRtPJgeYa/ajlxH0eaehJ+8r8T37MwvvLII/n+vtfD1SwurPS6soW38PFtvPElT+fqM+8TFbvq2PcZoxyGM2JjX9mJIhM9JsYeEfDmPHYxxwDZGJF49tmL5WK5FkNbrdy/fWSykRHoeRimwYGeqy+172WK7KKwvMmyso3k5eDobi/FCVFDEEwKlDcZYZkgyB2aJM3/zCvq58/Xf5nN3B5mzu8FR5ngS2dyEKZWxWqPHxxvSrRAeQdBFkgxhTEK15mp3OxwOh2NlWD932g6Hw+FwOBwOh8OxhqTpGBaL1mU8r2X+A1T1doS5FzFcTlDGUkk1zZGPlHlXtxIBBm9NXd2eBmEzOdqKOVw7xiBqVUhShDHYqDCrhq21wVqD3QwR5sGLCC8vRtj4XcgJn/a/firXnvZuofTuY6s5ugZjuSccotPLT5aP64BX4i4skqHd70CHeTH/pTPDPPFyPwCesPzDQ4P0FJYg4FqdRZdDJmJ4EorFrC78BkNawd3pbg6pvXhTpllSUl4NznLZ79vY60Acs2KE5aJ/nReDNxkR0wUiiWSP3sZDyVG6dPu6caZKAT9+T5nv3TM9aeAP32zmy+cXJngD+Dpmy/Br9PQ9RxBPj3dHSEqte7ix/V2UWnZt+nreFRFyUuxGT3me+xlil91oJQyOYzmeaxEMIPgSjTiZpe9hrcUajZ4tprxYACGwYYBI0nXjkJfWIIxGeyHaixCehzZZgZhUzX6PNXOc+dPYUroAd7efbV6JKPPmFmySYOM4c3c3iDDsBixJOkStdhVj1k8cvcPhcDg2Dxt8JsLhcDgcDofD4XA4GoNSY1ijMKa2gAhzA2kV0hiEoGok1VRTqqV4QtAU3BbslIgwwr/l6vZoXOzkoqiL3DfdhWYuraFUyQTvJMGGQSZEzoCxmaPbWI0QAiE28FdMMY6Insw1Wd0D6YO0ffkpZDUvCo9+4n3gbTxh9iZ3BePsCCq5tprxOBX3oJGMbD9G0pSvt3u5v8wXn7jtyvrb+0Y40r4EZ5nRkKSAyIRu6dWF7o13/hRsyLH0ENtM97Rt46LMi+FbjMqJNRiZY7WpyphXg7O87p8jnsH1WiDkHrWfe9V+Cnb+2tirgRDwo4crfN9dlWnb/uRMM194u7goXTFKxujtf47OodeQM7hOjRcy2nmEvq2PUos6lzP0dc+4KPKy2DnN73/E9tFjN9Z7guX7sGzNtQleBl5cdt9CegghMEpn9btnis+WEluIIAixQmSlL9YJvo5RMrueb0WZG0j17GL3bHHm6sULN3ud/QFXMMpcFosI38eUyujxcWzamL6lDAiCLSTxINak1GpXG9Kvw+FwOByT2XjfJB0Oh8PhcDgcDodjBUjTUZTOJvz9+eqLqnhShHnIUFmRKEMtNTRHPmJS8eLEa0ELH4OPb9fQ1W3ELcF7zlrdcYzQCmpxNqkazC7KGK0AizE3Xd0b160noq8jRN5tZGsfJrg8QPPzr+XaKw/cTXxg92oOr6Fs88ocDPPuS2UFp+IeYutT2rKfSufe3PaxUsIfPX4OXa9F+v6tE7x/W2nxD250FkMr60K3t3GF7i26jePJYVrs9PeLq14/LwdnSIRzsN1RCBjyxng+fIPLXh9mBufrFtPOQ8lR9qhtyDlrSawOQsAP3l3lEwenC95fPNfEl84XZzhqjv6A5sp1tl1/ktbx85kgNwUVtjDY+xCDXQ+gvMX1v5EYFK28Kbbl2gRwv71Ku53+eq9fAiyfxJK/HxD8FXBt2b0L38+Ebmtnd3cXClgpIAwQKs0U5XWApxOQEiN8TNiEEFnijTJ2zoUi/j278B7Yk2tLT50DPMRcYjesXJS5ANncjCmXwNqGurujqAeLIklGqFYvY+36+Ps5HA6HY/Ow8b5NOhwOh8PhcDgcDkeDsdaSqjGMLiNEgJTR3AeklcxNYzQV45FqQylWBL6kENz+mqVEiBEBShSQaDy7dq5uaSe7umeZgTUGUa1BmiKMxobRrPq1tTfrdWcTlhs6wtx7GxG8nWuyyQOgttH5599k8stlwoCxj71nlQfYONplzD3RUK7NWngl7mLChFRbehnbel9ue5JqPvP4OcrV7Pw93FbjR/eNLP7BjaoL3V62iOJmjW659oLforCwV23nXnWAYIooodG86Z/nnH8VO9eiEsemxgjDBf8aLwZvMCqmu3glkr16Ow8mR+nUbWswwul8bH+VTx0uT2v//NtNfOXCwiPNbyKtpn3sLNuuP0Wx0jfjPrWmXm5sfyej7QcxYuMmZczFVdHJWfLJDx6W4/YKTbaBQuWK04Xl47kWga7X754ehb8YZD0lxWiNVunMIrEQ2edFEGClRCTrw90tTRarrrwQ5dfrdtfHn87kUp9E8I4Dud/NxQHscCV7rnPV7l7JKPOWFqw2mEoFPdK4yH0pI3y/nSTpx5iYWu16w/p2OBwOhwOc2O1wOBwOh8PhcDgcaF3CWo1S5YVFmKtq5u4WgolEkmpDogwtYRbHeZNENqOFhxbB2tbqrmeWS+ZxdVcmxZf7QSZGzkImdIOxBikEG9fVnSAKX8u1WFPExu+l+bnXCa/057aNf+870B2tqznAhlEUiuOFAbwpf6q3kg4GdRNp2MLwzofrE+23+fNvX+TGUCZm9EQp//DQIP5iZxN0CmlaF7oD8H0oFKY91nonsD73pQfZo7dN21YRNU4FpxnwRld/YI51SVXGvBK8zZv+BWKmO1aLRNynDnA0vYtoHUSbf3hvjb97dHpiw2dPN/PNy/MsApsFX9foGnqF7v4XCJIZ4ruFpNS2jxvb30W5ecd6KWneUM6Jbq7SnmsL0TxoLxPajZT+cA+WfPy2YBTB51lO/W4hBNLzsEqBBaNneU3CCCslhGFd6J2eGrDaCMAzCdoPsUJCWMgc6tbOGWUO4N29DZry13360gXmdXffjDI39Shz3biFlCIMEFGEKZUxtRqmuryFDJOJol6MTUjVGNXqRew6qb3ucDgcjs2BE7sdDofD4XA4HA7HHU+ajoI1aFPB9+cRu1WtHh2ZoGVIJdXUEo0nIZykAGoRoGU0ydW9Ri4kC8JyKy53VrE7ThFpPb4cAdHcwobWBmsN9laE+cZERE8hptRUtvEHkGVL25fzNbzTnk5K7zm+iqNrHD6G44V+QpGffL+ctnBZtaK9gME9j2K9vJvsGy9c440LWeR5wTP84yMDtASLjB9VKSgFnp85usMgc+htMKG71TRxIjlMp52+2GFAjnAqeIuKXLtFLY51ioABb4QXwte54vVjZxAFu00HDyVH2a22ItY42vz9u2P+zpHpgvf/fKOFJ68uTfAGKMQj9PY9Q8fwG0g9/fPQeBEjW+6hf+s7iMP2GXrYwAjBG2I7A+TvL4qknLCX8WaIel+vWD6MZVeuTfAW8OTMBywQ6XtYa7FGY2arFS3Iyl74PtbzEUm8HI29YXgqwcgAg8AGxcx0bSxKzR1lLnwPf0qUuTp5FoFX/3ycS/AOsrSURkeZk7m7TbUCWqNHlpDiMgue14TntRDHA2hTJUkGGta3w+FwOBwbd0bC4XA4HA6Hw+FwOBpEmo6idRWweN489bqTSuZSNZqq8bBYakpT8Ke7ug0SLUJ8U1sz37O0AlH/OXt8uYVqBZRCaIWNZo8vv7m7MQZjDUIIhNigXy3lAATP55qs2g3qKG1feRqvkhcuR3/gfXO63dcrAssDhQFaZF5AGFQF3ko6sUiGdz2CDlty2189N8K3T/Xd6uNn7h5kR9NiHGQ2c3NrlTm5/QCiYN6FFOsOCzt0Nw+kh4im1Kw1WM56V3jTv4AWrgapY3a0MJz3r/Ji8CZjYrqY7CHZp3fwYHqEDrO26REf2BPzI4emR5r//mvNPHdj6Q50AbSUr7Lt+pO0TFzMklKmkIZtDGx9hKGu+1DeBnuvmAMrBC+LXYyRj4RvI+aYvYrYMC5XD8uPYMnfKwm+Blxccq9CeggpMEpl9btniwAPA6znZ+5uY7KFVGuMZ7LFG8YLUUETnhRoky1r0Wbuv6t/bG/ud3N1GDMwTubuXpsoc6+5GRDochk9Mpq9zg0iinoxpoJWJSrVpZ8vDofD4XBMZYPOSDgcDofD4XA4HA5H40jVGEqXAImUxdl3NAZ0DXQCUlJKBYmyaANRcFsE1XgoWUDJAgKzpq5uaRbg6q5WEcZCPH98OYDRCrBYY+qu7o3l0M2wiMJXEZNeE2s9bO3DBFcGaH7mldzelfsOEB/aM7WTDYDlSDhMl5d3fk2YgJfjbiyC0W33Ezf35LZfHSjz+W/fnoj+4T2j3N+5GNdyXeg2Kost9wIohJlAsYGQVnJY7eOA2o2ccp7HJLwcnOGaP7AxLwHHmlCRNV4OzvCWf5FkhmjzJlvg/vQgR9J9hHYOsWuF+ei+Gj9woJJrswj+2ystnOpf3rikVXSMnmHrjacpVGd2d1abtnFj27sYa9uP2agLqqZghOSk2E1liojZRZl77DXmtAGvK9qx/FDOVC2wCD4HTF/IsVCk52N0lhij0zni3ZuK4EmsH2S1u9f4ZZPWII1CexHaC5GehzEWay1qHqHYO7gV0ZpfAJGeWoC7e3KUOY2NMseTyOYmTKmE1Qo9MUP5gSXi+61IWSCO+1FqnDRtnHPc4XA4HHc2m+Nu0eFwOBwOh8PhcDiWiNZVjInRuoLnNefc2dNQ1czWrGO0CKmmhjjV+FLkIsxTrxmDQK0jV7edTehO0myyOI4RWIjmFiOtvVmv22Bh40aYB68gvGv5tuQR0J10/Pk3mPxymcBn7Pvfu7rjaxB7/Ql2BXmHZmwlp2o9aCSlzn2Ut9yV2z5RTvmjx8+jdPYivLOnxEd2LGay20KagNFZbLnnQyHKRO8NRNFEnEgP0Ws6p20bFROcDN9iQk53vzoc8yKg3xvm+fANrsmBGaPNe0wnDydH2al61yza/Pv3V/kb+/I1e7UV/JeXWnl1cPnXc6AqdA++RPfAi/jpDCKp9Jho30/ftndRadq61ppmQ0iFz4tiDwn5RWU7GOeg3UixzgeA9+VaBCUEfwoszQksvOw1MVqj03R27d/3sEGQ3a/Y+sKqNcbTCapeBsSGTZmr20Kq5z5rhZT4D+Td3enJc/VzXc7j7l7BKPPmFmycYOMkc3c3kCjqRekJtK5SqTh3t8PhcDgawwadlXA4HA6Hw+FwOByOxpCmowBoVZ6/XndayVw0xlDWWX3JWqopTHJ1GySpLKJEAQH4trETkAtmIa5ua6FSzeLLVYoNo3nrKBtjMAasNUgh2JCWVlFBRN/ONVnTgU0epemF14ku9+W2TXzwEXTn2sYKL4Uer8Ld4WiuTVvBqVoPNetTa+5mdNv9ue2pMnzm8XNMVDLxYH9LzI/vH15Eee0sIQBj60K3Vxe656g9ug7p1h2cSA/TZKcnPVzybvBK8DapWPv4XMfGRgvN2eAKJ4O3GBfTF054eOzXO3kwPUy7aZmhh5VFCPihuyt8cE9e8FZW8J9OtfLWcGOu60JtmK03nqFj5C2EmS5car/AcNf9DPQ+TBK2NeQx15KqCDkpdqOnfH7exRC77fAajWrxWN6LZX+uTXAewTeX1J8QAul52Ho0udHzuLuFwIZ+3d29tkshPJ2AkGjho4IinhAobdDGMk+SOf7xvNht+8bQ14cQ+HO7u72bUeYpqAaL3cUiwvMwpRJ6Yhxmq6O+BHy/AyFCkqSfJB1CqcY5xx0Oh8Nx5+LEbofD4XA4HA6Hw3FHc7Net0XPXa/baFC1zD0jJaUUEmUwlpzYnXjNWCRKRvh2DV3dTHJ1z+gbBKo1hDGZOOn5CxIktdZYDMbYDevqFtG3ECIfyW1rH0JUNO1/9USuPe3uYOK9J1ZzeA2hVSbcHw1NE6lfjbsYNxFp2MzQrkdgSjzwF75ziWuDWXRxZ6j42cMDBAv9M9v6uYTN4sp9DwqFrF73BkFYwX61k6PqLrwpzkuF4jX/LBf96xtyjYdj/VKWVV4KTnPav0TKdFGpyRZ5IL2bw+leAru615MQ8KOHK3zPzvx7ZmoEv3WyjbOjjRmPwNJSusy260/SPHF5RvEyiTro3/oOhrfcg5YbqyTCVMZFkZfFrmke6MO2j147viZjWjyyHmeeXwwm+A5wZmk9+j4Wi9Eak8whdkuJjSIIIqwQ9c+etUOaFKxF+xHKLyJv1e22pGpup7vc14Noz99/qlNn60L3HO5uMTnK3DQ2ylyAbGnBlMtgDGpstHFdC0EU9ZCmYxiduNrdDofD4WgIG3NmwuFwOBwOh8PhcDgaRKpG0aoCCDxvDmd3Ws3qQuoYJUJiZaimmsCX+F7dPY0glU0oEWWubrOGrm49j6tbaUQc34ovt1E0b7fG3nR2m2yOdSPWUfUuIYLXck02PQJ6H+1feRqvnBd0Rn/gvRtKrAWIhOJENIA35e9+JmmnXzdhpM/Q7kexXl4s+vapG7x6LqufGUrDzx0eoD1cYBytNZDUxYYwBE9CsTBv/ff1RGgD7k8PslP3TttWEhVOhm8x7G0UEcqx4RDQ5w3xfPg61+XgjEuUes0WHk7uYYfqWdU6xVLA/3JPmUe35z/TYi34zRdbuTjeuOvcMymdo2+xte9potrQjPtUmndwY/u7GG/dh93AU5uDooU3xPZcmwDus9fosJWZD1p3NGP5EeyUFUCCPwPGFt2bkBIhBVarW/cbs1IsZCdnECCUgnnqY68kgszdrb0AK2QmwpMNKZ1nXEKKae5udfICxppJ7u5ZrjEZZIsxjWl8lHlLC1ZrTLWKHmlsbe0g2IIQHkkyQBL3o3V1/oMcDofD4ZiDjXtH6HA4HA6Hw+FwOBzLxJgErStoU8LzinOLt2kFTBbPXFISYyyxMhQm1+qWzVgESkZ4tl4Dew0QdVe3sNkIppV7tUClnAneKsUGYTZhPA9GK8BijUFKj41nb1WI6PFci7UhNn4/wbUBmp9+Jbeteu9+4sP7VnF8y8fDcCIaIJI61341beZC2oZFMLTrYVSUd+K9cWGUb7xw/dbvP3lwiL0tC6yDanRd6BYQBVl0ebEIcuMI3e2mhRPJYdrt9KjoG3KIl4LT1MTaOgfnQ8UJw2+e4/rTLzFx6Tp2jWN9HUtDCc3bwWVOBaeZENMFTx+PA3oXJ9IjtJl5Sm80ECngJ+8t8WBvXlCrKslvvNDG1YnGXu9BWqZ74CRdA6fw0+mvg5U+4x0HubH9nVSKvRu2nvc10cHbojvX5mE5bi/TvFZlUBbNHiwfzrUIqgg+C+iZD5kD6fkYbbDGoOeqxy0ENipAEGClQKyxu9vTCUYGGCExYRNCgNYGpe28Kev+iX253+1QCXO5ry50i9nd3TejzI1qeJS5CANEFGFKJUy1iqnW5j9ooX0LSRh2k6RDGJNSrV5qWN8Oh8PhuDNxYrfD4XA4HA6Hw+G4Y0nTzHWkVWVuV7dWmWNGJeB5lBKIlcFaKNYjzC2CxMtc3SDWztUNeBqEzeY/rZjBUVSrIZSBJM4EyWCWSdRJWAvGaIzJnveGjDAPn0d4+XqoNv4eMM10fP6biEmz0db3GP3+9672CJeFwHJ/NEirlxcHhnXEG8kWQDC29V7ilq257TeGKvzZt27HiH7/rjEe7lqgy8poSNNsQj4Ks4n3YgE2yvlhYZfayv3pQcIpYoLBcNq/yJng0szpCOsAozSj5y5z4a+f4I0/+AJXvvU8Ay+9xfm/+g5v/+njjF246kTvDUpJVjgVvMXb/uUZo81bbJFj6SEOpXtWLdrck/DTD5S4vzsvKpZSya+90MaNcmOvewEUa4NsvfEU7aNnEGb666D9IsPdDzDY8yBJsPp1zRvBebq5QkeuLcBwwl4isgtcdLTmPIblSK5FcBXBVxbdk6gnghitMWk6t1BciLBSZokiWoFavLjeKDyTXRdGBii/iC8EaX3sap7C3XLXFkRX/vxVp85jsXV3t2RGd7cQIFcoyhyQLc2YahW0XgF3dxcgSNIharVrGLO+F5Q5HA6HY32zQb59OhwOh8PhcDgcDkfjSdUoRicYm8wtdqtqpvbqmMQGpMZSU5rIl8i6IzqVxXqt7gKeTZDTKnGuEnWRW9rs656Zar5WGlGrQZogjMUWogUZtK01GJP9zJ7zBnN1i1FE+HSuyeqtkB6j6cU3iS5cz20b/8DD6C1tqznCZXMoHKHHzzuvysbnpVo3FkG5Yw+lrgO57aVqymceP3erpuiDWyr8rV0LjJ41CtIkE7Zv1ujeQEK3Zz3uUXdxl95Rz0K4TZWYU8Fp+qYsjlgPWGOYuNLH5W8+y+v//Qtc+upTjF+4ip0SlVsdHOHiXz/BmT/5KmPnrzjReyMi4Lo3yAvhG9yQM0d6bzVdPJQcZbvuXpVoc1/CPzw2wZEteRF2PJH82vNtDFQaf/0LLK0TF9l2/UmaSldnrOcdF7bQv/VRRjqPoOX8C7jWFULwptjGAHmxs4jihL2Mb9dOwF04AsvHsXROaX0WeG3mQ2btSSB9D1MXrs2c7m6yJBHfx0oPkSSrGvE/GWkN0ii0F6G9EOH7WGsx1pLquf+GQgj84/tyberURaxO60L3HO5usXJR5l5zC1jQ5TJ6dHTGa2+pSOkThltI4kGsVdRqVxvWt8PhcDjuPDbGN1CHw+FwOBwOh8PhWAFUOoY2ZYB56nVXQCdgLSXlYYwlUYaCf9PVDYlsRosQi8Q3jYt6XCyeEbcE72luVAtUKqANIkmwYbhgYVJpjcVgjN2Arm6LKDyOELcdT9YKbO3DiGpK+18+kdtbbWlj4n0PrfYgl8Vuf4I9QSnXlljJyVoPCo+4qYuR7cdy25U2/NHj5xkrZULC7qaEf3BwaCGJ9pl7LE1vJwP4PhQK9cjV9U+zKXIiOUyX6Zi2bUiOcSp8i7JcPzVErbVUBka49tQp3vifX+L8l77FyFsXMMn8rs/a0CgXv/IkZz73FUbPXXai9wYkFYozwSVeCk5TEtPPywCfg2o3x9PDtJqmFR9P6MHPHR/nYEf+/BuJPX7thTaGayvzGeGZhC0jb9Db9yxhbQaXqRCUW3ZxY/u7mGjZM62O9HrGCsHLYiejFHLtrcQ8YK/kkkfWLwUsn8JOcSALvgBMLKon6fmAxSiFUfO8z0UB1vOyRVdGg2qsu3kxeDpBeWFWQiYoIshc3ame/+/nn8jX7bajFczFPsi5u2e4tlYwyhxPIpuaMKUyVqXoidL8xyyCMOzGokmSYarVy9gNsbDD4XA4HOuRjTZD4XA4HA6Hw+FwOBwNwVqNUhNoVUHKCClniYHVKhO6dQLSo5RaqmnmoIyC7CtVKotY4a0LV7e0k13dUyZXazFCa4jjTOReQHw51CPMtcEYgxDMXdt8PeKfRvgX8m3pCTDbaPvqM3ilfD3Y0R94HwSrEwvcCLq9KofDvPBjLLxU66ZqA1TQxNCuR+oT5bf5i+9e5kp/ttijNdD83JEBIm8BgopKs3+eD0GYvVbFjSN0b9VbOJYeokiUa7dYLnjXeN0/hxLrY8I9Hi/R98JrnP7jL/P2n36VwZdPoyqzi/BCSoLm4ozbasNjXPrqU5z+7F8z+valaU5wx/pnXJY5GbzJWe8KaoZayK22iWPpIQ6mu/FtY2toT6Xgwz85McHetrywOFj1+PXn2xiPV+79IEwn6Bl4gS2DL+Op6deDlQFjnYfo2/YY1ULXhqnnbYTklNhNmTDX3kWFe+21hrpqV45tWL4v1yJIEDyzqF6ElAgpsfXyKUbP837VVATfw/rBmrq7PZ2AEBjpo4ImpBRok9XsVvMI3nJbB3Jre65NnbyItWpud/e0KPPGRt/L5mZsHGOTpOFR5lJG+H47STKAMQm12rWG9u9wOByOO4cNNkPhcDgcDofD4XA4HI1BqXEsBqVL80SYV+oR5gk1G6CnRJhbIJXNKBFg8AjW2tVN9kVvmtBtDKJWhSRFGIONCgtOItdaARZrTN3VvTFEzYwYEX0912JNCzZ+N/71QVqeeim3rXp0H7Wjd63mAJdFi0i4PxqcpjO/FncxagoY6TO4+1GMnxd2n3i5j5feziK6fWH52cMDdEXzCbw2E7m1ypzcfgBR3dG9ARBWcDDdzSG1F2/KdEhKyqvBWS77fWt+eqtqjcFXz/D2n32Nt/7wL+l7/jXi0bldkc07etj53oc5+hM/wJG/8zF2f+BRoo7WGfeNR8a59LWnOf3ZrzBy5qITvTcaAq75Azwfvk6/nB6zLxBsN908nNzDNt21oqJfU2D5+YfG2dWSF7xvVDKHdylZuYtJAE3VfrbdeIq2sbMIM/39SwXNDPWcYLD7OKm/8o73RpAKn5NiN/EUd/R2xrnb9q/RqBbLCSz3TWl7EVicCCs9D6MN1hi0mqees+9jAx/CILtnmyv6fAWRJgVr0V6E8gv4UmCMxVqLmue9Nosyz7u71csXsSa7BwMfhMeM0/lycpR5Y2tfy2IR4XmYUgk9PtZw53wU9WJsQqpGqVYvufQRh8PhcCwJJ3Y7HA6Hw+FwOByOO5I0HcUahTHx3GJ3ko8wV8aSKkMhyCaitQgxwq+7ulPkDG67VcGCsCBtJi5ME7tLlUzwThJsGIC3sK+D1oIxGmsM1mZuq42EiJ5AyHKuzcYfABvS+flvIszt18n6HqN/672rPcQlEwrN8cIA/pS/9dmkjRu6GQsM73wIVcjXHj99aYyvPX/bPfW/7B/mYOt8k+N18UCrTOT2AogCCKN5jlsfRDbkWHqI7aZ72rZxUebF8C1G5eJidhuJTlNGzlzk/F9+m9f/+xe59sRJKv0z12i+SaGrg+2PPcCRv/v9HPhbH6Dr6H78KERISeehvRz65EfZ/b2PEXXMXHs+Hh3n8tef4a0//mtGTl9wovcGIxWKt4KLvBycoTxLtPndag/H0kM0m5nd/o2guS54b2vOC2BXSz6/8WIblXRlV48Ia2gbP8/WG0/SVL4+4z5xsZu+bY8x2nEII9Z/akdVhJwUu1FTVt7sY5jddvoCh/WHwPLeKS1V4JXF9VIvFWO0xqRqfmN7sQmkxAY+Il0bd7cgc3drL8QKiQ0KWEBbFhZlPkXsthM19Nl+rNX1VB2RRZpPRa5glLkUyOZmTKkM1qJGxxravecV8f1W4rgfbWrESV9D+3c4HA7HncHGmqVwOBwOh8PhcDgcjgaRpmNoXQEsvj+L2K3TLBZSx1jPp5waaqlCCoi82xHmGg+Dj28bPMG4CKQViPrPaUJ3HCO0gloMUmTR0wvEWoMxYKxBSoHYSF8j5Q0ITuaarLoL1CGKp04Tnc/HZU687yF0V8cqDnDpSAzHowGKMr+44rpq4lyaxaCO995DrXVbbnv/SJU/+eaFW6LBh7eP8+7e/GKA6dSFbqOzc8f3oRBl9VE3AJ26jRPJYVrtdGfnVa+fl4MzJGL1XYBWG8YvXuPS157m9T/4Ape//gwTl2/MGVUctDbTe+Iohz71UQ79yEfoOXaEsGVmx6qQks6Dezj0yY+w50PvJOqcWfROxia4/I1neeuPvszwW+ex88UFO9YVY7LEyeBNznlX0TMstmqzzZxID3Mg3bVi0eZtkeUXHpqgp5h//IvjPv/3yVZqq1BC2dcxW4Zfo6fvWYJ4BjFOSEqte7ix/V2UWnat+3reE6LIy2LXtKIoh20fvXZ8Tca0OHqwHMi1ZFHmC1egBQLpe5i6k9jM59b2JDYMIYyyR0nW5p7M0wlG+hgh0UERTwiUNmhjMfM8fdnbjtzZmWtTpy4Amtvubp9pU/o3o8z1CkWZt7RgtcZUqujRxkaZA4RhL8bUUOkE1crFhvfvcDgcjs3P+l/O6HA4HA6Hw+FwOBwNxlqLUmNoXUYIHylncaem5XqEeUqNCGOhlhqiwEPUI8yVjDAiQGCRdm1iM7EgzSyubmMQ1RqkKcJobKG4qJhmrTUWgzEW31/ZGrCNxSAKX0VMei2s9bG170XUEjq+9N3c3qqzlYn3P7Tag1wilvuiIdq9vBt7VIe8HncBgnL7bia6785tr9QUf/jVcyT1mvP3dVT5kb2j8z4WcZL9DELwvEzo9jfAdIKFvXo7e/S2aZs0mjP+ZQa8xk/azzkka6n0DTF65iKj566ga/OLMV4hpGP/bjru3kvT1i7EImujCynpOLCb9v27GD9/lb4XXqM2PF0MTMZLXPnmc/S/+Dq9J47Sefc+xAITIBxrixVw1e9nwBthv9pJj8mLZQLBDtNDd9LBef9aFn/eYK23s2D4hYfH+ZXn2hiu3f6sODsa8B9PtvG/PThOuAofIVEyTm//c1SatjHWcTfGy3++Gy9ktPMIpeZddIyephCvX6f0kGjhdbZzn73tWBfA/fYaL+AzKtZ3NLvlUQRnb/0u6MdyAVh4qRDp+RilMUqhhUSGwdynbrEISQpBmCXZBAGsciKNr2MSWjEyRPlNRHKY1FgsFqUNoT/3ePzj+0iu3v5sUi9fwv7QO8DTCOFjrSCb0p+SyCID0NUsylzFWQJLgxBRiAhDTKmEaSpiazVEA0uY+H4LntdEkvTjB60kyRBh2NWw/h0Oh8Ox+dkA304dDofD4XA4HA6Ho7FoXcJYhdLluSPM0+qt2ofjqSTVGqUtrVE2UalFCEi0DPBsumY+scmubjvV1V2ZFF/uB7AIwdpa0MZgjEEI6hGaG4TgFMLLR2Ha5DGwHbQ9/h28ibybefRvvTeLd98AHAzG2OrnY4srxuNUrQeDIC52MrL9WG67NpY//tp5Riey83lbMeWn7x5EznnSGohTwGZ1UD0PosKizqG1IrA+h9N9dNrpdasrosYb/nkqsrZq46mNjGcC99uXSCbmc9Jn8b3t+3bScXAPrbu2NUR0FkLQvn8XbXftZPzCNfpefI3a4Oi0/ZLxMle+9Tx9L9RF78P7kN76/5s7IBEpbwYXuGGGOKB20WTzYlRIwGG1l22ii7f9yw2/BrqLhl94aJxfea6dseT2OfvWSMB/PtXKz56YIFiFjxEBNFduUKwOMNG6j4m2PfVax7dRYQuDvQ9SqPTTMXYGX02Pgl8PXBcdRCjutgO32iSW4/Yyz7GPsljPpSQOYtmC4PaCAsEz2EWI3UJKhCcxWiN9g9UaMdf7kRTYQoSwFpumiCTFFlb3NRJYpFEoL8T3AoQXYHWCMZAuSOzeS/KlSak0lQR9+jr+0Z2AB3gIYbG2/vl8k1tR5mnD63YDyNYW9MgIaIMaGSHYvr2h/YdhD9XqRbSqUK1edGK3w+FwOBaFE7sdDofD4XA4HA7HHUeajoE1aF0himaZrFNJvfZhDS08Kqmllmg8ya2JSiULGCQGn8CWVvEZTGIuV3ecItJ6fDkCosVN+GqtwFqsMUiZ1YrcEIgSIso7t63eAskj+H1DtDzxUm5b7dBeavfsX80RLpkdfom7wnyEbWoFp2q9pHgov8jQ7neAzIsBf/nkZS7eyM7RJk/zjw8P0OTPkadqDST1yfIwzGq8FwvT+l2PtJomjqZ3ETE9Zn1AjnDGv4QWKx/VnZYrjL59iZEzl6gNjc5/gBC07tpKx8G9tN21Ay9YmcUXQgja79pJ274dTFy8Tt+Lr1EdmO5wT0sVrn7nBfpPvkHv8SN0HrnLid4bhFE5wYvBm+zSvezW2/CmRB632xYeTI9wzRvgone9odfD1ubbDu9SevtxXx0K+Z2XW/iZB0rMo/U1DGk17eNnaS5fZazjbqpNW6ftU2vq5Uaxm5aJS7SNn0fa6VHwa80FuiiQspvRW20BhgftJZ5lH7FYrwu1BJZ3IPjypLa3gBGgc5ZjpiOlh05TrDHoNJ3/fahQwMYJIgqhVgPlr/oiLU8npH4RC5iwiEgTtDEoLbA2Sx2fDbmlBbm3G3Nx8FabOnUR/+jOeu1uH2s1EJBzd9+KMlfgm0zw9hpXbsRrakYPj6DLZcTIKMG2bXM/kUXi++1IGZEk/Xh+E2k6ThDMXH7D4XA4HI6pOLHb4XA4HA6Hw+Fw3HGkahStq8xZrzutZIKfTqlSwGKpKU3B9xDiZoR5AS3CNY0wl0xydWNve3yMhWoFlEJotej4cgBjNNaYbGJ2lWNAl4OIvoEQeVeTjT8MVtLx+W8hzG1hx3qS0Y+/r6ETtivFFlnjaJiP3DUWXq71ULYBRngM7X4Hxs+7OZ95rZ8X3xoCMkfg/3pokK3FOYroWp3FwCIgqkfAFourHgW7aCzsMN3cpXYhp5zsBst57yrXvIEVXbOh44Sx81cYOXOJ8rX+BR3T1NtFx9176DiwG7/YuFjY+RBC0LZvB617tzNx+QZ9L7xGtX96pHNaqnD1uy/Sf/INeo4fYcuR/cgN4O6/07HCctnvo78ebd5tOnLbBYKdupce3ck5/yoDcqRh18aOFs3PPzTOrz7fRkXdft842R/xe6/CT91fmidVorH4ukbX0CvEpcuMdhwmDackPghJqW0flebttI+dpal8bX0t7RKCN9lGZBW93F5YV0Bxwl7mefaixHq9Jo9j+TqiLspmr+uzWD664B6E70GaYrRCKIm1du5yDoJscZY1WOnVk22Ky3kSi8bTMWnQhJE+yi/ii3GUgRBQxhJ4c59h/vF9JJPF7lcuY39Ek61ryGp2Z6L3VHf35Cjzxord+B6yWMSUSti2VnSphNc6PT1lqQghCMMearWrRDqmWr1IENzfsP4dDofDsblxYrfD4XA4HA6Hw+G440jTUZQuAxIpZ5gAtTYTu3UMQlBKJYnSaANRkE0oaxFi6xHmcq0izC1IPYuru1pFmKze8mLjywGMMRgDxhqkFAjWudB5E+88Ingr12TTe0HvpvjyaQpnr+S2Tbz3QVR3xyoOcGk0i5QHCgPTBKI3ky0MmwIWGNn5IGmxI7f97NVx/vqZq7d+/9F9I9zTMUedaKMhvSl0T6rRvc6Fbmkld6s99JrpbsGYhDeDC4zL+ePDl4JRmolL1xk5c5GJS9exZn6XbNTRSsfBPXQc3EvU3rIi41ooQgja9myndfc2Slf66HvhNSp9Q9P2S8tVrj1x8pbTe8vR/ciNULv9DicWCW8E5+nUbRxQuyiST/gICTii9rFNdHHWv9KwaPM9bZpPPzjBr73QRqxvv3E9eyMikJafuLe8qoI3QBSP0tv3DOXmHYy3H8RMEQKNFzGy5R5KLbvoGDlNlIyu7gDnQgheYScP2Ut0cDtyvZWYY/YKL7Ibuy5LjUTACeCZSW0ngQ/ADOkbMyEQSN/HKIXnW0yq8OYrOxKF2DhGhCHUqqAUrOL7lTRZMo72IpRfJPQkaaox1qK0JvDmHot/bA/JF56/rWPHKfrNa/j378ZaNbu7e1qUuaWRK7xkSwuqvx/SFD0y0lCxGyAIOonjG8TJAJ5XQOsKnre+a9M7HA6HY33gvpU4HA6Hw+FwOByOOwqtaxgTY+oTaDO6g1ScuVtVjBY+1dQSpxpfikkR5hEGgcEntCsjos2HqLu6hc2c5vbmU0lTRJJAHCOw2Gjxzh6tNWAwxuJvGBdniih8LddibQEbvw8RJ7T/xXdy21R7CxMffGQ1B7gkAjTHCwMEU+qxX0hauaoyoXS85wjVth257YOjNT739QvY+mHv7Z3gA9vmiNs3GtIkE7aDm0J3gVVXpBZJ0UTco+6iyU5fuDIqJngzuEAq5nCyLwFrDOXrA4ycucTY+SuYZP5kB7+pQMeBPXTcvYdid+fczsQ1QAhB6+5ttOzaSulqfyZ63xictp+q1Lj25Cn6T75Jz/HDdB09gAzc9NJ6Z8Qb50X5Brv0VnbrrcgpC5g6bCv/f/b+O0iSLL/vBD/vuYpIrSpLa9HVXaK7Wg9G9EhgFAjMAqSRgFEABI9Lcg4kYTy7g+3B+M8RRwNtl+QuyQFv13hLgiCOXCwwg9ECmBbTM9Pd092lu7t0lhYpIjNDufsT94dHZaZnZlVlVkVEZvW8j1lbW/w8XvjLyshwj/d93+/vULqXK95NLnrXMU2INt/Rp/jNQ1P867d6SMzs+/3VqwVCD/7a3krbQzUE0FW5Skf1BlM9Oyh3b4Z5InEa9nBr7dMUq9fpLZ3G13fZINRGjJAcZhPP2BE65wicA1TZb69xjA2rMqXE8izw2ozkKoixHAGWfv2VnodRCqM1Ok2QYXBvCbdYAK2xno+IE6znt60biyCLMtdeiBUC/AiRVtHGkmrLvXzmsrcDuWMYc3Y2IUQdvoB/YDOgyZb0PYQg7+4WouHuTsGPsv830d0ti0WE56HL5azFSZM3EQghCcMh4vgGJlpLtXaR7q69TXt9h8PhcLx/cd9GHA6Hw+FwOBwOx08VqSoBoFSFIBxc/EmqlondWlG1Bay11FNNR5h9hbKAErMR5p5NFn+dFuNpELZh4rktTFgLlczFJFSKjQrLXvy2FrQxaGMQIlt8fBgQ4WsIWcrVbPwC2A66/+JV/Kn8poTJz38Yey932AojsTxeGKVD5sXaG6rI6bQPgGrPBqbXPJI7XosVf/Tdc9STrP/snp46f237xJ3fClqBSrOe3EGQLV4XolUpnMxlSPexW23BZ+GGjIvedUa8a00TN6y11MdKTJweoXTmEqpau+cYGQb0bt9I366tdG1Y81C0AxCN3uFdG4epXL3FjbdOULl6a8HzVK3OtR8dyUTvxx9hcN/OlvUZdzQHIywX/evc9MbZqTYxYHpzxyWCzXotw41o81FZeuC/nz0Din9waJr/5a1ulJ19se9fKhBIyy/vqa7Ix4y0mr7J03RWLjPZt4d6cc2C59Q61lErrKF7eoTu6QtI27ze5vdLKnzeYjPP2gtEzPYXX8cUsfU5JRb2JV95BoA9wKmZiuB1LE+z1DeYkBLpSYxWSN/HKp3Fm9+NIMAGPsKEUK1mqSVtvOb7Oib2ezBCooIOZFzLIswtKG3x7xFlHjyxjXiu2H3yMjZWiMjP3N142Bnhe86GK+lnIncrosylQHZ2YsplvP5+9OQU3uBA814fCMNB4vgmSTKKlBGdHduRMrr3QIfD4XD8VOPEbofD4XA4HA6Hw/FTRZqW0LqORS3er9uaLMJcZRHm04kkUQpjodCIMDciwAoPI0OkVSsWYZ716paNOTXqtXrWkzpOwPPhPhyXWmuwFmtMQ5xb3YInAHIMwtdzJas2Qrof/9YE3a+8nTtW37WZ2oFd7ZzhfWB5LBqj38u7Cid1yPF4EBAkhT7GNzyZO26M5Y//4gLjU9m4oUjx3+8Zxb+TzqrTzJ0lG++Xh0DoFlawXW9gox5ecEyheM8fYdybasq54qkypTMXKZ2+SFy692sKKenesp6+3Vvo2bL+oY36FkLQtXGYro3DlK/e4uZbJyhfWdiHXNdjrr92lFtH3mPNwT0M7tt174hhx4pSFwkn/HMMml52qE0U5sVJR4Q8qrZTFlVuyRKj3gR1cf+buh4bTPnvH5/mS0e60XME7++MFIk8y1/ade+NI60iUDWGRo9QjwYo9e9BBfPaCkiP6d4dVDs30Dt5hmL1+opfEesi5G228LQdwWdWgN/KOHXrc1HcYSPfCmJ5DpETu0exnAWWfh0Wno9JEqwxmbt7KX24ix2QKqwfINIEGwRtu6XxdPY3Y2SI8otEUpAqg7UWZQy+d3ex3j+4hfhP3wDTcG0nGnXyMsGhbYAB4YOd6+5ukIsyj4FOmh1lrqemMNUaqjTRdLFbCJ8wHCRJxgjDYWq1y3R27mzqORwOh8Px/uPh/MblcDgcDofD4XA4HPeJSktoVQHE4n0AVZwJ3jpGCZ9YW2qpJvDljAsnFQUMAr2CEeaeEQtd3Uoj4nhOfPn9OWGMUVhrsBa8h8CJChYRfQ8xJ3bXWomNPwkW+r7yIkLPOeZJSr/wwqoWcwF2BJOs96u5Wt14HI7XYJBov8Do5mczN/YcvvXjy5y7Og1AJA1f3HuL7uAOjkSVZq5uzwc/gNCH+3zftIvQBuxNt9FrF/a6Losq7wTnH0iYg8y1XDp7idKZi4v2r16MzvVr6Nu9hd4dm/Hvo3XAaqZrwxq6NnyUyvVRbrx5gvLlGwueo+sx118/xq0j7zF0cA9D+3bhvc/+Hd5XCBjzJpmQ02zWa9mkhxdEm3fZDrp0B9v1BsqiyqgscUuWqMvlx3o/Ppzytw+U+V+PdmHnCG9fPddB6Fk+vb05vcLvl0I8ztrrr1Hp2sRkzw6sl9+wof0C44P7Cbs20Vc6RZg0ZzPN/TItChxhI4fspdxv7RF7k5iAG6Jnxea2ONuxrEEwmxKRubuXI3Znm++MUggpscYi7tVmw5PYMERYC1UFSdy2a5zAIo1CeSG+FyA9H6sStIVUWwr32BMkugp4u9ahT12bqanDIw2x22KtnuPuDphxd7c4ylxEISIMMZUypqOY9UZv8r9pGK4hSUZJ03Hq9YhicStSOhnD4XA4HHfGXSUcDofD4XA4HA7HTw3GpChdQZsKUhYQYhFXjaplvYu1pmICjLHEytAVzX59UrKAFkEjwvzevXqbjgVpQcx1dVugWskEb5Viw+i+ei0bYzAm+7+UAsFDIHb7JxH+pXwteQrMGgonzlA4nT9W/tAh1HBznUjNZp1XYWeYF1OUFbwdryGxHlZIRjc/iwnyzrafvDPKG+9kfZYFlt/YPcbGjsXeozaLdDU6c3J7AURB1oNzFdNrutibbiNkoUpwXY5x1r+EmdfbfKmYVDF54QqlMxeZvnx91k13FwqDffTt2kLfri2EXYtsnnmf0bluiB2fe4HK9VFuvnWS6UvXFzxHxwk33jjO6G3Re/9uJ3qvYowwjPjXuCmzaPN+u7hIelv43qY3UBY1RuUEo7JEbRnC9zPrElJT5v97vDtX/z9PdxJ68PEtKyt4Cyxd5UsUq9eZ6tlBpWvjgn7eSdTHzbXP0lG5Sm/pDJ5ZmTYmAOOii5NsYL+9mqvvt1dJ8JgQi6TXrBgCy7MIvj6nchrLGLA0J7pAIH0fo1KktZg0XdpnS7EISYINQkTScHe3aSOfp2NSvwML6KCITFKUNvhSYO2999z5h7blxG79zhVsLUEUQ0CD8DJ3NxabizIP5kSZx82NMqfh7i5NgDaoiQmCdeua+/oyIAj6iZNbjVjzqxSLW5p6DofD4XC8v3Bit8PhcDgcDofD4fipIVWTAGhVwQ96Fz7BGkhrsxHmqSRWCmuh2Igw18LPIszF7Qjz+xPWHgSvkVkuYVbYq9cRymSupdt9l+8DrTVgMcbeM2JzdVBDRC/mKtb0YJMPIJKUvq++kjumejqZ+sQzbZzf8umTdfZFeTextXAsHqJsQiwwvuEQabE/95zzV6f55o9mhf0vbJnkiYHF4oHnCN1BkLm6o+i+Iu/bhoVNei3b9HrEvDhWg+GMf4kb3vjyX1Ybpq/coHR6hMkLV7BK33NM0NVB364t9O/eSmFgkc+RnwI61w2x/bMfoXpzjBtvnmT64rUFz9FJyo2fnODW0VMM7d/N0IHd+IXVnRrw00xNxhwPzjJk+tiuNi6INp9Lly3SpYts0xuoiFrD8T2xJOH7ZzYkpLrMf34nn8zwR+92EkjLhzct3zXebDyT0l96j67yZUr9e4gLC8XYaucGasVheifP0FW+vAKzzLgmeolI2W1nHdMSy+P2Mj9hK2VRWLG5LeQglj9HMLupIXN3f2bJryA9iVFgtUapBBmF9w7olgJbKCAs2DSFJM1adbQBTyekQSdGBii/g0BOkRqbSdPaEN6xv0iGf2Az8R+/BrfTabRBHb9E8MxOcu5uocH6gMqeJ71MSTcpaI9sR2Tz0my8zk70xASmUsFMTMDatU1PywnDNaTpOGlaolq7SKGwCSEegg2YDofD4VgRVvE3WYfD4XA4HA6Hw+FoLiotYXSKsck9I8wTfFJjqStN6EtkwyWtbkeYi4DQrECEuQVh5/bqtqA1ol6HNEEYi+0o3NeaprWgjUEbjRA0+nWvbkT0CkLmBV1b/wQQ0v39H+GXpnPHJj//YewqdpkWRcrjhdEFpvz3kn5Gdebinh7aQ613U+74+FTM//EX52fMyM8NVfj0hsVidi0kSfbLDkLwvGzRfzX3lbawXW9k0yL9uevEnAzOU5FL7/lrraV6Yyzrw332Erp+b3HNK4T07dhM364tdKwbQqzyCPx20TE8yPbPfJjqrXFuvnWSqQtXFzzHJCk33zrJ6LGG6H1wjxO9VysCRr0So7JEn+1iSPczaHoXTVK4Tact0qmLbNXrZ4TvUVmiKu/s0n5hc0xqBP/1vbzz+A9OdhJ6lufWr5xbei6BqjB0623qhSEm+/aggvx9g5U+pf69CGvorCx877eLCwwSodjCxEwtwHDIXuJ1thGL+9v81nxC4Engh3Nqh4GPAUsT5YWUmeCtFdL3sUoj/CVszCsUsrjtMETEdazyYSnjHhBpFFiL9kKUXyCSEqs1xrAksVsUQ7xH1qNPXpmpqcMjDbEb8u7uAHtb7BYi6919O8pcpeA38d7H9xCFArpSRvZ0oysVvK6FrUUeBM8r4Pu9xMktgnCAOL5OobChqedwOBwOx/uHVfxt1uFwOBwOh8PhcDiaS5qW0A2B2vMWifdMq2AUmNkI80QZeqLZheLbEebAikSYS5v5WqVtCN0WqFRBmyyeM4zuO57TaA3WYo1pCN2rXNCTVxDh0VzJprtB78QfLdH90pu5Y/Wdm6gd3N3OGS4LH8Ohwi1Cke+vfTHt4pLKYn9r3euZGn40dzxONH/03XPU4syVvK0z5m/sGF/EZGUgTgGbObp9L3N0r3Khe5vesKjQPSYnOeWPoMS93dgA9YkpSmdGKJ25SDJ1740qwvfo2bqB/t1b6dq0FvlQJB2sDB1rBtj2cx+iNjrBjbdOMnX+yoLnmFRx8+13GD1+msF9u1hzcA9+cTW5Th0zCCiJMiVZ5oy9RK/tYkj3MWT6lix8V2cc3yWqor7gcvLJrXViLfjymVkB2SL4D8e7CGSZJ9euDsFbAMX6KIXrY5S7NzPVswM7r3fwRP9egrS8cn28heA91hJZxVpmN3gVUDxpL/EGW1GLtW1ZASzPAD+aScURJFgOA88v+TWk76PiBGs0Ok2QfvHegwRQLGT3OKmX3S8tZdwDIgBfx2gvwooKNigg0graGJReRpT5HLFbn7qGLdcRXQXAYjF3cHfPiTLXcXPFbsDr6kLdugWpwoxPNF3shszdXa2eIU2nqNZGiKL1brOZw+FwOBZlFX+jdTgcDofD4XA4HI7mYa1BqWm0qiBlhJTzFuyNyfp1344wTwT1NBPRoiATjzU+RvgYEeLZtP0R5hakyQRvaIjdtRihNcRxJnLfZ3w5gDYKaw3WgrfqXd0aUfhurmJtgI0/BtbS+2cvIfSsaGylpPSXXmh6zGazEFgeL9yiU6pc/ZYqcCrJ4sqTqIfxjU/mjltr+ePvX2C0lLko+wLFP9g7SujNe29ak0W3YrO+3J6EQiFzdq9WLGzV69ms184rW0a8a1zybtxzP0ZaqWUO7jMXqY1O3P3JAELQtXEt/bu30LNtI164WhyRDwfFoX62/ewHqY2VuPnWSSbPLYx3Nqni1uF3GTt+hsF9O1nz+CNO9F7NCJgUZSZlmbP28pKF7w5bZIsuskWvpyrqM47viqjN/N1+bkeNRMM3zs8K3sYK/j9Hu/gHT0xzYE37N5TdCYGle/oiHZXrTPXuzPp5zxyUjA0eZPjG6yvXw1sIjrOB0F6kn9mkiy5inrCXeYvNmFURAd0H7AXemalkUebPkjVnWQJSghAYpRFSY41FzI9DWYwwmnF3U6+BUm3Z7OXpBOUXMEKi/CKerKJNtldRGUvg3X3u/r5NxIEHjXtSjEUdu0TwgcbmPatAhGBl3t3d4ihz2dGBkBJdLiOikEBvaPo9he934nmdJPFNgqCHOL7m3N0Oh8PhWBQndjscDofD4XA4HI6fCpSawmJQurK4q1vVGjneCbEN0BZqShPNjTCXBSwCLXxCs/TY5GYx6+oWmdBtDKJegyRFGIMtFO97HdMYgzHZ/6UUiKUuOq8UwVsIbzRXsvEHwfZQOHmW4nsjuWPlDz6OWrew7+rqwPJoOM6Al4/TnjYBx+Kh7D3nRYxteW6Bo/C7r1/lzOXMTRgIwz/YO0pfOM/pbHVD6BYQhZlQUCzedwJAu9ii17FFr8vVLJb3/BFueXcWrnWcMHn+MqXTFylfvbmkc3UMD9C3eyu9OzYTdDjh9UEpDvax9VM/Q318khtvnWTy7KUFzzFKcevIe4yeOMPgY5noHXS03mnpeADmCd89tpMh08eQ7iO6S4/vDluY+XueL3z/4q4aiRF8b2T2d6+t4N8d6eY3D03x6KC64+uuBJ5J6J94B2EV5e6tM3XtFxgbOsCam2+1fyNcAyMkh9nMM/YCXcyK7v1U2WevcoyNq2LDl+U5RE7snsByGnhkSeMFAun7mDRFWotJE7xoCa0RBFAogjZYz8/c3Z7f8hAbT2e/Cy1D0qBIhyeppxpjLUobgnsIxCIK8B/biDpycaamDl+YFbtn3N0+VphZd3ero8ylQHR2YiplbH8fenISb2Cgea/fIIrWUa2eJU1LVKrnCMNhpHSShsPhcDjyuCuDw+FwOBwOh8Ph+KkgTUtYozGmThguInqmtUbco6asApSxpMrQ2TE3wjxqRJgLPNtm99Y8V7fFQrmaCd5Jgg19uEfvx7thtAYsxlj81ez2BRBTiOjVXMnqNZA+Cami76uv5I7p7g6mPvlsO2e4LDb5ZTYG+Vjt2EgO19egkVghGdv8LHpev9i3T43xo+OzYu7f3DXOtq5570ujIb0tdAeZ06tYWPVC92a1lq16fa5msZzyLy4qdButmb54jdLpi0xdvIrVZsFz5hP2dtO/ewt9u7YQ9XY3be6OWQoDvWz95AeoP7WPm2+dpHT2UrapaA5WaUaPnmLsxFkGH93Bmif2EnQ60XvVI2BKVJiSFc55V+5L+K4RM+qV+PVdE6S6zkuXZzeaKCP4N2/38I+fmmJX/+oSvAF6S2dIg27iwqy4l0T9lPr20F96b8XmpYTH22zhWXuBiNl/t3VME9sbnGLtKhC8t2BZi+DGTCVzdy9N7AaQUmIAqzVKpcgoWppmHQbY2M/c3bVqdn1scYKHwCJ1ivZCjA4Q0kOg0caSakORe99z+U9sy4nd+uwNzFQV2dO4L7iju7vFUebdXaTT05haDTVRaonY7ftdWe/u+jUCv4da7SKdnTuafh6Hw+FwPNw4sdvhcDgcDofD4XD8VJCqSbSuAnahs9sY0HXQMVYIyinUU4UUEHmZKGjwMCJAiwCJartzSzLr6rZYbBIjtII4ASkgWIKr6Q5YC8oYjNEIQaNf9+pFRH+BELOL+NaCrX8KkPS8+Dr+RL5vaulzH8IW7v/fp5V0iJQ9YSlX01ZwOF5D3fpYYGL94yQd+QXki9fLfP3VWbfsZzdO8txQNf/it4VuKSAIs3jRQiF7vIrZqIbZphfGlJ72L3LTG595bK2lcvUWE2dGmDx3GZPcO/LY7yjQt3Mzfbu3Uhzqd70/20Shv4ctn3ietU/t4+bbJ5k4fXGh6K01o8dPM/bOWQb2ZqJ32NVxh1d0rCrmCd/dtoMh08+Q7qNwF+G7SMRmvZbNrOVf7Yz5fn+F/3Ah4fh0tmknMYJ//VY3v/X0FNt79R1fZyUQWAbGjnFz7bPoOb2fK92bCZMpOqvXVmxudRHwFpt5xo7gM7vxZysTxASMsNIpJ6Lh7v6zOZVzWG4Cw0t7BSmRnodRKnN5qxTPX6JoXSyCUlg/QKQpNgha7+42CanfkUWXBx3INM0izC1oY/HucV32Ht0AkQ9x497HgjpykfDDe7ldsNg57m4P0C2PMhdRhAgCTLmMKRaxcYKImiuoAxQK6ymX3yNObiGET6GwAc9zKSwOh8PhmMWJ3Q6Hw+FwOBwOh+N9j7UWlZbQuoIQ/sIFMlUDY0HH1G2AQVBPDZHvzfSBTGUBC2gRELQ7wtyC1HN6daMRtTqkKUKrB4ovh4ar21qMMQ2hexULgP4ZRHAmX0sfB7MBb2yS7hffzB2Kt2+g9sTS3WLtRGDZF43hibzodzweZMpk4nx5cBfVvi2546Vywn/98/Nok417or/KL2yezL+4UQ2h28v6uPsNoXuVi7sb1Bp26I0L6qf9i9zwxrHWUh8rMXH6IpNnL5JW7v23KAOf3u2b6Nu9la4Na1b9Zo73M1FfN5s/9hzDTz7GzbffZeLUhUVEb8PYiTOMv3OO/r3bGX5iL2H3Iq0nHKsTAdOiyrSscn5G+O5rCN933nRUJOKzAxGfHYArdcW3b1X51q0qR6cT/tWbPfzfnpliU/fqErw9kzI4epSbw09nn7UNJgb2EqgKYTJ1l9GtpSwKHGETh+zFXFOSPfYmMT7XRe+KzS3jAJbvIZjdpJW5uz+/5FeQvoeKdZbak6qli92+hw1DhLVQqUKaQNh8gXYunkpIg06MDEiDIqGcIlUGS+bu9uQ9oswDH3//ZtSb52dq6vDIHLGbhrs7ACsa7m7d+ihzQHZ1YSYnwRhUaYJg7dqmvj6AlBFhOEQc3yQMBqhUz9DTvb/p53E4HA7Hw4sTux0Oh8PhcDgcDsf7Hq0rGKvQd+rXnVYz14uxlJUk1QalLd3R7BKxkoU5Eeb3dpA2E9FwdQub+clttYq4HV/uN4TMB0AbhbUGa8Fb1UJggoj+PFexpgMbfxiAvq++jFCzYoiVgtIvfHTVCrzbgin6vHzs+KW0i5s6c7PWutYyOfxY7niSav7oO2ep1jN318aOhL+9eyxv1tYpKDVH6PahEK3af4fbrNdD7NSbFtTP+Je4JkcZf+cco8dOE0/cW0ASUtK9ZR19u7bSs3U90nfLH6uJqLebzR99hrVPPsrNt99l/NT5bMPRHKwxjJ88y8S75+l/ZBvDhx51ovfDRk74vkrXHOG7eBfhe2PB59c39/Drm3u4Wld8Z7TKd9+N+PRjN1nfee8WBe0kTKfpn3iHicE5wpvwGBs8yPCN1/BMe+8X5jIuOjnBBg7Yq7n6PnuVGJ8JsZJ/Tz7wFDC37cgR4BPA0toYCOkhhMAojZAaO7NhbwkUC5Ak2DBAJGl2L9XC1BNpFcIatBeivAJFKUgAbSDVlsISdHr/ia05sdtcuIWZqCD7b/8ezRx3t53j7g5m2vS0JMq8qwtdKmEqFczEBAwPt+R+I4qGSdMJ6vF1hAxIC1sIgp6mn8fhcDgcDyfu257D4XA4HA6Hw+F435Omk2AtSleIonX5g0aDyiLMjRCUU0E9UXgSQv92hLnMRZhL2rvY7mmQNvNbmzRGpArqMVkf5geL5zbWYAwYY5BSIFi9YreIfoiQ07majT8KFCi8c57iO+dzx8ofOEi6fqh9E1wG3TJhR5B3Y1eMz6mkD4A06mZ849O5BWNrLX/y4gg3J+oAdPmaLz5yi4I3RyRUKWgFng9+AKH/wO+RdrBOD7JLbV5QP+td5qq8xdUfvMXYybP3fJ3O9Wvo27WF3h2b8FdpdL1jlrCni00vPM3wk49y8/C7TLx7Hmvyn6/WGMbfOcf4e+fp35OJ3lFP1wrN2HHfCCiLKmVZ5YJ3lS5bbAjf/XcVvjcUfP7Wph7+1qYebsRrmKpNUI0mmBKVVRNC0lm9Thr2UO6eTeHQfoGxwYOsufVW29uezOW66CVCscfenKlJ4HF7mZ+wlbJYuShoy9PAq4jGPZVAYXkL+OCSX0P4PiZNkcai0xR/qdc7KbGFCGHBpgqSJNsU1iIE4OkE7UUgKhi/iEwraG3QUmDtvfVhb896KIZQm90kpw6PEH5szqa4xdzdM1HmCnRCs6PM8T1EoYAuV5Dd3ehKBa+r+Z/RQvhE0Vrq9auE4RCVyin6+p5u+nkcDofD8XDixG6Hw+FwOBwOh8PxvidVE2hdY9F+3Wmt0bQ6pmoCLJa60hR8b6afr5qJMA8JTL29k2+I3MJKrDWYWhWhVCO+vPDA65VGacBijMX3Hswh3lLkLQjyEeVWbQH1KKSKvj97KXdMdxWZ+tTz7ZzhkpEY9kejOROZtXAiHsQg0V7I6ObnsF7+K/tf/OQa713MBHJPWP7eI6MMFW472S2kKlvM9n3wAoiClkezNoO1eoDdasuC+nnvCle8m1z94dt3FboLA7307d5K364trsfzQ0rY3cmmDz/F8KFHufX2O4wvInpjLBPvnmfivQv0797K8JOPEvV2r8yEHQ+GgLKoUZY1LnjX6LwtfJs+Ouydxde1kc9a1kC6hpiEUa/EqCytCuG7t3SaNOgiLgzM1JJCP5N9u+krnVrBmcEIAxRI2cLETC3AcMhe4g22URdLjP9uOj3AY8DxmYrgDSwfgCVuvJOeh0lTjNFoleKF0dJNxYVC1mM6DBBxjNUBeK3b8OfpBOUXMEKigiJ+vUJqLRGQGkN4j3ML38M/sBn1+uz1UB2+kBe7MZBzd0sQZl6UeZL9v5k/W1cX6tYtSBVmYqIlYjdAEAyQJKPE9at4XpE4vkEUNT823eFwOBwPH07sdjgcDofD4XA4HO97VDqJ1hVA4nnz4jHTSrYAaC0VJUmURRuIglnhV8kCZibCPB873Wo8IxC3Xd31GsJYiG/Hlz/YVzprQRuDMRohWMW9jC2i8F3EnN7W1nrY+icBQffLb+GP56OtJz/7IWxxdTp7d4WTdEmVq51Pe5g0ERbB2KZn0GF+U8bRM+P84OiNmce/un2cPT1x45HN+nMbncWWSx+iEMKVEjCWzvAdhO4L3lUueTe49qPDjB0/s+B40NVB364t9O/eSmFgpXvPOppF2NXBxg8/NeP0Hn/nHFbPE72tZeLUBSZOj9C3awvDTz5Koc9F2T60CKiIGhVZY8QuXfiOCNmoh9moh0lIGZUlRr0Sk6K8IsK3wDIwdoyba59D+7PzLndvIUim6axea/+kZiYneI+1RFaxltl0lAKKQ/Yib7ANJVZms5vlWURO7J7E8h7w6JLGCyGQnpe5s30fo9Ol9+4WIosztxabpllrmGLrnO6ezu4ftQxJ/QKhJ0lSjTaWVN1b7AbwD23Lid3m8jhmdBo5NLvxx1qFyLm742wD3EyUefPFbtnRAVKiy2VEFBFsMC3ZOCCEpFDYQLV6njSdpFI5QxiuQYjVev/qcDgcjnbhxG6Hw+FwOBwOh8PxvkbrOtrUG/26O/ILYroR6ahjNJKqEsSpwpciF2GuRYgSARLd3ghz24gvtxKUwiYxxDECi40e3LFrtMbazNWdCd2rJBN2PsExhJfvOUryLNgBvIkpur//k9yheOt6qof2tnGCS2dA1tka5KPYp3TIubQXC5TWHyTpzEevX75Z4as/uDjz+BPrpvjw2krjkYU0AWMgCMHzstjyYPV/3V+j+9mjtjQ60s8y4l3jonedaz8+yuix0/lBQrD5Y8/St2vLTPKC4/1H0NnBxg8+yfATj3LryLuMnTyH1Tr/JGspnR6hdOYifTs3M/zkYxT6nej9UDNP+O6wBXrTfoLaAFuLd77mhQRsMGvYYNasqPDtmZTB0SPcXPs0zBGPJ/r3EqRlwnT6LqNbjBAcZwOhvUg/tZlyFwlP2Eu8xRbMigiGm7BsQDB7jRe8hl2i2A0gfQ+lNdZoTKqWLnYDhBE2jhFhCPU6KA1+a4R/gUXqFO1FGF0Hz0ekGm0MSi8xynznWkRXhC3HMzV1+ALhJw/MeVbm7gYfZtzdLY4ylwLZ2YmpVLD9feipSbz+/ua9/hx8vwfP6yauXyXwu6nVRujo2N6SczkcDofj4cFte3I4HA6Hw+FwOBzva1JVAkCpTOzOoRoR5jqhZnystdRTTSGY/ao0G2Ee4Jn2u7oBpDWYehWURqgUG0b3XhFdAtporDVYa5Gr1dUtKojo5VzJmj5s8hwAfV99BZnOuqStEJR+8aPkMsJXCT6GfdFYrqat4Hg8iEVQHthBpX9b7vhUJeG/fu8cSmeu9sd6a/zlbaXG0czlj7GzQnfh4RC6h3Qfj6itC4Tui951RuQ1rr9+jNGj7+UHCcGWTzxP/+6tTuj+KSHoLLLhZw6x91c+y9DBRxCLiVDWUjpzkVP/7VuMfO9H1Mcn2z9RR/MRUJV1rkXXONFxkl87fol/c2GSU5W7X4dvC98H0908l+xnV7qZPtNFu9pmh+k0/ePv5ovSY2zoIFqubNqGEZLDYjNl8hsH+qmx317N7ofajsDy3LzKCHB96a8gPYQUGKWyTXzzWyDc/fRQKILvYz0fkcQtfa9kfbtDLKCCIp4UaJOdUpt7n1h4Ev/g1lxNvT2y4HnW6sbmzszdjRCzUebYLMq8yXhdXdg0xdTqqPGJew94AAqFDRibkiRjVGsjGBPfe5DD4XA43tes0tUMh8PhcDgcDofD4WgOWYR5HYvC9+f1EEyrmcPFWqZSSaIMxkJhjliYRZj7gMSzafsmbjNDjrQSkhSrFMQxeH5TxExjDcZYjDFIKRCr9OuhiF5CiHyf9Cy+3Cd6b4TiiXwv58rz+0k3rGnjDJfO3micgsy7U08nfVRsQL1zDZNr9+eOpcrw//vuOcq1TMxfW0j5v+wZxROANZnQjc36cvseFAoPHG3fDgZ1L4+obQuE7sveDUa8a9x48wS3Ds8Ti247undubuNMHauFoKPIhg88zqO/8jnWPLEXeYf3+eTZS5z6P77NyHd/SG2s1N5JOlpGd2j57/aP8d9ujfOXfnKdz75xlf/5Qon3yvcWvtebIQ6ku3l+RvjuRrRY0+2sXqNr+mKupv0i44MHsCucoKKEx9tiC/V5YZ9rmeYRe2OFBO99WPL3Z4LXlvUK0vMx2mCNRaXLvFcLA6znZ9dSY0C17l7P1zEI0DIg9Yv4UmKsxVqLWqJI7x/alntsrpfQ10vznqWZdXd7gMyizK1pRJk3XxwWhQgRBNhKGVMpY5PWbRD1vAJBMEAc38DomErlXMvO5XA4HI6Hg9W5muFwOBwOh8PhcDgcTSJNSxhdBUTe2T0nwlwhiY2glmoCX+J72WK0QaBFiBZhI8JcL36SFiBtJgXKVGHjehZfbi02ak6fRaOzhVBj7OrtdehdRAQncyWb7gW9DZSi789eyh3TnQUmf/YDbZzg0lnrVVjvV3O1MR1xSXWRhp2MbXpmgVv/yy+NcG0si5steoYv7r1Fp2+zxerbi8hhmPXFLBZaFr3aTAZ0D3vVNuQ8weeKd5Pz3lVuvHWCm2+dXDBu80efoX/31gV1x08XfrHA+ucOsvdXPsfwoUeRd9j4M3nuMqf/+Dtc+Par1EZb6zB0tIe+yPJbT00xWNCcqyr+3cgUv/DmdT7z+lX+8/UxpqnedXwwI3zv4rnkALtbLHz3lk4T1vPvvbgwwGTfrtaccBnURcDbYjPpvGXhLUywlfEVmJGH5el5tWNAZbEnL4rwsuuf0RqTpsvX7DuK4EmsHyCStGXubmk1whqMF6K8AkKKzNVtIdVLO6nctgbRm08qUofv7u6eEb1noszTlmxskF1dmEoVjEVPtPazN4rWYrHE8Q3i+BpKrWCbAIfD4XCsOKt0RcPhcDgcDofD4XA4HhxjUpQuo3QFKQuIOT00SSuNCPOUqvYxxhIrQ8G/Q4R5m13d0mT/kSSYNGnEl4dNiee2FrQ2GGOyZMtVGWGuENH3chVrI2z8MQC6X3mbYLSUOz756Q9iOwrtmuCSiYTi0Si/6JtawYl4EItkfONTWC8fb/viW9c4eaEEZCGvf3fPKOuKKnNkJQkgIAqy6PJiEeTqF7r7TTePqu3IeUsRV+UtznlXuPH2SW785MSCcZs++gz9e7a1aZaOhwG/GLHu2QOZ6P3kY8hw8XjoqQtXOP1/fpcL3/oB1VsrIeI5mslg0fBbT0/RF806YM/XFP+v9yr8zeNX+ZF3kvPeVcriXsK3z7qc8L2Fft2DsM1zXQssg2PH8FQ+maTcvZVqx7qmned+KYsCR8Qm5nuJ99ibrLMr0QrgKSyz1zGBBt5c8mghBNL3MCpLQjHLdWf7HjYMIAqzm6TlusOXgacTlJe1ozFBASEEWhu0sUvSn4UU+I9vydXU2xewCwbfdnd7CNEQu2UwG2WuWxBl3tmJNQZTraAnSk1//blIGRBFa0nSMZSuUamcbun5HA6Hw7G6WY0rGg6Hw+FwOBwOh8PRFJTKFmy1KuP7nfmDcyPMlSRWBmuhGMwutiqRRZhbZFv7dc+4uuMUq1JI4kzMDJrT79NojbVkYre87fpZZYRvILy8OGXjD4HtxCtN0/3nb+SOxZvXUn36sXbOcIlYHgvHCUReUng3HiC2PlNr9pAW+3PHTpyf4KW3Z/uV/pVtJfb11TOhO00zZ1YUZpH2xQKsys0KefpMN4+lOxYI3dfkKGf9y9w88g433ji+YNzGjzzNwCPb2zVNx0OGX4hY98x+9v7K51j71D68O4neI1c58yff4/w3X6F6c6zNs3Q0k+EOw289PUl3kP9MPTkW8q+OhVyQN3g7fI83whOc964wvSThe5D9aifPJfvZ00Th2zMJg2NHweZTYSb6HyUJuh/49R+UCdHJcbFhQX2fvcqAXbqrujl0AflWHoKfwDISdaTnAxajMnf3sikWQQhsGCCSpGWR7p5OsNLDCInyi/gCVONUagl9u2FhlLkdncZcWbihJ3N3e8y4uz2/pVHmBD6iWESXy5gkxpRb+z4KwyGECIjjayTpBHEy2tLzORwOh2P1svq/ETscDofD4XA4HA7HfZKmk1iTYmyC580Ru3XSiHGMSfFIjaCuNKEvkQ3ntEWgZYgWARLTvgjz265uZSBNsXEdYSy2EDVNk9ZGY63GWotcjRHmYgIR/jhXsnodpI8D0Pu1V5Cpmj0moPSLH22K673ZbPLLDPl5Z9911cF13UFc7Gd66JHcsdFSna+8PNvr9UPDZT6xbjp7v6ZJJmzf7tH9kAjdvaZrUaH7uhzjjH+JW0ff4/prxxaM2/jhpxh8dEe7pul4iPGjkLVP78tE72f240Xhos+bvniNM3/655z/xssu3vwhZn1n5vDu8POC95FbIf/bsS60gbpIuOzf5HBD+D7nXWFa3F14C/BZ2xC+n0/2syfdysADCt9hMkX/xLu5mpUeY0MH0bI5G9gehBuil1NiOFeTwOP2Ml22vvigFmF5NvdYMA28s+TxQsosFtwojMnSa5aFlFmrmCDECgFxazY5eg1HtZYRqV/E8yTWWswy+nbLzYOIgXyfc/X2wijzhe5uH4RseZS5rdVBKXSptZ+zQkgKhfUoNYVKp6mUT2HtMn/vDofD4XhfsPq/FTscDofD4XA4HA7HfZKqEkpni9s5sTutZs4WnVLRHsZYEmUo+nNd3RE0enZL20ZXNwJhQdYTrFKQxI348uZ8fTM269OdubrFKuzXbRGFP0eI2c0F1gps/VOAJDp9kY5jZ3IjKs/uJ920ts3zvDcdImVPWMrVYuPxTtyPkQHjG5/K9enWxvInL10gVdlC7a7uOr+6fRxhVObovu3u930oFBb0+F6N9JhO9qU78OYtP9yQ45z2LzJ6/BTXfnxkwbgNHzzE4GM72zVNx/sELwpZ++Rj7P2Vz7Hu2QN4hTuI3peuc+ZP/5ypkattnqGjWWzq1vzjp6YozhO837wR8R9PdDLXIFsXCVf8mxwOT/F6Q/ieuofw7eOz1gywT+3k+eQAj6RbGdC99yV8d1au0Tl9KVfTfpHxwf3YVZCsMsIAIwzkaj6GJ+1FCm28/4ENWDbnKoLXlvUK0vMx2mCNQaf3MfdiIds4FwQIlYJuvnAqsEidor0QIxtua8BYUEvs2y2EwD+0NVdTR0YWiTKf6+4GRAjSb22UeUcHSImeLqNLky35N5xLEPTheZ3U46toXaVev9zS8zkcDodjdbLaVjUcDofD4XA4HA6HoylYa1DpFFpVECJEznVQpbWZCPPpVFJPs4W4KMj369bCa0SYt6lftwWpQdZjMAZbr2Uid5PiyyGLMIfMQbQqXd3+ewj/Qr6WHgKzFpSm7ysv5Q7pjgJTP/eB9s1viQgs+6MxPJFfeD6RDKDwKK3djw7z0fovvX2Na6M1AAZCxd97ZBTfpKDSbDE8CCFoRJc/BEJ3t+lkX7oTj3w/8ZtyglP+CKMnTnP1h4cXjNvwM08wtH93m2bpeD/ihQHDhx7NRO/nDuIVogXPscYw8p0fMn3x2grM0NEMtvVqfvPQNKHMf87+6FqBP3ync1HTatwQvo+Ep3g9PM5Z7zJTonzX8/h4DJsB9qkdM8L3oO5FLkP47iudIoxL+bkUBpnsXQWbeoTglBjmOvlo9QjNk/YSgVV3GNh8LM/lp8Zl4MqSx4vGpkWjNSZVyzcuC4EtFCAIsFJmceYtwNMJ2guxgA468IRALaNvN4D/xLbcYztRwYwsFuN9e/Ngw93tBa2NMpcC2dGBqVSwRqOnp5p/jnkUChswpk6SjFOtnse0677d4XA4HKuGVbiy4XA4HA6Hw+FwOBwPjlLTWAxKV/P9ulUjwlzFxNZD2SzCPJoXYa5khCZEYJC0Z6FXIhDGIFOFTRLQChsWmhZfbi1orWeiPeWqi8COEdH3cxVrurJe3UDXq4cJbuUjMad+7gOYzmLbZrhUtgdT9Hr5RfJLaRdjukitez3V/rwj6+KNMj84cgOASBq+uPcmPSIGrTIntx9A1HB0PwR0mQ72pzvx5wndt+QE7/kXGHvnDFdffXvBuPUfeJyhA3vaNU3H+xwvCBh+Yi+P/srnWP/84/jFvOhtjeHCd15l+vL1FZqh40HZ1a/44qEp/HmC98uXC/y39zruKhzGIuWqf4sj4Wleawjfk0sUvh9rCN9b1LosJfoeCCyDo0eRKh8NXu7ZRrW4CpJJhOCE2MA4HblyJwlP2MvItkVD78XSk5/aMtzdAoH0PYzKBN776t0dRdjbLUO0AtX8Nja+jkGAliGpX0AKuG3qTpcaZb6+DzGc/7dShy8s+lxrFeL29VgW2hNlnqbYeh09vrCXeLPxvA6CoJ84vo7WMdXquZaf0+FwOByri9W2suFwOBwOh8PhcDgcTSFNS2ANxtQWiTDXoFPK2kM1IswLwSIR5jLEs2nbQkalBlmpgbHYuI4NffCb97XNaI21YIxpuLpXlztYRD9AyHy0rI0/DoTIyTI933s9dyzZOEzl2X1tnOHS6JEx24PJXK1ifE4lfWg/YmL947ljcaL505dGZtabf33XKJvDakPoDjIXVhRAuNCduhrpMkUOLCJ0j8pSJnS/e44rr7y1YNy65w6y5uAjC+oOx4MiA581jz/C3r/2Ofr3bMsds9pw4VuvUr5yY2Um53hgHh1U/P3HpxckaXzvYpEvn1naZqikIXwfvS18+5eYFGXsXZRsD4+tej171NYlCd6eSRgcO5q5aucwMfAYSdB1h1HtwwjJEbGJMvlrTR81DtgrLRFFF+JheXpe7QQwveRXkJ4PWIxSGHUfYrcAOorg+1jpIZJ4Sb/f5SCtRliD8UOUX0B63kzfbr3E2G8hBME8d7c6PIJdVCw3jUQYDyECkEFLo8xloYAIAky5gi6Xsfez6WCZRNF6LIYkuUm9fgWl7t6qwOFwOBzvL5zY7XA4HA6Hw+FwON6XKDXZWOiys2K3tZnYrRIsUE4l9VQhBUTeHSLM29SvUlgQcYzUFpIEMBA0V9zURmOtwVq7+lzd8joEeaevVdtBZXHWfd/4ATLJL5aWfvGjTetl3iwkhn3RGHLOPgJj4Xg8iEYyvuEQxs//Xr/148uUprP32UeGp3myZyqLFw3CRn/uKHOYPQR0miL70134+Ln6mJzkXf8CY++d58rLP1kwbt0z+xl+Ym+7pun4KUUGPpteeJq+3flkBas157/1A8pXb67QzBwPyoE1KX/nYBk5T/D+xvkOvn5ueekfiUi56o1yNDzN6+FxzviXKInpOwrfa80Ae9U2xBIE0SiZon/i3VzNSo+xoYNo2byWJfeLEh5vic3U532GD1Nmr73RJsH7Keyc8wsMgoXXjTshpERIiTVZko25n57RYYD1vOzaawyo5if8eDpByRAQ2KCAALSxpGbp/8b+E/M+y6br6HOLfY7ZrHf37U1oXrG1UeYCZGcnplIBY9ETE/ce84BIGRBFw8TJLbSOqVTPtPycDofD4Vg9rK5VAYfD4XA4HA6Hw+FoAtZa0rSENlWE8JCyIS6quOHqjqlbD4Ognhoi30PMRJiDkhGGIIswb1OvSqksshaDsZg0wYZRU43XxlqMsRijEVIgVlW/boMofDfXhtpaH1v/BCCIzl6m4/Cp3IjKM4+RbFnX3mkugd1hiS6Zf8+cT3uYMhGV/u3EXfm42pPnSxw+nUV8DkUpf3n9jWxhPQjB8zKhO8iLDquVDlPgQLqLYJ5IMi6meMc/z/jp81x+6Y0F49Y+vY/hJx9r1zQdP+UIKdn80Wfo27UlV7dKc+GbP6By7dYKzczxoDy1NuHX9pcR80TpL5/p4Hsj99cCIhGKa94ox8IzvHYX4XuN6Wev2o5YQh/vzspVOsuXczXtdzA+uL/ZBuL7IhYBb4nNpPOWjTczwTbG2jCDDuDAvNqbsIyWMtLzMNpgjUGn97lpsaMIvof1g6x3d5N/OZ6OsdLDCIkKikgh0MZiTLZJbinItb3IDf25mjo8codn61l3t4waUeZpa6PMjcFUq+jx1ovdAGG4BiF84vgqSTJKkrTj/epwOByO1cBqWt1wOBwOh8PhcDgcjqagdRVjU7Sq4HmdiNsqqrodYa4oK49UG5S2FII5ru5GhLlqZ4S5BVmpZovkaYKVAnzv3uOWgdEayCIy5aoSuoHgMMLLRwjb5ANg+0Br+r7yYu6YKUZMfvpn2je/JTIga2wJ8v1eJ3XI+bSXNOyitDYfuT5dTfnaqxeBrJ/rr229TsEzEAbZ779QyJzdDwFFEy0qdE+IKd4JzjF+5gKXXlwodA8/+Rhrn1p9UfSO9zdCSjZ/7Fl6d2zO1Y1SnP/mK1Suj67QzBwPyvPrE/76Ywvji//re528dOnB0lLSOcL3Cf8cmrxjeMj08Vi6A7kEwbtv4j3CuJSrxYVBJnt3PdAcm0VFFDgiNmHm3QXttrdYb0stP7/ludxjQYUsznxpiMY9lNEao9T9abm+jw38rI2ItdDkKG5Pp1mKuBeh/CKeBN2YqFpi325Y6O5WRy5iF3Wzz3F3CwFeR9YuBdsSd7cIfEShgCmXMUmcubxbjBCSKFpPqibRqkKlcgbbljQCh8PhcKw0q2yFw+FwOBwOh8PhcDgeHKUmwVqUrsyJMDeQ1kDFGKCsJPVE40kI/XkR5nhYvLZFmHu1BJlqhNJYoyBqbny5tVmEuWksnq6qCHNRRkQ/yJWsHoAk69nZ9cOjBDfGc8cnf/Z5TFdH26a4FHwM+6L8PLUVHI8HMUjGNz4FMr+B4Ssvj1CLNQCfWjfJnq5aFpnqeVAsNH3DQ6somoiD6W5C8hG8JTHNyeAc42dHuPT91xc4x9Y8sZe1Tzuh27EyCCnZ8vHn6Nm+MVc3qeL8N16metM5Ah9WPrwp5q/uXSis/eE7nfzwanNaQkx4U5wIzqLRufqA7WFfuhNp736dFVgGR48i54mM5Z5tVIvDTZnjgzIhOjkuNiyoP2avMWDLi4xoJmuxbMtVBK+xVHu1QCB9H9OIHzf3K1R3dICQ2NBHpElTHdACizQpygsx0gc/zO7XrCVdRvS6P69vN9UYffr6HZ49x93tFeZEmbfmfld2dWHqNVAaPVFqyTnmEwR9eF4HtfpVlC4Tx9facl6Hw+FwrCyraIXD4XA4HA6Hw+FwOJpDmk6gTR0ws2K3irNFPR1TMx4WqCtNwfdmnN8zEeYiyBYh2xFhrg2yWkcYC0ZjfK+p8eWQOZusAWMMUgiafoIHQETfR4j8IquNPwV4yKkKPd/9ce5YsmGIyvPz401Xnr3ROAWZFz1OJ31UbcDU8F7SYl/u2GsnbnL2yjQAG4oJv7juZiZuSwnF4gJhfLVSsCEH0l0LhO5JUeZEcI6J85e4+BevLRS6H3+Edc8emE1dcDhWAOFJtnzieXq25QU9kyrOff1lqrfG7zDSsdr5xJY6v7Q7L3hbBP/78S5+cr05gvekLHM8OIuaJ3j32W72pzvx7iF4eyZhcPRodm8yh4mBfaRBZ1Pm+KDcED28J/LtNyTwuL1Ct6219NwL3d3XgEtLHi+9hrtbKXSa3l8KuZTYKIIgysbHzRWFPZ1gZIgFzJy+3VovfbZysAu5ZTBXU4cv3OHZFotpuLt98KJGlHlzhfzbeI3NAro8jZ4sZW1aWowQgijagDFV0mScSuUsxrSnJZHD4XA4Vg4ndjscDofD4XA4HI73HWlaQqsyIPC8YqNYa7hXNBXlkSiLNhAFs6KiFiEg0TJoW4S5N11FGItQJusB2oLYam0M1hqstcjVJKJ65xHBe7mSTfeDzqKFe7/5KjLOu7FKv/CxTBBeRaz1Kqz3q7namC5wSXURdwwwPbg7d+zWRI3vvXEVAE9Yfn3bDQIJeH7Wn3uV/Xx3IrIhB5LdROSFoylR5kRwlokLlxj58x8tWEAfOrCHdc8ddEK3Y1UgPY8tn/wA3VvW5+omSTn/9Zepjban16yj+Xx6e52f35H/bLYI/rdjXRy5Gdxh1PKYkhWOBWdI5/WT7rVdHEh34du7X3OjZJK+iXnXQekxOvR45vZdBVwUA1xgIFfzMRyylyi0NAFnD5a+XCVzdy8NISXCk9mGP2uwWt970GIUCiAFBCFCqaYKtp5JQICRPtovImWjb7cFswzxeb67Wx27hFV3+HmtytzdwkPcjjK3rYkyx5PIjg5MuYLVGj011fxzLILvd+L7vdTj6xhTp1a70JbzOhwOh2PleDi+QTscDofD4XA4HA7HEtE6Rps6WlfwvA6EkJlrSmUR5hpBRUniVONLsSDC3CAx+O2JMK/HeKlGpNmCpAmav7BtrMUYgzEaIUT277EqSBGF7+Uq1haw8UcACM9fpfOtd3PHK089SrItL0itNJFQPBrlxbDUCk7EAxgZML7hqUZkaIbWhj95aQTVcG19bmOJrcVq5uoW2WL6w0BkAw4muyjME7qnRYXjwVkmRi5z8Xs/ApNfrB/cv4v1H3jcCd2OVYX0PLZ+6mfo3rwuV9dxwrmvvURtrLQyE3M8MD+/s8bPbcs7kLUV/P6Rbk6ONUfwLsvqooJ3t+3kQLqLwN792t5ZuUJn+Up+jn4HYwP778+N3AJOi2Gu05OrRWietJcIWpaCI7E8M6/2DjC59FeQHtYYrDHo5D6jzKXARgUIAqwUiPt9ncVe2mRCs5Yhyo/whMAYi8WSquWI3VvzoT31FP3u1Ts8e467WwaAB7a1UeY2TbFxjJ5o3+ahQmE91iri5Ba12iW0bm0SgcPhcDhWltWyyuFwOBwOh8PhcDgcTUGpUuP/c/p1q/pshLmWWYR5qikEs1+JsgjzAlqEjQjz5i1mLoq1yOkqKI0ErC9bki5utAYsxtpV1atbhK8hZH7B2tZfANsB2tD3lRdzx0whZPIzH2zjDJeC5bFwnEDkXV7vxgPE1qe07gA6zPcW//5b17g+li24bu2M+czwGCAyV3cYZO6xVU5oAw4kuymQ7y0/LaqZ0H3pCiPf/SF2nvtt8LGdbPiZQ07odqxKpO+x9Wd/hq5N+cjm24J3fXzpAptj9SAE/NLuKh/bXM/VlRX827e7OTXenE1mFVnjaHCahPy9Q5ft4OA9BG8B9E28Sxjn32NxcYip3p1Nmd8DIwTHxXrGyV/TOkl4wl5G2lbFUz+JndMmQ2ARvLHk0cJvRJlrhdEKe79R3YUIKyWEIagU7uSaXiYC8EyK9kKs8LK+3WTmcbUMB7ns7UBuz/d6V4dH7jxgxt3tZ727jWpEmTf/9ygLBUQQYMpl9PQ09n77py/3vDIiDNcQxzfQOqZSOdOW8zocDodjZVg9Kx0Oh8PhcDgcDofD0QTStITRMRaF7zfE7rSaLeQZTVl5JMpgLBTmOKm1CLHtjDCfmsazIovElB6mBSKntWCMxjQWTFeN2C3HIHw9V7JqI6j9AHT++BjhtdHc8amffR7TnV9kX2k2+WWG/LyAcl11cF13Uu3eQLVvS+7YyPUyPzx2EwBfWP72rlF8dKNXtwC/OS7DVhJanwPpLorzhO6yqHI8OMPE5SuMfOfVBUL3wKM72PChJ53Q7VjVSN9n289+kK4NedFI12POfe1F6hPtieB1NBch4K/urfDBjfnP68QI/ue3ezhXao7gXZV1jganick7ZDtskcfT3YT2zp/xAsvg2FHkvCjp6Z7tVIvDdxjVXqyQHBGbmJ73+d9HjQP2CqIFPZ+hADw+r/YWsDTBVCCQvo9RGqzFpPfpQhdAsQi+j5UeIklolu0+69sdZCJ32OjbbS1K22W10Q6e2Jp7rE5cwsZ3+nlvu7t9kGGWwmJta9zdAmRnJ6ZSyVzspVLzz3EHomgYITzi5DpxcpM0bd+5HQ6Hw9FeVslKh8PhcDgcDofD4XA0hzSdROsKAJ7X0bDH1EHFKKCmJbVUE3gS35sV3rIIc4HBR7Y6wjxJkLUEESdI6WN9j6atms4hE7rBGIMUgpZYx5eNRUTfRcxxQ1srsfEnAYGcrtL7nR/lRiTrBik/f7DN87w7HSJlT1jK1erG4524H+0XmNiQX5yvJ5o/fWlkZuH6v9tSYn1QY8bVHax+V3dgfQ6ku+mwhVy9ImqZo/vKVS58+1Wszgvd/Y9sZ+OHn3JCt+OhQAY+2z79ITrXr8nVVa0heJec4P0wIgX8jccqPLsuLybHWvCv3+rm4tTde2svlZqMORKepk7+PEVb4PFkN5G9c6sKT8cMjh5d4K6dGHiM9PbmvRVGCY+3xWZq5DcIDFNmr73OstTZJWJ5NvdYUAOOLXm89G67uzU6Te7/bisKsJ6XubuNBtWc+Hap00bf7gDtFfAafbstoM3SZ+sd3Jprm0KiUe9cufOA2+5uGSBE1Pooc20wlSp6vH1R5kJ4RNE60nQcrWuUK6fv393vcDgcjlWNE7sdDofD4XA4HA7H+wZjFFqXUbqClAWE8LNe3Q23SlV5GAuJMgsjzEU0E2HutTLC3FqYnEJagTA26wFJa+I/tTZYa7CrKcLcP4nwL+drydNgMmGp95uvIuv5xdbSL3wUvFUyfzIH3v5oDE/kF0xPJAOkeIxvOIT18oLGN354icly9nPt6anziXWT2WK572cqTLC6Xd1Bw9E9X+iuijrHgjNMXL3KhW//AKvz0a79e7ax6YWnndDteKiQgc+2z3yIjnVDubqq1jn31ZeIJ6dXaGaOB0EK+LX9ZQ4N54XoqpL8yzd7uFJujuAdi4Qj4WmqIu8kLxDxeLKboonuMBKiZJK+0qlczUqfsaHHMaI5DvQHJRYBb4stpPOWlTdRYjtjLTjjGiz5OHfBayx1k6CQEunJmRhz+yAR5B0F8D2sHzTN3S1to2+3F6L8AkLO9u1ejtgtuwt4u9flaurwhbuMyM4hRAjCz9zdLYoyF4GPKBQwlTImrmNq7eufHQQDSFmgXruCUlPE8fW2ndvhcDgc7WP1rBY4HA6Hw+FwOBwOxwOi1GS2OKjn9OtOa6BTMJpp7RE3IsyLweyithYBVngYGSJbHWFeLiOVQSYJMgixUmJb4eq2maPbWI0QAiFWw9e/GiJ6MVexpgebPA9AOHKNzjffyR2vHHqEZMfGdk1wSWwPpuj18oL8xbSLcV2kPLCDuCsfOXv83ATHzmZOpoJn+LWdY0ityFzdXiZ0r2Ix2Lce+9NddNpirl4VWWTvxLVrnP/WKwsEhL5dW5zQ7Xho8YKA7Z/5MB1rB3N1Va1x7qsvEk+VV2ZijgfCl/B3DpbZP5T/DC+nkn/5kx5uVJpzrUxEytHgNBWRF/UiQg6mu+kwhTuMhM7yZTrKeUeuCjoYH9zfgruF+6MiIg6Lzeh5d0y77C3W21LTz2d5LvdYcBO4sOTxwvOxxmKNQacP4F72A2zgQxhkonAT+k9nfbsTtAywQiIafbu1gVQvT3j250WZ63euYOt3+Xln3N0+ApltyFStc3ebWg2URo+Pt+QciyGEoFDYgDYV0rREpXoWa5vTc93hcDgcq4fVsNrhcDgcDofD4XA4HE0hTSexRmFMnPXrNiZzduuY1ECiJXWlCX2JlAsjzDV+a13daQrlKlJZBALCENsCBw2A0QqwGHPb1b3ygqOIXkHI/MK/rX8CCMEY+r7yYu6YiQImP/uh9k1wCfTImO3BZK5WMT6nkz7SqJvJ4cdyx6YqCV9/9dLM47+ydYKhKHloXN2+9TiQ7qJrntBdI+ZYcIbSjetc+OZCobt352Y2f+xZxGpJFHA47gMvzATv4vBArp5WMsE7ma6szMQcD0Qg4e89Ps0j/fnr/WQi+Z/e7GGs1pzPrVQojgVnKItqrh4ScDDdRacpLjpOAP0T7xHE+WtNvTjEVM+OpsytGZREB8fFhgUC/GP2GoO22ZtBdmHJ/x0KXl/yaOFl90FGKYzW2GU4phdQ7AApM3d32hx3t6dTjJf17bZBESGyDYvaLK9vt39gcz4JRxnU8ct3HoABLEJGgJf9LPP6xjcLr6MDEOhKGV2azO7R24Tvd+P7PcT1axhdo1a72LZzOxwOh6M9uG+dDofD4XA4HA6H432DUiXUTL/uzkaEOaBjqsafiTAv+vmoUiUKrY8wvx1fbiyeUsioSBaI3fzFPmtv9+vOXntVRJh7VxDh0VzJprtBZ9Gkna8dJ7xyK3d86pPPYXpWR59SAIlhfzSWa61tLByPB9HCZ3zjUyDz760vvzRCPcmE4AN9NT40XAGlAbnqXd2elexPd9JlO3L1OjHHwtNM3LjG+W+8jJnXt7R3xya2fPw5J3Q73hd4UciOz36E4lB/rp6Wq5z9qhO8H1ZCD754aIqdvflr/njd43/8SQ8T9eYK3tMi/z4JCLKNRKZj0XECw+DYUeQ84XG6dwe14ppFx6wEN0UP74m1uZoEDtrL9NhmRlWLBb274V1gaf2fBQLp+5nQbS3mQdzdnsSGIUSNOPrkwcVhr9ErW8uA1C/gCYE2LLtvt+iI8B5Zn6vdPcocrFUgfcBHWAEmbUmUOZ5EdnZgyhWsVujp9raDiKL1GJsSJ6NUqxfQLRL1HQ6Hw7EyuG+eDofD4XA4HA6H432BtYY0nUTrCkIESBlCUgGTgDFMp5J6mi3eRXP6decjzBWiVSGhlSqkKTLR4AUQhJgWxShmQjcYa5BCsPKubo2IvpurWBtg448DICs1er/9o9zxdO0A5Q8+3rYZLoXdYYlOmRd2z6c9TJmIyTV7SQu9uWM/On6T89cyd1unr/kbO8cQ6MzVHXir2tWdCd276Lb5zQZ1Eo6GZ5i4dZ3z33wFk+b/PXq2bWTLx593QrfjfYUXhWz/3EcoDPbl6ul0hXNfe4mkXF18oGNVU/DhN5+cZmtP/nPsVs3jf3qzm6m4OddOJTTHgjNMirzbOcDnQLqLHrP4pi5fxwyOHVsgPI4P7CP1V89GsEtigAvzXNc+lifsJYq2mZHYT2AJZx5ldzdvLHm0bDierdYolT7Y3V6xCEJggxCRqgd2KUurwVqMF6K9Ap4UGGux1qKW+dr+E9tyj/V717DVuwm7DXe3F4EVYGXrosw7u7BJgo1j9MTSNio0C88rEIaDJPFNjEmoVs+29fwOh8PhaC3u26fD4XA4HA6Hw+F4X6BUGYtBq2rm6tYqi2LUCbGRpHjUlSaaH2Eu5kaYt2ZxD6VguoyMUzwEolAEbEtc3QBaG6w12JkI8xUmeBPhjeZKNv4g2G4Aer75Q2QtvxBb+oUXMufzKmHAq7ElyAsVkzrkfNpLvWOI8uCu3LEb4zX+/CdXZx7/6vYJ+kIz6+qWHoThqnR1SyvZl+6kZ57QHZNkju7R65z7+suYJO+I7N66gS2ffL4RF+twvL/wCxE7Pv8ChYH8ppZkqsy5r71IWmmmi9XRLjoCyz96coqNXXnB+3rF51++2UMlbc5ntBaG48FZSiLvZvXx2J/upNd0LTouikv0lU7lalb6jA0dxIjVc408LYa5Rk+uFqE5ZC8RWHWHUcslAg7Nq70FLO3eTUiJ9GTW5sWCVQ8wLymwhQiCACsEInnwVCBPJ2gvez0bRJmr24LSy5Pl/X2bYG6CkbGoo3eP7bZWgwxoeOBbFmUui0WE72PKFfTUFDZt1ntjaYThWhAQxzeox9dQqr3ucofD4XC0DvcN1OFwOBwOh8PhcLwvUKoE1qBNNevXrWpZnreKqWiJNpZEGQpBfnE4lRFaBK2LMLcWSlNgNFJZCMNsoa9Vvbpt1ufRWIMQAiFW+GufmEJEP8yVrF4D6ZMABJeu0/mTE7nj1YO7iXdubtsU74WPZl84nqtpK7L4chkwsfFQTrRW2vAnL15ANxaonx2s8MxQNXN0z3V1+35bf46lkAndO+i1eeElJuVYcIaJsRucX0zo3rKerZ/6AHIVbVBwOJrNbcE76s+LeslkQ/CuOsH7YaQrtPzWU1Os7cinrVwuZ4J3tUmCtxGGE8FZxsVUru41BO9+3bPouM7yZToqV3M1FXQyPri/VVk0y0cITogNjJGPZe8k4Ql7GbGcxtN3wfJs7mcWxMCRJY+Xvo81Fms0On3Ae75CAStFtnFNpY3NbPePZxKMDLAIjF9ECIHWBrXMvt2iEOA9tjFXU4dH7jFKZ1Z5GWbZ6Ua3JspcgOzsxFTKYC26VGr+Oe6ClD5huJYkHUPrGuXKqXsPcjgcDsdDgRO7HQ6Hw+FwOBwOx/uCNC2hdRWwmbM7rYJOsdZQVh71VCMFRHNcpxofK3yMaGGEebUGaYqo1vGCABEVMkdRqyLMtQIsxpiGq3tlncMi/DFCzDp3rAVb/1lAgrH0f/lFxJx/dhMGTH7uQ+2f6F14NJqgIPO/r9NJH1UbMLH+IDrIL+7/xU+ucXOiDkBvoPiV7Y2oTq3IXN0+hNGqc3VLK9iX7qCv4bi/TULKseA04xM3OPe1l9Bx3kXXtWkdWz/1M07odvxU4BcL7Pj8R4n68n8ncWmac197CVWrr9DMHA9CT2T5raenGCrmP+tHpnz+l7e7iZtkQDXCcjI4x6gs5eoSyWNqO4O6d8EYAfRPvEuQ5EXyenENUz07mjOxJmCF4IjYxDRRrt5HjXVM3WHUchkA9uQqgtdhqfdvUiKEwCid9e9+kPhxARQLEPhY6SGSB0sH8nQmvmsvQPkFfJE5uwHUMvp2AwRPbM091mduYKbvvhnHWo2QQSOS3W9dlHlXF1YbTLWKnhi/94AmE4aDSBkS16+RpiXi+Gbb5+BwOByO5uPEbofD4XA4HA6Hw/G+IE1LKF1BCA9pfdAJ6Ji6kWg8aqkm8j3E3AhzWcAi0MJvjatbaZguQxzjISGMENJrWa9ua2/3684Wb1c8wlxUIMi7tkkfB7MegM43ThBezi8yTn3iWfQ8EWklWedVWOfn+/GOqgKXVBfVno3UevMO9PNXp/nR8dmf6W/uHKczMA1Xt4HAz76J+6tLGBZW8NgiQnd629Fdurm40L1xLdt+7meQq+zncThaSdCRCd5h7zzBe2KqIXi3JgLY0VoGCobfemqK/ih/jT5TCvg3h3tImnTptsLyrn+eWzLfs1gieVRtZ0j3LRgjrGFw9AhS5z+Dp3t3UCusac7EmoAWHm+LzdTIJ5dstKWmncPyXO6xYBRYWv9lgcjSdbTGWvvg7u4ownoyc3cbnbWtuU+k1QhrMDJAeVEWuX6ffbu9RzdCNOd3YC3qyN2jzKHRZkX4CER2H90CRBggoghTrmDqdUytvYkYQkiiaD1KT6PSKSqV09gWpS05HA6Ho304sdvhcDgcDofD4XA89GhdxdgUrSp4XgdCNyLMdUJVSVJtUNpSCPJfgZQsoEXWo7Al/bqnpkBrRK2OLHRAELbW1W0MxoC1BikEK+7qDt5CiNmf1VoPm3wgO1at0/OtfLx5uqaf8oeeaOcU70okFHujvOsotZKTyQDK72Bi/eO5Y7VY8eWXZ6NCPzI8zYH+hstT3XZ1e6vO1S2s4DG1nX6bj9BNURwLzjI+eYOzX30RXc8LeJ0bhtn2cx9ErsI4doej1QSdRXb+/AuEPfnI//r4JOe+/hKq7gTvh5E1HYbfenqKnjAvfr07HvD7R7pRTdLErIB3/QvckPlrjECwV21jWA8sGOPrmIGxYwvipccH95H6HQuev1LEIuCUWJur9VOlwzbrb2I7lrzAn7m7l8btFBKrNVqlD57pUyyC72E9P3N3P8ALSp2ivTC7R/Azh/z99O0WoY//2KZcTR2+cM9xVhiECBob9Gi4vJuP7OrC1KqgNXpi4t4DmkwQ9OJ5XdTjq2hdo1a71PY5OBwOh6O5OLHb4XA4HA6Hw+FwPPSkaSlzrejKnAjzBGMNZe1RT7II89CfG2HuYYSPFgEeLYgwr9UhTqBaRQYRRBFSeC11j2itsRiMsSvv6iaB8HC+lD4GjV7Qvd/+EV41H/db+oUXVpHj2bIvGicQ+ffFO3E/deszsfEQ1gtyx77+w0tMVTKX2FCk+MvbStmB270vAz/r1R2sHnFYWNirtjFg8tG5mdB9hrHJG5z76ksLhe71a9j+6Q8hV9HP4nC0m6Czgx0//1HC7s5cvT5WygTvuDXOSEdrWdeZOby7gvz1+thoyP96tAvdrMu4gFP+CNfk6Lyy4BG1lXV6cMGQQjxBb+l0rmalz9jQ4xixWq6fcIsuEvLz2WAnm/TqAsuz8yqngbGljRYC6XkYpcCCUQ/o7g4CrO9DFGbi8AO4xT2dYKSPQaD9ArLRt1svs283gH9oW+6xOX8LM1G5xygNQoKVCLyWubu9zk5AoCsV9ESpZaL63SgUNmBMTJKMUa2dxxj3ee1wOBwPMyu9+uFwOBwOh8PhcDgcD0yaltCmDhg8ItBpFmGuJRpJXWmKgYcQi0WYB3jNXuAyJnN1JwkiTZEdXYiG+NyqCHNjbzu7DUJkMY0rSnAMIfICqU2fzg5dvknna8dyx6oHdhHv3tK26d2LzX6ZQS8vxl9THdzQnZQHdxJ35l1lR8+Mc+JcCciW4X9t1xgFr7Eync5xdUdhG2a/NG4L3UOmL1dXaI4HZxmfvsm5r724oAdxx7ohtn3GCd0OB0DYlQneQVfeWVsfLXH+6wuj/x0PBxu7Nf/oqSmKfl6Ee+tmxH843sUyWyjfGQFn/Etc8Rb2Dd6ttrBBLYwo7ypfoqNyLVdTQSfjg/ubvW3vvrFCco38JqoNlBDLVWzvyEEshVxlWe5u38NaizUakzahIXtHEaTE+gEivX939+37UeOFKL+AJ0DdvpVYbpT5I+uhmL/nUEdH7vDsWaywCOE3EpJac8+KJ5GdHZhyGasVulxuzXnuNgWvSBAMEMc3MDqmWj3f9jk4HA6Ho3k4sdvhcDgcDofD4XA89KRpCa0qgMAztrFAl1JRHqmyaANRkHcYzY0wl83u1z01nS0QVmuIQici8Oe4uluzFG20AizWGKT0WNkIc40If5Kr2HQnmEEwlr4vf5+5hmkT+Ex+7sNtnuOd6RApu8NSrlY3Hu/GAyRRD5PDj+WOlcoJ3/jR5ZnHn1o/zZ6ehtBvNNBwdXsSVkvkt4VH1DaGTH+unAndZxibvsm5r76Imue+71g7yPbPfBgvyLvaHY6fZsLuzkUF79qtCc5/42V00uRrjKMtbO3R/MMnp4m8/HX79esR//lkZ1MF73PeFS55NxYc2qk3sUkNz386fRPvECRTuXq9uIbpnu1NmtSDc0X05R5HaIaYbtKrh8CT82qHgfrCpy6CkNkGSKN01r/7QZ3FnocNw2xDmwXS+4tsl9Zkfbu9AOVnfbuttRhr0cuNMvc9/P2bczX19r3FboQBBNiszUnzogzyyM4ubJxg4wQ93v4oc4AoWofFEMc3qNevoFT7RXeHw+FwNIe2fstOkoQjR45w7tw5rl+/TqVSIQgC+vr62LJlC/v27WPTpk33fiGHw+FwOBwOh8PhaGBMjDY1tC5n/bpVHXSCNoaKDqmnGl+KXIS5wcOIAC0CJApJExfy6nEWYV6tIbB4nV2Zy1oIrGmCe2gRrAVjNMYYrGXlI8z99xAyv6Bt0yxytOPNd4gu5Rf0pz/+DLq/u23TuxsCy/5oDG9efPmJeIBU+IxvfCqL+GxgreXLL40QJ5n7aUMx4Re3lG4fzVzd8nav7lUiEFt4RG1lzTyhW6M5EZxlrJw5utNKLXe8ODyQCd2r5edwOFYRUU8XOz7/Aue+mv/bqd4c5/w3Xmb7Zz/i/nYeQnb2Kf6vh6b412/1kJrZTWSvXCkQeJa/+kgV0Yy9ZQIueFcxGLbq9blD2/VGJJKL3vWZfWzSGgZHj3Jz7bMYb9a9O9W7kyCZpljPR6OvBBURUbJF+pj9e9hoS9wSPU15fcszwI9m2tAIEiyHgeeXNF76PjpNkcai0xQ/ih5sQsUCJAk2DBFJgvWD7Pq/TDydoGUIZH27RVrN0tGNpbjM1/IPbUW9cXbmsbk0hhmdRg7d/Z7LCoOwMotONzrbrNdkZLGI8DxMpYwuRNn9UpsTY6QMiKJh4vgGYThEpXKa3t5DbZ2Dw+FwOJpDy68g58+f54/+6I/45je/yeuvv45Sd1/cWb9+PZ/61Kf4whe+wGc/+1n81bLr3eFwOBwOh8PhcKxK0jTrAal0lcDrAqNAx9S0xCCop5qOcKGr2wJaBARmaS6gJWFtFl+epogkQXR3I6REIrHGYFvk6rbWYEz2fykFK+vqtojwjXxFbwC9EVGt0/vNV3PH0qE+pj+yehYWtweT9Hr52OGLaRfjpsjk2sdQhfwi/Q+P3WTkeuYE8oTl13eNEdxeEzYGMOCFq8fVbbNo3GEzkCtrDCeCc4xWbnL2qy+Slqu548WhfnZ89iN4qyiG3eFYbUS93ez4/Ec5+9Xv51IRqjfGuPDNV9j+2Y+4+P+HkEcGFH//iWn+7dvdKDt7ff2Li0V8Ab+8p3mC90X/OgbLdr0hd2irXo9EcsG7OnOJ93WdgbFjjK55krkTGB/cz/CN1wlU/nN8Jbgi+uizs2L3EBUimxKLZmz86AP2Au/MVASvN/p531ucFZ4HaYrRGq1SvDB6sN+jlNhCAWHBpikkKRSWL6B7OkH5haxvd1BE1msoY/CNwFqWNUdv1zrojKAy6zRXh0cIP7n/7gMFjSAigWhspGz6raUA2dWFKZfx+vtRkyX8oaEmn+TehOEakmSMOL6G9CKSZJQwbP88HA6Hw/FgtGy7/5e//GU+/vGPs2vXLn7nd36HV199lTRNs34od/nv6tWr/Kf/9J/4whe+wPr16/nt3/5tLl++fO8TOhwOh8PhcDgcjp9K0rSE0QnWpnhGgDWgEiraI1EGY6EwT1xI50SYe7aJ/VSnpkEpqFTB95FRBwKZLYDa1sRAAiilsRiMsSvv6vYuILxbuZJNngGg97s/xpvnFi79pY+sDhEY6JEx24N8LGzF+JxO+qh3rqE8uDN37NpYle+/Ods39XMbJ9nadTuueBW6ui3sUptZZwZzZY3hZHCWW9WGo3ue0F0Y6mP755zQ7XAshagvE7z9Yr6fcOX6KOe/9Upz+gM72s7+oZS/+/j0gtSP74wU+f0jXdSb+Gu97N/grLdwLXSzXssOvTHXDaUQT9BbOp17npU+Y0MHMcJjpblBD2rO8rMg693dLDJhexbBBHBmSWOFEEjPwyoFFoxuQruBQoSVAsIQoVJQy7/3kyabh/FCUr+AJ0E3ep0vt2+38CT+41tzNXX4whIGCiw6izE3mmYGIM1FdnVhtcbUauiJUmtOcg+EkBQK60nVJFqVqVTOYJvWW97hcDgc7aLpqyBf/vKXOXjwIL/0S7/Eiy++iLWWKIp4/vnn+c3f/E3+43/8j3zzm9/ktdde49SpUxw5coTvf//7/Mmf/An//J//c37pl36JTZs2Ya1lbGyM3/u932P37t188Ytf5ObNm82ersPhcDgcDofD4XjISdUkWmfOWl+LLMLcWqrap5ZqAk/ie7N2FIOcE2GumxdhniRQrUG1jrAW0dmNFBIpJBiDbdFKobFgjMEYgxDZot1KssDVbfpB7SK4eovOHx3LHavt20H8yLY2zu7OSAz7ozHkHOeSsXA8HkTJiPENefe5UoY/fXEE3WjaurUz5jMb5wjlt3t1+6ukV7eFnWoT603erWQwnAzOcauW9ehOpiq544WBXnZ87gX8+3CnORw/rRT6e9jx+Rfw5v3dVK7e4sK3f4C5R+qhY3XyxHDK3z5QnonNvs1bNyN+97VeblSad/296t/itH9xQX2jHmaX2pwTvLvKFylWruWep4Iuxgf2tShPZuloIblOPhFlo53MknCawlYsa3MVwWtLHi19D4vNBNdmbEQRIoszD3yslIhk+RsqpTUIozFegPZChPSwNhO80/vonx08kRe7zbUS5nppCSNt4/fkIYyhFW8mEQaIKMKUy5haFVNrYtrSMgiCfjyvg1r9KkqVqdevrMg8HA6Hw3H/NPXb9sc//nFeeuklrLUUCgU++9nP8qu/+qt87nOfIwyXtwP8zJkz/OEf/iF/9Ed/xKlTp/jSl77EH/7hH/IHf/AHfP7zn2/mtB0Oh8PhcDgcDsdDirUaraZRuoq0XrYArWKqWmIsJMrQGeW/9uQjzOPFX3j5E4HJKVApIomxHUW8IEQgQEqMbp2wkb22xRrTcHWvYIS5vI6Ytzhvk2fAQt9XXkTMWdy2vkfp8x9p9wzvyO6wRKfM/57Op71MmoiJjY9jgnynzO++cZVbpWxR1heWv71rjNm28BZSnTm6xSpwdVvYoTeywazJlQ2Gk/55btVucvarL5FMlXPHCwO97Pi8E7odjvvh9t/Pua+9iK7PCl7lKze58O0fsu3nPoj0V95561gez6xLSHWF//1EJ3bO9fZaxeefvdbLbxwoc3BNExzCwHVvDINlj9qS3U80WG+GkEpwyr8IIrvq90+8gwq6SMPZXsz1jmGmk230TF9oynzulyuij022NPO4SMoAFcbpasKrCyzPIfizOZVzWG4Ba+487PZzpYeQAqMVQntYYxAPmpATRtg4RoQR1GtZ4s8yN7x5JkXJkBCBDSJEqjDGovXyFWe5fQ2ip4idmk3WSQ+PEH267x4DPaxOEbaANSlQpBUWb9nViZ6YAK3RExPI4vp7D2oBUbSBavUMaTpBtXqOKFqLlKsglcfhcDgcS6KpW/5ffPFFBgYG+Gf/7J9x/fp1/viP/5gvfOELyxa6AXbt2sU//af/lHfffZeXX36ZT37yk0xOTvLWW281c8oOh8PhcDgcDofjISZNJ7FYtK7gWQlWg06ZVpJYZxHmxWBhv24jfEDi2eYsSFMuQ5rOiS8vIoVECA+sbZmr21owRmf9wC0rHmG+0NXdAeljdLz9LtGFvOts6mNPowfybq+VYtCrsSXIC72TOuR82kO1dxO13o25Y2cuT/H6ydmo9l/aWmJ9xxyhXM9xdfsr7Oq2sF1vYKMezpUNlnf8C9yMs+jyZHI6dzxqOFPnRzE7HI6lUxzsY8fnXljQAqB8+Toj3/0hRusVmpnjQfiZjTH/8MlpOvz8tb2mJP/m7W6+dq6IaZIL9qY3zrv+Bew8W+1aM8hetY3bqerSGgZHjyB13kk81buTWiHfuqLdTFFgmvymqY1zxO8H5wCWjlxlWe5uz8dogzUWlTbhvlAAhSL4HtbzM3f3Mt8Pnk6w0sMIifYLSCnQxmZpPst8LSEl/jx3tzo8cu+obiGy+2osGBDGtsTd7XV2gQVdqaBLpSa6/peH73fi+33U4+toXadau7Ai83A4HA7H/dHUlZDf+73f48KFC/z2b/82PT3NW7T40Ic+xLe//W1+/OMf88wzzzTtdR0Oh8PhcDgcDsfDjVKTWKMwupb161YJqbHEJqCeakJfImU+wlyLEC3CRoR5E4QGpaBchXqMMAbbUUR6PgKBkBJjWydmWGswBow1jZ9zBcVuUQL/VK5k06cQNU3v11/N1dVAD9MvPNXGyd0ZH82+cDxX01ZwPB4kDToorTuYO1atK77yysjM40d66nx83Vyh2IK67eqWEKxgn2sL2/R6Num188qWd/3z3ExucO5rLxKX5gndfd1O6HY4mkRxqJ/tn3sBb17Cw/TFa4x890dO8H5I2TeU8v98fpKNXflEEIvgK2c6mtrHe9Qr8Y5/HjNv49wa089etT3rqwz4us7A2PG8WCgE44P7Sf18OklbEYIroi9XGmaawDYr9cYH5t9THAFqizx3IcLLNkUarTFp2hytNQywng9hCMZkGyKXgdfYtGBkgPILeCITuy0WdR9R5v4T23KP7a0pzNWJew+UEmsSBF6jPUsL7jM9iSwWMeUKVqXo6fK9x7SIQmE91iqS5Cb12mW0rq7YXBwOh8OxPJp6hfon/+Sf0NnZ2cyXzPHss8/ymc98pmWv73A4HA6Hw+FwOB4u0rSE0lXQKb6IQMfU5kSYF/35ru5oJsK8aa7uWh2sQdTr2EIR4QVI4TVc3Zkg3Sq01lgMxthV4Op+EyHmxJTbAJLH6X7lbbxyfrGw9JdegGCFe1gDYHk0miCSebHpVNJHxQaMb3wK6+UFqq+9eolyNVugL3iGv7Uz3+d7oat75WKKt+p1bNbrcrVM6L7AjeQm5772EvHEVO542NvFjs9/lKBjBYURh+N9RseaTPCW8wXvkatc/N6PsfchXjlWnjUdht9+dpJn1i1sifJ2o4/39Sb18R7zJjm5iOA9ZPp4LN2BbAjehXic3skzuedYGTA29DhGrNz16Bq96DlR7BJYz2TTXt/yNHbOMrdAAUtLBxVCIH0Po7Jru1FNuj/sKIInsX6ASNNluaIFFmE02gvRXoSUEktDN7+Pzwu5ZRAxkF+zV2+P3OHZcwf6YNJsA4XWCCtb4u6WXV3YOMYmSRZpvkJIGRKGa4iTW2hdp1I5c+9BDofD4VgVrOxqiMPhcDgcDofD4XDcJ9Za0rSE0RWEMUghZyLM62m2EBgF+a88SmQR5haJZ5LFXnb51Ouzjp0oRHoeAtrg6gZtDMYYhAAhVtLVXYXgWL6WHkTEkq4fHsmVa49uo/7o9jZO7s6s86qs8/NC/KgqcFl1MT24m6QjH/16+NQY71wozTz+K1snGCrM/R3bzOl/29V9Hy29msVmtZYtOt/30mJ5zx/henqDc19/ifp4XmgIe7rY+fMfJeh0QrfD0Ww6hgfY/tmPIOdt9Jm6cIWLf/FjrHGC98NI5MPfOVDml3dXEPNUwGsVn999rZcjt5rT93fCm+JEcBY9L5VmwPawL92JtNl9QNf0CMXq9dxzVNDFxMBjrdApl4QSHjfpztU22lITI6t7gMdyFcEbLLXHtPR8wGJU5u5uCr6HDUOIwuznTJd33+npBN3oGW3CCAFoa1H30bdbCIH/+LZcTR25sLQoc8DaNEsQsIZWyAmyWER4HqZcRk9NZvdSK0QUDSOER5xcI05ukaYrJ747HA6HY+k4sdvhcDgcDofD4XA8lGhdxmJQqpz161YxsYbEBtSVJpoXYW4RaBk1P8JcaUhS8H2ElHjChxlXd+vEbq1V1g/cmIarW9xzTMsIDiPE7MKktRKbPEXnGyeRtbzjbfLTH2z37BYlEoq9UT6+PLWSk8kASaGPqeG9uWMT0zHf/PHlmccH+mp8aLiSf1GtANtwdXvgrYyLbpMaZpvesKB+yr/INXWD819/mfpYKXcs7O5kx89/lKCzY8E4h8PRHDrXDmaCt58XvCfPXebiX7zmBO+HFCHg57bX+UdPTdMZLOzj/W/f7uZrZ5vTx7skyxwPzqLm3cP02W72pzvxrEQA/eMnCZJ8i4pax1qmu7c9+CTuk/lR5l0k9C4xanwpWJ7NPRZMAu8taayQEiFl1hqnsZGwKRQLIAQ2DBBJuixx3zPpbN9urzjTt9sC+j7eTP6hfN9uO17BXBy790Dpga4DAkyL3N1SIDs7MeUKWIuebJ7rf7kI4RFF60jTElpVKJdP33tTgMPhcDhWnFUjdn/1q1/lr//1v85nPvMZ/v7f//u89dbSomYcDofD4XA4HA7HTydpOgHWoJNSFmGuYqpaohsR5oVgfoR51n9YiwDZtAjzOIswT1NsECBlJmBI4bVU6AYwRmONwdpskXblSBHB2/mS2guqk65X8vXao9tR6/Ju6ZXBsi8aIxD5xct34n5qRIxvfCpzZjcwxvKnL42QNBIDOn3N39g5dtvwNPOauV7dUXOcfMtlo1rDdr1xQf20f5Fr6jrnv/4StdG8Syno6mDHz3+UsMsJ3Q5Hq+lcN8S2z3wYMa/FweTZS1z6/utO8H6IeWww5X94bpJNi/XxPtvBl450U1MPvjFtSlY4HpwhJX+eXtvFgXQXvvWQ1jA4ehSh8/c7U707qRdW5jo8QQdV8tfGjbbUxDNswpLf6CV4bcmjpedhtMEag16mC/vOLyqxhQiCECsExEt/3dm+3WHWt1sKzEzf7uWLr3JDP2JN3l2vDl9YwkAfMJm721iwgpa4u7u6sFpjqjXUCkaZAwTBAFIWqNevofQ0cXxtRefjcDgcjnvTlhWR73//+wwPD7NlyxZKpdKC47/zO7/DL/7iL/Jf/st/4Tvf+Q7//t//e55//nn+4A/+oB3TczgcDofD4XA4HA8haVpC6xroGE9EWKOoaEk91UgBkZf/upOKAlp4jQjzJondcR3SxmJzGCKFn/XqBkwLe3VnrqPsHFIKxEruYw6OI2TemWWTZ+g4cgq/lHeVTb/wVDtndkc2+2UGvbzj/Jrq4IbuZHLtY6govxj86tEbXLox6+L+1e0T9IXzfr+3Xd1Bw9Ut2+/q3qDWsENvWlA/41/iir7O+W+8TO3WHYTu7s4F4xwOR2vo2rCG7Z9eKHiXzlzk8ks/cS7Ch5g1HYb/xx36eB++GfK7r/U0pY/3tKxybBHBu9t2ciDdRWB9fF1jcPxY3k0sBGOD+1HeCrSrEGKBu3sdU3hN2xwosDw3rzICXF/86fNHN/4ejdaYVDUvYb1QwEoBYYBQKSyx57bAIo1q9O0Os42UZMPVfWyKEULgP7EtV1OHR7D3comLhrhtkuy9ZE0Wad5kRBQiwhBTLmOqVWy93vRzLHkuQlAobECbCmk6QaVyFmNWLlrd4XA4HPemLSsi3/jGNxgdHeWZZ56hr68vd+zo0aP87u/+LtZarLX09fVhrUUpxd/9u3+XCxcutGOKDofD4XA4HA6H4yEjTSdRahq0QmpDrCG1AbVUE/keYkGEeYgWIQKDpAkLVkplQneagO/jeQFC3HZ1G5qf8TiL1hqLwRjbiDBfKQwi/EmuYtU20EN0v5RP64q3rifZvjBau910ipTdYSlXqxuPd+MBal3DVAZ25I5dvVXlxbdnF8qfHazwzFC+z/esq9sHVsbVvV4PsXMRofusd5nL+hrnv/Ey1Zv52Pags8iOz79A1NPVrmk6HI4GXRuH2fZzH0LMa3cwceoCl192gvfDzO0+3n95z8I+3tdv9/G++eDXiYqscTQ4TUJ+A1+X7ZgRvAv1cXomz+SOWxkwOvQ4RrR/U9ZVenNdtD0s65hq4hn2Yclf05bq7hYIpO9hVCa+N613txBZnHkQYKVEJEt3d0udohupQbf7dhtjUNrelxgfPDEvynyqhjl/cwkT8cAkWGsR1oCVDYd3c5HdXZhaFbRZcXe373fj+73E9esYU6dWu7ii83E4HA7H3WnLqsgPfvADhBB88pOfXHDsS1/6EtZa+vv7efPNNxkbG+P1119nYGCAOI75/d///XZM0eFwOBwOh8PhcDxEaF3F2ASdTODJCGFSKkqSmizasRDkv+ooEQECLUI8mzanu3V8O8JcYf0AKQOEkCBa26vbWtCNfpJCkJ1zpfBPI2S+r6JNnqXw3gjB9XwfyOmPrryrW2DZH43hzYsvPxEPEnsFJtYfytVTZfiTly5gGq6n3kDxK9sXWXydcXV7K+LqXqcH2aU2L6if865wyV7l/DdfoXoj//vwOwrs+PxHiXq7F4xzOBztoXvTWrb93AcXtKKYePc8V1550wneDzFCwM9uu3Mf739zuIevNqGPd1XWORqcJiYvoHbaIgfT3YQ2oHt6hGL1Ru64CruYGHi0hdvyFicRAaPzxOjmRpl7WObfbxwDKos9eQHS8wGLUQrdLLEbIIywUkIYZvcMamn3iZ5JZvt2+0U8KdCG++7bLdf1Idf35Wrp4ZElDMwEd0wMDVe5sM2///Q6OsGCrlTQE6Vl9ThvBYXCeoxNiZNb1GojaL1ybnOHw+Fw3J22rIpcu5b1tdi3b9+CY1/72tcQQvDFL36RQ4eyhYWnn36aL37xi1hr+d73vteOKTocDofD4XA4HI6HiDQtgbXoeALfBhijqGiPepJFmIf+PLFbzokwt03qw1iLM2e3tcioMOvqNgbbYlc31mKNaQgkzXfWLA2LCF/PV/Ra0JvpfunNXD0d7qe+d3s7J7coO4JJerz87/9i2sWYKTCx/glMUMgd+87rVxibnI2i/Zs7xxeIFjOubs9v9OoOWzX9RRnWA4sK3ee9q1yyV7nwzR9QvT6aO+YXG0J3nxO6HY6VpnvzOrYuIniPv3OOq6++7QTvh5yZPt7dCxNl/uxsB186/OB9vGsy5mh4mjr56PQOW+DxZDcFG9I/fhI/LefHdayj3J13+raD+VHmvdTpss0UEZ/GMrvpTKCBN+/89DkIKRGexGiNtQajm7R5UQDFIvg+1vMRSbykACCv0XNdyxDlFfClwDTSUe8nyhxYGGV+ZAR7r2j121HmNsVajbC0xt3te8hiEVMuY1WKLpfvPaaFSBkRhkPE8U2MialUz9x7kMPhcDhWhLaI3bdu3QJYEGF+9uxZrly5AsAXvvCF3LEPf/jDM89xOBwOh8PhcDgcjrmk6SRaVbG6hodHrEDhU1eaYuAhxNwIc1AywtCIMLdNiDDXBtI0+8/zkEGU9c0WoqWubgBjFNYarGVlI8y9Swgv7xSzyTOEF28QnbuSq09/5CmQKyXKZ/TImG1BPiq1bHxOJ31U+7ZQ71mfO3b60iQ/eWdWJP7I8DQH+hdZjFeN95PvgedBG38na3Q/e9QWxLwNDxe8q1y0V7jwrR9QuXYrd8wrROz4+Rco9Pe0bZ4Oh+Pu9GxZz5ZPfWDB5+TYiTNc++FhJ3g/5Nzu4/3sYn28b2V9vK89YB/vukg4Ep6mJvLXqQIRjye76dQ+Q6NHECbvVp7s3UU9Gnigcy+XMbqo4+dqzXV3dwH7cxXBT4Cl3Z9J2di4aEyT3d0B1vMzd7cxs/cPd+F2327jhWgvAK/Rt9uC0vf3ueDPizKnEqPPLKGvufTBqOw/2zp3t+zqwsYxpCl6haPMAaJoGCEk9fg6cXyDNG1m7L7D4XA4mkVbvoXfvimfnMzH273yyisA9Pb28sQTT+SODQ4OAlCtzu+F5nA4HA6Hw+FwOH7aSVUJHY+DFXgGKlqSaos2EAX5COnbEeZKBs2LMK/XAQtpiogKSCGQQkKLXd3GGIzJ/i+lyAT2FUKEb+QeW9MLag/dL+bdU7qnk+qhPe2c2gIkhv3RWE5HMjaLL0+CLkrrDuSeX6mlfOWV2d6MQ5HiL28rLfLKFrTORO42u7qHdB+PqK0LhO6L3jVGuMqF77xK+Wq+D6dXiNj58x+l0N/btnk6HI6l0bttI1s/+YGGg3KW0eOnufbjI07wfsiJPPiNu/Xx/nEvhx+wj3ciUo4Ep6mKWv7chBxMd9OTWAbGjuejoYVgbPAAyis+0LmXgxWCq+SvQ+uZRNr7cyoveg6ezT0WTAPvLGms8LP7SKM1Rqnm/u11FMGTWD/Iencvyd2doGT23jB+ESEEWhuUub++3XKoG7l5MFdTS4oyb9xfmwRMmt1/tMDdLYtFhJTochk9ObmkTQGtRAifKFpLmk6gdY1K5dSKzsfhcDgci9OWlZF169YB8M47+ZuKb3/72wB88IMfXDCmUsl6qfT397d4dg6Hw+FwOBwOh+NhwpgEravoZAwPD2MsVeVTTzW+FItHmONh8ZoXYR7HoBTCWmRUzBb8pMQ0caF2MbTWgMEYm4nrK4W8hfDP50o2eRr/1iSFk/l0rukPHQI/7+BqN3vCEp0yv1h6Lu1l0hQY3/gUVubn99UfXKJSy54vsPzarjEK3iIryjOubh8Cv22u7kHdy161bYHQfcm7wXmuMPKdVylfzrvuvShkx+dfoDDghG6HY7XSu30TWz7x/ELB++gprr9+zAneDzm3+3j/46em6JrXEqOuJf/2cA9/9oB9vFOhOBqcoTxP8A4JOJjuYqhapWcyf522XsDY0EFMG+8rrs6LMg8wDDPdxDNswJJv8SF4bUkjBQLp+5jGNd6kTRRbfQ8bBBAF2aaDJTjHpU6ze0zhofwITzDzHrmfvt0A/qG8u1sdu4S9Vx/x21HmGKxJZzZNNN3dLQWyqwtTLmctiyZX3kkdBANIGRLXr5KqSeL4xr0HORwOh6OttOUu5vnnn8day5e+9KUZp/a5c+f4yle+ghCCT33qUwvGnDqV7ZK6LZQ7HA6Hw+FwOBwOB2QR5hiNTqfwrEddgcKjnmoKQf4rThZhXsCIIIuCbEaEuTEQJxCnCD9A+gFCeFkfbVondlsL2hi0MQjBgv6u7WShq7sI6X66Xnor6+PYwBRCKs/ta/Ps8gx6NTYH+Z6PJR1yIe1hemg3SUc+vvWt90Z57+JsKtmn1k+zp2dh9CyYOa5uAcGDOfKWyoDuZa/avkDovuzd5ByXGPnuD5m+lI8j9cKAHZ9/geJgX1vm6HA47p++nZvZ/PHnFgjetw6/y403jjvB+33Ao4OK/+H5STYv0sf7q2c7+HeHu6mm9++WTYXiWHCaaVHJ1QMCDqS7WD95k2I1n/yRht1M9D/WwmyaPDURMkZHrrahqVHmYHku91hwGbiy+JPnIb2Gu1spdJo099+lowhCYkO/4e6++6t7Zk7fbr+ALyW60bc7vd++3QfnRZnXEvR71+498HaUudVgFbTK3d3VhVUaU62hSisfZS6EpFDYgNJl0nSSSuUMtsUbXB0Oh8OxPNqyOvIbv/EbABw9epT9+/fzy7/8yzz//PPU63WKxSK/8iu/smDMyy+/DMCePSsbd+dwOBwOh8PhcDhWF6kqYeJJjE7xrKSiJYk2GAuFIO/Q1Y0Icy1DPJs0KcK8IXymKTLqQCAQbXB1G60zQd2YhtC9Qj2wxRT47+ZKNj2EnErofCuf5lV+/gC2ELVzdjkCNPvC8VxNW8GJeJC40M/Umkdyx8an6nzrx7ML4RuKCb+4pbT4i992QLXR1d2ve3hUbUPO+91f8W5ylotc/PMfMX0xv1gtw4Dtn3+B4pBLTXM4Hhb6d21h80efXVC/+fY73Hzz5ArMyNFshoqG//sd+ngfuRXy/36t94H6eCuhORacYVLkN3sF+BxMd7Fl9Dx+mj9W61xHuXvLfZ9zuVyZ5+4epEqxWQk8AOzF0pOrCF5f0kghJcKTGK2x1mL10vp9LwkpsVEEQZRpxPHdf2aBReoU7QUYGSAaQvyD9O2W/Z3I7WtyNfX2hSUMvB1lrrA6RdwWuZvs7hZRiAhDTKWMqVSyHt4rjO/34HndxPWraF2lVltC9LvD4XA42kZbxO6Pf/zj/MN/+A+x1nLhwgX+9E//lNHRUQD+xb/4FwwNDf3/2fvzKDmy+74T/dx7IzKz9g17YQcavQC9N7rZ7I2kKFISZckWRT5JlrlYeqPxe/boaJ49Mz6eOZIl2daMz9h6so6s8TsaiTzDsSRStLWSTVJkd7NJ9t7oBehuoLEvhQJQe64Rce99f0TWElWFWjOr0Ojf5xwcIH8ZN+JWVqEy8v7u9/vNHF+tVqdU348//vhaTFEQBEEQBEEQhPcISTxWz+tOwIeUbUgltoRGE5hsEzDWBSwah8H4xa0il0S1BkmMBnQuX1d1g/cNXAidB+sSvHd4D3pdVd0vo9R0Y9/7AOJ7aP/eEZSdUTea4qP3rMMMp2bAbfkR8jr7fTkedVMktS9nhmWrc56vPnWWOEm/BqM8/3D/EOG8L7UDm0CwdqrubtfBHcke9KyP8Zf0VU5ynnPffo7xM5cyz+lcyN5PPE7rxqx6XRCEG5+eA7vYPk/De/Dlowy+Ig3vm4EFc7zLZtU53lY53gxPMqqy9uABhrujPey+8i7KZe+NxrpuoZpfm/eMq3QQYTK1xqq7DZ4HZtXehCXapWtt8M7hncNGDbqHnKRQAK0gzKGSJHUNWgDj0mY3gA0L6Hput11hbjdAcM/uzOPk2AV8tIgDklKgDODAR+nfqNTKvMG2ALq9HVcug3UkI+uv7gYoFLbhfEwUDVGunMW59W/CC4IgCClrtkLy7//9v+cv/uIv+Af/4B/w0Y9+lM985jN861vf4h/9o38059i/+Iu/oLOzk507d/J3/s7fWaspCoIgCIIgCIJwg+O9JYmGsfEY2itqicGiiRJ3HQvzPE7l6hbmDVio9D7N645jdJgHY1BaN73R7ZzDufRvrRVq7T7KzaIK4evZUnwIVTa0/+CNTLl0/+24jrY1nFuWLabMlqCcqV1LClxI2hnbfJAk35557pkjl7l4dfr4T/SPsav9Oj8zsQUUmLVRdXe7du6I985pdA/oa7yrz3HuO88xfjprzarDgD0/+hitm/qaOjdBEJpH76272f7E7GYdDL74JleOvDXPCOG9xpJyvN9deY63U46j4UmGVTb32GC4r9LPzmunsjbaSjHcd4jEFFZ2wWXNTTMwS3ndzxiqoVb99+OZdv1ROBQvL2mkCkw6wiY4mzQ2QkArfL4AYYjXCrWIutvYCJTGqYDEFDAKkvp0kpXmdt+9MxuXUEuwby3B5l2ZupU5eB/NUHebhcctE9PWBh5cqYQbGVnU7n0tMKZAGPZSqw3ibI1S6dR6T0kQBEGos6YrJD/+4z/OF77wBZ588kn+6I/+iI985CPzHvfpT3+aM2fOcPr0aXbt2jXvMYIgCIIgCIIgvP9IknF8XCZxZYzXFK2mNmVhnl1ksyoHaKwOMT5ujOn3pI1inKDyLSidqrpds5vd1gIe5zxarZ+qm9xrKDXdAPZe4aMHaHvhTfSMhVqvoPj4fesxQwDyKuG2fNa+PPKaY1EvlfYtlHr3ZJ67cKXEd49M51zvaqvxo/3ZxsAU3qWLvIGZUmU1ky7Xzh3xPsysj++X9RAn9FnOfed5xk5dyDyng7TR3bYl66ImCMJ7j97b9tL/2P1z6peff4Orr72zDjMSmsHtfQn/8wfG2Dlfjvep1eV4O+U5Fp5iSI9m6gbNB8Z72TyabXA6k2Now924NbjfuDTLyjxPQh/F+Q9eEa3AnbNqLwGLKJgBhUIHAS5JY2Rc3Gh1dx6vNeRyqVvMAupu7WLwYE1IEhQwRuO9x3lPssLcbt3Rgtm/OVOLjyzBmnuGlTl2Utms0qZ3I/vRgUEVCthSERfH2FJp8TFrQD6/GY+nVhukWrtEkizNKUAQBEFoLuu4SiIIgiAIgiAIgrA84ngUHxdxSRnvQqo+pBpbcoHG6OwicKILODSOAN2oDMhqDZIEowwqCNDK4Juc1e09JM7hnE3dI9fNwjxBha/MKh2AuJ2O7x7JlCsH95FsXK+MaM/B/BChyq64vlXrpazbGNl2b6YeJ5b/8vTZKdVcoDy/sH+I4Hovc5IwreoO04Z3k+h0bRyM985pdF/RwxzXZzj/9IuMnTyfeU4Fht0/+ihtW7NZnIIgvHfpu2Mf2x65d0594LnXuPbG8XWYkdAM+loc/8ODYzy0tfE53l553gpOc1Vn7aA1mieGCnSVsvU418Foz+2NdqaeQ1EVGCWrIu9vqJU5eB7KPFaUgKNLGqtN+no7a0niqLGvhwJa8un9hFKQXH/jpCJteFudw+kg3WxJ2h+PV5jbDRDckxWZ2WMX8dVFmvpTVuYWvMOT1NXdqvHq7vZ2fLUGcYIbvjGszLUOyec3E8VDWFulVDqx3lMSBEEQkGa3IAiCIAiCIAjvIeLaVWw0BjYmcgWsTy3MW4Ls4poHElXA1i3MG5LX7X3a7I5jTJBHBWG6rrcWqm7vcc7VG93Na64uSHgMpbOqGh8dpvWVdzAT2frEh+aqENeKHcEEfSbbKBhIWhm0rYxsuwcX5DPPff25iwyPTx//yV2jbG29juLLO3B2WtUdNC+ru8O1cjDeh5mVZ3pVj/C2OcOFZ15i9ERWgaWMYc+PPEr7tk1Nm5cgCOvDhkO3sO2D98ypX/r+Ea69Kc2Wm4W8gV84VOT/cWsJPWvT1mSO96srzPH2Ct4OzjCos84nBsVHLzvyUTVTL7dtpdi+c0XXWg6z1d0bKJJvxH3bFJvx7M5UFM+zFBmy0hptNM7WbbsXaEiviLB+L2mCNLt7ASZzuz1gwxaMUvXNkKvI7b5rZ3bTXmJJjl64/oBJlEnvhzzgm6fu1q2tKK2xxSJ2fAzixRX5a0EutwGlQmq1AaJ4hFp0bb2nJAiC8L4nWPyQ1XPu3LlVjd+5s/k3VoIgCIIgCIIg3Nh474nLl7G2jHKOsstTjVNVdX5WXrdVIV6lFua6YRbmEXiPdh7yIVobvHP4JuuerEvw3uE9mHVTdXtU+FK2kuyEZDMdz3wzU6/u7SfesWUtJzdFm4q5JTeWnY8zvF3rpdS9i2pHdl5vnx3llXeGph7f2lnlI1sWsKNcI1V3u2vlULyfYFaj+5oe4W1zmgvffYmR42cyzymj2f0jj9Den7UkFQTh5mHDnQfwzjPw3GuZ+qXvvYrSmr479q3TzIRGohR8dFeV7R0J/8drHRTj6ff+qtX83pFOfnxvmb+zr7L8tyEFx4OzuMSx1U1HXeQ8/NBAha/vCHF6+r1nrHs/YTxBodY8Ve1lOjnAIEH9fkoDWxnjDI2L4vA8hOLM1GPFAJ7zwOJrzsoEuCjCO4eNI3TQ0rB5oTXemDQfvBqD89e9tzA2Ig5b8SogCQoEapy43uWOnSNnln+PqFrzmFu3Yt+6NFVLjpwhvH/PAqNIrcwddStzjQ89CoWfVHerBm0K0Ard3o6bmMB3dhIPDhJu72/MuVeBUppCYSuVylmSeIJS8Ti5nl7UekYNCYIgvM9Zk2b3nj2LvEEugFKKZJGdbYIgCIIgCIIg3PxYW8THEyTxOM7nqPmQamLJBxo9r4W5whGQ8w3K+KtVwVmMCuqqboV3zf2s4pzDufRvrRVqvcy5gpMok1WC+egwhbdOEV7NLoCvl6pb4TmUv4aZpYQ7WuujkutgbMuhTL1UifnLZ6ctwAvG8bl9Q9dvHEypuutN7rA5qu4218KheN+cRveQHuUtc4YLz77MyNunM88prdn9sUfo2L4+mwwEQVg7Nt59K947Lj//RqZ+8bsvo7Si97a96zQzodHc1pvmeP/ekQ7OTWSXcP/qVCvnxgN+4c4ireEyN90peDc4j08829x05EVX7HjkconvbuuccaxmuO9ONg2+QGCr85xs9VhlGPSd9DO9Wa3fj3KGvrTz3xAO4OlGMTpVUbyAX1KzO3XVcUmC0hrvPKqRm93CsG5hrtJNdbn57y8yud2mQM5ofGyx3pPYlTW7AYJ7dmea3fadAXy5hmrNX3/QLCtzfAzkQIHyKlWaN+glMl1dqbJ7bAyMxvT1oVsKiw9sMmHYTRRdo1q7RBC0U61eoKVFBHuCIAjrxZqslHjvV/VHEARBEARBEAQhrlyBJMImReIZFuaFcG4+YLMszHXi0NqgwxysgarbWQt4nPPodVSLqNwLmcfeboRkFx1PvZypR1s3UDuQzX9cK/aGY3Sa7Pf6bNzBkGthuP9+vM42Cv78u+coV6c3K3x61wgbCgsokaZU3aZuO9p4VXerK3BnvJ9w1r70YT3GMXOai997meG3TmWeU1qz62MfpGPn1obPRxCEG5NN99zO5sOH5tQvPP0Sw++cWfsJCU2jr8XxPz44xgfmyfF+/VqOf/V8F5eKK8hJVnAyuMB5M5gpby/HHBouZ2rO5BjacBe+ifchF1VP5nErMT2Ur3P0StB4Ds+qHQPG5js4g0KhgwBnLd57XBw1cF5ALle3Mjcou3hud2JyqfreBCjAOU+ymtzuQ9shmPG9tY7kjfPXHzA1oZlW5jFe+fqmzAZndwcmbXhPjEOckFweaNy5V0mhsA3nqkTRMOXyaZxrpP2+IAiCsBzWRNn9h3/4h4seUyqVOH78OH/2Z3/GxYsXeeSRR/jFX/zFNZidIAiCIAiCIAjvBeLKJayt4G1M2bVQjS1aQd7MZ2FucDqH9gmqEQ3pOLWW1E5BEICu5zc2Ee/BOodzNhXQrJeFubmIMpcyJR8dJndmgPy5y5n6xBP3NaUJvBhdusaecDxTK7qAd6MuxjceIG7JLqK/+NZVTpyfPv7O7gqPblrAAcDbpqu6W12Bu+ZpdI+ocY6aU1z8wasMHTuZHaQVO3/4YTp3bWv4fARBuLHZfN8deOe48vKxTP3CUy+glKJnnTYeCY0nZ+AfHiqyqzPhy8dbcX76ffZK2fCvn+/iF+6c4N5Ny2y0KThjLuFw7LLTG6YODVcYyQdcbMtN1eJcJyM9t9MzfLRRgt0MYxQokqed6aZ+vx9lRLU18Cr34XkKRfo6pfeHL+H5oUVHaqNxCXhrSZIYnc837nUwGm80KgigVkubx9c5eWpl3pbmdgcFtIqwzuP8gg7oC6IKOczt/dgZDe7kyFnCh/YvPHCWlTnap8HwKt0g0FB1d2cnrlgkGRmGMMBOTGA6Ohpz8tXMy7QShj3UapcJw27K5VO0t9+63tMSBEF4X7Imze7PfvazSz723/7bf8uv/Mqv8B//43/kkUce4bd+67eaODNBEARBEARBEN4rxJUBkmScxHkS2qnECfnAzLGSTFRqYW4baWFeqaKdxwAqVwAPHteYc1+HKQWR8/VG99o3kQFU+GLmsXcdkNxKx1N/nakn3R1U7rplLacGgMZxKD+U6bE7D2/WNlBp6WNiQ3bRcXisyjeevzj1uC2wfGbf0MI9+sQCummq7oLP1RXd2Sb6qJrgaHCSS88dYejNE9lBSrHrow/TtXv9sysFQVgfNt9/EJznyqtvZernn3oBpRXd+8VS92ZhMsd7R0fC78/K8a5Zxe8d6eQTe8v8xHJzvBWcCy7j8Oyx2yZLfGCwyDe2dzGRm1boltu2EkbjdBSXoPpdLkpxkW5u9dNK801MEHhLohqlEi4AdwMvzai9DDwOLLyJTWmdNrxtgg4CfJKkzelGMWllXvOpk0w4/7mNi4hVG06nud2hniC2qdNQYh25YBVW5jOa3fbEZdxEFd2xgF34bCtzErwKUWi8d6A0NOpeWStMdzfJ1au4SpXk0gDmQPu6bLCcTT6/lTgeI4quoHVAobCdIGjkJg1BEARhKayfD951CMOQ3/3d3+VDH/oQ//bf/luefPLJ9Z6SIAiCIAiCIAjrjK2N4JIyNh4ndi1Yr0ispxDO/UgT6wJWhY2zMAeo1dAOUBplQpxfwO66QVhn8d7hvUevl6pbD6HCdzMlH91PcHmUlrfPZOrFx+9Nm8FrzIHcKK06q7I/FXcxRivD/fdnFkKdc3zlqTMZu8+f3ztMd26BxVhXV3WHpimq7sAbDsb7yM1aaB9TE7wZnOTSC69x7Y3j2UFKsfOHPkDXnu0NnYsgCO8tlFJsPnyIjXfPUhJ6z7lvP8/oqSY0JYV15dZ6jvfOjrnuMn99qpXffbWDcrz8BuCFYJCT5sLU45zzPDYwQeCy7jhj3bdQy3cv+/xLYYBO3IyNfQbP1iXYjC8Hz4OZx4oK8MaSxuogwDuPdxYbN9iuOsyBUnhtUMn1nYO0S8B7rM6RBAWMTvXpzkNsV95YDm7vh9yMBrv32DfOLT5wysrcg4up7wZNn/KaRqb96PY2VD6PHRnB1aokQ8ONO/kq0Dokn99ELbqKtTVK5XcXHyQIgiA0nBuu2T3JL/3SL+G95z/8h/+w3lMRBEEQBEEQBGGdiUsXwDvieIKqa6USpRbmsxUsliC1MFcNtDCPYpR1aAcqzKdRhE1udjvvcM7jnENrVc9AXHtU+FLmsfd5iO+i4+lsVrdtLVA6fHAtpwZAn6mwIyxmaqM2x5m4k9HNh7C5rLLmqVcuM3CtMvX4wb4SD/RVWBBbV3VrU8/VbJyKSHnFHfFeWn1WOTWmirwRnOTSi69x9bV3Zg1S7PzIQ3Tv29GweQiC8N5FKcWWh+5iw10Hsk94z7m/fY6x0xfmHyi8Z1kox/uNVeR4XwquciKYbnB2xZaHByeyBynNUN9dJCa/7PMvRqwCrpC1pu73o2kjtWFsxLMvU1E8z5K6slqjlMIlNnXfcQ10+AlMmokeBOl9x3WmowDjYqzJ4ZXBB2lut3WexK38dVL5gOBgdgNd/OqZxQfq+s+Zs1CP95nK7vaKRrcegr5efK2WWpoPDqYq+BuAXG4jSgXUapeIomtE0dB6T0kQBOF9xw3b7L7lltT+7qWXXlrkSEEQBEEQBEEQbmq8Jy5fwsZFImexuoNqYmkJDWpW4zHRBTwKq4IGqrqraAzKO1QYNr3RDamFOaQW5lqt08c2VYQwmwVLdA9mtEbrkazSuPTwXfhc43OsFyLEcjCXXUy0XvFmrY9yxzbKPdm82guDRZ59fdoetStM+Lk9IwtfZLaqu5GWpR4OJDvp8u2ZclGVORqeZODlN7h65O05w3Z8+EGxJhYEIYNSiq0fuJu+Q7OiJJzn3LeeY/zMpfWZmNA0JnO8f+bWElplm5yTOd6vDOauM/r6XDZDvBOcxde7rdtLMQeHy5ljnMkxtOGutDnbYC6q7szjDmp0Um3oNTwPZR4rrgBnFx2nUKggmIqZabi6Oxem9xv4qcbxfBgb4XRYz+1uQWuFdT4VV6+i4R3ck71vcqev4EYXiQOatDL3dStzn9BMdbfK59HtbdiREXwcE1+52riTrwKldGpnnoxhkxKl0rv4hm7SEARBEBbjhm12j42NZf4WBEEQBEEQBOF9SlIhiUex8Sg1q4ltDusgH85VLSV1C3NQGB815vrV1MJcqQC0wfnmZnV7D9Y6nHPpGuI6WZir8BWUmm7se2/w8X20f/dV1Aw1kwsDih+8a41n57k9P0xeZ78Xx6Nuiqadka13Z+pxbPmzp89mxGGf3TdMW7jI99ImpKruAHL5hqq6d9mtbHK9mVqNiKPhKS698gZXXjk2Z8z2Dz1Izy275tQFQRCUUmz74D303ZFVrXrnOPvN7zN+bmCdZiY0C6Xgh3ZV+e/vH6dj1vtZzSr+42sd/JcTLSy3/3nFDPNOcGaq4X3ncIVtpew9VZzrYqTntkb2MQEYppXKrFiPfj/a4Kvsx5N9/03V3Yuj63EtzlpsEjf2688FoDRemzS/+3pzcDEocDokMamVuXMejye2K5+RuW0bFGa89h6S15ZoZe5nWpk3Wd3d3YO3Djs2RjJ0DV+b63CwHoRhN8a0UqleIrFFajX5nSsIgrCW3LDN7i984QsAbN26dZ1nIgiCIAiCIAjCeuIqQyS2SBSXiFwLtcQTaDWPhbnBqQCrchgaZGEeJxgLylpUmK8v/DZXqTGpGHLO1RvdjWuwLp0Icq9lS/FBVMnQ9sLRTLn8wB249tY1nBtsMWU2B1n78WtJgfNJO8Pb7sUFWXvVv/7BBUYnphfqH980wZ09iyjFnAXnIAzqqu7G5ZFvtr3stFsytQTL0fAUF159jcGXjs4Zs/2JB+i9dXfD5iAIws2HUoptj95H7+17M3XvHGe/8T0mzl9ep5kJzeTW3oR/8YExdnXOVQP/zemV5XhfNaO8FZzG1VO0Hx4s0h5lG7Dltm2U2rfPf4KVotQcdfcWxjEN3Wio5mR3wzvAIm4vpP/HtDH4JAEPLmmgutuEeJW6yCibXPd2czq3OyQJCmhVz+12kKzCWl0FhuDObERKcmRxxft8VubNVHcTBpiuLtz4OMQx8cCN8XtNKUU+vw3nysTRMKXSSZy7MWzWBUEQ3g/ccM3uEydO8N/+t/8tX/jCF1BK8WM/9mPrPSVBEARBEARBENaLuoU5SUQ1qWBVG9XYUgjnfpTJWJi7Rqm6qyhtUF5BoNfEwtw6i/cO79fRwjx8HaWmlTLeg48eoP25N9DR9MKu14qJx+9d06kVVMJt+eFMLfKao1EfpZ691No3Z557+8wIr52YPn5DPuFTu0cXv1AyqepubFZ3t+tgf5K1Ifd43g5Pc/r1V7n84ptzxvQ/dj+9t+2dUxcEQZiNUor+x+6n59Y9mbq3jjNPfo+JC4PXGSm8l+lrcfwPh8d4eOvcjVyTOd4Xl5njPWTGOFZveOec5/HLEwSzZOKj3Qeo5bpXM/U5XKIr0xsNcGxmvKHXgHvwTNu8KzyKF5c0UgcG7z3eWVzcwGamAsIQjJm0+bnuYcZF9dxuDUFYz+12JNavKuI8uGd35rE7dw03VFxk3jOszJm0Mk9F3QrVFHW36ewEpUhGRrDjY9jiInNcI4KgjSDoolq7jHNVKpUz6z0lQRCE9w0NDBy7Pnv3Lv6h3DnH6OgoExMTU7VNmzbxL/7Fv2jm1ARBEARBEARBuJGJSyTxGC4uU0ksicvjPBTCuR9lZlqY6wbldetajLYuVfEohae5FubOO5xLVd1aK9S6NLstKvdytpTsh6iT9mePZMqVu27B9nat3dTwHMwPEc7KJ32r1ksp7GJ088FMvVyJ+Itnz089Vng+v3+IgllkJdjVsyfDXKrqnufnbSW0ugK3x3vQs9T67wbnOf7mS1x+/vU5Y/ofvW+OLbEgCMJCKKXY/sQD4D0jx89M1b21nHnyWfb86GO0b9u0fhMUmkLOwOcPldjVZfnTd1pxfvq95krZ8G+e7+Lzh4rcv3npGwJHzDhH1SnuiPfSFcEHBos8u7Vj+gClGdpwJ5sGXyCwjbGTrqmQa76djUw3MPv9KJdmKb5XRx64FzL25a8AHwIWzjpX2qC0wiUJShv8lBNPAwhDiCK81ummu+u4yhgbE+Xap3K7ja5hXSqgts4TmJVt0DO3bIHWPJSnv5fJkTPkfujQwgOVARdNW5mbgLTxrUF5lNfpPXSjzIqMRvf0YK9dw3d2kgwMYPbvb2jczEopFLZSLL5DLbqKUgGFQj/GtKz3tARBEG561mTl5MyZM4v+OXfuHOPj4+nOOO95+OGHeeqpp8TGXBAEQRAEQRDez9QmiJNRomScyBuqcUho9JxFPIfBqRCrQjQJuhFN6SRJs7qdBxNMZVc2E2cd4HHer1OjGwjeRumJTMlHD9L20jFMKWsdPvH4fWs5M3YGE/Sa7GL6pbiVQdvGcP/901aadb769DkqtWll1A9vneBA5xIW4+MEVF3VnV940XuphD7gYLyPgOwcz5tB3j5zhIEfvDZnzLZH7qXv4P6GXF8QhPcXkw3v7v2znCQSy+mvfZfSwNV1mpnQTJSCH9p5/Rzv319BjveonuDN8F0SLDtKEXcMlzPPO5NnqO8ufAOXmWdbmXdToc03NpvZ82Dmzk5RA+a+F8+HNgHOOrzz2LiBVuZhPTM7MChrr2v/bWy6YSGT2+3T3O5VWZkbTXB39nfG0qzM65sCp6zM04ln1d2NbUSb9nZULkcyPIKrVLAji9vQrwVa58nlNlKrDWJtjVLp3fWekiAIwvuCNVF2f/azn130GK01HR0d7NmzhyeeeIJ77rmn+RMTBEEQBEEQBOHGxTt8dYSkNkQpqmIpEFlFW/56FuZgVUjoFsliXiq1CI1GOwem+aru1LHS4uqLlLpRKqHlzQKVy9p4+qQfki10PPONTL16y07i/rVTBrapiP250Uyt4gzvRL2Mb7qNuKU789wLR69w8uJ0035bS8Tf3ZkdPy+ubsMZ5MBoCFb/sVl7zcF4L4VZarGreoQTtXe5+MxLc8ZsffhuNhy6ZdXXFgTh/YvSmh0ffhDvPWMnp10ufGI5/TffZc8nHqdty4Z1nKHQLG7tTfifHx7j9450cHY8+z72N6dbOTcR8It3FmkLl9b1Htcl3gzf5WC8jzuHK4zkAwbapt/T4nwXIz230jPyVkNamtdop4Yhz/SGtX4/ynG1eYFRy6UXOAAcn6ooXsDzAIs1ZpUxEMc4a7FJjMnlGyMqVuDDEJVY8HFqZT6Pult5m+Z2mxxJkCevVV3VDYn1EK58CsE9u0h+cGLqsbs0ghscQ29ewMlHMcvK3IKaR92tGhgHpMD09pJcvowrlogvD2K6utN7t3Umn99EHA9TiwbQJiSORwnD7vWeliAIwk3NmjS7//AP/3AtLiMIgiAIgiAIws1EVCJJivikSslGxK69bmE+d9EvnmFhbnxj8rqDWpKqarTG6bVQddvU/dG5elb3OlgxmtMocy1T8tFhWt54l2A4m5c58aH712xaCs+h/BCzXTmP1vootW5goi/bFB4Zq/DNFy9NPTbK8w/3DzFP1PssfKrq1pNZ3atYLZ5xyluTXXT4tkx5XBV5x5zh/HdexEZZVdiWh+5i4123rv7agiC871Fas/MjD3HOe8ZOXZiquyTh9N88w55PPEHb5r51nKHQLHoLjv/x8Bj/11ttfP9SIfPcm9dy/Kvnuvh/3zNBf8fSGpATuswb4bvcGe/ng4NFntzeRTE3fU9Wbu8nF43TXrq46rl7pbjku9nD0FRtK2Oc8BvTnOoG4XkIlWl2X8NzClg4PkQplUbcJAmEAc7GmKAB9wyQRqjEcfp1ugSYp9lNqu62JkyPMzmUquCsw2qF9yt39DZ7N6E6CviJ6c2jyZGz5D5+18ID57Uyn1Z3e6/TiBjVuHtq3VJAt7ZiR0fRba3EV68SbmnkhoiVoZQhn99CtXqBXG4jxdIJurseQN0ANuuCIAg3K+u/1UkQBEEQBEEQBGE+auPE0RBxXCN2jloSkgs0Rs+2MNczLMxtgyzMHdp6VLpCh1+DtSnrLN47vPfrpOpmrqrb9kKyl46nX8nUo/5N1PZtX7N57Q3H6DTZhvDZuIMh2hnedn9mRdc5x59+52yqbKrzif4xdrUvwWbUOcClC7QNUnXvtf1scN2ZWoUax8LTXD16nOLFwcxz3ft3sume21Z9XUEQhEnShvcH6Nzdn6m7OG14l68Mr9PMhGYTGvjcwRI/e1sJM6vJeLVi+DcvdPHy5aXHdZR0hdfDE+AiHrs8QTDLD32051ZquQUUwMtgdkZ3DpvJ8W4Me/BszFRUJsf7+ujA4PF4a3FRA63Mc/V7D2NQ8fU3IhgX43SIR5EEBYxSWD+d271SlNYE9+zK1OIjZ/B+kXNmrMxjpj3Y3dSNtPKNv781vb34JMGOj2OvXcU30lZ+FYRhL1oXqFYukiTj1GqX13tKgiAINzXS7BYEQRAEQRAE4cbDO4gmiKNrlOIqCZrI5miZx8px2sI8h3GNUXWbWozyqfikueblKc57nPM4Z1FarU9etx5ABeczJR8dJn/yIrmLVzL1iQ/dv3LJ0DLp0jX2hFlVedGFvBt1M7rlTmyuNfPct18e4PLQdLb4rrYaP9qfHT8/jVd1b7Ub6LdZq/eYhKPhSSZGhxh4/vXMc2FbC9seXdscdEEQ3h8oo9n50Q/QsWtbpu6imNN//TTlqzdG3q3QeJSCj0zmeOfmyfF+vYOvLiPHu6yrvB6eoCWq8NDgrOaz0gxvuBtr8qued1nlGCb7Ht/vR1d93iwKz4OzKidghqL8uiO1QWmFswnOOfwqsrKzJ1b4IEg33HmXepPPw2Rut9UhSVAg0DrN7fary+0GCO7ZnXnsr4zjBkYXmTdpw9vXM7u9nfW0Si3NG7yDVIUBpqMDNzqGj2OSgRujqayUolDYhnUl4niUUvkk3jfQxl0QBEHIIM1uQRAEQRAEQRBuPKIi3jni2jDFJCJONBCSn8eHOtEFXCMtzD3oKKmbiHuaIEKZg7MW8Djv6xbma88cVbdrg+R2Op7K5kknfV1UDi1s79koDI5D+aFMX915eLPWR7Gjn3L3zszxFwfH+f4b0435QHl+Yf8QwVJe0qms7saounttJ/uSrPrd4XgrPE3Jlzn3t8/jZy1gb//QgwT5pSvsBEEQloM2hl0//DAdO7dm6rbe8K4Mja7PxIQ14UBvwv/8gTF2dyZznvva6Vb+wysdlOKlNSIrusbruRNsKk1w+0gl85w1OYb77sY3II7l4ix1dx8lCg2Kq5nmLjxZm3fFC0saqU2As2mjO2mkojgXgjF4pdLc7vmu7S3KO5wJsaaA0nVVt4fYrs4qXO/agOrJxq8kR84sZWTaoJ+0Mq/jVZPV3d3dANjRUZLREVy53PBrrIQg6CAIOqlVB3C2QqVybr2nJAiCcNPS0MzuL37xi1P//sxnPjNvfSXMPJcgCIIgCIIgCO8DqmPYaJRaXKPmLJFLLcz1PBbmVuVIGmhhrq1HJQnKqlSl04jc5gXwPrUwd3UVzrpYmKtRCE5k5xXfR3hxmMKJrNp74vH7UvXzGnAgN0qrzi7Kn4y7GNWdjGy7O1NP4oQvP3WOmS6bn9w1ytbWuYv6c/EQ21TRrVav6m5zLdyW7E5VTDM4HpxjTBcZfP4o1VlNpQ13HqBj+/rnTAqCcHOTNrw/yJknn6V4YTpGwdYiTv3VU+z98Q/R0te9fhMUmkpvwfE/XC/He2h5Od5VFfF67gSHhvczkt/I5dbpzVq1fCcT3XfQOXp0VfO9QgcxmrB+f6eAbX6MU2rjwgOXRQ64D/j+jNoR4CPAwgp1ZQzEMc46VBzjc/nGGN+EOVAVMAEqifHXuS/RNq7ndit8kEfFFWwDcruVUgR37yJ+6thULXn1LLkfvWfh3GkdpLndk1bmpgCZe6FJdXdjs7sxGt3TjR0eRnd0EA8MkN+3NhszFyOf30qpdJxadA2lAvL5bZgGOB8IgiAIWRra7P7c5z6HUgqlVKZBPVlfCbPPJQiCIAiCIAjCTY6zEJeIo2uUY0fsY6Kkna7W+SzM83UL85DQ11Z/bQ+6lqQ24t7idAMX4q6Dsxbv0qxprRQ0QAm1XFTuJdSMRUfvcxDdTcfTT2WOs+0tlO6/fU3mtMFU2B5m7VFHbY4zcSfDO+/Fm6wC+i++d4Gx4rSK6NbOKh/ZMrG0i9lJVXcegtWpunM+5GC8D0P25/WsGeCqGaE0cJWrR97OPJfv6WTLg3eu+JqCIAjLQQeG3R9/hDNfe5bipWk3DFuNOPVXT7PvJz5EoacxucvCjcdkjvfuzoQ/eacNO8NWejLH+3MHizywZXEFdU3FvBGe4N5BxTPbN1MKp9/7xju2UoiK5MpnVzxXpzQDvoudTNvs9zPKKb+hoXEqnsPAD1D1nGlFhOdV4AMLjlNKoQODSxJMGOCSGBM2YJOkVngToIIEqjE4N+9GQ2MjoqAjze02BQJVIfFpiz5xntCs/DUK7s02u/1wEXd+CLNzw/UHZazM63+r9PXwyqG8xitf/7uxlt6mvQM3PoEdHkHlctjR0SnF93piTIFcro9abZBc2Eu5fJKOjjvWe1qCIAg3HQ3fju/r2SDXq6/kjyAIgiAIgiAI7yOiCXCOqHqNok2IrQVVIG/msTBXBZwKAI1xq7eP1ChUHKG9ApukSt8mY53Fe4f3Hr0G15uDKkP4ZrYW34UZrtHyelbtXXzkHggbumd6XkIsd+SyeZmJV7xZ62Oidx+19mwO9junh3nj5PRCeME4PrdvCL2kNV4PSf17rXSqplohxmsOxfvIk13oHtRDnDOXsVHMue9krVGV1uz8oQ+g58mjFwRBaBY6CNj9I4/Sti2rkLXVGqf+8mmqI+PrNDNhLVAKPryzxn//wPw53v/H6x189UTrknK8I5XwtjnOA5evYWYNuNq7Hx1sus7IpTHbyrxAQh+lVZ1zLt3AbZlKamW++AugTQB4XGJxjbQyD0MwAaAgmb8xPHnva02a222Mxvs0Fme1ud26vxe1oSNTS44sYeOCmmllPp+7zqS6e1XTm4tWmN5eXKWCK1dILl9ONwncAORym1FKUa1dplobIEmWuBlTEARBWDINXaU4ffr0suqCIAiCIAiCIAhzqI2DrVGsjRJ5S2Q9BdOCmmNhrrA6j1W5uoX5KhUiHnTi0YkD53HOgmmuhbnzHle/VuqStfYW5ip8FaWmFyO91/jofjqeeRk1Y/Oxy4UUP7AW6mPP7flh8jq7QHk86mE818vYpqwaplKp8V+fvZCpfXrXCBsKS/x5qOelEwR1VffKms7Kw+3xHtp8S6Y+qiY4EZwHBZe+9yrxRHaBfvPhQ2IZLAjCuqDDtOF9+m++S/nytal6Uqly6q+eYt9PfJh8V8cCZxDe6xzoSXO8/+ORDs6MZ5eJv3a6hXPjhv/nXUXawoU7k7FKOOuPcddVw6ubp5W/XimubDzI5oExLCtz4CmqAuO+QCfVqVq/H2VIta/ofNfD8yCKt6YeK0bwnAAOLDhOaY3SGu8SnDOpU08j4l7yIVQreGNQSTKvlflUbrcOSUx+apOf85BYD6u4jVVKEdy7m/ibb0zVkiNnyf34fXPuybMDA2B+K/OZ6m68gQaru3VrC6qlJbUzbymQXLtGsGl1my0aMi8dkMttplYbIJfro1g6TnfX/es9LUEQhJuKhja7d+3atay6IAiCIAiCIAhCBpdAVMLWRilHMZGLSGyetnkszK0uTFmYB35xq83FUChUHKPRkNTwWjXdUdzVG63Oe8x6qLqJIDySLSW3oycMrS8dy5RLDx7Et2bzPZvB1qDE5qCSqV1NClywHQzvvH+O2v7L3zlHNZpeLL2zu8Kjm5aq+Jql6s6tUNXtYV+ygx7fmSmXVZW3wtN45Rk7dYGR42cyz7dt2cDGuxZeRBcEQWgmJgzZ86OPcfpvnqE8OO2okZSrnPzzb7P98cN07t62jjMUms1kjveX3mrje7NyvI/Wc7z/X/dMsH2RHO9EWYZrr7Nn9H5Od0/b4FcDQ9ByC7by5gKjF+ai6qbTX556vJEJcj4hUo1c2t6FZzOK6Sx7xfP4RZrdANoYbByjncPGETrfgPslrfFGo4IAalWuF8JtbIQ1OVAKFxQwcZnEOoJV5nYDBPfsyjS7/VgZd+YqZu8CDeQFrMxnHqR8Or9G32sHPT3EAwPYiQmUCTA9vag1cCVajFyujzgeolYdwJgWarUr5PPr34gXBEG4WVh72YAgCIIgCIIgCML1qE2A99Sq1yg6QxSXUSpPLpj70SVWBZwyeDTGrb7ZbSzoOFU4uyRaVW7zUvA+tTB3dYvFhqiAlkv4JkpnG8s+eoD2778+9VoAeK0pPnZv06dTUAm35kYytchrjkV9jG28nbiQzZB98c1BTg9M53q3BZbP7Bta+sKuTZhWdRswK9twsN1uYqvLZlhGxLwZniRRlrhU4cJ3X8o8r8OAHR95CLUe33dBeB/jcXhVwauVqUxvRkwuZM+PPU7rpt5MPanUOPPks5z/zgvY2urfZ4Ubl9DAZw+W+Lnbihg1y4q8Yvg3z3fx4uXFN4RZ5UjGX6G3Us3Ux9r6yPmVy4wv04md0RXVwFbGVny++VF4HppVOQVcXXxk3RXGWYuLExqWyhnmpu9Hk/kswUHbGKcDHIokKKAV2Pr141XaeJst3egt3ZlacuTM4gMXsDJPM7sVqZ154zd6qnwO3d6OGx3FxzHJ4ODig9YApTT5/FYSO0ESj1MqncD7G8NmXRAE4WZAPlULgiAIgiAIgnDjUBsDW2WiOkoMRDYhH7ShZnUvPQqrc1iVQ6WG5qu7rk9tqJW16WKidytufC4V5yzekdpdqvqi35riULmXMxWf7EFVu2n7weuZevneW7Hdzbay9RzMDxHOWmR/q9bLeMtmin37M/WxsRJPvjSQqf383mG6c0tdOPRpBuakqju/skX4DbabPbY/U7M4joWnqKkI7z0Xnn4RW802irY9ch+5jrYVXVMQhJXhifF6FEcJp8bxqtG5v+9dJhveLRt75jw3cvwMx7/8JOPnBuYZKdwsTOZ4/38eGKdz1ntp5BT/6fUO/uz44jneXllyxXcztWstIZv89hXPLVGGQbLuKf1+lMZ1lSe5E09rpqJ4ftFRCoUODK7ekG5YdncY1nvCAeq6ud3p/YUzORKTze22dvXN1ODerGNr8to5/GLnnVTcT1qZZwK6J/+dqrsbnt0NBN3d6abSsVGS4SFcpbL4oDUgDLswpp1q7RLWVqhUzq/3lARBEG4a1qTZPTY2xq//+q/z67/+6wwMLH5jPDAwMHV8qSQfPARBEARBEAThfYGNIa5AVGE8KlOzEc5DPmydc2ii8oDCqhzGR6tuExunII5RaFxcw5ug6b1nax3eO7z366PqDo6jdFYV5aMHaXvxKKacVWRNPH5f06ezM5ig12SVlpfiNi77Tkb67834cHrn+L//9hzWTq+QPthX4oG+ZSxmTqq6w7qqewU28h2ujVuT7CKwx/NOcIYJXQZg+NhJJs5fzhzTtWc7PQck7ksQ1opUzV3E6VHwCu270b4Np8p4VVx0/PsFk8+x5xNP0LFz65zn4lKFM1/7LueffhEbNaiRJ9yQ3FLP8d7TNff7/PUzLfx/X+mgFC98k2SqgwQ225yttG2h4FcYF0JqZT6TNiK6aXQTMwBmZym/Bku4jjZpg9clCbZRze7A4JVON2BaO29jWHuHchZnQpIgh1YKBVjniRfbmbCUKdyzO/PYF6vYk4uopSetzF39XsuvrbqbwGC6urATExAnJEvoR6wVhcI2nKsRRUOUK6dxDXCnEgRBENao2f2lL32JX/u1X+NLX/oSW7fOvWGezZYtW/jSl77Ev/yX/5I//uM/XoMZCoIgCIIgCIKw7tQmwDui2jhFm1BLSmiVJz9Pzl6iC9gpC/NVLijWVd0mduAcJHHTLcydTxXdzlmUUii11s1uj8q9mK3YLRBtpf2ZVzP1yu27Sbb0NXU2bSpif240e11neCfqYWTrXdhZGx6+/dJFroxMN+S7woSf25O1P1+YSVV3AKxM1V3wOQ7Ge9KM9xmcNpcYMukmguroOJeeey3zfNBaoP/x++e4FQiC0Bw8UV3NXUX7dpTvRvkWlG9F+3acqqQq72bIC9+DBPkcu3/kUbY/cRidm/u7ceTt0xz/8pNMXLgxrIGF5tBTcPyzw+M82l+d89yxeo73hYnrNykVnkLlSqZ2rj3PzmTLiuc0Sgslss3yfj+64vNdD88D+Bnv7YoEeGXRcUprlNE4a/He4ewqXYcmyYXpxjz8da3MjYuxOgcobJBHK4V1HudYVIm/GHpDB3r7rIiDV88sPlBpoG5lbmfPe3pSzVJ3m85OlAlIRoaxxSJ2fKLxF1kBxrQQhr3UaoM4W6NcPr3eUxIEQbgpWJMVla997Wsopfj0pz+9pOOVUvzMz/wM3nv+8i//ssmzEwRBEARBEAThhqA2BkmV8coYMSFRXCYXtMw5zAOJzuNILcw18y/8LRXtVd3C3OHiKFUQN9vCvK4qdlOq7jVufJrzKJNtVPjoMK2vvUswml0MnHhitsKpsSg8d+aHMDNeAu/haK2P8c4dVLp2ZI6/PDjGs29cy9Q+u2+YtnAZVp1Tqm6zIlV34A0H432EZBtBl/RVLpp0cd9bx/lvP4+fZTu644nDBIX8sq4nCMLySdXcEzg9Bl6jfTfKtWBcD8ZuQdtelG9Buw68ivBqQhredZRS9N62hwOf+jjt2zfPeT4uljn9109z4bsvN07BKtxwhBo+c0eJv3/7ynK8C+VLmccjhYCC2UCLW+F7oFJz1N2bGSfwDWoqT9EJ3JG9NC8Ci99naG3wzuGda9z/jVwISuF1Xd09D8ZGOG1wSpMEBYxW2LrFe7LK3G6Yq+5O3jg/5/5mDlNW5gm42VbmdXU39XvgZqi7tcJ0d+NKZVylSnLpUrqp9QYgn9+Cx1GrDVKtXiRJxGFEEARhtaxJs/vIkSMAfPCDH1zymIcffjgzVhAEQRAEQRCEmxgbQVKFuMxYVKaaWDwJhXBupvGkhXmiQ4yPV9cm9qAd6NiC9/goarqFufdpXrerL7ith4W5yr2QnZPrhng/7U9nM7xrO7cQ7d7W1LnsC8foMNkF4XNJB1d1DyNb787UbRzzn7+TzTd8fNMEd/bMVZ5dn7qq2wT1rO7lWaoqr7gj3kurL2Tqw3qMk8GFqZ+dwVeOUbmaVZv3Hdw/rz2wIAiNZVrNXUP79tS23LVh7Fa060zzdX072vahKKQNbyK8KLwz5Npb2fNjj9P/2P3oeVxWho+d5PiXv0Hx0pV5Rgs3A0rBh3bU+KcL5Hh/5To53vnaCMZmLZrPtxfYaVf+PniJrkzL2eDZwviKz3c9PA9mHivGgHcWHaeCtGnrrMUlCb4RmeJBgFcKggBlk/mtzOsuR06HU81u78F6T9yI3O57ZkWvVCLs8UWswaeszC3zWZmntclDm6Pu1u1tqEIBOzKMi2okw8ONv8gK0Dokn99EFA9hbZVS6cR6T0kQBOE9z5qsqly5kt70LsXCfJItW1Jbm8FBsUUSBEEQBEEQhJue2njdwrzMRBJRjUsYrQjMXGV3ogtYDB6D8avLudM+zTXUicO7BOWSVOnbRNJGNzjv0KqeV7iW6Cuo4Eym5KMHKLxzntzloUx94kP3Z7KyG02XrrE7zC5SF13Iiaibkf578SarnP7zZy8wXppujG/IJ3xq9+jyLjppARpMqrqX8bHYw4FkJ12+PTtnVebt4MzUt7I0OMSVV9/KHJPv7mDrQ3ctb66CICyLuWruHpRrRbsetNuEmuXGoH0b2m5E+Tzad+CJ8WoMvwQF5/sFpRR9d+zjwKc+Ttu2TXOejydKnPrLp7j4vVdw8eqcVoQbl/0L5Hg/eZ0cbwW0lC9namc7cmx0PbS67IaxpRKrgKt0ZGrNsDKH7Xiym/0Uzy86SqHQQYBLEvC+cf8nwjC9Z/F+XnX3ZG63NSHW5FF6Orc7savvIuueNvTujZlacuTs4gMXtDKfoe72Cnxz2hRBbw++FuEmJkgGB69rBb/W5HIbUSqgVhsgioeJomuLDxIEQRCuy5o0uwuF9AamXC4veczksabJ9oGCIAiCIAiCINwAVMchrlCsRtSISWyFnMmhVFZJllqYF3AqROHRc1Qiy2BS1e2BJMHHNUClit8mYq3De4d3fp1U3S9lHnvXAvFBOmapuuONPVRv39u0eRgch/JDmV668/BmrY/xvv3U2rKLqifPXOONU6NTjxWez+8fomCWs4hbXyQ2Jl2AzS1P1b3LbmWTy+ZW1og4Gp7CqrQ5ZuOY899+Pl3YnUQrdnzkoXmVkYIgNAZPDa9HZqm5W1PLcteRKgfnQfsWtNuI8gW078ST1BXe0vCeSa6jjb0//gTbHr1vSr06k6E33+X4V75BaeDqOsxOWAsmc7wfu06O928+18X5WTneLeWsiGk8FzCaM+xahbp7tpV5J1U6fGXF55sfheehWZWzwOX5D5+BNtPqbhtHjREshyFojdd6gdzuqJ7bDTYooHWa2+09uAYozGeru5M3L+AXa+bPsTKf/Xt1prpbN0XdrfJ5dHsbdmQUH8fEV24MJwqlNIXCVuJkDJsUKZZONMYJQBAE4X3KmqysTCq6X3rppUWOnGby2EmFtyAIgiAIgiAINylJDWwNkgojtSpV63FUyYetcw61dQtzq3MYH61KE62Zqeq26YKdMU0VWjsPzjmcdyilUGqNm91qDIKs4tjH95E7N0T+1MVMfeKJ+0A378U4kBuhVWcXSU/GXQyFGxjblM3KrFWqfPm72ezPH946wYHO2vIuOqXqDiAMlqXq3mx72Wmzn08TLEfDU0RqWuk28IPXiMaz2Yub7z9I68Zsk1wQhMbgcTg1jtPj4M2iau75SBvem+oK7656w1sU3rNRSrHh4H4O/PTHaduyYc7z0XiRk3/xHS59/0iqbBVuOkINnzlY4ufnyfG+VjH81vNdvDAwvZEsF41hkmwj+mxHng2um3Y3171nKQzRRoXs5rF+P7aicy3MQTxZJ5clqbu1RhmNsxbvPf46OdvLIgyBSStzO29T2NgYP5nbbQoYpXDO4/HESQOa3Xfvyrr91GLsW5euPwDmsTKf+1pk1N1NalUE3T1477Fj4yRDQ/jaMu8fm0QY9mBMK5XqRWxSolq9uPggQRAEYV7WZGXlsccew3vP7/3e7xHHc+1uZhPHMb/3e7+HUopHH310DWYoCIIgCIIgCMK6URsD76hVS5RcTDWKCU2M0XMXQWNdwKJxGIxf/LPFdfGgbWpjTmLrFuYWHzRXeetsAnicc3VV99pamKvcK6gZi9PeBxDdMyer23a2Ub731qbNY4OpsD0sZWqjNsfppJvh/vvrtpeTc/T88bfPUYumF0i3tUT83Z2jy7yqm6HqVvWF46XR7drZn+zM1Dyet4MzlPT0Iv74mUsMv3Uqc1zr5j423XPbMucqCMJS8CpVc3sitJup5t66oJp7PrTPY+zmesO7O7VE16PS8J6HfFc7e3/iw2z74D3zqryvvXGc41/5JqXBoXlGCzcDT9RzvLvmyfH+/73RwZffacW6SSvzrLr7XHsODytXdyvFJbozpS2MoX2j/68aPPfPqr0BlOY7OIM2Ad45vHPYaBX3q5Mo8LkgdR/ybl4r88l89ExuN+AcJG71r43ubMHs25ypJUfOLGHuC1uZZ9TdvjnqbsIA09mJHR+DOCYeWCRvfA3J57fhXJU4HqFcPoVzDfh5EQRBeB+yJs3uz3/+8wCcOHGCn/u5n1vQzrxcLvOzP/uzHD9+PDNWEARBEARBEISblNqkhXlC1UdEtkJOa5TK5jmmFuZ5nMrVLcxXvhik6i0Q5RU+ifFJzKRipll4P5nXnS44rr2FeRXC17Ol+E6Cq1Vajp7MlCcevadpr0WI5Y58tgGSeMWbtT7GNh0kKXRmnnvtrQHOXJ5eWDbK8w/3DxEu9+VL6gvDy1R1t7oCt8d70LOaZu8G5xkx03njSaXKhWdezByjg4AdH34ItQ529YJwMzOl5lYz1Nw+VXMbtxnFyn5/KXIYO0Ph7X294d0AZeZNhlKKDXce4MAnP0br5r45z0djE5z8828z8NxruERev5uRNMd7lL3z5Hh/42ya412MFK2zcrtLoWGoENDruuhwbSu69iXVnemJhjg2M7Gicy3MA/gZy+cKC7yy6Chl0g2NLklwNmmMPXWYA6PxSs/bNFb4em53DmtyqcIcsM6RWE8jpjDHyvzYRXxtkftxFQBqASvztVF3m85OlDYkIyPY8XFssbj4oDUgCNoIgm6q1QGsrVKunFnvKQmCILwnWZNP3B/84Af5mZ/5Gbz3fPWrX+X222/nN3/zN3n66ac5fvw4x48f5+mnn+Y3fuM3uP322/kv/+W/oJTip3/6p3niiSfWYoqCIAiCIAiCIKwHcQVsjI9LjEaKclxCUSMMApTK5ilblQM0VocYH6/OwtyC8qCcwydJ2ghttoW5czgH3ju0Uqy1qpvcEdQMu23vFT56gPZnXmGmE6nL5yg9dKhJk/Dcnh8mr7ILncejHkZat1Hs25epF8cm+Kvns9mKn+gfY1f7cjc6uHRhOFieqjv0AQfjvQSzGmcXzCCXzXTD3nvPhadfIqlkbTG3fvAe8l1ZC1RBEFbH/Grutik192rJNry7ZzS8xZZ7PvLdHez7iQ+z9QN31Rt8M/Ceq6+9w4mvfpPyleH1maDQVLoLnn96nRzvt4bTHO/B4QpBnFVDn21P7/F2JytTd1dVyBDZRnm/H13RuRamHcjeEylehEU2wCgUOgimrMzdEpxOFyWs34sEBnWdDSTGRlid3uPYurrb1oXT1jXAyvzOHdmIm9iSHL2w8CAFaLOglfmaqLuNRnd344olfK1GcukSDdkB0AAKha14LFF0hWrlAtZeXygoCIIgzE9zPfpm8H/+n/8n165d41vf+hYXLlzgV3/1V+c9bnKn2w//8A/zhS98Ya2mJwiCIAiCIAjCelAbB2+pVsqUPVTjiJypzWthnugCDo0jIPSrUGP4dNev9hriGt47lLX4XG7RoavBWpuqEZ0nmMf2tbkkqHCWEim5FT0W0PZyNsO7+PCd+EK+KbPYGpTYHGSzO68mBc67boa33Zupe2f5wrcuZBZnd7XV+NH+cZZNbAGV2n/mlqbq1l5xMN5LgexrcU2PcNpkMyqH3z7N+NlsrXPXNnpv27P8uQqCMC8eh1dFvKqhfA7t21E+RLtutG/sphJFiLGbseYKmm4cY3g9hnZdK1aN38wordl492107NzG+e+8QOVqtrFdGxnn3f/6t2y65zY23X8H2qz1e6DQTCZzvHd3Jfzfb7Vh/XQzdKhq+PcvdfLPNw+S9O2dqp9rz3PvtTLdvoMu186YXv593UXVzQY/3UTvoUyrr1FWjb2H8TyEYtoZRzGB5y1mN8Fno43GJeCtJYkjdC63um2OSuHDIG10xzFYB7M2mBgXkYQtaW53UMDoEnHi8HiscwSr/L+n2guYA1uxb0/f8yRHzhLet8j9jjJAUrcyjyGYu+nQq3STgPdMW583GNPejpuYIBkeRuXz2OERTF9vw6+zXLTOkcttpBZdJQz7KJXepbPzrvWeliAIwnuKNfNSKxQKPPnkk/z2b/82/f396c7Yef7s2LGD3/md3+HrX/86hUJh8RMLgiAIgiAIgvDexPu6hXmZiZql6iKixBEG8fwW5qqAbYCFuXHpUqMCXFyDJM3RnlLMNAHnJ5XdDqVAqTW2tQ6PoXRWJeKjw7R/7wjKTi8meqMpPnJPU6ZQUAm35UYytchrjkZ9jGy9BxdmNzh89+ULXBudVooFyvML+4cIlvvSeZdaZwYmVSMFS9jU4OHWZDcdPqsaG1cl3gnOZkT5tbEJBr5/JHNc0JJn+xMPoNQaq/cF4SbFqxpuSs3dgfZdaNeOsVsa3uieRBHUM7wLaN+N8honCu8FKfR0sv/vfoQtD945N77Be668+hbvfvVbVK6NzH8C4T3N49tr/NPDc3O8J2LNKydGM7VqoLnSkt537Uq2rkjJe5UOIrLN221+bPknWpRteHZkKornFx2ltE4b3jZJhcuNsPMPQwgMXql5rcyNTe+Pnc6RmOncbusgto1RMc+2MrdvX8KXa9c5uo4yTFuZJ8zfyHZ1G/MmqrsVmJ4efLWGK5aIBwfnzT9fD/L5TShlqEUD1KKrxLH8nhQEQVgOa7odVSnFf/ff/Xf8k3/yTzhy5Aivvvoq165dA2DDhg3cd9993H333bIgIAiCIAiCIAjvB+IyuARXKzMea4rxBErVyGnmNLutyuFVamGuV2Nh7lP7cu01OIe3SbrIpev21k3C2bSh7p1D6/qC35rhULlslrRPdqHK3bQ/90amXrrvdlznyvIzF8ZzMD9EoLIrl2/Vehnt3EWlqz9TH7oywndezyoDP7lrlK2tK2gyJQlTqu4wzNpvXoc9tp8NrjtTq1DjWHgKN+Nr8M5x/jsv4JLsvLY/cZigRTZvC8Jqma3mVr4D5QO060H7ZvyuyqIwGLsJZ67WWzNjOD1aV3gvLQ7h/YbSmk333k7nrrrKe1Zjuzo8xon/8i0233sHm+69fa71ufCeZn93muP9e0c6OD0+/X/k2ycd99w3TpzrnKqda8+zpZLQ5dvp8R2MqOVlbnuluOS72M30/cI2RjnpN6bN4AaSqrvPTz1WXMBzEei//iBAm4AkivDOYeMIHcx1LloWYQ6ogAlQSTLHlUjh0S6p53aHKG1QyuKcw7pUNb3alyY4tIOaeT7toANYR/LmBcIH911/0Ewrc+PTv+dx2cmquxXN6HjrlgK6tRU7OoJubSW+epVwy5aGX2e5KGXI57dQrV4gF26gWDxBd/dh6ZMIgiAskXXxXlJKce+993LvvfcufrAgCIIgCIIgCDcntXFwCeVqmZoqUIkmKJi4rnrOWlAmOo9D4QjI+dL851sC2qt0vc2DS6K0+T3PYmEj8R6cSxcavQe9BAvthhKcROlss8FHh2l//ii6Gk3XFBSfuK8pU9gVTNBrsqqfS3Ebl3Qfo1uyNo0ujvijv83mP97aWeUjW5a3CA7UVd0WgqCu6l68ObXVbmC73ZSpxSQcDU8Sq2xT+8qRtykPDmVqvbfvpXPXtuXPVRCEDF7VcGoijZ5wHSgKKNeCdj1raiWuMGi7CfRVnAYYx+mx+pyaE/lwM1Do7WL/3/0hrhx5i8FXjqUWJ5M4z+DLRxk7e5EdH3qQlr7udZun0Hi6C56fv6PEbzzXPVUbrhrGrl6jtX+62X2+Pcf9V0sYUnX3SDix7L2Al1Q3u/10szuPZQMTXKVzgVEr4TY8nSimo1QUL+D5ewsPMxqUwiXII7CLAAEAAElEQVQJSmu886glbLq7LlrhTYAKEqjG4NycprG2Mdakv5sSk8eoGOumc7sDs7rmqWrJYW7vx7453fxPjpxZuNkNWStzF4Oe757MgdegPMprvGqO6tr09hJfvIgdHwOjCXp7UU2OM1oKYdhLFF2jWh3ABG3UagMUCnJPKQiCsBRk+6QgCIIgCIIgCGuPdxBNQFymVLMUE09iq+SCCKUKGRXDbAtz46Prn3fBa4J2acMbwEVR3QLSpxbXTcJ7h3Pp31or1lbV7VG5F7IVuxFq/XQ8+2qmXjm4j2RjT8Nn0KYi9udGs9dyhrejHob778eb7GLnX3/vHMXydFO5YByf2ze0FEH2XJap6u61nexLtmdqDsdb4WkqOtusL18dZvDlo5larrOdrQ/fvYKJCoIwicfh1DhOjdezuXtRvhVt+zBu47pkZis02m1Eu1aU70L5EKcn8GoR6973OcpoNt9/kFv+3kcp9HbNeb56bZR3v/otBl85hneNz+cV1o+dnZZdndkNYt97azTzODKay63pPUCHb6PXzf0ZWYySyjNCVi3d70fnP3hVGDwPzKq9CSy8EU+h0CbAWYv3Hhev8B52Jvkwva9BwTzW6MZFeK1xypAEBQKtcPX40KRB/8/mWJmfuIwvVq9zdJ0lWZlPq7vxesrWvNGoMMB0dODGxiFJiC9fbsp1lotSikJhG9aViOMRSqWTOCfRGYIgCEtBmt2CIAiCIAiCIKw9cRmcxdZKjCUBxdo4WkGoI5hlYe5UiFcGp3Non6y4VTyt6lZ471A2SRcJtZ7XSrFRJIlNmzfOr72q21xEmYFMyUcP0vrqccx4ViFffOL+JkzAc3t+JNNj9h6O1voY6buVqLUvc/T5s4O8cjK7cPzpXSNsKKxA2TNb1R0urOpucy3cluxOF1hncCI4z5guZmouTjj/7eezSkWl2PGRhzCLXEcQhOvjVRWnh/HEaNeJ9p31bO6ta2JbvhBpw3tDveHdifI5nBrHq0UaPAItG3rY/1MfZdN9d8zxUPbOMfjim7z7X/+W6kgz8paF9eLR/uz/jefPga6MZmpnO6bdEXbblWV3X1TdmccbKJH38fJPtCj342dstlE4FC8vOkrXrfq9tSRJvHpj7jAEBT5IrcxnM5nbbXVIEhTQk7ndHpJG5XbfsR1yMzaKOk/y+rmFB820MqduZT4vs7K7m4Tp7galsCOj2NFRXGnlzlGNJAg6CIIuatXLOFelUjm73lMSBEF4T9DQ7bBf/OIXG3m6KT7zmc805byCIAiCIAiCIKwTtXGwMeVqhUi1UomvUggdKDsnrztWBRwKuxoL89mq7qSWWpjbBB82z7bQeXDO4ZxDKeoW7WvHnKxu1wHRLXQ8/Z8z9drefqKdjc8r3BqU6ZllX3426WAwt5nxTbdl6kmlzP/1dFZZc2d3hUc3rfB7niSABmPqC8PX3yaR8yEH430Ysgr/s2aAK2Z4zvEDz79ObTTblN907+20be6bc6wgCIvjsfVs7gjl8yjfvqbZ3EtlsuENQ3VLc3BqAo1H+VVm8d7kaGPYcvgQnbvTLO/ayHjm+crVEU585ZtsPnyIjXcdQK315jCh4Ty0NeLL73gil77/Wq+4cHGIbfu7p4652JYjURB4aPMtbHDdXDOjy7rOIJ3cxiBBXSmsSLO7T7OxQV/JJK3AncBMZ5yXgEdZaIldaY02BmcTdBDgkwQVrGJJXmu8MajApFbms4K4Z+Z2OxuCNijlsNaR6Mbkdqt8QHDHdpIj043Y5MhZwg8eWGTgpJW5W8DKfPLrUHiv02NV47O7MRrd3Y0dHkJ3dhAPDJDfv7/x11kBhcJWisV3qEVXUSqgUOjHmMLiAwVBEN7HNLTZ/bnPfS5jN9gIlFLS7BYEQRAEQRCEmwnvoJZamBdrjmISYF2RfJAqUWZnoCa6gFVh3cJ8ZUodzQxVNx4fxShr0wXCJlqYu7pNuneurupeQwtzPYQKTmZKPnqAwltnCa9mM7wnmqDqDnDckstep+IMJ+JehvfeDzMb/97zp985RxRPW1q2BZbP7Bta2YKst3VVd7ioqtt4zaF4H3myxwzqYc6ZubaWE+cGGDr6bqbWsrGXzffdsYKJCoLgVQWnSuAV2nWiyKNcaz2bu3m/n1eKQqFdHwqN0wpPEaeK9YZ363pP74andWMvt3zyhxl86ShXX3snfR+u453j8vOvM376Its/fJhCd6Nzl4W1pCXwHN5S43uXppt0T74+wef3TXdbE6241JpjZym1995lt3JNjy7rdskpzWXfyXZGp2r9fozTbFh9V3cWnodQM5rdihKeo8DCESY6MCQ1i3cWG8fo1TS7Ib2vSSygIE4gl72HMTYiDtLXPTEFAhUzKepOnCdcZW43QHDP7kyz254axI2V0V0L/B6csjK3oCatzOdubPHKparuZmd3d3TgxsdJhodRuRx2dDRVfK8zWufJ5TZQq10hF/ZSKr9LZ8eh9Z6WIAjCDU3Dt0n6egZII/8IgiAIgiAIgnATEZXAO+JaifEkpFirEegagamByqHUdHPDqiC1MFeTFuYr+3yg7QxVNy61fUySplqYew/OWbxzeM+aW5ircJaq2xcgvpOOp1/J1KMtfVRvzWYvNoJ9uVHyKpvH+HbUw8jmQyT5jkz9rbcvcGKgkqn9/N5hunMrzJZMLEtRdSsPt8V7aJulyBxVE5wIzs1ZbE+qNc4/nX1dVWDY8ZEHUUZUiIKwHDwWp0ZxqljP5u6pZ3NvwLgNN2Sje5K04d2Ldh0o3472rThVwqsbwwb3Rkcbw9aH7mL/T36EfHfHnOfLV4Y48ZVvcvX1dyTL+z3OY9uz7i7nRjxJMbsR7mzHtMNOqy+wyfUu+zqzrcxbiOmlGf8fN+PZnakonmcx/3WlDUopXGLT/O7V/lzncqmVuTHp5s1ZGBuBms7tNkY3PLfb3LYNCjOa7B6S1xplZT5jQBOzu1FgenvxlSquXCYZGIAb5HdOPr8JpTTV2mVqtUHieHzxQYIgCO9jGqrsPn36dCNPJwiCIAiCIAjCzUhtHGxEuVIlUq2UolE6cgrvqiidbTomqoBHYVVIzq1s0VL5dG1N+bRV7uM47WFaiw8b+pEog/cO58B5h9aKJuw1vj6qCOGxbC26h9zpa+TPZjO8i0/c33DlU4eO2BFkc66vJi2cb9lNqXdvpl4dH+crP7iWqT3YV+KBvmzze8m4uqo7XETV7WFfsoNen1UOllWVt8LT+FmWmd57Lj7zMkk5m0G67QN3i/pQEJbJe03NfT206wEUTqe/4Z0qowF1A1mv38i0bu7jlk/+MJdfPMq119/JPOetZeAHrzF2+iI7PnSYfNfcprhw47O3K2FrW8JAafp+663TI9x513RD+1Jrjkgrci59392ZbOGqHl5Wf3OcAuPk6WS6ud7vRxlW7av/ImaRqrvPTD1WDOC5AOxYcJwKAlwco73HxjFBPr/g8QtiNF7r1Mq8FqW99hmvl3YxeLAmRxIUaKk/N5XbfX3DmyWjQkNwaAfJS6emasmRM+Qev22BUSzZynxS3e2brO7WrS2olhbs8Ai6pYXk6lWCzZubcq3loFRAPr+ZavUSudwGSqXjdHc/sN7TEgRBuGFp6MrOrl2NVwMIgiAIgiAIgnAT4SxEqYX5ROyYiA3elcgHCohR9GQOn7QwB1ZuYW7VVMPbKQdxBIlFeYfXzWt2J9bicTjnCZpolT4fKnwFNUNV7b3Bx/fS8fTfZufY3UH57lsafHXPbbnhTP/cesVRu5mRnfdmD3WWL37rHG5GX7krTPi5PVnV17Kw9axuberKp/lXy7fbTWx1GzK1iJij4UmSeRZUR46fZez0hUytY8cWeu/Yt/K5CsL7jDSbewKv4hnZ3GGqkn6PZl5r1w3oesNb1y3NHfj2eoCGsBA6CNj28N107enn/HdeIBrPbpQqX77G8a98g60P3UXfwf0Nj08UmotS8Pj2Gn/yzvT91jdeL3LnnW4qzsRpxcW2kD0TqZV5C3k2uz4um6FlXegi3XT6wanSJiYIfUKsGn2vdwBPN2qGbbriefwizW5tDC6OcdZikxiTy69ur2EuBGuhVkvdimZs4FSkDW+rQ5wO8DrA1HO7bYNyuwGCe3Zlmt3u7DXccBHdu8AmgyVamc8YUFd3Nym7Gwh6e4kvXcJOTKBMgOntQzVxQ+xSCcNeougateoljGmhVhskn1//RrwgCMKNiPisCYIgCIIgCIKwdkRF8J64WqKYhBQjSy4oY3SqxFFqutlhCXAqwKocxscrszD31FV29QVV71FxkjZElYagiRbm1uGcQylQai0/etUgdyRbig8RDFRpeetMplx87N7U6ruB9Acluk2UqZ2KOxnY8gAuLGTqL7x6loGR7CaGz+4bpi1coYWks6n9ZGhSVfd1MjE32G722P5MzeI4Fp6iqqI5x0fjRS59L2v/bgo5tj9xWBovgrAEPD5Vc+sRPBbtOtG+E+06MHbre7bRPYl2nakq3begXTtO1dKm/gqjN96PtG3ZwIGf/hgbDs3dgOUTy6Xvvcqpv3pqTjNcuPH5wNYawYwmZbHmmBjObmo72ZF9v96RbEEt07r6Ml3YGRtMNLCVseVPeFE0nsOzaseAhW2mlVJoY/BJUnfwXtkmzinCdEOf19exMncx1qQW8UlQQCtI6t+GuFFW5ge2QmsuU5uZ4z0vy7AyT9Xd9e+pb969tMqF6PZ23OgoPo5JBi837VrLQSlNobCNxBaJ4zFKpXfx/sawWRcEQbjRkGa3IAiCIAiCIAhrR20ckhrFao0aeSpxTEtYw1MBFaBmqG8SPWlhHqxY1W1cukCW2sv6VPkCkFh8E9XW1iaAxztXz+pew4Zo+DpqRsPWe/DRA3Q8k23W2tYCpQcPNvbSWPbnRjO1sgs41naIaufWTH3i2jW+diS7CP34pgnu7MnahC+LKVV3ALn8vLKlDtfKrclcV7LjwVkmdHlO3TvH+e+8gIuTTH37Yw8Qtr23G3SCsBakau6xVPHs8zOyuTdiXB/qJlma0q4DbftQpA1vryJpeC8THQZse+Re9v6dD5HrmGsFX7p0leNf/gZDx97Fe3ld3yu05zz3bc5uJHvxndHM46stBWp6+j27QI4trm9Z10mUYZCs3X2/H01vhBrOvfgZXuAKj+LFRUfpwOC9xzs7575i2QQGr+ob++oN9Jmkud0Kp4Kp3G7vPc57rG3Ma6KMJrhrZ6aWHDmz+EBtADdtZb74ldKmd7Oyu4GgpwfvwY6OkgwP4yorjNNpMEHQiTEd1KqXsLZMpbLIZgJBEIT3KWv+iWJsbIw/+IM/4Bd/8Rf58R//cT7ykY9w9mz2l/SlS5c4duwYp06dus5ZBEEQBEEQBEF4z+EsxCVIykzUHOOJwboKhVDhfRVFVvWb6Hzdwlxh/Fy17aL41O1QT6q6lU8tzK1DeQemefaEzlm8c6lNpF7Lj10WlXs5W0puwYwEtL6azUMtPXwXPteA0MYZ7M+NkVNZxclrfjsjW+7KHhjX+INvXsqUNuQTPrV7dOUXn1J1B/Ws7rnf34LPcTDei571UfiUucg1M/+1r77+DqXL2UzxngO76dq7feVzFYT3AXPV3F0o34FxnTeFmns+tG9D2w0oX0C7DjwRXo3jESXecmjftolbPvUx+uaJiXBJwsXvvsLpv36GaKK0DrMTVsKj/dmNbM+dKOJnKnqV4p2ObAN2Z7IFvczm5iXVnXncTkQXzWhatgB3z6q9DCzcuFXaoLTCJQnOpveKqyIMITCkAd3Z5vl0bndIYvIYVY/0cRC7xm0ACO7ZnXnsLo7gri6scocZVuZu0sp8fqbV3QrlzZymfsMwGtPdjZ0YhzgmvjTQpAstn0JhG87HRNEQ5cpZnKstPkgQBOF9xpo2u3/3d3+XnTt38t/8N/8Nf/iHf8jf/M3f8PTTT1MqZW9On3rqKQ4dOsShQ4cYHh5eyykKgiAIgiAIgtAsoglwjlqlSNnlKEUJLWEFrQAfZSzMHQanQqwK0SQrsjDXPk1L1b7e6PagohkW5g22757EOYdz4LxDa7W2qsXgLZTOWrz66EHanz2CmrGg6gND8YN3zR69Kjp1jf4ge+3BpIUzGx+Yk43+t8+dZaw8vcit8Hx+/xAFs4oVzGRWVvcsAm84GO8jJNvgH9DXuGiuzHvKyrURBl88mqmFHW1se+TeeY8XBCHFk8xQcxfqau4WtN2Idr03jZp7PrRvRbuNKJ9H+048sTS8V4AJQ/ofu589n3iCsL11zvPFi4Mc//KTDL99SlTe7wFu7U3Y2DL9vh8njsHLWSvz07OszHOEbLUbl3WdEVopz3qf7/ejy5vsEvE8mHmsqABvLDpOmwBnHd55bLxKK/NcCFrjtYYkawc+ndudw+kApwO0UiTO4ZynUf1us28TqmPWhtXF1N3LsDKHVNCt0Ok/fPOcmUxHByoISYZHcKUidnyxpv3aYEyBMOylVhvE2RqlkggEBUEQZrNmny5+9Vd/lV/+5V9mYmKCXC7H/ffff91jf+ZnfoYtW7ZQq9X4sz/7s7WaoiAIgiAIgiAIzaQ2DrZGsRJRJU8lcrSGVbyvAh6lphfKYl3AA1aFGLcyVbd2TCmCUlV3nD6RJHhjmuYsbq3Fky4k6jVVdXtULmuh6ZPtqGIPbc+/mamXDt+Bm6d5sJpr354bzriGJ17xangr1Y6sffnV85d49nh2w/MPb53gQOcqVCrOplaY11F1K6+4I95Dq88uxg6rcd4Nzs/7s+ASy7lvPz9HdbXzww9iGqyIF4SbhVTNXcbp0Rlq7vabWs09H9q3oN2mesO7a6r5Lw3v5dOxfTMHPvVxem/fO+c5FydcePolznztu0TFuTEUwo2DVvDY9qy6+9m3slEm5XwnA0H2/mCH3YRZTlazUlycpe7ewjjGL9xMXRkb8WTdBxTPs5j0WNU3WzprsXG8Opf1IEwjW4IAZeexMncR1oR40txuo8HWL5g0KLdbaU1wdzYeJn717OKbUJZlZe7qX5tCed08O3OtMD09uHIZV6mQXBpIpfA3APn8ZjyeWm2Qau0SSTKx3lMSBEG4oViTlZeXX36Z3/zN3wTg53/+57l8+TIvvPDC9SelNZ/61Kfw3vPNb35zLaYoCIIgCIIgCEIzcQlEJXxUZiLyjMfpR5F8WAGqpB9NphuIiS7MsDBfvupFM6nqVtN5qXEMzqUK56A5Fubeg3UO5xxKgVJr2Ow2p1FmKDuf6DDtz72BjqZfQ68UE4/d19BLbw+KdJrs9+lk3M3VTVmLTx/X+MPvZFXU21oi/u7O0dVNIK6r9bWB/CxVt4dbkp10+WyOZ1FVeDs8fd1ND5dfeJ3aSFbRs/Ge22jbujyVmSC8X5hWc5fqau7e942aez60L8xoeHfXs8tHpeG9AkwuZPvjD7Dnxx4nbJu7YWLi/OVU5f3OGVF538A8vK2GVtPfn7fPT2CTGdbbSnGsM9uUDgnZtkx19yW6M//LDJ4tNEeh63ko81hxBVg4U1kphTYGX//anV2FuluBD8M0msd7sNnXz9h4KrfbBgW01ulh3hPbxv0uCu7JNrv94Bju8ugio5ZuZQ4z7cxpqp25bmtFFQrYkRFcVCMZujFcZ7UOyec3E8VDWFulVDqx3lMSBEG4oViTTxq/+7u/i/eehx9+mC9+8Yt0dXUtOubhhx8G4I03Frd/EQRBEARBEAThBqc2Dt5RKRepkKdYS2gJI7RyOF9FqQKqLgt26BkW5ha93MaAB21nqLp1amFOHKcWj0o1zcLcWgve452rq7qbpDyZB5XLbij2tg+qO2n/3pFMvXLXLdi+xT+TLZUQy/7caKZWdAHH2u8kKXRm6s+8colKPL06aZTnH+4fIlzNJ1NngfoGBqPnbGTYabew2fVmajUijoYnsWr+n62JC4NceyO7iFjY0M3mBw6uYqKCcHOSVXM7tOuuq7k73ldq7vnQPo+xm1A+V294e3xd9S4sn44dWzjwqY/Tc+vuOc+5KObCUy9w5snvEZeakdEsrJbuvOeujdONXWs9p85nrcxH2noZ0qOZWr/dhFmGdXWkAq7Rnj1Hk6zMYT+e7D1Gqu5eGB0YPB5nLS5apZV5GIKZtDKfL7fbY01IbApTud3WeaxtXLdY79qI6s46BiVHFm76z7UyTxY+nrWzMw96e/C1CDc+QXJlcM7rul7kchtQKqRWGyCKR6hF19Z7SoIgCDcMa9LsfuaZZ1BK8Y//8T9e8pjdu3cDcPHixSbNShAEQRAEQRCENaM2DkmNUi2i4vNUY0dbLkoVWPVm9yTJlIV5bkUW5pOqblVXdXsAG6P8pIV50LQetHMJ3jm8T20d1ww9gAouZEo+eoC2l9/GFLOL/hNPNFbVfUtulFBlF0zfjLcwtun2TK04NsHTR0cztU/0j7GrfTWLvD5VdevJrO6svfgm28sum7VRT7AcDU8Rqfmvm9QiLjyV3TigjGbnRx5CN2mThCC8V0nV3KM4VZ6Vzb3pfanmng9FDmM3T1uae4/XY9LwXiEmn2PHhx5k9488StBamPP8xNlLHP/yk4ycWIKNsrDmPN6ftTJ//p2slXmc7+JEfjRTCwnYvkx192wr8y6qtPvq/AevCjUnuxveAUbmO3h6lDYorfA2wdUdgVZMWL/3CQzK2oziWQHGxViTw2uDMyFaK2w9s7tRud1Kqznq7uTVJTgtLMvKHNbKzlzl8+j2duzoKD6Oia9cWXzQGqCUplDYSpKMk8QTlIrH8V7cQgRBEGCNmt0DAwMA3HrrrUseUyikN6y12ipy2wRBEARBEARBWH9sDHEFF5eYiGA8TrMbC0EFTwS4Oc1uN2VhvoJmtwXt0wU+P9mEjRLwDuUsBM1pWKaLleC8Q2u1pk2eOVndrh2iW+l45pVMvXrLDuL+TQ27bpeu0R9m8zUHklbObbgbb7J24l/+7kAml3JXW40f7V+lreikqtvMVXV3uXZuSXZkDvd43g7OUNLXV/1d/O7Lc1SBWx+6i0JP49TwgvBeJ1Vzl+pqbj8rm3sL2s9tQr6fUYQzGt7deE9d4X1jqAXfi3Tu2saBT32c7lt2zXnO1iLOf/t5zn7j+ySVZjQ4hZVycENMT356o8epSxNEs5TNQ21dXNXZZvE2u4lgGUreIdqpknV6aZ66+x480/c8Co/ixQWOT9EmwFmHdw4br9bKPAAdpE3jWVbm2sY4nUtzu00BoxTOpdtBk4Zame/OPPZDRdyFxSzADaDrVub1e7pFWCs786CnB+89dmyM5No1fPXG+F0Sht0Y00a1dglry1SrFxYfJAiC8D5gTVZfcrn0DX90dHTJYwYHBwHo7u5uwowEQRAEQRAEQVgz6hbm5XKRqipQrFracgFQAl8lbUunjRGHxqocySoszFNVt8YDblLwEUUQ2/Rapjl53dami3TO+bqF+RqhRiA4nin56D5a3jxLMJRVTE08cX/jLovn9lx2ETPxijfVLko9uzP1E2eGOTc43RQPlOcX9g8RrOpl8un3dB5Vd4vLc0e8Bz3rI+/J4AIj5voN9pETZxk7eT5Ta+/fTN+hW1YzUUG4qZhWc1fQvmWGmnsz2vWImvs6KIJ6w7tQb3ir+mYBaXivlKCQZ+dHHmLXxx4haMnPeX78zEXe+dMnGZ31e11YP7SCR/qnhU3ew9FT2cZ2uXUL58zlSW8eAAIM2+3mJV/HK8UlspvUtjKGbooKNg/cO6v2CrDwhk1Vd4tx1uLimFUZEYQ5CAxe1RvHMzAuSqOxdUASFDBapffIjobmduvtvai+rH18cuTMwoMU6X3cMqzMYY3szAOD6ezEjo9DnBAPXG7OdVZAobAN56pE0TDl8mncklTxgiAINzdr8glk586dAJw4cWKRI6f59re/DSxPDS4IgiAIgiAIwg1IbRySKqVKTNmFRImjNWfx1PC+Cio/ldc9bWEersjC3DiFmlJ11xfwEjtlYU7QHAtz78E6h3UOpVKbwbVC5V5CzfiavM9BdBcdT72cOS7q30ht/w4axY5ggg6TXVx7N+ri6qa7YcbXb63lr5+/lDnuk7tG2dq6ygbPdbK6Qx9wKN5HMEvRdcEMMmCun20YFctcfDarhDf5HDs+fHjq51MQ3s/MVXN3o3zbDDX33GajkCVteG9C1xXeypv66ymNitXQtaefA5/6Ebr2zX2Ps9Ua5771A85+8wckFXGPvBF4tL+GmtHIPvLuaOb5JNfOWN5wZY66eyOhX/qGxdlW5iGOTUwse75LwfNgRmCsqAGvLThGKYUODC5Jm9NuNeruyQ1/xqDm5HYnaW63zpEEebSu53Z7T9LA3G6lFMG9uzO15MhZ/GJe6cu2Moe1sjM3XV0obUhGR7AT49hisSnXWS7GtBKGPdRql7G2Rrl8ar2nJAiCsO6syQrMD/3QD+G95/d///eXdPzFixf5T//pP6GU4mMf+1iTZycIgiAIgiAIQtOwESRVbK3ERKKZiNK+ZCFMF5z9PHndTgWAxvhlLvr5un25Tz/mTKm64wi8RzmLb1LmsrMWvMc7V8/qXqPmqCpBeDRbi+8mf/IquYvZfMGJJ+6HBjVt8yphX26WatyFnCjcQq09m6v57GtXGCtOfy9v7azykS2rXWyeVHUbUAbqbmLaK+6I91Ig23S7pkc5bS7Nd6L0bN5z/jsv4GZZqfY/eh9hW+sq5yoI731SNfeIqLkbgMLUX7cCynehfIDTY/VYD2GlBC15dn30YXb+8MOYwtyNF2OnznP8y19n7LRY/q43fS2Og33T77fnBkuUytmNCOWWLZwLBjLqboNmxzLU3VWVY4i2TK15Vua9wIFMRfECi3lsaxMAHpckJHFt5Y7cSuGDIN3451z6Z2oeM3K7lcHp3FRut4eGNrznWJmPlnFnry4yavlW5rBGduZaoXt6cMUSvloluXSJ1UnwG0c+vxWPI4quUK1eJElKiw8SBEG4iVmTTyP/+B//Y8Iw5LXXXuM3fuM3Fjz2nXfe4Ud+5EcYGxujtbWVX/qlX1qLKQqCIAiCIAiC0AyqY1MW5pEqUKxZ2vIBnhLex0Ay1ex2KKzKYVWubmFuFz73LEy9u60Bp2YsREVxqupGZTKdG4l1Cd47vGdNLcxV+CpKTSt4vNf46L45qu6kt5PKof0Nu+4tuVEClV3sOxb1MbLlUKZWKkd8743ppntOOz67bwi92p67naHqDnSaw+7h1mQ3nT67sD2uSrwTnFlw/8G1N45TupTdHNC9fyfd+3eucqKC8N5mWs09AqgZau4ujN0sau4VotBotwntWmY0vMfxSpTHq6V77w5u/fTH6dzTP+e5pFLj7De+z7m/fY6kKq/1evLo9uzr/9rJ0czjcttmKipiUA9l6lvtBnI+ZKnMVnf3UqbFN2djiefBzGPFNWBhxa3SGm00LknqLt6rVHcbk25sTGZZmdsIp8O0uV23Mp/M7baLKa+Xgdnajd6ctY9PXj278KAVWpkDeOWn7MxVk+zMTVsbKp8nGR7BVavY4ZHFB60BWofk85uoRVextkap/O56T0kQBGFdWZNVmH379vGv/tW/wnvPr/3ar/GBD3yA/+1/+9+mnv/yl7/Mv/7X/5pPfOITHDp0iGPHjqGU4rd/+7fZuHHjAmcWBEEQBEEQBOGGpjYOcYViLWHChsTW054P8L6YWpgDqp7XnbEwX4GqW/lU2Qszmt3WopxLF/2MaYrg2jlXF9E4tFZrqHCMIHckW0puJ7xYpXDiXKY88fh9qaS+AfToKluDcqZ2KW7jYvcd2Fw2q/Hrz18iTqYVOj+xY4yNheVtYphL3ZJem9QuPUxV3XvsNja47syRVWocC09lNz/Mojo8xuXn38jUwvZW+h+9b5XzFIT3NlNqbipo34ry3Sjfgkm2pE1vUXOvirThvRHtWusN7xCnJqTh3QCClgK7fviD7PyhD2DyuTnPj757juNffpLxs9d3/BCay90bIzpy0/cHb87K7bZBK3Guk3PBZdwMpa9GszNZurr7Cu1EZJugzVN378WzIVNRPL/oKB0EeO9xiZ3jMLMswhAUeBPMtTK3cT23OyQxBYxKjeStg9g1Nsc8uHdX5nHy+ln8YtfQAcu3Mgfw6WcAFHid/mk0CoLeXnythiuWiAcH65su159cbiNKBdRql4iia0TR0OKDBEEQblLW7JPJP/2n/5T/9X/9XwmCgBdeeIF//s//+VTu2a//+q/zv/wv/wtf//rXsdaitebf/bt/xy/8wi+s1fQEQRAEQRAEQWg0SRVsRFwrUow1E5EnNIp8AN5X8FRA5VAqXYRMVGph7tHLzuvWXqXCEK/mqro9KJvggyZamONxzqPXMKub8E2UqmZKPjpMx9NZVbdta6H0wB0NuaTCc1t+OFOLveKY3cz4hlsz9fODxczi9Y7WiI9ubUBWZv31nqnq3mo3sH2WtWlMwpvhSWJ1fYWQs5Zzf/vcnEXYHR96cN4GiSC8H5ij5vZZNbdC/m80irTh3Yd2bSjfifI5nBrHz/rdLiwfpRTd+3dy4NMfp3PXtjnPJ+UqZ77+LOe/8wK2Jhbya02g4YPbpjd2DFyrMDKe/bkvt26mpmIuz1J3b3YbyPul/R7ySjNAVmm8jVFUU6yoFZ6HZlVOAAs3IJU2KK1xNkk3UCYrbKRqncb1BKZuCT79NWpfz+02aW63qud2O+ew1jfUmXuOlflEFXvyyvwHT88w/eOSZVmZQ2pnzpSduW6Knbkq5NFtbdiRYXwUEV9dzJp9bVBKk89vJU7GsEmJUukE3t8YjXhBEIS1Zk234f6zf/bPOHLkCJ///OfZsGED3vvMn87OTn72Z3+WV199lV/+5V9ey6kJgiAIgiAIgtBoauPgLeVymUgVKNUS2vMG70uAx7valIW5R2F1DqtCNG55FuYetJtH1Q1pXvekuqUJFubeg3UO5yxKUc/rXgscKvdSdi7JXsy1kJbXTmTqxUfuhrAxX/vOcIJ2nW0evxt1M7TpEN5kr/G156ZzURWef7BvGLNqZf0sVXcuR4/tZF+yPXOUw/FWeJqKXlghOfjim1SHs9njG+46QHv/ptVOVBDek3hivM6qubWouZvKdMO7HeU70L5QV3hX1ntqNwVhawu7Pv4IOz78ICY31/565PgZjn/5SSbODazD7N7fPNafbW6/MdvKvGUzHjgfXMZm1N2KncmWJV/noso2u/NYNlBc9nyXxl34umPRJGl298LoIMA7h3cWG69i80WYAxMAavr+l8nc7girQ7zSeJ3DaIV11BXejesQ642d6O29mVpy5MzCgxTpvZ1z6c31stTda2Rn3tODtw47NkZy9Sr+BtkkE4bdGNNKpXqBJJmgWHxnvackCIKwLqz5p5Tbb7+dP/iDP2BwcJAzZ87wwgsv8IMf/IDjx48zNDTEl770JQ4dOrT4iQRBEARBEARBuLGZsjCPGU9CrIO2fFi3MLdANG1hrvJQz+zWy8xS1Eyruv1MOYdzKOtmNEcb72HurE3X5JyvN7qb4JM+H8E7KD2eKfnoMB3ffTWjVnK5kOLDdzXkknmVsC/MNobHbY5TwXbK3dls61ePDzFwbbpR85EtE+xpb8CioE2YVnUb2lQ7tye76z8B05wIzjOmF17ILl66wtXXsguChd4utjx45+rnKQjvMTwOr4o4PQq+ruZ2bRjXjRY1d9NRKLTrxbiOesO7BaeKeFVefLCwKEopeg7s5sCnP07HjrlN0rhU4fTXvsuFp1/ErsZGWlgWm9scB3qmX+83ZlmZu6BAlO8mUgkD5lp2rOulxeWXdJ2SKjBKS6bWPCvzHDA7BuUIsPDmO2U0SilckqT3liu1Fs9NWpkb1Jzc7hhnQjyKJCgQaIWrC9CSRluZ3z3byvwc3i5mZW5IFd12WbndKc23M1dhgOnsxI2PQ5wQX77c8GusBKUUhcJ2nIuoVM9TrQ1QqVxYfKAgCMJNxrpuyd25cycPPPAADz30EPv370evmQoCXnrpJX7913+dj33sY2zfvp18Pk97ezsHDhzg85//PM8+++yi5yiXy3z1q1/lH/2jf8Thw4fp6ekhDEP6+vp4+OGH+bVf+zUu3yBvfIIgCIIgCIKwpsQVsDFxpUTJBkzEjnygyQUa50vTed1qOq/bKlO3MF/GQrMHbWeouvWMZndt0sLc4pug6oZU1e29w/u1tDD3qNyL2Yrdih7rpfXFY5l66cGD+Naswmil3JobwcxQzXsPx6IeRrfcmdlIEMWWb780nYPak0v4uzuzTfKV4dPs9bqqO5dr5WC8FzMri/OsGeCKGb7OOVJsLeL8d7JKK6U1Oz7yENo0RxEkCDcqqZp7FEcV7dum1dx2C9p1iZp7jZhseGvXifLtaN+KUyW8Kq331G4awrZWdv/oY2x/4gH0PCrv4bdPpyrvC4PrMLv3J49tn1Z3XxutMjicdTQot6abEy6YQewM1x+FYqddjrq7O/N4A0XyvjkbGzyH8TM24Ski0ob39VEodBDgrMM7RxKtcIOg0Xij002BzmYsvY1Nz2l1QBwU0Lqe2+0hsY31/g7uyTa7KUfY44u5J0xamU82u5fXgM/Ymbvm2Jmbri5QCjs6gh0bxRVvjN/PxrTQ0rKdOB4lql2lVDpOHI+u97QEQRDWlPflJ5bHH3+cw4cP86u/+qt885vf5OLFi0RRRKlU4sSJE/zRH/0Rjz32GJ/97GeJrnNz8frrr7N582Y++clP8vu///u89NJLjI6OkiQJw8PDPPfcc/zLf/kvufXWW/mTP/mTNf4KBUEQBEEQBGGdqY2DSyhWStTIU4ksbXlTbwyX8FRBBShVV5joPJYcCodm6WoOVdf0Kp8u2GXWteJohhK48Q1M59OsQ+cdSilUE5Tj82LOoUw2+9BHh2n/wRvoePq181pTfOzehlyyz1TYHGQXoC8mbQy27yVq7cvUnzlymWJleh4/t2eEgmnAiuPk9zIMMEGOg/YA+Vlq00E9zDmz+Ibji997lbiYVUxuefAQLX3dq5+nILxHmF/N3VpXc28RNfc6oV13usnAt6F9G06V8apZlsvvP5RS9N62lwM//THat2+e83xcLHP6r5/m4ndfxsai8m4292+KaA2mm5pvnsyquystm/AoYpVw0WRzkje6Hlrd0jb0DdJJMmMZXAFbacRGvPnoBm7LVFIr84XvhVT9XtXZBJck+JVai4e5enSPz1iZa2/Be5zJYU1h6t7VWkfiGpvbrXvb0bs2ZGrJkbMLD5qyMq836ZdpZQ51O3OfOi0pbxrf8DYa3d2NnSjiaxHxwAANfeFWQRj2kMttpFobIEkmGB9/A2sXdhQQBEG4mWhKs/u5557jp37qp/ipn/opvvKVryxr7Je//OWpsS+//HIzpselS6nKYNu2bfzyL/8yX/nKV6bs1P/dv/t39Pf3A/DFL36Rz33uc/OeY3x8nGIx/bDxyCOP8G/+zb/hm9/8Jq+88gpPPvkkv/RLv4TWmvHxcf7+3//7fO1rX2vK1yIIgiAIgiAINxzeQ22sbmGeMFa3MG/PB3hfARzeV+damOscxsfLMgI3FpRP18e8mqEAcQ5l7bQSuAkuUq7efPXO1V2q1qbZrXJZRbJ33ajyLtq+/3qmXr7nALa7Y/XXw3NbLrv4HHnN8biPsc0HM/Xh8RrPvTm9GH1fb5l7ehuROzup6g5AaW4zt9Lus5akY2qCE8G5Rb8NoyfPM3oiu+Datm0jG+66tQHzFIT3Bp5oHjV36ww19xpt3hHmRbsutOtB+Va0b8epCl5NZKM6hFWR62hjz489Tv9j96PDue4vQ8dOcuLL36B46co8o4VGERp4eNt0Q+7N07OszE2OWiHNf75orpDMUnfvsluXdB2rNJfpzNT6/WjTGpWeBzOPFcPAiQXHpOruEJdYvPcrz+4OJ63MA1SS3UBqbIQ1IV4prMlhVLp5Exqb2w0Q3Ls78zh54zw+tvMfPIk21FPEV2BlDpPd7Sk78ya0PkxHByqXIxkexlXK2LFmbZpYPvn8Voxpo1w+S5KUmJh4A+8ba1EvCIJwo9KUZvcv//Iv8+d//uecP3+en/zJn1zW2J/8yZ/k/Pnz/Pmf/zm/8iu/0ozpcdttt/Enf/InnDt3jt/+7d/mk5/8JIcPH+YDH/gAv/Irv8KRI0c4cOAAAP/5P/9nnnnmmTnn0Frz6U9/mqNHj/Lss8/yP/1P/xMf/ehHuffee/nYxz7G7//+7/PVr361vkPO8k/+yT/B3yA7vQRBEARBEAShqcRlcJZapUjZhRQjSyHUBEanqm7vwdfmtzBfTl53vcmt67l8bmZvJp60ME+aZmHuXJqp6D0ovUaNIX0FFWQbtT46TNuLb2HK1Ux94on7G3LJ3eE4rTq74Phu1M3whluxYbbh/I0XLk4tlrYYx8/uyS5ar5hkUtVt2B/sp9d3ZZ4uqyrHwtN4tfBnrrhU4eJ3s5uqdS5kx4ceXDtlviCsI9Nq7jHweoaau0eyuW8wtOtA216Ub0G7DpyqScO7wSil6LtjHwc+9XHatm2a83w0UeLUXz7Fxe+9gotX0ngTlsKj/dPN7tGJiAtXstbQ5dZUgZ8oy8VZzjYbXDdtLnsvcj1mW5m3EtNDef6DV80uPFnnAMXzi47Sk+ruxGLjeGW9+MDglQZjwM6yMncRTtddlUyBwGhsPbc7bnRu9107sxsQazH27UvXPR4AtTorc1gDO3MFpqcHX63iSiWSgQFYLI98jVBK0dKyC5SiXDlDHI9QLB1f72kJgiCsCQ1vdj///PO8+GKaH/c7v/M7hOHcDJyFyOVy/M7v/A7ee773ve81Rd39V3/1V3z605/GXCeLbcOGDfzv//v/PvV4PnX6Bz/4Qf7kT/6EO+6447rX+cmf/El+6qd+CoCTJ0/y6quvrnLmgiAIgiAIgvAeYNLCvFyuW5g7OvJpw9n7Yj2v26NUAQ8kOo8jTC3M/dIXk029u60AN7vJWYtT22vfJAtz53AOnHdordYs03ZOVrdrhepttD+T/axRuW03yZasvfhKKKiEPeF4pjZqc5xlAxN9t2Tqpy5O8M7ZaXXL39s5SnduEQXPkvDpYq0J6Dc72KqyGZ0xMUfDkyRq4Wt57zn/1AvYWnZDRf8j95HraGvAPAXhxiar5m5H+S60a8PYrWlOtKi5bzi0b0fbPhQFtOtIv4dqXBreDSbX0cbeH3+CbY/cO2UlPZOhN9/l+Fe+QWng6jyjhdWyvcOyp2vasvrNU/NZmaf3WRfNFeJZcTdLVXePU2CCfKbW70dXMOOloPA8NKtyClj4Z0gphQ4MLklfD7dSK/1cCGHdytxOv17GpuezJiQJCpj6r/1m5HbrrlbM3mzDPzlyZgkDV2dlDs23M9etLaiWFuzIKC6KSK7dOL8btA5obd2NcxUq1YtUqxepVhfZZCAIgnAT0PAVmT/90z8F4NFHH+Xhhx9e0TkefvhhnnjiCQD++I//uGFzWw4f/vCHp/598uTJdT+PIAiCIAiCILwn8A5q4/ioRLFmGY3SJndrvq5U8SWgSvpRJLdyC3Of2pdrN6nqnrGK5TzKJnXba90cC3NnAY9zHq3WptGNGoPg7UzJx/fS8vppgtGJTL1Rqu7bciOYGa+t9/B21Jval+vphoBznq8/f2Hq8b72Gk9sblDGbN2Cc0O4mb1mT+Yph+NoeIqqWtwRYOjouxQvDGZqXXt30H3LzsbMUxBuUFI198Q8au5etNuEYnkiBWFt0b4NbTegfB7tO/DEeDWGX4HiUbg+Sik2HLqFAz/9cdq2bJjzfDRe5ORffIdLPziCS0Tl3Wgem6HuPnp6JOOO6XVAtSXdwGeV48IsdXef66LDtS5+EaXmqLs3M0G4jI2Wy+NOPNl5LUndbdJ7Z5ckJHFtZX3aXABK4bVJ74cnz+0tyjucDklMHpRC13O7bYNzuwGCe3dlHifHLuBri7zeq7Yyhzl25r7x9+pBby8+SbDjEyRXr+JXujGhCRjTSqGwgzgeJqoNUSy+QxzfOHbrgiAIzaDhv+l/8IMfoJRatn35bH7iJ34C7z3f//73GzSz5VGrTd9kXU8BvpbnEQRBEARBEIT3BHEZvKNSLlIlRymytOQ0Ruu6ojvG+SpKFVBKpRbmGBxmWRbm2qcaRM08qu7JjENrm2Jh7j1Y63DOoRSoJjTT50PlXkZlGs8B1O6m4+lXMsfVdm4h2rNt1dfbYMpsDLJ52+eTdq4VtlDp2p6pv/z2Na6OpDbqRnn+wb5hGuPsnqq6O8IeDgRzM7XfCc4yoRe3IK2OjDPwXDbTPGhtof+x+8S+XLip8dTwegRHLVUJ++66mnsL2nWImvs9gvataLcR5Qto34knqSu8peHdaPJd7ez9iQ+z9eF7UPOs4117/Tgn/uyblAaH1mF2Ny+Ht9TIm/Qep1hOODOQ3TBXbp12dblkrhKRbSzuSpam7r5MJ27G7z2NZwvjC4xYDQFw36za60BlnmOnUVqjjUk3VXimVN7Lop7LTRCkG0Bn3CprG2NNDpTCmjxGQVJ/Pml0bvedO8ncEEaW5NiF6w+AhliZwyw7c6+n/t0oVC7EdHTgxkbxcUwyOLj4oDUkl+shl9tAtXaRJJlgfOINnKstPlAQBOE9SsNXZSbVy3feeeeqznPo0KHM+daap59+eurft99++7qd58KFCwv+GRgYWPHcBEEQBEEQBKHhVMfBxpQqFSo+RyV2tOdT1aCbyuuuZi3MVYjCL93C3IN2acMb5mt2x5CkyhVM45vdzlm8p97sTi0Sm08Fwmyzlvgu8sevkBu4lilPfOh+WGUDV+O4LZe1Ea15zbtRN6Obs5/1KrWE77wy/bnkY9vG6W9tkLolSSioFu7I34lR2abDaXORa2Z00VM4azn/7efxNmtzvuPDhwkK+euMEoT3Nh6HU+M4PQ7eoH0PyrWiXY+oud+jaN+Sfu98Hu276g1vUXg3A6UUG+86wIGf/hitm+dGgtRGJzj5599m4PnXcUkj4jqEQgAPbpluxM22Mq8WNuDq9wFOOc6bbGOxx3fS5doXvU6sAq7Qkan1+1EaLmmu4zmMn3GfqIiBxWMudWDw3qfZ3bV4+epuBYRhGuXj63EwdYyNcDrAoUhMHmN0ei3vSRqc263aC5hbsvEzyZGziw9sgJU5zLYzb3x+t+nuTvdljo6RDA/jKgtvZFhr8vmtGNNKuXKWJC4yPv4G3st7hiAINycNb3aPjo4CsHHjxlWdZ3L85PnWEuccv/VbvzX1+NOf/vSKzvPaa6/x13/910Da/F9Js3vHjh0L/nnwwQdXNDdBEARBEARBaDjeQTSBi0oUI8dobNAK2sJ0cdL7Ip4IcChVwKocoLE6XJaF+ZSq26u5jW7vUXGSWl8rDabxqmtrHd47vPfoxsiXFyd3BKWmNwN4r/DR/XQ89XLmsP8/e/8dJFl2nfeiv7X3OenKd3dVezMG413PYDDwZkASvAIpXoJG5BVFI/KBCpERDEXohq4ML0ldUtK9oZAJUU+gKIkhKuJdvgeJj9ILkgBBgBgYAjOYGYzrcT3T077alk1/zt7r/XGyq+pUl6/Mqu7p/YvI6cmVZ5/c5TJP7m9/30pGR2jee/umn+62eIayyS/gH28PMzN8hKQ8nKt/9flxGq3s2NFiwg/s75ZDyhM54f7KIxSkkHtk3Fy5LsZ0OS499yqNK/lF850PvIeBA3uWGREI3NyoZG5upb3AzV3p9OYObu6bGaNFrNvdEbyHURxqpoLg3SOKwwPc8Vc/wd73P4Qsvp5Q5fILr3Pi//cX+CTEmneDjxxozv3/ayencH5hlLmlWZ5fax63V2iRTwQ6nO5dk5i5OMp8gBaDNJc+eNMMAvflKsIzrOZWFmMRa/Auza45N7KpIo7BGNSYuZYwANZn3zdvC3N9uwXwHpIu9+0GiB45krvvXjuHNlZJc8pFmW9mA6WisjDOvMupq9ZghodxszNoOyE5f2OZ0kQM5XIWJd9onCJJJqnVjm/zrAKBQKA3dH3lp1LJepHMzGxugWN2Nus5Vy6XNz2n9fIv/+W/5JlnngHgM5/5DI89tv5+d61Wi1/4hV/AdXbO/dZv/VZX5xgIBAKBQCAQCNxwtKugnnptlhZFqi1PpWCRjiCsvgraJFtSK5KaEh6DJ1p7hPkiV7cuFrvbncU859Co+22EfMfR7dUjIh1nd69JkHiRCyi9h/h0g9KJc7ny7EcfZbP54RVJOBLnP89NuiLn/BDTY/kNvJcmGzz72ryz/G/cMUHBdmehVFLPveWHqZi+XH1CZngrOrMmQ33twhUuvZDvc14cHmTvE5tLIgsEbjQURaWFl0m8LOfm7n7SRWDrEQpYNzYveKt2BO/gMO4FYgyjD9/De37keymP7rju8fqlCS4+d2wbZvbu48ig48BAdh3XaDnePpe/FqlXds/9v4pyJsq7u4e0n2HNu7aXYoIK9UXpFvt1aoOzXh3lidx9YRp4Y9Vxxkao96h3uGTtrX7miGPgWpS5m9sIYNRnfbttTBrN9+1Ovcf3om/3gwfzm0+dJ33lzMqDclHmjo1GmWdcizMXRKXrceZ2YACJYtzkBL5WxU3fWL2xjYkplw/jfJ1mc5xG8yzN5o0lygcCgUA36PrKzDVH9ltvvbWp81wbv1mH+Hp56qmn+N/+t/8NgLGxMf7dv/t3GzrPL//yL/Pss88C8DM/8zP84A/+4IbOc+bMmRVv10T5QCAQCAQCgUBg22nNgGtTazSp+5h26ukvZuKKapL1jtUmSBHEZP26pdCJMF+ba8Mw7+pW9HoDT9LubYS5SwFFve+4urfAIRm/iizqS63tx69zdbuBPuqPXt/Xen0odxcmc3q5V3i9NcLMrrvxUSl39BefPsc149X7d9W4d6hLvQDV8574LoajkVy5Jg1ej99Z07fdtRPO/MXT+WhSIxx88glMD3q5BwLbgeJRaWR9uWUGEIwfXNCbO7i5340sL3gHh3GvKI0Mcef//CR73vcgYvLLqZdffpPmZK/6Pt86iMBH9s9fRxy7Lsp8J97Mv39fMFdpkr/uOLIWd7cI5xe5u/cwg+1ZvPMBlH35KfD0qqPEGkQEn6Z45/DrjRgX0DjKXNLqr4syd6YAzPftdp3rpaTbUeblAvae/Ne/lVHmcC3O/JrgbbsbZ24EOzKCrzfwjQbp+IXMJn8DEUV9lEr7aSdXSNoTVKuvk6az2z2tQCAQ6CpdF7uPHj2KqvKnf/qnmzrPtfjvo0ePdmNaa+LYsWP88A//MGmaUiqV+PznP8/Y2Ni6z/NP/+k/5T/8h/8AwOOPP86//bf/dsNzOnDgwIq3vXv3bvjcgUAgEAgEAoFA1/AO2lVcq0YtUabbBmugXLgWYV7r/NucizDXToS5WWuEuYJxK/TqVrIIc38twrwHzm7vOhHmXLfY3Rs8UvhOrqLpYaJLBcrH3s7VZz/8CGxSxB2zDXZF+SjPM+kAk/EI1Z135OpvnJrmxLlsoaw/cvz4kfyi9GY4JAfZHecXRlu0eSV+GydrW0A8/60XaM/UcrU9732AyujIMiMCgZsHxaFSw5sJvNRAo8zBrcOI9mPcTmxwc7+rEeJ8pLkK3kwHwbuHiDGMHb2XO/7nJ/PXAF45/83n0R71fb6VeGJvi9hk38fXT02TpAve88XQKM+v06oop6MLufED2scOP7jq85xnKKd3Rnh206sNC7KEu/sUcGHpw+eOEUwU4Z1Hvce1N+LuLkBkUTHgFkSZuzbeWLwY0qiEsSZr7a1K4rov1EaPHM7dd2+Oo9VVouO7FmUO83HmJnN2dznO3PRVkFIJNzGJb7dIr0509fzdoFDYSRzvoNE8S5pWmZl5Ce838DsVCAQCNyhdX5351Kc+BcAf/dEfcezYxmJ8XnnlFf7oj/4IEZk7X6955513+L7v+z4mJyex1vIHf/AHfPSjH133eX7nd36Hf/AP/gEA99xzD3/yJ39CX1/fKqMCgUAgEAgEAoGbnHYVVKnVZmlLiWrb01eMEOkI01pFNQVShFInwlw6EeZrW8CSjjdRVFCWSCFMEkAhdai1XTdde/V4n8WYGyPZglmvid5CzFSupO330f/U8yzU+n2xQO2JBzb1VBbP3YVFLipvebs9xPTu+zuRkhnOef7smfkI9R87PMVA3J3F0THZxeHCbbmaw3EsPkFb1va7Mv3OOSZffydXq+zZxejDm3W+BwLbi5LiZQZvJvE0MFrqiNyDGN+PcaNEbi9GwzrErYAQdQTvUmejg8EHh3fPqYzuYNdDd+Vq1XOXmD5xdptm9O6hL1Ye250JcO3Ec/xMPhK6XtmTu3/RTNCQvGh62K3u7m5JzBX6c7VeRpnD/eii51uTu7vTksenKT5NUb/ODRWFzoYna5EFfb9NRzz2JibJ9e1WXC/6dt9/AOIFArNX0pe3MsqcbLxC5u42XY8zj3bsQNtt3Mws6aWLkNx4r8Ol0n6sLdNonCJNq8zOvhI26QQCgXcNXV+d+Ymf+AnGxsbw3vOjP/qjXL16dV3jr1y5wo/8yI/gvWd0dJSf+Imf6PYUr+P8+fN8z/d8D+fPn0dE+E//6T/xQz/0Q+s+z//9f//f/O2//bcBOHz4MF/60pfYtWtXt6cbCAQCgUAgEAjceLRmIG1Ra7aY9TGJ07kIcwDVKqqN7I6USKU4F2G+1n7dxoFothinS7l7kwScR7zftMN5KbzzgOK9YrakV7cihXzbInVjmKmd9D3/Wq5ee/+DaLm4qWe7LZ6mZPI9X99sD1Pr201zIJ8o9fSxy0zMZNGh9ww2+cBo3kG9UYZkiPdEeQFBUV6LTlIzjTWdI6k3OPu1Z3M1E0cc+sT7tsiNHwh0H6WFlym8mURJMFrB6A7E92P8ADbdg/VjGC1v91QDW4xgsW4MoyVEhxC1HcF7s07IwErsfvQ+4r7839v4t17AJeH7vlk+sn9evH5lUZR5qzjSid/uIHDK5h3S/Vphlx9e9XnOLYoyH6ZBn3apHct1WJTHFtVeBupLHTxH5u6O8c6hquvv3S2SRZlHUSfKPLt+NuoR73A2xtkCiMGI4LziFdarqa86jWJMdN+BXC194eTqA7sYZQ7Z5wfpiNzdjjOXYgHT34+fmkLbCcmli6sP2mJEDOXyERRPvXGSdnuCWn1zrWgDgUDgRqHrn/QrlQq/8Ru/gary5ptv8sgjj/Df//t/X9PYP/qjP+Lo0aMcP34cEeEf/+N/TKVS6fYUc1y5coXv/d7v5cSJEwD8m3/zb/jpn/7pdZ/nf/yP/8FP//RP471n7969fPnLX+bAgQOrDwwEAoFAIBAIBG52fArtKkmrSj2B6ZYQW6EUX4sw96g2UJogMd6UULF4U8BouvYIc8Bo9hHGLx6kIEmSRTSKdD3CXBXctX6JskUR5vYssmgBV9uP0//Nl3LuHLUmizDfBH2ScDjO9+676opccH1M7c47xquNhK+9kM0rEuWnbp9AumCOKVPm3uie6zYSvB2dZdKuLVpUVTn71LO4Zn6xet8Hj1IY7F9mVCBwY6IoKk28TODNDKAYPzAncls/jHX7sH4XQmHV8wXevQgW48YwvtwRvKNOpHmvhLuAiSP2fvCRXC2pNbj03KvbM6F3Ee8ZSdlTya5zjp+ZodVesBFPhHpld+74y2aSmuQ3xB12e1YVMq/QT4v89WJv3d3vRRcsxQsOeG7VUWbO3e1wScK6jbhxDNaiIvm+3X6+b3dqi1iTid2Kkm5FlPnbF/EzK4v93Y0yz+hlnHk0MpJtSpieJr16FW2uEtW+DRgTUy4fwbk6zeZ5Go3TtFo3njAfCAQC66UnzZt+8Rd/keeff57f/d3f5fz583zmM5/hyJEjfP/3fz+PPfYYY2Nj9PX1UavVuHjxIs8//zx/+qd/yqlTp+aiMz772c/y2c9+thfTm2N6eppPfepTvPpqdiH6z/7ZP+OXfumX1n2eL3/5y/z4j/84aZqyc+dOvvSlL3HHHXesPjAQCAQCgUAgEHg3kIswL1JLHIM5V3cNUNQ3ESmTdCLMHREFXZsj2HbUbWGJXt0AaZIp0mmK2qj7EebeodqJMBeh60+wBNf16vaDSPUI/d96KlevPXovfnAzkcXKPcUJzIIvySu83tpBbeQ20lK+9+VXnj1PK8kWQX/gwDS7y5uPaYyJuT++n1jiXP2svcS4vbLm80y8doLZ0+O52uCR/YzcfWTTcwwEtgrFgzRRaaB4RGOM788EbbUYHUR839a0UgjcNAgG40eBK3gjwDTezGIURDeX/BFYmqHbDtB/YDfVs/NC0eWX32Tk7tsojazeNzqwNCLw4QNN/uubfaROef3UNA+/Z8fc443KbgaqCyKwBU7Zce5Lb58rVbTMqB/hss07wxeiIpzXYW5jPpV0L9Mc19Gsx3XX6QceAF5aMPXvoHwQWF50FRFMZPFpgo0sPmljC+vY4BQXQBpgIyRN0EJ2rWVdQhqV5/p2F5IGbQfeQ+I8hai73wN77z4oxtDqiNYK6YunKXzknuUHLYwyFwekbF7O8KAGJIszV/Ww1GeLjRBZ7OAgbmYaOzBAMj5O4bbbVh+3xURRH6XSPprNc9iowuzsq1hbIYoGtntqgUAgsGF6InYDfO5zn2PPnj381m/9Ft57Tp48yec+97kVx6gqxhj+0T/6R/zar/1ar6YGQL1e59Of/jTPP/88AP/wH/5D/t7f+3vrPs9f/uVf8kM/9EO0Wi2Ghob44he/yP3339/t6QYCgUAgEAgEAjcuzWlwTWrNNjPpAM55+orzomUWYe6ANiLDpFJaEGG+BpeGZmtQ867uJRak2gn4LMJc17MAuEac8x2HumK77BpfEnMFiU7kStp+L/1Pv4ZpzkdYqkD1Y49u6qn22Do7bN79dyoZZNZUmB7LL0Cev1LnheMTAOwrt/nUvrU5rlfCYLgvupeylHL1KzLFO/bcMqOupzU1y/lvvZCrReUSBz762Fzv+EDgRkZxIA28NLM0Cy0iWkaIEC0gfgDRCrIFm20CNyeZ4L0LuIo3ALN4mcEwgGhpldGB9SIi7PvQUY5//s9Q33HCeuX8N57nth/4WHjv2QQf2Nvi/3u8glPhlROTObG7XRwmtSUiN++avWqmqUqdfp1PCD3s9nDFTK7Ymvm8DHObzovdBRxjVLlIbzYrKE8gObF7FuU1MhF8eYyN8KnDO0eatDGFwtrfCYygNkKiFJrZ9TLGYF12PelNTBoVKZlsK6dTJe1B326JI6IHDpA+985cLX3h1MpiN4CJwLfBxJA2Idp8Uk8WZ25QUUQtStq1fax2aAhfrZJOTkIc4WZnsQM3nohcKOzCuTqNxhmMKTEz8zLDw49jTLz64EAgELgB6dk2YBHhN37jN3jmmWf4zGc+gzEGVV32ZozhR37kR3jmmWf49V//9Z5eELbbbX74h3+Yb37zmwD8yq/8Cr/5m7+57vO88MILfPrTn6ZWq9HX18cf//Ef89hji/uvBAKBQCAQCAQC72JcAkmddqNGIxWmE6EYmZwbxGsN7fRA9GZgUYT56otpRjNpx+gyQjdk/bpTBwjY7u7pvebo9uoRyfrd9ZrrXN1agsZ9DHzju7l68747SEdHNvw8Fs9dhalcreEtJ5JBZkbvQW1+48AXv312Lj7zb9w+QTdMP3dHdzFo8ovKs1R5Iz655oVH9Z7Tf/E0muZ7jh/4+ONE5SDwBG5slAQvM3gzgaeJ0XIWVa4DWWy52411ezDaF4TuwKpkgvdOjO9DdADRIl5m0UUxz4HuUBoeZNdDd+Vq1fOXmD5xdptm9O5gsKg8MpaJsSfOzVBv5lNkFkeZX3N3L6SsJcb8DlaiLgUmyLfQ7G2U+T6Ug7mK8PSqo8QYjLX4NAUFv97e8IW4c30snetlELTTt7uAs0XAYOaizMF1u3E310eZ+5OX8ZOrpDyZiMzd3c4c3jd6nLkRzMgIvlbDN5qk58dZf/b81lAqHcCYEo36SdJ0ltnZY3Opu4FAIHCz0TNn9zUeffRR/ut//a9MT0/zjW98gxdffJGrV68yOzvLwMAAO3fu5OGHH+bDH/4wQ0NDvZ4OAD/5kz/Jn/3ZnwHw5JNP8vM///O88soryx5fKBS46678hevbb7/Npz71KaampgD4zd/8TYaGhlY8z9jYGGNjY5v/AgKBQCAQCAQCgRuF9iyop1ar0qJIo+0YKi90dSuqNZQGSIQzA+uLMFcwPhO8YbkIc4d0IsyJuh9h7pwji2H3GGPoeYS5zEL0Wr7WfoTKd09gZ/Lfs9lNurrvKExTNHmB+I32CK3iELWRfOziKycmOX0xe/6P7Z7lzsE2m+U2e4RdZleu1tQmxwonlt/YsASXnn+NxqWJXG3HfXcweGjvpucYCPQCRUHaKA1Ukk48eT9oCVHBaH/m5CY4rALr55rgLRi8EZQqXqoYFNHK6icIrIvdj97H1FunSarz/YfP/+ULDBzcgy2Ev+GN8pH9LZ67WMQrvHZyisfumb9eaFT2MDh7Knf8hJlhRmoM6nxrl0PpXi6ZSXSFa4pzMswOnf/Z7aRGSds0pftJQXDN3T0fwy6cRTkH7F9xnIki0lYLn6Y4MZg4XvsVaSGGRgONIiRNF0SZt3GdjY1pVMK6GknqO327FWu6e81r79oL5QI05q8h0xdOUfjEfcsPEsDG4FpZlHnahIJl8x6+3sWZ274+/MwMbnISUy7hJiawO3d25dzdRMRQqRyhVjtOo3EaEUu9foK+vtCeNRAI3Hz0XOy+xtDQEJ/+9Kf59Kc/vVVPuSx/+Id/OPf/X/nKV3jooYdWPP7w4cOcPHkyV/v617/OpUuX5u7/nb/zd1Z93l/7tV/j13/919c110AgEAgEAoFA4IamNQNpi2qrxbQbwnlH/8J+3TQAh2oToURiijiJ1xxhPu/qluUXKpM2aOZO0bj7i8rep50I88xZ02uk8Dwifu6+aoS2jjLwtT/MHde6bR/twxsXc/ulzcFoNle7kpa45MpMHXgwa5rZIUk9X3omixQfih2fOTS14ee9xh6zhwP2QK6WasoxeZNkkQC/EvWLV7n4/Ku5WmGon33vf3jTcwwEuk3Wj7vV6cftOv24B4ECohajA4jvR1bo3xoIrAVBEL8DELwBg+Cl1hG8+1YdH1g7Jo7Y94FHOPWlv5yrpfUGl55/lb3hvWjD3LszYWfJcbVpefntyZzYnRQGSKIKcTovUiNwKhrnweTOuVKJAnv8TsbtlWWf5xIDJBhi5q+99us0b8tod7+gOe5BGUCYvwYTnkH54RVHiTGINXjnMJFHU4dEa3yvMAa1FrEW0iRzGotgfUIad/p22yIFqdMmSzpPvafY5VBYiSzRQ4dIn35rrpa+cHJlsRvAWPA2S5QS24k133xyT8/izAWiHTtIxsfx1SrJhYvYoaFsU+4NhjEFyuVD1Ovv0GpdABGiaJBisVe//4FAINAber9SEwgEAoFAIBAIBN6duDYkDZqNWZrOMtNWSrEhsvMfM9RXszg8bXUizCO8rDHCfC2uboBWAklKtrLU3UUkrx7vsxhzYySLO+wpLYhfzJeS+ym9dpH40mSuPPvx927ieZR7ipMsNOw4hdfbIzQH9tLqyy9wffOli8zUss0JP3HbBJVoc86XERnhTpt3jXj1vOZfo15Ilxl1PT5JOf0XT+fjIUU49OQTmPjGW1AM3LooHpVaFlUuNdAI44cxOoxoP9btxLp9GD8UhO5AVzF+BOMHEe3DaAUvdVTWkKwSWBeDt+2n/0A+Wvvyy2/SnJzephnd/BiBDx/I2uCcvlhltpbfJFmv7LluzJTMMi35jXwH0z1z15JL4cUwTj5tdB9TPYyetiiPL6q9AsysPtJGqPeod7hknQk7cTx/nZxm11rzfbsLpFEJc61vt/ekTnvyLbguyvzsBP7K7DJHL8AWAJ/FmKft7P+7gIrOxZlLF+PMpVTE9PfhJifRJCG5fLlr5+42UTRAsbiHVvsSSTLFbPUYaRreJwKBwM3FLSl2r9Q7fKnbYlc3wM/+7M+u+zzB1R0IBAKBQCAQeFfRmskizKtVWhRotD0DxbzAqHP9uhVnhlEEJ9HaXN0scHVnob/XkzpEPTgH1nY9Ydw7Dyje65b06iZ+EZH5xUtV0PZ7Gfjqc7nDkj07ad59ePHoNbM3qjFiW7nayWSQOkWmdj+Qq09X23zzpYsAPDTS4LEdm+v72id93BPdjUj+h3XcHWcqbuQc5atx/tsv0p6u5mq7H72PytiNFxUZuDVRUlRmO/24GxgtdUTuQYzvx7jRTj/u/i3YTBO4VTF+GOOHO4J3f0fwri73zhrYACLCvg8dzSfAeOX8N74beuBugg/uayFkouuxd/Kb/hqV3df/BgucjPK9u4vE7HW7Fh+Z45wM5+6XSNlFL8W+x9AFgauCR/jKqqPEWsQIPk3xzuH9OgTfQgwCaiNkQd9u49NO3+4CisEawXl61rfb3rEb6c+7stMXTq4+UARMDD4F9VmceVdQ0CwNAzXZrUvY4RHUedz0NOmVK2hr8y2AekWxOEYUDdNonCFNq8zMvoT3a9+AGggEAttNVz9J/Yt/8S9oNDa38LESzz77LF/4whd6dv5AIBAIBAKBQCCwDlozaNKg2kqYSrJ+f5Vi3hHhtQo0AENqBnASA4LV1Rd7jFuDqztJsgUql6JddnWrgvOdhUSh06+7l6RI4flFpbsovNOgeCq/cDv7sUfXJQovJMJzV2EqV6t7y8lkkNkdt+MK+XjbP//OeVKnFI3nf7ltYqNPC0CBAvdH9xFJ/md1Oj3FJS6vy5k/c+o8E6++natVxnYw9ui9G59gINAllDZepvFmEk8bo2WM7kC0H+MHsekerN+N0XJnW08g0FuMH8T4EUTLGN+PlyYqs0Hw7iKl4UF2PXRXrlY9f4npt88sMyKwGjtKngd3ZRskXzmRF7vTuI8kHrhuzIypMSl5l/QBtxuzgohZlRLT5AXYfTq1wVmvhQqQj7gXXgTOrTrS2AjvPOo9bj3iqbWoGIhstkm086dvXIIzWRsgF5WwRvCabTNN1yOmrxGxhujhQ7la+t1Tyxy9iM488Ul20+6IsSoeOp85RA3delmUOMIODuJnZiBJScbHVx+0jZTLBzGmQKN+kjSZoVp9NWzWCQQCNw1dXa35u3/373L77bfzz//5P6dW697ut29961v8lb/yV3jiiSd45plnunbeQCAQCAQCgUAgsEHSFqQtGvUqbY2YbSvlgsEuEIQzR3eC1xYqfaiJcRJjWD3CXDQzaYtmRy6bPpm0O1GMki3edRHvHeqzeG0jQtdt44uJXkNM3qWs7cevc3WnQ/3UH84vpq+HOwtTFCS/ePlGewdJVGZ21925+ukL1bnF5R86OM3O4tp7aS/GYrk/uo+iFHP1S8kFTvkzUCiuWcBPG03OPvVsriaR5eCTT2xJX/VAYCkURaWFl0m8mUZxmXtbdyC+H+uHsOk+rN+FUNju6QZuQYwfwLidCJngrdIOgneX2f3ofcT9lVzt/LdexLVXT7QJLM1HDmQO3nOX60zO5FNp6pXdSw3h1CJ3d4GYfW7lHsSL3d2jzFLokpi6FMrH0UXvBcIXWE1pzfp0X3N3p+h6BOnitShznY8y923UmKxvd0fszlzdkLrevDZEjxzJ3fcXpnDjU6sPFJZwd3dnjr2KM7dDQyCCm5zAzUzjqzduPLiIoVI5guJoNM/Qal+m0Ti53dMKBAKBNdHVVYCPfOQjXLx4kb/39/4eu3fv5q//9b/OH//xH+Pc+hdETpw4wW/+5m9y33338eEPf5gvfOELDA4O8thjj3VzyoFAIBAIBAKBQGAjXIswr1VpUKCRePqLce6QzNUNaANnd2YLZxJj/Rpc3V7mBG+VZRbxnEeczxbrjN2w03k5nPNZn12vW+DqVqSQF281PUA0XqD82ju5evUjR7PI9g0wYNociPKC+qW0zBVXZnr0XtTmndVfePosAIf7Wjy5dw39FFfgnuhu+k1/rjadTvKmezNrzLnGHtuqytmvPUfayMdX7vvAIxSHrnd4BQK9JuvHXUfNBF5mAMnc2x0nt/UjWLc/c9USeskHthejfRi3C9ESxg+gtFGZQbvU//ZWx8QR+z7wSK6W1htcfO7V7ZnQu4AHdyUMFbPfz8Xu7kZlz5JS56ypc9Xk+6UfcGPYFdzdFxjELdjYaIC99LLnej/KR3MV4Szw8oqjBMHEEd451CsuWcdGirgAIqixSGe93rpsvDMFUlvCiCCStfJxvjd9u82RUWQovylkTVHmACYCDLg2qIM1fK5YGz2KM7cGMzyMq9bQVitzd9/AbmljipTLh0jTGVrNC9TqJ2i3r2z3tAKBQGBVuvop66mnnuLzn/88//v//r/zxhtv8Ad/8Af8wR/8AX19fTz66KM8/vjjHD16lLGxMUZGRhgZGaHRaDAxMcHk5CRvvvkm3/nOd3jmmWc4ffo0kC1kFItFfumXfol/+A//ISMjI92cciAQCAQCgUAgENgIrRl8u06tlTCVVDDi6YvzAqxqFdU24EntEE4KZBHmqyzKKRjtxAgCfjkNu93uRJg7tNBdl6Rq5uj23iNC7/t12xOIvZqfQ/t9DDyVjzX35SK1992/wSdR7i3kY8idCm+0R2iXhqmP5HuAf/fNq4xfaSAof+P2Cewm9hLcYe9gh9mRq9V9nVcbL6FFC+v4+U2+8Q4zJ/MxnwOH9rLj3ts3PsFAYAMoDqSBl2b2WqQFjFYQIkRjxA8iWg69uAM3HEYr4Efx5jIGyTZpyAzoYPh97QKDt+2n/8BuqmcvztWuvPImO+45QmlkaBtndnNiDXxoX5M/eafCKycm+cgje+Yec1GJdmGIYvt6UfqUHWenn/9+x0Tsd2Ocji4s+TxOLBd0kP0LBO79OsUpdnR9Q+U8T6A8hzAv4gt/jnIPrJAAYqzFJwnepbhEsIXi2qYYWVQEiaLOdXQRkYV9u2O8GKwITuf7dkebuQhcAjFC9Mhhkqdem6ulL5yi8P0PI6t9IQJEhczV7VKglfUj78Jrl4rPPn+IIt6gxncl2MkODOBnZ0knJpFiETc1hb2BNY4oGqRY3EOrdQFjK8zOHmN4+HGsraw+OBAIBLaJrm8p/rEf+zF+9Ed/lM9//vP863/9r/nWt75FtVrla1/7Gl//+tfXdI5rvSD27NnDz/3cz/G3/tbf4uDBg92eaiAQCAQCgUAgENgIaRNcm1ptljYFZlpQKVjE5FeD1NdQbeKJ8dI3F2FuVnGP2Y66bVihVzdk/bpdCui6ej2vBe8cqKLed1zdvY0wl8J3cvfV7cJc3UXlhT/J1asfeAgtbkzY3x/VGLJ598uJZJCGRkzteTBXb7UdX372PADfs3eWw/0bj18dNaPss3tztUTbHKs/TxqzLld3a6bK+b98IVezpSIHPvb46oujgUCXUNLMyS0tUMFoGbSEYBFfQnQgqwUCNzBGy+DHOoL3EF6mQaZBh4LgvUlEhP0fepQ3P//F+Yhpr5z7xne5/Qc+Ft6vNsCH97f4k3cqXJpscmmywdjI/GtsvbJnSbG7ZhpcMZPs8vOi4n43xnl7mVSWTiE9J8Ps1/lz9dFmmAZT9Erki1A+hfAHcxVhFvgmyieWHSUimMji0xQbRfikjV3rxsE4znp2tzW7jo4irGuT2KxneWpLRMbRTB2qWd/uaIOJQiuxWOzWK7P4cxPYAztXHywmc3j7NPvXtcB2531XRRE1HeHbdja2bfKkAnZkhPTiRXytRjJ+ATs4lO3kuEEpFMZwrkGjcQpriszMvMTQ0HsxJiTUBAKBG5OevKKKCD/+4z/ON7/5TV577TV+4zd+g49//OOUSiVUdcXbbbfdxs/8zM/wh3/4h5w5c4bf+q3fCkJ3IBAIBAKBQCBwI9GaAXXU6zXqGtNOPf3F/MKHaorSRLVBaoezXnUSY/3qrm5RMJ0m3cuK3d5n8YupyyLMTXcXjp1PUfWo0vse0OY8Ep3NlbT9Xga+8WIW036tFlmqH3p4Q08R47izMJWr1XzEqWSQxuB+2pW86/prL1yg1kjZWUz5qwc3HuFpMNxmj+RqXj3H6i/RpJX97NYo3qv3nPmLZ/BJvn/mgY+9l7hS2vAcA4G1kvXjnsKbSZQEo9f6cfd1+nHvwfqxIHQHbhqMljB+DNEiRodRHCpTIdK8CxSHBxh9+O5crXb+EtNvn9mmGd3cjFY89+7INuwduy7KfAxdRo08ZS/ketJHWA64sWWfZ5oy1UWO6v06tcFZr5W7UBan0/wlsPLzmk7rGe8cadJeezJ2IQZjUGOy62jAuASMwYsljYpzGqxTSHrUt9sc3InszLe3Sb97ah0niAEPPskizVl/G9Wlyb7euTjzLsknplLGVCq4ySk0aZNcudyV8/YKEaFcPogxMfXGSZJkhmr1tdUHBgKBwDbR8604d999N7/6q7/Kr/7qr5KmKd/97nc5e/Ysly9fZmJiglKpxOjoKKOjozz44IPs3bt39ZMGAoFAIBAIBAKB7UEVmjO4Vp16O2Wq3Yc1nnLh+gjz7N8mzu7DSUwWYb5yXz2jgnT+XdXVrSBp2vUI8yy+HLz3GCM9d7hd5+r2/cjMbfQ9nU/Gqr33Pnz/xpxFdxamKCzqff56awQnEdO787HoEzMtnj6WLcD99dsmKNmNL3IesAcoSjFXezN5g1k/mfWNtGbNrvzLL7xO/UK+Z+DIPbcxdGT/hucXCKyGoiBNVBooDtEI4weAIqIWo/2IH0DovustENgKjBYRN4azlzAMZw5vMwV+KPxeb5Kxo/cyefwUSbU+Vzv/rRcZOLQXW4i3cWY3Jx850OK1iQKvnJjiE4/tm6t7W6RVHKHUmrhuTN00uWwmGfPzm/r2uVHO2cskkl53PCKcZ5i79NJcaTczvKG7SaVXfw+C8ingc8ic0JoCf47yo8uPMqYTZ55iogifJth4Db9XUZzFskcRkiSoFuc2ozpTII1KiAgignMeZyTb/NnlQAKRTpT5l4/N1dIXT1H4gaNrSz8QyQRvn2Tu7rQJUV9X5tazOPOREZLz53EzM4i1RDt2IGv5mW0TIpZy+Qi12nGazTOIsdTrp6hUDq8+OBAIBLaYLc2diKKIxx9/nMcff3wrnzYQCAQCgUAgEAh0i7QBPqFWnSGRIrNtpa8YXbco5bWGaopH8WagE2HuVo4wVzB+Da5ugNbCCPPuLj565wHFq2JNjxf6ZQKi47mSth9j4OlXMe15F7yKMPvRRzf0FEOmxYG4lqtdSCtM+DKzo3fi4rwL9c+ePofzynt31nhwpLmh5wQoUuSAyQvRk36Sy63zYEzm6l7jYn/98iQXnjuWqxUG+9j3gUc2PL9AYCUUP9+PG9/px92PUACNMDqA+L4Q9xx4VyAUsG53R/AewjMNZjoI3pvExBH7PvAIp770l3O1tN7g4nOvsu8DG0tquZV5ZKxNf+yZmGlx/nKdfaPzGwDrld1Lit0Ap+0FRv1I5tQFLJYDbjfvROeWPP48Q9zJpblXd4uyh2nOsmPJ47vDGPBeYH4DpHAM5XFgeWHRRBGpa+HTFCcGE8era7ICGsdI6rK+3c4hkcW4JOvZ7WK8WCJxpApFIPVK3OW+3QDRI0dyYrdO1vCnrmCPjK7tBCYG7zLBW6QjfHdHPO5FnLkU4qx/99Q02t9PeuEC8Q2eaGttiXL5EI3GSUzrIoIQRf0UCmuImw8EAoEtJHwqCwQCgUAgEAgEAmunNQM+pdaoU3UxidPrIswhc3arNkhNPxB3IsxXcXUz7+peGDl5HV4Rl3YizE126xKq4L3Dd3psmh5HmEvhuZxTRrUA9fvo/8aLueMaD96J2zm0gWdQ7inkF39TFd5sD5PGZWZ3vif32NvnZnjj9DRl6/mJI/mY0PVyxB7GLnBBqSonkuOABxut2dXt05QzX3ka/ILfCREOfuKJ4IwLdJ2sH3cVbybwNDBawPgRjA5h/ADG7cK6vRg/EITuwLsKIca63fOR5gpqpjKBJ7BhBm/bT/+BPbnalVfepDmx8RYhtyqxgQ/sawHwyjqizBumxUWTvxba53ZR0KWvIRKJuMxArtb7KHNQPo6Sb8sifAFW2CgqxiDW4F2n/U66hFt9KeIYrEHFdDaPgvWZ2A1kUebWoJpt/kx9b1obmL3DyO789W36wsm1n0DIril9CurAZRvUusOiOHPtznu+HR4GwE1NkU5O4huNrpy3l8TxEIXCblqtiyTJDLOzx3Duxp93IBC4tQifzAKBQCAQCAQCgcDaUIXWDEmrRqPtmWxbYisUI7PoMI9qHaWFs0OoKQIGqyv061YwboGr26wUYd7O1p9cikbdFTu970SYq8eI0JXMwuWQGsSv5GvtR+h77gR2QeQpwOzHH9vQUxyMqgza/Pf9RHuIlkZMj92fuas7eK988enM5fSjhycZKmx8sXBABhiz+Z6Y436cent23a7u8adfojU1k6uNPXIPfXt2bXh+gcBilAQvM3gziaeJ0XLWj1sHMH4Q43Zj/W6MVubcgYHAuw0h6gjepY7gLaiZDoL3JhAR9n/oKLJw85xXzn3zeXTNTZYD1/jI/kzsPvZOXuxWE9MsLe80PR1dwC8QQQ2Gg+nuZY8/J8O5+4O0GNBei3sVlI/nKsIF4IUVR9koQr2i3uGSFa61F3ItOjuymcMbsK4NYvASkdoS14zcvod9u0WE+JG8cz194RS6HnHdRCAW0oTsIn6N34M1oOKh89lE1Mz9/6awBjMyjJudRdsJyfnzmz/nFlAs7iaK+mk0TpGmNWZmXkY1vDcEAoEbhyB2BwKBQCAQCAQCgbWR1ME7qtVZ2lKgmnj6i/a6CHPVGlkMeAtvBnFS6ESYL78gcs3VLR1X94pLakmSRS6qgu1uvKrzDsWjXnvv6o6/i8j890TVoq1H6P/a87njmnceJNk/tnj4qhRw3FGYytWqPuZ0OkCrsoPGUD5i/NnXr3B5ssmdA00+PJaPPV8vd9jbc/cTTTmVvAP4zM29Rlf37JkLXH3lrVytvGuE3Y/dv8yIQGDtKIpKCy9TeDOFkmK0H6M7Ed+P9YPYdC/W78JocfUTBgLvAjLBe6zj8B5CVTuCd2+cnbcCxeEBRh++O1ernb/M9NtntmlGNy97+x13DifM1BJOXajmHqtX9iwzClrS5oK5mqvt8TspamHJ46/SR2NR98+tcHfDe1HyEd7CV4DWsiPEWMQIPk3xznXa8ayCgMZR5opWD6nH+AQUnI3n+nZbEVLn8V7p1d6MaJHYrbNN3IlLyxy9DDYGfObwTlt0z909H2cO0hG8N39O2z+ARDFuYgJfq+GmpjZ/0h4jIpTLhxATUW+8Q5pOU62+vt3TCgQCgTmC2B0IBAKBQCAQCATWRifCvN6oM5vGOAd9xevduao1VB2pFFApZBHmK7m6uebqznzUulKvblUkSSFNQUwmmnaJLMLc471HBER6+XGpDYUX8qXkXsovXyS+mo82nf3Yxlzd7ylMES/6Xr7eGsEjTO1+MFdvtFK++vw4VpS/cfsEZhPGlTEzyoDJx3+edqdIk2bm6BYLhaUXlxeSNluc+ep3cjWxloNPPoF08eceuPVQPCoN1EziJUsNMH4Qqzs6Ivcw1u3H+B0IISo/cOshWKwb7fSq7wjeEgTvzTB29F7i/kqudv5bL+Da3XOh3ipcc3cvjjJvlkfxK1y7nYkuXufuPpQuI5CLcH6Ru3sPMxjt9d+ARflUfirUEL624ihjI7zzqPe49sptg+aICxDZLMrcp1krIZ/gTAFvIrxYrIDrqNxJr6LMx4Yw+0ZytfSFU+s7iZjM4e2Tjnjf7OIMF8eZd2GjrRHsyAi+0cDXG6QXLmSu9BsckYhy+Qjet2k0z9BsXaDRCJt2AoHAjUFYIQgEAoFAIBAIBAKrox5aM7SbVZqJMplYipGhEF3/kcJrFdUWqelDpYJiVu7X3RG5RQ0K+JWE1nanF6FzaNxdV7d3DlRR7ztxoz2MKo5fRiS/EKft9zLw1HO5WnvfKK33HFz36YdNk31x3p09nlaY9CXqw4dIysO5x/7iuXEaLcf/tG+GfZU19ntcAoPhiD2Sq9W1znh6ljlXd2QgWvlnp6qc+/pzpPV8ZOje9z9EaWRww/ML3NpkInct68ctNdCo0497GNF+jNvR6cc9FPpxB2555iPNOw5vHCozQfDeICaO2PfBR3K1tN7k4nPHtmdCNzGP7WlRjjyvvjOF9/Ob+tRYmqXRZce1JWHcXsnVdvsdlPzSyR3nGc6ZeGM8u5lZ8tjucgfKXYtq3wauLnUwABJZ4Jq7O11bDPi1KHNrkfRa3+42zsYokEYljDXZZlBV0rU4xjdIdPRI7n764ml0vc9nOl+PTzqi98avZxczH2cuiEpX4sxNXwUplzN3d7tNenX5n++NhLUlyuWDJMkU7dZlarXjJMnk6gMDgUCgx4RPb4FAIBAIBAKBQGB12jVQT3V2hkQKNBJPX/F6wVJVM2c3LZzpw5syBr9ihLn1gsy5uldZ2ErakDpEfebg6CLOu06/cXocYe6QwrO5iiZ3UHyrQeFsPrZx9uOPgaxvQU1Q7inmF50SFd5sj+BNxPTYvbnHLk02ePb1K+wuJfyVA3lX+Xo5YA9QlPyi8Yn0HdS5zHUjZn5xdQWmjp9m+sTZXK3/wG523n/npuYXuDVR0k4/7gk8DYyWOiL3IMb3Y9wokduL0f4gcgcCC8gE7wUOb9KO4B16TW+EwSP76T+QdxJfefk4zYnNvffeahQtPLGnTb2ZcuL8bO6xemX5PtwAZ+xF3IJrUkE47JZ2dzcl5ip9udrWRJmD8n3ogvcjwSN8adnjBcHEEd451CvpWnp3G0FtlG1A9B68x7oERLK+3VHWt1sA55W0R3274fooc+ot3PEL6zuJSCZ4+zTbpOuadCVzvEMWZ35N8LZdOXU0MoImCW5mhvTiJUi6J9D3kjgeplAYo9kaJ0lmmJl5BeeWj9oPBAKBrSB8igsEAoFAIBAIBAKr05oBl1BrNph2BZyH/uL1YrPSABxtEehEmBtd2dVtlE4vvFVc3QqSJNkilpiu9uv2qniveO8xRnoreEVvIia/OKvJ4wx8Ne/qTncM0nhg/eLuwWiWAZNf5Hy7PUxbLTO77sJHpdxjX/z2OVThb9w+QbyJL7tIkQMm3wd80k8yqVfBu+znZVi1V3d7tsa5b+b7lttigYMff991/eEDgZVQ2p1+3JMoCUYrGN2Rubj9ADbdg/VjGC1v91QDgRsWodDp4V3A6GBH8J4NgvcGEBH2f/hoJz2mgyrnvvk82quGyO9SPnIgS8e5Psp8F16Wv85IJOX8Inf3qB+h4ktLHn9uUZT5CA0quhWi3k7giVxFeAN4e9kRpnNd7F2KT5K1/U4V46xvtwikrtO3W/E2JrVZ324jgvOKV/A9+jU1O/oxh3blaukLJzdwoggw4JLs2tN3s02AokL2GUGlK3HmUixgBgbwU9NokpBcvNiFeW4NxeIerO2n0ThNmlaZmX0J7XnMfyAQCCxPELsDgUAgEAgEAoHAyqiH9izN+iztVJhsCaXYEC3RN1l9DVXt9Ou+FmG+/EKT7ajbBvAr9eoGuOZSSR1qbVdTxr1zgOJVe9yrW5HCM/mK20d0pkDpzdO5+uxHH113T/KipNxRyDvEZlzM2bSfpNBHdecducdePzXFifOzfGi0yt1Dm1u8PWIPY2V+4U9VOeHeAddxUFm7qqtbvefMXzyDX9TDdP9HHyPuC4JkYHUURaWJlwm8mQYU4wcykftaP+50H9bvQli9d3wgEMgEb+PHOpHmAyjtIHhvkOLQAKMP352r1c5fZurt0Pd2PRwadBweTHn91HQ+XlsMjcryUeYAZ+1F0kXu7kPLuLsvM0CbvKi5de7uj6Lk+7wLX4RlWgmICCaK8GmKql53LbUkcQwCaiMkzfp2W5+Q2gLeWJyJsEbm+nb3Nso87+5OXz6DpssnQy2JAFEM6rLNsWmT5b5fG8N3HN2SbdTtQpx5NDyMquKmp0gnruIb3ew33jtEhHL5EIih3jhJmkxRrb6x3dMKBAK3MEHsDgQCgUAgEAgEAivTroIq1doMLSnQSJSBJVzdAKpVvLZxpowzfQgewzKRfAqiYDoLRWsSu51HvF/VHbweVMF7h+/0N+xphLk9hdjL+edvP87gU9/N1Vxfmdp771v36e8qTBEt+j6+3t6BIkzvfiBzxF97Duf5s6fP0R85fvTw1LqfayEDMsCYHcvVxv04da1D6sFkvSRX+7ldeflNauP578/wew4zfPv6+5YHbi2yftx11EzgZRYwGD+E0RFE+7B+B9btw/hhhO62QAgEbgWMFjF+V0fw7kelDVLd7mndlIwdvZe4Py9ijn/rBdxaxMnAHB/Z36TVdhw/k++jXS8vLVxfIxXHOZtvGzPqR+jz12+qUxHOM5Sr7WUa2RInfgnlk7mKcBl4dunDmXd3q3OkaZtVp2lMtoE0sh0ntGJcgjeFrG+3LWKNoApOlaSXYvfDh/MbWZsJ7vXz6z+R2Mzh7dLORX53nfgqvhNnTnfizCOLHRrCzc5CkpKOb+Br3iaMiahUDuN9k0bzHM3WeRqNc9s9rUAgcIsSxO5AIBAIBAKBQCCwMs1pNG1Ra7SYSjJnbmWJft0AXqukJutn50wFq8myBmyjgnT+XVXovhZh7tIsarGLEeaqHu+zf41kc+8VUvhO/rn9CObSGOWX3szVqx98GOL1CXI7TJM9UT1XO5f0Me2LNPtGaQ7kF3+/fewyk7Nt/tqRSfrjzS1e3mFvz91PNOWUO52lAuCzn5c1sMJGgsbVKS4880quFvdX2P+ho5uaW+DdjeJQqXb6cddB404/7mGM9mPczo7IPRD6cQcCm8RoORO8KWF8H16aqNS2e1o3HSaO2PfBR3K1tN7k4nPHtmdCNynv29umYJRji6LMW6URnFk5SeacvUSyaDPmYbd36WMXRZkXcYwyu+Sx3ecRlPz1m/AXQH3Jo8UYjLX4JAUFn67R3W0jQCBNsb4NAt5kfbuNWdC3u1c55oAZqmBuy2+cTF84tcGTxYDPYszTBFinQ3wVuh1nbgcHERuRTk7gqlXczFb9fm0eayuUSgdJkgnarSvUam+SJNOrDwwEAoEuEz7pBQKBQCAQCAQCgeXxDpIa9dosqQrTLaFcMNglREvVNpCQiMWbCmCxy/XrVjB+Ha7uNOshSJqiNuqqHu2cQ/F4r711dZuLSJRftNP24wx8/QVkweKhjyOqH3xoXacWlLuLE7laoobj7WEUYWrPg7nHqo2Er71wgfuGGjyxa+kF07UyZkYZMAO52ml3mpS0E2EumcgdLb8Y6FPHma88jfq86H7wE+/DFkPUdOB6lBQvMx2Ru5mJcDqC0cEsttyNYd0ejPYhPdzAEgjcahitYNxOhDJG+/FSD4L3Bhg8sp+Bg3kR88rLx2lOBJForZQj5fE9Ld48M0M7WSBmiqFR2b3iWCees4vc3Tv9EAO+ct2xdSkySd71vVVR5mBQvj9XEZoIX11+RBShKD5Nce326sbjQqETZW4R5zA+c0Q7UyCNSgiCMVnf7iwNqXeCd3z0SO5+euwM2lomIWolRDLB2yfZxsu029HgXY4zN4IdHsbX6vhGk/T8eVa35d84FAojFAqjNFvnSdNZZmZfxrmt6G0fCAQC82y52D09Pc1//I//kV/4hV/gB37gB3jyySc5dSq/4HP+/HleffVVTpw4sdXTCwQCgUAgEAgEAgvpRJjXa7M0tEAjVfqLS7tlvFazyEOxeNOfRZjr0gtUhnlX95p6frYT8L2JMHfe471HhJ72677e1V3BTN1G33fyTq7a+x5AK6V1nftwPEO/yX+v32oPkWCp7riNtJgXo7/8nfNomvLXb59ENrE+ZzAcsUdytbrWGffjgGZit7HZouMKP7cL33n5ugX+0Yfvpn/f2DIjArcqSgsvU3gziZJk7m3difg+rB/CpnuxfhSj6/sbCgQCa8doH8aPIFrGaKUjeDe2e1o3FSLCvg8dRRZuslPl3DeeR28ikWu7+ciBFknqeeN0/hqivorYDXDeXqZN3vl8OF2bu3snNYq6VbHzh1EWt7Z5Fri01MGIMYg1eJf17tZ0FbHYGtR2NiU6h2jWt9vZAiqdvt0ieK8oSuJ69/tpHzwEZsGFaduRvrbBWGwTAyYTvH0KXf55dTvO3PT3IcUibnIC326RXp1YfdANRLG4B2v7qNdPkiZVZmdfRrV3sfeBQCCwmC0Vu3/7t3+bQ4cO8dnPfpbf+73f40/+5E946qmnqNXyO0C/+tWv8sADD/DAAw8wMXFzvbAHAoFAIBAIBALvKloz+KRJrdliKo0wAn3x0g5d1SopBlCc9C0fYa5g3AJXt1nD6lCSQNpxCXcxwtw7B6qo950F5x45QGUKojdyJU0epe8vX8Uk84uQagzVj6wvtrskKbfH+X6V067A2bQfZwvMjN6de+z85TovHJ/gBw9OM1bagFtmAQftAYpSzNVOpO9kGxi8BzSLL18hwrx67hJXFsW4l3YOs/vxBzY1t8C7D5U63swAivGDGN3REbmHsW4/xu9AWDm6NhAIdAfjBzB+GNE+jJbxUg2C9zopDg0w+kj+Pbo2fpmpt05v04xuPm4fStnbl/LK2/ko83ZxhNQWlxmV4cVz1l7M1UZ0kEHfd92xFxkkWbCMLsB+pjY87/WifC/K/KZBQRG+yHIKq40i1CvqHa69TMrSQuK4sykxS1Gyro03cbaJNSplfbvJLu1S3zsB0wyUsHfmEw/SF05u7GRC1rvbp6AO0hbQ3bl3O8482rkDbbXxs7OkFy/CahsVbiBEDOXyIRCh0ThFkkxSqx3f7mkFAoFbiC0Tu3/t136NX/mVX2F2dpZCocBjjz227LE/8RM/wZ49e2i1Wvy3//bftmqKgUAgEAgEAoFAYCGdCPNaLROxp5qGSsEiZmlBWH2Vthi8xCDFZSPMpePqFs0WzlaVutMUuRZhHnU5wtw7VD2q9DTCXArPIQui2lVjpHY//X/5Yu64+iN34UYGFg9fkbsKk9jcueH19gggzIzeg9p8DPgXnj7LgUqb7927uX6ARYrsN/tztQk/yaR2FpydA0zm7I6WFiBdq82Zrz6Tq4kxHHryCUwXNzUEbn5UmnipZRHKOoJoH9bv6PTjHkIIvy+BwFZj/CDGDyLaj9FSR/AO0bXrYeyRe4n789HZ499+EdfeKtfwzY0IfPRAi7fPzdJYFHe9WpQ5wLi9QmuRu/tIuu+6i1MvhgsM5mr7dGoLo6aHgQ/kKsIJ4M2lDkZMdr3u0xTvfba5cyXiAoigphNl7pJO3+6Y1C7s2+1Jnfb0y44eOZy77147hzbXINgvhYkAk7VD8i5zeXeV7saZS7GI6e/DTU2hSZvk0uWuzHKrMCamUjmC83UazfM0mmdpNs9v97QCgcAtwpaI3c899xy/+Zu/CcBP/dRPceHCBZ555plljzfG8GM/9mOoKl/60pe2YoqBQCAQCAQCgUBgMZ0I81pthoYv0HZKf3HpKGrVFE+T1FyLMGfZCHPrQDRbNFNZg8OinfXrFu9W7Pu8Xrwq3msWYW4kc2b0hAbEL+dLyUNUnjmBred7CM5+9NF1nXmnbbA7yjvpzqb9zPgiSXGA2siR3GMvvz3J2YtV/sbtE0Sb/HKP2MNYmf95qCrvuHeu3cvsP7azOrrMz+3cN54nqeZ7hu954kFKO4Y2N7nAuwqVFl5mMVrKXKR+EOv2YvxAD/9uA4HAWjB+GOP7QfsRLeJlFiUI3mvFxBH7PphPdEnrTS4+d2yZEYHFvH9vC1HPayencvV6Zc/SAxbgRTkTXcjVhrSfYb1+4+HiKPMyKTvYun71yodR8vMS/gxYpmWQjfDOo96v7u6OLHqt5UyazvfttlnfbhCsEZxm2q7rYd/u6MGD2fXjNVJP+srZjZ1MgKgA+Mzh3RN3d3fjzKPhEdR53PQM6dUraOvmej21tkKptJ8kuUrSnqBafYMkmVl9YCAQCGySLflU+Nu//duoKh/4wAf4/d//fYaGVl+4+MAHst1qL7/88ipHBgKBQCAQCAQCgZ7QmsG1mzRabaYSizVQLiwXYV7DSQHVBGf6sNpeNsI8E8KzjyJ+LQaIdgJJShZh3r1+3ZnLRfGqmB726qbwAiILospV0MZRBr7+fO6wxj1HSPfuWvNpDco9hUWxnWp4qz2EAlN7HmRhQ+4k9fz5d87x8T1Vbh/YoEOmw4AMMGbz/bTH/Th17QjXcxHmNrst0Rh86q3T10W19u8bY9eDd21qboF3F0qCl1lEC6D9GN+fRSf3quVAIBBYN+JHML4f0QFEY7yZRQnO5LUyeGQfAwfzwuyVl4/TnJheZkRgIf0F5dHdbV45MZWrJ4VBkqi86vgL5ipN8tdFh9O914mWs1Jmhnw0+n7NP2dvKaB8T64iTABLG8okskDH3e0culr8eKEAsQUUcSnWt3EmRsXgTYwx8327XQ+jzKVSxN6d752+4ShzADGdOPNs82wmeHcXFZ2LM5fNxpnHEXZoCD8zA0lCMj7enUluIYXCTuJ4J43mWdI069/t/eY+ewQCgcBqbInY/bWvfQ0R4Zd/+ZfXPObIkSMAnDt3rkezCgQCgUAgEAgEAssyF2E+i8Mw1Tb0FSNkCdESwGuVRGI8gkoJq0svctuOui1kbppVSR2iPutZZ23XIsxVwXuH7yzW9S7CPEHivKhNei/lFy8STeZjxGc/tj5X95F4horJu3mOt4dJsTQH9tDqG8099s2XLmKSBj98cGpdz7MUd9jbc/cTTTnlFgjX1yLMxUB8/QaFdrXOua8/l6uZQsyBT7xv2d+xwK2HkuLNNKIRooMY34f4ke2eViAQWIQgGL8j+xvVQUQjvJlGl3GcBvKICPs+dBRZeC2iyrlvPI9uWUz2zc2H9zc5OT5LtZ6//myswd2topxe5O4e1D52+MHrjl3s7h5jlniZJKPe8CDKgVxFeAqoXnekIJg46gjdSpqssgGlEIEY1FhIHdYleHt9327nIXG9/b2Mjh7J3XdvjKP1TYjUptNOxyfg2yznht842tnQK6Amu20COzgIIqSTk7iZGVz1+p/vjU6ptA9rK9QbJ0nTWWZmXw6vZ4FAoKdsidg93tmBdPfdd695TKlUAqB1k0V1BAKBQCAQCAQC7wo6Eeb1epW6j0kc9C3j6gbwWiMRgzclBItZSuzWLL7c+Guu7jUseCTzEeYadc/VrerxPvvXiNDVRuALiY8hJh8zrq33MvBUXuhtHdxN+7Z8/+uVKEvKkTgfCTjlCpxP+1AxTO1+IPfYdLXNN1+6yE8emaQcbW6hacyMMmDyMZqn3WnSuYVDzTZLRCb7xLno56aqnP3qM9f1I93/4UcpLOpbGrh1URxqpkFNR+guYfyO4OgOBG5Q5gXvckfwtngzFQTvNVIcGmD0kfy6aW388nUJKIGluXtHyq6S49V3pnL1emX3mlKlL5mrNBbF7x9217u7LzCEW/A+ZIC9bKUDX1C+f1GljfCVJY82Nrt29y7FJ8nKYqON56LMxaXYNHPiuk7fbiuCCHjvcb7HfbvvO5BvgeOV9KVN/C2ILHJ3N1cfs05U/FzP7qx/9yZOZg1mZARfraGtFun4+Bb2h+8OIoZy+TCg1BunSNqT1GrHt3tagUDgXcyWiN2FQgGAqampNY+5ePEiAMPDwz2YUSAQCAQCgUAgEFiR1gw+adFotZhOI6yBUrxchLknJcGLw5kKkbol5SijmUxlWKPQDZC0M1c3cp1ouhmccyge77WHrm6PFJ7NVTQ9QvH1BoXxK7n67Mffu2TU99IodxcmsAu+h6rwWnsHIMzuuANX6MuN+NJ3zvHAYI1HdzbYDAbDEXskV6trnXG/IGLRuexfa5f8mV195TjVc5dytaE7DjLynsObmlvg3YPiUTONKhgdwmgR40dDf+5A4AZHMBi/qyN4DyFqs79l3HZP7aZg7JF7iRdt+hr/9ovXbQ4LXI8R+MiBJi+fyLd3SeN+krh/1fEqcCrKx0X3a4WdPt+KMxXLRfKO7/06tcVC5H6UhxfVvgtcH3ctIpgowqcpqopfqXe3AHGcXb+pImkbVPG2QBoVUcCK4Hzv+3ZLKcbel98Emr5wanMnNTFgMme3d5nw3WW6GWdu+/uRQoF0YhLfaOAmJ1cfdINhTEy5fATn6jSb52k0z9BsXVh9YCAQCGyALfmkeOjQIQCOH1/77p2vfCXbkbYeN3ggEAgEAoFAIBDoAp0I83p9Fo9hpm2pxMtHmKvWSU0Rrw4vZYwusZCmYHwmeMMaxW7nEechdV2PMHfe471HJHMe9IToOGKm8s/dft91ru5k1zDN+25b82lHbYPRKO9IOZP2U/UFXFRkdle+5/XpC1XePjXBT962+UWyg/YARcn3qzyRvoMutK84B8YA10eYNyemGX/6pVwt7iuz/yOPbXpugXcHikdlJktd0CFECxgXhO5A4GYhE7xHMVpCdAhVCYL3GjFxxL4PHc3V0nqTi88e26YZ3Vx8YF+L85erTFXz16GNyu41jb9sJqlLflPgUu7uxVHm/bQZYnObCdeL8kmUeO5+llH0BZayE19zd6tzpGmysi4fx2ANagySpljXxtmsb7czMZERvCqqStrDvt0A8eIo87cu4s5c3fgJBbBxR+h2HXd3t7+GLsaZC9gdO9BmE1+tkVy4OL+h9CYiivoolfbRTq6QtCeozr5Gms6uPjAQCATWyZZ8WvzkJz+JqvK5z31uTcefO3eOf//v/z0iwvd93/f1eHaBQCAQCAQCgUAgR1IDVRr1Kk0t0EqVSnGlCPMqiRTwEiFil+zXPefqVlm7q7vdzhaMnEPt5twRufk6B6qo953+mL2IRVak8J18xe0mOlmg9PbZXH32Y492xOHVMXjuLuRF65Y3vN0eBmB67D7UzgvMqsoXvn2W//ngFDuKm1sgK1Jkv8m7bCb8JJO6YD7qs5u1mc3KzP/cvHOc/srTqMsvLB74+PuIioVNzS3w7kBRVGZR0jmh27oxhO6lOgQCgd4jmGyTihYxOoSqdgTv3opj7wYGD+9j4GC+z/SVV47TuDq1PRO6iRguKg+NJhxb5O6uV/asLVFa4JTNu077tMyoH8nVpihTI3/dsl+nNjDjzTCA8pFcRTgNvHrdkWIMxlp8kmadZlbq3R13BPTIIq7Tt9vEKEIalTDX+nYrpD3u223v3QfFBe//qjR+9yv4i5uIjTcWxIJLsutVv4LTfYPk4sz95uLMTbmEqVRwU5No0ia5fGX1QTcghcIu4ngHjeZZUldjZuYlfA+c9YFA4NZmS8TuX/7lXyaOY1588UX+j//j/1jx2DfeeIPv//7vZ3p6mkqlwi/+4i9uxRQDgUAgEAgEAoHANVozkLaoN1tMpzFGoLxMhDlAQguPw5ki1uv10vEiV7euOcI86USY63UO4c3gvEPVZxHJvYowt2eRRQum2n6cwaeez89loEL96D1rPu1t8Qxlkxet32yPkGJol4apDx/KPfbCmxOUWlN8Yk91nV/A9Ryxh7Ey/3ugqrzj3skf5BzQEbkX/cwuPnuM5qLF+l0PvoeBA2tzXAXe/ajMopJgdGCB0B2vPjAwh0dppZ5W6vOJC4HAFiNY7GLBW4LgvRoiwr4PHe1sxuugyvlvfnflfssBAD66v8kri8RuF5VpFwaXGZHnipmiusjdfcjtyQuWIte5u/cwg9Wtdt1+ACU/D+FLwBKbTqMIRfFpikvay787CGgcZ/2t1WPb2ffCmTgTu0UQEZzzpD3u2y1xRPz+9+SLtRaN3/kyfmIT17W2APgsxjxt0313dyfOXLMNtaJ2U4K33bEDTR1uehp35TK6UhT9DUyptB9ryzTqJ0nTKrOzr4TXtEAg0FW2ROy+4447+K3f+i1UlV//9V/n/e9/P//X//V/zT3++c9/nn/yT/4Jn/70p3nggQd49dVXERH+1b/6V4yOjm7FFAOBQCAQCAQCgQBkLod2lUajRuqF6bZQig3GLBdhriTiUFI8RaIlFowM865uXav84j3iXCcS266jn/Uqp1XFe80izI30LBpZCs/k7qsfwl4Yo/zKW7l69cOPrFnIr0jCkXgmV5twRS64CgpM7nkw91ir7fiL587x07dPsMyPb80MyABjdixXG/fj1LWeP9D5jks932O9Nn6Zyy+8nju0ODLInvc9tLmJBd41qNRQaWF8fyaO+V0IwfG/HlLvabQdzntS76l3/j8Q2C6EKNu0ck3wxmVtCoLgvSLFoQFGH8lvhKuNX2bqrdPbNKObh/t3JbSqVa5M5du9NCp7lhmxCIFT9nyuVNESu/2OXG2codxvsUXZQ/4arfdEKN+bqwjTwLeuOzJzdxu8y3p3a5ouf9q4AJFFxWBcC1GPtzHOllAgEkg7F/NpD/t2AxT+p0ew78n/7HS6TuNzf46fqS8zahVEsv7dPs0+96TN1cesm+z7MhdnvonPGxJH2IEB/PQMmiSkFy52aY5bi4ihXD6M4mk0TtFuX6VeP7Hd0woEAu8itqzp1d/9u3+X//P//D+JoohnnnmGv//3//5cz79//I//Mb/6q7/KF77wBZxzGGP4F//iX/DzP//zWzW9QCAQCAQCgUAgANCugir12gwtKdBMlb7CSmJsk1RiUszyEeZunb26AdpJFmGepmjUPVe3dw5QvCqmV726zWUkyjuetf1eBr72Agu/fF+MqT7xIGtDuac4mROtvcLrrRFAaAweIKnkF2K/9sIFPjgyyYG+zccE3mFvz91PNOWUW7To7h3QiTCPzFw0u2snnP6LvPgvxnDoyScwUffi6QM3LyoNvNQx2odQwvidGC1v97RuKlqpp5l4rAjlgqVcsFiBRpK5vAOB7WJe8C5gdBgl7QjewdG3EmOP3EM80JerjX/7RVzr5nR1bhVG4EP7W9e5u+vl3Wv+jZswM8xKLVc7lO5BdP4irC0RlxnIHbP1UeYA96IczlWEb8ASwruJItQr6h1uJXfwtet+a5HUYVzS6dstOFvAWoNqdi3d677dEltKP/cxzOFdubperdL8na+g9dbGTmw6qTE+yW5LfH7ZLN2MM7fDwwC4ySnSqUl8fYNC/zZjTIFy+TCpq9FsjVNvnKTVurTd0woEAu8StkzsBvhf/9f/lRdeeIGf+7mfY9euXdlOsgW3wcFBfvInf5Lvfve7/Mqv/MpWTi0QCAQCgUAgEAgAtGbBtWm02sy4Aqqs2K870SYegxOLQZFFKznS6dUtmj2ia3UYtxNwnQjzLgmiquC9w3cW5noVYS6FZ/PP68uYydvoe+61XL32/gfRcnFN5xyzDXbavPPkdDJATQt4sUyO3Zd7bGKmxVtvjfODBzbR1/Dac5tRBkx+Qfe0O03KIleQ92QR5gai+ejpS8+/SjKbXzTe/fj9lHfle2AGbk1UWnipYrSMaAXjRzDat/rAAJClVTSSlNR7irGhFFuKRigapRwL5Ri8T2m2E/y1DSnL3pRNrcYHAssgxAsE78EgeK8BE0fs++AjuVpab3LxuWPbM6GbiA/vb3HsxESu5qMireIarzsETkbjuVKJInv8zlzt/KIo8yGa9GsvXMIrISjfz8ImQkKC8OXrjzQWMYJPU7z3nQ2gS51Sso2mUQTeY5PmfN9uW8J2nspvQd9uACnGlH/hE5i9w7m6vzBF43e/gjY3IFQLi9zdLXrx/te1OHNrMCPDuOos2m6TjI+vPuYGJYr6KRb30m5fJkmmmK2+Sppuvt1SIBAIdM8isUbuvfde/uN//I8AnD59mkuXLuGcY+fOndx+++2965kXCAQCgUAgEAgEVkY9tGdpN6u0UphpCcVYsCtco7dp43F4iSku4e4wDkSzNSUva3R/eEVcCqnLhNMufUZQ9Xif/WtE4Pru4ptHZiHKi9okj9D/jVeRdH5RUa1h9sOPrOmUFs/dhbxDqektJ5IhAGZ3vQct5F2wX3z6LP/LkasU7eYW7gyGI/ZIrlbXOuN+8SKbZpHzthM5b7MNCu1qnSuvHM8d2bdnF6MP3b2peQXeHShtvMwiWkS0H+MHMX5g9YEBABLvaaceI1CODZF4ypFDrAVVCqmjrY5CBInzaAoYITKyrle/+VcRWfCyKYseX8sZF2+HYsnzLT+Phccsca4Vnnfp/w9sJUIB40fx5hKGAbzMZu+ZOsD6fiNvHQYP72Pg0F5mT8+/51555S1G7r6N8s7h7ZvYDc7OsmdPVGX8ap29Oytz9UZlN6XW5Aoj55mSWaalypD2z9UOpru5aK7OpRRdoY8mEaUFm//26xRvyBoj07vGHuAo8PxcRXgJ5XHgQO5IYyNckmC8x7XbmPIyKSqFGJIUFcG2m1AewtkCaVSi1J7BipA6T2QE1a51G1oWqRQpffaTNP7tn6FXZufq/vRVmr/3FKVf+AQSr3NzrIkysdu1QQz4Npi1bUJdO0oWZi6omuxD0QbbONj+AfzMLOnEBFIo4Kam5hzfNxvF4ijO1Wk0TmNMkZmZlxgefhxj4tUHBwKBwDJsibL85JNP8uSTT/J7v/d7ufqhQ4d473vfyxNPPMGdd94ZhO5AIBAIBAKBQGA7mYswr5JIgUbq6SusvHDUFo/vCMdWF0kPmn3gyBwN4Ne6EJa0s7Uhl6JR9xY9MgeLx3vtoav7OWSBqK8aQfV++r/9cu64+qP34Af7Fw9fktvjaUom7755oz2Cw5DGZWZ23Jl77O1zMwzXx7l/ePPuooP2AEXJL/ydSN+53o3nO65Qa7NbJ2/94rPHULdgUc8IBz7+OBI++93yKCnezCAaITqA+D6MH97uad0UKEozcbSSTGjoi6AkKZUI2qU+auVBapURkr4RCuUBiMqYuIy3Reo+ouoiEimQmuKCW6Fzi3GLbn7uFuElwovFY+ZuOpfrsdqL/LWjFLk2Wjs3n3ZuSe5mF9wi315waxGv+dZccGvM3ay22ajoENgYRosYv6vTw7sflTZIcPQth4iw74NHEbvgPVOV8994Hl18zRXI8ZEDLY4tijKvlXav4XWqg8CpRe7uIgX2uAVx2iKcZzh3zF6mMbr1ryvKkyj56zXhCyy2EktkgY672zl0uRjyuJDtDbIRNmlmfbtNRGqLKNll3jVTd9LjKPNrmMEy5V/8JDJUydXdWxdo/pev568314IAUSHb7OvSjru7+1/L9XHmG9wZYAS7YwfaaOLrDdILFzrX3zcn5fJBjCnSqJ8kTWeZrb4aXtcCgcCm2JIVhq9//es89dRTHDlyZCueLhAIBAKBQCAQCGyEToR5vdlixsc4D5UV+nWnmqKipGIy0WLR2o3tqNuGdfTqhk6EuUNU5xzCm0UVUu/x3iMC0pN+3U2IX8qXkgfo+/YJTGO+p6AKzH700TWdsU/aHIpnc7WrrsQllzlxJkfvz1ycHbxXnvrOaf7akbU5l1aiSJH9Zn+uNuEnmdQlzu0cYDJnTJz9zjQnp5l882TusJ333E5xKDh3b3UUhzfTiFpEBzG+gvE7Vh8YwHlPve1w6umLPX0moWQ9UblIvW8YF5WoOE8FcIUS9b4hosEhCsVM8I4KZdoaM5VYGj4ilZhUYpwUOrciqRRJKZJSmLs54vxNYvwSt/nzrHbrPM+1myl1buXcLcndSp1bcdXbWoR8QYl8C7O4JUOgpxgtZ4I3JYzvw0sTDYL3shSH+hl9+J5crXbhClPHT2/TjG4OHhptc/JMPsqcKKZZWvt7zbSpMin5a7CDbjdG568hz8lQTk6O8YyRH7M19KF8LFcRzgEvLaoJJo46QreSJsv07jaC2ihrJeQ9NmnhbAFEcLaY69vttiDKfG5aO/op/+InoS8v7LtjZ2n9v7+F+nXORcy8w1sV3AZ7gK9CPs584/27TaWMlMu4iQl8q0V65UpX57mViBgqlSMojkbjNO3WZRqNk9s9rUAgcBOzJTHmY2NjXLhwgeGbNFojEAgEAoFAIBB419OJME9bdZqJMtO2xNZTiJYXhVvSQhEcQqxtcntpNUvqM3Ou7jWu6qgiaQppmsWX2+6I0t450EwMzlzFPchbLLyIyPyioaqgjaP0f/2Pcoc177uddGwti63KPcXJ3CYCr/B6awQQWpWdtIbzYvSzr13hyeELDMabd3ocsYexMi+kqyrvuHeWnCfeZb0dDXMbFC4883K2cNjBRBFjj923xPjArYTiUTMNKogOYXwJ43eGGOM10HaexDkK4inZbINRXCiSlvpJbEQMlNVgozICxAotY2gVykihTLmdUK+1KBilmaZMJ0rkhUohum6z0obQpe9cf+qFj+l1teWPXfKJlq5r9p8lvyzNnOVeLIbMNY4oXkJ86lZhtAJuJ95exSh4qWIQRPu2e2o3JGNH72Hy+CmS2dpcbfzpFxk8vBdbLGzjzG5cIgMPDM1y5mKVg7vnk3Rq5T2Um1fXfJ5T0XlGkvnWKwVi9rldnI0uAdCUAhPax07mfzb7dYoLMtSFr2K9vA/lOYT5r0/4c5R7gfnfE2MtPknwLkUSQQuKLJVDHsfZ9TiCaTdIC2U8QhqVKKbNrEWRz5zdZbqzOXUtmN1DlD/7JI1/9+ewoF93+tw7SDGm8JnHl/56lj1hDL4BPgEH2AJ0/etZFGcOIMv0TF+FaGSEZHwcNzuL2Ag7sgOJt7xTbVcwpki5fJh6/R1arQsggo0GKBZ2rT44EAgEFrElzu6HH34YgDfffHMrni4QCAQCgUAgEAisl06EeaM+S9sUqSeOyioR5ok4UhHAEy3SKYxm0lW2iL1OVzeAc2jUvYUb5x2qHlXF9MTVnSLx84tKd1F5/iLRTC1Xnv3YY2s64x5bZ4fNO0xOJoPUNUaBS6MP5h6rN1POHD/Jh0bzz7cRBmSAMTuWq437cepav/5g11msszYTvEWoXbjCzMnzucN2PXQXcWWZ3pCBWwLFozKd/R3qUBZl7MeQrVmauGnxKM0kAdeizySUrcdEMXHfIK2+IdJCiYqJqZiYkgg7khYjSYuKc5S8pz9NsaokhZjSYB+lUkQ5jugrRjhVZpsJ7W4482ThTeZuet3NzN282M4tWua20DV+7ZZ3iadzt4VO8cwtnix1s2Xapi+LaJcCzsQYTbHamwjbwNIY7cP4EUTLGK3gpY5KY7undUNiooh9H3wkV0vrTS4+d2x7JnST8JH9TV5ZFGVeL4/i13EdOGvqTJjpXO2A243NubuHc4/voE5Zl3FM9xSL8n25ilBF+Hq+JoKJInyaZu7s9jJzLcYgoNYStbLrP28LpLaUnUOkk5qUbcbcSuyBnZR//hOwqE938pdv0v7TF9d3MpGO4J10oqA23wZoKebjzAVR2XCcuRQLmP5+/NQUmiSkFy92d6JbTBQNUCzuodW+RJJMMzv7Cs4t8XkjEAgEVmFLPlH+wi/8AqrK5z73ua14ukAgEAgEAoFAILBerkWYN5pUXUzqoG+FCHOH4GjjEIwmmIWhUQrGZ4I3rFPsTtqQOkR9FivYBXzH0e29Q0R6E2EevYaYvMisrfcy8FReAG/dto/24b2rnw7PXYX8Am3DW95JBgGoDh9G+vKuoa999zx/7eAl1mNmWY477O25+4mmnHLLRKZ6l7nwMWAjVJXxp/OxmbZUZPThu5ceH7glUBSVGRTXEboLWDcahO5VcD7FtZsUtE0pAhMVsMU+bN8gjfIgJirRr0IBGEwThtKEzl8j/S5lpN2m7B0Vl9LnHBhB+suUB8sUYsNgMSayQr2VUmun3DLtMgVSySLPPRGpKWbtW30LYWNuu8D6MX4A44cR7cNoGS/VIHgvw+DhfQwcyl8/XHnlLRpXp7ZnQjcBu/s8zYkr+AVKrLERzdL6XKOnbL53d0zEfje/IfAS/bQXOYH369T6J9wV3oNyx6Lat4D8NaXppPB450jTZOnXfmNQayCKMC5BvMPbmDQqoAjWgOsMTLehd7S9fYzSz37suhSo5Muv0P7KOjeCmBgwmeDt0+zfHpDFmV8TvO2G48yj4eEsdX16inTiKr5xc79uFotjRNEQjcZp0rTGzMxLeB9ajAQCgfWxJZ8qP/OZz/BTP/VTPPXUU/zNv/k3qdU27zQIBAKBQCAQCAQCXUI9tKv4dp1aqswmBmugGC//cSERUE1wYrGa5uIC513dgq5H6FaQJAWXZj30uhZhngJZX0FjevERSJHCd/KV9CClYw3iS/l+kWt1dd9RmKJo8guHb7RH8Bi8ibi6Kx8Hfmmywe7ZE+wpb35haMyMMmDyfbVPu9OkS/a19VmGpbFgBCLL7Klx6hfyPQR3P3ovthAigm9VMqF7FiXF6OACofvmjN3cCkRTfNJAkxZWwMRFsGUKlQpuYJh2aZAShj7vKXnPjnaL0hJiQ4QylCYMJQlF7+h3CSWXtR0oDvVjywUqhYhKMSJxmcs72cL+q9uNl4i2qaBYUimgYol8G6O9EToC12P8IMYPItqP0VJH8O5N39ybGRFh3wePIguvjVQ5943n0Vtml8r6eXx0lpPj+Z7wU8U96zpH1TS4YqZytf1ujEgzwVjFME5+A+I+ppBt+bkIyqdyTRyyhkNfyh9lTCfOPM260STLvObFhSy1B7DtBqkpAEJqCxhjMsFVlcRtTypGdM8+Sn/9Qyze6dn+4++SfOv42k8kgL3Wu9uBa9KbpA9FhWyjnwroBuPSI4sdGsLNzkKSko6Prz7mBqdcPogxBRqNkyTJDNXqq9s9pUAgcJOxJZ8sf//3f59PfvKTvPTSS/zn//yf+e///b/zgz/4gzz00EOMjIxg7cov7D/90z+9FdMMBAKBQCAQCARuTdo1UE+jXiWhSD1VKnG0Yr+7NglOYlRT7MLFoE25ujsLbalDI9uVttqq4L3De5/NrRdit30bsXlRW9vvY+CpZ3O1ZPcOmncfWfV0/abNwSi/MHs5LXHZZRHgl0buISrke3Q+8/wpfn5fPmZzIxgMR2x+jnWtM+6XWURzDpAswjyOUO8Zfybv6o4H+thx32KXUeCWQmqotDF+oBNdPooQ+swuhSEFn5KmDodB4iLGRNjIEvX304qzzqj9Posm70tTyt6t+nJZVE8hadMwFokiCs7TNBbpK5IUYrTWZNAI9XZKrZVSjA2lyHYlKeJGR0VomwoRLfCCSorxCYLiJGKLfCK3NMYPA4oziqB4mcUAosVtntmNRXGon9GH7+HS8/MiUP3CFaaOn2bkrsPbOLMbl8fG2vznU1e5ff/8Jr60sgs/bTG69hSHU3acnX4I6bzaRlj2uzFORdn10TkZ5rDOXwsWceyiymUGljxfbxkFHgeemasIr6GcBI7M1UwU4V0Ln6Y4EUwhvv69JI6h2URtRNRqkJb68WJIoxIll/Xtdl5x27hJKnr4MMVmQuv/8+1cvfXfnoZSTHz0yNpOZKIsrShNILKZu9v04jXIgxoQQdSg6mE9n5c62MFBfLVKOjEBcYSbmcEODvZgvluDiKVSOUKtdpxm8wxiLPX6SSqVI9s9tUAgcJOwJWL3z/7sz+YWyiYnJ/kv/+W/rGmsiASxOxAIBAKBQCAQ6CWtmSzCvNmkoX20Es/w4PIuXI/gSHBYjFZzEeaGBa5udH3pfEkCziPqUdudxSXVrJegqseYa81ku8t1rm63i/jtAsWTeYF49mOPZe7nFVHuLUzkBCan8EZ7ByC0437ao7flpJfXT03xZN9JVjDir5mD9gBFyX/vT6TvLP+TTH0nwlwgipg8forW5EzukD2PPzAXlxm49VCp46WB0X6EIsbvwgQBaxGKwWF8ivOelhc8BQqFCDGWuNQHlQqJEYreU/KOSJXBNCFah3NQgIp3lNqOqo0QoKCeZhRhhiq0Gm36jNBOHI3EkThPpRARrfq69S5AIKWIN4bYgzeGSBMi38aZGCW8hvUa8cNYFGcAZjLBWyVsjFnE2NF7mDx+imR2PjVz/NsvMnh4L7YYvleLiS0Mty7h3CFsxxVvrKFWGmOgsXY3bN00uWwmGfM75mr73Sjn7WUSSalJkSktM8x8nPR+neKybIfYDcrHgZeRBfMRvoDyWa5t4Mnc3Qbv0k4P7wQbLbr+jywqBrEW025kLnATk0YlpCUYIzivWcsgVcw27ZCKn7gTbSa0/8dz80WF1v/rm0gxIrrvwNpOZOOsZ7dPIW1BoRNv3mVUfCZ0iyJqUdL1f0Qxgh0eJr18Gd9okp4fx/b3d67Lb06MKVIqHaLReAfTynqRR9EAhcLObZ5ZIBC4GdiyVz9Vnbstvr/aLRAIBAKBQCAQCPSIToS5JnXqiWc6sRiBcrz8wn4iFk8DJ4LVJsL8wphxG3R1K0g7WRBh3h1hwTsHKN73KMLcnEeic7mSth9ncFGv7nSon/rDd616un1RjWHbztVOJkM0NNtQcGbHQ7mvI3WeybeOc9fg5iNfixTZb/bnahN+kkmdXHqAOsBnPytr8F65+Gy+R2Jp5zDDdx7a9NwCNycqDbzUMFpBtIxxOzBa3u5p3UB4jCZEvon4hKYTqi5GTZG4UIK4j+LgCK6/Dy9CxaWUvKPiHCNJe11C90IMMOhSRpI2Je/pcwn93lEpFzADFaJygYFShCBUWynNxG+4r+jNhpeYtikviDU3IdZ8ixAE8SMY34foIKIR3syghO/9QkwUsf+DR3O1tNG87v03MM/7d9d469xsrnY5Xl+UOcBpeyG3+c9iOeB2z90/J8O543dRpbhtrx1llE/kKsJF4Lu5moki1CvqHb69zFwLMcQRRh2StHG2gLPFrG+3CN5n21uTdHvfKAofu5f4ex/MF73S/M9fJ33rwtpOIqbj8E6yz0hps/sT7dCNOHPT34eUSrjJCXy7lbm8b3LieJBicQ+t1kXSZIbZ2Vdw7ubuSR4IBLaGLXF2v/POO1vxNIFAIBAIBAKBQGC9dCLMm40aTS1STxylgum4oJcZIkKqHi9KrClisgUa0cyUICoo2drNmkkSQCFNUdu9CHPnPd47RECk+2K3xK/kn9MPYM+NUX71y7l69SNHs0jEFYhwvKcwlavVfcTJJIsknCqNUdw5mnv8u69d5K+MdqdP3xF7GCvzc1RV3nErfJZzHpDMQRJHXD32Fkm1njtk7/seXDEOP/DuRaWFlypGS4j2YfwwRvu3e1o3CB6rKUYdCqRENFLBA1GhgNgiUTEmqpRIrKGwwM09kCYUumQKiFUZTtq0jKFqY2L1FK2l1l+i0bJUbEK7ldBMM5d3X9Fum2tvK1ExWay5NoEQa76VCILxOwCPNwDTeDON8cPI1ixh3hQMHtnHwKG9zJ6ef/+/cuwtRu65jfLO4e2b2A3KgQHH189f4e5D8321o4ERXDXG+rWL0Q3T4qKZYI+fd5nudbs4Zy/SlpSLDHI3F4k67X0E2Ms0J9nVta9lfTyG8izCpbmK8BWU+4FSdt9YxAg+za7nvXPXp/EUYmi1UGOxSQNXzt7L06iI9Q3aDryH1HuK2/z6WPjUQ9BMSL7++nwxdTT/01cp/63vwR5aw8/CxFmcuU+yXuCagvTi9ac7cebRjhGS8+P42VnSixexA4PITZ7yUCiM4VydRuM0xhSZmXmJ4eH3IhJSVgKBwPJsyZXi4cOhb0wgEAgEAoFAIHBD0poFl1BvNmlSoZl4dvUtv0DigZQUJxHG1zALol2NlznB24tf9hxLkiTgPeI9WuhOxLF3rtOzW5FrUdtdxUN0PFfR5BEGv/Zi/qhykdr77l/1bHcWpiks+r693h7BIyjCxdGH6VvwWLWecHD6NfpGNi98DcgAY3YsVxv349S1vswIzfp1GwsiuNRz6buv5Y7o2zdK/8H1O6cCNz9KgpfZrN+u9mP8AMbfvH0ku8cCkVsMTmKa3tB2Hi8xhWIZMYZKpYAvFXAKFeeI1VNyjn6Xdl1GEKDkPQXfot6JNo8RioWYqrXYOKLSaNNsJ8w0U8qxpRjdAmKvQColvCYh1nyLEQzG7wIu440yL3gPBcF7Afs+dJQ3z11EXee6QZVz33ieO/7qJ8ImsyU4yAWS9DbizuuXMYYr0W52t8+u6zynowuMtXdgOteUFsPBdA9vx2dxYriggxxgau74/TrFSXbCtvxMDMqnEOZbiQp14CmUT80fZSNckmC8x7XbmPKiBJYoQkWQKCJqN0grQ1nfbluiZBpZ325VUqeobtOX2kFEKPzVx9Bmm/Q7J+YfaKU0fvcrlH/p+7B7hlc7SUfwbmcub9eEqI9etELqRpy5FIuY/n7c5CSmVKZ96iTFO+4Ee/O+V4sI5fJBarW3qDdOYkzMbPU1Bgce2O6pBQKBG5ib91UvEAgEAoFAIBAIbA710J6FpE69rcykEapQKa4UYR6h2sRJjPE1RDoR5gpGQTT7iOHXs1CjZGJ36rIFpi5FmDvvUfWoKqYHrm7sGcTkY/XM1QNUvvt6rlb9wEPoKg6LQdPiQFTN1S6mZa66bMHxZOVO+gYqucdff/UUjw3nYzk3yh329tz9RFNOudPLD/Ae0GwhzVouvfQGrpWPX9/7xENhwf0WREnxZhrRCNGBLJLYD2/3tLYVQ4rVFrFvAUpqYhIpUEsNVWdxUR/FUoU4tlSGyrhSAavKgEsoes9QmjDYA6E7P0fodykj7TYl7+jTlJ0WBsox9Jco9ZeJI6HRdlRbKf5WjzUP0do9JRO8RzvJEEOggpppFLfdU7thKA72M/rIPbla/cIVpo6f2qYZ3di8d6zBW2emc7WJwt51n6clbS6aq7naHr+TombXw4ujzCskjLDcxsGt4HaUexbVngGuzN2TKNu46NM02yjql9iwGscQWWzaBO/n+3Yz37dbAXcDvDmIEYo/9n7sgwfzD9TbNH/ny/ira7h2Np0UD9eed3n3iG7EmUc7doCxJJcu4et12mfXt4njRkQkolw+gvdtGo3TtFoXaTRW+GwSCARueYLYHQgEAoFAIBAI3Kp0IsyTVo26j2m0HaXYYFfobZ2IxZGgeKxvIGQiru2o24Z19uoGcAmi1yLMo64YJ7yC9x6vDhHpTYR59GbuvrrdDHztHcTNLxJqZKl+6OFVzqTcU5jMOWGcCm+2RwBoSwG/L9/ve/xKjQ+Z17vinhkzowyYgVzttDtNSrr8IOcAky2stROuvJJ3uA/dfoDK2M6lxwbetSgONdOIWkQHMb6M8TuQHrihbgYMKZG2OjG5QmqKOCnS9hGTbUtVixQLZUqFiHIppjBYwVtL2Tn6XErRe3YkLYpLCQ89IkIZThOGkoSidwyrY7RgiEsF7EAfpb4iqVdmmwmJ235RYyvIYs3LeIlwUsCZGONTrLaBrfvZ3GoIBuNGES1idAhVOoJ3+J5fY+yReygM9OVq499+8brNZwEoRZBMXsrV+ocHScz604RORxfwC34PTcfdDTBDiVny59yvU+ufcBdRvjeXRiF4hD9bcF+wUTQndKfJEr8/cZy1rRHBJK1O3+4CHsGa+b7dN4LYDSDWUPqpD2Pvym9o0JkGjd/5Mn56lQ0IAkRxtjHYp53e3b167fHZxl+yOPP19YHqYA3R2BiapqRXruCmp0gvXVp93A2OtSXK5YMk6TSt1iVqtbdot2/+vuSBQKA3BLE7EAgEAoFAIBC4VWl3IswbTdpSpJE4KoXlHQUeSEVIRRFtYvCABc1azJnO4sy6xe52CuoR71bta71WvEsBRb1iVhDvN/EM10WY07iDvqdfzpVq770P3593ZC/mQFRlyOYXFk8kgzQ1i2t9tf8hioV8dGvzndcZLW3e4WYwHLFHcrW61hn3K/UB18zZHRkwcPGF19F0wVxE2PP4g5ueW+DmQvGZEKVkQrcWMX5X5la6pdBM5PZNrE9QhMQUM5GUiFkfM5HEqIkZKBWIY0Olv4z2lTAI/WlKUT0Dacpwmmzbd6+onh1Jm/40paye3dYzHBtMqUB5qA8TWWqtlFqS0qUW4jc2IiSmRGoKeCJSU0RQIt9GgvjaMwSLzQneispUELw7mChi3weP5mppo8WFZ49t04xubO4tXqDZnr9eERFO6vrd3W1JGLdXcrU9ficlLYDIde7u3cwS6wobCHvODuD9uYpwHHhr/n7n+ts7h09SdPELexwDAlGEbTdxJnOyu6iEFem4uiHZws1ZqyGRpfSzH8McGc3V9WqV5r//MlprrXIC24kxT8n6Iq1y/CbI4syzz1GitiN+rw8pxESjo/haHTc5RXLhAm6mOwlQ20kcD1MojNFqXSBJZpidfQXnmts9rUAgcAOyJc1ubr/99tUPWgYR4e233+7ibAKBQCAQCAQCgQDqs37dSZ1a2zGbWpx3VArLf0RIxaIkODEYVwWJEZGsVzeZ2L1uoRug3YbEAQK2Ox9RvM/cKar0Ruy2ZxGTd4VUnk4xrfmYQxVh9qNHF4/MEeO4s5CP1az5iFNJ1t/4AiPs2L8v9/jbp67w4Up34gkP2gMUJe9AOpG+g660yuYdWYS5pVmtM/HGydzDO+65jeLwwJJDA+9OFI/KNKoeo8OZMOXGbjGh22PUYTqChpcILxYweLG0NWI2Aa9KuZD1vY7jiLi/hBqh5B1F74m9MpAmRBtZ6e4yAlS8o9h21KIIMZZKDFfFoIMVbDulVWvi0oRKISKy734Hv5MYbyyxb5KKYEmIfAtnIjzxdk/vXYkQYd0Yzl7EMISXKZBp0KFb7DVmaQaP7GPg0F5mT89vUrt67C123HMb5Z3D2zexG5AjAwl/cW6Su27bNVdr9u2B6sl1n+uMvcgetwvb+R0UhEPpXt6MTzHOEO/hErbzOm5Q9jDDGXZ05evYCMpHgBcQanM14YsotwE2iyOPInyaYqII124TFRdcHwpoIUKcwyYNEu307Y5KlNMGIlmiknOy7X27FyLFiPIvfILG//NL+POTc3V/YZrG736Z8t/6HqS0QqshE4NvZDHmqUChAHRnY+5iVBTBoOoRLCrr39RqKmXsyAhuchIpFknOnMbceSdSXH+CwY1EsbgH5xo0GqcxpsjM7MsMDz3Wk+SuQCBw87IlYvfJkyfXfKyI5HaPhR5vgUAgEAgEAoFAD0jqoB7XrlN1BeqJJ7ZCIVotwryBIkSuiphi1qvbb8LVnbq5CHOiLkWYe4/34NVjjNCVky7iugjzdJTBL+ZrjQfvxK2y0PyewhSx5F0wr7d2oAhe4dzow+w28/NPUs/hyZexK7cAXxNFiuw3+3O1CT/JpE4uM6KD82QhYYYLL7zBQlunRJbdj92/+ckFbhoURWUWxc0J3daNIT1aDL7x8FhNMepQwJsYjwUEZyIcMU0HjcRhBAZKEZERipUiUiogChWXEqlScSkV52640HcLDKYpZXHMRjF7YmEmVaYKEaWoj6TRYraZUIoNpcjeMCJHr7gWax5rCxBUUqxPEFGcdPq8BrrKvOB9CcNwR/Ce6Qje7/JfuDWw70NHefPcRfRaGxVVzn3jee74q58I66oLEIFK/QIwL3aPjPQzNV1m2DbWda5EUs7byxx0u+dqY36Es/4iddPkkg6wl5m5x/brFGcY2UYVuIjySYT/MVcRrqB8h2uub2PtXN9ulyTYQjE/3bgA7QTTbIF3eFMgtSUArAiuk8btvN5Qm5+kXKD02U/S+LdfRC/PO539mQka/+mrlP8fTyLxMhKJSEfwTjKXd9qEqG/pYzeNgkpHGzHZ9bWs3ylvh4bQdht3+TImjmi/c5Lie+4Ee/Nel4kIlcohqtXj1BsnMSaiWn2dgYH7tntqgUDgBmJLxO6f+ZmfWfWYWq3Gm2++yUsvvYSIcPToUR58METfBQKBQCAQCAQCPaE1k0WYNxu0TYV6O6V/BVe3kjm7U3VAgqGNMIBh3tW9oht4OZI2qCLeoXF3XHHeZc5j75WoJws710eYxyeHsdVTudrsxx5b8SxDpsX+uJarXUgrTPhs4fBFPcLusaHc4+dPnOZDhRm6wRF7BCvz3x9V5R33ziqjfObsjmJqVyeZOXk+9+jog3cR95W7Mr/AzUEmdCcYHUQ0ziKHt2apYZtZIHKLweVE7hhHjEeoJylJqhRioRxFWCsUBsoQWWLvKXtHpJmbO77B88BjVUaSNk1jMTaiLMqEKtJXIi3GNGstklZKX8FizY0jdPQEERJKWEmIPHhjiHybiDapFAiCd/cRsteXTPAewst0R/AevOUF7+JgP2OP3MvF5+bjy+sXrjB1/BQjdx3ZvondgDxQvsT5ZkKlNH/N+Tb7eWxBpPdaOWsvstftIups7hKEQ24Pr5uTnJNh9ur89doALQZpMsN2XiM9gvIdhPkUAOEplIeACmJMJngnadbDO0mwhQXX5h1BWKzBtlu4YgFnY7wYIuNppR5VJfW+R9ffG8cMlCj/4vfQ+O0volPzyUz+7Us0f//rlH72Y4hd5nXbxNm1r08y8VsTkN4keWRx5gZEETVZy4b1vrwJRDt3kly4QHLxEvE+S/vMGQqHD984lvsNIBJRqRyhVnuLRvMsiCGKBimXD2z31AKBwA3ClnwC/b3f+701H3vs2DF+/ud/npdffpl/8A/+AZ/5zGd6OLNAIBAIBAKBQOAW5FqEedqg1laqaUTqHJXi8h8PErEdwdtjfY1s5SXGuAWubrORCPMkc3V3+gBuFlVw3uO9QwSkJxHm5xGTF6kH/vhq7n7zzoMkB8aWPYWg3FuYyNVSFd5sDwMwk0bEt92Te3y21uLR9rGuaCgDMsCYzfcwHPfj1LW+zIgOLotUVNNxdS/AFguMPnz35icXuGlQqaHSwvgBRAsYP4rQhdiBGxhDiqjDqM8iXE2MdkLHr4nciJA6pZ4keIVKMaJghbgUY8sljEDZOSL1lJ2j36U3jVQnQNk7it5RtxFxwTKbeKZFMINlWs2EmWabSmQoWtOLYI0bByHb1GAssW+QmiJWE2Lf6mx+uBU2fWwtQvY6480lDIN4mQGZBR245QXv0UfuZvLNk7Rn569Pxr/9Iv9/9v48yLLsru9FP7+19nDOyTmrMmvqrqlHdbekbklIIAkDkkA8G+MLhnffc2DwxRh4l2fCgYfAjnAQjrB9w3bE9Qv7+YLNIGPsZy7XvgKuzSwJoUZogJZ6VKunmueqrBzPsPda6/f+2Kcyc9fQVTkPtT4RFd3nd846Z+XJk/vsvb7r+/0NHzmIzXf3cXklDKaBq5eucfjI/sVaMjqJzr6xYh3Qiee8vcxhv9T3eyKMcSZc4roobVJaLLW3OaTTzMpWit2C8p0In1hW6QKfQfkLQNUHPvgewTmcgMnSpb8sETRNEOcxrovLq82ZzuYkoUo38QrOK9uxq4MZG6D5433Be36p/7Z/5Ry9//x58r/ywdtfNwiVqzsUYGzl7k6rNiUbwXrEmWMNyeQk7vx53JWrYAzl5cuk+/bdfew2xtomzeYDdDqnsabFAkKSDJKmo1s9tUgksg3YdltNn3zySf7gD/6AgwcP8oM/+IO8+uqrWz2lSCQSiUQikUhkd9GPMA/FAnPO0ik91kB+1whzj6IYPweSYjEIIH1X94qlbu+REMD5KlpvPSLMvUcVQtD+gtVGRJjXRV5ZGKb59fla7W6u7geSeYZsWau9WYzQ00oc+bPkCUaHbuqvd+ZVmsatctZ1HrLHa7dLdZzyp+8+0AUwlrnzV1m4VBf4J9/zjrigfh+h0iZIG6ODCA1M2IvRxlZPa8MwOBLtYUMJCM7keMkJpJQmozADeMkAoVsG5guHIAw3UrLEkA+1sAMNMlEGfUkeAqNlydAOErqXY4BB7xh3BXsS2JfBgHe08gQ71GRBDLM9R9jmbvX1oIo1bxEkwUuGNyk2lFgtgJVH0EbeHqM5JuytNtjoECoFyPzdB+5yTJJw8EPP1Gqu0+Pin758hxH3L5PuQu32ntEWb7SHV/VcZ+0VSurnZkf8fhDhnIzW6vuZxepWHxMOozx1U+3PgEsAfXe3IXgHCsHVz1VJU0gsJpRV6w6xuKSBkSp+2/uAC8p2PfSbiWEaP/pRaNTVePeVk/T+zy/XWqvWB/ZbVLiSqldSefvHrQsKWiUFoKb6twokTbATE4ROB399GnfpEn5mZp3nuvmk6RhZNkG3dx7n5pidfRHve3cfGIlEdj3bTuwGGBwc5Kd+6qdot9v8i3/xL7Z6OpFIJBKJRCKRyO6iNwfB0e316EmDhSLQypI79nW8EWHu8QgB0Q5I1nd1V3KyrrRXN1SubgXxDk3WJ+7Qh4BqFaNoZCMud/SWCPPmn9YfURycoPfIg3d8hkw8D2XTtdpcSDnjhgB4tT3MkUcO1+6/dnWGx8PJVc96OZNmgiEzVKud9qdx3EVI1wAEVAwXn69vSk4HW+x54uF1mV9k+6PSJcgCRluINjFhDKOtrZ7WBqCVyB262FCiCKXJK0GThNLkfZEzBYGgMF84us6TJ6bqz51b8tEBTGppeU/TO5ohMFb2yLZc9Fg7iSqjrmRv8OxvJIzhaWmg0cxwrZxpp/T8NlU91hMRSmng+o5uZ3JEA0kUvDcEo81+kkSOCQME6aJR8Gb4yEGGjhys1a69/Aada9NbM6FtyvH0GvPtolY7bw/e4dFvjxfPOXu5VtsTRhkMLS4wUtsImhDYx/q0olkLysfQZckTgiL8LvRna5IEDYp6TyhuFrurTY1WA3iPNykuqTa6Jf3vQaj6dm9X7KFxmj/ybZDVrz3cn7xO8d+/evtBAiQZVTsfB67HRh7bVQL0k7MkGFa+o7jCtJrY0VH89DRhYYHyzFm0213HmW4NeX4Aawdot0/h3AJzcy+iu+CcKhKJrI1tKXYDvO997wPgU5/61BbPJBKJRCKRSCQS2UVoqPp1l20WCk8npBQuMJDdWWwu+32dnThM6CB4jGZ9V7fpOztWMZfyRoQ56xJhHhRCCAQNSN9hsu7Y84ipL6gP/GGndnvuW977tj3xHsmuk960OeDV3hiKUHjh7NhTZGm9l/YD155fF/enwXDUHq3V2trmQrhw+wHL8R4Qps9cpDs9V7tr3/uewqzThoXI9kbpEWQe0RzRAUwYxoShuw/cUQSMlqShiwklQeyiyB0kpTQNStskSLIYHlF6Za5b4lUZyBIaqSVp5WSDLVJh0c097EqGXbl9F2NWSa6BPa5gfypMZpZBXzJoDaaVM2+qqPPt6vRbNwS8ZJSmQcDgTIZiSEMPc7fNRJEVY7SJ8XsQmhgdJEgHlYW7D9zlHPrg08jyfsmqnHv2uTs7Vu9DjEB36kqtNrZvL/Pl6s60ztsrlNRF4SPuAD1JucpgrX5Ip1f1GuvLCPChWkU4AVTJRWIsYgzeueq82i+L0TaC2gRJDLbs4SUhmKpvt7UGr4qqUobtLTzaY5M0/tq3wE19usvPvEzxqZduP0hMP868rPomuY11E2u/bzcIonbVgrcdHcEMDuCvXiN0uxQnTy1df+1QRIRms+pB3u6cpCyvM7/w2lZPKxKJbDHb9vrqxknYpUuXtngmkUgkEolEIpHILqIfYa5Fm5kyoV2Gqn9semehsnJ1Cx6P0Woh2YYMWXR1r2JBKwTE+0pANfZtxeF7fkrvAEVDwGxYhHl9IcVM5aSXll7HjQ/TeeedHc5jpsvBpN4X+3zZYjpUrpg/nD/E4w/Ve2nPXjjPHn99rVMH4EH7ALnU49HfcifuLYTeB4LCxRfq70FjfISxm5zokd2JUhLMHKIpokOYMIgJo1s9rXUkYLWoxEl1lWPNNAiS4k1GYZqVkCnLN6NAp/Qs9BzWCMN5SppZ8pEB0mZGI3gGvKPRd3M3trkAsBYEGPCe/VpyqJEwIoFh72imliLPmFah2MZuv/UiiF10/Fex5smyWPPd//NvJkYHMH68SpjQFkHaqLTvPnAXkw0PMvn047Va++JVpl8/tUUz2p4c0XO12+PDDZ6f27Oq5/ISOHOTu3tchxkOA7dEmY/SYUC3PnJZ+RBKPbpd+D3ob8wx1qIhoCHgi7oLnjwFm2B9ie87xF3SwPZPhxf7dm9zkscO0viBD99yDVL81lcpP38H4dT0489DUf3b0I1M1Xu4GGe+Bhkn2bMXkgR3+TKh06E4c4advgPNmIRW6yghdOh0z9HtnqPbPb/V04pEIlvIthW7f/d3fxeAkZGRLZ5JJBKJRCKRSCSyi+hHmPd6XbrktAtHIzOIuXOEeSkGJyBaINoG7ffr7veQW5Wru9ePMHcOXQdXN0AIvlqYUzB3+HnWhsJNYnfzS3Xhav6D777FJXIDQXk8r4vWpQqvF2MAnG2nDD/0WO3+onQ8OvviWicOQE7OIXOoVpsK17mu9yCkBw8Erp04R7lQd7Lvf/87+/3RI7sZxRHMDKIW0WFMaCFhbKuntU4sidyCLoncJH2Ru4WTHL2pNUJQZb7n6LlAM7MM5Am2kZEPD5Baw6B3NDQw6BwjruR+yT6wwGhwHEmUvZllMDiGUSS1zNmUOZaibncttVjztB9r7kl0Y6Nv70eMDmLCWJU0oS2CLKDSufvAXczE04+RDQ/Uahe+8Dy+V9xhxP3HKLMsLNTjnGcb+1et/12wVyhu4+6+qoP0qJ/nbg93d4rysVpFuA58ofr/xCIiBOcIvjq/Xhpate4weFCt+nbbBiKC6fft9tu4b/dykncdJv+/f+Mt9d7/+SXKPztx6wCRSvAOru/u3thI8PWKM8cIyeQkhIC7cgU/N0e5CwyG1rZoNB6gLKcoeteYn/86Zbn1rQIikcjWsC1XJH71V3+V/+V/+V8QET784Q9v9XQikUgkEolEIpHdgSoUc1WEeRnoaUq3DAykdxabnVhAcHisFkgosVT9+gwQVtOrG6oI874Tm3WIvw4hEAIEDX2hewMudcwFxNTju1tfXvr5VYT204/ecfjhZI5BU18IfbMYpcASFJ51j/DAZD3uMrv4OmlYHwfQUXsUK/V49BPurXsb7AO+9Fx+5c1aeWD/XoYOH1iX+UW2L4pHzSyoQXQEExqYsKdyG+1gDA6rvcW/MWdSnOR4EpzJ6JkWTjL0NskThVdmuw5FGWwkZJklHWqRD+Y0CAz6kiwExsqCVvA7/J1aHakqB8VzOBeGjDLiHU1RCpMwYyzFbn9XFmPN836seR5jzTcIE4YwYbgveDcJMo/K1rtntwqTJBz84DO1muv0uPind4hnvg8RwM7Vxb4jD4xzcnZ156RBlNPJxVptVIcYYYjz1I1cB5hBtkV/4adQHqxVhM8B8wiCSZJFodstd3cbg1qLwSOh3rfbCrj+qfF2jzK/Qfr+h8j+0vvqRYXer34e9/LZWweYBDB9d7evYs03kPWKM5c0wU5MELpd/NR13OXL+Onp9ZzqlpBl46TpHrq9czg3x+zcC4R1unaKRCI7i/WxUNyFH/7hH77rY0IIXL9+neeee47z58+jqiRJwk//9E9vwgwjkUgkEolEIpH7gHKhWpQpO8y6hHZZuS5a+Z0X9op+hLnisKELWmIYxPRdBqsSu0NAvAPXjzBfB1dwCB5QQlASuzH+SUm/XrttpjKSC0s/f+/hBwhDAzcPAyAXx/Fsplab9SlnXCVuf+7qCO9635Ha/d2FNg/Nvb4eU2dIhpi09Xj0C+ECbe7F/aYQPFdeP4Pv1Rf09n/gXRvTGz2ybVACKjOoKkZHMZpjwgSyPffO3xMGh1GPaKgcaX0RUpFFJ+6ddFhVaJeO0ilpKrSSBLKEbLBBKkLLOxJVWt7T8m63y7l3RYAhlIEULotw1QUyVeYxzBlLhtIKAbuL472DJJTG9l3dBqXEhhKRgJeUjWi5cT9StVRQggEhEGQWwzCi+d2G7kqGjxxk+MhBZk8txfpee/lNxh87RnPvbknlWBsP6nmusHTuNTyQ8dzCBMdGLr7NqDtz0VzjAfbR6G8Khcrd/VoyxTGuLdYyPJPMc+mmGPHNR1C+E+Hnl1UK4FMofwlJLJQlwTvEGTToUhJUmiLOY7zDiyWYhCAWa5Wy9ARVfFB2SqRJ9uceh25B8bsvLBWD0v0Pf0TjRz5C8sj+pboANgXfA/GVuzuzbJynUKnCzAVVA6KsNiHENBvY8TH8tSkkyyjPnkXyHNNsruuMN5tG4yAhdGl3TjFoMmbnXmJk+BlEdu65aiQSWTmbInb/+3//7+95AeRGr+7h4WF+4Rd+gfe97313GRGJRCKRSCQSiUTuiX6EeVl2WQj9CPPUYO8gNgcqZ7czBrSLaLtyemiGUVmbq1tBvEPT7O6Pvwuq4H0ghIAIGxSpfWuEeeuLHlm2itd+5vGbBy3yaDZNctP79WoxDgjTheXS6GM8NFB/L/ZdeRFZJwHoIXu8drtUxyl/+t4Gh0DZ6XLltXq/z+GjhxjYv3dd5hfZniiKyixKwOgoohnG71ShWzF4THAIuihygyFg8CYlkLyt7uiC0i4cQaGVJ6RWMK2crJGRa6DRF7qHXUm6E/JbNxED7E9gRALnSkg00PaBjrE4mzAggdTtXge8ilDSwEpBEkDFYENBguIkZZsGL+44TBgDFDXV31+QOYwKwtrPNXYiBz/4NHNnL6HeVwVVzv3xV3jou78tblQDcrdAZ36B5uCyjYoj++i6izRWsWKuopxJLvKIO7xYG9ZBGrqXKbnAOEv95A/pNJdkq8VugIMoTyN8dVntq8A3IBzEJCnBlZhE8WVBkvc3j2QZdLuY4HD9vy+XNEjDPAKEAKVXmunm/jRrIf32d6KdgvKPXl0qukD3l/6Q5o9/DHtk2TmvsRAs+BLEVi5v09iwuamEyt0tigRTHeNWeR1mh4fRXoG/dg3JUspTp8gffhjWqa3UViBiaDaPsLDwOu32KUQsCwtvMDh458StSCSy+9iUo9jhw4fvehJljGFoaIhjx47xLd/yLfzAD/wAe/fGhZNIJBKJRCKRSGRdWBZh3i4CJRndssPI26xClZKggBODdfOVq1sTbP8yYtVid9GPMNf1ijD3qNIXu6uYv3XHXLwlwrz53NLraGLpPHn85lEAjJsO+5N2rXa2HGAmVAuGv3FpP9/y0X21+930VQbbq3MW3cykmWTIDNVqp/1p3L3G6HrP5VdPLS2WA4iw//3vXJf5RbYnldA9h+IwOoJohvWTyOYsI6wjAaMeqw6lctkGqRxYQSxe0v7tt0Gh5wOd0mNFGG5YSBLSgQZpYmgGT6qBpvcMeBdly7ehaQ0PGbhSBK54SINjwQlzqSVLM1reY3Zr7LuAJ0ONIQk91ORYdaSht7TZIrJmJIxhCAQDMEMws5gwgrCDVLd1IhseZPKZx7n0py8v1toXr3L9tVOMP3Z06ya2jRjuXqQcfGjx9mNHRvny8w2++dDqejFf6ru7mywlChzxBziXnKmJ3XtYoKEFXdn6jRjKR4FX+q7uG2fRv4PyP2ESS3AlwXm8lNgsRwSwBjUG6x2lQsDikgZZuYARwYVAEgTVqs31TkBEyL77vWi3xH1pWduewtH5+U/T/InvwB4YXarbDFynijF3Um0A2MAzgBtx5jeEb8Wv+pIn2bOHsixxly8j1lKcPk127NjO+WXdBmNSms0jtNtv0u1eADEkyRCNRmy3FIncL2zKmfTJkyc342UikUgkEolEIpHInSjbSxHmpaVTBnyAVnbnS4LCWLwYVKu+toQCQ4pRQVfrOA6KuBsR5mZdIsy9D6gGVBVrN2aRSdK6q9tMJSTnlhaEOu84hjZujUoVlMfz67VaoYY3ilEAnp9qsv+Rh0iSpXmHoBy6+sK6iD0Gw1Fbj0dva5sL4cI9PoPSm5nj2olzter4Y0dpjG0HR1Jkw5B5VApMGKoc3WFyh4lFAatVXLlCX0y0gOBNgidF7yHeMii0C4fzSp4aGomFRkbeyslFafoSqzDkSvJt0YN1+yMCk7lh2HnOdQKpTWj3Sjom4POERmLJXIkJu9MdvxhrHnogMdZ8vREEE8a5EWleCd4zmDC6AzfrrJ2Jdz/O9ddOUswuLNYufOF5Ro4exOZbL7RuNXuKi1xkSeweaKa8WU7wzZxZ1fOpwOnkIo+5pXOvIW1xVh+klIuky+KnD+kMb8rE7Z5mkxlE+WaETy1WhDMoLyPyVF/wdtg0IZQlNuufC2QpxncRAh6Ls0t9u8t+ukkZAtkGnZtvBCJC/v0fgF6Je35ZAlKnoPtv/4Dm//vjmL1DNx4MJoXgqj7ergtJawNnd1OcOVQx6qvBCOnEBOWFC5RXroC1lBcukh7c2cJwkgzQaByi2z2LtU3m518lSQZJkqG7D45EIjuenfNtE4lEIpFIJBKJRFZPbxaCw5U9Zn1Gu/CkVsiS218SuH60rxODCR1EPUYdpt/7Mpg1RJgDeI+uQ1xe6Du6gwZEZIN6s90mwvxLAVkmSLSfeey2I4+kswyYuoP6jWKUEkvXC3+4cJgnj9d7ZzaunSAt6i7y1fKgfYBc6iL8W+7EvW9W8J6LL79VufD7iLXse9+T6zK/yPZEZYEgXUwYQMgxYS9Gd4ooErBakIYeguJNijNNAgneZBSmhZP8noTu0itz3RIflIE8Ic8TzHCT5kDOgFY9uRshMF72otC9ChqJ5dhAyn4tGZLAMAHaHdqFo51klGm6azt5qwilaVSbMCTFmQxRT6IFq+3FGllCMJiwBxMaiA4jaglmBr3XRJNdhEksBz/4TK3muz0ufvmlLZrR9iLxHcqF2Vpt7769nJ1bffLQZTNFW+rO8MP+IBd0pFY7yHTt/Gpr+UaU+vmo8PtAibEJoARXXUcszjjNqnPv4PFYgrF4sRhrqhZDqpR+5x3PxBjyv/Ih7OMHa3Wd69L5t39AmFmW1mT6wn8oq39abujcVEK1owJBVPr/v0rSBDsxgXZ7+Kkp3NUr+Onp9ZrqlpFle0jTcTrdszi/wOzsC4RQbPW0IpHIJrApYvfp06c5ffo03t/7bqMQwuK4SCQSiUQikUgksgYWI8w7tEtPISnt0jGQ3XkhrzSWgODFYHUe6S/eWM1QWL0AURbgPKKhckGskeAdoGgIGFMt/qw75hJiZmql5nPLnNjNnO5jR24eRUMcx9P6AuqMzzjnqt6Qv3FmhA+973Dtfl8W7L32KutBTs4hc6hWmwrXua7X7zDiVtpXppg5d7lW2/vOR0gHNtK5EtlKVDoEaWO0hdDE+D0YbW71tO6KoUqgSEMPAGdSnOR4EpxJ6ZkWTjL0HiI6VaFTehZ6DmuEwUaKaWZkwwMMpAlD3pFrYMg5RlwZXQRrwBiYGMg4lhvGXMGYNWRlQbHQpR2UXp7jErs7RW8BJxmlyVGqHvKKkIYe5j4UZdebSvCe6AveI6CCmpkq+vc+Y/jIQYaP1IW7a6+8SefqvZ8P7Gb29OppN48fHeXZC2vovyxwytafc0CbtPWhWq2BYy8LbA8SlO+oVYRZ4I8RYzDWEJwDheD6gm5iUREsniAW1apvtxX6fbsV73fm0VsSS+OH/hzmWN15r1MLdP7tp9D5/mYGYcndrQFcjzVcJd0TVZz5DcHbrunlTLOBHR/Hz8wS5hcozpwhdDrrNtetotE4hLVNOu2TODfP3NzL6LbZWBKJRDaKTbkmO3r0KMePH+frX//6PY85ceLE4rhIJBKJRCKRSCSyBhYjzNvMuZReP0W8ld9ebFagEIsTgyiYMI8JJaKCIalcBatBFSld1a9bDNzBVb4SQvBoCFVPwHWIRL8dktwcYW5Jzi5zdT/1MNzGpf5Ydh27rK+5KnytGAeEk/MZ14ePsn9PXTQev/I1TFgfV8hRexS7rBexqnLCvXXP4zV4Lr74Rq1ms5SJpx9fl/lFth8qPYLMY7SJ6AAmjGF0YKun9bYYHIn2sKEEBGdyvGQEUkqTUZgBvGT33IcyqDLfc/RcoJlZWo0UGWjQGmwwKIEBX5KHwFhR0Az3n2i2UTQzy+HhnAl1jAfPkCi60KHT7tEzliLP8Bt0jN9qgiQUplWlD0iGlwQbSqwWbLRostupBO9JjOYYHUGVvuC989yma+XgB59G7LJNjqqce/a5KAABA51LtfehkVmumkmKNRzir5ppFqQuGk6Gw8zctHnsoE6v/kXWncdQjtUqwh8DM5gkQVUJ3hOKZeepaYoVjyKEvtgtIhgRfNAqgWmHfsQkS2j+9W/DHKo73vXSDJ2f/zTa6buFTQIYcAWohw13ESsq1fENFdDVpxAA2OEhzNAQ7tpVtNulPHkSyp294UrE0GweRQl0Oqcoimu022/efWAkEtnRbNqVwmpPnuJJVyQSiUQikUgkskaKOQgO73vMlJZO4bAG8juIzaXc6GtrMNpD1IMWWHIQIazWPH1j4cR5NFnbwgz048sDBK1c3bIhlzcKN/Xrbn1ZaxHmndtEmO+1HSaT+iLnWTfIXMjwCr96eoJve2/dZUVnlsHpU+sy6yEZYtLW3SgXwgXa3LtbY/7CZeav1F1fE8+8gyT2+NyVKAVB5hDNER3EhCFM2K49DkMlcocuNpQoQtkXuT0Jpckr8VDSFYU9FF6Z7TqUKrY8aaTYoRaDjZShUEWWD3jHqCtIogi57lgj7BvKOdRMGOt1GTeQOkcx26ZXeooso8hSwj1uXNhJVLHmzRhrvgEIBuMnEc0xOoqqojJ93wne2fAgk8/UN6u1L13j+msnt2ZC2wgbCkxnulZ7+Mg4z11ew/nObdzdLW0wo/VzxgnmyHS7CIuC8nF02Ren4BD+ADEWMZW7O4RAcP2dAFmKwYOA12V9u00ldiuK24FR5jeQZkbjb3wUmRiu1cPZKTq/9Ido4arzjCQDQrWh1/XY+ON26O+FEkTN2uLMgWR8HEkz3OXLhG6X3unTEHbu7w3AmJRm8wjOL9DtnqfdOUWvd2mrpxWJRDaQbbst9obIbXbpzt1IJBKJRCKRSGRTUK36dZcdukWgkJz5wjOQJcgdBINSLB4hIFg/h/WgWmI0I8gaBJ7lEeZ2HSLMQwCUEBSzIb26AXMFMdO1UmNZhLkbHqB3rB4Vbgg8lk3VaoUa3ihGAfjUhSEeeuwwA8209pi9l19E1klAe8jWE7JKdZzy994iSlW58NW6yJ8ONNn71MPrMr/I9kJxBDOLaILoEBJaSBjd6mndFqNlFfMcSoLYRZE7SEppGpS2SZBkRSK3KiyUjnbPkSbCYJ4irZzGYJNhC0N9N/doWTDg/UY0S4gsYzBPeGCsyTieCV8yiBIWuhRzbRxCkeeUyS7cbnDbWHNirPk6IFisn0Q0qxzeBFTuP4f3xLsfJxserNUufOEFfC/2sx3pXqzdfuzwCH9yYW0tW66ZGeakXasN+4dwy5y4BjjADNuHfcB7axXhJeB05e4OAQ0BX/Y/M0mKiGAJBElQsXiTYE11RhsCO7Jv93LMUIPmj38UGasn3YS3LtP95T9Cna8Sq0zS79ut4HsbPi+V0I8zZ81x5hghnZwEhfLyFcL8HOWFC3cft81JkkEajYMU5VXK8jpzc6/g3PxWTysSiWwQ21ZJvtA/oA4Nbded5JFIJBKJRCKRyA7gRoS5azPnEsoApVNad+jXHRCcWJwxGFWMzgIFVWe4xurFbgUpXNXTTgzYtTm7VcF7XwnespER5vVWTGbKkJ5Z5up++jEwdenraDpLy9SzL18rRnEYrnYtn5uZ5P1P1l3X+ewFGgtX12XOk2aSIVO/jjrtT+NWIJZMnzhLd6a+GLTvfU9ibhPXHtnZKB41M4haRIcxoYkJ47X0gu2C1QKjDm9SnGkQJMWbjMK0KE2DICs/rrigzPXK6riYJzQaGQw1GWrlDBNoBE/Le8bKgjQmz20aqTUcGGky2UoZ9yV71WGdo5hZwHd7uCShaOR4u/v6eddjzfNlsebr0+LifkVI+oJ33+GNR2X2vhK8TWI5+MGnazXf7XHxyy9tzYS2Ec3OZXSZkzVNDGZ4LxcX1nB+KXAqOV8rNciZDk/Uaod0ujqx3SYo34ZS71ku/A5iBREhuJLgqzZCCGhaubu9TVHvcbaBMdWeM6+K26F9u5djRgdo/thHkaH6++JfPU/vP3++ei9MStXUvARfABvf6mQ948xJLMm+SbTXw09dx127hp+auvu4bU6W7SVNx+h0zuD8ArOzLxA2PGo+EolsBZsqdt/JObKcsix59dVX+Sf/5J8A8Nhjt0YCRiKRSCQSiUQikXukH2Gursd0mdAuHEagmd5+QaSQSjhwYrDaQ0KBagejCZg1LKKUJaBVhLm1K3Jd3o4QPKqVu9tIJcWvP7dGmDf/jJoI2H760fr9UnI0na3VrvucC24AVfhPJ8b5tm94ELtMINcQGLu0PgvNBsNRe6RWa2ubC+He3RnBBy69+Hqtlo8NM/bo0fWYYmQboYSqf60KoiOY0MCEvRvUEmBtGC0x6vEmr0TAvsjtJEdXGWvdc4H5nkMQhhoJ0sxJB5uMZnaZm7tk0LttKP3fHww3Uw6NNhg2wqSvfhdlp6CcmQfnKbOUMs92XbT5zbHm3qSIVv3pY6z56hFSrJ9Y5vB2qMyhu27LxJ0ZPnKQ4aP1NirXXnmTztXrdxhxf2BDSd6rC3tPPTTGs+cadxhxb1yXOWakvnkwC4+iuvQ9O0DB6ArazGw8LZRvqVWECwjPY5KE4Ct3tyv6gmGaYnFgDCFI1bcbwSxGmYPfqY27l2Emhmn86EehWY+3d189Re+/fqk6iph0yd3tupswq/WNM5c8x+7Zg5+dJczNUZw7R2i37z5wm9NoPIAxDTrtkzg3x+zci6jG79JIZLexIVew1traP6hi8J566qlb7rv5X6PR4Mknn+T3f//3ERG+7/u+byOmGIlEIpFIJBKJ7H5UoTcHZYeeU7pktHueZmYRc4cIc5PgxQCC8bOYAGgPuxZXN1Ritw9ICLAO7mDvA6oBVd241kfmKmLqi7/NZRHm5eQY5cHlDm3l8ew6dtlbGxRe7Y0Bwp9ea9Ed3Mejh0dqzzk89SZJuT4LSQ/aB8glr9XecidWtJA/9cYpioX6ouv+979zw9zzka1hMcZXFaMjldsxTGxPoRuH7Tu6FUNpcpxkqxa5VWG+5+gUnjwxtJoZOtBkcCBjVJSmdzRDYKzskcXF0C0nTSwHR5uMtzJGJbC37GGKks5cB13ooEDRyCnTdHdJlstizQPJYqx5EmPN14SQVcc6zTA6jFLed4L3wQ8+gyxP2FHl3LPPLbaUvF8ZaNf7+T58aIjnrrZwa/kaEDiV1DccZuS0Q71/+iHdbpsNvgFlb60ifApJqmNP8I7gHBoU0hQTHBghiMXZ6jzUGiEs9u3eHZ8te3CM5t/4Nsjq1zLuC29Q/LfnUEkAUwnewVX/3WDWNc4csEOD2OFh3NQU2u1SnDyFljv7O0fE0GodRQm02ycpiynm579+94GRSGRHsSFXsapa+3en+t3+ff/3fz9/62/9rY2YYiQSiUQikUgksvtxnWqhxbWZ8wleoesCrez2YrPDEBBKsVgNSJhD6VaLJtJc/TyUvtjtQGRdIsxDCAQNiFQLGBvBLRHm14X01HJX92PVz9NnwnbYm9RdHGfcEPOaseCEXzs1zsc/UO/vLWWXoat19/hqyck5ZOrPPxWuc30FC6i+dFx66Y1arbV/L8NHDt5hRGQnomg/vtf3he6scjuyxgjMDcDgsKGsHK4klfAnq98wU3pltlviQxVbnrRyzGCD0TxhODjyEBh2JcOu3Iay//2LCIwNZBwYaTKYWiYJDHa79NoFxWwbW5R4a+g1clyyu6LN67HmGaEfa25irPmqMTc292iG0SFUClTmtnpam0Y2NMDkM3WxtX3pGtdfO7k1E9omNDuXq9Y/faw1PHBwnOevZG8z6u7MmHmmb/58hXegy2Kn9zFHohsfe33vWJSP1yrCAoZnMUlKcB5VrXp3C5AmWPV4m6EBvEmxstS324Xds3HMHpmg8T99C9j6WUL5h1+j/PRLYJPq+ks9+C6bkcaxPM58XQTvsTEky3GXL1eC9+lT1S9yB2NMRrN5FB/adLrn6PbO0+mc3uppRSKRdWRDGq79zM/8TO32P/pH/wgR4cd//MeZnJy84zgRodFocODAAT74wQ/y0EMPbcT0IpFIJBKJRCKR+4PebF/sLpguM9pFtUjRym4v4RTGEhCCCFnoIFqi2sWQgFhWvXLiS0RvRJgna04c994DiobQd3VvUHxtcnOEudwUYb7UcskQeCyri8q9YHmzqFzc//XUGI89so+9o/U4zNHLr1RumHXgqD2KXdazWFU54d5a0XNc+dpb+F69j92B97/znlpSRXYGldA9h+IwOrxM6N6O/dhDJXRL0ne2ZqsWulWh6zy9MpBYoZGnaDOjmScMouTBkYXAkCu3oeQfuUEjtRwabXG93UM6JQ1XMF1A2wcaeYpppLg0xVtLUjrsDl+cv8GNWPOEHgQBEUwoMQScpGxyl8JdgdEGhAmCvYIJSjBzKPOIDm711DaFiXc/zvXXTlHMLkVsX/jCCwwfPUSSr03c3akY9TS71+i0ltaunzo+xue+fIH37ltbj99TyQVGy6HF25YcFx4ltV/r31Ye5DonbnJTby0PozyCsLy1zRcwyTME1yI4j5cSm+VImmELT2Ez1M3hkgZZKKq+3SHgvKBa2yO6o0kePUDjr34z3f/wR1WMU5/it5+HRkb2jUfBlZDYyt1t8js/2boQQA0ipnqfAcWv/hLJCOnEBOWFC5RXLpNaQ3n+AukDh+4+dhuTJAM0mw/S6ZzGmOo4Z2yLPNtOf3eRSGS1bJrYDfATP/ETPPHEExvxkpFIJBKJRCKRSGQ5NyLMXYcyKAs+pV0U5InB3iaOWoFSLE4MovQjzJWgPSxDa4swLxyEgASPZunqn6dPCK4fYc7GRWubq4it925sfmXptXqH9+P3LMWRH09naZq6I+e1YhSP4bXZnD+bHeVvfsf+2v1p5zqtmTPrMt0hGWLSTtRqF8IF2ivoAVl2elx9tS6ODx0+wMCBiTuMiOxIZAGVAhMGK1djmEDYjsJGIAk9gtjFnsVeVnf8CKos9DxelTyzpI0U8ozh1DCoAYsy4BzN4GNv7h2AMbBnMKeVWa7MF2QuMNPu0C4cifc085QyrXp5e+9JSofZDfHMAo6cYCxpgGAMiZbV30k/+SCyMow2we8h2GsYVYLMYxBEB7Z6ahuOSSwHP/QMJ3/7c4s13+1x6csvcejD79nCmW0tzfbFmth99MAgn2w3udZZYE9z9ZtnZs0CU2aG8bB07liGJ0nM64hUmx4P6xSnGe+3E9oeKN8BvIn03cmCx8gfYJLvITiHTRNCWWKzFNuZB5ujQXC2Qc4c1gi+31baByWxu+dbNnnng+T/4zfR+8+fr9WLT34ZyS3p0wf7m457kG38pqQqztwgIks94WUNaQGJJZmcoLxwEX9tqtpk1Wxg9+xZnwlvEWk6hvc9er2LGNNgbu4l7Mh7SZKhuw+ORCLbmk359vzEJz7BL/3SL/HAAw9sxstFIpFIJBKJRCKRGxHmZZs5Z1GEbukZyG/vWSzFAoI3ph9hvrAswrxx2zH3TFGA84BU0X5rIGgghCrG3BjZuP7CN7m6zXUhPbnM1f3Mkqu7JSVH0tna46d8zkXfogzwH98a59ves59GXv/ZRy++uG7C2kP2eO12qY5TfmXRfJdffp3gli2KCRz4wLvWY3qRbYJKmyAdjA4gNDBhL0Y32m20GgKJFqhYvKRVD9BVCvKFV+a6DkUZyFPsQIOk1WBPahhWT6aBsaKgFYXuHUczSzg02mSwkTLaSBhXj07PMz/bwXR6pEWBGqHIM8ok2TXR5jdizRXb711vY6z5GjA6gPHjiDYxOkCQNirtrZ7WpjB8+ADDR+tOzWuvvEnn6nbrH715NLtXkWWJO8YITxwb49lza/+uPGXrvbsNGX5Z7+4MzwNst/d+L/D+WkV4FWPPAEpwDlf2UBGwAsbgTIYzKQokRgj9dqW7Kcr8Bun7jpN9zzfcUu/92hdxr1yqXN0awHVvM3r9UQlVpjmCqIGwtuskyXPs3r34uTn87BzF+fOE+YX1mewWkuf7SJJROp1TODfP7OwLhNDb6mlFIpE1sili9w/90A/xQz/0QwwPD2/Gy0UikUgkEolEIpHe3GKE+YxL6RQeH6CV3l5sLiTBixAQrHaQcCPCPIW1OEyc70eYO0jWHmEefACUEBSzgc6Xm/t1N78iiFaTVyN03vlI/x7l8XwKs+znCgqv9sYB4XfODROaw7znsXo8XnPmDHlnfRY0J80kQ6buRjjtT+O493j03twC116vi+NjDx+hMT5yhxGRnYZKlyALGG1Voo4fx2hrq6d1G5RES0AqoZuEUhorPnaoQrt0tHuOxAqtVgMdbDDYTNlrAk31DHjHWFmwe2TQ+w9rhH3DOZNDDVqZZW8zpdHp0pmao2gXpJ0C6xw+TSgaOd6aXfHbVhEK0+onHmR4k2LUYbXHZvSH3W0YHcSEMURbGG0RZAGVe09G2ckc/ODTiF22EVKVc88+h+6GNIRVIBpodq7Uak8eH+OPz+XL06pXxbzpcNVM12pleAeqS6klR/QaRrfX37DyLSj18wVjfg9jITgHCsGVSJZicfg0Q71WxyVT9e32Cs7vzs9U9uHHyP5v764Xg9L9T3+Ce70veIcSdH3aFt2NyuF9Q/C2oGu7XrKDA9jhYfz1KbTToTh9Gi139uYqEaHZfBBrm3TaJ3FujtnZF9Ft9rcXiURWxvbJRYlEIpFIJBKJRCLrg2rVr9t1cKrMlAntwpMlQprcegkQELwYnBiMKibMIRpACyxNwloE6rIA1SrC3K6tE64q+OAJIYBsZIT5NcReq5Uazy2LMH/4QcJQteg3YTvssXUnwKlyiAVNudhJ+K1zI3z8A4cwy9RwCY6RS6+sz1QxHLVHarW2trkQLtxhxO259MJr1Rt8Y47GsO/971yXOUa2HpUeQeYw2kB0ABNGMNu0L63VElRxkqIYSpOvWOj2QZnrlRROaeQJ6WATM5AznhnG1JOFwGhZMOCjm3u3MNhIODTWZDC3jLVSRiz4qVk6MwtIUZJ1e0gIlFlGmWeE3dA4VsBJTmmyfk/7HAGS0ENYQ3TtfYoJQ5gwUh0jtUmQeVQ2x425lWRDA0y+5x21WvvSNa5//eTWTGgb0GxfrN0+vG+QkDZ4+eraW/GcshfQZVtuhBQXlt7/HM8hptf8OutLA+XbahXhMjZ5EVWtenf3SjRNsaEkJE1wHp80MCKIgPcBH5Tduoci/ehTpN9a/zvCB7q/8gX8iUvL3N2b8wYsCd4gwfTd3qvHjo0heQN3+Qra7VKcPAU73KkvYmg2j6IoC+2TlOV15ue/ttXTikQia2BLGvpcv36d559/nqtXr9LpdO66W/AHf/AHN2lmkUgkEolEIpHILsB1+xHmHRZ8gorQLh2D2Z1c3RYFnBiyECAsoNpDFJA1xjb2SigdIJWzew2E4NFQRZkbqRwLG8LNEebTkJ24fYT50Zviy7vBcqIcQRV+5a1xHj48yrGDddf10NXXSdYpzvBB+wD5Tb+jt9yJ2kLq3WhPzTB96nyttueJ42SD29H1G1kpSkmQOUQz0EFMGMSE7enYt1og6nEm7wvdTVihKNlzgU7pMSIMtFJCI6eRGkYNpBpo+srRHXf+7z5Sa9g/3GSuWzK10CNPDDOdgu6Vgmx4gKyhBOso05SikWOdIyndjt/wECSlMJY0dHEiWEqSUOAlIayyz/39SnVsDAQDQqg2CSHItmz3sH5MvOsxrn/9JMXs/GLtwhdfYPjYIZJ8dS0kdjKN7hTGFwS79LM/eWyMPzq3wDsn1uZobZsuV800E2FssebC4yTm64hUmyeP6jXOMopuo97d8B6UP0W4tFgR84eIeYzgDSaxaFAMHhKDN5ZS8qpvtwhBd2ff7huICNl3vQftlrgvvLF0R+HofOLzNH/8W7AP7odQgNmc44mKImr6wrdF8VQXd6vACOnEBOWFC5SXL5NaQ3n+POkOb1lrTEqrdZSFhTfpdM+AGKxt0Wod2+qpRSKRVbCpYvcf/uEf8jM/8zM8++yz9zxGRKLYHYlEIpFIJBKJrITeLKgH12OmbNArA85DK7/19F+B0iR4qXb9i7b7EeYdDNk6RJgH8B6sXbM27X1ACWhQbLI2l/jbITeJ3c2vmEV3REgTOk8+BMCI6TFqi9pjXy9G8Rj++MoAby40+YnvrPfCtEWbwWtvrss8c3IOmfrzT4XrXNeVxaNf/OqrtdsmTZh85ok1zy+y9SiOYGYQTRAdxoQBZNkC+3bCaIlRjzMZ9IVuXYHQrQoLhcN5JUsNabMBuWU0NQxpwAYYciV5jKjc1YjAcDOlkRouz/WwIswXjvb0PD5LaIwOkAXFJxaXJgRjSIsSs8PthiqGwrRItAcIKg4TSgTFS0IMdrx3TBgDFDXVZ6JKxRCE3Sv6msRy6EPPcOK3P7dY890el770Ioe++b1bOLOtQVCancssDC4JeU89NMYvvHSJ6Z4wmq/teHHKXmBvGEX6J8ZCggvvILVfBaCB4yAznGM7fV8blO9E+OXFitAhST9P2ftWNHh8WZAmFkHwNsdr6PftNnSdX+zbnawx6Wm7IiLkf/n90C1xXz21dEe3pPsLn6P5//oYZv84ZCmbc0xWVKgE76pRFYpb/fWYNSQTE5QXL+KvXgURpNEk2btnXWe92Vjbotl8kE7nFMY0+rUB8nxyi2cWiURWyqad7f7sz/4sH/vYx3j22WdR1RX9i0QikUgkEolEIiugNwdlBw9Ml7bfsxby20SYezEEhNJYLAEJ85VATYGhscYI8xIUxDt0ja5uVQghEEJApIqe2xBkCrH1Xo2Nryy9Vvcdx9C+y+lwOld7XCdYLvkWs6Xh/zg5yjc9NcnYUN29MXL5ZYyuT7zsUXsUK0sLhqrKCffWip5j7uJV5i9erdUmn3qYpNVYlzlGtg7Fo2YG1PSF7gYmjC8urm8nDA6rDm9SFEtp8hU52pxXZrslLijNZoodbJE2UyYSw7AGGiEwXvai0H0fkSWWgyMtRgcyhhoJY80UKR0Ll2fQ+Q6Jc2S9arNSkWf4jWqLsZkIOHNzrLmShCLGmq8QCWPV5iAdQjQhmFmUnd2j9m4MHT7A8NH6BrprX3uL9pWVbaDbLTTbl2q3D+xpMTbc4PPn1u7K7Zgel81UrebCY6g2F28f02vItlsTP4pSj+oW82XEXCM4R/CeYA0mlPisAU7xNsP2D69eodylfbtvIMaQ/z8/iH3HwVpd53t0fv4zhOvzEHp3GL0R9AVvbmxqtmtKUpc8I9mzBz+/gJ+dpTx/Dj8/f/eB25w0HSXP99PrXaQsp5mbexnn5u4+MBKJbCs25Wz+a1/7Gj/5kz+JqvLOd76TX//1X+e///f/DlS7nt58802+/OUv87M/+7O85z3vAeDDH/4wL7/8Mm+9tbLFmkgkEolEIpFI5L6m7EAooWzT9gkBw0LhaaUJchuXZCGWgBAQEg1IWEC1i6ggskbBsyzAuer/1+jEDt4DioaAMYYNizBPb4own4HszVsjzBvi2GfbtceeKYdQhF87OYbJc7753ftq92cLV2nO1uPCV8uQDDFpJ2q1C+ECbTr3/ByqeourO2nm7H3qkXWZY2TrUAJqZlAFoyMYzTFholrs3GYYHDaUeJMQSChNTpB73Byj0C0D84XDGKE12ISBBkO5ZcIoDQLDrmTEldvwJ98gFCRU/+53jIHxgYwDI01aecL4QE4zNbRnOxRX5zClJ+sVmBAo84wySTapm+rGUsWaN1EsTjJUDEkoMLq7xdr1RBBMGMeEFqIjfcF7pnJF7mIOfvBpZPn5mirnn33uvjQi5b3rGF8XJZ86Psaz5xqEdXg7TicXCbXe3ZbSL7nom5TsZ2btL7TOKN+OsvQZEZQk/QzBezQEfPAYHCFtoBqqTTciGJFd37f7BpJYGj/45zDH685gnW7T+bd/QLg+C5u6ASlU5wZIfwPk2gRvMziAHRnBT00ROl3KU6fRorj7wG1Onu8jTcfodE7j3Dwzs8/j/WZuTIhEImtlU673/vW//td479m7dy+f+9zn+O7v/m4OHz68eP+xY8d473vfy4/92I/x5S9/mb/7d/8uzz77LH/zb/5Njhw5shlTjEQikUgkEolEdgfLIsxnXUrhA6VXWtmtYrMCpVicMYiChHblwtYuhnxFEcK34APiQyV2m2TFfXdvfTqHakC1ck1sFDdHmDe+uizCvJnTfbS6PjmcztV+JKfCOTfIS9MNvnh1gI++7yBZWl8wHr300rpJ9A/Z47XbpTpO+dMreo6Z0xfoTNUXUve961FMI7q6dzJKQGUW1YDREUQzjJ/clkI3hEroloRAijPZPQvdQWGu5+g6T55asuEWppGyNxXGJJCHwHhR0Ai7XPXVqgWn8ULihNQZEt//5ySK3kAjtRwabTLcTBlupIy2UlzpWLg8jSlKsqIkKUt8mlBm2a4QvKtY8yZeErxkeJNi1GG1AOKH4l4QDCbswYQGosOI2l0veGdDA0w+U3futi9f4/rXT2zRjLYOAVo3ubufOj7GlY7l61Nr7wralYJLpp6sE/QwPiw5go/pNbafMjwGfFOtYsxbGPNW5e52DiMBrMXbFNfvoGoFXP9HceuxW2CbI1lC869/K+aB8Vpdr8zR/XefQuc2dyODSqic3X3BG13bJmQ7NoY0mvgrV9Bul+LUKfA7/7ul0XgAa5u0Oydx5Tyzcy+g65TIFYlENp5Nudr97Gc/i4jwkz/5kwwNDb3tY0WEf/bP/hkf+chH+MxnPsMv/dIvbcYUI5FIJBKJRCKR3UE/wlyB6cLSKRxGoJneuqhRikURnBgS9YjOIwSgxNBA16LMFjcizD26Vle3BkKoYsyNkY0T7WQasZdrpeayCPP2Ox+BpIp7P5TUI/vOuwEWvOU/vTXOoYkWTz9S7183MH2KrLs+C1uTZpIhU7+uOu1P41awAK8hcPH5r9dq+dAA448cAbP9Yq4j94aiqMyhuL7QnWP9JMJ27I8ZSEKPIJYgKd6keEnvaWTplbluSUBptnJkqEkzS9ifwADKoHOMugK7K2TL29B3b1svpE5InMGG6vfvbKBMAs5Wi86LovcufSvuFWOEiaGcfcMNBrKEvYM5VqB7fZ60W5A4T9broUYoGjlhjRu0tgUiONOIseZroBK8J/qC9wioVKkZu/j9m3j3Y2TDg7XahS++iOvtfOfmSmm2L9Zu7x1tsH9Pk8+dW59NgSeTC5Q3xeOX/n1oX4gcoGA/s+vyWuuJ8s0o9c9Ikn2G4It+S9IqM8pnTbxWiRnWGlSV0O/bfT8gjYzm3/gIsm+kVg/nr9P5d3+A9u49jWk9uCF4gyBqKtF7tQikExNgDOWVy4SFNuW5c+s2161CxNBsHgWg3TmBK6eZm3vlvky3iER2Ipsidp89exZgMaIcqEUoluWtUUo/+qM/iqryH//jf9z4CUYikUgkEolEIruBZRHmHU0pVVjoeZqZRW4jYBYmwYugSNVH2t+IMAdkjT0JywK8AxTW2K87+ABUC2Qb1qsbIK2Lv2YOstdvjTA/lMyTLFOOVOF0Ocx/OzvM1V7Cd37jA7XnEV8yfLkeF75aDIajtp5+1dY2F8KFFT3PtTdOU8zXY9j3P/0Y0u9HHtmZqMyhUmJ0CNEM6ycQ7k1A3lwCiRaoWLykBLE47v7ZU4VO6VjoOWxiaAwPIM2M8dQwYQK5BsbKglbw27Az+RpRMIGae1sUvLkhcCs+AW8Vl4T+f3VJ9HYG62VN0aW7gYE84dBYkywxDLdSXFB6820a7Q7WB9JeAUEp8gxnt+MmkZVzx1jzXd6Der2oBO/Jqh2EjqC7XPA21nLoQ8/Uar7b49KXXtyiGW0dWTGLdXVB8qnjY3zlUsZcsfZvGSeet5Kb29sM4sJTi7e2p7s7Q/lYrSIyhbXPEZzHa0BCiU+bEALeZNj+2xXC7u/bvRwZbND8sY8i4wO1ejh5he7P/w7qNvc4rBIWE6sk2LUJ3taQTEygpcNdu4qbvo67cvXu47Y5xqS0WscIoUenc5pecZl2+/5Lt4hEdiKbInZ3u10ADh5cimIZGFg6yF+/fv2WMQ8//DAAr7zyygbPLhKJRCKRSCQS2SUUc4sR5nMuxYdAzwVa2a1is0fwGLxYjCpGO5jglyLM1+LuDQHxHpwHY9fkFFaFEDyh7wIxWxRh7kYGKY4eRFAOp3O1x132TV6bb/J754d550NjPDBZX9Aavvp17Dr1fHvQPkB+00aEt9wJdAUKli8dl196o1ZrjY8wfHg/7BJx535EZQGVHiYMIppjwl7kHgTkzUdJtASkErpJKKXBvajTHefoOSVvZSRDLdLUsj8RhkRpec9YWZBsO1FglSxzb98QuK0XFPA33NuJLoraZRroZp4iq+pFWj0mWMVZxduAURaf534Wva0RJodzcmsYbCS0i0DZczTaHRLnyIoC6z0uSynTdFe8VTdizcOyWHMbYqz5vSKYqh2ENvqCt/YF79353g0dPsDw0UO12rVX3qR9ZWqLZrQ1VFHmdXf3k8fHcCp88cIaN4X2uWymmJb6eaUP7yBo5QYepMckc7cbusW8C6X+GbHp5wluBlQRdYS0SslwahERrAguBMJ90Ld7OWakRfPHPoYM1RMB/NfP0/3l30c32emuopWzG5BgWEuUl+QZyd69hPkF/MwM5YXz+Lnt+HldGdY2aTaPULoZet0LtDsn6PYu3n1gJBLZUjZF7B4fr/pTLCwsLNYmJiYW3d2vvfbaLWOuXq12Ak1PT2/8BCORSCQSiUQikd1Ab7Zyd4swVVjaRbV40spuPe0vTRXwW0WYB9AF6EeYizTXtrhf3ogwd+haXd2hH2GuASNV9N6GINOIrfdmbD639L51nn4MjDBhOzRN3c11shjmV94axyaWj33Dwdp9SW+ewWtvrcsUc3IOmfrC4lS4znW9dfPw23H11RO4bl183//MY4hde2/1yNag0iFIG6MDCI2qz6w2t3pat8VqCRpwkqIYSpPf0591twz0SiUbbGKaOcOJsD9RGgRGy4JB73a+m7vv3rbL3NtGIchy97YuureL1NPLAmVaOblrb4BULu9e2r/fKKVVvAmYUIne5j4WvfPEMj6Q00otjcww2y1RH2h0uqRlSVo60qLEJ5Yiz3ZNrHlpGrh+rHlpckQDSYiC970g2CotQ7O+4B1Q2b2C98EPPo3c1Ibm/LPP3Xdxvs2b+naPDmY8MDnAH53N10ewFXgjOUOofY4Mpf+Gxec/ple3obtbUD5er0iPJP0cwXtC6KEi+LSB6yfMWAHf/znK+yTK/AZm7xCNH/sYNOubEP1XT9D7z5/Z5L8rXSZ4C6J2TecCZqCFHR3FX79O6HQoT59Gd0HbgzQdJs8P0CsuUxZTzM99jbLc3F7rkUhkZWyK2P34448D8Prrry/WWq0WjzzyCAC/+Zu/ecuYT37yk0AlikcikUgkEolEIpG74LrgS3AdeprS87BQOBqJwd7khlagkAQvBhSsOvDzqHb6fV3X6FbplVWEuSqssV+3Dx4loEE31NVN8nrt5i0R5k8/CsCRtN47ccZn/Pr5cU7M53z43fsYHqgvYo1ceglZJzXpqD2KlaX3U1U54VYmpLtujytfq48Z2r+HwX0TkK5tY0Jka1DpEWQeo01EW5gwhtGBuw/cAqwWiHqcyftCd/OeNlgUXumUnmSoicks40YZs9AMlZs723YiwD2iIArmJve2AN4Eyr7AHWwlcpdJoNcXuF2ihGqd+u25IXpnYTHevEwq0dsGSJ1gqk4R9x3DzZTBRspwnmIFptsFKOS9grzbxfqqjzdAkWf4jfwO2kT88lhzk6NiSEMPg9vqqW17hATrJ6v0DB1F8ajM7krBOxsaYPKZd9Rq7ctTXP/6/RXnm5bzJOV8rfbO42NcWEh4c2Z9zps6psdZe7lWU53E63EAhumxl/nbDd1iHkR5Z61i7AuoP18JDsERsiZeElQVYw2qleDt/O77m7kb9sAozR/9COT1z437wqsUn/zjLRC8q9QKVBBN1nQeYEdHMc0W/soVtNujOHUSdsHvOM8nSdNxOt2zODfH7OwLeN/d6mlFIpE7sCln6h/+8IdRVT73uc/V6t/7vd+LqvKv/tW/4hOf+AQLCwtcvnyZf/7P/zm/8Au/gIjwkY98ZDOmGIlEIpFIJBKJ7Gx6s1WEedll1lWLSr3S08pvXYhzYlCE0lgsAbSDCWFZhPka5hEU8a4fYW6qf6ukijAPhBAQYUP7dctN/bobzxskVCpSuW+c8sBeRkyPUVt3KrzSGeGTZ8YYHcz44FOTtfvy+Us05uuOoNUyJENM2vpG4AvhAm06dxhxey6//AbB1QWN/e9+rLoyXKMLP7L5KAVB5hDNER3EhGFMGNrqad0WoyVGPd5k0Be69R6EbueVhdJhhhqkqWUMZdgKI65k2LnNWdRYT5bFk6dOql7aAZQl9/aNeHKfBIok0M0CRRrwia7++CzgkiXRO9wQvUWrqHR/f4reewdy8sQw2srwCrPdqn9q4jzNhTbWebJegQmBMs9wSbIr3qLbx5qXMdb8HhDSusMbt2sF74l3P0Y2PFirXfjii7ekw+xmqijz+rncE8dHEYFnz65PlDnAGXuRDvX31flnUK1eY3u6u0H5GNp3bgOIKDb5A4J3EApcVqXMeLVYqd7PEBR3H/XtXo49vJfGD38rJPUv8/Izz1P+zp9u8mwCynLBew0Ob4Fk714wlvLyZUK7TXH27HpOdstoNA5h7QDt9kmcm2d29nlCiJvDIpHtyKZcF37Xd30XAL/+67++2L8b4G//7b/N+Pg4ZVnyIz/yIwwPD3PgwAH+/t//+3jvaTQa/PRP//RmTDESiUQikUgkEtnZ9Oag7III087SKTw+QCu91VldSkJACAhJCBDmAQ/qEFlj9HHZF4PXI8Lce1BFQ0DMvVgYV4nMILbeh63xlaVLpfbTj4HILb26O8HyiycO0PWGj73/IMnyhSsNjF58ed1m/JA9XrtdquOUP72i5yjm21x7/VStNnp4P809o9HVvQNRHMHMIpogOoQJg5gwutXTui0Gh1WHNymKpey7Se9GUGW+9EizSSNJGAme0dQw6grynRSBqmA8i+7txBtE6UeL34gnZzGevLcYT165utf10LdM9PY2EBIoraKA9YbEC7KD3tq1YgxMDuek1jDcSOmWgU5RtaowqjQX+3iX2LLEpQlllu0KwRsRSlmKNXc3Ys2j4H1XhAwTJne94G2s5dCHnqnVfLfHpS+/tEUz2hqaN/XtHmymHD0wxJcv5nTc+hyggyhvpmduquY4/zQAo3QZZ+GWcVvPMMqHahVjz6D6CqjDG4s3FkeKiGBE8EEJCmFXHEhXTvLwfhp/9ZvB1D87xW99ieIPn9/k2YRqEx4CatYmeFtDMjmJOoe7eg0/M427fPnu47Y5IoZm8whiLO3OCcpyhvn5V+67lg6RyE5gU8TuD3zgA3ziE5/gn/2zf8b160v95Pbs2cPv/u7vcvToUVS19m9ycpJPfvKTvOMd73ibZ45EIpFIJBKJRCJVhHkBro2TlIWiijDPEiFNbo0wL8XiTCW2GByEdhVhDqw5wrwswXlEFezaBFQffNUTU9nUCHOZh/zr9Qjzhjj22XbtcW/0hvmjK4Mc2T/Ik8fGavcNTp0gLeri+GqZNJMMmbpb97Q/jVth5OzFF15Dl60sihH2P/UwlR0jit07iUronkHUIjqCCS0kjN194BZgcNhQ4k2y2Cc4yN0/b6owV3i0ldPIDIPBMZZbRsuCZLsvMC5zby/Gk4eqoYG3gTIJy9zbSpkGupmn6MeT6wbu7VmcokCZKr3UV33Ak0p4B0i8IXHSb2ux+8kSy97BnEZqaGaGuZ5bdB0K0Oj2yHoFqatizdUIRSPfJX28l2LNAwZnMpQYa34vGM0wYd+uF7yHDh9g+NihWu3aK2/SvjK1RTPafFLXIS3qbWyeOj5KEYQvXsjuMGrlXDdzXDHXazWvDxFClexzXK+t22utLx9EGalVEvsZjHYrYTtvVn27VbGmEruV+zPK/AbJUw+S/z8+eMt3ffFfn6X8wtc2dS4qoXJ29wVvdPUtqCRLSfbuJSws4KenKS9exM+uz/XQVmJMQrN5FNWSTvc0vd5l2u03t3pakUjkJjZtReOHfuiHblt/73vfy6uvvsqnP/1pXn75ZZxzPPLII3z84x+n1Wpt1vQikUgkEolEIpGdS28WNEDZZU4HUJR26Rm+TYR5KRalijJPgodQRZgH7WJprC3CXBUpHTgHYsCu/smCKiEoIQSMkSpib4OQ9LXa7eYLSxHmvSMH8OMjPJRer7UWdir8ypkDlGr4zm+sLwIb12P4Sj0WfbUYDEftkVqtrW0uhAsrep7O9VmmT56r1fYcf4BseKD6PZm19VaPbB5KQM1sP3JyBBMamLCnWqTcdoRK6JaEQIoz6T0J3SjMlx7XyGkllpZz7GkmjLuCbftJVTAKJgii/d+FVDHhaqremEjl3gum/69f20rUQGkCPkDiDM6ABMWGKmI9SCXKb/U8N5rBRkLXpaDgfMFMp2B8IF887qdliQmeXqMBvYIyTSnyjKR0JN5v7eTXgSrWvEWqPcCgUmJDiUjAS8ImeWV2HEYzCJMEcxnDCEFmQGZBhzf0vGWzOfhNTzN35iLqlj7r5599jof+h48iu2HTxz3Qal9kJhtevP2Oo6P81ufP8rmzDb71wfWLdX8rOctYMUyy7Nuu9N9AJr/DmLQZ1TbTst3Wy1OUb0f4L4sVMTOIexbMd1GmTdIkRXsBaw2Fr1zdpQ9kye75O1kp6XuPQadH75P1+PLe/+8zSCMjefqhTZuLSkDUgICoqVzLq4x5MQMt7OgofnoayXLKM6cxDz+M5OsX+78VWNug2TxCu32Cbvc8iGBti0bj4FZPLRKJ9NkW3yhpmvLxj3+cn/qpn+Lv/b2/x/d8z/dEoTsSiUQikUgkErlXenNQdkCE62VCrwx4D83sVlGpMAleBEVINIAuUEWYe0Qaa5tH0XeBeY8ma5OkgveAElQ3tFc3MovY87VS47llEebPPIYlcCiZrz3mTDHIb50f4V0PjbN/T/3aZfjKq5hQrsv0HrQPkEt9cegtdwJdYcbgxa++Wrtt0oTJx49WIvcaf1eRzUMJqMygqhgdQTTHhIltKqoEktAjiCVIijcpXu7NAbcQPEWe0UwMTVcy0bCM+3J7Cd39dWCz3L3tK9HHm7AUT77Mvd1b5t4Om+DeXgnBQJFWPcK9VZyteogbWPrZdrnTe7yVk6WGkWa/f3enfhy3PtBYjDUvsN7jspQyTXfHW7MYa572N6fkCNp3eZfs+g/AKjGa7/pI82xogH3P1JM325enuP71E1s0o82neVPf7mae8NChIU7PJZyaXb9vp0Icp5L6eakyig+PA3Bcr67ba60vT6AcrlWM/RMMU5Q2RcXi1GAqPRUfFHe/5pgvI/3w42Tf+c56UZXuv/893NdW1q5orVSCd3ViIsFWETCrxI6OYpot/NUraLdLcfIU7IKNYUkyRKNxkKK8SllMMT//dcpyequnFYlE+mzKFfFHPvIRPvKRj/CJT3xiM14uEolEIpFIJBK5f1gWYe5Nylwv0O45Egv5TW4Jj+AxeLEYhzpb7AABAABJREFUVQSP+CrC3CCsPcK86EeYhzVFmKtCCJ7Q78m7qRHm7aUIczVC550PcyiZJ1mW56sK/8eFfcw7yzc+NVl/uu4sA9frfbFXS07OIVN3jU+F61zX63cYcXvmL11l7sKVWm3i0SMkzQYxwnznoGhfQPF9oTvD+m0sdGuBisVLShCL496E7k6AbpKTW0PLlUzklr3BbQ+hW8H048lTJyTeYEP1u3F9cftGPLlLAkVS9d4u0kpAXsO68eYgEKxSpIEyDQSjlFbxNmDC7he9jYF9Qw1SK4w0U7ou0C7qi/NGlUanS1qWpKUjLUp8YinybBfFmmeUplHFmkuONykmOBLtIex8sWIjuB8E773vfoxsZLBWu/DFF3Dd9XM1b2cS3yPr1c+/nnqoah/y7Nk1bha9ifPmKnNSb53jwlMEHWAPCwxrZ11fb30QlO+sfT2IlKTht6trD5viSRAEcyPKXCFEwZvsY+8i/ZZH60Uf6P78b+PfWlmS01pR0crhzRoFb4Fk716wCeWly4ROm+LMmeoiaoeTZXtJ0z10umdxbpbZ2Rfwfjv+TUYi9x+bclX8uc99js9+9rMcPXp0M14uEolEIpFIJBK5f7gRYe56LIQUVVgoPK0suSVasjTLIszVo6GDaEC1i6w5whykLCHciDBfvTSlGgih+q+Rjc35laQeYd543iB9d2b30SPoYJPDab3X3CXf5H8/s5ejBwbZv6dZu2/k8ivIOilBR+1RrCy9j6rKCffWip5DVbnw1XqketLImXj4gep3lJhK4Ylsayqhew7FLRO6J5HN60y2ApRES0D68eWWUhr39GfcU6FtEzJRBlzJeGaZxG+pnC8KxrPMvW0QBW90yb2dsChw99JK4HapEizbyr19z0j18/Syqr+4N1r9nOaG6C2YKnxj15Emhr1DOXliaGWW+Z6jdHXBUoC8V5B3e1hf9fEGKPIMv0uOp0EshRnou7wTnMlRDEkosFrALhJx14vdLngbazn0offUar5bcPHLL23RjDaf1k3u7scOj5Amhi9ezOitZ4t7gTeS0zel+CQ4/w2obmd39wHgmVrFmucxnKVMU1ySg/NYEUK/b3fpd+EXyUoRIfvzT5N84Fi9Xjo6P/ff8Gev3H7chqDLBG9B1K7+u94akslJ8B535Sp+dpby8uX1nOyW0WgcwtpB2u2TODfP7OzzhHVK9YpEIqtnU87CJycrt8Po6OhmvFwkEolEIpFIJHL/cCPCXJXrZULhA6VXWmldbFagkAQnBpQqwjwsACWiHpG1urr7F/jOo9auSeDx3qMEQtCNdXXLHJLU+1g3v7IswvzpR5mwHZqm7mT73asTXOslfODJiVo96c3TmK8vhK6WIRli0taf/0K4QJuVOQdmz1ykc226Vtv3xHFMkvQjzNO1TjWyGcgCKgVGhyohJUwgbM/fndUSNOAkRbGU5t6E7kKEeWtJUQaDZzQ1HDRh84Xufjz5onvbGWyotrB4W4m/7qZ48u6yeHLdZvHka0LAJ5Xo7frx5pXoXfX0Tp1gArtO9B7ME0aaKUONhNQIM53ytma0xDma7TbWebJegQmBMs9wSbI73pK+y7swraoVgWT1aHON0eY3Uxe8h3ed4D304H6Gj92UOPPKm7SvTG3RjDaXZvtStcG0T5ZaHn1wmI4z/Oml9e1HPG86nLd1kTPoQYI+yATzDGl3XV9vvVA+gt6U5JLxSUqTUqYNtHRYU32nhgAu7I6/jbUiNiP/S8+QPF2PgqdT0P03/xfh8vQmzqZKohEMqCCarPpQL2mCnZggtNv469O4S5fwMzPrO90tQERotQ4jJqHdOUFZzjA393LV6zwSiWwZm3Ld+O53vxuA11577S6PjEQikUgkEolEIvfMsghztRlzXaVdOIxAM6uL3U4MiuCMxRKAgIQFNHT7McjrIHb7gISwplhsVfAhEEJAhI3t131zhHkH8lcrlSqkCd0njnMkna09ZsZn/MJb+xgbynjs8EjtvsGpt9ZN43rIHq/dLtVxyq+sd5+GwIXn667ubKjF+JH9latbiP26dwAqCwTpYHQAIceEvRhd30X19cJqgahfdIGWpgn3EO1cGsO8WKz3DAbPsIUHE908zbgfT37DvZ3ccG/LUjy5T/p9rJNA0Xdvl/148l0jbt8JAdcXvb0NhL7oHUSx3pB4QXaZXjHWymmkluFWhgIznfK2i/0mKM3FPt4ltixxaUKZ7ZI+3oCKUJoGpckJ2KVoc62izQ3raWnd+SwJ3vmuFLwPftPTyE3nDueefe6+EHlsKMm79SjzJ4/3o8zPrf/38il7gR51t2jp34tqwrFt6+4eRPmWWsVyGpJX8GLw2GV9uwPO625Itl47ApJk5N//Huw7Dtbu0vkOnf/vbxCm5u4weCMI1ea/RcF79Q5v02pix8bw09OEdpvyzFm0uz03a6wEkYRW6xiqjk7nNEVxlYWF1+8+MBKJbBibInb/yI/8CKrKz/3cz23Gy0UikUgkEolEIvcHvbnFCPO25rigtHueVmZvjTCXhIAQEJIQ0NBGVFG6CPn6RJh7Vwlba4gwD96DKhoCYjbWInlLhPkLBnH9CPMnjzPcVEZtUXvM52fGOdPOef8TE7X3WHxJa3plYvSdmDSTDJmhWu20P41boaAw9dZZirmFWm3/Ox9FTP93ZO09CZGRrUOlQ5A2RluINjF+D0abdx+4BRgtMerxJoO+0K338PlyxjIvFvGeYZRBCTyYyMbqx8vc20vx5NUrehsobVjWe7tyb/eWubfDbnJvrwSBMlV6fZHfJ1DagAKJNyRu94jexsDEUE5mDSPNlMIHForb96sWoNHtkfUKUlfFmgdjKPJ8d/Tx7hMkoTCtW6LNbShjtPlN7GbBOxsaYN97nqjVOpenmHr1xBbNaHNpdS7Wbj/y4DB5ZnljOuX8/PpuIPQSeCs5e/MMcOFd7GOOAd2u/dI/gDJeq6Tyu5TiKSVDfMAawWuln/rYt7vCJIhNaPyVD2Af2le7S6/P0/k3v0mYbd9h8PqjckPwFlCzJsHbjo5gBgfwV64Sul2Kk6fA7fyNUsbkNJtHcX6ebvc8ne4ZOp1zdx8YiUQ2hE0Ru7/3e7+XH/iBH+Czn/0sP/zDP8zCwsLdB0UikUgkEolEIpG3pze7GGE+4xJcCHTLQDOrO6sVKMVSmsqtaAlImKeKMA+INNY2D1dWlmznUJusLcI8eFQDqmxwhPkC2PoCYvO55RHmj93Sq7sTLP/mrYNkqeGZR/fU7huYPoXR2wshK8FgOGqP1GptbXMhXFjR8wTnuPRiXcxvjo8wcnAvYKq+6ul27PccuYFKjyDzGG0iOoAJoxgd2Opp3RaDw6rDmxvR5Tl6D6kMzlrmjUGLkmECLfUcyQ12I/70++7txXhybzCh6od+w729JHAHiqTu3tbdo1muGTVUGwBST7A3XO+ViLcoeu8C7SK1hsmhjKzfv3uhcBTuzmJlWpY0Oh2sD2S9AlQp8gy3hg1g245l0eZ+WbQ5Mdr8Fnaz4L33XY+SjQzWahe/9AKuu13F1/Wj2b5SizJPrOHxI1XSz+c2wN191UwzJfWUIR8eJejYNnZ3W5TvqFWMzEDzOXppA8oSa5b6dvsYZV4hQJIhqdD4oQ9jHqxfa+jlabr/22+i7c1zRVeCtywK3ujqv8+SPXshSXCXLxM6HYozZ9gNtv4kGaTROERRXqXoXWVh4esUxf3R2iES2W5syurGf/gP/4GPfvSjvPDCC/zyL/8yv/Ebv8Ff/It/kXe9612MjY1h73Li/4M/+IObMc1IJBKJRCKRSGTn4Hr9CPMOJDkzs4F24RGBVlZXigqxlXNCDEnwVBHmncUI85t7662YooRQRZhrtvrnCqqEoIQQMEb68eobRPJazdQsHci/1nd2thrw2EH22Xr/7RcWRnlpusUHntxDvjwmXpXBqfVxND1oHyC/qX/6W+4EukLx4OrXT+I69UXnA08/hmg/Zt6wprj5yMailASZQzQHHcCEIUwY3upp3RaDw4YSLwmBpIo6lrt/tlyS0BZD6BYMoTSd53DLkJj1U5VFQYJgFKSvVqtUPaeD6OL2/3CjZnRtKRf3GWqgyEI/At6gBiRU/bwTZwimel93sgu+mSWMtarvtdIrM52SPYM5d/qYWh9otDv0GjmiiksTXJaizpCU5U5+K2qoCE4aBHUkoUDFoOIwoUp4CKY6HtzvGM0hTBLMZQzDBJkFmQUd3thznA3GWMuhD72HE7/1R4s13y24+OWXeOCb37uFM9t4jDoanat0W5OLtaeOj/H861N84XzO9z7SJl3PX63Am+kZRop3YBc/M4bSv5999vd4S3u0ZTu2NnkU5TjCW4sVk3yBInuE0PaYXPqu7urYmqdbN9NthZjK4Z15mj/yETo/+/uEi9OLd4dz1+j83H+n+RPfjWzSm6YSEK2y50VN1bJgNTEuRkgmJ3Hnz+OuXAFrKC9dIt2/f/0nvclk2R5C6NHtnceYnLm5Fxkd/QasbW311CKR+4pNOfP8a3/tr9Ui/q5fv86v/Mqv3NNYEYlidyQSiUQikUgkcjO92X6EeZeuHaLnKrG7kRjsTY7o0iR4ERQh0YCGhcUIc0Nj7XlPZQnOAwJ29ZcYwXtACapYs7FOuFsizF9cijDvvOsRDjfaNTHcqfC/nTiICLz/iYna2ObcBZJy7bGCOTmHzKFabSpc57pev8OI2+N6BZdfebNWGzwwweDEWOXCtzYK3dsYxRHMDKIJokOYMICE0a2e1h0IfaHbEiSt4o3vQegu04SuGNxCjwFRBoLjcNOSr7WHvFYCt1HBBKhUViUIBBsIUpUU7QuxEHa4GLsdCAaKNGCCkHpBBYxWorfZBaL3aCuj6zxB4dpCj5l2yVgrvePPY1RpdLoUeYZQ9fUus5RghKwokV3gZLtBFW2eYClJAgRjMFptgBEJeEnYpFDJbcudBe8RNrhhw4Yy9OB+Ro49wMyJpZScqVfeZPzxY7Qmxt9m5M6n1b5UE7uPHxyi1UiY7zq+ejnjG/YXbzN65XSl4Iy9yFG/1MtZdQ8hPMxRucwrcvBtRm8VgvJx4OeQ/oZNEYe2nqWYfpqGKiIQQsAHQTV21lnEpBAc0jQ0fvQjdP7N76PXltKmwomLdH/ht2n86F9A0s1JDrkheKsoEixq+idcK0TSBDsxgbt8GX+9ur4xjQZ2dHSdZ7z55PkBQujR6ZxCTMrMzFcZHf0GjIk7OSKRzWLTzjhVdfHfzbfv9i8SiUQikUgkEoncRG9uMcJ8ukxQVbqlp5XXhSaP4DE4sRhVDIqEBdD1ijD31cK9c2iy+ghzVQjBE/pRhpsdYd74ytLrdZ9+hEPJfO3+N7tD/NHlYR59cITx4bqDZnDqLdaDo/YoVpYWrVSVE27lz3355TcIZb0P3oGnHwPvq0a0mCh2b1MUj5oZRC2iw5jQxITxbSqIBJLQI4glSIY3CV7ePtlBqYTunljcQo8mgSHvOJCZW9ov3DP9ePIbvbcTX7Vr8GYpnryK2e7Hk6c34smVYHeuALvtEAi26uddpgFvlNIq3lTO79QZjJcdmXAtApNDDbLEMNpIKUNgvnj7XqMC5L2CvNvD+qqPN0Avz/Ab+f22FQh4SfvR5hlBMkpTfU+moYfVkvu9n/ftI81nVpzast048E3vRm7apHTu2ed2/Vpuo3sFCUuta4wRnjg2CsDnzm6My/qsvUxb6vHVLryb/dqjoesrrq8fk8D7ahXJXqfdmq6izEXwIfbtvgWRvuBdYoabNH/8O5CRehsb/+oZur/8e6jfvGOrilYOb0CCZbX9XUyriR0fw0/PEOYXKM+eJXQ66znVLUFEaDYPIyal0z6Bc3PMzb2I6v39/ReJbCabssJx4sT6RPpFIpFIJBKJRCIR+hHmvcUI89mFQKfwhACtrL7oWJiEQBVhngWH4qsIc+1HmMsad5sXVV9SCR5NV/9cqoEQqv8a6dsvN4rkDWSZG0G60Hilej03NsTEQ0MkMrNsbvCLpw+iCB94su7qTjvTZO1ra57SsAwxaevPfSFcoM3KFn+KhTbXXjtVq40eOUhzdAiKHiQpGKnc3ZFthRJQM1P1q9cRjDYwYe82jboNJFpFF3tJCWJxvP0CvwIuTSmNoZzvkgbPiHr2psJwcwXHjmXubVmMJ7+Te7tybgcTe25vGgLeVk7uxAvWC8FU7mYbBBsEb3Xx97RTsEaYHMq5EAKDIWGu60itIU/e/u8zcQ7T9nQbDaTv8C7zDC0d1rmd9BbclSraPCdogg0FLIs2T9QRTHpfR5vf3uE9s6Md3tnQAPve8wQXv/TiYq1zeYqpV0+w5x3Ht3BmG4vRQKNzhc7AUvzyU8fH+NOvXeVrUxmX24bJ1voKXCrKG8kZ3lU+sqya4f17OCav8DU5sK6vt14o3wa8hCw7n3VjX8Gf/SaSgRF6zqOquBBI4rnpEiaF4CvBe7xJ83/+87T/1f8FC0sbHvzzb9H7z58h/ysfQdaxBcydqc6lKod3QNSiuFV9l9vhYbRX4K9dQ7KU8tQp8ocf3vGbcUUsrdZRFhbeoN05iYhhfuE1hgYf3+qpRSL3BZtyBDly5MhmvEwkEolEIpFIJHJ/sCzCvEiGaPc884UjTwypXVp4V6AUixeLKLdEmIs01y42FCWUDpA1LVB471ECISjJWqOM74IkX6/dzl8ySNmPMH/3ozyc113d58sWv35unH3jTY4dHKrdNzj11rosUR+39UXhUktO+dMrfp5LL7yOhqUFVjHCvnc/Vi2YIWAspDt7IWm3ojJfbfbQUUQzjJ/YpkK3kmgJSCV0Yyml8bbHEgXKLMUbSzHXxvrAuHpGExgfuHcXnGjl4O43jsSjqO0L2bKsH7fZeWLqrkPA9R31iReSG6K3B+sFI+y431MjtYy1clR7FC4w2ykZH8ixd/kzNUFp3ujjDZRJwKVVrHla7J4+3jcIYgmmiaEkDRCMXYw2N+JxknK/RpvvRsF777seZerrJylmlmKWL37pBUaOHSJpbMde0utDq32xJnYf2T/I8EDK7ELJH5/L+Z5H1t+pOmPmuWSusS/sWawFPcr+cIK3pKS31g2sG0IT5VsRfnuplF5lvnmSId5Zubq16tvd2I7T3yqEqjWUL8BYzEST5v/8F+j869+Ebrn4MPfFV5FGRvaXP1xrIbtxKCpSbZjWgJCsWvBO9uyhLEvc5SuItRSnT5MdO7bj8+yNyWk2j9Juv0mnew7EkNgBms0Ht3pqkciu5/48u4xEIpFIJBKJRHYyxVKE+axLUJRO6Wll9dN7JwZFcMZgCQj0I8x7VYT5XZyYd8V5REMVj23tmiLMfQiEEBABkY2MMG+DPVMrNZ9ber3Ge4/QNL52//9+YT9FMLe4uo3r0po9t+YpTZpJhkxdRD/tT+N4+5jcm+lMz3L9RD2effzhI+SDLXChH2G+tk0JkY1BpYdKD6MDiGZYP4mwPR1OVkvQgJMUxVKaexe6y7k24jx7gmNQlInBxj2vaVZCt0EFyn48eUgUb5UyCfT68eQuqRzdO1Q32n30Re9eFvA2EBIobRXebL0h8YLsoITP0VbKQJYw0kwxAjOdgntJbBag0e2R9gpS58l6BcEYijwn7PCF/dsiECSlZ1p4kxIkpTQ5ivSjzQvu12jz3RZpbqzl0IeeqdV8t6i5vXcjje41JJS12pPHxgD44/MNNipd+kRy/pbzQ+/fx9FwfWNecF14H0r9HLq39zWCayMieB/wQe/pWHpfYRIQC66EELAPjNH80b8AN/XpLj/7AsVvfWkTJ1ZlzwsGVBC1q2tRYoR0YgJCoLxyBT8/T3nh4rrPditIkgEajQcpyyl6vcssLLxOUVzd6mlFIrueKHZHIpFIJBKJRCI7Cdfr/+uAzZjpKb0y4D20bup5W0pCQAgINngUh4Quqr1KSDNrtFCUZRVh7vv9uldJ8B5U0RAQs8Eq1c0R5j3IX65er9i/h8OH6z/HdZ/xSycmaTUS3nl8rHbf4NTJSuxfAwbDUVtPwmprmwth5Ys9F79ad6ybxLLvqYdBPRCqDQnW9EXvyHZBCajMI5oiNDFhFNmmUb9WC0Q9zuQohtI039aBUwndGcEY/FyHUHrGQ0lLlMnh/J4/iktCd+UUDlYpkkA3CxRZwCeKxo/1tkYFylTppR7f76Ne2ur4mXhD4qpY+p3A3qGcLDEMN1NcUOZ7974xKStLGp0OxleCNyhFnuF3a3xvP9q8ME0CCV4yvEkRDSShh1nhpq7dwm4TvIce3M/I8QdqtamvvUX7ytQWzWjjEZRm+3Kt9lT/PHGmZ3jx6sbYlEtxvJWcr9WUIfaHg2S6Xf+eDMrH66Wkx0LrRRIB1//Yu9i3+1ZsCgQIDlwP+8gBGj/8nbecy5e/86cUn/7qpk1L5YbgLaAGVit4pwl2YgLt9vBTU7irV/DT0+s93S0hy8bIskl6vYsU5Qyzcy/h3PzdB0YikVWz6ZeDr7/+Ov/wH/5DPvaxj/HUU0/x0EMP8cYbb9Qe89JLL/Fbv/VbfPazn93s6UUikUgkEolEItubYm4xwtwnDeZ7joWeI7GQLesdGqgizEtjEAWLQlioRGXtgjTWPpeyANePx15LhHnwqIaqV/EGC7GSvFa7nb9kMP0Ic33Pw4zaonb/71yZYN4lvO/xPSTLe7MGz8D1k2uez4P2AXKpO+zfcidWvOC9cHmKufP1RdeJdzxURYj6QBVhbmKE+Takii9XRIeQ0MDo4FZP6bYYLTHq8SaDvtCtdxG6izwjGCEsdPFlyZgvaAH7hvNay4W342ah21ulSAPBanRv70DUQJkGitQTrPajzvuitzNYJ6tbMN9ErBEmh3PyxDCYJ7QLT7e8941P1gea7Q6Jc2S9Aut91cs7Tbb7j75qVKpjRmkyPAnO5ARJsKEk0R5yH7q8K8F7YtcI3ge+6WnkpjY05z73HLqL7bqt9qXa7YMTLcaHq3O6Pzq7DufZd+CSucaczNVqITzB8dC9w4jtwEMoj9UqvZG3UDuLqhL6fbsjNyGmcniHcvH6L3nqKPlf/egt50DFJ/+Y8k9e2bSpVYK3IAhyQ/BeBabZwI6P42dmCfMLlGfPEjrr3wZgK8jz/STJMJ3OKZybZ3b2eUIo7j4wEomsik0Tu0MI/J2/83d44okn+Kf/9J/y6U9/mldeeYWTJ09SFPU/8tOnT/Nd3/VdfPu3fzvnzq09FjASiUQikUgkEtk19GYXI8znXIoqtAtPK0tqvdpKqRbNvRgS9fUIcxRhjYtwPiA+gHNrijAPqoSgVYS5kQ3uUdwBe6pWaX5laeIT79tff3Sw/H/eOIQxwvveUY9fbM2ew/remmaTk3PIHKrVpsJ1ruvKoihVlQtf/VqtljQy9j5+DNBlMfNS9f+LbBuUfnw5A4gmmDC+1VO6LQaHVYc3N6LLc/Rt2g3cELoRgYUuRbdkuCgYMPRFwntbEJVwq9BdJiGK3LuAYKDIAkUS8Lb6/TobMEDqDNZvb9E7TyzjAzmtzNLIDLPdEr8CV6JRpdHpkpYlaelIihKfJBR59rabSHY0/WjzwrTwJqtFmyf3abS50cauEbyzwRb73vNErda5MsXUq29t0Yw2nrx3HXPTueCTx0cBeOlqylR3g85pBV5LzqK1vxfLpH+UNGxXdzco344ub9EiSnvgTwEICs7vvM/9pnAjiSuUfdHbkb7vUfL/8VtveWjvVz+Lv3Bt06Z2Q/BmUfBe3WfeDg9hhoZw164SOl3Kkyeh3L6f5XtFRGg2D2NMTqd9EufmmJ19AV1jMlgkErk9myZ2/9iP/Rj/8l/+S7z3HDx4kO/7vu+742P//J//8xw7dgzvPf/lv/yXzZpiJBKJRCKRSCSyvfHFLRHmhQ+UXmnd1L+tMBbf79mdaEDVge+i2u1HmK9R9CyKKr7Oe3QN8avBe6BydJiN7NUNt0SYU0D+cvWa5bEDHJyoCwx/PDPOpW7Gk8dGGWrV4ygHp9a+eHvUHsXK0nunqpxwK3/e2bOXaF+drtUmn3oEmyYQAqBVfLm1YHapiLIDUQJq+vHl2sTo9owvNzhsKPGSEEgo+47MO6EiFHkOIki7S69bMtDrMpgIewbyW9ot3AkJVbx1FLp3N6Hv1C/7bv3SKt4GTNj+ovdwM2WwkTKcp1iB6Xa5op6zAuS9grzbI/GerNcDgV6e4XdzuwkRnGT9aPMULxnOZAhKeh9Gm+8mwXvvux4lHx2q1S5+8UVcd22bA7crbxdlrgifP5ffbti60DZdLpl6yxvVfTwWNu41184evHyoVnGti4T8Ii727b4zIpXgHdyiuxuU9ENPkv2lb6o/NgSK//LspiYqqAREq5MzCaYvfq+cZHwcSTPclcuEbpfe6dP965idjYih1TqGorTbpyjL68zPv7rV04pEdiWbcvb8qU99il/8xV8E4B/8g3/AyZMn+bVf+7W3HfP93//9qCqf/vSnN2OKkUgkEolEIpHI9qc3u7jIoUmT2W5Ju3BYA81sSTT1CAGDE4NRxaCg/R5h2kPWJcK8BO8AXXU0tiqE4An9hYwNjzBP6xHmjZcF06sWZFrvPVxrPexU+F9ffxCAb3xqsjYuW7hK1p1Z01yGZYhJW3eLXwgXaLOy2D4NgYvP1xdMssEW4w8drm54DxgQGyPMtxuysCy+PEfCdowvD32h2xIkxZn0bYXuIFI5ulFsp0e3U9DodBjNLCPNlOHmvfUwjUL3fYaAt0ovDZRJwBulTBRvbojegqn2RW079g5kZIlhtJXhVZnrlSt+jsQ5mu0O1nmyboEJSplnuGT3xppDP9rcNqoNNFicZHhJMIvR5n6rp7hp3F7wnt1xgrexloMfeqZW872Ci196cYtmtPG02nXBeXKsyeRYdZ797LmcjWxD/WZyBU+7Vhvzj5JvY31Q+XMo9Q0RveE/w/WdruUuEDc3BJMAptr4rB76UdjZx95D+q3vrj3Uv3YW//zmJiqoaOXsRpBgVyd4GyGdnISglJevEObnKC9evPu4HYAxKa3WUXxo0+meodu7QLt9cqunFYnsOjZF7P53/+7fAZVj+x//43+MvQfnx/vf/34AXn755Q2dWyQSiUQikUgksmPozVW7+VVZCBk+wELP00xtLcK8MAmBpQhzAPFVhHmlFqxR7A4B8b7q12368dirQDUQQvVfI1UE3sbRvSXCvPGV6nJIjeHB9+6p3ffiwgivzLZ4cN8AB/e2avcNrYOr+7g9Xrtdaskpf3rFz3P9xFl6swu12v53PYaxBtDKEZGY6spvDQ78yPqiFATp1uLLZdspuYEk9AhiCZLhTYKX7M6PFqHMM1Al7ZV02j3S+Q5jeUIrSxgfuDe3WRS672MEfKL0soDrx5tXordig1Sidz+sYrtg+v27U2sYbqR0irCi/t2LzxOW9fEuCmxZ4tKEMku304+7IQRJKMzAYrS5W4w2L+6raPNbBe9yRwreQw/sZ+T4A7Xa1Nfeon1laotmtLFkxQzW1Xtl33B3X+tavnbt3jZ5rYYggRPJzeeODZ7wezfsNdeKUUuR/IVaTdNZyuZrBFW8vz/+3leMAElabXr2rkr66h8bs+/6ADJa3zDZ++Qfo8VmpmRoXfBWu7rv6sSSTE6ivR5+6jru6lX81O44dljbotk8TFlO0+tdYqH9Jr3ela2eViSyq9gUsftP/uRPEBH++l//6/c85oEHqhOji7tkB08kEolEIpFIJLImfFEJ3WW7ijAvFBcCvTLQypeclgqUYvFiEWUpwjz0+hHmydojzMuyijB3Dk1W/1zeeyAQgm64q7uKMF+2gFZC48XqNeXxg+RDSyKeKvyrt6rrkQ88WXdf22KBxtyFNU1l0kwyZOqultP+NG6F0a3BeS698Hqt1hwbZuTIgf4D+lZIayFJVr0pIbK+3D6+fOMWw1dHINECFYOXlCAWx53F6kVHtyppr6Dd7mLm2oy1UvLUMDmU39PHLwrdEQAE3A3R2/bjzRMliGK9IfGCbCM9JE8sewYzGqmh2e/fvZreswLk3R5pUZA6T9YrCMZQ5Dlhtx+/hX60eYsgt4s2L9lWuxw2iN0ieB/4pqeRpL7B7vwff2VTo5U3CwGaN7m7b4jdAJ/bwChzgAu2QyH189LB8CAjfh1SnDYAAYK8j8DBWr0cepFSu5QbaYXf6Ui/DVVw/Xisqj2A5CnZ//DB2kN1ao7yU1/Z5AkqKiBUUeaiyaoO29LIsXv24GdnCXNzFOfOEdrtuw/cAaTpKHm+n17vImU5zdzcSzg3t9XTikR2DZsidl++XPUvOXr06D2PSdPqYt+5+6tXTyQSiUQikUgkcluWRZiTNpnplLQLjwg006XTetfv0+2MwWqoNKJwI8K8uz4R5r1lEebJ6tzCquBDIISASNXPbCO5JcL8laUI873fUF9wO9kb4DOXRxkZTHnHkdHafYNTb61JdzMYjtojtVpb21wIK9/ke/W1k5Sdupto/9OPL7n8vQcxgAEbI8y3DdJGNSA6uE3jy5VES0AqoRtLKY07Cs6VGJchQcl6Bb12AbMLjDUS8sSwb7iBuYde8VHojtyCgEureHNvFZ9AaQNK9VlJ3PYRvYcaKUM3+ncbYaZTrKr3rABZUdLodDC+ErxBKfIMfx+kc6gIpbkRbZ7gJMebFBMcid4f/bx3g+CdDbbY954narX2pWtMv37qDiN2Nq32pdrtseGcQxNVKtBXL2fM9jb2i+y15DxQb6HwuH8A2aYfGaOeIv2+etGWtFsvEAIbGv2+4zEpECCU4Erot3tI3vMw5uH69Uzx+39GmJrd5AmGakP0ouC9Ooe3HRrEDA3hpqbQbpfi5Cm03B3H/zzfR5KM0umcxvkFZmdfIPQ3LkQikbWxKWL3wMAAAFeu3Hs0w9mzZwEYHx/fkDlFIpFIJBKJRCI7imUR5h1yChdoF45marDLXNGFJP2e3bIUYR4WQCtRVN7GnXlPBEW860eYm+rfap7Ge1AlBEVMFXm3cfRujTB/rh9hniXseVe9J/cvnq4Wi97/jomaSCfeMTC98qjx5TxoHyCX+u/gLXdixYvYrldw5eU3arXB/XsZOnDDiR6qCHNrq6u+VW5KiKwvSkmQDobWto0vt1qCBpykKJbS3Fno9sZQZCkmKFlRUHZK3PQ8I42UPLXs68c7340odEfeDjVQpoFe6glW8YnibKVyL4re20Ac2TOQk6WG0WaKV5jtrrx/9w2s78ea9wVv6z1lllKmu7uP9w2qaPMWzqSV6G1yFIMN5X0RbV4J3nt3tOC9912Pkg3XN3Nd+OIL+GL1fxfblbScIynrLWVuuLu9Cn9yfmPd3deNoWvqmzozHeLQNo0zt6HA20cI/h21etl6HWencbFv950RqQTvUC5tggZEhPwvf3M9xan0FL/++U2fosoNwVuqL3Bd3TVIMj6OZDnu8uVK8D59qrq22QU0mw9ibZN2+wRlOcfs7Ito/7o9Eomsnk0Ru48fr/rRvfLKK/c85rd/+7cBePLJJzdkTpFIJBKJRCKRyI5hMcK8U0WY95QQqr6gzWzJsRsAJxZnDKKKQVEtqpi7foS5rjnCvKh26HuHJquPXvbh/8/en8dYktz3vegnIjIyz1Jbdy29z3RPz8aZITlchhxRpqyVV5auLOnKFgwY9h96kJ4t4AkwKFrwHxZgQDLMJ1096T75PstXNIgHGL5PlrVZtmzoajPF4T4bhzOcnul9uqt6qb3Okhnb+yNPLdl7Vdc5VdUdH6DQfeLkEnUqTy7xjd/36wghEEJA9rmqm+Q0QmwYQNhgYV5//2HkBhv46ybj31+YRCeSDz1VzfFuLlxA+q1XFWRkHJFHKm1zfo75ML/pbV178zTuhgqHg88/vf7C9X5fpUDvNovsh5NAIMjlnq3j7rQvV6FABLcmLBlZv639vVMSk6ZI79FFge8a8vllhmsJtUQyMZyR3cMkiyh0R+6VIKFIPYV2OBWwG0VvK1FO7KjTtZRwYLic4DFa13SNp11sffBahkCt3UEbgzaWpDC4JKHIUsLD8P0Q4G6yNs/Wrc3Dg21tLkN9g+A9vOcEb6kUhz/xfKXNtrtcffnex4b3CqWVebW6+9kT+9Yun1+4VNuS08Nm+LZaQlC9n3zUHSILu+s+A0D40h3Kyh8ibBRCRWC58XUKF0W/OyI1IEvB21sI5QQSdXQC/TeqOop95TT21HsD72IpeAvK/G4JfguCtxToyUlAYK5dxa+sYC7fX5TUbkEISb1+HIB25yzGzLO88tbOdioSeQAYiNj9qU99ihAC//pf/2v8PczAefPNN/n85z+PEIIf+qEfGkAPI5FIJBKJRCKRXUy+3Ju93wFdZ6lj6BqP99BM1wcPjCgrvpyQJD0Lc+HbQCCEHLbDwrww4Bwi9LKgt4AP4H3Ae4cQov8W5snbldfZWwLZLUcgJz9WFZ//48wBApIPPrGf+gYRnBBozp+5r34cV8dRYv0zCyFw1p7d9HaKVofrb5+rtI0+cojG/tH1ButBKkCUed2RnWfNvnwYGTKEH777OgNEBoMMDidT6And4bZCt8LoFOUdujCQF3Tml6mnkmaq2N/MGMruftxFoTuyFbyEQnuKpMzzLo8djwygd1j01onqTfSQNFLFSm4xbuuVaALI8oKsm/eqvHMQkGcZbovOKnuNqrW5Wrc2D5bEP9jW5uuCd21PCt7Djxxi+NjBStv1b75DvvjgZdQ2bsjtHm5qHjlQVrZfaSveme/vvdiyrNFS32TjyU+ScNIcuf1KO4QApDf49CAUL1TeM+k0bXlxZzq2VxCU8UTeQnC96u7yOpP+8MehUXUSKH73C4T7uA5tlSA8YqPgHbZwzUoUydQkIS9ws3PYuVnc7Ny293UnkFLTaJzA+5xO5wJ5foV2e/PPhZFIZJ2B3Bn/3M/9HM1mk9OnT/OP/tE/umMO95/+6Z/yqU99im63y/79+/npn/7pQXQxEolEIpFIJBLZveRLaxbmhajRLhwrhSVLJMkGi+BCKlwvs3vVwhzXglDmgAnuU+wOAWEtWFuWsN2DPfGt8L28bx8Csu+D9Tkk5yot9VfKfYpmRvPpybX2tlf8v98tLcw//sxkZZ3ayhV0UbWo3AwjYpgpVd3mtJ+mTWfT27ryzVOEjZOIheDgB59afx080LMwV1u3mo9sHwGLF20k9dK+3O0u+3KJRQWLk6vW5RnhNpNQrFKYVKOcRRcGWRjacyukSjCalbnFY427V5KtCt0+Ct2RrSDAqzLP22iPkwGjAk56pC9Fb7lDovdQljBa1wxnCYkULLbNfVd1JtZSb3dQzpF2C6QPmCzFJg+HrTncxtpcPPjW5ntZ8BZCcOgTz/fiakqC91x+6dWd61Sf0LaNLqoi/vtP7lv7/xcubcOE07vwrlIoWY24GQ/72O9G+r7vzSK9wasM714EW6+8t9z4Bi48uJNYtgWZgFBlbrfvZXgDolkj+59frCzqp+cwf/3GTvRyg+ANwku2Yksisgw1Po5bXsYtLVNcvoRf2foz2W5CqTr1+iMYu0jenabVPkOeX7n7ipFI5JYMZNTjwIED/Jt/828A+NznPsfJkyf52Z/92bX3f+M3foOf+Zmf4dlnn+UHf/AHuXz5MlJKPv/5zzM0NHS7zUYikUgkEolEIg8+FQtzzVIRCAQ6haOxoaq7zOmWWCFRISChtDAPOSF0S7tkeZ+5zUVv4Mk5whYzoEMA713p+BTov9idnKlamFuovV7uc/TDhxEbBPv/fn2Stkt4/OgIE2PVQcmhudP31Y3H1GOV1yYYzrvN5393F5eZP1u1Ixx//BGy4eZ6g3OAKEXuWNW94wQCQSz17MsbyDCKIN3pbq0hsShvcCLBk5TVk+LWx41NFDbVKGPXbJXbc8soAWP1lHqmGG/ePZt0o9DtotAduR8EOBXIU49NfO9YKkVv5UFbgfQMXPTe18iopYrRRkoAFjvmvvsgvafe6pBYR1oUKGOwOsGkeg/IntvEBmtz17M2NzKDB9zafC9bmtfGRhh/7olK2/KFaZbOX96hHvWP+g3V3e87PobsXde+cSWlZfp7kVsUDZbkKaBbaT9pjyG3UlXbR5QzBAQhHUZ0quKsU8vMygfP7n7bURrwZYW3zVmd8JN85zPII9UopuK/fJWwsvkJtttBEKGs7EYgvNqS4K2Gh1AjI7j5OUKnQ3HhAsGY7e/sDqD1KFl2iLy4WtqZL7+JMUs73a1IZE8ysCvd3//7f5//8B/+AyMjI1y8eJHf+q3fQvQs0X77t3+bz33uc7z11luEEBgaGuI//sf/yA//8A8PqnuRSCQSiUQikcjuZM3CvAu6wWLPwtx5KmJ3IRM8qxbmpbgr/Eq57nZZmJscrEMEX1YUbIEQSvv1EDxSltZ2/UQkpyqvs28LZKfc5+gLR9fabRD8P08dA+Djz1YrsJPuElnr+pb7MCWnGJZVy+oL7gJ2C9arM6+9XRnHl4li6rnHNywRSrFbqjJreYuTEiLbiGgTWLUvT3eZfbnvCd0KL3RZMXkbodskCVZrlDFoa0nygvZCixBgrJGSJZKp4dpdjQSi0B3pCwJssi56+1XRWwSUE2g3WNFbSpgczkh7+d259bTuI797FQFk3S66KNDWofMCLyVFluFvEzvwIBKEwMoaRtYIKNxDYG1eCt6Te1LwPvCRZ0jq1fvQy196Ff+AZTM3bsjtbtQSHjtSVlUbL/jK9N0ng90vZ+UoWr1caauR8og7eJs1dgYRei5PWR0fPoDojFbeX8xew27B/eihQsjyecybcjax7Tl5SUn2d76rumwnJ//jr+xAJwFCVfAOakvXYrVvHyLNsFevEbpdivPny6r2B4Asm0Lr/XQ6F7F2maXl13Eu3+luRSJ7joFO6/rJn/xJ3n33Xf7Fv/gXfOQjH0EpRQhh7efZZ5/ln/2zf8a7777Lj//4jw+ya5FIJBKJRCKRyO6kWC4HL4LHqRoruaWdWxIFmS6FzAAYoXBCIQKo0Hvw32hhfr9idwBhbFk9IOTW87qdAwLeD8LCvICkmn1Wf7ncZ7K/Qf3E/rX2ryzuY7qbMTFW4/GjVbvH4bnTW9bhJJLj6tFKWzu0mfYzt1nj9rSuzbH0XnUgdeLpE+iNA8i+p+YoGS3MdwEV+3ISpBtHDPYx/A54Ep/jhcKLFCcTnLi54jwARic4nZAYsyawdZfbGOcZq2uyRHFgpIaSd/6mRKE70nc2iN5OeXwCRgU8oJwkcQIxoLFxrSRTwylpImlmilZhMfb+dy6AtDDUOt3S1jwvgECRpbgtXpv3Kl6onrV52rM2r+GF6lmbr1c6PijsVcFbpZqDH/9Apa1YXOH6N9/ZoR71h8R1SfOFSttzj22wMn8vu+9Ig7sxT4MlcQUpqveZR90UDd9/K/V7ZS23W2aEJCOdf77yfhCG6/obO9K3PYXsxcb4ovzpTfRRjx8m+XDVUcG+9C3cxWsD7uAqgSAo74GD6LkdbXITUqCnpkBKzNWr+FYLc/nBcYio1Y6gVIN2+xzWLLO09BohPFgTgiKRfjPwp+zx8XH++T//53z1q1+l2+1y9epVpqenyfOcb37zm/zyL/8yU1NTg+5WJBKJRCKRSCSy+3CmtC837Z6FeTlxv104Gul69aUVioDASokKHgGEkCOCIZAjRFoK1PfDqlWc6VmYb0GcCgGc93jvEALE/fbpbiRnEGJDdZfbYGH+0aNrTlMhwGffeQS4Oatb2pzGYtU2fDMcU0fJRLWS54w9u+mB6RAC069+u9KmspTJ91Xt0UsLc1lWdid3z02O9I/SvnwZgirty/3ILrIv9yShIAiJExovFJabK84CYLXGJQlJYUr75DzHrHTpFp6RmibTkqmRDJ3c+fsche7IIAkCjA7k2uGSgEsCRvUsXp0ksQIxAH2wniaMNVKGsgStBAsdg9+m/SrnqLc7JD3BWzmHSTVGPzw53kDP2lyTywZOarzQPWtzgfY5KhgeJNF7rwre+558lMbU/krb1ZffxLQerOrd+g3V3U8/OkqiygvdeysJ55b6HC8jBGflBIn6GrAulAkET9hju8rlXzmDV5qQKLw6jpyvVp8vqVN0xewO9W6PIEQpeHtbPtCYLqt/9/THvgM2PC8SIP/dLxD6PePitpQRVuuC9xYqvJUkmZwkGIObncXOzWGvPxjHiBCSev04CEm7cxZjFlhe/tYO/r0ikb3Hjk4pl1IyMTHBgQMH0DoOxEQikUgkEolEIhVusDBf6hgK6zAu0NxoYS5UL7NbrFuYuxZh1cKc7bAwN+B8aWGutjZQ553rZXYHhCyt7PrJLS3M2zdbmL/dHuL1xSHqmeKDT1QHYpvz58rfeQtkZByRRyptc36O+TC/6W0tX7pK+1p1vQPPPY6qPEeFsrJbyfJJL1qY7yyiQxAOGUYQIUX4kbuvMxACSTCAKIVuFEbUbvo6BsCkGpcodGFInCPr5rh2wUpuaWaKmpZMDNeo6Tsfa1HojuwUQYLRnkI7vArYJGBXRW8rB1Llva+RUk8Vo/Vysst25HevIkOg1u6gjUEbS1IYXJJgsnQrsah7GyGwIqOQdTylU4WTGvEAWpvvRcFbCMHh7/xwpc0by8xXX9+hHvWHRvsKG8u3s1TxxLH16/8X3uu/lfksTZaFQd2Qez0Shjjox2+z1uCRvujldtdwukE6+zS4DfcTAq7pL+/q43pXIBNAlk5g3kLRAt9F7muSfuojlUX9mWnsN3bOUSGIVcFblBfosPlnFZGlJOPjuOUV3NIS5vIl3MpKH3o7eKRMaDRO4H1Bp3uBPL9Ku31mp7sViewZdot/WiQSiUQikUgkErmRYmnNwtyrGktdQ6uwKMmauOQpK7utlIgQkL0BIeHXLcwR9zmwFkAUBtz9WZg77wnBE0JA9ruqmwKS6uBA7ZVyn9mREbJD6wOP/9vZMqv7w09NVKtTg2do/tyWe3BcHUeJ9c8qhMBZe/YOa9ya4APTr1WrunWzzv7HH6ku6EuLeJRaz+yO7Ahr9uWhZ1/ud499uQoGgscKTUBh5O2Fbq8UulcxmnW7hG7BUtdQSyVDWcL+ZsZQdufJL1HojuwGvIQi9RSJw6mAVQEvAomTfa/wFqKX351Ixuoa4zwrxfYJrwLI8oK0m/eqvHOCgCLLcA9hlEUQEiPrmIq1eYLyhuQBsja/teC9vKuFwcbUfvY9dbzSNn/qPK2Z6zvToT6gfEGWVycnbrQy/+pMRrff8y6E4KyYIJHfQrBceeu4PYwOfa4uv0dEcAgCLqnh0jpSDKOuH68s01FXWFGbv3d+qBBA0nMOsh1wBZgcTAv9Pc8iJqqTLYs/eImQF4PvZ49S8BaU+d2yvEBvEjnURI2O4ubm8J0u5vwFQrFzv9N2olSNRuNRrF2mm0/T7pyj253e6W5FInuCgd/1Ouf4vd/7PX72Z3+WT37ykzz77LM8++yzfPKTn+Qf/+N/zH/6T/8Jax+c2ZaRSCQSiUQikciWWLMw74DStKzEeWgXnrpWaxbcRpR2pU5Ikp6FOb4LwRDoIkR2/3bh1gABrCWorVmY+wDee3xwCCEGYGF+9mYL89d6FuYvHFtrniky/uvMfqSAF943UdlEfekSyna3tPsRMcyUqlqiT/tp2mzernP+3Hvki9WKhYMfeAp546QD5wFZTkjQu2Mg82Fk3b5c9uzLh5Fhd9iXq1AggsPKjEApCN04KaIUulO8UqU1svdknS6isCx0DFoKRjPNcE0z1rizQ1sUuiO7Da+g0H7teAwikFjRd2vfREqmhjNSLWlmCa3cUWxDfvdGtLXU250yx7tbIHzAZCk2UbtY/uwTAvwtrM3DmrV5wYMget8seBe7XvA++LEPINPqtePyS688UFa9jXY1L/uJY6OkurwHzZ3gazP9r+6+xhArQvfszNfRJJywh/u+/3thPbdbE3SKz+qkc49CUXWkupZ8Df8AOTP0BSEhqfUszU3pCuYNgoLsR1+oLBoWWxT/fWfz0IPwiDXBW5X3zJtE7duHqNVx164R8i7F+fO9Z6G9T5KMkGWHKIprmGKOlZVvY8zCTncrEtn1DFTs/qM/+iNOnDjB3/27f5ff+q3f4qWXXuKtt97irbfe4qWXXuLf/tt/y0/+5E9y/Phx/uAP/mCQXYtEIpFIJBKJRHYXaxbmndLCvGuw3pMbT2NDJWUhFU5IwgYLc/yqhXkBt8jh3TSFAe8R3kOyVQtzCwSCD8gBVJrdaGGenhKolgABIx9Ztxb//MXDgOB9x8cYHaoKksOzW7eNe0xVs7RNMJx3Fza9He8cV16v/i61sRHGjt84UBnKyu5k1cI8it07xpp9+TAiaIQf3ekeASCDQQaHkyn0hO5wK6E7S/FSkOY50jtqnQ7KOhbaBVLAWCOlninGm3c+t0ShO7JrEWASj5dlhTcCEtd/wbumFfsaGc1UkSWSxY7Z9nF56T31VofEOnRRoIzBao1J9S6WP/vIba3N/QNjbb7XBG/dqHHgI89U2jrX5pl/+8Gp3q13rpb38D10Inn60fV7gUFYmSMEZ8QESs4gxbnKWwf8OKN+qP99uAekM3iZEFSC002kzBAzT1SWsbLFfPLGDvVwDyEApSHpTWS0ObgC9fQB1FPV5wbzF6/iry3sSDdXWRe8QXjJprM3BOjJSZASc/UqvtXGXLrUh57uDFk2idbjdLrvYe0SS0uv49zmJ01HIg8TAxO7f+M3foMf//Ef59KlS2uz9Y4fP86LL77Iiy++yPHjx4HS2u/y5cv8xE/8BL/+678+qO5FIpFIJBKJRCK7iw0W5iR1FjuGdu4QAuq96hCLxCOxQqKCR1LeTwvXgtCrSN4GC3OMAevKgZMtWph77wjeEwIDELvNTRbm9ZfLfTZOjqP3NQBYcQn/x7ly8Ofjz01Vlk/bs6TdhS3tfUpOMSyHK20X3AXsFgbVZ0+dx7Sr1eWHnn9qrbJ/Ddeb6KCSKHTvIOv25TUEetfYl0ssKlicXLUuzwg3uCsEoMhSvBCkRYF0nlq7i7KehY7BhVLoThPJ1HCNO32No9Ad2fWIssI7yICRAREGI3iP1jWNNGG0rhECFjsF213QKoCs2yUtCrR16LzAS7n2/X4YWbc2z3AkWJnhRYLsWZsL3E538b7Ya4L3+LOPk41V75Omv/JN3A5aK28n0ltq3dlK27MbrMzPLmneW97a/fRmuMowK6Ro9TJQ/Wwft8fWhMadRPoCEPi0tDInUeilKUJrX2W5ueR1DK2d6eReQwhQGcgUvEO4nOxHnge54e9tPfnvfXHHurhKEKG0MkcgvNq84K0kyeQkwVjs7HXswjz22oMTi1CrHUapJu32eaxtsbT0Gt7v/UlakUi/GMhT91e+8hU+/elPE0JgeHiYz372s1y5coXTp0/z0ksv8dJLL3H69GmuXLnCZz/7WUZHRwkh8JnPfIavfOUrg+hiJBKJRCKRSCSye7jBwrztBIX1tI2lriWqpzIZqfCINQtzABG6gIXtsjA3BhFWLcyTrVmYe4/34INHytKyrq8kZxHCbOjAuoX5yEfXLcx/f2YKFwRHJhscm2pWNjE0t7WqbonkuHq00tYObab9zG3WuD2uMFz91ruVtuaBcYYOTd68sHVlTjciWpjvEKV9+Uo5UBeaSD+EDAOo3roLAofyBicSPEmZYyuqx0iZ75tCT+hWzlPvdFHes5QbjPOM1TVaSQ6OZCh5++9wFLojewYBRVIK3laVgrfy/T1QN+Z3j9Y11gdW8u0fuBZAWhhqnW5pa94TEYssxamdn4CzIwjwIqGQDZxM8UL3Ih0EiS/2vLX5XhK8pVIc/sSHKm2um3PlG2/uUI+2n0b7SuX1ySMj1LN1gfsLlwZT3X1WTCBEl0S+Vu1fqHHUTd1mxcFR5nZ7vNS4+hAhSUiERMw8XZl8FITluv76znV0ryHoTYCtgVTIiRr6Ox+vLOLeOIf91vmd6d8aoSp4B7XpSWciS0kmJvArLdziEmb6Mm5l5e4r7gGEkDQajyKkot05gzGLLK9864GKfYhEtpOB3OH+2q/9Gt57RkdHeemll/jMZz7DxMTETctNTEzwmc98hpdeeonR0VG89/zar/3aILoYiUQikUgkEonsHooNFuZJnaWOwXtP13jqaSlSBcAIhRWyHKBfFbt9mxA8IRju28I8AO0OWIvw7j4szB0Q8D4g+53VzW0szFcEKMHIh8pKbhMEv/JOKXx//NmqeKxMm/rS9Jb2fUwdJbuhmv6MPbulwearb57GFabSduiDT99c1R084EHJ8kf2v1oocgtElyBMz748Qfixne4R4El8gReqJ+yU2bWVJYSgSLNynkReCt21dgfpPe3C0Sk8wzVNTUsOjtbQye2Pryh0R/YaQYLpVXg7FZBeIPusdyopmBzOyBLJUJbQLhxd05+dKueotzskPcFbOY9JU4xOdqEEOiCEwIqUQjbwQuNEipUpgoD2ORJz923sUvaS4D187CAjj1atla9/6x2684s71KPtpda5Vt4791CyjMxZ5cuXM4oBGApcYYQ2GiXfRYhqtfkj7iC1kN5mzcEgWLUy14RE45MaQimS7hAsHqssu5ycZkXutDi7xxACVApJjfT7nkEMVZ9R8t/7AsHutLNFIAhKJ6SwNcFbNhuosTHc/By+08GcP094QJwihEhoNE4QgqXTuUCRX6PVemenuxWJ7EoGInZ/4QtfQAjBL/zCL/DMM8/cdfn3ve99/MIv/AIhBP7H//gfA+hhJBKJRCKRSCSyi8g3WJjrBosdS8eU1dHNtBSajFAEBE6WFuaC0sKcnoW5ABC1++tHt1PmdOdFrzpg8yJqCOC8x/vSgl0MxML8dKWl/kq5z6FnDqCa5aDeX8yOs2Q1ww3NMyeqVolDc2cRWxgYzsg4Io9U2ub8HPNhftPbMu0u12/Irxw9dpDGxNjNCzsHiFLk3sLfKHL/BBxetHr25SnS798F9uXrQneZU1vm1VaWEAKTpUBA5wblXCl0h0BuPctdSzNT1LVkfCijpqPQHXnw8BJMEvASnPQoJxF9FrxrWrG/mdFIFTUtWeoanO+PIClDoNbuoI1BG0NSGFySYLJ0046xDxJBCIysYWSGR2F750np7Z62Nt9Lgveh73i+el/oA5dfevWBqFqUwVHrVu2Un9tgZd62kpev9F9oDmvV3QGtvspG9wKJ5HFzrO/xDXdD+g253WkDEkUCcP0JcNWJtjPp/6AQD8aEiIEiJGJomPSHPlhpDlcXMX/xNdjx852HsCp4yy0J3mpsDFGr465dI3RzivPnwO1dt46NSJlRrz+KdSt0u5fpdC/S7V7e6W5FIruOgTx9z8+Xgzvf8z3fc8/rrC67sLDQjy5FIpFIJBKJRCK7k1ULc1tamBdB0TGOVmHJtCTp2Y8aoSiN/wRJKAcohF+1MO+AyG6uAN5UPxyim4PJESEQsq0NyHnnCAG8D70BzX5bmJ+/2cL81fIzG32hrBAJAT576hEAXnjfRMWSWXhLc35rVSMn1HGUWBcDQwictWfvsMbtufLNU4SNAzRCcPCDT916Yedh9bONed07QhDLN9iX13e4R54kFAQhcELjhcLe4PSwJnSH0Kv4dNQ7XWQIGOdZ7Bhquqw8HWukDNf0bfYVhe7I3sepgFUer8CLQOJK15R+MlLXDNU0IzWNErDQNtue372KALK8IO3mvSrvnCAERZbh+z4JbXdTWps3sTLF82BYm+8VwTsbHWLyhnublfeusHT+wRBxGu1qhM3xQ0MMNdbv075w6T4npd4j04zSIUGKeZSsuh/tCyNM7LATjfQGEHilcbUhSDQSEDZFXn+6sqwXhsvpn+OJucWbRkDywhPIY+OV5uK/v4a/fg18l5083wWxKniL0nYlbHICrwA9OQlSYa5exbc7FO+915/O7gBJMkytdoTCXKfIr7Oy8m2M2fyE6kjkQWYgd7SHDh3akXUjkUgkEolEIpE9x6qFuSktzBc7hkCgUzgavapuD1ihsFIiQ0D2Bi9FaBGCIwQL3OcAWqsDziMKQ0jTnpi6eZz3PVv1HbIwf1eglgUySxh67gAAr62McLrdIFGCjzxdjVdqLFzsDbptjhExzKSq2qFP+2nadDa9re7iCnNnqoMz+08eIxsZunlh7ygtzBUkcst/p8jWCaKzwb5c7wL78kASyoFjJzQehRG1ivDspSgzun1P6PaeeruDCAEfStEtkYKRWinG7W/efrJLFLojDwo2CTjpcarMEE2s6HvF40QzLfO7GxoXAst5fy20tbXU2p0yx7ubI3ygSFNsonaZDDpgBLibrM2zdWvzYNjx8tdNslcE78kPPY1uVieITb/0Kn7HrZXvn1pnFuHXRVkhBM9ucBM6Na+ZafX/vi0IwTlR3u8m8nWgXXn/pD2KCjt3/yiDQ4RebnetSZASoSQqBMLiMdTK0cryhZzniv7irjuW9wJCCrL/5YVqY24p/vgbYHIwLQg7F+VQCt6CMr9bltYrm0FJkqkpgrXY69dxiwvYq1f70tedIE3HSdMJuvlljFliael1nGvffcVI5CFhIFey7//+7wfgr/7qr+55nb/8y78E4Hu/93v70aVIJBKJRCKRSGR3ki+DW7Uwr7PUNXSNx3lo6rIapBBl1qYVGy3M/ZqFOQDiPvK68xzhLOR5KZ7q21d03gkfwHuPDx4hxP1Vmt8TFpJ3Ky31l8tHnuEPHkL28s7/115W9wce30+jVq2EHpo7s6U9P6Yeq7w2wXDeXdjStmZef5uN5X1CKQ68/4lbL+w8pYW5hGRrf6fI1lm1Lxch2zX25SoYCB4rNAGFkVWh20lJkaYIH0iLYs26vDyPwHyrQAgYa6TUU8VE8/bnkih0Rx40SjvzgFWhrIJz/RW8pRRMjWSkSjFc03QK37f87lWU99RbZY63LgqUNVitMal+6KWjm63NM5zUyFBam8s9Vk26FwRvpTUHP/6BSlux3OLa62/vUI+2D4Gn3qkKbR84OVZ5/dcDqu6+zCg5CUJYtPpG5b0UzXF7+DZrDobSyjzt5XZnkCRI75FCIq48gzIjleWXk9Msqr1/jOwE6pEJkhdOVtrsN87hzlwCb8C0wbbZqSrvIDxiTfBWZZX3JhCpJpmYwLdauIUFzMwMbmm5P53dAbLsMEkyRKdzHmNXWFx6Db+FidqRyIPIQJ7CP/3pT1Ov1/lX/+pfcerUqbsuf+rUKT772c/SbDb5zGc+M4AeRiKRSCQSiUQiuwBvywEGU1qYW5GwklvauUUrQap7FuYywYnStnrVwlz6LmXeWhdxPxbmPiA6XTAG4R0hzbYsXHlngUDwHjkIC3N1HiGKDR2A2mvlZzby0bIq5GK3xhfmxgD4+LPVSuxs5Qq6WNn0bqfkFMNyuNJ2wV3AbmFQvHV9nqWLVdvLyaePo+u3GgwNZWW3UiBEzOveAVbty0UYQvjmjtuXq1AgguvZ8EqMrJfHRg8nJSbVyJ7QnThHrdMtv5kBFjsGFwL7GilZIjkwUrutWUAUuiMPJAIK7fEyYGRAhP4L3lmiGG+m1LWklvY3v3sVAWSdLmlRoK1D5wVeSoosxfd9Ytrup7Q2b2ClxpOsnVOVN3vO2nwvCN5jjz9C42DVaefqK29RrOz9isVG+0rl9eHJIcaG191SXrqcYQdwOHkhOSdK+2opLiLFpcr7h/wEQ37n7mGkL/BSlfEr9WFQChko4yR8QmP2YwhfndR5TX+Zjri2Mx3e46Q//DzcEE+T/9GrhKILrih/ihXwOTvharEueIPwslftfe/IZgM1NoZbWMC3O5iLFwh53o+uDhwhBPX6Iwip6bTPYs0Sy8tvEPqVgxKJ7CEGInY/9dRT/O7v/i4AL774Ir/+67/O3NzcTcvNz8/zG7/xG3ziE58A4Hd+53d46qnb5NJFIpFIJBKJRCIPGvlyWVrZszBf7lpCgPYGC3OLxCPWqrrXbuj9Rgvz+xis6nTKkuyiICT6vgRU7x3Be0Ioq9f6jdDVCo/0jEAtCtRwRvOpUtj+388eBQQnDg8zta/6OQ3Pbr6qWyI5rh6ttLVDm2k/c5s1bk8IgZlXv11pU6lm8n0nb72C90Aoxe5VwTsyMILo9uzLhxBBI/2+u6/UR2QwyOBwMoWe0B02Ct1KYtIU6T26KEisJVsVuoHl3FI4z1hdo5XkwEhWybPfSBS6Iw80Aoz2hF6FtwigfH8P7uG6ZrimGck0SgoW2kXf8rtXEUBaGLJOt7Q1z8vJYkWW4lSMxHiQrM1vErzF7hK8hRAc+c4PVdqCdcx85fUd6tH2kXXnkK6otD23wcp8uZC8du32USHbyXuMUaB68yO/DhsmZQoEj9tHduyQXsvtlr3cbqWQSiC8R0qB7dQYWarabwfhmU7/HEd3Zzq9h5HDddJPvb/S5t+bx75yqZxIa7vgDJhuz9p88K4WQYTSynytwntz12E1NoasN3DXrxG6OcW58+D2fjwCgBAJjcZxAp525xxFcZ1W6+4FppHIg05y90Xun1Ur8snJSd555x0+/elP8/M///OcOHGCqakphBBcuXKFs2fPrs1Cefzxx/mVX/kVfuVXfuWW2xRC8Gd/9meD6H4kEolEIpFIJDIY8iVw3XUL8wVDYR3GhTWxu5AKj8AJSbaaAxg8+BaEDiC2bmFuDaIoShtzIGRbt0L33uM9+OB7Qne/B84dJKcrLbWehfnIh48glGTRJvzO5TK3+8UbqrqTfJmstflMt2PqKNkNn/cZe3ZLA8jLl6/RulqdFDz13OOo9Db25M4BEoQEPZBHu0iP0r58pWdfniH9vh21L5dYVLA4uWpdnhHEen+sUthUo6wlMRZtbZnX23u/XTjahWO4lpDpsqI7vc1Elyh0Rx4GQq/COzWlcXXiJAHwqn9K0HgzI7eOsbpmtlWw1DWM1vsfT5E4h2x3yOs1RB56luYpvne+eNi/2kEIjKiVVua+IAiJFBbpywlGXib4wQyv3hcy1MFP4uU1pAcvl4FlCMOIXfBXrk/sY//7HmPurfWJhwvvXmD8mZM0D03eYc3djSBQ71ylNbSeO/3hJ8f469fXK76/8F7GRw4Ut1p9W/FCcp79PBGuIUWLRL6B9c+vvT8cGhz2E1xW1/velxuRwfdyu1Ns1iQIgUgSRG4ga+C8QbUO0NBP0W6uT261ssV0+lccKX5gx2Nk9hr6O5/CfPldwtWltbbiT14j+cDx8lHSF6XrWJKCcSBTSDIGVDsJhPI4CJKAR6AI2Hu/3xSQTExgpqcxV66glaS4eJH00UcfiAnCUmbU68dpt0/T6V4CIVGqSb1+9O4rRyIPKAO5G/vLv/zLio1iCIEQAqdPn+b06dO3XOfdd9/l3XffvcmCQQhBCGEAeX+RSCQSiUQikcgA2WhhLhO81Cx127QKi5JQ04oAGKGwQpaVZqH0PRS+A3gIqxbmW9h/ANodsA5hDSGr3Zd45Z0DAt4HEjUAe211HiGq9nT1V8vBmNEXyof+f//eIVwQ7B/JePKR0cqyQ3NnNv3rZmQckUcqbXN+jvkwv8ktQfCBmdeqVd26UWf8iUdvt0ZZeZEk5ZjTID7jyBpBrGywL28gQ2PH+iJwKG9wohRcjEzxYv1R3yYKq0uhWxtLYgxpXqwd74X1rOSWRqpopIrxZkY9vVeh22OSEIXuyANJkGWGd2oFLniUlyACvk/j/FLCgeGMSwtdRuqaxbZBq3Vnl34iQ6DW7lBkKQIQwWO1xkuJsg7l3EP/NS+tzRMUhsRTfjbBorwBSRS8t4GDL7yfxdMXccV6/uylL77CE//L9yNul6mxB2i0Zypi977RBpNjNa4tlBXJb85qrnckE/X++5lfZB/HmUXjUfLbOH+cwNja+4/aw1yXixRi8BnApZW5BilxtSaJtYjc9OKQEnJjaCw9g03nKPS6fXlbXWI2eZUJ++GB93kvIxJF9mMfpftv/3ytLazkFH/6OtmPfhRkArYoq7xlUj4regNJrRS+B4InCIlAEsKq4O3u/b5TSZIDB7CXL2OvXwcpMTMz6IMHHwjBO0ma1GpH6XYvomSNFgKl6qTp+E53LRLZEQZyJ/Zd3/VdUZyORCKRSCQSiUTuxKqFue2AHmIltzgP7cJT1wohBIVQgMBJifJ+7Tlf+BbBOwIOIYbvtJfb0+0irIciB6lKEXWLhADOe7z3CMFABiiFrlq36dMCtSDQE01qj+6j8IJ/c64Upj/+TLVCSLiCxsLFTe/zuDqOEusiRAiBs/bsFnoPC+cv0V1YrrQd/MCTyNuJ2Ks2fKr3t4rPWwMjiJwgCqQfQYRkh+3LPYkv8ELhhS7zZcV6JahNEqxOUMaUubyFIS3Wq8esCyx0DKmSDNcSxhqakdtUkkahO/Iw4lXABI9GIoJHubLCLPTpsqYTxcRwxtWlLiZVrOQWrQR6ALbiAsjyAuk81DKk99hEY1ONDQnSe5R1yA33Hw8dAhwaL5NedrckYKLgvU0k9YwDLzzH5S++stbWnV1g7ttnGH/m8R3s2f2R5gso28UltbW25x8f40+/XkbeBARfvJTxo493+t4XJxQX2M/JcB0hPFp9jcL9wNr7CYrH7BG+rc/1vS83Ir3B6IwAuNowSWcFKcAah2pk4AOFcYwsvMj8+P+Fk+uf15x+lZqfZMgfG3i/9zLJU4dRzx7Ffeu9tTbz12+jP/448uBYKWx7W4rcvgNSAwFkAUkdGMRkWw9B9gogZek+tgnBW+gENTmJvXIFN19OSPYrK+ijR5H1ncup3y7SdD/e53TzaaTMWF5+g9HRj5IkzZ3uWiQycAZW2R2JRCKRSCQSiUTuwKqFue9ZmC9ZrPfkxjM2UtpkG6FwCDyCNGy0MG8T6JRWb1uxMPce0e2CMQgfCI37rOr2jhDoid1l1lp/cZC8W2mpv9Kr6v7oUYQQ/NcrkyzZhCxVPP/k/sqyzfnzyLC5DLdhMcyUqorm036aNpsfqPTOMfN6VayvjQ4zdvzIbdagFLulBOR9TUyIbI6Ax4vlG+zLd6qqfl3odiLFyQQn1ittjE5wyUahuyDdUC3nAyy0CxIpGK1rmlnCvsatzx9R6I48zLgkIIIHJREukDiBEf07/oeyhLyuIYBxnqWOYX9zi64tW0Bbi2x7ilqG9KWNrFMSpxQmSxEhIJ0rhe9+B4vvUoIQWJERgiDpFeMqbwhSEHbsmnDv7GbBe/yZk8y+eZp8ft1aeearbzD62DGS2tbjdXYSAdQ7V1gZXnfr2Sh2A3zxUsaPnOwgB/DxX2A/jzCHxiPlNZQ/jQsn196f9Pu44uaYV0t32Mr2o7zBIPAyLXO7EQidIIwlkKGSBG8tvkgYWXyR+bG/BLF+DppJ/4pH8x9Fhy1O/H1IyX70I7Tfvgy2dzLzgfwPvk7t//59ZfGiSsqJ0N6U1ubBgUrBr5QW57L/1uZBeESQCAFhdbaZuPdnN9moo8b342bn8N0uyfg4vtMhmZhAHziw5x2ysuwg3ue0O+cRUrO09BpjYx9FDqwCPxLZHexdD5hIJBKJRCKRSORB4QYLc1TKUsfQzh1SQF2XOd1WKKyUyBBQvUxo4TqEVQtzalsbomy3IXhEURBS3RNRt45znhA8IYReXnefURcQoltpqvXE7pGPHsUH+F9PPwLAh58cJ9UbBjSCZ2hu89XYJ9VjldcmGM67C5veDsDsOxcwrapIfvD5pxC3++yCL3+UAin2/ADNXqK0L2eDfflOVU14klCUIpTQeKGwlCJAYF3oTnpCd5pXhe7QE7qDgNFGSk0rJodqtxTTotAdiYBNyuPfqkAQkDgBfdR59zUyaqlitJHiAix2BmsprLyn3u5Qb3fQRYE2liwvSPMcaR1eKYpaRp6l2ET186PY1ZQTjUpHDS8UiS+A/ltRbwcy1JF+AhEypB8miIIglgk7/NcUUnLkOz9UaXN5wZWvf2uHerQ9NNpXqq+bdQ6Nr1eVzueKb12/tbPKdmOF4iLrrjSJehWoRgGdtEeRYbAXehE8Iji80jhdIyQJIkkghF48kkDrBGMMSb6fkdbzlfW9KLic/jkeO9B+73Xk+DD6u5+ptLl3ZnBvrFd7I0QpcKts3YnMGTAFmFYphPeZIDwEAZQ53pu1WFEjI+hDh8AHzOXLuPl57NVr5KdO4ZYGO7FjuxFCUK8fQ8qUTvsc1i6ztPxNQtgb16NIZLuIYnckEolEIpFIJLLTVCzM67QLS+E8bWOpaYmUpYV5AKyQJBseXKVvgbc9C/MtVLwUBmEsdItyIEPf3wxw36vo9sEjhOhVdvcXkdxgYX5WkMwLasdGyQ4O87XFUS52SiHvY89MVJatL02T2M1VY0/JKYZltWrkgruA3cLgmisMV7/1TqWtObWf4cNTt1/JlwN+SAU6VnUPitK+PEeGoR22Lw8kwQA9oRuFEaUbQwCs1rgkQReGxDrSbo42ZuPqLHUM1gfGGposkUyNZLec4xKF7kikhwCTeLwsBW8R+it4SwmTwxm657yQW0+72JwDybb0w3uyvKDeapN1uujCoK0tzyt5gQgBqzV5rUaRapySD53wbVl31igF75y9I3g3NgjeQ7tG8B46coDRx45W2mbfPE1ndmFnOrQN6GIJZdqVtk+8b6zy+qXLg6tcvyD243oXcyFyEvVK5f06GcfcwYH1ZxXpDU6mgCiru5MEAXjj8J7yuUJK8sJQa52kUTxaWT+Xs1zVXx54v/c66fc+hxhtVNryP/o6wdzwbCNVL7NblwK37fb+bYNt0e9zX1nh3Ttuvdq04C1qGfrQIdTYPtziEubyZeziEsW5cxTnzhPM4LPqtwshFI3GCQKedvscpphjZeXtne5WJDJQotgdiUQikUgkEonsNMUyuLxnYd5gqWNw3tM1nkaalJWaMsH1LMHVquW29/jQItAFIWGzYncIZVW3tQhnCVl23yKWdxYIBO97Vd07Z2E+8tFyoPRX3ymrup96ZJSx4epnNDR3elN7k0iOq+rAWju0mfYzt1njzlx76wwurw6sHHz+6dI28HZY36u+F9HCfECU9uUriJAiqO2ofbkKBoLHCk1AYeS60G1SjUsUuihQzpF1u2hbHahcyS2584zWNZlSHBjJbpkHHIXuSOQGBBTaE0TA9ARv5fv3hdCqnIiSJZJmVuZ3G7szIqoAEueodXMaKy2yvJxEkxaGrNMlsYaAwKQpeS3D6AQ/CGeX3YAAS9aLlNCEPVfhvSp413aV4H3oxQ8iNjrXhMDll14h7FHrfMHN1d1PHa9Omnv1WkrLDOZ7Y0RSqe5W4gxCXK0sc9RNUfeDtY5X3hCEKp1r6qWVuUoSgrE478ldQKsE7z3WOpqLH0L70co2lpJTLKpTt95B5JaILCH9kQ9X2sJcC/OXb91iYUDpMrNbCLA5uKKs9C5WoM8TfoIIZWU3ILzsVXtvAilQY6PoI0cgSbBXrmCvXcPNz5G/fQp7/Xr5jLwHkTKlXj+O82063ffo5pfpdLbmPBaJ7EUGPjLivefNN9/kzJkzLC8v49zdZ6b+w3/4DwfQs0gkEolEIpFIZAfwFopWaWPeszBf7CzTMR7voZkpHBKPwEiFCn5txqr0bQKBEDogss1rUJ0uwgfIC0g0JPcv3nnvCN4TQmlF2XfUewhZrcyuvSxBwMhHjnKm3eBriyMAvPhctVpad+ZJO/Ob2t0xdZTshkkFZ+zZLQ0Km06Xa9+uWqiPHD1Ac+IOFcPBAb5nJSjv23I+cm+U9uWhZ19e3zH7chUKRHBYmRGQGFkONK4K3V4pdF6gvC8FqBuetzuFo1U4hmsJNb0qpN38vY9CdyRyG3qCd2oklvJ7EgCv+jMw3kgTxhql44pxnoWOYXwoG0iu7+0QgDYWbSxeCKxOsEGTCIfv5Xv7pIxSEN6jnEM5tzFa98FDgKGGpoxUURiSUGBFyl6oM5KhAX4Cr673MrxX2OkM73S4yeTzT3H1G2+utbUuX2PxzHuMnTy2I326XxqdGZZHT6y91lnG8YMNzs2UFd/WC74+k/I3j+W328S2cl6McyzMowiluZP6Grn9W4jeMSuRPGGP8bp+d2DXf+kMaPBS49IGKIlIE1S7i3Wla5QRgiRJMMaiVMbY0ie4PvqnBLE+ue+q/hKZH6cWxgfT8QeA5PlHMS+dwp9Zn/RQ/NkbJB99DLnvFve9QkCSlc+yzoLvlhXfIYA0ZQW46If0VMaJiCB7ld6KgN30MSp0gj54AL/Sws3NYS5dQo3tI3iHm19AHz2CrNfvvqFdRpI0qdeP0elcQMrymVWqBlk6cZc1I5G9z8DE7na7zS/90i/x27/928zOzt7zekKIKHZHIpFIJBKJRB5cipUNFuZNCuvpGEc7t2RaoqSkLcvMbo8gCxvEK9/uZaR5hKhtbr/WIfIcihwRAiG9P/ty6NmXe/ChrOoWAxjgFUnVnk2fFyRzgsaTE+ixOv/bG0cBwcHxOo8eHKosOzx7ZlPjIhkZR+SRStucn2c+bE4wX+XqG+8QNoqRAg5+8Kk7r+R8uaCU0cJ8QKzZl/shRNA7Zl8uMcjgsLIUT4ysE9aE7hSvRJmn6wO1TgflqlU1hfUs55ZGKmmkivFmRiO9+RiKQnckcmeCLC3NU6twwaO8BBHwfbrk7Wuk5NbhQsrcSs5ix7CvrnfFd1KGQFoYdGHwSmK1xoYErMNLgUuSsk1rpCuFb+ncbuj69rMqeIdOabwSCpJgsEKzZwRvt7sE76kPPs382+cwK+v239Nffo2RRw4h9+A9kDYtkmIFm67fj37XM6NrYjfAly5nAxO7C5FwKYzxCOV9rBSLKPltvF/Pbx4Nw0z5/VxVcwPpk6CX2y1TnEoJaYZwDqUE3jmMBClUeR8sHHlRUJdDTHS+g2uNL6xtJwjHdPpnPJL/KIrBVqfvVYQQZD/2UTr/rz9Zr2w2juKPX6b2Dz55+xVlUoravuj9WEhSMA5kWgri234ODARRPmuG4BEkWxK8AeRQE1mvY+fnsbOziNYKyfgEvtMmmZhEHzhQTjDeQ2i9D+dy8nwGKWssL7+BGv0ISTJ895UjkT3MQL6pKysr/M2/+Tf57Gc/y/Xr1wkhbOonEolEIpFIJBJ5YMmXKhbmix1DCIGOcTTSMqfbCIWVsrRMXc3r9o5QsTDfpFjdboPzCGNKoXsbysS8d0DA+4AcQFY3eEiqede1l9ctzOeM5j9fmQTg489OVpaTpkt96dKm9nZcPYoS61WwIQTOurN3WOP25EsrzL57sdK2/7Fj1EbvNAgRwDlQqqymUHtvoHevEfAEsYIIGkEd6ccQgzdIQ2JR3uLkqnV5RhBlRWmRpXgpSPMC6Ty19s1Ct/OBxY5BK8lwTTNa14zU9U37iUJ3JHJveNXL8FbghEc5ieiTa6sQZX53piSjdY1xntYO5HffCQEo58l6NudpNycxFt2zOdeFWXOgKG3ONV4+gPneAoys4VE9kRuSUE5K3AvI0EC6iV5cx85bmkudcOg7PlhpMyttrr727R3pz3bQaFdjbx49up+NyTWnFzUzrcEJa+fEeOXo1PKbWKrZ4o/ZwyRhcNEtyhc4qSlzu5uAAKXQvWegwpXPGqJnZ26sQ64cYtS8r7IdI1eYSf/Hjlvy7yXUkf0k3/FEpc2+eh53+spt1ughKF2nkt7ka9vtWZsXG6zNt/vv4AlQTq4OAhHU1nehJMnEOPrQIfABM30ZNz+PvXqV/NTbuKWl7ez4QMiyAyTJGJ3OeaxdYWnpdbwfzESaSGSnGMjV85d+6Zf4xje+QQiBF198kX/37/4d3/jGNzh9+jRnz56948+ZM2cG0cVIJBKJRCKRSGTwrFqY286ahflS19A1DuehqROMUAQEVkhUWK+GUr5TTgwNXQSbtDDPc4RzkOe9CuGbRa/NEgI45/Heg9g5C/P6yxKRSEaeP8y/u3AYFwTNesL7H6tW4w7Nn0VsYkRkWAwzpao26NN+mnZo32aNOzPz+qlKHpxQkgPvf/LOK3kPhLK6QKltmaAQuQuiRQgBEYYRvoYMQ3dfZ7u7gEN5gxMJngQjU7xI1oRuhCAtekJ3p4vyVVElBFhoF0ghGKtrGmnC/ubNVU7rQrePQnckcg84FbCqFLy9CCRObP9Yfo9EylLw1pJmlrCSW4odyu++GwLQ1lLvdKm32qRFQWIMWVGQdnOUtXgpKLKUIsuwSYIXD9CJRgiMrBFWBe8QUMHQt4Njm9ltgvfoiaM0D1fvv669+jbFcmtH+nO/3JjbLXXKs8eqFtFfujy4SuRcaC4ztvZaCEemvlZZRqM5YQ8PrE/SreZ2S1zWLO93lQLvSLs55AXGOpwXCCkxhcF7T3Pp/dRc9VhpqYvMJa8NrO8PAtkPfhDq1UnU+e9/jeDu4ZojZCl4yxS8K59xnSnFb9sC7F03sTk8BEr3iSDvT/AGRC1DHzqEGh3DLS5hLl/GLi1RnDtHce48wZjt63qfEUJQrx9DqTrt9lmMWWZp6ZuEsDvvHSKR7WAgU9J/93d/FyEEP/RDP8Qf/uEfImOuXCQSiUQikUgksm5hbtqgm1jvWelaWoVDK0GqJSsiwQlBQJBsfDj1LUQweDxCbCJPzAdEpwvGILwj1OrbImZ57wihtDKXQjAIhewmC/MLgmRW0PzAAWytxv/34iEAPvr0BGqj/Zx3NOfPbWpfJ9VjldcmWM67C1vqd3t2gcUL05W2iadOoBt3saJ3DpAgVLQwHwCBAi+6yDCECAnS79+BXngSX+CFwguNlRovNEEIijQFwVpGd63dQd7gjBYCzLcLfID9QymZlkwNZ9yoK1WFbqLQHYncI1YFRO97J5wgcQKr+vPdqaeKfY2MEHKM9Szugvzuu7Fqc54WBidlme+dbLA5VwqblNc06T3S9vK9d7rj94sQGFlH+zZWpiQ+R2Fwm3Xh2SF2k6W5EILDn3ied/7Tn65NEgzOMf2l13j0U58YaF+2g8R10PkiJhtda/sbz4zxxoV18f7L0xk/+nhnYN/tc2Kcw2FhrSJOy0us+Bnq4eDaMgf9BFf8HEuy/5MMpC8FRS81TtUgy8AHkBJhLYmxuLbB984dSChMgZQZE+1PMj30X3Ciu7a92eRlan6Spj9yu11GNiCaGdnf+iD5761PevDTC9gvv4P+zrvELUGvyjsBqcq4LV9AcGXlt2+V/6rtszYvc7slQkAIvW2K+3A/kQI1NopsNrGzs9iZK8ihJjiHX1khOXiQZHw/N91M70KEkNTrx2m13qHdOYeUipWVtxgefnanuxaJ9IWBqM6XLpX2gD/3cz8Xhe5IJBKJRCKRSGSVjRbmSZ3lriUAnaK0MHcInJA4oZAhoHpT1YX3+NCGnoW5EJuozO50yv0VBSHRkGyPLaFznhA8IYQB3fPfwsL8lXK/oy8c5T9NT7FkE5QSfPR9E5XlGovvoVxxz3uakpMMy6q9+AV3AbuF6oQQAjOvVu03VaqZfObk3dbsHSeyfIpTg7OTfBgJeILs2ZeHOjLshH35utDtRIqTCU6keFFWRELoCd3ulkI3wFLXYH1grKHJEsmBkRryhtHzKHRHIveB6NmZy1AK39DXCu/RuqaRKkbrGiFK14a9kv6nvCfLCxqtNlm3izYWbSxZN0cXBQSwG2zO3R63OQ9CYGSDgMTKDBEcKtz7vcdOs5sqvOvjY4zfcJ+0ePY9Vi7dxVp5l3JjdffUwf2oDdfmua7i7bnB3XN0RMoMo5W2IfUVHFXB8HF7DDGAP78gIIPtid2aUK9DswG1GmS1UnjMMlwIkBfQyTHtLqabYzqKA/l3QxAbN8h0+pcYsdL/zj8gJC8+gTw0VmnL/+Q1QmsTNthC9KzNs3KiylqVd1E6m/ntq5IOwvf+5gIRJIT7fxYVOkEfPICanCR0uphLl3ALC5jLl8hPn8Z3OnffyC5ASk2jcRzvu3Q6F+jmM7TbW4vhikR2OwNRnqemSguRiYmJuywZiUQikUgkEok8JHi3wcJcQZKx2Dbk1mFcoJGqnoU5WFGt6ha+BSEQehbm94wxiKKAvCgrc7LtsUlcrej2wSNEOYu876hLCFm1EK+/LJG1hMYzB/n/nDsKwHOP7WPohmzi4bnT97wbieS4Ol5pa4c203761ivchZWZ66xcma20TT5zkiS9y4SFXh46Sq1ndkf6h2gTgu/Zl2cIP2j7ck8SCoIQOKHxQmHJ8EJgshR61ZLKOWrt7i2F7lbu6BrPaF2TJYoDIxlaVb+bUeiORLYBAYX2BBkwMiACqD4J3mV+dw2dSEZrGusDrXy7bWH7iwAS66h1uqXwnRdoY0mLgqybk/Rszk2WUtQyjN67NuehV+ENEhcF7/viwEefRdWqlfGXvvgKwe89S95G58oNUTYJLz5RtTJ/6fJd3H62mbNivPJX1aLFsqpOKm2GOkdusAnvF9KZ9dxuVYMsheEhGBuBRh3dqBFqdfKsrPwOPpC32tilZcL1OuP5hyrb8yJnOv1zPPdR8fsQIZQk+/EXqo2dgvy/bcESXqietbkuBW7b7f3b7lmbb8/fpKzwLq8VwqvqhIf7QA010UeOIBplpbeZnsEtLJK/8w5mehruxd59h1GqQb1+DGMXybsztNpnyPOrO92tSGTbGYjY/bGPfQyAt99++y5LRiKRSCQSiUQiDwnFcs/CvAO6gQ+BpdzQLixKQqYVhUxwQkIQqLA+ECDcCiIUBDzcq4V5ANodsA5hDaFngbwdOFcKscH7XlX3ICzMT1VeJxcFyTXB8AcP88WVCS52ykHCjz87WVkua11D58v3vJ+j6iiZqE4KOGPPbmmgN4TA9A1V3bpRY+LJ43df2fkyBw8Jyf1nrEduT8DgRQdJc82+fLC2rav5rj2hG4URtbWMW0IgzQuUc9RvU9HdNZ6V3DJUS8gSycRwRnaDi0MUuiORbURAkZSCt1UBGUD5/nyZlBRM9fK7h7KEVuHId2l+990QIaCNod7uUGt30EVBYixZXpDmOdI5nFIUtYw8S7FK7blq7yAkhawTkDiZIoPrneP3BrtF8E5qGQdfeH+lLZ9fYvbNe5/AuFtQLifNFyptLzw1Vnn98pWU7gDnsbRFxhVGKm37xWusiOrE0kfcIbLQfzt+6TfkdqsN9+FSlhXeoyMkYyP4WoZRGtkYwqcpRghMnlOfOUKjU80Z78rrXNNf6XvfHxTUyQMkzz9aabNfegd3aW7zGxOA0pDUy1lbLgdXlJXeRQt8Dtz/dSyIUFZ2s72CN0qSTIyTHDwIzmGmL+PmF7BXr5K/cwq3dO/PljuF1mNk2UHy4grGzLO8/C2s3f39jkQ2w0DE7n/yT/4JAL/5m79J2Cv+SpFIJBKJRCKRSD/Jl8qHfO8gqbOSW7yHduGpa4WXioDASIXCr924S+/wdAl0CZuxMO92Ec5DkYNMtjXz2XvbszAHMRAL8wA3iN31noX5yEeP8r+dOQbAoweHODTeqCw3NHvvg6IZGUdlNd9v3s8zH+a30mkWzl+mO79UaTvw/ieRd7WS9+VxolT5BLdN1vORmynty5cRQUOo9ezLBzu5QAWDCB4rNAGFkTW8khRZivDrQnet3bmlLm2sZ6lrqKWSZqoYb2YMZdXvexS6I5HtJ0gwvQpvpwLSC2SfNOiaVuxvZjRSRU1LljoG5/f2eFvF5rzTRRdm3eY8LxAh9GzOaxTp3rI5D0JiZEZA4aRGBouMgvem2f/0CWrjY5W2K197A9vp3nqFXUyjPVN5PTq+n0yvX4QLL/jGle1xYLpXzojxyutUOFrqm5W/s0Jy0h7tW1TDKhtzu21y689B6gQ9PEQxNIxpNqDWwEpJqNcwWcrU8sdITLVifjH5Nkvq3f52/gEi/Z8/DHrDc0cI5H/w9a3rO0KUtuYqLeOZVq3NTRdMC+77vBg2CN4CEdS2HquyXkMfPowaGcUtLmIuXcYuLlKcO0tx/gLB7O7zepYdQOt9dDoXsXaFxaXXcG4T1vSRyC5nIGL3Jz7xCT772c/y0ksv8ff+3t9jYWFhELuNRCKRSCQSiUR2J96BaZf2bVKBSlnqGKzz5MbTzBIKofAIPHeyML9Hi0PvEd0umALhA6G2fRUZPni8L23MpRSIQTxiqEsI2ao01V+WqOGM9448wjcWy3ztG6u6VbFCbeXe8x2Pq0dRYn2AJ4TAGbe1jDPvPFdeqzpdZaND7Dtx9O4ru15Vv1KgY1V3X1mzLx9C+trA7ctVKBDBYWVGQGJkvaxqTDXSB9KiJ3R3urfUpZ0PLHQMWklGM81wTTPaqB4zUeiORPqHl2CSgJfgpEc5ieiT4D1S1zQzzUhNIwUsdsyeye++E2XuuaPWzWmstMjyHG0taWHIOl0Sa0p78Czt5XvvDZtzLxKMzPAkOKlRwSLZOxb0u0HwFlJy5Dur9tSuMMx87Y2B9WG7qHeuwob7e6Tie5+p3nN86fJgxe6WqHGF4UrbIXGOGXmt0jbuRxn31Yzv7WZjbreXKeE2zxeJFOhEUghFGB7GDg1hlII0wyYNDtvvLwXPDVzRX6RrrzwQ58t+I/c1Sb/vuUqbP3MV++r5+9xwssHavOhZm9v15+P7qvIOBEH5TBoEIiTbOzlDCtS+MfSRI5Ak2Jkr2GvXcHOz5KdO4WZn2c0HV612FKUatNtnsWaFpeXXCSHa+0ceDLavnOMu/PzP/zwnT57kp3/6pzl27Bg/8AM/wJNPPkmj0bjrur/4i784gB5GIpFIJBKJRCIDolipWJgjBIsdQ7twSFFWbK0IhZWyzP7cOBjmWhByAgFxrxbmrXYpeBeGkOrSAnCb8M4DAe8DiRpMxfFNFuaXBMlVwch3H+GXzj8KCMaGU55+tDoQNzR39p71vGExzJSq5hJO+2naoX2bNe7M3LvnKVqdStvBDz6NkPfQI+vLSREISAb2CPfQsWZfHnbGvlxikcFhZQo9odsmCqNTpHfowpBYR9a9tdAdAiy0C6SAsbqmnpVV3RuJQnck0n+cCojgSYJEhEDiJFb4bXNT3cjkUEphHaMNzVzLsJwbRmoPzqQoAWhj0cbihcBqjQ2BxDq8EDil8InCJQnCe5RzKOt27SmtFLwD2gMSlDcgwQ9uePa+kKEBbhyvZpEevFwBliEMD+x62Tw0ydjjj7Dw7oW1trm3zjD+zEnqE/sG0oftQHlD1p0jr0+stX3g8X38yWvrtsJvz2uutSWTjcHFFJwV4xwI631IcRj1JoXfR7rB6eakPcqCXMb1azYPvdzuJEMbsEmGtp1bLpcmEh88XeOoZTW63Q46S1BZRj0d44D9LmbUX6wtH4RjuvaXHLn6PSRpE5FliG10vHrQ0N/9DOarpwlzK2ttxX9+meSZo4jsPj63VWtzqcD2BG+ZlDe03pYV4DJlazepHoJECFlOYkURcNt6vyt0gj54ALfSws/NYS5dQu3bR3AOOT+PPnIEWb/HZ/UBIoSkXn+UVusd2p0zSKlYXn6T4eHnEHtg4lgkcicGdia/evUqv//7v8/i4iLee/7wD//wnteNYnckEolEIpFI5IEiXwKbr1mYtwuLcYFWYalpiVMJAYEVksSvD9oqb/F0ehbmCinu4XY+NwhrIS9K6zi9fVXdIYDzDu89iB20MH+53K9//gR/cr4cNPzYM5OVB3bhDM2FC9wrj6nHKq9NsJx3977+RpyxXHmjapnYmNzHyJGp26yxgeABX9r9KbmtExUi6wRCz748gVDfAftyj/IGJ5OedXmGTTRGa5R3JIUhsaWd7+2FboMPsL+ZkiWSqeFa5XCJQnckMjisCoheZZdwkFjRl++blIKpkYzpBc9wTbPUMaTKU9MP3rVChtLdQhcFXimMTpAhEKwlSIlLVCmGa410DuUc0vldd4rzQmMlJB4QYQ8K3k1w7KjgffDjH2Dx3CWCXa9GvPTFVzj5t79nT4k1jfZMReyuje5jf/Mic631qtAvT2f8yMlbi7z9YFnUuRaGmGRd2HyUq3xbXeQpt35vnJHyiDvE2eRS3/oifYGlThAKp2q3FbsBskTRKRyF9aQ6pdXO0VrTDTA++R3kywvMm1fWlje6xbWJV5m6/gKik4NSyFpaCt/qwTt/3g9CK7K//RG6n/+rtbaw2Kb48zfI/tbz27ADWVZ5ewvelM/HUgMBpCnf28L5MQiPCBIhBCFIBGy74A2ghpqoeh07N4e9PotYaaEnxsnbbZLJSfTUgfIZbhchpabROEGr9S6dzgUQEtU+S7P52N1XjkR2MQP5ps3OzvJd3/Vd/Pt//+9xzhFC2NRPJBKJRCKRSCTywOBdmUlmO2sW5osdg/OervE004RCJjghCDdYmONaCE9pYS7uwcI8BOi0wVqEs4Qs29YHfO8dwZdW5lIIBqKaycsIuVJpqr0i0ZNNPu+ewwVBqiUferKaO9hcuID092YXOiknGZFVG8cL7gJ2i3aj1946g8uLStuhDz59bwOyzgGiFLljVnf/WLMvH0aGDOGH777OtuFJfIEXCo/GSk2RZJhUo5zt5daa2wrdAEu5wXjPWF2TJYoDIzXUBteAKHRHIgNGgEk8XgasKr9riRN9ybnNkjK/u64ltVSy1N37+d13QkAZ57Bqc97NSYxBr9qcF4aAwKSrNucav8vyvZ0oz/VeaJxIUN4g2Ds2sjI0kW58xyzN06EGBz70vkpbe+Z6pdp7L1DvXCufC1YRkv/p/dX7jy9dzgbuiHxWTFReZ1hSeZZ5sVRpP+Imafr+Va6u3rd7meDUnS3dhRBkWuEDWBROCJZX2jhn6ay0ODTyP1FPDlfWaWXvsTz5HmpsGKkTfKeLm1vALizju3nUJDagnjuKevJQpc38xZv468u3WWOTCECtWpurdWtzZ6FogeuwFWvzIHxpZY6AICH06VlKSZLJCZKDB8E5isuXcfML2KtXyd85hVveps9pG1GqTr3+KMYuknenaXfO0s1ndrpbkch9MRCx+1/+y3/JqVOnCCHwd/7O3+HP//zPmZ2dxbmyCuRuP5FIJBKJRCKRyAPDmoV5G5J6z8Lc0jGeEKCWJTgkTihkCFSGZ32LQF7mkN2L2N3uIHyAvCAketvFUuc8AU/wATmgimOhb7AwvyzQM4LmR47xf06XgzDPP7GfWrrhdw2Bobkz97R9ieSEOl5pa4c20356S/01nZzr367ue+TIAZpT++9h7VCK3VKVVfnRwrwvBCxetJHUS/tyN1j7chUsCIETGi8UeVLHphrVs+5NjCHLi9v2qJU7uoVnpKbJtGRqJEMn69/HKHRHIjuEgEJ7ggwYGRChf4L3SF0zXNOMZBolBAvtYjdHhm4bAtDWUu90qbfaZeW3NWRFQdrNUdbipaDIUooswya7J9/biRTXE7y9UCS+4P5yagfLTgveEx94inSkWWmb/vLrOGMGsv/tQAZHvXu90vb4o9XJmtc6incXBnv/tyjqzFL9bI8zy+nkIn7DMSoQPG6P9eWcVm4/IL3BybTM7hZ3ftZQUpAmCus9JCm5sXTaHfJOjisCx4Z/AnVDBNT19Ot0hxaRw03U/jHU8BBCgF9u4+YWcEsrhOLhOJ/eCSEE2Y99FDbGLzlP/kff2O4dlW5WSVYeV7YDzpQ258VKWfm9SVYFbxCIIHui9/Z2exVZr6EPH0aNjOIWFzGXLmMXlyjOnqW4cIFgtjZxul9oPUKWHSIvrmKKOVaW38KYxZ3uViSyZQYyIvVHf/RHCCH4B//gH/A7v/M7fPd3fzf79u3bU9YykUgkEolEIpHItrDRwlw3yG2ZMdfOLZmWuESXz/ZCkoT1ag/lLJ4ugS6QIO5m52YdoiggzxEEyLbPvhx6cWq9yalClPlf/edmC/PaK+UzxV8d+xBLtvxMPv5s1R68tjxDYu4ta/uoOkomqtUjZ+3ZLQ/eXv3WO3i7sWoHDn7wqXtb2Zd56CgZLcz7RCAQxFLPvryBDKMItve7cidkMIjgsEITkLR1syd0G7S16KIgu8EVYCNd41nJLc1MUdOSieEaNb0+0SMK3ZHIDiOgSErBu7Q2B+X78wUcb2ZkWjLW0LgAS929I/ptB6XNuaHR6lBrd3rCtyXLC9I8R3qH1YqillGkKU6pHa/2tqQ4meBE2hO8c/a64I1YGYjgLRPFoe94vtJm2x2uvvxW3/e9nTTa1UpK2Rzl5Hj1fu9Ll+9c1dwPzoqq6F7Hsl9c4aK6UmkfCU0O+uqy24n0Bq/KWBmn7j7RVytBIiXGg9AZK60u1hraK8toMcLR4R+7YY3AZfVncKBOMjZait6jw6j9Y8hGneAcbnEFN7eAX2ntOrFykMgDo+i/UX2Gcd96D/vty9u/M6F6Vd66FLhtt7Q5t22wLdikE0ZpaV5ee4VXiKB6AngfkAK1bwx9+DAohZ2ZwV27hpudJT/1Nm52jt00eyLLptB6P53ue1i7zNLS6zjX3eluRSJbYiCjJZculfkdP/VTPzWI3UUikUgkEolEIruTW1iYL3UMIQQ6xtFIFYVIsKKccV6xMPcbLczvMugVgHYbnEdYQ9BpOVN+W38VBwSC972q7kFYmM8gZNUGrv6ypPbIGP965VkAnjw2wv6R6uczNHf6njafknJUHqm0zft55sL8lrqbL7eYfadqqbnvxFFqY/doke0cIMtjJRlkfvRDhGj3BsCGkSEdqH25wKGCxUsNSDppE5fq0o7XOtK8IC1uL1YZ61nqGmqpZChL2N/MGMrWJ8HcKHTbKHRHIjtCkGB0aWnuVEB6geyDniklTA1naCUZqWm6xtMp9o419naivCfLCxorbbJuju45ZWSdHN07r5pUr9mcu52yORdgyfBC4YQm7PkK7yZe5AMTvEcePczQ0QOVtuuvnyJfXLnNGruPWuc6YmO1qhB87/tHKst8/UpKPuCv8rxoMk+1Cvp4mOU9OUNbVIWwE/YwOvSn+lx6Q0CW35G7WJmvkmmJFGAoJ4ouLrVw1tJptRlOTzLV+JuV5V1o8V77D5HDdfTBSfTUJMnYEKrZJNk3ito/iqyl+MLgFpawc4v4dofg9s73dLtIP/UBxFB10kH+B18n2D4coAJQunRCkxJcDq4oK72LFvgumzlXBhHKDO+epbnwCXjVP2eCVKMPHURNTODbHcyly7jFRYpL75GfOYPv7B5BuVY7glJN2u1zWLvC4tIrUfCO7EkGInZPTJRZH8PDg8w9i0QikUgkEolEdhlrFuadDRbmho5xOA9ZlhIQWKlQ+DVNSgTAr8Cahfld8vGKHOEc5HkplOrtF0qdt4RQWq+LgVmYv115ncxAMi2YefpJLnbKgZcbq7p1d5GsPXtP2z+hjqPEelVsCIEz7uyW+3vl9VOVmftCSg68/8l7XDuUld1KloM9Ma972yntyzvIUEeQ9AbrB1U971FrOd0JuaphdIqylsQ60jxH38GK1fnAQsegpWA0K+2Lxxrr3/NbCd02Ct2RyI7hJdgk4CU46VFOIvqgk6SJYmI4o6YljVSynFvMQyjIrCKAxFpqPZvzLC9IjCHt2ZwnPZtzk6UUtQyzEzbnAoyo4UXSE7wlSdirgnd9oIK3EILDn/hQxVo5eM/0l17t6363E0Gg3r5aaTtyZLx0ZerRsZJXrw7OdWaVMzdkdzcwHBCLnE4uVtoTEh6z1cmi24X0Bgh4qe+psnuVVZcbp1KscyyvdMjbHWxhmKz/DYb045Xl2/Y9Zlp/BoDINGpslOTwAZKJ/ajhIWSzido39tDne4t6SvpDz1fawrUlzBffvvUK27LTnrW5yspnI9spRW+Tl5PIw726mASC8IRVO/Pev/0WvdXwEProUUS9jr12HTM9g19YIH/nFGZmBnbBNVoISb3+KEIq2u3TmGKBhcWvY+3uyxqPRO7EQJ7kP/nJTwLwxhtvDGJ3kUgkEolEIpHI7mTNwtyCrmO9p5Vb2oVDKwE6xSPwCBK//uArvcGT4+lQWpjfQfj0HtHuQmEQ3hHSbNsFLh883pc25lKKAQmEt7Iwlwgh+Dej3wnA1L4ajx2pTrAdmj19T7/+sBhmSlWF8mk/TTvcm/35jbTnFlk4X7X1G3/qOGnzLhMVVlmzMFflT4yA2lZK+/LlXm5fA+lHBmhfHkiCASFxQmNlQp41ECGQGIsuDPoONpkhwEK7QAoYa6TUM8V4c73aKQrdDw/eOUyek7dbdJaXWJmfY+n6VRZmplmZnyP4nR9AjazjVMAqj1fghSdxspzMts0MZQmjdc1wpkmk6DnIbP9+9hoyBLQxNNrrNueJ2WBz7hwuKW3O8yzFDtLmfFXwpqzwBlFeJ6LgfVdq+0aYeO6JStvS+cssX5ju6363kxutzENthBceqd7rv7QDVuZzNFmkKjAfD9dZEMtclXOV9im/nzE/tO19EID0Fi9TvEwwSePe1hOCmi6nDnul6bS7dIuC9vIyBDg6/KNoOVpZZ7b7VRbzNzdso8xgTsb3oY8cQI+PIYeGHvp87+SFk8hj+yttxX//Jn6p098dy1tZmxsw7dLe/J7Pl37N1rwieoekfC7oB0qSTE6QHDwIzlFcvoybX8BeuUL+zju45Z0XlaVMaDROgBC0Wu9gzAKLiy9jzNYcziKRnWAgYvenP/1ptNb86q/+Kt1utECIRCKRSCQSiTyE3GRhnrHctaXjeGGppwojFEaWg99q4wO7ayE9hJAjxF2qGtodCB5hCkKiIdn+W37vSiHWhzCgrG5AXkHIpUpT/WVJeOwgf2UOA/DxZyerq9icxtKle9r8Y+pE5bUNlvPuwm2Wvjszr3672hedMPXMyXvfwKqFuZCg+2MN+VAjOgThkGEEEVKEH7n7OtuECgaCxwqNR9FJhwgCdGFQzqGL22d0E2ChY3ChFLrTRDI1XFuLc49C994nhIAzhqLbpbuyQntxgeXZ6yxevcL89CWuX7zA1XNnmDn9DlfOnub6xfPMXb7EwpUZWvPz5K023jlW5maZvXQRe6fjKTJwbBJwsvx+BhFIrOhLNdm+RkamFaP1FBdgsfNw5XffjTWb81abrNNdm2SUdXN0XiBCwKaavFajSAdkcy7AyFLwtqJ06oiC971x4MPPkNSrYvDlL73ai9zZ/WT5PNLllbbvfN9Y5fVbs5r57qDcZ3oIcVN19xAFB1jmTHIJQ3Vi3kl7bC0XeTtJXBenUpzKyLP9OHlv98VKCtJE4kSCF5Kl5RaFMXTbbRJZ55GRv3PTBOJLy/+Zrr1+07aElMhmAz01jj40RTI2ghxq9PK9R5H1G/O92w9svreQguzHX6g25obiv746gJ3TszavlbMR7Kq1eVE6qPmce72oBuE3WJtLCKLM8/b9y/OW9Rr68GHUyChucRFz6TJ2cZHi7FmKCxd2/JiRMqPROIlUKa3WuxTFPIuLr5LnV3a0X5HIvTKQq+SHP/xhfvu3f5tTp07xqU99ilOnTt19pUgkEolEIpFI5EHiVhbmbUPXOKyDrFYjAE5IkuCqFuZhhUC3fCC/k4V5YRDGQF4AArLtrwIJAbx3+F7FoByUhXlStcdTVyG5JPjzox8CBI1awgdOVqsMmvNnEeHug8STcpIRWRU7z7sLWLY24LA8c52VmepA2dQzJ0mye60cDuXkiESWT2xJFLu3k9K+vI0MtdK+3O8fmH25xCKDw8kUkHR1E58odGGQ3pN18zvq0ku5wTjPWF2jleTgSIbq2bfKKHTvarxz2KKg6LTpLC/RWphn6fo1Fq5MM3f5Pa5dOMeVs6eZOf0OV8+fZfa9C8zPXGbx2lXaS0uYbpcQIElT6sMjDI9Psu/gYcaPPMLkoyc4+NgTHHjsJJOPHmf/kaOMH32E4D2z712gu7J38msfBkwS8CpgVSAISNz2C97r+d2C0bomt572Q5rffScEkDhHrZvTWGmR5TnaWtLCkHW6JNYQxAabc91nm3MhMLJGWBW8QygnSO1MoviWuJ3g3U9UlnLwY++vtOULy8y+8W5f97tdCKDRropJ+w5MUFPr97ABwZenB29lfp0hlqg+T5wI1zEYziVVB6NGqHHMVTPUtwPlcpTrYvQQTiZ0a5OEe7y50UqSqLK62znP4nKHTquNs5Z6cohDQz9YWd5juLj8H3E+v80WQSQJamQYfWiql+89jBrq5XvvG+nlexcb8r27D1y+t3p0kuSjj1Xa7NdO4y7cPFGgLwhZ2prLtHxmst0yy9t2y8nl9/wMt2ptzuDyvKVA7RtDHz4MSmFnZnDXr+NmZ8lPvY2bnWMn7QGk1DQaj5EkTdqdsxTFdZaW36DT2fok8EhkUAxk1OSnfuqnAHjmmWf467/+a5555hk+8IEP8OSTT9Jo3Nl+RAjB5z73uUF0MxKJRCKRSCQS6R/FcsXC3IfAUm7oFBYlgVTjhCAgSDYItNIVeAoCXUDfXpQLlFXd1iGsIWS1vohc3vcszINHCsFglLQAujphtv6yRCSK3xr+DgA+8tQ4ycYq9uAZmjt31y1LJCfU8UpbO3SY9luzvwwh3FTVndQzJp46cZs1bsFqJZJSUejeZqr25U2kH0aGQVmDepQ3OJEQUGVOd6pR1pZVht0ceYfBrXbh6BSekbqmpiUHR2voXpa79KCi0D1wQgh45/DO4q3DOYu3Fu8crvevdxZn7U15nkIIVJIgVYJKEpJ6ilQKmWiUUsjee1Kpm1IMVKJRWpPoFKVX/69RvdeEwLXzZ1GJZvHqDPMzl2mO7WN4fAIRIxF2HgFF4kmDxAbQTpA4gVXb+53ViWRyOOPKUpdmqljJLVoKdB8cXx4EBKCNRZsyx9smGhsCiXV4KXBS4ROFSxKE9yjnUNZt/2lWCIyso30bK1MSn6MwODF4oXOryNAEB17NIgN4sYIMWV/jQvY9dYLZN0/TubZuuXvlG99i7IlH0I17jJDZQertGVaGH1l77XST735S89/eWp+k8qXLGT94vDvYZBshOMsEHwzrTknD5EyywowUHBDjjITm2nvH3AGuynm68vZi8VbQZoVCJhTpCCKfp1vbT707e0/rZomiGwLOKYpuzorWJEvLDI+Nsb/2IdrmPRby19aWz90sl1b+C8eGf/yu10yRaVQ2ihwZIeQ5vt3Bt7uIRgOMIeQFvtOBVhtSjcxSRJY+ENfi9Iefx37zIuTrziH573+N+v/jBxFyAL+fAFRSOqZ5A76AYMt878Kt53zf04RWTxDrgvdqxTdBEKQH/LbfU4tUow8exK2s4Ofm8O0Oav8+gnPIhXnSI0cQtXvPqd/WvglFvX6cbvcSne5FfC8X3fmcZuPxB+L4jTyYDGTk5POf//zal0AIgfee1157jddee+2O64UQotgdiUQikUgkEtn7eFdWdm+wMF/JLd5D23hqqcYLhRMKGQIbzTKFbyF9wIYcIe+QhdftIryHIi8f/Ptkfe28I+AJPqCSO2SHbyfyKkIuVppqr0guPfoYy0kDKQUvvK9qYd5YvIRydx9oOyqPkImq2HnWnt2y5ebihWk6c9W+Hnj/k8jNfFbOlWV5RAvzbWfVvtyPIoJG+NG7r7MtBJJQ4IXCC42Vmjyrr+V0J8aQ3MFuNbee5a6lmSnqWjI+lFHTtxG6E7/totnDRvAe51xPuLY3CNer4nbZduOZQkrVE7EVKtGktXpPxE56IrYuX6vq4KsQcoNwnW4QsDUq0SRpuiZy38sg49H3PcfVc2eQStKan2dp9hqm22Xs4CFUnESz8wgwuid4U1Z3Ky9wanuruZpZwlijtMQ2zrPQMUwMZYMVy/Yg0gfSokAXBV4pjE6QSSBYS5ASmyis1thEo5wjMWZbT7lBCIxs9ATvrCd4F3tP8PYeL0HQJYg2IvSv/0IIDn/nhzn9B3+21uaNZear3+TYd3+sb/vdLtJiCWXbuA2Z1B9+fB//7a31StnpVsK5JcWJ0cG6NFxlmBVShliPxXgsXOeaGOLd5CIfMk+VFbGUk0gft0d5Q5/e1vsQAehiiSLbh9EjCKDQBam5e9axEKXg3QkpLu/QabfROiHNOtSaDQ4P/SBde4WuW89OXyreZLZ7lIn6vR07QgpEvYas1wj7PKHTxa20CalGhAbkBp/n+OU2tNoIrZG1DLTes+djOdIg/YH3U/zxy2tt/sIs9utn0B/bRHTT/SJEKWzLBGxRVndLXU4Ed6aX831v554gygnnIkgQgoAvbc2FJOB6lmvb2XdQw0Ooeh07P4e9dh2xsoIenyjt9idL9wAG5KRW6ZqQ1OvHEEKT5zMEbyEEvM8ZHnpmcFFmkcgmGMgTziOPPBJnfEQikUgkEolEHl5M62YL847BOk9uPPWhBh6wQpL6dds16QU+rCDICQLk7SzMnUd0u2AKhA+ERn8GE0sLc4/3HiEY2EOuSKpV3eoa6IuC//M7XgTgmeNjDDd1ZZmhudN33W5KylF1tNI27+eZC3Nb6mfwnpnXqnbr2UiT/Y8dvc0at9xI+ZNokKKcHBHZFqr25RrpxwdmX17mdIOTCR5FN20SpCDtFijvSfPb5yob51nsGGpaMpQljDVShmvl8R6F7s2xXnHdE6+t7VVju7V/vbNrMQ2rCCGQMkFqhZIJOqshG8maqF0K2b0q7BuqmaRKbhatdYrSSVXE3mYBWirFwZNPsHBlBhDoWo35mWlmL55n9MAhsru47EX6TxBQaE9qVgXvcqqb32bBe18jI7ceF1LmVnIWOoZ9dR3PE/eAgLKC2zkCOTZJsDpBek/A4HqiNyGg7fZmrYZehXfqOziZofag4C38EIhlBA28XCIEg0DffcUt0jwwzr4njzN/6txa2/zb5xh/5iSNqfG+7Xc7EECjNcPy6Lo1dLZ/ksnGFa611+8FX7pc48Roa8CdK6u73x/WbctH6DJOi1kpuKSucdRNrb23L4ww6fdxTc3famtbRgaPLpYp0hGsb0AWkL4guYfJrVIKMq3o+AxTdGitdEikRGflNfiRkZ/g3YXP4UN3bZ2Z1v9FPTlEUx/bVD+FlIhmA9lsEKwtq71bHUQtJThfVnvnOW5xGaRcr/begxNc9SefwnzlHcK19UkHxX99heT9xxD1AZ+rhCyFbW/LKm/vygngNoDsid7c23NVKXqLnugNIXhESED48r3tFr0TRTI5iW8O4ebmKC5fQo2MlhOGFhZIjh5BDd1h0nsfqdUOIqWm271E6MVqBF8wPPx+pOzf+TwS2QoDOYueO3duELuJRCKRSCQSiUR2J/kSuGLNwjyEwFLH0CpcbzJ6ihEKEahYmAufE4LB0eGOFuatNniPKAwhTfs2+9s7ByEQvEdIyaAszIWuCsj1VyQuy/iriWcBePG5alV32rpO2q1WV9+KE+o4SqwPeoQQOOPObrmns+9eoFhpV9oOfvDp3md1jzgH9ETuPTjotVsp7ctXSnUpNJF+aGD25as53VZmBCRd3cAlCl0UyODJOt3bfpN8gIW2IZGCkZpmqKbZ3ywHD6PQXbJqJe6sXavE3mgjvlHcvtFKXErVq7IuhWud1m4QsFftxG8cHBVl5XWiUWm18npNvE7L9zf1/e8DYwcOUmsOMXPmHZROWbwyzfzl9xjaP05z3/5YmLDDBFlmeKdW4IJHeQki4LfxsBECJoYyjO0yWtcs9O4/mlmcTLUZBKCtRVuLFwKrE0zPlttqjfQe5bc3lzcISbEmeKckvgAMTuwNgUEgkH4ErywE1avu7q+jysGPvZ/Fs+/hzfrkg0tffIXHf+z7dv35rtG+UhG7fVLj+5/O+A8vr/8uX51O+cmnWugBX1pmGOExrtO8obp7libn1TSTboxsg039Y/YI83IJK7a3Cl35gsS2MbqOCIZubZxG+woy3H0/iRRkSULXaoo8Z6WTkC4uM7J/H6nax9HhH+XC0v9vwxqei8u/x+Nj/zeSO7lr3YHVfG81MkzIDb7dxrc7yEatdIrIC3xeQKcLiUJmWSl8q71RNSsSRfZjL9D9P/58rS0sdyn+9Jtkf/sjO9AhqtbmroDgejO2HSRpr8r7Xj7fQBABkD3ROxCCRITS5hzhtv2eWzbqyNph3OIibnER32qhxsfxRU4ytg996NCOPB+m6ThCJHQ6F/CtM4Tg8f5lRkaeR6lBxUFFIncnjp5EIpFIJBKJRCL9JPjSwty0yxnnKqNtHMYF2oUlzTQIiZUSFXzlmVn4lVJcDgVCjtx6+3mBcBbyoqwE1v0bAHXeEYInBFCDEnDkNZALlabaK5IvH3kOozRHp5ocmWxW3h+eO3PXzQ6LYabUVKVt2s/QDu3brHFnnLFcfePdSltjfIyRowc2uSHfm6wgYl73diK6BGF69uUJwo8NZrerOd1SE5AUqr6e0+3unNMdAsy3CoSAsUZKPVVMNMsBpVWh2wmPT3oZ3Q+B0G2LgvbSArYo1quxb2H/LtW6UF2Kz40y//oGAVvecB6TUt1gG56gbhCxk1QjVbLrRZON1IaGOPbMc1w5cxqpFCtzsyzPzWLyLqNTB28h5kcGiVcBEzwaiQge5WQZF7KNl1mtyvzumSVP0/Xyu5UgjfndW0KGQFqYXnFfipcKm2pkN9/203AQEiMztM9xUqO8KR0A9orgHRoQFpE08HKZECyij8PRulln6sPPMPOV19faOlfnmD91nv1PHe/bfrcDbVvoYhmTDq+1PX1iP7x8de1120pev5bykQO3d4TpC0JwjnGeDdNrTWN02EebedHkdPIez9h1oT5F86g9xGn93rZ3JbFtvEww6TAyd3Rr49Q7V+/pu5dqiQsppt1GdjssJoqs1qbWbDCSPsFk/W9wrfPXa8tbv8zF5d/n+Mjfv29Hq7V879EHK987efow6pkjuDfXc93NF76N/vjjyAODigu6gVVrc6FKK3Pf6VmbB5AWdIN7E7zh1nneAShtzrc9z1sK1L4xZLOJnZ3FzsyghofAedzyEvrQIdT+/du4w3tD61GEeIxO5xyt9mka9RMsLn6dkZEPkiQ7U3UeidxIHD2JRCKRSCQSiUT6SbGybmGuG2sW5s57usYzNNrEI/AI9AYLc+UFPrR6OYcgxS1mTYcAnQ4Yi3CWUKv3TezyIeB9wHuPlGJg9s83WZjPgj4v+OPvfAGAF5+tVnWrok1teZq78Zg6UXltg+WCO7/lfl7/9llst2qjePD5pzc3QOUd4MvBmUTuSD7bg0jA4UWrZ1+eIv3+AR2/HuV7Od0kGJmSZ7VqTre9TSVSoDxPhMB4MyVLJAdGakj5cArdJs9pzc/RXVlGKEVaq5PW06qFeJKUgrZSN+VfKnWzaL2WiZ2mZYW21g+06KsSzaEnnmJ++jJCQFqrsXBlhusXzzN28DBprbbTXXyocUlABA9KIlwgcQIjtvd7XU8V+xoZIUDhAosdw/hQhnyAzx39RhuDUxINFLUMk6bootj207EXCUaC9oAE5Q0Igd8Dw7oCiQwjOGEhtHvV3beZwLlNTLz/Cea+fZZicd1aeeYrrzN64ggq3d2TBOrtmYrYHYaneHr/Zb49t/63/tLlbPBiNzDNKI9xnTpmre2xcJ1viCazcpFZuci4Xxc3D/kJrvo5luXWJpLeDgGkxTJ5to9CD0Pw5NkYtXzhntavaYXPauR5B9XNmVtY5mCWIRPFVOO7aNtLtMy601PLnOdK+y842Py+7en/A5jvnf3oR2m/PV1O2gXwgfwPvk7tZ753Z8V6qUrB25vej4MkKyehb0rw3mhtLso87+ARoX953iLV6IMHcSsr+Lk5fLuD2r+f4BxyfoH0yGHEgO/dkqRJo3GSdvssrfa7NBonWFz8BiMjH0TrsYH2JRK5FTt2V+S9Z25ujna7zZEjR1AP8ENlJBKJRCKRSOQhJl+uWJgDLHUsbePxAZJMY6REBFCsPyQL391gYZ7eWpxrdxA+QFEQEg1J/+6py+rJgA8BNbAc6UCiv81GObD2imS5Psw3J04y0tS87/hYZY2huTN3HWSelJOM3FApf8FdwLC1vE3bzbn2VrWafPjwJEMHNpkP6ctBFKQsM7sj20IQyzfYl9cHsl8VLAiBExovFHnauOec7uXcUjjPWF2jleTASIaS4tZCd7LNuYG7CJN3WZmbo9taQSnN8MQUjZHRcqBYyIpduNpQeb0uZpfV2TttJb5bEEKw//ARakNDXD3zLipNWZi5zNyliwxPTNIcHdvpLj7U2CQgevcBiRMkTmz7RJbRuqZrLCHA9VbOYtuwrxHzu++HrJvjm2U0RZFluCQh2eb8blgVvENV8JbsDcHbNxFiCUkdL1f6Xt0tleLwJ57n3J98Ya3Ndrpc+cabHP6OD/Ztv9tBo32FpbEn1l4Hpfnu9zX49hfX7xneuK5ZygUj2WCv/6FX3f2+MLPWtp82o6HNomhwOrnIWDGE6uUiCwSP22O8ot/e9nOMIJAWS+TZKFYPle7VrkDbuwvrQghqmaZlDXmni0oS5uYXGZ/YjxCSY8M/zumF38b4pbV1rne+RCM5wkj29Pb+Hg9IvrecGEZ/9/swf/attTZ3ahr3rfdInttc5vm2IwClS+HbFmBzSATYNiSbE7zXrc3FBmtzNuR5b7O1uQA1PISq17Hzc9hr1xAry+jxCbrtFsnkFHpqcqATpJWq0Ww+XgrerXdp1I+zuPgKw8PPkmVTd99AJNJHBvrE55zjc5/7HJ/85CdpNBocOHCAxx57jLffrmbw/fEf/zH/9J/+U375l395kN2LRCKRSCQSiUS2l+ChWK5YmOfW0zWOTm5JaxlCSJyQJMFVno2DbyGCJwSDELeYtW0doiggz8vB8Sy9eZnt+jUCeO/wvSzKG61/+4a8jrvBwrz+suRPD38YLyQfe2YSuaEkTXhLc+HO1dkSyQl1vNLWCR0u+7tXg9+Oq996F3/DwPbBD252MCyUed1K9az34mTg7SCITmlfHoYRQQ/MvlwGgwgOK0r78m6ymtNt75rT3S4c7cIxVEvIdFnRnSbqoRK6i06HucuXuH7xArbIGZ06yOSjxxkZn2D86DEe/cCHeezDL/DoB57n6NPPcvDxJ5l85Dj7Dx9hZGKK5tg+as0hkjSNQvctaIyMcuSZ52iO7WP8yCM0RkZZunaVhZnptfN8ZAcQYBKPlwGrAiKUojfb+DUXAiaHa+hEMlbTGO9ZybdfmH2YEEDW6SJ9QBmD1QmuT+cdLzRWpngSnEhQ3iC3OFFvkKxWd0MNgiSI7a30vRUjjxxi+JFDlbbrb5yiO790mzV2B4nrkubzlbZjR8dJ5fqJwAXBV2d2Jif3EqN0b5io8Fi4DkAuDBfUTOW9odDgsKu6MG0XMli0aWFVDacy8mw/Tt6bCKykoF6rYQN02x2WW13arfK4TGSDY8M/cdNE4/dW/jO5m9v232OV1XxvfagUMJPRYdRQg2TfKGrfCLKW4osCt7CEnV/Et7sEt3uu2en3PYcYqU4ozf/oGwSzvbntW0bIsqqbALZbPnfZNrCVzzAQhCf0RG+BgCARPgGvtvW6DUCiSCYnSQ4cAOsoLl/Czc9jr8yQn3oHt7KyzTu8M1Jqms2TKNWk3TlLYWZZWv4mnc7FgfYjErmRgT31Xb16lU9+8pP8zM/8DF/84hcpioIQAuEW+WTHjx/nV3/1V/nFX/xFXn311UF1MRKJRCKRSCQS2V4qFuZ1EIKljiGEQMc4klqKE4KAIAnrD9rKQwgrhJ6FubjRwjwA7XYpeFtD0Cn99LULweN9+a8UgkGVgNX0m5XXag70OcFfHvswOpF8+Klq5XRj4QLS33nQ96g8QnbD53nGniVscVSiWGkz+05VYN934gj1fZu06PQeCKXIrRTRV/b+WbUvFyEbqH25xKKCxUsNSPJKTre7Y053YUvhqZEqGlox3syopw+P0J23W8xeusjspYt4axk7cIiJR04wPD7BxCPHeeT9z7Pv0BESHZ0P7hedZhx58n2MHTzEyOQUYwcOkrdazL53AVsM3h430kNAoT1BBExP8FZ+e68HSgqmhjNSLRnKElqFI7e7RzDZiyjv0XmBtg7pPDbV2651rOKExkqNF3pN8BbsEjHpDgjfRASFpEEQOWEAIv3hTzxfnfDkA9NfevWWY9G7iUb7SuW1aUzy0cPVz+ulyzsjdgchOSeq998TtBgJHQAuqau0RKfy/nF3iDT057qduC7KdTF6CCcTurUJwj0+p2itSGs1CmMxecH1uUVcb/JqQx/hYPNTleV9yLmw9Lv40P9rpMg0at8oyaEDJBP7USPDyGYTtW8MNTqMUAm+08HNLWAXl/HdYsePa5Fp0h/5cKUtzK5g/uqtHerRLRBiXfB29yt4Q5nn7SH0Kr2RpfgdEghy20Vv2aijDx9GDY/gFhYxl6dxS4sUZ85gLl4EM7jJT0IoGo3jaD1Gp3OBIr/GSusUrda7A+tDJHIjAxG7nXP8yI/8CF/+8pcRQvCTP/mT/OZv/uZtl3/uuef4+Mc/DsDv//7vD6KLkUgkEolEIpHI9lOxMG8AsNgp6BiHDZI01VihkCEgb7AwF8Hh6XJLC/M8RzgHRVFasvVZ+HHOEfB4HwZX1Q2I5J3K69orkveGpnh39AgfeHwf9axavTE0V7US//+z9+dBkmZ3eT/6Oee8S+6171W9T8+u0QjtAmEwSP4JgyTAXNnhC9iY8L0mMBABtiNwQIQDHBBeIEI4/I/AhnsdQtcCJLMZ+xqQrnbNaCQhjWbrtbqqu7q2rMrt3c459483a3mrq/fKrOqe9xORUZUn3+Xk9ub7nud8n2cvHh6zajbTtm7qrNl7r9JY/tZ5rNn13knJxBvO3v2GtAZkWnVwxKwJH1SsaHYHnyoIU+6TfblBmhjdzemOpE/k+3eU062Npd6J8ZSkWnAYLLnUiu6O0C0fTqHbWkvQbLIyf5m1xQWsMQxNTjN67DjVkVHGj5/k+FPPMDgx+VBnah8GQkpG544zcfIM5YEhRuaOISyszF+i0zja1Y8PNVuCd7fCWxqB1AcreBdcxXDJp+QpfEey2YnR5uE5rhwGbhyjtMaN0zzj2PN6KHh76K7gbYTCMRH3Ltb0h7S6uwq2f9Xd/kCV0T3nZI35azQu37ubTz8otpdSd6guVire9Wg1s8x8w2G+cTi/iQsMEpLd98ludbcV8JqTre5UKE4n2fPvg8SNmwiribwaWroEheE7XrdYSONOOp0OSaJZWqmzpRkPF76NAf+pzPKhvs5C88/6JiwLKZDFAs7IEO7MBO7IILJSRtXKqOFBVDW1cDeNFnqtjmkHfenXzXCePYE8ka3kj/7P32DqrUPq0T5sVXhbCzrsCt4d7ucYakU6SU1YkV63W4EwKs30tgc8gVkK1PAQ7tQUCEF89Rp6ZZVkZZXglVfQa71zH9iLEJJi8RieN04QLhJ0Fmh3LtFofBNrj/ZvUs7DSV9Gqn73d3+XL3/5y7iuy5/+6Z/y+7//+/yzf/bPbrnOD/zAD2Ct5TOf+Uw/upiTk5OTk5OTk5NzsOxjYZ4YQytMLYql7yLljoV5BtMCq1MLc7nHwtwYRCeAKEYYg/X9nhZaWwvaGIwxCJFe1PYDXy4R7rUwf0Hy17PPghC87clsJlihcQ03uvVAygl1AiV2BuestZzXtxbIb4WOYtYvXMm0jTxyDK9cusstWTAaHJleoeWC3n1jRYAVEdJWENZFmqF+7BXHxlgh04o76RB5RayUuFF8y5xua6HejlBSMFB0KfsOQyU/K3Srh0vottbSaWyyMn+J9WuLCCEZnp5ldO441ZExxk+c5tiTb6A2Np5bkfeYyvAIs48/RWlgkOG5YxTKVepL19hYXjr0SrHXK1amluZWgpYGZQTygMeNB0rpsWag6CIFbHRi8rf73tmxMze4UYRREu307vc8wUNLBy28ruAdcuQFb1PdU93d+4r08Wcfxyllz6UXP/dVjD661fDKxPhBVrAamhhl0M/2+bCqu42QXNpT3T1Ok4pNhdZN2eKqXMk8PmoGGdZ36Xp0hwjAjTZBSGK3RuKUiNzqbdfbolROJ0N2Wh3CIKK+mV5PCCGYqbwPX2XF243wG6wFXzmw/t8pQkpkuYQ7MYo7NY4zWENWSqiBKmp4AFnwMa02to/VvTf0UQj8D74le20aaaI/eeHQ+rQv24K36QreyX0L3jvW5rYv1ubC93CnplAjI5hWi3hhAb2xQXTlCuG589gwPNgd3oJCYYpCYYYoXqHTvkgQLLK5+TXMbRzXcnIOmr5cMX70ox9FCME//af/lPe+9713tM6zzz4LcEOed05OTk5OTk5OTs4DQdS60cI8iLFAK0rwfB8tVJrJudvCXIPZbWHOHrG73QZrEFGEdR1QvT2lN1qDtVhjuoJTf+y1q/43M/flOrgXBH81+yZOz1QZG8y+Lrer6q6KChMqK5BfM9do23uvLFo7N4/ZXaUrBKOPnbr7DW0NuCoFjtNTS/rXAxaDEc2ufbmPNEN9sS9XNgZr0MLFoAhVsZvTHSOtvWlOt7VQ78QYC4MlD9+VjFUKKPtwCt3WWtqbG6xcvkh96RrKcRmZmWNkdpbqyCgTpx5h7smnqY6M5iJ3H3ELBWYee4La6DiDk5MMjE3Q2dxk9co8ulupmtNfjOpmeKuu4K0l4oC1zNGKj+dIaiWXxFiaYf5e3w8C8INd+d2Oi+nVcUxAgo8RCi087ANQ4Z1Wd1e61d0C+lDdrTyXqbc9k2mLNpusfP2Vnu/7fii1s9nXYWGE7ziWFbu/eNXnsBIIrjBIdJPqboCLziIx2ePJ6WQWedBVrl2kNbhRA608ElUk9AdI1J1NBpBSUiyWSJKEIAip1zcJwlSkk8LjWO3vIfdEIF1r/QXteOHAn8edsjffW1XLiFIJlMJ0Dre6W80O47z9kUxb8sJF9Pnrh9Sjm7AteGswW4J3wP2r0tk8b7ZyvXshegvSz8HMDKJYIFleJrm2hKnXCV55hXhpqRuV1Xs8b5Ri8QRxskmrfZ4wvM7Gxlcwpn+ie05OX64cv/71rwNptfadMj6eDkStrq72pE85OTk5OTk5OTk5PSXc3LEwd9KKgY12QhBrYhSe55BIibImI4BJGyCswdAB/HRW+BZRjIgTCKNUEPV6X9GhrcFai7Ug+1TVrTCE6lymrfhVycuDx7haGb2hqtsJNvFby7fc5imVFaETm3BJX7rJ0rfHGsPKKxczbQNzk3jle7DKNhpkmvOGyi3M7xcrGrvsy0tIe7eV9nePJEFajZYeIIm2c7r1bXO6m2FCrA2DRRdfSSZqBRwePqHbGkOrvs7ypQtsXF/C8XxG544zPD1DbXScqTOPMvfE01SGhhH5hI9DQUrFxMnTjB0/SXlwiJHZYxitWZm/RNg6QhakryO0siTKYCQYYXG0ONCBciUF4zUfX0kqBYd2ZAjioyuWPggonVZ2O4lGGEPcw/xuBMSi0BW8XayQOPaIC96mirASSRHTp+ruwUeOUZrIViJf/8q3iFu9F9vvlWJnOT0/3EJI3vzIQGaZRiT55mpvo4xuhhaKyyJrFz5Bg7JNha1EaM47i5nHC/gc01M965MyEU7SJnZLaOkRFEYw4s7cFVzfxfNcwk5AHCcsr9XRXZHQV8PMVr4/s7zFMN/4AxJz+J+hNN97EKkUqlTARhH2kJ0L/L/zDBS9TFv4R1/G9kl4vWO2BG+jwUSg426F90EctdM8b2H3iN5bed4HiaNwxsZwJiawSUK0uIBeXye5do3wlVfRzebB7u8muO4ApdJpjAlotc8RRWvU68+RJPk5ZE5/6MtoVb1eB2BkZOTWC+5Cdw/KKrfwy8nJycnJycnJedCwBqJmWtUtJDgFjLU0gphOlCBcF6UkBpGxMBcWrGmC1RiSrIW5BdodSBJEEmN9r+dF1taCMQZrtyzM+yNAjbtXaImNTFvhK5K/nn0TowM+j8xlbRAra+dv+VKMyVFqMrvOZT1PzL1bq20uLBG3Opm20UdP3sOWTDrjXimQAnpoefp6wIqwa19eRlinT/blBmVitHCwqG5Ot9fN6Y67Od37f9Y6URprUCk4+K5MRSchHyqh2xhDc32N5UsX2FxZxiuUGDt2gqGpaWqjY0yffZyZx56gNDB42F3N6VIbHWfmsScoVmuMzh3DLRRZu7pAY3UltzU/BBJl0d2bFRy44O07iuGyT8lVFDzJZpDnd98vbrST322hP4I3qeANAsfGHFXBW6C62d3F9HMsOrdd5773KQTT73o202aShKtf/Jue7/tekVZTDLJW4M7QBCcHstXSnz8kK3OAeYaId0kLAjixq7r7ulyjLhqZdWb0OCWzx7XqAHGSNtLExF4VI12Cwsgdf/cKpSJSCjrtgCgIWam3tqMdav5jjBbfkVk+NpvMN/7oSGQTCymQ1RL4PgiJPeTqblEp4P2drKOCWVwn+cJrh9SjWyAUKD+doL4teB9EhXfKTp63zOZ5m4PP85alIu70NKpaQ9c3iBevojc3iM6fJ75yBW5yPXKQOE6ZUukM1mra7deI4nU2Np4njjduv3JOzn3SF7F7eDid6TU/P3/H67z66qsAjI2N3WbJnJycnJycnJycnCNG1EoF77i9bWHeDBOMhWZkcX2fRCqEtchdF9LS2K6FeTrwJ9g1gBV0EMakVd3KSe2ue4y1Jo2TNrZvFuYCi+++lGmTdVDnJZ+eeYa3PZm9PpBJRGkjm5udeRzJSZUVoTu2w6JZvMkad8bKSxcz94vDA5RGB+9+Q1oDAqQCN6/qvh9S+/JG17680LUv7/XkAYNjI4xQGOGSSJfIK6Q53XGMvEVOd5wYGmFCyZOU3K7YpNRDI3QbrWmsrrB88TzNtVX8coWx4ycZnJykNjbOzKNPMn32cYrV3mR45twffqnM7ONPUR0eZXh6hurIKM31NdYXF9B9GCzN2YXo2plLS6IsgoMXvGtFl0rBpea7KAH1dpTnd98HqZ15iDIGN4oxSvU0vxsBsUwF70Sklb5HWvDOVHcH2D70szQ2zPBj2fPB+quXaF1buckah89eK/PIH+Q7TmS/mF+77tGKD8cNJRGKebKTCqfYpGi75z0CXnPmMbveX4ngTDJ34PnFWwjAixpgIXKrJMon8gbvbF0hKJWKoBM6QUS70WSjvWPBPFH6LkrOscw6rfgC19ufPsBncO/IShkpBbJYwIQR9pAnLbnveAQ5OZhpC//8q9j2EbS1lnsF7wj0QU4Y6GOetxSo4SHcqSkQgvjqNfTKKsnyCsHLr6DX1w9wZ/ujVIFy+REQknbrHHFcZ2PjK4ThrZ3YcnLul76I3U8++SQAX/7yl+94nY997GMIIXjLW97Sq27l5OTk5OTk5OTk9Iawkc4K321h3omJtSFE4rsSLSTOXgtzEyCsxRCA2GVhrjUiCCEOEdamVd19wBgNWKy1yD5VdY+pDmvycqat8FXJ10fP0qkN8cwjWcvEcv0i0t7cqm9WzuDvydk7n1zA3seoQnttg9byWqZt9LGT91b5npiuhbnoywSGhxkrmmDZZV9e7vk+lU3AghYORigiVUA7Dk4UI42lcJOcbm3SnG5XCaq+y0DRZcB3HwqhWycJmyvLXL94nlZ9nWJ1gLFjJxkYn2BwfJLZx59m6syjFCqVw+5qzm1QjsPkmbOMzByjMjTCyPQscRSyeuUyUaf31Zg5uxAQuQYrLbG0CAvqgAXv0bKP70gGSx7awmae331fSGu3BW8VJ2l+dy/PpYQglgXsluBtLcrG9ExVvA/S6u5KX6u7ASbf+jTSy9p+L372haNnrdyl0FlBmF3fQyF44uQwjth5TxMr+NLV/lwX7MdlMUyy60xHkM3u7siQKyqb1TxgK0yY7Pn8QSKweNEmRjokbpnIqxI7dxYzpFwX33fRYUAQxmxuNmh387uFkMzVfhBHZs9fljufoRG9euDP424RUiIrJUQxve6xwSFXdyuJ98E3ZxvbEdH//NrhdOh2SAXK2yN4H/SxKRW92WttbrrW5gd4uBa+hzs1hRoZQbdaxAsL6I0Novl5wnPnsWFvJx1I6VIun0aqYmppHq/RaPwNnc7hZd3nPPz0Rez+wAc+gLWW3/qt32L9DmaPfPzjH+eP//iPAfihH/qhXncvJycnJycnJycn5+CwBqJGWtXdtTC31rLRjmlHGuu6OI6DReDssr0TFqxtgk0wxEixa1Cm1QFjEFGM9byuONp7jDEYY0CkAzz9YMK9QlPUM23FFyR/Nfcsb3p0BHd3ZZQ1lNcu3HRbHh6zajbTVjd11uzaTda4M1Zfzu7TKfoMzN1DBqHVQNfCXMm+va8PI6l9eYi0lb7Zl0tipNUk0sMiCWUhzenWGkdrvJvkdFsLG50IKWCw6FH0FSMlH0dLjHhwhW4dx2wsL7F86QKdzU3Kg0OMnzhFbWycwckpjj35DBOnzuCXep+hnnOwDE5OMf3o4xQHBhmdPY5yPNYW5mmt39+xNOcuERA5qeCdKIu0oMzBiadSwnjNx1WSWsEliAyd6HBzXx90lNbd/O6km9/t9VZ6FoJYFrFIEukhrOkK3kcPYWq7qrs7fanudooFJt/8ZKats7LO2ss3P5c8TASWYjsrFCfVCZ4ZzzrGHKaVeSwcrtxQ3b1BYdfnbl5do0NWWDuZzODY3rkdSJvgxi0SVUQrn9AfwYg7m1TqFQq4ShIFIUE7oN7oECfp59OVFeaqP8ReSWW+8Uki3fuK2dshK2WEkEjfw3SCQ48ecc5M4jyTrYaPP/cqevHwX6t9kQ7IruCtu4K3OfjJOKm1eTfPm67obVQ3z/sAJ0UJULUq3swMolggWV4mWVrC1OsEr7xCsrSUxmn1CCEcSqWTOM4Anc5lwnCZZuslWq3zPdtnzuubvoym/ORP/iTHjh1jc3OT97znPbz44ov7Lnf9+nV+8Rd/kX/wD/4BQgieeuopfuRHfqQfXczJycnJycnJyck5GLYtzDvgFEAI2pEmMZZmbHA9h0Qq1B4Lc6XB2BbQoWuAmT4QhgidQBCmI9Guu99eDxxjDcakVuZpVXfvK7sHZEigsgOOcgPseZfPTz/N254YzTxW3FzESW5etXBCnUCJnYE0ay3n9P1dXMedgPqlq5m2kUeOI9U9XFppQ2phLnML8/sgtS9vIqzXN/tygUaZBC1dQBLJIvFWTncU48QJ7k2snjeDmMRYBkouniMZrxRwtcAKi1ag5YMldCdRRH3pGsuXLhA0mlSGhhk7foLa6DiDk9Mce/oZxk+cwi30LqMzp/cUK1VmH3+KyvAwwzOzlAeH2VxdYf3qIkbngmi/sBLiboW3VhZpBPIAx6k9RzFa8Sm4kqInaYQJYXI0q14fFDL53SLN7+4lVghiWeoK3j7CapTdP07jMBE4h1LdPfLEGfyhbHzGtS99g+QmkSOHzV4r89ir8e0ns+ecFzZdrrYOb8LkJTGC3nWdIIETdnX7vhGWc2422tTF4WQy09N+OTpA6ZDYraClQ6c4ir2D6xkhJV6hgDIJQRjTaTapt0NM1xa87M4xWf7bmXWMDbi8+QeYQ55cIhwHVSoiikUwYIPDtwz3/u6bwN09WdkSfuLLhy7E3xS1W/COIYnA9KZKPmttvpXn7Rx8nrejcMbGcCYmsHFCvLiIrteJl5YIX3kV02wd3L72IISkWDyG540ShAsEwSLtzgUajRePRN59zsNFX34Jfd/nk5/8JLVajeeff56nn36aJ554Yvvxf/gP/yFnz55lenqaX/u1XyNJEoaHh/mDP/iDe7MCzMnJycnJycnJyTksti3MY3DTCsaNIEYbQ8cqPKXQQqL2WG8L20FYi7YBiEI6FGMsdAKIE4TRWM/vh+YMgNEGsBhr+1bVfcxtcF1k87cLX5N8aeJJjp+ZpFbJVq5U1m4uXFdEhQk1nmm7Zq7Rtu376uPqq5czdpdCSkbOHLvFGjfDpnndSoEQ6cBKzj2R2pfbrn15sQ/25QZl4jSnG4dEemm1Xiane//BxVaoCWLDQNHFU4rxqo9vJQhIlMVIS/yACN1xGFK/dpXlyxcJ222qI2OMnThJbXSc4elZjj39RsaOncD1Dq/iLOdgcVyXqUceY2hqmuroKEOT00SdDqtXLhP32A4zZwcjIXYsRqaTY5SWiAMcL64UHGrFNL/bdyQbnTiv8L4PtvK75a787kT1dkKW7VZ4g0QfZcHb1BBIJIW+VXcLJZl+57OZNh2EXH/umz3f973gh+tInT2+zs6MUvOyr9XnFw9vQlkkHBYYzLRNU8ffJfyuywbLMlvNO2lGGDC9jTRx4wbCaiKvhpYuQeHO7NOV6+L6LsQhnTCi3Wyx0YnZ0mdHCm+l5j2RWSfQ17ja/IuDfgp3jayWEUoitqu7D7k/wxW87846Kphz10m+dvkmaxwBtgXvuCt4h2B6dZ6zlefNnjxvdeB53rJUxJ2eRlar6PV6Kno3NgnPnyO+cgVuMlH3fhFCUChM4/vTRNEync5lgmCBzc2vY0xv9pnz+qRv076eeeYZvvzlL/OOd7wDay0vvfTS9mNf+9rXeO211zDGYK3lrW99K1/84hc5c+ZMv7qXk5OTk5OTk5OTc//sY2EOsNlJaEUGrRwcz0FYMhbm0giMbaQW5iJBiu6AVaeDMBaiEOu44PR2cHQ36bm5AQuyD/baBZFQU9dpiOxAWPErkr+efRPveGos0+611/A7N7fAO61OZe4nNuGSvr9BFaM1a69dyrQNnpzBKdyDmGfSyQRImQreMp/key/s2JeX+2ZfrmwMQqCFixaKyPHTnO64m9MdhPvOSQkTQzNMKPsK35GMVn1KMj0exNJipSVyTd8mtNwrUdBh/eoCK/OXiIKAgbEJxo+fpDo6xsjMHMeefiMjs8dw+uRCkdNfhBCMzMwxefospYFBRuaOIYRk9cpl2psbh9291w1aWRJlMDKtmnS0RBzggPhwyadSdBkouhRdxWaQ0ApzwfteyeR3JwmJ6/Q2vxuwInUdsUi09JBWHzlLc4GDMOVd1d39yRiuzk5QO5GtKl755msEa0fvGCaAUnsp0xaUJ3jbVFZ4+/yihzlEUfOiGMHsOoFRWI7viQ0671whIXscOZPMIg6ygnUPAnCjTayQxG6VxCkRuXcmsLt+AVcKTBTRarbpdEKa2/ndgpnK9+Grkcw66+FXWQteOOincVcIz0UWCsiSn7pIHQHXAve7nkAMZSejRn/8PDY8wkLnDYJ30EPBG8DsyfOWqfhtDzjPWwrU8BDu1BQgiBevoldXSZZXCF55FV2vH9CObsT3xygWjxPHddrti4ThdTY2X8D09HXNeT3RV4+TM2fO8NnPfpZPf/rT/PzP/zx/62/9LR5//HHOnj3LO9/5Tn7qp36Kv/iLv+ALX/gCp06duv0Gc3JycnJycnJyco4S+1iYh4kmiDXNxOI5CqMclDUZPUsaizVt7G4L8yRBRFFqYw7g96860lgwxmKMQcr+WJgfcxss76nqlg0IL5VYeOrbmJ3IDkzdqqp7TI5Sk1mLyst6npj7G+StX7pKEmQHjEYfPXFvG9MakCBVbmF+j1gMVjQR1kVQ7NqX9/a1lDZGWEMiXOyWfbnrIrXGSbo53ftk32lj2ejEFFxJxXcYLvvUHBdpBInqCt3O0Ra6w3abtYUrrF6ZR0cxg+OTjB0/SXVklJG5Yxx/+o0MT8+inPzz/HqgPDjE7ONPUh4YZGT2GMVqjY3rS9SXrmXcL3J6R6JSK3OtLFZYnEQc2GC4lDBW8RksuVQLDtWCQzNM2AziA60yez3haI3bjbkQ1vY+v5tU8I6lj0WhpYu0CfKICd7S1BAoJH7fqrsBpt/xDGJ3BI21LH7uhSNprVzcY2WeuGXeeSo7oaweKl5aO7xJZqFwWWAg0zbLOq7dETMjkXDJWcwsU7JFZnTWiemgkdbgRQ208klUkdAfREvvtusJKXELPo7V6ETT2GzQCmKCOBXslfSZq/49JNnX/Wrzf9JJru63yb4hqxWE4yA8F93pT0TArRCug/8D35Zps/U20V8dTUeFbZQD0u0K3kkfBO+tPG+7k+dte5PnLXwPd2oKNTKMbraIFxbQ9TrR5cuE5873zNrcdQcplU6hTZtW+zWicJV6/Xm0vj/3tZwcoMcjATfh27/92/n2b//2w9h1Tk5OTk5OTk5OTu+IdlmYF9IBn9TyztKxEs9VGASezc5iF7aFwKJtB2Qxrc5qtyHRiCTG+oW+imBWa8BirUXK3leTKwwzTpMX9lqYf1Xy2clnePPTk9nl4w7Fzexg2RYSyQl1ItPWsR0Wzf7L3ynWWlZezuaJVyZGKA7WbrLGLbeWVnY7Kp1+3GM704cW0Uo/o7aKMIU0+7OHSBKU3ZvT7SKsTTNZk/1zuq2FejtCSUGt4FL2XYYKLkoLtDRpBq+T/j2KBK0mrfU1oiDA9XwGJ6cpVioo12Nocorq6FhfjhM5Rw/XLzDz6BOsXLmMkAKvUGRjeYkkDBmcnMLxbi8m5NwHIj12CCtJAFcLHJ1OoDmIcwYhYLjs40jJSjNECsFmEGNMzEDRJU8dvHvcKEI7CjeKiXyPxHVx496Kz0Y4xBJcA0hQJnUnMYczJHwDAhdhSlipQYTpzRZ7vl+vVmHsmce4/pUXt9uaC9fZvLDAwKnZnu//bvCiTVTSRjul7bbK2Dhz1evMN3bex88t+jwxcniTGS6KEWZsfbuybqu6+zWxI2YvyhXGxQhVu/NcjulJVtQ6gehdBbIyEU7SJnZLCJvQKY5Sai8h7a0dK6TrouIEdEQUSdqtFlIKHClwlKTgjDJT/bvMN/5oex2L5vLmxzk9+E9wZO8/y/v2u+AhPA9ZKqDrDWwUI7zDddxRT8+hHplEv7ozeSP+q2/ivuU0cqS35/D3heq+bmbr8xmkiprs5UT0dBIbdKu8hcVaUsFbGKzQBzM2IEDVaqhSmWRtjWR5GdlsooYjTKuJqlZxJieRxYP9HDtOhVLpDO32edrt1yiWTlKvP0et9kZc916urXNyUo7o5XROTk5OTk5OTk7OA4Y1aV530slYmG90YlqRJpEOjpcKY3JXLY8yAmNbYGOM0EjhQxAgEgNRmFb+9rlSUnfjhawF0Qd77RmnSSyabIqs3WHhBcnnH3sHT54azLSX1y4gblIPNSNnKIhsbuGF5AL2PuunWstrBOubmbaRR0/e28ZMOpkApXYyu3PuCkuEEQGSLfvyO8tgvHfSnG4tHAwOsfSJPTeT0+0H+1R6WKh3YoyFwaKH70rGyz6OlhhhMApilf49Slhr6TQarFy+xPrVRUAwPDXD6LHj1EZGGTt+kuNPPcPA+GQudL/OEVIyduwE4ydPUxocZHT2GNZaVq9cJmg2Drt7Dz8CItdgpSWWNo1J0QdX4Q1QK7qM1wqUPMlg0SXShvV2dOg5sA8iAvA7QZrfHcdop/f53bAleHsYHLR0USYmnSJxNNiq7hbWw4r2fZ+z3Snjb3wMt5wVcRY//1VMj3Jr7xUBlFrZ6u52cYJ3TmfPO15Y8ugkh3dOGQiPq3uqu+dYx9ktKAt4zbmceY8VktPxXM9dI5ykjTQJsVfFSJegMHLbXQoEbqGAFCCThHazTRTF1NsJpusbP+A/yUjhrZn1YrPBlcYnD9UpQFXLCDeNwdKd/kQE3AohBN4H3pyNbkoM4R8/f3idulOU263wjnZVePfDHn4rz1vsyfN2DjbP21E442M44+PYJCFeWCRZXkavrRG++irRxUvY4GA/Q0oVKJfPgJC0W+eI4zobG88TRSsHup+c1xd9EbullDiOw4svvnj7hbucO3due72cnJycnJycnJycI0/c7lqYt7ctzGNtaIeappYoKUApnBsszA3WtLB0sEjQLiIIII4RxmJ9v79V3RaMNRhrECId5OklAssxt8F19liYN6FxeZDqu96cyQwXJqFcv7jvtjw85lS2Gqdu6qzuyQy8F1Zezu7Tq5SoTd+j7aI26YQIJDh5rvHdYjFY2bUvt0WkHeyxfbnFsTFGKIxw0dIlVt4d5XQ3woRYGwaKLp4jmagW8IzACotWoKVBO0dHMbLW0t7cYOXyJepLV5FKMTI9y8jsHNWRUcZPnmbuyTdQGx1HyHzufM4O1eFRZh97kmIttTX3S2XWr11lc+X6kbQFfqgQEDmp4J2oVPBW5mB/uyu+w0StSMFVDJVdtLGstUL0YYYEP6BIa/HDEKX7l98NYIRLsiV4C+dICd4CD2GKCFtKRdA+ZXdL12Hq7c9k2uJmm+WvvdyX/d8Ne3O7jVPgTSeLKLHzHYyM4Llrh+uocVGMZvQ3B8OxPefhTdnhqswKWsO2xqgZ7GnfBGmVPBYit0qifCJv4PbrSYnyfJRNwBo265vEWrMZJNuTfibLf5uSk70Gacavsdz5TA+eyZ0hikWE46BKRYhi7BGYxKEmB3Hf9WimTf/NPMnLh2v7fkcoF6SzS/DupG5ufaE/ed6yXMKdmUGNjmLDiGhhAb2ygl5dJXjlFeLL89gDzICX0qNcPo1UBVrtc0TxOpubXycI7s+RLef1S9+uTu/14qZXF0XPPfcc/+bf/Bve8573MDs7i+/7VCoVzp49yz/6R/+Iz3zm7n6M/vzP/5wPfvCD29uanZ3lgx/8IH/+53/ek/7n5OTk5OTk5OQcMcIGmCS1MXdTa77NIMZgaVmB67pYRLa6AcC2EVagbYAQBUQnFc1FFGE9B1R/BSVjNFiwxnbFrN4OwI6pDkWpuS7mM+2Fr0k+dfwtvPWJ0Ux7aeMKSu8/sHBCHUeJnQopay3n9M2zve+UqNlm80q2omb07Il7rHo3aWW36lqYO3lV7F0j2lhrELaCMD7C9Nb6UNkYrOlWdUtikVZ1b+d0h/vndAexoR1pKr5DwZVMVH2KKBBp1q6RlviICN3WWlobdVYuX2Tj+hKO6zEye4zhmVmqo2NMnj7L7BNPUx0eReROBDk3wSuWmH38SWqjYwxOTlEbHaO9scHawhX0ERhkf5ixEmLXYGSa4S2NQB5w9HHRU0wNFii6DsPl1L51rRUR6zyj/W5xEo0T787vdvtSy6yFSyLddOJWV/AW3NrGuV8IO4DA6VZ3d/pW3T1weo7y1Fim7fpXXyJq9Cav9l5xkxZulHXLEAMTPDWaPSf+/GIvrZVvT1t4XCNrQ3yMtRuufy46i4Rk+34qmUH1ONNFYPGiTYx0SJwykVcjdm5v0aw8F6EkThJjtKax2SRMNK0o/W0TQjFX/UGUKGfWu97+FI3oXE+ey+0QIq3uxvNAKUynt1nTd4r33jdAOfs5DT/5HPZB+C1R3h7Bu91HwftWed7q4PK8BahqBXd6GjU8jGl3iBYX0KtrJCsrBC+/RHxlAXtAERxCOJRKJ3GcATqdS4ThCo3mt2i3L9x+5ZycPRz5qdi9uJB+97vfzVve8hZ++Zd/mf/9v/83CwsLRFFEq9Xi1Vdf5b/+1//Kd3zHd/BjP/ZjRNGtZ6sYY/gn/+Sf8L73vY9PfOIT29taWFjgE5/4BO973/v4yZ/8Scw+gx85OTk5OTk5OTkPCdZAuJlWdQsJTnoBv9lJaCeQIHE8F2Vt5gRcGYExTSDECo2MFSJOIIjSEQq3/wNW1pi0ctZaZB9ErePuJgGtGy3MvyKZ/9vfh+9nK58rq/uL1xVRYUJNZNqumWu0bfu++7jyysXMjHnpOAydvsc8R90d7FMK3NzF6m6xxBjR6dqXu0gz3FP3AUmCtBotfSySWBbSnG525XTHN4p4cWLYDGKKnqTkKYbLPmXlICzE0mKlJXJNX10b9sMYQ2t9jeVLF9hcvo7rFxibO87Q9DS10XGmHnmM2cefojw4lIvcOXeEVIqJU2cYnTtBZWiE4ek5dJywMn+JsH20xKOHDSMhdixGpq4RSkvEAQ9F+Y5iaqBAwZUMl32UFKy3Y6IkH/O6W7wwQhmDG8VYKUjc/ji9aOGhu4K3EQrHRMDhv3/SeghT6FZ3675VdwshmH7Xs5lIGZtorn7h633Z/91QbO9jZT6THbd+te6y3D7c4f4LIjtR1cUwy3qmTQvDeSfr6uTjcVxP9bx/0ia4cYvEKaKVT+gPY8Stz8kFAqdQAAyOSYg6HdqdkFaYEHaPf66qMVf9IHtP7q40PkGkN3r0bG6NKBWRSiKLBWwYHglBWRQ9/Pe9MdNmlzaIP3v0HBX2Re4SvE23wtv2T/DesTa3vbU2lwJVq+HOzqIGBjHNJvHCAnptnWT5OsFLLxEvLsI+10F3ixCSYvEYnjdKEF4hDK7Sap+n0XwpdwfKuSuOrNi9spLamZTL5dssefcsLqZWCNPT0/zMz/wMH//4x/nSl77E5z//ef7jf/yPzMzMAPB7v/d7/PiP//gtt/WLv/iL/PZv/zYAzz77LB/96Ef50pe+xEc/+lGeffZZAD7ykY/wr//1vz7w55GTk5OTk5OTk3NEuMHCXKKtpRHENHWaey0ceUNVgzQabBtLAAhox5AkCJ1gfa/vQtiWhbk1NrUwF729XBiQIYMqusHCXLRgaXGCx972SKbdb16/oapli1PqVOZ+YhMu6cv33UcdJ6ydy1adD5+eRd3roHRi0hx2RN+z2B90UvvyBsK6YAtd+/JeigM7Od0WSdLN6TZS4kY3z+k23ZxuVwpqvkut6DLoeUgjSFRX6HYOV+g2WtNcW2X50gUaa6t4xRJjx06m1bhjE0w/+gQzjz5OqXZ7e8+cnP0YGJ9guvsZGj12DNfzWVtcoLm2mg9c9hCjLIkyGAVGGBwtEQf8crtKMj1YpOgphkoenpLUOzFBfPgiyoPEdn63NbhRgnYUug/53QAJHlo6aOF1Be+QoyB4H1Z1d3FkkJHHs+eRG+fnaS5e78v+75S9VuZWuZydq1J2s+/dYVd3t4TPEtVM23G7hrTZfq7IOmtiM9M2rccom9tXWt8vjg5QOiR2K2jp0imOYm9zYialQrk+JDGOsLQ2m+nkxna8HelQ8U4wUfquzHradphv/AHG9t/hREiJrJQRBQ+ExB6B7G4A562nkbPDmbboL76OaRyN/t0SwY7grbuCd9xvwRv25nmzlevdC9F7cAB3dhZZq6EbDeIrXdH7+vW00vvaNbhPBx8hBIXCNL4/RRhdp9OZJ+hcYbPxdexeZ7ycnJvQV7H7TmeCt1otPvzhDwNw+vTpA+/HY489xsc+9jEuX77Mb/7mb/JDP/RDvOUtb+Htb387P/dzP8dXv/pVzp49C8BHP/pRPv3pT++7nVdeeYV//+//PQBvfvOb+exnP8uHPvQh3vKWt/ChD32Iz3zmM7z5zW8G4N/9u3/Ha6+9duDPJScnJycnJycn5wiQsTBPB2iaQYK20DQS13URVqD2DPJg2mBB2wBCmVqOhlGa43wIQqi1BmPSv+m5e2/VuGNuKlzvFbsLX5N86Ts+yNBgKdNeWdvfBnBMjjIgs5aJl/U8Mfc/6LB+4Qpmz4z1kbMn7m1j1gAmrepWsit659wxu+zLZc/tyw2OjbZzupN9crr9fXK6rYV6O0IIGCx5FH3FaMFHGYGWJrUadtK/h4FOEhqryyxfukBzfY1ipcrosRMMTkwyMD7B7ONPMfXIoxQr1dtvLCfnNhTKFWafeJLK0AhD07NUhkZorK2yfnUBo/OBy16ROBYtDVqBFRYnEQc36N1FScFkrUjFdxgsufiuZKMT047y9/VukNbiBxFKa1SiifuU342ABB8tFFp42CNS4S2tn8aT2HK3uvvgsmFvx8RbnkL52bzrxc++gD1CTp2ODvDCbIV0WJ7krZPZ1+nzV33MIc8pOr+nuttDM7enuhsB59x5zK7PnUDwSDJ34Mes/XDjBlhD5NXQ0iUoDN92HeWnduYiiZBoGo0WiTHU2/F2fvdo8R1UvWwudSdZ5Frrf/fiadwWWSkjZVrdbcIQe9gfDlIR3v/AW7KNQUz0Zy8cTofulozgHYLdErwPI7IlzfMWdo/ovZXnfVAoiRoaxJudRVar6I0N4itXSNbXSa4tEbz8MsnS0o6L2T3i++MUi8eI43Xa7QuEwRIbGy9gTP9+D3IeXHoygnbq1Kl929/znvfg3qYCIgxDrl+/jjHpANv3f//3H3j//uRP/uSWj4+OjvIf/sN/2N73xz/+cd797nffsNxv/uZvknRnrXz4wx+mWMzOPCuVSnz4wx/mHe94B0mS8Bu/8Rv8p//0nw7oWeTk5OTk5OTk5BwJrIGo0bUwF2llN7DRiekYQWKg6LkoazLCmDICY5tAhLUxMvQgDhHWYj1v3131mjR6x2KMxelxdVFBJEyoNgFtNuRq5rHiCxL1/8hWRThhk0LzxgobieSEOpFp69gOi2bxvvtorWXl5YuZttrMBH71Ht2ntAYESJlndd8l2/bltoywDtKM9NS+XNkEEOiuzWsivBtyutU+A+CbQUxiLMNlF8+RTFQKuEZiRFppGXcrLvuNThJa62u0NzcQCEoDg5QGh1COQ2V4hKHJKbxi6fYbysm5S5TjMnnmLPVriwgh8IpF6teusjJ/icHJKbxC7yv4Xo/EjkVgSQBHCxydOksc5GFTShivFVhppg4XSiQ0ggRtLFXfOfSYhgcFJ0nQscQCRqa/NV4Y9f7lE5BQQBAALooYx0YkwuMwjUCFrSEIEdbFihZYr6e/91s4BZ+JtzzF4me+st0WrG2w+q3zjD55puf7v1NK7SUif2j7flAc4x2zr/BX84XttpWO4tV1h0eHD0N4S2mKAsu2whjN7bbjdpV5hjC7nKMCEXFZXeOEnt5uq9oyU2aUq2qlp30UgBdtEPpDxG4VAURuiBc3b7GOwPF94k4Hx2jisEOj41EreTSCmFrRRQjBbOX7OVe/TmR2BP614HmKzgxDhTf09Hnd0GclkeUSRhvodLBBgCgd/m+vOjmG820nSZ7fyWZOvnwO/Y5HUMdGb7HmEWFL8AZIwlRli9vgluA2tvi9wArDltCN6E5etwqESB87KJsXJVHDQ6haDb2xgV6vYzY2kYMD2CQhWV3DGRvDGRlOTxTuAdcdQgiHdvsirfZ5wFCvP8fAwLModfif3ZyjS0/OXi5evJi5QTpQtLCwcMNje29Xr15Fa421lre97W38i3/xL3rRxdvyXd+1M7h27tyNFSTWWj75yU8CaaX429/+9n238/a3v51HH01nc33yk5/M7bpycnJycnJych424jYYnc7mdoqpRZy1bHZiGhqQEkfdaGGujAbbwdgOhAkykYgoToVueTgjxMbo7QoWcY8Xp3fKMbeBELC818K8Da/ZtzJ1fCzTXlk7v+9Q54ycoSAKmbYLyYUDsb5sLC4TNbIZs6OPnrjHrVnQJr3oF7mF+d1gsV37cgdssef25dLGCKtJhItFEgmf2Pdum9PdCjVBbKgVXTylGK/6+EZihUWrNENXO/29HkyiiI3r11i+dIFOo0F5cJixEyepjY0zNDnFsafewMTJ07nQndNThBAMTc0w9cijqa353HGU47K2cIVWff32G8i5ewREjsFIS6Iswqai90FXSwoBY1WfoZJHxXeoFhw6sWYj2KlyzLk9XhghjcGNY6yUJG6fzhEExKKAwUELFxA4NuYwK7ylLSKMdyjV3SOPn6IwnI3vWPryN0j2iSw5LIrtpa5TUIqVivHxIabK2fOSw7Yyhxuru300M9RvWO6Kuk57T0b7iWQa1/b+eyCtwYsaaOWTqCKhP4iWt550LJWDdD1MHOFLQdxq0Y40nVjTidL3QckCx2o/jNhTZ7jY/DOCZGm/zfYUWS2nlua+h+mER0af8L7vWfB3vUYWwk88dySqz++ILcFbqFTwtjodG+CwJpr0Kc8bwFGokWHcmRlEsYheW08zvdfXiK8uErz0Mnp1Fe7RHcNxqpTLZ7A2ptV6jTiuU68/R5LsH2mWkwM9quz+sR/7scz93/3d30UIwQ/8wA8wODh40/VSb/4CU1NTvPOd7+S7v/u779j6/KAJw50TGbVPVcuFCxe2s7+/8zu/85bb+s7v/E5efvnlbbH/5MmTB9vZnJycnJycnJycw2PbwjwCP7X+bUeayFjaWuK4LhKQu64uhQVrWmDBJE1ErCAMUyH0XrOg7xNj02tRYw1S9tbCXGGYcdKqiSWbzcMufF1y6QN/n5Fd1wFCx5TqN+Zve3jMqdlMW93UWbVrB9LPlZcvZO4XBquUJ0bubWNmy8Lc61qYH17V1ANH175c2sGuxWnvLLYFGmUTtHQBSSwLJG6a0+2FIdLun9MdJYZmmFD2FQVHMlrxKXerOhJlMdIS91HojsOQ1voaQbOBUIrq8CjF2gDKdaiNjjM4MYVzSA4SOa9fSrUBZh9/iqXzryGVorG6wubKMnEQUBufQObHxYNFQOwavEiSqFTsVkag1cEfi4bKHkoKVlshSgo2OjH1Tsxg0eWQhvUeKARQCAI6pRJOFJN4LtIYlO6D6Cwglj6usSTCxbExjo1JRPo7eBik2d1RWt1NG0F/hFshJdPvepbzf/zX2206jFj68jeY+Y5v60sfbocyMX6wRljcEZI75UneOf0yf/DqzjD/c0s+f/+xVkZH7DebosiqLTPCzsTRE3aVKwxid1V3W2F5zZnnDfEj220OilPJLC+7F3veT2UinKRN7JaQJqZTHKXUvnZDxvhuHN8jThJ0FOL6BYJWgCNLbJLgKImrJAVngunK+1ho/o/t9SwJlzc/zunBn0DJwk23f9AIx0GWClitoRNhgxBR7N/+b4YcKOF9z9NEf7pjX24urZB85QLum/d3Dj5yCED5qZ15EoLjQ9QGrwwclpOXxYodwXvrf6zAyu416QH9NgvXwRkbxQ4MoDfqJCuriI1N1OAgNomRyys4E+OowUHu9oRAqSLl8hna7fO0Wq9RKp2kvvE8terTeN49XpPnPNT05Cfvv/yX/5K5/7u/+7sA/Oqv/ipPPPFEL3Z54HzqU5/a/v/xxx+/4fEXX3xx+//HHnvsltva/fi3vvWtXOzOycnJycnJyXlYsHZ/C/MgJkASaYtfdG60MLddC3MTYOMAGZcQJsEWiodm+2m1BizWWmSPs6RnnCaOsIR0brAwd16sMfiBpzJt5fWLSHtj/tcJdRwldvpqreW8vnDDcvdCsNGgeS1rnzj66Il7n4yrU2s5pEoz2XPuCEuCEW2kLaX25Xq4h3amBmW6Od04xNIjUQ7a3ZXT3bkxp1sbS70T4zuSiu8wVPIYcF2EgVhZrLRE7sENKt2KOAxorq0RtJoo5VIdHadUG0A5DrXxCQYnJlH55y/nEHE8j+mzj7G2eAUhBW6xyObSNVbnLzM4OYXrH3414sOEFRC5Bi+WXUvzrl12DwTvWtFFScFyI0QC652YtVbEUNk7LMOaBwppLF4QQsHHaEnsuggTIftRgSkEsSzgmQ6JAMdEKGK08DiME1Npi1jrIihh5AaWEGH7c2yoTI8zcHqOjXM7kzFXv3We4SdOUxwZ7EsfbkepfS0jdgeFEd42o/nDVy22+36FWvDCdY+3Tx9uzu15McqI3RG7CyRMs8ECQ5nlNmSTJbnKhNkRsMbNEEtmlbrsfSWnk7Qx0iXya/hhnaAwSrFz/aaffoHAKfjE7Q5KJygb0A4dlPTZaCcMl12kFAwV3kAnWWAteH573cisc6X5xxyr/nBfi/xUtYJpdxDd6m5RKByJyUjuux8j/uJr2JWd9zn6k6/gPDWLKDwgEzP3Fbxbhyx4b1mb07U2F1gMwqjUiQ59cNbmgPBcnLExbG0AXa+TLC8jNjdQg4OYKEReX94Rve8CKb2u4H2RVvs1isUTbG5+jUrlcQqFqQPrf87DQV+m6P3yL/8yv/RLv8T4+Hg/dnffGGP4tV/7te37P/IjP3LDMleu7Ngtzs7O3vD4bubm5rb/n5+fv8WSN3LlypVb3q5evXpX28vJycnJycnJyTlAMhbmBehWKWx0YhpaYaXCdW60MJdagw0wcQO0QIYa67iHmuOsjcFag7UgejgqLbAcc9PBjOtcyYyhig586/EfRe2277SWyvqNAnZFVJhQE5m2a2aJlm3dsOy9sDerW/keg8dn7nFrNv2cKJU+3zyv+46wWKzY7NqXl5B2AEHvBr0cG4OQaOGiRWrpmnguUptuTnd0Q063tVBvRyghGCi6lH2HYd9HmjQf10pL5PRe6I46HdYWr7Ayf5kkChkYn2Ts+AlqI6OMzM5x7Ok3MjIzlwvdOUcCISUjs8eYPH2Wcm2AkbnjCCFYvXKZTmPzsLv30GFlmuFtZRqnoIxA9qhguOw7TA4UKHgOI2UPi2WtGaIfFEvaQ8ZNEpwkwY1ihLXEnnvQzvM3RwhiWcSiSKSHsAZl437t/cbumPQ3X1gHS6ev+556+zOI3edq1rL42ReOjPVzsbOcnlduISTu0DhPjGTfr88dASvzuiixRjYq5YRdRezzWl5wFon32D+fieeQtveKbJrfvQkWIrdKonwib+CW60jlID2XJApxJNigQytMiLVmo7MT5TBZ/l6KznRm3Ub0Miudz/fo2eyP8FxkwUcWfdAaosOdCLGFcBT+B96cabONgOh/f+OQenSPbAneiK6luUkFb26csN1vstbmaYW3ME4qfB/w90v4Hs7EOO70FEhFsnSdePEqSX2d6PJlwldfRW/e3QQWIRxKpVM4To1O5yJRtEqj+SLt9sUD7XvOg09fzEx++Zd/uR+7OTB+4zd+gy996UsA/OAP/iDf9m03WtU0Gjtfykqlcsvtlcvl7f+bzeZd9WW3UJ6Tk5OTk5OTk3PECDd3WZinlQhhomnFEGiDdF0cbGaGqbBgbRMRJxjdQgQitRc7xGo2a1P7cmMtQoj0IrhHjKkORZle9C+Zy5npt/7fOMTvfU9m/nuxcRUnvnGQ85TKuiUlNuGSvnQgfUzCiPUL2SzxkTPHkPcqUhsD2FTsVuquLdxet4g2VhikGURar6f25cpGYA2J9LFIYuETd22+3Sjq5nTvGfS3UO/EaAsjZQ/flUyUfBwr0NJ0Bab0b68I2y2aa2tEQQfX8xmcmKJQqeJ4HoMTU9TGxnru1JCTc6+UB4eYffwprp1/FekoNpevU1+6RtTpUBsbP7RYu4cRoyyxNbjIVMTUEktvjk8FVzE14LO0GTJU9qm3ItZaEYNFF9fJrepvhxeE6JLEjWMi3ydxHdy4P/mvtit4u6ZNIn0cE6KIuhXe/UXYImxXd29ibdTTCW+78Solxt/4GEvPfXO7rXV1mY1z8wyeOdaXPtwKaTXFYIVOaWfSZ7s0yTuml/nm6s5r9NKay1ogGS4cXgY7wAUxyrDdiSMqETPJBlcZzCwXi4SLziKPJDuvcRGfOT3BJedaz/spsHjxJqE3SOKU0zhmE+EmN59s4Xg+UazRYYBfKBJFIW0pEBJaYUKl4CCFw1z1hzhX/wja7mxrqf1XFJ1pKt6Jnj+3LWS1iglC8Fx0u4PjH43KaefxGdTjM+hvLWy3xf+/l3Dfdho5futJB0cKQToBPgnSm1PYZWl+2L9/qbU5yG6lt8VaibCpzTlCH+jkXOH7uJMTmE6AXl8nubaEKBRwhgYxnQ6yXMaZmEDdRlfb3p6QFIvHCYIFOsE8pjsZy5iQcvlsfs6YAxzyt2xjY4Pf+73f4/d+7/cOsxsZPvWpT/Gv/tW/AmB8fJz//J//877LBUGw/b93m6wzf9fAZafT39mIOTk5OTk5OTk5PWLbwryTtTDvxERCEmqL6zo4e/LeHCMwpoGNGlgdI2OJ9bxDsy8HMEaDBWtsT6u6AY67adVeSMCGylqYt8PvQA1kBzQqq+du2MaoHGVAZpeb1/PEHEwF0tq5eezunEwhGHnk+L1vUGtAppX/7iGGJz5ApPblHaQtInCQeqRnkzAkCdLqXTndRbTrYJTEjVIL2f1yupthQqwNg0UXz5FMVgq4VmGEwSiIVfr3oLHWEjSbrMxfZm1xAYtlaHKa0WPHqY6MMn78JMefeobBiclc6M458riFAjOPPcHAWGqzPzA+QaexyeqVyyR7J5jk3BfasSTSoFWaketoQa/Khj1HMTlQoOhKhssejhKsd2LC5HBFtweBNL87RBqLE8dox0H3Mc9+S/AGiZY+wup0QlifEQikqSHw0+pu0e7r/seeeRS3Ws60Xf3C1zB9mnhwO0rtrPgb+YO8YUpQdHa+YxbB549AdfcaJeoUM20n7SrsU919Ta6yIbKFYrN6gqLpz/OQJsGNmyROEa08Qn8YI25+7i6EwC36mERjkgRXR8SJJogMrSghjNMJvp4aYLb6gT1rW+Ybf0Ss++doIgsewnVRxQIkGnuEfmf9938bqF3HOm0IP/n8kXFUuGMEqY35doW3hrgFHJXfP5Pam1uRit5d8Tt10pIHfl4giwXc6SmciQkwhvjqNZKlJfTaOtH580Tnz2Pad3Z8F0JQLM7i+5OE4TU6nXk6nXkajb/B7hN5lvP641DF7itXrvDjP/7j/ON//I8PsxvbfPOb3+SDH/wgSZJQKBT47//9v9/Uer1QKGz/H93G9iMMdwZGisXiLZa8kfn5+VvetirQc3JycnJycnJy+sy2hXk7Y2Fe78Q0tUQLhasEao/YLUwCwSbGdiBMkMI7dAHUGJNWeFmL7OGs6AEZMqjSc+flvRbmASy+9f+eWd7t1PE6a5k2ieSkOpFp69gOC2bxQPpojWH1lYuZtsFjU7ilwv4r3H6L6efEkenVl5OL3bcjtS9vdAdcSt3B7l5VnhiUidHCweIQS59EKRLXQW3ndAc3zEUJYkMr0lR8B9+VjFd8iiissGiVWgVr52BHi6y1dBqbrMxfYv3aIlJKhqdnGZ09RnVkjPETpzn25BvSitg+CiM5OfeLlIrxE6cYO36K8sAQI7PH0mPx/CWC1t254+XcmsSxaGXTmAVBTwVvV0mmB4qUfMVQ0cN3JBudmE6UD0jfDmkMXhjiJBqpdWpn3seqNSskkSxikWjpIa0+FEtzYUtgHYQtYUWMPaBJjXeCdBym3/FMpi1udbj+1W/1rQ+3otBZQZhdr4cQJNUJ3jyRHaP+/KK/n6bcX4TgghjJNJWJmGAfkVfAa848dteBSSI5k8z17Fi1F0cHKB0Su1WMdOkUR7ez0PdDKgfpuiRhgLAWJwkIYkOcGDY6Mbo7gbbqnWa89J2ZdbVtMd/4w74KdapWQXhpfJZuB7dfoU/IsRruux/PtOmXFjPV3g8MQnQFb1LB2xw1wbtrbS4Mwopd1uaqK3of/O+NLBVxp6fTXO84IV5cJLm+TLK2Tvjaa0QXL2I6d/Z59P0JCoU54nidduciYbjExsYLGHN0Jm/kHA5H4gr4KMzQuXDhAu95z3tYX19HKcXv//7v8+53v/umy1erOxZ6t7Mmb7V2cgNvZ3m+l9nZ2Vvepqam7mp7OTk5OTk5OTk5B0TU2LEwd9Msulgb6hGEiUE6Dh7Zgm1pBDbZQMQxRreR2sUWDtc+ztqu2G0sQqQWYb1iK6sb4Fqyx3L88lnMmUcyTZW1czcMLc3IaQoiKzxfSC5mBsXuh435a8R7Bn5GHz15k6XvAN0dvFIqF7rvFNHBCo20NYT1EKbWox1ZHBtjhMIIFy3TrO6tnG73JjndsTZsBjFFT1LyFCMln6py0gIOZTHSEh+g0G2tpb25wcrli9SXrqEcl5GZYwzPzFIdGWXi1CPMPfk01ZHRXOTOeaCpjY4x89iTlGoDjMwewyuUWL+6SGN1+UiMGz0UiDRewchU8Ba2t4K3lIKJapFK0WWg6FJ0FZtBQivMBe/b4cZJGqERxQj6nN9NKnjH0sei0NJF2gTZZ8F7d3U3VvW9urt2YobKTLYIavlrLxNtHv4kHIGl2L6eaWuXJnnndNaJZqmtOL9x+OefK1TYJHv+frPq7rYMuKKyz23QVhk3Qz3t427cuAnWEHo1tHQJCsO3XN7xfUCShAHKaBwT0440ibGsdxKsSZ/nWPHbqbhnMuu2kytca/2fXj2VGxDFIsJRqGIRohibHA23AgDve55C1LKFguEnnsMmD+Bvxr6Cd5ujJHjD3jxvsSfP+4B3JkBWyrgzM6jRUWwUES8uoJeX0atrhK++QnT5Mja80VFrL543TKl0kiRp0mqdJ4pWqW88h9ZHZwJHTv/Jr4SBxcVFvud7vofFxUWEEPzO7/wO73//+2+5zuzs7Pb/V65cucWSaXX2FnkGd05OTk5OTk7OQ4C1aV73HgvzzSAmEoqOsTiOwtkzS19ZMM1lsCE2DhGyBIcsTllrsDb9m2Zd9aZyqCASJlQ6SBkRsOFmLczrw/+3zH0ZB5Q2s9XaHh5zKns+XTd1Vm12W/fDyssXMvdLo4OURgfvfYNad9/j3ML8Tkjty9tIW0jty81wz+zLlY3BGrRwMChivD053Rpnj72jsVBvx7hSUPNdqgWXId9DWIilxUpL5JoD+RpZY2jV11m+dIGN60u4foHRueMMT89QGx1j6syjzD3xNJWh4TynLuehwS+VmHnsSaojYwxNT1MbGaO5vs7a4hX0ERqQf6ARELkGKyxxV/BWppeCN4xVfAaKLtWCQ7Xg0AwTNoO4b5WaDyp+ECKtwY1ijJQkfZ40Z0TqeGJw0NJF2QRJf7+HaXW3QtoSVkTYPu5fCMH0O59Nz/W7WG1Y/PzX+taHW7HXyjz2ahwb9RgvZa8/joKVOUJwfk91d5WQMRr7Ln5ZXSMgW6V+KpnBt/2ZJCyweNFmOunDrZI4JSL35gVsQgicgo9JEnQco+IQMDTDhCTRbATJ9nKz1ffj7oljWg2+xEb4zX22fPAIAbJSAd8DpTCd2wuL/UIUXLy/+2ymza42iT91NBwV7pobBO/kSAreaZ63wbJlbS7ASoRxoEeit6pWcKenUcMjmCAkWriCXl1Fr6wSvPwy8ZUr2Nu4KTtOlXL5NMaGtFqvEkd16hvPkST7H1dyHn5e92L3ysoK3/u938v58+cB+PCHP8yP/uiP3na9J554Yvv/l1566ZbL7n788ccfv8WSOTk5OTk5OTk5DwRbFuZJ1sJ8vZPQMQItFJ4SqD1XhqLVQJgArVtgFMK9u4ibXmCMASzGWGSPq7q3xgqXWciIgSYZYuPp784sX1m/gNhjAX9cHUeJnQxiay3ndVacvh/aK3XaK/VM231VdVuT3pQCKSDPT74lWfvyMtJUkbY3A7Q7Od0+Fkki/X1yurP25dZCvR0hBAyUPIq+YrxYQBqRWgJLS+Tcv9BtjKG5vsb1SxfYXFnGK5QYO3aCwckpaqPjTJ99nJnHnqA0MHh/O8rJOaIox2Hy9COMzB6nPDTMyMwcSRSzOn+JqNPfys6Hli3Bu1vhLY1Amt5NmhECRio+I2WfkqcYKLoEsaHeiQ/fYvkIIwC/syu/2+1vfjdsCd7ejuBt4r4K3gKJtDU4pOruwvAAo09mK3E3Ly7QuHLtJmv0Dz9cR+qsUNkpT/KOqWzbl695xEegMHaZKg2y53Wn7Mq+1d1GGM4585k2F5en4tM4tj/n09JqvKiBVj6JKhD6g2h5c7FdOVt25iHWGLwkAgvt2BAmmnaYfm8cWeRY7YcRZJ/HQuNPCJKVnj6nLWS5iFQSWfSxYYjVR0d8dd50Enl8NNMW/X+/gdl4QH//HxjBG7byvIXdEb138rx7cI4gBapWTSu9h4YxrXYqeq+tkSwvp6L3wgI2vvlvjlIlyuUzIEQqeMd16hvPE0VrN10n5+HldS12b2xs8N73vpcXX3wRgF/7tV/jp37qp+5o3ZMnTzI9PQ3Apz71qVsu++lPfxqAmZkZTpw4ce8dzsnJycnJycnJORpsWZgnOxbm2lrWQksQa4RyKIjsBaxKDLZ1HYzBmA7CLfeqiPquMEangregZxbICsOMs2P5eC26mHm8E3wga/FtNOX17DIVUWFSTWTarpklWrbFQbG3qtstFRiYm7z3DRpN6tem8qruO2HbvryKsC7CDNx+nXuim9Mt3a7QXbijnO7NICYxloGSi+dIJssFHCvQ0mBlag1s7+MrZK2lubbK8sXzNNdWKZQrjB0/yeDkJANjE8w8+iTTZx+jWO2VrXtOztFicGKS6Ucfp1gbYHTuOI7ns7Zwheb6Wm5rfgDsPm5paVBGIHs89j5QchmvFih5ksGiS6QN6+0oF7xvgcrkd5u+25kDGOGSbAnewum/4G3KCOsgbRErwr5WdwNMvPlJVCEr0i5+9quHLhAKoNReyrR1ShO8bY+VeTuRfG35cGOTgH2zu2uEjLL/ufya2mRF1jNtJVvgyfgUshfC2z4oE+EkHWK3jBFpfre5xeTg1M4ckijEJjG+0ESJIYg1jTAhStLPTNGZYqrydzLrGmLmG/8dbXpfaS2kRFbKiIIPQmKDo2P9LITA/+BbstfJUUL0J185tD7dN/tZmidHVfDeyvPesjbfyvPukbU5pKL3QC0VvWsD6EaT+MoCem2d5Poy4csvEV+9Cjdx+JHSp1Q6g1QerdZrxFGdzc2vEYSHPykpp7+8bsXudrvN933f9/GVr6QHyl/8xV/kX/7Lf3nH6wshtq3OX3rpJb7whS/su9wXvvCF7cru97///bm9XE5OTk5OTk7Og85NLMwbQUwoHDpG4CiJs6cqWdUbGFpYHWAlSHEEqrqtxZjUwlz20MJ8xmniiPTKOCKk7u3Yjltc6nMfyCxf2riC0nusC1W2wjqxCZf0ntzv+yBuB9QvX820jZw9cX8TABLTtTAXeV73bcjal7tIM9Ij+3KDY6I0pxuHRLpoobZzup1E4+6T092ONEFsqBVcfKWYrPp4VmGEwSiIVfr3XrHWsrF0jeb6GsXqAGPHTjIwPsHg+CSzjz/N5JmzFCo3t8/MyXlYKVaqzD3xFJWhYYamZykPDdNYXaF+bRGjj0Cp4gOOUd0Mb9UVvLVE9HjsvVJwmKgVKbiKoZKLNpa1Vog2ueJ9M3byuyMEEHte3wVvLVwS6WKEuy14C/rzHdyp7i6AlX2v7la+x+Rbn860hfVNVr75Wl/7sR/FPVbmiVtmoFbm0aFsDMvnjoKVObBEjRZZ4f3kTaq7AV51LtMSnUxbzVZ4LDnRtxgEJ2khTULk1zDSISiM3HTXQggc38fEMTpOMGEH34EgNsSJYaMdbx/rhgvPMuS/MbN+qFdZaP5pXyZ0yUoZKdPqbhOE27niRwE1N4LztqyjQvKVi+gL12+yxgPAtuBtIQnSqKsjLHjvWJuzK8+7h9bmAEqihgbxZmeR1Sp6c5N44QrJ2hrJ0hLBSy8TLy2lr90epHQolU7jOBXanQtE0QqNxjdptw9uvCDn6HOoYrfneRw7dozjx4/3db9RFPHBD36Qz372swD8zM/8DL/yK79y19v52Z/9WZRKRzR++qd/mk4n++Pb6XT46Z/+aQAcx+Fnf/Zn76/jOTk5OTk5OTk5h0/S2dfCfLWjiYwlEZKCstkT7U6A6DQRSYiWHZD+DdZ1h0EqFFiMtYgeWZgLLMfcndysZbuQuQppe9+Nrgxn1qmsnc/cH5WjDOzJtpvX88RkB/Luh9VXL2UG2oSSDJ+eu8Uat8FooGth7shDz2Y/yqT25c3UHs+WkabSM/tyZRMQAi1cjFAku3O64xhHa9w9Od1RkmYuln1FwZWMVnzKOFhh0V2BSDv3PuJjrWVzeYlOs8HAxBS1sXEGJ6c49uQzTJw6g18q3ddzzsl50FGOy9QjjzI8PUN1ZJThqRmiTsDqlcvE4dGpRntQ0cqSKIORYITF0bLnIlLRU0wNFih6DsPl9Bi81opI9NERW27F1vTAfv6yp/ndFjeKMEqiD2ESnRYeuit4G6FwTES/hJq0ulshKR1Kdffwoycojg5l2pae/yZJ53CPQV60iUqy4n+7PMk79lR3f3PVZSM8AgVY+1R3D9JhmP0nMCRC8w33HOGe/O4RM8iZZK4vgrcgfZ2xELk1ElUg8m7uPqRcF+k4qZ25Nqg4xJGCdqxJjGFjV3zDVOW9FFTWRWozepHV4Es9fEYpQklkqYQopBO3bXB0srsB/P/rjVBwM23hH30Za46qOHwH7Ba89Zbg3eHoCt6wZW3OtrW53GVt3qNfQSVRw0N4MzPIcgVd3yC+skBSXye5do3gpZdJlpdhj7uGEJJi8QSuO0QnmCcMl2i1X6PZfCV3BHqdcKgjLo888ggXL17czsvuF3//7/99/tf/+l8AfPd3fzc/8RM/wTe+8Y2b3l555ZV9t3P27Fl+4Rd+AYDnnnuOd73rXXzsYx/jueee42Mf+xjvete7eO655wD4hV/4BR555JH+PMGcnJycnJycnJzeEW7uWJg7aXW2tZbV0BIkBqSiIHZfTFnU2gbGNhHWYFSC5GhUVxhjsNaABSF7MwA2pjoU5c7s66vBzrm/BZr+j2SW91vLeOHm9n2J5KQ6kVmmYzssmMUD66NJNKuvXc60DZ2cxfHvw/LRGFILcwmOe9vFX9eIACvirn25gzCDPdmNtDHCahKR2pfHYk9OtzH4QZjxN9DGstGJ8ZSk4jsMFj0GHRcEJMpipCW+D6EboLGyTHtzk8HxSYqVKpOnH2H8xCnc7uBjTk5OWi03PD3L1JlHKdUGGJk7hpCS1SvztDfqh929B55EWXT3ZoXF1aLnIpLvKKZqhbTCu+yjpGCtHW3b/N4Ju0VniUAhcLo3N/UJweve/O6tgKQgFMXurSQUZaEoC4dK91bt3mrCpSZcBvbcttqr3b9OH3Jp0vzuAGksKo5JDiG/GyDBQ0sHLbyu4B3SD6Emre6ugj2c6m4hJdPvejbTZqKYa1/6m772Yy8CKLWyVubt4gRvmgjx5M6X2FjBF68ejeuPawzQIXtufNLePKs6EjHfcM8R75ngMGVGmdMTN1nrYBFYvHgTI10Sp0Tk1UjUzV26UjtzSxKG6CjC71pmtEJNlGiaQTqxUgqXY7UfQorsOd+11v+hFV/eu9kDR9bKqaW572E6wZESBEWlgPd3nsm0mYV1ki8evqPCfSFkKnhbCzoEnTwAgvdua3Oxy9pcda3Ne/Qb6CjUyDDezAyiVEKvrRNfuYJeXye+epXg5ZdJVla7190pQgiKxTl8f5IwvEbQWaDTuUyj8Y103CPnoeZ16aX3h3/4h9v//+Vf/iVveMMbbrn88ePHuXjx4r6P/eqv/irXr1/nd37nd3jhhRf40Ic+dMMyP/ETP3FPleM5OTk5OTk5OTlHDGshbOxYmLvpIEcz1HSspGMsriNwdl+s1jdwEoPWm1g/ASkQ+vAHm6wFY7aqukWPLKPhuLsjXMeEbBTXtu+H3hsIB89mlq+sZifCzshpCnsGgC4kF7EHOApfv7SADrMVI6OPnriPLdp0pr5S6edEHX4V/1HFojGi1bUv95BmuCefRUmCsglauoAklgWMUiTOrpzuIEDsGuSzFurtCClgoOhS9hxGCz7CQqwsVloi19yX+39jdZnWRp2BsQmKtQEmTp6mPDh0+xVzcl6nlAYGmXniKZbOv4ZSDpury2wsXycKOgyMTdxf9MTrGZHamQubJjG7WuBoQaLsrY9x+/wUi33aM5uwOy0FoZirllhrRZSFohUmJLHFExLPkdvrie5/9zucbvd0Lb2/SxDcc3ZhMTvr2F3d3/5r8btCeWgNQY9tvdP87gjwsLIbwbFnklbPEZBYH4QFPBQRjolIpEeva6qEqSJEAylKGNHEWt1Xp6Ty5CiDjxyn/uqOLe7aSxcYfuI0pbHhW6zZW0rtazQGduJ+jFNAlIf4tomQz1/dOYf+3KLP9x4POOyETSsEFxjhCbtjwT5Mm0Hbpi72d7Npy4AX3fM8HZ9B7vqcndDTRCJmSa3tu95BIk2CG7eI3TLSJgSFYUrtJaS90WVASInj+yRBgHEc4k6LcmWAZqTpRAYhNI4SFD0HTw0xV30/lzY/tmsLhvnGH3Jm8J/gyN7F2AjHQZYKWJ1AJ8KGUZrjfURw33mW5AuvYq5tbLeFf/Y1nGeOI0pHp593zZbgnQSwndEedOPRjvJ5TDohDrpV3sJirURYkbYL3ZtUNNfBGR3BDgyg6+skq6uIzU3U4CA2idEryzjj46ihIbYOcL4/gRAOQbCAtTGpm11ErfoGpMwnoj+sHOVvzwOBlJLf/u3f5k//9E95//vfz/T0NJ7nMT09zfvf/37+7M/+jI985CPI/IIrJycnJycnJ+fBJ+l0q7qzFubLgcZYS4SkIOzONV6SINc3IO4gpEG7CeD0TFi+G7ayTq0xyB5VdQ/IkEG1IyIvm6yFeaP89zLLq6hFobkz8OXiMqeyVuJ1s8GqXeWgsNay8vLFTFtlcpTCQPXeN2oMYEHJVOju0ev7MGBFY499eS+y7A3SxNs53bH0MEISey7CdHO6owi12wrPwkYnRlsYLHn4jmSyXEDZVPyx0hI59yd0N9dWaa6vUxsZozQwwNjxk1SGR26/Yk7O6xzX85k5+ziDk1MMjI0zODFJ0GyycuUySRTdfgM5+yMgcg1WWmJpERYcLXCSnZsbb91kektuvDmJxNHZm9q+CZQRKAvKpnqpIwSjZZ+S51AtOLhKsBEktOOEBEuCJUIToumg6dj01raa1vYtoWkTGtu3mE0bs7HntmljGrtuTRvTssn2rW2z229b0/27e3/pvpo2oWMNLZsQoPGFpCKcnp/hOXGM0unvFhxOfjcCElHACIUWLlZIHNt7S/O0urvSre4W0OfqboCpt70BucdCfvGzLxxqRaybtHCjRqatU5q4wcp8oekw3zgaEzAXGSDYU4N3q+pugE3Z4mXn0g0TXh9JjjGkawfex/1wdAelQ2K3ipEuneIo9iYng8p1EY4iCVI7cx12KHqKMDGEiWEzSIi7555V7xHGit+eWT8xTeYbf9TzalRVqSCUQvgeph3cLD79UBBK4r3/zdnGdkj0P79+OB06SLYEb6PBRKDjVPzu/xH9HrC3tjbv0VMQroMzNoY7PY1wXZLlZeKFRZL1daIrVwhffgVdr29Hk3neCMXiCeKkQat1nihcYWPjebQ+Wpb9OQdH3yu7jTG8+OKLnD9/nkajgd4nUH4vP/qjP3qgfejFCcj73vc+3ve+9x34dnNycnJycnJyco4QYWPHwry4U8GxElo6GhCCouzaVwOsrqKMwCQbUHQxsonUvRDz7h5jUwtza+lZXvfurG6AS80LMJj+n6hJOuXvyDxeWTufGS46oU6gxM6gnLWW8/pgI5BaS6sE9Ww/Rx89eZOl7xCtAQlCgfu6NNO6I6zopPblpoawbo/syy2OjbFCooXbtV51ib10Rr+3LRpkc7qbYUKkDYNFF1dJpioFHCvR0mBlWgF5PzF1rfo6jbVVqsMjlIeGGJ07QW107H6eaE7O6wohJaNzxymUKyxfuoDrF1i/usjqlcvUxiYoVu9jwtLrGQGRY/C6Fd7S7HEn3S613qprzpK5v1f/uc3koFrNJWoahBVoq7najil6iqqvsEJguxKX3a6wtrsqtXf/n33M2uzje5ffb/27oYQCHBIsJeFQFS5tmxD3aLR/y87clEu4UUTk+2jHwUn6m2GNgJgCrg1AgGMjHBuTiNRBpWe73a7uLmJEB2lLfa3udstFxr/tca59cce+vL20Sv3VywydPd63fuyl2L5G7O0c99rFCc4Ov8xwQbMW7Lw+n1v0OVbr/ySBvVghucgIj9kdC/ZRWtRsh01x82ulFVXnPFc4nexMhhUIHk9O8HXxGk3Z++fmxk1COUjo1fBDTVAYphjsPxHX9QtE7RZJFCKEwPc8fFfSiTRKCDbaCcNlFykF46V3004WaMUXttdvxZdYav8Vk+W/3bPnI3wX4fvIYoKuhxBFcD9RTgeMc3YK9YZj6K/v2LrHn3sF5x1nUFMPuBuSUN0K7z3iq1OkNyXSB4vt2vOnVd4Caw3Cps5mFrN9rnDQCN/DmRjHhiHJep3k+jLCTyu9TRQiCwWcyUlUrYbr1pDyNO32BVrt1ygVT1Hf+DIDtTfiOL1zTcg5HPo28tJut/mVX/kVPvKRj7C6eueVGEKIAxe7c3JycnJycnJycu4aa9O87mSPhXmk6WhB24AjwN3yBmy3EM0WMjDoYoz1BFiDsIc/eJBamKditxDpOfdBUxAJE2pnwCkmolVd275sb1R+ML3A7yJ0TLm+M4hREWUmVTaHb8ks0bKtA+3n3qpur1qmOn0/oqNNK7sdlY715hbm+7JlXy6sj8DvmX25sjFYg5Y+BkWCj3YURim8MM3pLuyxgA1iQyvSVAsOviuZrBYoCAcjDEZBrNK/90p7o87myjKVoWEqwyOMzB5nYLw/mZM5OQ8bleERvFKJpXOvIh2HzetL1JeuEgcdqqNjPfl9e9ixEmLX4MYSKwUZo++9Ud6Z+13ZeM9Lvsu1fFtYzt7f2VbVd2htJLSNpqFjLjValEPFaMU/su9l22oiaxiQLsbGFIVDSThEGDq2N7bmAvCDgKBYTPO7HRdpDNL0OY9UQCx9XGNJhItj454L3gKFtFW01UAHRAdsfwWL0afPsvatC0Sbze22q1/8GrUT0yjvcOxxS+0lNgcf2b5vlUtUHOHtUy3+7MKONfgXr/r88Nk2zuGbTLHAICdZwd9l/3/KrvBVMXeLtWBRreBZL5PXrVA8FZ/ia+6rdGRvqzYFFi/aJPQHid0qAojcEC9u3rjstp15iHEcolaLYm0ArS2tKEEK2OikLkJCSOaqH+Rc/SPEZicGaqXzeUrODDX/sZ49J1WtYMMQPBfdCXCOkNgN4H//m2i/uABJ97NiLdEfPUfh//k9R/a34Y4RCpSf5nfvNHYF7weDVPTea20u0/ZeWZsDwvdxJycwnQBdr5MsLSEKhVT0DgJkqZSK3pUK5fIZWq3zqeBdOsnGxvPUam/AdR/wCRM5Gfry09ZsNvnO7/xOfv3Xf52VlRWstXd1y8nJycnJycnJyTl0kiCt6o476QVptxp6qWMwWGIrKcjuIKM1sLyKjGOwIaLgokUAuEfCwnyrojvN65b04gr0mNvIZALOhwsIlZ7bG1GkWf67meXL9ctIs1OVdEqdyjye2ISL+hIHSdhosbmwlGkbffTE/Q2aaE1qYa7AcTj0YMQjihXNrvVdBWHKPbEvlyRIq9HdHNFEFjBKkDhuN6fb3JDTHWvDZhBT8CQlTzFS8qkqByssWoGWBu3c+zVqe3ODjeXrlAeGqI6MMjQ1y+DE5AE825yc1y9eocjM409SGx1ncHKK2ug47c0N1hbm0XF8+w3k3ICREHqGwNMEviHcunmGaPfNNcTbN0vsWhIne9OORav0ZpTFqHT7RnbdTrduAhAwOVhgbrjEQNFlvOrTijRLjRBzhMcHEyxrJqJjDW2b0LEaD0lVOMgejfIrbXCjCCfRCGOIPfdwzG+FIJYFLCoVua1NJ5r1sDfCVBFWIiliRJBWEPYRqRTT73xjpi1pB1x/4Vt97cduHB3ghfVMW7s0eYOVeTOWfGPlaOTVGiG5JLLxLWM0qdjgtuteVIssyWxOt4vLk/FpXNv72j5pNV7UQCufRBUI/cHu+eY+y7ouQm3ZmWviToeyr8BCO9aEWtMK02sgR5aYq/7QDdeLV5r/g1AfXIzTDX0s+gjXRRULECfYI/bbKYcruN/9RKZNn1vKVHs/0EgFykvHGkzUtTXvHHav7pLU2txuid7dv8L01tocQBYLuFOTOBMTYC3JtWsk15bQ6+tE588TnjsPnYRy+QxSurRarxFF62xsfJUwXLr9DnIeGPoy0vYrv/IrPP/881hrefvb387v/M7v8Pzzz3Pu3DkuXHR+Y7oAAQAASURBVLhwy9v58wdrU5iTk5OTk5OTk5NzT4SbYHVqM+amFRLWwmpk6ejUXrMku1dx63VEHCPbMcZPwFUYQqTxD/EJ7GC6mdLW2J7kdSsMM062uuHVzR2hulX+v7Bql8WstVTWds77R8UIA3Igs/68vkLMwQ68rL5yMXNfug5DJ2fvb6NGg0yzy1C5hfl+WBFgRYS0FYR1kaYXM+oNysRo4WBRxNLHCEHseTfN6TYW6u0YRwoGfJeq7zLspQOXibIYaYnvQ+juNBpsXl+iVBugNjbG4MQ0w9Mz9/1Mc3JyQErFxMnTjB0/SWVomOGZOXSsWZm/RNg6WEeQ1w1d8fkwGKl4nBgpUym4TNYKhLHhaj1Am6MreFtg08ZsmpgQQ8MmgKAqHLweDb+6UTeKoytMHa7gXUwFb+khrOkK3j3aHaqb3V1MX3jRf1GoemyK6lx2strK118h3GjcZI3eU2pfy9wPimOMVwSnB7LvxecWj8b1CMAVhoj22NCfuk12NwACXnUusS42M81FfJ6MT6PuJ2vmDlEmwkk6xG4ZI7byu2/cr0DgFgpYa4ijiCQMsEZT8hSJtoSRoRUlhEl6TlpyZ5gsvzezDWMjLm9+HGOj3j2fagXhueAodPv2Ew76jfddTyKGypm28H88j436HOHQK6SzI3jrqHt70ARvAIMVaSRJOmlDIIzq5nn39qRCloq401M44+PpxJLFqyTXr6PX1wjPnSO5tEBBTOE4ZdqdC0TxKpuNb9DpzPe0Xzn9oy9i98c//nGEEHzf930fn/nMZ/jxH/9xnn32WU6ePMnx48dve8vJycnJycnJyck5dMJGWtW928I8sXRiS8cKFBZXSogiRL0OzRZSKmxFYAix1h4JC3MAY3QqeIve5HXPOE2cXRldoY1QI8sAWASNyg9nli80r+HEqeW5QHDSyWZmd2zAglk40D7qOGbt3JVM2/DpOdR9ZWyb1MJcdi3MndzCfC8WgxHNXfblQz1wOzA4NsIIhREuiXTRwtkWAdx9crqthXo7ApFaSRY8xUSxgLAQS4uVlsg19yz8BK0mG0tXKVRq1MYmGBibYGT21jadOTk5d09tdJyZx56gVBtg9Ngx3EKRtasLNFZXcufAB4yBksvpsQpl32F6sIDGcnWjQ6z7bNV9lwQY1kxEZA0NGxNhKApFWagDnzsggEIQoozBjWKMUuhDOvew24K3JJE+wmpUD4U5YWq7qrs7fa/uFkIw9c43IuTOOYw1hsXPfbWv/dhNsb2Uuktt9UcqguIo75zJVnd/fdmjGR0N5yEtJJfEcKZtnAZle3srcivgW+4FGiKb0121JR6PTyJ6LKwBOEkLaRIiv4aRDp3iyL4TToSUKM/HRBFGa6JmC0cJCq6kExvixLDZjtDdKILhwpsY8J/KbCPUyyw0/6xnv2WiWEA4ClUsQhRjk6MlIgvPwf/+N2XabL1N9JffPKQe9QDpgNwjeJujN/HgTkirvG1a3Y1IHb2MgzCqp1XeALJcwp2eRo2NYaOYeHGRZHkZvbZG9Np51HWFY0p0OpcJw+s0W6/QbL2anyc+BPRF7F5YSAem/vk//+dIefi2jTk5OTk5OTk5OTl3RdwBE0PczliYL4cGDUQGiiKtlmZ5BeIEGYRQdhEStOggcNMLvUPGWIMxqZW5FAdftiWwHHOzVS1/vbyK6FbEBoW3k7hZka+yulPVPSNnKIhC5vELyYXdiaEHwvq5K5jdgzgCRs+euL+N6m6OnFLgHg2LyKNG1r68hLSl2690lyibgAUtHIxQaLydnO5oy748m9O9GcYkxjJYdPEcyVSlgEKQqK7Q7dy70B22W9SvXcUvVxiYmKQ2OsbIXD6pOyenV/ilMrOPP0V1eJTh6RmqwyM019dYv7qA0b3JUM7pDWVf8chEV/AeKAKCq/WAMD7a76PGsmYj2lbTsZq21SgkVeFy0JK3sBY/CJHGoOKExHExPXDtuRO2BG+Q6B4L3gLn0Ku7C4M1Rp56JNPWuHyVzctX+94XAGVi/CBr7d0uTfLmiQhH7pxHayv40rWjVd0d75IoBHDyTqq7AS0M33TP0SErjg/ZGo8kx3ouqgnAixpgIXJrJKpA5A3su6zyXISS25XdSadDwVV4jqQdaWJjqbcTrE0nU8xUvg9fjWe2sRF+g7XgK715LlIgKxXwPVAS0+lt9vm9oN5wDHVmItMW/9U3Mas35qU/sKjdgnecusqZo/de3Bk3WpuzZW1uemttjgBVKaei9/AINgiJFq6gV1Yxa6uIy23kmiFozhN0Fui0L9FofhNrj/aEupxb0xfleXw8PTCPjo72Y3c5OTk5OTk5OTk5B0vGwjyt6jYWVkNLYATWWApKQKOJCALYbKD8EqZkQIIhOjoW5joV5Xfyug+WMdWhKLOD0M3o1e3/G9W/l3nMDTbw2+mAlovLMZUVwjfMBqv2YDPqrLGs7LEwr81O4lXuU3hNulXdiDSvOyeDFSFWhEhbRlinJ/blkng7p9siiYWPkVs53QnSGApBiNw1c78daYLIUCu4+I5iquLjWYWWBishdtK/90LU6bB+dRGvWGJwYorq8Ahjx0/eXy58Tk7ObVGOw+SZswzPzFEZHmV4epY4DFmZv0TUeRBtQV+/FFzFmfEK1UJa4e06gqubAe3oaAveAE2bUO/amjdtjMFSEQ6FAx6OTd1KIpwkSfO7Xe9w7MwBKyRRt8JbSw9pNbJHlubC1BBIJIVDqe4GmPi2J3CK2Umai5974dAm1txgZV4Ywfcdnh3PTjo4SlbmiVBcJlvdPckmpTucKBGLhG+4526IO5oww5zQ0wfWz5shMHjxJka6JE6JyKuRqOI+ywmcQgFrDEkYEQcBJtGUXIkQ0Ao1caLZDNLnIYXLsdoPI0X2vbrW+gva8cE6Xm0hy0WkEshiARuG2CPmpCGEwPvAm2H3hJ7EEP7x84fXqV6wLXjHXcE7eIAFb8hYm2/neffH2hwpULUq7swMangY024TLSygV9dQ6yAWAtpXX6HdOE8YXGVz86sYc7RcDXLunL6I3W9961sBePnll/uxu5ycnJycnJycnJyDJWNhngqiDdMVyYxAWY2HgdU16HQQYYSoDWBViCE4YhbmJp2xbOlJXvdxN5ud98KGz8DUEgCRc4Kg8JbM45W189s1TifUCZTYsd+01nJOn+eg2Vy8TtTMWh6OPnri/jZqNWDSqm4lu7ndOVuk9uWNrn15oWtffrBWqwKNMglauqnQLYtpldl2TnfSzeneGYCOEkMzTCh7ioIrGav4lISLEQajIFbp33shCgLWry7gFYoMTU5TGRpm/MSpXOjOyekjQ5PTTJ99LLU1nz2OclzWFuZp1dcPu2s5d4HnSE6PVagVXaZqBYqu4nojoBH0Lhf6oIgwrJmQ0BqaNiFE4wtFRTgHWuO9O7/bijS/+7CwQhJLH4tCSzd1XOmBEC1wEKa8q7q7/3a/ynOZfNsbMm3RRpOVv3n1Jmv0lmJnGcwuoV1IOsVx3jGVFcoubTosNo9O3M5lMUyyp7r7xB1WdwMEMuQb7nk02UkGc3qCad374jtpEty4ReKU0MojKAxjxI0TX6VUSNdHxyHGGKJWEwSUfQdrLe3YEMSadpiKbb4aZrby/ZltWAyXGx8nMa0Dfx5CSmSlgij4IAQ2OHoW2mpqCPedZzNt+m/mSV45HEeFnvHQCd5da3OxZW0u+2ptnoretVT0HhjENJvEVxaQ6wnuhk/74jfZnP8yQesqGxvPo/WD/Vq/XunLCMzP/dzPAfBbv/Vbufd9Tk5OTk5OTk7Og8VNLMxXAkOCIDKWgrSItXVEHMNmE1Gpgm8RwqIJENY7Ehbm1oIxFmNMV+g+2MuBARkyqLJVGJ9euo5w02uAvVXdMgkpbaS52RVRZkJmrfqWzBIte/ADOasvX8jcLwzVKI8N32TpO0QbQKQid17VfQOpfTm77MvLB7wHgzJxmtONQyK9dLDdc7Fi/5xubSwbnRhPSSoFh6Gix6DjYoVFK9DSoJ17u36Nw5D1xSs4ns/g1DTlwSEmTp3JZHvm5OT0h2K1xuwTT1MeGmZ4Zo7y4BCbK8vUr13Nx6geIBwlODVaYbDsM1HzqRYcVpoR9fbRF7wNsG5jmjYhsIaWTRAIqsLloCRvAdt25lv53Yk6PDHTCIdYehgcjJBdwfvgkaaGQCHxD626e+jscUrj2fPI6195kbjVfxcJaTXFICsSt0uTPDESM+BlX5ujVt09T9bxZ4oNCndhg9+Ubb7lXLwh+uhUMsuoHjyIbt4SR3dQOiR2qxjpdvO7b/x+O76LkJIk6GC0JglClBSUPEWUGILY0AgT4iR9v2r+Y4wW35HZRmIazDc+0RPLZVkpI4REFnxMEB7J30nvvW+AUvbzG33iuSNXiX7fKAek2xW8k4dC8N6xNmdXnveWtXkfRG8lUYMDuLOzyFoNvdnALqzh1otEa0vUX/4U7fmXqa9+gSQ5+HGInN7Slyvtd77znfz6r/86n/vc5/jQhz5EvV7vx25zcnJycnJycnJy7p99LMxjC/XQEFqJMYZiFCI2G6mNORZVG8TIDkiLIUQelapurQGbVpr3oLp0b1b3lY7PuPt1ALQcoF16b+bx8vpFRHeQ5pTKVrwmNuGivnTgfeysb9Jcytqijz56v7bSNs3rliqt/s/F7gyWOLUvp4ywCmkGD3wfyiYgBFq4aKHQwiVRaU63u09Ot7VQb0dIAQNFl7LnMOqng2aJshhpie9R6E6iiLXFKyjXZWhqhlJtkInTudCdk3OYOK7L9NnHGJqapjo6xtDkNJ1mg+bawcZk5PQWKeH4SImxaoGRss9Q2WO9HbHSDNMD+xGnbTXrJtq2NddYysKhKA5GlJbd/G5lDCpJSFwHc4huIgYXi8AKhdxywDlgBC7ClMCWSGfV9b8SVQjB9LvelGkzccK1L329732BG63MI38Q6/q8bU919xeu+hwlbfCSGEbvEoclcOIuo4zW1SavOpczbQLBo8lxauagJ1reiBs3wRpCr4aWHqF/Y2SPQOD4fmpnHkXEnTYm0biOpOBKgliTaEu9HaNNelybKH0XZfd4Zjut+ALX258+8OcglESVS4hC6phgj2B2tyj5+O97Y6bNLG0Qf/aVw+lQL1FuV/COdgnedz4J5OiSWpuzbW0uU/HbOtxzftTdoCRqaBBvdhZZrkA9wFmw6MYmm9dfoPnil1l59c+Igvw88UGib6MwP//zP8/p06f5yZ/8Sebm5vje7/1ezp49S6l0+1y8X/qlX+pDD3NycnJycnJycnL2IdplYe6kYndTC1qRITQSmST462sQxYh2B1urIR2XRIVYgu6s5aMhdmtjsNZiLQee110QCRMqaw3+e/PDvPV0ainXLH8/Vu6agW8NlfWLAIyKEQbkQGbdeX3lhuy9g2BvVrdT8Bg8PnV/GzVpDjpKpjbmPbCHf1CxWKxodAcuCkg7iDjgy1BpY4TVJNLHIklEASMEieug4gTVFbq3c7otbHRitIWRsofvSKZKaYJqLC1WWiLXcC/FdttCt3IYnp6lWKsxdeYsUh4dq9CcnNcrQghGZuYolCtcO/cq1eERmmur+KUyXvHGfNWco4kQMDNUxFXpeYwjBSvNEG0s41X/yEdFxFjWTERNuFgSPCEponCEoGWT+5aDHa0xUYwFjJTEnocXhofjLyQgkS7CWKTQKJugxcGfE0tTw8o2wnpY0QFb7LujUml8mKFHT7D+8sXttvVXLjH8xBnKEyN97Uuhs4IwMVZ2reyFoFOa4J3TC/yvSzvHuo1Q8q01l6dGj4Y7QiwcrtghjrO23TbDBhfsKKG4c1v+JbWGZ91MXrdE8mR8iq+5r9KWvZsQIbB40SahP0jsVhGA0iHungpRqRyk66GjEOk4RO0WfrVKwZVoY2lFCdJ32OjEDJU8hJDMVT/Ia/WPkJjm9naWO5+h5M5Q9R450Ocha2VEq40seJhOgCgWOGqHVudtp4k//wpmYSeWJPqLr+E8ewJZLRxiz3qA6n7+t0XuDjgiFcEfcKxI3dGEFal1vjUIm04gt8KA6PFENiVRI8OogQGSeh1WN4jaqzQrbYyOWFq+ztCxb6d87Ol84vIDQN/E7uvXr/NHf/RHbGxsYIzhk5/85B2vm4vdOTk5OTk5OTk5h0ISpBlZWxbmUmEtrEUQW0GsLeXGRte+fBNcB1WpYmWEEBAfNQtzazDWIAQHPhh8zG1kBkGaiWKlfg7hgkXRrPxgZvnSxgIqCRAITjonM48FNmDBLBxo/wCSIKR+Ibvd4TPHkfdr86k1INPKbjev6s4gAqwwSDOItB7CVA5085IkHTyXLiCJZaGbVeohjO3mdMc4u3K6m1FCpA2DRRdXSaYrBRSSRJlU6HbuTejWccza4hWEkAxNz1Ks1Jg68+j9f75ycnIOlPLgEMPTM1hrCdttNq5fY2TuODIfxHygGK/5uEoyv95CScH1zZCrGwGTtUI3quXoYoENG1O0iqp00FhKwqEqXDpWE92n5O1GEVpJ3Cgm8j1iz8WLDkfQTKu7I4xQKBOjheGgjUYFHsIUETLBiDpCBGmOd5+ZfOsb2LiwgNn1Wi9+9iuc+eD39HUShsBSbF+nXZnZbmuXJpmpXuZ4LeHS5s656ucW/SMjdkNa3T1n15FdL2OJ5bhd5RUxeVfbmVdL+NZjyuzkdTs4PBWf5qveK0Sid89ZWo0XNYi8GomJCQpDyHaM2lON6/gecZKQBAFSSpIgxC0WKHmKRpjQCjVCQDNIqBYdHFlhrvpDXNj4f7HbJWG+8UnODP4EnrqxivxeEY6DLBWwOoFOhA3DNMf7CCGkxP/gW+j81v/aaQxioj//KoUfefvhdaxXKBewuwTvNjilh0LwTq3NLanoLUFYrJUIK9J2oe/p2uyucBTO6AhqYABZXyPYWKTZ/ibFwhxryV8SXrlI7dRbcKamjvykutczfTmTX11d5d3vfjf/7b/9N7TW3WqSO7/l5OTk5OTk5OTkHAr7WJiHVtCINCECHYQUmpvQaiHiBDtQQ0k3tTAXBkuEtEdjYMAYk1rRGdudlXxwF2kKw4zTzLT9fxYneNvQlwFol/4W2hnLPF5ZOw/AjJyhILKz7y8kF27I2zsIVl+7jDU7g0NCSkYeOXafW7VgNDgyvbrKhc1tLAYjWkjrI3AQZviAJ36Y7sC5g8Ehlv5Ncrp3BheD2NAKNRXfwXclU9UCvnDQ0mAlxI65J+c8nSSsLV4BRFrRXakwdfZRVG5pn5NzJBmcnKZYqTIwMYlJNJvLS4fdpZx7YKjscnKkTNl3mBzwSYxlcaNDoh+MscQOmtWurXnDxkQYikJREuq+fi0z+d3xIed3C9DSxeBgEV078x7sxg6k5xrd6u5enEfeDrdUYOLbnsi0dZbXWX/5Qt/7Umpnj2mxVyN2SrxjOmtJ/dXrHu346Ag3oXBZIOv2NEsd724z3wW85syzKuuZZh+Pp+LTOLa33wdlIpykQ+yWMcIlKIxg98gwAoFT8LFao6OIuNPBaIOUgornoK2lExvacUIQp9+bsjvHZPlvZ7ZjbMDlzT/A2IMV8FWlglAK4buYdnAkkyLUyXGcN53ItCVfeg09/5BaT0sPpJMK3iaBpAMH/L4fLvbW1uZ9+AwK18EdG6c88gSOrNFuXqR97RUaa3/D+kt/TfuLXyReWso1yyNKX8Tuf/tv/y2vvPIK1lp++Id/mL/8y79kdXUVrTXGmNvecnJycnJycnJycg6FcBPiIGthbgTNUBMa8NZW8IxGNFvYcglcDyElVoWYI2Zhbk2alWitRR7wbOQZp4mzy2JMW/h/Xxlm9EQ60Nao/L3M8l57FS+o4+Iyp2Yzj22YDVbuMp/vTjDasPpqNgN88PgUbvE+be50d/BNOWlWdz7TexsrmumghC0jTeWAJ35YHBtjhMQIFy0djHBumdMda8NmEFPwJCVPMVryqUgXIwxGQazSv3eL0Zq1xSsYYxmemaVQqTD1yGMo52GotMjJeTgRQvz/2fuz6LqSxDwT/SJiT2fCPHMmM8kcaq5SqQbJGmzJqrJkS3JbtiW53Uv3+q7u6762dPXg5Se/+Mn2stXt69XuvtK1ZlmSy2pLskpyaWhVVWZWlaoqMytnZpLJESQ4gADOtKeIuA/7gMQGyCQBHAAHYHxr5WIi9tkDgANg7/jj/3+mTpwkCCOGJqfoNpt0m829vizHFmhUfJ6YqlMPfWaHi7/p88td0nx/zCfqXqx512q6VtOxGh9JXXhsR/K+29+t976/W1P8PTTSQ9mcnejuLtJjIoStYtF70t0NMP7sE4QjjdLY9a+9gk52t2M3TBaRuixsd6ozfHwmQa25Z8+M4OsLg/GsssoFMVF6hygsR+3iA1//QAS86V1gRZQX5NZshWeyE0Vs8g7i5W2kyUnDIbRaFbzLSOUhA588TbBGk3aKuHOlBBVfkWSGJDesdDOyXsH6ePRxhoLyoopYX2e+9Yd9vX4R+oggQFaiIsUqG8ye6OAHPwLBmsWlFpLf+QusOYBipOCe4K17gnd20ATvItrcCoOwAoEsxG+jinjzHf65XUUGAbWx01TGjpOFbTpL52nOv8jyjW/Qfe1V4tdf35XrcGyOXRG7f/d3fxchBH/v7/09fuu3fovv/u7vZnR01Fn+HQ6Hw+FwOByDy2qEeX4vwtxYWM6gawV5u0PUaiKaTUBAvYaSHkYmCCHIRRdhwwEIMF8TYW4siP72dQssR/2yQPBHN8b5oP0KhJAEz5CGz5a212+fA+C4OoYn7k1OWGs5r8/37drWsnz5Gnm3POk3fubEA169CXJTxJcjwHfi5iqWFCsSpK0hrIcwww/faRMom4E1aOFjkOSE93q684093cbCUifDk4Lh0Gco9BkLAqywaAVaGrS3+Umxu0K31owfOkxUrTN7+im8YLAmjh0Ox0b8MGLi6HEqQ0NU6g1Wbi6g8026Bx0DQTVQPDlVpx56zI5U8KTg2nJMN9sZF/FO0LQ5y6ZwdzdtjkVQFx7hNqZuPa3xsgwvyxHWFsknfbzmR0YIculjUFhAcnDd3VIp5j714dJY3k1Y+ObuCiOCje7ubnWaemB5/2RZGHthfjBSqFaJhc+1de7uIyzib9bdDRhhec0/T2fd4odh2+Cp/NiOOkUFEKRNsJD6DTIvIg023g97QQhI8iTGZBlZXDyvhL4k9CRxqsmNZbmTY4xFCMGh+l8jVOUu+KXkZRbjF/v6OaihOsL3wPfRnb1ZQPIw5HCV4K+8rzRmLt4i/+buJyrsCiXBOwF7MAVv6Ine2MLdjQArEcYDo3bF5Q0QBtNUR0/BVEjiL9O+eZblxW+Q3bi+Oxfg2BS7InZfvVr04v3UT/3UbpzO4XA4HA6Hw+HYPqsR5ll8N8K8YwWtJC/0zZu3CXSGiBPsUAOkREkPq2KsyLE2Qw6Kq9sajCn+LVzd/ZPgJ1WXiixPWv78pUN8euJrADQbP1baptIOleZ1aqLGtJwubVswN2jZdt+ubRVrLbfeLE941CbHqI5tU4DtueVRCpQE1/cKgMViZQthfQQVpB1G0L+4SEmOtBotg+KjtT3d1uJleTG53+vpthaWOikIGK4GRIFiKircf7myGGnJtiJ0G8Oda1fRWc7Y3GHCWp2500/hB4M1aexwOB5MY3yC+ug4Q5NTICTLC9ddNOU+JfAlT043GIp8ZoYjQl+ysBLTTvbPAoYEw22TkFhDy2YkGCKhqAlvy3duQZKijMFPM6wU5Hu0MM/gAwIjPKTJ2QmlQtoQYUKErfXc3XvjRG0cmWHo2Fxp7NarbxPfWdnV66h0ymJM7tfI/AafmiuLlu8s+Sy0B+se9l0xUXqHeFt1dwO50Lzqv0NCWQycMKOcyg/vsOBt8LMmRgbkXrXo8VblVCkhBH4lxOQanWVknc7dpNuKL5GieP7MtGY5zrEWlAw50vhbSMo/z9dan2clfbtv1y8rEcL3UdUIshybDebvU/+7nkaM10tj6e9/ExsfPAEYKAve+VrBezC/P9vD9kTv1Wjz4l9hdi/a3GeIKDiEmKyQ1Ztkdok2F3b+xI5Nsyt/ySYmJgBoNBoPeaXD4XA4HA6HwzEgJM0NEeZtI2lmhmylhey0CVotCAOoRAgkQiiQgxdhXkyYWIyxyD66ugGO+eWJuxeXG7y55DF68ha5mqRT+a7S9vqddxFYTqmTpaSn3OZc0Bf6em2rdG4t0V1cLo1NPHV8+wfWGpCFs9u5uu8hulgMwtYRNkCY+sP3eWTu9XRbVK+nu5i8twL8NEMZQ7AmLrSZZOTGMhL5hJ5krhahBGTSYqUl9c2m139YY1i6Nk+epIzOHSKq1gqhO9pmLL7D4dh1Jo4ex48qjEzPkHQ7dJbu7PUlObaIpwSnJuuMVANmGiG1UHGjmbDS3T+ChwHu2JS21cRW07YahaAhfLYieQsg7MZIa/DTHO0p9B70d1shepUjxbl3zt091HN3+1jR3hN3N8DsJz+EWLsI0ljmn39xVxfTBOkKKu+Uxjq1Gd4/kVH3y1HyL1wbrIV6XRFwjaHS2BHuEG7RvZqIjNf8c+Tr3ndzZpLDemrL1/koKJPhZ21yr4qWAXE0jlmTbAW9OHPfJ08SrDGk7WLxr5CCali4WDuZJslz2mkhaEbeBIcaP1g6jsVweeU/0UzP9e/6GzVE4IOnMJ1u347bT4SnCH/4Y6Ux24xJ//iVPbqiXWBV8BZqjeDdOaCCN8C6aHNWo829XYk296gRMYOWOalsktN6+E6OXWdXxO7v/M7vBODVV1/djdM5HA6Hw+FwOBzbI4+LHqw1EeaZhXYOnW6OXV4hajWR1mCHiomYIsK8C1KQMzgR5gDGaGzPISD66D4elgkjquya+YVLc/yQ/6cQQqv+o7BmMkeYnNqdi4yLcYZl2VV9WV8hY2cmo2+9VXZ1+7UKQ4dmtnlUC8aAJ4unKm/3J44HEYvGiA7SRgg8pB4rYuf6gsGzKUYojPCLSNReT7f2FH7W6+nuxnfP2Ek13dQwFPmEvmSuHuGjyFVP6Pa2IHRby53r10jjbiF01+rMnn6aIKr06fN0OBy7ifI8po6fJKxWqY+M0ly8TZYkD9/RMZBICScmaozVQybrESNVn9vtlMV2WkR97BPaNufO3VjzDI2lJjyiLSSlFP3dKUprVJ6T7VF/t6ZIZDHCQ+6QICNtBWGCPXd3h8N1Jj94pjTWurLAysX5XbsGAVTb5SjzTmUaJeHbZ8u/416YDxm0iuML69zdPoYP2csou7XO97bs8rp/HrOuM/6EPsSUHt3GlT4cT3dROiELGhjp062MY9fdgHphseBgNc487/0dUlJQDRRZbkkyQzvJSfLicxgOn2U8+vbScSyaSyu/TSvtT4y3qFQQnkJVKtg0w+rBFFPV04dQT5UTFbIvvom5ubuJCruKoJirEArytJdK1wEG83vUDzZGmwuE8RC7EG2uiJDWPfMPMrsidv/sz/4svu/zr/7VvyKOB7PfweFwOBwOh8PhuEuyAtYUq6T9e67uVpKRN1vYVosg6WLr9bsip1yNMCcDcqQdDIeE6Wmyxhqk7G+E+fqu7ivdkM/fmOATU1/HiJBW7a+XtleXLqNMzkmv3JUd25ir5mrfrmstabvL8uVyjOPE6eMIuc2vg9aALSLMPa9IAHBgRbtYXW+rSFNH0L90A2VzsKBF4QzTBOWebl3u6U5zQyvJqQaKyJdM1SpUhIeWBish84p/N/X5WcvS9Wuk3Q6jsz2h+8kzhNVq3z5Ph8Ox+1SHhhmZnqU+NoHnBywtXLu7SMyx/xACjo5XmR6OGK0GjNcDVuKMm61kX8XUZ71Y89ga2janiyYUkrrwNj2h6+X5nvd3WyHQQmGEQliL3CFBpuju9gt3N52H77BDTH74KfxaeSHctedfwuS71yVfXRdlbryIJBzlk3NlsXsxVpy9U3Yb7zVtEXJ9nbt7iIT32atbXriyLFuc9S5uGH8yP8aI2dlEWj9rgTUkQQMtA5KwLLALIfCiCJPn6Cwj7XTu/h3yPUklkHRTQ5YbVjopurc6Yab2VxgJP1A6liXn4spv0s42fq6bRUiBrNeLNDMlMZ3BXAwmhCD8Gx8tqqVW0Ybkv3x97y5qN7greMuew1tD2oEdSs8YDDZGm9/r896daHPHYLIrYvdHPvIRfv7nf56zZ8/y/d///Zw9e3Y3TutwOBwOh8PhcGyNpNnrvbLgVbC2ELtXFluYJMW/dQvleVCrASCFLCK5ZYom7j14DUaste2JstZaRB8jzCORM63KE4i/eHmWWt5i+NQiner3Y1R5gqq+eJ5D8hCRKEc9v5u/u2Mxk7ffvliaEJOeYuzUke0fONdFfDkS/MGaHNwrLAlWJEhbK/q6zUjfji3JEFaTywCLJBNhr6fbv29PtzaW5W6GrySNyGOs4jPs+RhhMQoyZTCbXJhvrWV54TpJp83I9CxRvc7Mk2eIav2MaXc4HHvF2NxhwlqNkekZdJbRvH1rry/JsU1mhyMOj1UYrvhMNkLaqWahmWD2keBtgWWb0bQ5qTW0bI7oxZr7m5zWDZIUaQx+lmGlJN+D+xctVt3dCml3RoyRtlLch9gqVuRYsTfinPJ9Zj7xwdJY2mxz61tv7do1+HkbPy0vTu1Wpzna0ByqlxcbPD8/GAt11/KmmKG9buHkFC2esDe3fMybaonz6kppTCJ4JjtB3excSo/AEqQrWKHI/TqZXyPzaqXXKG9NnLk2pJ17z1qhJwk8SSfVZMay1MmwthB5D9V/kOHwfaVjWXIuLv9H2tmlbV+7rFWQSiCjCJumWD2Yi8Hk1DD+dz5VGtNvzJO/fuUBexwQVgVvxBrBu83BFryhFG1+t89796LNHYPHrtzV/NRP/RQAzzzzDF/+8pd55pln+MAHPsDp06epPmQFvBCCX/iFX9iNy3Q4HA6Hw+FwOMoR5l4RYR4bQZpmtJdasNJEZSlifOKuSVpK/26EuaaLtMHARJhrY7DWFpMh23Uzr+Go3yyZmVu54jevzvAj6vcwFVhp/Fjp9VFzgWqacMQ/XBpfNsvcsrf7dl1rMblm8Z3yBM/oicOoYJsLEawGDKjC4VCI3o83FouV7WJymQhpRnp9attHoFEmR0sfkGSyAqs93VIQxGmpp9taWOqkSAEjFZ9a4DERRlhh0cqipUF7mxM6rLWs3Fyg22oyMjNHpTHEzKnTVOo76wJyOBy7h5CS6ROnuPLGazTGJ1i5dZOwViOs1h6+s2NgmaiHeFJyabGNEoKFlYTryzHTQxGqj/dFO03XajJrGJY+xmZUhKIqFCmC7iOKxgKIujHdWhUvzcgDH2kMaheFKytkr7fbwzcJQmjsFqLZH4YwwwiVIayHpYtgb4TckVNHuP3aO3Su31s8s/DiG4ycPk5Q351UmErnOllw736lU5lmRLzFJ+cS/tPZe9LANxdCfvypNtEAreHMheIljvBx+y7+mvjxE9ymbQOuiZEtHfeqd5OAoNTXrVA8m53i5eAs8Q7F30urCbIWqd9AmJw4GkV2MpS5dz4vDEnznDxNEFKg0xQVBAghqPiSpjF0Eo0UsBJnDFd8hJAcrv91sIbl9PW7xzJkXFz5jxwf+nGq657BNoOQElmrY7SBbhcbx4jaYKYaBd/3PvJvnMc276ULJ//lG6jTs4iDXDslAC8q5jLypPj/tA1BDXbgd+wgYYWBVZe3AGtNIXgLgxW6n8F2jgFnV/58/eIv/mLhdKEQr40xvPzyy7z88svvuV/hPnFit8PhcDgcDodjF0ma9yLMw6JXum0Ey/M3MYC4dQtZqyDCe5NmSnpo1cKSYdFIOxgT49YW8eXGGoQQfRMfPQyHvFZp7Lfmp2lqj2+bfpE4/DZy/3hpe33xHMfVMbw1Hd7WWs7r8325pvtx590r6LTcAz5+5vj9X7wZ8uKBGulc3XcRHaw1SDuEMGEffwYMyvR6uvHIZIAVEr3a052mSLump9vCcjdDWxivBQSeZLYSIQRkymKkJduk0A3QvHWTzsoKI1MzVOoNpk8+QXVo+OE7OhyOfUVQqTJ++AjWGpJ2m+WF60wcPY5UB3ui+KAzUvXxVZ3zN9vMjsD1lYRry12mhyJ8tSuhl30hx7JoUhrCwwIBlopQeELQsRr9CCk50lqCOIEoxGpJ5vsIk96tANkNtPCRVvfc3Tla7IDYbStgfQRVjFzB2rSv1SqPfB1CcOjTH+btz33h7pjNNde/+i2O/uVP7Mo1VDsLrIw8ee/8yieOxvn22dt87mz1bnd0ogXfXAj51KHBiqnuiICXOcxH7KXSk8wz9hpdApbE1kTXd9VVAuszZe7FiQf4vC87xcv+22RiZ2L2lU7wpEfm15AmJ47GqXYWED0xXwiBF4bkcYxWHkmnTcXzizhxKaiHHs04p5MahND4UlANvULwbvwNbNOwkr5593zGplxY+Q1ODP0EFX/uQZf1UGSjhmi2kFGIiRNEtXJX7xkkRBQQ/OBHSH7j+btj9laT7ItvEnzvs3t4ZbuAoFisnyc9wTssOrz9GrsU8LyHWKywgOyJ3hZrJcKKYtyJ3o8Fu/IuP3r0aOm/Y8eObRi733+rr3M4HA6Hw+FwOHaNZOVehLlfxVhotWJWmjG21UYkMWroXjy3XJ2gkyk5MWKAIsyN0WDBGttXV/ec18IT9yZFtYX/cHmO8fQOtdNLNBt/q/R6L2ky1ukwLadL4wvmBi3b7tt1rcVay62zF0pjjblJoqHtRk5bMLro6hai6Ot+zLFojOgiqSDwkGsmDbeLshkIiRZ+r6vbxwhB9oCe7laak2rDSMXHV5LDtQglBJm0WGlJfbPpiY7m7Zu0l5cYnpymMjTM9IlT1Eb69zk6HI7BYnhqhurQCMPTs1gLyzcW9vqSHH2gFno8OV2nHvrMDRdRxdeWYpJd7E/uBxZYsTkrJiPB0LQ5IKgLj/ARp3n9PC/qP9JsT/q7iwVsEiM8pDVA/53lAoE0QwjCwt0t9q67uzIxytjTJ0tjS+9con1t61Hcm8HTMUGyVBrrVGcYCS3PTpQXhQ5ilDnAHVHjTTFTGpPAB+0VKnaLLmwBZ72LLIlyzHvFRjybnUTanZNNvKyNNDlpOISWxeKDtT+DyveRnncvzrx773lJSUE1UKS5IckMzSQny1eFcsXhxo/QCJ4snc/YhHdXfp1uXu5w3wxCSVStgoii4vmyO1iLItbifeQE8thEaSz9wiuY5b37PbBrCFGI3FAI3kZD1mYnfs8OJkW0OXejzQvxu4g2P+iCv2NXvsMXLlzg3Xff3fJ/DofD4XA4HA7HrpAnvQjz7t0I85aG5NoNuhrE8hK2XscL7gmcUnrYXoS5oYuw4cAsGrbGYClizGWfVt4LLEf98qTQH90Y53I34kfFF0gbR4grnyxtr98+xyl1srT6X1vNBX2hL9d0P1rXb5Esl93nE2dObP/AvQ50PFX8N4COht3GilbRi2arSNPom3NK2QxhDbnwsUhyEWK5T093T6iIM0M70dRDj9CXzNUjAumRq57Q7W1e6G4t3qZ15w5D45NUh4eZPHaC+th4Xz4/h8MxuEweP0kQhgxPTRO3W3RWlvf6khx9IPIVT0zVaUQecyMVfE9wbTmmm+4vwRsgxrBoUlJraNqMFEMkFDXhPdKfuiBJ9rS/W8vib7sRCmV3xkErbBWs1+vuzrBkD99ph5j5tvdvqNG5+tyLWLM7AlS1UxY548okRig+NVcWLN+643O7O5iC0FUxykXGSmMBmg/Zy3hb7H+3wvK6f56W6JbGG7bG0/lxdmoViACCtAkW0qBB5kWkwVDpNV4YAoY8SdBJWkqrCjxJ6Eu6mSbXlqVuhjHFxUqhONL4m9T9U6XjGRtzYfnXiPMbW75uOVRHKImMAkwcs4uBEJtCSEH4wx8r3/enOel/fXHPrmlXeewF7yLa3Apb9HkjC/HbKIRRrs/7ADOYf70cDofD4XA4HI69IFnpRZjH4BWun5Ubd2jFOaYbY5OsiDBfs4uSPkYlvQjzHGF3PyLxflgL2prC1S1AiP7c+k+qLhVZnlD6+UuHAPjo7Ms06/9daZvQKUdWOozIcuTzZX2ZbAcnHW+9VV40Gw7Vqc9MPODVmyDXRXw5ErzBcPDvJVYkWJEibR1hPYTpT7S3JEfaHFPq6eZuT7efZqWe7lxbVuKMKJBUA8VkJaKmfLQ0WAmZZza9mL+9dIfm4m0aY+PURkeZOHKcoYnJvnx+DodjsPF8n8njJ4nqdSqNIVZu3iBPd6bD1bG7BJ7k1GSdoYrPzFBExVcsNGNayc4IrjuJxrJoUzpW07WattUoBA3h8zDJWwBRnCCNxcsytOeh5e5NExs8LKIXZa7ZaXc3VmHFzqQJPQpeJWT6295XGotvL7H45u6YvCqdheIZp4eVirgywYcmU6pe+Wv/wrXBdHcDnBVT3KSc0lQn5f32KmKLyqsWhtf8d4gp/44fM8M8mR/dQcHb4GdNjAzIvSppMEyuonvbpcQLI0yWYXRO2mljzb2LqfgSTwjaaU6uDcvd7K74LIXH0aG/Rc0vL/TVtsu7y79KnG8tVUB4HrISISoRaINNBtfdrY5O4H1bWfDPv/Eu+t2ti/37ivsK3h0eJ8G7iDY3WGzh7kaAlYXgbdSO/Ww79g4ndjscDofD4XA4HKskzVKEedJJaN9aphXniCQmjyJ8716voBQeYHoR5l0ECjkgEebWGqwp/i0c1f1ZwXzMXyl9/OJyg28uNzjcXkA9Y2nXPlPaXr9zkVPqWGkstjFXzXxfrud+JCstmvPlSZyJM8e33yu3GrWpPJCicHY/xlgMVrQQ1kcQIs1In3rhDcpkRWw5HpkMsUKs6enOSz3dxsJSJ8WTgqHQZzj0GQ0CjLAYBbkymE1+qzrLS6zcukl9dIz62Djjh48xPDX98B0dDseBoTYySmN8kqHJKZTnsbRwHTuoNjbHpvCU4OREndFayPRQSD30uNlMWOrsnfN3O7RszpIp3N0tm6Gx1IRH9JC/ydIYgiTByzVS6yLOfLcSawTk0seisELusLtbIe+6u/duUcP4M6cIR8vu3et/8Qp5vPOCoTIZYbxYGutUZ/AVfGymLPK+MB8OrGMXIXhFzNGkLMhP0Oa03XrlRCpyXvXfIVv3/pgx4xzTMw/Ya/sok+HnbXKvipYBcTSOWdNhr3wf4SnyboLRmqx7z4EuhKAaFq/tJJpE69KiHSk8jg39GDW//BymbYcLy79Kkt/e2jU36gilEIFfLAYf1PcKEHz2wxCVn82T3/7q4xFnDvcRvPPHUPCGVdH7gdHmA/wedmwOJ3Y7HA6Hw+FwOBzQizBPShHmdy4vYPKcOCk6DfE8/DXd10p6GBWXIswHBWMMYDHGIvvk6h6WCSOqPCH2C5fmAMGPyi/QmvxBrKzc22gNTyx1qIiotM+7+gJmBx+yb711ofSxCnxGTxze/oG1BkTh7PYHY1HDniK6WGsRto4wEdLW+nBQi2ezos9T+GjpY4S3rqdbE8Yp0lpsT+i2wHA1oBoopqIIKyxaWbQ05N7mZjA6K8ss37xBbXiUxvgEo7OHGZneuYlOh8MxuEwcPUZYqTI8PUuWxLQWtyYOOAYPKeHYeJXJRsREPWS0FnCnk3K7lTDQ6s0DSDEsmoTYGto2J0YTCkX9IbHmfpaj8hw/zRDsbn+3oTjXzrq7JdIOwV13996JXEJKDn36w6UxHacsfP21XTn/hijzaBwt/Q1R5jc6inPLuxtrvxm0ULwkDpNQXsl4lDsctosP2OvhdGXCa/559Lr34VE9y4zeuQobL++iTEoWNDDSJ44msGt+av0wwmLI04Q8idHZvUU5UgpqgUduLd3U0ElzWvFawdvn2NDfpuodKZ0zt23eXflVEr35r5cIA0QQIKuVIvEqG9zUE9mICP7qB0pjZmGZ7r/+A/S5rS+O2FfcT/DOH0fB+z2iza2LNj8oOLHb4XA4HA6Hw+GADRHm6a1Fmt2MZjPGWkEuJZ4SJXewkh5WJRhSLHpgIswBjNF3ewBFn2Ip13d1X+mGfP7GBFjLhw6/RrP+N0vbayvXecKWRcJls8wtc6sv13M/dJpx590rpbGxJ44it+3CtoXYrXo93d7gTgLuBpYcI7pIKgjrIc1oX46rbAbW9FzdkpzgAT3dxUReM8nIjWWk4hN6ktlqBSkhVxYjLdkmhe5us8nKjQWqQ8MMTU4yMj3H2NyhvnxuDodj/yGlYurEKYKoQn10nPadRdJu9+E7OvYFQsCh0QpzIxVGKj4TjZBmkrPQTPali98ASzajZXMSa2jZHNGLNfffQ/IO415/d5phdrO/W4CWwd1Ic7XF3uWHnsbUinsVWynqV/bQ3V0/NM3wyfICzNuvn6N7e2nHz13p3iyijFcRkm5lipPDOVPV8tf+hfnBWcB7P2IR8LI4jF73vj5jFxizrS0ftynbvOldwK5b8vFEfoQx3Z+qnvvhp02whiRokKuAJBy5u62IMw8xaS/OvN0pxZl7SlDxFUlm6KSadprTLEWaBxwb+jtUvPL7LjdNLiz/Kqm+s+nrVUN1hO+B76E7gxtlDuB/+gxypvy9s62Y7r//Y9I/f31f/q7fNHcFb9tb4K8fW8H7wdHmnos2PwDsqNj95S9/mZ/+6Z/mh37oh/jhH/5h/uk//ae8+OKLj7Tv22+/zcmTJzl16tTDX+xwOBwOh8PhcGyXNRHmVoSsXLpGHqe0jUAGCm0snrp3+6yEj0GDTNF3I8wHQwA11mIMGGuQsj8R5pHImVZlN8wvXp5FW8GZlYu0P/YxtFcWtk8vxXii/DU5r3e2m3Dx3GVMvnYiTzD+5LEH7/CoGA3YQuxWqogxf4yxolWsgLdVpB1CsH2ne9HTrdEyxCLJZdTr6fawUuJn5Z7uTqrppoahyCf0JYdqEb4QZNJipSX1zabe+nG7xfLCNaL6EEOT0wxPTjN++MjDd3Q4HAeaqFZnbO4Q9bFx/KjC8o3rvfQUx0Fhaijk6HiVochjqhERZ4ZrKzFmn4ogHatZNGkp1rwqPCri/gv/BKuC9+73d+ve/YORHtLm7Ky7OwIr99TdDTD7iQ8i1JrvhbXMP//Sjotu0moqcXnBaac6gxBscHf/xfWAdGfWHvSNZVHldTFbGpPAB+xVqnbrAuyiWuYd73JpTCB4Kj9Ow/QjxWgjAkuQrmCFIvfrZH6dzLt3Lun7CKXI4wSr81KcOUDoS6pBT/BONO0sZyW+J3grGXJ86O9Q8eZK+2VmhXeXf5VUL2/ueqMI4fuoSgRZhs32bgHJwxBKEv0P34UYK3e9Yyzp736T5Fe+jE32Z4XFplgreOv4MRe8YWO0efGvMC7afD+zI3cuWZbxkz/5k3zXd30X//bf/lv+4A/+gN/7vd/jX/yLf8HHPvYxfuzHfoxbt97bzZGmKRcuXODChQs7cYkOh8PhcDgcDsc91kaYq4DkyjXaWpKstMjCqBDALRsizK1KQIAhRpjBcUAY3YswtxbRpwjzo36TtTWOrVzxm1cLcfu/j75Ac/JvlV4fdm9zOl3XS6gXaG3DbfEwrDHcOnuhNDZ8ZIagVrn/DptB6yLzVLgIcysSrMiQto6wHsIMPXynh9Lr6ZZ+T+he7emWaM/DSzOksXd7urPc0EpyqoEi8iXTtYhIeuSqJ3R7mxO6k06bpevXCGt1hqdnGJqYZPxIHxZJOByOA8HIzByVeoPh6RlMrlm5eWOvL8nRZ8ZqAScnatQjj5mhkFxb5pe65Hp/znjnWBZNSrcXa961mgBJQ3j3nQxW9+3v3oUL7XV3GxQWenHmO3AaU0NYhaS65+7uoFFj8kNnSmPt+Rssn7/ygD36x/oo8zQcIVchn5hNEGvUnW4ueenG4CRWPYjrYpjzlCPGfQwftpfxt9EDf13d5pIqf60Ukmezk1R26JlPWk2QtchVhFYhcTSKlsUzh0DgRRHWGrI0LeLM8/LnF/qSWqhItaGTGLppznJ3reAdcXzo7xKp8uLkzCzz7vKvkOmVR75WIUA1aogwAE9hOoOdeCInh6j+zGdQT89t2Ja/fJHu//KHmBubE/z3JUIWgrddK3h3eXwF79Voc3Mv2pzVaHPPRZvvQ3ZE7P4H/+Af8Ou//utYa+/73+c+9zk+8IEP8Nxzz+3E6R0Oh8PhcDgcjs3Ri44jj9EJJNdv0e4kxF6ICULyJMGTAnVX7BZIqdZFmA+Q2G0M1hqwIPrgQPYwHPLKIvVvzk/T1B7SGqZPW5Lwg6XtTy3lyDXquLaai/ritq/lvVi5ukDWLk+2TJw5vv0DWwPG3HN0bzsSff9iMVjRQtgAQYg0o72Jge1g8Exa9HTjFZPed3u6fZTWeFoXrjNr0cay1M3wlaQReYxFAUNegJYGKyHzin8flbTb5c61eYJKlZHpWRpj40weO1GqLHA4HI83QgimTpwkCCMak1N0myt0m82H7+jYVzQqPk9M1alHPrPDEQDzy13SfH8KARZYsRkrJifB0LQ59GLNg/v87S73d0PmB7tibivc3WKNu7v/Zy3c3Q2wg+HunvrgU/j1amns2gsvYXbYIRt1byHMGherEHSr04xXDE+Nld2tgx5lvso5MckCjdJYlYwP2quIbbjlL6prXJe3S2M+Hu/LniDYoTQvpRM83SX16xix2t9d/KxKKVFBiElTjNZk7faGNIDAk9QCRaYN7dQQZzlLnXSN4F3h+PCPE6mp0n6ZWeLd5V8lM4/+d01UKgilUJUIm2ZYPdhRAKIaEv3U9+B///s3bDMLy3R+7g/JX7m0B1e2y5QE7wR0/tgL3sB9os2Fizbfh/Rd7H7uuef45V/+ZYQQnD59mt/7vd+j1Wpx+/ZtPve5z/Hxj38cay3Xr1/n+7//+/n93//9fl+Cw+FwOBwOh8OxOZIVyLpYY0gu3aCtIW92SIaGUSZHa4u/NsJcer0I86wXYe4hGQwB1NpC7C5c3aIPQiTMeS08ce8pT1v4D5eKlfF/PX6NxY/9jdLrvWyFM+3yJNBlfZmUdNvX8l7ceutC6ePK2DDViT50SWsNCJAKdqvHclARHay1CFtHmArSVh++z0NQNgch0MLHCIVe39OdZkVXd55jLSx1MqSAkYpPPVBMhBFGWIyCXBnMJn4U0zjmzrWrBFGF0Zk56qNjTB0/6YRuh8OxAT+MmDh6nOrQEJV6g5WbCxucdY79TzVQPDFVox56zI5UUFJwfTkmzgZbyHkvYnqx5tbQtBkphopQVIXaEIKyurDMT1NML11lxxECLX0MxbkkO+Xubqxzd+/d91T6HrOfLC8Uzdpdbrz4xo6eV2CpdMrJFJ1q4fT95Loo89du+yzF++B+SAheFXMsE5WGR+nwtL0GWxW8BbzjXWJRlh2/EQHPZk+gNrOychN4WRtpctKggZY+cTR2V2tTgY9QkjyJMVqTdzc6qv2e4J1rQzvRJJnmTie92/PtySrHh3+CUE2W9kvNIheWf5XcPFoKl5ACWa9DGIKSmE68rc97NxBSEP7VDxL9374bKuuSC5KM+Be/SPJfX8Qe9KqSu4K3BrMqeMc4VXe1z/s+0ebGRZvvB/r+W/kXfuEXADh06BDPP/88f+2v/TWq1Sqjo6P8yI/8CC+88AL/8l/+SzzPo9vt8qM/+qP82q/9Wr8vw+FwOBwOh8PheDR0WsSY512y2y10J2alFZNXq6RBBEmMseCrcoQ5KgFhexHmgxPzZ3qr6q0xfXF1CyxH/fIq/z+6Mc6VuJhQ+kzjRdrDf7m0/eRKqyT9xzbmqpnf9rW8F93FZdo3FktjE2f64c61hditVK/r7PEVuy05RnSRVIrJYrP9hQTSZgiryUURX56JcENPt+xFq2JhuZuhrWWkGhB6kplKFaRFK4uWhtx79FmILEm4M38FLwgZmZ2jNjLK9MknELvUU+pwOPYfjfEJ6qPjDE1OgZAsL1zf8Z5dx+4T+oonpus0wsLhHfiS6ysx7WT/Lm7QWBZtStdqulbTsRofSUP4rJW8BRB2Y6SxqCwj93env/uuu1t4SLMzX+fC3V3vubsF7LG7e/jEYeqHyg7bmy+/RbK8s6kR1c5C6eMsGCLzqnxkKiVU936fWQRfvbY/3N1GSF4Wh4kp36cfYpljLD5gr4djBbzhXWBFtEvjdVvhmewkYgdijgUQZE0QgsxvkHkV0mCot60XZ24MeZKSxTEm37how/ck9dBDG0trVfDuZpi7gneNE8M/QajKEfCJvs27y79Gbh7tZ0PWK0glkFGETVOs3h8isffMYao//Rnk7MiGbdmfvkb8f/wptjX44v22WBW8jQaTgs56Dm93TwNros3vit69aHMxGAYHx/3ZEWe3EIKf/dmfZWxsbMP21W1f+MIXGB0dJc9z/v7f//v8+3//7/t9KQ6Hw+FwOBwOx8NJVsAaTKdJOr9IvNIm05CPj2PyDJ3mSMHdCHOBRAoPq2IMCRaDHKQIc2uKqGlLKUZ8q0yqLhVZnkT5+UuHADgVtUg++mEQ9zqshUl433LZWfGuvoDZ4Wi09a5urxIyfHR2+wc2Rf85SvVizB9fIdSKFlgFtoq0wwi2J/xLcpTNMdIHJJmMCnfXup7uKC56utupJtWG4YqPrySHahWUgFxZjLRkmxC68zRlcf4KyvcZnT1EdWiE6VNO6HY4HA9n4uhx/KjCyPQMSbdDZ3lpry/JsQP4SnJqssZI1WemEVILFTeaCSvd7OE7DzBNm7NsCnd302YYoC48wjVTxEV/d4qfa6Q25IG/4/KHFQItPYxQCCxyhzq1C3e3RFLB7LG7WwjB3Kc/XFTk9LDGMP/8Szt63jBZROqyi7tTnSH04KPT5fHn58MtG6N3m0T4vCQOo9flFTxpbzBpt76AwAjD6/55uqIsfo7YBqfzYzuiDQpr8NMmWgXkXpU0GCZXxfOVlArph+gswRhD2m7dd9GVpwT10MNYu8bhvVbwrnN86CcJZFm/SfRNLiz/Grl5eA+3kBJZqyMqxbOwjfePQCwnGlT+0Q/gffTEhm367et0fu7z6Eu39uDKdhGhQIVg8jWCt3N4r1L0ea9Gm8si2lwFSOW7L9GA0vcn+fn5wrHxyU9+8j1f913f9V188YtfZG5uDmMM//Af/kP+1b/6V/2+HIfD4XA4HA6H471JViCPSS5ew+SCZiuBeo2uH+GlCZk2GyPMRY5VOZoYgYcYsAhzawxCgBDbv90/5q+UPn5xucE3l4tevJ9Mv8Wdp36otH2qdZ7Q3Hv6WzYr3DI7O1GQdROWLpad4+NPHkOqPjzuaA3IYvX7YxxhbkWMFRnS1hHWR5jGw3d6TwzSZHd7ujMZYIW829Mtez3dQZwgjSXODK0kpxZ6hJ7kUL1CICWZslhpSX3DhizWB3BX6FYeY3OHqQwNMfvEaaQcjJ9jh8Mx2CjPY+r4ScJqldrwKM3bt8iS5OE7OvYdSgmOj9cZq4dM1iOGKz632ymL7Z2tZdlpEgy3TUJiLS2bkaCJhKImvLt/Sr0sQ2mNnxafaxbsfH934e6WGKGQdoeizFG97u5KIVaIhwt6O0k0OszE+54sjTUvXWPl4s4lIgk2uru71Wks8Kl1UebzbY+LK/vn/qgpKrwi5kpjAnifvUrdbl2IzUTOq/45UsqLXabMKCf0oS0f971QJsPL2+RetRdnPo7puUq90EdISR53izjz+P5/g5QS1CMPg6WZ5KS5ZrGdoXvPar5qcGL4J/HlSGm/WC9wYeXX0ebhXzNZryKEREYhJk72VdqJCDzCv/spgh/5ttKiEwB7p033//PfyL7y9h5d3S4h1wveqevwLrEabU6xUEqpYl7A7p/fi48TfRe7s6z4pa/Uw7/hzz77LF/60pc4ceIE1lr+yT/5J/yzf/bP+n1JDofD4XA4HA7H/ckTyBPymwvkd9pkNxfpVmro8XFyrRFJuiHCXEoPZLHi2dAdqAhzawtHt+31dT+y+vcAhmXCiCpP6P7CpTlAMBlmzB7xMF45yvrZpbIgfF6f39Y1PAqL71wsdasJKRl/4uj2D2xNEe3mqeLJ6TGNMLcYjGgjbIggQJrRbXbBWzybgZBo4fecXH6pp9tPM7w8x89zcm1ZiTMiv+ggnKpGVJVHvip0e48udOssY3H+CkJIRucOU6kPMfvEmWLiwuFwOB6R6tAwI9OzNMYn8PyApYVr+2qC3/HoSAlHx6tMD0WM1QLGawHL3Yybzf0l6qzHAHdsStvmxNbQtjkKQUP4eIh7cea72N9dLHpTaOEhrNlhd7fqubtj7B6LOtMffRavUk5Fmn/+pbvVRDtBpXO99HHu18j8Bk+O5oxH5fM+Pz84CVaPwk0xxNui3EftYfmQvUxgt/6eikXKa/458nVpAIf1FIfyyQfstT28vIsyKVkwhJEecTRRiG4IvDAs4szTlKzbuW+cORTpZPWw+NltJjmZ1txpZ+jes5OvhnqC93Bpvzi/xoWV30Cb917MJTyFqlUQUQQWbHd/Lf4SQhB8xxkq/8/vRwxVyhu1IfntrxL/1lew2d6lQOw4UoEKyg7vrAN7mHwxeBTR5qB6Ueb9rzBwbJ++i92Tk8Uv90uXLj3S60+cOMGXvvQlnn76aay1/PN//s/52Z/92X5flsPhcDgcDofDsZHubWyekpx7F50Y2nGOGBsl9UNskpBrjRTg9RzCQkikUL0I8xiLHawI817ktjEW2Yc45iPrurqvdEM+f2MCgM+O32Txo+Wu7lr3VabTe1F4C3qBlm1t+zreC6M1t9++WBobOT6HF/Xh+6I1IIr4ct9/6MsPLKIN1iJsDWGqSFt5+D7vgbIZWEMufAyKnOJ7taGnO06wFpa7KZ4UDEU+w2HAaBCgpcFKyLzi30dB5zmL81cAUTi663VmT59BPaaLGBwOx/YYmztMWKsxMj2DzjKat2/u9SU5dpDZkYjDoxWGKj6TjZB2mrPQTDD7WPAGaFvNHZOSYmnaDI2lJjwioe7b3212uO4jFwG74+6uD4y7WwU+s5/4QGksXWlx61tnd+ycQbqCysu9zJ3aDFLAJ9e5u//ieki+z0yeFxhnnrJ4WyHnQ/Yy0m79k2nJLm/472LW5Ryc1IeZ1CNbPu6DEICfNsEakmCIXAUkYbHQWCoP6QfoNMEaQ9ppP3ABjpKCxhrBO9WaxVZG1uvYDtQIJ4Z/Ek+Wk5u6+VUurvwG2r53moVs1BFKIsMAE8f7Jvp+LerEJJWf+Szy5NSGbflX36H77/4Ic6d9nz0PCNK7J3jncfFv2oaHLHZ4/NiHb+7HiL7foTzzzDMAfOlLX3rkfebm5vjiF7/Ihz/8Yay1/NzP/Rw//dM/3e9LczgcDofD4XA47qFTiJdJ3z2H7iZkt1ZIx8Yx9TqJlag0JdMWT4m763aV9DEiwypNTheBPzAR5gDG6ELw7kOEeSA006o8CfbLV2bRVtDwNJ8Qd0hGnyhtP7Z8b8GrtpoLuixC7wTLF6+Rx+UJmIkzG7vXNo8txG4pQYjH2NWdY0SMpIawHtKMbOt4khxpNVoWk9m5jECAlr2e7my1pzsBC0udDGNhuBpQ9RXTUYQRFqMgVwbziD9+RmsW569gjGXs0GGiep3ZJ59CeY/xIgaHw7EthJRMnziFH1VojE3QXloi6RzgiXAHE42Q4xM1hioe00MRSWa4thTfFYz2KxmW2ya56/DuogmR1IWHbwx+muLlGqEN2Q73d1shMdxzd4sdchbe6+6OMKK75+7ukSePUZ0eL40tfPN10lbnAXtsDwFU2+Uo806liDJfL3a3Msm3bg5OktUjIQSvixnuUF6gOUzMs/Ya21Fjl2STt72Nzzin82MMm/qWj/sgBJYgXcEKRe7Xyfw6mVcDwAsDhJBkcYzJ8wfGmQPInuAtEbSSnMwYltrpGsF7lBPDfw9Plj+HTn6Fi8v/EfMegrfwPWQlQlQj0Aab7M+qBzlUofI//hX8v/TUhm3m8iKdf/0H5Gev7cGV7RLSA6/3M5N373V45x1crLljP9B3sfs7vuM7sNby27/925uK8xkfH+fP/uzP+NSnPoW1lj/90z/t96U5HA6Hw+FwOBz36NxCr6yQXryEXilc3PnMDJkXkOca8ozc2A193agErMGQIAcowtxYizFFlLnsQ4T5Ia9Vqi6LteQ3r04D8L2zTdqnzpRe72WXebJ9+O7Hl/UVUnZ2osNay8233i2N1abHqYwObf/gPZc8niqc3TvsZBpELBYrmgjrgY2QdhjBdkR/gzIZWnhYFJkMsUIUPd1Br6c7X+3pNrSSjMwYRio+kSeZq1ZAWrSyaGnIvUd73rwrdGvN+KHDRNU6s6efwgsG5+fX4XDsT4JKlfHDR6iNjhJWqiwvXN/R6GHH3jNS9Tk1WaceesyOhFgsV5e6LHWybQloe40Flm1G0+ak1tCyOaIXa15NNZ7WBL3qyp0WvLX02Hl3t9dzd1cHwt0thGDu0x8pjdlcc+0rL+/YOavrosyNF5GEo0xVDU+MlLupX9hnUeZQLJx4WRymQ3lh4wwrnOTWto59Q93hXVXuVZdInslOUjPbS0C6H9Jq/KxFriK0ComjUbT0izjzKMRqje7FmWfd+IGajJSCWqgKwTvOSbXlTjsl61n3QzXGiaGfxBO10n6d/BIXV34LY7P7HRYA1agjlEIEPqbb3be/DoWShH/jY4Q/+R0QrFtV20mI/48/Jf2TV/d1jcV7IgR4USF8r3Z46wyyNmyjBsDh2A36PmPz2c9+FoD5+Xn+83/+z5vad2hoiC984Qt83/d938H9heFwOBwOh8Ph2Ht0ilm5RfeVb2G6MdlSh3x2DnyfxPMh7pJrW0TH9RRfKRQCiVUxWiSARQxShLnWgMVYu21Xt8By2CvHj/+f1ydZzn0CafjusTbNJz5a2j7e/FOq9hAAsY25aq5u6xoehc7NO8R3Vkpj/XF104swl0Unl/94uroRMVbkCFtH2ACxLbeKxbMpRiiM8NHSxwhvQ0+36vV0d1NNJzU0Ip/QlxyqVvCkIFcWIy3ZowrdxnDn2lV0lvcih+vMnX4KPxicn12Hw7G/GZqcptIYZnhqpqheuLHw8J0c+5pa6PHEdJ1G5HN4pMJwxWepmzK/vP9d3l2rWTQpKYamzcgw1IRiJCkqRvw0wyiF9nYu2cjgYRFrxO6d+ZoKM4RgcNzd1clRxp4+WRpbPneZ1tUbO3I+P28XEdlr6FaLha2fWufufuWWTzPdfx21mfB4SRwhWyeBnLK3mLbL2zr2FbXAvCzXV3gons1OEdr+L6j0dIKnu6R+HSP8Xn+3KOLMA588SciTQvBOWi2sebDgXQ8VSgjaSU6aGxY7Kcmq4O1NcHz4J1GiWtqvnV3g0spvYx4geIowQAQBslqBXEP2YGF8P+B/+DiVf/wZxEQ52h1rSf/gJeJf+iI23p8O9ociKCLNVQBG34s1z1ZjzZ1u5xhM+i52f/SjH+U7vuM7OHnyJL/0S7+06f0rlQq///u/z4/8yI/0+9IcDofD4XA4HA4AbOsG8etvYVaWSBdWkJWIdHqWTHnkBkSSkBlTRJiLntgtPazIsFKj70aYD47b1xiDtQYsCLm9yahJ1SWSZSfNr1yZBeA7p9qIYBzWCOrCtDixcu9h/4K+gNmFCcP1ru6gXmVobmPP2uYxxYO9p4onpscwwtxiMKKNsCECH2lGt/V+L3q6LVp4vZ7uYhJwfU93GCdkuaGZ5FQDRcWXzFYqhEqSKYuVltQ3jxRcYI1h6do8eZIyOneIqForhO4o2vLn4XA4HOsRQjB1/CRBFDE8NU3cbtFZ2Z6I4hh8Kr7izPQQU0MRY7WA2aEIYw+GyzvHctukdK2m0/svtJLxJMdb7e/2fMw27zcfiIBcBlgURkjUDrkJBR7C1NZ0d8c7cp7NMPPx96PCslA6//yL2B1aRFFZ5+4uoswFH51O8eW997C2gq9d258LBdsi5BVxaIM896y9xpDdhqNfwDnvCjflndJwiM/7slN4tv8LQrysjTSaNGigpU8cjWMBLwyRQYhOE7JuF52mxCvLmPz+yQii5/BWUtBONVluWOqkJFnx+sib5PjwT6BE2aXeys5zaeU/PVDwVkM1hO+B76G7e//ztF3UzAjVn/4M6tnDG7bpVy7T+bnPY64v7f6F7RbSK1zeQhSCt84gc7HmjsFlR2bnvvjFL/L222/zu7/7u1va3/d9Pve5z2GMQbv4J4fD4XA4HA5HP9Epyasvk9++QXr1Jngh4ugRcuWReAEmzRBGk2uLV4ow97GlCPPBmfCxFoyxGGsQUmxbhD/il10eX19q8FqzjsTylw91WD7zwdL2evv3mdYfB2DZrHDTbC8a8FFIWx1WrpQn6CZOH9+20A/0XN2iiC/3H89OZytaxcIJW0eYKtJuXSBe29NtkeQyfGBPtzGw1M3wlaQReUxEAfXAJ18Vur1HFLqt5c71a6RxtxC6a3VmTz9NEPU/WtLhcDi8IGDy+Emiep1KY4iVmzfI0wPq+HLcRUqYG63wxFSDoerBc3k3bc6yyXou7xylLSOZoZIbhDFkfrBj/r5Vd7fdYXe3NEMIFJIQIzp77u72opCZb3tfaSxeXOb26+/syPmqnXIShVWFgFr1LR+eKv8Oe34fRpmvclvUeUtMl8YUlg/Zy0TvEc39UAS85V1kWZQTsao24pnsJNL2d0GIAIJsBYQg8xtkXoU0GEIg8MMAv1LBaE3W7qCzjHhlmewBPd6rgrevJO1Uk+aGpW5GnBVCdsWb5vjwjyNF+Rmglb3D5eZ/xt6nYkBEFYTnoSoRpBk22/+x16ISEP0P30XwmQ9teAaxN5t0/pc/JHtpY4f7gUEIUCFIH0wGOilE77QF2/nZcTh2gMGxojgcA4JJErKFGxj3YOpwOBwOx4EkffNlsoUbZFeuYowgODJLt1IreoOlh41jcmOxFoK7EeYeAlFEmFOsUhc7EE+3VVYjzK2xvb7urVMXKWOqPCnyy5fnAPjYeIdafQwTrom1s5rJla9QtcWK9/P6/LbO/6jcOnuhlKAmPY/RUxtX3W8eC7npdXSLx9TVnWFFgqSGsAppRrdxtHJPd97r6bbre7qTBKELV4kUMFLxqQce42GElgYrIfMs9hGeYK21LF2/RtrtMDrbE7qfPENYrT58Z4fD4dgitZFRGuOTDE1OoTyP5RvXXUXfY0ItPLgu7wTDoklJrKFlM0SaUDXQyDWIoopkRxCQS78QvXfU3e0jTLXo7oaBcHePPX2SaHykNHb966+Rdfp/bZ6OCZKl0linOgNsjDK/1PS40ty5+Pqd5jKjXGakNBai+ZC9jLJbX+RgheV1/zztdb3vw7bOmfx43xOfhTX4aROtAnKvShoMk6tiIYL0PIJqFSRk3Q46S8k6bZL2/WPNhRBUA0mgJJ1Uk+SG5W5OJ1kVvGc5PvTjSFFe6NBMz3K5+TtFqljpeKCG6hAE4CnMAXB3Q7EwIPgr7yP6B98L1XWLPtKc5Fe+RPK739ixBIY9RwDKBy8s/p7lcdHfnXVAd3Eub8eg4MRuh2MN1lq63/wm8Wuv0X7uObovv0y2sIB1CQMOh8PhcBwI8oVrJG+/QbYwj252CA4fRUQRXT8i9fxiEiCJSbXBkwLZE7uV9DCyF2EuBi/CXBuDtYVAv92+7iN+2ZlwM/H5/I1xAL5ntklz4lRpe6X7ZWbTJwBY0Au0bHn/nUBnOYvnLpfGxk4dRvXDhW0MYApXtyd7ovfjg8ViRRNhPbAR0o4g2PrEpmczjJD37+lmTU93lrPSzdDWMlINiLwivtxIi1GQK4NRD58ttNayvHCdpNNmZHqWqF5n5skzRLXt9I07HA7HozFx5Bhhpcrw1CxpHNNavL3Xl+TYJQ6yy1tjuWNTOlYTW43tdvENNDKDVYpc7YwAavCxsOPd3avubmEDrOhi97iPVkjJoe/4SGnMpBnXv/atHTlfdV2UeVyZxAjF0+MZI2F5PvSFfezuRgjeEjPcplYabpDwPnt1W4tScqF51T9HQtk4NWFGeCI/0nfBW5kML2+Te9VenPkERhQ/h0JK/GoV6fvkcUIWx+g4IWmu3DfWXAhBJZAEnqSTaOKsqBNq9wTvqj/H8aG/ixTlhd4r6Ztcaf6fGwXvSgXpKVQlwibpgZpT987MUf2ZzyAPj23Ylv35G3T/9z/GNLcRjT/oCFUI3lJB3nN452khenNwvs+O/cvjNXPjcDwMrTHdmOzqFbLLV0gvXSJ+7XXazz1H/Oab5HfuuJXZDofD4XDsU3SrTfziV9DLy+TXb+DNTKOGG8RegEGQyACbFg6GXFv8UoS5ByrGWoMhHbwIc1v0dQvB3Y7xreBhmPXapbFfvzpDZiVzlZS5mVGykfHS9kbrt5kwn0ZbzQW9OxFud969glkXizd++nh/Dq41IIuH+McxwlzEWGEQtoG0AcJsXSSWNgNr0MLHIEs93UZK/DRD2qKnu51o4twwXPEJlORQrYKQoJVFS0PuPZrQvXJzgW6ryfD0LJXGEDOnTlOpN7b8OTgcDsdmkEoxdfwUQaVCfXSc9p1F0vgAT3w7NnCQXd4tm7NkMnKrMd02whhquQU/wGwzWei+CIqFcigs9ATvnThNgDAVhK0WQvcAuLtrMxOMPHmsNHbnrQt0Fvq/gKbSWYA1gqWVirgygRTwidmyePuVayH7eN0GVgi+JQ7RpizcTtHiSXtjW8dORcar/jkyys8os2aCI3r6AXttHS/vokxKFgxhpEccTdzV1ItY8wgvijB5RtrpkGcZ8coKOtmYZFo4vBUVX9JNNXGmaSU5rXhV8D7MsaG/g6D8bLScvs7V1u+VBG8hBbJegzAEKQ+Mu3sVOVan8j//VbyPn9qwzZy7Qfdf/wH64s09uLJdQghQAcigiDXPYzA5pG0wLiXXsbc4sdvhuA9WG/LFRZJz54nfeov06jzphQt0X3yJzle+QnL+XUyns9eX6XA4HA6H4xGxaUr88jfRS7fILl9GNWr4M0U0d8ePyKVCS1lEmGuDseCrnqtb9FwlMkH34ukGKcLcWgO9zm6xGr29RWa9Fkrcm4TNTSF2A/yl6RadxpHS6/30LCPd21TsES7rK6Ts/AOutZZbb10ojTUOTRE2avffYXNHB6N7jm4Kd/djhMVgRBtpQwQewowhtvh+EmiUzTHSByS5jO7b0x12E9Lc0Epy6qEi9CRztQq+lOTKYqQlewShG6B56yadlRVGpmao1BtMn3yC6tDwlq7f4XA4tkpUrzM6e4j62DheFLG8cB1j9rE65Ng0JZd3pXB5D0UHw+WdYlg0CXmeYZIY8pTAWkQYPXznLaDxAYGRfi/KfGe+dsIOF/c+A+LuBpj99g8g/XKdztXnvtl3E44yGWG8WBp7UJT5Sip5/fb+XgyaC8WL4gjpuuSi4ywyZ5e2deyOjHndP49Z9z49rueY1hvdwNtBAH7aBGtI/SFyFZCE5eoh5fv41VpROdBpo7OUpN0ibXfu+z6KAkUlkHRTQzfVtNOcZjfHWqj5Rzk29LcRlN+TS8krXG3919LxZL2KVAK56u4+YH8Dha+I/vYnCf/Wt4Mqy2t2pUv3332B7Lm3DrZhTnng9X7v53HP5d2FvIOLNXfsFU7sdjgegKzXCU6eRFar5LduEb/5Fsm5c2RXrpKce4f2V75K5xvfIL1yFZtle325DofD4XA4HoA1hu6rr6FvXiW9dAWhLP6RwyAEWkgSFZAoH2EMOk3JtEUKUGsizK3MQGoMqxHmO+Be2SLG9Pq67Xb7uu2GCPM/ujnOQhLiC8PHDivisUOl7Y3mbzNhPkViE66aq9s496PTvHaTtFl2n0+eOdGfg+ueE0N5RVf3TriUBhgrWkXMoq0hTR1pt5pgUPR0G6EweGQy6PV0s6Gnm1yz3M2IfEkt9JipVqh6ikxZrLSkvnmk9RvN2zdpLy8xPDlNZWiY6ROnqI1sp2vc4XA4ts7o7ByVeoOR6VlMrlm5uT3HoGN/UgsVZ2YOnsvbAEs2I0k6mDzHpAkIgQxCVL/vkYUou7t3KCq3SLOJeu5uPRDubr9WYfqjz5TGujfvsPjmu30/14Yo82gcLX1m65rjQ2Wn8vP7Ocq8R1cEfEsc2iDJPW2vMWrb993nUVmRbd7yLm5YMPFkfpRRPbStY69HYAnSFYxU5H6dzK+TedXSa+RqrLnnk8cxWRKTJzFJs4m5z8KbyFdUAkWcGTqppp1lNOMMa6EeHOfY0I9tqDhaSl5mvv35u+KukBJZqyEqxXvFdpMN5zkI+J94ksr//P2IkfLXHG1I/vNfkPzHF7Dr0sgOFEIWgrdUhatbp4XonbWBA/x5OwYWJ3Y7HA9CCFS9TnDkCNHTTxMcPQpSks7PE7/xBunFi6SXrxCffYvWc8/RfeVV8ps3D9xqNYfD4XA49jvJ2bPkt2+QXjgHeUJwaAoRFC7grhdigdTzEWmMsJBpsybCXCClApVgrcaQDVSEOYAxpnCMie31dY+pmJosP5T+8uXC/f7R8S566nhpm9SL1Dp/woT5FBf0hQ0Ohp3i1roJvmi4QW16/AGv3iS5KR7WEY9dhLklxYoEaWsI6yHM1h3RhfOKIr5cKEwvHSHzg54Lpejp9tKcpU6KkoKhyGc0DBgOfPJVodt7NKG7tXib1p07DI1PUh0eZvLYCepjfXpPOBwOxxYQQjB14iRBGNGYnKLbXCFuNff6shx7wKrL+8npg+fy7lpNp9PEGI1NYjKlkJ5PsI370ftx190tPGRvkedOMIju7vH3PUk4Uq5juf61V8jvE0W9HSrdm0W60SpC0q1MAfCpubLw/9KNgHa2/xeE3hE13hCzpTEJfMBepWK39/W9pZY4710pjQkET+fHqZvqA/baGtJq/KxFriK0CknCMbQsu68FAj+K8KIQk2WknTY6TYlXltHpRgNX5EuqoSLNDZ3E0MlyVrqrgvdJjt5H8L4Tf5Nr7T+6K3jLeg0hJDIKMXF8YF3O6ugE1Z/5LOqJmQ3b8q+fp/u//hHm9gH++y9YE2uu18Sad8AczEUOjsHFid0OxyMgpESNjBCeOEH01FP40zPYJCG9cIHk9TfIrhT93t1XXqX93PPEb51Fr6zs9WU7HA6Hw/HYk165QjZ/jfzds5hOl2B6GFFp3HXsdvyITPlYBLYbo40tR5hLrzC6qsGMMDfWYEwRZV64urc+8XTUK7u632xV+epS4T74zkMp3aHDpe2N1u9QMZPkepSb5taWz7sZ4uUmrevlc008dXxbPeV3MRowRXS5ksXs9GOCxWJlC2F9BBWkHd4wgfWoSHKk1WgZYBFkolgcknseRkn8NEVaQ9BNWOpmGAsj1YCar5iMIrQ0WAmZZ7GP8C1oL92huXibxtg4tdFRJo4cZ2hickvX7nA4HP3EDyPGjxyjOjREVKuzfGMBnTun0+PKQXV5a2vodFvkWmPylI4nkUJSEapvSUhWCLT0MEIBdgfd3SHChAhb67m7916okUox9+kPl8Z0nLDwF6/29zxWU4nL99irUebfNpPira05soK/uD44z0PbYV6McIFyvHiA5kP2Mt42O+Ln1S0uq4XSmELxvuwkUZ8XT3s6QemYzK+j7/Z3b/z5U36AX61iLaSdDjrLSFpNsk53gxgdepJaoMh0IXh3s5ylnuDdCE5xpPE3WS8tLcZf53r7j7HWIjyFqlUQUQT24Lq7AUQ9Ivp/fC/+9zy7YZuZv0Pn33ye/I3dSUHbM+4bax5D3sbFmjt2i8dnBsfh6BPC9/EmJwlPnyZ88knUyAh6aZnk7beJz54lm79KeuECna9/g/ZXvkp64QIm3vv4I4fD4XA4HjfyxUWSt98mX7hGfusGwdQQshKBVwEgk4pcKhLPR5mcPMvJtEEK8HrObiU9kBlWaDRxTwwcHCdDET1nMdZuy9UdiZwJ1S2N/crlWUAwU8mYPjqLVWscAjal3vovTJhPcV73P0rxQazv6lahz8ixQ/d/8WbRGpCFs/sxc3UjulgMwtYRNkCY+hYPVMSXa+Fh7/Z0i6Kn2y/3dLeT4udtpOJTUZLZagUrLUZBrgxGPXzSv728xMqtm9RHx6iPjTN++BjDU9NbvHaHw+HoP0MTk9RGxorfTUKyfOP6gXW3OR7OPZd3/UC5vEWeE6cd0jTGWMOKX0SOV4TE69N9syYAZOHutju3aETYoZ6728eKzkC4uxuHZxg6Ub7fvf36Obq3l/p6nvVR5mk4Qq5C6oHlA5Nlp/MLByDKfJW3xRQ3Kd/71kn5gL2K2Obv6wtqngVZ7kP38Xlfdgrfeg/Ya2v4Wavo7w6G0NLf0N+9ipSKoFpFKkXe7ZInCVncJWm1sKb8+fprBO92qkmyIpXJGstQeJojjR9l/WLr2/FXWej8aVGx1agjlESGQc/d3ddPeaAQShL+4IeJ/v5fgnDd97abEv/Cn5H+t29t+BofKIToxZr7vVjzpBC90xZYVwHr2Hmc2O1wbANZqeDPzRE+/TTBiRPIKCK7vkD85huk754nm79K/M452s+/QOfFF8muXcO6ldwOh8PhcOw4pt0mfu019MoK2eV38caGUVUP/ErJ1W2EIJMeIkkxFjJt8VQhZwskUnhYlWBtjiXdRofxzmCMxloDtuhj2yqHvWapnnolV/zO9SK68C9Nt2mPHi+9vtb5E5S5g8ieomXLjvCdIk9S7rxbjgMcf+IY0tuaA7mMBWPAk8UTUl+OuT+waIzoIG2EwEPqsS0u6LB4NrsbW57LIsLcAnngI7Xp9XSnpHFGJ9XUI4/IlxyqVVBKoJVFS0PuPXwSqLOyzMrNG9SGR2mMTzA6e5iR6Y3xgQ6Hw7HXTB47gR9VGJmeIel06Cwv7fUlOfaYWugdOJe3TBJynZPEHXIBTU+SYwmEJOxDrLkVAi0URiiEtcgd6oOVtoIwwRp3d3/jwrfK3Cc/hFBr7k+tZf7L3+zr4pmoewth1ghSQtCtFosIPzVXduWeX/a53j4gsoIQvCIO0aT8nDdOmzN24QE7Peqx4W3vIndEOf2zQsiz2SnUo8QYPfqpCNIVrJBkfoPMr5F5tfu/Vgi8SoQKQ3SWknU76CSlu7KEXtcx7XuSeuChtaUda5JMc6ebYYxlOHyKI40fYb3gfav7Ajc6f47wPWQUIaoRaIPtc/z+IOJ94CjVf/wZxPS6SigL6R99i/j/939hOwfX5V7EmvugwuL5Ok/A5pB1wHTZqRoKhwOc2O1w9AUhBKrRIDh6lOiZZ/APHcYaS3rpMsnrr5NdvkR6+TLdN96g/dxzdF97jXxx0a3odjgcDodjB7BZRveVV9DNFtmFd1EVhTdaAcRdV7el6OtOVc/BGycYa8mNJVjj6rZYrIrJ6QJiwCLMi+dHYwxSbj3CXGI45LdLY/9pfpqOVnjC8tEnhjF+pbS90fxtQjPDfL4zMZL3Y/HcZexax5MQjD95rD8H173+R6XA86Afsej7BCvaYAXYKtLUEWztPa5sDtaghYdBogmKnu6gOJ6fpqhcQzehmeRUA0nVV8xUKgRKkiuLkZbsEYTubrPJyo0FKo0hhiYnGZmeY2yuTw5/h8Ph6DPK85g6fpKwWqU2PErz9i2y5ABPdDseiYPm8haA6nYx1pCkXWIl6EpBYg0Kgd+HKWgtVt3dCrnNiOn3ouju9gt3N50dO89mCBo1pj78VGmsff0WS+cu9+0cAkulc6M0thpl/uxERsMvvycPkrtbC8lL4gjJuhqfI9zhiF18wF6PhhXwhv8uTVF+LzVslaezEwjbv+cOaTVB1kKrEK1C4mgULe+fWCUQeEGAX6lgtCHtdDBZRtJcIeuWE0o9T1ALPbS1tJKe4N1ZFbyf4XD9r284/s3ul7nR+RJqqI5QChH4mG53w+sOInJ6mOo/+gHUB45u2KbfuErn5z6Pnr+zB1e2i0hVuLyFKARvnUGWulhzx47ixG6Ho88IpfDGxghPnSJ86inU1BS60yU9/y7JG2+QXr1KevES3Zdepv388yTvvINu7Y4jyuFwOByOg461tnB0N5ukFy8iRIY/M4nQScnVnSgfIySJ8gl0RprnZLpoNvN6Dml5N8LcYERcxDsPUIS57Qm0dpsR5jNeh0CUHzh/5cosAB8Z75BNnSxtC+OXCLK3CfJnydidODJrDLfPXiiNjRydxa9G/TlBrosHciT4/Y0UHGQsCVYkSFsrIvrNyJaOU/R05xjpFx/JCAToUk+3xevGLHUzfCVohD5TUUg98MiUxUpL6puHrtmI2y2WF64R1YcYnppheHKa8cNHtnTdDofDsVtUh4YZnpqhMT6B5wcsLVxzi98dwD2X9+R9XN7L3f3l8hbWouIYoTVZntH0BJmADIMvBHKb99FWFEK3Fh7CGsSOdXdXivsiW8WKHDsA3d0Akx88g98oO3WvvfAyOuvf/Xi1U3YyZ8EQmVfFk/Dts+WvwwvzIQcpkTkWPi+LI+h179MzdoHxbSZZaWF4zT9Hl/LXcNQO8WR+tK9mV9Xr7079OkY8uL97Fak8gmoVoQRZp0ueFk7vpFmONfeUoB56GArBO801i50MbSwj0fs5VP+hDce+0flzbum/QAQBslqBXGPTxyPOWkQ+0X//nQQ/+JENC6nt7Rbd//UPyb6xe3Vge4IQhcNb+mAy0DHovIg1N4/H+8Cxuzix2+HYQWQQ4E9NEZ05Q/jEE6ihYfTtRZKzZ0nefpvs6lWS8+fpfO0vaH/ta6SXL2PSgx/p4nA4HA7HTpG8/TbZ4iLpxYuQJfgzYwibsNbVDdD1o6JHWCpkmqCNJTOmiDAXIIREClVEmJsMS4YcIFc3gDYGay3WgpBbnTy0HPGapZEv3h7h3U7xtfruUx5ZZaS0vdH6LQCa2e45aZcvXyfrlB0GE2dO9OfgVgOmcHWrXmf3Y4DFYmW710MfIc0IYkuPhwZpevHleGQyLKJGpST3PVSvpzvoxqx0UqSAkUrAcOgzGobkq0K393ChO+m0Wbp+jbBWZ3h6hqGJScaP9Mnd73A4HDvM+KEjhLUaI9Mz6CyjefvmXl+SY0CQEg7dx+V9p7P/XN4yz5FphszSwgXqK1Jr0UAktit3gxYeu+LuNsMIAoT1sAyGG1V6HnOf+lBpLO90ufHNN/p2jjBZROqyILvq7v7kuijzO4nizcX7u4b3K8uiwutitjQmgPfbq9Ts9hY9ZCLnVf/chsXC02aM43r2AXttDT9rIa3u9Xd7xNHYe75eSIlfqSCDAJ0kZN0ueZoQr6xg1iR5qZ7gbbE0k5ws19xpF4L3aPRB5up/bcOxFzp/xlLlDYTvge+h17nGDzJCCILveYbof/zLiPq6JIRMk/z6cyS/8xfYXUxL23VWY829qFjUkceF0J13IO/iXN6OfuLEbodjl5DVKv6hQ0W/97FjCN8nu3ad+I03SC9cILtylfjs2SLm/OWXyRYWeo4th8PhcDgcj0I2P0925Sr51auYdgd/ZhTpyeKBao2r2yCIvYBEBQhr0UmKtZZcW/y7Eeb+vQhzETNoEebWgrEGY00hzm9x6nBYpgyp8oTLL10uJlumo4zRo+XoNZXPU+k+h9QjGDO5tYvfArfeulD6uDoxQnVipD8Hzw0gipnmx8jVjehgrUHYOsKESHv/Tr+HoWwOQqKFj5YeRnilnm4/1/hJSqeTkBvLcNWn6immKhFaGayEzLM8rLIw7Xa5c22eoFJlZHqWxtg4k8dOIB6jyHmHw7G/EVIyfeIUflShMTZBe2mJpNN++I6Ox4aD4vKWSYzQBpUmZAK6nkdiNRaIxPYWFZpeXYoRXk/s3hmhRNgK3HV3Z1gGw5gydGyO+uGZ0titb50lXlp5wB6bQ7DR3d2tTmOBo0Oaw41yn/NBijJf5boY5hwTpTEfw4fsZXy7va74WCa86p9Hr0slOKJnmNUTD9hr8wjAX9PfnXvVB/Z339tH4IchXqWC0Zqs00HnGfHKMvma6g0lC8EboJnkpFqz2E7JtWEs+jCztc9sOPZC+ucsBW+iKhGkGTbb3tdxv+E9MUPlZz6LPLrxe5x9+S26/9sfY5YHozJhxxCyELylAp3e+y/rwA6ldDgeP5zY7XCso8s1muG7JN4dbD9zZHoIKVHDwwTHjxM9/TT+3CFsnpNeukTyxhtkV66QXrpE/NrrtJ97jvjNN8nv3HERZw6Hw+FwvAf5nTvEb71Ffvs2+e1F/NkpVEDv4ans6o79AIMgvRthbshM4ZAOVCGcSemByrAYjOgibDhQEebGaLBgjUVIyVb7uo/4ZVf3lW7In90qVv7/5eOauFF2GTSan0Ng0PrJLZ9zs3RuL9G5Ve4065urGwtGF65uIYq+7scAi8aILpIKAg9pRrd0HEmGtJpc+FgkOWG5pzvLUFqjOwnd1NCIfCKlmK1GIMEoyJXBqPe+z03jmDvXrhJEFUZn5qiPjjF1/KQTuh0Ox74jqFQZO3SE2ugoYaXK8o0FjFvk7ljDQXB5C0DFXTAWmWV0PcgExNYggHAb9TsAWhb3HUbIYtHdDiAQSDOEICzc3WIwhCghBHOf/lDv/r/AGsP8cy/1bd6w0rle+jj3a2R+A4BPrXN3f3MhID6AuuV5McF1GqWxKhkftFcQdns/gy3Z4Q3vwoY551P5YSb0yLaOvRZpDUHaRKuQXEXv2d+9FuUVseYIyDptdJaRttsk7fbdWHMlBY3QQwCtJCfThjvtjEwbxisfZbb2/RuOe0M9z1L1PCiFeYzc3avIkRqVf/h9eJ98csM2c+Em3X/zB+jzN/bgynYRAagAZAAmv+fyTttgBqMuwrG/cWK3w7EGaw0xN8hki9i/SYtzmB1cvSk8D298nPCJJwhPn0aNjaObLZJz54nfeov06jzphQt0X3yJzle+QnL+PKYzGDfYDofD4XAMCqbbJX71NXSzRTZ/FW9iAq/mFSLmuq5ugI4XkSsPIwRempBrQ6YNnhQIIZBCIZFYFWPIsOQDF2FujcFSxJjLLQp+AZppVb6v+JUrsxgESliePTNb+roJ06Te/r3i/NnprV/8Jrn1VrnLzK9GDB+ZecCrN0mv9xxPFf89JuKpFS2wAmwVaRoItvL+NiiT9ybNJNn9erqNwevEtOKMyJdUfclMpYLnSbSyaGnIHyJ0Z0nCnfkreEHIyOwctZFRpk8+UZrkdTgcjv3E8NQ0lUbR4W2NZfnGwsN3cjx27HeXtzAGlcQInYOxtDyJwZJYg0LgbWPRpMHDItZEme+Uu7sK1lvj7h6MjtloZIiJ95cFs9aV66xcnO/L8YN0BZWXnxE6teLe+9tnEqS4995LjeAbCwfP3Y0QvCbmWCYqDY/S5Rl7fds/f3fUCm97l8qnRHAmP8aQ2Vra0v1QJsXTXTK/hhH+Q/u7716LlPjVKtL3yeOYLI7RcUzSvBdrLnsOb4mgFeek2nCnnZLlhvHKx5mp/pUNx70ZPE9r5Ao2TR/LNFPhKaL/7tsJ//Yni2fPNdhmTPd/+wLpF984+IY35d0zI+Qx6Kz4N+/gYs0d28HNEDgca7AYwJKrFol/m4wlVniLlMUdP7eMIvyZGcIzZwhOnkRWq+S3bhG/+RbJuXNkV66SnDtH+ytfpfONb5BeuYrNBuNG2+FwOByOvcLmOd1vvYJptcguXUTWG3jTE4Wj+z6u7lxIUuWTKB9lDFmabYgwl9IDLFYlaLoMaoS5NfZuv/hWOOS3WFv1HWvJb85PA/CJmZRs7Ejp9fXW7yJtF6sbYPokNj+ErBOzdPFaaWz8yWP9EzpzXViokOAdrM7BB2FFghUp0tYR1kOY4a0cBc+md3u6cxlghcRISe7d6+kOez3dQsBQ5DMeRNQCRa4sRloyz75nQECepizOX0F5PqOzh6gOjTB9ygndDodjfyOEYOr4SYIoYmhqmrjdorOyvNeX5RhA1ru8D41UaOwjl7fIMoS1yDzHKEnb5mgsOZZASLbc4C0glz4WD7tL7m6sworBqR2Y+sgzeNWyEHvt+Zcw+fa/FgKotsuLcDqVIsp8KLS8b7w8F/n8AYwyBzBC8pI4TEw5+WmOZY5ze9vHX1CLXFDlBQoSyTPZSaomesBem8fL2kijSYPGI/V3r1LEmkd4UYTJM9JuB51lxCsr6LR4D0gpqIUKKQTtJCfTljudlCQ3TFQ/wXT1ezYc90b1qzRrl7GPobt7Ff/jp6j8v/4qYmzdwgZjSf/LN0h+7TlscgAjE9YiRC/W3AOzGmvec3nv0O90x8HHzRI4HA9Ay4QO82Qs0+YSbS5g2PlftkIIVL1OcOQI0dNPExw9ClKSzs8X/d6XLpFevkJ89i1azz1H95VXyW/exJrBfshxOBwOh6PfWGuJX38dvbJMcuECKI/g6FFE2nygq7vrR1gEmfLwdUI31aS6HGGupI9VGdYajIh7EeaDg7UGY4p/ixjnzV+dwHLYa5XGfm9hgqWsEHy/8/3jWLlmtbnNabT+U/H/+vSWzrkVbr99seScEEoy9sTR99hjE1gDmGJluRQbVtcfRCwGK1oI6yMIkWYEsYVHQmULR5kWHkYoNH4vvtxHGIOXa/w0Je5mRU935DPkeYxWfDJlsdKS+ubRhG7lMXboMJWhIWafOI2UB//75HA4Dj5eEDBx7ASVep1KY4jmrZvk6WB0AjsGj1WX99RQxPg+cnkLQKRZ4e62ltRTJNaQWoNhe3HmpnfvsTvuboW86+4eDBFGBT6zn/hgaSxttrn58lt9OX51XZS58SKSsKi9WR9lfvaOz83OwZQYUuHzojhCvu6m9Ql7k0nbfMBej85ltcA1eas05uPxvuwUge3PQlwB+NkKCEnmD5F7VVK//sj7K9/Hr1bBQtppo7OUpNUk7XSKlDEpqIcKJQvBO80NS52UJNdMVj/NVPUvbbigm6PfYEWee6znstXhMao//VnUmdkN2/IXL9D9X/8Qc3NlD65sF1mNNVdhMX+Tx4XQna3Gmg/m3zbH4HIw/xI5HH1AGh9FRMxNEm6QsEiTt8jY/s3MoyKkRI2MEJ44QfTUU/jTM9g4Jr1wgeT1e/3e3Vdepf3c88RvnUWvHPA/hA6Hw+Fw9EjPnye7dYvs8mXIc4LjxxHCPNDVDdD1Q1KviD4kSTDWkuQG3xNIKZDCQyCKCHOb9iLMB8utYEyRRGOMRW5xknBSdYlkOTruly7PATBby6nMlAXlWucLeLqYiLHZmS2dc7MYrbn9Tjneb/TEYbywTy57rQFR2Kb8x8PVjehirUXYOsJESLv5mERJjrQaLYOip1uEWFEI3XCvp5tOQjvNqYUeVV8xWYmwXk/o9t5b6NZZxuL8FYSQjM4dplIfYvaJM0jlhG6Hw3FwqI+O0RifZGhiCqkUyzeuH/zoUseW2a8ub5kViziE1ljPo4Mmt5bEFvehkdji33YBWgZ3I82l3ZlIZIFE2iG46+4enGrBkSeOUpuZKI3dePFN0ub2Heh+3sZPy/Of3WqRAPWBqZSqV36/feXaYD0v9ZOWiHhVHCrJbgJ4v71Kw27TnSzgHe8yt+VSaTgk4H3ZKTzbn3tfaQ1+2kSrgFxFJOEIWj76M5WUqog193qx5klCHsckzSbGGETP4e0pSTvVZLlhqZMRZ5rJyncyWfl0+YACbox9naZ5uy+f335F1EKi//v34H/f+zdsM9eX6Pzc58lfvbwHV7bLSFW4vIW4F2uexZC3cbHmjs3gxG6H44FIIqaImCSnS5crZKzQ4hwdrvYiz3cP4ft4k5OEp08TPvkkamQEvbRM8vbbxGfPks1fJb1wgc7Xv0H7K18lvXABEz++kTAOh8PhONhk16+TXrxEfu0autnCP3oUGYaQrKxxdVdLru5UeeRCkSgfX+fEcU5mLNpYwp6IpqQHwmJVjBYdQCL6tKq+Xxij766C32qc8xG/PHn1zaUGrzaLFf6f/UAD45cnrBrN3wTAmgaYjavPd4KlC/PopOxymzhzvE9Ht4XYrXo93Z738F32OZYcI7pIKgjrIc3oFo5ikCZDCw+LIpchVgi0pzBK4acZyhjCbsJyN8NXgkagmIoqKF9gJOSexb7H21bnOYvzVwDB2NxhKvU6s6fPoB6D75HD4Xj8mDhyjLBaZXhqljSOad/Z+Qo1x/5mv7m8hbXILENmOQiBVYoOORpIrEEC/hanpzXFPbqRXi/KfIfc3aZW3DvZSlEHMyDubiEEc9/xkdLzjtWaay+83JfjV9a5u4soc4Ev4eOz5Xv0F+bDQXvr9ZWbosHbYqo0prB8yF4mtNusmBTwpneBFVFO3arZCs9kJxC2P4layqR4+dr+7vFH6u++e5lC4EcRXhRispS000GnGfHKMjrLEEJQDSR+T/BOcsNytxC8p6rfzUTlk+sOCNfrz9OUF/ry+e1XhJSEP/BBop/6bojWzTvEGfF/+HOSz7908F3wQhQOb+mDyYr5HJ1D2io+djgeASd2OxwPwaNOhUMIArpcJ2GRhBs0OUvO3qzolJUK/twc4dNPE5w4gYwisusLxG++QfruebL5q8TvnKP9/At0XnyR7No1bB96exwOh8PhGAT08jLxm2+iF2+T37yFPzuLajSKh6CSq7vcddbxIowQ5NJDpgmZNqS5Rknw7kaYe70Ic4sRCdIGAxVhbiwYU3R2S7m1CPOaSBlT5fjBX75SCNhKWI4dLfdxR92vEWTnig/y3Ykwt9Zy6613S2P1mQmi4UZ/TmA0YAuxWylK5eUHFCtaYAXYKtIOIdj8Ig5lMxASIzy09DHCw0hB7vm9nm5DGBc93QBDlYDRIKAWKrSyaGnQ6sEzoUZrFuevYIxl7NBhonqd2SefQj0mfeoOh+PxQyrF1PFTBJUK9dFxWou3SePuXl+WY8B5T5f3yuC5vGWaAvauu9sAHZtjsKQYfCFQW7m/7HV3GxQWkOy0uzsCKwfK3V0ZH2H8mVOlseV3r9C8svCAPR6daqd8DKsKgRQ2Rpnf7CreXjrYCxMvMsZVhktjETkftFeQdns/c0ZYXvPP0xFl09KwbXAmP9a3NGcvbyNN3uvvXhW8N4fyA/xKBWssaaeNyTKSZpOs18FdDSSBJ+kkmiQzrMQ53VQzXf1exqOPlw8mLNeC/4uWvHSfMz1eeM8epvozn0XOjGzYlv3xq8T/3z/DtpONOx4kBKB88MJi4VYeg8kh74Du4lzejofhxG6H4xGQeERMEzJOzgod5klZpsnbxCxg96hDQgiBajQIjh4leuYZ/EOHi5uNS5dJ3nid7PIl0suX6b7xBu3nnqP72mvki4suGs3hcDgc+xYTx3RfeRXTbJLOz6PGxvAmevF97+HqtkDshySej7CWrBtjrCXLLVGvq1kJH+5GmCdYNGLAIsytLkRaay1iixHmR/yya+BW6vMHC8XX8DNnAnR9pLS90fyN4twWbPrhLZ1zs7Rv3CZeKrvPJ86c6N8Jcl3MFIvHI8LcigQrMqStI6yHMEObPoa0GcIacuEX8eUEvZ7uoNTTnXQzktwwVPEZUh6jUUDe6+nOvEcQurVm/NBhomqd2dNP4QV9iq13OByOASWq1xmdPUR9bBwvilheuN6rLHE43pv7urzN4Lm8hTEIrRF5DlJipSTH0rVFpLmm6O/eytLDwt0tMMJDmpyd6ngt3N0KSXWg3N0A0x97FhWVn1nmn/smRm9P/Pd0TJAslcY61WJR7PGhnJla+WvwwvxgPTf1HSF4Q8xyh3JN1jAxz9r5bf+85ULzqv8OCWUX66QZ5aQ+1Je3tgCCtAlCkPkNcq9C5m9+MbFUHkGtilCSrNMlT1Kyboek1QIL1UAR+ZJOqokzTTPJaSeamdr3MRZ9bN1FGa4Ff0pbXtn+J7jPkRMNKv/oB/A+fHzDNn32Gp1/8wfoK7d3/8J2G6EKwVuqnsM7hTztmRp2ZlGT42DgxG6H4xERCHyGqDCHAGKukXGHLtdo8Q6avV1dJZTCGxsjPHWK8KmnUJNT6E6X9Py7JG+8QXr1KtmlS3Rfepn288+TvPMOutV6+IEdDofD4RgQrNbEr7yCabdIL15CVqr4c0XP9MNc3bEXYBCkKsDTGUmuSXODEOCr4pb4boS5jNGiixjACHNtDNYarAWxBTeyh2HWK/f4/cbVGdJervQnjtZL2/z0HaLk68UH+ZNgR7Z03Zvl1psXSh8HjRqNucn+HNya4r9VR7d3sHugLQYrWggbIAiRZhSxycdAgUHZHCN9QJLJCHo93ZZ7Pd2im9JKcqqBouYpJish+Dy0p9sYw51rV9FZztjcYcJanbnTT+EHB3zS1OFwOHqMzs4R1euMTM1ick3z1o29viTHPmG/uLxlmiKKeCJsr5okwZD2+rstW+zvFgItPUxv3511dzfADp6724tCZj7+vtJYstTk9qvvbPvY1XVR5nFlEiMUQmx0d3/9ekBywHUoKwQvi8N01iUkzdDklL217eMnIuM1/1wv6P8eh/QUh/XUA/baHIK1/d1VknB4U/3dd48jBH6lggpCdJqQdbvoNC1izXNNJVBUAkk3NcSppp0Wgvds7a8yGpUXUFthmA/+hLa82pfPcT8jQo/wJz5N8MMf25A+Zu+06f7bPyL72rk9urpdRAhQAcig5+7uubzTNpgD7nB3bBkndjscm0QSEDGHzzBJT+wuXN5nSRiM1VUyCPCnpojOnCF84gnU0DD69iLxW2dJ3n6bbH6e5Px5Ol/7C9pf+xrp5cuYNH34gR0Oh8Ph2COstcSvv0G+vExy4QJISXDs2L3O6vdwdQN0/YhcKrSQ2G6MtZDkBl/J3ksFUiq4G2Ee98TBwcHaQhQ01iKE2LRgCTDrtfHEPVuAtvDrVwqHxvcMNcmOHC+9fqj5H+9+DWz6bVu99E2RNNusXC3HJk6cOY4QffpuaA2IYqW4f7DjFgEQnSIJwNYRpoK01U0ewKBMihEKg0cmA6yQ5OpeT7c0hqCbsNJNUVIwFHpMRiF+IB/a0217QneepIzOHSKq1gqhO4ruv4PD4XAcQIQQTB8/RRBFNCYn6aysELeaD9/R4ejxXi7vlQFweYs8RxiLzHOsUtjefV3R322JrUFQOLw3iyYA5Bp3984gTGOdu3twlN2xMyeoTI6Wxha+8RpZe3u1CJXOQrFItIeVirhSJEJ9+2yKWGM3jrXkpRsHP5EnEx4viSNk657FTnKLGbu87eO3ZZfX/fOYdZHNJ/QhpvToA/baHMpkeHmHzK+gZUC3MoHdwrOlQOCFAX61gtGarN1BZynJyjJZHBP5ikqg6GaGTk/wbsY5s9XPMuK9v3QsKzTzwR/Tkdf68jnuZ4QQBN/5FJX/6fsQjXXPRLkh+c0XiH/7K9h8cH4H7RjKu2dkyLugs0L4zju4WHPHepzY7XBsAYEgYJQKs1hyulwlZYkOl2nxLmZd5MxeIqtV/EOHin7vY8cQvk82f434zTdJL1wgu3KV+OzZIub85ZfJFhZ6EakOh8PhcAwO6YUL5Ddvkl2+jE0zguPHET1XSMnVLeQGV7cWglgFpMpHWEMSF33dxkLorXF1IzCqi7ExFjNwEebGFH+frbFbcnWD5Yhfnjj/bzfHuZaESKP5zPHy5JTKb1Dt/Emxp54DM7el694st89eLH0sfY/RE4f7dHRbiN1KFQsivIMtdltyjOgiqRSTs2bzE2TKFpPGWviF4C18jBDkvo/KcpQxhHFCO07RFkYqPiO+Tz30ez3d9oE93dZa7ly/RhbHhdBdqzN7+mmCqHLf1zscDsdBxo8ixo8cozo0TFSrs3xjAZ0PTlSyY/B5kMt7cQBc3gIQWYrQOdh77m6AttUYLIk1KAT+JpebWiHQonB3i17Zyk5QuLvrPXe3gAFydwspOfTpj5TGTJZz7avf2tZxlckI48XS2GqU+VhkeHq8PP/5/EGPMu/RFiHfEoc2SG3P2GsM2+2/L5Zli7PexQ3jT+bHGDGbjx2/H17eQZqcLGhgpLel/u5VpPIIqlWQ4q7DO+sUseahElQDRZIZOommk+U0k5y5oR9iyDxZOo4VmqvBF+jK6w840+OFOjlF5f/9WeSJjQln+Vfeofvv/hvmTvs+ex4wVud4pAcmLWLNdQZZG6y7T3Lcw4ndDsc2UERUOIRHjYRbxCyQcocmZ8nY/mq+fiKkRA0PExw/TvT00/izc9g8J710ieSNN8iuXCG9dIn4tddpP/cc8Ztvkt+54/q9HQ6Hw7HnZAs3SN+9QLZwHb28QnDkCHKt63Otq9urbHB1x16IhaKvO0kxxpJkBl8JVE80vhdhnpCLGIEauAhzY0wRSW0tcgsu5zGZUJPlh8FfvjwLwI8vvkj7ox8vbWu0PofoTRbadF232g6hs4zFc5dLY2OnjqD65cA2BrCF2K1UMSt8gLGiBVaBrSLtMILNfR0lOdJqtAywCDIRruvpzvHTjDzO6KaGRuTTUB5j1RDtrfZ0339i3VrL0vVrpN0Oo7M9ofvJM4TVzTrPHQ6H4+AwNDFJbWSM4alpEJLlG9fdM7lj0wyqy1tmGVgQWmOVd1dYM1g6tnB451h8Idlsg7cWRdWKEQppd87AUbi7JZIKZsDc3dXpcUbPHC+NLb19kfb17cVrb4gyj8bRsnhO+uS6KPM3bvssxgf7/nqVRVHnLTFdGlNYPmivENntm6BuqiXOq3KPtUTwdHaCmtn+wtC7/d0WMq9B5kVk/tDWjyclfrWC9H3yJCGLY/IkIV5ZwReWWqhItaGTGLppzkqsmav+II38ROk4VuRcCf4bXeHqPADkUJXK//R9+N95ZsM2c+k23Z/7A/K3H4PFAYIi1lwFxdzPaqx5thpr7u6VHE7sdji2jUASMkHEFJqYLlfIWKbFu3S4PFA3vqsIz8MbHyd84gnC06dRY+PoZovk3Hnit94ivTpPeuEC3RdfovOVr5CcP4/pDM6KVYfD4XA8Puhmk+TNN9BLS+QLN/BnZ1FDax7CH+LqBuj4EZnysAjybofcWHJj77q6BRIpPFApxmrsAEeYW1P0jIstRDyud3WfbVV54c4wR5oLfOLZyZLwK0yHeut3i3ObYcif2N4n8IjcOX8Fs9bFJmDi9PH+nUBrQBbvlQMeYW5FjBUZ0tYR1kds2gViUCZDC6/wSMkIhCh6usW9nm4ZpzTjjMiXNHzFeCVEPKSn21rL8sJ1kk6bkelZonqdmSfPENXqG1/scDgcjxmTx47jRxVGpmdIOh06y0t7fUmOfciqy/uJqcFxeQtrkXmGzHIQYNW9e7Gs5+xObRHevNk4cysKoVsLD2HNDrq7Va+7u1JoK2J7MeH9ZubjH0AG5QW7V7/8TazZ+ve70r1ZiEurCEm3UvRHf3gqJVJrYs4RfPXawY8yX+WKGOMS5eSkEM2H7GVUHxZdXPVuckWVRV8PxfuyU0R2+19ngcHPev3dXpUkHCJXW3fnCwR+GOFFESbPyDoddJ4Rr6wgdUYtUGTa0E4NcZbTFD4z9nupp0dLx7Ei52r4R8Ri+z3oBwGhJOEPfxvhT3wafFXaZlsJ8f/+J6R/9trjsThOro01j12suaOEE7sdjj7hUaPCYSQhXRZIuEXCLZqcJWdwI0VkFOHPzBCeOUNw8iSyWiW/dYv4zbdIzp0ju3KV5Nw52l/5Kp1vfIP0ylVsNjgx7Q6Hw+E4uJgkofutb6FbLdIrl1Gjo3iT6yK8HuLqzqQikx6pChB5jk5zklwjBXhqbYQ5GBVjbTqQEebWGqwtRMKiu3pzUnwkciZVeTLul6/MIq3lH5/9r9z+vh8obau3fw9pW8W504+yG48N1lhuvXWhNDZ0aJqg3ienrzXFe8VTxadzgCPMLQYj2ggbIgiQZnSTHe8Wz2Z3Y8tzWUSYr+/pDns93VLAcOQzHoZEoXrPnm5rLSs3F+i2mgxPz1JpDDFz6jSVen8iGR0Oh2O/ozyfqeMnCatVasOjNG/fIkuSh+/ocNyHejRYLm+ZpoBF5BrreSUvXhdNZi1JTySMhLrvMR7EWne32HF3t+q5u4v6o0HBr0ZMf/TZ0lh8e4nFN89v+ZjSaipxWXRcjTIPFXxsJi1te34+3OuK+F3lrJjmFrXSWIOE99v5vvx8vauuckPeKY0F+DybncK323+eWe3vzr2ivzuOxjFbWFhdOqbvE1RrICDrtNFZStpuY5OYWqDItaGdaJJM01YVZvLvptqdLR3DiIwr4R8Si9vbupaDhP+RE1T+0Q8gxtctELaW9PdfJP7lL2Hjx2DOXoherLlfmB90UojeaQv6kKrg2L84sdvh6CMSRcQ0IePktOhwlZQVmrxDl+sDdQO8HiEEql4nOHKE6OmnCY4eBSlJ5+eJ33iD9NIl0stXiM++Reu55+i+8ir5nTsPP7DD4XA4HFvAGkP86quYVpv0wgVkVME/dKj8okdwdXe9ECsEmVKYOMZaS6Ytoa/uysVSeoW7RCbkdHqOjcESQk0vftsYi9zC5MNhr1VaB9DMFb9zbfL/z96ff8mZ5ed94Ofe+24RkfueSKwFFICu7q6l9+qFaopbi2RrZImyZNkzmrF15OMZaWTJlvk30LKk4YxGPtKRfaxt3JRIiVaL7Ca7STbZ7EL1wqrqWrEU9lyRe0ZGxLvde+eHNwBk5ALkEpnIBO7nHBxkvHtsme+93+/zPPzZ639Mz2dfwoRrXjub01n9t8WPNoLsY3u8+u1RnbxHutrqJDNw8cwWW+8CrQFR2Jf7h8uivu2IGliLsBWEKSPtzqwOpc3BmiL/EokmaOZ0e6j8YU53I8nJjaUr8unxfDoj77E53dW5WeorK/QMjVDq6GT4uXOUu7rb8awdDofjqaHc1U330Aid/QN4ns/yjLMzd+yerVTe87WDV3kLYxC5RuocpNgQKdMgRwOJNUjA38HUtREKg8QID2kNYp/m4IqxQsehVXcPfPQcYW+rHfX0D94lj3ffNLPeyjwNex4ogNdbmU/XPG6tHK6x1H5iheAdMcYqrUrrQVY5b9tgxS3gqnebJdHq0lW2ES9kzyE36y7dIUV+d9bM7/b3lN99n8LWvIz0fPI4btqax+halYov0caymmiSIKCWSYbrP0Gp0WoLb0TKePhNErGwxVmePdSxXsp/++dRL4xtWKffvkP9V7+BmTlc0ar7ggCUD14IxhbqbpsXc0OmgVN5P5u4YrfDsQ/4dFFiDIGkwRQpi8RMs8qHaOInfXmPRUiJ6ukhPHOG6OJF/OERTByT3rpF8v4HZBMTpHfvFDbnP/wh2cw9N/B2OBwOR1tJLl8mX1wivX0LhCQ4dQqxPl85WW7mNW2u6rZAw49IlI+1kDcaJNqChVAV20ohkUKBl2CMxsgUYQ6Xqhsors0UltAbXofHILGM+asty35jaoiulSX+z9e+zfSf/Qst68r1P8DTM8WD9CXgYKwI567cbHkc9XZRGexr09FtUeyWqtkJ/vROwFlyjIiRVBDWQ5qeHe0v0CibY2ShjsplhBWQBT7CWrwsx8sybJKxmuRUQo8u36evFGI8HpnTXZ2fpba8RPfgMKWubobPnKXS07vptg6Hw/Gs0z92grBSoXtklDxLqc7PPulLchxx1qu8j3U/GZW3zFIwBozBrrsnM0DN5hgsKQZfCNQOHI209LEPsrv3x8oc1mZ3RxjROFTiFqEkY1/4RMsynaRM//DdXR8zaswhzBrFpBA0ykVh8vmenMFSq5L+tcnDN57aT3KheEucIKXVjeAUC4zZvQuFrLC8799gdV1jRZetcDE/vee44rX53anfSa4i0mD3+d0Pjyvwo4e25mm9hs4ystUVImEw1lJLDFkU0SBgcO6zlNL1Be+kWfB2gqv7iFJA9H/7MsFXXtpg+GbvrVD/1W+Qv33niVzbgSNUUfAWspgX0hlkaVH0PoTRso79xRW7HY59QuITMUpANymLNJhsqryvknB0MkeE7+MNDhKdP0/4/POonh704hLJ1WukN2+QTk0Rv/ce9ddfJx0fx+b7N5hwOBwOx7NBevs22fQM2fg4Jk6KQvd6Ja5JIWsUgxi5uao7VT5aSBLlY5IUayxJpgk82bQCB0+GIARGNtAkgEEcUHF3uxhrMaawMpe7sDAf9moEonUC7l/dGeZvvflvWf3il8h6W4uNXdWvAWCtwmav7Onat0tjaYXVmVaLuoELZx68T3umqYzHk4Wye4cNA0cFi8WKKsJ6YCOk7Uawk8J+kdNdKKM8Mlk4I+S+jxUCP81QxuDHKUuNjMCTdAce/VGIDB6d011bWmR1cZGu/kHK3d0MnjpDR19/2567w+FwPG0IKRk6fZYgKtHZN0BtaYmkfngj0hxHg8Og8hZ5jjAGmedYpbDr7vc0lobV5NaiKfK7t3tHaPCwiGaxW7Nf6j6B11R3lw+lurtjbIju5060LFt4/zr12d0VDAWWUr1VpXzfylwI+Nw6dfcPpgKyw1P/PxAaIuDH4viGT9xFO02v3fvvbi0M7/kfEtNqG99vunk+P9mGgrfFz6oY6ZN7ZdKge0/53WtRvo9fLr4rab2OzjJ0o0ZoM4y1rKiAHEhlyODMZyjpkZb9tYgZD79JKp4BxfI2EVIQ/MzHif7an4bSuvmLJCf+539E8vU3sAfo3PHEEAJUCDIo3P/yGEwOaa2YN3I8MzydszwOx14wCuGVkNJvw42CIKCXEsewGBqMk7JEnXFWuYHhaOVIyFIJ/9gxwosXCU6exGY56Y2bJNeukU1NE1+9Su3SJZIbNzCp+2PicDgcjp2Tz82RXL9BNjODXloiOHECWdrEgvl+VvcWqm6Auh+hpURLhY5jcm0wFkKvuAWWQiGlhxRFx7gWjebE1eFS/RqtAYuxFrELC/MTXquq+7vzPZx//21enLvO1F/4Sy3rwvhPCLKrxYP8I2DX5YHtE+uzur0ooOfU6OYb7watAVl0fvuH6/1tKyLGihxhOxA2QJidvX/K5iAEWviFhbnwyJVCewo/u5/THRfqL6C75NMbBESRwqitc7qTeo3q3CyV7l4qvb0MnDhN18BgO56xw+FwPNWE5TJ9Yyeo9PYSlsos35tp3hc4HHvjSaq8BSCzDKE1WLtB3Q2QYEitIbEayw7yuwXkMsCisEIW9zb7hDBdCA6nuhtg9NWXEF7r6zb5vTd27cxYrs+0PM6CLjKvDMCro63F7noueXv2cDUQHwRLosz7onUMI4GX7Dhlu/d50lTkvOt/SEbr53rE9HNqXYF4NyiT4ec1cq+MbtqZm+1+9x6DlKqwNVeKvNEgTxJMEuNndbCWuheQBwFJCsOLX6SkWxXeWjS4G36DVKy05XqeFryLxyj/7Z9Hjm10y8q+8z7xP/09TPXwu8zuGQEo76EIIo8LlXfeKP4dst/Pjv3BFbsdjjVYaxFWFhPmUjVVMXtXFClCShzDo4OEeWJmSFlkhSukLO39wg+YBzbn588TPPcceB7pnTskly+TTU2R3LhB7bXXiC9fxtRc57nD4XA4toderRG//z56eYl8ZgZveBjVvUmW7zZU3QZB7AWFqjs32CQhyQ2eFCjZVHWrQtVtvQRjM6xIEObwTcoYY7DWgC06uHdCl0zoVq0TK795ucx/9d5vsfTJz9A4cap1+6aqG8Cmn9z9Re+APE5YujnRsqzv3Cmkas/ECpiiMcJTxejnKbUwtxiMqCFsiMBHml7EDoZ7khxpNbko7D9zsS6nWxvCJCFOcpLc0FXy6VE+XSUf84ic7jxNWZqeIihX6BwYpGf4GN1Dw5tcgcPhcDg2o3tomFJnkeFtjWX53szjd3I4tsGTVHmLNC3ubfMcq7xNtSZ1NNpaYmsQFArv7VCouzkQdbcwlTXZ3YeroBR0lBl+5SMty+oz8yxdu72r44XJAlKvK2o31d2DZcP53lZBz2sTz5aV+X2mRA83aXUv8jG8bO/i2b03KzVkwnv+DfS6z/VJPcqoHtjz8VXeQJq0rfnd9xFC4JdKqDBEZylpvY7Ncvy0Th74NHKL9gMayynDjZ8m0kMt+2tRZzz4Btm6/PJnHdnfQelv/hzep5/bsE5/OEPjH/42+vbRcZndE6I5PyRVMW+km/+yGuDcaJ92XLHb4VhL86+3EBKpArACYTyEUW1QeUtCBogYRpNQZ4KMZWrcosYd7BHNkVAdHYRnzhA+/zyy0kE2NV0UvScnSW/fofb9H9B4+2300tKTvlSHw+FwHGJsmhK/8zZ6dZXs7jiqpwd/eIuC2DZU3bEXYBGkKiBPGhhjybQl9O+ruj2kUHjSR4ta08LcIuzhmpSxFoxpqrql2FHxEuCE1zoRcLce8MrvfZtynjD15//TlnV+dpMo/n5x3vw0mINR3s5/eAdrHk7WCCnof/5k+06gNSAK+/L1dvhPEVasFpPGtgNhyki7sQlkawr7ct3M6c5khBViQ043Sc5qklMOFN2eT18pwD4ip9tozeLUBEp59AyP0tHTS9/Y8bY9Z4fD4XgWEEIwdPo5/Ciia2iYuLZKfcVZuTrax3qV9+gBqLwLdXeKzIu5sM3U3QA1NAZLYg0Kgb8dQ3MBWgZF0VtIVBsKjFshTRcChSTEiPqhU3cPvHSBoKvV6Wfq9bfR6c6dJgUb1d2N8vCD6dLPr7Myf3feZyVpUyTREeNDMcg9Wl/3Cikv2nFEG75PVVnjsncLu26y+lx+grPZccQehFsb87tD0mCTBvQ94AUBfqmENZa0XsfkGZ5OyJWkoTyMNjRWMkYaP0NkWgv4uaxxN/gGmVjd4ujPJsL3CP/Sq4R/4TOgWucM7HKdxv/3d8kuXd21s8ORQgAqaNqa52tszetgksfu7ji6uGK3w7ElAmElAgFWIowHVu656O1RpswYipCYeyTMkjLHClfJObp/qGWpRHDiBNHFi6jePvL5BeIrl8nG75KOT1B/403qf/InZPfuPRt/WB0Oh8OxbawxNN59D12tkt66hQhD/ONbFMS2oeoGaPgRmfLILZh6TJIbpAC/OfDzvLDIg5aa3NYxIikszGmXmrg93LcqteZ+Xvf28dGMePWWZd/91iKfvHeV2tnnWXmxNY+7s/o1RPNGx6af3sNVbx+jDfPr1CU9p47hl3ZSqH0UFnLTzOgWT7Gqu3AmkFQQViHNRhu7R+3t2Yc53bn0sUIWOd2yNad7uZGipKA39OmLArxQwBY53dZalqanMNrQc2yMqKODoTNn25fD7nA4HM8QXhAweOoMpY4OSp1dVOdmybOjFYvmONysVXl3H5DKW2YZYBFaY73N1d0GS93maCw5Fl9ItpPgrSkaHAt1d87+qbt9hCkX2d1w6NTdUimOff7llmV5I2bmT97b1fFK9enWY/kVMr8TgE8OJwTy4btorOD704erkfjAEIJ3xRhVWp9/P3Uu2um2NJAsqGU+9O5uWH7MDPJi9jyh3X2Tr8ASpCtr8ru7yFW7xmcFUnkE5RJCCbJ6A51mKF+S5zmxlOhGTCMRDNd/ltC0KuVzuVoovHFuomsRQuB//jyl/8fPILrLrSu1Ifn1H5D82uvY7BlROCuvEEfAGlvzGPIaztb86cQVux2OrbAaK0yh7rbFBKkwCmHVnq3NBYqIYUIGyKlTZ5KMZap8SIPJQ9cJuhOE7+OPjhJdvIg/PIKurpJcvUp66ybpxCTxu+9R//73SccnsC5rzOFwOBxAcvUq+eIC6e07YCzB6dMIucVt6jZU3VpIEuWTKo88y5E6J9OG0FNFk6/0kUiU9EnFEoYcK9LDaWFuCwtza9lxXveYv8pa1/PaYsL573wXgMk/9xdbtpV6nkrtWwBYPQi6jcrqR7B8d4q80dpd3X/hTPtOYAxgClW3J5tF76cLi8WKajN+J0LaHsQOmjaUzcCaZka3QhOg7+d0pznSFjndq0mGttBb8un2fcqRh1GQbZHTvTJ7jzRu0DsySlgqM3LufBut6R0Oh+PZo6O3j87+QboGhhBSsTwz5RrJHW2nI/I4P9x5ICpvYQwiz5F59iBOcDMyCivz1Bo027QzF5BLH4PCQtPOfH+4r+4WNsCKxga17ZOm69QxOk+25kjPvXuNeHHn2cdBuoLKW5tp65XCyjzy4BPDrfFJr00+o8VuijHpm+IEybr78uMscYLFtpxjWs1zW01tWN5lK7ySXqTXdO762NLm+Nn9/O6grfnd9xFS4pdKyCBAJwl5XhS8UwlJkpLHKY1EMVz/OULT17JvJquMh98gp77F0Z9d1KlBSn/751FnNzrl5T+8TuMf/S5m4egK7naEEE1bc3+NrXkG6SpY1zT4tPH0zfY4HG3i/q2pFQYr7DqVt4I2WJv7dFLiGAJFg2lSFoiZoco1NIerG3SnCKXwBgcJL1zAP3ECm2akN26QfHiNbHKK+OoVaq9dIrlxE5umjz+gw+FwOJ5K0vFxsskp8okJTL1eFLq3sprepqq77odYIJU+utEg1RZrIfQeZnVLobAyJ2cZI4oBsrSl/XiKu6awMC+K3UKwI0WswHLceziAtdby7r98n0oWkwwOsfClL7ds31n9DQTFYM+mn2KDTHcfsNYyd/lmy7LKYB/lvjba5GkNyGLy9Gm1MBcxVhiE7UTaAGE6Hr9Pk/s53VoGxSMRYqQge5DTrQnjhDTVNFJDZ+TT7QV0lwOMt3VOd21pkfrKMl2DQ4SVDobPPo8fPLuTnQ6Hw9EuBk6cIiiV6BkeJY1jaosLT/qSHE8hSokDU3nLNL1/04vxt3bgidFk1pI2i9bRNopuhbpbYKTXVHfvTxFaECBMCWHLRaH7kKm7AY59/uXWZmJjmfzemztumBFAudZqZV4vPbQyf3Wdlfl41eNu9dltdkyEz1viBHrd2OqCnaHftqfYeMeb5op3e0OGt4/HR7OznMxHdv3R93QD9SC/22trfvd9BAI/DPFLJYzWZNagpCQV0KiukhtLnCiG6j9LYHpa9s3kSrPg3WjzVR19ZGdE9F//FP6XP7JhnRlfoP4Pf5v88uQTuLIngACUDyp8KJyweTGvZGL262+D4+BxxW6HY1vYdSpvWRS/rbdnlbfEJ2KEgB4yVpoq7xWqXCVm9tB1hO4UISVeby/h+fMEZ86AVKR37pBcuUI2PUVy4warr71GfOUKpu668RwOh+NZIl9YILl2jXx2lnxhkeDECWS5vPUO8fJjVd0ADS8iVT6Jscg0Jc41vicQQuDJAIFAKo9MLKDJMTJBmXLR1HaIuK/oNtY2Vd3bv74B1aAkHypYqm9M0HW1sAuf/uqfx65R2ArToKP2m8U5TQfkF9ty/Y+jPrdEY6E1c3Tgwuk2nsEWnxdPFqOep1BVbDEYUUPaEIGHMH07+BwbpMnQwsOiyGSI2SSnW6Q51Tgj8iW9vkdv5IO/dU53Uq9RnZul0t1Luau7abu7e1WJw+FwOB4ilWL4zDmCUomO3n5WF+ZJYzfJ79gf7qu8B7vCfVN5C60RxiDzHKTEPqK5s05hZ55YgwT8xym8hUBLH0NRRJfsn7pb2O7iXuyQqrvD7k4GX7rQsmx1YoaVmxM7PlZ5nZW58SKSsIjQudiX0Ru2vs7PsrobYEWUeE8ca1kmgBftBBXbnsaIe2qBt/wrNNY1WggEp/QoH8vO4tndjYX8tArWkPpdzfzunjZc8Uak5xGUy+B7pCZH+AqTZ6yuVMm0IUl8hus/R2BaG6NTuewK3lsglCT86ieJ/i9fgnBdM1E9Jf5nv0/67Xew5nD9vto3pCoEE0IUc0o6gyxxtuZPEa7Y7XDsgELlbRBWIJBF8dt4hdJ7D38XBIKAHiJGAUuDCVKWaDDBKjcwPB22Gqqzk/C55wiffx5ZKpNNTpFc/oBsaor09m1qr3+fxjvvopeXH38wh8PhcBxpTK1G/N576JUVsukpvKEhVE/PI3ZIi3ylx6i6U+mRS0Xq+eRxis5zjIHQU4BAqQApFVYk5KxiZB2BRBwyVTcUqm6wWGORcmeF+BN+9cHPeTVh/NfeKX6uVLj3Z77asm2l9lsoU2xvs1fggHLL5660qrr9Somu4xut1naNbmaRKa/I6n4Ks6KtWC3uQW0FaTqQdvuTicrmICRGeGjpYYTXzOmWD3K6gzhluZEhBfRFAT1hSBDJLXO68zRlaXqKoFyhc2CQnuFjdPYPtPdJOxwOxzNO1NFB7+gxOvr68aKI5Znp5j2Dw9F+lBIc7y1zdhOV99RKsmeVt6BQdwutwVist7W62wI1qzFYUgx+YR7+yOM/UHcLD2n2T91duOtETXW3PpTq7qFXPoJfaR3zTF56C7PD/F4/rxUF0DU0ysU9vBQb1d3fnwzJn/FfUTOii+ui9Z7Yw/CKHce37clPrsuYN/0rzMmlDet6bRevpBfpNI9oLN+CIr+7ipGK3K+QBp3kan/GzkJK/HIZWS6RW4uRINKY1VqdNMtJkoDB2s/hm66W/VK5xET4O2iSLY78bOO9dIry3/oziMHW1w0L6Td+TPy//SG28Yy4rgpRKLylDyYDHRfzBulq8dhxpHHFbodjF1hhsPAgy7uwNvfAyj3dNytCSozh0UnCPA2myVhihSukbcpzOQzIUong5EmiCxdQPb3ks3PEly+TjY+Tjd+l/idvUH/jDfLZWZdB5nA4HE8hNstovPMOurpKducOqrMLb/gxRc7tqrr9Qp0aoyCJSbXBk6L4p5qqbumRiHk0GVYkSFM+ZJruAmN0MXktdpbXXREZ/erhQH/m199G1IvH9372F9DRmkYBq+mq/pviR+tD+lJ7Lv4xpLUGy3dbVSED509tndW+G3LTzH4UT6WFuSUtPr+2grAewmzf/l2SIawmFz4WSU6IVhLtKbw0Q1pL2IippTm5sXRHPt2eTyVSRU632pjTbbRmcWoCpTx6hkfp6Omlb+x4m5+1w+FwOAB6R8eIOjroGRrF5Jrq3L0nfUmOp5zOTVTe2pi2qLxFliGsReoc63mPnFbTWBpWk1v7IL/7UffxVohmU58C7DOt7pa+x+irL7csy1br3Hvr8o6PVVqn7i6szIt3Yn2xu5pJ3pt7+u7Fd8oNBpiitdhYIuMlO46w7ekG0MLwgXeTG2piw+cvIuDF7HlG9cCO564f5HerEloFxFFf2/O77yMQ+B2d+GGIlRKjM4TJWK3XaSQpWRoyWPtZ/HV55IlcYDz8pit4b4Ec7qb8334F9fETG9bp98ap/7++gZ5aOvgLexLctzX3ouK7kMdFoTuvg27gVN5HF1fsdjh2zTqVNwJhFMKqPVmbCwQh/ZQYwZBSZ4KMZWrcpsZtDO3p+DsMiCDAP3aM6CMfwR8aRq+sEF+5Snr7FtnEBI133qX+/e+TTUxgXae6w+FwPBVYax8outPbtxF+gH/ixKPzqLep6rZAwwtJPZ8ky5FpQpZbQk8ikHjSR0oPIxpoGhhVa05IHT5rPWMNxhRW5lIIdmJhfnyNqrv640lW/qSwJzSex/R/8hdbti03/hBPTxUPso8Dm7+27Wb+2u2WSVHpKXrPnmzfCYwGTGFdrmTxuXmKsFisXEVYH0EJabsR21bkG5TJMdIHJJmMmjndPkprvGZOd55paommEnr0BAHdpQDrs2lOt7WWpekpjDb0HCsKMENnzu4oZ97hcDgc20cIwfDps/hRSOfgIPWVFeLV9uS/OhxbsV8qb0Gz4J3nYHmkuhsgwZBaQ2I1lsfnd2sCQGKEamZ37w/ShggTImylqe4+fEW37ueOUzk21LJs9seXSVZ29vujXG/N7bbKJ476ARipGJ7rblVIPutW5gAIwftilKV1461eGrxgp9sSC1CcBya8e7ztXyNd5xQqkZzLT3AhP41c37n6GDwdo3RC5ndipE8cDexrO4eslPFLRZO7TRKENdQbDWqNmCyJGKj9LJ7paNknkfNNhfczolLeISIKiP7qTxD8wisbxAN2rkrj//0NsjdubrH3U4hozi1JBTot/uVpMe+0j41Rjv3j6Zr1cTieAIXK2xYZ3g9U3gr2aG2uKFFmDEVEzD0SZkmYp8oVMqqPP8ARQiiFNzREePEi/vHjmDghuX6D5PqHZFNTNK5cofbaJdJbt7Cpu2FxOByOo0xy7RrZwgLpnTugNf7p04jHZSlvU9WdeAFGSBrSxyQJWW4QAnwl8VQACKSSpHIOIxIs2eFVdevCwvxhXvf2UBiOeTUAdD1l6td+/GDd/Je+TNrb17J9Z/XXALBWYNNP7P3Ct4HJNQsf3mlZ1nvmOF7QRsWH1oAsBq5Poaob0cBiELYDYQPEuomerTF4NsUIhcEjl8V35kFOd5rhZTkqy1luZASepD/w6Q4DRLgmp3vdl2Zl7h5p3KB3ZJQwKjFy7jzyKcxIdzgcjsOEH0UMnDhFuaubqNzB8uwMOn96muMdh5f9UHnL5lyP0Pqx6m6AOhptLbE1CAqF91ZYIYp7H+EVCvJ9FJEI29VspvWxon7o1N1CCMa+0FrostowdemtHR3H0zFBstSyrF4eefDzenX327MBtewwjroOFiMkPxYnaNDa0HGMZU4z39ZzrcgabwSXWRIb55CHTC+vZOcpmZ01IfjZajO/u5NcBQ+y2veFIEAoRRCVEMZgdY6whjhJWK3VyeISg6s/i2cqLbvFco6J4HefmkjQdiOEIPjTHyX6638aKuve/1ST/OvvEf/b17H1w9essy8IQAUgAzB5U+WdQ1oD84y8Bk8RrtjtcLQFixWmyPC2EpBF8dt6e1R5KyKGiBgkp06DcTJWWOU6dSawT5mthpASr6+P8Px5gtOnAUF6+w7JlatkU1PEH16ndukS8dWrmEbjSV+uw+FwOHZINjFBNj5BPjGBqdUJTp1CBsGjd9qmqhug7oVoKWloUGlKkht8JVFSoqSPkj6aVXKbNLO6A6R9zPmfEMYYrDVg2VFe96hXwxPFpNrMb7yLXikGaBaY+qW/0rJtGL9FmL5fPMjPg+1px6U/lsVbE+i0dfKh/8LpNp7BgjHgyWK04z1dRVeLxog60kYIPKTuKxout4GyhWJKi8LOUwuf3PeKnO4sQxpDkCQsN4r3p68U0BX4lB6R011bXqK+vEzX4BBhpYPhc+fxA6fecTgcjoOga2CISncv3cPDgGD53rSLAnMcCO1WeQtrkXmOzLNmpurj799qFPndiTUoBP4j7odysVbdvX+KPWlLCBOsUXcfPsFG1NfNwEfPtSxbuTVJ9c7Ujo5TXmdlHpcGH1hbf3okxZMPfxflVvCDqcM57jpoUuHxljhBvu7z+rydZciutPVcmch5x/+Qu2pmw7qyLfFKdoEB3bPt4xX53SvN/O4OMr+DzNuf/G6EgDAE38f3PDwLYMDkpHlOtVYjiUP6az+DMq3XEKt7ruD9GLzzo5T/9s8jT/RvWJe//iH1//HrZG/cfHbuKZRXCCsA8gborJiHyus4W/Ojgyt2OxxtxAqDFfahtbkVRZb3HlXeHh2UGEPg02CahAUS7lHlKpqnr+grhEB1dRGePUt47hyyVCKbnCS5fJl0cor01i1qr79O493CBtfhcDgch598cZH46lXy+Xny+QX8sTFkpfL4Hbep6jYIEi8gUT5ZptFJirEQehJPhiAEUkEqFrAiwZIjTbnNz7I9WAvGWIwxzUL3dm/ZLSeaFuar78+w/P2H6unllz9J/eSplq07q197uGf6qb1e9vau0FrmrrRao3WODhJ1bVeZvA20BmwxSep5W35mjipW1IpmSltGmg4E25s4lORIq9EywCLJxP2cbq/I6TaWKI5ppJokN3SXipzujpKP8TbP6U7qNaqz96h091Lu6mbg5GlKHZ2bX4DD4XA49oXB02fwoxI9wyMk9Tr15aUnfUmOZ4h2qrxFmhbba415jJU5gMFSszkaS47FF5KtErytkM1GPw9hDWLfs7v9Qt1Nfd/OsxeGP/VRvFJrc+LEa29i9PZfl1J9BtZkTVupiEsDAFR8y0uDrYX+S87K/AGrIuIdMbZhqvhjdpJO2+Z5XgG3vEne866Tr3M1UCg+kp/huXwMsU2xlrQaP1slVxFahSRhH0Y8/vu6K8JiHI/noYwh8Lwi4kvnZHnOaq1BshrSX/1ZlG0teDfUDBPBt5+qONB2I3srlP7Gz+J97tyGdbYaFyrvf/r7mLmny2F2S4Ro2pp7hehCp0XRO6vBPkZgONqHK3Y7HG3HNq3Naaq8C7W3MB5Yueuit8QjYoSQPnJWqDNJxgpVrhEzc+iskdqFLJcJTp4kvHAB1dNDPjtLcvkK2fg42d271H/0J9TfeJN8bu7Z6TZzOByOI4ZpNIjffQ9dXSWbnMAbGMDr69vGjttXdTf8EINgFYVME9Lc4CuBrzyk9FDCIxNVNFmh6rYh0u7ToHyPmGax1lq7o8zjXpnQIXN0I2Pqf3+rZd3EX/zPWx572R1K8WsA2HwMzOheL3tbrE7PkSy3ZgIOXDzT3pPkurAvR4J/ON/j3WJJsCJB2grCegjTs809DcpkaOFhkeQyxEhJ5vvIZk53ECeYzLCa5JQDRZ8f0FPyYYuc7jxNWZqeIihX6BwYpGd4lK6BwbY/Z4fD4XA8GuX5DJ1+jrBcptLdS3V+jixx1puOg2Otyrvrgcrb27HKW2qN0AaZa5ASKx8/bZ1TWJmn1qB5tJ25Fh4Hpu62PsKWsSLHHsLsbhUGjHzmxZZl6fIqc+9c3f4xTEYYL7QsW2tl/oV1VuY3V3ymVp8ux6W9MCc6uSZa89MVlpftOKFtvyJ5Qa3wZnCFVbGxAWNMD/Fi9jyB3V78k6eTZn53B0b6NEr92P0IB5MCwgCabnBCG4IgQCkJJifLMupxTLzq07vy0yjbOl/QUFNMBr/nCt6PQHiK6C9+jvA//RwEG7+f+uoU9b/3ddJvvYPNn4Ec6/u25ipoii6atubZfVtzV3s4zLhit8OxbxisMA9V3giEUQirdm1tLhD4dFPiGAANJklZoMEUq3yI5vDdQLcLGQT4x44RXbyIGhpCL68QX71Cevs22eQEjbffof6DH5JNTmKNsxdxOByOw4LNcxpvv4NZXSW7cxvZ0Yk3us3C6jZV3VAUu3PlEWsgSciNLVTdqugGF01Vt2lmHatDquoG0MZgrcVadpTXfV/Vfe8/vE+++FARUDv9HNUXX2rZtqv6NURzoGazT7fhqrfHelV32NVBx8hA+05gNWAKVbdqZnY/JVgsVtaKyVMipOlp3mM+Hs9mGCExwkdLHy28Bzndfprh5TlelrPcSFFSMBgFdIU+KhSb5nQbrVmcmkAqj57hESo9PfSNndinZ+5wOByOx1Hu6qZ7aITO/gE8z2d5xtmZOw6ezsjjwgOVd8hIU+U9tRSjzfY+jzJLEUaDsdhtqLsBYjSZtSTNAnYkNr//M8LDIDHCaxa792/uSJhuBAHCethD6sjYe+E05aHWBuR7f/IBWW37avQNVuZRP1oWBdMX+jO6g9bX+DWn7m7hNn1M0N2yLCLnZTuOtO3/fMYi5cf+VablxnzwLlvhE+kFesz2XJru53cnQRdaBiRhT5uvtkkUPVB3kxVNAL7vE/g+EkuaZTTSlLjq0738U0jb+hmrqwmmgt/H7KObw9OA/9lzlP/uV1EvjG1cmRvSb/6Y+t//LfT1jZb4TyXSK8QWQhQFb51BFoPOcQXvw4srdjsc+0yh8raFuhsBViKM2pO1uSSgxDF8ukhYpMEUKctUuUrCwuMPcIQRnoc/NER48SL+2HFMHJN8eJ3k+nWyqUniy1eoXbpEevs2NnPZLA6Hw/EksdYSv/8+emWZ5NYtUB7ByZPbUyvvQNWdC0kqferCw2QZWZoWTeCejxQKT/pkYgljc4xsIG2I4HAWQa0FYw3GGoRg28ruSOQMqQa1q7Msfbe1oPzBX/lrLY+lXqRc/53ifKYX8rPtufjHkKysUp2cbVk2cOH0jtTrjyU3gCg+M/72lAlHBlHHWoOwHQgTIu32rN+lzcAatPAxSHKCjTndcUI1ydAWBkoBHZ5PqaSwm+R0W2tZmpnCaEPv6BhRpYPhM+fa+z46HA6HY8f0j50gLJfpHhklz1Kq83NP+pIczyDrs7yP9ZRAwGJ9e9nVIsse5HdbpbatFq2TP8jvlkCwRcOolj4WiREStY+2tMKW4IG6O8Ny+LK7hRAc++InWpaZPGfq9be3fYxSY7ZoTn5wUEmjVKiVlYTPjraKcl6fCtlm38OzgRB8IEZZoLURu4uYj9nJHcUAbBcjLNf8O1z1bqPXNXz4+HwsO8uJfPixc9b387utkGvyu/ehofz+uM73i9cjywGBUh5h4KOALEmJk5xkJaBr8ctI2xrzVFPjTAV/gHUF70ci+zqI/ssvE/3Vn0B0b3wv7b0VGv/4W8Rfu4RdjZ/AFR4wQoAKQfpgMtAJYIrCt3FuAYcRV+x2OA6EwtocK5rW5rIofltvTyrvgD5KjGLJaTBByjJ17rDKrafeokVIidfXR3j+PMGpIoM0vXWb+MoV8qkp4g8/pHbpEsm1a5j4GfgD7HA4HIeQ9MYNsrk5srt3Ic8JTp9GqG0WmVtU3eVHqrrrfoRFsGolKk3ItCX0FZ4XFQU4qclYwog6YA9tVjeAMQYsWGMRsnCG2Q5j3io2zZn6/73ZsnxlaJTss59pWda5+u+Qtphws+knt32OvTJ39VbLYxX49J7ZpHN819jiM6NUs/v/cDY07AaLxogGkhICD2l6t7WfQKNsjpE+IMll9DCnO7uf052QZIZGauiKfLo8n66Kh1Wb53SvzN0jbTToHRklLJUYOXceud3vtcPhcDj2DSElQ2fOEUQlOvsGqC0tktQPZ16w4+mnM/J4frgDX0l6yj7VOCfZhgWuAESaIXQOdvvqbgvUrMZgSTF4CNQm97gGD4vAPrAy3x91t0AgTReCsFB3b2IdfRgoD/bRd/G5lmVLH95hdV2D6lZIqynFrY01a63MX11nZb6USD6Yf8oaUveIFYK3xRh1Wl+XYaqctdt7H3bDjFrgx/5VGutcQgWC0/oYH82fw7OPvsffLL9by32IkSqFRdFb3Vd3F5V4IRVRGOJ5ijxLidOMbLVMZf4nkOss2WvqDlPBH2L30dHhaUAIgffiScr/w1fxv3Rx03mY/IfXqf3K18l+cP3pd5ERgPLBC5vKhLyYc8gOp2PHs44rdjscB4gVBivsQ2tzK4os7z2ovBURJcbwKJMwS8w9UhaocoWMlfY+gUOIEALV3U149izhuXPIKCIdnyD54DLZ5CTJrVvULl2i8d576Gr1SV+uw+FwPDNk09Okt++QT02hq6v4J08iw23a1m1QdW+9nwUafkSiPFJt0I0YLJT9AIlESZ9ULKLJMTJGmtK2rZ+fBNYUk27WWuQ2lbICy3F/ldn/+AHZXOtE2nf+6t9ByIfHESahY/XfN89Vguyjbbv2R6HTjMUb4y3L+s6eQG5zAnN7JymyzvFU8e8pUhpbsVo0SNoy0nQiCB6/UzOn2wiFwSOTQZHTHTRzunNNkCTYXFONMyJf0h8EdEU++AKtNuZ015aXqC8v0zUwRFjpYPjcefxwa9cFh8PhcBwsYblM39gJKr29hKUyy/emMdop2RxPBl9JRroiuiKPwJPM17anbpZZsZ3QGuupbU+XaSx1q8mtRWMJhdxY7haQS78oeu+7ursM1luj7j6c7oMjn/kYKmgtDE5+741tRwSutzJPwx5yVYzfjndqTna2vsbOynwjmfB4U5wgWzdOfY55Ruzyvp23Jhu8GVxhXi5tWNdnunklvUjHYxrFi/zumMzvQEuPOBpof3638sD3IPDBmua4r4kQhEFA4HvoPKcRJ+haB9HsFwqR2RpW1S2mgu889QKxdiAin/DPfYrS3/oK8njfxg3qCcmvXaLxP38LM7N/n9FDg1Br5qUszsr8cHJ4Z/ocjqcW27Q2p6nyFmtU3nJXvysFkpBBIobQNGgwTsYKq9ygzvgz07Umy2WCU6cIL1xAdXeTzdwrit4TE2R371L/4Y+ov/km+cLTbfXucDgcTxq9vEx8+TJ6YZ58dg7/2DFU5/ayv4AdqbpT5aOFpIpCZDlppgk8ie9FSKGwMiNnBSPrgEDa0t6f4D7xwMLcWBDbz+seVnXym3MsfOd6y/J3j12k/9XWrO5K/bdRpjkYzV4CDkZZsXD9LiZvnZToP3+6vSfJddEcgQTv6VGMWJFgRYq0HQjrIUz343eCYvJWCLTw0UKhhV/kdFPkdKs8x0tzlhsZUsBQKaQz8AhKctOc7qRepzp7j0p3D+XubgZOnqbUsYPvtcPhcDgOhO6hYUqdXXQPjWCNZWX23pO+JMczTH9HSOgp+ioBSWZYTR5fZBLWIrMMmRX3MnYHDjIphtQaElvMu22W323wsYA5QHU3VmFFbV/Os1e8UsTwpz/WsixeWGb+/etb7NFK1JhDmDWFfCFolIcfPFyv7n7rXkAjf3qaUttFXYS8LY5v+DR+1E7RbffPGUALzfveTW6qCey6SemIgJey5xnVA4+cr/azVYTVpEEXWvok4fZcqHZEFIJUhYtXsr5xRuD7AVEYYIyhHifYejfR7Oc3LXiPB98kxylzt4M60U/pb32F4M99CsKNY2xz/R71v/9bJN94C5s95U0EQnBQrniO3eGK3Q7HE8NghVmn8lYIq3Ztbe5RocQYkoAG0yTMkzBLlSvkHE7LpP1AhiH+2BjRRz6CGhxELy0TX7lCeucO2eQkjbd+TO0HPyCbnt52p6rD4XA4toeJYxrvvIupVkknJ1F9fXj9/Ts4wPZV3QANL0QLQd0ISGKMhUoYFZNLyiOVC2hyrEhQpoQ4xIMTaw3GFP/LHQykjrPE1L9+o2UCIpUe3/4rfxPlr5ngs4bO6r9pnkths1faePVbY43dYGHefWKEoNLGxgNrAFN0/Sv51FiYWwxWrCKsjyBEmp5tORNIcqTV5KLIpcxFSO57GCnx0yKnO4wTamlObix9UUCH8imXvU0L3XmasjQ9SVAq0zkwRM/wKF0Dg/v4zB0Oh8OxW4QQDJ0+ix9FdA0N01it0qg+/a5vjsOJlDDWW6LkK8qBYrGWbsv2VqYpYJvq7p05AdXRaGuJrUEA4foGUlFkd9+3NC8K3vtDoe5WyAfq7sNZDOp/4SxRX2tD5cwP3yVvPD4WUGAp1VubatZamX92NEGJh+95agQ/mt6OS9Gzx4KocEWMtCyTWF6240R2H3PfBYx793jH/5B0nQOBRHIuP8H5/BRyfb7Rw93x0ypWSDK/k8yvkHmV9l6j7xdjPP++unvjd0kpj3IpLBou4gRT6yGae7WYa19DrO5xN/yPpOIZUCS3ASElwZcuUv7lr6JePLlxA23Ivv0u9f/pt8ivTh38BTocTVyx2+F4whQqb1uouxFgJcKoXVubSzwiRgjpJ6dKnUlSVqhyjQbTG7r0nmaE5+EPDxNevIh/bAzTaJBc+5Dk+nWyySni9z+gdukS6Z072Oxw2kk5HA7HUcJqTfzOO5jaKuntO8hSGf/YsZ0dZAeq7sLCPGQVD60teSPGl5LAC5FSYUWMtjWMrCGQiEOs6oZmXjcWYyxym6ruLpmQ/e47pDOrLcv/5Ue/wsufPtuyrNT4Ln7etBLPXgDb5gmILViZmCGrtXbOD1w43d6TaA2IZoPEPuTEPSlEA2stwnYgTITc1ntW2JcXeXmSTEZopVpyusM4IcsNtUTTEXr0BAGdZQ+aOd1mzcfPaM3i1CRSefSMjFLp6aFv7MR+PWOHw+FwtAEvCBg8dYZSRwelzi5WZu+RuzGv4wnRVfLpKnn0V0K0tSw3tqHuNgahNSLPQUqs3NkUdo0ivzu2BoXAX9dEqpvuRkZ6TSvz/VJ3S6Ttggfq7sMpRBFSMvbFT7Qs02nG9A/e2db+5fpMy+Ms6CLzCvvrzsDy8YHW3z/OynxrxkUvd2hVRgdoXrHjqH1szABYlqu8EVxmWaxuWDds+ng5O0/JbP7eSasJslW0CtEqJI560bLNblthWDQ3CwlbqIiFUJTDACkVSZKiV7oJZ18tYkTXkMkqd8KvU5fTmx7HsRHZXab0V3+C6L/6MqJ347jUzlWJ/8nvEf+rP8ZUnXLecfC4YrfDcSgorM2xomltLtdYm+9OgebTRYljCAQNpkhZJGaaVT5Ekzz+AE8RQkq8/n7C8+cJTp0Ca0lv3SK+epV8aor42jVqly6RfPghJnm2XhuHw+FoF9Za4vc/IF9eJrl1C6QkOHUKsZOJKZ3sSNUdeyEWQdUqZJqQa0ul1FR1S49EzKNJCwtoUz7Emu4CY/QDx5Htvm6jU7eZ//a1lmVXe45z5af+LFG5dXKhq/prD3622af2eLXbZ+7KzZbHpb5uygPttLazRbFbNXO6n5JityXHiAaSEsJ6SLOd18zi2fs53X6RSblJTrfUhuVGRuBJBsOQjtBDhhtzuq21LM1MYbSmd3SMqNLB8JlziKcoD93hcDieVjp6++jsH6RrYAghFcsz09tS1Doc+8GxnhK+J+gu+Sw1UnK9PXW3MAaM3bG622Cp2RyDJcPiC0lLgrcQTXV3kQku2Ud1t6kU93K2VMTTHFJ1d2V0kJ5zrarNhcs3qd97fBRgmCwgdet82lp193or8w+XfO7VXVliK66KYeZoLSZ2kPBxO1FkX+0jmch5x7/GuJrZsK5iS7ycXWBA92y6r9IJnm6Q+h0YsQ/53YEPUhT/67xokt8EISSlKEB5PkmWk690Ec18Calbm9+NSBkPvsmK+rB91/gM4L1wnPLf/Sr+T75QvB/ryN+8Rf1Xvk526SrWuPsOx8Hh/qo4HIcIKwxW2HXW5t4eVN4BEaMEdJOy2Cx6L1PlCgnz7X8ChxwhBKq7m/DcOcKzZ5FBQDo+QXL5MtnUFMnNm9Ree434/ffRqxu7GB0Oh8OxNemtW+Szs2R372LTjOD0acROi47JyrZV3QB1PyRBklrQjRhPCiIvREoPLWpoYoyqI/AQ9nCrB4yFYi7PIOX2LMz9PCX72mvFzvePIyX/8JW/xE99olVRHyTvEqSFMsPmz4HZgbX8HmgsLFNbN0E2cOFMe4ulRgO2KHYrtemA+yhixWrR9GjLSNuF2Ea+urIZWIMWHgZFTkDmB01rwSKn28+KnG6AoXJIxVeEZbWpfXl1bpakXqdnZJSwVGLk3HnkDnIzHQ6Hw/FkGThxiqBUomd4hDRuUFt8fNHK4dgPIl8x0BHSXfKRQrBYf7zQQOQ5wlhknmOVwu7w/jHHEltNZg2ajXbmhbpbYISHNDm7mnjbBg/V3RFYeWjV3QCjn3sRuW4MN/G9Nx7bKCPYqO5ulIcfvKIvDqZ0+K3q+UtO3b0lVgjeEWOs0mr3PkiN8/beFnu18/xw05vkfe8G+bpGEA/FR/IzPJePITb5WHhZDfkgv9sjjvrad2FCQBQVzc1CQPooxxJBFHj4fkCuLelqiWDyS6isZ91mhungj5jz3nim3FD3igg9wl/8BKW/8/PIUwMbN2ikJL/+Axr/6HfQU4sHf4GOZxJX7HY4Dh22aW1OU+Ut1qi85Y7vvQWCgF5KjGLRNBgnZZk6d1nlBoZn08pMVioEp08Tnj+P7Owim54pit6Tk6R371L/wQ9pvPUW+aL7g+xwOByPI5u5R3rzFtnMNHp5heDECWQU7ewgO1R1ayFJVMCKVQijydOUSlhuZnVLMrmAETGWDGkqh17VbXVRsLXWIrZpYT76R6+TTrZmcP67j/wk9sLzdPe2dq13Vb/24DWw6UGqum+1PPZKId0nR9t7klwXnxkhiwy3pwArEqzIkLYDYT2E6XrsPvdzugu7QEkumzndSuKnKdIWOd31VJPkhr5SkdNdKXuwSaG7vrxEbXmJ7sHhQtF97jx+uMPvtcPhcDieKFIphs6cJSiV6ejtZ3VhnjR+fAavw7EfDHdFBJ6irxKwmmji7NFqagGILEXoHOzO1d0AMYbMWpKm/XMkHjbtWSHQ0sM0l+2/ulshKR9qdbdfKTP0yRdaljXuLbC47p5+M0r1Vjvo3K+Q+Z0AeBI+PdLa4HBpMsSJPrcmF4o3xQlSWhtNT7HAmD2Yucp5tcyb/hVWxUZL6jE9xMez5wls6/iraLJdeZDfnXtlUr+jfRcVBsXYz7+v7n5UBIEg9BV+EKAtZA2FvPs5VH1kw5YL/ltM+3+E2cffA08jarSX0t/4OcJf+iyUgg3rze05Gv/gt0m+/gY2OZy/9xxPD67Y7XAcWgxWmHUqb4WwalfW5oqIEsfw6CBhjpgZUhZZ4Qopy/tw/UcDGUUEx48TXbyI6h9ALywSX75MeucO6eQkjTffov7DH5LNzDywlnU4HA7HQ3S1SnL5A/TSEvnMPfzRUVTX4wtzG9ihqrvhhVgsNRQ6TpBIoiBASZ+cVXKbYGQDQYC0h78Aqo3BWoO1ILahTPam5zDf/nHLsnioj39+9mf4mZeHW7fNJyg1vguA1cOgDyZvOWskLN2ebFnW//wppGrjEMSa4t99Rbd39FXHFoMVqwgbIAiRpre4F3wkBmkytFBYPDIZkiuF9tfkdDcStLasJjmVQNHrB3SWFMIT5OtyupN6nZXZe1S6eyh3dzNw8hSljs59fd4Oh8Ph2B9KHZ30jh6jo68fL4pYnpnCuLGt4wngKcFIVxGfEnqShVr6WEtmmWVgQWiNVd6udJd1CjvzxBokEKxpLNUEgCzU3Xb/CjGFursT7OFXdw98/HmC7tb7vqnvv41O0kfuF6QrqLz1edUrD4uKn19nZT4fK64tPh3xQ/tFLAJ+LI5j1rVuX7TT9NnawVyDTPixf4UZudEhtNt28Ep6gR7TWsyW1hCkVbQKyVVEEva0L79biCK72/eLn/PHibgEgZIEfoCViiwDM/4ycvnMhi2r3nXGg9955uI/94qQAv/V5yn/8lfxXjm9cQNjyb7zPvW/93Xy98cP/Poczw6u2O1wHHIKlbct1N0IsBJh1K6szQWSkAEihtEk1JkgY4UaN6lzF/sMd68J38cfGSH8yEfwR49h6nWSq9dIblwnnZoifu996q+/Tnr3LjZ3nWgOh8MBYJKExttvo1dXScfvonp78QYHd36gHaq6ARp+yIqRGEDXG1TCCCkkUkEm57EixpIjTXnn13PAWFvYlxtrEUI8vrCpDUO//i1Ym3UoBf/s03+enr4OxsZamw06q7+GoJjULlTdB6NzX/jwdkujmJCS/nU5gHtGa0CAVOA/JZNlol4o/G0HwpSQ9vGfYWVzEBIjfLT00MIjD3ykNs2c7rSZ053iScFwFFEJPbxIYpQlX5PTnacpS9OTBKUynQNDdA+N0DUwtJ/P2OFwOBz7TO/IMaJKhZ6hUXSeU53bfxtch2Mz+jtCSoGivxKQ5IbV9DHqbmuReYbMchDsSt1tgZrVGCypNXgIVPN+2AqBFgojVHGufVRcC9O5Tt19OOfgpFKMfeGVlmU6Tpj50XuP3E8A5VqrlXm99NDK/FSXZrTS+vo6K/PHsyTKvC9alcgSeNGOU7YHU5Q1wnLVu8M17w6G1mapAJ+PZec4kQ+3zFMrk+LlDTK/ghF+e/O7w6AodHseZPk2cswFvpKEvk8QBAgk+dQFuPfChrn1WE1zK/g61XyRTNv9jkh/qpCdJaL/4otEf/2nEAMbG6XtYo34f/kOjX/+R5jlw9vw4zi6uGK3w3EkKKzNsaJpbS7XWJvv/EbBo0yJMRQhMTMkzJEwywpXyXm2s6qFlHgDA4QXLhCcPAnGkt64SXztKtn0NPHVq9QuXSK5fh2TuE4/h8Px7GKNIX73XcxqjfTWLWRUwh8b293BdqjqzqQikx5V62GyDGkEURCihEcmqmibY2QdYUOkPfwFUGM0WLDGbkvV3fHHbyLvzrYs0196gd/yL/DTL7WquqVeplL7BgDWdEJ+vn0X/giM1sxfu9OyrOf0MbyonRNatih2K/VwsuOIY8kxooGkVEyGmt7H7iPJEFaTCx+LJCMkCwoLOT9NUbnGzzKqSYa2MFwOKXmKUllhhSVdY19utGZxahKpPHpGRql099B/vM0NCg6Hw+E4cISUDJ85hx+FdA0OUV9ZIV59tsf+jieDEHCsp0ToKzoixUItxTxO3Z2mgEXkGuvtTt2tsdStJseisYSiKSgBtLiv7lZIu49W5kik7WiquwUcYnV354kRuk4fa1k2996HxAuPdoYsr7MyN15EEhb3s0LAF9apu380E+KcjR/PlOjhJv0ty3wML9txvH38zLYgYFrN82P/KvE65bNAcFof44X8OTz70GnLy2tIo0mDzmZ+d//6o+4OKYuCt+8Ddhvq7uZuQuArj1IUUYkC1NJpmPhEIShbg1YrTFd+m0U9yXIjYzXOSTJNrl3lezt4F0Yp//e/iP8zH4dNXN3023eo/8rXSb972bmoOtqKK3Y7HEcIKwxW2HXW5t6uVN4SRcQwIQPkrFJnkoxlqlynwRSWZ/uPjRAC1dNDeO4cwXPPITyf9M7dZq73FMnNm9QuXSK+fBm9ejDWQQ6Hw3GYSC5fJl9cIr19C4QkOHUKIXdxa7kLVXfdj4iNJZUKE8eUwxJKSoSCVCxgRB2LRR0BVTeAMaawrrYW+ZhCvze7SPfvvt6yLBju4F+e/1kqJZ/zz7UWRztW/z3SFtmcNv0EcDA238u3p8jj1kmQgQsbreL2hDGALYrdShWfnyOOFatgFdgy0nYjeFwB36BMjmnmdGcyQrfkdFvCOCbODI3U0BsVOd0dFQ8UZP7DQre1lqWZKYzW9I6OFTndz51DPOYz6XA4HI6jgR9FDJw4Rbmrm6jcwfLsDNq5ljmeAJ2RR3fJp7ccYi0s1R9dqBLGIHKNzLOiYrrLe74UQ2KLfxaImnbmVhSFbi08hDWIfc3u7kJYiaSEOcTqboBjr76MWFuospaJ772BfURzgp/X8NNqy7JG+WEz7mePJYg1E5iJFrxxb2POr2MjH4pBZmhVy1ZIecmOIw5QfrwqG7wZXGFebmx86DfdvJJeoMOUgGKYEWQrICSZ30XuldqX3x1GzfkDH7KMnU6MS+kRRSFhNoYa/xzkrfMQViYsdX2LqrpBnBvqmWY1yVluZNTSnFQbp/p+BMJXhF95ifJ/9wvIs5u4hCUZ6W/+iMavfhN9d6NFvsOxG47+jJDD8cxhm9bmNFXeYo3Ke+dfaZ9OSowhUDSYJmWBmGmqfIgmbvvVH0VURwfhmTOE588jOzrJpqdJPviAbGKS9PYd6j/4AY233yZfXHzSl+pwOBwHQnr7Ntn0DNn4OCZOikK3v8sMrh2qui1FXnfVSKyxyEQT+R6e9MnkIsZmGNlA2ghxQIXdvXDfwtwaixAgxCP+lhtL769/G5GvmRQT0PmXP81vzo/wEx8balWG25TO1X/XPE8A2Yv79CxasdYye+Vmy7LKcD+l3l1kuT8KrQEJQj4VFuZWxFiRIW0HwvoI87iMbItnU4xQGDxyGZArj9z3UA9yumOMsazEGaVA0h8EVCKF9AW5Mi053dW5WZJ6nZ6RUcJSiZFz55Hq8H+HHA6Hw7F9ugaGqHT30j08DAiW7808dh+HYz8Y6ykReILuksdKnJHpRwsuZNbM9zYG6+0++7eBRltLbIsU5LB5761F0ThYqLsPIru7VAxsRGPfzrVXgq4OBl+62LKsNjnL8vW7j9yvtE7dXViZF2OUntDy0f7W5gZnZb5NhOBdcYwVWl+vPupctNPbsPJuH7nQvO/d4KaaxK4rMkeEvJSdZ0T3gwVhDX5aRauAXJWa+d1taHBQslB2+37x3LPdfG8FnvIJ7SD++BcgWTf+EoZGz/eohm9TS3IamSbJDXFmqCea5UZGNS6W587yfFPkcDel/+ZnCP/Sq1De+F034ws0fvWbJL/5I2y8PYW+w7EVrtjtcBxZDFaYdSpvVeR571jl7RMxQkAPKUvUmWqqvK+SMLvhxuVZRUYRwYkTRBcvovr60QsLxFcuk929Qzo+TuPNt6j/6EdkM/ce2enqcDgcR5l8bo7k+g2ymRn00hLBiRPIUml3B9uFqjtRPjmCmvDRSUrkh3hKgdRkdhnTnDCSZpfXdMBYa7Cm+L9Q0G5d7K9cepvw1lTLsr4vn+Xf+S9gpM+nPjLQun3td1Cm2YiVfRw4mImk+uwi8eJKy7KBC6fbexJriiYJTxUjmiNuYW4xGFFD2BBBgDS9j81uVzYDa9HCwwhFjt+S0+0/yOnOUAJGohJRoAjKakNOd315idryEl0DQ4Wi++zz+GG030/b4XA4HE+AwdNn8MOInuERknqN2pJr2nYcPIEvGewI6S75KClYqKWP3F7kOcIYZJ5jlcTuwXmmRpHfHVuDQuAjms2DEiM8pDWwj26HD7O7SxgRH2pnxaGXL+J3tLplTb3+Y3S2dVGqXG9torHKb7GvfnWdlfnlBZ+F2JUotoMRkrfECZJ17k/HWeIkCwd7MQLGvRne8T8kpfXzIJE8n5/kfH4SaUUzv7tO5peb+d397cnvjsJiHkF5u1J3P3gqQhLIbsKpLyFqgxvWZ11vk/f+EIshyw2NVFNLc+L7xe+0UH2vNDJqSU6SGYybFn6AEAL/M2ep/PJX8T59duMG1pJ99zL1//Hr5G/fcXPqjl3j/pI4HEecQuVtC3U3AqzclbW5QBDQQ4ljgKHBRLPwPUGNGxhcd9V9hO/jj44SXryIPzKKrtVJrl4jvXmDdHKK+L33qL/+Oun4OFYfXksqh8Ph2Cl6tUb8/vvo5SXymRm84WFUd/fuD7hDVTdAw4+o5qClRKY5oVJ40icVC2gyjIyRpvTYQuFhwTStuI2xyEeoutXCMt3f+F7LMn+gTP8vfIR/NT7KZy70I/1WFW5X9dcAsFZg00+2/dq3Ym6dqjvoKNN1bHiLrXeJ1oAo7Mt36ypwmBA1sBZhKwhTRtpHN2tIcqTVaBlgkaQiJAubOd1ZhqeLnO5ampMby1AppKQUlU1yupN6nZXZe5S7e6j09DBw8hSlzjar8B0Oh8NxaFCez9CZs4TlMpXuHqrzc2RJ8vgdHY42M9QZEXiK3nJAPdU0sq3nTwRFdrfQGozF7qHR0WCp2RyDJcPgC4lEoKWPbaq71b6qu1Uzu/vwq7ul73Hs1ZdblmW1Bvfe+GDLfTwdEyRLLcvq5ZEHP788lFLyHhb4LcKpu3dAInzeEsfR64rF5+09Bmx1i732j2W5ypvBFZbF6oZ1w6afl7ILRCbEy+tIk5OGXWh5v+C9RzwPfAWBXzRD72kOVuDJiGjuVeTyqQ1r09J1kr7vEEWayFf4QmAtxJkufn+lmiTXheo7KwrfK42MRqrJnOobANEREf3lVyn9338GMbxxHsku14n/+R8R/6/fwSxs/Dw5HI/jaMwCOhyOx1BYm2PFJtbmO+uUU4SUOIZHJwnzxEyTssQKV0hZ2perP6oIpfAGBgjPnyc4eRKb5aQ3bpBcu0Y2NU189Sq1S6+T3r3rit4Oh+PIY9OU+J230aurZHfHUT09+MN7KGDuQtVtEDRUwCoSnRtCJIHvYWVGThUj6wjEYwuFhwljdFHwFmydeW4tvb/+e8h11myjf+UV/qA6xEQS8adebH0vosb38PPbxYP8AtiDKV6mq3WWx1utC/vPn261V98ztpjIkKpokDjyqu4cI2IkFYT1kKbnMXsYlMnQwsOiyGWI9v2HOd3GEDZistxQSzTdoU+n71OueAhPtOR052nK0vQkQalM18AQ3UMjdA1skqnmcDgcjqeKclc33YPDdPYP4nk+yzPTTknlOHCUEox2R3SEHpEvmV9NHmnFLLLC1UboHKu8PRXKciyx1WS2SM0OhcTgYZsqb2k1+6/ulkgijGgcanV315kxOo63jjXm3r5Ksrx1YbW8zso8Lg1iRNGYGyj41HCrkv/SZOiKgTtgRZR4VxxrWSaAl+w4p+z8gVqaA6Qi4x3/GuPq3oZ1HbbEK9kFBnQ3QTPPPfM7yb0Smf+42KZtEEXFuFApSPYu1JLCI1p+BX/+oxtEZFkwzVLX7yC8VQJfUQoUlUARegohINOWRqapJ/qB6ruRaWrNrO/VuFCD5/rZ/rCrs8OU/87PE/yZlwqntnXo9yeo/72vk/7Be9jHRFw4HGtxxW6H4ynCCoMV91Xe963Nd6PyloT0EzGCJqXOBBnL1LhFjTsY9q/D9SgipET19BRF7zNnwPNI79whuXKFfHqK+No1V/R2OBxHGmsMjXffQ1erpLduIcIQ//jxvR10F6ru2A+ItSFVATLT+EriqYBUzqPJsCJBmnLhdHIEMNZimhbm8hEW5pUfvEd0fbxlWc8XT1M5P8i/uDvKR0/34Jdb1c1d1a89+Nmmn2r7tW/F3LXbLfcc0vPoO7vHz8p6mmp4PFlMamzVJHAEsFisqDYbFCOk7Ubw6OK9ZzOMkBjho6VPrgJyb01OdxyDheVGRuhJBsOQUuThB6053UZrFqcmkUrRMzJKpbuH/uMnD+BZOxwOh+Mw0Hf8BGG5TPfIKHmWUp2fe9KX5HgG6a0ElAOPvo6A3FhWkq3nmwQgswyZF/Mqe1F3A8QYMmtJbHG8SCpy6WNRWCH3Wd3tNdXd5UOv7hZCcOzzr8Ca5lVrDJOvvbXlPqX6TKG0vb+9VMSlh5FLnx9rdZOYqStuLB/tBtaD5p7o4kPRarktKRTer9i7BPv4+d0MK+CmN8EH3k1yWuc+PRQv5M/xXD5CkNzP7y6ThN17z+/2/aJg6vtgNei9P2+BJKhdIJz9LA8GT020t8xC1zdI1WyxrRB4ShD5inKoKPkKX0mshTQ31FNNLdUkmSZuFr9Xk5zlemF5nmrzTDZ6CE8R/PTHKf/dX0SdH924QapJ/+ObNP7hb6Nvzx78BTqOJEd3ZsjhcGyBbVqbs4nKe2dfeY8SZcZQRMTcI2GWhDmqXCXD2YlshursJDxzhvD555GlMun4xMOi932l9507rujtcDiOFMnVq+SLC6S374CF4PTprVXI22EXqm6AuhdRzSU5giCHyPOxIkbbelPV7SHs0ckZNrppYW4tYgsLc7VUpfu3vtuyzOstMfR/+ii36hF/vNDDV14ZaVkfpB8QJm8BYPMTYFrX7xc6y1n48E7Lst7njqPabTOuNSBBKPCP+KSYiLEiR9gOhA0QpuORm0ubgTVo4WOQZARkgY8wzZzuNEU1c7oBRsslQl8SlVpzuq21LM1MY7Smd/Q4YbmDoTNnm7nxDofD4XgWkFIxdOYcQVSis2+A2tIiSb3+pC/L8YwhBIz1RoRK0RF6LNUyzCMqPzJNAYvQGuvtTd0NUKewM0+sQQKeCLFwQOruLgRr1d2Hd54o6u1i4GPnW5ZV70yxcnty0+2VyQjj1gzptVbmZ7tzhsqtz/c1Z2W+Y27SzyQb7aAHqPE5e4M+e/Bzt3Nqibf8K9Q2aeA4rod5OTlNOU3I/BJaBjRKA9i9lqjCsMjtFhKy9hX5vXiM6N6fAt362bQqYan7d2l4rfFdAoGSgsCTlAJFOVBEvsITkN+3PE+KyIZEG+LcUE80y42MapzTaKq+n6XitxzoJPrrf5rwv/gionPjXI6ZWqLx//kd4l//PraRbnIEh+MhrtjtcDy1GKwwCCvWqLwVYscqb0XEECGD5NRpMEHGCqt8SJUPSZh1ed6bIEslgpMnW4veV68+VHq/dskVvR0Ox5EgHR8nm5win5jA1OsEp04h9lq83IWqOxeSuvBoSA+hwcPgeT6JnEeLFCvSpqr76GCMxloDls1tvq2l59//AXKdHdvof/YyquTzv909xonhDiq9rbbtnStfe/A6HKSqe/HmOGbd5MLAhdNtPospPjueKkYyR9jC3GIwooawIQIfaXofmTUv0CibY6QPSDIZkYXFd9HPMpTW+GlGPS0s84bLzZzuigLZmtNdnZ8lqdfoGRklKJUYPXcedYRfS4fD4XDsjrBcpu/YcSq9vYSlMsv3ikYoh+MgqYQevZWA3kqABRbrW88xCWsReY7Ms2IMoTZa4O4EC9SsxmBJrcETAiHDB5bmyu7f90HgIUylqe4WWFHF7j3FeN8Y/uQLeOXWYtTka29h8s1fow1W5lE/Whb3rkLAq8da1d0/mg54RGy7YzOE4H0xyg025l+HaD5p7/K8mUEccPW0IRPe8q8yIxc2rOu2HXymcYr+1CMLOjHS23t+d+AXzgOBXyi7TfuaVFTaS2n6JxHpOst1Yah2/TEr/tsYu/n5hBB4UhD6hd15OVD4XjHey3JDI9XU0vyB5XmcFqrvlUah+k4y88jmn6cFIQT+K6cp//Kfxfv8+Y2GdxbyS9eo/8p/IHvjpotdcWyJK3Y7HE85hcr7vrW5ACub1uZyR0Vvnw5KjCHwaDDdVHnfo844y7xHlWvE3EOTPP5gzxAPit7nz69Tek+7orfD4Tj05AsLJNeukc/Oki8sEpw4gSyX93bQFlW32raqu+FH1FJN5vl4uaHkBxhRR9sYI2tFsdDu0QLtALEWjLmv6habFjnLb16hdPlWy7Luz56k44VhGlryG5NDfPWTrZZfKp+i3PjD4hy6D/Rz+/Yc1mKtZe5K67V2jg0RdlbaeyKtgebEZrsV4weMFatFo4PtQJgy8pGuBEVOtxEKg0cmA3LfwyiFn2YoY4jihFwbVpOcrsCj0/MplyTSky053fWVZWpLS3QNDBGWK4ycfR4/OjqOCA6Hw+FoL93DI5Q6u+geGsEay8rsxsxVh2O/Ge2O8JWkp+xTjTOyR+S0yjQtbqa1wbShWU9jqducHEuOxZMhAoGRHtLm7Ke6W5oehPWRtgsrchCH111BBT6jn32xZVm6ssrs21c23b7UmC2aVO8jJI3S0IOHr462zh/Wc8lbs0dnPHdYsEJwXQ7xJ+Ik8SZxSKdZ4NP2FiV7sKpYIwxXvdtc8+5g1n2HAnw+0RjldNxF6nWSeRGZ37X7kwkBUVg0QgsBWXufq9RlSjNfRjaGWlcIiLt+zHL0Grl+vBBMCkGgJKWm5XnkK3whsE3Vdy3VNFJNkmvizFDPclYaRfG7kT79lueiFBD9hc9Q+ps/hxzt2bDeVmOSf/094n/6+5i56sFfoOPQ44rdDsczQWFtjhVrrM1V09p8+xo4iUfECCF9aBIazFDjLgmzxMzSYIIVPmCFq8TMuML3GmQUPSx6lyukE5sUvW/fxuYuD93hcBwOTK1G/N576JUVsukpvKEhVE/P3g/cououbUvVDVBTATUrAQ8vy/E9RSYXMCLGkiPNHovwB8x91ZQ1ZlNVt6zW6PkPf9iyTHWFDP+FjwHwG1NDBB0VBkZaba87q/8G0bRAtNmn2CoHvN1Up2ZJq7WWZQMXzrT5LBZy08zoFkdc1d3MmKeCsAppeh65/f3MSC18tFDNnG6/mdNtipxuY1lpZPhSMBxFRKEiiFRLTnfaqLNyb4Zydw+Vnh4GT52m1LmHiSWHw+FwHHmEEAydPosfRXQNDtFYrdKorjzpy3I8YwSeZKgzpDvy8KRgvrZ1sUpqjTAGqXOQEtuGGJa0aWWe2qIs56kSBoWFpp35/iBQSDPQbNwtY0QdKw7vXFrP86cojwy0LLv35gcbxgFQvG6leK5l2Vor8/6S4UJva4HwkrMy3zWLosLr4gyzbIxF6ibmc/YmI3b5YC9KwLSa58f+VeJ1c8QCwfNJLy/Gx0B1kIRd5GoP738YFuNE34c8b8mMbwfC+kSzn8dbPb1hXdZxk+XO3ydJV7etOhYUqu/AV5SCQvkdeaqo1WtLo2l5fl/13cgeWp6vxoUa/Gm1PFenBin97Z8n+MVPQLDRvUNfnaL+975O+u13sFs4SzieTVyx2+F4hrDCYMV9lfd9a3MPdmBtLhD4dFHmOGXG8OlEkxAzQ43bJM1s74eF78s0mEYT7++TOyI8suj94YdFprcrejscjieMzTIa77yDrq6S3bmD6uzCGx7e+4EfqLprO1J1p9JjVQsyP0JoS9kP0HKV3CYY2UAQIO3RUvkaa7AUndlykwm6nt/8DrLROiEw+pdfRpULtcO/uDvKL74y0tIsIEyVjtpvAWBNCbIX9vEZtLJe1R11d9Ix3N/ekxgDmELV7clm0fvoYbFYUW02HUZI24PYRIVxH0mOtBotAyyCTIRkQbAhp7uaZGhb5HT7nqRU8VpyuvM0ZXFqkqBUpmtgiO6hEboGhrY8r8PhcDieHbwgYPDkaUqdnZQ6uliZvUeeubgyx8Ey1BkR+Iq+SkAj1dTTrYsYMk0RWoOxWK8944AGmtxaYmswwiOQAUbcV3fvX0VJ2rCIs7FlhA0wonpo87uFEIx94ZWWZTbXTL3+4023X29lnoY9LQXNz6+zMn9v3mc5OUrBVIeLTHi8JY5zWQxj1jU9exg+bid5wUwi21wIfhyrssGbwRUW5MZi+1Be4lPxaUp0EUf9GLHLMZ4QRcHb95vq7vb/DRNIgoVX8Bc/tmGdLt1jpf/3qGfz5LuY0xVC4ClB1FR9l3yFryTWQpob6mmh/E4yTdy0QF9ref60qb6FkgQ/+QLlv/tV1AtjGzfIDek3fkz9H/w2+vrMwV+g41ByNGeIHA7HHrBNa3PWqLxlc8J1Z78SJAEBvc3C93F8ejBkxNyjxh1iZkiYo8EkK1xmhQ9oMEXO4bVlOii2KnpnrujtcDieMNbaB4ru9PZthB/gnziBaINi4qGqO92RqrvuhdQyjfZCvCwjUJJM3Fd1a6Rus1X2PlNYmJtC1S1ArBvQl96+Rvnd6y3Luj45RueLhWX5D5c6GdfdnD7T27JN5+r/gbSN4hzZK/CIAmo7iZerrE7Ntizrv3C6PZ+ZtWgNyKJR4ihbmIsYKwzCdiJtgDAb1RcPKezLtfCwSHIZkYVFnuXanO44MzRSw1CpmdPdoRBrcrqN1ixOTSKVomdklHJXN/3HTx7UM3Y4HA7HEaCjr5+OvgG6BocQUrE8M+1yMR0HipRwrKdEOfAoBYqFWrLlZ1BkGcJapM6xnmpbKbpOjqYoeCN8lCyiXuQ+F5+l6USYEsJ2NvO7Vw5tfndpoJf+F862LFu+Mc7qxMaCU9SYQ5g1RUchaJQfNlF/YjghVA+fp7GC7085dfeeEIK7oo8fiNPU2GgLP8Yyn7M36bAHK0rKheY97wa31OSGz3bZ+LySnGXIDBNHA7v/5IdBMcfgeZDl7Ef1VyAIqucJZz+zYR7dBivUBn+fupkmTmKM2d35BQIlBYEnKTWzviNf4QnIm5bn9VTTyDSJNsT5Q9X3SpzTeIpU37Kvg+i//DLR//UnEN0b3fzszDKNf/wt4q9dwq46od2zjit2OxzPLKY50SrWqLwVYgcq77VIfAJ6KDHWLHz3YtHEzFJvFr5j5mgwRZWrLPMBDSbJqR3aG/iDYH3RO5ucXFf0vkR665YrejscjgMjuXaNbH6e9PYd0Br/9GmE2mgdtWN2qeq2wLIISL0IrKBsJVqtoG2GlXWEDZG04foOEGuLrmvbzOteazUuaw16/o/vtGyvOgKGf+lhPt7/emeMr7w4DGvtz21GR/XXm8f3IHt5H59BK+tV3Sr06T29Sff1nrBFo4QnixFMOz6TTwCLwYga0oYIPITpQ2xpNW/xbDOnW/jk0if1ggc53YV9eYIxlpU4oyNQdPs+pbLC8x/mdFtrWZqZxmhN7+gYYbmD4efOtb8ZweFwOBxHnsGTpwlKJXqGR0jjBrXFhSd9SY5njJ6yTyX06K8E5MZSjTefCxE0C955DhZsm+JtDFC3OQZLgkQJDyECpNn/ORlp+pv53d2FsltstAY/LAx/+mOosLWQOvG9N7HrstYFllL9XsuytVbmkVcUvNfy2mT4VBTpnjRVEfF9cYYJujesq5DyWXuLE3ZhXwrCWyLgrjfDu/51MlqV1wrB+fwEz5nnyfzeLQ7wGKQsCt6+TxGBtX8OJV7jONHMl0Cvm9fwEuLhPyLx7xLHdfIs23PjmBCF5XnoF3bn5UAReBIBZE2Vdy0trM3T3BCvUX2vJjlJZjBH+EslhMD7+EnK/8NX8b90cVPRRP7D69R+5etkP7juGvWeYVyx2+F4xilU3vetzQVY2bQ2l7t2aSoK392UOEaZEwT0YTEkzFHjDg2mm1bnU1S5xgrvU2eCjNVntvD9oOj9/PMPi96XL5NNzxBfv+6K3g6H40DIJibIxifIJycx9TrBqVPIYGM3+K5IVsDkO1Z1x17Aaq7Jgwoiy/E9SMUiRjSwWJQptef6DhBjDGAxxiLXWXF3f/2PUKuNlmXDv/QiXmcxiJ5Lff5goZ+PX2y1CK/Uv4Vn5osH2UfBHkyGeZ6kLN4cb1nWf+4k0mtzMVo3//4pr+jUP6KFWitWi/srW0GaDqTduulD2SJrTgsPgySTIbnvo7Ic1Sx0C2NZbmR4AkaiEkEgidbldFfnZ0nqNXpGRglKZUbPnUcd4bxzh8PhcOwfUimGzpwlKJXp6O2jujDP7O1b1BYX0G4s6jggxnpL+ErSGXks1jP0FupImRa53kLnWM9r22xSjqVhNSmWHFAqQlBEy+wnAonSgwjrIakU451Dmt/tRSEjn/l4y7JkcYW59z7csG253qr4zoIuMu/hWGW9lfnEqsed6tFsbD1saCF5Xx7jHXGMfF0ZSGK5aGd4yY7j24P9/b4kq7wRXGFlk4aOEdPPC+KTKNWzu4OHEQjZVHdn7GcEgUr7KU1/GZF1tq6QmmTgdeLyVZI0JUni5hxAe5BC4CvZankuBbap+q6lmkaqSXJNnBnqWc5Koyh+19Oja3kuIp/wz32K0n/7FeSJvo0b1BOSX7tE43/+FmbmgPPpHYcCV+x2OBzctzbHijXW5qppbb63yWSJh08XJUYpc5KQ4o9Rwjw17tJgioR5YqZY5cNm4fsuGVUsB5shcxhoKXp3dK4pek+7orfD4dhX8sVF4qtXyefnyecX8MfGkJU22YM/UHXXd6TqBqjKkMT6GCEpG4HxlzA2w8gG0pYQR0zVDWCMLga76yzMo/dvUHnzSsu2lY+P0vXJhyrpf3F3lM9fHAK/9Xl3Vr8GFI35Nv3kPl59KwvX77YqOISg//nT7T9RborPDuLIWphbUqxIkLaCsB7CbFRZ3KfI6c4x0gckmYzW5HTn+GmGp4sO/tzYIqdbCSoVDyMf5nTXV5apLS3RNTBIWK4wcvZ5/Cg6oGfscDgcjqNIqaOT3tFjdPYP0HfsOH4YFkXvWzdYnJokrq061ZRjXykHRW53b7loul2sp5tuJ6xFZjkyz4tGyDY6/yQYMmupI7EIPFlC2v3P0RYESNuLsCWEDZv53Ydz/qfv4hlKA60K3Jk/eY+s3molHCYLSN1a0F6r7j7fm9Mftb62lyadlXk7mRbdvC7OsMzGccAQq3zO3qTXHqyTQCoy3vavMaHubVjXYct8RH6eTnls5wdWEgIf/KAYHGf7+/2RukJp+k8h48HWFQLy/ndpdL9Bnqc04gZplrb97+dDy3NFKSiU35GvithyYwvL86RpeZ6bovjdtDyvxoUa/KhZnqvj/ZT+n18h+HOfgnDj3IC5fo/63/8tkm+8hd3n999xuHDFbofD8QArDFbcV3nftzb3YJfW5uuRqGbhe4QKJwnpRyBJWWgWviebGd8zrHKdZd6nxh0ylp+5wreMIoITJwp7845OssmpzYve2f5Z8jgcjmcH02gQv/seurpKNjmBNzCA17dJp+xu2aWq2wjBklXYsIw1EIqM3K5gRB0AeRRV3dZiTGFlLtdYmItGQu+//4PWjUsBo3/pxQd207kV/O8TI3zx48Mtm0WN1wmym8WD/CzYNr53j8Aaw/zVWy3Lek6O4pfbXEw1GjDFBKaShT3dEcNisXIVYX0EJaTtfkSjhkGapn05HpkMScMAK9bmdKekuaGWaAaigJKnKHd4CAVp0748bdRZmb1HuaubSk8vgydPU+rsOtDn7XA4HI6jSd+x4wydOUv30Ag9I6MMnX6OzoEhdJaxODXJ7O2bVOdnydPNi5AOx14Z7YnwlKS34lONc9J88zkhmaVFQUtrTJuda+rkaCGK/G7p4wtv39XdcD+/u4ywHWBlM7/78M2JCSk59oVXWpaZNGP6+2+3bsdGdXejPPxgmlEK+Nw6dff3p0K2eMsdu6QhAn4oTnOLjWPFiJxP2jucNbOIA6x6WmG54U3wgXcTTWvDg4fHWfUpRuVHYMvYpy0Iw2LMqPZf3Q0gbEB07wt4qyc3rDPdt2gMXCLXMVmaEscNtN6/xpn7lueRr6gEXqH6VsX4Oc0N9bRQfifN4ndjjeV5LSl+1x6FwreQkuBLFyn/8ldRL2583dGG7NvvUv+ffov86tTBX6DjiXD0ZoocDsc+Y5vW5qxRecumyrt9vzIECp9OIoYpc4KIQQSKlEXq3KXOBClzxMywyk2WeY8at0mfscK3DMNHF71ff53k5k1X9HY4HLvG5jmNt9/BrK6S3bmN7OjEGx1t3wn2oOquqYAkFyQqINIW6y2iyTAyQZryI7KODy9Ga8BirG1Rdff81ndRK63d9P1//uP4PQ8L+r8728eJsSFEubV7uaup6gaw2af358I3YXl8ZoNyY+DCmfafSGtAFp+fI6rqRjSwGITtQNgAYTq23FTZHIRECx8tPVIv3JDTjYXlRkbZV/QGAVGkCIKHOd15lrE4PUUQlegaHKZ7cJiuwaEDfMIOh8PhOOp09g0wduEjnPzoS/SNnaBrcIiBk6cYOHGKqNJBfXmF2Tu3mB+/S31lGdtGi1aHw1eSka6IrsjDV5L52hbqbq0RWhfqbimxbWyKtEDNajLhk9ocKQIO6k5Umj6EDZG2C4sponAOIZWRAXrPn2pZtnj1FrXpuZZlpfp0y+Pcr5D5D62fXx1tLXavZpJ3547off8hxgrBNTnMG+IE6brGWwE8xxyftLeJ7MHOMc6pJd70r1AXjQ3rhtXznFOv4rEDtb/vFU5ovgfWNMeT+4tAEix8En/phQ3rbGWWZOSPSc0KWmviOCZN26/y3oxC9S0p+UXWd+QrPAF50/K8ft/yXBeq71qasxJn5PoIVLwB2V2m9Fd/guiv/SSib6MzoZ2rEv+T3yP+V3+MqW78fDmeLlyx2+FwbIHBCoOwYo3KWyHapPJei0Dh0dEsfJ8kYhCJT8oydcapM9G0Op+hxk2WeZcat0hZwrL/NyyHgS2L3lNTJDduuKK3w+HYFdZa4vffR68sk9y6BcojOHnygZK4LexS1Q2wiI/xyxgkgY3JqWFkHYFE2qOn6oYir9taAxaELF6L8OodKj98v2U7feE4g5873rLsn90e4yuvjLQs89OrhMmfAGD1COgxDoq5yzdbHpf7eygP9LT5LBaMAU8WI5d2Z4EfABaNEXWkjRB4CNO3ZaOGJENaTS58LJJUROS+h8of5nRLW+R0C2C0VMLzJaWS9yCn2xjD4tQEUkp6RkYpd3XTf+LUpudzOBwOh+Nx+FFE/9gJTn38ZUbOnqdneJSuwWGGTj9Hz/AIQgiW781w79YNlu9Nk8ZuMtnRHgY6QkJP0d8RFDm0yeaqapllCGPAWGyb1d0aSw1DZgWptXh4yAMQYBT53f0I6yNtBSsS7CaFwMPAyGdfRPqtr/vk995saYAJ0hVUXm/Zpl55OK4ZrhjO9rTOZ73mrMz3jXnRwSXxHPNsLA720uBz9gaDduVAr6khE970r3JPLmxY1yEHuOD9KSpiBw5mUVQou6WC9GDmSgWCYOUi4dynNwrGohWy498jYY5cZ2TZ/qu8N1xfU/Ud+oXdeTlQhJ4sLM9zQyPT1FNDri2rSZHtfVTwPjJG+e9+Ff8nP1rYRawjf/MW9V/5Otmlq1hzNAr5jp3jit0Oh+ORFCrv+9bmAqxsWpvLfXGBEchm4XuoqfgeQhKQsUydCeqMP7A6r3GLZd5jlZukLGAOaY5RO9lQ9J6aflj0vu6K3g6HY2ekN26Qzc2R3b0LeU5w+jSijVl3e1F1Z1KxakNSL8C3AuQc+n7msSkfQU134bBojMVYg5BFM5lIUnr/3e+1bGcCn8G//EpL08H1eomlaAS/t7XI31X92oPXwqafYscWb7ukPr9EfW6xZdnAxf1SddvCwtzzdtQscViwogZWgC0jTQfSBltsaVAmRzdzulMZkYU+wlq8LMfLipzuelpYzh2rFDndHR0Kq4qcbmstS9NTmFzTOzpGWO5g+Llz7W1gcTgcDscziRCCSk8vI2ef59SLrzBw4hRdA8P0jR1n8NQZyt29JLUG8+N3mb1zi9rSYtPRxuHYHVLCaE/pgSJxsb65ElJkWZHfnedYpbBtvu9JsTSEIMNggFAcTPOlICgU3pSQNsKI2qHM7/bLJYY/9dGWZY25RRbWNMYKoFxrtTKvl4ZbphU/v87K/O3ZgGrq7mH3i1R4vCFOcE0Mbmjf8DG8bCe4aKaQ9uAKnkYYrni3+dC7i1k36eyLiHPq8wzKs9s7mO8/zO82GvTBfXe8+gmie18EvW7c58XoE5fIwinSNCXPc+I4JkniA1F5r0cKgackka8oh4qSr5DwIMf7ftb3UbA1BxCBR/iLr1D6Oz+PPDWwcYNGSvLrP6Dxj34HPbW4cb3jyOOK3Q6HYxsU1uZYscbaXD20Nt+nP3pF4btCxGBT8T2MIiKjSoNJ6twlblqd17jDCu+zyg0S5p/6wndL0buza/Oi9w1X9HY4HFuTTU+T3r5DPjWFrq7inzyJDNvcPR8v71rVvUSAxSeTHp6pYUUDo2qFMtYezS7/+xbm1thmXjd0f/M1vMVqy3aNX3iV4cHWSbR/cmuM/+STx1qWqXyGcv33AbCmC/Lz+3fx65i70qrq9ksR3SdGtth6D+S6aJRAFjZ0RwxLUjRo2ArCegjTs+WWnk0f5HTnMiALQqwQ+GmGMoYgScm0YTXJ6QsDSkpRKiukEg9yuqvzsyT1Gj0jowSlMqPnzqParHByOBwOh8PzfXpGRjn5sRcZu/BRekeO0T04xODpM/QdO44fhFTn57h38zqLU5MktdoTmch3HH16yj6dJY++SkBuLMuNjXM9AhBpitA5WItV7b/3WUWQY0kwSGsPrOAtbQVpOsB2IKzCysOZ3z3w0ecJe7palk3/8B3y+GEBu7zOytx4EUnY++Dxp4ZTfPnw94S2gh9MH81x35FBCG6JAX4oTtPYxKT/BEt8xt6iYpNNdt6va4IpNcfb/lVi0TqnKYRkTH2U0+rTSLbxPb+v7hYSsoOdJ1bJAKWZLyOydep5qTGjP8J03ybLMvK8KHo34gb5E5zDFQiUFESBxJOCOC9yve+7ahylP+FqtJfS3/g5wl/6LJQ2Npqb23M0/sFvk3z9DewWjiGOo4krdjscjm1jhcGK+yrvNdbm1oN9sDdfi0DgUSZkgDInKTGCokTOKg2mqHOnWfi+R527LPMeVa6TMIfh6S34yjAkOH6c8MIFZNe6oveNG9QuXXJFb4fDsQG9vEx8+TJ6YZ58dg7/2DFUZ+fjd9zRSZLi3y5U3RZYFmVS30NIibQzaJFiyY6sqhtAG4O1FmuLgXpwc4KO195u2SZ+boyBL55sWVbTiu/Vj9Mx0prz3Ln6bxHNOA+bfpKDurXP6jHLd6ZalvWfP4VoY0YiUHTgYwpVt2pmdh8hLBYrawjrI4iQpqe4f9oEZTOwFi08jFAkKkJ7Cj9r5nQ3YrCw0siIlGQgCghCSRSpBznd9ZVlaktLdA0MEpYrDD93Dj+KDvhZOxwOh+NZI+roYOj0c5x66RWGTj9H9+AwPSOjDJ1+js6BQXSWsTA1weztm1Tn58jTzbOXHY6tONZTIvAkXZHPUiNFb2JBK7OsiAnSGut57Z+eEoIVBDmQ2gwP8A5K4W16kDZA2E6sPZz53UJJjn3hlZZlOk6Z+dF7Dx77eQ0/XdfkWx5+8HPZt7w81Pr74ZKzMj8QVkSJ18UZpunasK6ThM/am4zZRQ6y4lmVdd7wLzOnNtr398hRLng/QbTJ9bYQ+IWlte8Xym5zsI0iMu+gNPNlZNzfukKAHnwXhi6jjSZNE3SWkaQpcRxjnqDNtqCwOY88SW4scWbItKF6hHK8oYiM8199nvIvfxXvE6c3bmAs2Xfep/73vk7+/viBX59jf3DFbofDsUPsOmtz+UDxXdib72/RG5rdZpSahe8TlBhFUXlQ+K5xh4RZEu5RZ7xZ+L5GzCyGp3NgLYNgi6L3tCt6OxyOFkwc03jnXUy1Sjo5ierrw+vvf/yOO2UPqu6G8MnwyVSEtDWsiDGyhsB/hAX04cZaMNYUFuYCZJbT+2+/3bKN8T2Wf+lPMxbUWpb/xuQQf/YTx1teQ2FqdKz+x+axQ8g+vv9Posn8tdstOVdCSfrOnXzEHrtEG0AUHpb+RqXBoUfUsdYgbAfChEjbselmkhxpNVoGRU63jMiDZk63NoRJkdO9kmQYC6PlElIJKhX/QU532qizMnuPclc3lZ5eBk+eptzVfcBP2OFwOBzPMlIqugYGGbv4Aic/+hJ9x07QNTDEwMlTDJw4RVjpoL68zOydW8xP3KVRXWnJ9HU4tqLkKwY6QnrKPlIIFmob53UKG/MMmeUgwLYzmqlJJnwaNicXAm0SfCGRBzC1LpBIPYCwAdJ2Htr87s7jw3SfOd6ybP796zTmlx48Lq1TdxdW5g/HOOutzG+veEysHq2G16NKLhTviGO8J0bR69rLFZYX7DQftxN49uDiKbTIec+7xvVwGbtusjkUHZz3vkivOLH1AYSAKCwcwoSA7ODnhIUJie59EVXbeJ159w3ssbdAGrI8J8tSdJ7TiOtkWfZEHVHu25sba6lnhkxbakcsxxtAdpaI/vMvEv3XP4UY2CjwsIs14v/lOzT++R9hlutP4Aod7cQVux2O9eR1yJKmmsixNZsUvZHrit77r70rCt8RIf0PCt8eHWgaNJheU/iepcE4y7xPlavEzKA5QBueA2JD0Xt6s6L3DVf0djieUazWxO+8g6mtkt6+gyyV8Y8de/yOOyWPd63qBlikgpYS7XkIfQ9EgiVHmnL7r/WAsNaABWssQkq6vvUD/Pnllm1Wfu5VhoZ9fGHX7Af/YvoUIydbC5cdq/8BaZtF8fRF4GCaAIzWzH94p2VZ75njeGG7z2+LezGliokJ72hNclk0RjSQlBB4SNO7xZYGaTK08LAoMhmShkFrTneuiTNDnBpGyyU8KenoVNDM6c6zjMXpKYKoRNfgMN2Dw3QNDh3o83U4HA6HYy1+FNF//ASnXnyFkbPn6RkaoXtwmKHTz9EzPIJAsDQzzb1bN1i+N0Max0/6kh2HnOGuCF9JeisBq0lOkm2cs5NpCtimunsfGiWFIBY+sTXkaKzJCOTBxMUI/GZ+d4i0pWZ+9+Gb1xl99SXE2vt2a5n44zceFO3K9dbcbqt84uhh4/UL/RndYWsxzam7DxAhmBQ9fF+cocrG132EKp+zN+m2B1cUlGjuqEneKM+RrYuslMLjlPcKx9WLWzpoEYYPm6fzHA4wg/w+AkU4/yn85Ysb1unyFHrsdbxIY60hzRJ0npOmSVPl/eTqE0oKymtyvDNz9HK87+OdH6X83/8i/s98vHCNW4d++w71X/k66Xcvu0a8I4wrdjsca7EGTEYxG52DPnydkoePtUXv+5neD4ve4oCK3rC28N3XLHyP4dOJJqHRzPVOmCVmlgaTrPABK1xpFr6frsH1o4veNx8WvZ2FnMPxzGCtJX7/A/LlZZJbt0BKglP7YD0NkKzsWtWtrWRVRWReiKWGMjWMrCNsiLRHUN3b5EFet7UVTSOBAAEAAElEQVREd2fo+O6bLeuTkyOsfuFFTvit1n4/Wu7i1Y+cwqwdkNmcztVfL360Ept9Yr8v/wFLtybRSevfjoHzp9t/oubrhaeKfzv4DB0GrFgt7n9sGWk6EVs0IyibgZAY4aGlTxqUsLI1p1sby0qc0RP6VDxFqSzxPEnqF04Bi1MTSCnpGRml3NVN/4lTB/xsHQ6Hw+HYHCEElZ5eRs6d59SLrzBw4hRdA8P0jR1n8NQZyt29JLU68+N3mL1zi9rSYvOeyeFoxVOC0e6IzlAReJL5WrrBUlkYg9AakecgBXYfxjm5CEisJsWiTYzFEsqDGaPI5n0ltnJo87uDzgpDL7cW9OrTcyw1m2U9HRMkS63ryyMPfpYCPjfaKkx5fSrkiIlJjzw1EfIDcZo7bGzYLZHxKXub03buwGzNPR2zJJd5vXOGFbGx0D4gT/O890UCNmmOFwLCoOkUJuAJiX8EgmD5BYL5T26YJzfhEsnoH+FVEqRU5PdV3jqn0YhJ0/SJqbyFWJPjnR3dHG8A4SvCr7xE+b/7BdTZ4Y0bJBnpb/6Ixq9+E313/uAv0LFnXLHb4VjL/d/S1oCxoFPIG+y7L/dTgV2T6X2/6C3gCRS976MICOilzHHKjOHThSYl5h41bhNzj4Q5GkywwmVWuEyDaTRPT5PD/aJ3tKHoPVUUvV9/3RW9HY5nhPTmLfLZWbK7d7FpRnD6NMLbByXCHlXdy6KCQZJ5PsLMg0ywmCOt6oamhbkxoDV9v/4HiDUjQ6ski7/00/R4GZ2ydfD9j2+f5PnzrTbz5frv4+l7xYP8Itg2561vgbWWuSs3W5Z1jAwQ9ezD+XNddOBz9CzMC2vJFGk7ENZDmM3txKXNENaQCx+LJFGlIqc7zZH2YU73ciMjlILBKEQFknLJI/OLRsPlmSlMrukdHSMsdzD83DnEEWsMcDgcDsezgef79IyMcvJjL3Lswgv0jhyja3CQwdNn6Bsdww9CqvNz3Lt1g8WpSZJa7YlauDoOH/0dIZHv0V8JSHLDarq5uluYYk7P7sdYRwhyGVK3Go1B6wYCgS8OSOFtupEmRNgurLVYUd1g7/ykGXzpIkFXpWXZ1Os/RqfFOKe8zso8Lg1i1uSfv7rOynw5kXywcLTGA08DRkiuyBHeEsfJ1pWQJPC8neUT9g6hPZjisZ+tEouMH3TMMCFnN6wvix7Oez9Bl9ikiBmGRdHb94pit843bnNA+LVTRPe+CKb1M229Bo3hP0R0LBD4ARZIsxStM7IsJY4b6CfUDHY/xzs84jne95HD3UT/zU8T/mefh8rG+SozvkDjV79J8ps/wsaHz0HDsTWu2O1wbIXVRbHbFbx3yP2it3lQ9BYbit7ywF9O+aDwPUaZ4/j0YMmbhe87xMwQM9dUfF/5/7P3p0GSnIl5Jvh8n19xR95X3agC0A2g0ei7m002m6J4iBQlUkMdoxlpd3RwKI6t2dqare2flWz+jsZs98eaSdSs7a6NRsNbGlEcUS1e3c1u9gmgge7GjbpQd1VWHnG6+3ftD488orIKlVWVkRlZ+B4zGCrcwz08MjM83L/3e9+XFm/Q5yqax6OvQ+wQvW9sE73PedHb43nMUTdukl+4gLpxHbPeIj52DFkqjebFHsHVDQEtUcKECXnQIzBdnOwhXYLkcMVYb6cQuoso88mvvEx0c2VofeunPoOen+JY1BlafiuPaSw+hYmG33uj/Vub/3b5J0d34HfQvXmbdG3YeT7z9Mm9fyFnAQtBWESMjaBzcVQ4LE50EC4qYibtxF0j9QSGwGmsjABJFlRQmz3dhiQterq7mcZYV/R0S2hUw82e7vbtZdJul4mFReJyhcUzTxGMYlDX4/F4PJ49plyrM3fyCU4+/3HmTp6iObfAxMIicyefoD41g1GKlWtXuHXxPO3by2hfw+WhuK04MlGiFAXUkoCVbo69092tNcI6pNa4IMCNYBKgFgkOQd9pcAplFYEICMTor1kFEmlnEC4a9HfnMGb93TIMWPzcC0PLdC/l5suvA1Du3RiKknYyIC3PbD4+UjOcaAyLkd/wUeYHxi1R55viCVbv4pqepsdn3XlmXOcuW+4tAkect7Ay4K3KGm+GFzB39IeHIuaJ8DMsyDviwqUs3N1xXNxjpimYg/teCbJZyte/iNB3/EylJp39Brp+kTiKCYMQbQx5nmO0IU1T8iw7sIlg0UaPtx30eNvD2eMNhWM9+uQTVP9vf43w06d3PsE51NfepPfP/wD9/ff85LtDghe7PZ57ISgG621efAHqPoxZPNC4syF6s0P0DhAuPBDRG0ASETNBmSUqHCNmEocl4xY93iPl+kD4vk6bt1nndXpcQdMZuxmzD8p20TtoNgei91tbovc3v0l29qwXvT2exwjTbpO9+QZmbQ194ybR4iJBozGaF3tEV3dqS/SDiCwUWNcmoHAqHHpXt7GAI7xyi+ZXXx5alx+Zpf2Fj5MIzVwwPMHqX19a5BPPDncvJ+mLxOodAJw+Dnb/upmX37ow9DiuV6kvjeD1jQFEMShx2MRb0cc5h3A1hC0hXfUuT7IEVmFFgCUkl/Fde7pzbenmhvlyiUhKqrUQQtCBo9dap7u2SmN6lqRSZf6JM0SjmsDi8Xg8Hs+IkEFAY2aOIx96hmPPPs/U0lEas3PMHD/B9NHjJJUqvfV1bl08z8qVy/TbLd+l+QGnXo5olCMmqwnWOdb7w4KVAKTKEUaDG4272w3c3UoEZCbFkWMwRCIsxr1GjCBE2ulBf3dl0N89XmM4jRNL1I8tDC1b/sE7pKstAqtI0uHJv9ujzAF+5A539/duxvSUTy86KDIR8aI4zlkxs2NUNMbwMXeJp+wNxIj7sKUzRKqDDkpcj3u8Er9JehehfSF4itPB5wi3946Xy4XYXUoGgnd2YJHmAFLXKV//CWQ2NbxCOPLp75E3X0MGAXEUI0Th8tZaobQiTftofTDu9EAKyvGgxzs/3D3eAKKaUPrbn6P8az+FmN+ZyObWe6T/85+T/n+/gl0Z/aQOz6PhxW6P554ICGIveO8BG6K3Y7voLQ5c9AaQhEQ0KbM4EL6ncDgylunyHn2uk7FMynXavEuL1+lxGcX4RUU9CCKOiY4cubvoff68F709nscE0+nS//73MZ0O+eVLBJOThLOzo3vBR3J1h6zJGCFC+kFKZDpY2Ufa8l2dsYcJaw1OKWb+3ZcRdlt8uSziywkCjoQd5LYfl7KCN6PnMJXheLNG+ze3ts8/NfJj3yBrd2ldvjG0bOapkyOIzHaF2B0MeroPkdjt0FjRR1JGuBBpd3bcAQSuGJgwIsKKgDyu4KQc6um2g/jyRhxRj0LisiSOi57uPO3TunWTcr1BdXKSmWMnqDTuHpXu8Xg8Hs9hIS6VmT56nBMfeYGF008xMb9Ac26B2ZOnmJhbwDlYu3GdmxfOsX7rBipLD/qQPQfEkYkScSholiPW+wp1h6tQKAUOhDa4IBzJyM2GuzsXYE2KsgqHJd63/u4y0jbAVRAuwsn2WPV3CyFY+pGPIbb1pjtrufqN7+Gc2xllXprGbPvZfXohIxBbvzltBS/eiEd/4J57IwTnxCwvihOk7LxHO8EKn3YXqbjRjiOGJiMwGSqq0Q0Mr0RvsGqv7HheXc7yVPgFqmJq8/ipVbcE7zCCPAN1cOOewiaUbv4YQffIjnWq+TbZ9HdAOqIoJgxDrDXkeYbWiizLSNMUa/d/bFoKQSmSBIMe7/wQ93hvEJyep/J/+Tniv/IChDtTOszrV+j9j3+A+9pl3CF0sn9QODyjRx7PQSBDQBQutc3L434xgH/IB94PBjuo7ZYIJ4pKb2cRLgAhi0gQYdiHibB3RRIiaRDRwGIw9NB0ybhNxm0CSoRUMfTJWEYQEtMkYoKQ6qEUYzZE73BuDn3zJurGTfTybcKZaaxSqMuXiY4eJT52DBH7GwuP5zChl5dJX3+9ELrPX0CWykRHdt5E7d0LPpqr25HQlgl56NCiT+zWQAikK4/mePcJ68BaqH31ZZJrt4fWtX/ik6ilWQSOo+HwLOEv357m8x9ZGhqci/KzlNLvAODMNJiTIz76LW6/fXHosYxCJp84uvcvZA3gCrE7CBiaATDmONEBJ8BVkK6BYOdgp0QjnUHLYoA0DSuYMCDMFdI5kn6KGAjdoRDMlxNEBLVKhAoNWitWr18lSso0Z+dpzM7TnLtLL53H4/F4PIcUISXViUmqE5PoPKe9skx7+RblRgOdK/rtdXqtFr31daI4odxoUK43kIeo9sTzaCRRwEw1wRhHO9OsdnPmGlsJN8I5pFYgBCYMcWGI2GMXpBUSI2MElsz0iGVCZgWJjIllRG5H7xgVtokkw0qHZRVEC1xzX9zluyGZqDPz/FPceuXNzWWdyzdoXbhK/YmQVWuK+0YAIemX56h1C9GyFjuen8353s2te8pvXE34wtFhx7dn/1kTFb7FKZ5x15hj+B62Qcpn3HneZIFrYnSTcSPVJpOTZHED3CpvBec4qlc4Ip9FiK2x2ViUORP8CFft69yy54qFtSr0JFCMS5PnxZD/AY15CheQ3P40Sr+Gar49tM5Ur5CGfUq3PktAiUAGKK1QSiOlBReRWkMcxQRhOIKJ6O9z3EJQigJyY1HaYpSFENqpopaEyEN0H7+BCAPiv/wc4QsnyP7tdzBvXxt+Qm7gP1/AvrqM+Vu+WmEcOXzKjMczYiySPKzgNi4ONwbsrSkG8Y0G3cM7vB+FDae3Gzi95VbUuQ3BBgdekS4JiKhTZoEqx0mYQSDJWaHLJfpcJWeZPjfocJZ1XqfLeyjWx2o27W4RUVQ4vT/0IYKJCdSNm1ud3htO73ffxXqnt8dzKMjfe4/+93+AXlkhf/csIoqIT5wYmlm/5zySqzuibYvv227UJ7B9hOgR2PLYDNY8LM4Ywhu3mfizF4eWq4VpWn+pcGbPBT0SOfzd8e/bz+ImhmOp6+3f3vxpFF3d+/OzMUqxcvbS0LKp08cIohHMm9WmiC8XEqL9ccbsBU5kOKGQroZwIcLerSqgiC83IsQhyYMyKo4IjCHc1tPdU0WE+VKljJDQqEWY0KKFZfXaFaSUTC4uUmlOMHPsxL6/V4/H4/F49oswjplcWOL4cx9l6elnmFxcojE7x9zJJ5haPEIQRbRvL3PzwjnWrl8j63V9r+YHhLlGiTgMmKrEdPPCVbgdmeeAQxiDC0fj7lYDd7cVIUq3sFiUU0gE4b70d4s7+rs1iN79N9xH5j7+YaLq8OTlq998BVRGOV0eWn6/KPOzaxFv3Pa+vXFAiZBXxVHeEPOYO+5JQyzPuas8a68S3NGpvVcIIM5bOCHRUQ0V17gmb/CO+QtyN9xhL4TkSPAcJ4NPIjd8n5UylEsQJ4XIrfLC5X1ACATx+nPEtz/GwCW2iU1W6C98BRu2QAiiKCaKQpyz5CpDa02W52RZij2Amo84kCR39Hi308PZ472BnKlT+pW/RPJf/yiifpeqsOsd+v+v/8SN/+Gf7//Bed4X/w3h8dzBWnmeXlRC2JxAlCjpDkIEEJZAZ2BSoAT0IKzg54w8Cg4nHAzizREMBHAHThTrhAVxsDerYiB8R9Rx2E3Hd84ajlUk8abjO2dl8PwGEU0iGofK8S2iiGhpiXB2Fn3r1sDpvUw4M1M4va9cITpyhOj4caR3ens8Y4ezluztt1FXr6Fv3kBdv0EwMUF09Ohohe5HdHUjEloiJhc5mdQkZg2BRBxyVzeA0Zrp3/0TxLabPScEK7/8lzfjsY5FwzPiz/YqfPyZJ4aWBWaZau9Piu1tFfSHR3zkW6yeu4zd7oYRRYT5nuNs8V8YFY7uu8SHjSMOhxNdhIuK7kQ7eZfvfkfoBj3dIkLJiCwpFT3duSq6urVGGUsn08yVEuJAUqkGyFCQScP6jWtYbZg+emyzp3s/Z+97PB6Px3OQlGt1yrU6M8dO0Fm9TWv5Fkm1ijWGfqtFv7XOytUrBGFIud6g3GgSHqKJc54HIwwEC80SylhaqeJ2J+fIRGlzwq2wFqENUihMWComU+6xEGRFgBERQjgC10PZLlLWUIP+buscdsRmCEGAtNPY4CbSlbGih3QhgvFwHQZRxOJnP8p7f/qtzWWq3eXWK2/R+LFF+pWthKI8mUAHCaEpRMfnZhT1yNJWW9fV/9P36/zfP7vOdPnwCmmPDUJwmSnWqPARd4XaHb3xS6wz4Xp8nyO0xd7f12/0d6uojrSKLJmi3b/OW/qrnAw+QV0O17dNyCVKosFF/SJ9WoXYLYAegCjEbucgSTioyNGoewppKqQz3wa5df/twh79ha8WDu9sFilD4jhAaY3WGmsNuIi+tURRRBRG+3qfGEqBjAMyZUlzQxIFuMxgI0cSBg/mgxgThBBEHztJ+KElsj98Bf3Nt4eNeQ7CmekDOz7P3Tk8CozHsw9Y5zAyJIvqZFGDdjLJanmRNKzghCwG750bDOqbYlD/ELp4xw+3zek9EL6Rm05vYYMdM9sOCoEkpEaJeSocp8QckgjFOj0u0+PKoOP7Bl0u0OINUm5g2dvIrFGzIXoXTu/JTad3fvUa2YUL9LzT2+MZO1ye03/lVfIrV1CX3kNdv0E4P0907NhohW54RFd3TKYhTSp0wzagCdw60lYOuae7uGSofO1lkkvDXdedL3wcdawY2KnJnMlgeBb5b956knCuOrSs1v49BEUcolMfY7/mrDrnWH7rwtCyxpF54lpl71/MGEAUEyZG4RofFSLFYRGuhrAJ0u382UinwVmMCLFIsmjQ060U0lriLMM5aPUVtTCkmUSEiaCUBKjI0l5ZJu12mZhfIC5XWDzzNMEh6jP3eDwej2evkEFAY2aOox96lmPPfISppaM0ZmaZOXGS6SPHSSpVemtr3Lp4npUrl+m3W97t/ZgyVY0pxwHT1ZjcWNrZ8LiLzPPigtxabDiaiQ9KlnFCYAnBZGRWYZzBYInl/lyrSVdC2gmEqyJchJVtHKNx1D4MzdPHqC4OC483X3kTees9xPa4dyGGxO9Qws+cGnbpdpTkX7xSJx+ft/eBpyNKfFuc4go7Y8srKD7tLnDc3WYUZc5Ff3eKimoYGZKWZtAozppvct28teP5JVHjqfALLMlnC5d3qQTVSpEoliSgNaTbq0z3nyCdp3zjiwh9xwQBqUjnvo6qbtSLCaIwIo4inINM5RitUXlOmvYxZn8/JDt6vLWhrwy9/PD2eAOIckzpv/g05f/TzyKXJjeXy8VJpv7+3z/AI/PcDS92ezx3wYmQLJ6gE0+ShhXayTSr5QWysDpwqw0Eb6u94L2nDERvsV30FjCGojdsCN9VSswNhO95AmIULXpcGQjfK/S5SovX6XEFw+HqF7pT9NY3t4ne588Xovc773jR2+M5YEynS++ll9DLt8jPnUevrRMfP040Pz/6Gb2P6OoWIqFFgpJ9ehJC1pEECDceboRHQdxYpvmlbw4tUzMTrP/UZzYfHwvbQ+s7JmDy5PO4bb83YXvUO78PgHMh5B8d4VEP0756k7wzHIc48/SpEbySK8TuICgmS4xoQHKvcVis6CJdgiBEuMkdzxEYAqexMoKB0G2isOjpto5SmiKAVqYQFD3dLoB6NUaFlm57ne7aKo3pWZJqjfknzhCV7hKn5vF4PB7PB4y4XGH66HFOPP8xFk4/xcTCAs25BWZPPUFzbgHnYO3GdW6eP8v6rRuoLD3oQ/bsIULA0ckySRhQKwWsdhV2m6oijEZYi9QaAjl0fb1XbKT2aBkhsGiXotAoq3A4Erk/17TC1hG2jHCNQVJiC3fQ/YADhBAsff5jQxOinTFc+4uXKfduDj33zijznzqR8tHZ4fGm99oh/8vrtUMtoD1uWCF5XS7xfXEEdYfcJIGn3U1ecJeI3N4bgSLVQThDHjcwMiJLivux6/Ytzupvod3w348QkrngNB8O/xKT4igk8ZbgXSoV9aUHLHhL1aB0/SeQ2cTwCuHIp18ib76++fkWMiCOY8IgQBtNrnKMNqRpSp7n+zrZa6PHOw4kuXGkypJrSzsbPjcfRoITM5T/z38FfvYkJAHJ3/wswqfHjB1e7PZ47oF0GukMvbhBJ54gCyq0SjOslRfI48FsNZ0NBO8uXvDeSzZEb7speosdorc88F7v7QgEIRUSZjeFb0lIxjI9LpGxQsoNWrxJhwtoOvff6RhxV9H7rbc2nd7db3zDi94ezwGhb9+m//JL6NVVsnffxWUZyenTBBMT+3MA213dUeXBXN0iwTjoRwld1rAhBLaFtNVD7+rGOhq//UcIvTWj2glY/eW/vOlaDrEshsNC8h/ePkr96HDfc637vyPd4HtDPQfsX7z76rnLQ49Lkw2qc1N7/0LWAq4Qu4OgiDE/DIhecT3iqghbQbo7Kz6Knm4rAiwhWVAij2PkoKc7TjOkLQYCstyyWC6DFDTrITaypHmf1q2blOsNqpOTzBw7QaWx0zXh8Xg8Hs8HGSEl1YlJFs88zYmPvMDM0eM0Z+eYPnqU2eOnqDQnSDtdli+9x/J7F+murWL32fXmGQ3VJGSiEjNZSXDAam/LKSwo3N3CGLAON6JUHCUSnJBYAkKbk9kMiyW3xUTGSIze4V30d08P+rsbhbNbdEf+urulPD3B9LOnh5a1LlxBXHxjaJmKG6hwKyVJCvgHz3VYqAx/Xr91LeHP3vOTP8eNG6LBt8Up1tj5u5mly+fceSbd3v5dCiAa9HerqI6KqqiwSElru5u8rb9Kz67u2C4SJU6EH+dM8HlKyTTUqhAO3N7GQD/lQAVvW6J08wsEvaUd61TzTbLpF7clOAiCICKOYgSQqxxtFEodjMs7DiWl7T3extHua5QZo4H8h0AEEvGjR5H/1x8lODl7/w08+44Xuz2eeyCcoapaVPN1wNFNmnTjBv2wynplnvXaUbSMB4K3GQje/mZpr9kQvdkhegcIF46d6A1bwncRdX6UgAqKNXq8R8YtMm7R5l3avDPo/R6zN/A+3Ev0VteuD4ve2eFysHs8h5X80iX63/8+emWV/OxZRBCSPPkksjKCiOm7caerO7hT6Hs/BEIk9FRIL07pByBln9A6pDv8M2STv3iF+NyVoWWdz32U/NTWzepS2CEQW98B1sH1ic9itsfOO0O9/bvFPx24/BOjPfBt6FzRujLstph+8sRo0gKMBiQIeWgizB0GK1IkZYSTSDux4zmB0yAERkRoEZIlZYRzRLki1JpIa4x1tFLFTCmmFErKFUkQSVKbs3r9KlFSpjk7T2N2nubc/M4D8Xg8Ho/Hs0kYx0wuHuH4cx9l6akPM7GwSGN2jrmTTzC5sEQQRrRvL3PzwjnWrl8j63V9zPkhZ2miRBwKmpWIdqpQZsuMIpQC5xBG48JwJKMvRkZYQoyMEVhwlr7NsDhypwlEQCCCEbzyMAKJtLOF4E0VK/o4MT5jM/OffI6gNJzedfNLX0Ka4WO8091diRy/9rEWpWDYZPQ7b1d4a+Vw3Dd8kOiLmBfFSc6zs884QfMJ9x5n7E3EHp53pbPEeRsTJJggIS1NYgapCjl93jF/wXXzFtbtHLevyWmeDn+cpeQFZG2iuBctJeAs9PojiV/fLcKFJMufIWw9uWOdqV4infs6Tm59foSQRFFMGIZYY8jzHK01aZqSZem+fteFUlCOAwSQ5gZlHd1Mk6rDr52I8uEfr3pc8WK3x3MfQquo5etU8haOgG4yQS+q049qrNaP0yrNFDOkrIG8hxe8R8OG6O3YLnqLsRa9ASQRCTNUOEbEBJoePS6TcoOM5W293rfGqlPpfuwQvW/dGha9N+LNvejt8YwEZy3pm2+SvfMu+uZN8osXkLU68enT+xullK2DUQ/p6i7hHHTCkB4r6DAgtB0Cu09C/QiRt9ep/oevDi3Tkw1aP/u5bUscx6LhlI/vdSaZPjk8KFDpf4XQXB/s5Em4S0z2qFh/7xrObhsslJLm8cW9fyFnC2d3GBR3J4eki9qJbmHXdxWkayDu6FGXFClBWkQ4JGl8R093WvR0r/cV1SBgMokhFlTLIVmgWbt+FSEkk4uLVJpNZo4eP6B36vF4PB7P4aRcbzB/6jQnPvIx5k6cojk3z+TSErMnnqA+NYPKMlauXuHWxfN0Vm5jlLr/Tj1jRxxKZuslJkohoRSsdLcS5wQglUJqA46Rubu1TLBC4pCELsdiSV2OdRaDJhJhMY41YqSLkW4S4coIl2BFG8feR0c/DGESs/iZjwwty1ZbO9zd/cr8juG9xarlH35k+N7JOsG/erXO7b6XN8YNJwTvyjleEsfIGJ7oIYBT3OaT7iIlt3fpkIHNCU2fPKphRdHf7QafOYflun2LN/WXWbfXd2y7GW1e/mkmmx/eijTHQb9f3K8eEAJBsvYR4pUXdox729Jt+vNfwYadoS2CICSKYoQQKFU4vLXW9NM+eh+/56QQlO/o8U6VpZsd7h5vz/jivw08nl0S2Zxqvko5b2NkRCeZoB/X6ZemWKkeoR3UCqky9w7v0XKn6C2HRW8bjKXoLQiImaDCMRJmsWj6XN/W632Z9UGvt+XwRIFvit5PP00wOVWI3m++ibp2bVP0Tt9+24veHs8e4vKc/iuvkl+5grp8CXXtOuHsHNHx4wi5j5d2OgWTg+4/hKtbIkRErgM6SZ8+4EJNrDTSHQ6h8544R+23/zMyH76JXP3ln8QlWz+jmSClIocHnl4KP08eDQ8G1Fu/ubXr/JMjOOB7s3Z+2JlePzJHGI9gMoUxgCjiyw9J75VD4USGdBWECxC2ccczivhyM+jpTqMKJooI1UZPd4YAupkGB/PlElbCZC0iDyxrN69jlGJqcYmkUmX+iSf39/Pt8Xg8Hs9jRBCGNGbnOPrh5zj2zEeYWjpCY2aW2RMnmT5ynLhcobu6ys2L51m5epl+u+3d3oeM+XqJKAqYqsb0ckM/3xqXk3kOOIQxI3N3F5MbA7SMkM4gnEU7TY5CWYPDEu9Tf7e0dYStIFwNnMSJ9tgkCk4+fYry7HAl0tqf/dHQYx1VUVF9x7YvzCn+6hPDFVBtJfmXr9bJ/TDsWLIianxLPMEy1R3rJujzWXeeOdfas9cLVRe52d8dkpaG/9Zyepw33+Gc/jbZXeLUI1HiRPwpzkz/FUrJDJTKFIJ3OqjdOjiizhMkt34E7PB4iYu69Oe/gkmWh5ZvuLyjMMQ5S55nGKXI8pw0TbF2f84JQgiSSG7r8TaDHm996Hu8PeOHHzHxeB4AAcQ2o5atUFJdlIzplKZIkwn6cYPVZIZOVMfmfRiTmZOPLxuitxsWvQe93uMregsialQ4QpkFJAEZt+hxiZzbpNxgnTfocgFN7/47HBNEFBEtLhai99Q0+tbypuidX7zoRW+PZ4+w3S69l19GL98iP3cevbpGfPw40cLCaKKl349HcHULUQIEHaAj26gIQnIi8yCC+XiSfPuHxG9dHFrW+fSzZGeODS07FraHHt9UMfUTR4f3lX6PRL0FgDNLYI+M4IjvTt7p0b21MrRs8uQoXt8VYrcMir+hQ+TqFi4ESkjXLK5DttYSuq2e7jyIyeOk6OnWhjjLkNaSa0svNyyUS8hAUK+F2MjRWr9F2u0wsbBIXKmycOYpgkPyc/F4PB6PZ9yJyxVmjp3gxPMfY/6JJ5mYX2BifpHZU0/QnFvAWcfajWvcPH+W1q2bKH8PeyiQEpaaZSpxSCmW3O5mmxMWhHNIrZFaFdebwQgixYVAyQQrwoG7u5j4mtkcgyGzxeP9E7ynEC7e1t/duf9G+4AQgiM/+rGhZerCu7j2cKdyrzocZb7BL5zu8/zMsEHkYivk37xR9U7RMSUXId8Tx3hbzHGnXBxh+ai7woftNeQeuKc3+rsZ9HfrsEIe1XY8r+Vu8Kb+8vtEm8/w9OTPs9T8DLIymNSc9g9c8A7TBUo3voDQd3SiBznp3NfRlUs7tpFBSBwlCCFRWqNUjtGaftpDKbUvE7sEYrPH21hHX1m0sY9Fj7dnvPBit8fzEAggMSn1bJVE98nDMu3KPP2oRk+WWanM03XhXb8wPXuN2yl6I+8QvfdZANolAWVKLFDhCAEV8s1e72VSlmnz9qDXe31sZuHeDy96ezyjQ6+sFEL3yirZ2bO4LCM5fZpgYuIADmbD1f0wXd0BiBBtQ9ajdTKbY+OAWBsEo++yGyVyvUP13395aJluVFn/uR8dWlYWiukgHVr25/qzpHd0PzXav7X57/12da9eGHZ1B3FEfWlu71/IWsBBKIuBx0PgXnYiwwmFcFWEixB22KkQOAXOYkSIEQFZXEVQ9HQHWhMpjR3El08lMeUwIC5J4kTS7q3TWV2lMT1LUq0x/8QZ4lL5gN6px+PxeDyPL0JKapNTLD75NCc+8gIzR4/TmJll+ugxZo+fpNKYoN9ps3zpIsuXLtJdX8MaP8YzzkxWI6pJyHQ1RltHO90yoYg8L7p3jcWOKspcxDgkRoZIpxGDcZyiv9uinEIiCPepvzswM0V/t6tiRYoT6f033Acqc9NMPn1qaFn60jeGHvfKO6PMAaSAf/iRDnOV4c/iN6+W+PKl0l228IwFQnBRTPNdcZIeOyd8HGWNz7jz1Nyj/41KZ4kG/d06KJElE5v93dsZjja/cZdDlsxVPsyHZ/8Gk5PPAGIgeB/s90CgJijd+Alk3hxeISzZzHfJG2/sHEMWonB5RxHOWTKVYbQmzzPStI/dp/cUSkEpLs5//W093tlj0OPtGQ/GfzTJ4xljBI5E96hlK8QmJY8bdMozpCKmG9VYjZr0g/iQyJSHne2id+Hw3i56izEWvSUxCTOUOUZEE013W6/3bbqcp8WbZIeo1/t9Re+NePO3vOjt8eyW/PJl+q++il5ZIT/7LkJIkjNnkJUD6rfedHWrh3R1S/pa0YpS8rDocorUeJ6jd41zVH/nj5D94fPayi99EVdOhpYdizpDP7LcSszi00PPCdUFSuk3i13bJugzIznsu+GcY+0Osbt5fBEZjODWwRhAggggGn/3ssMNXN0RghhpJ4Zc3Rs93UbGgCSNq9hAEuVFT3eSZuCg1VeUZMBUKcZGUK+EdHWX9Vs3KNcbVCcnmTl2nEqjee+D8Xg8Ho/HsyeEcczk4hGOP/dRFp/8EBMLSzRm55g7eZrJhSWCIKJ16yY3L5xj7fo1sl7Px5yPKUsTZeIgoJaErPXUZlSvNAZhLdJokBInRnBdKwRaJhgR4RAEtnAgOxypzbDOopwhFCFyH4bki2vVSQQb/d2dsenvXvzMR5Db6pGyV78ztN6GJbJk8q7bViLHf/dCmyQY/gz+zlsV3l4Z//uJDzItUeZb4hTXuLMCCmrkfNpd4Khb5VFt+oHNCXUfFVWxIhrq776TItr82/eONpdlTkx8gTNHfpFSNFVEmpuD/RxJU6Z048cJ+jsTENTEG+RTL+F2+OhByoA4TghkgN5weRtDv5+S5/m+fK8Fgx5vKQWZMuTG0vc93p49wovdHs8eIHGUdJdatkroLFlUpxM1SIOEtiyxkkyRBmUveu8LA9FbbBe9BRwK0TsgZnLQ6z2NRdHnGj2ukrNCjyus8wZ9rmJR99/hGLApen/oQ1ui91tvoa5eJb9YiN7Z+fO4A44C8njGFWct6Vtvk739DvrWLfILF5DVGvHp04j4gCK/H8nVHYIIsC5iNbhF5iwmCYiMIzjkX5Lxy2+S/PDs0LL2C0+RPTPsWpBYlsLhGMFvq4/Qaw47ERrt3950g7j8E+znZXt/ZZ2sNXyjP3lqFBHmtpgZHwbF2zsMUd0ixWERroawCdJtn3BikVZhRIgjIA3L6G093cmgp7unDMY4FsolrIDJekQmclZvXCVKyjRn52nMzNGcu3t8o8fj8Xg8ntEghKDSaDJ/6jQnnv8Ys8dP0pybZ3JpibmTp6lNTaOyjJWrl1l+7wKdldsYPR7ioaegmhS93VPVwniy2tuKvJZ5jjAGrMONzN2dAAIjI4Jt7m6DJXMK4wwGSyz357pXuhrS1hCuXvR3y9ZdRbD9JiyXWPjks5uP7a1r6GvDEcz9yvw9t1+qGf7Bc8P3VMYJfv37dVZSL3eMM0YE/FAs8UOxiL5DgA5wfNhd53l3hfAR01JD3UVaTR7XB/3d0+/7/PtGm8cLPH3kb7I083lkZg9c8BYuJLn1OcL26R3rdO090rmv40R+ty0Jw4g4Ks6RucoxRqFUTpr2MfuQYCKEoBRJokCSa1v0eJuNHu+Rv7znMcaf/T2ePURiKesOVdUisIZ+UKETN8kIaEc1VkszZEFy/x159oAN0dtuit5ih+gtx7jXu06Fo5RYQCBJuUmP98i5TZ/rrPM6XS4eml5vEYbDovfybbK33kJfv052/jy9F1/EdMajQ8rjGRecUvRffZX88iXU5cuoq9cIZ2aJTpxAjKJnbrfsgau7Z3p0whQlU5wsEasxPBk/AKLdpfZv/3RomamVWf35z9/R5QyLYY9IDL/f61PDvXXSrFDt/hEAzpVAPTeCo743q+eHXd1xrUJl5u7OikfCGGDQmxjtT3/ho+CwWNFFugRBiHDDP5PAaRASK0JUEJEl5aGe7sBalClmrc+VkkFPd4ALHMs3roCQTC4uUmk2mTl24oDepcfj8Xg8HoAgDGnOzXP0w89x9MMfYWpxicbMHLMnTjJ95BhRqUxndYXl9y74Xu8xY6FZIgwkk5WIdqbJdSHuCqU2+7tdGNzT6fkoOCFQsoQVEY5Bvc2A3CkUGmUVDkeyT/3dwk4gN/q7ncWNSX/39LNnKE1tpRjl3x92dxdR5vf+HX18PufnTg2PibVzya+/UsOnIo85QnBNTPBtcYoWO8fJ52nzWXeOCffwY54CiFV70N/dQIflu/Z3b2dX0eaN5/nwsb/LZHjs4AVvBMnqR4lXnt8xvm1Ly/QXvoINdrrVoajyiKOYMAjRxpDnOVob0jQlz7KRu7zv7PFO840eb4X2Pd6eh8SL3R7PCAiwVEyfWr6O1Dm9qEonKJOJmFY8yVoyTS4PyJH3AWRD9GaH6B0gXDi2ojdASJkyC5Q5QkCZnFV6XCLjNim3Br3e76IOSa/3naK3unGT/J130cvL9L77Xe/y9ngG2F6P3ksvFW7uc+fRq6tEx44RLS4iHkBc3nN0/xFc3REICUS07BW6YYiOQwJiQnO3GceHh9q//VNktz+07PYv/BiudmfXsuNY2B5a8q4+QXd6+Ka73vm3CAY/k/yjwP5dMzhrWbt4dWjZxMkjI/i7c6DtoKNbHBJXd7+4XnAVhK0g3dbvRaIRzqBFhEWSxjUEDPV0u0F8+UQUUYtDwgTiRLJ8+ypGKaYWl0gqVeafeBJxCLrLPR6Px+P5oJBUKswcP8nJ5z/G/KkzNOcWmJhfYO7kEwRhxOq1K97hPUbEoWS+UaJRCgmlYGXg7hYMBG+jwTlcOJoJxEV3t8CKCGmHU/nSQX93blVhdBCjvwYWSORmf3cNJzKc6N9/w1Efl5QsfX5r0m/+g+8OrXdBdF837l8/0+e5meF7yfOtiP/1zaqPRD4E9ETCd8RJLrJzYnUZzSfdRU65Ww8day42+7tjdFAe9Hff/976vtHmYYUTcz/FmcmfocT7C+j7QdQ5Q7L8WbDD5zQXdegvfAUT377HloIgCImjGCFAqRytFUor+mkfrUafKrrR423Z6vHuZJpM+bFhz4PjR1E8nlEhIACquk21vwzW0A1LdMMy/bDMejLFejKJ3ocLW0/Bhujt2C56i0MhegfEJMwOer0baNqDXu+bZCzT4Txt3iTj9lhEUt2PDdE7OX0a5xzZu++irt/wLm+PB9Crq/Reegmzukp29hwuy0ieeIJwcgTO2gclaz2iqzug5zp0whwl+riwRqxH4anYP+JX3yb53ltDy3ofOU332SeQd/x8JmRGPRi+YXyj9nnctucJm1Lr/HsAnJM4Nez6HjXta8uYbHjAaPLkCCLMrQVs4eoO5UD0Hl8cBiv6SMoIFyDtxLa1lsAqrAgBST+uDXq6c6Qb9HQDrUwRiYCpUoIOoFmLWW3fIu12aM4vEFeqLJx5iuAwCP8ej8fj8XwAEVJSm5pm6akPcfwjL1CuN5hcPAJOsHr1CtZP3B4bZmsJSRQwXUvo54ZeXlh9ZT4Qvo3BheFIhoCckBgZYwbO7e3uboC+zbA4cqcJREAgRp/aJYiQdgpBCenKWNEdi/7u2tIczdPHALBrK6iL7w6t71Xev9ZHCvhHH+kwWx62cv/FlRJfveyTNQ8DTkjelgt8TxwlZ/izIIAzbplPuPdI3MMJr0V/dw8VVbAiol+eI4sbu0p2uG+0efkIT8/9IkuVjyPFwSaVhf0lSje+gNDD9WgEGen819CVy/fcVghJFMWEYYi1hjzPMEqR5Tlpmo78uy0QgsqOHm/je7w9D8x4jyp5PIcdAYiQEEstXaaSruKspRtW6IU1+kGZ1dIMrXgCvQ8Xt54N7hS95bDobYOxFb2He72nsOT0uUafa2Ss0OMS67xOn2uHotdbViokZ84Qzsyib3qXt8eTX75C/5VX0CsrZGfPghDEZ84gq9WDPrRHdHXHA2E8Yt1cohsF6EAgRY1Ip6M64pEjun1qv/vHQ8tspcTKL/wYQhQ3jds5Fg1P5Fkzk6zdEQ9e7f5HAtsqHugPg9vfmeKrF4YjzCvTEySNEfz9GQPI4m/pMESYiy44Aa6CdA0EW4J04DRuEF+ehQk6jrd6uvtFT3eqLEo55sslrHRM1UM6eYv22gqN6VlKtTrzT5whLt2ZBuDxeDwej2ccieKEhTNPk1SrTC0tYbRm7frVkUe/enaHlLA4UaYcBVTigJVuEcsrnEMqhVQahMCNqB5KidLA3R0S3OHutlhSl2OdxaCJRFiYMUaMdFWkrYGrIlwwNv3di5/9KGLgss9f/fbQurQ8i73PeGk1cvx3L7RJguHP3m+9WeWdVT+J9LCwLOp8S5xihcqOdVP0+Kw7z4xr32XL+xPqXtHfnTRRYYUsbtKtLpJHtfsO/+4q2rz+HB+e/utMlk491PHtFYGapHTji4i8MbxCWLKZ75A33nqfVNANl3eCEBKlNUrlGK3pp31ylY/0+22rx1sM9Xh3fI+35wHwYrfHM2oGgjcyINI9quky5XQVIxydqEk/rNIPK6yWZmlHTYzwH8v9Y0P0dsOi96DXe5xFb4EkokGZI5SYBxj0el8mZ4WUa7R4gy7vYTj4eKr3Q0hJtLBAcuYMeJe35wOKc4707bfJ3n67iC6/cAFZqZKcPo2Mx6T24pFc3QkQ0ner9G2XNDTYsEHogh3RfoeJ6v/2ZWR7uEds9a99AVMrD2K/t35GsTDMBcPPfbnyRXSw7XvfWert39l6mH9yJMd9L4xStC5fH1o2cWoErm4cWDNwdFO4u8cYh8KJDOkqCBcg7NbggUQjncGICCsCsriKNHbQ050TWIuxjlaqmCslhIGgWgnR5Kzcuka53qA6OcnMseNUGs33OQqPx+PxeDzjRhhFLD75NHGlysTCInm/T+vWTjHEczBMVCJqpZCpaoy2jvV+4WSWSgEOBu7uUWCFxIgYI2IEboe7WztNjkJZg8MS72t/d4LY7O9+OPFwL4lrFeY//gwA+Q9fwpktB62TAWl55r77OFI3/DfPDo8dGSf49VfrrKZ+nPWwkImIl8Rx3hWzO6ZhxBg+5i7ztL2OdA82SUMAcd4iMCkqqpKVptBhhTSZpFdZRIWV+w7/3jfaPKhwovljnJn8aUrBxAMd314iTYXyjR8n6M/tWKcmXiOf+t77T3IRgiiKiaKoSOJUGUZrVJ6Tpn2M2elw3yuKHu9gqMdb+R5vzwPgz/Yez34gAFkI3sJqYt2j1r9FSbfQMqQTNUnD8kD0nqMT1bGHOtT1sOF2it7IO0Tv8fx9CAQhFcosUmYJSULGbbpcImOZjJu0eIsOZ1G0Dvpw3xdZLhPfy+V9zru8PY8vTinSV18lv3wZdeUy6uo1wplZohMnEOMiAj6Kq1skA2E8YN1dphcJDAYhJwl1emi/7aLXzlH67mtDy9JnTtF/4Smsdcg7YrmPhh3ktjeb2xI3pxeHnlPu/zmRKfqynT4JdnYkx34v1i9dx5lt51ohmDi+tPcvZAaRiUFYdHUfZA/9LnCiWyS/UEK65uA6AcAhrcaKAIukV6qBgCjPCbQhUgrnYL2vmAhDanEIMZRix62bl4iSEs3ZeRozczTn3j+i0ePxeDwez3gSl8osnHmKUrVGc3aeXqtFZ+Ve/aie/ebIRJk4lNRLEet9hbEOYQzCGKTWICVuRHU6SpZwQmAJCezOyPDM5hgM2WDyb7IPgvdwf3cdJ3Kc6N1/wxEz8/xTxM0artdBnX1jaN39osw3+MRCzl85NWz2aOWSX3+1hq//PUQIwXkxw4viBH12TkY5ziqfcheouOzBdosjUl2SbAVpFHlUJ0smUVGFtDRNrzKPDkr33c99o83jBZ6e/qss1T55YNHmwkUkt36EsL3Taa5rF0hnv4ET7286kDIgjmPCIEAbTZ7nGG1I05Q8y0bq8g6loBQNeryVQfseb88u8WK3x7OfDARvrEZYTZK3qWXLJKZPLhPacZN+UKYX1lgpz9ENa1703le2i96Fw3u76C3GWPQGCEgoMUuFY0TUUbTpcpmMm6Qs0+EcrTHv9b63y/ucd3l7Hktsr0fvpZdRt26RnzuHXlklOnqUaHFx4AweEx7a1S0Gru6Ivlihr7p0E4GVdaSICA9phLnoZ9R+54+GltlSzNrf+Amsc3BHhLnAcTQcPn99P/kC/Wh4MkOj/Zub/95vVzfA2vnhCPP60ixhaQTJAtoW10OIsY8wdyLDCYVwFYSLEHYr0l06DTiMCMmiBBNEg55uR5IWf9vdTBMiip5uaZmshtxcvgxCMrm4RKXZZObYiQN6dx6Px+PxePaCcq3O3MknKDca1Kemaa/cpt8e78nmHxTKccBUNWayEiEErPSKzm6Z5whrwboRursDjIjQMkJgCdxOwbvo77bkNi9cjfsieIdIO40g2dbffbBpWzIIWPqRjwGQf/87Q+vS0vRm//n9+MUzPZ6ZzoeWnVuP+M03xqAWzPNArIsK3xJPcIP6jnUNMj7rzrPk1njQUmfpLLFqk2SrCGfIowZZ3ESFVfrlWXrlOYx8/3vgrWjzr9w72rz6DB+e/utMHFC0uUASr75AvPrcjtRSW75Jf/6r2OB+E10EQRARRzFCQK5ytFYoreinfbTaeU7bKwI56PEWYjPSvK8M3dz3eHvujRe7PZ79ZlPwNoXobRSJblHL14lNRh6U6MRN0qBEN6qxWpqlt4s4Fc9eMhC9xXbRW8AhEb0lITFTm73ehpw+V+/S6319bHu9N13es3PomzfJ3vUub8/jh15dpffSS5jVFbJ3z+LSjPjUKcKpqYM+tGEe1dWNwAlJ214mC3OUDCGYJrAKeZeZ0IeByn/4CsHacORf5xd/Al2v4ZxF3hFhPhf0SOTWe7Uu4OLUE0Pbx9kPSPLXAXBmFsz+CqB5r0/nxrALafLU0b1/IWsAW0SXh7IoVBxTHG7g6o6KwUA7sc3VXQxYWlnEl+dxlUDpQU93kVhQdI1Z5kolXOCYqMesrt9AqZypxSWSSpX5J84gxvhn4PF4PB6PZ3fUpqaZPnKc2tQ05XqD9RvXyXoH75j1wGKzTBRIJioRnVSTaYPQuujv1hoXBLgRTTTWsoQTEkuwo7sbiuvNQvB25E4hEURi9D3T0pWRtjHo747Gor+7cXyR+okl8te/h1PbBGsh6Zd3RjLfDSngV57vMFsevs/82pUSf3452cvD9ewDWgR8XxzhdbGAucMMFuB41l3jOXeV4CHGFaQzJHmLOF8HBHncJI8aqLBCrzJPvzSDvc9nMae7GW2e27tHm588wGhzgSBqP0Wy/JkitXQbLm6RLnwZE6/cfz9CEkUxYRhirSHPM4xWZHlGmqbYEY3RbvZ4y2093tr3eHvujR9Z8XgOAhkW/w0Eb4xG2oyS6VPL1whtThZUBqJ3mU7UYKU0SxqUvei9r2yI3nZT9BY7RG95SHq9ixuDlBs7er17XMIwfu5KISXR/DzJmTMIx06Xd/vgu6U8nodFXblC/5VX0KurZGfPghDEZ84Q1GoHfWg7eWhXt0SIGIhIuUlP9ejFgC1BWCE0DxY7Ni5Eb1+k/I3vDy3LnzpB75MfBhzWuSFXN8CxaNjVfTb6NK3SsDthp6t7fydVrV24OvRYRiGNpd0NKj0QxgCymDgRjrerG5HisAhXQ9gE6Sqbq0KnCrcOYRFf7hyh1kS5IrAWO4gvn0kSolBSKoXk6Tqd7jrN+QXicoWFM08RjPvPwOPxeDwez66ZWFikMTtPc26BuFJl7fpVVHY4r3kfJ8JAsNAo0SiFxKHkdjdHACLPEUaDG52724gQS4iRMQJ7165hi6XvUoyzKKcJREAgRl9nJWwTaUsIV8c5cKKFO+ABrqXPvYAwivzN4futXmV+1/uoRo5fe6FNLIffy2+8UeXs2ugnEnj2GCG4Iib5tjhJh50T7xdp8Vl3nobr32Xj+xNYRZKvEectrAzIkknyqI6KqnSrC6TJJPY+n8eWu8Eb5itcz9+4T7T5Jw4k2jzsH6F088fADE/4cEFGOvc1dPnKPbbcjiAIQuIoQQiJUhqlcozW9NM+ucpHEm0uEMSR7/H27A4vdns8d5Bri7EOa91oYzFksEPwxuRIHGXdo5qvE1hNP6zQiRtkQZl23GS1NEMW+NmI+82G6M0O0TsoejzHWvQWhFS39XrHQ73eKTdp8SYdzqEYPwH5ni7vF1/0Lm/PocM5R/bOO6RvvY1evk1+/jyiXCE5fRoZjyAu+lF5BFe32HR1OzruGrlokwU1kFNIOJwR5llO7bf+89AiF0d0/s7PYJ3DOQsOxLZy7prImQy2BjmdE7zdfHZoH6G6RLn/F8V6WwP9oRG+ibuzdmH4Brd5fBEZ7vUgmwNrB45uYM/3v3c4LFZ0kS5BECLc5OY6iUY4ixEheZhgZEykFNJaojwHB62+oh6E1JMQGzlimXF77QaN6VlKtTrzT5whLpUP8B16PB6Px+MZBTPHTlCdmGBifpEgjFi9dgWjRxf16tkd07WEJCoizTNVOAOlUsW1uzG4IBzZkI6WCVZILJLQ3n3yg3GW1OUYZ9FoIhEiRzxsLxBFnLmLB/3dGg64vztp1pj96NM7oszzZBL9AGOhR+uG/+NzwxOOjRP8y1frrGXjm9TouTddUeLb4hSXmdixroLiU+4CJ9ztB4413yCwOUm2SqQ6WBmRJpOoqEYe1elWF8niJu59JqQ7DNfFO7yZ/jGt7PKO9UW0+bMHFm0e5FOUr38Rkd8RCy8N2cy3UfV3djfZRQiiKCaKomJ8S2UYrVF5Tpr2MWY06X336vHOtR8T9mzhxW6PZxvOOpQp3DjOOVJliu7NUbFd8HZ6IHoXF74BloruUlMtpLX0wiqdqEEWlGjFk6wm0+T36RDx7D0bordju+gtDoXoDRu93nNUOEZIDUWbHpfIuEXGMh3O0uItMlYOPMJqO97l7XkccEqRfv/7ZJcuoa5cQV25Qjg9Q3zyJCIYU9HvoV3dAYgIiOnL6/RVnzQyWFeFuEZgMsQ4nyzvQfU/fp3g9vrQsu5f+wJmqom1A1e3FNuirne6um8Ez3KzNixy1tu/gxicc536GLC/fw/91RbpHbHskyeP7P0LGQO4QYR5+AB/TweA6Bff566CsBWk27jmsgRWFS4dEZAlFQI9iC9PMwTQUwZhYbqcoIWlmcCt21cp1xtUJyeZPnqcSnPi4N6bx+PxeDyekSGEYP6JM5TrdSYXj4ATrF69MrKYV8/ukBKOTJQpRwGVOGClm4O1SK2QShfNdcFoXL9aRDiCTXe3uIu7G0A7TeZytDUYDLGMijGnEVL0d08hiAf93T0cB5tGMPfCh+HqWWx/m/AuBL1k9oH286mFnJ85Oez2Xc8kv/5qHa+PHU6skLwhF3lVHEHdIWtJ4Cl3k4+5S8Tu4SYYCSA0KUm2Qqh7mKBEVppChVWyuEG3ukQe1d9X9M7DnHPmO5xb/zK53jlWORxt3nyo43xYpKlSvvHjyPSOz5KAfPIH5JOv7HosWMqAOI4JgwBtNLnKMdqQpil5lo3E5b3Z403R462MpZcb+r7H2zPAi90ezzY2hG3nHMaBto5+XvRBjOykKQMItgveZiB4Fy8YOENVd6iqNuDohnW6UZ00LLOeTLGeTKKkj8Dcf+4UveWw6G2DsRa9JSHJoNc7ZhJDSo8r9LlOzm16vEeLN0i5gWV8ZqF7l7fnsGJ7PXovvYy6eRN1/jx6ZYXo6FGipSXEuAp+j+TqLgESKxR9d4uMNbKgjnN1XBASmsPn6g7PXab05y8NLVOnj5J+/mPYwexlZzf6ugfbYFkMt7q7nIPXGp8c2oc0a1R7/2mwPoL8o6N6C/dk9fzwzPOoUqY6N4LueG2KvyUkROMbIegwWNFHUka4AGknNtcFTuOExIiQtFQFx1B8uTKWfmaYLSU46ahXJKurVwmSmObsPPXpWSbmFw7uzXk8Ho/H4xk5UgYsnHmapFplamkJozVr16+OZPDfs3sa5YhGOWS6mmCdY72vkXkOOIQ2uHBE7m4hULKEFQEOSeh2dndvkDuFQqOsxmGJ92G8r+jvbhaTPF2ElW0co3Fn7up4opDFTz+Hev3loeUtOXmPLe7NL53p8eGpfGjZ2bWI33qz+kjH6DlYbooG3xJPsMbOpKwZunzWnWPKde6y5e4QQKT7JOkKgU7RYXkgeldIkwm61UVUWL33+SIKaSWrvLH6B1xvv/I+0ea/sO/R5sLFlG5+nrBzYsc6XT9PNvtNnLj3OeqOvREEEXEUI4Bc5WitUFqRpn202vvxZCEEpVgSSkGmLZkypIMeb/8V6/Fit8fzPuS6iMXIjaWvDMaO6KwpAgiiOwTv4oJ7g9BpaqpNRXdwCLphnV5Yox9UWEumacUT6H3o9PHcyYbo7YZF70GvdyF6j6mQxUavd5MyRykxC1j63KDHFTJW6HOVFq/T4zLmgGf3brDD5f3OO97l7Rlr9OoqvZdexqyukr17FtvrE586RTg1AjFxL3loV3cIIkAQ0ZfX6OseKuihxCwiriKcIzD5/XczTuSK2m9+CbHtMsBFIe2/8zMgBcZZnCsmxm3v614KOwTbNmqLk1xuDPey1zr/G9INzq/qI0BplO9kB8461i4O93VPnBzBJAxrAFu4uoNBZ/eY4kS3+O52FaSrIyiEeYlGOoMRESpMUDIZii93g/jyqTgmiSRRIkjbyygsk4tLlBtNZo+fPNg35/F4PB6PZ18Io4jFJ58mrlSZWFgk7/dp3bpx0If1gWdpokwUCprliLV+jlEGYQzSaJCisICPgMLdLTEyQjr9vilXqc3QGDKrAEeyD4K3sA2kLSNcA5zAifaB9nc3Tx1FXnlneOHkPKutBzumQMKvPN9hujQsNn71comvXfYVkYeZVES8KE5wjukdf6kJhk+4S5yxNxGPoIAKHJHuUspWkSZHRTWyZBIdVkhLU/Qqi6jwHtVUQYirV7ie/oA3l/89rd57O/d/QNHmAkm88nGitWd3rDPlG/QX/xRdurb7/QlJFMWEYYi1hjzP0FqR5Rlpmu55solAkEQBpTBAb+vxbqW+x/uDjhe7PZ73IRQCbSxq0OOdqhG6vIXcJnirHQ7vDSKrqKoWZd3FyIBO1KAfVumHFVZLs7SjJkb4j/b+43aK3shN0VtsiN5j+p1b9HrXKLNEmUUkIRnLg17v26TcoMUbdDiP4uFnR+4lmy7vufktl/etDZf3Oe/y9owF6upV+q++il5dJTv7LgDxmTMEtdp9tjxg9sDVrUVK5lbou1Uy2QRbxkUJoU5HHMa391S+9A3Cm6tDy3o/93ns3BTOFY5u5yxCsE0kdjsizH9Y/xx2u4jsMuqdf1f80wlc/vFRvo270rmxjO4PT2aaPDWKCHMLDAYQo/FNpHEonMiQroJwAcI2N9dIp7EiwGzEl5vh+PJWqqjIkEYSoaUjyDt08w6Ti0vE5QoLp88gRjSA6vF4PB6PZ/yIS2UWzjxFqVqjOTtPr9Wis3L7oA/rA00pCpipJTTLEVIKVntZ4e62FqzFhSNKHxICLUsYERbubvv+k39Tm2KxA8FbjNzhvdXfHSFd48D7u4UQLJxsYNvDFVLto5+gs/xgBoda7Pi1F9rEcnhA7jfeqHJubXzTpjz3xwnBWTnHS+I4GTt/l6e4zafcBcru0SbbC2eJVYckW0U6Qx7VSZMJVFgmLc3QK8/fvVM+kNCok4s+51p/xrkbXyJXrR1PO4hoc4Egbj1NsvzpopJzGy7skc19k3TmW9hgt+cBQRCExFGCEBKlNErlGK3pp31yle95ukkYbPR4u6LH2/ge7w86frTF43kfwlASh4XzKNcGre3A5a1H4/LeFLwtWFX8/y6CtwBim1PL1ynrHlqGdKImaVgZiN5zdKI69tDJCY8D20XvwuFdlD8NRO9D0etdosQ8FY4SUkWxfkev97u0eJuc1QPv9d7Z5b3h8j5P77ve5e05OJxzZO++S/rmW5hby+TnzyHKFZIzZ5DJIZhBnj6sqzsCIRHE9OQVUtNDix45C4iwBDI4dBHm4cVrlP/su0PL1IlF+l8s4sg3HN3WuYGru/hZTQcpFbkV25W5Oc41h938te6XCOxa8UA/CW5iVG/jnqxduDL0uDzZoNSs7/GruGISXxAUjplw3F3dAVBCuuZm/7p0GpxDi5A0qeCcIFSaUBXx5amyYGC6lJALQ1WmrPdu05xfIClXWDzzFEE4viK/x+PxeDye0VCu1Zk7+QTlRoPa5DTtldv02zvFDs/+Md8oEYcBU5WYTmbI+hnCWqQ2uCDAjahmSosYkBgZ3tfd7YDeQPBWViERRGK0wqwgQNoZBBHSVYr+bnFwCX/lySbBuVeGlsnmFLfKp+jdXnugfR1vGP7+s8MTkbUT/MtXa6xnfuz0sLMqqnxTnOIWO00FTVI+484z79bvsuWDIZ0hzlsk+RrCOfK4SRY3UWGFfnmOfmkWc+fEFCmhXoMoosUN3rjyO1xffXFsos3D3lFKN34MzE6Dg6lcpb/4x+T1t3c//isEURQTRVExLqYyjNaoPCdN+xiztxUJRY93sNnjrY0b9HgbH2v+AcSL3R7PfZAColASSol2jkxbjIVUGVI9ghPnhuDtLNj8noI3bIjeGbV8ncT0yWVMO27SD8r0whor5Tm6Yc2L3gfCQPQWdlP0FoitXm97GHq9IxKmqXCMiEk0fXpcJh30ene5OOj1vnngvd53dXkve5e352BwWpP+4Adk772HunqF/MoVwukZ4pMnEcH4inyb6H7x/fPQru6AXLbRtOi6FYwrYWQTF1cQ1hDYgz1fPBDaDOLLt07WLpB0/suf3Yw4LCK5HM46pNz6vj0WDk+2eaP6eVQwfOldb//21n7zT43gDbw/VmvWL10fWjZx6ujev5AxFOXWQSF4j2lPvRMZTiikqyJchLAbXX6WwGmsjNBhgg7izfjyOMuxDnqpZjqJIXCUQ02rc5vq9BSlWp35J84QlysH+t48Ho/H4/EcHLWpaaaOHKM+PU253mD9xnWy3sG5Zj/ohIFgoZlQS0KSULLazZF5jjDF5MZRubudECiZYESEAwL7/r24DkffZhgsudMEIiAccX2hdAnSTiJcBeFirDjY/u7FiQx39fzQsuhDL3DluiVbf7DUwc8s5vzUif7QsrUs4NdfreONoIcfJUJeEUd5S8zvkGUjLM+7qzxjryLdo/+ypdUk+Tpx3gIhyJIJ8qiBiqr0Kgv0S9PY7ZNTpIRaDcIQV464vv4Sb176LVrppR37Ho42P/nIx7obgnya8vWfQKbTO1dKg5r8If2FP8Mky7vep5QBcRwTBAHaaHKVY7QhTVPyLNtTl/f2Hu9Um0GPt6Hre7w/cHix2+PZBYLiYjgOAySQaYPSFq0d/Vyj91pI2xS8XREje49I8+3Hl5iUer5ObDLyoEQnbpIGZbpRjdXSLL2wMs666mPNhujtEHeJOI8OQcR5QEyTCscoMYvD0Of6tl7vK4Ne7ysH2ut9d5f39S2Xd8vPnveMHtvv03vpZdSNG6jz59G3V4iOHCFaGkEH8qh4aFd3PHhuRE9cJTVdDCk5i0ghsWERYX6YqPzxtwivDd/Q9X7mRzCLM5uPrTWF4C22+rrLQjMTbL1X7Rq8PbE4tJ9y/2tEuri5dfoI2OH1+8H6pRtYvW3wSsDEiREchzaDyQHjG2HucDjRLURuEqSd2HR1h05hRYAWEWlSQRo7FF/e6SuaYUQpDnBCoXorhLUytckppo8ep9KcOND35vF4PB6P5+CZXFiiMTtPc26BuFxh7fpVVHZw988fdKarCeU4YLoak2lLp9MDB0JrXBCObHhGiwQQWBkhnbqvNcViSV2GdRblNKEIkSOuLpS2jrAVhKsP+rtbB9bfLaVkwVzE9btDy0s/+Utc+PbbqO6DTRr5L57s8aGp4UkG765F/M5b1Xts4TlUCMF7YorviJN02Tlp/wjrfGYPYs03CGxOnK0RqTZWhkW0eVRDRTW61QXSZBK78XmVYuDwDqFcIncdzl39A86t/Am52Tlxo4g2/8K+RZtLU6V08wvEtz8BZmcaoYtbpPN/Tjb1Ik7udlxHEAYRcRQjgFzlaKNQWpGmfbTaOyPEVo+3HOrxbvse7w8UXuz2eB6ADZd3HEiMc2TGoB1kypKqPXZ5C7nlpjMbHd4p76eIChwl06eWrxHanCwo04knSIMynajBSmmWNCiPq6b6AcAe6ojzrV7vI5RZ2Oz1LiLOVwa93m/S4QL6AHu9h13et7Zc3i+95F3enpFi1tbovfgSZmWF7N2z2F6f+NQpwum7zI4dVzZc3ephXN0JEJLLNSxdeqzibEweTENcAsGhijAPrtyk/EffGlqmj8zR/8uf3nxsncXaIspcCsFGhPnRsD00R+Bc6UfoRsMujHrrtzb/7dQn9/4N7II7I8zrC7NE5dLevogzgIUgLDrLxjXdQKQ4LMLVEDZBusKJLdEIZ4v48riMc3JHfHnkAmqlkNRqwryFjqA5O099epaJ+YUDfmMej8fj8XjGhZljJ6hOTDCxsEQQRqxeu4LRhyj16DFCCFiaKJNEAbVSwFpXgcqRg4mgo3R3axljRHGfFbj3d3cDaGfIXI5xBoMhFhFyxAmO0k4hXIx0zcLZLQ5ujCdCM73+5tAyEUUkf/W/4tyXvonu737SSCDhV55vM10adqt/+VKJv7hyCOrGPLuiLcp8W5zkKjtF4hoZn3HnmXJ78zctgNBkJNkKkephgpgsmUSFVfKoRq+yRBY3cMXs+MLhHcdQKkEQ0lp7mzdu/B7XO9/fRbT5qKsMBFH3BJVrP0XYPnXX8Wlde4/e4h+jaud2PQlGCEkUxYRhiDWGPM/QWpHlGWmaYvewKjYM5GaPd08ZlHF0M01u/FjwBwEvdns8D4ig6IMoXN6CXBtybdFm4PLey5OnEIXDGwaCt72v4A0gcZR1j2q+TmAV/bBCJ26QBWXacZPV0gxZsMeD2Z4H4PBHnAeUN3u9Ayoo1ujx3qDX+xZt3qXNO+SsHcgM4CGXN8K7vD0jR127Ru+VV9Crq2RnzwIQnzlDUNvZGTXWbLi6jYKountXt0gGzw3oi6vkroOyGVrP4IIQG5WRRu1JZNi+YCz13/gSYtvkGCcF7b/7s0NirTVFhPlWXzdILEeiLeeBdSXemDg5tPs4e50k/36xXzsJ+vTo3ss9UP2U9vVbQ8smTh7Z+xcyFhCFs3tEg4aPisNiRRfhYgQhYrM73RJYhRFhEV8eJjviy3VuacQhCkOsW2QuY2JhiXKjyezxkwf4rjwej8fj8YwbQgjmnzhDuVZncvEIOMHq1SuDWhzPflMvhUxUIiYrCc5Be60LOIQxuHCU7u4SDrAiQt4nynyD3ClyFMpqLJZYxiOVuwWSwMwgXIikihUpThzcxOWKWqWyNhxnHs4fIfiRn+X8H/45Jt/dzxGgHjv+yQttIjn8G/43b1Q5vz6mE3M9D4wRAa/JJX4gltB3SGARlo+7Sxx3t9kr51ohevdJ0lUC3UeHZbLSNCqskMVNutVF8qiGEwKqlYHgnRTR5mmP62vf5c3b/4FWdnnnvjejzX9xX6LNhY1JVj9G6cYXkfldXOWBIp96hXT+K5hodbd7JQhC4ihBCIlSGqVyjNb00x5K5XsWbX5nj7eyjl5m6O+1UdEzdnix2+N5SKSAOJTEYYB1jkwPXN7akuZ7ePK8m+CtU9jRQLKTAEtFd6mpFtJaemGVTtQgC0q04glWk2lyuXvXnmfvuXvEuTg0EedFr/fMoNd7Ak1v0Ot9g4xlulwY9HrfOpCeJ1kuE58+7V3enpHhnCM7e5b0jTcxy8vkF84jSiWSM2eQySGbGa7udHXvNm5aDFzdEam8jaFHx60ibIksmETKEBtEhyrCvPxn3yW8fGNoWf8vfwZzdH5ombUW5yy4ImIPYCHsEYmtc8vV+NOslIZ/lo32b24OTrn8ExzEJfnaxatD3y0yDGgem7/3Bg+FK/q6N3q6x1TsRvSL2EpXRdgK0hWf3cBpnJBoGZEl5R3x5f1UUw9CZATSpmjXo7m0SFKpsHD6DEL6Wy2Px+PxeDzDSBmw8OTTJNUqU0tLGK1Zu351T/tLPbtnqVkmDgXNckirl2FzhdSquHaVoxE+rZAYmWBkBLhdubsBMpuj0ORW4QaC9ygRxAOHdxnhEqzo4Di4JILJ9jnCdH1oWenTP46eO8WFL30d+wApCScahr/3zLCzV1vBv3ylTis7JPVjnl1xXTT5tjhFm+HxGQE87W7yrNubHu+t/Toi3aOUrhCYFBVVyUpT6LBCmkzSqyyioiquVi3E7qRUVH3lGXl6m3Nrf8b5tS+/b7T56X2KNg/yKUrX/xLxykfB7ryXt8kq6cKXySZfxYldTjgRgiiKiaII5yyZyjBak+c5adrHmL0ZOx7q8VaDHm/le7wfd/wIjMfziAQCkjBAii2Xt7KFy1tpuzcn0DsFb7d7wRsgcIaq7lBVbQSOblinG9VJwzLryRRryRRKjmeH5geH7RHn8hBGnAfETFDhGAmzWPRmr3fOCn0us87r9LmKZW+6cXZ9bN7l7RkRTmvSH/6Q7OJF1LWr5JevEE5OEZ88iRjXqOb3I3sEVzcCB6TiGooO2iicaqDjahFh7hyhORydhMGN21S+9BdDy/T8NL2f+dzQMuvAWoe1Fik3Iswdx8L25nOci3it+fTw/vVVyv2vFettGdSzI3kf92Pt/HCEefPYAnKvxWhrAFeI3UFQzBQcMxwGK/pIyggXIO0EUMSXS2fQIiSLy1gXDMWXZ8pSIiSKJUpYhGkT1atESYmF008RhP66yuPxeDwez90Jo4jFJ58mrlSZWFgk7/dp3bpx/w09e04cSWZrJZrliEAK1tY6hdPTWmw0uomaSiQ4BE6EBLt0dwOkNsNgyQbbJCMey5Outq2/W+JkC7fLsci9RuCYXn0N7LCoXf2lv0e/Z7j4x9/EPoBQ9rmlnJ883h9atpoF/Kvv19HeF/FY0RMx3xUnuUF9x7olWnzSXSTZ5aST3SJwRKpLkq0gjSKP6kW8eVQhLU3Tq8yj61NQTiBOBoJ3DnnGenaJN5Z//57R5vX9jjbvnKZ89acIusfu9gR0/Sz9pT9CVy7tOt1TyoA4TgiCAG00ucox2pCmKXmW7ckEsI0e72Sjx1v5Hu/HHS92ezx7gNju8gZyXURkZKbo8rZ7oXgPCd55cfGtU3gAt2zoNFXVpqI7OATdsE4vrJEGZdaSaVrxBFocQoHmseI+EeduvCPOBYKIGpXNXu+AlFv0uETObfpcZ5036HIBTW9fj23T5T2/ULi83/Eub8/DY9OU3ssvo27cQF24gF6+TXTkCNGRI4fTzXmnqzvcrUtAIkRM4eq+hSWl79YQtkJfNBAyQIdlQpMN5PAxx1pqv/ElhN76bnUCOn/3Z3e4kp0phFznHGIwMaApcxrB1k3ySvA8V6vDtSGN9u8gNr671UeB/RdF0/U2/dXhiT4jiTDXpogvF7K4eR9DnOgOElTKSFdHEAIO6TRWBKiwdNf4cqkhDgRaWsoiRbmM2uQ09ekZkkrloN+Wx+PxeDyeMSculVk4/SSlao3m7Dy9VovOyu2DPqwPJHP1hDgKmKrG9LoZea6RWoOUReTwCLAiwIgILWIEjsDt3pXctykWS25zBIJ41IL3Zn93A+cs7iD7u3WPybW3hpbJcpXq3/pHtC/f4NKXv/NAYzu//FSPpyeHRc63VyN+721/Pf+4YYTk++II74qZHeuapHzGnafp9n6cUjpLrNok2SrCGfKoQRY3UWGVfnmW3tQJTK1RCN5xDEpBnuHQXO++Mog2v7JjvxvR5h/ap2hzacuUbn+K0o0fRaiddX0uyMhmvks693XsNgPA+yMIg4g4KmoZcpWjjUJpRZr20Q+Q1vB+RBs93tbRU4VJ0fd4P54cwtFYj2d0rP8v/4bab36J+OK1h+rsCAQkgSQQAmUsSlu0dfTzwvH9yJr3puAtBoK3BZ3BXWZ5vR+RVVRVi4ruYmRAJ2rQC6v0wwqrpVnacRMj/OnhoLlrxLm7S8T5mFL0ei9Q4QgBFfLNXu9lUpZp8zZt3iHjNnaforCElERzc4XLW3iXt+fhMOvr9F58CbOyQvbuWWy3R3zyJOH09EEf2sOTtYrvlQ1X9y4RA1e3FZZU3ESJFrkxoBqoqIqIYpwMDk2EeenPv0d04erQsvTHP4k+ubTjucZanHM4x+YEh2PRdle35LXG80PbSNOi2v3DwfoApz62129hV6ze4eoOywm1+Z03/Y+Es8V/G47ucPwm0zk0TmRIKggXImwRBSedBudQMiKPSwjjhuLLTWaJhcRFEEeQ9m9TbU4SRhGTizv/Vjwej8fj8XjuRrneYPbkKcqNBrXJadort+m3/T3pfhMEgsVmiWocUooka6sdhNZgHW6ENTxKlnFCYHkwd7fD0bcZFkfuFBJBNEJ351Z/d4R0NZzIcKJ//w1HRKV7jXL3+tCy6MQZyl/8edbPXuLK11/etSs0lPArz7eZKg2Pq/7pe2W+cdXXPj52CMF5Mcsr4uiOHu8EwyfdRY643XZQPxjSGZK8RZyvA4I8bpJHDVRYoTd1gv7McUypWojeSkGaAY7ctDm39qf3jDaP9zvaPJujfO0nidaeAbtTO7ClW/QX/4S8+RpO7G6sVwhJFMWEYYg1hjzP0FqRZRlpmmLtoxsnAikoxwESSHPf4/24MqbFeR7P/uOMofVbv0Pp5k0WvvUDsqNzqM89T/bJZ3Cl3feuCgFRKAkcKGPJtSGUhZ9NW0cSSoJHifEUAoJ4S5QIIjAZBAk8gCtbAJHNCfMcJROysERHNolthkOSBWVKuktFdZCHwY33WGMHmrYYxJuDE66IOHcSROEGBwtjqH1LYhJmiJhE00LRQtEmpExEA00XuExEjYgJIprIEX89bbi89fIy+sYNzHqL+NhRei91iY8fJz516nC6cz0jR12/Tvrmm9h2m/ziexAExKdPI0ul+288rmy6uvsP6OoOQERATCqv4EjpuxZC18htgIsruKiEcBb5AIM3B4VcXqX6v//50DIzM0H35390x3OdA+ss1lmEKFItYgzzwdZM8I54mvP14YkDte6/R7rBwJB6BtzuJxbsFc451u4Q9CdOLCH2OmLcGGDQdTjCCMhHwYkOuABcCemaxaQyLIHTaBmRx2UsIZHKN+PLjXaESAhBBIKANkoIqpOT1GdmiZJDfC7weDwej8ez79SnZtB5UfVltGL95g1kEPqkmH1mshKz3M6ZqsVcW0vp5zVKkcZGEU6pkQy1WBFgidDSEtk+kc1QcnfjjxZL36VUKKEwRCLE4jAPaIbZLYIIaaewwW2kU1jRRbpokIq0vwhgcvUN8qSBCbc+J6Uv/jzq3FusvPE2QRyx+NmP7mp/jcTxTz7a5n/4bhNtt37T/+b1Gkdq65xojOZn6jk4bok63+EkL7hLVNgaq5DAM+46dZfxlpgfSbJDYBVBvoaRcdHnnUwSmAxXleioQtRaJu7cQva6kFL0eiNYzy7Ryq4yX/0Ic9VnkXdoABvR5rd6b3C9+yr2AdIiHhRBQNz6EGH3GPnUq5jy9Tue4FDNt9DVS8QrHyVMF3e31yAkkAFKK5TSSGnBRfStIY4iwjDaTNV7GKQQlCJJposk3lgKHA5jHNUk3HWTn2d88SP5Hs+Azte+hrl5c/Nxcvkmtd/9E6b+6b+k9ptfInxAt7ccRJuHUqCtQ2mLsY5U7YHLW1AI3kJudXibB3d4b+wqthm1fJ3E9MllTDtu0A/L9MIaK+U5umENO44q6geOwx1xLgmImaTCcRKmsSj6XKfLe2TcIuUmPS6xzmt0OEfGykgd3ztd3u8WLu8LF7zL27MD5xzZuXOkr7+BuX2b7Px5RKlEcubM4Ra64RFc3SVAYkROxjK5XEdbhzA1srCClAIdlAh1Ov7fINZR+60/Qqjhc077v/zZwrp759OtBQfOusHEGMGRqLNZSe2c4M36J7DbBWSXU2//u62H6pOjeCf3pXtzBdUbdmJMnjq6x6/iCrE7CIpJemPYX104UhTSVREuQtjibz90CisC8rBMHiaEShXRc1kODqQWIMGFUKk4+p01Ks0JgihicsG7uj0ej8fj8Tw4kwtLNGbmaM4tEJfKrF2/isqygz6sDxRCwJHJMkkQUEtCWus9nFLFNf8I3d15UMaJAC1LSKcJXb7rbY2z9F2OcQaNJhIhcoRD/dJVkbYGroZwwYH2d0tnmLr9w2I8dICQktrf/IeIcpVbr77Fze+9sev9nWwa/usPd4eWKSv4F6/UaedjfzfreQi6IuHb4hTL7BwDOcYqn3DvEY1QMA5sTpKtEqkOVkakySSqMkHenKc7/QTZ1JEikj9N2RjodZjdR5snJ0d27BtIUyW59TmSW59F6PKO9S7skc19k3Tmm9hglxHxQhBFMVEU4ZwlUxlGa/I8J037GPNok0+EEJSigDiUqDt6vM0eOMg9B4sXuz2eAWu/+3t3XS5yRelbP2Di//FvmPgf/zWlr38P0d/dTYcAwqDo8oZBl7e25MbSVxr9KCdRAchoTwTvjd0lJqWerxObjFyW6MRN0qBMN6qxWpqlF1bGVUf9wPH+EefhWEecF73edSocpcwSETUMffpc3xZzfpMe79HidTqcI2cF9wD99A/C3bu8bxVd3mfP+i5vD84Y0h/+kOzCBdS1a+SXLhNMTBKfPIkIxi+a+YEYcnWHD+DqDkEECCL68hqWlJwu5HWMAR3XIExAiEMRYV765qvE77w3tKz/oy+gzxy76/OdNUARYy6FQOA4Gm5FiuWc4O3mcIRYtftHBLboYXT6FNiDib1fvTB8U1yaqFOebOzti1gLuELs3ogxHyMcDie6hchNgrQTCCQSjXC2iC+PEqRmKL5c5INhhgjiRGLzNYSQVCcmac4uEMY+6tDj8Xg8Hs/DMXP8JNWJCSYWlgjCiNVrVzB71Ffq2R3VJGCyGjNZjTFpRjc1CGNwYTiysTArAnJZwYoALePC9el2n4qlnSZzOdoaDIZYRoUpYkQIO4F0McLVD7y/O8lbNNbPDi2TzUmqv/R/AOD6d37A7dfe3fX+Pn8k4yeODU8KXkkD/tWrdXy17+OJFgGviGNcYGrHukl6fMadp+5GN54hgNCkJNkKke5hghJZbRZVnyarTtNdeIo8aeL62ZABb1fR5hNf4PTkT4082lwgCPtLlK/9FFHrqbuORZvKNfqLf0xef3vXE2SkDIjjhEAGaK1RKsdoQ5qm5Hm266qCexEHkuSOHu9O6nu8Dzte7PZ4Biz8s3/GxD/5bzFT9x7wDa8M3N7/7MHc3nIQbR4GEuMcmbZoC5kypPoRuiE2BG8Z7IngXezSUTJ9avkaoc3JgjKdeII0KNOJGqyUZkmDshe9x4YN0dsVQreTFJaz7aK3HFu3d0BCzBQVjlFmiYAahh59rtHjPdKB8N3lvYHj+zw5q3sufG+6vJ98csvlfe1a4fL+zncx6+t7+nqew4NNU3ovvYS6cQN14SJ6eZloaYn46NHHI+p+yNW9+6jEDVe3En0Uq+RyHaNB2CoZAYQJOiwjrUaOKEpvr5ArLSq//9WhZWayQe8Xfvyuz9+MMLcORDF7ejboU5Jmc/071U+TB8N/H/X2b2/tI//UHr+L3WG1Yf29a0PLJk4e2fsXMhqQxYS8cYwwFykOi3A1hE2QrgIUcftahEV8uQgJtS7iy40lMALrwIQWEQiqNUe/1aI2OUUYRUwsLBz0u/J4PB6Px3OIEUIwf+oM5VqdycUj4ASr164UiUKefWOxWSIKJBOlgG6vj83zQZ3g6CY5axmTywpGRBgREdr8ge6hcqdQaJTVOCyxHF2qkkAizSzCxUhXP/D+7nr7Ikl6e2hZ/MwLJJ/5IgBXvv4yq+9c3PX+/tbTPZ6cGJ5s8NZqxO+942sFHlecELwj5/mBWMLcMVGkjOZT7gLzbrRjggIIdZ8kXSHQKTqpkU0eQVWapJOLdCePo1zhdN7OenaJN5Z/n+ud72Pvcs6ox4s8Pf0LLNU+gRSjvS8XLiRee47y9Z9EpjM7nyANavKH9Bf+FJMs73avhGFEPJhUnqscbRRKKdK0j37ECWHhPXq8U9/jfWh5DEZpPZ69IZqfY+If/Des/tN/zM1f+2W6H30Sdw8n0rDb+3/eldtbUJxE47A4iW64vLV29HONftgbGAGIcJvgbQaC96Od8CWOsu5RzdcJrKIfVujETbKgTDtuslqaQY3wAtrzoGxEnLs7Is7loYg4h0L4TpiizFHKLBJQRdO5i/B9cSB8XyBnbU9js2SpRHzmTOHyvrVcuLxvL9N7+WXv8v4AYtbX6b34EmZ1lezsWUy3S3zyJOHMXS7cDyMP7eoepIoQ0ZNXMfRR9HB5HWsEeVQjCAJMGI+/q9s5ar/zR8hsOC6w83d+Gle6+8/DOYu1xf+lEIDgWNTeXK/dAm80h/9GSv1vEusLxfZmDszdHeOjpnX1JvaOqPaJk3scve1s4ewOg+JOY4Sxjw+Dw2JFF+FiBCHCTQAQOA1CkkdldBgTKr0ZXx46iVWODEMYSqqNgGx9FRGEVJoTNOcXCcYwqt3j8Xg8Hs/hQgYBC08+TVKpMrW0hFGatevXHtnB5tk9cSiZqyc0SyEyy+n0czAWO+JrWi0TlCyjZYwlJLQpwu1+/CG1GRpDZhXgSEYqeIdIO1UkJLkyVnRx7N6NvrfHAlO3X0Oa4fu5ys/+TYL5YlLvpS9/h9aFq7vaXyjhVz/aZiIZFg7/5GKZb13zKU6PM9dFk++KE6R39NAHOJ53Vzljbz5QvenDIHBEukspW0WiUfUZstoCujZNWpujV5pHhcNx4WMXba4alG7+GPHtT4BJdqx3cZt0/s/Jpl7Eyd2NFwkhiaKYMAyxxpDnGVorsiwjTdPCiPCwxzvo8Q6kGFTPGvrK0Mu1F7wPIV7s9njuRErSZ05x61d+kdX//lfp/vyP3sftfWvL7f0bXyK8cPV9v/w2XN7xhsvbGLSDTNmHnzk0JHhrsKZw6j1A9NG9CLBUdJeaaiGtoRdW6UQNsqDEejJFLv3F3njh7htxzhhHnEMRgRNQImF64PjeLnxfpcelQdT5DbpcYJ0f0t1D4VsIseXyltK7vD+gqBs36H3ve5jVFbJ33gVjSU6fJqjXD/rQ9o5HcnUHKNnG0CKXazgTgq2QG4st1TFR0WM+7mJ36asvE79xfmhZ+pmPoD506p7b2EFEt7UOKSRVkTMVbE14e6/8aTrxsPOj0f7NzX8Xru6DOQevnr889Lg2P01c2dmt9UgYAwzcL9EYCsCiDw6EqyJsBekSBAbpDEpGqCgBLTbjy0MEKOhbS5wEiAQqkaXfaVOfmi5c3fPe1e3xeDwej2dvCKOIxaeeJq5UmVhYJO/3aN26cdCH9YFirl4ijgImE0maKnSag5S4ESd7KZFgRIIKEhwBkU0RD+BYSG2KxQ4EbzFSh7d0FaStg6seeH93YHMmV14bWiaiiNrf/scQxeAcF//kG3Su3NzV/hqJ49de6BCK4Z/9v36txnutQ15j5nlf2qLMt8UpVtl5j3yK23zMXSLch+Q64Syx6pDk68hYklcnSCeWUEmdNJ6kV1tEh6WhbR4k2jzZh2jzqHuCytWfImyfuqvxStfeo7f0x6jaOdyuznOCIAiJowQhJEptRJtr+mkPpfKHnhg21ONtih7vXFvamcJ6xftQ4cVuj+d9sM0a/Z/+HKv/9B+z/qu/TPb8fdze3/4BE//P/7Vwe3/t3m5vAQRSkIQBEkGuDbm2aDNweT9MP8R2wdtuCN5qTwRvgMAZqrpDVbUBRy+soWREK5n0gvfYcveIc3FIIs7hbsL3AgFlFO2B8H2ZjGX6m8L3a3S5SM76I99oyVJpq8v71jLZ2+9subzffde7vB9TnHNk586TvvY6ZmWF7Px5RJKQnDmDLJXuv4PDwkO7uuMixo+QnriKFj0MWeHqtpAHCTKM0GFCYPIHGpzZb8J3L1H9/S8PLTONKt1f/OL7bmet2fz8Cyk5Fm3dSFo3yevNYad0lL9Fkn0PAGfroJ/ag6N/cHSa0b56a2jZxKm9jjB3hdgtg+LvZOxc3QYr+kjKCBcg7QTgCJzCiIAsrgzFl4fGEhlJX2uIQUvH7FRCZ+U2YRRRbjSZWDyCHGGspcfj8Xg8ng8ecanMwuknKVVrNGbn6bVadFZu339Dz54gJSxNlKnEIbHRdHopWIsb9bWtEGSyjBUROigBgsiku54m64DeQPBWViERRCOMLha2ibQlhGvgnMOJ1i5Fq72nnN6m1h6OKw/mlqj83N8CwBnLhf/8dXo3d/c5OtXU/FfPdIeWKSv4F6/Uaefjax7xPDq5CHlJnOAyEzvWzdDl0+4CFff+6a57hXSGWHdIXA8hBXlzjqw6jRIx/doC/doCJhgey9lNtPmH9i3aPCZZ/RilG19E5hM7nyAV+dQrpPNfwUSru9ypIIpioijEOUuuMozW5HlOmvYx5uEnI+zo8TaOdl+jzPiOa3mG8WK3x7MbpER9+BTtf/iLrPz3v0r3538MM3XvWVDhlVvUfu/+bm8hioikOAywzpFpU3R5a0uamwefkSQoRIsRCd4AodNUVZvAanphHSVjWskUmdwZTeIZFw5/xDlsCN9lEmaocHwgfJd2CN+F4/v8QPh+D/UIwveQyzsItlzeFy96l/djiDOG9IevkV+4gLp+jfy9SwQTk8SnTiHGTLR7ZB7a1Z0AIZlcw9AlF2sIm+BMCWUsJqmBlFgZjbWrW662aPz//gPijrirzt/5GVzl3pMarCsSuq2zSCkIcSyGW4Mg18JPsVwedlA02r+5OUDl8o8DByOMrr13behaRASS5rE9diQPXO+EsnB2j1mvvRPdItnElZGuXkQwOg3OkUVldBARKLMZX14ipK8MqTAEgaDZjHAqI+12qE1NE8YxjdnZg35bHo/H4/F4HkPK9QazJ09RaTSoTU7TXrlNv9066MP6wDBRiagmIZMRGGPJ+jkuCHCjTmgSgkxWsQQoWQIckdl9J7bD0bcZBkvuNIEICMVo7j8EEmmnES5CugZOaBC9kbzWbmiuvUuUD39GSp/6AtGznwDAKs35P/wa6cruxnF+9EjGF48N39PeTgP+39+v8TAeJc/hwQnBG3KRN8TCjtHEKjmfdheYce27bjsKJJaEHnHWgjghq86SB1VUVKXXOEq/OoeVW2NW4xZtHuRTlK7/BPHKR8HuHFuzySrpwpfJJl/Bifwue9iJlCFxnCBlgNYDl7cxpGlKnmcP7fLe6PEWbPV4dzNNqkbv6Pc8OuM1AuXxHAJcs0b/pz/74G7vf35vt3cgKFzeQpCbwuWtrKOfF73eD3x+HhK89Z4L3gKo6A6hVfTCGrmMaCeTZMFj5Hp8LDn8Eecb3Cl8lzaF7xY9rtDjChm3SblBh/Os8/pA+H64aK0Nl3e03eW9fGvL5f0IMwc944HNMvovv4y6cYP84gX0zVtES0vER48ixkywe2Qe1tUtkoGrW9IXV9Gig0VBXszk1xZcUsOEZXCOwOzPbOcHRmnq/5/fR3aGB2J6P/M51LOn33fT4rPucM4hhGQx7G7G21lX4/WJk0PPD/R1Kr2vFNu6GNTze/UuHpi188M3uY2jCwR7HTNuDCBBBBCN1wQRh8aJDEkF4UKEbQKWwGl0EKOiEsJsxZeXkKjc0jKKcimEkmOyFtG5fZsoTijVGkwtHkFK7+r2eDwej8czGupTM0wdOUZ9eppyvcH6zRtkvYMTEz9oHJksEweSkjN0u0Uv7Mjd3RRCWxbUsGJD8LZEdvf3VhZL6jKssyinCUWIFKO5py36u6cRxIP+7h6O3YlVe38sjqnbP0RYPbS8+ot/DzkxDYDJcs79x6+Sre+Meb4bf/vpLmcmhsdT31iJ+Xfv7H7CuOfwcllM8pI4QX7HhPUIywvuMifd8sh7vDeRkiCWxNkakeliw5g0mUDFVVTSoNs8RlqZxm6b3DJ20ead05Sv/jRB99jdnoCun6O/9Mfoynu7jjYPw4g4Lsa08jxHG4VSijTto7W+z/Z3RwpB+Y4e71RZupk+sPQKz+54zEZvPZ59RIoHc3tfHbi9/+m/oPYb/2mH23vI5Q3kupg9lJmiy9vYBzyZbgreZpvgvXcXnAIo6w6hzemFNTIZ04onSL3gfUg4/BHnGwgE4ZDwPU9AjGKdHpcHwvcyKTfpcI51XqfHJRTtB7pIEUIQbnd5nz275fL+7ove5X2IMa0WvRdfRK+skJ19F9PpEp88STgzc9CHNhqy9YdwdYuBqzsilbex9MnFOoGtoHWIsg4dVwikRAclwgeI29tXnKP2u39MdOn60OL8mSfo/ezn77u5sRbnikloQsKxaGs295p8gcvV4YkD9fbvIhhMhlEfAQ4mBSVrdendXhtaNnlyryPMbXHNEQbFHcaYpSE40QEXgCshXROB3IwvT+PCPRNoQ6gUiXEEVrKmcpJE0peGpakyWa9H1u9Rm5omShLq04/pOcLj8Xg8Hs/YMLmwRGNmjubcAnGpzNr1q6hsTCeVPmZU4oCpasxE4MBB2s9wYbAvwyRWSLKghhMBWpaQThPa3Y/paWfIXI5xBoMhFhFyRHdo0pWRtgmugnARVrYPrL870j0mVt8aPr5yherf+kebqVO6l3L+P34V1b2/Yz6U8KsfbTORDL+fP7pY5tvXfKXjB4E1UeHb4hQthse7BfCku8VH3BWk26e/dykQ5RIhiiRfI8rbGEKy8hQqqZOXJuhNHCMrTw6lUIxTtLm0JUq3P0Xpxo8iVG3HehdkZDMvks59HRvuzj0vhCSKYsIwxBpDnmdorciyjDQtJio9KJs93oEkN24gelu0wddajjFe7PZ49oAht/c/2XB73/3jJZSm9O0fbnN7v4zobcXiBAKSQBIIgTIWpS3abp1UH2jCmAyL/zYFb124+faIQvDuEtuMflgllwnteII0KO/Za3hGzW4izg+H6A0bwneFhNlN4VsSDYTvS/S4Qj7o+O5wlnVee2Dh27u8Hy/UjZv0Xn4Zs7pK9s67YCzJ6dMEjcZBH9poUH2w6uFc3RSxeKm4jhJtHAZUHYtDGYtL6tggwklJqMdzAK70F69Q+vYPh5aZmQnaf+/n4R4pLRs4V8SXW+cQQjAtc6pSD9aVeL3x9MD5XiBsm1r3DwbrBS7/xB6/m92zemHY1R0kMfXFPRZqjQFEEV++147xR8SJDCcU0lURLkLYKhKNdLaIL5chgbZIZ0mynDIh62mOkQ4dOOYmSkSBpLOyTJQklGo1po48hqkPHo/H4/F4xpKZ4yepTkwwsbBEEEasXruCeUjHmufBWJwoEUlBLbD0uhnagQv2J9nHiqCINBcBWsYEThE8QGpj7hQ5CmU1Fksso5FNSBa2gbRlhGuA40D7uyu9a5S714aWRcdPU/6Jv7r5OG93Ofcfv4pO73/f2kwcv/rRNoEYfj//+rUal9o+5emDQCoivitOcI2d40QLtPm0u0BpDw1m74sQUCohwpDQKZLuMkFvDR2UyCozqLhGVpqkO3GcPGlufgofJNp8uvwkYsT1a0E2R/naTxKtPVOMO9+BLd2iv/gn5M3XioqE+yIIgpA4ShBCotQg2lxr+mkPpfKHijaPQ0kpCjDW0VfFeFBuHdp3GYwlfoTG49lLpEB9aMPt/d/S/as/hpm+n9v7Twfd3ltubyEgCiXJYMZorg3aWHJj6Sv9YC5vGQwL3lYXjr49QgAl3RsI3hXyIKEdN+mHPtLncPF+EefBoYo432BD+C4xR4VjlJhDEpGzNhC+rw4J3y1ep8dlFJ373pTd1eV91bu8DxvZ+fOkr72GWVklO3cOkSQkZ84gS49xQsVDubolQsRATCpvYUlRokXkaigjMRYMAS6poMMywhoCu3fVGXtFePYy1X/7Z0PLXBzR+ke/9L493RtYa4qBG+sQUnAs2ooB6/AM5xrDE71qnT9AuoFbQD8N7mAmUDjnWLtD7J44sbTHQq0DbQduCTFWrm6Hw4luIXKTIO0EApBWoWRUxJdbuRlfXhMh3VzTMoo4kcQlyWQ1Iu12yNOU+vQscalMbXL6oN+ax+PxeDyeDwhCCOZPnaFcqzO5eATnYPXaFax3l42cKJAsNErUsYQC+v1sX6LMNzAyIpdVjIgwIiK0OfIuzsx7kdkchSa3CocjlqNxIwvEtv7u+oH2dwtgcvVNAj38+qUv/hzhqac3H2erLc7/4Z9j8vvfu56e0PzdD3eHluVW8C9eqdPJD884mefhsULyQ7HE22Jux4hhnYzPuAtMuu5dt91zhIBSAmGIiEIi1aO0doUg66LiOll1Fh3VSCvT9JrHUXFt85h3E21+rPE5npn9G/9/9v47Sq7svu9FP3vvkyp2dQS6G3Fy5AwnUhRFiqRGskSKpERbtq5lkQrXkqmr+96TvZ5ky9ZbDtf2vcuXspZk2dcSJVJ0oCxTYiYlkmIYksOZ4ZATMQmDDDTQuSuetPd+f5xCdxe6ATSATgDOZ60Gqk+dOqG6wtn7+/t+f+wo3Y0SG5dOJ1B49dsoTDyC6uxcZQVL0vcyndEvkQYTK+9fdaMC1/VwXQdrDXESodOUOI4Jww76MgxKjhQEXib+G2MxBlpxbnTajuRid07OBmH7ynQeeQNz/7Tr9r7nlrW5vf/PDy+6vWU32tyRktRY4tSgDZfu8l5V8F4/113m8G7j65COKhIpn6Zbpe2U1m0fOZvJORHnXL0R52cRSBxKXeF7T1f4dhaF7w6nulHnp2lysCt8nyS9iPDd4/KeXubyfip3eW9nrNZ0nn+B+PARkjOniY8dQ/XV8PbvR2wjkW7dWXR1ty/D1S0wQhOKSWKxgMUi0yrGQKINxi8jhCBVPo4OL7rJzUbON6j+8ScR50wINv7uj6LX6HA2xmAxWGspSs2wyoRsax1errwOvdwZblMqzf+59Gv8wJWfxGXSnp4jPqc/ef/+dY4wNwYwmavbkYsRgdsCEWIxCFtGGA9piyibYoUk9EsY5GJ8edkIjLZMRRFBoAiVYXyggLWW5swMfqGIXywyML4bIfJJrZycnJycnJzNQyrFzptvxS+WGBgbR8cJ86cnLsuplnNpDJV9AgkVVxB3YhLDeef3NoJUeiSyQCo9DA6uCRGXEJscmgiNIeoWJPtyY1KYBApphrr9u4tZ/26xNYlf0moGZ56HZc+TEJLyT/0iorgUndyZmuPIF76BWUNSwpt3Rbx5V+9Yd7qj+IPnylxGSnLO1YgQHBWDfE/sJjlHVvPQ3GePsdvObk4fbyGgEIDrgOtlUd6tGfz6BFLHxEGVqDRI4pUISyO0q+OkywwPF4s2d2WB0fLruXP4vYxXHsJTKyPH1wupS/hT34c/9QZEujIt1jptopHHCIcew6i1FdFI6eB5PlIq0rTr8taaMAyJ40t3eatuH2/IEv82K7k+59LYRjNROTnXKGfd3j//bmb/+Rrc3hPTS27v//p53MMncSR4jkLQ7eWdLrm807VeUUkFqit42zT7X0esp2IZ6A6+DglVkUgFtNxKLnhf1dhlovd5Is6vMtEbVhO+hxEoYuZocZwOE0TMEHKaRo/wvXqF5oV7eT+Jnp/f3BPMuSAmiuh873skp08THz1KemYSd3QUb/fuazyS2C5zdaeX4OpWCOECHh15GktIIpp4tkqcgrYWbSy2UEErLzP1pttM7E5TKn/8SWSjd1DU/qGHie+99TwP6uVshLk1WfrKbre9mFge21t4pa/3u67Y/hKOnsoem+4Gs0qV8iYxd7jX1e1XSxQGzn8dclloDcjsWmMbRZhbDEa0EdZD4CBsPwKNtJrILaClg0ot0lpKUYqLZLIToRyIlGGsVsBVkrDZIIkjygND+MUSpVr/Vp9aTk5OTk5OznWI47qM3nwLfrFEbXSMuNOmPnVmqw/rmkdKGKsVKJgUT1jaUbJpUeZnSWSAlj6J8jGoTPC+hMmYjgkxGGITIxC4GyR4S9tNUrJFhPUwZ9tfbQFeXKdv4bXe46v0UflbP9+zrDUxxdEvPoZdQyzx37mtxY19vU7wAzMef/5qnm55PTEjyjwh9tGk10AggdvsGe6wE5dUkHJFBAF4TjYOVw4yifCa0/jtGYQxxEEt6+ntlemUd9KujKHV2TZ1WbT5y+eJNgeQwmG4eBu3D76HfX1vpuhsTMKZQOB0xihMPIK7cMuqyaK6OEFn9IvElZexrOX5FTiOi+dmf6c4jkl1QpJkLu/0EtuBCCF6WtflbD+u5VndnJxth60ud3v/rYu7vZ94ntq//2/U/s8PU3z0u3hxjKMk2lqi1JAaiBJNmOi1FY2J1QTvmPUWvAPdIVQFQqdAy63Qcjeu+itnM1iKOKdH9BaZ6H0VRpyfJRO+ywTsWCZ8S2JmaXHsHOH7VRY4QIdTpKysJFx0ee8cXebynqb93e8Rvfpq7vLeBuhGg/Z3vkM6M0v82mvoRgNv716c4eGtPrSNJwkvy9UthA9ItIiImSGSCwgEylRItCVNDcbxwPFInAJSJ8htVuJa+vhf4x7pjbyKb9tH+x1vWvM2bLdy11qDEjDutrrLJa+WXk/k9H6XVxsfW3rsFrq6jTYsHOs999q+8XV2JdvsesKR2chikyf+LojoZO1hbAlhikib9TpMpUPsFhBGII2lEEaUhGIujOkYDb6gXHToL7mZq3t2Br9YwisEDIzv3uqzysnJycnJybmO8QpFdt54M0GpTHV4B+16nebszFYf1jVPX9Gl6kLFU+gooWMldpNFj0gU0MIlVQEgcPXaBW+LpWMiDJbYJigErtiYVDNpqghTQNgKWLGl/bvLjaP4Ye/7w7n5Lgo/8EjPssaxCY5/9QnsRVoDuBJ++Z4GfV7ven95pMCTpzcmIj5ne9IWPk+IfUyxcs57nAUesMfw7Ca1d/N98F1w3KylmE6RcQe/M4vXmQMBcWGAuFAj8cq0q+N0yjvQKit6ibrR5gfnvkg9OrXqLoSQ1IJ93DL4Dm7q/2Gq3q4NORVhHbyFuyhMvB0ZrpLCJzVJ/wt0dn4Z7U+tbZtS4roejuNgtM5E7zQhiiLCMMTk0QzXDNdwVmdOzjZGCpLb9pHctg9RbxI8/gLBY8+gZlbv8+tMTFP++JcpfeprRK+/jfb3vY5w907iVKOEwFUSY1I8N4s8vyBCgRJZv1ZpyQqhYlAeWSD5lePrELCEqrj4KWMRlJPGumw/Z+uw4uwFfSZ6I+g6v23m8j4rimPX6+W0aZwVvh3KWDQpHTQtYmaJmEXh41BC0yFkEomPRx8uNRyyKl4hBM7wMLJSITlxgui113CGhrHWkM7MENx2G6pW29oTvU5JJieJXnwR3WwSHzkCQuLfeCOysDIi6drjHFe3v9be0Q4IB4FLRx7B0CGljW9rxKnFWpulixQqWCExysWLttfnvP+tZyh865meZXqwj8bPvvOSorazfogWYyy7/BCv+1mY2n28VOt1SQfhE3hJ5iCwegD0DVd2EldA49Tkih50/fvWOcJcd6uhlZMNrLdJpbNFY0QHaQsIq5CmhrQp1lo6QRmLQKUWJ0moGkGYamaiGCcQGAXj/dlnQ6dRJ00SajvHCMpVitV1dsXn5OTk5OTk5FwihUqV4X37sYdfQycJjdkZlOtSqKz1Oj/nchivFajPRhSEIoxTfFfh6EtzBl4RQhDLEkI3QQW4uoOrQ2K1tjGtwRDaiAI+CRpXOBgs+hJ6gK8VaQaxIkbShxHzCNECu/lGGAEMzLzAmZ0PY9RS7+HCIz9JcuRV0uNHFpfNHzyG9FzG33TfBYuDa4Hll+9t8O+erKKXmT4+/HyZ0dICuyq50eF6QQvF0+ziRjvFDfQWVdTo8LA9wjPsoi42Yd7J6xZbRAAC0gSsRQGqHaMdP+vnXRxEpSFWSlK3iBs38TqzSKNpxhM04wkCp5+R4h30B/sRYuW8SdnbSdnbSZjOM9k6wFx4aI1O67Uj0yrB5A+QFo8T9z8HqrclgvUahDsexWntwZu7C2GCi2xRoJSDkpIkTUmSFCkNWJeO0XhdMTxvV3Z1kzu7c3K2mMzt/fCS2/vei7u9B37nvzHyf/8Jfd96GtvuEGlNaiFKzNpc3kKCcrMemybZkEhzX0cU0jaRDAidIh2nRMOtXm2J1znnZWXEOYsR585VG3F+FoHCXXR878ZnEBBEzHSjzk8TMU2H0zR4hTov0mECTdbDd1WX99RU7vLeIuIjRwiff6Hr6D6EcL3rSOjmsnt1CxEAkkS0SZgnlgtIFMqUiRNDYrL6fBOUSZUPFhy9NT3ZVsM5cory//xyzzLrOtR/4T3Y0qX97Y3RmeAtLHu8s65uOObfT8PrdTJX6stc3ckDbGXlz9yR3iiy0vAAXnmdI/ZSk8WXI7ZXhLloZYkjtoC0FQQSZVNir4iRDioFaS21WIMVTLRDhAOpYxnvxpefdXUXyhVc32dgfGOq13NycnJycnJyLpXKwBAD47upDA5SqFRZmDxD1F5bL9Ocy6PgKkY8QclXkKR07OZPeVghiFUJgyKRAWBwzdrHYKnVdGyMthpNiisc5AbIAwKJ0sMI6yApYURny/p3KxMzMHugd6FU1H72f0OcMycwe+A1Tj/x3EW3eVMt5adv6211FxvB7z9doZXkYtl1hRC8Jkd4Royjzxn7B6Q8YI8yauc351g8DwI/K0J33Wy+P0kAi0oj/PY0blTHKI+wOEziV4n9Plp9e4gKA9iusB2mcxyrf5MD03/OZOsFtIlX3V3g1NjT90buGHovI8W7UGJ90w0EAre9h+KpR3Aa+1f9wE1Lx2iPfZGkfGhtCRIic3m7roO1hjiJ0GlKHEeEYQedz9de1eTO7pyc7UKP27tF8PjzF3V7V//8r6l8+ut07rmVxhvuJt43huMojElxlcRR8vwGq7OCt07AxIAHRKB81mti3jMRpJaOU8I63XAlISjHC1eb6TfnvFisyC4mFgVvYbEWhFWAzO4XmUh0NZIJ3xVcKl3Hd5uUFhHTRMzgEKAokdIh5AyKAJcanqj1urwPHcIZGsKa3OW9WVhjCF98kfTMJMmZM6RnzqD6+3HHx6/x/tzLsAai+mW4ut3sewKXtjyKpkNKh8AMkXZF7kRb8IogFdopoHR0SX3jNhJRb1L5o08izhmoNH76b6DHRy5pW8ZaTDfCvN9Jqaqku3wXL/b39qty49cIoicBsKYAyR1XcBZXRhonNE5O9iyr7V9nV7fRgMnSYRx5SW75jcSSYkWEtGWEdRCmrxtfrojcIsIIhLFUwhgPyekwJMEifKgVXfpLmWjfXphHpynlgSGKfTUK5coWn1lOTk5OTk5OzhL9O8dIowhrLCZNmT99ioHx3bi+f/EH51wWO6sBU7MxRSVpa0iExFtnR+PFMEISqTKBbpLKAo7p4BhI5dr+7qlNiYQA44GUeNIlMvG6R40LPKTtx1gQJBjRQFqF2AI5IghnKNeP0qzuXVxmClVGfvFXmfwP/64nvnzq6ZdQnsvI62+/4DbfvCviaN3h0ZNLjtKpjuIPny3zq/c1kPnE53XFpKjyBB732hMUWEpXU1jushNUbMSrYmTj2x+4TjatHwIISGJIANfN+mInHVTSQbslUq+UzeWkLSyCxK/ghQu44QICS2LanGo+xenWswwWbmG4eBueKq3cpSowVrmPHaW7mQ0PMtU6QGxaK9a7XIT18Odej9PaS9z/NMaf711BJsQDT5OWjuLN3otK+i+6TSkdPE+RpilpmmKMxnFcwjDEdV1c181d3lchudidk7MNsdUSnUcepvP2h3BfPUrwrWfwnj2IWKV3jEhSit95geJ3XiDZOUjzDa8jefAubDlAG4vvyvN/OC8XvPVGCd4xIqUreHfPzxNU4vlc8L7GWIo4lwgrrqmI87MsF74NGk1rUfiOmUFR6ArfbUJOZ8J3UMO9cRw13SQ5fRpdb+DtGqfd7uDt3oV3ww2I7dTj9hrBxDHhc8+Rzs2TnDiBnp/H3bkTZ+TShM6rmqQN4TyY9DJ7dStiWUfTIJZzSDwUBTqJzgRva7GFCkY4GKnw4+aGns6aSTXVP/4UaqH3eNpvfYD4/gtPWKyG0d0Ic2vZ62VuGWvhtHsfU4VeJ3Ol8d8XP95s8nq28lJ74dhEz6SNkJK+PaPruxOtAZk5u53t5OpuglVgA6TtQ2EQ1tAJsghykVi8NKVsBI0koR6naN8QOM5ifLkxhubcLIVKFcdzGRjLe3Xn5OTk5OTkbD+G9uwjjWOstcyePM7cxEkGd+1BOfmU70bgKMFYQXAsEUSppq0kLnbTRREjFJEq4esmWvo4JsJaiRZruyaPTYKUEgxI6S4K3uuNNBUsEUIaLPNYUQdbQ2xB2GzfwkGioJ/EWyoAT3bcxOjf+Tuc+u//neUxmaefeA7luwzecdN5tycE/PTtLU40FYcXlp7352c8PnGwwE/e3NmYE8nZtjRFwOPs43X2JAP0Jm3sZZayDXmOcRKxwZ/PjgMBEEaAl7m747gbdS4QgJO0UEmb1CuTemW0U8SJmxihSPwKfmsKJw0BMDZhqv0C0+0XqQX7GCneScFdKSgr6TJcvJ2hwq3MR0eZbL1AJ51dt9NS8QDBmbeSlg8R114A2dtGwvhzhDu/gtO8AW/+DoS92PyXwHFclFSkOiGOY5SjAIvW6WKf75yrh+1hv8jJyVkdKUhu3Ufj597N7D//ZVo//mb04Pl7RbqnZ+j/xFcY+v/9PsWPfg772gnaUUqcmvNHm58VvLGZ4L0BkeauiSmkTVLp0XHKhCqg7vVvE/9fzvpjrumI87NIFC5VCoxSZA8eA1gMEVO0OUbIGSKmCTlFQ7xMe3gWe0sfxtFEhw6RTJwiOnqM9pNPoufnt/p0ril0s0nnO98hnZ4hPvQaul7H27v3+hG6TQLtKejMZBHmZwVvb2UF7up4XVe3Q0ecIhUtNDG+qaE1aGNJtEFKhfaKpG6AsAa1AZMjl0PpE1/BPdQb3x3fvIf2j7/lsrZnjMZag4dmp5NNWFg7wkt9O3vWU+kUpfaXu/c7kNx7WftbL+YP9z4H1fERHG89BWmbtUNxZDaicLZH0Y4VEVYkSFvKYhNNEWkSIreAkS4yzarrB2JDYi1nOhGx1DiuXIwvB2jPz2GNoTwwSLl/EL+4zvHvOTk5OTk5OTnrgBCCHTfcRKFcoX90HGthbuJk1oInZ0MYKXkEQElaNILQbk01vxYOsSyihYOWHo6JUXbtPcRDE5GiiUwWc+zLjSlelWYAYX2krWIxWWHqFiCwDMw8hzC9z1F025sY++G3rlj/5KPfZe7gsQtu05XwD+5pUvV632+fP1zkqdPrG+mcc3WQCIfvij0cY6UYPEibh+wRyjbc+ANxHAiCbJzuulkxRxSzfDJWYHHjBkFrCplGJH6VqDRE4hbpVMaICoPYZW4li2EuPMTLs5/mtbkv0YgmVt21EJL+YD+3Dr6TG/sfoeKNrdtpCQRu80YKp34Y1VqlIF1AWjlEZ+yLpMVja0qsEFIuCttGa+I4Jk1ToigiDEOMuconsK8j8tKEnJyrBFst0fmhh+m87azb+1m8Z19d1e0tU73k9h4dInzjPUQP3olbLaJWy9ERMosg1Un2A0AIKmC9LLiuSSBt0nHKdJwyAHWvn2o8d7WafHMuylojzvVV6/Q+i0QhqeJSxZB2Hd9tQqYQCBQFHMpovwg3CFiIEWdew2vMEozvy13e60g6NUV44AC62SI+chgQ11F/bgNRM4stNykkLUjjzM3tVrt9lS9O5up2iOQsmg6RWEDZAEVAK027sd4WUSxlUVfKx0mjbfE29h9/nsKj3+tZpvurNN7/46AuvcbTWjCm6+r2w8Uounl5D8fLvZMXleb/RNCdOEnuBLt14mjcbNOa6q2gXvcIc60BC0plA+ltEPFlsVjRQlgXgY80NZTVWdSjV0QYizCC/ihFAKc7HUKjccqyJ77caE1rfo5itYbjegyM5b26c3JycnJycrYvUil23nQLJ186wMDYOLMnjjN/eoL+0bE8hnUDEALGi5LX2hYXS1sLAmG25LlOpYfAgAGEwTERRsrF3rsXIzQhRVkgMgm+9PCkS2ySiz/wEsj6dw+i1Zmsf7dsYukg7OaP0d20Q23uJeYG71pcZqWDeehvMNqcZ+Kb3+1Z//hXHke5DtW95xfr+gPDL93T4IPfqaKXFT788QtldpYXGC/nPYCvN6wQvCx20rABt9vTyGWCa5GEB+0RXmCMSbHWNnOXiaNABtAJsw+uOM4Eb99luQdWWIMX1TFJO+vjXRjASdpYIPWKBM1JlI56Nt2IT9GIT1FwBhgp3kkt2ItY5XOn4o1S8UbppHNMtQ4wFx7GrkPrB2kCgpkH0c19RANPY91Gz/1WRURD30GGR/Fn70GmF3uuBUo5KClJ0pQkSZBSg3XpGI2Xu7yvCnJnd07O1cai2/tdS27vodp5V3cnpql8/MvU/tnv4/zxp9GvHMOuVpEkRNfhTbePtwEdwjr2HnJNQjFpkEqHtlshUj4L/gBmW0gkORuJFWfd3pnTO4us6t6+RpzeZ5E4uPR1Hd+78ejHogmZpMVRQjFJWkvQ+z2a5ePMnn6U5uTzdI4ezF3eV0h89Cid554nnZ0lfu01hOvh33TT9SF0pyE0z2Qu7qQF4VwmePvV7GeNQjfCByGwSDpiglTUsSR4toa1WZ/uNM2+F7RfRqvMBe6mWx/R5hw7Tfl//FXPMus61H/hPdjy5QnP5mzPb6PZ42U9p4yt8WLf3p5eW8K0KTc/le3Tgo3vv6z9rRdzR3pd3cpzqYyuc7JBqruvK5n1BdsOiBCLRtgywngoGyCtphNUEIBMoJgYfG2ZS2Kascb4Ft9Ri/HlAK35Oay1lPoHqAwO4QbB+feZk5OTk5OTk7MNcDyP0ZtvwS+WqI2OEXfa1Kcmt/qwrln6fUnZlRQlCEfRSrbOSZ/IgFT6pNLHoHBNJxPA14AF2ibEYEhMgkTgbkDEssDLHN4UkDbAiBaWtbvQ15NS+zTFVq8jNfZreN//I+y4/87elY3l6Bcfo3nqwu+lW/pT/vatvT2KIy34/acrtJN8zvN65ZSo8R2xl+gcv6mD5R57khvMFOePYl0npIJCkBX/ex5gIUrArmKeMyleZxY3apC6RaLSIKlToF0dIyoMrDpt20lnOVp/lAPTf8Fk6wD6PMUyBaefPX3fz+1DP8lI8U7UGlsuXAwVDVOYeDvu/B1gVkqdJpiiM/pl4r7nsWINnzkic3m7roO1hjiJ0GlKHEeEYQe70X+vnCviuhW7Jycn+cxnPsNv/dZv8aM/+qMMDQ0hhEAIwfvf//5L2taRI0f49V//de6//35qtRqu6zIwMMAb3/hG/sW/+BdMTuYXlzkbw1m399xv/iILH/gpotffij2Pc00kKcGTL1D+4H/F+5d/iPzyk9A6R5xYTfBO11fwdmxKMWmihaLtVoilT93vzwXv64blEedd0dsKhFGZ23uL4r82iiXhe4wiu3Dpx5IQMknHm0CPKvSwpNk+yMypLzM38ziz3/0rOq+8gNV59e9ascYQHjhA9NohkjNniI8eQ1armVPe3T59hDcEq7O48vbUUmR50ganAEH/mnt0Z4hlru5pDCGxqOPYIgqPKNVYLImxKMdFOwGpCpAmRdqtfb2KZpvKhz6BSHuPo/m3fxi9e8dlb9dYg8Uw7EQUZPZd2LJ3c6jaK36WW59G2m4cX3oj2IHL3ueVYq1l/hyxu7Z3FHkZzvbzYjRgMle3kmsvpthALAYj2gjrI3AQtoayCZEboLvx5S7QF6e0jWamHdMUCQXP6Ykv12lKa36OUq0fx3XpH1tnR3xOTk5OTk5OzgbhFYrsvPFmglKZ6vAO2vUFmnPr1y81ZwkBjBUkrtV4ShAi0VsYdRuLAlq4pCoAJK4OEWt0FFgsoYnQGGKbooTCEet/fS9tCWnKYMsIq7Cyvi4Oz8uhNvcSTtLbU7lR2Uf1jW9i6O6be5ZbrTnyhW/Qnrzwe+kHd0d8/1hvPPVkW/GHz5XJU5CvXxZEgcfFPuZZWUB9I9PcY0+gNno+RSooFLKxu9+dI4rjVQXvrJ93G781jbCWqDhI4peJghrt6q7M8LAKiWlxqvkdDkx/nFON75Lo9qrrearIWOV+7hj6m4yV78eVa223d34EEq9+G4WJR1CdnausYEn6XqEz+iXSwurR6+cipYPn+UipSNOUJInRWpMYgzYGu8pzl7P1bBMbxuazY8flT3wu56Mf/Si/9Eu/RKfTKxrOzc3x2GOP8dhjj/E7v/M7fOxjH+ORRx5Zl33m5KxACpJb95LcuhfRaBE88TzBt55FTc+vurozMY3zZ1/CfuKr6PtuQ//A6zE3jmdi91nB+2ykuXIzwdvJLpjXg0zwbtB2K7TcCiSw4A/QF832RLvkXMucjTjv9vQWFmslwoprJtr8XCQuHn1AH4aElBapaJFWYygYmO+QTL9IXJqiY07gTX2H8k0PUBi6CaX8rT78Tcdau1Thep7bFiBNCV96iXRujuT4CfT8PM7OnbjXfH9uC3ErE7etzm6nEUgHglr2/6Ui/LNbJhRnSEQ2+XDW1R2nBq2z+02hgkGgHR8v3pqea4toQ+WPP4Wa742t6rz5PqIH7zzPgy5OFmFusMawt5AN1Iwt8WrlJtLlLUFsSqXxZ0u/Jg9c9j7Xg87sAlG911VQ27feEeYGECBl1v9rOyA6YC3ClhCmiGMUBk3oFZHGIIykFqWkWKbDiDkdU626PfHlAK25WYSQlGr9VIeGcb3r7/M3JycnJycn5+qlUKkyvG8/9vBr6CShMTONchwKlQ2Oy70OqShLLXDRsSX2XJrtNn3FLerTLASRLCF0E1SAq0NcHRKrtaWcaQyhjSgQkJDiCgeDxayzoCNMDSkiDBUM8yCaCLv5r01pNQMzzzG548GstSOAEMwN3cXI9zfQccLcy0cW1zdJyuHPfZ0b3/VWgoG+VbcpBPzd21ucaDocrS+Nx5+b9vjUawXec9PWp6HlbA2RcHmKvdxmTzPOQs99IzR5yB7haXbTERv4+SFlJnh3QvDJ3N1xDJ4LqxS3SKvx2rOkXonUK6OVjxfWaVfH8TpzeOH8qtO22sZMtp9nqn2A/uAGRkp3EDi1Fesp6TJSupPh4u3MhUeYar9AJ527slPUJfyp70MXJoj7n8E6ve8567SJhh8jbY/izd2D1BdLABQ4jouSikQnxHGM5xis1dgoushjc7aC61bsXs6ePXu47bbb+Ku/+quLr7yMb37zm7z//e/HGIOUkve97328+93vZmxsjGPHjvGRj3yET3/608zOzvLud7+b559/nhtuuGGDziInJ8NWSnTe/jCdtz6E++oxgseeyXp761WqtZIU5/HncR5/HjM2RPqme9EP3wWlwjLBO14mePvA+lR3OlZTShq0uoJ3KWmw4A92Be+8Our6IRO9M5e36N7ORHCLBnFtFj9kwncNj1omfLst0qEWaWeepH4INXUav2+M+IUZnIGn8INRCs44ShZYzHs/K/qeFX4XxeDuP6uJw8vXsbZ3W6utaznvOr37W2V7K7ZzsXXO2d4lYNOE+MgRTBjh7d2L6lt98HnNYGLozGWfz0kIaSt73rxy9jl9Wb3iJEJ4gEdHncbQIRF1XFtG4hAbg7GQaIOUYnGwA6zo3bTZlD71VbyDx3uWJTfuovWeH7yi7VprsBaKImbIiQGIzR28UusdEBXbX8HRZwAw6U7QW9vfee5wr6vbKxcpDvWv4x5s5uxWCqTI+oBtMRaNER2kLSCsQpkqyqa0ClUEApFARVuUNkzHMTNhjFeQK+LLdZLQri9Q7h9AuS610dzVnZOTk5OTk3P1URkYIu1OxOs0YWHyDMpx8AqX19onZ3UkMOJL6nFCwXVpSEWcGjxni4JUhSBSJQLdIJEBrmnj6pBEra0lT2o1ETE+HlIIPOES2xizjqYUgUTqIaw6jaSMkY0t69/tJQ36Fg6yULtlcZlRPvODdzL+5hgdJ9SXja10FHPos1/jxne/Db9aXnWbroIP3NvgX327j0a89Dr47KEieyqa+3bEG3dCOdsaIyQHGKVBwC32TI+drEzMw/YwzzHOjFj9tbUunBW8wxB8kfXvjpMsAm2VtDYBuHELlUYkQR9RcRAnbmIRaK+E35pE6dVjyy2G2fAgs+FBqt44I6U7KXsrXddCSAYKNzBQuIFGdIrJ9gs04rW5r1dDIHA6Y6hwhKT6Ekn11RVzy7o4QSeYxK3fhlu/udtq8wLblBJPemits6lMYxEiT+Pcjly3Yvdv/dZv8eCDD/Lggw+yY8cOjhw5wv79+y9pG//m3/wbjMlEud/93d/lAx/4wOJ9Dz74IO9973v5h//wH/LBD36QTqfDBz/4QX7v935vXc8jJ+e8rHB7v0DwrWfO6/aWp6bx/seXsH+xzO19wziY5Q7vCJS/asXX5aCsppTUabsVml6FctxkPsgc3iqPA7musCJzCQqbpQtYa7Je3sJgr0GX93IWhW9RwxSHSdw6Uf0UrYVXUEkJLx0h5hQtnsWzffh2GGXPOg3PisVLt1cVu5f+gxXi9TnLeq4BV3NWL1/lXJH6Svd57u1zt3P2l97tmE4HEPg33nht9+e2BqI6xI1MbIwboNNM4HZL2cDlchE+IDAiJWKKWNYB8LpV9nFi0MaircXxixjpkLoBSsfILfy89r9zgMJXn+pZpvvK1N//rkyMvQKyazzLHjdzdVvrc6h0O51zJq+qjY8t/ZI8wFZ+YFljmD96qmdZbd844rIKIM6D1oDNRG6lLrO4Yn2xopW1wbAFpK2gLESuTyo9VKIJhEMpimiYhJl2TEemDHtBT3w5QHNuBiElxVo/fSM7cbaLaz0nJycnJycn5xLpHx0njWOssZg0ZW7iFAPju3H9PLVmPSkJzUDBJYksUeDTaLYZLLlbdo1shSRSFXzdIJUFHNPBNRGJXNvfPbZJNnYwIKTAky6Ridc1g1HgIs0gRk0jbYoRLaR1EGz+tXe5cYzQHyAqDC0uCwvDtKp72fN2y5EvfIPmiTOL96XtkMOf/Ro3vuttuKXV5x4GAsMvv67BB5+qope16vuj58uMlhYYLeci2XWLEBxngCY+r7Mn8Vh6LbgYXm+P8yojHGVg4z5DpIAg6AreHiQxJOcXvKHby7s9Q+qVSb0yxvGx4QK6ugu/M4sbLlxwFqQen6Qen6TgDDJSupOavwchVs5fVfwxKv4YnWSWyfYB5sLDXJYjBhDWwVu4C6e1h2jgaUwwfc5JaZLaC6SlY/iz96Ki4YttEaWc3J63zRE276oO0CN2v+997+PDH/7wRR8zMDDA3Nwcg4ODTE9Pr7rOwsICtVoNgPvuu4+nnnpq1fUulxMnTrB7924Ajh8/zq5dW+smutrpNBb4zrc+TluBEVBOt/qI1hljcQ8eI/jW+d3ePauPdt3eD90GBS8TvIVcV8EbQCNpexUASkkD1yT0RTO54H3dIrOiO2GxmQUZKw3ZaGuLD22zsJA0ZogbE6SqjcXipEXctISwCjcp4Uf9SLsFQszyC+6zt4VY+tOc5/4V9632uNUeu9p90CPeCc/DGR6+tvtzJx0I58CkWU/utJN9DnslOE/PpLWjELIE+LTUMUJO05YTeLaKZ/vQxtIIU8JEoy1QHSLy++gUBvGjOs4WObvViTPU/v1/QyRLX9ZWKRb+Xz9Nunf0ircfxxE2TfjB8mkcYYn13Xxm/E0s+Eu1on74FDum/t8ApLqKbP8i69Xy43KonzzDka99p2fZre/8QfzqlffBWiSKslN0fSgGV1xUcKVYUoycQ9oywpRw9QjSGhrFfqS2uKlDf5SQpAmTnZCj7TY7agEDRY/9w0vPSxrHTB87QmVomMrgMHvuugflXLd1wTk5OTk5OTnXANZaTh98hebcLLMnj2OMZnDXnvwaZ51ZkB6H6wlN6bAw16DiSAre1l4jS6sJdANlExwToaVLegkRyYH0cXHwpQsIIrP+jmQj59CyjhXzICzC1C7qsNwItPQ4s/NhzPL2cdYwcuZJnPYchz77NdpnZnoe4/dXufFdb8UJzl9E8OVjAR97qXcctqOo+ScPL1B0cznmeqdgY+6xJ6iwcj7lFFVeFKOYVQThdcPaTPBOdSZ2Gw2ud17B+yxGOsRBDSsVbtxAxW2cNCRoTSLN2oQUT5UZLt7OQOEmlDj/PF6sW0y1X2Sm8yrGru4gXwsWS1o8Ttz/HKjV569Uazf+3N0Ic+EkDCPPgHFQYoiH3/d/XfYx5WyMrplf3VwBcZx90V/IEd7X18fQ0BDT09OL6+fkbBlSkNyyl+SWJbe3/61ncM7n9p6Yxjvb2/v1t6C//27MzXuBdXZ4YyjFDVreUqT5vD9ILZpF2bzi8frDYAXLos0NwmTuQYu5ZqPNexDgVgdxizV0HJKIBqlokIgEhwLGFAhJ8Snjm2GUWHYxtgbBWJxvvQs8dl2doTlrxyRZX+40hDSGpJX16HaL4BTWpdpXCB+QaBESM0cs5xFIXJsVIcWpxlqLNhbHUYRumdQpgLVbFmEuWh2qH/pkj9AN0PypR9ZF6DbWYgyMOy0cYbHW4URwd4/QDb2ubpncz1YK3QBzR3pd3cXB2voK3VYDJiuwUHLLhW4AK5pgFdggc3UbTTuoIBCoVFDWFqtTGknKiVaHvrKL7yh2DfQ6MZqzM0jlUqzWqO3YmU8C5+Tk5OTk5Fz1CCHYccNN6JdfpH90nOkTx5ibOMnA+G7klaRC5fRQsCnDJYewYykUfZqNDoErt3QMbYQilkU80wJpcUyMlQJ9AWFpOaGJkFISmQRfevjSJTKXLzathjB9SCKMrGKYA9EAm7Uh2kyUiRmYeYHpkfuWHZxkdvAuRtIn2P+jP8Brn/4q4cz84t3RXJ3Dn3uUG975FpS3+nP6tt0hRxcUj00szdecaSs+9FyZX3l9A5lPsVzXdITHk+zjTnuKHTR67hujTtnGPM0uojW+Zy8Zcdbh3Z3TSchc3o4L6vxjYWlS/PY0qVch8SpoFUA0T9vZhdeew40u7PIGiHWTk40nOd18lqHiLQwVbsNVK5MSPFVivPIAO0uvY7rzCtPtF0lMZ5UtXuRUEbjtPTidncS1F0jLh1eYqXTpOO3Cabz5O3CaN2z651DO+pBf2VwBt956KwCHDx8+7zr1en3R9X12/Zyc7UDW2/sh5n/zF5n/wE/RufdWrFr9I0EkKc4TB/B/+0/x/8WHUF9+AurzcAVVVeciMZTiOlhLy62SSpd5f5B0HR3kOVcXVpieft5YiTAOGHW5KTZXH45CFUsEhZ2Ughvx/B1oPyYsTJEUWsSFJs3ScTrFaWxRIYtFZKGw9BMESz++j/Q8pOchPA/huks/jpP9KLX0I+XSTy50bwHdyPLmGYhb2e2onqVrBP2Z2L0ufxcHRBYZ15ETaDqktPFsHwKJtRCnluRsEohXxApBqnwcHW3N5b82VD78adTsQs/izvffQ/SGu9dlF0Znou4er9Xd5Y28VKv0rOMmhwnCxwFItQ/J+uz7ctFJQv3E6Z5ltf3r3HNaZy0nkBLcrReDrYiwIkHaEsI6ODogcTxS5eEkmoJQeFFM22hONjsIF0qesyK+PIkiOs0G5cEBHM+jb2RlL7GcnJycnJycnKsRqRQ7b7oFv1hiYGwcHScsnJkgD/pcPzxrKDmSsrQEvgdS0oy23riRSo9EFtHCRQsXx1xaC6qOCTEYYhNnYpFcX9FNIJFmCGFdpK1gRQzi0oWs9SCIZinXj/QsS90S87VbUb7H/h97M15fby/lztQsR/7ym5h09b+1EPAzd7TYU+kt0H522uMzr13D7ddy1owWkmfFOAfFygjtKiEP28PUbHvjDkAIKATgOF1XtwNpt53phR4GuHEDvz2btU4oDpG4JaLiIJ3KKEauba5A24gzrec4MP1xjtUfI0wXVl1PSY8dpbu4Y+i97Kl+P4FTu8QT7R639fDnXk9w5geR0SrbkAnxwDOEO76C9uYuax85W0sudl8Bv/zLvwzAzMwM/+k//adV1/mX//Jfrlj/Ujhx4sQFfyYmJi7v4HNyziIF6a17af3cu5j65/+A+Xf+AMlQ7fyrn57B+7MvE/zG7+H86Rdgbpb1Uh4lllLSQFhDy62SSJcFf5BUbP2Ees5WYTPRG4GwErr/C+uAvb6+wgQSjxpFduNSI6VBm+NETBMxRZ2XaHEMvUoEUs5VRhpCczJzdCft7H+Tgl+BoO+isVKXghABIIlFi4QFYjmPxMWxmRs4Tg0GS2IsjhQkfhktXaxUOGm4bsdxKRQ/+yjeK0d7liX7x2j95NvXbR/GGPplh7LSWCuZdO7mTLE39q/S+Bji7Pdf+jrgSuPkr4yFY6exy9uTCEFtz9g67sFm/brP9um+QLX3ZmCxWNFCWBeBj6OrCCyhX0JpjWc9CmFMxyZMtUPmdMxg2aev4NJf6p2oa85O47guhUoftZ1jyG3gWM/JycnJycnJWS8cz2P05kzwro2OEbZa1Kcmt/qwrikCkzJUcFASiqWATpKizdYXFCTSJ5UBqfQwODimg1ij4G2xdEyEwRLbBIXAXWdDisBBmkEEPtIWMaKFZX0d5Gulb+E13KhXbGuXx2gXd+AWA254x1twy8We+1unJjn2pcd6x2HL8BR84N4GZbf3/k8fKvL05DXchi1n7QjBYTHE02IX6TlSnY/mfnuUcbvBwmshAM8Bt+vqTtPM5X2R+X5pEvz2NCrpkPhVokI/qVeiXd1F4lcu+NjlWAyznVd5aeaTHJr/a5rxmVXXE0IyULiR2wbfxQ21t1P2Lq9IXcUDBGfeijd7D5iV8xrGnyfc8RWi/qezIpycq4ZcQboCfv7nf55vfOMb/Mmf/Am/8iu/wlNPPcW73vUuRkdHOXbsGB/96Ef5xCc+AcBv/uZv8kM/9EOXvI+zufU5OZuBrBRJfugNTP/gg6iDxyh/+zkKz63e21skKe6XnsD5+vdI33o/6Y/8AFSrV34MWIpJg7Zboe1WKCYN5oNBauEMjr3WmqjnrJ2laHOEwFqDsN1oc6Gvn17eLIneLlUS6iQskNLAoYIlJWYOj34CdqA4f/+onG2I1UsCt04gbmbLnMI6OrmX42ZOcVw68ggpbTQhgRnKWghYiFKNNlk7J+k5pE6B1AkQ1iDXOcZuLXjfe4nil5/oWaarJeo/925w1mfixVowxrLba2bbt3t5qX+gZx2pZyi1vgiAsRKZ3LdiO5vN/JGTPb9Xx0ZwgnUU4I0GbCZ2K8WW5+6JEItG2irCeDjWpeOXAImvIUgNSZrQTDTHWh0Gq96q8eVxp0PYalHbMYrr+fQNj2zN+eTk5OTk5OTkbCBeociOG27i9MFX6BvZycLkaZTrUj7nOjfn8vCtxlMuVSWwgUvYkjTChFpxawtiAWIRIIQBBa42uCYkUQXsGiZSDIbQRhTwSdC4wsEAeh1bDkpbAFNFS4sgwco6mP5N798tsAzOPM+ZnQ9jlzlT5/pvx4vqeBXY/44389onv4IOl0wG9aOnOP7VJ9j9todXTcUbLBh+6Z4Gv/1UFWOX7v/Qc2X+yRsWGC2t3W2fc+0yJSo8wT7utccpLiv4kMAd9jQVG/Ky2IndqORF31+ac5Iy6+MdRZkAfgHDhQDcqIFMI5Kgj6gwhBs1sEKSuiX81hTyEj4v6tEJ6tEJiu4QI8U76fP3rPq+qvrjVP1x2skMk+0XmA+PcilmPIHAbd6Iao8T9z+HLh1fcWJp5RBp8ST+3N2o9u482vwq4Pqyxa0zSik+8pGP8Gd/9mfcc889/OEf/iHvete7ePDBB3nve9/LJz7xCd761rfyxS9+kX/1r/7VVh9uTs6aEAJcV2Fv28/s33snE//s71N/11tIh/tXXz9OcP/y2wT/+HdwPv4FaLau+BiWHN6allshkS7zwSDJOkcm5Vx9ZC7v6zzavMtKp3czd3pftVhImtCY6EaWNyBcAAQENfBKGyB0n+3VrYjlApomsZxH4eGQVaunxmIsJKlBCYHxyljIIszTcNMv89WpKSr/7Qs9y6ySNH7+3dhzIuWuBKM1gUgYcSKshbq4m2Plc13dH0d0B6Cd8Hawa69a3gjidofmmZmeZeseYZ7qbNArZDbg3UIsBiPaCOsjcHBMmUQ5JMrHizUuChF1iI3htXqTwJerxpcDNGancT2fQqVC/9gYIu9fmZOTk5OTk3ONUqz2MbxvP8VqlXL/II2ZaTqN+lYf1jWBAHybMuhLlJSUygFRaojTbSBkCkEkixhcUlUABK5ee0pXajWhjdFWo0lxhYNcZ0lBmD6kCRC2irVgRR27BZM8ju7QP/dizzIrHWYG78IiCGpVbnjHm5Hn9OmeP3iMU9/47nnbA9w2kPK3bumNow615PefrtBJcwEtJ6MlfB4X+5mmtOK+3cxzvz2Gu5FGMM+Dgp8ZCXwvK3BP4iza/CLvR6Vj/NY0Mg2JgypxoUbilWn37SLxLn2+pp1Mc2Tha7w48wmm2y9jznPeRXeQfX1v5o6hn2C4eDvyEtNhpQkIZh4kOPMDiGSVeR0VEQ19h3DkUYyTf19ud/LZnCvkxRdf5E/+5E947rnnVr3/scce40Mf+hAnT55c9f6Lcfz48Qv+PPHEExffSE7OZaAE+EoiKiXqb76fyV//OeZ+5W8Tvf427CoTwSKKcT//TYLf+G2cT34J2lfWZ0d0BW9lNW2n3I00HyCWW18Vm7PVZNHm2NWiza+/QcLaRe+tiZzOuQgmhtYkdOYg6UA4CzoGr9yNLN+oEB6v6+p26IhTpKKJIcYzS4VNcarR1qKtxXUksVtGq6zad7MjzEU7pPqhTyDiXjd56yffTrrOoq42hnGniRBg7Dgv9430VE8L06Hc+sTi7wVz/7ru/3KYP3Kq53fpOlTH19GhbDVYs+ToXicX/WUjOmAtwpaQxkdah8gv42iNj4cbRsTWcLzVIrLmvPHlUbtF3OlQHhjE9QMqgyt7peXk5OTk5OTkXEtUBoYYGNtFZXCQQqXKwuQZ4s4G9oS9jgiMRkmoeRLX9/CczN3NduiPLgSRKmFQJDIADJ5e+7xdYlMiYhKj0Rg86a6ry1EgzunfnYLYmtdlsX2GYqt3fJX4fdT7bgSgMNTP/r/xJsQ5Y6KZA69x5snnz7vdt+8JeXi014xwuuXwR8+V2QaJ9znbhFQovid2c4SVqRv9tHnYHqZiN7C3veNAodDt4+1n/+sUojibE7gAApulIHTmMNIlKg6SuiXC0gid8g7MZbRBiHWDE43HeWHq40w0nyY1q89FearMeOVB7hh6L6Pl1+PIwqrrnQ8VDVOYeDvu/J2ZoeocTDBNZ/TLJNUjWcJozrYkF7uvgEcffZTv+77v49Of/jTj4+N89KMf5fTp08RxzPHjx/kP/+E/UCwW+djHPsZDDz3ECy+8cMn72LVr1wV/RkdHN+DMcnIyhADXkXiOwgpBa/84c3/vHcz+5i8QPnzXqtEpIoxwP/01gt/4IM5nvgKdyxdEBFBMGiibLgredb8/F7xzgK7LW5x1ectM/L5OXd6wFtH75Vz03lYYiOaheaYrci9kseXSg6Af3GBD3NxnyVzdDpGcQdMhEgsoW1iMvjcWEm1JU5MdhuOilUviBEidXFIM1RVjDJU/+Qxqer5ncfiGuwm//5513ZW1gNXsclpYC23u4mBfbzuAUuuzKNMAYL69H8zWxl5ba5k/3FtU2bdndB37TluIU0Bm8WXuVvfq1hjRQVJAoHB0mdAvYpEEqUKlhiSNmY8TTnciBsurx5cDNGZmcIOAoFymf2x81Xi0nJycnJycnJxrjf7RcSqDw/QN78ALCsxNnCKN876kV4rC4hlNzQXXUZRLPtpaOvE2cHcDVggiVcYIRSILgME1a0+Ci01CQkpiEmxX8F5PBKrbv9tD2gJGtLFblFRXm3sZJ+lNrmxU9xH6mQBZGh1m3yNvXJEKNfm9F5l8+qVVtykE/L07muyu9DpUn57y+NyhSxPmcq5xhOBVuYPnxBj6nKKSAikP2qPstAvnefA6IGUmePsuOG7m+AaIYzAXd5Yvurx1TBz0dV3ela7Le6VrfS1oG3Gm9SwvTH2c4/VvE6Wru6wd6bOjdDd3DP0ku6vfh6/61rwPgcSr30ph4odQnVX6gQtLWj1JNPokaXBq5f05W04udl8mURTx0z/90ywsLLBz506+/e1v8zM/8zPs2LED13XZtWsXH/jAB/j6179OEAScOnWK973vfVt92Dk5l4UU4DkSR0pSY+nUqtR/+keZ+ye/QPTgHauL3u0Q9xN/nYnen/s6hJd3gZoJ3k2USWk7FWLpUfcHiGTeizgHzrq8Lazi8pa56J2L3tuTpAONMxDWs9jycC6rkA2q4FeygcVGIjJ3tkXSEadJRANLim9ri6tEqcZaS2osrpQkbhkjJEZ5OHpzJxyKn/8W3ouHe5Yle0dp/s0fWveCAGsNO1QLTxqsHeZgZZx0+d/DaqqN/7F0bGbre3WH83XChUbPsv596+h2T1PAgOdmr82tjjAXreyz3RZQpohRPokKKMYaJRQ2bBMbw6GFJiVfnTe+PGw2SaKQ6sAQXqFIuX9wa04oJycnJycnJ2cLGN67n1Ktn9rOMZTjMnvqBDrdwHjc64TAaiSWmq+QnkfgKJpxit0m1l0jJJEqY4UilQHSpjh27YUOoYnQaCKTJW756yx4SxsgTQ1hSwjrYmQDy+a7KKXVDMw8v8LJOjt4J7p7zpU9o+x+28MrxqSnH3+WmQOvrbpdX8EH7m1Qdnu3+6nXCjwzlbduzOnltOjjSbGXDr0F5wrL3fYUN5nJjU2O8DwoBqCcbqx5t5d3EnOxCVeBxQsX8Drzy1zeRcLSDjqlEay4vHkvi2am8wovznySw/NfpRVPrbqeFIrBws3cPvRu9tfeRsndseZ9SF0imHoj/tQbEOnKQhTrRITDj3HgwP/3ss4hZ+PIxe7L5Atf+MJiNPmv/uqvsnPnKtUewJ133snP/MzPAPDUU0/xzDPPbNox5uSsJwJwlMBzFJJMCIkG+qj/3Xew8Bs/R3L/7asmSItWB/fPv5iJ3n/5jSz25DL2XUybOCam45S7gnc/kQqu9LRyrhkMVhiEFctc3gph1XUZbQ5rFb2P5qL3ZmJSaE9BZxrSNoTzkHbALWa9udVmpFaIRVd3KKcwhCSijmNLSLLBtbUQJ4akOyHjKEHslbIIc8umRph7z7xC8a8e61lmykUaP//uDXEYG63Z7WTCcWTu5OVa7/dMsfM1HD0BwHw4gmP3rfsxXCpz57i63WKB0sjKyLPLwugsssxxutXd/oYmDlwMS4oVEZIS0kqkLhJ6JTxjcYSH6IRoLIeaTYzgvPHl1loas9P4hSJescjA2K7c1Z2Tk5OTk5NzXSGEYMcNN1EoV+gfHcdamJs4iTHbw4V8teJag7KWsrQUfJdyMRvjNaLtU0hghCKWRYxQpNJDmQRlk4s/sEvHRBgMkYkRiPV3eJsKwhQQtgpWYEVjS/p3e0mDvvmDPcuM8pkduHPxaGo37mbXm1e2tTr56FPMHzy26naHCoa//7oGYtk5WQQfeq7M6VYu1eT00hAFHhf7mWOl6LqfGV5vj+NsZPKeVFA8G2vuZcXvxmTz++bi+1U66rq8E+KgRhz0kfgVWn27SN3iFRyYZSE6xqtzn+fV2c+zEB7Dnkf47/N3cfPAj3DzwI9R8/fCGlswOJ0xChOP4C7csurccl/f1psfcnrJP0EvkxdffHHx9n33XfiFff/9S196L720epRJTs7Vgjwbba4k2loirYlGBln42XdS//WfI73v1lUfJ5pt3D/7S4J//NuoL34L4rVfSEP2NVRIWzgmpu2UMsHbqxGqPOonZ4nM5X022lyAlQijrttoc7iY6D2di96bgoGoDs3TmZM7qmeubiG7keXFzRMQRZaKYbGE4gyJqGcRdHYp2inRBoMl0RYlBdopZJX/ToAyUc+gfCNRp2co/9fP9SyzUlL/uXdhapUN2WeZDn0qwdg+jpT20TmnD1ul8aeLt3X0AGsdJG0U1ljmj/bGZ9X2ja2TcGuzqm0ps0puz80GuluIFU2wCmyAo0tZBJpQFFKBTVKMTjgThsyHKQMlD0/JVePLw2aDNI4pDw7hl8qUav2r7C0nJycnJycn59pGKsXOm27BL5YYGBtHxwkLZybOKxjkrI3ApDgYKr5CuB5lzyFMNanePs9rKj1iWUQLFy1cHBOvuVWVxdLuCt6xSZAIXLF+hchZ/+7Bbv/uKpYUROviD9wAys1jBJ3pnmVRYYhmec/i7wO33cDo961sr3XsK49TP7p61PHtgyl/85benuSdVPL7T1cIt09dRM42IREOT4m9HKe24r4hWjxkj1CyG5jAJwQUAgi6Pbz9rlEjiUEnrM3lPY8XLmCUT1QcInVLdMo7CUvDl+3yPksrmeLwwld5aeaTTLdfwZzns6zkDrGv9hZuH3wPQ4XbkFz8c0tYB2/hLgoTb0eGQ4vLZTTA2NhPXdFx56w/udh9mTjO0pshvUjMT5IsiXrLH5eTc7UiACUFvqOQCGKtiVNDtHOI+fe9i8Zv/BzpPbes/th6E+9PP5+J3n/97Wwi/RL2W0hbeCai45SIpU/D68sF75xzyKLNsaIbbS6XRZtfv869XPTeInQEzcnMxZ103dwmzeLKg75NFg8lQniAR0dNYruubtdWei7yo9SgTeZ+dZUk9koY4WCks2mubtGJqHzoL5BR73dE6yfeSnrT7g3Zp7GGcdUEINF38FJ/73eLHz6NHx8AoBmX6Zerf89tJs0z06Sd3kFt//51ijA/+/3suuCopT5dW4QVEVYkSFtCGYURVRLHp5QYDBIbdmjplBONDiVfUfYddvUXV8SXW2tpzs4QFMt4QcDA2K4tOqOcnJycnJycnK3H8TxGb84E79roGGGrRX16cqsP66rGtxphoYChWPQIfIUSgmZ0aaaPjSaVPokskEoPg4NrQoRdm7PfYrqR5obYpiihcMT6jW0FEmmGM8GbEkZ0sGLz+3cLoH/2BeQ5rbwWajcRu0sF2MOvu5WR++7ofbCxHP3iYzRPrR6z/MjekAd39m53ouXwR8+X2Sap9znbCCsEL8lRDoidnPsuLRHzkD3CkG2s+th1w3WyXt5nY82Vk7U9S2JYcVQrUWmI315yeSdBldiv0qruInWufG4/0nVONL7NgemPc7r5DKlZ/TPDdyrsqj7EHcPvZWfpXhx58eRYmVYJJn8Ad/ZmSD38udcjrlCkz1l/8r/IZbJ///7F248++ugF1/3a17626uNycq52RLeXt+coDBCnmlQbwtEhFn7h3bR+4/3ou29a/bELDbz/9ln8f/LvUV99otsTdA37BIK03RW8i8QqE7w7zpVEn+Rci1hhsMKeE23uZE7v63jgcH7Re6obb/5SLnqvB1ZDZxZak12ReyFzdSs/c3M7/uYfk/ABgRYJEVPEsg4IPFtdXCXVFm0siTYoIZBSkjhFUscHa1H60ltRXDLGUv4vn8WZnOtZHD54J+EPvH7Ddqt0wg6nhbVFJoKbmPd7CxSXu7qnGw/CGqqAN5pzI8wL/VWCvnVwvZs0iyRzu/Hl/ha8XpdhsVjRQlgXgYe0JWK/hG8k0jrYTkhqLYebLbhAfDlAp75AmiRUBgcpVPooVvtW2WNOTk5OTk5OzvWDVyiy44abCEpl+kZ20F5YoDk3u9WHddUigMCmuBjKnoPyXSqBS5QaomTz+09fiEQGaOmTKB+DygTvNU6YaAyhjTDWkNgURzjIdRR/pPWQth9hCwjrY0RjSwRvZRIGZl7o7Y0sJLODd2OWCfw7HriTwbtu7nms1ZojX3iU9tTK95MQ8L47muwq986Hfm/S5/OHc1NPzuqcFP08JfYS0Vtc4mC4155gn53e2D7eUmYub98Dx82izY1dc6y5sAYvnMcNF0idoOvyLtKpjBIWh7DrkJ6XmpDTrWc4MPVxTtQfJ0pXLwJwpM/O8uu4Y+i97Kq8AV9VV11v8dgROO0RglMPo5LaFR9nzvqTi92Xydvf/naKxUxc+4//8T/y3HPPrbre5z//ef7iL/4CgPHxce69997NOsScy2Bq5guk8q+B+lYfylWFEuA7EkdKUmOJUkNqoDM6TP3v/yThr/8s+s7VCz3kXB3vv3w6E72//h1I1/DFCBTSNr4O6agikQpoulXaTmmdzyzn6sd2o805J9rcAStz0btH9G7R5sSynt656H3ZJM1uZHkz+wkXsuWFGvjlLep5LBHCBTxCeTrr1U0T11azYpAuUaoxNhO8XSVJ3CJWCBIV4KThpoR2F/7qMfznX+tZlu7aQfOnHtnQ526nXEAJSM3tvFjrLaBykuMUwm8CEGuXHc6dG3Yca8WkKfUTp3uW1favh0vZQJJmqQPSAc/PBrRbiQixaIQto4xD6gwghIufWJI0BZ0yEXZoRfqC8eXWGJpzsxTKFRzfZ2A8d3Xn5OTk5OTk5AAUq30M791PsdpHuX+Qxsw0nUY+N3a5BCZFAC6aUqmA60h8R9KM0o0Voi6DSBQwwiVVASBw9doF79RqIhujrUaj8YSLXMdRozQVhCkibAVhPYyoY0Vr03t4B9EslcaRnmWpW2S+f6mVoxCCsTfeS/8t+3rWM0nK4c99nXBuYcV2fQc+cG+Dktvriv3kwQLPTa1vL/Sca4d5UeRxsZ86vY5kAdxsp7jbnkSuMaXhshAiS34r+FkKnN+dM0hiSC8eaw7gpCFBaxphUuJCP4mfubzbfbtInYs7rdeCIWW68zIvznyCw/Nfo5VMr7qeFIqh4i3cPvQe9ve9lZI7csHtilxS3bZsvSVli/jGN77BwYMHF3+fnl56sR88eJAPf/jDPeu///3v7/m9VqvxG7/xG/zWb/0WjUaDN77xjfzqr/4qjzzyCP39/Zw5c4ZPfvKT/MEf/AHGZB8u//bf/lvkVk8W5pwXay0nJ/4Iow6i7LcR3I4RDyLseCaQ5VwQAThKIKUi1YY41SghcJWkNbYD9x/8FN7Rk7iffhT10tEVj5ezC3h/8knM575O+uM/iH7DPaAuHIEU6A4AoSosVn5ZBKW0ue7nl3O1Y7BiSfC2wmQObyGwGBDba7C5mZwVvV2qJNRJWCCliUMZS0rMHB79BOxAsT4XnNcsJoHOXBZdnoSQtrJrfK8ETrBFIneGEAEgSUWHmDliuYBA4tolF7C1kGhLkppuuwoI3TJaeiAlTrzxhQ/u869R+vw3e5aZUoH6L7w76xm9QRhrGVdNrPWZdm7ldKk3srvS+NjihM+hufu4xd/698LC8TOY5QViQlDbO3aFW7Ur48vdrR0uWAxGtBHW77am6Ec7BUqJIUGiwhZzacxkM7pgfDlAe2EenaaUB4Yo9fUTlMqbf0I5OTk5OTk5OduUyuAQaZw5Z3WSsDB5BuU4eIU8Se9SkYBnNEYKAs8lCjwqxjLTimjFhpK/me2sLoIQRLJEoBskMsA1HVwdEq+xZWBsE4QQYEBIgSddIhOvmxwtzQAAVgos7WxsQAq2sqmiU3XhEKE/QOIvJUO1S2ME4SzFdlaELIRg11seQMcJ9SNLKVw6jDn0ma9z07vfilftHYMMFw1//3VN/v1TlZ65zT94rsw/fcMCI8UNFC1zrloi4fIke7nDTjB6jmlvJw1K9ghPs4tQbGA7MsfJiuSjCBCg00zs1iabv7lI0oOwBr8zR+oWSPwK2vFwwwVMZQwvXMDrzK658ObCWBaioyxERym5I4yU7qTPX709Xl+wm75gN614isn2CyxEx7munVJXGcLabVZOtkm8//3v5yMf+cia11/tabLW8mu/9mv8zu/8zqr3n8V1Xf71v/7X/KN/9I8u61gvxIkTJ9i9O3tzHj9+nF27cofK5TI7+02+9/TPrlguzBjSPIi0tyPYRhej2xxtINHZJLyjJEoKlBB4jsA9eAzn04+iXj1x3sebkQHSH38r+uHXXdRRFqmAUBXwTUiQdiimLUrJBvcpybmKEYhM+V6sBrbCgNDkdS2ZsHRW9AaLQxmPGgInF73Pi4GoDlEji22Km6CTLKrcLW29KxYHIYsIfOrqEBGTdORpfDuAa5cG2mGi6SSadqRxpcDxPOqVcSKvipYOxXBjowzl5Cy1//ujyHApKt0KQf0Df4vklr0buu+aqXO3e4ZE3803h97A4erSa1zqecYm3ou0McYKJqb/PqPBOkSFXyGHvvIEzYml/m+V0WH2v/WhK9uoTrK2Iq6XCd2FIsit/WC0ooWhg7T9KFMg8fbgWw+VGHQYEaURh+stwsQw3l9goOixf3hl0osxhqmjhxfjOXfdfjd+MZ+4zcnJycnJyck5l8kjh6hPTTI3cZIkChnctQfH20DB5BolRbDg+HSEQ2Qsc9N16mFKJ0kZKvnILb7OPhdpDb5uIG2KazpY4ZDItbczKkgfBwdfuoAgMuvbAsvIBkbOYYkwooEQEmGqiE308qWqwJmdD2Pl0j6FSdlx+nGcriEHwGjNkc9/g+bJMz2P96plbnzXW3FLKwsJvnA44OOv9o5jxkop//jhBYLr1q6Yc1GsZS+z3GwnV0xpxiieFePMiU1IQk2SbpS5gbjr7nacrK/3GjBCkQRVjPJwkjZO1ECZhKA5idLr377AV32MlO6gP7gBKc6v90Rpncn2AWY7r2HRGHkGjIMSQzz8vv9r3Y/remIjdM2tnn29qhFC8Nu//ds8+eST/PIv/zJ33XUXlUoFpRR9fX3cf//9/Nqv/RrPP//8hgjdOevL8ROrFz9YeQrtfJLE+T20/AaW9iYf2dWJkuA7CiUEiTYkqSE1ljAxhDfsJvr//C9E//vfQt84vurj5eQs3oc+jv9bv4t64tnsy/I8+Dok0G0iGRA6BdpOiaZ74T4bOdczZ6PNRdclmP0vbDfa/Donjze/RJIONM9AWIe4DeEcWANBFfzKNhC6xaKrO5ZNUurEcg6Ji2OXBjzWkrWg0FkBiONIYreERZAqHyfd2L+3CGOqf/iJHqEboPXut2y40A0wJhewVtEQt3G00juhU2l+HGmz43pl9s5tIXQnnZDm6ameZbX9q3+frhlrMqFbdauzfX/rhW40RnSQFFBWYNQwUni4SUKcakyaMBlGF40vB2jPz2GNodw/SLl/MBe6c3JycnJycnLOw/CefZRq/dR2jqKUw9zESXSaXvyBOT04WBxrcK1BOYpS0aPsKwQiizPfZhghiVQZKxSpLCBtinMJgnXHRGgMkcmSojLRe/2QpoLUwwhbQNoa1oKR81g2r4+3ozv0z73Ys8xKh5mhu3p6DUul2Psjb6Q4MtizblxvcvhzXycNVx7zj+wLeWBH7/JTLYcPv1Debsn3OdsJITgqBvme2E1yjtTnobnPHmO3nd349gmuC8UgS2n1vWxOIU2yaPM1OKOl1XidOdyoQeoWiUqDpE6BdnWMqDCw7t7qSC9wvP4YB6b/nDOt50jN6p8jvlNld/UN3Dn8XnaW7sERa0u8yNkarltn97VC7uxeP1qtQxw5/J85feYTIJLzr2gdpL0LqR9EcuEeDjkZxkKqDcZalBA4SiIFeI7EQSMPHMb93LeQhyfOv42xEZJ3vRVz3x3nFY9i6dNxingmopC2CdIO5WQhN+vmXBBhJYjM0ZwtMNjc5b1I7vQ+DyaFaD4Tu3UMcQusBqcIbmFLI8szBAgfsRhZ5bGgXiUWU4RiisAM47B0kR5rQzvSdGKNEBC4inp5jNgtE/kVCp2Zjev5ZC2VP/ok/rOv9iwO77ud5s++Y8Ofy8DGPOgcJdW38J3+N/Ni/9LzIkzE2MTfRJl5AL534ue5p29gQ49nLUy9dIiJ7y5NskhHccdPPoJ0LjeBxmZV2JANTD03E7u3GCPqWGKU7UfYPoy3m0JqiFKLaneYSSOOz3UIPMlIJWDvYIn+0spJNaM1U0cPU6j0UR0eYc+dr8MNrsPPrZycnJycnJycNWK05uTLB2jXF5g5cRzlKAbHdyO2vJj36iISkqbyaEkXayzT03VacUq9kzBQ8lZtvbPVKJPgmybKJjgmJpUeWqxNuBYIijJAIfGlh8aSmAvMsV4GlgStprEiwoo6ViRIW0LYzStmne2/g3a5t4VUuX6E2sLBnmVpFHPoU18hnO3t110YGeCGd7wFdU6rriiFf/NEHyebvW7Yn7y5xY/uzw0HORemaGPusccps7JI5SR9vCh2Yi8SLX7FWAtxDHGaJR8ub5Mm1zZfkbm8+zDKxUlaOFETpWOC1iRKr29ixFmkcBgIbmKkdAeeOn+7M2MTZjoHmO4c5vU/88825FiuF3Jnd07OBlIq3cANe/8xbvqraPN2rD2PM1ikGPk0qfsHJOq/YsQri1HIOasjBbiOxFESbS2R1qRdF2GoJfrOG4l+7e8Q/YOfwOzdufo2Tk3i/6c/xf8Xv4/83oFVK9IykbtFIn06TomOU6Dh9eV/nZwLkrm87WI/b6xEGAeMzNuycK7Tuz93emOzuPLmaYia2e2wnvUiCvrBK26x0N0VuWWlK3S7CArEcgFNi1gsoPB7hG6AODFoY9HW4ihJqjyMdEicAKmTjRO6gcKXHl8hdKfjwzR/+kc25bkcZQ5rBR17BwervQJvqf35RaH70Pxebi0PrrKFzWfu8Mme3/t277wCoZvM0U23r5aUsA1iKi0pVkRISkij0O4IrhVorVFRQt0kTLUiEDBY9ukruKsK3QDNuVmwUB4YoDo0nAvdOTk5OTk5OTkXQSrF6E23EhTLDIyNo+OE+TMTF2zjmLMSzxqktbhGY5Wkr+hRcLP5sUa4/dzdAFq6xLKEFi5auDgmRtm1HavF0jERBktsExQC9wIRwZeDwEXpHUhTQtg+pC1iRKtbKLs5r8/a/Es4SatnWbO6j9DvLYx2fI/973jzij7dnclZjv7lNzGp7lnuO/CBexsUnd7x91+8WuT56fV1yudce7SFxxNiH5OsFGvHWeABewzPrm/xyQqEyArnC37WGs33MmEgiTOn95pd3rO4UZPULREVB0jdIu3qOFGhf0Pe5camTHde4sD0X3Bk/uu0k5nVj024DBfv4baBd5O8dH7TXs7WkIvdOTnnYG2AsQ+T8Cs46XsRZvf515VHSJ0/I3H+I1o+uanROVcbAnCkwHMUEkGcauLUkBhLO7HEwkXfdSPRP/ppol/+CcyuHatuR544g/8f/jv+v/yPyGdeXiF6eybuCt4eHadEqAo0vFquWeZchCzaHLs82lx1o8232qG7PchE777rW/TWUTeyfA6SNoTzYJIsrjzoW3OV6oaxKHL7nBW5hXAxRLTFMVLRxBDjmVrPw1JtSY0l0QYpBI4UxG4JI2RWSbuBEebui4cpfvbRnmWmGFD/+fdkwusGI61hp2pg7F4OVQdIljsrrKHS+B+Lvx6dfyOB2vpvk3C+QThX71lW238FFbBGg06zflpSZoPSLU8mACuaYBXCeKTOCI4IUHFEmkI7iViIkjXFl+s0pb0wT7HWj3Jc+kevMO49JycnJycnJ+c6wfE8Rm++Bb9QpDY6RthqUZ+e3OrDuqoQQGA1LgYsBEUfV0kqvkOiDWGiL7qNrSCVHokskEoPIxwcEyHWWABtMIQ2wlhDYjVKOKh1F7wl0gyhTB/ClpCmgiXGinksG/+cSmsYmHk+awW1jNnBO9Gyt3DYLRa44Z1vWdGnu3lqkmNffgx7TtvGkaLhf31dE7FsJtMi+INny0y2cykn58JooXhG7OIQQyvuq9HhYXuEqu2s8sh1xnGgUMj+d73sf51mru81fJYIwEla+O0ZBIKoOEjilYmCfjrVcbTaqAJ9y3x0hFdmP8vB2b+iHp1Y/fiEQJS2Pg0vp5f8EzInZxkWS5rEaGuxVoC5DVf/LE7y80hz9/n7+Yo5tPorEud3SeUXscxt7oFfRZyNL/cclVV6pprUWGJt6WiBFg7mrv1Ev/53iX7pJzDjw6tv59gE/u/+F/z/4/9BPv9qj+jtmphC2iSVHh2nTKgC6t7GVH7lXFtYYbDirMtbZuK3ccCo3OXd5boUva2Bziy0JiHtQLiQxZYrP3NzO1t8gSt8hDgrcjuLIrdFY22HSJzBkBCLeRxbRNF7vLHWGGvRxuKobEiduCVSFYC1OHpjCrnk9ByVj3wasey9ZYWg8b53YoZqG7LPc9nJLApLrO/g5Vqv27fQ+QZuehyAyfYg+/w9m3JMF2PuSK+r2yn4lEcu13Fus1gxKbNe3d7ao8U2EkvUjSMsggyQziBOmhJbgQk7tE3KTDOm5CvKvsOu/uJ5IyCbczMIISnV+qkOj+BsA9d6Tk5OTk5OTs7VglcosuPGmwlKZfpGdtBeWKA1N7vVh3VV4ZsUAXhWk0rFQMnHcySB23V3b1O3fCIDtPRJpI9B4ZqwR4C9EKnVhDZGW40mxRUOcp1lCIFAmhpSDy718cZg5TyWDXavAl7SoG++N6HMKJ/ZgTtWPEtepcT+d7wFFfSOxetHTnH8q0+uSEy4ayjhPTe1e5a1U8nvP11hG7Z7z9luCMFrcphnxDjpOT0aA1IetEcZtfMbfxxSZoK374HjZqK3JRO8zdpeyNKkeO0ZnLhF6pWJiwMkXZd3HGxsmmszOc2h+b/mpelPMds5iLFLhTSJbqPGahu495zLIRe7c3KWYY0hK6izWGtJkwhjQTKKo9+Fm/5vSP0mOF8fGBFh1BMkzu+TqD/DiKN5xPl5UAJ8pVBCkGpDkhq0gVBDaBVWCMzd+4n+8fuIfvE9mNGVFWkA8shJ/H//J3j/9g+QB15bHCS4JqGQNEmlS8cpEymfup8L3jlrwXajzVnm8pZdl3cebX6WtYneR65+0TtpQXMC4mb205knK8nvA7+8xQ5Yb0nkFpmT2wqIxRwdjtGUr7GgXqEjJ0lEE4vGs309W7AWktSS6qyy1pWC1ClghSR1ApSO1zyhcUlEMdU//ASy0yukt9/5AyS37V///a2Ca1P2qnmMHeNYeYSW2yvyVhsfW7z91Ok3sbe89a4Lay3z54jdtX3jCHmZr8Pl/bMctU3iyy1WthDWRVoP64zhaNBpgo1SGjZleo3x5WmS0FlYoNTfj+O69I+OrbpeTk5OTk5OTk7O+SlW+xjeu59itY9y/wD1mWk6jcZWH9ZVgwR8o3GtBgFu4FL0HMq+i8XSijeuZdSVEokCWrhZITQCV69d8E5sSkRMYjQagyfdrHXcOiNtCaV3IKyPtP1gFUYuYMXGu1fLzeMEnameZVFhiGZlZaF00F9l/4+9GXlOgtn8q0c59c3vrRC8f3R/yH0jvePlk02Hjxwob9f6iJxtxqSo8qTYR5ve15zEcped4BZzGrEZLybPgyBYFmsus7mIJGYtk6wCcOMmfnsGiyAqDpF6JcLCIJ3KGEZubCpgqOc5Vv8WL07/Oafbj6NNxHTnZcR5Cu5ztg5nqw8gJ2c7IY7XuVXdwjE7xZxtYEwmeDuujxQgqOCYt2DN92PECxj1BFasEuEkwIpXSOUrCDuC1A8h7Z2I/C3Xg+j28lYWUm2IUo0jBFZJjJB4ChQac++NRK+/GfXdl3E+8w3kmZVVxOq146gPfhh9817Sd78dc9t+XJsgkgZtt0zbrUACC/4A1WgOmSuWORfFYEVX8BYCaw3Cquw2hh476nXMWdHbpUJCg4R5Upo4lLGkxMzjUSNgJ4qrqE+uSaAzl0WXp1EmelsLXgmcYMtFboSLFjFaNDEiRYuQlBaWbLBgMWhijEgwIkbTxrVl5DmDnDg1GCyJsThSIIQgdsto6WClwo03YBLLWir//S9xJqZ7Fkf33kLn7Q+t//7Ow14xhSMsob6Dl2q9kXJe9Dxe/BwAraRI2d4Bm+AOuBityVmSdm8BSf++y4zlNmkWYe52+3T72ySCS4RYNNKW0e4Ajigj4hapVrSSFq0opRVphiv+BePLAZqz0wjlUOyr0bdjJ8rJ+9zl5OTk5OTk5FwOlcEh0jgT3nSSsjB5GuU4eIXzX4vlLBGYlEgqHGOIhaK/5NKJU4qeQytOCFyJutwC1o1ECGJZQugmqABXd3B1SKzW9nePTYKUEgxI6eJJl8jE63+YeCi9EyOnMVIgaGJEE4kGW9oQkT3bL/TPHuDMzjdg1NJ4aqHvJvxoHi/ubT9VHO5n/994E4c++3WsXiqmnnnhIMp32fng3UvbFvBzdzU5/bjiVGtpPvnJ0z57Kyk/sv8qNxbkbApNEfAE+7jbnmSQ3rSAvcxRthHPMU4iNlizcBTIIkQRILL5iCSFKAbPgTW0OpAmxW/PkHplEq+CVgFE87ScXfjtWdxoYYPe6RmJ6XCq9XVON7+DEgNsjk0j51LIyw9ycrpYYxGnW4yoER4wd/JGcw9jjKGMs+jwPovAQdl7cNJfxEl/BmFuOW8hkhWTaOcz3Yjzr2HJq1/PRXZFb1dJtLVEWpNaiDRERmVPrdXo+28l+mf/K/HPvQsz3L/qttSrR/H/3R/h/bs/Qr56FMemFJMmWijaboVY+tT9AcyGfv3lXEtkLu+z0eYCrEQYlUebn8OFnd7TV5HT20A0n/XmTtoQLUDUAOlkkeVuYdOFbkNKIlqEokFb1Wm4J5h3XqWpTtBRZ2iLk3TESSJxhlBO0pInackThHKSWMxjSHBsGc/WerZrLUSpRpvstuNkhUaJG6CdAGEN0qy/wFv4ypP433upZ1m6c4jG//Kjm/bclm3IqGqizQiT/hizQe/Artr42OK3xKMn3sj9g9sjK27ucG+/qKBWodBfvYwtmWxgKVX22vb8TPDeYiwGK9oI6yNEEamGsz7dSMKwQ2LMmuPLkygibDQo9w/guB59Izs3+WxycnJycnJycq4t+kfHqQwO0zeyAy8oMDdxkjRef+HyWsTB4lqDazVWCJSjqBZcSp5CCEEz2vrC2vNhhSBWJQyKRAaAwTVrb3UVmgiNJuqOLf0NcmEKFNIMo0wFYStIW8aIECsWMsPCBqFM0u3fvXziWDIzcBdmFQGvNDrM3h9+YzYZuozJ777I1DO94+TAgQ/c26Dg9B7/x18tcmAmL+TNWRuJcPie2MNRBlbcN0ibh+wRynYT5uqkgEIAgd9to9ZNlotj0AmX5vKexQqZubzdElFxkE5lFCM33mhobIyx22OOKKeX3Gaak9PFTDUQydLFQ4kCN3o3st/uZ9bOciY9Q1O1e+aCBQJh9yL1XixzaPkdjHwGxCoXfaKNUd/AyG8h7Z1I/SCS0U04s6sDAThSoIQi0YY41SghcJREW4krLa7RCAz6odvRD9yOevJFnM98HTk9v2J76qXDqJf+EH3Hjch3vw1x035aboWWW4GkwYI/QF80mzu8c9aIXdbLW3RvW0Bg0bnLexkrnd4LV4/TO+1AOJ9dZCcdSNtZdalfBWfj450zP3aMFtHSDxFGgMDFCjBorNBoEWOIMHSw3defQCGti0MJaV0UHgLnvFXsqbEYC0lqUFKghCByi1gEiQpw0866lwW5Lx+h+Kmv9ywzBZ/6L7wni7PaFCw3yEmsVaT6YV4c6XUlOOlJCp1HAUiNYqH1AMHQ1g9kTKpZOH66Z1ntslzddmV8ubtNhgSig7UWx5Qx/jBOqjBphzgyxFavOb4coDk7g3RcitU+ajtHUc42OcecnJycnJycnKuY4T37SOMYaw2zJ44zN3GSgfHd+bXWGghMSqIk0hpiqagVPZpRSsV3WOgkFFyD52x9AepqGCGJVJlAN0llAcd0cAykcm3pUB0TUZQBkYkJpIcnXeINKKwWSIQZAFyMACkURtRBzoOpbljiZhDNUWkcoVFd8npqt8h8/20MzL6wYv3qnlH2vO0NHPvSYz3LJ779LNJzGbz9xsVlO0qGX7y7ye99r4LtjtAtgv/8bJnffHiB4eL2jcHP2T5YIXhF7KBhfe6wp3vmw4skPGiP8AJjTIrLKaa/RFwHlIQwygwPaZr9GNudm7j456A0CX57mtSvkPgVtOPjRZK24+O3Z3Cj3Gx4PZJfieTkdNEnVkZjA0ghGRJDDDFEZEOmzAwzYppY9FavCvpxzCNY82aMfBYtnwQxt3KDwmDEcxj5HMLsRpkHEfZWRB60AGTfcZ4j0ZZF0duRAoskReErjdIJSIV++E70Q3egvv1CJnrPLqzYnjrwGurAazh33Yx8zyM0brmdlluhlDRY8Ae7gnd+YZizNqwwZD28xbJocweEwYqs/1ZOxoVEb7PdRG+TZg7upA06hrgFVoNT3DAnt0GjRYQh6hG3bXfAYdEYDEaAkQmaFLBZmwws0kqkdXHpWyZsXzz2aTlRqtHWoq0lcLLHxm4ZrXwQAidd38peObNA5SOf6ekJZQU0/t47MCOrp3VsBEM06JMRib6XebfGqVKvyF5p/Cmi+73w7YkHeGBwe3w/10+ewSS9ontt32X0oNYpGAOul1VWb5P4covGiA7SBhivD2kriKhNbCSdNL6k+PI4DAlbTfpGduJ4Hn0jOzbxTHJycnJycnJyrl2ElOy88WZOvnyA2tg4MyeOMzdxisHxXYhtkBS0nXGtQVqLZwyhckAKBooe2ljCRFPvJAyWPcSWtsw6P0YoIlXC10209HFMBFaSios7jC2WtokoSp/YJHjSxRUOyQa5I6WpgPAwchqJwlLHyPlsjGE3ZvxTXThE5PcT+7XFZe3SKH44Q6l9esX6tRt3o+OEk1//Ts/yk19/CuW61G5a6vv9uuGEd93U4ZMHi4vLWonk95+p8BsPLeBf2lRAznXMhKjRwudeewKfpfefg+Uee5JDNuI1MbTxqXtSZi7vOAbEUh/vKO62Wrv4i1oAbtRApiFJ0EdUGMKNG9iiJHVL+O0ppNEX3U7OtUMudufkdHHv2kXn0EnCw6cpiuKq6/giYBfjjNsxFuwC02KaeeYXXXUAAh9lHkSaB7DiIFo+gZVHVt2elcdJ5XGwVZR5AGnuRZD3OwJQAqSSaGNJjSG1BldJrFa4wuCiEcKAdNFvvAv9hrtR33wO93NfQ8zVV27v+VcpPv8q3j23UX/vj9Pct4tS0mQ+yBzeyuaCd85asd33vERYmd22EmEFVhrA5KL3Mra36G0hbkK4kInbcSvrz63czM29hovri+/BYki7YnaI7orbRiSLa2hSDEm3v3aCQYOQZPkhCkUBlwrCOkgjkRdwa68VYy2ptiSpQQiBkqClg1YeqfKRJkXadRwUxAnVD30C2er0LG7/6JtI7rzxPA9afySGG+Q0xgyizW0cHOid6JB6gVLr84u/P3vmTXzfTdsjmnHu8Mme38s7BvGKl3jNYE1WMa2c7PXt+yvi87YKK1pgQYoaRvYjwgSNpBWGGGPXHF8OWa9ux/UoVKr0j44j1+G9nJOTk5OTk5OTkyGVYvSmWzn50gEGxsaZPXGc+TMT1HaObVuhdjsgyNzdWgmEtSRCUik4NKMUHbjMtmKaoaZS2L7T9Vo4xLKIZ1ogLY6JsVKg19Dv12IITURBBsQ2xRMuFku6nuPOZUjrI/QOjJrCIIEGRtSRFMEW172Pt8AyMPM8Z3a+AbssSnm+/za8eAE37ax4zODtN2DihIlvP9Oz/NhXHkd6LtU9S4mgP7a/w7G64nuTS2PYEw2HP3mhzC/e3dzsbms5VzF1UeBx9vE6e5Iava/LG5hmwLZ4lRHmz6OPrBuiW3yvVNbLW4pM8E7ibM7CcVjLBKvSCbI1Q+JXiP0qyvGxQqKdAL89jRs3N/Y8crYN2/fbMydnkxG+gx2r8NQrnyMIaozbHewwA6hV+qsIBDVq1GyNhIRpO82UmCJaFl+eRZzfjNQ3Y/QkRj2JEc+DWKVqUdTR6q/R8lGkeV3m9mZwI0/3qkAIcJRASkW6LNrcKklqLZ4wKBsjZDZpr9/8OvSb7kV9/buZ6L2w8svMeeYlBp55ifD+19H6iR+F0WrX4T2TC945l4jBChA2EyWtMFkvbyGyflB5tHkPy0XvlAbxVoveOoLOfPZ/GkHSypZ7ZXAvb/8Wg16MIQ+XubVN936NWSZsa5FgRNexTTYYV7aAIzyk8VEUkcLNHm+X1lsPotRgrUUbi6uyeP7YLWEQWfzTeg4GrKX8sb/EOTnZewx330TnkTes337WwC4xh4cl1g+jkRyp9Ird5dankd1eVc9N38ZtlQpCbP3AKA0jGhNTPctq+3dd4lYsxAkgs0Gjd3bwuPVYUqyIULaCdvtRqYvQCc0wxVp7SfHlcadN1G5T2zmG6/lUh4Y38UxycnJycnJycq4PHM9j9OZbOPnSAWo7R5mdOEl9epK+4TxR50IEVtPBxbOGSCg8qxkqe0Spoew51KOEwJW42zTOHCCVXpaEZUAIg2MijJRYcfFj1hhCG1PAJyXFEQ4Gi9mg+TiBg9Q7QM5ipcDSwog2Ag22vO4pm44O6Z99kdmhuxeXWekwO3g3I2eeRKwyph++51Z0HDP53ReXFhrL0b/6Fje8482URrPxjBTw83c1+dePKyZaS+O4J0777K2m/PC+Tei5nHPNEAmX77CH2+1pxulNSq3R4UF7lGlb4qAYpiE22JjnOJmzO4oAmbUWTFPQBjy3awa5MAKLF9XRZ13exUHcqIEtjZB6JfzW9PoaOnK2JdtjhisnZ5uxIJosiCZHooOMyGF2yp2UZXnVdV1cRhll1I5St3WmxBRzzPW4vSUjSP0OLG/FyO+h5XdgtclzkWDUUxj1FMLc2I04v2Hdqw2vNuTZaHMDidZEqcZREiMVjtb4NkFYAzKLk9Zvux/9A/ejvvok7ue/jmi0VmwzeOpZgqeeJXzoXtJ3vpn50UFq0Swq/+LLuUSWos0lCIu1Zx3fBvJo8xUIJC59OFsleluTRZbHzSy+PG5msc6OnwndayyHXs2trUVCJkjbZaJ22nVrJxiRfb4Imz0Lynq4tpSJ3JQQQpElBjiLRRPWxqynyA1gLcSJITHZdl2VDbkTt4x2sud8PSPMg699l+CpF3uWpSMDNH/mxzbVVeyTsEvMkpq7sdQ4WfKIz3EHl1qfWbz918feyi/sX/n9sRXMH53I/nBdhJL07d55aRtJU8CA52cDSW+zeqRfHCuaCKuw7gjCFhBxQifVpFpfUnw5QGNmBtfzKZTL9I+N53GaOTk5OTk5OTkbhFcosuPGm5l49WX6RnawMHkGx3Ep9Q9s9aFtWwTgG42WEElFIiS+A/1FF2MNnVRSDxMGS97GxwhfAYkMFls/CW1xTYdEFbBrEI9TmxIhgCyy3RMusY0x6zzuPYtAoswQhjpGgrQORjRAzIPtu+R2YBej2DlD2BygXR5fXJZ4VRb6bqK28Oqqj9nxwF3oKGHmhYOLy6zWHP7CN7jhnT9IcThr+xU48IF7G/zrx/vopEvP9f98pcjuSsrtgxsTC59zbWKF5ACjNAi4xZ5Z8e4dosWQbXHGVnhNDNMSG9gCTUooFLJY87j7e5xmvztO5vReA0rHyNY0SVAlDvpQOjjH5b095nhyNoZc7M7JuQAazYQ5zYQ5TUmUGJU7GZbDOOeJ56lSpWqrpKTM2BmmxBQdsRQHIiiizPcjzRsw4iWMfAIrT626LStfI5WvgR3qRpzfjWD7TExvBUqCFJnLO9EGYwRWKYw2uFbjWJO5vAGUQv/w96Hf8gDOV57A+cKjiGZ7xTaDJ57GPvkM6UN3s/CON1MdUDi54J1zySyPNhdYYZcc3xgQeWrAuaxF9HapUWAHar3aOyQtCOfB6Kw/d9LJopyDviy6fBWyGPLMrZ2edWsTZT3ayWRtQ8JSDHkmbttFt7ZC4uLYItK4SFwEqlvEpLLPdSEAiWBJ5MaeFc7Xn0QbDJZEW5QUCCFIlI+RitTxUTpeteL8cnAOHqf0ya/0LDO+R+MX34MNNrdX9H4xhaCGNncCcKjau38//B5umkWFH2+MURG7KDpzm3qM52P+SG+Eed+unSj3Ei7jje4WdXQrpgv+tpk8s0RYkaDECFoGqDakxtCJNfYS48ujVos47DAwOo7rF6gMDm3imeTk5OTk5OTkXH8Uq32M7LuBySOvoZOE+sw00nEpVCpbfWjblsCkhFLhGEMiFJ41VAsuzUjTV4CZVkQz1pT97T1tH4tC1l5Qgac7uDrsCt4XH2fENkEImbnDpcCTLpGJN2gEnCFNFay72MfbiDpWziFNdd3nW2vzLxP7NVK3tLisWd2LH81SCGdWrC+EYOz7X4+OE+ZfPbq43MQJhz/3dW5811sJ+qsA7CwZfuGuJr/3dHVxPYvgPz9b4Z++YYHBQj7/lHMJCMFxBmjic4edoEiyYpUdNBixDSZsH4fEEB2xgfqE54GjoBOB3+3jnSZgTNbLew2fLwKLFy6gVUgSVLsu7zq2tIPUbRK0pzPTXM41x/b+1szJ2Ua0bIuD+jUO6UMM2AFGnVFqqrbqug4OO9jBDruDpm0yJaaYZRbTFbwECmXvROk7MeYkRj6BES+uHnssptHqC2j5VaR5Pcrcj6BvA890eyMEuI5E2UywORttbnDQVuOaBOXY7Lm0Gjyf9G+8ifQHH8T562/jfOGbiHZvPxJhLe7jz2KfeI7Ww6+j8CP34g2t7uTPybkwy6LNhcBag7DdaPPc5b0qFxO9k/UQvU2SidxpuBRZbg14JXCCRdHPoBfF7LMx5EbEi8K1QXdF7XiZuL3cre0grYtjC0h7VtheTZhTCM5GMYnubZHtZwOc3OcSpgZtwFqL62RV7IlXxgiFkS5+VF+X/ci5OtU//hTC9J5P8+/9GHrH5rbq6KPNkGgTpz8CSNpKcrrYW+BQan128fZfHnkbb9mxPSp+o3qT9sx8z7LavvHVV14Vmw0QpcyqoT13XfrRrwcWixUtHBugvQFIHKQxNKIUYS1TlxBfbq2lMTuNFxTwSyUGxnflPSNzcnJycnJycjaByuAQSZS19dNJysLkaZTj4BU2OPr2KkVhcY1BS01buqRC4mIYrnicmteUPIdWnOI78oKFnluOEESyRKCbJCrA1SGuDonV2v7ukYmQEjDgSxdPekQm3tBDlraA0DvRagqJxFLHyAWkLSPs+r1epTUMzDzH5I4HYVl7zLmBO/FOfxu1ynkKIdj9gw9ikoT6kSVjlA4jDn/2a9z47rfhVTLx/J6RhB+/sc2nX1vqqdxMJL/z3Qq/+voGw8VcyMu5NOZEiW9xI+PMcYOdwac3JUAAYyyw0y5w0tY4LIaIxPnH51eEVFAsdGPNRZbKmKQQxeA6a57PUDpa5vKuodIQKwTaDQha0zjJSlNcztVNLnbn5FwiBsu0mOZ0dJqiKDLujbND7sA9zwd8mTJlW2YPe5i1s0yJKVq0FkUvaceR+iewvB0tn8LI74JYJT5WhBj1GEZ+G2lvQ5qHEHb8uo04X4w215bUGLQ2GKUw1uAkKa7SCOVk/XiFgsAj/bG3kL71YZwvPYbzV99CdHqfZ2Et6tvPED3xHOlDtxH8yH3Ioeu3sCDn8lk92lx0o81NLnqvwmqid0IT94pEbwNRI/sxKSRNSBOs42LcAvr/z95/R0mW5fd94Od37zNh0psyWba7urqrfU/3TE8PBuMwBjMABgAJikZLUhQgckXsSjqrc7Q6K0q7Wh1S1O6eI+2KuyS1IgSREElwSZEAxgEDjMf09EzPTLtqV23KdPn0Jswz9/72jxdpojKrKstkVmT1+/SpzswbLyLei8x48e79/r7fn81xMr0SRV70z4aiu3a+KmxL1uXWFjWdGPIqkYYYDRGCTZyPryVyZ8X+bjG5U7xXMuexIlgjKEIW1MiDCqhiXXLrT5Tl9P/W72OuSNRo/vxHSB89euuPf0Mo95pJnH8QpYhUPDkQo2uEUPENaq1vAzDbHuTcwiPce2hqm/dzY2avcHUHlYj+vTfgWM46ldlhWFRI91B8OdJGxOOCPXgvhKmlkaWo44bjy5PGElmSMLrvAHG1Tn1oeJsOoqSkpKSkpKSkZGRiH3maoF7xF3JmL5xjdP9Bgl669uwhKpqTYTDqycQQqicKDIPVCO+Vdu5ZaOWM1sOeSWTaEBES20fFLZKZCqFvdhzem2tJ1vIJdWNIfEZsImITkvj1ztLbusuEWLcHb6bwRhAaeFlCyBDtv23rrFG2xNDcW8wNH1sZ8zZiZvRhxiZf2PBZxBgOfvojnPra91g6f3llPGu0ePfL3+HIr3yKsFbMi37p3hZnFgJemlx9j11oBPzt5wb5648t8cjY1r6OJXcfKsJZRjjPEAeY5bBOE9GdfmqAA8wxofO8p8OcklGyqyTg3hIiUKlAkENCp6d3BtnaWPMbcHkHCVk8QFIbI0wWaPUFhOkicXO6dHnfRZRid0nJTSEEQUAzb/JW8hanglOM2zH22L0MXsV1bbGMM864jtOkySSTTDONW3YFMkDgP4X6n8XLK3j7PCobLLSL4uV1vHkd8Xsx/mmMPnjbe8zsBAQIrGBMEW2e5g4ngrcWl6+6vEUAbYGNoVoh/+KnyD/9DMEfP0vwxz9A2t3CjniPf+41mj96g+CZY0Q//xRmZGDDfSgpuTq6EmcuFEK3aNGTWXEbJzmU3D7RO29Bew51Cc7N4dw8zmS4eoALfBEVTiFre/IVt7ZbcWsrKCtu7VArK25tc8PnW9OJK18WuQMQs60i9zJJ7vCqOK9Ull3dYRUVIbcxgUtufWqvSt+//GPC9y52DacP3Uvz8x+91Ue/YfbIAjUqpP7RYveAd/u7I8zrzT/BaPFZ8I0zH+ej4+2eWFNSVeZOdovdQ4cmNt+H2udFhHkYFpPDeHuj46+F4lFpYWSY3FQIWgGpS0lTbji+XFVZnJ4mrtaIqtXS1V1SUlJSUlJScgcYP3iYPE1R9cycfY/ZC+cY2XcAG5TLz1cSqceqEntPywY4BIsyWA1pJDkDVWW2kdJIPfW4t9f7tCN4x26RzFQJfYvQJ2Rmc3OPpm9TMxVSnxKbiNCEZFsueBuMH0eYxxvBqMVLA2QedOAqCW03Tn3pLO3KKO3q+MpYUhllqf8Q/YunN7yPCSyHfv6jnPzKd2henlkZTxeWOPmV73LvL3+KII4wAr/+yBJ/94eDXGyu/o00c8N//9N+fvW+Jl+4pzfmtSU7Cy+G04xyjiEO6gyHmCG4Yt3Kohxmhv06x2lGOM0ITrbgXLXciq2dQCyQ58U/54vUuk2+V23exriULC5c3kHeKtbBgiqV5iRB1rr+g5T0PD2chVJS0usUgjdAlmdcdpc5nr/Ci7zMec6TcvXonRo1DukhntAnuNffS7/2r6TWCiFWnyTI/wZB/pcQf+Sqj6PmAi74fbLg/40zf4rSG5Gr282yyzsKLB4lyT2pWlJvSNMM75Iistgl4DoRwbUq+a98mvZ/8x+T/cLH0XiDamPvyZ99jeZ/9U9p/4vv4GeXtv3YSnY+Kn6N6G1ABfEBeLvVadU7mmXRu8Z+YobJadLkLAlTJEyxwJsscQrH6gWpIyHVGVrtN1hqv8S8vsacf5FFeZdmvEirktEOFmjLLC0zRcNcoGEv0rJTpLKEF4/VmNgPUnXj1P0ENb+bio4QaT8BlRsUug1CjEgFpHB1i0SdiPusE1m+fUK3V8ickuW+6BjeOZQ07MOZEDWWIN8gWeQGqXz/RSo/PN415saGWPwrv1icsLcRi+Mg02TuGej87iYrAUtR9++x3vgqAO084tlzH+GZ8d74PG1OzZI2uiddm48w90XUl7FgAojiYpLYK0gLK4Y8HMVkHnVCkhZ/m1M3EF8O0FpcIM9S+sfGqdT7qQ0ObcshlJSUlJSUlJSUrCLGsOfIUSp9/QxN7MN7ZfbCedSXrrmNqPgci0dUSTsikTEw1h8TGUMtDGikGc73/sKBF0Ni+1Cx5CbGaE6gm4skV5SWT/AoqWZFHtpWiGZXIAjGD2HcKKJVjA6hONTMohv0Lb6554DhmdcwV8yz5wePkEZXN9XYKOTwFz5GZaTbUNWemefUV7+H66R31ULlP3xygb317shpRfg3b9f5By/10e6+qaRk0+RiedeM86dyhFOM4DawRgR4jugUP6vvcEinMVvhkjamiDWPo6KQP4xAtYg19+769+8g6onac4TteZytkNTGyMMarb69tGtjaBnDuePpoRWvkpKdyKrgnec53nsa+QLvyTlekpc4ISeYZXYl+vZKDIZRRjmmx3hUH2WP7iHQoPPIgtF7Cd1fJMz+fYx7CvQqi72yhLPfIQv+Hrn9Mp7LG293l2MFYmuxIuTOkzhICUhyJUsT1OWFy821i37eAH018j/72UL0/vzPotEGr7Hz5H96nOZ/9Tsk/+q7+PneEEFKdhJaiN50+nl3Is5FA1BTit7X4Oqi9+SK6L3ACeZ4hYXsBRqtF2i507T9ORJ3gSRYoBk3acQzNIPLtO0sTtrF42qdihuh5nZT93up+jFiHSLUOpboFuLL1orcwTqRW7dZ5F4mzR2qSu6V0AqC4MWSBxXyoIJ4h73FCvrgnbPU/9dvdo1pFLLw7/0ZtLa5KLvbyUGZwepRVFdjv98d6HYYhNlJovQ1AL577md4aAhqQW+8KWevcHXHA3WqI5tpr6Hr48vD3nHUKA5jEnI7jnrFJBHtLMU7sxJfPlKPNhVfrqoszUxTqfcRxjEj+/Zv01GUlJSUlJSUlJRcibGWvfc9QFyrMzKxD5emzF26gGpvXF/3ErE6jELkHbmYlRliJTQMVkP64mJ9a76VFcJOj+PFkpoaXgJyE2F9htXNzS89nrYmePVk6rASYLdB8AYwWse6PYjGGB0CNXgzj27UYvImsD5jZObV7t+hGKZHH8Ff4xiDSsw9v/BxooG+rvHm5WlO/9H38Xmxrjle8/xnH57nyV3r25G9cDnm7/xwkAuNUgIquXkyCXjL7Ob7coSzDG24mhXhuF8v81F9h/06i2zFOSuKOtHmtkitM6aINc8ybmRhNcjbxM0pxOek1eHC7R0P0BzcX7T3K9mxlGe6kpJbpiN4i6wI3nmW4IF5medt8zYvyUuclbO0ufqFUoUKB/QAT+gT3OfvY1AH17i9Rwn85wnz/xDrPg16lYVucXjzEnn4P5LZf4qXEytRve8XRCDsuLwBktyTOEOmhiTLyLOkqPpyScdV2XmR++vkf+7naf/d/5jssz+DhhuI3rkn+84rNP+vv0Pyr/8Uv9Bcv01JyTXxnThzWePytkW8uZYVhNdivejdWhW9/QWS9kna7jRN3qOhJ2mZSdIoxQcBVipEfoCqG6Pu9hZubT9CpAMEVDG3ratLb4rc0Cl6zTx5xxUQdCKh07CGIuS2QnCLvbrN3CIDv/37yBXOjcX/zRdwN9Jj+jZRJWUvObl/bGUsE+FMX3eSR73xFQSYaQ/ypXc+z8d39UaKh3eO+TMXusaGDu/bXDy3y8H7Tny59FR8OYCRNs5UcVInyJTEOfLU4jvx5bVoc/HlAM2FeVye0z86RrV/kGp/2XakpKSkpKSkpOROEkRRIXhXawztnSBpNkuH9wYIRe/uEA8oyZq+t0O1iDAwDFRCMudppTvjtctNRGpqOAlxEhL4FKObc17m6mhrilOHIyeUALNN0oUQYd0ejK8hOoRohJdFVJauamC6ESrJLP0LJ7vGXFBjdvjYNR89rFe595c+QVjvLgBeOneZM994buU9VQng3398iT97tIFc8YgXGwH/9XODvHD52mlZJSXXI5GQ181enpUjnGdgw7/dCjkP6kV+Rt9hr87f/kKdwEK1VsSbhxEEYbHOn6RFqusmEfXErVnCZIE8rJDUx8jCGq3+Cdq10dLlvUMpxe6SktuCENgNBO/O+TyTjAtygVfkFd6UN5lmGn8VwUMQhhnmfr2fx/VxJvwEkUad2ypY/wxh/psE+a8h/sBV90jNKfLgX5IF/xBnfoRyayLGTsN0RO/QGpwqLQepWjKvpGmCrvT4SIA1F96DfeR/4Qu0/u7/gdZnP4Zu5ITLHNm3XqL5X/4Oye89iy6WfT1KbozC5b3azxs1iLdltPmVqBYXrT4vWhDkCZKlhFlELR0mTiLydJp2dopM5yBrEaSGih+hxiFqHKCquzpu7T4s8W3rvdVNt8hND4ncy2S+SBbInGKNYDqCaRr14WwEwq1FmOc5/b/9+5jF7iKg5mc+TPrEA7ew5zfPvUyS+w/DmmKG030hbm2Ut+bUG18H4H9+9d9mMAw40r+5uL2tZvH8JC7tdkIMbybCXH3x+WaDIsI8jrc9Pv5aCA5MhrOjGJeRpiEuVUBW4svH+jcXX67e05iZpto3QBBFjO6/+nVRSUlJSUlJSUnJ9hHXauw+cpRKvY/hvftIW4Xg7UvBu4uKzzEKsXfkxqzEBBsDY30xYWCohpbFHRJnDpCbmNxUyE2EJyDwbWSTIlSmOQkZmXc4PJEJbyFx7cYQLMaPY30/Rgcw2oeXNirzt8VINLBwkiiZ6xpr1ffSrO295v2i/jr3/OInsJXuou2FU+c4+53nV1ITROAL97T5j55cpB5272/bGf7+iwP8m7eq7JA/o5IepiURr5p9/EDu4TJ9G25TI+MRPc9H9F3GdeH2it5GoFqBSlSI3lHnvZEmReH/DRBkLeLGNOIdaXWELO4njQdpDu7HBb1lGii5PqXYXVJy27i24N3ZhAVZ4F3zLi/JS5yRM7S4ulAaEbGPfTymj3G/v59hHV5xhBo9Ruj+KkH26xj/KOhVom9kFmf/mCz478nN11Fmb+9h9zACBEaIA4tBSJ3SdoZcDUmekWUJ6nPIE7giWkmG+tG/8Dnm/m//GY1Pfwy1G7y+WU72jRdo/Jf/hOQPfoA2bk/EUcn7hSLaHJVOtLlZE23eO8LUbUG1cJmuEa3J2pC1IG1AsgjJArTnoDULzRloTkFrGtqzxXiyAOli598SkrYIM0s9GaKejFBv9VHJh4iC3QTBCGZbJsUGiNaJ3CKCat4TIvcyy65ur7ri6s5NiDchWVDBuGzTFfcbUf9fv0l4qtuFnB47TPMXf/aW9vtmGabBABOo7u4af2Og+1xebT2L9bN8+72P8ur0g3xqzxKbMU5vB7OnuiPM67tGiPpq17mXQpoBpjPpC4qvPYSYFmkwhPcW2orPPM4HNxxfDtCYn8N7T9/oKPWhEeJafRuOoKSkpKSkpKSkZDPUBgbZe/QBqn39jEzsJ2u3mT1/Fu9uft5xt2GAqs8I8RhVErM6X6lGloFKQH8lwIiw2L49faS3g1QqOInIbIxiCH17neP4qvf1KRk5mc/QjuC9XQgG40cwfrjo4+0HUHLUzKHcWvNrQRmZPo5c0TpsbvgBsuDa87zK8AD3/MLHMVcYcmZPnOb8sy90tQl4eCzjb314ngP96/f3qydr/L2f9tPIemTSW7KjaUiFl8wBfiiHmWbjuXgfKU/oOZ7WU4zo0u0VvcMQapVizSOOwASQZ0W0+Q04iYw6otYsYbJIHtZI6mPkQZVm/wRJdaT0JO0gSrG7pOS2sgnBu0MuOZfkEsflOK/L60wyiWPjC35BGGSQ+/Q+HtfH2e/3U9Gih4RhL4H7ZcL8f49xHwO9ykKvpHj7PFnw98nsv8TLqdsSxbMTEIGoE23ugVYOiTfk3pMkCS7Piw9D12atMCVAPBCS/JVfZfL/8X8h+cSH0Y3iVNOc7I9/WojeX/kh2ixF75LNo+JR0SuizYPC6d1rb9GbEq2nO6L1zIaiNWkDsiakTUhbxWPlLcg7j5s1IWlAstR5/M6/NfcVl0MQQ1QvnKxbzqrILRKyscjdOws4uVOcV3LnMSIEHZdvFvXhxeBtROBu/rwVP/sS1Wdf6hpzo4Ms/tVfKiwJ24yg3CsNcv+BrvHLYc5itXsRod74CpPNUf7liV+hP3R8dLyxnbt6VfI0Y/Hc5a6xoc24uvMc8BCFxWsfRde9y3YSiCe3gqMPm7XJXUyeBTcVX+6dozE7Q3VgkCAMGZnYxOtTUlJSUlJSUlKyrVT7B9h79BiVvn5G9h8gTzNmzpWC91oq6rCqxN7hxJCtKdoerscrceZJ7mlnO+R1EyExNbyE5LYKCKFrb7ocve0THI6kIwzH2yh4Axjfj3G7EK1gdKhYCjFzqNxaambg2gzPvN41piZgZvSR68Ym18ZHOPz5n0WuMONMH3+bSz9+tWtsvOb5T5+e55m96/f3+HTE33lukLOL29MTveTuZ0Gq/NQc5MdykDk2LlofpM1T+h5P6RkG9Ta2BTW2cHlHYSF+h1Gxbpl02phuEgGCrEncmEK8J6mNksX9JJUhmgP7i0TEkp6nt6weJSV3BYXgnbucPM8JgoA8SwjCaCU29orNWWKJJVniPX2PEUYY13HqV6mICgnZy1726l4WdZFJmWSGGZA+Av9x1P8MXl7D2x+hcmnD51M5QW5OILoL457G6MPI++B0YAWMNThfOBxzNcRGIc9wLicMoyJayYYgxYW0AJW8SXu4zuxv/BVqv/gpan/wdYJnX2BdFUM7I/vDH5N952WiTz1B+MnHkGoZeVKyGRQVZdndraJFtLkKajwrRRi3q/hWtVNN6Tvfd76y/L1f872u3raR+r5clbly/yu3X/Ozv3JsA0Q6ByrF9yKFaLfR+MrPy/fbaoRC2A4631tELKCo5vSSwL2WxDm8FoJ3FBQCogJpWCe3MSgE+c1N2oNT5+n7V9/oGtMoZOE3fhWtX9+ZuxXsZY7AP4mne0Hkxb5uQd+4aeLWj/h7r/5N2q7CL+ybJbK9UWEyf+ZCV09DMYahg9eOt8O7IrIrCIr3TDXepvfF5rAYnFkitcPYPCdPQ3yiKIapRvuG4ssBGnOzqCp9QyP0jYwRVa/nei8pKSkpKSkpKbkTVPr6mLj/QS6ceJ3RffuZPn+W6bPvMbJvP7bHUojuBALUfYa3glVPYgICX0je1sBoPSZ3baqhYbGdE1mD6aE2RVdFhMTU1qBcJwABAABJREFUqbhFMlMh9E1C1yK1m5sntnxCzVRIfErFREQmJPXb5243WkHcHrydBAzKIl4WMNQRvfm5R611mWTpLI2+/StjWTTA/NB9DM29dc379k3s4tBnP8Kpr3+/a03y8k9fw8Yh44+tthCLLfz6I0scHsz5l2/WcGsSBCdblr/7w0H+6sNLfHhvb7TxKtn5zEqd56kxxhL36ST9G7RUHaHJ03qaSa3zjuxiUSq3/sQiRfs2awuR2whkHYe3XU6729w5s3B5z+DCOlnch7MxUXue5sA+ovYcQXK57Obdw5RXFCUlW8JGgnd6dcG7gxPHJJNMyiQ1rTGmY4wySnCVt2o//fRrPwc5yLROMymTtKSF1ccw+aOovFf065YTIOsX8FUu44Iv4/SbGP8BrH8Kof+2vQq9iAgE1mAM5M7TdhCKEFmPTxOCIMQqiHFgY+gEIVddE0Fp7tmP/42/ROULH6fyB38MP3ptvWjXSkm/+iPSb79E9LmnCD/+KLJR7+/3EZ5OgYHTzldP7j0oxIGlGltCY7atF1Pv4lGhiDUXQfGFw5tCUEU6eQyyRphms6I1a7Z/v4vWN8rOFLkBUufJ8+I9B6y4uvOgiorBBVWsSzYdKbcWWVii/3/6feQKV8biX/p53L5dt77zN0FIzgEG8dotDJ9zF5gdPNQ11tf4Gt84/bOcmD1K1Xo+uXtpO3f1msyePNv188C+XdjoWgKwFpM5Y4rJXBRuU8rB5jAIYlKSoIL4CJ8sQjpM7iMaaRFfPt4fbzq+3DtHc36O+uAQQRSVru6SkpKSkpKSkh4nrtWYOPYQ50+8wei+g8ycO8vMufcYnthPEG6va7cXidQTqCf2jqYNycQQdfpc1+Mi/UhVSZZSFtsZg7Wd4TJUERLbR+wWyUyV0LcIfUJmrm8MUZSmT6iZmNRnhCYkNhGpz7YtqVIIMG43mBnUGJQGXhoIOaJ9RTrfTTA4d4IkHiIPV/sdL/UfIm7PUG1PX/O+A4cmOPipD3PmG891jV/4wUv43DH2yNGVuaMIfPpgmwN9Of/w5X4W09X9Tb3wj17p59RCiz93tMl1grVKSjaHCFP0M0Ufu1nkiE5SZ31BxTgNxvUkF7Wfd2ScptwGs9hy4X+SAFKYAfIcXCf9Tjb3R164vBsYl5BVBklqowTZEoqQxYeJFy9je6NjYckVvL/Vl5KSLaVb8LZBAJsQvJdpSpMzcoazepZhhhnXcfqvIkQHBOxmN7t1Nw1tMCmTTDON5yDGHUSZw5kf482LsFHkjjTx9vt48wOMPoTxH8LoxC0ef29jOtHmzkPmHHluiDou77zj8rZXuLwrrgUobVtFJ/ajf/0vUv38aYKvfIf8J2+t1w+bCenvPVs4vX/haYKnH0DuQKTvdqJ4cg+59x1hu/jqOxWnCjgtfnYdkTT3SjtzWGuohoZqZDHv8y4bRS9viqSBzj+lcHivjBVbgiqKg87tLPddvm2iNax0PRGzw0XrG2XnitxelWbiiuISr2ROCYwgnd9LGtbxEuCNJc5uQuTNHQO//QfY+e77Nj/1QdInH7wdh3BTHGYJ7z/RNZZqm9fqF/DBI13jzakf8q/f/ssA/NyeRapBb7i606UmzcnZrrGhe64j5mYdh0MYQmB7Kr5cACuGtklxMoxNFvGuD5dbvHLD8eUAS7PToFAfHqF/bJwwvg3V4CUlJSUlJSUlJVtKVKmy74EHOX/iDUb272f2fCF4j0zsJ+ih69c7Rd1l5IEh8J5ELKH6FTvAaF9MK3MMVAPmmhmVzBGHvVPcei28GBLbR8UtkpsKoW8TeCE31/+dK562T6iYGO+VuCN4Z5rjdHvm44LB+jE883gDRgO8LILMgw4g3PjvwahndPoVLu1+GmT1/rMjDxNdfA7rr+22HrrvIC7NOPe9n3SNX3r+OJMvvcnIA/cw9sh9RAOFmH7/SM5/8cw8/+ClPk7OdxeX/MnpKu8tBPyNxxYZiHtjTlxyFyDCJQa4TD97medenaS6Qd/7PSyyWxc5r4O8K+O05RaLn4yBahXSFFIp1jGzvPg5DIq+3pt9KJ8TNafJozp51Ie3MUGyhB+oIs3tS5ko2Tyl2F1SsqWsCt4u70SL3oDgDeDFM8000zJNRSuM6zijjBKy8cm/Tp261jnAAWZ0hkmZpAEE/jOo/xjevIwzPwaZ2WB3PV6O481xxO/H+qcRfeCmKxV3AtaAEUvuPImHXCE2SpYmOBsSKojxYCNAqHR6DLVttVjBP3CI6r/3a9Q+d5r0a8+Tv/D2uufQ2SWSf/pNsm++SPTFZ7CPHF4RnHYqSiGgubWitgfXcY8qoFoI2rnXos2zV7zqSld0I8WG7cwTGiEKDLkzLCU5cWCoRgGRfT+5vTtCtc+LOGJ1qK4KyMIaMRkDeNQr4NYI4Frc3nF5qzrAFbeJp1u0pnB+vi9E6xvlSpHbdL6n50VuVUhyRzvzeFWS3OO8YjvvMQCPkIVV8rCCqMe6G48tq//etwjfPdc1lh49SPOLn7jKPbaeuiaM8CCe7kWTE/mbLI0Mdo1F7Zf5Rz/5NJmPiIzn03sXt3NXr8nsqe7X1UYh/Xuv4ZRfPmeEnT7dcW+1zwgkwEmTNKhjMofPDbQDHOFNxZe7PKc5P099aAQbhAzvubuL80pKSkpKSkpK7ibCuMK+BwqHt+w7yOy591Yc3mGPXcduNwFF325vIDcRiVgqHUF3Oc7ceSUOHAvtnLHA7Ji1JS+WxNSJ/RK5iQh8iqrgNiFsOTxN36ZqYhIPobGEEmAQMl0vnm0Vxg+ChngzjcHiZR41sxg/iFxljfZahFmDobm3mBs+tjLmbcTM6MOMTb5w3ZWw0YeO4NKMiz98uWvcpxlTr5xg6vhbDByaYOzR+6nvHWO44vlPPrTA775R57tnu4uF35wN+dvPDfI3n1jknsHeXe8o2XmoCOcZ4gID7GeOe3SK+Io1NQH2Mc9eneesDnNSxkjlFmXLKCpizdvtYp0kyzppeL5YO9nkWrMAYdrA5glpZZCktpuwNUdS2xnFRu83SrG7pGTLuXXBe5m2tHlP3uOsnmWIIcZ1nAEGNhQDLZZxxhnXcZo0mer85/yHMP6DqLyNM8+j5uSGz6XmLLk5CzqA9R/E+CcQ7kz/1a1GBMLAYBUy52k5JRJPSEricoIwItBOrLlYYtemcHjXIOi89gcPU//1EcJzT5F+9Xncy++uex5/YYb2//ermHv3Ev/KR7D3Xqf/ag+gFH1+806fc+c8mQfXiSCHwk/sOsK384Wj1Ps1ojZgjRBYwRiDFcGYooRCKV7zNPc0UofBEQaG3CtJ5rFWqISWWmgxm4yb2Vksi9sdsWrZYe07Tu3lsZX/AxiQoCNCB4UIu+alWX3ldU00daeyAN+J+/Jr/pWsslbkhsLJvTNEboDMKa00x2nh5M5yDwKV0K7ElwNkYb2IX7IxQZ7ccDlJ/MPjVL/3QteYGxlg8a99kTuXfaYclRjv93eNTvmLTFe+R7v6t7rG3zl9ipMLRaz5x3Yt0R/2xntBVZk92S12Dx3ai7na66q+qFI2tqhQjuJiItcjBGIBTyswiAZotogkw6Q+vqn4coClmWlEDPWhYQZ37S5dQCUlJSUlJSUlO4wgiph44EEuvPUGsv9AV6R5VHl/J/ZUfU5iLJF3pGKJ1K1M9/sqlqUkwHllppGy2M4ZqO6cCHhnQlJqRL6JiBaCtzF4ub5oVESat4lNBB6cKJEEGAk7sebbg9Ea4gKcncJgUBbwZh6jdURvfM20vnSWdjxCu7Za3JxURlnsP8TA4unr3n/XE8fwec7ln7y2/kZVFk6dY+HUOSpjQ4w/ej+DRw7wVx5qcHgg55+9Xidf08d7NrH83380yL/9YIOP7d8gFbSk5BZQMbzHCOcY4iAzHNZpwivWJA1wkFn26RxndIRTMkq+ifPDVbEWajVod2LNfV6snyQpREFXqsL1MD4nbk6T9FVQG6Out9cH36+UYndJybZw+wRvABVllllmZZZII8Z1nDHGiNh4wbdGjYN6kP3sZ1ZnmZRJFvUoRo/i3WW8fR4vx0E2qIiUBZz9Js58D+MfxfoPIYzd8D7vBFaizZ2SesidEosnzxJyFxKHIMaCjYhdgii0ghoaSCcIWujbB9W//gXcqUukf/AD3Fvn1j2Pf/cCrf/uX2Mfu4f4i89g9oxs/8FegVK4sJ3r7q3tvF9Jt/YU7my3/G8DUdsYwYoQhQZrVkXtqyFAZA2RNYULtSN8J7knWHF7K412ThQaaqElCuwOdnt3BOxlgZvlogFHYX9fjiMHMIV4ZQyrarZcUXy4HGG+7PYWkLD79elElhe/qWUBfM1UcE1E+vtbAA+RlapyW0SRiewIkdsrtNKczBXvzXZe9G4PjRBuUO2fRnWcjUAMQd6+oecKzlyk7//39a4xDQMWfv1X0b7aLR/LzbJLE0L9UNeY04QT/lkaQ7uKApFlfJt//sMiFtyK8rmJ3nF1t2bmSRcbXWNDh/dfZeui9QawGl8e9s6lfdGQwtA0TZytYJpL4Kq4LMKp3FR8eZ6mtBbm6R8dJwhDhvb0ftFYSUlJSUlJSUnJeoIwZOL+B7nw9puMALMXzjN7/izDeyeIqnduXnGnsShVn6MGMjEkElBd414e64toZ46+SsBCK6MS2pUEr51AbuKVonxxSujbpKaKbtLckPgUJ44KMW31nVjzmFQzvG7PWoYQYd0evJnCG0Fo4GUJQw7ad0PrVQKMzL7GpWgAF6wWeiwMHiFOZonThes+xp4PPkL/vt1MvnyChVPr1yAB2lNzvPetH3HhuZcZffgIH3noCPufdvyDF/uYTVYFv1yFf/JaH6cWAv7isQbhzvnTKtkheDGcYoyzDHNIpznIDMEV5SoW5R6m2a+znGaUM4zgbtYAJQLVSifKnCLpMs2KWPMgALuc6LiJh4Krt4As6Ql6Z0WspOSupxC83W0SvJdJJeWcnOOcnmOQQcZ1nCGGNry4MhhGGWVUR2nT7ni9QzK3C+VTePMCzvwEZIOFf8nw9qd4+1PE34v1H0T03pvqTdPLCHQcyEW0ecsLoRYu73aSY4OQUB1iYyKfQK60gzraOZuqCP3pHPbwbir/wa/gXj9D+vs/wJ+fXvdc7uWTNF85RfDMMaIvPI0Z7tuWY/TqybySrxG2NxS1tRDOlr/vtN3uErXDULDLbu1b1J+NCNXAUglsx9ntaKWONo7QFm7vNPOIyamGlmpoCXrIwbgxWkST61r3Nmvc2251DNPphd2pLryh80IRZ77ylMBq5HnRo6Z4r8rq89NxgYsiLEegs3L7ah9wXfP1buQaIvc29QC7WVQhzT3tzK1EludeOwUnFrvBm9KZAGdjcltBvMPeQOybLDXp/63fQ/Lu12XpL3wOd2D3LR/PzWLwHOIQ0O0COZG/jqt9iUbf3+seP3WZVlacOz4y3mAk7p3f85Wu7qivRm1saOONXV4UyYRRUa3VQ7GPBrBiyUjJwhhJU/BgWjGpVJhauvH4cui4um1AbXCIwd17scHOcbKUlJSUlJSUlJR0Y4OAiaPHuPD2CRBh7sJ5Zs6fY3jvBHGtfqd3745R9TltCYi8I7EBzgm2Mx8PrDBSD/GqtDPHQitjtC/aMXHmAJmpYDpF9mFH8M5sFd2k4JSro6FtaiYm8RmhCYgkxOG2LdZcMBg/jjCHN4JRi5cGIq7Tx3vza1XG54zMHGdy/KnVdSAxzIw+yu6Lz2E2sS5R3ztOfe84ycIS08ffZuaNd/HZ+tcib7W59ONXufzT1xk6epD/4wP389tnD3Jitnte9d2zFc4uWv79x5cYrrxfDRElW0kulndkF+/pCId1igPMYa5Ydwzx3KeTHGSGk4xxliH8zYreYVAkEbaT4n2W58U/vxxr3uvryyWboRS7S0q2FcFugeDdeWjmmWde5gk1ZIwxxnSMChtHQFWosF/3s499zOkckzLJvKth/DN4eQNvnkfNxhWBat4lN++CVjB6FOMf6Ajfd8+i84rLWyFz4PLC5e1JabuQKFSsDYlQJFdaQR+t5TNqNER/OoeIEDx0CHvsIPlPTpB++YfozBWFBKrkP3id/McnCD/xGNFnn0Rqtye2y9Pt0i7Ebc9ysatCl0PbXSFqC2AFjDHEdlnUBpGt9VULFI7UOMADae4Kt3fiCaRwezuvNJOcMDDUIkvcU25vDz5bdXAvq8+aF5HDfo17WiyYqCNy3+4LqzUObnXdMejLfcBl+fvlu2gRcy6e1aD51duKGPS1DvCdLICHCMtx8GtFbtcRuXv72HKntDJXtBhwSpoXf1OVwGItV30/LEeYOxsTZUubf0Ln6f/tP8DOdZ/DWh9/kuRDD9/0cdwO7iUCPdg1tqgXmY6+RFbZRx4e6rrtT18r3OyC8vMT16+U3y7Ue+ZOn+8aGzq8b+OFK3XFxMwGRYR5HHPLFUe3ESsBHk8rFFQ9JkswaZXU1286vjxLElpLiwyO7y5c3bv3bPFRlJSUlJSUlJSUbDXGWvYevZ9L77yNIMxePM/shfMM7d5LpW97DAG9hgA1n+FtSKZK21jqflW4HKiGNBKHq4TMNFKW2o7+6s5a4k+kSiwesRC6FqFrk9nKpgVvxdPwLSomLpZgRAnFYiQk8dkW732BIIgf7vTxnsEQ4GUBzCz4wWK9YZPEyRz9CydZHLx3ZcwFVWZHHmRk+vimV7vigT4mfuYJdn/wYWbfPMnU8bdJF9bP+9V7Zt88xeybp/gze3fx5ugj/P7S0S6H/bvzRR/v/+3ji9w/vH290UveX6QScEL2cEZHuUenmGBunewc4XhAL3GIad5ljPMMoTejoxjTcXmngKz28k7SQvA2d5eh7/3IzvokLCm5K9hCwbtDJhkXOv/108+4jjPMMGaDKiVBGGaYYR0mJWVKp5iUKqk+jPfn8OZHeHkDZINKPmnj5RW8eQU0RPQIxj+A0fuQq4jsOw0rxeQrd56WCqFzBCYlSQ3GeuIwJ7TFa1MI3sXvUKNhBtLZQlI0QvihBwieuI/s+8dJ//DH0LgiOjhzZH/yAtn3XyP63JOEH38MiTZ3ilYKp7ZbEbYL8cv71V7PK4K2Ks4V7m63RsuzAlYMUVA4tq0RzBaL2pvBUIh3cWBxvnCutjNHO3ME1hD7oi+xmIxKGFC7I25vXwhPy85tdR2d1K/5eW00uQEJO+7tbd7V5f3tsJq+szYG3XRPytYI4Oti0Lsi0ndKDHpQFObsUJFbFVpZTpoX7+c087hOZHm0QWT5laRhndzGIGDd5vtw1f/g20Rvv9c1lh3ZT+NXP3kzh3HbqKoyrMe6xpSE4/47SOUnLNX/067bpufbvHepiAl/arTJnmrvTNoXL0zikrRrbPiefRtsqZDmgCmuIaKg+NojBJ3I+LY4nBVsawl8iG/XybFML7VuOL4cCld3EIZU+wcY2jOBseVEtKSkpKSkpKTkbsAYy54jR7l08h0QYf7SBeYunmdw9x6q/QN3evfuCLE62hoQe0fLBmRiCNfEdI/1RSS5py8KWEgyKqEh3EFx5oiQmjrilsBWVgTv1N5Y3+u2T3DiiInw6ohMRMVEpD7Hb9PahNG+Yr5j1vbxnsNoP6KbT98aWDhJUhkmjYdXxlq1PTTb09QbF25on2wUMvbo/Yw+fB8LZy4w9cpbNM5f3nDb5oXLHLjwTX6z9iN+UH2MV/oeJDNFm8yF1PDf/niAf+uBJj93oH1jAYQlJTdAW0Jel72c1hGO6BR7WG9MqJDzkF7kMNO8wzgXGbjBVEyK7aO4ELaTpCN4p8U/u7y2Uv6h71R6Z2WspOR9xdYL3p2nYZFFFmURq5YxxhjXcapsfPEYETHBBHt1Lwu6wKQMM+f342UeZ36CNy+AtK7yXBkqb+DMGzg1iN7TEb7vR9jZ8VMiEAYGq5A7wTlHKA5BafmAKPSE6kCVVthPKyyqjxfiYerpIlbzQvQOLdEnHyf88IOk33yB7JsvdgSLNbQS0t//Adl3XiH6xacJnn4A6Yi3ymof7awjajsPzvnO7eBV8Vps5z047/G6Kt8ZoYgft4ZKR9C25s6L2tdDgMAIQWTxWLLck+aOxcRjl134HlpJTmALt3clNDcUHXVjrOm77TsC6Uo0uV8dQ4oLKOm4L3t2ZrCZGPRuARwU3UgAhx7tA76zRW4oIstbaRFZnnYiy40I1atEll9JbmO8CciDCtalmE32NIt//BrVb/+ka8wN9rHw134Z7rDgeD974YrPtJPuVVzlK6hUadZ+ruu2F07MrHz/hX294+qG9RHmtdEh4v4NPj/zHPCdCZqBKNqeHdwEQaesLlVHGgdItgjOYJuGlvQxtZTcVHx52m7TbiwxtGsPQRwzsGvX1h5ISUlJSUlJSUnJtiLGsPve+5BT73YGhLlLF1HvqQ0O3dF9uxMsu7udFaz3JGIJ1K+s3YSBYagW4tXTyg0L7YzRetTDaw7rURFSWyd2i2SmQuhbhD4hMzfWninTHKeeqolJfEpoQiITkmtOvk2tyYzGiNuNt1N4DLCIlwUMNdDappIIBWVk+jiX9jyDmtV50tzQMaJknjBv3vB+iTEMHt7H4OF9tKbnmHrlBHNvnUH9+rUA01zio81neXr2eY73PcjLA4+yEA7gVPjdN+qcmg/4yw8tEZc1xyVbSFNiXpF9nNRR7tNJxlmfTFAj41E9vyJ6T9J34+e+IFgVvBFwWbHW4jxE4Rakb5ZsB6XYXVJyx9gmwbuDE8elzn916ozrOCOMYDfouS0IgwwyqINkZEzrNJO6i5b/Wbwcx5sXUXN+g2dZfgCPyjs48w5Ov4boAYweK+LO2blVuaYjejsvpM4TuJxAUlINyHMlCnNqOJrhIM2wHzIhrcQISuhTApcVX6tC/IsfJvzZR0j/8Mfkz77KSnZ4B51bIvmn3yT5kxdwn/8g2bGDuDXbeKXTU7sQvH3Hue3X7OuyqL3cX9uYrZN+txMDxIEhDjp9vHNPknnamSc0hihUMudZbEMlDKhGlvCW3d5+NZbcd4QmhUL09qsi9/Iems5FE2YHFwRuFIN+jT7g0HGB91of8J0vcjuvNFNXpDd4JcmL9IAwMIRWNh3hn4Z1vBi8DYmTzQm99uwl+n73j7rG1FoWf+NX0YE7W8i0RytEeqBrLNGLnA9+DzELNKpfQE1t5TbvlZfemgbg0aEWB+vbE2+3GVyWsXDuUtfY0Eaubu+KXt1B0IngintmQcsgGLHk6kiiEE+TME2R3JK5vTQyd1Px5QBLM1OEYUSlf4CRvfswZbxYSUlJSUlJScldh4iw6/C9GGOQTku1+cnLqCr1oeHrP8BdRqSeUD0VHA0TkokhWlOwPNiJMx+swnQjYSl19MU7a6nfiyGxfVTcIrmpEvoWgRdyc2MFvR5P07eIV2LNbSfW3JBuW6x5gHG7wMygRlCaeGki5KD9mzJjBC5hZOY1psceXxlTY5kZfZRdl57vrLPcHNXRIQ588mn2PP0YM6+/w/Sr75C32uu2C33GBxZe5omFl3m3dg8vDjzG+cpenrsQc27J8ptPLDJW7QVDQ8ndzJJUeFEOMKhN7tNJRlhf7NFPwhN6ljkqvM0uZuUG16iMFLHmaQYpxTpumkGaFmsudmedT0tKsbuk5A6zvYJ35ylp0KAhDc7oGUYZZVzHqV/FfR0Ssoc97NE9LOoik7KHWf8UTubw5gRe3kTlNMhVBCNRVM7gOIOzX0f83jXC9+jWHOMWsuwwtmLJnOC8I9RC/GynAYFbpOo9rXiYxWgIqzlWc1IfEZi844CFwOfYsX7MX/oc8vHH0K88By+9u/4JL81i//Ef4w/uovXpp0gOjHeL2lCI2UaIrCnix+8SUXszdLm9nSfNPUtJvtpz3UMrzbHWUA0t1chsGOe/Hu3Ej691b7PGve1Wx1aiyYNONHlvCE9bw9X6gK/GoN9aH/BlEfx2sPNFblVo546kE1We5h7nlcAIcXj9yPKux0LIwhp5UAXVTUWYS6PFwG/9PpJ1J1As/fnPkh/ae8PHczsxKuzXI1eMprzsv4FUXgagUf+FrlvfOrvAUqs4ll5zdc+fuYi6NX/7IgwdmrhiKy36SRlTTLqi3ukpJRTx5R5PagyZcQTJEqoR0qqQEt10fHnSbJI0mwzvmSCMY/pHx7b2YEpKSkpKSkpKSu4YIsL4oXtWWtaIMSxMTaLe0zey89aQbpWay8gCQ7DG3b18FS0C4/0R5+cc9SigkeZUAktgd9aahBdLYvqI/RK5iQh8iqrgZHMpUMsoRay5F09MiOIJJSQ2EZnP8NuwBiAYrB/Ds4g3YNTiZRHMHPiBTfXxrrYmqS+dpdG3f2Usi/qZH7qPobkTt7yPYa3C7qceZvyJY8y/8x6Tr5ygPTW3wbHAkeZJjjRPMhmN8eLAo5zQo/zt5wb5G48t8dBo7xSPl9y9zEuNn3CQEZrcp5cZZH2BxhBtPqhnmNYa78gu5uXG2iEQhRAYaCUQS7HukmeFuSkM2cEupvcdpdhdUnLHuQOCdwcvnkkmmZRJqlplXMcZZZTgKqeGfvrp135y8o7bezct+WCnWvEtvHkDlZMgV48JUnMBxwWc/Rai44h/oCN87960O7EXkGUxVQ2Zc9i8cHnnGoBfpJInaKUfJxGZiUhMXPTIdjniMvAGckF8CHuOwK8fJnznNP1f/jbxu+fWPV945jLDv/01kgcO0PrMk7BnpBC2t//QexIDxNYQ247b23nSrHB8B0aIQkPuPI0E4sBSjQu3d/ffnAefrTq4l/O8NS96bvs1cdxiwUQdkbv8LayNQd9sH/Cti0G/isiNB83YCSI3QOo87dThtOhLnzkFESqhJdhEZPmVZEEVFUNuYwKXXP9s6zz9//OXsDPzXcOtjz5B8syjN/z8t5v72YNQ6xq75F8gqXwNAbLgAEnlia7bXzxRuLqP9rc5OrD5fuXbweyp7vP+wMQugvgKN0PWWUwIQwhsb8WXS4CiZOpJohjjpiG3hK2EJoeYatxcfDl0XN1xTKWvj5GJ/SutPUpKSkpKSkpKSu5eRvcfRDqFnSLC4sw0qp7+0fE7vGfbS4ASe1csIZmIVCyVNdHcUWAYqEZ4r7Rzz0I7Y6QW7rgifGcCUmpEXhGjBD4FIzi5ceki1QynjoqJ8arEJiQyUSfufJtizX0/aIA30xgsngXUzGF8P8L1Y9qH5k6QxEPknTaJAEv9B4nbM1TbU7dnH61l+P7DDB09ROPCFFPHT7Bw6vzaRZ0VxtMpPjv1LT468xyvDDzM//Cjh/j8McvnD5d9vEu2ARFmqPMjDjPOEkd0kn7Wr+mM0mRUT3FZ+3hHxlmSyuafw1ioVQtXN1KsC2d5EXMe9o7RoOTalGJ3SUlPcOcE72Va0uKMnOE9fY8RRhjTMQauEjkeELCb3ezW3SzpEpMyyYz24fVxlAQv76DmDby8DXL1Sj+VSdRO4u2fgg51enwfQ3TfjhG+rRQXiM4JiToCl2PVk3sw2QzLkc8qFkyIMyG5ichNFQ2rRZ8clxUi+D1HmPubB6mfOMnIV79FfEWkLUD85ntEJ86SP3kf2c99AB3qW7fN+53ACIGxaFi4vZPc00gcRhxRRwxvZw5rhWqgVC2YZbevwkpkubpC5AZW3dthx719Bw9wx7CZPuBrYtCXBXA8iL1ODPpGAvhakbsjru9AkdsrNNOc3C1HlntQJbSdyPKb/ExIozrOhKixBOnidbevfeV7RCdOd41l90zQ+LM/d5V7bB+D2ke/7u8a81zkreD3EFP0c7rS1d1oZZx4r3Bz/0KPubrTRovGpemusXUR5ssJE2FYnIviG+tjt5UEWARINScJangWidIm4gLSdDdLnXPwzcSXtxtLpO02IxP7iSrV96Wbp6SkpKSkpKTk/crIxD5Mp9BRxLAwPYn3noGxXTc9L9qJ1HxGaiyxdyRiidR1GR+GqiHNJGegosw2Uxqpp74DGyvnJirWATwgSuATvDHoTRgMHJ6mb1PpxJqHxhJKgBFDtk2x5kariNuNs1MYDMoi3ixgtI5o7Zr3FfWMTr/CpV1Pd4lssyMPEV18DuvT27afIkLfxDh9E+OkC0tMvfo2M2+cxKfrX6eab/HhuR/zwbmf8ubMUX7n/DH+/IdjKqXCVLIdiDBJP5P0sYcFjugkNdb/ne5iiXFd4qIO8K6M05RNGgVEirUWayGhWHtJM8jSIl0vKP/Qe53yN1RS0jPcecEbQEWZZpppmaaiFcZ0jDHGCNnYhdVHH33ax0EOMq3TXJbLtHgI3EMoGSon8eZNvJwAWR81soLM4e0P8fwQtA/j7+8I3wc7gljvIgJBYPBqyJ1DXY6RBFWLR1C/HP7cQhRCIETwNsTbGIIIH1VAaghC+4MjXHziUfqef4HBP/gTgpm57udTJfzJWwQvvUv2kYfIPvFY0be1pAsBImuIrFmJgM5zh88TIuNXWrHkQGCU2ChWll3GUkwopNN7+300kd5abrUP+EYx6A6wO17kVoXkisjy3CvWCHFob+lzwIshD6rkQQVRj7nO5D564Q1q3/hR15gbqLPw7/5K4Si+gxg1HNFDV4zmvOq/gsSvA6BYGvXPd23x8tuzeK8crKc8PHSNz6I7wNzp810/mzBgYN+u1QH1RUWxsWACiOJi0tUDGAxGDLnm5CYksxlhNgOuimllNGXopuPLVZWl6WmiSo24VmNk34H31aJmSUlJSUlJSUkJDO3Zuxppbg3zly+hXhnctft9c21ogIrP8QZSMSQmoOpXW00ZUyQoZXOeWhjQSDMqYdHmbqeRmQqmU9guTgl9m8xW0ZtwHChKy7eJTAg+woknkhBjIlKfbstKgRBi3W68mcYbQWjipYGQI9p/TaNPmDUYmjvB3MiDK2PeRsyMPsLY5E+3xIMRDfQx8ZEn2P3Uw8yeOMXUK2+RLiyt287ieWjpTTj+Jn96ci9HP3iEg/fvKVO4SrYHES4yyCUGmGCOe3WKCt3t9wTYywK7dYHzOsS7Mkay2dYIQVCcWNsJRAJ5Di4vEj/rN+AWL9l2SrG7pKSnWC94a5YSbrPgvUxb2pyVs5zTcwwxxLiOM8DAhhdjFssudrFLd626vZnBcz/G3Y/iUDmDlzfx5k2Q9RdLK8gS3v4Uz09BKxi9v4g613sK52aPYgTCwOKdIfc54lwh4UkhcBffS7GhCJAWsdmp4LPC/e1siDcheRCy+NEPs/D0Bxn4zrMMfeVPsEvNrueT3BF97xWCH58g+eQTuA8fQ8LeLgzYfhSDJyCnah1Yj3OKcw6fORweMeCN0BILRgiDkCgIMDtwYrgzubU+4Cvb7FCRGyB3SjPLcV7JXBFbjnDTkeVXkoV1FMhtTJi3rjkptucn6f9nf9g1ptaw+Ou/gg7e+SSJQ7oXe0V8+QLPMR//ycpxtStP42x3X+cX3iqc01/YN99TtSuqyuzJs11jQwdXF/RAi15RsBpfHvbG5XvRp9vicTigFURYfxnJBZss0NZjtxRf3l5aIksTRvcdIK7VqQ8Nb9mxlJSUlJSUlJSU9C4D47sQY7h86l1EhLlLF0GVwd173jeCd9XntKVwd7dtQI4QrJnzVkLDQDVEVUlyx3xrZ8aZAyRSJRaPWAhdi9C1yWzlpgRvgNRnePFUiGlrSmxCYhOTaobXG2mZdnMIBuPHEObxRjp9vJdA5kAHrmnwqTfO0a6M0q6tFkMnlREW+w8zsHhqy/bZRiFjjxxl9KEjLJ65yNQrJ1g6f3nDbXc1LjD/nQu8/HwfE4/fx8ixe7BR767dltw9qAjnGOYCg+xnlnt0mojuVgUG2M8ce3WeszrMSRkl20x7BGNWY81Fip+zbCctNb4v6Y3VspKSkjWsF7yzOyh4Q+H2nmWWWZkl0ogxHWOccSI2jgG50u09KZM0pYnoPRi9B/U/j8o5vLzREb7nrv7k0sbLy3jzMmiI0fuKPt9636b63Gw3AlgrGBMu+4MRKdzYy6KerPhZVy+qjQKaEfp2ZwvBY/A2Ivn4k1x45nH6vvEDBv74u5ikO67ItBKqX/sh7tnXaHz+o2RPPoAlx7oEsw0X7r2G4DDqMZqvVgSrIjhEPaF4CAonbeYNbTW4XDBiCKyQq9LO85Ve36ExO3F+eBdwY33AFQVN2UlXntqJLM+c4jqR5apa/O0F5rYt3KRhHWdjECHIr+5qlmabgd/6PeSKuLLGr32a/MpY7TtAn/Yxyt4rRi/xqvnXiGmtjCxdEWF+9nKDydk2uysZT4606CXacwsk893FX10R5svVw2FUFEr1Uny5BCieXD3toIZIgyCdg7yKz4ZYTEMaSXJT8eWqytLMFHGtTlStMrLvwNYdSElJSUlJSUlJSc/TPzpWCN4n30HEMHfpAnrxPEO7974v3KQC1HyOWiFVJTEB1mdd8u9wLaKZ5gxUQmaaKa3MU412oCFChNTUEbcEtkLo2oSuTWo3P5+4klwdDW1RNRUSnxGagEhCHI5M8+s/wC0iCOKHQKNOH+8AL/OdPt4DVzX2CDAy+xqXogFcsOooXRi8lziZJU7nt3a/jWHg8AQDhydoTc8x9cpbzL51upijXrltc4kLP3iRSz8+zsgD9zD6yFHiHiiYL7n78WI4wyjnGOIgMxzSGcIrWh9alEPMsE9nOaMjnJZRctnE+TGKipS9pN1pb7lFB1FyWyjF7pKSnqT3BO9lUkk5L+c5r+dX3N6DDF7X7d3QBpflcuH2Fo/ofozuR/2nUS7hzZuoeROVyas/uWR4eR3M6zi1hXjuH8Do/QjX7nez3Yh0f/6pLEc1r5fiBF3pV7z8symk7kLocE0Q8J95hJln7qf6Rz+k9v0XkCsuLu38IgP/4g/Jv/08jS9+nNYjRxEU61KMy7EuRby76z6Xi9fLId5hyFdeZVG/Inwvoxi8BKgYFIOxEKM4D5nzpLknBawRwk5/b8ERhYbYmtLtfce5Wh/w5dt2BqqQ5p525vBaiNy5V6wUkeW3M26uELojclvB+LzoT78R3tP/T76MnZrrGm4/8yjtn3n8tu3PzSIqHNFDV3zW5Lwt/wofvrsy4swQrerPdt33xRPLru4Feu0tPHvyXNfPYa1KfXyk+EFdEZdlO+0U4pheOYCgMynM1JFKQGqVOJtEfZWwvcSCv4/ppfSm4ssBWosL5FnG0J4JKn0D1AYGt+pQSkpKSkpKSkpKdgh9wyMYY7j4zluIMcxeOMfshfMM7Z1Y6e19NxOro60BsXe0bEAuhnDNeocxMNYXc8G1qYaWpSQnCnZmnLmKkNg6FbdIZiqEvkno2uQ2vmmHt6I0fYu408e7iDUPMBKSbFsf7xriApydxDCMsoA3850+3huL+cbnjEwfZ3LXU6tOfTHMjD7C7os/xGyDWA9QHR3iwCc/xN4PP8qZl95l6tV3qOTri8l9ljN1/C2mjr/FwOEJxh69n/re8fdNCkPJncOJ5STjnGWYQzrDQWawV6wVBij3Ms0BneUUo5xhBC/X+fwILJgaJEmxJmMM8P4zl+0ESrG7pKRnuZrgHWKudxLent1jjjnmZG5Tbu86de7Re9a7vRGEPRi/B/wnUKY7Pb7fQM2Fazy/Q+VtnHkbp19F9CBGHyjizhnYooPeGhRhrXV4nRi+xhVu+mKSX/s4+ccfpfrVZ4leOLHu8YJL0wz+o39Dcu8BFn/l02T37sX4nJwaoopxaUcAz7AuQ4SitzhXREX3MIWI7Tru7Y5jfsW9rWtc84IXi2LQK6OwV7YQAgOBsah2YqS9kmcOI0JgpRAkxXf6J5du795i54jcUESWtzLXiSwvCiwAKoHBWrlmz64bJQ1rNKujZLaKCyKiZPGq29a+9n2i1092jWWH9rL05z7TE9F3+3SC6IqipkS+z6Xwu11jjeovwppIqiz3HH93lpEo58NjjW3Z182iXpk71d2ve/ieic4igEKaA6boFxUFxdcewGIwCLnmeKAdVgjdJMalmLYn8QeZarqbji8vXN3TVPv6CeOYkX37t+5gSkpKSkpKSkpKdhS1wSH2Hn2Ai2+fQCb2M3v+HLPnzzK8d9+aVkB3J4W7O8NZIfCeRCyB+q4ZZDWy9MdBEWfeSFlsZwzVNl6n63VUDInto+KWyEyV0LcJXRNnItxme+9uQOITnDgqRCTqiUxIxUSkPsdvg4AlRFi3B2+mOn28l/CyhMGB1jdcE4jTOQYW3mVh8MjKmAuqzI48yMj0K9u6khdUK9z7zEPsffIB/vB7k/SfeY1d6dSG2y6cOs/CqfNURocYe/QoQ0cOYoK7+31acufJJOBt2cUZHeYenWY/s1yppIR4juokB5nhJGOcZaizbnwVjEC1UkSzGoF4Z55X73Z6Y9WspKTkKmwkeGe9I3h3WOv2HmSQXbpr027vSZlkmmm8dOKmGcX6n8HyM6ibx5sThfAt74FcRdQSReU0jtM4+3XET2D0WEf4HtnKQ98WNnKF+13jZH/tVwh+7gL1P/gu4Vtn1t0vfvc94v/uf6b12IPM/ZnP4feMYnyGsSHGxxhVVATrMqxLCFyCcQnWO/wacbhwQS+L4XcGwWPUIeoKFzew7N426roi4VUMjvCq4vY1n0eEKBDCjts7d54s92QUbu/AGtyy2zsQQmsJ7J0XAkt6H1VoZzlJrjhV0szjOpHl8W2MLF8mDao0q2PktkIa9xFkRa+zjYheOkHt6891jfm+Gou//is90R+6pjX2sKd7UKZ42fwrkGRlSIGl+q91bfbayTmSzPNnDi8Q9M7HJgBLl6bI20nX2NDhToR5ngMeohisLaKzegCDYMWSq8OjNG0V0QSTT0EeQ+aYS0doJOlNxZcDNOfncHlO38gYtYEhqn39W3Q0JSUlJSUlJSUlO5Fq/wB7jx7jwttvMryvELxnzp1lZN/+u17wjtQTqsfjaJiQVAzxFe3rRvpiWrljsBIy20xpZ45KuDNfFy+Wtu0jdktktob1CYFPMeLIzc27vHPNaaqnauJOrHlIZEKc5mRXS0O7jQgW48cR5oo+3gR4GojknT7e6yev/QsnaccjpJXhlbFWbTfN9jT1xvl122811cjyqz+3h2+cPsS/fnmBx+Zf5t7mqY4hpZv29Bxnv/08F3/4MiMPHWH0oSOEtZuPpS8p2QyphLwpezitI9yrU0wwv+6MEeM4ppc4xDTvMs4FBjvr8FfBSGFEeB+kiexE7vwKZklJyXXYGYI3AALzzDMv84XbmzHG9dpu77rWOcCBVbc3zRV9UhjE+g9h+RBKAy8nirhzOQly9WpLNedxnMfZbyK6q+jx7R9A2HVbXZO9QH5wL/P/uz9P+OYp6l/6LsHZy+u2qb78OpVX3qD1zOPM/fJnSUeLAgDxOdZneGPx1pJrBUWKftcuIcgzrG8TuPaaoOiin/hyDDgiW+QK70S5a94Rs5fd2x7Bd77q6pZiUWxXYcCtsM7t7ZXcKe3MISKEVnAqJLlijRBZ0+mxfMtPXXIXkjpPKykiy9NOZLmIUL3NkeXLZEGVZm2M3MYkcT9B3iLOljbc1l6cpu+ffrVrTI1h4d/9ZfzQnRcZRYV79fAVk33HOfNPSIP3urZNzOfJ4/GusRdOTNMXOH52V2+5umF9hHl1ZJDKYD94V7SwWJ5AVaKecNdDEV/uO/+1sTgbEmdnER8QthdZ8A8x3chuOr7ce09jdoZq/wBBFJau7pKSkpKSkpKSkg2p9PUxcf+DXDjxOmbffqbPn2X67HuM7NuP7ZFEpK2i5jKywBB6TyoBoaZdsyVrYLQek7s21dCw2M6JdnBbtkLwHiDSFgp4DQl8cssub4+n4VtUOrHmXiyhWEQM6TbEmgsG8SOdPt4zGLF4WQAzB34AuUK2EWBk5jiXdj+D2tVjnht6gCiZI8ybW77PVyICnzmccGCgzv/w8uf408YSjy0c5+HF14k1Xbd93kq4/JPXmHzhDYbuO8jYo0epjg1v8MglJbePtkS8JhOc1lGO6CS7WZ96WCXnYb3AYaZ5h3Eu0d8z6zAlm+fu/vQvKblr2EGCd4dUUs53/htkkHEdZ4ih67u9aTBJt9sbQKhj9QNY9wGUNl7e7gjf74Bc/SJU5TJqL+Pt90CHOz2+jyE6cfcI3yJkx+5h7v7DRC+8Qf0r38NOz3dvokrtBy9Sff4Vmp94iqXPfQzX348zEWlQRAMb9VifFjHnNsQFGUIfaNH327qk8zXF+rwQlvXK+HW5aVf4cn/tIpq887vXTj/ujsi98lxicAQ35d6+UUSEyAqRZSV6+kq3d+497UwIAiEu3d4lHbxXmqkj90rulSR3oBAGhvA2R5Yvk9kKjVrh6E7iAYK8TZRuLHRLK6H/t/4NJuk+hzb+zKfI7ztw2/ftZtjLXqrUu8Yy86ecsj/oGlPfR6P+F7rGZhYSTl9c4lcPLBLb3oq7d1nO/HsXu8aGD+8DFLKsELltAFFY9OvuAUIJUCBXR66eJO4j9LMYbWLantSPMNmoAP6m4ssBmnOzeO/pGxmlb3iUuFa//p1KSkpKSkpKSkrel8S1GhPHHuL8iTcY3XeQmXNnmTn3HsMT+wnCm4+57nUClNg7vIFMIlKxVK5wI9fjovhUVUmWUhaTjMFqb6RF3QwqQiI1LCGRb6LWYH1auLxxt9TLu+0TnHgqhKh6QhMSm4jMZ/htaJtmtA98iDdTGGynj/ccRvsRjbu2DVzCyOxrTI89vjKmxjIz+ii7Lj3ftW62nTwwkvOfPzPPP3yxj++HP8OPhj/Ig0tv8vj8Kwzl8+u2V++ZPXGK2ROnqO8dZ+zRowwcmkBKt2zJFtKQmJdlP/3a4j6dZIz1pog6KY/pORaIeYddTFEvRe8dRCl2l5TsGHae4A10ub1DDRlnnDEdIybecPO1bu8ZnWFSJmnQ6NIzhQpWH8G6R1AyVN7t9Pk+0RVpu35fZvH2OTzPgfatEb4PbhgRtOMwQvrUg6SP30/l2Zeo/dEPMEvdlZ2SO+rf+BHVZ1+i9ZkP0/r4k2gU4U2AsyHehGRRtfggV8X4vIiJclnR55tiAmVcRuDaBHmbwCWId50Pf8EgoKbQwbvE8PWucADxDkPeFU2+LHyv3tfgJVi97x3CGsF23N55l9sbQiM4NWS5YowQl27v9y2q0M4dSeaLfu+5x/kisjwKDWaL/igyG9Ooj68I3TZPiNLFjaf8Xun7X75CcHm2a7j9oYdpf+wDW7J/N0pVq+zVvVeMTnPc/rN1RU4u+QWa+w91jb341jRV6/nUnqv3Kr9TLJy9iLo1C1IiDB6aKIRugDCEoHfiy4PizE6mOYqnFVQw6jD5RSQDkzmm0v00EnfT8eXeORpzs9QGBgnCiOGJfVtzMCUlJSUlJSUlJXcNUaXKvgce5PyJNxjZv5/Z84XgPTKxn6BHrqW3gprPSI0l9o7EWEJ1XFkiO9oX08oc/ZWA+VZGJfTEvdbb6QZxJqQta13ewW1xeWea4dVRMTHeK5EJiUxErjn5NsSaG40RtxtvJ/EYYBEvCxhqoLWuQvlqa5L64ns0+lcL1LOon7mhowzPvbnl+3o1Riqe/+TpBf7563W+d67CywOP8nL/IxxuneaJ+Zc50D634f0aFyZpXJgk6q8z+sh9jDxwD7bsh1yyhSxKlRfkIEPa5D69zDCtddsMkPABfY85qrzNOLNSFuLvBEqxu6RkR3GF4G0DMs0Iox4XvDtkkt2Q23ucccZ1fMXtPcMMTrovMoUQ0Qcw7gEUh8ppvLyBNydArhFbK0t4+xM8PwGtYvQoxh9D9J51UUE7jsDS/viTJE8/QvVbz1P95vNI2i0MmVZC/UvfpfLdn9L8wkdJnn4E24lpUkDFrojfua2ShX0AiPcYnxXVsy5duY9R1xG+WwR50f9bdDVmvNC8Ow5vlS5X+LK4LaprqlClE01utsW9faMsR5mHHbd37jyZU1LnsEYIrcF5TysrtouDIq66FL7vfjKntNIcp1okADgFESqhJdjC2LjcxjRqu8hNvCJ0x+nCVd851a//gPj4O92PsX83S3/+s71Rtapwjx7GdBW3eC4Gv0XTXOreNH2MVv1nuqLcVJWX3prhk7sXqQW95eoGmD3V3VOtf88YYWwLsTsMC2d3vHFR2HZjALOmT3cLwQcV4vRMce5vt2lwkKklQy0yNxVfDtCYm0VVqQ+P0j86RlQpe7iVlJSUlJSUlJRcnzCusO+BwuEtEwdWBO/hif2EPXJNfbsxQMXneAMphtQEVH3etc1ynLnzRZH+QitjrC9CemG+dwusurwjIt/AW0PQcXlbcjJbuSmXt8PT9G0qJgJftLULJMBsW6x5gHG7wcygRjrtHJsIDrSvy6QzNP8WaTxEFq22Hmv0H6DSnqbantryfb0aoYG/+nCDw4M5//z1OjnCqdphTtUOM5pO84GFlznWOIH49Q70dLHBhR+8xKUfv8rwA/cw9sh9xIN3vrVayd3LnNT4MYcYpcF9OskA7XXbDNHig3qGKa3zjozTplyn6GV2uKJTUvJ+ZI3g7XIgIEt3juANrHN7L/f2vhW3d/GwFtF7MXov6j+PyrmO8P0myPrYnNU7tvDyMt68DBph9L6O8H0EuUq/8Z2AViKaX/gorY8+Qe3rP6Dy/ZfWXVDa+SX6f/ePqH7reZq/9HHSR+9DRBB1mNxB54NekRXx25mQJOyHCFAwPsP6DBNmGJdhOu5s61IC1yLMCwe41Qw6zvCNkqCKaPKwJ8Xta7Hs9o5UcR4y51fd3tJxezvFCESBIQosO7RVVsk18AqtNCdzy5HlHlQ7RRFmSxcUchsVQreNSOJBrEuvKXSHx9+h/rXvd+9/vcrCb/xKEZvdA+xhD3X6usYS813eNT/sGlM/gCafpLnnYNf4O+cWaTUTPnOs91zdWavN0sXJrrGhwxOQ5UVkuQkgigvBuwewEqz06c68J6sMEuQLGJ3HtBJyalxaHAO46fhyl+c05mapDw4ThGHp6i4pKSkpKSkpKbkhgihi4oEHufDWG4g50BVpHlUqd3r3toSqz0mkcHe3bUCOEFyx2NJXsSwlAc4rM42UxXbOQLU35ny3ijMBrY7LG8BpQOgTItckv0mXt6K0fEIkHnyEF08kRax56jN0i2PNBYP1Y3gW8AaMBnhZBJkDHUQ6/n1Rz8j0cS7vfhpd0/ZqZvRhxi//hCjbuJXZdvHx/Qn7+hz/8KU+5pJi/6ajUf5k7FP86fAzfFFeYv/l18lb68VFn+VMH3+L6eNvMXBogrFH76c+Mb7jizRKehQRpuljmjq7WOSITtLH+n7zYzQY0wYXsn5OmFGyUvTuSUqxu6RkR3IXCN4dMsm40PnvRtzeTZpc5vKGbm/ohGnrAYweQP1nUC4WUefmTZBrVDlKipfX8OY10I547o9h9CiyQz/IdKBO4899htYnnqL+1T8l/ukb67YJLs0w8Fu/R3Z4gsYvf4L8yP6u2wUlcCm44gNfYUX49jYgC6ogRe9v8Q7rM6zLML6O6UQ+Ge+wrk3o2tisTeATBEWxhdN7BwncGyEiBBYCa3Gq5Lkn80qaOqx03N7qaGee0ApRUDh9y+v1nY0qJJ3IcqdKmntyr1gjRKHFbvEvODfhGqF7COtT4mT+qu8mc3mG/t/5cvcxiLD4176IHxnc0n3dLBWtsE+vFDtneMP+DnrF+V7bnycPh0jq413jL5yY5md3NxiI7kzPsmsxd+p8V8GPCSyDe0aKH5bjy8PeuEQPsJ34codTTxJWMaoE2QXEp9hcmcz2spQI4/3RTcWXAzRmZxAx1IeHGRgbJ4zuTgdOSUlJSUlJSUnJ1hGEIRP3P8iFt99kBJi9cJ7Z82cZ3jtBVK3d6d277QiF4O2tkKonMQHWZ+vmgmN9Ee3M0VcJWGhlVEJLtMPjzFcQIZUaucTErkG6zuUd31QrvFQzPJ6YCK9KvNzHW3PcdsSa+wHQEG+mMVi8LKBmFuMHVkw5Yd5gcO4EcyMPrtxPTcjU+JOMX/4xYd682sNvC0eGcv6LZ+b5H17u58TsauFB21b5lzzDfUef4C8PvEbzjRO0pmY3fIyF0+dZOH2eysggY4/ez9B9BzHBlYH9JSW3AREuM8Bl+tnLPEd0iirrEx326iJ73CIXGYDmNNRG78DOllwNUdXey3Ys2TRnz57lwIGiR8d7773H/v37r3OPkmvRmJ/h2W//C5Jqscgct/Lr3ONOoziXo6pYG2CM2ZGC95Vsxu29jMMxw9Xd3huhTHV6fL+Bmoub2ykVRA9j9AGMvx9h50bp2PcuUv/Sd4nePH3VbdKHj9D4pY/hJsavus2VeLEd8bsQwVeqS9VjXY7xRey58Z3+3KoELqGSzBVC+l2Isur2dr4I0gqMEAQGK4XQHQWGuHR770hypzQzh/NFXHmWexCIg62NLF/GmZCl+m5yG9GOhzE+o5LMXfU0KO2Uwf/2fyG4NN01vvSrn6T9qQ9t+f5uCoVjeoz+rnOsciH4b3jXXuHqTp9Ek59jfvwYi+MPrIw32zn/r999hf/q8XOMxlu/EHGjnPja92jPLqz8PHx4ggNPHYMwKoTuao1eOCEYhEACcs1xeFpAFg8SJxcxeomwsUjb7+Kd6SPEQcDugQqHRus37urOMibPnKJveIT+sXEOPvIEQXh3uE1KSkpKSkpKSkq2H+8cF94+QXNhjrkL50nbLYb3ThDX7r6eqwrM25hELC0bUPE5oa4v+F1oZUwtpcw2U7xXRuo7P858HapE2ibwbUQ9oU8QPM5E5DfZy1sQqibGYgmNxRLg1JHp9qwXKxnOTqKSorKASobRPkSrndthZvRRWrXdXfczeZtdl39C4Nb3It5ucg//6kSNb5xZXxQ9GHn+xmML7EsuMvXKW8yfOlc4Cq6CrcSMPnSE0YePENZ2piGpZGcgquxjlnt1mpirvN/HH4bH//L27thdxFbomr1hGykpKblJ7h6H91rWur0HGGCX7tq023uSSaaZ3tDtvYwwhvVjWD6KuvlV4Vveu7pYLorKSRwnceYPEd3fEb4fQBi+TUe+PbgDe1j4zT9P+MYp6l/6LsHZS+u2iV59h/C1d0g+9AjNL3wUPzJw3cc16jDOgVsTfb5G/M7COllnMmU6zm+Xh+RBhThdpNKeQ7Y4Emq7EYTAFL2evHZ6e3sl67i9Ayt4rySZJzBCFBpCY0q3d4+jCs0sJ8sV5ws3t1MlNEIUbG1k+TLOBIXQbSLa8dB1hW5U6funX10ndLeffJD2Jz+45fu7WXax6wqhG1rm25w0z3eNqR9Gk4+hQGPwQNdtr7wzw1MjSz0pdLfnFruEboCh/bvABkWEeRz3hNANYMV2wsuVzDuyyhBB3sT6aUy6gPcDXG7sRtXcdHw5wNLsNGIMtaFhBsf3lEJ3SUlJSUlJSUnJLWGsZe/R+7n0ztsIwuzF88xeOM/Q7r1U+vqu/wA7CAFqPsNZIfCeRCyB+nXzwv5KSCNxuErITCNlKXH0V+4yWUCEVKrkEq26vDXF+hRDTmbiTtu8zaMoTd8m7vTxdqJEEmAk7MSaby1CiHV78GYKbwShgZclhAzRfgRheOZVnIlIK6trkz6oMLmrcHgHLtnivbw2gYG/eKzJ4YGc33mtj9Sv/nXOp4b/9ieD/IUHAj752XGypQZTx99i5o2T+HS9q9a1Ey7/9DUmX3yDofsOMPrI/dTGd9aabMnOQEU4ywjnGeIAsxzWaSJW15gUkCOfuXM7WLIhd9mnWknJ+5G7U/AGQGCBBRZkYVNu7xo1Dukh9rP/mr29u59iEOufxvI0yhJeTuDNm6icArlK/K2AylkcZ3H2G4juLkRvfwxhbENRvhfJjh1m7v5DRC++Sf3L38VOd/c1F4XKj44T//R1Wh/7AK3PPoPWN185KSiBT8GvjT4PVuLP86BCFtYI8xaKkAVVqq1pwjt8Ib5VGCmiy8M1bu8096QUfb9Da8i9Ijii0BBbg+kR0aukQBXSvOjJ7juR5ZlXrAjV0GK36fflTMBSbTfORLQrQxifU7lGdDlA9U9+SPzyW11j+b5xlv7Sz9Mr1RWRRuzX7kpOZZYTwT9G15yPVQVtfQEISerj+Kg7kvDFE9P85oFuQblXmD11ruvnoBLTt2sUggCioPjaAwRSJHPk6nDqSMIKohCml0CXsKlh1g0w1+y7pfjyPE1pLSzQPzpOEEYM7dl7uw+lpKSkpKSkpKTkfYgxlj1HjnLp5DsAzF++yNzF8wzu3kO1//rF/DuJSD2hejyOhglJxRJfEbUtUsSZJ7mjLwpYSDIqgSG8W+LM1+DF0rL9hJoUArXp9PL2rWItSqIbfszEpzjxVIhI1BOZkNjERdz5Bk7624lgMH4cYR5vpNPHe2mlj7dRGJt6kanxJ0nj1dZkLqh2Is1/gvV3Pk3xmYmUib55/v6L/Uy3V6PInQr/7I0+Ti4E/OUHYeIjT7D7gw8z++Yppo6/RTq/vv+4es/sidPMnjhNfe84Y48eZeDQBGLuvr/nkjuLF8NpRjnHEAd1hkPMEOC5yAB7+/bc6d0ruYLeWFErKSm5Ra4ieIch5i75oL/S7T2u4wwzfNvc3gBCH1afxLonUVp4ebsjfL8DcvWIIpVLOHsJ7HdBRzo9vh9AdG/vC99GSJ88RvrYUSo/eInaH/4As9Td10dyR+1bP6by3Cu0Pv1hWp94EqIbd94JYH2O9TkhLRTIgypp2EdeiYjSRXx9N1G6RKU9i7nLXN7LrHV7q2oRf+2VPHOYZbe3Kol4rBHiwBBY0ytmz/ctuVNamcN5JXdK4hwond+PbNt73YkthG4b0aoMYtR1hO6rv1/C109S+8r3usZ8rcLCb/zqTb2XtwSFe/QeLN39t86F/x+WZK572/Rp8BMALA4e6rrp/FSTCWbYW+u9NiSqytwVYvfQgd1IHIG1EN34ostWYIrlFHLNUJQUxQc1onQWTIOguUibPVxcGKcWBfTFAfuHa4T2xq83lmamMTakNjjE0O492B4R+0tKSkpKSkpKSnY+Ygy7772vEMBEQIS5SxdRVWoDg9d/gB1EzWVkgSH0jlQsobp1narDwDBUi/Ca0MoNC+2M0XrUM8XPtxURMqngJCRyTdQarGZYnxLhbsrlnWtOQz01E5P4jNAERBLi2PpYc0EQP7Smj3eAl3kws+AHCsF78gUmdz1FFq0mpeVhvePw/gnWr3dKbzcHBxz/+TPz/I+v9PHadPf89wfnK5xbDPjNJxYZrYaMPXKU0YfvY/HMBaZeeYulc+tTKQEaFyZpXJgk7K8z9sh9jDxwDzbujbl1yd1DLpZ3ZZy37TBH8ykuMEJZqt97lCtKJSVrCKaO82A0zVsM02CnfTBuIHhnd5fgDWzo9h7TMSpUNtx8rdt7VmeZlEmWWLpub2+hitVHse7RYqlf3u3Enb8Fcg3nsczg7bN4ngUdwPiHMP5hhN29LXwHlvbHniT50CNUvvU81W89j0m6L4RNK6H+5e9S+d5PaX7+Z0g+/CjchLixjABh3sK6lCTqJ6kM4fI2vuPyrrVnCPM7319oKxERokBW3N6582S5J6NwewfW4LwCruj3baUYNwZr5K6ck/YaqtDOHUlWRJWnna+BEeJweyLLl/FiadQ7Qnc8hFF/3fh/MzVL/z/+ErJmExVh8d/5Jfzo0Nbv9CYZY4wBuh0WDfsNTstPusbUjaHpRwBwNqQ1sLdrEefFE9P8wr7ulIpeoXF5mqzZ7hobvncfGAOV3llkClbiyyHzGXnUj/E5Np/CujnUDTDVGiB3dfYM3nx8eZYktJYWGdy1myAMGdxVVkWXlJSUlJSUlJTcXkSEXYfvxXTahRljmL98CfWe+tDdE38coMTe4Q1kYknFUtH1ho/BahFnPliF6UbCUuroi+9eecCLpW37Oi5vwZuA0Ldv2uWteBq+RcXE4MGLEorFSEiyDWKy0TriQpydxDCEsoA38xjtw2iFscmfMrnrKfJwNa4/D/uYGv8A45d/itmmXuPXoi9S/qMnF/m9t6t87WR3StuZxYC//dwgf/2xJR4azRARBg5NMHBogtb0HNPH32L2rdOoW++mzxYbXPjBS1z68asMP3CYsUeOEg/2r9uupORWSCXgdbuL2N9FWstdxN37aVZScqOoJ7zwQ/aHDfbT4JLWeM/0MetjrquM9gzvE8G7w0Zu7yGGMOvqVwu397IwfiNubwAhQvQYxh1Dcaicwps38HICpHmNOy7g7XN4+xzoGHZF+B65lcPeUrQS0frCR2n/7BPUvv4cle+/iFxxEWnnl+j/F1+n+q0f0/ylj5E+dvSWRJrCmTpHHlRWXN5xtkTDWMKsSbU9g9niWKg7zTq3d8c93M5cMSGXQuTOvGAFpBPpbIxgDYQd8dtIKYDfTlLnaaUO77UoQvCKbHNk+TJebNGj2xY9ugW9vtA9Pc/A//h7mFZ3gU7zlz5Gduyerd7lTRNpxEE92DXmmOWE/cesVelVDdr+BZYvX5f693d9tuW5J5u8wKGjd75ifSNmT3a7uiuDfVRHRwp3vbFXudf2EogtUjc68eWZsXgbE7cugTQxaZsFP8JsY4zRvpuPLwdYmpkiCEOq/YMM7d2Hsb3xGpSUlJSUlJSUlNxdiAjjh+5Zud4UMSxMTaLe0zcyeof37vZR8xmpscQ+JzEBoXrsFfNFERjvjzg366hHAY00pxJYAnsXLySsc3nLLbu82z7BiScmxK/EmkdkPsNvcUqhEK3p422ARbwsYsgxvs745Z9yedcHceGqkJxFA0yNP8HY5AuYDYogthsj8GePtjg84PifjveRuNW/v6XM8P/8ST+/drTJ5w63V9a4qqND7P/Eh9jz9KNMv/4u06++TX5FMTmAz3Kmj7/N9PG36T80wfijR6lP7NpWo0JJScmdoRS7S0qWmT6Bac+s/LhbmuyuNllwIaezAS65GrojRO/3l+ANdLm9Aw1Wentfz+19gAMrvb034/YunsoiegTjjqB8AZWzeHkDb94EuUaPWJnC2e/i7HcRP4HRhzH+QYTerDLU/jqNX/s0rU88Re2rf0rlJ6+v2ya4PMPA//T7ZIf30vjiJ8jvO3DTz1e4vNtYl5JG/STxAHme4MWQBxWq7VmirHELR7RzEBEiK0QWnNfinxZiq1K8ViKF6G2NQQyk4lkO0i4c4YI1hqB0f98UXpVm4si9knslyYvI8tAawmD7IstX9kcMS/VdK0I3KJXk2kJ39MKb9P2LP1ondCdP3E/r009v7Q7fCAqH9NC6+PKz4X9P84pzqqYfAb9r5efp/nu6MlhePz3PZ3bN0Iv43DH/3sWusaF79kFgeii+3HTHl2uGi0YI8jaWGUw6S+5HmVwapBLWbym+PG23aDcaDO3eQxBFDI7vuv6dSkpKSkpKSkpKSm6B0f0HkU6RqRhhcWYaVU//6Pgd3rPbgwGqPsebgBQlMZaaX+/kjQLDYC1CVWnnnoV2xkgt7Jmkqa1iI5d3sNzLW0Jyc2PzskwznDqqJibxSmRCIhORa06+xYKyYDt9vOfwRjqtGBsIOcYPMN5xeLtgtTA5jYeYHnucsakXkR4xlDy5O2VPvejjfam5uiagCP/qrTonFwL+2sNLVNYoWEG1wu4nH2L88QeYf/csUy+foDU1u+HjL54+z+Lp81RGBhl79ChD9x3CBGWRdUnJ3UopdpeULHPm2Q2HB2zGo3aao36OM3k/57I+8g2cw73F+1Dw7pBLzsXOf9dzexvMitu7RYtJJplialNubwDBIHoQowdR/1lULuDlTbx5A+Tqgoua8zjO48wfI3oY4x8uenxzc+64rcSPDbH0V3+J1s99iPqXvkv0xql124SnLjD0936X9KF7aXzx47iJm58oGvVUknlyG5NE/bTsCHG6iFYNaVij1prpiSrU7cIaWXEQK4pXUA/Oe7xCnrsVAdyYQgA3xmDdGve30BV9XsafXx1VSHJHO/NF3/Tc47wWvdNDg7kDL5wXQ6O2m9zGHaEbKsnc1dMO0oy+f/1NKj94ed1N+Z4xFv/tL/TUIsYoowwx1DW2aL7OWXmha0zd7qJXd4ckHiTq7y4WunT2Ip8fu0abiTvIwrlL+Kx7oWn43v0Qx3doj9ZTxJe7lfhyZyuoBATZeVSbmNQymVRpp7vYN3Lz8eUAi9NThFFMtX+AkYl9RR/FkpKSkpKSkpKSki1mZGLfyrqYiGFhehLvPQNjd4fzs+Jz2mKJvaNtA3KEYIMi6aFqSDPJGagos82URuqpx+8DEfBaLm934y5vj6fpW8SdWPNALIFYjBjSLY41FwziR4AQb8CoxcsCmDms84xPFg5vb1fnnEllhKnRxxibeumaxfPbyUSf4z/78Dy/fbyPFye7Cw5+cinmwpLlN59YZHe9ew3EWMvw0UMM3XeQ5qVppl45wfzJc8XCzhW0Z+Y5+50fc+GHrzD++AOMPXK0FL1LSu5CRHWDM0DJjuHs2bMcOFC4Kd977z32799/h/doB5MskL79LeT8jwjl6hVuuQrn8zqnswHa2uv1IopzOaqKtQHGmPeF4H0lm3F7L+PxzHBjbu8rURTlMt68hjevgmyif6waRO/rCN9HEW5OQNhqwjdPUfvSdwnfu7Th7SqQfOhhml/4KH5k8JaeSxGSqB8XxBiXEqeLWO+oJLNE6dKOyFnYalQLAdx5xWvhAF/+VF91fxfx5saw4v42K+7vQgTf5kTuniRzSivNCxe9K5z0iBAHhUP+TuARGvXdZEGlELpFqLRnryp02/OT9P/jLxFcnF53mxsbYv5v/lv4saGt3ekbINCAR/VRgjW1l45ZXoz+A9qytDKmatHmXwE/tjJ2YugD1CZWo8/nllL8S9/iseH1MWa9wMlvP8/i+csrP/ftHuXeX/wEhL1xHRFKsR+Z5uSak6ojq4wSuiWC/Ay2PU2rPcTp+UMM18YZrIYc29t/U67upNlg5vw5hvdM0D86xoGHHi3F7pKSkpKSkpKSkm1lYfIyk2dO0lyYZ/7yJar9Awzu2n1XCN6JWJZsSMMEgFDz2YbrJ+3Mc36uxVI7p5nljNbjbW/XdUdRJdSU0LcQ9QQ+weBwEpCbGy9KjiQklhAjhlCKNb3UF6lZW42XNt5MoZKhsoCKw2id3I4xuespvO0WkSvNy4xOv9IzgjeAV/jqySp/8HZ1XbJqNfD8xqNLPD5+7QKCdLHB1PG3mXnjXXx69W3D/jp7n36UwSMH7or3fMn20Q7AeE/sDZ/5ub96p3dnR7MVumYpdu9wSrH79tKYn+G5b/9zdlVb3Cvz1GV93M8yqnDZVTmdDTDve8eZtZ5S8F5BoZ9+dumuq7q919KixaTcmNt7/VMqKufwchxvXr92j++VO0UYvb/o7633IPRYtaFXopfepP7l72Gn5jbcRK2l/bEP0PzcM2j91hzruY1Io34UQ5QuEboW1iXUWtPYDSK53u/4ZQHcFe5vr7rq/hYpnN62ELiXncoiEBghMEX8+fvJ/e0VWmlO5pYjy30x6TVCGJg7NvFRhKX6LrKgShIPoSJU2nMbJxuoUvn+i9R/79tItv490X7qQRp//rNopbc+q474I4ww0jV2Mvw/c950u9J9+xOQfWj1Zwwnj3yBOF4Vin/6ylm+aH7Sk3+3eTvhtX/zja4K8/0ffYKRR+6/g3u1isVgxZBrjsPT9ikuqKNBlaj9NsbPYxqeU0t78P4wuwcqHBqt37Sre+q9MyAwtv8gu+45Qv/I2PXvVFJSUlJSUlJSUnKbWZye4vKpd2ktzjN36SLVvn4Gd+/Z8eKXAvM2JhFDy4ZUfE54lYLp6aWU+WbKdCNFRN4XceZXYtQT+SZGsxWXNwi5qeBvsJe3FUNFYgyG2IQIhkxz3DYkFCo53k7hJQFZwksboxXSYA9Tuz6Imu75W7VxkZGZ4z1nJHllMuQfvdJHM1//2n/x3ia/dKR1XcOGyzJm3zzF1PG3SecXr7pdddcIE888Tn3v3dHKoGTrKcXu28dW6Jq9YScpKekhPIbTDHJaB9ifLHIoXGTYro9FFYHdQYvdQYs5F3E6G+Cyq3JTVuAt5f0bab4OgUUWWZTFTbm9q1Q5qAfZz35mdZbLcvmG3d6CILofo/tR/zlUTuLNq3h5EyS9yp3Sjjh+HLSK8Q9i9GFED2x7r+ANMUL6gWOkjx2l8uzL1P7oWcxit4gvzlH99o+Jn3uZ1mc+TOsTT0F0c8JI4FJsa4Y06iON+8hdTJwustgXUWnPE6cLvfCq9AzLgnbQ6UWmKN6DU8V7JVfIsmKiJQJWBGOEfMX9XUyC7bL4bYuvdyLCeytRhTT3tDOHUyXNPblXrAhRZLF38HhXhG5bIYkHryl0S6NF3+/+EfHLb61/nChk6d/6DMmHHu65BYthHV4ndM+br60TujXfB9lTXWNv24PU4u5L2H3Nk0h3qnnPMHf6QpfQLdYweN/hO7dDaxDAisXh8Cipz1ExuLBOmE4iJsE2M2ayIVrJxC3Hl7eXlsiSNiMT+4mqNfqGR2/vAZWUlJSUlJSUlJRskv7RMcQYLp98BxHD3KUL6MXzDO3eu6OThwSo+wxnIwLvScQSqN9w3WS4FtFMcwYqITPNlFbmqUY9ZrjYYrwY2qZOoCmRb+FtQOASQt/CS0B2Ay5vp56mtjt9vCE0llACDEKmW2vWEAKM24WYoo+30QAvDcL8LGOTwtT4B1GzOo9u1fcwq47h2dd7ak3t0fGMv/VM0cf73FL3vP9L79Y4vRDwG48uUQuv7t+0YcjYI0cZffg+Ft+7yNQrJ1g6uz6hsnV5hnf+4FsMHN7H3g8/RjzUo4sKJSUlm6IUu0tKroow6WpMuhoDJuFQuMgu29ywemzIpgzZKZo+4EzWz/m8juupvt6l4H0la3t799PPuI4zzPBVe3uPMsqojt5Ub+9lih7fRzDuCEqGyts48yoqb8PVHktaePtTPD8FHcD4hwrHN7vvvPDdcW+3n36Y6rd/TPUbP8Ik3TFBpp1S//L3qHz3pzS/8FGSDz8KNxF7KyhxukiQt4te3pURwmwJrQhZWOu4vLe2H9JORRCsAYuwHBKgqjgF7z1OIcs9Re3yGve3MaQGbN5xf8OK8G1NEe3dY/rppsmd0swczntyVwjdAJXAEtg7e1CK0KiNk9sKSWUQL5Zqe3ZDoTt45yz9/+TL2Ln1lcr5/l0s/DtfxO8aWXfbnSbQgEN6qGssZ5q3gt/pGlMN0PYX4Irz8vzgIWprfj57YZ6n+2a2aG9vndlTZ7t+Hjw0ga1EV9l6ewkkQFGcejJ1eDwuHMT4FOsvYdI2Lq9wubGXwVqV0Br2Dd9cWoeqsjgzRVytEddqjEzs3/GumZKSkpKSkpKSkp1N3/AIxhguvvMWYgyzF84xe+E8Q3sndvR6Waie0Hu8cTRMSCqWeIM5pTEw1hdzwbWphpalJCcKzPsrzhxAhFxivISEfrmXd471CZFz5CbGy+aKABSl6dvEJgIPTjyRhBgJO7HmW3gYy328NcKbGQwhXuYJ8tOMTinTY0+jZvU4mn37EPUMzb15p1cYu9hV8/yfnp7nH7/Wx/MXu4sNXp6K+Ds/HOQ3H19kX/+112VFhIGDexk4uJfm5RkuPPcSjQuT67ZbOHWOhTPnGX3oCLuffJig2lupeCUlJZujjDHf4ZQx5reXxvwMz377X5BUizqQuNVddVeRnIPhIvuCJQK5+lsnU+Fs1s97eR9JT/X1LiLNvSrB+z3SfANutLf3LLNMyiSLLN6SoV9p4+VNvHkVlVNwjb+t1TuNYv3DHeG7N8QsWWxQ+/pzVL7/IuI2jsjKd43Q/KWPkT529KadpgqkYR95WMX4nDhZxGhOnMxTSeZ76gJ9p7Ds/lZVnO8I4Z3Lg+Ue31bAGIMVVgQqYwohPexEnxvpbQFcFZpZTpYXx5nmHteJLI/uYGT5yv4BjVoRXd6uDOIloNKew15ZAe491T9+jtrXnkU2uIxrfeIpGr/8cQh66fNnlXv9vYzS7eh9O/xbXDKvdo359mcge6J7u2SA+IlPdv2uLr/6Ck/Ku1u2v7dCsrDIm1/+btfY4S98jIH/P3t/HiVXdt93gp9771tiz8h9xVbYCkBtFFkLi6RFSaRES5Q0smVbliXLnnPcdo/7j3a7+8yZmT5n+q+Z4/bS7dPdtsft9tK2bGuhF4mSqIWiREm1sKrI2oBCAVWFPRfkFhn7W+6980cEkAjkggSQCWQC95MnDxAR9728LzMiXrz7/X2/v/3jD2lGq9yIL09siunGlxvpk4b9hPFlpFnBr7WYbo5Sae9nXznLaDnLeN/m58eNaNWqVOZmGZzcT3FoiKknT23zETkcDofD4XA4HPdGq1Zl9qNztBt1lqev4YUB/eOTSLV3Xc4aQcULaQtFIhR5E29oy5mvRlTbCQuNGF8KyrndUZz7sPBMRGDaCDSejpGkmG4v77sRUjyhyIgQgbgZax7bBLNBrPx2YonRav6WPt4JcXCQxaEX4bZ49kL1In0rH+269TRr4fcuZ/jVczmM7Z1dqCy/cKrO82MbpGauuz9L9dI0M6+9u2G8uQx8Rj51gqGnjiK9vfv6d+wMLsZ8+3Ax5g7HQ6ZtPc7F/XwS9zHp1dnv18jItVVkvrAcCqoc8KvMpjkupSXqZjd8UOw4vNEpqU7xnMO7h/t1ey+ySLpJn/eNEGRQ9lmUfhZLHSM/wIjTWHltk40W0erbaPVthBlH2lNIcxLBw4vcscU8jT/7Q7S+/9PkfvOPybz1wZox3vUlSv/8P5McGKfxE99PemTfXf8cAYRJHU+3iYISrWw/ftLEQtflvYSn17YecGzMDfc3CLw17m+LtpZEW6y+EX/eEb+V7ESgx8J0Ivvp3NdxgO8e97e1kGhDK9aYWyLLpRBkfbUrqtY7QvdwR+gOu0J3tFbolpUahX/9GwQfXVmzD5PPUvvZP03y1OEHNOu7p8/2rRG6l+TX1wjdNj0AybNrtv8kPMzJW55UUZzyFBd3ZK7bwfInva5uLxtSnBp9SLNZRdKJL09tJ7486joMtF9E6TrSVJDtlLbJstgYZ6gY4PuK0eK9Cd3WWupLi2RyBYJshoEJV5zpcDgcDofD4dg9ZIslxo8+ycxHH9I/OcXy9DWWpq8yMDG1ZwVvhSVjNEZCIhSxUGQ26B09UAhppZpSxqfSjGknmoy/N497O+g4uW91eSuUifDv0uWdWk3DtsnJkMgk+NIjED4a/QBizQOUHsPIRYwUCBoE8UUGFmFpsFfwrpcOIq2mVL2wo3O6W4SALx9os6+Y8k/fKVJLVuccacE/fbfIpWqLnzrS3FKIpBCCvoOTlPaNs/jBx8y9dQbd7l0/NHHC7Ovvsnj6I8ZefIby4X0P3RjhcDi2hnN273Gcs3t7uZOz+3YEllHV5IBfo6Q2ryRb1CGXkxILOsPD7+vtHN5bxbMegwwybIfJsnl063a6vQEsyxh5puv4Xhuzs84GCHuwE3Vun0TcYb47jbo6R/7Xv01w9uKGY+ITh2j+6OdJ94/d08/oCNx5Ei+HsJowrqJMShjXyLQriB0NiHr8MLbb/9sYTNf9bbmD+1vc6P/dcX+rByyAp9rSSjTaWFJjiVINFnxP4qsbEv3DxQLN7BCxn6MdljHSIxOtrInmD97/iMK//Qay0Vqzj/jofuo//2OYvsIDmvXdo6ziKfsUAavFXwkLfC/4r0hE++Z91gbYxl8BW+rZ/mrDZ/nJH6K/uBoptnzlKk/X3trxud8LVqd8+Ot/SNxcPbahp44y8blPPcRZdfCFB1gSq0lMSkqKVhm0XyBMziPTFK/R4pOVI6S2zERflv0DOQYK91a411ypsDJ/naF9BygNDTNx7MT2HpDD4XA4HA6Hw7ENRM0mM+c+oN1ssDR9FSkVA5NTqF2amnUnDFDxMkRIIumRMwlqg3WSRqSZq7aptmKi1DKYD5C7oDD8YeOZTi/vtS7vAHsX6wkZGeLjoYTE77aTih5AOz6LxcoVjKxiiTCiRjt3gOX+l9YkLvZVzlGsXd7xOd0LS23JP3q7yKXq2tfiiYGYv/ZMnWJwd2uAOoq5/vZZFt47h90goTI7PMD4S89SmBi+p3k7Hi2cs3v72Ald04ndexwndm8vdyt2r2LplxH7/RrDqrWpkFM3HpeTEjNpHvNQRZZewVtISeAE742x3NHtfSstWiyIBSpUaNO+b+HbcB0jT2PkaRArW5hvtz+4eQppjyLw728C94F/7hK5X/s2/pXZDcfEJ5+g+ZWXSQ/cW7SvEYooLGGkh5+28OMGyqRkW4v4un3nHTjuCWstxoK29qYD/Manihvu744ILpCSm8KykgJPiZsi+E5cP1sL7VQTJZ2o8jg1aGPxpCDcBZHlN+gI3YPEfr7j6JZBx9F960VvkpL/tT8k++3vrt1eCpp/+nO0vvRip+HaLuagOcgwqxeIFss5///OgjzXM860vgLpU2u2/9rSE7z4+ad77uv76A8pxpUdme/9YWlcm+PjP+wV4o/8mS+RG364rSc8FFII4m58eWTiTuFQZgjfLOIlc6impt4qcXHlABN9Gcr5gGOjxXsqVLHGMH/5IkEmS3lsnMnjp8gUdm9RhsPhcDgcDofj8SZut5g+d5ao0WDp2lWEhP6JKTz/4a2r3A8t4dFQHg3pI7HkzMZrnXPViHo7YaEeE3iCvuxuSKl8+AhrCEwLZWOk1Xim4wbWMkCLrRdC+MIjFAESQSADBBCbznXZTmNEEyMXsSLBiCrN/H5W+l9aM668fJZC/eo6e3j4JBp+8WyeP7m2NnFsMKP5L5+rcaC0eR/v9YhrDWa/8x6VjzYW+ksHJxl/8RnC8sNL1HQ8fJzYvX24GHOHY9ciWDYZlqMMOZGw368x4TVQ6/ReLsiUk+ESR4IKV5IiV5ICCQ8jGmhtpHmcJE7w3ggBNWrURG1Lbu8sWfbZfexjH23arNgVKqJCjRp2Kz25b0MygjQjWPNFrLiGEacx8gyI5gbzNVhxHi3Po62PtMc7Mef2CcQDfr4lxw6w8rd/juDtc+S//m3UQmXNmODMJwRnPuk4vb/yMunBibv6GdJqMu1lUi9L7OdJMwFBXMfkRwiSBpnWEtK5vLedm3HmCLg9/lwbtIUkNcR03d9CdJzeSpLozm3QCAGeFHhSoLoO8PvRouNbIsuT1JBoC0KQ8RXeLqpMt0CrK3RHQWldoVvNLVH8V7+Od+36mu11f4naL3yV9NDkA5z1vVGypR6hG2BR/doaodsmhyFd28v5essjO9Z7nK1ancldKXQDScLy5d4Cn7BcJDvU/5Am1EEikEKSWo3FEnefa8bLI0hR6Twi9RCp5mptknyoCH3FRDl7z6/JZnUFnaYUBobI9/U7odvhcDgcDofDsasJMlkmj59g+txZBqamWJ6+ytK1KwxMTOEFe0/8zdiUtlVkjKalPFIE3gbrI4OFgHaiKWY8VloJGd8Qem6N0ApJpPJ4xsc3LaxSeDrCMxFS6C27vBOboq0hK0MiE+NLn0D6pDYl3SBifruQNofQPlotIJHkG9NY8QbV8vM94yr9TyKMJt+c2dH53Au+gl842eBQKeXfnc2jb+njvdhW/J3v9PFzJxq8PHl3rQ2DYp79P/QSQ88cY+bVd2jMrE3XrF68RvXyNIMnDjP66VN42XCdPTkcjoeJE7sdjm2maX3OxgN8HPcx5dfZ59cIxdoKvUAYDgcrHPSrzKR5LiVFmvZBV4k6wfteSEXKXPdrK27vTPdr1I6i0VRtlYqosMIKibi7yCKBQNgppJ3Cmi9jxcWO41ucBbFBlL5IMOJ9jHwfbBZpTiDtKYTd9+AinIUg/tRx4meOkHn1XXLfeAVZWyvUBx9cIPjgAvHxAx3R+4mtV3UJwE9bKB0TBUWiTB86bWMQJF6GbGuJIF0b/+zYXoQQeAKQHfXb0ok+N9Z2osQtJMmN3t8dwVtJQdIVzkX3/bLj+u4I454UXWF8c4y1NCNNejOy3IC1+Erie7sjsvxWWpkBoq7QrVVIGN8SXW4t4evvU/jaNxHx2veJ6Nlj1H/mR7C5e+uh/CCRVnLQHuy5L2KOj9Uv9txnTQYb/TDrRWH83vV+Pvtsuee+gdrFXfYX7WJSTJKwcm2u5+7+owceeqKAEgrT/UpNR/C2SLSXxdfXEEahoibz7QNo6zGQCyllfYqZe7tkMMZQX14iWyzhBT79rle3w+FwOBwOh2MP4IcZJo+fZPrcWcTEvpuCd//EFH64t0QuAeRMilECaQ2R9FAmWfdaypOCwXyINpZ2oqm2EoYKwUO/jtktpDJAC5/AtLAKpPXwTISvm12X953XdQ2GpmkRyhBMJ6nQFwop5M1i5J1C4KP0KEYuYaWkWJ/Biu9R6+tttbU8cBJhDbnW3AZ7engIAd+/L2KqqPkn7xSpRKtrsYkR/IvTBS5WPf788QZ3W6eRGx7giR//ItVL08y89i7xSq13gLEsnv6I5fOXGPnUCYaeOor0Ht/e9g7HbsOJ3Q7HDpGguJD0cSkpMeY1OODXKMi1H1qUsEz5dab8OvNphktJiWUT8uD6ejvB+565xe2trGKIoTv29lYo+umn33bcfQ3boEKFFbFCg8Zd/dkFEmGfQOonsHwFKz5Gy/ex4iMQG1SEihZGfRfDd8EWkeYU0pxCMPpghEClaH/+U7SfP0X2T94m+803kPV1RO8PLxF8eIn42H6aX/kc6eGtCyTSarJRhURliIMCaSYgTOrYnCJJmmTbS0i78xFRjg4CgZId97d/u/vbrLq/b/b+vuH+lpJYgkptdz+3xp93BPAb19vWQpRq2onB2I7IrY1FSUHoqy0J5Q+aVqafOCgQByW0FxJGVTzdKVgR7Yj8L/0ume9+sGY763s0fuoHaL/87Jr+WruVKTtFyOqCkMXyif8/kt5WoGOjL4PNr9l+OVLUS1P4t1ypGmMo167s3KTvFWsgSaldX0bHvfGA5aMHHtKkOnidDAYSq9FWk9KZn/YLSBp46Qoi9knTAnONMqWMj+8JJsr3XlDRrCxjjaE4MEShf5Awl9umo3E4HA6Hw+FwOHYWLwiYOH6CmfNnEXIfS9dWBe8gs/uLjm8lsBqv6+5uKp9ESIIN1kUKGUU9Umjjs9SIqbVTStm9GeG+E1ghiFQOz3g3Xd7KRHgm7rq8wzu6vC3QNhFGGEJ8rDX40ieUAYlJMDuYTCiQKDOEoYqRUKrOYPGo993SMkwIlgZPIRY02fbCjs3lfjhcTvnvX6rwT94p8lGl9/n5rSsZrtQUf/3ZGuXw7n6XQgj6Dk5S2jfO4gcfM/fWGXS71ylu4oTZ199l8fRHjL3wNOUj+11BiMOxC3A9u/c4rmf39nLvPbu3gmVQtTng1xhUm/cQrmqfS0mJOZ3bUgzOds1vtYe3QkjlBO97wUKBAoN2kDJlArYecZWQ3BS+V1jBrJMIsLUptDHiQ4w8gxUXYCux6XYQdVP4foD9ZKOY7J+8Q/ab31lX9L5BfHR/x+l9ZN9d7d4ISRwU0SpApRFBUu/08m4vEySN+529Y5uwdHp/W9Nxf9/oAw5dAVze6P8tu+7vzvuilB0BXOtOv/BEd2LLERB6uyuy/FZaYZkoLBEFRVIv0xW6OxdP3qUZiv/q11GLK2u2S8eGqP3CV9ETw2se260UbIET9kTPfXPqa3zk/eue+0xyHNo/vu4+fvlimQPPf4bJ4VUhXFWmGZ9+Y/snfF9YSGIwlouvv0/16moVfH58mMM/8QMPbWYSgSc8Upuib/bpthjhkWZKBOllZAJBvcrl6klqic9Uf5aRUshU/70J1EZr5i9dIFvsozQ8wv5Tz+DvsUVBh8PhcDgcDodDpykz58/SqlVZnpkmjSP6xycIsnurkDNBUvUCWsJDC0F+A3c3QKotV5dbNOKUaiuhPxcQuDjzNQhrCWwLZSKkNd1e3mbLLm8AhSQjQySSQPpIZDfufGdjzQGMaGHkIkYkVPsOUC892TvAGobm3yYTLe34XO6V1MAvf5jjW1fWGo/6QsPfeLbGkfK9r+/rKOb622dZeO8cVq+/Tpsd7mf8peco7KG1Gse94Xp2bx+uZ7fDsacRLOosizpLQcQc8GuMeQ3W02JKKuFptchRU+FyWuRaUiDdICJ7O+e36vDWeECc4ATvu0VAnTp1UeeSvUSWLGXKlG2ZPPlN3dM+PsMMM2yHMRhqtsaKWKFChUhsvd+MIIOyz6L0s1jqGPkBRpzGymubbLSIVt9Gq28jzDjSnur0+KZ4N0d/94QBrR98ntbnnyPzyjvkvvkdZHWtCB2cv0xw/jLJkX00v/IyyZF9W3K1SmvIRCukKiQKirTUAGFcx2YlsZ8n21pEPYALCMfmCDpiNkrgrXF/rwrZVt+IP+/2CpcCKUXX2d2NLJcC35O7tqq2FfYRhaVO6sCtQrexZL/1Brmv/xHCrL2Aar38LI2f+gEI9k5FvbSSQ/ZQz31tZrig/n3PfdbkoP2ldfdRTyRn4iFeHu51fJerl7Z3stuBTsEYUgO16d4eXw/d1X0zvtySmBTbdQrooICyK6gkRrahGU9RiTwGCz6+koyVNk4quRONylKnAGxggOLgkBO6HQ6Hw+FwOBx7EuV5TBw7wcxH50AIKjPTLE1fo398gjC3Nplqt+JjCIzBSE1D+sRCEW6wHuIpwUDex9hOnHmtnTCYD/ZMutiDwgpBJHIofALTxCq56vJGk6o7u7w1hqZpk+nGmntS4QsPKSTJDseaS5tF6DGEWqC0cgUrfBrFw6sDhGRx6FmGFr5HGFV2dC73iifhZ080OdiX8m/OFEjM6u97JZL8vTdK/MyTDb5/Krqnp68KA8ZffIbBk4eZfeN9KufXrkW05pf55Ne/RengBOMvPktY3uG1VIfDsS5O7HY4HgJ1G3A6HuSjpI8pr84+v46/jos3IzXHggpP+CtcSwtcToq07U6+bJ3gva0IaHW/ZsQMnvXoo4+yLVOihLfJW7BE0kcffbaP/eynZVussEJFVKhTx27FrQ0ICijzPIrnsbrS6e8tT2PF/IbbWDmDZgYtfw9hD3Sizu2TiE3i2e+bwKf9xc/QfvlZMq++S/b3XketI3r7H12h73/9JZLDUzR/5GWSY/u3dLHl6QjV6vbyDoskOiQUklSFZKMKQVzbnb1/H2NWe3+v/mWM7bq+tcFYiNPVcC8lBIGvULvUzQ3QDkpEYR+xnyfxsgRRDU9HiGqD4i/+JsHZi2u2MdmQ+s/8CPFzxx/8hO+TCTtBhlWB02L42P87aNF7wW7aP7zh+8s3Z4ucOnJbdXTcIlO/vu3zvS+shjQF5bFyeRp7S8GCUJLyEw8veccTCguk3fhyTWdBy6gQqzRetAQ6i4ybTDcH8RWUMh6jpQyeurfXk05TGpUK+XI/yvPpn5jcxiNyOBwOh8PhcDgeLFIpxo8eY+7jjxAIlmenWZ6Zpjw6TqZQeNjT2zI5kxBLSWA0sVD4Vm9orSlmfBqRRme6ceaRpphxUsJ6aOnTFiUC28ICxvp31cvbYmmZNoH0wQQYYQiEj5QBsYl3MNQcBB5SjyBkhXLlAlZ4NAurxdpWKhaGnmNo/ruEcXUHZ3J/vDwRM1lY4R+/XWSxvdpHW1vBL35Q4MKKx8+daNxsr3e3BMU8+3/wRYaePsrMq+/QmFm7rlq9OE318gyDJw4z+umTeFlX8O1wPEjcGcrheIhE1uPjpMyFpMREt693Tq6NVvGE5YBfY79X47rOcikpsWLCdfa4HTjBe6dIRcoiiyyKRYQVFChQtmX66Nu0zzdAtvs1ZsdISanaKhVRYYUVUrG1OB5BGWU+hzKfw3D9pvCNWBuX3N0AKy6h5SW0/QbCHu4K30cRdxHPflcEPu3v/3Sv6L1SXzPM//gqff/ol0kOTXac3scP3FH0FlgycZVUB8RBkVZmkCCpgxDEfo5caxFltrN1gWO7udHP25OdqxOL5YamKCUPpu/8PdIOirQz5Y7Q7ecI4jq+buOfvUDx3/wmsrY2xj85NEHtL38VM9D3EGZ8f+RtnjHGeu6bVb9KRV7suc9EJxH6yLr7aGvBH8yV+Bt/qr/n/uLKlV32l7YQp4AEz2P50nTPo6UDE6hwh94z74DsfqU2wWJJbOc9zgLaz+DpJWSqUFGDSvwEzcQyWgoJPcVQ4d4/Z9SXFxFCki/3UxoewQ926jOLw+FwOBwOh8PxYJBSMXb4KHMXPgZg5fosldlp+kbHyBZLD3l2W0NhyRiNlRALRSQU2Q3c3ULAUCEgSjX5wKMWJWQ8ie/izNdl1eUdEJgGRkk8E+OZGEVKojJ3dHnHJsEIQ4aQto0JpU8owx2PNRdIhBkAG9C/dB4rfFr5idVjkx4Lw59i+PpbnXW0XcqBkua/f2mFf/pugQ+Weq/BX5nOcK3u8VdP1Zks3vvvMjc8wBM//kVql2aYef0dokqtd4CxLJ7+iOXzlxj51JMMPXUM6d2jwu5wOO4KJ3Y7HLsAg+RqWuRqWmBYtTjg1+hXa2OrhYBRr8Wo16KiAy4lJa7rLGz7sr8TvHcaKyw1atREjStcIbQhZcr02T6KFJGbxNZ7eAwwwIAdwGJp2AYVUaFChRatLT0dJCNIM4I1X8SKaxhxGiM/ALFBH2thsOI8Wp5HWx9pj3X6e9snEOzAhzbfo/2nvo/2Z58h89p7HdH79g+QgH/hGn3/+FdIDk50RO8nD95R9PZ0jGotEQf5bpR0SBjVqBUCMu0Vwri6y4Q0x0YIBGoPvCVFQZF2pp/Yy60K3VGd3G/8MblvfmfNeCug9eWXaH7lc+yJA7wNYQWH7KGe4oOWuMJF9Us946wuYuMf2PD19oezBfZNlslne6vg85XL2z3l+yNNAQNBSNRs07ze28/sYUaYr8aXQ2KSm/HlxsuCjPDbdUTqY+N+ZpshmUCSCzzGy1nu9XSfJgmtapXCwCDK9ymPTdx5I4fD4XA4HA6HYw8gpGT0iSMIKTtrD0JQmZvFWkuutDeKlLMmIRKK0KREykNrg9rAO+x7knIuwNiIdiqpujjzO6KlR1uU8G2rc9t6+CYi0E3SLbi8U6tp2BZZGRIZ8KXXiTVH3Cxe3imkLSB0wMDiORaFop0bvfmYlT4Lw9/H8PW38NMN1g53AYXA8l9/usZ/PJ/jGxd7jUWXqh7/w6tlDpZSXp5o88J4TN6/e9+8EILSwQmK+8ZYPPsJc2+eRrd71/FNnDD7+nssnv6YsReepnxk/65tt+dwPCo4sdvh2FUI5nWOeZ2jJCMO+DVGVXPdz5BlFVNWCzSNx+WkyHSaZ+PwoXubixO8HxyRiJhjjjkxh7SrEeZlyvhs/EFY0HGIF2yBKaaIianYChVRoUYNs048/u3bCzuFtFNY82WsuNhxfIuzIOINNkq64vhpsFmkeRJpn0LYfdvvrPU92l/4FO3PPk3mtffJ/u5r64veF6fp+ye/SnJgvCN6nzi06cWXwBLGdbw06vTyzg7gxw1sRpD4ebKtBbwd7o3keDyI/AKtTD+xlyUJ8vhxg3B2huL/+XX8SzNrxutSnvrP/xjJsYfb4/l+GLfjPWkVFs1H3t/BiN7qad36EnKDVIvEwO/OlPjRHxjsuT9oLOAlu+jC2uhOr27PAympXJnteVhlAor7xjbYeGfxhIfF3hJf3jkfWCTG9/DSRUgzqKjF9fgAqbEMl3zyoUc5d++94etLiwgpyfWV6RsZw/P3Tp95h8PhcDgcDofjTgghGDn4BFLKjt4tJSvX57DGkC/333kHDxlJR/A2yiexlkgqcpuk3PVlfRpRSl8WFhsRjdiQD51TdTOsEMQiRypCQt0gvkuXt8XSNG1CGYABLQyB8JDCJ9rhtSpBgKdHGZr/iPkRRZQduvmYUQHzI9/HyPU38dLWjs7jfpAC/uyxJgdLKf/idIFI9/6uL1Y9LlYL/PKHlmdHYl6eiDg1mNy110AoydCpI/Qf2c/1t8+y8N55rO5d90jqTa78/ussvHeO8ZeepTAxcr+H53A4NsCJ3Q7HLqVqQt6LQs6LlP1+jUmvjrdOn+acTHkyXOZwUOFqUuRKWiDatr7eTvB+GBhhWGaZZbEMFvLkbwrfefKbbhsQMMIII3YEg+mJO483Eq+7CCTCPoHUT2D5ClZ8jJanseI8iA0ifkQLo76H4Xtgi52Yc3MSwdj2Ct+eR/vzz9F+6WnC77xP7ndfQy2t7RXkX5qh7//3NZL9Yx3R++QTm4reyiRk20skfp4kyKO7Lm9dGCeMqmSiFcSOdkdyPMrEfp5WdoDEy5IEBfykSeE7b1H4pd9Btte+HuOTT1D7S38aW8g9hNluD1mbZZzxnvum1b+nKq/23KfbzyDsoQ338yfXCxg/w5HJ3jjA3eXqtpAknQx95WN9j+WPrvSMKD+xD6ke/EKQ7OaDpDbFYont6oKIDkKEiPDbMaSCJJ5goQn5UBEqxUR587Yam5HGMe1aleLQMJ4fUB4dv/NGDofD4XA4HA7HHkMIwfCBQzc/60shqS7MY42hMDB4h60fPhmraVuP0GhayiNF4G2w9iEEDBdDri23yAUejTgh9CSeci7VO2GEoqWKBLYN9Lq8tQxI7+DyjkyMFoYMAZE1BNInI8NO3Dmbm1vuB4FCmSGG5y8wPyKJMgOrx6RC5rsOb0+3d2wO28Gnx2LGCiv8o7eLXG+uvS5PreCtuZC35kJKgeGl8YiXJ6K7jjlXYcD4i88wePIws2+8T+X8pTVjWvPLfPLrf0DpwARjLz1Dprw3Wh84HHsJJ3Y7HLuctvU4F/fzSdzHpFdnv18jI9eedH1hORRUOeBXmU1zXEpL1M129Ah1gvdDRUCDBg3RYJppfOvTRx9lW6ZECbVJhLhEUqZM2ZYBaNomK6xQERXq1DeNOxf4CPskUj+JpY0R5zDyNFZcgHWKLjob1TDqNYx6DewgypzqRJ0zsP74e8FTRC8/S/TCU4RvnCb3O6+hltb2HPcvz9L3T/8Dyb4xWl/5LPGpwxuK3gIIkgZKR51e3tl+/KSJBZJuL29Pr20r4HBsRuznaGYHSVSWOCgQ1Cv0//tfJ/P6e2vGWqVo/MT30/7+79vTcXA34stvbcPQEBe4pL7WM87qPkz0BdQG5xBt4RvTJZ49PoCUq78PoROy1el1t3koJF0B2ffBk7RW6sQrvckTDyPCXHAjvrzj5Y5vqfw3QmF9QRBVsWTwW5YrURGLoT8XUs4F9+XSqC0uIJVPrlSmPDaO8tylhsPhcDgcDofj0WVwaj9Cdj4/CymoLS1iraE4OPyQZ7Y5AsiZBKMEyhoi6aFMsuEyUeBJ+nIB1lqixFBtJwzk/D19/frAEIJYZElF0OPyViZGkpLIECs2Xl9NbUrTmm6seYIvfQLpo21KsqN9vAWe7mN47irXxyRxWL75mPayzA93HN7KbG6sedhMFjT/rxdX+MbFDK9cy7ASr/+7rsaS37mU5XcuZTlQSnl5IuKFsYhCsHUDTFDMs/8HX2To6aPMvPYOjen5tT/n0jTVyzMMnjzM6KdP4mUz93xsDoejF7cC5XDsEVIkl9ISl9Mio6rJAb9KSa2NrpECJvwmE36TRR1yOSmxoDPcX1/v9QVvX3koz0UXPUgSkbDAAgtiAWEFRYqUbZk++siw+QekXPdr3I6TkPS4vvVGzm1AkEHZZ1D6GSx1jPwAI05j5bWNf5hYRKtvo9W3EWYcaU8hzQkE21S56Cmizz5D9MIpwjfOkPudV1GL64jeV2bx//f/SDo1SvMrnyV+6siGF2PKpGTayyR+jsTLk6qQMK5Rz48SxDWy7YpzeTu2ROxlaWaHSFWGOCyQuXCBwf/jl/DmltaM1cP9VH/hx9H7RtfZ095ijLGe9AlDykf+/4i9pZ2CtYKk8cN4cuP3qzcWcixGHs8d6y2UyVWvIXfwYv6uMGknwtz3O87uMGT5rQ96hgSlArnRB+/qWI0vN6Q27an416GH1BEqBhGlNPQklUjTl/UJPMFE371faCdRm3aj3okuDwL6Rvb+c9rhcDgcDofD4bgTAxOTN80gQkiqi/MYYygNjezqHr2hNbStITSapvJJhCSwG7uFy1mfZpRSylqWmzHN2JBzceZb5obL27cdM8VNl7dpoaVPKjY2LBkMDdMiI0MwnX35QiGE7Clu3gk8k2F0dobZcUUSFG/er/0c8yMdh7fa5W0Ac77lzxxt8ZOHW5xZ9PmT6ZB3rgekdv3X56Wqx6Wqxy9/mOPZ4W7M+VCCt0XPV254gCe++kVql2aYef0dotvbMVrL4umPWD53kZFPnWDo6aNIVyjucNw37lXkcOwxLIJZnWdW5+iXEfv9GsOqta5+N6giBtU8deNxOSkxk+Yx9yx63yZ4W0gsaGPwfB+5ez+/P7JYYalSpSqqYCFDhjJl+mwfRYqbxoj7+AwyyKAdxGKp2RorYoUKFdq0N6yNEBRQ5nkUz2N1pdPfW57Biusbz1POoJlBy99D2AOdqHP7JGKDXr13hVJELz1N9PxJwjc/6IjeC5U1w7yrc5T+2X8inRym+SMvEz99lPWetB2Xd/NmL+92poyftrAIUi9Htr2In+7umCbHwyXxsjRzw6QqJAoK9P3eH9D3td9GpGtF2vYLp2j82S9hM9uRwvFwydgME3ai576r6l9TF719yU30fQg7uWHRibHwW9dK7B/NM3ib8JrbLRHm1kCSglQgPQhCrIXKx70R5v1HDzzwxS2FRACJTbEYErvae88ogZUCr9XCWg/ZyjHX8pDSUM76DBdCAv/eE1tqi4t4fkC2WKJ/fAIp3cKXw+FwOBwOh+PxoDw2jrgheKsbPbwtfSOju1rwzumU1JN4xhALhW83XjWUEoaKIXHFkPU96nFC6EuUWxDcOkKQiAxa+AS6iVUSzyZIExOg7+jybpsILQwhPtYafOkTyoDEJJgdNGcooxidmWV2XJEGq23XUr/AwvCnGL7+XaTduO/7bkFJeHo44enhhEYieGM24JVrIReq68fJayv47vWQ714PKd4Scz61hZhzIQSlgxMU942xdPYTZt88jW73pkaaJGX2O++xeOZjxp5/mvLR/bv6/cLh2O04sdvh2LMIlk2G5ShDTiTs92tMeA3UOhHTBZlyMlxa7eudFEg2ib/e7GfeKnhLawCPJDZ4zuX9cBHQps0ss8yKWZRV9NF3s9e3t8nbvUBQokTJltjHPtq0WbGduPMaNewGseWCMsp8DmU+h+F6V/g+DWKtw/rGHK24hJaX0PYbCHu4K3wfRXCfYp9SRC8+RfSZk4RvnenEm88vrxnmXZun9M//M+nEMM0f+SzxM8fWFb2l1WSiCqmXJfbzpJmAIK5jciMESYNMe7n7/Hc4VklUhkZuiFSFJIli5H//F2TfObtmnAl9Gn/uy0TPn3oIs9wBLGviy+viPFfVr/UO04Po1ot4m5wr3l3OMt0K+InP9DqivahG0Fr7mn7wWEhvjS9X4HvULk2vuXAtH93/QGcmACUU2mosluiW6nqLRYchno5QWiBbHjXbRz3WDBVDfE8xXLx3V3fcahE1G5RHx/GDkNLQyDYckcPhcDgcDofDsXfoGxlFKsX1i58ghKAyNwvW0jc6tmsFLB9DYDRGQkMGxEIRbpKmlfElfVkfrCVONdVWQr+LM79rjFC0VaHj8jYgpIdv2ltyeSc2wVhNRoYYYwmkTyADUpuS7mASmmcsY7MzzI5Pkvqr145JUGJ++DmG57+3e5LYtkDet3xxX8QX90VM1xWvTIe8NhOyEq1fbFCLJb97KcvvXsqyv9iNOR+PKN4h5lwoyeCpI5SPHmD+7bPMv3sOq3t/T0m9yZVvvc7Ce+cY/+yzFCbc9bTDcS84sdvheARoWp+z8QAfx31M+XX2+TVCsVaIC4XhcLDCQb/KTJrnUlKkadevXtsYgVI+Umq01qRpgpLKubx3GVpollhiSSyBhQKFm8J3jtym22a6X6N2FI3uiTtPxPrRRJIRpBnBmi9ixTWMOI2RH4BorP9DhMGK82h5Hm19pD2KNCcR9jDifk5NShK98BTRp08SfvcDsr/zGt71tdHR3vQ8pX/xa6TjQx3R+9nja0RvAfhpC6UjoqBElOlDpxEGQeJlyLaWCdLmvc/V8UiRqJBGfphUZeDSAuP/7N/iLVfXjts3Su0Xfhwz3P8QZrkzjDJKgcLN24aY8/7f7S2UsZKk8WWkDNgoOsJa+M1rJQJfcupQueexfOXSfTXj2DZ0CsaAH3TeM8IQgOXzl3qG5UYHCfuK6+1hx+jEl3c6dSemI3jfwPgAAr8dY1MPm5SYbQoCT1AMFWOlEE/d+2+4triAH4Rki0X6JyZvulocDofD4XA4HI7HieLgEEJKrl/4GCEklbkZ7Ow05dHxXfsZOWdSYqkIjO66uzWbzbQ/F9CMU4oZn+VmTCsxZANnfrlr1ri8BcomqC24vDWGpmmTkQEY8ITCEx5KSBKrMTtkzvC0ZmxmmpmJKbS3KsgnYZmF4WcYmn9nTxpDJgqanz7W5KeONPlgyeeV6ZDvXQ9IzfrXyJdrHpc/9PiVczme6cacP3WHmHMV+Iy98DQDJ55g9o33qdy2hgDQWljmk1//A0oHJhh78Rky/dvUCtLheExwYrfDsSmW++t1/WBJUFxI+riUlBjzGhzwaxTkWnFSCcuUX2fKrzOfZriUlFg2IXdzrEIoPE92BO9bXN7xDZe3Uq6wc7cgoE6duqhzjWsENqCPPsq2TIlSjxvzdhSKfvrptx1hrmEbVKiwIlZo0FjzlBEIhJ1C2ims+TJWXOw4vsWHIKJ1fgIgEow4g5FnwGaQ9nhX+D6I2PQSaxOUJHr+FNGnTxB+9yzZ33l13X7J3swCpX/566Rjr3RE7+eOd7K5bkFaQzaqkKgMcVAgzQ4QxnVsTpEkLbLtpT1VverYflIV0siNkFqfzG+/Rt/Xv4mwa6t7mz/wGZpf/VMdN/AjQmhDJu1kz32X1b+keVtrAx29AHoEucmxn62GXKiHfOpYP4F/yzhryFWubuu87wmrIU1BeZ0I8zAEKdBRTPXidM/Q8tEDD3RqHgoBxFZjMKSsRshZkWD8Al4Sg5V4zZAFnSVKNWN9GUJfMVgI7/lnR80GcbvFwPgkfpilODi0DUfkcDgcDofD4XDsTQr9A0gpmf34PEJKlmeusTwzTXl84mZv792EwpIxKVZCLCSR8MhuEkktJQwVQhLdJusr6lFK4Lk483ul1+UtMNLDu9HLW/ikcn2Xt8XSMhGBMECAweAJj0D4ICzaGlKbbnu4uadTxmauMTs+hfZWDVRxOMji0CkG599H7mCk+k6iJDw1lPDUUCfm/M3ZgFemQz5Z2Tjm/HvXQ753PaToG14cj3h5MmLfJjHnQTHP/h98kaGnjzHz2ts0pufXjKlemqZ6eYbBE08w+plTeNl7T2FzOB4nhLXrrMY69gxXr15l3759AFy5coWpqamHPKO9TaNW4ZXf/3dE2U4dSFipdxa0PQWb9EzZvVgGVZsDfo1BtXmf4ar2uZSUmNM57F0K/NZqtDaARUrV/RZdl7f7sLubkVZSpEjZlilTJriLOPGE5KbwvcIKZp00gRtYUqz4CC1PY8V5EFsQh20eaU4g7UmEndq0B/kdMYbg7Q/J/fareLOLGw5LRwdp/fBLRN/35BrRG8AISRwU0CpEpRFBUkeZlEx7mTDZwMXueKRJVUAjN4qutin9698gc/7CmjGmkKP2l/40ycknHsIMdxALx+1xSqxWG1fFGd7z/589hTBWjxBX/xxKBpv2cf4HZ0b4YCXD//WrR9k3uuoUz1RnGLr6nR05hK1jIYo7/w0DCPybru6ls59w9Q/fvDlSSMmJn/9xvMy9C8h3gwQ84ZNajUYTmfgWV7clDQGZJdOoQlzAtHJ8XPPxlWS0lOHQUJ6+3N2mvKyycOUSQkgGp/YxeugIhYHBO2/kcDgcDofD4XA84jSrK8x+fI6o0WB5+hpeGNA/PolUu6/42QAVlSESkkh55HSCuoNgOV+NqLYTFhoxvhSUc/fZns6BtJpAN5GkN13eIO/Yy9sTilAEN80snlQoFAKBxZBag95mk0bs+8yO78OoXi9l2JpmcOH9TY01e42ZhuTV6QyvTodUNog5v5WpYsrnJiJeGIsohRu/jqy11C7PMPPaO0SV2rpjpO8x8qkTDD19FOk53+rDpu2BNIbQSL70g3/5YU9nT7MTuqYTu/c4TuzeXpr1Kn/yR79E5AmQgrDSAK0B2xG9leoKYHtPwC2ImAN+jTGvsWnMeNsoLqdFriUF0rv6YGLRRmO0QUqBVAohJJ5SKOU5l/dewEKWLGXKlG2ZPPktC8wGQ40aK2KFChWijVzcgKWNEecw8jRWXIANeoL3blRCmpNIcwrB6L0L38YSvHOO3G+/gjezsOGwdGSgK3qf6JR23v64ComDAhZBGNfxdBsvbZNtLaKcy/uxIZU+jfwo6v2LFP/tb6KarTVj4mP7qf3cj2H7CuvsYW8zbIc5aA/evK1p83bwN2mLWwpKrCSp/yw2HcDzfDY6f35SC/j/vj/GUF/I3/zpkz2PDV5+nWx9dgeO4C5Ik06EeRCC50E2c7Mv3ce//gc0pled7KWDExz8kc8/sKn5wsNiSa0mMWmvq1tFpGGZoN1GJgK/muFaXGSppZksZ+nPBxwZuffnZrteY3l2hsGJKQqDQ0ydeGrX9iN0OBwOh8PhcDgeNO16nZmPPqTdqLM8fQ3lewxMTO1KwbslFA3l05Q+AkvObOzuBtAGrlWaNCJNpRnTl/XJ+LvvuPYc1uLbGN+0ENbgmQiJRguPVG5eUK2Q+NLvJn8JpBB4wkMiAIG2mtT2try6H2I/6ArevX/3TPMyA4vvI+/CULMXMBY+WFyNOU82iDm/gRKWp4cSXp5s8/QmMefWGJbOfsLsG6fR7fXXU/1CjrHnn6Z8dL+75n6IOLF7+3Bit2MNTuzeXpr1Kn/ynf9EWxiwhkw96jQRNRoSTafWUXac3kqxF0XvUKRMeXX2+XX8TZy4qRVcSwtcToq07dYrx6w1aN354KSkQkp5i8v70anqexzwrNcTd+7dReeLFi1WWKEiKtSp9/buvQVLAyPPYsRprLyytZ3bQaQ5iTKnENyjg9BYgnfPdZze60QG3UAP99P84ZeIPn1yjehtEZ1Ycy+D1AlhXEUaTTaqEMS1Pfju4LgbtPSpB4Nkf+2PyP3Rd9c8bqWg+aNfoPVDL6zpB/8oENiAp+xTKFYvaj/2/jdm1e/2jDPtL5A0P4VSalNX9/92doi3l3N86fkJPvfM6M37Zdpm/NzvIB5mDJrRkMQdkdvzIZfpFMABcb3J2V/8es/w/V/+LOUn9j2QqXkopBDENkVbQ2zj1QdFQpIJkCZD2FqB5iBJEvLJiiCfUQzmQ46PFe+5v561loXLl1Cex8DkFONHjpPrK2/PgTkcDofD4XA4HI8IUbPJzLkPaDcbLE1fRUrFwOQUape5NC1QUSGxULSUR0Yn+He4DmtEmrlqm2orJkotg/kA+Qhe/z4MpDUEpom0SY/LO5Uh5g7rq4JO+lcgvFW3t1Aosf1u7ygImR2fwt52vZ9tfEL/8vtIm7vvn7EbaSaCN+c6MecfV+6clFa4EXM+0Yk5X0+v1nHC/NtnmX/3HFav/7fJDvUz/tlnKUyM3O8hOO4BJ3ZvH07sdqzBid3by02xWxoQgkxCx82VJB2d2+iO09toQHQEb7U3I84lholuX++c3Lha01qY0zkuJ0VWzFYjWS3GaLQxSNF1eSPxPOfy3qsIKyhQoM/2UaZMluyWt01JqVKlIiqssEIq1n++WaoYeaYrfG/NxSnsKNKc6vT4pm/Lc7qJsQTvne+I3teubzhMD5Vp/vBniT6zVvROZUAcFrFIgqSOn7ZQOiLXWkKZ5O7n5Nj1aOnRqvnk/8/fwF+nWEIP9FH7ha+SHpx4CLN7AFg4Zo/Rd8trriLe4XTw/+4ZJvU4Ue2nsVbieR4bFYhda/r8D++MIwX8rZ95isItkdqFhfOUr5/ZkcPYGhaiqFOw4IcQ+hCsVqdff/sDZl9/7+ZtGfic/Pmf2LQ3+XYh6VTppzZFY9bElxu/ReoPk2k2IMnj1eByVKQeafYNZBkqhOwfvPeFh1atSmVulsGp/ZQGh5l88uSdN3I4HA6Hw+FwOB5D4naL6XNniRoNlq5dRUjon5jC8++9ndBOEAlJXQU0pYdBkDfJHQv556oR9XbCQj0m8AR92UfLzftQsRbPxgSmhcDg6Y7L2wiP5A4u7xtIJMFtbm8lOrduuL211Zj7KDBvhxnmxqawt7UDzNXP01d5D2kLiEco1vx2ZhuSV6dDXp0OWY7uvBYwVUj57ETES+Prx5zH9SZzb7zH8rlLG+6jeGCC8RefIdNf2nCMY/txYvf24cRuxxqc2L29rBG79S0f6dK0I3qnBjCQ6nUizvdiXI9lWLU44NfoVxtHTwNUdMClpMR1nWUrrnaLwWiNMRal5Govb89HrtMP2bF3CG140/VdpLjlXjwWS4MGFVGhQoUWrXWfSpYljDyNlmdAbBw3fivCTCHtSaQ5geAuY3mtJXj/I3LfeAXv6iai92BfR/R+/mQ33eHGfAWxnyf1s0iTEEY1pE3JtFcI46pzeT9CaKFI3psn/x++hUjWFm5EnzpO/c//MDaXeQizezAM2SEO2UM3b6c0eDv4m0SicvM+YT3Sxs+TxkU8pRCbnB//j/ODvLaQ59j+En/xy4d7Hhv96Jv4cX3bj2HLJDEY0+nT7XmQXS30sdZy7ld+m2i5evO+gScPMfX9zz+Qqd0aXx6bBM1q5beVDdJMGS/x8dstZLNALclxuarpzwX05wOeHCsSbJSjdgc6ru6LeH5I/8QEE8dOkC26i2yHw+FwOBwOh2MjkqjN9Lmz3Ujzq1hrGZiYwgt2lzi8ogIioWgqn9CkBHbjVEiA1FiuLrVoxikrrYRyLiC8x+sMx/pIa/BNs+PwvunyFl2X99bXon3h4QvvZkKbEgpPSATyvt3erUyWudHJbvvPVfK1s5Sq7yJNCXEXiZF7EWPh7FIn5vy7c3eOOZc3Ys4nIp4ZjtfEnDfnl5l57Z2etmk9CMHgiScY/cwpvOyjuwa1m3Bi9/axE7rmo/0O43BsJ57X+TYa4qTj5va8juCdaujGyey9iHPBvM4xr3OUZMQBv8aoaq7rvi6rmLJaoGk8LidFrqV5zCYip0CilEAI0+nnbSxKKYxJnMt7jxOJiOtc57q4jrSSEiXKtkwffQSb9OQRdBziBVtgiinatLnGNZZY6nnJCAZQ5gtI83ks1zuOb3kaxMqG+7byKpqraPm7CHuw0+PbHkdsxYUuBPHTR4mfOkJw+mOy33gF/8rcmmFqcYXiv/sGud9+leaXXyR64SnwFAJLmNTxdEQUFGllB/DjBjYjSPw82fYino7X+cGOvYSONPzG2xS+9+Gax6zvUf+zP0T00tM8ym9svvXZZ3sjui94/7RH6AYg+lOYtIQQIDYpbppvK76z0HEXf+pYb1uCoLn4cIVuk3bO+b7fuWAPeyvn24uVHqEboHz04AOZmtdd0Ei7Vfi3Ct2IBOMpsFm8uIJNBjGpZr4FnhT0ZTxGiuE9C90AzeoKaZLQPzZBttjnhG6Hw+FwOBwOh+MO+GGGyeMnmT53FjGxj6Xpqyxdu0L/xBR+uNUkxZ0nrxNST+IZQywUvjWbrnB6UjBYCDA1SzvRVFsJQ4XA9RXeRoyQRKqAZyIC08IoD0/H+KaN6fby3oqbMbEpiU2RSHzp4VuLtjfc3gpfKHzh3ZPbO9tuMXJ9huujEz1rIo3ikwirKdbeQ9oiwu6e5/p2IwWcHEw4OZjQfFLwVjfm/KMNYs6NFbwzH/DOfEDBNzw/FvG5yYj93Zjz3HA/T3z1+6ldnmHmtXeJKr3rD1jL4pmPWT5/iZHnnmTomWPIXdYeweF4kDhn9x7HObu3l02d3bdj7J0jzj0FezCmJSNS9vs1Jr063ga9lgEiK7mUlLiaFNB3OM5bXd5SyW4/b+fyfuSwkCNH2ZYpUyZPfkub1alzWVymIRqb7NpixTRGnMbIM7DJ2NWNFMI+0Yk6t0cRmwjxvdtZ/DOfkPvGK/iXN45U1wMlWl96kfaLT3df750+V4mfJ/FzSKMJoirKpoRRlUy08nB7DzvuGXt1Gfkrr6GWqmseS8eHqP2VH0ePDT2EmT1ALByxR+in/+ZdS/I7fOD/f3qGhXqSZuPPk6Yaz1OITSrN/80n/fzhXJF81uO/+Zmnevq79U9/j3zl8vYfx1awBuK4I3L7AWRC8HsvGqdffZuFd8/dvO0Xcjz5sz+244s6q/HlCRq7Jr7cqippOI4fGVQk8RqSxbTAdDVlpBRSzgWcGCvdXnC/ZawxzF++SJDJUR4bY/LJU2Tyd5mm4XA4HA6Hw+FwPKakScLM+bO06zWWrl1Fpwn9E1MEmd3jzKxJn7ZUNFRAYDThFty+syttau2UpUZM6ElK2d0V0f6o0OvyTlEm4l5c3jfwum5vb123t0VbTXoXbu9GrsD8yPgaE0Bx5X0K9fc6PbxtDrFnTGL3z1xD8upMJ+Z8qX3nv9FkIeXliYgXxyP6ujHn1hiWzl5g7s33SVvrJ7P6+SxjLzxN+egBV2yyQzhn9/bhYswda3Bi9/ZyV2L3DaztOLuTBLTpLJDrRyPi3MMw6dXZ79fIyI0/2MRWcjkpciUpkm4qeluMMZhuQYBSEiEUnpIoz3+UzZCPLb71b8adlyjdjEraiEUWuSquEovNXdAWgxWXMfI0RpwF0b7zZKyPtEeR5hTCPrG1+CRr8T+40BG9L81sOEyXi7S+/CLtl57uJD4AWnjEYREjPfykiZ80UCYl11rE05u3DHDsIoyFP/4Q9c33EGZtfFvr88/R+MkvQvDoX8gP2AEO29WY8YQq3wv+Jomo3bxPWh/d+CukacetrdTGvborseT/8d1JUit4+ekRvvzC5M3HhEkZP/fbSLM2Kn7nsd34cttxc3se3BYJZo3hg1/8Omlz9b1n5FMnGHvh6R2fXSB8DKYbXx6jueV5KRukfhYYINNcwUb92Ag+qXkICRN9WfYP5Bgo3HtUYmN5idrSIkP7D9I3NMLYkWP3f1AOh8PhcDgcDsdjhE5TZs6fpVWrsjRzDR3HDE7t3zWR5hpBxQuJhCIWiryJ72jlSbXl6nKLRpxSbSX054L7SpNybI5nbvTy1ng6RpLeVS/v2xFIAtkRvSUSiUBJhUICAk03tZPNY+0B6oUiC0NjawTvvuX3yDVPI6yHsKVHuo/3ehgLHy55vDKd4btzAfEWYs5PDSZ8biLimZEYX4KOE+bfPsv8u+ewev21+sxQmYmXnqMwObITh/FY48Tu7cPFmDscuxEhOm4vvxtpHicdJ5jngU47Pb5vRJz7N0TvvaHqpkgupSUup0VGVZMDfpWSStaMC4ThSLDCAb/KlaTI5aRIsq6oKW727dZak6YaqSygMNaglIdSe68owLExiUhYYIEFsYCwgiLFm3HnGdZWLQ8ySL/tZ87OMSNm0GL9D24C2Ykq1wexfAUrPulEnYsPQax9jnY2SjDiTMcVbjNIexxpTiLswY0/YAtBcvIJVk4cwj97sSN6X5xeM0xVahR+5ffI/u7rtL70Au2XnkH5kGkvk3g5Ej9PqkLCuEY9P0oQ18m2l53Le7dTayG/9jry47WR9iaXof4zP0L87OMh9HnWY7/d33Pfx94/7hG6ATLJF6iZAsZ0XN2bne9+b6ZEajuPP3dbhHm2Ov2QhG46525jOo5uKdbElwPUr13vEboBykcP7PjUPKFu9unuxJffstAgEqxMsbKfIGpgdD9+FDGb9hHrmIlChmyg6M/f+wKa0Zr68hLZYgnP9xmYdEWWDofD4XA4HA7H3aI8j4ljJ5j56BwgWLp2heWZawxO7UfugnUxhSVrUqyEREgi4ZG1m1+feUowkPcxthNnXmsnDOaDR7rN18MklQFGePimiVUCaVUn5lwbEpXB3uXas8UQmZiIG25vhWcsCatubyX9Lbm9C/UaVkgWh0Z77l/pfxphLdnmGZDLYPoe+T7etyIFnBhMOTFY52dPdGPOr4Wc3yTm/L2FgPcWAnKe4cXxmM9OtDn4/NMMnDzM3Bvvs3zu4prt2gsVPvn6H1DcP874S8+S6XdtxxyPB4/Pu4nD8SBQCrKqs0ieppAIUHQjztOO+5t0z0WcWwSzOs+sztEvIw76VYa8tU5aX1ieCKrs92tcTQpcSkrE64reEqUkUmi00aTGdHt5gzYG37m8H0mssFSpUhVVsFCmzD67b43oLZGMM86QHeIa15hnftP6EIFC2KNIfRRLghHnMfIMVnwEG4jliDZGvIOR74DNI80JpD2JsFPrRykJQXLiECtPHsT/8FJH9L5wbc0wValR+NVvdkXvF2l/9hkCmjd7ebczZby0hUWQeFly7UX8dAuudMcDR5yfQX7tdURjrQs/eWKS2s9/FTPw+Fww7Lf78Vm9AJuXf8yierVnTNFMsRJ9CmNSpBSbxpc3EskfzHair6dGcgyXe98H8pVL2zj7u8DqzvlbeZ3itDDsXJHexvL53vllh/t3/AJSdr9Sm2CxJPbWwh4LsoH2hpAGVKwgsbRFjqVmQiFUhL5ispy9r/Nro7KMtZZC/yCFgSGCbO6+j8vhcDgcDofD4XgckUoxfuQY1z48Q3l8gsWrl1memWZgcmpXRBBnTEpbeARGEykPrQXqDgX7xYxPI9LojM9SI6YWaYoZJz/sFKu9vGMC0ySREt+08XWrK3jf27pzalNSmyKIu729PbSVCMCTHp5QeMLrJI5t4PYu1lYwQrA82OsurvQ/jbCQbX2IkRWkzSNs9p7muZfJepbPT0Z8fjLielPy6nQn5nxxg5jzZir51pUM37qSYTyf8rmJDC++/CJDTx9l5tV3qE9fX7NN7fIMtSuzDJx4grHPnMLL7p5WCQ7HTuDONg7HTiAlBAH4/mrEuVSdiPO0G3Gu0859noJ76KnycBAsmwzLUYZSEnHIrzLitdaM8oTlYFBjn1/nalrgUlIksmvfboRUeFKiddpxeUsDeMTG4CkP5e2V34vjrhFQocIKK4wwwoSdwLvtlOTjc9AeZIQRrnClI5Lfcbc+yp5E6ZNY2hjxYVf4vgAb9Z8XDYx6E8ObYEud/t7mJILRtcK3ECRPHmTl+AH8c5fJ/fYr+B9fXbNLtVKn8LVvkv3d12j90Iu0X36GjNWkXpbYz6MzIUFSoyFH8JMG2fYy0t45CsrxAEg18vfeQ/7Jh2seskLQ+uGXaP7Iy6D2RrHSdlC2ZQZZdV7HLPOJ9497xng2IG7/aaw1GGPxvM0/Yv7+bIHIdH6Hn7rN1e1FdYLm0jbN/m6wEKdAN50l8G62JbgVnSSsXOh93ffvsKtb0HF1m66XOzZJ7zKTbGGkj6FENqpjdD8qarKQZDA2oT8X0pf1KdzHQpPRmuZKhXxfGeX7DExM3nkjh8PhcDgcDofDsSEdwfs4V8+epn9skqXpK6xcn6M8Ovawp4YEsibBKJ/EWiKpyN0hfUsIGCoERKkmH3jUooSMJ/FdnPmO0nF5K0JdJ1FZfN0RvFOZuac+3jewWGKTEJPcFLitsSQIlJB4QhFs4vbuq1awQlIZGFq9UwiWB55GLBqy7QsYUUeSgi08Vn28b2UkZ/jJIy1+/HCLc8ser1wLeWsu3DDmfKbh8avnPb52PsepoQIvf2aEw+1LzH/nXaLKbWun1rJ05mMq5y8x8tyTDD19DOk7SdDxaOKe2Q7HTnJrxPlN0VuCvRFxriHWIGRH9N5DEedVE/JONEwhiTnkVxlVzTVuMSUsB/wa+7wa19ICF5MS7TWit0ApHyl1N9o8QUlFYjsub8/31zPVOR4RrLDMMccCC0zYCUYYQd5WeZojx3F7nIqtcEVcob2V/tyAIIOyz6L0s1gaGHkWI05j5ZVNNqpi1KsY9SrYQaQ5iTKnEAzeNk6QHD/AyrH9+B9d6Ti9P1q7X1VtUPiPv0/um6/T/MEXaH/uWVQYEQdForAPnUYYBKmXJdtaIkibWzo2xw6xWEP9yquIa8trHtJ9RWp/+cdIj+x7CBN7eCirOGBXhVyL5bz3v5KKRs+4Qf0FZnQJrW+4ujdezGhrwTdniwD4nuTUof6ex3OVyw/nTJimgIEg7CSwbNAvr3phGpvechEvBH2H9687drvwhNeNLzekNr2tcj7BihZaHsDXCSLOIeM2TZmn0kooZXx8TzBevr8q7vryEljI9w9QGhrGD11VuMPhcDgcDofDcb94QcDY4aNMn/uAvpFRKnOzeEFAoX/gYU+NjNVE1iM0mpbySJD4d+jZ7HuSci7A2Ih2Kqm6OPMHghGKtioS6gZWCXwd4Zs2qQzQYv2Y7Lsh7YrZEQJfePh4aGu6bm/V6/a2GtM1dJRXlrBSsFK+ZV1NCJYGn2FwwZJpX8WIBkKkYEuIdRNCHw+kgCcHUp4cSPnZEw3emgt5ZTrk3PL6fz+L4P2FgPcXAnLeKV546jCfaZ9Bn36XtNWbUmiSlNk33mfxzMeMvfA05aMHdkWChMOxnTix2+F4UHhdF7cxkCbdiHOvc/vWiHNPde7fI6J33QS8Fw3xiUg4GKwwvo7oLQXs8+tMenVm0jwXkhIt23uiFkLheV2Xt9Zdl6tHEndc3lIp97n4EUYLzRVxhev2OvvsPvrpXzOmTJk+28e8neeauEYqtt7PV5BHmU+j+DRWV7v9vU9j5ewmGy1i1B9h1B8h7Ogtju++W8YIkqP7WTm6H68regfnL6/Zlaw2KPynb5H75uu0fvAF5OeeJcmViIMCaXaAMK5jc0MkSYtsewm5Se8jx84g3rmI/LW3EPHa51X01BHqP/sVbP7xi9bab/cTsCr6Xpe/T0W91TNmyOxnIXoWawzWWtQdXN1/NFegkXYuYE8eLBMGt1zMWkt+ZZOClJ3iRrsRz+sUpWU2XoxZPn+x53ZxahQ/t3PCr6ITF5fYFIsh6emVZ0E1MLIPQQa/3cTYLCKNmW+DFIJyzmeoEJLx733RQKdpx9VdHkB5Pv3jztXtcDgcDofD4XBsF5l8gZGDh5n75DxpnFBbXMDzfTKF4kOdlwByJkErgbKGSCo8Y+64YtmX9WlEKaWsZakR04gN+fDxFTEfFFZI2qpAaJqgwDMCz8QIYUhluD0/A0tsE2J7u9tbI2+4vYUPYtXtXV5exApJte+WtT4hWRp8lsF5QxjPY8QKVlaQpohg/cLzx4mMB5+bjPjcZMR8N+b8lTvEnP/BtRx/wGeYOniSH4q+S9+lM1jdu76YNFpc+dZ3mH/vHBMvPUthcnTd/TkcexEndjscDxopO64xP+i4yOJbI87T7rfujPO8jut7D9CwPqe7ovchv8q411jjyJYCJv0GE16DWZ3jQtxHo0f0XuvyllJhLUijuy5vp3g/ykQi4iPxEUVbZJ/dR558z+MCwQgjDNpBpplmjjnsRvHkGyAoocxLKF7C6iWMPI2WZ0AsbLiNFXNoNYdWv48wU0h7EmlOICjcHJMe2Uf1v/oLeB9fJfeNPyE4t47oXWuS/89/QPab36H1g5+h+YVPExUGiMISaRpjhCT1MmTaS4RJY832jh0gSpC/8V3k9y6uech6ivpP/gDRF557LKvQ+2wfQ6zGjUXM84n3z3rGBDaDSn6IxAi00R1X9yZ9wRIDvzO9umDz3LFet0KmPod64H3s7WryivIh8LtJK2tJGi3q13p7YZWPHdyxmQlACYVGY7FEt8cGyhYWi1Ej+EmEMQW8douKLVJvxwwWAnwlGS3dnxjfXFlGCEm+3E/fyCjeBq53h8PhcDgcDofDcW8U+gdIJqYA0ElMZW6WQd9/6IlKgTV41hAaTVP5JEIS3KENmxAwXAyJlw25wKMRJ4SexFOP33X1A0cIIpnDt51rWmslykT42pKo7X0uref2vuHo9qVCCkXYdXsPLi9ihKBeKt/c3krJ4vBzDF1/myCRWKoYudLt453b1rnuZYZzhp840uKrh1ucX/Z4ZboTcx7p9V9PV9s5/hWfpzDxLF9pvs7Y4vk1BSrthQqffP0PKe4fZ/ylZ8j09627L4djL+HEbofjYSFEp6e373cE7iTtCtv2lojzqLv43nWa7QG3d8v6nIkH+STp46BfZdKrrxG9hYBxr8mYanJdZ/kk6aNuglse77q8TUf0ttYAiji2eEqhlPc46k6PFTVR4wxnGGSQKTvV4ywFUCj22X2MMMJVrrLE0j29PAQDKPMFpPk8lusdx7c8DWJlw22svIrmKlr+LsIeRJqTSHscQcf1mx6eovo3/wLeJ1c7Tu8PL63Zh6w3yf/at8l+8w1aP/A89S++SFQapKUGCOI6NjtI4ufJtpdQd+iJ5bgPppdRv/wqYrG25qFkdJjqL/w4dnJwnQ0ffaSVt8WXG877/wtGtHrG7TcvcT4ZwGzR1f3qfJ5K0hkzUAo5ON7rVMhX1haJ7CxdoRs652NPbhhfDlD5+DLY1QIb6Xv0HZjYsdndiC/X1pAYjb0tvhzRwsgxpAWvLbGpJbUBiy2NrwSljMdoKXNfi0rGGJorK+RKfSjPo290/P4PzOFwOBwOh8PhcKyhf3ySuN3GGks6fYXlmWkGp/bf8Tprp8nrhNSTeMYQCYVv7+zuDjxJXy7AWkuUGKrthIGc/1gWkj9whCARGSySwDSxUuKZFoFukagMdpvXl291eyskvvSxxiLQSCHwhEcofCaXV5iWitotiQVWKhZGnmNk7l28VCBodmLNSRG2sGkx/eOGFHB8IOX4QMpffLLBd68HvHItw4cbxJzXvSK/WvoSQ+Gz/KnlV5hsTa8ZU7s8Q+3KLANPHmL0M0/taGqdw7HTOLHb4dgNeF7n25jOont6I+JcQ6LBxIDsLMLvkYjztvU4Gw9wISlxwK8x5dVRtzlwhYBRr8Wo12I+zfJJUqJqbsTqCJT0kEKjtSFJU5RUpNZibrq83QeeRxoBiyyyzDJjdowxxlC39e4JCTlsDzPKKJe5TEPcmxtaIBCMIs0o1nwRK6Yx4jRGnoGN9iksVlxAywto+w2EfaITdW6PIghIn5ii+n/783gXrnVE77MX1+xCNlrkv/5tst96g9YXP8PKD32BuFgm1RlCUSVVIZmoQpA0utH+jm3BWsRr55G//Q5Cr/291j/3GRo/9f0o//F9j9ln9xGyGnM2K7/Biny3Z8y4PchC8izWgjEaKeWmF6LawjeulW7efu5or6tbphGZ2iatBXYCnXbOtX7QKSoLN492Wz7XW7zSd2gK6e/Mx2nvlvhygyFlbXy5JYNRfQTtBGMzeFGD+bREK44ZLWUIPcVQ4f7i6lrVFay15Pr6KQwM4vn33+/N4XA4HA6Hw+FwrM/IgUOkUUT/2CSLVy6zPHONwcl9CPnwrk89LKHRGAmpDIiEIrOF9mvlrE8jSihlPJZbMc3YkHNx5g+MVAYYoQh1HStz+KaNr1skMoPdoTVVjUGbqNPLW/gEeJhuwbgnFeOLiyAktfxqkqOVivmRZxiZO4On55DWw4gayAqYEsJJWGvIePDyRMzLEzELrU7M+avTIfOtta+vhXCY/zD6ExxoXeZzS68ymCz3DrCWpQ8+ofLRZYafe5Lhp4/t2DqHw7GTuGetw7GbuLHQHgQdp3eSgPTA6o7T+0bEuVKd7z0g9kbW41zcz4W4I3rv82t468ROD3sthr0WC2mGC0mJiulUkq3n8rYoTJTgec7l/ThghGFaTDNv55myUz2xyjcoUOCkPcmiXeSquEos4nv+eQKBsJNIO4k1X8KKyxh5GiPOgtggXllorDiPlufR1kfao0hzCmGfID00SfW//HN4F6c7ovcHF9ZsLhst8r/xR2S/9QbNH3iB5S//IK3cIEFSxwpBO9OPNAleGuHpNl4aub7e90qjjfwP30Gem1nzkMmELP7cn8E8ewhlkocwud1B0RYZYeTm7RYzXPT+Zc+Y0GYp6y8wnfoYo7GAUpufk95azDEfdYRSIeDZ28Tu3MoVBHfXluC+MN3zqvI6seVh2E1RWZ/20grtxUrPfeWjB9YffJ9IQApFajUGS3z781G2AINWoyhtUZECnRCRY6mZkAkUuUAxXs5udkh3xFpLc6VCJl9A+R7l0bH7OSyHw+FwOBwOh8NxB4SUjB05ytUPTtM/McHS1StU5mYpj40jHuICWNakRFIRGk0kFIHVd/TcSgnDxQzTukXW96jHCaEvUbdHQDp2DCMUkSoS6jqJyuLpNoFpkcoQLXZOGrJAYhOSddzeQ/PTaDFJM7caVW6U4vrICUZnPZSZRqIwVDt9vG0RYben5/ijyFDW8OOHW3z1iRbnK52Y8zdnb4s5F4JLuQNczu7jZO0sL1a+Q173JveZJGXujfdZfP88w88+yeDJw070duwp3LPV4diNCNHpGRrciDhPQCjAdMRurTtuNNkVvTfoLbqbSFB8lJS5lBTZ3xW9/XVE7yGvzZDXZkmHXIj7WDIhqy5vgzaaNE1RUpKmXZe35yMfYoWr48GQiIQL4gJzdo59dh8lSmvGDDJIv+1n1s4yI2Yw4v7c0ALZiSrXB7F8BSs+6USdiw9BbCCGigQjznRc4TaDtMeR5iTJwYNU/8ZP412aIffbrxKc/njNprLZpvAb3yb3+69T/6GXqXz5i8SZQZRJUDohVTHSdvqES5PipW0nft8F4pM55K++hqitLVqIDkyy8Nd+Dq9PPdZCt7SSg/bgzdsWzXn/H2JuKyA5bl7gXDKC7aZt3MnVbS385i2u7sOTJUr53rjwBxthblb7dHsehH7n301YPt/r6vZyWQoTwzsyO9Xta2YwpKbTr3uVFEQbY/uwMovfNBgRoNpNlnSG1MSMlHzyoUc5d38u7Ha9TpoklMcmyBb7CLKub5rD4XA4HA6Hw7HTKM9n/Mgxrp09Q9/oGMuz09SXFigO7sz1x5bmhCVrUqyEWEgi4ZG1d267lvElfVkfrCVONdVWQr+LM3+gGCFpqyKBaWAVeCbCMxFCGlKxcRuv7eKG2xvAFz4+HkPXr3F9dIJ2dtXhbTyP62NHGZtRCDuDRGKpY0QVSQ5sDrEH0k4fFkLAsf6UY/0pf/F4J+b81emQs0v+zeh6KySnSyc5VzjC9628zadW3sG/7XWctiJmXnuH62+fZeS54wyePOJEb8eewD1LHY7dzs2Ic93t653ecvvWiPOu8L3LT/oJio+TMpeSEvv8Gvv9GsE6guSAihjIXqeiAy4kfSzoDEJIPCUwpiN6G2NRSmGMc3k/TjRFkw/5kDJl9tl9ZOjtJyORTDDBsB3mGteYZ35bXhYChbBHkfoolgQjzmPkGaz4CMQGQrNoY8Q7GPkO2DzSnMAcPEnyX/wU3pU5ct94lfD9j9ZsJlsRpa9/i8I3X6H16adIhgZJB/pJ+/tIykUo5pCBIFUZZPdD6ar4HeGlbSd+34o2yG+dRnz7DOvU2FD74c+z9H/5UTK6/lgL3QCTdrLnNTWtfp2aPHvbmMPUzUmaWmBMiqUTR7YZ71YyXGuuXkR/6livq9tvLeNHa3un7wwW4ht9uoPO+XOTPt3QcThXbhO7+4/u35EoQQ/VjS/XG8SX17HWw/hDeIlApBIZt2jKPJVqQj5UBEoxUc7e91yaK8uE2Rx+GFIec726HQ6Hw+FwOByOB0WQzTF6+Cgz5z+kNDhMdXEe5QfkSn0PbU5Zk9IWisBoIuWRaoG3hXSu/lxAM04pZnyWmzGtxJANdr9x51HCCkEk8wS24+a1VuKZGCEsiXxwrukbbm+JpDx3ieWxg0SZ1aJq7XlcHzvE1KyPMbNoKbE0MaKJIAFbcn28t0DowWcnYj47EbPYkrw6E/LKtdWY80QGvN7/Au8XT/LS8hucqJ9ds3Sq2xEzr73L9bc/ZPjZ4wydcqK3Y3fjnp0Ox15BKghVZ2E+TVYjzk3X6Z0m3TjWvRFxniK5kPRxOSky5dU54FcJ5VrRu6xiPqXmqWqfT5I+5nUWKRVCCozuuLylkuBc3o8XAipUWGGFEUaYsBN4t53SfHwO2oOMMMIVrlAV1W388T7KnkTpk1jaGPFhV/i+wLpqKoBoYNSbGN4EW0IfOEXy1z6Ld/Wz5L/xKuF764ve+T9+a93d6VwWXS6h+/swfQVMXx5bypP05YjKRSiWUBnhxO9KA/UrryIuL655yBRyLP7VP0fz6VOE8cpjL3QXbIFRRm/eborLXFL/pmdM1ubZZ76PN9M8WIsxpvueu3FFibXwm1dXF2RyGY/j+3sXaB6oqztNwZpun24BYeaOmzSm50kavRFfOxFhLhFIIUltit0kvtyIYQQBfqQxViFSwVK7ExXXnwvpzwfk77MXXtxqEbfb9I9NEGRzD3VRzeFwOBwOh8PheBzJlfoY2ncAsKRJTHX+Op7vP7TEJQHkTIpVgsRaIqnwzJ3d3VLCUD4k0W2yvqIepYSeRLo48weLEMQih0ERmCZWSjzTJtCGRGVuun8fBAaD0RG56fPoiaOktwjeie9zbWyS/bMegVkmkgtgPYyoglwG0+f6eN8Fg1nDV59o8WOHWnzcjTl/YzagrSUNr8A3h3+Ad0pP89nl1znYWrs2o9sRs6+/y/w7HdF78NRhlH9/KXIOx07g3hUcjr2GFB0HWhCsRpynezfiXCO5lJa4khaY9Boc9Ktk5FpRrqQSnlML1IzPhbjEnM51ndwdl7e91eWtJMrzncv7McAKyxxzLLDApJ1kmGHkbRWeOXIct8ep2ApXxBXaG/XdvkcEGZR9FqWfxdLAyLMYcRorr2yyURWjXsWoV0kPDhL/FyfxZ05S+PoHhO+e39LPVc0WqtmC6bkNx1hPdYTwchFdykMpiyiGiIKPKIZQykIxC3fotbxXEaevIP/TG4j2WhE7fvIgi3/1LxAPDBJGK3j63vu8PwoIKzhoD96MBDOknPP+IVbcsnBh4YR9gYtmnDgFbTrv1eoO55lz1ZBP6quV4k8f7u/t7200uZWr23cwm2G650jP65wjw0znvHoHls9f7LmdGegjO1je9ukpobrh5ZbUpOvGl1uTxQQlgkhircWLmlQpUW1HlLM+gScY77uzgH8nGpVlPD8gUyjQN+J6dTscDofD4XA4HA+DvpFRknYLa0EnCcsz0wxO7ce7QzrVThFaTdt6hEbTUh6JkPj2zi3ksqGiGHpYa4kaMdV2Qjn3cI7hcSeVnZaRgWmSyCy+aePrNokKsQ/YNS2toTjzEdWJo+hwNZ0s9gMuj44wNafJ2IBUzmMISGwFIytIm0fY+08ze5wQAo70pxzpT/kLTzb43vWAV651Ys4XwiF+fezHGI3meGH5TSd6O/YkTux2OPYyt0acR0nHze15Xaf33oo4N0iupEWupgUmvAaH/BWy64jeRZnwTGaRhlnhQlJiNs2vdXmjMNaglN8rqDgeWbTQXBaXuW6vM2Wn6Kd/zZgyZfpsH/N2nmviGqm4c/Xx3SLIo8ynUXwaq6vd/t6nsXJ2k40WMeqPiKYg/uujqOXnKPxWhdyfXLz/+aQatbiCWlzZcIwVQD4DfVlsMQelLLaU7Qjhpdzq/8M99AE2SZG/9TbyjbV90a2UNL/6BSo/8gOkQY4wqj72Qjd04suzrF4oXlVfoyF7f3/7OYaw+5lLQsBgjOkK3ZufW27t1Q3wmeO9Eea56jRyC26A+8be6NOtQPmdojHvzgVhJk1Z+aRXjO8/tv2ubk905pJajbaalFvPgZ34cqzCqCGkyeAlEToVpCbDYjNFSkFf1me4EBJ493fuS+OYdqNO38goyg8oDgze1/4cDofD4XA4HA7HvTO47wBJFGGNZvHqla7gvQ+pHrzBpePuTtBKoIwhEgrPmi2tOA4UQlqJppTxqDQT2okm4+9uk86jSioDjFCEuk6isvi6ja9bpDKDEQ/2byKNpjTzESsTRzHBauF2HIRcHRljbOYqnhlBeosEeBhbIxUNLBps3vXxvgdCBS+Nx7w0HrPUlrw6HfJbF7LMhaM3Re/nl9/iUOvSmm17Re9jDJ464kRvx67Aid0Ox6OAVJBVYOxqxLnaIOLcU7CLe5tYBNfSAtNpnjGvwSG/Sl6uFUHyMuWpcIkn/BUuJn1Mk0OLTpR5akzX5Q3GSDzn8n5saIs2H4mPKNoi++1+cvRGewkEI4wwYAeYYYY55rAbxY7fJ4ISyryE4iWsXsTIM2h5BsTChttYMUc6MEflL0H1p0cJzpfInM7gzUXISh25UkO2ou2dpwXqbai3ESxvPLeMD8WuEN6X6/m/LWahLwu5kIf+YptbQf3yK4jra2PrzUCR6l/5SZpHj5J62a7Qvb2/z71IzuYYY9W5Wxcfc0X98m1jShwyT/O2HkJrizYaAXdsG3GxHnBmZVVEHx/KMtTf+7rMPZAI8xt9ugX4frdP99YuxqoXpzFJ73mofGT/ts5OIpCsxpcn9rbzXje+3Jp+jF8kaBk0HipqsmxKNKI2w8UQ31OMFLfB1b2yjFSKbKFE3/DIjvQmdzgcDofD4XA4HFtDCMHIocOkcUT/+CSLVy9TmZ2hf2IS8RCuwQNr8K0hg6YhfRIhCbbg7lYSBgshadWS9TW1dkqoJMLFmT8UjFC0VZFQN7BK4OsI37RJZYAWD1a8lDqlNP0R1cmjGH81GS4OM8yMjTM6exWVDIBcQSiLb32MrIGtYU3hgTvSHyUGMoYfe6LF8YGEf/hWkbaWzIWjfH3sRxmJrvOD9e8wXF2bXtkRvd/riN7PHO+I3ltcZ3E4dgIndjscjxI3Is59v+PsvuFgs6Ybb753Is4tgpm0wEyaZ0w1ORRUKci1UcQ5qTkZLnHIX+FiUmI6zZNoTZpqpDSAh7EGT3qoLTj4HI8GNVHjNKcZYohJO0lAbzSWh8c+u49hhrnKVZZZ3tHgA8EgynwBaT6P5XrH8S1Pg9jYcW3COdpPzdE+JZH2KZT+IoJhiGLUDeF7pY6s3PLvjftrjQ1bh9/zMbQTaCeI+Y17n1slO7HofdmuAN51hhez2L6Oa5xCZktu2rvGWsSbHyN/821EujYVInnuMNW/+GNExQESL0sQ1ZzQTSe+/JA9dEt8ecI5738GoXvGnLIvMG8HWEkVoLfs6v6t21zdLzzZ6+pWcYOwuXEByLaRJIDtnCOlhEx4x01usHy+t5K5MDmKn9/eHnneLfHlyQbx5Zgs2i+jdIBKmqANiciy2IgJPUkh9BjrC1Hq/t7MjNa0qlXy5QGkpygNj955I4fD4XA4HA6Hw7GjKM9j7Mgxrn1wmv6xcZZmrlGdv07fyMP5vJ7TCYkn8W9xd29FbsyHivyNOPN6TC1KKGVdnPnDwgpJWxUITRMUeEbgmRghTDfu/MGhdLIqeHurz4kkk2duZIL+uYsEpoi0PkYuISmBrCFUFWVKWOuhuXPRhWN9jpRT/pvP1Pif3irSSjuv5uvhCP8+/CqfHp/my83v0Lgys2Y73Y6Z/c57zL/rRG/Hw8WJ3Q7Ho4gQ4Hud75ui942I8xRSsxpx7t8QvXdrFaVgVueZbeUYUS0O+SuU1FrROys1J8LlrtO7xNU4S2wsaZqglCIxoI3B8/2ttGd1PAoIWGCBJZYYs2OMMYaiV2TNkOGIPUKNGle4QkM0dnhKAsEo0oxizRexYhojTmPkGdjoZwuDEe9i5LsIcwSV+Sx2dB9idGD98QBaI6uNW4TwrgheqaNWajfvX08Uvq/j0wYqDag0NnxHuRmbfktcui3mOs7wUhZbyt19bHorRv7nN5Cn1/Z9tr4i+snPUf/8C8RBgcTPEcR1fL29vdv3KuOM9yQgXFb/jtZt/eYPcIKcHeJ93Y/RBq3TLbm6Z5oe311a3benBE8/0dtiIF+5vPNnH512kk58v3MuzG49gSBttald6W1DsN0R5p5QWFbjy/Wa+PJGJ76cIsgSfjNCCx8VN6mkWaI0YqwvQ8ZXDObvfzGiuVIBIF8uUxocRnnucsHhcDgcDofD4dgN+GGG0SPHmDl3ltLwKCvXZ/GCgHx5bSu3ncbDEhqNkZDIgFgoMnZrawyDhYBWrClmPFZaCaFvCO+zFZPjPhCCSObwbWfNzFqJMhG+sSTy/pPD7gaVxpSmO5Hm1ltdF0pyRZZH9lOcvYBE4ttBLBWwJRBVjFzCs0UCW+gUkttOMbnj7jjUl/K3P1PlH7xZopmuvibfiieoDP0Yf/1Tl6i8c5rapek1294UvW/29Hait+PB4lavHI5HHa8bXW5MJ8o8EaDoRpynXbfbXog4F1zXOa7rLEOqzSF/hbJa22c3lIbjYYVDQZVLSZGL7QzJLS7vJDZ4yrm8HyeMMEyLaRbsApN2kiGG1owpUuSkPcmiXeSquEosdr6Hs0Ag7CTSTmLNl7DiMkaexoizHRfnOlj5Ean8CGEmUeYlhD2GWO81qxSmv4TpL6197ObOLKLR6hHDxUoDsdJArXSEclVZQTVb23TEHXpi06c3iU0Pvd6e4bf833Zvkwvh6iLql19FrDTX7mOsTOsvfYnm/kPEfn5V6E6395j2KlmbZdyO37xdFWe5pv5jz5iCLXPInuCCHaCVgsVgjEWpLbi6p3uff88+0dfbx8lacpW1UVjbiu228pAKpAdheFepJpWPr4BdvUAWnqJ0cHLbpie7X6lNuvHltxVzyRagwfRhgjIqEaANXhzREnmWmzG5QJH1FRPlzH13EbDW0lypkC2WkMqjb3Tszhs5HA6Hw+FwOByOB0a2UGT44CHshY/RcUx1YR7l+2TyhQc+l5xJiKUi1JpIKgKrt7Sq6EnBYCHA1CztRFNtJQwVgocSye7oIgSJyGCRBKaJlRLPtAh0i0RlsA/QJKWSiNLMR1QnjmLVqnyV5Puojx6gMHeR2ACmhPJWUKKIpEUkqkhifPrwhIfFYq0hdW7vu+JASfO3P1Plf3qrRD1ZfUV/XPH5x+YA//UPDTBaWeT6W2eorid6R7eI3s8cY/Cpo070djwQnNjtcDwuSLlxxHl6W8S5p0DsVjFYsKCzLOgMA7LNE0GVfrU2ijgQhqPBCgf9KpeTAp+0sqSpRUqFtTdc3h7SfZB+bIhFzAVxgTk7x367nyLFNWMGGaTf9jNrZ5kRMxjxYD4QCyTCHkTqg1i+ghWf3CJ8r62MtvIaqfwa2AGUeRFpnkZwlx8chcAWcuhCDj05svZnAEZ6mARErQUrTbyVKmppBW95GW+5gre80nGMVxsIu70VsyJKYb5659h0Y9f92ealo7R+7GVapRFiL0vi5/DjhhO6b2DhkD2E7C5FaNqc9/4ht+bfCys5ZV+gbTNc0yWMSTFaI4S4o6t7oa14fT7fc9+fOlXuuR025vF29O9hIU7ppJj4EHQTT+6C2yPM+w5ObutF2mp8OSQmua3ufDW+3Kg8whbx4zrGKnSqWY4gNZbRUkAx61HK3v+8WrUqWmvy5X7y5X788MFW8TscDofD4XA4HI47UxwYIml3iuTTOGZlbhY1uQ8/fLCx0xLImBQjIUYSSY+sSbe0bTHj0YhStPFZasTU2um2XNM47o9UBhihCHUdK3P4po2vWyQygxUPziDlxe1OpPnEUaxaXaOOC/3UraVw/RICiU770bKKsClKCJAtYrGANH14wkcISYBybu+7ZH9X8P4Hb5ao3SJ4X6j6/IO3SvytT8PBr3ye5vzS5qL3G+8z/+45hp45xpATvR07jBO7HY7HjY0izu2NiHMNsQbRjT2Xkt0ZcS5YMlmW2lnKXdF7UK11w/rCcjioccCvcznO80k7R2o7Lu/4hstbqft2wzn2Dk3R5Cxn6aefKTtFhl4xRyKZYIJh2+nnvcDCA30JCBTCHkXqo1jqaPkmRr61vttbLKHVb6HlH6LM80jzaQTZbZoHKJOiFFD2seU+tBwkkT5aBWjpd95PLMikjV9ZJlhcQi0vo1bqqEoVtVxFVarIlTpUWzsTm34bNhtgfuoFomeO0coOknhZkqCAnzQJ0rXu78eVMcbIsypGX1L/mrbs7b30hD1FgTLvm2GSVN90dXtbcHX/znQJc8uY4ZJHafD2CPNLt2+2vdzo0x0GnfSS4O76wLUrVVrXl3ruKx/dvghzv1tpnlrdiTDvqTZfjS+3NouWQwRJ0omTi1rUKbLSiihmfAJPMtG3Pa/7RmWZMJfHCwLKo+N33sDhcDgcDofD4XA8FPrHJ0nabYwxLF29wvLMNQan9j/wNkRZk9IWitBo2sojReBtUVAcKoS0E0Mh41FtJWR8ReDizB86RigiVSTUdRKVxdNtAtMilSFaPLjnlxe3KM58THXicE9CW1wcoGEM+YUrnVUHU8LagFQtgc4iVAMlFrGUEDaDRCCFvOn21lY70XsLTBU1/+3zVf7+myWq8err8lLV4++/WeJvfbpKcXigK3ovc/27p6leXF/0nnvjfRac6O3YYZzY7XA8zvREnCfdiHOvc1unkMSA6IxRHrtT9IaKyfDddoY+GXHIX2HYWysKesLyRFjnQNDgcpzjkyhHKgJSazFGd3t5787jc+wAApZZpkKFEUaYsBN4t50SfXwO2UOMMsoVrlAVGzuMd26aBTzzRax5GSPfQcvXQaysM7CJVn+Ilq8gzXMo8wKC8jbPpSt+mxQ/bXWc38LDKB+tfKLhMaKRjjgmdYIyCUrHSJMgAGE0fnUFb3kJb6nSdYS3oNrsCOErLai1EK17j5C3B4fRP/0S8dAQzewgicoS3xC6k53tx76XyNgMk3Y1irsi3mXG+42eMSU7yH6Os2hzLJosxiQdV7cUiDu4uqux5I+v97q6v/psb5KC0DHZWm8v7G1FJ90+3UGnaCuz9T7dN6jc5ur2shmKU6PbMj2FRACpTbGYzePLVR/SBqikitGS1AQstzpuif6cT38uIBvcfxpL1GyQxjF9QyOE+QKZwoOPQXQ4HA6Hw+FwOBxbQwjB8MFDJFGb/vFJFq5eZnlmmsHJqTtes23rPICcSbFKEFtDJD1Udx3gTnhKMJD3MbYTZ15rJwzmg7u+dnNsP0ZI2qpIYBpYBZ6J8EyEkIZU3F0h+f3gRw1KM59QHT/cNWR1iPqGENaQW7zWea7ZDKQj4C1htSSVDbRYQpFHUURaC2g8ofCEh7GGlO01ZDyKTBQ0/+3zK/z9N/tYiVZ//1dqHcH7b3+mSjGw5Ib7Ofgjn6e1sMzcW2eoXry2Zl89ovfTRzuid/jgnkuORx8ndjscjm7EedgRBdIU4lsjztPut74l4nx3VlmumJC3oxGKScwhf4VRb208rhKWQ2GD/UGDK3GOi3GBmAATd9yKSnnuM/VjhBWWOeZYZJEJO8EII4jbLsly5Dhuj1OxFa6IK7Q36Ke9kwiCm85tIz7AqFexYm6dgQlGvYGRbyLtSaR+CcnO9NwVgLIpKl0Vv61QHde38juOaj8HrIrfyUAGVR5EHLIIa1A6wkvbeDpC6bjzm4/Tjuh9Qwhfad2MURe1FlRbUGv3RJdbKTBfPIX9/hPEQZ5mdohUZYjDAl7SckL3rVg4aA/ejC9PaXLe/196hkirOGVfACv5RA+TpgnWdl3d3p1d3b83UySxq+cJT1oOHBztqZvOrVxF2B1qE2B057ylvM55Kwx7Loq3grWW5fOXe+4rH9m3LYtGAlBC0fFyW+I1MX/d+HKbxRJg1CBh1MbgIdstqrZILWrTnwvwlGS8vD1R443KMn4QEuRyztXtcDgcDofD4XDsAaRUjB05zrUPTjMwMcni1cusXJ+jb3Tsgfa/Dq2mbT1CY2gpj1RI/C1e7xUzPvVIU8p04szrkaaQcZLFbsAKQSTzBLazvmqtxDMxQlgS+eAi8/12neLcBWpjh3rWpNvlkY7gvXQjpc6DdBjkMiCwok0qG6RECF3C74r0EoMSigCf1OpuYzHHRoznDf/dZ1b4e2+WqESrhfbX6h5/742O4F0KOys+2aF+Dv7I5+4ser95utfp7URvxzbgzhwOh2MVITp9TX2/IxQkafdDhL0l4jztiAZq90ac10zAu9Ew+TjmUFBlTDXXCNhKwMGwyf6gydUky8W4RGSDjsvb8+/Yj9bxaJGKlMviMtftdfbZfZTXcUWXKdNn+7hurzMtpknF1vpQbScCibKnkOlJrLiIlq9i5YV1BlqMOI2RpxHmEMq8hLCH1gj52zs3EFYj09Za8Vt2xG9uiN8mQekEqTMoL4eg03db6TZeEOFl26jB+OZs14RLaQONdkcIb0bYkRL0F0i8LM3cMKkKicIiXtoiTOo7dsx7kRFGevrVX/D+ObGY7xlzxD5NjiJXbZmGUZ1e3UYjpUDcodipmQq+Ndfr4v7RJ31s0BuznV/eqQhzs9qew/Mg9Dv/3iXN2QWSWm+RxHZFmK9GpxmSNRfWq/HlmCxaDeNpi0xirLYkIsdSI8GTgr6Mx2gpg6/u/3yVRBFRs0l5dAwvCMmX+++8kcPhcDgcDofD4XjoeL7P2JFjXPvwNH2j41Rmp1G+T3Fw6IHNoePuTtBK4BlDJBSeNVtagRAChgoBcarJBx71OCH05bZc5zi2ASGIRQ6DIjBNrJR4pk2gDYnKYB/QunDQrFKYu0h99FCP87/VPwbGkKvcMIQIMANAHaQA7YGqYdUysS6ibIgvPYy1XZe3wiK7qWuOjRjNG/67bqT5UntV8J5uePzdrsO7HK7+BrckeseJE70d24oTux0Ox/p4XufbdIWD9EbEuYZEg4kB2en9Le8/PnUnaNiA96MhPhEJB/0q414DedtnMClgf9Biym8xk2S5kJZoxeB5zuX9ONIWbc6L85RsiX12HzlyPY8LBKOMMmgHmWGGOeaw4sF/HBYIhD2E1IcwehajXsOIM7DOXKy8QCovIOxox+ltTyDY+ddsj/jNVsXvEOUlt4jfN5zf7VXnN4CSUMpBKXfzYiTxMjRyQ12hu4SXtgliJ3TfSmADpuzUzdtL8k2uq9/rGVO2w0xxlNgqLpkBtE6xVm/Z1f2t2SJtvbooIbB83/GBnotGv1UhiHaiLYDt9ummU7Tl3X2f7hss3xZhHpZLZIfuXwC+EV+edOPLU3tb0YxsczO+nAzIAl5URwsfGbWoGUUzThgphfi+YriwPdX0jcoySvlkCiXKD9gF4nA4HA6Hw+FwOO6PMJdj9NARZj8+hx4YpLa0iBcEZIulBzaHwBp8azBoGtInFpJwi+7uwJOUcwHGRrRTSbXl4sx3G6kMAUFgmiQyi2/a+LpNokIsD6YwIWyswPVL1EcO9AregxMIa8iu3FLIbwpgfVDLoCXIGqgq2uQwJrzF5a1RwsMXPsZqUufy3pCRXEfw/ntvlFi8RfCebXj83Tf6+NufqTKQ6f393RS9FyvMvXWa6oWNRe/5d88x/PQxhp52orfj3nAlUg6HY3Ok7ETA5nKdfz2/86/fPekkced7p+Jot4Gm9TkTD/InrQmuJgXMOtqkFDAZtPhcdo6ngv8/e/8ZZVmWnueBz977mOtNeJOmTJbp6qo2ZboLDTTQQDeaIETQE5qZpUWtkcjhUBBJUQR/zQ/9mjVrlkhRohMoiFwSNaORASgSJOHRRKOB7q6u6urq7vImqypdmAxz/b3H7L3nx7lhbriMyIyIjMzcT66oqHv8NXHuOfv9vvddJqd7JEmEMWf3eTlOjpZo8YZ4gw/FhyQku+Z7eJy353naPk3d1vdoPT49JDN4+k/jp7+A1C9kF/N7YMUS2vtXJN4/RsvvYLn9bOzbQQDSavy0Ty5uUeyvkO+vEcQdhDGkXo4oV6VXmKCfqxEFJQZhhX6uTqc4Q7N8nk5hikFQIVXhyEueqJBuYZJU5YjCCiqNCOL2GfSduItYeNg+jBoWOiS0eN/7RyOLKOvxlP0cAsHHdjyrazJgjBl2dR9cJBFpwe8ujHZ1vzgTY2ujVvrFxqg9+LGRptkB+/7Wd9dtYLSmefnayLT6YxfuWACWZPblqTUYLJHZeW7RIPpg84CHUTN4OgFt8KIBkSyy1onJ+ZJi4DFbzR3VnX1PdJoy6LQp1mooz6M8PnnnG3U4HA6Hw+FwOBynSrFWZ/zcRUpj4+TLFZrLS8T93fF+J0lBJ0gsvjHEwjuSbFjN+4SeopL30NbSjd143FkjlQEDVcYIj0Rl7m2+7iPt6WVfh511ijd3jyn0Js4xqIyPTrRhluNtc2Cq2WPZw6omMR0GJkJjSGxKajVSSHzhDUvUHXsxkc8E78n86Hu+3FOZCN7fe5AiP17joa/+KI/9+a9SffjcnsuYOGHpu2/w1v/8b1l85XV0dLrjlo57H9fZ7XA4DocQEPjZz/ZcbzO0O4+jrPPb8ziL1uYAA+vxVjzG5aTCQ36Lea+L2tEJKwTM+gNm/QFLaY4Pkxp9mUMp3xWUPmgIWGGFNdaYtbPMMLOZc7xBjhyX7CXatLnKVbri7mVDC6p45qtY80WM/C5avgJ7HY9oodXvoOU3kOY5lHkeQen0D5hM/N7o/AYwQqGVj5YBqZfDio3O7xSlY1KTQ3l5BBas3cz6joIyqQw3he4wbp3Rs9DdY4IJKmxV9V/2fplErI8s85j9DHmKdGzIgqmgTbytq/vWl4x/uFykk44K4l95ujzq/mE0heY1jh2js7gNzwOlIMwdOad7g/bHC7tuqo7DwlwJD4vBYEiNxo6UbFhQnU37ckMdIT28fgttJSaVtBJLrA1zpRz5QFEvHE+lc6/ZQCDIV6pUJqaQ6my6tTgcDofD4XA4HI6DqU3PEPd7WGPRScL64g3Gz13A8/cuij9uPCyh0RgJiQiIhSJ3SCFUCJgsh8TrhkLg0Y0Tcr5E7bRodNxVjFAMVJlQd7FK4OsI3wxIZYAWp/M5y7XXsELSmzw/Mr07cR5hDGFn+1iHBD0JsrGxNsg+yA6WAQOTx7MFPKkw1gytzb3svv0URfx7ifGh4P13Xqmw3NsaP7jZV/yXL1f4xRdaTOT3LlbJj9e4+NUv0F9tsPzqm7saDSATvZe/+yYrP3yPiWceY/KZx12nt+NQuM5uh8NxdDwPCnnIhcNM1OFvrSGKQCfc1VbXWxBZj3fiMf6wP8dHcRlt975wnvYGvJhf5Bm1SF63XJf3A4oRhuvyOj8UP2SV1T2XKVPmKfsUj5hHCOzdvQAT5FHmx/DT/xSV/nGwY/ssOMCoPyLx/iGp/HXsPs/tNMk6vwfk4haF/mrW+R21EUZnnd9hZdj5XScOSgzCKv2wSqoCorCK0k7o3ovABlywFzYfr8hvsqK+MbLMuJ1hjocB+MBMYrTBGIvW5lBZ3amB37oxapH3TK1PODU/Mi3fXkDu6mi+Q+xGTrcCNSzK8m5fsN1pYV6cnSQoF+/oED3U0L48y+hO2c++vITFR3vjeEmEsQJv0CcSBdZ7CaWcIvQV87X8sRRgWWPoNRvkK1WU51Gdmr7zjTocDofD4XA4HI67xuSFhyhUq9Rn55BSsr5w/VTHswomQQGhSUmE4ihyYeBJqoWAUqBQQtLsJ2DP7vjig4oVkoEqoUVAokK08PFMjGeiUzuGfGuFwuoOS2wh6ExdJCrWdq9gapnobQuZxbmughUg26Rqlcj00FaTWk1qUwSCQPi7ml4cGfWc4W+/0GSmODq2sTrIBO/l3sGvW368xsWf/kLW6f3I/p3ey999M+v0fvl1Utfp7bgF7q/V4dhG3O/x8W9/k7jRvtuHcm/ge0N782Bobx5kYkOaQhRnnXZnmNgq3kvqfKM3x+W4QrqP6D3hDXghXOJpeY2ibmHdhfYDSSxiLsvLvCnepM3e54hxxnnGPsO8mUfau/sVK/BQ9ln89K/gpX8OYeb3WVBj1PdIvF8iUb+CESfQdXubSKvx9W7xW5p0U/zuFyaIcjWUiQkjJ3TvwsJFe3HTvjymwQfeL40s4tmAT9gXEAhumhJNm0ebFGsM1tpDdfp+e6XIejza/f2zj1mSfG1k2vFbmNvMaQRxxzndAOkgon1lYWTanXZ1S0AKSWoNFkt8K/tyZlBoVBKBsSQ2pDnQGGupF0KqeZ9S7njMmXqtJsYYCrUaxfoY3h28dg6Hw+FwOBwOh+PuI6Rk+pHHCAtF6rPzmFTTWFw4tbEsCeRMio9BYInk0e5dankf35NUch6pMfSdnfnZRAgiWSCReVIZkMoAaVN8Mzi1Q8g3lsmvjd6/IwSd6YeIC3vk1dsA9ET2YwtgKqArYMGqBrFcIzL9TWtzg8YbWpu7sabd1ELL336+xdwOwXttKHgvdm89Lnpo0fvVN3nbid6OW+DEbodjiLWWP/if/hnND6/x8f/+u7Te/siJmodBiExYKOQzwdv3IQizs0sSZ/bmZ1z0TlB8kNT4Rm+eD+IqyT4i5biKeDZY4lPiKhXT5ix3rztOjq7o8rZ4m/fF+wzYfREvkcwxxzP2GSbsxF3/mAgk0j6Jp/9DvPQvIsxj+y2Ile+Qev8jifrnGPHuDpvlu8+G+B3G7aH4vUoQtQniNmHUdDcfezDOODVqAFgsH3j/LalojSzzhP0sIXm0FXxoJ9A6zbq6N7K6b3G5aCz8xvXRG8nHygMm5mdHpqmkR9i9eedPajtJChgIPJDitnO6N2hevobd1vUglKS2zw3XYVFDC7QD7cvJ7MutKWP9HF4SoVHIQczAhjT6MdW8j68Ec7XcHR3P5p6tzbq6S2U836c2PXvrlRwOh8PhcDgcDseZR3kes5eeIMgXqM3MEvW6tFeO+V7sAPImRdnM0lwLSXqEu3UpMztz35PkfY92nKDN2RqbcAwRgkTmiGURLQJSmUdYTaD7WfzcKZBfXyTXWNp1XO3ph4nz5b1XsmHW5a3HgHyW523KgMaoNSJWSWxEajPRG8AXPp6T0nZRCS2/+EKLc6VRwbsRKf7OK1UWDiF4w5bo/fhf+GNUHzm/5zKjovcPSQen5yTguDdwf6EOx5A3/+BrvPfSNwGwqWbxay9z9WsvoeNjtlu9X5ES8jko5rKObz8EP8iEviTOfuzZrsZMkVxOqnyjN8d7cY14H9G7piI+7S/yKXGFOh3uuprpOH0ErIt1Xhevc1Vc3W1JDAQEPGwf5pP2k5TtPhfYp4hAIO15fP3z+MlfQZpPZ/nAe2DlVVLvfyfx/glavIbd4/mdBaQ1+HqAnw6c0L2DvM1z0VzkIfvQ5rSb8vdZUy+NLDdpzzFNZnF+3dYZWB+tNcZkXciH6ep+dS3P8mA0m+tnz3Xo1kZF4kLj6vG+TybNfjw/cxXJ5zLB+w7YaWFeuTh3R9lQG/blqdWZJdp+9uW6BPgYbwJlNDJNkGlCLAqs9ROkEFTzPhOlkNA/nkztqNshTRIKtTr5cpWwUDiW7TocDofD4XA4HI67j5/LMfNo1uFdnZym22zQbTZOZd+CTPD2MUhriKR3pJGznK+o5n3KoUIJQavvxmbPMqkMGKgyWngkMruv9HUfcQrjwAIorN4gbO4o5pCS9szDJLkDIslsHtJpMPWs01vXsmgxkZLKVQasoUlJbEpqNXLY5S3dCNQI5cDyt55vcb48Ot7RjCR/5+Uq1zuHH8PIjVW5+NM/konejx4ker/lRG/HLpzY7XCQZVa+9lv/Ztf0xvtXeO9Xf5ve8t3Psr1nkAryechv5HkPLc6Nybq807Od5w2gkXyUVPhGb453ohqR2ftLuSpjnlYLfFZcYQLX6f0gYoVlUSzyQ/FDlljasxO6QIEn7ZM8Zh4jZ4+nI/NOEUzg6T+Bn/4CUv9IVtW654KraO/fknj/CC2/id2jk91xdhBWMGbHeNI8ydP2aaaY2syXiljhsvfLI8v7NuRJ+ywCQWQ9rto6WqdYazEmu5G7VVe3tfDr16oj0y4UYx4+X8OqUZH4WC3Mrcm6uqUC5WUd3fLOROCo1aG3uDIy7U4szCViaF+edXNvVIRvsWFfngM8rBkHpVBJD42CWNPTks4gpVbw8ZVkunJ855Buo0GQKxDkctRmXFe3w+FwOBwOh8Nxv5EvV5i8mGV4F6t12jeXiXrdU9l3aPWwu9tghCAVR5Mh6oUAz5OUcz6xNvTjs+0a+aBjhCJSZYzwSFQeiyQwfdSu++DjRwDFlWuErR3j91LRnn2UNLxFYbcpDEXvaiaA6xqYAlZERGKZhAaahNimWCye8PDE8RSh3y+UhoL3xcro+92KJX/35QrX2kd7vXJjVS5+5Raid5Juid7fcaK3w4ndDgeQ5dn8/H/x/+Kpn/ipXfPiVpf3/9XXWH7tbWdrfhQ8L7M2D8Os0zsMM0FCa4gi0ClnXRw2SK6kFf6wP8dbUZ3+PqJ3ScZ8Qi3yrLzCpGhx1p+X4/hJRcoVeYXXxes0aOy5TI0aT9unuWAu4Nnjydu9UwRlPPNT+OlfQ+mvwH4d6KKDVv+OxPsHpPJ3sbT2Xs5xVwhswLyZ59P20zxqH6XM6Ptosbzv/0O06I1M/4R9noBMPP3QjqOtJN3s6galbn2Z+Hojx9XeqKj9s/NNevULI9PC7k28ZHT/t88eOd3+nf9NNXZ0datcQPn8zG1vTwk1NC+3JCY9wL68AKaE9ksok4A2qDgiFkXWewm+yvLqZio5PHU8FeTxoE886FOs1QhyeQqV6q1XcjgcDofD4XA4HPcclYkpatNzlCcmCQpFGosLJNHJi0ICKJoED4NnDJFQRxotkxImiyGBJ8n7ik6UOjvzM44RkoEqkwqfROXQwsMzEZ49+YxlARRvXiFor49Mt1LRmn2UNDhE4bgpQTqTZXlvit55UtEnEsuktElsQmoTBIJA+JsNBg4o+pb//LkWD1dHnRjaieTvvlLhSuvoBQKbovfP30L0/p4TvR1O7HY4NvHDHD/xF/8SF376R5DBqB0rxrL40g/48Nf/gKTbvzsHeC8iBAQ+5AvZb9/POr2lzDq8o/jM53kDGATX0jJ/1J/jjWiMntlbVCmKmCflEs/Lj5kWzVPLp3GcHQZiwHvyPd4R79Bjt7AnEEwzzTP2GabtNMKeDesjQYgyn8dPfwGV/kmEndxnwRijXiLx/hGp+jUMy6d7oI4tLFRshUvmEp+yn2KOOXz8PRddlL9FQ742Mm3GXmSSeQCaNsdNW0brFDa6uqXkMJeJv74jq3s6l/CpKUtUnBqZXlw/xq7uZOgQEvigFOTuLKcbsvzqnRbmtUfOH8rGfS82qrw37Ms1O77rxHb7cg/DGEKAF/exVqETQSeBfqwZLwWEnmK8dOfPc4Pu+jqe75Mrlai6rG6Hw+FwOBwOh+O+Zmz+HKVandr0LMrzaSzewOiTH4/zrcG3htBqrBDER+yGzYeKcuhRznlIIWj0YteIdMaxQhDJIlqGpDIklQHKJPjmdAosSssf4Xcbo8ekPFpzl9D+Ye6pRZbfvSl6Z/bm1oYkok0sbpKIHrFNMGi8obX52Rjdu/sUfMvffK7No7VRwbszFLw/vg3BGyBX3xK9a5cu7LnMdtF74aUfkPad6P2g4cRuh2MHtUfOc/Hnv0JuZnzXvM61Jd79ld+mdWXhLhzZPYwUWWd3IZ9ZmvsBBEF2BkpiSCKwZ1/0tghupCW+2Z/lh4NxOvuI3nmR8Lhc5vPyMs/IazwibjItmpQYIDnbueWO46ElWrwh3uBD8SEJu7OlPDwu2As8bZ+mbutnxgxAoFD2Gbz0L+Ol/z7C7GPhLAxG/pDU/2US9b9gxEd7Wrg7jh9lFdN2mqft0zxhn6BOHbHPbVVMzEd8n8vePx2ZHto8j9vPbj6+bCYxVgy7urNzsTqEJfi7rZD326PV0X98vkW/fiErdhoidEK+fePQz/FAdJoVSfkeKJkJ3eLObyv7y2vEzc7ItNrjD93WtuTwnx5anO1pXy632ZfrOiYI8HSEMQIVDYhkkbVuRD5Q5H3FbC2PPKar9jRJiLodirUxlOdTHtt9veNwOBwOh8PhcDjuH4QQTD3yKPlSmdrsHMYY1hdunIpwXNAJEotvNLFQRx4VGy+F5HxFreBjLDT7SZan5Ti7CEEkCySygBY+icwhbEqg+yfeGCSA8tJH+L1RR0KrfJpzl9BesPeKu5CZ2J3OZB3fpgi6jrEeCQ1SsUJCl3h4v+8LHw9nbQ6Q9yz/2bMtHtshePfSTPC+3Lh9Z75cvcqFL7/I4z//MweK3jdfe5u3/39O9H7QOBs+qg7HGcMvFzn/p79E8ztvsfzqmyPz9CDio9/4BhPPPM7M55+57a6vBxIpIZ+DVEMcg1CZaJGk2WO5YUV7tutwLIJFXWSxX2BK9XnEb1JWuwVNXxhq9KmJLTcAa2GAT5eArg2zHwIG+ODqAO8vBKywwhprzNpZZpjZZW+UI8cle4k2ba5whZ44LpvnO0MgEPYSUl/CmBsY+W2MeBvE7psSKz8glR8gzAzS/AjSPnnLnGfH0cnbPFN2inHGUQfcQBlSboq3WZY/oCs+RMv3QYyenz5hX8Anu8FbNBU65DBpMuzqNsOu7lufj35jR1f3WJDyuYkuK7XRG45C8xrCHkOhj9GZK4jyQG7kdB/PZ21nV3dQKVGYGrutbXmb9uWQmGQf+3K5aV9uVBGJQSYR1ggSE9COUlJjmar4FEOPWmHvrv3boddYR0hFrlymOjWNOC4V3eFwOBwOh8PhcJxZpFTMXHqca2+/QX1mnrUbV2kuL1I7YacnD0toNEZCIhSxUOSO0PAiJUyXc1xv9qnmfRr9mE6kKeWcrHHWSWSIRRCYHonM45sBvh6QqBB7guNGwlrKi5cz+/L8Vsyb9QKa849TXryMHx12/E2CqWWCt2wDAkuOVPbRooEve1hbQtl81uWNh7Ya84A3hOQ8+BvPtvgH36vwzvrWeEY/lfy975b5G8+1uVS7/Tz3XL3ChS+/yNSzT7H86ps0Pri6qwhmQ/Reff19xp++xOSnnsDLH59jnuPs4b4VHI59EFIy88LTlOanuPq1l3bZl6/88F26Cze58OUXCWv75Nw69sZT4OWHIneUXbnqNBPBozibrzzOvvgrWNYFlnWeSdXnYb9JdQ/Re2QNAXkS8iRMiO7mdG0FvQ0BfPN3SOqqAu95jDBcF9e5aW9yzp5jnN1dlGXKfNJ+khW7wjVxjUQc/Dk6TaSdQ+o/i2UdLV/CyO+D2H1BauUiWv4faFtDmc8jzacR+9hqOw6HsII6dabs1K4cbgBDTFd8TFdcpi3fpyneJRLX93x/Npi3jzBOlkOdWsFHdhxjLak26GFXtzxEV/eVrs/rjfzItK/OtdClCXRQHJlebByHhbkd2pdL8DwIvOz3cWxZm+zGaBv1xy4ibqNj3BMKi91mX75D5BcRmX15BfCwpowNfbykh7EeKurTF2UavT6l0CNQirlafq9d3RZGa3qt5rCr26MyOXXrlRwOh8PhcDgcDsd9gRcEzDz6GDfefYvq1DSNpUU8P6B0wm5PBZMQS0VoUiLp4VvDURK8PU8wVQ5ZbA4oBz6tKMFTgpzvxszOOqkMMEIR6g6JyuPrAb7uk8oc5oi29kdBWEtl4TKtuUukua0xCuv5tOYfo3jzGrn26hG26IGpgy2BbIFRWDSx7KHEOkZ00baILwp4wsNgSO8BF9OTJPTgrz3b4h+/VubN1a2O+oGW/NffrfDXn23xeP32BW84pOid7hS9H8fLHyLD3XHP4cRuh+MWlOameOzPf5VrX3+Z1kejNqz9lXXe+9XfYe7HnqX++O0NjD/Q+F4mbCcJJCITuNN0+DO0qZWKe0H0vqkL3NR5xlWfh70WdS8+0haUsJSJKItRa5XIKro2zIRwQro2oEdwohWQjpMhFjGXxWWW7BLn7fk9xcsJJqjbOot2kUWxiBFnx/ZeUMczP4M1P46Rr6DlKyD6eyzYQKvfQss/QJrnUeY5BMXdyzn2JbABk3aSSSY3c7hT+vTEh3TkZbriAzriMj1xFY7wGcnZIpfspzcfX7VjJHjoNMvANsYM7ctvfc7dmdVd9jQ/NtWlW3t8ZLo3aOEPGoc+xr3ZELqBcJjTHRzWeuzWtK8togej597aY/tY+B/Ahn15arNu7tjuLFrRIHub9uXoOsbPoUyKTBJIDRF5Gr0EC9SLAfViQDE8vgGAXqsJQKFaozw+ifJcQYrD4XA4HA6Hw/EgkSuWmHroUZYuv0caJ7TXVvGCgFzp5Bp5JJA3KUZ6xFgiqSiYo4lc+UAxXgqwxCRG0xokKCnwlRsfO+sYoRioMqHuYpXA1xG+GZDKAC1O7p5UWEN54YMsrzssbJsh6U5dIA0LFFeuHc1a3fqgx0HEIJtgFJoUI3so0cDSR9kSnsgRCJ/U6qHv24NJqOA//Uybf/xamde3Cd6RFvw3363w155t8eTYnQnesE30fu4pll99i8b7Vw4WvT/5KJOffsKJ3vcZTux2OA6Blwu5+NUfZfXND1j41mtYvfUlZdKUa7//HTrXFpn/4nOowA0cHwkhMtHC8zIxQ4hMyEjTobixXfQ+6whWdYFVXSCMY8oipiQTyjKhJBOKUh85WjYUmlD0GGPLXsdY6Fufrh0K4IT0CIm4F7rhHV3R5W3epk6d8/Y8IaMWOgrFPPNM2kmuc50VVs7U2yoooMyPI82PYOT30fIlEI09Fuxj1Dcw8ltI82mU+TyC+qkf7z2DhQoVpuwUJTy64kOW5XfoiA/oisv0xY09beQPi7I+T9sX8Ybied/6XLc1jDXoYVe3gKGF+cEs9j1eXS2MTPvybBvfV/QqcyPTi42P7/zju5nTHWROIMeU073B+rujFuaF6XHCaulI2xBs2Jdnvdyx2Sl077QvL2PJgZKouIvBQ8YDIqtoDfrU8j6+EsxWj+/Gy1pLr9kgVyqjPEVtaubYtu1wOBwOh8PhcDjuHUr1MZK5cwDoJKaxtMiY5xPkTk74yZmUgVCERjNQHikC74hWz5W8T5QYsJa0l9DsJYwVA6Q8Q4Mmjj2xQjJQJULTAwWeEXgmRghDKk/OWloaTeXG+3SmHyIpjBbtR9UJdJijvPghUh9RcLUB6MnMvU02scYjJcaoAVauoW2ITxlPZA1LqU0fWGNzX8F/8tk2v/RamR+sbAnesRH8g1cr/MJn2zw1fjwOl7lahQs/9Xmmn32KpVff3F/0/v47rLzxPhOfvORE7/sIJ3Y7HIdECMHEJy9RnJngyu99m2i9NTK/8f4VekurXPjyixSmT9b+575Eyix/1fcgSkDIrTzvZJjn7XnZ9HuAyAZENmBlW/GeRFOUKSURU5IxZZlSkgmhPFqFnxRQFAlFEmDLCj21go4J6BLQMQE9Mkt0I/zj1IUcx4GAddZp0GCaaWbtLN6Or+SAgIftw8www7pdpymadOicGeFb4KPM80jzLFa8g5bfwsqFPRZMMeq7GPkq0j6JNC8i7dzu5R5QpO1TFF0CuU4srvCBvEwklu98w7aGsDNIO80URR4X4abQDXDZTGQ3XEkCGIw2KHW4ru7fvF7Bblsurww/OdOmV7kwWphkDYXmtTt7HkZnxU9qWPR0jDndADqKaX18fWRa/Ta6uj3hDe3LDalNd1du77Avx5TRQYCyKWiNijUDUWS9EyOloJr3mSzlCLzje66DThudppTqYxSrdfwTHMhyOBwOh8PhcDgcZ5v67DzxYIA1lvTGVRqLNxg/dwF1THFROxFAwaQYJYitIZIeyiRHHuIYL4UkxlK1sNaLafQTxgr+sRZEO04IIYhkAd9m4wbWCpSJ8Y0lkSd3fyqNprzwAb2xOQb16ZF5aa5E49yTlBc/xI+6+2zhAGwIegpkH2QLowMSEaNkjBWrSBviU8EXPsYaUh5Ma3Nfwl/9TJt/8oMyry3vELy/V+YXPtPm6Ynji3QMa+Vbit421U70vs9wYrfDcUTy4zUe+zNf4ca3XmPtrcsj8+J2l/d/7WvMvPA0k59+0tma3w5SQX7Y2R0n2WOTbuV7q42c1nvvtTUo2kbRJmT7tU2ApiQTSnJDBE8oygR1xKfoCUtNRdSI2B713TeKjvXpmoDO0Aa9ZwMQEiEEQkh3T3CXsMKyyCIrrDBv55lkErHjs50f/puzc6SktGyLhmjQpEl6QDbzaSGQCPsJhH4Sa64MRe8P9ljQYsRbGPkWwlxEmRcR9tFdz/d+xWKBFlYsYsQiUtzEiiVi0WBwZxsGxpF2BrH5M40gy3kOSXhCfjySh7Zu86xRxBiDMQatM9eJw3R1r0aKb6+M2tJ/aaZNwbMs1UdF4nx7EaWPFukwiskcPuQwpzv0jy2ne4P1dz8acWsRUlJ99PyRtqGQCCCxKRZDYnf+Xe5hXy697GlFfYxV6MTSN5ZurJkshwSeYqp8vNXt3fV1wkIRLwiozswe67YdDofD4XA4HA7HvcfUxYdJo4j6zDyrV6+wfuM6Y+fOH+re8HYIrEZZj5zR9JRPIiSBPWIDiISpcsgNY6jlfNb7Ma1BSiXvnDbvCYQgETksksD0sFLhmT6B7pOo3Ehh/bHuFiiu3cCLe3QmL44U0Wc53pcorlwjbK3e3hGYfPYju1jZJtUBQsT4MiYSKyibxxclfDy01ZgHsM/bk/BXPtXml39Q4tXlrfGO1Aj+0ffK/NXPtPnU5PEJ3rBN9H4uy/Ref+9g0Xv8qUtMfcaJ3vcqTux2OG4D6Xuc+/HnKZ2b5vrXX0HH207ExrL40g/pXFvm/E9+Dr+Yv3sHei/jDUXtJIWYTPTWwyxvrbOsb3Vvit47iVGsGcWa2foiFVjyIh3aoMebYnhBHr0CMC81eTSTaktSMxa6xqdtfTomoGN8etYnwh/aP4mhEO7E8NMgFSkfi48387xr1PZczsNjjDHG7BgAXdulQYOmaNKle1f/HAQCYS8i9UWMXsaob2PEG3tmSlv5Man8GGEnkfpFpP0kgnshquBwZML2OkYsYrf9bM84v63EJisQTG4TtTeE7f3yqy0PixXUNvtza+GymQQEaZqJs8ZYvEN2df/OjQrabi3nC8NXZtskYZkkP2pTX2h8vHP1I2CzgifI7Mu9483pBtBJwvL33hqZVr4wg5c7vMgsACUU2mosluhA+/I8mBLWBtjAx9Mx1khkFDGQJdbaA0JPUgo9pqsh6qgVTwcQ9bokccTYxCRhoUj+BPP4HA6Hw+FwOBwOx72BkJKZS49x7a03qM/NsXbtKs2lRWozsyfSwCOAoknQKsAzhlgofGuOPJThKcFUOcei6VO2Pq1+gq8k+eD+GVe430llgBGKUHewsoBvBvi6TyJz2BN09Qw7DVQc0Z55GONvu/cXku7kMMf75hFzvLdjill02VD0jrWPJxMQfbTo49siSpSQQGofvC5vT8Jf/lSHf/Y6vLy4TfC2gn/8Wpn/+6fbfGbqeAVvgLBa5vxPfp6pZ7NM7/X3Pt5T9F75wTusvvk+4089yuSnn8QvONH7XsKJ3Q7HHVB75DyFyTGufO0leosrI/M615d491d+m/M/+TkqF1wH1W3je5nIkSQQD/O8k6GtbWruoTzvo2ER9KxPT/ss661sXIUZCt/JZhd4SSb4ewiKByEFlFVCmQS25YEnVtA2GwJ4QEf7dIyPFpIsAkkOix+dGH5Ytl872c3/WrZfN9vhQl2b5XlXqXJRXKQgRnORd1Ic/pu38yQkI13fWty9i2bJFFL/SSxfQsvvYOT3QOzu8LXiJtr712j7+yjzOaT5LIKTy2o6CSwGy+qIqJ0J23fS0QxYhbBTW6I2M9njQ166FYh4VN6ktk1gB1iwVXqEm13dRuvs7/gQlfvtRPKN5dGu7h+b7lLxDY3ahZHpMumT69w81LHuSZqCNcOcbgHh8d9grPzwPdJ+NDJt8lNPHGkbmX15ltSdGD0sdNjGiH25D6aCUT5CWGQSY60gMQGdRBOlhtlqjpyvGC8ec1d3o4EfhISFArVpd03icDgcDofD4XA4MpTnM/vYE1x/+01qM7OsLVyns7ZCeXzyRPbnW0NgDEZqutInForwNkS/nC8ZL4WYdkSqLe0owZMC/xijoBwnixGKSJUJdYdE5fH0gMD0SWWIFicnW3lxn+q1d/bO8a5MoIM8pcUPUfp2RVcBpjQUvTukdBBkonciumjRw6OETwFjLfr22iHuWTwJ//HTHaSAlxa2xj60FfzS98v85U91eG76DsfU9iETvT/H1LOfuIXo/S6rb34wFL2fwC+4ZsZ7ASd2Oxx3SFAu8ujPfYml776ZdYhtO0HqQcRHv/ENJp55nJnPP4NU958oeyoIkXX0eR5EMSDBKkiTLM9bDC1u70PReycaSdOENM12IcQSCr0pgpdlTElkVujyiCK0LyxjKmZMjV5U9IyirX06NhO/OyagZ302O0EFZ1YMP4rYPDJtVxWn3Vxt9DrIjq44nG/ZNfnQrAz/VUSFuqwzJsYoydKB6/j4jDPOuB3HYrOu76Hw3aN3V7q+BRU88xWs+TGMfBUtXwbR2WPBNlr9Hlr+IdI8izIvIDh7nacWjeXmDmF7Ce7QTl7aHKE9h7VTJHZsKG5P3Fa3u4fmolhlVjR3/d0lVvKxHQfIurrt0bq6f3ehTGy2Bg6UsPyxuVZWnFMdtf4uNq/eQSW0zpw8PC8rcApzHPlkdgvSfsTN778zMq18YZbi7OEHdLyhfXlsNQZDyq3tyy0CfA+VZvblcjAgFSXWu30KgSLnK+ZruWM9ZyZRRNTrUpuawfNDivWx49u4w+FwOBwOh8PhuOcJcnmmH7nEwnvvUBmfpLV6E+UHFCrVE9lfwSTEUuIbPezu1tyORF3OecSpASypMVl+dzFAHfP9o+PkMEIyUGUC08Uq8EyEZyKENKTieN3dtnNwjneR5rknKC99iD+4jRzvrb2AqWQOb7JNQhdJgKcSYtoo2cWzJTybH7rFPTgoCf/R0x2UsHzzxlZzg7aC/+4HJf7SMx1emDkZwRtuX/Sm4kTvs4wTux2OY0BIycwLT1Oan+Lq114i6Y520q388F06C8tc+PKL5GqVfbbiuCVSQj6XCSHRUOQ2OrM6T+JM7Pa8bPoDhSCyHpH2WNX5bVMtBZFsdn+Xhnbo+duwQi9ITUFqprelC2sLHePT1t6wG9yna31i4w1zmLfdXBwghsPG9YQ9vNgM25Y9frF51/bYKYZvPd69ix1Hbvc+iN3PYfcxrw7/CQGBCBlX44yrceqyjndAlatAUKJEyZY4xzliYpq2SVM0adE69a5vQQ5lvoA0n8OI19HqJRAreywYYdS3MPIlpH0GpV9EMHGqx7qBJcGKZaxY2BK2ubmnLftRULZIyT5C0TxK3l5kYKusA+nwPbn9kh3LjGjxkFjZ1+nhsp0kRaF1JnIboxHycF3dvVTw7xZHCxA+P9FlPNT0y7MYb7QTudC4cptPYyOnW4Hyh4VOx1/ItPzaW5h4tEp75nPPHHp9CUihSIf25fEh7MuxAcYPkFYjkgShLTEFmv0UbS1jxYBy3qN8zFlzveY6UnnkSmWq0zMnYkfocDgcDofD4XA47m0KlSoT5y8CljSJaS0v4fk+Qf5gx7nbQWHJGY2RkAhFLBS527R0HisGxNpgLax1Y5r9hLGCj7MgvHewQhDJIqHNxtOtlXgmRghLIk/O/W8zxzvq0Zm6MNJEZT2f1txjwxzvlTvsH5FgqmBKGNkmpocnAgQRsWjhyR7KlrAmeKC6vKWA//CTXZSAb1zfEryNFfzyD0po2+HF2ZMTvGG76P0Uy997k/V3DxC93/iA6tOPMvGZxwlzx39edNw5Tux2OI6R0twUj/35r3Lt66/Q+uj6yLzBSoP3fvV3mP/RZ6k/8ZAbbL4TpIJ8PrO5jeJMBNdDa/M4yrK8vfsjz/tOsAi6NqCrA9h2z+BhNoXv8jYR3BNHU4aVgKpKqKoE2CrwiIwcCuBDEXxohZ4iEUKjjdgthu9x9KOP7o7YfGjE9meT/d/+f+Jic/lsGbFz7q6XxlpISFjUCyykCwBURTUTv73xW3Z9BwRMMsmkncRaS4sWDZt1ffdlH4Tcdjwnh8BD2c8g009jxXto+W2svLrHggYjvo+R30eYx1DmRxD23PBzc/xYBlixtNmpnQnbK3DEv4md+LZKyTxK0T5K0T5MyTxKyBQdOiyLZa6xjj2GwoMKfR6VNymJaM/5A+tx2UyySglrQetkq6vbO1xX99eXyvT1ligusPzMfAuA7g4L86C7gh/fTvXzRk63AN8f5nQfr/ALEHd6rL7x/si02qUL5Mdrh96GEh5m+C/d1748BV1lw77ciiyKQ8U9LB7EMYmVNPsR5ZxP4EnmasdbJazTlH67TWlsHOX7VCZOxorQ4XA4HA6Hw+Fw3PtUp6ZJBv3svjFJWF+4wfi5C3jB8XfY5k1CJBWhSYmUh68N6jYGZISAqXKOG7pHteCz3k1oDRIq+ZPrCnacAEIQiQI+CkwPKyWeGRBoQ6JymUvaCRF2G6jrA9ozj+zI8RZ0J89nOd4rVxH7jC8eHgWmBqZEqlpoC77MkYo+QjRQysczJYz1MA9In7cU8B88lQnev39tS/C2CP7ZD0sY0+UL83uPdR0nYbXE+S99jqnPPsXy995i/d2PdoveWtP4/rs0X88yvTuf/ROUnHPemcKJ3Q7HMePlQi5+9QusvfkBN771GlZvVWTZVHPt6y/Tub7E/I89iwrdhdcdsWFxu9HZrVQmeGud/WzMf8BF752kSBomR8Nsz8C15ITOLNC3dYIXRXpkATSUhlDGTLBVfWctdIdW6JtCuPbo242ihLMtNm/fgWCvBU72M7b7uVi6dOjYNh/HHxEQMCbHGBt2fSuxfyesEIIqVaoisyOLbMSaXmfdrtGiicYiZVaMkGU5Z8UJxymECwTCPo7Uj2PMdbT8Fla8s+fLaOV7pPI9hJlHmRcR9nHEbRmcDbdHb8SG3IhFEOt38GwyAjtByTxC0T662bkdUN8U6DWaVVZZFm/Q35Gjfdv7JOVhscKUbO85X1vBNVvnmq1jhq+Z0RpjwBiNlAJxwGdlg1gLfmdhtKv7s2N9ZvMp2ssxKI1afhVvt6s7SQCbdXNLCbmTqeBe/u4bI9/NSMH0808fen0PhQASq9H2IPvyPJl9eQ0Qw67uFLRBJikRedZ72XmyXvAZKwbk/ePtYu81GwgEhUqVysSUi1NxOBwOh8PhcDgcBzJ+/iJJFGGNZvXaVdYXrjN+7sKx30tIIK9TjPKIrSWSioK5vYgwJWG6kuNGY0Alb2n0EpTUFEN3/3OvkcgQiyAwPRKZxzcDfD0gUSH2DsaCboUXDw7I8R4nDXKU7yjHe2RvoMewIiG2LTwh8aRFiy5GNpAEKFNE2wfDuVQK+L98oouUlq9d2WoAsAj+hzeKaAtfPHfygjdsiN4vZPbm33uL9Xc+2kP0Nqz88D1+75/+t/ypX/x/nMpxOQ6HE7sdjhNACMH4Jy9RmJngyu99m2i9NTK/8f4VekurXPjyixSmx+/SUd4nCJF1/nneML9bZN2ASZpleqca/Acjz/vOEAysx0B73NzWaCqxFLd1f5dElgkeyqPZ6ggBJaUpKc3stumpFXSMt9n93TEeHeMTIxlVPu+u2Hz22BCjs/9N0CxxkyV9E6EF1W1Z3wV5sLVOKEJm1QyzzGCsoWmbrJk11s06/W229Rv281IIEEMBXN55Jru080j957GsouVLGPkD2KPb2crrpPJXwY6hzOeR5hkE+3f9Zp22nRFR24pFEK191zkswo5RMA9Rt5+gah6jaB/BZ++Iij59lsUyq7cKXN8AAQAASURBVKwem328wDAvGlwQa6h9us9XbInLZoJo22tkLWiTYq3e1tV9a/7oZpF2Mrrsz843AehWz49UYwidkm/dOOpTyjK6jc46uqWEfHgiVgOD9RZr73w0Mm38yUcIqwe7I2wgEUghSW2KxZLYvezLu2zZlxfBhhipEFIg4wiLRMeSGOhEKWOFAE9JZqq5PfZ4+1hj6LWa5CtVpPKoTk3feiWHw+FwOBwOh8PxQCOEYPqRS6RvR9Rn51m9doXG4gL1ufljd6nM2ZSBVeSMpq88UgTebXa0Bp5kshyy1LIUQ0snSvCVIPAeDMHwfiKVAUYoQt0hUXl8PcDXfVKZwxyiYP922cjx7o/N0q/PjMzTx5bjvQ3rgx4nFRHatvBlGWk1WvSQsoG0AZjCZvPC/YwQ8H96oocS8Dsfjwre//zNEsbCT5w/HcEbIKyUOP8TLzD12U9sdXqb0XPT5//Mz5/a8TgOhxO7HY4TJD9e47E/8xVufOs11t66PDIvbnd5/9e+xszzTzP5mSedrfmdIgWEYSaURDEgwQ6tzZOh1bnnwQleFN2PGARtE9A2oy4EPnqz+3srEzzZV3jbD09YaiqhpkYFo9hKumZDAN/6Se8g0fhBwWJp2CYN3eRDPiJHjjFZpy7r1EQNeUCmvRSSusiWBeibPmtmlVWzRjNtYLHozaz1bQKnGOqSQiK3CeGbovghTm+CcTzzs1jz42j5CkZ+F8RgjwXX0Oo30PIPUOZ5pHkOyAHNEVE7E7bv8AbECgQTCDuDMNMU7SPMmE8xwfyBluoWyzrrLItl2rSPtRajTpdH5U3yYu9q4q4NuGwmabC7yGGjq1sbc+iu7tTAb14fFfI/We1zsZRggd4OC/N86zryqFlrVmfFSVKB9LJz+QkVKC298vpIVa7wFFPPPnXo9ZVQQ/NyS2LSfezLk2325ZmDgvU9lElAg4hiUllgrR3hSUEl5zFdyeGr472B7bVbGK0p1GqUxsZPxHrQ4XA4HA6Hw+Fw3H9IpZi59DjX33qD+swsawvXad1cPvYCWgEUTIpRAmkNkczum273FroYKuqF7L4n1SbL7y4GKOnGXO81jFAMVJlQd7FK4OsI3wxIZYAWxx93toEACmsLqKh/wjne27AhVk8SmwFKdfBlFaNjhOwjVQNpQ6zJYe/zMVEh4C88ngnev/nRaMTb/+etTPD+yQunJ3jDlug9PRS914aid/nCLDOPPnaqx+K4NU7sdjhOGOl7nPvx5ymfm+Ha119Gx9sECmNZ/M4P6Vxf4vxPfh6/eLxZnQ8kUkI+l3V0x3EmbhuddXrHcXaR4nvwAFTFnSQJinWjWN9hhV4Q6aYIvpEJnr8NK/RAGAIVUVejFzGRUXTsqADeNT7avZ/7MmDADbPADbOARFIVVcZknTE5Rk4c3Emal3nm5TnmOYe2moZusKpXWU1XGdAfitlsE7U1ZlMI33rTs65wiRx6x2/Zo+/uCheU8MyXsOYLGPl9tPz23t3YootWX0fLbwJqb2H8KFiJYDITtu0Mws4i7BSezTHOOFN2ijwHn6MTEpZZ5qa4SbKPGH275Ih5RN5kXPT2nJ9aycd2jAVb2zPLantXtzUW5R3uEvA7K0XW4tFl//gwqzvOj5GGox3RxcbHh9rutiODOAVkVqwUeMNz9PHTW16jefnayLTJZx4/9HevNywOSK1GW41mp6i/YV+eY7t9uVY+QoCKIowVpMannxp6sWa6EhL4isnS8Vq2W2vpNdbJl8p4vk9tevbWKzkcDofD4XA4HA7HED/MMX3pcRbefZvK5DTN5UW8IKBYqx/rfkKrN7u7e8onEZLAHs1NcDu1gk+sDdZa1roJjV7MWDFwTUb3IFZIBqpEaHqgwDMCz8QIYUjlycSebXB6Od7bsDl0mkPLPr4UKAI0EUoNECpCmBBtc4j7WPQWAv7sYz2ksPz6h6NNHP/z2yW0FXzl4h2O/90GQaXEuZ94geoLT7H2yptMPfnoqR+D49Y4sdvhOCWqj5wjP1nnytdeore4MjKvc32Zd3/ltzn/pReoXJy7S0d4n+Ep8PJZZ3cUZWqbTjMRPBrme3sbedGO40HQsz497bOsty5IJGaz83t7Jnggjn7zEkpNiGZcjV7Y9I0ait9B9ttmIvheot+DjMGwbtdZ1+t8oC+TJz/s+h6jKioHdn0roRj3xhn3suiFnumxZtZY1Ss0dDMT/rZd4wuxYbMuMCYTwvVQFB/pCpfDDO8NEXyzKzxA6heQ5lmMeAujvo0VS7sPTCTAEYVl6yHs9DZheyYTurfdMORtnik7xTjjqFvcSLRpsyyWWWcde0R3g1shMVwQa8yLdfYqRrcWFm2Fj+04yQGXdVlXt0Xrja7uWxeIGAu/cWO0q/vRcsTjlawIpbujq9uL2gT9I+afb+R0h0F2Xj7B7uPF7/xw5LEKAyY//cSh1pUIJJLUJkP78p1Zctvtywub9uUWwFeoNMKgEIMYTYG1zoCcLykEHrPV/LAg5PiIul3SJKE6PUu+XCEsHBxn4HA4HA6Hw+FwOBw7yZfKTD70MPbDD9BxTGvlJsr3yRUPFwN1WAo6JfUknjHEQuFbc9ujOULAZCkkSQ21Aqx1Y5r9hFreP5GoLMcJIwSRLODbbFzGWoEyMb6xJPJ4o8B2spnjPXWRpFgdmXf8Od7bMHkSkyeVPQIl0DpEigghB0gijAnB5hH3aeOPEPCnL/VREv71B6NjGf/rO0W0gT/28OkL3gB+pcjsl54jNPfna3+v48Ruh+MUCcpFHv25L7H06pssv/rWiJWqHkR89Jt/yMTTjzHz4qeQ6v6t0jpVPC8TUJIEEgHKywRwnYLenuftLnhPCoOkZUJaZnvVpSUQhpLY6gIvDkVw7zbEwrzU5KVmclvGtLHQs97QDj3Y7ATvW8+J4EP69Llu+lw3N1AoaqJKXY4xJuuE4uAq2YIsUJAFznnDrm/bYM2ssaZXiWyExWKtBWsx1mw/3Q1tz4fp62YogO9hj45gKPA+gZBPIOTHWO8lUB8d/knaYFTUtjMIxve8KRBWUKfOlJ2iTPnAzWo0q6yyLJbpi/7hj+fwB86kaPOwWCHcJ+u7ZXN8YCbpcPAN3kZXtzFZdfthu7pfW8uz2B+1B/vZ+SZCgJEe/er8yLxi48rR/rJ0MszpDrKCpNzJ5HQDtK8t0bk+Wiwx+ZknUeHhxHVPeEP7ckhMcgT78gBpDaQpIjUk5GhHKbE2zJVzFAKPWuH4Ldi6jXWCXJ4gl3Nd3Q6Hw+FwOBwOh+O2KY9NkAyysZY0jmksLjB+7gJ+eHydtT6GwGiMFHSlTywU4VHjsbYhJcxUclxr9KnmfRr9mE6sKYVOCrknEYJE5LBIAtPDSoVn+gS6T6JyJzrGJ42mvHh5/xzv809QXvwIf9A59n1bUyAyeTw5wFMSYQOkiFFygL3PRW8h4E8+2kcJ+Jfvjwrev/JekdQK/r1HTmIsznEv487wDscpI6Rk5vmnKc1Nc/Vr3ybpjp6YV15/j87CTS585UVytco+W3EcCSGybkHPz/K7hcg6v5N02FW4XfR2nA6C2CrWrGJthxV6TugRK/SSyITwo0YsSQElkVKSKdNs/Z1pC71h9/f2bvCBfbCLHjSaVbvGql4DDQVRYExkwndFVA60/FJCMS7GGZfj4D1G13RZt+usmXVatjUUBm3221qsZfP/MwF228bERqc3WVf40B4dIxCcg/g8yCVE8ArCexu2F0fYPJhpMNOI4W9sbfPYLWIoUZrhT0ZAwLSYZoopAnGw+NmzfZbsIius7GFjvQ+7Xrqh0L/PS1oi4pJaoSr3rlSNreKyGWfJlofb2ngNdm9QAFqnGJO91nJoH38rrIVf35HVfa4Q80wtO6Z+ZQ4rt11GWkOhcfWW293E6KzwSA3PvWHIsbc3bxyatSx+5wcj07xCnomnLx1qfU8oLHabfflOV4q97cutEKAUMuljrYJYkyJZ70WUcorQU8zXc8eu78eDAfGgT31mDj/Mk69Ub72Sw+FwOBwOh8PhcOzD2Nw5ksEAYwxr166yvnCd8XMXDl1IfRgKJiWWisDoYXf3nQXWeZ5guhKy2BxQCnzaUYIvBaHvxv7uVVIZYIQi1B2sLOCbAb7uk8gc9hDudbfLVo53j87UxdEcb+XTmrtEYfU6uebNExhVFKQmjzY5AhWB7CFsiJQRQvbRNsLaHNjcfSl6/3uP9FHC8qvvFUem/8v3CxgLP/eoE7wdWzix2+G4S5TmJnnsz3+Va19/hdZH10fmDVYbvPerv8P8jz5L/YmHXK7McSFFJqj4fmZljtzK806Ged6el/kqO+4SgoH1GGiPFZ3fNtWS35EHXpQJxdvIA1cCyiqhvMP6OrViMwN8UwS3PrGVPIgieM/26Nke18w1FIq6qG12fd9KEC7KIkWKnFPnSG067PpeZ92sE4t4j/dsbyHcDrvC2dUVPgbpVxHiCwi1lP3N6inYFH+3o/d9+2qixpyaZVxMHHietdayale5oW/QtM09ljiez4eP5lLQZN7r7Pm5NhauJGUuJ9VhTv3hrbKMMVgsSh3u0u/NZo6Pu6OV+n98vrV5XDstzHOdJZSODns0WaGRlNk5N/SGsRInQ+vD6/RvjtqrTz//FPIQ+5TDf1v25Xu85nvYlwNYL0DYFFKDShIGFGj2E4y11AshtYJP8QQ6C3qNdTzfJyyWqM3MuGsIh8PhcDgcDofDccdMPvQwSTSgPjvPyrUrrC/cYHz+HOKYipYVlpxJsRJiIYmEIn8H3d0A+UAxVgywxKRG0xwkjEmJp9w90r2KEYpIlQl1h0Tl8fSAwPRJZYgWJyt1hd0m6tq7tGcexgTbGneEoDdxDh3mKd485hzvIRZBpHMokyNQAzQCKUI8McDIPsYOsDY/FL3vr8/3zzw8QEn4394ZFbx/7YMC2sKferTvEgocgBO7HY67ipcLufjVL7D21gfc+Ob3sXrrIs6mmmtff5n2tUXOffG5Q1utOg6BlJDPZV2FcZKJ3CbNRO84yjoNXZ73mcLumwduKQy7v7cL4Xl59BsiT1hqKqam4pHpsZXbBPAtITy9Dysm90OjWbGrrOhV0FASRerDru+yKB8opnnCY0JMMCEnAOiYDms2E75btjVcasPKfK9u5+wmYcMS3QJ2KIAbU8Smj4wc6a1QKGa8Gc755yjK4oHLRibiRnqDG+kNIntYIZedTuyHWvx80OPxXBt/Hxv/m2nI24MKXeORPc+jfcattUgpD13pu7OreyqX8Px4D4AkKBEXxkfmF9evHPZIho4aZIVHnoLg+Ozvdu3NGBZfHs3qDqplxp54+JbrCrKubjPs5c7sy3cuNCCzL6+w3b7cSAlKIOMYEKSph7bQ7CdU8z6BJ5itHn++WJokDDptyhNTeL5PeWzi2PfhcDgcDofD4XA4HjykVMxceoLrb73B2Nw8q9eu0Fxeojp9fAW2eZMSCY/QaCLlobVB7b4LOxLVgk+cGrCWtJfQ6MWMFwPEUe0DHWcGIyQDVSYwXawCz0R4JkJIQ3qL5ow7xUsGVK+/u3eOd3mcNMhTXryMSo85x3uIttBPcwSygJBdrBQokUeKHlr0MKIPtphF+t1H49o/fXGAFPC/vD06jvdvLxfQRvBnH+s5wdvhxG6H424jhGD8qUsUZyb5+He/RbTeGpnf/OAqveU1Lnz5RYrT4/tsxXFbeENRO0khJhO9dQqpzvK8PZUJ3/fRxcH9hkFkHdgEI9qfwmxmgG/+iITwNkTwQBgCFVFXo2LnwKisE9yOCuHmARDBO7ZLx3a5aq7i4VGXdcZEnbqs44uD84dLskSJEhfUeRKb0jDrm+J3smen8obl91AMB2C77diGRfrBFESBOTnHtJxGiYNty5qmyQ19nRWzkm1ZgceOdQ7Y4VFuxesq4hNhg7JK95zfM4q3BlVu6pBtL8AeOzx4r0JK1CGjGt5vB7zbGhVif2autRklsLOrW6YDcp3RPOx9SVMwZiun+xhz3vZi/d2PiBrtkWkzLzx9qO4DT3hD+3JDatN97Mv7Q/tyf9O+HADfR5oUtEVECakostaJkEJQzfuMF8MTsc/rNdcRUpGvVKhMTh9bl4XD4XA4HA6Hw+FweL7PzKXHufHOm9SmZ1lfvIHyfcrjx1NkK4G8STDKJ7GWSCoKZu975aMwXgpJjKVqYa0b0+gn1Av+/tlijjOPFYJIFgltZmNtrcQzMUJYEnmy4wybOd71GfpjsyPzdFigee7kcrw3iI0hNUVCWUTLDkIKfFFAiy5atLEooICwJ/tanCZfvjBACcv/963SyPTf/CiPtvAXHneC94OOE7sdjjNCbqzKY3/2Kyx86/usvvnByLyk3eWDf/U1Zl54mslPP+EGr48b3xtmeCcQi0zgTtJMlEmNy/O+B9FIWiakZUYv6nz0bhFcJvhip4h1a3JSk5OaCUZzlXtG0R3mgG/8dK2PvU+LJlJSbpqb3OQmaCiLMmOyTl3UKcvygev6wmNSTTLJJABt0x4K32u07WFvCgTsU68qEIzLcebkLFV5cG6xtppls8wNs0DP9oYbkPu/awe8nYd5p0OR8njQYMbr7XM8gstJhStJBYNAneJp/zeuj75WtSDlxckuMHRZqJ0fmV9oXN1MQz8Qo7OCIs8DpSDMnVhON4BJU5ZeeWNkWn6iTvWRc7dcV5G996lNsRgSu8cAi+oCYrd9ufJAgIxjrLUkJiDSmk6UMl4O8JVkunL8Xd1Ga/qtFoVqDaU8qlNTx74Ph8PhcDgcDofD8WATFgpMPfwoix+8S3l8gvbqCl4QkC9Xbr3yIchZzcBm3d195ZEi8O6wu1tKmCqH3DCGWt5nvR/THqSU8wcX6zvOOEIQiQI+CkwPKyWeGRBoQ6JyJzoOJ4DC+iIq7t+FHO8Mg6FvwLdVAltGiyZSKRQFtGiT0sbSR9gigvvjs/6l8xFKwP/0ZnHk/f2dj/MYC//+E07wfpBxYrfDcYaQnsf8F5+jdG6aa19/BR1ts1O2lsXv/JDOtSXO/9Tn8Yv5/TfkODpCQBBkIkyU2c5iVSZ4J3GWCew50fteJ0HRMIqG2S40WUIxFMHFlgBelAnePpbSB1GQmoLsM0l/c5qx0LMeHROMWKL37P3nHNC2bdq6zcdcwccf6fr2bpGfVJZlypS5qC6Q2CTL+bZrrJsGKYev5g4ImFEzzMqZW+aL92yPBb3AkllGH9Ea/HaQWC76LR72W6h9Pl+LaYF34xqRPf3LtKtdnx+sj36/fHW2jT/UpAelKYw3KtQWG4ewMLcbOd0KlA/B0ML8BFl94wOSbn9k2sznn7mlxZ4AlFBoNAZLvFcnwYh9uQcmG9ixgPE8vDTGWglxjBEha90BvpJUQo+ZSu5EMuL6rSbWWgrVOuXxCZR3f9zMOhwOh8PhcDgcjrNFsVZn/NxFANI4prm8hPJ8gvydj1UKoGASjBIoa4ikhzLJHY+ceEowVc6xaPqUrU+rn+ApST5w43z3OokMsQgC0yOReXwzwNcDEhViT9h9Mcvxfof2zCN75ninYYHSzSsnkuO9QWITUi0I5TjYBGQLJX0kMSkttGwgbDAUve99OfCL5zLB+394Y1Tw/r0rebQV/J+f7OJSCh5M7v1Pt8NxH1J9+Bz5iTpXv/YS3cWVkXmdG8u8+yu/xfkvfY7Kxbm7dIT3MRt53kZnoreQ2f8nQ9Fbqkz0Fq67/v5BEFmPSHussf3GzJITejMHfMMKvSiTI180SQElkVKSo6KZtmTit/VHusEHVnE/iOAJCctmmWWWQUNFVIZd32OUbpGX7QufaTXFNFNYa2nbNmtmnTW7Rtd291ynKqrMqVnGxfiBgqa1llW7yoJeoGGbd/QcD49lUvV5PFinsI+dflv7vB3XdxRjnC6/sSOru+Rpvji91WXfrV0cmR/01vDjW3XhW4gTQGzL6T7ZHC0dxSx/762RaaW5KUrz07dcd8O+XFtDYjXmlvbldRjeQFvPQwoLaYpIDYkJ6SWaQaKZqeYIPcV46fhtxKy1dJsNcqUyylNUp2eOfR8Oh8PhcDgcDofDsUFteoZk0Mcai05S1hdvMH7uAp5/50W3oTUMrCE0mp7ySYQksEd35NtJzpeMF0OMjUi1oR0leFLge26M714nlQFGKELdIVF5fD3A131SmcPcIsruTvGSiOr1d+hMPbQrxzsuj9EMcpQXP0Sl8T5buHMsloGJ8IQitJNo00eqNoEIMHZAQhsj1xE2RNjCPS96f2E+QgrLP3u9NCJ4//7VHNrAf/CUE7wfRO7tT7XDcQKcXJ3V0QjKRR75uS+x/OpbLL36JmyrANODmI9+8w8Zf/oxZl/8FFK5KsRjRyrI57PO7ijORHCts8dxlFmde/dfV65jO4KB9RhojxW9faqlINKhHfqWEF4Q6ZGtcpSAikqokABbdtapFZvCd9OE3EzzJDszo+9BWrZFS7f4iI8JCLKub1mnJmoHdn0LIaiIChVZ4SEuEts46/o2a7RsO7MqV7MUROHA/cc2ZtEssqAXiTm5m4ydFETCE8E6E95gz/mJlbwfV7melu6q3f1y3+OV1dHX8MuzbXIq+/7RKmRQHhWLi42Pb73hNAVMJnBLceI53QA3f/DOqDsKh+vq9ob25YlNMWRZ3btQw2KLnfblZDEYMh1gkdjYoJGsdfvkA0XeV8zW8ifi3D7otNFpSqlWp1CtEeSc+4vD4XA4HA6Hw+E4WSbOXySJBlhrWL12hfWF64yfu4A8hpuegk5IPYlnDLFQ+NYcy91yOe8RawPWkhpLo58wVgxQThm75zFCEakyge5ilcDXEb4ZkMoALU7W+Uwac+sc76UP8fsnl+MNkFpNavsEMiBIp9Cij/QkATm07ZEORW9pc2ALiHt4rPHFuRgpOvzT10sYu/X3+43rOYyFv/hJJ3g/aDix2+HYxkqsuTn1HPnmO3i6gRHdYaWTl1lao/ZJhj0ZhJRMP/9JSvNTXPnaSySd0WzX1dffo7twkwtffpFc/XiycRw72MiWTVOI463/1zr72ZjvRO8HBouga3262mdZbwmDEkthxAo9E8Lz+3TxHoQnLDUVU1Mx5+hiAljTORZ1gZtpgfSEbZhOg5iYJbPEkllCIDa7vsfk2C1F60AEzKhpZtStu3QBmqbJgllgxaxiT7GkSWF4JGhywWvveYFtLVxLS3wQV89EMcNv3qiMiO2hNPzkTHvzca96bsTVQpiUfOvGwRs16TCn2x8WEeU46buNpDdg5QfvjUyrPDxPYWr8wPUkIIUitRv25cnuhfaxLwewvo9AQ2KQqSYiR3uQkhrLdCWglPOoFU7mBrvbWCfMF/DCkNr07K1XcDgcDofD4XA4HI47REjJ9COPcf3tN6jPzrN67SqNxQXqs3O3LDS+FT6WwGiMhK4MiIUitMcTPTZWDIhTgwVWuzHNfsJYwceF/d77GCEZqBKh6YECzwg8EyOEJZUn6zC3kePtRX060xexIzneHq3Zk8/x3iA2MSmSnMxBkkfKHp5SKPIktoOmCzLaJnrfm+OMn5uNUaLDL/+whN4meP/RjRzaCv6vT3ec4P0A4cRuh2OItZZXWxFxWCee/Dy5/iK55mtI28XaAXaYrWo2RW8PUGC9E6+CKs5O8tif+2mu/cErtD68PjJvsNrgvX/xO8z/6GepP/HwHV9MOvZADK13lQdpnD32VGZtniaQavBdnveDjkHQMQEdArZHPyvMSA54ScaUREIoD2/BJQVMeAMmvAEmWGNV51hMi9zUefQ9ekG6HYulaZs0dZMP9UeEhJnduRyjJqqo27Cc0lazbJZZMIv72p6fHJZZr8tjfmPf93ldh7wT12mbk73ZOizrkeKbN0et5b8006HoZd99FujWRy3M860byL3yrDewJjtPSpWdP8PwVM6Ty997E5NuOy4hmHnhmVuup4SHxWQd3UbvURhhdtiX19iwLzdCgpLIuI8VApNIDNDoJZRCD19J5mon020d9XokUcTY3DnCQpF82RW/ORwOh8PhcDgcjtNBeR6zl57g2ttvUJuZZe3GNdorN6lMTt3xtgsmJZaKwGhiofCsPpYRWCFgqpLjRqNHreCz3k1oDRIq+bNxf+64Q4QgkgV8m31arBUoE+MbQyJPPjYu6DWpXnuH1l3M8QYwGHpmgC98QlNEmAJS9QmkwlAksW0MfZADpM2Dzd+TovdzMzFStvkn3y+PCN7fXgjRFv7jpzuoe+9pOW4DJ3Y7HEPeb/dZT4aihBAMCrPcyE1Sa39Mpf0xghTQWJFi0VgRYTFYa7NOuKEIvtUF7h3rF4SXC7n4019g7a3L3Pjma1i9pabZVHPt66/QvrbEuS8+hwrdxdmJIAUEYdahGMWAzMScNBnmecthnrcTvR1baCRNE9I0o9bNPnqbAL7VDe6Lgy92pYBJb8CkN0BbWNV5FtMCK/eJ8A0QEbFgFlkwiwgEVVFlTI4xJuvkxcGCYc/2WNALLJllNMdT9X0UKjLiiWCdmtrbJn1gFO/FNRZ1gbPkCPHbC6M3BZ6w/PRsa/NxnK+ThuWRdYqNKwdscY+cbv/kLzvjVoe1Ny+PTKs/fvGW7iceCgHEw4zulMPYl2+7afU9hEmxGmScEIkC690YC9SLAfViQCE4me+GXnMdPwgJCwWX1e1wOBwOh8PhcDhOHT+XY+bRx1h47x2qk9M0by6hgoBitXZH21VY8ibFSkiFZCB9CiY5ljtpJWG6kuNGY0Alb2n0EjypKYRuTO++QAgSkcMiCUwPKxWe6RPo/ma+90mikojqtXfoTF8kKdZG5p1WjvcGiU1IbUooA3xdRJg8SnWHznZFNJ1toncBbO5UnW2Pg89OJfzVz7T5pdfKpNvGtl5eDDEW/tIzHbz7Y8jUcQBO7HY4yLq632v2dk+XHuvVR2kX5qmuf0R+sIQUKSBQAsCQtXAORXCRAn0MFqzFIreJ4AqsD8jbFsGFEIw/9SjFmQmu/N63Gaw1R+Y3P7hKb3mNCz/1eYozE7e1D8chkDKz4k11Zm0uJBiddTDGcda56HtwnwiPjpMhQbFuFOtme1WpJRSZCF4SCVUVMaEGqH0EcCVgyusz5fXRVnBT51lKC6zoHOY++fxZLA3boKEbXNaQI8eYHKMu69REFSkk1lpW7SoLeoGGbd56oyeAj+axoMGc193T+cxY+Dip8GFSOXNFCZ1E8gdLpZFpPzbVoRpsdaX3ahdG5ntRh6C3uv9GkwSwWU63UpA7+ZxugMVX3sCareMWUjL93CcPXEcikEKS2qybe2/78giIQZfZZV+uFEiBjBKwllgHJMbQHiTUCgG+ksxWT6Z6PI1jBt0u1akZPD+kVD/Yqt3hcDgcDofD4XA4ToJ8ucLEhYew1pDGMe2by3i+T1go3nrlg7ZrUmKhyJmUnvKP1c488CST5ZCllqUYWjpxgqcEgVPF7hs2hO1Qd7CygGeyHG8jFKkMR6LcjhtpDeXFDw/M8S4tfUTQb++zhePDYhmYiFSkhATYtIwSRQLVReOT2ghDFyO6ILoIGyAIwQb3jPD96cmEX/hsm3/0WpnUbB3zd5cywfv/9ikneN/vOLHb4SATkf/Y/Djfv9ng+43OLpvV1M+xOvUkQe8ctbUFwqSPERpEgiXBihghdHbyFwKFznI7RYoVG93gMZb+HiL40fPAc2NVLv2ZL7Pwre+z+uYHI/OSdpcPfu3fMfP8J5n8zJMI6c7iJ4anwMtnGd5RlIngWg8fD/O9PY+z1L3pOOsIIusRaY9V8pBmNuiTqs+012NC9ffNmlHCMuP1mPF6pNuE71Wdx9xHn8EBA26YG9wwN5BIQkISkr07cU8BgeW81+aRoLlvV/7NNMc7cZ2+PZm85jvl9xbLxGbru0Ji+ercVle3EYpeZX5knULzyv6fKp1mBUC+n5XL58JTyT7rrzZovPfxyLTxT14iKO8/uCIAT3hD83JDatJ97Mt7YEMgGLEvt4D1PKROwApsrLEiYL07QElBNecxWQpPbLCk21hDKo98qUx1esZFmTgcDofD4XA4HI67RmVikmQwwFpIk5jG4gJj8+fxw9svfhZAScc0vXCbnblB7bpvuz2KoaJWCABLqk2W310MUC7o977BCEWkyvimhxUCaTWeiQl0Dy19UnFyDqlbOd49OlMPZcXyQ6zyaM8+SmH1Brnm8qmM3KVWk9o+gfQJrI9Iy/iyjJJNUpuJ3lZEGLLfCLFN+PbPvM350xMJf+2zbf7h98ok2wTv7y2H/NL3BX/l0238s/0UHHeAE7sdjiFKCp6q5Ljyg+/QrE5japO7BufjQonl/CXC1gqFtQWUliiRQyIRAqRIkUJjSTAkWJEgRCYzCUCKrBNciBQjNZAAUTZYbgErsRsCOPLAPHDpecx/8TlK56a59vVX0NE22xNrWXz5ddrXl7nwU5/DLxZO4BVzbOJ5mbCdJNmPUpngrdNM/PY9kO5067g9NJJFXWRRF/EwTHo9plWPcTXYV/j2hGXW6zHr9Uis4GaaZ0kXWdW5E61aPW0Mhj79u7b/MTngiXCdktyjExjoGo934zor+mSymo+DgRZ8bWHUnvxzEz0mc1uV8v3KHFZtE+qtpdC4uvcGjc6iHdTwvBeGWSHQKbD48usjj6XvMfXZJw9cZ0Pozm74NOle1vdyw768mFmYb7Mvt8pDCBBJitCWxAQMUk031kyWQwJPMVU+ma52nab0221KY+Moz6MyMXki+3E4HA6Hw+FwOByOwzI2f45k0Mcaw9r1qzQWbzB+7gJS3b5ttLfLztw7NjtzgHrBJ0kN1sJaN6bRixkrBq6Y+D7CCEmkSngmxjd9jFIom6BMTECKlgFanNzYbdBrUb3+Du2ZR9C7crznt+V4m/03cozEJiFFk5MBGIW0dQJRxRMtEjoYUoxNQURYYoxo3TPC91PjCX/92Rb/4NUK8TbB+/s3A/7xa2X+k0+38V1awX2JU18cjh1IneLfuIxZW8LOPUyaH7V2RQii6iRxqU5+fZFc82bWxb1ZUCgR5JAij0QhhEZikDLFkoKIh7/t5ldC1hWeIoQZWqEPYFtvmTUKu00Az7rAs7WrD58jPznG1d/7Nt3FlZFD7d5Y5t1f+W3O/8TnqDw0dxIvl2MDITK7Xs/P8ruFyDq/kzQTwMVQ9HZ53o47IEWykJZYSEt4GKaGwvfYAcK3Lyxzfo85PxO+l9MCS7rA2n0mfJ8mOZHyeLDOtLe30J5aweWkypWkfOZf468vlujp0RuUn5lvjTzu7rAwz3WW8dLBHluzQ/tymRUBBd7Q3eLk6S6u0P74xsi0yU8/gZff3z7cH97IplajrSGx+9iXi+325dXNWRbAU8g0xiIxkcYiWOtGhJ6kFHrMVHModTKfgV6zAUChUqUyOXVHg0cOh8PhcDgcDofDcRwIIZh65FHSOKY2O8fqtSusL9xgbP7cHYnHO+3MI6HIHZOduRAwWQ5JtKFWCFjrxjT7CbW8fyouZY7TI5UBqfDxbQRGYJSHp2M8E6FISGSIFScj4qokonLtHTpTF0lKtZF5cbk+zPG+fCo53pA1kPTMAF94hAQYK/DlGDk7jhUDNB1Suvek8P3kWMrfeLbF3/9ehUhv/Q2/vhLwD18r8wufaRO4IZT7jrP1KXQ4zhBy0KVy4z1KSx8i9/iSscqjN3GO5vknifOjXXEWuzlwHhvDwEAv9eilOQZJjSSdRKeT6LSOMWWsLmFMCW3yGF0GXQddQ5gKwhSQwkNJjZIDlGojVQMhGwjRBtEjKCse/rkvMvX8U7suwvQg5qPf+kOu/9GrmPR4LgIdByBF1slYyGcijx9kP5YszzuJybLeHY47I0VyIy3xvWiKP+jN82Y0xqoOM5eIffCFZd7v8mzuJj9euM4nglXG5ABxTPZf9zsSwyN+gy/kF/YVum8kBb7Zn+XjpHLmhe7EwO8sVEamfabeY76wJfqmfpG4ODGyTKExahWesSF0A6GfOVwEJ2cFNrJna1l46Qcj01QuZOKZx/ddxxMKASQ2xWJI7F43k/vblwPg+9nfTmqQSUpKQCfWRKlhvBiQDxRjxZN5Dawx9FpNCpUqUnlUpqZPZD8Oh8PhcDgcDofDcVSkVMxcepywUKQ+M08SDWguL97RNjfszBWWUKckUpEe4z23lDBdCfGVpJr3ibWhE7tx1PsSIUhkjoGqkIqARIUkMnPkC0wfz0QnNpojraG89CH51RvsHMDTYZ7muSd26QwnTWJTuqZPQkpiUiKTkBoPacfJmYvk7Tw5O4Fvq3i2jjR1pM0DGiNaGLmGES2siLBnaMz78bGU/+y5Fjk1ekxvrgb8g+9ViO5OGqLjBHGd3Q7HAQgg7DQIuk36tWn6telddqw6yNOeu4TfbVJcvY5KogO3aTAYy7AlTIIJgGCbFbpBkiKkRpCASLOuYAAsAoMQGtAgNEJk4qmUMPe5OSrnSnz8uz8g6Yx23a2+/j7dGze58JUfIVcfFTccJ4CUkM9v5XfvzPP2VGbze8bFMMe9QYLielrieloiQDM1zO6uyWjfIuRAGM75Xc75XSIrs47vtMC6CXGfy51YplSfx4N18nLvm92W9nk7HqNpTsay+iT4o+USzWS0lPVnd3V1nx95LNOIfHuPQYrNnO4gO9+dUk43QPvqIr0dzibTz34CFeydke5l37ikNsvnjkyyd7nHQfblQmKVRMURFoFOJBZY78YUQ0XoK+aquRN7CfrtFkZrCrU6pfoYfnDvfO4cDofD4XA4HA7H/Y8XBMw8+hg33n2L6tQ0jaVFPD+gNDZ++9vEUtAJVvkk1jCQHsVjtDP3Pcl0OWSxNaAU+LSjBF8KQud5fF+yYW2uTEJg+hglN63NpdZo6aPF3uMKd4IACo0lvLi/f4732g1yjdPJ8YascW9gIiJifOHhoTBDMV4KDyXqeMOOb0OPlA6GBG03XGyjM9nxfamW8jefa/Nfv1qmn24dy9trPn//exX+2mdb5JxCet/g3kqH4xAIaymsLxK2V+mNzROX67uWSYpVGoUyueZN8uuLSHO0SiaDAQs680UF4wEhAoEUIIXOLNFFCiSZ4C029mEz4RtNaSbHEz//o1z9/R/SvLw8so/BWpP3/8XvMPejn6L+xCMIZ6l98uyX552mkJphnrd7HxzHR4ziWlrmWlomFClTqs+M16Wm9rdBCoXhvN/hvN8hMoolnWcxLdI0AQ+68F0UMU+E64yrvQuZYit5P65xPS1yL71W2sJv3hgtfPpEtc/D5a3PiQV6OyzMC81ru50AzLCQRw3PZ6eY022tZXFHV7dfKjD21KN7Li+RSKFIrcZgiU2yLTRkGwfYl2c7UQhrsMYiYo0WOZq9BG0t9UJAJe9Rzh//TTFkz7nbWCdXLOH5PrWZ2RPZj8PhcDgcDofD4XDcCbliiamHHmXp8nukcUJ7bRUvCMiVbr9zNWc1sVXkjaZ7zHbmAPkwc+iyxKRG0xwkjEmJd0LxVI67j5Y+feFtszb3USbCMzGK9MSszbdyvB9GB/mtGULQGx/meC+fXo43ZKJ3bBNimyAQeMLDQ+JZBQgkHkrWCGwdRIyhOxS+06HwHe0Qvv2h8B3cNeH7kVrKf/5ci7/33Qq9bYL3u+s+/82rFf76s23ynnO8vB9wYrfDcQRUmlBe/oikdZPuxDl0WBhdQEgGtWmi8hiF1QXC9uodSx+ZJTpoK8nsU30gj0AghlngUhiESBDCIEiQfoELX/kJ1t76gBvffA2rt74UTaq59vXv0bl2nXNf+iRekAOrAAVWYVFn3nr3nmMzz9vLrMwRQ9E7yWzNpcyyvk8oE8bx4BJZj6tpmatD4XtaZR3f1YOEb6m5IDtc8DsMjGJJF1hMC7QeMOHbw/Bo0OCc19kzD91YuJaW+CCukd6DqTAvrxRYjUYvA//4jq7uQWkK7edHphV3WZibrJBHDnO6Q//UcroBGu9fYbDWHJk288LTe+ZXSzL7coPGYEhM9ns3B9uXW6lASmQ8yNzbUx9tLc1+QjnnE3iS2Vp+j+0eD1GvS5okVKdmyZUqhIXiie3L4XA4HA6Hw+FwOO6EUn2MZO4cADqJaSwtMub5BLncLdbcm8zOPKHpSUKdEikPTxu8Y4xnqxZ8otSAtaS9hGY/ZqwQIPYaHHDcHwhBInJoEeDbARbQ1sczUdb1LTxSGRz7mLlKIqrX3qUzdZF4Z453qU7TP90c7+1YLIlNSGz2d6eEhycUnlFDXUKiRI1AjIGIMuFbdDB2p/DdvuvC90NVzd96vsV/9d0K3WRr3+83fP7r75b5G8+2KfhO8L7XcWK3w3Eb+IMu1WvvEJXH6I3NYb3R7i2rfLpTFxhUJyiuXMcfdI79GCw2MzU3G/vesjAVaJQ0VB//FLmpOa597RtE66NiQOODZbpLbS585TMUZ8tDoZzhTyZ8Yz1AgvWwSJfqe6dICbkcBBoGcSZuGw1JCnGUdUV6ztrccTJE1uNKWuFKWiEnUqa9HjOqS0Ul+66Tk5qLss1Fv03fKJbSAou6SNv43L+fU8u81+VS0CAQe1fPrumQd6I6HXs6mdTHjbHw69dHu7ofLkU8WRntXt/Z1e331/Gj9rYpFuLh58cPsniGU8rpBjBas/TK6yPTwnqF2qULey7vCQ+DIbWG1Kak7BPQdJB9OWB9D6lTrBEQa6zwWe9mr1294DNWDMifoM1dt7GOn8sR5HPUpmdObD8Oh8PhcDgcDofDcRzUZ+eJBwOssaQ3rtJYuM74uQso//bcsNQ2O/N0aGdeMMmxymcTpZBEW6p5WOvGNAcJtbx/anFdjruDEZJIFJAiJNC9LL7MpigT4+seWgbHbm0urKG09CH9aJr+2OzIZ2wjx7u09BFBv33AVk4WC9k4is3GUTyhsq5vaxFWwIbwva3jW4su2qYYm2BFjGVwV4XvC5Wh4P1Khc42wfty0+e/+m6Fv/lci6ITvO9p7r1WJIfjjCCAXHuN2pU3ya0vwR6WIjos0Jp/jPb0Q2jv9AQAiyI1PonJIyvnOfcnfp7qk5/ctVzS6fPBv/o2S6/cQCc1tK5gdAFtPIw1GNHHyg6oBkKtIVULJXsoESFFet9KXSeOVFDIQz7MxKFw2PWtNURRln3rSgscJ8jAenycVHhpMMsf9WZ5L67S1gdfrOel5qGgzYv5RX40v8Alv0FJxtxPn9WqjPh8bomnwrU9he6+UXx/MMF3B1P3rNAN8IP1PAv90eP/2fnWyD27VgH98qg9drFxZXRDaZp99/k+SAHh7VXm3y5rb39I3OqOTJv53DOIPSzUfeENb8402moSu4/QvWlfXgTULvtyqzyEAJGmCG1IdECiDZ0opV7w8ZRkpnpyr0MSDYj7fYq1MfwwT6FaO7F9ORwOh8PhcDgcDsdxMXXxYfLlCvWZeUCyvnADc8QIyO3krMa3hpxJsQgicbw9fVLCdCUk9CS1vE+sDe3B8dmlO842RigGqkQsC6QiIFEFjPDxTEyg+8hjtM6HrRzv8uJlhB4dr9jI8e7Xps/MCFxqNQMT0TE9+nZAQkpiE2KTEmuJNTU8fY6cnSNvJwmo4tlxlBlD2iJgMaKNkWsY0cSKPnZP573j5XxZ84vPtygHo/v6uOVlInjs1I57GSd2Oxx3iLSG4toNalfewu829lwmLtVpnP8EvbHZE8n4uBXS85j6kR9n9qd+BhmGozOtZenl1/ng3/wh/ZZAmyLGFLC2DKaO0TW0LqNNHm0U2qZo2cPKFkKtI2UXKeLdGa6OW+N5UCgMxW4/+y1lZm8exVnXt8NxwvSsz0dJlW8Phe8P4iodc7DwXZApDwctfiS/yBfyCzzqNyiK07dUOi4CoflksMrn8ktU9rB41xY+iCt8sz/Lsi5wL3e12z26uufzMZ+q90em9arnRqMVjKbQvDbyGJ1m5zGlMqH7FC3dTJKy/N03R6YVpsepXJzbtawnFAJIbIrFENv93AxuYV8OCE8h0gRrBTq2IARr3RhPCio5j+lKDl+d3Pd8d30d5fnkiiVq0zMI11XgcDgcDofD4XA47gGElMxceoywUKA+N4dOEppLi1h7++OJJR2jLORMSiolyTGPuXpKMFXJEfqScs6nl6T0YzdW98AgBKkMGagKiQxJZUAsC1gEvhngm+jYx8ODXovqtXdQ8egYTZbjPUdn+qG7oi0cxIbw3TV9eqZPTJLZnw+Fb2MqW8I3kwTU8O0YyoxvE747Q+G7ceLC93xZ87efb1HdIXhfaXv83VcqtJ3gfc9ytv4yHI57GJXGVBY/pHzj/d1fSABS0q/PsH7hE0Sl+l2RhksXH+bCn/p58jO7xYD+wiKX/8W/Ye3yOnEywSCu009KRGmBVBfQuoAxeawtga5hdBVtchirsbI9FL7bSBE5w/OjsJHnXchngrcfbNkAJ3H2s4drgMNxEvSsz+Wkyrf6s3yzN8PluELXHFwdXZQpjwQtvlBY5EfyCzzsNymI/a3RzxICy0WvxY/mbzDnd/dcZinN883+HJeTGuY+uGx6uxXyYWe06Oln5lsjOrVlt4V5vn0DaYbVxXYjp1uB8rNzlndytt17sfLDd0n7g5FpM5/71C7x10MhEaQ2xWKJzAGfTdnLfpsimDzYHbnbngIsItWIRKNtQD/R9GLNWDEg8BWTpXDXZo8LnSQMOm2KtRqe51EaHz+xfTkcDofD4XA4HA7HcaM8n9nHniAsFKnNzDLodmivrtz29iRQNDE+Bs8YBkIdu0SW8yXjxZC8r8j7inaUkKRunO5BwgpBLAsMVAUtAxKVI5E5hDUEuodnj7f5Q6Ux1WvvEnTWd82LS3Wa5x4/VQfZo6AxRCama/p0TZ+ImMSmm8K31hU8PUfOzJFnYg/hG4zoYuTqiQrfsyXNL77QpBaOFq9c63j8nZcrtCIneN+L3Pujtg7HGSPot6lefZvizau7bEcArBfQmX6I1vzjJGHh1I/PL5aY/2M/x9hnX9iVM2OiiIXf+02Wv/0NTGrBhlhTJNUVknSMOJnMRPC0SJzm0DqHtWWMrqN1HmMtRnZBrSNlCykGyFOwILkvkBLyuezH8yEMM2tgY7I87zThfrKLdpx9ujbgg6TGN/uzfKs/w4dxhd4thO+STLgUNPnRwgIv5hZ4yG+SP6PC97jq8yP5BR4PG3hi999Wx3h8tz/JD6JJBvZ47dDuJr9+bdSWeyJMeWGiNzItyVVJcqPLbVmYb+R0i+wc5SkIjjev6lakg4jl778zMq18fobS3OTINIlECplZl2OJTYLd7zwq4szC3GzYl9dGZlshsJ6HSGMsgjTNxP3VTkQukBQCj9lqnj0c1I+NbrOBkIp8pUplahopT7fAwOFwOBwOh8PhcDjulCCXZ/qRS4TFEpXxSbqNdXqt5m1vL7SGwGhCm8UtDuTx37+X8x7VvE8l5+FLSaOfYIwbo3vQ2LI2L6KFT6zyaOkjTUKge6j94tJugyzH+yMKqzcyi75t6CDL8Y4LlX3WPhsYDLFJtoRvuyF8ayIj0bq8TfieJKRGYMfwzBjSlrJtnKDwPVM0/O0XWozlRgXvG12Pv/NKhYYTvO857p/RW4fjGLDW7vz+uC0EkGutEHTW6ddnGFQndwnLaa5I69wTBO01iqvXkXsI4yeFkJLxzzxPYXaexa//Lmm3MzK/+dbr9BcXmPnSVwhrYzvW9sB4GPIYA4lIkCJCSYmSOdAWTYwQKcg+kh7SKrABWB+Ndw8bAJ8CngIvD0kKMVnnZJpmdsFag+9l09yr6Dg1BB0T8L4JeD+pUpEx06rHtNcjL/e37yqrhLJq8ljQpKUDFnWBpbRw14XjvEh4PGgw5e3hwAEkVnA5rnI1LWPvs7+zy+2At1ujedI/M99C7Xia3drFkccq7hJ2h9X2ybDwJhjGLuROrpN5P26+9jYmHi2imPncMyOPJZl9uUFjsCQmxex7U6RBdjP7chsMhe4dqrXnIazJPO1jiyHIKvq1ZbISUgg86sWTE/2NMfRbTQqVGkp5VCanT2xfDofD4XA4HA6Hw3GSFCpVJs5fBCxpEtNaXsLzfYL87TUFFU1CKiQ5o+krj1hIgmN2SawXAuI0u6tc68Y0+gljBX/XeK/j/ieVAVr4eDYCIxAyy/L2TIQkJVUB9hh6TAWQbyyhol5mX662xtOs8mjPPEJ+bYF8Y+nMj14ZDLHNYuUEAl94eCiMVYBE2hJSVPBIsbKHtl0MCdqmGDHAEmFEF0QHYX0EIdgQcYev81TB8IvPt/i7r1RYHWw1FCx0Pf7Oy1X+1vMt6jnXyHev4Dq7HY5t/NabN/l734PLzeP5ipBGU1y9TvXq2/i91p7LxOUx1i88Ra82jT3lC6T89CwX/tTPU7r4yO7jWl/l6q/9Ks133jw4P8f6GFMiSccZxDXitDDM/C5idQ2tSxjrYeUAVAulGkjZQ4jE9SkfhD/M8w78rHsyDDNhKXF53o67iaBlQt5L6vxhf47v9Kf5OCkzMAd3mFZUzONBgy8WbvBCbpELXotQnF6BD4DE8Kjf4Av5hX2F7utJkW/25riSVu47oRvgN3ZkdVf9lC9MjhY7WSHpVedHphUbV7JXQ6fZucf3hm4U4anf2CfdHiuvvz8yrfroefIT9c3HAvCEj8GQWkNiUzT7nTMNqHa2lilm1uVm1L7cSglKIpIUYSFNFcZa1nsJpZwiVIr5em7vzR8T/VYTay2Fao3S2Dief7rd9A6Hw+FwOBwOh8NxnFSnpqlOTlOZnCbIF1hfuEEa354ddGZnnuAN7cwj4R27z6SUZPndnqRa8NHG0hqc7riG4+xghSCROQaqQioDEhWSyDwCS6D7eOb4rM2DfjvL8Y5253j3x+foTD985nK8D8JiiW1CzwzomB4DGxPbhNSkxEag0xLKzBKYOXJMENo6gR3HN+Mn0vE9Wcg6vCfzo+NGSz3Ff/lyhbXBvfPaPui4d8rhGJJqw9///ct81IL//q2Af/aWz8d769NHxksGlBc+oLzwATIe7F5AKvrjczTOf4KoWDtVEViFITM/+VWmvvATCDXacWl1yvI3v87i7/82OooOsTUPY4rEaZ1BPEaUFtCmgLV5rK6jdRljfAwxQrZRah0puwgR728t+yAjRCZyb8/z9nfkeTubeMddQ9A0Ie/Gdb7Rn+Pl/hRXkhKROfjSoqZinggb/HjhBs/nljjvtQnESRZvWKZVlx/NL/BIMJpNvUFTB7zUn+bNeJyY+9Ma+nrP57X10Sr5n55r4+94u/rlWazalv1kLYXmVbA6i1OQCqQ3LMA5/ddq6btvYvW2z4sUzLzw9MgynvCw2My+3GrSfa3E7FDotqDLgA+6tnOJrKvbaDAWE1usUDT7CdZCvRBSK/gUw5NzLLDW0m2skyuWUb5HbWb2xPblcDgcDofD4XA4HKfF+PmLFKs1ajOzSOWxvnAdo29vfCCwhtBocjZFYBlI79hHGpWE6UqOUCnKOY9+oulHrhnlQcYISbTD2jyVAdJuWJsfT7SfSmOq1/fL8a5lOd7+6Tvv3SkWS2IT+iaiY3r0bUREQjwUvtO0iNSz+GaWkAlCO0bAUPg2xyd8j+cNv/hCi6nC6N/zzX4meK/0nYx6L+DeJYdjyP/xvetcXtnKLX2/Kfm7r8J//zrc6Byw4iERQNBrUbv6NoWV64g9Lt6MH9KZeZjW3CXSIL97IyeEEILqE09x/k/+OYL6Ttty6Hx0mSv/6n+jv7R4hK1KrCmQpFUG8TiDtIDWBawpgKmhdQVjclg0QnaGHd8dpIiONX/jvmAzzzsEz4MwyMRvY7Iub+3yvB13G0HD5HgnHuMP+vO80p/ialIitgdfZtRVxJPhOj+ev85zuSXOeW38fTtwj05JxjyfW+ZTuVVye1iuR1byRjTGdwbTtMy9d1NwFHZ2dReU5iemd3+57bQwD7s38ZIexCkgM6eJwMu6u0+ZqNFm7e0PR6aNPfkIYbW8+dgT2XElNh3aZO13Y7khdBvQFSCAdIJdl8ZKgRSQpAhjSbRPqi3NfkIl7xF4gtnqyXZ1DzptdJpSrNcpVGsEudO7PnA4HA6Hw+FwOByOk0IIwfQjl8gVS9Tn5jHa0FhcONhh8gCKJkFZS85otJAkJ9DtGniSyXJIzlcUQ492nBCnbhzzQSeVAX1VJpF5tAhIVAEjFJ6JCXQ/i0W7Q7ZyvK/vneM9//iZz/E+CAukNmWwKXwPiEmHOd+SJC0i9Ay+HgrfbAjfEwcI34cfYxzLGf72801mdgjeK0PB+2bPSalnHfcOORxD/sWr1/ec/oMV+H+/Av/8Lbi5t/PtkRBY8s1lalffJGyt7PpyAkjzZZrnnqAzcR4jT09QCGtjnP8Tf47qJ57eNS/tdrj2G/+Stde+izVH/YKWWJMn0RUGyTiDpDQUvvNYU0HrKsbkM5FbdofCdwshBnCMwtc9j+dlXd5hmAlNYZgJMWnqrM0dZwjBusnxdjzGH/Tm+W5/kmtJ8UDhWwgYUxGfCNf5icJ1ns0tMe91blv49tE8GazxYm6RutrtSmEsfJyU+WZvjhtpCe5Dy/Lt3BwoXl4Z7er+8myHnBr9/kn9PFFpcmRasXFlK6c79LNzThBwN1h8+fWR70zhKaaffWrzsYdCAtqmmS2WOUDoll0g3dbRPQ47uvqzrm6FSNOs+TsWCCFY78VIIajmfSaKIaF/sh3u3cY6Yb6AH4ZUp2ZOdF8Oh8PhcDgcDofDcZpIpZi59DhhLk99do540Kd1c+m2tiWAks7szH2jiYSHPoH7/WKoqBUCSqEiUJJmP0Eb14TywLPd2lzkSGVILLNi9cD08U2EuMNmpSzHe5nywgcIPepit5Hj3atP3xctUanVI8J3Qkpikz2E7/EdwnfWEGHoYuTakYTvWs7yiy80mS2OvrZrg0zwXu46OfUs494dh2PI//gffY7/4mcfp7LHGL4FXlmC/+d34H99FxqHcfS+BVKnlG5epXrtHbx+e/cCQhBVJ2hc+AT96uSp5cdKz2PqxS8y+1M/gwx3dDpay+r3vsP13/rXJN3bbXcXWBuS6PJQ+C6T6mImdpsKWtcwpgBIhOwjVRMpmwjRB1wWDkJkOd75bXneQZidzZMYkgiOoVrQ4TgOLII1k+eteJw/6M3z6mCS60mRxO5/PhMCxlXEU+EaP164zmfDZea8DodL3LKc89p8obDAeb+zZ5z0qs7x7f4s78Z10gfkMui3blQw275DQmn4qZnd3zvd2oWRx0LH5BtXhjndfuYykTv9nG6A3s01mpevjkybePox/GJ24yiRSCEz63IskUn2j8eQPRAx6BKbQrfdIwPbG4rYqYbUoq1HlGo6UUq9GOAryVTlZLu6436PJIoo1scI80UKleqJ7s/hcDgcDofD4XA4Ths/zDF96XHCQpHK5DS9VotuY7dd86G2hSFnUkKrkSdkZw5QL/gUAp9q3kcKaPTi2+5Id9xfZNbmBSJVRotg09pc2BT/mKzND8zxHpujPf0w5h7K8b4VG8J31/TpmT4xyQ7he3pL+BZ1Qibw7X7Cd+9A4bv6/2fvT4Mky87zzvN/zrmL7+6xb7lU1pKVtRdQC4gCRFIkQYgiBYpLazU1KU3Lmt0UezSaHlEy2WisORqj0eYDp8coQd2j1pAjmkxik2xSTWohAQokQRCoQgG1oFCVteYaERmr7+53OefMh+uRGR4RmZGRseR2fmlhHuF+3a97pMd19/vc931Dy3//fJO50nAOsR4p/sevVrnSvjfHH94Ljr4HpePcoQJP8ldfOEa59S5fPJ/ypXlFLx3eoW8s/Mk8vLwIf2YWvu8ElPZZ4ObFPSrz7xMXa3TH5jD+8A1a5dEdP0a/Mk5x9TJB94AGie+idPIU4fgEV/7oi/QW54cu6y3Oc+G3f42xZ1+g+ujjCHXrG3lrA1IdkOoiQiR4IkEqH4TGYhEiRpIiZB9BD6zEWh9rAywe4h6vyLwuKa5VeEcxCJkFUkkKcZTN1PU97vWKVefuYRGs6jyrOs/b8ShjqseU12VS9fDEzh8IpYBxr8+41+exYI1VneOKLrKU5tFbguqa7HMmWKesdv7Q0DOKs/EIyzrP/fR3UY8lf7JUGjrvO6falPzhgwcs0K0Oh92F+kVEEoPysvncYZgF3rfB4stvDv2sAp+JZ88AIBF4QqHRGCyJSa8/DkP2QPTBlIAQ9CjYHV7IBVjPQ6bZ8ylNsse92okJPEk5VMxUc3jqcJ9Lnfo6vh8QFgpUp11Vt+M4juM4juM496Z8qczEA6ewH32AjmOaK8so3ydXLO1+5S0KJiURipxJ6SqfWChCe7DdEIWAyXLIZa2pFQLWOjGNXkIt79+WA8SdO48WHlqV8GxMYPoY5aNMjGdiFCmJDLH7CKQ35ni3J04Ql0eGLktKNZpBjvLih6jkAKr27iAagzYxEVnhgyc9fKuQVoIpIkUZJVI82UOLHpYYbVOM7WNEhKELsoOwHoIQbIjY0umvElr+z883+cVXK1xsXYtQm5HkF1+u8X95/mjyGWdvXNjtOFsECv7MrOaFSc3LyyH/+RJEW94PJQb+4BL8yQL82WPwZ49Dfh9/TQIIO3WCboNedZLeyFQWLGxighytmYfwu00KK5fwjuCFyi+WmPvsX2D9jW+y+torQ+1jTRSx/LUvs/7W64x9/EXKpx5G7DMEsdYnsT6YAgKNJ2OU9DEyxeoCQqRIEoSMEURYJBgfgw/WQ9wnVZpDpIJ8ftDKPMqCKJ1mlYiRzioTlQu9nTuLRbCiC6zoAm9jGFN9pr0uE6qHukHwPeH1mfD66ABWdZ4raYGmCXgwaDDjdXe8nraCj5IK55My5j7cRvz+fIV0UyW9Jyyfmdle1R0VJ9DBcKvz4vIH2TbF8yD0stPboH35Cu1Lw23sJj52Bi8MEGRzug0GbQ2JSdHXO0JX9EF0wRTAhmBGwO5cmW09lc3USg0kFotHJ0qJEsN0NUfoKUaLhzvnPY1j+p0O1clplB9Qqo0e6vocx3Ecx3Ecx3Fup/LoOEm/D0CaxNQXFxg7dgJ/a+fJXWTtzGMaXkhgNLFQeNagDrjGW0qYruS4XO9Tyfs0ejGd2FAMXeWnMyAEqQjRIiCwPSygrZfN8jY9jPBIZXDLHV2FNZSWztGPunTHZocOtNBBjsbco5SWzh1Z8dxRMxhiExMzCL6FwsfbFHyXUELjyT5adLHEGJuibYQR/RsG3+XgWuB9vnltf1grlvw/X6nwiRdbPDpdvk2P3NnJ/bfX13FuUs6DP38K/m+fgO85Bv4Ofy2Rhv94Hn7uq/DFCxDv8yBBYS2F+hVqF94maK3tuExSqNA4/hidsTmMPPw3T0JKRp99jmM/8MN4OxxNmbZbXPmjL3Lht/9X2hfOHVjLHosiMXn6aZV+PEKaljG6gLEFjK5hTAVhQoRMUbKNVHWEaIGIrl/Rdy/zPCgUIAzA869VYLp53s4dziBZ1gXejMb5UneO1/vjXEnz6Bu0OlcCJr0eT+VW+VRh4bpB92Ja4Cu9GT5Kqvdl0L3Y8/jDK8Pb7Zcm2oyE27cHW1uY+711gt561r7cU9m4hNvAWsvClqpur5Bj/IlHsu+Fh8Vm7cutJr3euAsRZ3O6bT77MlUw+Z3XKQUoD5GkCGtJEom1lvVuTCFQ5H3FTC1/6EXunfo6UinypTK1yel9H1DmOI7jOI7jOI5zpxudPUZpZIzq1DSeH7C+cBmd7n2soYclb1ICq5GYQ2tn7nuSqXJIzpMUA592lBAlbh+cM8wKQSQL9FUFLQISlSORIcJqAt3F20drcwHkG9eb461ozTxEd2T6npjjfSMGQ2wTOqZH2/SIbExiU1IjSdICpBNIPY3POIEYIWSMwE6gTAWQGLqDVufrV1udF33L33uuyanK8P9PK5H87G+84UYX3GHcXjPH2UUpgL/4MPxfPwGfms2qC7fqpPDbH8L//Wvw5ctZIdh+KJ1QXjpP5dJZvH5n+wJC0K9NUj/xOP3K+JG8WOWnZjjxw3+J0qmHd7w8rq+x8MX/wKV//1vb2p7vl0WSmpAordCPR0nSCmYw59voKlZXESaPkBYpO4Pguwmid8MZHPccISAIoJDPwm8/yH4WDOZ5x26et3NHM0iWdIE3ogn+sDvHm/0xltI8Zo8buZbx+Xpvkjejcfr2/mxi81Y9x8+/OU1krr3VE1g+O7e9qttIn155Zui84sqH1+Z07/Eo+oPUPHeZ3tLwwV9Tzz2B9D18kf3fJja9+qFmRyIG2R5UcxfAlAdtzK9DeQhjsMZiYgFC0eqnpMYyWgwo5TxqhR1mfB8gozW9VpNitYbyPMrjE4e6PsdxHMdxHMdxnDvFxAOnyJfKjMzMYS2sL8xjzd73Z+VNim8NeaMxQhCJwykayoeKkWJAMVTkfUmjn5BqF4I52xmh6KsSsSwO5nkX0MJHmphA95D7aLd/bY739oKQ3ugMrelTmPvkIHo72EfUNX3apkvfxsQ2RRtBmhYg2Qi+sxnfOcYIrwbfaij4zgcd/o/P1Xmoem2f03hO80//+scRbmTBHeX+eHY7zgGohfCXT8M/ehGen9q5KXQjhl97D/4fL2dzvfca0GzlR10ql9+ldOU8It2+E98qj87EcRrHzpDk9z7DZq9UGDLz3Z/h2A/8MLnJnWeH9pcWufQffpvLv/+7RKsrB34fLILU+ERpiX4yRpJW0KaIMUWMrmB1DWGKCCmRso9UjU3B996PBL0rSQn5XPbl+VlFpu+DMdk87zSBe/54Pudup5Es6iKvRxP8YfcY34rGWE5zN9yuJlbwTjTC13rTrJud21Pf66yFLyyU+R/fnqCrh9/mvTjeZTK3fTvYrc4Nj84wmnzrMigFYe62zem2xrD48reGzgsqJUYfPYWHQgCpTbFYYnO9o6DTQdAdZAG3KYKpXH+dUoKSkKQIA4lWGGupdxNKoYevJLO1nSvCD1K3UQegUK1RHp9A3aYW8o7jOI7jOI7jOEdNSsX0w48SFoqMzs6RxhH1Kwt7rvDO2pknSCyhTkmkIj2kMX+1gk8p9KjkfJSUNHoxdr87hp17kxCkMqCvKqQyRyoDElnAIvFNH9/0Ebe433ZjjvdOHWOTYo3G3KNo//YVNNwOFktiE3qmT9v06NmIiIR0EHybZBz0NN5Q8D2JslU2gu9cuMp/9/wFHhqJGclp/vsXmswdwb4hZ2/cnjPH2aOJPPyXj8H3HYd/fw7e2CHPXe3Dr74DX7gAP3gKnh4fGpmxJwII22sEnTq9kSl61cltwYMO8zRnHyFo1ymsXkal8a2t7Cblp2c59uf/Ip1L51l99WvE69tfQLuXLnDh0gVKDz7M2MdeJKhUD/x+WCA1PqnxERRRUqNkjBQRWI3AIkQCIkGIPpYe1kqs9cEGCA63Mu+28xR4eUhSsuEl6to8b62z6m+lcPO8nTtdimQhLbKQFvEwTHpdplSXUdVHiizgvZyWeD+uknD/zsZKDPzrj0b58tL2g5+OF2L+6gPrO16vUzs59HO+OZ/NMgsGLcxvk/V3zxPVh+dKTb/wJJ7ykEKS2gSDJTIxdscPghpUC6yXhdw2B6Z23fVZAN/Lto/WYmIQQrDWibHASDFgtBhQCA73d2Ktpduok69UkcqjOjl1qOtzHMdxHMdxHMe503i+z/TDp5k/+21GpmepX1lk5cI5SmPjFCrVm66oVFgKOgHlk9qsnXnRJIeyJ2y8FJJoQy0Pa52YRj+hlvdvfaewc0+zQhCLPKkI8E0PKwRyY5637qKFTyqDPd+usJbS0vnBHO+5oeefCXI0jj1K6cp5gm7jIB/OXSEbg5eS2uzAGU94eELhGYUxBaCAFAZP9VH0shnfaFLbJ+/1+akXGvT6kvH7s77mjufCbse5RbMl+K+ehPNN+J2P4OwOGcJiF/6Xt+BEGX7oFDw6so/Q2xoKawuEzVW6Y7PEpZFty8SlGnGxQq6+RGH9CuIQW1YLISgdf4Di3AlaH73P6jdeJm1vb4/b/vB92h99SPX0GUaffR6vUDyU+5MF34rU5IE8njQokSBlH0RK9mKlESICmQARxgqsDcD6gI+4V0Nf38sCqySBWGQBd5JmFd6pzi4/gvnvjnMQUiTzaYn5tISPpqJiOsa/b9uVb2gmks+fHef91vZ33M+NdvmbD68Squ2BcBxWSPK1ofOKjYuDOd17/1B1UEyqufLqW0Pn5cZrjDx0AiUUqdUYIDHJDYLuJiCztuU2B3rsxiv1BgeSJRqrQVuPRBta/YRaIcBXkunq4X+i6bWaaK0pVkcojYzih+5TlOM4juM4juM495+wUGDqoUe48uH7+LkczZVlmstL9JoNKhNTBLmb+6yUs5rEKnJG01E+faHI76Nd9PVICVOVHPP1HrW8z3ovphVpyrn7e3+Fc2NGKCJVwjMxvulhlELZBGViAp2iZYAWe3sOZXO8l/HiHq2pU1h17fpWKlozD5JfWyC/vniv7g2/KcPBt8rCb6sw6abgW/ZRsosloSBDCvnIjQm9Q7ktrePs08kK/PQz8O56Fnqfa25f5kIL/tkb8HAtC70f3EeRs0pjylfOkTRW6IwfQ4dbWmYISX9kmqg8RmFtnrC1dqgvWkJKKg+dpvzAQzTefZu117+O7vWGF7KGxtlv03z/XWqPP8XIUx9DHfIM2NRIUkLQIZ4AJaPB3NZssydFihQJyIgs+CYLvvHB+oh7bcrDxjxvz4MoJguAdBZ6J3EWdvsebrqFczdJUKxq1zboQsfnn74zwVq8/W3dXzhW54eONZHXeSHo1k4M/aySLmFvGfKFw7irN2312++TtIfnTM28+DS+9DGDf4lJySLvrUxW0Y0AXclmde8WdAuwnodMU8CSJtm2cK0To6SglvOYKIcE3uFuI621dNbXyRVKeIFPdWrnkSGO4ziO4ziO4zj3g0KlyvEnnmbt8kWkUhQqNZrLV1i9dIFCpUp5bBypblzAIYCiTkg9SahTIpUd2Owfwog/TwkmKyGLjT5l49PsJ/hKkPNdkYlzY6kMSIWPbyMwAqM8PB3jmQhFQiJDrNjbPgm/16Z66Syt6VPocHg/T290hjQsUFo6hzQuvE2tJh0cBKOEvBp8S10AnQXfiBiBRNrbVxziXJ8Lux3ngJwegf9TDd5azULv+c72Zd6vw//rm/DEWBZ6z+1jzLbfb1O99A5RZYzu6AxWDbfktp5PZ/Ik/co4xZXL+NEOd+gACaWoPfYklYcfpf7tN1h/8zVMMtxO3eqU9Te/SePsW4w89XFqjz+J9A6/lXhqIdUhEKIEKJmAiEBECJFHCD0IvmOgMwi+PSAYtDu/hwLgjXneaZqF3lJmLXs3fvYUKA/X2txx7g6vrub5l++PEZvh7VQgDX/r4VWeG+td55pghaRbPT50XqFxEZHPcd10/AjoOGHpm28PnVecnWDk+BwWQ2o12mpSdprXZgdBt82CbvxB0L3L41EKkbUIwaZgraSfaLqxZqIc4nuKydLhz7WKu13SJKY6OUWuWCZX3McbBcdxHMdxHMdxnHuA5/tMPvAg5fEJVi6cw8/l6DbqtNdW6XfalMfGyZcrN2xtvtHO3CofbQyR9FAmOZQ9fjlfMVYMMTYi0YZmP0EJgX/IB0879wAhSEQOvdHaXAmk9fFMRGB6aOGhZbinwzQ25ni3J04Ql0eHLkuKVRpzj1Je/Agv6R/sY7mLaWvQNiYCFBJPZsF3miqkLQ4Kxpw7jftfcZwDJAQ8OQ6Pj8E3l7KZ3ss75AxvrWZfH5+AP38KJm+xgE4AueYqQbtOb2SafnViW590nSvSPHaaoLVGYXUepZNbW9lNkr7P6DPPUX30Cdbf/Cb1t9/E6uHWQCaOWX31q9S//Qajzz5P9fQZxBG10dYWtM7alitRxhMJSiZY0QORQ5K1P7cyBroYulijuBZ83yNHYnpe9pUkEMdZa/M0HXxp8H3X2txx7mDGwu9cqvK/X9reKmQ0SPnpM8ucKN54e98rTWO84aNRi93F2/63v/zGWXR/+GCpY5/4GEIIEpuirSG2Oz22jaDbDILuANJxdutYYeHq9lBYSBIF1rLWiQk9SSn0mK7mUOrwDwDo1Nfxw5Agn6c2PXPo63Mcx3Ecx3Ecx7lb5Etljp15gsbyEutKkSuVaa0s01i6MmhtPnnDMVA5q4mNwsiUjgiIpEfe7HQQ9f6V8x6R1mAtumup9xLGigHyNh5Y7tw9jJBEqogyAYHpYZS82tpcao2WPlrcfAHZ7nO8T1NaOk/Yuf/meO9GY9AmC767SYonJFK5WPVO5P5XHOcQSAHPTcGzE/C1RfiP56EebV/uG8vw2jK8OA1/7gEYvcWxnNJoiquXyTVX6IzNkRS3hx9xeZS4WCNfv0K+fgVhD75Vz2Yql2P8hU9Sffwp1l77Os333oEt69S9Lst/+kfUv/UaYx9/kdKph294FOZB09airQfGQ4kinkgRMsaIHtgQid0UfPc3Bd8+2BBxL2xCfT+r5E7i7I3ORuidxCBkdqSacKG349xJIi34l++P8Y217UdKPVzu8988ukLF370FVWdkuIV52F3BE4d7QNRu0l6flTfeHTqv+sAc5alxEptisSTXC7plB0i3VHTvvv2SSqAtCG3QiQAE7TglSg2z1Rz5QDFaPPwWVUkUEfW61KZm8MMchWrt0NfpOI7jOI7jOI5zNxFSUpuapjQyyuqlCyhPUehVaS4vsXrxAoVqjdLo2HVbm5dMTCpy5ExKX3kkQuIf0vzd0UJIkloMsNqJqfcSRgv+tkIlx7keLX16wsO3MZgeRvkoE+GZGEW6p9bmV+d4Rz1a0w8Md4mVivb0g+i1RfLrC67f53UYo0mFxt4rxXD3mHsgqXGcO5eS8NIsvDAFf7IAv3ce2lv20Rvgq4vwyhX49Cx85iRUbnGfukoiKosfEhcqdMbmMMGW9FxKeqMz2Tzv1csEnfqhv3j5xRJTn/puRp58ltVvvEz73AfblklaTRb/8AuEb77G2HMvUpg7caShN2y0J5FgcihRQAmTzfMWPbABEvBEihURVsQY+lgrwWYV3+AhNv02jZAIaxGHMP/nwEkBYZgF29Eg5N6Y5x0P5pz7rrW549wJViPFP31ngovd7S8Un55s89dPrXEzndFSL0dUnBw6r9BdOKi7ecuWvvE2Jhk+sv7Yi8+Q2hSDJTIxdqftquyCiEGXuBp0292PclYmIglLZGOZPNLUAllVdzFUhL5itpo7kn0RnfoayvPJlcpUJ6eP/HXQcRzHcRzHcRznbuEFAVMPPky5OcHKhfP4uTzd+nrW2rzdojw+Qb5c2XY9CRRNjFUBqTH0hUJZcyjtzKWEyUqOy/UutYJPvZPQ7KdU8oc/0tG5hwhBIkJS4RPYPhbQ1sczcVb1LTxSGWBvcr9tNhr1LK3pB3eY4z1NUihRWJk/9JGojnPQXNjtOEfAV/Ddx+CT0/Cly/AHF6A33NkbbeEPL8OfLmTLfs9xKNzie5+g28TvNulXJ+iNTGO3tNYwfkB7+hRer01x5RJefP2ZrgclqNaY+bPfT39lmdVXv0Z3/uK2ZaK1FeZ//9+Tn5ph7LnvID81fej3aydZ8A2YEEUeJQ0MWp1b4SEoghJo3yP1AhKVI1UltCqhVYHUK2ClD9agdB8v7aPSHp7u46W97Pu0hzTxnRUfSwX5/JZ53oO25pF287wd5zZ7vxnwz85O0EqHjyAVWP7yA+t8z3T7pkPZbmW4bZUwCfn+8kHe3T2LWx1Wvz18QNTY6QfxRyoYNIlJrhN090D0wRSBEPTo4CCkG5PWIJTEyAAV94hNDili6t0EYy2jhZBK3qd8BDsidJrSb7Uoj03geR7l8fFDX6fjOI7jOI7jOM7drlCpcvzxJ6kvLSKVzFqbry5Tv7JIt7HR2jwcuk5oDbHRGAla+PSlR+GQ2pkrCdOVHPP1PuWcpdFL8KUkH7rKUGdvrJBEooAUIYHuYpVE2RRlYnzdRcvgplubqzS57hzvNFfKRqK21ymsLaCSHdrVOs4dyIXdjnOEQg8+ezKr4P7iRfjDS5Bs6ZQTG/i9C/DH8/C9x+G7jsGtvP/ZaE0Sttbpjk4TVca3tclJ8yUaxx4lbK1RWJtH6sN5Y7dZbnyCuc/+EN2Fy6y++lX6y0vbluldWeDSv//fKB4/ydjHP0E4Onbo92szCxjlY/yAyAswXoD2AqyfnRrPx97MTFsh0V4B7V1nKLvVQ0H4Rgi+8b00ye2JlT0va2eeJJCIQZvzjXneJqvydvO8HedIfXmpyK9+OIq2w1uFgjL816dXeLzWv+nbskbTGXlg+Ha6V5CH1LrtZl35+ltYc+0+CCmZfv4JDIbEaDQ73D/RB9EFUwCbA1PLTm+CZ/pEQRVrIBE5RJKijaXei6nkfHxPMFu7xfkie9RtrCOkIl+pUp6YRLptrOM4juM4juM4zk0RUjIyPUtpdIzVixdQvke+u9Ha/DyFWo3S6DhSXqvfLpqEVEhyRtNTHrGQBIf0mTjwJBPlkCtNS6otrThBKUFwM23ZHGcLIxR9VcKzMb7pY5SHMnH2RUoqA8xNjKS80RxvgLg0QlysETZXKKwvHklu4Dj74cJux7kNij587kH47rks2P6T+ayye7NeCr/zURaIf//JrB26fwvvgaRJKa1cyuZ5jx8jzZeHFxCCqDJGXKqRX18kV18+ktbbhZk58j/4o3QunGP11a8RN9a3LdO5eJ7OxfOUHzrN2MdewN+h/dCtsAiMl4XZehBmGy9A+xvf+1kr78MmFKlfJPWL7HSMnDDpoDK8N6gI7+PpjcrwPtIe4psMISAIsuA7jgEBVkGaZPO8pcouO4rfk+Pcx7SFXz9f4wsL27d/07mEnz6zzHR+L9sCSxTW0GFp6NxiZ36f93R/+msN1t89N3Te+BMPo8p5UpuSssNjFHE2p9vmsy9TzULvm+CbCCMliZ9HxAnaBngmZr0bI4WgVvAZKwXk/MMPnY0xdBsNCpUayvOoTt6eriaO4ziO4ziO4zh3Mz8ImX7oEbrNBisXzhHk8nQaG63N25THxq+2Ns/amScYJfCNIRIeno0PpZ05QDFU1AoBYEmNodFLGC0GKOm6Jzq3QAhSEaJFgG97WEBYH89EWQB+k63NN8/xbk+ewPjhlgUEUXWCuDxKbv0K+cYSwt4FIzud+5ILux3nNqqE8OOPwJ89Bv/xPLy8yLaYuZXAb7wPf3ARfuCBbP63uoV3Xl7cpzL/PnGxSndsbtuLl5WK7tgc/co4xZXL+N3GoVcVCyEonTxF8fhJWh+8y+o3XyHttLct1/rgXVofvU/10ScYfebjePkbhxlWyCzE9rPgenOgbfwAo/xtR6vdiaz0SGWJ1C/teLkwyVAIfvX7tIfSvYOp0pQScjnw9Q7zvKOs6ttzrc0d5zB0UsH//O44327kt132ZK3H335khYK3lw8ZFpKE7vSDQ+d6SRs/bu7z3u7P4itvDv0sfY+Jj51BW02y04E9IgbZBhtmAbcpg9l5W7mVtBppU/phDSykNkAmMXFqaEcpo8UAT0mmK9t/74eh12xgraVQrVEaHcPz3fw2x3Ecx3Ecx3GcW5W1Nn+K9cUFpFJZa/OVrLV5r9mkMjGJFwQE1pAzGishFT69QTvzw9rDNVLwiVODtbDWial3Y0aLAeIu2Efp3JmsEMSiQCpCAtPDCoG0Opvnrbto6ZOK3ce8+f02tQtv06+O7zgS1UpFb2yWfnWcwtoCYWvN7Ql27jj3bdi9tLTEyy+/zMsvv8wrr7zCK6+8wurqKgA/8RM/wS//8i/v+Ta/8IUv8Ku/+qt8+ctfZmFhAc/zmJqa4umnn+Z7v/d7+Rt/429QKt3cjljn/jKWh79+Br7vOPzuOXhth7Gp6xH867PwhQvwg6fgmQnY68F/Agg7DYJuk351ku7I1LZ21MYPac08iN9tUli9jBfffGvcWyWkpPLIGUoPPkLjnbdYf/1VdLRlvcbQePtNmu+9zcizL1B6+jlEvrSpGntQpe37WHVEQYG1yDQefCWoJEalCYFO8HUflCH1BKkfkHp5tApJvTypl4ebaCez6+qlTxL4JMHOFe9Sx4MW6b1r7dLT3tVq8T1V8CsFhfy1kHvzPG+tr7U+d291HOdALPQ8fumdCZb627dn3z/T5MdO1vf8GoBOMUh6tWNDZxfb87f1L7ezuELz3HBl+fjTp1H5gMjEO1wjHVR0+1nAbYpgbq7zh8DimQiNR+LnMVplR0AnCWvdGE8KKqHHVCWHpw7/t2KtpVNfJ1cso3yP2pSr6nYcx3Ecx3Ecx9kvISWjs3OUx8ZYuXgez/eJul2ay1dYuXieYq1GaWSMAgnxlnbm4SG1MxcCJsohidbUCgFrnZhmL6GavzuKcpw719XW5ibGNz2MUng2QZqYgHQwz/vGUaDADkairtGrTdGvTmT7fzexXkBn8iT96iSFtXn8btPtCXbuGPdt2D01NXVgt7W+vs7f/Jt/k9/+7d/edlmz2eS9997jN37jN/jkJz/Js88+e2Drde49U0X4W0/AxRb87kfw7bXtyyz14P/7bZgrwQ+dgsdH9/5+SFhLvn6FsLVKd3SWqLJ9JnZSqNDIl7O5HGsLSKNv8VHdPKkUtSeepvzYUzQuXqCzuoooV5G1satfqjYKuTzb678PgTHINEZtBNrJpu8HAff1fvUpWeyrkHgiQYo6UiZZNaJIMTIgGQT02stCcO0VSVURrQoH0h7cqACjAhKq2y+0FqWjq8H31rnhSkc7h+G+B95gnncsBrO906y9eardPG/HOQDfWs/xP783Tk8Pbwc8YfkbD67x0mRn7zdqNKQp3YlHsHLT2z9rKHQX9nmPb521lsWXh6u6VS5k/OnTRCbZYSukQbWysQqmdG1O903yBuF5HJQwwsNokGlMP9b0Ys1UJSTwFROlcJdbOhj9dhudphRHRihUagS7dC5xHMdxHMdxHMdxbp4f5ph5+FE69XVWLp4nyOVpr6/Rqa/Ra7WojE9QKkmaniAwmlh4eDZBHdKIRyVhqpJjvt6nkvepd2O82FAM3b40Z/9SGZAKH99GYARCeXg6xjMRioREhdhdmvVLoymuzZNrLtMbnSEqbQ8fdJinNfMQXq9FceUyXtw7zIflODflvg27Nztx4gRnzpzh937v9/Z83UajwWc+8xleffVVAH7kR36EH//xH+ehhx5CKcXFixf5wz/8Q37jN37joO+2cw87Xoafeho+qGdzuz9obF/mchv+pzfhwQr80IPwcG3v65E6pbR8YTDPe440t6XzwMZcjtII+bUFcs2VfR+tZSGblz1Ujb3pey/Ijhp75OMU97mu3Qijkcm18FoNAu2N74XeX+siC2hM9o31wHhAHjAIGaOSGE+0EUIjhQAMiARDilYK4xVJvRJGVdCqROqVSFVWIb7vIz6FQHs5tJcjDms73HmD0tEOs8KzUFwKgfC8rLU5m1qbu3nejnPLrIXfXyjz6+dr2+YqVXzNf/voMg+Vd6p03o3JDlCRku7oqaFLcr0VlEn2ca/3p31xkc7CcDuTyY+dQXtgt+1cMKCaZNucchZ069GbXpeyKdKmJDJH6udIjY8kRkYxq52IXCApBB6ztfzWg5cPTae+Tpgv4IchVVfV7TiO4ziO4ziOcyiKtRHylQr1QWvzfKVCc3mJ9cUFwkIDf2oOG+ZJhaQvPQrm+gUu+xV4kslyyGKzTyn0aUcJnhKEntuP5hwAIUhELpvnbbpYJZCDed6B7qGFTyp3b22u0oTS0gVy9WW6Y7Mkhe0d9dJ8mcbxMwStNQprC6j0VvZZOc7BuG/D7n/8j/8xL7zwAi+88AJTU1OcO3eOU6dO7X7FLX7mZ36GV199lTAM+bVf+zU+97nPDV3+/PPP8yM/8iP84i/+IloffmWsc295qAb/3bPwzjr87x/CpR3KmT9swv/7NTgzkoXeJ8p7X48Xdalcfo+4VMvmeXvDL3hWeXQnjhNVxqisnCfs1LPzpUKjsJtCTSvEUHBtvGCo1bjxjq41j9DJpmrsJAuxN4Xbwujb1GpFYk2OlNzgZwMyAiKEFEgUQku8pI8v28BFIAVhAYGwPkbV0KqC9stolSf1cqSDU612f8OyKyHRXh7tXWdmrTXXgvCki4raeFEbFbXwuk1kHCGUcvO8HecmJQZ+9cNRvrK8fdzJiWLMTz+6zGh4K+8jDERZmJ2UxogLw+FwsTO/05WOhLWWhS1V3X6pQOXMSQxb28bZrKIbAboCNhgE3Te3fRFYlInQwiOVPqnKI1KN0IZ2LyLRlolKSDH0qBWOZhRG3OuRRH1GZ+YI8gUKlR26cDiO4ziO4ziO4zgHQkrF6OwxyqPjLF84h+f79NttmivLROfex04fJyzX6PkBsVCE9vD25RdCxWgxAGJSo2n2EkaLAWrP88ocZ2dGSCJVQpmEwPQwSqJsgjIxgU7R0keL3fd/eHGPysIHxPky3bE5dLh9X3FcHiUu1cg1lsmvXzmSDrGOs9V9G3b/D//D/7Dv2/jyl7/Mv/pX/wqAf/JP/sm2oHszIQSed9/+up19EAIeG83C7NdXsvbmV7rbl3tnHd55FZ4Zt/zgKZgpWAR20Ip6UCNo7dXW1OLq/Jlrl+caHUrNBdqjx2iPzG1rR63DAutzjxG218g3lzHKQ/sh2s+hvRDth9uC8sNijcG2Guj6Kubq1xpKp1SOn6A4Ooo8pJZDB0+CyQN5rBlUgw/Cb2wEKAQghEWIBCFS0Et45gpeIhHWQ+CDDZF4WOFhvDz6agCeJ1U5Ei9HqnKYg5hpLiSpXyT1i0T57W3whUlRUQcv7qDSLl4yCMWTLl7cRd7GSlLHudM0Ysnnz07wQXt76+wXxjr8xENrhGqv2zMLOmtdDoDv06mdHFpC6ohcf/UW7/X+NT64SH+1PnTexHOPZU0whthBRbfJgm580OOwS+utzTwTARItQ9KghEahdIKII9a7CaWcIlSK2Vpu19s6KJ36Op4fEBaL1KZmjmy9juM4juM4juM49zM/l2P29Bna62tZa/NCgc76Gs2leTpRhFcbJc4VUdbgHeK+xVrBJ04NWMtqN6HejRktBgg3v9s5QFr69IR3tbW5UR7KxHgmRpGSyHCokO16gl4L/9I7ROVReqMz2zMAIenXpojKY+TXr5BrLiPs3bJv3rkXuPR1H37pl34JgGq1yt/5O3/nNt8b516yEVBjGQTWWTD9/Ljl46Pw8hXB75z3WIu2v/l5fUXwxorlE5Oav3AyYTy30QhWsHFrIDBCZueJq/E3G/F4bn0Fv92kMzZHXBrZto6oNJrN6zhM1uxYja2SmGRpnrU//SN68xd3vGr3G18hPzPH+HOfIDcxdbj381BcC7+z/3qNlRGWeBCCD8IrNEIkIFKk6CNEC5BIAmQa4CU+Hh4CMYiEJFKAEV42I3xQCZ6o3NDp0DzfW2SlR5qvkuZ3rlQUOsGLO/j9BoXmZcLOys4zwh3nHne+7fNPz06wHm//u/uLx+v8+bnm3pth2EHbcmuyg5Z8Hysl3drxocWKnfnb9ndntWHxlW8NnReOlCk8PLt1SVBtrgXdAaRj7CXoVjZBWk0i82gksV9EpBostFo9jLWMFEJqBZ9ieDRvjdM4pt9pU52cQvkBpZFDfk11HMdxHMdxHMdxhpRGRilUqqwvzCOlIl+uslxv0F5dxlQSbKFMWRxuV8jxUkiiDbU8rHViGr2EWv7oumI694mh1uZ9rBRo6+ObKKv6Fh6pDLaN1Nt2M0CutUbYXqdfnaBXm8aq4WI5qzy643P0q+MU1hYI2uuu56dzJFzYfYviOOa3f/u3AfjMZz5DLpdVAmmtmZ+fR2vN9PT01fOd+0u2AbfZAFaGA2sxOH9jmWtHONkbhg7ZJRIJfHJK8PyE4U+uSP7DBY9mLLYsK/jqks8ryx6fnBF89iRUtxcMsjn8tkisAITM7okR5JaXUM020dgEJjzg57LR19qLX201fm1mttTXn43jVyrkv/8H6c5fYvXVrxGtLm9bprdwmYu/85sUT5xi/LlPENS2h/Z3DwWmABSuht8bld9WRmA1WXOYFEQKIgHRQwiyoNsGCAIkQVYFbg0yjpE0CMiWEUIgNp4L0iNVeZJNAfhGZbhWOeyWiv9bYZVPkq+R5Gt0R04i04h8c55C8zJBd9W9CXLuC6+sFPjlD0aJzXBwG0rD/+GRVT422tvjLdqsklungAQ/yMJuT9GvHcOo4ReCQmdhfw9gH9bOfkjcHJ7NMfr8GcRQyzYLsgMkg6DbAz3GXt6+Zu3LY7TwsxZefgUrBCpNsXFMo5tQzvn4SjBdPcKq7sZ6NieuVKE6OYU4qiHhjuM4juM4juM4zlVSKcaOHac8Ps7KhXOowGc51jTbHTqpwQYelVzu0LJnKWGqkuNyvUc171PvxbQjTSnnYhvn4GWtzQtIGxLoLnZTa3Nfp2gZ3FRrc2Et+foSYXOV3sg0/eo4bKkON35Ie+oBVG2S4upl/N4O81kd5wC5reYtev311+n3+wA89dRTNJtN/vE//sf8yq/8CvV6HYAgCPjO7/xO/tE/+kd893d/9y2t59KlSze8fGHh9u2ovh9sDqazsHqjBfjOrcHB3DCk2wisuXptgRGDgFGITefLa9XY4joRuIJPHYMXZuCPLgu+cMHSTYcX0Vbw5Xn42iJ86pjPdz0QUvTl1Qrum3qnlmiCxUV0qURSGwF1c0Gn0CkqjVFJH5X08ZI+Ko2QSYLQ6eA4gFt/pyiEoDh3nMLsMdrnP2T11a+RNBvblutc+IjOxXNUHn6U0Wefxy/dwlDzO87W8DsdhN+Dyu/BTCFLihUJRiQgIrKFJcL6CBsgrY8QPlJIhN0IuwGdInWfXCzIbwrCBdnzU0uf1MuTqPBaVfggCE+93LY3NzfDeCGd0VN0Rk8hkx6F5jz55mWCnjv6z7n3GAv/7mKV3728vfPBWJjydx5d5lhxj63+jYYkBQx4Higv+9QcBuB5dMpzQ4sH0Tp+usNMjCNgkpSlV98eOi83OULx5PTwgrIHIgZdImtdPgZ2b2MYfN0HJKkMSGVIGuSy9u5YWo0OACMFn7FSQM7f/4E8N8NoTa/ZpFgbRXqKyvjkkazXcRzHcRzHcRzH2VmQyzN7+jFaayuISxeRuTytXp9OnKI7K5TLZfxwx0qiffOUYKoSslDvUw59mv0ET4kj+4zq3H+MUPRVCc/GBKaPUf6m1uYJVii08DDixs9BaTTF1cvkGst0x2Z37BCrwwLN2UfwOw0Ka/N4cf+wHpZzn3Nh9y369re/ffV7YwzPP/8877333tAycRzzhS98gS9+8Yv8/M//PD/7sz+75/UcP35894WcQyEwBHo4CBhuB37tezMI96zwBsvJa8uIzctfz7UA2g6WRwjMlmA8u1xe+x7AE7z0IHzsuOGPL0R8+UKfWA/femLgSxcS/vRywneezPHpEzlC7+YjRAF47Taq0yGt1tCFPFZIhNbINEVsfOnsVCUxysTZkWE2ZaOCXZIijUGQDoJTiRHq6tetEEJQfuAhSidO0Xz/LGvffIW02xleyFqa771D64N3qZ55kpFnPo6Xy9/S+u5MHtmQ2+KW8DsahN8b89mzqm8rEqxsY7CAzMIj62UhOD4SOagKl0ghEHb4uSJ1gqf7BGKjFnzwnCX7G0lVcDUI35gTnqoQ7eXRXn7XgyyMn6c99hDtsYdQcYdC8zL5xmX8qOmCb+eu19eCf/n+GN9cK2y77HS5z089ukLZNztc83pMFnIbnYXbXpidBj74WeszLQP6ufGhaxU78/t8JLdu9a0PSLrDVetjLzw2PJdM9kD0wBSBEPQo2L3tWFA2QWCIZR6LIpYFkBIZx+gkpdWNGCkEeEoyVTm6qu5uow5AsVajMjaB8tzbccdxHMdxHMdxnDtBeXScYnUE/9IlRL2BNNDtKpprq4RhjkKlivQOPoTO+YqxUoBtxyTa0OwnKCnwlesC5hwSIUhFiBYBge1hAW19FAnSaHybhdJmEHobcf0J9iqNKV85R1Jfojs2S5rfXmyWFKs0ChXC1hr5tQWU3mORh+Pswu1du0Vra2tXv/+FX/gF+v0+f+7P/Tl+7ud+jqeffppms8lv/MZv8A/+wT+g0WjwD/7BP+DMmTP88A//8G28186uBkGzFhJrJbFUZMHz1Tru611xSyA9qM4WG8H35sBaXg20ry27f3lf8v0P5XnpeMiXzvX56qWIdEteEmn4/Q/7fOVixHc/kOM7joX4ag+ht7X49XX8+voNl7OIrIKOEKxF2RRFgjIJQhkgRFqDtCnSapTNXtyyF085ePHc2+9FSEn19GOUH3yExjvfYu2Nb2CiaPh+GUP922/QePdtRp58hpEnn0H6wZ7Wc3fYEn5vVHaLQfX35vBbJkACsovFZgcgDMLvLARXg2euzFqiD6q8pTAYey3kBq7OBVe6h9J98jSvVYsD1hpskpLgkagcsV+kU50jKY5d95HooEhr/DSt8dN4UYt88zKFxmX82LW+ce4+K33FL52d4HJ3+3bnO6da/NUH1vFu+nOszSqU00FLD98H6YEnIRwE3gOd4szQQSbCpOS7S/t4JLfORAlL3xyu6i4cm6AwuymMF30Q3ayDhc2BqWWneyCweIP25VZIIlXE+D4Yi9CaVqODkoJqzmOyHB7ZDgRrLd1GnXy5glQe1anp3a/kOI7jOI7jOI7jHBmpFMdPnEBVWywuLmI9Hxt4pOtrNJavkCtXyBVLB97avJL3iVMD1pJ2LfVuwlgxQEpX+uEcHisEkSggRYhvIqyVoDYXrmk8mxVVGRRGquvuu/ejLpX590kKFbpjs+hgS7GZEESVMaLSCPnGErn6FaTZS8GH41yfC7tvUadzrXK03+/zmc98ht/5nd9BDVo8T0xM8FM/9VM8+eSTfNd3fRfGGP7hP/yHfO5znxuuXNrFxYsXb3j5wsICL7744q09CGc7IYllgRQ7qFANr7X8vnrKpipkkTUuP6zBLbegFEh+6HSBT5/I8Qcf9fj6fIzZcthVJ7H87ns9/vhCn+89lef52QB1WG+chEALH40PEqQ1KJsgbYKyiuGqb42yMR7x1apvLbxBNfvNkZ7HyJPPUjn9GPVvvc76W69j0+H+7jZNWHvt6zTe/hYjz3yc6pknkTfZnv2uZP1B699S9vPm8NvEcLVFfwoyZSP8ZlD5ba2PHYTf2g5+T4PnlMjqv68G4VIY9OaW6Gz0Pxi0Qw88AmMJkxbETUbbl4mET7s4RXfkGEn++rPV07BMa+IMrYkz+P0G+cZlCs3LeMntacXsOHvxbjPk82fHaafD2xqJ5a+cWue7p9o3/1JiDSRJdirVIOgWEITgD7+1s0C3ODt0Xr57BWm3tAA5AgJYef0sOo6Hzh974bFNC8XZ9sfmsy9THYxt2Btf97FX25fn0EJhlYdIU5JU0273mCiF+J5ionQ4reh20ms10VpTrI1SrI3gh0dXUe44juM4juM4juPcHCEEU5Uy1g/wGw1W6orQD9DNBr1Wk7jbpVCtHnhr89FiSKwtNWC1E1PvJYwW/Dtq37NzbzJCEakC2DzKpngkyEHhmsBmRWtGZ+3ON/bdSy/b38K1ffcCCLpN/G6TqDxGd3QG620ZSSdlNuu7MkZ+bZFcc3XXvriOsxsXdt+iXG545+Qv/MIvXA26N/v0pz/Nj/7oj/Lrv/7rvP3227z55ps8/fTTN72eY8eO7fu+OnuTyoBIZHF3JPe+g/1OUctJfvSxIt95MscXPuzz+mK87SWjGVn+t3e6/NH5Pp95KM/TUz7ykN88ZZXbIRAirM1anZNuevEEYfWg6jtF2QRL1iJ+L1XfKggZ+/iLVB97krXXv0Hj7Fuw5UgxHfVZefkr1N96g7GPvUD5odMIeR+0B7ph+B2RxWMb4fdG5XfMRvh99frWw6LQDEKzjauxEYKLa63QB+3QxaBTAoFEpBqhITQpYWeekeY5+jKgUz5Gb+Q4aa5y3YeQ5KokuSrNqccJumtZxXdzHpW6uS/OneePrhT51x+NoreMBCgozU89usJj1eg619zKZpXcOgUk+EEWdntqUM29fdsYB1VSvzh03u1qYW66MVfePDt0XunBWXLjtewHkYBsgw2ygNuUwZT2vB5va/tykcMqBQJkmrLe7BIoSSlUTFVD1B46nOxXp75OrlDCC3xqUzNHtl7HcRzHcRzHcRxnbzwpGAl8TKUKYY5WvYEvICjk6TUatNZWCXN58pXKgRXRSAmTlZD5uqGW91nvxjT7KZW8v/uVHecgbC5cExZJVrjmmRih9GDffYoyGmlislI2iZEKzbWiNQHkWquE7XV6tUl6tclsH9YmVvl0J47Tr05QWFsg6NTdCEvnlrmw+xaVy9fmDkxMTPCxj33sust+9rOf5dd//dcBeOWVV/YUdjvOfo0XFH/lySLfdTLk9z7o8/bK9nkYqz3Dv/lWh//8UdYK/fEJf08dCG6VFYJUBKQEg6rvrKW5MilSZPdTWINED1qmxHD1yLHhF9Dr8fIFJr/j04w88TSr33yF1gfvblsm7bS58uX/zPq3XmPs4y9SPHHqSB7/HeOmw+9kU+X3RvitNrU897KfAYtFYwGzLQS/Wg2uQHkexoA0Fk+FFIwl1zxHuv4esVekVz1Gt3YCHQ6HdZvFhVHiwiiNqScJuqvZjO/mPErH172O4xyF1MCvnR/hPy9un1U0k0/4O2eWmcylO1xzB0Zns7kx4HmgvOxTcBhkP19HZ0tVt5d0COLGXh7GgfCEx4VXv4FNN1WUC8HYc2cGP6SDoNvPAm5TBHP9A16uR1iDMjFaXmtfjhBYzwOtiVJNv9NnqhgQ+orRwtFVdUfdDmkcUx2fJFcskyvtPch3HMdxHMdxHMdxjk7RV3S1xhCgazVEqYhdX8XzfaJul16rSbK8RK5cJiwcTGtzTwqmKjkW6j0qOZ9GL8FXknxwD3eldO5MQmSty4UikblN++4TjEq5Nqo0QZpsjKlFDGZ8+xghEdZQWF8k11yhOzJNVBnf1qnABDna06fw+h0Kq5fx+52d74/j3IALu2/R8ePHr36/W/X15mWXl5cP7T45zo3MlD1+4tkSFxop/+n9Hh+sbw9YrnQM/+qNDscris8+nOfh0aM9ajB7IVQkkhtUfacoq4deQO3gekao61Z9++UK09/5vYw89Syrr75M5+K5bcvE9XUW/uA/EY5PMv78d1CYmTvcB3yn2hZ+x4PwO75B+L1Rmbo5/PaB4YMR7OCfGYTgiU3x8PA8hUEgAWU8Ah3gpTHh2rtUVt4hDqv0KsfojhzH+FvmvWwQgrg4Tlwcpz79FGFnmULjMvnWAtLcZKDoOAekk0j++bvjvNPc3qb6qVqPv/3ICnnvZlo0mSzkNjoLt73BPO7Az9qX3+CTtBEevcLU0HnFzvyRHyXroYjrTVbe/mDo/MqjJwhqJUCDaoFVWdC9Maf7FvgmytqXi4BE5rPXBSFASmQU0er0yUnI+4qZap6jbObRqa/jhyFBoeBmdTuO4ziO4ziO49wlRkOfWBtKvkfTQnlmDtNp0Vpdwc/l6LVadJtN4m6PQqWKFwb7XmfoScZLOZZafRJtaUUJnhT43n3QkdK5Y13bd5+7GnJ7NkHaQTW3NSibDkLx3qZurQo0lFYukW8s0xmdJSnVtt1+mivSnDuN365TXJtHJTfbCdFxXNh9y5544omr32t947mXmy/3blB95ThH4UTV428/V+b9tYT/9H6Pi83tz9+LTc2/+Eabh0Y8PvtwnhPVo3/eDlV9b2qZokyCEVlwKaxBkQXfns3OuzovBLVj1Xc4Msbs9/0AvSuLrL76VXpXFrYtE60scfk//jsKs8cZe+4T5MYnDvfB3ulskH1tuBp+b8z83hJ+b1SGA1n47W+q/N7+f5KSok2KwsOTCiNBSoUKivjaYNIYmbQIV96muvwWUX6UXuUYvdoxjHedqkwhiUpTRKUp1o0m11mi0LhMrrV4W2YVO/eX+a7HL70zwXK0/YChz842+dET9Z06jm9hQeusbTkM5nJ74MlBy/Ibf8DVMmBl4mNYuWn7bQ2FzvZt3mFSSKSQXHrlDbDXwn2hJGMfPw0YUE1AZG3LbQh69JbWlXX/MCSygMEjEdn2wXoeGEu/nxB3+kwXfYqhR61wdAd0JVFE1O1Sm5rGD3MUayNHtm7HcRzHcRzHcRzn1ikhGAl9dD8hpyTtRDNSrpIrlWitrCClJCwU6DbqNNdWCPN58uX9tzYv5RSx9gGLNiab310MULvvUHCcQ7cxqjTdPKrUxlibNTYX1iJJUYP99h4RRnioOMG78iFxo0R3bI40t72bZ1KqUS9WCZsrFNYXkdoVMTm7c8nrLTp58iQnTpzgwoULnDt3Dmvtddsef/DBtUqmubn7tFLUueM8POrz0Ase315O+L0PelzpmG3LfLCe8s9eafHYuM/3P5RjpnybNhlbWqZsHCWmbIq1CSgfAdmc76F5IdeqvrUYvu/5qWnmfuCH6V6+yOqrXyNaW9m22u78RbrzFyk98BBjH3+BoOrCCWBT+D1ozbwRfIsITMLV8Fskm742Zml7W9qeZ4FdNiF8S+htDVJKVJjDD3OYNEXHEbm4Tm6pTu3Km0SFMbqVY/Rqc1h1nSNnpaJfnqFfnkGYlFzrCoXmZXLtKwi7/XnvOPvxxnqO/8974/T1cBjtCctPPLTKd0x0d78RayBJslOpBkG3gCAEf/ftcOIVWZn4GNobrirP9VdR5uja+0sESihayyvUP7gwdFntiQfxirlrQbeuZtsVPZb9vEdZ+/KEVAZYIYlVIWtfDljlIZKEdj+hIDSh8pmtba+4P0yd+hpK+eRKFaqTU/fXqAzHcRzHcRzHcZy7XMFTFH2DxZIYSztJqfge1clpCpUqzeWla63Nm02S/hK5coWwUNxXa/ORQkCcGqyFtU5MvZswVrxxlzfHOWpDRWvW4g26tSqToJWPwF7db78xptTv9Al7dfqlcTpjcxh/S0GTEETVCaLyKPn6Evn6ktuP69yQC7v34cd+7Mf4xV/8RZrNJl/84hf5vu/7vh2X+83f/M2r33/6058+qrvnOLsSQvDEZMBjEz5vXEn4/Q96rPa2v2i8vZLwzkrCM9MB3/dgjvHC7Z0RY4UcegHdXPUtB/NCNrdN2Th6zCLR0hu0O5cIISgeO0Fh7jjtj95n9RuvkLS2z7Jtn/uA9vkPqTxyhtFnn8cvujmrQ2yYfWU/DFd+i5sJvwMwAaCGQ2/h4YlB6I3E8zyk52OsJk0ThE7JRWvkrqxhl96gnx+nWz1OvzKLVTu/vFnp0avO0avOIXRCvrVAvnmZXHsZwc20lHacnVkL/2m+zG9eqG0bp1D1U3760RVOlXcLmm1Wya1TQIIfZGG3pwbV3Lt/mO2HI6yOP42Vw1XLUsfU6u/u8VHdOkE2p9tgmH/59eH7EniMPPPQIOg2oCuAD3qcnbo/3AzfRBgUWvgkMpe1yAKsUiCg143QUcxkIaRWyCq7j4pOU/rtNuXRcZTnUb7fu4U4juM4juM4juPchUYCj0gbyr6iHqf0tSHvKfxcnrHjJ+g2GrTWBq3Nmw26zQZxt0uhWsULbq21uRAwUc6R6C61QsBaJ6bRS6gW9t8q3XEOxZZurcpqFDFq05jSq8G3iSk35yk2r9AZmaE9OodVW7rwSUVvdIZ+ZZzC2gJha/XIx/M5dwcXdu/D3/27f5fPf/7z9Pt9/t7f+3t8+ctfplKpDC3zq7/6q3zpS18C4Ad/8AeH5nc7zp1CCsGz0wFPTfp8fT7mix/1aEbDwZ8FXluMeeNKzPOzAd9zKk8tdwfMidlS9b0xL0TZ5FrblKtHjxmUifEG52ZzRrLwu/zgI5QeeJDmu++w+trX0b0t1ZfW0nz3bVofvEv1sScZferjqNzRVgbeHcQew+84C75VF/DAhGCDbOauTdFWo4S6GnorJEpIAj+H8TRpaCDVCJ2S76+Q765gFl+jX5yiW52jX57JwsIdWOXTrZ2gWzuBTGPyrXnyjcuE3RX3psnZk8TA/++DMb66sr310slixE8/usJIuEv7fKOz2dwY8DxQXtaqPAyyn29CtzDN2ujjsGWEg5d0GV/5Jl7au9mHtG+e8LAY6pcXaF1cHLps5JmHUYWs5XgWdAeQjnGrQbdnsttKZQGDf7V9OWQtzG2q6cYpBQy+UkxXj3bb3W2sIxDkK1UqE5PI62yTHMdxHMdxHMdxnDuXFILR0GPJWPJK0kk1vpR4UgCCQrVGWCrRXh20Ns+X6DbrNFcHrc0rVeQuI8l2oiRMVXLM1/tU8h71boIXaYqh+2zp3OGEQAsPjQeSwSzvBM/ECKWBcHBeSmn9EsXGAq2R43RGZreN77OeT2fyBP3aBIXVefxu0+2/dYbct2H3l7/8Zd5///2rP6+sXGth/P777/PLv/zLQ8v/5E/+5LbbOHHiBD/3cz/H3//7f58333yTF198kZ/92Z/l6aefptls8pu/+Zt8/vOfB6BSqfCLv/iLh/JYHOegKCn4xLGQj88EfPVSxH8+16ebDIfexsLLl2NenY95fMLnhbmQh0c95B3SPmfzvBDsxtFjyeDosY0XUZOF31ajbFZhbFAYqaideZzyw6epf/tbrL/5DUw8XIlptab+rddpnn2bkaeepfb400j/6Oa+3n12C78HM7835nzLLtAdtDkPsDYgtRZtNZ5QWKHQm0NvFNqT6I3K11QjdUqhu0ihvYiRil5xim71GFF5alsIuMF4AZ2RB+iMPIBM+hSa8+Sblwh667fljdNyX/HtRp7FnkfF1zw/1mUi52aN34nqseKfnR3no/b2+fEvjnf4iQfXCNSNugaYLOQ2Onsj7w3mcQd+1r78JratFmiVH6BZe3jbZUFUZ2zldZRJ9vCo9scfjI2ITcrC194YukzlQ2pPTWV/87oMeIPW5bf2ljTr4rG9fTlkbbSQkl67g001I6FkrBSQ849uh4Axhm6jQaFaRXke1YmpI1u34ziO4ziO4ziOc7BySlHe1M68labUfO/qqCqlstbm+UqV5vIVVOATdTv0Wy2S/hXylSpBvrDnLuSBJ5koh1xpWkqhpR0leEoQendAIZLj3CQjhgvWlM0qvrPufNk++9La5Sz0HjtBrzK5bb+YDvK0Zh7C67Uors7jRTcxLtC5Lwhr7X3Zt/Unf/In+ZVf+ZWbXv5Gv6Z/+A//Ib/wC79w3WUmJyf5rd/6LT75yU/u+X7u5tKlS1erxS9evMixY8cOfB33k34U81t//HXq3S7WWkaK26v07if91PLlC33++Hyf6AY5Wy0neX424PnZ8M6o9r6OzVXfyqaARViLJGudItAIwCKzF95Ys/rW69TfehOr0x1vU+XzjD79HNVHH0cod0Tl3uks4JY9YFD1vRGCi4QsLB/MCLc+AoknFEooBAIlJAoJCLTVaDa14dc6awedaDAWrXx6pWl61WNExYmbChFV3CXfvEyheRm/3zi04LudSN5phrxdz/HtRp6VaHvw92ilz0uTHZ4b7RLeMDx1jspH7YB/9s449WT4/0tg+ZETDf7cbPMGTzObPUfTwbbF90B64MlBy/Kb25ZaBPWRR+mUtr/+57tLjK5960hnGnkopBAkNqV+7hLn/9NXhi6f+PQZak+OgyllB8HosU0Hw+xdoLtYJInKEcsCqbx2W8b30UKyvtqgpFNGfHhspoyvju51qlNfp7myzMTJU4xMzzL5wINHtm7HcRzHcRzHcRzn4BlrWezF9FJNI04peIqCt9M+QUunXqe9toJOU3qtBlGvh+/75Ks1vFsonql3k0Er85g4tYwWA9RNjDxznDvZzvvsDcb36YwfJyqOXPe6QWudwto8Kt1tdOD+tfoRUkA5l+OHPvvnD31997LDyDXv28rug/TzP//zfO5zn+Pzn/88f/zHf8zCwgK5XI7Tp0/zuc99jp/5mZ+hWq3e7rvpOHuW8wTf92CeTx4L+aPzfb5yMSLZITOp9w1f+LDPFz/sc3rM44W5kMfG/Tvuzdb2qu90U9V39sA2V33nfMPcs08x/uijLL/xOvV3z8KW0Ej3eix/7cusv/U6Yx9/kfKphxG30JLo/qXAlLMvkYDoZeG3zQFmUO09qAJHYm1AYkJS62eV3ig0Jgu9hUShroXeSmVfAWA0KtWUWpcoNS6ivZBueYZeZY64OH7de6eDAu3xR2iPP4IXtbPgu3EZP27t61EnBt5vbYTbOS50gm1znrc628xxtpnjX8sRnh/r8tJkh0fK0Z6PBnYOxteWC/zKB6MkdvjvPZSGv/3IKs+M3qBluDWQJNmpVFkFtxQQhFnofZOMUKyNPUU/v/05XGpdoFp/90g7EygkUkhSm6CNYeFrbw5d7lfyVB8bAVMYBN2j+wq6fRMBllSFaOGTimszyyxglUev3UMCFWmYLOePNOi21tJt1MmXyni+T3Vy+sjW7TiO4ziO4ziO4xwOKQRjoZ+1M/ck3VQTSIG3bX+goFgbIVcq0VpdQSpJmC/SbTZorSwTFArky5U9tTavFXyi1GCtZa2bUO/GjBaDq5XljnM32rzPXlg7CL0TVJpQWjxHmFuhOzZLmttemBiXR4hLVXKNFfLri0jjOmPer+7byu57havsPliusvvGmpHhDz7q8/X5iHSXQsFSIPj4TMALsyETxTu/4nljPoiyCfI6Vd9xq8XSa6/T+OjD695OMDLK2HOfoHjspHujuR8iGgTfPcCQVYBvhN4GUGADhAnxRHi10tsTEjmY+6utGa703mA0pIMvbUj9PL3yDN3KMZLC9Y8U3MzvN64G316ye7scY+FS1+ftRo5v13O83wqJzf5Dt4kw4aXJDp+c6DC220xo50AYC791scp/uLz9ILaJMOGnz6wwV7hey3CbVXLrFJCDam4FG23493CAkJYBKxPPkgSVLauwVOvvUm5fvPkHdQAkAk94pFZj0Cy/8wELf/iNoWWmv/c05YdPgsmDGYTet7o+q/FNn1RmQXdfVTCbxhQYpUiUT321QVVaRoXmzHQZpY5uu9xvt1hfXGD8+Ekq45PMnj5zZOt2HMdxHMdxHMdxDlc9TmjGKetxChZqgXfDfYFRr0NzeZk0jog6bfqtFkhBvlwhLNz852NjYKHRoxtr1joxvhLU8jc3Bs1x7iqDYjWPBGESklKV7ugMxt+5cELolHz9CrnGMuIQYk9X2X1wDiPXdGH3Xc6F3QfLhd03p5sYXluMeeVyzEJ794DtgZrHC7MBT00FBEcYNNyqq0eQkSJNgsAgAGE10qZEq8ssffMbtC9fvu5t5CanGX32eQozswh554f9dzTRB9EF2Ser10wHwXdMFnx7CBOiKA5mBd9k6A3ZJ4Q0vRp8J0GRXnmWbvUYaa6y83W28HvrFBqXyTcv46X9q+evRYpvD8Ltdxo5WunengdlX/NgKeK9ZkhX3/i6AsuZasRLE20+Ntpzbc4PSS8V/C/vj/H6+vYPoY9W+vzU6RVK/vWeazqbzY0BzwPlZa3KwyD7eQ8Sr8jKxLNoL79tHaNrb1HoLe3p9vZLAL7wMRhSq4mSiA9+7fdI29eq24OxIid+7BMIWwJTzdqY72d9uotFkaiQWBZJZTC0jA5DWr0Y3YuYIuZ4Lcd46daryG/F6qULgGTs2DFmHjlDoeK6/DiO4ziO4ziO49wrrLVc6cX0tGY9TslJRcnfZd+PNbQbddprq5gkoddqEvV7+H5Avlq96dbmaWq53OjRizX1XkzB9yjlXBNf5x5mLRKDIiEpVeiPTGLVzs95mUQU1uYJ2vUD7Xjowu6D49qYO45zRyj4kpeO5/jksZDLLc0rlyNeW4yvO9f7XD3lXD3l353t8rGZkBdmA+Yqd+7mxwpBKgJSApAbVd8JyqRIkaAmjjH7mVn6Vy6z/PWX6S1vD5b6S4vM/97vIDyP/NQMhZk58jPHCEfHXJvzvbK57MvYrNJb9MD4ZMF3DDLGyi4pHTQBni1gbX4w3ztrby6RmJ1CbykhCAatzg1+GuPXP6C8+h5JWKZXmaNbmUOH1w/mkvwIjfwIjeknSRrrnLuwwlfebXGuvre3U4E0nK5EPFbt83i1z2whQYqs5fkb63n+ZKnEt+q5HdudWwRvN3K83ciRU4YXxrq8NNHmoXLsDuw9IMt9xS+9M8F8L9h22XdPtfjLD6zj7finbbKQ2+js+eYN5nEHfta+fI//QVFYY2X8Gawc/gAsdczYyuuEcWNPt3cQPOFhB0G3tpq1tz8YCroBxl98eBB0l/YVdAN4V9uXB1n78i1BtxWCxArifkLNE+SsYLRwtEF33O8R9/uMTM8S5Asu6HYcx3Ecx3Ecx7nHCCEYDX2u9C0FpeikmlAJ/Bvt9xOSUm2UfKlMc2UZ6SmCqEC3kbU2D4tFcqUKcpfOb54nmCyHLDb6lAOfZpTgKUFut7Ddce5WQmBQGBR0YvLdi6TVCnFlBMTw35zxQ9pTp/CqbUqrF/F6Xaxw++Pvda6y+y7nKrsPlqvsvnWxtrxxJebr8zHn6umuy8+WFS/MBjw7HZD3754Xm61V31hN99J5Vl/9GtH62q7Xl0FAfnp2EH7PEdRGXbvzW2Ky2d6iN6jwttmpiECkCASKHB55sCG+UEgklqzS21yv0vvqzZtBtXeKTQ1Jrkq3MkevMocOdm8tZYzlo4UWb324ztvnGvTj7UeCCCwnizGP17Jw+8FyxG5/CvVY8tXlIl9ZLrHQ2/1o38lcwksTWZvzUdfm/Ja90wj55++O09lSna+E5a88sM53T7d3uJYFrbPOATBoWe6BJwcty/e+3esWplgbfWLbm3iVdBlf+SZ+eoM54Yck66YAiU3R1tCPupz7t19A9+Ory+Rnqsz94HcibDFrX74PyqZ4JiKRuUH78vK2DyzG82gkFtHrMSYND1YDaoWbOzr+oKwvzJPGMRMnH2Di5INUxieOdP2O4ziO4ziO4zjO0WjGKfU4oR6nmEE7c3mT+/qy1uZLpFFMv9um32oipKJQKRPkd9//1OwlrLRjmr2YXmLI+4py7sbt1B3nXmKUR1qrokvl6y4TdtYpL5/DSyK08DDi1g4KcZXdB8e1MXe2cWH3wXJh98FY6mi+Ph/x6nxMJ7nxJsaT8NRkwAtzAadqd9mbsY32KTZBphGdj95h9Rsvk7ZbN30TKpcnPzOXhd/Ts/iV6t31O7gjpFnwLXvZ99hB6B0hhEGhUOQQNocncqi9hN6QBd9aY5OUy23FeaZIa7NMz45TzO8eoGlteP9yFnyvLq7wSKnLY9U+ZyoRxeu1vN6FtXCuHfCV5SIvrxTp6hsHpwLLY9U+L012+NhIj8C1Ob9pX1os8W/OjaDt8N9lydP81OkVHq1G269kDSRJdipVVsEtBQRhFnrvkQVa5ZM0a49suyyIGoytvIYy15sTfng8oZAIEptiMEQmZuUbZ1l79ezQcsc+9ynyk3Ogx/a1PoHF170bti+3QN8Labd71HzLuI45PbW/SvK9SpOElfMfUZmYojw2zsmnnnUdPRzHcRzHcRzHce5R1lqW+jHdVFOPUwIpKe/ls781tOvrtNfW0GlCr9kgjvr4QUihWkXtMvpspRXR7Kf0Ek27nx1wX8l5hK7K27mPmCAgGRnB5PI7L2At+eYyldVzqDTGCA8jJEb43OxeUhd2HxwXdjvbuLD7YLmw+2ClxvL2csIr8xHvraa7vnCMFyQvzIZ8fCagHN59wYCwJgu93/kmrXffJF5b3fNteIXitfB7Zg7/BkelOTsQyWC+dw/Q2ZeMESJGAUp4CBviUUAR7Bp61/uCt9d8vr0a8PaaTyO69rwUAk7NlHnywRHOPFAlH97EBxmjybcXyTcuk29fQdhbC7s3Swy8tlbgK8tF3rpOm/PN8srwwniHlyY6PFhybc6vJzXwb86N8IdXtv8NzuVjfvrMMhO5rdXyNqvk1ikgB9XcCjw1qObe+y/bIqiPPEqntP31PdddYnTtW8gDeB7tlYdECklqUzSWyMQkvT7n/+0XMcm17h7FE1PMfv+fAT0O+5yU5JsIYTWJKpCKkEhtP8rdSEndSLx+j5qEMzWP4s38bR6g5vISvVaLyQceZOzYcUZm5o50/Y7jOI7jOI7jOM7RSoxhsRfTSzWtRFP1PQK1t32bOolpriwTddskUUS3UcdoTa5YIiyVr9va3Fpo9RPWOgmpMbT6Cf3EEHqScs5H3cK+CMe5G1nA5PIkIyPYYPsYQgCModBYpLR6Cc/Eg+tJtPQwwrvhflUXdh8cF3Y727iw+2C5sPvwrPc0X5+P+fp8RCO68WZHCnhs3OeFuZDTYzff+ueOYi221yZeOEc8f57ewgWSRn3PN+OXK0Pht3cTLYycARFtCr4tkCJkjBIpUmSNzj1bQJEDPLQ1dFPDu+s+3171eXvVZ75zcyGZkoKH5so89VCNR0/W8L3dj54VOiXfWiDfvEyuvYS46eMIr289Unx1pcifLBW50t+96nw6n/DSRJvvGO8y4tqcX9VKJP/Tu+Ocbea2XfbMSJf/6pFVclur443OZnNjwPNAeVmr8jDIfr4FRijWxp6kn9/eArvUukC1/u4+4+NbI5F4QpFajUETmwSNYflPv0X9Wx8OLXvix76PsPIQsL8DmJRN8ExMIvNo4dFXFewOrw0d6dOLE0akZZKEB8euc0TvITFas3TuQ4q1USoTE5x86mO7HoXvOI7jOI7jOI7j3P3aScpalNJMEhIDI3toZ75Z1GnTXFkijRP6nRb9dmvQ2rxCkL/+Z9xUW1bbMZ04JUo1zX6KtZZy4JMPJK7awblfWEAXSyS12nX3yQmdUlhfpFBfQBmNIEWQBd9GemihsFv2Zbmw++C4sNvZxoXdB8uF3YfPWMv7aymvXI54aznB7LIFqoaC52ZDnp8NGM3f3e13TLtBPP8R0fx5+gsX9tTufENQGyE/c+xq23MVhodwT+81FmQ/C75FRFYrm+KpFGNSzjdznF2t8PZqgQ/qwbZ21bs5UU55bDTm8VrEw8UunoB+cYpedZZeaTqr7N2F0DH55gKF5mXCzsq+g29r4cN2wFeWiryyWqR3E23On6j1eWmiw7Oj3V1nh9/LLnd9fumdCVai7W+G//xcgx8+3thSoG2ykNvoLNz2/Ow08LP25bf4YVLLgJWJZ0mCyrbLquvvUmpfuE1BN3jCx2BIrSYxKSkpSbvL+X/7B1hzrcq8/PAJpv/MD7DfoDtrX97FCI9UhkSyhJbbD+bQFhrCw08SqsrwREWRO+K2be21Vdrra0w+8CC16VkmTjxwpOt3HMdxHMdxHMdxbp+lXkwn1dTjBF9KKrcwygzAWkNnfY32+vpwa/MwpFC5cWvzTqRZ7UQkqaEdaXpJiicllZyPp1zg7dw/rBCk5QpptZrtq9uBTCIKq/OEnTrSapRJh4NvodDCwwrpwu4DdBi5pis1cRznSEkhOD3mc3rMpx0bvrEQ88rliOXuzm14G5HlDz7q858/6vPwqMcLcyGPT/h4d2ELHlmqkjv9LLnTz1IF0ub6IPw+RzR/Ad3r7nobcX2duL5O4+03AQjHxq9Vfk/NIP3rtGi5rwkweSCPtYalfp+z65qz6x7vrYX0dwmCtxrNaR4fS3h8LOHMaEI52BxM58BaCukqhcUrGAS94jS9yhz90iSInddlVUB35CTdkZPItE++OU+hcZmgt3ZLgaYQ8FA55qFyzF9+oM431/J8ZbnI242d25xbBN+q5/lWPU9BGV4c7/DSZIcHivdXm/PX1vL8i/fGiMzw/5MvDD/x8BqfGN/8N2pB66xtOQzmcnvgyUHL8lsPeBOvwMrEx9DeliO2rWZ09S0KvaVbvu398oR3NehObRZ0A6y9enYo6EYKxp79JPsNugE8HQESLcPB185dC7pWYK2l6MGYx5EH3dZaus0GuVIZqRS1yekjXb/jOI7jOI7jOI5ze42GPrExlHyPZpwSSUO4x3bmAEJISqPj5MsVGstLKE8R9/p0mw2ay0vkiiVypTJih/2jxVCR8wusdyOEEOQ8SbOfstaNKPgepVC5Km/nviCsxW828NotkmoNXS5ve+4bP6Q9fYpu1KOwskDYbwAh0hqkTZA2RdlksD9Vst8Rfc7hcWG34zi3TSmQfOfJHH/mRMj5huaVyxFvXIlJdsi9LfDeWsp7aykFX/DxmYAXZkOmSndvtbdXGcGrjFA483GstaT1VeL5j4jnz9FfuIiJ+rveRrS6QrS6Qv1br4MQ5CYmyU9n4Xduchrp2ufSiuHddTi7DmfXJevR3lrB5z3DmdGEx0azgHuyYG78mUCIrEWO5yGtpRgvU1xYQCPpl2boVuaIihPX/WBhvByd0QfpjD6ISnoU6hcpr76HNOmOy+8mUJZPTHT5xESXtUjxp8tFvrJcZOk6bc67WvKlK2W+dKXMTD7mUxMdPjHRoRYc/Vzoo2It/PvLFX77YnXbwQC1IOWnH13hgVK86QoGkiQ7lWoQdAsIwmxO9z5EYY2VsWewavj/R+qYsZXXCePGvm5/P3zhZQMBrEZbTWKz52S03qL53sWhZatnHsMvj+57ncomSDSJzGOQxGLnlm2pscRCkbcGTwpmi0e/7eu1mug0pTQySrE6gp/b3gbfcRzHcRzHcRzHuXd5UjAS+ph+QqgE7STFkz7qFsNl5QeMzh6j327RWlnGC0Oidpt+p0Xc75GvVAl2+OypJIyXQkqhx3IrwleCTmzoxAlRqinnfALvPm7r59xXhDEE62uYVpOkNoLZoZuvCfO05x6k1+0Qri0RxB2Uzf5GhDUoOxhd6NyxXBvzu5xrY36wXBvz26+fWl5fjHllPuJSc/cZwieqihdmQ56eCgi9e+fIKmstydoS0eVzxPPniBYvYJNkT7chpCI/OUV+Zo78zDFyExOIm2ipfbeLNXzQGITba3C5s7frK2F5sJbw+FiPx8ZbPFjtIaXEGB9sgGD3Wdg7stcqgTUevdIs3eoccWFs9/uU9KgtvEG+vXhr697hrrzfCvnKcpFXVgrbKpm3koM255+abPP0SO+eanMea8GvfDDKy6vbt/enShH/7aPLm4J+m1Vy6xSQWbAtFXhqUM29v21QNz/F2tgT2zoAqLTL+PJr+Onu3R8OiycUEkFsUyyGyMRXm+3P//6f0jm3fHVZ4Xk88ON/HS+/twNLthJYAt1FC59UBkSqjBY7h9iN2GCCgBFSJkPBycLRP0lXLpxHeh6js3PMPvo4+VL5yO+D4ziO4ziO4ziOc/ut9GPaqWY9SvCEpBrs/4Bsaw3ttVU69XV0mtJt1kmiiCAMyVdqKG/nfX7GQKOX0OjFJNrS7CfEqSHvK8qht2N1uOPcy3QQko6MYK5XpGAtqt0mqK/jpX2UTVA2YbWv8YShmgv53Gf/3NHe6XuMm9ntbOPC7oPlwu47y3wr5ZXLMd9cjOmnN95UBQqenc6qvY9VFOIea8djjSZZXhy0PD9PfOUSVu+t0ld4HoWp6UH4fZxwdAyxj1bLdwpj4VIL3lnPKrg/aGSze/dipgiPjmRfD9ci8n6Ep+LBkbcpUiQgIywmmzNvQ7AhYj8NUtIUtCbFp1eepVuZI8mP3PAq+eZlaotvotLo1te7RaQF31zL8ydLJd5p7l6JWvQ0L453+dREmxPF5K7ufLUeKf7p2XHOd8Jtl33HeIf/8qHVa8G+0dlsbkxWua+8rFV5GGQ/74MF2uWTNGqPbLvMjxqMr7yGMns72OUgeSikEKQ2RWMHQXf2R9ZfXuTib708tPzoM88x9vEX973eQPcAiFWeVOaI5c5V3UlqaKAoBooymsdLkvCIj+uJuh3W5i8zOnuMysQkx848cbR3wHEcx3Ecx3Ecx7ljaGtZ7Eb0tKERp5R9RU4dzAfVNIloLi8R97pXW5tbo/HDHNJTSKmQKjsVKvteCIhTw0o7pp9oeomm3c/2K5Zz3pGPAXOc280CJl8gGRnB+tcpbDIGr9nEazYQxtDotAmkoVQo8V9835850vt7r3Fht7ONC7sPlgu770yJtnxrKeaV+ZgP13cPeKdLihdmAz42E1C4l0pQN7E6JV66TDR/Pqv+XprPWirvgQwCClMzFGazym+/NnrXHCSw0ttoS54F3N09dviuBHBmEG6fHoHq9qwTACkifJUgRYQQIIUGEWNEH2M11koEuUHwvY8PBqkGnZKKkG55jm5lljRX3XFRoWNqi9+i0LiAOOA5Masbbc6XiixHu1ewzxViXpro8B3jHSp3WZvzD1sB/+zsBI1k+P9NYPmxE3W+f7Y1CPJNFnIbnYXbnp+dBn7WvnyffzMWQX3kNJ3S8W2X5XrLjK6+idzj3/ZBkkg8oQZBtyE2CWbQtsnS5/LvfpXefPPa8mGOB378r6GC6/xR3SRlEzwTE8s8Rvj01Pa5ShvWeimykKcqNFN5ycng6N/ars1fwqSa8RMnmTr1MKXR3Ts2OI7jOI7jOI7jOPeuXqpZ7ie0k5S+NoyEt97OfMfbbzdprSyTJglRu02axBitsVpjGP5cLKW8Gn73Ukuzb9BC0E0MfQ2h71HOByhX5e3cZyygS2WSWg2ud0CK1vj1Oq0riygpqRXz/KXveeko7+Y9x4XdzjYu7D5YLuy+8610NV+fj/n6fEQ7vvHmy5PwxITPC3MhD454yLskyL0VJomJFy8RLZwnmj9HsrKY9areA5XLUZyeyeZ9zxzDq9TumPC7k2yeuw2ru48zHxIqeLh2rXp7urC3jFICgdJI0QcZDT6cJBjRR9seRliE9RFsVHzv4yCLQfAdqwKNiceJSlM7Lha0lhi5+HX8pJOFr1IOHtT+/8/MoM35nywVeXX15tqcPzXS46WJDk+P9LjTxz59dbnAr3wwRmqHf1d5Zfjbj6zw1EgfuNZ2Hhi0LPeywVe5MPt975MRkrWxp+jnJ7ZdVmxdpFY/e8CHM+yNBDzhY9CkNgu6NYPxEiKmc/ki87/71tB1xl94iZEnn9nXegWGQPeuti/vqwpG7PyBI0oNTSOoFEOKJuHRsk9B7D4C4yAlUcTKxfPUpqYpj01w4sln7phtp+M4juM4juM4jnP7rEUJrSRlPUqRAqq+d6CfF60xtNZW6DYabJ4nbIzF6hRjDEZrTKoxJvuy2pCkCc1uTD8xJNrSS1Isgnzokwt8hJTZKESprn4vNvY9Oc49yApBWqmSVirXfZ6bKMIsL1Gxmr/swu59cWG3s40Luw+WC7vvHtpY3llJeGU+5uxKwm4bstG85IXZgOdmQyrhvf/GzER9osULWeX3/DnSteXdr7SFXyhQnJkhPz1HfvYYXqmCPaLoLTHwUeNauH2xxa7/x5tJ4GTlWrj9QCXLKPdLCUkgFFJGILpImSIAS0RCFyNigEHwnRvM+L7135k1mm5uisb44xgVbF/AaCqL36a89DbCGkBkc6OFvBaA7/P/rK8F31gt8JXlImdvos15ydN8YrzDS5MdThRvX+vtnRgLv3mhxn+ar2y7bCJM+Jkzy8wU0qxLQpJkp1JlFdxSQBBmofcB0DJgZfwZknB7BX+1/i6l1oXbGnQLwBc+BkNqNYlNSe0g+BcJVjS5+BtvEK20rl7HKxQ5+WN/DbnPtu6b25cnMk8irz9DabUT45dLlJRlJq847qVH/nurX1kk6naZfOBBxo+fpDY1fcT3wHEcx3Ecx3Ecx7kTGWtZ7MX0Uk09Til5ivx1ZmvvizXoNEVrjU4TTJpmP6fp4PsEozWb965ZA+1+xGqrRxKndPox/ShFCUPBlygMWDNcSyPEpiB8EIIP9kFJpbLzhdh3FzzHuV2sUiTVGrpUuu7zWEZ9fuChY0zmd9hX69wUF3Y727iw+2C5sPvu1OgbXl2I+Pp8zFrvxu1+BXBm3OeFuYBHx/z7pj2P7nWIFy5cnfmdNtb2fBtBuTyo/J4lPzOLzJex4mAOHDAWFjrwzloWbn/QyALvvZjMw5nRrC35IzXIH0wmuSNPKALhIzEI2cu+hMGQktLF0MeKFBAIGyBsDvBvOfjW0qdRO023OLPj5X6/Qe3yNwi7q9kv0xiufYCRWVB7ANXfy33Fny6X+MpykdVo91/wsULMpyY7fGK8Q9m/vW3Ou6ngX7w3zpv17XOfH6v2+a8fWaHoDyq5dQrIQTW3Ak9ls7kP6AjmxCuwMvEs2isMX2ANo6vfotBbOpD17Icvsv/fxKZoq4ntxoELGlST1vurLH7h20PXmfzUd1M9/di+1uvZGGkSEplHi4C+uv6Hi16saWlLtVaiYlIerHiUjni2uU5Tls9/RHl0nPL4BCefehZ5QHPYHMdxHMdxHMdxnLtfXxuWevHVdua1wMe7Lfsj7abwO8Xo7DSJE5YaHeqtHlGS0OwlaGMo+B7FQCEw2EFFuDUGjMYMTq0xYPWWQByE2KgEV0NV4ULJa5e5QNy5gxnfJ6mNYAqFHS9/sJTnu2ZGjvhe3Ttc2O1s48Lug+XC7rubsZYP11NeuRzxraUEvcvWrRwInpsNeX42YLxwf4UTut0ctDzPKr91u7n7lbYIazWK09MUp7Pqb5ErYIW8qepvY6EeXZu5fXYd2nvMqEr+tcrtR0dgZPei4wO3EXorFIgEKfsgu1g0qY0xoochAqERSIQNweYQ3FoS38+Nsj7yGNrbHthiLaX1D6lceRtpdXaIrjWgN8LvjbB5/9XfxsK7zZCvLGdtzuNd2pwrYXmq1uNTkx2erB19m/OlnscvnZ1gobd9Dvn3TLf4L06u46Gz2dwY8DxQXva7CYPs5wMSBVVWxp/FquH7InTC+MrrhHH9wNZ1qzyhEAgSm2Ix9E08uCQLum0K53/tGyTNztXr+NUaJ//iX84+sN4iYQ2B6ZHKYBB0l6/bvhxrWW7H5MoFioHiWEEyJVK8PfWA2L/W6grdep2JB04xOnucsWPbZ687juM4juM4juM497f1Te3MAWrBwbYzPwjdKOXCepdeFFNv92m0eyhrqOUkoQSrU6zW2andUtBgBoH44BRjMIPTjYB8awwlpMyqwtXmQHxL2/Q77Hfk3H90mCMZGcGG4bUzreXHT01RPqDuj/ejw8g13f+G4zj3DCkED4/6PDzq04kN31yMeeVyxJXOzhWlrdjypXN9vnSuz4MjHi/OhTwx4eOre/+NlCpVKDzyFIVHnsJai27Vrwbf0fx5TK+z621E9TpRvc7aO+8AkBsbozQ9TWF6Gjk2y7oNWY0Ua5GkHsF6H9Y3ne52MMJWvoSHqln19qMjMFPMMtvbKbWa1Oos9CYAXUaYMp5MUaKHpo22CdqmIPpZ8C17CNQg+A73FHzn+mtMLf4pzepDtEsnht/0C0F79CF6lVlqy2+R71wBbUCZQZH3IPS2JkurtR5UMMNeq7+lgDPViDPViL92ap2vrxb4ylKR91o7H3GgreC19QKvrRcoe5pPTHT41ESHY0fQ5vztRsg/PztOVw+HpkpY/tqpNb5zqpWF3EZnj90bzOMO/Kx9+QF+sOrmJ1kbewK2BLgq7TK+/Bp+2j2wdd0qD4VEkNoUiyW6WiltQLUAQfNsfSjoBhj/+Cf2FXQD+CbCINHCJ5G56wfdQCc2WCnIhT5FaSh5Am+vG5V9ssbQbdTJV6pI5VGdnDrS9TuO4ziO4ziO4zh3h2rg0deGsq+oxyldbSgeRjvzfSiEHo9OlVlqRSjlUS4WWGlHrCSasuczWvVRg8/91hpsmgyqvROs1hidYlONNYNQ3OjhFQyCb2sHFeFaX/s5ibN54lsDcSGy1uhqIwBXIK6F4Vk79Xt/P65z+6ioj1xcQBcKRNUaMgjw2k3K/tztvmvOFi7sdhznnlQMJJ8+keNTx0MuNjWvXI54/UpMrHde/sP1lA/XU/Ke4GMzAS/MBsyU749NpBACrzKCVxmheOZZrLWk9ZVB+H2eaOE8Nurvejv91VX6q6vw1ltoJFfCSS7l57iUm2MxnELLvf0+BXC8fK1y+1QF/Dvrc8BVWejdwxOKkACrPaSo4IsavohIRZvUtEAUwSZY0cfQA9lFWG8w3ztEsHtYKK2hVn+PQmeR9dHHSYLy0OXay7M68zz5ziK1+lmUjrPQ2+hrpxvHf2yt/r4abN589XdOWT492eHTkx2Weh5fWS7yp8tF1uKd/79bqeILCxW+sFDhRDHmpYk2L453D7zNubXwB4slfu3cCGbLfS95mv/m0WVOF7swOKo6m8vtZcPdc+GBtSyH7FiDdvkEjdrpbZf5cYPx5ddRV6unbx+JRApJalM0ltgkWCxgB0G3xUQlVl99eeh64fgkxZOn9rVuz8SAIZUFDB6JCK+7rDGWbpySL+VRAsZyinDrh+gj0G01McZQqNUojY7hBW5Wk+M4juM4juM4jrOdFILR0GfJWAqeoptqAinwD3Dfw0EQQjBVyVHL+1yqd/GVpNVPWO3EdOOU0WJAOecjhET4IfgAO3QfZBCIb1SCD06NSSHNgnHM4HT4Sju2SrdGY9MEY/pYs+VA90EgfrVV+lB1+LXzHedWCcDrdmmtrOCPjlJIb/8+PGe7+yPJcRznviWE4ETV40TV44dOF3jjSswr8xEXGjsHI73U8pWLEV+5GHGsonhhNuSZ6YCcd38cJWitpZNY6mqE+kSVevlJGidS0rUlcmsXqTUuMtldILA3rshVGGajRWajRV7kVVKhWAinuZSb41J+jqVwYseqzbEcnBmBR0ezudvF7V2n72hbQ29jLVL4+GICnwlS2yKhiZFBFiLaCCsiDB2QbYT1B8F3sGvwHSQtJq+8TKt8gmblwWy29Ca94jRRbpRq/T0K3QUEmy43ZjgAP6Dq78l8yl880eBzxxucbYb8yVKJb6zmSezOj+VCJ+BCZ5T/9fwIz4z0eGmyzZO1PvttrpAa+NcfjfLHS6Vtlx0rxPz06SXGVS9bUKpB0C0gCLM53QfIAvXao3TK29tb53rLjK6+idza/us2kAg8odBoDJbEpBgGs99VCzCgKzTeOo/uDh/8Mv7cJ/bVfk1Yg7IJqQywQhKrwg0r6juDAxTy+YCSB6EnCY/4g4a1lm59nXypjOf71KZmjnT9juM4juM4juM4zt0lVJJK4A26qBlaiWYkEHdcO3OA0Fc8NFFitROzUId8qFhrxyy3I9pRyngpxFc33m8lhER4Erzr79yzdmMe+HAoPvy9HhyIf/VKYK8zR1xrTBJnl2+dIy4V0g9QuSJC3aHVNM6dzVrM+jqiuPMBHs7t5cJux3HuG6EneGEu5IW5kMV2Vu39zcWYbrJz69tLTc2lZpffebfL01MBL86FnKiqO/JN6M2KUksjMtT7w1+NjdPIkO6Yu41AOAKTTyOtZjJa5lj/Msd6l5mJFvHsjasqPas53r/M8f5lqEMsPOZzsywVZwkmZ5ibm+D0mGL8HnmvcC309gjxB6G3wBdlfKpoE5HQQos2lhwWA0RYIoxoZUel2gBBOAi+d37OCSyV1nkKvSXWRx4jyo0OXW5UwPrYE3SL04ysvYOne9kFV49qHbwNsPZAq7+lgMeqEY9VI7qnRNbmfLnEB62dq3W1FXxjrcA31gpUfM13jHd4abLDXGHvbc5bieTzZ8d3bKn+sdEuf+uBRXIkYCX4QRZ2eyqbzX3AR/oaIVkbfZJ+YXLbZcX2RWrr7yKOeMb0TgTgCQ+DQVtDYlI0GrAg24AGXUZHlrXX3hu6bn72GIXZ/c3VydqXq0H78vwN25drY+mlmlIhj5SSsRBCo/c4dX7/ok6HNEmoTs2QL1cIC4UjvgeO4ziO4ziO4zjO3abiK3paU/EV63FKJ9WU7ti5v4KxYkgl7zO/3sMTklKYstKJubzepVYMqOb8/R38LiRCSVA3CsRt1hJd66wyfKNl+tZQ3G4NxO21IH0QiOuoh+73kEEOL19EeHfq795xnL0SdusgBOeuchiD3O9n/Sjmt/7469S7Xay1jBSLt/suOYcsNZa3lhJemY94fy3ddfnJouSF2ZCPzQSUgjurBY42lma0EVrbHQPtXnrwm3xlUqajK1fD76loCcXeKlVVGFKcniE3e4L87DH8cuWuPqhgK094hMIftIkW+MJDIDEYEtNDyzZGdEBoLBpEhKEPQgMCafNgc8PV2VtYoFucoV49jd3hQ4IwmkrzQ0qtCzcXsG6t/jbXqf42g+pfYLfq78VNbc7r12lzvtnJYsSnJju8ONaleBNtzi92fP7p2QlWo+23/UNz6/yFyRWkMOB5oLzsPoZB9vMB09JnZfxZkrC67bJq/T1KrfNHHtBejy+yx5/YFG018UbnBtkGEYMuAwErXzvH+huvD133+A/9GLmJ7WH+zfJMhLQpiSygZUBfFm9Y1d3oxiTGMjJaoZLzmAqhmkZ4R3zQwOqliwCMHTvOzMOPUqjWjnT9juM4juM4juM4zt0pMYbFXkw31bQTTS3w7rh25jtp9hIu1XtEiWa9G9PsJQSeYrwUEN4B88ezYDvFaA0mxaSbKsNNik0SrDXofg/d72KNRgZZpbf03VgyZ3frnQ5KSmrFPH/pe1663XfnrnYYuaY7dMVxnPuaJwXPTAc8Mx2w2tW8uhDz9fmIZrRzcLLUMfzuez3+4/s9Hp/weWEu5OFRD3nIwexGe/HG5vB6S4V2K7JHGvf4Emo5SS2Xo5o7RTn3ECInib2USnMef+UiycJ5kpWFXW9LRxHN8+donj8HgFcqU5iZIz8zR2H2GF7+7q6aTG1KatMdKr09QlnEkCfWNYyIQHQwoosSBaxNYWi+d7Cpzfnwc04Axc4Cud4q9ZHT9ArTQ5dbqWjUHqFbmGJk7W2CpHXjO31g1d+D0FtKpvOWHz3R4C8eb/B2I8efLBX55lqB1O7893O+E3L+o5BfOzfCM6NdPjXR4fHrtDn/xmqef/n+GJEZ/oAYSMNPPrDEC7VGdl+8wTzuwM/alx/C327iFViZeBbtbXneWsPo6lsUelcOfJ23anPQbTCbgu4uiAhMFnSnrTz1b781dN3SAw/uK+iW1qBseq19ubxx+/IkNfRTQ6UYojzFiC/wrD7yoDvu94j7PUamZwlyeRd0O47jOI7jOI7jODfNl5Ja4GEtRDprZ14LxKHvW9yvSt7n0VCx2IyQQlAMPVbbMfP1HpW8z0ghuK2PYWNGt7xOkbg1mrTTJFFNVC6PjiNMr0PSXEd6PipfRAY7dyR0nP8/e3/2JEl63nt+33fzJfZcaq9uNLrRTZAECJDgIXnmjOZoTLK5kclMJtlcyEzXMpPpr9OFLsY0uhoND5dDEBtJoDcARFV1LbnG5uHu76ILj1qylq4tMysz6/m0lVV1Lu4ekZER4f68z+8RZ58Uu4UQYm2rZ/gfPin533234Is9zz/crvn1Tkt8Th0lJPjl/ZZf3m+ZFJq/vJ7xl9dzJsWbrcRsQnomUvzpgvbz48VPhlYwyjWTQjPO1bqorRmv/54UmtK+aK5QDpc/he99CkCsK+pv/kB953fUd36P33/w0v37+YzpF79m+sWvAcgmm/Su36C8dpPy6nVMdj5XXD6/6K1xylDonIijjQWKCUnVJLUgKYtWfUgrkloR1RSlDKRi3e199DFnYsPW7q+oFnc52Pg+wR6N826zEfev/AcGs39nNP361edFK9XFfb/27O/11zwx+1trxZ8OPX86XrIMmn/cHfC/3u/z2/nzTyp8UvzTbp9/2u0zdp6/ubTkP12ac63nSQn+37dH/L/+MHnm+zYyz//z49t8p1ev53JbMBqK/Ngjyx+qszG72z8imqOPURVbtnd+Tl4fnMh+34TFoOgK3YlE83CRglqBqiD2IWUQN9j72T+S/BPpF0qx9Rd/9Xb7j6tH8eWNLonq238ms9pjjSYvMvq5welIHr59hMJJWB4cYJ0j7w8YX7n68m8QQgghhBBCCCGeMLCGpY8MneFgHWc+PLNx5o8ZrbkxKdnoOf6wvyS3msOq5WDZsmwC2/2MMjubt0NpgxtuYAdj/GKGnx8S84LY1IRqQTs7QBuLLvuYLD+R5gghxMk5m888QgjxDhmt+P624/vbjlkd+advGv7xds1u9fyi4MEq8j9/veL/+/WKz7Ys/+FGzve3HVZ3b4pCTMya9NwZ2Q8L2i+aG35S+k49KlyP88cF7Id/BpnC6ON5U6fzkvKjzyg/+gyAUC2o7/z+UfE7TPdfuo3mYI/mYI+Df/0lKEWxfZne9ZuU129SXLqCNu8+Lul1PCx6O2XJcMQUHxW9c50RiPhoSKkkEUh6TlRzFCUptSRVEVk+7vZOPdRTL+nlaof87n/hcPw9FoObR9+kK8189BFV7zIbe7+mqPfe7IYcQ/d3D8V/3mz4z1v7fFPn/O3OkP/yoM9h+/y3KIet5X+6M+J/ujPiu4Oavo386uDZYe+f9Cv+Hx/fZpwDLu9WcGQ5nODJ47K8zN7Wn8JTM6eNr9h+8M84vzyxfb8ug0YrjU8tkUQdGxKp6+bWC0i9bkFFnNAcNBz+5t+OfP/o0++TjTfeeP8u1kDCm5ygHF5/++rp2kfaEJn0MnRmGdtumUeeTrfY7duW1XzGcPsy1jmGm9unun8hhBBCCCGEEOefUoqt3NLGSN8aZm0g05HcnP04c4BeZvns8pD7s67Le5BZHixqvpmuGOSWzX6GPaPR7Epp3GCM7Q/XRe5DdJaT2ga/WuDnhwRtMGUPk5dS9BbinJBitxBCfIthrvnfflTwn7+T89sDzz/ebvjl/ea5XdYJ+M2u5ze7nr5TbPc0B6vI9J3Fi+vnFrTHhSZ7Xg70KTFln94nf0Lvkz8BwM8OqG//rit+3/4dcfWSgmBKrB7cY/XgHvz8n1DGUl659qjzO9/aPjfzvtvkaV9a9IYUxyhGJFWR1IykHYkIVERWJL2PSm4dcZ4/ijjXKbBx8Bt6y7vsb/4x3g2O7D/YHjuX/4Le4g7jgy8wj+LH39Bbdn9fswv+L1cX/J+uaP513udvd0f8bL//wpjzF3WC/zebh/zfPnyAyw1o0x1Tnp1YN3cC5oMPOZx8+sxJkGumbD/4GSY2J7LvN6FRGGXwKRCBNrbrQnezLnQXEEuII4h99v75f+5+TmvKGDZ//Jdvvv8U0MnjdU7C0OqXjClIifmqJbcal2cMi4wMTx7Dqc89Xx7uo7ShHI0YXbqCOqMn70IIIYQQQgghzja7jjOPCZoYmfuA02c/zvwhpRRXRgWTnuPWfoU1mlndsrdouL1fsdnPGBYvyBQ/A5TS2N4QUw4I9ZJ2eoByGcm3+GpJWM4Iy8W66N3rmiiEEGeWFLuFeJEYCKslJivlxUyglOLjDcfHG47/Y1vy87sN/3C74Zv587sKF21icXj8HYcKGL0gVvxhQbvnXhQvfjbZ4QT7/R/T//6PSSnh9+7T3v6K5s5vWX5zh+S/vQCbgmd55w8s7/wBAJ3n63nfN+ldu4Ebjc/8/fG46O3IsE8VvXMisStMph6kHim2JD0jKoNWPUhN1+2tZqAW6EcR513ROW8OuXL375mNPmI6+i48FRe97F9nVWwzOfgN5fLe8RYQ36D724TED4cLfjicsbip+Yf9EX+7O+Z3y+JFewFAkfgfbzzgf399hrKu22+egT25tzsJOJx8xnz44TOfK6oHbO7+Cn3K3cffRgFWWeL6vzZ61iVv0PN1bHkf4gDikHp3h9nXXxzZxviPf4DrD567/ZfvP2FjTcQSlH2l+PKqjfiYGPUcrsgYGNAJ8ui/9fuOWwyBajqlN55grGV8+c3nlQshhBBCCCGEEANnqUIkJst+0zJvA6MzGgP+Irk1fHJpwN6i5s4B9DLD7rzhwbxmXnu2BznuDHesK6WwRR9b9Al1RTs7QFlHCgNCtSBUc3y1wBQ9bNE7sUYKIcTbOV/PnEKcMKU1Sht0VhCahrA8JCznmKKHkRczsdZzmv/4QcHf3My5PQv84+2an91tqI+hntVz6plY8ScL2sNjjBc/i5RSuK0ruK0rDH74N1z2c9r7t6m++QPVnT9QPXhAit8+YzrWNfPffc38d18DYPuDLvL82g16125iey/pIn2H2tTSpvaZordVhkw5UBBSwCdFipvdbG+9WEec56TkQa2IVOuI8xyVChQZisRo+lvK5T32N/+YJj8aQR1Nxt7WDyl615js/xobVidzI1+z+7vvIv99Mee/vzLl9sLxt7sj/m5vxNQ/FdtuAv/3j+/yg60WtIPMdXO6T3ChQ1Savc0fsOo9W/Tsz28x2f8N6lRzHV7OKktaL54IKeDxQAAzh2TXRe4exDEAOz/9+yPfr13G5g//4s33v+5w7+LLM7zOvv0bUmJee0qnscYyKB0uRWyK2FO+b5fTQ1JK9MYbDDe3MfbsrlAXQgghhBBCCHE+bGSOOkQGzjJtPKsQKc5wcfhFNvs5w9LxzX6FUZph7tlZNNzeXzLpZYxKd+a71k1eYvKS2NS08wOUMRAHhNWSsFpSrxbd1xT97nNCiDNDit1CPEEpRbF1leneLlpbssJ1sSWrJX61xOSFvJiJR5RS3BxZbo4s/4fPevzyXsM/3mn43cHzuw3tk/HiLyhov8t48bMmKk3jRthrBRtXrrP54/+Arhes7t1m/s1d5nfvUe/tvHQ7fjFn+sWvmX7xawCyyQa9azcpr9+gvHodk337rOB34XlFbwCrDEYZcmXWBctIiEM0Q6JakdScpC2aHlATqUj6EIVBpRJSjvNLLt3/Jxb9GxxOPiXpo28FVuU29/K/YXT4FYP5H04nJvoVu79vTOB/HE/5P390wK/2Sv52Z8jXi5xrRcP/9bt7XOsnMBaK/MQXJwXt2N3+MU0+fuZzo4MvGM5+f+oR2y/jVHf/tikQiTSppSt0TyFpiMN1hHm3EKK6e4flrX8/so2NH/4YU3x7h/2LmOTRydPqgoimeVl8ObBoIolEP88oypzcKEyM5PF0u+VTSiwPDygGQ4w1TK5cO9X9CyGEEEIIIYS4mKxWbOaOnVVLbhSL1uO0w5zxwvDzOK35cKvPpN9ya78id4aDZcP+smFRB7aHGbk9+9fVdZaTb17B+bbr9NYGU/QIddV1e68qdFZgyz7qBNMEhRCvTn4ThXiKznL0aAvaBhsrlLaksk+ol4Rq+ejFzJQ9tHR1ibXMKH5yPecn13PuLwJf7bXEdHR2dv+cxYufFV5neOVwqcblkH/wKf0bH3KNQFN7Zvd3WNy5RXXnNu3s8KXbaw72aQ72Ofi3X4JSFNuXu67v6zcpLl9Fn6HFLA+L3gaN066LeU8BrRRGWZwyOGUJKRBSSUwFKXqSnhPVAqNKUmpIakVUi3XEeQ6pZLC4TbnaYX/yR890JidtOdz4I5a9q2zs/xtZOz/dG/6S7m8TIj+63PKjS3vwsLtXK8hycCf/1qa1JTvbf05wTxVrU2Rz71/oLe+d+DG8LqsMii4yP5FoYgtEMDNAdfO5Uw5hE+iKuzv/dLSr25Qlkz/5szfavyJhYk1QlqgMrS5JL3k+jDGxbDylsxit6PUzshTRQH7K0fCr+YzgPYPJBv3xBu4NC/5CCCGEEEIIIcTTetbQs4GEZS92cebjcxZn/qRR4fijK4Z70xqtFf3CsjNruHNQMSodG73szHd5A2jryDcuEUcb+PkharEueq8qwmpJc7iLzjJM0Ue7lyTXCSFO1Pl9xhTipFlH3h8SRy1+Pl2/mHWzO8Kqoj3cQ7sMU/TQZ7AzVLw7l/uGy/2zUzC9EJSiVQVBObKwJBmFSR6Xw+YH1xh/50OCcrTzGcs7t6i+uc3ym1uEqvr27abE6sE9Vg/usf+Ln6KMpbxylfL6TXrXbpJvbqHOwPiCQCTEGui6cx2WmBItYJTBKo1RGYlESAYfLYoRSVXrbu+MlMI64nwFeoVKDh1LtnZ/zmp5mf2N7xPN0eeyNh9z/8pfMZz9ntHhb1F8e4T8ifq27m/o5nKfws+qzsbsbv+IaI6exKjYsrXzC4p6/8SP4XVZDBqFT55Ioo4N6VGhO0EYAw7CFqz70Rd/+D2r+3ePbGfzR3+Jdm+2yMvGGtAEnRN0/vL4cmBRdykZg9zQ7+dYo7GhIY/h1LvmF/v75L0+Ns8ZX5WubiGEEEIIIYQQx2sz7+LMh85y2HgqHyjPQRf0ixituT4pmfQcf9hfkhnNYdVysGy7Lu9BRu+cFPS1sWTjLdxwgl9Mac0UU5SEpiZWC9rpPto6TNmXOoEQ78j5eDYR4h3Sxj3xYjbDLw4fze4Iq2UXZWJsN9c7L050PqwQ77uoDCszwKaGLK6IxmJijY0NBo8aDHCf/THjz/6YlBLNwR7LO7epvrlFdfcOsW2/dfspeJZ3brG8c4tduqSH3rUblNe7ed9uNH7n3flt8rTJo9E4bbEpEpJGozDaYJXBKksk4pMlxj4pNutub4tWPUj1utt7ilKaYrXkyje7TCefsRjcPLpDpZmNvktVXmay/+uzU8x9Xvf3CavKS+xu/gD00X0aX7H94Gc4vzi1Y3kZjUYrhUYDCZ8ikUQb2ycK3RHCCMjAbwPdYoEUI7tPdXXbwZDxZ3/8RsdiUotOgVaXXXy5Kl/6PSEmKh8YZA6jNWWvwMZ1V3d8/qiIk1Ivl7RNzeb2JfJen3IwPNX9CyGEEEIIIYS4+LTq4swfrFpKo1n4QKY1Rp/va829zPLZ5SEPZjVaKQaZ5cGi5u50xSC3bPYz7BloNHkVShvccAM7GHd1gvkhMS+6OkG1oJ0doI1Fl/1ubKLUCYQ4NVLsFuIVdS9mE+xgRKjmtLNDdF6QfIOvFvjFlFDNMUW/K3qfkxdpIc4dpfAq77q846obNZwcNtZkYUnQDq8ylFLkG1vkG1ts/OmfkWJktXOf6k7X9b26f5cUv71TOTY1899/zfz3XwNg+4NHkee9azewvf5p3OLnHxuROjbUdBHVTlls7Lq9tdI4ZciUI6lETAYfMxQTkl4Q1QxFQUoeVEWkAlUxPjigXN7iYOOHeHf0tnnXZ+fyT+jPbzM++AKdTrfg+K7NBh9wOPnsmRMV10zZfvAzTGze0ZE91hW4u4UPkIikR93cAG0MBALoORAgDAEHfosnFw3MfvslzcHekW1v/cVfod4g4r+LL28IyhFVN6f7ZfHlAPNVi1aKXqYZ9jKU0bjgsSliH0bXn5LFwT4uy8l7PZnVLYQQQgghhBDixJTWMHBxPX4sMfOesbPvvPHibSmluDwqGPcct/YrrNHM65bdRcPt/YqNfsaoOD/jQpXSuMEY2x+ui9yH6CwntQ1+tcDPDwnaYMoeJi+l6C3EKZBitxCvSSmN7Y0w5ZBQL/GzQ5TNSCEQqgWhmuGrOSbvYcoSpc9v3IwQZ1lSmtr0MNGRxYpoNCa1mNiQEfA6J6rHi06U1pSXr1Jevsrmj39C9C3VvbtUd26x/OYW9e7OS/fpF3NmX/6G2Ze/ASCbbFBe6wrf5bXr3arNd8CngE8BRfNEzHlXyHfaoJUhV5ZExCeHjwOSWq0jzi2aPlATqXDtb7l07xbz0Z8xG34P1NGFO4vBDapym8n+byir+6ceJ33aEnA4+Yz58MNnPldUO2zu/hJ9yvOjH1I8LnCrIwXu8KjA3f3MIyEFEgn0AlT7uNAdtnny7WAKgd2f/sOR/WQbWww//vSNjtGFFaDxOsPrnKBffvLa+sjKR8alwxpN2cuJKWGI5PF072vfNNTLBZPLV7Eup7+xear7F0IIIYQQQgjxfplkllWIDJ3p4sxDpHeO48yflFvDJ5cG7C9rbh8oysywO2/Ymdcsas/2IMeZ89NA1tUJhphyQKiXtNMDlMtIvsVXS8JyRlgu1kXvHpzzLn0hzjIpdgvxhpRS2KKPLfqEpsLPpl3XWxwQVsvuT71AZwW26KOs/LoJcRKCdlTK4lINURG1xcYaFyuisnidkZ5TktXW0b/xAf0bH3TbWa1Y3r29Ln7fpp0evnTfzcE+zcE+h//2S1CKYvtSV/y+fpPi0hX0Kf/eJxJNamlSi1EapxwpJhQBrRRGWdy6CzwkR4g9QmzXEedzjCpJqSGpisHsp+TVVxxO/po2P1rgiyZnb/vPKKoHTPZ/jQ31qd7O05KUZm/zB1S9y898rj+/zWT/16hT7jJ+UYE7PF3gjpHAusD9kF6CqiEOgayb0Z2OFp8Pf/Ov+PnsyMe2f/LXb7SK3KQWRaTRJQlD+wrx5QCz2mONpnCacc8RtCFPAZ0gP+WFBYuDPbSxFIMh4ytXz/1qeiGEEEIIIYQQZ5tWiq3ccS8mSqNZruPM7QUqlG70coaF485+hVGaYe7ZWTTc3l8y6WWMSoc+R+ffR+oEddWNPbWOFAbr5rg5vlpgih626EkirBAnQKpvQhwDk5WYrRLnG9r5IUobTNknrCrCaklT76KzDFP00S5714crxMWjFK0q1tHmFUkpTPKY2ODCkqAzgvr2jlJTFAw/+oThR58A0M5nLL95XPwO1fLbjyElVg/us3pwn/1f/BRlDMWVa/Su3aR3/Qb55jbqFN/MhhQJqUYBVjkyLDF1MedGGazSGJWRcISU4+OIqCqSnpHISCmQtyu2Hvx/WA4+YTb6EemprtxVeYl7+Qbjwy/pz29dqC7voB272z+iySfPfG508CXD2e9O7fa+uMDteRjEH4mE5xW4H21kBaqC2IeUQdyAdDSJILYtez//pyMfKy5fpXfz2a72lx9zwq7jy7sUhv4rxZfXPtKGyEYvwxlNXuS0CmwM5Cmc6mMseE81mzHY3MJYy2j70inuXQghhBBCCCHE+yo3mpEz8DDOvPVMsvMfZ/4kqzUfbvXZ6Lfc2q/IneGgathfNszXXd6FO38d7SYvMXlJbGra+cEzzXH1atF9TdF/o3FxQojnk2K3EMdI24x8cok43MAvuk5vU5SEpiZWC9rpPtpYdNnv4o4v0BsUIc6CqAwrM8DGpuvsNhYTa2xsMHhanZPUqxWc3WDI+NPvM/70+6SUaA72qb65xfLObaq7d4jtt89oTiFQ3blFdecWu/8EOsspr11/VPx2o8mpnKQkoE0tbWrRaJy2uJQISa27vQ1WGayyBHJCGOLViqRmJGUwqsdwdpeyusvB5M+pyxtHt68tBxvfZ9m7ysbev+H84sRv00nztmRn+8/xrnf0Eymysfev9Jd3T/wYNF2BW60L3Gn932sVuNdfhWq6+PJUQiogTiA+22V98C+/IKyqIx/b/su/eaPHqQsr0qP48oKoXuEELiXmq5bcajKr2eznBGOwMaKBPJ7unPjl4QEKRW80ZnTpMlpOQoUQQgghhBBCnJJxZqnWceYHrWcZIv0LEmf+pGHh+KOrlruHK7RW9HPLzqzhzmHFuHBs9LNz1eX9kM5y8s0rXXPcbN0cV/QI9ZJQLQmrCp1LIqwQx0V+i4Q4AdpYstEmbjjBL2b4+SExL0htg68W+PkhYf0CZ/JS5nUIccz8upM7SxUJCMnhYk0WK4JyeP16CQtKKfKNTfKNTSZ/8mekGFnt3Kf65jbLO7dY3b9LivFbtxGbmsXvf8vi978FwPb6lNe7ed+96zexvf6b3txXFonUsaGmwa5ne9unu721w2EJqcTHlqjnRDXD+cDWzi+perc4nPyIaIoj227yCfeu/jXD6e8YTX976vHex6XORuxu/5hojj5GVGzZ2vkFRb1/YvvuCtwGpdQTBe5ISHFd4E6ElIjpRQXuBMoDofv74b9hXeTudRHm8dnHWlhV7P/qZ0c+1rv5Hcor1177dtin4ssbVbz8m4CqjfiYGPUchTMUuWWpFHkM2BSxp/iYSjGynB5SjkZoYxldvnJq+xZCCCGEEEIIIdQTceY9Y9Zx5gp3ASOwtVJcn5RM+o5be0syo5lWnv1lw6LxbA1y+tn5LGVpm5FvXCKONvDzQ9TCYIrnJMKWfbSVRFgh3tT5fIYQ4pxQSuMGY2x/RKgWXXSJy0i+xa+WhGpGqOZd0VvmdQhxrJJS1KqHVjl5WNAYjUktJjZkweN1/mrdps+htKa8fJXy8lU2f/QTom+p7t19VPyudx+8dBt+uWD25W+YffkbALLxBuX1G/Su3aS8eh2T5y/ZwtvxyeOTR6Fx2uCSJSTdxZ7rx93ekRwfx3iWKDWjv5xRrP6Ww8knLPvfObpRpZmNP6bqXWZj79/Im5fPPT9LqvISu5s/AH30cWH8iu2df8a1x9+1rlHriHIFzylwJ7ridlfgjk8UuBPgQT2nsI2GZLq48mS7f2O6InccPfc49n7xz8+kFWz/5K9f+/aoFDGxIejsUXz5K6WYpMS89pRO47Rms+9olEalhCWSx9Od1V3NpsQQ6E02GGxs4rKT/X0UQgghhBBCCCGelhnNKLMkEk2MzNrARqYuVJz5k3rO8tmVIQ9mNUat6OeGnXnNvemKfm7Z6mfYc3r9XBtLNt7CDieExZTWHB5NhD3cR7sMU/TQcg1CiNcmxW4hToFSCtsbYHsDQl3Rzg5Q1kEc4KtuXoeXeR1CnIioDJUZ4lINURGNxYYGF1dEZfE6I73lJGBtHf0bH9C/8QEAoV5RfXOH5Te3WN65RTt9edG3OdynOdzn8N9+BUqRb12id/0G/Zvfobh89cROZBKRJkYa2kcF7hQTLQGtNFYZMpWRkRHSkNav0HrG5u5X9BYP2N/4Y4I72ins3YAHV/4D/fkfGB98iU6nW6h8E/PBBxxMPnumMOuaGdsP/hkTvz22/nU8LnB3J2iJRKAraCceF7i7gvfDDu4nitoqdP9PAtS6oO3WMeUWePgaotYfz7r53On5HdbtfM7hr3915GPDjz8l39x67dvmYt3FlytHq8tXXlCyaLpCfj/P6GeW3BnmynRzuhPkp/gYSimxONin6A+wzjG5+vrd7UIIIYQQQgghxHEYOUMVAkNn2G88Cx8YuItc1lFcGhaMy4w/7C+xWjOvW/YWDbf3Kzb6GcP8/M4v19qghxvYwfhIImxs6q5ZbnYgY1CFeAMX+VlRiDPJ5CUmL4ltTTs/RGlLKvuEuiKsFt28jizHlD2JLhHiuChFqwqCynBxSTIKnSw21riwJKxjz4+LyQsGH33M4KOPga6YWH1zi+W68ztUy2/fQErUO/epd+6z/4t/xg6GDD/+lNH3PiMbbxzbcT7Np4BPgRqFW8ecx9QFaFttMMpQqD6JkjZ69HJGXv+U6fgDZsMP4al56IvBB1TFJTb2f0O5enm3+7uQgMPJp8yH33nmc3m1w9buL4+lWK9RaKXRPFHgToHI0QK3T4FI2xW19ZMd2w8L22Zd3M67QvYzhW0HZE/8++X2fvaPpPDEbVSarb/4q9e+jTY1QKTVPSKWVr3aSuQYE8vGUzqL1YqNvqNVGhTYGLqC92sfzZurFwt82zK+fI1iMCI/hREDQgghhBBCCCHE8zyMM78bE31rmLeBzESyc9rh/Koyq/nk0oD9ZcPtg4oyM+zNG3bmNYu6izbPzPm9Dx4nwg7XRe5DdJZ3Y1BX6zGo5okxqFL0FuJbSbFbiHdEu5x84zJx1OLnU9TCYoreuuhdddEl1nXzOlwmL2hCHIOoNLUZYGODixXJGExssLHB4Gl1TlLH/0bZDQa4T7/P6NPvk1KiPTxgeecWy29uUd29Q2y+vWvYz2fs/+Kn7P/ip+Tblxl98hmD736CLXvHfqzQFV6b1NKkFoPGaUeKCU9AK4VRlkw5MrYIYYLbm9Ob/4K9rY9p86Mx2dEW7F76EcXyLhv7nx9rh/TbSmj2tv6UqvfsPObe/DYb+79+q9njD+PJHxe4Hxaz46P/D6kl0BBVC7rlSGEbsy5u5+uO7Ydv2x52c2fAw87tN1us0RzsM11H6T80/qM/wQ2fH3f+Il18edslJShNY3qv/Lq1qD0Ag9wwLC2Z1SyUwcaIBvLoX+tY3tbicJ+sKMnKgsmVq6e6byGEEEIIIYQQ4mlOayaZJSVoQmTeBiaZWo9Eu9g2ehnDwnJnv8IozaAI7Mxr7uwvGfcyxqU71/eDUhrbG2LKAWHVFb0fjUGtloTljLBcYMp+V/TW5/e2CnGSpNgtxDumjSMbb+GGky66ZHG47vxuHkWXKGPXq7gKKXoLcQz8upPbpaoLiE4WF2uyWBGUxeuTm42jlCKbbJBNNpj8yQ9JMVLvPlgXv2+zun/3aJftU+qd+zzYuc+Df/hf6d34kNEnn9H/8CO0PZmX9EAkxBrgiW7vRAsYZbBKUzAkbxP9b+6yNzrkcHKd9NTc61XvKneLTcYHn9Nf3D3VTt3nCdqxu/0jmnzyzOdGh18xnP72jY7xaIE7EUmPCtyJQFItkaYrcNOCiuvvfLJj+2EU+cMjsBCfLmwfzz24+9N/gPS4oK+sZfNHP3nt7bhYEzEE5Wh18crx5SEmKh8YZA6jNZNeRkARlSKPAZsi9i0WHLyuZrWiqSomV6/j8pLeeHJq+xZCCCGEEEIIIV5kYA2VjwRnOWhaFj4wvNBx5o9Zrflwq89Gv+XWfkVhNftVw2HVsKg924Ocwp3vsaBKKWw5wJZHx6CmMCBUC0I1w1dzTNHDFj244J39Qryu9+PZUIhzQGmDG06wgxGhmtPOpl10iW/w1RK/mBLWL2jdKi55QRPibSSlaFQPr3KysCQZjUktJjZkIayjzU/+ZVJpTXHpCsWlK2z+6CdE71ndv8vyzi0W//47msP9F9yAxPLW71ne+j3aZQw++pjhJ59RXr1+YnOL2uRpk0ejcdpiUyQkjUZhdDfb++osMqluc29zg6ocHj1knXGw+QOW/StM9n+Faz3qHZS9vSnZufRj/FOzxkmRjb1/o7/85rW293D+tkbxuMDdEFQDeOKjAncgEQG9jhkvnujYfrKw/XQU+ck8368e3Gf++6+PfGzyJ3+G7b1eYoCNXXy51z0i7pXjywHmqxatFL1MMy4dVisqpVEpYYnk8XTnvS8P9rHOUfQHTK5cPbczwIQQQgghhBBCXCxKKTZzRxMjfWuZtZ5MR/JzHOX9uoaF44+uWu5NVyit6OeWnVnDncOKUeHY7Gfnusv7oUdjUJuadn6AMgbigLBaElZL6tWy+5qi131OCCHFbiHOmi66ZIQph4R6iZ8domxGCmG9imuOrxbygibEMYnKsDIDXGogVkRjsaHBxhqtPF7npFMsyGpr6V2/Se/6TbZ+8tfUuzvMvvqc2W+/IFTV829D2zD94tdMv/g1tj9g+PGnDL/3Gflk80SOMRKpY0MNWGVwymLjw25vTe4NH97f47C/4v7GBtEcfbvR5Je4f+W/Yzj9F4az36FSjuJ0nsuabMTO9o+JJjvycRU9Wzs/p6hfsLjgKWZd4FYoEoFAjach0oDyJBWIKXah5MkADmLR/f3o8WTWBe3siY7t0ztJ3fmnvzvy/zrP2fjhj19rGypFTHqz+PLWR1Y+dkVu0xW7E+CV6eZ0J8iPYV76qwpty2o+Y7h9CWstg62tU9u3EEIIIYQQQgjxMlYrJpkjppYmKube4/T5jvF+XVopro1LJj3Hrb2KzGhmK8/eomHZdLO8+9nFKHvpLCffvILzTRdvrs16DOqSUHWFb50X2KKPOqHERyHOC/kNEOKMUkphiz626BOaFX5++MwqLnlBE+KYKEWr8i7aPC5JRqGTw8aaLCwJOsOrN5uJ/HaHpSi2L1FsX2L7P/xHlnduMfvqc+a//y0pPH+OsV/M2f/lP7P/y38m39pm+MlnDD/+9MTme/sU8CmgaB7FnIfURXMPF55+VfFgY5PpYPDUjTPMxn9GVX7I+ODvyZspKhUosufs5XhUxTZ7Wz98JmLd+BXbO/+Maxcv/F5F18Hddfp6UBUeT6SmK2kDSRFRhKhJ0dG9zXpYvNaPC9oPi9unWNh+2vLOLapvbh/52OYP/wKTvV6Ev4urR/HljS6JrzHzflZ7rNEUTjPpObSGRmlQYGPoCt6vdTRvZ3G4j9KGcjRmdPkqWstiMiGEEEIIIYQQZ8vAGaoQiMmy37TM28DoghR3X0fpLJ9eGfBg1nD3sKKXGXbmDfemK/qZZWuQYS9IMqq2GfnGJeJogp9PUQuDKfqEVUVYLWnqXXSWY8oe2p7cdTUhzrL371lQiHPIZAVms8D5tosu0QZTPvWC5jJM0Udn8oImxJuKSlObATY2uFgRjcbGBh0bMjytzkmvUcw7Tkpr+jc/pH/zQ2LbMP/d10y/+vyZguWT6t0d6t0ddv7xv9C7fpPhJ58x+M530fb4C/eJRJNamtRilcEqS4oJFQPbO98wWAy5v7WNf2phjs8m7F76H+jNv2A4+zkmzVGphJSjjrEYPB/c5GDyR890HbtmxvbOzzChfu6t0kSUCutu7ZaAJ6VETKCwJCwx5V2B+1FpVj1R0Hbredtnp3CaUnqmq9v2+oz/+AevtR0XayDhTbdQ5HVm3dc+0obIRi/DGc0g7x6TrTLYGNFAHp+/oOMkxBCoplN64wnGWMaXL5/avoUQQgghhBBCiNexmTmaEBk4y7TxrEKkeI/izB9TXBrmTHqOP+wtsVqzaFp25w239is2+xnD3F6YEWXaOLLxFnY4ISymtOYQU5SEpiZWC9rDfakRiPeWFLuFOEe0deSTS8ThBn4xQ5kppujmd4TVgna2jzYWXfa77rwL8kIuxGnzOuu6vNMKAPWwyztWRGXX0ebvjnYZo0+/z+jT79Mu5sy+/oLZl5/THOw9/xtSYnn7Dyxv/4H71jH46GNGD+d7n8Aq18fd3mCVI8OSLadcr2YcblzicDQ++vykFMvhZ9TlB4wPfkpe/wHUAp1ySCXqLd6uJOBw/D3mo4+e+Vy+2mVr5xfoFEgkIKBUiybCwwI3EEmkaLr52ikjYohREYjd4+BhtzbZet722X57Nf/919Q7D458bPPP/xL9GgkhOgV0ehjzr2n1ayQHpMR81ZJbTWY1m/0crcGjiEqRx4BNEXuKv2XV9JCUEr3RhOHWNuYEFoQIIYQQQgghhBDHwWjFRu4Iq5bCaOZtF2du3tNrwc5oPr40YH/ZcPugonCG/XnLzrxmXnu2BznZBVoMoLVBDzewgzF+McPPD4l50dUIKqkRiPfT2b4aK4R4Lm0s2WgDN3z8gqbzgtQ2+NUCPz8kaI0p+pi8BC0vaEK8rqQUjSrxKiMLXbS5SS0mNrgQCNoR3kG0+dNcf8DmD/+cjR/8mGZ/l+mXnzP7+gtCtXzu1yffMvvyN8y+/A22138833vj+OcTJ6BNLW1q0Wictkz27tGbH7J76SrNU5HZwZbsbf8nysUdxoc/J6Yp6BUqORQlpAz1GsHWCc3e1p9Q9a4+87ne/BaTg5+haEkqoFREKdbbN6RoSCkjpS6KPCa6GdxJk5IDHkaSv/vHwOtIMbL703848jE3GjP63vdfeRsKsLEmYgnK0ujea8WXV23Ex8So5yicoZ93Xe+t0qiUsESKeHqzulNKLA4PKAZDjLOMrzz7eBFCCCGEEEIIIc6SnjX0beyS9mJk1npGzr5X87ufttHLGBWW2wcVRmn6hWVnXnNnf8m4lzEuL9Z8c6U0bjDG9oeEak47O0Rn+dEagTHrGkEhRW9xoUmxW4hz7PEL2mjd2X2IchnJe/xqQahm+GqOKXrYogcXZE6JEKcpKsPKDLCpIYsroum6vG1sMHhaUzwRX/3uKKXIN7e59FfbbP/l37D85vZ6vvfXJP+C+d7LBfu/+hn7v/oZ2eYWo4fzvXv9Yz++SKSODTUNtm64dHvJYrzN4WSL9NRzU9W/Tl1cYnTwG3rL34FaEdUUpTSkYt3t/e3PZ1FbdrZ/RJNvPPO5wfSXjGb/glYKjUWRo5IhJkNK5lE/cYyGkLo/6RwWtp9n+uVvaA8Pjnxs6yd//Vod/vZRfHm2ji9/jWislJjXntJpnNZs9rv7NAFeGfIYUAmydHrF7mo2JXjPYLJBbzwhK8pT27cQQgghhBBCCPGmNnLLKgRGzjJtPQeNZ+gM7j2+Bmy05sPNPpv9llt7FYXV7FcNh1XDbOUZl45hcbEWBSilsb0RphyuawQH6xpBi6+WhOWUUM2lMU5caFLsFuICUEphywG2HBDqqit6WwtxQKiWhNWSerXoZn8X/e5zQohXpxRedXOJs7giadAPo83DkqAdXp2dWThKa/o3PqB/4wNi+98x//ffMvvyc5bf3IL0/GjoZm+Xnb3/ws5//Tt6124y/N5nDD78Ltodf4HXJ49PHrt/h+3FPtPtG9Tl0QJ7NI6DrR+w6t9gsvevmDADVRGpQFeolKFSieLo8SUC3jp2t3+Cd8OjO06Rzf2fMVreBbaArrAdUyQlh0ruUXH76AzuiyF6z94//+ORj+Vblxh85+NX3oZJHp08rS6IGJrXiS8HFk236ryfZ/QzS+Eed3WjwBLI1xH4pyHFyHxvl3IwxOY5k6vXT2nPQgghhBBCCCHE29FKsV1k7KwatHJMW89h4+lbQ2nNuz68d2qQOz67ark3XaG0YpA7DpYNe4uag2XTFb1Li3mNpLqz7kiNYFXRzvdR1pHCgFBJY5y42KTiJcQFY/ISk5fEtqadT1HaYso+oa4IqwWhXqGzHFP00O7sFOeEOA+S0tSmh4mum99tNDa16NiQEfA6f60459OgnWP0yWeMPvkMv1ww+/oLpl99TrO3+/xvSInlnT+wvPMH7lvL4DsfM/zkM3rXbhz7fO9EJDUL+nc+Jx9tM9u8TjJHT8ZWxQb3rv5HJod/oD//Co0HaiIVSR+gkkGRk2hJytO4Dfa3/huiKY5sR0XPld1/paynpNQnxsdR5DEZfEr49PwO+Ivi8Ne/wi8XRz629ZO/Rr3iamZFwsSGiCUqQ6tL0ms83mNMLBtP6SxWKzb6jxcqtMpgY0QDeTy9n8Pi8IAYAoOtbfrjDcrB8OXfJIQQQgghhBBCnBG50Vwpc3brBqMs8zYw94E2JQbWXKgO5telleLauGTSc3xzsCIzGt+LHKxaDqqGg6plVFhGpcNesMKvKUpMURKbmnZ+gDJm3Ri3WDfGLbs6QtHrPifEOSfFbiEuKO1y8o1LxNEGfn6IWlhM0SM0K2K1pJ3uo61DFz1MlsvMDiFeQ9COSllcqiEqlLbYWONiRVQWr7Mz2RVse302fvBjNn7wY+q9XWZfdfO9ny6APpS8777mq88xZY/hx58y+t5n5Jvbx3pcCnDTHSaLAxbbN2kGR6PHk9bsb3yHZe8ql/Z+i/F3CZSk1JBURWSFwlDnH7G/+ZckffTtjfENV+5/iWsSMV0BNIGw7jAPQDzW23MWhaZm7xc/PfKx8toNetdvvvI2bGwA8CYnqPz14suBRd0VsQe5YVhaMtudSHoUUSnyGLApYnl++sBxiyGw2N+jNxpjXcbmjVe/L4QQQgghhBBCiLPCasXlIuOg8YDCmci89Rw0idF6wfn7rHSWjy8NqFrPg2mNtZpJzzGtWqaVZ1q1DArHuHQ4c7GK3jrLyTev4HzTpcFqs26MWz5KhNV5gZU0WHHOyaNXiAtOG0s23sINJ/jFDL+YEvNuVVeoFvj5IcEYTNHrZnZI0VuIV6MUrSrW0eYVSSlM8pjY4MKSoLt5xmdVvrlFvvkf2frJX1PdvcP0q8+Z/+5rkm+f+/WhWnLwLz/n4F9+TraxyfCTzxh9/Cm2Pzi2Y9LBM7z3O5rZHotLHxDt0WJqnefcuvpHbEyvsnl4h8g+gYwILPofsL/x2TPPYa6puXL3NjpoPA6f2nWB+/1y8KufE+v6yMe2X6Or26R2HV9eEtE0+vXmWoeYqHxgkDmM1kx6j3+2rTKolLBEinh6P5v5/i4kGGxuMdzaJitfL5JdCCGEEEIIIYQ4K5RSbOSO3Gj26harLNMmcNC0DJyluGBF3DdROsuHW5arPnJ/tsJpzbh0zFZdwXu2aunnlnGZkduLdX9pm60b4yb4+RS1MJiiT1hVhNWSpt59nAZrndQIxLkjxW4h3hNKG9xwgh2MCNWCdn6IznKSb/BVRVjOCMsFplwXvS9YdIsQJyUqw8oMsLHpOruNxcQaGxsMnlbnrxX1fNqU1vSu36R3/SbxP/5vWPz775h++TnLO3948Xzv/T12/+vfsftf/47y2g1Gn3zG4KOPj200QracYv/936i2rrMabR99g60U++MJs16fq3s79FYzHmxssj96ttu8qBZM7v07TWwI6eJ3b7+Ir5bs/8vPj3ys/53vUly68krf/zC+PChLVJpG90ivedIzX7Vopehl3Ynkw1XlCfBKk8eASpCd0kKE0LYsDw/pTzYx1rH5Gh3uQgghhBBCCCHEWdWzBqcVu6sWnSvmbWDWetqoGVjzyoveL7LMam5u9LgyKtiZ1zhTMy4cs9pzWLXcPljSc4ZxL6N0FyviWxtHNt7CDtdFb3OIKUpCUxOrBe10H6U1Ji/ReSkR5+LckGK3EO8ZpTS2N8T2hvjVEj8/QNmMFAbdTO9qjq8WMrNDiNfk153cWapIQEgOF2uyWBGUe+3I53dBW8fw408Zfvwpvloy+/oLZl99Tr2788Lvqb65TfXNbe7/l/+F/nc+YvTJZ/Suf/DW8711ivR3bpHN9lhc/pCQHe0k9s5x68o1XLNJm+XPfH8x3aP34N9pTykS+yzb+/k/kfwTc7CVYvsv/vqVv9+GGtAEna//vF5iQesjKx+7Irfpit2PPqc0KLAE8uRPLfx/treD0pr+xgbjy1ex2dn//RRCCCGEEEIIIV6F05rLZRdrrlA43c3x9utYc/Oex5o/5Izm2rjk8jBnZ95g5zXDwrKoPYeV55vDisIZxqWjn12sUprWhmy0gRuOuzTY+SExL0i+IaxWhNUSXy26Mah52Y1BleY4cYZdrN9QIcRrsUUPW/SITU07P0AbSyoHhNXy0R+dFdiyh7JnN45ZiLMiKUWtehiVkYUljdGY1GJiQxY8XudEdT4WkNiyx8af/oiNP/0R9cHeenb3F/jF/Llfn4Jn/vWXzL/+ElOWDL/7KcNPPiPf2n6rVcOuXjL+w2+oNq5QbVyBp7rkn1foLve+ody/ewanpp++djbl8Df/euRjo+/9Edlk4wXfcZRJLZrwOL5cvV58OcCs9lijKVw3E+vJc6NWGWyMaCA/pQjztq6pZjPGl65gXcbk6rVT2a8QQgghhBBCCHFatFJs5o5Ma/YbsEoxbR/HmucSa/6I0Zoro4JLw5y9RcP9Wc0gdyyaLt783nRFZrprGv3MXqjueKU0bjDG9oeEaolfztG2IqVhNwa1qQjLKX4J2hWYvOiSHS/QfSAuBil2CyHQWU6+eYUYWtrZIcoYTPnEzI7DPbTLMEUfLd1vQrxUUJbKDHGphqiI2q5jzldEZfE6I52jUmw+2ST/yd+w9RfdfO/Zer53bJvnfn2oKg7+9Rcc/OsvyCYbDD/5jOHHn+IGwzfavyLR279LNt9ncelDfPmCOeEp0X/w7xSzvTfaz0WQUiLWNe18hl/MOfzNv0B8HOGujGHzx3/5SttSJGxsCMp18eWm/9rx5bWPtCGy0ctwRjPIHy+c8iiiUuQxYFPEnlIX/mx3B+sc5WjMxrUbGCtvh4UQQgghhBBCXEwDZ8i0YqduMVoxaz3T1lNGQ9/qC1W4fVtaKbYHOVv9jIOq4d60pp9ZVm3goOqK4M60jEvHILfoC3TfdWmwA2xvQAyesJzjqzm6LSBGQr0i1hXt7AClNTorMXmBkmsq4oyQR6IQ4hFtHPlkmzjaICymtGaKKcpuFddqQTvbRxuLLvtddMkFekEX4tgpRasKgspwcUlSCp0sNta4sCSsY8/PE6UUvWs36F27waW/6eZ7z77+nMWtP8ALZmI3B/vs/tPfs/tPf0959TrDTz5j8NEnmDdYOGPbmtGdL6hHWyw3b5CeHLMQA8O7vyWrZm96886FFAJ+uXhUzPbzOe1i9vjvxfxoZPlTxt//wSsvOnBhRULjdYbXBUG95tvGlJivWnKryaxms58/09WtUsISKU6pq7teLqmXCyZXr+OynPGly6eyXyGEEEIIIYQQ4l3JjOZqmbFXtygUlQ4sfMC3kaGzGLnGe4RSio1ezkYvY1p57s1WFM5Qh8DhsmV3XnOwbBgVjmFpMepidclrY9HDCW446RJhqxlquSCVPZJv14XvJWG16L427wrfEnMu3iUpdgshnqG1QQ83sIMxYTmnnR+i84LUNvjVAj8/JGiNKXqYvJQXMiG+RVSa2gzWnd0VyRhMbLCxweBpdU46h2+KtbUMP/4ew4+/h19VzL/+kulXn1Pv3H/h91R371DdvcODv/tf6H/4XYaffEr/xgco/erR7goopru4xZTl1nXa3hjTVPR3bmGb6hhu2buTUiI2DX4+e1TA9ov5o8J2u5gTlos33r52js0/+/NX+lqTWhSRRpckDI0qXnt/VRvxMTHqOQpn6OePf84J8EqTx4BKkKXTKXbPdndwRUE5GLB54+Zbz5YXQgghhBBCCCHOA60U20XGrPWoR7HmnoOmZWgtmcSaP4diVDpGpWNet9yf1uTG4HuRg6rloGo4qFpGhWVUOuwFvMags5w8y0mjTUJdERZztF2SegNi23Qfq2b4aoZ2OTorpElOvBNS7BZCvJBSGtsfYXrDdWf3IcplJO8JqwWhWnRxJq7AFGU3r0MI8Vx+3cntUkUCQrK4WJPFiqAcXp/f3x9blEz+5IdM/uSHNAf7TL/6nNnXX+Dnz++yTiEw/+2XzH/7JaYoGHz3U0affEa+femV47NMaBne/z0Jzk0gfIoBv1yui9nzI393Re05ybcntv/NH/8lpnj5zG1FfBRfnpSmNv3XP0lJiXntKZ3Gac1m/2iKQas0KLAE8uRP5WdYzWa09Yqt6zfJyh6Dza1T2KsQQgghhBBCCHF2DJ0l05rdh7Hmjeew9fSToTQSa/4ig9wxuOSoWs/9aY21mknfMa1aplU323tQOMalw13AhQNKaWzRxxZ9YgxdzPlyhs7yxzHnTdU1ySn1qNtb2fOVainOLyl2CyFeSimFLQfYckCouxctZe3ReR3TfZSxGIktEeKFklI0qodXOVlYkozGpBYTG7Lg19Hm5/ulOZtssP2Tv2brL/6K1b1vmH71OfPffUVsXjDfe7Xi8N9+yeG//RI3njB6ON97OHql/Z2lU7DQ1Edixbtu7PW/5zN8tYR0OnOpUQrb62P7A9xgSO/GBww/+eyVvtWF+lF8eatLonr1zvuHFk0kkejnGf3MUrij22iVwcaIhlOJME8pMd/bIe/1yXo9tm58ICfwQgghhBBCCCHeS7nRXFnHmmtg6SNLH2hjYujMhZpFfdxKZ/nOluWqDzyY1TitGZeO2aoreM9WLf3cMi4zcnsxr49rbdCDMW4wJrY1fjlHV3Ni6JG8JzYrQr0krJaP6gU6z18r2VGI13W+r6gLIU5dV8wucaHFz6eo5byb19E2+NXD2JI5JssxRU9WbwnxHFEZVmaASw3EimgsNjTYWKOVx+ucdKbKuK9PKUV59Trl1etc+uv/lsWt3zP78nMWt/79hfO928MDdn/6D+z+9B8or1x7PN87z0/56J+VYuy6shezx/OyH0aMrwvbsX1+Qf8kKOtwgwG2P+z+Hgy7wnZ//e9e/40ium1qgNgVubG06vXv+xgTy8ZTOovVio2nuro9iqgUeQzYFDGc/AKA5fQQ37ZMrl6nGIzojScnvk8hhBBCCCGEEOKsMkqxnTumWqPwON3Fmu83iZEzOGlk+la5Ndzc6HFlVHRFb1MzKhzz2nNYtdw+WNLLDOMyo3QXt8irXU42fiLmfDkjVA5T9om+IaxWXb1gOUNnGTorJeZcnAgpdgsh3og2jmy8hRttEKolfjFFuQzisHthW1WEeg9tLLroYbICtLyICfGIUrQq76LN45JkFDo5bKzJwvJR7PlFoK1l+NEnDD/6hLCqmP32K2Zffc7qwb0Xfk917xuqe9/w4O//f/Q/+A7DTz6jf+NDlDmZE4TYNrTzJ6LF1x3Zjzqzl4vT68qGR13ZdjB8XMDuDx4VuHWWHXtnskoRE1u8zkjK0JjeG518LGoPwCA3DEtL9tRK5lYZVEpY4ql0dccYWeztUg5HuDxn6+YHJ75PIYQQQgghhBDirFNKMc4suVHsrlq0csxaz2Hj6VtDaS9ukfa4OKO5Pim5MsrZmTc8mNcMC9sVvZeebw4rCmcYl45+dnHLcUopbNHDFj1SDN340+Uc7fKuXtCsiPUKPz/EK4XJC3RWyFhUcWwu7m+XEOJUKKWxvQG2NyC2Ne1i1sWTFD1i2xDqrhDul7NHXeHKylOPEA9FpanNABsbXKyIRmNjg40NBk+rc5K6OKtpTVEy+eMfMPnjH9AcHjD7+nNmX31BO5s+9+tTCMx/9zXz332NzguG3/0ew08+pbh05ZWLvSlGQrV8ak72fN2l3f39opj1k6CsxfWH2MHgUcz4kcJ2r39iRf1v42JNRBOUo9XFG8WXh5iofGCQOYzWTHpHT1oi4JUmjx6VIEsnX+xeHuwTY2SwuUV/sknRH5z4PoUQQgghhBBCiPOiMIYrpWa3bjDKsmgD83Ws+UBizV+J0Zoro4JLw5y9RcP9Wc0wdyyartP73nRFbgzjnqWf2Qs9Wk1pg+2PsP0R0bddV/dyTix6pBCIdUWoV4RVhTKmiznPindyLUxcHFJxEkIcG+1y8klOGm8SlnPaxRSd5RBD1+m96mZ1aJehc4ksEeJJDzu5XVoBEB52eceKoBxeX7yVjtl4wtaf/xWbP/4PrO7fZfbV58x++xWxqZ/79bFecfjrX3H461/hRmOGn3zG6JPPMEX5OFL8ib8f/3vxwuj0k2DK3qMObDsYdIXt/uDRv3Wen7mTGhu7+HKve28cXw4wX7Vopehl3cwq+1Sih1caFFgiefInHtYfvGdxsE9/PMG6jK0b0tUthBBCCCGEEEI8zWrF5SLjsPWAwprIvPUcNInRekyZeDmtFNuDnK1+xkHVcG9a088sVRs4rLoiuDMt49IxyO2FX0igrSMbbZKGG8RmhV/OCdZieoNuLGpdPdEFnqGzQhJixRuRYrcQ4tgppR+t3grNCr+YobTtZnU0NWG1xM8PCUqji3W3t6zcEoKkFI0q8SojC120uUktJjZkIdCa4tzP8n4epRTllWuUV66x/df/Lctbv2f65ecsbv0e4gvme08P2fvnf2Tvn//xdI/V2HXRevDcmHHbH6DP2fOZShGTHsaX6zeOL299ZOVjV+Q2XbH7ma9RBhsjGk4lwnyxvwco+hubjC5dxhXFie9TCCGEEEIIIYQ4j5RSTDJHrjW7dYtVlmkbOGhaBs5QnLPrHe+SUoqNXs5GL+Owark/qymdoQ6Bw2XL7rzmYNkwKhzD0mIuUKrj8yilHqW+psnWusA968aipkRoamJdPUqI1VnedXxbJ81y4pVIsVsIcaLMejVWGm/il3P8YorOC5L3hLoirpaEavH4Bcxl8gIm3ntRGVZmgEsNxIqoDS7WuFDhdf5G8dLnhTaGwXc+ZvCdjwn16vF87/t3T2X/piyx/YcF7K47+8kubZMXZ64r+2118eVmHV9evvHja1Z7rNEUTjPpOfRT52keRVSKPAZsihhOdga6bxqW00MGm1sY59i4duNE9yeEEEIIIYQQQlwEpTVc1YqdusUoxbwNzNp1rLk1F+66yMlSjMuMcZkxr1vuTWtyY2h7kcOq5aBqOKhaRqVlVDjs0xdTLqBuLOoQ2xsSQ0tYdoXvmBddQmy9ItQr2nofpXWXECvNcuIlpNgthDgVShvcYNzN6qhX+OUUbR2pN1gXvSva2QFKG8y62/uZSokQ7xOlaFVOUJY8zGmNxoYaF1cXNtb8aSYvmHz/T5l8/09pZ1OmX33O7MvPaWeHb7Q9Zcyj7utn5mQ/7Mq279dbIxtrIOJNj6gcrXqzx1XtI22IbPQynNEM8ud3dauUsMRT6eqe7+2itKE/3mBy5RrWPXtMQgghhBBCCCGEeJbVmitFxn7TxZo7HZl5j1/HmhuJmX5tg9wxuORYtp4H0xpnumaBadUyrTzTZcugcIxLhzPvx3VxbRx6OMENJ4Smwi/nKLvAlH2Sbwj16nGznHXo/GHM+ftx/4hX935d0RVCvHNKqa6YXZTE4AnLGX4xIxY9km/wq4pQzfHVHO0KTLHu9hbiPdV1eY/I4pJkwCR94WPNn8cNR2z9+C/Z/NFPWD2493i+d7169DUmLx7FiT8zM3swwBSlrD5+gk4Rk3wXX46m0W8WX05KzFctudVkVrPZz58554h087rz6FEJsnSyxe62XlHNZ4wvX8E6x+TKtRPdnxBCCCGEEEIIcdEopdjMHbnR7NUtVlumTWC/aRk6S/6eFGSPW89ZvrNluToO3F8Xvcc9x2zlOaxaZquWfm6Z9DKy9+g+NlmJyUrSeKsbg7qYo21F6g270ahN1dUSlrOubpAXkhIrHpFitxDindHGoocb2MGEUC/x8ynKZhCH67iSina6jzL20UwPZNWgeA8lpahNHxst2XsWa/40pRTl5auUl69y6a/+E830AKX1uitbOndfh42rR/HljS6JbzgfqmojPiZGPUfhDP382cejVxoUWCJ58ie+RGO2u4NzGeVwzMb1G+dujroQQgghhBBCCHFW9K0h04qdVYvOFbPWM209ZdT0Jdb8jeXW8MFmj6vjggezGqdrRoVjXnsOqpZb+0t6mWFcZpTu/bmuoZTGlgNsOVg3y60b49oCYuy6vet1Sqx6GHNeoN6ztEZxlPz0hRDvnFIKW/SxRZ/oW/xiilrOMWWP1Db41ZJQzfDVHJMXmLwnL17ivdQVtt/fWPOnKWPIN7be9WGcSy7WQMKbfP34yd9sQykxrz2l0zit2ew/f8FBqww2RjSceIR5vVxQL5dsXL2Oy3NG25dPdH9CCCGEEEIIIcRF57TmSpmxV7coFJUOLHzAt4mhsxgpeL8xZzTXJyVXRjkP5jU784ZhYZnXnsOl55vDisIZJqWjl71f18S7Zrku5jw2NW01Qy0XpLJH8u268L0krBbd164L3xJz/v55v34zhBBnnraObLyFG20QqgV+MUO5bL1qa0lYVYRV1c3oKHoYl0u3t3ivSKy5eFs6BXTyeJ2TMLS698bbWjSRRKKfZ/QzS/GclcYeRVSKPAZsihjS2xz+t0opMdvdIStKisGAzRs3UXKCI4QQQgghhBBCvDWtFNtFxrz17DdglWLWBg7qLtb8fYrcPglGa66OSi4PC3bnDQ/mK4a5Y9G0HFaeu9MVuTGMe5Z+Zt+7jnqd5eRZThptEuqKsJij7ZLUGxDbpvtYNcNXM7TL0VmByXKJOX9PSLFbCHEmKaWxvSG2NyS2Ne1i2sWZF/31i9cSPz/EK9VFnBc9lMTUiveExJqLN6VI2FgTsQRl3yq+PMbEsvGUzmK1YuNburpVSljiiXd1r+Yz2rpm68YH5GWfgXT+CyGEEEIIIYQQx2rgLJnW7NQtVnex5oetp5cMPaPfuyLscdNKcWmYsz3I2F823J9p+pmjagMHVcP9WY0zLePSMcgt+j27v5XSj1NiY+hizpczdJY/jjlvKvz8kKDUEzHnMv7wIpNitxDizNMuJ59cIo23CMs57WKKznJSCMS6IqyWhNUS7bLuxUtWbIn3xONY84XEmotXYmMDsI4vz97qcbKoPQCD3DAsLZl9tmhuCNtMAADcEElEQVQe6eZ159GjEmTp5IrdKSXme7sUvQFZWbJ58wM5wRZCCCGEEEIIIU5AZjRXy4zddaz5UgWWPuBjZOjevwLsSVBKsdnP2exnHFYt96c1pTPUIXC4bNmd1xwsG0alY1S49/I+19qgB2PcYExsa/xyjq4WxNAjeU9sVl3H92rZNdLlJTrPUVoahS4aKXYLIc4NpTS2P8L2R4Smwi9mBGMxZZ/Q1MRV1+0dtO5euIpSXrjEhdfFmg8l1ly8lEkenTytLohomreILw8xUfnAIHMYrZn0nl8090qDAkskT/5EH43LwwN827Jx7QblcExvND7BvQkhhBBCCCGEEO83rRSXioxp053vO62Ytp79xjNyBidjxY6JYlxmjMuMed1yb1qTG0PbixwuWw6WDYfLlmFpGRUO+57e79rlZOMnYs6rOWG5wJR9om8Iq1UXc76cobMMnZUyIvUCkWK3EOJcMlmJyUriOBAWM/xiSswLkvfr2d5LfLVAZzkm76Gdk25vcWG9ONZ8ideFxJoLFAkTa4KyRGVodUl6i+fE+apFK0Uv04xLh33BiUGrDDZGNJxohHmMkfn+HuVwhM0ytm5+cGL7EkIIIYQQQgghxGOjzJIbzc6qwSjHtPUcNp6eNZQSa36sBrljcMmxbDz3Zyuc0UyiY1q1TCvPdNkyLByj0uHe0xnqSils0cMWPdI4EFYL/GKOdjnEIaFZEevV4xGpWY7OS7STlMzzTIrdQohzTWuDHk6wg3H3IrWYoq0j9YaEuiKuKtrZPsoYTN7D5AW8p6vbxMUnsebiRWysAU3QOUHnb/V4aH1k5WNX5DZdsft5PIqoFHkM2BQxpDfe58ss9vdIMTLc3GawsUXe65/YvoQQQgghhBBCCHFUbjRXy5zdukUrWPjAwgfamBg6815GbJ+kXmb5aGtAPQrrGd6acW9d9F55pquWQe4Y9xzZe1r0BlDaYHsjbG9E9G3X1b2cE4ve4xGp9YpQr7r6QVag8xJlpHHovJFitxDiQlBKYYoSU5TE0HartZaz7oXLN/hV1cWUVDN0VmCKEm2l+CcuHok1F08zqUWnQKvLLr5clW+1vVntsUZTOM2k5164fqhVBp0SlniiXd3BexYH+/QnG9gsY/PGzRPblxBCCCGEEEIIIZ7PaMWlwjFtNaBwOjJrPQdNV/CWWPPjlzvDB5s9ro4LHsxqnNbruHPPQdUy22/pZ5Zx6Sjc+13A1daRjTZJww1is8Iv5wRrMb0BqW0ezfb21QLtsq6GkBUSc35OSLFbCHHhaOPIRhuk4bh7gVpMUTbrYkrqFWG1pK1XaGPRRReHLi9a4iKRWHPxkE0NJrYE5Yiqm9P9NvHltY+0IbLRy3BGM8if39Ud6eZ159GjEmTp5Ird871dlNL0JxuMti/h8uLE9iWEEEIIIYQQQogXU0oxziyZVuzV7ZFY8741lFauSZ0EZzTXJyWXRzk785qdWc0wt4+K3ncOK0pnmJSOMnu/y4JKKUxeYvKSNNkiVAv8coZyGaREaGpiXeEX0/V87xyTv13jiDh57/ejWghxoSmlseUAWw66mJLFFLWcYcoeqW3wqyVhOcMv55i8wOQ9lJWnRXFxSKz5+8ukFhNbIBG0w6sMr3OCfn5x+pWkxHzVkltNZjWb/fyFXd1eaVBgieTJn1iegG8aqukhw61LWJexcf3GCe1JCCGEEEIIIYQQr6q0hitas1s3GGWZt4G5D7QpMbASa35SrNZcHZVcGuTsLVoezFcMC8eiaTlYer6ZrsitYVJaepl97+epK6WxvSG2NySGlrDsCt8xLyCGRxHnbb0PWSnjUc8wqeoIId4L2jqy8RZutEGoFrSL9WqtGAirah1TUqGtQxc9TJbDe/5iLy6Gx7HmlcSavwd0CtjYoIgEZQk6I6FpdUGr8rfadtVGfEyMel30VT9/8WrsRhlsjGg40Qjz2e4O2jh64wmTq9cw9i2K+UIIIYQQQgghhDg2VisuFxkHjQcUzkTm61jzkbNYSdo8MUZrLg1ztgcZe8uGB1NNP3NUbeCgarg3q3GmZVw6BrmVxQd0abF6OMENJ4Rm1XV72wWm7JN8w9InSOldH6Z4ASl2CyHeK0dWazU17WKKMhZT9olNTagr/PyQoBQ672GKEmUkXkecb12seQ8bjcSaX1AqRWxs0AQihlaXJKUJKutmdau3XHmaEvPaUzqN05rN/ouLyh5FUgoXAy5FDCdzItCsKlaLOZPLV7FZxvjK1RPZjxBCCCGEEEIIId6MUoqN3JEbzV7dYpVl2gQOmpaBsxRGOmVPklKKrX7OVj/jsGq5N11ROsPKBw6rlt15zcGyYVQ6RoWToveaWc/rTuOt9ZjUOWpVo1JES6PFmSTFbiHEe0tnOXl2iTTexC/n3QyOvCCFQFwtCfWSsFqgXYbOS+n2FueexJpfPIrUFbmTX3dwd4XtiKMx5bEtZFg0kUSin2f0M0vhXrzdVhl0Sl2EefTHsv/nme3u4LKcYjhi8/pNtJZFG0IIIYQQQgghxFnUswanFburFp0r5m1g1nraqBlY897HaZ88xbjMGJcZs1XL/VlNYQ1NLzJdthwsGw6XLRv9jFEhxdyHnhyTqqYLTGrJR8N3fVjiOaTYLYR47yltcIMxbjAmNBV+MSMYi+kNCE1NXC27bm+tMXmJLkqUFFXEOSWx5heHTS06NoDC64yg3KOC93EuXogxsWw85TpibONburoj3bzuPHpUgizFYzuOJ60Wc5qqYvPaDbKiYLi1fSL7EUIIIYQQQgghxPFwWnO57GLNFQqnuznevkmMMouRgvepGBaOYeFYNp570xWZ0Uyi42DRsjOvUeuvEU/RBmWs1AXOKCl2CyHEE0xWYrKSOPKE5Ry/mBLzguTbbrb3aomvFugsxxQ9tJNuWHH+SKz5+WZSi4ktkIjKPTWXOzv2BIpF3XVnD3LDsLBk9sURY15pUHRd3cmfyNKJlBKz3R3yskfe77N54wOUltgzIYQQQgghhBDirNNKsZk7Mq3Zb8AqxbQNHNRdrHkuseanppdZvrs9oG4D96Yr7Prayu68xmpNmcn1QXF+SLFbCCGeQxuLHk6wgzGhrgiLKco6iANCvSLWFe10H2UMJu9h8gKk2CLOGYk1P19UirhYo4hEZfE6I6HwuqBVBekEVkCHmKh8YJA5jNZM+t/+uGiUwcaIBooYjv14AKrZFN80jG9eJe/1GWxsnsh+hBBCCCGEEEIIcTIGzpBpxU7dYrRi1nqmraeMhr7VEmt+inJn+HCrj9ZLEok2Re7PVlyblGSy+ECcE1LsFkKIb6GUwhY9bNHDhRa/mKGXM2LZI7UNvq4I1QxfzdBZ0XV7W4l5EeeHxJqffd1c7hqdAhFDq0uS0gSVPZrRfVLmqxatFL1MMy4dVr/48eBRJKVwMeBSxJCO/XhSSsz3dikHQ7KiYOvmh8e+DyGEEEIIIYQQQpy8zGiulhl7dYtCUenAog34FBk6iTU/bTc3ShofiSnxzUHNvemK6+MCIw1e4hyQYrcQQrwibRzZaJM0nHRx5ospymUQh13396qirfe6rvCih8kK+JbCkBBnhcSan02KhIkNJvlHMeVRGSKWxvRO/OfS+sjKx67Ibbpi97d+vTLolLoI8+hP5JiWB/sE7xlsbtMbTyiHoxPZjxBCCCGEEEIIIU6eVortImPWelT9MNbcc9C0DJ0lk0LrKVJ8Z6tH+yBydQx3DiruTWuujgu0LDwQZ5wUu4UQ4jUppbHlAFsOiL6hXUxRS4spekTfEFZLwnKKX84weYHJyy4CXYgz7sWx5hav83d9eO8Vm1p0bADwOiMoty54l3jljn0u9/PMao81msJpJj33rZMaIt287jx6VIIsxWM/nhgC8/09euMJNnNsXv/g2PchhBBCCCGEEEKI0/ewsL37MNa88Rw2nr41lEZizU+L0ZqPtwd8cX/G5VHB3cMVD2Y1l4e5/AzEmSbFbiGEeAvaZuTjbdJok1DNaecztMshBsKqetTxrY1F56XM9hZn3qNY81SReDLWPEqs+SkwyWNiAySicoT1XO5WF7QqP5UiN0DtI22IbPQynNEM8m9fsOOVBgWWSJH8iTxKFgd7kGCwscVw6xJ5r3cCexFCCCGEEEIIIcS7kBvNlXWsuQaWPrL0gTYmhs5Id/EpcUbz3e0+X96fc2mYcX9as79UbPalEUacXVLsFkKIY6CUxvZG2N6I2NRdt7exmLJPbJuu6P3kbO+8RLvsXR+2EM+VlKJWPSzPxpoHnROUvH04bipFXKxRRCIWrzOSUnid06qSdJondCkxX7XkVpNZzWY/f+kanUYZbIxoII/h2A8ptC2LgwP6k02sc2xcv3Hs+xBCCCGEEEIIIcS7ZZRiO3dMtUbhcbqLNd9vEiNncNJEdCpKZ/nOVp/f7izY7MPuosYazaiQ9FJxNsnVaiGEOGY6y8mzS6TJ1uNu7yyHGLuid72irfdRxnRF77xAaZmJLM6e58Wa21ijVJBY82OiSNjYoJMnrmPKk9IE5Wh1+U7mpVdtxMfEqOconKGff/sxeBRJKVwMuBQxpGM/pvn+Lkpr+pMNxpev4DJ5/AkhhBBCCCGEEBeRUopxZsmNYnfVopVj1j4Ra27lOuppGBWOG5MSEvgY2Z3XWK3oZVJWFGePPCqFEOKEHOn2bmv8ct7N9i77pLbB1xWhWuCXc3SWP+72lkgecYZIrPnJUICJDSa161nc3cKCiKXVJUG/o7doKTGvPaXTOK3Z7L98xW6rDDolLJE8+mM/pLauqaZThtuXsFnG5Or1Y9+HEEIIIYQQQgghzpbCGK6Umt26wSjLvA3M17HmA4k1PxXbg5zGRxKJNiTuz2qujTW5lQ57cbZIsVsIIU6BdjnZOMeNNgjVEr+coVzWdXs3K2Jd0c4OUFqvZ3uXKCOrFMXZILHmx8ukdj2XG7zOCMqtC94lXrl3uuBl0XQnMP08o59ZCvftz0ORbl53Hj0qJbIUj/2Y5nu7GOfojSZMrl7DWHm8CSGEEEIIIYQQ7wOrFZeLjMPWAwpnIvPWc9AkRs5itRS8T9r1SUETAinBN4cr7k0rrk9KrETKizNErhYKIcQp6rq9B9jegBha/GKGXs6JRY/kPaGuiKsloVqgXdYVvl0O8sZNnAHPxJpHiTV/HSZ5TGyBSFSOoDMSilYXtCp/56kOMSaWjadcnyxuvFJXtwYFlkiRwrH3+TdVxWoxZ3LlKjbPGV++csx7EEIIIYQQQgghxFmmlGKSOTKt2atbrLJMm8BB0zJwhkIahk6Y4sPNPq2fc2WUc+dwxb1pzbVxId314syQYrcQQrwj2jiy0SZpuNHN8l7M0NaRegNiUxPqCj8/xCuFedjtLR2N4h2TWPPXp1LExRpFJGLxuiApRdA5rSqI6myshF3UXQT5IDcMC0v2kkiqRBdhbmNEA3kMx35Ms90HuCynHI7YvH4DreUEVgghhBBCCCGEeB/1rCHTip26xSjFvA3M2nWsuTUoKbyeGK0UH13q8+W9OVdHBXcOKu7PVlwZFnK/izNBqiZCCPGOKaWwRQ9b9IjBE5Zz/HKGzgtSCMS66orhqyXaWHRRYrICJCpGvCOPY80tWVwStcXFlcSaP0WRsLFBJ/8opjwqTVBu/e+zU7gNMVH5wCBzGK2Z9LOXfw+KpBQuBlyKGNKxHtNqPqdZrdi8fpOsKBluXTrW7QshhBBCCCGEEOJ8sVpzpcjYb9ax5joy8x6/jjU3ko55YpzWfLzd54v7M64Mc+5OV+wuGrYHkvYo3j25Gi2EEGeINhY9nOCGE0JT4RczgrWYsk9sG0K9JCxn+OUcneWYvES7lxelhDgJXmdEZcjDgsaUOIk1f8TGBpNaEhq/XgCQMDS6JOiXx4OftvmqRStFL9OMS/dKM69aZdApYYnk0R/r8aSUmO3ukJc98l6PzRsfyEphIYQQQgghhBBCoJRiM3fkZh1rrrtY8/2mZegsuZEGoZOSO8NH232+frBga5CzM69xpruWJMS7JMVuIYQ4o0xWYrKSNA6EakG7mKKzHGLsOr3rFW29jzIGk/cwuXR7i9MXlaEyQ/JUARJrblK7nsud8DojKLfu6i7wKnvnc7mfp/WRlY9dkfsVT1Ai4JUmjx6VElmKx3pM1WyKbxsmV69R9If0JxvHun0hhBBCCCGEEEKcb/2HsearFp0rZq1n2nrKqOlLrPmJGeSOmxslKYGPkd1FjTWKfiblRvHuyKNPCCHOOKUNtj/C9kfEtqZdzlDLrts7tQ2+rgjVrIs+f7LbW97QidMiseboFLCxQREJyhJ09kSROyed4d/HWe2xRlM4zaTnXmnNTKs0KLBEihSOdUlDipH53i7lYIjLczZvfnCMWxdCCCGEEEIIIcRF4bTmSpmxV7coFJUOLHzAt4mhs5gzfD3mPNvs5zSha3zwIfFgusJOSnJ7dkb2iffLxb/6LIQQF4h2Ofk4J402CdUSv5yiXAZxSKhXxLqinR2gtEbnJSYvUUbeZIjT8T7GmqsUcbFGEYlYWl2QlCLonFYVRHW20xZqH2lDZKOX4YxmkL+8qzvRRZjbGNFAHsOxHtPiYJ8YAoOtbfrjDcrB8Fi3L4QQQgghhBBCiItDK8V2kTFvPfsNWKWYtYGDuos1zyTW/ERcHZU0bSSlxN2YuDddcW1c4uT+Fu+AFLuFEOIcUkpjewNsb0D0bdfVvZwRyx7Jt4S6Iq6WhGqBdllX+M5y6fYWJ+7ZWHODifWFizVXJGxs0MmvO7hLotJE5Wh0SVTnYJFJSsxXLbnVZFaz2c9fqas7oEhK4WLApYghHdshxRBYHOzTG02wLpOubiGEEEIIIYQQQrySgbNkWrNTt1jdxZoftp5eMvSMlljzE/DBZo82RiI5dw5WXcF7UmDOePOHuHik2C2EEOecto5stEkabhDqJWExR9uM1BsSmpq4WuLnh3ilMA+7va08/YsT9EysublQseY2NZjYklD49e1JmC6yXGfv+vBeWdVGfEyMeo7CGfr5qxXoW2XQKWGJ5NEf6zHN93chwWBzk+HWNllRHuv2hRBCCCGEEEIIcXFlRnO1zNhdx5ovVWDpAz5Ghs6ipeB9rJRSfLTV54v7c66OCm4fVNyf1lwZFXJfi1N1vq82CyGEeEQphS362KJPDJ6wnOOXM2JekEIg1lVXDF8t0caiix4mK0DLGw9xMp6ONbfnPNbcpBYTWyARdIZX7om53Nn5Sk5IiXntKZ3Gac1m/+Xx5QAR8EqTR49KiSzFYzsk37YsDw8ZbGxinGPz+s1j27YQQgghhBBCCCHeD1opLhUZ08ajAKcV09Zz0HjGmczxPm5Ga767/bjgfXdasTtvuDQ8f9f+xPklxW4hhLiAtLHo4QQ7GBObFX45IxiLKfvEtumK3stpF3+e5Zi8RLvz05Eqzo+nY83TOYw11ylgY4MiEpQl6OyJIndOOocnSYsmkkj084x+Zincq3Z1a1BgiRQpHOtPb763g9Ka3mSD8eWr2Eyek4QQQgghhBBCCPFmRlk3r3t31aCV47DxHDaeSSYd3sctt4aPt/p8+WDO9iDn/qzGGcWkJ9d2xOmQYrcQQlxg6ono8jQOhGpBu5iisxxiJNQVYVXR1iuUseuvLXilwb1CvKpzGmuuUuzmchOIGFpdkpQmqJxWF8RzOn8oxsSy8ZTOYrVi4xW7uhNdhLmNEQ3kMRzbMbV1TTWbMb50BesyJleuHdu2hRBCCCGEEEII8X4qjOZKmXN/1TDODAfrgvdYCt7HrpdbPtzq8fudJT4m9hYN1igG+atddxLibZzNq8tCCCGOndIG2x9h+yNiU9MuZ12Bu+yT2gZfV4Rqhq9maJdj8h7aufMVzSzOtBfFmmsVaM9QrLkidUXu5Ncd3CVRaSKOxpRE9Wpd0GfVou7mbA9yw7CwZPbVivYBRVIKFwMuRQzp2I5ptruDdRnlaMzGtRsYK29RhRBCCCGEEEII8fasVlwuHPeqxCSzHDSeaesZO4uS657HalJmNONu5F3rIzuzGqM15SsmCgrxpuRKohBCvId0lpNnOWm8SagW+MUM5TKIQ0K9ItYV7WwfpXUXcZ6XKCNvSsTbO+ux5jY1mNiSUHidEZQjYbrIcn3+o5dCTFQ+MMgcRmsm/Ve/Ta026JSwRPLoj+2Y6uWSerlgcvU6LssZX7p8bNsWQgghhBBCCCGEsFpzucy4XzWMnGXaeqZtYOSMFLyP2eVRQRMiKSV8TNyfrrg+KXHmfCYkivNBit1CCPEeU0pje0Nsb0j0DX4xQ1dzYtkj+ZawqgirJb5aoF2GzktMlku3t3g7ZzDW3KQWE1sgEZQ7Mpe7VdmFeczPVy1aKXqZZlw6rH612xUBjyaPHpUSWYrHdkyz3R1cUVAOBmzeuImSMQpCCCGEEEIIIYQ4Zk5rLhUZ91cNIyyHrWfWwlAK3sfu5kZJ7SORxDcHNXenK66PC4xc8xEnRB5ZQgghANA2IxtvUVz5gHzrCm4wxg3GZBuXsIMxpISfH9LsP8AvZiR/fJ2d4v3kdcbKDInKruPBLTbWuFif2jHoFMlChY0NSRla08PrbiZ3ZUZdvPoFOeFpfWTlI4PcYk1X7H7l71UaFFgiRQrH1n9fzWa09YrR5jZZ2WOwuXVMWxZCCCGEEEIIIYQ4KjNdwTszmpGzNCky94GUjm9UmwBQfLTVo59bro5zUkrcm9VEuZ/FCZHObiGEEEcopbFFH1v0icETlnP8YkrMC1IIxLrr9g6rJdq6dbd3Aa/YISrEk95VrLkirudyByKGVpckpQkqezSj+6KZ1R5rNIXTTHqOV11Mm4BWGWyMaCCP4ViOJ6XEfG+HvNcn6/XYuvGBrKQWQgghhBBCCCHEicqN5lLueFC3DLHMGo8CBk7KZcfJaM3H2wO+uD/j8qjg7uGKB/Oay4Ncrv+IYye/vUIIIV5IG4seTrCDMbFZ4ZczgrGYsk9sakJTEZZT/HKGyXJ0UaLt+Z9rLE7ZKcaaKxImNpjkH8WUR2WIWBrTI6qLOZu+9pE2RDZ6Gc5oBvmrd3UHFEkpXPS4FDEczyrc5fQQ37ZsXL1OORzRG0+OZbtCCCGEEEIIIYQQ36awhi1gd9WSnGHWBpQK9O3FvC70rjij+Wi7z1f35lwaZtyf1uxrxWY/f9eHJi4YKXYLIYR4KaUUJi8xeUkch67bezlDtwXEQKgrwmpFqFcoY9dfW/DKraNC0MWaR2XIwpJkFDbW2FijVejixN+STS06No/2FZRbF7xLvL7AizRSYr5qya0ms5rNfv5av5qtNuiUsCTyeDzjC2KMLPZ2KYcjbJ6zeeODY9muEEIIIYQQQgghxKvoWUPKYbfuUu3mbTe2rScF72PVc5bvbPX57e6CzT7sLmqs0YyKV2/EEOJlpNgthBDitWht0Ot53rGpaRdTlHGYok/yLX5VEaoZvpqhXYHJS7RzF2busThZURlWZnCsseYmeUxsgERUjqAzEopWF7Tq4szkfpGqjfiYGPUchTP081c/aYuAR5NHj0qJLMVjOablwT4xRgabWww2tij6g2PZrhBCCCGEEEIIIcSr6jtDJEENKcHCdwXvUgrex2pUOm5MSkjQxsjuvMZpRZlJiVIcD3kkCSGEeGM6y8mzS6TJFqFa4BczlMsgDgn1ilhXtLN9lDaYvEAXJUrLm0XxEscUa65SxMUaRSRi8TojKYXXOa0qSRe8yA2QYmJee0qncVqz2X+9VbOtMqDAEilSOJYJ6sF7Fgf79McTrMvYvH7zGLYqhBBCCCGEEEII8fqGzhLXE9tiSsx9QClFYSSx8jhtD3IaH0kkfEjcm9VcG2tyK/ezeHtS7BZCCPHWlNLY3hDbGxJ90xW9l3NS2SP5pos4Xy3x1QKdZeisxGQXv6NWvJ0u1tyShcVrxZorEjY26OSJGFpdkpQmKEeryws7l/tpKSX2li0A/dzRzyyFe/XbnoBWaWyMaCCP4ViOa7G/Byj6G5uMLl3GFcWxbFcIIYQQQgghhBDiTYwzS2Jd8cYzbz0KSy4F72N1fVJQ+0BK8M3hinvTFdcnBVZGYYq3JMVuIYQQx0rbjGy8hRttdAXuxRxll5CGhGZFXFX4+SFBaXReYsuezPYWLxSVfuVYc0XCxAaT/HoWd0FUhoil1SVBvz9ve1JK7C9bYkps9jNyp9kavN5c8oAiKYWLHpci5tFJ35vzTcPy8IDB1jbGOTau3XjrbQohhBBCCCGEEEK8rUnm1h3eiUhiti54Z1LwPkaK72z18WHOlVHOncOKe9Oaa+MCLU1R4i28P1d9hRBCnCqlNLYcYMsBMbSE5Ry/mBHzkuQ9sa4I9ZK6XmLLPibvgZY3NeI5vjXWPCMoh0ntei531xEelFsXvEu8er9mxj8sdIeYmPQdudVcHRVY83r3QasNOiUsiSL6Yzm2+d4uylj64w0mV65h3evFqgshhBBCCCGEEEKclI3MElO32H+KZ9p6xsripFHn2Gil+OhSny/uzbkyKvjmYMX92YorwwL1Hl2/E8dLit1CCCFOnDYOPdzADibEeoVfTgnWYco+YbUkVHPCaonpDSXeXLzQ82PNGwwtkIjKEXRGQtHqgla9h4+llDis1oXunqOwhqvjguw15x9FwKPJo0enhEvxrQ+tWa2o5jPGl69gnWNy5dpbb1MIIYQQQgghhBDiuCil2ModiW6822HyTBvPOHNYadI5Nk5rPt7u8+X9GVeGOXenK/YWDVuDF48tFOLbSLFbCCHEqVFKYYoSU5TE4GlnByhtMEVJu5jj54dEYzH9Idq9XuSyeD88L9Zcx4DXGUkpgs5pVEFS7+GK25Q4qFrakJiUjvwNC90ArTKgwBLJU+A4Tufmuzs4l1EOx2xcv4E278fsdCGEEEIIIYQQQpwfSim2c8eDBGRw0HgOW8/YWSl4H6PCGT7a7vPVgwVbg5ydeY01mnEpKYDi9UmxWwghxDuhjSWfbBMHI9rDPdCG5Ev8Yk473UdnGbYcoqy8VImnPBVrHowlKEerS6J6TwuoTxS6x6Ujd12hO3+DQncCWqWxMaKBPIa3Prx6uaCulmxcvY7Lc0bbl996m0IIIYQQQgghhBAnQSnFduF4sEqMM8th3RW8J5nFvG8pgidokDs+2Cj5QwIfI7uLGmsU/UyuB4vXI48YIYQQ75S2GfnWVWxd0Rzuomy2jjqf0xzuYooSWw5AZuOIpzycza1IxPexk/uhlDhctTQhMikzCme4Os4p3JvdJwFFUgoXPS5FDOktDy8x29khK0qKwYDNGzdR8vsshBBCCCGEEEKIM0wrxaUi437VkDLLYeM5bLqCt5aC97HZ7OfUvhuf50PiwXSFnZTk9j1taBFvRK40CiGEOBNMXlJcukG+cQnbG5BNtrC9IbFeUR/sEKoFxLcruomLJyn13he6p6uW2kfGpaNwmiujnMK9+QlBqw06JSyJIvq3PsTVfEbb1Ay3LpGXfQYbW2+9TSGEEEIIIYQQQoiT9rDgnRvNODMkEoeNJya5Rnmcro1LNnqOS4OczBnuTVf4EN/1YYlz5D2+OiyEEOKsUUphe0OKKzfJxlvYXp9sso3NS0I1pzncIdQrkDeUQqwL3Z7VutBdOsPlYUGZvXmhOwIejYsBnRIuvd2JRUqJ+d4uRW9AVhZs3vwAJaufhRBCCCGEEEIIcU4YrbhcZOTGMMkskcS0lYL3cftgs8egsFwZ5SiluDtdEd7yupR4f0ixWwghxJmjlMYNJxRXPsAOxtj+6P/P3p3HWXbXdf5/f79nv3utvXe6s7MEQQyEJbIJw64QWVQIAQREAUE2B/hlUIFBMQOIIwohBGSGMLIORB6CCgFCMiEQkUXFbKS3dHftVXc92++Pe6tSnd67qrr6Vr2eedSjTp177jnfW8vpk/O+n89XXnVYxvWVzE0rnp5QFndWe5jAqpptJWolqSqhp9B1NFIOVQiW1uIpNo5kJE+ZgjzVUmPpxvSUkjhWeXhYUbmqQqW6xD0CAAAAAACcXq41Ggk9+daq6rlK81yzcaKcwHvZGGO0Y7iogudqQyVUkuU6MNPmTQU4IYTdALACcuXKjvJxtP9wOOu4CgZGFI5ullsoyytX5VcHJGMUz0wqnp1SnqarPUzgtJttJWrEqcphr6K7Eqq4xKA7lxQbKzfLZCQF2dL+trI01dzkhKJyRa7va2jrtiXtDwAAAAAAYLV41mok9OU7VhXPVZznmolTAu9l5FqrnSNFRb6jDZVQ7STVxBwFTzg+d7UHAABrTa5csdEpxNf5UasozVF2dtTtT3L9sZ+z+i2HrRcoHN6otNVUZ2ZcxvWVtVtKGnPqTI3JCQtyo6JkeQ8X1r65dqJGJ1GlF3QPl4MlB92SlMooN0Z+lsjLMzlLfBNOfWpSeZapPDis0sCQgkJxyWMEAAAAAABYLb7TDbwPtDqqytV0nGg2kcquw7RtyyRwHe0cKuiOg3UNlwIdmG3LdYxqBX+1h4YzGGE3ACyj+aBbkry8GyCfSFx0/22O95zcHL7dye7jRJmj7OlkA/ijPXYi6+YDdyeMFAZblDZnFc9MyvqB0lZDabOudrspNyrJCSOJi0usUfV2qno7USXwFPmORkqByuHyXM7F1pHNcznKFWbJkvaVJonqU5Mq1gbk+r4Gt2xdljECAAAAAACspsCxGgk9HWzFKsvVbCfRnKSyR9y2XIqBp+1DBf18rKE4zTTR6Mh1jEqBt9pDwxmKvz4AWCa5ciXqhsxeLjkycvLFj99v+yPksSccWJ9kkn3/NukrEcCrV82+MgH8oqp3I6lYllMoKW/MyTRm5ZZrStsNJZ2WklZDThjJeove7Zcvev58a6F80YgWtRsiJseZqtFONdeOVQo8RYGj4ZKvcrQ8l3KZpERWQZbI5rm8PFvS/uYmxmWMVbE2oMrIqLwgXJZxAgAAAAAArLbQcTQcSGOtWLnnajZOZJSq5C298x66apGvTrV7fypJc43NtuVYq4jvMY6AsBsAlkkqKTPdoNvKyO99PqpTSH6PF1of/WtzAttoIbA+1j6Ptm6pr+doTz96eG7kF8rKwoKS+qxya2XDSGmrqaTTkskS2bAg63hHfF3HGdh9R1u0bI4UkC9e11tvDtvHoY/f9wqAE9Nsp5ptxyoGroqBo8Gir0q0fO9mjY0jGclTpiBPl/S7mXQ6as5Mqzw0ItfzNbBp87KNEwAAAAAA4EwQuY4GQ2m8FSuXo7k4lTVSwSWMXS6jlVDtJFOe50qyXAdmWtpci+Q5TGWJQxF2A8AySJUrNZJ7okH3Kbr//NnLfoTTEMAfus4c8vUhwfb9XtxRQ2/ryi8PKAsL6kxPKHUS5VmuZG5W2dSk5AdyC2UZZ/5C0xzyKTem+4VZtHLh+MdYb80h67Vo++UJ1nvrslwmiQnG17FmJ9VMO1bRd1UKXA0WfdUKyxd055JiY+VmmYykIEuXtL/Z8TFZ11OhWlNt4yY5Li2mAAAAAADA2lN0HeVBrol2t76lnnQLCCIC72WzdSBSJ82UKdfeqZbunWlpczWUYwm8cR/CbgBYoqwXdDu91uXzLczXixUL4E8gMT6kMtwNFA1tUtyYVXvsXrlepDRtKJ4cUzxxUE6hLK9Ukaxz35zeiz7n9/v6iOtPyqGh+uH7uu/xY653HeWOI9turaPfKsxrxalmWrEKvqtS6KpWWN6gW5JSGeXGyM8SeXkmZwkTDnRaTbXqc6qNbpTr+6pu2LiMIwUAAAAAADizlDxX2UJzx1xzSSpjuq3OsXTGGO0YKug/D2TaVAm1d7qp/bNtbayEsqd0zxZrEWE3ACxBrlxJr/jXUTfwdokkT5vFQfv8UlCoyN9WVjw9rvb4vfJcX/HctJKJMbUnx+SVa3KLFZmTvBhaiP/uF4jnRwjI71tvDgm75z/niyvGDwnDF3296JWlYaAsCGTbbX671pF2L+iOPEfl0FUt8jRYXP4q6dg6snkuR7nCLFnSvmbHxuT5gcJyRYObt8pa/scOAAAAAACsbRXfVda7e5gr0VycysgooN32snCs1TkjJf1s/6xGK6HunW5pbK6tkVJw0vd4sTYRdgPAKcqVaz4Wcueruld1RJhnjJFfG5ZXGVB74oCMtXILZcWzk0pmJpTUZ+RVBuVGxRPf5/zCwlzd+aHrl9FCsG6t0qggp91WGhB4ryftJNN0K1boWlUiV5XI1WDJX/bjZJISWQVZIpvn8vLslPfVqs+p02pqcNMW+WGo8tDw8g0UAAAAAADgDFbzvd7twlyZcs3GiYxc+QTey8JzrHaOFHXH/jmNlH0dmGnLdYwGC8FqDw1nAP7KAOAUzAfd2f3m6b5/S2+sLmMdhcObVDr7gfIHhuXXhhWMbJF1PXUmDqh1cK/STmu1h3mY+dnATZbJaTa6n9ttyRhlQbCEJtPoB50k03Sz0wu6PZUDT0PFlblwj40jGclTpiBPT/kMlue5ZsfHFEQFBcWiBrdsk2HuJAAAAAAAsI7UfFdFz1XFc+U7RjNxojg79cICHKrguTprqKhi4Gmg6GuqEWumFa/2sHAGoLIbAE5Bqm7Q7RF09wXreipsOkvpwIhaB/fKer6ydlOd6Qm1D+6TExXlVQZk3TOvNt9kmZxGQ2mBCu/1oJNkmmp25DvdoLsUeBouB6c2bfxx5JJiY+VmmYykIEtPeV/N2RklnY6qWzcqKJZUGhhctnECAAAAAAD0A2OMBn1Xea8j5HSeaLqTqOa7cikKWBaVyNOWWiTlUpLlGp9ry7NGkU/cuZ7x1wUAJylVrtR05+eeD7otsWNfcMKCitvOVWHLTnnlAYUjm+UPjCjrtNQ6sFud6QnlSwj8Vsp84H1IhbdPhfdaEy8KumuRp2LgaWSFgm5JSmWUGyM/T+VlmZxT/I3Ks0xzE+OKSmX5YaihLduWeaQAAAAAAAD9wRijocBT6Diq+K5cazQdJ0oy7uQtl+FSoJFyoKGir8h3tH+2rU5KBf16RtgNACchWxR0uzLyenN1o794paqKO85XtHGbvHJN0Ybu57Q+o9b+3YrnphfegXmmOCTw7nQka5X7PoH3GtENumN5i4Pu0soF3ZIUW0c2z+UoV5gnp7yfxvSUsjRVaXBYhWpNUbmyjKMEAAAAAADoL8YYDYeeQseq6ruy6gbe6Rl2v7Gfba6FqkaeRsuBPMfq3umWElrGr1uE3QBwgnLlSkx3LmVH9wXe6E/GWPm1YZV3XqhgaIP8yqDCDdvkhEUlMxNqHditpFlf7WEeYj7wVprKdtrKrUPgvQbEaTfodq3RQOSpELgaKQdaye5WmaREVl6Wyua5vPzU/mcgS1PNTU4oqlTl+h5V3QAAAAAAAJKsMRoJfQW9wNtImu4QeC8fo7OGiioFnjZUAsnk2j/TVsb3d10i7AaAE5Ar13zdo9ur5j7zZnfGqTCOq3Bks0o7HyB/YFj+wLCCkS2yrqfOxAG1xvYp7bRXe5gLTJbJbTZl0ozAew1Is1xTjViONaoVPEW+q9FyuKJBtyTFxpGM5ClTkKen/Lad+tSElEulgSGVh0bkR4VlHScAAAAAAEC/un/gLXUDbwLZ5WGN0Y6RoiLf1YZKqDjNdHC2fcZ17MTKI+wGgBOQSspMN+ien6fbUNW9pljPV2HTWSqddb78yoCCoY0KhjdIWar2wb1qTxxQlpx6q+flZNJUTrPRC7w7BN59Ks1yTdQ7cqzRQC/o3lBZ+aA7lxQbKzfLZCQFpzhPfRrHqk9NqVAbkOt5Gti8ZVnHCQAAAAAA0O+cQwJvR7lyAu9l5Fmrs4eLijxHo+VAjU6iiUZntYeF04ywGwCOI+3N0+0RdK8LTlhQcft5KmzZKa88oHBki/yBYWWdploHdqkzM6H8DJj/xS4E3qls3FHuOMo9Au9+MR90W9MNukPP1cbTEHRLUiqj3Bj5eSovy+Sc4m/N3OS4jLUq1gZUHd0gzw+WeaQAAAAAAAD9z7VGo6En31pVPVeZcs3ECRXIyyT0HO0YKqoQuBoqBZpuxppuxqs9LJxG7moPAADOZFlvnm5nUdBtCbrXBa9UlVssqzM1rvb4vXKjouLZaSVz00rrs3LLA3KLZRmzer8PNk2lZlNpIZLtdJT5viRPJuZi7kyWZrkm6x1ZIw0UPYWeo43V0xN0S1LHOrJ5Lke5wvzUuhXE7baaMzMqD4/I9X3VNm5e5lECAAAAAACsHa61Go18HWh2VJGrmTjRTJyq4jmren9xrSiHnrYORNqdS0maaaLelusYFX1i0PWAnzIAHMXioNuVWZirG+uHMVbBwIj8yoDaEwdkrCO3WFE8M6FkZlxJfUZ+dVBOuHrzFNs06QbeUSTbiZX5njJJlsD7jJRluaYaHRkj1Qq+QtfRxmok5zQF3ZmkVFZBlsjmubz81LoUzE2MyfE8FSo11TZukuNySQkAAAAAAHAsnrUaCX0daHUD7+k40WwslQm8l8VQMVAn6d7rirNcB2dacmuRAtdZ5ZFhpdHGHACOIO8F3ZLkqBt4ewTd65ZxXIUjm1XaeaH82pD8gREFI1tkHUft8f1qje1T1mmv2vhskshpNmXSRLYTK3ddZZ63auPBkWVZrslGR7l6QbdntbEWnragW5Ji40hG8pQpyNNTOqt1mk216nWVBoflBoGqoxuWfZwAAAAAAABrke90A2/fsSp7rjpZprkkpaX5MtlUDTVQ8DRSCuR7jvbPtJSkqz8lJVYWYTcA3E+uXPONfb1eNTexISTJeoEKm3eouP08+ZUBBcObFAxtkNJUrYN71Z48qCw9tbbQSx7bkQJvl9/cM0XeC7ozSQO9oHtTNZJrT9+baHJJsbFys0xGUpid2u/q7PhBeUGgqFzW4OYtspZ3xwIAAAAAAJyowLEaDjyFjlXZd9VOM9WTdLWHtUYYbRssqBy6Gq0EMsbo3pmW0lPsboj+QNgNAPeTSsqM5C6ap9tQ1Y1F3Kio4vbzVNi8Q165pnB0i/zakLJ2Q639u9WZmVCenf4LKJskclqt+wJvz1VGe+lVl+e5JpuxslwaLPgK5oNu5/SeV1IZ5cbIz1N5WXZKF4GtuTl1Wi2Vh0bkh5HKQyPLPk4AAAAAAIC1LnIdDQWeQmtV8hw1CbyXjTFGO4aLKnquNlRCJVmuAzNtZVTPr1ncAQeARVLlSgm6cYK8ck1uqaLO1Lja4/fKLZQUz04rmZtSWp+TVxmQUyid1jl35ufqTsNQJpZyrzeHd7I6FefrXZ7nmmzESrNcA0WvG3RXwtMedEtSxzqyeS5HucL85H8f8jzX7PiYgqigoFDQ4JZtzCcFAAAAAABwigquoyyQ8raU5VI96U45V2CO6SVzrdXOkaL+88CcNlRC7Z9pamKuo+FysNpDwwog7AaAnqw3T7fTa13u9wJv4FiMsQoGRuRXBtQe3y9jHbnFsjozE+pMjcnMTcuvDsoJC6dtTPOBt8JQmQi8V82ioLtW9BS6jjZWQnnu6W+sk0lKZRVkiWyeyzuF1k3N2RklcUe1jZsUFssq1gaWf6AAAAAAAADrSMlzlKtbcZwrVz1JZY0UOgTeSxW4jnYOFXTHwbqGSoEOzrblOka1gr/aQ8MyI+wGAN0XdFtJrozcXuANnCjjuApHt8irDas9tk/GcZWV2oqnJ9Qe3y8bRPKrg7Le6bmYsnGsvFd1mxnTDbxzya7SnOLrTp5rqtkLuiNPgeNoYzWUvwpBtyTFxpGM5ClTkKcnfXbLs0xzE+OKSmV5QaDBrdtWZJwAAAAAAADrTdlzlfU6bOd5otk4lWQUOsxEvFTFwNO2wYLuGW8oTjNNNDpyHaNS4K320LCMCLsBrHt5L+iW1Au5OTni1Dl+oMLmHUqac2od2CvrBUpbDXWmJ9Q6sEduoSS3MiDrHP+3rBmnipNMxcCVY0/+zRdOp7OwnEnKfU9ZJ5dNmf9nRfWC7jjtBd2eo0211Qu6c0mxsXKzTEZSmJ38Gx7qU5PK0lSloWEVqwOKSuVlHycAAAAAAMB6VfVd5fl8hXeiuTiRkauAwHvJBgq+Okm3y2GS5hqbbcuxVpFH9fxaQZ4DYF3LlStRNwzyem3LPebpxjJwo5JKZ52veGZSrbF9coJIcX1GyeyUkmZdXqkqt1SVsUe+YJ1uxpqod2SMNNmIVY08VSJX9iTnSHY6HWm+wltS7vvKOx0ZAu+V0Qu6O2mmWuQr8LoV3cEqBd2SlMooN0Z+lsjPMp3sSLI0VX1qUoVKTa7nU9UNAAAAAACwAmpBdyrC7l3rXLNxImNc+Ue5f4gTt6ESqpNkyvNc92a5Dsy0tLkWyePNBGsCYTeAdS2VlJlu0O3IKCDoxjLzKgNyy1V1JsdkJlx5hZLiuWklc1NKGrPyygNyCiWZRSH2RL2j6WasWsFTNfI01Yg11exopreuHLqHbH88Tru9sJzJKPN9WQLv5Zfnmm7dF3SHnqON1UCht7oXzR3ryOaZHOUK8pOv6p6bHJdyqTQ4qPLQsPwwWoFRAgAAAAAAYMB3lfUqvKfzRDOdRFXflUfgvWRbByJ10kyZcu2daunemZY2V0M5fG/7HmE3gHUrVa7UdFuXWxn5BN1YIcZYBYOj8qqDao/fK+O4cotldWYm1Zkak63PyKsMyglCjdU7mm0lGir6qkSeylG3hXkl8jTV6Gii0dFMK1at4KvkOwtV28dzaODtdwPvdkcmI/BeFnmumVaidpKpGnkKPasNlUDhKrdD6hirVFZBlsjmubw8O6nnJ3GsxvS0SgODcjxPg5u3rtBIAQAAAAAAYIzRUOApV7cb6XRnPvD25J7CNIe4jzFGO4YK+s8DmTZVQu2Zbmr/bFsbK+FJd9PEmYWwG8C6lPWCbqdX0T3fwhxYSdZxFY1ulV8bVvvgPhnHU1ZsKZ6eUGtsn2YyV+2gopFaSaXA1daBSMPlQO041b0zbbnWqBp5mmx0dHC2rWnHaqDoq+CfWKBq2+1FLc19ZYEv227LZCcXgOJwM61ErSRVNfIUeY5Gy6GiE/y5rIRMUtu6SoyVl2XylCnM0pM+y81NjMlYR4XagKqjG+X6/koMFwAAAAAAAD0LgXcuyZemOomm40Q1r1sUg1PnWKtzRkr62f5ZbSiHunemqbG5tkZKwUl10sSZhdp8AOtOrlyJkYwkR93KbpegG6eR44cqbNmp4rZz5VUG5A9v0rRfVbvdVrU1pqA5pW21QMPlQJIUeI7OGiro/I1lDZZ8jZZDba6Fso7R/pmW9k431YqPX6FtJNlWSzaOZeOOTJIqCwLltOpZktlmN+iuhJ5C19FIOVQhWL2gO5FRw3pKZBWlicI8UZSlCk+yhXncbqs5O6vy4JBcz1dtw6YVGjEAAAAAAAAWs8ZoOPQUOFZV35WVNB0nSnstznHqPMdq53BRBd/RSDnQXDvRZLOz2sPCEnB3G8C6kitX3Mu13V5VNy0usFrcQknB1nO13xtWHFS0YcdOVYdHNOynSsb2aG5iXPmiquuC7+ickZLOGS1poBBoUyXUxmoo5dK+6Zb2z7QUp8eu0j4s8E4JvJdirpWoEScqh72K7kqo4ioF3bmktnHUdDxZ5SpmHXl5pnLaUTGLT/otPbPjY3I9X1GlqoFNW+S4nC0BAAAAAABOF2uMRkNfobWq+N37MtOdZGFOb5y6gu9q+1BBRd/TYNHXVCPWTCte7WHhFHHXEsC6kStXom4g5DFPN84AcZrpzoMNxVFFZz9kg8LWlLbYukKbaW5iQnOTE2rMTKs8NKyoXFl4Xjl0Vd5Y0lQj1r7ppiLP0Vw70VSjo92TTZVCVwORL9c58u/2fOA939I89X1lfiDboaX5yai3U9U7iSq9oHu4HKxa0J1JalpXmbEKslRensrPM5XSzim9s7HdaKjdqKu2cbM8P1B1ZHS5hwwAAAAAAIDjsMZoJPS1v9VR1Xe6Lc07Sbfam7bbS1KNfG2udd84kKS5xufa8qxR5BOd9ht+YgDWjVRSZgi6cWZoJ6nuPFhXplznjpZUCT097IEXKnKkyX17ZB1XhWpNs+MHNbX/XjVmplUZHpUXBAv7qBU8VSNPE/WO7p1pqeQ7mmknmmrEqrcbKoeeBiJP9ghz+RhJttmUokiSlPoBgfdJqLdTzbVjlQNPke9ouOSrHK7OZVVsrFrGlVGuKI3lKleh1778VM5weZ5rdnxMXhgqKpU0uGWrDJX/AAAAAAAAq8Kx3Qrv/c22ar6rqU6imThRxSPwXqqRcqBOmnUL5bJM+2fb2lyz8h3uhfUTwm4A60KqXKnpti6fD7otQTdWSStOdcfBOVljdN5oWdXI08O211TovWtwZPsOVUc3aHz3PXJ9T+1GQzMHD2h8188VVasqDw7LOt0KYmOkoZKvgYKvsbm2nJmWyoGr6Vai6UasuVaiauSpEh1+8TsfeOdRJEdSGvQC73ZLhnZIR9XsBd2lwFUh6Abdlcg77ePIJbWMq8RauVmmME/k5LnKaUeuTv3n15qbU9xuaWjzVvlRQaXBoeUbNAAAAAAAAE6aa41GI18Hmh1VPFczcaLZOFXFc2QIvJdkSy1UJ0mV57n2Tbd173RLm2uhXIo/+gZhN4A1L+sF3U5vjm6v9xlYDfV2orvG6vJdq50jRdUiXw/bXlPoHdr+2g8jbTr3AjWmpzS26+fyw0iN6SnNTYyrNTen8uCQokp14WLWWmm0Emiw6OvgbEuO01EldDXZiDXV7GimFatW8FQO3EMugI0kp9lUGhXkqN0NvIOQwPsomp1UM+1YxcBVMXA1WFydoDuVUdO6yo1RmCbylCnI0lOam3uxPM81NzGmoFCUXyhoaMs2/ocJAAAAAADgDOBZq5HQ14FWRxW5mo4TzcZSmcB7iYy2DxYUp5k2VKS9003tn2lrUzWkcr5P8LYEAGtarlyJ6QV66lZ2uwTdWCWzrVh3HJxT6FmdM1LUUDHQw88aOCzoXqxQrWnbAy/S0LbtKg0NafisnQqioqYPHtD47nvUaTUP2d51jDbVIl24sayRcqDhkq+tAwVFvtVEvaM9U03NtRNpUZDdDbwbMmkqp92W8kxZECjnYu4QzU6qmVasgu+qFLgaKPiqFU5v0J1LahurhvVklKuYxvKVqZTGKi0x6Jakxsy0kjhWpTdPfKFaW4ZRAwAAAAAAYDn4Tjfw9h2riueqk2ea61Ul49Q51mrncEmR72pDJVScZjo42+b72icIuwGsWblyxb3kx+1Vc9POAqtlqtHRXWN1lUJPZ4+UNFwO9Yvba/Ld4/9TbKzVwMbN2v6gX1B1ZFS1jRs1tGW7lEvju3dpav8+pUlyyHN812rbYEEXbixruBRopBRqSy2S51gdnG1rz1RLzU563zEkOY3FgbcIvBdpxfNBt6Ny6KpW8DVQPL1BdyapaV11rCs/T1XIEvl5qmrSVpCnx33+cfefZapPjCsqV+QGgQa3bFv6oAEAAAAAALCsAsdqJPAUOFZlz1U7zVRPln5vaL3zHKudwwVFnqPRcqBGJ9FEo7Paw8IJIPcBsCblypWoWwXpLZqn21DVjVUwPtfW7qmmagVP2wcLGi2HumhLVdae3O+j6/vacPa5qsyOamzXz+WFoZoz05odH1O7frdKg0MqVGuHtC0KPEc7hguqtwPtm27Kc6zacaqJRkf3zrQUeo4GC54Cz1kIvNNCQU57vqV5INtur+uW5u1e0B15jsqhp2rkafA0B92JjFq2e9kWpYlcZYqyRFGWLNtZrTE1qSzLVBocUmlgSGGxtEx7BgAAAAAAwHIKXUdDksZbsXLP0WycyihV8RgdJHF8kedqx1BRd47VNVQKNDbXZu7uPkDYDWBNSiVlhqAbq2//TEv7plsaLvvaWitoUy3UAzdVljSPTlSuaOsDHqyZg/s1sXePwlJJsxPjmhk7qMb0tCojIwoKxUOeUwwcnTta0mwz1t7plgLPUTNONVHvaO90SwXf0WDRl+fY++bwJvBWO8k03YoVulaVyFUlcjVU8k/b8bttyx3F1pGbZQryRG6eq5TF8vJs2Y6TJonqU5MqVmtyPV+Dm7cu274BAAAAAACw/AquozyQxrtNGjUXpzKmux6nrhx62joQaXcuxWmmiXpbju/Id8gXzlSE3QDWnFS5UtNtXT4fdFuCbqyCvVNNHZhta0M10KZKpLOGCjpvQ3lZ9m2MUXV0o0qDQxrfvUvWcVSoVDVz8GA3AC+WVB4ekesdWoFcjjydH3qabsbaN9VU5FnNtVNNNbrzeZcCV7XIl9M8QoV3qy2j9RN4d5JM082OAteqEnkqB56GisFpO37aq+bOjFGQJvKVyc8yFbPOss9DU5+ckGRUHBhUZWRUXhgu8xEAAAAAAACw3Iqeo0y51JbyXKonqYykiMB7SYaKgTpJ1u0gm+VqZctXdILlR9gNYE3JekG305uj2+t9Bk6nPM+1e6qp8bmOttQijZQDnTNa0s7h4vGffJIc19PojrNVGem1Ng8CNWdnNDM2prF77lZpYFDF2oDMonY7xki1gqdK6Gmi0db+mbZKvqOZdqKpRqy5dkOV0FM1y6VS8X4V3q118RfVSTJNNTvyHatq6KkUeBouBzpdU5h3jFXbuLLKVUhjOcpVTGOFyzA39/0lnY4a01MqDQ3L8TwNbNqy7McAAAAAAADAyih7ruYbMmZ5rrkklTFGoUP77aXYVA27gXcu3Vtvr/ZwcAyE3QDWjFy5EqPuvMPqBt7uuojlcCbJ8lz3TDQ03Yy1fbCgwaKvCzaWtW2wsKLHDYslbbnggZodH9PEnl0KCiXVJyc0Nzmh5uyMykMjCkuHzsFsrTRcCjRYCHRwri1npqVS4GqmGWu6mWiulajSSlQcqi4KvMM1H3jHi4LuWuSpGHoaOU1BdyapbV0lxspb3LY87chdoar6uYlxGcdVsTqg2oZNh3UDAAAAAAAAwJmt4rvdCm9JUqK5OJGRq4DAewmMtg8WFKeZOiZXs52s9oBwFITdANaEXLnm/6lx56u6V3VEWI+yLNdd43XVO4l2DBVUK/h60OaqNlZPT0toY4wqwyMq1gY0uW+PrOMoqlQ1M3ZAk/fuVVAoqDI8Ktc/dM5pa6UNlUBDRV8HZlpyHaNK5GmyEWuq0dZMe0y1kQGFkrJw0Rzep+VVnV5xmmmqGcvrBd2FwNNI6fQE3UmvbXkuoyhN5CpTmKUqZPGKfa87rZaac7Oqjm6U63mqbdi0QkcCAAAAAADASqr5nrJcknJlyjXbC7x9Au9TZozRjuGi6vtn5coo8PhenokIu4GjMUaJcjmSzJqMdNaO+aA7M5K3aJ5ufm44nZIs010H62olmXYOl1SLPF20tarh0umb43me47oa3naWKsMjGtv1c7m+p9bcnGbHD2rsnrtVqA2oNDgkaw+9OHMdo80DkYbLge6dbsmxRtXQ02SzrYkDkwpqZZWSTF4xWpOBd5LmmmrEcq3RQOQpClyNlgPZFb6GzSV1jKOOdeTkmcIslpNLpawjP1/Z+YDmxsfkeb6ickUDm7fIOsznBAAAAAAA0K8G/Ptams8o0UycqGpceSt9g2sNc63VloFIrXaq0aJ//CfgtCPsBhaxxsiRpDRXLik13ZayTp7LivD0TJWKoBurK04z3XmwrjjLdPZIUdXI00O31VQrrO7Fjx8VtPn8B2huckLju+5RUCiqPtVtbd6anVF5eERhqSxzv7Jl37XaPlTQaKUberuOUTVNNVlvaDqTvDhRsVKSu4YC7zTLNdnoyLFGtYKnyHe1oRyueNCdSWpaV5mxCtJUnlL5eaZS2tFK/y9Iu1FXu9nQwMbN8sNQleHRFT4iAAAAAAAAVpIxRoPBfS3Np/JEM51EVd+VS+B9yhzTvWcYeBSKnIkIu4H78XJJcSY53dA0lZQYyeaSo1x2TcQ6a0eqXKnpzs89H3TzM8Lp1E5S3Xmwrky5zh0tqRJ6etj2msrhmdNIvzQwqEK1qql798k6jsJyRXPjY5raf6/86SlVRkblBYe3Wg89p9ump51q33RTvpOolcaaSa2mJ2cVlAuKXE9esnJttk+HNMs1Ue/IWqOB+aC7svJBd2ysWsaVUa5CGstRrkKaKMyTFf9+5nmu2bEx+WGksFTS4OatMvwPDwAAAAAAQN8zxmg48HQwl6q+NNVJNB0nqnqeXNvPd/GAIyPsBu7HqFvOnSeZ3NzIGMnmuRIjJeou09r8zJAtCrpdGXm9ubqB06UVp7rj4JysMTpvtKxq1A26C/6Z98+rtY4GN29VeWhY47vuket5ihpVzR48oLFd96hQqao8NHzENtbFwNG5oyXNNGPtm24pSBLV/UBzjZZmg1CesSrkaV9eLC8E3cZosOAp9FY+6M4ltYyrxFq5WaYwT+TkucppR27vXbcrrTU3q7jT1tCW7QqioooDg6fluAAAAAAAAFh5xhgNh54OtnLVfFdT7W7gXfNdOab/7uEBx3Lm3Y0HziC+jNI8V2yMTJ4r1X2tzd2cKu/VlKv7BgQjydF9gTdwutTbie4aq8t3rXaOFFWLfD1se03hGd7KxgtCbTz3fDVmpjV2z8/lRwU1pic1NzGh1tysSkPDKlSqh7U2l6RK5KkceppqxNo721YQhmpmsVrW01SayW/HKgWubJ+E3mmWa7LekTXSQNFT6DnaWA3lrGDQncqoaV3lxihME3nKFGSpitnpq47P81xzE+MKCyX5UajBrduO+PMGAAAAAABA/7LGaCT0daDZUdV3uxXevZbmBN5YSwi7geNwZLqV3bqvyjs1Umy6c3lT5X365cqV9JbdXjX3mdMwGuvBbCvWXWN1FXxHO4eLGigGeui2mny3f9pAFypVbXvggzV9YL8mHUdRuaKZsYOaOXhAzelpVUZG5UfRYc8zvWC4Gnk62Ii1N3EUKlUr9NWQ0Vi9qYLnqhg4Z3SAmmW5phodGSPVCr5C19HGarRiQXcuqWOsOsaVVaZCmshRrmIaK8jTlTnoUTSmp5TEsQY2bVFUrqpQqZ7W4wMAAAAAAOD0WAi8W/OBd7wwh7c9g+/dASeDsBs4AaYXpjq9Km+bd+eKTnpV3k6ey4rQ+3RJJWWmO7/6/DzdfO9xukw1OrpnoqFS6GnHUEFDpUC/sLUqdyXLgVeIsVa1jZtUGhzS+J5dso6jQrWmmYP7Nb5nl6JSWeXhETnu4ZcL1kobSp6qmdGexGqilcorBWq5Vs3ZhppxqoLvqujbbkJ+BsmyXJONjnJJAwVfoWe1sbZyFd2ZpJZ1lRorP0vl56m8PFOpN0/36ZSlqeYmJxSVK3J9X0Nbt5/W4wMAAAAAAOD0cux9gXdtvsI7TlT1CLyxNhB2AyehG6x225nLdCu+U0mJkWwuOaK1+UpLe/N0E3RjNYzPtbV7qqlawdP2wYJGy6Eu2lLtm7bdR+P6vjbsPEeVkVGN3XO3/DBUY2Zas+Njav38LpUGh1SsDRyxUju0ubYHucpBoPFWqpleeNycbajeidXoGJUCV5F3ZoTeeZZrshErkzTYG+umarRi840nMmrZ7uVWlCZylSnKEkVZsipnrvrUpPIsU3lwWKWBIQWFwiqMAgAAAAAAAKeTa41GQk8HmrmqnqvpONFML/A+k7szAieCsBs4SUZGrnpV3otamydGStRdprX5ysh61fTOoqCbNxfgdNk/09K+6ZaGy7621graVAv1wE2VNXUxGJXK2vqAB2t27KDG9+xSWCxpbmJCs+Njas5MqzI8qqBYPOx5Xp6pZmI5RV/lzGjcdeTIKGq31WjHmmndF3oHqzineZ7nmmzGyvJcg0VfgWe1qRLJdZb/Z5hLahtHsXXkZpmCPJGb5yplsbw8W/bjnYg0SVSfmlSxNiDX9zW4ZeuqjAMAAAAAAACnn2etRiNf+5sdVTQfeKeqeGf2dITA8RB2A6fIyMiXlPZam5telXfaa23u5lR5L6eFoFuSK7MwVzdwOuydaurAbFsbqoE2VSKdNVTQeRvKqz2sFWGMUWVkVMWBAU3s3SPruCpUuvN5T+zbo7BYUnl4RK7nHfI8P89UTjuS42tDYDUbRGrWHbm2qUKQaa6VaKoZy+ukKgXuaZ/fPM+7Fd1plmug6PWC7lCuu/znkbRXzZ0ZoyBN5CuTn2UqZh2tZrP7uYlxGWNVrA2qMjIqLwhXcTQAAAAAAAA43TxrNRL6OtjqqNoLvGcTqewSeKN/EXYDS+So2848WVTlnRopNt3qb6q8ly7vBd1St6rbySWP7ylOgzzPtXuqqfG5jrbUIo2UA50zWtLO4cOrm9cax/U0sn2HKsPd1uZuEKg5O6vZsTGN3XO3irUBlQYGZex98a2fZyqlHc05vkqSvEqoLHRUn23KtVZxkmm2nWiy0VHgWhUDV97pmOs8zzXVC7prRU+B62hjJZS3AoF7x1i1jSurXIXenNzFNFaYp8t+rJORdDpqzkyrPNR9o8LAps2rOh4AAAAAAACsjsCxGu4F3mW5mu0kmpNU9ogM0Z/4zQWWgZGRp15rc2Nk8/vmls56660IvU9FrlxJb9nrVXN7x3wGsDyyPNc9Ew1NN2NtHyxosOjrgo1lbRtcX3McB4WCtlz4QM1OjGl89y4FxaLqkxOqT02qOTuj8tCIovJ9Ve5BnklprDnHk9JEbd/T4IBV2upoqtGR51q1k1RzrUQT9Y5Cz6oUeHJWat7zPNdUM1aS5apFngLH0aZquOyV5ZmktnWVGCtvcdvytCNX+bIe61TMjo/Jup4K1ZpqGzfJcTmTAgAAAAAArFehYzUceBprxZLnaiZOlCtRwXHkrtR9OmCFEHYDy8jKKMilRLlkuhXfqaTESDaXHNHa/GSlkjLTDbrn5+nmTQNYaVmW667xuuqdRDuGCqoVfD1oc1Ubq+u37XN5cFjF6oAm9+2V47iKKlXNHjyoqf37uhXDwyPygkCSFOSp8lTSfODtuPJDX5t9R3PtRFO9yu5mnGmunWi83lbkOioGruxyXkz3gu447QXdnqNNteUPupNe2/JcRlGayFWmMEtVyOIz4mzVaTXVqs+pNrpRbhCoumHjag8JAAAAAAAAqyxyHQ2F0lgrVlmu6kmiyTSTZ41Cx1FgDa3N0RcIu4GjqLcT7ZpoaKjkq+Cf3J+KK9Ot8l7U2jwxUqLuMq3NT8x8dbxL0I3TKMky3XWwrlaSaedwSbXI00VbqxouBas9tFVnHUdDW7epPDys8V33yPU8tet1zYwd0Piun6tQq6k0MCTrON223fcLvCWpHEpF39VcO9ZkI1bkWjU6meqdRM2krYLvqugvwxxBvaC7k2aqRb4Cz9HGaqhgGYPuXFLHOOpYR06eKcxiOblUyjry82zZjnOqsixT3Gpqdnxcnh8oqlQ0uGmLrHVWe2gAAAAAAAA4AxRcR0OBNNmJFTqe2lmuVpJqNk5UN0ahYxU6Vg6hN85g6zbsPnDggG655Rbdcsst+t73vqfvfe97Gh8flyS95CUv0bXXXnvK+240Gnrwgx+su+66S5J01lln6e67716GUWOlOdYo8Kw21SIFntVEPdZ4vaOC72io6KtW8E+41a6RkS8p7bU2N70q7/nW5m5OlfexZL2g2+m1Lvd7gTewkuI0050H64qzTGePFFWNPD10W021gr/aQzuj+GGkTeddoPrUpMZ2/Vx+VFB9elL1iQm1ZmdVGhpWVK4o1KLAO0vVto6U5QpspkrkqRR4mmrGsjZW5FvVO6mavY+i76rgW+lULqTzXDOtbtBdjXyFnqMNlUCht3xBdyapaT1lxihIU3lKF+YsPw2zkB95TGmqTqupTrP7kbRbytV9k0JtwyZ5Qajy8MgqjQ4AAAAAAABnoqLnKHKt6kmquThVYK3SPFMzydRKUzWTVL61Cl0r367WnS/g6NZt2L1hw4YV2/eVV165EHSjvxhj9EtnDeru8boi39GGSqaZZqLxeke7p5raM9XUQME/qWpvR9125smiKu/USLHpzuVNlffhcnUr4Y0kR93KbofvEVZYO0l158G6MuU6d7SkSujpYdtrKofMbXw0xdqAokpFU/feK+s6ikoVzY4f1PSB/WpMT6syMqowDHstzaU8kzrWlckS+Xkma6XBoqdK5Gq6EcuxsSLPUb2daK4Tq94xKgWuIu8kQu8810wrUSvJVI08RZ7VhnKgyF++aubYWLWMK6NchTSWo1yFNFGYJ6f1TJUmieJF4XbcaUuSHMeTH4UqVKvyw0iu78sYq+HtO2g9BQAAAAAAgMNYY1T2XJU9V60001ycyDWZisrVSjO1kkzTnURur9o7cKws95lwhli3Yfdi27dv14UXXqivfe1rS97Xbbfdpg984AMKw1Ce52l2dnYZRojTKfIdPWBTReeNlrR/tq09k01VI0+dNNNEvX1K1d5GRp664XZsjGx+X4vurLfeitBb6gbdce/b4ObdlvCcqLDSWnGqOw7OyRqj80bLqkbdoPtkpzBYj6x1NLh5y0Jrc8dzVWjWNHPwgMZ336NCpaLS4HA3rLaSMqltXakXeEuSa42GSr6qoaeJRkeONSpmrurtWDOtWI2OUSn0TqgFeTfoTlUJPUWeo5FyqChYnqA7l9QyrhJr5WaZwjyRk+cqpx25ypflGMeSJok6zcZ9ldtxR5LkuJ78KFKhNiA/iuR63Tdo+GGksFxRVCorLFcW1gMAAAAAAABH021d7ivJ8l61d6LIcRRnmZppqnrS/ehu58g9wW64wEpZt3fxr7zySl188cW6+OKLtWHDBt19993auXPnkvaZpqle8YpXKE1T/bf/9t/0sY99jLC7j7mO1ZZapC21SDOtWHsmmwvV3rOtRONzJ1/tbWUU5FKiXDLdiu9UUmIkm0uO1ndr81y5EnUDJa/Xttxjnm6ssHo70V1jdfmu1c6RomqRr4dtryn0mNf4ZHh+oI3nnKfGzLTGd/1cXhipMT2luYlxtebmVBocUjgwvFDhff/AW5Jc12i0EqiWeJqox3KsURRkqrcSTTU68hyrcuDKO0roPdtK1IzTXkV3N+guLlPQncqoaV3lxihME3nKFGSpilm8YmeoJI7VaTYWqreTOJYkuZ4vP4pUGhyUHxbkeN1/e4KoqLBc7raQL5XkuITbAAAAAAAAODWuNar6riqeo0av2tuzVqmbq512g+9mmsm3RqHjyLeGroJYFes27P6jP/qjZd/nBz/4QX3/+9/XBRdcoLe+9a362Mc+tuzHwOqohJ4qm7xDqr0r4eHV3pHnaLh0/GpvV6Zb5b2otXlipETd5fXa2jyVlJlu0D0/T/d6/D7g9JltxbprrK6C72jncFEDxUAP3VaTfwIVxDiyQqWq6AEP1vTBA5p0HEXlsmbHxzQzdlDuzLT8jVsVFkpSZtTutTT3FgXekuS7VhurgVqxq4l6LM9adZJMc+1EE42OAteqFHhynfvOD3OtRI1OosoyB925pI5x1DGOrDIV0kSOchXTWEGeLnn/iyWdTm/O7W71dpokkrpvJAgKRZWigvwwkuN2/5UIikVFpW6wHZbKctx1e1kHAAAAAACAFWKMUdF1VHQdddJMc73K7oJr1c5yNZNUM3Eia4wixyqkxTlOM+6KLpOf//znuvLKKyVJf/3Xfy3f91d5RFgJy1ntbWTkS0p7rc1Nr8p7vrW5m6+vKu/5tu7uooru9fT6cfpNNTq6Z6KhUuhpx1BBQ6VAv7C1Ktch6F4qY61qGzaqNDikiT27ZB1HhWq3tXnjnjtlBkflD44o9wK1jCvp8MBbkkLP0eaao3o71WS9I9+1aiep5lqJxuttRZ5VMfDUijPVO4kqgdd701GgUrj0oDuT1LKuUmPlZ6n8PJWXZyr15uleijzPF8LtuNkNuNO0G557QaCoVJYXRvKjSNZxZIxVUFhUuV0syTp0HwAAAAAAAMDp4ztWg45VzXdVT1LNxqkCa5VkmVpppkaaqpGk8h2ryLHyLPdasfIIu5fJ7/7u76per+vFL36xHv/4x6/2cHAanEy191DJV63gyT3Cid1Rt515sqjKOzVS3Ft2tfarm7Ne0O30KrrnK7uBlTI+19buqaZqBU/bBwsaLYe6aEtVlvlllpXreRrdcbYqw6Ma23W3vCBQc2ZGM+MH1Wg25AyOyC3X1LKulMfyjhIgFwNHBT/SXCvRZLNb2d2Mu5XerXpbeS6VA09R0O2uUY6WfnkTq1t5LklRmshVpihLFGXJKZ2duuF2e2G+7U6rqSxNZYyRF4SKKlX5YSQvjGQdK2OtwmJJYamiqFxWUCzKWsJtAAAAAAAArD5rjMqeq5LrqJ1mmk1SeUmmonK10kzNJNNUmsg1RpFrFVhLi3OsGMLuZXDdddfp7//+7zUwMKCrrrpqWfe9e/fuYz6+b9++ZT0eTt79q733Th1e7b1nqqm9vWrvwaKvYnDon56RkSd1W5sbI5t3A+DESHFvvdXaDL3z3us0khx1K7vdNfg6cebYP9PSvumWhsu+ttYK2lQL9cBNFS62VlBYKmnLhQ/S7PhBTezepaBY0tzkuCYnx5Q0G3IGhtUKIpkslnuUwNsYqRy5KgauZluxJhuxIteq0cmUSyoEjoaKvirR0uapziW1jaPYOnKzTEGeyM1zlbL4iNXnR91PnitutxbC7bjVVJZlvXA7UqFSkx9F8sJQ1lpZ6ygslbuV26WKgkJBhne+AgAAAAAA4AxmjFHoOgpdR0nWbXHuxqkix1Gcdef1notT1ZUqcKwixznmFLDAqSDsXqLJyUm9/vWvlyS9973v1cjIyLLuf9u2bcu6P6ysSuipstHTuSOHV3tPNjoan+scs9rbyijIpUS5kkWtzRMj2VxytLZam+fKFfdejtur5uakhJW0d6qpA7NtbagG2lSJdNZQQedtKK/2sNYFY4wqw6Mq1gY1uXe3rOMo6rR1YGZOjbH9ykpVZeWKisqOGnhLkrVSteCpFHqabsayNlae5xoo+qoWlhZ0pzJqWVeZMQrSRL4y+VmmYtbR8WLnPM8Vt+6r2u40m8rzXNZYeWGoYm1AflSQF4Qy1sg6rqJSWWG5W7ntRwXecAEAAAAAAIC+5Vqrmm9V9Vw1kkyzSSLPWqVut8V5K83UTDP5tjuvt28N98OwLMiVlujNb36z9u/fr0c96lF6xStesdrDwRlicbX3bCvWnqmm9k07Gi0Hh1V71wq+hu5X7e3KdKu8F7U2T4yUqLvsqP+rvHPlStStopyfn9vP+/914cyU57l2TzU1PtfRllqkkXKgc0ZL2jlcXO2hrTuO62p4+w6Vh0c1tuvncn1fE+1EU3NzasUdJcWyyp4r/zjpsmOlwaKnWuQpy3O5ztLOHR1j1TaurHIV0m6FeSGNFebpEbfPs2wh1O60mopbrW64bR15Yajy4LC8KOqG20ZyXK8713ap25rcjyIu5gEAAAAAALDmGGNU9BwVvW6L87kklZukKrq5WmmuZppqJk7kGKPQ6QbflvtkWALC7iX41re+pWuuuUau6+qv//qvV+Sm9a5du475+L59+/SIRzxi2Y+L5VMOPV240dN5o2XdO9PS3qlDq70n5jqaOEK1t5GRLynttTY3ea5M3SrvTJKb93eVdyopMwTdWHlZnuueiYamm7G2DxY0WPR1wcaytg0WVnto61pQKGjLBQ/Q3MS4nN33yAsjTdcbmq3PacL1VPUdRWF43P1YqyWdCzNJbesqMVbe4rblaeeQCvMsTRW3Wuq0Gr225C3lkqx15EeRykPD8qOCXD/ohtuer6hU7gbc5bL8MDrlMQIAAAAAAAD9KHCsAseq5ruqx6nmklShYxVn3UrvRpqqkXRbnIeOlce0fjgFhN2nqN1u65WvfKXyPNfv//7v6yEPeciKHGfr1q0rsl+cfo41p1Tt7ch0K7tlunNb57lSI8W9im9X/RcSp+q+BndR0N3PwT3OXFmW667xuuqdRDuGCqoVfD1oc1Ubq8cPUXF6lAaHVKjVVN67V2ZsXH6aaarV1mQ7VqfRULFclustrT350SS9tuW5jKI0katMYZaqkMXK01StZnMh3E7a7W647bgKokjRSFV+GMoNAkmS6we9yu2yonJZXsDvGAAAAAAAACBJjjGq+K7KnqNWr9rbSzIVlauVzLc5T+Rao8hxFNDiHCeBsPsUvfvd79Z//Md/aNu2bfqjP/qj1R4O+sziau/9My3t6VV7x1mmifqh1d6DRV8DRU+etd3W5sbI5lKmbmvzWJKT57Lqj9A76wXdTm+Obq/3GVhuSZbproN1tZJMO4dLqkWeLtpa1XApWO2h4X6sdTS8dZsqQ8O6Y/duOa6j2URqNhtKJsYVhqGickV2md7ZmUvqGEcd68jJM4VZLJOm8uamlTRmNdZsKul0JHXbj/thpEK1Jj8syPW7wbsXRIrKZYXlsqJSRa7vL8vYAAAAAAAAgLXKGKPIdRS5juIs01ycyjWpCq5VJ8vVTFLNxonqRgqto9C1cgi9cRyE3afoT//0TyVJv/Irv6Ivf/nLR9ymXq8vfL7uuuskSaOjo3riE594egaJM55jjTbXIm1eVO0deo42lEPNtmKN1zvaO93UvulDq71T3dfaPFW3tbnNJUdndmvzvBfQG0mOuoG3ewaPF/0rTjPdebCuOMt09khR1cjTQ7fVVCsQSJ7J/CjSBeeeq93jE3IOHJDjumoHgdoTY4pbBxSVyvILRS3l+jaT1LSekiyT06grb86p2ajLmZ1SnGdyPU9eGKlUG5QXRQtV5X5UUFQqK+xVb69UtTkAAAAAAACwHnjWaiCwqvquGkmquTiVb63SPFMzydTKUjXb3XXdFudUe+PICLtPUadX8fXxj39cH//4x4+57djYmH7jN35DkvS4xz2OsBtHdKRq7/Ixqr1rRVfWWpleO/PFVd6Ozrwq71y5kt6yO1/VvaojwlrVTlLdebCuTLnOHS2pEnp62PaayiG/cf3AGqOtQ4Pyo6LGJyZ0YHpa6cYtMtNjqs9Mq91oqFCtnnQldZokaiWpGrmUxXNymnWlaaJiGqvgWgWjG+RHBTlu9wwaFAq9luTdcNtxuWQCAAAAAAAAlps1RiXPVclz1U4zzcaJXJupmOdqp93gezpO5BijqDcHuCX0xiLcuQXOMPev9t471VLkNY9Q7S3VCr5qRV9+6MjkuTJ1q7wzSW5+5lR5zwfdmZG8RfN0n2mBPPpfK051x8E5WWN03mhZ1agbdBd8/rnrJ9YYjRYCGTuksFTWvePjalujUthUa2ZSM+Nj3XmzyxVZxzniPpI4VtrpKOl01Ol01HF9pa4nP89UMlJYLqvmGvnWyBiroFBcmG87LJWPul8AAAAAAAAAKyNwrALHV5rlmktSzcWJQqfb8ryZpqqnqepJqsCxihxHriVjAGH3Kcvz/Ljb7NixQz//+c911lln6e677175QWHNKYeeLtjo6dzR0jGrvUPPaqAcqFh05ckoNVLcq/h2tfqhciqCbqy8ejvRXWN1+a7VzpGiapGvh22vKfQILfuRNUYjoa9c0paNGzQ2M6f6zJSKvquk2VBzZkZx64DCcllBoaQ0iZV02kraHSVxR1mWdffjB8qrgwo8TwUj+VYK81wDUaBiL9gOSyVZy+8JAAAAAAAAcCZwrFHVd1XxHDXT7tzenrXK8lyttBt8t9JMnjUKHUcBLc7XNcJuoA+cSLX3/qmmNCXVyoFKBU+BZw9pbW61OgFzqlyp6bYunw+6z5SKc6wds61Yd43VVfAd7RguarAY6KHbavJdu9pDwxLMB94Hmx0NlUtyg0Ct+pz86Ql5Yajm7KwaMzNqzswol2QkuZ6vICrICQJlfqTYceUbqeJ7KkSRRiolDZbLMpbfDQAAAAAAAOBMZoxRwXVUcLvV3bNxKjdJVXCt2lmuVpJqNk5UN0ah053b2yH0XnfWbdj9ne98R7fffvvC12NjYwvLt99+u6699tpDtr/iiitO08iAY7t/tffeRdXek/WOxuc6mpzrKIoclSNfUegosUY2lxyd3tbmWS/odubn6O59BpbTVKOjeyYaKoWedgwVNFQK9Atbq3Idwsy1wOkF3gdaHcn3JJWVFwqy01Oy1iooFBS3WvJ8X44XyFgpt46SsCDXDzUQBqpEkULP0VDgySXkBgAAAAAAAPqOZ60GA6ua76qepJqLUwXWKs2783q30lTNJJVvrSLXyuM+4LqxbsPuq6++Wp/4xCeO+NiNN96oG2+88ZB1hN040yyu9p5rJ9oz2dQ+r6nRRdXe4zMtOXWjYuApKrjyXCsnz+Vo5au8c+VKTLfS0lE38HYJurHMxufa2j3VVK3gaftgQaPlUBdtqcoyV8ua4tj7Au+q72q6I+W1IQ1UK6pPTCgNO3KDQH5UkIJQLeN0q7k9V561qviOqp5LKyMAAAAAAACgz1ljVPZclT1XrTTTXJzINZmK6rY4byWZpjqJ3F61d+BYWe4LrmnrNuwG1pJS4OqCjWWdO1rSgdmW9kwumtu70dFUJ9FsO1bgOSpEriLfkaeVq7LOlSvpLbvzVd0rciSsZ/tnWto33dJw2dfWWkGbaqEeuKlCoLlGudZodCHwdjTVSdQwnmqbtsgaozzPNZd05+oJnO4Fr2uMhkJfIVX+AAAAAAAAwJrTbV3uK8nyXrV3osjptjxvpqnqSfeju50jlyKpNcnkeZ6v9iBw6nbv3q1t27ZJknbt2qWtW7eu8ohwplio9p5uKk4zTbcTTXcSNZJE1rGKAleR66jo2mWv8k567cvn25YH+erMF461a+9UUwdm29pQDbSpEumsoYLO21Be7WHhNEiyTAdasdppqqlOIiujkudoLk6VKlfJdRQ6jgqu1WDg8a5NAAAAAAAAYJ3I81yNXrV3O82V5rlaabdAJssl3xqFjiPfmpMqmppsx/KsUdl3ta0YruArWPtWItekshtYo45U7T3R6KiZZ5ppJ5prJWraVDOOUcFxVAocuWbp1Y/poqDbysgn6MYyyvNcu6eaGp/raEst0kg50DmjJe0cLq720HCauNZqJPR0oJmr5rua6iQLbYkGfFeutRrwXZU8LnEAAAAAAACA9cQYo6LrqOg66qSZ5pJUbmJUdHO1s1zNJNVMnMgao8ixCmlxviZwJxhY4xxrtKkaaVO1O7f33qmm7plqqBX5qsep5jqJZuNEs51YoXVUClxFnnNKx8p683Q7i4JuS9CNZZLlue6ZaGi6GWv7YEGDRV8XbCxr22BhtYeG08yzVqORrwPNjqqeq3aaqeg58q3VUOjJs7QtBwAAAAAAANYz37EadKxqvqt6kmo2ThVYqyTL1EozNdJUjSSV71hFjuWeYh8j7AbWkVLg6vwNZZ0zUtK9M03dNdnQZMtRnGeai1M14lT76y25uVE59FQKHTknWO29OOh2ZRZamAPLIcty3TVeV72TaMdQQbWCrwdtrmpjlZYx69XiwNu1VmXPUc13mbMdAAAAAAAAwAJrjMqeq5LrqJ1mmk1SuUmmonK10kzNJNNU2u0cGblWgbXcY+wzhN3AOuRYoy21grbUCppodnTHRF0H5tqq+K4aaaZmJ9FUq6PJeq5C4Koceses9s57QbeR5Oi+wBtYDkmW6a6DdbWSTDuHS6pFni7aWtVwKVjtoWGVedZqcyFQJsnhAhQAAAAAAADAURhjFLqOQtdRkvVanMepIsdRJ8vUSlPNxanqShU4VpHjyLHcc+wHhN3AOjcY+RrY7Gmmk+ie6aYOzLY041rFkadWO9FcI9HcdFO+Y7vV3oEjZ1E7j1y5kt6y26vm9lbnpWANitNMdx6sK84ynT1SVDXy9NBtNdUK/moPDWcIY4xObeIFAAAAAAAAAOuRa61qvlXVc9VIMs0miXxrlbrdFuetNFMzzeTb7rzeOLMRdgOQMUbVwNMDhl1trISaasbaP9fSQWtUDD3FcaZ6M9Zko63JurrV3oGrwHOUGSkzkrdonm5DVTeWQTtJdefBujLlOne0pEro6WHbayqHvJ0CAAAAAAAAALA0xhgVPUdFr9vifC5J5Sapim6uVpqrmaaaibvlfh65xxmLsBvAAtcajYS+iq6jYuBqSzXVgXpHY422PM9qIPNVbyWabSWaa7dkHCPfc+TkuTxrFWZGieco9Kxcy7udcOpacao7Ds7JGqPzRsuqRt2gu+DzzxYAAAAAAAAAYHkFjlXgWNV8V/U41VySKnSs4qxb6Y0zF6kBgMMUXEehYzXdSeRaq5Gir4lWrMlmLMcxqkaeWmmmdpYpSzPFHWluNtZ4nCrPu/vwHKPA7Qbf859Dz5FHyw8cR72d6K6xunzXaudIUbXI18O21xQeY954AAAAAAAAAACWyjFGFd9V2XPUSjPNxqk8m0nK5Rqqu89EhN0Ajsgao4HAU9F1NNGJ5VqrSuBqLvZUb6dqdBJlmZQlmWwgeWWjPM/VSlK1k0zNOFUnzjTXTjXR6CjrvfHJtUaB2w2+A88qdLuffcfK8A/FujfbinXXWF0F39GO4aIGi4Eeuq0m3+VNEgAAAAAAAACA08MYo8h1FLmO4ixTO80UOhRknYkIuwEck+9YbQh9zSWppjuSb618J1El8lTzXRVdRyXHUaOTqt5OVO8k3c/tVJ2km3DnytVJMrXiVK3e52acaqoZK826peDWqBuAzwfhvc++a2UJwdeFqUZH90w0VAo97RgqaKgU6Be2VuXSDQAAAAAAAAAAsEo8a+UxdesZi7AbwHEZY1T2XEWOo6lO3Aufc/mO1WDgyRqj0HM0WPQPeV4nydToJKr3gvC5dqJGO1UrTu/bJu2G3+249zlJNdNKFkJwY9QNvnsV4KHndJddK2sJwdeK8bm2dk81VSt42j5Y0Gg51EVbqvyMAQAAAAAAAADAURF2AzhhrjUaDn210lRxlqvoOsesuvZdK9/1VSscuj5JM9U73Vbo81Xg9Xai5qI5v+MsWxSAd9ui1xsdxUm+sJ/AtQut0OerwQPPyuUdVn1l/0xL+6ZbGi772loraFMt1AM3VWhrDwAAAAAAAAAAjomwG8BJCx1H4RKmpnAdq2pkVY28Q9ZnWa5G3GuHPh+Cd5KF+cElKZkPwZNM7V5b9OlmrINz7YWg3HPMfRXgi+YF92iHfcbZO9XUgdm2NlQDbapEOmuooPM2lFd7WAAAAAAAAAAAoA8QdgM4Y1hrVApclYJDT015nqsZpwtt0OfaSXeO8E6iNO0m3Fmeq5Wkh1SDz7RjxY1sISh3rTmkEjz0rAK3Oy84li7Lc6VZrizLlfaW5z+yXN3lRevjNFOjk2pLLdJIOdA5oyXtHC6u9ssAAAAAAAAAAAB9grAbwBnPGKOC76rgu9L9in5bC5Xg3fC73u7OER4n3YQ7z3O10/uqwFtxqmacaqoZL8wL7lhzhHnBrXzXrptW2nl+XxCdZYcH09ni8Poo67P86Pt3rJG1kmOsXNt9Y0PgWY2UAw0UfF2wsaxtg4Wj7wAAAAAAAAAAAOB+CLsB9LVuhbajodKh6ztJ1gu+Dw3C23EvBFeuOOlWjLfnK8KTVNOt+0Jwa6RgUSv0+UrwwLPHnKt8NSwOnpNF1dVZ7+tjB9ZaeM1H0g2pjaw1coyR4xi51sh3rBzb/fq+xyXHWjm9YNvabtBtdOTvV+BZnb+hrA2VcKW+NQAAAAAAAAAAYI0i7AawJvmule/6Gij6h6yP00yN+1WB19uJmp10YZtOmqm9MCd4qlacaryeKO61TDdG8p1uBXjg2kNaojv25EPwY7X/7gbWOnZVdZ4vzFd+f8Z0w2bHmF51dXc5cIwc2w2jXWNlrelWXPdCa7e3rWvMMavbHcfIs1ZuLwB3Hdv7bOTa+5a9XjA+v61j71sHAAAAAAAAAABwKgi7AawrnmNVLVhVC94h69MsV+N+VeD1dqpGJ1kIkpMs61WAz88L3m2H3pltL+zHd+xCK3TfsYtagx89rD5e+++FDyNZa+W5RqG1hwXYzqLKa2t6gfWxgupeEL04eD5WcO3db1vXHjsIBwAAAAAAAAAAWEmE3QCgbvBbDj2Vw0ND8CzrtjpfaIfe7gbhjU660Po7y+fbofeqweNMM81YSZbL9qqlFyqlj9r+ez7U7rYBt+bY7b9tbzuvF4S7zqFhtGt7ldXOoirr+RC7V3FtqaoGAAAAAAAAAAB9jLAbAI7BWqNi4KoYuFL5vvV5nqsVZ4dUgc8vJ+kxSrV7FgfQXq+luLu4wtpZVFm9KLim/TcAAAAAAAAAAEAXYTcAnAJjjCLfUeQ7Gi4FhzzWilM1Oqk6SbYQXC+uuHZo/w0AAAAAAAAAALBkhN0AsMxCz1HoOas9DAAAAAAAAAAAgDXNrvYAAAAAAAAAAAAAAAA4WYTdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvuOu9gCwNEmSLCzv27dvFUcCAAAAAAAAAAAAAEe2OMtcnHEuBWF3nzt48ODC8iMe8YhVHAkAAAAAAAAAAAAAHN/Bgwe1Y8eOJe+HNuYAAAAAAAAAAAAAgL5j8jzPV3sQOHWtVks/+tGPJEkjIyNyXYr1l2Lfvn0LFfK33HKLNm3atMojAgAcDedsAOgfnLMBoD9wvgaA/sE5G0A/SpJkoWv1RRddpDAMl7xPktE+F4ahLr744tUexpq0adMmbd26dbWHAQA4AZyzAaB/cM4GgP7A+RoA+gfnbAD9ZDlaly9GG3MAAAAAAAAAAAAAQN8h7AYAAAAAAAAAAAAA9B3CbgAAAAAAAAAAAABA3yHsBgAAAAAAAAAAAAD0HcJuAAAAAAAAAAAAAEDfIewGAAAAAAAAAAAAAPQdwm4AAAAAAAAAAAAAQN8xeZ7nqz0IAAAAAAAAAAAAAABOBpXdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A2cpB07dsgYoyuuuGK1hwIAOA5jjIwxeuc737naQwEALNE3v/nNhfP6N7/5zdUeDgDgKK699tqF8/Xdd9+92sMBABwD19gA1gLCbqw5P//5z/XGN75RF154oYrFogYHB3XxxRfrfe97nxqNxmoPDwCg+0Lo4308/vGPX+2hAsCaduDAAX3lK1/RlVdeqac97WkaHh5eOAefyps7v/rVr+o5z3mOtm7dqiAItHXrVj3nOc/RV7/61eUfPACsI8txvl4cQh/v49prr13R1wMAa9mtt96qP/7jP9ZTnvKUheviUqmk888/Xy996Uv1ne9856T2xzU2ABybu9oDAJbTl7/8Zb3oRS/SzMzMwrpGo6Fbb71Vt956q66++mpdf/31Ovfcc1dxlAAAAMCZYcOGDcuynyzL9MpXvlIf+9jHDlm/Z88e7dmzR1/84hf127/92/qbv/kbWct7rgHgZC3X+RoAsLJ++Zd/Wd/+9rcPW9/pdPSf//mf+s///E9de+21uvzyy/XRj35Uvu8fdV9cYwPAiSHsxppx22236QUveIGazaZKpZL+63/9r3rCE56gZrOp6667Th/96Ef1s5/9TM94xjN06623qlwur/aQAWDde/WrX63f/d3fPerjxWLxNI4GANa37du368ILL9TXvva1k37u29/+9oWbcA972MP0lre8Reecc47uuOMO/dmf/Zluu+02XX311RoZGdF73vOe5R46AKwrSzlfz/uHf/gHbd68+aiPb9269ZT3DQDr2d69eyVJmzdv1vOe9zxdeuml2r59u9I01U033aSrrrpKe/bs0Sc/+UnFcaz//b//91H3xTU2AJwYwm6sGb//+7+vZrMp13X1ta99TY961KMWHnviE5+o8847T295y1v0s5/9TFdddRXztwLAGWB0dFQPfvCDV3sYALBuXXnllbr44ot18cUXa8OGDbr77ru1c+fOk9rHz372M/35n/+5JOmXfumX9K1vfUtRFEmSLr74Yj372c/W4x73ON1666163/vep5e97GV0WgKAk7Qc5+vFzj//fO3YsWP5BggAkCRdeOGFes973qPLLrtMjuMc8tgll1yiF7/4xXrMYx6jn/3sZ/r0pz+t3/md39Ev//IvH7YfrrEB4MTR2wJrwi233LLQHublL3/5IUH3vDe+8Y16wAMeIEn64Ac/qDiOT+sYAQAAgDPNH/3RH+mZz3zmktrjfuADH1CSJJKkD33oQws34eYVCgV96EMfkiQlSaL3v//9pz5gAFinluN8DQBYeV/5ylf0/Oc//7Cge97w8LCuuuqqha8/+9nPHnE7rrEB4MQRdmNN+OIXv7iw/NKXvvSI21hrdfnll0uSpqam9I1vfGNZjv0f//EfesUrXqEdO3YoCAJt2LBBz3nOc3TzzTcvy/4BAMvne9/7nn7jN35DW7duVRAE2rJli1784hfr3/7t31Z7aADQl/I815e+9CVJ3SqWSy655IjbXXLJJbrgggskSV/60peU5/myHP///J//oyc96UkaGRlRFEW64IIL9Ja3vEUTExPLsn8AwNJlWaaPfOQjevSjH62BgQEVi0U95CEP0bvf/W41Go3VHh4AnHZPeMITFpbvuOOOwx7nGhsATg5hN9aE73znO5K6c7s+/OEPP+p2j3vc4xaWb7zxxiUf9wtf+IJ+8Rd/UVdffbV+/vOfq9Pp6MCBA/riF7+oxz72sfrMZz6z5GMAAJbHX/3VX+nRj360rrvuOu3Zs0edTkd79+7Vpz71qYWWYACAk3PXXXctzEu4+Fr7SOYf37Nnj+6+++4lHTfLMr34xS/WC17wAv3zP/+zxsbG1Gq19LOf/Uzve9/79MhHPlL33nvvko4BAFi6RqOhpzzlKXrVq16lm266SVNTU2o0GvrRj36kd7zjHXrCE56ger2+2sMEgNOq3W4vLB+pApxrbAA4OYTdWBPmK/LOPfdcue7Rp6K/8MILD3vOqfrRj36k3/zN39SGDRv0l3/5l7r55pt100036Z3vfKfCMFSapnrlK1+pgwcPLuk4ALCW/d3f/Z0e+MAHqlAoqFwu67zzztNLXvKSZeu+Me8f/uEf9NrXvlYPetCDdM011+h73/uevvWtb+kNb3iDrLVqNBp68YtfrE6ns6zHBYC17qc//enC8uJr7SNZzmvx/+//+//0qU99Sr/2a7+mz3/+8/r+97+vv//7v9cznvEMSdLtt9+uN7zhDUs6BgCsZS996Uu1efNm+b6v4eFhXXLJJXrHO96hPXv2LOtxXvGKV+gb3/iGXvKSl+j666/X97//fX3hC19YmH7ulltu0bve9a5lPSYAnOluuOGGheX5aTcX4xobAE7O0VNBoE+0Wi2NjY1JkrZu3XrMbefbZdXrde3atWtJx/3BD36ghz/84frnf/5nVSqVhfWXXHKJzj33XL3oRS/SzMyMPvWpT3ERAABHsfh/4KTu/zjdfvvt+uQnP6lf+7Vf07XXXqtqtbrk49x88816+tOfri984QvyfX9h/aWXXqqhoSG94x3v0D333KPrr79ez3nOc5Z8PABYL3bv3r2wfLxr8W3bti0sL/Va/Lvf/a7e9a536e1vf/sh65/61KfqqU99qr72ta/ps5/9rP7iL/5CIyMjSzoWAKxF3/zmNxeWx8fHNT4+rv/3//6frrrqKn3gAx/Qq171qmU5zne/+1397d/+rV70ohctrPvFX/xFPe1pT9Mv/dIv6cc//rE++tGP6k/+5E+OWbwAAGtFlmV673vfu/D185///MO24RobAE4Old3oe7OzswvLpVLpuNsXi0VJ0tzc3JKPfc011xwSdM/7zd/8TW3evFmS9O1vf3vJxwGAtaZQKOiFL3yhPvrRj+rb3/62brvtNn3ta1/T29/+dg0NDUmSvvjFL+pXf/VXFcfxko8XhqE+/vGPHxJ0z3vd6163sJ5zNgCcnJO5Fp+/DpeWfi3+8Ic/XG9729sOW2+M0R/8wR9IkpIk0U033bSk4wDAWnP22WfrTW96kz73uc/plltu0S233KLrrrtOz3ve82SMUavV0u/8zu/oIx/5yLIc77nPfe4hQfe8IAj0mte8RlI3bL//m2ABYK16//vfr1tuuUVS9xx5pCk5ucYGgJPDWybR91qt1sLykUKM+wuCQJLUbDaXdNyLLrpID3nIQ474mDFGD3vYw7R3717deeedSzoOAKxFe/bsUa1WO2z9k5/8ZL32ta/V0572NN1222264YYb9OEPf1ive93rlnS8Jz/5yRodHT3iY/Pt03/yk59wzgaAk3Qy1+Lz1+HS0q/Ff/M3f1PGmCM+tviGIed1ALjPc57zHL3kJS857Px58cUX6wUveIG+8pWv6LnPfa7iONYb3vAGPfvZz9bGjRuXdMzf+q3fOupj9z9fH+0eCwCsFTfccIP+8A//UJI0OjqqD3/4w0fcjmtsADg5VHaj74VhuLB8InOtttttSVIURUs67vHmSxkcHJR06DvxAABdRwq6523YsEGf/exn5XmeJOlDH/rQko/HORsAVsbJXIvPX4dLK3stPn9OlzivA8Bi1Wr1qCGGJD3zmc/UlVdeKUlqNBr62Mc+tuRjcr4GgK6f/OQnes5znqMkSRSGof7u7/7uqG/K5xobAE4OYTf6XrlcXlg+kVYt9Xpd0om1PD+WQqFwzMet7f55pWm6pOMAwHp09tln68lPfrKk7jzee/fuXdL+OGcDwMo4mWvx+etwaWWvxefP6RLndQA4Wa985SsXAvEbbrhhyfvjfA0A0l133aWnPOUpmpyclOM4uu666/TLv/zLR92ea2wAODmE3eh7YRguzO+6e/fuY247OTm5cAGwbdu2FR8bAODUPfCBD1xY3rNnzyqOBABwNFu3bl1YPt61+K5duxaWuRYHgDPT6Ojowj0WrsEBYOn27t2rX/mVX9HevXtljNE111yjX/3VXz3mc7jGBoCTQ9iNNWE+ELn99tuVJMlRt/v3f//3heUHPOABKz4uAMCpO1aLRQDAmWHxG5MWX2sfCdfiANAfuA4HgOUxNjamJz/5yQtzXH/oQx/S5ZdfftzncY0NACeHsBtrwmMf+1hJ3bYt3//+94+63eIWXI95zGNWfFwAgFP305/+dGF58+bNqzgSAMDR7Ny5c+Ecfbx2t9/61rckSVu2bNGOHTtWemgAgFNw8OBBjY2NSeIaHACWYnp6Wv/lv/yXhXsb733ve/V7v/d7J/RcrrEB4OQQdmNN+LVf+7WF5Y9//ONH3CbLMn3yk5+UJNVqNT3hCU84HUMDAJyCu+66S1//+tclSeecc462bNmyyiMCAByJMWahDeO///u/6+abbz7idjfffPNC1cmv/uqvUjUIAGeoj3zkI8rzXJL0uMc9bpVHAwD9qdFo6BnPeIZ+8IMfSJLe/va3661vfesJP59rbAA4OYTdWBMe8YhH6NJLL5UkfexjH9NNN9102DZXXXWV/u3f/k2S9Pu///vyPO+0jhEA0PXlL3/5mFNO7N+/X5dddpk6nY4k6Xd/93dP19AAAKfg9a9/vRzHkSS99rWvVbPZPOTxZrOp1772tZIk13X1+te//nQPEQDWvbvvvlu33XbbMbf5yle+oj/+4z+WJEVRpJe+9KWnY2gAsKZ0Oh095znP0Y033iipex/6Xe9610nvh2tsADhx7moPAFguH/zgB/WYxzxGzWZTT3nKU/S2t71NT3jCE9RsNnXdddfpIx/5iCTp/PPP1xvf+MZVHi0ArF+vfe1rFcexLrvsMj3qUY/Sjh07FEWRxsbG9M1vflN/8zd/s9A68bGPfewJt/kCAJy873znO7r99tsXvp4//0rS7bffrmuvvfaQ7a+44orD9nH++efrzW9+s9773vfq1ltv1WMe8xi99a1v1TnnnKM77rhDf/qnf7oQsLz5zW/WeeedtyKvBQDWsqWer++++2494QlP0KMe9Sg961nP0i/8wi9odHRUknTnnXfqs5/9rD772c8uVHX/+Z//Od2VAOAU/MZv/Ia+9rWvSZKe+MQn6uUvf7l+/OMfH3V73/d1/vnnH7aea2wAOHGE3VgzHvawh+kzn/mMXvSiF2lmZkZve9vbDtvm/PPP1/XXX69yubwKIwQAzNu7d68+9KEP6UMf+tBRt7nssst09dVXKwiC0zgyAFhfrr76an3iE5844mM33njjQkXKvCOF3ZL07ne/WwcOHNA111yj2267TS984QsP2+blL3/5KVW1AACW73x90003HbEb3rxCoaD3v//9euUrX3nKYwWA9ezzn//8wvI///M/6yEPecgxtz/rrLN09913H/ExrrEB4MQQdmNNedaznqV//dd/1Qc/+EFdf/312r17t3zf17nnnqvnPe95es1rXqNCobDawwSAde0Tn/iEbrjhBt1000268847NTY2ppmZGZVKJW3btk2PfvSj9ZKXvESPetSjVnuoAIATZK3Vxz72MV122WX6yEc+ou9973saGxvT8PCwLr74Yr3qVa/S0572tNUeJgCsWw9/+MP1qU99SjfddJNuvfVW7du3T2NjY0qSRAMDA3rQgx6kJz3pSfrt3/7thYpvAMDq4hobAE6Myef7EwEAAAAAAAAAAAAA0Cfsag8AAAAAAAAAAAAAAICTRdgNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAADACbj88stljNFrXvOaJe3nne98p4wxMsYs08iA/vC+971Pxhg9/vGPX+2hAAAAAFgjCLsBAAAAoM9885vfXAhL3/nOd57Qc6644oqF59x9990rOr616JZbbtGnPvUp+b6vP/zDP1zt4WANu/baaxf+Vq+99toTes6R/r4XrzvVjyOdX8bGxvShD31Iz3rWs3T22WerUqkoCAJt3LhRj3/84/X2t79dP/7xj484zle/+tUaGhrSDTfcoM9//vOn+B0CAAAAgPsQdgMAAAAAcBzveMc7lOe5Xvayl2nr1q2HPb44oOTNBFiLsizTu971Lp199tl63etep6985Su66667NDs7q06no/379+uGG27Qe97zHl100UV6ylOeop/+9KeH7KNUKukP/uAPJElXXnmlsixbjZcCAAAAYA1xV3sAAAAAAACcyW655RZ9/etflyS98Y1vXPL+3vnOd55wRT5wqt797nfrTW960xEf+6u/+it9+MMfliRdc801uvjii4+43ejoqCSp2WzqBS94gb785S9Lknzf1wte8AI9+clP1o4dO1QoFLR//37deuut+sIXvqB/+Zd/0de//nV95CMf0Qc+8IFD9vl7v/d7+pM/+RP95Cc/0Re/+EU997nPXaZXDAAAAGA9IuwGAAAAAOAYPvjBD0qSHvnIR+rcc89d5dEAJ2bLli3asmXLER+bD7ElaefOnXrwgx98zH29+tWvXgi6H/nIR+q6667Tjh07Dtvu6U9/uq688kp95Stf0etf//oj7qtarerpT3+6Pv/5z+sv/uIvCLsBAAAALAltzAEAAAAAOIrp6Wl97nOfkyT91m/91iqPBjj9vvCFL+gTn/iEJOkhD3mI/umf/umIQfdiz3zmM3XrrbfqiU984hEfn/9buuGGG3THHXcs63gBAAAArC+E3QAAAACABXNzc3rve9+rRz3qURocHFQQBNq6dat+/dd/XV/5yleO+dwdO3bIGKMrrrjimNtdccUVMsYcMTC7++67F+a+vvbaayVJn//85/X0pz9dmzdvluu6evzjH3/Ic372s5/pta99rR784AerXC7L931t3rxZD33oQ/Wyl71Mn/nMZ9Rut0/iu3CfL33pSwvPveyyyw57/Jvf/KaMMXrpS1+6sG7nzp0Lr2H+45vf/ObC4+985zsX1h/J/b+PP/jBD/Rbv/Vb2rZtm6Io0rnnnqs/+IM/0NjY2CHP++53v6vnPe952r59u8Iw1DnnnKO3vvWtmp2dPe7rTNNUn/jEJ/TMZz5TmzdvVhAEGhoa0mMf+1j9j//xP9RsNo/4vPmf5Yl+LP4+LPajH/1Ir3zlK3XeeeepUCioXC7rQQ96kN7whjcccw70I/2+fP3rX9eznvUsbdy4UUEQaOfOnXr1q1+t3bt3H/f7IEnf+MY39JKXvERnn322CoWCKpWKLrroIr35zW/W3r17T2gfa8l73vOeheWPf/zjKhaLJ/S8Wq2mZz/72Ud87BnPeIbCMJQkffrTn176IAEAAACsW7QxBwAAAABIkm677TY985nPPCzQ27Nnjz73uc/pc5/7nJ773Ofqf/2v/7UQVK2kPM91+eWX62//9m+Pus3f/d3f6UUvepE6nc4h6/ft26d9+/bphz/8oT7+8Y/rRz/60XFbNR/JN77xDUnStm3btHnz5pN+/lL97d/+rX77t3/7kNd3xx136P3vf7+uv/563XDDDdq4caP+/M//XG95y1uU5/nCdnfeeaf+7M/+TP/4j/+oG264QaVS6YjHuOeee/TsZz9bP/zhDw9ZPzExoRtvvFE33nijPvzhD+v666/X+eefv+yv8b//9/+ud7zjHcqy7JD1P/3pT/XTn/5UH/7wh/WRj3xEl19++XH39V//63/Ve9/73kPW3X333frrv/5rfe5zn9MNN9ygBzzgAUd8bqvV0ktf+lJdd911hz324x//WD/+8Y/14Q9/WJ/+9Kf1rGc964j7ePzjH68bbrhBknTXXXcdtwL6TPejH/1It956qyTp0ksv1S/+4i8uy36DINBDH/pQ3XzzzfrqV7+qd7zjHcuyXwAAAADrD2E3AAAAAEB79uzRk570JE1OTi5UFb/whS/U0NCQfvrTn+qqq67SD3/4Q33+85/XFVdcccRAcLl94AMf0L/+67/q0ksv1atf/Wqdf/75mpqaWqj03b9/v1760peq0+lodHRUr3nNa3TJJZdoeHhYzWZTt99+u2644QZ98YtfPOUxfPvb35YkXXzxxUd8/OKLL9aPfvQjfelLX1oI7P7hH/7hsGB8586dJ33sH/7wh/r0pz+tc889V29605t00UUXaXZ2Vtdcc40+9alP6Wc/+5ne9KY36bnPfa7e/OY365JLLtFrX/taXXDBBRobG9Nf/MVf6O///u/1gx/8QO9617sOC4ElaXx8XI997GO1a9cuBUGgV7ziFXrc4x6nHTt2aG5uTl/72tf0wQ9+ULfffrue9rSn6Qc/+IGq1erC89/97nfrTW9601FfQ7PZ1GWXXaZdu3bJ8zxt2rTpkMf/6q/+Sm9729skSSMjI3rrW9+qxzzmMUrTVP/4j/+o973vfarX67riiis0PDyspz/96Uc91kc/+lF997vf1eMe9zi96lWvWvh9+eQnP6lPfvKTOnjwoF72spfppptuOuy5eZ7r13/913X99ddLkp71rGfp+c9/vs4++2xZa3XLLbfoqquu0j333KNf//Vf14033qhf+qVfOvYPcA2YD+6lbjX2cnrEIx6hm2++WbfccotardZpeQMNAAAAgLWHsBsAAAAA+tiBAwf04x//+LjbTU1NHfPx17/+9ZqcnJTUDQ1f/vKXLzz28Ic/XM9//vP1tKc9Td/4xjf0mc98Ri95yUv0tKc9bUljP55//dd/1eWXX65rr732iC2/r7/+etXrdUnSP/3TPx1Wuf3oRz9al19+uf7yL//ylI5/4MCBhfmEH/awhx1xm2KxqAc/+MEL1a+SdP755y9LRe+//Mu/6NGPfrS+/vWvq1AoLKx/whOeoFarpc9+9rO67rrr9NWvflWXXXaZPvOZz8hxnIXtfuVXfkWPfexjdfPNN+vqq6/Wu971LrnuobcBXve612nXrl0666yz9I1vfOOwUP7xj3+8nve85+nSSy9dqBR/97vfvfD4li1btGXLliOOP89zvfCFL9SuXbskSf/zf/5PXXDBBQuPHzx4UG9+85slSZs3b9bNN9+sbdu2LTz+mMc8Rs9+9rN16aWXql6v65WvfKXuuusueZ53xON997vf1Ste8Qr9zd/8zSG/L0960pPk+76uvvpq3XzzzbrtttsO+3leffXVuv766+V5nv7v//2/eupTn3rI45dccole/OIX69JLL9VPfvITvf71r9d3vvOdI45jLVlc7f/whz98Wfc9v78kSfTDH/5Qj3zkI5d1/wAAAADWB+bsBgAAAIA+9uEPf1gXXXTRcT++9KUvHXUfe/fu1Re+8AVJ0lOf+tRDgu55QRDommuuWQhLTzVAPhn/f3t3HqZ1Xe+P/3mz78KAiIjmFrjkjmmaS2aSJgIetw4nRVHTSjMt/bmlHTVtOYKZelTSOikes8gN0NRESKVvCqIeFwwlBWVJVPZ15vcH19yBMMM2MHzg8bguruvDfLbXPQ4v576fn/f73bZt2/zyl7+scW3rKVOmJEnatWtX6xTlzZs3T/Pmzdf4/suu8dyxY8c1Pn9dlUqlDBo0aLmgu9q3vvWtJEvX2p4/f37uuOOO5YLuJGnYsGHOPvvsJEtHcL/22mvL7Z84cWLuv//+JEv/e9Y0+nyfffbJt7/97SQpr4u9Ov7zP/8zv/vd75IsDdXPOuus5fbffffdmTt3bpLkxhtvXC7oXvbel156aZKlsw/UNkp/6623zs0337zSn5dlR59Xj9avVlVVlZ/85CflOj8ddFdr165dfvaznyVJnn322bz11ls11rKp+PDDD8vbdf1vYNnrvf3223V6bQAAYPMh7AYAANjMjRgxIkuWLEmSlQbd1bbffvt85StfWeGc9aVnz55p3bp1jfurp8T+6KOPag3z19b06dPL2+3atavz66/KnnvuWeP60nvttVd5+ytf+UoqKipWedynA8WhQ4dmyZIladGixSpH6R966KFJlj4Y8e67766y9gceeCA/+tGPkiRHHXVUbrzxxhWOefLJJ5Msfajh+OOPr/FaZ5555grnrMwJJ5yQpk2brnRft27dymuWf/r78Nprr5VH8J9wwgk1Xj/51/chyUqnQx8xYkSqqqpSVVVV+PW6k2TWrFnl7ZYtW9bptZf9ma1+cAUAAGBNCbsBAAAK7KqrriqHa7X9Oe2002q8xrLToK9qKuHq/XPnzl3vozH33HPPWvcfd9xxadu2bZKkT58+OeKIIzJgwIC8+OKLdRLEz5gxo7xdH2F3165da9xX/brX5Lhlg8sk5anX586dm0aNGqVUKtX459hjjy2ft6pgcsyYMenXr1+qqqrSrVu3FaZXr1b9c7fvvvvWODV5kmy11Vbl4Li2Kft32WWXWuuq/m9Y0/chSb7whS/U+n2oDsyTzSOgXfZhk+olA+rKsv+m6vraAADA5kPYDQAAsJlbNtRd1VTFnTp1Wul568OqAub27dvn4YcfzjbbbJOqqqo8/fTTufDCC9O9e/dUVFTk+OOPz6OPPrrW92/WrFl5e968eWt9nbW1sunLqzVo0GCNj/v0AwDTpk1bq7qqpx5fmQ8++CC9evXK3Llz07Zt2zz88MPLBe7Lqv75WZ3psat/7mr7mavt+5D863uxIb4P62LZadirqqpW65xlj6tp2v+10b59+/L21KlT6+y6yfL/pmp72AEAAKA2jeq7AAAAADYedRmUrauVjQb+tEMOOSR///vf84c//CHDhg3LyJEjM2nSpMycOTN//OMf88c//jE9evTIkCFDVhmGftqWW25Z3l7fwX59qA59O3TokKeffnq1z6tpbe/58+end+/emTRpUho2bJjf/e53tY46r1bfP3PLht+PPPLIak8/vr7WcV92ffnVfchi2ZHRdTnd+LLT4I8ZM6a8jEFdWPbfVE0PRAAAAKyKsBsAAGAzt+zauVOnTs22225b47HLTt386XWiq0fOVlZW1nq/up6yuFmzZunbt2/69u2bJHnnnXcydOjQ3HzzzRk/fnwef/zxXH755RkwYMAaXXfZsPujjz6q05o3BtWjdmfNmpVdd911tR4uqM0ZZ5yR//f//l+SZMCAAasMRisqKvLBBx+s1ojh6p+7mtYmXxfLjl5u27ZtPve5z9X5PdbE2qxlXX1cqVSq0+D4sMMOK28PHTo0l1xySZ1de9l/U9ttt12dXRcAANi8mMYcAABgM7dsuPfXv/611mOrw8wWLVpkxx13XG5f9fq+qwqGx48fvzZlrrYddtgh3/nOd/K3v/0tXbp0SZL87ne/W+Pr7LjjjuXR4Kuqub5HJ6+NffbZJ0myYMGC5datXhvXXXdd7rvvviTJ2WefnfPOO2+V51T/3I0ZMyaLFy+u8bhp06blH//4x3Ln1KXq70OSPPvss3V+/TW17Fr1L7744iqPX7RoUV555ZUkyW677ZZGjepuXMMee+yR7t27J0lGjRqVMWPG1Nm1l/03tfvuu9fZdQEAgM2LsBsAAGAzd/jhh5dH9d511101Hvfuu+/miSeeWOGcatXTW48ZM6bGtYb/7//+Ly+//HJdlL1Kbdq0yf77758k+ec//7nG5zdu3DgHHnhgkuRvf/tbrccuu773ggUL1vhe9aFnz57lkH7gwIFrfZ0//vGPufLKK5Ms/bn45S9/uVrnHXnkkUmSjz/+OEOGDKnxuF/96lfln6fqc+rSvvvuW34o4o477sj8+fPr/B5romPHjuVQ/6mnnlrlmuKPPPJIZs6cmST58pe/XOf1XHbZZeXt008/fbVnZvj444/zyCOP1Li/+t/U1ltvbWQ3AACw1oTdAAAAm7nOnTunT58+SZLhw4fnN7/5zQrHLFy4MGeccUYWLVqUJPnOd76zwjHVUx6///775VG+y5o1a1b69+9fZ3U//vjj+eCDD2rc/8knn5RHote0zvSqHHLIIUmSl19+udYQe+utty5vT5gwYa3utaF169YtJ554YpLkf//3f3PjjTfWevw777yzwn/Xl156Kd/4xjdSVVWVHXfcMb///e/TuHHj1br/6aefXh45f9FFF2Xy5MkrHDNu3Lj8+Mc/TpJss8026d2792pde000aNCgHOi+/fbbOfXUU2v9bz1z5swaA/3DDz88pVIppVIpEydOXOuaqkfGL1iwIP3798/ChQtXetykSZNy4YUXJlm6xv23v/3ttb5nTfr06ZNTTz01ydJ/B1/+8pfLI+1rMnz48Oy///556qmnajym+t9mXa4DDgAAbH6s2Q0AAEAGDBiQp556Kh999FHOOOOM/OUvf8nJJ5+cdu3a5Y033sjPf/7zvPTSS0mSk046KUcfffQK1/iP//iPXH311Zk5c2b69++fv//97+nRo0dKpVJefPHF3HjjjZk0aVL22WefjB07dp1rvu+++9KzZ8985StfyVFHHZXPfe5zqaioyKxZs/Lqq6/ml7/8ZTlAPeecc9bqHr169cqPfvSjLFy4MKNGjapxZPE+++yTZs2aZf78+bnyyivTuHHjfOYznymvY77NNtukefPma/dC16PbbrstL7zwQt5+++1cdNFFeeihh3Lqqadm9913T9OmTfPhhx9m3Lhxeeyxx/LnP/85ffr0yde//vXy+ccdd1zmzJmThg0b5sc//nE++OCDWh9A2GGHHdKyZcskS9dE/9nPfpZvf/vbmTRpUvbbb7/8f//f/5eDDjooixcvzpNPPpmf/exnmT17dkqlUu64447VDtLX1DnnnJMnnngif/zjH/PAAw9kzJgx+eY3v5nPf/7z2WKLLTJz5sy88cYbGTFiRB5++OE0a9ZspQ981JX+/fvnvvvuy4gRI/Loo49mr732yjnnnJP99tsvrVq1yj//+c8888wzufXWWzNjxowkyVVXXZWuXbuul3puu+22fPTRR3nkkUfy17/+Nd26dctJJ52UHj16ZPvtt0/z5s0zderUjBkzJn/84x9XOf36W2+9lffeey9Jyg/aAAAArA1hNwAAAOnSpUueeuqpHHvssXn//fczaNCgDBo0aIXjjj/++JWO/E6WhpeDBg3K17/+9cyfPz9XXXVVrrrqqvL+5s2b57e//W0effTROgm7k6XrFQ8bNizDhg2r8Zhzzjkn559//lpdf5999sl+++2XF198MYMHD64x7G7dunXOP//8/PSnP82YMWNy1FFHLbf/6aefzuGHH75WNaxPFRUVefbZZ3PSSSdl1KhRGTlyZEaOHFnj8W3atFnu79WB5ZIlS3LKKaes8n6f/j5861vfyscff5wrr7wyU6dOzfe+970VzmnatGnuuOOOHHPMMav5qtZcqVTK/fffn+9+97v57//+70yYMCEXX3xxjcd37NhxvdWSLB2lXf3gwUMPPZQ33ngjF1xwQY3HXnXVVbniiivWWz0tWrTIgw8+mOuuuy4/+9nPMmvWrPz2t7/Nb3/72xrP+drXvpZvfetbK903ePDgJEt//tbnf1cAAGDTZxpzAAAAkiwNdt98881cf/31OeCAA9K2bds0adIknTt3zvHHH5+HH344f/jDH5Zbn/rTTjzxxDz33HPp06dPttxyyzRp0iTbbrttTjvttPztb3/LCSecUGf1DhgwIPfcc0/OOOOMdO/ePdtss02aNGmS5s2bp2vXrjnttNMyatSo3HbbbeUR1mvj7LPPTpIMGTKk1umtb7jhhtx555055JBDUlFRscKa5hurTp06ZeTIkXn00UfTt2/f7LjjjmnRokUaN26cLbfcMgcddFAuuuiiPPPMM7Wu6b62LrvssowdOzZnnXVWdtpppzRv3jwtW7bMrrvumu9+97t54403ytNor0+NGzfOrbfemnHjxuW8887LHnvskS222CINGzbMFltskb333jv9+/fP73//+7z++uvrvZ42bdrkwQcfzIgRI9K/f//ssssuadOmTRo1apSKiop07949P/jBDzJ+/PhceeWV5fXX15cGDRrkyiuvzNtvv51f/OIXOfbYY7P99tunVatWadKkSbbaaqscdthhufzyy/Paa6/l0UcfrXGkeXXY3b9//zRp0mS91g0AAGzaSlVVVVX1XQQAAABsrGbPnp0dd9wx06dPzz333JO+ffvWd0lQWH/5y19yyCGHpEmTJnnrrbey3Xbb1XdJAABAgRnZDQAAALVo1apVrrzyyiTJj3/841RWVtZzRVBc11xzTZLkjDPOEHQDAADrzMhuAAAAWIVFixZll112ydtvv537778/J510Un2XBIXz17/+NQceeGBat26d8ePHp1OnTvVdEgAAUHCN6rsAAAAA2Ng1btw4v/71r/PUU09l8eLF9V0OFNKHH36Yq666Kvvuu6+gGwAAqBNGdgMAAAAAAABQONbsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCaVTfBQCw8Zs/f35mzpyZmTNnZsGCBVmyZEl9lwQAAAAA1KGGDRumadOmadOmTdq0aZNmzZrVd0kAq1Sqqqqqqu8iANg4VVVV5YMPPsgHH3xQ36UAAAAAABtQ586d06lTp5RKpfouBaBGwm4AajRx4sR8+OGHy32tQYMGadiwYT1VBAAAAACsD0uWLEllZeVyX2vfvn223377+ikIYDWYxhyAlZo3b95yQfdWW22VioqKNG/e3NOcAAAAALCJqaqqyrx58zJjxoxMnTo1SfLhhx9mq622SvPmzeu5OoCVa1DfBQCwcZo+fXp5e5tttkmXLl3SokULQTcAAAAAbIJKpVJatGiRLl26ZJtttil/fdnPCQE2NsJuAFZq9uzZ5e0OHTrUYyUAAAAAwIa07OeB77//fsaNG5ePPvooVsYFNjbCbgBWavHixUmSRo0apVEjq14AAAAAwOZi2c8EKysr8/LLL2f48OEZM2aMwBvYqEgvAKiVacsBAAAAYPNT/bngkiVL8vrrr6d9+/blffvtt199lQWwHGE3AAAAAAAAK9W4ceN07Ngx06ZNK3/ts5/9bNq0aVOPVQEsZRpzAAAAAAAAatSxY8dsueWWmTFjRiorK/Puu+/Wd0kASYTdAAAAAAAArEK7du1SWVmZWbNm5f3336/vcgCSCLsBAAAAAABYhSZNmqRRo0ZZuHBhFixYUN/lACQRdgMAAAAAALAaSqVSqqqqsmTJkvouBSCJsBsANhmlUimlUilXX331CvtGjBhR3j9ixIgNXtunbb/99imVSunXr199lwKbBf0BqIn+ANRGjwBqoj8AsLEQdgMALGP48OHp06dPunTpkqZNm6ZLly7p06dPhg8fvspzFyxYkNGjR+fmm2/ON77xjXTr1i0NGjQov8kHim1d+kO/fv3KvWBVfyZOnLj+XwywzubOnZshQ4bk3HPPzf7775927dqlcePGad++fb7whS/k6quvzpQpU1Z5ncMPP3y1+wNQHHXRI66++urV7g+1BY/AxqWufoeo9thjj+WUU07JjjvumBYtWqRZs2bZdttt06tXr9x///2prKxcj68GoP41qu8CAAA2BpWVlTn77LPzq1/9armvT548OZMnT86DDz6YM888M7fffnsaNFj584LnnHNOfv3rX2+AaoENqS76A7Bpefnll3PwwQdn9uzZK+ybMWNGRo8endGjR2fAgAG54447cvLJJ9dDlUB9qc8e0a1btzq7FlD36rI/LFiwIH379s0f/vCHFfZNmjQpkyZNysMPP5xbbrklDz/8cNq2bVuXLwVgoyHsBoDNwOGHH56qqqr6LmOjdvnll5eDrH322ScXX3xxdtppp0yYMCE//elPM3bs2AwaNChbbrllfvzjH6/0Gst+j1u3bp199903b7755ho9kQ0bmv6wanXRH6p17tw5jz/+eK3HbLPNNnVWO6wL/aFmM2fOLH9IffDBB+fYY49N9+7d0759+0yfPj1DhgzJnXfemZkzZ6Zv375p06ZNjj766Fqv2b1799x9990bonyoE3pEzeqqR3zrW9/KCSecUOu9lixZkkMPPTQzZ85MmzZt0rt37/XxkmCN6A81q8vfIc4///xy0N2xY8dcfPHF2XfffdO4ceO88sor+clPfpJ//OMfGTVqVE455ZQ89thjG+x1AmxIwm4AYLM3fvz4/PznP0+y9IPmkSNHpnnz5kmS/fffP8cdd1wOO+ywvPDCC/nZz36WM844IzvvvPMK1zn66KNz+OGHZ//998+uu+6aBg0a5PDDDxd2Q4HVVX+o1rhx43zuc5/bILUD60+DBg1y0kkn5aqrrspuu+22wv6jjjoqRx99dPr06ZMlS5bkvPPOy1tvvVXrVOQtW7bUH2ATUVc9omPHjunYsWOt9xo+fHhmzpyZJDnxxBPLv6cAG6e66g9Tp07NoEGDkiTt2rXLiy++mC5dupT3f/GLX0zfvn2z1157ZeLEiXn88cfzwgsvpHv37uv3BQLUA3PsAQCbvYEDB2bx4sVJkptvvnmFD4hatGiRm2++OUmyePHiDBgwYKXXOfnkk9OvX7/svvvupjKGTURd9Qdg03LQQQfl/vvvX+mH1NV69eqV448/PkkyYcKEjB07dkOVB9SzDdkj/ud//qe8feqpp67VNYANp676w1//+tfyWtynn376ckF3tTZt2uR73/te+e/PP//8upYPsFHyKSwA1LO5c+emdevWKZVK6du37yqPf/7551MqlVIqlXLrrbeu1j1GjBhRPmfEiBEr7O/Xr19KpVK23377JMnHH3+cH/7wh9l9993TsmXLtG3bNoceemjuvffe1brf8OHDc8wxx2TLLbdMixYt0rVr11x44YWZPHnyap1fbcyYMTnnnHPSrVu3tGrVKi1btky3bt1y7rnnZvz48TWe9+tf/7r8eidOnJgFCxZk4MCBOfDAA9OhQ4eUSqVcffXVSZZOPf7QQw8lSXbZZZcceOCBK73mgQceWF7/7qGHHjIlGxuE/lAz/YHNnf5Qsw3RH1bXl770pfL2hAkT1uhcWBd6RM02pR4xc+bM8u8qO+ywQw455JA1vgabH/2hZkXqDwsXLixv77jjjjVeZ6eddlrpOQCbEtOYA0A9a9GiRXr37p177rknDz30UObMmZOWLVvWeHz1m71GjRrlpJNOqvN63nzzzXz1q1/NxIkTl/v6qFGjMmrUqDz//PP55S9/WeP5F1544QojG996660MGDAg99xzT4YNG7bKGiorK/P9738/AwcOXCE0Gj9+fMaPH59Bgwbllltuydlnn13rtf75z3+mT58+eemll1a6/5133sn777+fJDnssMNqvdZhhx2WN998M5MnT87EiROzww47rPK1wLrQH1akP8BS+sOKNmR/WF0LFiwobzds2HCdrgVrQo9Y0abYIx544IHMmzcvSfKNb3yj1qUSoJr+sKIi9ofqh22T5O23367xOssG5cueA7ApEXYDsNYqK6vy0dzN66nQdi2apEGDuv8AoW/fvrnnnnsyZ86cPPTQQ/n3f//3lR63ePHiPPDAA0mSHj16pEOHDnVax9y5c9OzZ898+OGHueKKK3LkkUemVatWGTt2bH70ox9l0qRJueWWW9KzZ8/06NFjhfMHDhxYfpPZuXPnXHrppfn85z+f+fPnZ+jQoRk4cGBOPPHEzJ07t9Y6zjvvvPIT44ceemj69euXHXfcMS1atMi4ceMycODA/N///V+++c1vplOnTjnuuONqvFb//v3zyiuv5NRTT83JJ5+cTp065d13303Tpk2TJK+99lr52F122aXWupbd//rrrwuzalFVWZklH39c32VsUA3btk1pPUxfrz8sr+j94cMPP8xhhx2WV199NbNnz05FRUX23HPP9OzZM2eccUZatGhR6302FVVVVcnCJfVdxobTpOF6CSD0h+VtyP6wup555pny9q677lrrsW+88UYOOOCAvPnmm5k/f346dOiQ/fbbL//2b/+Wr3/962ncuPEa3buoqqoqs2jRR/VdxgbVuHG7lEp+h9Ajau8RK7O5TWFeVVWVBUsq67uMDappwwZ+h9AfVtof9thjjxx00EF57rnn8utf/zoXXXRROnfuvNwxs2bNysCBA5MsHf191FFHrVENAEUh7AZgrX00d2H2u/bJ+i5jg3rxiiPTvtWavUFZHUceeWQ6duyYadOmZfDgwTW+0XzyySczbdq0JFmt6cbW1PTp07Nw4cI8//zz2X333ctf32+//XL44Ydnjz32yPz583Prrbeu8EZz2rRpufzyy5Mkn/nMZzJ69Oh06tSpvP/QQw9Njx490qNHj/L6tyvzxBNPlN9kDho0KP37919u//7775//+I//yNe+9rX8+c9/zvnnn59jjjkmjRqt/Neal19+eYXr7LvvvuXtSZMmlbdXtsbVsrbddtvy9nvvvVfrsZu7JR9/nLcOOri+y9igPvvcs2lUUVHn19Uf/mVT6A+zZ8/OyJEjy3+fMmVKpkyZkj/96U+54YYb8rvf/S4HHXRQrffaJCxckgV/fr2+q9hgmh6xa9K07t9+6w//sqH7w+oYN25chg4dmmTpB9KrCrKmTp2aqVOnlv8+efLkTJ48OQ8//HB+8pOf5Pe///1ahWFFs2jRRxn1l8/Xdxkb1CFf/H9p0qR9nV9Xj/iXTaFHfNrEiRMzatSoJMnBBx+83FTFm6oFSypz3ztTV33gJuTrO2yVZo3qfmYQ/eFfitwf7r777nz1q1/NO++8k3333TcXX3xx9t133zRq1CivvvpqfvrTn+add95Jhw4dcu+996ZJkyZrVAdAUVizGwA2Ao0aNcrJJ5+cJPnTn/6UDz/8cKXHVU8f1qpVq/Tq1Wu91HLNNdcs9yaz2s4775zevXsnSf7yl7+ssP83v/lN+Wnp//qv/1ruTWa1I444ImeddVat97/hhhuSJP/2b/+2wpvMas2aNStPY/aPf/wjTz/9dI3XO+KII2q8TrL0SedqrVq1qrW2Zad2mz17dq3HQl3RH/6lyP2hVCrlwAMPzHXXXZfhw4dnzJgxee6553L77bfn859fGupMnjw5Rx11VMaOHVvrvaCa/vAvG7o/rMqCBQty5plnZsmSpTMYXHfddTUe26BBg3z5y1/Of/3Xf+XJJ5/M2LFjM3LkyAwcOLD84fZrr72WL33pS3n33XfXuiY2P3rEvxS5R9Tkt7/9bXm65dNOO22ta2HzpD/8S5H7Q9euXfO3v/0t11xzTebMmZOLLrooX/rSl3LIIYfk3HPPzaRJk/L9738/Y8eOzYEHHrjWNQFs7ITdALCRqH5KetGiRfnd7363wv558+blwQcfTJL07t17vUx1WyqVanyiO1n6dHWSzJgxIx9/aorqJ59cOsq/Xbt2tb4JPuOMM2rcN3PmzIwYMSJJcsIJJ9Ra66677lqeQu3555+v8bhVPX0+f/788vaqnnJedtqx6rXxYEPQH4rfHwYMGJDnn38+l112Wb761a9mn332yRe+8IWcffbZGT16dC677LIkyZw5c3LmmWeusFYg1ER/qJ/+sCrf+c538sILLyRZGkL17NmzxmOHDBmSJ598MhdeeGG+/OUvZ++9984hhxyS7373uxk3blw5xJo6dWouuOCCdaqLzY8eUfweUZN77rknydIQbn2so8ymT3/YNPrDI488knvvvXelD9xW/7cdPHiw9xfAJk3YDQAbiQMOOKA89Vz109PLevjhh8tvXtbH9GFJ0qFDh7RvX/MUihXLTNG87IjHJHnllVeSJPvss0+N03klyd57711jaDR27NhUVi5dg+3rX/96SqVSrX/++c9/Jlk6DXBN9txzzxr3JUs/HKq2cGHta9AvWLCgvN28efNaj4W6pD8Uvz+0bdu2xnNLpVKuu+66fPnLX06S8qhvWB36Q/30h9pcf/31GTRoUJKlU5/ecssttR5fW39o3LhxBg0alG7duiVJ/vjHP2by5MlrXRubHz2i+D1iZUaPHp3x48cnSXr16pUttthireth86U/FL8/XHTRRTn99NPzxhtvpHfv3nn22Wcze/bszJs3L2PGjMnpp5+ed999N5dccklOOOGE8mhxgE2NNbsBWGvtWjTJi1ccWd9lbFDtWqzf9Y369u2b//zP/8xzzz2XiRMnZvvtty/vq37z2bFjxxx55Pr5vq/qSe0GDf71nNyn3yTNmDEjydL6atOoUaNUVFSs9M1h9Vpga6p66rKVadeuXa3ntm7dury9qqnJ58yZU95e1ZTGm7uGbdvms889W99lbFANawkr6oL+sOn3h29+85t56qmnkiTPPPNMDj54E173vknDpetYby6a1P1am8vSHzZ8f6jJ7bffXp6pYZdddsmwYcOWW+ZgbTRq1Cj9+/fPxRdfnGRpf6htFFzRNW7cLod88f/VdxkbVOPGa/fztrr0iE2vR/zP//xPefvUU09dq1qKqGnDBvn6DlvVdxkbVNOG63esmv5Q3P4wdOjQ3HjjjUmSfv365e67715u/z777JO77rorXbp0yTXXXJMhQ4bk1ltvzXnnnbdW9QFszITdAKy1Bg1Kad+q6aoPZLVVv9GsqqrKfffdl0svvTTJ0jdxjz/+eJLk5JNPrvWp5fpWKpXW+txl37zefvvtOeigg1brvNreTDZsWHvA0KVLl/L2pEmTaj32vffeK29vu+22q1Xb5qrUoEEaLfMUPutOf9j0+8Nuu+1W3t7UR26WSqWk6cb7s1o0+sOG7w8rc9999+Vb3/pWkuQzn/lMnnjiifJ0p+tq8+oPDdKkSc2j/FhzesSm1SMWLlyY+++/P0my1VZbpUePHmt8jaIqlUpp1mj9PkC2udEfitsfqkeAl0qlXHvttTUed9lll2XAgAGZPXt27rrrLmE3sEnaeP8vBQCboa5du6Z79+554YUXMnjw4PIbzd///vflKXTX1/Rh66pdu3aZMmVKpk6dWutxixcvLj+B/WnLTl/WokWLfO5zn6vTGldm2Q+P33jjjVqPXXb/rrtuRiMS2SjoD5t+f1iXD+rYvOkPG74/fNrDDz+cU089NZWVldl6663z1FNPLffAzLrSH1gXesSm1SMeffTR8mvt27fvWgVrUE1/KG5/eP3115MsHdm+zTbb1Hhcs2bNsvvuu+evf/3rKt/TABSVNbsBYCNT/Uby1Vdfzcsvv5zkX9OH7bTTTjnggAPqrbba7LHHHkmSl156KYsXL67xuHHjxtW49u3ee+9d/jD32Wc3zBTYO+ywQzp37pxk6bSgtRk5cmSSZJtttlluejfYUPSHTbs/vPbaa+Xt6vvC6tIfNmx/WNZTTz2Vk046KYsXL0779u3zxBNPlNdArSv6A+tKj9h0esTmOoU564/+UMz+UD3avrbXXm3RokXLnQOwqRF2A8BG5pRTTik/nX/vvfdm0qRJGTVqVJKN94nqJOU1vGbMmJFHHnmkxuPuuuuuGvdtueWWOfDAA5MkgwcPzvTp0+u2yJUolUrp1atXkqUjM0ePHr3S40aPHl1+CrpXr15GWFEv9IdNuz/cfvvt5e3DDjtsra7B5kt/2LD9odpzzz2XXr16ZcGCBdliiy3y+OOPZ/fdd6/TeyxevHi513/ooYfW6fXZPOgRm0aP+PDDDzNs2LAkyV577ZW99tqrrkplM6Y/FLM/7LDDDkmW9oXqUd4rM2PGjLz66qvLnQOwqRF2A8BGplOnTjniiCOSLF23afDgwamqqkqycb/RPO2009K8efMkyYUXXrjSqcSeeeaZ3HHHHbVe54orrkiSzJw5MyeccEI+/vjjGo9dsGBBbrnllsyfP3/tC09ywQUXlN/cn3feeZk3b95y++fNm1de16pRo0a54IIL1ul+sLb0h2L2h9GjR+eDDz6o8R5VVVW54oor8uSTTyZZ+uH1wQcfvE51s/nRHzZ8f3jppZfyta99LXPmzEnLli0zdOjQ7Lfffmt0jaeffrrWWhctWpQzzzyz/CF2z549s+22265L2Wym9Ihi9ohPu++++8ojNI3qpq7oD8XsDz179ixvX3DBBSsdvV5ZWZnzzz+/vO/YY49dp7oBNlbmrQCAjVDfvn3zxBNP5L333sv111+fJOnevXu6du1az5XVbKuttso111yT73//+5k4cWL222+/XHrppfn85z+f+fPnZ9iwYRkwYEC22WabzJ07t8Ynpo855ph897vfzU033ZSRI0dm1113zTnnnJMvfvGLad++febMmZO///3vGTVqVIYMGZKPPvoop5122jrV3rVr1/zgBz/IDTfckBdeeCEHH3xwLrnkkuy0006ZMGFCfvKTn2Ts2LFJkh/84Af57Gc/u9LrTJkyJY899tgKX6v261//erl9X/ziF7PzzjuvU+1sfvSH4vWHxx57LDfccEO++tWv5itf+Up22223tG3bNgsWLMjLL7+cu+66K3/961+TLF0r8M477zR7BGtFf9hw/WHChAnp0aNH+QPxa6+9NltssUV55NTKdOzYMR07dlzua7/5zW9y3HHH5bjjjsvhhx+ebt26pU2bNpk9e3ZefPHF3HHHHeUpzDt27JibbrpprWsGPaJ4PeLTqqcwb9So0UYdQlI8+kPx+kO/fv0ycODAvP766/nTn/6U7t2757zzzstee+2Vhg0b5rXXXsttt92W559/vvz9uvDCC9e6boCNmbAbADZCxx9/fM4999zMmzev/AaoCB9mXHTRRXn33Xfzi1/8IpMnT853vvOd5fZ36NAhDzzwQE488cRarzNgwIBUVFTkmmuuyZQpU3L11VfXeGzLli3Loy7XxXXXXZdp06blrrvuytixY3PKKaescEz//v1z7bXX1niNN954I6effnqN+z+97+677xZ2s8b0h2L2hwULFuShhx7KQw89VOMx2223XQYPHpz9999/nWtm86Q/bLj+MGrUqEybNq389+9973urPOeqq65aaU2zZ8/O4MGDM3jw4BrP3WOPPfK///u/ph9lnegRxewR1d5444387W9/S5IcddRR2Wqrrda6Pvg0/aF4/aFJkyYZPnx4evXqlXHjxuWVV17J2WefvdLzd9hhhwwZMiQdOnRY67oBNmamMQeAjVDr1q2Xm5KqYcOGKw1XNkY33XRThg4dmh49eqSioiLNmjXLzjvvnPPPPz9jx45drRCnVCrlhz/8YcaPH5+LL7443bt3T0VFRRo2bJjWrVtnt912S9++ffOb3/wmH3zwQXnqsnXRoEGD/OpXv8rQoUPTq1evdO7cOU2aNEnnzp3Tq1evDBs2LIMGDUqDBn59on7pD8XrD6effnpuvfXWfOMb38hee+2VrbfeOk2aNEmLFi2y3XbbpXfv3vnVr36VN9980/TlrBP9YcP3h3V1ySWXZMCAATnppJPyuc99LltttVUaN26cVq1aZaeddsrJJ5+cBx54IGPHjs1uu+1W3+VScHpE8XrEsn7729+Wt01hTl3TH4rZHz7zmc/kb3/7W/7nf/4nxx13XLp06ZKmTZumSZMm6dSpU4466qjceuuteeWVV7L33nvXd7kA602pqnoBDgBYxssvv5xFixalcePG2XPPPeu7HAAAAABgA6r+fHDRokV5++23kyydaaKioiLbb799evfuXb8FAsTIbgAAAAAAAAAKSNgNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAbCJKpVJKpVKuvvrqFfaNGDGivH/EiBEbvLZP23777VMqldKvX7/6LgU2C/oDAAAAAJsiYTcAwDKGDx+ePn36pEuXLmnatGm6dOmSPn36ZPjw4as8d+rUqRk0aFD+/d//PbvttltatWqVJk2aZOutt85Xv/rV3HHHHZk3b94GeBVAXZk7d26GDBmSc889N/vvv3/atWuXxo0bp3379vnCF76Qq6++OlOmTFnr6w8fPrz8sEFNDyQAAAAAsHKN6rsAAICNQWVlZc4+++z86le/Wu7rkydPzuTJk/Pggw/mzDPPzO23354GDVZ8XvDOO+/MueeemyVLlqywb8qUKZkyZUoef/zx/PznP8/vf//77LnnnuvttQB14+WXX87BBx+c2bNnr7BvxowZGT16dEaPHp0BAwbkjjvuyMknn7xG158zZ07OPffcuioXAAAAYLMj7AaAzcDhhx+eqqqq+i5jo3b55ZeXg+599tknF198cXbaaadMmDAhP/3pTzN27NgMGjQoW265ZX784x+vcP7UqVOzZMmSNGnSJMcee2yOOuqo7LrrrmndunUmTJiQO++8M3/605/y1ltv5cgjj8yYMWPSpUuXDf0yYQX6Q81mzpxZDroPPvjgHHvssenevXvat2+f6dOnZ8iQIbnzzjszc+bM9O3bN23atMnRRx+92te/8sor849//CMdO3bMtGnT1tfLAAAAANhkCbsBgM3e+PHj8/Of/zxJ0r1794wcOTLNmzdPkuy///457rjjcthhh+WFF17Iz372s5xxxhnZeeedl7tGy5Ytc8kll+Siiy7Klltuudy+ffbZJyeccEIuuuii3HjjjZk+fXp++MMf5q677towLxBYKw0aNMhJJ52Uq666KrvtttsK+4866qgcffTR6dOnT5YsWZLzzjsvb731Vkql0iqv/eKLL+YXv/hFmjZtmuuuuy5nnXXW+ngJAAAAAJs0a3YDAJu9gQMHZvHixUmSm2++uRx0V2vRokVuvvnmJMnixYszYMCAFa7xve99LzfccMMKQfeyrr/++my99dZJkiFDhqSysrKuXgKwHhx00EG5//77Vxp0V+vVq1eOP/74JMmECRMyduzYVV53yZIlOeuss7JkyZJcdtllKzw8AwAAAMDqEXYDQD2bO3duWrdunVKplL59+67y+Oeffz6lUimlUim33nrrat1jxIgR5XNGjBixwv5+/fqlVCpl++23T5J8/PHH+eEPf5jdd989LVu2TNu2bXPooYfm3nvvXa37DR8+PMccc0y23HLLtGjRIl27ds2FF16YyZMnr9b51caMGZNzzjkn3bp1S6tWrdKyZct069Yt5557bsaPH1/jeb/+9a/Lr3fixIlZsGBBBg4cmAMPPDAdOnRIqVTK1VdfnSSpqqrKQw89lCTZZZddcuCBB670mgceeGC6deuWJHnooYfWatrnJk2a5OCDD06SfPLJJ/nwww/X+BpsXvSHmm2I/rC6vvSlL5W3J0yYsMrjBwwYkLFjx6Zr16655JJL1uheAAAAAPyLacwBoJ61aNEivXv3zj333JOHHnooc+bMScuWLWs8vjpQatSoUU466aQ6r+fNN9/MV7/61UycOHG5r48aNSqjRo3K888/n1/+8pc1nn/hhReuMPL5rbfeyoABA3LPPfdk2LBhq6yhsrIy3//+9zNw4MAVQuXx48dn/PjxGTRoUG655ZacffbZtV7rn//8Z/r06ZOXXnpppfvfeeedvP/++0mSww47rNZrHXbYYXnzzTczefLkTJw4MTvssMMqX8unLViwoLzdsGHDNT6fzYv+sKIN2R9W15r8u544cWKuuuqqJMltt92Wpk2brtO9AQAAADZnwm4A1l5VZbJobn1XsWE1bpGU6n5ilL59++aee+7JnDlz8tBDD+Xf//3fV3rc4sWL88ADDyRJevTokQ4dOtRpHXPnzk3Pnj3z4Ycf5oorrsiRRx6ZVq1aZezYsfnRj36USZMm5ZZbbknPnj3To0ePFc4fOHBgOcjq3LlzLr300nz+85/P/PnzM3To0AwcODAnnnhi5s6t/efmvPPOK49KPfTQQ9OvX7/suOOOadGiRcaNG5eBAwfm//7v//LNb34znTp1ynHHHVfjtfr3759XXnklp556ak4++eR06tQp7777bjlgeu2118rH7rLLLrXWtez+119/fY3D7kWLFuX5559Pkmy11VapqKhYo/OLpKqyMvNmz6rvMjao5q1ap9RAf9iU+sPqeuaZZ8rbu+66a63HnnvuuZk7d2769u2bI444Yo3uAwAAAMDyhN0ArL1Fc5OR19V3FRvWoZcnTVrV+WWPPPLIdOzYMdOmTcvgwYNrDLOefPLJTJs2LUlWa0rjNTV9+vQsXLgwzz//fHbffffy1/fbb78cfvjh2WOPPTJ//vzceuutK4RZ06ZNy+WXX54k+cxnPpPRo0enU6dO5f2HHnpoevTokR49epTXx16ZJ554ohxkDRo0KP37919u//7775//+I//yNe+9rX8+c9/zvnnn59jjjkmjRqt/Neal19+eYXr7LvvvuXtSZMmlbe7dOlSY11Jsu2225a333vvvVqPXZk77rgj//znP5MkJ5544hqfXyTzZs/KbWfV/c/oxuzcO+9NizZb1Pl19Yd/2dD9YXWMGzcuQ4cOTZLssccetYbdgwcPzmOPPZa2bdvmxhtvXKP7AAAAALAia3YDwEagUaNGOfnkk5Mkf/rTn2pcy7l6iuJWrVqlV69e66WWa665Zrkgq9rOO++c3r17J0n+8pe/rLD/N7/5TXlE5n/9138tF2RVO+KII3LWWWfVev8bbrghSfJv//ZvKwRZ1Zo1a1aeKvkf//hHnn766Rqvd8QRR9R4nSSZNetfo49btar9QYZlp4+ePXt2rcd+2ttvv10O+1q1apVLL710jc5n86U//MuG7g+rsmDBgpx55plZsmRJkuS662p+AGzGjBn53ve+lyS5/vrr07Fjx7W+LwAAAABLCbsBYCNRPRJz0aJF+d3vfrfC/nnz5uXBBx9MkvTu3TstWrSo8xpKpVKNo0aTpSM4k6Whzccff7zcvieffDJJ0q5du1qDtjPOOKPGfTNnzsyIESOSJCeccEKtte66667laZqrpwZfmVWNcJ0/f355u0mTJrUeu+zUxvPmzav12GXNnTs3xx9/fD755JMkyc0335zOnTuv9vmgP9RPf1iV73znO3nhhReSJKeddlp69uxZ47Hf//73M23atBxwwAGrXEscAAAAgNUj7AaAjcQBBxyQnXbaKcm/Rmgu6+GHHy6PJl4fUxQnSYcOHdK+ffsa9y+7xvSyI6KT5JVXXkmS7LPPPjVOGZwke++9d42h8tixY1NZWZkk+frXv55SqVTrn+opwadMmVLj/fbcc88a9yVLR4FWW7hwYa3HLliwoLzdvHnzWo+ttnjx4px44okZN25ckqXr9fbr12+1zoVq+kP99IfaXH/99Rk0aFCSpdOn33LLLTUeO2LEiNx9991p2LBh/vu//zsN1sPa7gAAAACbI2t2A7D2GrdYuob15qRx3Y+WXFbfvn3zn//5n3nuuecyceLEbL/99uV91QFXx44dc+SRR66X+69qNOiyAU31tL3VZsyYkSSrnJq3UaNGqaioWGkAVb3e8Jqqnh55Zdq1a1frua1bty5vr2pq8jlz5pS3VzXleZJUVVWlX79+GTZsWJLkpJNOKk+vvKlr3qp1zr1zxVB2U9a8VetVH7QO9IcN3x9qcvvtt+eyyy5Lkuyyyy4ZNmzYcsscLGvBggX55je/mSQ5//zzs/fee6/VPQEAAABYkbAbgLVXapA0WXXgx+qrDrOqqqpy3333ldd1njFjRh5//PEkycknn1zryMj6ViqV1vrcZQOy22+/PQcddNBqnVdbYNWwYcNaz+3SpUt5e9KkSbUe+95775W3t91221XW9e1vf7scQh599NG55557NpsRnaUGDdKizRb1XcYmRX/Y8P1hZe67775861vfSpJ85jOfyRNPPFGeMn1lhgwZkvHjx6dx48bZbbfd8r//+78rHPPaa6+Vt1999dXyMQcccEB22GGHNa4RAAAAYHOx8X4SBgCboa5du6Z79+554YUXMnjw4HKY9fvf/748xfb6mqJ4XbVr1y5TpkzJ1KlTaz1u8eLF5VGen7bsFMktWrTI5z73uTqtcWV222238vYbb7xR67HL7t91111rPfaSSy7JbbfdliQ59NBD84c//CGNGzdeh0rZ3OkPG74/fNrDDz+cU089NZWVldl6663z1FNPLffAzMpUL3+waNGinHXWWau8xx/+8If84Q9/SJLcfffdwm4AAACAWmweQ4sAoECqw6pXX301L7/8cpJ/TVG800475YADDqi32mqzxx57JEleeumlLF68uMbjxo0bV+Pa2HvvvXd55Oezzz5b90WuxA477JDOnTsnSZ555plajx05cmSSZJtttlluCulPu/baa/PTn/40ydK1fB999NHVXuMbaqM/bNj+sKynnnoqJ510UhYvXpz27dvniSeeKK+jDgAAAED9EHYDwEbmlFNOKU+te++992bSpEkZNWpUko131GaS8jrBM2bMyCOPPFLjcXfddVeN+7bccssceOCBSZLBgwdn+vTpdVvkSpRKpfTq1SvJ0pHbo0ePXulxo0ePLo/s7tWrV43TMd9000258sorkywN+B577LHl1gWHdaE/bNj+UO25555Lr169smDBgmyxxRZ5/PHHs/vuu6/Wuf369UtVVVWtf55++uny8VdddVX56/369VtPrwgAAABg0yDsBoCNTKdOnXLEEUckWbo27ODBg1NVVZVk4w6zTjvttPLo5QsvvHCl0xU/88wzueOOO2q9zhVXXJEkmTlzZk444YR8/PHHNR67YMGC3HLLLZk/f/7aF57kggsuKAeI5513XubNm7fc/nnz5uW8885LkjRq1CgXXHDBSq9z991353vf+16SpVNOP/HEE6moqFin2mBZ+sOG7w8vvfRSvva1r2XOnDlp2bJlhg4dmv3222+drgkAAABA3bBmNwBshPr27Zsnnngi7733Xq6//vokSffu3dO1a9d6rqxmW221Va655pp8//vfz8SJE7Pffvvl0ksvzec///nMnz8/w4YNy4ABA7LNNttk7ty5NY7KPOaYY/Ld7343N910U0aOHJldd90155xzTr74xS+mffv2mTNnTv7+979n1KhRGTJkSD766KOcdtpp61R7165d84Mf/CA33HBDXnjhhRx88MG55JJLstNOO2XChAn5yU9+krFjxyZJfvCDH+Szn/3sCtd48MEHc9ZZZ6Wqqipt2rTJTTfdlOnTp9c6+nSHHXZIy5Yt16l2Nj/6w4brDxMmTEiPHj3Kofq1116bLbbYIq+++mqN53Ts2DEdO3Zc63sCAAAAsPqE3QCwETr++ONz7rnnZt68eeWQZWMetVntoosuyrvvvptf/OIXmTx5cr7zne8st79Dhw554IEHcuKJJ9Z6nQEDBqSioiLXXHNNpkyZkquvvrrGY1u2bFkelb0urrvuukybNi133XVXxo4dm1NOOWWFY/r3759rr712pec/+OCDWbJkSZKlo06PPvroVd7z6aefzuGHH75OdbP50R82XH8YNWpUpk2bVv579cwNtbnqqqtqrQkAAACAumMacwDYCLVu3To9e/Ys/71hw4YrDV83RjfddFOGDh2aHj16pKKiIs2aNcvOO++c888/P2PHjs3++++/ymuUSqX88Ic/zPjx43PxxRene/fuqaioSMOGDdO6devstttu6du3b37zm9/kgw8+KE+PvC4aNGiQX/3qVxk6dGh69eqVzp07p0mTJuncuXN69eqVYcOGZdCgQWnQwK9P1C/9YcP3BwAAAAA2TqWq6kX+AGAZL7/8chYtWpTGjRtnzz33rO9yAAAAAIANqPrzwUWLFuXtt99OkrzxxhupqKjI9ttvn969e9dvgQAxshsAAAAAAACAAhJ2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgNQq6qqqvouAQAAAADYwHwuCBSBsBuAlWrYsGGSZMmSJX6xBQAAAIDNSFVVVZYsWZIkqaysrOdqAGom7AZgpZo1a5Zk6S+2s2bNqudqAAAAAIANZdasWeUBMAsXLqznagBqJuwGYKXatWtX3p42bZrR3QAAAACwGaiqqsq0adPKfzcQBtiYCbsBWKktttgipVIpSfLJJ59kwoQJmTlzptAbAAAAADZBVVVVmTlzZiZMmJBPPvkkydIpzGfPnl3PlQHUrFF9FwDAxqlhw4bZcccd8/bbb6eqqiqffPJJPvnkk5RKpTRs2LAchAMAAAAAxVa9RveyA12qqqry/vvvG/wCbNSE3QDUqG3btssF3snSX3IXL15cz5UBAAAAAOtLZWVl3n///cyZM2e5r1dVVZUHwwBsDITdANSqbdu22WuvvfLJJ59k/PjxWbx4caqqqtKoUSOjuwEAAABgE1FZWZmFCxdm1qxZmT179gojuhcuXJjFixenSZMmadq0aT1VCbA8YTcAq9SwYcNUVFSkbdu2efHFF/P666+noqIinTp1qu/SAAAAAIAN4KOPPkqDBg3SunXrdO7cub7LAUiSNKjvAgAoju222y6lUint27fP9OnTM3Xq1CxatKi+ywIAAAAA1pNFixZl2rRpmT59eioqKtKgQYNst9129V0WQBIjuwFYAy1atMjuu++eZOn6PNOnT8+0adPSpEmTNGjg+SkAAAAA2JRUVlaWB7u0b98+W2+9dbp165Y2bdrUc2UASwm7AVgje+65Z3m9ni233DKzZs3KggULUllZWc+VAQAAAAB1qUGDBmnSpEnatGmThg0bplu3btl3333ruyyAslJVdWIBAGvg448/zrvvvpvJkydn3rx5WbJkSX2XBAAAAADUoYYNG6Z58+bp3Llztttuu7Rt2zalUqm+ywIoE3YDAAAAAAAAUDgWWAUAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOP8/NmgZTq4pxfsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Get Meta data\n", + "dataset.get_landcover(buffers=[50, 150, 500], aggregate=True)\n", + "# Create analysis from the dataset\n", + "ana = dataset.get_analysis(add_gapfilled_values=True)\n", + "\n", + "# Make diurnal cycle analysis with plot\n", + "ax4 = ana.get_diurnal_statistics(colorby='name',\n", + " obstype='temp',\n", + " stations=None, startdt=None, enddt=None,\n", + " plot=True,\n", + " title='Hourly average temperature diurnal cycle',\n", + " y_label=None, legend=True,\n", + " errorbands=True, _return_all_stats=False)\n", + "\n", + "fig = plt.gcf()\n", + "fig.set_dpi(200)\n", + "fig.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d84febac-3bd7-4e06-b787-136641b613dc", + "metadata": {}, + "source": [ + "## Interactive spatial" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "3211be17-f66f-4e1d-9fa2-b56c2b54c871", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset.make_gee_plot(gee_map='worldcover')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/_sources/special_topics.rst.txt b/docs/_build/_sources/special_topics.rst.txt new file mode 100644 index 00000000..17ed82a1 --- /dev/null +++ b/docs/_build/_sources/special_topics.rst.txt @@ -0,0 +1,222 @@ +*************************** +Special topics +*************************** + + +Using irregular timestamp datasets +===================================== + +Some datasets have irregular time frequencies of the observations. These datasets +come with some extra challenges. Here is some information on how to deal with them. + +A common problem that can arise is that most observations are **not present** and +that **a lot of missing observations** (and gaps) are introduced. This is because +the toolkit assumes that each station has observations at a constant frequency. So the toolkit expects +perfectly regular timestamp series. The toolkit will hence ignore observations +that are not on the frequency, so observations get lost. Also, it looks for observations +on perfectly regular time intervals, so when a timestamp is not present, it is assumed to be missing. + + +To avoid these problems you can **synchronize** your observations. Synchronizing will +convert your irregular dataset **to a regular dataset** and an **easy origin** is chosen if possible. +(The origin is the first timestamp of your dataset.) Converting your dataset to a regular dataset is performed +by shifting the timestamp of an observation. For example, if a frequency of 5 minutes is assumed and the observation +has a timestamp at 54 minutes and 47 seconds, the timestamp is shifted to 55 minutes. A certain +maximal threshold needs to be set to avoid observations being shifted too much. This threshold is +called the tolerance and it indicates what the **maximal time-translation** error can be for one +observation timestamp. + + +Synchronizing your observations can be performed with he :py:meth:`sync_observations()` +method. As an argument of this function you must provide a tolerance. + +Example +--------- +Let's take an example dataset with Netatmo(*) data. These data are known for having irregular +timestamps. On average the time resolution is 5 minutes. In the data file, +we can see that there are 4320 observational records. However, when we import it +into the toolkit, only 87 observational records remain: + +(*) `Netatmo `_ is a commercial company that sells automatic weather stations +for personal use. + + +.. code-block:: python + + #code illustration + + #initialize dataset + your_dataset = metobs_toolkit.Dataset() + + #specify paths + dataset.update_settings( + input_data_file=' .. path to netatmo data ..', + data_template_file=' .. template file .. ', + ) + #import the data + dataset.import_data_from_file() + + print(dataset) + + Dataset instance containing: + *1 stations + *['temp', 'humidity'] observation types + *87 observation records + *0 records labeled as outliers + *85 gaps + *0 missing observations + *records range: 2021-02-27 08:56:22+00:00 --> 2021-03-13 18:45:56+00:00 (total duration: 14 days 09:49:34) + +The toolkit assumes a certain value for the frequency for each station. We can find this in the .metadf attribute: + +.. code-block:: python + + print(dataset.metadf['dataset_resolution']) + + name + netatmo_station 0 days 00:05:00 + Name: dataset_resolution, dtype: timedelta64[ns] + + + +We can synchronize the dataset using this code example: + +.. code-block:: python + + # Code illustration + + # Initialize dataset + your_dataset = metobs_toolkit.Dataset() + + # Specify paths + dataset.update_settings( + input_data_file=' .. path to netatmo data ..', + data_template_file=' .. template file .. ', + ) + # Import the data + dataset.import_data_from_file(**testdata[use_dataset]['kwargs']) + + # Syncronize the data with a tolerance of 3 minutes + dataset.sync_observations(tollerance='3T') + + print(dataset) + + Dataset instance containing: + *1 stations + *['temp', 'humidity'] observation types + *4059 observation records + *938 records labeled as outliers + *0 gaps + *92 missing observations + *records range: 2021-02-27 08:55:00+00:00 --> 2021-03-13 18:45:00+00:00 (total duration: 14 days 09:50:00) + + + # Note: the frequency is not changed + print(dataset.metadf['dataset_resolution']) + + name + netatmo_station 0 days 00:05:00 + Name: dataset_resolution, dtype: timedelta64[ns] + + +The :py:meth:`sync_observations()` method can also +be used to synchronize the time series of multiple stations. In that case, the method works by trying to find stations with similar +resolutions, finding an origin that works for all stations in this group, and creating a regular time series. + + + +Creating a new observation type +================================== + +Observation types for Datasets +-------------------------------- + +The toolkit comes with a set of predefined observation types. Each observation type has a standard-toolkit-unit, +this is the unit the toolkit will store and display the values. + +An overview can be found on `this <./template_mapping.html#toolkit-standards>`_ page. + +Each observation type is represented by an instance of the :py:meth:`Obstype` class. + +As an example, here is the defenition of the temperature observation type: + +.. code-block:: python + + temperature = Obstype(obsname='temp', #The name of the observation type + std_unit= 'Celsius', #The standard unit + description="2m - temperature", #A more detailed description (optional) + unit_aliases={ + # Common units and a list of aliases for them. + 'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], + 'Kelvin': ['K', 'kelvin'], + 'Farenheit': ['farenheit']}, + # Conversion schemes for common units to the standard unit. + unit_conversions={ + 'Kelvin': ["x - 273.15"], #result is in tlk_std_units (aka Celcius) + 'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write = (x-32)/1.8}, + ) + +Similar as this example a user can create a new observation type and add it to a :py:meth:`Dataset`, +using the :py:meth:`add_new_observationtype()` method. + +.. code-block:: python + + import metobs_toolkit + + #create an new observationtype + wind_component_east = metobs_toolkit.Obstype( + obsname='wind_u_comp', #The name of the observation type + std_unit= 'm/s', #The standard unit + description="2m - u component of the wind (5min averages)", #A more detailed description (optional) + unit_aliases={ + # Common units and a list of aliases for them. + 'm/s': ['meter/s'], + # Conversion schemes for common units to the standard unit. + unit_conversions={'km/s': ["x / 3.6"]} #result is in tlk_std_units (aka m/s) + ) + + #add your observation type to a dataset + your_dataset = metobs_toolkit.Dataset() + your_dataset.add_new_observationtype(Obstype=wind_component_east) + + # Now you can import a datafile with wind_u_comp data! + + +If you want to add a new unit to an existing observation type you can do so by +using the :py:meth:`add_new_unit()` method. + + +Observation types for (ERA5) Modeldata +---------------------------------------- +Modeldata objects also holds a similar set of observation types. But in addition +to the observation types stored in the Dataset, extra information is stored +on where which (ERA5) band and unit the observation type represents. Here is an +example on how to create a new observation type for a :py:meth:`Modeldata` instance. + +.. code-block:: python + + import metobs_toolkit + + #create an new observationtype + wind_component_east = metobs_toolkit.Obstype( + obsname='wind_u_comp', #The name of the observation type + std_unit= 'm/s', #The standard unit + description="10m - east component of the wind ", #A more detailed description (optional) + unit_aliases={ + # Common units and a list of aliases for them. + 'm/s': ['meter/s'], + # Conversion schemes for common units to the standard unit. + unit_conversions={'km/s': ["x / 3.6"]} #result is in tlk_std_units (aka m/s) + ) + # create a modeldata instance + model_data = metobs_toolkit.Modeldata("ERA5_hourly") + + # add new obstype to model_data + model_data.add_obstype(Obstype=wind_component_east, + bandname='u_component_of_wind_10m', #See: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands + band_units='m/s', + ) + + # Collect the U-wind component for your stations: + model_data = your_dataset.get_modeldata(modeldata=model_data, + obstype = 'wind_u_comp') diff --git a/docs/_build/_sources/template_mapping.rst.txt b/docs/_build/_sources/template_mapping.rst.txt new file mode 100644 index 00000000..5aeb4e2e --- /dev/null +++ b/docs/_build/_sources/template_mapping.rst.txt @@ -0,0 +1,216 @@ +*********************** +Mapping to the toolkit +*********************** + +The MetObs-toolkit uses standard names and formats for your data. To use the toolkit, +your observational data must be converted to the toolkit standards this is referred to as **mapping**. + +To specify how the mapping must be done a **template** is used. This template contains +all the information on how to convert your tabular data to the toolkit standards. +Since the structure of data files differs for different networks, this template is +unique for each data file. A template is saved as a tabular .csv file to reuse and share them. + +On this page, you can find information on how to construct a template. + + +.. _link-target: + +Toolkit Standards +==================== + +The toolkit has standard names for observation types and metadata. Here these standards are presented and described. + + +.. list-table:: Standard observation types + :widths: 25 25 15 + :header-rows: 1 + + * - Standard name + - Toolkit description + - Type + * - temp + - temperature + - numeric + * - humidity + - Relative humidity + - numeric + * - precip + - precipitation intensity + - numeric + * - precip_sum + - accumulated precipitation + - numeric + * - pressure + - air pressure (measured) + - numeric + * - pressure_at_sea_level + - air pressure (corrected to sea level) + - numeric + * - wind_speed + - wind speed + - numeric + * - wind_gust + - wind gust + - numeric + * - wind_direction + - wind direction as ° from the north, clock-wise + - numeric + * - radiation_temp + - radiation temperature (black globe observations) + - numeric + + +.. list-table:: Standard Metadata + :widths: 20 25 15 + :header-rows: 1 + + * - Standard name + - Toolkit description + - Type + * - name + - the name of the stations (must be unique for each station) + - string + * - lat + - the latitude of the station + - numeric + * - lon + - the longitude of the station + - numeric + * - location + - location (the city/region of the stations) (OPTIONAL) + - string + * - call_name + - call_name (an informal name of the stations) (OPTIONAL) + - string + * - network + - network (the name of the network the stations belong to) (OPTIONAL) + - string + + +In the template, you map your observations and metadata to one of these standards. What is not mapped, will not be used in the toolkit. + + +Data structures +======================= + +To make a template you must be aware of which format your data is in. The toolkit can handle the following data structures: + +**long-format** + Observations are stacked in rows per station. One column represents the station names. + + .. list-table:: long-format example + :widths: 15 15 15 15 + :header-rows: 1 + + * - timestamp + - 2mT-passive + - 2m-rel-hum + - ID + * - 2022-06-07 13:20:00 + - 16.4 + - 77.3 + - station_A + * - 2022-06-07 13:30:00 + - 16.7 + - 75.6 + - station_A + * - 2022-06-07 13:20:00 + - 18.3 + - 68.9 + - station_B + * - 2022-06-07 13:30:00 + - 18.6 + - 71.9 + - station_B + +**Wide-format** + Columns represent different stations. The data represents one observation type. + + .. list-table:: Wide-format example (temperature) + :widths: 15 15 15 + :header-rows: 1 + + * - timestamp + - station_A + - station_B + * - 2022-06-07 13:20:00 + - 16.4 + - 18.3 + * - 2022-06-07 13:30:00 + - 16.7 + - 18.6 + +**Single-station-format** + The same as a long format but without a column indicating the station names. + Be aware that the toolkit interprets it as **observations coming from one station**. + + .. list-table:: Single-station-format example + :widths: 15 15 15 + :header-rows: 1 + + * - timestamp + - 2mT-passive + - 2m-rel-hum + * - 2022-06-07 13:20:00 + - 16.4 + - 77.3 + * - 2022-06-07 13:30:00 + - 16.7 + - 75.6 + * - 2022-06-07 13:40:00 + - 17.2 + - 77.0 + * - 2022-06-07 13:50:00 + - 17.2 + - 76.9 + +Metadata structures +======================= +The metadata **must be in a Wide-format**. Here an example + +.. list-table:: Metadata example + :widths: 15 15 15 15 + :header-rows: 1 + + * - ID + - Northening + - Eastening + - Networkname + * - station_A + - 51.3664 + - 4.67785 + - demo-network + * - station_B + - 51.6752 + - 5.1332 + - demo-network + + +Template creation +======================= + +Once you have converted your tabular data files to either long-, wide-, or single-station-format, and saved them as a .csv file, a template can be made. + +.. Note:: + If you want to use a metadata file, make sure it is converted to a wide-format and saved as a .csv file. + +The fastest and simplest way to make a template is by using the *metobs_toolkit.build_template_prompt()* function. + +.. code-block:: python + + import metobs_toolkit + + #create a template + metobs_toolkit.build_template_prompt() + + +This function will prompt questions and build a template that matches your data file (and metadata) file. +The *template.csv* file will be stored at a location of your choice. + +To use this template, feed the path to the *template.csv* file to the data_template_file (and metadata_template_file) +arguments of the :py:meth:`update_settings()` method. + + +.. note:: + When the prompt ask's if you need further help, and you type yes, some more questions are prompted. + Once all information is given to the prompt, it will print out a piece of code that you have to run to load your data into the toolkit. diff --git a/docs/_build/_static/_sphinx_javascript_frameworks_compat.js b/docs/_build/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 00000000..81415803 --- /dev/null +++ b/docs/_build/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/docs/_build/_static/basic.css b/docs/_build/_static/basic.css new file mode 100644 index 00000000..16e1d1e6 --- /dev/null +++ b/docs/_build/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} diff --git a/docs/_build/_static/check-solid.svg b/docs/_build/_static/check-solid.svg new file mode 100644 index 00000000..92fad4b5 --- /dev/null +++ b/docs/_build/_static/check-solid.svg @@ -0,0 +1,4 @@ + + + + diff --git a/docs/_build/_static/clipboard.min.js b/docs/_build/_static/clipboard.min.js new file mode 100644 index 00000000..a17ea72e --- /dev/null +++ b/docs/_build/_static/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.8 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 + + + + diff --git a/docs/_build/_static/copybutton.css b/docs/_build/_static/copybutton.css new file mode 100644 index 00000000..f1916ec7 --- /dev/null +++ b/docs/_build/_static/copybutton.css @@ -0,0 +1,94 @@ +/* Copy buttons */ +button.copybtn { + position: absolute; + display: flex; + top: .3em; + right: .3em; + width: 1.7em; + height: 1.7em; + opacity: 0; + transition: opacity 0.3s, border .3s, background-color .3s; + user-select: none; + padding: 0; + border: none; + outline: none; + border-radius: 0.4em; + /* The colors that GitHub uses */ + border: #1b1f2426 1px solid; + background-color: #f6f8fa; + color: #57606a; +} + +button.copybtn.success { + border-color: #22863a; + color: #22863a; +} + +button.copybtn svg { + stroke: currentColor; + width: 1.5em; + height: 1.5em; + padding: 0.1em; +} + +div.highlight { + position: relative; +} + +/* Show the copybutton */ +.highlight:hover button.copybtn, button.copybtn.success { + opacity: 1; +} + +.highlight button.copybtn:hover { + background-color: rgb(235, 235, 235); +} + +.highlight button.copybtn:active { + background-color: rgb(187, 187, 187); +} + +/** + * A minimal CSS-only tooltip copied from: + * https://codepen.io/mildrenben/pen/rVBrpK + * + * To use, write HTML like the following: + * + *

Short

+ */ + .o-tooltip--left { + position: relative; + } + + .o-tooltip--left:after { + opacity: 0; + visibility: hidden; + position: absolute; + content: attr(data-tooltip); + padding: .2em; + font-size: .8em; + left: -.2em; + background: grey; + color: white; + white-space: nowrap; + z-index: 2; + border-radius: 2px; + transform: translateX(-102%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); +} + +.o-tooltip--left:hover:after { + display: block; + opacity: 1; + visibility: visible; + transform: translateX(-100%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); + transition-delay: .5s; +} + +/* By default the copy button shouldn't show up when printing a page */ +@media print { + button.copybtn { + display: none; + } +} diff --git a/docs/_build/_static/copybutton.js b/docs/_build/_static/copybutton.js new file mode 100644 index 00000000..aac75127 --- /dev/null +++ b/docs/_build/_static/copybutton.js @@ -0,0 +1,248 @@ +// Localization support +const messages = { + 'en': { + 'copy': 'Copy', + 'copy_to_clipboard': 'Copy to clipboard', + 'copy_success': 'Copied!', + 'copy_failure': 'Failed to copy', + }, + 'es' : { + 'copy': 'Copiar', + 'copy_to_clipboard': 'Copiar al portapapeles', + 'copy_success': '¡Copiado!', + 'copy_failure': 'Error al copiar', + }, + 'de' : { + 'copy': 'Kopieren', + 'copy_to_clipboard': 'In die Zwischenablage kopieren', + 'copy_success': 'Kopiert!', + 'copy_failure': 'Fehler beim Kopieren', + }, + 'fr' : { + 'copy': 'Copier', + 'copy_to_clipboard': 'Copier dans le presse-papier', + 'copy_success': 'Copié !', + 'copy_failure': 'Échec de la copie', + }, + 'ru': { + 'copy': 'Скопировать', + 'copy_to_clipboard': 'Скопировать в буфер', + 'copy_success': 'Скопировано!', + 'copy_failure': 'Не удалось скопировать', + }, + 'zh-CN': { + 'copy': '复制', + 'copy_to_clipboard': '复制到剪贴板', + 'copy_success': '复制成功!', + 'copy_failure': '复制失败', + }, + 'it' : { + 'copy': 'Copiare', + 'copy_to_clipboard': 'Copiato negli appunti', + 'copy_success': 'Copiato!', + 'copy_failure': 'Errore durante la copia', + } +} + +let locale = 'en' +if( document.documentElement.lang !== undefined + && messages[document.documentElement.lang] !== undefined ) { + locale = document.documentElement.lang +} + +let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; +if (doc_url_root == '#') { + doc_url_root = ''; +} + +/** + * SVG files for our copy buttons + */ +let iconCheck = ` + ${messages[locale]['copy_success']} + + +` + +// If the user specified their own SVG use that, otherwise use the default +let iconCopy = ``; +if (!iconCopy) { + iconCopy = ` + ${messages[locale]['copy_to_clipboard']} + + + +` +} + +/** + * Set up copy/paste for code blocks + */ + +const runWhenDOMLoaded = cb => { + if (document.readyState != 'loading') { + cb() + } else if (document.addEventListener) { + document.addEventListener('DOMContentLoaded', cb) + } else { + document.attachEvent('onreadystatechange', function() { + if (document.readyState == 'complete') cb() + }) + } +} + +const codeCellId = index => `codecell${index}` + +// Clears selected text since ClipboardJS will select the text when copying +const clearSelection = () => { + if (window.getSelection) { + window.getSelection().removeAllRanges() + } else if (document.selection) { + document.selection.empty() + } +} + +// Changes tooltip text for a moment, then changes it back +// We want the timeout of our `success` class to be a bit shorter than the +// tooltip and icon change, so that we can hide the icon before changing back. +var timeoutIcon = 2000; +var timeoutSuccessClass = 1500; + +const temporarilyChangeTooltip = (el, oldText, newText) => { + el.setAttribute('data-tooltip', newText) + el.classList.add('success') + // Remove success a little bit sooner than we change the tooltip + // So that we can use CSS to hide the copybutton first + setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) + setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) +} + +// Changes the copy button icon for two seconds, then changes it back +const temporarilyChangeIcon = (el) => { + el.innerHTML = iconCheck; + setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) +} + +const addCopyButtonToCodeCells = () => { + // If ClipboardJS hasn't loaded, wait a bit and try again. This + // happens because we load ClipboardJS asynchronously. + if (window.ClipboardJS === undefined) { + setTimeout(addCopyButtonToCodeCells, 250) + return + } + + // Add copybuttons to all of our code cells + const COPYBUTTON_SELECTOR = 'div.highlight pre'; + const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) + codeCells.forEach((codeCell, index) => { + const id = codeCellId(index) + codeCell.setAttribute('id', id) + + const clipboardButton = id => + `` + codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) + }) + +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} + + +var copyTargetText = (trigger) => { + var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); + + // get filtered text + let exclude = '.linenos'; + + let text = filterText(target, exclude); + return formatCopyText(text, '', false, true, true, true, '', '') +} + + // Initialize with a callback so we can modify the text before copy + const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) + + // Update UI with error/success messages + clipboard.on('success', event => { + clearSelection() + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) + temporarilyChangeIcon(event.trigger) + }) + + clipboard.on('error', event => { + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) + }) +} + +runWhenDOMLoaded(addCopyButtonToCodeCells) diff --git a/docs/_build/_static/copybutton_funcs.js b/docs/_build/_static/copybutton_funcs.js new file mode 100644 index 00000000..dbe1aaad --- /dev/null +++ b/docs/_build/_static/copybutton_funcs.js @@ -0,0 +1,73 @@ +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +export function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} diff --git a/docs/_build/_static/css/badge_only.css b/docs/_build/_static/css/badge_only.css new file mode 100644 index 00000000..08397ca2 --- /dev/null +++ b/docs/_build/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} diff --git a/docs/_build/_static/css/fonts/Roboto-Slab-Bold.woff b/docs/_build/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 00000000..6cb60000 Binary files /dev/null and b/docs/_build/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/docs/_build/_static/css/fonts/Roboto-Slab-Bold.woff2 b/docs/_build/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 00000000..7059e231 Binary files /dev/null and b/docs/_build/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/docs/_build/_static/css/fonts/Roboto-Slab-Regular.woff b/docs/_build/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 00000000..f815f63f Binary files /dev/null and b/docs/_build/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/docs/_build/_static/css/fonts/Roboto-Slab-Regular.woff2 b/docs/_build/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 00000000..f2c76e5b Binary files /dev/null and b/docs/_build/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/docs/_build/_static/css/fonts/fontawesome-webfont.eot b/docs/_build/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 00000000..e9f60ca9 Binary files /dev/null and b/docs/_build/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/docs/_build/_static/css/fonts/fontawesome-webfont.svg b/docs/_build/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 00000000..52c07733 --- /dev/null +++ b/docs/_build/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_static/css/fonts/fontawesome-webfont.ttf b/docs/_build/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 00000000..35acda2f Binary files /dev/null and b/docs/_build/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/docs/_build/_static/css/fonts/fontawesome-webfont.woff b/docs/_build/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 00000000..400014a4 Binary files /dev/null and b/docs/_build/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/docs/_build/_static/css/fonts/fontawesome-webfont.woff2 b/docs/_build/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 00000000..4d13fc60 Binary files /dev/null and b/docs/_build/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/docs/_build/_static/css/fonts/lato-bold-italic.woff b/docs/_build/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 00000000..88ad05b9 Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-bold-italic.woff differ diff --git a/docs/_build/_static/css/fonts/lato-bold-italic.woff2 b/docs/_build/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 00000000..c4e3d804 Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/docs/_build/_static/css/fonts/lato-bold.woff b/docs/_build/_static/css/fonts/lato-bold.woff new file mode 100644 index 00000000..c6dff51f Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-bold.woff differ diff --git a/docs/_build/_static/css/fonts/lato-bold.woff2 b/docs/_build/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 00000000..bb195043 Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-bold.woff2 differ diff --git a/docs/_build/_static/css/fonts/lato-normal-italic.woff b/docs/_build/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 00000000..76114bc0 Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-normal-italic.woff differ diff --git a/docs/_build/_static/css/fonts/lato-normal-italic.woff2 b/docs/_build/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 00000000..3404f37e Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/docs/_build/_static/css/fonts/lato-normal.woff b/docs/_build/_static/css/fonts/lato-normal.woff new file mode 100644 index 00000000..ae1307ff Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-normal.woff differ diff --git a/docs/_build/_static/css/fonts/lato-normal.woff2 b/docs/_build/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 00000000..3bf98433 Binary files /dev/null and b/docs/_build/_static/css/fonts/lato-normal.woff2 differ diff --git a/docs/_build/_static/css/theme.css b/docs/_build/_static/css/theme.css new file mode 100644 index 00000000..473b8b4e --- /dev/null +++ b/docs/_build/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} diff --git a/docs/_build/_static/doctools.js b/docs/_build/_static/doctools.js new file mode 100644 index 00000000..d06a71d7 --- /dev/null +++ b/docs/_build/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/docs/_build/_static/documentation_options.js b/docs/_build/_static/documentation_options.js new file mode 100644 index 00000000..7e0cecce --- /dev/null +++ b/docs/_build/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '0.0.1', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; diff --git a/docs/_build/_static/file.png b/docs/_build/_static/file.png new file mode 100644 index 00000000..a858a410 Binary files /dev/null and b/docs/_build/_static/file.png differ diff --git a/docs/_build/_static/jquery.js b/docs/_build/_static/jquery.js new file mode 100644 index 00000000..c4c6022f --- /dev/null +++ b/docs/_build/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); diff --git a/docs/_build/_static/js/html5shiv.min.js b/docs/_build/_static/js/html5shiv.min.js new file mode 100644 index 00000000..b4011dd6 --- /dev/null +++ b/docs/_build/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); diff --git a/docs/_build/_static/js/theme.js b/docs/_build/_static/js/theme.js new file mode 100644 index 00000000..d8a98c62 --- /dev/null +++ b/docs/_build/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} diff --git a/docs/_build/_static/logo_small.svg b/docs/_build/_static/logo_small.svg new file mode 100644 index 00000000..c6e965db --- /dev/null +++ b/docs/_build/_static/logo_small.svg @@ -0,0 +1,99 @@ + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/_build/_static/minus.png b/docs/_build/_static/minus.png new file mode 100644 index 00000000..d96755fd Binary files /dev/null and b/docs/_build/_static/minus.png differ diff --git a/docs/_build/_static/nbsphinx-broken-thumbnail.svg b/docs/_build/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 00000000..4919ca88 --- /dev/null +++ b/docs/_build/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/docs/_build/_static/nbsphinx-code-cells.css b/docs/_build/_static/nbsphinx-code-cells.css new file mode 100644 index 00000000..f3547347 --- /dev/null +++ b/docs/_build/_static/nbsphinx-code-cells.css @@ -0,0 +1,258 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} diff --git a/docs/_build/_static/nbsphinx-gallery.css b/docs/_build/_static/nbsphinx-gallery.css new file mode 100644 index 00000000..365c27a9 --- /dev/null +++ b/docs/_build/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/docs/_build/_static/nbsphinx-no-thumbnail.svg b/docs/_build/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 00000000..9dca7588 --- /dev/null +++ b/docs/_build/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/docs/_build/_static/plus.png b/docs/_build/_static/plus.png new file mode 100644 index 00000000..7107cec9 Binary files /dev/null and b/docs/_build/_static/plus.png differ diff --git a/docs/_build/_static/pygments.css b/docs/_build/_static/pygments.css new file mode 100644 index 00000000..483d0fcc --- /dev/null +++ b/docs/_build/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ diff --git a/docs/_build/_static/searchtools.js b/docs/_build/_static/searchtools.js new file mode 100644 index 00000000..7918c3fa --- /dev/null +++ b/docs/_build/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/docs/_build/_static/sphinx_highlight.js b/docs/_build/_static/sphinx_highlight.js new file mode 100644 index 00000000..8a96c69a --- /dev/null +++ b/docs/_build/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/docs/_build/contributing_link.html b/docs/_build/contributing_link.html new file mode 100644 index 00000000..67030fc3 --- /dev/null +++ b/docs/_build/contributing_link.html @@ -0,0 +1,284 @@ + + + + + + + Contributing — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Contributing

+

All contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

+

You can contribute in many ways:

+
+

Types of Contributions

+
+

Feature Requests

+

If you are interested in a new Feature, you can add it as an issue +with the Static Badge +label.

+

In the issues describe clearly the new feature or functionality you want to see implemented in the toolkit. If the request is specific to your application/data, make sure to +add a sample of your pickled Dataset (use .save_dataset()).

+

Assign yourself to the issue if you want to (help) implement the new request. All help is much appreciated!

+
+
+

Report Bugs

+

Report bugs at the as a new issue with the Static Badge label.

+

If you are reporting a bug, please include:

+
    +
  • Your operating system name and version.

  • +
  • The version of the MetObs-toolkit (use metobs_toolkit.__version__).

  • +
  • Any details about your local setup that might be helpful in troubleshooting.

  • +
  • Detailed steps to reproduce the bug.

  • +
  • If possible, provide a pickled version of your dataset (use .save_dataset()). Limit the size of the dataset as much as possible.

  • +
+
+
+

Fix Bugs

+

Look through the GitHub issues for bugs. Anything tagged with Static Badge and Static Badge +is open to whoever wants to implement it. +If you find yourself not so familiar with Python you can start by filtering to the Static Badge +and Static Badge labels.

+

The Static Badge +label indicates that this issue might affect multiple modules of the toolkit, the data structures or is technical more challenging. Contact @vergauwenthomas to discuss a plan-of-attack in advance.

+
+
+

Implement Features

+

Look through the GitHub issues for features. Anything tagged with Static Badge +and Static Badge is open to whoever wants to implement it.

+
+
+

Write Documentation

+

The MetObs-toolkit could always use more documentation or spell checkers. Use the Static Badge to indicate that your issue is documentation-related.

+
+
+

Submit Feedback

+

Any form of feedback is much appreciated. The best way to send feedback is to file an issue. If you cannot find a suitable label, you do not have to specify one.

+
+
+
+

Get Started

+

Ready to make code contributions? Here is how to set up a developer’s environment for the toolkit.

+
+

Required software

+

The following software (or equivalent) is required to set up a developer environment:

+ +

Make sure you have this software installed before proceeding.

+
+
+

Setup a developer environment

+
    +
  1. Clone the MetObs-toolkit locally:

  2. +
+
git clone git@github.com:vergauwenthomas/MetObs_toolkit.git
+
+
+
    +
  1. Create a conda environment and install the required packages.

  2. +
+
# Setup a developers' environment
+conda create -n metobs_dev python==3.9 poetry
+conda activate metobs_dev
+
+#optional: install Spyder as IDE
+#conda install spyder
+
+# Install dependencies in the developers' environment
+cd MetObs_toolkit
+poetry install --with documentation
+
+
+
    +
  1. Create a branch for local development which is a copy of the dev branch.:

  2. +
+
 # checkout the dev branch
+ git checkout dev
+ git pull
+
+ # Create a new local branch and switch to it.
+ git branch name-of-your-bugfix-or-feature
+ git checkout name-of-your-bugfix-or-feature
+
+
+

Now you can make local changes.

+
    +
  1. Test your changes locally. The build_and_test.sh script builds the package and runs a series of tests. All tests must be successful before your contributions can be merged in the dev branch.

  2. +
+
source deploiment/build_and_test.sh
+
+
+
    +
  1. Push your code online:

    +
    # Add your changes to your commit
    +git add -A
    +# Write commit text
    +git commit -m "Some text describing your code changes in this commit"
    +# Push your branch online
    +#only the first time:
    +git push --set-upstream origin name-of-your-bugfix-or-feature
    +#all other times
    +git push
    +
    +
    +
  2. +
+
+
+
+

Pull Request Guidelines

+

Once your branch has been pushed to github, you can create a Pull request in github. Make sure that you have referred the corresponding issues to the Pull request. +If your code adaptations are still work-in-progress add the Static Badge label to it. For each push, github will perform a list of checks (package building, version control, functionality test, os-tests, documentation build test), in order to merge your contributions these tests must all be successful.

+

If your code is ready for review, you can add the Static Badge label to it.

+

After the code review, and all review marks are resolved, your contributions will be merged to the dev branch.

+
+
+

Versioning/Tagging

+

From time to time the dev branch will be merged with the master with a new Release tag. The new release will be deployed to PyPi index with the adequate versioning specified.

+
+
+

Support

+

For general support or questions, you can refer them to @vergauwenthomas, or by mail to (thomas.vergauwen@meteo.be).

+
+
+

Acknowledgement

+

This file is inspired by the RavenPy project. Thank you for the inspiration!”.

+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/analysis_example.html b/docs/_build/examples/analysis_example.html new file mode 100644 index 00000000..15045ee0 --- /dev/null +++ b/docs/_build/examples/analysis_example.html @@ -0,0 +1,559 @@ + + + + + + + Demo example: Analysis — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Demo example: Analysis

+

This example is the continuation of the previous example: filling gaps and missing observations. This example serves as an introduction to the Analysis module.

+
+
[1]:
+
+
+
import metobs_toolkit
+
+your_dataset = metobs_toolkit.Dataset()
+your_dataset.update_settings(
+    input_data_file=metobs_toolkit.demo_datafile, # path to the data file
+    input_metadata_file=metobs_toolkit.demo_metadatafile,
+    template_file=metobs_toolkit.demo_template,
+)
+#Update Gap definition
+your_dataset.update_qc_settings(gapsize_in_records = 20)
+
+#Import the data
+your_dataset.import_data_from_file()
+
+#Coarsen to 15-minutes frequencies
+your_dataset.coarsen_time_resolution(freq='15T')
+
+#Apply default quality control
+your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example
+
+#Interpret the outliers as missing observations and gaps.
+your_dataset.update_gaps_and_missing_from_outliers(obstype='temp',
+                                                   n_gapsize=None)
+
+#Fill missing observations (using default settings)
+your_dataset.fill_missing_obs_linear(obstype='temp')
+
+#Fill gaps with linear interpolation.
+your_dataset.fill_gaps_linear(obstype='temp')
+

+
+
+
+
[1]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
temptemp_final_label
namedatetime
vlinder012022-09-02 15:30:00+00:0026.453659gap_interpolation
2022-09-02 15:45:00+00:0026.207317gap_interpolation
2022-09-02 16:00:00+00:0025.960976gap_interpolation
2022-09-02 16:15:00+00:0025.714634gap_interpolation
2022-09-02 16:30:00+00:0025.468293gap_interpolation
............
vlinder282022-09-15 07:00:00+00:0014.114815gap_interpolation
2022-09-15 07:15:00+00:0014.251852gap_interpolation
2022-09-15 07:30:00+00:0014.388889gap_interpolation
2022-09-15 07:45:00+00:0014.525926gap_interpolation
2022-09-15 08:00:00+00:0014.662963gap_interpolation
+

5111 rows × 2 columns

+
+
+
+

Creating an Analysis

+

The built-in analysis functionality is centered around the Analysis class. First, create an Analysis object using the get_analysis() method.

+
+
[2]:
+
+
+
analysis = your_dataset.get_analysis(add_gapfilled_values=True)
+analysis
+
+
+
+
+
[2]:
+
+
+
+
+Analysis instance containing:
+     *28 stations
+     *['humidity', 'precip', 'precip_sum', 'pressure', 'pressure_at_sea_level', 'radiation_temp', 'temp', 'wind_direction', 'wind_gust', 'wind_speed'] observation types
+     *38820 observation records
+     *Coordinates are available for all stations.
+
+     *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:45:00+00:00 (total duration:  14 days 23:45:00)     *Coordinates are available for all stations.
+
+
+
+
+

Analysis methods

+

An overview of the available analysis methods can be seen in the Analysis documentation. The relevant methods depends on your data and your interest. As an example, a demonstration of the filter and diurnal cycle of the demo data.

+
+

Filtering data

+

It is common to filter your data according to specific meteorological phenomena or periods in time. To do this you can use the apply_filter() method.

+
+
[3]:
+
+
+
#filter to non-windy afternoons in the Autumn.
+subset = analysis.apply_filter('wind_speed <= 2.5 & season=="autumn" & hour > 12 & hour < 20')
+
+subset.df
+
+
+
+
+
[3]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
humidityprecipprecip_sumpressurepressure_at_sea_levelradiation_temptempwind_directionwind_gustwind_speed
namedatetime
vlinder012022-09-01 18:00:00+00:0047.00.00.0101453.0101717.0NaN22.945.04.81.8
2022-09-01 18:15:00+00:0048.00.00.0101448.0101712.0NaN22.445.04.81.7
2022-09-01 18:30:00+00:0050.00.00.0101461.0101725.0NaN21.845.03.20.6
2022-09-01 18:45:00+00:0055.00.00.0101468.0101733.0NaN20.345.00.00.0
2022-09-01 19:00:00+00:0058.00.00.0101460.0101726.0NaN18.845.00.00.0
....................................
vlinder282022-09-15 18:45:00+00:0076.00.017.8101314.0101266.0NaN15.715.08.10.8
2022-09-15 19:00:00+00:0076.00.017.8101320.0101272.0NaN15.515.04.80.6
2022-09-15 19:15:00+00:0077.00.017.8101325.0101277.0NaN15.35.00.00.0
2022-09-15 19:30:00+00:0078.00.017.8101339.0101291.0NaN15.165.04.80.9
2022-09-15 19:45:00+00:0079.00.017.8101343.0101295.0NaN15.065.00.00.0
+

6347 rows × 10 columns

+
+
+
+
+
+

Diurnal cycle

+

To make a diurnal cycle plot of your Analysis use the get_diurnal_statistics() method:

+
+
[4]:
+
+
+
dirunal_statistics = subset.get_diurnal_statistics(colorby='name',
+                                                   obstype='humidity',
+                                                   plot=True,
+                                                   errorbands=True,
+                                                  )
+#Note that in this example statistics are computed for a short period and only for the non-windy autumn afternoons.
+
+
+
+
+
+
+
+../_images/examples_analysis_example_7_0.png +
+
+
+
+

Analysis exercise

+

For a more detailed reference you can use this Analysis exercise, which was created in the context of the COST FAIRNESS summer school 2023 in Ghent.

+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/analysis_example.ipynb b/docs/_build/examples/analysis_example.ipynb new file mode 100644 index 00000000..e4d41d52 --- /dev/null +++ b/docs/_build/examples/analysis_example.ipynb @@ -0,0 +1,569 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "9116142e-ebf4-471f-af77-52efca4aa935", + "metadata": {}, + "source": [ + "# Demo example: Analysis\n", + "\n", + "This example is the continuation of the previous example: [filling gaps and missing observations](https://vergauwenthomas.github.io/MetObs_toolkit/examples/filling_example.html). This example serves as an introduction to the Analysis module." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e7593f73-c25b-4ac0-989e-77a03a8f4a92", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
temptemp_final_label
namedatetime
vlinder012022-09-02 15:30:00+00:0026.453659gap_interpolation
2022-09-02 15:45:00+00:0026.207317gap_interpolation
2022-09-02 16:00:00+00:0025.960976gap_interpolation
2022-09-02 16:15:00+00:0025.714634gap_interpolation
2022-09-02 16:30:00+00:0025.468293gap_interpolation
............
vlinder282022-09-15 07:00:00+00:0014.114815gap_interpolation
2022-09-15 07:15:00+00:0014.251852gap_interpolation
2022-09-15 07:30:00+00:0014.388889gap_interpolation
2022-09-15 07:45:00+00:0014.525926gap_interpolation
2022-09-15 08:00:00+00:0014.662963gap_interpolation
\n", + "

5111 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " temp temp_final_label\n", + "name datetime \n", + "vlinder01 2022-09-02 15:30:00+00:00 26.453659 gap_interpolation\n", + " 2022-09-02 15:45:00+00:00 26.207317 gap_interpolation\n", + " 2022-09-02 16:00:00+00:00 25.960976 gap_interpolation\n", + " 2022-09-02 16:15:00+00:00 25.714634 gap_interpolation\n", + " 2022-09-02 16:30:00+00:00 25.468293 gap_interpolation\n", + "... ... ...\n", + "vlinder28 2022-09-15 07:00:00+00:00 14.114815 gap_interpolation\n", + " 2022-09-15 07:15:00+00:00 14.251852 gap_interpolation\n", + " 2022-09-15 07:30:00+00:00 14.388889 gap_interpolation\n", + " 2022-09-15 07:45:00+00:00 14.525926 gap_interpolation\n", + " 2022-09-15 08:00:00+00:00 14.662963 gap_interpolation\n", + "\n", + "[5111 rows x 2 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import metobs_toolkit\n", + "\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "#Update Gap definition\n", + "your_dataset.update_qc_settings(gapsize_in_records = 20) \n", + "\n", + "#Import the data\n", + "your_dataset.import_data_from_file()\n", + "\n", + "#Coarsen to 15-minutes frequencies\n", + "your_dataset.coarsen_time_resolution(freq='15T')\n", + "\n", + "#Apply default quality control\n", + "your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example\n", + "\n", + "#Interpret the outliers as missing observations and gaps.\n", + "your_dataset.update_gaps_and_missing_from_outliers(obstype='temp', \n", + " n_gapsize=None)\n", + "\n", + "#Fill missing observations (using default settings)\n", + "your_dataset.fill_missing_obs_linear(obstype='temp')\n", + "\n", + "#Fill gaps with linear interpolation.\n", + "your_dataset.fill_gaps_linear(obstype='temp')\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "cfdf87f1-dcfd-4a13-b12a-7373e880e4cd", + "metadata": {}, + "source": [ + "## Creating an Analysis\n", + "\n", + "The built-in analysis functionality is centered around the [*Analysis*](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#analysis) class. First, create an *Analysis* object using the [get_analysis()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.get_analysis) method." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "c69bfda4-8a5f-49b6-9a80-cce0ed2d3dbd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Analysis instance containing: \n", + " *28 stations \n", + " *['humidity', 'precip', 'precip_sum', 'pressure', 'pressure_at_sea_level', 'radiation_temp', 'temp', 'wind_direction', 'wind_gust', 'wind_speed'] observation types \n", + " *38820 observation records \n", + " *Coordinates are available for all stations. \n", + " \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:45:00+00:00 (total duration: 14 days 23:45:00) *Coordinates are available for all stations. " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "analysis = your_dataset.get_analysis(add_gapfilled_values=True)\n", + "analysis" + ] + }, + { + "cell_type": "markdown", + "id": "26990a49-157d-4a59-9dce-9cbb1523d177", + "metadata": {}, + "source": [ + "## Analysis methods\n", + "\n", + "An overview of the available analysis methods can be seen in the [Analysis documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis). The relevant methods depends on your data and your interest. As an example, a demonstration of the filter and diurnal cycle of the demo data.\n", + "\n", + "### Filtering data\n", + "\n", + "It is common to filter your data according to specific meteorological phenomena or periods in time. To do this you can use the [apply_filter()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis.apply_filter) method." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "036ffd8c-bb43-4667-8556-84622d2b5498", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
humidityprecipprecip_sumpressurepressure_at_sea_levelradiation_temptempwind_directionwind_gustwind_speed
namedatetime
vlinder012022-09-01 18:00:00+00:0047.00.00.0101453.0101717.0NaN22.945.04.81.8
2022-09-01 18:15:00+00:0048.00.00.0101448.0101712.0NaN22.445.04.81.7
2022-09-01 18:30:00+00:0050.00.00.0101461.0101725.0NaN21.845.03.20.6
2022-09-01 18:45:00+00:0055.00.00.0101468.0101733.0NaN20.345.00.00.0
2022-09-01 19:00:00+00:0058.00.00.0101460.0101726.0NaN18.845.00.00.0
....................................
vlinder282022-09-15 18:45:00+00:0076.00.017.8101314.0101266.0NaN15.715.08.10.8
2022-09-15 19:00:00+00:0076.00.017.8101320.0101272.0NaN15.515.04.80.6
2022-09-15 19:15:00+00:0077.00.017.8101325.0101277.0NaN15.35.00.00.0
2022-09-15 19:30:00+00:0078.00.017.8101339.0101291.0NaN15.165.04.80.9
2022-09-15 19:45:00+00:0079.00.017.8101343.0101295.0NaN15.065.00.00.0
\n", + "

6347 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " humidity precip precip_sum pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 47.0 0.0 0.0 101453.0 \n", + " 2022-09-01 18:15:00+00:00 48.0 0.0 0.0 101448.0 \n", + " 2022-09-01 18:30:00+00:00 50.0 0.0 0.0 101461.0 \n", + " 2022-09-01 18:45:00+00:00 55.0 0.0 0.0 101468.0 \n", + " 2022-09-01 19:00:00+00:00 58.0 0.0 0.0 101460.0 \n", + "... ... ... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 76.0 0.0 17.8 101314.0 \n", + " 2022-09-15 19:00:00+00:00 76.0 0.0 17.8 101320.0 \n", + " 2022-09-15 19:15:00+00:00 77.0 0.0 17.8 101325.0 \n", + " 2022-09-15 19:30:00+00:00 78.0 0.0 17.8 101339.0 \n", + " 2022-09-15 19:45:00+00:00 79.0 0.0 17.8 101343.0 \n", + "\n", + " pressure_at_sea_level radiation_temp \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 101717.0 NaN \n", + " 2022-09-01 18:15:00+00:00 101712.0 NaN \n", + " 2022-09-01 18:30:00+00:00 101725.0 NaN \n", + " 2022-09-01 18:45:00+00:00 101733.0 NaN \n", + " 2022-09-01 19:00:00+00:00 101726.0 NaN \n", + "... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 101266.0 NaN \n", + " 2022-09-15 19:00:00+00:00 101272.0 NaN \n", + " 2022-09-15 19:15:00+00:00 101277.0 NaN \n", + " 2022-09-15 19:30:00+00:00 101291.0 NaN \n", + " 2022-09-15 19:45:00+00:00 101295.0 NaN \n", + "\n", + " temp wind_direction wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 22.9 45.0 4.8 \n", + " 2022-09-01 18:15:00+00:00 22.4 45.0 4.8 \n", + " 2022-09-01 18:30:00+00:00 21.8 45.0 3.2 \n", + " 2022-09-01 18:45:00+00:00 20.3 45.0 0.0 \n", + " 2022-09-01 19:00:00+00:00 18.8 45.0 0.0 \n", + "... ... ... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 15.7 15.0 8.1 \n", + " 2022-09-15 19:00:00+00:00 15.5 15.0 4.8 \n", + " 2022-09-15 19:15:00+00:00 15.3 5.0 0.0 \n", + " 2022-09-15 19:30:00+00:00 15.1 65.0 4.8 \n", + " 2022-09-15 19:45:00+00:00 15.0 65.0 0.0 \n", + "\n", + " wind_speed \n", + "name datetime \n", + "vlinder01 2022-09-01 18:00:00+00:00 1.8 \n", + " 2022-09-01 18:15:00+00:00 1.7 \n", + " 2022-09-01 18:30:00+00:00 0.6 \n", + " 2022-09-01 18:45:00+00:00 0.0 \n", + " 2022-09-01 19:00:00+00:00 0.0 \n", + "... ... \n", + "vlinder28 2022-09-15 18:45:00+00:00 0.8 \n", + " 2022-09-15 19:00:00+00:00 0.6 \n", + " 2022-09-15 19:15:00+00:00 0.0 \n", + " 2022-09-15 19:30:00+00:00 0.9 \n", + " 2022-09-15 19:45:00+00:00 0.0 \n", + "\n", + "[6347 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#filter to non-windy afternoons in the Autumn.\n", + "subset = analysis.apply_filter('wind_speed <= 2.5 & season==\"autumn\" & hour > 12 & hour < 20')\n", + "\n", + "subset.df" + ] + }, + { + "cell_type": "markdown", + "id": "93399221-9b4e-4a6b-9b00-51ab9bf32a7e", + "metadata": {}, + "source": [ + "## Diurnal cycle \n", + "\n", + "To make a diurnal cycle plot of your Analysis use the [get_diurnal_statistics()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.analysis.Analysis.html#metobs_toolkit.analysis.Analysis.get_diurnal_statistics) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "e867c52c-72fa-49ac-ae00-98e9150b513c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAPgCAYAAAA4JE15AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebgsV1nv/1lr1dDdezpDTk5ykgAh5CLCvYDgRRAIaCCMGuUhDAqE8SqPA2JQ4v0xhClMooCo1+EBBAUEBBEvkwyGe0VULgiKjwRIGEJOkjPsoYca1vD7Y1VVd+/p7H3O3mdP6wMn3bu6urqqurt6fdf7vt9XOOccgUAgEAgEAoFAIBBYM3KrdyAQCAQCgUAgEAgEdhpBSAUCgUAgEAgEAoHAOglCKhAIBAKBQCAQCATWSRBSgUAgEAgEAoFAILBOgpAKBAKBQCAQCAQCgXUShFQgEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgnQQhFQgEAoFAIBAIBALrJAipQCAQCAQCgUAgEFgnQUgFAoHAafCOd7wDIQQ333zzVu/KnuHlL385QgiOHTu21bvScPPNNyOE4B3veMcp17366qu5y13uMrZMCMHLX/7yTdm3tXCXu9yFq6++uvn7c5/7HEIIPve5z23ZPq2Vxfu+Xdiu+xUIBDaeIKQCgcC2pBYq//Iv/7Ls4w972MO4173udZb3KhDYXP7hH/6Bl7/85czOzm71rgQCgUDgFERbvQOBQCAQCOxU7nznOzMYDIjj+LSePxgMiKLhT/E//MM/cN1113H11Vezb9++DdrLtfPQhz6UwWBAkiRn/bUDgUBgpxEiUoFAILAOer3eVu/CprMXjnGjEELQarVQSp3W81ut1piQ2mqklLRaLaTcmOFBlmVYazdkW4FAILDdCEIqEAjsGrTWvPKVr+SSSy4hTVPucpe78Fu/9VvkeT623kp1KYtrG+r0wr//+7/n+c9/Pueeey4XXnjhsq/9jGc8g3POOYeyLJc89shHPpK73/3uq+775z//eZ74xCdypzvdiTRNueiii/i1X/s1BoNBs84b3/hGhBB85zvfWfL8a6+9liRJOHnyZLPsi1/8Io961KOYmZmh0+lw2WWX8X//7/8de15dd/T1r3+dpz71qezfv58HP/jBAHz1q1/l6quv5q53vSutVovzzjuPZz3rWRw/fnzJ63/uc5/j/ve/P61Wi0suuYT/9b/+V7Ptxbz73e/mfve7H+12mwMHDvDkJz+Z733ve6uen1FmZ2ebiM3MzAzPfOYz6ff7zeOr1S0tfu/rffzGN77Bz//8zzMzM8OhQ4d4yUtegnOO733ve/z0T/8009PTnHfeefz2b//22PZWeq0Pf/jD3Ote96LVanGve92LD33oQ8sey+j+vPzlL+dFL3oRABdffDFCiKYO77LLLuPe9773stu4+93vzhVXXLHqOXPO8apXvYoLL7yQTqfDwx/+cP793/99yXrL1UitVPPzsIc9jIc97GFLnvve976X/+//+/+44IIL6HQ6zM/Pc/XVVzM5Ocktt9zClVdeyeTkJIcOHeKaa67BGDO23Te+8Y086EEP4uDBg7Tbbe53v/vxgQ98YNXjWw1rLW9+85v5r//1v9JqtTh06BCPetSjmrTh9ZzbU21rJWZnZ3nBC17ARRddRJqm3O1ud+N1r3tdEJmBwA4nCKlAILCtmZub49ixY0v+LSdYnvOc5/DSl76UH/mRH+F3fud3uOyyy7j++ut58pOffEb78PznP5+vf/3rvPSlL+XFL37xsus87WlP4/jx43ziE58YW3706FE+85nP8PM///Orvsb73/9++v0+v/iLv8hb3/pWrrjiCt761rfy9Kc/vVnnqquuQgjBX/7lXy55/l/+5V/yyEc+kv379wPwmc98hoc+9KHMz8/zspe9jNe85jXMzs7yEz/xE/zTP/3Tkuc/8YlPpN/v85rXvIbnPve5AHzqU5/i29/+Ns985jN561vfypOf/GTe+9738pjHPAbnXPPcL3/5yzzqUY/i+PHjXHfddTz72c/mFa94BR/+8IeXvM6rX/1qnv70p3PppZfypje9iRe84AV8+tOf5qEPfeia64KuuuoqFhYWuP7667nqqqt4xzvewXXXXbem567Ek570JKy1vPa1r+UBD3gAr3rVq/jd3/1dHvGIR3DBBRfwute9jrvd7W5cc8013HDDDatu65Of/CRPeMITEEJw/fXXc+WVV/LMZz7zlIPtn/3Zn+UpT3kKAL/zO7/Du971Lt71rndx6NAhnva0p/HVr36Vf/u3fxt7zj//8z83InA1XvrSl/KSl7yEe9/73rzhDW/grne9K4985CM3Jfr4yle+kr/927/lmmuu4TWveU2TJmiM4YorruDgwYO88Y1v5LLLLuO3f/u3+aM/+qOx57/5zW/mvve9L694xSt4zWteQxRFPPGJT+Rv//ZvT2t/nv3sZzci5nWvex0vfvGLabVa/OM//iPAus7tqba1HP1+n8suu4x3v/vdPP3pT+ctb3kLP/7jP861117LC1/4wtM6pkAgsE1wgUAgsA15+9vf7oBV/93znvds1v/KV77iAPec5zxnbDvXXHONA9xnPvOZZhngXvayly15zTvf+c7uGc94xpJ9ePCDH+y01svu30033eScc84Y4y688EL3pCc9aWy9N73pTU4I4b797W+verz9fn/Jsuuvv94JIdx3vvOdZtkDH/hAd7/73W9svX/6p39ygPuzP/sz55xz1lp36aWXuiuuuMJZa8de4+KLL3aPeMQjmmUve9nLHOCe8pSnrGmf3vOe9zjA3XDDDc2yxz/+8a7T6bhbbrmlWXbjjTe6KIrc6M/MzTff7JRS7tWvfvXYNr/2ta+5KIqWLF9Mva/Petazxpb/zM/8jDt48GDz90033eQA9/a3v33JNha/9/U2n/e85zXLtNbuwgsvdEII99rXvrZZfvLkSddut8c+I8u91n3ucx93/vnnu9nZ2WbZJz/5SQe4O9/5zqvuzxve8Iaxz1XN7Oysa7Va7jd/8zfHlv/Kr/yKm5iYcN1ud8mx1tx+++0uSRL32Mc+duzz8Fu/9VsOGDuez372sw5wn/3sZ5tli78XNZdddpm77LLLljz3rne965LPzjOe8QwHuFe84hVjy+973/su+Twvfm5RFO5e97qX+4mf+Imx5Svt1yif+cxnHOB+5Vd+Zclj9blY67ldy7aW269XvvKVbmJiwn3jG98Ye86LX/xip5Ry3/3ud1c9hkAgsH0JEalAILCtedvb3sanPvWpJf/+23/7b2Pr/e///b8Blszw/vqv/zrAac9mAzz3uc89ZQ2MlJKf+7mf4yMf+QgLCwvN8j//8z/nQQ96EBdffPGqz2+32839Xq/HsWPHeNCDHoRzji9/+cvNY0960pP40pe+xLe+9a1m2fve9z7SNOWnf/qnAfjKV77CjTfeyFOf+lSOHz/eRPF6vR4/+ZM/yQ033LAkpegXfuEXVt2nLMs4duwYP/ZjPwbA//t//w/wUYa/+7u/48orr+TIkSPN+ne729149KMfPba9v/qrv8Jay1VXXTUWXTzvvPO49NJL+exnP7vqOVppXx/ykIdw/Phx5ufn1/T85XjOc57T3FdKcf/73x/nHM9+9rOb5fv27ePud7873/72t1fczq233spXvvIVnvGMZzAzM9Msf8QjHsEP//APn/b+zczM8NM//dO85z3vaaKBxhje9773ceWVVzIxMbHic//u7/6Ooij45V/+5bFUyxe84AWnvT+r8YxnPGPsszPKcu/d4vM5+tyTJ08yNzfHQx7ykOYztx4++MEPIoTgZS972ZLH6nOx1nO7lm0tx/vf/34e8pCHsH///rHP/eWXX44x5pQRzkAgsH0JQioQCGxr/vt//+9cfvnlS/7VKWw13/nOd5BScre73W1s+Xnnnce+ffuWrStaK6cSQTVPf/rTGQwGTT3Mf/7nf/KlL32Jpz3taad87ne/+12uvvpqDhw40NSPXHbZZYBPb6x54hOfiJSS973vfYCvfXn/+9/Pox/9aKanpwG48cYbAT+gPXTo0Ni/P/mTPyHP87FtrnSMJ06c4Fd/9Vc5fPgw7XabQ4cONevVz7/99tsZDAZLzjuwZNmNN96Ic45LL710yX79x3/8B7fffvspzxPAne50p7G/68/CaH3Yelm8zZmZGVqtFuecc86S5au9Tv05u/TSS5c8dqo6uVPx9Kc/ne9+97t8/vOfB7xAuu222075+Vppnw4dOrTke7QRrPR9qWuKRtm/f/+S8/nRj36UH/uxH6PVanHgwAEOHTrEH/zBHyz5zK6Fb33rWxw5coQDBw6sut5azu1at7WYG2+8kY9//ONLPvOXX345wJo/94FAYPuxfayCAoFAYANYbWb4VCwueq9ZaXZ9MT/8wz/M/e53v6YW4t3vfjdJknDVVVed8nUf8YhHcOLECX7zN3+TH/qhH2JiYoJbbrmFq6++eix6dOTIER7ykIfwl3/5l/zWb/0W//iP/8h3v/tdXve61zXr1Ou/4Q1v4D73uc+yrzk5OXnKY7zqqqv4h3/4B170ohdxn/vch8nJSay1POpRjzqtInlrLUIIPvaxjy0b4Vu8TyuxUnSwjias9BlY6f1daZunep2zzRVXXMHhw4d597vfzUMf+lDe/e53c9555zUD8s1itfO53Dla6fuyFmfDz3/+8/zUT/0UD33oQ/n93/99zj//fOI45u1vfzt/8Rd/sb4dXwebeW6ttTziEY/gN37jN5Z9/L/8l/9yxq8RCAS2hiCkAoHAruDOd74z1lpuvPFG7nGPezTLb7vtNmZnZ7nzne/cLNu/f/8SY4OiKLj11lvPeD+e/vSn88IXvpBbb72Vv/iLv+Cxj33sKWf9v/a1r/GNb3yDd77znWPmEp/61KeWXf9JT3oSz3/+8/nP//xP3ve+99HpdHj84x/fPH7JJZcAMD09fdoDwZMnT/LpT3+a6667jpe+9KXN8jraVXPuuefSarX45je/uWQbi5ddcsklOOe4+OKLN3XwWJ/vxe/xmUQl10r9OVt8nsBHKE/FahMBSime+tSn8o53vIPXve51fPjDH15T2unoPt31rndtlt9xxx1riuIt930Bfz5Ht7cRfPCDH6TVavGJT3yCNE2b5W9/+9tPa3uXXHIJn/jEJzhx4sSqkaS1nNu1bmu5feh2u5sueAOBwNknpPYFAoFdwWMe8xgAfvd3f3ds+Zve9CYAHvvYxzbLLrnkkiV1CX/0R3+0asRirTzlKU9BCMGv/uqv8u1vf/uUbmownKkfjXQ453jzm9+87PpPeMITUErxnve8h/e///087nGPG6uRud/97scll1zCG9/4Rrrd7pLn33HHHae1T7D0/CqluPzyy/nwhz/MD37wg2b5N7/5TT72sY+NrfuzP/uzKKW47rrrlmzXObesrfrpMD09zTnnnLPkPf793//9Ddn+apx//vnc5z734Z3vfOdYKtqnPvUpvv71r5/y+fX7uJKD4dOe9jROnjzJ//gf/4Nut7umz9fll19OHMe89a1vHTvvi9/Llbjkkkv4x3/8R4qiaJZ99KMfXZdl/VpRSiGEGPsu3nzzzcs6QK6FJzzhCTjnlnV1XPwZPNW5Xc+2Rrnqqqv4whe+sMTRE/z7rLVe6+EEAoFtRohIBQKBXcG9731vnvGMZ/BHf/RHzM7Octlll/FP//RPvPOd7+TKK6/k4Q9/eLPuc57zHH7hF36BJzzhCTziEY/gX//1X/nEJz6xpB7mdKj7yrz//e9n3759YwJuJX7oh36ISy65hGuuuYZbbrmF6elpPvjBD64YLTj33HN5+MMfzpve9CYWFhZ40pOeNPa4lJI/+ZM/4dGPfjT3vOc9eeYzn8kFF1zALbfcwmc/+1mmp6f5m7/5m1X3aXp6moc+9KG8/vWvpyxLLrjgAj75yU9y0003LVn35S9/OZ/85Cf58R//cX7xF38RYwy/93u/x73udS++8pWvNOtdcsklvOpVr+Laa6/l5ptv5sorr2RqaoqbbrqJD33oQzzvec/jmmuuOeX5WgvPec5zeO1rX8tznvMc7n//+3PDDTfwjW98Y0O2fSquv/56HvvYx/LgBz+YZz3rWZw4cYK3vvWt3POe91xW2I5yv/vdD4D/+T//J09+8pOJ45jHP/7xjcC6733vy73udS/e//73c4973IMf+ZEfOeX+1P2arr/+eh73uMfxmMc8hi9/+ct87GMfW9Nn/jnPeQ4f+MAHeNSjHsVVV13Ft771Ld797nc3kc+N5LGPfSxvetObeNSjHsVTn/pUbr/9dt72trdxt7vdja9+9avr3t7DH/5wnva0p/GWt7yFG2+8sUlL/fznP8/DH/5wfumXfqlZ91Tndj3bGuVFL3oRH/nIR3jc4x7H1Vdfzf3udz96vR5f+9rX+MAHPsDNN9+8IdeeQCBw9gkRqUAgsGv4kz/5E6677jr++Z//mRe84AV85jOf4dprr+W9733v2HrPfe5z+c3f/E1uuOEGfv3Xf52bbrqJT33qU6s6n62HOj3vqquuGktPWok4jvmbv/kb7nOf+3D99ddz3XXXcemll/Jnf/ZnKz7nSU96EgsLC0xNTTXRuFEe9rCH8YUvfIH73//+/N7v/R6//Mu/zDve8Q7OO+88fu3Xfm1Nx/EXf/EXXHHFFbztbW/j2muvJY7jJVEm8IP/j33sY+zfv5+XvOQl/Omf/imveMUr+Mmf/ElardbYui9+8Yv54Ac/iJSS6667jmuuuYaPfOQjPPKRj+Snfuqn1rRfa+GlL30pz372s/nABz7Ab/zGb2CMWXbfN4NaSBtjuPbaa/mrv/or3v72t3P/+9//lM/90R/9UV75ylfyr//6r1x99dU85SlPWRJBrD9fazExqXnVq17Fddddx5e//GVe9KIX8a1vfYtPfvKTa/rMX3HFFfz2b/823/jGN3jBC17AF77wBT760Y+u2Jz6TPiJn/gJ/vRP/5SjR4/yghe8gPe85z287nWv42d+5mdOe5tvf/vbecMb3sBNN93Ei170Il7zmtcwGAx40IMetGTdU53b9WyrptPp8Pd///e86EUv4nOf+xy/+qu/ymtf+1puvPFGrrvuujF3x0AgsLMQbquqZgOBQGCX8td//ddceeWV3HDDDTzkIQ/Z6t3ZMq688kr+/d//fdl6ocDp8+Y3v5lf+7Vf4+abb17iNhg4M8K5DQQC6yEIqUAgENhgHve4x/Ef//EffPOb3zwjF8GdxGAwGHNru/HGG7nnPe/JM57xDP74j/94C/dsd+Gc4973vjcHDx5cc9+twNoI5zYQCKyXUCMVCAQCG8R73/tevvrVr/K3f/u3vPnNb94zIgrgrne9K1dffTV3vetd+c53vsMf/MEfkCTJipbPgfXR6/X4yEc+wmc/+1m+9rWv8dd//ddbvUu7hnBuA4HA6RIiUoFAILBBCCGYnJzkSU96En/4h39IFO2duapnPvOZfPazn+Xo0aOkacoDH/hAXvOa16zJDCFwam6++WYuvvhi9u3bx/Of/3xe/epXb/Uu7RrCuQ0EAqdLEFKBQCAQCAQCgUAgsE6Ca18gEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgneydBP5VsNbygx/8gKmpqT1VHB4IBAKBQCAQCATGcc6xsLDAkSNHkHLluFMQUsAPfvADLrrooq3ejUAgEAgEAoFAILBN+N73vrdq8/EgpICpqSnAn6zp6ekt3ptAIBAIBAKBQCCwVczPz3PRRRc1GmElgpCCJp1veno6CKlAIBAIBAKBQCBwypKfYDYRCAQCgUAgEAgEAuskCKlAIBAIBAKBQCAQWCdBSAUCgUAgEAgEAoHAOglCKhAIBAKBQCAQCATWSRBSgUAgEAgEAoFAILBOtlRI3XDDDTz+8Y/nyJEjCCH48Ic/PPa4c46XvvSlnH/++bTbbS6//HJuvPHGsXVOnDjBz/3czzE9Pc2+fft49rOfTbfbPYtHEQgEAoFAIBAIBPYaWyqker0e9773vXnb29627OOvf/3rectb3sIf/uEf8sUvfpGJiQmuuOIKsixr1vm5n/s5/v3f/51PfepTfPSjH+WGG27gec973tk6hEAgEAgEAoFAILAHEc45t9U7Ad6n/UMf+hBXXnkl4KNRR44c4dd//de55pprAJibm+Pw4cO84x3v4MlPfjL/8R//wQ//8A/zz//8z9z//vcH4OMf/ziPecxj+P73v8+RI0fW9Nrz8/PMzMwwNzcX+kgFAoFAIBAIBAJ7mLVqg21bI3XTTTdx9OhRLr/88mbZzMwMD3jAA/jCF74AwBe+8AX27dvXiCiAyy+/HCklX/ziF1fcdp7nzM/Pj/0LBAKBQCAQCAQCgbWybYXU0aNHATh8+PDY8sOHDzePHT16lHPPPXfs8SiKOHDgQLPOclx//fXMzMw0/y666KIN3vtAIBAIBAKBQCCwm9m2Qmozufbaa5mbm2v+fe9739vqXQoEAoFAIBAIBAI7iG0rpM477zwAbrvttrHlt912W/PYeeedx+233z72uNaaEydONOssR5qmTE9Pj/0LBAKBQCAQCAQCgbWybYXUxRdfzHnnncenP/3pZtn8/Dxf/OIXeeADHwjAAx/4QGZnZ/nSl77UrPOZz3wGay0PeMADzvo+BwKBQCAQCAQCgb1BtJUv3u12+eY3v9n8fdNNN/GVr3yFAwcOcKc73YkXvOAFvOpVr+LSSy/l4osv5iUveQlHjhxpnP3ucY978KhHPYrnPve5/OEf/iFlWfJLv/RLPPnJT16zY18gEAgEAoFAIBAIrJctFVL/8i//wsMf/vDm7xe+8IUAPOMZz+Ad73gHv/Ebv0Gv1+N5z3ses7OzPPjBD+bjH/84rVarec6f//mf80u/9Ev85E/+JFJKnvCEJ/CWt7zlrB9LIBAIBAKBQCAQ2Dtsmz5SW0noIxUIBAKBQCAQCARgF/SRCgQCgUAgEAgEAoHtShBSgUAgEAgEAoFAILBOgpAKBAKBQCAQCAQCgXUShFQgEAgEAoFAIBAIrJMgpAKBQCAQCAQCgUBgnQQhFQgEAoFAIBAIBALrJAipQCAQCAQCgUAgEFgnQUgFAoFAIBAIBAKBwDoJQioQCAQCgUAgEAgE1kkQUoFAIBAIBAKBQCCwToKQCgQCgUAgEAgEAoF1Em31DgQCgUAgEAgEAoHdj3MWhx3eYrHONMsSNYkS8Vbv5poJQioQCAQCgUAgENijOOcaUeMFjmmEzqjIWXGd0ftW4zBYp/0/DNaVWOeXOQwOBziss4BrtikQHO7cmwPpJVt9StZMEFKBQCAQCAQCgcA2Y3kxU993ywseLG6R+KlFjG0ETolzBovGOF2t7wCLwzXbxjn/d7MtL4AWIxDVY/4+CIQQCJT/WwgEEoFACIlAApJIRCN/C7r6KM7Zs3iGz5wgpAKBQCAQCAQCgTWwWMDUQsVHWJYTPMsJnWH0xqKH0Rs3/Hu4jWH0xlFFcOr7I5EkECN7Wd93I0tkJW68aPECphY4shI7yssdWa0zIn6av8Xo62wsYgdaNwQhFQgEAoFAIBDYsSxNTTuFmBkRKT4yYxpRMiZqRlPTMP75TlfypH6dRRGbWmgtityMRm2GSxiJ1iwnWmqxo5BCNEJoKHxGnxPYCoKQCgQCgUAgEAhsKV641Clo5RJBY/DpaNpmaJdjbFGtV9ferDU1rY7eCOqIzWKRMxq9WU60+MiJQhIh5DA1bTTKU6e3BXY3QUgFAoFAIBAIBM6YWsAYVy6brlabDhhXYFyBthnG5WhXVGJIV1EfO4wU4RBIHK6pv5FCjURslqamIVeK8oToTWBjCUIqEAgEAoFAINDgnF0kgKqokCsbRzYvlsphhKiJEumqnqdOhTOLangcXgzJKmWtFkUKRUIkFRKFaJaHqE5g+xKEVCAQCAQCgcAuZNRyehglqtLhqO9rtM1HIkQ+WuSFkMVVdUJDZ7chw1S3WhD520jE/u9KDEmhtugMBAKbSxBSgUAgEAgEAtuYYf1QORYlasRRtczYvBFDpcsqYwQ7tLh2tkmX8/g6IS+IhpGgWhTFMvEW1kJWj4W0uEBglCCkAoFAIBAIBDaZleuHyiXpc8blVZTI31rMCvVDi3v4yCYS1IgiIpRMvDFCFT0K6XKBwMYQhFQgEAgEAoHAGlmufmhxZMhHh4rKSGEoiJp0uWXrh4Zpc6Npcl4cRUgSYhk19UShfigQ2HqCkAoEAoFAILDnaKy2GwFULptCp20lhqo6IuPyYU+iKjK0Wv1QHQmqbyMZj0SLQrpcILCTCUIqEAgEAoHArsI5S2n7FLZHaXtoV9UOVWKorh+yo5GhRfVDdcpcky5XRYIW1w+NWnEHAoG9RRBSgUAgEAgEdiza5pS2T2l7FLZHpmcZmJNoN8DYfFg/1BgmDOuHFDGRTEP9UCAQOC2CkAoEAoFAILDt8VGmAYXtUtoeuVlgYE5S2m5j3w2gRIwSKYmcIFIHQ6QoEAhsGkFIBQKBQCAQ2FYYW1RpeX0K2yXTs2RmltINMDar1hIomRCJFm21HyWTLd3nQCCw9whCKhAIBAKBwJZQR5nqtLzCdBmY4xSLokxSRESiRSI7KLU/NHgNBALbgiCkAoFAIBAIbDqjUabS9hiYKspk+1Utk7cBj2RKJFLaaj9SxKFmKRAIbFuCkAoEAoFAILBhOGfRLqMwPQrbraJMJyjswjJRpjREmQKBwI4lCKlAIBAIBAKnhXGlT8szPtI0MCfJzCzaDtA2G0aZREIkWyHKFAgEdhVBSAUCgUAgEFgV5xzaDSrB5CNNA32C3C74/kxNlEkRiRaRbNFS+0KUKRAI7GqCkAoEAoFAINBgna5S8nyUKTNVXyabYWyGxSAQqCrK1FL7UCIJUaZAILDnCEIqEAgEAoE9SB1l8hbjPQqzcIooU0pLzYQoUyAQCFQEIRUIBAKBwC7HR5l6jc14bubp6+PLRpmUTEOUKRAIBNZAEFKBQCAQCOwSfJQpG+vLlJmTZGYeYzO0ywEfZVIiJRItWvE0UoThQCAQCKyXcOUMBAKBQGAHYp0epuXZLrmZZ6BPUNoBxuZYNACRSFEyJVUzdESMEHKL9zwQCAR2B0FIBQKBQCCwjRmNMpW2T95EmeaqKFMBOISQvpZJpCHKFAgEAmeBcJUNBAKBQGCbMBplKptaphOUto9xOdb5KFPtmJeqaToiCVGmQCCwYynykvnjC9x24gckh45z8JJLt3qX1kwQUoFAIBAInGWccxiXjwgmH2XKzRza5Rib4xZHmVSIMgUCgd2BMZaF411m75jjxK0nGXQziuQY57ezrd61dRGuyIFAIBAIbCJ1lKmONDW1TK6HtstEmeQUSh0MUaZAILCr0MYyd3KBk8fmuf0HJ1hY6KOdI+4kyAMp85nhRBGEVCAQCAQCexJts6HNuOkxMCfJzex4lAlJJL1jXhJNoUS81bsdCAQCp422Fm0tpbFoayitpTQGbS2FNswt9Jg92eXkiQX6gxxtDCJWRBMRUkpAgzYUaHplsdWHsy6CkAoEAoFAYJ1YZxrzh/EoUx9tM6wroerLFMk0RJkCgcCOYyiQTCWSLKX1AinXmoHW5KWmtBbj/OPWOqxzGGPIujmD+QFFP8cWhjhWdNopSRQhBFgBJYYSS0bJgiw5ZvpbfdjrIgipQCAQCARWQdu86ctU2h59fWIYZXI5zi2OMk2GKFMgENiWOFcLJB850sZWt/7vTJdkWpNr0wgp4yzGWhzg/wNSCCIl/a2QpCoilY6il9Of6zM42SPPS5SQ7Ou0kFMKLSwFljlyBmhKLAaHwyERlMJinNvK07NugpAKBAKBwJ7Hmz8UGJc39Uy5mWdgTlDY3qIoU+wFk5wkEiHKFAgEtp5aIJWVIBq9XxpDrrUXSEZjrEVbh7EG4xzOgRB+OxKBUhIlBEpKWlGEkoJISkS90ujrWsegl9Od67JwYoGsX3hh1I6Q+1K0tCxQUGDQWCwOASgkMZIUgcRvt2Tp9rc7QUgFAoFAYFczKpKMK9A2HxFNAwrTpbR9LCXGlWibAw6BIJItlEjpROeEKFMgEDjrOAelNU3NUTlSi1QYQ1Z6cZRrjXHOCyRjsLgmgiSEQApQUhJJL5LakSJSCVKIZQXS6vvkKLKS/vyA+eML9Hp9cmsgVdh9kkI6NAUai6ASZ0jaKCS7a+IpCKlAIBAI7FiWF0n+fmn7FKY3JpKs1Vg0AtHYiytipIiQIiaVLTqhlikQCGwyXvQMTRmGt9YLpCrFrtA+amSquiPjHHXgRgBKSJSUKOkjSIkSROnpCaRToXPNwnyPEyfnme8OyEyBjgVuQuAigUVXokkQI2mhEDswyrQegpAKBAKBwLZkNZFU2D6l6VLaAYYC6zTW+oz7mqFI8kIplS2kikIvpkAgsGms5mCX6zrFrqQwVe2RcxjjU96ccwjhpYeSkqgSSbGStIRApSlKnj1h4pwjK0vm5rvMznU52evR0wVOgmgplJJEwosmH2va3aJpOcKvyTZD25LjxfeZjA4wEc1s9e4EAoHApuCcxbhyVZFUVJGkcZHkf6ilkEh8FEmJmFi2kSpGCrW1BxYIBHYli6NGZW3YYCyF8Q52WakXGTR4ceQEwxS3KnKkhCRRikhKpJBnVSCthLGWzGgyUzLX7XFyoct8b0BRljggiRXtiZRIeNG026NNayEIqW1GZrp8r/91AA7ERziYXsBUfDAMDgKBwI7Bi6RiST2ScUVTj1TYHhYvkIwrcVj8UMMhhfICiSCSAoHA5jHmYGeWRpIGuqwiSKYyaFjGwU54gTTqYHcqg4btgHOO3GpyY8hMSVfndLMBg0FOr5dhco2wkEQx+9udqt9TYDFBSG1DrNWk0QR35N/hWP5dpuNDnNO6iH3xYSKZbPXuBQKBPUwtknyD2ZG0O5dTmh6F9el2Fl+PNBRJniUiSXWq+qQgkgKBwMZQGzQ01t7rcbCDyqBh1MHOR4x2gkBaDucc2hlyY8itpq8LerqgdIa81BRZSdkvsJlGaGgpSZx0kFEQT6ciCKltSio7tNMptC1Y0MeZXbiNCbWPc9KL2J+eT0tNbPUuBgKBXYZztuqNVDQiSbu86aNUN6C1aIz1KXe1SBIIhJAjIikhVhNBJAUCgQ2nNJZ+WVZudj6C1NQfGU2htRdHtUFD3fyocrBTAuQGOdhtR4x15LYkN5rManplQW5LSmdxzoF1uMKi+yVlP8eU1ludpwmqHa7X6yEIqW1OJBNmknOxztDXc9zc+1eOZt/kYHohB5ILmIj27YovfSAQ2FysM026nbF5I5iGzWa7aDvAOI11JdaVtXnuuEgSMYogkgKBwNkjN4ZeXtArC04OMhbyjKzUqzrYRY1Bw+4RSMvhnKOwpkrT0/R0wcAUlFWEDSCSihiJKBzFoCRbGFAWGoA4jUgmk117fjabIKR2CFIoJuMDTET7yWyXHwxu5PbsZvYl53FOeiHT8aEwoAkE9ihDkeTT7YYiKaOoIklLRVJdkySQQqEqZ7tIpEgZRFIgENganINMl3SLgl5RcGKQ0SsKMl1inSNWilYUsb/TRu3Buh1t6xS9koHR9HROYQ2lNeBASUEsFB2VoKSkzEvyhZy5hYwiK3HOEcUR6UQLuQ0MLnY6QUjtMIQQtNUUbTVFYTNOFLdwPP8+U9FBDrXuxL7kMLFsbfVuBgK7Gm0tvbJAO8u+pLWpP+ZeJC1tJKttXomkLtpmy0aSxkVSTCRSlJxEiij0SQoEAtsC56BfFnSLkm6Rc7Lfp1dqCqOxQKoUaRRxMJnYFs52ZxPnnG+2a33KYs/kZFpTOoN1FoEklpJEKjoqbqJKujRkCxmDhYw8K7DaomJJ2k6QKlz7N5IgpHYwiWyRJOdhnKanT/LNhX+hE81wKL0T+5PzaUdTW72LgcCOxjpHryzolj6lZKHIOZb1mMszBlrjcEwnKRdOznCoPcHBdofJOF3H9vWyznY+ktRfRST5H0sloqaRbCRTFEEkBQKB7Y1xjl5R0CtKFvKcE4OBN37QGiEgVRGtKGKmle6pdLPFhhA9XdCvDCG09bWokZTEQjEp0yXRJGss2SAn62UMejmmMEglidMI1QnZBZtFEFK7ACUipuNDuMjSN/Pc3PsaR7NvcSA5woH0AqaiA2FgFQisgnOOgS7pVqKpW+acyAYcz/pNd3lbCZhUKVoqYiZtIYGFsuDLd/wA52AqSTnYbnPh5D72pwkzqUKgx5ztjM29BbjrU9rM90hy3gJ8lCCSAoHAbsAbQxR0i4L5LGc2GzDQvt+SRJBEik4csW+PCSdjbVPX5A0hcjKr0ZUhhBSCWEhaMiJS0tsILsJZR5EVDHo5WTejLDRCCOIkIpmK99T53CqCkNpFCCGZiPbRUTPkts/R7NvckX+XmfhczkkvYiY5FyXCWx7Y22RjgqngZCWYBrokM5rSGIBKMMVMxCkHWxNEI+l7zjkcBY6c/apkX+pNHPrlrdzSW+DmhR6RNLQUzCQRE0nERBTTUhEImnqkIJICgcBuozCGbl7QK0tmBwPm85ysLNHOooSkFUdMpymx2jtRktoQIrOawpT0dEm/MoSw1oLwKXqxULRVjFxFADmHr3vq5/QXMsq8hKruqRXqns46YVS9CxFC0FITtNQEpc2ZLY9yovgBk9EBzm3dmX3xYRLV3urdDAQ2lcKYKi0vp1sWzBUZxwY9umVBpjWFMQghiISgVYmcfWmLWA5/3IeCaZ7SZjgyjOti3QKOAksJlIDAOVAKZiKFIMLYiMw6jvYdtgepckzGgnNaE0ynLSbjlCTkqgcCgR1MbQzRK0tvDNEf0C0Kcu0d9WIpSfegMURtCJHZkoHW9E1ObqsUPee8IYRUTKgEFa/tvJSloajEU5EVWGNRsQp1T1tMEFK7nFim7KvqqPp6jm91v0RbTlX9qI4wEc1s9S4GAmdEbfxQ1zHNFxnHsj7zeUZmfNqEc6BGBNNUOyWRqkl7cM5WgmlhRDAtYF0XR46lAPwPIEIhSBDEKNpA5LezaBJQKUgUEAMOMqvpFgXHswESaMcx+9M2+1ttpuKUyThdLnMjEAgEtg3eGKL019y84MRgQL/0wsk6R1I56k10OnvGGMKOGELkRtPVObmpDSEcAuEFpVRMqnjZFL0Vt60t+aBg0M3IBhmmsFXdU4wKzXK3BUFI7RGUiJiKD/paEDPP9wdf57b8JvbH53MwvYDp+JyQVhTY1tTGD7VoWihyTmR9TuYDBkaT6bLpRt9SMa0o4kDaIVGqSZPwginHsoB2GdbVgmkBR1mJKYNwAoSsBFOCYgIhoiViac0IaKnIp/ZVxzLQJbf2Fvhed45EKibihEPtCaaTlKkkJVXh8hwIBLYWO2IM0c1zjg98fVNhNDhIo4g0Ukyne6O+qTaEyCrh1Nflugwh1vQaK9U9pRHJVOj3tN0Iv9R7DCEEnWiGTjRDbvrcnn+HY/l3mY4Pcah1J2biw0Qy3urdDOxhFhs/9MqC41mfE9mAgfZpeQY/y5dKP/s5k7Q43J5cVjAZN6CwAyy9JiXPiyaDcICIGsEkmUQIdfqCaY1IIZiIEybiBPBpiH1dcuPscQTQimJmEl+bNZUkTCYpKvx4BgKBTUZbS6/wEae5LGM2y3wqtNZIIUkjRSfaO8YQo4YQA+vPS241pbXA2gwh1oJzUGYF+aAYr3tKQt3TdicIqT1MqjqkqoO2BQv6OLMLR5mI9nMovTP7k/NIVWerdzGwy8m0plvmTZTpZD7gRNanV1bGD9YbPyTSF+AuNn7wgimrBFNWCaY6Jc8LJp+SB4gYQYyghWTqrAimtZIoRVIVXlvnyLTmWNbnaL9LJCXtKOacVoeZtMVUktJWcUgDDAQCZ0xhTBNxmssGzGY5uS7RziERtOKIqTgmarV2vXByzpFbQ240hS3p6oKBLpsUPaoUvXhRz6YzoSyquqfugGJQYm1V99RJkHuopmwnE4RUgEgmzCTnYp2hr+e4qftlblUTHEwv4kByhIlo366/gAY2l6Hxgzd/mC9yjg16LJQ5udbkxoDAz+wtY/zgnGkEk3MZmelj6VaCqfSCyfm0iqFgaiOZ3laCaS1IIejEMZ3YR4a1NfS15ub5kzh8iqC3We8wHfs0wCj84AYCgTWQae0jTkXBycGAbpEzKDXGWSLpr78z7faeuKaUlWjKrWagfbPbwuomRU+JyhBCJhtqlGG1Je8X9HsD8n6OKS0yCnVPO5UgpAINUigm4wNMRPvJTJcf9P+T27Ob2JecxznphUzHh5Bi79iVBtaPsXYsJa9pYFt4wZQZ3ytJsrzxg3MaS4aji20E0wLW9YYRpmpmcCiYOkhixC794Y+kYjpRTCepd8gyJbP5gDsGPS+6opgDrQ770hbTSUonSkK0KhAI4BwMamOIRjgV5NpUxhDS15LuAWMIYx2FLcmtITMlPV0sMYRIpCSVEZNnkKK3EtY6ikFB1st83VNphnVPrb1d9+Sc8z/rWGJZ4qpMlJ1CEFKBJQghaEdTtKMpCjvgePF9jue3MBUf5FB6J/Ylh4llutW7GdhCrHP0tf9xrqNMxwd9ZvOMvinJdekN7gSkKqYdRexPWyTK1zEtFky5rQVTfwXBlCCY2NWCaS0IAe0oph35aJWxloEpuaU7y3cXfArkZJJwsNVhOm0xHadNymAgENjdWOe8o15RspDnnBz06ZeaXGsQNI56U8npmSDsFJxzlG4YbeqVBQNTUliDcYsMIVS6as+mM9sPX/eU9QsG3QFl5icSoySiPdFC7PD3YCiAlt63/s74chzOOqyr17e0ZElLZXRUxnTSozVxknz+O1txOKdNEFKBVUlkmyRpY2xJz8zyrYXb6UQznJPeif3p+bTV5FbvYmATGTV+qFPzTmR9jmcDMl0yMD4lRACpjLzxQ5zSateCqfSCyXWxZBS2j2Ue6waVYNKVYJIjEaYJJMmO/5E5GygpmZTeOh1HM2g4kQ2QwptW7EvaHGi1mUpSJuNk0wYNgUDg7KKtpV8ZQyzkOScGGZkufY88IFXVNXmXG0MYa4cpenW0yQ5rbL0hhK+zjYTY8GjTYspce8vyhYHv92Sdr3uaSLdF3dPaBBCAv/UCyAv1en1nHQ5ffrx4/erekteVwtJRBRNRwUScsS/t0ZIFidQ4oCglbZXTL/NNPf6NJgipwJpQMmZaHsJGloGZ5zu9r3I0+yYH0gs4mFzAZHRgV1+o9wKZ1vT0MCVvNs84nvXol14wjRo/tFREJ0440OoQSYlzxYhgyilst4owZVUPpkowCdE45AmmqghT+NxsCMIPnNJFFuu39Re4pect1jtxzDmticq0IqGlgkNnILBTKI3vmdcrKke9ge+VVxqDqhz1JuKYfbvcGMI5523HTX5WDCHWgtWmijxlvu5J13VPyYbWPVmvbLxQqXyUXC14lggah+//O3zc1vdhzQII6jJj0WjQuneiQAz7KEqB8GuBAIWhrXJacsBENGA67pHIkkgYb+zhFAOnWNAtpAKRWiZTA0m2YefrbBCEVGBdSCGZiPbRUTPktsfRwTe5I/sOM8lhzkkuZCY5FyXCx2o7U1pTiSUvmuaKjOODHgtlQaZ9DrkAlPBucS3l7cVjpbCuwJHhXA9LhnY9cj1fGUGUQJ3SJ6voUoJiCoJgOusstlgvjWFgNN+aOwH4FMGpJOGclu9dNZEkRKGXXCCwbciNoZf76/TsIGM+z8nKEo0jQtCKY6bTlHgPpO822RE6Z7YcMDCVw10lmibl2Xe5s9aRD3Lybs6gl6GbuqeYpC3HRNyYyKkEEFRRHipxNBId8oJpKIRsJZx8YqJrvJVGo0bLsZIAAuGzEwR+grMSRSNPWh8OInyaXlvmTMZdpqIBaVyghMEKQWElfRRWRkjpQDqE0CSU1TkSKGVB2FO82PYijHgDp4UQgpaapKUmKW3ObHErJ/JbmIoOcKh1Z/Yl55HI1lbv5p6mNn7olQU9XTCfLzZ+0Di8xW0tmM5pTxALCaL04sh1cWQY16XQ3UowFYCfURJN09oYRRuIgmDapsRKEatx04qT2YDb+z2UlHSimIOtNjNpm6k4pRMFi/VA4GzhHGS6pFeW9PKC44MBvcL3zXPOESlJS0Xs77Q31EFuO+Oca1L1ZosBfVNgnfNOeipBxZt/HupIDs6LG2scRV6Q9XIG3QxdlFggihQyVjggLzU29+LGukUCaJgPNxRWK7y21ziVFGoEkDdrQjYr+L/rJ5wlrLMkrqStBrSjATNJl4k0oxUVSOEwQlAgGTiJERFC1MdpkE6CE2AlzolGPAIrnovtTBBSgTMmlin7kvMwTtPXs3yr+yU6appz0ovYn5xPJ5rZ6l3c1dTGD3WUqVvmnMgGnMz8rF2m/YVe4o0fWsobP8RSIUSJY1AJphzjFhjYbtXMtk7JA4QaiTAFwbTTWWxaoSvTiu8uzGLnZ0mVYjJOONSerGqrUhK1NwZvgcDZwDnol75/00KRc3IwoFeUFMbXiyRKkUYRB5Pd76g3inOOzGj6xounni4wzhBJRUcl67Jlr+t4rHVj6W1YH+FxdjTlDay13gyh/uesrw3CYUqDzjV5VqBLP5EopfRpewLK0kDp09/Ho0DVbRXxkYJKBI2nwW1rnMNZQ6oy2qpPJx6wr9WlkxS04hIhLdpJCqeYtwqH8EKpunVW4Nx2P8jTJwipwIahRMRUfE41izTP9/r/ztHs2+yPz+ec1oVMRQcRIXXotKl/YBYK38C2VxacqBrY1nVMtor3JzKiHUVMxynnpG2k1FWEqVdFmBbIxgSTrWqY1EiEqYMQ0fa/yAfOmEhKpmTKVOyjVbnVLBQFx7M7kEA7jtmfttnf8tGqyTgN0apAYB0Y5+gXBd3GUW/AQGuKylFvrxhDLIdvhOtrdGfLAX1doK3va9VWEUqkOGsxxlGUBmMtzlqfFleZIHjxY71osrZKn/MCqa4FGq0rWj72IRByKG6cdZhSU+baR56sQylJux37NMLd+DY5hxUaSUE7zmipHpPJgAPtPmmkSZVBCEduFbmJOGlauNKHx5zdjSfk1AQhFdhwhBB0ohk60Qy56XN7/h2O5d9lJjmXc9I7MROfSyRDkftq5EaPOeWdzAYcz/r0y4KB0ejK+CESinYU0Ylj9qctlKxd8no4crSbJ3c9rMkrlzyDcAKalLwExUQQTIEGIXzT39Yi04pbewt8rztHKv3n7VDb11ZNJWljcBEIBDzaWnqFbxExn3nznkFZUhqLFII0UnTiiH17UDhBNTFYlswVOXPFgG6ZUxiNdIIYibCC3JT0TYatHeNGIktDIVTFf6S/7035vBCSCFQT/RmaIqx2vp21lIWmHJQUWYHRFiEFcRIhd01U3oG0CGFwWJzQKJHTSfq0o4ypOGMmzWgpQyQdzkoKE5GZhPlCgdst52FjCL9+gU0lVR1S1UHbgvnyDk4WtzIR7edQemf2J+eRqs5W7+KWUhs/dKuGifNFxrFBn4UyJ9PezhXnIwatasZyOk6IlG4Ek3EDLD1yt4AzvgeTF0yAiBrBJINg2hgcDHoDuif7DLoDpJJEsSKKI2QkkUohlUQpiZQCqeTYv502aBozrXBQWENfl9w4exyBt1ifSVIOtiaYShImkxS1w44xEDhTCmPoFj5Vb24wYK42hnAWJSStONoTxhDWOqyxaGOb+8ZYrHFoYxmUOd0iZ17nDJymdBrhBJGVyMruIB8RREJ6UwSlBEJJhBQbfg11zkeeiqykGBQY7ScqVaRI28kO/c10IBxCWpCVgYPQIEqQmrjp31QwE+dMRiWpNEjAOkWuYxaKFtrt7s/rRhCEVOCsEMmEmeQw1hn6eo6bul/mVjXJwfRCDqRHmFD7dtwAcz0Ya+npqsN8mbNQ5Nwx6DFfeMGUGQ1QDUwj2irmYKvlu3yLHOf6lWBaoHA9cpP7prV1nkLTg6mFZAoh1A69+G9fdKnpzfWZP75Af36ANZYoifwMqXGNLS0C6upZIQVCekHlBwQSqQRRrFCV+FKxQspKaElZiTGJkhKhRLN8W1A19ayb/FrnyLTmWNbnaL9LJCWdOOZg2mFf2mYqSZo6rEBgt+CczxroFSXdqr6pWxRkpcY6RyQFaRSzr9NeV03PdqWuGzLGYqwXRcbWAslSaosuDWWpsdW1sE61cw4MlhzNQBhyqbHC+aiciGjLVpUmJ856unCdtpcPCnSpcdahIknSije919TG4RDSeLEkLUJahNQgNQjjrdHxzngdWdKSJfvigo7UpMqiBJROUpiYuaKF2cJok2tud5blRBBSgbOKFIrJ+AAT0X4ys8At/f/k9vxm9sfncTC9kOn4HKTY2TMgzrnGJW+uyDie9bm936OvC3KtMb4Uk5aqrcVjDikBIse5DOP6WLpo16W0pRdMtddpI5jaSKaDYNpsHAy6A7qzPeaPL1BkJSpStDotovjUn1NbdW+3pkpLsc4POPLS29pa64ufoRJgw1lYIYUXVtLPwtbiS0WKOI4QSiIjgapEmKhE2DAStvnfIykEnTimE9emFYa+1tw8fxLHSVoqYipJOdjuMB37NMDdMLAM7C2cg0FZNSYvCk70B/TKglz7gWosJa0o4kBnZxlDeHFkMMa70Vlj0dZ4oaQtZWnQxqC1HdYg1ZNGI8g6cqT8NSsSAiugEJBT0nMlJT7a0SbxqXtbJFSsMZS5phgUlIXGGuuzCpIIuW3fuyq6pAwIL5YQGhEZUAbhq8HA+d8TYyypNXRESUdVwinWpJFvbVLU9U15VI1GzuqRNGMWJ/znyApAOKwAJx2ZNGd1n86UIKQCW4IQgnY0TTuaprADjhXf41j+fabjgxxq3ZmZ+FximW71bq6JTGvmi4z5IudkNuC2wQLzec5AlxgckZBMRAmTkeJg6hCy9I1q3fGqaW2PgS1xFFUkQ4wIpk7VtDYMPs8muvDRp7nj8wzmM6x1pO2EqQOTw14ba8D36VCsJ7W+aZpoKtco4zDaNDOm9exwsxtVo+PhYGYYAVNRHflSqDiqRJZE1KmH1T9/XyDlmQnzSCqmk3GL9dl8wB2DHkp4m/0DrQ770hbTSUonSnbOxG9gz2Cdo1eU9IuShTzjRGUMkRufap1EyqdZp9uvvslZ54WRHYkeVel1xvjIkdaWUlfRI2uHjnVNRN3fSimR9a0URFGMkKxov26cZUDJwGp6rqB0fuAeo5gg2bJzVdc9FVlJWdU9SSlRsSJOt9EwWFTRJVFHl4wXT1JXkaaq/W5tsmHxNuvG0qZkItJMxgX7JnLakSZW/nei0F44LWQpZ2PmtRFLomoWPHorXPNYva4YfaJotrBj2EafoMBeJZFtkqSNsSU9M8vc/O10ohnOSe/E/vR82mpyq3exQVvLQuEjTXN5xtH+ArN5Rl+XlNbPuLWimI5y7EsdQmQY12sEU+YKnClXEEwzQTBtIc45BgsDFk72WDjZpayiT+2pFuos1jUIIXyNkQRY2+s6vLhypoqAVak1OitxvdyLr6rBo38RfL1xFe3y0S+fhqiUGkk9VEvrvqpZ51PVfS22WDeVxfot3Vm+u+BIVMRUnHCwNcF02mIqTpqUwUDgbKKtpV/4iNNClnEyyxhoTal9g9W0Ek5b5ajnqsas1njHOqsdxjqM9dEko42PHpUWXTvX1TVKi6NHVc2RqCZcIhWNpB6v/9iM82l7fVvScwUF20Q8OYcuNGVekg8KbGlAgIoj0vZW1go7H1VSFqRBCOujSkpXBhAWIUZ8BS1YK7GFwxiB1Y5IWNqyZCIumUpz9rVyWsoSKYtzgswo+iahLOtmUxt+BEuiSrVIcoyLpSVCya/Q9NzdDSOeIKQC2wYlY6blIWxkGZg5vtP7Krdl32J/eoSDyQVMRgfO6kXZOUe3LJirok139Lscy/pVSofGCUiVpKMsh1oaKQusW8C4eRwDMleAM9WVJKlMHyaQJKEH0zaizMum9mmwkGGdI22tP/q0lQiETyk6DfFFJbpcZRtcFiV5li+t+wJwbmndVz1bvYa6r1RKWlEbKaHEf7+OZwOk8BMQ+5I2B1ptppOUiTg5rYFdIDCKc9A18xQ2R1b/M84xKAyZ1izkJfN5TqEtxoIUklTFTMUxUau1qb85rqk7qiJIuqo7qpaXpUFrgy5Ns049STI6aS8EzXdSSUEkBSKKkcofz0bjxZNhYAu6rqSk6n21xeIJ6rqncqTuyZtGJO2zXPdUp+BVRg8+uqS9aBI+uuRGEuuclWAF1iisYZiVYC2JKOhEXjjNTGZMJyVpZFHCYawgN4r5MsUUG/denyoFz8/Eja/fBJMc3h3Y7g6hdCqCkApsO6SQTET76ah95LbH0cE3uSP7DjPJYQ6lFzEdH0KJjf/oZrpsRNOJbMBt/QUWipyBrguIoRNrZhJN1Cqw1KIppyAHQ7AV3yE4W0WfZnssnOhS5iUqVrSnWyi5N6IijfgC1hMI2ui6ryhWuEgxrwbcwUmshDSKmags1ve1O8y0WnRaKUqpkAoYWDN90+N4fgcn8mP0y4LCGrJSk+nSu8oBSihiKYmiiFgqQFAg0E4hjUTU8ksohFDV5Ip3mPMG2yP3hUA4UUWPqtQr46NHPprkvyu6NJS6EkdmpAnsaPRI+NRgOTJxEUdRtUye9e+BdY4MTWZLuq6gcFV9mJB0tlg8DeuecsrC+LqnSBIl8SbXPa1g9KB0VcfkmugSgHOyalArcVr63lbWjdSf+Xy9VqSZjko67ZIDrZyJqPT1TQK0FWQmYjaPsWdoDLFSCh4CbL3fcrju4siSsD7ktNcvyUFIBbYtQghaapKWmqS0ObPFUU4WP2BS7edQ687sS84jka3T2nZpDfNFznyeMZtn3DboMpsNmhS9SGpayvgLWlLixFzVzDbHoDG2bl6bVsYPIS1vJ1BmJd25PvPHFhj0BjgHaSdhamLnRJ+2mk2r+xoZRGbOcod0fNObeZFKxYSMmKmaBk+1UlqthDhNiGKJihRSKeJYISOFivwyVd3fbnUsgc0lNxknimPcOjjKQt6nn0sKDQ5BJBNaqk2kZBXxtJVLmGv+BxaDQbvh33WE1jpfS2RtJYDqwbBxQ/Fk/Wce60UVTvoZeueFlyJqIrYiligksVSNIKMRaSCc/3srrk/W+V88L55yCmewVd1vW0SbEu1aDn8uq3fHUjXY9ee8yAvKvNzEuqfljB4MItKN0YOQtl4TUTemdRJnRSWeqESTrfbbYo0/l9JaOrGmE5VMdkr2tzI6kSFR3nChMJLcRHSz5LSMIdyZpOAxFEthdLMyQUgFdgSxTNmXHMY4TV/P8u3u/6OtpnwdVXIenWhmxeda51gocuaLjLmRFL1+WVLYAkFBojQtpTnQyhFyAecGWHIchtIBTS+mKSAOqXk7CGstg4WMhRNdurM9irwgjiM60+09E33aas6k7ssaS241XWc4aXuIQZekK5iwkraRtKwkHhloNrVbldmGkL7PV5zGxGlMkkbeeCOSjQviqOhSka8TE1sw6x84M0pbciy/g1t6P+BEtkBWSKyRpJFkKo2Xpoo6h3XSRwO86VnT/NVaMTRp0LZpCOtFkq3GmaISWrXZixf+UgISmr7zwtfF+LSFUbm2aACLGI58Rz7TtZgCiXAS4RSiuu/Xq8MGVScmN7Ks7s7kKmF2iiGxq8TTwJb0XE4+Ip5SEaFOQzy5qj6zNkmAkckTW52R0Ya7tu5BVaUe18/3Tx3Znm/Eq6INqHs6hdED0iFG8inHoktm2OKhqWtqjsM7A9bHroRtRNNUXLCvVdBSmkR604/cKAZaMVckrOWA1puCN/bEbZSCV5VOAf5bspMIQiqwo1AiYio+xxsDmHm+2/83jmbf4kB8PgdbFzIVHWSgNfOVIcSJrM9t/S7dsmCgMxwZiSxJI1+kKUUXR9ZYjFshES5GkKLohNS8HUyRlfTmeswdmyfr5eAg7aRMT0yF6NMOoE49VFISE1FbzmgcuTP0MfScIxGCtoiYkQltFKlTqGbW1//L+5r+wqCxeF7yWpJh765INSlVKpaoKGqMN6LIux8OjTaGfb6U8m6IsrGfH3dFDFGxjaVJi3KOUpfckR/je73vc2wwS1FKcDEtpUh9QR6DIvc9jRoHO1O51o2Ytbh6Kr4SMFS1R4LGEVNFIETEuvTEyAz/qVbz8mr4JD/AtN7eGgPSjTzmGpO9en+HtSpyZKkYi24NBZmPkOEEpYPSWfqU5M5ihUMJRSoipBVeuFiDqep+awOM+v5SIeQnsbCnEEKL9t/vaNV0V9TLRNNrCvz3VTQProfFRg/Op+HVRg+Lo0tO4FwVVdIS55Z5QVufCztW11R3LImlYTopmYg1M2nOdFyQKk0kXSWcInplzKxd2RhiSQoelegQbkkK3pInbsMUvObTW0XC7Mj8gRMwqPpq7hS2vZBaWFjgJS95CR/60Ie4/fbbue9978ub3/xmfvRHfxTwH+CXvexl/PEf/zGzs7P8+I//OH/wB3/ApZdeusV7HthMhBB0ohkSMcVsMcfXe/9OZr5GXrbR5gCFTnCuQIqMNNakqs9EkgEFjqIyzVO4kJq3q7DW0p8bsDDbpXuyhy40URLRme6saNkb2FlECCIRMUGEE44CS89q5myOEJIUybSMmYxj2mlEu6lrWZk68mWNr6+w1jcc1QODNUPXQ1elcy0asjb3pRJNPZgcM+WoBFUVBYsaceaFmlSiiYKNirOl9vTDnmE7QZfZ5rwNB5emrq+rBtJ1b6I6/dPaofmJrZq+6koQG+P8/aqexFjLLLOc4Dg9umgD0qbEOCSWjHxkb4bDdSEkflwuGtOU+n3bSqqY6tJloyJszYJsKLh8VMfgqugSzmExaGfRGHJXovE1Y8L5kh/lg0XkxotWan8LO3JrvdDAeaME53wUzVX1Yk5V34UmXbGKlAmBcMoLo9GQykaxBqOH0RPprA8hLhtdGqWOno3VNVUCvFKJrcgwkWomYs3+VsZkVJAog6yMITKjmC/SJY1v15qCt4S6xeQ2E0s1zaewPhbANnVXrllJLJ3f2jFseyH1nOc8h3/7t3/jXe96F0eOHOHd7343l19+OV//+te54IILeP3rX89b3vIW3vnOd3LxxRfzkpe8hCuuuIKvf/3rtFqnVz8T2J5Y6xiYkn5ZMtAFs3nGfJmT6wHGZgjRR8p5IpmRJhGJnCQSKZIIRIxPz5us+jJtt8tN4EzIBwW9uV5V+5Qj8NGn9mQrRJ92MaKKHadSATEGR+4sd5ic2xgQC0VbKKZFwoSM6MiIeJmpWymrHlpraLK8EnX9Rp2WNLyt3BC1pciGj9V1NcsJMhh3YhsVZvV9FamRJs1RY9zRWNLL0RTHysK+3lYTOZOVJhRjjnBusaCpZ9xH+pjVAskYi9ZmifOcMT79rXaY87b8DKMWTSSDKmVK+AGjGxGpohI7VZSi7pVmccwxzwlxnIFcwDlBQodOFDXrglhf1Gg7U6UT4micNEcjQFBHh+paxNr63DbPrSMkGouWlkJatPD1PziBdBLpBEKAQVRC3fnrZ6WDhHD+nPoySR8dEyAwjeIbT1Ucx9XFOJVqcHUqo8OLsSZdrg6/jEaBRJWzVt2vn3c6Rg9WDpXLKtTf52Fdk/NCtBYvODqJYSIumYxL9iUZnbgkkd4YojSS3Ch6ZerbEY+KJTHsqzRq8rDk5C1KwdvOv2bLiqYqcjYqSkVz/oaRX6D5PK3hrdlWCNfYK20/BoMBU1NT/PVf/zWPfexjm+X3u9/9ePSjH80rX/lKjhw5wq//+q9zzTXXADA3N8fhw4d5xzvewZOf/OQ1vc78/DwzMzPMzc0xPT29KceyVrrlSb4+dwPTySGk2MP1G8438+yXJX1dMl/kzOZ9ctOnNAOELIhEQSwzImmQ0k+b+dkwhXG6yutuk4h9JHIGRXt7X4UC68IaQ39+wMLJLt3Zvo8+pTFpOwnRpwAO16QBFs4igERIJmXMlEjoSB+tktv0ojBalG4MVXPVOhIzkrpYRc/q+w6aGXIvZLyAgXqgI5r7o2lUYlSo1amIQlSCbhi1kUJCZavdRHRGomZ1GqOohE8tgJDeqETU2xTrjwLlRnNCz3GHuYO+mEcIaLkOkdzmc8KVkKxrZ4bpcIC1VWoh40KoMljwwnYohFxtgLHaDH6V+lank1oJRjlK6UWUrbSRahwHzxJiJErWpO2NRIcqsbZc2G1coIkqSiaaVLxmeW30UEfK1spYXZMbq2uqUdLSiQ0TiWYqytmX5rQiTSINDm8MkdmIwqhG862rXontGVVajBu5rVP06no/5CLRNCKcm+MS9QPV7YiAvPPkSb7y/R/iFY/6w808hDWxVm2wra8+WmuMMUsiS+12m//zf/4PN910E0ePHuXyyy9vHpuZmeEBD3gAX/jCF1YUUnmek+fDkP/8/PzmHEBgzZTG0NdeOHXLgpPZApnpUZg+ThQokZGIglZkmYh9KaIvmvX1TLgYMTL9qKoZHkPOwN5Obk8Qy2lSOeOrLXZCXkxgWfJ+Tm+uz9yxBbJ+jhSCpJPQmWxv9a4FthEC3+o69gUVWByFs8yagmNkRELSEoqZSlR1RER6GpNXPiWtHhiPRlrqqM0wWmUrdVNHcxxg6uhVEwUaih9nbSWMRgbeVBGG6r61jGQaiuFtFWkQkb8uipHoj48E1EoLHAZrGE4p4wf9dUSoPs56+7UwagQYXlB5sTSSnhipSmB5F8Vh2qNcNso22pesFnYO6OmC42WXE/YOcrmAUo4OHRRnqYZ1sRCijqwxLoSoG2PbxqVtsRDCjbjPrcQiISQkw3TOOjoHqx67FQ4tLIWwlNJS22NEzpuzbAluZMRcZ8MtXmW1p9d3RsTWaCremjlFXRMAEmLhmGhrJuKCqbhgJslJVUmkKmMIq+jaiFxHOFFFVCWgRl38hq8J2zcFbyVGznQTTGxEUxVRqxEAVowH1gRVXd/IbbNCfUEbfiZ2IttaSE1NTfHABz6QV77yldzjHvfg8OHDvOc97+ELX/gCd7vb3Th69CgAhw8fHnve4cOHm8eW4/rrr+e6667b1H0PrIy1joEu6emCXlFwMp+nr7sUZoBhgKRPJA2xNCTK+VlMInx1RMvfrkEI+We1iGQLQ0HhZinMLJGYIBX7iMU0Yi9H/XYQ1hi6cwO6JxbozvUxpSFOYyZmQu1TYG1IBC2haFXf+bKKVt3q+jjjo1VtFHEhmLARsRNNKpqpBsJ1uptxtcubrUsjqv5a/rVqIQX4aFA9ohoRI/VIo8lEq26FENUgmqbgXorhQFpUeVXDdUc2cJYYpue5RlC4pr+YRZcjj1fObNZVrmfNvlbCrolSVdEpAVJKrHAMpGUhKik6fURnQBQ5YpMACaXUlOixCBeycqarjQqqx0YzJ4fCdj1CaKQO5jSEEKchhE4Hi0NLR4mhUEPxpJwk2XJftg1kVJCdilPWNdF8VlqxoRP7xrfTScZkmtOSBiktBsHAKk4aRakT6ixFUTk01hMTOyEFbznc2O2Iq+RoNuaYaKoEoR1JnpduBdE0opBq0WTrB3c+21pIAbzrXe/iWc96FhdccAFKKX7kR36EpzzlKXzpS1867W1ee+21vPCFL2z+np+f56KLLtqI3Q0sxsFA+/S8Xpkzm8+zUM5TmAxtuwjhRVMkLZ24skiuo0xE3jVvA1AkKJH47iBuQNcujKT9TSNFuiGvE9hYsn5Od7bL/PEeeS9DSknaSYinOlu9a4Edjo9W+QkaKxwLWc73Bn0GuiSxiv1lzITxDVqrcflwwF4tk82AHaKq3mgogob3d1sEvI5CbQRekNgqtc0ycJYFVzIvSsp0gGr3iSKNLCJcT5E7A26w+kZrIVPnj40Iqdo9zlm38vNHBK2fUQchZFMfBMP3fqsZFU+ltBixS8XTGhmva6pSYBenQkoQClqRppOUdKKCmTRnIipIIo0UjhJJZhRdG6O1HAZQ6hS8bWAZfrqMJk82LoCMCCbAyXHRJBxNtKkRR3W0afQ7VoumJmQ1stFdyrYXUpdccgl///d/T6/XY35+nvPPP58nPelJ3PWud+W8884D4LbbbuP8889vnnPbbbdxn/vcZ8VtpmlKmoaB82ZQGkNPF/SLjPlygbl8jsz00baLY4AShlhaWpFACVUl37SA8dS8zUKikGISJyzGZfTtrWTuOKmYIZYzRHS2xY/jXqaOPi0cX6A318doH32a3D9x1hpABvYOeWno9nIGWUkk4GDcIosNcy2DsJIDNtmTA9KzhZDgnGCgDF1X0kNTphlJq0+SlAgbQZn6aNVafrbrMbMbDujq6GAd8YLtI4ROBwsYaSmwlXjyKkE5SbKeuqCdzip1Tc7noA6FcOJoRyWtuGAyztmX5ExEmlh6owxtfX3TQtHCVu6DdQreTs1bGa82WySYGNE3ctQkpPqv8+m/ok4TXiyaVkrN2+WiaTm2vZCqmZiYYGJigpMnT/KJT3yC17/+9Vx88cWcd955fPrTn26E0/z8PF/84hf5xV/8xa3d4T2AsZZeWdAr+3TLBeaKeQa6S2m7ODdACEMkLLFStKMIQVKl6MVb3lNFIIlEByXaWAoyewe5PUksJ0nkPiImz4qwCwwZdDPvvHe8S97PffRpIiWOd8xlKrCD0NbQ7ZX0+jnGOtI0QlXGBx0itHPMyoK+0By0KdMu3rAoTMDj+xZp5pwmQ0NcErcHtNPcz34XLT+gWw+iihSM/cbs/PfNAVpYSuEd90bFU+zULjjCNWKprPAt2ng7d+9450AJ7y8hQUjDRKTpxCWTquBAktNSmlQYnBPkNiLTEXMmXfK93mm//G7R7aqiaSzVrhZAAuEqR8Z6K6pOzXNnLTVP4PtuyR3mhb7tRyif+MQncM5x97vfnW9+85u86EUv4od+6Id45jOfiRCCF7zgBbzqVa/i0ksvbezPjxw5wpVXXrnVu76rcA76ZU637NErF1go51koFyjNPNblCFGihERJwUSUoEQbiAG15aJpNQQCRYqSKYaSws1TmHmUaJOKA8RiEilOo5g1sCZ0aejP95k/vkB/foDRhqQVM7l/0s8YBwIbjHGWfr+k288ptSWJFWm6dOgUIZh0ERmGW1VGz2oOupTU7dT56W2CcwywdJ1mAU2BIYo0aStHpAM/aCuSqnns3sYBRjhKYSq7cj/AlOxB8VT1FDPa4qzFRBbTook4RcILpwlVMhPl7IsLWtIQC4t13oY8KxLmFzW+3WnncKUo0+hj46Jp+Y3U9vbUBhlbkJoncSTSkEpNS5V0VMmhuMf+tLspr7dZbHshNTc3x7XXXsv3v/99Dhw4wBOe8ARe/epXE8d+cPsbv/Eb9Ho9nve85zE7O8uDH/xgPv7xj4ceUmfIoMzplQt0dY9uMc9COUthumibgTBIIYiFohXFRGLCp+jtcOMGRYwScVNH1bPfQ4nW0D491FFtDA4GvYzuyR4LJ7rkgxypJK1Oi+gM+vgEAqvhcAwyzXwvpyg0kRK0W/Gq5UsCQZsI4xzzUjNwhgM2YcYl29Y2fbtinGWAZd6V9DBYLIlyTKQZrj0AaaCMEXZvXwOG4slSSDMinsQeF0+1iQGYNtjIcSDKmVSafXHGdKxJpUbVjW+tYqFI0TtUkC+OMtWm4otFE4x4byz5cLgR0QRjVuNbkJqnsKTSkChNW/ratFhYlLBYBNopYuxY/6+dwLbuI3W22Ot9pHKd0S279MoFeuUC88VJCtOjtDlQgpBEIiJSKbFIfIreHogWOCzG5RiXI0VMIqartL/OrisePxvoUtOb7zN/bIH+QobVhqSdkLSSEH0KbBoOR1EY5vs52aBESEGaRKf1Fc4wFMIy5SIO2pS22/ZzkVtO4SxdV7KAJsP380qlQ7VybKsHyoCOEWZvCyg9Ip6MsFi8eIrcHpLsI+LJal/3BDR9zJx0lJGhneZc3FrgcDpACefrm4wiswq7A4XTalEmWCSemrqm5bbiEXBq17yzMPKPhCWVXuB2ooKW1MTCIIXDOkHpFNpK36y44i4Ts/zfH/wQv3rZezZ/B0/BrugjFdhYnLOUJqenF+iVPfrlPAvlCQZmQGlyrNMgIBIxkUyYUPtQYm1W47sRX0fVJhJtDDm5O0mufR1VKg8QMbHjo3CbjoNBd0B3tsfCiQXyQYmMFK12GqJPgU2n1IZuP6c3KMFBmka+39Fp0kKROElXGAayzwGXss/GqB1XVbG5OOcYYFhwmi6aEkuMZEJISDNcq4eNCzAR5EtrVPYKuu71VEWefMF/LZ72yDmp2goYa7DlqHiiagztpYWJLMQFF7R73KXVpaUMs3lKuYNSbZcTTLC8aIKh9fjKosmNWOpXi7bINU8AsTCkygunCVWQKE1cRVS9cJL0TIJb9NleYr2+am+B7UcQUrsU5wza5gx0l26xQE8v0C1P0tc9SltgrKl6WSTEMqEdzRDLZKt3e9uiSFEixQqNdl0Ks0BEm1TuJxbToY5qEbrU9Gar2qeFAdZY0nbC1P7JPSvMA2cPYy29QUG3l6ONI0kUkdoYsSMRTLmIAsvtMqNXmVFMOG+VvpcxztLDMO9K+hgcjtRfPSEtvIBKcoSVkLf2jlgYYZi252ueLA6JQDm5d9JFG/FksaVpxBMj4qnGCR+F2tfpc5f2POckBd0y4o5s+7bAWM38YfE6DaLybxi7TI0/Y0w0bbFr3lh9kyzpRCWx1ESVkDNOUlpJ5pYbG1ViWThkFTETOKRwKOWIIn1WjmGjCEJqF2BdibYZue5VKXqz9PSCF02mQDvvUiNEQiwSUjVBHEd78kfsTJFESDGNw6BdRs/cghJ3jNRRtcfWt86RW01u9NCCt+5WX/1XVI0ZltaHivr/w34mix+n7pfSrL7sayxebzNwzjHo1rVPCxRZiYoUrYkWUbRzZg0DOxfrHP2spNvNKbQhjiTt1uml8Z2KBEnsBH1huEX22e8S9tuEaK9Fp5wjr8wj5tHkGBSCNhIpBC72Asolmf8dKtL1O/HtcEwTefKue0PxJIj3yuelsiq3xmK0wZqVxVONUZYozblkcp4Lkz44uGPQrhJEtwenSstbbv0mULSSaBJupK6Js+aatxoK64VTVd/UViWx9M7MdX1TYSIGzefZiyMlfXRJCP+uSTn0EmzGI66RVogdWCMVhNQOwjnX1OyUpl+ZQZxkUPbomz6FLtDWoZ1AEBHJlEhO0JJR1eg2sFEIFLGYwAmHIWdgbyO3J4AJcJOUJqms4QtKY9DWoiLZiKZx3DLL/HqCpeVYdaPPpWsPn9P8LUYfYURsNe0qAT/LLurmovWjYmRbYlSIiWbmVCLQpSbv53Rne+S9AuccSRoT709wQmAwgBnbu8V7P9xnsWT5ep6zVD4uXnf51wnsbByOLNe+H1SuUWswktgIBIIJF1FiOSZzesJwjk2YdBG7PTplnaOPYaEyj9BYEiSTRF5ARSU27eHSDIQFnSDtHhENePFkhCWvxJOrBo7KyT0lnpxzlWHEYvEkVsxOcDhsbDh3aoE7teeZlJrZIqWwWzdkPZX5Q31/ya97rXvGzCBGtlYtHzOEaFY5e6l5ixmtb2qrgrZaXN8kKaxiQOSjSjik8sYRokrnE3UUrTox1tVLASerfm87/zoZhNQ2xTmDdjnaZmib0Svn6JWzZGbAQPcZmBJtvTuNIyISKbGaoBMplNwjF+lNxOGw1o40/HO+0Z9zOFO/P5ZSW0pnKLQms12sPIp1lrJI0EUHihbSSXCQJDGdyTbpREKcLB+hqaNWS+ZjXD2HM/L4iE/M0pSB0fX888bvu5FZoPEZtdG/3ehKo8udpcxLBv2CvJ9jtUEoSTzha+r6aHB6uANjPy/L/twsWbZY/Iz+tfxjSx9fbR3Z/DV8jljyuGh+4EYfr0WlFIIWESl7KC1nm1GUhoWqoS4C2mnkG6+eRWIkkRP0MdwiB8y4mIM23ZUD5tJZemjmXEmGQSBIkXSq9GYnNbbVx7ZGnfj2Rtq4rSJPufCNcn3kiSptb/d9FpbFgaua42pjscY2l/fVxFONFY7JTp8Lp+Y4N+mTlQm3Fx3O5sTEWswflp36rHTPMEVvPMrUZJVsg9S8UQRVfZM0pKqkowpSqaueTg6DwFhJjgI3jCpFGOL6GJrIkmiiS9bJ4TBlZwWZ1kUQUtsMbTNO5t/iePZNSp0zsBmZLimNo7QSh0KJhFhO0FKSKN5DRalrxDEUPtYCzhew1h3PcV4k+ccdWIexDmvM0u7ozvn1nUNjMc7/UJZYNA4nHFb4a6b0cSqkhHakEZ1ZbCvF6Q62bFMWhpN3zKFmFe3JlM5Ei6SVjA36xlPyRhBL7mwJZanJuzn9hQFFViAcTCUJqrNx6VPLGYmumlteLV2+cHe5bfkfAbPCtpa8lht/ZOxx59/7lIgJEdEWMSnhO3k20NbS7RXLNtQ97W1i6UUFqY1IrVrX+ygQTBChcZyUBQNhOGgTpnZDI9/KPKJO3/PmEf54a8dNJy0u7Y848UWIcve3IanFUzEingCivRR5qsWT9VblZlQ8yVOLJ78JRxSXXDg1y/kTPWIcJ7IOZhNd+JaYHCxavhL10dRmEG6xaJLD+2KbpOaNMqxvKmkpzUSckwpDLA1UESftBGXVYEoAKC+cnKuT8gTOga0/44tO2i7WTUsIQmqbcSI/yfe636U0bZyLESImFm1ipejsEdE0Fg2y1n9xF0WDbHXhds5VNqkWYxzO2uFzqgJW5/zfOMcyY3QAb68qQCB9NF06jHQY4QdXZWVH64T/jxSKFmKYEgdIfFhbCUskJEo4ItUjkrMoBNakaNMizyLygaDoK2yakk62iVttRBRjkdWFafu8z8468kHOYCFj0MvQpUFFiqSdnpED2kos96N76lfZuvNlnKPEcMxppMtJUUFUbSLGWfqDkm6voNSGJFq+oe56cDhyqVmICwppGNiStomZ1Mm6HfkivBlFhuEHKmPaGg66ZEc28jXO0sdW6XsaiyNBMcXQzdUJi0tyXKuLi0swatc78VkcWvrvfSktRvihpXSSZK+IJ4aRpzHxRCWe1Dref2E5ONHlgulZ9kUFc0WLebNxw9O1mj8sl8nQPHdZ0eRGUxuq1PftkZpXU9cptZSmJTUtVTARFSTSoISPKJtKNGVO+XTMkaiSGz2OU7CXxNMoQUhtM0pjKY2mE02RyJ3XAPZU0SDn7Mjja4sGuUoArdTyTIgq/UpUdT1CVNapAqSPE/moj2C5cb91DoOPOBUYiiry5LAoLJG0TAhHIiyx8BelqBJMSdUXIZbGiygsUjiksMixsL4BYf3laUbibIS1EUUuMVoishiVJkRpgowjrIvQRBinMNV9i8Q6Vd3Kkb+F39N62QYJsbLQ5L2c/nyfIvf20VES0Z5KdvEQaf0oIVDVpXQoqspGVE3KmDYRSRBVZ0TdUHehn5Pna2uouxYMjl6U01clAujoCCMcvaiklIZJnZ5WdKpNhHaOeVkwcHpHNfKtez/NoSmq0v4WkkgMRYLDVQJq1Ilv9wooC2jpsxG8ePJ1IMpJkh3Yu+h0acRT9Y/KqXrd4qliIsk4f2aWc9s9CqO4fTDBmfx+LZeWB0vF1GLRNCqcatFkR9LxxvoyAYgRE+8tTs2TleudECCFJZKGlvLRpiZNT9iqvgm0k5ROMbAKnGSxHfl62KviaZQgpLYpW5VP7ZzDumWiQbYWN6cXDWq6ki+iMTgQIKofad98D6SQ3tigWedMf6IdEgtC44QGYbCiBDSRMCTCkghNWxoSaUmqC4+kEkZi/HLjoBIvAuMk1gkKFNb6+3bs8jzyLOEQQnthlThE7LClxvUNolcSpxHtdkQnkSgFohJndbmSqO8LgXOiOqoqHxl/UfTiS6GdwrgYQzQmtMaFmG+IZ51EW0HW1wy6GdlI9Cltp2e97mQnslhUFRjusCUSSasSVa0gqtbFWEPdrESIjTOSKIRmISoolCG2ElUNiJUTtI2gkIbZeEDbxEzo9TvyRQgmXUSO5TaV0XfeKr21DRv51r2f5ivziKb3E2qsYbbD4aIC1+7jkgGO3evEZwEjbGNXPi6edl6E8XRxFqwxvlGusbhR8RSd3vseSc15kwucPzVHrAyzWXvdaXyjomk584fFLP5Frte1wkcZm6/3mGhyw2gTMO4ecXbwImloFV5P1nrhVI1dVEkqDW2hSZRBYRAMbci7LsFt4LgyCKgh2+9qHjhtzigapL2A2uhokETBKtGgMz1iWUWBlLD+vjBNep0SFkGJlCVKaoQosRiEMAhqgeQQVYoeApyTGIQXQk6inWxE0vLCaL0IcALnkuoIHEIYSDQiEThr6Bea7myEkClJ2iJpxah4uRnxqvcCtrrQ2kpGWRKZk1aySVTnCSeqtANRCTHfJM+h0NpS5IZsUFIUDh1J3P4EqxK09VExU4tGOxRj/twMz5GpxFzAi6r2iKjKMfRtiapE1UQQVadkSUPd5Mwa6tY4HH1V0osKLI7ULPf9EiQ2wgh7xtGpupHvQtXId/82auSrnaWPYc6VDDA4IEXSYmkzdu/E18elg13rxOeoez0Z8hHxJJ0kdmrPfFNXEk9CCtRpiifwomB/q88FM7PMtDIWypj5wdpr6VzzbzzatFxa3rLPE+CEq/TQeGpenZY39IGofvPPQn/Yuo+Sn1T2IkkJWxk72Gb8JHAkVRZMXAmnWBqi6mxoJymNYuCSDRc7Z0087TCVFoTUNsRa39DU+yLU0SDf7bmJBtXhdWuxmxINUr5QdMOiQWtDMhREckQQqUYkGWKpiYUmkqZZX1SRI4fB4nwOOw7twFSFk64a/FOFs604s5D2xiBwLgIXQSWq4pYGSqwZUJSSIk+JohZJ2iFOI4QcXvkdArNcseda8pmtweQFRVZgigJnNXEkaLVkNeOVIUW/SRmoX7H+0XJOYJH+thKadYROW4W2kb+o2wjr1Ijo8s8bF2G7W4gtFlUDDD2riRDeqELGfrAdRBWwuQ11NZZuXDBQJZGTpHb1yIJyckOiU3Uj3xzD7TKjXzXy7WxFdMo5Miy9kd5PEb73kxJLj8tJ7Y0k2rvTiW9UPNWNcsG/Z0E8nbl4qulEJUemZjl3sosG7hh01pQKt5x4qlkh78PfiqFwalzzRlLzmm2chShT/TsqRprPCjkSXRr5na2e0Bx4LA0JhkRpOlITSz9JCpVwsorBJkVIt0LT2B2mpIKQ2mb0uxn9+QH97gmEU9s4GrQ2xFi0aDmBZIiFrjpimyqFzg7T6UaznYWPwVgnsFZigMJBaSUFUFp8Clv1HFlFmvwpEot3bBtSiyoAf5FNWhrn+ljTY5DNkuct4qRDHLdR8XIdw0+NKTV5VlIMCkzp+zupKEEkLUqgWrQGhmmPYiQFMhKWRGlElI39QNS/C6J6bi3ErBOVGBumSWqnvBirbo1Ty0TAZBMlG1229eJ4dZQQdKpLr3aWAZqeLYiQpERV+p8i3jOiqsrvryZAsqyg2/cNddNIMNGSSFFWnyHX3DJyv27gKETjJ9UMWBhZv5SGQZSTSktiRdNfT9bps9W6s/kEJ/POiKgfRqf6TXQqIbXrb2yeooidpN9EpxIO2PWbWpwOde+nOn3PYEmRY+YRo+x2Jz4tXJW2Z/a0eHKVeDKLxJOMNuYKpITlcGeBI1PzpEnBrE4py2jVbZ9KPC1Zt4ooWcF4at6i5q6bKZqWiyo1ZQFVSt7YQdS+FPVEr/XrJ8KSCu3rnBrh5HydnlPk1qfsbyY7S8psLUFIbTOs9he0JFZEMqlE0nYa97ulaXSLUuuiKmIUV64w9SClvqDU2/H/FU00oh5UlzYaDrDrYVFlCGFwWCza2ep+vRX/P4WvS9j0TpybzngKoJQOqTTO9SjLBUodo/I2UdIhjlogVx/QOWspc00+KCjyEmsMSimi9ExqTYZRqNO56o6mI47OysVSk1IiomGNWhMJE2IkIgZmJCI2TMtUaCcbIeYjYstFwIZCbHTZ2RRikZBEyObzPSqqWmORqlPNNjYeS0MBQVVPx7i4qP9GDAVMvW4tchdvY+XlI9uv3j9fh8iIiK5nYK3P72f4vLpI2gFaa/LCixQ5CbGSw4j5yPEhaI6nScVpBiXVrHOdxurqlF1HIQ259Gm9kasNWRxjW3f+uI50ZjmZT3Brf9+YoFJOoproVHZG0alJF1FUjXz7wnDQpkw6xWZc7Vfq/RSL5QdjO9GJz1afBSeGQ2/fBNVihcNVQsniBZTGYaSfdpNOIJ1oPhGaNc8mrZHTO29re9b6t+2sw5nKrtz6lH8BEAtfm0wtYM50OO3Yn+TcaWKOfe0+PSS3Fy1Aglp5601JQfV3c4SLMu3G65r86428tP+81s4RG0QtimrRhHAo4ZDSp9U32RtieEmCqp7a1iUCQyJhaEnt67OVJpUlUXNdFD7aZOIlz9sMgng6PYKQ2qZIKTfFWnopbsy2e7k6o0hoIqmrWzNivjA0YGgGtzAiirwY0kT+AlINWk954XdgsY1oKrFoN35Zr/s2RQDLpKLsPgS4GEGMUA7nNMZ2MfkCZRERxW2iqINUKeD71jgcpjQUWUnRz9Han30VK+Jk67/6DoFzqupuvv7n1yYc9Q/aUIiVpKKqHatnAV098B4KsdF0RFdFxWohVto6IhZVdXJqLP2wFmGuOtOwXDSkOcph5ARGBMxQjIwJFWdxwmKEwfsxCtpCkEpFC0lciZThtke3MbL9YaL/yP6N/L2MUBp9rF46MnE6cn/0yEeXL7XNHak6qGZex/8ujSXLNUVhcAIimSAklE5Us+PD13FueFb934wc+fLXlRJLpkoKaYmdRK4hlUgJw760x/60x4l8gqP9fZzMJxpJmtgIW0Wniio61TqN6FSCJG4a+fbZ52IObFQj3yr61HWahab3kxzr/bTkKVROfGkPm26tE5+PMiwSR6IWTL41BVisHE6o0dS++OdLYZGqREY5QvrfFCeq3m91DYyTzYDXuVpEDD+ffp2RdLHRz9vo8ubrM/IZHXm8FvWr/v5t8kjWOYvvLGLrH9Emdb/+Xlt3GgVByxxSS2ouai9wpN3FScdtZYJzCj8ntPQ1VpNt9lRayFWRpg0wPFnJ2GFxVKn+CtXv+2hUaaXJOAFVvyZNIjUdVZJIn0cDfmJQW0nfqrMmaraLeHLVd/qYjRFKb/XurIutH00FNpy11xkZlNQorI8M1BcN6oC6vzh5e23ZGDAY6roXsSFW29b5JoYGMFW0ydc5eQR1s9u1Nfbb/QiE8D3GnHMYXaJ1FxV1iaIYqWKcTSkHUAzAGIdSkviMok/bD4fEjAc41/XsJg1jRIhJHEqWpCofmpE0QmwYv6ili62GmKORHRiZjWT47XDDvEaED32MLa+3PypAfMND0M6nvfkGiYpYKGIiVP2qIwLFC1TZbKc52kV/+9ce//tsxr6NdQzykjy3WBsRxylS+HTdjQgIOCCXmkxqnHAkdu2pksYpTuaTRMJwIO1xIO1xIp/k1v4Ms5Wgkk7SMoJSWubijMLGTJTrj06NNvI9IYsmOjXtIk7n/TDO0qvS9/peOizp/bQcNspHnPjYFCe+RhyJYcSjqWHBYYSrjADq67+tg/NLvuL1PIGoPtcC4ffXWkSkEVGJjApQ3mnWOAlOoBpBU+sa/0pCDF+v+S7XLzJm1FN/d0ejH+PiafExN1sc+Q7W39lGrOEnd4ZiYOk2R7/Di7e5+DpQ/YxjncMa5511q1G/FHLTfgsklsOtARd15plIC2ZNTKajqkRp+KL1KMM190d2aPG+LbrOn+muj9qFiyo1vY4q1cYOguHbXr98XVYwfrVf5XXwjW8TYUhUSUeWxNI2BQg+c0KSu/isC5qtFFC2Ek26+meqfwiYsx1UUmzh3q2fIKR2AEvrjCxyLGo0rDOqo0lrqjMaqS+xdtifaDNTm1w1IPRpehaNxbjhBdV/l8RItGkXjfw3ASEEKkrAOXRhyPsluAFCOZSUJBMJiBRMjLM+AhSAWnCcqRATVfrYsrPVG4wXVa5qiwoKQYIilT71b/WKg+2Dcd7OfJCVGGOJlCRON3bfDY6B0hRSI50gPoWhxEpopzhRC6pWlwOtLscHkxwd7GM27+Dw27bC0ldVdKo8vehU3ch3gOEHakDPxhx0yZpttnPno0+1eYRCLOn9tBxOldjW6TvxDcVQPf02FEeWShRVKVB25PFlNMcy4kj6+3Xdzgrn1AqLkxqiAhEXCKlBgLYSV8bNdAcsFws5U9zY/eFPVh2BHnl4LLXWjl8tGnHnhuu6SrANZ3GqTYuRx5cKuFFTqjpFTlSzNc3kyeJbO5JKP3Zoi6PLi5cPr3vTKudOnQXOaQ0YOMnRsgXOi9wm4lXvY3NOlpzQMxZMY8YOdf2urCNKI3W7YmSCy41HlU4nlU4JSyIMqTSksqQtfRaPqo7bOEVhFYNNrm9aibMv1qq6LgFGDkXTSuVpwsGkLMl2mBNoEFLbDEHBeekCk0CqvFuLFGa80etInVE9+7R8nZEYEUZbMMhyPoWgFk66StGzDEP4dYqetx/fGQPB7YSPSFmMNlhtq8nSGGf9YFKZkijRqEgihcTZGGcSnItwNnz9T5868nMWX1F48aRQjajK0AysRiFIK1EVb1NR5XAUpWGQacrSICUkidrQr70DSmHIlEYLS2TlhjTA1U5xIvOC6mC7y8FWl2PZJEf7+5grOkuiU7mNmTzN6FSnauQ7VzXy9dGpWgwsOt4qfW9hpPdTgmRylfS95rlS49IBttX3RhIjTnyr1htVy62wS8TTWsVRNfG/brHZ7LvwGQxWGIgKVFQglUZJi7MKq2OG03KbzZhSGrsmDCNGm8XITFDdrsTWw9eqz9No6m4tLoCmvnDxtkZFm2NVoVM/GAnLeemA85M+kbScMBEG6Kh8LNpUi6ex6Lgbj5Y30bdq+0sieYyf18V24V48jdqFVxHPEeHoxdLaokqrEVWiKRGGtipJZElcCTeLoLSS7CzVN63G2fiZqlPzarFU364U1JYOIgfKVrfOjwfv0ulzND9yFvZ44wgjqW2Gos+R1jyxcyDipj/PuuuMtoDFhhDlMil6AkEzVxuE02nTdJYvNdZWZhtSIOXIwM2Bs5K872fgotgSpTkyzgGJc8qLKhv7SNU6myEGto7Fosrg3f/6tagSilT4SNVW+485HLq0DIqSvDAIsfECCvwgLZclmdQIILFnnna8mEZQSc05ywiqOjo1UN40Y6JMaJ9mdKpu5HuryuhazTkuJa2iU3okfW9Q5UGmSNormUc0kSGwQuNaGaQ9bFSCVVircMpgo7KaLfbKx42PbRsEdXBFVH+fuThajTrVz2DR0iKURqqSJCqrCIPAGYUxu8eSfU04sNZC3RsSQOIde8E78m3WCwMIx4Ek46JWj+moYN5GDEzcrOKgMbjBgarFzTIfkTFzhjoQV0eM6ue45Y9n7LkOP6F8mlGl1UiEIZGaRBo6qiARhqgxManrm7aHc+xmiqfVUvOW2xHlhmJpKJpWPkdnc4JyIwhCapuyULYRcvv+KLiRaJPGVrVNdYqevxLWkaaQorcxLIk+4ZBSoJRa/gImqtQ/qXDWoUtHWfpZyiiGKDbIuO/XtQrr4ioFMAopgDsIISBCEsFQVDlN31XNf4Ui2SJRpY0ly0uyQoODOFLITdDrtaFEKS3RGg0lzgRtI05kk8RSc267yzmt3oigatMyilJa5pOMwpx+dKqFInaOBakZOM2EjVFG0MOQY5ACYuHbW1hhyIVpIkUGi5XWixDpr8sizhHJABGXOCtxJvJTw5X4HIoj72JXD0zPttmEw4s+g8VIf4swRJG3hI6UQQqHsQqrE7bjxOKm4XxPSWcXiadNNKcarVFzgBWCCVVwYavH4WSAdpKjuoUbLQ4d7u7IHxu3T02W48ZtcgyJI5aGdFF9kxrp36SdJLdnv75pJTZ6P04nNa8WS7VgUqdx/dgu53OtBCEVWBNDQ4jKNnaZaJOiKvjdEy56Z4lqpnFJ9EkNbWrXgm+0LKoolaXILboQyEiilETFIFUGKgMnQgrgDmU5UdVzmp7zkaqWiEiE3HRRZawjL0oGWYm1EEUSpTb+9RxQCM1AeUOJeB2GEhtBaSOON4JqwUeoBlMcHcwwX7SxOAYjtVOnik75gcvQcMFRCSJhOSYLvi8MykFHKFIETkDGeAoe4CdRKlEkABlponiAjEuckZC1z7o4Wg0/OK9aWwhf8+R9KR2J8rbQcVQipcVaiTWRN4/YK5wl8TQSZKw1dOOcWC+LheVI0ufCVp9UGGZ1QoEcpgKeJTb6paSwXjRJQ2vZ+qa68e3W1Detxkaci41KzTv964pb5t7OIIyQAktYqyGECtGmTcNHnwymrDrMnyr6tFYECOUTP3yUyqJLiywFUaRQSiKVQ8gSoXJwi1MAo5WvrIFtxfKiqqTnfOpYKiJSIYk3UFTZ2kgiLym1JVKCJNkchzCDI6sMJcQZGEpsBKOC6nBnjnPaC15Q9WeYK1MKaTmZ9unbiI6JkVXJhq16HHnhUAuoOiLjKDAU1CYNoJzACkffWYyNaDmJcsMkmcWDGKFKSAbI2LtguXLjnfhOh6Fwqn5n5LB21jtnWtJKPCnpUxeNVZTl6TkZ7khGxdPQMWLDxNNIwHFZwbTok4TAcTDOuSjtsT/O6RnF7ablM8KbGridQ1SJpkQY2rL0nzdhx+ubbOydFLchZ3K67QqiaaNS89bHMkey0z5LW70DgS3GjfZsCoYQW0odfSoNxpjTjj6tFSEFqopSWWMpTNmINRVFSOWnGIU0iJACuKM5laiqI1WnK6pqI4ks0xSVkUS6CXVQNUVlKFGKtfeGWhsOG5WVQYJEWAHIRZMHbmzmvklorgYk/bJNLEsOTB1jevIEt+UT3JJNM6sTMpmz4ASJVcROeUvoakOycmqwFgocJRZbVbskiySSAfIqatN2kmTxeyYNIhkgk9zXOuloS2sga+Hk6oyGKtXQ4sdudQp4pEqiqCRSGlFFn0odwTrTIncsK4kn34ju9DY5km1nqT+3K41U68/iOC2huSDtcX6rjwNuK1OcEDjptoUwXwtJ1fYlld4YIhWaqHJOHPZvirdFfdNKrFdf1N8xI0CfxdS8U+3VqbA7rEgqCKk9hnWuEk6r92yKCD2bzhbOVeJJG6xxGxd9WisCZFQ1orSOsjTo0iCVREUSFUUj3dpNSAHc4SwnqrquhBFRlQpJtEZRVWrLIC8pCt9EMYnVpvXIdkAmSzJpAEe6oYYSvi7HRSVW1o2sqnRYROUuJqvJJ7Homc3aAGgEg2KCVBqOtBc4nPa4LZvi1sEUs6ZFKR3COdo2QjlZ9Qiz5FjKSqhFSFZKIlKAdJISx4IsaTlF20lvvBDnyDQDpXE6hi2K1JlVhFPd4kIBSmmU1ERxgRIGh8QaiTXbL4Vqc3A4W4kn/+ECqsjTOj7ap0rLG0eM/HdlhLMcTgdc2OrSUZrZMqFA1W/ithVRAtfYkPvGtwVR1b8JfJredqtvWo217OPmp+bthDO1NYSRzy6mNoSoU/QWG0JUFU3BEGIrqJsk6rMTfVordZTKOVc5AxpkqVFxhJISqRQYPzATwoYUwB3OYlGlK1HVdX55q3L/i5BLRNWwoa6vg4rjzTGSqNGVoUQu6yjU6b6Ya5zpbNP8tU6rs0il/ZDBSS9ppPMz9GIol2Q9arWqmvKvolYjzVUBSiM5ZmJSqbmwM8/hVrcSVJMcJ6HAoKzCWh9lkngxu5YjE/hIlQUGqsSqksmkQCnjBVSRcnZmYjx2xFmvTtUbCqdhU3XwEzKR0kSR318hrE/d2zPGEauIpzW8+XYVwTSelrc2wTS2Z/7Dz3TkzSQOJRkDo7i9aDHsVMu2GleP1zdp2rJs6pscdeNbRbYN65tWYrXTu/GpeRvlCLLSNnc3QUjtFtzink2jhhD+A12n5wVDiK3D2Uo8aVPVPvkfTxVtrxQ5IQQiqmbjnaPMSzSVOUUk/f46OZIuFFIAdzpCQFxFQbyoMnSdF1YxsrFUV1ZSlpvbUHcUbyhhvFgQjmRNhhJupAbE4qSr0sts0w+p3jZUs7BWUCmBesnwv2PXy2oUKQBlKntnfIS26UwrcHUkyEpyq7g9mySVJRe05zgnXeCWrMN3sklOmoRYKFomOq20yjgqaKcZTpUMnCAqExI2pn/Waoxbkg+FEwzTwaspl2qp9eJJFagR4whjFG4HDXBPn0o8Oar0Pb90NfG0Wlre8nVMpydDa/HkzSQMF7T6HEn7RMJyvEgwQtbhim0xPhZAS5aklWhKpSaWvs2HQ6CtJLc7z5Bk8akdS82r0vPWmpo3ejsurOtXWc8buS4pvo51dwdBSO1QFvds0q6ucwJGok2qStML0aatxRqLLg1WV9EnIZBKbv/3RYxYqDuH1RajLVIaVFyZU0j/8z2a2rdiCqCNfLQqsK3xokotElWGWe1wpUWU+AbAScQmui77aIssvaEEYpneUKtFl3wF/HjanRc50ko/eLSAs1jrcM7gnEMJ41cefS1hh8/34Sk/aBW+MXOzSxJENaATka4mIiph5SQDC/NlQorhws4ch1tdjmZTfDefpFemxFYR2bXJKalKVJIRxQXOSVyZIIFCWIxzJEISuY0sCV9qST4qnASiSkUcf3+k1E3tk1IanNhDxhHLiyff8290rfWn5Z2pRKjFE1BFDh2HkoyLWl1mopJ5HTNnE79fcmTHtgiJ88JJlUyqnFQaJG5Y32R2YH2TG73rmn5Mo6JptdS8pp7JrjU1by1v4GlJ8dN4zlKMg++WUz66toMII5qdwCJDiLIyhBg1vK1nAH2K3s6ahdntWGMpsgJrHVJKVLwz35+xKJW1lHmJEbWFukJFw+NybjQF0IQUwJ2MAGkEuqx6mEmHSCUGQ+4sqfMD9miDYyClMAyUphSmEgQCI9YYXXICUf3zD/qZWN+71FJax2gTUyEEQoCQEiGrSJIYFwR+3OmqiJVdNHQQi25GogyyMjWXBpRFITBOcNLFpMJyl6njnN+Z4wfZJN/PpujnHRKz8tkUUhOlGapy4jM6biLDAoidwOAYCEOMI0GiTuM7VhtEGGw1C15bkq8mnOrjt6jljCPKmN1vHDEqnhyu/oxV4slWUab6XJ5pHdM6d60ZNdiRxVOq5KJWl3OTjNJJbi+qnlBbHIVSwjapepOqIJYGgUM7yeAsOuqt6fDXcY6a1Dy1Wa55myWY1vsap8Y6OOFa3GY7HHNtjJYciIoN2fbZIgipbYrGYJ1Z1RBCEQwhtjvOOoqsxFm37dL3ThvBmIW6qS3UVW2hPm424JyCJrVv56cA1hO52vpvpJRVyuwu/CpaC0WpKUvj035U5cTn/HkwWHrSIDAoJ0mdOG1R5QeX3g48V5qB8rYLEkEhzKrRpdGl9cacc9gqElCbuIwOagWg1NIIV8PYAVTzvGLZB0eeVjn64UWaHXlIGLzgESCEQwjHQMCgjGlLzSWTx7igM8steYdbBjPkWRtlY4ST/vsjDVGco5IcISzOxDi7vChR+Ia6pXAYDAnCuwSucO7rQ2gsyYX/N7Qkp8pwWH3Ge8w4Qhqc2yvGEcuIJ1m990qMRJxWrmXatMuHGyYD2kUPJcJyftrjgnRAIn1PKO3ksNRvC0RUJHydU0eVdGRBUhm/lE6dVtRpQ0XQai+9zGOLU/PqprbrT81bLcp0pju+Xs78A1GLp9tthztcGzMyudIR5Rlv/2wThNQ2o29KSmHpUWLdME8/GELsPJxzFHmJtXb3iKhFLG30WyKlRipJ1Fiojz1jlRRA6cXUNkwBdA6M9SlT2lqs9U2qARCghEQJQSQFUkqk2NnCyjkoS0OhNdaAUmJJ/xpBZVQxJqpA4CNIyTKiapi2ZLBUA/e6j5KwGOEolMYIh3T+uucc49Gl5UcsfgDr/HszOqiFWjiJ6vO4CW9ME/jyVRpmZKEcXWdEiDlHFRETdF1CN09oxyUXp/Ocn/a4NW/zg2yCrEiIpSWK/XDD6sjXX42kZomRdMPRl6ujU5mwaCAdiU7Vwmk1S/K6yfqqh76ScUS5240jhuLJN6yv3g3/xRhbb8gwyrSpZ2ZEPC1O6KoSsTkQ51zU7rI/KunqiPmy5Z8xGoU6SyIqacRTTkeVRMJHfEsb0TPpkt1wK/6xCusUQetlSWqeWHtqXu2cN56aNz5ttDWiqWZjxdMx10aPiKcEzWHZ57Ds8986d/DZubue8eudTbbPSCUAgHb+AhL5ZPut3p3A6VIZNJjSoCLlZ5BZ5aq601kUpdKlxZTFiIX68j2FtmsKYC2crHNo6zDWNcJJCIEUgrhKAasjH4Wz5MbhM2IkSlbCSvj7O0FYOQfaGIrCYIxDKojiU0eXFosqLSxd6c+XYsSJTgxrmtzIbLfApxoV0jvmJUax6oDA+TQ9auHkbCWk/FyTEF7gy3WkkVlAC5+utt5pDycYyxqoj+lUNBkF1U1mEo6ahI4quTjtcqTV5w4dc6xs0SsTjBO4qKhUkPSW7EZWJhnVCNiJKlWxin7hzdZKaSmxRMILpJUtyU+95z51z1TiaS8YR7jmv87564Jxw2X1x2w0wjT+99lh1DRiqXzzdKTmwnaXw0mGA+4oUhzirEehUqFpKc2EKmipkhiLRVBYRWbHP0NuyR2GB7UF19XTcc1b3J9pZde8xX+vnvq5eZzOh6Ca2BFV3NA5TrgWR+0Et9sOeuTK2kJzQbTAhdE8h2TfX7dxvgYuzjbkCM4WQUgFAptA04spkiAdIikQTmDLZPeKqYpho99FFupV2t/SKJVn+RTAHiCaFEBnYtiEFEDnwDiH/f/Z++8oSZLsvBP9mZl7iNSVmaW1rmo93T0903IEZnoERkAtCYp3wOU7D1xyl1yQfADB8wAS5BLEocJiySXBBbDEAoQgCZIQo7VoNT09M627RJfo0jIzK3VEuJvZ+8PMPTwiIzIjdWRVfudURWQId3MPF/ez797vGjM3ccIpCWWjMdamaX1CCJQPXq21RNpQ0UkgmyVWAiVlWxErC+jYUIk0sTZIOTeBSme8ReKQZ1LDh6TuwwhDLKCEa9yprCS0EmVEqlQZIJKaSGqElah0Wr+6IpeW54PYWeqbkhHbZLlCEAtB5P/Fda9lH7X/QZQtctRM0INmLhhPoJoFrQtF2UqGbY4uVWFfcZLNuTJXSp3cmO6kpEOXAyQdaSdIxqm9MgzWCJdSZ3HpdbgZYSthWnib9UgQWN9uQQhEsh2ZgLCm1guLlHoNGEdUf48M/cnk0iW0sYr6kVe/b1OF0Rr/V4b8u+BvGdPyWkAz8gS126UwbMlPs7MwScH3hIr8dXQlSJSg6rTXFTiziACDRlIxssaavClxWuEdveDUPJNRm2ikMtU/Z47XV3LDa8+ehBRJR7f9vc4/xx1XUlikT1e21nJdd3JR93Ap7ibKkicRsVONsTMYY0BOpxlWxiv01l/Bm9cNtifWidQ61rHEiCsxcTlCSumCPBUh/Oy8pHJHkCkAhEAGPrA1lqiiidFVC3XVWKXyX/YpgIFfVJICOA1WLToF0KXjOOIU1REnhEBliFMCY61zxzTV2WgpIPZBfmaz01BNeJJlrCGOoezfT8hUIN26lKyqBysNoy2VSBPFLiAPVC3Jc8G1d2gTziXUSlfPhPAhnEg+6RUR/6eyyrmGkig2lrIwODdlb7wgDEYaVGJrnqbpuRQ943vtRNYpRrGUaCmIQ0EkZC0pgvRvu0CmqoXkuOziXj1OcUZVycLVp1bgiIpTe6wVTER5JqIcHSpmX8cYWwuTjlBNdVGa0QDbE1hlEaHFihgpvEpnJcoTLIxEW9BSYmOL0jODFpH5TwpLGGrCMCIIY6S0GCOplINU9Vo5ZFQgqvTBJqlslpr3G3/dpt9MXxaQ9AmrISSmdoEuoGTVU+xbJU/+0/QFFXYVJhjIVZjSihuVAskFJyVRy5DK18xpL7aSyCimPXlqB+JUn5qXPLacmmcyqXnp9bC69NaxHBvtftxE9XHjNJ4U+efMJEUJWUoea4aX2aTYwjXd1ZA85YnZpsbZriYYkNPpqRPZYEWUz5XAOpFaxzqWECY2xOU4TS0SwiCC2FkgG4lQ+s4iUx41jX5j5/4200K9ORabAuiaUzuFLPZESFvjY3/fJkDN7E+UpPBo49zLrMGpNfVpt3WrTGayTSOS5VUDEWtnl41XqYQgJyVKyVSxWs4jxNqqkYS2FqUEQjoVqZG6ZEWSBGY9WXKkR/qq+rnm5ZM+dljXXHdSGkrCEgPGKowQRFYQizrVSApixIKCV2Etof8XWEsI7jH5u+5RYjnWUWBCBLylHJnKJcH7shIoQ6A0Srml67QGyq1lSodM6aBKqPJTXJ3u5Fqpk2mrfOsqH1gLt4+Fb0IkACmtO9aUAYxvwOya+WIEMlZI7fpgWT/dHiiNCiLCMEJJjTGCKJLV/lhO55pZnyVmGnOImoO52V6rJ0nJ/y51di6SVKMw1Z07idKWLCa7phlU2TRYkai+ZGe8OXMMjbdQzPLX3Ki3K29lWXmp2Z6fZFthCoHlZiWH8RLjcqlQrTjtrTZxstgasrTg1LzshojM85aw0I2dixQ5AqSwSGEQwl3XEmUpIUY1Q6gbss/FyChF/tqQ+ZKxcMN0cEl3c0V3NSBPE2xX4zXk6XbFOpFaxzqWCFY7cwkLrkcUgIqd3O1JgNXqjiVTQF2jX5M2+lXhTAv1ZpiZAhjXugCaEGtCdKzQRqJNlTxZ69MUhCQQ0hll1C8fV38TW+OaWlvSuqdWyxYTNcr/MWP5CHfjdQGiJcaRuimqilUgJIFyKYGhdL28BIubDLc4dSzSmnIco61GhAKk9bbMzdUlaVVDsmRxjuARjgBFeDKEIKp7TFQjvcCNULOQoEYkqd6TrxUcNeO8LnsoCcUx1cVdZqwm1lzKM1YI62qNfGNfbeQs1wTBlAmZrASuhqp7lM0dE1wqdXK10kHZBP53mvnNhBxlHc/ccWaxSmMDDVa4/SsNgXRqFoDRiliH6bHQ6BxICYqTehsPv8Z1g5odaTPMq9l+TklKgwmGDOdMnzvzBzvzM3XLk37wxs4cd7PDtFmobGd9fwHkK8Pp5laeqpBYNuWm2VmcpFPFjMUhZVMNdFMS1XxY80Ijpz0BVLzTXtKFbcaPu8y3v/mm5lFHlpq75vlfpOXxzzZ5sNykqHruG5ucp7KGFLWKhDxd1t1cvsPJUxbrRGod61gCOIe+So1Dn1Oj9AyL4pRM2QgThaxOQtcqQ4AQEiWptVCXgiCcaaE+24KsL0w21oKIMWIKKw06kOjY26uLEEWAlM0XWk3dMyTZTkoIgiW+I2RJlqybBU2VLANloynpqv+bFIJAJsTKPcrUVCFpEJsJJIX2t2lvaY0htprYGDQGETh1zdapS64Br1OBUiIkGxOiyD8uKI3OWgIc6XFEyKKS1zCeDEHOWHIGT4yW/1wJMRyxY7xBL5Mi4KTs4qCZWNLuRwJPoAJHoIwVGN2k7s/x2RpSMOkJVaeKOdAxxvb8FJdLHVyrdDRI+WsM6+QrBArpjSNyMiaQ1tVY2WQyyDgly7oI1FqZYU4iGaJXfaosJ0sq6hLpaj+QPq++UCWuVZOWVFWy1U/Yuh+lESdoGLMvgDw1WuZ8MG/yZWcqT7L27YboCSrszE+yMVeiYiU3KnlSkrqEKlTWaa+oIsKM09649o6NK0icklq2hCzNOzXPttLQdvYRACtMiqqK0XLBWLjpladm5GmbGmfwDiNPWawTqXWsY7FIHPriWptzEXg1qkGvF6sVInAGoHcsmfJoaKEuYmTQzELdwfhAyFib1tG4NDqFkAolLblQQz4Cq5yrWOwMK4xxxfEtp+6tEBKSVc/3LG6MkdZUNEzjb87SjVck/wQuhStxTRLu5htZSymGigWNRMvAmy80IEmwINlL1qtCxjhiZPxzaVHCpZXlrKGxvpXdYh8EeVlJW5caKmus0JcSXpWTkMNw0IxzQvYwKnKcEx3ssVNLcpY6AhUjhcFa53RXgwbEqTEEkzpkUgd0qZiDnaNsy09zqdzBtUrRKVSzjUNqAqkJw5hAGm+4IinH/ii0wpcN+Zn3pP5KOHJv/W9gEoJlwHoi3mjorVky1Nb9JOmKmbf9wvyTOqYh6teTDeAXSZ4Wi7lWkeWSyT6om2ch85EZuzgUmu35KbYXpshJw3CUQ2eZZkIqhK0qzfNEM6e9spGUTCbDYpmJU1LPFIv5p+Ylj3Nb6VRJTnOjhdZIkSCZAKhiNUhRq8iSpyu6i0qGPOUyytNykacGp2hbY51IrWMdi4G1ROWYuKJdWlpyH5EG1Ew1quarZp1M1UDQxEJdoAKFVM59zHriY7DVPkHC199kUvWsAY0C7dVBaQjz08A0OpZEcUAcK2ItATWv1L2Vg03TAKV07niRMMRSEGGpCJdGF3uVKHnU+BQ7KzCJSjBPV+pEJQotBP4xrHm03qHKqUfSG0NY18AJLzuCAqMMRoIwSaA717Eu0tgd64JpIyxGur+lFUjLkpEqF5i5f8mZ2I1mv5ngbdnFDVkgZwzb7cJteZXUqECjpMFagdZBsqlps9aFxQ+CCR0ykSFU2/NTXCx3cL3cQTnjcCmEJVCanG+cKyVoI6jEtXbzOg0Ks3KpyDxWZ9+lMNVIwup0g4zxv7PxAWJGnXBPbc2i573tDb4wQ/2aZaHtMHveiDwl6ajNhlfPUQSWwbDMruIEPUHEeBwwFudqvpA100h+x1b2twDyMqIoYzqDMnkZE2DdBIxRTPsJqZVSnCoCIgmVZhmwdWSpWs/kHS4TpUhUlaKEJMmmpGh2owVob1LUKqrkqcuTpyo9yNWl7c1R0jw/SEh2qC+3RK2xtpvrRGod61gE4kgTRa4BbfbOLILI3bhmIVJOgXFkSgA2yjX/7B0G4dPWrLVUtMHExpMJ4WyulSdOLUZD1kpnBx0b584nNTKIKYbJewFah2itfIrVytwALRAJiIULEmLp/nb/EsMF6UmSI0wLTaMLsT648Ol0ngylKhKQS8gTwt8sRU06kfERsTU2JU2Jw54WntBm5DStDFp6Iuhs/xawl1ohVY5YzZdUWa9CxSJJJKsd4QYi9tgp3hGdXJId5Ixho63Max1ZJ77ELtwpbQslTs1QJVTdKuZQR5VQDUV5jLTkAu2UMCA2EhtLqtSjdjROEfTBZI2CkdlLtj4rzwWgCIsMqnKR8ctwrb+kT1uTDZweslsz5+a2hOzsdruRJyDTx2v+Z0enithRmGRLbprYp/HVBO91KlQrEBiKMiavIrpVpcZpr2IU09nWE8u8PzWWinTkKarfQdZfr6wlh/sXJIQIi5TOgU5g03q/GmIksr+FTReeGC1Y8MYYcs2RolZhLAyZYpq2t+TkKf3NMkSpha8sOu90hbFOpNaxjgVCR4aoHPvgPhNmKI1QJuNuNQsyZAoLNr6DyZT1gS2k9uLGAsK5yWEsRlukcQ5iKDlrzVMCTTX1D+uCfWHCNIaT0nh3sgrGCKxVxFGINgFGK1cT0iI0eNe5hAglREmkBCn7/kJNF2RKhEhJUUKGlDUobVHG+Nd9LxM/cSw94cnCxRLVwD6uf9OTGN+YCPD7sY44pV8RjkQZaZ2g1rS6e75oRqrcb9s6qXKpQUZUXfia/cqbbJmykVyRRd4RnYTW0kc050il9E1rlSMu2nqT4WXukWIRjOmQcRR9QYX7em8yZSRXoyJXKwVKutrzSfgAcvY95ZwbZQ2ZakS9SE0jbPWP9FNSOHMLpEsNVOi06t94cmU9uVrKPdTu5GkhIrgShq35KXbmpyhIzUicI6q/TqUkijlJlPL1TgXvtJf3v5Fz2guq9XLLjMRNr+JVp/rLhrSWgrF0oumRFUKZ9Prz359FKUrJkK2SpTsRs5MnzTY1zjY1waCcmps8LYAo3Y5YJ1LrWMcCYLQhqriZaVEXSArlw9BWowELGIUMY2c3Gs8zB2utIkOcrLVp01CoDfrTvSurM4bWWGKtEcK4vlSqdrrSUE3/SyYbZTYFJQNjpOutg0ufE0KTz0+7NA1fV6W1QpsgJcfjEq6GMrXqTgiSWbDpAhnjBbx61Igsufca3bCsTVSi6j50T9Ld7QJ64/+qJ1ZCINL+TWAxWJMJmAV+wqC69uwMrwuzLVZatPLLN3OF6YvBwkiVFZa4BQKVxQ47TcVIhmSeU7KLo2aMziYNe4W0aRqfEIbYyrSeaKnQ7NIisChpCISzU4+F5UYc0ikNe3JTDKoKVypFbkTFmYF302W6Vr3JfnWvzTaG+tPMB7NO4qrZCse7LDLQ/lOufxaW1IrdJumBLY22fWDrnmSPt4UHnJb+sMLOwgT9YZlJHXA9KtR+pIZA0fSHUkJTlDFFVaErQ0oiK5nUza4ySw9TpzrVHSKE1lKwhi40HSoiVC4tT1tBZJWr0VvHrLAWbs5Cnrb6Pk8zyNM6UWoJ60RqHeuYJ6yxVEoR1lhkUKs6pWqUnuclx7qUFxlGjijcpmQq6efUEnFqAon7oOuBAzrSmDj5snCzmH65cp7NmFxdR+BCZOHSQ8JcmdCbhmifAhjbkJth48unSJ3naklRmCFDWbvuqj6wQFhnaW6q/YQbj6vuifVENkp2pLUJv/IBrkujbLQ4m3msxmkGoyxW+eUYlxaY6Fx1vI5FbnUdGpAqWSXSCaGykNKf+ZyhAthrJ4msZEyEnJTd3GXGyPvw2AJIi1IxgXL1eMbI1lTpBpgfabAo4c0jhEZ5/3NtBJHfyjGtmLCWLqU5VBxna26ay5UObkYFT6gapxkmBDqFT6dM3ljcL5hRrlKOVk27EtKQ9MS24MmU73O1TOrVYrE85MmhKGO25yfZWpgG4GalULUVT5CSqEapfJbQk6cOVUmd9gAqRjGROO0tMxKjiIpXnupvlcKn7BWtoZuYoopRvvm3tq42a8Z2r2MGEvKUWJWXM+F+iHZpe8E4g2oqTX1cJ0oLwzqRWsc65gPrekUZXevQ5990atRC7+xW3HZkqkqcqo9JNrorVF/4xVviStAsAm0s1mjX6BZvDd7E7a/1wTtLauMdi5IUQBWW6Uey1xadbS7OvSkwoIyopkDVNGtZBrRIoGq+khKNxBQi86Yfbrbw34WuIvt2+jz7aIV1JEramjQ+18undhUJZN2JUrvMxew3T6q88maAWGYUKJv0Dmq0DmeSoJTGUnt+S+CAmeCY7GZaBJyQ3RxhFEW1F5SSxhPu5h2sFnJ5aLakQBqnfknXZtVYiJrUZRohGDMB41rRpWIOFUfZmpviUqXIzbhQq1BlCXV2wP65FW7CoM6OYgmQkCu3khpyBb6lRLI/2ke9yqbuLSV5cssxbM6X2FmYoFPF3IpyVOxMgl61Ns+SKFvjtFdUMQEGgydPZuXI02xGEcpA3lo6rKbDj1eJ5L4hKZugrQhzu2JO8hSMs0ONs1G1kLa3jpaxTqTWsY5WYS2VcoyOtCNR9ZOByiCUTpvv1nzV4Gyp51xHQqZiV46i1xaZSlQOkxAnqnnrLoUMFmvIkwQq2q8rMYiTPmyxFrTWGOMa7kopZtQEzRvSEnsKaJGEWPaoCaTK3t6lb7Ar0UZirHQKl3XPrRU+DWWxBM/P6ibNrpqJbglPSohTXaNUkUiAs6+KKgVJ/PZqqY6VjkQhLNLM3YUleZyNZNU4ZWXemy/Jcul+VfIOLojTwtXOKW+AkW1iayMFUvuENlEds3AOdQcY5ziuYe8purhHDRH4PktaS+ZblD6/T7vCeSUNoYzxXQMwRrZQteVWZhGMm6rL35HiGGN6miuVDm5EeeIWUv6qsXqiYi5nVJYhRnXqlXvXqVei2qPbESuv8lv89Re5LPJVvV/GUk6f9AYVdhZcT6hprbheKcxcep0KJWzitBfRGVRmOu3ZRWvgLWFuowjIGUOnMHSIiFDplDxpJGWt1snTXBDuXjBkilyKu7msuynbdfK00lgnUutYR4uIIk2cOvTVv2sRQVxTC5FY/lrf60hYkELO6BE0A0m/nDB2wWYbk6k5iROwWGEIqsGKSwespiGlXCDrmChAoJw5hdFY4/viKImcz50kSQ2TBpsxCHCKi8QYlQmiPJHwwWUYxNQmvlVJljESvUCS1bQOimS/Wx9ImhmF16JuP7WCeuJSS6zAKotVvhZqjlqFmal9tcjuLUvjANU9zk2ynEGC7y0DDf0drEjSilwjT5UeZAKMRCifnlezAktoNYcY5Th9TJDjlO3lgB5tSNaXLm5x6lPg1ScBzuJ+viYeWcIoqoSqW8UcLo6yNRf6lL+5CVWNm7afzZj39jb6XVr9YPad7LHnfycpccYWwn3IGIOO5h/yNBDk5vz8YglATmi2F6bYnp9CCcvNSg7dSN8STg2WGAoiphBEdKmIwmxOe8uEuY0iIGegYA1FoSmImDDQKH/fiK0kWmAq7G2LhCAnT/3L1jrDiItRN5cakqcJtqsxNq0x8qSwbFCWQMxi59mGWCdS61hHC4gjTVyOkVLWOPQlECpGSKdGWePNzXyDVyFdrY5rqup6yDiVZJYVGomVBpmLMRWB1e1xqtYTJ6jWOS0lcYJqQJKaUWTIg0yezAYpkJ5QWcDEMUY4MiUTeWzGd2YjT7Otz00LJ2M0NfeBWpIVBG6GeF4kyziTiGwvHiypymRsXbGIoOFxuli41QpIUvmES+VLjgvh5bEs92h1FLN9tlWSlXwq+bl8C66Gy6slFRBJp9whQBpJLtRuvyZLsAKJJVSGjqDMUaN5Mx7kpukgFJY9arzBeFpHffAtcDV6SfqeFBZjBfFsLRXmg+QYEt7lLyVUY2zLBVwqO0LVMIDPLiZRiNInMDNtcrm1heyMgvu7RoAVFqks1mpMPL9gPVnySoR2AsumnEvj6wkixuKQUl1j5WSzlNAUgpiid9rLeRXVOe2pOqe95dn/BmY1iggs5IyrdypITV7GhMIdy9YKR55s8zTY2x5NiFIjpIYRsSNPpTrytDWYYIcaZ5OaXFPkycGyKYzZm6+Qk3Bf79hqD2heaI/obB3raGOY2BCXI6d0NLpCCQtBjNECo536BD7gz9qi48iTMS5gm1Od8mRKhC5pZzXI1FzECRxxWsrrdjZ1z6TSy0zlqWXIJCVNYY1Fe/t0IZxtvVQCIxqQJ1sfGSwUCyVZTnsx2pEobXwvLOPUK+PTl4yVy0ac6mHxKpTPhXP9hUQ1KAeoUQwXTqyymO17ye50aXw27RebjevnRIapCSHcZEgsUcq6YwXnghcojRAWY6Rr2CtHOWX6uGI7yRvNVjmVLm6+SNLVpKiqT9I7ZCwpgapdoYNw6XBjOkRoS7eKONIxxmgcpCl/cxEqR8r8coWdp8v7Yo/dOVZmwRqB8imYZg4zoKVQleaLLhWxqzDJ5tw0ZSu5XilQnyYaJE57YYVOVSEnqk57U9p1UWod89/nLRlFGAgNFNHkpSavYgKhkcIfx1Z5U587AJlmswu59iXKkyNPXZRsNTtl7ZMnh06p2V8o0xskxidwpVTgXas8rvlgnUitYx2zwBpnLmEtyKBBvxxjQUVgDTqSCGmdU9wskNKrU9qrU0mfpEYwElIyJRrWXy0lEuLk8tRXhjhBg9Q9xyMWTp6aQEiB8DYHRhiQxqV/Cd/g14p5N3Vd5IgakqwkHdQVd1iEtIRSg/IpVMJirUyLsY1xwaGx0hEsI7ya5dexBLDCpfFZaaGRrXl6XCQKTnVbFkqsGgW0M/925Cnbtmg2ZSszwurrKV+vjkxrhVIRoYpRyiCF8XVv1ZN1oyxRYZzzppt3TDc5NP2y3GSkzSEEzrJcagLp7J2NxZtWrBCSn80KxnQOoS09nlBtjYM05W9WQpXZwenTWXaDbfBsuWD9cSGUBsOsvZFmqoPLh9D3hNqRnyIvNcNxriatMhSaDhXTocrOaU9qQFAxckXMIloxishZCI2liCaUhnzgHAEFLgX1tiVPGaK0VGeqtTBsilychTxtV+NsUi7tc60iwLK7UGFrGHk7e3jtTAe//XNbOPSzBu5f7RG2jnUi1WbQPuhwDUmrMxmNMOfr7dCJcA3DWmdzbkytQ19a92QsBk2Yi7BGzKv+RuDIk8EtR1qnTjX8yVIyVQFyS0qmkrqaGU1wWV7i5NbaIHXPr2upCVQ63y8NrlwgkSxEyuIM1tcRWURTZrs8sP58t16FqzGGEBJ0td4ngcSCdK5eSuGaOqfLE0tGsiy4lEffG6ohiWoEkTw0J1buA42XNjNEaPBKErCL2QP2uiHVLqNR8O/T6nKBRimN1sorQonkUsVWMUFZSK7ZTt42fRwVQ/SIqKVgXAqXuhdKp3SBQM+ZRrrMSNVFwWiGUB3tGONWHHK5UmSoBUJlRfUUW3F5pwlcWrVFhQYbyepvX4eV2PsCS39YZldxgg1BxIQOGPU9oVxz3JjOoEJRRs4N0kLFZm3Kl2+UrRhFhN5pLye0+xc6R8C0x9PtYFO+DESpERx5Knjy1F1DnoK05mntkycHy+YwZk++Qs5nNlwaDfmNf7yN7/xhHwCV/7sMP7J6I5wv1olUm6FciTDWUoo1EGfeaZRS1tqlNPuZRrGpqEY8MwIk0eSPWQOpunGtSSJoLVE5Qsc6JVHWONKjMx7eQc65Rdl4YWOVPgI0xiXONU33WyoylaTqwaJ6OS0GiVubyaTuJVboy0aeJC6qSyM7UbXpTmfifZBvAXRaR7UcjmRZ4mSzBNbW/RizwOBIoGngg7hUJKsmlc8yb7XOZv6v41M1n2oUGogm/yffSFQosYg8rJqaM49AaXJBTKC0U2ZNtt5m5oqEgD1yjIpRjNgCJ3Q/96ibFEWThr0krntJzydXL6LbqdA+o+4lhEpqS08QcVfHKLfiXKpQNQuWRYN92w4xoDUCqSwqiIkXYD6xqHX7xw4Zs7MwyZb8NAa4WcmTkzH94TSdqkxeagLfzDmykmkdZDj8MlyPaM0oIjSQIyFPMbkgRnkJ2FhBxagZ6Yhti5QgLj9RaoSEPCU1T9O3NXly6PJpfD0+jW8ikvy33x/kP//SZnTFZfQ8/ueHGfzLbXQtbAHrRKrNkMQESoiWgspGM2qzpcJkP29nvLicJ+vKE8EZH22FCPqbVVyJ0JFGKEFsDUYnQa8P+KVASoMINTadqV4oBFL6/PPZzCgWSKaWognuYrFSqXuNyRNpACJmSS9xwxBVlU5br06532KhKpXFpueYMdUxZpGWTc2zgXAzzEayBNYZoGBRysxKsiJ8nZYRWG+CYcn65i1fclYNCfMjpy6NbzHxRepyKKrbEoYx+dA5LkbG2S+HgJB2RmpS/XXpgBzhmB5gghzHdD/3qKG0hgVASUMgNIEySCwmVZ/auA1mRk0yCG7FOSSOUB3tuMVonONSpYOhWQhVMumUValWA9nVak+mpNGYZUyXrt9UhWFLfppdhUk6VUzJSKTQ7CjeIi9cTVxsvNMePrBO7RFhKUmUqVOdGhtFuH+BMOSEJlQxeW98gnVpe21LnlaZKDWCtTCSUZ7qydNW3yR3821EnsCl8e0plNkSxggBsYXnX+zm3/z1nYxdc/tg72NTfOjvDfHgfSN86+rOVR7x/LBOpNY4GhOL+S5kwd9cNBZKBGs+s8RE0BhDFMW4aTaTxgE+mvZBryUINUIYfyNuvu55KXIik+5Xp04JcLbM0kBYAZv3JK4Wy9kEdz5IJgWy6leyHUtLoBLy5JWTGvLErOSpERJChUgUqnqVSs56piTEycKM3k2ZtaSfbaSKLCcs3kyhwQodybIgDSo06Q1C4J0ovcmFNq5WyHiSlSpayzZjXlWhkjS+ha4lWVb1JHA/QD6MyIWx267MeaWNJJTxnMqkEnBYDfOmHqRE4JSp4AZ5ZQhEnJ7LxkC86G5qK4g6zlxPqO7qGGUkznHFp/w1JFSZYzx92uLlelnCSeuUqSAwxMxtPjGPxTaEwLIhqLC7OM62/BQWgxSa3tAgsE51MuHMOiKvBC/FOTUfo4jQWgLh6jLzQezU07THk6Cs1ZKMaVFoQ6LUCLOTJ5MhT5O3FXlysGwJY/bky4T+BzpzOc///jd3cPKFLgD691T48N8b4sD7p9ZsNco6kVrHqqKtiKAFrQ1xJfbMIzGOaBBwSoNSMVbXBtWNLoN2jvebQVsD2lmnp8E9gBZIpSEsoyuhC/pslbhYqjffhDjNELfI3IeWGE1T95InSwbblDwxS2PY+SDpDZSqVMYC2ptWOOe/NE2PZsRJ1Kiv2bq0KktfPdQfnzY5MuLa0ERgEd5hUAVx+lPWk6zUwj2TKmhSQ42FbWyjNL56raohMoF7onA12uUFT6K0lr6fVxXGuG0SovHETxahsBxVw7yhB5gk5JTp44HwGuDI55pG9vyiSqgUhu4gYkNHhZE4x+VKkeFZCFXV2Y/5XRCXGIkqrpTrNWfnmbYKjYdfv5QuVeZgxxi7iuN0qIiKcedYZBWTOmys5gjI+MrPe1zJ6Cy0aBQBQYY85YQztXA9nrxN+aIzLxaAFapRWmok5OlS3M3FO448OXRJzYFimW7foG9sWvLb/3ILn//1jQAUejVP/c8jPPQXRlHt2yqzJawTqXXc8bDGqVCxNujY1TVIObvq4NQoZtx857rNzPc2lKTCySQDyQdzOpaIwGDCClE5TB2o0sywzExdo0oNMeO5mPF68vd8xrwSqXtWuv5Fbqew5OSpEdK0P3Bqk7ewb/LpGuKUIPluTXbfMsclrd+inUKT9gRuqPi4YFNbqA9rBBYyJCu3RCQrS6BmizcSa373Q9V/sFZSya5FYsnnIsJAE8eyaYqSNpIw0LMG24lxRKcs84CJ+H55K0Omg7cqGzkcDK/Z2dYaJMQ0s4tjJCOeUDmFqsJwnONKuchwPJNQJfzAZo6R1SJUab1UqF291BzjaIU4gSUvY3qCMruLY+wpTNClYqaNZDzOUZmrOW5LqXzNB6qhJaOInHHHfyBcvV5eVm3KrfUNcltoEr4oJIQxebp8a1p2pORJd3Mp7mYqQ56UJ087bnPyBBAIy558Jo3PwJc/t4F/97/uICpJZGB5+C+O8uTfGKHYV9udbSIO+b3r97FRjjdZentinUit486EV0u08UGxtRitXdrZrM2dnBollMbU26gtAyTV9LiaHD2AWDpb5nxMXA6wDW/Qdpa/qirWYiIZC6lhgoPwBIo0DZKad5n170YUZDXIUyM4PlWrUiXK32zI2spXF7RwLOTXah6SeRKVHGwLSJuzOMbTKslKlt+MZBmv4JisLV/dxjQmso0Up8Z7SwpLIVchUIY4VrPuU2Mc8atXpZoZR3QJzd3hTV6PNnJFd5EXMXuD1W8yuWThWwO+qjOEqjeI2NBZYSRyphTDcS4lqenXMnyhIf9dIRgtUMqC0sSZZr2zTJM0gKUoI7qDCr3hNJvCaTYXSnRJzbR21vFznlU1KtRco6j9RKtGEaF1x2wgNKEy5GVEIEy12XOdvf+icRsRpUaoJU9dTNlc+p7KKE9bbnPy5DAzje+t40X++U/v4sop50Z58AOTfOhnhxjYF9V8czzO8aVrh/ja9f2UTMhTG86s9OAXhXUitY47CtaA8eYRxnojAXxKlgUxB4kCUH6mZSGpIC2Pk9pbaJaQSOvNDxAutTAwBLmYuEIDMjW7Yja/LahSLkviMudryNI8L5EZb+33atc6W2JWEs174pSYRviAWtTZb892e1rOG3dNumUTLIRALSVJmnNdIqNELYBAtbSOeZKsZFzO+CJRwSSxEb4my9VmWd+YuB6NtqGeXClpKITOVjqKW6tXijOqVGPjiNptG1QlDtkRTsb9vBP3UUCzNZhsaV3ZcbctaoW+FFlC1RdU6A8rDEV5rlSKNYQqi9VWp7QBoQzSgp7DfKJ6Kls6VYXuoEJfOEWniiiImO5A0xUYhJXcqOTQrZxV9anJc8BAy0YR3nOWUGhClShPJl3Oono8pezIVp/e5rAWbpk8l3Q3F+PupuRps5okuO3Jk0O3cm58SRrf8KjiX//8Dl740z4ANh0q86GfH2LfY9M13xuN8nzx2iG+fmM/FePoyL6OYTbn1hWpdayjvdBAfZJCIJULfExsMMYg5kjnA5BKI5VZsuLkzBBr7qH1cbes+asaoEsBNpbIlEw5d7WlR9UsIrXpFoCQLXRUb/QB0ThmEMaTJ1sbqGVu9H7efz6DbzqaxgmNc3+vEWonkqv7y2KrtVYtrWl+610IUhVq1lS+5Yf16YLGghUyIz55b0ABUloCYsKg+i28apWkB8aeVFVNL2pJVnbbAqXJhzESSzQvxzZLIGLC0KQKZCPjiOxvvC2YoGQV53Uvx+N+QqEZUKV5rHMNoAkB0EiG4zwKw4agTH/gU/4aEaq6bLYVjz+ta5KulEkdKhtBYugMKnSrMhty03TIiEAaKkaSE4K+0NKpLNNaUZ4rhc+t1vcPY9aLg8X1katIV/M0u1GEn3sShlAaQqHJqYjAn+RmPj2eMkTJbf+dibnI05ZM2t6dQp7A1YTuyZfZknPOr1Es+G+/M8jv/NJWjBZ0DsS8738d5oEfH0dmToeRSoHPXzvMt27sI/Lnye6OET6x5Rg9kcaquNHq2hbrRGodty0aqk+iVnUy2riUvhZIFIAM9IwagQWNrW4R9cSplbGkqpAA4kSZiojLIXZJbnm2Vn3KjFIsgU13Gn8J4+7QiWkEkG2Uu9SYud8X9mM2nJC31WVWVZDGpHG1Zm/rU/lW8r5fvyqLH8cMeJt10+jX8SoWIDIkK/09LCnJ0lb6PlDun5KGXKjRRvgGu7NDYAmUS90LpEEqgxAWrZvXU9VjbzBK2SqumS7ejAZ5l7hGt4zm/uJaQhN1CqqEKhCGDUGF/qDCkCdUI40UKpFREFcyJrUCpHNjjSNSMqWEpktV6A7KbAinKaoYiaFiAiZ0ntBYNoYl+sMIjeBWHLR0bAhhZ01ptLRmFJEzkPTKTshTTkTklDOLAHc+NLQpryNKd4qq1Aqy5OlS3M3kOnnKwLI1jNldKBP6A+b7L3bxL/7aTkau51A5w2N/9RaP/7UR8l3VfXOz3MHnrx3mmZt7iD2B2tc5xKe2HKM0meP3vv9eRmyRJ/rO8NOPrsZ2LQzrRGodtxesC/q1MQ3VpxokJKpFTiCVRgYGE8+PpNi6x+zz+RCneqTfsd6FL1WmIuJK4xSaVpDYKGSbxaaNaZfgLjs7eVo7t/EZt84MiQLfbLmNsNIqVCPSVCNCNMjobFkbtL4NQUMnFTfXLoUllDE55RYeKoOUxtdjiarphZXeYVJ6pden7kmXCqV8mqGxgjgOCOT8GL4QcDgcphIpRkyR1yqbeDB3laJs3LB3TWMWYhBbyXCcIxCG/qDCgCdUlytFbmUJVeZyACtM9I1AKEshjCii6VYl+sISBRljsVRsyGicxyBRWPrDMpvCCjlpGNeqavoz14qapPLNzyjCQXqziJyMydXZlFeMwqYNA2s7wK1jJqyFUZPnYlPyNMn2YIwtdyR5cuhWmgOFMl0+je/atZB/9bd28uoz3QDc9bEJPvB3h9iwo6oqXS938tkrR3h+aDfaH7mHum7wqa3HKI/n+N2X3stNOgEQMVy5smGFt2pxWCdS67gtYK1z3nPqE0nLp+Y1T8aitQtk6hutNro8WixBoP1s9zzHlnlM1rTUN7NEMNKRJAgNAZV5kqmqm1xqbOGmOJfEbex2IU8NUZeZs7L2F61hKQwlZl9+3d9zLLy+pmOpxuLOA5lRUZ2qFAYaBMRJzzcBoTBU/dRd1Jr4ubiWARZtXBpUFsaCVMY1yG4RUsDd4U1ermxm0uZ4LdrEg7lrbgy3G2ZRp6ARoSpzM85zudLBaJyxA89cIpZLncouMq9iulSFXlWiJywTWo02kpIOGYmKNRvWoyI258r0BM6NbzQOaOkozhIof6zNzyjCrV8mPZ5EnBqdWCA2Ap1JKRSyaRL1OjzmIk+b1SQ7gnG2qIk7ljyBu17uyVfSNL5yRfB7v7aZ//pvNmG0YNu9JT7894fY+WA1dflKqYvPXjnCd4Z3YXz0c7T7Op/a+hblsRz/zwuPcV06AoWB/lsV3qMvsv+Biyu+fYvBOpFax5qGMQ3Up6TdRSKreKTpdLZKohACXZOMVf1sFkoZCDQ6ljPem+v2uRjVqVVklx1HEhUalCdTzde8vKl7tzV5gjoC5YLxdtyqpTaUmKGszrbA7IeT+DgTaC8nmQOX6pRTzhRCG1ltGNxgQiRJjUKAnqVOxliJNLOKLw0RCMt9uRv8oLyZaRvyemWQ+3PXUe140CwF5thBCaEKhWEwqDAYlLkRFbgSFWsJFdXjbKGEquFxai1F6clTUKJLVcjJGGMFJRMwZfMYrWpc7HJCszFXYSAsA7ScxgekJMrY+RpFuO8Gvt4pryJCYRDCYJFoK6isRo+nNYyEPCVpexMZ8iS98rROnhJYtoURuwsVAn+IPfPlHv7N393B6FBI9+aYD/7dIe75xATJnPSl6R4+c+UI3x3ZmZ4f9/Zc5ZNbjzE1UuA/PPsE14JOFxsY6BmKGTgWIa5JTrKdYmFt1ZGuE6l1tCds9X6ZjfFd4G+wxjXPTYKh5BZi/JTybJc+Y3TDJHyReVavUQWhTnOi1sLtSkcCFepUmaImKLFV8rTEqXu3PXmCJgSq/bZtsal8c6XmzfmFLOoCxqWOTRotTgpDLtAoaYhbMIdxp4OcO1C3C1OlAPJCOzJV2cyYLXAsGuTu8Obt0WOqEeZQpwAiKxnyhGpjrsRgWOJmVOBKpcgtHUIjQjWP48dmnkgsHSqiS1XoC6bpUBGh0MRWUtIBk7qqPAlhfSqoc0rdEEZsypUoSMOkVkQtmvpYLFrOYRRhE9XJ1/6Bq9dKejyJ2NXoYTBIYiObtLtYRzNYC2M2z8W4OXnaHoyzdZ08pejxbnxJGt+Fczn+5f+8i+M/6CQsGp76m8M8+ldvERbd/jo/1ctnrhzl+7e2pwTqgd7LfHLrMSaud/Bb33ySq7lOxzwsFK9bNrweUxgxCCT5QsRd91ymZ8vEam3ygrBOpNaxPJiFCGXfMdnP16VI1d99rbFp8G8sTnlKkx1qYzyflTYDRrup6Ox354IKXJG5adEmuT0g0JFEBhoVVtBRbtlS9+4I8pQgPUbbl0DBzFS+ueKCeZGm+cQYy0ygoPFwlDTkVIwQtiUSNe91esI1X1UKoFNG3BPe4LVoEzdNB6fjPg6Et5Z8jG2FFnZUZCVDUZ5QGDblSgxkCNVollCJhvNgM2ABJQw54Sy/O2REX1CiQ0UoYYiMYloHjNt84+9bgZCWnrDCgIrpVTGRdWYSc907DNYpThIq0ro6pQwCYwlxqlMgfMjpJzxCNKEw5GRCnnyPJyOxrKV70OrDkaecJ089TcnTFjVBuE6eUoTCsDdfYbNP45uelvyHf7qFz/72IMYI7vuRMd7/t4fp2ewye85ObuDPrhzlldFt6TIe6rvIJ7Yc5/Kpfv7Pz/0QQ7158Kda4Yal//WY4pBh845bHHjPVQ7cc5Ud+4bY1TnBt67uXPFtXgzWidQ6GiLbdLIZEUqUDQAy7lrNE+Rmg0j/T2tshUgND4yprksIQbCA2MhoizFmXiQKLDKIsWuSEAh0LJCBBiqYcuDZ5eJT9+4o8gQzjv+2J1CzqFAzSNNCVabZsMxpfAkaDS9QmtDb59b3dlqy9VqXViyVXdDxvkGVOcIQx6JBLuoe8kKzM1hbvVPmjRbUKXCE6qYnVJtzJQbDMjeiPFcTQmWrk2eJOpUQppyMXfqbT9nLSUdKlDcgKRvFhM6hW1CTQmEYCCoM5ioIaxmPcrNYhtvUntyl7NnMTJ5AWE+crCXnFa5kI4TFp+3F5GWMkgaBxRivPLXptaZdkZCnS7GzKp/IEGVZV/O0Tp7qYdmWi9idd2l81sJX/3sfv/EPtzM2HLDz4Wme/vmbbL2nAsCpiX7+7MpRXh/bCrh6vHf3XeSh6ArHnt/Fv9QfZXyLgg1u6blhy5YTJe7ffIkDn7jK/ruv0d23ttL4GmGdSN2OqFeD6l6bQYRs9f2FkSDIEqH0FpU2aZ3noqxL0bPakahk9nHufkXNYYzFWONzeFtfkAoNUtk1pkZlf0uJ1gYVuHTGuBIsmETdceQJ1kwaH8xUoWrHvsjUvPkgq0ItE4Hyi56BQMWEys2SmmUiUen6rQRrFqRKAWxWU5TtCGfiDZyON5AXmk1qaqmH2X5ocYclhConNFtyJTaGZYbiHMNRSMkKcsKkhCkvNIEwKGn8/cO5MkZWMmlCT5xaOxIFlt4gZlNYpkNpprSkIhRW2tpxC0skXLqeM4qozYmQnjTlaowiqmmDodCEMibvzSLAYlJzk/a8xrQzxkwuTdsbb0qeJm9Pg5clQI934+v0aXxnThT4tb+9kxOvdNC3I+LH/+FVjjw9iRBwYnyQP7tylLfGNwNuHx/Sw2x8K+L8iR38zr79TO4QWM8wChOa99gLfOih4+z4iWE3AXUbYZ1ItSkSgtM8Lc6lD6QvLYoIiZpn6QVfzHh7eWEcgapRn1gcgQI3q2KNYd4VTsKi1pga1fAWYSVWJ3VeEEcBWIloIc68I8lTgjWSxgdgpcUKT6LqCwcbfmEZBrECaXwJGi069CSqvhnvso3B+lopOf9aqQQ71ThlG3BJd3MsGiAnNH2yvMQjbUPMoU5JYQlxvbsCYbBoeoMKO3OjWAFTxqXYTRlFbBUxkpLOobU7COf166cfthSlZlNYpi+IiYFbRvn6URDSorGUrXDKk6A2Zc9aQgs5IKeZkYSXkKecjMkJV7sHTjWtmLU1UdcumIs8uZqndfI0G3I+jW+TT+ObnJD85j/axpf+sJ+ww/BDPzvEu/9ft1AhHBvfxJ9dOcqJiY0ACGsZvFgh91yeMbuZCwcDJp8A4zMoO+MKP7H/ZT5w8NTtWwfKOpFqO5QqEVZZYq1Tu8i50SAtLiFC7X7wpql7S6c+1SzegtHOl0/O80xWgUHI9lejqreILP2shbUCqwVBzu2LOArA4Kzf6z4+K3myYnmC8HZCnZLTbgQqu/utsI48ycybosmHlwvJIbFKKlRibx4q7d32Vu73skaml9qF7Goh4EAwQtkqbpoO3qhs5F25q3TKeO4v3waQwhBiUsIUCk1Bxk5dEhYlvMKEQFvBqAkRFgrK0B9YZCwYjgNKRlV/BJ+SVHMUZAuqRH39rPU9oSoMhhVCLBM6QOOMw2OgIgQVAXHdPUTUqU4yO5GRbJ/QPsUw9uRJePK0Hn7NF1Mm4Kbp4KYuclN3zKh52qSm2OENI9bJ0+wQPo1vl0/jMwa++Af9/Idf2crEqOJdf26M9/3NETr6Na+PbeGPT97NO2Wfo6ct3ScEPa8IjOxgdF/AxE4wnst2iTJ/7tDLPLnzDLLFGTXb5PlawPqZ3GYw1jfNE76hZ3vFcEuHZVKfamDBmoWRKNfhPsbo9vwBatXHBLOP1ViJ1IYw51Kf4kqAK24TvnHOHUyeoEka3+oi3e3CW9XXDyibsbTSccMK1UElaEiiGtqbrxyWQpUSAo6GQ7xaUYzZvGvYm79GXtw+DXslhlAaAp+CFwqTIUwG5VMqEsJkkJS08of0zKOqHCtnmx5G9AUxI3HASJxjyipPlNyBUL3sNzk4raVHaTYGFbqU6wk1YQMiHHkq16tOQGCta4prnVW5SIYoAGNR0pHDnHL1WlIYsIlNebg0O/QOgLUwaUNHmjx5msoQJ3BkYLOaZIcaZ2uwTp5aRa+K2V+opGl8J18r8q9/bgdvv9bBvsen+At/b4j+vRFfPXGYr5zYz3C+CICIofsYdL8ukEUYPRAyvl2i3dt0iAo/dvBVPrDzbQI598X4dgkr1olUm0LQIGha61hm9akexhhXEL6A+Eap2JGJNrOYXextIiFTuZxGAFGkXMd7ZatB+Z1EnhK0QRpfDWlqZffX9EtbxoE1wgqm8UHjzZuvvflyYbGqFIASlntyN3i5kvSY2sgDuWtrzoZ5TsLkt8cA2kqMkZRsUDVxmEe6cGQlt2LpbdMrbAgjbsUhIyZgOpsqlxYJ1i47LzSDYYUNQUQFuGJCykIQCWokq3qjiACfLp4sT1oCnKKWl67HkxTW12kJYrtOnlqBtTBuc6nadNMUKdXtO4GlT5YYVNMMyikG1fQ6eZoHcsKwt1BhU+gU77Fbit/637by5f/UT//eiE/+qxEqXb384fcf59i5fsr9AvIgIug+Ztk3PIbsFJzZN8DYdknse+kWRMSn9r/Oh3edJKfmngBaW1e1ubFOpNax/FgJ9al+ldqtb34OfQ5CGoLQYFYxOMuildS91mFd0GIhLEYQGmIduJl8k9FgbjcS3wyrkMZXcxNpgTTNyNQTVFP5VkGFqm8gutIqFDh781DFyGWyN58PqqqUXVTdYE4Y7guv84PKFiZsjjejQe4NbyzrdXKhqCdMifFDy4Sp6YLt3JM4GcUJIEYwqgNHqMIyG6gwEucYiUOmG0yESSx9QYWeIKYiLedsiK4z4FFJyp4nUfXnoBQWKdz2J9sthcFYSWzliqaXrlUkTXFvGkechnSRcl1IKrD0y+mUOPWr6XWnvQWgURrfZ393gN/5F1updHSz8yfzjOt+fv+NHm49CNEh9z0ZWfaPjPJw4RLXegb4wfguxjcKoh73fihiPrbnLT62+zgdYTTnOG7XX26dSK1jeWB9gGHsiqhPWRjtHPoWQqLAokLt1ajVC9Aax8cL3Xk+2hVV1cn1kpIESkNqs+uUQiHEzFqb2w0rlMZXX8/EPEhTw2UlJGqlVag2SONLsBL25vOFNcIpuyzuZylKzb25G7xS2cSIKXIy7udwMLxqhdqtEKbkUJwXYZoN/jzB+HNStHawRVZyS0tywrAxqNCnnEI1rENXQ4WhM4zJBZqygOuJHYTAGUVQqzo1Qog79vJSo9A+my8hT+2VvdBuMBZumQJDpsgNT5yiOksOiWEgIU5qin5ZSkn5OhaGPhWzv1CmwzvlvfVyJ//nv7yLUzd2IO7rQqN4vQNGH4Soz30nZzSPd57j3YOXePHCET5//EEmd0DlqHtfCc2Hdp7kE3vfpCc3uzlOq79eOVZ878puvntxLw/vOL2wjV0lrBOpdSwtvPpkTbXZ7koRKEhmh5Pb+PxXKqRFqdVTo5ZOYJhJnrJvgbMIlkIShDGWAK0lCEGiG4okar7dCJWtJ1BLs4Fz1jPVodW1tpsKtZRxzXwXtZL25vOBtQJjxKJVKYAeWeHu8CavRxu5qrvIo9kbji7RSBujMWGKCIT1assyEKYGqFlaCzUWjVCxkoonVP1hGRloRq1Cux7KlJO7g7XkM6pTo6NJAEHitJeQJ+HIU4RyypMV85ocsbO8dzvBWBgxhTRNb0gXieuIU4Ch36tNG9U0fevEacmQE4Z9hQobfRrfrZEcv/W7D/Dl7xx15lODMHEQxh42VLrc0d8hKzy9+W32To3x/HeO8hvXjjK5Hcr3uGVKDE9uP82n973BQGH2Vg2t/IrWwrnRfr59/gDfvbSH6djVwIVBZcHbvRpYJ1LrWBJYgyNP1jrHJOFvTCt4p0gc+lyK+0JW7C3CWVk1qjYuXowUNDd5mrFuK5BAGMZAgNYK4d2qbjt1aonroBzBmV9q3sLWweqQqCUkUEsRGq20vfl8sVSqFMCAKnHIDnMyHuCc7iUvYrYFk4seoxKulqcpYaJ6PGsjMVYyvQyECWY5L5IduMAdaYEIGENRts6+PFlZmFiUW0vQZAwSty8ceYqdEYawjjxZVZO25y6PFjELmZptE1aCMqzUmaKtYDghTrrIsCmi6+hpiGbAq02D0hGndkxdXcsQWDZUBIf6SoSBQRvBn33pCL/zRw8wOZUHZQienODygTyTKgdIuoIyH9l0kq23Sjz7xbv41lA/k9ugdK9N6wXfu+UdfnTfa2zpnL1xeCvH9EQlx3cu7uWZCwe4OLYhfX1jxzg/vPcYXR1rqzn5OpFax8JhXC8rq+vUp9WYKLYs3KHPQyqLVHpFZrqbx8PzT0WcL3maMRZPpgI/c+XIFLePOlWXxrcYApXWrUvbcPcu5e6xsDqGEotI41uOIa6mvfl8YJPeakugSgFsCyYp24BzupeTcT95oRlQpZa+2wphSlJ8tZHoZSRMCVpesq17bBEGKAkoCeFqnjyUtRR9yl6z5DtJ0iBXe/LkezwhqVjV1A0ymTS0CxjvSmG5hhVbwZAuMuQd9UZMYUbLlhxxmqY3KKfpleXbup/QaiEqK86e2IgYzfPRh8+xbfMEAG8c38T/+dvv4cypbrbtu86mv1zhB+FWbsXdAPQG03xk09v0XTc8+6dH+cZoD5PbYPo+69OIBA8MXuTHD7zKru5bTdffyjFmLBy/uYVnzh/gB1d3EntDmEBqHt56nid3neLQwDV2FSb55tWdi9wjK4t1IrWOeaNGffKB6UqrT7UDyjr0LVzNUYFmZjX90mJpBIUMecqqFf6thSBLplxtm7vIJaTD+oghVSXWws2wYR3UwgbuUvXsjENj2eqq2kGFmoVArRinW2V78/lCW4FiaVQpgD3BKCWruGa6eDMa5AFxnR5ZTXtpR8IELahNS4REfZqWggpU3faspWChMIvypHz/qryICaVGYrA4p72KDbzt+dyDdZdGO2eK31pHxUqGM1bkt0zBH+lVFETMoJxKVaduUZlBnBa6j9bCLWelYC0MXe3m1BtbOPXmZqaGOvjpv/h9nvzhUwAM3yrwm795D1//773c80NneNcv5fnKrUOMxQWIYUM4xdMb36ZwUfHcf72L4clOprbA9B6LVY5AHdlwjZ848AoH+242H0cLYx2e7uC5C/t49sJ+bk51p6/v7BnmqV2neM/2d+jMra1UvnqsE6l1tIZm6lMbTC8Zk3XoWxikMshAY+KlV6OWLHVPZAjUEpCneqRpfjlNVKmSKXCpkpYkbXMNpPstQRpfM/Vp2U0WEhK1wipUfRrfSq6+EWrszY1s2xn/LKwRPpXMLsmEjBBwOBwmihTDpsgblUGe6jjPBlWiIGPUKhOmdJytfnCJfkNNVX0ymXtQYC0FX/vU6EoeYAikJufVpyp5kkQ2Q7nE/I5+a913ZkvxW2soW8WQLqZ9nEZNnvpfukNEDHi1aVBN0SmiZVOclit9eq2gUlKcPb6J029u4dQbW7g11EkYaH7iE2/yF3/0VQp5jdaCP/2Dbfzurwyw46lRjvxrwddK9zFx03XKHchN8vTA23C2wPNfu5+JUp6pTTB9wGICR6D2dA/xEwdf4Z7+q01/y7mO8dhIXr22nWfOH+CN61ux/mwsBhXes/0sT+06ze6+4aXbOauMdSK1jlnRDrVPs8HZnC/UoS+Bd+qzYhHLqBtX3fKry11A6p5k2chTPZwBhfVkStSkOQqEd51r43S/GhWKBROolVKfsusEqrlHK6VCiQx5yxxTqx0MpvbmcvXtzecLbQVKmgURqZkKk6YgY3YWRvnixH6GdAcvlbbxyZ4TBNgVJ0ywcmpTPSxQAUp16lNiGlH06hO4VD0pbPVRGEI0gTSePLkGuTXkKd2OhW1EK/VS7YySUanadFN3MG7zMz7TKSppmt6gmqJDxqsw0plo93m9hcBauHGlh9NvbObUG1s4f2oQHVcnNx958Dx/6//9HTYPONOH17/Tyb/9/21nqjtg07/r4Bl5D5MTzrxhY26CD/WfpnKik2e+9CDTlZDpjTB9xKADlz++rXOUH9//Kg9tutCQQLVyTF8Z7+GZCwd4/sI+xiuF9PXDA9d4YucpHtp6nnxw+zQaT7BOpNYxE4n6ZCzGnz2rVvs0C6x1NufupF/4ZVQGBqkMJl6cfe2SkieBq7VYAfJUD+c+ZgjDmCgKZtSMtaUZRcM0vvkvYiXVp+x6VyOVr74fVLugxt58jZEoSFQpiRC2aT1XM8IUCIvKKky+qau2kqc6zvGlif2MmgJfHD/ABzrfWZGGvS0Tp2UailOfBCVBjfoUWkun1XR6G3YpDQqDko5ACf8vgUFimpGnZHsWsRHVeqmlUSOXG1MmSInTkO5gwuZmfKZblB1xUtMMyCmKsn2D4Ha4DS0W5emAs8c3uZS9N7YwNtJR837f4AQPP/oOP/nRY+wecOYzQ9cCfvMfb+PF13rp+Nk+XuvdxbQJQcOW/Bgf6D3L2Jt9fONzDxNpSXkASrs0lVABksHCBD+6/zUe2/oOssH1ZK4zohwrXrq8m2fOH+DUyKb09d78NI/vPM0TO0+zuWttmUfMF+tEah0pamufHNpJfcrCOfSZRTj0pUtytVELvPHdLuSpHsbIDJkKMXXF8467tokZxSLS+ByJsTO8AVZqM1bDUCIlbm2I1bY3lxhyKqaigxmF8/OBscIH9nbehKnSRGEqSM37O8/xlYl93NSdvDC1g8c7Liyp69m81KZlVp8iYZkWgoqo/g4SSw8RG0SFvLSImj3l/rK4/WmsTK5Oc69wiQhpQqawbTU3gbUwacM0TW9IF5maQZwsvbLMoJx26XpqmrxoX+LUCGuNTFkL1y/1csqrThdODdZc91Sg2XP4Bgfuucqhe69w344RduYqKAk6hj/5rY38/u9txf71fk7+ue2UTQgGthdGearzHDdfG+Rrb7zb1f31QWVvzHQYAIre3DSf2vcG79t+ilDOnL2b7fi1Fs7eGuCZ8wf47uXdlLxtuRSG+zZd4sldp7l30yXUAlsYrDWsE6k7Hc3Upza+GlnLoh36EqgFqFHLTp6Sxa4yqmQqakimoN6MYoUJ1SLS+FZLfcquf9VUqGVOwVooAhWTW2V7cyGgoGIiE8xjH1mUsIQZlSknNR1BZUGEaTb0qjJPdZ7jG5N7uBj38nIp5sHClQXXpay22pTsG5d+Z4mxTKIYd9pSuvJOYjbICl02BiFdLRgCa4OZQ5vvsbPEqp61ILxz42qdZtbCuM35GifXx6lkw5rPCCx9suSMIbxBRE6sdJO6pUe7k6nSVMiZY0mt02bGb9WqTv2bxjlwz1X2332NPYduEOY1G4KYfbkyHYE7ol59rpP/45/t4vIntnPun2xxKquBXcURHs1f5MoPtvCVk48AUOmxxPsrTIQ5IKAjKPPDe97iw7tOkFe1RHmu43WikuOFi3t55vwBLo1vSF/f1DnGkztP89jOM/QVphe9j9Ya1onUHYq1pD7VwJOoxTn0VRcmg9il4syBO4U81cMYiZJ6VjIFWTOKFUj3W2Aa32qrT7XjYEUNJdo1jQ9cQLcW7M1rCZNXmKQmL2NCYaqEyasiGoEBKmZpa5g2BVM8WrzIc9O7OFkZoENWOJofmvN7q6E2SVwzX4FFioQ4uVQ8JdxesdYyTsCQzTGdCUkCDN3EdBMTeveTiBYIbqtGH4tM5ZsNybVmpeqlrIUxk+emKaZ9nCp14Z3AskFOOztyOUW/mnb79TZEO5Epa+HqhT5OvbGF029u5sLpAWxGdQrCOFWdDtxzlf5N1X5xBWHYmy8zmHOE5+aVgH//q7v4yrYDXPvbm12DYwt7O4Z5SF7lwve28rV33g1A3Gmxh0vcCgpAjpyM+cju43xs91t0hlHtGGcZv7FwzNuWv5yxLQ9lzENbz/PUrlMcGrh+R9varxOpOwlrUH2qh3PoW5p6LRUapLIN1aiZ8e1CyFNmJ8OaIU/10EalZKoShU2J54qYUdh6AjX3wi0zzSNWMQNxRQ0l2jmND0AIQ6g0YVvZm1sUhlA6whQKQzgbYfIKU5QSpupxLxukzCwFduXGmLJXeLm0lVdKW+kQMbtzozWfWSm1SQqXwihEYvBgapU4rzilq7NgkUxbyS0bMk6YIZqWDjQ9xHSgFx6cJetrRqiWm0Bk6qWWg0wZC6Mm72ucXKpeVNclS2LolyVf4zTFBllakZq6dsFqkqnpyZAzb23m1JtbOP3GZibGijXvD2we48A91zhwz1V2H7pBENZeJySWHfkKO4IIpSCO4L/9/hb+r+H7uPixLRif7nqg8yb3xTc5/cJOvnnlQQB0hyE4OsWw6gQKBELzgR1v88m9b9Kbr+1DN9vRMDzdwbMX9vPs+f0MTXelr+/uHeJJb1veUUfIFos2vlXNinUidQfAGjfrZ8waU5/qsDQOfR7CourUqIWTpzrClNqUN/naGryXJWQqF8ZUomBWFW9ZzCjmmcaXzAhbUbu7V+uQXzUVqk3T+KA97M2dm5vrJxQKTUFG9OWmiYOSU1GaEqYWZnIsWCNcmtcy4HBuiEkTcrIyyHemt1OUEZuDqdoPLYHaJBOSlEnBU3hCKYwv8as1dkisHgxgrSTyhMZYGCdgnIByJvAPMPR49WlJg/1G6tQKkYmlNJ8wFkZMwZEmU2RIF50akYHC1KTpbZAl1B1EnBqher9Y5vUYuHJ+Q9rX6dKZgRplPczH7D183aXs3XOVDYNTzZZEf6DZE1TozDly9YMXu/mVlx/klUO7sbvddedw13WOTN/i5Ld28e2bOwAQHTG5uye4KHqwdCIwPLHtLD+y73UGi5OZNTRHbCSvXN3BM+f38+aNbSR9wopBhUd3nOWJXafY3Tuy8B3VBCIzMgsr6kK6FFgnUrcrbgP1KQtjnEPfkpAoXBGnkBYdy7oLy1zkybZOmJLF3SaokikoV4JZgwMBS2NGMc80vkbq00JWuxSwyX/J8SFZGRUqS6Da9PhbaXtzp5I4lSkUmkBoCipRmBwxSBAIQ9kKYqMWZTgBjlAIlq5BbwKBC9IfLFxl2oRciHv59uRuPtx9hj5Zzg6gJSSESAqTqkqJUYZIUvOy1z7rXPCSoMdYQX1z1nQIFspIxgiYIMh8ztKJpoeIImb5UoNWkUws1HxCW8GwKTDk0/SGTRFddyyG6LTx7YCcpk+W1uz9fbmxHOrU1HiO0285k4jTb21marxQ8/7GbaPsv9upTrsO3JyhOtWjIAx7ggobi86x9Ma1kH/x7H388Ya7sYfdb3+06xr7x8Y5/uU9PDe2C4Cgs0LHvWOcsRswtheAd28+x4/tf41tnWPp8mc7/i6P9/LM+f08f3EfEzW25Vd5atcpHtx6gZxaeuOR2mls4VO7wawxt9Z1InW7wYC5DdSnLJy5RDJHsbgNsYCQBhm65nUzb/6ZSOEOJUyzQRvlGlqGUIlmJ1OwCDOKhgSqSaCWPK6weYRt9kf2uWTFDCXauQ4qi0BqwmB57M0FVZe8JCWvIGNyQqOkRWV2jLaC2ArKVmG8JbYQhqKAyErsIkkUsCSq1GwpehJ4tOMipcmAG7qTb07s5umuMzP6+wjq+yp5spSmKs6uKhkriRDzOq60V5/GCIky+zLE0ENENzFqDd+XWkUrzXpjKxjSRYa8HfmIKcwg8TliZ0Pu+zj1yvIdXZcyXyyWTBkDl9/pT2udLr3TX3PRzeUj9h51qtOBu6/SO9Ca6YLEsiOssD0XESiIIsF//N5+fq3yCFP9zg3v7q6r7Bia5vi39/Kdqd0AFHum6bp3lJN6gMgMAHDvwGV+4sAr7OmpqkbNjrlSHKS25adHNqav9+aneGLnaR7fdZrNnRPz2UXzQlWFcv0qTebVtYa2JlJaa37pl36J3/u93+Pq1ats27aNv/JX/gq/8Au/kFpeW2v5h//wH/Kbv/mb3Lp1i8cff5xf//Vf5+DBg6s8+hXEbaY+ZeFmJxbn0Ocm5qsheRhol/ZlFfMmTMlC7mDEWTJVadKTpQ7zMqNISdTcBGql1KdmPCndjCz/zh5DK5TK1+5pfAmWzt7cEabEKS+UmrxwdUxKGoJ0pws0oI2kbJR3A1zZC+N8Van51jYFwvJUx3m+MrmXMVPgW1O7+XjPSYpCZ1LwMqpSBiYlS7OrSq3CWighGSNk0lVO+aE7570eYgrLqT61KwRAlUxVrGTYW5Hf1EVumcKMfZ8XMYPS2ZAPqim6ReXO229LjPmSqcmxPKff9LVOb25merK2SfGm7bfSWqed+2+igvlcgC0DgWYnFbqLjka8cHYj/+DaE5wtOWXp3q6rbL4acfwbu7lWdqSqt2+C3vtHeKOymXPRZgAO9l3nJw68ypEN19PtbLhGC2duDTrb8ku7KWvn5JjYlj+1+xT3bLy8rLbl7n7p0l2NlT5mTeJ5+MHYVnTbGg41RlsTqX/2z/4Zv/7rv87v/M7vcPfdd/O9732P//F//B/p7e3lb/2tvwXAP//n/5x//a//Nb/zO7/D3r17+cVf/EU+8pGP8NZbb1EoFOZYwxrHbag+1cCyYJvzevKUQAYGlfN9owKzIoRJCkteuBni2Eq0lWsuB7gesVGucWoOolbJFGJ2M4o6FaoRgVoJ9SlNyfMLbkSimiZ/Ck9qPEdYbjfhtZDGl6Bqb+4UjlaRNK8NvcqUkzEFGaOETz3zG24QaCOJjKK0CoSpKWZRpVomTQDWuQZmVSXhUxaVMPxIcJz/eusuRnSRb0/s5tM9x5HC4rQnl4oXL5OLXGxFWvuUVZ9y3jii6w5Rn5qhbFRqRX5DdzBq8tT/+kUROWMI6YhTp4jWidMyYDYyZQxcOjvgVKc3NnP5XH/N+/lCxL67rnl78qv0bCg1WdLsKEjDTl1hS4eLC66MFfkn59/Dl27sRgD3d16h74LlxFd3cSV2YfrGTbfov3eYl0tbeXva1UXt6h7mJ/a/yn2DlxGi+S1gvJxPbcsvT/Slr2/uHOOJXad4fMcZegsL25ZWUUOgTC2BMhZeGd/Kl4cOcKncyw91n17WsSw12ppIPf/883z605/mh3/4hwHYs2cPf/iHf8h3v/tdwKlRv/Zrv8Yv/MIv8OlPfxqA3/3d32Xz5s38yZ/8CT/5kz+5amNfNlhHnqyx3v3o9lGfamDBGDMvm/Ma8iT9KwIXwPi4KghjhDJorWq/uMTIi5i80hRlRDGICH1jQ22FC2iMoGICIivRRhEj0Ua4x3kEmauJWDtlinmQKWhiRsHsaXzLpT41conLXN9n3HTnXF+GRGFnptst1Wm6VtL4wKkRYaAJlMbMYm9eX8eUpOU1cspzExLuHFqSFLxlRlaVaggB2CpJElikbGwX3iwFr1uV+XjPSf5k9CgXoj6+PHGAD3SeXbZg3FqYQjFOwCSK5OgW2NS2PH8nqk9AySjfv8m56o2Z/IzPdIpKDXGqT8dcx/Ihe12fGM1z6s0tnHpjC2fe2kxpqrZR8ZadI+z3qtOOvUPzVJ1qIbFsMRG7OyoEAVRiyW9dvIdfP3cvJRNwf8dVOs8qTr2ym0s+Dtix7QYb7xviu5M7eHN8rxtTxxg/tv9V3r35PFI0nkczVvDWjS18+/wBXrm6A21dzJOTMQ9vO8cTu05zqH/5bctnpPBlbrDaCl4a3c5Xhg9wveKcAQsyomJb7+vZDmhrIvXYY4/xG7/xG5w8eZJDhw7x6quv8uyzz/Krv/qrAJw9e5arV6/yoQ99KP1Ob28v73nPe3jhhReaEqlyuUy5XC3IHRsba/i5tkIT9el2vUk5m3Pb1Oa8EWGyGcI0Y7dY0poAq9WSB5+B0OS9RXKXKhNKty6DILKSyVRCd7PKOakpyhiRKYQ2VqBJnMEUZaPQVhF7t7BEzVps+s1SQntlihCiaD5kCmdGkeljJkStlcRSqk81KlP2uaglTg3H2Soks6fXNZoxnCe5mm2s7YhG9uYCn5InE8c8Z/yQI1vH5G68ybHfslNeOyH9naq/uvRkKHHCU6mqVLULF/699NuWNCnPpeDVJ+hVMRhM83T3ab4wfpCT5UG6ZIVHOi4t6WZFGfUpzvwm+Yz6dNtN7M2BKRP4/k0uVW/CziRO3bLMoJxiYzDFgChRWCdOqwKjBRfPVFWnqxc21Lxf6KhUVae7rtHdtxRKjWUDml1E9PS5SdVvD23jH7/9Hs5Pd3Nf8RrhyTxn39ybfuPA3stsvvcmz4/t5gfDhwHoL0zyI/te54mtZ5ByZsYNwM2pTp7ztuXDpc709T3etvyRZbAtb4QaAoXEmOqrkZG8MLqTrw3tZzh2DYk7ZIX3bXiHv7j1dV66vm3Zx7eUaGsi9fM///OMjY1x5MgRlFJorfnlX/5l/tJf+ksAXL16FYDNmzfXfG/z5s3pe43wK7/yK/yjf/SPlm/gS4VUfXKz94kD0O1+k8ranKeXCn+/tsI/9/VMMwJsF21kX/GwqMAA1TqyxUBiycuYvIwpqoi8igiFSxWMjaRsFdqEM77nLJQBZs64yMRBTFhyKqI7qJJ960mWQRIZSUUrYpRLZUJijCsGn0/K1FLAAlorgsDdHOZDpiy1BMkpOF51WKD61JQw1S1oSXdTnQo13+/W74OmpWNrpA4qgRSajjAir2KEdapUUscUyFqnPDdRIFatjmlJkGaqGpSsc8EThsDbrCfK1Gx24WYRNQK7cqM81fkO35rcyw+mt9ElK9xVuLGoTbMWJr36NJVRn2SqPkXk7xCrbWth0oY1xGnK5uo/Ra8s+x5O0wzIKQqyzvVshZr1rgPGRgqc9qrT2WObKE/X/l5bdw+ntU7b9wwj1dL9MgVh2DoVs2NzBYCL0538k1OP8PUbO7ivcIO+03DxbUegBJa7Dl9g+73X+Nbwfp6/ei8A3WGJT+17g/dvf5tQzcwXj7TklWs7eOb8Ad66sTWdbO0Iyzy64yxP7jzFzt5bS7ZNs6Emha+OQJW04rlbu/n68D7GtCu96VZlPth/hif63qGgNN1BZUXGuZRoayL1X/7Lf+H3f//3+YM/+APuvvtuXnnlFX7mZ36Gbdu28VM/9VMLXu7f//t/n7/zd/5O+vfY2Bg7d+5ciiEvGta6U8BoS2xNTU3GUjShbXcYLEZqUGAyhCmLNFhOS5zmDjqktChlMGbhknFOaFefoSI6goic0Ehh3Yy5lUzomcRpPkgKLxvNFQmS3i2OwHWoqCYQ01ai/TIqRlExQY2K5Wb21bLcuFMypVojU66vysy0ubTnU6aWpCmpSP+rf7EOmWKmZQlaBH68S7SCZotp6zooS5BpYJuTmmIQ0RlUCKRGZk5hjTOZqBiFtq2T7vZCVU1K3e9kxgFP2NQFrwpv64tTl4xlWZXlo4WbTJgc35/ezjOTu+mUlRkNe1tBZAVjXn3K2m8XvG15J/q2n9izFsZtLiVNN3UHJVt7rRdY+tLmt85ZLzdLgeRyNutdB+hYcOH0YOqwd/1iX837xc4y++6+xoG7r7L/7mt09ZQbL2gRkFj6xzQHtpQJuy1lLfmNC/fym+/czUE5wpFjZS6e3+M+Kw0P3nOWXfdc5as3DvKN8w+7cQYVPr77LZ7edYJ8MFPBvDjWy7PnD/DCxb1MRFVPgCODV3hq12ke3HK+IfFaDtQoULaWQE3qkG+N7OFbw3uZMo7Ebgim+aGB0zzae57cMjUuXym0NZH62Z/9WX7+538+TdG79957OXfuHL/yK7/CT/3UT7FlyxYArl27xtatW9PvXbt2jQceeKDpcvP5PPn8TOm9HXBrcprePqhYN1+/UKe6dodNFSWTSYmymPrbiidM7tVWadOMtaWKSas3LYurT0hUp05VIS81gXQjjIxiWocrZhphEcQo4ibBtPTpQYEw5JRBBuVq7J2oWVYSWUVZy1TNcrVZ7nExs+AWn+Y3izJVT6DczJUfY6Yfa3ZiOx1SCypTfTHTsgcoiRK1jA5D2UUn/WhWE4raGqaciCkEMQGaUPq0NeHU5NhCpBWxTU7wtQOBS0uUGKQgJUiB1AQYhEw0pOp0gEX47AFB3KwiysJK9TV6uHiZCZPjRHkjXxnfz6d6T7ApmJzze8arT2OElDLKucKktU+521h9shZGTZ4h3cENb0letrWhksCywdc2bVTT9Ktpl5Ewj3UsVbPedTiMDhc5/YZXnY5volLKkF1h2b5nOO3rtHXPcM3EdHbCevGwdEwY9nTFDOxw06LfGNrBPz3+EF3lCttfM1y6shuAMIh55IFT7Lv3Ml+6epjPn3oMcHVMH951go/teYuusFahmY4DvntpD8+e38+ZW1Xb8g2FSR7feYYndp5m4zLaltdjthS+sTjHN4b38cytPZSNN80IJ3h64BQP915a2ubbq4i2JlJTU1PIOhlGKYVxvxR79+5ly5YtfO1rX0uJ09jYGC+++CJ//a//9ZUe7pKgPK2hN+EPJmNnLtL/ZfaVNr8GNyRMpBvlP+T+GZNE2TNn6RazmVIalNToBmpUtuZEYNM6p6KqUJQuXU/4dL2KlUzHi1OdlgsGScUCDYo0pVezpLQURESHMjW73ljpiJYRlG1AZFRGyZK+387cSp4FTEqmBFHkUoCcemRrCFRVfcoQqzqSmKhOM377JgfDisYjiRK1XCsVMxU7qCNWsGzEqmr84AhSXjinvFDq1PggWX1CxCfjwCm/0oCmqalEe8GrSxiUtIQipjOo0CErrtZSZI0dMlbhRmBYIEG0ICQNjU6WEkLAU53nmDI5LkS9fH7sID/ae4xe1Xj2vWIFY4SMO6qYDrYDTTcxnei2v98sBMbCqCl4R70iQ7qDqC71WmLoV9OpMUS/ml50ELjQZr3rcNCx4PzbGzn1xhZOvbGZm1d6a97v6C6x/65r7Pe1Th3dc6eMNbrmzgeqbOgrK+7a4SYsLkx38U+PP8zFq53Y17u5MuQNFfIVHn/4BAfuvsQXLh/lj9/8gPu+MLx/+yk+ue91+vLV2ixr4fTIIN8+f4DvXa7alithuH/zRZ7cdYp7Nl1BriAxmY1ADUcFvja0nxdGdxH52GFbfoynB97mXd1XbjsVu62J1Cc/+Ul++Zd/mV27dnH33Xfz8ssv86u/+qv81b/6VwEQQvAzP/Mz/JN/8k84ePBgan++bds2fuRHfmR1B79AWH93rclos37mSliMcOkx4INPg7ORFiI9OLMF+yL9b5nHnRImW03NSk7qGlVBVKPBzDlvvAth9k692GFb/78KnemDabDA0NdsOJOIShooaiuIrFp0ul47wLiqjYYNYQWkKYOBNOQpIzKuRMa6wFF7Navi1azYSHSiZmXs3I0FjCJQMdZCFKtqoJCoT5lDQNjmE/RzEqiVUJ2aYbn6DGS2qdHS5yRWMK+d4hrYOrKUE5pQeOMHGacGCMkijU9hjY1E25nnhZLGOfNlf+C2Qi1pcumIcZqil5AmJU16TFuzHGqaWH4W5aGE5cPdp/iz0SPc1J18fuwQP9J7jKI3OjAWJggYI6CcIQ9BRn0Kb5NZ4wTGwogppml6Q7pIXEecFMY1vvU9nDbIEmoZ9oO1OFdZs57i1yrK0wEvfXM/L371IFPj1XQ2ISzb9w1VVaddI4gFlEMshExZDZUbHbzvwA1C6dP4zt7DV9/cyegbGymNuXF2dU7z1CPHOHj3Jb5w4Sj/6ZUPY5EILI9tPcun973Opo6qmjRWzvPCxX08c/4AVyaqRHFL5yhP7jrNozvP0JtfXtvyetQSKIE1VfX9eqWTrwzt57ujO1JzoD2FEZ4eeJt7upbfIXC10NZE6t/8m3/DL/7iL/I3/sbf4Pr162zbto2/9tf+Gv/gH/yD9DM/93M/x+TkJD/90z/NrVu3eOKJJ/jiF7+49ntIZRmQqCn18PA0QYDxU/naUtNTNvmGzF4WZK2x9HyJ1mIJU82ycDcSZ6RhvWvb/GHr/srGcUoaZEaNSkwiCjKmQ1V84bvLHYysomTCRaW4rTVYIEb6lMHaYMKpnzY1wSiKiE5lMj1mRdVp0EgqVnk1S6EthGFMiRylOEwJVJpvOEcLr0bjTAe12lDAMqTk1LfVagUziFXmxVpi5YmDSvoxaQoyIq902oco+bz2KqRzjWxhIkF4EiXbiUTNRZqq15/EWdON25In9i0IljFlc4VUKYCcMHys523+ePQoo6bAF8cP8nTPydS63GYu3J1efeq4jdQna2HIFLnhzSGGdbGm3gsgRDPgSdOgmqJPllZs1tyds+v1UnNhajzHi18/yEtf35+aRXT2lNh/91UO3HOVfXddo9i5NG50rZKp2MKliwN8eN91Nh9yzXC/fm07v/2duzj36g4qvoHvht4J3v/etzh05BJfuHiU//jSx1I78oc2nefH9r/G9q5RwE1evnl9K89c2M8rV3em7VByKubd287x5M5THOi/seLnZ5VAkSFQ7p1LpW6+PHSAl8e3pdeTQx03eXrgbQ51DLU01mQSS9ZkAawNCGtXaGqsjTE2NkZvby+jo6P09PSs6lj+7Rf+PZu3/meujnVj5sVzbYNnmfSfRilS1KYMpl9I/9lqChM0kQ7mJwuk2VvJYeeJlGjxqpBdVZXUNYYEcmHFpyRZ19NJVch556zYOge8VtLW1lGL5BBJetykj8K7IvrfxQhBJXb1ZBUdEhunaMQ+bTA2ze3c03i8jo+vanznNnpJpbCFEKjZoIRTlwLpGtgmEwdJfU8yfGNFTQrngiAgkBoljXOMXJW7iSNNgU9frSFNWEdYcM02LYLZbdTdRIvL51/eI00Iu6K7aygu8FJpK5vzY/QE1VnsAEOPV59ul5qFBMbCD8pbOR/Xpn3liFO1aVBN0SvLq0ocRSJSrpOpGRi/VeA7XznE97+9j6jsYqLBrWM8/tHj3PPIhSV12KtHs0MiMpJXL27l8S0jPDLoCNT5yS7+7XP38cyzRzFlNwG1eeMtPvDomxw8eIkvXTjKl88foeJrhe7uv8KPH3iFfb3DANyY6uS58/t59sJ+RjK25Xv7bjrb8m3nKK6AbXk9ZiNQ70z38aWhA7wxsSX9/D2d13h68G32Fm+1tHyJRfkUciUMg0GZr17ew08/+pWl3ZAFoFVu0NaK1Drmg0YpcVXVqrbmQiB8grb11MamxGmGpFWFcQtJDTBavPGkGWVZzi4EGKdENVrODMIETSe66+/9gTAUZERnrkxvroQSzojB+HS9yThsGryvozUkhNgkahYze3M522ft+ghJg1UVZOaCbDL9scpaUbFBSrB0QnIzeuqq/2LJpMJSKS5zpPHNBZkYP3jClBMRRRUTCONVJpdTafANbI2ibLP1L5mhJErhvMZvCZVBipUkUY6sJzV/IY4wJqQpuXa5GibQTVJa2wFJJvNyTmVaCyUk4wRMKMnBThf0GSso6ZD9wSjF27RpbmwFL5a2c013IbBsC8adOYScoltW2mqb180nZuLWzQ6e/9JhXnluDzp2k51bdo7wxMePc+RdlxaUtjdf1CtTkZE8e2U3uwsV/uZdJwmkpaQV//F7R/iPn3+ESskpULu23eADj73Jvn1X+drFw/zWC59mKnYq2v7eG/zEgVc52n+NSEtevLSbZ88f4K2bVcO0zrDMozvO8OSu0+zoubX8G9oAzQiUtYKTUwN8eegAJ6c2+s9aHui+wtMDb7OjMN7C0t31OvSZDNLHZ3qNHvvrROq2houOatL3PFkyXmXK3kxEtpBlluDDZNSklodRvzKbJVEioXM1GYENF9NgnRJLXsUUVEynKlNQrig+UMb3pgmYXuH+Sncismll2KRnVkDslarYSrRW6QcS04Kccr24ELaa+efTy4x1KYNlHdSoWAnZWinXRGBJ66Lmo0JJ33/IpeQZclKTVxF5UWf8YEmJ6bRp7ihZk4GbfS7qPjPL+S2kc7ATwmLMcp1bLZAmm9QACke6U8l7DcAuhL22Bm1hnIAxQqKMAhdiiOKQb4/vI7IhuuMCDxSb91xcqygZxfOlHdwyRRSGRwqX2NqCY+FqYt18wuHm1S6e+8IRXn9xl69RhJ37b/LEx4+z/56rK06ALVAxim9c24upFPjbh15lU34agG+e2s6v/bf3cXXYqRUH917mg4+9ya6dN/jWpQP8X89/irFKEYAdXSP8+IFXeWDwEhfH+/iDNx7mOxf3MhlVHaTvGrzCk7tO8a4tF1bMtrweWQJlccY6CYF6c3ITX7p5kHdKGwB3b3p37yU+3H+KzflWzi9LIC0B2vfas2gEsS+9EGtUEV8nUrcN6uqUEoVJ+vdE7UfTPxOnFVHlTjWC0zyPa5v5v/pikpuVvGurgZuc+fk5gzicPWjSDLczcCYREusa1mrFFBIlzDIGeetIUJNKWv/T4y7ABlDKYH09FTiL6NjKqnsK1Yu48kG0FIZOqWtSkRI7d20lsVGUjfJ9iWpTBuvrIBaFJaqLmo1ACWyGMDkVryAi8jJ2dT6+jslYrwQaSdk2Nn6YcxytvN+gAEvgSFQoNWDTQGfxmD9pssnlzWMtzmUupSplLUwjGSdkItM0V2DpIqaHmDwGEU4zWbzC81O7+M7UTjplhYP54cUPoE0wYUKem97JpM2RI+ax4kX61coW5C8UznDpzqyXunqhl2c/f4RjP9iRXij3Hb3GEx8/xq5DN1dFQZzWAd+8sY+TI5v5e4d/wCN91wA4P9LFv/qTJ3nx+G4ElnsOn+eDj73Bti0jPHdlL//u+UcZ8ul5m4rj/Oj+17hv4BIvXd7DLx//KGdvDabr2FCY5Imdp3l812k2dqwe2a/NZBJoT6CMFbwyvpUvDx3gUtmlyAZC82jvBT40cJr+cLqFZbv6p1CatBF70pKlHlfOFNHtJBe3gHUitSaRIU1zEKbq8zlqmRpk2JlMil9CbhpNGMx8qfoll/Zd+wlrM+trMOlSE5j7RyUNBd8MtytwJhFKuMDc9XTKpSYRQrhAb23YL69dNPqdmn7W/xZJ017dJABPcq/j9OCp1q9V5wisb35qyauIDlWpmclKzBJ0pjlxZBOHQZVauresZqUSziKOp5rUWkeKQuHSGnLeObLgjU+UT7VKbmLJdkwvgDA1woIDNOF6RAXKmbPYBau8VdKk/OxkljQJYT35dumfMUkdnU2JU7Ps4zUHK5rUnraO2AqvPgXEGWqZ98YRXcSoup11X/EaEybHa6UtfGNiLx0yYnvYSkpOe2NEF3i+tIOyDegQFR4vXqBbrnxdyaLgb7Z3Cpm6eLqfZz9/lLdfr6a2Hbr/Mk98/Bjb946sypimdMDXrh/guet7+P/seZP/7cAXCaRlOlL8P19/kD/41gNoK3jovtN84NE32Tgwxveu7+LfvvAYV6Yc2ejLT/Hpva+ztTjGcxf287svv5eKdiG3EpoHtjjb8rs3Xl1R2/JGqKpQAmOkS4u2kpdGt/OV4QNcrzjb9ryMeaLvHB/sP0NPMHcTY4nvvSc1CusdgGdevUvjije/vIFXPjPApTe6ePjnhuD9S7uNy4l1ItXWmIUwJa/XfXROwjQPNFQXJNSUSNcnETdaTnYZLbq1CSx5pSmoiA5VZxJhJCWj0Caklul5kUsaEEs5W76OBK2Qp5rDpiab0ymfc5Gpudbt3AIVUbbkLvOpRM0KpCEvNUKUqk6DGTUr8kpWJdM3KyFcqZqVqKYLPKeUrPZjygnfwDZJPc3UpiTGD9ESEqZ6LOayIHAmFkq5CQrrVez6Fcw8JuZJmqzEiiq5kCK5/N2+IWWS4TyfLbQWplCMETCVUZ9kVn2ao0Hsox0XmDA5zlT6+dL4AX6k5zj9wdyzy+2Kq3EnL5a2o5H0yhKPFy5QkHruL7YbMvVStyuZshbeOb6JZz9/hHdObALcBOhdD1/g8Y8dZ/OOsVUZ10Qc8tXrB/nKtf18ZOMF/vSRz7LR24t/4429/B+feYyhiSKPvOtt3vfeY/T1TPL60Fb+7YuPcW58AICusMQP7TxJqA1fffsoVyd70+Vv7brlbMt3nKEnPzcRWW64ygqXaWGsxFiXxvid0Z18dWg/I3EHAB2ywvs2vMP7+s/SqeaamHBp+4GfKJSeQNWbehkNZ1/q5tXPDHLimV5UH+S3arZ8corp6bUVu60TqTaDQSOkRYSZQqWGKpNYsSLqaulUA5cp0exPMTPOMrPfEkKpKWTS9XJKozAYX+c0Hs3ipJUsWlqkNNhGTaPWsWDU/3LNhM+aNxvUq1gjQDoyZWHJUi+rq8moWVrNOFqyalZRRXRm1CzrU+ayalZZBC5N0NdlRZ5w1ZuVJA1sc1J7AucJk3D24onJhiUxfpCUbTBjOcuFRZOopEdUpmfIzA/aND1R4prbJqYXTUkTokZNd8TpdgwdZ4EV3sRk7o9GGfUpm7payKhPrdp2CwEf7DrD1FjI1bibz40f4kd73qJrzkCp/XAu6uEH5a1YBJvUJO8pXCKcg0i2M1LzidvsVLAW3n59K89+7giXzjriIaXhvkfP8dhHTzCweWKOJSwPxqIcX7l+iK9d38+e4ji/ff/XeLjPGbOcu9HLv/rTJ3jt/GYee+gETzxynK7OMm+PbOTffe8xTt5yRDCvIt41cIlKOeALx+5NbcvzKnK25btOsX/D6qQo1mOGAmWhpAOevbWbrw/vY1y79kHdqsQH+8/wRN85CmquSQlX/xSikdn6J6swFsooSjbg5lCBi2e6GL6VR22A4l/TvOcXhhAZntVZipdnw5cJ60SqzaBFff+OlSNMSXzk4t+G1U71H22IaiXU7J9TwqQmEV2qQl5FhMJggMgoSnGQXoxaRSCNNwRsg6vVbYBGCtQMflTPqua4+TsyZQmVJmLpyFTDdc3426lZccMx1qlZQUwv1doK4wtvNTJVsowVMxrYekNKtK9jKtn5H8dLhcXGYY5EOeMWY2RmeW5fKeH6foQiSUu0SGnTSNDtL9+nKZnckDjSJUDeaaSpCWZTpayFSa8+TdepT93E9BCRW2BqUCAsH+1+mz8ZO8otXeQL44f4VM9x8mtEybEWTkQDvFVx7mE7g1Eeyl9ZsR5Qy4nbqVmvMXDsBzt47vNHuHaxD4Ag1LzribM8+vQJegdWRwkdjfJ88dphvnFjH3mp+bn93+cvbTuBkpbpSsB/+NpDfPYHB3nvQyf5+596nmIh4tzYBn7j5Ud57eZ2tx1Cs7trhJHxDl46vzdd9r4NN3hy52nevf0dikF7EIMaAuUVqEmd41sje/jW8F6mjHMW3BBM8aGB07y39wI5OXsAKnC1zFrCtFUM2xxTcUjJBkxbR57KVlWL73uBd0E/tRM2EkNBaHplmQmTn7miNsY6kWpXNKz2XiJkCFP2sS5pr/7j8118Zqn+dUk6U98hK3QEFULh5lXTtKZsut48IdfVqCVDI0OxrBha8+IC7vLWSIQ0nky5gHsl0XjISdqfs7mt3zZXMOvS1DpURJfPEU8cBstWEZvQf3b1sXgS5e3NpQEDoYhnkqbUJq/anDnSdc1sfVqyEOtNB5qigSpV8erTOCE6s+eKaHqI6FyiprkFqfl490n+ZPQoQ7qDL0/s5+Pdbzv7/DaGtfBqZTNnog0AHAqHuDu38o1KlxNr3XxCx4I3vruLZ79whOFr3QDk8hEPvf8M7/3wSbp6Vie9baRS4AvXDvOtG/uIreTHtpzi5/Z+j4GCG89XX9vH73zrfu6++xz/3//pM4Sh5upkN7/92nv47rXdgLs+9gXTjE508M60I/JdYYlHd57lyV2n2N49uirb1gg1BAqJMTAWF/jG8F6eubXH982DjeEETw+c4uHeSzU95YyFCooyirJ1jxWke80qSpkJnmYDMGUoXVWUr0pyRrNp8zQ79k7QGcYUREzOGw1tDqf56sie5dsZy4B1InU7YxbCVI+U7CzxEALhnMcKKqYrLLvUJ2GqPZ10vpoqtMg7hVKuAGvdZGJhqDkGmuXyLZA4NYIxEulTxmLUipOpRnDzF76Jq6XWsR9BbERNQT+QGkn4p6uOxf48ytd05ZUmlLFrtqxMmnZns6TJNCJNbhTNDCFaGV877MeVhvVC3gSKMUIfnDgojFefYsJlIDg9qsLHe97mT0ePcCnq5ZsTe/hg19m2JSXaCl4qbeOy7gYs9+WucyA3strDWhasxXqpOJK88twenv/SYUaHnHtdoaPCIz/0No988BTFztVJH71Z7uAL1w7zzM09xFZxd9cQv7TnBd618SYA71zv47e+/gCDO4f4q3/5qyhlGZru4E9P3suzV/Z5lzlLYAwmUoyVOpFY7tp4mSd3neKBzRdXzba8EWpqoDyBGo6KfHXoAN8Z3Unk65a250f50ODbHOgcpoLiiu10hClDmua6KkssBWJUxTBxNuDK9zq4dSJP6YqidEXS013h/k8Ocd/Hh+nZtPbSh2fDOpFqM2jje8LM94uiNcI0y9eXBBJLQcbkVUxnUKYgXZ0IAiLfD2iqmS11feQ1c4Oar1c6ebkdgvG1hkR9SkSoGWLoEpKneqRkSmqfS73av59Ne7lkuWOKOs7QTgQK5v8zBcI11HVNfJ0hRqDc7yGwPv3DpTNGpgE1Sv9cHHGa6zvtsn+XC2UE4zZknGzDZEsHmh5iOpZIfZoNg8EUT3ef4vPjh3i7MkjXdIX3dFxa3pUuABUreWF6B0OmA4nh4fwVdtwGjoPNsJaa9VZKiu9/ez/f+fJBJsZc/6TOnhLv/fBJHnrfGfKF1Ulxu17u5HNXjvD80G5nRhKU+bubX+TPH3gbJS1T5YA/euEuSl1lPvSx7yEFjFXyfPbU3Xz9wqGqUYIGGQusDRgoTvDEzjM8vvM0g6toW94I9Sl8WsPlqJvvjO3gQrmXjrDCQ5vOM5ibpC83jZUQIzhu+2dZpiNKReH+5YWmQExBaIKK5vQ3enn1MwOcfak7PU5znZp7nh7m/r8zxI77Jtt2YmaxWCdSbQatq7VJplGlqah7bAm1eVpLGfwJXE+nrElEKHTagDXSihKzmETMtfD6gTYJ6lU6C3SbnqlLjJQsVTOzqrt1GYlTI9QoU3p1yZRowPFnG027HG2t/Fw1pElqcmikN4NIlNzE9LNigsa/wzIRp7lwOxIrQ6I+BZQz6lOQUZ+CFU6v25kb432d7/DNyb28PL2NLlnh7sKNFR3DbJgyAc+VdjJu8oRo3lu4xMZgarWHtexo92a905MhL33jAN/92gGmJ119S8+GKR77yAkeeOIsYW51VJorpS4+d+UI3xnehUEisPzFjmP87XtfZUOHq3999q0dXESx511nEAKmopAvnDvKF88dJfIpb45AuXPzXd62/K42sC1PYL2ZQ6IglWxAySpKVjFlQ9esXMH2DbfYzq3a7/qrqcCSR7t/wj0WiOmQMV2qTJEYK5whE1ZgLVx8vZOXPrORN7/cT3myeg3b8+4xHvjkEEc/OEJYaI99tJxYJ1JthrL26WnC1kw+LSYdJlv51EjwmS8CDAUVZUwians6Teocy1YN0UC1ksLVcayrUbOjYdldjQy1esiSqShWy3f8zAIh1+YFv9GonVue++ea+2qXoudJk7HCWcF7J0IgJVUGmNk5eGWJ01xYq8TKAmUkYwRMkD3OLZ2J+iRW1+jhSOEmEybH96a38+zkbjplhT251a/3GNV5nivtoGRDCiLi8cJFetXqW0ivFNrRfGJyLM93vnqQ731zP5WSqw/t3zTO4x89wb3vPYcKVmekl6Z7+OyVI3x3ZGd6jj1Uuc4v3vsS92xzEwMXbnRzfLKD/I5bbAPKWvG5M3fzxfNHqSQEyjgCta1jlKcOnuLRHWfpXgXb8ixRKqEoewOHUoY8Nb0KCveONi4+65Fl+lR5BmkKM+04JMY1h8/Yl2urwML4jZBXP9fPq58ZZOhcIV1N3/Yy939iiPs/MUTf1sqy75N2wjqRajNoo2fUNjULYBphrsvWQgIQiSUvk55OFYpBRE64Xk2xkZS1QlM1iVjJS6cQoJT1XCCZWVlHgqaeJe1yJ84gIVNhsBpkqg13yBzwQmJLpMnUkaZ6KOEKfd28sXB1YqyZQ6ftiZUGJrxteSWT2hx69ambuK1uxg8VLzNhchwvb+Sr4/v5ZM8JNoerl750Qxf5zvQOIhTdsszjhQt0yPZwQltJpDWcq1wvNTpc5IUvH+LlZ/YRR06J2LT9Fo9/7Dh3PXwRuUptgM5P9fKZK0f5/q0d6WtbRqb4mT2v82MPHENKmCoFHL/VwWSHJp+fpBwr/tOJB3nmyv5qCp+BnNE8uvUsT+0+zb6+5bUtn6koObLUElHySBSlWEsul3q4PN3LZJxjMsqxNz/C+zecZWdhthRYSyAsgdCoOvvyuCI4+e1eXvmzQU5/pyc19AoLmrs+NML9nxhi94MTDTM67gS007V7HYBpoh61grmCiUYX3mbfyQlNQcUUVYVOFZGTGiVM2l9n3M6errdSgYyUBiFNTfPddg+qVgINs+PaMQKuw+qQKQuySkzmgo7g7NfynP5igaDDMnAodv8OR3QMLO9OVktAmmphUcrietkLH+Lbuk+sPTQa80pfByxQ8urTZEZ9Ehn1qZCpiKp+USCkXdUeQkLAk53nmDQhF6I+vjB+kB/tPbYqCtDFuJvvlbZikAzIKR4tXnQTeXciMvVSq0Gmhq938vwXD/PqC3sw2l0ttu0Z5omPH+PQfVdWLZA+O7mBz1w5yiuj29LXuq7H/A9d5/hfPvJdejvdcXt2qMC1nKTSYbgy0c1/Pv4Qrw1vwyQDN7AlP87H9r7Je7afo7BEtuVLSZQKIq4+CpeinTOGE1ODfPnmYd4pbQCcqvRI70U+vO01NuWaT4I4N1pDKAxKOH9QVxMruXK8g1f/bIDXv9RPaaxKF3Y+MM4Dnxzirg+NkO+8Q8/FDNaJVJthvhfG+ZCG2d5TGAoqJi8juoKIgooIhKN1kVFM6TC95c8VkKxcwOIuAM3W28yr4nYlVjPI01qMgFl5MpXcQ7MZjo3WOH5Fcuy/FTn+34tMD1cjhlOfr36mOKA9qYpTgtW3RyMXcKVNCFNS0+RaBcwkTXHLpKkK4ZvnKlltlJtgjR42c2KlrgMa0qa5UUZ9ymHoIaaTOFMR1Xhc7dCIVQnL092n+dPRI9zUnXxu7BA/2nuM4goqQacrG3i1sgkQbFPjvLtwue1t2Zcbq2E+cf1SD8994QhvvrQzvVbsPnSdJz5+nL1Hr6+aicCpiX4+c+Uor49tdS9YS8c1eNfUKH/v6ee4a6dL4xueCLggQm7IHN8/v5PPnb2bi9N9JGZ0wlqO9l3jJw9/n129t+Y9jqUkSomJQ15oCkKTJyFMxvdHc8e/QaC14Afj2/jy0EEul3sA19fq0d4LfGjgNP1h8/5cMiFQUqMwPn1PMjkc8trn+3n1swNcP9WRfr5nc4X7fniIBz45RP/OOyelthWsE6k2g9bNXfuW8vYhSHo6RXTIqNrTSbieThWjmLaNezrNdxzLdY1V0vWxadbQtZkoczsRq4YOe7cBqmTKEMVy2chUti4qa8mSqFPWwKUXQ978Lx2c+1YuTWno2Kg58iMlVM4ydDJg6GTA6HnF9JDi4guKiy9UGwqqnGXD/jijXLnHfE913VXSpF1u+hKSJnDEKd06AVL4ZrjCtoFT4upgsdcBW/d8Gsm4V59IJ50sXWi6ick3Up+aLFcgPMGd56CWGKEwfLznJH88ehdjpsAXxg/yyZ4ThMusCFkLb1Y2cjIaAGBfOML9uWu3revXfJFtzbCcx8jldzbw7OePcOKV7elrB+65whMfP87OA0PLt+I5cCsq8P+ce4jXRh2BEtZSvCrYeMnyt973XT758HGkhHJFcEGHfGdkE8+cP8izl/YyLUJHoKSbQH5k0zv85bu+R2fY3JLbWtdHqVRHlJLnFeae8GtElNxzTd73UWp2fGeLJgyCWEu+O7qDrwwf4HqlC3Dx3JN97/CB/rP0BM2IjkViCb1TrvTX/3KkePvZXl79zCBvP9uL0W6NKmc4+oFb3P/Jm+x99zhSNVnsHY51ItVuqMY62T/n+/WGCIU3iZAx3UE5TdezVlCxigmdZ7ZwYrbLxGzrnWsbFnZv9M1357mDGok2Wvx9yQABAABJREFU7ZAGNB80rHu6TQhUFimZUhDp5SBTM3dasobSmODEnxY49kdFRs9XL5Pb3l3h7j83ze73l1Fh7XejaRh+25GqoRPucfjtgGhKcvNYyM1jtV/o3hqz6XCFLUfKbDlcYttdFbp3RlixONIEM4lTdnNFQqKw6z3XMkjJc+bvuRAjGEcxTlDTXyzvyVMXulmzhzkH0y6ndIeM+eGek/zx6FGux118bXwfT3ef8rPjSw9j4fvlrVyIewG4K3eDw+HQOomqw3LWS507Ociznz/Cmbe2uBeE5ci7LvHEx46zdfetJV7b/PD66GZ+6513Mx4XHIG6LCieDvnx+07wP/2NF+npdEYHF6dy/Kd3DvPFM0d4Z6wfE0AiBSuh+cD2t/nRA6/RGUZOUbKrR5SaLxOyeRLTseKF0V18dWg/I7FTizpkhff1n+V9G96hUzUjg43rny6d7OSVPxvk9S/0MzVSvT9tv2eC+z8xxD0fGaHQvbrmN2sB60Sq3eCZwVIYqSkseRlT9D2d8iomJzTWQoSipIOF3uaBhZO9eiyEaClpZlWjWkW7q1Y14xC1f98JcYUx0qUfsNRkyjbM579xLODN/1zk9BcLxCVfUNtpOPTJEnf/D9Ns2N/8phIWYfN9MZvvq6Y+SWuYvAzDnlzdPBFy/USO0csh41cCxq8EnP5mNX0i12EYPFRh0+EKmw5HbDpcYePBCrnO2c+SLHESyXFSwwgcRZASZ9lrWcJ9eZthjt1igSkU4yimMuqTxNLljSPyi7wqtpMqBdCnSny0+20+O3aYd6INPDu5myc7zy05uYms5MXSNq7rLgSWB/NX2R2uvmNgWyJh/ktEpqyF029u5tnPH+XCqUEAhDTc88gFHv/YcTZuXd1eXbER/PfL9/DFa4cBCMah65U89w/c4Gf/yrc4snsYgBvTOf798fv5w+P3U7EKE4DIWzrzZXqLUzyy9R3u3ngFFJylh1I0f6KU9/2TFkuUmq8rgfuRJ6OAZ27t4evD+xjXzimvW5X4YP8Znug7R0E1vi/V1j85FXliNOD1Lwzw6mcHuHKsM/1s10DEvR93qXsb95WWZkPmifbxo5wf1olUmyFexF1T4Ho6FVVMUVboDCJyQiOETU0ixuYwiZgPVuqQn0lqrHMY8zePpQ4HV1u1mrEu0fBp08+s0WtRUxgjEdIQAPESkaksiYrLcObLBd78L0Wuv16dles/GHP3n5/iwMfLhB1z79QkNU8Jk6bnKQyb9lv27gfz0cQIQjA9FnDjpCNV10/kuH48x423c1SmJJdfKXD5laqtLMKyYVfsyVWFTYfLbDpSoWdr7G7cdTMajVWmhEQZWGXHr7ZHk50TIRgnYBxVMwFV8OpT56KmpRqPo50Ew63hBD/UdYYvT+znrfImulWZdxWvLtnyS0bxfGknt0wBheE9hUtsCdqr0WnbYQnMJ6yB469s47kvHOHKOdeQVQWa+x97h8c+cpING1f/N7he7uTfn34P70y78RXOKXZcjPhfPvg1PvHEaQCmIsV/PHuUP728l45ChUfueZuu4jTdhRJd+TIyk8Z9nY4Z5/lKEqXZUFWhBONRnm8M7+VbI3uZMjkANgRTfGjgNO/tvUBONk6xlVgC6dLEFYYoFhx/oY9XPzvAiW/1oSPf8iIwHH5qlPs/dZMD7x1bUC3voiGsz5BwSNrorCWsE6m2Q+Kg1RqSnk5F5Zqm5ZVOezpVfE+n1jLz1w4SNUqbRh5jM7HYrV9u1arp+Be6wNss7c8CeGXKAnqRZCqpixq7KHnrj4qc+NMipVvJjcWy78Nl7v5z02x+IKq5cWZ/86BBTZPCpDfrpKYpshKrZ4bXhR7DzofL7Hy4mstuYhh+J0OuToRcP55j8mbAyLmQkXMhJ77cmVmGZuPhCpuPeIJ1pMLg/oggX/+Du4kHp0Stk6j5wAKTPnVvOmMRIbGpbXlumfaoBYRtH1UKYF9+hMfNeZ6b2s2LUzvplBUO5YcXvdwJE/Ls9E6mbI68iHm0cJF+tTqz4msNVfMJ5nWtN1rw5vd28Oznj3DzikujDHMxDz51hvd++CQ9G1Z3/1sLN07m+MqxvXxz81FsXtInp9h8LeL9+8/z1//CK3TlnRLzaqmHb04NMjVQ4cmBEw2X1y5EqRkEgL9Gj0RFvja0j2dv7aHse1ptyk3w4f5TvLv3UhPDFYsSNjUnksJy7UyRlz+zkdc/38/4jVz6yS2Hp7j/kze596PDdPStQupehjxZb3KRTIwbK9BmbVGTtTXaOwD5sMSGcIqoaJjSeSomIDIBkZFoJBJLQcbkVUynKlNUMaF0J0JsJWUdEJOdpr69kEjV8ymQXw6itRjVatbxLMfPdhsQq+QCG/gZuIWSKaMtF5/N8eZ/LnLh+Vw65d+5RXPXT0xz+EenayzME8UzUZpCoclJ14BatUiaWoUMYPBAxOCBCnd/Ilk7TA5Lrh/Pc/14QrDyDJ0JKY0pLrxU5MJLxXQZQlkG9kYpsdp8pMzmo2V6NsbrJGoeqCAYI2ScoGYiqphRn1bkCttmqhTAvcXrTJg8r5a28M2JvXTKiO3hwtO+hnWB56d3UCGgU1R4vHiBLtm88H8dM+HIVGsTJXEkee07u3n+C4cZuemNCgoR7/7gKR75obfp7F69ZqrDFwLOvtLBlfNFbk3niZ7qpvik5cfyr9GVKxEIy/seucl7iyMAXItzfGlyM5fiIsYIJsp5xksFJkpFOmSF+zZcYXtxjEIbEKVmyCpQN8qdfOXmfl4Y3ZX2tNqeH+XpgVM80H2lSV2iJZCWAFf/VBmXfO8rG3n5zwa59HpX+qmOvoh7PzbM/Z8cYsuh5m5+y4Ya8gTGSrS/dybxXFY1XEtYJ1JtBiEsyveH6VPTgEHirGglrr5BOSGfilFEJmAiDu6Yegcl3cXQmKXb3qUgWq2qVvWft/UvrATWKLGyVmAsBH7iYD5kanrEm0f81yLjl6vKwo7Hytz1P0yz68lK6kikqLUcD6RG4RSd6g1AEi2CNNVtmb/BZ8whMr9JZ79l72Ml9j5WnSGOK3DzVC6jXrn0wNKo4uapHDdP5Xjrc5llDMZsPlxh05Eymz3BGtgbrU4qR5vBAhpBBUGEYMrkmc7cGhWGbk+gwhU+WZwq5RWHNjpP39txgQmT43Slny+NH+DTPccZCOYfnF2JO/luaTsaSZ+c5rHCRQpyvbh9IbAA0iJMYzIVlRU/eHYvL3zpEOO3vFFBV5n3fOhtHn7/KQodK2drH1lByQaMjOW4frXAeClEFyW5raA+ChuADcTASPqdXhnxqc4r7Mi56+AXru7i/z51FCnh9K1Bbk13YhEc6rvOTxx4hUMbbqzY9iwEWQXqSqmbLw0d4KXRHT7igz2FET4y+DZ3dza2l0/rn6RGGMPZl3p5+TODHPv6BuKyW4ZQloOPjfLAp4Y4+MQoKlzhi0gL5Kke1rp007WE9dtoG0ICWFdzUVTO/SVQLtdVA9pIYquQUiO1QVmFtpLYqNsujS+LhahRS4FWLz31o5rT5bBdfqo1RKwsAmNkS8qUtXD99YC3/qjI6S/nMZH7XL7HcPhHShz98Wn6dusatSmUMYGwrjDX244nzW2XyuFOYP0+tw0YNS1JEEEOttxVYctd1dlja2H8mnLK1fEcN07muHY8x/C5kMmbAWduBpx5rmpsoXKGjQeiKrnytVfF3jV2F5sHNFBB+n+CCpII2eC6aelA042mY6XUp2awAttmvZOEgA90nWFqLOBK3MPnxw/xoz1v0dXUNWwm3ol6ebm8BYtgk5rgvYVLBG22nWsKCeGuM58oTQV871v7efGrB5ka90YFfdO898MnefCpM+Tyy0NctYUSAdM2oGTd42QcMGUCbOgnoTqB/ZDLfM9oGI8KjFaKjE4WmbrYyX0DQ/zP9/+AnlyF0XKOX339IU5M9XLy1hYmItdqYnf3MD9+4BXuHbjSlspTgiyBOj/dxxdvHOCV8W3pfexQxw0+MnCKgx2NnSqr9U+a0Ys5nvvMJl797CCjV6stNzbum+b+Tw5x38eG6BpcOYIMLIg8lacU514b4OzLg5x/eYC9f+46vG8Fx7xIrBOpNkNelehRZUReY4XEGJcyVIqyJhEWKVyPmc6ggvAKlbaC2CgqRhFbhfbpgLeHWmVRygW3dgnVqKVEyyFAxn1v3luynHGGH4wVdeNqs9jGkihTjclUNA2nv1jgzT8qMHS8ah4xeFfEvX9+isMfnaTQoQmlIRSxU3sTtcm4i35kw/rVLhgiDQ4bEKclZNRCQM8WTe+2KY58cBIS5XpKcOPtHNeO5bnmlavrJ/JUpiRX38pz9a18zXJ6tkVV9crXYG3YFTV0OWxXaCCqI0yVhoQpgSXEksPQKSKK1tIu5c7tqkoFwvLR7lP8ydhRRnSRz48f4tM9x8nPoShZCyeiAd6qbARgVzDKg/lmaUvrmA+yzXqnxvK8+PWDvPT1/ZSnHVXpG5zgsY+c4P7HzhGEi58wSRrRTnuiNE1Aybq/GzahVaQW5OVrMHVOwqihM4zp3Rzz3c59vHRrFxaJHJWEk4Kfe+hFfurIGwAcv7WBX3r1Ub57c2e6yC0do/zYgdd4eNP5tj6GsgTq9GQ/X7xxkDcmt6Tv39N1lacHTrG3eKvBt6v1T7pkeeurG/jBZwY594Oe9BOF7ph7PuJS97bdNbWyZFJQU9s/F3myFm68082ZHwxy9uVBLh3vw2hJz5ZJ3vNTxzn75rYVHPzisU6k2gxKWBSGklZomgVzAmMVxmZfcX2VQqkp+FlBbV3gUNaBI1ZrWLUSuLS+tu97kw2U61K06oe+oC1ZMdegWV5og2DOWoEBVFIfqCW33gl4648KnPxMgcqEi/pV3nLoI1M8+BfG2XnfVGO1ySztZEN9DydBJgBeVinSO/NlingBch2W7feX2X5/1djCGrh1MeDa8TzXjue45muwRi+HjPl/b3+jamwRdhg2Hayw+ahTrTYfLrPp0Ny27MsNA15VEjVKU3P/PEvgCVPOP4b+uassteRETMW2Wbq0FS4IazPkpebj3a7H1LDu4EvjB/jhnpNNiuHdefBKeTNn4w0AHApvcnfuZlsrCGsNYyMFXvjyIb7/7f1EZRfiDW4d4/GPHueeRy4g1fyOI9cuRTpViYBpWyVOJWY/T+JxmDormDonmT4nmHpHEFY0W3aW2PPgNLvfM03HBsPJ8UH+/ZlHuXWr6E7qsYCdcoL/46Nf5Z6BmwD85sn7+JdvPELka4cOb7jGU9tO894t76T1qu2IhEBZIzg2sYkv3TzAyamN/j3Lu7ov8/TA22wvjNPoZhtIQ4DhwisdvPqZQd74Sj/RtGejwrL/vWM88MkhDr/vVgOjoeXdsBryhESb5uSpNBHwzqsDnPnBRs6+PMDkSNWZNsjHPPXTb3L3x84hA0v/gxMrsglLhXUi1WbQ/sC087yzOEVKuZlYb98jhCXAONVKWF9jIohwqpU2ithK9BIHkksPr0bhunq39VATiLpHqrxqLQx/VszbQWN5YK3AxJJ3vp3jtf/UycXvVJWVvp0RD/3kGA/86Chd/XrZ1CaYSZzc4KqPK3Nuzc/eXEjYsCtmw66YI09X7Y1LY5LrJ1xK4LUT3uDiZI5oSnLp1QKXXq23ZU/UK29skbVlX0IYSMlSlFGZ4qaEydU25VLSZDxpsktrUb5CSBzZ2k2VAuhWFT7ec5I/HT3K5biHb07s5YNdZ2YcA9oKvlvaxhXdDVjuz11jf+7Wagz5tsStmx0898UjvPLcHnTsAu0tO0d44uPHOfKuS3MqytoKpr26VMooTNN2jn6T1sKoZeodwfCrAROnPGk6J4mGoXuzZs97pzn46BR7/sI0PVuqiqWx8N8v3s1nrx5xB3csYCTg49vP8E8f+TZdYcRwucDPfu/9fOPqbnZ3D/PeLe/wyJZzDBSmlmK3LRtSAmUFr41t5Ys3DvJOyU0gSAyP9F7kwwOn2ZRz2QMOLkIQnkBNXVN8/3Mbefkzg4xcrF57+3eVeOCTQ9z38SF6Nq+gMYsAkZmKn408WQNXz/Rw1qtOl0/21WQThfmYXfcNcf8nzrHtXdcRgdsHgTVcGB1YqS1aEqwTqdsWAmsFETIT5Nq0FqSgIlCuyNpYScUExJ5YtZtqJaVN1aj2GdXCsNbH3xQrrFpN3ZAc++MCb/xRBxPX/WVMWA69f5J3/+Qoex+fxgh3yS/phRAnWxcINtmgZUzVax1LZ29e6DHseneJXe+uGluYGIbeCbl+3KUGJurVxI2AkXM5Rs7lOP7lzDJ6NZsOOWKVEKyNBxrZsjfaEmaoS5FXnJrtV1WjLFXJ01okTLOiTVUpgMFgmqe7T/GF8YO8XRmga6rCezovpu9XrOT56R0Mmw4khncXrrA9WN0Gr7cLbl7p5rkvHOG1F3dhfUuQnQdu8sQPH+PAPVdr6qVMg1S8hDhVZk1mddbhRREjxg0TpxTXXwo499UCt44ryATIxV7N7vdMs+dT0+x57zT9e6KGEysnRjby78+8h1EK7tSekuRL8Ivvfoaf3HscgJdubuEfv/Ze9vVd558++hm2dY0tzU5bRiQEyljB929t50s3D3Kp3AtAKDSP9p7nhwZO0x+W6r7lruO2ZDj1rZ7/P3v/HSZXel73or+dKofOOaMBNHKcGWASQc6QQ85wKIoSSQ2pQCpYwbKudXTukY7vtc9z7Ss99nXQsS3JEi3TsihySImkGIecnAcYDOIgNIDOOVV3deW09/7uH7uquqoTuhvdQAPT63kKXai0d+3a4VvfWu96ufDDCnpP+/JWFpvLYM9Hgxx4OkDjgdjtU3EXIU+6aT0yP/QrHtLou1BhkacLFSTCtqLnKxojtB4O0HY4QN2eaUyHjplVEyUB6bQNp5Ignim2m292bBGpzQZbqsiyt77IqlYCrDkMS7VSELiUNJIisvUnErrI1VrJ+XqrO6NaibxNZHOrZlsowjoTK1kykTEZO6vx/rfc3HjJjalbC3GX6Rz6+RCHPxfGU2s1n86gkq9JEqskRfOx3Lrf8dSQje8RJatQ2Z6hsj2TjWW3EJtWmMgGW+TUq0CvlRw4+J6TwXmx7BVtGap2prJ9r1KU706jlVMU+pBehjDJBeqSVnB/s9QybTQ2syoF0GgL8yF3P6/G2jifrMWtpNjrmCJuqrydaCQi7GgYHHcOU6Hcgfjlewzjg37eem4XV8815AfbbbvHeejJTmq3z5BEZcJ0ETdVEkLLWvEWqVsqgIqBUzJwouOUrJs5YzJ2ysbA20763/UQHi2emNJcJk1H47Q8kKDleILqjvSS6pcpJC5N1vGP/XsZlLygWMqFiKm0OcL82cMv0eGfwRTw09EmJk3434+8dFdYP3MESjdlTgUbeWF6O1PpbLy8rPNIST8fLuvFp86Pl7fGOONXHFz6YRmXXygjFZ0bmrcctax7HR+Zxea8TUFAkmU7zF1RcsqTMY88mQaMdfmzdr0KxnvmiB+AzanTvH+atsMBWg8F8FUmEQgyqoEum3mbjs2QCSbtGJKM/y48N2wRqU2EqB6E+mFeSTVSL6L4pI2OgbVUKx3yPQtyqpUqG9jlDCBhYBUPZrJx65ZqlSvc3tgznCxbtV+bvjZqC8tjFcRKytYxWTcD4iZXfujhzLN+JrvmZqoaDiU4+oUwHU9EUXMTX5IAAaZp2dfEfC/lpiZFq4XVP4QNJFHLwV1u0PZQgraH5i58ehoCPVawRc4iGAmq2GtM/O063h0G2nYTo01ixrn4rKMkBDbJUpa0Alve8kPADwg2sSoFsNMxTdS08V6igbdjzUgIBgw/SaHhlDI85BjCp9y5PkX3AoZ6ynjrx7vo667CWZWg+miAxn2T1O6aBrfJmNAY0WuXfL+MiRMDhzRHlpzoOCQdTRIkQjIDp51cPumk/5ST6d5iVUHWBA0HkjQfS9B6PEHdviSKbYmFZRFN23hraBuv9O8goDnAbY1thC4hoio/29DNvzn0Ji5VJ24o3EjY8Hhn8Cz/sZsCOQKVNmXemmnhpUA7QT0bLy+nOVHWx6Ol/bgXJFoKEtMynT8t4/0fljPVNzfxVFKXslL3npymtP42HS8LyJOEYSoLyFN0xmapTucr6L9QQTJaTKyrWsO0HrKIU33HLIqamwgX6LJJRjXyJ3K7KaHoClNpG2khL1lbudmxRaQ2EQKpIRASYWEnjJ0SkaKJKM4NJ1SFWFq1cigZXEq6QLXKWgI3TLUS+WS2LTXqbsa8X6+If1tRqYps9W7SJKt3kywLJm9onP5GCRe/7ycds6Y4NafJ3qcjHHkmTM2uRS4wQrIKYGUZ04R7dehttQIQeQ/+nYYgGy1uk3HuMqnblaKCNO3LpIbqSQj3qIS6NEJdKqFuldkulVRApqI9k6+5ysWyq/dwLPtKkVOl5gfZbCYcdo4RNW10p8vozFQgS+CTkzzoGMYl3+Yo5rscZjZCPG6qjEyWMDJegmmH6i+M0OjrL3ptDLXIxu/IWvGcko5TzpIlFjamTcclhs46GHjXS99Jp5XiWXhOkQQ1u1O0HrfCIRqPJLG5VrbzDYVKeLl/J6eGW0mpEpToSGqWRCUVXCmd/3z8OT5SMwJAUFe4nrCTFpvfmJsjUElD5fWZVl6ebiNiWHVMPiXJR8p6eahkAIdSPH4zM9D7lpfLPyyl+6Q/Xzek2k12P25Z91qOROdUvQ0+ziVpefJk6BKj10vyCXuTfb6i99vdGVoOWna91oMBPGULr8uGZBEokbPxmeAXMhldYSKjkbkLfu/lsEWkNhFa3PthsJn29vP0GH5msRPCRpVIUE8M7Y6w9TnVigWqlYldtny+JrkEtJxqZdkDrQLEtQ30ZFlkQzLu7oPs3sIipKjguQUPLwjdsFIprShXizQp2Sh/gExK4vILXt57toTBM3MzdOVtaY48E2Lfp6M4vDlyvTgkJCt0IU+m7i1IsjWxAXeGRBX2YiqsZ1pJtHhhDZNpQkC3IacEmYREJKKgz8oYaZmJq3Ym5sey12ao2mklB96tsezrAiFZ58U7vR5LQJKg1T7DtHCAJKGbEgccE1skagksiBAvuBVFiJeDr7y4rkwrJEsFNwd6cRR4vsBFQk/D6CUHfSedDJxyMnzRke+xl0N5W5qWY5ZVr/m+BM6SlZ9IdVPi/HgjL/R20B2qtIYNbgPJY9VKCRMcQfjVjtP8ZscVPKqJEDCQsjGY1tjsk185AhXTNV6Z3sZrM63ETUuSK1XjPF7ew3H/EJo8t82EEEx1Objyw1KuPF9GIjQ39G48EOXgpwLsfjyI3bPIdt6ASZObkadwwJEPieh/v4x0vFh1qmkP0XrIIk+120NLJkHmbHxGNiwMAZouUypDVFeZyGjoS8Sj303YIlKbDabCflsATyLFACUEsTOBiwAOGkSMKhKboFfCfNUKJMksUq3Ail9fq2qVS62BTTvxeg/gVknRoh9ZdF/C6n2hSGYBcRL53kq5tJ+pURvn/t7HhX/wEQtYpyVJEex8PMbhZ0I0P5Bc8X5v9d0pJFN3/IBZJyweb75RyEWLF9cwycu0p7UIk0ZxWp621Jq6KIhltwaI82PZJ69bf0MjGuEx69b92sJY9qqOFNW7Nk8s+0Zis6tSXelSLqWrITtonsm4eTHSzs/6O3F+gMlURsgLyRJW0MNy4U56QiE+6SA55cDvTNDeNkm5N45D0lfUwFiYMHHNRt8pF/3vOBk86yQTL5598NVm8sSp5YEE3urVu2BCSQevDezgpcEdRA07QgZsAsmtI9mta7kSlfi42s3vPHmadmcKRYKUKXEtYSdkbO7haI5AhTJ2Xp5u541gCynTWucqW5SPlnVzn3+kyJ4WD8pce76USz8qZbJrrhm6tyrNgU9Oc+CT05Q3p7gp5ocarWX9lyFPekZipLPUUp3OVRAY8ha91+lL03rQsuu1HJzGXbK83VAg0BUTXTHy5ynFlLHrMl5FEM4oTOpzJCoesTPaU8loTyXjPRVUPzS+9i96B7C599wPMJySwQ5ChITGIB7iaAzgZQInTSJKCelNVYAphLwm1coiZAtVK0uNMjHFB6WU/Fax8aQo9//lZotU2cwqTiY22UDBtH5LskEm2QbTQkgIE/pOOjn7rI+uV9x5i4OnUufQ58Ic/FwYX/aCXrD4m6527vWSkCzSIXMPkKnVxZuvBoXR4oVK03LR4ioLa5jWI1p8NbHsU113Ppb9jmETqlJCwOV0JV0ZK7p4mzZDuzrD98K7CJsOngtv51P+62jSPSgTZ2EIiYRQSJIjS1qeNC13PEkIHFnrXXTMTe+ZWqa6S4hPOiEFR0/08ujHruPx3XzQLQTM9Gv0n3TSd8rFwLtOErPF11FXqUHzsUQ2ICJOadPajg0hoHumgu9176czWIMpS9bJWQEUE9mdIZf7UzuR4p8/8CqPNAao0ixCPaMrXE84yGwCe/JSkLL/TKcdvBDYzjuzTfma8np7iCfKuzngnWsobejQ946XKz8upftNP6ZhPaHYTDo+PMuBT07T9kAYeS1Dm1VOnixHnmYnnPSdq6D3fAWDl8rIJOfogCQLarfP5kMiaraFV6T8CwSmLMioet4dKpsSmq6gCgmPYhLSFYYiToZ7qxjtrmSkp5LghL/oc5wDmzvafj62iNQmh1/KsFcEmcLBEB6SqNygBB9pmkUE122tn1oNFlet5MVUKyQyhuWTNYSCbspW3Pkml/g3DpuDFN0M+domrFAIm2xa6Xq5lEUhWX2bTKVo8YmQzKXveTn7rI+Z/rkq5eYHEhx5JsSOx2Io8xLLV5JVsdhrpOx6CpmiHhZ3F9YnmW+xaHGrF9PS9tvCXkyFStPtdtMtFcs+M6Ax0bnCWHafYVkDO+aaClduX1ks+2bDZlOlTAFnU7UM6daAaI9tkh3aDJIET/lu8L3QLqYMDy9FtvGEt2sTuCrWDiEguYgVLylUUjcZUtmzoQ7zrXhqRnDh7VZeen4noWlLcXW40hx/rIv7H+vC6V6+V1B4XKH/lIu+bEBEZLz4BGpzmTTdn6D1eJyWYwmqdmRuyUGX0hV+2reLV4Z2ENKdc+QJcCopSp0xxlU3yCAn4KNqH1/65HvsdSVwKgIhoC9lY3iTW/kkYDzt5oWp7bwbasif+VqdM3ysvJs97sk8AZ3qsXPlR6Vc+Wkp8Zm57V+3J8bBpwPseSKI07cO47WbHPOF5EkgoWfJUyqhMHSljL7zFfSeqyA46i56n7s0lQ+JaDkwjdO7uv5UpiTIKDpmzuYnQNMVFFPGzMiMDZZz6VotN27UMDVSmo/qz6G8dpaG7ZPs29VPt7TVR2oL6wxJgiqSlIkUo7gYx0UYG5coo0okaLhj9VOrgxAyBmAUqFayZKIisKkpJARm9hQgZIm0oVp2QCFj3OV1Uvnh7yYlRSuBVddkkSZNNlCL1CZL9TGEvOTs4tgVG2ef9XPlRx70pPV72twm+z8d4fAzISrbV37iXumlNzfWVBAYEpsimGF1WD2JyhGmwsa1OZVpJdHihcRpM+vBsgoV2zJUbJsXyz4jWz2vrs2Rq0CvjWT45rHs1TtT1O2MYy8HaTN/edg0qlRGyJxK1jNluJEQHLGP0aTN9fspUVJ83NvND8M7GciU8FasmUfcA5taHRQCMixixRMqSdRlJ/lUzAKSlMnXLDmztuZCpJMKZ17fxqkXdxANWful25fk+Meuc+RDvdgdi1sh40GZgXedefJUOCEFoGiChkOWVa/1eILavcmiySmrVmn1kzLXpiv5x+4DdIUqMXMShQSKZLC/fJSDZSP8oH8P4zZrkO4P6fzentd5sGGCbY40sgRJU+JawkHY2LwHmAQMJb38NLCD8+G6/O+9wzXFE+XdbHdNI0mQCClce9HP5R+VMd45Z91zl2fY/+Q0B56epmpbcoml3OIKFvx4i5InIREYdudDIoaulKGn57a5JJvUd2RVp8MBqloia1MlEeiKga7MxZnLusJUfzl9N2rp66pmsL8CPVNMN/wVEeq2TVHfPkldWwCHO42CoMYZpq+ndA0b5c5hi0jdRVAlQRMxqkSCITzM4GASF9M4qBNxaojfZTN9EqZQMCF/UpAkE5uiW9awbNpNoSVQx1KsDORNPSiWrAIhrNRDlh753yFSdDPk1CYFgSrpaLJl11uoNi1f86anJK7+xM3ZZ/2MFtivqnakOPKFMHufjmx4PYvAGjjkydRdo0wtH28uAD1fv1RMmJb6TaRlCNPdslVuBneZSeuDCVofXBjLPp9gJUIKU12WTfDKj+Y+Q1YF3modX62Ov9b6m7v5a3V8dXo+9OROIh/vf4fOFwlT4Z1kIyHTgYLJMccw1epCW06NFuVxTw/PR9u5mqrCo6Q57By7A2tcDF1IJOc1p83djJtY8XKx4fPVpZVYFxMxjdOvtHP65e0kYlaoiq8szoNPXOPQw31otuLPSMckBs9YalP/KSfjncXJepIsqN2TsmqcjsdpPJREcy69UwgAWSCtgEzNJh38sHcvp8ZbiBn23AYABA2uWT7e0sn91QM8d2kvXxs5hOkBDLhfjPFbJ95mlztBpWZdywMZhRsJR1YF33yQgN5ECT+Z2sHlaE3+8X2ecT5W3k2LcxbTgP5THi79qIzu130YGWs/UVSTHY/Osv/pGdqPhxa4KtZ9XRchT8mESv/75fRmLXuhCVfRe7zlCash7qEAzftnsLvXXrMoEBjz4szDUx7efWEvV861kEoWk3uXN0Fd+xT12yapb5/CU3L39YtaCltE6i6EQzLZTpiwSDCQrZ8awsNktn6qlNSmnu1bDpYqJaMbc19AzoYVaIqRb0ZpYPWyyohcrZVcoHTdboi8j3oBccqSoztNjG6GnNokSyaarKOtUm2aj+CQyvlv+bjwbV/eny9rgl1PRDnyhTANh5K3dR8VwrrwKIK7QpkqjDc3hdUIcb66lF4mWlzKk6Ri4qR8QA2zqg1qdqWLIvOFgMiEkidVudqr4KCGqUuERjRCIxpDS3ymzW3ir9Px1WaKSVbuVq3ftL/OrcDiUFL+GL3diJg23k40EBc27JLOg44hSpWla3ha7bM8bA7yVryZ0/EGPHKaHfbp27KuCaEQL6hXylnx0stqrgL7Eql4dow1nb+iYTunXtzBmde2kU5aI+2yqggPfeIa+48N5HvuGGkYvuig/6SL/lNORi468g3Ic6jcnrICIo4laL4/gcO3CmIvsqqUJJAWmaRJ6Conx1p4cbCDsbiP/AVNgFtNcbymj09vv4RHSzMTcvHHr3ycoTIX2MGeNPnNlnd5pGmQXc4kDllgCuhN2RjdrFY+Adfj5fxkagc34pWAdQ495B3lY+Xd1DsizAzaeOOHNVz5SSnRqTmWVLMjzoGnA+z9RBB36caGqRT2eRJIZAyZySEf3Wcr6TtXwfDVUgx9bgJAUU0adgdpPTxF26EA5Y2xdbnumpJJAoGcJcizAQ8v/v399F5pyL/G4UzT3j5BXfskJa3T+Cujd+249GbYIlJ3MXzZ+qkADoZwk0KhCz9e0jSLKG7pbktIEsiKyEamz8EUMmahjJ21O9lkHXv2O5qiWLUyTBl9w1Sru5s45RIRLbXJsulZahOAWLHaNB+mAT1vujj7rI+eN1z5GVNfbYbDnw9z4OcjeCruXE2fyFqhFKwI781IpgwgI0kYkmXLSwkrLW+5aPHFapiWNx9tAayBpK/GwFcTZ/sJS0WRECimTnDSTmhUIzSmER5XCY+qhMZUwtlbYlYhHZPzatbiCxB4Kgx8dTq+mjkly1eb/X+djqtsbQPyPERWXbjNqtS04eBkopE0Cm4pzcPOIdzyza25e52TREwbF5O1vBZtwSVlaLCFb/q+tSJmqvQbfoLCseRrVhwhfgsIzTg5+fxOzr3Zhp6xyFtV/SwPP3mN3UeHQMBEpz1b4+Ri6KyDTKJYEfPXZ/I1Ti3HEngqb+1cKnJkCkvxzpgy7wfqeG14O1ema4oqIWVT0O6f4ue2X2Rn+WT+/a9e2Mm3pveRzpa0tBtB/vn9r7HdnaDVbln5EqZEZ9xB1NyEVj4Bl2JV/GRqB/2JMsBqWHy/f5iPlvfgTye49tMSXvvxNkbfn6spcpVk2PfxGfY/HaC2YwOsewWYT55iMRu9FyrpOWfVOkUCzqLX+6vjtB2y7HpNe2ewOdfnmhuL2hnsL0PzJajbNoksQzql8s5P9nPm1V1ICNp2jNO2fZztOyZoa5omaChM6/f+1WiLSN3lkCSozNZPjeFiFBcRbFymlEqRpIEYtrskJUmWreHizUiIQMIwpSLrhSyJvGqVG1TMqVZKPop9LapVkU3PeuCuIk6yNBdBrskGGkZebQIJw2RVatN8xIMyF7/j49w3fcwOz83UtT0c58gXQrR/KL62hKINwGYhU1a0uFXHlJGk/H1zyVF1cS8mDbF8tPgW1gxFtQiWt8akgcUVlnRcyhOs8LhKaDRLsgpIl5GWiU6pRKdURi8usSybuax90FejL9v89E6oUmO6h9PJOgxkSuUEDzqHsa8i9OiYa5iYaaM7Xc7z0XZ+xtdJhbq+Np+UUBgwvEyaLshuH1e2Xmm+HW8lEeJrxcykm7d/0sHFky2YhnW9qmud5uFPdFLuDTDwrovv/G0NA6edJEPFJ0l3uU7zMavGqeVYnNLG9Z8YNUyJ68Eq3h5t5fT4XJw3ACZ4lRQfabzBE22duLQ5ohwKO/nK649wrcKHKAHZEHyu6hJPtl5npyNJeVapmMpa+ZZumXBnIAScjdTx/NR2RlJWQIomGRz3D/KR0h6ilxTe+8sybrzqR09Zv5ukCLYfD3HwUwHaHwmj2jZuvykkT6aQGOn10322mt5zFYxcK8nvSwCqzaBx7wyt2aa4pXXxdVF+UkmVgd5Keruq6e+upH77JA8/dQGHy9oPrpxu5fqZVmrrQvziP3mdxpYAqmqiSSZ2WTCdUZn5AJAo2CJS9wwUSdBAjMps/dQ0DqZwMo2dOhGndrPXT0mWlWmtMdVWP6KCQsqsaqXJxgLVSjcVMlnVykDCnBdkcTcTp5zaJCPQllCbzDWoTfMhBIxetHP2WT9Xf+LGSFvb0OE3OPCZCIc/H6asZXWpP7cLRWRKLMhIXFfkosXnEyZjGcKk5glTsdK0mQ/fewor2NA2lxVSUdG2+D4uBMRnFMJjiqVqFahZoTGLbEUDCkZazicMLgWn31igZFlky7IUeisNZBu3RZXqy/g5n6oBJKqVKA84RlZNRCQJPuzpIxbWGNN9PBfewWf8nXiU5XvTrAS6kBg2vIyanryKWyHHaVbCOG9jwu3kiI+3nuvgyntN+cmahpYpGiv7id6I8/zvuYhMNhe9x+4xaLovaalOxxNUbt+YFidCQH+kjFNjLZwcayGULqijESAZsLNkkqfaLrOnaqxo3CAEnLq4jW8MHCKWdXGVmwn+t32vs9MTYpcziT1r5etJ2hnLqGwmK58hJE6HGng+sJ3JtAcAu6zzSEk/R9JD9P/Aw7efayE8Nnc8VrQmOPypKfZ+YuaWVcDlUEie4hEb3ecr6T5bSe/5SmLB4ubkpXWxfEhE454ZNHvBZPkazwG6LjPcX05vVzV9XdWMDJZjmjLNO8d48ktvU1k3C0Ak6CI26WPvzgmOHhgp+gxblkRNZUnUan77qGGjP1nBj4N78LI5xw5LYYtI3WOwSybthKkWcQbxEkVjuKB+qmxT1k9ZatL6fmJOtZpDoWrlzA46TCR0UyYtFMxss1FL6ZrzhG9m4rTRatN8pOMSV37s4eyzfiauzp3ca/YkOfqFMLufiqI5NunGKkCeTMmgm3CrF/u5aHGJjCRnyZOEvkzzDUUU9GGSTOxbhOmegSSBu9zAXW5Qu3dxgmCkITJZoGaNFdsHQ6Ma6ZhMIqSQCClMdNoX/RxJsYIx/EV1Wpk84fLV6jh85i2d94WAznQF1zIVADSrsxyyj695ck6RBB/3dvO9cAdBw8WPI9v5tO8adnltA1VTwJjpZsjw5fs1+aQUrUoI7wosh+uF0f5S3vzxLq5fqM8/5rdPIwbGGX0jzSgq4AMsNbLxcDKbrBendk8KeQNHZOMxLyfHWzg11sp43Df3RJY8OaUMJxq7+XDLDSrd0QXvD4WdfO3Fh7hYVorRYJ3jH/X284vtZ2h1pGmxW8Qvbkh0JhzENpGVL2PKvDPbxAvT7QQzFnF0yWke8fZRe3GGru/7efbctvzr7R6d/R+3Uvdq98SRNmjQlCNPwoSR7hK6z1XRfaaS0a6SolAkza7TtH8mb9krqVlGwV3hhIppSoyNlNCXJU4DvZVFyXq+sihP/MIp2vaMAlZIk82QqXRlqGqZWfB5dslEkwWTGZXgCkiUEDCtu+lNVtKbrGAiM7dPNhO8+RfYRNgiUvcovJLObhFkGjtDeEij0I0fT7Z+yrOJ6qckyWrAu9FNU4tUKxkkctHrBvbsDIhAxjQl0kKxotfZyFqr1UEqStKzQiHUDVCbFsN0r8a5b/m4+F0vqYi1DVW7ye4nrfCIun0r6M6+yZAjU+oqyFQuKS+DRFqS8+RJR2Kpkaos5mx4WsF9OfuJ69Ejagt3HxQblDTolDQsfS5ORuQ5++DYnJUwZx+MTKiYukR4VCM8unRMmM1lZklVMcGyLIQZfDU66hKimCngQqqGfr0EgJ1agN22wC1PyNllgye9XfxjaBdBw8XzkXae8t1YEBG+HISAgOmk3/Dlezg5ydCihimTbl+gzcCNCl7/wS76r9cUrNgs0uAEkZg16JUUQd2+FC3HrDqnxsPJDe9hNpty8u54MyfHWugLV8w9IUAyLQLV6A7yeNt1jjX0WUm5885DQsCZi2188/IRgtsFqAK70Pmt9lMcLR1lpzNFmWoR4Im0SnfSvmmsfElD5Y1gMy9PtxPJJg76lCSHk0PYf5Sg+wUvnfEs6ZUE2x4Ic+hTU+z80CyKI/cd1vu7CGQEsZDNIk7nKuk5V0kiXHwAVjRF8gl79buDqNoq9pVFyJQQEJj00tdVnbXrVZFMFE/OuL0Jtu0c4+iHO6lotiLeEaAYMpqhIC2xLeyydU2bzGjM6ktnwJpCYjTtpydZQW+ykrBRXN9Vq4U44B0mNONe9P2bFVtE6h6GJEEFKUpFivFs/VQUG1coo1wkaSSK/Y7XT1m9pDYccnZZRQ9aaWjWIFrJPmIlmzlkHUnKILC6gBtkgyyEFb1umPKGD3pvpjaZwrIqZDaox5apw41X3Zx71kffO3P2j9KmDId/IcT+n43gKr3T+8+tYTkylbPlpfO2PCsAQixDmDSyKlNWbdIQy+SCLR9vvoUtOLwmjp1pqnYurmqZBsQCypx1sKBeK6duxWdU0nGZQI+NQM/SFkJ3RXFtlr8ug6feYHJ/KUG3GxActE/Qps2u2/fzKmme9N3g++FdjOo+Xo228pind0UEaNa00W/4iQrrO9kwaFLCVMvrUyNyM2RScPqHTbz35k7C8RLrQSFgMog0OI6USFG1IxtJfixO033J2xKZH8tonJ1s4uRYC50z1QVXPSuyVDJAFYKjtYN8pPUa28um8turMHwCLBXqWz89znlnBald1rq3O6b5nR0naXFE2elMYZcFhoDupJ2JTWLli+karwZbeXW6jYRp7R8lcoLt3RMk/pdOb78dsEhEaWOSQ08HOPTJAJ7qTHZ7rT95woCRrhK6zlTRfbaSsR5/UYS9zanTcmCa1sNWU1xf5S2GWEgQCjrzxKnvRjWRcHEcut2RpnnbFG3bJ2jdPk553Sy6pudXSzYlNF1BXmaM4ciWEoxnNMLGQkqRNhUGUmX0JivpS5aTEnMTPgoGjfYg2xwBWh0BfEqKGmeYF2b23tp3v83YIlKbDBthIVMkqCdOpUgyhJsADqZxEMROrYhTSwzlDp37JElsjBq1KHGysNwmFjl1IWvpk7BSfFTJwKZaM8e5VDtdKEVBFvPTBlcDCbJqk5lVmwwUTCsCe4PVpvmITimc/wcf57/lIzKRPUVIgu0nrPCItocSLONYu+tgCskKf5AlEqaSV5oyS6lMwkrKmyNMYtW9mCRJWDPvktgUaucW7k7ICnirDbzVBg0HUyCLBSe4TEKaU7QKbIOFypaelIkFVGIBldFL1vuUEmj8UwWXW8JMCsb+lcFYlw9frasoEMNfY6la/lp9TT3hKtQET3i6eS6yne50OZ54mmPu4SVfPz+JT8GkXolSL0dXpWatFqYB41fs9J50cuXdBiYTTQhPdubcNGF8Br8xQvt9QVp+K0HLAwnc5benLittyFwM1HNqrJWLgXoyBbY6ycwRKAm/PcmJ1ht8qLmLUudCe1g+yS+rQn371BECu8F0mUhC8LN1l3my9hqtjjRNtgySBDFDpjNhJ74JrHzhjJ2XZtp4M9iaD84oycSpemOGxDcMJnQZsGFzGez+aJDDn5qk6WA0qxFJS4wY1gpBbMZG97lKus9W0XuhgmS0eCKjqjVsqU6HA9TtnM3H368V8ZiNvq6qvF1vespX9LyiGjS1BmjdPkHb9nFqG4IoisCUrH5QGdlaviRA01VkU1pShQJwyha5nsjYiBQ0WI4aNnqTFfQmKxhOlRUFgznkNK32adocUzTbZ9Dku3syFraI1KaDsYHFODbJZBsRarL9pyLYGMHNJA4aRYwKbm9vH0uNWqfvK+f8xostZe0QWOl/hpj7oJxqZZd1HFIGClIEi1WrpRujFqlNkoGa7XovSXNJPYaQMEzltigVQsDQGQdnn/Vx7QVPvmeJq8zg4M+HOfS58LIWpLsFuVqmVLYfUxqZVGG8+LzraM6WZ0OgiezfW6SykmztP1skagvrCQFIWYW18DKiOQXlrRnKW5cOxkgE5ayaZQVjzEZtRD5RAhUSRkQw9M8N4hcAbAQHl1a1HH6jIBAjU5RG6K/T8Vbpi9YBNdjCfMjTz6vRNi4ka/HIafY6J4tekxIyA4avKImvRo7RqEQ2JJlWCAh02+g/5bRiyU87STkrEI3V4HaCBzANyh1jHD7exa4Ts7f1HGkKiasz1Zwca+XsZCMJfe530SQdPa1a9j0hs610ksdar3O0bhD1JgPX2bCTf/jxMc7rNcQP6yBDiZLgd9pPstsboMOZoiRr5RtLq/Qk7cu0Z7g9mEk7eWG6nXdmm9Cz9n3fbBzXtyNob6VICmuPaToS4fCnAux9fBrVYWIiZ6fA1geGDiOd2Vqns5VM9PmLnre7M7Rk0/VaDwXwlN1awEo6pTDQW2mpTjeqGR8tLVK5JMmkrjGYJU4TNLYE0Gxz5F4gSCsGhmLm7YCqIaMuY+PLwSWbCGAioxHRlWy9k2XZK6x3AvArcdocAbY5AtTaQus37tsk2CJSH0C4JZ1dYpYgdgbxkEKhFx8TOGkWUbzS7SnOXbMaJQHS0nNHG32ILqZaSYuoVqaQyKCQMS3VSsrXNi2hNonbX4uVikpc+oGXc8/6i/rhNBxKcOQLYTqeiC5ZO7HZYUARWcpZ8xbXjSyCZM+m5GmmyNvy1u8XEcgy2XqozdnHagt3OUTROGpFkCRwlZm4ytLU7E4za9h5O1kJQsEpZXioegj336WJTObUrFydllakciXDCsmQdZu8vkQwhizwVM1Xs6wEQn9dhIPVI1wQ9bwVb8Itp2m1z97WJL7ZYTVLnFwMvOskOqVaVt7qMkRHNTit76UqGfbf38uJn7+Gx3fraYMrhRDQGy7n1FgL7463EErP1Zg4lDSmLqOnVQyhYpNNHmjo47HW67SULAwHWOyzz7zfxj++epTATolMpXUtO1IyzJebz1JvT7DTmcKWtfJ1JexM6kvX5d0OTKTcPD+9ndOzDfm+V+7BBK5/iOB4P4kE+GrT7H9qmsNPT1HRmMw6ENaPQIWm7PSeyybsXaggnSjYJpKgpj1M66EAbYenqN0eRlbWPkLRdZmRwTL6blh2veGBckyj+HtUVodo3WERp+b2SZzO7HiuYLECgSFbKlR+DtGQLBXqplc8gUs2yQiZs5FKriSq6EtWEppX71SjhWhzBGhzTFGm3h677Z3CFpH6gEKSoIwUJdn6qRFcxNC4SillIknThtdPrUKNusPE6Waw6FC2afB81UrScajFxPR2q02LYfKGjbPP+rj8fS/puLVlNafJ3qcjHH4mTM2u2zc4uFXkAiDmCJN1X19ij5GyhMmWv1mqU94ZLwlMWcoS/PU6++dIlLlVD7WFDYOlSs3Zs1aLSd3FqWQ9Ogo+OclDjmGcclaVqNcpqV9acUlFJcLZqPdQEeFS842NzYxEZFwjMq7B+cU/x/svktg/6eCF4Daaro3jOSyQsoX/rlSaVluIUnV9zk+xaYX+U848eZodmhsEC1lCbi5HaqrCkCwC5fKkeODxG9z34W4crtunPo3GfNm48lYmE9784w4ljVdJMxNxkxY2JCQqnFE+3HKDR5q68dpXFgIUCjv5znPHuBisJXI0g3BYzdq/2HSeE+V9NDvSNNmt61jUkOlMOEiYd87frZsyz47v59RsY94f4LiSwPeDMPZrKTS7yc5PzHLoUwHajoZQFZG349/ysjMyg1dK6D1rWfamhrxFz7v8KVoOZmudDgZw+dc+MW2aMDFako8kH+ipJJMuJq/+0hhtOyZo3T5Ba/sEXv8StVVZxcnI2vhEzsZnWjY+ZQW11ilTZiBZzsV4NZfjVSTNuVnW+fVO7nVoZ3C3YItIfcAhS1BHnEqRyMakO5gpqJ+qI74hvvNl1ahNTpxWgvmq1WaAkYbrL7k5+w0/g2fmZo/K29IceSbEvk9Hb0sx9K3AamQ7R5ZyStNSZju1gCzlyNNyLQJz9ihZEiBbF7JbJ1NbyXxbuI0QEmIN5+yhjI8zqVoEEhVKjOOOEbRVTKbZPYLK7Wkqty8+gBKmRVxy6YOF/bVypCsWUIn8/+KU7c5Qvy+O7UEAiViPRO+faky/7gD8uMutQAxLzdIXJBJ6KoxF6zhTUYmB0076T7roP+Vk8kaxciYpgtr9GdT2csZDjSST1vPekgTHn7jO4Ud6sdlvT93TTNLJu+MWeRqIlOUft8k69a4Q4biDYMzNTDY0YXfFGI+1XudA9XDW7XBzCAFn32/jey8eZaZJJnE0AxLUOUL8zrZTbHPPssORwq9Y+8FoWqMneWebNKRMhT/vfYDutJVC6DwXx/fDMPbeNPX7Y+z/f02z76PTuH0ZJMjXMN8KguNOes5W0nO2kr73y8mk5obOkiyo2zFL66EArUcC1LSF11xDLATMBDz03rCIU193NYlY8T7qcidp3T5p2fV2TFBaHl2R2iMQZNSsjc96AM1QUAx5WRtfWLdzNVHF1XglPYly9AIlzyFlaHUEaHMEaLLPYFtj+4LCtXTIOjb57ioj2CJSWwBAkwStRKgWcQbwEsbGKG6mcNAgYlSua/3UPDVqmWAI65kt3ArCYwrn/t7HhX/wEQtYh7ykCHY+HuPIMyGaH7jdtXE3h1WbZkWLF9YzZZaw5knZwAc7okBpWpt5Y33J1BaJ2sLtxVpUqa50GZfSVQDUq2GO2sfWfQJNksFTaeCpNKjfv7hSMp2y05fxk7RZs+4ZUyYQcpH6ShRp2EBzSWTiErFpldi0ytiVxZclawJf9Zxt0OEzGb3kYPSSHWEUH8vVHSlajsepPaQzFmrk3Ft7SU1kk94qojz0iWscOD6Aqt2OxD0b701YiXvXg9V5wiJLJtv9U9gw6A1UMhi3SIRDyfBgYy8fab1OvTe0qmXlVKjLI3VEDmbQS6xB8InKHn6h4SK1thQ7nCk0CXQBNxIOAvqdGzJKQCBg5/++/hDTpR6khEnlf5miYirK3idnOPDvAtS0JVAkM+v6WHv6XiYlM3CpnJ5zFfScq2R6xFP0vLs0SeuhadoOT9F8YAand+2qUzjkyIdD9N6oJjxbHP1ts2dobpvK2/WqameRV0HUBAJdNtEVI69KKaaMpi9eByUETGQ8XI1XcTVexVC6pOj5EiVO67rWOwm8SoYqe4xqWxynYtDun77Fz7y92CJSWyiCSzLoELPMYmMQD0lU+rL1U00iiv+W6qesA06WTWQ5d18s8oot3CqECf2nnJx91seNl9355n6eSp1Dnwtz8HNhfNW3Z2b1ZrhpAMQ8KPPIkj0bM76eXHB9yNRWvPkW7hBWqEoJAZfSVXRnLMWjXZthn23ytk+s5JP4JAfYrCS+KjnO6VgjIdVJ5f+l8Hn/NVRMkiG5IOZdy6tZudj3yKRlIZwd1pgd1oDi2o2yljQtDyRoOR6n5YEEhmzj5As7+OEPtpFJW0OiitowD3+ik733D91STctKkDIULkzlEvfqMArsZ9tLJml0BxmfLeH6eE3+8Wp3mI+0Xuehxh5c2uquyTkV6vsv3EeoRCH6YBqhgVNJ8+XmM9xfNkyLPU2DzVIFIobMtaSdpHFnUvkkID6r8NqzdTzfupt0kx05arDre4M88RsD7Dg+i00zkCWBuUb7nhAwPeKm55ylOg1cLkNPz32OrJjU78qqTocCVLVG1nyMJOIa/d1V+UjywGRxIIWiGDS0TGfteuPUN82grHEftGx8c3HmkilhM7Jx5gW9pgwhMZAq4Uq8mqvxKmb04pj0FnuQ3a5JarQZPEpiHc4PAo+SodoWp8oex6XMKVCmAKdy+5porwe2iNQWFkCSoJQ0fjHDBE5GcBNH4xqllIoUTURxrKjIV+THnlI2pcyK+c753bYGl+uNREjm0ve8nH3Wx0z/nH+5+YEER54JseOxGModrA9eSwBEjizZ8ta824NbIVNb8eZbuJNYiSplCImzqVqGdStha69tku3azG0lUTdL4iv3JfleaBdThpsXI9v4uLcLZ4mJsyRNdccSvbV0iEzNRbuHx1Ri0wpVO9K0HEvgr7MGbbMBF68+d5ALb7dg6NaguaYpyCNPdtJxaGRDWzwYpsSVmRpOjrVybrKRpDF3Um70BDlcNYTIyLw70sLr49WAdbXcXz3CY63X2F05lm3EvjrkVKirvfXEdukkG60B6zZ3gN9qe5cGR5QOZwpv1v41klbpS9msHUkSSLdxQkgC4iGZ039Xzannqxn5vVr0Og0tqvML5nke/ONR7IqOLK2t/imdUOi/VE73Gash7uxEMXnwlidoOxKg9XCA5n0z2N1rs5ul0wpDfRV5u97YcCmi0GooCWrrg/k6p6a2KWy2W5vkNBFkVB0zN1Gds/GZcza+lKlwI1HB1VgV1xKVxAvqnVQM2p3T7HZNcp9nHJucYTytkb4li6TAXUCe3AXkyRAS02kHM7odIQnOTDXyc7ewpNuNLSK1hSUhS1BLggqRZAQ3EzgJYmcWG9UiQT0x1PysZz5lwfojLV4cJGVfeyc91vcixq7YOPusnys/8qAnrZOdzW2y/9MRDj8TorL99s7w5AIgCslSCrmon0Qh5gdA2LNWvTvdrqqYTEmYpjUBsBy24s23sCkgrMHvYsgImVPJeqYMNxKCI/YxmrTwbVu1lSbxlSgpPu7t4ofhDgYzJbwZa+ZR98CyZE9WwZ/tc9W4yPOBMS9v/aSDS+82IbKBCY3tAR5+spP2veMbRiSFgJ5QBSeziXuRjCP/XIUjyrHaflo801yZqOeF63tIZ5uburUUjzR1c6LlBlXu6JqXffb9Nn7w4lEiqkbkwRSGxzrvPllzjU/XXaHGlmG7I4UqQUbAjYSdmVyD1RwpX0ss5CohAYmwzOm/q+LMtyqJeexM/h9VGJUqXiPJ/2PfSartMWTJskyvlEAJAVODHnrOWgl7g1fLMPW5K4yiGjTuDtJ6xFKdyhtja9oXDENidKgsT5yG+iow5ql5FVUhq85pxwQt2yZxudcnmEEg0BUDXS6IMzfn4szDup2r8So645V0J8uLtp1LTtPhnGKPa5LtzgAOWcermMRM+ZZIlFvJUGWzbHtudSF5mki7COlWUErcsFFuj91148MtIrWFm0KTBC1EqRIJBvEQws44LgI4aCBKFfGsZ3eRi3bhSTcbMLEZOp/fC9BTEp0/tcIjRi7OXZSrdqQ48oUwe5+OrKlB5moxFwAhF9U0rVcAxJ3GHJkyQZaXIVNb8eZb2DwQ2X/mq1IJU+WdZAMh04GKwTHHCFVq/LaskylgzHQzZHjzRes+KUWLEsInLz7ZU6PFeNzbw/ORdjpTVXjkNEdcY6te9vignzef20XnuYb8dalt9zgPP9lJ847AhhGokaifk2MtnBpvYaogcc+rJbm/ZoD7q/sJxV282r+Tn3Tuyz/f4Jvh8dbrPFDfh11du0IRijj5zo+PcbW7nmSjQXxXCiFL+LUE/6T1NHt8E7TZ09RlrXxhQ+Zawk5q3sA516w3d3+9IQGJiMx736jkvWerSMcU0vUa0/9nJYZXpVKL8bvbTlKmLZFKtwiSMZW+i+VWUMS5SsKBYptnSXWcbYenaD0SoGFPEJtz9dvZNGFy3J+PJB/oqSKdKrZ9+Eri+V5Ordsn8JUsbIZ8K8jHmSsFceamhKqrTKW9c/VOqZKi95WrMXa7JtntmqTZPpuvi5QQeBSTqCEzkdHIrJJEueQMVfY41bY4noLUYlPAdMbJRMpFIO3ERMYuZzCRiWXsJHQbatqKeb+bsEWktrBCCFySToc0y6zQGBReEmj0i1z/qTAlUmbZIifLirClRt0qZodVzn3Tx4Vv+0jMWoMRWRPseiLKkS+EaTi0MeERawmAKIwXz1n07q5TpIWbk6mtePMt3FkIkb2ZEkJIVl1kdjc1TSvOPyI0zlJLUlKxCZ2DmUlsSQgKN6YpZT9DKviM7P+FtMjzBcsS1v/N7P/JvtfMvtYUkPZDsk4gsiFkUgK0QZXUtI3rwr/052Ufq65OM9Fm571EA4MXqvCNG/nl5b6rOe/9ufeGZlz0dVbnt9XOgyM8/GQn9a3BDfktphMuTo1b5GmwIHHPrmQ4UjXEsZp+Gt1B3hpq5ytnHmU2adnKZMnkSO0gj7VeZ3vZrdWqFapQMd1G7FCaVLW1Q+zzjfHrre9RbUvQ4UzhyVr5hlIaA+mlK04tMrX+NZ+piMJ7z1bw3rNVpKLWNc31iMnkr1aQkVVq7WF+t/FdfOryce5CwHivL1/rNNRZklcdAVSbQfPeabYdDtByOIC/dm31PjMBtxUOkQ2JiEcdRc87XSla2ifzdr3yyrXXVN0MpmQRqEIb30y8hHPhRjrjVUzrxeEVjfbZPHmq1uYl/gnruu1VTSK6wkRGQ1/hhKCzgDx5F5AnB5MpN1MZZzYExKp1digZgjE33aO19AzVMTBSTSJlo6159Ja2ye3GFpHawhKYs+pJ+Von67FSyeo/NSFcDGcJ1TWznBKSNEuRxZskSrmkvi0StRaYBvS+5eLMN3z0vOHKz6j6ajMc/nyYAz8fwVOxfuERAvIR46sNgMipTOsdAHGnsTSZ2krmuxcgBFx5r5HBrgoMQy4elM8jEWYByWA+yViEaBQ/P48wmPPIS/Z1prmQEBSuhznv9TezXDlbYjT/+gCq2yA1aeP6X+3k3MyhDd+uJdtDtP9sP77mGACpWY2+HzcxdqoqH4KzUrg/PoP7RJjxdhvX3qwm0+28+ZuykCTBnvuGeOgTnVQ3rL+NMZq2cXqimZNjLdyYnSNtimSwv2KU47X9HKgYZjhcyit9HfzZaFM+WMJnS/Chli5ONN+g1HnrakVOhersbiBTYhI/nCBjk1Ekk5+vv8THqm9Qrem056x8JlxP2gkaNx8SCgBZIJm3fq5LR2Xe+1YF7329imQkG/TRnqDltxM8V7WHpKnR5Jjldxrfxb1EAEEiotF7oYLuM5X0nq8gGiwmNeX1UbYdmaLtUID6PUEU2+rXOhJ2WAERWbve7Exxip9m02lqm8orTjX1wVUl660FAkFGMTCyNj5TSFwP1/Lc1B4iBc1xVcmg3WHVO+1yTS1LRmVJ4JFNwhmFSf3mJMoh69mapxi+eeRpJmPZ9gJpV1H8fDjmZHyynMGJSvrHqpkOFYdtIMF0YN5jmxxbRGoLWcwnToudbKSiUqgaKUEFSUaEh3FczOJgVtipEXHqpShawWfkrH/31tB64xEPylz8jo9z3/RlE6gstD0c58gXQrR/KI58i2FKuQCIQpXpZgEQxQ1tb18AxJ3GYmRqi0Td/QgGXDz3tSP0FqgW9xK8e0M0/tIQsk0Q73cy+D+aMRMKimogyQJJshJUJSl3I/t49pa1rM49Nu/5gveT/TxHZZKKR6Zwt1q2QTMtETpXQuSSD5dhsn3f2KqXR1IwPSYTr5Up+9I4decyOGKm9XzWOr7g82SBopjsODBGefXaaoyWQkpXODfVyKmxFi5N1+Vn2wE6Sic4VtvHfVWD2BWdd0da+HdvP8FAqDz/mm2lkzzWep0jtYNoyq3HqwsBZy+18YMXjhJP2khtSxNrNxCSTKU9ym+1naLdPcM2e5qarJVvVpe5nrSvvAYmZxe9hfCJdEzmzLcqOP31KpJh6+pR3prkod+YwLjfxl+PHiVjKrQ7p/nNhtM4lOJJwkxK5sILLVx/p5rhG6VFhFxz6LTuD7DtyBStB6fx1SQxV2mzTiY0+nsq83a9qfGSoudl2aSheTofSV7fPI2q3p4ejDkbX1ox8mrS5XAdL0ztIaxbBMolp+lwTbHbNckOZwD7Cvo7yVk7X0i3SJSxxDZzyDpVtjjV9ji+gsbYpoBgljxNpZ3oQkEICIY9DE1UMpy9zUY9Cz5TZDed25PAaU/R0rJ66+6dxAdl/LOFBVgdcVoKqiRoliJUiTiDwksQB+O4mRJOGohSTRxFFsg5j8kWbgohYPSinbPP+rn6EzdG2rrAOfwGBz4T4fDnw5S1rD48YmEAhEwKaRUBEJbKdDda89YThWRKlqWtePO7GKYJp1/ezmvf30MmraJqBvef6MLuzuQH55JMfkA+nzQsNmhfjmQs+tplCMDcOhQ8X/j6RdYtt1w5+/4B4eOSUQlI1ChR7t9zHfVPz2/YNl0yic8dwfboMDx6a59vCIkfh3cwio/gA/Cz/ut4lfUp1l8JdFPi8nQdp8ZaODvZSNqcG0Y1eWc4XtvHAzUDlDviBOJuftq9hzcG24mmLaVElQ0eqO/jsdbrtJTMrNt6hSJWIl9nVwOmXZB+KEbUqwISD5QN8ivNZynX0nQ4krgVgRAwmNYYTGus9tqcq5dabfhEJi5z9h8qePdrVSRC1nYra0ny4K9NsPOxEO/Ha/ibkcMYyOx2T/Jr9WewyXMERZjQ+WYNb369ncjUnOpS2RSm/cgU245MUd8RQtJEnjythERlMjJD/RV54jQ6VFZkCQSoqQ/mm+A2tU1ht9/eprFCQMC0I2lp3KplqB9P+nhuch+DiXLK1DgP+/rZ45qg2TG7qj5wORI1qytMZTQMa2CYH//Zc+TJFsevzR1rQkAwY2ci7WYq7SRlqEwF/QxPVjI0XsnwRAWxZLFqLBDZqHrZ2nVUgVBBIBEWTsJJJ8rA3XU13SJSHxiI/LlySeJ0C8XxTslgpzRLSNgYEF7iaAwIHxO4aCFMuUjMVapuYVFkEhJXfuzhzDf8TFyd62ZesyfJ0S+E2f1UFM2xshNMYQBEqsCid7MACHtBTdNmDoC408iRqa1kvrsXE8M+fvS3Rxntt2pYmndM8slfOktt3Sxp4+7f+4WAzkw513WreWuLNstB2/iaYrNXgsWS+MqlBC1qaHG79xqhSIInvN18L9xB0HDxXGQHn/Z1rmjWfa0wBXTPVnJyrIXTE81ECxL3Kp0Rjtf2c6ymn3pPyNrugRq+8f59XBhvyE89lTujfLjlBo80deO1L1/rsxoUqlCJpB29KkPiUIqUpGKTdX6x6TwPl/dRo+lsc6RRJEibEteSdkK30BtqNeETmYTMuX8o59TXqkjMWs6K0qYUD/76BB2PzyIrcDpUz9fHDmAic8g7yi/XnS9IBYahy6W89jc7mOix4vp9FQke/WwX2+6bwlOexiBrueXmQT+GITE2XErvjRr6uqoY6q9AzxQPh8sqInni1NI+gdtz+8h6fj2FxECyhJ5kCdXuINs9kwDEDY1XAh1MJkrY5Zri58o6F9Y7rRAKApdiEsySqNyxa5N1qrQE1bYYJfPI06xuZyLlYjzhYSBQwfB4JUOTlYxMVJDK2Io+X5YN/L4oaV0jknRiKhJG0UnIui8ZAjUB9kwG320Kv1kvbBGpexIF/juWjiLfiBhTv5RmH9NM4WRIWA19rxlllGSTmdzS7Z3FuRsw3adx7ps+3v9HL8mwdWFT7Sa7n7TCI+r2LX3RzQVAFJKl1QRA5BSnD7rKtBZYqWh392D7gwg9I/Pmc7t45yc7MU0ZuyPD4599n0MP9S1oEH63whRwIV3NgF4CQIcWYJctYPVGWuevuJYkvluFXTZ4ytvFd0O7CBpOfhpp55O+G6uahV8JhiIlnBxv4d2xFgLJOUuSz5bggZoBjtf00eafRpIgoau80reDl/t2MhYtyb92V8UYj7Ve50D1cLaH4vqhUIUSkkA+HGa2ygaoNDpn+e22U9Q7w7Q7UlRrFtEM6jLXkw4y63DuErBsfyk9KXHuOxWc+tsq4jMWgSppSPHgr02w62OzyNkR6BvBZv5hwkosPOYf5Jma9/OEf2bExRt/u53u01UA2Bw6x36+lwc+1YfTqZMy1JumygkBU+O+fDhEf3cVqWTxgN/jS1g1TtmAiJLSOzOYT5kKXYkKrsSr6E6UcbBkkEcqu9FkA1NAT7SaVNrJE95+fKW3RsgVBG7FZEZXCGQ0VMmkyhanyhanRE0VEeVZ3c5owsPFkUZujNQxPFHB6FQ5ekFdnQA0LYPPH0NRDSJJF9GUg6lUtuYpV50gBGpaoMQllKRATQjsU3G08RjqbILSz66vBXejsWoi1dfXx5tvvsnAwADxeJzKykoOHTrE8ePHcTgcN/+ALWwAComTyO78t4c4LQZJgioSlJFkTHIxanqYFXYu6JVUy3GaZKvZ4gcZpg43XnVz7lkffe/MNQIsbcpw+BdC7P/ZCK7S4m00PwAiZ9FbOgBiIWG61wIgtrCF1WCou5wf/u0RpsetWe2dB0f4xBfO4y1ZeaTyZocuJE6n6pgwPIDgoG2CVi2ElLXZrddQ3rIaOek3fKSyQwknGVrUMGXSxiSHFsKjpHnKd4PvhXcxpvt4JdrK457eW17uVMLNqWxc+XC0NP+4Q0lztNpK3NtdNp4nRWNRH6/27eDtoW0kdGtwblcyPNjYy0dar1PvDd3aCi2C+SqU8OjwYIQp2bJRfaSym19ovEiJmqHDmcIlW1a+gbTG0BqsfEuvSPaj5pGpTFLiwnctAhWbtkbP/voUD/7aJLufCOYJFMCL09v4wdQuAD5U2sdnqq4gSxAPabzzrTYuPt+AMGUk2eTgx4Y5/gu9aD4TIWUDYZZYtdkZl0WcsgER0UixxczhTNPSPplXnSqqwnfMNBPW7XTGK7kar8r2d5Lp8Izz5aa3KbVZhC6RseMyYb89CPZbT5tUJYFTMpnVJWxyioPeYBF5AphJObg6Vc3bXdu5OtjE+HRxM2EB2Bxp3O4EQpYIJ5wkDY1krKR4YYbAIXTUqICwiprKNgxPprFNRNGmYsgZA82jU3d/GKniFgu/bzNWTKS+/vWv85//83/mzJkzVFdXU1dXh9PpZGZmhp6eHhwOB1/84hf5wz/8Q5qbmzdynbewIuJ08/qmjYYmm7TKYWrlOH2Gj2nhZMJ0EzCdNMhR6uTohtlMNiuiUwoXvu3l3Lf8RMazh58k2H7CCo9oeyiBJFsBEIlbCICwY3J3nYq2sIWNQyqp8sp393Lm9W0gJNy+JB9/5jy7Do/cU47jlFA4mawnaDpRMLnPPkqtGss/L+aCJm8Js6aNfsNPVFjEQcOgWQlTLcdv6/YsVxM84e3iufAOetLleOJpjruHV/054bSd0+PNnBxvoXu2Kv+4KhnsrxzhwZp+DlSOYMuGHphC4sJ4PS/3dXBlqi7/+mp3mI+0Xuehxh5c2saocYUqFIB71yzjLSop4cStpPnVlvc4XDpiWfnsaWQJUlkrX/gWrHxLoqBeykjKnP/Hck79r2qigSyBqk1x/Fcn2f1kEKVgxCkE/CiwkxemtwPwRPkNnqq4gZ6Wee/HTbz7nRbScesztt03yaO/3IW/PoVuShimjDovnCMWtdPXVZWPJQ8GvEXPq5pOU2sgT5xqG4J3TIEWAiYyHjrjVVyZ19+pwhbhU9UXaXJl6+cEaIaCQ5hI63Rw2SWDUjWBqqSpV9JFx+x41Mt7Ay08f2kfN0bq59YZQAK7K4XNniFtqsTTDhLYSMQL1D0hkHUJSQdFN3CGMxBTkXMjElOgTcfQJqP4/SHKd8cp3ZmgdGccT32aVv80bw10rMv3vF1YEZE6dOgQNpuNL33pS3znO9+hsbG4X3gqleLkyZN885vf5OjRo/zFX/wFn/3sZzdkhT+4EJueOM2Hkm2+a5cMOtQgITNGn+kjJmwMmD4mTBfNSpjy2zB7eSchBAydcXD2WR/XXvBg6taXdZUZHPxsiP3PRLDXCNLIjGMnvUwAhLxEzPiWNW8LW1gcXZdqeO7vDhMOWsrvwYf6ePzn38fp3piB7p1CzNR4O9lATNjQMDjuGKZcmVPacnV9krR2VSpmqvQbfoLCcp8omNQrUerl6Lrb6laKBi3CCU8/r0TbuJisxSOn2eecvOn7ErrKuclGTo23cHm6FjM70y4h2FU2zrGafo5WD+EuqA+Jpm28NdjOK/07CMS9+dfvrx7hsdZr7K4c27DJQSHg3KVWvv/CfSSSdmRNx/uhAD1qCQjY7pniN9vepcoWZ7sjRWXWyjetK9xI2lfcD2gtyKQk3v9+Ge/8zxoik9ag2leT5vivTrLnqZkiAgWWHfQ7E3t4Y7YVgJ+p7OSx0h463ygOkqhuC3Hiy13U7gmhmzJ6QQBEOqUw0FvHjRu19HVVMzFaWrQMSTapb5rJ2/UamgNo2p1zwuTqnXLNcef3d2q1B/hoVSe1zqA1HhKgmjKqoSCtg4IoY+JVk5SoSZzzyNNgsJTXrnXw4uV9TIT9edIkFHA4UkiqIJGxYQqZuLATT87VcJe4okgpiIVdoMtIhoScMtASAtmQkbKTLUoiRYkyQ2PLGJUfi1CyI47Ns8kGrWvEiojUv/23/5YnnnhiyeftdjsnTpzgxIkT/PEf/zH9/f3rtX4fbEhZG9aiNU6bjzgVQs6v89zR6pfTHJACTAknA4aPJCrXjTJ8UopWJYxHurcGNgB6Gr73B9Vcf9GD6jIp25eh9fE4zY8lcDcZZGSZELZF37sVALGFLawdsYiNF751kMunmwAorYjy1C+do3XXzQfZdxuChp2TyQZSqLikDA86hvAuUZ+0FlVqySQ+ZXPYtHfYp4maNk7HG3g73oRbztC2iP1JN2UuBWo5Od7K+cmGosS9Ft80x2v6ub+mnzJHcS+nwVApr/Tt5NRIK+lsTYhbS/FIUzcnWm5Q5d7Ymo75KlR5a5CZPQY9egkSgqdrr/Kpuk78ik6HM4VTFpgC+lM2RjJWct9GwMhIXPxBGe98tYbIhHUd81anOfalSfY9HUTRFu5khpB4dnw/74YakRB8rvoSzSMR/u7f3s9Et1VL4y1P8OgvdbP94Ul0ZHRzTknTdZnz77Ry8qUOkonia2dV7WyeODVvm8ThuLM12YX1TtfilcTNufVVMGl3TrPbNcEe7yiqLZn/mWRTQtNV5Fv83SzylMKnJnDPI089U5W82rmLN27sZCxUgpAB2cTmSWMgk8nu53HTDtm5BKctRW3JNH49SmJcY3KmgrjNm10WyAkDJS2hZCwjsYxBVfkU2w8N0rB/qsjSeS+lOK+ISC1HouajvLyc8vLym79wC4tCYFg9NGSzYMictXRtYuI0H3JWjVpA/ySokhKUS0lGTA8jppuwsHNRr6BKStCshDfFhflWIIAMEomUzMXnfVQ+nWH7/z6Jp9H6bXNIZ6XurQCIuwsyAp9i4FNMDCBuyiQMmaRYynq5hdsJIeDSu0288K0DJGJ2JEnwwONdfOhTV7DZNy7Z7U5hQndxOlWPjoxfTvKgfRjHEgl21ll55bVStyuJbz1wyDFG1LBxNVXFy9E2nPJ1arUouinRNVvFqfEW3htvIqbPzaZXu8Icr+nnWG0/te7iJr26KXFurIlX+nZyY2auv1iDb4bHW6/zQH0fdnVjt8ECFUrWaf7wMOdtlei6QomW4Ddb36XDN0mdptOatfIlTYlrCTsRc2MM3kZG4v0flvHOV6sJj1vb01OV5sEvT7LvU9PZAfPCc6EuJP7X6CEuROqQMfm0o5PAX5Zy6vROwAqSeODn+zjw1DCSRj68JLctrr9fxxvP7ck3xC0pjdG2c5zWbCNcj3f90hDXioX1TnPfwSmn2eWaYpdrkp3OAJqSIa0YiKzFUBKg6SrKSnt6LQIZE4+awqsk8ajp7KS2hZ7JSl6/3sEbXTsZDpeCYqJoJoYzN7sikzQssidLJtUls1Q6ZnFF4kgDOpErNiZEJROtLRgeG9gAIVCSJmpKQs66bcqqg+w4NEhTxxiabbFj5N66Tt5Sat+Pf/xjXnvtNQzD4KGHHuLnfu7n1mu9PrgotEfcpYlgi6lR86FIgiYlQrUcY8DwMSVcTAoXAd2Rr59SNvnXzyXmFQZA5BLzBBLYoeFTxSf2XABEYT3TVgDE5oaEwKuYlCgGJaqOTzEXte+YAhKmTMKULHKVvcVNeUNtNVuYw+y0i598/RDdl2sBqGqY5elfPktdy60XZ29GDGZ8nEvXIJColGM84BhFu9lEVK71zzKq1J1I4rtVSBI87B4gatoYzJTwg9kOIqMebgSqSRlzzcz9tgQP1PRzvLafVt/0Alt5KOng9YHtvDawg9mkZQeVJZMjtYM81nqd7WWTt8WKPl+FqmmYxrwvxnuJGhBwwD/Kr7W8R6mWYocjRXnWyhfIKHQl7egbcFUxdLj8ozLe/moNodEsgaq0FKgDPzODap+79ptm8Rggbcr89chROmNVKJgcvjLOuW+05YMkDnxshPs/14/dpyPmTcKO9Jfx6g/3MTpotSpw+xJ8+OOXOXasC126s1OOQsBkxs3VePWCeieAMjXObtcku12TtDiCKJJAIMgoBqlcnZcA1VBQTXlNNj4ZEzs6dqFT6YoW1Y/1BSp47cZOXu/OkScsG6st+86sXdLnilFbMoNfj2KfTJHuFAQ73YTCGjMOH/EWH4kdXoQtOwFsCpSkQElaCprdmaL14Ajb9g9RUrGUQrv0d5Mw8WpJPGocvz225Os2I9ZMpP7lv/yXfPe73+Wpp55CCMHv//7v89prr/Ff/+t/Xc/1++DiLlKfipBtBLmYGrUY7JLJDnWWWjNGn+knImwM5uunIlRIiU1RP2VAUeiDRZiWTswzkhC8rhHtV2g7EqeqIb0VAHHXQOCVTUpUgxLVwKcYC0h9ypSY1RVkSeCUBU7ZRJHArZi4FbD2mDlkTPLkqpBkJUxpi0avA0wTzry2jVf+cR+ZlIqiGjz6yU6Of+w6inq3nkyXhhDQlSnjSqYSgAYlzBH7yupzlquVyiXx5azXcHuT+NYC3ZToD5fTOVPNtWA13aEK2tvH8LqTqJVpzGkJt5biSJWVuLerbKJolh6s790TrOCVvg7eG23CyKoIPluCD7V0caL5BqXOxGKLX3fMV6EU2eDAh7o446liJlGFKhl8tuF9PlrVjU8x6HCmcGStfL0pG2MbYOUzdbj8XBlv/48aZkcsAuUuz3DsVyY58LPT8/obWgxdlufIVMJQ+crwfXQnylFMk+pnU0xetpxL2+6b5KFf7MFfn8wSqLl1DwbcvPGTPVx/3wo90DSd+090cd+HuvC6UtZY4w4c3jerd2qwzbLHPcku1yQ1Bf2dBIKMbKIrRv4nUgwZbQ11UImkSipuo9Qeo7V8GluBOjo4U8ZrXTt5vXcHfcG58BSy7Q80Rae2bMZSm8IJ6NOJvGVnts/FhOkArBrIjN9G/IiPZK0n3zRMNk2UOCjZ5L361gna9g1T3z6Joi43iVP8/RTJwKsl8dkS+LQEXi2ZPy7r3HfXxNeKidSZM2c4evRo/v/f+ta3uHjxIk6nVRT4pS99iRMnTmwRqQ84rLkNserBoVfOsE8KEBCOfJzuDaOUMclNqxxa0u+/3sg1ss0UqUxLhz/kEvNy6pKIwnP/z0oGXnPi8Jk889dj1DXcebvBFpaDwJ0jToqBXzVQ5+2+aVNi1lCY1a3bQhufwC4JXLKJUzZxKnP3HbJAk8Evm/iZF2kvICkk4kahgiWRMGXSW1bBFWFq1MuP/vYow73WwKyxPcAnf+ksFbWRO7xmGwMh4P10Fb26VVzfrs6w1za1OpKziCq1WZL4bgbdlOkLl3FtpprOYDVdwaqiWieAof4Kdu0YwWHP8NjBK3ym5Ap2eeEgL2PIvDvSwst9HQyE5koStpVO8VjrNY7UDqIpt89qHo44+c5zD3C1ywr0qq+dpvLRMV4MbUNkJKrtEX6r7RQt7iANtgwttozVw8qU6EzYia2zlc/U4cpPy3j7r2sIDlsEylVmEaiDn5lPoAph7ViSLBHNqPzF4DEGUyXIKUHF/9TRBmSq28I88itd1O4NI0QxgUrEbLzz8k7Ov9OGachIkmDffQM8/MRVPL47cz1Nmwo3EuVcjVfTuWS9k0We/OrCdTQkk4yq541GkilhMxTkFdr4ZmNO+scrUExBS8k0+xuGcFTM1YANBUt5rWcnr3V30DdTQeG1o8oXoqpkhhI9ijaeIt0pEbjmIRC0MdfcyYKzMoW2T2W6tIKZdEn+cTlj9XuS0+Dxxtl1Xx8te0ew+9PWspY9TCQ0Sc+TJp8tgXte1DpA2lDQhUI46V78YzYpVkykfuu3fouHH36YP/mTP8HlctHW1sZ//I//kc9+9rOk02n+23/7b+zYsWMj1/UDhbtyDnUJNWql12BJgkopSZmUZNT0MGx6iAgb7xuVVJpxmpUw9nWqn8rVMc1XmfQlI8bnwh9sBcSp0JYXnVL4xq/WMdVlw12u88xXx6jeefu7oW/hZrBUpJxVr0Qx0OZdyzICQlnSNGsoxE2Z5fdkiZSQSBkyQQMo4P0ylmJlESuri7wzS7JUCZySwCkbzFex9LxVUM4SrTnL4FJK6AcJhi7x1k86eOu5XZiGjM2R4bHPXOLIo73cYbfPhsEQEmdStYwaVoH3Ptsk7drqZ28LVanoJkziK8RKiJNHS9JROklH2QQdpRPUe2aJmHb+MbSLkHDwUnQbn/B25RW7QNzNa/07eGOwnWja+t6qbPBAfR8fab1Oa8nMbf2Oi6lQDz16lSsVfl4KtQPwYHk/v9h0Hp+aYYcjRVlWgZjMKHQn7RjreE4wDbj6fClv/3UNM4PW9nGVZrj/l6Y49PPT2JwruQ5LhDM2/tONhwlIbuSYoOqrGSpScR7+vR7aH5lCSBKiwPas6zLn3m7j5Ms7SWWDJFp3jnPiqStU1oaXWtCGIaLb8qrTYvVOHc4pdruteif7EnWJJoKMqmPmotazcebKMjY+IWAq7KVnrJrBiXK8WpLDTQN8etcFnLa5i8toyM+r3R281r2TnukqQMJtS7GnfoQmVxBXKE60G6ZOuQj2uIjoHmCusbSsmpRti1OxK0rJjjgBewWXe7cRCnusgAkhUFKgJgSKadK6Y5T9h7upaQsQN+zZCeZcQob13bKd6rHLOj5bEp8Wx2dL4FIXToYndI2w7iCccRJOuUjqGi3eGcaiZSv9iTYFVkyk3n33Xf7Df/gPHD58mH//7/89X/3qV/ln/+yf8ad/+qcYhsHDDz/MN77xjY1c1y1scsjZWPb5g7zcpXilp3lFgkYlSpUcZ9DwMSmcTAkX07qDejm2qgu8APRsHVNmRT2ZrG7fWkENU444LTc2C48pfP1LdcwM2PBU6Xzxb0apaNuctQQfPAgckshb9fyKgX1e/xBdQDhLmmZ1hehNidPKYSIRM5VFZosFNilHskSeXLkUE4ckUCXwKiZexZw/aUgyq1pZQRdz91MfEBVruLeMH/3tEaZGrZSv7ftH+cQXzuMvuz32qzuBtJB5N1lPwHQhIThqH6NBXbvqljJlBk0vE5ssiW/lxGmCjrLJPHGab2v0Kyk+4e3ih+GdDGVK+PrsAUqMFAOjFZzvb0JkjdZlzhgfbrnOI03d+Oy3X+2Yr0I11E6z//EbfDe4m2jUjl3W+eXmszxYPohfMdjpSGGXBUbWyje+jlY+04DOFy0CNd1vESinX+f+X5rk8GensblWvl/0DJbx38bvJ+HRUEKC+r9L8MiH+9j31AiKrdi1IgRcu1jPGz/ZQ2jGUiMqa0OceOoyrTtvX8pmYb3T1XgVQyl/0XouVu+05Gch0BUDXTbzyq9iLm7jM02J0ZkSeser6Bmron+igo6acR7deY3Pf/Q0btvchOxY2M9r3Tt5rWcnPYFKGsqCNJdNs8c3hDqWJnJNZewffVwNFJMmAEdpmspdUSp3RanoiFK+PUYs5eT8pe2cvHqEdCarspkCNQlqUuD3R9l1Xx/7D3fj9qSI6XYihoP5jgynksavJfBpSXxaAruyMDExlrFZpCntJKw7SQvVksYXC6a+i7BiIqUoCn/4h3/IZz/7WX77t38bt9vNn/3Zn1FXV3fzN2/h3ocksv7WpU/oqyVUdslkuzpLrYjRZ/gICztD2Qt/sxKmcl79VHEd05zKtJTNcH5aXu62WnNEcEjl61+qIzSi4a/L8MW/GaW06c7Grn7QYZPmrHolqoFjHnEyBISNOcUpaiy9n2wcJNJCIm3IhIz5z8zVXuXtgtn7mgwOWeCQDUrnqVhGQeDFHNGy/q7njPWdQjqp8Or393L6lXYQEi5vkic+f4E99w1vKvvZeiNhqryTbCAs7KgYHHOMUqnE1/RZupAYMT2bJolPN2V6Q+VcC1ZzbaaartnKZYjTBLtKJ6jzhFZUD1atxfiQq59XY23ETBsxyYZan+JgZS8irrDPPc7DlX231b6Xw2Iq1EcevcRUo8LfTh0CoNkV5LfaTlHjiNBoy9CctfLFDYnOpCOrlK/DupjQ+VIJb/33Gqb7rHINh1/n/i9OcfhzAezulW+feEjjp9/v4LX2JowSGXXG5ENdg5z41904fAv3r+G+cl790V7GCoIkHv34VfYcGUS+DcqyKWAgVcqV2FL1TiF2uybY7S6ud1oKAoGRrYPKiW3z48x1Q2ZoqpyeLHHqGa8iYyocbunn8Y6rPPhkFx77HHmaiHh5vWcnZ4eb0SWJOtcsB9U+9sZ7mHjPw8gND4OZ4rRsSRaUbotT2RGlYleEyl1R3FVzEeij4+U899o+unobELkearpATQpsGYNtu4bZfaiPhpZJ7IpORqiEMi7SpgIIPKpFmHI3bZ511hQQy1hqUyjtJJJxzil6ueuxmS8eu6ux6rCJtrY2nn/+eb72ta/x6KOP8vu///v803/6Tzdi3T6QMMXdGf29lBq1GFZLqDxShr3KNNPZ+qk0Cv2ml4Bkp0ROIklWM9ulB4oiT5a0ApVpPXoyTfdqfP3LdUQmVEqb0/zi34ziq91cscAfBGiSiT9LmkoUA5dSfGY2BUQMOa84hQ1lU4c8CCTiWSvf9Lzn1MJarCKiJVAk8CgmnkUCL9KmlK+/Kgy9SN4lgRc9V6r58d8dJjRtDXT2H+/no599H5fn3rbPhk0b7yQbSAgNh6TzoH0Yv7J65cQUMG66GTI9xUl8agjfbezhtxLi5NWS7FwDcSpEIO7m5b6dvDGwnaSh4i+JUVEZpqw8YkUy2wyuU0Z/yEezbZY22wwNWhj1NtgZwxEn3/nJA1y9MadCfeTjF/h2aDeDU1bt28eqbvDzDZdwKTo7HSlKs4X8ExmV7qRtXey9woTrr1gEaqonS6C8Ovd9cYojnw9g96x8PKKnZc7+sInX3tzG8DNOTK+EK5zhN+rP0PxgECFkTHNunWem3Lzx3B5uXM4GSdh0Hjhxg6Mf6sa2aGT2+uFm9U7bnNPsWabeaSmYkklGMfI2vlyceSat0TVRSc9YFd1j1fQHKsiYKrJqcKhpkN95/GUebu3C65hb1lTUw8WxBobDpSSCCspohvLOKUav+rg8XrJg2U5/hqY9Iep2R3DvjONpT6Da55EbU+JGbz3vndvFRGDOPienrfqnCn+IPR/qZce+ARzODJpsoEgmCUNDBqocs5bipCZQFkxOSkSyxCmccRLJOLKJgMXKVd7aY95dLX2Ww4qJ1OzsLH/yJ39CZ2cnBw4c4I/+6I948skn+YM/+AOOHTvGf//v/519+/Zt5LpuYbNiBWrUYrgZoSqqY5JkdMmkSgoXxZ0miwx3Fjlaro5pPTF53cY3frWW2LRKRXuaL3x1FG/VFom6HVAQReEQHmVhiEPElJnVFUK6QshQ7pm6Il1IhA2LDBbDsjA6lTlylbMM2mWBLXsrYeHMYXKRyPaEKZPJtbi/g4hHbbzw9we4dKoZAH95jKd+8Rzb9kzc0fW6HQgYTk4l68mg4JFSPOQYxiWvTu0WAgLCweC8JL5mJUyZlEKWBJKUbdS7AVgpccrVN3WUTVDnXj1xAus73Jiu4sXeXZwfb0Bkrw9V7jCP1V/nocYe7KrOaMZLX7qUvnQpCaFxI1XBjVQFGgZNtlnabEGabKGbR8mvYf3OXW7l+8/PqVAfffR9bDsi/PnwA6RMFY+a4tda3uNgyRglisFORxKbbKnN3Ukbk7p28wXdbD1MuPGan7f+ey2TXRaBsnt07vvCFEefWR2BEiZcfaOGN/9uO1MOF5Nf1jCdElVmlH966F08agay9XiSBLGonZMvZYMkTCtIYv/9/Tz0sc4NDZLI1Tt1xqvoWmO901LIxZkbWRufEDAzXcrZq9u5NlLPSLAEU5YREsiKyaGWQU60X+fhthv4Hcn854RTdvqmKxjq8zP4nofxq37GrnnQU8XnekkWVLTEqd8Tpm53hLrdIZqa4qSFzERGI2HKRSQlldJ4/2obZy50EE86sitt1T859AwduwbZdaiXqrogkmSRSZ8tjkPRscs6rnn9qMA6ri3SZJGnqO5YONKSsS4wSBarzIXbiHuHRMEqiNSv/MqvMDs7yzPPPMPLL7/Mb//2b/O1r32Nv/mbv+Hll1/m85//PE8//TT/7t/9u41c33sfd6EgZcnvK1OjFoOJVceUKbDj5ZLzFgziclK5EBjIxEwNXSjoyFRKCerk2G2ZURy7bOPZX6sjEVKo3pXimf8xirvsLvzx7hLIiDnFSTXwyOYCi0XUkPNWvZCu3BNWttVBIikkkrrM/PgBpTDwQsmGXmTJliKBSxG4lIWBFxkBCaOYXOVUrY1WsYSAK+818Py3DhKPOEAS3P+Rbj78M5exOe79CYsR3cOZVC0mMmVygmOO4VWH7YRMG/2mryiJr0mJUC0VJPEJCbGO58wccerMEqfuDSROOeTS917s3cVQeG6mfU/lKI+3XWNf1UjR5zfawjTawjwsBhjXPfSmy+hLlxIzbfSky+lJl6Ng0qiFaLMHadZmVz24no/5KlR9zTSf/uS7vJho453BXQB0eCf5J63vUmpL0GzL0Ji18sWyVr7ELVr5hICu1/289ZUaJm5YPbLsboOjz0xx9AtTOLyr278GL5fy2v/cwXi3n0SbROBXNEybRItjhl9vOIczWycjkDDSEmfeauedl3aSSlr7Y1vHOCeeukxFzfonbM7VO1VxNV69oN6pNFvvtGcF9U5LLiNr40vLJlJWoensb+Qf33yQYNyDyAoyst3kYN0AH2q/zqNtNygpiNJPpDX6+0u4+EYNp3/aSHDItWA5do9O3a4w9Xsi1O0OU9sRxe428mvhVUyShkWikmKORM2G3bz73m46u5sxcjW62fqnmpJp9h3vYfueIRz2NG41jUtN4VZTOGR90US9cMZJKKs4xQ0bK5pkk7F+DIl7xso3HysmUq+88grnz5+nvb2d3/iN36C9vT3/3GOPPca5c+f41//6X2/ISm5h80KSBPJNmu/mIJiLFy8kSyurYypWmXJ9fWKySp/hJyE0RoXGlOleOFBYZwyfs/PNf1JLKqpQdyDJL3xlDKd/6QuQKSAtFBy3eCH+IEFC4Cuw6nkXaYIbN3KR5CohQyGz1fR2SRhIRE2FqKlAkaBhxbY7CxWsrKJllwSaBJpq4lsitj1RUIOVSxVcj9j2cNDJc18/RNf7Vg1uZV2IT/7yWRrabm+a2p1Cb6aEi2krhatWiXCffWxVA72YUBkwfPkkPhkz2+g8tuBzrAQ/1qxKZUyZvlUSp3p3aF3Oz7NJJ6/27+C1/h1Esul7NkXneEMvj7deo94XWvb9sgR1WpQ6LcpDrkEmdTd96VJ606WETQf9mVL6M6XImNRrYdpsQVpsszhXoQoupUK1HhjhL/sfYCLlRULw6borfLK2E4ds0uFI4c9a+cbSKr2pW7PyCQHdb/l46yu1jHdaA3Wb2+Do56c4+oUATv/qrk3Twy5e/9vtdL9bDUB6nyDwCxqmLLHdFeDL9efzxFMI6LzQwOvPzQVJVNXOcuKTl2nZMbXm77QY1rveaTHkEvXGQh4qKqcp80eRgNHpUr5/8jg941YzcFk12Vc7wofbOzmx7Tp+55zylEioXHmvmje+18KVU9WYRjFBLm+OUbc7Qv3uCPV7wpQ1JpZIIrVIVCJLolJCRpgwNFLJWyf3MxYoJ3culnSBw8iwt6OXI/dfp756Jkuc0osGQyQMzVKb0hZxSpoaazqv595ics8RqBxWTKS2b9/OV77yFX7913+dF198kebm5qLnHQ4Hf/Inf7LuK7iFzQ1rFmahGjVHmIrT8pa+GFh1TPPT8m5Wx+SWdPYo0wSFnT7DTxKVHqOEMdy0KiFK5PWtn+g/5eDvf6eWTFym6WiCz/3lGHbP0meHiKlxOllPWNjYa5ti+xqiij8IkLIXhFw4hE8xFhCnZLYJbk51Sq+w/8YWlsNcbPvsvLFULra9KPQiS7KKYtvVhYEXczbBuR5Z8RXEtgsTzr7Rxsvf3Uc6qSErJo881clDH792TzbWnQ8h4GqmghvZwvEWdZYDtokVqzUpITNoeJkUc0l81XKcRvkmSXyrUKVWQ5x2FShO6zmx1Tdbxku9uzg90pxvnlvqiPFY63Uebe7CY1v9eV+SrHCKai3GA65hpg1nllSVETScDGVKGMqU8EZMUKtGaLMHabUFcS/T43AxFepzT7/DZSr5kxsfwRAyZbY4v9l6ih3eaUqz9VCabCWJdiftTOmrLmXPQwjoedvHW1+pYeyqRSo0p8HRzwe474tTOEtWR6DiIY23v7mNCz9tQJgykmxS9oUQF/ZUYSKzxzPBL9VezAcPDPWW88oP9+WDJDy+BB968gp7jgwA63P+Xkm9Uy5pbzX1TjmYpsRYsISrQ3VcHqonnLLz0fvOc2h7LwDxlI3nzx7hZGcHQkjc19TLk7vf50jDQNF+GItonHm5gdMvN3DtbGWePNlcOrUdVm1T/Z4wdbsiOLw3/12kbOP4WJZEJXSFc+d3cPbiTmIp59w2SJvsa+3l0Qffp6VhEo8tuSAYQghrO8YNOzNpNzMpz4Jjes3In1akor519xIkIVY2B3XhwgV+/dd/nc7OTg4ePMhf//Vfs2vXro1ev9uCcDiM3+8nFArh8/nu2HpMj8/yqw//b9TWhbGVGrjKDTzlOu6KDO5y3bpfnsFVqiOv0z5+K5CyfaPSSKTmqUz6Mg1s59cxaSuoY1rJNThXTD1oevMNdMukBC1KeF3SqHredPLt361BT8m0Phjns38+juZc+vAZ1r2cT9UUbYtdWoCd2vQ9nTC2Mgg8uSa42UhyZd42SeWIU9aql9wiTpsEAk0SxZHtBYEXy+3bqXyaYHGqYFJIBMZ8/OhrRxjqrgCgoW2aT/7yGSrrbk9j3Ywp0x8txSYbNLuD3O6D1BRwPl3DoG5Fuq/mXLFUEl/zKs590hK1UplcjdNMDdeCVXTNVpK5zcQJwDAlzo418VJvB93Bqvzj7aWTPN52jcO1g6jyxozSgoaD3pRVUxUwilWOajVCm80iVT7FGjgLAecvt/K9AhXq8UcucfT+G/zN4FEuhiyl9XDJCF9ueQ+vmqbFnqEh2yMoYshcS9jXfM4TAvpOeXnzr2oZvZwlUA6DI58PcN8vTuFaJYHKBUmc+nYrqbhVo9V2dArnMzF+kt6BQOKwd5RfqL2EIglmpjy89uM93LhkBUnY7Bke+PAN7v9QN5pNz+5nUlH4xM1gCImIYSNsOAgbduKmxkDKz41Exbx6p0y23mmCHc7Aqp0guiHTP1HO+f4WboxXMxn2oaOgajqP7r3M4wcvYtN0TAGnr+3k3I1tPNjax7HGHlr807gcc8Q6FtY493o9p19qoPO9KgxDprQ+Qd3uOZteRUsceZVRwVL2+hkzZbqmfbz8+mG6B+sxUFBkg6aqSXY3DHJ4Vw+NtZMLUimFsBSnmG4nadrIGDJxw05Mtxdty3VB7jcuJFHLHKYt3mne6d/F//cTz67veqwBK+UGKyZS9zI2C5HqOt/PPzuxAnukJHCV6Lgr9CzBsoiWO/vXU5HBXWY9v5q+D8sh148pg0RaslSmjCwtXseUhTKPLOWCH25lOLyS025GSAyZXsZMN7lZ2Vo5RqMcWXP91PWXXHz392swMxLbPxzjM//3BKp98c8yhMTldCW9upW+VCHHKVMS+Vnm7do0e7TAB4xMWTU5hQER2nwPtgmhrFVv1lBImB+Mnkj3EiQEjnmx7blGxLZlBrm6ITE86mNotITRSQ+++jDV2wMkRa5J9vojbSj0RMq5Fq7ieqiSnmh5niB0+CZ4pvU8zZ7ZDVn2fOhC4nSqjgnDg4TgoG2CFm15WxosncTXLIfxLaOULAYJy2GQNjYHccohmrbxxsB2XunfyUzCIgWKZHBf3QAfbbtGa+n8XMuNRdiw5ZWqCb24T0+FEqOeKFffauHaBcu1k1Ohwk6Nv+p7gNmME1UyeKbxIh+u7LGsfM4UvuxgdySt0peyrakGUQjof9fLm1+pYeR9a91Uu8mRzwW47xcncZetMkShIEgiPGWpHFVtYR7+lR566v38YMqaTD/uH+Qz1VdJxmy8/WJHUZDEgWN9PDwvSELCqpkxTashb8aUCRv2olskd1+3/sZM+5LreSv1Tsm0yuXBBi4MNNIfqCSUcGFKUsGlR7C7aZBPHXuXCp81qROOOpFnNKrMGHVVYXwlc98tHlU5/3o9p19u4MbFCiq3xajfHcmGQoRxldxaa5Sce+OdKy38+K2DBBNu2urH2dk4zI6GEdobRrHbipdhCom4biOm24gbduK6NRKzyQZIEM/YiK205mk1mE+UFyVT1gSOlP1ujd4ZTg508G+e+Nb6rssasK5ESgiBdA+P+jYLkUrGUvyff/57HCu7xPCYi+i0ndi0SnRaIzatEpvWiM2oCGPlv4XmNLIkq5BgZfIEzJVVupwlOrJi7dsGWERJyjaylSyVSSyxD8hFlrw54rTO8xpFWMkWiAuV/oI6ARWDJjlCjby6+qkrP/bw/f+jCmFI7Pp4lJ/59xMoSwQnxUyN06k6Zk1rmTu0aXZpAWQJujKlXE5bM6ltapD9tsl7mExZfZBypKlEMRYMpHUBoYImuLF1bIK7hc0HleJEQadsoukyLtXApi094ZM2WZAmGF9DbHvKUOiKVHA9VMX1cBW9kbIFs69eLUnSUMmYKhKCR6p7+bmm9/HbNi5NLCUU3knWM2s6UTC53z5KjRpb9j1LJ/FFKJOSqzqv5BWnYDXXlyBOPluiqI9TrTu84eeukYifl3o7ODncRtqw1sdrS3Ki5QYfbrlBiePON1+OGhr92ZqqMd1btD+mZ2xUG3Eebb3ByUALPxrbhUCi1hHmt9pO0eQKUa7qbHek0CQr2KUraWd6DVY+IWDgjIc3/6qW4QtzBOrQzwW4/5cm8VSs3pExeLmE1/7nTsa7LYXUU57kwS/2suORCV4KbuP56e0AnCjt5eMl3Zx9axsnX+4glbQujtt2jXHiqct4q+OEdUtFCukLCVLIcGTrb24OBROvksKnpihRk9TbQux0Ta2q3mkm4uJ0TxvXRuoYDZUQy9gWVZ8VyWBH7SiffOA9qsuDgEBLCUS/jbrKKBU1c33cEjGVC2/UcflcFeGUg5odMep2h6naFlu12rQcknGVd97dxWTMRXPDBDsbh2mpnUCdpzgZpkTMsGfJk52EUVzfJEtgkzNkhEIs4yC1Xja+HJZM5bPiz+XskzIg5WyGWTLV4Jzl5OBO/j8f/fv1Xac1YF2J1O7du/lX/+pf8ZnPfAabzbbk67q6uvhP/+k/0dzczB/90R+tbc3vADYLkQL4V9/9bb5w+FXGEg7MRUrYhAnxWcUiVdMqsYBFrqKBHNmyCFd0WiUTX/4I1jwGvrY0Je0p/O0pSjtS+FrSaEsl95gCTQhsksAuG9gxURHcyY48K1lu0LTTZ/hIYJ2snWRoVcKUyjcfHF38jpcf/b8rQUjs+5kIn/zjySVtlaO6h3OpGjIoaBgctY8tGBBZReRWgW6zOssh28Q9Q6bs85rg2hdpghvKNcHVFaJbxOkDi3RK4fUf7OHdl7YjIWhqCvL05y6ye/c4roJUwfn7UCHEvNj2wlTBjJBI6BpdkUquhSq5Hq6iP1qGMc8qVaIl2OmfZKdvkg7/FHXOEGHdztd7j/BuwFIUHEqGTzVc4aN1NxbUFtwqoqbGO8kGYsKGDZ3jjhHKlOSy71lREt8ysIhTBddmqrg2W033bMWmIE5gKWyXJut5qbeDK1N1+ccbfTN8tK2TB+r770jz3JshHHXw7RcfYNj04WmL4GyIFYUDJDMqMzEXTdosv1h3Aaeq02pPU59VDsJZK19qDVa+wbMe3virGobOeQFQbBaBOvbLk7jXQKCmh5288bc76MoGSWgOnaOfGeDg08OoNpMfTu3k9WArIHisrAfvqODM+W3E0BBuE3tVCl9TlIxNImzYSYuVDdI1ycCnJPEpaXxKMk+YfMrczSVn8vuhXdFxymnSy1jRTAHd41Wc622le7KKQNRj7esL9mWBW0tTXxKko36EbZ4x3LYYvuYIbtXALzK4kwZ+31zNUzKucONSBSPjfnSnQk1HFE/ZBvRjEybTUy5mw06qK2doqA4sqJnMmDIxfY44WcRo8QNWlU1UybCsfRlHvgxi3WBmZSdprr+oJOWsw4ucz7MPiWxIUZN75t4kUi+//DJ/+Id/SG9vLx/96Ec5evQodXV1OBwOgsEgV69e5a233uLKlSv87u/+Lv/iX/wL/H7/un6hjcTdRKRWg3RcthStGYVESiWNhGmXkL0m9goDW+niFyTTgOigjVCPjVCPPf83NqwhTAmb27DshBWWndBTUWApzP/N4PQbSyTNbAyWu84LAeOmi0HTm7fAlEpJWpQwLmlxqf3M1308/28qATj0+RCf+L8Ci34fU8CVdCXdulVQaxc69qQgmHIxk3YRSLmIGTZcSgankqHMHcXnSyBJIGfAl0njVjLW82oGl5LGlf3/eg/c1hOaNBcOUaIaOOcNek0BYWMuHCJibHxk9u2CYUj0DNTgdKSorwkib1Btxr2Ivs4qfvS1w8wGrJnzvfcP8rHPX8DtXRgQICOK6q8skmWpWvNr6goR1VV6oiX0xkrojfnpi/npjfkJZVRavEE6fJPs9E9S7SieyZYQ2BSdtKFyI1zJN/oO0Re1LLmVjiifb7nAkbLhdSEVQcPOO8kG0qi4pDQPOobxLmPHW00SXyGKiFOwmu7QUsRpko7SCXaVjVPnCd/6F1wFErrKO0PbeKm3g4mYdQ2WMDlUM8xH2zrZUb451fulaqEePNbJW5FmLsTq8DhSReeHVtssv1vZSY1mTeQNpzX6U6vvdjh03s2bf1XLwJksgdJMDn5mmuO/PIm7avX2sXhI451vtXHhp40Ypozwm7R+LEDTY9Mk7Sph3c6VWBUzugsJgSKJJV0q8+GUM/iUVAE5SuJTUvjVJD41hVdJYxPGqn7jxYhUJGHn4mAjl4caGJwuJ5xyLrpdFUxKXTFaKgLsrR+iIh5i8pqb0U4PrqoEj3y5h7qyGKVyGkdBSEsmLTMy6iOiO5DLQb71ll7zIJAlE1XOgGEiDBOvZ6HyOh3ykhQqwiaI63bSpsLNJiUlQFN0EJJFuow1pvAt+uFWyYYEWdK09LhF5NN1C5ZdcPq6Z4lUDm+99Rbf+ta3ePPNNxkYGCCRSFBRUcGhQ4d44okn+OIXv0hpaem6fIHbiXuFSOXqmCw7nmXJSyNZNQZLnKEUIdBME5ISxqxMckIlNqwSnbQtULhiAQ09tXJmJCsCV3kmH5Ixn3C5K+aeW6reaC1Y7tSgF9RPiaxhN1c/pRUMRk79Dz8v/3ur6P3+X5nlsT+cJmLYmU5nyVHaxXTKRUh34PPHcTusQWDPTDmdkzU3rQSr885yqG4IWYLRsI9zo42LvkeVjCypSuNSM3mC5VLSOJVMwWNz5MtVQMbWk4ipUqFVT8etzItRFtbMak51Ct9DTXBzMAyJs5faeOXtvczMWgMYpyNFe8s421vH2d46RlnJ2mJ173UkYhov/sN+Lr7TCoCvNM6TXzzH9v3ja/g0QdrQCCa9pHUbNkmiyp6kxR2iwRldllgki4Iu5hStlJCQIE+kBBKmgHemWvh2/wFmM1aNSIdvgi+0nafJPbuG9bYwrrs5narDQMYvJ3nQPrxkUfxqk/hWTpwmLPJUNkGta05xytVK3Y7q6amYh5f7dvLmYDsJ3VLYnGqaR5q6eaz1OpXu6MavxBoRjjr47nPHuDIvka+yMsw3hw7wypTVIqbNPc1TjVeZFi5q1AxfrujCKRtEDJWvTm8naki02oLUaZEV1fYMX3Dz5ldq6T9tnX9k1eTgz05z/Fcm8VTfnEDpQiKsOwjplq0umHLS1VXByGQJukfCLAHTByuNipTiEl45RY0/jF+ziJE/T5oswmRb5jo0v15qpVAlg8mgl7MDLVwfrWE87CdlLMJshMCu6FT7wuysGaOjbBiGBSNXvYxe8THR7cbUZfZ+ZJSnf+8KjTURnAXHlWFIhJIO4oqNqG6/xSrvBSuHIhmociZ/U+ZtK1PA8GQFPcN1JA2VmuYpNPvqruuyJLDJOmmhEs04yJhr9xtKeYXJIkxL5jDnm7kv/5uaBkTG3MwOupkd8pIcseO+L8F/+b2vrnkd1wtbYROrwN1GpArrmPLBD5K0fB2TEGgIbMIKfNCEVc+0mlOCEKDHJeJBhUhAswhWQFtAtqIBjcTs6kig3avjySlc5fOIVgEBc/hWPmu13MsSQqHf8DEjrMGRgkmpmcJIqZz6SQVXLpShV9jwHJAwazSm064F9RSV7giHa4ewqQYZQ+bCWAORhJMyW5zywps9hkdNkzRU4oZG3LCR0DWSsozqsRKMYkkbPROVxAwbCcNG3Fj9DOViuBUi5lXSVNgyedXJs0jyT9Sca4Ibvoeb4OqGzNn3LQIVDFlKituVxDBkkqliu3OpP8r21jG2t47R3jKB27Vx9TV3A4SAznP1/PTZQ8TCVmPdox/q4SOfuYzdsfKZ81DazvVwFddCVVwPVzISL1nwmhpHmD0l4zxQPsI+/xRV9mRRdPv8gJNCGMKqxUoKCOkqEUMhaliR7UlD5cfDu/jJSAe6UJAQPJqtn/Ktsn5qIOPjfLoGgUSVHON+x0jRJE4Oc0l8bszsmXqxJL60IdMXXjtxWgySJDYsqlgIuD5dzYu9HVwYb8hfhardIR5vu8ZDjb041FsryN9ILKZCPfbIJT7y4GUm0h7+svcYQ4kSAD5RfY3P1F/GJpu02dPUZq18A2kX/3lyDxMFfY7skk6LLUibLUiDFl5AqkYuuXjzr2rpO2WNUWTV5MDPzHD8yxN4swQqZSqEswQpVECWrPtWnVLUWDq0oRAyJl4ljUdJMZN2EtIdCAGOSxpaj4Ych4N7B3n0o524vbd2jluOTKUyKqGYk9moi+HpUvqnKhgL+wklnYuOYCRT4LUnaSybYVfdME1iimCXk5ErXkav+ohMzX3/mqYID36yn0d+tp+SgjAMU0DUsBPRHUR1e/74u3UIFElHU+aIkzzvd9YNmf6xam4M1XN9qIHgrI8HDt6gadsQ0hr4jyYbyJIgYdiIZeyrmNwUFpeWLHU4n79RKChlhwRihb0D9ZRMaNjN7JCH2UEPoUEPoREPpl64fQW1J6b4m//wFytcz43DFpFaBTYzkbII05y6lAt+MJe4CkpZwpQjSpoQ+eCHWx7iSiIfL3uz+RBDp6iOK0ey8oSrgIQZ6ZWfpBTNzCcU5ohXobLlrphLMVQ0a10lIGGoTKddBFJuZtJOptNuptMuDEXQUjadL1wOpRy8O9rCUKSU+VtMQlCiJSi3xWgqDeJyp5AksAmDnfI09fZIvpP7SjGhuziVqsdEplKOccwxgioJTAEpM0u8dFuWgGlFRKzw/9brrP+vlYg5ZJ0j/kmOl45xrHSMvZ7pBXHCAwkPndESeuJeBhNukMVtU8TuBHRD5szFNl59Z45AedwJThy/wrHDXSiKyfBYOd19Ndzoq2VwuGKug3wWddUzeWLV2jiFpn1wGjNHZh385BuHuH7BikEurwnz9C+fpbH95klrwZQzn6h3LVzFeGLhubnOGaIjW+O00z9FiW25+iKrwXBxXLt13yGLRSfgc5MFEUMmYigMxd38j97DvBtoAVZXPyUE3MiUcTVj2YUblRCH7eMLlnuzJD4rVa+Ca8FqrgWr6A5Vos/b51ZLnOZjI1SpjCFzaqSVF3s7GA6X5R/fUznKR9s62Vs1uuJ+WXcKS6lQtVWzvDndwtcHD5E2Vbxqkt9oPc0+/wRO2WSXI4lbsbbnUFpjIK1hCJnRjJfetBWrnhRzaoomGTRrs7Tagmjdad75qxp6LvoxyxSolKn9cIKqB1MknRoh3UlItxM2HCRWGtogTJSwwJySkUPgSOm07wywfccUPs2qR/IoaTJC4avDh+lOlIMOvhft2IcU2nePceKTl6movrXWBIYpEYk7mI2682RpJuImFHMxG3URjLqI63aEAkJmYespYX2XcneUbVWT7CofwTmdYOKam9GrXsavezEyxW+qbopw4rO9HPnQCJXVc4ERprD6PkYzTqK6Y53Ik8gTJi37d/5xmMkodA/UcW24gRsj9fSO1pLWVXY0jPMzD52nrGqGaf1mHTUXwlLXM5hCJqrbSRpL5xvkyFyujim/pNwdsTBsT0KyQiWWQCqqMjvoYXbIIkyzgx4iE6557xFIJSb2bUlce2KozRkoF/hn0vzZp/52Vd93I7BFpFaBzUKkEnqQ//LGb3Og6QZBw0YaBWOpq1+eMGUT87L/X/3htnLIkkCWzXW1awkBqYhSQLRywRka0YA693dGIxlaQqGTwPAqZMpV9DKNTJlKplxFVCnoFSppv4ZuX1ohkxBsL5vkaPUATs0iQrNBO6BRoiQpt1nkqdSWQBcy76VqCZjWTGKrGmSfbWpVcavzMWU4OZlswECmTI7zoGMEbbnmmSvASohY2lSotSdod0XY5Qmy0z2LNo849ce9nAzWcnK2lneDNUxnnEsscXFsJmviamARqG288vYeZsMWgfK6E5x48AoPHOrCtgQZSqVV+gar6OqvoauvlvHJYquzqhi0NE5mrYBj92x9lTDh/FutvPTt/aSSGrJs8tAnrvHwk9dQl0joCyRdRYrTZNJb9LyEoME1y07/VJ44+bT1Uvus2Ha3bOBTdVwSeBVz0ch2XcBkysHrU028OdXIxVAlBiafb7nI4bKRRQmLEHAxXUVftiXCYi0Qlkriq5eizIS9XF+GOPkLwiE6SieocUVu2V66XqpUMOnk1f4dvNa/g2jaqu+yKToPNvTwWNt16r2hW1vAbcByKlQahf81cIR3Z5oA2O2d4DdaT1NiS1KlZmh3pFEkK33yetLBrFH825kCIrqN/kwp/ekSAoabTEHmrWlCPK1ZKWwZ200H+DZJp0RN4lOT+LN1SP7sfWYEl77VQN+bVVbNjEPn6GcGOfj00AK7WDyj8l+6HmRKcSGlwfe8nUYlzEeevkRze2BF2yyR1ghFLVI0G3Nbf/P/dxGOOTELAjZybrAccRIL8ogEPnuSWv8s7ZWTNIgp0kMSY50eRq/4CI07FqyH05dh96MTHPvYEDv2BPB55s4ZQkBYaMwaNmJpJ9IKgzGWgoQ5R5yUDIqkLzgODUNmbLKc8+9v4/2+VvqClRjZ411VdB7Y081jR67SUBpmWleZzqx+VKfIAk3SSRsaUd1OJuumWdKWV8xtCg55qfDhuUfE3HNCQHzGnleYZoesW2Jm4W8h+Q2cO+O4dsdRmzIYpWBoC/dnfzrJXz66RaTWDS0tLQwMDCx4/Hd+53f48z//c5LJJH/wB3/AN7/5TVKpFE888QR/8Rd/QXV19YqXsVmIVCB5jR8M/vqCxxWRjRQv+Ls+xq9VYBVq1HojY8rMpJ1Mxt2MB71MRDwEki6CuouQ5CBms2PKN589kqMG2kwGdUZHm9HRpnXUmQyOaBrbbBoiOk2/nKDxi0kkDRAC56ROVTyGvzRNwq9xRq8jJVQUTA7Zx2lU16dZ6LTh4GSygQwKpXKCBx3Di9Y/3Bqs/hM5q55vkSa4yWwT3BldYTJtZyabBGQpXRuriC2G203EdF3mvYvbePWdvcyGLbLs9cT58INXeOBg96rVpEjUQXd/DV19FrEKRYqbeebqq9pbxtnRdm/UV01PePjx144wcMNSXupaZvjkL5+humEuwEAImEx6uB6u5HqoimvhKqZTxdtGwqTJPZtVnKbY4ZvCoy0MpFhPFIZNCMAuWceMVzHyfxcLuZhMOrkYqmQs6aTeE/j/s/ff0XGl150u/JxUOQIoFHImAKYmmx3VQZ3VynKQZMu2rmU5yPad8cx4zdwwa9bn8fWMJ17fufadGcljW7Jlq2WP3baVOqizOpOdGAESIEgiFICqQuV4wvv9cQoFFFAgwdQkJf/WKlSh4qlTJ7zPu/f+bVxauZ7magqJQ5VOFkw/ILjJscywlm54/UYnPskSZFM+3p3rZSrT/r6A0+Z1cXlRqdOpVp45vZODC/11t8QWd4GHBia4t38Kn+Pq/pZXStm8i8efuINjkzYorUahuqJpThfCfPn0ncQrPmQsfqL7KB/pmESVBCOuKtHaxFys6uSJVAeLVR/pjel2xkbnNLumx6dV8WqVBpdCIcCyZByWSUAuE14HSavA1KzWrphRee0vh3nnyV4sU0aSLfY8ssAdP3UGT2izwcmJUx38efomygEZqQxdL8OH7jzG7ptn64ZLhinXo0jpvLcOR+tBqapfOEImSRZuTwUUKFkautkIM0FPkZ1dMUY7FxmJLlNcUDj+VISTz7ZSymx4f0kQGSjStTvLjluT7LpliY7WxkwRISAnVFKWk7SpIZsaiiXbEZaLlITZkKanSJtLDywhU9EdnJmN8upruzl0ZAe6S8Z0Uq9dD3iL3H/LcW7fPUXAVcEpCZKGysolQJRDNpEli6LppGQ6ELAWZdoSmDY+2ChR+ytMmXzMU4el9DkfmVkf1cLm31nym/j2FHDvLKL06phhCUNtkoqJwCtV8EsV/HKFHe5lJhZ7+DcP/ZCaTVwLxeNxTHPtwHD06FEeeeQRnn/+ee6//35+7dd+je9+97t87WtfIxgM8o/+0T9ClmVeeeWVbX/G9QJShlXmK+9+iqFAgqohoQnpshvYXinJsu0mc6XNA1Y7bCernk2Xlbqhw4WjIBKCsFai1VmkRSsQFGW85QquQhUtZaDEdSrxmm18Yi3qVclvTjp2dpoM/nqeyEP2zJVRkEi850K6WUFSJIx5sL6p47XWHAp9GxwMnd6Lh6C06eSVmotXQC5zj2sOp3Q5aWAC74YmuOqGn69qSaRNhVTNkrx8gVzn7f76loCypTaFsKKxAcBMbR2YrT3//QQxJwazZ9s4erifQtaNrEsEnCUe+sAxbr8EgGomISC+EmBqxgar6bMdP1T1VaYh8fozo7z07V0YuoLmMLj/U8e4/aFTSBLESn4ms+21Pk4RUlVPw+tlLAZ8K4zXIk47Agk86lWwEz6PGkGq2fZnuwiuhyuvbDVNScsbMjlL4b1yCyeqYWK6k5udS3SrawYKRaFy2giQwZ69NUyZw7O9vDfbh7FuQPl+gNNG2QOvi4tKGZbE27E+vn96nOlUe/3+HS1LPDI0wc0dsyg3SARWCHj32AB/99TtFEuNUShJFnxvcYxvLe5CSBJBrcSdbedQFQufbPLLHZP0OIuYAv5ocRd/urTzvOdOCYFHVCFuUT0jIa+YKCsmvb1Zxh9KYYRUYoaPjOVueE2nmmPQYacAeuTNaeVGVeLtb/fx2l8PUSnag92BWxPc/flpWnuLm56fXPLx5NM38d5oEDMkkEuwdylNf8cKuZKnIaKUL7m2dYz2usqEfEVC3iIhX5GAt4iJxErRx3wqxHwq3BCVUhWD4Wicsc5FxjoWiQRyVIsKp15o4cRTbSxNrjVBdnoNunZl6dqVo3t3lr5dadoCRQJqGbeyduywU3Q1ViyNjHBgCBnFktFM5SIAas1Rz07Tq24yhgAwLQXd0jAsjflYK6+9vpN33xukZDkw3BKWY+3z+jvi3HfgOHtG7P3CIdktH+K6DVEXdOJbV7ckYeFUDAwhUzIcVETt9av24muv2ta3Nat2PVOqnprnJzvvxaxuHjPJAQP/vjzusRJyj44RkjDUZgVdAq9UrUFTGb9UxidVGzJ6+jwrvDI3xu/8A0hdPf3Tf/pP+c53vsOpU6fIZrNEIhG+8Y1v8OlPfxqAiYkJdu7cyWuvvcadd965rfe8XkAKrqz9+RXTZUSjLAEZ3VWvSapfatbgyapnW834HJJBq9M2b1hv5rB6O+woXXR6nVmFx/9ZlFPP+ZE1idt+PkO416o3Qdb9Mr6Pmbj67W9tConlQ26m/zcP4gLuhauNkFfBKthZZeSeDD37z9+gL2s5eLncS0Wo+KQK97hmcW/h5rVZAo8sCClGvQnuxqi5Lqj3cUqbKkVre0WibPtZV0Y3Aoh5VJ39wRgjvgvX+zSTaUn1+qpTM52cvYHrq2JnQ3znz25hcdZOXRvcucSBz55kQfbXwSm7IS1UkUyGfCuMBZcZD8QZCSRwXWSN4ZXWhUFqs2QEPsVCshTyVR897gL9ns2RaqtWb5XRFU7mQxythCk47Wb3liVxItbFO2cGKOkOgo4SO2vQNB5eIvo+gFMzbTcqla86ePHsDp6bGSNVtiOLimRye/cZHhmaYCC0cvUXdgsde7WbJ/9oHy6vTrijQDiap6WjYN/uKBBuL6A6Gs9s8ayXx1+8jamlKLgt/O15BkYXMRwyK7qb5aqvibGT4FMtM/yznndxyRbLVRe/dfYO3iu02k52apmQUl5LtatdjDnBu38U5tQztTRgSbD70RT3/PIiLX3VBgBLmS5mqiFmqmGSpqfhs6NqgUEtxaAjjU+qMPGDDl78+ijZuL3fRQZz3POFKXr3pqkaCplaDVI67yG+EuDUqQ6WKj6qtxfBLaAsoRzxIpW2PmGpimFD0jpQWvu/QNBXwqGa5EpOJmMdTCx0cjIWpVBpTPtqD2QZ74ox1rXIcHsch2oggNn3Ahx/IsL0y2GMir0csmIxcGeafR9ZYucdy6CAv5bK6NkAT0VTI2M6SaKi10JpsiWhmQryBXt2NTrqaYqOvCFLRAgwhYphaeimDU/FkpPDhwc4dGiEhVgLpgsMl4SozWJKksVNI+e478AJ+jvXUiSdkoUmC+JVlZSxGaJWU/JArIMnYS+nbKFKFpVaKp+5OSfyvKrm1XqEKX3OT2bWR27Rg7A2v4ca0gncnMM1WkLuNtCDErrSbKwq8NSgKSCV8csVfFLlguO0HwmQuu+++/jFX/xFPvOZz+B2X1y9xOWqWq3S1dXFb/7mb/Iv/+W/5LnnnuOhhx4ilUoRCoXqz+vv7+ef/tN/yj/7Z/+s6ftUKhUqlbWZ3mw2S29v7z+A1BaSFYFM82hU1ZLrQLQ+irT6f0r3bGqC2Uw+tUKro1ADpFL9doujSKuziE+pXtGBhFGRePw3oky96EXRBD/+/y4y+mCx4RsmTRcHK50IScKrrB0AHDkD9YhJeUapG2bk1xlrVM/TCNnbojP6QIbxh9P03pxvClU5S+OVci8loeGVqtzjmm062wgClyTqfZxCirmppsMQkKm56l1OE9wbLdvsQiCW0x3MLLZzdrmVKgpCBclp4vDqWCoXBWK3hWf5TPcR2pybZ3gvRjdifZVelXnx27t57fs7qARljF4L3805FlUfeaPRHUyVTIb9ybo5xLA/iVO5vsDwUkBqoyYzEZ5Z2sE9vWfZ4cnSoxYZ1Ap4mzjRlS2Z0yU/h5Y6iVfcSEqVHv/KNQOnjbpQVGo+G+T7Mzt5fW6Qai2CFnCUuH/gJA8MnCToOn9z4autyYMdPP5fbkNY9jlIIBBusIICEQArILCCAiViILeamAGoOBXMJilIzSRjEVZLdDryfKnzOLf57UmVcxU3B3N+XIqOT6k2jVjGp128/D86mFgHULseSXH3Ly/RNlC5YPZH1nQwUw0zUw2xbPoaH4xJ5N7yUpz0IAmZtr0FpCD1OqViZbNzn/CYmHsL4BRQklEPe/Ar1ToUhXxFwjVICtagyeuqNN1OTUviTLyNyYUOJmMdzK20NDzu1HRGO5bsqFNXjBbf2rEzn9A48VQbx5+OkFlYA66WvhI7Pxxn7KEk/nCVdmeWsFbEtc7AQQg7PTBruMiYDkoyWLVjpCRAM1RkIW0Rhbqwo54QYFg2OK1eBDJCwNmzEQ4dGuHYsT6qporhkjBc1G3kXY4qd+49xT37JggHGs8VTslCkwTLukbGVJBqX2jVzXAVmNYk1du3OGoTrQXDQdl0nPe4JQSUUs4aMNlpeelzforJzfVMAM5IGf/+HK4dZeQuE90vU2kKTdSgqVyPNvmkCuol1I7fiCB10SP1m2++mX/+z/85//gf/2M++9nP8ou/+Ivbjvxcrv7u7/6OdDrNF77wBQAWFxdxOBwNEAUQjUZZXNy6N8m/+3f/jt/+7d++ikv6wyEhoGBpZCpu2/FuHSStwlPWaL4DrpeMRdhR2hRFaq1BUoujiHPbUZfLV7Uo8df/awdnXvOguiw+/f8tMnSP7donsL/3aSPM0WoEgYSPKnuVBDkczFteqn6V6l0K7XeXOKAkcG6Ypao3Ql5NI0xqLE24OflikMKKxjt/08Y7f9OGp0Vn7IEMYw+l6bs5j1zbG/2yzr2uWV4u91AQDl4q93GPaxafrOOQ1lL1QqqJa8NA2hRrTXBTNfvmy43MXAfjuYuWLIFHMfBsiHDousIb747wxqvjZPMeXEBHoMADdx3ltn3TqKr9W24nIrZU8fPGSi8HU728k+7iw9GTfLRjAtclwoHTYTA+ssD4yALQvL5q6kwnU2c6efKFm69pfZUpJF4/NsiTr+8h6XNR/qzd7NuW7fDlkA1G/AnGgnHGA8sM+pPn7Sfzw6KAp0hPV4LTlo/34q28enqEqqFwf9dpHu2bot9ZoFMt06FUcMkWu7wZdg2tGS6ULanuEpgzZfLmtWsrILDduSREfRhnCTi81M0zp3dyPNFZf25fMMkjgxPc3n2moa7n/ZIlIGc6yRou0oaL0+faeOt4P+ZPWLj7ihA2yePEbNolvoklXBXkjISjYOE2dcoBhWWPG8uSCUslvth3iNFQAp9istNdwV2L3J2pasxVJdqdhabLmZhx8vL/6OTE90N1B7Pxh1Pc+yuLtA1VsATnhahSRSOV95LKe8nlPSh5N86Kg6ymYYVMXJEyUqfA//E8/o/nKaedJOb9ZOf8VDJOVo/oqmwiVUBUJPAYVG4qgQNa5SI/13+Yrr1Z1Iv4HVfyHiZjHUwudHJyMUplQ31UT8tKDZwWGYgkGlI8TV3i9Gshjj8Z4dxbwXokxOExGX0gwfiHkkTH8vi1Cm2OPGGt2AA5RdOGp5zhQhcyumJiKlZ9AkC1ZNRNaXyiwU2vmaOeDU5aPVXPsBqb2ObzTt59d4hDh4ZJJIJYChhuCdNF/XmtwRz37p/gtt1TuBzrzke1tDy3ZCFLgriukRdKbb2sXuyMEdHEIU+SLByyiW4pFE0n1Q0tD4QFuSVP3THPdtDzU803zwDydBUJ7M/hHKlAh4HuUyjLGhZQRIF1Biju1fS8WqTJL1VQr3hN942jS0rtMwyDb33rW/zpn/4pTzzxBCMjI3zxi1/k85///EWZPFysHn30URwOB9/+9rcB+MY3vsEv/MIvNESXAG6//XYeeOAB/sN/+A9N3+cfIlK2TCGR1l11KFrR3WuQpNvXFevCy+CUjcYIUg2QVmEppJWuG1vbSl7iL7/Uydxbbhwei898OUb/7WuzplUh806lg5hpO4Z1K1ludi7VXfQqQuasGSAu7LQKGYseOU+XnG9ahL5epi5x9qCPiWdDnHwhSDm7tm49YZ3R+zOMP5Sm7xYbqkqWyjvVDjq1CuPODLud6U29nOzBg1yrc1LJXgFw2qjr5Ke7LOm6wuvv7OCFV3eTK9iR9FATgLpYnSsG+ebsPibydj1IUCvx6e6jfKDl7BXd5i+mvmpkcJEdA4tXtL7KsCTO5FuYyLZzIhVlMh3B2BBOdck6OwLxuqveoC+FeoOB06VEpKqmwnSmjYlUO/O6n47uFRRZkMz6eGNiiN62FW4bmCFQi86Uqyqj2gq9Wg6vYhFYV2/lka2mg7niOgv2rGk3E36/7IYkAFlQ0lVePjfCszNjLBcCtccsDnTO8vDQBKMty1cN5A0hkzWcpGvmDGlz1ajBvi9juMiZ2+/345Wr9dQ6j1Ulu+Dj9FQnZl6DokxrNod6xqJa1NADsPgxlXKX/d6B90wiL5jIhuDTnz3G//IzR9BUQbag8fyJdgyXRShawOFqnFBJnnXyyh91cOzJcH1QPPZgmnt/JUZkpIwlJAxTIVNw10EplffY1zkv6YJ9u1zd2sYaQHEaBLpytPSncbaVWc+NTtPAnzOJvRhl+b1WJCS0HUXi95vokkKfK80v97zVkCK3lXRDYXo5wuSCnbK3nG0cO3mdZUY7l+yUvc5F/O7Nx6PEjJvjT0aYeLaV8jrjiO6bsuz6cJyRe1bweHVa1AItWqEh9bdsquQNJynD7vEoEJiyha6Y9ZOWbEl2FAppW456lpDqwKSbGqbYnGJnWRJTUx289dYIJ070YFoylgNMDw2RzKHuJT548wl2D82hKOv31lWrcXBJ9hRJXFfJWbVjzjZG5HbKoUXZdFAwHOi6SnbeuwZM53xk5nxN65kkWeDvy+O/KY9juAJRi6pXpiQ1QuKqXOi1eqZK/fpyXYW3lqDPk7rhIlKXXSO1vLzMH/7hH/Jv/+2/xTRNPvrRj/Ibv/EbPPjgg5fztpt09uxZhoaGePzxx/nUpz4FcMmpfRv1w1ojVbGUWs+kRjiy/3eT0t3bOvEE1HITSCrQUkvB8yqbZ3KuR5XSMt/85U5iR1y4AiY/9YcxuvevHdzTppM3K10UhQMZiz2OOINqeq2gc51ylsaMFSRXc9lyYDCg5GiTSttaF6YBZw/616CqZu3uCxjccv8K934qzs79OcK+xoiKEJCrNcFdTdm70gYg63UD/KznVVVXeP3tHbz42nqAyvPg3Ue5dd/pi5px3UpCwNvpLv5q7ibiVTvFZsCzwud632PHJdZPXUgXV1+1yGDv8kXVV+mWzOlca91V71SubdOMp1wVRI0CHxg5zZ62Rfp9qctqA3A9aDsgtR6cJlaiTGfaMITCUMcSewZnkSSIp/y4KyYDncvItX52uqHw+uwQk/EOu/9U7zEe6TzVAJtKrd7KBisbrjZGncGOPOfXRa1y5oWNYi5V8YKPZ8+M8fK5YUqGfbzzaBU+2DfFg4OTtHmaR162q7Kl1KNIdtPYdbdroFSwttdEVkLgpUpl3glpibCzxC23niHsWKtJCiiVupvnRke+rugKP/XJV+mKphACXlkY4C9i+ymj4TBN9k3HcR+XqGQ1fu2X3uGeu2cBeO31bn7vv9xJPr+2nL5wiXC0gNdfInVaYemYhoXAdEpEb6/Sc18Fw+1gZRWacl6yRff2DRw8RaS8IDvjhBwoJZOegRXu+fEp+obttN+KUJjT/ZzVgyzofqx1VGVmFNy6yaQcJlt1MexO8cWet5q6/kHNaTPrZ3Khk4mFDqaXIw2GKJJk0d+WZLxrkfGuGN0tqaaTSZWCwsnnWjj+VKTBOMLbWmXnhxLsejROqLtMUC3RquUJqOX6OdUUEitVL4mqDxMZt6xTFQqmZAOUWE3jsyScJjjltRontcn3Mi25IU3PFFt33EynPbz99jBvvTVMJuO12644Ab+o24vLssXNo2e478AJeqNrx/7V2qbafwhh97MDWK5q5K3zFE43SCDKEolzQRZOt5A4G7L7M8W8TeuZFIdJcCCHb08Bx3AF0W5RcSsUcTT9nk50AnIFn1QmINsRp6sHTfb3kTacM3rcaV6ZHePfPPwjAlJvvvkmX/3qV/nmN79JIBDgC1/4AvPz83zjG9/g13/91/nP//k/X+pbb9K//tf/mq985SvMzs6iqvbOm8lkiEQiPPbYY/zkT/4kAJOTk4yPj//Qm00IAXnT0VifVIsorYLTdjqYK+vS7lq09al3JdpcedochU1NWW9EFZIKj32xk+VJJ+6Qyef+ZIGOXbb9rhBwxghxpBrBQsYjVbnNuUBY2TyD1pAYUOv7ctYMUKn9Vn6pyqCcwS9vz21MQeCTTJSkTFg16eyqsNHJfSHm5LTbxwkrxGzVwwFnjLBy9WsPbmSIsgFqlBde20W+BlDhoA1Qt9x0ZQBqo3RL5pnlEb4d21k3ULk9PMunr0D91IVUrSqcPhfl1JkOpmY6iZ23vmqR7o6VhvqqqqkwnWutN8CdzreibwAnzTBxLEi4FgVRvcBnPvUmg2MX7idzo6hU1Pirr91NbC7MyNgiY3vn2bEzhuywmMq0MbESZSIV5XSmFUOsH/gIbh46Q1+HPXBql/KEtRKpmhOfjEW3nKdbLjCVbeMbMzdztmDXjERdOX564B32tyxsOQHjkCx8ikVgnQX7RvdNAN3CBitLJmsq5E0F/TwNM88nIWAiGeWZ0+O8t9RTH9x3+DI8MjjBB3pP42pS87XxPYqWthZFqkFSZvV2zQZ8O2ZDYNfYBZQKoVUgamLeUJp38Ni/uYdS3kH/rjif/d9fR3Ns3tc3OvLJssXD9xzmwbuPoiiCiqnw2Ow+XkwMAzDsTfCrQ2/Q5izil03G3RVcssC04LWJdl58o5vEop/lRJBk1kfJcmA6ZUyXjOmU7NtOmQumLWDvqyFvgbC/QNhXJOxbf50n7Ckw80Ybz//ZWFMjiY0q5Jy8/NRO3nunD8dQCfeuPJ7RAutbJgkLdjiTDDgydCj5OgCVqyqnFqNMLHQyGesgVWhsURD0FBnvijHetciOjiXcjubnPWHB3GE/x5+MMPWDFsxqzfhBtRj8QJrdj8bpuzWDW9Np1fK0aIWG1hV5w8GK7iVZ8WLVUsycioFTrlCUwVRMFCycmLgwcUjGBR31DEuruQVu/ZsYhszkZDeHDo0wNdWJEBKWbFt7G0653pbA46xw100nuWf/BCH/6rFeamIxDqumUBY2RBW2gCghoJh2snI2QPJcgNQ5P8mzAXJxb9PnO3w6wYEsvt0FHINVrIig7FIpiuZ1U0502wCi5p4XkCs4rmpzGztdsXmfPal+6fOu8PLZcX730W9exWXZnq4aSC0vL/P1r3+dr371q5w6dYpPfOIT/NIv/RKPPvpovUDu5Zdf5sMf/jD5fP4C77Y9WZbF4OAgn/vc5/j3//7fNzz2a7/2a3zve9/ja1/7GoFAgH/8j/8xAK+++uq23/96BKnZopuVqn9Tut1qNGlF92yaIW4ml6yvwZFWqkeV7P+LBLVy01kjSRL1HOYbKzlns3JLCt/4hS6Spx14IwY/8ycLRHbYB3xdSLxX6WDOtH/3DiXHAefitno4ra42U8CC5WPO8tUjfG1SkQElu6l+SkYQqNU3BRWTgLI5lSddUJg47OcH34rw1vMtZFMask/Q+58quHYKZNPiTuc87VdxcH6jQlS1qvDa26O8+HojQD10zxFu2XsaRbn6kwIZ3cnfLuzmB4lBBBKaZPLoZdZPXawu1L/K6anQOpJCiuikHQ5my6ENcAABrcxoYBlfwmT26Q7Eot1Y965HT/LBjx/fsrHujahc1sWff/k+FhfCWDJUwlBplSi3QjUkITYcJEPOIjvDS4yFl1DDVeJ4bGDSMlSk1VltQYdcpFfONRxPLCHx8vIAf332prqT4e7gIj89+A693gwXlsAti4beVr4tLNhLltQQtcqb8nkj2FVT4Y35AZ45Pc5cbg3G90TmeWR4gj3tC0is1SOt9kLK1NLtssY6UDKdm7apreSSdYJKmYC6DpSUcv12UC3jaVLDsl7JmJc//+17KGRcdO9Y4XP/8tVN6XVg7xt/s0UUCmC+FOC/T9/JfDmIhOCjHRN8susYpZKTDtXi5tYUigSJoos/ePUW3p7tIpXzki9vz3xLrlgoFQulImrXFnJ57X+/p2S7CkbXOQtGC7RG88RnfDzzJztZnAoC4G0pc9fPnmb8viU2ln7pVYWDL43w+nOjVCs2rO7Ys8D9HzvKtDPAk6kdBFxlWlylhgO+KkwcBYnEfJDT0x2Y66JOimzWrcnHu2JEg9nz/ia5uMaJpyMcf6qNbGydccRAkd014whfqEpIK9KqFfCpa5OXuiXb8KT7qFiaHbkQdhQJBE5nAU0p45BMnJKxKRrezFFvu81k4nE/b701wjvvDFKonUcsFZxtFXKmC1GboIiEM9x34AS37TqN4wITC7WlwitbGMgsV1WKNYgSFmSXPSTPBurgtHI2QDnXfDLc01omOJDFO15EG6xitQlKmkZBOJtCkwPDTstbl6LnqLdWEXbt2CVOupzvu26MNtn3grBsgw6BhLBg/QY44E/y8tmd/O6jj13h5bl4XTWQcjgcDA8P88UvfpEvfOELRCKRph/+qU99iueff/7il7yJnn76aR599FEmJycZHR1teGy1Ie9jjz3W0JC3o6Nj2+9/vYDUqUycn3vi/wPNIFF1b2unD6rlNTiqR5Rqxg5aEfclpt3Jio0EN/pQKTOv8o1f6CJ1TiPQqfMzX43RMmBDVMZycLDcRV44kRDscsQZUVMXvb5Wn14VEgumn6zkwCkJ3JJJl1KgQy7hqfVzCijmpgFPqdYEN20oZEyFas3l0DLg3Du1mqrng5RKKj2/W8Vzs4VVAe3vK+zascLAHTkU7coBwo0IUdWqwqtvjfHi67soFO0Tdksox0N3H+XA+wRQG3WuGOSx2f1M5u1jZEgr8ZPdR/hAy7n3tWZQCJiNt/DqzBDHU1EW8VH1Sptq652WwYAzzc0ds9zUFsOVN/nenx9gZsKue+3oS/GJnz9ER+92Bvs3jk4vtPFnf3sPK6obvVVQDUobGqSCUhK4VgTtZoH9XXPcunuGSE+ag9Vu4qYHj1LBp1Trg5hWqUS/ksV9nj5wJUPlO3O7eGphDEMoSFg80DHNj/UdJaBdXH2bVBug+WuTM37FxNNkm7cNhDbXW6VKHp4/M8qLZ3eQN5zIqoXTqTMWjTHQmsRSqKfd2fVIjouoR1ofRardVmoRpVpkaat0su0qE3fz9d++h2zSQ7Q/zc/8q1dx+xqjI+eLQlVNlVTOwwvxIZ7LD2FiN73tXSlhJFwIU+Zff+RFPjh8FoDvTwzx20/eT77aONBVhIGUMVDyOkpep60lx757lxgcTxHyFAn6ShglhdSSh9SSl5VFL6lFL+na7dIWA+eGL2EJZMmkZ1eK8Q/GaO0pEOoo4HTb61BYcPStPl56Yje5jA0BHb0pHvzEYfqGk7yS6uXx5d0A3BaY48PBU7y30s05PYjhEyjrInimLlNZcdJiVtgVWGJHdBmnev7fyqhKzLzezDjCYPSBFXZ9OE50LI9XqdLqKBDWCnUIEgKyhouk7qv1j2w0h5AkC5dSwaPmcSqbf99mjnrbVVVXOH6sj0OHRjhzpr32ieAIVpEDJunS2mTUjt4Y9x04zs7B+Ys4ltv7aElXmZwJszATqgPTyqwfo7J5YlySBKGuHC0DWVyjZaQ+A7MVioqDvHA0/X4aRs0AwgYnO9LUWA+2lmTIFQKo1bqvZsec1WhTzURlAzitqixU0qYbNMiu+PkvH/r6FViuy9NVA6kf/OAH3HvvvZe9gNeTrheQOpNb4cHvfLn+vyqZdpPZVTjSNvRO0koN4e8rJTsaZdmzBVf83d8/rZxV+cYXusjGNEI9Oj/ztQVCPfas0Vk9wOFqFBMZl6RzmzNGq1JEBVRJ1C+K1Ph/4+OgbHhsOxBW3gBOlQ328M3WuWXC3Ls+TjwfJHWHH9cBgVWFhd9yYByBHffZ7n8Dd+RQHZf3q91IIFWpqrz21mgDQLWGczx49xEO7Jm5JgC1Xqv1U385dxOJWv3UYK1+6lL7T21HBUPjZK2+aTIb4Uw+vOmk6xVV3HmBHnOipBSUEnVXq6CnQHlZQy6A06rywCePc8dDp5Cv8fq8XBmWzNlcmKl0G9OZCJPJ9qYNv8POAuPhZXrUDNKCQuxYG7MzbYjavqr6dHb8wklCXXm8SqU+mPJLFQbkLIFtpvYCLJe9/NWZ/RxK9gLgVqp8qvcYD2+on7pYKTRGrfyK3exzo0qmwrFcK8cLLRwvhzlRDrOkbxzEbpaMRUCtNESOAmqlId0uoF59N698ysnXf/seUks+Wrty/NxvvYw3UK0/LgTML4f5u2dv4/RcFCGDx1chEs1QqjpI5b0UTY3yQBWzxV5WJS3jnHEgGxL7u2P8+098n45Agaoh8yeH9nFwoZ2w3063c+plzj7tZvq7HkTRRunBO7Pc+6UYPTcV7XQwAds5spYLKqmlVbjyEJ/1c+54K4WM64InF7e/grPVJGP6KNX6NPn8Je798HFuuv0skgzPJgf5XmIMgF4jhzjrYX4lvBbFkAShSJbeoThaSwVTWTtmKFh0qzn6tAw9WnZT1kZixs3xJ2rGEdl1xhH7sux6NM7IvSlcbp0WrUCrVmhomFuxVJJVLyu6F11sBgpVruJVi7jVNbc+IcAQKrrpaOqodz6tr3teWAhx8NAI7703SLlcM/KQLcI9ObKWqx5pVBSTW8Zm+OCBE3RHUtv6nEpRZelskMUzAVbOBpk/GyI+58cyNwOQopmEe3O09GfxjhVw9FUwwxIp4SFjNa9nVzFtWFp1z5PLONlsorFetbV3mVEoUbdm3yhLyAir9gxB088oC5W05SZjuUnXLmWxts106Tm++vAfX+KyXTldNZB68MEHefzxxzdZjmezWX7sx36M55577pIW+FrqegGpqmnyS4//C35i/E2EMPCpxjVxu1MUO/njRotGSawBTm5O4ZX/0oJsQXSowt2/mMYbsOeZ88KJhYJbNvHJOgG5Wn/dlZAlwBASVSGRFxolS6EoFGZ1N2d1DyvrDvgKFioWCgJVarytIFCxavcL+7mShTDg0EonaZ8bYUgs/I6D/It2ioDDa7LjgzZUDd6ZQ3Ve3MD3RoGockXltbfGeOmNnQ0A9dA9R7h5z0yDte71IN2S+f7yDr4TG19XP3WOz/QcodVRuuz3z+kOJmv1TRPZduYKoU0pHhFXnvHAMmPBZcYCcSIu2yRgfX3ViZPdJFLBhtcpsslg39b1VdezUmU3U5k2pjNtTKUjnMm11Osa6hICT8nkwMA5dkZi7GpZJOwsbRq4FvJOTh7r4uTZdtwPrBAMFut9UopxF6XjAfpDK4zuiuH2bB+kVjWRifCNmQOcK9gpdR2uLD89+C77wlvXT637CnaritVUu3Wudqu3M4aTgKqzx7PCLs8Kuzwpxj0pvE2aICd1J6dKQc5WvCxW3aQNFYds2E1lNTui5FsHkNdKxayDP/+/7iYxHyDUXuCn/uVrlIXGzEI7pxY6mF8Js1JsPjhflek1KQ/rCKcAIejLF9mlJGj153lk+Cx3dS0jS1A0JSbKznpNS3ZJ47WvRXnv71oxdXuQO3B7jnu/FKN3f+GiAGq9JASWDge/NcCrfz1EtWgfL/puTrLrkUUEMpklD6lFL5llD+lFD/mCC8PnwHLWtm1LoBZ1lKKBBCitBqlHZDIjtcH4ghPm16zQu8IpxroWGe+0rclVxbJrgE0PZ/Ug5/QgebHmFihj0anm6TJzlF9RmPxOG8sn1xlHtFXZ9aE4Oz+UINRdxq+UaXUUCKrF+jZjCUgbHpJVX62ee4O9NxZutYRHLeBYB12GpVAyPOimA4ckqJ4vfVRaNRCH9VOUlYrGe+/18+bBHSwstNbv94fzeKNl5tNhqoa93n3uEnfddJK7900S8G5dm5xPOWvQFGTpTJCls0FSS76mz3V4q7T2ZQn3Z/HtKKL06lT9CmnhJmu5N0XEYQ2a1tzzyriaOA9uJbHu1sVD1BZpetuINlWEUoelNWhq5jwp8EsVepxp9KyT//rIn17E8l0dXTWQUhSFWCxGe3t7w/3Ly8t0d3ej6xd/ArnWul5ACq59Q95rF42y58vXR3vsKE+TyE/DY2tRo23U8W5LZg2EjNq1idTw/9qFdY+tPW4DqFSvJYhZXpLChSFkTGQMpG2nxZxXQmCt9pjICopnVSorCkZewshLUIFwtEJ0qETnSAGnZqHUYE212wg2HIRvBIgqV1RePWQDVLFkA1RbS5aH7j7C/j1nrjuA2qiM7uTx+T28nByo1099uGOSj0YnL6o5babqZDLbzkQt4jRfDG16TocrW7ciHw8u0+LcGtgMXeal7+zktafGMJCRAhaRsRwrBd+m+qr1/at2DMZoDb9//avOJ8OSOZcLM5Vpq0eckuXNhdk+rUyHnGflaAgtKTEcSvC5n3uJ5CkHs+94KSZVXEETT4uBt8Wwr8P29YrfxWkrWDfgsSoyM8/0cvqlvnoKkyxb9A/HGdszz/ieecKt23e1s4TED5YH+ZuzN5HV7e17V2iRT/Ydxa3pm13t1tUpNRt8NZMwwdQVLF1GNgW3hWM82HGG3f4VOrQSoS0m8IqmXW+Vt2RylnxFetRdrCwBuZybZNrP0lKQl76zk0zBjRWQIAgloWFpsOkLCHtyqqstRUdLhrC/QMhb4KQc4pVCHxYyEWeeXx16nSFvCk0SjLnKhGttEZZ1hamyExOJXFzlta9FeffxtjpA9d+a495fjdF3c74GUJfioChQhODoS5288PVRctswkshnnbz81C7ee2MAISQkyaK7K0nQlWWxEGRJBMj6nZi7dYjWonSzLuRzGs6kgTthECyXaAvnCUWLhKIF+7qjSChaxFVLjxQCViwX5/QgZ/UgWWut3kmYYByTMQ5KdFs59nwwTt8tGZyqQatWoMWRb+gTWTQ1klUfKd3bZJsVaLXok0stNUSfyqabou6hYjmRsM0mHJJB1VK2BKb1bnlCSJw9E+HgoRGOHO1H1+3xlayY9I3EqWgKM4vta8YqrSnuO3CCW8ZPo61rjyEsSC17bVg6E2TxrH1dyDTvqRlsLRLtz+DrzeEaKaJ0G5Q8Wj0iY7IZBFehybfOctwtXbo78sWl8p3PFEK2JwdWJwk2TBRUm0BTaQto8kkVQnKpfgnKJVTZYsC3wstndvK7H/4hrJE6fPgwAPv37+e5556jpWWtU7Vpmjz55JN85Stf4cyZM5e35NdA/wBSNUnUU0kuPholUGgCQhtS4pRmj9dg6UoNxgo5mXxGoVKR8XUbWApkLQcLhpeipaILiaiSxy3pTWHpavdhEtgDglWoWg9YBjKmWH/bvl5/2+T8BePbV23dswpYtdtYtd+lFiGr316NlDUHsaupckXjlYNj/ODNnRRLdh1BW0uWh+45wv7d1z9AbdTZYojHZvdxcl391Ke7j3DnFvVTqYq77qg3kW1nsbT5ONXtSTMWsMFpLBgn5Nies+O5U218588OkFyy33P85jk+/Ll38YfKF92/aqR/EZ/3yvWvOp/SFRdT6Ug94nQm27LJaVDCoseXZiSUYCSYYDiYIHa0lb//y9sRlkyrN0Fo6RyLx1xYxtYg4hk0GPmXOYK77YGlZUH2ORXzTXB7TQyXm5VqC0vpCJmsv+G10c40Y3ttqOrsWWlw5dQtuRYxctYjSVnDxYru5mwpRN50Isnb3898SoXgeic7pYKpS5xc7uBYrItKxQFCIuAscX//Se4fOEXQ2bidyA0W7Pa1u8n+ZTXUW8nkLIWSdSkA0ShdV1hJ+0imfSRTflZSPpJpP8mUj5W0D91QEQpYmm0A0AycJAQ+rUw0kGWgPc5Y3wI7+pfqqb7pqov/MXM7x3N2/d8dLef4+f63cCsGQcVk3FXBIQtMAdNlB0uGSj6h8dqf2gBlVOwfsfdAjg9+aZGBW/NYgLCkSzh/2OfFs0fDPPcn49sykqhWFA6+tIPXnxtFr6oIoG/vEm170sxmW5haakc3VUDAYAnadBDQOV+mf6aAWJTILHkopJsP/lfl9FZrgFXE46+QX1SIHXZT0mQcd5g47jBRBte2DQWTu7znuNM3S6e2ZkRhCImU7iVZtR0NN0rCxKOW8GgFNHktQqpbKkXdQ8nw1N36VteZS9Fxyga6pdhrvCFiUksrA/IFJ++8M8ShQyPE42vR9kgkTcdgirlsmIXE2nh2fGCe+w4cZ6wvhmVKJOb8LJ4J1aNNy+cCVEtNnCYlQWtnnuhAhmh/hsBwHlePSVx1Mq/7SJkejCbQpGASkkuElQKtagGvVEUyabCqvxxdOJVvq2iTDU5bmUJUhbwuPc9D2nJTbApN4JPKDdAUkJvYqsu2mciAd4VXTu/i337sG5f4ja+crjhIybJcd+Vr9hK3280f/MEf8MUvfvESF/na6R9AqtY/RbbQaiYTTWFIopZ21gyWrsxy2HnP1ACjMdJjrv7P5siQISTOvOPisV/uopxT6Lm5xGf/cBHNJzhajTBj2OkyrXKR25wLl13cfK1lCWzAEjITeguLph9JEvSoWcJyGUNIZFccpBNOinkVHKD6BKrfQvUL5O05Dp9X0mq64ca0xBqIraYtrkKZsuG2zIXheRWgXnpjJ6WyDVCR1owNULvO3jApZs0kBLyV7uav5vZuqJ96l5Babog4LZcbB+cSgh5vupaqF2c0EL9og4JKSeXZx/fy1ou2xbMvUOLDP/MOOw8sbPmai+1fNdC7jOMi+ldtJTvaFGI6E2Eq3cZUpo1keXPajFer1IApzkgowWAgiVs1qORl5t7z8spz40wn7e+rLGfQpmL18Ze/vUrvzXki/SXyaQeFFZWyqeB72CR0n44k1/q4xRyc+A0/1YXmKUWWS8Ns8WF2+jA7nQi/QPgshE8g+XS0UBUpaGC4ZSrq9nZEIcAyJbAkOl1ZdvgShNX1wFTGr1bqqYaWgMNL3Xx/ZpyJRGf9ffqDSR4enOC2rrNoF9ECQJUEfnkNrAKKidZknGcI6kYWuRpk6RtrQAUUii4SKR8rKRuQkuk1YMrmPI3PhzVwqsHTRnBSZJOe1hXGemLs7Fugvz3REEVYryOZKP9j5nZyhguHbPBzfe9wT+sZJEnQ59Dpc9gz/wVTYqLsIh538PqfRXn7r9cAqmdfnnt/NcbgbTmQJIQlXcLklg1QyXkPz31tnKk37CwfzWVw60+cY/8nZtGcGxqwW3D0UD8vPbGLbN6N7pPQuqroIchWGteb31NE3ZEn5XAiY/HTHUe4JRhreE61rJBZ8pCupQimlzykF72klz0UUueHLEUxCUaLhHfliN6+wp4d8+wLxvApa/VpZyohZsshsGR8m1JIBQ65ikcr4FbW+i8KASXDTdHwUrWa9zsCcCq63UeqiX24ZcHUdCeHDtWa5pr2czTNYOfuc6ghg6Nnesnk7Yi1phjcPHqGna1z6CsKyzVois8Gtqxnau/NEu3P0D6QwT9YQHRYpGU3ccNL3PRQbZJOqmARlEuElKINFUoRn1TGqZoIoKg7KV1ErdeFtBmitmMKsTnapNegafWSsdwURHNjFG+TSNMFe1HJAizJBil/8ocXpM6ePYsQgqGhId58880Gtz6Hw0F7ezuKst2mYteXbnyQ2pgW1wR05PM8dhXS4urpcWwBQw2wtAZGq2lxF6uZV938z1/vwCjL9N9Z5DP/dRHdrXKw0kW6loYwqiUZ1xLXPK//SksIOKZHmNLtWbVdWpxRx8ra4xYsHPMw+WyIyWdDZBc1ZAcofgt3m0HfXXn67iwQ2VUGjXrUy1gfDatFzgxsR7MrEbWTaB71UiQLDIm5uTZOTXVQyLvRyyp+V4Xb9kyze2QOh7zZ/fBGVdWU+buF3TwTH6nbRQtTQuhrPU4kLPq9acaCy4wHltkRSODTqud51/Pr5HudfO8vbiaXtgdfN99zmoc/fQTXRdb2VKsKM7PtnJzpbNq/SlFMBs/Tv2orbT/alGE4mGAkFGckmCDqySFJUM4qzL7j5dzbPmbf8bE46Ubvbcfosesh1PkVWipz9B/I03sgT9+BPKHuKrJkN+QtGhpzlp8Fy1tPwy1bKp6KQf/iCqmUh0TeTariJq27yOOkoDooOzUqXg0jqIBrmzPKFYGcNJFTJo68gaus4zUq+KkQUCq0uErkQm5eDoyxJNnnp6gzy+eG3mFfONYwGVHSNV6eHeK5mXGWi/76ejrQOcsjgxOMtMSvSBRZQuBULPw1p0C/bPe6anYeyZY1ziaDTC608u5MJwcneskUmvfCAXv8prp0nH4dU5XIG85NsC4ZAmde545bpzmw9wx9keQFe8MZlsTfzO/lyaWa2YI7za8NvU6n27anH3NVCNXga7GqcmTJw6t/GuWtv4rUAar7pjz3fmmRwTvs7exyAKqY0fjBN3fw7pM9WKaMJFvseSTGHT81gye0eT+cmYzwxJP7WSwHqQYkdF9jGocimwy2JxjvjDHUucxThSEmixEUyeLzne+y17+87SVMnHZz+DvtnHyx3Y5iqgpCkXEGAU2mUnTgcle5457TfPDhCUbG1947nXfz5kovB9VuEuba7+zTq/RpGUZ9cTqdKbxaoaFJrm5qFAw7+rQdtz2nouOSdfR120Y67eGtWtPcdHptoqWnO8HYnjkSZR9vTw7W659cSpWolUadM8nG3E0jNk6PTnQgTbTfBqfAYB6jDZLCU4MmL5XzQFNQKRGSbXDyyY3tZiTJwimbVC2FouncVkub7Wgtla8GTk0e38qCXBdygwlE+jzQ5NkATaHtQNNGrYMoBAwEfohB6odZ1wtICVHhvz31i3x850EyuoYsyU2iQs1h6EoNKtdDjbnutg09jZGgRliyb7/fOfMAp5738Pg/iWJWZYY/WOAnfn+JhOrlrUoHBgoODG5xLhJVt1+rcKNJCJjQW5nU2wAY1RLs1JKbBk1CQOy4h8lnQkw+FySzsHaA1FwmQ3fnGH8ozfDdWRye5gfE1cLSC6Ui2imTTW6vy2a/HMlcKOq1Filbb9axevtagZgQECv56+YQk9l2UlUPIJBUCxRRc5USDLlXeLT9JLtCy3jUy68/LWSdPPnN/Rw/ZDvEhSN5Pvb5txgcj1/2e8OF+1c1q68yhcS5XHhb0abhoJ2iNxKMMxi0o00ApbTCuXd8zL7t49zbXpZPrQ2KBKCPdGBGQyAJ9oyc5MEfO0aoq8raUGMt5TZm+YhZPqzazlO1FPKmk3TJw1whSNZoXgzeTC50vGYVd6WKVjAwEhqluIdiyo+ZcyDlJahKSALkbAllJYe8kkcub/6thQSZO4LEPxbB9NsDruCZHDvfOYvXbTA31MHZlg502X7MJVW5o/U0Dw1N0tWeu6JpuELY0eJk2k9yxcdK2k8q7cEjCaL+EoORNLt64gxGU5vSbi0LZpbDTC21MJfyES+6iJXc5AwXyaKPWCpUH+iuyu2oMtSxRGVGI3XYh7tc5af/j9fo37U958vlspcvn76TmaI92fRQ+yl+qucwmmwRVgzGXBU02Z4IPLbi5u++0sNbf9WGXrIH6Z27C9z7qzGGP5BFkqR1dVAXtdaQEZi6zJvf7ue1/zlMtWj/VgO3Jrj789O09jb2BixUHBw6Psir7+1gRXiwtMbPbPXlGe+KMda1yEh0GadmUDYV/nj+Fk6XWnBIBl/ofocx74XXUyWvMPlcK8efjLB8ah0ARSrs/FCCXY8mCHaW8SpVwnKBsKOAWkuVtCyJiRMdvPj9cd58cRjLkpH8Jo6byjj2l9FGywx54uz3zDHiWq7XPlV1haVYC7miHy1g4Qlsvw5oFaTKusqJiR4OHRrh1Kmueo8nl6vC/n0z+EJF3jvdz7nU2uS/UjTxLFZwrugNGYG+cImOWmpe+0CG4ECBclAmYdpRprjhbXCXW5WMRatSol3N06vl8UklTMuoH0OaSZFNVMmibDooGNtvJ7C11tWGydTBBLY2hTCETMZyNUBTXmw2/gDwSNV6hMkGw/W9qC5BEnY6piWt1ZJIdkTq1eld/JuP/5CB1Le+9S0+8pGPoGka3/rWt8773E9+8pMXv7TXWNcNSOnHEckfu/TXCzbBTrMUuE2X2usNuEK1N++fTjzp5e//eRTLkBh9JM8n//MSk0SYNuwTZotc4lbnAh55O83ybnydrLZwXLdPGMPqCnsc55mBFrB4ws3EsyEmngk1QJXqtBi6K8v4w2lG7tkaqi5FombSYdbgyxAyxarGidPdnJ5vB1WgOQ0CwSKdXSt4feXGGrIrBmJW8xqxpvVhG9IVL1AftnpUXR2cL5SCnMy2cSoXYSrXSt5wISNAsudeFdmk35tiyJ8k6CjxXq6T2VIISRIE1RIPt0+zJ7jIuuSM9efJ+gSG2PB4/T4hcW6qlWMHe9F1FUmxGNq1zI69MRS10Vzmgu+1oaS7/r/YvGyVqkau4CZfcFIouezBpyJAFQgNJM1C1PrXSrVcfQk79cSpGPZFNXDIBmrNBAfsgZtRlTB0GdOwU6skWYBcG0TIICsCSQEh1+yOL3KcUjEVSpZGxVKZybWxtK4uTULgU+yeSAGl0pBiF1QrBGq3HVvYl1sWxObCTBztYfJoF0sLjZG8gDdHxJ8kIKVQiiVKKZXCikoxpZItOog/ECF1Xxih2vmGUkVGKslIQsIRLxN8M0ngcBpZt38RWRF4WnQ84UYDDW9r432rtxVNYFoSmayHZGq1PmmtTimZ8m+qldsoTTPojqywf2SBPX1LjERTdIfy+B2bj8VlXWFyuY0jsShHY+1MJ0O4vUVGOpcZ6VqiK5ziyT/ex3sv9CMrFp/5528wvP/CEZas7uTZ5WGeXhqlbGl4lSpfHDjIgfACEoJ+h06v04bWbFXm61/t4ftf7qZatAGqY1eBe39lkZF77HqfS3PiswEKAUdf6uLFr+/Y0kjCsiRmky1MLHRwfK6LuVS44bMULEaiy+zqm2e8a5E2f77hkwqmxv+Yu5XZchCXrPOL3W8x5ElvvWQWzL3n5/iTEaZebsGs2juJrFoM3ZVi14cT9B3I4FBNWrQCLVoe97oUvbKpktR9rOjeejTdqMp2iuCSh2pOJtKeYmhsAX9wrRZvrhricKGHE+VOygkn+nsuqu+6kGMywfZig+HFqgGGJ1itH3OrVYVM0sPksW4OvjVSb5oL0B5O0+JMk8j5WKQF3V2L8giBI23gXqqg5Q1aOwpE+9M2OA1k8PcVKHi0epQpbngpbQFNLUqJiFogohSJqAVaFDsS45MtMqZCXNdq56nm24NTMTEFFA1nzcX1Us5n66JN615u1zZJ9Xq9VQtyQ0ibIk1bQZO7Bk3r0/OclwNNG7U6ubIKUauLUItIvTa9i9/5YQMpWZZZXFykvb0dWd76bCRJEqZ549WeXDcgZc6Tm/8QDlWnbMkXBiKr8X57zV/8DinLAlmybjiIOvotH9/+P9oRlsSuj+V4+N+t8LbZxYplH1SH1RV2O+I/NClg29W0HuJI1S6iHlRT3ORYbjroX3+XELA0UYOqZ0Ok5zZA1QeyjD2UZuTeLE7vlYOqYsnBy2+O8/LB8frALBpJ8/A9h9m7s7nxwiqIrUa37IjYVrfXYG31NduNJlxIq5YfzQDkxvBA/Ac1U8lQKZgOLElGCAlVh7C8BklBtYxfqdSbiF4JpZJeJo52M3m0m7PTESxrbRv1BUqM7V5gfM8cgzuWsWR4eXqIp8/tZEn1Qq1vnGRZDM8vMfbOOSpJhUJKpbiiUclvnXIvVBnT68DyOjA9tWuvA+HTMN2OCxYx+r1FWsN5WsI5WsN5WkO5+v9+bxlJgoquMrMYYWohyqmFKIW8h7Fokj2dy7XLEgHX5jRVXWDXWpkyLz09yHcf20M25+TH/8lBxu+INVmaNc2X/Dy1NMpryf76AH+HL86Xht6g1VHCKVmMuSsEa+mAh94O8h9+fZxCyh44R8eK3PulGDs+uApQXIIT35ohz5mjLTz3J2MsNTGSyJZdTMY6mVjo4GQsSmljk9+SoMOZ5f47jnPTyNyWKYxZw8lXZm9lserHq1T5lZ5D9LiyTZ+bW3Zw/Kk2TjwdIbu49nmtg0V2fzjO2ENJ3EGdgFqmVcsTVNdqmCwhkdI9JHUvhSa25bYRRBmPWsCpVBpel694mY9FOJHqYFH1kgupiHUF1lZGpvqei+q7bowpu+GspclYDhlcIHvBUBR0qxFwFEzUrI5UMKmENUpRB6JWxCeZgnA1x3jLAoODcaIDGQJ9BdKKqwZMdqSpmVGChLChSSnY4KQWaVHW2h6sSkbgVSwyhkLiPBAlSxaabFK1VAqGs75tbk9NwEmsTtbJ9QkzLDCt1UiTpw5NuS2gybUBmkJXGpo2qmYqgVgHUetW5w8tSP2w63oBKbgGZhO1+im4sfpGvfOXfp741xEQEvt+Msstv1Xgbb2TKioqJgeci3Sp+Qu/0Q+pzuhB3q1GAYk+NcPNjsVtW50LAUsn3Uw+Y0NVanbtRKs4LIY+YKf/jdybwem7tK2mWHLwgzd28sqhsTpAdURSPHzvEfaMNweoK6VGEFufdrhaB7a+Jqzx9hWzrl9bmgbb3tWvvf7/iqlSstR6OpFTMfArVRTJ2vx8ad3/QpBLu0kv+2yjAqAlkifUVqin1qy9vvln25Gizbn2Wz2/Yqgky16SZS+JkpdkyZ6pXk2DsoSdCx9yFmlzFXCbBkZWI73sJ5X2QS39RAgJSVi4rRJSvIIxV0XOVO2Bg1l7j64K0bEiHeMlOsaKeIL2yd+wZM5lgzzz+m6yqhOrzUSErXqrgPqAA3DKBh1aDtOSOF1sQQD72xfwaVVMS6LdKnJ3YPaKQtOFVCpqnDrRxcSRbqZOdFKp2INGwwmlPij2SOiyPQBzKjo7O2PMWz4Wy/a5q8Od5XMD77CvJYYlYCXhJTYXZGkxQDzhZyXjJ1vykq+60Tl/VAnTQi5WUQp67bqKXLsoxSqSKVA0a80qPqzjbBWUWnxkPEHihEhUQ5v2mYCnyEjXEju6lhjpWmSgJd3QONgnN0+9zRQ1qppVN7PIm2sOpkLA8Vw7Ty2OciS7ZrAx5E3yaPQkt4bnkCVoUQxG3RU0CcoVmd//VyO88C3b6KF9tMi9v7LI6P0ZG6DgEpz4VgFKEJ/z8fyfjjG9zkji5h+fJXhnial4lMmFTmLpUMOrZVOgZQVa1qI3kOLDH3+XnsGVJp+zphXdzZdnbyWpewmoZb7Uc5AOZ2Mqu1GVOP1amONPRDj3dqCe+urwGow9mGTXownaRws4ZYNWR54WrYBjXQ1TwXSQrHpJ6d6mx0BF0vGoRTxa0a5zraliOijqXkrm5ibPhpCYr/qZLrUQEz7MdRP1ZkmmNOWneMpH+ZwHNpg+SKaFXLbQ8jrCsihHnZTbtLoRiUcrc/voNHd94ARlp8pyLcqUMD3krc01PxKCkFIiohRpV21wam0CTZu+NwKvbJGuRaKaT0gLNNlEkqBkahQN5wW2qebQBPYxdDVNT2DXnWdXoclYhSZX0/d3SjrhdVGmkFzCJb2P2Trr66FWte62aUmUS07i2Rb+4499/f1bri30DyB1EfpRBilZEcjcWNGoN/8syDO/a9cCHfi5DH3/Ak4aLYBEUC5zu3MBr3z99DPbcBx83zRr+Hm70olAolvJcoszhixd5JyqgOVTLiZr6X8r59acnBTNYvDOnJ3+98EMrm1AVaHo4Adv7uSVg2NUqvYgrrM9xcP3Hmb32OwNET0UArKGg9eT/UzlWpnJtVI2tfoAXSDhlAwGfUlGAkl2+OP0e9OocmNS4sXUrKR1F4/P7+aVWv8ph2Tw4Y6TfKRjsqFHy6qW5wN8589uYX7GNlfo2xHn4//LW7RGr9zkgmFJzOXD9bqm6Uwb8ZJ/0/O8ql3bNFyzIB8KJuq1TWCvz8yCg8k3Wjh2tJu5lQhFbxDL0zjrLJsGbdoKOwYWueUDZ+nuz1AWKgsVP/OVAAvVAHOVIHHd23QQ4ZWrdDuz9sWRoduZJV7x8D+X9hKrBIi4c+xpi6HKgoqh8NZyLwXdSYtW5KHWae4OnWsYWL4fMgyZV46M8NzZMebkQH2jUUoC35zJuCPO2NgCkd4071a6eCk/QJlaI9Gcgeukipw7/3nE6ynTGsrREs7TEswTcBVwSSVcZhkKJqV0La1wRa1FuVQKKxrFlEq1oGA5ZKpRL5VOL9UOL3qre7OrXr6KY7GAI1YgUMgS1Ar4WvS1dMJWvZZquJpeWCXaXiVzOoycczA6mqSvd3N0RQjIWzJThQDPxAd4PtnPVCGIQOLm0Dwfjp5kxJes1xwOOKv01FILTx3z8u9+YyeLcy4iIyXu/ZUYYw9kkGVRqyO5WCMJG6BkWZBLO/nBYzs4/FQ3lilj+CTC95XR+1Rmkm0NNWASgnZvDnNJxVhwoBYEoZYC93/sKOP75i94nFiuevny7K1kDDctWpFf7TnY0OQ7Pu3m+JMRJp9to7xuW+jZn2HXhxOM3LOC5rQIqUVaHXn86pr7p2HJrOhekrqXchPbchC4Fdu23LnOrc+0ZIqGh6LhxawZMZiGxMqKj2QiQCLuJxEPkIgHSCb8dk8nWeDqK+AZzeMeyaO41+1rOjgSMp64hWvRRGQlikknBdVJ0htguWJH+mSHSe/IEiM7F9BCFeKWtyk0gSAkl+tRpohSoE0tXrRRgoLAI1ukDJWkoTbdXiQsHIppp7AbTiqWSnP7h+bRplULckusQVPGcpM2bdvxrLUFNKFvSs9zX8sSh40QVa/fgqVMiIlYNycXuyjpTg70nuGxL/y/12xRV3VFQer3f//3t/3Bv/Ebv7Ht514v+pEFqRswGvXqV0K88P/Yg8Pb/1Ea1y96SFi289igmmKPI/6+zB7bc2NrFSF2XQewWuNRm/tePYFbQqrlQr+/mjd8HKp0IZDoUHLc7oxd8voRAuJTLiZq7n/JM41QNXCHHanacV8Wl79xwFkoOnmpFoGqVu310Nm+wsP3HrlhAArsRrhPLYzx3OIOyuba7+lWqowG4owHlxkLxOn3pa7KdnimEOKbc2v9p8JakU93H+GOFnsdGrrMy0+M88oT41imjNOl89BPHubAvTMXXSO0UZmKqw5MU+kIZ7Itm1ymJATdvoxtP16Dpw5PtuH3FQJSs46aMYRtEJFd2jBIUwQteywc4y6KvgCLuVbKqNBiQNi+yG06lneLdZyXcKbhlsGz7GhJ0O3MElTK9UHpiu7m8aVdvJ3tRpEsdrfEiPpsyAzLJfZpi7yZ7uO55DA50x6I+ZQK97fMcH/LDB7l6k7UGJbMoYU+npkZZybdVr+/XckTTOpU5tyUKk4sGdZb5VmKoNhvUeyx68UQ4FmA7lSJaCBHSyhPa3j9dQGX8+K+S77kZHqx3U7Vm48SWwlvGsh5rBLBUgbvSg51oYARsyil1HrT4u1IBH3Qbte6BuQl+vpijO7JMzyep7e/TGdHBZ97M9iWa/brFaj3uJKAUUeFoMM+0/3tV7v46v89QKi3wr2/ssj4Q2lkeS0CdUkAJQmqFZU3vj3Aa387RNbrphx1YPQplLTGwbzfVWKsa5FOd4a5g+3MTdr7s9Nd5e5HJjhw92nULezb12uh7Ocrc7eSN51EHXm+1HOQoFahnFM4+Xwrx56MEN9gHLHrQwl2Ppog2FnBLVdpdeQJa0XUGkQIATnTRbLqJWN4mg7SVUnHoxXwqMWGprkV00m25Gc2FiVeByUbnFIrvoaU1fWSFYuWlhxtkRxtkSytkSxKtErGqzJnBRprlSwQSY306SD5tAdnaxl3Wwl/NA/u5seDoFyqA1NEtaHJcbHuchvXAQK3LFgxFJKG2nQ9KZKFKptUTI2C4ag13z1ftKm2NVlgCpms5bQjTaYdabKhafM6dGCsg6ZiPdJ0PTRKpzYu2ghR2aKbiVgPJ2LdpItr5kI+Z4kdkWW++Qv/5VosbYOuKEgNDg42/B+PxykWi4RCIQDS6TQej4f29nZOnz59eUt+DfSjClI3UjRKCHjp98O88t/tE+ud/yZH5SN+KqgoWNzsXKRHzV3y+zeCEXUIYh0M1RM8GmDpPMtcSyOSEZhIlMwLpNFcJS0aXt6sdGEh064UuMM5f8F0hQtJCEhMu+o1VcmZNaiSVYvBO3KMPZSh+/YSbx4fawCorugKD997mF2jczcMQCUrHp6YH+fFpaG6DXevJ8U90RnGA8v0ejP1AcXVlhBwKN3NX83dRLJqD5KGvEkelM7w3jd2kIjZx7DRfQt85GfeJhDeXmPe9dputMmjVhgOJhkJxhkOJRgKJPFojQNzIWDlrLMOTefe9pKPN+4LsiLo2FWkr2ZFHtijE1d9zFeCzFcCzFcCpE03TZWXIaXiKZno5xww56DDneHnf+1FAqFSw1N1S+aZ5DBPJnagC5Wgo8ht7bNICoBgVFthn2sR01IQSFQtmdfTfXw/OUxSt9e1Uza4J3SGh1pPE9Iuft02k27IpNI+ZhNhXo8NcjwfrUeWsATOtIQrAepWH2cJJNNOC5MsUPxVSvsNEn57v/SqFX6s9ygPdEzVJ8+2q2zRxdRClKlYlOlYO7GV8KbntAczjHQvMdK5xEjXEmFfcdNzhAWlzJppRiGpUkhptQjXasTL/j9bDmG21FzWkhmklUz9fartGqkHg2Q/4CcaKHOTP8F+5zIHWGR3Twp3E2McIeyJrlxa5ff+zx1MzXi455cX2flIGkUWtaL8i3XiW0vhMw2JF58d5aVXxkj7vJRbtQbAlSWLwUiCsa4Y412L+OQyrzy1iyMH+xFCQlYsbrl7mrsemcC9zRYEZ0oh/mjuFkqWRrczwy93HSJ91M2xJyNMvxzG1GvGEZrF8F0pdj2aoPdABk2xCGsFWh0FPOuiSFVLIal7Wan6mvZAkrBwqyU8agHHuomEYtnJ5FQfb749zsyZTrIZz6bXrsrh0GmL5GiNZGlry9bBKRQuoCgCw5BJpP0sJYP1y3IyQMkp4+vP4+/PofnOv34CcrkRmpRi06j95UiTBC5JkDQUVppClEBT7AyEoqFRqk3GbBVtMizIrZpArIs0NUuh1DAIKWvOeSGphFvavtvh1VdtzCStjp2sujNiseJgMtbN8YVeYum1JsiqbDDcvsRoR4w7+09ycGoX/+En/vQaLf+arlpq3ze+8Q3+23/7b/zxH/8xY2N2P4bJyUl++Zd/mS996Uv87M/+7OUt+TXQjyJISZKo29Je79EoIeDZ/9DKm18LgQS3/XGZwj4vIBGQKtzmWsAvNxYrb6w7WYMg6k5pq95idaew+n1bLEftHS1gvbXy2ic2lyxZCLhmIAUQNz28Xu7GRKZNLnKnaw7tCg78E6eddfe/xGk3lkOhPNJGeagF1JqFcGSFD91nA9T1c9A/v5ZKPr47t5NX4gOYtcLgIV+CT/YeZ1944Zp+D92SeXppB99Z3FlLFwHvKeg5WuYTP/YOO2+5cFrQqrJV51rfpnQbM9nWLaNNQzX78ZFggg5vdhMMCwsSp121Hk5eZt/2UVjZUByuWXTuLtJ7IE/4Vh1rRGVJ+Jmv2tCUM5s3A23TCnQ7snSoOaS0QuZsgDPTHU37Vw30xOuNgbuiKxwrtvPXi3tI6F4kBLe0zRH2FgAJt6RzizNGu1LEoRhUzcbBkSkk3s528XRihPlaGpGCxR2hWR5pnSLqPH9rBbsJrdN2vFttPruuEe2K7qHUJlEJsTqrg6SDK2lfFMsiFCjWo0mNkaU8MoJTJzqZPNrNqeOdlMv2sabUDun9gmrQ/i5RZ46fHX6bm8JbmzWk826mYtE6PC2ng5ue0xFO16FpuHOZkLeEJAuuRKHA8de6+Ps/uBUhJPZ9cIZ990xRTKmcyrdx0NnP2UBrPcXRs1Si7cUVnC8VkQwJWRZ0D5YYuynH2L4co3tzDI4VUTXB8bf9fOX/HmDnj6XY+UgKpW7mdrFOfDZAlaoaxxe6eOPoEBOxTnRH4/4S9hbq1uQ7oku4HAbVisIbL4zy5gs70Kv288f3zXHfR48Rbtt+e45ThRb+ZP4AVaHSq6S55c05pp9obTCOaBsqsmvVOCKg41MqtGp5QlqpPuljCcgYbpJVX22fa1wHwhJUigpupURbKIWm2kBimjKHjw3xyut7OHGyD7Gh6bLXW7ZhqQZKq9DkD9imFaYlsZL2sbSyCktBlpIBkmk/lmgetfK6y0Rb07T2ZNA6y5R99gRMRF0zgmhTCriucvqtJgmcNYhKNYGo1d5QOjJFw2EfR4VUN4WwLMiablK1xrZp074+PzSV6vBUh6aLiO5eOa2DJGpjJknAuppbYT+tPjlRrqpML3cwudDNuWSk/vtKCLrDSYbbFxloS6Ap9u82EI7z5snd/KdP/8k1+H6NumogNTw8zF//9V9z8803N9z/1ltv8elPf5qZmZlLW+JrqB9FkJIVCxlx3UejhAVP/U4bbz8WRAnBvr8wKHfYg6x+Nc0B5yKqZDVGjaQ1cDo/GFF/hlg3E3mlXdeuB5CSgITp5rVyNwYKYbnEXa65y05v2Kh8wcmTT+3lrYmRem68ki7hnljGGc8ycJud/jd6fwZ36Pp1+JwrBPnO3C7eSPTWUyl2Bpf4RM9xdgaXrhsQnDrSwd//zQHO7vCQHwMk0CSDj3ZM8uGOk01nYk1LYjYfYioTYboWcbrUaBPY++jyKTfn3rahafYdH6VM47FLcVh07S3QereOuk+m3OEgZtrQVGxSeyEhaNfy62qasnQ5s00HSYcP9fP4Y3egqwq+SAnLITX0r7J8Jvr+InrE3rPbtDx3dJyjWjNs6FGy7HMu4ZBsO4pmIFX/rgKO59t5KjnCVLGtvqz7/TEebpnCXzHqNuHrgWkl7avXBNbfC9ADUGoDY13bLL9VYdSZ4Ka2eSJhu3YpHCxcsOHsqgxD5ux0hMmj3Uwc7Sad8pIfgvQeWC0X6TGz/PTgO+zpjbGS89ahaWqhnUS28RwoIehsTdWtyIc7l/C7K5s+1x5QcVnFoKfejvI3v3c7limz/6EzPPLFw7yV6uGppVHOFNdmsG8Kxng0OslOv93ewTKxa7nW1XCtRr4qGQW3w6JlV5Fdj6bXAdTFOfFZlsRcMsyJWCdH57qZiUcathHJFHRoaW656Qy7e2NEAmu9uywLjrw5wEtP7qKQs89f3f1JHvjEkQsaSWzUsXyEP1vYjyEUQvMl/L9XRK40Gkfs/kicyEgRTTZp1WzjCNc62/KSqZHUbeMIQyi1+iV/vXYpl3HRHV3mpl3TdHeu9aBaiod49Y09vH5wJ7mCh1CoQFvbWjpeWyRHW1u2HlWzBKSz3jVYWrGBKb4S2NRkeVUuZ5Voa4b2lgzR1tqlJYvX07jNNWvIe7XlkCwcEiRqELXqxrM6KavIdmuMkqlRMJzopkLWdJKyPPUUvazVvA+diklIKa6l6CklPFK1+bnmqkGU3ZN0fRuK9Y22Vnfvel8qJExLqhtgWMJOizUFLCTbOBXr5Ew8im6unQ/afFlG2hcZal/C49js1nkjgtRFj9RjsRiGsblgzTRNlpaWLvbt/kHXQJK0OjS8tqPB9aDTGDWyYUiY8K1/FeWdx4N49sHIf4Wy24WCxe2ueYYdqU3vuebKRROUuk5Gv++zVr91m1LiHtccr5R7SFluXi73crdr7opYneYLTl54fTevvTVqFw4D3R1J7hw7gTFZYnI+xPKim5nXA8y8HuDJfy/ov7UGVQ9k8FwnUHU618K353bxzkpP/b594Xk+0XOckcD2mn++HyrkHDz9V/s4+kY/ADsqBQ7sm+QlrY9T+Tb+PrablxKDfKbnCDu9y5zOtDGVsSNOM5nm0aYub6ZmCLF1tAnsQevySTfnajVOc+96KWc3gJPLou3+Ku47wBpWyQQ8TOqRtTrBdZ4XMhYdjnwdmLqdWToduW0ZO7z+4g6e+NtbALh5/ww//jNvIMuCxIqf4zPdvFTsI9bisqM8lqCnUGTHaIyqrCAMaE9VGY+sbHtCoVzRCOYNHi7N0Zsrc0SOkPA6eSfXxTu5LpRlBe2kEyWuIDU53gT9BQKhAqWwzLzsrxfCy5LFgY5zPDI0wXA4cVmgrqoWw2NLDI8t8ZGfeJulhRATR7o5+l4Pk8EwuR0wpwT4z2fvw/kWOOIqkrkOCCSL7tYUI112qt5w5zLeJvbkmyQkJElcMkedOdrG4//lNixTZvSD80gfK/F/HP0oK1U7VUyVTO5uPcuHoifpcjemccsKeFtts4qttL5edXUQeCFlSi4mFjo5Pt/FiYVOCpXGSKmWNXAvV9jZE+PRHz9KsHUzYJ6eiPL8t/cQX7Qje6HWPPd/7ChjN118RPvFk/182xxHyBLu96oEvlpCMiR6b7aNI4bvXkF1WgTUEm1agcA623JTSCTKPqYWo0zNdtTNHhLxAKmUF2FJjAzNc/cdR7n5Q6dwaPb+p+sKx0/2M322h7LhpC2S46c+/wqtrXk0h/0cISBbcLOcDPLWxBBLKwGWkkHiKwGqevPaYIemE2nJ1kApQ7Q1S3trhoC3dN1MVK2XQ7LQJIgbChlTsSEDweoZVsUiVfUwWwmzbPhJmx4ylqtWF9UoFdN2zVtN0VNKeLeCpvUS0mVMVGyMJgm7915NGyHJAixTtqNoNUASQsKqQdzGyKEQsJL3MbXUyfRiB8Xq2r7ic5YYaV9kOLpI2LM57fdG10VHpD7xiU8wPz/PH/3RH3HgwAHAjkb9yq/8Ct3d3Rds2Hs96kctIqUodhzqaqT0XawJw1ZRI1OHv/oX3Rz5bpDWz0tEf0MGWcIvVbjbfY6QUuFGAaNrHZHauJYyppOXyz1UUfFLFe5xzV5yOkQu7+LF13fZAGXUaoc6Ezx87xHGRxpTy1bOOpl4LsjEMyGWT67l0UuKoO9AnvGH7UiVt+X9dxaazET49twujqZt22QJwa2ts3y85zj9vvT7vjxbSQg4+mYvT//lfop5J5IkuOPhU9z3yWM4nCaGKfH04ihPLI9RqEV6hCEhCmqDfbBbrTIctF30RkLxLaNNAKYBSxOeWo2Tl7l3fVQKa4MDoYA8IuG7W6DskSl1OEmoXvQmdRaqZNLpyNWBqduZpcORu+iaPSHg+Sf28OLTewC4496TfPjH37YNAwQczHbzt0u7yBh2XdUOLcGAJwUh+6iXnfcx9dQQlawNMl3RFUYGFxkdWKAzkmJ5JUQi5a81n11rRlsqb3YAM/0m+mgVo0evp+V5iiajpTTjrgSRkN1XSdckXprdwcvnhqnUjEo8WoX7+k/x4MBJWtxXfoAhBCxnAnbEqWYOkTLdVDpNjEDtOG2Aa04itGAy3B7n1r3T7No9j8N5cceE1UmwS4lKzZ0M89jv3kXRqSJ9pEysz12Hbr9a5sH2aR6MTBPQNoPKdiRL23PiM0yZmXgbx+e7OL7QxdxKS8PjGgaORR3ngo57qcrI7mXu/vw0rb2bf7ulhSDPf3sPZ07aPf1c7ip3f+gEN981sy0jiVWVcwqTz7by4twAZx8KgyzhfbNC/1Mr7H4kwc4PxQl2VnHKOq21prnaukbQc/Ewr7w3xnOv7yGR2Jym6fMVufPW49xz51HaI+n6/fmSm2zJj1BVpHX1XoWi065fqsHSaqRpqwbNimyuAVNrhvba7VCgcFk1su9XREoCnJKJKkHc0MiYCpZlN7dN6l6SppcVw0vc8GE0gSYFc11qXomgUsInVS4eFs8bhbqYlDu7LstcjSDV6rREDZiEwN5HtlkvmC87mV7qZGqxg1RhLbPBqeoMRpYYaV8kGshs+/veiBGpiwapeDzOz//8z/Pkk0+iabX+FobBo48+yte+9jXa29svb8mvgX6UQMqujbLqkZsL6WqaMIh1eenr0+mMqsRf/ZNOTr7hp/v/kvHfZy9Fn5rhNtfCRVuUXmtdS5Da6nfIWg5eKfdSFipeqco9rlk8F2GNmsu7eOG13bz+9o41gOpK8Mi9hxkbvvBMa2rWUTeqWJpYB1WyDVVjD6UZeyBz3hnmy5UQcCTdwXfmdnMyaxe2y1h8oP0sH+s+Tpfn0s1LroYySTff+4sDTB21Ya+9O80DP3uEQkBtEm0S4DKR3Gb9t4jIBe5rnWFfywKdW0SbAExdInbcU0/Vm3vPi16yBwhCA7NXRRpXcByQMAY0sj43ZhNLQIdk0OXINViOtzsKl+1maFkS3/3rAxx6dQcAD3zkCPd96BiSBLPlAH8V28t0yXb2jGgFPtoxwYripCw0JASj8grygsbUTCenZjob6qtU1cCy5C3dxQB83hKt62qUWsL2bcln8Ea5m1fTfXWIbHfk2eNYZjbWxrHl7vqRscuX5uGhCe7snsGpXrlorCVgMRViaqGd6VqdU67UaNKhyCb97Uk8kQLHRBsZyZ451rIQfhfcS6BqBkOjS4ztmWds9wL+wPZMNSS46FqpxZkg/+MP72V5j4P8qFyvf+pyZflQ9CR3tZ5tAIOL1Wo/qK1+02Tea0ec5juZXOygrDcep3tbkrQZOdIvuTFnJCQBkcEc93xhit696U3vl8u4eOmJXRw51A+rRhL3THP3wxO4tmkkISyYfTfA8SciTL8SJnWPm9RP2umq3dNpfqL9OL37s+RzbtymTk9whe7WtWXJ5Ny8cHA3z76xh/ml1ob39vlKtEay7Ns7zU07T9MRSdSPBZaQKBluioaXXMmzoYbJvhRKzesXZcmiNZSzYal1DZxagvl6PfaV1NUCqdXxDdgbjgOLtOVmohTiXDVAwrDBSW8yPlOwapGmYh2eLgmaNsriiqTcrfZEE9uEpK1U0VVm4lGmFjtYXGcaocgmvS0JRtoX6W1JXtLv/iMBUqs6efIkExMTAIyPjzM6OnppS3od6EcJpFTFrgNYDUhfSxOGZqqWJL75j7qZi3vp+Y8Kjm4JuebKN6KlrsuQ/4V0rUDqQqsqb2m8XO6lJDQ8UpV7XHMX7L+Vzbl54fVdvP72DowaQPV1xXnkg4cZHYpd0u+TmnMw+ZxtVLF4ohGqem/O19P/fG1XBqosAW+v9PCd2V2cKdgnAVUyuTd6mo92TxBxbb/o+/2QsODQC8M8+3d7yLscVCPg35sj53Ow3KS2aTXaNFxLzztcjPJGqg8Ah2zw0egkj66rnzIqEgvHPHU78vnDXoyKjHBKGP0q5qCGGFWQxhVKLU5EEwJzyXpDlKnbkaVNu7wZ52YyDJnH//xOjr3bhyQJPvqTb3H7PVMUTI1vLY/zcmqtz9ajbafoCmQ4bdig5JOq3OpcIKw0RjVyeRdTZzuYmumgb3iOUDjH88/egiYLWsM1UFrtsxTK43ScfzvMGQ6eTQzz/MoQem2GWhgSZtrBTmecDw1NsKtt8YocyywBC8lwg6teodw40FUVk4H2uJ2q17XMQHu8nrZlCokXF4d4/Nxe8ob9On/CwH9IRavNI0iSoLsvydieecb3zhOJZrdc9ouJSlkCXpge4W8m9lLsWDvX7fIv8WjHSfYEFi97+6mntVlrtVBVQ+HUUjsn5rs4Pt/FUrYxSuN3ldjZFWO8K4Y3Xeatb/SzNGWPC7wtZe762dOM37e0qZ1AtaLwxvOjvPlio5HE/R87Sqh1e9HG7JKD409FOPF0G7klJwLIfNRF5qP2cXEonaXjnIFPqXLL2Ax37Z/E667Wv+O7JwZ49o29vHV8EJ+/bBs9rDN8aI+maPFl8KhF1HVZCPmym9OxLt6dGmYu3spyMkgm39x9T0IQDubrkaXVS1sod1GRtsvVlQKpNXCyJ2kypouY7iem+1nWfSzoPspic3qigkmrWiAgl/BLVUJyEb98qdBUG3utwtIqJIlmkGQv53ZT7q6UTEtiNtnG1GIns8m2hhq3ztAKI9EYA21xnIrBJWcLCRho+RECqR8m3dggJVbrHc+bSidjD0xVyVyX1bvlO/J+mDBsVCUv8Re/1kOmz0v0N2Vkh4RXqnK3e5YW5crYDF8LXQuQ2u6vVLRUXi73UhAOXJLOPa5Z/E1gKpNz88Jru3njnZE6QPV3x3n43ksHqGZKzzuYrKX/xY6vGQYgCXr3Fxh/OM3Yg+lLgipTSLwR7+M7c7tYKNmDJ4ds8EDHFB/umiDsvL62sVzVydszvTzz5i7ispdKi4RQN6/oLm96XZpegk5vZtMAdKYQ5rHZfUwVbIOEgChx88xZlGfKxI560BUFc1DDGLTByRpWMTrUTY1VoXlj2xb16tc1VMoq3/yTezh9sgNFMfmJn3udXftneTnVz7fjOynU9q9bAvN8KHKSk1YLWcuGg0E1zR7H8nlTCA3JoqoatWCegiwufoC2UvLw/JlRXjy7g4LhQAlUUUOVejWyR65yX60XlV/dRt3RBpmWxHwiXHfVm461U6o2phtqqsFgNF6vcepvT6BdYIBbMDS+NbubZ2KjmEJGxmJcT+J9T2F5pjG9raUtV4eq3oEEitK4TlcHg1uNLMqmwsuJQZ5cGCVp2vu4ZAnuCJ/jI92T9HkyF7lWtlDtvCgsiYVMkONzdrreqcUoxrpBoG1NHmd39wK7u+fpbEmTnPPx0p/t4PSbdqRacxnc+hPn2P+JWTRn47q0TInDB/v5wXojiYEkD37yMN39m+t4N8qoSpx+JczhJ6OcO9WC5XJguTWEX6HwgERh3P68thMWH/JN8fAdxxjojtdfn0j5eXe6nzOJNlz+Km2RHC2tOTRtdTkFLqWMWyniUtd6qZWrGocmRvn+wZs5t9w8kyjoK9K+DpbaW+zUvFUQv5a6FJBaH20SAjKGk5juZ1H3s6D7WdwCmmQsWpQirWqeiJqnQ8vgQadoOtEveJyo1aRLq/XpovEELdaBEraDpO3ud3kpd1dCq81ypxY7mVmOUlnXSDrszTPSscBQdAm/Vq4t1yUsm6j/AWCgJcHBU3v4jz/5x5e9/JerKwpSv/mbv8nv/M7v4PV6+c3f/M3zPvf3fu/3Ln5pr7GuL5D6VX7mwAssll2IWvM2eXXnl+yeROtT7Oyo0fr4z1pa3SowWbVH1ixPLy9qdDVUysp8/R/1ID7hJfhhe0alW81yh2v+ijvLvd+6nkEKoGQpvFLuJSecODG42z1LsGYnn8muAtQODNM+YfT3LPPIvYfZMXhlZtW3Uiam1Zv/LhxthKqe/QXGH0wz9mAGf/v5o2i6JfPK8iDfnd9JvGzbo7mVKg93nuJDXZP4tYsf0F5pmZbEXCFUd9GbSkeaR5uUKsOhRB2choIJvFvUNq2qWpSZP+zl7Nte3sr0cPL2LmiTURULR1nHYRmItuaDgYBSbjCB2NjY9v1SIe/gL/7wPubPteJw6Pz0L74MvTp/tbiH2XIIgC5nls90HEFxmByrRrCQcWBwwLlIp3r+KKOFoKzqIIFTgGpo2zIjAHuwMZ1q45mZcd6K9dVnhNs8OR4amOTOnhmOFKN8PznCctXe/jTJ4O7wOR5qmabVUdryvU1T4lyi1YamhSjTixEqG1LPnJrOYMdy3VWvL5LctsPfRi2W/HxzZj/vproBu//UR9omiSxWOHW0m9Mno5jm2rbi8VbYsWuB8T3zDI8v4nQaW0alUlUXzyyP8EJ8mGLtWCiXBJ0zJX79Ey/RFb6yqbSyJDi1GOU7797ERKyr4bGwt8CurgV2dc8z3hnD69QxhUQ27ebVbw5y9OluLFNGki32PBLjjp+awRPa3B/t9ESU57+zh8R6I4mPH2Vsb/P0ZiGgkHeSiAeYOd7G6cMREgk/hsOBWGefLiRB8bYK+o4qNwfm+aRykrsG1pr0mpZEvOgni4uC5WT9EX/VWjybdxJyZxmMxvC51yaJJs5189K7ezk0uQO9NjC2rcVrsLSulsl9kc2a309tB6RWwWm1yfCC7quDU0z3UWriGKpgEdXydGk5vFIJf80MQpaEbYAjCUqGg4LhRCCtm8AW9d5JDRJrVuCWsFNMTVZ7SNXS76iZOwCSJXOZ2c+XrXTBw9RiJ1NLneTLa6nBHkeZ4Y5FRjpitPjy9lZncmkQtR491q20gXCcg1N7+I8/8UMGUg888AB/+7d/SygU4oEHHtj6zSSJ55577tKW+BrqegKp//Tk5/jxnW+xoqtYqyBVe2z9D7V6krdhXloH9VtszLLdeV2c7znXSIUVhT////Xh+pIb54CEJAT7XEuMackbMpVvo95vkLqUVVYRCq+Ue8hYLjRM9pnLvPXaKG+uA6iBXhugRgauLkA1U2ZRY/K5EJPPhJg/4m14rGdfrabqwQyB6NqJv2IqvLA0zJPz46Rqzl9+tcyj3ZM82DGFR712g4Rc1cl0pq3et+l0trVuQLBeWtai3Spw775T7O1aaBpt2qhKXmbuPbu+afpkkJgeQO/XMAY1O9oUaT7wCCplep3phvS8S4maXGmlUx6+/t/vI7EcxOOt8KlfepXXHV28mekFwC1X+Xj7JLeHZnm32sFyLcoRVfIccCxe0EhFIKgoBpYskAUEBOjmhUHKsGQOLfTxzMw4M+m2+v1jrYs8MjTBvuh8Q5NmS8B7uU6eSuzgXA3+ZCxuC87zSOsUXa4cuilzbrm1nqo3sxihajRuF25HlaHOZbuPU+cSPZGVK16DcjQd5bGZm5kv2svZ5c7wM4PvsMOdYHqyg4kj3Zw83kWpuBYNUxSzXlc1vneeYKiEEHCuGOSppVHeWOnDrEGmM2cSeEPQn8jy8//qZXyhSzOR2EqnlyN85919nFiwAUqWLMY6F9nVtcDO7hgdwTRKbdBrColS2cHb3+nl4N8MUC3aQDNwa2JrI4n5mpHEqZqRhKfC3Y9McOCu0yiqwLIgnfaSjAfqluKJ2u3KFqYMAF5PmbaODJVbStzSf5aPRCbodK5ZXBZNjWTVR0r3oAtlg7V4gETKR29kmXv2Hmf34Ln667IFNy8f2c2bJ8ZAli9oLX4jaCNIrQK8EJCznMSq/gZoatZmQcYiohbo1PJ0qDk6tBz9jhxIsFTVKAmlBkkWTsXAsCRKppPKqvtoPZok1yNGpiXVokhgsRpV2topUtgLwqoJ4LWCqGLFwenlDqYWO0nk1hOPT5YAAQAASURBVMbBmmIwEFlipGORzvCKbegDSBY2RDWxct9SDbgh1Qcr69dK/w8rSP2w63oCqf/n6c/yybF3SVS1WgPQKzBilewTCRKXXWR4pZWLK3zzq4N4f8GB7JJwGjr3BmZpU7aepb3R9H6C1OX8ulUh81Khj5zkxKjInPi7UfIxP4O9SzzywcMM918f/ZOyNaiaeDbI/GFfw2PdewsMPJJjaX8bL+ZGyOl2qk3YUeQj3RPcF53Gqby/aSmmJTFfCDKVjtThaam4+TjjUqqEylUqp1y4EhbhSpmPfvpddt82e971Xs4pnHvHy6kTYaaTYZKaF2NAwxjSEOHm0NSmFohoBeJlL9PZVgxTQZNMu/9UdBLHZRT3X0nFFwP82ZfvJ5v24G8pMvz5aV6q9FOxVCQEd4XO8cn2E+Rw8E4lShUVGYu9jjiDanpb26sum+iKCQLchopLMbfsIwWQqzh54ewOnj8zSqZSs+aWTe7snuHhwQl6g+nzfp4QMFlo46nkDiYLkfr9vrxJ9bQXK92YqudxVmwb8i67AW53Sxr5KhTvb5RdPzVcq5+yl2lfeJ6fHniXTk8O05SYnWlj4mg3k0e7WUmsRVAFAu/+LNlxQUxb20dH3AnUZzSMN9yEWot8/l//gEDrlUupnV6K8N33GgHqzpFpHt17lDZ/gdVmuqsAVTUUJl7u5JU/HyIXt2fez2ckkU27+cGTuzhyqK9mJGGy85Y5ekcSZLPeOjStJP0YxhaREiGQywZKpUpra46hvXFGb1km0p6l1ZejKiR2epfrEyaGkFgqBjm+0M3EfGfdAGK9tXhXa5IP7j/CXXuO4/fY69MSMLvczvxKBEM4iLTmrltr8UuRS9FxyVVShptYdTU1z4amgrXZXVPGok0t0qHlbHDSckS1Aqq0mrMj8EoWVSTiukrJUhBIKFioikVJ18jqbqqmisU6OKpFmtYqyrcvG6IEkiVdE4DSDYUziQjTi53Mr7TWj3mSZNHTkmSkI0Z/W7we4Rar7GNScxHcxvdtSN1rDk/r9Q8gdYPqegSp5YqGuFJmE9dpNGolpvH3bwzhfsj+nq2VAh9smW3aRPRG1vsFUpfzy6azHp5/ZTeHjg8y+vFpAj15LENiOJ9jX9f8dXvyzS1rdk3VsyHOTAVI3dtC6oNhLLc9iAnoRT7SeYKHd0xflvPXRhVKDk7NdiBLgqCvRNBXxO8tochi29GmTm+GkWCC4WAcZ0Jw8C/HyCTtaMreO87yoc++h8e/OSJUSCkcP9rG5Hwrc+UA2ZAbc0BDBDbPDEpC0CoX6PNmtmxsu7F+qkUr8pmew9wenrumv/vc2Rb+4g/vo1hw4tqTpXxvhXgt2jTgXuGzHUfpcWU4XG3nrBECICiXudUZIyBvL5JmYVFWDZDAYShoQt6yIe9sJsT3Z8Z5Y36wXmMTdBZ5YOAk9/efwu+88Kx+RVeZWYzUm9/OFMMY3TqizajvwEpWYqia40DLPDs6l+hoSV9x046L0cb6KUWyeKjjFJ/qO4q3FtUVAuJLAY4e6eHVxADnoh6MVQ8HC4KLJjdbixRf97By1osvVObzv/UyLR1XxthlejnCd9/dDkAJTCGjWwqzR1v4wZ+ObMtIIpt28dLTuzn6bq9dZC9LaG4D3VC3nJxUFBO3UsZMmlhpC7mkI5d02rsy7Hl0mbEHk7gCJi5Zp1XLE9YKDceoU8kILx8d56m395IteDe9v0PTuWPnBA/e8h4DHcv1+3VTpWS6KRmeelP0G11WLcqUMlykTfuStZzEdS+5JtAkIYioBTq0PJ1arg5NtuOvPeRt2L8FeGRB2ZJZrGgULRUBOGUTS0C26iavO9flB12+xGot+/sMUZYlMZ9qYWqxk7Px9oZ6wfZAmpGOGIPtS7gdG1JZJYEkpFoq3wXWw4a6p/Unkgsdym5EkLrovaxcLvMHf/AHPP/88ywvL2NZjYOTt99+++KX9h909VSrq6r/c51ods7DC6l+3A/JCFOwo5rklsj1EfH4UVIq4+H5V/dw8N3hugtP6e0gXe0p8g6NsyEPnaaHqHp9NtHzt+sM/3ieU3f0cC42RLU2cHAsVmj9fpLAO1nes7ws7x5m/KE0Yw9lCHVdWrpaKufh6FQvR6b7OD3XbvffQGC6wHCD6RWYXgtDa2IFLhv0eVOMhpcZa1lmOJTAp1Up5h18/3/exOHXBgAIthT46M+9zcgeu7m5JeBcIsCx6QgzmTBxxUu5w4nolqG78TMkSxCuFun1ZRgMprfd2HbQm+L/HHuBg6ke/uf8XpJVL1+ZuZNnlxN8rvc9Br0XLpi/0pqejPLNP76HklPB+FSOeFQFU8WvVPix6HHuCM6Stlw8VxqgIByAYIe2wi4tsW3oEAgqNYhSLAmlyeDAEhLvLnbzzMxOJpPR+v2DoQQPD05wa9c51PMAeqmq2eBUS9U7F2/dZMMdNgy6rTSFdjgjBTADMqfwUXJ24FVzRMlwGV04L1teVedzg+/yQMc0j83s571UN0/Hxng1PsCP9x3h/o5pCoaDV60enmsfJt9iD2wdwqRjuYz1uhcp62SafgCkiEXbrhUWYi14QhVcrkt342wGUB8YmeZDdYCyIxGyLDAtmaqpkpj38vKfjWwyktj38VkqVQdnZtpJJNbS8RYXQmvpeOtGTKvRIJerSlskS2skZ/cLW7ZYOuRi8W03Enbik9NvMPZgkl0fjtM+UqRaUXCYJp2k6fBl6++ZqHp4anmUZ164maUza+mi663Fx/vnuGnoNF0tCZTaticElE0XRcNLxWysmbpRtApLadNFeh0wpU0XGdOJtQXESAja1GIdmDq1PFEtX480UTNwEEJCF3KtFGJdCxYBftUkbygsVByULQVZErgUnYqpkq26KV/BSdDVVD7gfYMoISCRCzC12MH0UgdlfQ0+A+4iIx0xhqMxgp7NmUCrUSjJki6cyrdF3dONtzVenC46IvWzP/uzPP3003z6058mGo0ibRj5/tZv/dYVXcD3Qz/MESlJFusclK6PzfnofAuH1Q5kj4SZEtzpnGU4en317LmSej8iUhf7y6YyXp57ZTeH3lsDqOH+RR6+9zDD/cuYQuLNSheLpg8Jwe3OBbrU/AXe9f1VvOzle/Pj/GBpCKPmnNTvXeETvccZtRY59bzdp2r2HW+D01HHziLjD6cZfyhNqPv8ULWUDHBkuo8jU73MLtkDG1MT6H6QWquUHCpWE/qXK6AWQS1KqEVQKiDVfiWHphP0FVEti8yCB7MkI5uC0fEFxu6fJSsUZlN+Fg0/2YAb4WgSadIF/myJTjXHjmiSodb0JTW23aiqJfPU0ijfXRyv9aOCu1rO8JPdRwk73h9Xw6Pv9PI3j91Bbq9F6WYdIdstEO5vmeFjkUmcssFJvZUJ3U5FcUs6tzhjRC4yHbgqGxiKhSTAZWhItcJxh2KQLrt56dwOnjszSqJop6zJksUtned4eHCC4XCi6aRPseJgOtbOdKydqYUos4kWxAZAC/sKDHcu1V31IsFc/b1SuovnksO8nOqnUpsUaNMKPNw6xQdCs1c0qnqpOprq4LEz++36KUngdZapSkq9/qnVUeCR9inubZvBoxqUCipf/0/3EltoxXLKCHltfSiKyeCOZcb3zjG2x66r2o6aAdRdO+wIVItvNcolUCULS0jolkIu4+L1vxzkyNNdmIqK5ZKJ7Cni69VJZ3wkEn4q5a2P0TIWbe1Z+gbitLXnaGvL0hbJ4vFWSEx7OP5khMnnWqnka+dtSdB1IE/XvSW0XolE1o9b0tnXe44PjE7VZ/xNS+L1ZD/fS43xRqKXlkmFHkeuwVo8Esrgd+XxqEUcylqkwLAUioaXouHBugSXyfdbdv2SYw2SjPWw5MI8zyBdwSKklO2LWiKi2bVNYbmIQxK19itrKXarCXtN5yBq90kI/KpJ0ZRZqDqpWDKabKLJFnndSbbqqpVYXKHvD3Y9lFU7Z19liMqW3EwvdjC11EmmuBbVdGlVhqKLjERjRAJbtzOop/JZgLlFKt8VhqcbMSJ10SAVDAb53ve+x913333ZC3m96HoBqYJ+jmdmPolH0zFr4LN+Z9u4YUob/258XpNo1Pr32Oq9L3R783Jsb5cxhcQrS10seEMAVI+ZfGToNJH2a1/QfjV1tUHqYg5YK2kvz72yh7cOD9UBamQgxsP3HmGob7nhuZaAg5UuFkw/EoJbnTF61GsPvAtFP9+d28Vr8f76LOVoIM7He46xN7TZCCOfUDn5gp3+N/u2D7GuQ3zHzmItUpUm3FO1i+OXWjky1cfRqV6WU3Z+kukQ6AEBbTpFtTFNz6XoDAUT9HrStKsFAqJCteQgk/eQybvJ5D1kC/btUqU2EygLCBhIQQMpZF8TMJCanbOroKwIvPkqUbXAaDTJjmiCFn8R11Vy1UpVXfzN/B5eXRkA7IjaxzomeDR68qrWT73x8gh/+/Z+8nfoWH774DTmjfPZjiN0OvMULI1DlU5WLLuepUfJss+5dNHOnnWrc8BpqPVo1HLex3NnRnnp3I56OqZXq3Bf/ykeGDhJi7sxMpsvOevQNBWLspAMb0oJbA3kbGOIGji1Bi6czlYwNV5cGeT5lUEKpr3NBJQyD7Se5oPhM7iVq9eo+kISAo5mo/zl7D4WKmvnS7ek86muYzwUna43XRamxOO/fwsnD3ahOQ0++7+/Bg6ZiaM9TBzpJhlvPN929dr9qnbunSfatbnGbasI1Ef2HaHVl685JgpMXSKT9jI/FyY2G2b+TJjZ6VYMVcNyKE1t/cF2XvMHihhlhVLOYUO2o8pdD57gtnunUdS14VIpq3LyuVaOPdFG/IwXw6thBBwoHTLOfomyw0mm4MXvKfHQ3mM8uv8IfZFk/fWxVJDXzw7xuDHGvAjgkar8Utdb9Psyq2sah1zFoxZxqaW6cYkQUDLdFHUvVcvB9TJBuiohoGBppEx3U2C6ECwFV2GpBkxhtUyLUsQv6zV7cAnDlHHIJm6lumb8sO0FtK9WIapgyixUnFSFjEvVsSyZnO6ioDu37dy57Y99H+qhyrrGzLLdLHcpE67fr8gmA5FlhqOL9LQkL1xnufrVm9VDbcM04lL1IwFSu3bt4pvf/CY33XTTZS/k9aLrBaRy1VP8YP7Hr9nnX7K2AWOWkMgYTgzZtvw0lqAjUkR1iHrTua1euyUEcukwuPn21TsZXU2Q2u5SrwLUocPD9dSiHYMxHr73MIO98S1fZwl4u9rBrBEEBAcci/Rr2S2ffzV1Nh/i23O7eCvZWz/B7QnF+ETPccaCW3+H9Sok16Dq3Fs2VAkJ9HYv8l4PpWiIknCtpewFLUSrQUleO1lLCEZCcQ5EZtnTuki3L9PgzrZRVUthoepnvhzg3bM9zJaDWC0CmkCTqILIaJBREWkVkVEhv7XpjFPTCfiKdp2Wt0jQt/7SWLt1KTpdCPPY7H6mC62AHW34TPcRbrvC9VNCwLee289z1gB6tw1FYbXIpzuOsd8fA+CcEeBwNYqBjIrJfucSvZcA9gJBqWZ1rpoymqlyMtnO06d38t5ST33b6vKneXhwgju7Z3Cqdnpktuhaa367ECWWCm16//ZghpGu5XrUKey79LTYiqXwarqPZ5PDrOi2sYVL1vlg+AwPtJ4mqL5/bmuGJfFGqo+nlnYwVwoBtbQqrUC84MeyZBRJ8HDnST7ZewyPrPPtL9/MsZd7UVSTz/5vbzC4t3E/jS/5mTjSw8TRbubOtDXUG4Va8rYD4J55rIDgiSM3NQDUTZ1zjHkWKSVcJJb9pNM+8gUXJd2JcYFsDlU1aW2zm9WuXrudVY682cvxd2wjCUUxufWDU3zgoZO43PaEha5LHH+tg8OvdjE334LudWL4NUyv1gBnsmRxYOgMH9p/hDtHp+rF+ropE8uHyAoXMcPPl2dvJ2W4CaklfrX3IBFHERkTt1rCoxXQ5DVg1i2Vou6lZLhrjr7XTkJA0dJImY0peKvAZJxn+WQsgkplDZaUMiHVvvbLFWTJ3q5kSSDLotZ81jYGMVHqzZXdagWvUq1Hzre34PaVhCCgmuRMhVjFgYmEUzEomyqZqptqk5rWS1VjKt/VceUzTJlzyTama81yV1swSAi6wiu2aURkGYd64fpzQS2wJGish7qMuqeL0Y8ESD3xxBP8/u//Pl/+8pfp7++/7AW9HnS9gJRplfnKDz7DB/tPsvL/Z++/wyPL7/NO9HNS5YhUyN0NdAI6zkzP9GTOcBKjxCBSlChZsmlJtqW79tVeX+1alh5Ja1q21/Z69+61RFmWlZijRDHMcDIncGJP5wQ00IhVSJXTSb/941QVqpAaQKO7MSLf5ynUqXRw6lSdU7/3977f92uolT5SDsSyvyxTrRuWJWd2rRrPWXtcWuG5K71+leVtNvm1dag/P7CJ5TXIoCw5J0/b0racsF1rbfPJgKNAne6rI1BTPPbAaXauQaDqIQS8o8cYrRT0H3El6NNSm9/oDWIo08y3JwY5mVwsCrqtaYIPd5+jL7iwqXXqpsLps1386LV+RjMxLEVDIDB9YARsjJCN5Vk8/hTJYqApwbG2cY62ThBZpXlv0VaZKoeYLIeY1J3rGcPPSp+UlLFRRgzUUYMWPUdfU4p9+xfoOpLHVLSKolV/8daWM/k6desakCSboK/UQK7CgcIS4lVcVd0SAl5L9vC1iUO1wfxu/9bVT+UNlf/6owcYiQZBBlnYPNF6mSdahnDJFmUh8065nSnLsdg1ywWOuafxyRtXZeqjziVb4uTV3Tx1ZZCr6ebac26LjfHIrovsb0mQzntrzW+HpmPMpMLL1tkeTdUUp/6OGcL+rU8ctYTEG+kufjC/m+mKCqRKFvdExnm0eYhW142rYcyZGs/P9vPMbD9pw1ECXbLJA82jPBa7TJs7z1QhyJdHj9aO0YBaZt/EAtlvhFFkm4//5uvsuT2x9v/JeLh0rpNzp7oYvtSOYakYAYlim4wRrA7mBO6MwD0P1xTlbIFsWGgYeN06Pf3zDB6fpCWWIRIu1AIlyiWVHz27lzde2FNL2hs4Os6R91yhaLqZmQ8zMRlhYqKJjOkDeWVFxePWGdwxwaOHz3Bs1yiBuvCRvOViXveTNPzYyEyXA3xu/BhZy0OLluef9LxOzJ3GrxXwKIvJeraQKJle8qYP4yarT0JAQWjL6pWql7Ua0UqIRmWpcomqi2RppddU+2JKklPTpFsKhq1g2TJL3/uGiFTD77sgqJpkTZVp3YUkCZSKlS+re2sW1a3AjbTyCQHTqWilWW4bRh35aw5k2N0+TV8sgX8dITg1VDfSlpyLkG563dOPBZGanZ3lk5/8JC+++CI+nw9Na2TuCwubG9jcSmwXIgVbVyO1WBu1tV93UXcmuBbxsgUMG1EmrBASAmNUIL1S5P5fmEfzLF9P/T1rrnsNMriu5VtEBhVLxrWR2bNrYK23MZ8M8MxLB3n7dF9tdmpv3xSPPXCKHd1zG/5fQsBpvZVhswmAg64Z9mg3LoRACDifjvHtiUHOp50ifwmb4y3jfLD7HD3+9DXWsBzFksbZkW5OD/VwcbQL3VQRksDwgx010QNgKouDA0m3CVzK0jk/z/G+MY68d47mnYs/SgVLY6KOME2WQ8yby9O1AKSshJyQUaYltPN5ukrT9Pen6b09R/eRPO7Axu1yZUMlU0eu6olWOr9IuJaGG6wGd6V2KxwoEPIXl6lbXl+JV/M9fC+xrzZ4ua95lI91bq5+yhbwykIvX504jFEJ6OgpZ/mVA6/RUiEGM5aPt8rtlISGhGBAm2OvtrBpNawadW7ZEv//H76Py/MdgEMM7um+wu0t4+gFFxcmOxiaijGXafw9kBB0NCdrzW/7OxIEvTdPFbIFnMnFeHJuDyPFpto23RGa5LGWIXo8W6cWJ0oBnprZzcvzO2ufd0Qr8kjbEA+1XKkl9tXjdLKdL47cxlTRIZyueZuPNJ/hg/efRZLAtqFYdJFK+Uml/MzNBJmZDrMwHyCd9pEvedAtDdMjUWyWMP3Vk73AlQHPvFgkUKaNbFi4MfB5SgQDRcLRAk2xLLHuNC1dOYIt5QY7XsO+tCRO/GgnLz49SF73YGsSnuYy7rBBKu+rhUkshWTZBJUC3d0L7Ng5T0dLksHOKbqDSULa4nFgCpkF3ce8EaBU18NovBTiT8aPUbBd7PXN8Bs7XyLqyqDWhcLolkbBdNSnrUyKWwohoCRUR1lagTDpa6T+SQhCcpmwWiK6hDCFlHLN3rkWFslTZXsAS8hYtoxhKbXfrpWwbiJVtxlyhUSlTY24oaLJNoYtk9G9FE3Xu8LKt5ALVEIjOsiXPbX7A+6i0yw3Nk00sLE0zJoKBZV6KBbrim9yaMSPBZF69NFHGRsb4zOf+cyKYRO/9Eu/tLktvoX4e0ek5ErfqFrh5c1H3lZ5pdjDvO3MYM//lU3grSw/939P4vLehJiaNdBI0zamyK1LDVzy1zJlTJczUNZMBXULildX+1TnFgI8+/Ih3j69q/YjtK9vkkcfPM2Oro0TqHoIAeeMFi4Zzuz9gDa35U2ThYB3kp18e3yQKzkn3EGRLO5rHeUD3edp924s8CKd83JmuIfTQz0MTbRj2zJCFuhBoMmg5JcbPPt+rcyh0BRtUwuUnzYZ/5Ef21p8g9HDZfwfl0jtDzJOZMXjS56xUEYNlHGBVAggp9zIeZloMMl73n+KfffN4/LenNAAW0Cu4FlT3UrnfZTWaBJaD0my8YZLFHaYpMLOQFMVNrdrcR4Ij9ISzK2pblUxWozwpalDjJUdD7+Sknifd4gP3nYWcBSYc3oLQxXiHpB0jrmniCqbJy2zRS+eQAZFFnzpxL28PLIfj2wQk3PIWZn5VLBWN1j/frtbkk4fpw5HcfJ7bn1NpxAwVGjiqfk9nM0tpgkO+hM83jLEHt/mjksh4HKuhScTe3gn3Vn7fvd4UzwRu8Rd0XHUNWyipinzg68M8szkPhZuV7E9zusjKZ2mCwIz6V6zeN/0sIxA+eYNmpIFXNiUTbeToFfnAGjvSrLnwBT9B+LEutKrvu98wU1iPkxiPsSl4Q6ujrVSRgVllRfYNmrWqFzKdLSlOXTfJIfeM43LLfDKOk1ajiZXoS4hDjKmh3ndT9r0LTs/DBei/I/J29gfiPPB2BkGA9MN6lPR9FGoqU9bh5KtLNYsLSFM5TUj0gVBWSeqFGv2u+olvE6ytBRLyZMtJKxKkp4lZGxbrtn31sK6iNQKJCplaswaKopsUTRdZHTvxuyB18CilW/rSFS+5GY44YRGLOQW+7W5VINdbQl2x6ZpjyyvKVw36uuhqsl8W1j3tBH8WBApn8/Hq6++ypEjR657I7cL/r4RqRulRq0X02aAV0td6ELFygqmfs+mU87yyf9zCs19a0nUVsC2oZB1k0+7yaWd63zaU1muXGfc5FPOtWUq3POpM9z18QsYZYU3vzqIz2vR3JWlpStHuC2/mltkRaz0qc4uBHn2pYOcOFNHoPoneeyBU/R2za/wis3jot7EOcOJDt6jzXNAWznBbCOwhcQbc9383cQg4wVncK3JJu+JXeH9XRdodq/fujSbDHK6ElN+ddrZTlsR6CGQm3UKHqUhSjfqLnB72zh3tI2zLzLTUE9UTCuceamJNya7mIxFMAbdDQMvJWGgDJsoIybqiOFY9Qwbz2CING2AhMdX5omfPcmhu8e2bbz/ZtQtM2hT7DOwwpV8rJKE94qKNqfg0cwGRStUqeFy+XXelts4rVdURh2CJxV++c7X2D84BUDGdvFGqZOMcKyLu9QUB10zG04ktCyJ2XSQtyZ38Gaih1+473k6QilOTfXy3198BDUnoRYb6yNdqkFXc5L+DqfGqa99Fu8NCvTYKoyXQvxgbjdvZbpqA/dd3gWeaLnMwUBiXXHwlpB4M9nFk4m9jBaaavcfDk3zROwS+4OODbhUcpFK+Uil/KTTfubnAk59UtJPNuejqC/az2xNkNktyO8QzsDShsCoRHBIQikKJMNCNmxcso7SZJHq8JDxOBNvMjYH2iZ5YN9FIoESuqHWLvMLASbHmpmabCKZ9CMkp85RyBKay8Qb0nH7DBTNxjAVdEOlpGsUSytbYSUETeEsXr1E+SroYwI1Y6AUDMKxMgOPzzL4xBzBNh0Zm6iWp9mVx68sEmrdVpg3/CzogVVVnNFiiFlT4/6mIZrrrJhly0XB9FG6TvWpZCsr1iulLA8lsXbNT1AuL6tXcshS6bqTQGF18lRvo7NsGduW1r0Prkmk6jZbQeBXLVKGStKUsSXIVnpDrRarvhlspZVPN1VGZ9oYSrQzlWyielzJkk1Pyyy7Y3F6mudq9XcbRrUOqqEeyiGwt/Jn6t1IpDY8Ut+/fz/F4tZ7wH+CCioHnibbWFiVm9WeB1JDjPOKkBdro242bAFn9DbO6c7gtXjeZuK3bPYezvDx/30a9cb2o70umKZEIeMml/aQT7lrpCifWSRLubSHfNpNIePeMEl97SuDdOybp+fgLHsevMqX/9V7McvO4adoFk0dOVo6czR3Z2npzNLcnaOpPbeqLaWK2fkgz7x8iBNndtZilvfvnuDR+09vOYGqYp9rAVkSnNHbuGw0YwmZw66ZTZEE05Z4dXYn35kYIF5yTlQe2eC9HZd5ovMiYde1FQghYHKmidPDPZwe6iU+HwEqMeXNArlFJ69VG6w6A4p2X4Y7KuRpZ2h+2WCzaKucy7dxstDO5YEWrIHFH1vfTAme0dFeLqPMWqhum67DeXrvzaF+1MXrrx4gNRcA4MBdYzzxyZP4QzfP/rUZuDWT1miW1ujq4Q0rqVupnI+LmSYu+SLoHpnCoIGStrCGNcrJcC31UEgCq0fH3F2qfgTIkxruCy6igRyvDO3lbLwLb2+OcrsFkoQqLI4os/S617ZxWpYTLT2djDC9ECaRjDCVDDNVClH2y9gu+MSRV+kIpUgXvXzjB/cRKth0RFO096TpaErRHk3THk3RFMzhUVduyLtd0ePJ8I+63+bD+gWent/Nq6keRopN/PH4cTrcGR5rHuLO8OSK6kHBUnlxbhfPzOxmXndsqSoW+6UF+nIZxFWNl589zHdSfrJ5L4ZVjfaujbkW1XkJcFWWbYFk2YQuCPwTguwgFJtlcn2CYq9FbK5MNGtSRGMOP2Wpsl4hUMoSSknm8kIPly/0rP3mI403TVwUSy5Y0WkqkAxQDIFi2ezpm6a/dYLZH7kY+X4Ew5CRAb9ms/uBBQafmKP7aAZJFviVMs1anqhWqAXL2ALSppd5PUDW8rDyFJfAo5SwJYO7mydr5xnLlilaPgqGD/MaJKceui2TsjwrJuIVr7Eev6w7dUpKcRlh2gqytBTVwIgqbCFhVsiTsCUn7K0y4esoUddWodaNehIlCfyKRdJUyNgSBjLpsmPl20q9ZSusfJYtMbHQzFC8g7G51gaFvD2cZHf7NDvbEni060vtFFRCLyQcK58NCPldcsbbftiwIvXUU0/x+7//+3z2s5/l0KFDy2qkbrWisxlsJ0Xq9771j/m5oy8xq7sQyJWTkWMxcb7kjT/vonavQ7RkyfE83Gw1qmirvFrqZsZyfowXvmKR+D8Eh9+f5iN/GEe5BQ3W9bJSpxp5GpYXlSSHIJXyG2R5ksAX0PGHS/jDZQLhcuXaue0PlQlEyvjDJYLhIpIsmE6EcceyKC6LqXMtvPBnR1mYCmIaK1tdJNkmGsvT3JWrkauWzizNnTlSeb+jQJ1dJFADuyd49IHT9HTeGAK1FFeMCCcrysIONcVtrvU3VNZtmR8m+vju5ADzZec741fLPN5xiUc7L61Yf1EP25a4MtXqxJQP95DMBBAIbDcYYYHUbJBXGs9NO4LzNfLU6V/eO6NsK5wrtHEq186FQmuD5a/DleGwP86RQJwWrUApqzD2VgBf1KBjsIiuqzz99cO889IuAELRAu//9An2Hp5e3w55l6NsKzwZ38t34/vQhYqE4KAnwR1SgqliiLe0NvKV2Hg5LaOe9yCnFz8fl09n70NXiHY7NT4LY2EuvdCHUdRqtVshfwG32wDFqT8pGi4yBS/JvL9SjE6t5s0MQNVBdjA2xq/d9zQA8ckYYY9ONJhfteDdpby7iFQ9bAHzJR/PL/TxSqa3ZtsKSmUOMUt7tkQ+42Wm6OeKJ8Rs2I1dUVglHTzjKu4JBdmQGolS/Rh3k7KqHrYp9FpUkuuRS6DNKyhFGYTTa00pQTVdX1UsXJqJSzWd68pFUy0U1cKlWmiaWbtWZItc0sd8IsDsZBi9oDkWQBsQAtl0Bo97BiZptme48nyI3OyiStW2J8/g+2bZ+/A8nqCFKlk0azmatDyeumSLoqUxbzjBEeYqNkVFMvCrBbxaAaXO9jdSaCYoC/RVidciWVrpUriG5c8n68vqlaqkSdtgi4DNYJE8OaP0euVJ2FLlmBLIzke+bhvfSlhVkaob0aqSjU+xSZsyKUshZ7hIGz5Me4t7Q0mAtDkSJQTMZMIMxTu4MhOjbCx+xmFfjj3t0/TH4gS919/Hr8qdgEoClhMqId0i99JKeDcqUhsmUnLFg7S0NkoIgSRJWNa14xW3G7YTkfrdb/xTfv7255guerAbBEMnyaZKrJAEMqJ24qqm3aiyYOknWu294CzDVrteE6aPV0vdTkG4aTP+O4LMU4Jjn0rxod9LbMi2thaEgHJRJZdqJEWLqpGHXMVOl0+70UsbizCVZHs5KQo1EqRAxCFJvlAZRVnfoVMff25JNrpiguTUS8mWQmbWx9xUgPnJIHOTQeYnneVycfn2Wy6ZUqsbPazWBjRd0XkeuOMcAwem8AZurg3pqhHibb0dkOhRMtzunl7TSlSyVJ6L9/P9yf21BLCQVuR9nRd5uH0Ir7r6TJthylwa6+D0UC9nr3STL1Ziyr1gRWzs6NKYcpu9kVnuiI1ze+sELd7lBbi6LXOh0MrJfAfnC60NA6M2LceRwDSH/XFirtWLd8+/1cX3v3iUXMZ5P8ceGuK9Hz2D23vrev3cKizoXr4+eZBXF3aAJHBrRq03llcy8L3mQjrpobkly8d+6UegwaQRJB5yIxQJYUHmQoSJszEyRR+6pVVsW9QG9SvBlgVm0CFR1ePCLRnc1TbCx46/gqraoKv4pLVPRjeaSNkCDHPRpmYYCmVTxaizrukVO5qzXPdcc4XHq8/RnWvDXPzNEGpFBdxRhqql2pCw8wq6S6rtJzkv4Z5UcSWUDQ2oVNkhOpIQlNIakg3BcJFYVxpNM3HXEZ8qIUrpHl7N9TLnc9fi/6NWiY93nWKgJdFIlioWW4eISFi2jImEYavXnCgUNkyPR7l8tpPLZzqYS4RobkrhT84zd3KRPHmCJvsemWPwfbO09hcBQUgt0qzlCauL6XmWkEgaTnBEwVpNyRBObLmax11n+0vqPp5f2EOyHOLx5ivIEhhCJm25SZlL1CXLQ/4aZMkrGTU1qaYuVS43ssfbalgfeQIQSLLzfGFLmEJe1qx6I1hGpJb8HFdJVMaSmNU10oa30hvqBlj5Km9/IyQqXfAxFG9nKN5BtuSr3e91lemPxdndPk1zILtldvBGEkWtye6tNfItx7uRSG1YJ3juueeua8N+grVhr3ogSghRJUUrPS5QFRvDeZJDuirkSmaRaC09ZJzjX6r9MG2EaAkB5/QWzuhtCCS0lMH5fyShX4W7f2mB9/+r2WueBGwbijlXzTa3smq0WHdkraLerAZVs1ZXjeoJUriMx69vGelbDYqQUW0FU3HSw9xCIhIrEIkV2H3bYkNcISCXcjM/EWRuKsjYaDMXZ7vJ4K8NgLSMgWe2TKGk8eRLR3iSI/gjJUe16srR0rV47Q+Xb0h9zg4tgyIJ3ix3MG6FsMoSd7qnlpGpvKnx9NRenpreS950BjLN7jzv7zrPg20juJSVJ2BKZY3zo12cHurh/EgXZaMSU+4Hu9vADIuKLcix7amSxWBznDvaxrmtdYLQCtZAw5a5WGzhZM4hT/U1Dc1qniOBOEcC07RruTX3WTbl4XtfvI2LJ5zI5+ZYhg/9g7fo3XNzFMHtiCZXkV/e8RY+l84r6d7KuQUUS6C97EW6qNHZneQXfu0FNK/BG4UuZgNO8pSZUxl7q4uJiRbH0iLD0jGPIlv4XDqabCFsKKCR8WiYvjpiUAZ3ClxZlaNHRlFVm+mZJj73Vx9GkcXy2q2625FAnpC3SL7koWxqK5Ibw1QpV0jQUrKznPw0Pqee6NxoSAaowy6UKyr6Ph27R0fSBHLExC1AZBU8p1R8IwKPVsDvKREMFgmGygQjRcJNJaKteQKhMm5XozKkqRayLBg+2crX/uNxfFaZw+8Z4wO/8g4rcdUrMy189+Rhzk05x4pfsWjalWKSAEnFw/9I3MHjitN/ylOZTFEqo1NLyJgVJm3Z8rKJwpWgFxXMOQvPfJLWlIE+HKR4SqGIGyRB7x1pBt83R989SVSXwC0bNGl5mrU8Wl16Xs50MW8ESBm+VWtpVNnAr+bxqoWGprkTxSa+Gj/KuXwH/f4knd4M30gNkLI85Oy1Wxd4JKMWF75UXXLLt36yemXypGAJaUWLnlSZ7BVIWLayaRVqVSz5Tmh1JGq67CGt+yhtYW+o2r/coJWvqGtcqYRGzGbCtftVxWRX6wz9sWk6o8lrN8vdBBr2dqXJ7nYjUe9WbFiR+vuI7aJIFQydI3/9nzgUjdMXmGEgPEevP7Vms88qnOZ1dkWjWuFxoGoErBV+SiwhWesnWmVb4dVSF/FKbxfP5QInftmFKMH9v7rA3f8wW1GKKgQp43bUovowhrSHfMaFWGc8cxUur1EhRSXnul41qihGVYLk9pq3vMB/aUNegUCv9rIR4DZX7y+VmA3zzEuHOHVuR+3T2d83wdFdo0h5wfxUoKZiZeZ9K64DwOPTl5Gr5q4s4ebiigOfjWLKDPBGuQMbmZiS47h7CkUSZHQ335/ax7PxPbUfspgnw4e6z3NP61XUFWZQs3kPZ650c3qol8vj7ViW4li2AkCzQTkgYdT1WPMoBodbprijbZzDLZMrqlqmkLhUaOFUvp2z+VhDUlVULXDEH+dwIE6Xa7nlbyksU+LNF/p54W8HKRddyLLNve+7yAMfPI+q3fwZ4e0CIeB0LsbX4geZMxy7ZpuWYz7rJ18JjvBkbPZaKYQtETs8izdYRggYO9vByMmu2rnApRqVuqVqDZNTxxQN5rGFxJtTO3jqykBD/6c94RkOR6YI2TqZvI/mlnkOHRzGNGX+9IsfZGK67ebvlDXgUs2KNc1EVSznPF8Zm9qmjGXKGLqCXtawTAWEqM18189+1+6zBbJhI+s2ctkCYVPYI8gckTEiMiBQJRuvomNozvGjYHNXeJzHW4aIuTcWmTx2vpkv/7u7MQ2Fgbsn+anfeGvZRNRSAiVLNnfvHub9R07TEsgxVQjxhZHbOJ10Gu0GtRI/s+Mk720fBgmnh5CQkSWBZctYYvkAXNiQHPcwfT5A/FyA6fMBFq56l9UTh9rLDD4xy8DjTnCEhE1EK9Ks5QjWNTY2bJkFw8+CEaBkrxKBjo1XLeJV87iVRRdAznRzOt/FC+k9zJuBNc8lbslc0mNpUV3ybAOytBQrkyd5VfLkYFGFsmwZW0jXpULVo6ZIWY2TEy7JxqeaJE2F8aKftO5dMylyMxAbsPIZlszV2TaGEh1MLjTV3r8k2XQ3zbM7Fqe3dQZts6ERa6EaJCFwBoGVUAlpC3tlbTXejYrUhonUiy++uObjDz744EZWty2wXYjUDydH+cWnvtJwn08psz88y0AowWB4hphnBalXErVI2s0eitciWqYuUajY5uLlAEOxMKZLBhOy3/Qx8fUmUBW0oIJpbnzmxxusEqA6grRMNXKuNde7a7C6lEiBQ6bKqoGQQLYlXJbaQKbiMw6BOn1+kUAd3DfGo/efprM9ueL/KRcV5qccUjU3GayRrFTCv6oVRnObNHfkGshVS1eWaKyAvE7rYhUJ08ePyl3YyESkEpPxJl5I9GNUrBfdvhQf7j7LnS0TyyYH5tMBJ2lvqIfRKUfhtGWBEQS5RafgVRpqloJaidtaJ7i9bZzBpjiuFX6ELCExVGzmZK6ds4UYxbpBUVgpcjgQ54g/To979cjkpRg+G+Oprxxhbto5T3TsWODDv/QWse61AxH+viNR9vOV+CHO5x2y4rFNOlMl0kNhUmUfRoeF3m4iKYI9zTPsaZlBlqCc15g700JUKtcCHzqa0kQCy2uY8rqLF8d288zIPpIlh6hpssm9PVd4bNcFOoKLPZRsbEpqxUJrKWi2QtlQG9MI6xIKM0uSCSVErf5mUYWpq9WpLVu15aqdrfF5FhI25ZKLYsFFIe8in/WSSXvJZPykUj7SaR/2emo2TNshSoaFZFSWdQvZMgkHi0RbckRiRdROk+HOKGfcMYqVZA+/ovNQ6zDvbR0mopU4l2/lqbk9XC44LQYkBEeC0zzeMsROb+qamzI1FOGL//Ze9JLK7tvifOz//UZDMM5qBOp9h87QEsw5gUjVQR5wcqGDL47cxnSl/1SPL8knd51kX3gWWXKcGrbtmNnLOYX4BT/x8wGmzwVIXAhQzi1X+kIdJToGcrQP5OgYzNG6u4AkC7yyQbPLqX1S6hSkjOlh3giQMb0NU4qWkMhYblKWGyHZtLsX6PXM46qQHVNInM138np2F0OltobXyti0qIWKDa8xFc+7iYbSNxubI0+V11ZVqBsRJgF4lTIBVadcR6RckkVANUnoLkaLAQqGZ0stuuu18tkCphaaGEp0MDrbhlm3ja2hNLtj0/TF4nhdN8iKX3ds1UhUJVRiO5Mo+DEhUvIK3qf6eqmf1EhtHkII/vnX/jmdHRP8aK6bi5m2hsE3QNRVYCA0w0A4wUA4QdRVqqlR9gZOGEKAXlRrdrp8xk2hslyo3XbVHtOLGiBoeixJ68dmkVQoT7uY+lwn5cnlNgVZtvHVEaMaSYqUF8MY6oIZrpVO927GSkQKwJZsysriYE+1FaZnIjUCVcWh/Vd59P7TdMRSm/r/pi6zEPdXlKsgc5MB5qeCLEz7nZnulbZZsReTBCvkqrkrR3NHDnUNInup0MQZqxVJhvmcnx9d6ae3QqCONC1a/oSA6bkIp4d6OT3cw9SsE7lcjSlXWsvkXWqDnabJk3fCIlrH2ROZbYgpr8IWcKXUxMlcB6fzsYbi7KBS4rA/wZHANL3u1LpioatYmPHzg68e4dJJZ+bcFyjz8EfOcPT+kRtuB91usCyJ2UyQ6YUIE8kIJ6x24n43zogXpAk38pgbyV7cwQo2XbtmiN2WIOB3Zv+nMyF6yPC+2GW0NWo7EvkAT1/Zz8vj/ZQrqmbYXeThnRd5aMdlgu5G+6ZAUFJNhCSQbQn3kkmKtSBsZ/ArpEWr4FqwbcjlPKTT/kokuK/WbLZ6u1DwXHM9CLFIjgwLSXeWJcNCNi1CwQLR1gKRWJFQW5FwW5FIzLkOtpSRFcFYIcyTib28nuypxUq3ubM83naZ+5qv4l7BPnulEOWpud2cynXU7tvnn+WJ5svs86/c1mBmLMTn/7d7KeVd7Dgwyyf/5Wu1c8K1CFQVEiDV1fMqksCy4anpfXxz7CCFiv33aHSSx1wXKV5QmT4XIH4+wMLYcrVJ9VjE9uZpH8jRPpijYyCHL7pIVBQsolqBZlcOX52CVLYV5vUAc7qfedO/rF4pZXowkLgtMM5dwRE6XItkfUYP8Hp2F6fy3WiSIKyUmC4GGSuGsSyZJ5qHeDBy9ZY7IjaK6yFPDrYmTGKN1QPOJLNfWyRSXtnCq5pMlNyMFkLo1tbGBF/LyicEzOeCDMU7GE60U9QXx0VBT4Hd7dPsbo8T9q2/lcemUK9CVXe9zbYLlViK6i7dGZ3lzSuH+Pcf+dNbuj1wA4lUOt0482oYBidOnOB3fud3+OxnP8sjjzyyuS2+hdguRAoawyYMoTGai3I+E+N8uo2hbMuylKAOb4bBcJwDkQR7gzNIJYlCxrVIkCpx3fllJMm9alrcSpB9Fp3/cJrAUcf+YV3SmP8ffubPyAjD5OhPJzn4/iSBcIlAqIwvWEZRHAtEtX+EvILpsGpFFKLekrh9D/bNYDUiBWDKTq2UEPDcD47x4iuHa49dL4G6FmxLIjnjWyRX1bCLqQBGeeVaDkkShNsKtFTJVaejZJWiMk/N7eW1uV4iviL39A+jKRZu2+QR/whu2cYWcHWqtRZTPp92bKGWJjDCTkx5TtWo//w7/ela0t6O4MKKgxJbwGgpyql8O6fy7eSsxR8wv1zmcCDBYf80uzzJDZEngHJJ5aXv7ue1p/dgmQqybHPnw8M88KFzeP3bu7/Q9aKeMMWTYeLJCPGFCDPpIKYtI9oM7F2lWpCBNK/ivqrS6c1i5WQWroZRyoLjd17k8AeGOGPEMJGRhc3YQhMnZp1o6xZXnk92n+KOyGTt8xUCLi+08tSVAd6J99RmlbtDSR7vO89dnaOrWmF02cRUnIbk3jVssythadiEriuk074aUXIuvgbiZFnrOI9ads12V+2fVFOWdJtgsFAjRuHqdWU51FJC0Vb+mbYFnM6081RiL+ezi9bFvYFZnohd4kh47fCXKqZKQX4wv5s30l21yYteT4rHWy5zNLi4jvkpP3/9B/dTyLjp2rPAp/7XV3F5rBUJ1PH+K7z/8OkGAtWwryVnwC4jsJEwbYVcVmP4XBNPzu3nQiiGkCUwBU2v5mh5IYNSdvZDuLPkkKaK2tS8q7hkMk7gU3SCSomgWsKvlBejx4XE1VKUt/OdnCm0k7S8ZKyl/YQEfZ45jgdHOOibrBF9U8hMlJqYLUdAKESUMj7ZwBISfz19hNO5dmRsPtV+mjvC757EzpXIkykcK976laStDZNYCsuWKJgaedNF3nRhCokef4p2Tw6/auCSbK4W/Yzmg9hssZUPViVR2aLHaZYb7yBVCNTud2s6fW0JdrdP0xZav+th01iqQtWTqG0YKlFF/e6UcBSpt0cP84c/9d9u1SbVcMOI1Gp44YUX+M3f/E3eeuutrVjdTcV2JVI2KrYlUcg6xCid8jKUa2ZYb2ZMDrPg8jbOmtoCz6yNb8LGN2Hhnba5ltXa5THxVSx0vtCina7+th21uRBooojmNEpUZzn9r12c+3YQSRZ88LOzHP7o6v1noN46WJ86uEi0nOWViZYN8C4mWmsRqalEmLwt0d07Qyrl508+91Ps3pngkftP09F2a+xiwobMgreRXFXsgktj4kutMvPHVHJ9i8SrM5/hntAoYtDAUmTcpkXuRJSzF3eQLXidpD03WBELmk3ycuM6d4XmauSpw7/y90oIGCtHOJlzyFPGWpz198k6B/0Jjvjj9HkXVuyfs559cOq1Xp79xiFyaSeNr28wzuM/e5LWjrW/6+82rEWYrBUsZ8JvIfYUsEPO4NIvdB7yXOWetjGC3gLf/vJdnHxjFwCPffwE2p1Zpiq1lM1ygWPuaTySyWsLPXxt8hBJw6nt2xuY5ZNdJ5lNR3hqeIDRuvqnQ22TPN53noGW+JoDEkuyKVdq5NymirKBgZxtwzsndnHxYhfJZIBU2k8+vzE1aZEk2Uj64rI/WFqRJDnLpTVV3pWg2zKvzu/gqZk9TFf6r8nYHItO8ETsMrv8K9t/r4V53cszC/28nOzFqNQRtrlyPNY8xD5jji/9wX1kF7zEdqb4+d9+hal8ZMMECqhMrNnMXfUyfibC+LkwU2cDLIwt1nmWW1US74+Q3+N8Bh7T4EF5mMf2XyLQtNQWJ/DIBkG1jE8pE1RKy1TOsXKYFzJ9vJrtJb9C2IOCTaeW5s7QKAd8UwTVxbhp3dIomD6Kpm9Z6ptuy/z55G1cLLSiSDa/2PEOh4IzS1e/7bByn6eNkqfKuurCJNajQtnCiZGvkqLFS+N9BWtxubhKWMS9LaN8euc7pE2FyaL/hqTygROjX91dZUNlZCbGULyDeDpae74iW/S2zLK7fZrupvkVXRM3BPUqVHWbBYtK1DYcMy0lUNXzem/kx5hIXbhwgWPHjpHLrX7y3K7YLkTq5PlxfvlzX8FtG0iGgBKIkoSsC2Sj/mIjGwIhC4odCoUemUK3gh5tPIHIlqApX6TLyLJDWmCHP0mwRpJ0p97IvTrTEgJGzAhn9FZsZHySzh3KFM//ywgXnwogq4Kf+t8TDL5/Y0XKK6GqVjk1WTTEu2+MaG2/E8ZKRGoqHuXplw5x9mIvbrfOr/7q39DcnMUouQgqTgex7QYhoJBxMzcZ4OR0J69YvcT9wdqDgWGL5rcM3AsCPawi7zHZ9+lhXD6TQtLD28/so+hSsaIW5brGYrJksy8y4yTttU3Q7FnZ+iAETOghTuY6OJVvJ2V6a495ZIMDvhmOBKbZ453fFHmqYnIkypNfOsrkiDOQj7bmeOwTJ9l7ZPpdZ9OpRyNhqpCmNQgTLIY+dDSliEazjPoCnDVbEUi4JJP3tVzmkeZhNNlG1xW++hf3culsF7Js8/hn3iC1S3LaIiAY0ObYqzWqimVL4XuJfXwvvtcZuAsBBRWyKi4s7u0e4dG+83TW1T+tBoGgqBoggWrJuJb2l1kDCwt+vvrlexmbWCGQoqomLSFHVdIkGTbeoE6krWK7ixWJ1BGlUFsJl2drLO8Zw82zs/08N9tH1nQIhlc2eLB1hEfbLtPsKm7J/8maLl5Y2MXzC7tq9lg1b+N/RaY3nuWhX7vAM5cHNkSgSlmFqfNBps4FmToXYup8kHJ++WcU6SrSOZClfSBP60CORFOIb4wfJlFyzjXdvhQ/03uKnaF5NNkkrJVod2UJ1EWOA+QsF+eLrZwrxDhXbCNuBFFwLHj1/ZWiSpFOV5IWdxqPUqp9P20hUTS9FEw/ht2olFdRtFT+bPJ2rhSbcEkmv9x1gn3+7ZvauZXkyYFT61a2FDK6h6zpJmd4aoSosIwouchbGgXTtanaJQmBVzHwqzo+RWesEHUSgyWT25rHOBqdWDHAaDOo1UPZzl6xLImxuVaGEu2Mz7Vi1yZpBJ3RBXbH4uxsm8G1RguPLcdSFaqyzds5VGI1AlXFu5FIbTiL9dSpUw23hRBMT0/z7/7dv+Po0aMb3tCfYBHz2TyWLFOQ3c4n473mS9Bkk4CmE8sUcAsdIyDIuVTmJB9FRWMu5GMOHyeJ4VEM9nsTHPAlGAgkCLtW9+oaQuKdcjuTVqWoXslymATf/p9aGXrBj6IJPvpf4ux9ZGv8vtX6LhupcWalgqVEqz7anYpFZFWiJWCRht3akfBkPMrTPzzMuUs9la0R7O+fwm2pIEDz6FiWgryFDQO3EsN2lL+zDnDJ0wo4s8p3t17l/sAIY+V2zpldTGWasJERQvDW0wMcfewCvmiJox+8wCvn9lIuu5FMQSBh0JnLstc1S1dHmmYpi+wG20Wt7kgImNaDnMy3czLXwYK5OGPtkkwO+Gc44p9mr28O9TrIE0Au7ebZbx7i5Cs7ASeI44EPnOf4o5ffVWl8myFMbs2ohT0sJuU5oQ8ALyV38O3ZAfKmM6i+IzTJR2NnadKcWftiQeMLf/ogY1da0bw6D/y/ThAPu0BAQCpzzD1NVFkeRZ8ueSks+JBnXOAHfDb4LVS/weOxi3y48/ya9VNVCESt3lASEto1jh9hw9x4gPGzUd460c/VXAdClsEWuGcLyCUL2bCQddu5z2c41rveJWpS5drtu7G1wZPFID+Y2cMr8ztq9u5mV57H2oZ4oGUEr7K1g7egqvOhtos82jzk9H2b2ovhl0k/BmetAKeH7ocZ16oEyrZgfszH5FmHNE2eCzaoTVVoHov2/TnaB7J0DOboGMwSiBqVgb2MIWRkS+JTvre5mG0hoJY5HJriUCBOh6uRsOm2wqVSC2cLbYyUmshbbiJqiSalyD2+SSJqiaC8aPGTJROfWsCnFlDrrBuO+uSnaHrXVDfylsafjB9johzGIxv846632OVLXd+OvwHYCHkSwtmPVdKTW0KCcqZ7GTHKma46UrExeCqkyK/ozrWq41eNJbcXL17FqHx+gmZXiav5CP/9yh2MF6K8PtfHhXQH97YOsyuwcn3felG18mFJxJMRhhIdjMzE0OuCtJoCWXbHnGa5fs/yc9sNx1IVCupCJbZfPdRSAoV0q0djW4dNhU1IksTSl91999382Z/9Gfv379/SDbwZ2C6KVCqd59c/+wcM7hwjK6uYioohKehCJV/2kC+5yZXc5IrO8lonL4HAdoPltzEDAjMgWGob1mybqF2iXc7R607R6ssT8JRQfAbTQS8lWUVCcMA1S4+e4uu/0c7oqz5Ut83P/N9x+h7YmtnP60UtabB6vYRoVWu0bhXRkiWbselmvvP87Zy7vEigjhwY5b33nybW4sy2m5KFoVogwG1tzJZ0I2ELOLHQxbfHDzCad0IhVMnizug4XYUCV6/EuDLZhhByLaZcatEp+WUMFHzuMvceuIjfo1Muqox/vQPjVQ+SvkpfFs3CfyCPecQi2aOR9ywqeZpkMuCb5Uggzn7v7LoG2deCaci8/uxufvidgVoT58P3jPLej54hGLn+bvI3CltNmFaqpRkuNPGV+EHGSxEAOt0ZPtl+mr11s+7ZtIe/+tx7SExFCfdmGPhHFylpzhzdLjXJQddsA8kVAoYq9U8n6uufgkmO9I5xptzKaMH5nrW4cnyy+3RD/dRKMCq1hgjwmCrykgGwaUjEh8JMnIsycS7CxPkoRcNNsSuI5Xc+cyWv06tOsWvvHKFYiVBdoIMncPMT1oSAc9k2nkrs4XRmMQxil2+BJ2KXuCM6eV3K63pQyqt84bP3cjXdRPohGb3PBq9zzMlCcGdwgg+1X8BXMmpq0+S5INMXgugrqE3R7qJDnCqBEC27CsiqTVFoLJg+kpaHedPLvOEja2l0uLMMemc44J2h191Y42gJieFiE8PFFvK2C9NWCKtlomv2WhJ4lFKlaW65QX0qmD4Khh9TXDt1NmO6+dz4MeJ6EL+i86vdb9LtubZqerNQJU+GLZMzXGQND2nDQ9ZwkzXcjUTJaCRHxiajwl2y2Uh8qiRJ1fEtI0XOYw3f33V/lQVR1aBoK0yUvKQNjaFsG6/M9td6FHb7Fri/bYgm98YmeqsqVDLn58pUB8PxdnLlxRltn7vkkKf2OM2BW+S+WkmF2ub1UA0k6hoE6t2oSG2YSF29erXhtizLtLa24vGsw0u+TbFdiBQsr5FaDZIsKOsK2ZKXXNFNrlQhWsXF61zJTb7kIVd0ky25KaqqQ6r8AssvljW7lMuwI7jAgX1jKIqglHdx9sV+9LQbkTGxUxaKrtN/e4b2njx+T5mAp0TAW3aWvSUCnjJuzdgWFighcHqPmDK25VxbloxpKViWXLlIWKaCWbltmgqmpWCYzqW6bJoKhqVUHq88r/L4stumXLu/+lrdcH6cJcnm6IGrvPe+07S1NP7wCgSGYmHJmyuU32pYQuK12V6+MznAZCECOESmnxTSmJvEdCVpTxYYIVBayuQ9akNMechV5LbWCY60TTDnc5MXLjySyT3qBOaMxlxdwMVULkSi1UtpEOxY3WnJAO2ShOusRFuySFt7rqHpcFNHblPWKSHg8ukOfvCVwyzMOLahzp0LPPGpd+juW9j8jttiWJbETDpUq1+aXgiTSG6GMKWIBgrrOjbThptvzgzyetoh/l7ZUSgejI42DH4W5gL85R89RHLBT9fDU7S9N4GQJFyY3O6O06Eu2n5NW+Kt6R384Mp+RlIttfuX1j/ZAl5b6OVrkwdr9VP7ArN8quckO1aY8V8x6jyvMnEhwuS5COPnokxfDteaeQtAb/ZQjvlBllBki7uPXuCR95/G4zMbwiZuBUxb4rVkL08m9jBRjADOwPj2yCSPxy6z2z9/U86veknhv/3nhxh2tVJqrZ6/LPbsmyQVUJiRKoX1tsD/hk7o6RKu6cXjUPNYdAxk6T6QoXMgS/O+AkW/xoLlI2l6WbC8LFgekqaXktBQsNnlWWDQm2DQN8Mezzyq1DhRsmB4mTf8TBdDfHHkKCcWegGnHcJP9Zzj3tbRFSYEBKpk4q2oT0rd5EvZclEw/BQtL+udRFswvPzx+DHmDT8htcQ/6X5jwz24NgNLSOQNh/zkTDc5w0XedDu3jUXFKGcsXpdX6YN1LSiSRaBCegI18lMmoOkEtDJ+xcCjGPiURfK06UmtDYxAZQQR1SBrqYyXvBTqYsUNW+Ht+V5OJHuwhdPC4FB0gjubr+Jeh2KbL7u5MhNjeLqD+eziOFBTDHa1zbC7fZqOSPLWjm3WIlHbsMnutWx8K+HHgkj9fcS7jkhtsm+UYcoVVctDquBlONvClUITE0aYtHBxuGeC3mZnAJnIBHnn4k7slAs1J6Hk1y8VK7KF31PG59bxucp4XAZel45HNXBrJm7FRFNMNMVCky1U2caqkJsGolJHSqwKKbHqSEqVvFTJUY3AVImRqdyywdBSOARqlEfuP0Nr88ozl845cvPRzVsFw5Z5eWYn35kcZLbkDJZUYRFK2tijXmRTwlYFRkggt+rkNK1hP7d4crWwiN2RuZqtpCQUXi72kBFuXJjc55nAsmVOVWx7U/risScLm7ZskfCogXRKJXk1WIngXxnh1ryTINidrUW2N3fm8AZWTtabmw7y1FeOMHy2HQB/qMQjHzvN4buvbkmD4s3gVhCmpTCFxHPzfXx3bh9l21Gk742M8VNt5wmqjTUo0xMR/vpz76GESv+nruDd6cz+xpQct7vjeCRnUF0wNF68uoen6/o/qbLFvd1XeKzvAp3BlUNVFuun9mEIBQnB/c2jfKzrDGHNsdLUHy+FOQ8nvryHiXNNzIwGl0Vk+8JlWvYVmJJjLOSc71p//zQf/ehrRKPOQHhpat/NRM7UeH62n2dm+0kbziy4SzZ5oHmUx2KXabsJg/UqLk+18ufffoCkx/m8JGx22glaLi2QOu2iXFAp7VXJPO6ltH/xuGyLZ7nTnmBnfxJiEnOWjznTz7zhqE1Lk/G6XWkGvTMM+hIMeGfxLOmtVLYVcqbbCR2wNWykitpiI2EzV/YzkosgAT61TJO7QKc3jVfVK7W19rLjwLJlR30y/VhiY9UNibKfz03cSdr00KQV+Cfdb2yqLq0atpAzqkSo8TpfI0SLpGilsKL1QMZuUIMCWqM6FKiQpPrbLtlq2G8bDZNYNzYw+lQkm7BqkjQ0xote9FWUs7Tu4ZXZfkZyjv3cq+gcbxlh/woJlrqpOM1y4x1MLzTVjnlZsulunmN3+zS9zXOoN6JZ7kawEoGChlAJyd4eDhbYHIGqvmZHZJZ3Ro/w2Z/6kxuwZRvDDSVSzzzzDM888wwzMzPYduMX7M/+7M82vrW3GO82IiUrzg+EjYQQYNtSjUhYVQWlQiTWJiXO42VVJrfDBq/T1+PKVBtnZjtpOFHaAm/Bxlu00bIOsbJsGQvZabYnSZVu35s8udrCScSpJONI9pLlJdeb+S+ybKOqFqpioSrOsqLYaKqFolioqu08VnetKBaaYqGqFlrtfhNNtdFUE011HtdUs/K86nMWX+9SLdxeHWmNycH692MjKG2yaP56ULYUXkj0873J/SR1RwmQTYF7WsE9IyMUMMM2cotBVmn8Ue8OpLijbYzb2yboDaw+a1cWMi8We8kJN7YtcTbZQa5ix5Cx2eOd50ggzgFfoqHuQwjIJT0VBSvQ0A+rkFmewFWFP1JajGnvzhJqLnDpbBfvvLwL25aRFZvjj17mgQ+cx+29Ofat6yVMVTve9RCmlXAu18pX4wdJ6I46t9O7wCfbz6zYoHV0uJUv/LcH8PQV2PHxq8geGwWbg65ZdqkpJAlm8wF+MLKfl8YW+z+FXEXeu+sSD+24tKz/02qY1718beIQryUd9cEjGzzsvcKusRTBWIaeY7MUki6+8OsPUUwtfhci7QW6B5N0Dybp3JfkwtUdPP30YUxTxe02eN/73ubOO4caB4y3gEglSn5+MLOHl+Z3oleO9YhW5JG2IR5quYJfvXkx+8PxFr712m0Mp5wJBmyBfyRP+J0kWm7x+NC8Jm3H8oRuK1PaqzIRjJAWbue8Kju2ardk4pEN3LKBRzbwygYxLcuAd5Zed5pWtYBriYphCdCFVLmAXS2muE4IAWXLTcH0U7I8m1rnZCnIn0wcI2e5ibly/Fr3G4S1MkJAyVKXEKBFYpSvKEa5BvXIvemwBZ+qE6iqQzUCZOCrBDAEVKOOKJXxKuZ1nCMWI80t26mr2pJI8w2OOjXJJqiazJbdTJY9mOvYhvF8lJdmdpPUncmAVneW+2OXibmzTCw0Mxxv5+psW8M5ty2cqjTLTeDRtkl7i2uRqG0UKrFRArWsbgpHkTo5dpR/86HPbe3GbQI3jEj9/u//Pn/wB3/AsWPH6OjoaGjGC/DNb35zc1t8C7FdiFR8PsOv/qf/g67QHHldwzDVGhFaVF2W2NCuU3Vp3jdP/yOjKC4bPa9x+Xt9ZCZCWC6BERHoUediL3FuSiZoaQlX0rkoeSpzhYDsTAYL2WnsKqkCSRGL90tOqISNjMXmZrYU2cKjOUqXz6Xjc+v4PSX8Hp2At0jAWybkKxLyFQj7SwT8BdQbdK5ZjHav1mg5dVrV2VAJgS0kSqvYLFZ696ZkoavOjP5GY5w3iqKp8tTkPr4/uY+icAiSpINnWkbNSIiwjWhaHlPeH56tKU8x39p+8bTp5nS+nZO5dib0EAORBEFXGdOWyBU9DHrmOOhP4Fc2/uNVyLiYnwrUSFa18XB2YdHbLgChytguheq0pNddom9vnO6+BZorSlaoubhlitRKhCmejDCTDmGvMnt4MwjTUszpPr6WOMCprFOHE1TKfCR2juPh8RXrpi6c6eTrXzxO7PE4zcccBTsilzjmniYg6QwlW3lquLH+qSvo9H863rV6/6fVYJkSieEQbw5385xnF+mwczI6pEzya3e+AMC3f+9OinM+ugeSdB9I0rU/RbDZIWozMyG+8Y17GB937IR79kzxkY+8RiSyvH7iZhEpIeByroUnZ/bwTqqz9r96vCmeiF3iruh4zXVwI1FMq0ydD3LybCdvFXaTDIWQJRufWqI5mad1LIE/UiQ6UCDYX8bbZqAEbFAFLsnCUyFJHtmsESaPbOCWTOTKuc8lCVyASxKoS3apEKCzSJ4cqiYte45TyyojhFQJspErE4mVwT0yRVPjzflu3p7vIW+6KVsqtzVN8UDbKG7VWrbe1aBbSoMSlDNdjBfDvFbowkLGjUmTVaJUR5qsTZ6fvUpFEaqQooDqWOca7ysT1HSCWgm/WkaWJCzhTGTabDZt79qoqVCVhrxb8n828ZX2yBZe2SJe9jBd9tSCqdYDS0icSXbxRt0khVYUSEmt1jA87MvT3z7N7lickHd71H0Di7t6aaBEfT3UNgmV2AoCVcWPBZHq6OjgP/yH/8Av/uIvXvdGbhdsFyJ1ZXKeT/2rv7iudciS3aCGVJWXeqVFUW00zcR3MI2r1zlxiJSCctmNZgvMApz5lp/SvITHb3LXLyWRWiUmRZAJM8yYEaa0pCA3oJTZE5hlIDTDYCROzJ9DkZfbKpbCsiUKZTf5YiVIo1LTVa3tWlb7VfJgrqcB5hJIko3PrdfquPyV2q7acrXGy1uq1X5p6tbI+dWf2NXWttouqm8s6jG1LY9ET+QCfPXibZwodGBVYvLkEmjzMppkY0Vsiix+zopksz+acGLKWyeIetb+0cmaLoc85dsZLUVrg0UJQZ9nge5QEl1SULC52zNJm7K1Hd/LBZX5qQAX3+ngxCt95HMVYmXbyGUL2Vp+6tPcJs0Va2BL16JNMBorICsrnyrfLYRpKXRb4cm53fxgfjemUJCxeahphA+2Xlw1Be7Ea7t4+uVBen5mDHezDgj2agvsUeY5Ee/lB1cGGuqfDrZO8nj/eQav0f+pHuWCwtSliBMKcS7K1MUIpr5Y35Q5pFJ6v+D/e+/3CblKvB3fQbtUZndTY12bZUm89NIgzzxzCMtS8Hh03v/+t7jjjiurbsuNJlKWkHgz2cWTib21QA2Aw+Fpnmi7xP7g7HV+/tWWEfbipE7lGtummNYoJFX0vIxZlsAtobXaeIIGPncZn6bjvo74ZgmBhkOaXJJAW4E4lYVM0VYoWhpFoSKEjGkr1S2vECa5QpgWY4TWi8lCiK9fPcT5dAyAkFbiQ93naPXkK+pQRRlqUIwW7zOWOABk1cIdcIIpLFOmnHMvs40CuGVzsY6oQoj8S9SjeoLkV/U1yHKliX1dk9ybQZ6q/1uWK46xrbLxbXJOwK+YKJJgquRhRndveDsyBS9D8Q4uJzpIulzYflEhIYIOJcs9sWHagzehWe5GsZoKtc1CJTaaxLcWgarix4JINTc38/rrr9Pf33/dG7ldsF2IVCZf4jf+6+9z984L5GwZRaFCgqrkyMKtmSiKjbKUKFWeJ69jFjNva7xe7iRte3AGQvMMaE4B88JVlS/8cieZaY1It8HP//kUke7GH1ZbwFg+yvlUjHPpGJcyrbXZnipaPTkGwwkGwnEGIjOEtK2JBxXCaYa3SLSqpMtTI2IO8VokX0V9devXWnCpRoVslWphGvWhGotBG861x6WvOIO/FtY+6TiRzra8dfVSqZyXNy7v4pmZ3cS9vlqSo1QGd8nG1iT0OkupSzY52DzNHW3jHG2dxK8t1skIQcXqIdWus4aLc6U2zhRiXNUjDYPRLjXDPtcce1zz+DCxhMQlLUJacSMJwa5SlqBpOuuzK4MqW1r2P5xrsCuzpKL+dt3jxbybiyc7mR6LggSKarFzYJb2niTFvIt8xk0+66aYdVHIuSgWXIjqAEkCIS0uS7JA85q4fSYur4nmsVA9FlnDew3CpFdIUvqWEaalEAJOZDv4RuIAC9UwB/8sn2w/TYd7dWXxpWf3cTrXTuyhOJICXgwOqrOcmejmmSv7WdhA/VM98ikXE+eijJ+LMnkuQmIkiFiyPz0Bw1GbBpN0Dy4QGVhAUm2mCyH+w+n3YQqFB1pG+GjnWcJamUQizNe/fg+Tk04vsH37Jvnpn36NcHht8n+jiFTBUnlxzjnu5itWI02yuLf5Ko+1XabTm6n8f7uB/KxMiiq3V3zOlm0yuq1QsjXKQsWskBsJUBC4JBtNslEkG1fl4pVNPLK57Bw4UozyVrqLtzNdDBeauDM8xX2RsZpl0bTl2nFXDYK43n0vBJxJtfO1q4eYqfSf2ghUySKg6bhcOjlVBUkiJJU56kkQdpUqtUYVBUnV8WvlZTbFTWz1GuRJxqmiuJEnjUUbn7Cl2md+navc9AtDqoktYKLkY8FYf31YUdcYSTjNcmczkdr9qmzR1jZPyuMiaTrHYEgrcn/rEDtvUoDLulAlUUv3XXX7tkmT3Y0k8a2HQFXxY0Gkfuu3fotAIMDv/M7vXPdGbhdsFyIF8L98/p/yy/c9R7zkwVpSI1VtNHc9p+spM8Db5XZMFFyY3OGeJqY6SsDskMYX/2EnuVmVpl06n/7zKYKxa6ehGbbMlWwz5yrE6kq2eUlRMfT4kxVilWBfeBbPFvc9WQuWJZEvV5MMPQ3qV76ieuWWqF6rDYzXgizZjYSrjoB5XYZzbrQlx5JSRxCq5KCBKFQe97jLPHjXCTTNYmi0i1MX99SeWyUb1eeuTDgkyrpDPLOWi2xUxmiyF7u1GyDMit+yqhjZAk/JxlO0cZWcbRYr/M/aYEe1Udp05PYScpPRYI2z0ypW3I0Vd0N5uZIoyTYHHhimtTeJbUuc+2E/s2NNy5633bEdCdNKmCoF+Wr8IBcLTiF2k1bg47GzHA2u3mxYCHjy6UPMdav4e51zRYsoMDHWyg9H9zTUPz1cqX8KrVL/JAQkp301tWnifJTklH/Z80JtRboHkvQMJukaTNLSna99r+qjzkvFAF8ZP8rrdfVTA/kkM093YBsqHk+ZD33oLY4eHVnX57A5IuWMelYiNgVLYzgfJVEK4FIsfIpOSCvS6cnQ5CqgSFbda9b579aBckmlWNIomRoloVJSNEqqRgmNkl29qJRE3e2kRmnWQ1s0y86uJE1qkWa1iF/W67ZNOMqLUsav6Hhlo6FHETgELGtWmrNaHgqWxmvpbp5f6CNZaaLtkQ3ui4xxf3SUQF3AhCQ7sd2i0pLiemHaEi8k+nkxsQtFEo4SVFWMltQZBTSdoFrGr5VxyxYnsh18cfoQNjIHAwl+seOdG2C3XIk8yXXKE9xY8uRgy8Mkrms3Lcabjxe9ZK1rJw+aluw0y413MDHfXCOAEoLOpnknNKJ1Fs1lgQ2XM228MtNPwXImWXsrcenRNXpr3nCspkLBtqqH2oiNrz5YcL34e0ukfvM3f7O2bNs2f/EXf8Hhw4c5fPgwmtb4Jf/P//k/X8dm3xpsFyKVz5X4xD2/R9euFLvunKXvrjlaenNOvY3sDNQRK3VDujZsAWf1VoZMZ5DaJBc55p7CV/kRS5x38YV/1EkxqdC6t8zP/dk0gZbNNZksmiqXMq2cS8c4n4oxXog2PK5INn2BeQYjCQbDCfqC81vWjXwrIIQzq5WvtxmuES2fK7kpb2DGbKMY3HWVf/ChpwH4q+8+wtnhnRt6veUS6G0WRkQsntEswJArrFxCMkHNg5aXUIpce7ZLsZHbdJT2MnKz3kieMg55shNuKEnI1YbJkmOxlCWBLFcGELKNJNvsOjZBtCeDEDB5op3MZNh5jWzXXutcN96WKwOA6nU+42Z2KoRRVpGEwBco07kziT9QRpYXnyctea3zvyp9x2TRsG4JQbmoUsy4KKZd5NNu8ik3uQUPIiehFSz6ds/wyC+cJbZj+/SSqUfBUvnu7D6eX9iFjYwqWTzePMTjLUO4Vu25A6Yp8XevHcYc0FHcNsKEVCLEKxf3UG1W2hlM8Xjfee7uGllW/2RbEjMjQSbORxg/G2XyfJR8aolCLAlae3O1YIjugRSh1pX7d60UdQ5wOdfMX165nUkjDICSg4Fkis88/BLh8Hp7gQkUycStGJi2VJllvbZCxBaSoGo9UNXSJursbYvXMuWCQnwqyORMiHgqxJzhoxByU2pRKUddq5JAYYFR0DDzKjF3jmPtY6TfDPD2F3aDLvG+z5zktkeuNrxGk0x8itM01aeUlzW+Nm2ZrOUmZ3rImp5Kmtry/28JiROZDp5d6CNeCTRRJYtjwSneEx2lpTKI3SpV6nrwo1Q3X0scQCBxe3CKT3Wc3sKeXauTJwsJcZPIU21btjJM4jp3kYwgoulkTI2JopfCGkFLtoB4somheDujMzGMuij0lmCG/vZp+mJxfG69UrstkGyJ6seo2wpvzffyTsqJS5exORSd5M6mUdzKjW2wvQyrqVBQ12T31pKoG02gqvh7S6Qefvjhdf1TSZJ49tln17+V2wTbhUi9/fJlfvtX/nuD/zrSUWD3XTPsvydB574k0ka9Y0DBVnmj3MmC7cwG7lYXOOCarVkwJk+5+dI/7qCUUWg/UOLn/nQaX/TaxGa958yM7uZ8OlYjVrPlQMPjbtlgb2iWgUiCA+EE3f7Uhi1ytxr10fL1ylbVZljUXQ2D9oZBvNw4uF9KDmRZ0Nc7TnfnDKYpc/r8XnTdtbgu2ZnBnU8HmJxpYnKmiXzJg+kVlDoszFUIVFQrsj80w/5wgh5fCqW6HfLK22EiMaw3caHcyrDe1NAvqk3NcciX4LB/mjZXHqlClNY7wBQC3tbbGTPDgOCoK8Eu7dq2sCpmJkM8+eWjjF5oAyAYKfDIx09z8K7xG6YIlfIqr/zNXt78/i4sUwFJcPjBcR785HmC0VvQ6X4F2AJ+lOrhb2YGyVZmX48Ep/l47Gxt4Loa8rrK964MoPQ4ds5Myssb5/ZQLDnrOdg6xWN95znQuqhmGWWZqYtVtSnC1IUIeqlxMKSoNu170vRUiFPX/tS6Gt6u1hrANGVeeOEAzz1/gHw35A6aWJVwnP2BGT7Vc5Je30rfJYEiWaiyjiobqCuoKxuBEGDYKhnTTdrwUjBd5C03LsmizZOnSSsC9aRoKUmqHk+LX1hLSCzoHkYmo4zNhZktB8i6XFgtMvhW/2K7LZMWLY9b2ExONzMx1YKRVxElmeP9I7zv0GlaQzne+P4unv7LQwC899NnOf7BYRSsOuKkLyPatpDIWS6ypoec6aFoa2xsyGRzNtfO0/N9XC1FK+9YcDgQ5+HoCD2+TC3k4FbghYWd/O3sfgDuCY/xsdi5Lfg9Wpk8mRXl6eaSJwdbGiaxicNGCDAshaKhUTI0dFNFtmRmS16mi34Klft0U0M3VHRTpWxW7jOc++vJdsBTdEIj2uNE/IutAhyzRSOJqkdK9/LybD+jeae206vo3N1yhYHQ+us6N421VKj6eqhbGCpxswhUFX9vidTfd2wXIgXwL//6n3AgP8KbP+xm9FRzrYkkgD9SZvddM+w5PsOOwwuormuTnbjp561yOzoqGha3u+N0qot1EGNvevjyr3Wg52W6byvys38SxxO8serQTMlfswGeT8fIGo2RgAG1xEB4hoGKYtXmyW0re9T1YjNvpb5eShISHlPFNBUuXe3k9HAPZ4e7yZec/ViO2JS6LSxf3QpMwJTp8SU51jbO7W0TdAdS19yvhi1zodDKyXw75wttDV3v27Qch/1xjgSmibmuv8eNEHBSb2PEdAZXh1wJdmupNV9TzGs8/zcHeOuFfoSQUFSLe564xH3vu4DLfXNmFVMzPp7/0gDnf9QFOIEVxz84zPEPDW2qUfBWYbQY4SvThxitDFZjriyfaD/DYGD2mq+dKAb5Ua4bxWdj2xIXr3QxPNaOKtvcU6l/6gqmKWQ0Js87TW8nzkVJDIewrcZZU5fPoHsgVVGbknTsyazr3LUU9eEr1WbVk5NRvvGNe4jHnfd44MAYT3zobV7I7uTJxN5a/6kHWkb4WOcZoq58jTStRJycWjvFCTyoqD/XUohKpsrL87t4cmYfM5VJIkWyubtpjMfbLtOzIolrRMlWmDd9zJs+4rkA05kgSeGl6FVBWeUgtQWunEVElIj5c3Q3pWnRijSpBRLzEb578jBnJ53vpCzZHO+/UiNQACef7+G7f3IbHq/OR3/lDe56cASfoi/r5SQElGyNvOUiU1GdBJubGa/ub8Ny9uNIKcJzC31cqFhNAfb5Znmk5Qr9noX1z8RsAYSAp+Z389T8bgAeil7hQ62Xri86HBq+Y43k6Vb9qG1NmESVCJUqRKhKiEqGRtHUlt1fe9xcXLavU2FxqQZ9sQT97dPEwo2/Z9UE4Sp3vdYcydV8Ey/N7CZVqRttc2d4oG2Idu8NchmspUJtg1CJ9RKojdQ/rQc/IVLvUmwnIvWvvvVr/IOjLxAveSgW3YycaObK660MvdlKOb9oo3R5TPrumGXP3TP03zGH2788EOK80cIlwym2jsgl7nJP4ZcX46VHXvHylX/WjlmS2XG8yCf/6zQu/839OtgCJgthzqbaOZeOcTHduqwbe7M7z2A4wWDEqbGKuJZbdd4tX+LrOdHU95caHuni8996BN3QEAhMj8DssCg3CezqwKviqe71pLgnNsodbRO0XSOmHJymrBcLrZzMtXOu0IZe17SyWc1zJBDniH+adtfWE1wh4IzRypDhWFAHtVn2uRaWPc+2JN7+4S6e/5sDFPOOQrL/tgke/cQpoi23xuc+eTnKM58/wOQlZ9sDkRIPfvI8hx4cR76Jjoys6eJbMwO8mtoBOGliH2i5yMPNV5bZspbCEhI/SnczozmDiVzew9tn+xC6wsM7L3K7f5z0JR8T5x3VaX4isGwdgeaSozZVoshbenLIGw/abNwuyaZcSZNzmyrCUHnuuUO8+OIgti3j85X4qZ96g0OHxmqvmS97eC3ZhSybHAhNsy8YX2bZEULCtFVM24Vha9hCwaVY66qRSuoenpndzQuzfeQrzVL9is5DrcO8t3WY6JLzlBCQsdzMWz7mTa9DnAwfs2U/RXmNOpCiQEoI/EWDZrVAV1Oa/u4F2sP5ZZ/nyGzLNQkUCBLnQiSHgwwenqR//wzKktqfkqVSsF01AmUIFdNWsK9jVrxKKOrDJaqYKgd5PrmTd7Idtf2+w5PkvU0jDAZmbrhDQQj49uw+XkjuAuD9LZd4pGn1dMc11rRNyROsFCahm2oj4akQoKLeSHiWEaXKc1fre7cRyJKNT9NxqSayYuHSTFyqiUs1cKsmLs3ApZrOcuV+l2ri0ky8mr5iwNZKVr71wBISp1NdvD6/s5beuC8U556WK/iXNCTfNNZSoaChye6tCJVYbxLfVhOoKn5CpN6l2K5EykKt1HXYmLrM2NkmLv+ojcuvtZFbWFRxZNWm9+ACe+9OsPuuWbSoyRvlTuZsZzDUpyY56Jpt8Hhffs7H1/95DEuX6XugwM/8/+Jonlv/VTBtiZGcE1xxNh1jONuMtaSDeZcvVSNW+0MzeK8jrrceN/rdb/Zkk8l7ODPcw+mhHmzZ5hd/5ilkCb701IOcWNhBOSLQNbmWwIeAiFrkvbEhHuwcJuK+do2IKSQuF5s5levgbL6tId4+qhY57J/mSCBOlytzwyeJhYALRjMXDMdqsU+bq6VKAoxebOXJLx9hZiICQGtnmid+9iS7BmZu7IatA0LAxdc7eO6Lg6RmnBCFtt407/30WXYdmruh/9sSEi8s7OQ7s/srdiu4KzzOR9vOEb5GaqYQcDYV46zVgqvSmHh0oo3ESBMHzGn8F8pMn400nHeqaO7J1dSmnsEkobbSln5HBIJiXYPqmbE2vv71e5iZiQBw6NAoH/7wm/j9xZrSpMkGirS8EWnG8DCca8WvWMRchUrT88UnrSdsYqwQ5snEXl5P9tT6B7W5szzedpn7mq8iy4KFKlGqXC9Ulk3WGHguCJgCpiBQKhPz5djRnqZvzwItvWv3N1ubQGWdgAjZqXHySCbqklo23VYoWC7ylouC5UJIErLkKNKGrVy3clAlFosWspUxb3h5IbmTNzJdmJXzfsyV4+GmK9wemt7COqVF2AK+ljjAa+keAD7Sdp4Holev8ap6rEGeKoE/NwqmLVEyXDWSU9BdK6hALooVwlQ0XBT1xeebW0CEJITT01Ez8FQuXk13rtX6+yrL6uJys6eIVzGZ1jcXb74SNkui6lEwNX4018f5jNNbT5NMjjVf5UhkYtmkw4awlgoFtzxUYj1JfDeKQFXxEyL1LsX2JVJKLSWo/kMSNkwPhbn8WhuXf9TWMCvsHSzS9S9mkAMCRdjc7onTrWYb/sf57/v51v8nhm1K7Hssx0f+UwL1xmUlXBfKlsLFTCvnUo4N8Gq+MdFNxmZXcKFGrHYH59BucXDFagfURk46c6kAp4d6OT3Uw9XpVsdKJAkMPzz+njd49MBpyqbKf3jrA0wXI5X1CwZDCT616216Ate2I1hCYrjYxMl8O2fyMYr24pcgrJQ4HIhz2D9Nr/vW9Nm4pDdx1nAsP7vVBbpzeZ756mHOv90NgMen89BPneWO91xZtcfTrYJpyLz91E5e/uZeSgVnv/YfTfDenz9LS/e1VcGN4mK+ma/EDzFdds5fPZ4Un2w/Tb8vuebrLFvirXgPb2U7ae106uTKusr513cg/0DCfdls+N7Kik377kwtirxrIIUvtPEmyuuFQKArJpYswJZ4+ft38MILBxBCpq11gZ/9xA/ZtSOOugpxsoWMaWvolsabyR38xdVjNevO/uAMP9d9ssF6txqRsgWcybTzZGIv57NtgECRBX3BOQ5EEng1gwXLx4LpJWV5WPVoNwVM41ymQJoSuJIWnZEM3XsydA1m6RjI4gmszxI6OtvMd04eaSBQd/UN85HbTtAbTuJbJSAik/IwOR0lsitPwXYUp+r7V2SBZUuYQsGw5dXfyzrh2IJs7EqgwnqQNV28nO7l5VRvrZF5RC3ynqZRjocncK8RkLIRWELiC9OHeSfbgYTgE+1nOB6eXMcrt4Y8Wba0SHZWIkB1t4tLbpcMrSFgYbOQELjriI63QnaWkaOV7tMMXMry4+7acOLNLSExUfKS3IKwpqqVD0Cyr23lWw8SxSA/nN1DouScV8NawYlLDyx3SayJa6lQUBcqcfProdZj49uK+qf14CdE6l2K7UqkhKwgS/Y1T8rzEz4uvRbjqiuE66ESkgzlMY2p/7ONoFJm73GnrqpjT5ozfxfg2/9LG8KWOPDBLB/+dzMo104X3TbIGi4nuKJCrBJLeoS4ZJM9oTkGw3EGwwl2BFLXVUB+syAETM1GOT3Uw+nhXqbnnJoPIQv0AGhtJXIeFRMZSbH4jTufZqBpmul8mP/89uPc13aVD3RfWNH2WA9bwJVSEydz7ZzJt5OvI08BpVyredrh3h6BH8NGhFO601gz+UqUya91IQG3P3iFh376LL7AFtktbhAKWY2Xv7mXt3+wC9uSkWSbow+P8cDPXMQfvv5AigXDyzcSg7ydcQbSfqXMT7dd4N7I1TU/v4Kh8dzlvbw42U///mlamxziPTcRZvyLXXhPFZEtgctj0rnfqW/qGUzSsTeN5r55ExXVqHMh4Mmv3Y1kSuzpm+Tg4AjRyHJCatkKpq1hCg3TrtZgLO6IkqXw3fh+vp/Yi1mpn3qw0n8qpJWXEamSJfP8fD+vpHrJCxeaauFWTbyasdhnbAXIRRsxAWJSQppaVJqYE7T2FOgczNJ1IEvnQIbma6hNK8EhUIc5O+lMKjT7svzM7W/ynt2XaPbklk0mWUJiIePn2W8NcvqtHrxtZT76P71Vm4CQcEJrEGAI5bptfPWQJYFd6Ye0MQh0FF5N9vBCclctLMWn6DwQucr90TF8yuZJvGHL/OXUUc7l25Cx+XTHKY6G4mtuz1LypFsKubKbgu6iYLhqtrii4WogQEtVoipR0reACAF4VL2RCGkGXpdeUYZM3KqBRzVXJkLq8t5fS972lkJCENlgvPm1UKuHsitH+xZusxBwMRvj1dm+Wlz6Dv8897cOEXGt3ZcOuLYKdQvrobYTgariJ0TqXYrtSqSkSmHFtT6gslB4s9zBjOVYiQJxg+QXI1w90YxtLv54ub1litNFRDbPwcdn+NBnZ667duFWY67k41yFWJ1Lx8gY3obH/WqZ/eEZR7EKJ2j3ZrdNcIVtS4xOt9SUp4WMQwptRWCGBGpbmYymVXpyCVAFsmZjSxIBrchvH/s7wu4iwlTxidVPwLaAq+UIJ3MdnM7HyFqL9iy/rHPQH+dIIE6fZ2FbkKcqhICzb3Tzoys7afrgLJIMxgUPD8ZGae9ef6LfdsDCtJ/nvjTIpTccq4jLa3DPh4e48wPDaJsIXjBsmafn+/n+3B4MoTqEIDrKh9ou4F9lcJmZ9XD2TAcvxncz7GmltSPF4f2juDQLy5SY+H432R8GGegaZefBeboHk7TtzN0itU+AZIFawi2ZWEWFoH/5JIFlKxi2Q5pMW0OsZZ2rw1zZx1cnD/FG0rFzeWWDD7afpz8yx6zlZ7IcYqIcpoy6+vlCCLxlA2XWxhhW0IeURcKUdQYe7oBJ56CjNHUOZuncn8W9TrVpJVQJ1MhMK0c6x7m95yr377pMLNjoOhACirZG3nJTsFyMDLXwhc/eR7mo0Xckwcd/8w1UzfneyZKNLDm1S/oW2PjqUR8usZmhWDXRVLcU3sx08dzCLuYriqJLMrk7MsF7oiNENtjwvWwr/Nnk7QwVmlEli481nadLyVE0XBQMrWZ/a1CLKgSpYLgoVB7Xza2ZhXTXqT01W1ydTa6eJDnLegMhajxvLw2TADYTDnIDDvv6ePPxoo/iFlgLt8LKtx7olsKbCzs4mezGxolLPxKd4FjTVVwrxaWvR4WqkiiLm1oPtR0JVBU/NkTqr/7qr/jjP/5jRkZGePXVV9mxYwf/5b/8F3bt2sVP//RPX9eG3wpsRyI1o7sR0vKi3KWYt7y8Xu6gJDQUbI64EuzQnNnlcl5l+K2WWl2VZS6etNw+g/5jTljFrtvmcPtuXbrYVkEImCqGnPqqVDsXMm2Ulsx2NbkKtTTAwXCc6Drqh7YSpilzebyd00O9nLnSTa7gED9LE1hhC6XVIKPU94ERBH1FdFmhXCl+DWkl3td5gYc6L4KrvKynDjj7Yrwc5mS+g1O5GGlrkWB6ZZ2D/gRH/HH6vQs3pO7gejE9FuGpLx9h7LJj7et4T5zmn54BSaJLyXDMPb2tSN96MXa+iWc+f4D4FUdxDDUXeM/PXuDAvRPrUiWEgNO5GF+LH2TOcCZOdvvm+WT7abo9i3ZOYcPchJ+Js07T2wvTMSa6o+R2ulA0mwN7xujtdGq2CpNern5lJx2hND//ay/ivklph0veWSWKvJqopy9Tkm3bCYawUeuI0/UN+k9n2/hWYpCSrOFzl1cMBRECvMKgKV9AnhQUL6ik33JjjStI9ZxVErTsLFRIU4auA1maujeuNq2Eq7NRLkx00OQpcnv3KPvb4g21GkJA2VadGifbTcFa3DezE0E+/wf3Usy56dk/x8/+1mtobmuZjc+05WsGbGwEa4VLrBuSs40IRw+yhMSpbIxnF/qYqthYFWxuD03xcNMIMbeTHioEpIo+ptMh4pkwiWyIvO7UB+VNFwutEpbH6atlX/VD/vqUIZdi1sjNagSodp+rkTS5VfP66m5qWB4msameUDfo50CVbEKKSdLQGC/50K+TsC9a+W48iapHSvfy0uxuruadIC+vonNvyzD7QolFQnItFQoaQiWkDau1m8O1CNSNrn9aD34siNQf/dEf8bu/+7v8i3/xL/jsZz/LmTNn6Ovr48///M/5i7/4C5577rnr3vibje1IpOYMF5ZQVz0OhYAhM8pZ3amfCUhljnumCMnLrU4vfy7C8/+lGcnnI3aHRrEcamiKqWgWO4/Ms+f4DLvvmsUf2d52qfXCEhIjuSZHrUrFGMq21AqYq+jwpheDK8Iz+NWtrfcwLZl01sd4opnTwz2cG+mirLsQCGw3iKiJaDbJSo1NSrsDCwR9JUaLUYqVRLAmV54PdF/gwbYrtRmwqvUJ4aSZTZcjnMy1cyrfQdJcJE8eyeCAf4bDgWn2eOevmd52q5DPunj+Wwd5+6VdICRUzeS+91/knscvMiP7eKPciUCiQ8lyp/vGFJ/faAgbzr7SxQtfHiAz78yut/cleeTTZ+kdWN17nyj7+Wr8IOfyjtUxrBb5WOwcx0KT2KbE9FC4FkU+eT5KMa+R2+kiedBHKVapMwnlODY4hMdngIDECzHiz7Zz6OgYH/n511BumvrkNL+9VhR5ydJ48819tLQWaO9Ks6mZ9SVImR4ulZu5XGpmXA83kAfDlCmUXZRNFX9Rp+NMBulJm+zU8pANT9CgcyBL54EsXYMZOvblrkttaoTALZvoRRXblNgVncOjNYbq6LZSCYdwVCdrhX2zEPfz139wH/mUh47+JD/3r17B47WQZfuG2PiqWG+4xLrWJYtlfaWEgIuFFp6d38Vwsbl6L1FTR1tQSM4HKZkr1N0oNvKuPJLXRpgS9qgPiiqa4tg1fZreYImrhiM4y4vEyLdENdoaIrR51HpCIW0+0vwGvgWXZBNQTGZ0N5NlTy2k5XogbpCVb70YzTXx0uxu0tW4dE+GB9suE/NU1OH1kKibFCpxrSS+7UCgqvixIFKDg4P823/7b/nIRz5CMBjk5MmT9PX1cebMGR566CHm5m5sMtWNwHYlUqZYeZZMFzJvl9uZthwrWLeS4ag7jrbCQOSF/yvKy3/kBDQ88OsLPPAbSYQNU5citbCK5LR/8UWSoGt/ir13J9hzfIZoxzo8wO8SlC2Fy9mWWn3VaK6pYRAlYbMzkKwRqz3BuZUl+wqEgGLZRTLrJ5nxk8z6SVWuq/dl897a/xAILC9IzQZmxCbP4g+9hM3eyCwHWqZJWR5emdtZU9Niniwf7D7Hva1XUZfUPthCkJVBUw3Shpc/Gn2oVpztkkwGfTMcCcTZ6731IRxrwTIl3ny+nxe+PUi56OyXA3eO8cjHTxNuWvwOxk0/r5U7sZFpU/Icd09uW1J4LRi6zBvf6+PVv92DXnQ+s73Hpnno587R3LHYl6tkKXxvbi/PzvdjIaNg81D4CgcSc8ycCzFxLsr05TCm7kwSWJpEZp+H1EEPRsA5h6iSyXsOncfbXARJQirBpb/cQ/5qgLsfvMgTHzlxgyPaBapkNBCnZbOhAjJ5PxeGuuk7NIGOwls/PMCdR6/i8Wx+gkMISJgBLpUc8jRjNka2h4olwpMlpLOCy3IzadlH6JUi3lFj8ewgCVp3FRpselulNlW2Ek2yKk1wnWS9peeebNlN0XZhyRJ5y71sUmgp0nNe/voP7iMz56OtN83P/+tX8Acdpc+spPFtxYB2KTYTLrHm+ipNxwtljelMhOl0mOlMmHgmxHQ6TF5RkVvLSOFFoilyCsy6aJWLdIbSxEJpFLfFy1YnWeHGJ+l8quUMO3wpfC4drZJiaFa2+Uan7W0dqiqUE1zhbPcG9/kNPn16ZQuPbDFd9jBd9myJ6ikqRKDW3/gWwRISJ5PdvDm/oxbYsj80zd3NIyvHpdfXQ92kUIm1kvi2E4Gq4seCSHm9Xi5cuMCOHTsaiNTly5c5fPgwxeK7b+C9nYjUv/7bf8wvHn6JGd2NtYLfP2m5eb3cSUG4kLE57Jphp7o8VU0IeObfN/Pan0cAePh/nufeX0ktW58QMDfu5/KPYlx+rY34ULjh8ZYdWfYcn2Hv3QlifdunvmgrkDNcXMi01eqr4sXGz16VLHb5FujWMjRZRZSC7BCkvJ9U3kc676NsqSBR6Z7uzJItvS3LFlrQpOSXKKI1rH+wOc4dbePsDM/x0kwfLyT60SsWvm5fig91n+OulvFls/UJ3c/JXAen8u1kLBe/tuNFoq4CF3MxzqZ6OOJPsM83i2sbk6cqhs/GeOorR5ibdvZ/rCfJ+z51kt49K0/KzFg+flTqwkKmRS5wt2di2STCjYRtS1yZb+HiTDsuxaQtmKUtmKHFn6sNyDaCfNrFD7++j3ee3YGwZWTF5vZHR7n3oxc5K9r4ZuIAadNRRGILOdqe0sme9i3rSaO0W5TuVplojmBIznco4CrxUP9FQh1ZMjiqpzSpcvK/D2KXFd77gVM8+Ni5G3Bc26iyWbPpqSsm6kk1i16h7OG737uTk6d28iu/+S2CoSK5hQBtwc2p45aQGNfDnM+1cLnUTF6uU3xtgXxZIF4D3gZphf7EnpCjNlVteh37c7j9W2t5VCSrEkmu41fKyyY68rqLk1PdLBT9tLekCfjKrHe4k0u5+es/uI9kPEBTR45f+N2XCEdLN8zGVw/5OklU2VRIZBxLnkOYHNKULvlWfL6EoDmQoymapRCCuOyrvbdud5r3Nl+h053lc+N3kjS9RNQi/6z3ddoqTcTffeTJQU2FElKd8reB7b8Jp0y/YqIgmCx7mN1G8eZbCgnyhosfzfVxIdMOgCab3Nl0lcORiUXXxE0OlVjLxner6p/Wg3cjkdqwMXjXrl2888477Nixo+H+73//+wwMDGx8S3+CBkgsjzsHh/CMmBFO663YyPgknePuKSLK8iJbYcP3/7cW3v6iQ4oe/+1Z7vzFleOwJQlae/O09l7h3k9eITPr4fLrjlI1dibK3NUgc1eDvPqVfoItRScB8O4Zeg4kb2gRuhDOD5xhKc61rdRmUU3bieWtXlfvcx5f/pzqeozKcvWxsqlS1B0bj2WqBC2DsqxgyjK2AqascDnfymVaKxsFuABVgoBU+ZDWsw/kygvBoxgcbpnijrZxDrdMkjU8/N3kAH959fZav6xdgXk+3H2Oo02TDXVAs4aPU7l2TuY7iOuLaYWqZPHWwi7eGzvLvkCCg965hnqp7YqFGT8/+OoRLp3sBMAXKPPwR85w9P6RNdWRNqXAvZ4JXi11MWf7eLnUw72eCVzSjSONed3FuXgnp6a6ODvdSV5fbvWSJJsmX4G2QIa2YJZYMFNbbvHnVrX/+MM67/tHpzn2+AjPfnGQ4RPtvPJOH99t30W5x/kCqPOC6N+ZeC5oZCpkPNJeoHsgibLf4qI/xulUZ60upiOQ4tG+C/S0z3HWbCWDGxWL0qthzvzdHiRJ8KFPvMGd9w1vyf6RsBvUprWiyE1bqzW/BYnh4Rjf+MbdpFJ+fuYfPEswVARLojW4PuKgF2VSU15mJn0Ml5uY9gVJdXgQ3sqXSAZKAk6D9KaAd4Ccs+ZAS5mmo0WiXSWi3UWaugt07MoS6DBWrsC+DsjYlThyhzgtjfA2LJkz8S5OTOzgxGQP4UCBxw+dY3drlemtb3sKWY0v/eE9JOMBwi0FPv3bLxOKlDBspdIT6sYNn5wJH6liLVsbpiWTyAYrRKmiMGXCLBSWN3muIurL0xFK0x5K0x7O0BFKEwtmcKmL+zJpeHghuZPXUt1MlMP85dRtTt0QEq1ann/a+zohtUzZUt915MnBYpiEZSubC5O44QREEFZNTCFxteTbknhzZ61sOxKFAL+q80jsAgfCk/xwZg8z5RCvzPVzLt3B/a1D7KjGpd+EUIl3K4F6N2PDROo3f/M3+fVf/3VKpRJCCF5//XW++MUv8od/+If86Z/+6Y3Yxh97GELiRLmdScthxB1Kltvd8RUHjrYF3/nXrZz6ZggkwQf+YJbbPpFd9ryVYNkS7iaDfY/H6X90hmzGw5XTzYycbmHiUpSEFWT6VIjnz+5G81u07cnS0p8j0lPAlqU6MrNIWhoJ0OqEqOF1tnxN28oNg1W5GMI52ygCZOE0u5WoHDEVP4EQaMLGhYVPNvDIFqpsocn2smu/VuZQ8xSDTXFcis1kIcRfDB/jtbne2uB3X2iGD/ec5UB4sWh1wfByMt/OyVw7U/qiWqhgs8c3xxF/nAP+BB7ZcvafYmHIFrKQUG5BQ7/1oFxSeem7+3nt6T1YpoIs29z58DAPfOgcXv/6LFwtSpH7PRO8XOomaXt5qdTDfZ4J3NLWqAZCwHQmzOmpLk5PdzM819qQZubTygy0TwMwkw0xkwtSNjXm8wHm8wHOJxrXJ0s2Lf6co15VyFX1OuIuMDsSZOJ8BBuTzPsN0repIEtIOoReEoR+aBBrT9P7wSRdg0k69qe5rLfxgysDDCdbIeX8n8GWKR7vu8Ce1jgn9XZOmU49VRNFrn5tB8MnulAUi4//4o84cHR80/tHwmpsfrtCXx/Llmsx5KbtWh5FXlL5/vdv54039gBw70On2HdwDAR4bKVhsGHqEqkpD8lJLwvjXpKTXpKTHubSXvI73Yg7JDgAuOqGCGkBJ8B7waA5l6c5ViK6v0j0kSJN3UUinSVc3sZzaGP8+fVBQuCtKU46niV2RiEgo3t4Y2wXT104wOnpbgxL4a6+ET5xz5u0hdZ33q5HuaDy5X9/N7PjIQKREr/wr18i0FSmbGmYVZn8BqE+XKL+/1i2xFw+4ChMaYcwxbNh5nKBVRMCg+4i7aGMQ5hCDmHqjKTwuoxrEp+oVuIjbRd4tGmYl1K9vJzcQcF20eHK8pmut/BKJrq5NbHjNxdbECZxE8jHjYg3h21GourDJOq2pd2T5Wd63uZCpp1X5/tIGT7+buowO/1z3Nc8TFS9/pYXq+EnBOrWYVOpfZ///Of5vd/7PYaHndnMzs5Ofv/3f5/PfOYzW76BNwPbxdqnWxb/8lu/zgf2niRR9lC2NXJCY1L1Y8gKCEGgZKGWqrG/dWqMkNENhaFX/cxPuUGTaT+q44uJOpKymorjvH4rY2+3Gqpkoco2mmyhyRaKZC96pG0QloRlyVimgqkrGIYCtqMaVX3U0rLb4FINAp4yQU+JkK9I2Fcg4i8QDRRoCuYI+wu4FQtZspkuhriUaeVCOsalbAuG3fhjHPNkGKwkAg6EZwhoy21Jo7ko3x4f5K2Fntp9h6NTfLj7HHtCjpUtZXoqylM74+VI7XkyNru98xwJxDngS+BTGovPnealFpZsIwnwmNpN7UlxLQgbTr3Wy7PfOEQu7QRh9A3GefxnT9LasfFBI0DacvNSqRsdlaBU5n7POJ5NNus0LJmLM+018jSfb5wZ7wylONg5waGOSfpbZpelpmVKXhLZIDO5EDPZIDO5YI1krdk40xaoWRMlqmPuNqk48AhdMQg/Bcw5A5GuPQvc+6mLXHE18/TIfuaLzvapssXxrhEe77tAdyhFwvTxtt5BqRKLvlskeflPjjA11oLLZfCpz7xE/77EKhuzEgSyVFGcJN1RnFawjFZ7OBnriCK/fLmDb37zOOm0U5/58CPvcO/jJ0CCzJUA46+1kJz0sDDhJTnhJTPjrvhlQXQAd+CQp91QL9u6MiZtyTw7xQL9zQs0d5U2ZMlbrSHv+iDwyCY+pYxf0fHK+rJkybKtULBcjKZa+PKbd/L6SD9QbaQ7wvsOn94UgQIwygpf/vd3M36hGV+wzC/87stEOvOYtnLDbHxVOL2iYDYbZLrOkjedCTOTDWKtopB7NZ32ULqiMlWJU5qAe/m5s1or5YxYrv1+pMr3tmhpXMi1stOTxP0usDqvhOsOk7hJxONGxJvDNiVRsOZ+LVsKbyZ3cirZVYtLPxqe4Fh0HNcWNZReugn1BGo71j+tB+9Ga9919ZEqFArkcjna2to2u4ptge1CpC7Mz/K+L/1l7XZv2xyHd11FUQTFssYbF/tJ5la3PWwlJGy0CnFRlyosko1dlihnVEoLGlZRRrIEkgWyLQiGS7S052jtzOEPluuUmeo6lt62Gp6jSDZ6SSNX8JDNechkfaRyflJ1oQ754nJr1VLIkk04UCASzBMN5YkGK5fKciSUx+Myr7melaDbMkOZlloPq5FcU0MUs4Sg15+sEStVsvnO5ABnUh21x+9onuBD3efYGUiSMd2cqihPV8vRhvX0exY4HJjmkD+xao+gKgSCkmogJJBtCbelbgsyNTkS5ckvHWVyxEnYirbmeOwTJ9l7ZPq6HVQZ28XLpR5KQsUv6dzvGccnr+9zTRa8nJ7u5sxUF+cTHQ0NMlXZYl9bnEOdExzqnKTFn19jTasjm3Rx8UyMy0MxxhJNzJcDGAEVI6hgBBQIWsidRaSKOiJKMvaUF/Iqmmzis3X0eRXDLVNukhGqs8MCWomHd17i4Z2XCHtKWELirN7CsOmEywSkMvv1JN/6r/cxNxPC5y/xC7/2Il29qycDOhDIlShyrZao1zgAFQIssRhDvt4o8nxO49vfupPT53cB4FFK9FhXeeSfnKS5L8/YG1H+5n8+WiNNUFnsB/m4QLoTzNbGwVlMzrLfP8ce9zwtauG6vk8bI1ICl2TViJNP0ZelSBq2TMF2UbBc5C03Q7NtfPfkYc5MOI10t4JAAZiGzNf+412MnG7D7TP4ud9+leYduRti4xMC0iVvXehDVWkKr9pg1qUYyxSm9lCakKe0oc9LkZ2YtmupUnJloq1q63732fequM4wiZtIOlTJJqQaJHXXlsSbV7FtSFT1K7SegIu6eqhkycdLc7sZKzrnZZ9S5t6mEfYFZq7rXLVaEt+7lUBV8WNBpP7Nv/k3fPrTn2bXrl3XvZHbBduFSI2kkjz+hf9GwF1ib+8U7S1pZ/uyXiYnm5GEVFNk1Aoh0SQLRdhced5D5qqCIiwOvT9L++5ijZwsKjnLSUv1MVWqPEdxltcb5yoEzI4GuVRJAJwZadx/sb4Me47PsOfuBK07ckiS00spmatLuKu7TlUS70zr2jNZbs1wSFEo5xCjYKG2HA3mCQWKNy2WNm9qXEy31YjVVDG84vNkbI63jvGh7nOE3SVO52OczHUwUorWBm4Sgp2eJEf8cQ754wRXSv9ZAzY2JdVcsb/UzUY25eG5bx3k5Cs7AXC5De7/4AWOP3K51hB0K5CzNV4q9VAUGj5J537PBH55Oem0bYnRhWZOT3dxeqqb8VRTw+MRb4FDHQ5x2h+L41Y3RrSFgFTcx8S5Sgz5uSgLU/5lzwu1Fmm5LcPYnX6GAw651LDYYeTQ0jKzuSCzuSCWJGGrIKrWUgAbZANU03YGp+EMbc1plPYiluY8aZeapD1Z4vN//BCZlI9wJM8v/tPnaY2tNFhfXxS5JdSK2uTCtFVWq8sQNmTnXCQnHAvewoSH5ISXiblWZkMdCJcKQuCKZ3GPpbjvVy9zx6fHKKZVvvprx3C5BeHeIsphQb7fxWxTgKK8aA+SsdnhSrHXM88ezzxBZevaNVyLSKmS5Vj15DI+RV8WEGEJiYK1SJz0ygc3OtfcQKAkyeb4FhAocBIvv/V/HePSmx1obpNP/NbrxPak2IphVK7sYjodWVSZKuSpuErNiyJbxIKZBrLUHsoQ9eW3pO/btVQpR4Vyvru6pSyzGb6bcF1hEjeZcNyIeHNY7BUl2dx6ErUOFar23CWhEkLAaKGJl+b7SVfakrS70zzQMkzMndvw5qyUxPduJ1BV/FgQqSNHjnDmzBmOHz/OL/zCL/DJT36SlpaW697gW4ntQqQA/tfv/EM83UkWbC8gGNTm2KstrDpzUc5JfPWfdXD1dS+a1+YT/zXOrntuXXJiMu7l7KudXDjRwdRUFMulYHkULLeMFJQQPomyuHbhqYQg6C/SFMo5BClYJUwFIqE8TcEcHvfyCOXtgpTuqaUBnkvFyJpu7msd5eHOy8TNIKfy7QwVmxsGazvcSY4EHPIUvk4vtSlZ6Gqlv5Sl3vR6KdOQef2Z3fzwOwPoZWcQfPieUd770TMEIzemCXLBVnmp1ENeuPBIBvd7xgnKBkVd41yig1NT3Zyd7iJbXlQzJQQ7m+c41DHJ4c4JuiPJDX2nbEtiZjTAxLmoczkfJZ90L3tey44sPYNJugdStA+keEvu5Ltz+yjbjv3u3sgYP9V2nqCqY9kSJ+I9PFWtf6qgyZ3HZxokF/yUVa3i4RDs3BVn7/4JZEVQLqucPtlHZs4PORm5IBFUSrz3gbPsiM0RC2bxu0qosokm6xXiZCKtQJxqalOlzqn+51kIyCe1RbI07qnULTm1S2a5rjm0IlPaGcVoc9R0uWQQy03Q2ZZkx/F59n9kAkmC8ryPSTXK5XILV8pR9Lr2Dy7JpN+9wF7PPH3uhU3bN6+FpUSqGhBRjSVfGhBhCyjWFCdXpfXA4n66kQQKQNiCv/uj2znzcg+KZvHR//lNeg5cS3FcjpKhOmSpQpSm0xHimRDZsnfF58uSTWsgS0fYseW1BTN0hDI0rxGqslWo2kqXEt2qlc8WMrqtYN+kJqdbj8UwCcfGB+sOk7gFZMMrW7gr8ebxLYo3h21IotabK1UpN1gpVMISEu+ku3kz2YshFEAwGIxzd9Movmu4TWA5WZKkvz8EqoofCyIFcPbsWT7/+c/zpS99iYmJCR577DE+/elP85GPfASfb+WI0u2M7UKkTi2c4HPD/xFVtcGCPjPDYDixaqRyKSPzpV/pYPKkB5ff5lN/Mk3PHTdmkFqFZUmkcz4W6nsmZQIks76amqQb1y4ulWwbr6zTHMnR3pGiJZpzLHgV6104UEDdRJT0VkEIsCsZiraQnfOikByPupAqjy0uO49VXlN3X/V63vBxKt/O5WIzdt2PYrc7zRH/NIcDcaLq1n52ZcXEqjTe9Jga8k04zQoBl0938IOvHGZhxkkW7Ny5wBOfeofuvo0P8DaKoq3wcqmHrHAjWTB+rp1zY90N9X8eTedA+xSHOiY52DFJ0HNt0ioEFNIu5sf9zE/4mZ8IMDcWYPpyGL3YaGdSVJv2PWm6B5J0D6boHkjiCTjK1rlcK1+NHyRRSV3c6V3gZ9tPs8ObpmhovDTez9NX9jNXqX9SJIu7u0d5rO88PaFUbVsunYjx9FMDBD6QIdTvWA6zsz4uX+hmJh2m/ifVrersbZ1mMDbBQGyCPa1xtCU9ikxbxrBcCJw6J0uogEQxrTp1SlVladJLctxLcsqDXli97ktWbMIdZeQuF5NqN7rtQkJw7LZLvP9DJ3B7LASCguqQuNFCC9+eO9xwbATkMns88+z1zNPrSt2UfmEyFkGt5ATIKDoe2VwWEFGytRpxKtquFQeON5pASZV1fve/HeXEszuRFZsP//O36btthSz3OuimQiIbWkKawqSKy1XTKpr9OTpCKUdlCqfpCKWIBbO1pDzTlm+qdW65KiVqlkrDljGtG18TdmNwHWESt4hoBBQTeYvjzasQskOgblmvqI2oULChJrs508WrC7u4mHPCgFySyV3RqxwKT63YZH4tAvVu/KavhR8bIlWPl19+mS984Qt89atfpVQqkcmsHLO9nbFdiNRzw2f50sy/J5/zcPJEP3rZhaaY7GyaZ3frDHtaEvS1zOHVDApJmS98ppPEOTeesMXP/ek0nYecAaEtqA3yBVKNBDQM8lcY8AsBRV0jXfCRznvJ5r2kC16yRS/Zgods0UOh5F6UrqtpDyvc9rgNvJ4yXo+O16vj0gzMvExxXiOT8GDpknMykEHWbELtJSIdRYJtRWTVmdBZtn1LttVmOcERLH9Pdv1jy94/Dfuk+rwb+UPc6cpwJDDNYX+cZu3GqYdOvZSJkMRNqZeamw7y1FeOMHzW6aXhD5V45GOnOXz31S1sXLoyDEvm8myM01NdnJ+LsevgFKFwAV1XePO1/fhss1brtLtlZtVZc9uC9IzPIUs10uQQp3J+5QkCl8+geyBVIU5J2ndn0NyNkwBzuo+vJQ5wKuvUyAWVMh+JneN4eJyFop9nRvbxw7HdFE1HrQ1oJR7aeZmHd14i4ln+HZk0A5wot2OgYOsSM19uI/VimGhfkYzko3dfgkO3X2H/3nGa/LllVr1U0cf5RBfnE92cT3QzlmpGCBm3MPCWS2gpExIW0qyNljbQ0gaysWSfSYJwrOzEhncViXaXiHYVaeopogTge9+/g1OndgLQ2prmYx97lZ6eeWZNH5dLzbR4F+jxJlkwfHwxfhxTKLSoefa6Hcteh3bj+tZJCFySiVs2ccnOtbO8XOlyAiLc5CuWPXsNdeBGEyhnnQIZwVN/eYjXv9ePJAne/+vvsO94vPYc05aZqUSL1whTJsx8LrDquS3sLdBRDX4ILwZArGRvrX6fqv2Xbjbqw06qKpRhK1vSAPhWYNNhErdMqVmMNx8vekmZWxNvXlu7VLGs2dxaErWe/11v5dtgk93pUogX5/qZrUysRbUCDzQP0+tLAiuoTdKS238P8WNJpN555x3++q//mi996UvMz8//pCHvdWA0N8uv/vAPAUHBdNf6XCCJxQGFJFBkgTAF2M79ikeAXCVL784fkncbZJxiZlkSNV++XLmWqC4veva9ssGAb5bD/nitEeTNgF0Jn0AC1ZJx2Vsf+1sqqLz4d4O88exu7EpD2eOPXuaBD5zH7d1cmMd6kC56K7VOTlBE2VwkOh5XmXvuPYc7YKAIm/u84zQri4qfUZZZmGwkSvMTfpKTfixzlWNIEkRiRZq7czR152nuytOxJ0NLbxZ5lTI03VZ4cm43P5jfjSkUZGweahrhg60Xmc6EeerKAG9N99YUs3Z/msf7z3N31whudfmg3hASp/QYY6ZTgxeRS9wmppk9FcQwZHYOJOjqnl/2OsuSyWW8JCZCXLjQyYXRGHOFMCnbS8nrwQipWP61vxtuSyeiFGj1ZelsTtHTkaQj4kS41w+2z5zp4W//9k7yeS+SZHP/A+fZ+8AoV8wmLpeaSVleDvgnebT5PJaQeH5ugDa1xB7PHE1brMqCQJOsGlFyLgYuyfp/2Pvv8Diy884X/5xTVR0BNHIgCOYwwzwkJ2pyUJYsW5YsS7Z1ne3d39pr2Xvv2rr788+P96693rtee59dS45rey3nkTSSrDSjiZpMzgzjMJMgEpG7gc5Vdc7vj6puNIAGiNAIJPF9nkZ3V3dXnQ6oqu953/fzzmjSHC1JOQFSKkjaDcypFcOyGCi8fb/Sguf+6TZe+fJONHD3T56nameGayW1TAPj1TNSWKOBbDElr61omBJEAnNrPSD8fdximu4uVkJoTN/0Otq4gYESC4RJrGCqWwFvnlYGXZkIydmIpAvQipqo+UahytRDzVdKw7vjrbw2somM8gzppsgQ9zdcImZlbxkDVdAtY6QuX77M3/7t3/K3f/u3nD17loceeohPf/rT/PAP/zCxWPki+9Ws1WKkLicH+JHv/8GSbkOX9j7QeHutKfcLJ/+GUBhFyp4PqDAUpuFONg3C43XNbCj0JNNhlDwm0GQSAUZ7Ioz2RMiMBvxwlLcjrWnI0tQxTvPGcarrspPMSeH107YpmPkxPPMpS9dReI5/2yguY9pjBYN0I8kRirx/oht0KlcvpRQce3kTz351D+lxr+5o+75envjEcRpa5l9Ae93tabjqgyKO967n6mjDpMdrQmn2tvWwd10Pt7f0YZiKl1PrGRVhhKsJvyAYe9uLNCUGw5PIcKUyLJf69jQN65M0dHiGqaEjSV1belqkaSZpDW+Pt/Hl/t2M2F66887oID/ccpK+kVqevnQ7F0YnaKe3N/bx3i3vsqe5d8bf17Ab4miuFSE0rWaCHcEBmsxk2R5O/d0xrrzbQt+FGFffrKL3TO2s443W5anekMPaqBEtBnaNRToYJKGjDKaqJ9WVlVNtOE1DOEl6OEziWhTDUTRuibPp7h6umZHiCQJAg5nkU21vYAqFti2iFTk10JhCFY1SsCTaNNPn6WpBTpklFwtbGRiGmjP+vHOonn85tn9JDRR4UZeRdJSro/W8+upWzl5uw642cGvBnQEzHzLztMUKlLx40TTNJZX1emNZSRMFGkMqpMBr6+HemECJBcEkVhj9LdHELJsxx6S7gnjzgjQgfELfipmouW638HVVqMluzjV4I76RE4l1RVz6HbXdHKq7SkCqG/AXvjDdiEZq3lMJ99xzD2+++Sb79u3jJ3/yJ/nRH/1R2tvbFzXYNXlqCcU4aI/y2OZTJBwTIWTxBB6tGeoO8+0/Xs9YJIa7LoJuC5DRgYmZuIIRckHkwciBzAmkPZFnLKWm1keCTwc5eOS74AKR4AtWI+C1U2GkN8J5nwDYc7YWW4foJUQvTdSvS7H9ngG2393Puh2JJU8Xu1lkaolyJY6hyBlOReqlui408O2/P8C1q3UANLSM8d4fOca2PfPpT3R9ZW2T0/1tnOhdz8m+dsayk4vfN9UPsae1hy3hAYJxh5GeKP1vVnO6u43h7ijZnMm6zw0Q3Zsleb/g2htR0gOesQlV52lYP2GUGtanaFifoqYpM2OEaS7qzVbzT9f2cDbtgSLqrTQfaTxDYiTKf3/5UYbSXhqHIVzubr/Ce7e8S0csPsPaNAKXYR1AmBk+FDpG1RRKnVLQ293IhQvtXHmzjquvVJF06yHgR+hchQhnCFtJ6tdnqGvPeul46zPUtXv3r9drKZO36C/pizUwXuiVVUMqHySeiTBmB4m0ZqjaPUSoLos2NJep9WdrIZpzaWOMRzefxBQK4UrKowxml8HkCFMhNa9cbQF4BrxglPLKJKc94+To6SfgAo3B9c1yOQN115bLfGCRBsrrRxaiN1FLT6KWvrFaehMxehO1ZEvTpyba0GEZziRKXiHSVBteHAq+nLyUPrFiJkr65sPx0/jEMlFZK6sJmISrjLnDJFb4rRbw5sP5AN3ZCHaFAUYrZqJKDdRct1uoh3KuXw81VwUMl/sbLrGr+hrfH95KV6aOo/ENnBlv4T0Nl9hRNbhq4Vq3uuYdkfr85z/PZz7zGXbt2rVUY1p2rZaI1Hh6jH94/YepNTJcHmyka7CRayP1jI55IIdyTQ21ADcAKlC41kz9bwtIh/WxUbY39bN7XS9bGgdnBFisJiVHA1x40zNVnccaJqVcRetybL9rgO33DLBh7zCmdSMeUJdPGk3OcFBycfVSY6NhnnlyL6fe2ABAMGTz4EdOc+cjFzDMynwHA+PVHO9t52Tfes4NNk/63QekzYbgCM3pccK9OVJXg4z0RHHyMzufmnVpmn9hGLnNBaXZOpRgW/0I4ZrKUh/Trsm/DO7khZHNKCSmcLm/phM3EeTlzq2T6p8e2nSeR8vWP2mEdnBTGolDpDpHMDh5YsN1BN1narn8TiPnuzdxoX8zmXQAqzdONJugvj1DbXsGHQxy9VIrqTHPrjS2j/HoZ06zZf/i+peUqmcsxleP7Wc4GsRsyU2a3HCzBqmhCOnhCNmEV4j+oQNv8vie46RyAf7ff/kYpoDm6nGaq8YmXTdGk1jSnVbDFJQOpii/79Iactr0zFLJxZ7Ejp9d18OfV9JApXIBesdqi6apN+GZplS+fPRPojDGNIExl83tg9zznku01iRoiKam1cAthQrbWG64REGFuqi8Y5D3aZem6RP81I1whrlAmMQqOLQFhEvUcBnIB+mtIN68oFVhouaqeUAl5qJy1D0NXEk38NLQFsZ8XHpbKMGDjRdpXgAu/UbSjRiRWnSN1M2g1WKkTnW+jiN+eNKy8XSIgdFa+kfrGBiJMThQhTJNMAwiIXtSc9m66hSGobgy0sCFoWYuDDZzcahp8kwmXqPRjfXDbG8aYFtjP1sbB+ecH79SyqUNLr3VyPnXW7h4pJF8eqIeJhB22HJokB33DLDl0CDByNKgkW90LaZeyrElr353By9/6zbsvAlCc8d7LvPIx04RrVkkqt2VXBhq9s1TO/3jk9ODw/kc1deyGBcVoX6bcufR0lTUr/MiSvXrUzSuT1G/Pkl9e5pAyEVpeDO3jl632qPHBftYb1Ym9UppeC3ewVMDuxh3PfT5tuAwZsLgRO/6SfVPT2w5w73rLxGQLuODQUZ7gzhpTTCYp7YhRfPGcYKRycbJ0ZKBXDUXXmri7Nda6btYQ6TBYTTWxrhTgxCKhx8+xp0PXiJSO9kcuo7grWc28f0v7ySb9PPv9w7w2GdO07xh/mAgreGaU8W5TAMn4m2MW5P3Lc1mkh2hIXaEhmkyUiTzIT9yVY2t4fCOMwgBf/P9hzh6ZRvgNWvdWDvClrpBNtcOsbnOu7RUlf9+tAZbG1PS8kwfl764E+qZjNRiDJSHFvdM0oRhqiWRLU+4FULRXDU+qQ9T/qrJK3+yE5TgwHuv8PCPvbuss9MraaKE8NKwXSXIK2tSNMyQCkO68+uxtAISaIScJ0xilZyZFfDmvbkQ/RXEmxdUMFEsZ8Pd+dZCFV6zQKhEOU3dbIHGVypHCd72cemOj0vfXX2NexuuEJ4DLv1G1E1rpD73uc/x27/920SjUT73uc/N+tzf//3fn/9oV1irxUgNJM7y5Vf+P3Q0DVFXM070OrnsSguUNnC1gVL+tX/RfqqAUoLuRC0XBls4P9jMhaHmaelRAk17bJRtTQMeHbBpgNrw6oWGuLag80Q9519v5sLrzSRHJ2ZwpanYuG+YHXcPsO3uAarqKtes82aQKxQ5v14q4JiY15lR0xrOvL2OZ/5pP/FhD5HcsXWI933qHdo2xhc8jkQmxJHzGznW1cGlZBN2aZax0oQGbCI9OSK9eQLjE8Y4ELGLKXiNHUnq21M0dKSobckgjdl3ZUrDW/lWupwYoDkYuMZGa3GU0SuZWv6xby9Xsl6KY0xmCcQl3YMTvfU2BwfZY3cT60mR7LcIRXM0rhtn494RNuwZmVZ3lU2ZXEvFGIpWcc2JEe+J0HIxRXNThrr1GWQI/vZPH6S7sxEr4PAjP/l9tt9+jdmUSVq8+tR2jnxnM65jgNDsf+gqD37iDFV1s+9nXC24mo9xLtvA+Wwj42qiT5ZWYA5JDjV3cbipe8b+Zx5BMk9QKCIooigMrQlIh4iZn7GOaSBZzeV4I5dGG7nsX3rGaqkO5WiuHqO5aty7rh6npWqM2kh6UTWMU43UfAyU7UqujZWYJT/aNJyqmnF7DZEk62Jx2mJx2mNxOmpHaa4aQ0iBo70zt8vvNPG1PziIciV7Huri8Z86uaxpzdLPC1+JuqhCFMp2DfLuxHGtIIHyolKaVQqbWABMYpUYKJjAm3fnwgzlA1TarHomCljOXlELiUJVACpR0FwM1FQlnQAvD2/hXNKrqw1Ih7vrrrA31jdjSvONqpvWSD3yyCN85Stfoba2lkceeWTW5z733HPzH+0Ka7UYKYD/8LWf5sf2vUx/Pkj3OyGe/S91xJrzbL4nycFPjhIIuhjCRc6Q3lLQVJNVuO0qg4FkrGiqLgw2M5Cc/p4bo+M+ct0zVy3VY6syP1cr6D0f4/xrzZx/rYWR3pJ+KEKzbkecHfcMsP3uAerb0ys30FWkvHRwjOv3l+rvruG7/3iAK2e8nXd1bZrHPn6CPXd1zfm34NqC0WsRhrqinO9q4fxYCz2yjmQ0OOnoYWQU4V7POEWu5amp8eh4BdPkXZJE6/KL+h1qDe/kW7ji1AKwP9DPFis+7/VkXYN/7t/DK/GN3vi1gmGTdCIKCIRSxM4naTk9wo5119h8YIjNB4ZYf1t8WgpkJmkx3FtFOhliPBLiTEMzOWkh8Bpyby9pyJ2Ih/nfX3yYwWsxwpEcn/nZF+nYPJ3SN5NG+yO88A+38+5rXl2rFXS45yMXuOuDFwmEJgxrThlcytVxLtvIxVw9uZLmuNoWuJ0hVGeQ+zou8+j9JzEmmdjJpLyAdAhIm6BwZzQ5jhbFGqaMazKcqeJqop6eRN1ETVaymsFkNc4sBe6W4dAUTfrmaoyWEqMVC2Wu+9spGKnz/S18YwYD1VCVZCBZPSUlr5aBZPWMJ8k1oTTtsQTrYnHv4sMfwpY9icZna4nrGhRKy7verecr/+Uwrm2w855e3v+Lx5DLXJ60MnCJks/ENbHVzECJiajU6iqanTdMYlWdD3t4c1sLupcAb16UnyZ3ndOZymghUSi4bpPduWohBmqqejOTcen1VooHGi+yIRJf0JhWo25aI3WzazUZqc8/9bP8xP6XeOOlGH/3i+ux05KOwxl+5It9BKsmn6x4hsq7GMJFyoWZrGQ+xOXhZk5d8+pSuhN1004IqoNZtjZ60aptTf101I4ueQf7hWi4O8q517y6qr7ztZMea+hIsuPufrbfM0DrttVpDJdDpfVSQgtCzuR6qUzK4vmndnP0ha1oLTBMl3vfd473vP8MgWD5tMlc2mC4u4qR7gmk+EBvFX3UkmoLkV4XwI1MPgEOjtjUjyfZYAyzpXmIRh/6UN+eWtL0TK3hRL6Zi44XRdoTGGC7NTr5OQoyYyap0QDpUYvUqFW8PZiN8PrBDaTqvMiMipvY8RC4klo9zuHMRfbWdLF19yCt2xLTTnzzWZOcHUAEJC6W/78oOZVvKo6pWuQ4HOyj1piI8AwNVPPXX3iYxGiUmliaH/+F52luW1hErftcHd/7m930XqgHoKouw92fOo95R47z+QY6c7W4JbP/YWxEt8XwO424XUHaW0f5+Mdfob111KthEpPrmGaq2XG1mFbDlFOmv63r/0MqJRjJRCbBLgqpg4PJmZHfAEHTpqlqfCKKVTVOS/UYjdEkSgni6QijqShHLm/iWNcGb7ZcKLa39bO+cZRENkxvopZr4zVl61UBIoEc62Jx2mviE6YpFqcqWD4yXoi4OMrrg1Q6/r4LMZ78z3dhZ0223NHPh3/p7YrVIc5VUig0AsetLJ1t9m16BsQj8hmzfqfgfUemsZqiUhMwCS+ND2aFSayyw+hS482L8j+SZcGcLyQKBRWph6qEgSqV0nB6vJVXhzeTVV6Jw5boBC79RtctYaR+6qd+ij/8wz+kurp60vJUKsW/+Tf/hr/4i79Y2IhXUKvFSA0n03zoD/6QJjHKtTclImHT3JTk4c9eo6E2TSycpTqcmQMoYnEmy1Em8UyUnkQ95wdbOdHXQXe8nlR+IiUwaNpsaRgsRq02NwwVO92vFo0PBz0C4OvNXD1Rj3IndoRVDVl23O0RADv2jC77CcpKS6PJ+PVShpIEXRPlCt56aTPPP7WbTMozCbfd0c3jnzhOXWMarSE54sEdhruiDPdEGe7y+i8lR7z0SjsqSbcHSa8LkGkJgFESdVIu7TLOzvo+Dm65ysYNIxjLCAlRLqTjniFKjlp0Vdcw2uH9puWrmux3TdKjAc8wxa1iAbuyBLkGi3xDgPROi/z9AgKgHUFszOH26mvsjV1lX2MXTY3T62VcZeAoy7toyz8xnPhcEirIm9k2xrX3mW8xR9kdGMQsMSO9XXX87y8+RDoVoqFpjJ/4xeeprV9chFVrePPoRl4+v5nsJgGbJv//1hlpdoSGUVdCHPvuVlrrxtnYPsC9h8+xqX2QkGHPSsrLK5OsNkkhyGgDxw2AazEXw7QQuUowko7SP17DwHgN/b7BujYWYzQdnb22wz/JKrwdLTTS0DOexAdNm3VFs+RFmtpjcWrmEPWCiZ5QrhLY2sCZEnEZ7Kzmn/7T3eTSFh27h/jY545iBpYXEFSsi3JlxetiZpIhFVoL8q6BreYOCTGkiyHVikelhNRzh0mswkOORFNr2SQck65MhGyF8eYlGwKWwUQtNAoF3hgVftrh4k3UYg3UVGVdkzdGN3I8sQ6NwBCKg7VdHKrtwpLLu6+opG4JI2UYBn19fTQ3N09aPjQ0RGtrK46zzOjsCmi1GKnTvQP88P/80nWfVxXMEotkiIXT/nWGWCTtX0/cLh8xWrjJyjkmQ6kaOkca6UnU0zdWx7VxD9GbdQJsqBvxARbeJTrDLOxKKJs0uXS0iXOvNXPprUbs7MQsWzBqs+3OQbbfPcDmO4YIhFeXIVwqucLDoSNgrLuWp754HwM9tQDUN4+z/9AlTOUUI0wjPVFyKWvSOrSAbJNFel2A7IYAuarJj9eHkuxf382+9m62N/VXnBbp5EXRHKX9qFFq1CI1YpH2DVEhmpQZM6f1jqr/ZIrGH/cMyfA/h+n9l1pyDUFUiyS0waFqfZ6qhhy1oRT1NePU145Ra2WoNTPUG2nqw9ObKzulxklZ6Bn6/GgNF5w6TucbUUiCwuFg4Bqt5uR1XjrXzN/9+QPkcxbrOkb4sZ9/gWjVwgAfWkOPXc35bCPnsg2MuJOBB8FuRfu1NHvrejlwoAsnZ9EYG6c+Vr6JtNaQ98EPeR8x7oEfDDRUhBQ523tJ5QKMpqPEU140adSPKo369+PpCI7yxlKoc9Cl14XzoxmGZUqXtprEpOjSulic+khqQbVYAo2UGq29RrKOMrym6yUa6Y3yj//xbjLjQdbtGOGH/t0RrNDy7pOWGy4xAZSQ5F1z3lS4lY5KzQsmsQoNFJTizYN0Z8MVx5sXtdwmar7bqEA91FIaqKkazkV4cXgr3Rkvm6HKyPGehktsv0Fx6TeikZpzzHZsbAytNVprxsfHCYUmCvxd1+Wb3/zmNHO1pvlp8Ggn9d+8jNIuDQcU6x7SjOfDJDJhEmnv2lUGyVyIZC5Ez2jdrOurCmWpLZitgtEqmK5IhtpwmupwtsRwzW6ygqZDe2yE9tjItG0lc8Gisbo2VsuJ3r04rkl1KEdHXZxtjQPUR1euRilU5bDroT52PdSHk5d0Hq/n3GstXHijiXQiyKnn13Hq+XUYlsumA8PsuGeAbXcOEIndnGQcADdjMRYPU9MxTrhpHCW84m0jlWP8BLx8Ysu01wipqVqfxd1mMNYY5ppVQ15PmCcpFNsaB9i7roe967ppXUBtXT4ji6ao1AilRyaMUuHxXGo+aSeacCxH46Ykse15whvzhFsc6tIpmprHiPxUHvMnFGEjT3VgbkZFa3C1OcU4Xf8EJKNMjuZaGVReTV+rkeRg8BpBMfmE+fSx9fzzX9+L6xps3t7Pj/70SwRD85uscrTgSq6O89kGzucaSKkAJi5tgXFuCw+wKzLA5uAIDUaa8LaZ151XxuS0PB81PlO0wpaeiUJDYAEmKpO3PEOUnjBGpffj6Sh55/rfv0ATC2eoi6api6aoi/jX0RR10TRVwQx5ZTGYqmJwvBpXCVpqxlkXi9MYTVYshVmKQhPZ6Wl8BSUGwjz5u3eRGQ/SvCnBx3716IqZKFeLZTElpVhzW00HSsxFWguUEsWI1vKpFCYhZ4dJrFIDBRCULlHp0p8L0ZsN4y5VBFICLDHmfCF9oUpfuwgTtZwGqqCGYJqPtZ3gYqqBl4e3MuaE+M7A7ZwYW8eDjRdoCpafBFtT5TTniJSUEjHLr0IIwW/91m/x+c9/vmKDWy6tlojUhXO9/PQv/TUBmecDn3ybvXd1I0sO4lpDOh8omqox/1IwWvF0hEQmQiIdvm5eeUECTXUoWzRXU6NbtZE0NeEM1aEMAcNZUCQrmQtybbyWkVQ1jjYIGoq6SIa6SIaV7qqrXOg9W8u51z1YRfzaxAy9kJr220bZfs8AO+4eoLZ1fiRDgSrWjFjC9Qq2Ed61Frh4B15XS7+4vPJ7Xa0hnQh4EaXuKEPdVcW0vNF0DFVl8UOfe4HNe/sY6anmH375fpy0iRlwiyjx+vVJdLPgWjDGxVQzV0YaJ508VwWz7GntYe+6Hna19k5D6WsN+ZRRNESeEfKv4xapkcnmyM7OL53ECjk0bkzStDFFfXuK2tYMNU1ZqupyBGocrIhLIOgQDuQx55HyoLQg75qM2BF6czHidpgGK8P2yAgg/e9x/sjtHqeKt3Ot2BgYKPYGBthkJqYddI+8uoVv/ONhtJbcvq+Lj//4q1jW3MafUSYXs/VcyNUzrgK0WEnWBxLeJZig1RqfMaIylgpxpbuZq9ca6bpax/CFCJv2DHLg8atzTi8rjXaWo0PmHaOMSZocUcracytwrwplqYt4pqh4HZ24joUzXrRiDrpeH6mFqDSNz9HGjOCE5EiQf/iP9zA2GKG+fZxPfv51wtXLO5HjnfwtD1yiEJ1TWpBzTX97C//MlzsqNS+YxCo2UWHpEJCKviXCmxclALFMJgrmv41FQCVWwkCVk6Mkb8XXczTegaMNBJrdNX3cU3+FsHFjZIvdiBGpORupF154Aa01jz76KE8++ST19fXFxwKBABs3bmTdunWLH/kKaLUYqZOne/jcb/5lMX2qpS3O4x89xtad/bO8amJGTPpJ/kpDKhvyjFW6YLQixP3rUiM2Z8MlFDUhL6WwJuwZrILpqoskaaoeoy6aJBrIYkoXjRe3D5mznwhkbIt0PoQQgpDloPUExl0vkbmYSVrDUGeVZ6peb6b/4uR+Rk2bxtl+dz877hmgefN4yc5yMqUsKG1Cvnma6w5Va1D4B+QyJsv1zddkM1Zy2xUkBsKM9EQZ6iqFPlSRTU5EjDSggiZudRAM77uvrU3wmd/6LqEam8xwCDNjEapzODPYxsm+dk70tjOaiU4a7/rYCLc39LIlNECdnSQTnzBHk4ySb45ce34nZWbAoa49Q9NGj9hX25ahpilDdX2OSCxPOJonEHYwLWfeEYNkPkgiGyHtBHGUgcDrKu9YkkuqjrQKUC9yrBdj/En33XRlazGFy6fbjnFPbfe8tlUqW0uO55u56ni/q1qZ4XCwj2o53Xi+9MztfO9f9gNw6N6LfPgTRyZNqkyXJqNMRt0QjpZEjTztgQTrAuMEZPmIhqtFMbqUdU2OndrMl79xF8OjMSzL4c795+k/UkX/5VoAahrTPPwj77Lr3p5Z5z9sV5CzbKShGE3UcPLi1mnRpFSufNPZqQoHcuUNUsn9SqaLVtJIFYwCft+rcml8BaUTAf7pP93NSG8VseYUn/wPr1NVu7j+bAuRFAqtpV+ztZTbmQBK5F1jbo1pryvtE/yWulZqHjCJVWygwMObCzQ92TBDduXx5vhr1EttohZjoGDBUInVYqCmatwO8vLIZs77uPSgtLm7vpO9Nb2Lag+xHNpQO8jxqwf47ZvRSBXU2dlJR0cHcrkZrEuo1WKkAP79kz9P++gw3/jWAbIZb0Z2684+Hv/IcVrWJa7zau0TwrT/z6KLNSHlvmSlBMlccJLZSmTC0wzYWDY05wOdFIqacMFsZWiIjtFeN0pj1RiBQJ6AYRMO+DUn0dlDzgW6YLleWcthshIDoSKsoutUHVpJAiGb9ZvibD/Qz647++jYPEpNdXbGontHSbLKxNYGUmgMNFIoDKGR+NcV6ANh5yXpZIDUeJB0MuDd9q/TyYBnxgzJUKKOwaEY6XQAYWruft85tu27hpKarOEgBLxwfDffOHGn3wDQk6Fc6sbGqb6WIngxg9MnJsE75qJAxKGqIUdjR5qGjiS1bRlqm7NUN2SJxHKEq/MEww6m5WLIuZtQ8D7nRDbCaDbCaDZKPBtlNBslkQ2jkYRMh6iVpz6coa16jKZIquzn3u1UcyTXhsajw701sJ6okefnO95ka2R6SutcNeyGOJJrI60DgGanNcJt1tC0g5pS8N2nDvDqC7cB8MATp3jsgycmfRYGiqC0CUgHjXdSWmNmCcvyM44eKc+YqGHSnnlyfOjF8HAVX/nKPVy+3ALApk39/NAPvUZDQxKt4NQr63n+729nfCSMFtCwfYx9H+rCanSmRZHiqQgfve81Dmy5zGCihv/2lY+Rd6yy4wqaNrUzmiTvdsha3lnUShmpQhqfoyT5GdL4CsqmTP75d+5msLOG6oYMn/y/X6OmcfnpW4X/B9tdXGRodnnRuYUAJeYiIRSW4aKXKC1xzjCJVW6gQFNrOuS1oCsTITHD/+hiVfQ3cpWaqNJUvjk22a00hW8p1ZOJ8eLQVobyXi+7hkCKBxou0rFacekCNsYGOdl7iP/f+/9opUez9PjzdDrN1atXyecnAwX27du3kNXNqJ6eHv6v/+v/4lvf+hbpdJpt27bxv/7X/+Lw4cMAaK35zd/8Tf70T/+UeDzOe97zHr7whS+wffv2OW9jNRmp3/jqz/MTB17g0nANzz+zlze/vw3leg00D9x5mYfff4qa2rmkmHmmqhCl8haJBe3HlBKMZ0MltVoR4ukJ41UwXeOZ8JxPPoRQ1FYlaauN01A9Rm0kRUt1gpbqOG01cRqiydnHtOQmS2MKRUjaBKWD6bqYrqIqkis7G++6gmQ6iAoI8pRina+fpiYoNVXetZORZMdM7KSBm5VoVyC1xrIcIlGbaHWOSJVNJJq/biPa60kpL2XUxiAYyONoydn+NoZGq8kOGuT7BPleSTphkU5apMcsUuMB0uMWrhYEqhS1rRkaOlLUr0sTa85S3ZAhWpsnXJ0nFLExA745Qs/roGO7Bik7SDwbZSBVTX8qVjRJo9koo5ko8WyE8XyYxkiS9uq4d6lJ0F49SmvV+LzS+QBeGtvAgAwjBYxlg3yw6jxNwYU1qFYaztgNnLUbAEFE2BwK9tFoTF+f6wqe+ru7OHZkMwAf+eE3uP/BM5Ow4kHhzPh+HC0YtqOklUWh0iTnm/hy/w9KwWuv7eS73z2AbZtYAZuHHjvFph3XiGcm1ySNJKMMDNeQVoFZzxoObz/Ppx56EVcJvvS9R8nkQmWNUn00TTiwuJ5gS6HFGqmpaXyOmp14l88YfPn37qTvQh2RWI5Pfv416tqWv5Z0OeASBaCEoyT2AoASc5PGlMpLGVQVNGhzhUmsegNVgjd3Da5mI6SWCG8+YaJYmoa7hY9/IbVQhdfPox7qRjJQpVIaTo218drIpiIufVt0kPc0XKLGWv6o9zSJwufofQMdNQOc6b+T//uJ/7HCA1tCIzU4OMhP/uRP8q1vfavs465bucLY0dFR7rjjDh555BF+8Rd/kaamJs6fP8/WrVvZunUrAP/5P/9nfud3foe/+qu/YvPmzfyH//AfOHHiBKdPn54ExJhNq9FIXcuGcDEZGYry7Df3cvqdDQCYlsO9D5/lvkfOzrHo3DtxFaIypmo2uQXDlZ5IJRwrpBX6BiyRDpPMTs/DLlC1tAQkWJZNS41nqlqr47TVjNJSHWddbJT6SGUjWaW1TCE/NS8onRmjTLaSjI5G6DzXwInX1nH5dBN9V2O4rsQMuGw5OMT2uwfYeufgrDUOWsHYUIjh7qoiGW+4y6PjpRPBGV8XjNrUtqSpqs8SrsoRrcoSieQwpQsO4OIZM6mxqiXhRk20Kk80miUSyhKpzhGutqmK5Coy4++lJU6kl2u872DSffyCcLwdu0Li+OmJaTvESCbKQKqG7vE6OuONXIw3MZKpIu9OnymtDaUnDJNvmtqqEoTMxb0XreGbQzv4l8HbaAiluKO5GyGgSaa4J9QzCUc+FyWVxZFcG6PKQ6x3mAn2BwawptQUCjTCVRx/ZTMWLhvah9mxvZdoqDz1UmkYtKvoztfQl68hrwwi0qbFTM+YB19KuBtNRenur+eNY1uJp6MoE2TYxZVyTie3QmtkVmNkFWZO0d46wp79PbQ3D7Ohw6vrNB2DgF6+3kOV0kKNlACkVHNK4yvIyUu++v8epuvdBkJVeT7xG6/T2DH7BNJSqBQusVQpcaVAibyaf13hfCSFwjRctBIVqPcphUmImWESN4CBAjDQxCybhG3SlV06vPkkE6WpfMPdxabyFU4DXK5bD3WjGqipyromr41s5ORYAZfucrC2e1lx6Rr/P98/Jy33ya+vGeBs/518/mY2Up/5zGfo7OzkD/7gD3j44Yf5yle+Qn9/P//xP/5H/ut//a986EMfWvTgC/r3//7f8/LLL/PSSy+VfVxrzbp16/jVX/1Vfu3Xfg2ARCJBS0sLf/mXf8mnPvWpOW1nNRupgrqv1PP01/fTdbkJgGh1hoffd4o77r48j4hE4aDgc5GW0FTNJlcJ32CFiWcijPkRrfikCFeE8WyoaKwK1wABw6alOk5rTZy2at9oVY/SFhu9Trqg14DWQGAiMIXGEgpLqLI7Rq0paRpqkS0TZVKuoPt0Ledeb+H8a82MDU702hJS0bF7lB33DLBuZ5zEQLgIfRjurmKkJ4Kdm3k2MBC2CYZsDMMBV+NkNblxiZ25/sFPhQM4TTXogIkTFeTqwW7WpGIhgpZDbThFbThFa2SE2xv62NIwSFttgnAgjzQUBoU0RP8kUWi/Do9J14s9oCgNKTvIeD5I0g4xng8yng8xbgfJOhbST9UJB2yqAjlqQxmCplusDatUYXReSf6m9wBHxtYD8Fj9RR5ovMRrufW4SBpkmntDPdNMUDlpDZ1OjOP5ZlwkFi4Hgv2sN8cIFGvpPLMekA6BWWrpxpwgnblauvOx4mXUDrMhmGBHaJhNgVECUvmEu+gMlDvvtj2HmWeBpiacmQRrmKDcedc1oSzDvVU8+6VdXDrmpQNGqrN85v99hkh9dklQ58ulhRgpWRppUcaczKjrCL7+Bwe5fKyZQMjh47/+Bq1brpe6XXkJvP2UF2WpvIkqjdDllLXkAAtPGlO6SMmiolJzgkncIAYKlg9vPs1ELTRiNOvKF7HOOdZD3SwGaqqGclFeHNpKT7YWgCozy/0Nl9gWHVqS9zcX81SqW8JItbW18dRTT3HXXXdRU1PDkSNH2LFjB1/72tf4vd/7Pb7//e8vevAF7dq1i/e97310d3fzwgsv0N7ezr/6V/+Kn/3ZnwXg0qVLbN26lbfffpsDBw4UX/fQQw9x4MAB/vAP/7DsenO5HLncREhzbGyMjo6OVW2kwDtBO3Oine99Yx8jQ15D5MaWBI9/+Djbd/XN85/AS/2bSLWavZ5qJeS4krFMqBjJGhiv5spIA33jMUYzUTJlmnsGpE1LNMGG2CB7WnvZ2jDIupo49eE0YcOdsdDS1WBrQU4Z5JSBrQ3vwK/NOacLKgW9Z2Kce7WFi0eaGOmtmsO71N4LXf9aKT9kM/sJu2EponV5onU2kTqbaH2OunUZgjGXobF6MkGTSGuWqqY0sap00TjVhtNEAnPv76U1XjqLNryIkpYovNoApaV3kBQSAb7x0uQdg1Q+SMY2vR4+2msWGDE9rHh1IEuVlVt0BAn8j8qHbkwGdZSDc5QnJSbsIF/suovObB0SxY+2Hec9dVcBr7bp1ex6bAzqZIb7Qt0EZjFTOW3wdq6ZtLZoMlNstOJsC4wQ8WuaZvr9jSdDdA/WkYsJOnUtJzMtdOdjXiodUCVytKg01RkHlTSJl/RKGk3PnXBnaAU5gXSgLprijl2XWdcYLxql2kh6XvCOyyea+N7f7GbrfV3c/cPvkk+bDJ5qYdv+G7OHyXyM1HzT+ApSruCbf7Sf82+0YQZcfvD/fJP1O0cr9RbmJbmEhL5CFMp2faDEArDmC5X0CX7ebnS+P8Q5wCRWy0FyjgpKl4h0GcgHlxRvXsy2q3SvqMWm8RU0BxN1sxqoUmkNF1ONfH94C+OOl7nVHorzYONFGheJSy98fhPmScyr2OJGNFLzTo5NpVLFflF1dXUMDg6yY8cO9u7dy1tvvbXwEZfRpUuX+MIXvsDnPvc5fuM3foM333yTX/qlXyIQCPDZz36Wa9euAdDS0jLpdS0tLcXHyul3fud3+K3f+q2KjnU5JATcvq+HHbv6OPrqFl747m6G+mP8/Z8/wMatAzzx0WOs65jrAVkUz9WF/2MvpP55vmp5o1TlZBqK+qo09VXlawbyjsHl4QZ64zFs26Q6kGNT7TBb6wdYXzNa9qTVcSUDqSri2TBZ10AYLpFQmtpCjyuhwXAwcTCZMNuZnMXIaBXx4Qjx/jCJ3gijV8IMX44yNhAknzHJZwwmNXwVaTANME28I/MUo+Qqb4/mKxB2iDTanjmqtYnW56lqzFHXlibWlKG6IedBGaJezZFX0O5dBOWjajNJ+wZE+6ZD+YXTyr9vC8j5aOKga2GUOehkbIue8Rg947X+JUbvWC1j+XCZLYIhFK1VCdqrE7RXx+moGWFjzQiNkSSmnAzgMISaVjdmoDxgh1BIfwJACv+kCfDyNOb3GThaMmKG+Y0tz5JWFk1WiojhFM1XrZmi2RznRL6ZpApy0m5kf2AAE43231NQeGmh3oS15tORPgIzpEqoElLeyFiUr3zvEOeNOtIbQNQpKOFZ6JQkMxBhrK8aO2nx7nUORZFArizVLhbKcPFMG6+/tBPXNggGc3zwg29x6NDFRZ8gbN47yP/xu8+S81NEn/njQ5x/pYP1O4Z59MdO0b4tvrgNrEJNSuNTht8Tam4fpFbw9J/t4fwbbRim4iO//NYKmihvrtitYC2RJ89gKi2wlwAoMRcpLdAKhL/bnaumwySmnAKu9EFxAfLw5pqeJcabL6mJWmwUag5QiVvBQBUkBGyrGmJjZKSIS+/J1vL33QfZU9PH3fPEpZeap4nzyVtH8zZSO3fu5OzZs2zatIn9+/fzx3/8x2zatIkvfvGLtLW1VXRwSikOHz7Mf/pP/wmAO+64g5MnT/LFL36Rz372swte76//+q/zuc99rni/EJG6UWSYirseuMC+w518/3u38fqLO+i82Myf/bcn2Huwk0c+eILa+rkWLAsv6uDXuQgp/NQtL60BWHFTpTU4OYmdFZiOImQ4hM08TaE8t3X0EdhS/kg5ko5wcbSJCyPNXBxp4uJIE1fj9ci4wog7mCkXmVPogERWQ8O6JM0tYzQ3jtEa81IHW2OjNFQlCQdt2ltHaW8dhd2Tt5PKBhgYiTEwUMPgtWqGe6qI94UYuxZGj9tERJ5wyCbiR5CidXliLRlizVmqGrJU1eYIV9mYlls0RVIohFDzJvolMmFGM1GSuRCmhEgwT104gxBMMkpcd45II3BBev2Ahkaa6E7UTzJNI5nyETeBpik67tcwJfw6pjgt0fLgBwcTZ94p2hqJb6rKmCxDlJgwCmZMlbzG2+FbQtESTNEyyyxcK7A9Mjx9BHrmA63y00KT+RDDmSh947V0jtTTOdrAIBESgQA65mIcdMGPjWkFudEQmYEwmcEIbnZi9xw07VnT7Woj5Ql3/f0xnnzyHnp6GgHYsaOHj33sdWKxhcEzpn0GaGzLoz0K26C5Nc3lgEP3uQb++v/7ILff283Dn3qX2qbKbG+lVZrG5ygDZ+qJ9izSGp77612c/v56hFR88F+/zaZ9Q0s74BlUCpeopMkpYM0dJcm75pzba1ReXvTZRPlTHtePLhZgEq4ypsMkbkADBZpq/2S4K7N0eHOYaqIqROgrGKjFRqFKTVQZqERZA1W4cZPLkoq7669ye3U/Lw9v4UKqiRNj6zifbOLu+ivsqembMYui1DzJksjTrah5G6lf/uVfpq+vD4Df/M3f5P3vfz9f+tKXCAQC/OVf/mVFB9fW1sauXbsmLbv99tt58sknAWhtbQWgv79/konr7++flOo3VcFgkGBw5mL+G0WhsM3jHz7B4fsu8ty39nDi6CZOvLWR08fXc/cD57n/8XcJhefT0NGbxSvAAaT09mRenczcUv8KpiefMbAz0o/UFO4b5DMG+XThtr886y2beI4kGs3T1Jaidf046zaN0bFtjJaOcWSZ8iDHFvReqaHrfIzuCzGunq+l+0KMxEgIO2aRbQuSbQ2RbQvh1JgQA2ITqVDWWJ6q4TTOSUXmDRgUAYaqWzkWbccNmxAVRJtyVNdmqK3NUFuTpKEmSUssTkNVkmgoz+Z1g2xeNzhtbKlckP6xWsYyYWrCaWrDaWrC6Tk3CAUvNcZrvhwhno0wkq5iOF3NSKaKeCbKaDpKPBMhmQwRNh1qw2lChoOUBdCILqZwlt6W/m3822hNVptktEXatXAE/PT9z9JSk2DIsfiLd+6dlp4TlDbVZs6/ZKm2ctRYWUzpnVDJDAxkYwwOxvxtT9QeTLpfsrxQj4WY+O1NvGYiHbWwXJYsR0xMAkx7fuH9ojmWb+FYroUqM8+O4BCPVF+iyrSxDBdLupjS9W6Lwn2vP42UiqBf0+SZUxhxwgy6UQbdKD1DdZw8u5EzfW2MpqNoLRGGItSYIdycJtyWQVoaiZdeqRxBbjiEMSaoyTu0h5LU1Q5Q156aZJTClj2v2VHXFbz44m6ee24PrmsQCuX40IeOcscdlys2y6rR5A0XLbxAbgjJgz98ljse7eTFf7qN4y928O6r6zl3pI0733+Je3/gPKHIjdEUcqoKaXxe81gPJjGfmX2t4fv/sJNj39sIQvO+nzvBtsMDSzjimTUBl6gsoc+QCrQg55grEoWaKqWE99ucNSpVCpOQ5WESN6iJqjUd8krQlV06vDmUmCi/RKDiJmoxKknlK4VKlFvtrWSgpqrGyvGB1nfpzvTy4tA2hvNRXhjazsmxNh5qvEh7OAEsg3mqONpxebRg/HlB6XSaM2fOsGHDBhobGys1LgA+/elP09XVNQk28Su/8iu8/vrrvPLKK0XYxK/92q/xq7/6q4AXXWpubr7pYBNzUV93LU9/bT9XLnipjuFojgefOM3h+y5imNOPJFNNz2RDI8ln/eu0gZMtXTbxvAnDNHGfeRycraDL+i0J1m9L0LE9Qcf2OB3bEkRryhvAsZEgPVdquHa1moG+KIP9URLxEEZAEwgrAhGXQNjFCrsEQv512PWXKzKGRU++jqvpBi4nmugbq512QlQTSrO9aYBtjQNsaxpgfSxethlq1jYZzwTJ2d4MphQulmETDWapCXn1JrNpPBNiNB0lkYkST0+5ZCKMpquIZyKknCDaENODSAUakutdz/VT12iQoAzQUy5TV9JaPcqvPfJ1gqbDt04e4NvHDyJdEIXLEqGSl0xCw6YMNPq/r/4AXA0x108vFMlx+MF3qa1OI/KQkxJtSHJZi1NHNjN8rRYAGXQIN2WINKcJ1mcnIfNVWmJfDlEbd/jUY6/RUpusaApJX18tTz55L319XtP0227r5gd+4A1qaiobFXKES950QUPQNaelf/ZfqeHZL+3myikPkBOuzvHAx89y4NFODHN1HjCn1kiVpvE5en5pfKV6/atbeeXJHQA89pMn2fdoV4VHPjd5ExaVrYsqTGa4SpJX5jIBJeYmr0GvWxYUcV2YxOr8iV5XAk2daZN0Tbqy4SXFmxdUsYa7lUjjK6hMPdSagbq+lIaTPi49V8SlD3B/w2VqArkliTxpodECpBKsrxqkc+A+fvW9v1/hrcxfS95Hajn05ptvct999/Fbv/VbfPKTn+SNN97gZ3/2Z/mTP/kTPvOZzwAe/vx3f/d3J+HPjx8/ftPgzwsqa3qK0Z0Jg5NLG1wbqOdC30bS+QgAAZGjQfcTzKSxS4yPnTXQFc+Pn1Ag7GCFlW9sHBrXpenYmqBt0xit65M0t6WI1WUo19tZKUjnAmRsj5ZnCwPHMFCisrjWVD7ApaEmLgw1c36wmc6RBpwpSNiQlWdrwyDbmgbY3jTApvohrDlFlDRSuLgKbMfAcSWOMrFdE1uZaH9GWPlAB60Fjiu5MtrAhaFmLgw1k8hGJq0xKnLQLzBHwUxqttzez757OwlFHT9FU/jr8uoE0k6A4UyE4WyUkVyU0VyE0VwYW5U/uJrCJRbIEAtkiVlZagIZdrZ0s3frZbSG4+e3M5KIeZOFftPLwm1vNhfw34sqfU7Jeyx9beG94z9HUfL8kveiS5YrP51q1udPua0QuBJG2gR22DvYV/VDaFROjKf0taXjxB+nvzwQyrPvPReIVHs1dMmhCLmuCJFoDjemGA9aJOTkiHe9kSY24nDuG5twu4Ps3NPDJ37iVaxA5dpFOI7khRd28/zze1BKEg7n+PCHj7B//5WK5/orNFnTBgGWa2DNgFHWGi6+08yzf7ub4R4PkFPfNs6jnz7NtoP9q64GodRIFaK2rk/jm08aX6ne+vYmXvjS7QA89Ol3OfiBK5Ud9DwkhRdVq5TZKWLNXQN7mYESc5PGMlwQlBzrrgOTWLVnRNdXAW8ety26smFyS4g3L0jD4hvuVtJAQbF3VaEeqlz6XvF6le2DVlqFzyrrmrw+somTY16DelO4HK7r5nBd97x7M5bdhm+ehPaMrqEMpBa0VPfSO/Igv/T47y32rSxaFTVSpfVE19Pv/35lXeQ3vvENfv3Xf53z58+zefNmPve5zxWpfUCxIe+f/MmfEI/Huf/++/mjP/ojduzYMedtrBYj1dc5xL/9ud+kyUqQTFnkM+aCTY8G3Poo+ZYasLydqUzlsPoSGOnp1LZC5KYQyQlEXKywwgoVlnuGqPAcK+wS9KM/wYhLIOIQKD7foSqcJ2Tafm+m2fsyOVqSU6aPF7eKxfgrsYfLOwZXRnwjM9jMxaEmss5kIpopXTbWD/tRq362Ng4SCcwnhXKy4pkwJ3vbOd63njP9reRK0jBM6bKj+RotOknvCw2keqIArNs0wvs+9Q7rt3h0grRt0Tseo3usbhIAIpkvP5lgCJe26rEp/ZjiNIRTZXOic4aD68/MhxwLeYMdfXqy1Xyh625G7AhhafMz649we9X0VMy5KqsNTucbkRqG8xHOZxsYdSeb3nXWGDtCQ+wIDfPuixt5+msHALjjrkt85EfexFhkI+VS9fTU8eUv38u1a3UA7Np1lY9+9E2qq7MV20ZBGk3OcFBSzxl1rlzBO89u5KUnd5Ie80zmxl2DPPqZ07RuTlR8jAuVQBM0HFy/x5nt10IttED/xPPreebP9wJw78fPcc/HLlZyuPNSIaXPditRFzWR6ph3zYrXWlVSpVGpQvuPsjCJG9hAgVfvWW3aDOWD9Cwx3ryggonyDMsiVliJNL7CukrqoaZFIUuvV+fPdUU0ibQHSCGKk1yDuSjPD26lJxMDoNrM8mDjJbZVDc8PcFX466fFCy2KBqr0+NFc1XNzGqlHHnlkThsVQvDss8/OfZSrRKvFSHVd6OfnHv5/rvu8qabH8lPaypkeYcGV/nbOd3bgup6h2rK1l/sfPk1T27hnioJqUurR3KUxhSIk84TNgmGyZ+yLozXkdJm+TKu4cadSgu5ELRcGWzg/6EWJxrKTqXQCTXtslG1NA8WoVW145jQqpaFzpJETve0c722nK94w6fHacJo9bT3sXddNk07ywpN7uHjKqwcM12bZ/+FLRDZl6E364IexWkay0bLbEmiai+AHzyy1Vydojo5hzgNzrdFkTQct5n7yvFQqRKJcLXCQxZNeF1Fs8uuU3L+cqePZkS24WlJt5HhPfScRwy6+zkGU3PYx6cXbEsfHpk+9ndceJr8gA8Wm4CjbQ8NsD45QZeTRGp7++n5eftaLSLzn0Xd54iPHKhaJcRzJc8/t5cUXd6GUJBLJ8pGPHGHv3s4li/bkpYNjLMxU59Imr35tO298awuubYDQ7Lm/m4c++S41DZU3fXPR1Bo6S7hk3QA5ZS4oja+gM6+28a0v7ActOPTBSzzwqbMrFoErhUssti6qAJSwlY81XzGgxFzlRaWE8GASXhTq5jFQMIE3788F6c2FfXxN5TXdRAFqgaUtlY5CzWKiSse92qLgK6VJpD38eqcZPhut4VyykZeGtpB0vImwjnCch5ou0hicuYRBl9wq1CIKbSC1RJbry8ZNbKRudq0WI5VOZvmV3/4VHtl5mpQpMcNMMkaLMT3jiRDPf3sPb7+xGbRAGi53vuciDzxxmkj0+n2FBJqgtAlJh5Bhe6bJsDGvE2UqNU15Nfcml6tVWsNgsrpoqi4MNjOQnP6baYyOe6bKr7OKhTKc7m/jRO96TvatYzxX0rgXzab6Ifau88xTR+0o6ZTFt751gKOnNpGrMrBjYLS4JIU1Y/pMfSjlG6V4kZjXWpUgaC4+fUxpsDW4gTwIcO0AeSdcNC4F01J6v9TQTNz2zciMxkUUnzfVuJQ+tlp+R0HhsC04zPbQMFuCowTlxGftuoKv/8OdvP3GFgCe+Og73P/omYptu7u7niefvJeBgVoA9uzp5CMfeZOqqtzsL1yEXOFRHBEQcAzMBU6CJAbDvPCPt3PqZa8BshlwuOuDF7nnIxcIhiuX7jhVhVJzKSd+QYWUVO935Z2Uph1rUcS5i0eb+fp/vwOtJPse6+TRz55ecRM1UQe0UHlRKK2Fl8q3CoASc5WXgqgnwyRukjOfiOFgCU1vNshAfunx5lBiojTzb7hbaQNVMpZCOh9lpvnWDNT8zFM52UpyZLSDI6PrcbVEoNkf6+WehquEfELkpOiWXzsnEUhtIJSYtQky3GJG6sKFC1y8eJEHH3yQcDiM1hpxg/5SV4uRisdT/Nz/+Z+4fV03bkB7aXNhm1DYJuhfJm47BEJ22fqi2dTfG+OZb+zj4hmPchgM5XngiXe56/7zmJZ3sPGiTHbRMIWkQ0A6M0eZlEnWN0tZ1yKnLBwtfJS6f9q/SlDqS6FEJlQ0VecHm+lO1F13ljZk5dnV0sfetm7a6uIkcmF6xmvpHqvl4rVmRpwwmP4suSxcezPBUStHU9U4jdEk9ZE0deE0sbDXSLWccSkakBmMy0wmppxx2Roe4MNNxwH4+uA+LmWal/zzvZ6E/5s18BDnpt+PKukESbkBtIYaM0t7aByz+JyJ3lSmj0Y3KWDTp96eWK/hb6dwu9bIlk1ZtW3JP//VfZw5uR4hFD/wqTe54+7LFXm/ti159tl9vPTS7WgtiUYzfPSjb7Jnz9ICDLRfF6UFGEoSrEARe+/FWp790m66znhR2Wgsy4OfOMO+h6/Oe99WTqVUymIGkV/P5yLQymvMrPzaPunv+7Jq4Uaq80QDT/3+YVxHcvv93bzvZ08sMOK/eFUKLlEASjhKYrsm7qqPQs2im+YA5OHNNdCTDTO8DHjz4pYX2itqKU2U6w1smoEq/rn1NDVlbyHmqZwSdpCXBrdwIeUB5kLS5r7GK+ypuYYpC4VPgB95EkrOOYPlljBSw8PDfPKTn+S5555DCMH58+fZsmULP/VTP0VdXR3/9b/+10UPfrm1WozU5UsD/MxP/dm8XhMIlZiskFO8HSwxXOXM2LW+GG++tJ2AdNnYMcT2rX3s3dtJQ01yxpQvR0nPLCmraJhyc4oyaf+kSPv1N5q5oNRvRGm/ZubdkRYujzXQl61hzA0iLEXQsgkFbKShUEL4BexevLtgkkTx9kq/k5n1YO1Z7qjpIqcMvtp/BxkVKpoYQ+ii8Si9Pd24zGZiJprymlOMy/TbalpNV9Kx+NPuOzmfbkSg+XjLKR6pv7Rsn2k2Y/F3f/YAVy42Y5oun/jsK9y2t6ci6756tYEvf/leBge9fPX9+y/zoQ8dJRpduihUQYU6OeGn9FUqtVNrOHeklef+dhej/V5vsqaOMR799Cm27J9fHdsEKt8/jvtwEs8sCb/xtJgx9WmxRqr7bB1f+b07cfIG2+68xof+9TvICtbCzVeyAiaqCJRwDPLKgFUHlJijbqqDjabWcMjr5cObF7e8EBO1FAYKJqASfn+oCZzIrWugypknWdghVngbXelaXhjcwnDeKy1oCiZ5pPkiHeEkUksPQDLPDd8SRuonfuInGBgY4M/+7M+4/fbbOXbsGFu2bOE73/kOn/vc5zh16tSiB7/cWi1GanQ0xef+22+yp66L4fEwmWyAXMYquZhk/duuM5+UGk19fYqOjiE2bhyio2OYjRuHaGsrj/V2XcHwaBVDo9WMJqKMpcMksyGUpIwxcwiG7DnOuHrbktLr9bOaolRaU2wimfdz/23XJO8a3jLXW5ZzTZIqQEoHSGuTDBY5DPJS4kiJa1DxHALBFAMyxVCUMy6zmxivSa05o3GZzcQohJg/bGC5dC1XxReu3s2gHSUkbX6y/Sh7q5evX09yPMj//uLDXOupIxjK8+mfeYlN2xYOtSjItg2eeWYfL798G1pLqqoy/MAPvMGuXd0VGPX1dT3UeSXkOoK3nt7E97+8k2zKA7xs3jfAY585RVPH+LTnXy9NTxVJkmLO6U6LMVLXLtXw5O/cTT5rsmnfAB/9lbdWFPO+WLiE8D9br3eWtaqw5vPSSh9cKqxSvPnVbJj0EuHNvW1N1rwb7i6VgYKJ+ixX3vIGqvi+S64raZ5KvzoBSGRx3S5wLN7Kq0Mbirj026qGeLihixrz+mUjk7ajoaX6xjNS8/4P/O53v8t3vvMd1q9fP2n59u3b6ezsnP9I11RUXV2UtoPjfOjAsev2kXJsWTRVBZOVy1jYOYOIlacqnKWuKkV9bYqmhjEiMzTmHRsLcfVqI53djVzpbaKzu4mevnrcrETaas5FpLNFxkIR//ak5XlCEZtQxCESzhMM5z0zVmKqCubGVp6BsSeZGu9+zjWw1YTRmVhu+sXQk58/yRip0uV+3xihMQMOZtDBCrjTbwdcxHX+a7QGJ2/g5E2cvIGdM3FsAxTUBLLUh9I0hFPUB1KMXazi8ittOBnv8d37u3nPe89SXZPFnCHisvISBFyTrLBRUmNrl8AMOPXl1OlkE3/efZiMsmiwUvxixxusC00/AV8qjQ5H+esvPMzIUDXRqiw//gvP07Y+vuj1dnY28eUv38PQkLcjv+OOS3zwg0eJROZ3kFqoFF7jXQBLGUtiogAMU3PnBy6z54FuXvnqDo58ZzOXjzfz5yea2P9wJw9+4gzVdbliA+dCmp6rZNk0veXUUFcVX/kvd5LPmqy/fZiP/PLbq8JELZSmZ0iv8KWwz1x9WPPr6CYzTwUZQhEznWXFmxc074a7y2GilCxuxktbq/B2VrFKzVPhv3MpzFMhplQwT0XT6jevNLTkcKyf3ZFRvj/SwbGxZs4kG7mYquOeul7ujPXNCWyllC5uM2iuXgBZOc377CeVShGJRKYtHxkZIRgMlnnFmpZCpuVSG7AJ1RVqmRyCPmb8erVMOb+WKZkLkkwHyYUCBNptmkOj9AzX47oG2hS4lqClOU5zYxzlSHIZi2zGIps1yeQDZPMWjjbQBuSMAAkZRDugM6BzoMcF2ig0fvVua4m/TJQ0gvVvmxr8+8oA5aG0Kvq5Camwgp4hsgIOwWCGqH/bDDp+ndh1pEG6GtPVWFoR1C4hHMLYVEmbiLAJmQ6BoEvAcLAMl4iZp6VqnIDhojWceXsdz/zTfuLDXki8Y+sQ7/vUO7RtjFf0/S6VJF4kKmd6BDep3QWDByqh50c28c/X9qCQbA0P83Mdb1I9z9mwxai/N8b//uLDjI+Fqa1P8hO/+DwNTclFrTOfN3j66QO8+upOtBZUV6f52Mde57bbeis06utLo8n7cAmpBOYyRCXCVTaP/dgpDj1xief+fhdnXm/nnec2ceqV9dz7kfPc+aFLGAF13TS95dLotQhP/ue7yCYDtG6N8wO/chQzsLg+K4tRES6xIEJfKVDCvKGAEjereSrIw5s7DOUDy4Y3L2heDXeLsxwszXdSgFworxmY5tYyUAUVpkjEEpkno2DPJpkn0Hj7NqElUk2k70UNl/c1XWF/zQDfG9pET7aal0Y6OD7WxCMNV9keHZ3h3FSjlJepZEqJRGKsvtnjWTVvI/XAAw/w13/91/z2b/824H2JSil+7/d+b86Y9DXNT1OJeYXbMzVFyyvJuB0ikQ8zko0ylI0ynI2SdQJTojTG5PvCxD4sCO6KMzhcTTob5JrRCEYDRshFG6xc00WtES7Fi3RL7itdXGYGHIIRGytqY0UdzIiLiLiIsEKHNNq8/j+oJVxiRpaYkaXGyPm3c9QYWWqNHFGZX/COu7+7hu/+4wGunPEgDdW1aR77+An23NV1wx0MDC0xXYljKPKGi3TksveXcrXgn67t4cXRzQDcE7vKj7Ydx1pkw8D56OqlRr70pw+SzQRobovz47/wPDWxxaG8L19u5stfvoeREa+J7aFDF/jAB94iPENkeankSIWS3tlKYAlTOMul6dW3pvmhXz5K59nLPPs3u+m7WMeL/3w7b31vM/d94hy73tOzYhCHgsaGQjz5u3eRTgRp2jDGD/67NwksIXXweip8jkrLeaPbC1jzQorzYqiFy6ab3DwVVMCb92WD9C0T3rwgL8A7BxNVml+3VN+Lb9KE61+XbvcWUCltrxLve2o9lTEl6lR8nvBLMTRIZRR7QJVTazDNp9ed5t1kA88PbyDhhPhq/w42hhM81thJY8BrDaO1F4USAgxDEjZdomYKNYEou2E07xqpkydP8thjj3Hw4EGeffZZPvrRj3Lq1ClGRkZ4+eWX2bp161KNdcm0WmqkBpJJfu2pz3N3+wWqAxmawklao2M0h8f9VIvJcpXg6ng9F+KNnB9t5kK8mYvxJoayUZZj7yJQBAwv6hIwXCzpetf+/cJjheWTnzfxHKkVOIAjwBboPKicQOUlOmvgZL2GxLmMRUpZpA2LjGWQD0rssMCtAmoU1LqIwPVGDTotIG6gE9K7jhuT7lvaITy1FiwyMz1x2vIyNWOZlMXzT+3m6Atb0VpgmC73vu8c73n/GQLBlTvxWqxKm7MKLQg5y1cvlXYt/qz7MGdSTQg0P9D8Lk80XFhWQ3ruVBv/+JfvwbZNNmwe5NM/+yLhyMLNTi5n8p3vHOD113cCEIul+NjHXmfHjr5KDXnOqhTqvJwm9266Pk1Pazj3eivf/4edjA15GRHNGxM8+OkzdOwaqdi45lMjlYwH+af/eDfx/ih1bUk++fnXicSWLwpaTguFSxhSgRbkXIm9Qs3Q56xbxDwVNIE3D9GfD7JcZD4oYM719RvuLmUaX+k28CdPtVzVP9GKSVME5yyFeSoiOmZYdSF9byH0PfAm9V8fXccb8TZcPFz6wdg17o11E5QuhgFR0yFq5bGVSdoNkFA53MwT/Lsn/u3i3+witaT480Qiwf/4H/+DY8eOkUwmOXjwIP/6X/9r2traFjXoldJqMVKXBr9NJP9TZR+L58JciDdxMd7EhXgT50eb6BxrID+lNmXC3Ew2MfM1N5b0lwuX7osNHHlpG6nRMEJBS3Ocxz94nO07r1X0pNXVgnE3QEKFGHODJFzveswNMqa8azWHmYqwtom4DiHbIZDVWBmNkQQxJlFxiZO0immKhRqz7LwBHrNIaIJBZ5K5GrpWTSblpb7edkc3j3/iOHWNMzeyu5Gk0WRM28uXVpKAayy5mRrIRflC113056sJCofPtr/FgZprS7rNqTr25ia++nd3oZRkx64ePvF/vEIgsHBTfPFiC1/5yj2MjnrkujvvPM/73/8WoZBTqSHPWZVGnc9M05MozZzT9Jy85J2nN/L6U1vJZ7zC5i139PPAp85Svy61qDHC3I1UZtzin/6fuxnuqaamMc0n/8PrVNevTEPhgibgEnPfjxWw5q4S5NUqB0rcYgYKNNWmg9bQk40wbFssv4li9oa7y2GgCtsRgAtS3dwmSvjFT5UyT1OjTlNrnaY9XwDCa7gutFwwfa9Uo3aQ54Y2cCFdD0BY2ry3+RL3NfTgapO0EyCnLBK5Gi6lTTrMe/nND/7EgrdXKS2JkbJtm/e///188YtfZPv27RUZ6GrQajFS1+JXccfvZShdRX+6mlE7QjwfIZEPYSvDN0RuGUM0YYAMoZZkRt6xJW98fzsvPX07uawX9tl6Wx+Pf/g4LesSc1qHraVvkIKM+SYpobzbCTdIUl2/D4ZAU23kqC1Jt4v56Xc1fireTE2C5/IeJ5mr9GSjNXHbnGH57GasaV2C933qHTbftniK22rTUkYvpupsqoE/7bqTtApQZ6b5hQ1v0BEaW7LtlSoRD3PirY0cP7KR/t46APYdvsLHfvR1jAVirrNZk29/+yBvvuntU2trk/zgD77Otm3LawxLtRjU+dQ0vUK0SfvRpoXQ9KYqM27x2le2cex7G9BKIqRi36Nd3PODF4jULDwqNBcjlUub/PPv3sXA5RjRuiyf/L9fo7Y5s+BtVkKlcIm51kUVseausXIp29fTLWeeCtLUmjZZZdCdDTO2jHhzb+vM3nB3OdL4SuUbOrmajf4itNLmCeaXvjfv8WivFqorW8Wzw5sZ9HHprcEkD9RdIyoDDKUbSORidNkp3lO7i//nIx+vyLYXoyWLSDU1NfHKK6+sGaklUFffKD/2K3+CUzL7W1WVoSaWJlaTJhZLE6tNE6tJectiaaqrs2UR5kuldCrAS0/v4s2Xt6JcAyEUB+66wsPvP4lVbRdN0ZiaElFyg6T19fPuTFyqjZxvknLEpGeOavxlVTJX7EUlALHKUOozmTHDUmzbfW1Fe8ostWzpYhseIjvkmN7Ou8L6/uhG/r5vLwrJpvAIP9/xJjFzaXsoZdIWp493cOLoRq5caC6eqBqGy70Pn+WxDx1fcPPY8+db+cpX7iGR8A4sd999jve9722CweWPQhU0X9T5tDQ97f13un6EaSlpeiN9UV76+51ceqsFgEDY5q6PXuSO93YuCPhwPSNlZw2+/F8O03uunnB1nk98/jUa2hcfCVuMSuESc6uL8oASygdKLJTst2S6eXeRc5LwTVRqBfDmBc3aK2q5olAF3aQmainNUyme/HqrnZy+50WfKplRopQiIG2qAjZSCHLK4qXhDbw4tJ68P+HaKA06jAABIelXIze/kfqVX/kVgsEgv/u7v7voQa4WrRYjdaV7mH/1u39E0LUZiUdxnOvvQKVUVFdnPJMVS1MTS1MbmzBasViaSCS36CiV1pBWlm+Qglwbq+HMlTZG7TCixkXEXETw+j+lgHA8kyRzxQhSEeYgc0SkvYCxaoQs7EBWj6m61TS5XqqyTVuVhi/37+bZEa8G83BNNz+27h0CSwSVcBzJ+dNtHD+6iXOn1uGURBo3bhlg3+FOdu3vIhJdWPQjm7X45jcPcvToNgDq6sb5oR96nS1b+isy/oVK+Sl9CDBdWRZrP3uanmegWGaaXtfpel78u9sYuBIDoKYxzf2fPMeOe/rmtT+ZzUg5eclT/+0QV082EozY/PBvvE7zxuXD65eTZ171nOuiCkAJ2++Vp1cTUGJtZ13Em4/aFt1LiDeHBZio5TZQANI7nAt3Ff1OFyh//rdi5mkhUafia5cgfW/6RhRBmSNs2QhhkFcWSTvKYKae4Uwjg5kaLuYlg8rxxw/rDAtJkgfqbiwjNe+pDsdx+Iu/+AueeeYZDh06RDQanfT47//+789/tGsCYNP6BvY+fI0fP/gcPekIyXSEsfEwqUSY8fEwiUSEeDxCIhElkYgwPh5GKenfj864XtN0iiYrVohu1RZue6YrEHRIqkLaXdBPuwsVU/HG3SAOU3bqG8FgSjQgI6gWOVprxoiZfsqdzBUNU0guBVhBoL19AgqQ0tvjS+Gd9PkNMNaO00ssgYdEzwqvtiZvOBUhvWVck7/oOcSppBd1+HDTGT7QeK7iKaxKwdXLTRw/spHTxzrIpCfaOTS3xtl3uJO9BzuprV9cbdvZs+v46lfvZmzMgybce+8Z3vvedxZVX1UJTUWdW8qYJU1P4miBUhIFfiRk5aIaHbtG+PRvvcK7r6zj5X/0gBTf/KMDvPXtTTz4mXdp3xFf1PpdR/Av//MAV082YgUdfvDfHVlxEwXMy0QZUqG1IOesIqz52k65qALefNDHmzvLiDcv6Lomajm/r4KJukEjUUXj5N/xMmgqZ57kdUARZV9fmr7nVjZ9ryApXMJGloB00EiyOsxouo7+dDPxbC1juZpiGvEWE1qUyRU3T1Irul0bkwDd+ZWN8s9X8zZSJ0+e5ODBgwCcO3du0mPiRuM3r2IJAZFo3pvxbk1gSIUpXaTQKOXVFiglSCZDxOMRxhIREmOewRpLRIj718lkGMcxGR6tZsQJI/O1iKyDzLiIlIMcdxFjDqLKnQNKWFMl8xO1Sb5BqpFZhi7U8vo3b2P0Wg1ZQLck2P2R42y/fX4zwouXQCn/Go2Uohil8nZsa1GqpZTAa9br1dhoHK2wFjGrOpSP8IWuu+jL1WAJh8+2v83BmsoS7Ab6ajh2ZBMn3tpIYnRiQqI6lmbvwU72H+6kZV180b/jTCbAv/zLQd5+24uqNTSM8UM/9BqbNq2OmrlS1HlYS7+fkEYjcPz0vJVsens9CQm77u9l+53XeOtbm3nzG1u4dqmWf/zte9l25zUe+JGz1LbM3wQrBd/5k31ceqsFw3L5gc8dpW1bvPJvYJ6Sfm7Q9UzUBFDCw5q7Kx2FWtsBT1NIuoSlS182RF8utKx484K8n8UUzHmpgVpuEwXFXlE3goqfbal5EouLPM0VT37d9ZSm77lGxdP3ACxpEzaymMLFQZJwYgxmmhhINTOWi5F1QmVfF5UGu0SIYeVy1c1jAyP20qbrV1rzNlLPPffcUoxjTddRIf/dlApDusWZ4pqaDDU1GfJqlDEVmhxRckPexQmR1ibXOxPULuikgRo30eMGetxEjRvoMRM1bhLRNrI6jYylkTETGZMYMY0Zc9jZMcAd/7aLt17bwotP72KoP8bf/9kDbNrWzxMfPUbb+vgyfEpT5ZkqhbczE8JL/RNrqX9LKkNLLGVgGy62dJFaXLfOppwupOv5k647SbpBYmaGX+h4g43huYFNrqexeJgTb23g+JFNXPOhEQDBUJ5d+7vZd+gKm7YNVqz+8N1323nqqbsYH48ghOa++87w+OPHVjwKVUjTU0Jj+9HigGugtImzQml6i5UVVNz9sYvsebiLV57czqkXOrjwZiuX3mrmwBOd3P2xC4Sic6tB0xq+97/2cPbVdUhD8eFferuiuPWFqhQuMZuKQAnH6xm4YkCJtR3tjCrgzbuyYQaWGW9ekC7UHRdM1EoZKChO6N4IJqq8efLONSphnkrrneZvnpicvqeWIH0PTcjIEzGzgEtWBRjINNOfamU028h4vho1B/CUEIJGw6ROGlxwx9gVqa3gGJdeS1fFuKaKSWvIaaOIAE/qAEkdYMyZIOBl9HWoPsIDOdQUCXe5Yl1SWNmIpEE+ZTE+FiFREt1KxCOMjZm4tkkKk9R4mN7ehrKbKNZrrU8TStuMDFRx6Uorf/yHLWy/rZdH33+S1grM7M9fwqfG+KZKCgot39ZM1dLIVBIlFK700sXmWy/1aryDv+3dj4ukIxTnFzveoNZaHF46m7E4fWw9x49umgaN2H57H/sOX2HHrj6sCpqbdDrAN75xmGPHNgPQ2Jjg4x9/jQ0bhiq2jblqpjQ9pQUZP6VPuAa2E8BZjQS3eSpam+eJnz7FHe/t5KW/v40rx5t469ubOfVSO/d87CL7H+/EMGf+r9caXvjS7Zx8vgMhNB/4xWNsObDy0cO5EPqE/z0rLci5K4Q1X9uhXkeaGtNBaejMRBhZZrx5cRQCL92rnIlaTomJuV6hpHewXoWqtHmamkFpzAMUUXZ9y5C+J1BErBxRI4uLJp6LMJBp4lpqHcl8PVknvKD1GkJQK13Mle60Pk+tGalVpDE7xWhQ8OzYJrpz1STcEOPKI+DZc3D1QeEUTVKNnDBMBfMUFs7MJiYKtJR/SGsvLckzVlESvtkaS/imKxFhbCwyvV7LpPgLO3ulg7Nf7EAIRW1titraAhwjVYRiFC6h0MIbml5fhXqqidS/InVsrZ6qYiqk+BXqpXKGQ3AO9VJKw1MDt/P0sEcFvaO6l59of5vgAmvrHEdy4d02jh3ZyLlT7ZOgERu2DLLv0BV2H1g4NGI2nTrVwde+difJZBghFPff/y6PPXYCy1qeKNRMNL2paXqOkfNPngTYwYqnfKy0GjuS/OC/O0LniUZe/LudDHXV8MKXbufYMxu4/0fOsu1wf9n94qtPbuft72wC4ImfPcGOu1cOR1+Q9FnUhb5b5eQ1b9fYrg+UWG5TvLbznIM0daZNZoXw5hOjYMJElS5c7iiUmNi0VGJVmahJn1+FzdNio06T1ikKH9rSpe+ZwiVqZQibefJK0J2qpXu8heFsGxmnFr2EbU9Ws9aM1CrSQHaUzhqTzsSOso9HRJ5qI1+EN9TIHDEzS72VJmZksbx4S8XHJQREInkikTxtbfGyzynUayVKzZV/PTRYw/BwNa7yKFGjo9WMjlbPuL1g0CZWSh4sRb/HUtTUZCp0Mlqop5rIZV6rp6qcBIKgY5I1PZLf9eqlssrgL3sOcnzca+z9gcazfKjprI+7n7uUgq7LTRw/upFT70yGRjS1Jth3yING1DUsTUFrKhXk61+/kxMnNgLQ3Bznh37oNTo6hpdkewUV0vQKn1eBpudqo0jTm9q7SUsHfNS5yN98JqpUG/cO8ZndQ5x6cT2v/PN24v1RvvHfD9K+c4QHP32G1i0TaaNvfH0Lrz/lERUf/ewpdj/Qs1LDnqLZ4BLar2vzsObLCpRY21HOWdLHm4+7Jl0rhDcH3y9JvIhFccGSDWVGFScxhDeWSaZuhbTU5kkivVUs2jzBktP30AQNh2orjSltknaQs6OtXIq3k8g1oqjCuMX5CGtGahWpJVRPNK+4rfYapnaoMhxqZI5q3zjN1GhWCI2F8nuDMOeGjJWUlBP1WuVOGLWGMyfW8fQ3DjA6UoUWgnBVjraNo0hDM+ZHuTKZILmcxcBALQMDtTNuLxLJ+j21ymPfq6sz82iQWi71b62eqhKSSAKuQd6cvV5qxA7zxat30Z2LYQqXH1/3DnfG5nfyOnCthuNHNnHi6Ebi06ARV9l36Aqt7UuXWqo1nDy5ga997U7S6RBSKh544DSPPnoC06zsFOtMaXpaS/JzpOlpFNryi3pdC3ELzCZKCXsf7mbnPX0c+ZctHP3mZnrO1vN3v3kft93bywM/coaT76znpX+4HYD7f+QM+x+/usKj9iSF8vpzlTFRBay5oyT2cgEl1naI81Yp3rwrEy720VkKzclE4Z2HFxcup0pNhL8TEytooiptnioFiii77mnpe9IzoRWVJmJmqQmkAc1wtobLiU1cGW0l6dRhygCWIaeynG9JrRmpVaRqK8L2hMunt56kNxPBnePXo7XAdk2UVpiGQgiFqvisxOIkBNy+r5edu/t4+/XNPP/tPaQSIa4cb6Fj8yAf/cgbrN80Qj5v+BGt6LTIVmG5bZuk0yHS6RB9vfUzbE9RXZ0l5qcO1kxJH/T6a2XLNFJdQ6lXWoaWGErjSkXOcAhPqZe6nK7jj7vuZMwNUW3k+PmON9gSGZ3TusfiYU687UMjekqgEUGbXfu72He4k03bBpaoafXEoTKZDPG1r93JqVMbAGhpGeXjH3+N9vbKgAnKpekpvXCankajA35Kn5KIJUwtWo0KhFzu+/h59j7SxSv/tJ3TL7dz5tV1nD/Sgmt7pwZ3/8AF7vzw5RUeqacioa9MP51SoERemSzpfn9tx7dgFfHmuSA9udCS4c1hHibKZWW+07ImannhEtM+owqbp0ql7E1a/zKk70nhUhNIE7Ey5N0AV8ebuBhfx9VEEzkVIWSYhCyjolvVgOO6uK4GixsuwrVmpG4SebUPBgqBKdwVjU7NJmloDt13iT0Hr/LKczt59fmddF1u4i/+++PsOnCVxz50gqamcZqayvdoKdRrebh3D4ZRNF3+/fHxMK5rMDbm1W51dZUfi2G41BR6atWUmKzaFLEaz3yFQl6D4IKpWkv9m7+8eimDrNBooSfVS72ZaOd/9x7A0QbtwQS/0PEGDYHMrOvLZizePb6e40c3cvl8S/E3LqVi+65e9h3qZOfu3opCI6bKRBM2FErBW8c3889P3UU6E0RKxUMPneThh08tKgq1kDS9ecmwQfopITdhXdRcVV2f5X0/f4I73tfJi397G13veiCdg++/xL0fP7/Co/M0CS5R8j1NYM0FebXEQIm1Hd2itFx4c5j5pL0wx6IFfn8mVuR7LT1H1qIQFVseE1WSRehtbpHmqdKgiLLbmJq+pwrRp8r+hixpUxdKYgmHcTvCicGtXI6v41oyhotFwJBUBcyKmhxXaxxHobXGMATRUICsNKmJBq//4lWkNSN1k0kpiS0EGh+TLij2VVpNCoYcHvnAKQ7de4nnv72bd97czOl3NnDmRDt33n+BBx9/l3AZAEBpvVbrjPVakEqFJkWxpka2kknPbF2vXisQsEuiWCk/hTBNbV2KuliKWG3Kq9daM1WzaqJeykZJTV67fPfabr41tBOAfVV9/B/r35qxYbPjSC6caeX4kU2cPbUOx57YdS01NKJUEk1EKjTQORrlqafu5sKZ9QC0t43w6U+8TGtr3Euvm+P/nJcr750Uz5ymV7neTVq4aNMDuggnUHGi042o5k1jfPzX36DrZD35MZPt77m2cqjwEhVMVME4F1SIQi0pUGJth1YRRQ0HYwXx5rr0CQJkId1iJVP5Su4vtYkqZ54Ku9LFmKelijoVt7NM6XtRK0MskEJpwVCmlgvxdq6OtRHPRlAKTEMSNU1MQ1YmLRFwXIXrKoQQBEyDYMDAMg0MKRnJwZLl3y+R1ozUTSgv1a/Qd8qLTrmr0EwB1NRm+OinjnD3g+d55uv7uHi2jddf2MmxNzbzwBOnufP+C/Oe2ZcSqquzVFdnWb++fGqV40jGx8PTGhiXGq9MJkg+bzE4GGNwMDbj9iKRLLFYmtraqQRCP62wJj3neq1CrZYuRBy013h56rKpy73bpRemPM9bNv1505eXPn8h25y6XKmJ9TS0jrDjwGVcQ3E5VwPAlsQ46y8rnjl+YNo4xsdCjAxVEx+JTqQ1SQjWONTUpamJZTAtl9MXOjh1fsMMn93s7336e5Zlng/av6/8i+tItJZIqbjzodPc9+BpQqaDgyAsFVKArcQ0UzVjmp5e+qa3Gu3VRQnANWAJC91vNAkBm/YNEZI2WWWhV9hIFJKIlZaoYrRJ+9kGXjq3rSQV/Y2smacKagJvfjUTYcQOLNmWrheFKoAkhPbT01eBiQKWBHMuplxX2jxVChQx47aWIX1P4FIbTFIVyJG2g1yIr+dSvJ3u8WZsZeC4GkMKwpZBwDTnDXwqp6nRp0goQNAysMwK78NWQGtH0ZtWAleJEjPl/XOuxugUQMu6BJ/5+Ze4eLaFZ762n/6+Wp7+2gHe/P42Hv3gCXYf6KKSrQVMU1FXl6KubmZyWz5vTKQQzoB+z+etiXqtvpnrtcJhL1IyF4N0M0uFFY83Su5df5Ef3fAmX/i7DzF6Yh2vsm72Fwom7a2yboDsUICBodqlHO511dQ2wmMfe5OGljHyCEZci1FXE5KakHCpMhQRqTCEwsUzVW7BiFUqTW8e0mbem5LW4pZO6bsRJIRClxD6CkAJWxnYroGqVCRxzTwtgSbw5l2ZMOPu8uLNS+dgRKkLUMtsomZIc6s05rycedIl73u+5mkpQRFlt7dM6XsBmaM+lMSQikSuiiN9m7mcaGc4G0MDrjfrScg0CFjGovs5acB1FY4ffbJMScgysSwv+nSzaM1I3eTyolPeQdcyVnd0CmDrzn42/+rTHD+ykee+uYf4SBVf/pt7ee2FHTzx0WNs3Lp8jUwDAZfGpnEaZ6nXymatSamDxcjW2ITZcl2DdDpU0bEJ/6Rq4uKRE6+3fOL29HV4j1HmeWrW5ZO3O/V5E8vHQgZvr6vnqyP76KgbZn00zs996GmO199GPmcx2F/DQF+M5NhEMz/DcGlpS9DWMUJj8/iM76Xc9qaPY+axlfvsTKEJWy4KGHclKS1Rgon1GIpodXZSFoLAe9xG42jJuCMIYhAUmrDUWEBAaHJa4ioDZxn/Dz3UucOtgDq/0VWASzg+xcyQCq0FOadCWPM187RkKuDNx1yT7kyYtFpevHlpFEqUPnE58eai7M3igkpgzpfSPC1lyt6kbRbT98SSpu9VWylqgmkc1+Raqp4L8Q46E21kXe+8xFUKpTSGIQlZBpaxOJiE8qNPSnuRrUjI8qNPy9iSYRm1ZqRuCU1EpyzpeL1GwCf7rT5JqTlwl1fz8uoLO3jl2dvo7Wrgr/7no+zc08NjHz5OY3N5c7OcEgLCYZtwOE5ra7zMM7zPOZ0KkkkHyxqY2c1AueUUr28kvTXWxl/13IGtDdoCYzQIr3dRTX2S5nUDfPXPHypG40zpsv32PvYdusKOPb0ElhAaUU7Cr4MCGHMNRl0TQ0tqZnhuIVIwkaYnsZWBi5eSNY7woweakPQiVDWGQ9hwMQQ4SpDzU/uWSrci6vxGVSlcQggPe+4qSb4SWPM1A7WkMoQiZvh482yE/DKS+SYZqKkUhEJd1HLoOiZqsZjzqTVP08zTHD/ymUARy3FoXY70PUM41AaThM08KTvEmeFNXEq00zPeXKypVFp7tUpSELJMgotI4ytEn1xXgQDLNAhaJoGbLPpUTmtG6hZSAZPuaoVlKKRcfZj0UlkBlwefeJeD91zihe/s5q3XtnD2ZDvnTrdx6N5LPPTeU0Srcys9zFnk7Rqj0TzRaA5TTsw+3SrnM1rDt4e28/VBry/P7ZEBHkz28L0vHcIRio/9zIvsuOMq2/ddJTsWYe+hTnYfuEq0ammhETOMlpDQmFKTUgajjkG6pAZlgqQ3kYQ3yThp6aftTaarTUiQVQZZZTDimISEImz4pkoqqnCwdcFUVe7/clJd1C2IOr+RVAqXKNzOOwa2WgRQ4lbZ2aywAkJRtQJ481KYxLRWkxLPQC2HiZrNQBUWLgJzXrpHLBqoBZqn5Yw6Fbe9LOl7mrCZJRZIIQSMZqs5MbidS4l1JHI1k57nKI3WGss0CJkG5gLNjtLgOC5KKwwpCYcsApZBwDC44WZ8F6g1I3WLyWvoaKBZ3Zj0UlVV5/jQD7/FXQ+c53vf2Me5U+0ceXkbx49s5D2PneGeB88tKeq6MhI4ygNhSKERt4CZspXkb3oP8OaYR7XbNJQk+Z1WvpzaVHzO8Vd62XffBT72My8Qdi0qwwWavyyhCEtNRkmGbJOk6xkoU6oypkkWo00Kr8Zp/gdDQVYbZB2DUcckKDQR6VJtOIQNRRSF65sqe7EHW8MGYw11vtrlfSseSELgAUhyromrFhA9vNl3LqtMBbx5bzbEtWXEm88YhSosXy4631xMFAszUVP3fkUDJcWcztOXExRRdvvLkL5nCJcqK03UyuIok57xFi7E13N1vIW8OxklrrTCcTWmIQhaFoEFpPFNjT6ZpiRqhW6J6FM5rRmpW1RFTLpWGIZCCL1qQRQFNbWM86mffpkrF5p4+mv76euu57lv7uXoK1t55AMn2Heos6JAisrLI9hxC5iphBPkf168l263BpSm6uUAqXebAaiqybD3jk72He6kdf0IeSVQUpMTDiHHXNYTfQNNxFC4GoYdwbgycPGiARqB4xo4RdPELNGmxcgzTDlXMuqaBKaYqojwxpdXHg59Pv+ja6jzG0eimO4jsJWPNZ/v93Wz7lBWsaKGg8HS480pWfOsBoqSJy11XZSY9e6khfMxUVPrn2AihU/4JmomLTcoYsZxLEP6XtDIUmVlCBguyXyEd4e3cCHezmC6HndK+rbW2oM+FNP4jHn3hJqIPnm1T6Gg5aHLDQNxi0SfymnNSN3C0lpg+8jlAiZdKZaFHrYYbdo2yM/822c4+fYGnv3mXhKjUZ76u7t5/cUdPP6RY2zZMbDSQ5xFBTMlkELddGZqPBHixRPb+W54E3ZYILJQ80yIqmHFrjsvs+/wFTZvH0DKicNdwDXJChstNLZ0CSx5cbZGCkXUR9KPOZK4a5FRBk4xPc+7LH8vIY/sl3e9MVnCq6mqkg5R06VGKLSG3BxM1Rrq/MaRFApDamzXmD9Q4mbagdxQ8vDmrhZ0ZiOMLgPefNY0vunDW10mag7phWUNlP9nNgM1OWVPeHGnFTFPlEnfq+wxxBAuYTNH1MwgBAyla7k81k5nopVEvopy1XOO0mjlpfEFDQPLmPuYpkWfDEk0ELhlo0/ltHZkveU1HZMuWL2Y9IKEhL2HrnL7vm7eeGk7Lz1zO9d66vibLz7M1tv6eOIjx2huG1vpYc4ggVIapPQjUzf2uVA2a3Lm+HqOH93Eu9kGEo/aYIERF+y/GOeexy/NCo2QCIKuSc5wcAyF1C5mhWAI03o2oQkApoAxx2TYDpDwZ/7VKmjAOlW2liRcScI1sZwSU2W4xAyFKolUTZ0AWUOd3xgyhUJIRc6xyDnW3IASN/IO4yaQ8Ml8y4k3n1MUipInL9VvpMxuZCYTNVfMebkpoWkGSkx5rOS1KxV1Ko5nGdL3gkaekJkjJPPkVYCu8VYuxtfTl2oi4wTLvqaQxmcYgnDAImDOPY2vEH1ytcYUglDQJBgwb/noUzmtGak1ATceJr0g01Lc9+hZDtx1mZee3sWbL2/j4pk2Lp1t4cBdV3j4/SepjmVXephl5DeqlV56mRB6VdepTZXjSC6eaeX40Y2cOdmObRtk9jukHrRBQJud5Bf2vEbTfek5rc/QElNJHEORN1ykI7xC4HloqmkCr85Ea3C1gYEmKDQZZTDkBEg45pLWMlRapabK9E1VVLpUGS7VhkdBLESqlHQnUOdrJmqVygObCKHJ2AGyjsWs+9s187QqZKCJWXnGHYurmQiZhdSwzVG+b5q4P5ffwGowUYXHlJgVcz5TTL1QByVLDNRKgiJm0lKn7xlCETRyhK0cBppkLsKVZDuXE+0MZmtxZsje0Fp7PaGEIGQZBE1zTml8pdEnDViGJBIMeGmA84hi3WpaM1JrKlEpJt1FFpv4rv6TsEhVnvf94Dvcef8FvvfNvbx7rIO3X9/Cybc3cO/DZ7nvkbMEgs5KD3OatBK4AgxY9WZKa+i60sDxo5s49fYG0ilvFkxLjf2+FKmN3o72gbrLfLL1JMacjvoTspSBEtqrlzIdQo4140FpeqQJv6ExfqNb/CiTQGhNlaFwkPTbJiOOhX2D1wo5WjLmSsZcE8PWRAyXqPQMVVQ6jJse9VC4JmIJT/TWtDBJv/UBGtJ2gJxjMuMp4ZqBWjWyhEfZHMkH6Pbx5tPS0CqoQhRqTrvSpYRLzPDTnPFoVYiczXDucD0DVYhCrU7zxJKn7wVknqCZJyAdtJaMZGq5Gm+lO9XCaLZqlpRzjas0SmlMQxIyTUzj+ggnpcF1XVylkEISDJiEAiaWuRZ9movWjNSapqkQnZJa3BCCiryjAAEAAElEQVSY9FLVNyX5xGdfpevyOZ7++n66rzTy4nd389arW3j4/ac4cNdlpLG6zky0FrgaDOkZg9WGRx/sr+b40U2cOLqR0eGq4vKq6gzb7+zm3R1VDKkYAs0nWk/wUN2VBVFPhZ/i59VLQd5wCbiGd8gQlMGOC1wt/aiTZ5pUMf/FM1sR6dWexF2TYcda0tnjlZKLYNw1GXdNBm1FY2QMU3gnMTVaIgyHvBbk1FKAMtY0P2kM/3eslEflyzll6qFW0w5gTQAEhSJqOPTng/TmQmVTMMuag4VucK5pfCXPXS4TNetepGii5LTFM722kMbnOaYJp7QSlL2ZtNTpe4Xok2XYGGhsN0BvqoFL8XYGMnUk7cisry+m8UlB2DIJzKEnlOMqL3KlwTAkVeEgQctciz7NU2tGak1lVcCkKy2LTXxXOya9VB2bh/nJf/Ms7x5fz/e+sZfR4Wq+8U+Hef3F7Tz+kWNsu/3aqmpxoPHw6AUztdIQivFEiBNvb+DE0U30dtUXlweCNrfv62bfoU5CG1L8cc9dDNtRQtLmZ9YfYVfV4KK2K4Gga5A1XFyp/Bx7zyw5vlnSarppmiyv8W1QKlKuybBtMebenB3VpyocyGGaLkrDULqGOBDxU/+qDRcBRVN1I6U13gwSaH8/6iHzbSXJuwYUZpfXzNOqVVi6hKRLXy5EXy40rwmJ+Zqrop+Y6+9hqXpFzTcKVfJgKaHvegZKl9RBCbE6ok6lWur0vUL0yavSFaTyUa6lGrg63spgJkbenR1iotFFMxQyDQKWgTkLvlhrcEqjT5ZX+xRYiz4tWGtGak2zSmuBrUyUVpiGQogbJzolBOza383O3b0ceWUrL353F4P9Mf7uzx5k0/Z+nvjIMdrWx1d6mCUSuCvYayqXNXnXh0ZcOtdcRC9Lqdh2Wx/7Dneyc08PgYDLqfFm/ujq/WSVRaOV4hc3vE5bMDmv7Xm/oEKTW2+Z1oCWmAocwyUrFLaywO99dj1ZQhExFHkl6MsHiTsW7g3wW62ELOlQE/Rq0hLZKLYysYGkMhmyNWGpiEiHatMl6psqe81ULYuk38jZUR4V0kPrm2i1NvO72lVlOEgfbz5YIbz5JIDElIVCz2MLhXS+VWKiNBMmasb0vcK1b6CkFBhitZknljR9rxB9Mg0HtEApg9FcjJ5kE32pRkayNdPw5eXkKoVSGsOQhCwfQz7Tc12Fozzqq+lHnwKWl/q3psVpzUit6brSWuBoA4VXO2VKjXsDRacMU3H3g+fZf+cVXnrmdt54cTtXzrfwp7//XvYdvsIjHzhJrG5uUISl1/Li0V1XcPFMK8eObOLsyXZse2KXsH7jEPsOX2HPHV1Eq3KAd/B7dngLT/bvRiPYFhni59YfocqvyZn5XUHBNBUyN7T2InFKS2wt0AXkuBYoFyAHhotr5hH58KwHWYmmynBRwJBtMeJY5G/wOqj5SKCpC48jBGTsAGl7ShNGBCllkFIGQ07BVLnUGB4BUAqwlWeqbhXjuRyaiEJB3jVwtUQKhe0auGsmapVLE/Px5leXAG8+ab8u/QjUPHb2Gv81lTRRs/zrz7ZXKJwKSCURagYCX+kdAYYUSCFXV2bIEqfvBaRN0MyD1mgtydshRrIxepON9KfriefK4cunS2mNO6knVPk0vonok0YK4UWfLJOAJRGru+nmDaU1I7WmOUv5RDBTKgzpIsTqx6SXKhS2eeIjx7nzPRd49pt7OfnWRo4f2cSpdzq458FzvOexM4TC9koPE89MFfDolTdTWkP3lQaOHd3Eqbc7SKdCxccamsbYd7iTfYc6qW+cHGFyteAf+vby/fgmAO6t7eRH245jlslBKcAgpP/YBAxC4vhmydXCm40r8/sRAHYQLTIg/X5IZehzAs8UmEIz5hoMOwHSSnKj/CYrpVgohWUoXCWJZ6PM9v41grQySCuDYcciLBVh6VJjuIQNF2PNVFVEhSiUq7wGu1oLpFQ4roHrrp3ErGaV4s27lwBvXtoPCuEFP+Y5wHkbr7msc74PFWEYTJioSY9NebJXAiWQcrUZqKVL35MoQmYOU7o4ysBxTfJugMF0HT3JJoYytaSd0PVX5I3U6wmlvZ5QIdPALNPLyVVevZTWHnQiGrYIWoYffVpFH/xNojUjtaZ5yQNReDUr5g2ESS9VbX2aH/qx17nnoXM8/bX9dF5s5uVnb+ft1zfz4HtPc+i+ixgrDqSY0msKip3dF6qh/mqOH93I8aObpkEj9txxlX2Hr7CuY7TsAS7lWvxp12HOpZsQaH6w5TSP1V/0o0szE/Ty2piINOFdz/0TEJ6ZCmTBcEE5UDyh8VDmYalIKck1O8iYO7f0v5tNITNPNJBDaxjJVKHmEYkrNVUjjldbFpGKasMpmirHN1XOLfjZLkwTQAlbGTh+qpOUCteVOLdIvd6NKomm1soz5lh0LwHevNRELcgMTQVLlM0TnOf65vlwoY6rsKcpNNydOoRiep/2DJRYRQZqqdP3LGkTMvNeVEiZZG2LjBNmIF1LX6qJwUxsRnx5ORVgEqYhCFoWgSlpfKW1T0JIgpZB0DKxLIlciz4tqdaM1JoWoOlNfOHGik4BrOsY5Sf+1fOcO93G976+n6GBGr79lYO88f3tPP6h4+zc27PCO/3F95oaHwtx8q0NHD+6kd6uhuLyQGACGrF5R/+sxrE/F+WPuu5mMF9FUDr89Poj7K+5Ns00FbDjSkvfNHnvYTES2gAngLbyXoNZJbEQRKTCRtBrB26pOqipkkJRG/Iih8l8iPwiZs41gowyyCiDYcck5NebFUxVFHC0IKcFjr4x6iSXW4UolFKCvDKKEwdSaC+FdY61fmtaGZlCETNthn28eaXbJMy7J9RMKyn32lnz6WbQPE3UVAPlHQTEpPRCWfpKvxBKGqvJQE1J31Oy8tEnwyXvmGTsEGhJIhdlIFNHf6qBkWz1LPjyMuPVGmdSGp8xqSfU9OhTkIBlYK1Fn5ZNa0ZqTQvWjdrEt1RCwM7dfWy/7Rpvvb6FF769m5HBav7xL99Dx+ZBnvjoMdZvHFnRMc6311QuZ3Lm+HqOHdnIpXMtk6ARW2+7xv5DVzxoRNCddT0CzbupJv60604yyqLBSvOvNrzGuuA4jpoZO15xuSZI14tKBbIEnAAjToARxyJ3C9VBTZemLpzEkJq8azCWmx2POz8Jstog6xiMOCZBoX36n+M1Akbh+qbKXjNVgGegJOAozzAVqWVCowHHMYr/i2tafQoIb9KgPxeaEW++UE0yUItZUQEuMdfnzmUQZSJbpaZHlzxU+oloAUILhCsKkPLi5NqEgRKrphZHF4q3dOXT94rRJyBrB8jaYVxlMJaP0pdqYCBTx3g+wvy+fT+NT3lpfEGjYI68z9hxXVxXI4QgYBmE1qJPK6Y1I7WmRaq0ia+HSdfcGE18SyUNzeH7LrL3YCevPHcbrz6/g67LTfzFHz7OrgNXeexDJ6hrSK3Y+DzgB5gz9JoqQCOOH93EmRPloBGd7D5wlarqXNn1Cz+BvbRX0/PDm/j7vn0oJJvDI/xM+1Gipk3GtVjOE2cBRFyTjFQooRkVigHbgnnM6t2MqgpkCZk2SsNoppql+048w5RzJKOOSUBoItI3VYYigsIFckrekqZK4jXXVVqQV3IyRMKvH8krs6In5muqrAp48+5ciP554s2vp0IAadH/GQXM+UIHAeWjQqLkKf5Ap3quaS8THqZcKi8FeyI7wXullAJWAUhiWvqeW7n0PYEiZOaxDIe8azGeiwAS2w0Qz1XRm2xkKBMj6wavu66pKvaEMgThgOWhyQFXaxxHobX3WDQU8KJP5lr0aSW1ZqTWVBF50SkTV6sbrolvqYIhh0c+cJJD917k+W/v4Z03N3H6nQ2cOdHOnfdf4MHH3yUcnZ1Qt3Tyek0V8OgoQVdnA8ePbOTk2xumQyMOdbL3UCcNTckpawH8k7/iJKTf4NbREltLvty3hxd9qMShmh4+2XISS6p51ThVQgGhCBuKjJIkMxFC4RSW6VAdyPozfLempqLOnWVrNCzIa0HelcTdCVNVZbhEDJeIUCjtmar8TWyqCu9KFIESElvJydFi4aVeenCJm/NzuBm0FHhzmAAxoCsw5VMwUfNNByyJNl3vXYnCdqa8VpTcFwiQntuSLkh/Qk+hvffp8cxXgYFauvQ9SzoEjRwIj5CazEURQM4NMpytoS/VwHAmNid8+bRxa78nlBCELMOn8Qmvca6rvOiTafh9nySyDGhiTcuvNSO1poqp0MRXIzCFe8M18S1VTW2Gj37qTe564BzPfH0/l8618voLOzn2xmYeeOI0d95/AdOsdPOOuUgweK2Kk29v5MTRjYwMVRcfiVZl2XOwk/2HO1nXMVLSIL48dtz1qWxeg1vve0q7Fn/de4Cz6SYAPth4lsfqLy37gdHwceY2gmt5i7hj4SCJZKEunKI6mCHvWuQqTNO6EST8lD4PdW5NQ50v50gmTJXl9fCSiirpEDVdYjeZqZo8eg8oAWC7PlBiiqRYg0usbnl4c0cLOjMR4k5l8OZTUd+L/uYXaaKut+8uei0BE/EliseL4stFIbqmka5XF6XQE/2gDLniDV2XKn1vcvTJJJGtRmkDKSBth+hP19GfrieRq1pgNFPjKo1SXp1TyMeZe9EnhWFIIqEAwbXo06rUmpFaU8WllMQWAo3CkAoh9A0HoiiotT3Bj/3Ci1w408IzX9vPwLVanv7aAd78/jYe/dAJdh/oWhaTkRwPcurtDZw4umESNMIKOOza183eQ1fYsqPfb5pc0uCWydhx5V/KYccH8xH+vOcQA/kqAsLh023H2Vfdv/RvrkQCXWwWO+qYDDsW2ZKZvbQdImA4RAM56sLjDKRq50WpuxlUE0phGS6uEsSzc+s7shyytSThShKuieUowlIR9VMAY4bXCLJgqm4U4EL5TCjt14N6WPNyUVov1W8NLrFaVcCbp5VBdyZC0q3MqVBpFKoi3/piTNQcolClJqpQ6VRqniaVUvm7WVMZ/gsKPPOJ/a8uzQ8sWfdSainT90qjT1k7yGgmhsSrSxrPh/30vVpSTnjB2yim8UlB2DIxhMB1FUoID3EeCGCZBsZa9GnVas1IrWlJNAmTLv3olOKGPanYdls/W3Y8zbE3N/H8t3YTH6niy//7Xl57YQdPfPQYG7cMVXyb+ZzJmRPrOHF0I5fOt6D9WW8hFVt3XGPf4U527e0i7Pe+0oiiacqXNrjl+tjxC+l6/rLnDtIqQMzM8tPtR1kfGqv4e5pZHso8IDVJ12DItkiq8jP58WyUgOFgGS714XGG0jVln3czKmTmqQp4dW6j80SdL6dsLbFdyZhrMmhbhA1FlZ8CWC09yMmqNFV64nr6qHSxhtCeApQolQeEWYNLrFZJNDHLZtwxK4Y3n2SgKtU5YyEmag5RqKn1T1LIGc1T8TV+NEoqAS4gNLKQWlYCqdAASqMpTJ5O1E1V0lzpAjdeUPH0vYnok43tWsSzNeSdAKZUCC0ZyVXRm/Lqn2y1GEqqn8anIWBIDCGLHtSLPkkscy2afSNozUitaQk1HZMuuPEw6QVJqbnj7svsPnCV117YycvP7qT3agN/9T8eZeeebh7/8HEampPXX9Escl3BpbMtnHhrI2dPtmPnJ/5F2zcOsf9QJ3vu6KSqOl9Mx8s5JoV9sKuMeRP0Xouv55/7d6OQdITi/HT7W9SY5aEUS6FCHVRWSXryARKOWbZJ74QEI5lqmqIJgqZXKzSWiy7beFdKpajz8VyInFuZVKSlloNk3JWMuyaG7dH/PFiFZ6oEnqnKraCpEjPcnlg2AZSwXTkzOKIAl3DX4BKrUaZQ1Jg2IxXCm0/rCVUpLdREzRKFKmeg5pIkpvEJfa4X+BFSYhhy+gsL2za8dDppeC/WXloESutiL8Sp5mpW4ycACil7haVe3ycQFUvfK0af8OqdhtK1oCRB00Fj0Jeqoy/VyGiuetETWK5SuEojhcAUAktIrCJ5by36dKNpzUitNq10leYSaComXcobN9UPIBB0efC9pzl4zyVe+M5u3nptM2dPruf86XUcuvciD77vNNGquRsRraHnaj0njm7k1DsdpJMT0Ij6xnH2H77C3kOd1DelcH3seMaxitEmAKE0piwceee2E1YavjG4k+dHtwBwoLqXT7WeICCXp/bL8NP4XAQDtsWoY835xMZRBqOZKA2RJNXBLHnXIluhGofVqaVEnS+fXATjrsm4azJka8LSJWp4pqpKKgTaq7tS8jpmenGaz5qFH4lylMRRxsyNsUvhEjcYtfRWUEB4v7WBCuHNlyQKVVjnfEzULFGo8vQ9iZxa/zTLqpX0TJTEwDAkYj4BPDFRe1VsH+ubK621fymkBKqpAy2uRGjpGSY/Lb1S4AiBJmjmCUgbWxmM5apJ5iNINEHTJu0G6Iq3MJipY2ze+PLpUn5PKK01ppCETZNQ0PRqnwzjpjz/uxW0ZqRWmUaFSb5M4fKNr1JMuossNvG9cXccVTVZPvSJo9z1wHme+cY+zp9ex5svb+fYkU3c/9i73P3geazAzL2ahgejnHyrPDRi9x1X2XPwKq0dcbTwPre0PbNR0FrgKIkpFdLvNTXbcTjrmvxN335Op5oBeG/Ded7XcGFZ9uMCTUQqpICE69VBLSS9JusESeYcqoJZ6sJJBpILIyXdCIpOQp2vnrqoxchFkFQmSWUyaHupnVHD8UyVXyeX14JcBUzVwl7tASU0YCsDx5WzrswQCmcNLrGC8vp4SeF9bxIvzdJA+8ZB01sBvPmSGajSDczHRE2JQpUzT6Jkck2Kuf06NaCERiqBKYzJaXyLkSjUZAk/2qV9c+WPUYF28QyTomichACEqMgxqhB9EsI7jlzLxMjaQcKmTchwGMtHuJhYv2B8+TRpTd5VuEphSUk0FCAS9NDlN0b0SU/7TeoZ7s000aQnP22GJy3FP9TSa81IrSINZsf5vqzl9VMfY3NolO2REbZHhmkPjhXhATe6CtEpqcUNjUkvVVPrGD/6M9/n8vkmnvn6fvq663n2m/s48so2HvnACfYd6kRI70CeSgU5/VYHx45upOdqY3EdVsBh554edh3sYsP2QQr7VkeXr8Mop0JdmiE1Uijwa6amasQO82fdh7iWr8YULj/aeoI7avoq8Elcd4SEpCIoFUnXZNi2GF/kSWciFyFg2gQMl/rIOIOp2KLWtxplSofYJNT5zbfbVghSyiClDAZtz2iHpUON4UURpNDklfT6NM3h+13sL0AKQGhUOaDE9JIPD4GuJba7BpeonDwzZIiJZsfetWeMpJh+cudqgQK/Sbg3uZRWElsJ0spkxF54D7wlS+MrVSEaNdfBTAR5ptU4CUow5P7z52KiimWCwsOZW8KsGI1PC69+qjhOLZBaIrVf36T81r6GH7WSyqut1l5jWvTE62F+pkoITdDIETAcbNckkYkylvPqTKusLCGZYyhVQ2+qgeFMjb+f1XhFYfN8nyV/bFfhao0pJVHLJGJZmKYBSpPPOhPPL32xmPoF+2jEcjuf4mvmPcwZVlCyjeJ2JyTKbH7SY9MWTokflnlS6SIpbzys+813RL6B1Z0aJagVOUzOZZo4l2mCYQjLPNvCnqnaHhmhyUrd0BHgAiZdaVls4nujYtJLtXn7ID/zb5/m5Nsbefabe0mMRnnq7+7m9Rd3cPCuS5x7t42L51onQSM2bx/g9oNdbN/dRyA4/x32dHmRP6SXZiQEk04CL6dr+V+9B0m6QaqNLD/V/hYbw4kKbHd2WUIRMRQ5JenNB0k41pxOiK8vwUi6muaqBAHDJRZMk7ip6qU09asCdb580iWmatjxIlUR6VJjOIQNF0OArbxIVeE3tPhfkvbrRjRCaoRW2MqcDJSYep5RODn1m5A7juGf+q+pvDQGvhlaoDHK+f26bCVwELha4mpRvChdeI3AqSByf8mjUDD3hrsl57yl5kmDb3jERHZcyUd6PRM16W1Jr6muqY0Fp9Fp/8OaGK6Xmie0RJbcnklCgBCyOKlIIR3QB1lopcoGMKaO1jQcQmYeITRZO8i1TC0pO4wlFdFAhpwT5Gqymf5UPfESfLm3XTHNOUw3BdM/H6UVrqv//+z9WawsXXqeiT1rioic9njmf6r6a65iVXEQSZVMSTYtQa021EaLMNBsSLIF3UoXogQDupJ4xUtdUXcy1W1YptRGo2FYho0W23BbggiNFMlWk6q56h/OfPaYQ0SstXyxVkRG5s7cO/d4cp8Tb9X5996ZGRErIiMj1xPf970f1ntMotnOUjZ7CUkjfU9UO7lgVWIePpqvmn9i2fsqWPreieaJM3MNnXv9KdtaBk3NZxfNU5fNXa3zFNZyXIzZ3L5d3+HC+1saS7tCHRwcsLm5yf7+PhsbG691LP/H//av8otf/tf8/169y38c3uW7ox3Gc84wm3rEF2qwesHmDRoDXLWE8Cjh0Cokhd+e6FTsyxRTRkR8LEgwyRW//T9+kX/2T7/KZDz7/j187yVf/ekf8+VvfkxvcH3vnYppfhBg6l/vP+IfPfk61kveSQ/4K+/8G7bM+Nq2D9M6KAe8LEMdVH4NRfiZztntHgLwYthnXL4ZwLGZHdFPJlgn3kqr96YEnkwEqNpUllRZNFD4Wag6XdN4kYgOfPUsNG4jkSXHZRog6vRVhQknPphLvJEp2cslGql0q4CRJ1yHZiJGXjTAaBaKpv9CGqidA6Ob+JaYAajr3NAq5hINoJ+eaVV4bA6gmM2SOg2iTqQCqvBidU6Iqp30qnXF9+tEtOkqNX+8asB0pCrHyILSa47LHkd5n0mZ0DNjEplzXHZ5PLzL8/E2x+Xla06999jYONcBSgk2ex12N7tkSRuzmJcHitKR25LCObSUpEpzyD7/6fs/y3/+2Z953UNcmQ3ad3fNJIB3swP+5NYP+IWtj7Be8NF4g2+Pdvn2cJfvj7fZLzv868N3+NeH7wBwPzni850XfLH7gs91XtJR5evdiXPIe0HpFY5QO6Wlx65VdCr2ZBJhwjT/teOoar8kPv7tvcAJ+Jk/+T2+8kc+4l/81pd4/ONtPvjCU776Ux+xc/dyzn6ryjoJ0YDi//n8C/zTF58H4Ov9x/yXD3+XVF5FBGyxqjooJTwHVvGiTBhegc3wMo3LhMNJxiAds9055tmxprzG7d2EbovV+bWqBpzw37FXjJ3iZRnSRLvSMVAlHRkiVdYLJnGCXkGSbK4k/lpN5D0C52LbAET1CV7NiEC+WeYSS8Go+r2iicp5jVkwsjUUnQVGAgsnwOjs8d2cmml86wJRgupuvozwVKXIyXqo9csbBhSnHeXmJmWgXzwexelW4qdFmwQy/n4D79jcJpQsydQEKTwTm/JstMVx0cMDG2ZIJ83Zyzf4zvADXoy3LmVfXsk5T2ltuK8iBNpouplme9CllyW3OnvoqmW9Jy8teRmOl1GKXpqwkaZ0EkNmDN8/zOmZy78vN6kWpNZcSng+6OzzQWefP7XzPXIn+f5om2+PdvnOcJePJhs8yfs8yfv88/0PEHjeS/fraNVnsj3MDbmwXUYu9pTR0qGkDSlpN+bsF+5Mh76CVXLO9Pafj68oXZgYVP2aKmg6Td1ezv/6P/u9axz76RqVht988hP83tEDAP7Uznf4T+58+xpr7jypCJPcoZO8KFIObqhu5GDSJVElqS7Z6Rzy9BbXSzWtzo9ukdX5pTUDTqdJMHaKiZO8spJMOvrRpCJAlcd6wdiHiX240UENTMvyMM5TC6IiRBVrai5RuQ1OI0VLwAjqFLAajLzAchKMqqbeVwFGp4/99elG0vgqnQVRJwDKxQWmoDN/rFaBqBMAFV/sha9rlmZeuyja5BXKn52id92qnPeMzLFecVT0OcoHHBcZmS7YTI4ovObpeIcnwzu8mmziLpmCO40+eZQSpEbjBRit2OimDHoZ+k0pbL+EPFBYR16WlC7clE605m6/Ry9J6CYao28/htz+PXjLlEjHl3ov+FLvBQBDa/jOaIdvD3f49vAOz4oeP5ps8aPJFr/16nNoYaNxRQCrd9fYuGKmia8KTXztlcLU6el4VV+mwss4oRAQ8+5vYwH5XpHxG5/+FJ9MNlDC8V88+F1+dvOTM5vzXlRaOHrKkjvJp0XC3pXVQa2q0F/qXm8Poyxb2TF74/4Nbv+qNLU6L6xi/5Zana+sFe74izirFREC5iMjE68Y5obHHhLh6QhPX4dIVVd4LI6xlRRnFGU7BLk7q49ZAF3rQtPhm5r2nwZGiuoYxRevAEaFl3XK3DI4uol9W5cr640CFCyFKAGzNxRqkgq5pKfVqFQQtSyVbyafQopQiyPCzUInbIAoBF40b77ORZuuqG/TZaWkJVPjGH1KeDa8y3HRo3CavhlxN9tjWGb88PAdno53OCx6XPZsq6JPAFopOplCCIHznk6asNlLSRO9Bkfn9cl7mNiSSRGiTlpKOolhI8vomhB1Uus6Cb2gWpC65eqqgm/0n/CN/hMA9oq0TgP89nCXA5vx7dEdvj26E40rCj7fecHnoyPgvbUzrpht4qulCxf5cwHVFJjOk47nbykwLdKPxpv8g09+ikOb0lMT/g8Pf4fPdl8BYRJ4lWliMtZBeeB5kfDymuqgVpHzkpejAXe6B/SSCbnVDIvs7AXXSJXVuffw8g2xOp/RUnCqapYCHNSTyLhM9TkNNzpkbVDj6ghTeHEOHAHPioQ0wv1AlfRiI+DKtCBfFEHxUJxhoS+FxxNszi9jLnESjKa1RYvBKNzUaYJRbiWlD26GZQ1A0/qj5s+bAqOz9PpHcFI3VgtVqQFRM2DULCsTSwwklug0iJr5BhQiZF+IMAgvPK5K66Tq1bSaIcTrkJYlmRrjERwXPQ7zDY6LDlJ4NpIjtLAcFH1+ePSQF+NtxvZy138P2NJOo0+JIU0USgompUUpyXYvpZ+lazaXujmVzjEpLYUNt6BSrdjtdemlCV1jSM16Ru2vSi1IvWHaMhN+1nzCz258gvfwtOjx7eEu/3G4y3dHO4yc4feOH/B7xyHVa1OP+ULnxdoZV6zWxLeqXzotHU9gfUgt81VdhJ9fz5ul3zl8wD968hOUXvEgOeQvP/q37JhxHfEzyiGFw3s58wV7foU6KC09h1bxokg4djd3h36Zcms4nHTYyEZsZsfkVt8ay/A3zup8YapeiCzNRoapJ7KhfilGhU8BprMlmDjFxCleFgmJrKCqoK8sXTWFqsmKaWnVRKmwaq6Oaur6V1l2i3h9qnsazc3SvV8ERgEUizkwmo8WrRMYnab1Ht1riEJV23NhezPHZw6ignPb4vS9eZ0FUQHIohOdrB519ZPSK4zXSHd6bdTrlFEFmZpgveQg3+Ag32BYdshUzm62j/OCV5NNHo/u8nK8Sekvd+2sa598SNnrZDr0fVKScV5grWfQydjophi9XrB53QpRJ0teljgPWgoyY7jbC/2xOtqg1NtzTG75t3Sr0yQE3E+OuZ8c8wtbPwrGFZONOlr1g/EW+2U2Y1xxzxzVUPW5zku6r9W4QsTUPoWRJUbauYjRsnQ86kLyt0new3//8nP89y+DqcRXek/5Lx/8LtmMqUQAVCVDDy8RJ2XnVSocmXSMvOTJJGHf6rU63od5h0SXZLpgp3PIs+OttRrfYk2tzseF4fg2Wp372T/kPDA1UvIqYLJ+Ck5VVPhKbnbM2ZHlXpKXklelwTQiVX0VXAC9pwFVYeszaXQyNuh1glRahCxnhliNvwlGEyvqiJE9BYwqm+/1R4/TdVtG3zy9bgygqm36OYjys7ATms+uBlBN+GpCVLV/HocQEiGrpEDRSM0TeO8RQqCtQq6pdX+iJqQqp3Sal+MtDvMNxjahp8fcy16Su4RPju/xdLzL3mTjUtf5ZvRJKkFqDGmqSLQGAUVpmUxyMmPY6GV00rcnjc86H6NOYT5htGIz6zDIEjqJoWM0V3EF8NzkB/Jq1ILUWyQlPB9k+3yQBeOKwkm+P96OYLXDR5NNnhZ9nu5PjSveTfdjY+DnfPYajSuqu7UyFrVKfP1l4jwUTmOFRwgHXlB49cal411GhZP8oyc/wb8/egjAn9j6Pv+bO/9xaT1cZdUshUMKVoYpHdP4cgSPi4S9UlOu5Rew4NWoz73ePkY5tjpHvFrzNLnNdIhRFusEr8brPdZaPvynSsUT8uSnMaTSyplIUxWNubZ9nIOoeRVesldK9iJUdZWlL0s2tGVD2pr3XDOdDh96eZWKwqm3AoxO023dsxtP45tTE6J8BKEQzQQhTjrwLVNtmCKqBtLVae8JXW0kSqgAUl5GYJyuOTjvCbRbP4gK6WETjMwpbMKz0R2O8gGF0wzMkM3kiOOiw/cO3uPZeOfS9uXN6JPWkn5mYvQppPk67xlPSpQUbPe79Dspb3rAxTO1Jy+dR0lBqjU7vQ5dY+gkBqMu74zrvSf3BRM3wfoynrO36+rSgtRbLCMdX+wG23SAodV8d7RTpwI+K/r8eLLFjydb/A+vPkQLy2eyPb5YG1fsn9u4oioal1X9kpjepK4mVtZJcmSwJaaR3oNESUciC1RsgtlCFOyXKf/VJz/FjyebSBy/dO8/8HObH5+5XLBHnxasnwZTIgKUAF6WmpelYXxGLcnrVqiX6nOne0DX5OTlhOM1rZdKdU4/DT291tfqvAFMzNYwVZ9F61RtLT79/DZeeDPDnGqFzRZesl9K9jE8KRydeLOo6mEUMoo9hZOMiwS/lu/N9epNuMq+ljS+pqLpXvV9N5uOJ+vvwlVU2Y8L2aieitl6eIkSEilkmJAu2FePxwmP9mrGoe91S+DJ9BgtSyY25enwHodFH+8lA3NMIotQ/7T3kOfjHSb24lH7+ehTYkLtU2L0TK3TpChwDvqZYaPXIXmD0/jm7cmTOXvyjjFXAjmlL5m4nNzleO9JZEJf9dnUA3puwv30zuV35gbVglSrWl1V8vX+U77efwoE44rvjAJUVcYV3xnt8p3RLryATBZ8vtEYeGpc0UjnadQH+HhRd7GGKY93daf1DxLrgVPujlknGTuDUZZEWRD+rWuE2dRH4wH/4NOfZr/M6Mqcv/Twd/hcNJVYRdZJfOz3tBimPB3pSOo6KMORuz2Fo7k1HEy6bGbDul6qWLO6Iykc22tkdV59bqu+Qs10vDABjL3f6shS1Y+pevGJFd6czglR8yq95NDOXk+UDPWEk9K8NRB1Oz7dq+m1pfE11TCXqCBKEiNQKwGUh3jzMIY6EUikC4YQznnwAikFUkrEqXc4pxCl16TXnhSOTI9RwjEqM56P7nBU9BE4NpNjpHCh/9NxaKB7mfqnOvrkQvSp143mEXPRldJa8sKSGs3GIKObmjfOTMJzij15mtA1V2NP7rwjd1XUyaKFIpUpO8k9+rpHV3VJRIC04eQlStyu6+x6zSharZW2zIQ/Yj7hj8wZV3x7uMt3RjuMneH3j+/z+8f3gWBc8cXuc77Ye84XOy/YNBOclxRe4KrUHqaTr4t+XXskuQ2RqkSVKOnqu99vk37v6B7/18dfp/Cae+aIv/zo33InGZ17Pc6FBo9KuhmYSoSjoxxjJ/l4krC3ZnVQq+ooz0hUQccU7HQPeXq0yWXc1q5Wnu3sdVidx8hSwxSh8dRyh7yLmLVcEm7OvZ0r3IaMM+9xqcPn5A3U7ftEr6aZ0/Q1pfEBszbnflp7h5BLJubTIipfR88k2CrqJJBChs+sD5kcUgikPguggqzwaC/XAqIqC3OBZ1h22Z9sclz0MLJgO9nHI3gx3ubx6A4vJ5u4C2ZBeMBaiy09UkFiNGmiT0SfIKTxTfISKQVb/Q6DbvpG2XU7D3nDntwoRScxbGYZnSu0Jy9cwcTlFK4AIUiEYVNvsGkGdGSHruogbxkwLVMLUq3OlMAjpOdRdsg72QH/q93v473nR+NN/uD4Lt8e3uF7o232y4x/dfAu/+rgXQDumGM+zF7xYecVn8326FypcYWgjBGtRFlMNFSw7s254C2T9/A/vPos/68XXwTgi93n/IUH//5Sx9d5gXcSLR1GhPSmEsHTwvCqNBS3+k58qJcyah8tHdudI16OBqzDFLJnxmTmOq3Oo19ljBAvBiZJ7sJP5yqb7Wtyt5yPCFzV6q8BooQI1728UFj7+iedV6XXf9Zfn5qud68tha+pCFFVSh+EKNR08j6lK1+PWYCTIQgVU/Z89TJBSNkjtASRApSSwY1vhXCJFQ7lBeo1R+WVLOk0LMz3JxsMyy6ZmnAn2yN3msejuzwZ3bmUgcSq0adKk6LEOkc3TdjoZWTmzfjcz9iTC0jV1duTO++YuJyJm+C8QwtNpjLuJXfoqi5d1SGR5mp2aM3UglSrqGY6XqhfqgwgfKNwumik493RY/7Yxsf80cHH5E7zo8km3xtt873xNp9MBjwvejwvevzLw3cReB4mh3zYecXnOq94P90/w7hi0TfgyQ96SLkROBmASkmH9dW30punwkn+b0+/xr89fATA/2Lzh/y5u3+IuooZg4dMOIz0HJSSZ2XKaA3uWl6FPJKXwwF3e/t0TEHfjjnKO691TFqWbGaV1Xn3klbnvo6eyPgZrp+pnPAakdwqwuSvC5hW1VVEq64BosAjpaMsNXl5e78m38yr4EmtHUBBDVGyTsUDpAiGSTG4JFyMTzmQnvC9teDzGNz1AkTVtVVKhMjBivlmTjikF2hnXtt5sdjCPKOvR9zrvGRUZvzw8CFPx7uXaqBbVtEnCcZosrr2afH6rHNM8pLEKLb7PXpZcqvT+Jbbk6d0U3Ml9uTeewpfMnETSlcghCSRCbtmm4Ee0FUdOjK7dcYRF9Ht/YZodUFVF+TKHS/ceQXqWiWHoHQSW1uKB2A5LR3PSMvnOi/5XOclACOr+cF4i++Nt/nuaIfnRY9P8g0+yTf4Z/sfoIXlvfSADzuv+DB7xaP0cA4GTtbqLL+dLYKrn5MkugxNfOPd9tN1hR/w83xxn9jsagsflgn/1ac/yQ/H20gc/9u7f8Af2/rxOTa8TKEOKhWew1LzvDSMEUjhmuUxt16F0+yNe2x3jtlIh+RWk9vXdYds3up8VROMOcOHBcBkvcRWESYE3sUbIfUkbU11kWjVNUCUx6OVw5aSSXl76gFvxyivVmsJUBCoyAukhzp7ScTxNaNN9b3E5e+eixblglhbJUMt1CppfPU68AgvMO712HUnKidVkxkL89waBsmQ+52XHBVdvrP/AU9HO4zsxW5w+Rh9cg6UFvS6CYlRaL38ZqDHM85LBLDZyxj0MvQtTeNbZE++1enSTw2dJKFzBVEn621tEuG8IxGGrsrYSO7R0126soOWbx9WvH17fFsUTRvOrboHio+2qNW9aB+fmlqGn6hfqt3xGi5A5xtwrY60fKX7gq9ER8CDMuF74+06YnVgM74/3ub7421+C0hFyWdjGuCH2SvumuHcHaGzLwCO4KplVEkiLUq4aESxZhfGE8f17AL9TyY9fuOTn2av7NCRBX/h4e/wxe7LSw8lidbPYyf5aJLyqjQBQEWAYyUtHrnAhOJ2alikpKqgm+TsdA55erz1WhzyzrY6Xw5M1Wc0WIrLOdOHcEMELn4JWRudFa26DogSHi08LprarLO5xJvxibyYTtQ/rcN5Hnum+QhMIjbdxUdz8SXRpmUKn+X623hFI4lF6wlzAe0UN9lsV9CwMHeVhXkf6xUbyTEDc8xh0ecHh+/ybLRN7i5msmOtoywdUoI2iiwJBgnyjOOUl5aytHTShM1eSprcrp5QnmBPPrEl1nm0FCRXbE8+b00ukGQy5W6yy0D16aoOqUzfiqjTaWpBas2kqy/uFS+4lcWCiK5rzUWq5rSlV3UfF+9E3bj2Jo0DNnTOT/af8JP9J3gPL8oO3xtt893xDt8fbzF2hj8Y3eUPRncBGKhJqK+KcLWpJytvq7ChMDxRJUpFI4o1nhAtVGNi8B+O7/IPH3+didfcMcf85Yf/jnvJkMVRu9Wk8PRUifWSJ3nCyyIhbx4jD0WsC5maUNyyY7hQgr1xqJcyyrLdOeLF8GbrpVI1tTrfG/cAUMJOHfIg1i9VwDS1FJ8BpurFvtozXm9R/XVqUbTqindUCI+WDuckeaHxTlKd8uJ62uedPaYFj/nGzzfyvT5F9dfi64YnwcwAwmdP4KOphLASgYhNcM8vj8e7WBMlZfinzr8uj8cLj3I3Z3O+zMJcABsmOPC9mmzy6fAuL8ZbF3Lga9Y+KbVa9Gm6rGNclGil2N3s0s/SW5PGZ50nt7P25IM0YXCF9uSnWZN3VTCJUOLNSPm/KrUgdUskmIKSbCCQJxgFOD9NxwuTLRkbSa7f5FcIuGNG3DEjfm7jE5yHT/MB343Rqh9NNjm0Kf/++AH//vgBALt6WEerPpu9onuGsYL1knFpML6MNul2PaNTp8h7+B/3PuCfvPgiHsHnOi/5Sw9+Z7rvF4hsCRw9FSbt+6XheZEwdGrpxLRwCg9o6ZDCvREw5RG8HPW529sn0wWDdMThNbvl1a0ARIA3gGGeYK1G4PEIihhhso36pYVNXefA6a3UFUajhPBIGSaueaEpSoX3YQosXIwM3CBQrZqQ3Ex2vj1XtfNrLdL35IKNuhhhivb/VfGS9AJ5YYQKUQDnQwNUqdS56qDm1jS1Ob+Bnn9CODoNC/MX4zsc5n2MLNlODrFe8ny8xePhXV5NNs89N5mHp9D3Sa4Ufao0zgsABp2MjW6KWfOeUJ4l9uSDHr0kGEWYFeDxNM1akzu0kKQqYzfZDul6qksqX29LjnVXC1JrKi0dElv/XaXsOBcMH+qml41mtbdVUsA76SHvpIf8CX5E4SQ/nmzUqYAf5xu8KLu8OOzyrw7fmRpXxGjV++k+yQLjCo8gtwbrFKkugk26vx3RqdIL/tunX+FfHQYHxJ/f+DH/+d0/OL+phJ/+kklHJh1HVvG8SDgoo535iUKo2W2UVuERGGkDTC06127ZhL50mr1xn53OEYNkRF7qK+jfdJZDHmxmI5T05FbxbLiBc+G2yEJgaixbP3vLjvO16pL0EADKgReUpaIo1MkbBTHCd91AdZFdedOB6rUB1Fy0CZhCE8T0eVGfG97H1wuBdKAu+F3sCXU+AFoplDp/Gl9TN2VzroQl0/MW5h0yXbCb7pE7wyfH93gyusN+PjhXJsxJeNKkicJohZSrH+ci1g5lxrDRy+ik65vGV9mT54XFEezJu0nCRpZemT3522RNfhNqQWrN5CIkFU5SOI1D1gB10+l4r0tGOj7s7PFhZw+2vx+MKyZbdX3Vs6ZxxcEHKBzvZft8LltsXGG9ZFSYYJOuLBCd/db0WB5bw3/96Tf53ngHgefP3flDfmHzRxdOPzCxDip3ko8nKa8Kg2U2jW9WJzdkrcI7gdElCjfbBHn+5cvGuWYQMCpSjlVBL5mw3Tni6fGqfUqmDnnzwLTQIQ/wTtBPR2S6wHl4fLS1vDFwC05n61IfXY+SYRZclopilR5RVwRU8/csruIK9KYB1Y3XP81Hm7yYiTadHNT0fQxBqAhRXnBRZKmiUFIKVISoyyjYnEv0Ndqcz1uYH0QL854ZcTfbY1hmfP/wHZ6Ndjkqeyuv1zmPrUwjLgFPEIw6xnmJkoLtfpd+J+WSh/ZaNGNPDqRGsXOF9uRNa3LvPUqot8aa/CbUgtSayVlFYTWjIqGkPbEBOqrkK93nfKX7HAjGFd8fb9epgAc24wfjbX5winEFQjKxobmoibVT1knWzSb9Sd7j//TJT/Gy7JKKkr/w4Hf5cu/5hdYl8fRUyKV+nie8KAyTi6Z4eII5SaExlc28a9bzzb72hNYUtvbGvWBOoiw7nSOeDzeYnTD5hU1rm4YtpauAKdRILLrhYWTJbvcQgBfDwaxbYAtO59OFP7INgHKCIo8AdZ5rwDmBai4oea2gc9uB6gRAXcdGzhFtmqfemfeyuQoV3PnUOYwkpuvxMaIFSin0JaNQ0LQ5v57p3SIL83GZMkiG3M1ecVh2+Y/7n+HZeIexXc2NtAlPUglMBU9KIS9IPpOiwDnoZ4aNXodkjdL4TrcnT+hofSmYnrcmR0jSt9Sa/CbUglSrW6cNnfPN/hO+OWdc8b3oAjiaM67ozxlX7OgRRofoVFVPVus1TmT/4HiX/8uTbzB2hh095C8//Hc8SI8vsKYAUFp49kvN8yLh2F6NjbPzkokVpARHPxdrqFYY0ul/s2B4NwJbgpfDAff6+6S6ZCs75njSmTN9mI8wTS3FV4sQex7095ACjvOE/XE3bvmq9+Ut0IVOYR8i1DK48U1KjS1laHx6Uc0BVR3gdSeHeNNQc5uA6nrS9xp3JsTM6hdEm8Tyz2DzBkfzoeZBlSGgpdz5Mhw8AaAEIKRASYlSF62Fmuo6bc6bFuavxlsc5BuUTjFIhvT0mIO8z/eH7/FsvE3hzr4J7JzHOouzAZ600WQmRp4uARGlteSFJTWajUFGNzVrYSZROk9eWnJrEUAS7ckHWUJmzKXtyVtr8ten9qi2utVaZFzxOO/z3fEO3xtt88PJJkc25XePH/C7c8YVX+g+58u95/RNPjWiWDYLukZ5D/98/z3+78+/jEfw2ewVf+nh79BXxbnXlUpLRzqOreKTImG/qoO60gELJlZhCI5+3kmupGTkRmBrsa344bjDZmdIL5kwLhKOyyzUHtYptadt7HTtdg5JdYl1gmeHm5ebwL/NOvdhC++1lB7rJEVhKMvwOb+ydLEqctIAKh//rvS63u11BqqLAdRceGjRzjR31ov6ffB1it6SI9A8WHMPzWy9gqsYyJQe5DkgKqwjmlIICSLYml/cUKK57nAyXqXNuWDWwvz5KBhIgGDDHOOBV5MNHg/v8WKyhT0j4yHAk8NZH+BJK9KOxujLpzM675nkJVIKtvodBt300rVEl5EH8tKRL7InTwxdY9CXsCdfZk1+L7lDX/Vaa/IbVAtSrd4oSQGP0iMepUf88c0544rxNh9PThpXPEoP+GL3BZ/vvOQznb1Z44prBivrBf/dsy/z2wfvAfBHBh/zS/f+A/qcMz0tHD1pKbzkk9gPqrxOUw0vZu3RrwCmVrrc+5kfp8BWw/hBxLS8mEJTpd81bcWPiwQEbGZDtjpHHB6klBdNjWmMqasnbHeGADw93DxzotFqic41Fwjvt4xW5pNCUTgVGqGGp69eC4CK+Pfr1joB1en1TycjSUtXUkWUmjtVLXyRGxWrAlTkHdeAqFWhxUeAEhGgIFibqwvYmp9YN8HmXDt9JTbnAk+qx5g5C3MtLJvJMdYrno53ogPfBqeZXZ2AJyUjPEnUJfscVZoUJdY5umnCRi8jM6/nOrvcnjyjk+hL25O31uTrqRakWr3RmjGu4PuMneIH46lxxdOiz8eTTT6ebPL/efUhSjg+yPb4QgSr97KDWae8KwSrodX8nx9/k++MdhF4/tPdb/Mnt35wrhuTEk9XhVSBF0XCi9IwvmaXplpeBKtoBVo5ZIzeXETnXUqc+N0hZDge9fCIOGUVua9cLqcRptlInefZsE+qCzJd8KC/x8cHu6tH86qJVuN8kMJxb7APwP6oy7BYrV6g1ZzOcXII4YM7pxNMCh3t+2WoYbqJNMoGUEGoofKc35TiOvQ6gSoA1PQNEMCp5nYuvqqOLlU/wx0RH4lMLMoiWEVz9U/1mObUhKjK5+C8EOW9D+eAEMhg6Yn3oC7YG2rRKCubc3VJiKotzHGMbMrL8R0O8x6ZytlNDpjYhI+P70cHvkWNxINuAp4ArHNM8pLEKLb7PXpZcqNpfJ55e3JBqjV3B9mV2JO31uS3Qy1ItXqrlEnLl7sv+HL3BQCHZVJHq7432mbfZnxvtMP3Rjv8v4FUliENsPOCL3Rfcj85mr1QXxCsnuVdfuPTn+JZ0SMRJb98//f4if6zc+yJpysdRjoOSs2LIuHwiuqgzicxtUdXFunP17j3/ABV9WOaPdBV3VLhg6GIjX2YginE4vHMzqXCSB4fbPPe1jMyXXKne8Cz4WZjCT+3NPWs9OR+eO7199HSkZeKF8eDc+5pK2DlE6QCKO8EeakprAo2/VXU46Zq0ebGKxpA1fz7der6gGpJREksSN3zzJg8uMbi4fPUgJRIM9Oxiovf1a8+9Avqn+aHNx+FgpjOR+gVdRZE1XVQIqTxSSFwPtyaUUqu3PvoLF2FzfmshXmH/ckWwyKjaybcSfcYlh2+e/Auz8a7HJeLe+75CE/WeqQKFu7XBU9FaXEu9Nra7GUMehn6htL4KnvySRGiTkYpeknC4IrsyeetydOGNXlXdenIrLUmXzO1INXqrdZgzrjiVZnxg8km3xvv8J3hDkOX8D8f3+V/Pp4aV3yh+5LPR7DaNuPZFa4AVt8Z7vBfP/4mI2fY0iP+8sN/x6P0aOUxJ9HOfGgVj8cd9kt94UjQ1UhgbSga0LpEiTl79KVLnfbcYmDyBDgqnMI5GfqCIXCuijCd7zjMl0aUTvHkcItHm6/YzEaMipSjSSe+bjaCVT3kZUgXbD67kY3opRO8hyeHW1dfp/Y2aJVDJqITn4ciApR1Msx2q/fkvBC1NDSxgpa87s0AquWgtGi/qxsZzWjtbEru7NZOoIn3M+O6VK3HigBVD20uCgXTjEHhxKl1jp4QhRKE1L0qCuVcSDVW8vLOfJUua3O+yMJ8ZDMGZshudsBh0eUPjz7L8/EOY5ueWH4GnmSAp+41wFNpgzW49x4lJVli6KaGxIRtXefV1RMjX3P25LuVPXliSPXFb2K21uS3Xy1ItWoVJQTsmDE7ZszPbXyKlgWPiwF/eHSHb492+f5omyOb8u8OH/LvDh8CcMcc8/nOSz7fDf968wYRc9fWf7H3Lv/dsy/jkLyf7vG/f/g7bOh8pfFp4egpS+EFn+YJL4vkeuugziWBdQJf6NBrSp4OU6L+Ge3FBYi52ZjzgtIprJd1XZNz4kLA1NRpc2IBjIqMV8M+290j7vX3yUtDYecvldO75cJ7vPR4H0wMjCrZ7R0A8OJ4zuq81dlasVhOxf4/tpTkTuOswIsQMqhBZRUAWgnYVhnTCquZA6pFLn83rSlQ+ZpvTkbd/YnaIx/T75rgcbJeqfH6JdufmQbHOqJm9OnCqXsLxrUqQIkFx8AT3PnkaRDVMJKQMq7IB4iSQiDVJaJpcwoQdTGb80UW5rk1bCTHdPQB+/mA7ww/4MV464QD3zw8KaXoZJrEXB08eTxl6SitwwNaSfpZQmo0qdHo64YnP29PLsmM5l4/pZNczp58mTX5HbNDX/dba/JbqBakWrVaoNJJrDPc18e8e+eAX/TfJ7eSH463+fZoh+8Md/nxeIPnRY/nRY/fPniPYFxxGMHqBR929kikBYKpxP/j+Rf5Z3sfAPBTg0/53937nzAr3JoWePoqrOdVYXheJIxuqg7qnHJekpeaRLkZmAroc7KOCSpACul4dePpWM90FdPMs8BpkV4O+2Q6p5PkPBi84qO93VMKqkWwwZZhInp/EKzOhw2r81Yr6sy3e9oLylpBYTXWygDXkgC2Z9VDrcH8pP7YVzVUN5Z+6BdHlPABWprgEw0dAmA00+xmFly6mdM0E306kbp3wejTohDb6aOstSwKVckByosTvXvr5WP0TAqBkA1Y8kwb7V6BM189HuHrXlHnWeO8hflhvoH1wYGvoya8nGxGB77Z5uRNeBIx8tTJQjRIX6IGaGafnKewFuscAoHRko1eShob0l63A98ie/Ltbpd+msSUvYtHnU5Yk0tDV7bW5G+K2neuVasl8sQmvggSaUm15XPdl3yu+wp2v8vYKr432olgtcPjfMDHkw0+nmzw/937DArHB509Pt95yQ/HW/zh8A4A/8nut/nF7e8v/k71s390pCORjqNS8+y11UGdRzFK4ASJ9GhdhKanNOqYkDU4nVXHdLGtL9fqR07w5HCLd7efk+iSu/0Dnh5tnrKGAFM7vYPa6vzp4Wmvb3VCpx6qeStzTWmDlbmH01P51vktcCBi54WzwyWn/N18YuG6/IkHLwVKq4xxTtcCT9XCF4CnxjDCMks4Z2oucXLNUyOJaR1UE+hqiLqktffsmMOAV7U5F8xamL8Y7XKQ91ECBuaYwmmejO7weHSXvclGnYbsvcfa64Wnut7Jh4hdohUb3YzUKFKjr9U4wnvI7fXYkzetyUtXIkVrTf4mqwWpVq3OUGE1zkmMsmhlY28hSaYsX+0/46vRJOKgTPjuMIDVt4e77JWd2rgCwAjLf3H/9/nG4MnyjcXralUHNbaSjyYZe4V5zXVQ8woTNkmY3DbT8qpo0jBPkDKYABRWXUla3oJRLNVlt2J9rJfaeMkgGzEqEg4nyyNMHZPXVudPjjcpvVqrd2zttfDNDOlDQji8l4zzAFBN8PbSIxyzdSu36cA3olNLNb8/FTGeejNGTO3YEVXW3IkUvUvrDIBalrp3aXiqVnQBgKoWPS0KBVOImm+422yo26yDqp/34fmrsjef2a7wGKeRZ9x8WmRhflT0SGTJdnrMqEz50dFDnozucFj0whLeY62dg6fQJPeq4Km0lqJ0eBbUOyl5rfDUtCeHYBQxSFMGaUo3NWRaX/icXGpNng7oqQ6d1pr8jVULUq1arSDrJbaUGC9IlUVhsb66lRy0oXN+auMxP7XxGO/hRdHh26NdvjPc4bBM+c/u/gHvZoenbkfh6akS6wVP8oQXRULh5ezE4aYlfAAmESa01R1gD3gnKa2kjMYPzkucE9j4JS+BVBdobeNyl/uWvOmMrXGR8nI4YLd3yJ3+PpPSLKx5ksJxr78HBKvz0SSDRt3UjWudQaJ5PE4ZZ9PKPC91sNpvTh7jsqEh6unruhWaB6plJ05t1BBAqTqePqbmVT+vVrMA1Hho6cubtVdNva7oU2NoZ0ahYNbmvNpKWHZBHVRzufj8VTrzhW1Pbc5P6xVVW5gLx6gMFubHeYeOnrCTHnJcdPjO/vs8G+8wLDsLI09ZqkjM1cCT957COkprgWCF3u8kZElM2VPXV+/kWW5P3k9Cyt5F7cmDNXnOxOXRmlyRqrS1Jn8L1YJUq1bnUBWdSqKhQoiynPxSEwLuJCPuJB/xrc2PzlyvwNNTAT/2S83zImW4qA5q/hvnSidMIX0qpKm4enveg/eS0gus1VgfUvO8FyE9b8nXYDXnGZeGBEiUxQtXp/qdPZrTdVPz5r1Rj8zk9JIJ9zde8fHenTmLd8/d/h5aVVbnG8zWTd0gTN0GmDhjjEJ4pHTQBCgvZxat7y2sgfvdhTQT4FhClr5h5FDB07WB0ikS022fBlEzn+r6jfIN+BIXOj8XwdtFT/NVolCwuFfUtKHuXB1Uc7lrcOabjilA1DKb80UW5uMypW9GbKeHHBR9frj3Ls9G20ysifBUXgs8zdQ7CYFRks1ediP1TtaHbS+yJ+8aQ3oJe/LWmrzVIrUg1arVOWW9ZFwYjCpJlIUF0anV5cmkIxWOY6d4niccWL0UTk7oQmAVYQmPkME1r1rWeRkdi3TsxxQjTedstjv/yrw04CWJLpY6+q2vP4Dg6eEW7249J1GWu/19nhxu1aMapCP6tdX5duO9a8CUENfv0HYbIOoUBbt7B15QVr2gqvNkekinE+t1hqgTGazNaqCo2lkwvtg3nm9ETE6U5tw0lC8ou3LVXRJOz0hErlLFs0RNaPILn1pNc9H806JQEN6OJkTNN9RdCEhVPZQI6XxXDVFTm/OTkNO0MB8WPfYnG+QuYWCGpOkxe5MBnw7v8Xy0yaSUWOcRwl45PNloUe5cqAtLtGazm5Fcc72TB0rnolGEC1kQRrPb69JPUzqJvrA9edOa3HmHEZo0WpP3VJdOa03eijUHqb/zd/4Ov/qrvzrz2Je+9CX+4A/+AIDxeMzf+Bt/g9/8zd9kMpnwZ/7Mn+Hv/b2/x/3791/HcFu9RfIIcmuwXpGq4tTo1DIZ4ehKy8RLPs5T9ooEe9nZ8ILJm6wjTSfrmEorsU7hvIiRJkIj06vY/Jxyq3AeUlOipKV0y+Fz3ZjAecmTwy3e2XxBPx0zLobsj3sYVXKnH63Oh4uszgXCCRB+Yb+pK9G6Haxza2plXloVor5VxG/BqbgOPZiAs6NKvvGv2pFmausqNOCnh6AGqutM850DtmVXAtl87aJxXMFl7NTG55X8zI+ZiNP8a+D0KBSEt0dAbXHufBWhP1kH1Vx/ZZZwlfbmlZbZnDctzA+LDfYnG1gv2TBDUl/yYrzFp8M7PBsOKKxAiGAjnqWh5smYy8PT66h38oRap8JaCmtre/LOFdiTN63JC1cghSRprclbnaG1BimAr33ta/zTf/pP67+1ng75r//1v84/+Sf/hP/mv/lv2Nzc5K/+1b/Kn//zf55//s//+esYaqu3UNZJRs6QKItRFnDYM2y7JZ6+KnFe8KwIdVD5pftB+RhhAtkIfUzT8kItk3PTOiZ3woj8cjrtq6XaTuEUvhCkpkArVzuv3YavpUmZ8OJ4gzv9A3Z7B0xKw53+PlL4YHU+6i1f2AsEs/2mrkS34cAtkoe6mS5graRwOkZ2ObFfryUKdQKURONn/LWuUbogKK2q6waqJQDlOeMUW7HebdUhnHsVYnbTovnHOVVBlLBiaiQhYp3TKSB3HfbmlaY256YewkkL8wFCePp6TO40nxzf5eOjHV4O+xAdA3sdHeBJq0u9T957itJROouo651SskSTJhp9DSl73sc6J2spXbgAaCnQSrHTDU1xL2NP3lqTt7qs1v7s0Frz4MGDE4/v7+/z9//+3+cf/sN/yC/+4i8C8Bu/8Rt85Stf4bd/+7f5o3/0j970UFu9papt0r3EqGYz2tmLusDTlRYtPPtW8zxPOHbnvfhHYBIgha8L0itgco7QnNTL+O/8aXnn1ZKbtEtlnWQ8MWSmwChLufaW7lPtj7tkJqefjnm0+QIhgtX706MtztyHCFBXVjd1Gw7Zkom2kiGt1DpBbjX2jL5o1w5Ri+5jLAQlOfv8TeuqgeqMCNTSU6wiLAHNubO7wBjWoqKkShm14ZIqlhhJzMh73DU489Wrj0nC2ikkkKgJqZ6Q25QXo10O8z5GWTbMMcMy43v79/nkaIfDsoeWkm73auDJOUdh3Wy9U6dDZjTJFdc7LYo2CUKdUyfR9JKEjg4Rr1SrECU87za8J/fBJKJ0JUooUpm01uStLqy1B6lvf/vbPHr0iCzL+Na3vsWv/dqv8f777/Nv/s2/oSgK/tSf+lP1a7/85S/z/vvv8y/+xb84FaQmkwmTyaT+++Dg4Fr3odWbKj9zJ9R5QVkqEm3JVAlO4EWItkiCpfmxU3ySJ+yXZ9VB+XhHNKTkiapQwYfUO+9gYlUNS7aOMt3sxX+VOVxV4zA7Z5OMi4SUAi0dpauO0rpL8Oxok0QXsT4Onh5tnQkCzeWbJhTzx2XFVay35k+GOkwQrPKlcLEXlKFc5bhdB0BJmKlbqqAJweKeSmumywJV47XVomcu1ghPCbn4NKzm1GcB1bp90h0gLSgkYoX0vMreXEmJvCaI8gISJ+noSW1h/uT4PsdFl47O2UyOOcxT/qe9d3k62qHwXZJEs5WFmqfLcECz3klJganqnWK90VUxRtXLqTKm8IRok1GanW5KxxjSCE3mgj2dYLE1+UD12WityVtdgdYapH7+53+ef/AP/gFf+tKX+PTTT/nVX/1V/vgf/+P8/u//Po8fPyZJEra2tmaWuX//Po8fPz51vb/2a792ovZqbdTeBbkCTbsVBQhh4d+V6cLi14YZhvBx/iDCRV80ZxwiTBimtsPxn5NYwEgHOEovsQieFymvSkM55/gGjX5MC+qYrKvsxSXWidpmfB20tDxiBUDwXjAuDKkuMar6Il2P/TpNzkueHGzzYOMVR5OMYZ6dcw2XqJtax8vDfNRpZoxhPyUOKT3OCSbWUKwahbwqiJoHJ0fD5EGsNzSdpvMA1Vz0af7lC98NP/uCVYMPMh7i+TGs26e7umZLB0qo5XVQDV2Xvfl0TB6EZUOVJArGNuXl8A6jIqVrJgzMIXujLn94/AGv8h3QXdKOondJwCkjPHl/PfVOIdoUoluLok39JCHTAZySC0abKp1uTV5FnVpr8lZXo7UGqT/7Z/9s/fs3vvENfv7nf54PPviAf/yP/zGdTufC6/1bf+tv8Su/8iv13wcHB7z33nuXGutVSbyx1pkXB5qZ5+I3c2VwVYNOtZkIPFWLWN8EnPgq50WYR/kKSqrHBBZiH6Rg612BkvfgZtbZeC6uM/ycPqaEJzF5hIRg6CAJvXEW1jE5iXUS2+jH5PzV1jFdh0RjUnZuecGkMHjAKIv3bm0g8TTl1vCjV/cut5Lz1E2tE0AtnaCfHKQQLhixeMmkVJTncaS8KETVF5YF4FSdW+v+oTqvlgLVXJXTAoBatK7mi87DCs23LBhSiGm0a8YK/fXLE04J5QVayJVuYl6nvTkEC/NUj9AI8qLPi8kmkzKhq4Z05DEvjwc8Hn/AodtFqoxu/+Lw5LynLC2liymEStLPUrI0WJRftt7JeeoUvTKGKK8j2lRpkTX5tt5kYPqtNXmra9Vag9S8tra2+OIXv8h3vvMd/vSf/tPkec7e3t5MVOrJkycLa6qaStOUNE2vebS3QeHithLAnPJccz3VX4JYvLskelM7/zbgpAIV5ySOKdDM/i7mQGY51MzCj5iWPESQuu6v9NJDPsnIdElmCpRwEZCoC+tvqo7pqiTgWnoi5YXBe0GiS+Q5ek3deq1SN/W6T4tzgFP9jHAoGSbORakpnFodkKs7H6tqngrqD7q8HWl6V6kIVBUk1A/GO0+nvgONuqcVAjMzi1WHt+r2Nf+WhO+DKvL3+oGqhigEepWULt9w5pNLLNAvIS0smRrjhWNY9Dke71KWkq4eklLybLzNi/w+R24HbRKyi8JTXe8UrNqNUvQ7hjTRJFpzAaM7YHG0SQJahx5OvST0b0p1lRp4uePnvaf0NqbstdbkrV6vbhVIHR0d8d3vfpe/+Bf/Ij/zMz+DMYbf+q3f4pd+6ZcA+MM//EN+9KMf8a1vfes1j/TyksQ+PxdOTWMarmF5alodvZmJ3DQfq0BGRggJfZQcxNocUf++CGp8Hf1ZADX1MrO/v/6Z49XJIxiVhiLWglzWXvymVd3Uvol3pCg13gdHPyXtQsOON1OnNO99Hbt/AXCavtbVTnyFVaEX1HkijKtEoerVxel4DU7i7QOnBfLVfzxIROj5JOayG5svjofsrP5K84s1A1eSqfPmslWIuI1pQ+HXAFRxg8HdVKBXOTcbEKXUOQ7SCjKyoKNyrBe8KrocjAdoqxnoEblMeDZ5xMvyHiO/hVCSiziW1/VO3qOEwBjNZmIuVe+0ONokMUqFaFNiyCI06UtEm5x3NTCVvsR6W89jNAotTWtN3uq1a61B6m/+zb/Jn/tzf44PPviATz75hL/9t/82Sil++Zd/mc3NTf7KX/kr/Mqv/Ao7OztsbGzw1/7aX+Nb3/rWrXbsk1JSeEFPWyzUNxNruGEKIh6BdwK7JDXNzaWmVVB0WmrabERHTE2r3ooJ7fWpvCURlmZG1Ot4x0ur8AjSmca9b8O5N1s3dVPwClwOnBorUTKkq1onyUu9MkDVk+llEBUJQFT/bTrp3eb6pmuQYwpMIv4euZaFl6ALpu6tCk+LdONA1SA+IUVtc65XaaJeQdSV2pt7ElmQqZzCaV6MB7zMOxjh2VYlpch4nD9i391jaPth6OfcbFFaSjvt79RJDJ0L1jutEm3KYrQpuWC0ydawZCldifNh7FJItNBoodhQA7oqI5EJiUwwwpBI05pEtHrtWmuQ+uijj/jlX/5lXrx4wd27d/mFX/gFfvu3f5u7d+8C8Hf/7t9FSskv/dIvzTTkvc0a2g6P84THx11KTCOic/nUtHa+0aqpJjTVf6+BrJWMnQm9pqQ7tXHvG6dYNxWiyde0z0vB6cQfK61MSYcQUDpBUZoIv6sPZQai6nB6MycY8AJfm0Occ4hvuKobYBU0zafVVZLxGDc/Tqu8Uyfqnhak7l1E1wZUzVAZgIzAJwSVpbhaAaIqZ76rszf3ZConkTkTa3g83OKo6JDqkp00pyi3+TR/xKviDhN3PgObhfVOnYvVO1nvKayjnIs2JUoxmIk2afQ5cgG997PA5MvQ8BhqYDJSs2EGdFRGIgxGmghNuq1varW2WmuQ+s3f/M1Tn8+yjF//9V/n13/9129oRNcvj2DsJMdWY6/47Vl0KW3nJG+PXne06TxyXjIpDMlbClPA1cLU0nTBi67fI0VwmrROUJR6NSvzOdVbl40p9JtuDHFFqgBHNqJPyyXq1D2JCJAg/HQdS9Y9fe5q4GnxyK4AqJoLVOAU97mSiyeS9M1Y2pLVVfbmV+DMJ/BkaoKWBePS8Mlwl7HN6CclO52cvbLPj0bvczy5S+FXd5Jr9neSQlyo3qmKNuVliDZ5qGunemlCzyRkRp8r2lSl49kGMFXvj0KhpaYjUzpqi0xmEZYMRhiM0G1qXqtbp7UGqVbXr/lLVjtneXN0m8BpkZwPvaYyU6CVxVrJbbBHvxJVKWsVYJz3gzkPThdK11u84gqgnAuOi8W5ILeRs1hV/Ht4K40hLqAq+iQ4PfpUSYgKJmZfJRCIyjWyAVSVrhueFulcQHVK1Onkd5qvX668RJ6xR7Uz3yUhSghHR46RwjIqU56O7lL4jE0zoZNaXhYb/Phol0lxn8R3V1pnaUPKnosW5UYrNrOMRK9W7zQfbRIEB8JEK7Y6WQ1Nq0SbQnTJ1rVL1tm438HAQwsdGtzKDolKSGIqnpHJagYfrVrdErUg1WpGbdTqdmpd0/QuLS9C415fBBt57/C3wB79aiTAiemM+bQP4rWBU2O10UgiAJQOvaDOvHs8V+zlASumxhDtxWUlNSNHwp8efRJVJGZl54jg5uejy4kQRMh6PZoFKl8bIc3s0ing1NRFIEqKkM53UWc+iaWjxoBjaDscFJuAoZ9OsFieTe7y6XiXJ0WHLl16nJ7GN613Cvbhq9Y7eaB0jmJJtKmfJDU0pWZxXzfvPZZQt1RBk/cOj0AJGYBJGgaqT1dlGJGQNCJMbTpeq7dBLUi1OlNt1Gr9dNujTeeSh0lhcB4SbfFvkz06BJgSczB1JQYRq0mI0EwXB3kZnPi8l4s31bQc9HE8tpEq5mRtftDqdDWd8SoDiWVnvUAEM4UF0adFa25GtlTEiyqT1HmHi4wr/M1fX+pT3FdgJ6Zus6IBiqeuwzeOnYz3Ik5ZqOHMJ5U4d3qZ9x4lSjpqAsDQ9jgsN5BCsZlOGFvPR6MHPJ3cYa/sMsHSJaG7AKKc9xRlaFAuEKHeKdYmJafUOy2tbWpEm6raJjUXbQp24kUjwlQSDz9KhHS8TKZ01RapTGtQquqX2nS8Vm+zWpBqdW61UaubV3N++rZ+ZRWlAUKvqamj31siH+/OS4+obMeA6zwbhHDIeOKVEaCck7MRrxlwilEmVzmFhjFXs17huZYeZG+aZgDqrOjTktS9RWttwpNAIIl9pRqLVmAVuPlmgGoROAEoqepzTYhY1+UC6Hm/HKgqiArpj2dHoS7qzFfVUSWioGMmOBRDu8FROUBL2EgmHJeG7x6/x7PJNse2i8eTU5Kh6dGpRxbqnWzs7xTqnQaddGm9kwcK5yhnok0Co+Sp0abK7GFiQ4SpSsdDCAwKJUM6XkdmpCqdGj4Ig5btdLFVq0VqPxmtrkRt1Orq9FZFm86potQ4L8hM+Zb1mgKIFulVSOe6XP2iEx8EO/oAUCLkBcnGjNrH1ENfuYouSNWLr5VNOmi1UKum7wkxTWs7S02oWAZPC7fB9QJVE56qaJqU0QRCTiNsM2MSAiFBIBcC1XwUSlUR0TMGUkPUCu4MFTzhPaku6OgCh+bQ7jIsuxhp6ZuCg6LLD0ePeD7ZZuLSuKkAUSZClLOO3DqcByUFidZ0MrOw3mlRtMkohVGSrU5GJzGkSpFqjZQipuNZCj9hXFict3U6nhIKIzW9Cpjm7MTbdLxWrc6nFqRaXYvaqNXqasHpfLJWMfKCzLxtvaai6ropP02fuxJNAco6QeE01sU79FVuWRVxWgZOlRqw1abynS5HjJ7A0mN1nrqnWXiKqW3TFZ1LVwVUC9P1AFlHnc5O16sGJFgEVL6ul1opCsXq9ubV67wHKTxdU5DpktIb9ss7jMoOmSro6oK9vM93xvd4nm9R+tnpVU6Jt6BKRY5FS0k3NWRJrHfSss7eLZyjLE5Gm/ppQi9NSZUi0QqlPKV3IcrkcybOg43peEKRyYQsNqqdpuOFn7cxHa9wllFZMCpLRmWO82CkZJCk9E2Kli0Etrp5tSDV6sbURq2C2jS9y8s5yTh/S3tNwZwJxVJvs1VXhhIeIT3WSQqnKG04nt6JulaCVU0+aohaDgZvu6oAneQ0gJpalp/1/vq5q2ld93T2oivpIkAVAzeERM9G1ElU9VyXGFgEKmRYt3cxiuckUpyMZs3LxZN6mTPfLDyBktA1Oamy5D7hRb7DxBo6uiBTBS/yTR6P7/Ay38ShZrZjrSP3JQAbssdmtxPhKdQ7WecpnON4kjf6QCkSJdnqZqRaoVQYg5cO6wusLxgB2mq01PRUl47MyFQ6NXy45el4hbUMy4JRWTC2JQ6PkYqO0mynGV/cukMvSXg2PObx8JCPjw+wztHVhn6S0tO3ExZb3T7d3k9Zq1uv2wxWJy7PKwy+vaRfrYI9uiE1ZYSp6r7+WyIXJ4zCnxOmqvCnR8lgZ15aSVFoylLj6jS8ZjHUihJhHG0q30lVh6M6qsvS9y5a9ySvGJ4W6TSgqkfViDpJIRBCLk3Xu6gqcPQClBehnsqBkx7nQqR2GVDV9uZzznzTtD0i9Am09HTNBC0dY5vyZLKLdZpM5RjpeDy6w+PJHfaLQagLJGzfOhe3IxAKUq25m2ywlXSx3lPaAE6esB0jBd1EkaYaLUGpkG4ohEPg0UKjhaYjMzoqpONVtUtGGtQttxOf2LKONI1tgfchdbGjNTtZl/vdPptpxkaSMkhSOtpMF96BcVnwYjzixeiYj472eTkZ8XR0hBKCvkkZmJRE3e5j1Gp91YJUq2vVusylLgI+C5drtVbyFUzpMtijO8db02sK4m1/MS1CWlg3VYUNpie9JESgnJNMSkNRqmAOcdEzvlp/m8q3VJXzXAVRM8+tnLq3mmnEdUsQ7MSF91j81DodccIk4qrVTF1UXqLqQjxQCKTwOL8AqHzDmU+KAFHeT28cRHgKAOXo6DEqWpg/m2zgvaSrckZofjR8yNPJLodlFw9YFyJPHo8SAq0lqdYgQl1UT2RIpzicTJBKoJWnn0mMlmglSJXCSFPbiXcjMAVYSm51Ol5T3ntyZxkWIdI0sSVeQCIVXW241+1xr9NnIw3ws5FkZPrsaWqmDe/0De/0N/j6nQcc5BNejIc8GR7yyfEhT0ZHFNaSKs0gSeibNJwXrVpdgVqQalXrdc1/Vr6ctVGfVovkQ2NYDxhlY83EWwRTMFc35aez9qZiA1YpPN4L8okJRhInjtU5UwXbeqiVJOe63p7HsvyiphFXqsrjxFPXJMn4DyFwcg7yrniiOtsTKhyDRZbmQoqFQAXUEOUBZ0NkqoIqJQRaWjpqBAiOyw6HRR+JoKMKjsoO3zl6n6f5Nsc2w1kfb9yAEoLUqJAqKAQWT+FLcnIGOmEz1XSNxChJ16RkOiEVCV3VmXPHC81qbzswQThHJraM6XklE1ciPCRK0zGGh/0Bdzs9NpOMQYw0peryU1IhBJtpxmaa8eHmDoWzvBwPeTEe8fHRPs9HQ16MXyGArk7YSFKyZoSrVatzqgWpW6x1Bp/6Ne3EqtUNKS9MsCN+C3tNiWmy0zQ65KIhRHxeSRcAKkagTgLUdG2rbzhMm1tr8+WaryNaNXXvKk0jLqz4njo/je4IQXS4C6YPVRRNxfFa73H46Mh3NUA1H4VaxUxiBqhcGBNC1Ol0FTwJIdCioKPHWC85LAYclz20cKTSclj2+N7wPZ5ONhkVGutB4BDCo02sY5MeZIlXHoSkqzQF8CjZ4fODR2wlPZKZ/ku3Px2vKTcDTQW5tSAgU5qONrw32ORup1cD002m2hmpuN8dcL874Ks79zgqJrwcj3g2PObHMQ1wdHyIkZKN1rSi1QXUgtQa66rmJS34vD26rO3AbVdRGvCSxBRvtD26oEkusWeTrZ+pU5kAtHLgoSgVuTVXA5h1quAbVA8l5n76uZ/nkZ8CELCyZfl1m0acqbmoUwV9KppENMHppMI+ahHsJVyV9ncJoJqPQqmz6vYqk4jGvlQpe0oIhJI1PIEnkQWpnFB6zat8i3GZYaQllSUviwEfD+/yeNSncBIvHELmKA1SSbQM/Z4SldDRCR2V0jMdUplwUEzYTvp8bfM9evpk093bLOc94xhlGpYFhbcIIFOGrjZ8ZmObO1mXjTRjYFL6SYKR6wONfRNg6f3BFj959yF7+ZgXoyGfHh/yZHjIx0f7lN7R00lrWtFqJbUgtWYyenrBOe2j24JPq0VqL/eEdDUEqX5z7NGFaNBKZT3u4j4tuQYo5RAQjCRKfXXOhm9aKp8IEYZEhQm09MGQ3DeLmSow9dOFQhSw+hke857QMJkqdS+up84uC8/5+BofVxwm/qJC0+m7JFx0vpt933y9bPWAmI7hPPvegEUXmjKFqJMEJSRU0HGu0yYAlRIgLwFUzSiU9nI2ja8JTNV+NIYZjBoEMtadzW7Xk8oJicopnOFFvkNuExJVoGXJ48kGHw23eTbp4hBIaTFGkGhDplMGukvHZHR1QkcHW3HJNB3vZX7EltngKxvv3HqIct4zKos60lQ6hxCCTGu62vC5/g67Wbc2gbht0RwlJbtZl92syxe37zAuS16MhzOmFc9GR0gh6Ouwj61pRat5tSC1ZtJMJ0e3e+rXqtXrk7WSsTek+jbao/t4078CJxkm3n56bThNuuoFZSW5VWHfL2Mk0VQjWnPbIUpLS6ILEmnxLqQ87o36HBUZzk/7Ggnp8NEeHuGpjd4iGEh8cODzIGXsWyxdqOCJIKaEo0IfIXyMKFZRK1dP9BVEp7aG5BSPKvwC6nVXj9fPxXNHUIGZb0BXJI7Koa5aLgKTiCsSJ7Y4HdEUXk7CW22VP7OcxxGtwKsR+LA9P7c+CH21KkSVXsbaspia56e0JJgCk4hjPs0uXuBI1QQjCybO8GS8jUORyALrc753tMnHw132iz5GZfRNxlbaZaPTpaNTejol1WbhuisdFCOUkHxhcJ+BuV0QZZ1jZKseTQWld6E+TGt6JuG9wSY7FTSZlL5JULcImlZRpjXv9DdOmFY8HR3x8dFBw7RC1eDYmla0akGqVatWb6Sck0wKQ2IKtLKUVrGeMOVns6V87N3kxbkizlI6hABnJXmpsFaHoFVVpHPZflO33No8RJ1KUm2RwlE4ySRPeDHZZJinjMpkpomqn1m28YsIYBUAhzh5j+YHC10Tp6qiKNVyUgTTCNkA58AyFWhNoamJMs3XEH+v4Huaoehn41N1Y6TgaymkQKkQtRHThRrrnoJiOEd93E61jWBc0txWOBYewdRZI5hjgBIeRYAkF229g2GGiAYp4V8ArejABwg1PcZCNoBp9s1tgKFvmFeG34UPP8c25fl4B+cEWpQM84TvHj/gxeQ+qB12On0+t92j3wlNb6VYHRSG5YTClXxp4yE7aX/l5V6HSuei3Xj4V7kZdrShaxI+s7HFdtqta5r6JnnrgGGRacWr8Yjn4yGfHB3wbHQ8Y1pxwpa91VujFqRatWr1xsp5yaRIgABT1kpetz36fH3TFJy4EKBI4RASvBNMCk1ZqqnJhI9pZLL+g3PD1K1N5fNoYUlUSSItTkDuNC/HXY4mHcZ5yqRMFkdbogJIBIXAiEdYiSakrQktQIWeSl5WNuA+PBt/nYenYIAQ35+ZIGMz3jQ3mHMed++BymAhmkQQrb2lC78LL6A833rPOYo54IsHwnscDovDCTsdnwgRECMliVA14IkqCigqOHPxuLkp+EX6Eo3zvo4oenAOrA2Ne430TMo+n+bv4tR7DAbbvHe/Q6ovfqMldyXH5YQPB/d4kG1e+IhdhwpnZ3o0We9RCLom1AB9uLXDdtphI8kYJAk9nbQ1QQtkpOJet8+9bp+v7tzjuMh5MR7yfBRMK15NRnw6PEQLycAEAL1NaY6tLq4WpFq1avVGy3sRek15EXpN3bA9+gw4rVjftNJ6hUeJ0Acnz4OVuV8QERGAd4Swx3lh6pal8gnhSGRJqkoknsJLxi7h2XjAKE8Z5SllaWLC2ZJ1NP55goeH8B7pBQoV0/caYRxL9NPzOOHx0uOkx4rpRF9GpzmJ4FrmqB68i/bjlUkEoJVCRIe6m54cez91+2uCokCAlPE4egoshXAoNEYFmCmYwideBuira8UE+JiuGj9HPj7v402J0vm6wW5X52wmY/paMpHbjMVnkdk7vJsOuCg4NVU6y6v8mA96u7zf3XmtEFJYG+qZbMG4LHCAFpKuNmylGfc6d9jKsnqi322NFC6snknomSSaVjzi1WTEy/GQT46mphUWT0cZBq1pxRutFqRatWr15iv2mnI+2qPjTrH/vqRiCtTUQOBqwKlevQhRKA9MCh0B6vR9qWFKiDOa9zYXug2pfCHqlKoSIy2OUBf2YtLjuOwwtCZEJG31HsxGfRoZbTNTagc4PMILtAclFWomB+7EMKY/XXCXM1IhpI9z/ghYsZ5KxJq1C0+rKh72fmoSgUAqgawc9oS8kUzWACwVMLn6poGI55qQAtVMyROh/5PDYz10MGg0zgqKwmG9QKMQsQbL1y6TFYjJOro3fbzh7icFG6llO5vQMw4huozFB4x5iBAPSLm69CvnHS/yIx52NvlM7+65UgEvq9za2ghibEu89xil6GjNTtrl/nafzTREmQYmpWuSGxvb2yYpRG1a8YWtYFrxMkarKtOKp8MjpICByegnyZX0zGq1HmrfyVatWr01KspQLJ7oEnmJXlMzyWB1fUuVpifqO+SNV11aklAHBVBaTV6qc49f+JACOE31WzDTrtOw1jOV72TUSTEuDU/GG4zKhJFLsF7inUDMAVS1t4uOWjA5AAjRJy1UcJ5Tpxxj72fNEYREAVJEl7lAZHg8XjqcCNEqhwtAW0f6zu6MNJ+uJ6oeSEpeS9Spbq9bRyVddCCM4BTP+YodRPCuiwAX2wb7aPJiRSOzT5J7C0gyb+jKBB0Lzko8E1+SY0EIUiUxUtepkFWmlAOc89hY22OkIDOwneb0dI5QKRN/l0P7kJHbIfdXX7PkvedFfsRu2ufz/fvXZvHtvSd3U2jKbYkDEqnoaMPdbo/7nT4baTCBaBvMvn5lWvOov8GjJaYVT0fH5LYkU7o1rXgD1IJUq1at3ioVpcZ7QXqOXlOzzzZT9WSdUlQ9dfbyq6tKb1I1QKmGlfn5VKesecCBE6KOOp0I0awVRHlMrHUKUSdBbg0vxgOOy5RhaZg4gw/ZdRABSrgQ+ZiPNjVWGyAomicIL9BCIJEotXSpuJxvwFOIQAnk0smQQCCcCgBnY8Na6XHREdCJqTmDrKJVVX1VBS4x6qSUjFEnEOeswTgBRyf+jo/5CH+uAjioziCBQniJiLAoK2vy+PfM/0Rlpx4g0+EocAxUly3doRPTnaQMx7E6fhNXclBMOC5zvPcoKfHeU9qwB0oKUqPpGckgmdAzIySKid/glX3EKN9h7DdYjMxXo1fFMX2d8oXBfVJ1NeDivWfSiDRNXAkeUhWg6UF3wL1uL9YzBXDKdDuNW2edZVrxfHTMD8evwId0wda04vap/QS2atXqrVMZ64kCTC3uNXU6PDUMIq5RtZW5kxSFxrpw13vZ9NDP/Wxqfq4sPPiqbqqZJrUG9VAyRp2SKurkFCOb8GTUYWST6LAnp5E1IRAFCBfqaZaBa4UrHh+d9kASI0/ydHjyxNQ8YhqdkEhkdNw7DyrH5DQHygUfOydDqqaVjup/4BFCouI/KUUwiRDzZ+aKcFTvh6hfUhn5eSdwLkRURYysCiHCtqUKkCMlWsga5KQMxzn8nKbtSSFmUvgQ4L1j5EoMmns6Y8NkIVVyiVI0mxqkg8Mi56jMkVKwlXXoGk1f5/T0ECE8ue+xZ99j6O4wclv4G5jW7BdDtFR8YfCA/gV7RTnvmdiyds7LncUDmdJ0tOHd/gZ3Or2Ynhegqe1hdPt1mmnFR61pxa1UC1KtWrV6K2WdZJwbUhN6TZ2EqQZRuJuDJwgRKCFiL6hSY+1qEygx9/Os1woHToo6zUw0ePFm5TEyRp1EiDpNZqJOCRNr4isJ1uOSYNxWyghQi9fcTNkTseZLRVe4U2taGvAUNikwIppGiFOg65z77ZwLjhYuGAMgZfhm1uBVSAmMyYBTiPIzPyIYiWkfp6rvWOxB5quDUKU5RuMGKSRaxX9JgCQlFVoJVHT5o4KjCEXn270QYSm9o6cTtkxGtqA2xHkorKOwJaULO5Eqxf3eBh+mGotnUh6QuxcoCpTcYN++x7G7y8jtYLm5+p/jcoL1ji8PHrKd9FZaxnnPOELTsCgofHAr7GhDR2veH2xxt9Or7cYHSXptqYKt1kvLTCs+PT7k8fFJ04quNm0a4JqpBalWrVq9tQr26IbUlGjlKF1lKOADPLmbgycINVASsF5S5IrSXvMlOpZLYS8wSb6kplEni8RROM2oTHiSdxjZlFFhsPOxt1B+g7AgnQzjXqD5eiclCI57Mc1sqYJDSEzdC4lsulH3dJmD5OswoMd7V6frCQWo0NNJAEKKahjgJM6Jug4r2KQAPngASh9T64SM6ZhVLVg4b6t+S1UESUmB0RqtQvqilDI0Vb2G9956x9iWGCm5m/boq5TmoS+tZ1JaCmeBcKe+axL6aUon0XSMwYgSxT6SEZaMveIL/Oh4wA+OMnKXsZFmpPLmpjETWzC0Ez7fv8/9JTbnzvuZHk2FCzdFMmXoGsOHm9vsdnpsJKGeqW/aiEOroGWmFS/GQ358uM+rybA1rVhDte9Aq1at3l4JcEgmVuNFgZEOa2Vw9LvByIwUHik9zgkmpaYob6B5cFy9cCBcmHE76SsTtGtQiDqlqkQ3ok7Px32Oi5ShTZhYzcLEvEYzp2AgIefWHKIaAVSmvZok8ky3PV8nx0W3uUWmEUv3qArjVaOIa6oDVlMbbu983WhZColQKho0qABDRVVjVKUMylh/FUBJylAEZoWjFCW5LymFxcaaJiUESqiYCijQRqFk2H+pYireDdzJ9t4zcSUOz4ZO2Uw6JFJinWdUWorS4gjjTbRmp9ehm4TIjNEK4S2KAxTHeDQlO4zE1yi5i0g2eD+FQW/Mx4d7PBkdc+DHNwJUhbPsFUM+6N3h3e4OANY5Ro30vNKHXliZ1vRMwjv9TXY73doEom+SAK6tWq2gpmnFT+ze5yCf8HI85EnDtKKwllQp+jENsI1W3bxakGrVqtXbp6bzghM4KxmXKV5ZjC5rK4FrH4bwKBkm2JNcx9qtG5hoRWMG6cQ0JS7+XcNUfOxSmxGONDrsARROMSwSDopp1MkRUpgEJ7+QvArHRjrRsDAPqqI01TiFFxGg5IzBhKsKgRq74yMshohN0zAiAKWowSg47VU1R74yhWgelzqNLu6Fl1CGuiPvQuNbKSVG6RgNCj8rSJONeiIRbcKbsi6k/4WfIT0xFQmZSkGC1OCUoxSxwa0ALQNEadSN9q4pvWViS1Kl2dQdjFBM8pKhD22wjVZs97r0koSO0aRahUifdygOUf4Qj8CyyZAPKcU9SrZj2C5IADtph+00453JzQCV847n+SE7pk9fdvjx4V50DAzpeT2T8v5gi52sUxtB9E3STmpbXZmaphWfbZhWvIimFc9Gx/zocA/vPV2TsNGaVtyYWpBaN7XX3VatrkfVZ0sGeAozcdmYBMPEydBrypTBTe2C9uirDEVFg4Ei9oK6rm2d2LCA4L4tTtQVCQ/SCnzsf3SR6FRlEhGiTiHa93Q0YFhmDG1CHqNO9dtxYoxh28KH6JOysq7tcUzd7RQhXU81XN+Cqsa0lblEaFrc3P0ptMSaMA9Ih5cumiM04CjWGgkvEC4JTXW9iA12ZQ1S3nq89eCDJbnSirRjMEahtDo9pZBo5126Gpyq1EKpBFpK0kxjjIppeaGuqZmW57yj8JaJK5nYgokvGPkc8Cih0ELFhsBX/yVTmUl458mkIXMGW4abBL00YSNL6RhDZjSqqkvzHskQ5fcRWCwDRnyRUjygYBfE6ZNAgbg2oHLeMbEBCie25FV+zFbS5UG6xWaaca/bZzvt1GYAvRaaWt2wmqYVX4mmFS/HQ55F04q9yZhPjg8wUrWmFdesFqTWTLJ15WnV6mpVzZ6rCXM5C0/zqntNzTj6XZ0qK/MiWpnfCEDBiVS+ZdM+AcFCHI9bAaZmo06ewulp1KlMGZUJTVxaurcypMQJHwwkpAsmCRUMQYhqKAJAKAEyRirq9Dzv6qEKARoxNZYg2nA3NmnxeBGgGS+RZQqFRjoVIatypJuNcgFY63DW4VzoZSS1wmQGkyi0Vkv7TznncX4aYaqiZTKm4aWJJjFhHU1oOusmmxSSVEhSaUB3KJ2j8CUTVzByOYUrI4hKtJSYmDJ4GXnvGBYlI1uQCc1W2mXTpAw6KV1jyIw54TQn/DjWPeVYuuS8RyEeUXAHLzrnHsMioHp6DqCy3jGxJbm15K4MEVAhSZWiZwxGw4db7/G/fPAF3ult0Y2W7a1arZMq04r3omnF3iREqx4fH/Lp8IiPj/YpvaerDYMkoatb+L8qtSC1ZqrO6/b0btXqEpqHJydOhad5FaXGeUFq8iuDKdWwMs8Lc3MABdNUPh8icWddXyqYkn5x3dRM1MlLJs7wdLTJMIJT4c5R41UDlEAWMbpTA1TsnSSC6UPVa8gRanFKb2PkJv4TEiNEHXlRy0qjpK17N2lrkIVBWo2Yf08ay7sqxa4MJ5XSEpNoTGowRqLm+vl4PM56rHc463E+9quKwJRoRWI0Wku0VihZ9Yi6mqu/lhJNQkclbPouhQ+gMHEFY18wciXggnOfULEW6/Rte+8pncNaRxEjYIlUfGawzYPegF6Skhl1Ij1R+KI2jXCklOxSiPcouIsTV9MstwlUr5YAVekcuaugyeLxKCFJpKJvErbSDXompaODBfmr/BgjFX/i/he419m4knG2anXdkkKwk3XZmTOteDke8qPatOIYKahrq1rTiourPXJrJrXkLmarVq3O0Pwc0J4PnuZlrWLsU9Ik2KNfpAkuRCtzoHSS4hxW5leiM1L5zly8qk9SltQUJMIi6qhTykHRZVwaxmWKO+/tnwqgnECUoZ6oeq8UEi0CQFVRE4/D4kNtCtFRT6rYC+pktGleXjicDJVV0il0kQV4snrpyK11uNLhvA8GFEbQGSQYo1Fa1dBjnacoy0YdU3DfUzKM0aQKoxVaB4jSjWVvQkIIEqFJpKZPhvOO3AegGLkJubfkPtSxaaEitAbDFeschXM4H8BTCYlUgq7S7GSbvDvYZGDSkxv1FsUhkiNAYdlizJcoxD0sW8sNQC67r0uAas8NUVKRKMVGmrKZZHR1QlcbOiYcm6ZeTYY44I/c+UwLUa1utZqmFV9rmFY8jWmAlWlFokIaYGuKcj61ILVmknX+TePB19LXpVWrW6CqyGWmnuXi8DQv5ySTqteUcpR29S8XKR1ShF5QRXkDVubzuiBEVbYMRk0d9qwXjK3hqe0xKlLGRUp+nqhTU9KHkicnoBB15EtHtzkVPbunHngB0WQj2hQiU6scA4+TFi88wklUYZA2Rp+iVbj3oSbGx8Iq58A7ByJEiNKOQScBnIQQOB9gqcyLUFoVa7SUlKSZIjEKpRRKiQBO4uy0vJuWFJJMJGQSBj6jjGA1cQXDMuewnFA6i0CQyOCo101SlJRMfElPJ9zvhDqhmV5c3iE5QnMYe3BtMuIrlOIBJTszphHXrSZQ7U3GTGwZ+zYZkjN6NB0VEw7LMT935zN8pr97QyNu1er6NW9a8TPundpivTKt+PHRfmtacQ61ILVmmn4nNb55r8hBq1WrN0Lz8OTkjJvbVctVjXuTAFPWylM/ilI4pCRYmRc3ZGV+YhDULnynpfI190MJFxriqhJBcNg7LlKO826odbIGh8Sp4GQnz7lPTsWtWcBKlBW1VbeQ0S0vvlZUqXyEKNNZ0aYT+yUdVliEAwqFzDUUGqzAerCUVFsTIqxfiGDXZxKJVAlSy9jTKZhVuNKGOiYV6pjSJJhIaClROtQdrRswrSLvwVqPLUGi2KDLViowJph7WGFxeIblBOkkd7M+j7qb08mV90hGKPYRlFj6jPiQUjyk5A5e3Fyz3EUSCLbT1Wuvxrbg2eSQn9x5jy9t3r/GkbVq9fqlpZwxrRgWOS/GQ56Phvz4aO+EaUU/Sdpm0XNqQWrNZGJq33xhM0TLXjgJVCdeePXjatXqtaoJTxCtsG8u9cB7yXiSkCYFRlusE8HZrTlE4VEiTLonuaGwqvGhvSE1asNmrM2j/NxfddRJWpyT5M7wcrTJsMgYlym5m/2KkICwEpTDSZCOU+Vi+h4eRAnSKpQPaXuoaP1NiJCoyoL8jGiTd9GXz4eaHTy4aFXuVRiQKCWyMCinEU4HVz8tkWmoQZIyQFLVoFcIiRBQOktROJSapuAZE1LytFLhcSVXi4atqbyHwpbk1tVRp1RptroZ/SQNtuRG16mHh/mEZ+NDtpMeXWNQUnBQjhnZffpyTEeXCPrkPKIQ71Bw90KmEeug0lk+Ge7x5c0HfH37ndloW6tWb4G6JqEbTSu+efche5MRL8cjPj0+4NPhEZ8cHbSmFXNqQeoWqeaoeaDycy+4rnO6BbRWNykB1FYC1PDk/bWVV5w5oEme4F2BMWVsAisQIkShAPJoZX4jvaBODu9EKt/8R1ZJSyJLUmUBYq1Th+M8OOyNbYI7A/6EF6gywpTyIerV2JCjYZ3uQJUC5RSKkP5WQVMVbZIyWBNUgORdqIMiGtr5uQucrO8yCZAgjENJj0KjnMGQonyCSiVCBkA6y0TBec9oUqC1ZGerS5aaKzV+eN0qnKMoLbkt69qyrjFsZH0yE2qE5utznfO8nBwjheQnth/y/mAbIxzD4inHxUuOCnhebPGD8R2Gbgcpt+ibjJ5OzxU9XBc57/ho+IrP9Hf5mTsftHfdW731appWfH5rl4kteTke8WJ0zI+PDng5PubZ8BgpBD2TvLWmFW/fHr8BWhmorm3D17T+Vq3mI09OgA/wVAHU6775lZcGH+3RtQjT/NKGFL4bdeJrqjombholqmqdUhWsyYP7oCJ3hufDQXTYSync+b8GBAJtJdY7rIpRp+CsHZ73oEuF8SqYRkhVv7WyAUgOcLhoMU4NSELKujeUkPEf1L2YvAo9nwQC5TXGZyinkRfoHVSUJWXp6GYJm4OMJLn9X4vOOSbWkZehubSWilQpdroDuiYhS3SwJV/yWToqJhwVE+6kPT4z2GLb5Hj3YzySrt5lI/tplH5EyRZ7+ZiXk2M+Ge7xIj/m5fAYPPR0St+kZGr96yu893w83OdetsHP3vnMrRhzq1Y3rVRpHvYGPOwN+NrufQ6LnBej47qu6tnomPwtNK24/d8Yb5wEFkE/GRNaTgaFiYfAeYEjpBUFC2CJQ+AcuOouuJ9Z3XUM8eR2WrW6qBal7XlZn18+BqXWKThQlBrvQSl3s72gFinWQ1WRKCUtqSxJlI21TobjosdR3mFUJitFnU5T1bPJ4XE2vj/agZJoC4nVaKcaUScxBSQVm+dW6XSSOmIk4vOiWSzV2KrD4US0rPYK7bpol6C85iIXOuc847zAaMXOVo9uN12rc+w88h7y2AvJOodEkmjFbq9LLwnglGlz5k2I0lpeTEakSvLljQ73sxItn4PYRJtvotW7SHUfEZvlKuB+J+F+Z4OvbD3kqBjzMh/yfHzEx8NXvMyHTGyBEYqByejrdC0nVk/GB/R0ws/d/Qwbye1MS2zV6iYlhGAjSdlIUj67ucNPR9OKl+MRH0eo+vHRPg5PT4doVUfpN7IHWwtSa6bS93k83mRv2Al3ZXFI4dHCoqRD49DShYJ2QMoy1BkojyD8O8k3YgphPrS1DBAmAohVkHbeyUgLVK0uqgqeIADUHDxBI8C6ptfd0mpK+xoHECM4wkEmS1Jj655XuTU8Gw4YlVns67Tqpd5X/597yBF9K0K9kw+TaK0FWiiMUwglEUaQJRop5LTWqYoqLQSks0bjcaLEYZEotEswPkU5w/nsJ2Y1KUtc6eh3Uzb6GcbcsjQuH9L18rKkiHVORikGacogTcmMJov1TKuubz8fU9gD3u063ul06KcbaPUeSr+PUg8QK9Q99U1G32S839vhmzvvspcPeTkZ8ni0z9PRIR+PXuG8p6MSBiajo15/c9uXk2MAfu7uZ7ibDV7rWFq1uq1qmlZ8eeduNK0Y8TwC1f5kzOOyQEtJP6YBvinpsy1IrZmU0gzLlL2iB0zTC/zMb+GfxCOFD1AVC90lLj7uECLYL2sihAmHlhYlHKHW2yKkRYoAYIu9yELky/kqChZxzYvpYyJCWAtUrU5TVfMkWApP8RV4v14RqNelRoXYjLRyJLIglQ7pQtTpKO9yVHQYlwmjMsHP91BYCEizir4QU/txEXs9xchSisRoiUokiVJ0dEJXJCRoHHDgx4x8gUFdogDZ44TFYuvUvdT3Quqev9xXVhWFSrRia7tPr5OsLajPyzpHXlpya+t0vcxo7qQ9OrHOyejzT0xyO2I4eULfWB4N7nOv+3nS5EOkeoiUFwcLJSS7aZ/dtM8XNu4xtgUvJ8e8GB/z8WiPvcmQp+MDlJB1GuB8L6fr1mEx5ric8Efvfsh7vZ0b3XarVm+ypqYVm4tNK44Psc6Rac1Gkt5q04oWpNZMknjXl3l4aircig6A03zaz7zaNxebm0FJ6VEx2iWFr+FLCY+of3o0DiUdStgIYtUyFi1DrCuAWPiduU1WkTDfSEn0noB7fgppt9I3uNXZqg0j4h9uMTxVr6rqoN52iKoAquGpQKpKElUihY3NfVOeDYNJxLBIKJ2epkM2/jtzKOMfoooUNb64qpS9Ks1SAhpJIiWJ0WitQHuUUKQYMgwJqg4ZKmCTDI3kyOcoLzDn6BvksDOpe6nvxNQ9M78XF9IkL3He0++lbPQ7GL1+KWZNOe8pSsvEWpx3SCFJleJOr0cvNWTGkGp9QRAsUf6A4/wF1ivudd/ns9s/zUb6AULuXEuUKFOGR90tHnW3+An/iIMi1FY9HR/y6XCfp+NDCmdJpWFgUno6uVbXvFFZ8GJyxE/vvs8XNu5d23ZatXrbtapphRCCiX2daR4XUwtSayajNJbYmLeqfagQZWaSNKuTZVEeIaYwNVMS4QXOCRwX63siKgDDo6Sv0w+laMJZiIapRjRMCYuWIRqmRUhJlARgE/H+edMvI0S+mNaFNaDM+1BLRnys1RqpfjsiDjhB3Sh3idaxDup1SgBaOFJVkCqL9zBxmleTDkd5hzxPmRQG5j7DlRlDdWcv8tLMa+Zv1FTQJXxojGuQJEqTJhqjJE6BFQ6FpIMhJVkKSFJIBqQoITh0ORNfkjZga17XlbrXlHWeSV6QGs1gkNHLkrW8b+N9qFGaWDtthqs0W1lGLw225FnDlvz8cigOURwxKUue5AlJ8pN8YevrvDf4POoGo0FCCDaTDptJh88O7lA4y6vJMS/zYTCtmBzx4jik3PV0SAO8SgOIwlk+He/x1a2HfG3r0WtPL2zV6m3SaaYVHx8fBCOcW6QWpNZdovFDzDx0Ur5CqPC7Zzp/8d5NYat+jMVU1tzIAidAj4xNLaFY5ebBfDSsAq34u2qkJ85AmXChNixGwpR0Ed4CQiV1JO1kNAwIJhxtNOxmVB3C+Ua5Z0DuutdB3aSEdyQqGEVI5UNDX5vwcrLBcWkYuhSsQblg6a1nPBaWH0A3ZyA+E+3yoL3ACInRmtQotFYIKSmxFDgMki4ZGQa1SoRJCLqkKKk4dGPGWFKvGpPV2dQ96RUd30U5g/RX27x4nJfgPYNexkY/Q69ZFKqM6XqFtXjASEXHaAZpj05i6BiDVpcZs0dyjOIAgaNwPT4aPyDnAR9ufIWv7r5LV7/ehrkQ9vteZ4N7nQ2+vPmA42LCy/yYF+MjPhru8SofMrYFWkQ3MJ2iL1hf4bzjx8OXfLZ/l5/eef/C62nVqtXlNW9aYZ27dSl+LUi9SZqDrtlTUeJipbj3HiEkXgQfYr8kxDVfT3FiW2dB2PzfMboWTC8uNjkQOGQjCqbEbK3YFMrC7zpGwTQOKR1CeIwoEcKH5qIxGjY/VFdHw+TJFMUmmL3NELYInuzZ8ARvRx3UKuaZVdTJKAtekDvFQdnneFI57BmcCNbfyktUFaleoup2SROcZPNiEPszKS/QUpJoTWIUSiukDJ+EghAhMih6dMgwF0qxSoVGyQ6HfszIlxgvQDo8LtY9XW3qXlN1FCoxbPQzuplZi/slzjlyG+DJeYeSklRrtrudus4p1frSYxWM0ewjyPF0yXmP5/kOT8ZdHvUe8HO77/Cot3E1O3UN6pmUnkl5r7fDN3beZS8f8XJyzJPRAY9HB3w62sd6T6ZCGmBXJStFlbz3fDR8xaPOFj935wPS1ua8Vau10jq6ep6lFqTeIkkJuGAOEWAKEDJGAwJgNWd/899LM6VYp6QZnv7E5eSRWAeWi9xFbES/8EjpGhDWiIbF+jEtLUY4lJhGw6S0GAKAVbVhiygzRL7momFQ/8RXHovTSpbK4n6ttSzy5FYb95tSB3VaMBcC6yyqTVJAokoSVaCA0kvG1vB8uMGkTBm5FFtflj0ucpNyEnkCUEMfplloCsYQQojAs9Vn2oEi1CwliSLRGqllfefP4ZlQAJCg6ZCQohGXrFFRQtARCucLxr7EuISuH1xp6t68xnnYj81+xqCfnWg0e5OqbMkL6yitRQhBqjTb3YxektJJAjhdReNfQYHiAMUxjoySO+S8y7Hd4cdDF+y97z3gi1t3b1XTTCkkO2mPnbTH5zfuMbEFLydDXkyO+Hi4x14+4tn4ECEEfZ0x0CnJkv37dHTApunyc3c/Q99kN7wnrVq1ehN1e66mb4lENeOSPvgax0dXucu/kmQsvXLBKD0AVUj0EUKAaADVXFrfoiyik1O72SdORLVOi2RduwTWC2wVDXOnv3pWEZzEfDQs1oIJG2q+GtEwI6b1YVIEc3kpw9S3rl3Bx+lkANvwTjRtRprJWFPMquEr/lG5Jk7RrglsVa1c5bg4fZ2r1nMWxFW5YNV5cQ54qvflltZBLYKmClqaD4jpp3dGWlgSVWBkiBflVvNq0ueoCA1xR1YDsjGZ9qG0jHAZkC5ERS2zrQ2qaJOqti0qUI2fawtaCLRUJInGaInUambcFkcRU+xSDB0SEtSlAMrjsZSUogTA+IQHDBg7OLAB1/Q1pG5Y65gUJVli2BxkZOlriEL5qS156cL7nUhFNzFspH06iSHT+grhzqI4RHOIR1GyzZgvUXCP0m/wbDziuMj5cGOHb+w+4k7Wu6Ltvj6lyvCwu8nD7iZf23rEYexd9XR0yKejPZ5NDsmdJZWavknp6RQlJM/HR2gp+Nm7n2E37b/u3WjVqtUbohak1kyJMBw7AVaB0IAPs6lKYn5adzHIEhJErBMKIYK4rhqoQl3VIqA6db2n/S3q7L4ZLUwtXDtFUwt/8WhYZTMvRI009e8y9lSqEgmlmKYdVgmEQlTGHDGiE63uVTT2kLgY6amiZ1VSInF9Nu4J9XrC31OImz23fLSRjK+sflbgBo1IW72mGu6a0FYDXpXeWYPfFApveta7cmZqIzOugiUx8/rZRwQuRp1KJI7SKyZlyqtxh2GZMC4TCh/OIedBC5CNibWLCXrGiRNRKBU/n9UWnQipudY7cOHyoERI2zOpRimBlMGQogSwNn4OHSWhcWuGJhMGg0aK6v1z1NeCFWWxlKLA41Eoeq5PSobxCRJBX0JHpDy3xxz7gq4wS9Dz/BpPimBgMOgw6N9s01fnHBMb4Ml7j1aKVGt2s5SuMWRGk1zAlvyULSI5RnMAgGXAkK9RcJ+SHUAzLAs+He6xk3b4E48+5MPBLvoWpsycpVBf0WEj6fCZ/i6Fs7F31TGfjvZ5Nj7i1TD0rjJC8a17H/JOd+t1D7tVq1ZvkFqQWkd5ESatohk5acIUU6C6DGTF6ECITtGITsWnRXQE83Npf5eY+yxadGqIMX3sVrDVudRwF7zkzp0zDjQLb2LaLyzAWAPO8AgZ/3kfTicnED7CXoyUyLjOUKtW9SwLEToR0yebtWcyWupPcWMWCOtYmPDT4Fsg+brWr0oHrCNnDYCbRufmoK6OsjVfG6GuTk1tdE+bgYYwkGrqKWb+OnmMtQjgpGUJCHKr2Zv0OC4yRmXKxJqZiJ8gAJASAqmmCGtxSASJlxghUVIiI9BUASvrPCUeXIAn6SRGStJEkRoTUva0rNdZfXad9+S+pMAGBz4fok8KDd7j8NjqtbgIutV7EsORzcuNELHPlMWKsE7jUzquQ+pTlAi9pJyYonJPJBglI0zldIRBLT2uZ6u0lrywdFLDxqBDll7/V5rznsJa8tLGwmhJooMteTcN4JRpc8UGKh7JCMU+wQakz4TPkfOQkl08aT22T4f7WOf46tZ9vrH7kI3k7UlhM1JxNxtwNxvwpc0HDMs89K6aHJFKw+cGd1/3EFu1avWGqQWpW6PGt7JnCkjngqzma6eQFaJTVZRhAS3V/WZO1lFdZRChYep1pt480Fquyx3iaTofsPjASU9V8+TLCPFOXPggV9BSRdUqAKtQR1bw1KgzqyBvGi2rImlhbBXuyMZyU3MRTzTzr90foQmKrj6GVeCn2l74vdrVAE/N+NI8Ws0fz2r/Sq8YlwnPxxuMypRxmVD6xVEIj8dVxycaPFTsmKFIfbAdr8bl8VjvKBzgQgNegyRVmixNSBONNiH6tEjOe3JKvIOBTBjIDl0VmuhCdPWLpjNVum/l9Od9TBWM4Oe9x+LJfUFBjnOgSUhchnYJwqnojukpvK3X6eLy1c6m3jD2JS8ZYVAYIWO0TzQigFN4bD5XHZjJpEBKydagw6CfXUmd0ZI3jMJZJuXUltwoxSDLGKRJACdjUNewfcEExT6KMY4uBQ/JeZeSuzi6M689yMc8HR3xoDvgm7uPeL+/fevcr65aXZ3Q1Qnv9rZf91BatWr1hqoFqTdCVwBZcdJZl0c5X09mGgufWUd1VbsT59orp181ddsh60amPk14cmJa83TOg+eX/F7tRN3va6X1igW/LdjiCZBvRlGnE/GYQBhTIpspjG4aAaPqf1ZBF7Wd/gzgxeWq/mkiOkc6LzkuM8ZlciLqVI13nmG9By0lWorolBdek6Biz6UAP9YHMwmsQ3pIhSJVCVlmSBKNNupUeHDeM/GhCW0qNds6o6sS9FxqanD1E2eeeCUlE58jsHRESp9terJLh2zq6hchzMUImMfhXAWP1eMhdbF0jpflkKf2CO8gEyq0JHARvFyMjBFTF+OxK4pgF54mmk7X4A0cTCZMw5l+Cl4yQJis0iHr82Ma5QvngpiBDhttyXMbKtO0VGTRlrwb3fX0labrNVWgOURyjCehZIcR71FyF8uA+TeqcJZPjg8wUvIzd97lqzv318LSvFWrVq3eBrUg9cbrfJBVTRxdZXRxIpIVfq0mH68bqJYsdqrOWtfJqfD16sbuGctpSMB7AWUEqDrNbVYX2e9pktYqULRMp8HSdHJ8Wu5U2FPV/AOY+otUgY2pu97VvAsVNjU/DvEWRD0Wo2Ws4QnRnWD0oJAeCh8rpKxHe0kqBIlK6KQJJlFo0+zHtFjWeya+wAMdYejrjK5MLpRC53BMyCl8iRKKrugwkD26ZGixwDpaCGQjkgSK00oK79Ljftnn4/yAsSvYUemM1XqVmui9p7SOo9EEnaVsbnbZHHRq6PQR0rx3AUC9xzkX0iB9iOg5GwAugJ3D+bCFavnmKaeEINGKu50e3SS5Mlvy5bIojlAcApKSTcZ8npJ7lGyzzPP+5XjIq3zEe71NvrnmluatWrVq9SaqBam1VVWbcJ3bWAJZRNODePfY4anrlCUgXPxen73/7psueFdJHxcEqlNWt1RNJrzo8pfZ/lVohkHm4ckKvJMLDT7E3O8rjXOuZubcI50B8Eb0U1ZRg/mRnXsLEW5ChVP172rgyS+8hyAQwRSC6XGsPhpayzoKVeKjtbnAhaZlKC/pCEVqNGlmMDr0eFrl0JbeMXElQgi6IqGvMjrSIM8JUB5PQcHE5wCkImVbbtITHVKSUwH2ItrSHVKh+CjfZ68cs6Gy2hihumGT5yWTvGR3o8ed7T6dzsX6/zjnazCzPgBViHz5+Fz4PVEhAnVt6YJhNEiG0TTCYRkw4suUPKBgl9O+nie25OPjffom5Vv3Prh1luatWrVq9aaovfKumdIZ967pRLOeVtxY+ELE+awMGWDWx4L/6j4+dUpgFbUKN5JjS9BIPtNUwEZ610Vp6IqBaskmlmqV4V/123Oh/ZSx/ic2EKZO3QtPL4WkCx7U0wHqrOjS5WFpXq7aLiFtTdZQc7ltLIs2VdU9tTHF3GZc/JgoJRESCiyW4MqXWonxwSwiSw1JajBaI5VYiVe8Dw10c+9QQjDQKX2RkUoTUvbOoSp1z+IwQrMlNujL3mzq3jWpoxI+k+3wyWSf58WQDoZMaqx1HA0nJEbz6N4mWxvd2pzjIgpgFJYPX37XlZ63XIIRmn0kBZYeEz6g4BEFd6lMI5bJec/z8THHRc7nN+7w9d2Hb4SleatWrVrdVrUgtWbSUiJd6O6sfGWGHdNP4qR0OhW4AbCqagqCQRjOV2YBAppwBGCBavomqjEDMthy1/w10630ApB1A0C1ZLNLdVlGvOz2T8BTGSJP5+uVdYExLXojLpCKd1lN4UlMm9JyGXhaPdp02iZspCihBFaEqIf00HeSvkzIsgQT652WmUUsHJ2HnJLCObSUbKkOfZmSLkq3O0WzqXuSjsjYkH06ZJhzruuyMkLxXrpFIjWP8wOOxhOMlWwNutzZ7YW+ULdUgjw2yx3i6FByn5x3KbiLYzUQGpY5nw4Pa0vzzw12b9TmvVWrVq1anVQLUmumRJg6xc5Lh3ASFSehoZXrawIrKab+BLEGYbEjVFULMr1D72zlchZTzGScXFbRrCqyxSxkhf07BbJeE1At0nnT/a7kbZJTi3HvJf6G4KnSTCTqilLxzqOrg6eThhCLok2r7pqPY7PeIYRAC4Fy4bzvCMNWktJNk2AWcU64rBz4Su9JhGRX9+ipBHOOS/nC1D2xQVd2ya4hde88kkJyhw7D8YQ9Naazk/JgZ4BWNx85urzK2Cz3CIfGssOYr1JwF8smq35OrHc8Hh5ineNr2w/4+s6Dt8rSvFWrVq3WWS1IrZmMkGAFulA4JXHSY4VH+GZzzlmwqu2LrxusRJg8izhTDH2n4KyNyNiPygX/5Lqxq69W2li/FxeALEFtRvi6gWqRrnRaKqa23d7L2nHPVyfDNUsIMZMeddOq4KmCG1lj0zmiOQtS9GAKTatGm2bXSfw8hpPQO4/xgjTWOKEFPW3YSrroC6SmnXDgU4sd+E5TSN0LiYVV6l5PdunSufbUvVXkvefwaExZOr547x5bdzr8eLLP8/Exd7LeLYEp1zCN8Fi2GPJ1Cu7FZrnn24fK0vxhd8A3d9/h/f7WBWoRW7Vq1arVdakFqTWTVirO3SSiVEg8VjqccjjpEY7afaua+igEXog6FenawUoIpISai5ZGp2YlRSAkj8e7BbP+huHFRSFLECaxfm59t1qCCE8+wJO9RngSsxEdH6FFSMFla4wuKhdpucoOPR88zUabGrciLhRtml3zFJ6ED+mvygvwnkRrOp00XGGloK8SeirhvN4Fl3XgC6l7BaUvkDF1L7judW48de805UXJ/sGIfjfhcx/c4c52HyEEW7bLt/ef8/Fwn02T0THrM+apPJIhin0EDkefMV+g4AEld/Ccf8zzluZf23lAR6/jvrdq1arV260WpNZMqdYoJB2pwOvgJgXY0lFKSykthbAxdW7BHXRuCKzq6FSIMPkafc5eYTUxJzplraTTIEvG6XIDsqqoDXIaf6j2+VZAVgOeoAlP4krgaeldbcGcE5+88aaeVfoqTM0iVnXaWznadPHSqfB5jOeTctO6qaohq0kNnY6hcBYlJQOVkkl9rm3OOPDJhL5c3YEvpO6VTPwEgFQkbIsdurJDRvpaU/fm5b1n/3CMc45H9zd57+H2TC1UqjRf2b5HVxu+f/iS3Fk20/VIaxOM0ewjyPF0yXmPgncouIOnc+H1Vpbm7/e2+OadRzzstpbmrVq1arWuakFqDVXVeUgZJmhBEu811jlKYSmkxQoXrXyrZpjMsNHiiFUAsysDqwtGp6o9reyFnXcXBwQX1gWLISvYDYb9FnK6w0JWk+41gawIT2E8VwBPc9Gl5uMLNeeucJPpXhdz2lsWbZpN+zt3tKmZIuqrz0rYmo83EIwXaCHRWgUXOQHOepJEYVJF7iyZMmzoFL3i5+GyDnwlNrrulRhh1i51b16TvODgcMRGv8N7j7bZ3eotBHwlJB9u7NA1hm/vPefZ8Ig7nf5r4UFBEU0jjnGklOxGgLqLY3CpdVeW5gOT8sfuf8AXN++R3Ip0xlatWrV6e9WC1C2SEKCRaCSJ01jhaqAC6tojFyeYFqjJQFSpUQIFNViF1wZr8wuD1SWiU5WmdVSXAKpFqiDLh9F4O125r4BKVO6CrwGyZuBJBGiyErcqPJ0XlhZpbjvyhpzAzmsWcVqz29Psx5esbCEs1esVYnouKIGvPntSkgiFEtPPhvMhYpwmGplISufp65S+MivdVLiMA5/DkVOQ+6J23RvInbVL3WvKecfBwRiH592H27z7YJs0OeurSPCgs0FHJfzh/lOejA65k3ZvqG7KRtOIQzyKkm3GfCmaRmyxrFnuqnLe82x8xLAo+PzGHb6x+5Dd1tK8VatWrW6FWpC6pZIIpFdoK7HCU8qSUoWpqfHTL3bvPA5RR6IcxLlrNYGtZovh9dM0wAuAlRBIFTbizh2divsVgapqmnnVqu54e+/rCEzdVtg2aoOuGbKEPB88nZqKdxk10/huoA5qkVkELIKnK7AfXxGWhAChZLgZAIhGgNcRnk+FwoiTiXXWeZz1pKkOV1MBmzqjs0Iq30Ud+Bal7t2NqXudNUvdm9d4UnB4NGJj0OH9RzvsbnU5z0m8mWR8fech39l/zifDfTaTzjXVDjkkx7FZrseywZCvUXA/mkZczVdnZWm+m3b52Ufv8WFrad6qVatWt0otSN1yCQTaC5Q1GOEpRImNk3TpJUqK6BM1rZkKQR8/TfOjClyFBrrNSbu/CFhJgazd+ZqNfM+xX/U4zlFHdc71A8th7RogqzoEHvA2WJXPpO2JJcfpOubFzd0W4lrroFZx2rtos1tiSun09/PAUrRrb67U+1CX6EEKSJYAlPNgXdizNNM4BZlUDExKIk6PklzUga/EkvucMrrubYoN+mucuteUc469wxESwfuPdnnnwRaJuVg0qaMMX92+T0cZfnj4ksJaNi5dN1UiyRFMkIyQlFgGTPgcOQ8p2eWsZrnnUW1p7n1rad6qVatWt1gtSL0hEgiUF0hvcN5TCkspHaXwSDdbaE+cRDbhCj9NCWwCVjDGizAQuCYi2Blg1YxOMdfI95x7diV1VMvWfhZQLdIKkEWELCE8lVOCd/G1bi4KMz2A168ZgLq+OqjKaS+A0zw8Nc4fVog2NSJL3l0BLC3SPEDJkwDlPTgXm+pKgVESqSVeQk8bBioNKX9LdBEHvip1r2i47vVlj94ap+7NazTOOTqesLXR4YN3dtja6HDZE14Jyec3d0Pd1P5zno+O2M1WqZuyDWCaIChivF7hSHF0yLkf7crv4uheapyLdJCPeTY65kG331qat2rVqtUtVwtSb5gqoFJeop0PTn/C4qRDONGY0Favn05Yp1GJZvTKU9VSOQIoiGlWHNV0uK53mQerlRv5nq1rq6PigkC1SNWBEY00OdvcEDcHTU1dcx1UE4yaTntNTSNTi6NNzZV57+u+wvOwJJWEi8DSwoGfDlBNeBISlJSkqUZJSSkcINjQhq5Mlm7+vA5809S9HPCkIuGO2I6pe9lap+415Zxj72CEkpLPvLvLo3ubmAtGoRZL8Ki7STfWTT0dHnKn04upcQ5BjmSCZIygiMtIPCmOlJwdLFs4eji68V/GZWuelmlqaa746TvvtJbmrVq1avUGqAWpN1gKgXIag6J0jlKWWOFCc98zqmGm0asFcNVIoaqiWM5XyYKzkFWDVZW2do5Gvst0nXVUVTrheVZ7Y+l4F9U11UEtctqDOogUY1LUz88k9MUatSr6ea2wtEhnAFRV+4QApSRZotBKIpXC48ltiRaSgQ7W5gtWf9KBT3ZIhV7qwGej615I3VNsij592aNLhjwjXXDdNBpNOBrm7Gz1eP/RNpuDi9uBnybvHZsJ/MRWhx8cveLV6FMGSUKidA1MBfexbGNrWOrh6HBdwLRIL8ZD9vIR7/e3+ebuw9bSvFWrVq3eELUg9RZIIkhqYwpHIUvskgjVaZpJt6oiOI0aINeopbIRRhyVI+B0BdE/71LRKbjOOqoKBU5ub+FL11XXUAc1D0+N2OPMoZDRJVE0IQ7fgCWBUOJ6YWmR5gAqlQodAcp5KGyIdkolSBONNhIlVT0k6x2Fs6RLrM3nHfi2owNfsiQNbz51LxMpd2SfLhmJSK7vOFyTrHXsH4zQWvLh+3d4eG/jSpz1wg2THO9HeD/G+zHRCgQhUjo644tbX+O7yvMHByM6apON7E4Eptf3Nddamrdq1arVm60WpN4iVU5/ykqsm7VOl36VVp8ntUpqoBMBqGyMWTkBzgs8rm5serGtT0ch5RTOLp32J8L6KsQ8kUq4zvAEV14H5er/hh2vI0++ii5NzwNBBDYR/34dsLRIfgr3UgRjCCVkuAFgHdYR6p6MwugQfZoH58JbrHP0Flibn8eBz+MpY+qex5MIw67Yphcb5oo1N45YpqPhhNE4Z3e7z/sPt9noX8w8wft5YAq5sUKkCJEh1Q5S3kHKTYToI2UfIfoIYfhG19PJnvGvn/2YvSPLo56aBtVvUK2leatWrVq9HWpB6i1U0zq9FI4yApXj4kA1r2Zq4EnXwABTlgB0pXfYuiKmOSk/70imk/gKfqrUv4WphCJM6s+KyU1rszw0QW3dgOoK66BctIuAKSxJX/V7mkYDFQGWKuh4rbC0QD5GoHwjAiWR4DzWOaQUaCUxqUZpsRA6PTBxJVIINk2ob6p27YQDXzSQWOTAN03dKzFCMxA9+rJP7xam7jVVWsvewYjUaD7/wV0e3N1YycI7AFOEJT8GylheaEB0kHITKT+HVBGYRB8h+wix3D1PCsGXtu7RNyn/8umP+MHhS97rb2HkzR3f4yLn8fCA3azXWpq3atWq1RuuFqTeYgkEZq4XlRWOkqsDqtntzcKVQYCUOAeFc5TORUO7mH4V4apZZ7OYXqb1NjRfKwiNh6uCp0tGZwKkiWmEap2AqplCN2dhf/ai0/q2qrBJeFBIlAjRQqnC/gvE2sHSIjUBSgnQUiGdwFuPkyHtrjKNkGpZ1VIA8omzJFIxMAmp0Hjvyb2lcA7E6Q58DkcRG+YKBJnIgnGE6NzK1L0ZeR+iUJOCu9sD3n9nm373JOR4X0ZgGkVgKvD4CEwZUvSQ+n2k3EbIQYwy9RDi4nVV7/Q2+cV3Ps+/fPpjvnfwgke9Dbr6eo9309L8J3Ye8hOtpXmrVq1avfFqQWrNVE3o3LT66EakvEBajROeIrr8lVTpW8snmkGXG6eQkEiB9hJbOpwPwBLMLFxtxd6MWsFcTU4VXapMLapnBeCDwbF3PnqQL1jB0sGdfEjCNNp1QZhaeMROPLjCSs+VxhdTH6u/GqsXCDQCpSRKCFR9POV6gOKKmo9AGRQyuiZKJdCpwuhgGnHWblX1UB1lGOgUh+XY5eBBS8mG7tAVhmzOge9NTd1rqiwtrw5GdDLNFz97j3u7G0jhcO4Y6pS84DoICmSGEF2UfoSUuzGyVP3rXIv992bS4U88/JC+SfkPrx6zYTJ2squ3M4eGpXlvwE/uPuK93lZrad6qVatWb4FakFoz9VQSaph0gcWhl0ZhrkcCSBA4L7HSYaXDCYtw825vlzCJWPK4JLjKWetwzuE96PhiL+I/GsYVMyubp5BpQ9yqXgc5BapLB5PEdFkfbAvjTqy2RlEVFp3QIpOL6cP1vvvpy6vIUFidjY6DIj49uz4pqkqmAJwagZQqJKLNTPx8HOV5rOZP7tBVOQSepRmAApQTaGSoe0oUWkvUgrqnZcq9xTlH9v9n787Do6oO/oF/z11mTTLZNyCArEEJm8hSNxRZWgWL4sYr6ota+1Oo2iJaqyhVq6jFhSpaFbHFpSpYqm9RBNGoiAIGtWJYCrKFIGvW2e49vz9mMmRIQmYgZCaT7+d55oFM7tx77r0nyXznbJoOi1DgMX2B8KTaYBcWWBUd2lGtTwZMeKUHvuCse3Vd9xywQW3DXffCSImK6hr4jVrkZerokKPDaj0Aae6HCeVIYFKzoSjpUJTkeqHJ0eoh0qpqGJJdAJduxbr9u7Cr+jDyHCkttgB1/SnNT8/uiMLUHE5pTkTUjjBIxRmnYoelyoY0mYpqVcIvTOhSPUabUMsHmvoMBGb58yl+GEJCkQpUeeJTaIeyh2mGFlkFAm/uVSXwZtg0gzP7qUfeBAsRCEN1MwQa0oQ/+CYaUkLK+u14EuGRqd6ixAiscwN5ZAa3Y5U1khMypTwSqIRo9AKLBl/IJr7Z+NOhCebruuCJQFe7sNAoZGjbusY5EeyKpyoCqgh02RNHB6ew1q16fRcblOuoK9LstWvqCoqjvnf0183sPLhrE4GWS8UMLOirCQW6RQnOuKeE3jTLo8d9NXIMKYFaM7horqbBrmpwKDocwgqrojUY+2RCwgdvva57VmQkStc9mBDwQQgPFOGGYdSissYNp82CnMxMpKdmQNPSghM/pEAozmBgckLEUXBUhECf9Fy4rHasDo6bKkhKg3aC45bqT2nePyMfuY7kFioxERG1FQxScUYRgS52DmmDXao4LLyohR86lAafgLcGDSo0Q4dVSPgUPzyqD/7gWlSajKw80gxO/mAi1LVMqWtFUTRomoCiBVoPFEUJhQMA8HoNeH1+mIYMzKQWDEN1R9YFIEVwTJWJwBgvU4ZFqFA5gou8hr4TPIgIvlZChvZ/PDlRCRbMDIZDAKjfyxA4KiaENa0d+aZsdON6T4oj1wkSkEagta6u3HVtcYoIjBVTFQV6sHVGNZo/sUauXNPX4+gweKxtGzsp0fAkj3Q5lEf9i+D5ydAsfKY0oUjAIjToqgpdV6Fp4WPEQuGzifsgZWD2SCO4cK5V0ZCq25GkWGARGjShwIQPtdKHxuhCR7pIQ1Kb7bonQ4GpLjQdicAWmKYVBw47UOPJQV5WB3Qt6IyUpIxgaGo7f0I6OF04L797KEzlO11wHEfrkdvwo6y6Akm6BT/L6YIerixOaU5E1E61nb+C7ZAGBenSiiqhoFL4YMCAVdbNm9a6FClgNXRYDA0+1Q+P4odPMQKTEsjAeJNjBiYhoOqBgf2BwCQgFCU0cUFTLBYNmqbA4/XD5zOgiMA4nvoEAi0RqgLoUGAqgRhlmIEWNSMYrISom3WuroUi2JohJIQIrntlBkJZaGxYtJdaBBeTlQh1TzzS/Q7Nh6X6DVmKCM02KKUZbG1Sw4KmqBvBVq+cCgS0YMuTIgLXJrpTOHp70XSj0kkYxnes0pqQ8BsGDFNCEwJJmo4kixUWiwpVO3KmRxZqrlfA0LUP/MeQJrzSDxnolAYhBTroyehkTYVT1evFuCOxXNZ7JlBWBQ5YobaZQOGDIjwQwh0ITjBQ16HXNK0wzRT4zM4wZTJM6UBNrYY9+0ykuVw4tWcuOuWlB5caaJtSrXack3cKknUrvj9YjlSrHWnWyCa1qJvSvNbvQ3dXBooy8pFuPTljroiIqG1oK3/92y0BgWRpgUUqgdYp4YdVas1O/3Ayy6P5NCimAq/ww6v64FG9AABNKoEZ3nQVFlWBCAamQGg6/rFeiqLAbtOhaSo8Hh98PgOqpjQ5zqFudr9A3goGKylhSMAPE6Z55I2wKgQ0ISCCXcSkGljc1zBNmDLQhbCuQ2AwE0Z6oRoNVHXfOzoshYWXunFhEqGpNoRQoNZdT3Fk67pdBlqe6rrtNT89SFtjmCa8ZmD8l0VV4bJbkGS1QNe0Ru/JkSsU/k1DmoH1oCChQoFDWAGpQoeKjjYXcqxJJ7zuVnzwQ6kLS8IDRRiBrq/QYUorTDMJhtkJpkyBKR0wpR3SdEAiMOueaUr8dKAShmGiV9dM9O6WC2cjM/K1RTZNx5DsAqRYrPh63y7U+n3IcyQfc/xc/SnNz8grQNfkdE5pTkREDFJthRUaMqSCCnhRLfzQ5cnv6meaEjLYTc2UgTAgRGBmOKEADtWKZN0OQ5XwaX74FQNQgMAw/JafPF3XVGhKoHXK6zNgQkLTmj9OoMVGQBWApYlgZYZaGAR0TYEOFaZpwjQCoaouBzW23m8Tw6Hqih0KVEc/fzQzrBElcEQVCjQ1MNZHKAh1QQQC3UBDwSkBw1NdoPVJE4oQsGs6kq1WOKx6VG9iA+HJDz9MaFBgUbTAmCdoqDH8sKk6OlpTkKof/3TbsWOEuuMJ4YUQvmD90QKBSdpgGnkwTBekdARCk+kMBabGVNd6sW9/JbIyktGney465CbeDHSqouC09DykWGz4au8ObKs6iE7O1AbjpgxpoqymElJK9M3Iw2npeUjWEyNQEhHRiWOQakNUKEiVVuhQUCF88MOArQW6+klThlpN6v4VAISiQFEAzaJC0y1QFAWKKqCqKhQ1fMIJCcAHP2rhhRc++GBAgwK1kYVJT4RQBGy2YHc/jx8+nz9Qnii6G0USrEJhRQ2cM8zAtTFk3SwPdecd2M48Kig1aL06qnhHB7JAQK0/ZEiBHuwGGZhMQUKYdeFJhSbqWqYS6w2ulPVaBAWgKALJFhuSrRbYdT3iszWlCa80YMCEAgGLoiFVWGETOixCg1+aqPB7kKrb0dGaArsa7zOt1QUmb7BLnifYVVSFDAYmv5EN00yFKe0wpROmdEBKGyL9/WCYJvburwQk0KdnHnp1zYHD3tYnzDi2gqQ0JOlWrC7/EdsqD6Cj0wVbcNzUYa8bP9VWId+Zgn6c0pyIiBrBINXGCAgkSQt0qaJCeFErDFiPOavfETLYwhRYTsk8MmN3XWDSFKi6HgpKqqJCaJG1dARGWWjQocEPA7XwwgMf/PAFWlXQkmO7BDRNhaoo8Pr88HoDY2Z07fi6DzYWrMzgbH6BYAVIRUIoClQJSKNe2KybMi84CYIJBCfAk6EWrIalDwYnHOnWFxhjFmwVC3aFlCIQoBRFgQYVqoIGC74mAolAeDKD09JLBdCsKpI1HU6LBVZNi+iumsFue36YEBCwCg0uYYdNCSykW1c3ag0fPKYfOdYk5FtToMVVVz4z0LIET3AskwdCIDAbpbTClFYYZi4MMxWm6TwqMB3/eVTVeLD/YBWyM5Jxao985GWntJvQkG514Nz87lj7005sOFQOl8WOKp8HFlXF4OxO6JOaEwpXRERE9TFItVFWqEiXVlTChyrhgyYF9GDrj5Qy2MokwwOTUCBUQFUVaDYdqqZAqApURYUSYWBqjkBgEVQddvhhhRveYKjyQ0Fg9riWClRCEbBatbCxU0qwG9yJUBBo7cFRwcqomylOAEaw5STY1y64ILAI/EDVmzlPBgNWXUNW/cku6uaekGZgvxACqhrspld/pr0Ea3WqY5iBkAoAigIoeqC1065rcGg6LGrzAUpKE15pwg8jFJ6ShR02RYdVaBBh4UKiwu+FAqCTzYUsizOGYeHI1OKBliYPAqP0FEhpgSmt8JtZgcAkk2CajmDXPDvQgq28hmFi7/4KCEXBaT3z0euUHNis7S802DUdw3I6I8VixbcHytDB6UI/TmlORETNYJBqwxRTwGmogDRRofhQK/2wmoFJGIQqoKgKdJsenFo8sBZToPWpdd48alCQBBtssMADH9zwBANVXehriXIEwofdYYHPa8Dr9cPnNwNTYLdQAKkLVnWLA5tKIFSZUsJnGjCC46gQnJgiEKpCDVUIn10iQAKhadqFAFRVha4q0BJ0sog6gW57gfFfiiKg6wpMBdAUBVZNjShASSnhkwZ8wfBkESqShQO24HTljY3PM2HisM8Dh6qjoy0FKZrtpJ3jUaVtIjAFphaXphWmmQafmRaYKc90hCZ/ONm/niur3DhwuAZ52Sno0z0PuVkpJ/V48U5VFBRl5CPf6YLLYoOucEpzIiI6NgapNqCudckwTEgjMIYHEIFP8VUFyZoVSboNVboBj+KHXbPAqmhxM02xBgUarLBBhxe+ei1UAhrUFgk8AiIwVbqqwOP1wec3A605J2FmrfotVlZFhakFwoHPCIQ4Q5rBKc9FYNzTUWPJTBkYkyUgYFFVWDUtMCNfooYnKSGN4JpPigI9OA2+FIHZCO2qCoemHTNASSnhhwFfcIEuXShIFY5gy5N+zMlNvKYfVYYX6boDHW3JsConq8XFV687nhsiGPQkdJimLTi1eOqRmfKCoQlo3RYgv99A+f5K6JqKfoUd0KNLNqwW/imok2lzxroIRETURvCvZ5zyun2BbmMIrBmkKApUTYFut0C3aFA1BZqmBlqbggvVZkoTB/21OGx44IEBGyIbW9JaVCiwwwprqIXKCy/8EAA0tMyU7oqqwG63QA0u5OvzG4GFfE9iFy4FgWnJdcUCUwusc+Tzm/DLwBTq9ZqmAFNChYCmaLDq6jGCXsPBVaLR5+p/0cz3QzMTNvxmY/tu9tih18t629U9c2Tcky4A1SqgaRqEYsCEHwBgVVU4NBWaIiAQmEQhrLRSwqgLT0LCLlSkCT0YnhQImIFJF+BpUI66r92mD1KY6OKwI8tiQhUVDa7H0a+J5NxD2wmjkanFnTDMjk1OLR5LhytrcbiyFh1yXOjTPQ9ZGey6RkREdLwYpOKMHhzzozstsFrtUDUVmhpYm6kuMDVFFQoyNAesioYD/lpUm144FD3uWjoUCNhhgRUW+OBDLTzwBt9ca1BbYOp0EdFCvi1BwIQqTKiKCVUYUETd1waE6Q/M9GcaCETiQPchLTgb39GJRsi65V7DW7DqH+1ojb/FFw02kI3WgXrHOWpHzR+3kefqFjQODgizaCJwrqoKKIDf9EEIAbuiwqZq9bpOGaHjSEj4g2OepAQ0oSBJsQXCE+rqsmiwsPGR8gbusSmBSsMDVViQbwlMbS6kgCkbW19KaeQ50ch5NtxOSv2oqcXrAlN8/cz5/AbKf6qAzapjwKmd0K0gExadv/6JiIhOBP+SxhmbwwpHih1WLQWqEv3Uw0IIJKtWWISKA/4aVJle2IQOPa5mJgtQAFihwxLs8ueGDx74IGFAb4FAFe1CvkfKFQhCqgiEI1UxgwEp8Fzde2QBCVMqMKQCQ6owTAUGFNT6rfAYFrj9FvhMHR6fAo9PQAgVqqaEmnKOhICGwafB8wjM3NbIZjjypr/+xg2fazz8NH4t5NH7bOLYUgqYpgm/EWiFUhUFFosGix5oNTVMCY/phyIUOFQdSRYrbEd14TMl4IMBj/TBkIBFaEgSViQrDjgVK3xCQ2WDcz5y3keHFp9p4CdfDdJ1O3o7s2Ax7ajxNHhxu3GwogaVVW50yktDn+55yEhj1zUiIqKWwCCVoKyKhmw9GRZ/LQ4ZbvilAZsS+To8rUngSKDywQ93cAyVD77gWlQnMtNfYIFdi6rB7/PCNGqhCRMWXQaDkglFMQJBQQCoC0emCgMKDFOBx9DhNXW4DQu8hg6fqcNvavCZKvymBr9U4a/3/2OW1Wj6W22JaUj4DRPSlFA1HRZdhdWiQtM1KELAZxio8hpQhAKnZkeKxQJrMECZMjhhRF14ggxOGJGCFNUOh2KFRRz51XTsTofhagwfDvvd6Gh1oaczA464Xx/q5PH6/NjzUwWcDitO79sZp3TKgKZxAgUiIqKWwiCVwFQhkK7ZYVU07PfXxG1Xvzp1a1FZoMEHA2544YYPfvgbWYtKhlqI1OA4FVWY9f4Nf/ttSAWmVYHHB9R6FFTWCviFHV5pgdewwG+q8EntSCAy1WBA0mBIvvkEgtO0GyYMwwy0POkqrFYNuhbodgoAPsNAjWlAVQRSLDYk6xZY1SMTuPukH27phwETOlQkK3a4FAccijW41tPxO+irhU+a6OnIRFdHWpytD9V6pJQ4cLgGNTVedO6Qjj7d85DmcsS6WERERAmHQSrBCSGQpFpgURQc8NWi0vTAKnRY4vBNpkBgjJEiDNiEAZcwIIUfhnDDJ9wwhQEBNRCopAIT9VuOVLgNG7ymFV7DAp/U4ZdavRajQCDySw1en4oatx9utw8SgEU/0t2OwkkpA9O7G2ZgnSwtMJmHrqvQtCPB1mcY8AQDVGq9AAUAPhloefLDgAYNSYoVrmC3Pas48RYjU0r85K2GTdVRlJSNPEtSu1lM9mgerx/l+yqQ7LRhSP8uKOiQDu0kjA0kIiKiNhakHn74Ydx11134zW9+gyeeeAIA4Ha78dvf/havv/46PB4PRo8ejWeeeQY5OTmxLWycsQgN2XoSrIaKg/5AVz/7Se/qJ0PBSIEBRTFCrUeKMCGEGXZ8KQVMqcKQKkyo8Js6fEYyvIYVblNFlZSoNA3USMA0dQhpg2nqoYAUafc/oQJOZ2AsT02NBx6PH5oWHL9EgAws1OoPruSsqQJOhxW6rkLXwkNnXYDSjgpQfmmgynTDDxMaFDgUK1yKHU5hCyyU20JBx2sa2OetQZbFgV7OLKTqrbU+VHwxpcSBg9Vwe3zo2ikTp3bPRUqyPdbFIiIiSmhtJkh99dVXeO6551BUVBT2/G233Yb33nsPb775JlwuF2655RZMmDABn332WYxKGr8UIZCmOWAVGvb7a1FleuBQLFCjilMyGITCQ1Hd/4WQCMzZFhCYjEGDKRWYUoHXtMNrWOA1rfCZVpimBr/UYZgajGALkiE1GFKHKRuOjZIwAXhQHZzrT0DACvU4uisK6LqK5BQ7PLU+1Lq98HgNWPSTO1V63ArOuOc3TEgpoakKHDYNuq5B19XwayIlfKYZClBpVhuSNAtURcAjfag13dCgwqZYkKo44BRW2ITe4te1yu9FpeFBZ7sLPZyZsClt5tdZi6r1+LB3XyXSUuzo36cjOuWlnZQZKomIiChcm3jnUVVVhUmTJuGvf/0rHnjggdDzhw8fxosvvohXX30V5513HgBg/vz5KCwsxBdffIGhQ4fGqshxzaFaoCsqDvhqUWF6YBUCdgUNQlFdWIIIzOEmIQJTXEOFaaowoMKUKryGDT7DGgpHhtRCwcgwNfiDwcgwNcgTnIlPhYIk2OGAFbXwohK1cMMbHF+lByemiJwiBOyOQFe1mloPPF4DqhqYojxOh5K1KNOUMPwmTNOEqiqwWlVYdA26pkFRj7oAUsJrmvCaBnRFQZrVBqeqwVRM1MIDVQrYhAVZSgqSFCvswnJSQqmUEgf8tZAS6O3MQhd7KtQ47Kp6splSYt+BKvh8Bnp0zUJht1wkO9tnixwREVEstIkgdfPNN+MXv/gFRo4cGRak1q5dC5/Ph5EjR4ae6927NwoKCrBq1aomg5TH44HHc2Q+5IqKika3a7skBEwowg8RaikyQl3shAhMHZdqlag2PDjs98EnFViEFSYCrUI+wxEKR4a01GspqgtJer2JGFr/TawCBU7YYIcVbnhRhVrUwhMY8wQNGqKbIELTVSRrduhuH2rdPni8flh0FUJJvDQVGPdkwjAkFCGg6QqsFissenDNp4YvCAtQqRYLLJoCU5Hwwg+7sCBTSYZTscEuLM1OL38iDGniJ28NkjQLejkykWNNOmnHimc1bi9+2l+JjNQk9Ombi465aYG1yYiIiKjVxH2Qev3117Fu3Tp89dVXDb63Z88eWCwWpKamhj2fk5ODPXv2NLnPP/3pT7j//vtbuqgnmQyEIRiNBiQhglN4BzvWSSgwpQoptcC4I9MKj2mDP/gwpR54mBoqDBM7PW4c9pmwKw6osKCtNMcoEHDACjss8MCHymCg8sAHCzToUVRxIURoIoVatxdujx+qIqCpalu5HE0LThrhN00IBBbKtTsC3fY0vYnp5esFKE0RcFo06JqAriiwCT00YYRDWKC0QouQx/Rjv68WOZYk9HZmIlmznvRjxhvTlNi7vxKmaaJ3t1z07pYLpz369eaIiIjoxMV1kNqxYwd+85vfYNmyZbDZWq7Lyl133YXbb7899HVFRQU6derUYvtvCUnWvVCFCtQbcSSDXepMaJDBLnWGaYXftMGQNhimFgpIgXFJGkwz8LU8RguNBiBfNQCzAj/5amAT/ja3/o6AgA0WWKHDCz+q4Q49dGjQoUJEmIY0TUWy0waL7kdNjRcejx+6RW17n/hLwDADLU8SEpqiwGG3wKJr0LRjjAWTEh7ThNf0QyiA1SLg0HQkqVakKHYkKTY4hKVVu9NV+j2oNnzoak9DD0cGLEr7m5K+usaDfQerkJWejD498tAhx9U+x/MRERHFibgOUmvXrsXevXsxcODA0HOGYeCTTz7B3Llz8f7778Pr9eLQoUNhrVLl5eXIzc1tcr9WqxVWa3x+mi3hwN6qjgBcEMJeLxTpoWBU93VLdqmzKCoKLKlwKhbs9lbgkL8WKartpHbTOhkCk0/osEJHEuyogRtVqEUNPNCgwgItskAlBKxWHbqmoqY20DolAOh6/LdOhS+Wq8Bm1WCpt1huk6SE2zTgNr1QFMBu1ZGm2ZGuOpCk2uEU1lYfiySlxD5fDVQo6OPMQoE9tc3VyRNlGCb27q+EANCnRx56n5ILu61tfdBBRESUiOI6SJ1//vn49ttvw5677rrr0Lt3b8yYMQOdOnWCrutYvnw5LrnkEgBAaWkptm/fjmHDhsWiyC3AgR2HekIoqbCorXt7FCGQpTthV3Ts8lbgoFGLZMXaZj/9DyzumwRng0ClwAI9okClqAqSkqywWFTU1Pjg8fig641MxBBjRxbLlVAV0ehiuU2+VpqoMX2oNX3QFYE0qwO5ejLSdCccwgJNxOb++4PjoVyaFb2dmci0OGNSjliqrHbjwMEa5GQl49QeecjNSmErFBERUZyI6yCVnJyM0047Lew5p9OJjIyM0PNTpkzB7bffjvT0dKSkpGDq1KkYNmwYZ+w7AUmqBafY0lDmrcReXzV8UoVDafnpq1uLDhUuOOGEDbXwoDIYqFQosECD0mzLnoDFokNTtcDYKbcPfiP2C/k2uliuIxCe6i+W2+hrIeGTBmpNL7ymAYeio8CahjybC6mqHXqMwlOdWsOHgz438mzJ6O3MhFNtX+OA/IaJ8n0V0FQVfXvno1fXbFitbIUiIiKKJ3EdpCIxZ84cKIqCSy65JGxBXjoxulDRyeKCU7Fgl7cChww3XG2wq199GlQkwwEnbKiBB1WohRu+iKdOV1QBp9MS24V8G1ksN8lhhdbIYrkNXyphwIRX+uAxDUhTIEWxobs9BXnWFDjiJKwc9rnhNg10d6ajmz0dehttET1eFZW1OFhRi/zsFPTpkYeczJRYF4mIiIgaIaSUMtaFiLWKigq4XC4cPnwYKSmxfdNSuusnPLPicxSkt37XvqbUGF7s9FbgsOFGkmKBJUEWPjUh4Q62ULnhBRDoDqhGMHW6KWVoIV9D4uQu5CsBI9h1r26xXItFbXyx3AYvDYQnH/wwpQnDABRTRarqQL4tBVnWJOhKfKzBZAbHQ1mEip7OTORbk9t0cI+Wz29g775K6LqKXl1z0L1LFqyWxPhZIyIiaksizQb8K03NcqgWnGJLxx5vFcp9lfBIA0nKyVlstTUFpk6vvxaVGzXwQMLf7FpUrbGQb1SL5R7FDwN+GDBgQpECwlBgMS1I1RzIdSQjzWKDFicBCgB8poGffDXI0O3o5cxCum6PdZFa1aGKGhyucqNjTir69MhDVnr7XB+LiIioLWGQoohoQkEHSzIcqh6Y1c9wI0Vt/VncTgYBATussAXXoqpGLWrghRc+6MFA1dTEFC29kG9osVy/CUVRml8st566licDZmD8l9QAvwpVqkjRrMhyJCHVYo2rAAUANYYPh/0edLK60MOZ0eam3j8RPp+BPT9VwGG34PTTCnBKp8zAzJBEREQU9xikKGJCCKRrdtgVDbs9FTjgr4VDtcCWIF396taissGCZPhQFVyHqgYe6FChNzF1+gkv5Fu3WG7dpBGqArvTAt3S/KQRoW57MKEEJ8+wSwsMv4CUAsmaFZk2B1KtVmhxFnqllDjkd8MnTfR0ZKCrIy3uyniySClxsKIGVdUeFOSlo0+PXKSntr9ZCYmIiNqyxHgHTK3KrujoYkuD3auj3FcFrzSQnABd/eqzQEc6dCTDjmq4Q93+jrUWVVQL+QYXy/UbEqhbLNcRwWK5AEyY8AW77tWFJwes0KUGv1/CkBLJugWZ1kCAisdWQ0Oa2OetgV3VUZiUjTxLUkLVn2Pxev0o31+JJIcFZ/Trgi4d0qFpbIUiIiJqaxik4pQhJaSUcfvmUhUK8oMzve32VuCgvxYpmi3hWhR0aEhFUr3Ffd2ohScYYHQoRweqZhbyDS2WK02oqgp7hIvl1oUnAwYEBCzQkAIHbLBAlQpqfX54YCJZtyLTZofLYoMap3XHaxrY561BltWJ3o5MuHRbrIvUKqSUOHCoBjW1HnTpkIHCHrlITXHEulhERER0nBik4owqBGyqhgqvB4eFBxIy1PqhCgFVKFCFAk0IqIoCVQho4iTOGNeMVM0Gm6Jht7cC+/21sCsa7ErijXHRoCIFTjhhD61F5YYHAgJW6A3WompsIV9A1Fss19rsYrkmJPzwwwcDCgR0aEiGHTZYYIEOKSWqfYG2qWTdiiybHSlxHKAAoMrvRaXhRWe7Cz2cmQnTLbQ5Ho8P5fsqkZJsw5ABXdE5Px1qMwslExERUXxrH+9i2pA0ux2nJmXCleaAFIHZzHymCZ9hwG364Tb88BgG/KYJr+GDISUM00Sgg1hgNI0CEQhdigJNKEcCmCJOSjcvm6KhszUVDkXHHm8VDpuBiSjitTXtRKhQkAQ7HLCiFl5Uohae0NTpR69FdWQhX4/HByiARVeDb6AbvzYSMtRtL7BPDamwwx4MTwoEDGmiyueFEWyByrI5kGKxxnWAklLigL8WUgoUOjPR2Z4al10OW5opJfYfrIbX68cpBZno0yMPKUntowWOiIgo0TFIxSGbqsFlsQWm0m6ElIFxMKGQZZrwyyP/d/v98ARDl9c04DVN+KUPhmnCrLcfAYRauFQhoCn1QpcQUQUhVSjItSTDoVqwy1OBg0YtklUrdJGYYz8UKHDCFgpUVahFLTyQQIOp0xU1MFV6U44OTzpUpMABOyxhrV1+aaLS54WEiRTdigybAy6LNe7XWjKkiZ+8NUjSLOjtzES2pX1M7V3r9mLv/iqkuRwYeGpHdMpLb3y8HBEREbVJDFJtkBACWjD4NLfajiFN+IMBqy54+YP/95oGav1+eAw/PKYBnzThNk0YpglDmqhrNREIrJt0dLdCrZHAlaJaYbOlYbe3Evv8NbAqGhwJ2NWvjoCAA1bYg1OnV6EWNfDAAx8s0KA38SMmIYNrPfkhAWj1xjxZj2rZ8ksT1T4vJIAU3YJMuxMpuiXuAxQAuE0/DvhqkWNJQm9nJpI1a6yLdNKZpsRPB6rgNwz07JqNwm65SHIm/nkTERG1NwxSCU4VSmAx12YahkwpAwFLBkKWv17warJboSlhyEC3QiAQDlQEwpVL2AAF+Mlfg1rhg0uNrwVgW1rd1OlW6EiGH9XBqdOr4YYODXqwhapuoVwJCQ0qkkItT5ajugUCftNEtf9IgMqyO5GiW9EG8hMAoMLvQY3hQ1d7Gno4MmBRErN1sr6aWi9+2l+JzPQk9OmRhw45qWyFIiIiSlAMUgQg0OJkUVVYoAJougVJSgl/WCtXMHjJht0KNVWBLlSU+Sqx21MBu6KHZvULjOVSgi1dAkr9B6LrVhhP6iafsEKvN9NfoJVKQECFAkewS6AVelgXwDp+00SV3wtAItViQ4bN0aYClJQS+3w1UIWCPs4sFNhT20Tr2YkwTBM/7a+CKU0Uds9F7265cNib7s5JREREbR+DFEVFCAFdqNAVNeJuhVV+LzbV7MeO2gqoEHCoeqBVq278lmnCLyVMacA0JerauCSAwLQMItS1UIGAogTDV5wHLgs0WIJTp9dNmd5UeAICE4tU+30QAFKtNmRa7UhuQwEKCHRD/Mlbg1TNil7OLGRaEn9676oaD/YfrEJ2RjL69MhDfrYrruslERERtQwGqTijKAJ2mwVlew+HPa9pCnRVhaYp0DQVuhr4N56nUD7SrVBDmsWOjvZKbKrZD7fhQ47NGZq1TcojoctAoIuhKQPhyjBMeGVgPJffNGGYEl7TgGkG1laS9Y4nUK91CwpUAShKMHzF8I2tBhXJaDpQBAKUFwICacEAldTGAhQA1Bo+HPS5kWdLRm9nJpxqYrbImKaE32/Ab5g4XFkLIQRO65mPnl1zYLcl7nhAIiIiCscgFWdSU+w48/Ru8Hj98Hj98Pr8cHv8qK31oLrWh1qPF16vHzV+E37DgGEEo4QIdM87OmjpmgpVU2LetUoRAh1tKUhWLSit2Y9ybxXSNBvsqg4hAE0ozY6hkjIQngxTBkKWacIvzcAU8NKE1zDCx3hJCdNvhI3jAoItXGjYpVAVAqIVW7m8poEavxcKFKRZ7ci0OpCkW9pcgAKAQz43vNJAD2cGTrGnQW+D46EMwwwFJJ/fhGGY8PkNGEZgAhYBAQkJRSjQdAW6oiA91YlTe+QhNysl1sUnIiKiVsYgFWeEEEhzNd16YZoSXp8fXq8fHp8R/H/g31q3D9W1HlTXeOHzG6ip9QbfFBqQUgb3D6hqIGAd3crV1HTrLcml29A/ORdbag7gR/chuE0/UjVbROFFiMA6TqoKNNfWYcpA2DKDE2jUTaZhyCPjuo50Kwx8v363QiAwjktAgSLQot0KQwFKKEi32pFhcyBJa5sBypQS+7w1sCgq+iblIN+aHFfd2mSwVdNnmDD8gYlT6v9rShkor5RQVQWaGvjgQVMVOB0WOGwWOOwW2G06dF2FRddg0QM/PxaLBptFi+tWYSIiIjp5GKTaGEURsFl12KzH7kLk9xuBoBVs1fL6jEALl9ePqhovat1e1NR64fP7UeMOfBJvGGYgrUhAKCIwWYTWsDvhic5CZlFU9HZmwqVZsalmP8q91ci0OEITUbQERQhYhAAUBcda/rS5boUeaYRmLzTrdSs0wlbkaqxbYSB01e9W6DX8qDZ80ISCjGCAcrbRAAUEuiT+5KtBhm5Hb2cW0vTmRs21HFPKRoORzwi0JEFK1F1YVRXQVBW6FghKSclWOO067DYLrFYdlmBA0nUVVl2FHgxLDEhERER0LAxSCUrTVGiaCucxZg4zTQmf3wh1Iaxr2apr3aqp9aK61guP1w+324dKw4DfZ0JCApCAFIE3qU20bh2rZUIIgXxbCpI1KzZW78ceTyVcug0OtXXHmLRot8LgWlx108gbfgmzXrdCTSjIsjqQYXPAoeltNkABQI3hw2G/B52sLvR0ZsDeQvfNMM0jgchvwGeY8Ae7sZqGBIQMZiQRNk7QqmuwJ+uh1iOrRYeuqbBatGDrkQqLFghJnI6ciIiIWgKDVDumKAJWiwar5djVwG+YYS1bgf8b8Pj8qKnxoibYuuX1GXB7fcE3vuEtNk1NlpGsWVGUnINkzYqttQdRa/qQrtnjqnsYEF23wkC4OhK2zOD/rZoGp9a2JyOQUuKQ3w2fNNHTkYGujrSIWhL9jQSjunpimjLQEColVEWBWq+uOGyBliOn3QKbTYc12HJkqd/NLtjVLt7qDBERESU2BilqlqYq0OyWY66LI2WgdetIq5YR1WQZNgjkSgd2GIfxX7iRZXXCqqrQFAWKqrSp1hs1OHEFEmwBYiM4tblD1dEnKRs5uhOGIVFr+EKTNPj9RyZsODLcLDj+KNhSqWkKUmw22O06HDYLbFY9EIpCrUZHQpKmtb1JK4iIiKh9YJCiFiGECL751QBYm9zuWJNl1Li9+KmyCusP7MFuTyXsXg1WaIExLwAkZGAskiqgKEqgW6GiQlEFVFWByi5bLUJKhGaqM8zAWDG34cN+bw1ShQ1Zuh1+jx+7cDgUjOrGICU7raEJGqwWLWz8kSU4QYMe59P2ExEREUWCQYpaVSSTZYwwe+KbvWVYV74bPr+BDIsDMjiey+cz4PYEWro8Xn+gVcsXmGDANCUCc+0F/lGVwOxrqiqgqIFxUGoba91qSaYpQ8HINE0YRqDLoWEEZ6/DkQujqgo0RUBRBXyKAZ8mcXpmJwzIykOKzRbWamSp192O3euIiIiovWCQorijKyoG5XZEtjMZa/fuRHlNNTokp8CmhVdXKWVoevf6Xcp8/kALl8fjh9vrh99vwOc1UGv6YPjrxm4FQpeiBEKDUhe6FBH6ui1kAikRCEWmhGlIGKYRDEgy1JJXR1EQbMkLnKfVqoXGyFl0LdiypIRajFRVwU+eaqiKgoHZ+eiTng01wborEhERER0vBimKW52SXUi12rB27y5sPLgPqVYb0m1H1tgSQkAPLjp8LIYpAyGrXtDyB6fM9nj8ocWP/X4DXl+gZSu00HGQqorARAiqgKrWBQ1x0hY6lhIwj+peZ9QLTHXdHAFAUQOtb2owJNksaiggacGJGOqPUdI1JXAOx+gK6TdN7Kg8hDSbHWfkdkJBcupJOU8iIiKitopBiuJassWKM/O7IMvmwNf7yrC98hA6OFOiahlRFQG1mdkJJQJhxe8PBi3DhM935F+P1xfoUuj3B6aM9/jgN0wE1zmGhIQiRKglp67V5+jJMsLGHxnhIUmaR0qD4FgwVVGgKIEp5h265UhAqgtFemBCjsBMd4GwdKLd62p8XpTVVKJLShrOyOmENFvrrQ9FRERE1FYwSFHc0xQFp2bmIt3uxFflO7Gt8hDyncmwt+BU4gKBRVs1VT3m+K262Qn9wbWO/H4DPn9gMViPzw+3xweP1x9YzNdjoCY4FqluCjsh6o/XErDoKqxOK2wWHbpFPTJF/FGz3KmqEjaG6WTZ765BpdeDosxcDMjq0KA7JREREREF8F0StRl5zmSc36kbvt67GxsO7kWybkWm3dmqZTgyO+GxtzOMei1bfiM4XklAPyokxcvsdaaU2FVVAV1V8LP8zuiVlnXSui0SERERJQIGKWpTnLoFw/M7I8vhxNryXfgx2NVPi7NJENQ4CknN8RkGtlcdQrYjCWfkdEKHpJRYF4mIiIgo7jFIUZujCIFeaVlIs9qxpnwnfqw8iFxHMpx60wsGU+OqfB6U11ShmysDg3M6wmW1xbpIRERERG1C2/jInKgR2Y4knNepG4oyc7HPXYPymipIKZt/IQEAfqqtxgF3LQZmdcDZHboyRBERERFFgUGK2jSbpmNIbgHO6dAVqiLwY+VB+Ewj1sWKa6aU+LHyIADgrA5dcHpOB1jUY08hT0RERETh2LWP2jxFCHRPzUCaLdDVb2vFQeTYk5Bssca6aHHHY/ixs+ow8pwpGJLbETmO5FgXiYiIiKhNYpCihJFhc+CcDqcg3boH3x0oR5XPi1xH0gmvq5QoDnvc2O+pQa/ULJye2wFJOoMmERER0fFikKKEYtM0nJ7TAZl2B9bu3YWtlQfR0elq113XpJQor62CzzQxOKcjTsvIga603+tBRERE1BIYpCjhCCHQ1ZUe6uq35fABZNqc7XIyBb9pYmfVYSRbrPhZXmd0SUljCx0RERFRC2CQooSVarXj7A6nIMPuxDc/7UGVz4s8Z3K7WWi21u/D7uoKdEpy4YzcTq2+eDERERFRImOQooRmUVUMyMpHhs0RnIjiADomuWBVE7vqH3TX4qC3Fqem52Bgdj4cXGOLiIiIqEUl9rtJoqCC5FSkWu1YV74TGw/tR5rVjjSbPdbFanGmlCirroQQwLDcAvRJz4aqcJUDIiIiopbGd1jUbqRYrDizQ1cMyyuA2/BjZ9UhmAm0gK/PNLCt4iCSLDpGdDwFfTNzGaKIiIiIThK2SFG7oikK+mbmIt3mwNq9ga5+HZwpsGl6rIt2Qqp9XuyprkQXVxrOyOmUkK1tRERERPGEQYrapQ5JKXBZu2Hd3t344cBPcFltyLA5Yl2s47LfXYNKrwdFWbkYkNUBNo0/1kREREQnG/v9ULuVpAemBD+rQxcYpokfKw/Cb5qxLlbETCmxs+oQfKaBn+V3xpDcAoYoIiIiolbCd13UrqmKgsL0bKTb7FhTvgvbKg8i35Ec97PceQ0DO6oOIceRhDNyOiE/KSXWRSIiIiJqV9giRQQgx5GM8zp1Q1FmLn6qrcZPtdWxLlKTKr0e7Kg6hG6uDJzXqTtDFBEREVEMMEgRBdk1HUNzC3B2x64QALZVxF9Xv701VTjoqcXArA44u0NXpFissS4SERERUbvErn1E9ShCoEdqJlKtdqwt34UfKw4ix5mEJD22gcUwTeysPgyHZsHZHbqimysdQoiYlomIiIioPWOLFFEjsuxOnNvxFAzIzscBdy321FRCxmjNKY/hx7bKg8iyJ+H8Tt3QPTWDIYqIiIgoxtgiRdQEm6ZhcE5HZNgdWFe+G1srDqJTkgu6qrZaGQ573NjvrkGv1Cycntsh5i1jRERERBTAIEV0DEIIdHNlIN3qwJq9O/HfwweQZXcixWI7qceVUqK8pgo+aWJwbkeclpEDXWm9AEdEREREx8YgRRSBNJsd53Q4BRk2B77ZtwdVXi9ynclQTkIXO79pYkfVYbgsVvwspzO6pKSxKx8RERFRnGGQIoqQRVUxICsfGTYH1uzdha0VB9AxyQWr2nI/RrV+H3ZVV6AgyYUheQXIsDlabN9ERERE1HIYpIiiIIRA55S0wKx+e3dh8+H9SLfakWq1n/C+D7prcdBbi9PSczAopwPsmt4CJSYiIiKik4FBiug4uKw2nNWhCzJtDqzftweV3sPokJRyXF39TClRVl0JIYDhuQUoTM+GqnBCTSIiIqJ4xiBFdJx0RUVRVh7S7Q6sKd+JrRUH0cGZApsW+Y+VzzSwo+owMmwOnJHTEZ2SU09egYmIiIioxTBIEZ2gjkkuuCw2rN27CxsP7UOqxYb0CMY2Vfu82FNdiS6uNAzJ7dQi3QOJiIiIqHUwSBG1gGSLFWfld0GWzYGSfWXYXnkQHZyuJrvo7a+tQZXPg/7Z+eiXmRdVKxYRERERxR7fvRG1EFVRcGpmLjLsTqzZG+jql5+UAke9SSNMKbGr+jAsioqf5XdBz7TMkzKFOhERERGdXBzRTtTCcp3JOK9jN/TNzMXemir8VFsNAPAaBrZWHECa1Y4RHbuhd3oWQxQRERFRG8UWKaKTwKFbMCyvAJl2B9bt3Y2tFQdgSonuqRkYnNMJKRZrrItIRERERCeAQYroJFGEQK+0LKRZ7Vj30y5k2pwoysyDRVVjXTQiIiIiOkEMUkQnWbYjCaMKerIbHxEREVEC4RgpolbAEEVERESUWBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIiIosQgRUREREREFCUGKSIiIiIioigxSBEREREREUWJQYqIiIiIiChKDFJERERERERRYpAiIiIiIiKKUlwHqWeffRZFRUVISUlBSkoKhg0bhn//+9+h77vdbtx8883IyMhAUlISLrnkEpSXl8ewxERERERE1B7EdZDq2LEjHn74YaxduxZr1qzBeeedh/Hjx+M///kPAOC2227Dv/71L7z55pv4+OOPsXv3bkyYMCHGpSYiIiIiokQnpJQy1oWIRnp6Oh599FFceumlyMrKwquvvopLL70UAPDDDz+gsLAQq1atwtChQyPeZ0VFBVwuFw4fPoyUlJSTVXQiIiIiIopzkWaDuG6Rqs8wDLz++uuorq7GsGHDsHbtWvh8PowcOTK0Te/evVFQUIBVq1Ydc18ejwcVFRVhDyIiIiIiokhpsS5Ac7799lsMGzYMbrcbSUlJWLx4Mfr06YOSkhJYLBakpqaGbZ+Tk4M9e/Ycc59/+tOfcP/99zd4noGKiIiIiKh9q8sEzXXci/sg1atXL5SUlODw4cN46623cM011+Djjz8+oX3edddduP3220Nf79q1C3369EGnTp1OtLhERERERJQAKisr4XK5mvx+3Acpi8WC7t27AwAGDRqEr776Ck8++SQuv/xyeL1eHDp0KKxVqry8HLm5ucfcp9VqhdVqDX2dlJSEHTt2IDk5GUKIk3IekaqoqECnTp2wY8cOjtdKELyniYn3NfHwniYm3tfEw3uaeOLtnkopUVlZifz8/GNuF/dB6mimacLj8WDQoEHQdR3Lly/HJZdcAgAoLS3F9u3bMWzYsKj2qSgKOnbseDKKe9zqpnynxMF7mph4XxMP72li4n1NPLyniSee7umxWqLqxHWQuuuuuzB27FgUFBSgsrISr776KlauXIn3338fLpcLU6ZMwe2334709HSkpKRg6tSpGDZsWFQz9hEREREREUUrroPU3r17MXnyZJSVlcHlcqGoqAjvv/8+LrjgAgDAnDlzoCgKLrnkEng8HowePRrPPPNMjEtNRERERESJLq6D1IsvvnjM79tsNvzlL3/BX/7yl1Yq0clntVoxc+bMsDFc1LbxniYm3tfEw3uamHhfEw/vaeJpq/e0zS3IS0REREREFGttZkFeIiIiIiKieMEgRUREREREFCUGKSIiIiIioigxSLVB5557Lm699dZYF4NaEO9p4uE9TUzXXnstLr744lgXg1oQf1YTE39WE0883lMGqZPok08+wUUXXYT8/HwIIfDOO+802Oa+++5D79694XQ6kZaWhpEjR2L16tWtX1iKSCT3tL6bbroJQgg88cQTrVI+il4k9/Taa6+FECLsMWbMmNYvLEUs0p/VDRs2YNy4cXC5XHA6nRg8eDC2b9/euoWliERyT4/+Oa17PProo61fYIpIJPe1qqoKt9xyCzp27Ai73Y4+ffpg3rx5rV9Yikgk97S8vBzXXnst8vPz4XA4MGbMGGzatKn1C3uCGKROourqavTr1++Y07P37NkTc+fOxbfffotPP/0UXbp0wahRo/DTTz+1YkkpUpHc0zqLFy/GF198gfz8/FYoGR2vSO/pmDFjUFZWFnq89tprrVRCOh6R3NctW7bgzDPPRO/evbFy5Up88803uOeee2Cz2VqxpBSpSO5p/Z/RsrIyvPTSSxBC4JJLLmnFklI0Irmvt99+O5YuXYq///3v2LBhA2699VbccsstWLJkSSuWlCLV3D2VUuLiiy/Gf//7X/zzn//E119/jc6dO2PkyJGorq5u5dKeIEmtAoBcvHhxs9sdPnxYApAffvhhk9ucc845curUqXL69OkyLS1N5uTkyJkzZ7ZcYSkix7qnO3fulB06dJDfffed7Ny5s5wzZ84x98V7Gh+auqfXXHONHD9+fFT74j2NH03d18svv1z+z//8T1T7qqsLjz76qMzNzZXp6eny//2//ye9Xm8LlZYiEenf1PHjx8vzzjvvmNvwZzV+NHVfTz31VDlr1qyw5wYOHCjvvvvuJvfFn9X40Ng9LS0tlQDkd999F3rOMAyZlZUl//rXvza5r3i8p2yRiiNerxfPP/88XC4X+vXrd8xtFyxYAKfTidWrV2P27NmYNWsWli1b1kolpWMxTRNXX301pk+fjlNPPTXi1/GexreVK1ciOzsbvXr1wq9//Wvs37+/2dfwnsYv0zTx3nvvoWfPnhg9ejSys7MxZMiQZrvrAsBHH32ELVu24KOPPsKCBQvw8ssv4+WXXz7pZabolJeX47333sOUKVOa3ZY/q/Ft+PDhWLJkCXbt2gUpJT766CNs3LgRo0aNOubr+LManzweDwCEtf4rigKr1YpPP/30mK+Nt3vKIBUH3n33XSQlJcFms2HOnDlYtmwZMjMzj/maoqIizJw5Ez169MDkyZNx+umnY/ny5a1UYjqWRx55BJqmYdq0aVG9jvc0fo0ZMwavvPIKli9fjkceeQQff/wxxo4dC8Mwjvk63tP4tXfvXlRVVeHhhx/GmDFj8MEHH+CXv/wlJkyYgI8//viYr01LS8PcuXPRu3dvXHjhhfjFL37B+xqHFixYgOTkZEyYMKHZbfmzGt+efvpp9OnTBx07doTFYsGYMWPwl7/8BWefffYxX8ef1fjUu3dvFBQU4K677sLBgwfh9XrxyCOPYOfOnSgrKzvma+PtnmoxOzKFjBgxAiUlJdi3bx/++te/4rLLLsPq1auRnZ3d5GuKiorCvs7Ly8PevXtPdlGpGWvXrsWTTz6JdevWQQgR1Wt5T+PXFVdcEfp/3759UVRUhG7dumHlypU4//zzm3wd72n8Mk0TADB+/HjcdtttAID+/fvj888/x7x583DOOec0+dpTTz0VqqqGvs7Ly8O33357cgtMUXvppZcwadKkiMa88Wc1vj399NP44osvsGTJEnTu3BmffPIJbr75ZuTn52PkyJFNvo4/q/FJ13UsWrQIU6ZMQXp6OlRVxciRIzF27FhIKY/52ni7p2yRigNOpxPdu3fH0KFD8eKLL0LTNLz44ovHfI2u62FfCyFCbwwodoqLi7F3714UFBRA0zRomoYff/wRv/3tb9GlS5djvpb3tO045ZRTkJmZic2bNx9zO97T+JWZmQlN09CnT5+w5wsLC5udtY/3Nf4VFxejtLQU119/fUTb857Gr9raWvz+97/Hn//8Z1x00UUoKirCLbfcgssvvxyPPfbYMV/L+xq/Bg0ahJKSEhw6dAhlZWVYunQp9u/fj1NOOeWYr4u3e8oWqThkmmao/yi1LVdffXWDT8dGjx6Nq6++Gtddd12MSkUtbefOndi/fz/y8vJiXRQ6ThaLBYMHD0ZpaWnY8xs3bkTnzp1jVCpqKS+++CIGDRrU7Hhjin8+nw8+nw+KEv7Zv6qqDEUJwOVyAQA2bdqENWvW4I9//GOMSxQdBqmTqKqqKuwT661bt6KkpATp6ekoKChAdXU1HnzwQYwbNw55eXnYt28f/vKXv2DXrl2YOHFiDEtOTWnunmZkZCAjIyPsNbquIzc3F7169Wrt4lIEmrunVVVVuP/++3HJJZcgNzcXW7ZswR133IHu3btj9OjRMSw5HUtz9xUApk+fjssvvxxnn302RowYgaVLl+Jf//oXVq5cGaNS07FEck8BoKKiAm+++SYef/zxWBSTotTcfU1JScE555yD6dOnw263o3Pnzvj444/xyiuv4M9//nMMS05NieRn9c0330RWVhYKCgrw7bff4je/+Q0uvvjiZicQiTcMUifRmjVrMGLEiNDXt99+OwDgmmuuwcsvvwxVVfHDDz9gwYIF2LdvHzIyMjB48GAUFxdHNdsbtZ7m7im1PZH8nH7zzTdYsGABDh06hPz8fIwaNQp//OMfYbVaY1VsakYkP6u//OUvMW/ePPzpT3/CtGnT0KtXL7z99ts488wzY1Fkakakv39ff/11SClx5ZVXtnYR6ThEcl9ff/113HXXXZg0aRIOHDiAzp0748EHH8RNN90UiyJTMyK5p2VlZbj99ttRXl6OvLw8TJ48Gffcc08sintChGxuVBcRERERERGF4WQTREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREQUV0pLS5Gbm4vKyspjbtelSxc88cQTrVMoCvP999+jY8eOqK6ujnVRiIhihkGKiChBXXvttbj44osbPL9y5UoIIXDo0KFWL1Mk7rrrLkydOhXJyckAgJdffhmpqakNtvvqq69w4403tnLp4ldTwfK+++5D//79AQBCiGM+7rvvPgDA119/jYkTJyInJwc2mw09evTADTfcgI0bNwIA+vTpg6FDh+LPf/5zK50dEVH8YZAiIqKTwufzRf2a7du3491338W1117b7LZZWVlwOBzHUbL2q6ysLPR44oknkJKSEvbc7373O7z77rsYOnQoPB4PFi5ciA0bNuDvf/87XC4X7rnnntC+rrvuOjz77LPw+/0xPCMiothhkCIiIrz99ts49dRTYbVa0aVLFzz++ONh3xdC4J133gl7LjU1FS+//DIAYNu2bRBC4I033sA555wDm82GhQsX4scff8RFF12EtLQ0OJ1OnHrqqfi///u/Jsvxj3/8A/369UOHDh0ABFrPrrvuOhw+fLhBq8nRLTBCCDz33HO48MIL4XA4UFhYiFWrVmHz5s0499xz4XQ6MXz4cGzZsiXsmP/85z8xcOBA2Gw2nHLKKbj//vtD4eDll18+ZsuNaZqYNWsWOnbsCKvViv79+2Pp0qWhfdddl0WLFmHEiBFwOBzo168fVq1aFVaGTz/9FGeddRbsdjs6deqEadOmnZRuc7m5uaGHy+WCECLsOUVRcN111+HnP/85lixZgpEjR6Jr164YMmQIHnvsMTz33HOhfV1wwQU4cOAAPv744xYvJxFRW8AgRUTUzq1duxaXXXYZrrjiCnz77be47777cM8994RCUjTuvPNO/OY3v8GGDRswevRo3HzzzfB4PPjkk0/w7bff4pFHHkFSUlKTry8uLsbpp58e+nr48OENWk5+97vfNfn6P/7xj5g8eTJKSkrQu3dvXHXVVfjVr36Fu+66C2vWrIGUErfcckvY8SZPnozf/OY3+P777/Hcc8/h5ZdfxoMPPggAuPzyy8NabF577TVomoaf/exnAIAnn3wSjz/+OB577DF88803GD16NMaNG4dNmzaFlevuu+/G7373O5SUlKBnz5648sorQ2Fty5YtGDNmDC655BJ88803eOONN/Dpp5+GlfO+++5Dly5dIr8Rx+n999/Hvn37cMcddzT6/fpdLC0WC/r374/i4uKTXi4iorgkiYgoIV1zzTVSVVXpdDrDHjabTQKQBw8elFJKedVVV8kLLrgg7LXTp0+Xffr0CX0NQC5evDhsG5fLJefPny+llHLr1q0SgHziiSfCtunbt6+87777Ii5zv3795KxZs8Kemz9/vnS5XA227dy5s5wzZ05YGf/whz+Evl61apUEIF988cXQc6+99pq02Wyhr88//3z50EMPhe33b3/7m8zLy2twvM2bN8v09HQ5e/bs0HP5+fnywQcfDNtu8ODB8v/9v/8npTxyXV544YXQ9//zn/9IAHLDhg1SSimnTJkib7zxxrB9FBcXS0VRZG1trZRSyqefflqed955Dcp0rOtRZ+bMmbJfv34Nnm/suj7yyCMSgDxw4MAxj1Xnl7/8pbz22msj2paIKNGwRYqIKIGNGDECJSUlYY8XXnghbJsNGzaEWljq/OxnP8OmTZtgGEZUx6vfmgQA06ZNwwMPPICf/exnmDlzJr755ptjvr62thY2my2qY9ZXVFQU+n9OTg4AoG/fvmHPud1uVFRUAADWr1+PWbNmISkpKfS44YYbUFZWhpqamtDrDh8+jAsvvBC/+MUvMH36dABARUUFdu/e3ei127BhQ5PlysvLAwDs3bs3VIaXX345rAyjR4+GaZrYunUrAOCWW27B8uXLj/u6REpKGdX2drs97DoREbUnWqwLQEREJ4/T6UT37t3Dntu5c2fU+xFCNHiT3dhkEk6nM+zr66+/HqNHj8Z7772HDz74AH/605/w+OOPY+rUqY0eJzMzEwcPHoy6fHV0XQ8rc1PPmaYJAKiqqsL999+PCRMmNNhXXaAzDAOXX345UlJS8Pzzz7dYueqX4Ve/+hWmTZvW4HUFBQURHyMlJQWHDx9u8PyhQ4fgcrki2kfPnj0BAD/88AOGDRvW7PYHDhxAt27dIi4jEVEiYYsUEVE7V1hYiM8++yzsuc8++ww9e/aEqqoAAjPklZWVhb6/adOmiFsiOnXqhJtuugmLFi3Cb3/7W/z1r39tctsBAwbg+++/D3vOYrFE3TIWqYEDB6K0tBTdu3dv8FCUwJ/I2267Dd9++y3eeeedsNaylJQU5OfnN3rt+vTpE1UZvv/++0bLYLFYIt5Pr169sHbt2gbPr1u3LhSQmjNq1ChkZmZi9uzZjX7/6Cnzv/vuOwwYMCDiMhIRJRK2SBERtXO//e1vMXjwYPzxj3/E5ZdfjlWrVmHu3Ll45plnQtucd955mDt3LoYNGwbDMDBjxoywVpam3HrrrRg7dix69uyJgwcP4qOPPkJhYWGT248ePRrXX389DMMIhbguXbqgqqoKy5cvR79+/eBwOFps2vN7770XF154IQoKCnDppZdCURSsX78e3333HR544AHMnz8fzzzzDBYvXgwhBPbs2QMAoS5406dPx8yZM9GtWzf0798f8+fPR0lJCRYuXBhxGWbMmIGhQ4filltuwfXXXw+n04nvv/8ey5Ytw9y5cwEAc+fOxeLFi4/Zve+2227DWWedhQcffBATJkyAYRh47bXXsGrVqrB7eSxOpxMvvPACJk6ciHHjxmHatGno3r079u3bh3/84x/Yvn07Xn/9dQCBGQl37dqFkSNHRnyuRESJhC1SRETt3MCBA/GPf/wDr7/+Ok477TTce++9mDVrVthaTo8//jg6deqEs846C1dddRV+97vfRRRmDMPAzTffjMLCQowZMwY9e/Y85pv6sWPHQtM0fPjhh6Hnhg8fjptuugmXX345srKymmwtOR6jR4/Gu+++iw8++ACDBw/G0KFDMWfOHHTu3BkA8PHHH8MwDIwbNw55eXmhx2OPPQYgMAbs9ttvx29/+1v07dsXS5cuxZIlS9CjR4+Iy1BUVISPP/4YGzduxFlnnYUBAwbg3nvvRX5+fmibffv2NZi2/WjDhw/Hv//9b/z73//Gz372M5x77rn4/PPPsXz5cpx22mkRl2f8+PH4/PPPoes6rrrqKvTu3RtXXnklDh8+jAceeCC03WuvvYZRo0aFrhURUXsjZLQjS4mIiE6iv/zlL1iyZAnef//9WBeFmuD1etGjRw+8+uqrDSbbICJqL9i1j4iI4sqvfvUrHDp0CJWVlUhOTo51cagR27dvx+9//3uGKCJq19giRUREREREFCWOkSIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSFusCUPzx+/3wer2xLgYRERERtSKbzQZFYTtLpBikKERKie3bt2Pfvn2xLgoRERERtTJFUdCnTx9YrdZYF6VNEFJKGetCUHz48ccfsW/fPnTo0AFJSUn8RIKIiIionTBNE1u3boXFYkHPnj0hhIh1keIegxQBCHTnW79+PTp06IDc3NxYF4eIiIiIWtmBAwewdetW+P1+nHrqqUhKSop1keIamxwIAEJjovgDQ0RERNQ+1XXp+/LLL/Hvf/8bVVVVMS5RfGOQojDszkdERETUPtV158vOzsbGjRuxevXqGJcovvFdMxERERERhWiaBrvdjv3798e6KHGNQYoS2n333Yf+/fuHvr722mtx8cUXn/B+hRB45513Tng/1LpYH6g+1geqj/WBjtbe64SiKPD5fLEuRlxjkKJ25cknn8TLL78c62KESClx7733Ii8vD3a7HSNHjsSmTZvCtnnwwQcxfPhwOBwOpKamxqagCaqt1YeVK1dCCNHo46uvvophyRNDvNWHRYsWYdSoUcjIyIAQAiUlJQ22+dWvfoVu3brBbrcjKysL48ePxw8//ND6hU1AbbE+bNmyBb/85S+RlZWFlJQUXHbZZSgvL2/9wiaoeKoTPp8PM2bMQN++feF0OpGfn4/Jkydj9+7djW7v8XjQv3//JusOHR8GKWpXXC5XXISRusk9Zs+ejaeeegrz5s3D6tWr4XQ6MXr0aLjd7rBtJ06ciF//+texKm7Camv1Yfjw4SgrKwt7XH/99ejatStOP/30WJ5CQoi3+lBdXY0zzzwTjzzySJPbDho0CPPnz8eGDRvw/vvvQ0qJUaNGwTCM1ipuwmpr9aG6uhqjRo2CEAIrVqzAZ599Bq/Xi4suugimabZmkRNWPNWJmpoarFu3Dvfccw/WrVuHRYsWobS0FOPGjWv0NXfccQfy8/NbuaSJj0GK2rTnn38e+fn5Df5IjB8/Hv/7v//bYPujm+XPPfdcTJs2DXfccQfS09ORm5uL++67L+w1mzZtwtlnnw2bzYY+ffpg2bJlDfa7Y8cOXHbZZUhNTUV6ejrGjx+Pbdu2NTjugw8+iPz8fPTq1QtSSjzxxBP4wx/+gPHjx6OoqAivvPIKdu/eHdbkf//99+O2225D3759j+satSeJXh8sFgtyc3NDj4yMDPzzn//Eddddx/U+GtGW6wMAXH311bj33nsxcuTIJs/xxhtvxNlnn40uXbpg4MCBeOCBB7Bjx46w/VNAoteHzz77DNu2bcPLL7+Mvn37om/fvliwYAHWrFmDFStWRHiV2pe2XCdcLheWLVuGyy67DL169cLQoUMxd+5crF27Ftu3bw/b/7///W988MEHeOyxx6K/SHRMDFLUKCklaqvdMXlEs7TZxIkTsX//fnz00Ueh5w4cOIClS5di0qRJEe1jwYIFcDqdWL16NWbPno1Zs2aFftGZpokJEybAYrFg9erVmDdvHmbMmBH2ep/Ph9GjRyM5ORnFxcX47LPPkJSUhDFjxoQ+SQSA5cuXo7S0FMuWLcO7776LrVu3Ys+ePWF/FF0uF4YMGYJVq1ZFfA1ai5QStW5vqz9YH5quD0uWLMH+/ftx3XXXRXyNWoqUEjVeX0wekdaJtlwfjkd1dTXmz5+Prl27olOnTse1j+MlpUSt3xuTB+tDgMfjgRAiNH01ANhsNiiKgk8//TSifbQUKSV8Zm1MHu3lb0ZjDh8+DCFEWKtZeXk5brjhBvztb3+Dw+GI9NJQhLRYF4Dik7vGg3HJV8fk2Esq/wa70xbRtmlpaRg7dixeffVVnH/++QCAt956C5mZmRgxYgSKi4ub3UdRURFmzpwJAOjRowfmzp2L5cuX44ILLsCHH36IH374Ae+//36oSfyhhx7C2LFjQ69/4403YJomXnjhhVCrwPz585GamoqVK1di1KhRAACn04kXXngBFosFAPD5558DAHJycsLKk5OTgz179kR0/q3J7fFhzIQnWv24SxfdCrvNEtG27a0+vPjiixg9ejQ6duwY0fVpSbU+PwY8MrfVjwsAX8+4BQ6L3ux2bbk+ROOZZ57BHXfcgerqavTq1QvLli07rv2cCLfhwzkf3teqx6zz8cj7YNeaP99Erw9Dhw6F0+nEjBkz8NBDD0FKiTvvvBOGYaCsrCzi/bQEv3Tjb5svaNVj1rm6+zLowh7RtolUJ9xuN2bMmIErr7wSKSkpAAKB9tprr8VNN92E008/nS3VJwFbpKjNmzRpEt5++214PB4AwMKFC3HFFVdEvCZWUVFR2Nd5eXnYu3cvAGDDhg3o1KlTWL/iYcOGhW2/fv16bN68GcnJyUhKSkJSUhLS09PhdruxZcuW0HZ9+/Zt9Tc37VF7qQ87d+7E+++/jylTphz3PtqD9lAfJk2ahK+//hoff/wxevbsicsuuyxsnCUdkcj1ISsrC2+++Sb+9a9/ISkpCS6XC4cOHcLAgQO5RuQxJEKd8Pl8uOyyyyClxLPPPht6/umnn0ZlZSXuuuuuiM6FoscWKWqUzWHFksq/xezY0bjooosgpcR7772HwYMHo7i4GHPmzIn49boe/sm2ECKqgblVVVUYNGgQFi5c2OB7WVlZof87nc6w7+Xm5gIINLvn5eWFni8vLw+bbjVe2Kw6li66NSbHjUZ7qQ/z589HRkZGkwOLTza7ruHrGbfE7NiRaqv1IRoulwsulws9evTA0KFDkZaWhsWLF+PKK6887n1Gy6bq+Hjkfa12vKOPHalErw+jRo3Cli1bsG/fPmiahtTUVOTm5uKUU045rv0dL03YcHX3hmOBWuvY0WjrdaIuRP34449YsWJFqDUKAFasWIFVq1aFdfcEgNNPPx2TJk3CggULIi4nNY5BiholhIi4e12s2Ww2TJgwAQsXLsTmzZvRq1cvDBw4sEX2XVhYiB07dqCsrCz05vaLL74I22bgwIF44403kJ2dHfYLrDldu3ZFbm4uli9fHnqjXFFRgdWrV8flDH1CiIi72MVSe6gPUkrMnz8fkydPbvBHvLUIISLqXhdrbbU+HC8pJaSUoU/XW4sQIqLudbHWXupDZmYmgMAb6b1797b6By5CiIi718VaW64TdSFq06ZN+Oijj5CRkRH2/aeeegoPPPBA6Ovdu3dj9OjReOONNzBkyJDjPCuqj229lBAmTZqE9957Dy+99FLEA0QjMXLkSPTs2RPXXHMN1q9fj+LiYtx9990Njp2ZmYnx48ejuLgYW7duxcqVKzFt2jTs3LmzyX0LIXDrrbfigQcewJIlS/Dtt99i8uTJyM/PD5sVaPv27SgpKcH27dthGAZKSkpQUlKCqqqqFjvPRJPI9QEIvDnaunUrrr/++hY7t0TWFusDEBj0XlJSgu+//x4AUFpaipKSktCYuf/+97/405/+FJql6/PPP8fEiRNht9vx85//vMXOM9Ekan0AAi3VX3zxBbZs2YK///3vmDhxIm677bbQzH/UuLZYJ3w+Hy699FKsWbMGCxcuhGEY2LNnD/bs2ROapKKgoACnnXZa6NGzZ08AQLdu3WIytjYRMUhRQjjvvPOQnp6O0tJSXHXVVS22X0VRsHjxYtTW1uKMM87A9ddfjwcffDBsG4fDgU8++QQFBQWYMGECCgsLMWXKFLjd7mY/XbrjjjswdepU3HjjjRg8eDCqqqqwdOlS2GxHWgPvvfdeDBgwADNnzkRVVRUGDBiAAQMGYM2aNS12nokmkesDEJhkYvjw4ejdu3eLnVsia6v1YcmSJRgwYAB+8YtfAACuuOIKDBgwAPPmzQMQ+CS9uLgYP//5z9G9e3dcfvnlSE5Oxueff47s7OwWO89Ek6j1AQiEq4svvhiFhYWYNWsW7r77bk55HYG2WCd27dqFJUuWYOfOnejfvz/y8vJCj7rJi+jkEzKaeSIpYdXU1GDDhg0oLCzk9JhERERE7VDd+8Ft27Zhx44dyMrKatFWukTDFikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUhRQrvvvvvQv3//0NfXXnstLr744hPerxAC77zzzgnvh1oX6wPVx/pA9bE+0NFYJ6g5DFLUrjz55JN4+eWXY12MECkl7r33XuTl5cFut2PkyJHYtGlT6Pvbtm3DlClT0LVrV9jtdnTr1g0zZ86E1+uNYakTR1urDwCwceNGjB8/HpmZmUhJScGZZ56Jjz76KEYlTizxVh8WLVqEUaNGISMjA0IIlJSUNLmtlBJjx47lG7QWFE/1wefzYcaMGejbty+cTify8/MxefJk7N69O2y7AwcOYNKkSUhJSUFqaiqmTJmCqqqqGJU68bTFOtGlSxcIIcIeDz/8cIxKnXgYpKhdcblcSE1NjXUxQkFo9uzZeOqppzBv3jysXr0aTqcTo0ePhtvtBgD88MMPME0Tzz33HP7zn/9gzpw5mDdvHn7/+9/HsvgJo63VBwC48MIL4ff7sWLFCqxduxb9+vXDhRdeiD179sSq+Akj3upDdXU1zjzzTDzyyCPNvuaJJ56AEOJkF61diaf6UFNTg3Xr1uGee+7BunXrsGjRIpSWlmLcuHFh206aNAn/+c9/sGzZMrz77rv45JNPcOONN8ao5ImnLdYJAJg1axbKyspCj6lTp8ag1AlKEkkpq6ur5Zo1a2R1dXWsixKV5557Tubl5UnDMMKeHzdunLzuuuvkzJkzZb9+/ULPX3PNNXL8+PGhr8855xw5depUOX36dJmWliZzcnLkzJkzw/a1ceNGedZZZ0mr1SoLCwvlBx98IAHIxYsXh7bZvn27nDhxonS5XDItLU2OGzdObt26tcFxH3jgAZmXlye7dOkiTdOUubm58tFHHw1td+jQIWm1WuVrr73W5DnPnj1bdu3aNarr1F4ken346aefJAD5ySefhLapqKiQAOSyZcuO/8IlqLZcH+rbunWrBCC//vrrRs/z66+/lh06dJBlZWUNjk1HJEp9qPPll19KAPLHH3+UUkr5/fffSwDyq6++Cm3z73//Wwoh5K5du6K7WO1EotcJKaXs3LmznDNnTsTXpO794FtvvSXnzJkj//73v0f82vaILVLUKCkl3NWemDyklBGXc+LEidi/f39Y16YDBw5g6dKlmDRpUkT7WLBgAZxOJ1avXo3Zs2dj1qxZWLZsGQDANE1MmDABFosFq1evxrx58zBjxoyw1/t8PowePRrJyckoLi7GZ599hqSkJIwZMyasC97y5ctRWloa+qRw69at2LNnD0aOHBnaxuVyYciQIVi1alWT5T18+DDS09MjOreWJKVErdvX6g/WhyP1ISMjA7169cIrr7yC6upq+P1+PPfcc8jOzsagQYMivk4tQUqJGp8vJo9I60Rbrg+RqqmpwVVXXYW//OUvyM3Njfh1LU1KCbfhicmjvdaHw4cPQwgRaiFZtWoVUlNTcfrpp4e2GTlyJBRFwerVqyM6v5YipYTfrInJo738zWjM0XWizsMPP4yMjAwMGDAAjz76KPx+f0TnRs3TYl0Aik+eGi8uzv91TI79zu5nYXNaI9o2LS0NY8eOxauvvorzzz8fAPDWW28hMzMTI0aMQHFxcbP7KCoqwsyZMwEAPXr0wNy5c7F8+XJccMEF+PDDD/HDDz/g/fffR35+PgDgoYcewtixY0Ovf+ONN2CaJl544YVQ15r58+cjNTUVK1euxKhRowAATqcTL7zwAiwWCwDg888/BwDk5OSElScnJ6fJblqbN2/G008/jcceeyyi69OS3B4/Rl79VKsf98O/TYPdpke0baLXByEEPvzwQ1x88cVITk6GoijIzs7G0qVLkZaWFtE1aim1fj/6PvV0qx6zzrfTpsKhN18n2nJ9iNRtt92G4cOHY/z48VG9rqV5TC/Gfzqj+Q1Pgn+e+QhsavN/MxKpPrjdbsyYMQNXXnklUlJSAAB79uxBdnZ22HaapiE9Pb3Vu/4ashYf/HhGqx6zzqjOX0ITjoi2TfQ6AQDTpk3DwIEDkZ6ejs8//xx33XUXysrK8Oc//zmia0THxhYpavMmTZqEt99+Gx6PBwCwcOFCXHHFFVCUyKp3UVFR2Nd5eXnYu3cvAGDDhg3o1KlT6BcgAAwbNixs+/Xr12Pz5s1ITk5GUlISkpKSkJ6eDrfbjS1btoS269u3b9RvkurbtWsXxowZg4kTJ+KGG2447v0kukSuD1JK3HzzzcjOzkZxcTG+/PJLXHzxxbjoootQVlYW1b7ai0SuD0uWLMGKFSvwxBNPRPW69iwR6oPP58Nll10GKSWeffbZiMpNTUv0OnH77bfj3HPPRVFREW666SY8/vjjePrpp0PnSyeGLVLUKKvDgnd2x+YXtNUR3ZuJiy66CFJKvPfeexg8eDCKi4sxZ86ciF+vH/XJthACpmlG/PqqqioMGjQICxcubPC9rKys0P+dTmfY9+q64ZSXlyMvLy/0fHl5edh0qwCwe/dujBgxAsOHD8fzzz8fcdlaks2q4cO/TYvJcaORyPVhxYoVePfdd3Hw4MHQJ47PPPMMli1bhgULFuDOO++MuJwnyq5p+HZabAYs27XI60RbrQ+RWLFiBbZs2dKgG88ll1yCs846CytXrox6n8fLqljwzzObnxTjZB07Um29PtS9c8jrcgAAMBNJREFUYf7xxx+xYsWKsJaH3Nzc0Bv4On6/HwcOHGj1bp+qsGNU5y9b9Zj1jx2NRK4TjRkyZAj8fj+2bduGXr16RVxOahyDFDVKCBFx97pYs9lsmDBhAhYuXIjNmzejV69eGDhwYIvsu7CwEDt27EBZWVnoze0XX3wRts3AgQPxxhtvIDs7u9lfYPV17doVubm5WL58eeiNckVFBVavXo1f//pIt8pdu3ZhxIgRGDRoEObPnx/xp2QtTQgRcRe7WErk+lBTUwMADeqAoihR/eFuCUKIiLrXxVpbrQ+RuPPOO3H99deHPde3b1/MmTMHF110UYseqzlCiIi618VaW64PdW+YN23ahI8++ggZGRlh3x82bBgOHTqEtWvXhsZMrlixAqZpYsiQISdwZtETQkTcvS7WErlONKakpCTULZxOHLv2UUKYNGkS3nvvPbz00ksRDxCNxMiRI9GzZ09cc801WL9+PYqLi3H33Xc3OHZmZibGjx+P4uJibN26FStXrsS0adOwc+fOJvcthMCtt96KBx54AEuWLMG3336LyZMnIz8/P7Tg365du3DuueeioKAAjz32GH766Sfs2bOHU103I1Hrw7Bhw5CWlhY6/saNGzF9+nRs3boVv/jFL1rsPBNNW6wPQGDQe0lJCb7//nsAQGlpKUpKSkI//7m5uTjttNPCHgBQUFCArl27tth5Jpq2WB98Ph8uvfRSrFmzBgsXLoRhGKG/BXUTEhQWFmLMmDG44YYb8OWXX+Kzzz7DLbfcgiuuuCKsaxk1lKh1YtWqVXjiiSewfv16/Pe//8XChQtx22234X/+539afVxtomKQooRw3nnnIT09HaWlpbjqqqtabL+KomDx4sWora3FGWecgeuvvx4PPvhg2DYOhwOffPIJCgoKMGHCBBQWFmLKlClwu93Nfrp0xx13YOrUqbjxxhsxePBgVFVVYenSpbDZbACAZcuWYfPmzVi+fDk6duyIvLy80IOalqj1ITMzE0uXLkVVVRXOO+88nH766fj000/xz3/+E/369Wux80w0bbU+LFmyBAMGDAiF5CuuuAIDBgzAvHnzWuwc2qO2WB927dqFJUuWYOfOnejfv3/Y34K6iWqAwPie3r174/zzz8fPf/5znHnmmTHrDt6WJGqdsFqteP3113HOOefg1FNPxYMPPojbbruNdaIFCRnNPJGUsGpqarBhwwYUFhbC4WgbzfFERERE1HLq3g9u27YNO3bsQFZWVou20iUatkgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKEtp9992H/v37h76+9tprcfHFF5/wfoUQeOedd054P9S6WB+oPtYHqo/1gY7GOkHNYZCiduXJJ5/Eyy+/HOtihEgpce+99yIvLw92ux0jR47Epk2bwrYZN24cCgoKYLPZkJeXh6uvvhq7d++OUYkTS1usD+vWrcMFF1yA1NRUZGRk4MYbb0RVVVWMSpxY4q0+LFq0CKNGjUJGRgaEECgpKWmwzbnnngshRNjjpptuav3CJqB4qg8+nw8zZsxA37594XQ6kZ+fj8mTJzf4W/Dggw9i+PDhcDgcSE1NjU1hE1hbrBMA8N5772HIkCGw2+1IS0trkTBIAQxS1K64XK64+OPi9XoBALNnz8ZTTz2FefPmYfXq1XA6nRg9ejTcbndo2xEjRuAf//gHSktL8fbbb2PLli249NJLY1X0hNLW6sPu3bsxcuRIdO/eHatXr8bSpUvxn//8B9dee20MS5844q0+VFdX48wzz8QjjzxyzO1vuOEGlJWVhR6zZ89ujWImvHiqDzU1NVi3bh3uuecerFu3DosWLUJpaSnGjRvXYNuJEyfi17/+dYxKm9jaYp14++23cfXVV+O6667D+vXr8dlnn+Gqq66KUckTkCSSUlZXV8s1a9bI6urqWBclKs8995zMy8uThmGEPT9u3Dh53XXXyZkzZ8p+/fqFnr/mmmvk+PHjQ1+fc845curUqXL69OkyLS1N5uTkyJkzZ4bta+PGjfKss86SVqtVFhYWyg8++EACkIsXLw5ts337djlx4kTpcrlkWlqaHDdunNy6dWuD4z7wwAMyLy9PdunSRZqmKXNzc+Wjjz4a2u7QoUPSarXK1157rclz/uc//ymFENLr9UZ1rdqDRK8Pzz33nMzOzg47v2+++UYCkJs2bTr+C5eg2nJ9qG/r1q0SgPz6668bnOM555wjf/Ob30R5ZdqnRKkPdb788ksJQP74448Nvjd//nzpcrkivTTtVqLXCZ/PJzt06CBfeOGFiK9J3fvBt956S86ZM0f+/e9/j/i17RFbpKhRUkq4azwxeUgpIy7nxIkTsX//fnz00Ueh5w4cOIClS5di0qRJEe1jwYIFcDqdWL16NWbPno1Zs2Zh2bJlAADTNDFhwgRYLBasXr0a8+bNw4wZM8Je7/P5MHr0aCQnJ6O4uBifffYZkpKSMGbMmNAnywCwfPlylJaWYtmyZXj33XexdetW7NmzByNHjgxt43K5MGTIEKxatarRsh44cAALFy7E8OHDoet6xNepJUgpUevxtfqD9eFIffB4PLBYLFCUI7+67XY7AODTTz+N+Dq1BCklany+mDwirRNtuT5EY+HChcjMzMRpp52Gu+66CzU1NVG9viVIKeE2PDF5tNf6cPjwYQgh4qKF5GhSShhmTUwe7eVvRmOOrhPr1q3Drl27oCgKBgwYgLy8PIwdOxbfffddxNeIjk2LdQEoPnlqvfhlz+kxOfbijY/C5rBGtG1aWhrGjh2LV199Feeffz4A4K233kJmZiZGjBiB4uLiZvdRVFSEmTNnAgB69OiBuXPnYvny5bjgggvw4Ycf4ocffsD777+P/Px8AMBDDz2EsWPHhl7/xhtvwDRNvPDCCxBCAADmz5+P1NRUrFy5EqNGjQIAOJ1OvPDCC7BYLACAzz//HACQk5MTVp6cnBzs2bMn7LkZM2Zg7ty5qKmpwdChQ6N+o9US3F4/zrnx6VY/7sfPT4XdGlloTPT6cN555+H222/Ho48+it/85jeorq7GnXfeCQAoKyuL6Bq1lFq/H32ef6pVj1nn+xunwRHBBwltuT5E6qqrrkLnzp2Rn5+Pb775BjNmzEBpaSkWLVoU1X5OlMf04rqvprbqMevMH/w0bGrzfzMSqT643W7MmDEDV155JVJSUpotd2szZS2+29krJsc+rWMpVOGIaNtErxP//e9/AQQmzfjzn/+MLl264PHHH8e5556LjRs3Ij09PaLrRE1jixS1eZMmTcLbb78Nj8cDIPDp7BVXXBH2qf2xFBUVhX2dl5eHvXv3AgA2bNiATp06hX4BAsCwYcPCtl+/fj02b96M5ORkJCUlISkpCenp6XC73diyZUtou759+0b9JqnO9OnT8fXXX+ODDz6AqqqYPHlyVJ+6tSeJXB9OPfVULFiwAI8//jgcDgdyc3PRtWtX5OTkRHx+7U0i1wcAuPHGGzF69Gj07dsXkyZNwiuvvILFixeH7ZuOSIT64PP5cNlll0FKiWeffTaiclPTErlOmKYJALj77rtxySWXYNCgQZg/fz6EEHjzzTcjOj86NrZIUaOsdgsWb3w0ZseOxkUXXQQpJd577z0MHjwYxcXFmDNnTsSvP7qLnBAi9MsnElVVVRg0aBAWLlzY4HtZWVmh/zudzrDv5ebmAgDKy8uRl5cXer68vDxsulUAyMzMRGZmJnr27InCwkJ06tQJX3zxRYNfyCeTzaLh4+db/xNnmyW6X1OJXh+uuuoqXHXVVSgvL4fT6YQQAn/+859xyimnRFzGlmDXNHx/47RWPWb9Y0eqrdaH4zVkyBAAwObNm9GtW7cW2WckrIoF8we3fot13bEj1dbrQ90b5h9//BErVqyIy9YoAFCEHad1LI3ZsaORyHWi7m9Jnz59Qs9ZrVaccsop2L59e8RlpKYxSFGjhBARd6+LNZvNhgkTJmDhwoXYvHkzevXqhYEDB7bIvgsLC7Fjxw6UlZWFfiF98cUXYdsMHDgQb7zxBrKzs6P6o9a1a1fk5uZi+fLloTfKFRUVWL169TFnXKr7BV336VlrEUJE3MUultpLfajrAvjSSy/BZrPhggsuOM6zOj5CiIi618VaW60Px6tuivT6Ybw1CCEi6l4Xa225PtS9Yd60aRM++ugjZGRktEi5TwYhRMTd62ItkevEoEGDYLVaUVpaijPPPDP0mm3btqFz584ncGZUh31BKCFMmjQJ7733Hl566aWIB4hGYuTIkejZsyeuueYarF+/HsXFxbj77rsbHDszMxPjx49HcXExtm7dipUrV2LatGnYuXNnk/sWQuDWW2/FAw88gCVLluDbb7/F5MmTkZ+fH1rjYfXq1Zg7dy5KSkpCnzZdeeWV6NatW6u2RrU1iVofAGDu3LlYt24dNm7ciL/85S+45ZZb8Kc//SkuB5zHi7ZYH4DAoPeSkhJ8//33AIDS0lKUlJSExsxt2bIFf/zjH7F27Vps27YNS5YsweTJk3H22Wc36G5ER7TF+uDz+XDppZdizZo1WLhwIQzDwJ49e7Bnz56wCQm2b9+OkpISbN++HYZhoKSkBCUlJVxrrhmJWidSUlJw0003YebMmfjggw9QWloa+mBu4sSJLXae7RmDFCWE8847D+np6SgtLW3R9REURcHixYtRW1uLM844A9dffz0efPDBsG0cDgc++eQTFBQUYMKECSgsLMSUKVPgdrub/XTpjjvuwNSpU3HjjTdi8ODBqKqqwtKlS2Gz2UL7XrRoEc4//3z06tULU6ZMQVFRET7++GNYrfH/6W+sJGp9AIAvv/wSF1xwAfr27Yvnn38ezz33HKZNi00Xu7airdaHJUuWYMCAAfjFL34BALjiiiswYMAAzJs3DwBgsVjw4YcfYtSoUejduzd++9vf4pJLLsG//vWvFjvHRNQW68OuXbuwZMkS7Ny5E/3790deXl7oUTdRDQDce++9GDBgAGbOnImqqioMGDAAAwYMwJo1a1rsPBNRIteJRx99FFdccQWuvvpqDB48OPShbFpaWoudZ3smJEesE4Camhps2LABhYWFcDjaRnM8EREREbWcuveD27Ztw44dO5CVldWirXSJhi1SREREREREUWKQIiIiIiIiihKDFBERERERUZQYpIiIiIiIiKLEIEVERERERBQlBikiIiIiIqIoMUgRERERERFFiUGKiIiIiIgoSgxSREREREREUWKQooR23333oX///qGvr732Wlx88cUnvF8hBN55550T3g+1LtYHqo/1gepjfaCjsU5QcxikqF158skn8fLLL8e6GCFSStx7773Iy8uD3W7HyJEjsWnTpka39Xg86N+/P4QQKCkpad2CJqh4qw+LFi3CqFGjkJGR0eR9drvduPnmm5GRkYGkpCRccsklKC8vb/3CJqC2WB8AYNWqVTjvvPPgdDqRkpKCs88+G7W1ta1b2AQUT/XB5/NhxowZ6Nu3L5xOJ/Lz8zF58mTs3r07tM22bdswZcoUdO3aFXa7Hd26dcPMmTPh9XpjWPLE0tbqxMqVKyGEaPTx1VdfxbD0iYNBitoVl8uF1NTUWBcj9Idt9uzZeOqppzBv3jysXr0aTqcTo0ePhtvtbvCaO+64A/n5+a1d1IQWb/WhuroaZ555Jh555JEmt73tttvwr3/9C2+++SY+/vhj7N69GxMmTGitoia0tlgfVq1ahTFjxmDUqFH48ssv8dVXX+GWW26BovDP+4mKp/pQU1ODdevW4Z577sG6deuwaNEilJaWYty4caHtfvjhB5imieeeew7/+c9/MGfOHMybNw+///3vY1j6xNLW6sTw4cNRVlYW9rj++uvRtWtXnH766TE8gwQiiaSU1dXVcs2aNbK6ujrWRYnKc889J/Py8qRhGGHPjxs3Tl533XVy5syZsl+/fqHnr7nmGjl+/PjQ1+ecc46cOnWqnD59ukxLS5M5OTly5syZYfvauHGjPOuss6TVapWFhYXygw8+kADk4sWLQ9ts375dTpw4UbpcLpmWlibHjRsnt27d2uC4DzzwgMzLy5NdunSRpmnK3Nxc+eijj4a2O3TokLRarfK1114LK8P//d//yd69e8v//Oc/EoD8+uuvj/eSJbS2XB/q27p1a6P3+dChQ1LXdfnmm2+GntuwYYMEIFetWhXVtWoPEr0+SCnlkCFD5B/+8IdoL027lCj1oc6XX34pAcgff/yxyXOePXu27Nq1a7PXpr1qb3XC6/XKrKwsOWvWrCavSd37wbfeekvOmTNH/v3vf29yW5KSH1lRo6SUcNd4Y/KQUkZczokTJ2L//v346KOPQs8dOHAAS5cuxaRJkyLax4IFC+B0OrF69WrMnj0bs2bNwrJlywAApmliwoQJsFgsWL16NebNm4cZM2aEvd7n82H06NFITk5GcXExPvvsMyQlJWHMmDFhXSqWL1+O0tJSLFu2DO+++y62bt2KPXv2YOTIkaFtXC4XhgwZglWrVoWeKy8vxw033IC//e1vcDgcEV+blialRK3H1+qP9lIfIrF27Vr4fL6wOtO7d28UFBSE1ZnWIKVEjc8bk0ekdSLR68PevXuxevVqZGdnY/jw4cjJycE555yDTz/9NKLXtyQpJTyGOyaP9lofDh8+DCHEMVtIDh8+jPT09IjOrSVJKWGaNTF5tOe/Gc3ViSVLlmD//v247rrrIjo3ap4W6wJQfPLU+vDLQTNjcuzFa++HzWGJaNu0tDSMHTsWr776Ks4//3wAwFtvvYXMzEyMGDECxcXFze6jqKgIM2cGzrVHjx6YO3culi9fjgsuuAAffvghfvjhB7z//vuhbnUPPfQQxo4dG3r9G2+8AdM08cILL0AIAQCYP38+UlNTsXLlSowaNQoA4HQ68cILL8BiCZzb559/DgDIyckJK09OTg727NkDIPDH6Nprr8VNN92E008/Hdu2bYvoupwMbq8fP7t1bqsf97MnboHdqke0bVuuD5HYs2cPLBZLgz+S9etMa6n1+9Dn70+06jHrfP8/t8KhN3/dEr0+/Pe//wUQGBD/2GOPoX///njllVdw/vnn47vvvkOPHj0i3teJ8poe3PFNbN6czS6aD6tqa3a7RKoPbrcbM2bMwJVXXomUlJRGt9m8eTOefvppPPbYY82eV0uTshZ7y7q3+nEBIDtvM4SI7EPH9lYnXnzxRYwePRodO3aM6PpQ89giRW3epEmT8Pbbb8Pj8QAAFi5ciCuuuCLiMQJFRUVhX+fl5WHv3r0AgA0bNqBTp05hY5OGDRsWtv369euxefNmJCcnIykpCUlJSUhPT4fb7caWLVtC2/Xt2zeqN0kA8PTTT6OyshJ33XVXVK9rzxK5PlD0Erk+mKYJAPjVr36F6667DgMGDMCcOXPQq1cvvPTSS1Htq71IhPrg8/lw2WWXQUqJZ599ttFtdu3ahTFjxmDixIm44YYbIjq39qq91ImdO3fi/fffx5QpUyI6L4oMW6SoUVa7jsVr74/ZsaNx0UUXQUqJ9957D4MHD0ZxcTHmzJkT8et1Pfx4QojQG5RIVFVVYdCgQVi4cGGD72VlZYX+73Q6w76Xm5sLINB1Ly8vL/R8eXl5aLrVFStWYNWqVbBarWGvPf300zFp0iQsWLAg4nKeKJtFw2dP3NJqx6t/3Gi01foQidzcXHi9Xhw6dCisVaq8vDxUn1qLXdPx/f/c2qrHrH/sSCVyfaj7vdGnT5+w5wsLC7F9+/ao93ciLIoVs4vmt+ox6x87Um29PtS9Yf7xxx+xYsWKRlsedu/ejREjRmD48OF4/vnnIy5bSxLCjuy8zTE7djTaQ50AAq1cGRkZYZNR0IljkKJGCSEi7l4XazabDRMmTMDChQuxefNm9OrVCwMHDmyRfRcWFmLHjh0oKysLvWn54osvwrYZOHAg3njjDWRnZzf5C6wxXbt2RW5uLpYvXx4KThUVFVi9ejV+/etfAwCeeuopPPDAA6HX7N69G6NHj8Ybb7yBIUOGnODZRUcIEXEXu1hqq/UhEoMGDYKu61i+fDkuueQSAEBpaSm2b9/e4FPOk00IEVH3ulhL5PrQpUsX5Ofno7S0NOz5jRs3hnUdag1CiIi618VaW64PdW+YN23ahI8++ggZGRkNttm1axdGjBiBQYMGYf78+TGbvTEwxXbsxvRGI9HrBBAYJjB//nxMnjy5QfCjE8OufZQQJk2ahPfeew8vvfRSxANEIzFy5Ej07NkT11xzDdavX4/i4mLcfffdDY6dmZmJ8ePHo7i4GFu3bsXKlSsxbdo07Ny5s8l9CyFw66234oEHHsCSJUvw7bffYvLkycjPzw8t+FdQUIDTTjst9OjZsycAoFu3buzjfAxtsT4AgUHOJSUl+P777wEEQlJJSUlo/JPL5cKUKVNw++2346OPPsLatWtx3XXXYdiwYRg6dGiLnWeiSdT6IITA9OnT8dRTT+Gtt97C5s2bcc899+CHH35g951jaIv1wefz4dJLL8WaNWuwcOFCGIaBPXv2YM+ePaEJCXbt2oVzzz0XBQUFeOyxx/DTTz+FtqFjS9Q6UWfFihXYunUrrr/++hY7NwpgkKKEcN555yE9PR2lpaW46qqrWmy/iqJg8eLFqK2txRlnnIHrr78eDz74YNg2DocDn3zyCQoKCjBhwgQUFhZiypQpcLvdzX66dMcdd2Dq1Km48cYbMXjwYFRVVWHp0qWw2eL/k9141lbrw5IlSzBgwAD84he/AABcccUVGDBgAObNmxfaZs6cObjwwgtxySWX4Oyzz0Zubi4WLVrUYueYiBK5Ptx666246667cNttt6Ffv35Yvnw5li1bhm7durXYeSaatlgfdu3ahSVLlmDnzp3o378/8vLyQo+6iYuWLVuGzZs3Y/ny5ejYsWPYNnRsiVon6rz44osYPnw4evfu3WLnRgFCRjNPJCWsmpoabNiwAYWFhTGdYpuIiIiIYqPu/eC2bduwY8cOZGVltWgrXaJhixQREREREVGUGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIooSgxQREREREVGUGKQood13333o379/6Otrr70WF1988QnvVwiBd95554T3Q62L9YHqY32g+lgf6GisE9QcBilqV5588km8/PLLsS5GiJQS9957L/Ly8mC32zFy5Ehs2rQpbJsuXbpACBH2ePjhh2NU4sQSb/Vh0aJFGDVqFDIyMiCEQElJSYNtnn/+eZx77rlISUmBEAKHDh1q9XImqrZWH7Zt29bgd0Pd480334xNoRNIPNUHn8+HGTNmoG/fvnA6ncjPz8fkyZOxe/fusO3GjRuHgoIC2Gw25OXl4eqrr26wDR2/tlgnNm7ciPHjxyMzMxMpKSk488wz8dFHH8Wo1ImHQYraFZfLhdTU1FgXA16vFwAwe/ZsPPXUU5g3bx5Wr14Np9OJ0aNHw+12h20/a9YslJWVhR5Tp06NRbETTrzVh+rqapx55pl45JFHmty2pqYGY8aMwe9///vWKl670dbqQ6dOncJ+L5SVleH+++9HUlISxo4d25pFTkjxVB9qamqwbt063HPPPVi3bh0WLVqE0tJSjBs3LmzbESNG4B//+AdKS0vx9ttvY8uWLbj00ktjVPLE0xbrxIUXXgi/348VK1Zg7dq16NevHy688ELs2bMnRqVPLAxS1KY9//zzyM/Ph2maYc+PHz8e//u//9tg+6Ob5c8991xMmzYNd9xxB9LT05Gbm4v77rsv7DWbNm3C2WefDZvNhj59+mDZsmUN9rtjxw5cdtllSE1NRXp6OsaPH49t27Y1OO6DDz6I/Px89OrVC1JKPPHEE/jDH/6A8ePHo6ioCK+88gp2797doMk/OTkZubm5oYfT6Yz6WrUHbbk+AMDVV1+Ne++9FyNHjmzyHG+99VbceeedGDp0aARXpH1L9PqgqmrY74Xc3FwsXrwYl112GZKSkiK8Su1HW64PLpcLy5Ytw2WXXYZevXph6NChmDt3LtauXYvt27eHXnvbbbdh6NCh6Ny5M4YPH44777wTX3zxBXw+3/FdtASX6HVi37592LRpE+68804UFRWhR48eePjhh1FTU4Pvvvvu+C8chTBIUaOklHDXemPykFJGXM6JEydi//79Yc3UBw4cwNKlSzFp0qSI9rFgwQI4nU6sXr0as2fPxqxZs0K/6EzTxIQJE2CxWLB69WrMmzcPM2bMCHu9z+fD6NGjkZycjOLiYnz22WdISkrCmDFjQp8sA8Dy5ctRWlqKZcuW4d1338XWrVuxZ8+esDdJLpcLQ4YMwapVq8KO8fDDDyMjIwMDBgzAo48+Cr/fH/E1ailSStR4fK3+aC/1oa2RUqLG743JI9I60d7qw9q1a1FSUoIpU6Yc1+tPhJQSXtMdk0d7rQ+HDx+GEKLJFpIDBw5g4cKFGD58OHRdj+j8WoqUEtKsic2jHf/NOLpOZGRkoFevXnjllVdQXV0Nv9+P5557DtnZ2Rg0aFDE14mapsW6ABSfPG4fxp/1UEyO/c/i38Nmt0S0bVpaGsaOHYtXX30V559/PgDgrbfeQmZmJkaMGIHi4uJm91FUVISZM2cCAHr06IG5c+di+fLluOCCC/Dhhx/ihx9+wPvvv4/8/HwAwEMPPRTWbeaNN96AaZp44YUXIIQAAMyfPx+pqalYuXIlRo0aBQBwOp144YUXYLEEzu3zzz8HAOTk5ISVJycnJ6zJfdq0aRg4cCDS09Px+eef46677kJZWRn+/Oc/R3SNWkqt14+hd81t1WMCwBd/ugUOa2RvAtpyfWhrag0fTnvzsZgc+7uJv4NDa/66tbf68OKLL6KwsBDDhw8/7n0cL5/04NENselCNr3wLViErdntEqk+uN1uzJgxA1deeSVSUlLCvjdjxgzMnTsXNTU1GDp0aGw+qJG1kHv7t/5xAYjsEkA4Ito20euEEAIffvghLr74YiQnJ0NRFGRnZ2Pp0qVIS0uL6BrRsbFFitq8SZMm4e2334bH4wEALFy4EFdccQUUJbLqXVRUFPZ1Xl4e9u7dCwDYsGEDOnXqFPoFCADDhg0L2379+vXYvHkzkpOTkZSUhKSkJKSnp8PtdmPLli2h7fr27Xtcb5Juv/12nHvuuSgqKsJNN92Exx9/HE8//XTofClcotcHik57qQ+1tbV49dVXY9Ia1ZYkQn3w+Xy47LLLIKXEs88+2+D706dPx9dff40PPvgAqqpi8uTJUbXStDeJXCeklLj55puRnZ2N4uJifPnll7j44otx0UUXoaysLKLzo2NjixQ1ymrT8c/i2Axmt9qi64Jw0UUXQUqJ9957D4MHD0ZxcTHmzJkT8euP7vIghGjQX/pYqqqqMGjQICxcuLDB97KyskL/P3pcU25uLgCgvLwceXl5oefLy8vDpls92pAhQ+D3+7Ft27bQWIrWYLdo+OJPt7Ta8eofNxpttT60NXZVx3cTfxezY0eqvdSHt956CzU1NZg8efIJ7ed46cKK6YVvxezYkWrr9aHuDfOPP/6IFStWNGiNAoDMzExkZmaiZ8+eKCwsRKdOnfDFF180eAN/Ugl7oGUoFoQ9qs0TuU6sWLEC7777Lg4ePBh6/plnnsGyZcuwYMEC3HnnnRGXkxrHIEWNEkJE3L0u1mw2GyZMmICFCxdi8+bN6NWrFwYOHNgi+y4sLMSOHTtQVlYWCjtffPFF2DYDB/7/9u4+puq6/+P484vIvcqtAhZ5lwQWiorO5syQvMmMRkkkoRVmul2QtivbLk39lbSlWdZsY87bNppUSJF0UUqaJzWa2WE49QgKhTfHViwJEeXmXH84z+/ih9Y5xo8jh9dj+25wzuf7ufnuvZ3P+3w+3+8ZTX5+Pv3797/hh9rNDB48mPDwcEpLS+2JU319PWVlZSxatOim55nNZvvyfFcyDMPhLXau1F3jobsxDMOh7XWu1lPiYfPmzTz66KPtJl5dyTAMh7bXuVp3jofrE+bKykr27t1LSEjIX55zfULf1TsYDMNweHudq7lzTDQ2NgJ0WF3z8PBwKtmTm9PWPnEL6enpFBcXs2XLFodvEHVEUlISw4cPZ968eZSXl2MymVi2bFmHtkNDQ0lOTsZkMlFdXc2+ffvIzs7mzJkzN63bMAwWL17M6tWrKSoqoqKigrlz5xIZGWl/KtChQ4dYv3495eXlnD59mry8PJYsWcLTTz+t/c1/ojvGA1y7ydlsNnPs2DEALBYLZrO53T1zVqsVs9lMVVUVABUVFZjNZurq6jptnO7GneMBoKqqiv379zN//vxOG5s7647x0NzczBNPPMHhw4fJy8ujtbUVq9WK1Wq1P5CgrKyMDRs2YDab7asTTz31FEOHDu3a1ahuyF1jYsKECQQFBdnbP3nyJC+//DLV1dXMnDmz08bZkymREreQmJhIcHAwFouFOXPmdFq9Hh4eFBYWcvnyZcaNG8f8+fPJyclpV8bPz4/9+/cTFRVFSkoKMTExZGZm0tTU9JffLi1dupSsrCwWLFhAQkICDQ0NlJSU4ONz7Ztdb29vduzYwQMPPMCIESPIyclhyZIlbNy4sdPG6I66azwUFRURHx9v/4BLS0sjPj6e3Nxce5nc3Fzi4+N5/vnnAZg0aRLx8fEUFRV12jjdjTvHA8CWLVu444477Dely5/rjvFw9uxZioqKOHPmDKNGjSIiIsJ+XH9wkZ+fHzt37mTKlClER0eTmZlJXFwc33zzDd7ejm9/7IncNSZCQ0MpKSmhoaGBxMRExo4dy7fffstnn33GyJEjO22cPZlh0x2IwrXl3+PHjxMTE4OfX/dYjhcRERGRznN9PlhTU0NtbS1hYWGdukrnbrQiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVIiIiIiIiJOUiIlIiIiIiLiJCVSIiIiIiIiTlIiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVLi1latWsWoUaPs/z/zzDM89thjf7tewzD49NNP/3Y90rUUD/LfFA8iIvJ3KJGSHuXdd99l27Ztru6Gnc1mY8WKFURERODr60tSUhKVlZUdyhUXFzN+/Hh8fX0JCgrqlMme3H7xsHPnTqZOnUpISAiGYWA2m9u9X1dXR1ZWFtHR0fj6+hIVFUV2djYXL150TYfdTHeLBwCr1UpGRgbh4eH4+/szevRoCgoKur6zIiI9kBIp6VH69etHYGCgq7vB1atXAVizZg3vvfceubm5lJWV4e/vz7Rp02hqarKXLSgoICMjg2effZby8nIOHDjAnDlzXNV1t3K7xcOlS5eYOHEib7755g3LnTt3jnPnzvHWW29x9OhRtm3bRklJCZmZmV3ZXbfV3eIBYO7cuVgsFoqKiqioqCAlJYXU1FR+/PHHruquiEiPpURKurWNGzcSGRlJW1tbu9eTk5N57rnnOpT/v1t3Jk+eTHZ2NkuXLiU4OJjw8HBWrVrV7pzKykomTZqEj48PsbGx7N69u0O9tbW1pKamEhgYSHBwMMnJydTU1HRoNycnh8jISKKjo7HZbKxfv57ly5eTnJxMXFwcH3zwAefOnbNvC2ppaeHFF19k7dq1LFy4kOHDhxMbG0tqauotXzN31p3jASAjI4MVK1aQlJR0w/Hde++9FBQUMGvWLIYOHUpiYiI5OTl8/vnntLS0OHiVeg53jweAgwcPkpWVxbhx4xgyZAjLly8nMDCQH374wYErJCIif4cSKbkhm83G5ctXXXLYbDaH+zl79mx+++039u7da3+trq6OkpIS0tPTHapj+/bt+Pv7U1ZWxpo1a3jttdfsk6G2tjZSUlLw8vKirKyM3NxcXnnllXbnNzc3M23aNPr06YPJZOLAgQMEBAQwffp0+zfLAKWlpVgsFnbv3s2uXbuorq7GarW2myT169eP8ePHc+jQIQCOHDnC2bNn8fDwID4+noiICGbMmMHRo0cdvkadxWaz0Xi1ucuPnhIPt+rixYv07dsXT0/PW67jVthsNhpbrrrkcDQmekI83H///eTn51NXV0dbWxs7duygqamJyZMnO1yHiIjcmq795JVuo6mpmUdmvOWStnf9+5/4+no5VDYoKIgZM2bw4YcfMmXKFAA++eQTQkNDefDBBzGZTH9ZR1xcHCtXrgTg7rvvZsOGDZSWlvLQQw+xZ88eTpw4wZdffklkZCQAb7zxBjNmzLCfn5+fT1tbG5s2bcIwDAC2bt1KYGAg+/btY+rUqQD4+/uzadMmvLyuje3gwYMADBgwoF1/BgwYgNVqBeD06dPAtZvi3377bQYNGsS6deuYPHkyJ0+eJDg42KHr1BkuN7cw9n82dFl71x1e+Q/8vHo7VLY7x8Ot+PXXX3n99ddZsGDBLddxqy63NjN21xtd3i7A4Uf+hZ/nX1+3nhAPH330EU8++SQhISF4enri5+dHYWEhw4YNc6oeERFxnlakpNtLT0+noKCAK1euAJCXl0daWhoeHo6Fd1xcXLv/IyIi+OWXXwA4fvw4d955p32SBDBhwoR25cvLy6mqqqJPnz4EBAQQEBBAcHAwTU1NnDp1yl7uvvvuc3qSdH1L0rJly3j88ccZM2YMW7duxTAMPv74Y6fq6incOR7+W319PTNnziQ2NrbDdjP5X+4eD6+++iq///47e/bs4fDhw7z00kukpqZSUVHhdF0iIuIcrUjJDfn49GbXv//psradMWvWLGw2G8XFxSQkJGAymXjnnXccPr937/btGYbR4Z6KP9PQ0MCYMWPIy8vr8F5YWJj9b39//3bvhYeHA3DhwgUiIiLsr1+4cMH+SObrr8fGxtrf9/b2ZsiQIfz8888O97Ez+Pb25PDKf3Rpm9fbdUZ3jQdn/PHHH0yfPp0+ffpQWFjYoc9dwbdXbw4/8q8ub/d6245y53g4deoUGzZs4OjRo4wYMQKAkSNHYjKZeP/998nNzXW6ThERcZwSKbkhwzAc3l7naj4+PqSkpJCXl0dVVRXR0dGMHj26U+qOiYmhtraW8+fP25Oa7777rl2Z0aNHk5+fT//+/enbt6/DdQ8ePJjw8HBKS0vtiVN9fT1lZWUsWrQIgDFjxuDt7Y3FYmHixInAtXsuampquOuuuzphhI4zDMPhLXau1F3jwVH19fVMmzYNb29vioqK8PHx6fQ2HGEYhkPb61zNneOhsbERoMPqWq9evZxK9kRE5NZoa5+4hfT0dIqLi9myZYvDN5E7IikpieHDhzNv3jzKy8sxmUwsW7asQ9uhoaEkJydjMpmorq5m3759ZGdnc+bMmZvWbRgGixcvZvXq1fZHF8+dO5fIyEj7k8P69u3LwoULWblyJV999RUWi8WeZM2ePbvTxuluumM8wLUHIZjNZo4dOwaAxWLBbDbb75mrr69n6tSpXLp0ic2bN1NfX4/VasVqtdLa2tpp43Q37hoP99xzD8OGDeOFF17g+++/59SpU6xbt47du3frt+ZERLqAEilxC4mJiQQHB2OxWDr1N5Y8PDwoLCzk8uXLjBs3jvnz55OTk9OujJ+fH/v37ycqKoqUlBRiYmLIzMykqanpL7+BXrp0KVlZWSxYsICEhAQaGhooKSlpt8qwdu1a0tLSyMjIICEhgZ9++omvv/6aoKCgThunu+mu8VBUVER8fDwzZ84EIC0tjfj4ePsWrSNHjlBWVkZFRQXDhg0jIiLCftTW1nbaON2Nu8ZD7969+eKLLwgLC2PWrFn2n1DYvn07Dz/8cKeNU0REbsywOfNsYXFbjY2NHD9+nJiYGPz8/FzdHRERERHpYtfngzU1NdTW1hIWFtapK/nuRitSIiIiIiIiTlIiJSIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVLSjn57RERERKRn0jPonKNESgDw8rr2w5oNDQ0u7omIiIiIuMKVK1cAaGlpcXFPugdPV3dAbg+enp6EhoZy9uxZAAICAvDwUJ4tIiIi0hO0tbVRW1tLY2Mjra2tWp1ygBIpsYuKisJms9mTKRERERHpOdra2rBarQC0trbi6+vr4h7d3pRIiZ1hGAwaNIjKykpOnDhBSEgI3t7eru6WiIiIiPw/s9lsNDc309bWRkNDAy0tLQwcONDV3bqtKZGSDiZNmsSVK1c4duwYra2tGIbh6i6JiIiISBew2Wx4eXkxfvx4xo4d6+ru3NYMmzZAyg1cvXqV8+fPc+nSJe2RFREREekhPDw88Pf3Z+DAgfTq1cvV3bmtKZESERERERFxkh7LJiIiIiIi4iQlUiIiIiIiIk5SIiUiIiIiIuIkJVIiIiIiIiJOUiIlIiIiIiLipP8AQhptYOMJ7CYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dirunal_statistics = subset.get_diurnal_statistics(colorby='name',\n", + " obstype='humidity', \n", + " plot=True,\n", + " errorbands=True,\n", + " )\n", + "#Note that in this example statistics are computed for a short period and only for the non-windy autumn afternoons." + ] + }, + { + "cell_type": "markdown", + "id": "d3fdffeb-1ec7-4ffe-8085-c84dd5a3fdfa", + "metadata": {}, + "source": [ + "## Analysis exercise\n", + "\n", + "For a more detailed reference you can use this [Analysis exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Urban_analysis_excercise_04.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/examples/doc_example.html b/docs/_build/examples/doc_example.html new file mode 100644 index 00000000..179dd0e7 --- /dev/null +++ b/docs/_build/examples/doc_example.html @@ -0,0 +1,736 @@ + + + + + + + Demo example: Using a Dataset — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Demo example: Using a Dataset

+

This is an introduction to get started with the MetObs toolkit. These examples are making use of the demo data files that comes with the toolkit. Once the MetObs toolkit package is installed, you can import its functionality by:

+
+
[1]:
+
+
+
import metobs_toolkit
+
+
+
+
+

The Dataset

+

A dataset is a collection of all observational data. Most of the methods are applied directly to a dataset. Start by creating an empty Dataset object:

+
+
[2]:
+
+
+
your_dataset = metobs_toolkit.Dataset()
+
+
+
+

The most relevant attributes of a Dataset are: * .df –> a pandas DataFrame where all the observational data are stored * .metadf –> a pandas DataFrame where all the metadata for each station are stored * .settings –> a Settings object to store all specific settings. * .missing_obs and .gaps –> here the missing records and gaps are stored if present.

+

Note that each Dataset will be equipped with the default settings.

+

We created a dataset and stored in under the variable ‘your_dataset’. The show method prints out an overview of data in the dataset:

+
+
[3]:
+
+
+
your_dataset.show() # or .get_info()
+
+
+
+
+
+
+
+
+
+ --------  General ---------
+
+Empty instance of a Dataset.
+
+ --------  Settings ---------
+
+(to show all settings use the .show_settings() method, or set show_all_settings = True)
+
+ --------  Outliers ---------
+
+No outliers.
+
+ --------  Meta data ---------
+
+No metadata is found.
+
+
+

TIP: to get an extensive overview of an object, call the .show() method on it.

+
+
+

Importing data

+

To import your data into a Dataset, the following files are required: * data file: This is the CSV file containing the observations * (optional) metadata file: The CSV file containing metadata for all stations. * template file: This is a CSV file that is used to interpret your data, and metadata file (if present).

+

In practice you need to start by creating a template file for your data. More information on the creation of the template can be found in the documentation (under Mapping to the toolkit).

+

TIP: Use the template assistant of the toolkit for creating a template file by uncommenting and running the following cell.

+
+
[4]:
+
+
+
# metobs_toolkit.build_template_prompt()
+
+
+
+

To import data, you must specify the paths to your data, metadata and template. For this example, we use the demo data, metadata and template that come with the toolkit.

+
+
[5]:
+
+
+
your_dataset.update_settings(
+    input_data_file=metobs_toolkit.demo_datafile, # path to the data file
+    input_metadata_file=metobs_toolkit.demo_metadatafile,
+    template_file=metobs_toolkit.demo_template,
+)
+
+
+
+

The settings of your Dataset are updated with the required paths. Now the data can be imported into your empty Dataset:

+
+
[6]:
+
+
+
your_dataset.import_data_from_file()
+
+
+
+
+
+

Inspecting the Data

+

To get an overview of the data stored in your Dataset you can use

+
+
[7]:
+
+
+
your_dataset.show()
+
+
+
+
+
+
+
+
+
+ --------  General ---------
+
+Dataset instance containing:
+     *28 stations
+     *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types
+     *120957 observation records
+     *256 records labeled as outliers
+     *0 gaps
+     *3 missing observations
+     *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration:  14 days 23:55:00)
+     *time zone of the records: UTC
+     *Coordinates are available for all stations.
+
+
+ --------  Settings ---------
+
+(to show all settings use the .show_settings() method, or set show_all_settings = True)
+
+ --------  Outliers ---------
+
+A total of 256 found with these occurrences:
+
+{'invalid input': 256}
+
+ --------  Meta data ---------
+
+The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']
+
+ The first rows of the metadf looks like:
+           network        lat       lon       call_name  location  \
+name
+vlinder01  Vlinder  50.980438  3.815763      Proefhoeve     Melle
+vlinder02  Vlinder  51.022379  3.709695          Sterre      Gent
+vlinder03  Vlinder  51.324583  4.952109         Centrum  Turnhout
+vlinder04  Vlinder  51.335522  4.934732  Stadsboerderij  Turnhout
+vlinder05  Vlinder  51.052655  3.675183  Watersportbaan      Gent
+
+                           geometry assumed_import_frequency  \
+name
+vlinder01  POINT (3.81576 50.98044)          0 days 00:05:00
+vlinder02  POINT (3.70969 51.02238)          0 days 00:05:00
+vlinder03  POINT (4.95211 51.32458)          0 days 00:05:00
+vlinder04  POINT (4.93473 51.33552)          0 days 00:05:00
+vlinder05  POINT (3.67518 51.05266)          0 days 00:05:00
+
+          dataset_resolution
+name
+vlinder01    0 days 00:05:00
+vlinder02    0 days 00:05:00
+vlinder03    0 days 00:05:00
+vlinder04    0 days 00:05:00
+vlinder05    0 days 00:05:00
+
+ -------- Missing observations info --------
+
+(Note: missing observations are defined on the frequency estimation of the native dataset.)
+  * 3 missing observations
+
+ name
+vlinder02   2022-09-10 17:10:00+00:00
+vlinder02   2022-09-10 17:15:00+00:00
+vlinder02   2022-09-10 17:45:00+00:00
+Name: datetime, dtype: datetime64[ns, UTC]
+
+  * For these stations: ['vlinder02']
+  * The missing observations are not filled.
+(More details on the missing observation can be found in the .series and .fill_df attributes.)
+None
+
+ --------  Gaps ---------
+
+There are no gaps.
+None
+
+
+

If you want to inspect the data in your Dataset directly, you can take a look at the .df and .metadf attributes

+
+
[8]:
+
+
+
print(your_dataset.df.head())
+# equivalent for the metadata
+print(your_dataset.metadf.head())
+
+
+
+
+
+
+
+
+                                     temp  radiation_temp  humidity  precip  \
+name      datetime
+vlinder01 2022-09-01 00:00:00+00:00  18.8             NaN        65     0.0
+          2022-09-01 00:05:00+00:00  18.8             NaN        65     0.0
+          2022-09-01 00:10:00+00:00  18.8             NaN        65     0.0
+          2022-09-01 00:15:00+00:00  18.7             NaN        65     0.0
+          2022-09-01 00:20:00+00:00  18.7             NaN        65     0.0
+
+                                     precip_sum  wind_speed  wind_gust  \
+name      datetime
+vlinder01 2022-09-01 00:00:00+00:00         0.0         5.6       11.3
+          2022-09-01 00:05:00+00:00         0.0         5.5       12.9
+          2022-09-01 00:10:00+00:00         0.0         5.1       11.3
+          2022-09-01 00:15:00+00:00         0.0         6.0       12.9
+          2022-09-01 00:20:00+00:00         0.0         5.0       11.3
+
+                                     wind_direction  pressure  \
+name      datetime
+vlinder01 2022-09-01 00:00:00+00:00              65    101739
+          2022-09-01 00:05:00+00:00              75    101731
+          2022-09-01 00:10:00+00:00              75    101736
+          2022-09-01 00:15:00+00:00              85    101736
+          2022-09-01 00:20:00+00:00              65    101733
+
+                                     pressure_at_sea_level
+name      datetime
+vlinder01 2022-09-01 00:00:00+00:00               102005.0
+          2022-09-01 00:05:00+00:00               101997.0
+          2022-09-01 00:10:00+00:00               102002.0
+          2022-09-01 00:15:00+00:00               102002.0
+          2022-09-01 00:20:00+00:00               101999.0
+           network        lat       lon       call_name  location  \
+name
+vlinder01  Vlinder  50.980438  3.815763      Proefhoeve     Melle
+vlinder02  Vlinder  51.022379  3.709695          Sterre      Gent
+vlinder03  Vlinder  51.324583  4.952109         Centrum  Turnhout
+vlinder04  Vlinder  51.335522  4.934732  Stadsboerderij  Turnhout
+vlinder05  Vlinder  51.052655  3.675183  Watersportbaan      Gent
+
+                           geometry  lcz assumed_import_frequency  \
+name
+vlinder01  POINT (3.81576 50.98044)  NaN          0 days 00:05:00
+vlinder02  POINT (3.70969 51.02238)  NaN          0 days 00:05:00
+vlinder03  POINT (4.95211 51.32458)  NaN          0 days 00:05:00
+vlinder04  POINT (4.93473 51.33552)  NaN          0 days 00:05:00
+vlinder05  POINT (3.67518 51.05266)  NaN          0 days 00:05:00
+
+          dataset_resolution
+name
+vlinder01    0 days 00:05:00
+vlinder02    0 days 00:05:00
+vlinder03    0 days 00:05:00
+vlinder04    0 days 00:05:00
+vlinder05    0 days 00:05:00
+
+
+
+

Inspecting a Station

+

If you are interested in one station, you can extract all the info for that one station from the dataset by:

+
+
[9]:
+
+
+
favorite_station = your_dataset.get_station(stationname="vlinder02")
+
+
+
+

Favorite station now contains all the information of that one station. All methods that are applicable to a Dataset are also applicable to a Station. So to inspect your favorite station, you can:

+
+
[10]:
+
+
+
print(favorite_station.show())
+
+
+
+
+
+
+
+
+
+ --------  General ---------
+
+Dataset instance containing:
+     *1 stations
+     *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types
+     *4317 observation records
+     *256 records labeled as outliers
+     *0 gaps
+     *3 missing observations
+     *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration:  14 days 23:55:00)
+     *time zone of the records: UTC
+     *Coordinates are available for all stations.
+
+
+ --------  Settings ---------
+
+(to show all settings use the .show_settings() method, or set show_all_settings = True)
+
+ --------  Outliers ---------
+
+A total of 256 found with these occurrences:
+
+{'invalid input': 256}
+
+ --------  Meta data ---------
+
+The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']
+
+ The first rows of the metadf looks like:
+           network        lat       lon call_name location  \
+name
+vlinder02  Vlinder  51.022379  3.709695    Sterre     Gent
+
+                             geometry assumed_import_frequency  \
+name
+vlinder02  POINT (3.709695 51.022379)          0 days 00:05:00
+
+          dataset_resolution
+name
+vlinder02    0 days 00:05:00
+
+ -------- Missing observations info --------
+
+(Note: missing observations are defined on the frequency estimation of the native dataset.)
+  * 3 missing observations
+
+ name
+vlinder02   2022-09-10 17:10:00+00:00
+vlinder02   2022-09-10 17:15:00+00:00
+vlinder02   2022-09-10 17:45:00+00:00
+Name: datetime, dtype: datetime64[ns, UTC]
+
+  * For these stations: ['vlinder02']
+  * The missing observations are not filled.
+(More details on the missing observation can be found in the .series and .fill_df attributes.)
+None
+
+ --------  Gaps ---------
+
+There are no gaps.
+None
+None
+
+
+
+
+
+

Making timeseries plots

+

To make timeseries plots, use the following syntax to plot the temperature observations of the full Dataset:

+
+
[11]:
+
+
+
your_dataset.make_plot(obstype='temp')
+
+
+
+
+
[11]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur for all stations. '}, ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_doc_example_22_1.png +
+
+

See the documentation of the make_plot method for more details. Here an example of common used arguments.

+
+
[12]:
+
+
+
#Import the standard datetime library to make timestamps from datetime objects
+from datetime import datetime
+
+your_dataset.make_plot(
+    # specify the names of the stations in a list, or use None to plot all of them.
+    stationnames=['vlinder01', 'vlinder03', 'vlinder05'],
+    # what obstype to plot (default is 'temp')
+    obstype="humidity",
+    # choose how to color the timeseries:
+    #'name' : a specific color per station
+    #'label': a specific color per quality control label
+    colorby="label",
+    # choose a start and endtime for the series (datetime).
+    # Default is None, which uses all available data
+    starttime=None,
+    endtime=datetime(2022, 9, 9),
+    # Specify a title if you do not want the default title
+    title='your custom title',
+    # Add legend to plot?, by default true
+    legend=True,
+    # Plot observations that are labeled as outliers.
+    show_outliers=True,
+)
+
+
+
+
+
[12]:
+
+
+
+
+<Axes: title={'center': 'your custom title'}, xlabel='datetime', ylabel='Vochtigheid (%) \n relative humidity'>
+
+
+
+
+
+
+../_images/examples_doc_example_24_1.png +
+
+

as mentioned above, one can apply the same methods to a Station object:

+
+
[13]:
+
+
+
favorite_station.make_plot(colorby='label')
+
+
+
+
+
[13]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur of vlinder02'}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_doc_example_26_1.png +
+
+
+
+

Resampling the time resolution

+

Coarsening the time resolution (i.g. frequency) of your data can be done by using the coarsen_time_resolution().

+
+
[14]:
+
+
+
your_dataset.coarsen_time_resolution(freq='30T') #'30T' means 30 minutes
+
+your_dataset.df.head()
+
+
+
+
+
[14]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
tempradiation_temphumidityprecipprecip_sumwind_speedwind_gustwind_directionpressurepressure_at_sea_level
namedatetime
vlinder012022-09-01 00:00:00+00:0018.8NaN650.00.05.611.365101739102005.0
2022-09-01 00:30:00+00:0018.7NaN650.00.05.49.785101732101999.0
2022-09-01 01:00:00+00:0018.4NaN650.00.05.18.155101736102003.0
2022-09-01 01:30:00+00:0018.0NaN650.00.07.112.955101736102003.0
2022-09-01 02:00:00+00:0017.1NaN680.00.05.79.745101723101990.0
+
+
+
+
+

Introduction exercise

+

For a more detailed reference, you can use this introduction exercise, that was created in the context of the COST FAIRNESS summerschool 2023 in Ghent.

+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/doc_example.ipynb b/docs/_build/examples/doc_example.ipynb new file mode 100644 index 00000000..3ded40b8 --- /dev/null +++ b/docs/_build/examples/doc_example.ipynb @@ -0,0 +1,824 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d87ff982-1540-4794-830f-146992df5aa4", + "metadata": { + "tags": [] + }, + "source": [ + "# Demo example: Using a Dataset\n", + " \n", + "This is an introduction to get started with the MetObs toolkit. These examples are making use of the demo data files that comes with the toolkit.\n", + "Once the MetObs toolkit package is installed, you can import its functionality by:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "b54b0b5d-59f4-400c-a4a8-ff07fe809ff6", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit" + ] + }, + { + "cell_type": "markdown", + "id": "55faab4a-537b-4028-9adf-890746c4b8c0", + "metadata": {}, + "source": [ + "## The Dataset\n", + "\n", + "A dataset is a collection of all observational data. Most of the methods are\n", + "applied directly to a dataset. Start by creating an empty Dataset object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ffbfd64f-8724-48bb-b8c5-af1c45ad6a66", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "d088aba9-2a00-4030-8395-01792094c737", + "metadata": {}, + "source": [ + "The most relevant attributes of a Dataset are:\n", + " * .df --> a pandas DataFrame where all the observational data are stored\n", + " * .metadf --> a pandas DataFrame where all the metadata for each station are stored\n", + " * .settings --> a Settings object to store all specific settings.\n", + " * .missing_obs and .gaps --> here the missing records and gaps are stored if present.\n", + "\n", + "Note that each Dataset will be equipped with the default settings.\n", + "\n", + "\n", + "We created a dataset and stored in under the variable 'your_dataset'.\n", + "The show method prints out an overview of data in the dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4296efe0-7a6a-413c-a4c0-7d79b30d0ab2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show() # or .get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "34273a79-477d-4c04-ba59-65a677adfe25", + "metadata": {}, + "source": [ + "TIP: to get an extensive overview of an object, call the .show() method on it." + ] + }, + { + "cell_type": "markdown", + "id": "60edb538-7a11-4745-9514-94f9d577cd9c", + "metadata": {}, + "source": [ + "## Importing data\n", + "\n", + "\n", + "To import your data into a Dataset, the following files are required:\n", + "* data file: This is the CSV file containing the observations\n", + "* (optional) metadata file: The CSV file containing metadata for all stations.\n", + "* template file: This is a CSV file that is used to interpret your data, and metadata file (if present).\n", + "\n", + "In practice you need to start by creating a template file for your data. More information on the creation of the template can be found in the documentation (under [Mapping to the toolkit](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html)).\n", + "\n", + "TIP: *Use the template assistant of the toolkit for creating a template file by uncommenting and running the following cell.*\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "a34d31e9-6d3f-46a9-973e-f5a41b38e2e4", + "metadata": {}, + "outputs": [], + "source": [ + "# metobs_toolkit.build_template_prompt()" + ] + }, + { + "cell_type": "markdown", + "id": "65c6e54f-3073-4d77-8f7d-eda0465748a5", + "metadata": {}, + "source": [ + "To import data, you must specify the paths to your data, metadata and template.\n", + "For this example, we use the demo data, metadata and template that come with the toolkit." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "bbcbe25e-855e-46b5-ba80-e90a655ef719", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "dd390074-8b96-4ddb-b447-4c8e46b94c3f", + "metadata": {}, + "source": [ + "The settings of your Dataset are updated with the required paths. Now the data can be imported into your empty Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "21708ed0-7671-4e64-b3cc-dacb09baf4f9", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "304853e8-7ab9-4afc-a75f-db33785c57e2", + "metadata": {}, + "source": [ + "## Inspecting the Data\n", + "\n", + "To get an overview of the data stored in your Dataset you can use" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2bc74181-68df-4cdf-9320-9dc43d5af698", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *28 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *120957 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "A total of 256 found with these occurrences: \n", + "\n", + "{'invalid input': 256}\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "aa85e260-48f5-4e63-b3d4-b44ece98df0b", + "metadata": {}, + "source": [ + "If you want to inspect the data in your Dataset directly, you can take a look at the .df and .metadf attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "690a1e21-ee6b-4b4c-a8e4-b937946e14aa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:05:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:10:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:15:00+00:00 18.7 NaN 65 0.0 \n", + " 2022-09-01 00:20:00+00:00 18.7 NaN 65 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:05:00+00:00 0.0 5.5 12.9 \n", + " 2022-09-01 00:10:00+00:00 0.0 5.1 11.3 \n", + " 2022-09-01 00:15:00+00:00 0.0 6.0 12.9 \n", + " 2022-09-01 00:20:00+00:00 0.0 5.0 11.3 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65 101739 \n", + " 2022-09-01 00:05:00+00:00 75 101731 \n", + " 2022-09-01 00:10:00+00:00 75 101736 \n", + " 2022-09-01 00:15:00+00:00 85 101736 \n", + " 2022-09-01 00:20:00+00:00 65 101733 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:05:00+00:00 101997.0 \n", + " 2022-09-01 00:10:00+00:00 102002.0 \n", + " 2022-09-01 00:15:00+00:00 102002.0 \n", + " 2022-09-01 00:20:00+00:00 101999.0 \n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry lcz assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) NaN 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) NaN 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) NaN 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) NaN 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) NaN 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n" + ] + } + ], + "source": [ + "print(your_dataset.df.head())\n", + "# equivalent for the metadata\n", + "print(your_dataset.metadf.head())\n" + ] + }, + { + "cell_type": "markdown", + "id": "24021319-f5d4-430b-8b7f-807a36f91594", + "metadata": { + "tags": [] + }, + "source": [ + "### Inspecting a Station\n", + "\n", + "If you are interested in one station, you can extract all the info for that one station from the dataset by:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0c901b97-90c4-4fae-b181-57c6778a98bf", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "favorite_station = your_dataset.get_station(stationname=\"vlinder02\")" + ] + }, + { + "cell_type": "markdown", + "id": "685625e9-462b-4ad1-847f-4d26a0cb5df5", + "metadata": {}, + "source": [ + "Favorite station now contains all the information of that one station. All methods that are applicable to a Dataset are also applicable to a Station. So to inspect your favorite station, you can:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "9c777b55-56a3-4c00-aa0e-a93bb29c4f8a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *1 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *4317 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "A total of 256 found with these occurrences: \n", + "\n", + "{'invalid input': 256}\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder02 POINT (3.709695 51.022379) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder02 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n", + "None\n" + ] + } + ], + "source": [ + "print(favorite_station.show())" + ] + }, + { + "cell_type": "markdown", + "id": "82cb6811-3fbe-4f68-863f-c6c3f872293e", + "metadata": {}, + "source": [ + "## Making timeseries plots\n", + "\n", + "To make timeseries plots, use the following syntax to plot the *temperature* observations of the full Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "be68ff53-4470-4c1c-a5a6-501b68df33ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xcV334/7/ObdNnZ/tq1YslW3LDMm7ggsGmGNNxPiQkNi0GE/gSAr9PMISej0NCKAlgSADTQiAYO6HahhhsbNx7VW+r7WX6zK3n98estlgSLkg72tX7+XjInnvn3jvvMzvtvu/7nKO01hohhBBCCCGEEEIIIcQhYzQ7ACGEEEIIIYQQQgghFhpJugkhhBBCCCGEEEIIcYhJ0k0IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xCTpJoQQQgghhBBCCCHEISZJNyGEEEIIIYQQQgghDjFJugkhhBBCiClDQ0O84Q1voL29HaUUX/jCF5odEgArVqzgsssum1r+7W9/i1KK3/72t02L6Zn4+Mc/jlKq2WEIIYQQogkk6SaEEEKIQ0Yp9Yz+HemJksPpK1/5Ct/61reaHcZB/fVf/zU33ngjH/rQh/jud7/Ly172smaHdNh9//vf/6OSi9VqlY9//ONH9etaCCGEEPuzmh2AEEIIIRaO7373u7OWv/Od7/CrX/1qv/XHHXfcXIZ1RPnKV75CR0fHrKqtI8nNN9/Mq1/9aj7wgQ80O5Q58/3vf59HH32U973vfc9p/2q1yic+8QkAzjvvvFn3feQjH+Fv//Zv/8gIhRBCCDEfSdJNCCGEEIfMm9/85lnLd955J7/61a/2W79QaK2p1+skEolmh/KMVSoVUqnUQe8fHh4ml8sdsser1+s4joNhHJ0dLCzLwrLkJ7cQQghxNDo6f/0IIYQQommiKOILX/gCGzZsIB6P093dzeWXX87ExMSs7VasWMErX/lKfvvb33LqqaeSSCQ44YQTprrwXXfddZxwwgnE43E2btzIAw88MGv/yy67jHQ6zfbt23npS19KKpWit7eXT37yk2it/6iYbrzxxqmYvva1rwFwzTXXcP7559PV1UUsFmP9+vVcffXV++3/2GOPccstt0x1td1XGXWwsb++9a1voZRi586dU+uUUnz84x/fb9unjnu2b99bbrmFK664gq6uLpYsWbLffjO31Vrz5S9/eSq+fbZv384b3/hG2traSCaTnHHGGfz85z+fdYx946z94Ac/4CMf+QiLFy8mmUxSLBYP+JgAn/3sZznrrLNob28nkUiwceNGrr322oNu/2yVSiXe9773sWLFCmKxGF1dXVxwwQXcf//9QKMy7ec//zm7du2aavOKFSsA8DyPj370o2zcuJGWlhZSqRRnn302v/nNb6aOv3PnTjo7OwH4xCc+MXWMfX+fA/1dgyDgU5/6FKtXryYWi7FixQquvPJKXNedtd2+19ttt93GaaedRjweZ9WqVXznO9+ZtZ3v+3ziE5/gmGOOIR6P097ezgtf+EJ+9atfHbLnUQghhBDPnlx2E0IIIcScuvzyy/nWt77FW97yFt773veyY8cOvvSlL/HAAw9w++23Y9v21LZbt27lT//0T7n88st585vfzGc/+1kuvvhivvrVr3LllVdyxRVXAHDVVVdxySWXsGnTplkVVWEY8rKXvYwzzjiDf/zHf+SGG27gYx/7GEEQ8MlPfvI5xbRp0ybe9KY3cfnll/OOd7yDdevWAXD11VezYcMGXvWqV2FZFj/96U+54ooriKKId7/73QB84Qtf4D3veQ/pdJoPf/jDAHR3dx++J3vSFVdcQWdnJx/96EepVCoH3Oacc87hu9/9Ln/+53/OBRdcwF/8xV9M3Tc0NMRZZ51FtVrlve99L+3t7Xz729/mVa96Fddeey2vfe1rZx3rU5/6FI7j8IEPfADXdXEc56CxffGLX+RVr3oVf/Znf4bnefzgBz/gjW98Iz/72c+46KKL/ui2v/Od7+Taa6/lr/7qr1i/fj1jY2PcdtttPPHEE5xyyil8+MMfplAo0NfXx+c//3kA0uk0AMVika9//eu86U1v4h3veAelUolvfOMbvPSlL+Xuu+/m5JNPprOzk6uvvpp3vetdvPa1r+V1r3sdACeeeOJBY3r729/Ot7/9bd7whjfwN3/zN9x1111cddVVPPHEE1x//fWztt26dStveMMbeNvb3sall17KN7/5TS677DI2btzIhg0bgEZi76qrruLtb387p512GsVikXvvvZf777+fCy644I9+DoUQQgjxHGkhhBBCiMPk3e9+t575c+N3v/udBvR//Md/zNruhhtu2G/98uXLNaB///vfT6278cYbNaATiYTetWvX1Pqvfe1rGtC/+c1vptZdeumlGtDvec97ptZFUaQvuugi7TiOHhkZec4x3XDDDfu1tVqt7rfupS99qV61atWsdRs2bNDnnnvuftt+7GMf0wf6aXbNNddoQO/YsWNqHaA/9rGP7bft8uXL9aWXXrrfvi984Qt1EAT7bX8ggH73u989a9373vc+Dejf/e53U+tKpZJeuXKlXrFihQ7DUGut9W9+8xsN6FWrVh3w+TiQp27neZ4+/vjj9fnnn/8H27bvsWb+zQ+kpaVlv/Y81UUXXaSXL1++3/ogCLTrurPWTUxM6O7ubv3Wt751at3IyMhB/yZP/bs++OCDGtBvf/vbZ233gQ98QAP65ptvnlq37/V26623Tq0bHh7WsVhM/83f/M3UupNOOklfdNFFf7CNQgghhJh70r1UCCGEEHPmRz/6ES0tLVxwwQWMjo5O/du4cSPpdHpWtz2A9evXc+aZZ04tn3766QCcf/75LFu2bL/127dv3+8x/+qv/mrqtlKKv/qrv8LzPH79618/p5hWrlzJS1/60v0eZ+a4boVCgdHRUc4991y2b99OoVB4xs/R4fCOd7wD0zSf8/6/+MUvOO2003jhC184tS6dTvOXf/mX7Ny5k8cff3zW9pdeeukzHudu5nYTExMUCgXOPvvsqe6ff6xcLsddd91Ff3//s97XNM2pKr0oihgfHycIAk499dTnHN8vfvELAN7//vfPWv83f/M3APt12V2/fj1nn3321HJnZyfr1q2b9VrP5XI89thjbNmy5TnFJIQQQojDQ5JuQgghhJgzW7ZsoVAo0NXVRWdn56x/5XKZ4eHhWdvPTKwBtLS0ALB06dIDrn/qGGyGYbBq1apZ69auXQswNUbas41p5cqVB2zb7bffzkte8hJSqRS5XI7Ozk6uvPJKgKYn3Q4W8zO1a9euqW60M+2bhXbXrl3P+fF+9rOfccYZZxCPx2lra5vqrnmonrN//Md/5NFHH2Xp0qWcdtppfPzjHz9gcvZgvv3tb3PiiSdOjZXW2dnJz3/+8+cc365duzAMgzVr1sxa39PTQy6X2++5fOp7AKC1tXXWa/2Tn/wk+XyetWvXcsIJJ/DBD36Qhx9++DnFJ4QQQohDR8Z0E0IIIcSciaKIrq4u/uM//uOA9+8bkH6fg1VnHWy9fsoECYcjpgNVcG3bto0Xv/jFHHvssXzuc59j6dKlOI7DL37xCz7/+c8TRdHTxnGgSRSgMS7dM3Wwbed6dtVn+ni/+93veNWrXsU555zDV77yFRYtWoRt21xzzTV8//vfPySxXHLJJZx99tlcf/313HTTTfzTP/0Tn/nMZ7juuut4+ctf/gf3/d73vsdll13Ga17zGj74wQ/S1dWFaZpcddVVbNu27Y+K62B/76d6Jq/1c845h23btvE///M/3HTTTXz961/n85//PF/96ld5+9vf/kfFKYQQQojnTpJuQgghhJgzq1ev5te//jUveMEL5iQRFEUR27dvn6puA9i8eTPA1AyVhyKmn/70p7iuy09+8pNZlUlP7ZoKB0+2tLa2ApDP58nlclPrn1r5tG/bfD4/a53neQwMDDyH6J/e8uXL2bRp037rn3zyyan7n4sf//jHxONxbrzxRmKx2NT6a6655rkFehCLFi3iiiuu4IorrmB4eJhTTjmFv//7v59Kuh3sb3LttdeyatUqrrvuulnbfOxjH5u13TNNoEHjuYqiiC1btkxVCkJjsop8Pv+cn8u2tjbe8pa38Ja3vIVyucw555zDxz/+cUm6CSGEEE0k3UuFEEIIMWcuueQSwjDkU5/61H73BUGwXyLpUPjSl740dVtrzZe+9CVs2+bFL37xIYtpXzXSzOqjQqFwwORRKpU64DFXr14NwK233jq1rlKp8O1vf/uA287cDuDf/u3fnlVV3LPxile8grvvvps77rhjVmz/9m//xooVK1i/fv1zOq5pmiilZsW9c+dO/vu///uPDRloVP49tRtoV1cXvb29uK47tS6VSh2wu+iB/q533XXXrOcBIJlMAjyj18orXvEKoDGT7Uyf+9znAJ7TjK1jY2OzltPpNGvWrJnVxkKhwJNPPtn0rs5CCCHE0UQq3YQQQggxZ84991wuv/xyrrrqKh588EEuvPBCbNtmy5Yt/OhHP+KLX/wib3jDGw7Z48XjcW644QYuvfRSTj/9dH75y1/y85//nCuvvHKq2+ihiOnCCy/EcRwuvvhiLr/8csrlMv/+7/9OV1fXftVnGzdu5Oqrr+bTn/40a9asoauri/PPP58LL7yQZcuW8ba3vY0PfvCDmKbJN7/5TTo7O9m9e/esY7z97W/nne98J69//eu54IILeOihh7jxxhvp6Og4ZM/dTH/7t3/Lf/7nf/Lyl7+c9773vbS1tfHtb3+bHTt28OMf/xjDeG7XcS+66CI+97nP8bKXvYw//dM/ZXh4mC9/+cusWbPmkIxJViqVWLJkCW94wxs46aSTSKfT/PrXv+aee+7hn//5n6e227hxIz/84Q95//vfz/Of/3zS6TQXX3wxr3zlK7nuuut47Wtfy0UXXcSOHTv46le/yvr16ymXy1P7JxIJ1q9fzw9/+EPWrl1LW1sbxx9/PMcff/x+MZ100klceuml/Nu//Rv5fJ5zzz2Xu+++m29/+9u85jWv4UUvetGzbuf69es577zz2LhxI21tbdx7771ce+21syYRuf7663nLW97CNddcw2WXXfasH0MIIYQQz54k3YQQQggxp7761a+yceNGvva1r3HllVdiWRYrVqzgzW9+My94wQsO6WOZpskNN9zAu971Lj74wQ+SyWT42Mc+xkc/+tFDGtO6deu49tpr+chHPsIHPvABenp6eNe73kVnZydvfetbZ2370Y9+lF27dvGP//iPlEolzj33XM4//3xs2+b666/niiuu4O/+7u/o6enhfe97H62trbzlLW+ZdYx3vOMd7Nixg2984xvccMMNnH322fzqV7+aqt471Lq7u/n973/P//2//5d//dd/pV6vc+KJJ/LTn/70OVVm7XP++efzjW98g3/4h3/gfe97HytXruQzn/kMO3fuPCRJt2QyyRVXXMFNN93EddddRxRFrFmzhq985Su8613vmtruiiuu4MEHH+Saa67h85//PMuXL+fiiy/msssuY3BwkK997WvceOONrF+/nu9973v86Ec/4re//e2sx/r617/Oe97zHv76r/8az/P42Mc+dsCk275tV61axbe+9S2uv/56enp6+NCHPrRft9Vn6r3vfS8/+clPuOmmm3Bdl+XLl/PpT3+aD37wg8/peEIIIYQ4NJR+LiMOCyGEEEIc4S677DKuvfbaWRVJQgghhBBCzBUZ000IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQkzHdhBBCCCGEEEIIIYQ4xKTSTQghhBBCCCGEEEKIQ8xqdgBHuiiK6O/vJ5PJoJRqdjhCCCGEEEIIIYQQoom01pRKJXp7ezGMg9ezSdLtafT397N06dJmhyGEEEIIIYQQQgghjiB79uxhyZIlB71fkm5PI5PJAI0nMpvNNjkaIYQQQgghhBBCCNFMxWKRpUuXTuWMDkaSbk9jX5fSbDYrSTchhBBCCCGEEEIIAfC0w5DJRApCCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xCTpJoQQQgghhBBCCCHEISZJNyGEEEIIIYQQQgghDjFJugkhhBBCCCGEEEIIcYhJ0k0IIYQQQgghhBBCiENMkm5CCCGEEEIIIYQQQhxiknQTQgghhBBCCCGEEOIQk6SbEEIIIYQQQgghhBCHmCTdhBBCCCGEEEIIIYQ4xKxmByCEEEI8E/WwRjksUfaLZOws7U5Xs0MSQgghhBBCiIOSpJsQQoh54f78HTxSug+A5YnVvKz7dU2OSAghhBBCCCEOTrqXCiGEmBcUaup2oIMmRiKEEEIIIYQQT0+SbkIIIeaFSOmp217kNjESIYQQQgghhHh6knQTQggxL4TRdHWbRv+BLYUQQgghhBCi+STpJoQQYl4IZ3QpjXTUxEiEEEIIIYQQ4ulJ0k0IIcS8MLNLaYQk3YQQQgghhBBHNkm6CSGEmBfqUX3qdqTDJkYihBBCCCGEEE9Pkm5CCCHmBXdG0i2UpJsQQgghhBDiCGc1OwAhhBDiYILBAso2wVDYykahAIgZsSZHJoQQQgghhBB/mCTdhBBCHHmiAB1GBA/sbiyiGTlucGrW0nF/lFCHmMpsZpRCCCGEEEIIcVDSvVQIIcSRZ+896N9+AWh0I61b7lTCbZ9aWJn7uIQQQgghhBDiGZJKNyGEEEcUN6xznXsv5tIULe4jnNt/MlWzSlchRs1y0ZaFk25lwh8nbWWbHa4QQgghhBBCHJBUugkhhDiiTNSLFK06E/EqOxIjAFRtn+EWl1IKSqbL7sJu/vXBf8ELvSZHK4QQQgghhBAHJkk3IYQQR5S9QwPoyZ6krtZorSlbVayw8ZWlLJN0MkElLLB5YnMTIxVCCCGEEEKIg5OkmxBCiCNGFEYMbetDNSYpRSmohnkK8QqBGYEbTm2bjMV5eOThJkUqhBBCCCGEEH+YJN2EEEIcMXS5Tlm5U8umqSmFg4zHiuTqabQLw6UxhktjxLTDD578QROjFUIIIYQQQoiDk6SbEEKII0Y0WKRsTSfdxvMOE8EITmhTC+qMRnnaU610ZdrJJbOszK7kJ1t/0sSIhRBCCCGEEOLAJOkmhBDiiOBGLgNuH25ugihqrOtqd3kgWaA/M4abDigH1anJEyJTc3PfzfxkuyTdhBBCCCGEEEceq9kBCCGEOLrpyVkThuv9/DL7m/2uBvnr7anbZbeKH/gk7DiO2fgKG6gMzFWoQgghhBBCCPGMSdJNCCFEU5WCAj/Y+3U0+oD3aw0KTcWrUS1VsRMhJCBmOOR8h/5yP27oEjNjcxy5EEIIIYQQQhycdC8VQgjRVNWwMp1wi8BzDerTw7qhFHi+jw5CrLqJP1ok+9gw9eExFrkpTuo8ib5SX3OCF0IIIYQQQoiDkKSbEEKIphr3Rolps7FggBOLKI471L2IaHJwN8dx2FMa5o7Cg8Rsm+KGLpK9XWzPVbhv6D76y/1NbIEQQgghhBBC7E+SbkIIIZpqV20rrgpnrfvlXW1c/au7KLmVqTHfNg1uA8CoeVPbOaaNjUXezc9ZvEIIIYQQQgjxTMiYbkIIIZqqEpYbN7Ru9CUFdPpubHsL1z84yNruZSigvzgEgFWe7nsaM2xKVNhT2jPXYQshhBBCCCHEHyRJNyGEEE1lYREve9TTztQ6XxcBKHslHtxcIHJGsZTDBitGvB6yL+1m2TbUZAZTIYQQQgghxJFHupcKIYRoGq01o97QrIRbbFeeY/u2kp3IksXCJ4LQIDBcHomKuHtL5O7fi7NzjFQsCcBoZaRZTRBCCCGEEEKIA5KkmxBCiKYJdEDI5HhuYYTyAsJcnL1tBYqtReqEmHYJQ7mYgcLxDOqRTWF9N0YQ0RUl6CqZeLVycxsihBBCCCGEEE8hSTchhBBNUw9rU7c77tjN2a/6Dqf9+Q8ppBvrctomXXgBkR0SWhrfjtAPjmNVPOprOjn2mOMZzoT0VWX2UiGEEEIIIcSRRZJuQgghmqYWVkArzJEqZl+JCKgbIUYIuaJm9RN1PvSTn6GixvZmqAgNi6jgA5Bw4igUBb/UvEYIIYQQQgghxAHIRApCCCGaphpVQGnCziRx38cAynFwYwo3BgaaxaOwYtDB9E0yNZuE6+M/MEK8EpHvhXOTa3mouocwCjENs9lNOmKVf38HA1d+CCOZInXmGfT83d81OyQhhBBCCCEWtHld6Xb11Vdz4oknks1myWaznHnmmfzyl7+cur9er/Pud7+b9vZ20uk0r3/96xkaGmpixEIIIQAe3D3BJ37yGD+6bzu18RT2jgKlgkHNtBnIJKe2S9cAZXHug4t44WNdvG7oRRzfcQGd5WOIuuIEvke9O8kEVcbr481r0Dzg9/cTDA7hbd9O5fd3NDscIYQQQgghFrx5nXRbsmQJ//AP/8B9993Hvffey/nnn8+rX/1qHnvsMQD++q//mp/+9Kf86Ec/4pZbbqG/v5/Xve51TY5aCCHEzZuGueb3O3lkeC+Jtgr+yhZ6B4e5acWp/Hjj61lcbqGn3k5a9VJwLKxQUzVbWNF6Bqs6Tuf53vMJOhKk29rIxlLEtc22/LZmN+uI5m6f8fw4zsE3FEIIIYQQQhwS87p76cUXXzxr+e///u+5+uqrufPOO1myZAnf+MY3+P73v8/5558PwDXXXMNxxx3HnXfeyRlnnHHAY7qui+u6U8vFYvHwNUAckbTWAIx/69tU7767ydFA8rTTaH/LZc0OQ4hDavdYFdCkU/7UulpRsbWrjb+JlrBsz1UAPBx7iAfW3ABAue0MOuwWAMzQIFmKU83B8vYl1NVt/GbPbzij98Cf7UczrTVKKcLh4al1QV9fEyMSQgghhBDi6DCvk24zhWHIj370IyqVCmeeeSb33Xcfvu/zkpe8ZGqbY489lmXLlnHHHXccNOl21VVX8YlPfGKuwhZHIH/PHna88RLMbBYsC6ujoylxaM/D27aN+pNPEtWqdF5xRVPiEOJwGCq6bDgmzwlrCxBGuL7Hla8ZxYv+lz/fejIBASYmx6sTCLIjbCneR9rM0KcD2pXCwsCqN4q1Y5aDQrG3tLfJrTryDP3TZxm/5hqIGjNRJF7wPszcClAGtSeGSBzX3dwAhRBCCCGEWMDmfdLtkUce4cwzz6Rer5NOp7n++utZv349Dz74II7jkMvlZm3f3d3N4ODgQY/3oQ99iPe///1Ty8VikaVLlx6u8MURqHLbbSROOgl361aMeBwznW5KHFGtRlQuE5XLeDt2NiUGIQ6XzqxFb2edKARDa2rVKjXTRxmK5SzBwiQiItA+hm4k17J2K0vU9NdWzHOAKgCrdSeDlYFmNOWI5u3eDVFEfONbUbEsZutqlBVr3Ld3VJJuQgghhBBCHEbzPum2bt06HnzwQQqFAtdeey2XXnopt9xyy3M+XiwWIxaLHcIIxXxTvuVWKrfeCsAxv7sVq7OzKXF4u3ez7cKXNhYmu7wKsVA8MjjI/zljAgBzT42fPvQzyMCrR8+jpupY2iRBHMeI0RLrhBKkMditA7IYGGh00ULlbYrGBCPJGhlXZi7dj25UuJVOXke9JaSWGWXVw70QQTCRb25sQgghhBBCLHDzPunmOA5r1qwBYOPGjdxzzz188Ytf5E/+5E/wPI98Pj+r2m1oaIienp4mRSvmA394BAAz14bZ3t68QJRq3mMLcRhprbFj5anl9HiJ0NS0+i28dfS12E/5anKMOBUzwRozyTJl4WmNowwyoc1ozidDmpSTYKQwOtdNOeIFIyOAwd2v3kLoRKBh0fZ2kqU44Wil2eEJIYQQQgixoM37pNtTRVGE67ps3LgR27b53//9X17/+tcDsGnTJnbv3s2ZZ57Z5CjFkUoHAT2X/i3KdhpJr0jP8zl+hTjylN2AE47N4/sQ311k9VfuoP5G2FBfvl/CDcAx4wzFujlG2eR1RCF0WW4liFemZ+Bst7MMMDw1aYCAsFik/tDDWEuOY2atbKWlTrIUJyrVmxabEEIIIYQQR4N5nXT70Ic+xMtf/nKWLVtGqVTi+9//Pr/97W+58cYbaWlp4W1vexvvf//7aWtrI5vN8p73vIczzzzzoJMoCLH9TX/G4rd+BAAdBkSFGmZ7c8Z0m0W6l4oFZM94lY6MT2r7OIlyDbsvT2BbZCsptjt7aAty7HEG6CZFtxFD+Q6us4YsCpSipDUPFR8mN7qYtt1ZqkmPRDKF0oqCWyAXzzW7iUeE2iOP4qxdi9GxjshqdDNFgR8LAYhqYROjE0IIIYQQYuGb1zU8w8PD/MVf/AXr1q3jxS9+Mffccw833ngjF1xwAQCf//zneeUrX8nrX/96zjnnHHp6erjuuuuaHLU4UmnfJ7lsA2Gtgg4DtA7RZbd5AUm1jlignhgewgnBIcRyA/pbFSsGHJbXe1nlLSUXZfhu18+JB3F0tYNWu5Mge8zU/oHWPDlxL7WiTTXj4lkBx+XWohVs235PE1t2ZAlGhrHaWnFNY1ZVYGCHRF4V7deaGJ0QQgghhBAL37yudPvGN77xB++Px+N8+ctf5stf/vIcRSTms7BYJH3KCzDiSZRSKGUR7holGi01JZ6oWqXr7X+Lu+NJtJKKFLFwjLrDmDGX8jEdtDzwCP/1vGPZuWgLqf7E1DZBUCE5OIpuy+Irg5NMqKFxgHR7AvaOUBjcQ+t4ioFV4zj1BN2JZTy8+y42rr+geY07QvjDw5RvvZ+h3CJ0zxICczrBNrqoQOeeFhLVVBMjFEIIIYQQYuGb10k3IQ6lIJ/HyrahlCKoFHA2rEIXami/SQmvQJPacAqpDafgDmxrTgzisNNhiDKPrlk3++v99HZrjIpP7vFBSt05ADLRdBIoO14lqoxidawjDryR7NR9ZsoGwAvyrH3oRIaW5YklItZ3nsfDA/fOZVOOWGPf/S/c7Hk8cNl9QHnWfQPrxnA8kw235JoSmxBCCCGEEEcLSboJMSkcHcO0JittTI0Rt4mqXtPi0Z50L12oqvfdx56/vBwdhjgrVrDqv69vdkhzShtVaoMBHZUSyd0FKsvbAHAim93OABWjRqpYRLvTVaY1IgI0FVOhu1NkWo/DrQ8z3B+RGkqRT3l0t0bctr05lalHEq01pV/fRu3CVRiBIrKmx4Q0fIURGhihAdjNC1IIIYQQQoijgCTdxFEr8jx2velPMTIZnCWLSZ7xQkxzceNOHWGt7ISVnU2Lz922G7250LTHF4dPMD5OVKkAjUq3o00iVSXRZlGJ2oiNlPFijfVLvG4W+R2UVYV1e3wiXaRf1YjrGGNoYkbAsjUxdictQh2n6m2jM6zTVzXRyqJuRkQ6DVEExrwesvSPEoyNEVu2hrHY4FTCzfAV2ZEU+d4ykR1STZbQrimzvQohhBBCCHEYHb1nJeKo5+3Zg7tlC9U776Twk5+CZxJUioSVIire/Hy0nAcvXFG1ioo1Mk3etm3oKGpyRHMrChzCQRe7v0x/vJ2kauGc4XNQWlMO8li1Iq9mA0auhV6doA2DbhS9ZkRrulF9ajo5apGixemgpxYj1uKC4RImutEDA01uYXMFAwO4W3cRpDOYtcbXfGRrQns6wRsmLIzUUka++msqDwzj7io2K1whhBBCCCEWLEm6iaOWv3s32mucwCutsc0WrFQWM5lBxWzYeStsvQm0fpojHX7Nj0AcSn5fH9qdnBk3ivCHhpob0BwKwohMroDZE8MOA5ZURnmJuYQPjf0feoJO0laOZDbN4pecT2n9+qn9shhk41XMsPGeNawM6AL1oExuKEOYDuhpj2ixlzKw7f5mNa/ptOfh7d6DsuJUcnXCxHRCN5GfHjswcEK0jvB2xZn44SbGf/BkM8IVQgghhBBiQWt+OY8QTRIWprtuLn7zW0gO3ocG6oUq5vLR6UzXktMgnpv7AKXUbcGa+doD8HfswFm0qEnRzK2RkotjTyaCvIit2UU8Na1smiFhGNKnfN5LmZdjs+6YNjZkA1Z5BUBjOmkA+qvbaBtdTrzsUIr5LGpNcVf/vbyWi+e2YUeIba+4CL+vD3v1S6inpsek3PjLY4j9/kbGP7WOAJ/A8kFrNJPdS4+uYkshhBBCCCHmhFS6iaNWNCPxYcTiAChAqRCrMwXKBNOBYl+TIpymkATcQjLrtZfL0ffX72fz2ecw/t3vNjGquTFSqU7lk+2aRyqu6AizhDOyPv/rxjBNk7FIcfziOCvPWYlxTBfbu1eQtxvdci2nFcNaQS2KCMcr1NMetq3JpCtsrhbgKBwrDyAsNrqJ+i0Jiu0V4kWH7ESS7r0h1kP30RPrJbc7IlGJowwTHQWgIsyc0+TIhRBCCCGEWHik0k0c1ezly/F37cI0Z6xrMTGjxiD3OK2w+3bov2/ugxsoAudNLkgH04Wi+ItfgGlhLlpEODKMdmvoWqOrqfHYo1S/+HmsJUtxXvf6BVntOJovQ6pxO9QOXWtXscvwKeORJMZeIjYTUggVuwMbN5kl1pZuVKFi82TbcmoqgeW0EEVlikGZleEKnMEYJW1Sq5qMaR/Gx6Czq6ltnWv1TZuwOjrwikWq7ZAYCykvUsS0TSI1TtkrUfDGKS0zsOuNzzhlmKANvN0ldKRRxsJ7zQkhhBBCCNEsknQTRy2/vx89Po6da8EwFfsSW8qekeDKLga3CIE79wG6eZic1fFIGFdOHBoj//KveDt3gm2DjtD1yYRbLEZm0SLMeAxGR8D3wVl41Uf5QnEq6RYvFvFjWV5cOB0Dg20EXEqFRSrg1Z5FITJosRU1LyBhm6AUo+l2LN9HpWys2LHsLd/G89tOw44pYq1VVvmK2zeHUCgeVUk37XmUf3sLwcgIANXlrYytDgBYsbMHu1NhLerGigxQEFohWmuIQjAN0KDrASppN7MZQgghhBBCLCiSdBNHrbBc5pi3vwWgcfI5xYLe04lWnoMefBgzbELCDUC6lC5I+8ZzM5JJDCskGK8AmuwxaxoJt0lRtYay7AVXeVSoVqdum/WQzsxrppZrACgGQps7yikedh1ekE6ScKxZiefAtrEWZ1GPLQJsqkGJeMWh0lrHsTXjeI3E5Zo1c9WspnO3bmXk85+fXm612XchIRnEiS1ehJVswwwBCyJL4/f9CjO7HrNlCQBRLcCQpJsQQgghhBCHjCTdxFFL1+rTC6pxeqqAPr/GJQ/8A/79n+JfXvQvvODkS5sT4Pg3oVn5vmdpyznnEpZKKMNg3X33NjucI0pYq7HlzLNAKayurqkxt5wlS7ATFYLutXRd+n7qN39v1n7+rY9jnngM1oqOZoR92HheHX88IlUsYVWnK/n6cfki/tTy58oZAuCV8ekkUGe+n3yqDSsKKCZslNmFMrsYre+GsSypRIJBKyCybKhU5rJZTef392OvWE5UKkM6Q9jWSnKiihEa2JWA7+S/T+1EjxUBU9/8odqC3lsFNPbS1YQlD6s90cxmCCGEEEIIsaBI0m2hGxqEu+5qZJNa2+CFZzc7oiNHrTZ1U2uNMTl+VlLbeJFHa7yVifpEs6KbV4KxMQhDNBBVqxjJZLNDOmJExSK63kjw+rt3Y/b04CxZQmzFCsza4zDRRlSroDXUR8ewUklC18NoHUdXvac5+vxT0XVSbQZeWwvWvWMMsYPhRMD9gcN4EGHrVuJo6hjkVITn1vHyPr0xiy6vQjXRQtwvUyCDYcZQRhKtNBEhlfYaGaAllgR/4T13f4g/NIS/cxcAre96L25rhWpr43V31Y7vsccYxFlW43JfQ2PeGJzTT0U9YWBklxIVPcKSf7DDCyGEEEIIIZ4Dmb10oRsZhYF+6O+HbVubHc0RQ2/ZTG79iVPLxowB65M4+JHPcHWYW+76CdFROgvisxI1Zp5U8Tj+6GiTgzmyhPnpmUrRmnBggNo996CUg7P0VNKnnI0yDeKtOeId7ViJyUqjWgl3207Kt9/enMAPEy+YTnbbdYtuVnJC7Ri8oJUh3Y6PIlIKA8XlLSVWdeVwcq3ULYc1o9toqU1Qs9OAxmxxMO3VjNT7yXrTid6KYYIfHFUzmE51W47FSHl5Qnu6THaTu5P+aISdyTJ7i3sxI5s2u4Mw6eAPbkf7BYxMSFSTpJsQQgghhBCHkiTdFrr69Akuvj+VHDla6SBCuwH85mZSzoEnJ0hiE48aRaDbtz1CYXhwLkOcd7TvT423pet1ovHxJkd0ZAmLhf1XGgbxFeuJr72I+Krj8MeGYMbYgbFcC6ZfRZVrDH3ms3MY7eGltSYwptvZF18ydbuoG1MIP8/xeHhlP5/y4PXtGmU23ou2jtCmQ1tlnGosjdOeINNpo8wehmo7SbnxqWOlEg7RyBBMduVd6LTWBINDACQWLSLjh9RjjUkUiKAQlqa2fYR+QsNn3B/FXH8M4fBelN1CVDIJxuoHOrwQQgghhBDiOZKk20I3c1yjMDyqKj8OJOwbx/3fxw86G6hHiEfIR4JzAHDtiNHdu+YyxHknmtFNF6YrbkRDdIDnI7ZsDfFFxwABUCUa2kFq6VKgkUCpj4yiQpe4N4yVbZ/bgA+nuk9q8RiRGzFesHmseMLUXUUUOSPkBYk6P9/wSqw3buT2Ey6Yut9G4fccSyrRScotgWGw5hhQZiuLezcwMVImkY+DhpZ4DDeow/hYM1o558av+Rb5//ovAMx0ikhDKVdDBdDZl0ahMCe/7uszZmLWq5ZgdWenlqPCPBlEUgghhBBCiHlCxnRbSLSG708Oxu44cMFLwX1K5UK9DvbROztd7YknsHX6gPOC7m73ueV4D0NDbLSTzvscHF9RnmjSibuaH7NWRrXZrzFJus0WzUh8K6uR+EiuWz+5xmLil9/D37mVtoteBkBldx/KUI3x3TocsmddONchHzZRzceMexgxg3gYkvAMnsCnbhYYVTVW2AmWLF1EaJgopUBrUoFPPHRZagQQWWSUIu7XMXyfSizN6twgZmoRQ4UygWeQHErRYUa4OiBxlEymoL3pZFn8uDP5wUYfve+Smlmn1+hkQpfoMdrxvemx7sK0jZWNEdX6UYaJ1gtr0g4hhBBCCCGaTZJuC0mlDMqA0mSXqttv27/Sw3Uhk5n72JpIa43/wG6UbUIphERAZDoYYePkMwhDNJqdiRrVeONMNWgxGWn1MAyLyoRMpvCH6HoNe+VKgqEhzFSKLakRqqM3UY9qnNF6Dlm7tdkhNpW7c7pSUgcRKKhtfZIWfxQjEcPt34IFVPb0YdgWxSc30XrSCSQ62tHaIyrkiep1jHj84A8yT+iaR1BKEA1X2Usra7E5DhvCDmrOZhJOK7FFS2clnCu2Q9WyOY0C5OLYlTqYMczAJwo1qS4bM3QoDoxjdTj4BiwzHeq1NogOXNG60ETlcuOGYWC29FDq6GfqyoLt0RcNA7At7OPY2nKK1QopO40XeVh+DWW1oew4Xl/pwA8ghBBCCCGEeE4k6baQFEvTCTeAvX2zu1GmUvtXvh0FtBcQjZQg0ljpNpRfnUq4AVhmYyyphBMDJgcSNxTdsRzxLocv5r/LF772H3Med+hVCPkWx7GMv05cRMucR/AH+D4MD0F/P9HWbfg7dgAQVKs83jNOrdwY1+3Y1PFHfdLN2/qUCUw0eEP95E2H8VqB7a0ex6kOUksb45uN3nMfQblM6OZQyQyp408iGJ/A6V3UhOgPrcD3SHUXARt7b0QSxTgRLSiGvRzL2zOQalwU0FqjAKU18SjEWtJOsHsCfFgSBTyUaSdRrxDryRIfN7g3uJmza6eiDY0VWrgj/dC6rKntnSvhZEWf09aGhzmdcNNg+5o4DnU82lQLVXyyyRSgKQdFMl1dRG4BCAG78bzPkypbIYQQQgghjnSSdFtIKuXZy08dt6xSaVS6HW1q/lTFi9IRRI3EWqQ0SoNCESpNKTk9yUQ9afLGM14FwK1P3kV+58ich503KxRTATsYZ329l0v5P3Mew0ENDcLPfwaAHhgksgyMoPH8BSoEGonMQphvUoBHgChAYxCM7D8RR1At8Y3ij/mh9yt4Ify/kSWsmbzvoe46Z5VKmLEYhB4q9IhG87AAkm5eUJv61vE8g+MxacNgOyF54rwgMWOY0boPCQcNZCq7UI/fSuz8D4Bj0vOzn7DDPJZiKoe7chXZ2DDm5pCwHCPqrkAspBpyVHzeac8jKjUq1BLdXVSYnsV15YDJSx5L8TEnwFCKcV3AqptT95eDAlZbG/Xto1jpbsIxH+2GqLj8NBBCCCGEEOJQkF/WC0m1ColE40TzYLOU1hf+SehTaT/ELOzBKuwGphORjyz1uHOd36gK0aA0jUTlZJVHFIYEOiKXyOKque92VdbTSdQjrpPcyAhYFoQhkdbc/y8XU1uSA60xZ7z0/Mg76CEWvN//M+72PmoPPrLfXY8thR/WbwJDceGxZ9P/wuV8nTKnb3IYv88jqFSnN66XCQvOHAZ++Lh+fepbRwchELGTgO2T97dZEK+V8U2bhF9h3dDNmPnbcbxxHl0EAxNrQBnoNX2o3SZLd2YY6V1Gobebrq5VlKtmI+VkQF0lj4qk294P/v8o3XgjALmTT2S7E+KUbRzXpK0aYmhFl04xplzqeEzUi/RNDJBNZBizRzFbc+j6dIV0WHAxJOkmhBBCCCHEISG/rBeQ0i9+SaYtN2td6PmobBajPjnD5FHYvRQ/RAUuCs2NJ9eoOprQhEVjxvT8vQridajZGtvT+AkDAxMHk5UdK/ny5d+c87A//JlX85P09qffsBk8D1pbYWQE7bqoELTTqKAJZm52tCbdtEZjMXz9w6iYiXYbswZbrUmCikchDa3liHwKsrEUmAYhsMmZYHO6wlljRVL9A1gt7QTBIDqXbm57DpHNw+OwvHE77oV0YNEBPK5deo2AVSmDeqLR1tUjd7Go8AQT0Ta2rexlqGsJ/tD9BIkWgngc3b6Lzr3HQKSJ+zV621ewdyRgrZ1CxwLK2TSkU81r7BwJ8nmMbGMGUqe1FTcWoe02LPck9sSh1DvEspEcq5xOdvl72a2H8KMQ1/MouAVUro2ovI1gdDOxlSsIKz5H71Q7QgghhBBCHFqSdFtA/IF+aoGHk8tNrRu67XZa3vo2UoWJRgVX/ehLuukgZDDn07eozmAuxLUBDWV7djWgZwGGwk9Mj2fkBi6mjrjm9n+Y26CB3BlreV3LMYxWxgm3N3+MpVF3iC3lJ5jwR2llnDV1l04sonic6uJYY6MQEoFFLdZIvfn6KE26hR5B/250pBuTJ0xqO3s1Y7/ZRl+Hy0TWaHRtZvr+DlIM23XsUo3UZHfS2vYnsZYsjLHJdo8Nk/TH2NXWS6Ka4xFVI6Mt9mifcSxMczrdY0UlzPKDDPUuYdOqN2PoGPHaVlzHQnkrscwse3u7CO04aa9CT9tS7q6NsjY3hlm2qFp1GB5uYmsPP+15KMDq6kTZCYYrvdRTIemJHmx6wIJqNskrBldztjqfn9tP8E/ef+KHPolUjFpQp7Ykh9maw+pYS1iCqOw3u1lCCCGEEEIsGJJ0W0AS3d0kOtoBePJfvowOQzAMYjt3kiJCKwW5Vsa+eQ3a8+h85+VNjnhu6LrPlvYRNi8KZq13E7O3Cy3QgUZZ0wmukfIEWT9OaM597YdlOfTmcvTmugl09el3OMy2VB7n4dK9AOzphoGY4jV3GXiVAtg9jY1MqJnTz7MXLvzufQfkV/FGK+zdU8PqyDD88saIbStPWUr2/DfhPfJNYCdJJ87iXM/UbqNGlfGMIijP6FpczkNgshAUCmOoU9rpxGX5VpvjdYJiOMGm4gO8vGsjxyVD+ia3jVf7wS8x3noZ2dJZAKTKGissoXleI2GZa2xbTmRJtC3hiQcrvCDtQ9JnjBh6W0Dz09WHT33LFtxNm4hcA/P8s4kmOqkd04eXUtiNuRVQhs1rovVExVGWdy4DD8YredZ2rQSg2pXEGNiNNTlkYFQLDvJoQgghhBBCiGdLkm4LwcMPocMQy2kkhoJabSrhRhSRv/6/af+LN0OljH/ffYx86zsAtF92KUY83szI54Su+5RiTzmRnDF22z4qBLwQrEafU8vX1L06OR3DDA3mWqjDOX/MP6QSzJ6oYySn+fcLq6RP7UTb+yeFFApPH6VJt6BGkK9z/fkvY81fZadW/zCIeNPWBJVYY5S+VGx60Hu05klngoGuGO/7Py4/rtWwHAc7kyEqlub9rJJaa6r1Evs6fKa8xtdPLSjjaE0yCmYlt+Nrz0D1fZOI6fdeYHdhRGlCQxNQxZo8mopCvGwXXrWftic6yB8zRqnHpbjbP7Jm/T3Eag89RJjPk3jZZzGtDKCop1yUnh4D0LViRFpjENDqNqoqK15t6v56R4J0Yvr9K0k3IYQQQgghDh1Jus1nYQjf+85Ul1ErkyHyfXS2h6Ufuxqvfxej1/07YaVCWC5hao0Rj03tHgwP4yxbGN3Wno5rPqXL1IGSF2GIOVojXDaZvLQVu8b2sjrbxVte8LdzEOVsH/3XS8gsaZ/zxz2YUE+fjFseBDagIMgkmTmSm+OCFwONxo2Ovu7MAPg1zJWX8ILxH5PfuxR3URYMRd00+M81m0gnV7F6R0BkglX2CNIOKMXxleO5ZMcrKJlVxlWSniXbMNNpqnu2kA4uRNnz9yM7qrgoY/p9OOJD1RzDrg9xSnkHFxz3PIpeRK6WJ1Im8Q0noO9eRBRrQROhMAisDFolCKwxIgLCoYh4ysEywa7maUvGGKiaJOsmiVBRJljQSTf3yU3Ejj2WSCmsyc80gwhqcUJcTGKgDELTxogCWlWaU6xjsT2bgcIwSimKySqpWpFgbCsqFodweZNbJYQQQhyBbvglDA+BbcPzToFjj2t2REKIeWL+nsEJ2LsXYnGo1xtdqJRC2TZaRVi5dpTjoD0PM5cjCkNMw8CMx+l60bkU9w4QjI8fFUm3YO8Q2fYY4zQSQEaoCAIfIzb75a8dk91jCbo6bHLB8RhRgj9LnI058G0e/vUH5zzuWTN/2nNT4XT9/X3cuWOc0ZLL31y4lvW9LXh9fUz8139RPCkPqzMABDMm04yHceo0quDMsJFw2+eoTLrtuQuGHmJQHYeT9XAXN9I+gedj2Rauclme6cRcZxFPxRsJt0lBPGDz2XvxnYDKWIzOMYXpOJRuvhnn56vIvebiZrXqj1fzKUUuSRovkKWezaKwnT3xQYxqD2ldZDSVIp/IgdbY2RRq4lE81YaarHaLIoXSDo6q4qkqdvsiNOADvh2jI1VEeyZhOqAGTFQiFjervXNA2RY63UYs1nhfRkSMdwVY2gJfT017vCOoka4oxqqK+9uepMtv5/ktzwNgW2kLK45dhUo2ukAHE7UDPpYQQghxVKvVpv/l882ORggxj8x9nzlx6PTtgUIegKoVYyDdRd7JULMnBysLQ6JSCX/PHvzxCTSglKL95JNQ5RLh2FjTQp9Luu6yt206+ROZmvyuMpHW6Ml/0Oj+FmTbsZM+yepxJOpriOIrOY5lODqa83/GjDybYc5N0u2rt2zjh/fs4X+fHOaJwSIA9Ucf4+47fkM+NvlxMXkiv+95yyfKJFwTNIQzepnaONg4HHXGt6In+thUqBC2xHFGKugowrQtUAptKmiJs6RnER3pHHZt+m9bStXYu36U4TV5tq8fp1wPCD0Xb+dmCtdd18RG/fFq+SppMyCa8PHrBpbXeLGUagXQAQSawGgkwk0doup5ALQy0TS6Wms7R2Rm0boTL1kmoo4OXNARMbdMwjYo+NPPZ7XuN7qSL1Cl//0N4d46oV8lIsKxXbyEiaFjGNom0hpKY3Ql2+nNWHj5URI6Rtyf7sa7vbCNHaOPTS2HBUm6CSGEELPU6+DP6DVTHofCboiOrKFghBBHJql0m88qlambmztWsaO7Uebc6nucUc4T+h5GWzvR+BiR684aUNyMxwkn8nMbb5NEtRr+U4YcW5e9Aj1ocNWjr+DtL3lTY6VWHNuziJouAdM7ZOpLiNXmfiKF1yXT3LtvYY7yBuGMCV33jjcSlfXBPvr/6Zyp9ZEGQzFrfLFabP8fHT4e4/7I4Qv2SBR61Aa3oHU3Y4GJvbodrzOFF3jo320hcc4GtMn05Q6l8BPTf9xoxoy6bsan0p6kJdWJMk2iYn5Om3KoFUouUTzCaLUxiLAnx3TzwjqQImZGBGZjnW0YUBvFM1O4zmrUjPcjSoE28OxRYuZKLBpj5rmxNKevH8KoT489WI8iiCIwF8ZEFE8V1UJSL3rn9AozQBHD9juByV70mXZ8s5H8dnQ/PZUV9Ns7pnYJ8HlE72DV5HJYlKSbEEIIMUu5DBPj08uDT8I9t8GZ74dUZ/PiEkLMC5J0m8/cOl6lQlipMjGk4cJG0q1smNyY6yTKdZL++4/ALd9lcXn27JdLLr4If/woSIjs2I5T3cy+jGO2bKL9M1FY+LrGYq+Htf/8CIU//UcAQtOlHt9JhIeBBdqgYHfQXfkDj3GYdJsGTFb4GHM0B6M7I+vmhRHX3L6Dr+zN8XYaPzS0hkLZIp0Msa1GssgPA+zJZIkRQTSjfjYkJNQhplqYSY+n0sV+Xn3XGWyuhvS4A7z1xe2ooSK4Nmf3XYD18wybT+5nbGlpcgdm1Rv76QA8UJaBGZhMpKC3Dk5HJ1G5fMDHnC+qbkAsMf36slyTiIiCX8ewunj4eS+gbk1O7KIUlIcodL8A0PhGAd+aYEXfvUAbioCNj3yFh9b/C4E1PVFF2o4RZGpTIwyGVgzt+6gFmHSLXBeYPRHOzmP60ew/Oc6YG+DUaiSskNzEUnS6yHBxlLZYhpSdZLAdauXdxMwU2mudoxYIIYQQ84Q7Y7gUY8YVar8CSNJNCPGHSdJtPisWcVIpQtMkpG1qdagU0WQV0libRf21Gxj46mPYgxmc9jYM00RrTVRf+DNLat8nsKYriWL1CL/QBilwjASvPuZjjJkjWEYj82FoC0M7jQHIARSU7CTtxty/VdTM6rY5qnTrTDvsGW8kaGt+yETVx06EVKqKVFKjVKPKbV/CTWvNWCVPT7YDmJ1w28ePPEwzMTcNaLJw9whJq/HeW39sEXaVMdI5Voy2kqt14VTi9LTWMSLId9UI7RB8iBwNCpRpTBVZhk7IvevKDGzNsfrEvyTadTc6ilDG/BwVoFrxcOLTL+S6a+LqImW/D2JLcZ3E1AQnaaWhNMSe1rNx/K24sRa85HZW+rdRqa9sbNPvYq2tEEy9NYdBWwTp6bEQg3SMYHQUe8mSuWrmnCnddBPOMRuo1SZQsSQpR1PvqeG4vfttm0olaQkS1PyI9olRPLK0OGmsWIw2O8ZQOkPMzWHEskQVmb1UCCGEmPLgA/DEE9PLkYHbV2X8lkdZtOheyK1oWmjNMPaDJwlGahBGtL3pWOzu1NPvJMRRTpJu85XW6GQSd/t2PNcn7F0OgQ+GiaEjosnyGR2lCLIxymtWMX7fdhaf2w00Cr+Ohj++rlTwDU1nwSBUoFxwUrmp+1uzK+HYnhl7GCRLJ0/vj2ZXFYL2NXMW89RjD2wC5vaL7PH+4tTt+3ZNkIh8WjIBqWQjWRKEUKsbtDTGbUcpNZVwAzDCRrJQwVQypLprACvWitGawkgu4DHe3BLRxAiPlRrPVToW4MQUYYfJmt8txYkaFUgrHlvEiscWcdfLH6HQWUehCPywMcHHZCWY4SoiR1PPhAyuqHBs6hjMpQHB4CB27/5Jlfmg5gZErsYYsUmbFu2ezdfVL2mJNIlYgmhfMlE3krtl38TNriEys5hhGi/Wh3HRZzkm3pga4Sf/egnZiV3UFzV2S9QT7PUC7C6DRMHC8BRGzcfbuWdBJt3crdtQdopEopXAMnjktALDnasxosx+2/6ummJwyKYlSpDJx7gj3MMJlVVYUYQTyzGWhXDIxQB0MDdVtUIIIcQRb/euxvjZxQLQuAauACKD4r07WTT4AKx/Haj5eUH0ufAGK4TD1anbknQT4ukdDXmXhaleRw0NEe/sZCxfx129HqzGuGOz6hS0RWhGBOecQq7reVAdmrpLBQt/8M+oUMCzYaSlkczIlZz9h/aPz6zCUiTclTOWFHa9zKLbf3jYY32qweNndPOag/NgNwipB9Ml8w/15dEaNh4fEEZgGvDIfxvUVqbp6Rw/4DGifb349PT/azsHSLoVrPWLMJZ3HHC/BWFiG0N5C0sF+FrTvSzAXdEChCQqT33VaU775fGoyT/sr/7iXrzk9Dt31SO97DhxgNCJiJTGtwOUH+L19c3fpJsX4KyIEXT4eFWN0gp7YhAdeQQ6iwFEQEd1gtMWtTA06DGaXEtgZqgl7gIFxowftX49wN83IYCOqMUztJoutSBDraXx4zjo7sHdMUTqhXPf3sPN276dYFhjdUM161Dp2kiqCiH7zxj8cz/L7dVFvDBe5eT83fhGQAWPjmQnIR59ySqGV4cEEEnSTQghhABg0ybYsX1qcd83pOHYWJkskRdh5HdD64qmhNcM4VB16nd+ODG715SONGhN6ba9RFWf3MtXHeAIQhx9JOk2X1WnBxmbSLURZlsbA4YbBmCgJz8Nrcmqh72pUTaY3UzYMZKjw8RaWjAcGx2GC3K8oynFEuGMi08GL591t9Z6ekIArVEHuFJVbunmia39hzPKA2rZMJ10C4vFP7DloVGo+bOWtW78J5fxMQ2o1Aw68yV++NBi3tQHG9uqXPfC/U/woTHchaEb1W6+MZlM8qMDbrtgBB7bqjFqkY8BWDO6Naup6iFNI7VkTCXchniUKJzdpS+fShCvdFMzhqnlXIaXT9BdyOE+8Tip006bk+YcapWqS9DaqPaLVRxGqBMrNrqCJrIOkWFiRAGxwEWZBlsSXQQqg6ZGYDeSaDPHBjQMA8plzKBCaKUwgzpJO44ftBE6je0jM8LvG53jls6N2kObSZz1YQCC+PRXuTHZNX7mZ1vMNAHN3fUEL7QCjqucQBhOX3RpX7oG/Wh96gg6iFDW0XPVXgghhNhPFDUq3ZSCZJJqEGIND+O0ZLHSaVb+yf8hLG7FePi7cO7fNTvaOaGDaNaQN97u0qz7CzfuoHzL3qnl7IuWYcQl3SCEvAvmq0oVz/UIxkZ58iWnohnEMFowI4gMCzBRGJhBC61j51HO3oHZuhQ7uZYg/zN0oYBhGKjBAezFC6/r1ZRyGT82Y3bIpyTVZs7AiTpwhYdOZ6jYcz8mWXbGl9pcDOm2c7RKd9qh6kdccNZWehe7GCaM5xtVWqlExAvuu5WX9t/AutddRGu8je4Jg1IsoppsHCM9GrAyH6OUhp09jZN6z2wk87S/sMeK0qHPr8Y8NmSg4EPCCQALFSosbaJpJB1DQgzU1OQYkeNS+sljWBs6MXuWEE/2Eravxw4CvPBunHrE8PI83ZuX4W2/vYkt/OPsLfWhCwEZt5WugRZMNT0WcTLTSBRFhkU95nNT4rfUnGWYPigSnPHTFSRqy1Cnl+DCLgAMQxEFEFqNbg2OV2BrrUqHsxI32Zid06dGUFp4X3NaayJ3+v1UtfzJyV+cqWSuUooojCh7weQAkQoPSGW6WDSWJR1OT66zuHctY9YwmbJF3EoR1gKszALuCi6EEEI8nccehUwGkknoXUzl93fiDA7itGRRSqEtB+WehedmcUIfTLvZER92kTu7l5Se/C0Slj0G//k+9MxeVJbC21MifoxM0CTEwjsbOQoMXfUPOL5La3cXdu8i/FQ3ca8xLpk2ZvdEVBiY/iLsymlsj8dYrTSGnSCeaiSf3P5+WMBJt8jz8bIJmOxyZaqn+ULU0dS4DBEBUaDQiRSD7/nUYY50f6Yao3U0S2gWqRn3HPbH2zZSZnlHint3TdDR7ZNJN74480XN7v4kS4IJ4sNFHN+j1mbSqQ3GMtGMgezBH57grD0reXyJP5V0cy0f4tZkFeYCVivxQMHg8fJkralTBnKYk6WWanKcxaJZoy1sAaCkPH4arcLZ0ULCWE3r3izpde0YSQtDKYpWGT9WZ2yxg2XE2JYfoudgj38E05EmFp/AG67jtWpGPMVeewjD6gUcTDs2tW1oeOwNBslyLGaUx647JAsaIzQItpUo3LiTlpeuQJkKb6xKdvhBlGlRT/VCCFpNV2xqKyQYLTShxYeX9jymZtwA6rkAY7Lj/L7kG2GAYVpkEw6dMZusCug16hQtm+MKq3jCv5uuyf27Eu3YSpFMN7rWB+NFrMwC7gouhBBCPJ1iEeJxqNdh2TKCn/2CdNeM70bDAsMm0h1QGoDcsubFOkf0U5Juft5l/L824Y9UIdLgT5cJmBmHsLawL7gL8UxJ0m2e0bUa+qGHMJf0EmTSeEkT27X2G/NLE4FurDSUTay+giGnyupqERVLENYKhL5POLowu17tU1Vl8rHGSbhV75iqNjqoGZVwBhYGEZZlkkjNfaVboBZhBzHsoA3LPvxdM8fLHkMll0iDMfk8aQ25ljKpuIXhWTjVGlEyRtnx8XRI3FN4/jK0USXmh+S9XYREOL4m5oHha0JCqAfoysKcLXfnaIWdYxV+f1fImBdxTDxilT9CbDKRpEJodClVRGhqRp0wzIKGrxNya93k3NgSVq/pJb600R289Ogom9N3saI9iUJj+BZulGd08PB3Mz4swogJXSTelkR3VDnunqVs1QWicJwlrUtpzQZot0JgWqA8YvVlGNoCMjhuBStQoBTe3jJaQ8YPMQzwB/LUzjoNQ0coQrpTbUTh9OtM2zF0vKV57T5MokoFZU0nKvWMrhtqXzLOnPH1bpkUtUmSGL9KnIBXT7Lc9ai6NUwNL2w5g7z+/dQc2MGeIVjI4y8KIYQQT6dYhEIBXA9a2wiHB9GLeqd6nxiRh6qOEtANtfGjIukW1XzM1tjUWG5R0aV6/3DjTmv2yWg44RIMVuDEzrkOU4gjjiTd5pnwscfoedE5APiGxo1HRHYSM2gk2vZV0ygM/PIo9mS1gkJRNWwITFQijaldzHgcf2ThJt10FHHbhjp7OxoJyGzxBVgq+Yz3P+63u+g7rp1SLn4Yozw4barpAVvNwx/DXTvH2TVWnXy8xjqlwJksDoyqdYgi9JolbNCNGpmYnyRROweFQhOws2Wc94Qj/J/AwHUS4Ciq1cmxooKFOabbzx7u57M3bZ5c0vxprsj/t8jlO06SGhorMAGDniWb+NTeEqnNv+EHi9/IuNPW6DdswS0Jj9OSjY9jHWmiWkBHdQmGHiE0x6m1uBjxNEUVO1gYR7YgJNbjYnQ12thaiGMaE5jK46XrVjHeFfBQrNFNNBH4pEunYWgb2y2S6/dAg5GyiMo+/u4S/kAFZSiqYRtLKjsYbzsVAENHGGH71MNGZoQK7dljNy4AEwMjYE6/FozYdFfQqaSb1lNd5hO2iW0aDIY2g7RBTNM+kiOxJo5SCnd8M15s+v1Z7RsgzYa5aYwQQghxpHFd6NvTGNdt8RLCep3yrbfS8sHP43Z04ww+iPLKoEMI0+jCHtSik5sd9WEXVYLZkydEMwbACfYfDOeplXFCHK0k6TafuC7mffc0BrhX8F8vrFFxItpH0gRGmbBewHG6UVhoNGGtit0onCFSdSJtMmjH6HHisG84n3LpYI82v91zN9x/H/7zG18AHUOXoPaft3R/WkOkSZQ8nFIFf8BEhdk5GVNtv1ByISTnblylcn26W541Y24NazIDF8VtMC3MFb0UqeNFAZ0T3YzFIxpd3UxWZV7MGqeN8q6v0pgKEVyj8eWsF+hsuVuHyzimgRc2khbG5KslMBv/N4JGIjzUAUsH7uSe1CoKVoZ23yVScQKlGbdAZR1qZZfCaJlfbO/juHSKuO+yL88WOCG+lcKvlbET6blv6B8h8kOM1GRSR0OiEmNZMs3ipRvIxk36rOmkcqQAHRGYRTpGSizZMYy1rIdqrkS0qYblxdjz67tQZg/FsBNVLbGvRGvbxDCr2jPTx7JDDCdFVChg5nJz1+DDbNvDm2mZUenm2yahqmDq1PRGYTT1Rj6xt5X1PTn+70/vQwMmmuGRNRRqfRiGwS9q/fQuSdI7MkLKs9m+6Um6eMkct0oIIYQ4QuQnwLYhFoP2NtzHH0eHEVau8YNDG40r0gogCsEtNy/WORROToAFYCQtIj+EcPZZkr06i7+t0TMjqi/M3/5CPFuSdJtPdmwnMkyUhsi0cGprsUtLABOtauh6DeU0/qSBN0rpkVsJVh+Ls2QZjtVFqGDXeD89ToLq2DiGbWMkn3nl17zieSgg4avGrKTYqJl9cGdUgeyjJiuxtGVQz8awa8M4T+xi4JGe/brvzgX/bOha3hh8dC6SfhU35I0v30U6GZBITH9Jaq3xfY81AybZd7wRP26xmVFW6BxWGJ+qrIlUHStKY5kJ6oNjQKPiaIKJxoHChVfpprVm587xqYQbQLfpUfZrtJUMAjdOPN94j5XcCqV6lWomQY87hO90k0Sx19J0peOMVKq0Kg+cMv0pH1sFrImcqb99YId0xlIMPHYny06dZwkRP0SriHDQZGm5BSMy0MonG0uwt2Shew3ay6OApp4BQ8cwwhiWP4KdKmK0rcCLj2KoEC9WQxfBSisiYqj8TrKJxzAtAzdIEhnTXcFDA1Sshc2b7+W40+bZc/aH3HwT3sqzqOkR0imTarIXU6fQRGg0ulZF1Uz8uIWdaJwYBGHIi9Mud1cs2sMa9VILuWTjR3HZKdPnTJA1OiEOqt6MywxCCCHEEaJSaVS7uS46nmDv/3cFZiaL27cduzOLYZhoM4lhWRAFaC9oxqnCnNNRhLMqi99XJqoeeLw2pys1lXTTniTdhABJus0vQ4OYUePDa2LRWgKSxKIsoDDDBLXCEJbVhTJMwnyF0sO/ofTwb8i+5+VkeRFahWxum2A03Mqrkwn8QpEgWKADXOrGSeNYOkJpe6rb7VQ3swN0NdOWgVX3MVyfeLlGzP0N5//lO1EDA3Ma+j5fLczt13fF81m9rIJSEEUaTWMGxECHmBictyWFGVdoBStopW74uEUDJotrtPJRUaP6JjkWkS5pCCOCwIWkjYovvFmd8hNV2ixFi6UoBJoX7b6X01IRTms3Q60VoEpH0Gj3/+68D41mONbJ3kRj8pLzUwn2VCq0Jx0qvqY1nSBRzDMW2IzhcjEp9l1TDOyQjlgLmzfdM++SbhWviFNW+Iug5Ab0EZCyNIta4nRnQnYlWhhLN7rCx9QQvjmGU7dJ1OoEXhuZNS34o1tJeUlQEToPdqrxzBS9brz2RldIb3A7ShuYfgbLC0lUTXR9gLGdJTitWa0/tHQY4g2PkO44Acu0mMh2E5oWoapjaAsDCxIZtFvHMBtz5CqlSDg2H15U4codFnu0A5XpSjnTMhm0pscLtEeOjiv2QgghxAGVy9DRCYFHsOdBguECRibHPff/isTq41iTduixVWMCp9Ig9MQaFW+G+fTHnsfCCRdv++zxhb2Yz9ZT+olVLVL5BCeedQru9jzKMlGxhf18CPFMSdJtntBaQ7ECNIquyo4i7i0HIMKlPHQno9d+p3G/2egGuPTFb8ZetIaR8C4cqx2tQ5IdeZ4M7+JVfiuJnm4CzzvYQ85r2m2MA+XZYARpNAEKC19XcVTqoPutvfFW1jgfgsilpBehjvl/cNLJcxf4DOq/bpjTxzNtjzAEywLDmE74OaaNrtaJ6caMmnqy9kpNlHls5zBLXtPYzoqyU/sseaxIX1IRmiZ2xYNxn2gBXu3a2pfn5tEaAA6at22/EeekF1PfN/GFNrDcFgITylYGrYv4RhKlNVopXnfxGm7+wUMszqVY09l4/lTUeO5NINw3PoYGN+aTyOTYvGvzU8M44hX9PMFxMRQhHbsTLMGiaAbETLsx2ZXpTFakamqWheXl0JaJXUgR1jyiHFS3jkFLnZaJbqIwIlVtJIYGC0tpA1ToUg88rChDZNZwUwGllgQqvojCwJamtv9QcnfsIDM6QcvKHlTUypZ1HaDimBoi/Kkr7W7RI56LN747JpVTbZyWKnJHIUEi1OgQlAlLo6U8ZD4OQERExMJLkAshhBDPWLUK42MQRVSeuAeAklvmsYk9hA/sxVh5DD0r1wJgJnLo/MPglWEBTt4004Eq14qtVXacOAAKnKrN8zIxgqHGb2NlHg31f0I8PePpN9mf7/vs2bOHTZs2MT4+fqhjEgegKy4MDQEQOWmK3vRVBh16hF5tajm58kRWvvtL2CecB51LSedOIjTKgMLxe/DMgCCaHH9qgV6RiQbGQGk8S9E+fnFjnDutsfTkGGl6/+5TKoxI6aUMuN+j3/8v8l0fgf94wxxHPsMc98b0ojrWAdLwWmu6Rqd72KrJWThVJsdErvvAx3J9nPpkd93JLs8E0awEwEJQKNanbl+UqvLCt/w5vbleXLvRTstrI0qdxwOvPIbsxe8HlWbCbkcDXTGbl25YxBfO8liTmv4Rc/NYyOTFUwbGLIgasxPXcorOVCtj2wfnuJV/vEKtMHU7PllhlTYDWhIxxn2bQqKRcHTtUQzvWECTHi2SHq9j99i4RhmvUqbUMkZo+igUbRON11dY8VFeHW3GsJSJb43Dvi7Pk+PqqcL0eIXzXf2hh0nZOVS8FVRAJZdCo/GNcUJr+nluLT7ALb/5LY8O5KfWTSRSnGBX6TYDaoaiVnTQEbhmxDF7z6ZolDEwqKfT1KrzdKZcIYQQ4o/h+/DQg41JFOIWtf4htne0cM/KRYRm49S57s/4XRH5aJ0At3Dg4y0g2t//5KTcXps6SYjMCMMxUXbjeYpkIgUhgGeRdCuVSlx99dWce+65ZLNZVqxYwXHHHUdnZyfLly/nHe94B/fcc8/hjPWoFg2OgdZEVpJQW5RK07OO1kafZOLaH3Hj8wf5wYv38PDzJhMbk10oba8bL/RQGBhRjIydYjzZ+BA0LLPxpbLQhAGeqWkvTQ/QrpTCMBoJINMNMfzpL4LcngJt23YTmD6h4ROZISEt3NO7eM5DnzYjQXWYLxSFkcYw9+9qPFwc46Ftj7By2EKhCNg3WYBiqDxOKZuZfZzQJ3TL7PnAZ0kXLyE7thLHjbhk+9vYdeVbGP7sPx/ehsyxiUqjUjSZ8Fn7pl1cc06NH56k2Tu2jMxonMxEDgIfFUYYToIV7/4n/vriM3nzqatIZxz6HriTReP9LOvqolKr01+ocEt/CV9rHDyWFB4Fo/F3GV1qYpsOvZlWAn9+JZFGRseJBgxiQwkS5Ubie/PgHm7y2vndxovQGqzII1J1fDOPpoJTrxA3+rDas/jVxswvoR1Qb60SZDzMEDotRVQL0U7jfZ6JxfHtsanHjcyISE8Qqz+n60tHpGB0hFL7ckyzxNiKxoQagVnAd8aoWY/Teft/sWjrdQyN38NPCgkGCpWpfb14ghZvgl7DZYXhEgDKAJUIaK0tJRs1jqcSrezd/EAzmieEEEI0V2V6iIWQkOsKsKW7lWrMxgwjEpZDKaywa3yEAAvGd4GVgfJQE4OeGweqdKtnpn+TxgIHFKh44+KnzF4qRMMz6l76uc99jr//+79n9erVXHzxxVx55ZX09vaSSCQYHx/n0Ucf5Xe/+x0XXnghp59+Ov/6r//KMcccc7hjP6rosXEiJ4l2a9T2bqOQdvHWnAIowsooxVYPpaAei9COzXBtGx3xFRjKxAqzTHi7ScTaUNrBq3p48cx0JZXvN2bnWSB0FKGikMCCfMqivTbjTqUw3YDWwQqhgnpLDBR07RohNPKgEpihjUZTay0ykTyRG+67sintcJadMWv5hqHrntF+tbCCrwNarBznd16EbTz9DKhuEOLY+ydfQz/kvl2PYISr2EmeNuJkaSQ4vDBgQiUp1FxaEo3Xj2naYNpEjaeV0MlSTRsstXKMmHtoqdf3e4z5bChf58SMg5VzMdB4iRDPqbDp+XspddRJVBzsko0GtOdjOjEyNpy4KIdV3MsT43G8lS8lrkKU4TBUdnGDCNA4BBT37iW1/iTsyCa0NOUopFOlqYwN09LTzITwszNey2OsiXCpMeRrysrloR1309pzMq1RhKEilK6TcMfQhsZxTZY86uL7y7AMRRgGZHt6icKQajGP5XUSWREZw2akFhCOVei0duIGCbSqgp6cMdYCQ7XiLKAhyv65/D+cfMwpdIcZSpkMqMYUMW5iB74zyPpHP0dbqcrPvUtx8CnVpt9znmHSa4f4VYOcGeHXJyudYxGLrU4ej+3Aikz8sIy980k4+dzmNFIIIYRolkIROrvAgInCTlKYjBkatMaIIh7rGOWXPX18Kr0EFRRYnF5M5Cegnm925Idd5E2fK9iL0/h7y+gownJNglhIJVXD1z5GzCIq+VLpJsSkZ5R0u+eee7j11lvZsGHDAe8/7bTTeOtb38pXv/pVrrnmGn73u99J0u0Q0/39mPVG2XJlyxb0C47H8Xsay/UQvwuCJCyLb2B1/Hl0JVbP2t8NSvixEsrQtOa62a3GWK5yBMUJ7HIZtYCSbvghRAGBAyqKEZhFCG1MHUcpRRizCByD7N17WTFZQlbqKuPUbczAQEchKINYHmK1Vgq5iaY0Q5nMKnbzIvcZ7VcI8rhRnQl/FC/ynlHSre5HxJz9k26dZFnlpsGCTpKkmD7WiK9ojRtTCTeAKIpQSjUmqwBM3yZRiehItLGrew+9dy+calitNVXXpxhGpJ0qWNPliPnuRnWREU0/X6YzXXVpmganLMrg5lZOrUsEPu+2XCqLU3xzb4UySR4pL+b5yQIhYEQxTCdFSzZJfvfmeZN001pTC6tTy112C0YmRWLF8VjZVqygTBBrIad/ykD8dKygDagTqzf2MZIW1YkxioP9ACTacjhDCUIjZImt2OFFGKkY4/ENrIxVCKw9GNoiBCKj8QYyWDifbze29XG8dz4UwItbaB1ihi2ERgnTtWnpbSTZbnTOpDWjWbp4F7AGADfTzW/PyHDixDj/eUcvyysWrQUNQciT0b2sDNazPGwjoJf/fOILnPaay5vYUiGEEGKOVYah7zGo5tEVlz3bd1ANApgcm8y3TPq6yuzs8flJuJm/9V8IlTzsykNvrpmRzwnlGJi5GGHFw9/buKJZ7KoSxKaTaxMP3o02FEaLg7LN6UnshDiKPaOk23/+538+o4PFYjHe+c53/lEBif3pSKMq0yetTreNt2J6Kr6wVmK01WMipbis610sTRy73zGquoJNBh1FZCsnUzZvIsTDyaQJ8hNY7e1z0pa5ELkBRhTimxojSmCFkwP8z/i8H6y71IjonnwL1FMepdYa6WLXVKfrRNBGdrxO7cDDlh12OmRGB3CFYzyzxIHBsx+nr+6HOPb+V6NG/udRVnXmOMns2e++u6J2Aic9a50yFGrGE60Nh1rKINbTytZFiuc/OvysYztS6arH7XsK7KwGnG+Upu+Y8fTvm831qQylGhOezGBPjnfXYQUYhESY7Kq08Xwax/biLjrdxUq7k+19m1h+2osObYMOFy/AY7rrwe6Tl2GFWTqrb4PIJIinSARVtD9IzGjM6hqr7mHfG1bbCq88XarWdfKxlPv2ki61krM0GSMiqgWYcYt0LEHeLIGe7NZgNhLJGXdhJN3CKMRXmtaw8b4rdyRRyiRUVSK7Qmy0iDIjatqha1nExS/eARr0kIfCAWJYibNZsfh/id8f4gcmRosCLG7sWMXJ41mWAxYWDzOEF3o45tMn7YUQQogF4eHvo7f5qFoaHWkeGBqhZjV+jL9g027sMODXZyVRSvETcxPP87q52DwOQ2uiXZswjg/AWLjzFIZ5lzA/uwiglpq9vPvv/i89x/wVKt74TRdVA8yUTNAkjm5/9KdCsVjk5ptvZt26dRx33HGHIibxFFGljvJraBRjVobb3/Bp9IwT9jHP4k6jnVd1vYUl8XVorXHDKnvrT7IssQHLiHFM6vmU3JtJJk4jUV9H6cQcN+qbeeV9CcKREazVa5rYwkNLV1yuO63AWCYiXkvOuEM3xrkLIwbGKrTNmKmgkq3jxfcf02y5fTLP2/gncxH2fr72g5/Biunll3W/7hntd9Pwf7Ojum+2xmc2cUHdD0kmA2p1RSI+vc+ivUs4e89uOGP/fcyV6zl7VddT1oZoDJRuJEyceopE2aZtxTJuWWrA4wvnipcu1BiaHNuiVxXgAMlOM4hjuh6RH6HT8Vn3BdnF069JrSlYNr9uaefNS/fw5J47uTdax+6om/R4nlomg1YuY6kEy800d+3aMRdNPCSikouvIuyShXYSKNckUhFmPA1KEa8N0aEsijNmzIzXq4CNlVPs3HoHtUxjUP9ES45MZzf5xbsJtnoYvs0pKYPHJuqkszZ5HaGNAGPyqy1SGi/mwvIlPJi/m5Nzpx0oxHljoj6BHUBM2yjLI9w3ULHZuChz9hM38cjxp7Ot+xjOykwmuBXAJtBr0crBDjrIjV/IMvsJvOr0a7Y1UWVHlGGJoWhVIdVcju357Rzbvv9FHCGEEGLBKeyB8hBRoZPILTFarTBRLU+NkZ3yAn6/Hs5b/xHWZE4n0iFPDF7LC4eqZH2TYGtErDwE2fnRE+G50MH0uVPuTeso3dlHNVPHrBtggIo0XnuasDyKNZl0CwuuJN3EUe9Zjy59ySWX8KUvfQmAWq3GqaeeyiWXXMKJJ57Ij3/840MeoAB/5x4wLaJYBjeeJDJjgIEmwjfz9K4/nXce/3esS56JH7n4kcuAt41Rfw+2OdmlMvKI16uE+ETKwwqyqHCyGmS4Od0nD5tKlaoTYfndJMvHE+ET4YNSZAcrtIxUqVTL3McAo+px3Ow2xhYXmVhUpNQeUklO4Do1gqxPWJ1fA9Y3PPuEVt2POHXD+KyEG8CjqaUsaltGaXyUgeFFDPStZnjvSnalltO+fNWsbSMdUVNjjcdXjX9GlCQ1nqB1PMspK8/HHx9DV6vMd7ruU9w2TMoyeH5rjHBFP4mSQs3ooZsaj2MFacKYg07HKVSf0j148jmaedtXBqnRH9LqWPTadRYZRUIjJLSrhFaZStxgbyWPXfbmrrF/JF33IR3iZwICp4RhJYh0RFgpEJWKpCo7yfl1fLMD3xrHdfpJjxdw1FawNEbGxnJimLEYybYOUh2dqG6LeqJOVUdYGDiRpmaaxCybex7sJtCTCXQjwnYdYlGGLZXHCfX+ifX5ZHzvdnwbWsIMQ4vbiZSLb44RGHmMwTo7l6xj28r17GpZjhuYjOVtKv0+y/fcT9v4QygdoAkxoiQ1J8UJXUux6u2oaidnrsgQErEEk5R2WFpr53uPf6/ZTRZCCPFc3X4b/OiHjX+D82/m8znnVyAwCT0Xv1yiXK9N/U5bUvNJ9rTQf1yaVloxlIFl2ExEHq1GEjMWQ4cOlPY2uRGHWTB5nmAZpE/qYujlCdIDAbG6TehEBHGNl4vh73kUI1nBXpTCH6n94WMKcRR41pVut956Kx/+8IcBuP7669Fak8/n+fa3v82nP/1pXv/61x/yII924eg4ZTQDbcspWzHs+iherA1UhBWmSbUkycwYa2vU3cM1e95Ph+plffoc0lYOy4zhdvXi6QGS/gq0CplIZIlsE8rzPwmyTzhaItgxQKrLomy1YeoUAJoQq1RjxYODxOohP7SKPIjiVdaXyR+7lNFl5wGwa6Mms2MPi3YeA4FGGarRvdeY+8ospZ9Zldof8kyPUA88MulG1ZbWUHcNXM/kd2YPuFvRgYHykgR+ghC4y4wTTyZmx4siqbufsi5JqbVOvGLTlVvE//sTg2+Ui8RTqT+6bc0UVT321EK6YyZlr87y3h5qMxOWGnq3LKXSZRDUquwKQzpbpivd9Iy/7cyqv7g7Qrm0l8Vmihvqa6iSZGQ8Tms8ixFaRI5BRXk41jyajTMIYfK5UaGNLvvouIkyLQw7Tj51EhvG96Bt0JMXBAzfQhtxgrKFsdbBcuMsOu4Eeo8/CYBYJk0+10dbMY3WmraSi+t5PFYtUJ9YjA7HplLPo901sD3G/RFCHe0blmVeGrr7dwCYsSz9a1owiGOEcQJ7gsyIRtVeRu+uOK1mwFhgsqOzSMzto7VcYLTtXNBlUCk0AWf1ZLDxCOKN2V67O7vZQsBWAupAKkhzx+Ad1IM6cSv+B6ISQghxRNrbBxOTF9aLBejZf6gQMUlr2Powbn8cXQ+w0xmKA42xtFWkOf09H6dkDbM8aMWItVJNPElk1GlZotg2NEpn2cBRGmrjTW7I4aWDCM/22XnSMNfd+9+4hVEWBz5+q49TMYmP+QQJG/wiUVVhdRqE+YU1iZoQz8WzPnMrFAq0tbUBcMMNN/D617+eZDLJRRddxJYtW55mb/FcRIPDDLQuZmvXMQy2LcOPd6CUQT22m2rqMdS+rlS6UWYzWN2ME1nUgzz/tP0Shr1daB2Rqq5i08O3YOokRuRghh3k7TKqVmlm8w6pcOcoqjDBaCbACJNoGpUtdWc3UdzBqTcSS3cFFnmSrDP6iMzpLlZKG4BBaPtYVYf6E+NETap2e645t+eSUyj701ehNu/M8I0fdnD1949BKYOoowcVW4kXJKhmHQLboJ/EAY4SoXnKZAzKxE15FDorpLNZaj09bB/e/BwiPLLoqse2gQK/H6+zvNSPac8umzcCRfvwclAZaEuyZbyEqaY/bvdNNqEmu5bu+2MHRowacU7x72GIdkok2O1n8eN53NQo9bTFulQ3HUEcwvlRhakrbuNCsaaRJErH0DrCTKRRto3luTgRBOZyHL8HM0pj13rxw1WElqY0Oki9WCDdOd2VOdHSihsvUiEiZhr09JUoOw69mTaWtaaYWVRoB1k6+3IYwWQQ89jI1kewAgiyObzMjK7zQchZt65j7f1LWbKtk2M2L+KM7V2svn8Fl8X/nNSy91NNrQCVxcDBjJJ0tHaQsNKYQUvjGKbGj+qsweJ4LHJ6EePVcTZPzP/3qxBCHJWi6MC3xWx+FcrD0N+H7WaJd3RQ2r2Hu7ZtQlk2Vms7Dyd62Zo4g9bMOrJOB+Xs3VQzD9PaBX55BclUJ1HkEA4ONLs1h5UOIiq5OltO3UOsYwuJJROU1iXw0xFeKqS4zKC2LEc4vhNI4vWVCaTSTYhnn3RbunQpd9xxB5VKhRtuuIELL7wQgImJCeJxuRp+OMQqo1Ts/ZMc2qwRqQCFQRj5GMog0hHnDZ/A/2z6F360+bOYkcGouxulNYGZY3Gil4I/iMLBqZ/IjSdVMYOF82GoQ42R34Y2wApaUVgERhFfe6y4f3AqIZXC5afOh7FVyBjLpvZX2gBlEFjTCY0g/8xmDT30DkWC4Jkdozpjdsm6F9GdGSOu4CKnlVr9XArjS6m0xHjs/BU88IrVLF66/8QbKhhlVspPa1AGPXvbAcXoiipXRG/m37cvgC5rfjA1ntvb6o8SPWU4NxVBuT1BELfwah7Vuk/MNg+cSVUK08vjuGMETgtbVr6V49QevrDoATLKo1Kf/pgutNu4hk3KihEV+w9nCw8Zv+IStfiNXseTs7nu7dvN8DVXYu9+nFaviuPuJTIyU/skxiN8q85g2zbsRJKeY48n3TGddLMmZ1veTRVfa5KhJl5yMQ2DtV1ZvBm9SGu5RkLUdq15nnKDke1PEFgQJWdXiqrARxldRERUUnWiyZae5ltUd9XIhAHn5m/DCh9GE6GwWN3RSgvLaB17GQDphKbNnB5qoNPtISDgoeGH5q6BQgghDp1wRqItmN/DKxxWD34HfefnoQyGaROGIU8kTGoxm9MXv471F3+ccLLiO9QBu92Hpn/uGhDRyYOxM3m8/RWM/rYN/IVb2RUF4ayf+sYB5m6rdibR9TyROwGhxt1emLsAhThCPeuk2/ve9z7+7M/+jCVLltDb28t5550HNLqdnnDCCYc6PgEU7TQDLb1Ty1qH+OYYlfRD1JKbACgFjZMlQxnEZhTA/Ofmz3DuxElTn4o9y15FxuoiMEqgNK6TYrRFQzB/xoj6g8II34hAgxVk8K0xQrtITCVITdTRaPJEOCpgrTE57kJsupe10gqUgRuv4qZqmC0OwVBzut+qP7D0bPZ8JmpencERh8FRg1rdZWUsy0ozoNWbbvvgmjZMN8AIogNeMY2X0iRHR3GtAYx6HRVqVBihiKPNRhIg5aR4rLSVL9z3hWcd45FE+yEFP+LYuIHToklUIhL56deRHquxJxXh5WsUyy5Lo8n3l1LY4YxZYieTcHbk0ZZ/iFh9mInc86g6q+hKZWmzArQ7/UPZCKo8HjfJJBJUR/rmpK1/rFLFnfqmUYHByHiFamGEnrbFHOsNsrY2jr3lSkKjHR3lyQzlce0CQXuA1RknlkoTz7ZgzKhItWKNH78lFTDka6qhxvQiDKXIxGzK5RiW14blt+JPFiHa7vyeTUxrTVlXyUYxZk6Kqwnp2jKEskYZ7y1R6qwy4bhU0IQWRLUIA8hgYYZ5NAEhLlEYAprIqKEiiyBy6erM8GRUZ7v2SXpZWmqd3Lv3vmY1WQghxB/DNMA0wbafe/eJo0HoMXz9Y9R2N2aLNwyDO3duBcA2bAg1Vs0nqJd4tPhbBtxHpi4iAjx+bjd7j22nf107JZKw69amNGMu9PeOcOfFj0+viKZfV3vHBihOTFBclmVkWXYq+RgW3VnDqghxNHrWSbcrrriCO+64g29+85vcdtttGEbjEKtWreLTn/70IQ9QQDHZghk1Eh1h5BEaFSKzjjYCtNZsrdxLxPSJeT2aTpRkdIpY2SdWbHzwKaVQGogUkZEnXm9jIuURbV0gJ1aOgZtMoaI4vp1HqxBNgF3TOG6IQpFA86fGTxj3exn2VzbGx5tkGCZGvA2dimMaNkaLQzDRnCtWs1Nnz+3L6pnuVSkX6On06OmIUNogteNBnggsBpzpCksjijCDkMg2sZz9ExhmBIu27qLQ/iuShWG0ZaBNgwF/BfG9KXKDabyUxq8HPD72+H77zysK9kQwPjZKsKybWsqglguwKgbxUZP6UJHdrsdgEFAzFCeum57Jyp9MHhk6mhqg1w4KJAkJkl1oZXL/aV+k2raGUzIuuhqQGm8hVunEqtepWQ75aoXK3l1NafqzlR8rTd1WRozOthS6VCTwPVqyy1HFhylmTkZRwwwiQivC1AZlxjAsk5Ne9QYWn3DyrGPG0imMWAeREeLhYpiQGKsyNDbC7okKCdsmcMYJ7AnqWY+xRQUs15jXJx26XqfsRJwYLCYwp7NukVGntVwHq4TtmTxx+i7+/fg++h2FnTKIIk0Q1PH8Cml1K4E9gTbrje8CDKwwB5UeQi9ieVcrq40Yq5TN0ihHLIqxZ2yBDwothBALkdZQLEIYgu9DbeH0ajnk4jl0oDEnq+g9v1G9UIkFFM0qtRaHIGHjZrdD6gGczgG0MV2soHGJbJPQMfESEbjFpjRjLlQTNfSMswvThvzAIIMTw6DBjQJ01aPU4hDVdxPV9+D0pqg/ubDHuhPi6TynS/+nnnoqp5566qx1F1100SEJ6Nm46qqruO6663jyySdJJBKcddZZfOYzn2HdunVT25x33nnccssts/a7/PLL+epXvzrX4T4nuu5TiqewIp/QivGI+i693Y3SDa3BiOKsSp7C3tqTtFrdEIVkgjjgERJhYmCGGjc72fU30ijDwCJDQIAZtFONjxJu24LR0wu55c1r7CGgJ0qEYRGjlCbuLgWgmtiMEcYxJr8jisBiY5gWY4jB4DjqmbXAnsadAUSRSZ1BzFIHQVSj9vAI/t7ynLdluW5jerS95zr6+zNLMlQq0+3z8Fn5xDbSayt02EkwEmhgYkkGbRwkT681thtiRIp4yaFtEMqdGtAo1Uatp4IqxHHjVZaMdOOY87sruq541Gs+G6IydadOquwQKJuVDy/C+X2Jn1Y28/y/XATAwEQFMzGZvNR6KtEWzRjjzYh8ltqK7RFgxqhmlhILQlbEhvh1mKXS1ph1rBquIF1czur2InvGj/wfMFEYkZ8xXqDlm5RdH79WIZ1qIWbGoL6TkVQX6CSR1UK8MkaslmSixyOd2b8bM0AsnSVyR0H1kPdtltmggoj2bCt7y3USug3YDYAROrQPtBCrOwc81nwRjI9TS6c5rtyOzkKkKmhlMNH2C1rGLKJoEclijNG4z4BrEUspgqKPigNuCjvdgbIzeLE+UuWTUTN/NMcrmKZDOtFOvw6Ja03BCCjaecJawOaJzaxtXdu8xgshhHh2qlVIp6E0eeFLupceXH4H5ccHyPbWAEXJtkAp3LYU3uIloDVWPSBKDNPT29X4SR7RGDYjjBPYAZaniVU8ArON6vhWkjoCNY8mvXoGHss/wPjyMnpm9kApcosaE3RsGdrJ4u5F0A719jjeo7eTOPM9hGUXr69M4rgD/6YT4mjwrJNub33rW//g/d/85jefczDP1i233MK73/1unv/85xMEAVdeeSUXXnghjz/+OKkZsyO+4x3v4JOf/OTUcjKZPNDhjki1wXF2tq8iMkyUm8fMFYAOAGLV1eRKL2CovpO7bvsAta01XrN5GanzGrPLmpOFjKY/ozvbVO4mwg7biEgzkH2M4x8vwRPXwenvPXAH/XlCeS6erTESNkwWqCVra8nkq0CjO96ja26nfe0KfsVyKlEHpezI9P668ZxFVsie1Y/+/9n773DLkru+F/5U1Yo775M758mjCcoSGglJYBDCYLAN5sqWgWssLB5egq/fF64RDhfbVw8YfIEHLjayDAjbJIEkQICCkYSkkWY0QZO6Z3qm88ln571iVb1/rNNnn57ung7T02Fmf56nnz577bVqraq91qqqb/0CB2beil3IMfHVH6yEnsflpLgQlyHQDaMhp58Kk+fcstSnf2eZeD0rbu6p8wtuQNBLOPDVBSwVGosVKmt5ca8JyURQZ0VCNBHTyhx2n5jiszd4nCgTZzzWS9nV72G3TDCo5EBGdbXEql6g+ppv2djXVyOh7XwIDNXA49tfO8Nnv75KP9aklTl2Bw+RpPWN/azIiNwi9lm2svqS1O1KIlLNcJOga5VP6Cjai6eo7JxFKJ92OMGj+/93EIqw1WP3Ix3wBbOvvo2dr3nDOct1/QDpVvGDjFbLooAdh9ss3dRkV7NCT28n4mEAtLNuTZg4Z6zO3mjotTU6bp83qW3EVQ9pQ6y1WJGjhrcjjcPyjjUefrLJg49PkM7ESO3DAExssBUXx/NJ3RXKSNiUkVloH+3kmMktRGKBXcJhSjeI3T6x6PPJZz/JTa8ei25jxowZc8MwHI4ENyis3ShCFYgLjEleUeQJJh2iuymldfEoaa+BtQS3vIrkrleBEFg0SWUJcbrvXP/POjHGTSETJBWftOxz4omnueneVShPX6NKXVmstQySjL9pfxq79dzjKG0M/XQ0azk5Y7mtXXhk6LWM9NjL1/pvzJiL4ZJFt1ardcbnLMt47LHHaLfbvP3tb7/ocp555hkOHz7MfffdRxiGl9UJfPKTnzzj84c//GFmZmZ48MEHue+++za2l0ol5i4yTXaSJCTJKHB+t3ttXxKD1T7KuEiTMygnzNQmsdaiM4Wfh7SSNmutJ7jpWMTrvl5hcXo7e9ePPWRzTgrNPekyUFjdiFRjfQdrBdrponSF1G0iTQqDE9BfgNq2817P9YzVBrKM2AW5KdaCSnKaJ7tocnr1mOQNDh0zRXnYoy9mcdMAJ/MpDRt4aYnTPamVFlyJDK5NLChrrkACh4vUGKI83RDdVJLRiAsX5XC9LXJfIbIEK1xQ4kwRyVrC3hqDxiJ+b4p7P30AK3LCVkw0ESKFpNx9NYP6g8TllH+YvIaPpfff0AO/5UFGK9N8s0xYmnBwE0HYCVmqNBi+5+9z86Z6TVTLxSpplDFxqk9nR5XEL6xVdy5+gX3P/iqONYj7PoCjBLN1jyzpkTgBzXKF+tpItBImpe0oUqshisHo61okt0lGz0TIVCAoIaKQU90hadSjlczw6doEtv5Dxf1ketSXUuIwIpwpofwXtob0Gjvg6BJ9Ayu5pWoN4VrEQtWlElSJLCBAr8cTvNFjuuWLiwxCaGYNOmFRFysSvGgLykh69YiVuR5xJKkDjhMBhatMEiUoDVI6aGeN3FnFzSZBCIxIkTYklyskTrCegVihhGBLbyerpWW+NP8lfpQfvWZ1HzNmzJgxl8jgecu265ZuX/v9jxD3uwgEN739m5nave8aXNx1RNIlb6WoYGSQ0U+KVfutpf0bYSm00wUtkEZi3DPjGhs5Gq+ngUvnSA26J142ottXnlvjh/775/ih77GEiSILNDxv6JnpjMXuCiv9Fs1Snc6BKZan1ih1T+LM7CBfffkmlxgz5mK45FnIRz/60bO2GWP44R/+Yfbtu/CLe3V1le/5nu/hM5/5DEIInn76afbu3csP/uAP0mw2+YVf+IVLvaQNOp0iO8rExMQZ2z/ykY/wO7/zO8zNzfHt3/7t/MzP/Mx5rd3+/b//9/zrf/2vL/sarjTxWoesWohgub8wEinykNZKSJ52efdfK5rNX4F3GhA9eizzBE0+LhL+F5qP9x9l9pltZL4icyrEFZfYVxgvwooEQwNjFiCYgJNfgdrfuYY1vnxsqhGBop9LhFWkziJKV8Ev4WRDhNMmagp0RWJaEps4yKCM0oVA56UlpFXYTYKJf2+d2tzW853yJWX44S9c3oGXoWNZNifSiKgGxYBCY3mUHOMorOufdZzINOV2xNTyIQYTa5zcm7LjyRn8yKO23CWqOhilCOI9kCeo/DDlvMqE9YjyiJJ741idnsZay2KUkliYTDscpky4GuJkDrE/gdhsEbjJnVQa2HJoic62EChEt1r7ERqdIp6inigsWMuhwpMWPWiRBQ2yfDSY025O6lZ40iwTZgqitet6UJd3IyInwXgWGCBdHykke29/HfaOWwpN2GpKgxPk7pBSe0hSFszs2kLzzr0vWLYT1KnVD9NvOeRikqGB1GoaYWEJKEyAVTFpWbM210UYbmhLt+Hh58jCKWYGN7OmUjLZQcsewVAxbKwBOQ8tehw82iAMwAlaDMrg2xC35aC2V5EWrMrIZRfP1rDCQ1qPMK6R2C42zwjcnNPZJ0pZSBI3SbtnJ04ZM2bMmDHXMXEMU1OwslJ8zgtLtyyJwFosFp0m8KefgH6/WMT7tndDrf4Chb7MWH4SDv0ZvYdPUL7jZpJuj1gqutqwdXYnOA1YH9Op/hpmuhAuRV4kXjNuMaZwkh5+J8LRkAUOx8IVXttfvFa1uuK0hinVco7jQOZoGqcqrHkZaaWN5/lIKcmznE63Sp5LVroDKlOzJO4hKIXYTKHb8Q292D5mzIvlijibSyn5iZ/4CX7xF3/xgvv++I//OI7jcOzYsTOEr+/5nu85y3LtUjDG8GM/9mO8+c1v5o477tjY/n3f9338zu/8Dp/97Gf5qZ/6KX77t3+b97znPect56d+6qfodDob/44fP37Z13QlyNKRGJLqBG0MWZ7htKeZtRPszwTNYBdCuQjlI2SJnIw9GCa3dXjXfSf4028MeXjHJzjW/BR7H36WXV8/gsotMqsijcDTVYzJwC1B0nuBq7nOSTLoDzglDVm/hpfPomwJb5ASDCxCxXztW54GoPwEzP65YO/8m9l95LXsPvJaplf2rusjow7hRs+2c7EiQ9+MUt7a2CJ6MQdUxE4kr8JhzzkEN4DpY21u+5tn2H78y5y85TGeft1JOjMDJIKdT3bY9tChojWtwrU76M5GRF7Ou/VraCftF1/Ba4BNNSczwx11n+2zFpM5WM+g9BxiqnrmzqcHF9biZBovjRAaVJriDQaopTlW039OK/shVj+VsPSfH0V8eZ4sFVjpEDX2cKBUxlkO8AdN3CE0kphXqTlqfgjx9Z2GXQ8z8iCmtBjgZBOovMowy/FLPoRVEAJlUmZXvkC9dZjJ+RoTi1VU7dz322YcvwghkKYexgomHMlMW7PYGrCaruJmpxdfFBMLNUq9GzuOYG9+kV3xHGnoIMwQiQ8K/GgnWgncqMlXj5TJrWBLWaBVD6UdMAI0WO1gdCGmZf4S1mRgcnK1SqYUUbiKzAdEpZGVsJvPsFY5xaHsCeJ8vEo9ZsyYMTcMve5IcKvXyYXgib/80zM8FXSSQrsF3U7hjnqNvXuuOr2TEK0wPLwKgwTd6+IGPsvtFZaSGGd6N4aMbvVL9JzHNw6zDoXglkNv1aGin8Kq0xZxknaQkucvn8QVC92YW7d5tBdK+Cslms/V2fasJAhCpJQkScKwL4nyReYadWYbVZIpn+3HI2xnPRSKAZvoFz7RmDEvY66Yv83hw4fJLyJI51/+5V/yF3/xF2zfvv2M7QcOHODo0cvPxvf+97+fxx57jC984UzroB/6oR/a+PvOO+9ky5YtvOMd7+Dw4cPntMzzfR/fv/CE72qRGxA6xyoH5acoKfnac8/wbeUfhApMrnURYrjpiBIVfBSSW7/lBNo1dPsup/oz7NgVc7i/xoEH9kCphEKD8TEqouukhJ0lKE8UE/ngxlvpslGKQLMoJJ7nbMR0S8se/tCST34ZKO67Yf11mDceOMsorNDYNotu19DC4zLPfakx3QZ5Dy1z8lzgOBaZpahSyIe2P8PCyXshLwYR5zy2Mc/W4HsAgRb/EIDWbI+5o4Xg4ScDLCkSH5FXcYcV+k6Zd+dz9IYtqFwbK8IXxTBleWXAyUFKWEvRFY2o5NR6N5FXz/HusBaVG27/6+NAyJ2fOi3kW+BOIgwgkR2DaXXxDnfYf9skj900CUazdWonemIRjCCWMSv5NJEQRJnGDtcQ13FcWtMZon1B2szQ7hoyrzBMcyZqDazykTbn2z79Wr687V/herNkbo6bOTgXIbr5lRphmOC6CQNtwQVvscPszZNAmWG6lTQ4hV7v5dxEcblZgK8Hhs8+S+nOWXBn0ME0ykDkPEO5u4va6iRGGB4SCQbLP9/Tw4l9ci8l6FbIspz+4QSvXviDxOVDvPmr/4mv3/LfUbqGNF0QMKxPUqkPMZ2cCKjE28FCYEqc7J9kX+MV7oY0ZsyYMTcKWQZKFdlLOx10ltFKn5cUrN8rvjem+Le2Btt3XJvrvRboYsHZRBnetgb+9DTKUSz1O5Tu+QZktUrqzROXnsbxJrHaQ6EwqhDUrIKwnrPS89kZxXSnmgS9lCl3isMnv8zNt96YnkPPpxtlxLZHY25IAtQf3sqsGzJP0Q6+7zNTUvTiHGMNxlhipxDYTDYoLNxCBx3l1yxkz5gx15pLvvN/4id+4ozP1lrm5+f50z/9U9773vde8PjBYHBO1861tbXLFrt+5Ed+hE984hN87nOfO0vMez6vf/3rgSKm3MW4w15rMuVglVO8xEShIt1yeB+8qvjejTOe70/oolh0MrRTiDb7v76FYazozx4lLqc4uaG6NKA1Z3BMFam3kVc90EHhrtY5cUOKbqafILKU9mTOtHA3tjvDDCeLiIPjnBbd/MDhYrIUWHPjTtIvlt8/9WH23V3cW8YCScauf/V+/PmUznpiicw5M4YbQoC1JO5BBIWbQmRrYMGLRm0fGIF2WjhmDkmAkA16tYxXxVM8fuwozNx+Nat6RbBJxte6Kaq7hr3To1bJETlgRq/TM0zohcAdZoBm9KyuBxzDAhLJKu7kfrRKyNcivKfWUPvqaOWwc8se5PJ+AHqVwhUVJ2C2VCdaPkppx+uuSr0vBxtlpLsGaE8jtIfUFVrDJV61+wBG+VR7B3ngzndwdEfKzV8DN3OISgnuXPmCZTueS5q6+N6Q1sCSGksjPp2zFKQu+pmR6HbjDvRsnpM+ej/33P6DaG9zIBVDZa14dmPXYBLYLTWeTkjThPbkAnKrQ+lQjWQ+pXb/LbDjIABHduyj0n+EXuVOgngHPSOwMkGUHQw5ZQQTUR3HeMRqyFOLh8ai25gxY8bcKPS6haC2jjyH54bs9yHaZJHV75+1z8sanWIyTXSkxda3HUB5HsM0pR2EhO+OWOF/gpEIHTCx+m0AWHK2PfIVZk7WeOydn2J+e520qXAPrwBN4prPLcFt3L/8Z9z8Mslg+tUjLdzJUaiTYODRRIyGsmnO1BOKSnILx9cW2DExx1x9hj96s+J7+8NiPBxrbJRD85pVY8yYa8olvwkeeuihM/49+uijAPzCL/wCv/RLv3TB49/ylrfwW7/1WxufhRAYY/jgBz/IN37jN17StVhr+ZEf+RE++tGP8pnPfIY9e/Zc8JiHH34YgC1btlzSua4FVhvS9Um6FBItUnoDSaLm8Hsx5bWIoNtjw6SLkTth7Bj2PrKFt//2Pdz56BZed3CW5nMN+o2I+ZkubruHXHcpFEiOejnp2jSEE4W59Q2I6UZYVcRYEEaRqSLph8oMlohBMGqn6W218xf0vCQB14orEfXgQu6l2moSM2oXKUAaDe0u1sIEAlsecOyumZGrrRCUVgf43S42eG7jWq2Q3Hz/DmaONTb2VZkC0caSk6se7rDO4syAj/dduuvP4o2GSTKWcsPfP/QZWlPFfWQdyKVbZJO0FqEtM0+tUJ/v0zjRYuvBNUBRU/8Fl8eBVRQngBae9yj1nV9j+gfuoPl3D+Btr+JP+FQGCSpqjTxUMRuGWqnjUVIea0eeuRZNcNGkucbU1t8z1kMJhaeL2G4A3WqJQwduI/Ms1VaJwWSCmVI4zQu7gipXorWkUlplzy4f4QmOJm2GqwPaaRexHuVXmITu5ADtmBvWzi1fXaXnGyYTHxNscs9IBKVO8TlxMyasZZeXkafF4Fg7OXbKRQQUrqhrNW450iVMco7s2gdum9xZxYocN91CLluYio+z/vaZzDzq8RTVeIIHjz50tas9ZsyYMWMulzQ746PYJMAF9QZhYwIVbwobEIbQbl+li7tO0BnZfM7+H/wBnHKxUGc8S/3Nm+ajwuBHs+tJhgAUnxt0mTT/jbmlZ5lemUcMUrJgbWP+kDkVHokG8HzLwhuUfpLjeQa15tNYLBHGGarT5zXPuLz+oEfzYJeVxWd5rZ6k281Z7nZIMkvrwASRGol1Nh27l4555XLJS/+f/exnX9QJP/jBD/KOd7yDBx54gDRN+Rf/4l/w+OOPs7a2xt/8zd9cUlnvf//7+d3f/V3+5E/+hGq1ysLCAgD1ep0wDDl8+DC/+7u/y7ve9S4mJyd59NFH+fEf/3Huu+8+XvWqV72oelwNbJIzCDZZNaiUqm+Y2fNqklJAAqhDERN4G0lkTrsWzmgJD21BaYmyMCRl5xd38PhEDxk5WDPEALm7CFi6rsfKsM/WoAHmwm7C1yNCCoROMI5FJXVcXSynuJlGInGdkRtuc6aMXQ7ot86OU+SFHun6rtc0ptsZ535pAo/28g51Z4JOvraxrbYW83hnHjNTYTaYY3n7XHEtxoAQeP2YnV8/icoSnvymUWdqlEMw8EhKGZW2i/QzqiRM9OfphbcitYu1E7jBPIdSQTO6QeNdRBnTjmSPiehUfZz5MnWzAz81RH6x7OdGGbsOPYZnW1gcQCBETNX5GOJ5q57V2zTsfAMA7lwZm2pk1Qcr0GFz45cXSJRxcdoLPGV7VLNFxBpnJGu43kgGCW67jq0qpA3pdCOe7sCb179PfcuwWqJx0sOExTPslD2EvHB9HEditML3Y24+UKb15S43UaFd8Sl5Djor2jkNXWqrZaSW11REfzGkR46ytGcHe0SNTChSdwEQWJWQu6usbslZtRnVrss/3adxXA+jFF5YZuKWnfBsh2w1A6GZi+qckDkSRT+IEDYjc1fx0lm00wdvkkfJyQBpQnKR4WqfI889XrjiKPdClztmzJgxY641WXrGR6n1xlAy7rQB0JUmzM0Vsd+CEDyPVxQmRfcEOooIfJ+eTfm8OElY30Wetoo4bVaDdNAiQlqXnAFPZV3emn8r+xe73DvVYpdqcXLnMRorM5SjaSqqis1tESfbf4FF/huEfpxzx/QCeiKgDfi9Bp/UH+edB/dSdUKmqHPouTX23jLDh4dL7JqdBizbv+UdzHuWxlJRjonHotuYVy5X3d/mjjvu4NChQ/zKr/wK1WqVfr/Pd33Xd/H+97//kq3Pfu3Xfg2At73tbWds/6//9b/yj//xP8bzPD71qU/xS7/0SwwGA3bs2MF3f/d38y//5b+8UtV5SRkOO3S9iFx1ENZFk2C0pBxOgbUIA0HsoDbZb9h126Ygc9Y/g2SJKtPU+n28QQvjN5k9NmDptgbeerBxz2uS5S1YeQ6y4Tmu5vrGGotZ6NKNDZ5rsKlGyz5Kl/GiDCWWycTIesb1XG5+yx6+8ucH0dmZsdPSaCQ6XtuYbi/9KVrpKsaYdQstgTECay0ym2R/bzed4RSd6hQgQEosmslTEdU2JIHE6+7k4dvfzMLsdpKSi9/3KHUDEAJrJUiJFw+woUXLHtrJyLycKRpsF+FLX8GXAJtrHljp8vZ+m9wRuOUMnc6RqPKG6fCeBxfBbCUXJbb4ZyZuqbifAJtjkQgvhDt+Fe4o4n5IT4GFvBUTzAR0giE47kjosCF5Y44d7Tm2xYbHOk9BHoN7/bWltZZhmpDOFIKuF2/nsw8eJfUlqnMM3WigVbEKvP+hOeqiiW0llPbNXVT5ypVoI3EBucn9WfRTeiLBL0VgwBRNipMqTJKAU7nSVX3JyZeXGChDXVeYrzp4WZHpNnGOMnu0hADaEz1CLIIO6bCwcAjrTSb3HmDZ+zImszhlS71bZqh6SKA1uUBj5e1AjBUGK2Kk73KLcnG0ZY2AVA2RuCzpLrpzEjWx+1o1w5gxY8aMuRiOHIHBkIXqDAaJdR3q0VqRcEyC8jxcP8BPU2ivJ2RqrRVJFcw7NjJ2vuwxGjN0UOvj4P8kjmHDrRyoBQgcjBqCFfjxLhxbhL3w8FgSu2gj+OrxKrnjMvFOgZMl9CZTdFRlIfXASKLhCmFt2zWu5OXzzFKPh461WRlEZGIZv7sbISSOsXy+8hj1oMS79AGsNuzrQ3XLG/lg8gnKwU1IIcALiaf7sC66jRMpjHklc1Gi27333sunP/1pms0m99xzzwum+/3a17523u+yLONbvuVb+PVf/3X+z//z/7z0q30eF7JC2rFjB3/913/9os9zrTi+8gS9sImXFfHVfu/PZvmR171tY6XqwBePsdzOgZE1nHheGH0BtCZ2Ul9rI6kxZV0eD3rMtacIhga9rkNlQZMtskY8jAj8GzB7UVoIZV8cGBzl4mZNBC4IEAZ8cYj7B/+A029+KWTh2qzPdQ9tSqRwTWO6XZ710qUkUmhlq/RMGyEEjz9do9X1mNEZE/a1dFsuSejQ3r6+SmctNn0KJ5sBwI9ddj10Jw98l0stLVNZFEXmSSMh6GLjGlnq4fQkoilwTA3DgNUdXXreJFXh0l1aoDZzcSLL9YLuxVRbi+y1q6ztluQ2xV0onfFzhXFxPyqWAei+5n/RPf7fqE4ExK2TZIMOxxp/izd+//sQUp1RfvXtO1j7yFPsvH+R5Xftxmy2LBJFuakqVqNXO1kRh9G9Dgd1uSGyI/cWYV0W45Rbdsyg63NgIQ4P4ySKaquGHhRBFqv3XVxdlCMxen1iINkIkedoQ9WrQF5efwcYrBQ4mUL3+1C+jjNPnIf464/hdk7haZ+kNOq2naSHoAFA3zHskgbluJisaHc3CJBSYXwNRpD3fCprIT/w7DEebDaQ6Son7DEE+5E6JPVOMqjUGdb71NZiUBUm2i4nZ9vEus+jBx/gnjfuvgYtMGbMmDFjLgpr4bOfhjTl/jvfiVkfY7zlmc/hiD454IVlonYLaeXZxw6HULnxFqcuGZ1CtIajKvgTkwgEe2/9J5S8Cbq1L6K9IcL4CCPxszPjhX/vXoePrh7hAbGLE506QvTJg4TMrkAEymsgXMGRtUPcOnfXNargi+e3v3SU//alowinzdb6LImrKbdcjDA8Ph2zUyzwd7mNUDroZh23M6BGmf/3C7/L//6m78VzHFoHPOzjFoFAx9mFTzpmzMuUixLdvuM7vmMjycF3fud3XvbJXNfdiAE35sL0u0sIWQgcxmp6vVFw8fLygKS9yioe+9dFtyM3LTDUcPLwBLdaySkp2H1znWB/k/CJx9GnmuRxk+l+m5MiI2xltHas4eQ1+m4ZAZzqCPZWh+sm0dVrUe3LwiY5KEEbjasbgEQT40WKrYdO0DUJWjoblkhy/S8hzjQoE1JgN2tW19LSbfOVvUTeg+1sFYmiPcjp9l2SVPG65Qpiqmif4abYWjZL8LtPMHVEkSuLNJJKJ2T/ye20Jns4XY9cGlJhCIMIR0E2KNN8bhsLO4sOV5hCQBoGOZOqxMKDD1D71ne/NJV7CbDW0l0ZsKc7zx//vSm2A0pXgGYRy81CZTXCzXI88QhN99fBnUA4LtqtkmiI4hzhVqnOzCGfJ7gBBPsaBLdNEh9pceAr8xydfIr41r8FgEBhMawoyzQpiScL0e06XEm1Wc7AjAZY/hAWk4zv2u6D7aOVIVddbn5wK+EgBFfg722gKhfn3uKXHBI9i9LzCCFwaoql7hAvNZy2VZV5FYvBqEJ0yzotmN31EtT2pSVbWiT2JU5WIg1H90xpuAwUmeZSZbiz2WHvG+8jqNXBWrxy0WfE7hCX4u9kbYoGB/FNCrLCZPsxFiZmULqKFYUL+bAZUFuLCZVHc7lJt2bpB12+cuTr3PPGv3vV6z9mzJgxYy6Sfh/SFC3khuAGxWKdD+RAdWYWL82o94ZYx0G4LkgFcQTRK0R0W3wM+gtI1eRD7xigFVg+Qbj4no3spI21d+DkExuHyHgR3AqlbffwffW9fE+5jhQCvbZGa+pPEbqHSjWDsMysqXCwdZBbr1X9rgDznSIEj3S7+G4xNnMTh57TI3YNT6crHDar7LQNKpMTtA4+zOsP7ONo3mFt0KIRTsOcT18uUEmb2P6NGb5ozJgrwUWJbj/7sz97zr8vh/e85z385m/+Jv/hP/yHF1XOK4Esi1HrVi7aGN73pjvIdI5NNDMLx0i0RtHlmHQozwqeffUpnlj1sYcbPCUMzs4yc02fqckSje/8Hlp/9DROt0+jr5nP+zAsI2yJ3OkitOKgWUEkAipbimQK/i3XuAUuHptp0JaeayjbEgKFQlFt9QgGLpG1uEHGacPm03G1pHyetZs9nYrn9MdrmEjhCpz6QokUIj3EoKmVBV9+eIr/nNbY0ZzbsJZb21pBZBorDKZ1kjD1cfQmocjCtucq7F2b5NQhhb/enx6Ra5QDRZhN4QwChNUgHKQJcONJKlXDE/1lth67wVwY0pxOprnD9JGvvxM7H1CJZhCl9aD9uSZIMxwnR+WryPoEOnw1Jk84KbdBpKG2Ba9cpl45d5wPWXJRFRenGRB22wSDjJZdQnkWi8ZrL1AVARU83LKP7Z5CzN55NVvh4tCWWIxcCaxRvOW+EzSCW4Ay0sYEfcPscw1y1+Iqibfj4oX+sOqxfBJ2TK8/rwYmrE831Zx2kBcCEJrVrTHBIEcvxEzddMVqeNUQQtKb2s+h102TByUMObm7Qn01Z222h3Y0J8KIu2YCGlu34zwvE7i7pYYzD6afoVMPawR3tjIyXeGxZBFhIzJ3WIQniFqsVQUDEhyTk2Tb8NMOgd3CwWzhGrXAmDFjxoy5KLpdmJwkilJKSY/h+gJ61/OpuhN4tSphY4LKYpfcV8g8wVqJHKwH/R8MYPoaXv/VYu0wNPZgTItcsREbd+A/SurOg5agFXZ95hCnKVt6R2hP3AuAqDRwRBGSJUtdGvOGqJYR9hK0G7NV1DnZW7pWtbsiLB5fBKBU6nF6buSklmPucRDwlL9GGhlaScowzzBRzK3JLHXT5OhCl2zSZ28k6e/0qR4JyNs3XviiMWOuFJcc0+2rX/0qxhhe//rXn7H9/vvvRynFa17zmhc8Ps9zPvShD/GpT32KV7/61ZTL5TO+/4//8T9e6iW9bOl6gyItogFjoep7OFJBycEXU8yhmEITGgXzkAUaT0s+ajNEoHh/PcQLHXRucKZCdD9DugrP8WmmIavtDGkCpPXR0kNaidY5OD4MlmHqxhHdyNYz+JUzSv0ZctlCGg+/l2JZYKhThBrd7vK0sLbJVdpxJdKRJMPrQ3S73DNfintpZkeBdqtinsCUcNUoPtigGWBdBSjcx7/OdDBLVE5wUoW7HjcwUjm5Feh8dNyTWZ9jtaf53rV3g5ehsgztOYAkC1aZ2r+VQ/hMPJ4UKe3V2RZf1yM20XRKPoOoy5SeQvmghcLpJ+QVH+sqaq0OwvRpur8K6QS2divDpFsE4wWwFp1m7H/r2897HllyyE8OcfHwAk0oZiADKzTxRJ1Tyx2MXsQCUXuZ0tWp/qWhDbEwOOkUYPGSgDtu7cBaF7IOFsuWpycxMi8E5rpH/Z0Xb4WmHMn0jgnkugjsVBWPD1eJh3XWhh0q9RhhXFQ6oLbSIBxktE8ceUmq+lITPfII9f1VkkoVK04HEZCIrMbEYjGhemZPxHfdceAswQ1AVD0gxSQSCMniKZxwiOsYgkEHZWZRBvBOol2LJxz24VMTiqPOa5DOk1SBVTOA9jFo7LyKtR8zZsyYMRdNpwOrqxi/uiG4eVmMbwxZe41YWLbceic6PoST9ADIG7PIWrmI5ba4ALv3XMsaXBXsyiHS7j56ZgEvCkh9QAii0nHAEka3FCFqbBHPWFhNLXqOlnk1iKIXzvIcI0ApBeKdhFFMZ0qi7DQlU2e+d+Ia1/LF4a4bIoSlHt5ahTCrUm1VmWeee6t/i51qD8PaPmYGbbb2VvjUk/fzzrf/H/z80mdY7fe4adsWsl5Op7zAdJxg4hvHg2rMmCvNJZuZvP/97+f48eNnbT958iTvf//7L3j8Y489xr333ku1WuXQoUM89NBDG/8efvjhS72clzVGWiwGS44UEiXkhgjkROuBstddSy2W3NNsiRX/6a7tPPjTb+fOsk8a5XRWBlhrKb9mlmwxQ6Q1JAmzLQcjEywai2GvatIUJfqrJwqXtRsIm+VYk9P2cxzHRdoSkjLBIEMwxxPR60jSkRglRdFuclOWxDvesodt+9eTBmwUfGNmO7xYMlOIbmkGU8lOtsrTE3ZL7ggy3yliuVnL3KKkuTRBMPBwMweLRUtNtNJiof00m3ORrjHkj2tfYM3tEiYVvMSsi04GtIssWZa3O8Qlg11evtrVvmxsltNeHVD3E8TOBmYqJswb5JWR0KG6kor9PSQJcscd2H/4SzzXew4QCLfCjntey9bbX3VO19KNMmpFeVrluKmzkdBDGh8jMnxVYY+aoOz5LD779DV2gz43VhtiNyX3Vsi9VYQFYQK8bAuwlerQY8dTE1TbVZxcYt506bH9skyTrCcgFo7gZt0gBCZKdbxsFmlCMt/FOII4SOk8ewJrrr+2eiGM1lhrcaduxq4njMjdVdqTn0SaEC0NFstsvIttd959zjKcRom1fBGLRbgJNtFIMUCKDn6WbNpT4LhTtLfXybGkQtATDfLBLlaCBU6wxHDhyZe+0mPGjBkz5vIY9MHzyOVooTl1A2I3xAFCt4ynfEpyNG6x5Sa23YblZVhcvPrXfLXRGZYqph3AjgnSkijCY0uL9VoIPKr91+KaJiv9jJ/840eofep9vPqJD9BYuL/IsC7AdR18x8GjhMs2nHwHhiFeEnOHv58nohu3LQdJTms9bm6tkpBOSDqzA4QVdIOUVzXeyb1zf5djW+/h0dpujseaPyrt4Z88dAK7eh8nOgOalRJmLiSd8HGCLWQnB9e4VmPGXDsu2dLtiSee4N577z1r+z333MMTTzxxweM/+9nPXuopX7G0w4SwW1gCugrIMvY+vExz/uyXlnYMCAhCF18rHM9hemed5WMdht2EYS/B21FFhA5EEJKg+ynYDIHCMTV6vmR7Uudrq6e4t/rMVa7tiyTJEdLBm03w9QzS+lgsQS9FscDA1HHc9ob1mFjXm1/9zQeKhArGIgQMe/EZ1m/XT/bSywvqdiFLvXRDdBPUnpeCo9cIsM567Ltul+3hLRgMrek+yzs73PLgDpRRKFu8RpSQQNFewhaC0p81v8D7Fv8eKhFQVShTAZmThsV5Q89j+MwhynM3SDKF3NDONHfExzjE7QBkYR3vdOgyY/GiLp54qvhcmeHog/eDLiRJVb8V5V44Zpm7tYwIHVQEYV7BkiIIkMbDiJSecghxeb2zg9977LPs+bYlqFxnbagNsRxZUqpcofQmm7zIUu1NYLEkgcG6l36PO54k6xcu+E5N0RcZzdSynosNaT0QRUy3cuwxNFMMO23KzYnzF3qdkR09Sn7qFNWb30Za8rAkDEpfB2BisYowgmOlAd981/ktE6b33kTpm5q0P/oMNvPJBmX85npWWW9TgOj1oNpWSXAV2zKBrwKS1TfjTj3MUjDP/Y9+gW+8+Zt5+NPHOXmwxbabm9z9zrHl25gxY8Zcc6yFtVVIU7LymSEstFQEJxeoyDnUI8vrY7b1w2ID27bDkedgfr4Q7sov47huaR+bCvTqEoNdZ4/zVT4aqwzWE7XNiTV6zhbCqEfH6CIGHrA2SEhkm7lwBomPkUNSPyD0mqz0bsDEdOscWR1wOCrmEFsaHU77HAcDj+3xFijfs7HvI6bC9y/tx6vvxOllDHv3wMod9N70MNWwzMr2NgBmMM5eOuaVyyVbuvm+z+I5VkHm5+dxnEvW8MacB2MMkTv6eeJMI4YRwUoXaSzyeVk1+43CT15JB6mKzJxBaTS5T+Mcb3uF+jfvgoaLkiUkFmFGQS2/ul3xnG2xGGlIujeUlZdNMrCGnc6bzwh66uYGKbo4JeeMvBByXVg7nYlXSoEQAtdz2CxwLR9rX43Lv7K8QHbh5+NJnzyDU0vuGaKbG/TobimBtchMU+olpGaBqBrTmesTNUb3jZIlgoltZwzgJmyNpi1zwl0souvlo0GNF02h3SJ2SCsd4j196Ma513LN6pGYw/e8d7TNbsouKgXl5BkccaT4fPf3kZ82xQKscNl2593ntUg6jTMV4s6WyIOMQFew9jFSdwlhXVScYzZZax2zGQyvQ8tUbUidUSKFHNDDBpkZUu0+TW0xI3VjcichLVnS+NID7L7puw6Q6XXRraxYkkNW000ZU42PFRor1+9Nu5OlIzfWIDg9dgyxcxd+ME0mW2i1HodxaYag7zEIE3pDza49jfOWIR0HpxEiahJZjkiHAdbCIPIZdnvAcYxYRViDlSuoOCYNi/58j+6R2gnqvRqVtMafH0n5z/+fv+RLHz3I8SdXefQzZ1u+jxkzZsyYa8BvfRiOHAEg9s4MNZAmGe6JU/jaARlhbY52ArRbxkoHSmVoNqE5Ab3+1b/2q0nSwZ5U/MG3dfiLuxMwFp3Z0+vG1Nr3ocUqqyee4KuPfIXbxbPUpCbydzKVR9zUPkIpjRBJyv0HT5Ck6abQLsX/fddn2lZA35gZOxfap/1XLG+4fU9hCKAhWDE41TppsorWGXmWE5ZKvDmI2K3b1LMOk94Q6a0QDdeTOZUz8s4xwGD1DTLeHzPmCnPJKtk3f/M381M/9VP8yZ/8CfV6HYB2u81P//RP803f9E0XPP4bv/EbN4SOc/GZz3zmUi/pZUlvcYHaYJQ5MnAVtlYlTE9bEwlAYGxOR0Fvsng5liseMira1w9dqhMhQkCe5EjfofLGrbQ/fwLjuNhUIzID65rB0tQ0tjHAPtuAcArS/g2TwdRKiT35ddT0bVidYRFIXGSqyewylu34oeG0/CHPoze7voNy5EbChSy9lpl2XtqOyVjDWraM40IlBA/BUybhtkpMudShO3kbQlusFAStPkoO6VZ9nnzzMeaOzG6UI61HWK9izniuXawQnAqW+VrpSRr5BFCsmgqqKK0waoGhyUhyjdvvQ/X6v9esNqSdAWIyYrio2EIF15Q2dNra0hJuNkD5KQjJwacWaS2sbBxvzMXFrjudwVOWXWyaE4oV+kDutJEyJDWKr+l5ysKl1PDJeou4M7dd6eq+KKyxCKnxB5MIKwgSCFWFbjpgQgi8KMM4ORhBfEeZsn/pcf227m9QmShW86Uv2aWrDBPDwU6bZCoBK7AypzsZkbkdxAnNoBVfoNTri+z4CfTxY+hmDdfUsBjcxDB5qknqa2QmeGqwzLbjq7glQWP63NYJ7kQALYMhJA8rCAHlMEHbClasWwebHsJU0QGkgUOpmzIj4DhrpNk0DSfllOmzNxdYKzAW+q3knOcbM2bMmDFXkTyHeL1/k5LEcc/4WpTKeNUaxmjI+ijTR+XF/rl0MCtfR62tj36HL3M3wOEqA2VJ1m0ThBFIK/CSHYSDA0gT4ug2AwK+2KkBNfpzf4dSbRcHbrodFudxhw7H0gp/eaxFu5ywZVohrMJJHUqdFY6rCMdxyaJV3OvNE+EiGEQJr6t7HIwjHKcYnyktqXUnOXVLlVALYino9SKGaUYSlPlHrQcZ9rr8fv2t9LTl4HM+eW+BW+0kz71NcuAhhemnqPrZsWfHjHm5c8mi28///M9z3333sWvXLu65pzAtffjhh5mdneW3f/u3L3j83XfffcbnLMt4+OGHeeyxx3jve9977oNegfSTFo4e/TxRllFOUsxwBRlMbEzye1ry+UYL9Y3PAkXAT6mKL11f0VsrxLja5ChhhdpZRT+2gofAjWISv4sVGilLnJgyTKw5GKGQw9UbRnQb9lo8N9MlMFNIPLQc4PUsSlu6s2Wyu57F2Z7hCQ9Hurjy3C5+nu+g85HYdS0TKVwuF2vnlprRZDlKFCUEAWCiKod2JaShi12/l8qLLVyapEEhQmpn1C5uMENp524GXzlET1sE4BnJgJiB6FHRIe5A4PVT0gC07GOJwTjUSgqiHFZXbwjRzWgNcUY+LSjNajp0mJo3CGNRmebmL7ZRshjEGgsrJzdlexQKvxJitEGqCxsZC0ciV6FEiJ8tkYhJtOoWWqzjcUBNcNx0SLXk+ENfYeeON+F4189AxiQ5eT0jKa8Wn53tKBMSUKVXmWR752mczCN3Mob9HK0uL6vV6UdUCMEp2SdLHWy9gZeBUUMyuUS5U6a5AKlMaS9FL1zgdUa+usL8bbcjbEauOiAMuBNMzDtMnyre6xU5oLc6pLsyPK/opmoeouIgVYawgjw3GGvpsAXsKoYQIwp3YDeGtGzpEjGUFUiHtEUV6x2i0+iisbzuxLfi5WWsBZ0ZlHvJhvNjxowZM+ZKEUUwNQ1JDDOzLGYOMulj/KJP0ELhNBpkgKXCUA84Peo6nJ1gn26gKPprkpf5YsryAt2Sxc0gc8AKi0oq+PlO/HwbAFY0aUVFsAqJ5c4f+P+Oxlhf+iI3Pf4wq6uTVERA2lnDTV+LVhHaMQwbTXaYndydzbLSOcqWG1B0O9Ua8pVOSqPR29g2c6xB1JgilynSrZLkhomJKhNApb3AztUBXx0cpea5pP0SX34i4g3fWydt5fQqbUzikvfGotuYVyaXLLpt27aNRx99lI985CM88sgjhGHI93//9/MP/sE/wHXdCx7/i7/4i+fc/q/+1b+i33+ZmzNfAq3+Eq2KpNkqPoeuSzDQOOHUmTs2Uvy/Nc9peyxhJWLdlcoLRr9HEo/Mm9WWMurhFSwQxKBNYSmS522wgsD1eHbpIPu3vQaau1+aCl5hVsUqX7kjZnq5ENOsSMmCEJUbFnZUEUGPQJXwvTJbg51M++fuAJUrz3TPvKYx3a6E4Hf+MmI9Eh+ixOFtOOyWDliIZvZhfGf9MixT/RIGSWvmOWA9huA6OircHV0L1XWRbto0+UT4f/Of//LH8aptVG5I1623lC2RBEtgXFzHoYyAlWXYvfsK1Pel5eT8AKFLRLPxxmBViDIIgVoXa5UoBq36zT8JxzYdLFySQUaeG7yLEN1UbSQMBzqii8DRTYxIsMojFCG3SZ/Ha4ssr5ygsTDPxM7dV6imLx6T5ZhgPaabBe1KwugmCMAfrFHugrAeg0obRJk8vbxYHze/fiusn0ZLy+7Inp42IPMQ62n0+n0ZIOgMbixXj/Yf/iF2+06y2iSOhsxdRuQh5XbRXqnS7C+t9wAvoLgLR6JCl3w5Z0CDpx9aBgnDhgQ0kiZSgyXDBC5xKWOGiBKWljfLrYdvIbvrKIvhKo+Fn+eOZD/e/N3FNcQ54UXEKhwzZsyYMS8RcVyMpQC7Ywd5xobgBkVMN1GpkW3ZgXZKrNiUPbKElYpfj/+En/ffC6d7z+jGWpy6VOyhE0S+IVOAAPPYMgfyv0NnbhQHb9eJ3+ODT8wATSrKnLGoaW6+E/HIo+zO4F/akKfsJNrp4+ZFnFqA2A0IlMty9zhbtr3+KtfwxdMbFgvIlUprY5ubOMzfPIms+ehM89TSGq/ZVcR6K4U+pfU2+jv1mAfbDfK8QWfwBO4MJBMDxOdvJ37yWfztd139Co0Zc425rKXpcrnMD/3QD/Grv/qr/PzP/zz/6B/9o4sS3F6I97znPXzoQx96UWW8nIiTHsJ4GDLsuqTmRWe7Og4bEY7jEPYbTC7tYWp5z0ZGTi9wCMouypGkm451t1dIS0VPE/Q2iXE2wMknqDohhxdDSDrPP911y5Jo4aQNBAJDitRlvDhnUI8YVFtUfEvolfGkj3ceKzc4HePt8pIWXGku/you7sihHiAQJElGq+0ztf46MMqwVpsqRD+jmf3qQaQZIMUp5vcXscO0suSuQDsCTBGPa7NzoBE+ubCUUhgkp3CjkaAeRHMIHYDMWLB9tDEwf+qya3s1efJoDykkTA4wGbjD5kZSDjfOUJxETdfhfX/DyuRbQWx+xRZ/X6y45O2qIesuFotMXIwsBsHCKoROyFRxHzedEr+mHuU37v/lK1fRK0BvJSpEN+3j5E1yfyTUOpkEC6kbkwRDQGKM5cTTK+cv8DxstrCKRI40Fq8fYUSMtCFgGTQT0iAjQJJEN04gX5tl6JVVGrvv3thmREKUJpQ7AZGfcUgss2VHMVG4kGWuu62CrLj4+LjuFGlm8Ko1pBj1D8PwawzDr9ObKgJJ36o0ns1Y9Ldj5SbrB280KUvjG6dNx4wZM+ZlSTYaz5988nHS/Mz+IEPwldvfyhdmdvC5+iRP3PI9/Okd387n974ZpMQIB6s8rHLOKOtlh9HYXp+lusEx0I8GPNA/RRp4hYuCtfjRSdzhEvO2TgnLW/bUzyii+4UlTh69HT2Y4Q04fFcWYNat9QUClabEymWOCqfaR69FLV80nV4huk03e2Ch3HUot2rENR8z6HPq6AqfPDjPYmeANZp9VY9qUIxFZo+fwPeXQMZ0+8VY1TiWzNes/vp4rj/mlclFWbp97GMfu+gC//bf/tuXdSFf+tKXCILgwju+QkjMEIGHXA+41ht02dItOsHMTck9y6AWs7y9g2s90OBmAcq4VJohAI6nSKIcayyDdswDf3EI6UhmdtWh4WGyiLATk4tFED5YhZNOoFWHTm4hap33+q4nrLWs2EkanXuwaKwWBANNqR1hVZ+tJ57Ay9/F7Xd9O/Iikn3M7t3G0pMnCiMxc2PFf3o+LzQF7x0/gfUsvu+S02VBDogTw5aKQgu1bvEnmTseI1UVIzRJpbgHrQNOVpTuSYmx9gwFPyckMQnfsbwfx5RI+5LaYp80dMlrNbykTOYLlsot1qIBM+1OIfJdQhKIa8FKKwYhkSWJalcR/sht28v6SKVRr3orzN1BduorG5aSXnWalCIOns4uTqBwmgGq7hHFHYgCUm8epas4eR2rAp5NEmCJBiGPeC0ORZ/nn5scR14fCW2ifoadyUDliNwjdySWFisLKa9bysgrBpPnpH68YZ178ukVtu2ffMG4n2chR3devC4eWamKzKXWYmWOFRIvLgRMYW8cgShvtXDuuBM9sQvyNmmYkLkruLGk3xyS+TnVpeOkaiuOKzcSxJwPGTqYfoZAML9SJQokt0wF9L2RN1EcrmCcDpXSNEYKpjBsJWJFOkwem2RpXyGgu+UOtWZGqTlJllzL2JdjxowZM4Z0lC1cCwvOyDKrNFgjMBl9rzQaZ1kD1jCU0M67iNBB6PUy4ht77PuCRC2wHoMgI3eg4pSZXakSb5EgBdpkTHS+zt88fYzb2UUqt/KPWx6Lv/IQWBCuxAwzVMNHdxIcKwhil+Gwi6tWsMIHr0pOwPa8xtfWboxF5efTHRQLa7ONBWbbO8lyxXCijLfcYZB0ebIV809eu5fJSoAAIq/EriBEyhlOLDxNeU9ISs6xeY+tbsak59NvRNTrk3T+/M+pf+u3XtsKjhlzlbmo2dl3fud3XlRhQgi0fuEJzXd913ed8dlay/z8PA888AA/8zM/c1HneSVgs4SwP4pxVS3XSIJTxGFK7miEgMfe8hxBtoXdR24rgv+vZ4hMo0IYEUJQnyqTZ5qol2xYI6TDnKTiEC4LSu0ERBmjBhibofs1TlUSknsq/EFwionlT3B3/Q1MeFNnX+T1grHkpoKkGGBIJchqLnRTMGWqg4hUyosS3AB2v2oXi4/8JQBp/xoKGJfpXXrmtPv8hWRZwmze5FB2il5nG/eaKrgwNNGGebzVOaleI1THEf6mLJzO6Cw6zotEHZvKzq3CmgS7NE8eP4EzexPJa2ewFiRNtAKhA3pljZCC3rBHtdWCiQmuZ9I4x+EE3SRjsgzIdYF7MMDruWR6J+72GQBMPhIipm+6i37fxxhLd3VIdaJ0ruLPwN1aRnczrLDI1ENYFy8bJbDwPZ84txgMLgptc/7ZX/0wP/naf87NEzdf2YpfBoNBgnHXRTARYKWHtTGVsIIb97BYHBGgmlWMHFlKD3sJ5drFL8CctuwFSETxDnQyTcZ69lI7JA4TWtM9siWXeOXFWWVfTXS7Tf74k7j3NcEp4tSlapVqRwM5pZ7PPvk3HJbvIc8M8fCFrRPc2TLujgpZHJM83uXE4Emmd+2htLVGlJ5CKw9lfDQaLdok9ZxSx5AJWbg4p9uAYtV+iKbbcum2uuTpNXTDHzNmzJgxkG0S3QBrcmzrJKK5jWF5AqFz3CSC+CS2OYvEgpCUspiqnGFghpyW6WySXCc+Hy8BcZs0AduPqbiCVuBx9773FYtySUouY3Qy5Cl9gG9nju2mwmxHk631wZOoZoD0HUycICsexwcJvYHBqxnkYGpj2B07LgMn45nV45x45EG23/Xqa1vvSyCfb1NK4NaJNW5tTLDYNEBCfWGSvBxCvcTdlRTXGS325VKwZiSYlEQrqq6knblk2RDjaURkaPvHqHs++dLSta3gmDHXgItyLzXGXNS/CwluALVajXq9vvFvYmKCt73tbfzZn/0ZP/uzP/uiK/RywFpLp5SSBV4Rv2n9De5FEEQe4cDHi1wGjRjHFGa7m73YHG/k6Cck9FsRxowmRdZY7ESAk1n8SBWB77NZPD1DOmjgZgoRKladjKcHT3Jk+PRVqfflYjNNJmKMKEw1RJyDsXixJgtyTjVeS1hrXHR5cpPlzOZ2u/o8TzC76BhvFzdU6uddFkst6vUQktE9k5VkkfrcWoTWIEoY9uOEI7fc2tRINBLGggW56fqyHHKbIVwPO1wjcLdSXxmSlgvxCAHa6dP1NdOlKlIbOHr9m+B31xLymUkmtgbE9R5OXsRLyctlEIXgoXbsAEDnIwGkMVunuzpk2IuJ+unZBZ8DVfEQCLw4REQhVkQUEluKSYbESG5jhh1ZjXf0tjMk49GVR3lg8YErXOvLo5dGqCwAq5DaI0j34WVbwEB1OcLtKzIxxJqInXfs3jju2JNLl5TARGx6+UUyIcJiU13EJhMxlgDrODSXq8yIAB3dOG4zptNB1rchvAaWoi8wXpubn2pSa5VZ2b5G2fk0RhZTJaNfuN1U3SM73oeBoew0AIj7PRxPIe1WpAmQugrSMmxmxEGTA57LSSrEMkCkFaQRVHHou6sb5ebZWHQbM2bMmGtKmqKVwmDJjCHzGojmto2vheuTBxVozuIOVjiw8HWsVAy9CllllmVRuEdaIbH9GBvfOH3lpaDbPdJAsLTdpT/h4PkObmMOPA/ruWR2yJue+P/RY5I7bINX4SLzYpxLYjC9lHw1wnRT/L11tmlBw/poc3qMloDWeHlOw1bIogFLTx+8oRKz5SfXODG0HDGHqLkClRbjrMyrkYUujuswXS9RL/nFnElKUrdEY8t2DG3ibMiczjDpNCcXtlFqStKGIZ+uoZf7RA9+7RrXcMyYq8+LMuOJ4/iSXUI//OEPv5hTvjLINJGboNIa0vobolswLF56ykj69R6Tpw4wvbq3OGbTu9xxRwJKbaJEa7F/Rj6AYS/BmQrIPYGXlTFqiDIVpPWYDOaIEo+ahDVOF319dxT9tIN1A2TqY61FBIU45A1T4nKGEIrq7CVkDtpkOWOvpeh2BU79Qr9cZkbij8xG90xaC7Cnhcc4oepOYGTGoQMjUV0ICa6EzCAMGGvYbD+Ua9Amx3U99MpJzHAVv9PYONbNJsm9VXQ1oE9CRfk88bVPctt6RuTrFTlIEDMjCzZBuPG3k0pkSSPDQpDcbOnmhR6OJ8lTw+qpLqWqz9b9kxc8n39Tg/wrMU5UQzsxAonAA99jVUXo1LLFrXFrZ4a/qh9nkA95YP4B/rdb/7crWOvLY5AkaLewjpR5CbEe9c8mOV6kAUHqJSjHYXZXk6iXsHy8Q2uhTxJlBKWLDMy/SSQfyowQQXmYE1NBWReJQ+6OngSRXt/vs83krRbutttIgjLitA2CUXinrZbDlH7jO4iC3cVX+oVfGu72KrLsYgYZs+Eunux8iajXZVe1xGIrQZkKXjJLXD6IlQlJ4FAJoJZqum6VpL+TRs9hrZ7x5eBJdmGQyMtOgjFmzJgxY64QUYTSGgustteItMWlWMgXQpAqjzQMwRp2xT1mBm0OGYP2KnzrzPuY7z7HTXIBYXJsq0V6Yg1//+yFznrDMTjR59G9KdGGWd/6/0KQt5f46ol/xn12mpyb2SUcNOBOBQS3TBA/vIzpr3sThQr/libxU2vMxfBo1sOKHGl9UJCokD1qC+SSqNMiiyO88MJeDtcD2XKXTm44UIqR9RqpZwi6NZJ6FVEsyxeI0ZgjdQO61WmkDNG6Q3jiGNT3s9Ly0NqSlnKWt3fY7QRkS09v3JdjxrxSuOREClpr/u2//bds27aNSqXCs88+C8DP/MzP8Ju/+ZsXPH7v3r2srq6etb3dbrN3795LvZyXJSbOENoiUoeYDrm2yFafXA429knLDnPbRkHcN08jK42RENqcq3Lg3m1M76zjhUVihSzJqc6UMU0PkfUQ6Qq5amHJcaTi4Oeb3HV4pMde76JbL+sgs6LOm69VZTlrc10qzUnKk9MXXZ54nqVYel3EKxJctr/pObBJTiY2JdFIR6JbvknscKVgWB4yaHToTUVMutPcXL6DN0y8DeEU954wFmvs5r4XKwWpTgvxzmr06tOEZrgRS0StW4g5jsszdo2jtMl1Qrd36YH0ryYyTnDE6P0lzehZczKNKo2eG70pELFyXJRTtLHODccPLV/U+bytFbJSijT6zCD2QEcNWBymLPcHvIN93EadOdvg8aVHL6tuV5p+Pgq070cVDCmpswKtUVIN7WRIx8X1FKWajxcU7ffQp57h/j99ikHnwhnUNlumJrJoc2eTu6MwHmbT8pLDxVkaXg/Ehw/zwKsnaU+N6iiswOoerekex+88hi01Nr7TFxDdnKqHt6uKMxsyWdpKc8t2OkuLPP1XnyKzS+SqjasLMdjaiO60wjFwp58SigFL/gzbFitMDRpY4ND0V4rzji3dxowZM+ba8Km/gg/9JjxYWLkLBHGWY7KUZOU4Ni/6vFw5+GlMY9iiHrWZiLvsaI1SrB/Ux7DrMWGFTqE1vPp1uQr8y6+0iVONF1lIJH7rLrDg9VN6/RPsb7f5f7K/x+vIWEUTT/o0372PiXfvo/Sq6Y2Zs9MMKN02hbu1wqKJ8PIBmbuElsONuUiqXFzhAJZ0MDj/RV1HWG3I8oSqifm/J+bIJFSWQ9SggeiNxqFr3T6D8qOk7hIWjdQZrVKTajiBECW2dJfxvJPktk+eF2P/zkyfz/xbj7/6v+5hMbkxY92NGXO5XLLo9nM/93N8+MMf5oMf/CCeN5qc33HHHfyX//JfLnj8kSNHzumGmiQJJ0+evNTLeXmS5KTmLjy7hYA6rpKYZoXSoLB6y5ycRmMnO+NbqTQCGjMVJuaqNKbLlGo+fnn0u5SqPtPb65SrAaWKTzzIiAcZylPowME6kHkJRuZkzgrt3oBhUGXBjCbG17PmZtOczjPHEKKos7U5/sqA0uoAkcdkfo7Ockr1xsUXumnlRSnBoH0jp04/949nooRsk5FqkzUOiSHHklV6lVH93SRGu+AmLtRiKk6NCW+KSW8asZ41UiFwfAftS1Zyw3JmSGKLNhmOX1iC6e4p/CyhstIn6Ca4SQ2VNbGZoidTSrjss02Gf/w/r+sAvtJ4ONUK7qkArz+BMMVSaWW1TZCdxN9dYuW5p3ng936bzqkTuEFIdXYO5flnuAfrzPDUV44z7CXnOxUA7ky5cB23I/fpjWvxPHzHYbpSZq5aJ+9U8OMatEL+y7//S9qL127AbI0lYnS9ghq52wKhsbHF2VklDvrkTopaj7UYVkZBn60txMksubAFldhkmRqpQnTzBymps0TqzSOsIPMMK1s7rNgIpctYcx2/1DZxeOEw27M5dDASxVXsIq0hC3KkKLG6/fs2vjP5hcUvWfWQJZdYRUxVtxOUK/QPz2NkjBURRkR4wyYqs3ixg9crMefDXJBQ1kP6g9diojINU+bBbX/Bx2/91bF76ZgxY8ZcK7pdyFIWa5rff+OQP3lNxOLNDv70DvypHYh1Ic1Ih3LaRwDd+DjKGvatPouM12il88RCYLwq2q9hvDJ28PIS3b58eJXX//r7aVX+kLyhSEMBviGIt4LRmLzP/vbjfH9/kYrdzh4EkYAqAm9bsVDs7avj7arh76vjbq0gPYVwJRkJNrZYoVGmtLF4/5ToMpeHpFMOaXSDzCUyja9CdnmaasljtuWQGxCyDNXRxKGWRAwrjyOMwqIxKgOZMV0HrENTp8hc4agBR06A33dBF5FYVD+hlV7fi+xjxlxpLtm99Ld+67f4jd/4Dd7xjnfwvve9b2P7XXfdxVNPPXXe4zZnQP2Lv/gL6vVR+mWtNZ/+9KfZvXv3pV7Oy5I8TXCy2Q13rNPIrLC4cnJFOBXSzfR6YPYBd71t7xmT1uezdf8kypEM+wmOp1BKYuseghLCtvDywhIsUTF+2ERtipN0PVu62WFCazBA1wdYkWOMIpkqOsfKg5JBPaZS2r6RHfFiKMydC8syYwzHD66w8NzVz+T6/FYvTLEvfNxFGWtHOU5kqVPmeNZmV38LqfXY4boseCHS5Bih8AeacjfAdb/GtyTTMDtKhOJMBPTTHOtA3E2o9nLKjiSzFh0ZMpNi1wWV/NgX8Ve+m/5ri98GWcHIGEeFzN9c4Q0HA1yrKA8h6bXwgy0X1UZXE51pvKxLqdyjszUGYio9BwT0JxvIJwLwS3QXFkl63Y3jpvffhON5+GWPJBpZTa7N95jeXqdUPf9z626r4Aw8nJKHkRG57CKsIh26KPqsDhtI00cbw3Re5dnwONV4kqd4mKOP30JjdudL2STnJc802je4cR0rNU4eoKWL0lXqvaPkSzEBFdrOAtItHJMrjZA03uS6K4tyLoRQo/dkJHNOoOkYjZcXLuWpu4hRMHWqDgJWlCZL9YZV3fXMs9Eit4b3kruQqzYgmTkxoDSY4em7TzLZAxOWCf1i0WFzPM/z4U6ERI+tIJXEaznIhgJj0Azw9FaMyAjjuxiWD9LeEjJ7bMh3hhmf6FSps4aMJ3nD13fwubc+Sj8c0gtaY/fSMWPGjLlWrA/61iqGtVqxACJtleB0d7ppYSp2A1LH575YcIoO/XSA9t6Cp6Ee7kWLY/hJMX7Ju/2XlQvgg8fW6LtfpS5mSDaFnHCdCghF3pjg1fd/nAezO7mJJrOETFiJN1dGVYs+tnT7FKXbz0wsJz3Fdtmg1V+jXRqi6aO0RylN2OHO8bAXcrxziFsHb7mq9b1cTJrxscUB027MU+Uhp2YkkDN9vEyax3hhIbw5c2185SHxkXiAx2JlB7fsbnL0VIq1bYwJyZI6Wmfk7hBhIS9B9YSm312B2jWt6pgxV5VLnnWcPHmS/fv3n7XdGEOWnT/o5ukMqEII3vve957xneu67N69m1/4hV+41Mt5WdKLe0hdPmu7kxdm4yd2rPG6d34DJ79whGE3QbkSv3ThjHyu75BG+fq/DDFTQuAg85G7VSX0SYI6bt4EClPo61p0G6S0sxgvKzJGakYrSV6cE5dTQtO45HKFEFhrcVxZTP7zqz+pvPxhzoWPtFlO1x/SCQbUApc35QG7cOgRE5UCzPrK6ORJDQZ0mMPr/smZZaQaLzZYAcbYIqECkNtRQPfV4SpVwCZd0HHhiioFKq8W7pLS0Nrlkz4ncNcNo44ef5Sbpq8/0S1tR2TeNHl5ZAUqpL+hjjpxiLOlQdJ5buP76uxWvFIhNN7x5t08+aVjtJY2uVdewDJJ+gpTNnhxHSvbOKYYoYQhTLizCPUEk+V9ZDrnDQf38pm5Jxh4XVwd8PRX3s5db782olsSZQwcjQ46RT1sGZlXMGSUuxmsLyjkTraRVdgLHIRkI/6kNZwhUp7GWou1hUFqFudnCOpaarajKGWCw+vbBAq9aYDtC+j2+0wFjSte7yuJNYaTiw9z986/j/E8HB2g5ZBSq3i+/cTwjocDTnzDJPnxHlmSk+fmgpOk8pu20v30UUpphVmxi6cO3Y9bCYl/6Vf5pu//xxyuvhmb1oj94+SOi9+u8LrSKfb5Dk/YWbpujV2DI+RZCP4QhKUftYBt5z3nmFcgWoO6sAg8ZsyYF0lajOE75dE4VZrRnGAjZIoQDP0KE/0VJJYtVEHDY2sPU556LdrWWAm7bBssFPvnKTbVCP/6X6C6GPL1celO1SQ+PSbQPkIU7ymV5ZTMo3xK/2v+IdsJEZhQ4e18YWVI1QpBThpJXhoS9CugYBh6pE7AhC3RktEN414atzr81okebw/a1HwfKOb22qvhuSNLN6EME+4UucqKdLnrOGENZVfIREbJ9EhlnY99dhs/SgXhCv7qBx6kt6PCqfj6T542ZsyV5JLdS2+77TY+//nPn7X9D/7gD7jnBYKgn85wunPnTpaWls7IepokCQcPHuTd7373pV7Oy5J2khQTRWK6LGxsV7khdzTRdI4FBp0Y5UqqE6Uz4hqdD+VsmpxmhvpNE+RlgcoStBxgRIq1mm0TVZ7KNu97/Vox2FTTzTcH+AeZasJWRHuqQxJmbLvj7ksveH1lUACOo67Jv3OYul16+5zvmEyTyULQ0Nqyy7isYjhlVojdUXIAd9hncU8LufPs2AvCLwYqwoJJDXJddNMWjAbHWnS5hPF9rJQMZIstB5eRmUbi4sXbOP0K+lhjgXl6GCyfe+Ljl1zPq0G8su5q4W2yxrIeWEtpLcIdZpx89mE6J08gXZfSxCSTu/aw7c67N/bfd89Wdt8xs/H5QqIbgLuvCiZDqzNdPXrOFDuzL9OJBiip2FVyuC3eQ6ADTtYPceroGs999dpkiOqvxajm+gcrQJYxxGTuMhNaggOZmyDKiomdezaOu/1Nu9h71yjpybksqNI458sff5IvfexJHvrM4TPefbko9lf55phuLtqBqJyQWU0gBfcfuz4yvL4QutWiVbY4qo4gwBCTqzX8SBGVUhw3JVMeYaO88W7P4pwvfexJvvixJ84QdzcjXUn1rTswJZgOt7O1tI+410UYSxgvge0DgiDei3FBexIrfH6g1meXiomlz/0Tr4NoJLJ1BwvnPNeYVxidDvzGr8P/+2vwu79zra9mzJiXP8ZArweuy7A8ErmF8DFZgh72zthd64R61AYgci2/8c0D1m46RS76CASPzuzBSheLQJgUfeLqe3m8VCz2EurW4a6b76FdLrKR+slWAGScsf3gEyR4aG7Gt9DDEOypU3vr9hcs15kMyWSKk6izxml9R7KFCpmKSIbn7pOvN1orbQ4NMrZ7Cf3AInPw+j6ICoa4cCUlQnkST/ooL8KSrxtoWJzSxMb0pZZ3QPWxVtCTMW7qoLJifjU0N0Z7jBlzpbjk5YsPfOADvPe97+XkyZMYY/ijP/ojDh48yG/91m/xiU984oLHP/fccxfc55VOO44QNFEEGBL6nQ6zmUBlGqUVzWA76Xoqb50ZHOfitFPlbhLSckNQ9uj4DuW1nHi2sKyzUjMVOhxM4LSNzBPPPsMbZ952Jat4xbCZJpWwsfYiJMZT2FiQlDNQl2cxJoTAUrhr3fqGa2MtdPxrz1zWcRfjCWCtJVmPf2UyeJQcASiVotddi0WuiSt9+o2I6rf9X2eVITetftpUI9Z7WasEYc0hzwUOIJPChC3O+lTbHVbjOokjCOLdpOFxALq3lFk6MaDlxMxEDgfXDnLzxM2XVf+Xiri7How4KOojjIPWFjeJCIddSrNDunKIzor9pvfddIbgBoU1V1AauZNejOjmTIfYpyMaSwrDCkZ5OLpG6lQJzUn6WY+1PGaqJNgha6QmZs2kDCaf45FPD2lum6Gx9YUHjVcSYyxf/9wx1P5CAJMmBCGQBFiRU0VADlIp8jRGuaMV+dpkGak2iWjnEPyz5yU22Zxg2KjigzqjXQVGQTjwQUBgIv7q6c/ybfe+8wrU9qXjDx777zx22yzd9czCkgCjYsr9gHDosaXjs+Y1qZTdMxZUALAvHN8tuKmJc3CR9sl59jfuZUXOo7MYf7iAtMfJ1HbcvIkRMVngYHLJW4OUTzg5y2nGmj/BXDZBvbsbgL7XfolaYcwNhZKjxaEX8HwYM2bMFWI4gOlpMBbpWLAJCJDKR7o+uGeGr1DKZylfZEH3CEplEKC9Dqm3QNwr4cgJ2n6FZtRC6BTTv0HikF0EnWHG7XaSLilsWLfVkKkmiHIq6XM8wq3ciuY5DALB3m/adcFyZcnBNR5+7GLkgNRdROV1lA1AhWzNK/yNHpIObwxLt04nKgzXrGYpyDCOJK0kqHmJrsc4JkAQslvt4s7Zb+D+/gKn+iNryuXpJrJcwR1O4WsPdOHtMZApU1ow93STQXiEfOsk2mqUGFtEj3llcMmi23d8x3fw8Y9/nH/zb/4N5XKZD3zgA9x77718/OMf55u+6ZsuqozBYMBf//Vfc+zYMdL0zExyP/qjP3qpl/Syo59lZO5ysWqgDZV6nSjTKG2J/YzZuf1FBtKJEtYYgop34UI509KtvdSnMlnCCEEWSiwGgcRqQ3cwZKhHE+FWev2udGXDFOmPVCYn1ZR6Q8JuipXF4P/52UgvinXlytprGSD8JXTrjXN0sC5oZJJXrb8KHnM3TZSExUscBo0Yxzs77thpSzcosqGuNzdpboj6Gq0Vyh8dl+ke1UWLvNWiUoNwAzCAKISTUlBmkA+oGZ9f+tov8YYtb+C9t7+X64X26hBvcJJMp3jtOlLUsdYgBKg8Q+eTZLbIbKpcl+2vuvec5ShXUmkGgABrsdZy+OF5hBRIKdhz59wZ+/tbanhZmdbckKnFCo4uJObIqYNZw3dc4txQ8iQ3leEZHVHuTPFs7Ql2d6aJ2mtXVXTL4pxhN0Ui8PtT+MltkA/I/YzUWWLgNSjVLElcDECVc6ZrvOspqhMh1tpzCkdZonE9hc4NbuCQZSmnpXWjiptQ5ZpMrGAdgxU5Ap/cyXByheMEpJHmxz77Y7xl21v47pu++6VtkMvk4MpTTIhJhiWXTLUBEDorghEDgWtRysMLnLNFN15Y0PV2VHGUh800SjoIIzDaELXbBHN9cimxMkNFLVqNAVtjxbQyzCqNNJKAmFZ/P3Fex5qQYf3lFXB7zOWyqa91Xh4uaWPGXNdEESwUlsYre6LRI9ixsO60oPIh2ikBEGdd9kURQSJo10fJjmKxiM9tJHmftl+hpnPAQnJ2iIcblXaUsksEDMPTK8QCJ29iHEFSktQHh/mK3koNnwzLjFR4M2eH+nk+suaRVzX5MKbUEnjMFtvTIYv0aKqEY8Mh2XBI+9RxGlt3vJTVfFHYXNPpFvfFbZ7guHHRiz5p4OPmoLW/cY/lg8KKcrZaY3l5mURIjIjol0qkuo8hoZKN7sPDzhoy60DcJ1cpwdCylq4w7c9ei6qOGXPVuaxR0Vve8hb+6q/+6rJO+NBDD/Gud72L4XDIYDBgYmKClZUVSqUSMzMzY9ENSKxF5mWULdHjMGQ5bqyxWGIN22+forc2oLdWTHSmttcvUGKBckYiSTzMGLaGaE/iZpCKBGElQkl2zEzyxHwFWAOgl3dZPdlncj17z/XEoB2TWEFJRmAdjOfRn3SYebZNZ7IQdC8nCOzGMZfh0nnFOOPcRYy5i6vJaK/zXb3VBtc4mNyQpYJVDA0E5WaJaN1dT2VQ7gScvGkFqc6OGSgChVWgpcDRlkwJhLZkp0Nl5IA/EoSzpIcILV6UE9V9lC0hdRXj9pAlxdDJuT2d5hm1xvzxL/PZPOJde97FdGn6omr9UnPiyBLD6jQT9RbDRgc/auI5PrkDXn8Abox0FMrzcfzzJ0dQjqTfKjK0ur6itzZk5UQHYyzKEey8ZRrljp7VcMcEXlZGGLAyAx1grWXNBIUxv+4zUd5ONx5wX6/Jh8qPk5UjZO5wii5x7+qa8CfDlCTKyBoDtKcpRw1QJaxYI+UZZgb3FuEiS8V9Kp83OfdCl347QkiBe45YMskwJVt3O437KVloOB0jTgtIsfRzjWunIAMjIxCa1M8xuUVbydHWERbUYXzlX7eiW54MuKW/A2+2jKsbAKTecyB9Mi9nIo9YdUKmfAfHVWfEwwMw+oUXDNzpEvUjU2Rhxq7wDpbjE/QGKWG2wNB/LRhIKj08MUWWtKAMN3sZ/9Odopp26MV7Id4PZKwNx+6lY55HFLERfHHMmKvAQnQSTwU4QlF16i+bBAAvSDwSzjI5GvGJiQqnQxyfFtystbhOiYnOcap+hbarUVqjpSVzOkx4RUyIYbCKah8H5aEHZxpG3KhEqSZKUu70tiCUQwyorIpj6iAEbgxh+yTz+iZusQ5TQmBmSwh14XvIqfk4PUWj2uTgzNPMLIElw3glSv4cZetCJhmsLbPw5OPXt+g2TNGRw1T1JJmTseo4pNUYNwnQtdLmnBz05o8DtxF6ioygWHi3YAjQyQLSeoR5G0hBJfgmYAc7yaN5Tt6dYKKctXR5LLqNecVw0THdWq0Wv/zLv0y32z3ru06nc97vns+P//iP8+3f/u20Wi3CMOTLX/4yR48e5dWvfjU///M/f2lX/zJlIAvBzWJoshNcB3+4Hn+rKQjKLkk0skjyggsnUSj2c7j7bXsR62/NaJiRlB1UrrAyQeJzevK6IKobx63JJb7wx4euUO2uHNYY+sd7SM9DmhBp3Q2rNjfOaU+fFhsuX3Q7b0y0q469ogKgyTP6XkTmaLzcYXL9VeA2R7+7k2iSclq4Kpxj8Cp9hdDgZBaGGldbHIqYbgAiiRDBKOjqoFVMzGvrsdEcXafSfe3G919J+oDlVqb5jvwmHlx8kL88+pdXrM4vlpX5DouVo0Ukfjgj2YkX56Q2YrC2gk4T9r/l7ectZ3OGydZCn8e+cBRzOh5ebomjM92yvFoJI3JkLrGieA8IIaiWanzvlllIDyOEYKJcI2kJfmXiNUgJRyee5BNb/ieLz61esTa4GFZOdemtpmgvwtVNHN0AIdBySNAbvau0U9RTPU90E0JQqgWY3NJa6GPX28baIptwEp/ZPpu1JSsNHoLmpsV5YYv4NEklxcOhrgRN0yA1KZ8/cXZ80uuFw8MTTNgmcXWTJW8CXuKQhBlDGZLv2IMQAjdweL5RrtYv/L7wdlVBCdzEpeHMEFZrtLoRE2lnYx8jI9LQIdPFPXt3kOCalJ5XZzR8cDkVX0uL4DHXDc/vo8YupmOuIp9Y/J/8/qkP8d9P/mdSk1z4gJcDSbzxZ+ZsEt1UeNauQgieXfxffPzhBxFCkPsCrQAhcPzRs3qq6fHIrgR0AunLw9LtsVMdvnZymblRMBqcfBJHnxbdMvr67/MPeAeegN8XGbPvufWiylb1YnE5GHggczJnFUEx1smUx01MoVxwpcHk1/c70SY57dyQzPxXZkshcVNjHIMQTaxy0GoUIzAf9jBa0yi7qPVMChKPWM3hBSHYnKlkEYkAXaWzvk99sYJKNMMyzMcnrkk9x4y5Fly06PYrv/IrfO5zn6NWOzuLS71e5/Of/zy//Mu/fMFyHn74YX7yJ38SKSVKKZIkYceOHXzwgx/kp3/6py/t6l+m2PVOwYocuf7idtctO1ZfU/xkw16KcoqspeFFupcChDUfP3RwPMWwG1PZVkGZHCvXrcKQrA0Tys6oTCXgC91PX0cCVIE+0WZoBI4YdaIys/i9FDduM2gUg5EX4156TS3dzkBcprfpuQ/SetTxu+sxoxQCUx893yqLWNzVWj/72a8KuUk8Utlo0m0cgRtI8kxgy2W6gcfAc8njVUAQdhK8YQ7GoEwJjIMTRayUapwcRKwkQ16ttzJXmuOxlccup9IvCckgQusF8qCoq5M2ybOcynKPisjI6qMVYb90fpcE133h+BXzz66dtU3XM5QWGDH63ULX4VnXozddojVoMUgiHF3mrvoe3ujtp5xXWSuf4v6H+1f12c0zQ5YYhHFwkubG9qR0mDd/8lZSV5DPaXqNQgyUztmLBv6mhYTHvniEL3+iSJzw1FeOM394DbnJnXKz2ORKhxhzxv0orYuwgjQo2k4Iwd6sSALQy3poc30mimlnfXalWxiURr+dlxTvpTTMSMImQb2wYHC9s++pC1q6ba3iba2gGj43H3gjN7/xGzDGMCuHGHkKLSKE9Th10wQPvPFVANzm52zVber5mQtsrXMkvBgzZiy6jblaZCZFiFG/kJj4BfZ+GZGmZJ7HQAryzaKbdYoQNdaSp6MxRYDDsD3k04ce46Hl4xvbtYrIZY9cdVipWu6/KaXnZy9plJOryXMrA7aWcnaZBvF6Oyk98t6ZPjFPTpkFco6h2bOtRnmydFFlC1chtwTofkRtuYQ1XbQsFv1TVXg9NFTAWj5E59e3iGlTzWLSY9JUObxpQVTqMpgUI1IMPby0iys0i4eexHcltUBjKcYcuQiZ3b4X3JCm0dT1Mkp16OlCCK6tlqgc6VNeTVhJx1byY145XLTo9od/+Ie8733vO+/3//Sf/lP+4A/+4ILluK67kW1uZmaGY8eOAYVwd/z48Rc69BWBMQZBRMwiHb3KcmtAZamP3+3TmxhS21Xioc88Q2tx5DJ2KaKbEIKw6hNWPIKyT+YrVFrCyJFgMFHy2emNJmy3MMOwscqzDy1fmUpeIewwYdBJsYEh8eZJnWWs66CFRZqc3kRhW385otv1YelmX+DT+bmY+upg9OhLDQ/LHl+qJHQntyN1jsg15U4X7RT3wbncNEQw6pC9Td9HqSGLDWnmIj2XWpxSTjNEMkDUYkqdpKiNlEWQfZmThyFq+zSZ0XTjDIVkay5pJ+2LrPVLT55YTDnAyTzcZBZpA0gzjG/xU4Mhx6/WCBtNvPL5RTfpSEr1c7ufnnY3XTx6ZhxFZT1UrsidFpmzVGyTgpnhG1gLM4SwDNI+JaVA1bmzUcM1HuWszrw3z/KRpSvXEBcgGWQ4IeR+F6MyMrWCyVe49a9nUFrg5LaIhTfhENTqeKWzB7almk9tMqQ6USId5ph1q61BO6ZUD5BS4HqKSjMkz0dPhm8DBhRu2NauWwVaBy0HdCYHLNNhJTNMpSNxuZeemd3teqGvMnKZEpcTMrlKKlcIWjkrWzusbu0SGQdv/Rn0Sy6l6qgfEAKWjrU5dnCJhz7zDF/+xJN85c8PsnJqJJa5M0W7q6aPiXK8IGRpZUDDybFCoZ1O8SaxFotgoVYlkAIv6eJlQyAHEYOzRmIFZ5najXkF8rxeKn15uKaNuf6JTUxuRyLvK0F0e+ozn2Th4Qd5tr6bB/e8mVr72/AGhaueMuViLCgEcTaydp/KG4Dg0VPHmY9HfZ/MfZSp4Og6SlcJUsFq2AdjLriAcyNwfG3IWjpgXvbwBjlhN0ANq8hMU1qL8PqGFhnCWj4mM+b+1p4LF7qZ2FDXEwxrCdpPUaYQ9NKsz+N6kX1xg2eyFvo6t3QjzVkzKbtdeLScINoTOMkMfrQLcPDyJpIqqVejWqtuWO4FvsSIGCNSwODKFKMH1PI1lFE4ss28hUPOSXqDITYTBH2NFIrMjPuJMa8MLlp0O3z4MAcOHDjv9wcOHODw4cMXLOeee+7hq1/9KgBvfetb+cAHPsBHPvIRfuzHfow77rjjYi/nZcswSxBmhoBZPOVQQRDVA/whYAVZmhP1UnSm0drQmDkz29/F4LiK3lpEZ3kAgcTJLTKN0HQxNmaxM6SnRqJB2TosZ0s8/KljV7i2Lw6bG3IHHFXGT7fg5dO4g5T6aoywCrseVP3yYroVbXotRTdx3g8vnqw/yqIkcpdJU8KvN8ikwgiJlYIdj8XElaIzlOeydNuUSMEMcvoCEleQKUFYVcRxAJtim4kkwWYSNzOY04EhrAJb/F3xI7I0oeF5WGspp5IsHfDEyhNXtvKXicgNtYqEXGFkDydv4JRDkqAMiynd3gJJr0up0TwrOcAZ5QiByQ3iHI9tlmjSKGPpePuMe0+ELjKXSBPg5jMAnGoPWFYlPja7hdBxkcLBEZaFJxfYHzRI3YgwrXGy/Byf/73DrB59lqWnn2Lx6SfpLS9e8faBwroq6qfImgJhcPMJXD2FdKZoLrlIIxHAMGmTDvoYrXGDs91gpBJ0VyN6a0McT22847JEY/JiEpBnGp1rTA6rrUVWWgsIo4lEYXVlbZdctTAiRpkyVsE0daZciYtmX30f+xr7WBpePUHyUphsK+7u3wG+g2sm8cwUtVNQaYdox5B5FfxSIbS5nsOwNxq4WgvJMKO92CfqpRhtyVNNe2m0WCOUwEqB6abYVBM4ZYZxjs0ESrtIXUYYj8zpIIzlWDDBWmwp2ZieWwMcsAHkE3QyC+nVjR045jrH8yB9hbj4jbnmJHqUZdOXAbF5+WTdPBdZFBF3Ouh+n+ON7axWZlBmEmWKECHCqA3Lo0r5ALlJWY6fxcuGiPXtItg0hlMpVqx7vFgflWiOlWPuHz6A7d34Aqa18Jqa5g12B71Jl6gWI90A4yrimkc46FLC56SFrwvDNxyYuqTy1XpfXF0LUXGKFgMslrQ8i1IST0iOpj1Mdp1bumU5CX3uMVsQW11sY43cX0KZGkiJwEMajUyH9E8eob9SGGOUAgdpPbASkNS37cUrTYLJ8fKczFZI0NyUb6MZVCl3JIOqROaGleT6HIONGXOluWi1RinFqVOnzvv9qVOnNizYXoh/9+/+HVu2bAHg537u52g2m/zwD/8wy8vL/MZv/MbFXs7LltW4u9FRGnLCRoj2HSprMUs7WkSbJlav+9ab2PuqLZd8Di/YHENJIKUkCzMUNaQImK2XmAxHotuE8DnuP8PRU6forFw/WersMKHTypBsCtZf9lC5ISkVotJluZbC9eFeap537su4Fns+91I7cger54odKNaqDrkbgJQ4UZGNNC6fPxnF5uylTmaoWPAzS24h6mlWe7Nkzkh0k2mCXbeg9KNi4KHwkKbY51g+5NGBZSIMuYlJannIV5cf5j899J+I82s76DO5JtcWv64ZTnfQ7rAYYFBkzAUwqvh/5sCF44Dc8479vPHbb+NN33EbclOg3kojQOeW3mq0Yd0FIEsuSksQo99ta6OMn+1nKW6RrXyIqUqT7Y2tVHsV7jMeW0oNlqpHOdR8iBNH23zufzzGU5/9LM987jMsPfP0FWmX55MMM5aP9tDrOXrE+m+LtQRDy8K2DkvfvZ321DwApUbznOVsjlM57MZnrLQPuwlGW/yyR9RLGfQSmvVppppz1Jwqg/W4IQKFo5u42QxsupcBFsN5DncOc7J3kiPdI1eyCa4IiU7oNH0yNEaOnrMtJ8oEQ4/WTJ+B9TesnL3w3DmRzPPiuj3/MfZ3VMlXY9L5AV4cEMcaz02o0sYxVbx8lmHlSaKqIi/XmAgE27NVYqfEZqum1Iqx6DbmTEO3NIXoxp+sj7kx2GzZlpiYYT54gb1vfLpL8wzWVnABu+nFLqmCBaXrCOQZi3fTwV7KW/Zxd7Pof2Vlk5W5TDCyEMml9unXFcO65Ku9LzPotK9GlV5SnlrokWdDhu76WMIInHwSACfWqLRGiMNHZMrui3Qr3YwsFX2w0oq42kfZwtLQOC43McNr3B086BxkOLi+Ld3SVNMxEe/kZrzS+jjMCtxkdB8ZqUBIBJZ8Pabg7jmPIhCNgxUVvOYW0uEqoNkWn8Lkk8xvioNcXqoRTwSs5Mt0s/bVq+CYMdeQixbd7rnnHv74j//4vN9/9KMf5Z577nnBMqy1zMzM8MY3vhEo3Es/+clP0u12efDBB7nrrrsu9nJetvSSGBBoIhxpELmlsjLEj3KSaopO1+NJuQrHdS7LiqvcCPHXX6bGWijlZ7iXAlTdkZBVEwENT/P45Bf5+mdPXn7lriDWWuzagIgMYc90r1VpTme2WDm5XNFt5F5645nVX0ydN7thqFzxDDnZdHljVh4MUpIwJS6liPNofSJ0kGUXK0FuiqGVOwLHE6S6xMnhLZvOk2FKhSDiRfmm7TXyXIAs8WtmLyvDIY5Q/LP81YTC4YunvsgHPvl/XFIbXHGSHIxgwl+PH2jhdNIRZ73u1oPmjt3Ut2y9YHGbn9ut+ybZdmCK29+8Cy8ciU15NhLYZNPHj9VZLnwBU5wYLlJTKzy9cIhMaxpBlacPbuWW5CZqosrQ77BaPsWp5yocPzIHQG/p/AsoL4Y0zkkTg6ytZ8DNq1hySu2Y1M/oV2NKvtiw3HT84JzleOHIdfL0nEFsSpsllaDSCFCuJEsNZl1ErsmQVRnTxyDWA2kLFCCJKglrbpeMnIYps6O6g9SkPLL8yEvQEi+O1vIpJvMGedlH4GPIyOmjtCUJUgaNiNLsxMZ73PMdlHN2d67z0f0ipCCNzlxl93bVUBM+ZAa36xA2ptBa0cxGbkfabdNtfJ5OULgt7SEizIdnCCwrsg/p9bMgM+Y6YfjyFj7GXD883510oK/PsAFXCp0WYzjHQropBrPMXIR1cfNJrMlYTY/z1eX/QT8pPFVifwq3Vix2+XtuBiMR2seLdpKrNQw5Eh838VmYtFRMzpfnv3z1K3iFaUcpc05O4hYdl6MbKBOCNjQWBmg0nyXjUTTbpqsXKO1snOmQjBR/4G7EyD5NplxmbZnl6hIPHNbXXXzszRzqW95897dw6PYfQLrri+NZFe07GwYhAHbdVcN5TtH77f9B+aM/jBCn1vcR5PVRhtbZdJXy/5+9/w6zLLvK+/HP3vvEm2/lruo0090z05NnpBmNIkhIBGGSEDZYIGEM2CQ9JvuHwfgrYwT2AxK2AAMSBhswJggZIyEkoTyaII0m9fTEno5VXfHme0/ce//+uNVV1ZM7VHfPTL39VD83nrP2vufs8K613qWbHENySETkaIS9AtkzYC3Lgy1pqS28PPCCSbcf//Ef5zd+4zf4wAc+gNbrm0GtNf/tv/033ve+9/FjP/Zjz3kMay179+7d0m57DnSjBIFAEaKMoNiOCbspaZDRrUdIJSnVQ6oTz64Z9XwICh5+6FKsBsS9BFy1FlYOEPd6KLNOyrRFzA+nr6E/tkxz/hJZRKc5WOiKHlYYUmeJzBmKxYosJyqesv9cSbeLNzk+7dTn0ZSc9Xu4o6GJXSd8rKXQTvEjbzU66Jn7UIUOpp8hDAht6UhYzgzNXk5YcQncAY14gsWROu3Aw0titBoSKaXlaLVJFqlLOI4lDHKOyyp3dlIacUI9L/JOey0VCty9cg+/9tn3nL8OOEPkvQSV9QmdIdEmdQFtM/xGh2qjQVKLKEyNUhobR7kvXGMRYOf+CXZdPUF1rHiaIH6+QZxehR5GCIw6nTRxRZmFpIFwfbJkgSSP6SUJCyeLZIenGDdTzDBBs/YkSuV0O0WQVfIkwZxnQd+l422OP7ZMHmuccg5WIG2AwCF3DL2RAQ/cfIJQJPjlCpWpacoTU894LC9wSePT7StVA6rjBWqTJS67bgrPd9CZQQiFMcPFYFEUkEhKSITukLqLw0piVpEUMkayCi4OU8koJbfEtaPX0s8ukTFtA+afeIzRvEq3rpHGR+IikTjWwY890kLG9N7xtXHKDZzTCLZCxadUC0BAsTaMNrTG0lzs0dyQYupMFJChi7ujjMKhu7JEp1+kkidUB0+gxQoqK5I7KzhpxJGR3YzmyyirTwubi7FgLm0P/hYuADZOWr4Pl7p+0RZeElj63f/OsV//j2vPi6pM+yUePaOz4ZrdB3K57qwT2sftjw8fSxepI4rpCkHzdsLuA/jZCsGON/JNMz+IFxZBGqxK2Hk4RUUGa/rkNCh2ShQ7hj1yiodbj1yMJp5XtAcZk85QkiaMyvi97Rjbxx+kBN0eDQvHjaaWC77jFdvP+PjCUbh4FJsBhdb61lolXR4zbbqk1M1qMYXs0tUws3mOzFNyk4PxcLvbqDe+CcyQTDPEVAuK8aUlth+7ktIxQedgHfnE53HTJxDkWHKsG1KZ2IsX1piKT7Knd5SGXGHZwmOqTWUApiTRCuJB+3nt2sIWXgp4waTbd37nd/JzP/dzvPvd72ZkZISbbrqJm266iZGREf7Nv/k3/NRP/RRvf/vbn/tkUrJv3z5WVlae83MvZ/R7EUYuE7GMNwDtSpxEI7WgX4lJBzm9ZoTOzr5aXKHir+khpYnGSkmuOqTuPFr0CUolJqvraV8aw5gNyVRCQy6xfOLiexBtkiNGiuhSFy8bw8vHUXmR0kqEF2V0RlZTzM4iEnD1i6snukQ8UlacV1u00Yw1Q+onS0wPfBQCeyqFTwiUp+mM90kL2bNGzskNKW1ObqkYGHMliQHfttHCRTmGqHAVWgoyIcgdDVbj91NErrEixcmHXsWCrxFOwoc7Hq4UZLnm+7gWYS0JOXcu3sV9i/edtz44E5g4I/fHifwErz+Cm8wgpB7KWkmBSCWDzgojO3ef03n8gku5HlKuh2TpOunk1AMUGitOJ6IKssC2bAqrPEy2gDaaRpRQdvrUe1P0dItaWCapLiGlxXEsUVrCL5boNZbPydanot+O6Cz30cbiVBVutAOtOoishd/pI4wgV9B49KvoJCHpdp+VoPR8hXLXpychBSPTZeoTZWpjRSZ31YeOg1pAZbSIWa1AWlUh0ep94qQSL5vAzUfBOsSFlCcKx3koOIRRhieaT/DA8gOXZKTb3LETTHe2sVxvIezqhmqV1MrcHCuhUl93vAghKI+EBEWXoOQx6CT0WjFZnNNvrepqrQYYxt11nS13JCCb7ZEd66JnB+y89gakSPFEk3ZhL8qO4qYlhPVZHhvQCmsUwglGRIqv1yNLcuPw7q/8Oh9+/MOb3jdbeJEgSfjCw3/PF2e/eLEt2cJLHOmTT5KodadDahLm4qMcHTy/zvSLFaeIm0gKzKoz09gUQYhrp8hVk16+yL3tj/Gl9t9wPJB03BqzzZzPeW/Er07Chmrot331Z6nGDkpWcRghLlVpj0iMByfaRy5GE88brLWUPcVlnuVhv0EUdjGuxgqNQCD6CW0MfyFTRl3Ba/aPn/E5nNGAuBAjZUZnpEXqLKFFjPbLKFVkyXS5rbuTpurQXWk+/wEvEgZGYBwP6ViM1wRXwGr0Gmiq+T/wpi+/g6nHHkGlCdYGYDOWol+mMDgGKAQOrWIN9d11nB/eR+179nKVOw8mpI0g00WOm/X79Vh8aWRQbWELm40zUuD/T//pP3HnnXfy/d///UxPT7Nt2zb+xb/4F9xxxx382q/92gs6xq/92q/xsz/7sxw4cOCsDH6pI0kzsAVCxsiLFaJqQNBLkUYQl1Ncz0Eq+RRdtjODlILLb9hG3B+WAxeOi1UxXjaFtArynEGuwQwvjzIBVSFwdJsHons4drDxPGfYfNhUYxt9ltMYI3KMSLAqpTca4mWC3uip1LIXb6SbsE+1/cxTXZ9N0y2TGcv1iOa2HqmwtAsCZ4O2mByAyiRWPnsfytABCaLo4jgK7Qgya8ETFLfVyFIXYyTdyuWMDBKqaZFOZEEoSq0E6yiE9VB5DaE1mZZoIzig68RpTNHxcBOXHxavoUfE8egkv33fb1+UyKSs3SOXHvVCmbTYQEiNsiFJpYLXkWhSEILS2MQ5nUdIQbcZ0W1GdJbW2+mNFJCxDxsiFPtJhhQOB/UKRioK5hCZEeysVbhu0vJwOs6ibHIkmSebgSxzUa5PezFm0Gpw/N6vYM35S5/W2uL6Du2FBARYlQIW61Qo9RRZMCQMo1aDPE1I+l1KY8+8uHU8h1e99Spe821D3btXf8t+ZvaOMb13lOm9Qx0W5Sr6rZheK1kn3WRIsqpLY8UAi0bLHlhJHmjqeYVdyTa2x5O8Nr6J6/VVbE8mz1sfnC/MLS9Q9nxMqYCRA4xIELkmcRPScLhReqpD4brXX8bNb97HTW/ag1QCx5PYVV1Ix1dgwfUd0mSduM2NgVBBqDCA0ZpBbAlMBFYjsw7W8dAyZlB4mEwpXNHn247/Bd+6/PG14xiruGP5Qb5w4gub3zlbuIRx+nzT7ixy98m7L5ItW3g5oJu3acke/R1l3MYAjCWzKT3dfUmTblkS4/kBRenj6qFovxAOShcJ4l04uk7DzHJk8R6m093MHT2M8mcIqmOE4+MMqj7GWV9PfOHEDzCxcjtYiyFG6qGu2TX+Nma7s5dswaEXgtlWhE4zShbqzrByuZdNoqgQl33KXcsxoGvhe2VwVs56WXAIBgFev4iV6TAQwA7lM0bCceqySN316YcnOfjpezh81+1YY4g6LQatBv3mCll08Yt/ZKtjuBERKh3FSyaRRoAUjDX/O6//xB+TzHXwBxZhFSCwlMkKN3DNjn/JKdkVEPjV7cjpAu71o0zX29zcOsj/RXMDPjNJDastgyRiNlm66LrNW9jChcCZlb0Ebr31Vn7rt36Lj370o3zsYx/j/e9/P7feeusL/v473/lO7r77bm644QbCMGRkZOS0v5c7oryMtAUMOcoMIxncOOfgbUdBQJ4MK/c53tmTbgClWsiOK8epjBUAl1x1ABAE4DiMFgpIG66+Btczxde6Y9xd/BT3fOrJi69JsFoByFYdHF1GWh8tVosnxC1YFWI/66KflwDp9myE2fPjuVttrSXbEDEVZg69ckixsC4eq1LDoDKcBOUGIffTzhI6OKMhtp9hoxyVWxq5JU8t0vPxAkOeuTRqVwNwbMc3cOjQMNXNTTUqHXoZ/XQGKx1GaxmVgsuSP86jK018xyGwAW90prnKzJCScefJOy9KtFvv+Dyxl8BqFwmzns4hc4N2MpwNlVrPFhuL0Zx4fGUtbTIYr6C0xG4opFD0XYpeEZtOkEvFZNBlkA5/M1cKHilYssHl9E2fezp3kRcHDLqGVnuCLIppnTjKkS/fcd6u8aibkEYZeWKQNYGbj+DoOgiJ30vJ/GFKeFirU53ewfS1Nz5rIYUXAmc1FVcIudZPoaOIV69tmacIFMqUUKuFHX5rz58iEVye7eDnn/x+fv2xd3Pl4WmySyw1cqHbYDSrEVcMyhSR1sdNLX7mk66Sl89Ghgsh8EOXPDVrwbGOKxFiqLnX2kDmthb7JBKINNnxLrd863fS6+dU7SIOOcatUGxPgMrIvWX6Xko5GN4EhWRDxLN1iU3KZ098lkRvVax82eIpQ0kVn9neVhTDFjYPH5n9U774I5ex9Ka9ZCMF2KD92c1fmmlrRmuSbgcRxyRuQKaGov1DGfvyWgXTvl7htw//O375yM/xHdU3sCjvoBR4TE1V6YyF6FXSzeaCZXkZI42vgBBIApysCkDsWlqyxWePffqitfdc8dBcB7fd4J+4ZTJvuHaTp0T9jcVJDF9F8+pI8srXn3mUG4CqrK5tE+dpmm6p8thJlaudcY6WHuX4IxFzB+4j6fd4+B8+yr1//b+578N/zsLjFzeNd7g3GD6O6RNGeyhG14Eckodhf5bl9JdY6v9nSHZiKRCIjw2drP0M/dWFDUfzCPqvXn+qJLt6h3mUYVThtFUEKwEFP6RSLnNw+eCFa+gWtnCR8IKYm2PHjrFz584XfNDZ2VlmZmae8b33v//9L/g4LzekJkWa4YbGkFLoOzipRiZ9evVVL8Dqotb1z410k1Kw46px1BOS7hEX5DAPX2y4JKQuYFSfQZbTEwm3mcv5kH+Av7z8fXztPVez75UXL0LEZhptLZft/xoy1UQ7LYSOKTRrOPESwnGA/Bwi3VbJj4tNLp6C4Ow03Z7pO8aSyXXSzU0V2YbISXeQ4Q1yuqPDhYMUz8zNCyHwd1fIWwlkhrTicWhuKKZeGDxOqVqnETvkbpXPvP43sdKlsqEQgBtlaE8Ndd3yCtau8PrJx/h8bwf/Lr+G/9WaZbwYMJkEfLf/Rn47/38knuWDD36Q18689iw64+wxP7uM4Ti9Wo7MiqhknSyyxGRuys6bX3XO5xmdqdBc7NJvJ+RJTtzPKJR9ZMVDkqNVj8xp4OQ1BJKC5yDaY0QGam7Oo905XLfAWCHkKjfnKyuvw1gISi3+4Ybf57sO/BxxLwVvJ4p55g7cD9Zy2W2vO2fb0zgjTTTKExBalF4ncYNBTreeowSM7t6D4w0XqOIFVLx+NqyRblJi8uHmIVSSeJWYdLKU9aXv8LMt2+awP8eV8W4Ukr6MGM/qdNMuI8Gl4/RpN05wVe1y0kBzit7142G7ksJqpNtzjG1u4BD1hq0Pyz7jO6qcPNQgS/LTiimkcY5xJaARFrZt38fsgSK+7TCi52jqErmqr2WXPHbZXdwwUmQkn6Gz3Ed6C1gkUmj2FKbpknOsc4x99X2b0S1buOSxPuH0SAmtQ24ufvTGFl6aMElC1lyBWjBcq606SyUSg2GgLz29zvOBRz71MQatJoWwQN9ZF/3XYrCqozqcVx9PP4nx3sU/fs9XyD2NkJb5J65gPBylM15AaIGjS6w0NR8oTjA7fz1XAIYMN50kHFjabs412QTH578KV333RWrxueEvv3KCV1UFczbhYXxkVkLlJchTCicjniCjZzSvDmDyhjPXcwNQFRcx5qKSjGJzWHRAINFak6+m/87kZRqlRTpHh7N6OuiTb9B3y+OLPFbmBqkNXt5hRbQY9053uE/e+90oTiJFB088giuPYrwWSe1tqMRBH+tyxcwcj/v7sUIhbW04JQjIXI8xvQQIHsn7TKmQWrvIo8VlpBQcaNzPzVM3X4xWb2ELFwwviLm55ZZb+PZv/3Z+8Ad/kFtuueUZP9Nut/mLv/gLfuu3fosf/uEf5t3vfvczfu5d73rX2Vv7Ekc36ZOrHkYmaJ3jFHeQFqEwUESVU9EDw0WF4z5z9NGZYnrvKMeP+4zM+UN9B+EgtKbZW0auCnCvGEkvCvELffan23hCNphdnGcfFzEty1j6hZBWfIKiE6CEh3YT4pKHp1twKjrrLDXd1iXdLmJ66VMYsxdqycYmP1O0nNWG2Fsnv1SmsKFDEsf4QUBWcPE9zXwlWrXj2ftQ1PyhVpSvENaylA/PV2vdQbf0RvJY0G8I0AKsIZeKxDj4UuLFOXEVJC5Kl6g2H6MQTnC5WGRWV1nJNCYasL1Y4tX9Mh9x63iVMbS1HFg+wLVj177AHjl3NBp9TNmj0HfJiz5SrGuR+ZEDnkN54tzvB893qI2X0JmF0KXfioakm6dQqYcVGjdfJ4cKrkMpniYSghowSGJMnrDUTbnFH+FAZx+2/ABO5jFaDfjq+D9yi/sWVKGGJ3pk0YD2/Cxxt0NQrpy13cZYpJL4gYcxYHUMVpC684Qdn06xyaCcYAzsvOmWcyLb1voqUNQmi/Q7EaaxHum2LGLuJaeTxjjuAgiLyIee2kIuSWSKs0rClUyBnekU7aTN4OffQ95oQJ4z/u6foPjqVz/ruTcT2fIyURCyK57hkPLXssqTbsTSyDLLM8MIs+dKgamMFkiijKSfEXUTvMChPlUi7qWrep4G5cghUVp0ENoipUBlitQpYYxPYHIc08JaHycZJQ9XsMJAwaVxcpYiEpMOr/lcpMxHTfo2Yr4/v0W6vUzx6Je+yJWrj0t47LI1UrOl4buFzUG+uIhxVsfBDePhTLCL3ObP6jB8scPxA/xSGbncYLE6hp8v0g1AWAepPUAOq0jmKa1ggSwcOlpMLoicBr1OETf00E4P46QUA8lMf4XPy1F2RH1CLyPzc2I/4ETYYZtT4vCLWNft8cUuN5iIaeGz7PtUyNFOGxUVSLKMwIKWhu2OQ3lb7azOoco+djnDGyvRG41QjVmUruBQpW97PJacxHcUk90Kj4zfz/XeTh76xN9hco10XaSUpNHFrQBukoyeH2KFxLUWgYsmwckFfq+DLxYQoo8nj1Fz/wSAhnclpmDxigEyt+xC84TJQVoEehi84QyQrkPXq3ONaBOZKhEp3RxqxSFpPDd/7GI2fQtbuCB4QTPSwYMHKRaLvOUtb2Fqaopv/uZv5od+6If4iZ/4Cb73e7+Xm2++mYmJCf7wD/+Q//yf//OzEm6ncOjQIX7xF3+R7/me72FxcagT8Pd///c89NBD596iFzFaUbomLC+MwmvH+O0YQ0RSHHpDlJIERQ/XPz+kG0AYlmhMJ6T+CtZ2sEpRq06idAmAWa0oK0PROlzuFFFK8dDSxQ0FtnHGoJ0wXtpLge0Yd4AbZ4TtGIeFNdLtbCPdOLVYMxcz0m1zzi2MRduE8pIgXPZoRApR9HAdB6zF66eolZzcXy1G8VwRNXV/2EcW2OAV8wfHuM75cy6/YpaR7H6E1VggtwJ/lXDx2gnWGgwp0nosb5tkZDyjact4JuePnphj1A1xjCQUkpvCq3mi/QSZyXh45eFN6ZtnQ9Qe4FZjGtvb5N4iaEWW5MPrLdVUd2/HL5bOy7kKJZ9BJ8Zae5r+lpMb/E6GoYc1Kb0oJTeGFRvypC1zWO2ml7UZKVWwymOEiDEj8Ja/ich5nMPpYR4q3UnmxDz5YMqTj20jjRL6K8vE3c452ZwMMlzfod9JCacLSG1ws0m8bAod1tl2IsTK4YRzPgg3AD/w6DYiTM5aRnWoJL5Q3ITDdD7UbfHSKZQdOhD6/etYTsaI0Wg0LdUh9lO67SXShZxswUXH0/Tvffy82Hg2iA8+zHKxy4K/TOZEZM4KuWox1fMYb4zRmhxWHxXPMX0rR6EzM9R2cxVBwUUwjEY0xvLol0+Qp8OoNysh6OZ47QzdSZGlEZRcomCXydUI/sAhjK9YP3ZhSDjLDRqTFsm+YIarR6+mlbQ2pV+2cOmjceLo2uMOCSdEhyTdinTbwjli7itw//+CB/6U4YA/RNpYwY03rJOMJZwfkNqEk8lxZuOjaHt+q3RfCmgcO0Jnfg4HQeyGpCpE6RJKl7CAETG5s8JOp0Cg1qPyTSqolgaEEuSGauj1SON5ijlbQAiJFQWshVprBNdK9qR1Bv0XZ9SgtZbJcsB4oPhkkiACcLI6VliE4zEyiKhYxVtSB69afP4DPguEI3GmCth82E/SFHH0qRTdCnVTJFMGX0pW/DnaDY1JUzAak2UYrdHpxZVmyFODXd37pCYlTxRCRAgL0w8/hrARmm0ouYQFtHCJnRH0lCad7aE7MYPHQtysj5UuRgZ4yTDrTYkMsgHXHv84xf5hrnIKTCbrkizLndZFaPEWtnBh8YJ2P6Ojo/zmb/4mJ0+e5AMf+AD79u1jeXmZxx8fbkze8Y53cM8993DHHXfw1re+9TmP9bnPfY7rrruOu+66iw9/+MP0esMNxP33388v//Ivn2NzXtzoDFK8bAplSgiZklYDHG0Bi1Gr4pa5Je6nuN75I91Gt40BDCv5iNVoF2uQeqjp1rAOBQe22zJ7bYWubHNw4SC9xkUUvkw1kV5fbFmRkQch0oInVxCruh7nXEhhk4ivF4SnatyfJwLQGkvfjemNWqKxlAlnhPGJCtJxQAhy38Eb5MTFZxZs34jCjZPM/MfXMvOe1xC/Zj2lXOMhVhtQ9Z7kDXf8AjtPfJqx3p1rn6mtxAghEbhr19oef55jTHHSn+LJwi5a8QCZO9SNZUevSCNr8dDyQzzcuMCkW6tLqSAQZtgXypZwPEVUDfCiHKcSnrdzhRUPnRt6rZjWUo+ot7oQk4L+aBtJCSE9SqHHVCXEZCVKecxl+ghlfRhXCraXS1zvJ7w+UizrImn7Rtp6hXZpkfnSYVoLA5ZOGPr9YQRYnpzbYi+NMtpLfQbNBEKPvKw5xYTJPEMaS+bnZ6+x+AwQcqhdpjNDng+v1ZLj0Ge4kVBaYMSp1I3heLmob+A/ap830+EJf46arrCvu5PeoSdxtr2V8Obvx7viW0mPXTwtoOzoUYQU3DC4AqF83HwUR9fwVn+ieNUB81xj2/SeEW79piuZ3jvK1OV1KqNFLr9hG7XxYbRbe6lHa6k/rDa7WiXWAvlKhFMdzgd1M0/mjdKvBXjpehSnCU+NrcBqX1sraaUDDq4c5ET3xHntjy28eNA8eXztcQWfm+w2nCQFe/4KtmzhZQaj4eBfw9JBWDwA2ZDE7eUdltpHSAsbxkEpyAsK5/iwMrdE0s1eWrpu1tq1yqW5DGkUR7CiTO60sCJH4qymmDrEbkjuruvAOqFhnsfpfOphxo42QAzvS5cKvyxXaKoKJzopQnq4ukbs17HlkCvkGE9GCyTpi494a0cZdx9pMG37LCZ1CmWJo0dws1GM6zLShCyDVuRy85ufWRbphUJIQZjUADByPWqtLwXjYYW9jDBRDJlzjtMdnJ5oZvKc7uICyeDiRbsl/cGapI5Rfcp2F9LWcJKUYq9AqvdjnDGKv/RBoncf4s7t/x+H699CKzvJ6DuvRq8kpId71JO1VCG8ZBoA6Qiqukc5a2PyeQCcZH0fe6KfbOl/buEljzMKOQjDkLe//e28//3v52/+5m/4+Mc/zp/8yZ/w0z/901x77QtL9fq3//bf8iu/8it88pOfxPPWU7Te9KY3ceeddz7HN1/6iDZEtQglkamm0ErIvfWJ7tRGywvdp33/bDE6MawGqJ0O1marg65dK+QQS59H+was4PV2N1YYDnuP8qk/vrDEx0bYXNM261oIVmQI6+BFOYG7zHrhz7Pb5te370Q6DkJKWnPHn/8Lm4GncmwvkHN7PqLR5DlzxWXQUJ8r05yZxPPUMJVWG4qNAcK1xJVTgu3PPkwIKdZIOWdD9GVug7WNllwt0ODkMW7WXiMyw24C6fAcXroNrECUfa4VTyIxHAt30U/WoyQukyPsNGNIKfnS3JdeWGecJ5hBwmghwAoL2ht6MI2lvNBDmBRVPfciCqfg+ev3dntxwL3/eIgsyXGkxMh4mDayioKrsPkIvVUtyOmwxZ1Hj9NLYm4sCd401uJrIoVt3IbJS2Qm476pT+P4EqNhaX547y8fPrfILq2HNqWJwZ8qYpVe9bpnOPGQLcr8HEedP2cBrGtbniqkoKTiFH2ocoFdrWQq7KlrWKxef4qGWt+MmEfnEE6w9jxfuHgOhei++5C+wkjBeiUwkIOUfjAgCZ+/6MPaPekoHEetvRaWfaQSWAvtpT5ZqkkLiiyQCCBZGFDdfhm5DhnN55kaHERgkbaMSodee11z8R1neBev6ucZqyiKIfG8MFh4qjlbeJkg7nWf9prXbkFv65rYwlniqUVu9HDd99GFv+ITOx7HFPy1dQSA6if4f/153MYAg6GVNy+ktZsOk6/3R7u2ndTxMWTkbgMj151nWg7wHJfcW5/npIHx8YS9kxrs+vrZyRRT/i3c2l/kE4+cIEoSQOJlU/R8wX7G8aXHEyfvuiBtPJ+Y7wzn8m1+k4d8BcUlvGQbIAjaMWFzkZXcMFrKGd0/fU7nUhUfJxvOt9rpYBj+Vk23Tpx2qRDwinwb85VjHK6na9q2AMrzyeKI/vLFqxKbtbvDNO08Q8gNZG2SEvQLQEJwRQnpOQS1OrWZHQgp6TeWcaeKyLILAgpLem3972VTVJpfy1U3fx9797+B5eIOOjon0RGVpQJ5Z7jeddw6v/CFX7gYzd7CFi4YLrjgwYMPPsh3fMd3PO31iYkJlpeXL7Q5lxQWWk0yp0HizWKEwXgKGWcMquuaKIWyT2WscM6FFDbC81eLN8gYIdzhoCvUWslwISz3thPm+wGuULwtv5V+ocnS8Q46u0gebCk4nPfWnhqZEbZyqgs9nNd+15oW27lULzV5jtUaay5OG0+PsjvbljydqetEXYpZSGXRwXQtrYKi1ekPN+pKonIgE2TF566S+FQ47vpwkluHUnqcUnqCwB8uenae+DTTjS+AGNrk9FNw1bDmlglAWKKgzE7RZIdZRkvJgz1NK+9jJNRx2eFMcpmaxlhDM74wi2lrLalVWN+AAGldjIixcYYXa5R28EfOT2opDInMy6+fIiy5KEfihQ5zh1ZQrgJhiYPDGIZkZMFzwPjEq+mT436fZqppJBlLScLlkwk31WMK6RQq2UFd7SEqtZncU2FsewFUjbBap7swz+G7bj9rm80q6WZyg6q4qGSAsO6qJohheaJDGmTPGTV5Nth2+Qjb942tEZFSSrJVokpqSeYukblLGJENbwUpOXUvHZURB8NDHPKPQ9ugBw1gSE7ZJL9oeo7ZwgJjpsaJ4nDcz5xlMrlCkGgUwxxdgXhBfTm9d5TpvaNrz/2Ci1mNEB50E8Kyh6x54EqyqouOMqrbdyIEuCJhjAXcNAILI41vZnTxbTRKiiQfRi2KVdLNWsUrSpdx1chVnOyfPP+dsoUXBaq16trjFQY8LJZwjIPeqmi7hbOFTp/xubLOMBtAm9OWOTLRlB9ZQmQGkWk+ufi3fGHlkxfO3k1Gng6JnNaOVzM3uhcY6uJaocmcFbTNMeTkTpNxFJmXU14OCds+KlMEXQ9dyiivLBB0PeonitTnyggVc5s0hEsH6EQJudNA5SUGDhy3bW6Lpzlw7HMXs+lnhccXeuwcKZDIjMUgwYnHkDpAyw7F3jI2X0a7mu3bJE54bs5Td7pI7nQZmS3jDQRytQxS7pcxeZPZZJnLxDDddzltMn3tDWy75gaqMzsp1EZwg5DHPvcp7vmLP+Grf/VnF3wNkg6Ga3XjagphSiYaaLFMeTkjCvu4YYvw+tXINamGayVjAMs9f/O/SMsJ3o4yfl8PJXqEQFgHP9nOwNnJ3tveyuj0djKvhK9CgtjDSQRzCwqVbufg8sP8wD/8wAVt8xa2cCFxwUm3Wq3GyZNPX5Tfe++9z1rx9OWCNI+xIkPpEmEno9iIKEQax1/f0FdGi4xMlpHy/G1epVRIY9eiQgCC6DinVjKBSXiwM2DgpPRtyi5K1NJxlkaOsDz7dM/2hYDtxrR0TNMcIXUXMHJAUikRthO82755zfaz3eRv/N7F2nyfj1/4mSzvJh0aYYf2TA66iEwNRjmYLCZsNPHiFdrjPaSrmPCm2FO88hmO8nS4vsPU5VWmdkikyPDMgJ63naS6g2bo0ygE5I4HcpV0E5JgoQVkax7a1PfYLY6jhKaU9XkgL2ONRDiGEBjx6mirmS5Oc3DlAukKZho/SRhxhvehNAHKFpBFH0FGFOmDxwABAABJREFUHPTxziPpBjB12QhjMzWkFEghaMx3cdVqJJZVCGNIk4xmP0aiie0wyqjkZpxsdCh7Hkio+S3qiYtjBW4ekmnLWDBGr7iMF7hUxsusLEiElHQW5jj4iY9y8BMf5f6//Svu/fCfc/ATf/eC7NX5kPSKY4MZ5FixTtb6mWBssULma9R5FrYemSqz8+qJ0+5RteqhdVKFysu42TjKhqsk4BDCXSQzGVdHe9iT7CCICzjl9RRKNTqBbl6cCInEOARCsVzp4eR13HwM14zS6syyPD606WzT5oOiR2W0MCy0MMhwXAetJGqgcdsZ+Ykenh/Q7blESZl6vABCDQk2HJQpsTIxSvjum/HfsZ/tk6dSYSTaQKACtNVoo5/LjC28RLE8N7/2eJQC++04r5A7WGxvpQ1t4SzxDKSbsYZGvghqGL21ISiHYK5DfUnj9tJhxoM1GPvSGY/idovK1DRpcWLViQQWTe40MU6Pdr5IKro00wV6GuJSRncsIqom5IEmLqfk9ZhuPabQ8cnFAGkVqpIwllu0VuRRB6Ellhylp5i3fSZtkaONQxe59WeO440BO6se11JjtCoQ+ORuAydzceMUA8TAjsvOXSJESIEf1+jVY/qVBplaIUpz+lmOUSE6t4xkIdPtOieDw8jiXi6/7XXsuflWppdW2D9IuSbKSHtd3DAkHVzYdN5TGsK56pJHI7h2BGXHkHa4J5JuQuGG9XVSdXo75ckpEIIsikjyAUYbCp4kyLpgLQKFQCJMRs9kfOMN1zIfjAMQRB6Mp0xPaiZGE4gn0EbTTS7OvnILW9hsXHDS7bu/+7v5+Z//eebn5xFCYIzh9ttv52d+5md45zvfeaHNuaTg2h142STCSpJSmf5IiMw0dmo9UmFspnpa5ML5grJgSLCkoA2xN46wHkL7GCk4kRr2BYYxXaVqNU+WH+R48VFWZi+OxoPNNANHUpe78bLJIbukJXGc4ZT9tSixsy+ksLEE6MUh3Z6h7ugL/OZztzlK+5TiACeV1PQk2leMFH2EUkQjdaae0MhcUJQldoSXc9vI176gsypHMP9km/njhoFZv0ZlsUg9ShgZxHixi3XXIweFsoCLl04h8hAnt1zhzvKk3EaiPE6kmroXInJLaA0TUYFD+QmW+ouc7F2YiBqbaaxVDNwYJ/GRel1s141BGYVbOH+abqew46pxRqYrxIOMPNUghl5Tq2KELOL5LnvGq4BisKEQtePNIKymLBSkhplyA2NgkIzStYdZaC8h9/eYe6JNZzmmsuNWJvZdhVQOOkvRWcqg1WDQXKF5/CjmBRAop6KnVMEl2FHBOOW19+QqIdeTBseevzTcjUiymEHUpTfokBhFG0PHWrSzITXfeJy6h2w2wUmjiElZcFYwkUX3l9Y+q1sd8sULn+aRdzqsDFKuGVzBWHH30BYRYUkZF6OcypI923GtUB5WG+42B+SpZtAdera1K9CuwKrhCbI8JvS7jHrzGHV6VHXqZaiZMu71E1y1Z9i/1ipGRYFHVh6mM2gy1587K/u28OLGRmeVxnCSLlGesNTeSi/dwllCPyW91GT08i4lp4KbWOpfPs7Uhx8AbbDW8viU5b5Sgyt+5v/i9XOMsByLDl8c2zcBvZVFovkF3CxCGI0wmnbt0yTmEB3nK/zXw99PZ/L/4Y3NUi4XyN2coOshckCD33PJw5x+LSIqp3RnLLXFInmzyi3hNprOLk60+yhbReCgXdhVvpqdzghf7Bylnby4NPIOL/fpN5Z5MO8jChDEu/HTHaCK1I87pDYFnbPrG24853Opqo9B4yYKK1NcPUroOVSrY/iiy5Rfoyp8ZKCZ18c5+vgSJAnBygr1LKdkDKG1lLWhMz9Hco4Frs4UeZISpgNy0aBS0GjZA6PxIo0/CBn96X922udnrruJ6//Jd1Ksj4K1xLTIZ/u4jZjYGa6T7eo/o3yWKzUW/Sn+xdftw+Yx6Qb9OseBLBpnpb/A3fN3X9B2b2ELFwoXnHT71V/9Va666ip27NhBr9fj6quv5g1veAOvec1r+MVf/MULbc4lg1xbBEONO636a9X2nFSTbVv/mc6aRHoeKGsxKh3aoCSoYCjgndfJpcuD/m5m+zEjUvE1ZhcYeNS9n5OHLtIEnGnwNyzw3Q5KKwarehfnSrqdFul2USuYbsB5MqOnu/SCmNwzCFFHVoJhJIt0EbnBHeSkYU7ol/Ck97zHO4XTNN1u/teIH/708PXAJ1uNzLT9PoJ1EsftDzf9AokQkAQue2vL+GS03RrHZZ0kz8AoKtowvkp4Hesf5/7l+8+1K14QbJpTckvIkiT3E8QGnS03MejQDItQbAJ2XT2BH7pkiSaOV/tQnJ6qVXBDjup1LRLfKXOi3SBwHEoEvG7/IfYWByTRTiyCE8kx/n7lI3ihQ2c55vjDDYRyUa63/ues68plL0DY95Sm2ylZysLg6rX3hJUYYfnSw1Wu9r79bLviOaGUQyEsUypUKFCjiqSuHcyGvpLGR264r5esIcBjMh8lMGVUcXzdZuWSL1x4oiA7dpxe4yQVG9DaXsbLJlE2xOk9iSMdoupqEYVzSNOtjBSwBoyx6MxQqgVoT6IyCysxNtMk2XDOEcBNR7+K0BuI8g3LBrEqxG2tYiJziU3Cw+3HONI+ctb2beHFi3KhsvbYAh9tT3O4cT3HO8fIzUuviuQWLgCeIdKtkzfp5m0yX1B6dIn8s/fxgS/+Cb/7hT/lr+fu4Ffe4fCPNym8hWHETKT7mJdIMQ+jNRPSIwsqWKmwUpG7LUTRJZYZxhrS1XVwwVEc379EXE5RicTJFUkpozc2YHl7m6iSoPqWytLQaVh2KrwVlwMNARYcXcPNRjk0PsUERQ6bFvfMvXi0t7U2fOrhBaSdJcnrFEY10q6vab04J7U59bKF4tlXLj0FZ1sRIQRe4mDl6ddtLNq4yuEKOcaVapSThaPcc+g+ODmH+Pzn1laVDoLJ1YJdyQWOdIstRF4B6yU4uoYyJRCSYiOlNxUjXMXcEyuceOx0KSgnGGZhJEEfFOjlmFsevI+bkn9AWItAkKoVEiekM7GbR0b2YaVL2a7LEbiOQz+e5Gh/lvfc8R7+6MAfkWzJEmzhJYYz2ilmWca/+lf/il/6pV/isssuO6sTep7HH/zBH/BLv/RLHDhwgF6vx0033cS+ffvO6ngXCp9c/FuKUeGcjzMd7OD66i1Pez3JNJoeRmm06qDS7cM30hRdWd9gbRbpVk0tvWiDcGbWJw404eAKHPEVml6dX18a8G5XsssNuMJO8XjpOMePLAD7N8WmZ4PJNbgKHedENHCVRMsYPxJoeaqa3imG6twj3S5WeunTI+xemB3P1+LErIvER05A3E/wQnd1sZDTG+kjS/CNk287I3M3VtTNUr3Wh1IpcqVwTY5KUoSzvvgNWxGJTomVwEnHyL15zNg4e+ZPMptP0HZr9JJ5fMdFWsGucJpVbVoWBxcmEknHGYWwzGJxuIAXxsViCbopTpLDuQ8LzwrHVYzOVGgudEkTn2IzQD1FY7DgKQ7n29aej09U6Y0ITnaalP0Qv1fjmqkedx3bQd65hmLhEA807uddr6my8mjC0tEuTzy4jTd+7zevHePIl7/EytHDmCwji2P8UpnnQmdlgHIVwlfoOEYEQ2LGEFN7/Bgn6jFJpqgXXziJeybYmM54eTmBeFi9VKsOFg1I6o23cv3EIY6dHDoKFjbcT67xT3NBibCEbl94h0K+uEC76FPTIa1qgrNqYn3eBzLS+rCd5zIPjM1UaS316TWHuoClkZAscKAzHDvNICfOHYytIkhQaZfRuWWWdw7TSqRZJ2TlGunmMCbWU6wv1L25hUsLUg7ngDsjnx9eHGVgJEpU+fCXP8Jv7/gsb9715ots4RZedLjvf60/dkLQOd28TUlVsI0mfmPA0ZpgNPHoiITUG45Jzu6dlOYjdLENE6PEekDBOb8yEBcDRq9Hva+9tupcilermiZ5iue4OJ4iV8Nx3U89Sgsh3ZGI7kQfJ1WEDYewaVDawWIRwLtEyHd3FA/mEdoHJ6vRDPq8ytTxjOTA3J286bJvuKBtPlscXhnQi3MuH8+59zUJE2M5YsVFiz6FtsKJn+B4OkZ9+/lZxDmjAbZoKDVDsg1LnTTXHKHA7ngJ5VW5LZvhTn+BT9qP8OP3KkSxSBrHGJ0DlooQ+OUyy08+wfjlF25vHK9Sf9YKgmgvhhi/bzCyS7+ecsffPYxguBOZ3ju6JnN02atex5N3fJ7e8hJpGBO6VVhIKe5ZQdocLVxcPYUhxdOSnhNw8ppRZh5uoVKJ9gy+l6LSCW5wd3A4W+C37v0tPnvis/zRN/7RBWv/Fraw2TijSDfXdfnrv/7r83LinTt38k3f9E1813d91yVPuAFkJiE9h79ID1hOF3iy/xhP9h992vFzY1GUcHUVhKC0bKie7BEmkG/Y724W6ZY4kkFtPaIld0IcXUHpCkrkFG3M3brOR1ou9+oBb9P7qdoROqPz3PPxI5ti07NB5AaSnKJfI2QER9dApBQbOQuc7k0/H5pu5y3E7JxsODvyzz6D7YldJ91ct0RQ9BFCoLqLhM1lMk8TjDw3yfJMcDaQbnlq1uwXQrBUK7NcDMgc5zSqXwmPRHkIhlWPjMowgSYVDi2nQNup8Gi7y2wyANdQzRQ3uVeyP9hDkl8YL1jWjcETJHmG36khklEEgqTsY/2U4r6pTT1/uR4SFD1kUKRfj4kLHaxpItKM5W5EyRMctePcbS/j8ewqptIvIptfAqPpRD3SfsI1xSY3VcuU0hkcW2RMTXJg5Ha27akyuqPE4tEOn/zDh9bOKYQkbrdIB33y5PkreaZRRmcpwq/7qCAgdzqk7jypP8/kkkPcKPDlB0apnseqyxuxUbNn1BuysjKXIE5piggsOTftMXzvtx1mcjSimTs8VjrEkcJx5FMjOnNLvtLYFFufC7rVYm5qgpl0Ais9ctkllx0684Ll9AjJyLmTboWKT22iRFjyCIoutbES+YbDmSjHKdeQoo0QMYgYb7AhfTndkDquImThEE4wyxglXqN3cJ2c4UT3xFnbt4UXL67b/zoATmpFxzjkSBIrKeWTHOscu8jWbeHFhiMPzWPy9Qrm5BHohF7epac79KsKrxHRKMGKn5J5gmrPMtECWQpAQDRTJXJzEvPSiJoxOkep9XnUS3tDYTsgyRJCbeidPEQ4f5RSOyNflfNQmUJECi9yqC4VSYs50UgODKUFhuvc4XpRRhk4BZQpIU2RQeCwbAfcmIwx2zl6gVt89jgw2+bamQpjTkbmG4QAZSooW8S4El8M6MsqM5efe5QbgApdZOJgpKVfHa6BDDmeo1BejkNCd9BjUpSpRSEEMXmcQ6WCrlSIS0W0H5Bai2l3SLoX1vHnZAlj3SXyFDJnBSNTvCSj3PbJPIPrKxBDZ/Disdba9wr1EZTn4YYhuZtBUSELPsXiNOXsJFL3EXaAkCsEWQc/j2lsL5NXIupHQ47PhnT7PjYepSyKKARF6XOie4J+dnEkjLawhc3AGaeXfvu3fzsf+chHzumkH/rQh7j22msJgoAgCLj22mv54Ac/eE7H3Gy40sc7hz8lFH3dYyGd43h05GnHz/U6OWK1wCiHqOrjZAbtr793vqv/nYKyAitTMtUibEY4yYBMrWBFxlRxQIJLw7p8Pq3QzYpMUSAYlDncO8yhry6xePTCaQ/YbHXjuYG8sSIH6eKthoace3rp+q1xqaSXPhOB9sx47jbnZFSbPqVFDxOnxHFGqjXWr1Bo9Sg3Qwo7z1w30PU3VC9N9GnXqiMgyHJSJSHfoOPQahAmEVrEyLyAzEo0K3u5msNMmS61rE07sxSsAGFxspxu2qabtHGVy0PLD7HZGCw3KIcVsumcpNLC2VDExO0YClP1TT3/6HRlWCUqXyWGRI6QdaznMlYOqYQ+CR43uisUZrbTu/Wb6F79dtrlcULXIUlz9hWKHB1keI2biVWXTGfc3v8Mr/qnu4l7GYNuShLlPHnfUNfM8YO182cvgHQz2pDFBuGA7rXw8jG8bAppfJ6UfY7LHlMlQzXYLNJtPfpv1Dc8ieZ4DkZGq1qVFpCU5Tg7Jw03XnuS2G/jZQHkCpuvk3a6t4yJ2+h2a1NsfS6kx47hpAlzxR6unsIxZbCCYjei6kyRjp8qEHNuyhA7rxrnpq/by81v3kdltIAaDcjLDnnFYfmxFcb2XIHWRdKshJAGleZgUlJnmcxtrfshrI8Z7CGPdlMk5EG5gLaaZnJxilBs4eKi4lUY9MqUunV+RICLYVTmZL19PH70IBz6FLRePJv2LVw4tPoZj8/1uedQi/sOtXl0ts/CQp/5xQH3PbTCfQdXePxwG3R6WrS+003oBetzcrskWKzBkVKMWlonLTZ+58UMqzWJXF/8xp5HHgUs9xq04x6RkjyhE6KpXSxvK67t8txUIRKX1rYezekexUZAcUlR6tdwMrsqGyAQwqKx2KhN5jSwIkfZAZEwbBNVep1lHv7U3/PwJ/+OLI6e2chLBEdW+phUE5mUtOsg+jUsKSLXFJp9MruNfg47bzx/jlMx5uKmEivT4RoIhzjLeUJsRzkFFA5VXCIVscuG9OIUBgPCsXFqe66g6PkI12WkVMYJNzGN4qmwllZQZbk8ju8UEGJYPKlycoVubUBcyHBdhTXDommDzjqJLYSgOjVDHsdYx6DbMaJQQo98Pa+5vIjAomUfaDAoPETiQuoqDl2zh6Qu2DETsWt6QO72OBjP8o2FXQirUdbyaOPpQSpb2MKLFWcsRLRv3z7e8573cPvtt/OKV7yC4lPy4N/97nc/5/f//b//9/zmb/4mP/ETP8GrX/1qAO644w5+8id/kmPHjvGe97znTE26IHjLxLdSqVSe/4PPgka6xF/O/dHqs6eTJ1G6nv8vlCapBhSXB4DGqg2k2yZFurkoEBplikR1F5lnuLqENn0qboXXde7is7XXcTAzHE/LfF1Yo1DoMNc9wtKxLnd85BBv/dfXDz0hmwyb5ljAU0MSwogUxFDUnitbfHzhw6SrXs3zUUjBXiwtkLNMa32+Fvfp0akmWAQFXSNYbavTT9n2hMVKSfEsiKSNmm5pnA9Lhp86Z7XM9GKTPO+fptHie2NEfoiyIPEwbo+jO27h8m84ztxcyoP3ljnQz/mmIMSkhrI0fL25kd8RH2dpscvnTnyOa8auOWNbzwTLR05gAosVq15gs05IebHAndr8lJWZfaPM3zFM2TMbtEKMtZQ9jyfsKIvF/Xz55t8ZvmENUeMfuKpYI9eaq5Mmu8oz3LtcptzZT7P+VeJOn/sX7+ef/rtb+NBPfYGj7RV6KzFTl1dx/PWCB3n8/JsVnVuiboaol1GlDeOkzdljSjxCysogIvQ2Z3zYSLpVXEkRwaR2OB4eJQmPUm6+jjC5HJFXUFmVa/Ys8YWvTNB2W9zQuwY2BLqp0hjYDNN7bFNsfc52dLqYUoWx8jY6aAQK7XTYkyj6pZiO6oIFbc+vPta2q8ZpHmxhJDQONxn7hp2opU+jFJQKoxALkB5ePkZk1jvrVHopgKN9QlwO2nlk41ESneCrzSmcsYVLE/HKCvHSLvYDkxh+lx4rRiKSEb58tI31P4VIe1DbdbFN3cIlhqOLEU8unE7i1KXi/sf7HDw4LMxSCB32vTkj0uvRL243IdowfgtrsULQFBFOb3WuNJZIX9oE0QuFyXMC6QzXh0JghcYJY8YYYanXAGvpp6uOTQOrpadRmaLYX+0oDf2R4bw+dWK4nhEVgV31nYdC4hsQ+Qha9Egdl/HCXirpY/zf+AHedvQRAjzaJ+cYu2zPhe2AM8DjCz0OLPZ4y3SKmnJRWiJtgHUUTi6xdKi4CjUx/vwHe4FwXA8v9gCNXZ3DA9fhM4W38rrB/2SsvAeVu9QKHqUsI0x6kEK69ypUtYy6/z5CwMlT2oMuRmuk2vx9Fd0uenXNLnUBJxtFIKkt5JS6BY55bQbd4f0UdROUc7rjb2r/tRy5+3YGskWxWyWNe2RzfUqv2knxkXvplq8EUwfxawgvwHArnXEHo0pAjywXhE6ZThRyQ7id/60fI41zHlx6gJsnb9789m9hCxcAZ+wu/9CHPkStVuOee+7h93//93nf+9639vf+97//eb//u7/7u/zBH/wB733ve/nWb/1WvvVbv5X3vve9/P7v/z6/8zu/czZteJFgA4nzDO+ubIgMEKubGj/OMSp5SoTT5pBuzuqlsC7SLjEiRdkiNbGNdOp+qnkXbeG3WlWmTJlfzd7EyYnHkUpw4uEms49doOiGNMdYi6uCVZtzsAo3NUSTfVKTMOFt46bKbbx9+vvP6hSnRRRepEC3p/3SZ2PHU4i73OQshYtgYPzYxBq5aI1hZDYiDTJm987hFc7cw6aUpDYZIqUg7uen9aEZqZMpiTIWMVgGeyrlYT3CSJrhBl0rQ3lyB2+6bYF//s+O82BeojnoI6xgFMvlahsTtkqmM748/+UztvNM0XjyOHJUoD0DxkXqEliLTDUqM3gjm0+6FSoB4Wr0mZUbigMIwWTJo0eRw+7GNH0BE9tpDnpIKdF9j6uLLTwh6DVfjZcViXTEr979qwQFlzd//368wGFlrs8nPngAr1Bci3bL4ucvpHAq0k0WTo9kE6vp3l0s1cDdtEjdjaRbQQmWsMP00lVop7W6AHaQ6Si+Z7lyd05h8MyLbaE8dOPCp5dGx0/g+BXaE3JIuIkImUXkUtMb7TPmTjDlzXBd+RXn9bxqPMR6EmlANhISd3LtPd/PkHaj40etDU5CrL8eacV36WsoW48DKwf41NFPnVcbt3Dp4//q29ce1xDslCkVqbE4HO1NsKBjiLeiILfwdOhnyCho+gHR1/zs2vM4zrFZQidvAVBaiPGX+rSLICxU8HlFeAWeVTzutnCXejjdBKQgNs8/j70okGZo5a6v3cS6AybNMxCC7kqH4P4eYpV0Ezn4fZdq18eNFRtqQRF2PawEdzpEqPVj+b0IQ4ayJbTjcXziKm6yQ+3YrhoSdrMP3rv57T0H3H5oGWFhzDNIZam23oiwHk6UM/1Ig4GW7NiuIAie/2AvEKoc4MYOKpeYDWu1auByIlkhyQbUnQKvSLaxX9YJBKRW8bmPL/DJj84TqQAJVFcn2fRCFVNoNslXNTndfAywpO4Chd7wvkzC4bUhJEgl6DUjjj2yrt2qHAc3CEmCAbmXQWYZ3LOADMtoZ2L4IeHipxKpH8TvzCEsWHcEjML3LOWwQJRPEy053OKNklnD7z3wexdPV3sLWzjPOONIt8OHz630dpZlvPKVr3za6694xSvI85dudaunqHM97f1W1CJzFFZoTJ5TXBkQdBJEUMDadQ+d3KRN65DAyjAyRRkwSiLtcAAWxmX/1GXER5qcSGJ0UOMzacqNQZkgkKiJjEJc5MHPnGD3dWObYt9G2DinkRn6SQPX0yipCXqjeP2MpJxRlkPyJlABjjzLqpKXRKTb8zx/NjzHNbKSLuKlLoWGRLRDMAmZp3CNxtCnX48IfBf/LCs5WTusithvJ6fZkYUB7moFRJ0myNVUVCddJ90CUyfJRgCLMkWkBE8aZp1trERzRHnOeKXItsIkVyY72VYyLAwWuG/xPm6cuPGs7H0hGLTbeKNjVBdKDCoOWitcITCeInfaKH9zUiY3QilJIRwuDLVIMKwgGaYAz5Q86rLNEecy1ug/IRDFGt2oQaYTqqUKU15Mai0kM4y0r4QdcywOFnmi+QQ7r9lJqX6MHpalY12EmlnTckv7z71Zsdaic0My0ISBxPbbiOJqVarVioUdLPXi5kU9bSTdHCE4rlKyTOB362hfouV61dm4X2Ap8ZkY0TT7JQ6NHGFXZxyRRsigilAuSBfduvCFFJJGE7lzjEY5I3OWsVi8CFyjEKHFX3U0BCo8r+d1RwJEOuxDz0Cva7HxCEUPhIqGEROrkNobjkXitL0bcQa7TZWuM/SGLw2WzquNW7j0Udj9zdx3/WUYJdl75yzfmff5VFxgkR6xGeG/tuf5VfcJuO+P4cZ3XWxzt3AJIX8mGQ8hwCvhOBKw1Ks+nW6TKIwY96ZQS48ic0M/lFgBHRK2TV9FfCIhz1NMvUReHs47A927sA3aJIg0obcxgnhwcv29RPM90W5Gx25jujXDiaRJ6uRYBxwjCSKPLBiuuVSqKPSrlBshwoBbKZLJLmiBFpo0ipEM1zauNvT9EjN5mUkvoFHocVmwl2zQv3CRWGeIONO0BkN917JnaVuBNCECidQ5onuIJi6j0+dHz+0UZOiguhLtGjJ3EROPY3SAwPDB5AZ+pTCgN0i43h2jThEEeEKz1JR0FjJe9coC1hUU8hS/6NNvrBCUzz7L6oUib3fJ5VDL2docQx+Z9BiUYwbVmKiQURLD9UdtssTKbIeFI02CgsfEzhowjHbrnJwj7cQ4XoDupaRzPSrlCm7jMWKnzDUPPEmWH8bVJR67+p8wKDggh9dkrbxMf2En9/UeZs/MKKkQLNqMo52j7K7u3vQ+2MIWNhvnJgxzFvi+7/s+fvd3f/dpr//+7/8+73jHOy60ORcQzx3p1ul0cfNRvGwCJYv0Rwvk2iDr3gWJdCvjMnIyQaZtwkaHoNMnp00u+tjsKq6++kcZFRFKCqaI+OKgymG6fJd3I636HKWRgDw3aL35BJW1lgVgsrSHkAmEcEkLfaQxFNIS3zj5Nr5x8m3PWCX2heL0SLeL5WU5W9bt2b8R6QGFKCR3BSU7AgUf13HA85EmwY1dbBmUe3ZVJid3V5jaU2V8R5ksWSfUxAYSTw+awJDIcVJNaWWFepZiRELmNsjcBm42/LySkMiAQ6kit3Ckr+lGmqudy+j12ky54/zjsX88K1tfKMxKn6ia0J7skYUtPLHaN9bi2XDToreeCj/wGWtJ6gveGuEm8pwkNyhp+Irdz+jKnThpm1IgCVVOpC1CwCDtc2NZsb/oMmMcgugyBu2MEW+ETxz9BGHZY9c1I/gFl0LF4/hjMbXtuwiqNTqLJ+ktP3s1yqiXIqXCKbvkjVm00OSygbHLuFHCw7qHchKu3V7btL6Js4jZk09ycvEoBV+ireC63CMpN8m9FYzTXfusK12SVFIILA2nS5gXMeSo4tiQcAOEci9O9dJWm9aowQlHcPMxvHwckUc8Yfpc4Y6dl7HtmSBLHnJbkbTmIjxJ3E8xNifJUtLcIjZGutkC2NU0FDW8x6/Z2+K+axbp7R/ldZWreOXYTegNxS228PKAW9pGFrpoT5EUPX64OuBw5rKQVomjbSzrdBjl3J272KZu4RKD+7TdiEHoBLHyJDKskOeWpZWYhskYcYfzn9MbRhKd0nTzpEfFr3AgPcYjZp52c4XSI4tUH1o8A03cSxuusThy3dGnnfV2xd1xri78Iv+08PWUmyOofJ0MW4kkvY6iNlfC7SuUFhhivCTEjAc442WCiS7eaB8BZL2U1F0cFgOwGhu1iaSkbgp0whgpFUG1zvKTT1zI5r9gLHRibt1V56rJE6RKEjdHyWQDLbr4nQgpPJr5GOM7zi+h5W4r4qxWmJcmxBVFfEexrVLks1YhvBJZllGTIZ6VPEyDuX5IL3VwXEU3khgUiZSMuwGtuePn1b5nw2CuQTDoYfsttNPFOpYs6JCGGX7kon1LrxUjlaQyVhzu93LD7BMrPPaVEww6CaWxCbTOYEIOK7EqQfOvH8eVktgdxx+cpB3uJli6jwfvu4vK/GGkDnGTEfqtGsofELmWqK642V6LEJLLnBKfePh/X5A+2MIWNhtnHAb0Az/wA8/5/h/+4R8+7zE+9KEP8YlPfILbbrsNgLvuuotjx47xzne+k5/6qZ9a+9xv/uZvnql5lyyej8RJ8nwtakBkIDNNKdY4BY+N1MlmabrlUtLY5lNpWSI5nIQchgSXQCCcnK+55VZ2yTE6/Yje3HFmWGKp12eu1Gb5UJf6VIHZR5vsvPrMRfjPCP2EpW4XOTkMdbciQxgHL8oJzlM0jZAbI90uhcXa2f7up9veyldo1oZkwvjRADKNdSTCWsrLAqUFk1dceU6Wzh8aHj/uZWuvqXKZXAq04+AmPVyG6aty0Kc3uhcAJ68jdIDSam1TrwXETsj9EXzdRJmVOOPuI0X2lPfwJ/VPsNxsIhw1vE43ifyy2qUVdje8MLxTVWYwInuWb51/FCsBbQxZrcv4fIbAxToOMyNlmnkZFdRYWe3LXmygcBmyl7B3bDudqMtlJ+6h3JxnTl3PtuVb6M38X9wEDrcP08/6XPOG7dz7yeP4BYdHvrTI69+2h0Nf/DSOH9A8cYzS2MQz2jXoxJx8ok2i29R33oDFIIwEAdqdZb8q8T/zAUGyeZHMThAws+1yAI40HiWSOd3cQ2iJVQYjYgwJRqQYYxmrx7QcxVF/ha/PrhoOuhuhPMRZpFifK2LPIw9yjAItB0jjU2pL9soiytm8a00oAb0Mr5uhB5rmQg8/zahUErK8iNhQ8ViaAqxquQXecHzZu7tLZ2wAeLiyxhcfv5Pp6o5Ns3cLlyiydb1J7UgaRc2NosNcAie7Mcu6y7E8Y2d581PyX2w4+sB9KNcj6rbY88pXIeWlFz20mWhHpztsPROTqgKM70UUatBtAdBIGhyPh9fZFc0U6fsUMs2ILONKjzF3hJIsUM8dYgX9q4bzViNahNoFbNAmoX9ylnzi+rXnIizTjwYIJRhkgn5uODyIqC2XiMrJMErZCvzYpRa5PFQboB2DkAKZ55SaLhAjQwccj7TpIQVMJoqT2bDvEk/THZmhslylF6WsOH06cyfxS2W6i/NM7Du3NeNmYKGTcPfRJv7kPYwUt7NSzvBWhpk4Xt7BlVOMFBrUrji/msDCVzjRcB+yUQokcB0GWZmcHpWwyqSB1NVMU0CWMrJMoITh/tky/2RmmV6ukLpNz3NYOXqY3tICOsuY2HcVpbHzp0F3CnEnor1zDAFI20HpEkY+zMjCFI2pDqf2IMqRlKsBWTxcz0XdhLifUN9WZnznbg7ffTtNd5bxYBeyK8nyiPLDDY5fPoK10zjFGjNhh4+reS5rZiAqZH6Dog/VYBzTGWeRz7PffD/Hk0+iRIdw6f7z3t4tbOFi4Iwj3ZrN5ml/i4uLfPrTn+bDH/4wrVbreb9/4MABbr75ZsbHxzl06BCHDh1ibGyMm2++mQMHDnDvvfdy7733ct99951Fc14ceCaPW27WCQPhBBhX4UY5zkhw2uc3i3Q75TnTaj2VzGR3MigcAI4zojWyUubqyRqv3jNNr76NEVPhhnSE7swcRluWjvZ45Evzm2LfRthMs5KuT2ZWZAir8PoxpcL5SmG7FEg3e1be2ee6RlKzvinCLYOrhmSVtpQblry8zLa9+8/GWACK1fX+7zbWfyNVKBB5Dn6akT95cP11J0RmQzJBGherYnKvj7SrpJy0LCuPj5qZ4UKw6HOVSTh2dCdXmGnats+XF7/CbG/2rG1+Pgjj4bnrnmWxOmyq3JwmwL/ZKI2EuKv7knXtRSj5LgZF7jx9I9ucmCHKMurFGiG7+KblT9JWcMyB/QuvZiVb4eNHPs5Dyw9RGQu46tVTJIOcxaNd8KZwwwJ5EnPyoQfIN2yoNyKNNUtHB2ixPLSNDTp9q0UzljHUws1Lw42TDcLa0qPpJBQRSD30K1mZIvFxbBkdVyiElm3jOeq1LTpugnROHzeEVCSPPb5p9j4TrLUER5+kpAtor4gyBSyaQmeV5C1t7sWmqsPjy9QwaEf0TB0hDJ7bRZr1pYLKy2uPT0nhjNXXr8f8VEpxcuEqWm/h0oDcEOmehYrP3jTg9W+d4599xxwzYyGPRG1+rXU/dE/Ck5sbofxiQZRHWGv5yH/5j/yf//Bz/O1v/CrtxYWLbdYFR5afTrop1p00qrIuW9K1G+ahg09ikoSj49AwXWyWUc59embAcdlhxV3/bJJdIG2sTYQ1Bsdaev66Q6htZimGBQpeyKB1Bc1M8ydHupRyl7f88SvZc88Md907SvfgKCXp8Mb/czOv+pNX840fvJXX/9U6eacqHt41V4JxwCiq/Y3RzcO5e6eznTGvxBeW78OEHkmvS3P2GDrPLxHn9DrmO0NHkZAJInSRdn2Od1YdgEGgYeT8Bgm4YyFONlx3bCx6FbqKPBvnQG4peD5XOuNcxxRVAo44Me1vuJdHrvwsC12PREvKrqacavoL8zzyqY9x4v57OHnwAZ744mfOq72n4HSHGrYWg6MrWDQqG87hcTFb21coR6JcRbBhPWIN9FvD/q5OTZMnMfP1x3H2FiHWBA81QAjSwhSLo68BYM8VV9OuLFNqrdtQDA1aV2gWMjqLDf5D9QdZNDGfbxyk23v5jYlbeOnhjCPd/uZv/uZprxlj+JEf+RH27Hn+Kjaf+czmDBiXOp6XLLMeOT2QOTJfHcyiDG+mfNpktlnRPI50wYCWHdwowgoXkRToj8REwQmabg/HraJtirQOb7i6yl+KPqPSoeoJgn9+hDzRHBVP8vGF81vieTrYcVo6lc00bZ1wKmHRiAw3lQgyCt752diLDZU3L1566VNwFmY89SvZBtItKVWGEWLWUFnq0S93SEZzlHP2fTixu8L4zhLN+QGdlfWNuOt5LBdDhIXSyhxC9rFm+As6SUrqumDWz2uFAxYKIqVMn6NyhEc7i+wIFRMlSTo/xUjjKmbG25ykyW/f99u89/XvPWu7nw3NhS5WhuSOxuv7aKcIViDTjMpiF3sBg6FKlQC1qABN5jQp9EOMK7FCcGtNU/A2FBPwJLmx7H7ztyDu/SitZpd6oYQQRbaXXOZ6Gdfn6xuZxWgRIQRX3DrJ7KNN4n7O/Z+a5dZv+jqWDj1Gd3GeL//Z/+C27/shhFy/N6yx/N1/exBsjCrFmDwFmaNVhpUJziDiCCVWsNQKm0e6aQXN1iKO4yKRWDfmZGyQuYP20tPEpnt9n8cPVLn5mjZTVwvuvuwhvv5/Pl1n1PQjrNaIC6RXY/oDpDFUdQnEcINgnAHewHKCAVP1M68ofCYI9tXRUY5uxDiRIVbr5JoS6+OGoytIHWKciLERgaM0I7X1993VFN12euHTc7dwcZEZseaHyB1JLtdnIN83+IMruCf7Cv9zcIx3Hv087HwtOOdPxPxFh7vvwrn3K2RY9r9+N7+98iXeMnsjnz0ikUcXKAWKr7th83VyLwWkTyHdWktNil6fvDSCV5+E0EFJQSRyQlnFyyX+wpBIS1anlj4pv3pwPUOm4WfM5AbrSOLsxa/pZrRGWVgoT4E1CJ3SkIc5NTPkWYlHki433Ps52PFteImDSBWJlQyyGDwPL3GoBwIjBW7iYAF3MsTbUUZ4Endijmw5xe+CFk0sHsIo/CwmdgL2LVd5uLzMr6u/5P8nvp2k2+HOP/49bvj2f0Zp9NK5VhfbMWOBA25GHjqIfF0HVaQZKzrl+ldXwDlL3edngTMS4iSKYjNAmD656SFFESkFtULGX3dcXlM4gnG3o5A8Kpb5K/sgH+k8ii3CNYU38FCjxq5yn1qQMqocvDynYgVdJVnodbjnL/+EV3zX955Xu9kwVueiB8QU2pJuNaJbG4BdJd3c4Xro8uunSKKMQ/cONQXbS8N7ceqqa8mThP7KErPNB9lWuRJ6GU6myV3FIJhBy4Bd2ye4f2yBcLB77byj1QyQdN0a7e4Kr/LexCv83TyQHOORe36XW77mP5zfNm9hCxcY50XTTUrJT/3UT/G+973vfBzuJY9nil5SooxDCWWqlJehtDygmBi8sdIFiXRTcrUyokrJwpA8cKh0DfX2PyC5i8Q/CKW7iO0sqe3hCkkm9mFcgSckppigyhZZMLS7PVKTnJe/lXSRQ/1H+WrrjvU+8Bx6WcRS/xCpO49WHVQuyfwccZ4m0EsivdSu/QdA0j33yJHUrBJhVqAyjck0WI2VMZiUy/aem1ZUoeohhGBid4UsXo94cn2fyHdJHIXePo216wRM9fgsdZvjYCnlO3DSEYyKENbHUZaS6lNUHf50UGC2NyA2KfsmG4x291CNtzEhanxl/issR8vnZPszIR2kODIgKWakxQRlSiAMTmZxY4tfLj//Qc4TpJJ4qwsfIRy0p7BCUOk2+Jp9Oyn568TSIDWkuaU8vZPiK95MP0+Yby9z445dfAefZrvrEpo9XN69nhvqN/HZY58FYOaKOuXRkLEdJaJuSn37TpTr4RWKhNU6/dbKaTY9etc8lTEfbyKjsP1K0m4DIQTKFnB0HTfP2Y1iz1TIrpHzK1i8EcJV1GsTlEt1XOVTDyJ2oKgtj+MkE1i5fi0a43B0tkyaC3QO7sA5bYy12SL58mPDYgqdCxetZdottPIZNeMY0SFTDXLZQ8sE60rU6Oam5AlfoYouZjyg7DqkRhFlFaK4jGCdQA+TDOxwnM1yePtUQmG+hEwlQSQZyXxeUdrPROGZ05G38NJFumGqNK4iWU0/zjNBIUjptPcyMCkn0w7oFLLoWY708sBKaw4XiYdilAJ9PwMvAATGQppfIg6/TYa1lkrooDYsb6fSLiUlqcVtCiPbGEQ53X5GzyZEpk9bdvFaEbkEvbqTMWgC4SOFpCQCvjydUL/7OJUHTuJHm683vNmwRiOEwkoFQiJtzkpvPfVukLh8cQXuqq2ne25/YIqD91bpdU6QLzxEZrpIJaHiYjxJMuZjpgrI0MGdLoF0cEo5Mo8QhDi2iLQFEjdgxcJORghSj75I6NQEThDiBiH9xqVVOOdkJ2Y5zklsREMmuNkEuWohshSn1cHxBWLs/EvhyJKLqzT9ekwWpDiyhBSCpW7MTNnj83EJZfpgDRmaARkH5RJCCEbdURZveICGqpEKh3YesDu1jFtJGcmkthSihLjTxpjzp5k6WGjSIkSmi2AFji1hlUAISbkd4qsik/FuSvWQkanhmrc2XmJsukp9soQfOuSZxhhLaWwcr1DEK5YIdtSgJlA1j7G5LqW4jav7zG77Dkpmjl61j9vPCXqTeIMRaqHAd+dImcEYjcHyS6V3c7U/wiOdw2uFubawhTXc+TvwgVvh998I9/zxxbbmeXHeCikcOnToBVUfjeOY//Jf/gtvfetbeeUrX8nNN9982t/LFjYmYQmt2gzGSsRlj1ym3K4/y1IyTyBDqk4dR5xfr8wpnKryqeUAlQwoNiLCrs+uE49S6yzhZQbHKNL0KzgixFqJyWsMspRa6oGrybsCkTqYgcCT/nn5G+g+i+lJHu0dWLPVtAcITzFe3IOXTaFMES8KsMIi1Pnqn4tfSOGp9OoX/vo4Rw+sPONnnx2n2+5Yj0LLp7hSI66WUJ4DyqPcVFS6o1SuuOycbK5NFFg82mXusRZLx9Y9y24QoGZmKOer9IZoYfMUk0XkShFrcHVOahKUVGjVQ+UlfJGSah8EfKJXol4sU/YN11W63JBNUolHaNs+/bTPe770Hr668NVzsv+pyAcZwqR0w6EXz83GECjSkkdleYBbvXChbkIIijqgvOijNlR9zaXDK0qWbuxyotWhMRjgu1ArOmTawL4rGCvVkcLFcSpM9x4h9CVZd4aWt0Q76tBO2+QmRyqJdAR5anA8xWN3zxNUKqTRAJPnHLnrS8Sd9Qimxsk+JrfYEKTjoAolRJ6QOcvkqo1KcxIsd8wP8J+ulH3++mZDBVlHOpTdDI1FOylG9dlYftOVkkcPVzi5EOK4gsFYjHbW3xfuBM7YFQRXX4tuNjfN5qcib7Y4PnkZ0UgJZeu4egSBobqiSJwewt28SEEApx6QHeuiFmO2T1aobJsgdDuEQRdHrv/miVdE2lUnjTFcsbtNOtPDeIY4NNiSzz29h3lw6cFNtXcLlx5SvT5rGfJT8pc4rmWkqnF0ib3uZesk98ucdIvS9ZTHwDq8I7iRa3ftO33N8fBBuPtueOgARM9dSfrFCm1guZuhLWA0IksY8xzisIyRDt7G6PskJ2hLvHaOlAWibSMATHiX8drRf86rR76Ly8ObyYSl50MyUaJz/TbmC/1LLgXyTGG0pl2Zwc1TpNFoPaDr5ix0l2k0oBVJvjZX3FTYtfadNpZYwM3H7kJWpkEopJK4jmIw6tG4usL8pMcTX51l9skGeUeTd3wcimRqhcxZQYse5f4KqeMzk5ZJVIojPQa7KgggqFTJokvrXlZScF09YEaXSEcLGDXAiAwrHbx0WHGdfVec9/MKKVDRMN5Xqz65Hc6dk5WQerFMKgdkXowUgiGtZHlSDtcZQgi+lH6GQbWOR45SAywWx2qE1SjHYTwoUBwdI+l2n9WGjVg42mT+SJP5ww1WTj6zE7HzyCwDr4TxJtayqaxMwKTE9YyxqQmuGruasekK9cl1559yJEIKkignGWSk8VAqprZ9B535OVonj5OXMkysKUQZWVDBy7vYsMhoegClDEGUkPp9rNB4+ISFnCyqcXjlEBJJQRRwrcOcjmDx4DPav4WXF/SRE+Sf+Cz6U59Dz/Zg+VGY+yo8+dmLbdrz4owZio2FDmDooTp58iQf/ehHede7nr8E/L/8l/+ST3ziE7z97W/n1ltvPad0yfe+9718+MMf5pFHHiEMQ17zmtfw67/+61x55bqXJ45jfvqnf5o///M/J0kSvuEbvoHf+Z3fYXJy8qzPezZ4rgg1bTSKKRwUOcNB0Y01aZDTL0WEFAhVgelgJ0VncyJrlDwl/Bmj/QJ9H/yozi0P3sXVD9+LvuK1pNUb+cf7Pkr2BoUjXbqNKb7+xCRaneTT1xiy/3M5uYSp68f4xn99/fOc8YXhj499gNg8ZTLPDdmG6yZ32nhWkwU54jylqpwe6XZxPKRPjYg8/njC8sqjjM4MI4bGtpeYuWKEpeMd8tRwyzcPCbPnutY6eZNBLcFJS5SWDFYNiRA3zrEYZPncNPHCkotUAqMtUT+nthrR73k+s90WVyYJHD0GN6QIx0MAYSeh6TiAgzAhiXcU14DSFayEt8h7+HP9JhKV8l/vv4NfedX1GBtzm1jm0ONv4c5bPg95wmdOfIbACbh58vyR962THWyxjisyEnKkWe8flRmccvgc3z7/yKWkO5FQbg8II8BaBqUamS2xmyZT1WERlCSDJMsZKWmYKmIch8lKFUcJ0v4cy/0l/LzOSH+KJ/x76bc6HG4fZl99H2/9kev44L/5AstAnhte8517mLoCnvjSnbjdNu35OYJKlV4zobEU0elkVK6dwhnfjpASkce4eYCWEU4u6FoLAiYrm5dG5gYBWZ7iOh4Cye4go4sl7JZoTA/THywagcJZvbejZD1tNPNznPz0NNLk8SfJl5bxL7980+zeiGxxgZFeTFi9gtapF62m3PZp1BbBP196lc8MVVlNDJSgexmUXXSqUFIjnrJXdZNJcm+JIJDkk/Fp7/mrjqEov7Q2YVvYfGizfqG0x3rIfCgRZS0ox5LE4zx49CbCnV8AJOTxsx/sZYBe1OaU79tH8b3yRo5u30dzdX2jjYUHH4BT5H+hCJedm2PsUkS+QQuw3J7lzce+ggUWKlN0iiPIy9crTA7qPnHVgFUER+ZolgAcri+/iTeMfQ8AT3Tv44+PHSRTA7L+ABhF5RDpPoVn0D691GG0IRlkWJOzML6PzBmO1U7jDkZ21ZgsD9M6o8ThJwlQG0IGjYBy2mfb7D2Im96Fg8B0hnIAMz92PQe+OkuepcTd4WvbfYlc5XaVEThmGA3WDQ2lNGIXZWI3ZyVucDQ7yVQcksURju/D9ZdO4MTBuQ5PLMfs3jtPKiGMt+Hl46CgMpB0nByKmxN972wgrhxRBcAYS+AU6A1miDof4MTCZ/nY3BUoKfjd172JP9+f88njn8HB5X9VfpOx1k28VlawWASKJTFgLJOUs4xjWcxjt9/Nvtd9LY4riXop1fGnO4CttZx8ssGgM4xUd31Frxkxs28Mx11f7/SPLaxm+WuGpfMkRqYUu2WCpsvYxFUEe59Z3sILhoS4VIK4nxIUhpkRQwha0Rwjgyn8lZgEQVK7kUrnIDuX/ghXvIF+eYVCfw+92v0UQpgY2caTK3UWnUcQQF1WaGjFQ9ECNB6HqfOzt9zCixf2wQM4c4cB0KoCzjjoFsjNdUyfD5wx6Xbvvfee9lxKyfj4OL/xG7/xvJVNAf7u7/6Oj33sY7z2ta8901M/DZ/73Of4sR/7MW655RbyPOcXfuEX+Pqv/3oOHjxIcXUw/cmf/Ek++tGP8pd/+ZdUq1V+/Md/nLe97W3cfvvt53z+s8VTyZRe1kes1S7ViNxQWurRC1M8ub7R8uTmCWk7alVDaIPwZ+6USEQF33Z4fHA7O6o38tp9b+CDB+9jx5XXc/lEjTsbE3x3knDfieO4+1/H7OMtjh1ooHODcs5HZMvq5LXaZ9ZayDU4G0gxmaBSQRKkuOcrvVRsJN0ukndUnP5kZBKcsk8a5TTm+hx5YIWvfOzo2idufPNOXP+59afy1ZB0ZYprhJtIc8JORHeiOaxieC4mS8HOa0Y5dnCFldke21YlPvxCgcQb6ocIwPRXkOXtALjJev86WYkkACNjgmgPceERblGP8Ff2teTS5/bSNZxorjBVG2WimLLdc3n7Y/+aj+37QwYi5Z6Fe/iJf/wJAF459Uredc3zOwKeCzZOEa4iLqVghyXgT0HqHKd+YStcKoaTipERwhjsqr5aJhyqq3qGcaYJVhdUUTrczCyPjTFy4gRjpSpZeS8/nf4ffs37IV7b2sNs7XGWoiV+74Hf47qx63jXNe/iLT94Nbf/1RPMPtLkL//TV4bnVnu47ubHmH/kACePFXngM8dhR4XJf3olNs9Il48z23+Sy3d/zaqNA2SiWBCGaugwVd080iioVGgtLjFanyLwCowGJQpFB2+wQexXGIRdJ93iDaRb6meE/acWU3DIL6Cgef/kMdJwnGh8/RpTmaFTHxB40eaTblUPWXAwgxzdjBFVSTcpUQ26KHE6gSZXlbu0BjFx+nu1ZHhNxvrlTai8HGE2OKsWd9x+KgsZIaBezgCHvH0rxzqPwqSBl/k1MiwiNLyvJynhCkXkrjsnslRDb4MW2UVyAG42cr2+BnDzYbSMADy9WrFZOQjHw+YpmRiO246xCGA1qIiJYBjdZa2lYK4gmv1uCrv+kGOiy3SSk/sO/azzoiTdWkt9HrnrOFYP0KPr5Ecnncd31+e4PJWopzhdu8byhhNfReiUfOFB3FXSwt1ZpjxTYVsrot+O6HcSdGboBZKqCzYTGLthbBewVJnktvIkI32PRiHlyyv3cJt4A9Ya0v6lVaiiFaVcm0lSLyUpaIr91bWasTiZobR98+ZTryZQmcRsKHglpWCsOLy3l3WNMX+JqpPQyQOaC0v85Fu+i70jV/GRh/6Wx/OHeU/pGKnQ/NP0GkZEyKNimZ9XX0cx1Yxry399+OP0v/wFbjj5Roo1j+//tdc9zY5kkA0JNzEk3LJEM/v4CsVqyNjMkMg2xiKWFkn37YTVq8eSY2wXv79aXOk5imCV6wHLs4o81cT9DMahUB/hln/+L3j4U39Pb2GJoBDi9tbXW1GwDWFzPJEwe9Uipc4kvdrwvWpJo4/tpWG/vPb5bWqM29P7WZ6/j7H9bxtOKFt42ULo9UwfpS2M/zT0b4f+4kW06oXhjBmKcy2EMDMzQ/k86SB9/OMfP+35H/3RHzExMcE999zDG97wBtrtNh/60If4sz/7M970pjcB8D/+x/9g//793Hnnndx2223nxY4XgtOij57C4fTS9YlNGEvQTXBTy/0i4gcnv+uC2OeqIuNRRtIJhm5pIcg9wUDeCPIxfH2cedHELSjcJ47T7u2h2RO4tWkemz/AWB8KV1UxxjJop9z/6ePc/PW7nve8z4enDa3GggVrU3p6Gd+3GJHgpIos0LgvofTSp14oo+OaaDWKpDQSsGN/gZOH2vSaw4m930qoTRaecoTTj6HtcLCSev1zbpoT+y1U9ZmrU54ppvdWyRJN1FlPhXH9gJmrr6OxMqAQJfgrs7jBFSAUQXPAaNwgcko40RSZP0+mesi8jBWSW8Wj7C88xOP9PcyG03yiMce3lOqE0qVaT9jevILd2S7qnsPOqWv54vKdtJM29yzew/fu/16UPDshfGstptfBOpLcH/absOvXl5OBd6FJNzFcBFmRrxFuYdTHFELs6mZtkMcs9HKunxldI4zN5ARzDz1I0fOp12/kW1bexxfNK9kVXMsT8VfIijGfPPJJvnDiC9w8cTNX7N/PdV8Ts3S8y+EHltGpQWtFnI5w8B8rFGon8CaLeFfU0b0YaweobEDH9hE6IwnaZP48jpHEQDvKmaxsXlSgH4RoHSGlwpeKfaPX0ZuLKPR8ZFbBuB1AAy6+BBkcoxNlLK2kbNc18tUiFHbVzwsgLr8M3btw4tuDTpPW+JXkgSV3Glg0btSjX44ZqY1sPulW9jGDoUSE7qRIKYlyl7IdQXmnO1BO3QdpbHAdB+sNN8BWglotPBHlEcYapNi8tOItXGI4bTN0+uxd9A1CJkBE3L4e6IJ5aZJILxQ9UgYICniUV8m3nlfCyVNyI7HdPiZNkaf6NUme42gvXuQbIiRDo+kmgyERl8SwypHJoIjupeRCIgBHW1rbR/iZ7x5mh4w4OzHGIqXAUxI33knaeA3NsS5T/nC86jdnGQ+nL3TzzhmD1UqcWEN6KpvDGhrN2wmcWwFIEsE2IZ+2v8jymH958GME111LcM0I4VV1nNER8BRCCi67boq5J1bIsybWB1nPSHoJnujh9CSmuIKVDtKUyZVLJh2uXp7k8VzTLDeZnTbsi8fJogHWmNMKLV1MtAYZZdmjqodZTVZoctmm1PZpJEuMTm3ftHO7dY+RuQpJcPp+pBY6OKrJ5/NrecdlHtWmxBcuK23NjjzjR2/8UZ48cpwDXYXCxREWlZdYETkLXswRVqg4PofMPJ+vfRFbN+xbfgW0Kvzeuz/LW37gGi6/cXztfA/fdYxSPcQLHLTW9JrDtNZeK2JspkJrsccT980xLVKWNpD9AgfjZnjxahRb+Oz7qqDoUSh5ZJmm34qAOlIqvLBAoVYn7fVIKjFht0t9ZUBW8xkEUwDcePAgjxw/weBNN+Gk41iRM1oUWF2iVc6R4yVWmgt8b+kbOdJ9kgfzHm/MIvAu7Lp7C5cWbGbWAjjWMHEdyHsukkUvHBd8dPyN3/gNfv7nf56jR48+/4fPEO32MHd+ZGSo8XDPPfeQZRlvfvOb1z5z1VVXsXPnTu64445nPEaSJHQ6ndP+zgtO49xOnxXbgwGZs0LqnSR3YqJ6iFERg+DC/TzS8VgKXTqTMU7coLQ8QGUpRlcw1jARzZM2v0BPRtR7s9RKBbaPVilXR+iSEeYBYnebLB6KaT5yxzzWnD+y6hR5YHONLgUUAkVJjeHm41ihcVNBEuSnVx09B1w6hRTWMXN5wjf/6A1884/ewD/7d7fy9T94LfXpAuVRn+l9Nfrt51+QG7vuIZBpjs1zrM1xjMGep+KIu64bI+5n+MX1ibp5sk97aYGk1yXJEpyxUYQbIhyPgi6RSResxpgq0ngoUyB3mkg9hVuqcb14HISgoAfczRjtLKNjFTdUWoyOwnfOfT8/VPg2CgPI9ZA4GA/HufPknWfdDpMbCnqA8tZJcSuGm8SgMUA7A9xNjN56JshTVS3l+m9tHReVpng65XhrgdlWi5FCQHuQ01olUYJtMxAEKM+hn3QQ/jX8sPP/KPY6hAONP3Cw2sJA898//Kfc98lj3PwNu5jcXaEyEjB5WYXxGcnskSpSQtxLh5FR2gyrlYp5GqVPMHa5QJgeQgiMyFC5xOYRr9s7RiXYHD1KgKBU5tjcYyTpcHOipEJWFIN+ukq4DRfdAMpRmHgn6Arjox7JxIB8rQjFhpvu+AKLf/BBHv2Zn+KBv/tr7v/bv9rUsSCdm6VcHcHaGDcfwcvH8SMFAkaaC+BvbpVH4UqCa0ZRowG6m8BAkGQCgUa5pxMowgx/yzy3w7FSDgm34XHWf+f4ZZ4++PLDqch0g3VWnTirt0w5MFgdYnWFRjRObIdFfF7OGPTK/MflSd4+N863nRjlU4MAIyUGC56DGK2iV6sB47rDyiUvQaS5YSQQjGZdymkfX3m0opgwiim1Vii2V1DFyxFqGrzhNeZYSzNtYIWl4ozTz2LMaiRgLfR4xyuvYLd/LY1ei/IDJxk5mdDtXfqREM+ENM5XM0cs9pRj2cJccphm1ObYAiwvOFQQrHA6kb292wCg9MY3su1n/zm1b7mO0mtmKL1yau0z03tHufGNewlKHu5kCWEVwk8wXoZkFGWqJIMu1dYJjkcxV/XLZCKmlNc5lpxESElhZJSk98J0xi4EdlQDtgUDRBiDcXDzURxTBSEY9cep7t28SqtOXRGVEzoTTVJnlizNiNPhvZs7HZ4UI7gnv4zKengiR0pBungIkg4/uufd/Jfdv80bRr+G6coYBzpF/i6f41iSQ6YRRrPH1JkQHn5a5G+v/gB/c837yLOMz//ZPXzuf/wNcbdDEmc4roNJu3SPfQUZPQa9R1CuZOFok/s/e4hDD5yku5QgpGSQReSmjRZtNMt43RSZxHi7K4jnIN0K1YA80ziuM4zM3YB9r3/T/5+9/w6T6zjPvOFf1YmduycPBhkgAJJgzkpUtETZlryyvV5bjnLYXUu2vLb3XevTt+uwTvt6V9yVLVlayTnJtoItK4tBEilSzAEkkePk1Ln7xKp6/+jBzIAZIDAgad7X1eSgu885dU7XqfPUXfdzP/Rt2kzXryLS3lxKdBKctENkFxitz+FP1BGpInXnUU6NneWQjHOMI3ERFcZ4wmWdGOESa5Sj7QmIXzx97BWcH8i4+1RBjhTAi38R77QZii1btrB169ZnfD0Xrr76asIwZOvWrRQKBfr6+k55nSm01vzSL/0Sr371q9m9ezcAMzMzuK5LuVw+5bvDw8PMzMw87X5+7/d+j1KptPzasGHDGbdpNZ7NZ6vdDQGBEw8ufy/XsNDPIuk927CtFRWKtj3aA1na/SWq7o346Tz55hyVmS+yvn6MobxHtRNS74aEqWI9eXwks8ceJ1f2aFdD4iBh6lD9BbfrKZ5/qSaY7yDtlcHdiBQ7ksSZ+OxVd30RpJeaVf8FUFH8lLZsumiA1mLE1MH6suLt2ZAspW7YSRnt2gjbxo0Upfk8Sd/Z8WCqDGdpLQQ05lcm3GEnId83gMpmKLe6RHsfXf5MBm0qnQW6to82LjIeWCq2oLHjQSpJlTfaXyfGIzU2ByOPvYsLDFkxJTvmcm+aoC3otAxvEVfyW6/5LZpxkyONI9wzc88Zn4dShuZcnU7RwWs4WLGPnZQBiAs+fsdD5s5dyvfTwV5a5dYiQsYxdjcmtB0iLBKvyIbyMJbIUg0CgrSLJkYpTb7Sxz37HmPQy5H1B7D86xgMJ5DVB3jDg5v4gdtHcbRAKMNEdz8PTTzCxIFFLn/zRn7kN67nB/7L1QxtLqC1xnYUw+sDtr9mHV7JQWaytDcfhJ0Vcv4wCB876Uc5NaIYZi2bbpy+IP/O54KXzTFTm8R1PIwxGGOQEkbahZ6pjREo2aWbdgmiHhkQxyuPv9hOMVphVpuXSRszNYX66i20ZmeIOq1zOqmIalWsoRFUdqVPWYmim40pWwbcc9/X3PUFVDXExBrZEHRTCylrSFrYYQLaINNkJd0/UWhbIxRgwG1JrFbEsCyxobCBbvLyNH5/BU+Pk3e4ESvkkLUUB+e8CKw22DWEDKkrCWexAt9LERNdwd2Bz/2Rz/4kw0NWH6nlgFyZ5AYnK5gmCawqYvNygdaGhUZMNTQsOgVsKXEsiyA1JFrQLvfTKfWTzWuMmoKTYXEM86NZtC3YlLmEsjOAJSVaG2xLsnvdEJtKW6knbVoXDxM7EIcvzQl7EqVopdGr4j9bp8wLj42VMTYOg5MRfJ/t0f/kaV13AVkqYZVKz3mcC6/byJbXb8Zup5jQx04iNBGp1cTN+jTK68HPsUOXqBaqzHXnacuQ9vws9YkThC8S0q0dpdx/tMYiTUb0EFL5pHYNLWKcbkyiU7K7N5+z47ujWZzIAqGwdBHLltiW6PXtZJCJuBfHFZ2I+aYhjiLmZxagOYnR0Kp2eaN+LX944Y/x3y4exY/KTHlz3Gmm6NcZ+snwX8M3I5E0/XnqmVm+uenTHNNTHNvnMHdsmup0izhM6NSqxM0ZqkcPoqMaQatL2p6hvTBDOH+Y1sQcUqXEhSFsWcIyJSwG6FY6FBsDJJNtpP/M2SKWJXukXTOkVesyfmCe6SOLxEFvruHl8pC3MDmD24zpZF1SWWK+/1VYIgbp0qmEoC1QLtm+hEhtoWatZ//8g2QSBweH9XI7J1AQVM/Z7/YKXvzQSYoR1pM1KZA4IM4sq2ktcdqk2y/90i/x/ve/f/n18z//89xwww00Gg1+7ud+7jm3/+Ef/mEmJyf53d/9Xf7wD/+Qm2+++ZTXmeK9730vjz32GJ/61KfOeB8AH/jAB2g0Gsuv8fHxF7S/FawicZ7UXWrtBCftQ2Avf2bHCr2GE3rLWqXY0T3yxliS2FrH8cJbMDpmtLmfwvGPM5YZpF2dp5z1KeVyTFrDXEo/ydHHuPzNG1DK0KnH3PXZQ2eBsFoO43v/U5pW50mebiLFDSHKJmdtYn/Kfl4kFa86iwsEjfop7+XKK79bp9773Z6NeEyWKgyvLgiQqyq01MQDZye9VEjB1W/fTLe5MvEyWpMrjdFZWokwyYr/h/TLZDr1HtEpXHLdy1F2A22F2OkwbrLIm8Iumf6v03YKHM5s5ovTXeY6HXzbsDHfwYptFqYsGlPjlMyK9HyqPXXG56GVplmfw8saolKCckOk6V03N0wxAsRzeOidbeTyvcDZyBjtuqRZF4RAraps2QgTpuoJGTtLGAmaQUq2WGKh2+XI4hxZx8PLjPEv09cTVI9h1CQCzVvuG6HrxRzpO8QXCn/B8SdmSFetXJaG+8mV80iZkEQtpueahFqiVRe1VN3ST4bRTg4wJPYiReXQEJKrN535gsrzgZ8vMHHiAP/3r3+dfUcfYKY9Ts3rkg1sBDaInhlx1s4yUOj1jyhZ+e2UqxGyV9VtGScVJmkKxpB0u0+5/84molodXRkAscpUvGoT+QnC92AN0nbcDXkwoNsJsgZLcTO2rUh9B6RA2w627nmmpm3NTZ+8lu0PjeF1HeKCJhkrsxjXGW+NE6hXiin8a4FZsqUAMGLlWSKXurOxwLEUpBVUsJmpsPCvXul2JMxyLHUAQYgkHtxINdePXqXYV9lVHmTPs2LhSwndKGX/1CoriqjDHYf3ccvBOoQrMURhaANIgVhKdVcR+HkLgeBdo/8PFb9MonrppcvbiA0smhgsSXvAY1K89JRuRhsWp1oYA1quxKLCaDq2hbX0XNCJzdvipyqS7MZxdKOB9TxtfaRnIQZ8SLLYqUbiYaviciiezVdY7/UjDNTkLA8F+5a3Dc9WZtALxGwzpF8JilYLK5MgTQY7rSCNi99JSUnPkuf008OuZHGiXvyg7DZSWtiWxbaBIv25Po6rXgroaKZJnML8YsjMVBXG7+oVODCaijmMP/5V+vxpfix+K9mkyMe9uzlOnSIe18khXrXwKkaaW4nsgL2jd/HNzf9Aq+Fx/JFJjj46Q9RNcK1g2QtSx11IW9B6HBoPQ/cwhXiWoWyIsp6UtWFinMjCKnnPOa8q9GVQqSYJFeN75zm6Z5baXM+aY+zSK8n19dOx6owcrGKkoFG+gPF170ToELvVJvI7+OE2sGIodBnrD6h5OX7/yEeJRcKg1ccbvNdwR+cEur12Pruv4EWIMEV2G0+d5Sr5kqhOfdr5Pu9///uf9v2PfOQj3H///c+5/V133cXdd9/NZZdddrqHfka8733v4wtf+ALf+ta3WL9+JU9/ZGSEOI6p1+unqN1mZ2cZGRl5mj2B53l458A759QOcmrHCFZNbK1E4Dcj7CjFL5/bdKLVsMVKVxBpFS8pkHgWWAVmy69nlElMMokbnaCcOYGp9jHXGKaSz3K/V2FjMMMOmWVydpad149w7NEF5o61aNciCn1nfh4rlNvSNUs1zXYKlZUJs1AubiBpVYKzpnRbnaZ6vm5k8aR+IoSkvTBHtrySB5qveFRGsoSd5GnTS5/c9EQ9lXQTusWxS2bwvLMXhAxuKp4S/EpLEHV2cO1/++8s/Pqv46dtMmkHYfcm7+XFFn0DNVpujsgyWCqHsprk4t0oIbGN5vrhOt/sHsHpDHFv+Spu2/9V3nLh5RS8HN93wSR/vXcL67dG1O98iKuGr+Jo4yjHm2eexq6UplOv4W5Yut5GAhqUwG9FCPdplJjnGK6dIddJ0OkqGfXJya4x+FEX2W0znqRMt1wGcj5HF+e5Mj/G9utuYKFaZTSKyLguY6USB+ZnMUC2MsJGy+KCuYDjfQ2Ou4dZUHMceKDARTdsBOCK79rMjqsLHLzjNo73XUucpITeFEHhICZISI6GiFIeIQLiTBNjRVipBKG5bMNzr7K/oOuSyWCMJlWaIOqQ1wkmp3FjRbH+OgQCoZcqvlkWUohTlG7HVYehb99M5ad+jehA7z5qFzz8RQvjuogoxvgeswf2Ulm/8ZycQ9INCbYOgwlQIgATka0LalsiyPafk2M+Gc5YHmd9AVULMYspUb8kVYMIcaps/+S19JWL1BI7trFiC3IJSMFQ6DCVT+kkLy5z7VdwDqE17L6NOdmrLHkSfizwU0PgQdZJacQAkodbg1z5Mi0M8HwR6VVxDIZCpUQziMmjEITYdo62tiiGPTN0q/HyU7qFyUqQMlqbIBzfy30njmC5F2O3Q8rdKk2/hHPpG9h43Vupqn+CSBNON+jb0E/WamMtxa+dKOKhPUe5eMcWsG0KnsNHZn+AO5II13HpyLjni3eO/THPJuJohXhUqxZeHBVSW5UNk40ly+ndxizHJmLyXgDkaVTqzF88QOuew7hRysrRe/trGcNQPk8msuhmFDNRjdzAIN3qIvOHDzCy66LTP8mzjJlGwKBlEdldMlYGma6cuxMrUuvckv0ynyPb9Mg0PDCnxuWljOBoa4Bvx29mi3c/Q36LRuwztX8fV5WPsWHi19ioE/Dy6Gt+CulnefPb+pl5/OcQVZ+v29+hJHNU8PlJeSEHFi/ho85fsODPspCf5N6NX+SW2jR5kUVI2CUGeT2r/LWbj8BSuQSlBDuzMU2tiOxTM6tyNYko2Djrn7vwSG7VXFUIsByLif0LDG+qIITAL5VpDk1huk2yrYjElbRKF0IakMnHaLtLtraB2J3AiIh3XrHIx785xBOjdW7xHubV0YVstzcSG5uJ+T1s3PL6M/9xXsFLG4laVshr6SKsLr0EFXGKQvzFirM2y77pppv4zGc+85zf27VrF0Fwdla/jTG8733v43Of+xy33XYbW55USv2qq67CcRxuvfXW5ff279/PiRMnuOGGG85KG54/VivdTkWctomdGWJ7HiNdwqJHu9RAraGKZjXpZixBlHfRjkXiOaQGmn03oYZ20irsoBzfg9uYJk4S5moN2l6ZYzSxjMXdj93DyJYift6hOODz+LcmX2DLTnrELLUtVXRjjbeqqqt2mlha0qmcRVXFKUq38zMxeHI/yZSKdGunSquzJZfaTJegldA5mV56Cg906l5OerppESMThYhSZNqmPthBiLM3YA1syLPhwhV1k5exyFXWc2RiFLtcJvLFMuFmki5WLaSoYhLpIo2Hk/SjZYCyunQueCfxusu5OBOR89uQmyVLzP2ij33VKoc7MJ86vHbLPBPHh/Edj5JTZEtxC8aYM/aV0qmmFneRlqE8XcBrDyNwwJLgCsS6tU0thZ5XWSfnEOVXyAwvSfDiEIQg9HMUhSZNGgRpSqhCjs8YvvFYFXa+gY7rsdBtMVFfZNfIGLbQVCp5BjeMsmHHxQyl/XjapZjmOBIeorl4anpgrq+fwd1XI1WMnXTRXkpSmsFIiMQQvlPB2Bns2KJvqoAVS7QjuXR9+ZxeFzezom584tB9zHUmiZwuvjNN34RPvppHmpWgcjg7SWjmGJ+LyU8uEsQRsRPhbevncHGSPZmDhLZGpArZDcgXimTKFTqL84w/dN/TNeEFw15sYPIuCAfLZLAok9odwly0Zl5OVsbBHszgjOZAgBvkCVML8aRg5qTiM6967299dJTywsrEZv1S1dhXSLd/PTBoyrU3U1n8Hsq1N2LH/eRafThK0MpAKgX9hZXx5JHmPCZ9eXqUPR+8+19+hAmzogg0CFphQq0b0lYakamgHJdqJEnDkLjd6VUcfxkVU9hzrMn9hxpINPmwyUBngXr/Ztb/1O8y8oPvRg/146UxfhKA66NVu6eGyfbUSo5tUbD6ON7Zz+HFRSam57Frc+SyPnnPYSTncCgSpAfm8efbtEWCmnt6a5kXK+Iw7ZnhZ2zMqury86FhduaXl//tJXJVtWCB0opacx6CRQBk7vlXbbUHM4iswGvFaDOFYhGVKpzWItLLUsrk2DyfZ7CxESfJoXMuXr5Ae3Ge+//+L3nwM3/L5GOPnJ0LcAaYbUb4oWHR7ZDzy6cU81FBi/DcrgEi8nmEgaAUkTor8edcs03edbD8GoecLWh7AxIY8HoFqJh6DKnj3oK7SknabRa6/Rypb+JnGn/ET0S/hZfcTkMJ5roZspamlA+5rnkNnvZwjMuh4QfoOm2q4TyT6gTfiu/lTvcACInleViOy8l5QdD1ce2UQ3aESJuYJCJ2ZoncaZQVQ0s9LxlDoZyhMpynb7SAn3fJFjwsRxItSeVt1yOIa6QyAlsQZ1y67jBEbQo7N2NkgGM2Y6kCTrdEv6/AOORDlwPhUQJPcUgd4+cK7+Tx5rGz/nu9gpcOTJwsK+Tv3nwtt279Lr6+7SY6FCAzdJ5b99w4a7PsT3/608/Lk+33f//3+ZVf+RV+53d+h0suuQTHOZVdLxaLz/uY733ve/nbv/1b/vmf/5lCobDs01YqlchkMpRKJX76p3+aX/7lX6avr49iscgv/MIvcMMNN5x+5dJ9++Daa09vm2fEk+gUVcQ1PeWd06xiEVGZ9chcu3arcdYqwkXTJdOIkGlC6glKKkM9u4HBZkpVNchZGYoze/Bz76TVDTFOhiIeNZ2Sk8fpW5cjCVKkbXF0zwKXv2Ujfu7M/OmeTFUabZhpaFqmwaDsomWIFilCCYz17KmVpwPH9ymPbSRqt6iNn6BTPQ8+Ak+SqSVhSG3iOOsvuwp7yd8pV/IoD/eqE1lOL7B4pmtgjMEs5frYqh/tWGAMlVnBgWs6jMqzlwLoZx2+532X8+0/vQuMIU0UJppF2TaxEVCfQ4ULSKeMoZen73ZPQK5XaUoYCxBoEVFvBZSmH2Z9+S24pcN0m69HuIaG08c3p47zvuFRhI7Ju4rp0KXdzJHxLSbiFpVMhW+Mf4O3bXnbaZ9DEIX4HZtaqUN9tIWVGljiEGSgEfHaly23Ze8+0iLCitp4HYnKCJRrYwuDE3bZJjr8y0LKTbuzCKMxxqbWTvCyRQ5OHOfi7RciTvqeCUmr2SKvUi587dv5xl9/FdWvyLUle078A33hBCa+nBve9W+W2yAroxS7bRq1OsbqEd3OfED1xEbG/KNkvH6iQpVWqYWlLEpFjw1957balOuvrLQaA7mBIayci0okynV6HhBCLQ+9odmM6NbZMHSMNv04R7rMZbax2c+yrTkGwEN9d3FSU5rLl5hrVbE9n7h7jnzKQg1hitCKVNaQWjB8vMjhy5M1VWZkdlRo3HocEUO5M0J3nY0rF5Y/t6KQON9Lc8uqleeG33YpzGVQjXGGg14/fYV0+1cEbXDSQQQSgyZ1F0ld6Ju3EFWBk4m5cnvEseosAsM0Fkkcs/ZLF+cf7bhNtT3PVr1CVI86hotGygAsNlq43SpuapC5HN290+Q2b8QIgTh2FHbuOk8tP7uYnW8TKAuQtP0i45lhWm4Ft9yLAxq1KgNJi3qmDIBwV8VEgaKjHAasYTbldkIO9ieSjZfsxqQp9SjBdyz02A2QrRHbFkHcptGZo2+18udFjjhIaNd6z1ntrCzEL0YK27aYnPWxpOLCro1c4rC1MSQG7FUepaejdHOGsxA4WLYhdQVCgxSGpNBPozVOMexQQDBhN8mG/YzLhJEoAmOWfU9n9z9O/6Yt+IXnP6c7W5hphGzyXY4Lg2eVQdsk9jxumMeJNF7h3D5PhZfFXbJmUFYDK6ihMhWGinn6shmEcflC35tIx9+JUb9FI/FwZcqehTqezDLZLXK8XSbZ9zjD60P6MvfhmEdxgPeoIkmxS8POkhqXdfk2Ww9ehR78KlJIOrJJUVWQRlKzF8kIj3v0fgYyfVwiNoHWCMtHhRGuM0NiChT9ARLZxpZF3GQYgyKNu1jDGaz+5646ny36XHh9LwPg+BOz1GbauBmb2eM1Nu4awl6KX5SVkqmHoBUWVbpb3oozMYOyuqRWHZlqtJUgUosrHMOh7g7urt3Lj/fdhDEwIvs5HB+GsAn+2verV3D+Edy/hzwwXlrHgldAOx5SazpegUynjlhlc/FixGmTbldcccUpKVXGGGZmZpifn+ejH/3oc27/trf1Jr9vetObTnn/pBxaqecv+/3jP/5jAF7/+tef8v6f/dmf8ZM/+ZMA3HzzzUgp+f7v/36iKOKtb33r82rnU7DvCbj66jP21XkW8RHCcsCAQREXK3idlMRLybjnQemme+4iQckDPMpzIXHTJrZaJP519M18FCMbXDO0iXvjhJG+Igsth9G5PjbIiEU9xe1ffoStV47y2DcmcTzJ1MH6KWWsTw9PunkSRRwrKtkNWDqLpbM9s9J0iXA6Szdbrm+Ai9/2vZx48F4a05Oo5Oz4nZ0WnnQqcTek3dS0F+Ypr+sRA5Ytibop9dmAbvPZ29iY6y5XlJVL6WFCQ6YjCYoRkrPf34QQGGMoDWbQ08fJWBHqVVdT/ouDCK0Qlo2wbNJOgU540nMkRQuNkgFCWzTzO0Dcytu7Ab8lJ0nSf8M4isDewIXt+/nb/Yd43+4dKJ2y02vyzccrvMq9gC/GtyDrkiAJuGbkGvozp5eiN9OdQaUWJddjERBmlcF9qvEG1/6h75z0GRMK5WTp9kn8KOmZbxsQtssPRYf5n+k6fuMrj3LT7hKv37oRV2YR+QqJ9FloNdg9uoF22GG42M94vcoFr3szlpPnu173X/la42fpeAmpiNl59/3Upw+y8eJLGNu5HYBGN6UZapRbIHGWVtETzaJw8XNbMIARE0vXSfIjb95+zq+LkBLHz5CEAWmS0FmYAwPSd8i0BbX1uWVDd6FTMo5FnKyM5VGxQKOygyhcIYmUtbIc7pjeam3cabN4/AjbXn3jWW2/1prEHyQaKSCNjzQOWjSRCNJcAt21I92yVwwRHqrTfWAWR2Ro1XyG+laIRuX5uMk6MAIfhxCDj0AYQWsogKEBBu9wcaVLO26vWbtfwfmF1k9ShGsbZMoF0zb3bk1Y9G02bFRw1yBKS/bGD3NidpLtO85Pe9caxhi0Ukw/8SiHW8cIogahFlgYFPCpLfN8x55Dao+2aBBnNxIDE/Mt3G/fzc6LdmEWF2Fi4mVDuukwAmdlQabeP4pRK+oa19H01RY53r8JjMFY6XK/UoFiwUnIuINEqcKzLXaO9JZJjDFUTi7o57ZhdYfRlRCPDAemnuB6rlnjMz1zpLFCWrJXSMFaidHaaUrG14wN95RU5dmV55kAvtbSXLLnU5ys0Snzz590c0fzEAlkkCXIHqLUeC3Q8+bFLeI5GXZUB7knd5C26vCPs1/mfdZr0FGyvI+w1aQ5M3VeSLfFTozsKoKRWZzspp6CKh3E2JBTLvnN53YREGnjhL05lTEJKtPrl6nWFH2XblThRJCgLYNnWZD0Fgu/NbuJUDtLyZ+9u6B5dBxXpIiBbVzXdwQ7aiLatzFQ/n4Sp0Xsz+OwmZ+473fZs+OrxJHiquNvJ5cLsTcf5X8UP07bBHyzNU19cpgjuQMseHO8p/N9XNrfZRSbezI5bGvD0kik0TLAj3Oo2QB5zenRBJsuGqY+16E+1yHqJvSvK2IvVV5PMhF2R9EZK+GGimYrJOu3QSikcRCUSbIHYSNcld3GQ/FWpqJ97EkP8Vr7MkQq+UZ3DlpTr5Bu/wphjCG4+y780SwPbbgKvTQf0pakmSkwqCuQhuA8N1F8vnDapNs73/nOU4gNKSWDg4O8/vWvZ9eu5w4Ebr/99tM95DPi+Xht+b7PRz7yET7ykY+8sGNVq1CrQf8ZeuuIZ04vRdg90k0opLFwwyXSzVm7/GRL2AjTs61Sdnc57zjybbI1l4aA6XCAdZteh3Xi2+xSX+IrMz9BKbeDoWKWL8k+fsDMcZ0c5L/UvsYvX/U+vJxN1El5+JYTbLls4AURYsu/dapotRW21SNoDCkIg1RL/hVnq3rpEizHXZJjrz0sVpNogiMHNlLrWmy7bpLyurHla5IrewSthG4jXibVngxjDLPHmtCvwIhemiQgU0WYTUDwlBSys4Kl3zyNuuRKBp1AWimTDvYT7v8imct/qtcvTIFuUEHqFC1tpMpgMh200+HQ9ncxuWEagP/Qdx3HL3wEnZQBgRVdjtQxf1fqUrYFggAvaTKbWPxs7vuZljU0ms9M/jUbC6dXiXheL8APFkm83vKx0CvXR6aKY/nj3Df7xFm5TM8XXbVECgkQOsFIj0QYbP9byEGbpJrwpStC/v3uY+xPLEasncQmwsEjjC3W//wPcSI3xYmFOaSSZK7eQblT47bCUTY6MyRbUn4k+F4adhuDIb7CJd+0+ecjf8qW0lUIIYgWLkarMlp0SOyeAsqXkoVVCxLKWiJpIpD5tSGM8pU+atOTpHHvvtFpghxs4YVN4OR4oUHa5B2L6WAVyewZ5r1NHHnoXkbp9RNJnkQKHG2QqcLJZIm7HZKgy8SjDzJ2yVMXoE6SzKc71plugBzYhsGspMGakMiPMa4Gb+38PQHcLUW6D89iKYtkOo95GqWiMC4ZZeMvjbn2qsIUG5susY5pJ6+Qbv9aYE6xYRAgU9AW2VCwbtbmwEaDXzQM9YfMzGeJCfnzY/fw26/90fPW5rWESmLu+atPArBfjJMRDvPKQiEY8bt85Y0LwFfAgD8gUHM/goVFN1OmZop0Jyfx140hjh9b8fF8iSMRT7OIveo5kghJpbuIFwdEbgYt416/MiASwWFCBp1teLZFK0ooeL2x88njb01vZ4THAPji7CLXncEYfb4QhQlaLRnh2yux6HTH4HsrIgU3WHlGRAasuENbLrDpJ38C3/NxNz1/dZ+wJfbWHHZioeXKGC6kpO3lKPoZrkxHeeBok32bFngkvo8vDPXxtu6WFR9mpZh6Yg9DF6w9QXz3oQXenkjucxvgeVh6ZRLuhCn59ec+Dc1NJUIJUrcJOgVpY0vJWKlXaGq2btF/wzD1b/wH/MBn3ea9xLW9rMs2CIKQxSBL2q7RCRUd5fKd+XVszs4xlg+x46OYtI5jl7Hbkku3n+D+vVvQLY93VLJcvm2ciWaOR/fuIHd5mY5bZ49zLw9t/fbyBNTKjjKqtxIZzcxS1ceTSwCRM02p1YvbrNLpz3+2X7mO/fdNELRjDj44ySWv2cH0448Qxi2yjTZ2WCT2Cyz2XcnmiU8AkDiLyFW/0wVZg5rcRTjyef7f+T/nusH/wQ5nM1NtCQe+AN152PTaF/YjvYKXFlINSYTtFJ9CpEwV1rG1nkMkwcuLdPuN3/iNF3TAG288uwqBtcI3t97IOxbmz5h0e6ZCColKVk3mDZlaF6/VoTHQpuCtHelmSwez1EhltSnPdog9iMse/mSeWNToOFns0Rto1Bbw4xqZhX1MlwbwfR9/cAt7Zw6yTmSpDT/EoQdmueptm5g53KRTj/jn//0w3/efrjjtdp0MjE5eMZ0o4shQkL0Awwi19P+l759l0m3skssZu+Tys7rP54sTD/wDq/uKbWkcV3Lw/jqbroT6XJd/+J370Npg2ZJCn/cUtdu+277MVM2jNDrGfHUrDBtkmiGVHWydw4QJs5t7qbPngnQb3LaD2vhxdJpg2Q6GPM26xisPY08exERNsDMIy2XboMX9S22wdG+Sb6wasJPIzSAwZCyHXDYkiWIsYxE4JTJpnabuIKw8njA4doLBwtZFsl6IEdBNO8T69LxwYh2QsV0wkGkWcZKL0Tol10ioTHWoX5qc9j5fKJRZZWtsEgwe2rIwVhWp86i8IlKSvG0Y9gKaeg+RmmO9uYycnUGaIqk3AxkHHQVgu+SlIY0nWLDHKLkWQ+4YpDNEaUiaN0idwyjF4vwUhf4BdOwT6zm06aDma7jNCHfR5127LseK2ig7IfZ6SjdXO0h/bcYxa0nZkC6pUlWaoAcKlGcfp72Qp1vMod1eW/ozNsebqyZ8ria1fRpzB5ZJN6Tg3p0buGGhi2/ZZCtlOtUFMIYTD95LcWiE4sg6oKcAuOdv/mSJdIPr3v0exGmoonWjTjq6HavbIclZKKuFHS1gJD2TWHttDWL9LSXkBVmSoy3cbpagM/CU70jt4q6yhbXjFdItuxRaNKKXn/H7K3gGPN0iqFRYaZFys46abKJLWXaMtpmrdzFJhdvSu86IpH4pQq/K4ri1aVH2Klx06Q7+3XCFVNYJOLbyZWFYLP4L22dfTy3rMPF7n2Te1RjH47vm78c/fgw2b3nKMV5q8NKY2PKenkDUith28ZVmy+IxatkyU/1L44kAoWya1SYXyW1MNVo4UpJF49oSAyhpL/crXxWZPOGQKxkW3Az/5e8f5P/9d1et3Ym+AKTxUsV3ozCrpmzVbkTGX7nn3O5StUxjqEchfriAMQF+fz+W7ZzW8wjAW1/EnYpRVpfYmcNKC1gmQ9vxqHUWuW5sM185cJjF8gW0CpPcNv8d8qMeP7r++1k8doS40yaoV0nCAMdf20lwsx4hsBBGYByJTPMkVpX8oktt8TCbN529Qn7PBM9IjGXQBMsG71GS4lgGKVNsp8NiTrLugi10mjHzk4LBjevJZAu89sot8Kr3cf9f3swD37gLOr304vbYG+GirRy57W42+HuxsrsQVpHNXhsxVuX7M5uwLYObjxjLhxyoFbl28iYKdoHFkRPssx4iNiHbdD9X6fUsEJMIST0s4qkOnnRI3DraaSIVeNtL2AOnrwrMFX1yRR/LksRhghCSkQsvYdE/jL2/jR9EqFTRzO/Ejzq85q/+ib1vuQZBP040DEmNTF9I9riFM38lrfLj/EH17/npvptYZ60niVs443fBxlfD0xH3r+BlCZOontgAULIXb6okIUNKI1uh2tnAwBl6eK8VTru3WpbF3NxTy24vLi5iWc8vPe2OO+7gR3/0R3nVq17F5GTPaP+v/uqvuPPOO0+3OWuGVCcsTtRfwB6eXulWjRaXDeyNUASVLHZq4yQ2GXftJloSyUn7B21FKFtixRpbAEpiWzaWnwFrG9qySK0cF1c/i2VJgiAgFg5dt8BBmnyP3sFU/XEuf9NGjDb4ORvXt9h719Rpt+vJVy1oxVSKk7icVM9oCgslhBJP2eKlDvtJFQNfMzKJa6cc2wtf/thDfONv9gM9nzuVaupzAZ1GdArxqI3BaI1WKUG7RxBJk8Ve8pKRaYpZKkMvxNlPLzVKkQRdVJJg2Taen7L+kp3oSoXEThCW1ctxNTHRt2+lGMdkojn8wCXbrGB3A4QKMfwUthljqD7F9u4MOlaYVBPHNk5qSLoJ9dBCJxI7kQxZCYXYRsUKRzjEaYIrvdN6JUmC2xTUB9qE+RBkikAQ52xwGuiiPO19vuCXWFV1Nm2QX+iSrYfIjsY1Dr6XxUkleWOxUQjiVNOImkjjolMbggHMwu7ed3FwEwWJpD9ZZKC1n9Liwww3x8kGDUwaoVNFrGKIJc3JOjOPLxBFixgVo5IOppnQH0FdbyMMJ8AYtEhRdrPXh1OJzK7NOObne0bRWmu0Uqg4JimPUQm/gRECNwgRSUwqp3nDVTUc5xgT01CfnUc1pkjio6hkhUQ1NvhBxFQaIZotMqUKTiYLQmDZDp3q4vJ3w3YLy3bQSiGkpFuvnVbb2zMzBMMV4pxEWW0s5eJ1LGI/7d3N7tqqbe3+DPY6D6USNCntY+uWP7PimMReQKocrHKDaK+qQtjod/FD/Qrp9q8I5knppV6nH69bZiFwMLMBWAZVD7GyBp0MQDxCK8rz8PSR89TitYVZRbq1wlmMm9Kfccg4Nr5/KmGptUALRRoF4FmIjEPq+kij6LRCaDbXuvlnHSpVtPwiCNEzkV9SSi4TsEYhVIzQKRfO7WWwPY9lVtL/XTLMlg1VFRPpEFsKkqCDshy05ZCmKUIlREGHcqwp5gJabRtjDHPzpzc+n0+kyVK/MQq9qsKkp6qUrAWaxyPUkQZ+2vvMEgJXWmSDefJj6xn8mZ+h/6d+8rSP6w4XsCNBaU7iJkNYJkOQpDhRHVB044DdaR/XHXstUlg4yiMsO6y/9ErK6zeAkHi5ArWJM68gfyZohQkbsy6LvmIhP47RWYSxQfTikZyVxy6de+W4by35UIuVmMJzbNaXCzjSwnO6jAdt/LyD61kMb7+Ry2/6ea5+3/+CV70PgKt//D9x0U0/x9YNA1RKWR6qjnL75HpauctZDFoYLAyQUw4lOyZUEkcohIROanPxSJsro9dx0663ccOrdnPJpgv599f/LD+z/R1ERZ+BfB8jG7dhulUMCUrE2ImL14pxAgvVSnAGzowwzeRd3KyNVpp7vrSfqQmPbr2G6jbQaByjScQgltKMHTpMamZRhGjRxQky1El4RwxBeAEYzb3RIzymj3C5u5nJqAphvacgfAX/epAq2pZFZLkUoybdWpW5RgdpDH4ScGzB4Zt//6nz3cpnxWnPhp4ppTOKItznMTH4zGc+w4/92I/x7ne/mwcffJBoqRJTo9Hgd3/3d/nSl750uk1aE3jSYnKqQSFIcTMvdBK5cg0XowW0tDHEGJPihC5ukBB5KQX/zIoPnAmEEFhIUjTK1khjaA0V6ADrjEvUsFHaIhJ5Dl/y61x+/we40X6QT800ecuuDdQbTcqlC/AXH6ZrCnzZ3k9tYp4bf2Qnf/5r38bPO7RrITuuGVk2/H+eLTvlX92OwkqOIKw3AKBlRGuggbFGl8/j5YInq/YytuKKUo3JTo7DD1fJFUEs5QQL2UszbS6GsKoyk1EanSa05ueJ6r0PrDSHEm0snaPc0nQLPWWQPAdKN7lKoRO22xQGh7j0u67mUPbdzO95mPITATLX8/uzZuZpui4wRGqDMV1k4mNkBTess3UqZOeBvwTgh5IPsMdsZkRFXDO3j21eg7/2xrh2tMgflBukChZCn7/N7qNbarGpspF3rPshdvU9/1SHP7j/Nxi9YxfB7iNYKo8fbQEJbpBQmPPYOnoN3vA5LoP1JCxEs3zx+F8j2hqEQ3tpFfL11dfgFUtkLtxA9ZbPUgyrBF6ZP5D/h2jm37HtCpdMzgMl8JIsNyZXkXnsIRIhuG2myg3Rp3GEwhIS20T8TTHHX1fKrFeSnUfKjB4pokWR3O7rMRfHuJUR2vd9h5FwE6+7qs1fygL9dgbtZJDpYTIND2VpVBwh1kjpVhwYojQ0QthuMnHkMOu2XQAZj+HO14H/TJjJgmNj61EyTpvvfr3N6HCEJQdJ+xJqQ/uZmB/k4u/09pe/aAPTN11DgqFbWcAbPU7a79OcriLshBPqTjIn9iCkRCtFa1uPhBOWxWzzy7jJM68QG2NITcKgN8LFhStYnDyG6hvETlMwvftBi0MEhbS3GOKs3bPgJLJXDdO4dxy7k8WsWjxUjgNGYqkCclUK/EDsMtN2kO0mWJLLoiFS80pQ/K8GT4oNo9wiQltkixexZaHOvaMhTlcxanfYMFzDL4dMRYa/vvfzXPF9/+k8NXrtoOOYfg05A7+R3cidje2I0d7CmCJEdn2EbdDCQakQS0naJQ+hXYQUIASJtGh7BfpfBhVM43pr+e9c3KG9VCxhGdJGY2hnSpTbC2xfOMzRkRxWWsCIBA/BgBnm0oHdACRxipPrjbluEjI5N8/mwX68TI5Re4ykYNjQH1LI29z9aJc7Ds7z2gvO1Gt4beFlHVSUYFbFaHNhwroNOYqbEsDDfmTlGRELi5GZ2+iu9884JnbXF5DtArV1J+if7YCRZJwM7dJmcpk+4laLTfk8h+qKVKfYwmZ8cYrZziyDW3cw8dD9ANQnxhnavnYpphPVgKKSeKpJpTuC9jQmTLHTEl4QYdBrMk+wUw+3Y2MlFqgulvCINFSDiHImx1w75Rv7Z/jht17N7R/fQybn8NBXj7PlklNV5f3rd+LlP8D4p36d9rEjJJHmsYXr2ZX3eUvmW1B4G0ZrRosdgqBn9mAZTbngcN2o5rp3XgeOw2u4gJ+4+CcgCKD5MKQHIWgzt2k9uR27sK0Vz796f5XtDw1gIoU4rfnaCjZeOMTMsSq16V56chQk+H6OdCTECaHT75CL8jQKO7FyM3jzVfTQDbQrd9MdhFySY/39w2Rag3QHywhZZ//0Ea4e2cHh5DE223lQCVj/Gkvx/CtFoqgLj4bdh9IGr5BDLp4gdC8AQNol9n7jy9z4s+e5nc+C5303ffjDH+bDH/4wQgg++clPLv/7wx/+MDfffDPvfe97n5en22//9m/zsY99jE984hOnVC599atfzYMPPnhmZ7EGqOcqTK7bxJf/5NEz2v6Z0h7nOnPYqoKlCiAsEt8m04xJvHTZn2KtYC+1UdkaJ1iZLJk0T7k2zODMZuYfLTJ4KIvpeyOO5dA++h1SA8MDfRwob2JMVLhaDjBe/jLRV/8HuZLLRa9eR9hOmD/R5u5/OkQcnv5EzCwRle1qQGR3sTipDjy5r3Pj6fZigpaKSwabvGnjNP3lJlK0sWSEMb1F4nY1orUYnLqRMBgDjQUoBD2loaWKWCYPQlCc7xDmehPnc5FeKletzGI0frFHUo1degXacVDtmeWPbaeC1eopY+wkR1CKaPTPIZOY2O/j6OYfJ84MIoBflp8j0B5HRYk7i5dTr3fYlM7yz/Ui00ri2jCcDbnhxFupJos8NPcQf3DfH5xW2xutKtp1SLwUqU71BAHWTMG1GrZ0CF1N0EfP32YJsZbUjx/DaE1S7scxKYWwzaXZC0hLX+R/3v44t+zv+eIFsaa+eScYg5O47M4P8qC5kA8lP8BHk5u4Q12IE28mEoJDjiE7fAJlNFo3Ke6+Dn9kC0II+idjhi68gqzVJOPmyWc3Y6RFmJklKEWknsIRPtYZVi4+Xdz03l/mpz/8CeIgYOroYZ74zrdJ4g7R5Z8mE2tYpRy24jKWpTF6adywJDoHcXZFrWNbFjrjEmcdojQg1hFKKrRrSEVCmHaoLU7RbC4QqRDlGJRjSGVKmHSJdfSMr0iHTEXjPNK8j28sfoX6+DFEqUTqrIxfuSYE+fi8KN0AvFye+eGjJE6InZ4aKjiqDycewDEr6lg7sYnyCcFIhqL0kZNzHGseW+NWv4LzhlWkm0D0vEONSzXfj4+NnmhhFR02bQj50X8zzZuvcpGZKb4++9WemvbljCjC1Gvs0IINRnKtN8h4eAEjfWWkEBg7RGdDlBvhqBKunyKyLVrFJ5CWPIUk6Do+vAxIt6SxotZ7CuEGICRJtp9ZP4dEIzDEToSyW2grxJEuWzIraYLOqvE9dnyG+wcw3d4xlJ0ljnvXLJdLebgp+OBn9/CxbxwiTJ5/8bbzgaAVEXUT0jjBrMpGGG96lAorhQv8zsozIkFQqU/h9z/VFuD5wur3sZfUh8ppYbESAyW2y3Cpwo7hzdTNNFdOvIW6vcC91bv59tS3cbMrBE7YWVtfz6OLHWbnOnS8JrXcDLYo4CZDSOPhtyKMr597J2cBOdshzqUE5ajnlS0tbNtiIJ9hOJ/BGJ8Ti4pxmbJue4VuM+HY4Tof/Oi9/OAffJNf+r07+MwfPcTskRZRJ6E4fAFJGDB3dC8qOUik89C5B4zGwsXRkpKXcP9MP3sWyr0xYnEBZmdXGhXHMD8Hjz4M3Q5kFN++92tY3qlqNiNjnMjGKr6wuGNoQ5mB9UsFDwwIb4i2rjJwrE7q2jQGNnF87AcwSQBzBxA4iKUibzqXcImVoSbXk7QuIfBC9nTH2W1fyIFuhNaCh79+nC9+9BHu/9LRF9TOV/DSgNEGJQz5QpZOroJlexyU31n+3MuViMPwKar7FxOeN+l28803c/PNN2OM4WMf+9jyv2+++WY+9rGP0e12+djHPvac+9m/fz+ve93rnvJ+qVSiXq+fVuPXEnYaEmYLzM6EhN3kuTd4EsQpiZIrwelCc5XM3RgytQCjGnQLEbk1TC8FsJce6NpKyc1W8eod0Iaw4GInKxPnbLWFGvsx4gv+O5c6x7jvwFGmm13ibJn9xRJZHDyvQm7yL2Hv57nkDeu54Ooh3IzFo7dN8JWP73nebXoyiVabbRB4EYoUJQLUksmrstXTfv/lhFvFIULPw0iLt22qsvOSBTZum+OqdbNcNljFsiUL4+1T1KiW4xLFBQ7t28TOoQYYQa59KZoQGSvCap0g1wtGzwXpZq1SuvmlMluue03v70KJ0thGjJrD6ARjDLK8heKBR3HqNaTJkm3mSX1FZWacbDsmFhkmNvwQAJfJI2wq30qfSJn2xzhW3MGVssalpRb/p1akrns2MT81kGHbwuX4JsN9M/fRSTpP286ng2qkGK9DammsuIAmhlTRN9VboZcvWPF6+rDFyn1oxIr8KE4hbXWoT41jjQ7TdfNoIXmHvIKLRwYx/hGm2w3mWgFSQi0WcMOrIW8z7BYoDPwon1DfTdtk+Ja+nA82f4XhpEheCe7PZPmuscO8Y9sJ3KFN6E4bOTnJZudBpOMzFUKxb5QoaZBt1EmdHnFqKUkqop5KY40ghMDxe6kjcRQipKaGx+bZ4wweHl/+nqMyWLEkXUpLl0ISxwmBWZnMOqnGiiNUoMioSdyDt+Mdvp2ybagMrMdKRO+VgpUKLGWtvJfwrGnCnlxdXMLQmF1AZ3wwojeuiQbEIfWhNkJI8NaueulJ2J4PjqQ+MIOyk2VSRaYKLQLcZGSZtARoJCt/q4xDPoT57vyat/sVnB/0CimsvtcFQnsETgZLSuIvH6X7v+/n0KECrY5NuWjIy/Vob4pfv/PXz1ez1waf/TSZr38dAbSIqNHliFmZ6Gq5Uh3YjdZz5ESROJFE2aMYk4I2yG6Ck4SEfh7Sl76CNO6EuEmI/STC1RgDauX8coufIc7nSHMjaGtlMuVYPiXz1MrY2bCFasdIy0LNncAPesSbVxO0O20cG7576x5a7S6//5X9/MKf3XeOzvDsIAp68w3bFT0fI6OJE0Wc1hksd9HtGOtohBeuig1UjGUSvKEzLxggpUSI3rWLnRkUK7HTpOjSibqMFsvsTA8xGl7KhtZOcqrExx/5OLbrkh8YwslmScPgmQ5xTtCOUnwtqLp1Bt2NyFVV5+1OCFvXpiiR6/rY0dKcSi5dA2PQWrNlwAM0tqX5428d4fp3bqWyu8yHSyH/eGyeBxfa/HO9yR8dn+Ev75vgt++f5Mi668lVxhDSRsdPkFgFIIHaXxGXD2GGLBqWYSpw2V8t0tEuWDY8vErMcve34ZavQy4HBR/cDo9NZXoxxipoGeNYLvbo8694+3SQlmTLJaOs296P7Vp0OwKkIbVWiMAjm3+cpDSC3a4Ru1O40SgyzRIUYvptzXelKfHim9CzN3I4ewxX2HQPX8fHP/dGvvPFSU48UeWezx8l7Jz+vPwVvMSQaqRjcbR/K5m4QzU4woHOA8sfa8fDsiVRt/ssOzm/eN6zxqNHe0zyG97wBj772c9SqVTO6IAjIyMcOnSIzZs3n/L+nXfeydatW89on2uCNMaJA0rrPO75/CFu/HcXnvGuVpMiTldyMoyQKsWNLMpVh6OuwjpN49MXCoslY0IbvMTGDmIcxyEY8ijPrlrxkB6T6Tj1/ACbvYB9i9MkQxVaSYeql+eY2ctrkzIHPLhs7igDF+W54V3bWZho0xUxi1MdlNJY1nOf30kS7SRRGQQGZac98sE4pEtVOLWtT/n+ywHuk6rXflQdZnvuci4fGUHXalymNWEmRFZaGCOohh7tiZDK+F5YWlxy8wVaXZ+cFxELsJIyqdVEILESyVhgsy/Xe1gJcfYVSavTS43Wy4SIEIJc/wBpewJXLlUcc8vYRYXT6WA8gSeK+IHEoUkaJGRHckxu/3FY+GfSoMnrxFFusW+kGIe0ChsoxPtwUSza8EBs87pcRMlV/ER8IR+KpiiXy/zDvn/gpy75qefVdrvtEBVDjGMQsYXEBRts2+BuyCHOA+nmnEK6dSksdEEa2nMt+vpcOtVFcuu2oPc5hFaRa6Isny1l6Msb6skcqdlE1pO0gxS2bYO99xF0NFuchH7b8OfquxmrZNhqCdpqI13VomNN0ypKosqFWFEHx3XYmHucXRe1uA/F7NwCTq6GiTRh4BE7SwR4CoGz9t5D26+5gen9TxB1uyRpRCmp4quE/rkJFraMYaTEwmXPbcNcfP0cY5UmWjR4/J4HWQgHgTcDkD88R/uOfQBcs/lBRjIdkA5c9x9g96/y0H2fQiUxtudTGBxmZl+vOl62b4Di0AjbLnrmokHKKD55/ENAL71MtxpYroc0EkkGg4s0Ca2+LlLp86J0E0IwuPUCwkYLXTUIYzBCIAykVgOBhzKrKvrGK881lXXYwRB1d23Tr1/B+YNJU3rWGb1nsNfpw40KWEsEihxvkyhFMu0R5jRBYDHs7qRZj7lj/G5+8bZf5MNv/PD5O4FzBa1BKYwQSAMFPP7OPErTuhyAIHOIyJ3BinJYscCerXCpbdH2ejFNYW4eofO0RgtoHELpQrj4LAd88WNxusnk0Srx8FIxCJX2CAKWLEKslXElsX1k/WuYgR9FrSLdhBYMmqcWNrOiBKvUq1YdtgNGZo9iJbN0hwxHcwGZZkpfJWVoKsHg88RMk//2j4/wWz+4opp7/NvHicMErQ0Xv3oTfrY3/h5+ZJrmQgdjDJsuHqZ/tHjWr81qGG3I5N2l8017pvFCYFkGY2XQSqBrXdwwj7WkRu4mEbR7pEZp8wubUzlLC/HK6qBFRBx5KBUz6QoGag3iNGRjJcti0GG9sxEntXGF4Zbjt9CXJCTdLiqO17RYSidKyRlB6M2zlQuxw35SWcdKFLmOhs1rVNQh4zMwUSLKJECNXNMiLORpd0L68gZkiOcqgrhM38YCB4cstsw41NKULgYHOC41XdfQNoagbvM6k6Ff5jA6oosgXvdqXCvFzQtw83i6iVvQ1MMiE60m2y8u9sbfxx6D3buh3e4VA+x0oBjAaB/mgXki6tjKBysAE9E35eEsSuSWFz4HdVyLXKlHhohcCTe3FT0Z4DW7pJ6FpUOi0jqsMCW1W2AETpLBCQTJQMD2yZhviC5h/dWM2k/w+TsXEVaJvmKbZieD9Cycks1j35zk6rdvfsHtfQUvXsx3EiZufBepV0DJiLT8CK8e2k5Tfp4tkzfgqIQ0UYT1+WWP5xcbTvuOuv3228+YcAP42Z/9Wd7//vdzzz33IIRgamqKv/mbv+FXf/VX+Y//8T+e8X7PNWwpyaddvILNsUcWWZg4Tcn0MzxwdGqInTkSewHQiFTR7OsQ5KI19yeryDwDQUphMUu2ERMXM5hEE2ccxElFg9BIYooijyscRstFDjUN5XyOxBhsp0wkNCO6wm3+CHN7ehPRQp/P8NYi0hKoVPG5//kgX/zoI8wceQ6j7eX6470JXRIb2qtSwIxIkakgcZfeexl5urm2hRErE9lCHPDJ+AQsLuLbNr6BglIUlkiO/kyIIEUkK31TSpd2Q7Ip36VjNJbOo60IqTzsxS5TbrwUFICwzj7p5mRWfK3kk0jkgc1b0bqOSWN0GmGMpjy2me7YetJMmW7ZpjrcJPZaSAFRmIJXYLSTsjNocKM5TIjBEprDsp9JnWXnkW8wrxw+neYRSuLbiuusfl7HCHFb8aXDX+FA7cBzN9xoMoFHxutQni1ix4Xlj6yGIpkPke7ZLzzxXLDlym+kLU17IEu7L0cibUwcs3jkENlKDpMqhFaUtUc36WC5LeZbKTnHot5NSJTBeB5kM2SNxjHw88UmpYzDv71mI5/6gc3cUM4w4rfIGZeq20TnR/G6x7DiOeTiQapzi2TiE0TuOpKkhifzqEAjliZGtrJxrbVZVV4N188QdjrYjsPxJx6jkB7BzkhEtA6z1AeFStiTZmhYFtaoxBmpUNXfz9HWd3PcOYYt9tPwOpzYNs93rpriv6wvsiAlOD4cug3+/sfZOv4J+sL9WI6D1orcQE9V0K0u9KqcPgtOLXai6SYxtuqZLif2AokzT76RodUX9L7rrf11hN7925ybxIolJ+u6CNOrXGpEhHbKy98dTVYmM+0+j6lglvtm7yNSL/1UuFfwPPAkpVucbRJnDQv5QQxgL1Ubq1Ud7ExMlEguUJeSN4q4q+h0Av5kz5+cn7afSxw+DMUixmgSrVigy5Eg5kJfM9ueouPvRVsNlBMixQb8TD8jC1kKc1lysy6DxyfYec80TjOi0qniphEkL+103G4jQq42QV8i2Z4uLSi1C4BBFcdI7ZX+5XgltO1gVTsI1dtOpooN84/jLRwnqc9ihke5cOYxBmp1crFhsG8Qa7RMf3/A/2/9FInSNKKUb+2b488/9TAH7p9g8tACQSci7MYkUcrs8RoHH5xg73dOUJtpEbRjwk7CxIGFlSIH5whpomhVA1rVgDBRSK2QKiWMIob6p0iaGpFzcJJVlaMdD2yP2LHxRkdf0PFjWhTnsmSaKY7pI+Pa5DNZFtwsGS9LM9IMZYa4hr/hosU8VWuWpKs5VD9EttJHrn+Q3MAQabx2/bUdpvgGUithfWEdWGCsBGQO0WqTX7c2Pn5W3iNxQ2rrWsQ5Q6dcRlk2eVvgySxSKuLEYiDv8sk7jtAwBl10iG3Bq0fL9Jd8fFvSEIYAaHdTxsUIgY5JcWi2j3D/Iye4+8EpHv/m1+DAH+Ev/h1D5Q4qStgXjKJm5qFW7aWTfuMb0Gr1PN1sBRvyPDZl4xV9ojRASheLClhFqqMtMqUcVt/ZiTuyRb9XVK9QBDuDsloMjDdQnkecKRH1jVEUOfxWHScpoWSE1A7T66sMei7auGgrYsIeZTLcjxeWCBLJZRfNIS1BtujSWFhbReUrWHvM7T1A6ueW5vkKvBaVXJHENswXSkTZMgBh/anFPl8sOCOpxsTEBJ///Oc5ceIE8ZMG0w996EPPuu2v/dqvobXmTW96E91ul9e97nV4nsev/uqv8gu/8Atn0pw1QWxnqGfyiEKLTmORww/OMrD++TOpp1JBK0SKxMNNepO11G6Qr8cUqzmiXPKUrc41uqQsZGzItHCCACMEnaILBjQGCQgjiZs2/amh4G2kvPmdVE/MEmtBpW+ATuhwGcM0rJRHMjFvnzvO2NL+L3/TRvbd1fPwmj3aU8CkseKdv3Tls7TqpNKtpxBstVJU/8r1MyJFKknip0vffvmQbojVPUBQz3eZq3+ZA2/5JDuaHZiaREmB1WqRsVP6/IhjtQx6VRxo0hztmmT9+kXyuRQ37seLe4FYf6NFSQiM1L2JtDz7aprVRNsp/m5AYWiEzOggSAspLUwMbrL0OyYpUuWwUkFgRZTrEdMDOTLCZrFyBe7MNNuSKXb0fZV7Zr8XITW3yi1crfdxpKrYlynzkT7J++MqI77mZ6Precz9Rw409vORhz7CB6//IEPZZ0m9iDtkgzKm36Y+vEC+oXsGvEisVGMV1z7dD8ASFsIIjDAoGbJUIIvUzlDIj3KsPkEaNIncHAPtaWLls7l/lL2Zz9Lp/iaTjYAL/RLtMKUTKvLFIhZVCpbmp0oN3vXum6iMVZh+Yg+jSYmviyolx6XaP8amTI6odAHa8tiw8DVywTHsiT+mufmH8YoXoSwfefQB1LW9CZCVSrRce7+ca7/vB3n4a18klJKF8XFEMUF663FXe0lagr6sS7fTewR2Q4nvjdJOs2yiQgpop01ry6Vc1hwiH3s8UNnDWxdvgfm9MP84RUC0p1l0t5IEXYJGfXn3adTzlWgvLuDl8iRhl1zfir/OKaSb0uggS3u0jGXASiF25tDSYCyDMOK8pJcC2EvH7Y0RS1WONdi6D20CtLOyaKLjpXs9BS82jNSg4leY68yxobhhzdv+CtYYqeKUdVwjkSqLrRISaWNbFiQQTbpUygm5XEJYd/nxb/03Prv7Zu6tfoeqXuCHd/0wWeeZi5C81GAeegBRq2GM4ZP+PqSVp1UdIRqqUBwIaHlLFiMGCu2rsFKNH7q0hro4HYsoG4MxKN+m5vYR2y4sjD/7QV/kMJhTFhRPQrc6yyq1kxAmwqreTrL113rbmF4fM06GPqtAu28pBc4Y7FSxc/bTzJV/iLB0A9LLMV4bZmfaYsGMMkubJElQdkoqYn55u89/PxASdmIemGuxI+PSWOiglMHoXjtnjtVQ8SqvT0eSJppuI+ToozNsvWwUyz43WSlpvPL8TCwLvUROBjollykxvLUF5Mjst3rB4tIllUmAk6T07b7kBR1fZgXdUoSxqvQvrSOlSvNtb553uH2MOQpbgAxq5Lvj/Im9QCOt8vVjmlflf4rOYs9eQEUhzho9w8JU4SHYV9rPzvw2nKQPS5WQOiSb2uTXrw3pZucy+I0smG6vOu9JZHP0acnGwgDHahH3HF5k30yrRwAHKd976Sh/+CO9OdHNXz/Avu9Mc+mk4oCj+HzpYi6sfweIqXWOcndzEyBY12lwgfc4tqUY2nQ3D3S+nyDQPJopcnVpFsIQDuyFogtjG8B+HObn+coTOygMD1O0e3MCg0bLAL/roOfis+bHmy14qFTTqgdkvTyRaZNJVu4p7XvIA4doDrQo166nk99Hs6+DTBOuPuyR1oqQJCQLr2Ehvpt8NIq/cZZrd5xg74nNzB1vYrSh04jIlc5PrPQKzg6M0pCoXnabMijHZvZYlaAZU19swkBvrJXGw+ie+Fc5DbTVJfFivDdu4JHgEfrjyxHGIC37lIyr843Tbsmtt97KO97xDrZu3cq+ffvYvXs3x44dwxjDlVc+G3nSgxCCD37wg/zn//yfOXToEO12m4suuoj8i1QKeBLl1gxRfgd6pALWDI/cOsE137PlKeqdZ8ZqT7cVKGGzHHto8Jb84sJcvOYEki1tTua6akdSmmlR3dxHp+IT5T2y7V7blLIRrUXwKgyKEhd7D7B/bjvXbRqima0Q+GVuCC3+s1fgoexBLoxjLNelMprjR37jOvbePc0Td04RdVIm9tW570tHuebtW562TauvWrvWZHpeodatrL6cJN1iL3nS918GMGJVsk7vj3a+xZ9+8rf4vXf/GsL1sEsWYTvCkzFbSh1uOzFCJ1h5UB55ok2/l+GCSosJyyD0iholvxjQ9RNGw5R1geKiLc99/54u+rdsoziyDjeXf9pVbHfLFqLxKtZSBVO31sX2CqS+jdetEOQMjYEOOx6oUdtUIsBi/xW/zfBXv8qWNOV6fQvDpTfxxUaW8dxmxnObe6rI1PDlaj/vW3cc2cyx2bP5X8H38v2Zv+G28dvY1beL/3j5syhr4xZWmEMuKSgtnUMgQfWKjFiDa5Si8DSwsElJUHYIS7FcLASqrZEKxh+6n/LgEGlnDjcNucys5w7fIcgd5MD8MNsGCohIUG3H5K98LfqJ40jTI9UzBx+DsdfSmp/l8ngDd1hDHBcLeJf8GQeFQ7Y7TmXhHhqM4spFis27qA/9EUK69LfnOREYtN0b0KxUgLv2d2Shf4Bi/wDNxQXmxo9hdo+An8MJ29hBQppxwM5yaUkwPpfhskiS9TX9lZC5EysTvqaT49+u+/8TXNQbb4J6HfPv/wJx5/+GB/8c2nMUk0ns2hGC7KmkUhKGtBcXePTz/wiAdBxu+PGfW/58tYpZaUW3f2x10WGM6NLo6ylWBQL886R0W1LYaalWlG7aoOkiTZZuYQzD1NJ8TyOUwNiGxu4RnNybuGEdfLv+dcpB+ay2a52/gUtL15zVfb6CFwhzKukmEEjtErkZQieDsxQrXeKHTExlGRvtYm1vEoqUXFSCAhyqH2KmM8PW8ovYauQ0YdptBLCgIzLDb6HUdz1DO3qfte0lvyUDucZ1S4s6Kfma31Pw5xT14Q5jhwaxE03sWqTSfskr3Yw2GB0+5X2rXYcnkW5K+qAjBBC4US/bIi3iOgWGrDzLun4hsKMUOnfjzW6H/huwMnkO7n4zB5UicZtY6gvgOEw7guPMc8VGn8KxhFaseLQR8MNAEqmTu8MYlgk3aQtyBR9pCaIgJezEzE80GFhfpDyUPyeZKauVdN1VPnfNIMH3Vj7LpJlTJhap6vCtnRv4yUrfCzq+yVtYqSS2QwwKgYVtSTx3gEerCZeWNGOVAerNnVxj/xNXTP8IDw/fyYH6AQ5npzi5rJlEEWv1BKt3E/JK0HUbDPubsFUFg8Jp10h0RHFgbUg3mc/gTfVi8dQNOVno29aKwXyG125bx7H7D5MYyUK796EEtg6tzIULvs0l14xw3dUu9rfGWdSGb6/7t3QzZS4OHmbH7B0kqWAqKHG43ceu4jxfOR7Tyt1KMN/gvv0bye0a5sLtNYgjiG2YX4RiDe0PcMd4g5s2X7Cq1YbYnSFb7/1aL7SQwkkIIagM51mcatIJPMobNtM9ulK9OLDXM7L/Fmr/dAvNt+zEjcaIMseoj3TQziZec9kh7nxkKyreyKx3K2OLXyZ3wIEb+rjqxhx3f63N3PEWB+6d4Yq3bDorbX4F5wdqvkX60InePzIODzY0I/YTHFdX0Np1xapvClZbEaayzZEtd+Bs3coxGtzxmf+L15XsevNN9G968cQTp70884EPfIBf/dVfZc+ePfi+z2c+8xnGx8e58cYb+cEf/MHn3P4973kPrVYL13W56KKLuPbaa8nn83Q6Hd7znvec0UmsBR5txnhBFT9oUNqYR9rw+Lemnvf2z6R0S1dVfxPCIklD5sfqaNusPekmVgZYbWuyLY1fb+JGKd1KbxBWMsXyNMayESZGFDy2D3h0qtNM1Vuk3RYznsWi6XJjPMxjXobpT/1PAKQUVEZyZAsuWy4dYGRrETdj8+CXjxMFz2QMvKJ0m9w7g+dC6q8iPESKVGKlAufLiHZbcfvrwY9cnFgyzwzTMoG33YT87u+lObiFmW6GWEkuHmgQJivhjRSKK4aOM9/usGgEXrgBJboY0yE2LU4MtHCVweXcpEpatoNfKCKlPKWowknYlQrp3D503AU07OnghimZeoDTkRSmIrqlCDtKybcjSlmbSORoZwepWRZXqi7vGDjAtUM5NoiQiu5gmxRXKKZaih8a3472Y7oKBkyJD8RvpN8e5B8O/AOpfhYz6qiJjEtEbi81brl6qRQ4sUL652/lpGIGKc2H2HFKbjHAb4ZoVxDXuhTy/dQnT2DaB4mkJJAuF0zV2VHZQaXUopUuMtsKsC2od1LI5mkMrFvet6gdAUAlMVk8LtGbGHDWUY/nmAqPUE9j5kNJ4lTouOto5C/CUopMdx6rO0u06okiYoXJPpVoXQvkikWyhQKO5xEbifQLCCyy9ZVUx4sGc9QaDnOLHq26xQWDiwhrpZruYFQgESkyTpGJQmbytPe3wC/Cru9BDO8m8fq5uPa3S35WIC2bXP8A0rJ44mtfQNg20urVhY6DU81d5dLjNwoiwsF+nE5MKlsk9gKpXWMezdhhzWsP5uE8rdQVhkbI9Q+ALcnWQ7L1EDfoMtidQdABK0OwFJjXi+GyDYFxJNJz8GyXQAXPWsn1dF/T4QR7mg/yrYWvnZdr8gqeHlo/SdVqJML0VAcLZiW99MrhOlMHyoyfyNOuu+gfPECDldhj6kR1zdp8zqEUyrZpY3hMJBQqpxLF2loaEwR4yTAAMtVk2t7y4kWQ66VNWWlvLE2kTZi8tE3DjTFI6SCVOqXqbWHiQXYc+ijbjv7p8nvK8hEmJdlQIrSXyAnjYFlZZu1Tny+WSokAPbmP6Mj96MYspCFJJyYTGNSSNFx6HnvtcazuNK/fNcTF64rUlSFUGgQ4nkWhP8vghhKZvEtlJE9lKE//uiIXv3oz269ch7R6Y92+e8Z59JvnpnpimmoyBY9c0UOvqly62I3I+Cv3mxedqu4xJqLju7iZF7Y4aMoZrNTCyFMzbyr2GJNezES9ymyzwfqhS5lniNd6CxRVhYzJcUStzI/S6KkE67lCz9MNpLZw8EisGqldx+tGBNEC0lobWxBZzOHGNghQVhunXScTdnGShEanwfqyi5QRl210Gcy7bB3I8gtvuoD/9OYdy/v4mddu5X1v28nVN21hx8X93JTJsbV/jL6+HLafJfLL4Hk4nsXRaIhHki2EB2YIpw/hxZM0Ovdwy965nlBhVMP6FhRrkB/l/z6xnV2NRwhyfaR0wKQkziLKbmIn4Izlkfmzl/1SHs5T6M+SKWQwVgXbCinM1/E6Ic385fRf4DB6LKQQTGEpFzsp4XXyJH7KZbsTyuUawmrRcCrYOmKqfYITH3+AEWcf/WM5ysNZ5k+sbaXcV3D2cOihKe790n6OPDCx8maScFXmM7TzHq3BHGiz6nkhl6kUKy2gZecUokUtPT/TF1ml79OO5Pfu3cvf/d3f9Ta2bYIgIJ/P81u/9Vu8853vfE5ftr/4i7/g93//9ykUTl3NCoKAv/zLv+RP//RPn2HL84tmrAizvfQgkeng5WwOPTzD9quHlo1Ony9OdpnFE8cQxiJ2ZwGDlRYpdgXJkmn2Wnu6WZa3rJyJmodw0zpm3S78MCXM9dpkaRsVgrAttPCgFbGtNMDtUy18aWi3mwSyyAlxgA1U+Lwv6R79O/7mN96A49q84/2Xc/mbNwLwwFeOodI5gnbClz76KFsvH+SyN52qGFl9BRqzTYoFm8jrrR4lVhUrhnwzv0wfr/U1O5cQT0q/kBQodQKqOcGXP/5hKmPbKA4OcfmVb0WMH6ed2PRnQ46ZHFAHQKkOlomI0pSF3AZSp4FUWYQ2hF2FWnR5WzgI7gurUnSmcNZvwPb3I6TAGI2tJHHGIfUsRNyHFSbkOz7B+ggnTNGWIJ91aQxcTTR3J4NG8M/5Y/x27ho+mjg8Mt9A2AUco4mET2TleDSj2BUrRGTxar2BB1pNqhvhK8e+wvds/Z6nbZeJOwhlU7Cy1EwHIxRKBJTmTS8VN3v+SLfI6tIc9HG6NRzRC6r9MCE9FlJcX6ZLl24wRdGUEUaxS43hM0cp12FicQ7X3kYjiOkGNge+eQtB1EYJQcaAVw+h0UAt2QbsNhs56rgM+r179juLD/HNQ2P89w2vYdDbjJMp4IU1tOVSikNCO6E8kcORkkIzg3We0iIzpTLTR3sE4nwKmXAO1z1GqW7RHO0VwVk/PMKP50qY7CKOCHEGNCLbR9QyeAhcJ09a6q06izjFbjZ5fO801/+H9/UO8rmfJ401KorI0sCUt6DTlM5iLw+nOLKOdnUBKSW5vkHmD+1n7JKVlbrlIjFGY1UKJDkXW7ugCzjBLMcF7KTIcG7jWl22p8AvFOksLuDZHlFOEuV9rNhhg2lT1xLSiMVRRdeuYSUuTmwRORpL+4hEk7EKaG1w5dnrB7GJiFXEfDzz3F9+BWuGJE6X+7QWMSDJNDV9wQJOpoi7RBxvdEJmJwa54KI6KtWk+TZ61frvwuxz+Ly+lBBFOEGAg0DmioSqg4WPLW2CRBGqCLtdxko1MrDwophcPaTTsZETBRLZoOu0WUg1ekn1pC0bK1g7EuNcYH7v3TjeEHoVAWK0ZlPtywx1DlMrXkxmaApPNbBUyLeveQuLpTuwIgtMAScaxkiXPtteVVMTrAg8XScMA6xDt2Py/wZf1cAZwG6lZBp5hKoybHJ8glvY35xFdL+fon8ZF40UuLcVctPmPrIFjwuuHHtqw5dQ7MuSK/kE7RitNWE75u5/2YuXdbjijdvOWhyqEkXQilBC0O1b8dLO64C8XKR1LCSjQzLRqW1NdQfbcV8wwWRVyljJPAgwIkYYn1RpZFTmcLbKZbpIpFNUnHI8HWVnN2I4v55Qdfhq/Q6+4Vn8t9J71nTi2+7GTLotGtl5HKeCk/SumxMtYq3h9EAWCniqR6obkZDkyyRATqWIuE2QCoaKdexggZ+8+lV4uTzz7t/z/ttnUFrx7l3v5oaxG5b3d+GrRxneVuCibowxsOu661Hxj/L1//uHqChg9nCTyYaPJ1PQIIwhkTZddYA/+att9A9fy7W7T7C+f5qvfu1xxhfbPFq+jF2ZIjY5lIiwY5dslFJcLJBMtpFnKb0UoG+kwNThKq5nY1lDmMwiievgBQ1S2Yet5sjc/ihXXvBG7njDZrqFGqkLtZE2gzg4ModRPoHVh5PWcJKY9vFFxgYEaaLJFh3iZxRvvIIXO4J2RJoo5goZqpYgiWdo1Oep3vYIuVdfhrV5xbfdWAKBQBgbI1KU3SK1Glip38sAAtRS133Jk265XG7Zx210dJTDhw9z8cUXA7Cw8Mzm0c1mE2PMki9XC39VuoxSii996UsMvYDy1ucatSDEirs4aUikYjqtFMsS1OdaZPJPraD0VDx1tK/VphHkcU+ucMYdQiKiYri0xVqnl66Qh3JwM8VujsP9FUwnwXkSyaCrTcin4Htc1FfiI0dSfqhSBspEDcGOxTJGbuEfeYAHMxHpseMkhfWceHyRymiO+lyX4kCG1797F//4+/cTtGOibsLO60fwTxnoV6qXLk52mFvUZKyeZN5RfbTzx9CE5JreKd9/eeDUcwm9OnOuh9IO9X0Nus09hJ0t+N9XxndC2sYmSCVkBlgm3YJ5pJCUMx5hpowwFtL42MEEY0mGQ1YV6kehdH4m9nalQveeL5J949XIQk9x5bUihLFIow6tdT6uiXnikmOMzfbRaBdxbcnkhp/hgomvM29JRHMfQ94s//bCi1n30CfYM3gtd2UvIQ4iYuXwRWuIyzcdx5sdwNU+N1l9fGbyMH88+ye8ffPbnzZFfHF2GqFdLAFeewChbaRxQEaIjMQqrH01yZNw7R45nvgB1lyKnSg0AqMdLKVJo5BWKslaDiOJQhqb/7Px/+H7Ou9n/sjV2NLGAI12SKbZpN2t0RbQZyQmMXDH7ai0N8ZvZJB3ZF/PfHQcT+aZj2cIdR/H4wzZ7CbaxYvAKRB6BR6dvI1BeQG19b1pkBvZyOzZL87xfJAv9+H6PrbrMj57nIvK16JMjuxCHqcbgx2AV2CzY5OkgyxWGpjI8MbLJnjYpEjfpThTwu7EGAnKd9CeTz2X5bP/8k3e9b03QmUT/t7P0zYFMuEUi40K5XXrMVqTxjFhswHGkIYR3cUF0ihgZNduLGfpmgjR88s04LoOVhAS5UOEcdFWhzu+afOLu1LYeP5SycTSvSG1hVS9v7UlyKc2Wnhk4gBkiYGq4h5Zw44tolyCtgwDH/oaH/oJix+76Mf46W3vOmtt+sSxD6FRyxWtX8GLA+kq9ZU0bm9BMZ+n6gww3JmlnPXoGBeJQgLtSDLQp0iiEO2uxIPd8OVjiJ22WstBdsMrk7V71S4NCjdfI/SrpDJGaxcZFohcUPWQP9EJ6/IRGTvBrjr0OVCLFHS7uCLpFYTRGta4wv3ZQBrHxO0qMrOisDZGo8OQjGzhqhal8ChBbh0B68h0DzIz1GVBTdET5DfxOsO4RlITKVYnQmUcnEjjdhUnwlGmmzaLizOse8tWrM4xRup3cbh6NWILJL5PrqOR0uK4mmFAfplHDq2jL+fSLmf5lddsxrGe+7pe8tqeJcrBB6eYH68DEHZiDtw/yY6rx84K8aZSjdEpqUzR9kqq6KE2eGMFCpsV4OM8YJMajb2UbyVJ8Z8kbDgT2KV+rO5hAFKriRW72JZkXWkjx6s5qmKEgayPNXuQsijQF03xG8cu4r9srjIX1SmYDPfM3ce6zTtfcFueL6JAsVF2GepuBgGpVUdqD7ebonXnObc/W7AKHnarH6/VwglTSCMcLVAmpZgtUm+GlP1RDjaP8btjHfJb+vlPtz/Evuo+hBDMtGfYdXQXv3jlLzKUHcIbLFApZ5kfb2DJnk8aeLzrA7/JHX/7F9y793GkMIAkb7rcsuWt7J5+mGOZDdRkmd3TR3k8LvLG9YMcnthHJx6nXbqMWCg0CRYeCI/q0AxDx3spuGczo8N2LIzSREmKl3Vx1vmQCMJsGRNYqGIRf9dmZK2Ok1aQqY+V2sReTLGWwXI6CLdB17dJrRDLlnSG8ojJh5FyO425gHyfT7cdkz2LCr1XsDbQWmOAwHboOA7G3UTQSKhbQ1gxVEJFnLExS2OzEh10VyKWsrG13cGYnoqaVoKSLkhJbeI4QxfsxPHPnyXQapz2E/v666/nzjvvBODtb387v/Irv8Lv/M7v8J73vIfrr7/+Gbcrl8v09fUhhGDHjh1UKpXl18DAAO95z3t473vfe+Znco6xr+2h3Cxhto9CX5OoG9KYC5k6/PxSIZ4uvXRm6hhGrCgAlONT7qwUBVhrWKtIN2Vp7ETjLi4SFTzqQ7lTkh11N0UkEUSK3XYfbTWP0r3zqgmHAelyJetInQJfL0Cfu49OI+Y7/3KEr//Z43ztE4/ztU8+zjf/bh9jO8qouEeqffszB09p0/J1M4bGXI+MTPIrJstGKCwll9MGXk7ppVq6rE5F3uoMIr0q9dI8Vd8mjiJmDh9k8fg+6rFD2U8Zywc0F1f6T8aaYX25RN7zif1+nHQAaRz8Rm8FrpRdCkK84lqe2jLs4aWKj9++efmX87sJie9hckNs/Ow4QTFibkOdODzGsC8JEs187kKc7AXsjgK+a3E/M9FxMlHMyI5XcdHcfWzongAk3Vjxj/MVZrTGlOv40vBGs4UfMzsZ5wiPHX76SqaTJ9ooU4ScwbgutqogsCnMBZhAI85jeumyakiCGyZEBY9OySfpSvKiDxMruqmP6jyCBFwM6UOP8KqxG3D6b+XIQpe869JJJLVGb4I7JSDA9AozTE4jg6WUJsel5K1n0NtE0elnXj9GXWuOxDk8leIV++hmyhgMDzUn0KtMFqxUYp2n4Gdoy3biMKTbbDLXsjhQ3Qf5fuxYkWRdErfnoJbaDiK+EqFzWFnJzotDupuLULie5gUXkmYdVMYFpUiLWfTIOv7lrt/l7/7Hf+Vzt0/yncky+XiK0XLC+suuorJhM3G3g04T4m6H0V27GbnwYpIooLO4QHN2qkfKReGyl6fWGq8wQJIV2KqMpbP4oaJK2jOA9c+fMbCQsreyKDVyqUKgsSR+10UYQzefo1PpBTN/WbiXKFkKiFzN568bBGOYaE484/7PqE3ipELwFdLtxYRUnZryKIyNMD2COXR8UiWoNWLSNOHKksds3SGT0xT7CmTyK4qc2an6Wjb7nKI7M7n894KzoiaP6VLv/wraDkAqpFqJadwwpYmh1bbJ5j1qG9WS3QhE2SytTIlUOvASSzE9eb8GjQakIfGqaunh+H4m//IfWKcfIKOqKLPyWTM/wkLfCBgoTztk2xfhhFcTZfLkfR+V80BKkoyNG6T8y4nLmFpU2CrCas/QKWyjPnANmQuHUAyReJq4z2eT3c+FchOz9mHs4kNUOymPTzV5bPL0lJbbLhthw65BHM8GA4tTTcLOykJJ2InRSjO+b57xffOntW+ValBt6B465f3ZVkBmladbLiwuE24AcdqhMvrMSr3ni0y+jJ2eTCMxWEskb9Z1uWjXezhx+Vs5sOEKhop9HNZXkhczXOJ8jje0J1Fo6qLDffJwbwFqjRAHKYHTpFtoIrWHrcpIk8ELFEKsnUJU2BI3hagQ0+lrgO2RuC6hlwXLZUO5wLrCMHG8nm9NHeG+qYfYO38MbQS5zjt4aM+1/MN36nz50C0EccrX9j7Cd/Y3ONyFYx1I0pUZmZUvMlJOOdK/k339F1LcMsqQbPLp0X/D/eWrOJxZz0J8BHX4s9xz2z/TadS4s3Idk9kNDGQGkfTut14hhRC/4yJ8C3GWpYFjOwaIuinNhS5O31YyzSZx1qNV7qMzdDVO+wnad97CQJRHWyGJ3ybKQWkujzQZTDxMW/cRC2i5LgvNhEf39CHRdBox8yda1KfXjlh9BWcPxkBqCbqOgxEChEVm/U7yO67G33YZUd7FWaVktEwOx1vxP1RWB+2ECCEQRRflGdCaxtQEtfHj5+OUnhanTbp96EMf4rrrrgPgN3/zN3nTm97E3//937N582b+5E+eudz77bffzq233ooxhk9/+tPcdttty68777yTEydO8MEPfvDMz+QcoxGsBDj5QgYpDmMM1Ka7JPHzqdC3qiTA0lyhFTQAD0VAatVxw17q2vnyJ7PFCpGglrwyvMkJ3ChFO5Ioa6FkipEa7eYRaRekxjMOA/2PsGdmmlaYEGYr6KW2XxjnuC/jk934eRzfojUfUpvqET5CwPzxNq/9txcwuLGAZQv23TVDvLrKoFhRulXnXbRUOM6K5bgRKTKV6KX2vpxItyfjHZEglw5gLMMtO7KUSx4Cw/TehwhlSiOy8W2DHa8EFt1VIky9KujPtkImZUIl34JMH5Q2r+GZrMDu78dZvx7LV6jJf0DYMflqgNeJQVq4ySi5ho2VSg5fMUH4zXEIEkyquePqv6AlLK6MI35T30qZDoXBzeTyea5pPMio6hHiDSX54IELqGVi8FIio7jKrMMG/u4fv/K07ZqaUASZKoGXYKVlDDEGhb9keHu2DGbPBM4qctxrNHC6CdqWRFmHcCIkmy8jUMy4wxyWmlRI8p1FfvHCn+eijREn2seYa3cxCNJsb/XcCDgue2dpMGxqdbB9n+K6DSjPJ9URc8ER5s13KGz+OHeqh7kch1quHyfuEjf3s1/a+NYqIiROsErnpwrhxsuvoG9sPZZtU6s2MCiUSE+tYHpSiSB8+hfexfYHr6Rx5HL8YCsGhVlaZnC6MZVqC6fbIzirO3PcFt3P8cPj3LWwmTuqO/Brj2O7HvnBIdzsyn3mFYoUhkeWV9me+OoXuOvP/phH/uUzPYkboJXCdnOnKLespqaolxQ/3vkponASUlpoqZY9pQBMIKi0D+JEEd2KjwEunQOnYeN1HKxUcsT5BQySvbW9z7r/yT0PM7nn4efdHrFK/fwKXjyI01PjICdycbsCN4lIpY27VHnRaM3lRQ8vXTWOeSvP7Vi9tIsErIYOQ9IkoWtA5DcRpYrFTsBibYWMk0mRLX9ziO337uGiWw9jjiywiEbplfC8rlsItXL/KWkRLMyt6bm8UOy7d5y7/vkJHv3GPiwDib3qGRo2eEf/R5d9bPWqWLSdv4rB+R9ncPZHGakv4qYCgUVq26hVVUOdIMZtB/hWb/x1XBenehQ/mCXMjOLOHsRa5X32QfUGfjj7JvpFHr/0IJbdxGD4wGf3nNZ5SUuyYecgYxf0Y7s98rhd643dWhsevOUQ3/nCPsb3zzO+f/7U+PY5oBINRqGtlWuVJgmL3Rh/laebH2ZIVheqsjXl4ZHTOo+ng58v4Hd6Y7phRYEqhCBRCaiUdqbIopa8bf0gh5MxIpPjVxvz7Ag3UBBZDohJapNnd+Hl2SBjQ2R3ydnl5Uq3AE4IdmZtnxl52TuekeEp3oVSK4zRfM9F6/nd776O/uKbCKvbudb6Hdr7fpvZ8WtQnR3EC2/jtz7b4nP3TOOk6zHGoI0iNvDZe6f5mb+4j0/ecYR/irfywcov8IX8G/lq/nV8Qr+Gb+vdZAjwTIQvYh7uu4KmXWDKHeJobhsL3iADnkYuz7FiEnuCTMvBSx2ckbNvOVMZypMr9+KZmWMhfhDhtyIQglr5GgYu6pDWFhkME/xwCKE8qmNN1h3sx1qKLSOVpSQcpDHU8z6P7Blm+mgH25VYjmRh4hVft5ciVKLBFmgMmbBFJu5gpzH9Wy9FLsXAljKnPAcznRUFrba6oFaeG055hSfQ6sWTdnxacg2lFBMTE1x66aVAL9X0Yx/72PPa9sYbbwTg6NGjbNy48SXnvWXUcabnN7M9KzB+jj5ZZVGD7djMHK2yYeezV8RZfb4nJwvKlkhySByUSckvdpnoa9Ho6zH1a00g5ewCwyGoWJC0x0kXHOzhMi2v103SjEum23vQq06Km8age3bgb960gSANqbaaGM/h8RhcK+W75S5a8QJfzKVc5sQkoYXoiSewXQsvYzOxr8ZFrxnl0dsn0Mpw61/s5aZ/f8nSNVi6ZgY8L2FOtuljFZO0pHRLnd5N9VLrV8+GJ5/KVQsHqawbwCTDOMUODVFgZCCkuvceNm2+nm7LJVI2mYFkKbkURFGyL1ygmt+JMIJUVjHEZFqaIe2QjmTAy0KmvMZn14MsFEhmZiBN0bP3Y134XWSjAoljgdHU3/yjlOe/STcbkvgpqr5I65BLdiSHa9U5su5drJv+HP3pPMfGx8kPbqV/w1bk1AQX1x5nrv+1KODORol721t4a65KIlMWw4Q3pFezf/A+vv3pg7z6By44pV31GgT+MbQ3iNQ+cqn2lidTnPU5rPL5Ux+VnQqtEyk6cpFCkCylcKY5jQphcHQLpenPUXW3smjlyAqHPjzEAwfZ3F9ivFGlk3TQLUVb9rGdI+CN0oirVIkZNJq8kVzdiZk9vgcu2IEVtkl1jUC1GHEV/6vo84STJxs0CFWbR5Pj5NJNFG2YXWqnjY9TPj9VqSsjYwxt2oJJUqKgS7teJXFG8DINKnMtgrJHaNtAz5hVGk1z5EK2YrA0GFJAYqUCYwsGFhYxiY1uxbxt5H18Ze63uX5gI2ltisOdQcLDMd/18xejjKA4up6gXkVaFsXhUaRtMbh9J93aIs3ZGYzWqDjqVfOVoIXCyeSJhSK2ZkEYukGLnZ0ZGLkUCudHhXoSwpJoqZFqZdKQHH4AcVGBpNi7D5Qj2TYnkFgEud4C1UC2Qy0eohk16SZdss6pBKzRmoc/9yniMOipWMY2kOt7bqsG+Qrp9qJEmp4a2CoXlJcjVh4dLZYnd1orduZdvpGuqJk8Vyz7yYbqxeXB8oIQxwT5Cg+vu+z/Y++9wyzLqvPu394nn5vrVq6u7q7OYXpyZBLDkAQiSSCQZEsoW5aRLBvpkyzLQjafkoNkbD0KllFAGRGEyKABhoHJOXWs7q6uHG6+9+S9vz9udVf3AJOnG/h4n6eemblzzzn7nLvP3mu9a613UcoNYhoGhpPQyt3H6aeVWzAY/Mpd2LdcR67jkANaQnPAvAV3xUCLlFg/TpJsOBuRTBHdb62MjiRav2MVY5o5Qg1SpZAmqMXDFB2FQqJND0YuOnOcRp3JxJmYWyV2NtHJQWadS7olno0baMZ9k9yAz+De1+OVxoniGlbawWaJWnMY26lgxh1CM+S6wON69zICO+SfW7P0wlEaPYd/uH+Wt16x6Tndn19w8As27XrAkQfmOfLAPIYlMW2JyhSn+4w8cvs0l7x8G5b9zO6XRuP5BkFgIOIQbbuYlkWQZAShQXiiQ15ZaDNExTa9JCXMYmTJ5trv+xfPafxfD26+gDYyolyCoWq4tRKxX8QyDCzDQkQBdthh3vTRzXmOe9cwlgHSYGvcwiyP0YyarKgGJ++7iy1XfuNqqBcLYTdmye5SNAcR6w3CNJq0l+LY5zc71IkcKgvrNlDvCKYxBQakloVkI/tTAyIrcuOW3dx2+HbectHFXDJewTENlL6MOM1oZ/1GQo4lsfDItGaxEfHfPnOIkaLDJrNFLTWJsWmLHFWamEIzImrkCJjXA3TzQxTDNl+tXk/Rkmzxe4TxCrZdBAIyMyIoxtgtE+29+E2wLMekOlYgiVJUppEoZBwhfJPDu9/BSnkbe+f/LUt/+vsUf/FWmjojMxKOXTXGjidOMectk8oYyzAotSMCyySn2oQWpOtdhruNb6P94/8HOPLAHN1mSBwmJL5JtbOKVBmZkLhCEvlFTrcgk0qhDYlGo2QHKxkhSRRuNkBmd0Bu2CCpaQM9tlf2UTiliFYOY126GVm4sEHs50S6GYbBq1/9ap588knK5fLzuuCWLRvtfA8cOMAnP/lJJicnn+aIbw7cGucRloUFmIbmqklJi2WWOlXC3nONzPYX2k63jVA1pOWgRExq+RR6DifXnZavYV1eYiidseQCrmbr0ChmbwCndQKv0cZIDRJbkhkpytOkVq6ffkwMpRKjWcQD9ZRtBYtWGKHHtqHmjpF3cyRaE5g2XuGzYL0ZlWmufdM27v3ECXIlm+ZywE3fv5sj9y6DBGkIHvzsDJe9ejNnNN20BkwCu0XO2hCU1SLDSCXCdxiwXDx5YTJrXgqIc5xKwZASOGoZrYboGoJOENOVAjfOcCshomeDgIoTsLB+lCstAlJUcZRUZGD06+YTM+WojLmhrCBsQX7sAtxhnyQ1SiWytTWSbkp1Yo10Lt8PUAqJNi0S43owl3DDOsZATDLXgakS2iizuPkH8Jc+xg+264TZR7nYH+TLjRZZkLFPSu5UEV3pkCh4z6NVbrhkhVxqE8oOE4nFtAr49MynmToyyPjO/rzSShEEEmVGGLGBFW+QHkZTkbTCC6rpluiE2pAJKDYdD/BrAYKMKO+jVzuUnRHCgs1iWkKrmEVhkpcm9twJnLKkru6laN9Alimy/DDL5ddi6xTiLkFS48a5g1j09caEUwZtYVlVjO4xJsjx1vQiXAySXJFYBSxZsNQ5hpPtpyE31kKZSezKhSHdADbtv5i5g09iOTbN1RWyqiZrFdCZwMo0ylDEwsBUIanhIpTCkAbQ7xytiWC9q6KpE7ShSCyNn0kGdt7CQ1csc/yBRTpeiiMEf/7BN6ILFUpOiZ+afCtVu3qGRJq65nrmHn2INI7p1lZJo5jT9fqZTLGijMyzMNUISkRkiYvpurC4CFu2XpDndxpSGmRGgt1tkKsJICNRimLrEIGxC5HaxI5B3s0Igo0ywaIJwfybye/8G/7qyb/iJy7+iXPOG7b7Oq9pGCGk4NhXvsiB7/6epw2cHL1/maykwYRuM+T2Ow7TWukh5LdPsOV8IU0UcS+lPOpzxWu3MjD2wjIbsuQp0WRtINT6Ounl2Dsyjtp2BbNTO9HFElfpl5EsLjIv7sUwN7J2gvRbu0nA2dBhRM/yWS2OnDG2M6NNelZXZ+kqtu4/zBJNQtdiNXLouU3ysgIZZKJHZm6Ud/cPykFnlSzJmDu2RtiJCdoRlmOy88pNWPa5AvpLJ+uE3QTQlAZzlIfP77rcqvVIogytYvJqmgm/yZ1eCSVNMCVe2qJoBWRWGcu1Gd5/FQO2SRJ2aKfrTpLqEnuDlLpHEVlGTxWolzb2YbcdELeO0U3KzDXmGbqsSmliG6fWlnCj1b6tYZqEfp3YhzAvUfM93m1dxmeMo3xl4E46M++gJ2P+9p4ZhgsON+16+mD62ciXPaIgPcdqyxKFNATV8RKr8y10pomDlDhMnxXpFgcp7SAhqEyhz9I9HBRrbBru4ubz6A6YkY9pAAb4ls1cFJGrDHzjEz9L2J6Hkazb4DJDFypYQJopoizBFQIrScAv0qudQnU8MOtIK8+IzvGkzvAzi2Pd44yeGjwvpJsVKWy3w2A6iCIgsSI0imJm459ne8SyHVqDPTJLkV++Dz/ZAYbsZxGoFGR/DkghsKSknWl+/OpL2J5zsS0DhERpTUiGYxisdhXtZsD2qkMYK7ZW8hxb7bDUirgoL/ke4yB/vHYR5rpx8aPlh9ifPs57Om8mb0YcrexESpMSMWTL7PMSXPv0HHfQcn79GZrI6ksjobJp1xDdVkR9qY2ULmas++WEWhLkN2HlMtwT04y2X05tKEYql9hp8NZgG3GQ8FUR0srfiRe4KJ2Qs5u0DDaaAPa+ebKavoNnRmO5SxKlWGmAzBVIDAtHZYiwS5QfQAmJ7LaxlI3VS6ECoDFUX7PSNmwyqwFKIFMTZfZ//9MdvgtOuR8870ToXgzfSqQbwEUXXcT09DRTU1Mv+OInTpwg+RbRpXiZGuKRbsTo+Ci5qE1xcgej9TUOn1yjucVHa/20zsJTs9ZUlhE7BgU5AhnE1jJWrCiFNp1K8HWPealxdoe51O4v2naYEJT7k7u82MXITERHESQWhXodPTIKvZjtzjjvO/U437VrO5BjqRXzMu8kdjLBcd9iVQXcsvsoP/z26wHQSnPHB4/Sa0ZIQ6K15i3//nL+5j/fzeLRJvOH66wttOldE9NPMtJEkWCtVOMi+5Yz49T0y0s9N8+AP86gM3K+HtdLjqc0L8VI20xGcCy3QhZpTpTG8Zeb4EyQXvW9pEt3Mmo0cIwNB2ZTVmKXGOAruSEM8sjEplm6nUK7gNYSszsPhgNehQsFo1gka7WQQpOfOEJnejNXfvwop/b4LO6ZBCwsVSSxajjbjvFj/+ZavvxEjdWWTertYpMsMhWv0OIuBhYD3lyC/730MoQKeXvzk7x/4C1oNCtK8JnFMm/zY3ZS5WYz4c+Nu1iy5mh9bpUf9d/KJRMHWHn0ICf1MjJnUxtr46QKJRKkts6U2F3QRgpnvaciC+kNeIg4ZnW4SGW+S3SyRWXmHxkphcwVb6YHqDTASxMmRJ5P2h/hfz5Q4gd3/xC7h/NorYkB3BJZlOch/xRX9cK+VL1dRBmCzDS5stPjXxVeT69ewUfwWdei5eUYMorksxrz0RCjfsBp1RojkzgDFy5L6+JbX8uX//rPSKOYoh2RxMvYjLDz/hlyUwVmt1VYthxapo/MUnJxh6OrPbwtNQwvI/AOM7j6NpTKODqxhX1fnefh126nyC5uCAqUZz7La0s38THjSb5qnGI+moVolryV58SW13DpzlvPGc/EgUuZOHAph7/0eVaOHkKcjnIbGVG+gpbrpUSyRyeSbCquGwcXqAPsafR13UCIHN2BPjHTLu2kNrKfrl8GIPEsSlZGHBigwIoMyrZPHHs0evB3B/+W11rXEK6toZKEwsgYQgiCZgPo7wdBs0FzfpbyxNcPwi0eb3LysVXSqxTChDhMefQLs1SHwDG/fYia84UgkNQbNssn2wyO+wyMvTCbLs3OzYwQysRIDLQJqTQpDk2QbL+RZF2HxQc0W1ClQ5SaeURdYiiTOPn2KC/VSqEbdRLzXDIzI0CmCcq0QGvGa7dRKLdphEVkmmMQjWFsNBUztM+d3Tu4Ot23cQ5pouqrLM3UWTpRJ4n6e75hJoTdGMveEI0OuzErp5q01tY7KWp9Xkm3bjNk+USdqJdA1mPYXaIiM5RcJx/Q3Nz6v5huwuJbvszYvn6GWfjgKr30LAdJOPTccbQQtItfWzoZFjxKYpKCdQIA06tSyZkc6Q6TWDlKSZN8qullFkZSZjrX5EpnkGLQ4mo1Ttm/Hab+nuWjP8Kjcw1uO7j8nEg30za44lU7mTm4TKvWo7XSf962a7Lz8gkcz2L28CpCChaOrbF5zzC29/SNhtI4I7E90tzGOLJMcSwo4jj9EmUjAC0V4qxyZGuo9DXnej4QQmCsu2hK9s58bkhBzujvS7HtEqseQ7XjbGrWWE0L7LUOc23g8oFomIL0mKfB+UhMzpSGRNMzAwZyW7CyQURmkBoNzFRiD57foLx0BVZkkFmKJCcQ9fX8bCHAsBBwpsEgQMk1KXsVDGlBGtHJWtTSZSr2KI45wNRAmU6UopRmIOfw1ssm2T7Wv6eff9Uu+Kvv4991//vGAP7tHDh5PvP71/If567hL7NXQ6YBwS3iAX6gWONxXo3AWRcW6fueVmIhvZdOt9jxLFSqiQs2Wx6Z45SepDGWR0iIxyYwj0xTXlKkm9qILCbyu2xzh/l52lyuU6Yq1zNoFzGUwnMbGBXF9Gx//jdXAqJegnOBmnh9B88Nel1mxRUhNaNCz8lRnXmI+doqzqXb1r+koR1TWOvRHvJJ7NMyBCFCeWjZBqlR65luOkwJs4DU1BhJD0wXoRX6qYHBC4DnrOn23ve+l3e/+918/OMfZ2FhgVardc7ftysqU1WeONKkk7bpukUemrgE34YtxhqH71yh03z2Hbc0mjQK0ZZ3zqdmokikIrX7BtT5Jt0scZZuxHq5phVsGMCJa5KJrJ8FErk051xII0gy9uotSP8Inz3U127oDEywUhhhu+lyWTrIimnw9+1D6Gz93qRg8/4BlNLMH2nQqfedptf/64vZemCQXivh0J1LdGv9VGEtIDM0R/wFbGPjuZ1upGBaFra8cETIS4Kv8/P/cLNNWUsMZ5WHpkJC6dBamOPDv/3rPLDwJIlSOGcJ6m6WJdreIF1/AKltMhGQWCuYiUHPSPrRtsLYec+qPBvWpk2QJCRrPXSS4Vb7BYpjxyKcuz+P6NTQaKxsgGaqUElGtWCtD9ni9pFrkcAAAUoLOnKSfZUeUmic1grjySLQl/d4z9IwD8cGAsEVepw3tG8gsDrclvswP3/bv0GlKXd97m4+vPtP8LMhYi/BTCtIbSGTDKuXIisOwnzOS+eL97zOek/NsMnE4ytow6A9nOPEniGCQy20BjdZAa0ATVtKTBTXhj45kScr38bxtTrdKOkHC4QANJlbYn7sSqZFX5WxaQ+TrTuHxZEDsDqAlwmWjZRWcQu+UaQVzTMaF7i7EWHLDcs66izj5C5c5qkQgmu/5x0IQ3Jqvs1qax7QkJoQL2KqBtXaNP5j96CkQdsrM2opwixDyRhlBhhBX28kKfvM7amy4555pIaB3CYGJ9/I6/QO/iD9bm44UmTPdA4zhU7S4U8f/9NvKPQ/dfX1TF5+NXI9yo2UYFlI7SAwUDKkHgjGT3NtF1jTTRgGSqbniNgeuWQLDX+j+2DsmbhWStTsG0OJl1HyMlA50mCSpWCZk0/8CZW1L2Gv3M//uet9/M39v8N4oQ1oDMsmjUIOf+nz5zgh0HdK0jjjQ79zPwfvXDwT3DLMjLFqjby1hm2l3/l7jn+WsRHwTFZnXvA8SdW5Bq0VWRhp/3dMDJN/3vNqIicPWYIbNvqBSgRmViFn+2ipSM2YmG8P0i3qdujNzhAb59oloW71CTfg1i/+Azfc/WmEBLmuRxMIhf+UTDXTVmTJRtlUgkGyssyJx5bPEG7QF94POus20/p7dOSBuTOEG0C7FmyUtT3lXXspcOSBOZZPrQvpqxQ0BKrSz3ITAuIermlw3H0z5c0bZKNnP2WPFSaLI7fiBN9AFFtrhNJ4ZoHiwAibL9pEvuTiRAGZ4VMbvBbt7mZo5fupNF6FOVbijk1XooDths17o1fTNY5gWRFRqvnCwaWvf51ngGkalKo5rnztLq57414uubnvOE7sHOTq79oFWrM80+TIg/PPeK40ydDqXI2qMMkwDYVl9X83O7IQSp7zOzrjz54sfCaIda3G1Kwj4/7cWmmHfHl6Q1Owabj4tsNUdZjFbj+7e18Uk4tztAl4UszQq6+hsmejf/380YlSylqyVDpM3h45U16qjB460Zjl8xsENEo2Vth/1xMnZfcdpzCfogEuhEDTT9ropt0+4QZg2OTtKptz+8mbA2f2vYJrrb8bmno3pdSqU3DW14vv/l14xa/BtlfAjb8A9jrh/4N/z+ZX/WteNtDmRn+Oa+zjXG4c4f5LvhdB39DQJMTOKqWlHEYsXtLO8xM7B7n8ldspD+cIKz6F1R4y0/TyWzh59U+x5ZVrDE5/CjMz0UZEr7DM8rDDCJK3U2Q3F5E38ozkd1C2rmHTWUvY7ME6M088uwaH38GFhVKKNOm/D9px6Dk5jCxBrMwQdhvnfNcOUhLXIrMNNAkgMLSPmZ7Fo6QupP1Gd72JDvdPzeMsPYI7dw/O/H0QXXjb4jlT2a973esAeOMb33iuTtl6plf2HBbVG2+8Ec/75mjj+kxYmirx5lyeg2tHuXhgEz2nQMfJU/AyuksJf//e+/jR/3rjN8x2eyqBlkQhw0mD0/F5mWZkvZC5wc4ZsuV80yCW3FhkT2e6Wb0Ef7mBcj1SSyKFJHFjzNgi7JQpxD3wHYazMpdtsVleOcVio0jZc1iw8+QywY3ZJIflAidMydzCvWza1E8xn7p4kKAV02lEPPDpGW7+gd0UBz12XzuK5RgsnWzSNfpFlkLAXE4RVmoESRPP8EjNLm7DIBeZXD/yXZilC5sR8mLDEf0o8GksTf4Iu1b/ml1xxEquyny5y8NDt7Kj/hisrXCkvkaxuhuDDcM1zjTzo7shi0mtEGWEKKPLTJJg5NcNcfuFt5Z/ITDOam0fBx52dZU08KFXpvrEGrXco/QuugYN9AYv5xMPrJJpGMibxJlmZcdPI0/9EwCRytFMBxjOOexIW8x2XfY3HqM7NEAXmxTJnzeK/JeRBp7IeHtllNujIlmaEcqE93zo+/hcaZl8b4BWOsZ4awiZ2WSiTr7pIAHjJYwAPhucTS4rK2VgqUt9UBFVB6lPFIieXKGTvR43exLWCdi26RKligOqyBY5ScNtcs/cp4k7L2Pnpgm25V0KRkhqe6jcEI/ufyOPCoOx9qn+hYRg4MSTUCgggIFt2+lFgig4RYkaB9TNjJgCzLMc7zTFMC/ssxrdvovhrdvoNuqsJSlbrPVVNasz1Vmmd6pD+NAJsp37yQyT0azFk+o4A7l+AGmm2UCHOcYKDmtbSkwcrFFot+jlczS9EsdzEwx1V3lP5dV87OGv4AtobytSj1vcNnMbt2659WvGZHkemy+7CuvU/cRZG1OVIEnBWhealwmN2GS8WoCJQSheYE03KcmMhPJih/aQR5i3iXIbc9CIU1LHoFrI80TQPRPKq/op5bRNu/ZyvNIT/MfeV/lebyt/Fx4nMlJUBj9dGiefkzSLF9FZW6a7tsKdf/qH5KqDXPKmtwHwd++9F8OSDE7mqQz7zEiDjBQhNdsmVrj0QLMfOPgOnhPmTqZ89FP97LY0fuHESxQpWDfnFCkjJ6oYNAgqPoHjnwns2CpltL3MCbfcP65bQOiNvTvRF94wfjGQxhG2hlqakfXqNLTL4doCWyqHMdelC/0oRGq9nvDVf3iRUNiGSayiM1nNSdGj017DrVfBlITKoCQTDEtiOyZewaa20Cdn9Lr2YtRLeORL00hTYrtGv7xTQ68Vcuc/PbkuJAVe3uGyV2x/SZ6B1hqVKUxbkGVguRpSTVNtaDeKJCARRQJjHG+923WiYmb1A9jGVoysbx+YYQ0vXkZ28niNDkHB75fqrUOmGd1kEVtr8jKH49jkii4DvsNykpAJiUwDlNnXqHSiTSSmTahaRKLEJWKIXDyKzh1lp3cdp2o9Gr2Ysv/cgrnjO87VpTSsPiFimBKtz2oYEjxzlY8QAqRERL1+eamQxGnC1vwq7abA77QorGx0KW2mChF38MdevIoPGSiKKz5KpphBG1Mryq5JlNR5dF6wp+zQsnPMNmqUPR8jt4euNUc+brA1HGBVFFk06ygUca+L+xJqlHbjhAHDoGs3KRtDKGJSq0liLJEpE6Nyfis6ZLFAeTmPAGInxe51KS23qI8VUYZEZimr0Sxd3aHqbqVoF1FZjERgpBHoFEelxMJAI8k8H7CwpMmTra+w07mIkZFxXtd5DNgOpQm46d/B6SYlp/3R8mZ+8hb4yVt28ydfnobuKsGp/4sdTvYJPw1axritEL/lIhAvaaabZRtYtsGOS8eZq8WII02KS206VYulgRsJdJVq+5Pkouto2y6Z2aA7YHEcxSwKyznFnkZGZlWIdICIE6CfvesVLFZOttl55bdP1dO3K6JegmH2ffxMCApBi1RlHJ1+Ajl8lqamEFTn27TWM1W1kSKy/tz2u5rYAQSY2qc43aS2u79vNqweMRnOaW3Hbo8Ljef8Vn3hC1940S7+yU9+8kU710uNTClkGNLoxfRKIZUMjmuLnBliWAK/aHPvJ45z9Xdve8ZzaTRZFGEiScUiWtooIfC1JEk2jIjz3RTAkR4jWQEVdCBdI13tYHXb9IbLAJiZIsnFaEuD0hhakUQmFhqrnGcsaXHvbAdLQicIqVt55hODCaOKoQWDCp584oNnSLetFw/y0OdP4Zdsgs6Gob3t0iG2XTrEQ5+f4bHSE3TpCwaf8lNKlom33r3UVDatakA24yOsC5d59FLh7KwhgGT0auyVv2Y00dTCFonZ4eBlf8NCx+VNd46AzjhOg216kNOeb11UyYQEaWEqG6UUAwsFdsY+J3IRVLZD8YW3ln8hsHfswLvySgSgRBVnsEVnRgKKcmEr8iN/yPRl+4AMKxkm1X1bQgO+Y6ANuHPbjzA48w9EbOK+3q9jFzzy/BkEM+xLTzCtryCTDj2teSjzWc46jFmCi+QYPxq8hQ85n8VSJl9oLzGaDnIqFYx5KakjSKhjpAXcOMHelMcav3A6ZQCe9Cn3yrAwS5as4C11KVo+9ct8wGZ1cwn38BsoxEcYip6g5WyjpW1WJFSlT1lLMiNP6M8yV6uz2gyZzhV52x6bxHJBKxQCU8e0vA0D2fQ96AawfQfRpVdReGiNAmUmkoC7umtsdQw0moG5AmhFa/6eC/aMTmN4ahuCvi7ZanMNBvufZ3GBtHmYtX+6A39kkmYU4OgEbI8BYxDVtUFoHmguUzGrDDoVPK2JciZbpo9zbO82QuFyaHQPnZnD7B7qMFYusj9M+Wo7oFSs8r4H38eVo1dScr5+qY9KNQiQKkeuFdFd11DRIsFeWWHi8irEfc3MCwkpJbGRQloHPYgZJsS2gTb6DmFmm0S+xYApMNuruAvDiFRQFym5JCWJIR+59JyYz4bzpFqRopkwfP6qc5zvlnmq23YQtGoIo28cpUnCx//3wywca6AVjG4vEQcpw1uLLPkWvSzCdTP27OtSC30WuhWENJ7hTr6DsxF362f+Pey9cPHpKMjOkG4Sk9Jamfp4jsg9zcQpUCnji0fYsfYoNcNgdThPzjSpnkWexN8upFsUQZrRMW0Mv0IVePjBWTb5K5isv9PL/Xtdi38WSFEC5u2YnO2eIdxS2WJmM+w90Sas9J9lvFrCSDOGNpVwfRvLMc+Qbmq9XKfTCPAKLnEQI00DyzYRpqTXCvv7pwYpBUL0M+SMFzl7O0syHvvqyXUtOSgP5yiXKpgzOQ7KPWe+p5sL3NH6EXI7X8f+9c9OBtMUHI+oC4oYmSpSd4CWO8CgWiP4Og16ZAZ5axRXlsmtHDlDfuWloi5MzKhLagggRkuJE08S1E6yYEnGk4BVARcxzP1mjGlk7B4t8OhskxufQ4npM0EIQWkoh0r1mU6nT4deOyIzLLSzkTHelU1ueGWbQklDqYBaUcQOyEBTMiWpttHlFy872nQcWkP9taK8EuGIAk6WcWR+hbG9eZqRTSnrEdhF4jDAtmyEIWnpMTYLg57yGbI9HjaXuKjZeElJtyBWxGnIQG+YEWuMzGwjlYXfMsmSAKN6foMz1mgVtdSlNdh39gM1TbFRIag6pJ6LZUmOnvhbBivXYro7yHSMpRKsJMTtLbEpW6MapUx3GrQGdhDrMQIdUJMZJiYr2SJGJvj18F7WPv1RsGwylbEWruFbPq988q/4wb0/eM6YfvzGbSx1c/zOV7+HsX6BKwCZ2aZdbVJa7c/3l5J0Ow3bs8hNleGBFRCS1O3P8547jtUJcMIGHWsYkXlEuRr/yjlGTMrm4oP8pwfnKe75eTzDRScthrfmaSwGCENw4rE1tl4yyPiO8kt+D9/B80evGeIXXeIgIRAO7XV/o+wECM/AikMyTMxYYXcTZCXDX23QKXZJ7RCtFUq4ZzKUrHiYfbM1HqmkSCyq4dgZwk1Ji+aRQ1T2bb6gyQDP+cqnu5C+EMzPz3PHHXewvLyMUufqgPzsz/7sCz7/SwFtmZjCIFYS2y5iRwGpX8HvncRKQoKWYG2uw9KJFiNbv3ZTOYdA05AmEbE7hKlH1zXdlojjlG7u7OjX+dZ0s1ky2pAHr5LHHJwCaeB0ItAg4wyRCWLdw4otpBWT1RPMShnWukwYQ9zlPYpl34yhFc1Us19ktPUobUOxOUk5sbDhiNuuSZpkfaNMQxKfKy576Ss3c2Rac7pH15JzlLJ5rjGhRYoVmQjz209I29BnvxuCR7zthBPfzy+e/ANunBxAoxASpjZdh/qBHwWzw+PH/zd7hQWsa7z4eVJhgAYlO8R2g06hy4oS+LkAWqdg7PILcn+nIT2P4L77AEhfdQVeIcKpdElnStjSpzzyemSaIXV+XQdLg8owanOsOBPk7Cnum3wzDxhLDNZKvM3vcfW7b+axv7ubEx87iW8EFMMVZtwySggWYoN7ujZvzHfpZCk/sG0bHz5lsmI0CETCrLVEsX0dhp1hpWM4cb+Mzm6sEs92LjjpZkiTht+A7XmG14oIbxOjK9Ms+j5elBLZJqkepBf+ABNrv8/K2M8BKTWlcLVmPDF5Qp1goNBkelmSzwSOlbHWDvCK9ro3ZoJKiA0bL2sT42ONjxKZEyxP7WPmRAuDFJnFyKzBWuIhUkjtDrWJNgDFC6xFBmC7HiPbd/HIP38aC4de1sbzcyR6BNuqkJ76C5w0oVfss3Fx2KZiL1LPrQKQBA4Nmce0LEQ7omuG2J+5DTNbJLn8tSgNslrEWbSo2CbleZeBquLR9hyWYfH2j7+dqlvll67+JQ4MHThnbFmiwQY3rtKtbug+yVRxxBhgLO2BMMG6sNokdq6AKiq8mTy77lrg4ddM9Vlv2XfSRarQlma0UMZZOElnXWMm3xU0rDK5MGC1ux/Huo+Tuk3JKBNkTU5mXf62tsLI3A7U8QUGJi4i7D1CEkYURJ6FYzXioO8QBK2Yt//HqwF4/FR/re+pjM+tLPOBWp1TfPkCPJlvbRhKU97dn1uf04o//L9/9YLO5yqbtwxszHFlCMzkbPF/icYkkRZuGNAtTiCyGGFEODaEy69A2k2Cl7jc8XwhaTYwpex3B19HIxqgpFuIGUXmWqx+wWP8Zgj1LYCF0JocGY65QciYqsho6SIa20unOU262iVNNNt2eeCWWZ3fkHY5bVOHnZgszUjijN1XjbEy26S+3F73sQXSAMOQGKYk7ETkys+u6mRltkFzpUtztUe/MUOe6niBysi5GfOtekCv1a/lEALcnE3UbiFSTZDzESoDrXGWHmFGX8Hl1Y3rzwczrOgFynoKkSo4qwrDSFLMXkTqWmfWIOCMRqYhbezIRscxwrbJuSaluRoZMUs1k3S7whLlvjRJ3qHb8shlKceyjItth7vECocWO+wYLnJ0pfOikm7Q16LstaJnbP6itSaJU7Rz7u+SmDUGK9HpL+F2TGSiz3QHzrIIN/fijVmd/Q7riI6QuGaM55boxjA42ieQB1YrZLWIlp3nxFKPLYUGb6prPrspYTgsc9JfpLOyTGXT5hdtbE9FEGd07RbzpeMoIbHSPvEa5B7FwMJ4ng0Any/MShH3SAm3nWCFkJR8RmbrbE7WmLtkJ7KS483BTrr+AHVhAQqpFOXjX6Q4Os7uN3wv+k//hGMovLXDKCEwqjsZ1gIHF88ZoJ2s4FhjdHqPg++TqpQna0/iGR4L3QUeWXmE377pt88Z16eOf4pJ6zIEEhCIpIey78BrWziRxKg4yPz5sTuG9gwS9Q7iNyK6ZQfRmiMsT1DuHMLrLJOVfYy0RJCf5eIdZRK6LC+VWQ6/RDVexpIOytAsTS8gZIE4ykjCjHs+Ns3r/vXF2O6Frbb4Dr4xgk5MliqiRNHzN/yFxaUao0OaeL15TGaDnUb0Rir0vHxf3zuZAAFZvATZLEgBWjBEmfZgAy01pYZJS0cUhYNUCTKKUNmFrcB5Xlf+8pe/zB/90R8xPT3NBz/4QSYmJvjABz7A1NQUN9xww9Me+2d/9mf81E/9FLZtU61WzyGjhBDftKQbjonh53CXKpjSput7iGGTA43jvGJvk88+AtMPJgSdhNf91MW4z7BgJWGIMDe+I7SkGKcs+xvlWedb082RG4RW6vU3demWkRkEJYfYtzB7NonTRWqDJPYx2l1Ovyrv2vPTHBG/zky9yeWToySpi1MociDQ2NrlkBOj0jo/koaY6+TZ6LYST35lgV4zYvlEm4ldG+nfYadD2G5yOii86D5GNXfuM9Eiw47MC6qx9VLBjs/NPshyeQ5u+1GGV77A3Sfu5+0TY/Tye3jT6M9jCAutB7hjQPOH6aNczT5QJqt5i3i9lkXqPJl5Ajs0GUUSFlYgiyE3/PUuf95gjZxVDrsWIicSytsfJVgaxApdjMH9ZCxjMnqGh9bCZC31KeUz6rHBhLub1vDbeKT3V9iNNtRq7H3t28jf/z/40KkDXLd4G4c2byUxbJSC31wrMmGk3OBHqPlTfHDnv+bhYBsfOPGHyCRhsfYy7M0SmW2QIc56l2KjeGG1A92z3tPE6a8XtvQxeh2CfIlsXLLlUZdIX0Ix8ZlofYm50i20Jcwa8GPRxXxIPkxDdtm56cM8cOIHWIh7tIKUfz0p0eslqanhk2oFQiKUwvNsFpXD/Udb67FRk8ww2Rc+yi/WLqMQCZS5YaAb8pvD2BnbsYsHPvmPpEQ40kNEkl4nQxYHMMsDpMtLGN0WWa5IaOdIzI016G0lyX8/2cW0TKIBk7U9kwzcV+X2Jz7O/r2vROZdTphb2L56lH1jPnfNdthzf47iVYN8eeQ4c5055jpz/PKXf5kPvO4DVNz+uaNeQhJkYIOZniu0ntoRTruN7AQw9cyZ0y81VBIThg00mxBI9t01S67qc+feQZRloE1Jt+DiOxabBzfzJP056doJlk5ZtjeTny2zZ+UkjYE2UlsEFZfICmjJDklqsnSsw+zhNpY7QBor9GGJYWZM7K6wed8gl7xivblCFp9xrjs64T/0Poe2Ldxk0zca/nfwDRCj8Y3+bxVrSPUL01sy5bl7sDIkxlP1i6RkLtZcnKZUghar5jBG5OJ7FsnaqwFNI3/fCxrHhUaUqL4O4eoqK9uupFPY2N96cYoSOeLN/XXAaEbrJYf9ZxfbPZ4oL+Fa55ZG7Rl87ZksXYDUdOmtGTD9MMV9NyPPInBUptFK02mG9Fp9GyJf8rBdi9XZDXLOyduEnZikFtDrxOTKHmmSIaRgcbpGGmeMbK1g2gZzR/p6XIZpMHt49ZyxLc806LVCitXcOdlyq6eanI4bHrh5G/mSy+EvPkbgbKPr9Ttryjig+OQ/ocUVVEbXS4e0ppO1SMy1/nMxjfWGC32IqELq2V+rQ7v+FSEkli4TPP44/mWX4bjrmlqGTd6GU6vHGBy/tt+duzDBknsKutNcYpYoqCn+PPcF6iuv5vH5NvvHX3ydarme1amVftoGbFmq0CpDPfX/263TSgQgBMWogqnEGdsoi1vk8i/evmEZHtDX5BO6Q2xZJNrkomGftd7G2ObMEhfn2lgC/uzx3VxdPclVQ4cx9RQLxhpWKFg6/AQTl1yOlC+Nvd6LM3zZxhAWOXvjvZNZhowihHd+NWaNko0T2ISFmLAAUdVFrVmoxMYIE4w4w3ZdkvpRnqj/AyUNl4vLALBcr08qD41x5cIplgWcWJsGldEdu5S8OYIGKs4mLAwG3W3UzQUWk0e4cTzPQ0sPMteZY6m7xM9c+jOM58dpxS16SY8/fvSP+amJP0LSfzeczhpLm/u65G7bI6tHL6mm29kQUmAUbKpzbeb3DYI/xZHZNzLpfJrNMw9xcnILmV0js2rccmP/mH+4Lcfd+0z2d9fIVw+QqAgr+gKJ+wr8vE3QSZg70mDpeIvJvS+8i+938NKgXQ/otSJiyziT5YbWBDEU7QJnr75mF2L7tP5g+8znM7Ux6icnuHpLFVC4xm04SYPQgczWFDhLjifrodIULmA+wHNe+T70oQ/xmte8Bs/zeOCBB4ii/qbebDb5jd/4jWc8/ld/9Vf5T//pP9FsNjlx4gTHjx8/8zc9Pf3c7+A8Qfb6Ke43lyrcuXgbYdah4xU5YeQZo8a/OHAC25MsHG3ysf/54NOeq99IISIzNzYAq6dxOjFdbyPT7YKSbn4IBAineKaZgjYkSc7A7ZioXg0VdQgX24ikBwKMQPH9e99Grf0ItXYPw5DcZo5SMuBXauMUM8VJCe/63L86c519148zOJlHK/jSXx86Zzzd1eVzOh4ZA3fiUwS18aHbkThdq89yf5vhqbZWECVow+Dxvf8Fwx7i1l7IO6v/EikMlFYoNDdW30m10De43HALkXk5mn5EOTGaJOYKRmiwTEa1uF5edAE7l0K/vNTZsxth2yTLDdreNSBsqgfuJ3OaaDRG1iWV5woKK69MPeoLyoJgb/5ljI5dx87hJXjwfozKON7rfxPfTLBExtsbH2UPC6Rk9ITF7zWLPBpZJBrs6WNsimbIGR6bsyHuxqdQtHHiMRQxii5WmCALNrJ4YTO4HLkR+Y70CjruoMUAVrsB9BueCFeAMKilv8aW+F6GzBUMy6aXJTSMPBfpTfjaYcY5yDs25SmYkiOhweGjs1RXVyg0FrHTbp9w0ymDySLy0kupDW5C0/eDRss2l0e34ek2S5FmCEFmbrybnn9htchOY/OBS3n7e36Lq9/8NhLR36/sTCAsg+LN34138VvYc+cqF3/yKKOH6wwdN/BbPiITeF7Gfx5/nFML88gko1f1SYbGSfVBZh77EvFaByVN7t5yLaXCfr5r5xAuGZP3hLx5yxvYWtyKZ3jMdmb5jbs39seDdy72y0sBM8tDmqFJyEQXrUJy2br2RP7CZlUCGJYNAmInJDMFRqyofM9OClojsv7aEpQ8AtPj+vxZhLQnubw5TSUJ6JgFjqrvZXy1yK33FRldlTixS2iESCtgeNLjiu/awiW3bqU8bDCyqUNloMHgqOby12zBOC0fMHsXIuo7gKczO4Sy8EQOT37n77n8GcJnQdgsCxtTWvjCf0F/jn5KFrohsHsRrGc0aa37jZSm9rEQuww1ZxC6g8TG14P4VoIjMm4wx8geeHob6psZD59o8akHVrnL3MOhsf103QJRmnJkpYETLmJ46/M2ThE9hcaH9RIYIQNypjgn0w1AnU2Ias3i5BB3XvlW/vGf7gc4h3TTSrMwXaOx3EGaguKgj+Wa+EWHvddtZmxbhaHNJca2bTijcdi3O+ePrnH3xw9y8oll5o6u8cDnj3LPJw8xd2SVhen6GcLN8gyKgx6WY2CYkk4jZPrhcxsDROGGLev6FlopVk9OE8uNNU2GHRrmNaChONjf11ppg1PBccwsA/uf8f/bj+Hf/dmzbr+Ku3IuGbb/89Ps/dJMvwOj1hjlKWZ/9udY+9M/wy85eAUbV8G2+SexexGN0u1ksofAprvpelT3LiLVYgsV3myMYFo1ChY8MNN45h/8OUIa5xKk3whpnIHOyEwHkYb9dyjq4Q0dI44hbGbs+9g41RN5ammf6I3SmKA3j5t/8XR6c+Wz2F7VwO+GSOCS4Qpz3VmW2gFKaU56VVYSqPg5yn6Ru9Y2o7TBjb0MLy4wI1ZZ6ywzc99dzD360Is2vrMRJBnK6lAVg2jOCgAmKSJqgH1+s8Zl3sbPNhIpeuYKOg2JltpMhR22zK9QnpzC0fAKfQmvVpcgtMIvlBi/6FIA4vJOkskbKG+6gR0D+7CCOiQhQkjkuo+Yt0cZ9Pezy34lb638LL8/fTE3RRPktEWqU17/kddz2Qcu440feSNv+6e3EaYhBWsIjUYR4dU3fG8r6jO65zO4XLh5E56/EaSNSiNEbYPtR5/ghtu/ghtszEGtYSRX4e59Jofdo4ThGqawqRgRptnCK9nkyg4CuP1vDn2dq30HLxbmj64xf3TteR2rlaa52sWwJN7ZWdZC4I5OUfY3snWNOCWzBKlh0Y3WMOImSvRQRJgYZFmKQCAw+EfjKEbUf/d7JjwpVnl0cCsHB7dxPJlGZelTh3Je8ZxTEd773vfyh3/4h/zQD/0Qf/u3f3vm8+uvv573vve9z3h8r9fjHe94x0sW6XipoFwLZRkYnkE63aVbqaPCgFODU0wtPYoE3rnrIJ+d3cxSw6JdCykMnGuECvpdagCiqIdUMalYQwuBnQhOBV105axU7vOs6WZLhzFrDNWawUxygIcwINeMUWYPbQsi3URmIYaVR1geqheAShE5G92LuXLblfy9fTv1zgG6YYA9sInF4BTXmbvpyOMoIVhubXRKG5kqUhryiHspYTfhvo98BkP3O8+kcYxxwIb1dhNmPMKEGj+HYAsKAU5qn3f9u/OH/nwRWrPS6FHK2zjlKXreNi498Ks4SYNTtNHaphUvM+FMsN+7mtnsGF53D5lsYygPGSdIEeE1YgqNPAUk+YIN/gBYF67DJIC9ZQvCsnAvugidpmT5zWTdxzAKEebgEp2TVXJLHcJRgRYJQhn9COA5WbL9CPkWZyeP5x7n6oUFaDYpXf1WJj/4JwRhlyDqEeoyqdjPjBrn0djhhxaHuckL+C+DdYbqh/j5N/40H/3Lz7PViBCbL0GRAQZaJFiRRrVjpHdhtaMcw2XUnKB39CA6y5G1F3HzeXK1EEMrzIER5KBAtgW02oTdvezU93O/uw1sG5lkTCUjpECPCFF4gsLqdnKG4jPHV3ht0UE3ZqkZF1Hw+sTssNn/ZyfIqORNpBBcOlXAXFthtWMxYAkOWBbZWZluwrywGYGn4RdL+MUSi8eO0HBqVBwL3yyiBgoYuy9C9gLcWg1p+1hS49YN3GGJE+bolkL23ncJ5pSgVkzRacbJzZvYdpfFl4f/mWp0FcV2m8Sx0Npn18RlPLJcoyscpu7Q/NL/82He/NE3k6qUxe56F12tOXzPIvJ1Eg1I5YFpIDAwtAWpZtJLYXTzBddzAzDWy1uFFhipRqsMs+piDHjoTt+xLnSXqLsOo40Oo7M+sQUyFbyybVP3LYQQxHIrSes1pOZBFKtEdl844Ipr7mXyupuhtJmHPj+DX/RxzB7jWxTFsbP0vRYehKUnEJV10mL99R8QA3z2wDPbHt/Bubjz1CrvvL9PonzP1pj/9GNveUHn+8LHPkbjrP9WUmBlXZB941mrDJ3GGN0eq6nFeOsexPgosRViZQM4fo9608HDhcOHoJCDnbte0JjON5JUEUYZUmyUeaIF7SiilTTZnNTISv110WrHCGmQpnlscRDIcNMTTOx6Azd7w6QqRcgUgUGchaQqJm9Xz0x8mSWYU5fRWTqJNDecUqU0UZicIXS8fD9IJISgMpwnaEU4QK7oUhjwaNcDZg+vMndkjcKAh+2a/bLG00u56P8ZhkBnIE1JZbDAjsvHadcDlk7WWD7ZZGW2xcrsE1RG8uy9djNSCgoVD2lKTMsgjSN0mtDqKqQTI9CI2hzK307Zz5Fbfy4r0SKljk+iUlS7zTbzGlYffQBGR5ClEbS1QLxaIC7lsB0TlMbvpBuDFSDzQ5Cm1P70T9n0vW9HGpJCxcNTTQodj0ajiRIxQlsIBPcVr+TKtM1BCXvUBBpBOwHVDF70OSLP0i9USmF8g9yHOExBp2irhF6vDNGuiTQUtgGiY5E7Bk1WUMYEA6aFY9o0JLgvYrAmVxygslDoBz/DFqYKyFsKHIPVcJkg6bHcShjwixxPPephk4s3bePeEw8yE0+xNY1ZMTsspSOclGuUDj6ONAzG91+MeJH9wF6QkJkBtl0hS1soLwI0didDqBCs82uTCClwlEf5VN/VzlQP3ZsFa4K01cSeGKM0uInu8jxOt0eHhIKXQ9k2XrGEevBj6LUMrAmEsPFNByfuYcQdMsMCJGdeVAF2GhOGITqf5xfjW6iKIkdZ4REWwHKwpEUn6vJTm38fnUVoSyOyHsrZIPXdXA53dwWjfP6Cy87mIvahOpXVHpEJqZejecrFr6Rsa3yFBy6+BWHm0VYHIaDsWpSWbL64ZZ7Niy3sNGbAnaBlPIZgnMqojzQEUZCyMtNmaPOFbRb37YZjDy/QbQZEvb79N7K18pw1QXvtEMezMG2DVWkgsgQtDAyVUB0exzkr40ZLSbdkYTbmqRtrDDshQnsIBJ4REnTXWGrmGSx4qM3fS1abRjUeRZY8jm1/A9qpoAVsqz+ISl/aDsrPhOdMuh06dIibbrrpaz4vlUo0Go1nPP7HfuzH+OAHP8gv/dIvPddLX1A4rTpmZKB0xtZmBZWGID1Wc0PctvMV+GnIZSfvYdh4iNmey/SDW7jk1nO1C06TbhpNq9skcUcwdbXPq1hNdimbo/aFKy8VQlDP6oSeRW4gwLBXiFcThK7SWe8aknoeJKtobITlIUwXpTQyTdFZRt7K08sfgUxhyL4Y/iMqz0VUuKQrCU1NzjU4cfyf2TrV7+xnm3XCTow0NKunOhTyfQffsPrR0TPj0y5b1dZzxlxccXHDF0809psKT/n5perXvksfHtr7/xCJHJFTYBBIPZ+c3oTOFFEk8bp7UEYPM6kgsgQn0MQ5m2Z1iaxX5KQVsZ0I7NHzTu4+FdJxSJdXSJeWiGcGKf7sLyCXAZ3DH1mjO1NFZD0yQyGIMPRZ5Xha0Te0BUIIfLPIsWyZq52tcOI4zsWXUN58CWtPPkymNRctPsjtY5fjS01HCxpacG/o8DNLVRSw+Ed301BFfK2QVg4QaBRKpJjrra2ld2E1tjzps5QuoLcW0FaGWd1BGkOm2nTH+90IRUWRrSoM2yZIL8UL70AWTIJGnVgIrtJT3C+nSYFHjU8z5v8rWpFBXmbcvZzxGm8Jp+lhrNuoW9RJWBhEiK2oMCMOUsJP1bBVmRNZh82ehdkGZWy8r+dEyL8JcOV3v4WGcZzoaB0QyIfrJHMFhCn7gqzBCpONLo/PThNfBmZi9sncVFBsZTQzjRtkeOUh/n74hzh5eICp/Sl57TCchrS9EuWwScW20L0V5MlVjvz2W5kaX6VRnsSzPO5fup+h1S04vsnpQLzMFDIOyNYF53NNA1soWFyAffsu3ANbh2H3J4Ey+vNfKNCJwjpLR9OM5um4c4TFQbqFJu1SipFIbmgc5mRxF4cdDVrw1fJeDnnDBI1rSXs9KuVPcXzcwz9+iCPHvsrqqZPMPfEwaRgw83ieK1/1WiYvvQJTBVA7CmkXcaaMrH/9suEjrO80UXiucM8ykr+8YvLjf37vCzqf30i45SylAmUIZO+s/Zs+8ZYEbU5c8QqOhS2cLIeRSpzOFnLuY9SbILAwmnVYXv6WI92CWLG2TgCZSV+wP0HjWQZRoinVW3hzLZylLlYzBKUImhXifL+xgK9P0CtswxOnf5u+ie6aFmHcOqfMUqYptlbMPPk4k5fccubzdr2HShSmLbEdi/Ht53bTPN1gIOzGtGt9Uilb1+1KwhQhIF/26LUjVKaxHIPxbdWvOR6gUPFIwiLLJ5tnPoujlPlja7TWeqhM4653Os6SBFMqOu4Qaj0g48qE+WQbvfku3noGeSOqYQaS1JRsfXQMRip0/GP0tl4KQNOvs+VIly+MNBnqWozECkhBGKAFGKBThbXzbaj247AwQ7eZgYZcHLGzmOerY22i9gm87l5QcHLgWvbN309BmlwsBxi067SNkM3WEHd95EMUcw5aKbZceR35wReml/bUUuBvhDTO8IsWMgmxkwaRXSaKG2f+v79sI4SkaFY4FGbkVEIxWEbb6YtKupVHRqmLfjmXGwxQbEiUtChqAyPV5GwHlSp6lse4ldBTJjnHpTQ4yELQZFvU5vO+TyGEJ/xT7E82YdgFVk9MM7Rtx4s2ToCgHVN3OpStYQwzj5mUAfCaj2J4XBB9VEt7NCbT9XEYaCx00iFuGJhDAcX8JCdNE2tklHhpnijoYqQxlueRLZ0E9+X9E2UxBgGlwgTtlTmCsRwIgV1fIRmZRKuMWFpgaG4fvRyZz/PzS5v5y9pnsITJ1sobWFQNRMGlaA4iNSgkVrhC7EZUVlw04KQOWSfBOE/lpQD2ZAGtNMIQaCkwkoy1dBdF9xEAJk49Tm3s3TSLdxCLDpsnA+6aqWDJ4zgih6ktxrytHFz5BH7pJG5+H7WFLrZncvyR1e+Qbs8T3WbI2kKLbiNAZRp73ffp1APCXoxW4PgW3WZIsfrckjd6rQjLMUmSDG2BliYIQSYdOsLi4SM27o4MA7CilI4vaXfa5AfKwEm0SBHawpQGORkzUuqveUVnmEAlJOOH+x2TwwGkdjHiDqGdp7f0BLmBG1/cB/Uc8JxJt9HRUY4ePcrWrVvP+fyOO+5g27Zn1hH4zd/8Tb77u7+bT3/60xw4cADrKYvg//gf/+O5Dum8YLNznLnBLVjdmKmRHTyUPMnFlZ19/QkgSl3qbokhdx4nOsaJR058Dem2Ac1qo40arp7hVez1aqIsn52Je10IKsSRHqEKiW1NFg9hFMHq9kAPYCYJcWEAabbQAnQaotOYtFHD8oogE3QnZLA8AseOM7rvetY6IZ9VA1xhuPxg4vPufJfxsMadh/6BrVtvIWq3EekScVQFMhZOOBhTNpaVgo7RasMxsIw6VVEFpdByXSw4H+HoCy/Yfj7wwbunyRUtfvv7r+ZUuotC+yGq9QfYnT3Gw3v/MzPGAFbawglaxM5ezLRMYtRQmQvFHJlsgoBS5IDQSBXD5HUX+rYAMEdGSBsNpOPgl3KAhRA13JzNY/UvMhi/jJnBj2CHJpXV70XbDqApzD9Ad2g3ysqvlz0WmTNt6PVgYQGxdx8DL/95jtX/hPqJB3Blwof0L3Nc/DDxgXfy4fYp/nE64nTridnMQqDxHButQxA2sb2AlQxjkfWj6P6F1SoTQuBLnyBsQZqiVYaQIWZ2Vpbs0CBiepWkOwEiJUmewHJcAvqZVpv1INeoXXzYuBsvi3hZdYaPHtmEIyCKVrhB/wWuKZi47g1nuugmBz/JvPdjABQaEd27Fuj5IyxWI75Sj7gc55xMN7d8rrP3zYDCDRN0vjTLWU27EFYOAXS/+HvQ3czL/+iP+fjB97NQqsNgF13R5BoRUdEliTNUL2amuJsg1Ew3mxyY3M5qz2DVH8Bsdbhy1ODPHs1h9DK6QZ1XZGv8Gj1ynRx/8PAf8P2dn2V1toNKNDJzEDjEnkIQI7RJohO2Tg4DTchd+PJSaZoIaZAZCiVAW4KoHmAmCqEztDBo5rdTTuZwfEU+knRSMGMDuXUbb/7Sf+BtE5P83ev/LZ9omjSyPD08SLp09RCfvO8RRDnHE48co1PbKFXoNBosHZ+ms7ZCWS1B4wQENZSsArofxFIGBdPDvmLrhXo837Lww43upcd7goHwhZVduGeVc50u7bJw+0SREAhp0LjnE+T3XIs9MIqIy0R6FZtNSBExWXGZXYKeOi3c+a3XUCFKFK4lieKMyfoJTg7vREqTHLDYlGyOF2hevB2A8oP9ckwjd5azYgSwTridrfeltUbJfp2EEAKRZKSOh9xyESePfonNl/VjZ8IQdOrBmeSXNI6wv0EXwq8nMN5phAxNlth5+bPvaD4wVuBlb9qH1pr7PnOYXitk6eTGXDh9nSyOMQyIjY37LWZ1jnYn8Is2UgpSlVDrLFGvdFGmZmC1gGV6jMRjdAAZpmT5CZZ3dRjMF/BNE93oASb5q0t07m5CBtLMIcauQOUGiA4dxnZ2k8QpkYKxoa3ASVLdwMBBmxoGNvOZL3+Qt+6/lEhn7BR57giHeDKEU4uLjNspQhrUZ0++YNLNODvT7ew9+ymIw4RGJ0GXfUJnFKEzjKJFFJqYVkYushmwR2mnHUzpU3ENcLfSWzmEYb54hEmhUuF0CmtqpXitHgvjJZw0olrOaIaKqYE8URKzhM0BP6WubYJGwHxumHf0HuX3q+PM+0toy6ERdRhMXXq1FXiRSbdaLcTUESXZL50U9LuBazPD9r+ODuB5gOVsyGwkZoRR3IKOWgizBGGG7kVc9pZ38Nin/rFffg9Yng+rR9GJBF0HswSGjbY9nNY8w//4RzgPP4Y9NklqOchrXs7jr/8XAESGS2S7WELw+Ogermkl7Dk2y8rEDWzLlc6tENEarzFPZyClPtSvKDI+m2BuPf+JDPlrRnEeWKG2u4pwtzL9k/8V9798P1OvWiGXLdDIcghMpBWQK8Kbr72Bjl5i8f4Ou09OEZsJA6/dQb3yJL3cKtmURazhidxBVubvP+e9+w6eHlmmQPeJsTTJ0N56xZUUfXJ0uJ/koDKFlIJTLRs3ffZZpEpper2IpJiisxxecgmoDWLUunyCSK3hmRItBJnSRGUbZ3wQT7rE4j60SEFbFHOSiV1Pea+tDdshkz1k5pLZeU7tGuRI8FUGllZe2AP6Oui2e8/qe8/Ze/yJn/gJfu7nfo73v//9CCGYn5/nzjvv5N3vfje/+qu/+ozH/+Zv/iaf+cxn2L17N3BuV89v5hLB+eghdHIjSc6G3WNcbPSNEiFEXzTXcljLVbmkOsTrbJu/eegrJOHLsM4xbNYNKKBR68GYx+nEkIlDLWbISPLZGY2/853pBhu6boml0UIjtMBva4xUkdo2QU4gvQoq7SFMF2G6pPMPYY1ugV5M1uzxy9f8Mv/3wd8mCK9gqODR3jyJOXOIW7JLmIq/xHEb3r9yH9/XXaKz2sEUKxRKFu1mkV7P5/Dj27j2zZMMjTQ4kj7A6fLSi4MpBspj1CQITJSIKdS8b8vOpfBU0lWggCdbMWuNHo5tkhoDWEkL88RnGbL3MLfpnSROhcS+Fis1yWSbmphm1L4GlCKx++VtZmSS+DX0df8e4X5z6G5ZExOEjzxCMjdH1qjT+OeTSJYZfOVOUm+ZcK3e15Xy07OUKAVm0kGmMcruvy1VexNLQ5eSnWxinDwB83OUqgWKI1OsnXyQUFksBEWE1eCxL80x/DKLSysRq12BkSkOWCFCCA4UbYT00ChSo0muM4II1696HlqpPxN8M0/X7tCetNFZjJA5vLM6H5+SCTs2+3QPdUnUFN2lrZh7NsjpQMDL9F4+px+mLXrcZX6AK8ffyQPzozwRl/kufhsS+MfOg1xS7JcBBtnGfVvrDrru+Vzc2wV0qCDOId1yI+Mv8VN47jAKNu7eAcIn+yXsuBLDgejgV1GNWbp3nCJdWMZPPKBPSvTyIfmmJFcL6A54BGMFbmku84V8nntOtrh2S8BIwecx5wArxRHKzUleWf9vfHHOYTEsMnAMfthf5i8Gety9cDenov/I5vzFXCmHMLMyyiqgRRtD2ShCkvmUi0UXXBcqF1ZvEfqablplZGaE1ECsCVYC7MdrMFkEA5RdZLl4GaL3JUYbBouDEOUSjr9xhEu6l+NNjDPQXWJIVmibZp9Q0Tk67et5zPlThr7Y72otTZPR7btYOTFNEoUcefgB9t/yasrJnRDUwHDprpMxQgiccCf/bdPP8eRdM09zB9/B10O9tvHvpgBatW/43WcD2zw7S1+SOCZ2KzrHyUs7dbrHHkR6OaziIJllQ6IxtMtEKQ/06OkNoulbbWePEkWYKBACL0sxkgjl9NfNVtThQLxCU/dJN5tLqL2mwLh6+LSkG5m94Sx0wmPkvW0IJEIIvrj6Aa6KLmdo8jr0WZmdp2YXUUnUf6XSc4lKaYhv6GxKQ3L5K3dw9MF5WmsbDoOXe34leEIIRrZWmD20StDeKAu3nP5YsyRG5MukuY01bZndaNVhfGcZgKVogeP6GEgoLeYwQomwPIrWLswwJXVNaptLoIvk1+eV080Qoo05sYPTgv+yKFAtkMUpan/zf3D+1XuIw5RuvsJELSAf+XRzy6ggROJi5UoseRVWO20G8wX2GzZ3rI9Rj+3AaE2TJTGnHrqPiQOXIY3nn1n7rDXdkowwXyRzi6AVWlpkIsBx++9ZJSgSq5A71+5he+UWTk+i3a+8+XmP7evB8f0N0s3OcLqA1kSmw45qnqV2lx2DRXzH5aN6jN16mpF8gVfsOsCHHrqbR8feyk82PsVvVisczWa4VxzlVVGe5uLCizpOgF4nJnCX2eJdut6ZE5SIMWID078w2dD5ylnaiU5GproYTpF4pYs/MUC23MbaPYZpb7x3uUoVvvTb6OYojN0EOgY/j+jFjObKeJUpuHkL5Vd9D0auT1bMBR0aXp7TNVWJgmOUYMcNsM5tup16vxqmVIUkJigcZ2o+T21iPQCjwQls7K3n3y9wdw8wec8i4Vyb+kSB2N7MoR/9PU56HcYadxFZd5KJl1Ef/DimGVGpuMRtm4XROrtmtuKkNgNhlYZ9gjhdwPTKqNQnTFLabYl/gRugfatAA2Ev7pe3w9cq/xtgWhKlQa0L8KgwRbjPfr+Oo5QgiUGCnUycQ7hB3+YsWiH6LM6kM1RCSoeIFpmZYqj1jHJhM2ntP/cezhqIlmk/owKQRh6tFVEavOil7YmKnvlLPA/S7Zd+6ZdQSnHrrbfS6/W46aabcByHd7/73bzrXe96xuP/+3//77z//e/nne9853O99AXFXHea8pFZKl4eXXRpGC0ST2EbJRzDJ+20mTWH2dx7mILr8/rdIauzHcZ2lM+c48w80JpeJ8Vf76qhSUlbMcdRWPaFJSHLVpW4vYBSQGUNvejhdAV2NyHLasQyImvNIQujZ45pPfIo/kVXoEsD6GbA4OQm9m3fzZGZR7EGdzFazPGLyU7+yFrmNd0ut6kyq77mk19+D5eO/QR+ucSm7YpW22NtPkQIePz2FW76/l1EjQdgPWFmb3c38VlJbVqk+ImHOXxhNcnOF3b4BmGiOPbgCf7lD1zJ2u1forB8J5E5xPDRv6Tq7WN5+OWAQWwuE+YOU27updXqMkRCz14mF3hELcGgfQqR++Yp/zPPIhem3/wmdJpAllG4YjvDIzbHFh8D0c8ctdoPMLm6AzHpk0hB2Fsj9fuTpJfVGXS28cnKZ3hDtgseehD/ulcztvMiOjN3oWqHua+2iWs393C0yQ3mCL/y/+zmv/7t7Xz6yRXeUWpzpJeye6BKJrpkRg9lRFjJhkN5PtPuvxHOND2RgjhbxjXzjLQEfPLPWbzm1SwUyzjVOYZzGh1GJOl2Nu3a3u9qt7ZCEvTI4/IT2ct4Mlfk7vgODrt/zy7rLRxMJjm9WjXHXgHR5yEN6DRGcXWIQOMbIHwTooBAw8WWyVhqIDLI1VxE0KUw+c0zv85G/uWbQArS1QBr1EWGEapWRe3aTbK0QPjQwwwNVGjaXRpmi9qWFSrhVvLNEC0FYc7ilTnJwKkvYr/jx8nZBnEWYwmDldwgNX+A3iv+CO/vfhmdtYlin4FTFS4VIxzzWqxaCyxtOcUB8204WZ+YlMoiFU2kCpDzKVNbClAuguc9/c2cB5zWdDtdXgoQ3bOIFWf4JYduyQUpCOxBRNJkU3wxq8dXOTXV5MS+Oqfecyk33g8/udzmJ+yA9yaf5QNzP0amBSQlGmMZOd/ErY5z1Rvfyv6bXsEdf/vnHLzjSwTtFtNf/QRbLragOAmVKWrJ3ZSsHAJBQY3SNVzSC6zT8a2IimnwW7sH6GUaxwi5eLj5zAc9Deq1gLMllVNb9gOHpzPWVMZNzq14iyEzlYBasZ8Rl1irGJnPaL4A9AjWs9tVqvhWKxqO4o3AB3GH5Cxdy0ZnBmNThN2sUOq9BoZg9U030rz9A5hhDVPMg7VGrnMcQ0UIsUgihzFV3wEeOd6loOfJFULCnEW2TuYlY3nu+ru/Ir/plnPGkq+4bNr99FlZbs5GGOfamdbXyYB7tnDPJuxE/7/H1stbmwvz4HasAxIAAQAASURBVG44VzIOaTzSprqpQHW8LxnxUPNuCoFHGivKK3lW0pMMJmUMXWF4usbCrira6Dt8p6s07TDDcDXGgIs1kUeFKTJvotprkEmy5QTz4a/AlitJS4O0HruP6iYfsyqInJO4vR39Ms1dl/DIY7dx6dRF7LACJt2M2cTm8Z5gz8AgKo0JWy2CRp1c9fnvbZZr4RcdVKbJ0m+c6ZbGGeo0ubee/ZjJDXI07USsRXMIN2MkmidNXbTMqOy98nmP7etB2iZGLMlsRWpmOO02iDEAdvhlHqotAP3/FoND3Dm/wBV2h03lAWLT58/nK7x7NOS6IOSYWeXzziO8Mr2ENApf1HECBJ2YwK4x5uzs+1VGi8xsYSYGhn9hSBe7lKcyXyBxU2QSECSzeHERIQZI6stYxig6VWy69EqqUztIwwBXxnD3J8h2/x5E8wjfR26bond8FVtlDLyxn9WW9tqoIMAwJHuV4snlebrbdpFmAtIYDOtM0ENEIWmnA4aBtXgKLTXZQAuna9ErRuRrLoWGhzNexB7PPc0dvTSQtkHlqjHGn1zDXGjTcyXRpq0E+QHq8uWgFW60jBlXiY0aWkR43TJLuVVqpTq5JEe1WeZ44qJUTBKtIY0epj1G1hXY51Gj7lsZcZiiegJTWKDBtI1+ttt6A0PTMiiWfdAQBjFRL0Glmt5qQmX42VVmJInGVH2tX0t87VyTysBIfdL1rUhJgTb6dmhKDyuSiPVqN4lEqR4IF7m+TtpZGZkU0SIhEqsYKoeQCSKzyCsTq9tClka+5rovBIl8djboc95dhRD8yq/8Cr/wC7/A0aNH6XQ67Nu3j/yz1BBwHIfrr7/+uV72giNbHsWxjiOyXaSugb+2xpHCJykMvZGquw3tWkTKoOWVsJMOFc9i6auPMLbjLP07IUCv91rMjaPpkRgZoBjuZjRHenSNjKJZIW8WzkRqzidSndBYX5uCuIBvO5iJJsrbKHMIYbZZ2dnj+NVPIJCMTg8wcTghXFrCcVzUGug45aqLXs7Rv/8LGs4IptBcunMz9yUprz3yKb6imxSyIW5rz7HfXyJsNXCMBq/84Ru585+WaddCVKo5dPci9iUGMSAzwe5gK6llcLouTGaK4qyHasbf8H6+pfEUztUkY0fO4I5GyA+vtvF2XEX2WJ6u9MknS1TaB+nmt9H1BlFGSGZ0iLIUI+6i7YTO4DIAEwwyNPjiCwS/ELj79uJfey3R0aPoNEXHCUbepXuyx1jVYuHIcczjm9FODiVrDDxRp7rVYd7Os5pt/P5R0kFqxe3ZCd6Quxy0Jh838YtVrNwAquthCoHlBOR9h4XpJg989iQ//co9vNpfYqmW42H9V1T4UTpZGYmHFUTkmuvGriEQ9oVPU3eMjfT/bHAIOj5WvYH1hU+hr34NZneNyPEQRgPhAWkVpx2jlcKwLKzlEl6nyKvi7VwhBYvjx3AKNSbG51mbrRIpA8sy+L0HNXeYm/kP2w4RpiXCQv+6TjqNP7BMd3aCPPDTkWAEmM0ldAdCwCBXKF+AJ/PMcLeUcP9lv0FBttYhPbiATnLEJ1zc/ftpffoz5H70e0ArrLpiLpth8WVtEmsHZroTI9WIN76Sy6NrCSwPhEAiidIIYdg4SUTVjJjb/lP4J97PICdorri8bNWmeZnPcjFBZoLHlp/k4so2qu02YTFGaEhFTLdu4O6zIffNEUw4XaoUWQFxBURmES92KI7kOSUFVpgACidbo73aYmjwEKSDfc06CUYKgQMqTemaKf/CuIL7nR6HdEBKjIrLPDDi8JN7Jtl/0ysA6La3EAUGiCEeubfGzMwbMA2FO+KR3to3tkwh+bSqwPTf0VPdC/R0vnVh43CRkUeQccot0rFemH7aU5tjZbZBRoQRRGhTopMUuxNhCJNKHdKFNo1CjSw/QpY1cAzIe6coyf67mUTptwzpNvfuXyBdWaHzstfAJf05vJQfJkrbOEY/06WQxBSKOdSKi/ZDhFlEmTYd/yZKYUSmK0grppvv63LmmydpZuYZO2BnO2Nn83EakzchrQLK1JhRA4oGX/3Cxxm8/262X/s2SiP9TDrLMRkYeWYtI9e3OE23SkPgF59/aVmu6DI0WaJTDwHNln0jFAd8HjnRZrFXIcptOFi5NGStB4VBg6Et/XFa0sIJTKxMMfFwjqR9hKZYo8BmqicNVjeXSC2DzBSczuxyskWcy3Zj5m2SuX6Hc6NUxKjYxNPHsLZcg2wsUbzcQ1S2kt32t/jdq+gWE9D1vjaQMnCmLmfpq39Dt7eJkiPI6wJVt8tjYcZPXXoRq9NH8AeqdNZWXhDphtb0Wv2siKcrL5VSYEqN0TpO4laRcZtErpDM5skDzhI04lWmqg6Fpkbm+06ks/3ZlwY/WwzM26RGhplaWO0ahXoHkZMElk2zt8j06gq+6ZIv5FjNTAIl0VmEVx4lTUPGsoypJCFTHicdm9+QH+LHwtdy+Ys8zl4zYLS8GRmtId1tyMxBGxFmYmDmLoz2s1WwCYkJihGW4xColJzogCwSLBiE9YD6ow+gOglG3kK1u3S7dbrHd1EckUALbcSs/cGPk7vq1ejRzVjVYdAa4bpEWYyTKXJBh53LJ3ikUEK7OXB9yDIkCjONUVGM1ayTFspgmoz85a8w/1u30CnvxO1ZmLHEkv3GJNb4hZG18C8epHz3PGWlma04zA2ZQAaqL1GQGVXssEpSmccC4geGCMWnafR2MehpvMBi6Mv7mD3xYZSKkKZHfuvlGM4QI1ePctmrv5Hk03dwGqcOLdNodomDhNJgjh0XT3D0wTmCTp9gG5wosXVkg7B6/Csn+hm7EkRTkCu5TB0Y/YbnV0pz+OQsvVaIUhq1ZYh2t0lHmKh1W7M4t8aEscTxkQApbYwgwVBdGt1FHvIfZ9/WFDdexYojrKiKfkozQEPlqK69CS0ieukqhtHfd+w1mz0zCWXZo/qTb3lRy81bXuuZv8TzIN1Ow7ZtCoUChULhWRNuAD/3cz/H//pf/4v3ve99z/fSFwRuY4htlx6ldN8Y3WN1IkJe43+UX0lmuGHb/0QYJsrPuG/zVbzp5O0AGLUTtGtXn+lielZTdyy/jNRVpHLIZIfQXSYqRtiGjW/YjDqbzrC25xO23IgGKb+LqqcILXDrXRLVQqM5dVFIbaLv5GidMcYYwckV4nAUITPkpiZDW7aSPPoAX1ws8843vw1TCmZ7E+y0X4UUn6KeNWmnPg+27mWqvJssjrB8n3zFZe5gHa9kU5vrEu/vR44HT5WQWmJGGeH6k8zMBDsy12tjvv3QD0BvlB8IYuZCl1Gdcv+dj3P1tlmy6sWEvTaym7B78TZ2z/4Tf3DJ67DGS/jtSxDCpFAuYNWPnjlPPtbUovb5v6GngTk8TO/RR5GGgYpCyFLMYo5spYYslZifh+JwiBdauF0HNDS+uoKnipSHTXqVLtqw8M0qvaxOYJa5fflhZr0W/sFjnOj6TORHWJ3W+EbAycU1VrNpbG+Mo/ctMblnL5e88W38xd99lHE3Rzy2GUOOgobAs9CGwBxyEY75TVEGn5N5cj0LllaJ9BK5rABCUqg6aMdBxDGp7WFXTbonBCaC5FQTw7aJg4BCXMINfMhsiqZgJChx3J+lMfEEn/2Rf0fFrXDgPZ/hxFqXwYLLXbUSlWwj68qxmpheC2ENoBKXizAI0aRnl5f6F77z5jNB5hx0K8Sf3Mfq/O+jsxTDz+Hdfzm1WzsolRGMJZheC8OoU2p5aJN+9o5VwqPPLXXjhDQDrVOE7ZFJyaVXD6JH3kL68P/gZM9H0+PaewvUh4b53BUPct/swwzG17PNsTF13+lURp1JEUAjhclvDgNRmn0zQVkp5jKkTobQoBa7hHsG0YYEpTADh3ljlAEzjzAKIBogIXbhyZJNo7yDa7JFRjOJiySO+lk4DQu+snWVgWaT1v/6RTbLbVydtNgyWWam3uDoWodG7TiLwwkLwUm26/X9VAhce4ww6RJHF77k+1sNwrSRTj/DWLZPsm944BmOeHo82Eo4rZSiSLGChKRcIvP7v9eWx+u42Gg05aUex68cR6oimSGQRgFfJcTxFqbp2xZJlPKt0CLp0MK93Lf0ZcIsYr/3hjOfN80cJjm01iy0OwwbGfUhD+nm0aZxZmtPnTKaDgqJsDaCYSY9lBUgUhulwHNi9ognOLqccXzMAUOS+EMMJVN8bP8Kr7nfolubpTSyHWkInGfZ8EcI2deDk4LRqQqFyvPPrs2VXHZePsHMwX6Ab2Csv67VOjFdPLBdUBkIidutkypBr5WweV+VTGcc7x2BASgtehTaFY4d/CC5dg/7wA+Rd4e56PPHObWnyvTWEp4GR2uMKA9CYJQcZNFGugZGziZdtcDIgZnBk/fQ3jyDrgwhO02qzgRH3UMUojYiMkBItJljzRnhiYVT3LCrys9GLgWVcmhlid+a+QrvWDuAZbssHXqCkV17n/czOrvL39NlugXdmMD00M5Uf7+xi2SVr2JZAapn0puNOdx9jJflL0UlPXTQ78Bt5F/8jJ6gqOkMJBhJhh0J2pW+z2fqYVrZ/UyUb6XVC8lJwZOxwat9CDo9duc9Zlf7pYs/X2/yuwWHO/MrmNLg79UdvDH9eaz1bNClw09imCZZmlKe2IyTe+7ZVkaQILZXGS5ddeYzmaaInsZ4nmXTLxQyb2GtQlCExBMI1QZrNzoOyXpVskYISZ+0SIMUEKjMgZEfRUUKa2iEeGWe6OBBouMn0Ai0Sin96LtIxkdZDmocGLqY1DIpDG9h6o9/nYO/8L4+oSAlQkqcvEf6yIMIlZGWB3AWT0ESkGu4dMs9UIJOKWL4aBWdKKRz4fZT6Zok8x02aQ0rj5KUEua3vApMCy0kTjRFL5ylHQactHyuD69HIGh0Ja6nuHr3SebnDpAFd6FVwOr0J/Grb+XIfYts2lthaPI7TRWeDlEvJUsVSZQxubffGWnHZd+YyN9//VYA7vnkQRD9svhD986y/dIxzK/T4CoJU2oL641Z8jar3bQfvD6NsAtJQGJ5YBgoy0DZBk6jTm5wjLT7EJmlMUIfUw2jLfA7s/T8URQghHGGbBHawWKATrdLmCaMGAZDwiMghVMnYfPWF+ORPSc85zcrTVN+/dd/nfe97310Ov2oUj6f513vehe/9mu/9jWNEZ6Ke+65h9tuu42Pf/zj7N+//2u+/+EPf/i5Dum8YGs8wS9038875LV8l7JJMFlKLuK/HPscv1j4P9w6/JP9jIDKEMu1Yca7q+RbdeaeWGbPDaedpw1nXeaLCL1+7zrFCy3qQuGbHrY0zyG/ziess66b2nq9gyMYGPRG+i/eyvCXz3ynV0gxt95AqgqkCymQYj25Rml7FWuswrUL97PaexNbB/IkskJW3sMfz32ea8fa3J20SVtf5ifCIYSU2J7P5a/ezIOfnaG7nr0Wph3yGkanB5iMhrm/7J/JANQyJV/3EMULn3n0UuCpev2vLtX43MIIp8KMX3gs4+0zAW/Z/oMMZ/+AiHLMedewPPhGDop7OKDaeOE2DFnAjiNI5886r2Ku9c2lb+BedBF0u5xtgkazTeyhBTbdOE7BtzBrXbqTLt1qDfWFDFpABjnLQNv9eepgYxseI/nreF/nAxyJTqLmNQYG/++23yV66HNEKke95pMbuJM4uJWVGcVXPnSE7/43l/D4kTu5cqiJ9volPUoGGMpDBop0JcSe+ubQwDOkSddPYKpE/JU2GFOkvRjDkNiLswQ7D7AI7C0lkHVImSReDCheNcraiWO4vSJm1jfOjRReHt/Ap7M7aNYb/O59v8u/uezf8L1XDPNnX5nns90CvdY2/v3QRvTKNrsUthynsOU4d3/+NUxg4MA5mm6O9S3gMjvmmaYKRq5APDONatRJ/+B9XH/Vb/Hl8v3onEEiQEZnpY+vE6/WwinW4pRmvsxktU9gaCAyTCInhx9KCpbN1lyNhbAIWZuhpTZXnZjgZG6RHZsuJigYZ3KaZRLj6y5EwEUHzueT+IYw1km32A6QAuxA9bO1Q4WtNJEBSEngVzm45YcBsJIe2x6/mOmLPwFaEI6OUXcu4+7VE9yw9BhDxkYw4b+mL6ds9Si4NvsZxkCjDZ/K2DZGS10OrdxBNf/P3LPL4GH5OFPyu4C+bofW8EeNMneHw08d9nfwDJBI3JbD1W7EtbqM8YW5F3Q+M1+BTafPbdIZNKksbGQgyrRfot+IV3Adn1wzoj5aJLEX8YPdFM2U8dIKQbefVRx0IvxUnUNSfDPiP3zhFzj8yi4vyya5ZGBjjVS5IQy773SMFwvkWw8Tv3wTrjeFEW8QCqltAoJR6wdYNF955nND9agPfgKAj31+jJtaKaa5SnW2zdJUmd5A31Ep2sNEFUHPjFmefoCx3Tdw9RsuOqdL5tNh6qIRpg6MvKjBJNM819lqdtIzlR5ICVqz/fCdPJZdwvCWPHGvy/Hph6DfMByv6yFaS5QbPW47INg7bHCpEBgIrERzx5ElKsdqvIv+M7Au85GeiQDS5QANFG7ZQvMfU7QaIpm5F/vg/UTXvRYMA/+RUyRbFDVjkeFOf0zSEkxs38Hj997BTTtSdtspD8clRNPki3N/jZdPeUPnAHHQo9dqYhgGzvNodHP2fE6Tb0y6JUlfxw0AIdBotNG3i2XXIk7XSJIGJbZgDoz2GyqZJ1+SoKAVr+vyWQqcEkackdkGjlFkzvswjvkjDBVzLDZ7/HU7x89VmmwqV3AMA09kqPK/RCazvHrZ4J9ykhVvjkNqhodm7uWqbdeTxjHTd96OWl8jdt78KoZ3PPfM206vS94+t6Q6cQIcbWPmLkyw1Mzb2PMuEIEUtLIHqfpXg5BkXegLqYE9kSdbmSFZTJC5EbBzJLGNW8gR3PtZvBtvpLfWIe2FpJtGCEaqoFLStM1ab5mh3BiqYGIMjlC+7R8Ip/aRDo2RloZohxnsuAikxKgtUzl+EP/KG8g3PJSEVrUHEoozPtamC9u8qfDySVZ+/yGyesTQwFZmnEfwFh8nmLwMAIMSBja5YoNlW/LFpa2Mu8tsb22FNsAJypV9rERPotI1EKfoNb5AEt3MV/7hCG/++Rc7v/LbB0opWrUeYSfGco1nHbgBmNg5SG2xQ7vWo9eKGN1apjS0MZeU0ggBvc6G9plhG0RPXQPdHEZplKXqTrA2/NROaQSEZHb1IHvNnf1GCuvo5TchVIKUG+MN7VO48SSGtAmlYrCUoxnE5IVLAU3v4EP43wqk27ve9S4+/OEP8zu/8ztcd12/8+Gdd97Je97zHtbW1viDP/iDpz2+XC7zPd/zPc9vtBcQk8kYUZqR5jTNtqKI4Gh2LY54mD2dr3DC28+WwnUYGNy97Xq2zzzExZzkrrufhBvOzVjIMo05mDtDHhlZf/I8eGqQ94zeQM65cJpRltiY5LK6BqfKIAysIAb6KZxS+WQ0EUBYilF5D9HpIteJj3S2iVaavZdfz/2f+wSPHz5C/sAeqr5LzR9gR/5mrut+hId9h4fTFVKRkPMH+sLYvsWlt27iwc+f6mcZOT1G61UmDw8TkaCsDYNFixSv4yAGvrmN8ucL+RTjaavT48pcj/u6PqeijP+2MsKfNxbZX3gFXXUL9y9GmCcX+N5bMtxwOzLzgZCR5S7zxRiZCOzAIJYzhHxzlK6dhjkwwOY/+1PaX/oSvQceJJ1fRLWbdA+uMWZKvuvlm/h8d0MvJ/Jj/NQHNPl6xL4nljh2YJgo1Qgh2V+8EUs6HJ77jzjaIBaKr5pf5gd2dKEzyx2rUwStGTR/i1v+SeYONfjo7z7IVnk7b1o5xScuyaEIiKxFRJbDiCWyZONsL1+wZ3Q2XLlBaIXpLDrejLDL5G96A1ZzldP5EmleYuQlWS8jmjeoTu2gMDJO4/fuW/+GQkvJru4kt+Zu4Yvd2/nIsY/wkWMf4bqxl/GDl72Tjz6yTK1XXC/p6cNinRR3R5hGUUBQRJJZ68SU0hjimz/7SAiBsX2Y7MQqg+/4GRqf/RDB4/eje23Sn/h3DP7MtazeOAVCEItTbJl5lCd31IidiMwM2PvYxZQf/SRfrGs+PLaLPVddwo7RQazT4uUDeXZs/T682hMU1u6mFjos6Qo7ph1yW2zKhSm07qJFDiU6WKsho24GW3fAMwSwzhfk6U54EjoH2ozdcD1z/3gEGSm2iBR9ssWRyfI6eanYU/syqVtiunoRRlpAZjnKzZtBaOrD2/nM2iMIEdD3sGGLGuMi+u/2Gj2irElVFbCloOT5XDU5xldOnKL0SAdxGYizOlrvPTEBWcJgXMfSL6z75v/fIEyDFafIFwOPqsyz8yy9qOeDCelw7VM+S+0N8kUmCq01ZXsIgcBvBXTKFt38Emk8hpEW2DqQZ6XTz4zRmaLXCikMfHPtVU/FSk+DBZeqUSLLR6gMM4hJch5GlJ7RXivbwyxXXbzOuo2lNSJT69p3IYaRkpgbZJyRBbCu+2vLjLvUft5tfgwzXWDkuMPx8iQIQeQU+Q31Sv6xeB/e2gLdxgJSPnvCXjxLcu65YHzHRufqJFUbwTTRZ8rLrUW6FMkNuFQnLO79mz+jXc3gUnBbNsVTBsHqY3zyCsHf32TwyvphLl3q+xsTxxo0aHGN7bC+DWFW+vuhNVlAH2+SLQeYQx4yD1lLYG+5AdE8SGE+wNn5duSJhEI7JfRTQv8uvO61aAyMS78P46FH+Mr0Ya6slFnKKixmOXQ4xifNr3K9uYNq6vPgB/8Sw7K55l/++HMmuYyzsj/U02hRxml/Xplxi9Tu6xNpFDIwaDUEa617AXCNQVTcRWcBpZdf/ZzG8mxhpxt7UcwqufokvaqLMjxyaDpxQN72sC2Dn5ka5c5VgyvdI4zkC9ycLwAKvP2Ugge59tiruG33X9A12/y/9/8WH932T3TXVvqE2/r86KwsPi/SLaHFoLMJpVKElCgRoUSAkRrICyTpZZRscnWX1kCX2Esphw1OLvwh48Z2nH23IB0Xuwz2zO/RaW1j4OVvpP14hyyAaCnBHIax33kvB9//MPahE3hBBzksGfqum5n/p9/HMjfRUYKKSjCEiXjlq7G7C1CbJXA9cDxE2kUur+EdfYLSVz/H7p/6Dxw/ukxpNcf/x95/x112neXd+Het3U8vT2/Ti6TRjHq3ZcnCuICNO2BsY5OXQAAnhMBL4P0RfhDyJjhACIHQYmMSZIPBgItcJLlJlqwuzYw0vT69nX7O7mu9f5xH84xsyfaozdhwzed8PnPKs89a6+y99r2udd3XXR9pIxOBHVoUVQln0/nNULBHs2SuGMLfvwI1xfjAbhbDwxiPrOJvu4o0X8COh0jtVTaPRXz2SIlfd9bVayVT8/037efu+17J4sKDqHQBFT6K8PYwe0gQBcmzVm7+Z0ASKYJOhGlL8uVzU5qObxvA9iz8dr/i6ezR2jNIt5lDy8wcXjnz3LAkA5Mlji9EGGlMaqzPMdrOEFt9gYNIVT+bQitEe4aF6DCIZ5JuAKXmU4wd/TM+MvQL7CiX0eOnMdMiRpqn1vMRQlDwhnjcidgRQufEkfOyCj7nM+/222/nYx/7GK973evOvLZ7924mJyf5kR/5kW9Lun34wx8+91ZeIKgmRcx8i8OdMraGjLqeN8Xb+JncCb5+6jcY3PYhLOniyiKnRy8iW5/HCRv0WhGZgn1G55b6JoZIz6QXyFjxOAmzaXpeCTeArJFnQBVRYYtEtHm6kdnlNn7nON0dGyjMZGiPdUjsfsDguy1yjQgsgVnKgzRIp1e5ZM8NPPrIl4iaJ+n2JlBJymNmmSE8flxdyR8Hj7JqF3iodIx3bFr3+dtwaZUkVghDcKeM2LB/iPpQG6smQAhis47WCrsbYEbGNxkBf89APPOJY6Rcke3SSQ1mIou8IRi0Fa1E0VWwIWsxYCU0pqtEbhlhGYCBNXeKcCREWZrASmguT2NnXph/z0uB7HXXERw4SPG1r8V/9AnCY8cQaYteLWVwIItY7VGeDlBOFT+TUMkZqMRC1CKsBR/nEkG4FgDHKmDS28lFYoI6HSpmgQU1y9SQQ95aZn9rBDO/AaUscgMzmO5ONiaf5SJ1muXMLghXSXIpyuhSajlk4wZmJYM18vIbzD4bHLkux06LAr1axyhpMCtkTjxJmi+ghqr4GYGX7SENG60V6nSInvURRghOE6nyBFYVM1b8JG9hqbrCofohDGFQD2u8c6PD4nSTTe0iTaGg1qOuFP/u+BRvLHa5cdzgLrvBRFKhoNaVbjJWF0Qa7ncCWc6imz0cbyt5/zZ0GhEvz0GrwZY/fZBwMEtYzWI3A7w/+1/I376WaK1S7OD0AmL/Sd46218A3T71QbqVPEXXQ0pB13QpegblS2zqh10cPc3jqxGLPY/R5gaEkCRGBDrCTAWljmZsNAel81+19GlkqwOMXrKb2qkTNON5JjxFKgWpZ2AYmqIhMeOIxLIAzcncLob0Mhoor/wAAkFKF0M7gEG8/Q3cNNVh6d4DLMeaA2HClNOjTUJDBNxpH2esZLKrNkqsG5Q3j1JjH76QFNo2g2r93A+FRBsuY1EbUz+3auSf8SxIFXgZtsoeeWlyJH5hRTsGnsWDNj6LdLPSPskdqR6W6WKFitT2SMwGSvYISBjJe5xeKz1mWgadxoVPuok4BAtyyqJhWthBi9AtQtq/TmTDJzC75KqTePMnMF23f28XAm0apJaBwOf+y/+I1dIVoBIqjb2Yep2QKRsdZvF4MN3IlC6SrSuMOCV1LBSScWcbKvMgVqdAa/4R4DXnbTy+ER0/IetIeq0OGCaGSvAaswRmCctOCOsHcYtlpq1TmIsCKwG3FtAUNb52sWSoBZPBIAuihqsL1El5p/C4wTIwRnIYJRdrZG1D2DVRveTM/81Bj7S5hCyMMqALpPUYzDykIUppYiNBZ6bJdK5EkCI8B2/nDmaPH2Sk2GJcOhSkQas7Sn6gw5fjJ3lr0k9dNGyb5WOHGdq645zGw81YlIazRL2EoBc/5+eiNR+rxC4g4w74bRjWKC8lUf2/c6SHkCbCNkmWTlJ87Zuez0/0bZEP80TzKVpAbLRRhiZZUzO+e8Pvsb+2lylnBznXYzqJ2V4aY7FxmihpU8laOAIsGpQL4wwtbWG4vYlW9RTLwQoz7RnEygpusUzc62K6Ln6z7zL42Cc+RhqFCMNgz5vejml/a+ZMmnPAFqJoGdcdxdAeWipkLBAD54dMko6J4RhEmf556QvNYnSKyXwFoQKsoiQ33qO+TyDNU5gZE28qQ7TUJelB71CL7q/fj5MxMArDyMwQhpSYPRsvY+P0YrTu0E0ySDQVb4il7ix2UWM390JrH73KFtI4xYh7ZMIucauG3LgZt2MTZmKUrQmNmKyTxx49vzGuMCXuzgpJMyRZ7OEsSipjk2hrjk6hBEC2exnZ7h5eUQ6JRw/xcEOzy54nEBb3rXR59RaLbTtLWPZOFuZC0lSRhl+gPPnj3PXhp3j9T+8+r328UBEF/XkliRTW8/Cuzlc88hWPbiuk2/D7FcifXpNF6/ezXMVDCoGVtYGI1LCwkpDE6KcQB4UtoGKEFqA0Mk2w4yYnl58k1+7P9VqcdbzGImOzn2LotMnbZpuY9Dj0qoSw4mPICNs0aHXaxIHEM0r86pxDPXHwf/3TfPJnb2HDwMt3zp8z6eY4Dhs3bvym1zdt2oRtX1gpay8mTpin2eFP8rnyh3jrwr/B1QaLKG7TBf7gwe24k2V2RfOUnAkQAqES2l6ZXKfJ43ee5oa3buVpFkWFLqK3RFToAQKv1+MyTO7feH5lvQBSSFZkEzyIcyGIiLSziliRJJeMkFoGOJeRbwTINcXBqSszbNzbIb/qkzRTpJuguhGTl+zGVgZefS+e833YhkGaGyCwB7gsVjTlXiLd457Og7yn+m/OtGF8e4Xx7RWUUuz7bAkrtLBCE8O0SAmwkrUFqQwQxGB8byrdvhGfF4+SFkP+S3YbW9uf5f+Id3F/tIVYxJhuFiEE12ys8L7SPv7W16RqmWKSwarVMQNJeS5DailmGxk2bvjWVc3OF6rv+3EA5o78GtHxIwDUPvEYeAburdupT7pAl8CcRfl53M0FosUAmbMo1wPkeI5emGJg0wt99hiX8WD6dYw0pRe2iFR/jrph4DRfYTeJBtK9TOaWKHUPYCeKxKuCU8WOITFr+PYIhppDtWOs8xyQPI2MkWFQDhMePEhUn0HrK1AkaO1CrUmcr+I2l4hyUxTzXbptC2kLug/MorohRhSioxxGaQURVUgcAyeE22/8Hd784L+iE3XIWTmuGm7z6ssO8PknLqXnmVDJUAZWD0j+amaQLYVFHo1c3g/EaLJNFzMy0M15OLe1yHmDMZDDGMiRnFgm511P4fW30fzyZ6h/7GMwM8Plv3AHM2+5pC91n9vH6NFbMKZCFAa9AUFp863osE26cpB33vGHPDH8b1Gju5AIhGHwVelxi5xgdWo7G0/+Z66s1BAVxXS1ykx9gWY5g6QAAkqLJ3HKEsql8z0sZ+Bkc5iOi1IKw7YJWjW4tErkx4huxJDSFBcCWoOSxAElDOKwS17P0/TG0EKB0Ig0QQNaGjhuDmmFXDeUoW1neGKwzGOZIh+a+UVePfh/ERhFrMwoxdkvUtSCd4xfz76gzgbdxkHy9FL1vT94jMgXXK1eWOXNf4pQYQO7NIYgoqYn2W28sGpehlgnEDQh2XpCbEuyNR+RKkQYkoqUNANxNsToRbiNAJkTyMTFMGK2TEQYw3N8zguIrRli9Xkyixd21blXXn4tkalwk+8jIgPaObOhKjRIW1IMXNh6Fd1NdcxaA8ePweiTAIlt4GcMFoauh7VKbrXKFSTWCVjzt9t6ScTWqQ4Pi9dSeGQZI+xhdSskdg4hNI/u2MDkpqswuwY1O+BTpz+K5VwY4xbXJ1CigLINhMiQYLMwmTBfXsUwVzhZ9PtVbIWLaQpCU1H1t/DQW2pcPfVqIjXAJY/vQGORa0nCXMRWFI1ciIxToijlIf8A+FAuuJTG++M/t/ce5LigOC8QaYoQLtIP6JVSMg2H3KqHSEW/KqcEgSAiwXn1AM0rN1P0fC7SqzhCgbGV1PUAyTERYKaAEXG0eQfmvi9i2DaZ73CjRKWKVtZHFgSmbXDoOc7vdiWL8CcwlEBZVRJvXdlhDcc4P3EVuW6GxsFljMSke3mOg8v/8MJ/sGdBkPWpj/TthPyBIexuC8oeGFD2BjA9H09pUuqMXXaSuhsz2zLIEiFESMaUWIZEY+BcepwbnItou8NIBJ+e/WsGjBzJlhCVJBhWgJBtTs//HY2Ni+i1lNOFpX84U0n7uTD2mpCN9tVI1teiWsREVpfPV+ZgceVb/PVLB6dpUFzMIhQceccuUg0PtQOMwoNYA2MIkZD88DbQApm/FzFmY5TzbP34AIYv+8RDW+BnU9zQJHQV+x66h+VdLkF7hZ7lkNGrZ3zhexMpWrc5U4SAfVjhKdoXKxYv282hrbOkRsrog/1zr7SYxUokup1gDZ//GDezexCj5FD7qwNopcktl1FWlsV2HZUt9L3qkJh4XHvpThaWRthW81GLs0R+mQfCJ3ntFh8zGWd1uYTpCqKgTWv+o2Tyb2J5uv3P3m7PgiROKQxkSBOFfQ6ppU/DzdjYronfCUmV4Kn7TrPx0mGyBReVKHJrfqGlgSymZWC6698Rm2fNg2s+jzpNkVpgximm6vLA/B20xmuUFnIYZ6lSOqVhSkeOIu0pCqmJg0WpHbNSdkiJMAyBxmE1SDhhXcax8BQSDTrmv9z1IH/0w8+s/P1S4pxJt5/92Z/lN3/zN/nwhz+Ms3ZTD8OQ3/qt3+Jnf/Znv+Xf3nHHHXziE5+gUqnwvve9j4suWjcjrdfrvPWtb+WLX/ziuTbpZUFR5cmkGVZFnb/LtflPrSoaGEBQTSX/6O9gJplhNH8lCANlJIhSlczKPEuHFgh7GxBPnyRpFm1b2HE/yJV6GoDQPf+1upyz0tbkaEBl099x6r/fRyZNUb9ze798vXr6ZFcIDIJ8yswOm533nkJYJjpK0d1+OfBrv+9NRH/51zw21+Q1O8aIU8Xhqeu49PjXeVWS50NOi1La5VjzIYbY8oy23H3qbibnBxmaLmFFJovFORKrhBGPAWCupYaL79FCCt9YvfSorDMnOlxp7cYZfxfvf/NP8X1fupuFaCMAm66dIl90eehJQaYnkFaJji1x4yIrG46ROClez2b5yEE27bn85e/POcCaHANpgND09vf96AoXD9NMFY7vEGU81HKAZSoMzyRpBMhWSKP09Plr4MgMuwffzvHZfTwipxnRKV0jR1FmGS0JLh2Z4q4v3IuUElk7zO7Bh8nQ42FzO1r7IBwSq4bX24ZsO6TdGLNyYfiUOYbHslqE7WWyx5aRnQz4Lmm3hzN/mmhsIxEbaagG42Ob6M62iZsGqd8CU6AYxRInMYoK51QKpCSdFObneOXEK/mLJ/+CSEXceezTvM0ucbVp8JRhnjFK78WaWuBw/2qG2Ax5b6r5B9lPVYi8BMe6MBZ85wJz0yBs6pPR1U0/foYABrgIWP6D/0HNO0peH+PQ8ACWb3D80kWumt+BY74T1Vsm8ee4Zr/Pk5UQ5fXPlYPDV7Fz5YuUqlnurn6U0dm/YDLzFNPWJmIzhzIUqAjQFJZcjGoKW7e9/APwLZCrDhL3utjZHH6jTqEyyeyRHkJC20/YfKiJtEKeuHmE2PZomEPEVhmBQTvzVbSY59pf2svRD/w7kmIVIWDn9sso2lAcKLEiBJOhzy8N/RlWcRxDWsQ64o96f8uHVy/GdQyKTpFXYPCYtlhUBq6/mY2ZDA5TcJ48UL+rkVMkwgUkOe2j5AurAKuE4uk8QoFDr+zgGiFhzkILgedrhBZ0J5pUjo4QDadExTyJ10UFIW5cRcsOWccgsjSRTIlVgHmBCxgt02FspYqZvQwsZ+2+rXG6Md2Z+7AnbiAsZJCRSaa5Byca6xfe1LqvVjMUiR3DmZ37PmOX2usdlxZ0HQ+JJDYM8q0KmUYXv1wANIph3EyBMO2CSpk7fYKBiQms85w5AZAGOXSYAwSaHgKX2Ogh3AQMRaCjNf9gi8RNyNU8vLbD6mCKtksUWhWKQY5qt69wGOi4JFaK6TsYiWTmFXUi1c8zXdkWM/6lPKmhINGceEONk6OnGb2/QKk1SHOiybErWmQOncJONtOp9OPUbM8HVUaQ4hjbCLwGRtJCeFliJFlp4ssMUkakBQfRDID+75UkXYQKMFTmG0O2Z4UWkMgIrSCOxXOe32lawtEDIEAToPV6lXYhFYkRI1NJqdm/Z7UGm0QqfPaDvUAY8frGduQlbHy8SZTN0Rko4FCmaRwiS590bHAcIx+hugltcqh4CZwsWdtGaYXjRhRUma7ZQACrwTIeGgkI2yBVEVKY9IImiYjBAhCEiY9pPPdkoJVC2JKYHjYSsba81SLGih0iU8FLND7fDp40aA7351dP50jCmBhFkvQQroHWAl0sonpdDM9EoIl1xP53zKOUZvTrBVSqOLVrhZv+ZhtmT+IsSsSGEqleIjViIlIsYaDXFLLaMFFxvDbXgPD64yEcB2WqtfVo32exNdCjOlPs+yJeIB6azlSB0X9/LQu/8zDJsk/WFlz0tWMsjthMX+PiRtsATTHjUtw4wlKmw2hiclFg8t/8O7gqU+KiDafZf/Q2mq0DJMFXSAKT03s/yidOfpWLX/XD7L5lA8XBC1tJ/Y1IohS/E2K5JmGvX2H0xUIcprRW+jYTQxPPTxm65bIxFk/WOfbEPJ1U0VjqkMk7REGM3w5BwKWv2IgQgtnVAFuFRMJCKoWSBmHaw1mzWbBWF7jsa4sgcow5b+dPiq9kIh2jMdIh2+qS7aYg+ryJFTUJ1OU4a4R72nIRZoAXDyDsNitd2FjNs9i2KGY9lrsRUikePlZnqRUw9AKqdp8Lzvnqeuyxx/j0pz/NxMQEt912G7fddhsTExN86lOf4oknnuAtb3nLmcfZuP3223njG9/IwsIC999/P1dccQV/9Vd/deb9KIr4yle+8sJ79BKhosrs7u5gVbf4qe0xI9d4/HfpsxWDH8bhpxffxEq4gFw7ARLbY6k4wnheUvUXWJ5unyFRjLiKctd/YCNOWUUxMXj+lW6Osd4uXwrMkgdpfxI32suIvn5j7Z+BJgVp0BnMkEQNSCFpp+iVLiqMueZVP4BZNWg8ehdzrR62abBcHsdxHC7qXY6loW4IfveR3yZJ1m+IOtX87eN/x+VHt2BFJoEbseQqlLH+GSvsD6j4XlW6mWsO72cgOCmX+T3xOT7qP8nvfe43+I+N2/m8/0lSlXB0JeTOJ1aphyVWkwXSYJrhYw2E0a84CCA6/V1DN3dh7/JUfvRHEF6mnwK1htJKFwxJmIvxqxAtR2BI8ttdhCmRZ5l2Z0wFlkdcHOfGgR9DIJlhgaVqFUMFmHGDi07/LpuyqyiVMrOS8uWZMZalpJXdgRAeIBCJ299R62qs4cwFkzKZNdbnirDskiw+CdoirhfJnDW3dFsdnEdeSzb/AGiNCjWqq5BGF1feh8iuE/2ip+DgAd5/yfu4eeJmakGNWusERB1UbJCebQCdJqzGNrefGqCT2BiAI/Qz0ku/1yBzOazNmxj62iG2HM8QuynLG5scvO40ojSGNXoZ7qbX4folKssRQgiEEEyMDPBx9yrcZahMFdl8sUWu7BDltxHksxhpDqltlF4hiQLk5OT57uo3ITswhOk4RN0OjblpxrYOUB7OoRXUVYpGoEKHK7/2ITL+LH5mksTIItLjBLk5wlyCvP6d5L7+5f4BpcGe8TKbhipIKSGOwM3gVTZhGjZCCCzp8PaxX+X/GPv5feMB7jCOsyS6tIixwgEK7esoBrtxKSAS+58f5/iQyqO/7yoROsTQ+Rf2UN9c/TTI27jNkOFjDYxUE5shtZ0zKFthhf17m1QOsb0ASDKihI4GsGPRV174EhMbWzoX7mO1xA985QakXtvD1pryTJvhR4+yb7SBceLLjD5xgiTjkvP3PGN8Utskzrgktg/6aa+3HkbyJUpz60SyrQ380GI5zDFjm0gk1QXFWmUCJIMMJrfQsANUEJM0m9RPzmKJ8zt2pspCUEVoC6E7CDKAQMdtdGBgxIqoF6AKksRNcds2I8cqPLHpADWzi98eYWy6ysRKHpkI7t+yRM9OcCILmQjaUyHJiDjzfUbW4vTrm0gtyC45bLi7guuW0CokJUAlPkZqEZcKpPosD0N1eI2CMHHSXeTMq1BBynjQJgwNlnyXoD1MNwmZ6yxQHpzASCVGLDBigQwVlja/ozFxpIOlbYzURMbP/jeWcNY8efsQuCjjLA+jSKGDBLO3Ho9oQ71kv+PT6xqAntdCaonXXr/Hh+l6XJ5EWbptTXWoiA5ddCjpNDuYMXipSVkmaN/EbRcJkpBW0qUX+xixwDEzmKlE+Alxo3NmfI0YDCW/9bmmLUhNHEpnCDfok25axtjaOn/XwVl+VTKVZDshMgoxWj5iaRVb2ThmDq8wjK0sUBZ+I8WvJYSNlBiFYUBJmJy4eR6hoXQ8w7ZPb2Bq9kqcIITUwUpNHO2QEQUK+QGqwxuoDE5SzgxidiPMboQdCcxEEvgdjlw9S2uwh9u2ufQrm8ndPPFNc/j5hrdnEGdHGXMwQyYs4BkjWH6b5aG/esbn/KEcx6+ZpL7zUn6qdTn3LcYYRswbX/EIQl6E4d6I5eVR8QKd1Ud45NO388Rdp85Tr54/Gssd9t1zkkfvPMqT950ijZ/bF/JccfaxpPn8RUAD4wUsxyRNFLNHVgm6Ic2VHmmiKA5kz6yjemFKJB1AoAwTDWcINwA3dDm+p82J3XuRwmcuO8+wWQL6hRQ5a16y4jZJOtB/D81I1yFaiys8u0x26WFMUibLWd69e4wr7ACBYKnt8Nipl08Be85Kt1KpxFvf+tZnvDb5HSwSPvjBD/K7v/u7fOADHwDgb/7mb3j/+99PEAT8xE/8xLk242XHiqyxNZzsxzjZGJFKquUuJ2o2Y1pyI3m6s9fAaP/zYdxE2llqccpEJeYrtx8ifY8GAyxVIVX1M8c24pQmmskLwLskbxQYMSdo+rPUTRthmf1qU0phH/gMy7u7mEmRqdwIteA0SXsIqSt9YiwDlgKdaLQQ6KaPM1SguHmKytEneerUjeS2TZK1LU5nh7mJy3lf/W4+XZCcMDTv/LvX8Xfv7Csdl/7ocX5x7u107YAkl9IY7rAviRkX67t9Z0i3C2Rn5kVH+ZkpoD8/9z6uHz7JFyun2TX6bxFANVnmD0/8C+TcEpeX/y1O3PcK3OQPYmZ62H5Mz/Vx2iZ2qPFP14ALn3QzikUGfuKnSVOH1l//PjqOydX9M+8H2RjMHL1Fn8xEjszGBD+CTDskNSVG0eiXNgRKAzfxi5Ur+POj7+XrnsvmgVspr9yJJUJu2hTgnwyp+Q4HO0P0zDp2rh94CASGyoIQ2EGCUbxw1FuuzDBkj9KdmyZ1TdL6SayNWxGiQHHXdXinDpPaLmHsIwY247BAYWQ/IVegFXjWCfKrH6NWupmgYGIGKTI2oNOh+PA+bp28lcO1w4yb/fNExdYzSLebJm2+ciplybcoWwkbvQxGGJwh3YwXLw64YFB9349Tevvb6H3uo2xa6BLGRZYmu8xsW6FV7XHtJy8ClaJJsML1eaoTRFQnJvicHuM1px7g5MC7yY37tJZb2GuJkonZxgjbyKgLgxce6eZkMuSHRwmaTdrLiywd3MvURTvptQNiPyXMGFh+jB+/jq3+IeTM37FQuYbVindGwRO4q2w5nuHwE/fS3nMjIFCqXwnV0AoZ+CjDhCRGSwNlWVjCobDjl/ij42/lPfEeQkJ4NEf+4lv7uXtaI5VCpt+DJ9xLDCUEyng6aHXQovbCDqgFsdEjMVvkam2Kna10PQM7SLH9GK01TmeBW/xl5rMmqerPz0LZJEaLxGjSbHo8dWySX1BLKMtn3+ir2TE6QWno/G9IPhe+8Mj/n+O7BvpFnlKFTDVuO+RQLeSBT1coen/E0NvfSy59ppJf6L7qqVNxOXzdq868bncjhk9cBOlJTu3op02PtLJ0Z2zuvaeFU8xymQGZRkCnHZLPP73JspmR9s1M/+PHKDZDAhI23WRx3Y+9j2y5yvnAfD3kQRoEKz0KbkiQAxBsfDyicXgH45NHOPU2r6/ESQWDp0tMPTrChyjxtyeKJFLwTjXCNClNAz43X2LFM3nHpSWM2CRfcrlobNMzvjPNRtSOHyY63aawaHDjoRtofv23SJaXyZQqFLb+v4Rzp+me+DRhaRPdYkhlLmaxehrPGkIJhxGxi0fu+ByV+CS14Zt4LM1TVyZ7Nv8987mQ2275Qa4u7GHp8AFai/MA7NnyKnLV78y24+Cpafx2iNaw5+JNGN+wwI3ChC8+OUNs9UCkJFYeJQLMjk0QSOL7TqG+dhCR07D2lRtWHK4bfmmK1D0y/UVmWADAOn4Mgjz5Vh6/5dLNGTRrdUxvGk9UmZ+t8uCc4pev3k5y/zL12TZR+6tMbb2YnUNVTNMlWflD7kkL/NqIRep2OSwr/Nbwz7Hjiu/n+H1foT5zmjjwQa+Py4arLmFi85XP2caFY9PcdexzbFqzK1b0UPjYTUX5dI0rO1fBRS9NoYlvh7nsfqaX5ontlPxcjYv/9F6mRww2nV7CmHwF5Tdeh1kog0qJpcmqkCxjoJRGJRpc2GIr9sxqRKppRA+TihJONMzoQ0OMPilobFE43lbGLdknkKdTSFbAqRCcPsn8H9yLPTSGe9m1JK8Yp718iPteNUR+1aO4lMVzMue9iMKzoXjbBgCad5+i24oYPl6jWawTqYDYOokRF9EUkIaBFIJO1WPz0h6uCBaYO9VlYmOXd7/+ET521430Wj0yRZdeq04a7uWxz55idXorkxdfylU/8Obz3NPvDO26j1zzMdcaDj08w8XXb3hRjp0m60S6aT3/dbVhGWy4eIjl6QZBL+bII3MICaZtkq+se8d2wwTPXyVwSug1laZYK8Cm0jozO/cTZU6BgPHZMl2rzS2961mmgZLrRL/d8RG+jRIVeqQkCFY7BqrbJRarmGmebQMuzvJdLBavZ2ygwmarjSkUS6nJv//EnSzI9f6+95L3Pu++fzucM+n2fAshHDlyhB/8wR888/wd73gHg4ODvPGNbySOY9785gv7hI+MhEVrldFokBWaKBt+ftcEn9rbJdMET2l2Nko81dyP5w0jkTi9VRbtPAOWxuhK0lghhIUWMSpJSawaMk0gCjltp2wtvzAj4xcDObOAFop8IlCGwirYCMdG+wGiN41z9B5UIc/Ulh8j7SlWOy2kHid1IPQ0hXYNozyAdmzShSbGUIHx8a0snjrOse4KTb+MH9j4uQqxDLhp9Xo+rR7GFbChPs6B3/gCRVmgm3ZpGz1yuMxtW+H45fO4R7eRiHU1k6PA3lRAFr43U4vsLUNPW7oAkO/luGpxJ0eGLWIVYkobR2Z4pb6VPekepO9jJgZWL6C4/ziDlonoFVgdVYT5hDAP9oLF5CWXki2Wzlu/vlOU3vBG/KNLtJQmbfrIg4uokw0KlBBJPyXSP9rCGvYwRxysowG9fJ8Ys6MUq7dK7BQRArrxEjudnZw0Q5xNVxJ1DyHjNrnhzVwysIXHnjjFKpovLk/wGqFQaoXUErjtiHKtTmZjAXvywln4GdKgk7bpDZjYsoRqP4EhU4xsBzO3lbg8RFIooVp10sefwrH3Y1kDpIXfBcfFcZdhFWTZQyhIHANbKXA9mJ/nxtwYH/eqDFtFTghNPmtjW4JCN8IeybJ90yT3z5/C8rs4UlI0JWaoz6h55fdoIUkjlyP/uh/C+fyfU9w7wZ3VEA1YgcGTN57gknsmif1Z7E6O3IrHvBeRCBetJJ04ZjmFofoyR0fH8LqLiF6bMK8wYgPdjjDUCgxemH6Lueog0jBBwMKhJxndtRsnYxN2Y5QByjQQZBD5V1PK3EDu0J8Q9VJcOYjrlOkVOlSsLFNf+isObd1NN9XEpkMKZG3JgE5Jjz8FQFgo0R0aByS2kWO7dzN/p+7jnvg0N8+8hs1TERT7qpnh04tsXn5uQ/J/xrOj0Vnl4A2TxA5oCYZ8YcSlBtAK2+8yfthH5EOyyz7DRzoIIdBA2jyOf7qO1F3M0KU438Y38ihTY6VlBnJQzTp0W5JKYnPx6iO0WwMXNOkmtaBli7VUUYnTiZg4XOdIYnF9u4EzWMQvd7Bas0jlYCX93XizGxFnLBACmSQ4YQOjvkrGNxg51GJx8/oioGApLpvq8lgc4Kf9lDE7UiTNHlpEiGx/fEasST538SyveGgMcFmemyH2fThPdVl6QYKqdzGkBg3VzjKGSolii0mjg1kEI+pnT9i+yY57p3gsbHCv6rDJgPfY45yWCksKAqtfpdSeLFLdPdK3A3gWGDmb8pu3sfQ/HkO4JlgOMpvFMiRJECHSFG/TBsKjGrQiX3MJ7S5Rt0muWEJjYqiA/M5rqR+4n0nhc1C7eEbI5toPMbDxKT574rP8+g2/jk5ThDRI45Cg2fiOSTeVKvxOf2Pm2eq/JFGCdCWJ0Y9niu06qWrSLkeYuX5N29zwJob0urpUOi+dPY0nPCqzefq+5rPoxMdK4zUNQg9HWoxm+5tFQ9kOh1KFUimjWwvAJnqnHiGIV4nSCqZoYVmDXJnMMMjlaBVjZRTZkWEM0yQ/PLpGZGq00miVYnoeWutv1URWFlrkrQmanaMUM5uQMoMkQ7PawpEZyJ6/OSQ/WKVZ6gfz9mgO0zVxTImVt1G9GeL5YwgmEeVRQsNgVRm4jolKFWGQYDsmWRXR+ORfES/OEi8eRg6/GmvqBhAGQnugmzRjnyHTxQKEDsAo0Pzc/6H95CGEaZI0V7EqFQx1nHq5QqnmIZQk07Gxyh5G9vynoz8Xiq/egDAkvccXKSxbHL3GBu5l52ce5PTEz+NmR5C5LNoQnBrbSXF6GhCcWJJUswZX7TzGU/Pfz47rCzzwiT8gTSJAsHj8BI2FebZdcz3FoZHz3MtvjzhI8PIOQTvCdGSfvFf6RalCfTbpZrxAMcvgZJGFU3UMQxL0ItxMf52eK51FuvUifK+/IWR15lghJCvGMLMO0iiD6PTVb+2IxyvjDHQK+EMJucUMbmSupZ5D7Dk0u/8SRIJtujhasKXncWzwOE5zAzqR9MxRnNospteioW1uqVh8fCVmSKTEGv7w/jvIF1aoelUKdoE3b3tpOKmXrW5uoVBgcXGRTZvWd6VuueUWPv3pT/MDP/ADzMzMvFxNeV4ox1kaqstl7c3saz7JD5VeQZQGvPHiHP/1/gbvxqHYSxnK7KSrmzhmDhU1SIplWF4gbnZBgxlXAI1hZTBVBQRY0TKLEVyXO/9KGiEEhjRpGIJsYlDvCKQFaSDoTRRp7e5L+VwjQ9bIM+eu4vZa2B1NnCmguw5JU5E2AoycheqGXLLjap78zGeoFZcZzl9FlKScTAe4uDfDQGGSP5v9Km/emGFTfTPZXt/40MHkkFunva1D6/L+zao6VECdVbHEappEJ+rYExe2auv5wt51MTxwYu2ZQCuTis7wBuP1LKYmGBaOcnln9v3o7godZRLkTXL1HoOqiFhL3+nlQnLTPqqUpXZ4htqT89z87n9x/jr2HUK4FlaUYI8NI2yBIcAYy9OxQTV6CGmhAs3K4jKD1SqZgsTqRighSKXGaZxGuiWS8gQKg/Hiq8hKjwfGr8cUbyFjCCzXZPvl4zw1+yukK6eoth3S0ihSFkFFGKKIMiXxQo/MVRfWDblsVZC1DmI1IHV90rgCUQ+ZGGQaKwSdJlIrut0KBXsFEdfxtmwAYaDDK6GzBeUVkQJEqpGeR9oNMNKEwROLNJIV7MIAdpoQLLq0d5oEWRujm/C2Kyf53TuPAJrVSLJrNCDy169NQ3wPl2R3i9iDEmO+ySv+9iK+9M4naVd6RI5DkrQxsHB6il7Ro4RLPQ1ItCRONX+lR3h/7zRTM4u0pq4jyNlYaR4EZOITfZ+V4RdmaP9SYeqKazj0pS8Q+T5CwJGvfhFhbUCakqhs457uoW1JNNPl1MYcj81UaaxMY1/mIBoJYcYhDULMOM/O/+dHeDC/ha++7efZOVpmebXGvekf82/+UREvzdLIC1Z++hfID16J0vDGoV/iS09OEz65l/yVe8C1+yq3VFG0DjL0gR8+38PzXYf27f/A/MY7AHA7CcXa6gs6nqEtpNpCdb7A8KlRkCugEzQGWilIQ1zvEczcJqxuStKV+AUHZWn83CpO3KLWMvBMg46SVA0Dz69Ta7SAgRehxy8NptIKYiBHYvfnvNJiP15pCs3FrSZxIukYPmZcQZOgiHD8BEMYJBq0IVC2jW8PQX4I69gcSsRItb7j1hQ+sRPx7usOcmiTy7HHJKqe5/BDp1msKN74yssROkWbWba5A8zma4x3hgmCkLmn9pIEPgObX36fyFMnWlDOYgCi1aVn2pgioRxvoUyTk4M2mZaiVwi55K6tpFqyaucpr06zw3QZdAVFJbEzJrvftZ13PgfR9o0wCjbKT6AdEx5tYBQK+KdPY42PE33xs8hbXk/5dT/FgfLfk+14hJmIfM0iKRpoYWAJRa26g2LrE0Sxz0r1DeR1ysPdUS5ZeoK9/l5+8cu/iAwTNq26XONdysy+x5k/8CR2JsPUldfiFZ5bNSTPskRJU4XJMwmzJFbEcQxrpFvPMAgd8JYztJ2YXJDQ6dbAnUSFK6AU5mDh3H+g7xCWbVOrtgGojGURqyluW9EtuICLCMu042W6gU0qDFKlOLDaZUclR2ulQi90Od4w2D3hkqLQ3nV0ml/EDQxmjEU2ZTZwotRhAzC0dQcnHrgXw7JIwn52QxrH+I36czcQmFtsspS12Wo6fT9g+m6HMg0xY+BFICWeL6yCR67mASlGO0DFKVFXMnHNNKvHQ/RD/wH3//dlZqcjZrsaaaRc+X3bzqThpasdoofvI62dwD/0JDqMYOXvkN4wsrwJYdhkD5eRxYTp9lG85hyuOYhwR4jaW4mnP9sfD9PEGwjIn/wwsxt+rK+0LftM7R+m+tYLv/JV4VWTpLUAb6aA27IwgpheZpJr/uBf8LE3/jG7r9oOWrPsFnhk6+sBTbF5FF9PMzawSr1zmul9G7n89b/E41/4JIm/l16zQRp73Plnf8jbfvU3z3cXvyWay11UukZG0yfJTMugsdShPPLC18FCCDIFB5XqZ8xRz/dYUoAfxGgNQS9mcLL4TA+6JMTpNQkzA8S5MagdRRYt0HG/UrLdAQPCos3h0jhGp8s4ZRZEjXalRrmeAAK7F5MkY0jXw9SAJWiaFlY7JZXz2HIPkSdplcs0B9uYqxnahTKv7S7y2/UKA7bCqu3itPU3dIMe//OhP+GemXv4zZt+k6z14hYWOedRXV1d5Wd+5me4+OKLGRgYoFKpPOPxXLjmmmv47Gc/+02v33zzzXzqU5/iv/23/3auTXlZ4ZFlS7SBa3tX8PXGo9Q2GCAlljQYnHT5HwRUlCDTjsnaVUzpEGQHiXNDlMyYy3bZ6DXSzdQVhFzfUch2FMdQjBQvDJP2IWeUnp1SdwXNQRPp9lP1orMulozMMuSMErh1JAWSbL5PMAKgSZsRerWDWmyxYc/lmOU8F5+4h/0LTfKeQ+TlaYQwMng54/h84ciN3NK5BomkJ3w+Wvkc/37jB3ls2/Ez36mVRMnOmedGspae8r2aXvoNUCf+nMxmk1bGAscGIVCmgw40llOmW82QujZDIwJvso00+zupvVJAd9Shl1foWt84OF85P+km54S1Sd/IV4gXWqh6F7vd71Pkhmj6O9XJPXdhCsgOWkgNacai59p0xq5AGxapdBhwN7Kj/BqmSjfT6Fj4Qzlqhkm7GVBbaPPDv/HbPH6Ly8nhLmLN11DJHok9wPCBJqobY49fWGoLS9p0itDeViH0lxB0SHtForqJY5hEYxsISwPU3UsAEKQQ9wNXrW1YPUYrKhJ4BmYvhXpIfMn1EEWwtMQns+/nUrvMSOqilCC1+4GsbQqqOYenfuO1XCUf4z2THj89NYk6Syljmt+b6lMADBsEFLceA0yKK3m65ZDWQAd/xEGaBYorimw9ILVMCk6GUsZmw0ABb3CY/7ZkMRVGaDfP2Z6NbifF8C4Mz8Dnwvabb2PDFdeQBAErxw4zMJhy3Q9cxMU/cTmGITEChbsa4i/32HLNWxkbuh7hmfijisZ4glHeiqzcjLY2cZk3xdiJDn9+3zE+c6DBgeA0y5dFpCsLZE/M4/3xr6B0iiEleccmlhaF1Tmq2zaAY/arhMuEieax8z0s35UQufX7+eBsyI1ffuAFPW740lNc/fkdbN7b35iTWQvWfM6ElMQzD6KSFLuaJbupCwmMHq6jzQLK6GKoDEO5LEN5l1bavw4MLRjYfx/qjjvgs3fAQw+8/AP1bSC06Fd1X4MT9GW+W2YeYtdTH8IwAQGJVcPUeSQ2sZehcrrN9q/PftPxnNRFGhZCrc8FR+Q04Yhm6ft3UN7WJd3cZhsGA9LksaBvAaINi9Qu8H357+OpbT06YoX2yhKLh55iZu9jhJ32OfUrTRKiXhetNSo5N+lymio69ZDls3xWw0wZ3ytS9hsM1myKzhDdkZj2oE8gFW9dTXmN6HD3wqP88gMfYaiwkR3KYALJjnde/JzKtmeDEAKj0Ces0k7E2G//F3SvR++++8jc/2n8VkBzMULXAtpVn9pIh/G6iTb6BR8Co8jWao5PDL6eQmuWq8NjLCmbmTjLpSs7OF0/zudOfY47Fu7i6wPz5DZOkkYhrYVZVo4foTE7/S3bZ5y1oFXJN0vdkihFnRXWxpkCQjTxB3uYhZjVU7MQGOSEg7CrSG8Ic/ilSw10zHXrm8iyEOFpjNb6OTFgDJCiGckXKeeyHOjA7ceWiYKQXNUBMcRMbYbFdhPTLGJZQ4w707xubpiGtcJjK49w9/TdAEjDIFuqEPd6z2hDEgbfso3H506xJbOHvLtuz+BnDmLGCilScM7f+soczCCVoFOJqO10CafrFHr9eKm6eYnqTVMYOzezlPZ/dNu1nuEfnM7UiQ7eQ+eRx/qEG0Cq8R/4I3pf/S+Ai+V7FBY0hUYB29iDZgIVmBiVi7Avfgt2UbPz5yfIzf1HaM2xVCnRGOoRuymZpo1xgRQJ+3Yo/dBWsjJPUIjpDkF34wRqTjK48kCfWJUCK+PRzVboZqvMjV3LauGVDAUOVw4uUZ9rcmrfEojLMbx3Y2cmCTptZg4+yerM6fPdvedEEqUsTTeoLbTptUK2XzVGGivCXszqQutF+Y4oiOm1QoJu9IKVbgAT2wdJY4VKFFpppi4aOvNenCiaAYSZgTNWQAu9hHsf/zLd7JP0sk8xemydSFzMlcH1WR1r0RzqEmYXufQLh7jy08fYdfdJhHPWpkOqKfoKS0k6xYMoIya1yzSGr6BdeAqnUKY1tI2Z2cexJRwOiyw2dnPNyd8hG27l5PwmPvOw4DMP3I1KX1x/6nMe1Xe/+93ceeedvPe97+W//tf/yu/93u894/Fc+Pmf/3lc99kv6le96lV86lOf4j3vec+5NudlQ9w8hUJxZfdilt0OP7X/F7lp+cd53erPsKOgOe4opknxGgFG2L8ZpTpmLj8AaHZmFjEtuVaxVCCURBOTih62rxiumOScC0MdMuKM4cUuiYAlz8QZ7ZOpvQ0lRJAgj9VQrZCyXcW2I1LZBRSdkQo6XbsRpwqkJDm2hBCS4UsuIm+scvTRr7HQ7qGB+zffQOuQYC78GD31oxTTPD6KL+X200ES1m5EB2epi2QKQqFJQIfIfxKk2/qiPGk36C3P4XsWIkowogSBpj2QISmeReKKBo41j6AvzV8dqaE1iNUIsRKRLVcveE83ALHmW+Bs3IVZyaKDlMF6iJ2aJC7EehUhDTh6jFbUQ0hJkWemmWk7S6l9AikEUsgzKQrd2KCby9Iu5Jg+uMTxQ/M8FezDswsI6aAISY02mQZkWj72VB5z4Pynf5+NzNnFFKpZ0t4xpBWiQoeq4WLVV9DZPPPhJWc+J7uHIe2CM4zGANMlzJskjoRYEycFGB2DUhsjPIRIQ1YCA6ENkjWPB3vtejOkANVhwHQxhCA2FSIFM5A4nH/V7kuK6g6E4zF41QMUH/gqbi0lcRWNwQbSLaFESGG5g4xTEJI0XiSIY7YNFviMn+fH5weJLQeBRJOQ0iFbD7A3j57vnn1LCCmxM+tkTdTrL6qlJSm/fTvmUAax4DN0uENxdomJeh695t1VH+gHhubANjI3/muKF72R/wuXX8HjpK+ZrH+AX506zQffLGlnYNfxiLGP/z9o1b+n/NDuSSrDQ0jb7AdpScpE/XGc69/2Mo/C9waUXL+3yESSmvkX9jCeuSlhDmYQtuwXFMka2JsKRM0ErTSGleBNOlRWupTmBVI5BM5plE7YXM3Tkv35QySLzGQzHPMFnD4Bjz4KwbdefL/cML0sypR95WWY4DUClNZsjH0EGttxINZomoizvAedIMHpRHjN8MyiwwkSsmvepYa9Hg8GZ/nXoKE22ifQiggafsTp1fZanqLAHrqJiXKBu65aJYpC2rV5/FaDx//hr581RW923+M89YXPMLvv8We8vnryKA999C+470N/xL7P/P05jcl9f3uUj/z7r4EdouIQ7XdQpo3T8zFOeqQ65quVR6iPdogCyZGTebSWjLcX2daY4Wtjl3KtligEjayB+zyyGdztZWTGRHcTVCchd8stGKUSzJxGrvb9yYz5FLtrEGUSjLiFGbcBjdApg8U8hcIQT+Z2UmydJEdEguD+xlZ+ofhuRrOjZK0sjyw9wv+cvx3LyyDN/m+2eOipb9k2aT5T6faNSKKUxHCQyTppqcVZhcb8hNeMv4/B3BUIIUhWDuFueekU0q67TrolOQvBPCYBhcUOMlEU3UlmOg/TTZoM511G8w5PtUKiYJbKhIuT24OQVU6urhAmcb/atD3JDlMx3N6IpWy+Pv/1M98xeskepGmxtFBhaaG//ojDb115dHb5NHmrT8xqrVEEaB2QabpIU4Nz/mISI2fh9PobkdqAuOjiKY3S9M3gB7dRX+wQRymGJRmYeKZqUS0voFvrm0vl2y6ndOt12KN5iFeJjn+JtFdD+Q1UcxrVOknamkH1aiDA2f5anKt+ltVjt7Ia/z+03J+id9ZGgZv3LpgiYd8OQgpG37TrzNIozrm4r/45tj/xCTbdcwirs+6nq7VGa0XbziACj2Js8/YrD1BfCMi4AZapUeJGcpVBdJryyd/5T+epV98ei6fqLE83kaagOJilNJgjV3KRhqC53Pv2B/gOoNRZMcGLoAzNVzJc+oqNjG4uMzhZxD6L42j2EkJtYSYBWmu6YUwr12TnG2ZIVUymaTB5YIikIdBKYZRsqnGJ2FnjGDSYkYFRkgjRn0+1XrO4USBcA7drg9B0s/tIZRszLZHvXIcdH2WwWOCprW/iN7In+bPBeRSCu3sxx479MNHyGwhXb+Xf332KH/nDe/gXH3mIP7/n+LP08NxxzizPPffcw7333suePXu+/YfPws0338zNN9/8nO/fcsst3HLLLefanJcNAoW1NlybWwOcEv102IbuMJ6JGc877A1TRsOYdO3EagXz2EaJvVaXS4ImNxZvZf+KTSyXMXARWEhtshL2EJnnVgm+3ChZVQztUg0CfOkhPYs4Z6MMgXe8Rq8TEzSaDFa30KNFRpsgTGInQRhrJoh+iKgMQZIS75vh0stfwbFDjyM6+3n4+Ha2j4ww7kie3L6TLY+fQKUmNsf5pJjkT4tfJ5EhTjhBXrpAPwjVpBjJWmUiYSL0PwXS7SyUykReg7IrCImJuiluT5M6FmGakvMbZMw2eQ7gTjYJ6w3ScByBSf5Ek7Zjk9S7mHkDabx0/h8vGtZ2g+2x7chyGStjQycgWqvi1Ssr5OnT6Pwg6eGHEVe+CnG2IbEQaOliN49QHdtGr92jrSWGXFNfoEk8B0ekPLDvLgYokl9L7ZM4aJGQ7UZk8gnmcOZF8Ux4MVE0ywzEJaKZafTmjaS9GrbbRtoJhY6NW29gLs1Ru+516AN/ghApoMFYI02sMtp0CQuKyItwBjN0966Su/IEwm3RL0VsopMSq+M57F6MkgGTG8bPtOGy4jGuH6nxRDSPZwq0AYmhMN0Li6B80ZEdQuSGUMuHGPFD5uZXcTtVlkaXmdhXRDoept8h08qhPIWR9Dgg53BEmUsGE8LAIPRDnIyBwEQIC6+Xw955Yfq5nQ23UKQ0Pknk9/CbjfXXd1aITrVotjoYjZBCU5IVVTbsC1jaVCOxFc3BHqWmDXEAOKRIrkKyVQoerrl8dsdPkw48Sv2rX6VjaUb2n2D5bTFKmkgBY7e+GpK0v5Do9ti5eDfGVa86X0PxXQ1lnaWk6LmM/ModL+h48XKPxd955Mxzs+oSL/f6JvlIzKEsnc/M4Z/ciDkWYuYM3GZCqR4xZwTE9iJWOIAfZVgd2UzceIq7L30PieyrGp2kx9TqIbjz8/CDb3pBbX0xMVgex/TjfgGfROF2E6QQ2E6eQ8MmwnPBEsROFzfq35/cZoDbCvveo0FM5BgoS2J1IjIZE3tTAXrryjTjLJNnd6lLkPXQaLZZBl4iOLTUZDhrkbEMmm6OH40v5he9uzk5DiNff5xtdz2Edlwez+S47M3vRAhBbfok048+RJokxIFPr7YCaMYvvZz9d/wD4qwYobO6zMmH7mfj1dc/6xhorfnLX70Pv9Vf8FZGY+LOXyIzv4a0HBCCfGcFAodM18eXAc1tTRaXi/iBzen5LG4ccMP8fm6Ze5xDV72TrClpVRymtpQxvHPfkDZHMpgLfbKot3cZe+sW7ONbiVdrFNszxFs3kVmtoFoRmY5HnOsx3I5pFusEIodSCVvdDHGuzHBjLxviBerOMHsji3+3aHLrFbeSt/LcdfoungqP89nJw7zRu4zuyhJhp0XYaeM8x+amYaxfeyr9ZiI0jBIwLBQWQsVY9Q69sXXSaTK7mYQIFfcwhETmFObYS2d/4TlZqicKJGaKNhRC10AEuEGCagUE2QQjDugkC8SR4qKBDIHv89nZOm+ZiKiNbCQJBplptphsNSl5Gpm5lY32fi7K7GI6zdJptrjj+B28fvPrefzLASvTW+k0UlAKwylQHH1u3840VXSdFbLaxgjqpG65X/HVitFpjCzl4TlEHy8HhBCMGGOoRYVv94hv3EP2yHH80ZvIWgnc8qska8q3NFZYa2vI5MQyyXQNM32KuGPiTFWQXhZr6+tI5mfwtoW4176ZtFXrp9RaDtKahGiBtH4Qa7gIURmdGhieQyo8Ej1J0LAR6jDFhSxmKsldO/Stmn/BwZ0ssvHoJuq1RWInQWa3s2E5xV7u0Fr1qdmSlTim5BkgDBLTYdaC8ViTD1x+6oqD3Dc7yCk/h+sUUekQhS0DdBs1gm4H9zz6/z0btNYsTTfIVzIkcbJGtkm8vIMQgihMiMPkzHnzfHH2XCSMF77eMUxJvpKhXfNxvmFJ4IcphWCOkByJ65J1JDqImJt3mcodhWaB5eUpmqGFUW9gCIvh3jCx279OrNDoe+ePuTT23oE5dDnSLYIGWXJQ3ZhKq4xaULRKC4RmBjudxIzLKOmQax7k6sGUueWEHbLLNiNgJklp6QKBjDHsDkJ4HGss4S/n+OLBJX7/7iO87coJ/sMPXvIsvf3OcM6/0M6dO/F9/9t/8HsMcVQn9OdZyCcMqArztAmJcITNjDzJuLeJptRMtUPEShuVVWTIkMZNIrfKqg4pHkoxDYNQK4R+WpkUs8HPce/AhUOC5K0iHatJxwYhEi4ZzhAs5chONwmqGazUo7G0wMjW7Uy4G+nJVYhNrI5NmkQYMoLYQvtRnwSJEnZf/So+9eHfZ1Qd4q6jJ7lywyRWmJKa0BguU1o9yJL4Q/5BvZ9g4Ucpuz6pkrjGWkU1LUiMJgbrV658eoIwLywy5KVCdtRm2cxSDzTg4Rh1pBXjyRbYYCMJRJYMpxACVGSQmCm18TZQRp3qB/Fu9sXNUX/J8DTpNjpF0oywC5LsSpdB34QoR+I5mIUhhBCkc5qaX8PZJHAmDULTQGqNEjaNzCTFxjzjA1X2LdXo6wMkGoVl23RTzUx8gqJy2TR0K4ms90vLqQQrDkGbF1Tl0qdhCpMVqwGb8vhJg2Reocauw7BT3GYbs+ySOg5m2KaVDlE05xG9YwizBLaLHrsBpE3qhmhDIMIOUkQk9TZWJiXpZujMTlJzNtEsCxKRkNgWpUx/7kpWGhQ7kp3WRgAOmkfOtM12vkvOseeLzABEHWJtUoogGswTDBmYQQAoICXTCFm0JW7kI40MWdMnMZYZHerRqlkk7S5WVqLoIQixV1dwNuw63z37tvAKRcJuB52mdFaWiHpd7EwWaRvEOzXiIdBCIbREyBSva6NlP0hqDPlkoxy5kRWSVYEIbdxU8ocqS0dpFr+2gcgeoDBVw11tIESPSucYq/mLkUIwNlg+My9MLs9hForMfPkLdOMXJ73inxJacl1hIzGZ/ul/9cIOKPOI/A+ceWoOZZDHmmAZoDT25gGsTZtZ/tQBht9zCVa+QS82qcxrCoseQa6LwMI2BPHgOPeUyyiVEFsuUiUcrW5loH2CTHsR4hisC8P0286XSLy1OVFojl52gK4dIckz/NjPcLq4v/+e0cSI+pV5Y9fE7cYIBXaQkloxkWsSZi28Zoj2TOxqltJyjrbuPiNSN1LIrsLJ6+YZOzRBWIenFltcv3kYjUYJA7dyLR9dKWFuEZjDknvu75BzXDbGKf/4O1/Fb/mEAViW2/cH0hnSxOTJR+cw7BXiwMW0YPM22VfQac3SsUPUTp/EKw/w1IMSy8vgdw2qozk69YDQT9CACh+lMZuQ23EF8eoc8co0ucoIMtWEnond6jEt5zlRjLETSTEXM33Y5jUzj/CWY/fw4Z/6IO+WBaYMC+UnuNueXxUId2uZ5j/01UFG0cGenCSt1bCHBgmbDQxTYkcOK6Mh4FNdCtjxyBLLt4ydKWBwcdnkrqUK1+gWXlxn1RkmR0QQlvjAkTHkD72Gvzn8NyituH/+67xu7CrUksKwHTqry89JulmOSa7s9mOXZ1G6dXsJXnsWbZpomSO1HZJYY89nWQl7lDqaplyhJC1I5iF4EsP7yec1Tt/RWGay1EfaKEOTCoGZVUTRKm5vA72CTSFSeN4ElnCxHMXVm0Y5udzg/pbDG3o1ssUqdXOExfY0htyIoUMKMiQTPMGW6B0cdJ7A0xk++7n76HWGiEOFmy9SX2pimorFGUFjWdLzv8zu11yBm3+mEqzXjAhzAXPJDDl755nXtYixEw8j6EIm843delnhGhlimeD6Hu1cltxMg97oa8gOlmBgG8mxvqdmUc5TrB2E2iqy00Oke4Ae8WqT8HQNqFF53xi5628krd9K+4lloIrGBVMgnZj8La8mf1M/c2z1w39BXMtjlK8gmmuiO/3N1/pwh8RJyXZdqmMbz8+gvABYBRfdUjg9k24lJHv9L6Hrp8ne66OyBf5flvjA627CslJCHfLljVcxrjzcNGG8Mc1l9glOPbkVKTV+28bUpygNjnL4/nvZfdtrX9a+HP76vRy49yt06jV6zQaFwSFe8y9/jvLIGAC1hTa2a6FSRa7kseHivjjAyVj47Qg3a7My22J08wsT7+hnKN1ePDHL2NZvtjNq+Sktd+wZr3mZLsOjAQkwvG8UXxtIV1MqFvHiLHN6ETswcXq5vooNcCZyhI9/DHFFFqrjmOObIFIYeZu8lWfZXESZAd3c4zi1LQitSAwXZbpsKJscHRxmQ7LMbxsn+JN6jvt9i2FTcyi3lyTYiJYhSbq2eRMmfH7/AseXO/zMLdu4ZtO5j/c5k25/9Ed/xC//8i/za7/2a+zatQvrGwKfQuGlM/M8nxCrM9jjN1Lu1RkOKzykD6MF+DrkL9qf5IPjv84vTy/xRl9zYCCPEfZwnSLtaJGqt4HC8lPUFmZgYA+2m0HLLooAJUOSSFIqXTj59FJIbOWA9pEKhG0TjBeoXdP3ShBfmqOZ9uX5Go0ywEyH6IyCcpcxIoO4k0AYoXsanXVRLR+j4DF8OmbSneYLj53ivbdcTDNMSGyTjepOes0ulyazHNXbWOjY3LilyuVbPI73DiOTIhgxMloPwORasPJPRelmjRTwDYWrIkLDJhMtU89vRasGSljEwqWaLiLoK8FUAh1nFa9lE1k96CncXB4vf+GVBX9WGH1/BmHZGLZNcHyG9OgKy7dtAa/BaKGCmo2Q3hDasFE9GDm8yrgT8kSxQq/gAJLIHqUWNKksH8GzdpyVsGsQRSGrVpOD6VEWRYNceWNfgZpmicwlNj5VIw4MCqMX1s4XgGOszxlJNY8+UkMFOVSoULHCtdvUp7birM6xal1CUc8jlI/O93dpdLuFXlP96UxKMqMRZsrC9GXkLzrCjLyEVn6KTtWju1bmu1V/HMMpAhXCg8foDpeYS5epyAKpsS7rd70Lb7xeVOSGoLdCoWLAsI290iXOWVhtRZpxMUJNrmOSmiYtp0g+blF2R+klLfZMKOr66xRzl6F0f5wiew5Xb8DedOHvOEvTpLphEzNPPAZScujLd1IYHqWzskzUaRPv8MnM9uOAZnURp1ckzMXYPQM/38PogB8OYRKhUwsLgYUgg0YoQRDkqE38KJ56lHZxALuxjC70q19Ko5/GhxCUa8skgyV68wZ2d5h/GlsvLx7MAR/oezwaVo600/nWf/BtD2hinsUxCCkY/aWrzzzvfPWrRIePEAGLH3+M4ffdipnr4jQytIZ9wIcumFoiXI9maqN1ihAmyjBpu4LHJl/NluV9WE8+jrvzcrLu+bfkkNLkTNJoEHJ01xzC8UBBoT4M2Tx2B5TZJbUt0BozBTPuxy+bHlsEYHZnf2GiVwPMSweQrTaNwf5vkm16xGGEowRB2SGsRKjlJuNqEFsKTjZ6PDazyiu2jPSNxEeuoVe5hHK3xsDSfgobE+abO6l/NaWVJpwp+4aNEKD1EmnSv4KEAGkMYJiKpZXdtBanSaII07bRJhwVX2cu22bBOYljZRg9vpmReJiRtIJnzdPt3EcQJFSueT+ZkQm0nUelMU3DwmsHmKnD7w59gSvzl1EtxASRwc999aNcuXSY1tRW/sebrqL5mRNEM22ka5K59PkV0TDWqtqLrAWpxtmyhej4caLjxykUS8ys9DCTIjpt4PQkkZkgQokXCSJDA4rxYgbPniDFwAvaLHgWm4yQQ6FkT2uV2u13cp39Sj7HJ4mSiD9d/jg/0tuNncvTq9epbnj2tmmgU++nST+bp1ucavz8xPoLqoelUnoDPuaKougOkDEL2FaJePFrbLr9T5/XGH2nMDI29mmL1EqRkSZebKNycwwf2kxjKEc9kycfD3Ks+xhXld+IldG42SKry6s83Ey5elQyvW8Qpbq0Ap+xwjBRLIidnbz/Tbv4X1+YxsGloztsPX0Ttu6bub/jV6/mK395H4vTLkmUcmr/IpuvXP4m0q214lPMOmzPXfuM10WSYgcmhhef1/RSgEF7mIcqD+O0TPJjRaRn03Q2MXjDuwBI45SC26GiFvHqTwIKgYnFAwjZhiTAKOVIWz2czVPo2S5xzUSFDlrkyU5M05ufRCuX4FCN/E39jITqu95OMjNHdHKW8Eh/rRRbMVbYF3pkEher8N23SVqyBzhSOUCmaVMf7JFbKaDSOkNeGSvtUDJL/P3e47zrmouJk4jYdGjYQwiVEhkWuaUGm8drPHZwDNu+jKXFx7AaHfxewMWvvBXTfvl8iU/ufZxjD3/9TPq/324xf+QQ5ZExtNY0l7t0Gj5prNi4a13ROrq5wsyhFYQUxGHC0FTpBXmxKXXWRtyLoHT7VogShRW1iK08vSjBMCS2sa5mHQkc/pqEbg88L8WPA6yiR2QmBMUIMzSRMiLxE8yREWSmhHAGIFKoTgxOyuThYRZfO0/d8MHQJE4dOxxBEdDLbsSI2mwvPMpY4BImBj9HGzW3l3H3bRzZ+WVcJAPGILsyw8zULqG2OsVcEzphwpcPLT0v0u2cf51SqUSr1eLWW29laGiIcrlMuVymVCpRLp+nuuQvA+L6MVAJBbvKe/ZO8dH/kvA//yDh5sdTDqcn0WaDnUMuquFjBgmpkwGdkreHebIyRg6bWDrg2QhhIHUBqV2UCFmNBbsmSue7i8+Aq3NEpmDJMzDKJnF+/Yblr7Q5ve8JAEbdSZSxnk8eehKkQdx1iA6dAgS0A9KZOqO3XgdCc83yE1zZipl8YgllG7SreRZG3spWXeMnM//ITZuL3LClyvVb1tlxOx4gNTt9BdIanla6fW+Tbuv9zW4borF1F4G0kVpxhbgPV3foGRUCmSfFxOwsEMVljp/KEjXzBIMmfiEidQzCI0sEnfa3rKp1IUGYfYUEscLIlgCwl9YXhp3BFClthNmXWKM1OgbXT9nZbHDFpw6TW/EBQeqVmZ2rnxnNRK0RRNJmSSU8ovfTESHZ7BCGyiEQVGZaqMAAW2BPXHgkkiPXSbfYEaSnT5GZPAbKIO3ZFFMXoRXh8BQntr+3/8Fohadvq0cn306jEzMoU7KTp/AG59Gxx3RxK1/KvIsjA3tY3Faht6byE6niWO8Q//mB/4zWmvDJA2TdImPGIK5wSJ31IMXNXPiegS8I9vr5YFazuPMN0oyJP2zTCw4izf6YFZZ7KNuima1SmbsXz8gx4mzjoq3vRnln7byrAFSCzH53FKAYv/QKypNToFJa87PMPP4wjZlT9Bo14sBHehaTV1/N2K7LKMsBrEASZVKWNtbQAmRoosIMRqZDbuMRhJ32K7cCDoIxI0d50ysZrlzM8GOHKCTxuueMEBh+jFioUHviarLLZYzURKp/fpzL4+zwz8TFyOVe2OMblCTfGLKbQ+uEctrsK9ilJ3ECG7E2KcXW8vrvLCXCtFFJBGmKMhyWimPcv/X7+WowxYOH68/qUfZyQxXXCQBj/iTC9fqdN2B6V5PupiJRDqzA54r7jvEDO4rs+uKp9QM4krHfupHi9aNkNhbIvWqS0pu2kh0vnfmIa7pYjo3yLIbuPEzqKFammuy7+gS3X16mYgo+f3AeP05ACGLLpZGtcmJoG8c33MBlOxz2jfx3Vut3InmA8c0+G3ZoSoOwJXcSM7yLuP2/idv/myT6JOWhhEer/8j/Mj7Ix8c+xt9v/AQfH/8Yt49+hH+86G94aOqzTBcPcHToEe7Z+nH+ftsf83D1i8S9BQI/JI4VmS2Xoe08ojmPNvokn+WnnLBnWLGuZnzQwnUUteOaq5cOIYBodJLWnacIjzXQcUr1vc8/jUfaxpqnW0w013nG+Rfs38fQVBE3rfTfz0NjoA0JZGfWPAOFgTVa4rqWx1crr+Ki1kFyaZcTqsCfNTJYQjGilnnX7FamchvopT2+snIfnzMfx+80WDpyEJWmqLN8/M6cJ8a39nTr9aJnPLfSDu2RDqmlMBo9SuYwOat/fhTf8tKrcoQlcXyL2EtpTSiSOEXXH8bICnJLPbSUVN1NtNMWCoVtGlw8lKOhTP58cYA0nGHzrjx2/u08fOoYSmlsZ5isuZnCoc/x45f8OCEBK7lZjr3ybq587QYuu22S6liWDZdvR0hQyqDdzBF1vtm/qjbXJs1/81yQ2CEjxyqYObfPJp9HVKqjCAVhIaGxs0i62qX35HphmOWZFgNqH6PWPtCKVJVRqgo4UJwgXAhIGx2Qgv0n9nLg5GMkrZS054IGu7SCU1pC+4rwSIP4vv+NfvQjtP76U9Q+vp/aFwzQ4E426Uws4xciEielFGQRL7BS5fnARfk9ZIwsvWLEid0LYHgY+VEQkopZ5saww9FaTBCnZMw8lrA52nkYJaCWG+ThsRvYVKghhCZKyxSKO4jDiKUTx1g8fvRl60eaxJx49EG01uTKVaRhEAc+s4eeIk1igm7Mwok6aaxwsxbZswouWrbJ6OYKWml6rZBO44VlIb7Ynm7P+T1a0+jGxHYBrRQZx8IxDVxzfd6zIoM20O25uLZBOZtjqDxErxqgpKI6n0cpm6QRkK60MCrbENLGHM6QuXwIQkU80+Gqo9dwTe4Gdu3VmPWHaRXvR9InmVM7DxPXMBsvYBsmo4Ui75ws8ajZ4u2P/wrvfeg/Mb64nengFDO9IzTVCTKWohUk/MlXjtHy42eM2XeCc94mfNe73oVlWdx+++0MDw9/15gvvlDs/YUdDH9pGQwLx6rQRlBVHu97zGZlOOTR/EF2DE5xaCWD3QiwsxaJlxJHAcIt8bCXYljfvKDSwsdXMeMvYbnv54OclaOlV0AIwkKOJL9uXpzVisUTx9BKMWAPccI5ThKtYEZ5emaHbGoiDJPOXIbqRaClhW76bNtxBScHvohsd7ku6eIsdjA7RQIHjozuprhwM9ta9/Cr+s+496L/wL94xWZac5rZz3yK3u4bkWPTiGR9wpFrJ7uwvvtuGOcMLfjs4Lv7yiStKaSLNL98Ndb1kqDaH4dC0MZdrrOcbmR+ep4N0qLtnMatKQwBfqM/oeW+W8jxswIBb9ulqG4bp+ZTbsUknoHKtMEYhrWKT8pfxSgNErcVpQHBXEkzcGoFZQ7i5yVxbhihFfmsxdH6AQQVKvYoA/Ykm91dbEhLz/j6bEsgXYG1oXRBppd6MsuAPUR3YZo4b4NStHsNLCdERRa5pknxyD7ak1toT11BesRGxnPcm8uSCpuk+GqUEGzNZiiGHZwxSa8XsriphBHFKEOAFmhDYkYxornKw+FnmD05z1Rhijc/OYt9dZ9c01qT2us3H9u98EjKFxXShPIW0u4KwgtwVtfnx67/CN5iiDmym0wtwM87hBkYVlnm4zq2VQGdIv2QJAsQY3d7xL0TCHHreevSucB0HDZecwOG4+I36qikv0NpWDZeqUx1aiPFjRvo7KujL1LkVgS9oiDyIhqbV8jODpLkIJc9RGHTElgu3VOTpJGgJTWoFEcJDCFY5BVMHn2Uf72Q4S2jVUamhnB7MVqt+YcaGkrfBdWYLzDozHr1QUO7eNf9zAs6ngoTouNnpfl+Q2xoTUxgbdlCfOIEcatG2GthuA5CC6ozRbrZDqlYxuyOEGcsBBoVR6RBF+n146Nsb4XY9EhMh2bPYLkVMXSe5+azY+D6xiV0AioCy5B0SwFgkKu5lBfyZHMuVsXDVvrMBpCRs5GGZOeOMu2lLmRMjKxFYff4mT23si4QPa1gPzrPjr+/hBOvNlncWGdl7D7+VeNafvt4k7957CR7RstcPuqhDRcQrOaG2FTcxGs2XcV/Gv8y//FEBnt+mf0nZ8iJAtYlO1m+YTv31faihWZu8BRu/H9TisokaT9ZXmiNRCFlhrHOBIHUBCLGi0yKiWA+v8D9G+4lEWUu6xYp7noFZtrDiOvES6eQuUGcdoJTW+FJZ4F3vNpguSZpr0jKdx5DSYP67mu47B0/S+frq+Aa2KNZrJEXlhIo8zaql5C2QoTjUPmJn6D5j/9IurhINVyiMjzB9NIj0O3QHdBE8TKV44KlDWUSW4LjMXFtlRNPbCSb+zobgtPM26PMWgVqwRIlZ4BdlR4fOP56/vfkQxzTB/lk9CDzRo33tW7l/o/8CV6hyBVve9cz2/VtPN2iOIE1xxk78sk01jcbzZ5Pxnz6vqvIXvPSWxIIIbBjG+gXdgg05CsRplcnH+fINgL8nGRKDrEUHadsDXPlVJUnjp3kpG/wB6cU/3Zsme2XWDz1sMNss0HJc3HNzXhf/k3e4OV4sJLnpONxT3gXP1b+l2Q9B2lIrn79JpKgw5EHp+m2bL7y8RV+5Bu6vHB0iXSgTCdaIi9LKEOQmj6p0cFcjjEuOv/xiDucxz5lEzoRYbl/79rg9lBpjDQsiDsMmcfQ2kFrgWIDopBBiCWEbRI3+zFGIARf+eu/ZKA0THFgGNvOYDgSMw+emkfFNkmQo/VYGX82359DdN9dXnoJVjFlNV/HCg2yvsdIbvy5G30BwzM8tud2Md05TrO4ysLmZUaPVtFJiA4jbgp8PmnGnFhtsSGnydowP/OHDIx+gIHsRUSmzRNb38iE0WD5kVV8/wpsZ4lURfzNb/waN//4B7niNZte8n781a/8W/xOm9LIKFf+wFt48st3snD0MHvv+hxPfeWLTOx+DaPbXwGA7VnfRIblSi62axKHCXNHVykOPH/V4jM83V5C0m2pEdHuxWS6yyyTIZvNodE4GR9nWVFuVpFK0kKTBOs0VabqosMeVmRSXF4jzuo+wiud+YxZdsleNYyKEsLjLZKvNdia24jROUnv9EG6VU1sLmPFZQQmvjvGk1tu48ThA+wRPXYMjfFbpRP8/vHdSKkwQg83lBQHHiOqfp1C8/W4nVtZ8CN+/X89yI/tHOKK27Z9x30/Z9Jt//79PPbYY+zYseNc//S7GmneQecKmDIPQpLkMpiTk1S9LG+odZjTy1xRGGTGcvtuUU8rw3pdAr/GtOsxZXpUuiv0VEq7KNCGQokmjxuS61/Cct/PBxVrgE5tBVd28AtlonKX/IElRJKi/BhvZIza3AyV4QG0fApUCuESHWOeQcYBjdISHYXIShatFLvc7Xw6KxkxRykSEfkhVsNnIavIuTFkr8CI9rNz8Q52GvPQu4qCqnDX7CW88hKBNkIw1ncF7aKFU7SRF0CKyUsPgRfUCdwSUijyrQAz16Ow3AUliDIW5ajOHsfkeH2JpZOnGXOK9IoBQaVPSpUzg2QuHWd483c+QZxPCCH6xFuqMAeHkdk8+XyBeqG/a57Ptc8Qbog6iBhpBaSJhbJM3KEsejlAS/BaIaFbIqM6OGaVSlkyv1JD6SEUCVflv49iECLT9IxEww5ipC0xSxce4QaQMTOsREtQcchuGsUe30i7tshQcQtRkkM0TNzKAH6SoutLnNz2k0yc/FsMlSCFQSQNHJXSkZIpNJnSSY5svph8OyI2QQlNtJaSkZgGbkaSUwXM5jIf2fsh7huIeYP97n5jFGihKc/nIezhXnX+g9yXHImPETVxKw7Vxzv4++vEhmJxJ+T/5MNw9U/iDmWRaQ6vEZAaJk77GLP2MQaTEQqpjc72UwWEcQLxInpovBzIlCrsuPm2M1UPxy+97Mz/qxu3nHkt9n2O7T9JPd+3JGBkiWZpilAH2EnAydkAEZzElqNIw6K0dk3HAnytcYTgzgMrWJ2YXDFL9vAcO2YXkI5EZIq0vC4Xf+DCLcJ0oSI48giwVmUxAhUk3/Lz3w46VYiMie6tHecbYnYjl0OgQSlUfRXTMVE5E7NkEBs9/GqKGS+QLuxEWBJpQJrGiLCHspy+X5QUWFGLrihipxEzK955J90SN4C1nfNosIVIBUZqYKYCFSusyMBqp7i1HvamEgD21iLhgX5qrzyrSED+FesphdmpCpwEBCTmulpqan+dUh1mXmWhIkhEwrU7m+ROCfbNNXhirs7GyzJUJzajpAVoDlc3cnN7jox5G5dMlnG0waHlaZrvfCuhU2VUal49to07Dv0m+a6JE5vEOsRINFZ/1d6Pe80IIzdMIdyKXLoRhxRt/iPjA7CQrHBsJGDXShGrOEDqVkiBqnOKpFMnVTY67LFkDJO0l1CxJNPq8YavfgV3bJQdN11JNBtj5BxUEGNPFV7wpr6ztYSRtfrEWzPCnpxAui5iZAQ5cxxn8HJky0SnIZlWTHOwS3Wps1YFr5/K7m4d4Kpej8b+LJPpIt00R0G1+UgNfm6oiWF43JJJECdO8fvbqxjC4Fi0SEdEFEQOO5tDJcmZyqbAM1LAni29NIwCXNUkNXNEsSaj169NMwVDaZq9k+SJsSdf+YLG6DuFnaxbCfX8iPJEBaVW8fwRMAT5XoSWIEnpqlUmsluYzJuEKmUlNvg/yxXeWepQHb2EpaiLFF1CA06GN3NR4ShXJ4KWmZI6BZw9XfYMbT3zfRffNMWxR2axHOi2FHGYYjnrPthR8xQDo4Pk7KH+2ar65KAyujjWJoz8M5WD5wOGazJaG6Kl68RWhLlljPZsj/T4PspbL8dNlghkBUeEYBY5Oe2ycmCOhx+/m8HhUbaliiCfoeNY6DRleXWOBXkaZ9cgx69YwMqaeMrnshkDMxcSd2ysUkjccEAqpGXgXTrF6dIJmrYkH3pgCaojLz2x9FJhxB7jtDwOpuTAddNM71jhmk9tI+3OUDEMpmpz9Fo1FkWBy8KTSGsPd89+hB/Z+Mt42kZLg2RDhfKJFplgkG5rK3G4RKJNHv7k/6G5+DZuefdFL0nb9979eeYOH8B0HDKFEkbcZrezj0WzRljOohHE2mH52MPYbo6RbVcxtuWbNxdzJQ8vZyOkoNcK0Vo/73nzaU83IcVLKqhaXmlgdxdxtUEQxrSCOrH0cVOJjBLCJKBWFNTaTZxkfcMhrUQYvkEiNNnFALusUXGMc8kVqGAec6CKNZTB2VhEeiYrf/kUCAgO1ii+/hbK/+sQjVoAxmmU6WJqF6kCtFvA3vM61KFPEgchvtKMeI9RDy7niuYNvMK5iC9NfJ4FGoT54yw1L2LMG2F5rXhFfbGD8R3WjjtntuKqq65ienr6nxzp5o8X6KYnybZLqDSitWEnhvDxH3mE8ePwl7ua/Ej1tZiVFq1WRMcLCGSC6WSxwh5hZRf1VKOkQewUsJQNClS6QiHxyXkXVlqRKS1auQ4tIMhKRKJQliTYXOXq+V2cWDzF0qkT7Bx/JU1jmrK+jDQT0d6wjbQWYyoJSpE2emB5CM8mGxgsjaVc+9QUMqfIaEEnjHCqOZI0plPdRbW5EdKHYPoBcIssrhq00lfQTWKyQRGZGpisYvds0iWfsBNTuO05jDO+pyDoZfvpEVPzRxl9skEaeowdajJmNBEC7GKK+sDbaX/0Qwx7Qxhaknou2dM1knIG6WuWT5/kitddOJXfvi0MASlk91zP6ic+jNEtklnp4eQcOJuk0GWEsUra7GLZGWhFFIZd1EqKX/QAD5HERCpEhylvv/w2jh5ZZF/fu5bduZuxk5N0xfqU6PiQBinGBUq6uTJD0Syjl+qoMADTorfQQA5GkBqAYGAhYWl7AacVUyu+ivzQNBJJYBho0Q/eAylZsDaT9Yp0nQy+NElNydihJWZ39g1bEYKNk8Nc+8Q4x/RRAp1wcFTzOjTHwpPkKRBmY+qj/WIdpvwnQITnRkAltBaXKD/4JPt/9PXYqz3Cqkd7W5Wl7ScwhibolKfwWoI4snnz6SfA9rn/E79J+EO/Tq9qg7DwWpDa37z4+m7A+KWXPev/n4bleXipg9OViBRWMz43zO/lqJ1jTk3w6JcexXE6fH/5ekyZ0pd4CEwgKwQJirYeZsn1iU92yeyosTTs0hytUa8uoCpwevETL1Nvv3fQs9pYvokZG3hti2T5m9O2zhlKgykx8hZG/ptjGqNURmQ8hGEiTBMja5C0UvIrNokVk8ge2k3B0CghsTsdlv7xv1N656+AaZPIDK8+8lnuvPgHkaT0mjW0fuHkzAtBYkfrgbSh+6KSRKI8hUYSmYrEU2x6ahS5ta/UTxrrJIBZeXY/XyEEVXuIYKFJ4MU8LXszt74KM7uFPV/2uP+NT5LohCOVGS4bHuGLswag+O+H9/OnbpOZ4WuRSpHYBVZzw1zTEcxObKNheYztvIUoUyGxs2iVMCLzXLzz9/jI0Q/iLbXZdHIIT/XtGQSaSDj0rBwdq4DNKsvySyAkobeDRNdIRpZQOuGLo0u8bbRCpu0jRYTpZAmkTeDlmKplaA/08JRBsRCx7cHjOMUCpR99F86WV9N9ZAnVjTDKLqXXvXAyQBiCpB4g8zbxQhdn+w5Ut4ssFGh99rO4V/pkJwo0hwP0fItWdpmqruKttumM9TMCtDTJbR4lrryPt+79IP8quRFHhfxt1+G98X4qcgyDlFd6VzO5XGXaWuZjheM8Ys5xc20jzbkZlo8dZnjHxWfaJb9NeqmWCi1tYrsINnSW1tORsz2LIO1RsEoI4b9s535W58iu1JGJRo3mMT2B3zyFyRZ6Vzto6TLiX8JKPMuAuQXL0vzuT76GG//zndjCZDFOaZCSLW3mK6niZ3MzNHsdhL2VueV9TAxpQjvLaORzdOkJ9gztOfPdxaEijhPTaRlYtuKpe2bYsxb3L0+3qaXHkGmBNGpi2EWkzJKqE2SaNmZjFVEYe65uvaxILfDtGLem6U1NYPs9otm9+N4EY94itg6RBEThbu65/x+o1/t+j60nn8TXGi+I6JoSw7LRWjOR3c6h4Wma5S7K1OTjLPe+cpbU0hixgQRSoci4eS4LLqewYxT1hb2obZBamsAKGShdGGPzfDDgjNCK6yQkJDkwEkltpENZT1HRip8NM/zx6RZvesUEq70hNjojfKl3L0dO/Q9eMfAe5ksbsFXM1qssOLXK0dpujh78GAoPrQQLR6e580OKPa+eZGjDd56NdnLvChpYPtVi+kANw5ZEQUqvth/HaxB0ahhmRG3mJGniUxjYiJQb+IcvbMZzJvjRNx6gmbp89K8fQUiL6b13EbSOcsVtv/JN3+Xl+4rQNFYYpiDoRni557dmsV0TrZ2XfE4J/JBAJwReBc/SVB2HBnWi2ECVLKrHy1SamgZZ3FaF5foyhl1nTAyRuCmZuosXV4jqAmEpktka7tAoqgNijYy3hrNYgxmSekDaimh9oUbhK48TvOHVGEkDJ7Xw/Dl8dwxNl16jyXF/im3yGAVD8bpKysFGiwN+HqeT56fM7+P/jv+cWKziRzZLVgtHlgiDiCOPzhClwbfpdR/nvDL6uZ/7Of71v/7X/OIv/iKXXnrpNxVS2L1797ke8rsDSUo3PEix+HYSFdFQmzDr+6gCw02DiW6F1XKTHYMVjnRS2kUXK06p9zpUiwMYYZaWKZCui9NtkpgmAokyfDq8sB3m/4+9946X5KrPvL+ncld17r45zr2TNUk5C0lIgAwmyVg4YQx4vbu21zbG/rzrtb1mHfC+Xq/x2i84LcHYYIxtghEII0BIAsWZkSbncHPoHCuf948ezYxMkkAjjQSPPvrM7e7qrlOnu6rOec7zPL8LAUdPggtISScdUblmnO5oBrUbsWHsSpbmF1g9fZJN178M29TwEqdIdNfj92t0rOOkOwogCJfrqJksYb1FZ8bl3RO/x/KpAwyoI7gy4HcOz/O7ay8lkAkWo4iJTb8E7r2w90Nw7F72R5dTtifo7xO0jDZ0DUIKhDZo4SoAiv0SnuCfVfuKswHiLKVA1pAJgTGgIyKBt+jj1TT8hRZVBdJkULITdHMHaA86KF5MZf8RpIwZnFr77fZ4cUFVgQghBFquD3/mGLQvp1q0CWRMK91BkQp200LlSWLtVoJqiNEMSdgqrX4dzQsJTQ2paASKTkp6tGeOkEoXodyzxUW6hW/3ESsKStwrEGJ0LaQP+tjFmU8mhEATGuU8mJ6Nu3ASI5NGT4e4y70bj9mOEEKh2zdItRJSkBZNTSNSdZJ+iZZRRI8V5sUoVWULWJBP6SSO1xg60mDoSANVDRiaPAqXX4H5yWVevcvl3y5T+ZtXCsbNMabNSSI35qA5c7Zt5+fNvWRhpKC9QjptIu66C3tmhsaWQYK0SfNXtnNsvA7iGH1Ll9LN2cy7Q+xYsiGwGPD7OTY8iiJ6QayGG8LU6HfY4YsXWydv4HD9o4SOZE4IVo+2afsdhAAnlaJWWuLT7l9y29a3MpDM4876T8VikUflJmmw2lnmqqEMT15SoTbYQgkFmdUkwlbxY++FPsQXHTTToGgOkl9IMxGOIPqeu4G2OZUlseUbA/AnPvK3ZxWdT63I1/d8DSvM0u5v43tdjvpfYHy4l00zVC0guwJvdRZ1zVbakULHKpDtNlnIjuK5HRrdkIz9wlUyFVI5q+rTvl5kW/52IhlRzNX58thXAFC6GoOnh9Bf27uXqIlzxRfkNyFdnoIXu7QLHiI6992kszejqCkyq5L1j49x6NoZylqDV1xlseveNLWmQbU7TL1ioPbHRKpB29J5bGAH7fQ+EoUtaIqBGnpk3QaF6ixW6LNndAdYeX514ueYX/kku1JJ9ma3IPJrON3xkdVThEJBINBkhKBnkRUS4qWbGZvZxvGr/pmFkYhaKkHaNokx8GQ/7VQGohglaBKmDAYHqigKFPavMvGxjxO3DCofPYT0Y7T+BAO/dNlz8t0Yoyla988TNXyChRapm7ez9msPcuTSywhOn0ZdXqHvzW+llm3QSho0T8+hmFeiqsY5e7QQaFmHvuwm1jX6uP3oY3xOu4FW7PCGuQ28QX+YH8lJxpxpNgiHtWECqhG/bX6VkljkTnktx79+/9NIt6dluoURvhuiqAJVU4jCCE+1CKxzk/xsFLJw5u+cPs5AsjeGG/xvO56Tfnom0AKFdrE3XupIBTNt0Nx5guTL7kB3Q3xbJ6XkeKh1D2uS19BoR9Q7Ee961WZ+518PUPct/oEsP2o3WZ7pYz4N67IFkpbNfQc3sfGaaVZr91GSHuLwJ3jjJT/1tMn/lusNvvaZELdtsusLx1mzI4dmWMwdqjLXOYGdehOqcc4x1MwfIFQ9NC/uqRYvAhSMIrPpObppaGYyFE7OYrZPEc4eIyOPIYRPJPPsPDBzlnADSHkBhWZPvdecnuYXP/gRgo7PzPseZm7DKpEek/YcJhr97B06eTauU/EFsSEpxw38U3VuO3oLQ4UR9mTm6egefXERVX3xzp8cLcnbJn6ZL6/ezbHOQToZj6XJFQqrPVHQOs3ixk6Iqeso2XFygYcx1+QDaz7OB8qP8D9Sf09g9XMKwc3JY2xYc5pdyTT3PbxILBqsnN5PZUUjXbS+KekmpaQ81+LozmXiMGbrzaNohsbBry9y4okz81NVEAVdZNzEb30B5HkFi5Q8irkFL7wOxQxYLBkIIgwtJGGHvPInf4mv/POH6DZWmT9YY/X0KQanv9GplMwlqC63iGNBs9L9rkm3TtPD6wRohvqdN/4uELg9Ymq1ESKdUZASRendCX3qMOjh6YLMcs8pU0Iy4Kv05WIgg2f5SFWS25eFoAlmARkIMFNIGSOE8rQooMJbNlP+yAHcgxXCahdzzUbSqxZL6xfQSk06ziTEEd3EEKreRdZH+PADu3jbNaNkkhEjyVW2dTvMezqnllx+0fwxPmT9MwvmaSqtzUTSY8WPyYaSbueZqWmf9dl21113AfC2t73t7HNCiLMDqOibhIa+JKCpuHqVUHZRhclAYpw95ce4aWQcsTDLJUc7PNK/l9ucq0mvSIy2j2/rlDzIdluoZ6r5RV4X1e+CkyLGBd8nrTS+w86ffxSMPgzXxjc7NByL6Ez8ut7tEYSOnebUmWIKo9YEp/VVYncSxbRoJtqk2xkQguayja/V8WbPecX79WE6UYuvl76MWVzLoeU1TBVSLKcHiPc+gpJYB2tvhxMPsDNag5lKERgrIELU6JyGUw16v7WXNOkm6Dk7UEAIzJZHotlGmgIVE81QEVqMvwoylLSPrrDz7k9z59gvEipeb3LaCYjnOyiqSnZwFCf3vZWVfj5hXjeNFBB3A7QPFfBnjrH+jx9k75/8MC1L8tUf20OymuDmf9lIdptB6fE2QrPwS22sAZP+vIYtoBnFSFVB7bTxFo7wxO7jqKbDuhvfyNHFDgiFyCn2pMaEhGodw9XAAHP84spbPB9Fc4CGX8UbSuOOZEisLGP26ViZx1h9/EoUILvYojZk086PUvKuIRI6hleiGMziazl8RaWq5DDjFmmljaqPYRkCo8/AGE7gdI8gQkl49AjericQjsONnT62f8Vh7et79sg4igjOy4j6viDdRq6E0iHorOJMehQOtOiOdAkKNotavbeNhFBro4cJfDNF3H4IIfKELR//PFt8oukjXoQVxJ4pTCdJ6rhCvT+im4o4mpSYnd6EanTdBmKh0lhdZrUyT9Jr4QyN4p5eRWoZhFAY1xL8SnY9u64/Qq2/dSYjy8HPxhhO9jktb//9BkMxURPPLWmlWN980H6+hfqpCbU1ZZGd10isMyDtMz7c7a0vAWEy5Ia+1/HgzAHs4hgylWV5civF0gIVp4Cr29RaIa3j+6kvzpMZGvmmassLBfnUQthTxxSDkdAAjcHMKGsODqO0BMOn8uhDSfSBXkaZVrDwT5y5Rnyb366pWrSiBlKRiBBMV0cIi8hvo+g2I0eLhP0Bx8YXafSv8I43lfnjD6xHygS/dUqwKVrk1ZeMoSgCkcyRdK6nG3VQogAFQVNRMLpVcqVTjKuS5eJG5vuuIL7jcv7us7tRZcx4q0Og6Kw6Y/hngsZScZsBrUU7MmlEGh3V5rSzhsSJAbYNDTCxfgdx2GKkVWMxO4rmehA8yQOvO8GGjA9uRHH3IqPDb2f1z8+FlitZE2tT4TnLEzLGU2jFBGG5S3vXMulbxxGAsXYt3v79RMeOMvAHv8npD72JIJegvt6GUzC+Z5X5lTkqa0fBPheV8C/KT/CEnGXcn2PGGGVGGeNP5Sj/VG/yNethmnEftqFwG9MshG3+SHuQhbjCZmWc685rl2qoaIZKFEREoeTw43M0yz2l6dB0nsBKQRwihYrnhXDewrwV9e6tkddESz1/C4KJ+Fy+nt+f6fHM7jzWdINMKUt5KElsJgm6y1T8BfLGMCeXO+wYzvN7r9vMez53kEfaSUIEPz61yIdreX5FKVOwEuyYvI5azeO1zRb3OA5Ptk6x2F5k5eGQ+SNVRtbn2HDl1dTrJ9j71VU6TZ2dn92Hleln1xdmaI/XyCvn8mWl6BIpHbRARYndF7xy6VNIJrNn/w5GBvB3Pcao6eF2ZhDCJ5YK7TYEgc/6625i/VXXsnr6JOKLX4KZld5nTK9F1XVON4/ylR/bhRooFJdSXNO+hCWnSrGWJnuyl+VWGq7TLriERkR93Ec96nOweJqO7qEHKlu1C58HeKEhhCCr50koNq7sUBlvEz3cQREmCIXXRxonDq9yak2OdP96tudXiOz/iGqWKDf2MqjdQNd0OFRYy7b5LlsGFY7011kuu0T+o+iJ7cwdqnH1a79x362qx8d//7Gzj/fev4CTMWisuiiaINNnk0hq+O19zO3/wlMtJje8lVa1jKJaJNMWSatGGAlcX0eicnhmCClVOBjid7KoaokoCFg6duSbkm59Yxkqi006TY/5oyX6x7PfVV8+ZS+9UEUUlg7tY2bnI4RrXwUaxGGIpet4QYhMrCAUid7WSJZ1wvJxNFuj2T6nmJeKROtoBDMx0p1DyfQjXQM1MwaAcFTU9LmxjFAEmTvWECx3iGoe2vBryB3bSXVEw7MWMBsWsZrG8Ku0jByddYMMr/857hGC4WMPs6ZxiPE0TCmwp27zjlKWqwp3cMpcouGOUe+mWASG0yZO3zMjKp81W3Hy5Mln+5aXDNykj+y2aWs+WbMAxT78oIM6tpY1iy2W1YBFUaZf5BFhiF4NyQQ+x8oh00UF1TCptSqooYdAQWAhvZDpRPuFPrRvQNYsYCgmCU8SqhAaZ4KyuwFup0ShmOdU7SRf/8TfY902jqU3kKKKVgnoFFPI1QiECrGGNxsjEgoEILImIq1SPTnPonaMtW2D1fISjqaSt1ROjGxi7eoxeNlv4C39Kp/p3MAGR+BRw+im0OIzlRTjGKNgoiZNxEs60+1s3DJEMSIMcYJlcpd5SDmKEIKwFaLnI6Rm0T6+SmFwFE2zaaV7aoHY1gnbHlEYoOovnCLgu4EwNASg6BqJyy8n9tpoKytMHUswN9ImFAqB4aJPLCM0UIwz2TrzM/hTBiKKEKaDTPUGzno3QOvUAEEUROjdKoqwehVohEBgIRAIoaB7Oui9KmgXKxKKTSB6A3IvZ2IfayL0NJolSE7N0D49Qm6xTqT4+MEqy+MvA0XDN4sM+Q8QhJtY0ARSgCnbrAubZKsVZDqGS9O9TL3OOLiC8t2fx9y0CTWXo7DxclJbb6QUVSnpTVJuiGopZJYdpN/GGL04BrkXFHYBMhNgOIh6mUKqQHmugV53kek0iSBBQEAsVzAbJlKzaGRSJGaOofaNIkVMRBkhY5yagTb90u0zw3ZYU7yE495xvK5LeTxk4rCFI1Sm1m6gVq+j6hbHOk+S3fZy8hkF93QNIc5YvM5UqYyVmMyqgxAx2x8fxbksT/a6K17IQ3vxYwC49IXbvTVhk3y8hlWVuIrA1SWGQS+LxXJx9BxXUGShE6JaLjPtDlsap0inB0ioOof2L1Jc3UvgezRXFulbux4j8b0F8D9TSBlzfnidRLLjtnEA/Lkmmz/a+1skdYwJB0Xr3UsSW4q9Kry2hrXxWy+CnV28ECA1kJpAM1tEbgVhTGN1DLYe2sKxwSX0SEUJDa65pMrug3nqocRttplfrdKfS4IQKIBEoRZ3UYWCUHVKDPBYt8VjRxb5KaPIop6HKOAXrhznX3cepahGJM02RTPBYtsnJmQwHZHQwGg2Ea6FFkVEQqXDCGl7iKVGm6Ls4sqAjn8ad3AXwo2IQqitKPTJDrloE5pqoOYTEPbOb2sq85zYSp+CmjFRixZhqUtUcll6704Gf/lyij/3H3CPHqPzyMO4swugqkhdxcsZ4M3gOKOkaz7dmWMEuSKNnIkZqcR6Hx3F507tbr7kRSxpfVixRzYq8dqlaT6R+RcWw58ik2jxmnAjrpB8QHmc/XKWz374cgbJ8S8/9jk0TSH0e4vGURAh43NqR88LQeggemMfy9IBn9SqTdx1EbWAUvcUA9nqc9ZPzwRJmSS3mCJWY+KhPO5iFW3cQS7vxkmN47Z9Al3ljuTbkGofUsZUWiG1dkhSsflvt2/n03tOsn8hxs01Oa2YPNZ1uFK2KCZTHD+2wq07ruVgbQ/dKOLtH/sPvGXhN+k0A1ZON7HTa5ncMcTxXYsYZsTxPRI7UyJdtDiQqLBZ6Y3xemS+hVRcNF9FUbtgXRyLgPlUP8VDGTzbpzOg4M3WOf6/vsr4O9PEwkFKky8/uczy0irbbruDDdfeyIZrb2Rx31G666qo/f1M3vXjAJT8ZZLVBJEWk5AOma5DuuMw2ewjqkrilkQek5zatkRr2KWr+XxmzYP4BJiuhqJqjI2/+Ek3gMtz11HyV+i0S7STdXxzCb0sUJIjyKiLXlaJixbLns9Nl16NEDFCiXlg6UPcUFIpZi9nMTOMGYVsXN3PdRumObC8yMxqim7z71k6+eP8zTvv54Y3rWPjtUMA1Fc7fPR3zlWf1QyFVN7CtFU0XSEMYtZd3s+Vr1nDPe+/n3Iqjd/1sVI58iNr0K0Rtq5JQWeVUC2zZrTEI4c3YWT7WZ33cJseUoJtXo4lKiwtV/jKh/6Sh/75Y/zc+z+Mop6bl1i2QXE0Q7vWJfBC9j5wkq03Pvvr6FPjrAtVRKG2OI+dL7Cq9Yg0LwxJ6DqmrqHoHaQqCJwIY26JuLXKjhiWV4vUyjrZbIgSCZyWSXa5i4wb6IMO3tEZ1OIEQijIdoSafvo4Wu+3SV49iHuyQdx06asPU1pcIky0CbUmqXaZUEkgZEwsFBQpkVHIcmGK4flDtH0fXbNY57hM1SUPlNbhZ+awjCax7jIvx3n7LZtoNJ6ZeOpZLw9PTEx82/9fqsieaNLYNkkUhQhVI5QhSbuPjpTEqsYUgxxtH0ZHI8g2iS2DIG8zkE/Trpdwg4DQ98haiaetjKZbKpeNXHyTrYRh0VXa1K0uS7YkPrMSrnZ8LLuIpSXxOi0OP/wgpjSoaKeJFR0Ze4Q6yKhn95Fn/hMaqCmN9LUDJDf1s+bGHeTUJFc1DnFopoShKVTdgBVhQ8KGusqftd6AHXTJJjXiQEMIFSk6FMJ5UuU20YpLuNS+qEmR7xUBJwnUGhCjRDFaEBPNPgpsRghBHMeoiQiJivRjwlWXrfZNuLWjNOLDpE/5pPYtkwwchtdvYmDNi8ha+u9gbJxERgFqrsgl97VJLpiIZkjSN1jdMovmnJtoSaVAa3cTb3EFNTxXRtstZJmMR9k+uJ4tfTHxwS+TMM5cBqUEIiJRQgRlDB30/oub0M3pBQbEAJmZDv7maZR8P3GcQeCSmlxG0SNyS26vkl3ChjAiW3uCQvVxBpIx+ThAlRJDRqjY5CIN6YXQdMEPwQvwKnVO/uXf0Nh/gLhRxz9+nOS1N0I2QVHNUQxSRJ5Hy6lQH2jTGANDubgyKi8YcpOI0EXGJoNmijBno7mSTk6ha/jEKmh+SKjHGC2PslsgXHmEqNEmtFKoFJCqjR10EMmX7nVMUVUuXfdy4oRA6oJ2XiVjqKSEwlDbQ9d1nEwSRTMoVxYJYxXFOS+ZNu4Ry+WRJvWBNr4VoZsCu//Fo9r9Ab45rM0FEn4OiURBIKRCHIFdMjBaPetmtq0iTAc/DGglhzDCqFe8CYEWNGh3PWQco5kJSsePPm9t71lDn066PQUlY6D2J3oZM5FEOS/jLrEhT/6N68i8ag3m5LcuolXQiwwaI4gz+zBVC/uyCdw995zdJqh0ebVxBzYWRWGyvi8mrUdoiqTeaaMslXh9p8bWoEvOKzNb7lKpKxgiRUK10YfHSWy/liF7hA/vLdENI6quT182xX++bQf/5do1/MwVG/g/Oyr8/dVf5tM3PMSrpj5B23k/b3xZnR2vfJSfveqfyNqSMS1kMmujCwXfTHPEdnFTC0ihEZkeRILBusa6uTVsWrwcvVBEL9gkrxkiec0QuTvXP4ffTo+AsaYyoAhQIO6ErLz/SZI3v5z+n//PTP7t35L/8R8jt5ols5Ik0XXwNB2hKTjtLnFhAN1rYRt9qIk8xYyDIyTrtRU+5/w2vzL/l4x4ixBERDH8bP0WPlgqIiKdRGTz6ngDkzKLAAJC2rjUVxeeZt9q17q0a+dVv24/PW5GSslcokuzr0N7PCar9FNMTFJ83fMb5WPbKapDTer9bdpZs5eVV0jS/uo/kB2xiBTRWwzXU2cUrWdsGvSGVpahsr4/R0qTPN5OEAMPRimkUJBItvWNUjjez0Sk0BfBQDjHUvipM6SkZPcXZ0hms5iWxHIUEnZEFMT4bkiot2m6C2ihh+8FBNoyCIkW6AjD6I19LgLkM/24mQDNlYQJQBXIIEZXGiiiTbOtc/zAIQLX5do733zujZqKkskQzM1iTk4Sy5hStNwjQNWYba1tBHGA67fpxE28TJPA7KJmFDa4o6hSxYx07MBCRUOxTXKpfqxnmv7+IkBSS6FaDkXXpHRTBMTIoIlQTfrrLv26RtrS0RSBJlQ0YXBd/0/QcApU1JhI0VhK9jOTGWMiMciVxY0M2CGKZhMFp/DdkL33zTF/pMqpvSX2fnW+pyBWIHTvwU7eT6fyOaykQbqYYOvLRlk9/QR/8yt/zLHHTxJ4gjiW2JmNvPI6nZ+6K8mO8T3smD7Gjg2zuOYYmQ1rsTIGN75lG+PTCl3PpOMNo+kJclf9ELmb7iJ53Zv48B/+v/zD39/Nv37uYe69fz+rJ44xsrZAfEYirukqSycrz7oP4wuodIujiMbCHO1KGS1qYbUW8T2PUrXBzGoV4UpShxukT2mo6Ei/TcuP2BUM4KMQB1ovL3XeIqrNI2WLuBsQ1ZaRfkTsLmJMplG+SdRE8voRoppL3I1JtQqAQixLCGkQIwj07Hl3brCJ8aKAB9fezGM1n24QEcTwnnyV2zUPQ/PxAwvLgBPl1WfVD9/VjPIjH/kIf/EXf8HJkyd56KGHmJiY4L3vfS9r1qzhda97EYW0Pws0BgzM1Q4tbY58dDlB3EFpSU5nLLbv2o2RyWIdMWlc1mSsbwrdDYmRRH7M546s8OATB7lrfZqMaKNNXkmodBBSJww91PTFWenPiCx8JFrUxWz6xIrAaEWg1bEMjfrKMlYyRVjuoOgKyJAoM0zQmqVy6P0Utv7q2cFi3JGghlijDtpEgRQwemQLhx9+kNTSPrLOtfhhxGKzQyMSJPbs4bGmyimlj+tzOkp6BQ/I1PsoaxoJq4uS0J7m334pwlW+htf3BGZDcvPf5IkbpxEsEMcRUkpqjVUyUYfs629i9a/2o6JQiAdQUuCNLhFoy3Q39eF+4jDhkRX6JiZf6EP6rpHYsgXv6GGEbSNDnxve/Ad8MnMPXV+yqkZsalZBxMi4p3iLOm0IdBKGhYhj5FNZQlWDWDUx82P0RbNEjUWOqxlixQABiszhmcvEXR1Nf+ECup8JklqaZblMwlbpqC3i00dplcqYQxGKqKNnmkR+DrPepL5uBEFEM7medOsYQreIdIubVpYxRQR4xMIB2csmiH0PoenEfkDkS8JqFapV8u94ByLQoHWGzNRVomaDOGEBvbwKTby4FJXfNdIj0FxA4NDXP0Qw1OiJNs6oD2NV4iZKqMpW/CigYr+MTOPjiIEpICLGJVbamM0sSuriWI2/UNAUjen8JTxRfwRT0bE2DTK+cx5Ul0s2beXuj38EO5NhfjZk+/A2tKSNt9QGzUKoOj4tzBAUqeCEMdntddBeukTl9wuEnUURHiMnBtg/Po8me5P0TtGnXZC0lRYpP0Oy2qU0kSGMuzxpG2TCkJOZPpxOQGJgCH/+FIHosLD/SdrVCutuvPAVbUPf5XzSTchziiU1aRDXPGQYQwzG0LO3j8dIlvx5oGcDTiYzpG+fZuWPO8g47C1EehHpappGXxtiGBs3WduIGRmqY4SSt3gvAwnTasyGDePkv/xpNhcNwk6KezNXoakS09CJi0Moss5XnzjFa3aMkEz0xlYriTFEFBI1t9JeWuaB6n1Yh+b5w5PjqJsDtk1ew8roOn51e8xgu0y538RXLXzRQGYPEhpdUCLG9w4wsWuarFCIuyGxGWDv6Cdz+4VdrE/dNEbqpjGq/3KU9mNLBHGMd6xGYnOvEmDf296Gdv/f0cgvkaolaBolzPoQidggSOfBspAyxouaTGUD3FihLg1sPeDmwZO05u+jbBT46MhdmNJn1RFsW8zz2rEVBqIE74veyE8YH2eBKraw+MLhz3GHfM3ZDDffC5Hnzfja3QBFCCJVJ4wlBDFZK8ZvGXiWD40AFFA333BB++3fIxEnIAKzq59R4kU4WZPlf+swlCnzRDQMYYQQBopQiGWIHawwMDLF6RUXgSCTMOnGOqejNGN6nY/WMgSx4A/7KmiRSlH0M7qygy+N7iIb+YSjD/MjfT/E/BcDpJTUd9/H1k0zdMurNCoZVpXrGdmS4P52TH9qKyFgaBDGBkZHx3A1lNiHi8ThYRoJpJQ0Cz7EGtLKE8yXiNwIxdRodsZIpDM4mezT3te890tEpRLawACKbTPfnaFNm27aw6knyGUHqI1X+Yff/jWEoiCE4MrX3sk117+GcN881y31FG1PFI8SGTCa2sAVuetfgB64cLgufyt/N/d+olxEHNboH61gNl+JjCNMXyFZdfHTOWIhCMIYQygktBSqPc2R5kNsyb6ceiLDqfwUlu9SDJe4cmCUbX0xzWCRvcsGS8cqfOEvdiM0m25DIhlheG2duX0nWTneRTN0vLIHisqBr6qsnJwjCqpAiGXl6B9Yw+UbwWofRrZBqCpSzdAKspz0LkMICDCY232Iup9DKC0SjsbaNds5denrQKjEUYifG8IoDBOoGmEccWr/boqTU6y7dIRH7j6EbqoIVTC45tktSp5fvfS5htdqYKbSBGFMYOQJDAhaLrGE4XxIVYtoTyTJlxzU3CTBzNcpGHmcwOXzn53mrh01JgK47LExvPJ9xIogXO6ipoeQQkXRdaQffdO2C00hsblA88uzCCtBspPj1JpFcqUWXXv8qa0AKIYuqSigXRhG+F1Wtt7Al5o1fsQ9TUJ1eQsxpWiQ+6Sk2UoyV2tSbT8VvPCd8axJt/e///389m//Nr/8y7/M7//+75/NcMtms7z3ve99Xkm3+++/nz/6oz9i586dLC4u8slPfpLXv/71Z19/61vfyoc//OGnveeVr3wl99xzD88WsWPSGMxwVG1wzQOCrNlHRi1yKDjCWLFIvlRi7ZOCD2/4DH+c/VWsKKJjWmDqjFpFnhQZqkEVPfCxnBxqbCMJCRot1MmLU32UNjMs06CuaXDGwpk4chR5iUMmbfcC2ht13FMlxHqBby2jR/14E+sJDYdA1jDO2IOIIDFlEZ8XNvjyd/xnBqbWkn7sMP/3awf52Rs2o/QN8XkjwbYjD/KIPomhKkwNCtoAUuGpn6zqSeJuiD52cRKWzz0kmDpxu4Z3aicyCFBNi1a7wanSLPqeEGfUwpoxMJXe6lUpc4ruaAa8kGi2V1UymfvGktMvFhiTE6Rf9zoan/40/uljmPsXSF2aoJnocloxCZQWIy+/h9OPbEa0xlANB0+x6Ap5lnADENWIxmKIns9gZNPUlx5Enb6JONnXy84DYtEGsojExU26FcwBDGHQLULt0mH4290YXkAsB9CUE5iZJdzlPMkmrAgFqepEQL7yKAytBV+yGJfZYH6JMN5KFK8BeueUN3sca81GzMExUlffBDP76C6voDkOeOetxgcRfr1KpPcmnEpwLq/pJY9EAcwMildHUxbJev2s2vWzL6uxQiezgr0a4icNVsfWU6xvwxvpA8VBATzlJAYBSuKlvYAAMGAOIxB4cZd9g21GNIHW7TIVhvzCO3+Dex95kIMP3sfHF/+U9X3b2WTcdPa9zXyDttMbb+QWh4jl9NOqAP4AL1KoBjI4yOjx2xk7Psz/DX26dxxj7UQbIQS1dJdUPUOq4rE6KdC1JPekWvz6ymFO59fQSo6jVapMbd1O6cQRvEadlWaTYqNORjFQLuC1SA1c6Ntw7onzyBMhBIO/fiWKoyP9+Hxu7hnDUc9ldvmxh6laKI6DUELEUxWiQ0l3d4Udd17NrtbDYLvcdKV71lDxnmOPsrRrHbGUiIdn2Z6eZjqX5mOzLQ5a8zT8mDs2DnPdmn7qfQ4PPv4k9YX9PBQe4A2+wqCc4PTwLVSyE1jOj/OufQn2jx+lM7WVxVvfeK7AE7BEbywbiyZBYgZNsRFeArMbYTcNVEAbsEFVEIr4ltl/FwLJG4Zp71xGtkJajyyeJd2C5TbJZR25BhrFLu0+m+KKROAwfe8ejt2+DSEULC3DvKzyyu2HuPlEj0idSlawEzFxt8pU6zgnnCkOtmL+MrLZ0TKYSPnkEbyZEf4Kl1Ms8+czH2L4VICd20QQfWPxnABBrFsgJbomcMtNGoMd3KSP6irkW3nUnHG2St/zBdNKoEiBlwxoTybhUUlqUz9LnoG67x5GB3+KOU0/ewooQqOrDxOFMbom8EPJdF8KNJVdjZixrEQBPtVx+NFOi8udgNF0jlvnhsgeEvyfjQpPamXi1u/wMn6doOWTfvBdjMg5AJoU+XLyUo4sPsbC0ODT2hrpbXw7QC3ZKBoXTaYbQFbPMW8tUB3zibZcjfbw3fjlFqK/j0//28fx3A5Tl115dnsZBETlMgDa4DBSSvadeISKU4EYirNplHU6g9Pr+PkP/AO7PvdpAK6988cgBnUoC6qAIMKcK2HgvSSdCEII7ui/k08tfZTZvojWazL0PfoYtbUpcktpJg4oJOpdDok2f77kcdl4kcuzPsWhSbZkX86u6j1cmbmNilPgoTXXs7H0JAPhIYZVAyEERWuOT+x+iGqrN84VikkiPcmp3aeIQw87ZbN5MsHS6kkCabBadlCFieYMc92aPLpw8e0668d6BLCUEK7O0rbXU9NHEUCnEeBkDCKZoza/iKKodJohR+rbMETvfFdUDWtg4sxnSFA1ap2QfZ//DPnxSZLZJK2aT3WxSRRGqM9iYfIs6XYB7pmdahWv2SA0zi0+5WwDRYGF7mn0yS4ShdxCb/4h3RrFJnT1BJ0uZNoKeVQkkqh6EtXOoSRjYtJnb63Gmm+tGjfGU72YBjcmu2jAVoHrNEm2e/0jIhepmKwYNmr1EBtqT3I0fxXq8BQAXzgScktzlm1Jn7+Ii7w1nuXhyg6OLcK9B5d45frsM+qHZ026/dmf/Rl//dd/zetf/3r+8A//8OzzV1xxBe9617ue7cd9T2i322zfvp23ve1tvPGNb/ym27zqVa/igx/84NnH5nd58VWi3o/Rc0J8W8FwPfqTkxysP8SqFmFrKhtnIna5MBMtYBnnyKC32yq/7y7x6fmQN819kfwNPwJArHZJLS+gXHXtd9WmCw1HT0Ivyg294aHVuhirLeL6CZRUP1uuvJGZU4fY80+fZuR3XkNTdIhEDaMa4q5ZT+DOoaZTKIGKSMaYmZj49Cpy4yBCCBLJFFe+9k6GN85y6C//jpMPnCCz41achMOjW19Bdn4nt60pIvUmxCqp9rkTSgt6F75/799+qULKAH18ldae/SgCSscP4mVT3P/IZ2g0K/BE70K5PXcLQ8Yo1uppqm+KMBcbaCttIt/AHusj0z/4Hfd1sUIoColt22jfdz9Ru4l/6jhDG4sookLT7HDPUB/LdoicXmL6kQbTOwsYKynSxyMqW88VQ7ALPloc461CUIUJZR3a/OMs33ozkdUjLIXsAFlU5+JW0piKyYg1wcryUdrTRWQuR9ioIkkTyzSq7YMQpMsdrFaImxI9u9aW22DtOuS+NgIfIUAQcKZqB/WvfpbGg1+kcOfb0fuHSV33SuINW3Biid4/gFREz7ITxQhHx2+3ibTerU+5+IoxXzgoKoxcBasHEK1F7Kj5tJftwCSqNejY+0hXtxCaKsvXvQkjUolEG6kEKJGLYko086U3EP73GDRHuLX4Gh6vPchKvMqnbrX4kScK6JUK7N6NXelZIlyvQ7NThrOX/IjWmhA1FDh+gj4jByRQR7Iv0JH8AM8pFB8t7F1r+1B5ZDXBVNbDs9qsOFXG6oM4NQ+1VidM2YxnbuD/Lf8xt7a2EloFWplNDN7/axTdXdjOTWBdAqePEcr22SJQFwISCf0bz5Jt8nzJEj21G/BdEyQFo4+slqcW9s4LW00ihEBNn2eXUwXBqQbJv+kyuq2PZqFNx+gS6BGBKRifarLrsRrL7QS1UHJf1eNPTzfIaoIhs8XWlE6t5pBP2eTtBHfeeCWL3gnWRAZ3s48fPvk+rMIgbXsNrm5y/6Wv7x2vlBA3CDVJrPhIEaIFKlLoBEYV35jDbCuY3YiBUw5TB0fRx1Iopoo5lSF14/NbrVnrszGns4SlLsFs82zxN3+uidM+Z7Pz+9JorRpRN0MqSJGYP0l3bBqp6Zhahnuij3D5ll/i7n3XsOTPMZdNsSPYxa21B8ioHU5ltnA0jPnZCtxjLiNUh7d0LyWIVL482OFY9zTvEZ/ktys6yalJ2o0QoUAql8CwdGY9kFFAiEKj65NfrlFf62LXTBJNk65bJT09/LwvbGkJA93T8LSAMKkTNCKiTkDhlevxdz9C/sffwVwt6hGwseyND4Bscz9aYRsnl3vK+Gsm8+yerfJ4N8sVTof9XYvfrOb5ECvkzIhtw+Pc+/UJCmOLtGyP/WKFP5v8NcyOSxiqNK0pEvEKdlznmuRf8dnoCDllG3HYRlESyCAkcHp5d7qnoerioiLdMtki836vFm289XqUvV9l9b5l1FeM4AceTi5H/+TU2e3DahW1rw/FttHX/CjH3nsfp157Cr2jYXV0Nj00iXqZgappqFrybJ6lUJSnB0gZGpdO3fJCxndecBSMfq7L38rO8v1U0y7Vl4cocY2ViRrDx3MMn4wZAjZIn/9w+DCHMgXemm5hmZKcPsDhpS9wY/5W6rrOoeJ2TmbWMrJ8hKmlo+SdJP/xhtuZr9VY7AQc9VLEwTy5wWlSNFgzksDp2qxLJCh1GhzRY7YVC0xlUyhC9ApOajFRJaKbcHjiiEKuuB5bSzLnbiLu1LHcMoE5jqqrjGwpcPzRMglHwW+7aF0fTQnRWhV8ERPrDlI1kJFPNb2G5mP/wHClhKInSPRfg9v2aTc80vlnZq2WUp5V3F4Ie+nckzsxnCRGbpjzja8uxzFHH0dvath1i6EjJsH8TqLyMS6deBNfJoUEtD0pPAReVEMrJIhdl9ZX/hpry50Iq4BQBcbotxbhGMNJ9NEUUd2jUMnTf2yFdnGGhl1m7bE2QoYEMqDVdwuL2XVs/8rP4m3735xwJ8BK0l17OXsfOka6tcxAdpSfUod5+Mxnf/CLB1kqPbO59XdVSOHSS7/xtDVNk3b7+S0IcMcdd3DHHXd8221M02Rw8HsnGkaOh0R2jcDWaeVr9NUcbApYqT7cWhvXNFB0Da3epV5wSapNUtWeBFtYDlvVUyyEKR4buZG1fpvQDCBukyiVUPv6vuf2XQgUzCJL1TyB3iFIQ5A2sUptosBE1bNkbJtkrkDgudihhU+IKrNEWYiSWdTyCjK1ibgVoMYqUvMQQUR0dB5t/bkB18j6MS63O3TLR2l416MoCvWux22bx7i8mEByENPLYAQayaiK7vskPNDHkuj9F0dWwwXDeWN4Z/1amsUiYTJDvVGhqpeR4syEQggQCkei3fjzX2XI0jEraxF+CM2AbqNOt1Enkb54K3E+E5jr1qL1DaLlBwjmZzAredKaQyK0WLXKCAkCiT61QvxEElWEJLoeWjSOJMaMQ1LFQ3QXUyCGEVovodrOTp0l3EK1AWETPach7IubdANI6RmanopYWKU5oFKsV5ByHYpoYKRctEwIDcgs1TFaGmpBJbv9MrB1kG1U0WPWNfUQ0sox/3/+HG95lrhSxZ8/hZQRyfU3oqoxMoqRaL1BdSzPeDlC/CgkOrOipgYvZG+8ACisg+Y8InRZ50fMzLaJiiaqVHCiBL7bII5KRGZvhTMs5okUA1U6EEGy6RFbXTT7pZOv8q1gqQnWJjeyq/4QprAQpkXgJNBdBxTBNVJSXl7CkzHlbomys0RBGwRUfEch56WJVciIbM8Knnrp99n3A8wrL8F99CSukmCtk+UkMUomJIGJeua6nGj52J6Cr0scPcMBW/Ayr4QiVFK+yuLIG5hY6UfGLkRVpJKBuHNB2x1LyfkSNgX5rTf+LpDWsnixhy4MdMVg2OpZYaztm5DReRsqglQnwbb7RjixbQkZWoQLuzh46zAt3eCSK2cpPzCBGRloiiBravhhRFpXmLA13qzOsldbSyxCOlFErBgMamvIZw2ak+Mo7kPE0kSRBSRpECpSlkAYBPoJPPsARncTSjyKpIzmtxmo3UT/qSWGD7ugm2hZk4H/8PzmkJ0PIQRaXwKkRIYxnSdXcXb0091XIpXKk19KEwtJqHSRqo4wMrC6il1yiOKjeMMTxIbGj/b/Gi1nmh1vWMu+xRr3P3qC6foJ1rDIeONe/tIeRxoZGr7NMbfKeqMOQuO29gi7nTb5oI4fujxuneL6Tg1IImOw0xZT24YoHaxQXq6hWw6FZAK128R3QnxCjJpAU3y04vM/7lVSOkZHxyMgsAVRO8Atu2j9Dt6TR8kXEuSX5pE1BRnF1BJdKokWxymxYVSjL20QRDGbhjLohsLqYoWFRoStxJSlwgNukluUFlHc5rapHeyfb7I85SMU+HTC4w1tk5qYRtGyDMuvEcsES9ESX9VDhpQ+FK2noBGmAaJ3cqi1FmohA9bFQ7qNZqapHJjHlz6L4wusH72E5kqdez/3BJm+AYSiMDh9LtswrteJVlaQmXFAMLt5lcJyGtf2cdoOiXV51Oy547viNW94AY7q4oAQgk3JbRxo7EYG4AcuRDG2azCzYZmNuyYRAkZI84+xw666y2Krjel1cTSTT518LwuVr/DqDX+AoUikprM0spZceYm4UUYYCv25LJNFjStVhaZr8E/7Zrhu4whDdgbNDCHUGczl2DieYufQpcxrGrFQuPb0AySCEBoOSmIbfl9MNWlRCxSQMbassW3sER6p9BHECUxbQ486JE6fIti0ASVhEGPQPFpja24Xp70JWnoOVUjiSFKLE3j79zK56RLilV2kx65idab2LEi38/rxOSTdjn/tq1RmThL6Pk6+wGG1Rr22TNLJE8UQJ+skyzZBwsepW6TcBAwNoKhbmBgZJYoEKhIPCBSw2wt0ZmcBsK8cRHolhKGj9g1gjH7ras5q2kRJaAhNkKiAWYvxzSYinmfN/L8wXD7JidG7OJy5lGRQY8/m3+Kq3f+J1Mid7B/7aXxX55DbJj55hFdvyzOgqGwz2uwPNI7WI1qPzj6j/njWpNuaNWt44oknvqFowj333MOmTZue7cddcNx333309/eTy+W49dZb+b3f+z0KhW9tsfM8D8/zzj5+qiJFLrSZyXUwVxqs9JfJrybRnQxX3/RLNI99juw/fgSAvtUu1ckmRaHTzPV+7CPpJgcXN+FaTUgWiBNZFMC1WuiVFdRs9oId//cCy7DoJHuctNXwER0PR9WRjYOInCBp6TRKqyRzebRZn0a2TEpW0JodwnSG+JHPow3fRqC4SMUHNY8Eorka6rqRp63UbbjuGr7+iY+Rvu+vcF73K2ixyuhAkiHZZUb3kCKkm7BQ/RwkwAgrBLN1xBUvXuXWs4IQWJs2IpbmcEZGSCRctv2X/4ermg3+8j/9NJpuoJkmV7zmDeifuRs3H6L4IX4+QeJImVSxD90wSRUvToL3mcLatAlv5iSKlSColRitVyn/P1fT1FsIoRKJCDWO8RHMW/cy3vkJNC8gVFVAxVPA6TtF94nj5K75FWp7A2JXwQpDNNfHT0iU2EKRXWIvRjUu7kIK0JuYHUsKjLJK48ZLCE9XkdjEMo3QFYo3rFDZM8L4wRoAev9h0jf3BnWSXoBSK8pj6xL38EmkFxBXqxBHVD/3MQb/y39DcSykpkIokaoGMgah9O7UfkgcRth1B6Oro7vet2ntSxCZMUgOQvUk0zLBV3MmMtGz2Rh1jWpOwWo0UcI2ZlslTo3g6w1iWUUqCsKX6AM6mv3SznQ7HwPGEIveHIZiMnP9GqadTfC1B7DqdeqdNgjwVQVbJPGli2klqPe3KTk9627aSyAsDWFe/OfnD/CdkfvRn2Dl2IM4uk615ZGsmVAxUHwV3TR61kgJ6YrPctYm6zv8rPcLfDD+EHflfpsgjjnSfwnF6kkcBIFQacXL4D54QdvtIoG3n3tCPLekW0bPEckQgcCPXcYTZxQwgUdUn0GYDopT6KmKgl4Bq6nd/cR+m3A2ycK1LZKupOC5dLZ8nTu1d+EoSe5eqFMYSvGL2/qZ3f0YR+slrFYZZfAKlqImQgpMw0AaTapGlci2Ka5+CeRdCNGTzwiRRwSPkXYPkF62GPNmOenk8dUMyBSjJ79M7miCQC9i5TMYwy98FIi9rY/S3+5HSkn0b6dxj1aJ2yGGJ6hc1RvrGzUTuU8SixGEIhl9/AgnNyXx1mxEIFmbuQlV0am1Qy4fz3Pt+hwf/VQN2T6GOrSOH7P6+Ov9VQIZ87u1Sf5gQDAk2gw58FvHBb/r6OxUa3xV7mVt9wpyei9vy3IMoigmCCKkqhHFMd0gZIPSoruUJNQjjJqCoeXQB14A0s02cE6Z4ElEt4Mf+mg6SEMjaPj06xWuXnyQ8oG1BA7svmEKJzKpSg0t7tLsRtimxi0bBnjg8yu0VIOUFbJc90mqkv/VSXJdqoMbqViaxg21DfyZspOhuMuXTYUxu8klbofHjP/OmNxF2435Ok3UuIWu9yIeQi2JiDzUjkvatUl5fahe6aIppAAwbk9yX+6zWFUdL28Rtn3k6ikuLWkcWB+TW7uO4fUbz24f1esgFLTRq1ic9nBx6SQ9/ETAjZ+aJjDaKM7FkVl3MUAIwY+MvJU99ceIZMSuha+g1ku0lBrSzyP0FCBwUJnCxA5MpGlTESF3bPtfhJ0KUXsemRzFVw3iOObAlmuQgUUy6JJaehLFrWPGEtW0+Mkr15GQPoonaCs5FjMjVJI5zNCjbjq4egJBzAMT1xMpJiBIyBg7bGIpAk1ICkZEIRWhksRORDi6gu9Lbtnksv/+Oo2Ug1/qIFQFf6WJPHmSa/tP4l57FbvjHbTqTazNN9LdeTf7H/4ahuUw0BKEXpMjX6+xeOQQdjrNLT/5NgbWf3Oe5ilrKXxz0q186gRus46MYgrT60ikvrWAo12tUJ05idduU1ucw+/0BFkHSgeobdrEAAMABKGPq9XxDQ8/EbLx8XEIDawtExTf8mNUPnGYxs4VNAQKkrouSCeOYKxbR1gpE9XrBIf+msHf/TsUx0bv+/bnuTAVokoXxdJIuFlWMqsYFZX5/Gby1WWKC5/g2MjrkVqKQM9RTa4nV9+JNv2zmJFLYtt1HN3zdXaePspl67ZyxDfP3HoVls8rhvPt8IxHrP/jf/wP3vWud/HOd76Tn//5n8d1XaSUPProo3zsYx/jPe95D3/zN3/zTD/uecGrXvUq3vjGN7JmzRqOHz/Ob/zGb3DHHXfw0EMPoarfXMHynve8h3e/+93f8PyUO8BJe47GlkHCUomNOycx3RCrESKGJ4GeKOm2fRoHLmuwLT6z8hBLAqHyq9m/47fUafqt14CMeoGISgelVkO5SMpZ/3s42hnWWIKbNiBtIA4uIjeXwMhStCs0Vpdp16pYuwoEr9ZQGxlkKkdQWCVaXkFNAosmoerTrLXJFvNE3YDu8ipGLo1m9o59++2v5Gv/8BFqC8dQ936F3JV3IOOYsmLjG1UivUOqcY5g086UW1fTL21Lljhv+cGYnkZ2u7j79iHOyOUTqTS/9JF/6UmXz9glTn3sn1kaCmhN54ktnfSJKs1SiKKqZPoGXqhDeU6gplIohkHc6NkH2jsfYHPpLu6d3Hl2m0hVWMonuH4sTXN/E7t9TlWpyJ73May0CEqrpDaOUd/VIlGB7V88xud/9nGQkF9MoToKin7xT+o3JbfzqPlVOutzxGGA9+QKYeRgao2eC8ibQR/djj+ziowCvBNLZ98rJRiKS1Lt5YO098zjHt8PUjL2vg+heTZSSpS8g7rxUuRDDxHM1YhTvbLpBBFKZ5Gw41EdbIIC6fLFrw58zjFxE5z8CoRdMjJF6czTycBmpqjiJRqYJZNuVkWJY3wzRogMilTIlUKWO6tsSDz7oPUXK3ZkrubQwl4aYQ1HTfZIt+tugOtu4HJFcu8X7wbgM63/jytfeydXr30ZsX0Q6OXkGa6CfvXYC3kIP8BzCFXXcDdlMZ9ocT06Tj3LUn4RGYJY8M/msu19dDfFjbcRmxqp7Civ2fkznBg4zFTyMlzd4utjl9JcuoevKyV+/81/heVcWCVko9uEPQtnHz/X+XFCCN46/otPu78D6AMDRB0LxS70Bp5n4k+Ckw+jj16B6vShbnoFU3seY//rVBQ3ZvjJJkH8MCi38eqhNBlTZ3FXBW1piHQVQBIfPkZsnORz2scZmBph+/YrQETonSIj+16B03DJlfaztEFBijm2zP4dyqW3caSp8uT4DyMVnbGV+9ix79d4PPdOEuYYpmcTdwKyb1r3nPbNdwNjPEXhLZspvX8PUSeiW3FBAe08C3Jkm/hLAmtKJQwHUdJ5Bv/pd2le+TJwUkipnP0uVqttXrFBpTC5ldzAjSAENnDbE+/jn5Wr+HqU5E8Wv8a7cjWGM5cyILP8d1fhjfYXOB7O88n2P/M6zSXvXIamKbiBpNKJMfTe+G650WWT5lMb7BUoGjw1gqZLzPW5573vemNtQbPYBQSeaWINp1EbXaouxEe+guqdJL3tMuq7WvTNtlmdyhPGNmL1MKa+gUoroOuHvOWqaZ6YqTFTbdOSVU43PFRi3rxc5P6xZWK7j5Sh88iePh6+9DPMayp/kEtzzdE3Ubc+xec37EBf/Dp7TElFNfkRvY9YT6EoCqg2XrKOb3fQPQ0t7YBy8WR/qkIjFaUp95UJzBC3kMGopijWV3FWy2x6+89RD6qcbB/FiztsqgZ4a9ZgTF/JkctmaOV7Nt2pXUOorkDJ6d8/GbrPAtsyvVy8Y+1DVOxVOtkue1e+wrbTrwMk5oYcRw+v8LLHV4iRHLyiSHd0LdKJaRKiKjpIiRJ7dLQs6CpdHB5NXkXKawAxOW+VqfJJlBBcO8Ni7ir2JbNnMy6NoM1QaSfLXoPO6C29hWrAk5Jo9WGm+0dJiwQSg24wjOsnUSrLZIZTOLag1a0y1nyIetBHNT+NUBTqXZVHZ7YwsvNh1p78BJfctsCu4p3omX6GvSrq3q9yYGmew/f/I1HoE0e9OU99ZYmDX/m3b0m6xd+BdDu96xG61Z4IR6gqI1t3fMu+L586zuyuR5/2XCKX57g1x8zSYV41eGPvcwwXz1ki1iJSqwnMbm8+HzV84ijGn22eJakUBNPXjdC538I/2qtQ7pUraMPDZF71zKpeGyMp3L1lMBVyosDh7DJuyuBoOAlfeSVy6xbucR/ixqFfoCsDFqf+E+uW7icVNCkn14DWx89ctsAHd8F1U5tIKbAa91p4e0dy5Bm04RnPKN/97nfzH//jf+Qd73gHiUSC3/zN36TT6fDjP/7jDA8P86d/+qe8+c1v/s4f9Dzi/PZs3bqVbdu2MT09zX333cfLX/7yb/qe//pf/yvvfOc7zz5uNBqMjY2h5/so7HyM0tUjdPoF7WyAUzOwGgHmWJqOZaK5HmJ5mQFlC3FURw9TBKpCZFsc0zYTKjUmHadHuOERKS1E98LaH74XOGoKQ5r4nFGuRDFGzYXuPIb2OZLmVrKDw9SXl1g9cIhw3RBe3wymP0p306VEioaaWCGwC2gdA2/BI8pHqIrG8S99hfQl04ztuAIATdO48nVv4vF//Sdqu++lvvd+hjddR25QoTTYQfcFWTfPU4lJmh8jEtr3TaYbgKLrJG+5hdZ999HduZOwWkXL5c7ecIUQhJUK3Z07qb3pDmJdxZqrMxxlKL7+FtZffQOa8eInKYd++X9Q/oe/xj3WI4fyZQVjTMc/z9fYVQWTE2m+cOCrbHWvZdsXIkxlkcJ1h4lDhdBV6B56gtQN/WQuS9I5vkine2aCJkAJYvSsjnKRVL36dlAUhc2JbeytPUJjywDzdx8jH6o0wxGS9iKKrGANxrSiNkJ18GcrxL6PYhggJSrn+s1fXsaY3khixyWYU1NEB5d6E74g7A0kLrmEuH66p3SLQ5ROGa0+R6SqZ/NDNPl9SLppJlzyJjj8GW4vt1k80Oa+B2tsf83LWRELlNNdPP0UCXeKdsEGaQIxgbpEf9xgqd16SZybzxRpPcuAOcyqt8xs9+TTCIXB8UmshI175t6YKhTRJgs0Wx2EhJTvoGQdROL7p79e6lAUQeRomAM6nWWf7ZUklY5GYIVUBs8VJgn1frS9h5Eb19EcTLE+l+ShQ/fjbEkxYE7T7tuBm7Bpdb7EH937Z/zIwIUdk7aCVs9i/9RxqM/95Pf8+/tT0EdG6R5pAv3nbSnRhrbTffjPGfqj36Px+Zh8dweJ+hG6aY+105fS9zGN8c0VZuw0mYcrPb7OEChaAiWMUH2dG9jK5fZ6vrxjN8gI1bcw/UEWLhk446Qd6bXBq3L5id9hfnYtR3f8KcQBdneRlL9IHIYkOoOYno1UJalbxnuEyAsMIQTmSArn6gGkECB7hRSM4RQ55QS1sEw756IWd6CnKsg4R9Q2cK54B84TX6d53SvOEqAAsdARX/kHNo/cRRzLs6TrQLvCDeqj7Exexr/EN7G/XuELiWOgF+lXR/mVxvX8fuoBHuEAs/4SH7n2ZgrDaWpu9LT22mEXL3HuOb0J1ojxgpAsiq2RiM6R2G1dEHUlejqB3l/Ae/zLGEEJJfcq7CkLp9KmMpYG3eLE6f1cdsuV3H+gQtfvWbIvGcyyZTDL0b40H3/kEJVQMBPq/JfFFO8pVhnJ5PhT2+F9nVfxEesLlKwun936ZyAF+XaBMTPHmqDOG5oe68a24j9FTEsP36ygdzWSVQtlw8UXqXKJtp3HWl+jm/ZYuet61j/wWlqffydTq3WiPp1/mD8nYJmojXDybZexcsVh9K7K1OIE9nQebSQkmRrFuez7xO3zXeLlfa/hscOf4XRyldlX9bPp/xxAtzbiHa5xjZ1gf9ejIyXpekTC6dLNWKiKQRSHKMR4eg4t8hgN9xILlZaSp6MmaBsZlu0xZu21JP0mbSNJy8xAFNJpHaN/8esE+S3siRfZb1a4yV2hEKlUnQJSKIxPX0Wi3cRYfBSQ7Bm/gvnhzTAM81HUc+e8/PXoV76MIJ3rXXq7LkPO3bjbbNa7efq0Cu7xT0HxTgDE4Hpu7CwzlCvw5ZkToA0QdCt47SZxFHFk1+Os2fkIE5df/Q39dL7S7d8vHsk4plurnX28eHDvtyXdlg8fAEA1TKxMFgHEhsI/Ln+O2+3fPLtdK/0YsYgwGxr9M+cWEqKGT7TaJVzpgiFIbOsjc/M4wlDwnsye21EiQfLml32HX8A52Jf1091bIlhsk1lxGD5aYHGqTHN9Dn3f5xELyxRuyXLceZg1ycs42n8d05UnmCrvoZEYIjAsdm18D2OHf5d/O7CT/71RsM5IcI9c4clu9jvuH54F6XZ+QOxP/MRP8BM/8RN0Oh1arRb9/f3f5p0XD6ampigWixw7duxbkm6maX7TYgtqJoPz0ArdvgTBSB/1QotkLY/uR2RNydyZuoem5+N0OtiJFMGZjKOOLZnwhrBG7+a1hV/kNKBgEqsemnPx3RCegqMl8UWPcFN8yO6aQ8SSsB0jYwtDWaAwOoaVTFKenYFjVXxrCdW00Ds6rUuvJj+7B63/h/BEE+EKOkETTdFxjBSlk8fOkm4A66++ivpqk+rhJ9C9NmnPo610Scy3SKWHSQQJCGvIrkBzQ2Q3RM28tCdehUfnaazN4Q1niGSEc801RLUaUbVC5QMfoP9Xf/Vp23f37kUdH8UbzpA8VsaodrEiAzWVYWDq4qyS+2xh334NrT0PIQOf2PdQqg02BmuRFY/VRI2SUSLUBR8Zz2D8iAafPETarRIak4iyhZJvI/QsQbWEN3cSa6SPKLIJtZDUqo0SgVPW0LMa6otA6QaQcfqIvF5b/b4U7soCai6JQwJkiKKVUZKCuFFGG95A5W8/QvEdbwcJKufZQTUbLZfFnJ5GMXuVTgEIen/FsQYJA+G2IfJRDAUxOU745PK5j3j2qQUvDRTWg5Ek0SwxYmnETRcj1kmFSbzTy2AsYVTTRMksvu0TaF1CvUkxWWFm9YVu/PMLIQR5ow8ktKImjaBGxugNuoq33s6W5QWWTx5H1XUmtl2KSCfwOgFSgKqpqKO5H6zuv8QgVRUjr1JfCdEjDSl6Bct955xtY30KlqpLJGtFNCuBm1G5cc8NTF06hSwkOLx6GmEWuN58E7vr99DwGtjqhVOQhlEInKlGR4winh9iSc3nCJYeQ0YxWnEaLB3Z9VASKRJXvQJr3Tje0RL5ME12eR4pJN2Uj50cIDgaMqDUCZJqTyGnKwgziew0KVGla3U5/uplEjWDWJU4jQLp7mbsVgvFFLRTOoo7S8ue4NOv3IcEku0TxGqGfpFhXc6ibP0syXoOX3fRUhbWuuzz0i/PBEJTyL2hp4xoPjBH3PDRciaqpiBjiWf7yKgJQkEv6ChmhPQMUg2XVreNTDgIIYjikG5U5Z7BH6HHRkq8xipxp8X4bT9G8p/ezWpmLStqhnJo8LelOd7Sr4MwuNaboF/OUs/M0hUef3DoD3nv1PtwSzW8rge6iucHeMtH6SR9kssWqlQQpRbm5udf5Qa9a3a2kqIwn6bruDT7LcKOhlevkZjO4h48ijm8ioyqxLkx7BkXs94l0lVOqIPc+JmfZPrGvwEJ5WZApRVQ7/r0OSbpRII7nAoy8shpEZ4aEEegKio/F49x3L2WB5XTOEJgiRhHSZBKZ6ABtt8hVrMgxJlvQYAaESTAblqo6YvPSTSYG8Oo6xgrGoEZgaoSTawj21jldHqVJGncuIsudL42uYDrO6QXdSJHITc8yBUDN8GL27TyvCFvFJkY3MHqibuJVMnOV9S54eFposggEcF9GxyUQ3VuObrCyKky81cN0bUFdTlHICBjjpASCcTCHtT8NIrloAGJSEEhQlEUOmaOKI5QuzUqosux8CD/W/wjVP8RDQ0NlcOVz/PX1q/yWLIX8RMAVvUosWaBjHE1Cz30CFSDUOlFtwgZEzgplMAjVCDvznNNbhADFZEMEOIatLjMaOkApdQIjUSaUAiKqQyaqoDskB0cptWo0K7V6TSbnN71CAPrN2H9O3uo1/HRTQ0rqZMqPF0h3q6UMWybOIoQQqBbFrWFWbLD3+g2kFISnFkwVVQVw0qQGRqhO5pk7N+uAH+SIIwQikesdEEFu2qy8bHxs58hdIXq3SfQihZK0sAYTaMVe21SM+cKKhpDQ5jrnpnKDUBLm9iX9ePPNunuWSBZNrH6NQLaNLaNUnzgOG+cX+Kx+An0y/rREimOTNxFv9sgHYTU3SbNzHrW9QUcXjlNn1xDXTG4RTE4tOH0M2vDM24t31hG1rZtbPvi8cp/J8zNzVEulxkaGnrW71XTKRKzdSJDw2gE1Ac8iisaKJKU7KAOD9KoVRGaRmN1HvJ58kGToKWelZQ60kT6AhGWiVSwS120jv9cH+ZzBktJMGCMsOzPExsQDORIbN+KDAVSOKDqJFJpOvU6mmGQaNrIRBdCFRk1e8Gz9TnMaQdNM3qBljLAjX0MxUDTdLxOG9PuDYoLI2NsufU1HFtdwIhc+j75dxz74UmMxAjdfIDSlTSTWTBhzKqjjyVR7ItfifS9IDZUkBJ7pUvVL5G5/TYqH/gAan8/sfeN2Vne8RP4mycwah5xGKM1PIYv2UbfSyhcVRvIoBXTeKd7EuOoVuVy/+XEpSp78ycoJ6ogY3xVkDd1Tm/tsvZQElXvUD2wCSPnIrOXAgbdlTSd5RikIEpGNPt6NwunZKGpKor24iCQMkaO/HxE1GkRjBapzR0jjCxStgSRQNMrKIl+olIZYTgE88eBM/ZSrw5nuGttYIL+d/422nieaLWJyCZAiHPx4H6E4phITUEZzqG1etYqJZsFerYHXfn+UZ8+DYYDdhG9U0J3dHQtZn75JEEqork2h+F6JEsNNNcmcJIYYRIjXEaLVlHSU9/5819iSCg2ESE5vUAzrJ8l3VRN42U/9XYe/+wnAcgPj+LHHvJMXpapJtDG8i9Yu3+AC4NYCKpyBU01qIUKmcUk1YSHH0RIJALBvc1lTnshP3SJQhZBYziJMzPPVz6+j/5UQGrzBPGEQyeqM524kofdJQQXjpyVSEYSawiVJrHaRdWeH5WvuWYNxnA/IjnSu4iHPXuklCGok5Q/No/sRuhjSbKNFNXBJnpXpTkQ4pxoYKcT+FECMRAjck3qVo7d7cf5Gju52bkczbPwkxHZ5RRXfmkco28RZ0OCU4ZN0utQskZRzpSNUGSAaw0zXvUZW16lVjPxWptRY4kidbThxHfM2nmhkLpx9GwV1cHyKEoL/HaXjlFCWzFIjAYEXg6hGOT9BAtKL/Q8lpJIegRBA2mkUGLQVJUVHEJVo+Cv4utZrpx/nPvW/hBeq80/B5fR33Z5ld0hYyb4yVM/w/s2/BEKOqVZl/95z59whfIqzHTv2mZqGmlCZApaAz3iea2YwJh+4UQOTjqDlziBVRfI/gGCdgsZBkSKQrhcRhRXek4eWyWZ0ohUCFVJWltPWya4ZDgBam9MtftEncdPukRxzLXjBcKuwWvVvQBU+5KIoyVG7DRIwX8Nd/A2dZByfIjx7gZe3/4h3vCuy0gkDY586D+zX+/lBUZhhBaXyC2kiKWHsnwakdz+gvXXt0ImV6RRayMViVRA0QNSo5dw4oYIpVylMNTHkjtPVi/QMGfRPQPVV0i7aS7beP0L3fwXHTb2Xcb+Jz9DLHpEVrN/ntTqKLGq8ssdg98wJL/kd/jfQZLs/bOkJxPMZY5wVN3DlcM/R1k20AZfS7u8jCqSKKqOCMCIBZGhEgO60FAij4fan+Lr1X8mJ1Js0dcxFyyxLCvEikpTC8+2KRKiFzWlaNQ1C0VKzNAjULQz9lSBFAqCGEFMsVVmx8wj6OiExOhCQ8YueiRRY4mQAUYY0VQ7pDSPu667nCC9QhirPPxYjZM10AydTqtFq1z6BtKt2/JIJA3iKP4Ge2mnWsZKpfFaTbxWk6DboVuvf1PSzWu3sPNFVFXFzheYvq6nRLt/7n6OzDrcttFC11TAxujaJCs+hSddusInoRoQg2KpxHUPJWUivRC9/xwJaExOoA0NEdXrxO021trpZ/VbSF0/QvmjB0EROBUdzVUwWpLuSLpnQ/dcdnzxEZbW3EJkhaxoNnEiRSpu0lYd4nqNyiU/g7H6t0i/i2sptEWALpa+8855lqTb+vXrv+PqcqVS+bavP5dotVocO3bs7OOTJ0/yxBNPkM/nyefzvPvd7+bOO+9kcHCQ48eP8+u//uusXbuWV77ylc96X2omQ3rRpb2+iNqNkFaF6V1FTFeHSg1TQqrSs0FUDz1OZ/1mImHScVTMluDq7qX8f0qepmEgtSQKUCu2MFLZ56g3nnsIIQikD1IgJJhzJbpP7sVITKJQJ8Yin8mz/6tHUDWd6PAc1mvXojf6ia0qoZ0hOPQYdlKhc6yF1mcTNhWsvE0MhJ02br16lnQDSGYsto6uJVFZYElXqV0+TmNTEeii6ecKYIiqJBbBc1pl5WKEvdBk8ZY12CWXir9KMb+FsFLBP32acGUZfuM3AAhin4X2KQ70z1F9RQ63YBBmMhT3lVH6X/gA4+ca6uAAwrJRnRRRuwFnbD1Z3yFQzlg/FIVKyqC5xadR6LLx4UF0P9GrXGr2ftMyoDdpERAa52wcSm2WbrJNUvvWRVcuJmS0LJURFWNZwenWcNwBygxj6AtATO30PtTMawhX+oi9JsGqjnd6CYlE6XQIYg+hCfT+UbTx3qBfaAqy1j2zg95NT7Y94lIvX0ZJGDDVG9AGf//Fs23RlRcHUXlBYKYJYoVOu8v1V+SZGFqmZBRYapdRqweI7M0EpkDKEKlEqGYTM6tRny2/0C1/3pHRc5TqKwCM21OMMvm018+vwtaNOqS1LEEcYCdeGKXHD3BhoRoqg/1jqO7X+PtTa8mqEdpQ7/rjWyGmqzNj9/Ow9Ok/usDLrt2C4oWkhwuYJz5D3bue5oNLKA8sk7y8j8SEjac9H+ODgFj1CIxlzG+RFfxcw1y3jri7jJpOIAERSmTrJOHqCfSJG4hWXRDgHaySXpvETQboHcGpdcdZ+uKn+NJrBs/mDtlWljiboC9n0z+XpTUW4+d88gspLrt3LZKYVqvN3PGjdK0GU/lLWG/lOWadGbdJSdiNGNhTptMKIZ4m1haJtJiWXWL01heHwl4VGiWjhNMw6eZMkksaen6Y0O0StbIYnQbQqxIvAF3YWEY/aBYxMFI9wER6iINOBq/moxYmyM4d4y5/N38cb6UlEvxJvcFHOxaDWsTVesSP7/4tPnzFb3NEHqJ5sk06fxM5O415ZrHvBsXnUfNc3pzaidDXvXB2wnQ3RSvvQx7USoHoeInMjgJh0eb0pyXFbUWC7imS1hjeiEmiXKE2NQaByh6u4drqaSj2JsmT/TanVlw6QchQMY0qU8waA+TcZVbcOSbX1jj4+BxbR8YYUGJ+pzuBJydYiQwSYZ25gxXWXTnI/cq15H0fYQoURcG1fOrFJlbLQE2OoqS/dUXDFwqKUEgaaUI/QIkg6HMI97ZY7U/QUctofsyNxdv50upnUcyYzmCIVEJe85mNKLd8H8Z3PAdYa67lkaF5tLrCHm8vV1RLqK0rif0Wf1Ao8GC1yXu9Ln+tOrizIa/Y6/DEmq8gR38eBYOGoqONrCWMfBTVIvDbtI7sQvZ1WAgXSbePUotK7FFOoXXHWR8YLNZfxxJt2kN/QUdfRTsvyiWKApQ4ZMlKM1NYw7KZRjEsMq0SHd0iMJO9xW6hkAi63HTyERAmBx2bXZxCM4bQWhaJ3C24dhHFNFGjDrvW3EGhVWJq9TBOw0YqEZaRxfcW0fQstXKDlSMHMSwL3Xbw2i1UTac2v4LbivHqZZJOmkMnHiXwPQY3XkJl9jTdWpXA7SIUFcO2cRu1b9rPnVoFGYW0qmVS/b1rlZSSh+f2cknqevzYII4lQoFOeoFOJsYWZarJAEckiRs+YaUnKIndiLjpY4ycO4e1YpFwcREUhbDTwdq8+Vn/FpwrBunuKZGp5GgOnMYybdw+C6IIDAN97iTj73knR//k47iGhS4stnRmWE0kCJIZusZWhgseT55c4a5Lr2VWNhgIn9m851nNjt797neTOU/a90Lj8ccf55Zbbjn7+Kkstp/+6Z/m/e9/P3v27OHDH/4wtVqN4eFhXvGKV/C7v/u739Q++p2gZrPoCxWm3/cQx//ztTQSTZamykwcGCSSJpbj8JQJIpg7xVK1Rt7xqFspOvkE7WyCIWuC0nkroWq3hdp3cVtzXzv4ZuYPVFnee5rM7/9fAIJ6iFB8FOEz0jyClJLQ98CHdKNNpLRQ9RztrVfR/fCfkH/7KkKohIttWuWY/DU5kkaGqBbQXl0hs1ruER+XbMFJKIj2Cs3jR/BKZbxc77syIp1InOs7LYhQixc2JPliQPpoGSGgM+yw7C2yPrUFrb8fv9kkWFomjmOkkKx4S9xT/jRssYAzcnopSe46hfKGV72gx3AhoI0NI90OodshLK8gzuTFDLf6eIv4SWpHPsEX13To6ipuLkMz10LKZbY9MAVIjD6dqBsRN04T1VZQimPI9DkLvR4IEuaLJ9je1pIYgYo/kKJ89RjhB1Zwrn0lsVxBVZbIGNAcNfFPWqiaBfRR+9xu2LoJQzbRM2fOs42XnPtQ9TyrVBQ//V84S3QCxJoCZ8yomvLSVp9+W4zfiDb/KJmUSSZlAidwQpvQ0QidDPmHjhOvuaGnvZEquWCZMFbRkhenEuRCwlbPLQa0w9a33bYbdWiENQDM71cl5UscTt6GRRddwM9mazwZxZw485rr+JiuzvpuibULu/laZzPXX7YRzdJpbhgj+Wib49YputYkestg0I8wXJ9Av/CVlGMRECs+seIjnscM0MSWESofeRcEXbLv+Dman/2/6BM3IOwQc00OIomMYZA063c2OHLlLPV1JsYrtmN6ixgbxkBRGJuYPJu3lhmH2FMpzNkUqhmaqTKpZgGjaZB1B5CXCNpeHaREy6Sgsg88H6+ynrARIYRHrC3jGlkQMUpCIz3w7J0lLwQyeo6YmGaxS3NEpa88SPO4T3I6hbfYQE3kyK50qI0nEHFMFHokjHOTwS+2H+au2kb0iWsxCgPMjV+GMXcA9+DXePNNG5mvVzjZNLjf7Y0r/BxsjrtcOX87D0x+kuP6QWqWyuB56vpm18M/zx1Z6c68oEUBHDPVK9whwE1p1B44TmZHAS1t4bc02qdrBIMzmDlIKDDhRNTjGGmalIq3IVeOIM6QbhlH4zVX9HH3zlXs3Ll7QSeZpesNE7ayzA0tUTuxl+m+fopOgvWKh+J4LJoeX/lXh+nL+ll1FQpnqpMKINR7VWh1T4OwCc7FeW/dnr6SByv30h2A5UyFzPUvo7bxOKgKI1GOicRafmboF7jvb99NdfM4uZUU9mTxhW72ixabrng92u7P8+DgSUoFm0f80+z45yXsNa8kXJJcjYqGSRlJEYU4M8HPzv53dn7pHewcWCU19h8YtTajCZNJZxuGmeTIYMRHS/+LWAEZq2giIr9yDbXqy7lXpuidLCba8g9hDf8zn88v8pQ2LA47hKHHI5NXg6I8FYlMPdWznz6VcxvHMbVwhf3RCjNiju6a38JRrbOv+/TilKWURJpDQ7Vp2HlMr8WmSoCMJaulSxDKMmFQYfFEl5GJEfxOm8LkNDM7H+7tWDVB2BBWWXzyXL81FufP/p0eHCEKfdqlVRYP7qNbr5MeGGJ4y3aUMwtOrZUVOmcKLiTPRI/NNmf52O7H+Y1tf9CzvQKePguiN5+oaD47Wg6x9FFSOnGzR07KLuhjKRTz3Nw/sW0b6x9/nMoHP0jsuijOs5+nmVMZkjcPI++bx66bdLIe1asmiMxH0Dy/5+7ptkkePUhtyxVUdI1DiTHycZtZJ0topzAG1kBpDj8KGdcyvCzY8Iz2/axItze/+c0XVX7bzTff/LSsuX+PL3zhC8/ZvoSqohUKJOYbZ5/z+ySKrRGOrMNat5Z4dhbZbJKWsFous2WwhNM16Oo67bzFoBcRKgqhaBFpLbR2F2N05Dlr44WAqVqYCR1pp4jG1mL4LaKuII4LCNFkINHGMlVcN0QzTEbTU6y0F5DKAOQHkFPrWPmfv4M6eCva4KUoMoVf7aBkdCzdofzIQwyjQRzD8hL65i2UnniS0tcfIsqm8PqS2B2dQbdAFHSxlBDZ1dDUCP0iKEF/oeGcqpM6UsIbybKk9y5+yZfdRCuO8WdmCBYWWM4H/NvKJzGaEVHgY1VdNFS0hRKpIyXU7MVDlD9XMAfPrfbGVohI9vyRKgqa0OmmNrFm9+ew+xIcGU7RVlVmN62w+aFxDCVEcxIQSqzptST68uhzf0035QBbAdDDM4SS+sINcJ8tHC2JTx2/YOPVTxE4NpV6jmzSRRFNjMxhnGunaD24CMKg+/gh5JaNiLAL9M4l+9bzrAvnHbt8yr50Hukmzns90sFs6aihckEzlC562Hm8Na8hOvU1rKiKIgQZeQjoSfmVbARS9vKqRIe+qEQYq2T6v//CkB0tRU4v4scu3aj9bbftROdIOUe9+JQLP8D3DsXUzqqv+nMlCr7H402fgmbiOh6ZssP2vMbL+0u0l9vse2gvV23ZQJi1KP7UrzG79zFSuz9HFMOpE/3kcq+kLzN8wdvdSe7Bs2cBSGvPn5Ut80OvortrJ8HcLLUP/hXCMtFyNYpv2YQ1PU3zgTmgZ6HsfMKldbTF6liD1dvXsU7d0MtzEwACpQu6r9M/kySgTSGw2d53I4vXHqJzpI21kkBvW/TPTLI4coTl6hxTGQvH7aex0yUll1FEiY6RwUtCp+8kRn6QZKH/7GTsYkdGy579OxiO4CBEtQhvuUVitEFr5z6Si9fjpW26KZPUah3zax/iX68V1EWb491HWVSO8NrORqpmhuKmKzn16GfJRF36H/w7zM2vJmCJtKYxH9t8tqbwpC55vbuWRvlq9psVciNZ/DDCOLM473dD2pkQs6VjlzQend7FN0+jfn5gFG0Kqxk6VpcwZdI9VaJysEpufQZrKEn5gId5WY1qDBkFhkybJyuzKE4/YSrJ0qE6Q2eEKYoQKJpgrGgyX+pS7/j4sSSdMFGNJKX8pVi5mAUzCYceZM0l4xxqQZYAxwy5a2gv3r+U2KYmOD+kJzJ65da0TozwypC8OO8Xo4lJRqxxqo1Vjl4xT6RFWGUf5/gKa/sn0SY1qv92EsPeju43MTsqxqaL81heDDASScbXX8fgniOUBgT1y4Y5MXeYdY98HXNgLWrfKJe6OkosiXvJgIw4w9id93D16QYNs8CceZLPdf4Xk1t73EIukWF9KClGgtNLb+agewlN4ZETZUZlhSppSmQI2xt59eHfZ12tjra1RWio+KrK57e8GjUOCNGIiAhlwH2lvyNvDLE1GuOB8GF+KPN2wuQGVoZG6Aw6dIMIPQ4xNRWiGM0NUL2YbkolUkERKsSS48UJRktH0VG5sr/C3dURolASRzWOH86iHjcZWKqQslTiKILIg6fynRWFVHEAv9vGzubRDINOrUpqYIDs0CiaaTK/ZzfVudNUZ09ROnmMvun1jGzdQXNlCUXT0AyLZKHHF31g3wcYCF4LQNv1cCyTWHXROwZ6M0INekSj2m9jTqQJyx38Ez2uxVzz9Pmr0HVUXUdJJlGS3x0HIDQF57IhWl8+wuYHJ1lYV6JWrPHo372Za3/qn1CkQHXSFP/2fyPfehftdbdT1hOYkUo6WqUpsjzW9yOkjb/m0OJxhrPDjCjPLDvyGZNuPwgtBvuaa8j4ZYqH68jJKTqiQ9wJiY0sWiaDYpqUQx/Vdem0WphRC00JcVoRftYkWmzjTRto0kT1QxLHqtjrb3ihD+s7IpW3yQ2mkN0WcWmJIJkEERNHJsIpMGk9iZ8wiccuZd3YDpb27yMMTERQpXr7G+n72PtRlSYy9EDXiLsJzLyBrZiUFWhLcAwDZmdx5+dpzc2h5bK0BmwyCxFqzkAJQjxNx9WSkAKlJREXoFLYxQbNj9ArHRTdQPQLgthHzefRikWUVBJ3337K12QpmgM0KicpnOqy/ZPzzL1pG52DB9G64dOCJ18q0IaGcG68kbjVIm43Eedn6cRgZIfwHrZYF3u00mlmbAURqrgDNeyuiT1ugW1AxwdGkH3b8aIjpA4so3gRdrOnphEvItJtLL0O8eR9+I6K50S02iG5eJAoXiDEQajLpF/xQ7QfXkaGHdRkGvEvH0Zc0es7GZ1RL5zB0449OrO48TSlW+91v9NBOAZesmcFE+6LY5J1QSAUrOnrIW4QzD5O7AuSgctoO8BXFWSihBYv4RoWkdoh1bY4OXMSfXzbC93y5x2OmqQalABoRY1vu20gA4bMUSSSpPaDicdLEarZG46eEdJgRAr5lIFE0olnCctlrh5u41y7nd9rbWH17n9h5+Q4moDIMViz6VIq3UX6kw6TqSJu2kYx9G+7MPtcQMTnXROfp0w3AGvzZswN60m9/OW0H3kEGQSY69ZiTfeURE9llQHkzSI79q3na5kn8eMWkQgJMhZSVRFS4NRUMismTkPnkuhaim+9qvcZjDKX2k1wbxWRUBCeQn5oimZtieXlGYqLI6gZFdlo00n5eMUH8awh9NQAxTXrvm2Fu4sNtppk0BwFJMZ0Du1xi7jpEpQDclemaO9qYK+UcPMZpEwRO2n8wiA/9Ocf5N13uagalEwDU0YooY9pGLQK6wlrsxRlwJXlU7w7+17qyTfzuuorEZpBS6hcd10RtTnMzv1XUbzURFUUwjBkoD2LJmPUUMHs6qheyOjlL2yel5LQCfyQbtpHODpxEOB3JM2FJsbaLN7uMnEIHQkp2Zs3Dmspan5MN6yxWM7x73WPl09nuXw6y4NHS/zh3Qd42dQACpLJQhItaGPmB1lJOpTcFvdmL+enKvshiBlGY7C8wub0APvcNl3VQHd91NgnX0mRqjoIU0Di4nTEZPQcprDwNJ8oFaH5Crmajr3QIXzfn3HyfR9H3/YWplp51uzOo2gtjNt/cO/7XpAqjnDrjb/Ap47+DdKL8IazhMc+RXxKJ/vD/w2ppfEVHdcNcRDEQEYoRDJD/+GAIc2ilt9IUP4KQsugqzr9ocK+pbejeEmSeDSlwUDkU4gb/DAPY8R3Ik2bNSgMV3McdxwQglYUkPaauJqBKyVz3WM0w2V2Ln2Ca/veyFF/hrAhEYkIIRTqAw6l1SZ5y0CoAtHyMQB7qULu6BzzV6yhaUnCTBI3bGCpGoesGNsroeUDbs59kkPNQZpxH+36EfTE9cwcihgZt0hnzi16KrqJYSfY+urXs7B/z9nnnULf067njwaH+CifQtEVNjfHefNBjygMkDLGsJMoqoKZTPHnu/+c1VaNiVSecqNJ2jLRmzVq6f0Etk9oSibdUZSRFKoqSGzK489qqLbey5we/+a/+cLPvPV7+i3o/TbaUMTAbJrycJ2EmUDrlli583IGPrOP2NBJqDpDx45waPwaLCHRZUxXS5EKVzmYWMdEwmOpuUJ/Msuq/8wcGN9V9dLvV8SdDuK+h6i/5UdJEhIlDfSxFNJyMEwTVlYpAOSyzMcuWXEM19iI6oeEukLHB7Pl0sx3CPUKhq2SWLfuhT6s74h03uZYy8eYWIvqOGiaQuR6qFoMQufV0wugJuCn3wKpacLU50k2tyOFT31yE3knhdpcRCvqgMSd76I4TRRVBwQtU8eJBUhJ69HHII6JPA9543XUxzSgzURnmPqZAFYlitAcFTX3fWAzEgK97tJda5AWOmV/BXtigsrp0xijowTlVSpBQNtv4DsaU589DnqSqSc6dA/GsGkTavGlJ0nXslm8mRniVgulXKb6yU+Q2n5zb8aGxHKS7HtsH9f9+GYcqdBJSCDEvGI3hXY/gbIGbaJAeHCx94G1edoZn+bmXkko7VQvn/HFpHRThYabNdArHTpjKeywzv/P3nuHWXZdddrv3iffnOpW7KrqnFvdysmSLUvONo7YpLGxgSHOwAwPDDAMzHzA5AjMAEOcMQYzJhjnhCVZsmIrd6tzqOrKdXM6eX9/3FJXy5btlu1Wp3qfp5++4dx99jl1ztl7rb3WbwmZwDRAKYnnttEsibQTxD2LWEaI/X+BvLkf3aeirykV/pLpperrvm/Xa0TnjCSWeWlOcl9RNr0Bbe4pvG5IyteomhpOpNAHuziFM3iNM0hVI9Ns05YK+xJdjb+QmNKkYJSQaJjfImW0HTaZ8/qRO/uyN78S3VvjFcZIGlTbtbNGueMq6CnyXQeyZfTiMHHjWdT618PTxyi/8fXceP/nOHjrm2nlbBJCI973Bk6cmWLjQJliKkM8dQDi6Jvu9zulV15tX3+Fx4vhX/u1/ouVlMNvZIjoRRv9iMMd993EkdxjLJfmMI62Wbwxj0AQJjR2ftJAmsuUfvfGF/127Np91OdP0nliAWnrlMIhFpuHSdcL+J6L6dkwmKM13iT0tpAqlth+z5sv5GFfEJJ6ivmVZ4ywBFpxDNX1+kWWOi6q+TTaM59m6Pj3cOCnfhwRRRjbb4Lpw+SaD9LKROhGTMc/g0ztIwOI4jBG9ShNJIeXDuE3d/D2ic/w6sSdfLKjk5SKvz4xQEq8npJsM9vsMJJJous67cQQCzmJ2dPoZTxSi6BbFzdVUsuapE+nUJUI2WjiZ210v4ci1ddOsyTBTI/qhGREi5FA0dRZkia6F9EyDboHlkns/Po56e2bS/zEazbzsUenGUiajBczxEYCP4bO8hKO77F5LMs/aYygOgG/O9hgHRE9M0FoJzEAISXdoUU60ifZtPuBnK9gyvfLxdIdIhmBgtCO6aVg+58+RhQERJUqcrgOoQa6hTE5hVG+NFNlLydSegYjkyWpp4k26jzzL19NaGlYvfvY8ckZspveQVScIHZj/K6HFUt0BAKBFRW5ffkD1KMhYqNB2WsS6f+EaGwHgTB5w2KH7QWb9MAGhJhh22PLVCJoKItBNCI/JFV3kYZPYGgYYYArBJ2wTlLPUmk+jxkpHqx/DCFgovJu9EQbNZojihWD2QSJusv6h2aobsoTANnjLXIqy7IHftqh67bJmGnisEkvkafot2iKiP+ww6JbaTPa8vGkz5C/jrHuJAcqEW7mIAtanSlZYSBV5ucmP4SQ8iUXTRa7i3zh9Bd4WDvCGdVfNK3EDWpum9efXGZ9UMTvdhjZeQ01r8aJxgn2n/K5J2OhEJimgfLaIC3Sy0m0To/19RFUtYUvBfb2As6OV0ZLe+BHXsfcv3+UoRN5ZrcsY3QGaacWGfR94u4CsZOAL3yFRv1ZnB/43/gqxhcmmpbHsnrkspLHjla5YdxGD9xvvUNehtMtPnc17ypFLw8gI4Wz1KNWbJBIWbQXq1iTGRIrzjMFxPUGvVYdPzZIKpdqLk3Y9mlpBoGtY4RFAnMevdnF2Xx5iMyWx7Msaw7a6eMEiSRnfv9h0jtt8ndshPwEVKdRy8egsIm0suklTpLo7sAvmPQSWcSRx0jc/I+ImxaRD5qeRQ96+AIWC3kG3/wOePwx2n/39/SmzyAdB+P970Y2vkJMTCK0qKw4BGSgiNoR2kpK4ZVO+liF+bdsJ/CXWPaX2LxpE9HiIr3FRXo7Rplz19NRbZzFDvKrz2J94AOECwt4R49CFGF8G9V6LwfMsTG6Dz5IXKmw/Ie/R+JfX4/UdZQfkRwtEkWKbi8mFXWAFDJWtHSJim0QCuGcc/1IE1c3EGGM0iW2u/JovIycbgPWIE8WTKQFNXuKDZ/5c7x7vhelsmhyCiO0oHkGLWsR97r9AimLcwi5CwDF10Rp6Oekl648/1W4amCKle8bi/NE9qqzzjTXJoYIgbj9F6n+zb0MGnOkg1kWEuD5IYnWMapGgFQaqTCm1fYoXIVON4CYmGqwTD2sntUoUUpRDZaZ7p0kVhGbkttxo9UJjXWeYfxrXF5YSRvOcdgnfAmOoOa4ZPL9v3/sCYJ5idx5LfHxJZI3ZNn6xBwn90JlIkfWMshv306n06H+6OfQHvgLuIDVSwFSY++hm+u/lvrFmZN8q1X/5K0juMcbuAcrbGpcw6aT21CxjnhOYoynsTZnyf7B5Df8ffaNk3jHagSzHbqPLrBp5Fa6S4tokYEi5kzyOeJqRHZ0HdvuftN39+BeIQxpYgoLX3l4kYs5ksI7XANdJ+ylKH/wn2MbX0Qpn9QDj/PInTfiDQ8Tv+EH+cftu/m38W/yVLTAaPcpbizsQ8QRrdFr+EK4jnec/HMIO8xEWWbaZ/j59VN81d3KkcCkPb2EFQjswRQ520ZbcaDaQYfF9THL4/3U+uHHFaM3XVx7QctYaG1Fa8KFoolfTiE9j9TIMLLepb6gIR4+THxzzDOBZLMek4tCgpQJto4XTrLw1TnWDSbRX0KTeddwlu4OhX42JVnDHtqAv/dNzH/xT8n3XDa3SzyT28uvnMnyrm6J1KtTZJTq6zAphZL9ZFPD0xHS/7p9XEq8qnAPKoo41H0OAJMkBH09K+HkEDKDzBUJ5p7CGBq8mF29YhBC8N7RDyGE4DHrAY4OJ2lFTQgiDjbb7Pyr/01sFulqBn5phM8V7mYMjdcKE0NplEnSaZgsl7fhuy76JsHrHauvoV1s0y0lqBsaxCWqxQTW8km+SJJpXH6NNNmFNjPbBgBFz0wSqZC0VkQTBtk//C06141y72jIgIzZ193AhpPz6McWee72DqHlMnQiSXsspDpyEi8RsLxJkFlIkOylaaYHSXgWyrCR0kLltjLWCliSISlGeHb4DMdHPVAtCt6H2bxwO57W5nn5KJ7sj7Gn2/N8pPN5fsm/jpT59embj84/yu8//fvUvBplp8xib5GO8HhEHWKhWeUD0V1MZieJtwxxrH6MB2cepFl5M/nREuVcv4ikl0sQaV1apQ6ldgIn7o+bwtJe0axKLW0iEwaZSorAjvCcEG1jEbyV+Wa7n4Fx45dbWNvu5Zmb3gBK0dMchrMaPyN/mX9u/RZ/8uiDaJyffuxVXGbu5WOOrUM4DoOffp7u5jvp5jymdyyS744hX38niYlx2lNTZHsejdnDNKJdZON56lESP2XSLCaITIMYn0BvIJs9hH15RIVYjkHvrnfRu+d7KX/1Y7j3fgH3WEzsRZTfcD3MPEU43SI6+RybsiM8k2qhiBCWg/aDHyR/7Emc6yZo3TcPEYQdRXal+lVzfpY4DInabXpHjoJlkXzNa5iPasTEJH2bTNsiSvVvRm1FX0rLXCVOt+cXsSs93CLMu2fYMbTt7HeVpEsnaqOFkDhVQS+VSFx3LXO/8i8hjrG2bkX7NvPeL3WGf+1fsfy/fo/mZz+L6nYJF2cxR8YhiLCTKdLFEvNLEeUypIKItqFxPJVky/JehK3BOZVvldBpp5MoXaI3ejhef3X0ckovHXUmGZOjzNpnmH73Tsbf+WEC3aH75rtIOhUM0YFDH8fa+Gb8xS7SziJT5bPOM6G9+H4SQoCpgR9BGKNiRbywkgboGGD3z1FtbobYXnXYGfaa0w36q+7SMlEY7KrmaRl12qZGmwAZw3jHRyiLhYrL0GUyDny3SWop6kGVUAX4sYel2bTDJh+b/dOz28y50zjn6ARa2prT7UrESZksBB1yK+8Tgc4LGjOBFQKgtDw0emczL6p/+bsEDcWw+gD14WvA1FFKcWCpw3JyO9Mjb7vg/f7QucHBxqU5pRZCkHvzejojSfzTTfwzc6AijIEyWtJAs41vauwIISi8bxta2qT1wAzeiToyZ+I6PYIBl2SyDCgy5eHLWopmzJnkdPcY1XAZMWEjExpxN6J3xscaKBNE1yCFR2HbMwyemKSdTdEZGEENjfELf7OPf7n9fk6I09wYhyip89Zd47x++yif+vB6xtffhKYiPvF0zHvGjvIbxRH+xXKGE6EOBtyZT5BeGVOJI+zOMSq51XF1unuIu5Lvu0hnpo+WMbE7q/MEr+AQdixAkNwxCLaBWmggF2eIh8ZpxVBWEbc0ltnvJOmUEjyTd0h89DCDP7X369qvd0J0TSMMQzRtxQDXDDI7byOXz3Lq7/4nN3hT5MM6nx98HRtGpqiY+85qQerhqpPN8HSEfmk73YQQXFe4nfVfGiA63EaJmOSP/zTSEHSfmUMmiqjQI+4sYG275WJ394rhhWeUJS2yRh6qLdpJwdJdm3g+lWTnf3wA2m0MtZ/b37qLQb/J826GLbkJNAQDJ+q0htKQsjCFAD8ETdIeSvWvRaVACuY3jbBl2WUbMZ8D5oTHwMkmI6ZGc4vJscoposw2BIKjSzX+5+4P8vkgzT8/1Y+sA3j69mOc2bp8Vndhad05B9ITCAMW19dILbcpzxdoF2yIQ5AG1ex6PpVdz3BjlvcfuZ+se5LTXpoo1pgaafHI+CfONpXx86TTKRb8Of7+xN/zqnWv4g2Tb+DPDvwZAO/f+X4A/vPj/5maV6NoF9mY3chIcoT68iyzqsppFvkd/dP8yeR/4se/9JPMd+Yp6BmEfw3ri2nCKEZqklhUiIwOMoB0rV+lVR9JMPCBXa/AX//FZO5aR+MzpyifzrE4Xqexp0SQsjDaHsbwONbEZrBMHFHFnf8sdvm1IAxs2+RHb9vJ04O/yKYH/htz3fOTlrg0ZwiXKFo+j+r1SE7VCbW+48dN+sTVEDIZzM2b6dWqaN0eZquJa40gVEj8QrWORH9AlZg4tS5hO7iolYheDuligvyODXjdgK4y0VX/+KOeBt0KTN4CXhs0yHtpbHsRsRI5E6ZzGGNjmJNFzBMdwvkmUSfGKmaRUxXiYgG/28EPI4zRUbTyAPaWzfixR75jo4SGttTBctpYXQ2rFWIUjKvD6SYEyekGicUeyeEJakEF6Tgkb7uNqF7HS+sUjTLB3DTjz7QxJycx168nbvadIzJ15Yram+PjmJs2Ym3ciAoCguoC5sg4Koj6g6oQLCwpNnqjlN1FFFC1NLycg5PPvMjphjTorjgnw7RN1PNQKfMV1ej5TjGlSSYxQHe5hl9bxts4hPPwl1jYeQ3liSEMcx4ndNEbDxIZG9DcmMTdv0btSIWB6x6Hb5a6EkbgrZY7F5o8O3HpNGoIqZNZTCAU2MUr08n77dBLxsyeSVIa3EDaf5xANVAaDHohIx1wPYNqrYd5ierOXGhG7AlCFdEKG9SCCkPaKM2gTl4v0gjraEKjEdYwpU3RKGNIE0usOd2uRIQQqKQGlf57K1h9PntandhvIOwSkdsCt83Mv/95MCyUUmgnH2bkiTRBMklDc7kj/AyPi+00d99wQfus4hghDpx9v2ng0h1v9aJD9u4JWl85c3ahxdqQfZH22zfjhdQ2aWtIWydhF5BOhyC3hI5Gdnj0stJweymG7THcuEcv6nDIOcLGyTzukQpRR+Et+1ilbcRKIZ0Bti4scmz2JP611xAZBuVWlm2nNcINTZAvmFYCU9N5+/t/kjjwkaFL/bm/Z642xY2vSvKOp2PKUZP/VU9QdM5Jg5QakR/jpnzSiw52Q2M+2aPkXFypEKFLcrkS+eU6ofIJsjZRJ6LaCNFDH218kGjJxb7/43S/92eYjzWShqTROoxt7yDsKkw0ZooO9udPkX3d5Iva7/l9u0LXdZZmTxAnyxRTDpoUqJGdDN3xLqa//P+Y7E2zQSzzZJRgNLk634gaMyQrJoYrsOYayNSlP66m9DRRsYRb1Ahm2oRqH9LRyX5Pgvb9NYRuYQyksFa0Gtf47rEnewN7sjdQK1T48vKnqbfmqewp420awj61TBhFDH/1D8i/77385eOnEF6eDWaaRFfhND08RwMhcJbb9AYzfYdbGJ3NkAkcDUGP7WS5DlgmRrdrjHVTzDRseqkNKNEGGVGceJ6fnqnTO2mhMFAI9GTI0mgDzZdEZv/eEB5oShL2dBYDSDkxCSOml26RfG6J1HKS5Yk0kaXQgg6GErRMh7vjAZ4XPYSfoBkYLHclu7J76dUdenGPycZOPvijb+FfPvpLuKHLbz78m/zpc3/KXGcOTWgcrx/nq7NfxdEcrhm4hlLwNv7hoSyaFJTTi4yOfgSCGEe3edehn2ZXcRd7y3s5fFBx86YRas022YQNjSU0vQaDEBtgdQ3itIE1lkHPvPKSUfbmPN7xOulKAi8R4OUi3LfegfXQSVQUY7zjhyh4s5jlw3Qf/ggqsx3LHkMISSFpYW7fh239OG/o3s+v/O0XvuX+1pxuLwN9aAh7715EzqZU0YhFiigvkb3+adTXrcPc/zhuNk3JyXL6TMDIqE9W1Il7JpElMboNOtkezVKTofDySdm1EyZSCnRTQ77pnXBv30Met5uQ2QJmGqF56PIxymGN2EwQ+7MIpaHt2EVxw21ELR8VxigU7nwHzWhReOhpvA9+H9XpU5gnTmCMjBD3upjrN7DoHqOddDFDHU3ptI0CGCC7HYJqBXkRbtCLgYgVWi9ECgMhoBd2CBcX8I4eo/GOISrBIgxbpEMb6KLCEHvXLoTjkNi792J3/4JiDA7hPtcPzQ+vq0HCJG50UVHMputvIlpqocVlksESyhag4MuZh/BrXcYfybK3fC0AKjOGCE6SeWYeveuTz+xEtP0XO+YuAyzNpmp3YThBMFHCqSm040eoFm6jnJ8DFDKr0MMQRN9xFkc6fkuijY1/XXtC11B+hApjYjdA5BOgQBZXjcvl06dIbByhWe4CoBtXx315PmgDGRrHZxiMx1HohHG/AEzd0NnQ7WAaOpW6h2FdnecsqaUARcEocap7jCF7lGZUpxZWzn6f0wtUgyXqQRWJhq1d+obUGt8eyaECTPVfG6Ei3XBoGC3aOYVneVg9n9aRBn6tirHv/XhuC7d5nPg6RflUFagyZsQ4u95HudLhlm7wTff3HaMUdVZ1LvOXgZGfftXYeTvaLsTvL2UmnI0833oGWzp0tQ7W5ATukSpoEHYCrKIOAmI1SGKDT+Leacy2R+hA/W0/wi/dt4+5KZfWugaGmUQKialLIiEJscCwkIkkC0sLcOSP+ZnkzXT1AU5HYDjgdGv0EnkA3CjA6pkgFCh4zDnGTxoXP4rcjCxqpX7Ka36sjP9UjeGCARhUSwmipkCfOoqoL+OMj9LVFElhkmweppPeRBhaLA4kGH52EXtbAWu8X9n7+HwXAaRpIXpVMk/9Cr/Gz/Bjd11H0jRQKqY4VGDBtmi5IdeduZcv9m7mR/YpXN/HRJKmzkKxH9226elJhN69SGfp5WEMJeke7OtjKTciVhD7NsZoinB5GXv3BHo+f5F7eeWSN4tsSe3kudgjCHsc+eW7eNUDAfU//WviMKT5hS/wax//OJU/+r/0DjsodMy2R8JSgMTyQ6zpGs3hFcdbHGK3XXTlE+Pg6x0233OChQQ0Q438p5J8ovAxdtv3kBVDxNLFtY8zVsoSnqigiSF8Aac3LSFrDrLQRfcleqAhY8GwMNn/xSwPu0mKm2rs2rVMSWlo4QxGsAEVg+hGVH0fITQmtB5dZ4wfbiS4d15xrJVg33SBDXf/AJ+39tNt+NwQ34k8lmNbYRtJI8nx+nEWOgvU3TpZK8sXTn+BvQN7Od2cYvrEbWyb3EkUT+MGEXVtiLHlX2Hv5Fd4Q1sj4Qdoc4J7M9BtjzAwlEDoGlIKlNvGHayQnbLRY0mqZWCmjIumV6gXHYzxDKmDDkvrGiRrNpWNJum/OEYkBDORhmPZmMPX88POR3jfqV/knVv+CEtz+hp1QnAqs4O/fuDk+e3vAh/PFYVRHsB96ikUUP/ZbWhhD9kG70w/qsjcsQPjT/4UA0jmsoRuHanlaVg5sMDquUSGhREkiLUOund5FafYuHeERz51CDM2SSVSSNsBqaO8NiJ0EWIBoUdohGhaHkGZiB49v58aoqVNjOEUwWwHoUtCV6JpFt7j+5lrt0g98ggcPUpcr2Pt3IHVO0EUmzihTXXpNGzqO0j0MEDaEmlePlFI3yl2xWXOWyRnFqiHNfSREcJGE5VOkHAlrgiIH9xP5qf/KeH8AiqO8J59ltRtF7fa1YVGGygh0mn0fI448KDng6mh2i53/fCPE83VCZ6aJuHrdI3nAVhI1MCE5pnDDCTXMdoZYLHXxpc6vYkM6WPLyER/9fRySi+FvpPCEjamMGnLHjmhEIuzDBVHCYJZYvcEmqEgWt//gRKAIA6z6CL8+gZfOP4gIppvoGork9iBVQ0y3bSIzVXnpCEuXeHiV5pEJsvU8gKM7cKMdJQtURLMMMKJAkKloxQY1tUZvbUltZMHK1/C1Kyz6RR+7JHRc7TDFq2wQStskNXzJLU0hvjmaXBrXN7Yg6uGpUQyGhapp9p4oU9rWMc6qeHNeqBK6Jkiegb80c1osUZQfw4wiJJ5luZPkEvkWDeQuaD9jSPFA2J1Hif1tSn15UxKz9CLOrhRr6/xti6DCiXCiIl7oBAIJCAh0thw5yTNwGMhlUH3I/TyBjYvVnnOTKGEQAlBGIbEcvW6CIs7mPdKzLgzjOp1TIr8WLbJowlBYDigFKZfxZMasR7TzvdaKxPxAACUXklEQVQYPe1gDV4a2rxJJ4vmS4yOICoXwa/hB9B1Q8TGEXj4AUQyjXHkabyBMp2szSYjjx6H1ERM1zGIQ8HR0QwbvjzFyPdtJ5SCStNnqekTqBRbZj/MTrkfz/gLPj01yWu3jADQTk1y064i9z8yTTqsc0PjKXTtbjTDQAC9qEmiYeE5AVbHQCYvj3E1sWeAziNzRPQrwCsvovf0EsKQpG7fQvaeey5yD698dmWuJYh9Hq1/hTClc2inztD6IeLnjhPMzjH78z/PyL/6VUSzSeNTR7Gn56g+M4/EJqGXOX5tktgsrLQW0i2kQcXAIq2xGuagh2/qKL/IkT0pduXfQkbPoasUleyX0Q1BsKlN+aH1xPRobgiojNfxyx0iI+b1f7qPU9fMopset7eSvOYX3sfPA//94x/HTC7gNXUWcx2GjrtEjone8VEqgZWxqbs6jdwOpPdeipW/5NmGQVoExLP38b4tb+Dvnwk4muhx3xePUt73Q/zAbev5wtz/5bH5xyglShxcPEHQXc998ymK3rvoBaN8ZP40JV0RCZhrufS6LnJ5G4fjkCE95KdydZy6RZDcSDqVIutYiDgiLqwjNg8SpCJEHDF0ZghZhvTtoxftb2+tSzPyqRLP3zaFi4cay+NtGkOvR2jLc/SKNtn0DuS2t/Kvj1T5y9O/zd4Nv0gYKzRNMlLKIt70ev7qj3/xW+5rbYbwMtAH+0KWAsid6rC8TeI5Ps1nmgwD+kB5deN6jVZlDt8twooD17MtEALfmO0LubsXtqrWdxtNl6TyNu1KjOp1iLptvBQIKwVW6kVCgkOuyxljGTMYYqEe4AcRpqFhTmToPr6ACiDyC9j5EVJffYyGlERffQihFNb27QR6REVrgAaZXoLm3NHVfnggM1eJYb9iYDrLPUIClv0Fav4yxS1baN93P411SQI7xjndRDa72Lt303noIbyDfQeTMfH10UtXEsbgIKrVImi1CCfO9HUPvAjV8VFpGxX0o0kTwTmTLwFCKKIb8twbPcXu5Q3U2lla63SQgsyBBbTBlZQF/fJyuhWMgb4QtHLR3rSbkc/8Nb1anajXJZJbWe7VKTtLDN/5BYJ2iuX9txA087Rnd5K742a+7mjPSa+NT1VWPz/H7zF//CjD21fTXvQ1p9tZ7FSaYEVn5o65a/jCF/+S2fVNNly/lzDewJl5A3gU/SqNdBNCMOyMMdU7QTdq0wlb1IIqzbD+ou2aYR2FYtK59Kt9r/HtkxwY6OvhCIFCcbB+HK1oQEbjS7s/yw9OTRIEw4CO6swgbIdyrkzYiGDoVmKvje63aNY6HAwXSNkXNtVdxAI41+m29uy7nBFCkDUKzHtnmOq1icuvQ1qC2JP0TsxR/eh/Yt1v/Hdk7CLjKUztKFr3FpBlQsegnQjIY3PtZ04SzD3N1KSgcc87X7SP4tt+DoBnKwcYffy9PDPwz6nH6+hkB0D2x1vfKhKZHo1yB4DkfAdt48ArezK+Afl0f6x38xHt0RT+zAKGvplcWsffkiV59yaqnz+M9fiXaF1zK80gxrMjciLLLZ2AP9b3sz5zM5V1GaIzTTKnG/QGksxU+/aDE9cxgzoAr/W/xMPeB1GqrxXYkykmrrmGW7OTPPyFB8hmbIzEygKgG6DyXbrZfjtWz0DkL58FmuI/2sHynx3AP9EP4lC9EGMog7SvnuCCi82O9D4erX8FX4QcHIfOP7mNDb/eIJqap/npz1CcnMA2DWSzSCgsAsNjdneD7vAcjYEILxUCilz1dZjBEAjJ1A6b2oatZLobkC0bIyrRGRcMACiIRA83bmICvVRMrJsoE55+zSH8RH8hPFm10D0LU2jo6QK87q1n++z4WcIYtLxHd6TF4BM+s1FMmLbItiHWNOJUlpnFAVK9nYwkfpRXDWaY7y1w+OAzvPq2x/gf4zdwX70NPvBol4Xna2zY4WM5aW4auRV39h08Me0AgpweslFrc1PKx0onebwl2GKEuGHECc9gIXKwdMHj85Jrt2/nng0D/YyaIEAZBpFRoZurgYThIwVUCObwxY3gNddlkCWbTftHeO7OU7gpE/G929j0X+/FX66ymN/K0OICvPqXME/8AsLrQNzA0HJAv2r5SO78pCUuL4vyIiNTKew9u9GHhkhN1ftzLQlfed2TABiTE2jbthIKQandxe82CEOLUjiNEa9UwwjbxGIJZyFEu7Q1Pl+SwYk8yXwCnP4FFnfDvjNfKZTqz5cBBr0ImCXU6oCi3u0/PJwtedKvGUWYgmA5QpRfDXPz2M8eBCmIU0nMiQmaT63qpBieAENiRl3Mjo/p9zCKl8cK1neLxHLv7OtO1MbZsQNu3E1k61hzTdIn6zjXX4+9fTvhwuLZbc2xdS/V3BWDMTR09nVUr559rdyAeKlNeGAGBQx287zp5M2sXygztlTAPOHD0RahjHiyfJRT13chiEg9t0Dp2SYytRIhcZlFuhWtMhuTW7GkTX1TFrlvF6iY5S//HZaZ5rmjXRbFTjrGAP7w5Mqyi8KdS9M71Pm69kTC6BdN0CVooj9iZGz0scLZbfxel+gcW9OQa4bnC9ipFK7bod6s4Le7GLqBeLjCrsqtRPEOPL+/8GLYV9fz7FwKRomMnkMg+PCZ3+Nw+9mz3+WMAqa0UShyeoEh++Kthq5x4dENg6dtk/3VNse0FJOzGYJuQBiGiFKJOj0UHtAjigIUCk/6iASAQphJZGqIQTXMeGeUbte7oP9c1+sHC6+grTndLnvS+mp0ZNfwsDbnEEaESBRAWXQefQhpm0jLROAx5kyT7LXR/YB2ycaf2Y/strGKO8gY5yx6qhiUIo5C4sDDTY2jVMARf4njg1v7ha+85tnNNXNVfqa9OE2hMPKKHP+3wi6myC2mcFom3WGToFqhuxSilGIgJyi/dTtyz070meMM/clvsNuI6DmCuH2MTlDhDUGGY0tfQQsiGsMp7p/t8dChOpqApCUZ6zzD5lN/AoAlQj4UfgQvCImVwjJ0PvRgmcL6W9l1x2sp7VjVbHQ6AZ69Gq1vegYyfelqLH4t0tIpvHsr+tCqAyJ50/AVm8p9KWJpFncUXse+zC3Y0mFqCB767bcw94FbkabJ9J/+H5RSnNg7zye+/whf/ccVTt3aoTHQwWlFJEIHGYOSqwEoC1tGiPQslj+GEa0sTqu+zFJMSCWcZ3AqS6JuoDRwky5fft8T+E4ICqyWzuDpPFba5cY73sGNd74LzFU98x97z6uZ6GWwl3s0ym3q+KQWOsiOD0mTZN1F90IaqRLz1TJLai95ZzN7CndAGPCRTx3lvnoLm76ajgkcanTJfeEarC+/nX/30RGeON6/JpOixYQWkBYBSRnwUxsN/mR8iv858Dw3J1zGdJ/rjCq/fs8ufuSuG9hRtFmoNujUa+hxQNDt0DOfQfMl2YUkY4dLyKTEGL6496nQBNZ4hvJUnhs/uY3sQoL6jet55C+/H33mMB0jRfDUM2AmsbbfzT3qGvTag3Q7PbwgpNHzWaw2v/WOWIt0e1kIIYibLcL5eTIPOiRftZVQhBiBzqPL93PD4KswymW6p09jRRF2vUagnH66ZeQSSh0lenhODb+gIy7DKmzZUpLFqToimUZ120Rd9+x3L2T9xMok10th6jV81SPUQ+rtNOWshZa1cLYX6Ty2gIpDUEmc666D555DbdiAEpC4ficL2hz5joYeSMylOaSTwNcSkARCHZm8fFawvhukZtqsT2zBjXrMuKfZveUm3JQkTph4CRPjQBV7x3akbaNUjHPttaBJ9MHyt278MkbaNsnbbyd2XaRlU/3Sx3APPYsKPBLXXk/he94PjQ5WbDLgmiwm8hBDdN9JaqMh2oRNT/OIRT+6wllskXz2JPo/ygH9h/HlhClNMnoOU1hoCFqbChTczXhLs9Ray8RRmkryDkaM58mWEvRKFmHVR/mK5n0zdB5fpPC+rZijK6vHsYLei3WR9PEiwuoPHUopQjckVKsOu7VIt1V002Jgw0ZymSIApmmTSGZYqs2hBHgyYN3O3ejGVVAU5huQ0FNnI9sE/QgnWzqUzWFm3NNERGhoOFqCvFG8uJ1d44KT2L6Dhw/+BdSn2XTjLRjCp+M1MaXBQx/UceJFEobFm3k3tYNVuu2QdMak9nQdGj2kZhP5XSI7Ihle2DmWRNKkcfa9uIrv4yuFEXucbtQmVjEzvdOMD5XgaB1in8Rt/4zOsSco/UgaUTWhPshAZ5bYNIilRnukzIHvfTV2ZCOVZOTJUzgHHgfdxNu0HSFVv/iGYaOwOGLuYkfnUT5l/ihmq8JAwiDbPIQXZOjaPtn5BIanEdZm2F26/WKfGgC0vIVWMeilm4BA7tlN80xIE49i3gFp44zn8M4UCCsLSLdL/X/8Js67fozi2AA5FXHvmV9ks/1hpJUi0CUa/TStcs5i1+wjMHErLB6C4kYmxDwHEwb1Xt+h9po923hCWSSuWY91jkKP3Qupmv1tZCDRIonMXD5ONwC9YONsLRCUHAgV5lj6W/9oje8q2zPX9O999xSesImMkMW7N9PbVGLo8Xn+duQ0KpPHbETEIkZEMVrDQ1Y9EiM7IQywwioiKqCUhZI+EkUsQWCgiECE+JFLgEBvNTCqAmGHCFfjwfccJDAiRASJns7k4RJbjwxjljT04ktHhGWsAs1ThzE8G5GeIdUr07Q1bD+GWGG1fAJD4qHwVoQ8GkQMOwUeqDrs2ODRJkHLlQwKjbYXsj+vOB0HpBR4RKSlxz7T5w9Lh0BFRPVHiR57jlhooDReM/Bevk/fj55M80V3F+1AIjUdM2gzvHSS5tAuwk5EXOyQXLaRKEr1HFITGAMXXwvV2V0iU+3hnGpxfM8cRi8m0fRZ2uiRFhI/N4Bx5DDW2E7SLTDbB+naPrPNEAV87P4nz2s/a063l4m1dSsi4TDs26x/4jY+u/detK6g3qsghCB96600HnyQQJM4Jw4SY2LHy1T1AUSsiLUMkV7rtxVeXlE0AFbCIPBC9NFJDMtBGII4Bk0qFALQEAjyQYyIl9HiNLHoUXe7QD/Vw1iXQUsKVCAhCondTF+ctl5HZDOIZBpfb2Mom4bVwQ4zYK5GehnSR0tfHRUSX3D52DWPMA5w4y5JLU04XqaTUKRP1FEqppAaYehHfhkA97nn+umlmoZevPKN1HBhAe/oUYRpohUHCeemAdDLQ6jai6O3dlb7WmbHOv9A48Epfmz9D3DfyFNMpRZQSmEeXiYqDeJbEjtho6Tk8nK7Qc4o9tNk7BLLQ5LSyQRiuUb7I79H9vrrMeYPUREatZpicGeK6v39tFHVDQn9CG+6fdbpJl6ieqswVj+LggAzElhRhuxiDyV89PG1YeUFhBD0Oq2z703DwjYdBvJ9fZ6ZM0dZOHH8qtYpy2h5slqOTtQhJEAiMaVFRMiANUTNrxATUw+qlMwrexFhDdhy061suenWs++3+kv8/exHcFttgoRGIASdKOL/qI+R2THC+vYeikeOUr5+I7XP/BWNL/w1xsa7KV3zRkr2hY30FsCcOnP2vSbXnn2XO4PWCPdVPgtAUk+zITuK8hRCM1AijUwM4rctrMk74aEnEEj0OKSnWaAgzJdoK0Gq2kELYrY+OE3n2F9x4jf/DE3XCZSHV5lFC9q4ZgnVXaScNMmk8ngqxrP6czaj+SyBFDSLXR6bXORd9qUxl9MyFulFB1c54Lk0ujNkGjfwZO8Ut1+jMByTwr4ClZM23oKk8tmPohpNvOkToBTH8z5bxToeqvw2tw3/C7QYUGB3PEb2z1FZ2kLSewxbq8KZfvZCdt0TuJm+pnPGsTAtCyVkP8p0JcUmbLoYkSQzr2MGfWebzF5+dkL2jesvdheueqSQvGPkB3mm8Rj761/FGSrhtXyOvmESN28S2JA81WTgvuOM/k0/K0uUh9B+eidfvjEgTrpkAwFxhBAWHefjpE6kaI63EJpCSIh6W+hGitvum6I36nB4lw5BQGCAkCBjwa0nTAbYAa8a/KYRj9nkICeHsliuoDUAGd9HT2bQ2hGhrRMoRdfzeDQTcKQZ8g5hUyckXbyDM505cLsIQ+Nte0a472SHdaMpTix2oAdhAG/UDvHvMw9hOxtAlCFaRAseJo4Fhq4glsw9vZ/D5T0Q5MjTwUoN47SnqT35GQ41PbJOGT03jABiK8bwTHR0Yl+hZS/+YlVie5HE9iKVjx5ix0MdHn3TIQzdwitKRvwGXd3ArNRo2xlai3NIkSMhFZau4YUhxez5OQ7XZggvE2GaZ/Wy0m9VWD2jr7sQLVP1lyn+0A8x/x//I4YfkqnVkNUl0qkqgen0qxAREskWRDGadXmtwkDfiNx64zpO/G4AZ04A4LZ/iGT0d4jiJBARx0k0WWcwdpkVJnqUoNb2X9RGYkuWxleWQegIawzaHbR2B3d0iCjOspj1WUz1B1yrDSRWz5XoSmTy6oumyRp5pt2T1IIK7ahJ8l/+HF7jUXzlMXzz289up/wApEQvlRDala8HoQ8O9p1uiQT4q2Hd/vRpvDMnscb6k5g4jpArmilRFKCkIFYxd87uZXF5hsa//WfosUKUBrEiDdVyEZeZphvA5tQOHqndx5w3Tekdt2Llofdvfgt0g+z4RsasvsOn02giMgp17iGGit6Ti6RvXhFtPvf4X5AvOsfp5ve6pM0MrUKX5kAXEYEm1oaVc0me4/i2nRSOncL3XUzTptNtYjoXf5XvYpIxMjSi+tn31+Vu5drcLQD83eyf46l+NLUpLRL65WdErfGdUTQH+OHJf8p9p7/EbOsQnt3GMyQRiko8Q9tpUr1hglsXDfRc/14Lph8gvWeM7DWv50KvmiivAmQBEPLKH2+vdJL6yoITAjdykZkVg3BFazD2JN3nDmCuexNCM9GjFre0HkGTuzlkOcwg8BMp2nmHmes2MnogSWv7zzL47FfYvi7HFxoB9qab+/s6pZOMZrFlP5VUqpBY9Pe3NLlMaEYklwSPFmr8WmnXK38yXgIhBI6epFk6g9GVdDeNE9UrHKvP4rt53vFajbiswV1jTP/uw3QfuRd8l96hp8nccjc7gFG28ZnOl3nvtgU2PlPEO1En9iL82Q6wlUi8C03UMeRpAHILD7KQuRaUopR2EEJQ63rkE9YLnWKg22XOjOjmQopnVs5n6uJXe13j8mVP9gb2ZPspzI8nH2TWnUKfmSG3f55NX14keeOrmXntVswv/Q1qeQnv4cfhxvW4iaMUjjxMFO+hs7FAN9vj2hObeGxzHTcdgAKVeZbTfzzCWxnEX87wdGYBYkD0p9nf+/huMu97/Xn1c7C0iV74CJ4b0awLxh9qITeXaRUt2l5IxjEwsXnbRINKpY47u5ltWEzrYyxlk0z7NpOyx6/nH+HG59bzcKWLoUv8KGZXTvKb7kdwrBtR1nqE0AjO/A6GBZ3IJHIVZ3o5DlYNhl73buzhDbSUIn7w74m7J5k/fgRrcg/JiZ145hyR1cHLepSezRF3Yoy8jpCXzqJzYvcA6acWCe2IRiJGtW060x2qaQOr2mZ2JbkvVoIhUSfMTmLGITtuKfDJ82j/8rMoLzLGuel6UYdrvryJZMOmQZ37lj8LUjL9qpvxDI1SvUHqf/4yhWMPc0/rj7jp/sdoJz8PGiSmG2i53EU7ju+ERNpCGxo8+z6sStTx+3G9t+IGbyOMN6KUybooJNCnAEW3Z9B1V/UW9OEE0pGgwBzdt9p4KkHSGaFjrDpPDF8izqnup4UxMnF1Od0UiuQ5Bmc7bDHjnsZXHkktTdnqa5upIMA/dqxfAWvD1bFiNvLv/i3mhg3E9Tphpa9nJwyTcH6G+d//Tepf/gRxHJ91uAEYySSh750Vubc0Az3u5yqIFb1ChLhsI5D2ZW/GkjbL/jyz1+URdqK/ZDW9WtZaSAlhjJF4sZMsanqoFXHGF1VvVayIPqxuH3guRiAIzb42mR5cvufsQpEdXq06l0xlyCRzmKZNEPi0OnVM5+o2DHJGkaRcfbYltNXXlrbqkMzqeda4esmk0yRSRaznO+xabFPuBST9GM9pcUJ/jkdHjvDIW0xmvu8GlO/iL8z0f6gu7L9zNd3kVbDIdaVjSpMhq68duezPY63PMvC+SaTtgorRCluo/t6f4e8/BaWtIHRsY54g8rCArO/Rev4hlK5RH8tw4PVbmL/9RmavfS33OhOo7mo68nG5lWFRI2WsjLMqXvkvOjumqq7L9uE9DCYHuVQYTI5idQ2CRExr7zjR4gwDpXVMnV6k0TMRAlJby+Re/zbMsUmY3AbD2bO/v1Pby4Jo8RsP/wbC0pC2jpYxMddnEMLFV3tZ8P8LzeDtKAXlpfsQcfCiOZkWegTBik0RxYigRjfnQgzJhoMKfWT66l7QWuO7hylNTGlhYmCgo6VSyFQKLV8gKo2AUkQPP3p2+3bs0tyaIZYB2eUltGoFPVgZHwTIBYd3BwmEKmI0PMon8n2PjICc55DaUHrpjrwERbNMqhYSm5LlsQoojex8G4Ei46zayl82JllfKuOaVSJgPSaKJA6Kn0p1Ecc0fic3T0GP8MMYAdzSepJ06S5I9O30arVLkNxAFAm+OLeRPz55E5+f30qMwEj37/HYd6lHLicOPEsUhkTZvh5lYCwS2h5GVyM/l0JLSZKbLq171NqYw5zMUj7d1xlubs2QOPA02kmD9pOKwsOHsB97EpRCdk5hxhG+1Amj85vHr4UkvEyMyUnsPXuIOx1it0OmkmD8QJn2deCZAZ+Y/0uYnOD04UOkeh7DfoBeXSK10aYdKnqpfiqXiBRm+dIoAf5yEUKgrZtEjm9CeD2CRgs1dCPI/gqh0ooomSbV7KDLJUItjSTFYjvBpN3fxtxQwhqvEC77BIstrGu+D+/5j2EPlggij7beIeslkc0eeQvcSJJoNRGBgebFaKmrxOl2jgOjYAwwbK9j0Z3jy8ufJiYmIVOUzPLZ1dlwebm/sVJoqasjKkQvlTBGRhC6jnfkCADCclBhQNxuUvv0X5C85mZkYbX6l5lMUp7cwPTiCfKpEs4LFUAAI5Prv7jM9NzOZcyZZLp3km7U4Yg2y03rNxPWK6jqapENTerEjoazNYXRhcgX/cIovZDGZ06Se9MGVPJrqmrGCmmv3nuB62Ki09X7um/6i+Xf1gDKW7fSeOI4lrQYW7/tbNEEwzDp9dqYmUtr0vFKI4TgmuwNhCrElDaj9qr4eF4vMMVxoJ/yscbVy77CjexM7OOpp8qMn/os1yZdHhxJcUpPEGkxJ8VJGFDwzm1Iw8J5cAopXoFqVS8ME1GMlGvX6JXAoDVKrGIiFXE6OMG6ZAYjlyRqLqKCkKjeI2o1YWQIlRomqC4RxW2GezCo6Tx75PH+wtXIMAN+liCXIdY1omQRbcMtxO06KvKo2FsJMEi4s2gdl1ZqE3ptDrsrWFqpm6Bcnx0Duy/uCfkaSukhUt0kZqdLdzJLsPg4E7ffTtNrMbUk2T6RQos97CEdbyqJVOCnMsjuE4RsZLM1yVBL5wynqb46ZPKOnWfbrvz6PxB7kpBhWuIDWOuHySx/EjOo4+tp1IoW9sRAluW2T+h2yfmC0FyZfMiVyqW6iZa7uhe01vjucTbqbRC4Hvhg//P2wQWqiSzi43+K9Npntw8KCaLu42AYJFsdLPEV1j10NzKjWJiskqo7DFKg0T1J2hxh8vEEyojplUJGy1uQ2647777pUiftmoh2k9iWKN3Dqfs4Ay49e3V++ZCn8wYdBlKLLFZ1HJK8hpDjZpdrZIPIEtxg+nzIb7A/NAgxeJMhiVSKyKviUmBGH0Vs/1FaD/4li10PkwAFpBwdTdPRFo/QPTON+uonSWSztIWOlh0lrrdxC4dJLqdINQ2SzQR6UkdPaC+ycy820tJI7CqRrNikqw6xVETlAtr8AiEmSQYwGxtoffKLyO+9lVR2H37sEBq582p/zen2MtHSGdxnngEgblWABBueHeHJvVPo0kAiMHeNUeneRuKp52F6ll49Rj/ZoRUlKcynUUEX+/kFSG68uAfzHWCXsnSnjgEQNCtERohIH0Q5BRRppFEhZ4Dtz9O2JhFWm+mKzWSp7xzScklS1w1S+/Q0Ko7RB3fin/gsjmbTEhWc0CREIc0EkVMgMky66X5VKduJEMmLnwP+SpM18mhIUlqaVtRAIPvC+efc7OHSEs4N10McY27afPE6+0oTR2cdbgBaJgOaRtxuIAwL/8xJjHOcbu16hcUzJwjGrsU3ejTnp2HLFpxMBiO/op1wGRtQWSOPIU202CWhp/CHMpieh4pjwlYDPZ1F1w1kL8K0wJ7Mom8ZZvnPDqIA72SD7rNLWKMOkW2AH4IAYZsvSjkNfA9bswlXFI31y1Cn8kKTHhnEmu72076FwMBgZu44mm6QGh4iUS5860aucHZnr3/Jz3Nmkayex5AWY87kK9upNS45TNvgxrffxRf/0+e4YTPsXurSNi3qepJQ81G6Qo8UC6+awB0aQPv4n1zwyFv1npXUUliL8r1CGLCGeLrZj1pphFXWWQVk2kFYJYQF9o3/mNZjD5C47o2gIrwoBuETyhA7lWRCajz/uT8ifusbceIR8uE23HSCyDFQKIRpg3Cwd7yaz278EmGyn6mg+020QCPUOuRmkxBFnGaGkdSlZSsk8hnkcYVuWiBCtHVjpGs1Etk8TTdGc7LE7ZDsvjapfTcTIDgq7oTqP4AR47lNNprjnPYX+MzJz/ATe3/ibNvF9B/QjTbRiH4Q4TjUW+8ln1pChl2QDmiKtKOjpGBUzBAEEYlGgTi/Wu3VcPumrZa4+uyENV5ZNF3iX3M7+r1/j2ysXoNR0iTdFbh5hw2HTjAgmxyZfjPbVZb1B4aIV0KlM8YgUWuOQs9mLH8DAz+67xvv7JsgTJPWcApQuI5HouehhHZWFSaKFTlb47fmdH42O8eGms68SjLqQxTOsBDM8eRyzLu3bucnCnX+YN7CGRvHzOxhv5WnaSYJYpvm6QZpGdO+4Z9RvDND6HWpPfxnxJkQvXuSlOlQ8D26iQwzSnEov4XrdYeIBnqQQg9cTE/vV3pNXJrjpbO9iP2VBM2BWQDckgYnapAehThCL2xGf/YfiOYXicZCdEJc1Ldotc+a0+1lYgwNInM5tGyWqF1FpjYgLY3x5hiPJfeTM4qEhZCZwweZccD/4C+Q3KCTbZ8gDOpUR/qi2sPPgpa5fCvTZDeP002k0JNpwq5LsO1NaLoDsgBCR2EQhhqFaIqe8xo036JJxFKjnzZq6JJUIYGekgTVJEQKmd1EMlNgKuOipKRltChWLULPI0qsphapaoyWsb5R165YskaeNw99L4/X+toC0K+0dX3+trPbBHPz9B57HIDUHXdelH5eDIzRMWQ+T9xqIZ0kzta9OJt2svDH/wklBLXPfBQMA3NgBGNkhEShSNpt0fM6bC9fh9vuMXfkCD3AuGslAvUyjnQDyOg5TneOkTML1PYNk3vocfTyCN2nvkrmVW/E87oknBcKJkhkwqDw3q3M/4fHAKh/9iTJfWXMdeV+Ra2jC/1tzzEsA9dDkxZOyyLWYmzv8j5nFwIhBPr2IYKvHgdDo5Atk1jR8/z7z/0Rm9K3fosWrl62pXezLX1pRXmscfEJnEFOTh9j9+YMb55t8UheQwm4puHwVxMRvTRILeSx0oXXzfUKDpoboofxJbViv8a3T1JLYQkbS9r0wi5Ck4goAlRf2s1I4c4Umf3DCraTwx5rEJmPYam3orohu7ffyum541SPPMiTy0/zI80PYAzsJG4vcGa9wdKr7gS9HzEeJlbTRmMFcb5AYrlCfaRfBOrk6Tqvym25GKfhG6JlLSzPojZYwVmOWWodJ7tQwJU15upJ4l4NISIEPjodpNJZOvksOziEHLkZY7bG+vRWjtemOTL3NOw9p/GwR0K7H5UYpdb6QWI/opl7K47bpJcYBwStXkTClHiyABZsenaBkxt9knWLUPMxGj1U0EKYa4uAa1xY7LRFFMa0furfYVgaae0+aDaJ0inCBHSTMUXXwPIO8qT2CUb4AWylsIRASonSHWSyhOosUfrQNd92P1JaBrNSw/AFni3IKg3P6judhRDommBdIcNnjwlqaY202sgAS7zVP8p9J+/lkZSJkpL/Wm3wszfcxI8WejwxkGUmOUDH6mdNxUGMttGip8XoJbs/3vkdave8iW5Yx0hmiY0xygf+lokTp5gb2smxTXu4JZUnzndRWki72GXkTAGjJdGHL005Br1gk58cxuyewvB0fNul9+B/wdrxTsz1rwYVYaTXE9cDHFGnouVAnN+xrD2RXibmxk3EnQ7B6dME08eI2wFhxWVkqkTayFIJFqmUO2D3/wBuexlfJXCXhuicoyllVroY2ew32s0ljzM2At024dIcLM5A9gaUvR7CDiBRKomhu0yKmFBvIpSD75k88HydB56v89SJBqqcxvrejZy4ZoH937PAgX9xI0f2FZgqVqg4TSKp2JXcx963vYfwnKITpogR1lXmLz7HiX5WW0BamPLFK3nB4sLZ1/rg1VPpz9q0kbhWgzAkbjXQnCTOlj1kX/0W6LYJ5qdZ/IN/S+O+T4EfkRsapLW8RL2+BEDcXQ0LlyuabuIyjnQD2J25jlgolvwF5l89jrZ+PeHUcSqf/AhRb9XhBsBKlVIts3o9xRWP1henqfzF8yilUJH6usISgedi2AadvEsv419SgqiXEuKFNN0gwjL6r+M4Igh9UoVLoyrdGmtcLtz4tndz/0MzfOWxeRYrLkYYkonbZOJprqt12VsNKc/1CJPmBf/nLHVJTdcpPHpmLdLtCiFvFAmUTzOqUw2WQJMkxm2SmxIIIRCagZZeR1z16c5M4s+NkzLbBOIMMoJCdpC0k6FQ1ZkZSuA9+WHwO+jFTVi5LSSef5Jg7mT/ejnnmomtDEpI7Hbl7GfNoMNEduJinIZviEwZFKpZQjuiNQadyRJJz0e2e5x++glOL6aQwkMIhRAgRchg+BWiZA+iDs66Dbzbeg2tlM4DC4+w+MgXVxsP+krlicwBUq8eAy/GXSiSmLdedK66fkxPZhhffo7YV/TSPp2ch5dWWKqAls2u3Y9rXHAKg2lufut2JnaWGd7Qf260koqeDY2kIqPncFNv5tjfD/EDxz6PHfVwhESomBekbKWZQsjGd2RzpAtD+EWHzrBNL+ki5rvc+MBxSsGqxIJj6jzaiPn1qY3o4jQxQ8TJa7i7fIDxRA0Rx1CbZ//MLG7rKyymS3TsNFq3RTpoEFa7yISFtBOAojX1PJqZZEfmdq7J3UPGWk8cNxntHqTZjfho+QY8LY05OoyfqhHYdSIjJjPTD7TR0i9o3F1692l+4yh+IqSTd3FzoG3diTtqgmYgnTzW4PUEM3W05gyB1Gjq5xdVe5V5Lr5ztFSS1O234x44QG//V0m97l39LxoRN+VezVPNh1lS86R/9iZ6/3U/Ua9KEG3HrQ3gbqii90CvNrHnmuiZy9fpppdXHTpBo4rULPAXkY39xGNvJg7yIH2KcQfOzEO5r9Oj8NGlSa0TcaLa5F73j9GviUDXiXVY1HoIBXZokuiZJIwUqtcjkhZGL0ALQ6yCcdZJcMXzEg+jcyvqfC3hwgIym0XL5zFGRi507y4ZrG3b0MtlwsW+ZpmWySN0HWPixWkZLzjXdt31Orbd8RoWnjpAq9sgbNfPbqO9UEjhMo90szWHW/Ov4VD7WapqmdM/sI/J/1YlrCzgz5zE2bSqo/JCwQShS/SSTbjsrjbkxsz8yoNYm3MM/PCLK6gFnotmrg42OlfJffkykbrWr/oaRMiVFTHX65EplRnccBWlga+xxneBwugYb/ynv8hDf/2XaKdqDLe7JBM6Z+KYkUpAZng9Bzel6egXXtPNdzuoKCZsht964zUuCyzNZsxZz7K/wJw3Q7ySBqVnNMAHXmxgeT2HWIEjp4n0SdzpHnem34dSMa/y2kjr13Gf/nP0ydsZ8LYwZKRZ/sqnmf2e19LNlBGWg6YU8cnjbKpmWFjfRQYQ132qrTqDiUuniAL0I2fWj2xnqjqHa3rMvvc6hj/457xqZB33bh1mbj5mLH8XUhxH0COKW2xdH6EbeeKpj+KK1zBU2sifJH6Ff9z8//iZg7/FR/UcXHsdWGlw8ohsmdzrJgln23jHKqQXTczJFn4ygVxJm0t5s6S6XRDgJVeLr9kdEy1nf8P+r7HGdwu5stA8uqlf+MA4Y+LGPRSKglFiW2oP675vK+6+6/E+/HNI/zjK2YMQGnGzX65UqRiZib6jfqRzI1DtS191mULLjhFVPcwwRBomMWAbOjcXLJ6sZ1jgWcrCIWKQzNggrw2P8/DSGMc7JR448ChT7/hJNCOF5dUZnn+Ebq+JYezFFWn8uQPUTx3ms50k733LetJJE10z6dRbLJ1o8Vz+JznwGp0ThsuvbiihQkUk59FcnVTDIlm3MEYcNPvSDWxI2Zmzr91kyMZf+GUWZ5aInm4RNyO04ibk9L241UUyuWW884xhW3O6fRuY4+uI2y2iZgt9SEfaCYSjM5HYwOHOsyS0FG0zoHTtVmgIdM1CM5oEuR6hA+Fohm4Apn35CmjLTIbU3XfjnThD7LlEKkZ6y4jeKWQiBC+JDLpYukA+f4iovBOBCdInRuCYFtV2j3KUoektEQodLZYYgNAVOadIuTDKaGEv/qlTeGaOwDTAV2iaQBiX7s16MQkXFokbDeJGA710/tVvLnesbdtQAkQigTBMjLF1ANgj63H23Yh3/AhCyLNOzNLkeoQQLB8+RlrL0kRgb9uFSJpo5QFELnFF6AauT2zhaOcgBa2EOyLQMnlkIoV35gTWhu3AisMtdU6Em3vO4O9oCE0gpCTuBCilXrR6HAYBRmp1cquLtSHlGyEHM8RtF+o9FipnqNQWCAOP3ODQxe7aGmtcVggp2XzjrRy490ssRAHPPXYKt9Vg384iuhGw6853ct3QK1Oo6sO/9HMsnDjaj1J41yuyyzVeATJ6liD28GOPmqiRAfSkBrqG8nyUiiBsYG/ZTFCvEUQaiha9ToV2zQM0YhVhSA21ax+uW0czmvitwxSsCYr56+kde5yqnUUfXI+vYnKdHsUlm7nNisy8yVLaZVtmC5q89BazcmODRF2FmwqQponSNFS9hlezaTV6xGoIIWp95Sp1lJ4bkjAyGNo8Ag/VbVKyC9zSHGQ5r/ijA3/Ch7Zshs5Ksaf8ZH8/37OJyp9USFXrWL0CQgsIHI1sykB6PonIwVUgfY38TBIlweyCc8vVk+mxxqWDKVbn0pa0GbbH0KwUyeuvw332g0T7Z4iXjyGzYyA18DsQLVP4kTd9R/vNmkVKp1x8PaJXSKAJAy1nUTxTZXZLP5Ag7jbYN15iujPDY0GCdXfsBiTI/8sNz/wor5GHqM5mMd72r1G6Dp0KnbDHb8wU2SIFndmnGFl8Ehm5KDS2F95G41gVe3MR3dYxTItwziURJXjTret4qyOxCwkQPoqYZNXGcQ3S6SR6yli1JS7B+AZHJhkIBojbIYZl0Z6SjNgdqmmddqNN5LoYoY0IfGI/IOG1zqvdNc/Ft4FWGiBYXETL5YjqPv6pJv6pJkIIRqx1RIQoN6Bi16hOHyEQBfx6kdCzyJ4RJE5WyS110a3LdyVGCEHcbKJ8D+EkCbo9SEwiHQluF9VziOIClaainLPQQw1kAEiUiAmUT7WlWDJc3KLFhv1Z9AB0XxLHIU1aZPW+jlvUaBCsVCzS/BgtrV99YePq/EQahWli79mDuXEjWvnqmXTo2SzSdpCOA1GIke0fu1EsM/rLvwlhQNSo4p0++qKy8zvveR2kLWKvjXvoOXr7n0D4oOpdcC//yAVHTxDGIcLQ0AYKzG+QCCmJahXa3TpRFBITI7TVSb0xmkKmDYSlMfCh3Vjrs2hpE+noeEfrL2q/16iDtlrNVD/PEOurESEFBCFCl6QTOQzDJI4iSuOXVurQGmtcLrz9F36Vd//Sv+GGt76DiT37OHwm4rnjHb70x7/H6WeeekX6oFRfPPuqm5Nc4WSNPF7sEaqIh9wHIGMhTA3NNECFCARC04maLZQA6Saw9Rp6bCKURCDRhIFtJRm943WkfuhDPHiXRscIiTWTWGpkF8cIDj5E+MDHaH7+D8k8fwY/bFMdaVBf5yMzJvO96sU+FS+JOZIiN58kV0uTWpYExTSYFkNYxGF/7hTF22l3x/GDEn4Q0/ISVDI3ERt1iAVWKHn7+A/iSsmnOUTv2f105k2WDyap7G+z/Hu/j563GXyPgwy7iChGBB5a4OLXF5FeA9UO0dIarVKb2miH+nAHI7Cw1mW++QGsscYFwDhH8qcVNsibq8EPxR/+ANk37kWm8hD2IOjiPfMR/MN/QWLPpu9ovzkjT3PARDXbBAvHCBY6qFhhtCISYYhQCqUUtxRcfmlHjqc33Y5rpuimM/hmkkZmG44Rcc+ugDiKEE6OKFacOHWCp6oxX6ilqHvLaLFEUx6aXmKjTCGPNtFtHSElum0wcsMYme0l9KSBXUwidI1YVJGhjrIjrMCAWCBTl/YCvS516maDSr5GLdsg8jRoNjBSEoSNilw0o4BmjxAKGydunF+7F7jfVyT2ls0Ep6cITk+RGf8+IEHc60eB7Mzs49H6VxBZC21zHvV4i17FpWD4NMtdGmMKKKAqbQzr8jZQjbExuo/2KzxVq8sUktM4c58iHnsbigSarJK0FObCk7SPnOQHfuu/8OEz/wtZ20Giux2ISNf2ERkRzoFPc9fBt3F43wmqIwuMp7ezI7MXgKDeQMgCSIXuKYziVVRE4WVO5Hv79+OfOoVMJtFTqQvUqUuTTZ/7LABxx8O/f7WSKYaGXhrAn+6hohB1zikVpg5eRNxorn5mrzjD9StjTeJ1g2/nI2d+H2lIGq+fRJ9+jNLsaf7qr/8zRiLBvje8hdvKqwKuX5tCym2jLP3eM6AJVBhjb1ktauK2WyuLBwEApnEV3ZsvE2PnKNGXDkIYk3BSbHv9Pez+8e+/2N1aY43Lnuvf8g6uf8s7WDhxjA//0s/SbT5Jc2mB3PCFl1hoLM6vjNNrTrcriV2Za5nunWKqd5yesHBvLJE8FZCXkt7zZ5j/nV9Hn7wVZ+8HUDJJb7FMZ1HhNj1kfWUhSoByIQyHGNFzPKkfp9J9gvcFP4Q+fivJyORNN3yA3Fie+z79OwxpwxhaklgDYuj6XcqJS3PxVNo6eqRTz7ewdZPOsI190qWATqitmpaOnQRuxQ+OkzeXcPUMp1smpee/QPqO97Er2sL7xNv4rcrv8rk/+k12HxjBr3vAMvKJPyMOAzI37aJs/QKVk/+PYzePAhBgs332f+AH90AvIjT7C9MyEAze6WGtv3zle9a4fDHE6iK0oyXRvkZgXy8W6Xz2h/tvhMAcH2fj5z7/He/X1hzQJa0dg/ilFHwqJphpoaUEPU1DCYFMZKl1QzYMWLx+XYJgJYI2jAyWrGuYVH9NN7uVVGmA0M6z/KX/Q/Pos8jyO6goDcNtQbQAmiQ1+jrsdSXskgAVoen9e94uGGjFLJaWJDw0Tfpjf0P6nkmO3NOllQ6YODBEWA0pvDFHPF1dOQ2X5thpSZsg8vE1H+9Mm0U1jIx8pDOA0BIYIku0VGFwUGdSPXFebV4ZVuUrjD64qq+ggm7/RQzKi5BCMu5sACnQN+bxVIeo1UAFJm6iry8i3YDIizHsyzfSDV4s1B82arTsTdCrIpqHiSmiVALbkkyMpWlXlxFCsM5ZT2AsoYgADSvYQrK7A3HkKL2v/Bt0X0cPCwRP1FAr0V3dZoPQ6DsoLa9zyXvILxZKKYIVTbNzr9GrDZEwse7egbZxALlxAH3zIM6114EURLVlqp/487PXlhACOZAi9lY1zPoioYB2ZTweU1qa7x35IBk9R3NXmaf+85voTB0il0zhddqcfubJfqGEbxBNaY6lcXaXIFb4J5uErVXtFLfdRljnRLqZa063b4Z580as1+3Ees029NH8t/7BGmuscd6Uxie54Xvezbqde0hkc/jd7gX/NzC+nrFtO7npHe+52Ie/xneZEXsdEg1feSy6c/1CQlJgjW8icc3NREvHiHt1RGzSOrmVzsmtRJVVA1IRI0LoLUqOtU7yTPd5FgoK7+DfEbUW0KRNeFLg+S6J5RjbHsBLBnTyLgrFbG2RPQN7LuIZ+OaU2gV0T8NN+7T2TRI365RPnHxJ9/PCUoRSgoTWpFgI6Cw9jzt9HF0a3GPfgmWlOXnX9Zx+z9swShly1w0gTZPK7/wuUz/3q4jhCcZr/xGzszr/MFozeJ0EKoTQ7Mti6B4YO7a/QmdgjTVezOsH38mPTfw8Hxz/p9w98Nav+14bWLWbZT7P5F999Lu27wR9ySovbyNSswhTg6bCCPr3hgDiZIljiXTf4RZGCD8CU2dm6LU8/TcjnOzeTmgXUd0a7twJCr0qrwuOc4N8ih3tw0CMHN3I4Nv3kb12DGtiDN0wkPVliGOkbmFpSUQQwnKNYnaI9gYHPxEgAkGyZmFtSHxdUbZLEXslwy5wImTWxG85uN0shC2EmcTIbkFfnsNt+7Tl+clZrHkvvg2MkRGSt91GMD9H1DyDvX2SuBcStXykrVM0y8z3TtKlR/qaDZj4gAMKktM+2sw8bcvAuIzTSwHMiQns3bvpLNRoN+q0omHWAaI3B5ZNrAr4ERTziihYwOt2KBplaqk2nnoOozOOCJMoIvy3/jDxf/8Fxr9YY31hPXqxSKX+PKUf2kGvE8IA/VUBXKR+eZ+3b4vzSC+NWi20YgFtYgL7Kp50CCHA0BBGX2xXaJLUHa9GVXt0nnuM1v2fwT/xI1gb+0UWRMYmjlYncnLlvhSXeSGFFxBCkDeLJLQUXqtGFPp4129k8+Aoj7s95o4d4bff/25e/xM/y9ZbXvX1v9clxnASf7pF3AsJzrTRt/eda4HvEWsGqUUNESqSo2ury98M+UIV0yvEobvGGpcSmq5zx/d/gMc/+bdMH3z2Fd236SRe0f2tceEpmgOUrSG6UYflYIEt63cSLTSRrkn6hjvRxksEiwcQ9i0rSQkKZAyxDk7cn4v4isgLOXnseay8Rs+ymEl3GJ1/lOSGW4lDg6U//xTr8jcQB13aqS5WVacqaqRlkhuHbrzYp+EbUnSGyLSn8V2f9pb+Qq/uuRgvsfg2vyxJFVMM5iKK1jzTk69D3P/X5F7zXigN8InC/0AKicgL4m3vIHz64/jWGYRpQhTRiu4gpX+MdUcO4pkDaIHCrBVxPQsMCI0Vp1sgkGs6qWtcJF6IbDOE+aJU0xcwx0YZ/LVfI241kY6Dlv3uzZnX6euIp5+iWzBodg5SWr8bd6ZGbrZFayxJT9NRqu98Eyom63t4gaJnJCBT4vR/+CtEt4u5fJwg6qKa0/Q0mx3VIzw4eZyuabPh7b+AbWewOh6hlGhBiFSKRAXCToPmcBYUZBc7DP/tb2Pe8EFOJqYBUIYiExsYI8kXd/wSNbWKRt9BGsYhqqwjKjoiDFAxhLXTiGQRrdXGTFvMq1vPq801p9u3gZbJoKIILV9ACEkw06+IGLcCGICcnkdqOuFMi0jrEDTbhLpJu9iDokm2ZqABhnV5R4VomQzus8+iAYmwRayHtDa8l0RUR+QTKDeN6jVo9xRbdm+iNjdLbqSI0p4nka/SiGOczlaUqkMckRy3CGf/CJH/FWRCR+iSxudP0W3aZOp1QJAMWqBdRREiLyPsNlpcJJw+Q0g/BfpqR18/cPZ16s5X0XvkKTgg0HJ53IPPn3W6yaSNdJJYW3YiNIm0rqxItxfYlNzGgdoy8VITd88EpZpNujRAp15FNy0qM2e+4W+N0RRa3kKYkuaXprA35xG6pD43S27ietrlfnquvMyfaWusscblzwvppmus8Z1QMgeJlUIgmOqe4Prc7ch8glgIkjfdSu7672f5Tz+Gf9qHKEDYABKEhooEekYn7MYIBJPVjSSLWWYKM4wsRQh3P/HY9QghMIZuJG6egZTCzfp4hZAkaSoLXXYP7L7Yp+EbkvZTxEGE6emobAZzwzYUim1jO79uWzO3kVhrglQEsY29LkXr/grOwjRyaQZ362ZyVp6ImK7qkdt6C9Z1guVPfIKo0WT5Ew9TC20m7vgkvd5NhGqIFj+IEAIlIpIVExEGOI0Q9l3e0j1rXLlIy6Lwfe+7IG07hTJiKiK9FNNMNSlbGsIU6IBUIQiJQgEaSoAhQuxmjJ+IUVKgxTEa0GkE+HaEq1tEUYx5zV5eo91AduM4jj1It3iUZed5rI6HFacYOTRK4ennmX/tbaSWOv0AmXqTuLyFyK0SGpBfSKHFAtPVMIr2eeuUX0wCFbDs97PHkm8Zw2ucIa61CXwDkSoSuxXMKEEY1JDG+S26XVlW5SuIzKTxT5xABS1EQqIPOkSdfvrogDVE2+qiZW2cdQOoOKQ54JOs2VhLHvZsE1+Tl32kmzE0hCwWkaPr8JcqxLGi7SURcRNV66I8G1vvogIXf+kUtflZBsxBlv15Kt4ibuoAQoHOCI3JHSil05t2aX/2V4nbPv6ZFv5sG1fL08zlaOay2E67X21xja/Dn5nB3LgRfXgYY3TsYnfnkkImLVJvuI2oVUcr5Og999zqd1kH/9QJvCMHcJ9/FlnMIRLmi9ImrwRK1iDVRA9PhrQSMVkl+b5/8x8IfR8rmaK5OP8Nf+tsLaBMCBd7BGfaLB85CYCQGpG9qllh2ukLfhxrrLHGGmuscaGxNYeiOUA7bBHEPhV/EWKFavbA0IjrXco/8f2M/bt7GPuPb8JO7kcFDkoJCCVaUqxEcShyWpnt7Ul8XafjSOK4Ab0mQk8gNAtjaB/SSNJLBpg1SdfrYchL20Yw8g5arNHJeYS2RatXIThxmDSrc4JOt0W1tkivWqPnR1jSx6bNoHOM5k/+B2bOTDF/8hkGJwb4qnySU+EZesrlmOxR6VRZ9zM/g3RdglOnCBoCldlEaWIRsBDoCCXwnID6aI/aREiYWrMP1rg6KVqDNEeTeDKirrt0n36YeLGH3fbo6CYKhUBjJdYNIQXrnl1iYK5NrCBM5fDyJYzBYURV8PjENaQ1SaG8g4Htr8bYuAdLmURalV56hvrwMn54hOTv/SRdO2Li8Dw7j86x/aszTJxsktn2emSqhClM3JSP64TQMDFGvtZOuDRD3axznr++9Bn4kd1EkQQMhJ4AYWKENt3qErWF9nm1ufZ0+jax1m8gqlbxjx9EdWPChR5RrZ+iltIzOMJBlGzCYR1dRvQSHbpZF2/AInGmSWQYSO3SKwP+cjDXr0c1m8Qz0+iLM3SMCeayb0Sc/BwAsSoiRcTgQILhAYd2tYKtOexI78XHI1Yxkd7X0gqcNJpYrdKUvEUSVV28QzV8fbUKkSPjKy4C6bw4j1UB/+RJ/BMnCOfmMDdueAU6dXmRuOEGnD178A4dov6xjxHW60C/mELc6z8whe0g/BjV9RHWlRUInDdK6EKnO5mnOuHQ+epXcTJZcoND1OdmOPXsU3RbzW/4+3p78ezrh//PX9Cp12hMzRKZ8dnPrfNc7VljjTXWWGONS51Ba5iIkG7cYcmbQ98yBIaGqnUJD869aFuldxi963OMvPpzMPznHGk+ijtSBfoV07d2xpkrRvzfuy3odHCf+zuEbiOt1TluJx/g52Mc02Zj+tLOWNAHExRmU3gJn8ZQTPv6flSev7xwdptkIk0hX2bTxC6eP9nqVzuXgmw5iSPbxE4WLzlK0JznjsJWPjX9qwxoBTbZm9DNcR568ku46f4CaNRqUfvEJ1ECovTT/NHA3+BN+PTSq5UDbffytqvWWOPbpWQNgi7pjmepj5h0v/oZhLRIn67Rc/6WbvIgXedZ2qknaCefJB230R2JtdwFXaIsG+UkiVNZnMo8uzLbcV+3F7lpOyqTIVXtoqIunVyl7z0SUF+v4+c0KBapt5ew0xZmyYDQQCmLKJegsq5JL9kPPEJG6INJONekvTR9bljaqtPNjfu+CqPkwIrjUk8NY7gW9r1/h+qtOd0uKMZovyqWcmtnP4safaebEIJdqWuJFjqIgsOJm5Z4/rbTaL5G+nCd9CNnMEoDL9nu5YR0HOw9e9BKJbSZEwD4xgAoH2F6KH2ASBXw/Jh1oxna1QoAO9P72J2+lnI3iTFzAL1ZAU2HDUOY6QA0jbh+huL7d5J61Si+E6AFAbbbxtYMhLyKLtuXkV7a2/8E2DbWli1YW7ddwE5dnghdJ3nzTRjr1qG6XdwDB85+94LTTXNWKr6aGiJ9aa8yv1x0qTOe2IjViWlvLdOtLxJMT/Oa9/8Yw5u34jYbfPRf/cI3/H3P7NDwl4lVTFJkmD9+FFslzgoYAy+pYbHGGmusscYalyPrEhtY56zHkQn2Nx4CKRDGimMnCF9UgCj3/p+h9mSXqN1jdGuWoQGDqeoROkGDMA7Y09tCLkwxlfcgYRPXp/DPPIxSK2OoilkcqeH6LkutKrvz17xEjy4drPE0m8t7yC9nMAKNqXdMgNSIqqtON9/vG6upVI7lmTnY/X0wsBNDeFyT+hzqtjvw7ngrxxY62MYpfrIyzd8u/w8edB/BEDp7Mrdiv/NHGf/V/0ruje/BnZ3lsU9/greM/QGfKN1LNBrRSdchhmTFoNC4suZta6xxviS0JKNyCDs2aewbJexMEczsZ2HDEq1MDzNSJHt1fOsEvdRBFpNNpCXJz3cYPrCEeKHAXK/Lxoc/wz/fuJ43x6syDcVql5EzJ1GEyI6P5gYIoVD3bGFy7/MczdTophoYI5Kw4OMZAUEpWO2fq5OZOIE0Lo8soqRMktTSmMLCi1aeY7ePohX7Mjoq8jHym3Huu5/M7/+r82rzKvJefHcxRkdxrr8ec2IQ6bQxxlJETf/s95OZzZi2g4gU9QkPzwrILiVJnW6Sm67hx8E3af3yQUhJtLyM6LbIyBrJeI7GuvdAGEAgUCrJUqWLEIpeve90y5tFbi2+luEFibk4hzE7Tap+is6Ou9BzKeydO/GOHcXZVkDLmIQJk8gwcO0UjtDhChG4/24TLi3hbNuGVihgrZ+82N25JDE3bsQYGsTeuZPWffdz9LV3c+z1b0CFIdbmHVibtoOhga4hUlfe5G3MnkRDR/oRj/z593Fg+gEm915HqlgiVSjidjssnT75kr8NUxGdsMGSO01ZjbF0+iTjIztRvQa5KY38yRBLrmm6rbHGGmuscWWQ0JKktSxZo0BSS9MIaghjJQpeAdFqpLc+MArDO0FoeHWXRP1xnjx4H8veLFVvDj2SlKMBMoMboetCHKDqR1GqR0xE1+4RhiHNVhPXD9ha3HpxDvo8kQmD4b2bSfdS5GophNDp3L0Pf76vD1trLLGwPM1ibZYgDjBth7bIQ3YdFLdAfpIdqfuxVAPPHMZ//KNkh/byQ9ECybRNW/WYjRaJREwjn8Z/zav57Z/bys+8tcJkYoycU6Qkc/i2ID+fwghNUqmrSPN5jTW+hlx6hLxTJtUR+HvXIVKCmY2LFOczWGqaiaWPo/s6lp+mbtbQ0jGJpGS41mUoinCWzmDVlrA7TSqf+xJewiDZ7JKpNknnOjA2hTIEcdIksg1iQyNeXyJTNLjzdSMs1xdZaE8Rl12sokY72yO3lKSwmCDTU9jFZRDyxdlbl6hJr0uTTtTCVx6eWol0G06hpS2IXVTooSIf0kVi+/zsxTWn27eJXizSe/xxek88SNxbuWLk6pVTMAcQXvxC6jRCCTo5l8L+fji6uEIqXZmbNmHt2om+6xraC11a+iRdZwOCOiLjgJEkmUoSYZIyX+xo3HzaYt3RCtHAMFrQJLAlfs0FKYiWlwFI3TaC2TlGtjNN2p3HCwJE4io07L9Femnv4EG0XA7l+wjbRlzmqcsXCmvrVoLZOTB0/KnThEtLBFNTxN0O3tGDxJ02xDEiaSLkJToSfAdsS+9GmRqxJoh1Qa23gBCCsa07CVwP3TRZPNV3uqk45t7/84fc+3//kEc//jGa/jJKxRjCQimF6kYk4ySdfER9PKK2Xsdcc7qtscYaa6xxBZHS03hxD0vafV23hInI2v2CYUH0om3zP/ghYjfAb/kYhmTYFnhRF0OzCWKfvWKQewplxGAK6RgEUw8RmzoSjfkNdSrePLphoAsDR3cu0hGfP3rGojSXo5fykb6iOZpERSEA+ewAum5Szo9QSA9QGBimPj8Hk3dCHCD9JtJKYsR1iH2OOu/idOL1nOI2ipnbGLn7dp6xp/CJsDHxRMiu3F40BZVehe3F7SSERaPQpTbSpj7YIZcsXNwTssYaF5G0nsWNeiQG11G5fT3H99RpDPSol9r4QcimM6cIDQ+BINJbeHKROBY4KYudsaI0d4zMg58jbtQIuwY9UxLqGp1MgkTs02ofInNgAWumgVWPGNCKsHsY4oicf5jywGkGikNIKbHHTNyBHvWBDtVyF93TMXPtl8jgujRtrXM13V6IdNOzFnE36NvYmo4Ku7BhL8I5P9tnzen2baIP9stji0QCFbkEZ9r0nllCnbPqte6pFN3/+SRIUJoi1mNKD/dL58pk8iXbvdyQCQfvuQOEzz2NbFQRkUs1HiPuVFDNHsrLkE8LEmaIHTWIVgZjAP/ESeQXP4VfHKRZ2MpC+Q78iQ24zx3AO34Cf26OcGmJxvAOGsl1RGaCpJ5B5q4Mh+V5cZ7Pos4DD9K+917cAwfIvf17LmyfLmOsyUmiZhP34PMEJ06C77/IoSltByKFuW/iIvbywvLOwntBk0gvoh21ABjcsIlus47f650tqNBrt9j/qb9j/yf/jq/+vz8nDHyaQZWCPUSSDOZzINuKKLkaKm7LS99IWGONNdZYY43zpWQNUgsqLHnzHGg9hVAK1XBRtS58jdNNSEloTpKZyJEbz3HHTUM0giXyZpkcGfYFo7w9mWPbr95N7s59+DfeBJpGRMT8aIVUqUQhk+end/yzi3S0L5+SV6Cd7tEaglY2pvvUw2e/63SbxCqm3WlSnzpDdaZvA5EagtYstuywMXWIQC/STOxiLvFaZgvvYGmuR7ft8ba73s/7Kr+AqzzKWpGb2MZ7DhV5h7+L377rt/vFnAwDze+bs+lE6WKcgjXWuCQYsIaohRVqfoXKriLH3pggdBSRGWN2DGiMIwhxzSZdw2U5N0PUCOjNtlk8WieKFaHt4DppOpPb6TgWnmPioKBbxU0YNHcO4o1m8XIa9biFu+5GyKxDc5cpZ1v4GYU9mMFNBbg5hQz792YyjPtRbvBiTbdLlBc03QxM/Ng7+7lMmoCJ1B0YmCC+4dXoP/HD59XmmtPt20TL5bB27EB1u0T1Ff0CBeE5KaapfJF4vs3OPyry+v99A7f9zS5U1I/2kqkrw+lmrDgfAUYHACFopq+nIkaBfjGFIJKkkyYZvUN3RbweIGo00Lpt1v/yP0KLfer5a5j54C8hbbsvdv/Xf4134gSh0TfkDeWiMMBci+L6WsKFVQ0NvTz4Tba8uhFSUvqJn0BIQTA1dfbz9JveRPEnfoqRP/hvmHdsuaIr5KaKw+ROtYkTBvOTBoHnUhhdh2aYuK0mZw71K7u+oMEIEIUhXrfD4cajTHcOY2BRVmMMpjYROCsLDUqtRbqtscYaa6xxRTFsjTHubCQiZM6bxtdXF4/PTS99AevO97Hw0BSaYzC2pURoLOFGXRJ6hpvd7ThCYzrogJUhMAx0zwAJtfVdTN2gWq8y4JRfwSP8zsiYedLLCSIrpnLzOKHbJfb6kSFb3vw6hBCkkhk2Te6mWelnsZAdB90Gr4GTMdHiLkpziMXqIl6v7WNoBh9/+8cp7tiCJiQ70zvYmdmDcWIGwhilFK2S33cqNAV2ei3SbY2rl5JZJqWl8VSPdm7VVh5/psyu+yepZz9Idq6MUBq+VWNx3EDbnaedsXhm5wCze19D9a0/ROWdP8ry7s24aQMRx+T9HkE4i6uvRoLogUagfM50T6EyIzwqJtgvhnl8+Ak+vvWrfHrbo5wqzRHLmMKZNINtQL6E/X5pBrrhyAQaGgE+nZUABQAtu6pdrUcG2eUBaqdPnVebV65leYERQmBOTGBt3UrcncYYSSATOuFi9+w25fUbGN2yk3QvhR5rJFo2XVujncuQHh2/iL3/7mFt2ULihhvQh4eRM6dwZAst7tGWOUiZ4AwQxDZLlR6Wpb3YkG/0Kw5Zs1MkujNY7gJeZgRjx07MyUm8Awfpzc6jRP8mNZULGKsitlcR6lssC0StFubGjdh7dqMPrTndvhn27l3Y27a/KNq09CMfovxPfxo9lUImr3zHUdFNkJluo/kxS6eexkmnz1ZTblX7VYTb1Sqm7aCbJlYiidtq4cVd5rsnUPQNDSl1ZChIzQtKS/0KbWusscYaa6xxpaBLg5JZJqml0YVBxVitlqnCr3e66aUh5jyJ23AJ3YAbgxlEQYeki9dOMxe5POlXce94F/9tbz+yvF3oga9oLC9jBZeH0PgLWBMZNs5NUJpKY3oaR3/tDUSt/jnSUg5ixapO54pUZ1YWOzNjUNgMZhrZW6Kc75GOz4BYnd/7vX6QwnhmHD2XxMxnCDsNbkrv4033dYg9nyiI8JL9YAfD72cfrbHG1YohTQatUYpGmVCPSSz0SJ9osekBk4S0kTWD9FKM1ctj+Gmmsz2CJ2do52z0jg9RhOy08TfsopvWITjB4tBHeXrd3/MPt7bxwojEmQapky0M0Y8Eawct/ih6iqcn2jy9yaMqIrRIImIgAqttkAggOTB/zv196Ye6JfUUEf1I5k60Wp3UmshgjqdBl8i8idIhZZ1fcUz9gvT0KkGaJt7hw+jjRZTvY4ykiNurkW7p4gBRz0czDQI9QGs1SLT7f7iGfmX4O42xMaJmE3N8HVIT5JmmEo8ghAVtHQWYuiJRdEinFSfmZxne3BeH1bIZEjdcD7rO4PK91LN7wExS23Mr5WNPghDUH36M3BtG0S1JJl7C1cew9KvH6SbOcwnAP3UK//hxAIz/v737DrPrKg/9/127njpnei8a9WZZttwkFxnHxpgS024wxZRLLiH4XnD4cUmcUGJyE2rA1AvJBRMImFAcQ4DQbByKq2xZsnq36sxoyul1771+fxxpRiNppLEZaSTN+3meeR7NLuusc/TOOWe/e613Ncrw+lMJLVpEUCmD62LYNuFlF2E2NEx3t86qBqOe3FASNPyX/imz/vPfWDmYZdcVF1Mplgh8n+zwIOViAQCvXMa0HZxwmIOFXcwpHybm1mL4mkxdFi8MOn9hvKcJIYQQx0pYdcSsOHESDAdJmjkyouokSTeAfVacjqE84ZhD84tmc/jxPTizZlEu+pRLYR7IDfJD65+YXeliT+gAAy1DWMNlugoWi+euPovP7A9nRGy6n2vjuUv3EOiAVFeU9P40DdEuVHgsgRiN1lAeLPL9v/8AWsOlc23mNAegNd3Br/HjUAlc1pdeju3YFPNj11NGTbhaN1uB09JF3R+/geT3vo8X1JHoj4EBoYEsqlm+h4iZLWrGyPkZDGWRbwmjKgGuF8PPBWAZRLMFoJVADaJVkYfesglt7aZl34vxtYs13Eelto1wMk2hdQjDVwQqwM0UyHTVUWiMYJQD2mjFNwvk02kqyqMYLoEPTtlC2z5lE4xAEViahRuacRY+B0ZNtZPH5tzO0Zv1tnLoCs2moo8rQ1TjoAEjYaN8jY5D3J3cYBdJuv0B7O4urO4urKYI3qCHN5jEbonAiur+urZ2CgdHqO1shDL4QTVjGgBu/YUxBNpub6e0axdUKvipNO2X3ciB1GIsP0cFjR11Cco1jKRSaMMkUzw0em7+iSfxk0ns9nZmHVjDr2a9DdfPUlm9GOs/7ydcKZDrmksyWq2vFS8mcQJ1QRa4/0Mp28aZNQsMA+U4pz1+JjNjMSiVwPcBTWHdeqymyd2luFAsqL+E4HP/yprPvhQrXWSQYbr7D5Pcu5dEZyepgT6yyWFC8RqK2Qw1jc0M7ttDuVBNwj1S+A9yB4dpSWbw3JcBCieYOclwIYQQM0ej28LA0CEsZZNUgxzubGLZyGwSew6jFeD5KNvEbEkAUDDr2Jnp4/KuMH6+jOnkqIworLBBJF/LZm8YSNHk1xHBJR6Jkw+GyHbFaIp3Tetzfb6sxjD+/jxNLQ1svziPnSpzqDlLc1styrEgZFFIpwmZYYqZDP27tgOQ8BqY09gJBJi6gKEBNHH6SBfbGDqQRl+qUUqhTANnxSz0UA4vMDCjtRS3bUdfsprhzurUr7akOmcv4IU4WxJOPZsy61AKnJyH059BF4YgGkfZJlbeIZxroxjeCSqgFAOCAoNtm3DzMVRtPYZpkWttpJA4gF/OoKMuRtEDPyB0oIIRbwezQp91EGrGHtssGRQiHhXLBxTa1NglRSxrVf801flznaCUohwUyfoZYlacgp8nbEaw26NU9mcwEi5+qozbEiMRn9yqyXJL4A/QdMcdmNEYpc3PjG7zRsaK7TmhMLHI2AgaXax+MFQsg1D8mCg9jynDwGqqjqyqDAzg1iaozTxN3qrD0gpyZQwrQV3CIR5W5PdvAcAvlfDTaQCs5iai+b0s3/S3FJ0Gkr7N8J/dRd9Vt1CIJEYfK0x+bKn2meYUI3Erg4OUtm6lvGcPVsv5UwdkOs36wQ9Y8PhjLHj8ceb99jcoY2a9FbqLFxPeO4JR8fHqIqSWtmL4ZdTAAAe2bKJv53bShwcoZtKgNenD/ZRyudHzcyPVKahWyBxdtdn1z68pMUIIIcRk1NkNdIRmUdFlihTZFdvHntBBSBbw1u7Fe/YAlU1jN5Ut2+aJdYdRtolTFyHclEJXbLx0HH0owatS87h98e38sX0jzcVGUi0Fcl1hAgWNifOr/IxZU73R27uuFUxFuSnGLnM3yjJQpoGRiBB2ItQnmsgfHisxs3HrMN51H4Qb/g7aLq0mCYwi7bED2BTQGnau6+PA9kEObB/k4O5hPFNhxeK4rb3ook8uPVbP2C4jN+XFjNfstOJRwdMe5aiF25emvPWXUDHROU1NMkIon6Bp4A2EMnOrNdVMj0J8M8nmJ2na+CRNz6WJpEpobwfEQiilyLXXkOuqpdiRwC5auNsqJzy27wZU3IDeAcXNv5rDwse6mfVsK1YiWT3AOMlCCufwn2xLqJ2cn+FwqY/BUvW9xky4KMsgGClVa/n35anszZympaqZdaV5BkRXrcRMuHiD28ECbzA/bn/33KVUghJ5L0Ol7xlKlkk+GiGSSEzQ4vkndt1qzKYmguFhfKcD1yoToMhp0JZBUGkgUwTTUKjsAQLfxx8YAMBsbMSd04sCWg8/jO1VL+yT3QsYevXb6H/7X6J0hWZvN93ebphBU0uBSd21Kz77LEE2i93RQeTKq85Cp85/xjGjAY0ZODLQjESouf56er67gfD+FLnZ9Qxe20uiUJ3O8fi/f5fNv30Yyxmrb1c5Uhj5WLGOFvAD7KEcNb6sXCqEEOLCo5TiqvrrWBxbjmuEMJXJs407CThmeukxiypce9ubec0HP0654RJ8QiQuqhBq7MewyxQGFmI8sY5IYDHbqM7kSDXlsJIF4rtGcKzQ2X56fxAjahO9ur1aT2pPPXaqzEhnCL+peiNOhcZuyMWiNdXvtUqhMXj8ge+z5qf/AeFGsKrfIer8zayI/jvtziYGnhvhuU0D1Z+NA+wrgh+UMEJhovOWkc+PjLYdwhq9CSjETFXvNFFj1QLVfFbbglWouR346QPowCc64OJmDuIUK5gkCOXm4KZbMSoWSkOhK4zpBZilMr5ZOuljRNI2tcNxYtnxNRRb9tVRMxDB3duGtauROevbmPtsK+Ha6o36oyPdTlen/FzR4naQsOoJCFifXgOAYRiYNWPXRsoxKO+bXNJthg4bmjp2ewdWcyMqpDEjHgQQFD2MUPWlda0ItuFiGy6FQgbX88lXKjjhC6fYp93agtPTQ1BfT/FggajuJ1HeijK7UZ6Dpp7AqWUol+aiRc38/Cv3sPqK1RAE+IODGI4NGkLlIeZkfsPIrD9mKFvBqwSAxsQjFiRRlTI0nF9fRs6G5Pd/QPiyFRhuiMiKS6e7O+I8Ebn6amof/h7DI0XMXJlcd4LWfotkfYxiLktNUzOlQo54YxOZocPYoRD1Hd0kD+6nmM0Sb2yifk4TB0yDSkMUMyUj3YQQQlyYGpxmrm28ifBIhL7cPkqZNFtr97EoWU2cHZt0a5o1u/qPERf6XIK9j2O6WZQJOqe4tW8R7aWLSJcC8uE0nuuDG8bInH9JI6UUVn0IHWiiyRAlt45yqo91n/xTuntW0Hj7n1FyNdm+fmpiDRzq2wOA1j7P/PzHhKJxLnv5P4NfgsNbUfl+wKfLeoaU10ouGCvHU7QtKlYYKzmI095DaX8fiYEoZsUg7itJuokZz1AGcyILKesigQ7orplDIfwMwdA+lOWgTJu63UV0rI9IqgNtdHC4/jcYAbjFKNlEgTmP9tNYGGT3/CLgYhQrOP1ZKvURYiMBkUyUWCiBrQeImNXxWzW6hjgGDXtcep/uAlWdYmpEiugajW5ciGpbcWKHz+Ep4c1uKwm7Dl97DJUHCHSAoQys1iheqgSVAO0F2K2Ty+nISLc/kN3eRnHdOryBA9W6DXUulcHC6H7XPuY/olIdKVIxTcLR+Nnu6hljz5qFPzKCEYtR2t+H449QMhKU/AIVx4JEK/H6FlRQxvMCdH6E0v79hJYtI3TxxTi9HdB5OXRexiK9iVWL6rmoJ45lGSgFoUqSi4obsIwGCE5etHam0pUKQS6HLlfws1mil18+3V0S54n6172ORH+ZUmMEL+Zw+EXz2PfKToLrmvBmhcglh1ly7Q2UVRn7T+ai7lhE+rUJjKUNOJEIxVwWL2ER3zxAfPMAtVw4o3eFEEKIk+mNzCet0xjKJBPKj02PCjRaHzeCo242NMzDcEKYsQrKCBMUsrjzVpF6cANWwsUzvdHD7fyJU7bOB3ZrFExFLBnCd3y05bDjlbPx8lkI2ViYBErT1NI57rxiNkuy/xCVcgnmvQQWvAyMIzfwNETU8LjjC+WAwAuwmlvANCiEyqSacwx3ZHAjkXP6Al6Is+WK+mu5puEmrmu8mY5EL/aLbkCrAygrhFY2Lc9p2jbvomYwR+1QP4s2bMbzvSPjzzSG4aA0xJ7LE908UL2hYBv4cZdUdxg3D872gJF4kryfJe9n6QsOsthaVJ1mrgKUoVGuh9WaJohFUHWzoWUpRx7ivBCzarCVTaB9HCNEppIEwIhax7zvQ+VQfsI2jiUj3f5AdsuRFSv8DHgRStuT+CsK0FlNqrlOdPTYivIJlKJsmYRiseno7hkRXnoR5Z07MWpqcGb10HiZSdFopajK1Jc9tKEgUk9jwiKZLmNXsmS2bsU7dAjv8GHsN/0xPPVktbGG+QDMao4wqznCM9/7MsvrngMDAr++WpR1Jjr+i9wR+bVr8Q4fprxnDzUveclZ7pQ43y24/0c4wxv4Rfo/oeJTXtmJAQSdIZqbOln6ulewNbUBFtShbBMNtL72Sppaq8lv33yOUrNBuSFCLH9h1KkUQgghJlLnNFAI8uQdH9NT4y8gfQ3WcYmf5iXQvAR3zR7S2/ZhREMEhSj+SIQgm0Q3ONipIl7YxlbnZ7mL0Jxa2v/6KvjwIwx2pTkwr4gVjdG/+0k6asKYpYB4uJawOXDS84vZDHa9Cw1zYcXbUU/+X3xsIkYK/PHHDgUGkXwFZTkU6m3sAlTCPjG3Rka6CXEcwzTpuuwKsvvTDP70J4SW3YYOfCBC264kTat+Rv9IQDmbotIDKXLoXwO1rSSX7gfAzJQptsaPXIsqQpUwTtlC6eqKwkeni9Ytbebwf4yANtG+IljVij9nGc0Lz9964zV2LTvzWyDIkfJSJJx66l81j7pXzOHAh35fXR1zkkPYZKTbH8ieNQuruZlgZKyAqpccmwMdiYxdiJqFDKbWEAmTaG49q/08k+yOdtyFCwnSaTIPPoTVuYyG5ENksfA1UKzg+w342qC2xmFBuyL50H/hHT6MUV9PaE7HMY2N1YUKAp/Uvm2jv2siGDMt6XaKu3ba9xn59n2Ud+4E26b+bW89e/0SF4zO2gWE+vNgj9VLtLoSpP4ozM/678d6+SzUMfsGS/0Mdxaxw2EON0K5IQIVn1rnwliRWQghhJiIoQw6Q7PwVcCh2BCFY+se+RPPxlBAqN1GWQ5mvAVlV2/OZxMFKolq6ZTawvlbQsVwTZQNdQfjqAC8RJiRNhsMUHURQm6Y2d2LMU6ygmExmx37JdaKdhPVRRUSh7l8cT8rLx4kmqjWURrywLp+AamYzb6LS1TCPo07LFpLDTNuUSwhJkO5Nk7nLILkZoqbHsAf3Ep5238SJL+KYSq6WsNE/bG7B/lwAX3M5bbtOdVFEJQilLdp2VaDChRxPz6acFMonGgrre+7io6/v4a2uy7F7E1gnawW+7EDSc7x0alRc2yQVN4fq92mLAO7+0iOZ5KT8GZYBmPqmZEI4UsvoXwgjT+8Had3CV7/2DBDNxJjiAF0uQCV6rTTcGsbduj8/WA9nlKK8CWXgILK3n14ofm4kY2MaMhriIYsVClBstxAVPfT0RpjMDWC0zWLUFszVuSYMHTGpuP+5l+/hvKKZPMRXDdKMYgQdiVkjxq57zvkn3oKs70du7WV0KJF090lcR6yDZvFv+insGcXGhj829eDoegIdaOUQV9xHwm7HkOZhIwwa9OPcaBtmIH2LCpf/TBVShGNNE7vExFCCCHOgia3lWwpSSZIM9RQoHOgmhDSfjDxYnyBJtQWonjgINqPgeGiHM1I0wDOUJ5Q2qe544qz9hzOhNrXzqX54YP0741TqPE48LpLqBw+jFEbIdnXj6NsGupbODx0cPScmsZm8skR6J5V3WA6qNpeyB5E5Qaw9z4IaLq63sQBM0wxV2bgYIZkMIxZhnDKJn6ohGoMndMrIQoxXVTIwmyqJ7biCjJPPwJ+mSAc5kAmiTXSTHO9w8Uxhx2FCoeVIttQwD48Vqc5kg+xojLEwbCFP9KCEVST244xtqDA7Mh8lGFg1VcHz5iJKB2JKOe7uFVDo9NCJSiT98dPI3V641T2Z6E8ubYkgzEFrOZmvMEkKhJHuT5Baaw+gyoERImDEyfrV++GWfUX3ogQu7OD0tatuAsXUDyQpsYcJF/egmF0UvFjGIGLbzdQyfdRKfqEk0l0MoluqofKMUFsj/2BZkdG6GmoIRbxgTRa2zN36PhJppeW9+7F6emhcvAg4aVLUOYMW9lVTJme+AIKXp4gk+HK7BWjCdz1qSdxzTD1TiPLEpezJfMsURWjoAtYysYL8iTW9WOPFLD/m9R0E0IIceGrteswLZs61cRgXZ4tsd3kVB4GH2d18y20hjpOOEcHGitqEmo2KRzUKGVABSoRiKYDfFPR3rP87D+ZKRS9uI3W5Cq2535BQAW7DHvCG5gduQRlGgwOHSIWrePw0MHqIk2Dh0kPDpAdGT6uoUYY2QWmA74Ppk1i8FcU9AIG7NkM7k8zpIeJj8RAaaLJHDTa1dE4QohxVMhBpwuEZi+h2H+AwsA6gqTHjsYIPTrA8wMino8KNNFcmYHoYcKDY0m3UCHCglyZeSmX5I7Z0Gijgdp0hFSNhUZTGc5Q3rdnUv3RxQpEHFTYHjeT5lwUNqMMlvsByHrpcfuc1ji54MCka9TJu9MUcLp7KO3chsLAT5UI8h7+kcRbUBorRpCxNHnXJnS0DtwFJDRvHsVt2wgKRcq7d1Nb45E2e6hohVEuUcmnsY06bAuyh7N4jQn8hhbs9hbY87uxho6MdBvpO0gpn0P5Y8P2NQ7qZMNUL2SnGHbr9ffhj4zgJ5M0v+99Z7FT4kJjRCMUt28D06S0axcA2UcfY9Zjw1zxqwIL09Xp8AvjF/Gmnj8nbEQwMNBoim1xtGuhIhfOisxCCCHERJqcVgbL/ZSDIv3GABmVIWlnyHhp9qZ24A1mKK/fR+npPQS5I99jjywEFpnXC2YIrTUBAcVQgVLEoBIyqGnqPMWjnh+il7fSvrOJZHsJrzbOgR1Pk33qUWJWlI6WXpoa2rEch2te/2YitbVE6+rZt/FZ+nftGGuk/TIoZ6s3nG0X/DJmcZBmcxtBboj+8gGyQYpCNE+qKUftUBkwZu6NeSFOxTIgZBNZcSW1/+M9VObPw1u0gKF4HNNUuI5Fk6cZDNu4jfX4kQBtj/0tWWhU4OHQh86aVAbLeINlTMPEVwGB0kT8ELriT+oH00C5FkZd9JxPukWMKBEjRp194mwepz1aTbgdX8dzAjLSbQqEl11EMDJC5dBmnNBqygcyVA7mMHsT6GOSbrFMCtB0rLxm+jp7hoSWLkVns5Q2bSLf3EzjOz5Py8bD7No9zBIV4Pqg/QSRkInGIz2YAlJACX7/1bGGzGoR2d1r17D32XUsvKYVODIVV7vVNw6Bl8mQf/wJ/GSS0LJlGM75WXxXnBvCy5YRDI9QHB5h5DvfIfGyl3HgzjsJUqnqAR/4APVveuPo8ZfWXsVvh38JEQsvarP080+hXi9fdoUQQlz4YlYNrhliuDKIgUHgBKDBN3x25Dcxd3uEiF/97urXRVE9DaMzFgzboPWvlrPjmqvJdtWQuv1l+NEIXUPhUz3kecOI2DTaEXxbk2mp4FfytP/9l+h59ycA6F10MeacRmoamsgnkwBs/K9fcfi5Xdz+8c9VG3Fr4IaPgGGC71HY9G2c/s2owgEidjM76wNGGqpTVLs2NJHo76ued47XhxJiOihVXfCAXImIE6Fr5bUk9+/FeW4z6zcPceM1ncS96tT4YaOEOzfNc0/+BodLqucXHQhKeKE42jvyN2YqriwvZ9XwCgACApT9/K7R1XlwTR+2ohSCHPkgi6nG99dsCKFCFiQnN9RNkm5TwJk7F6u9nSC7F11JoVSCyr4Mod7EMSPdfI6OPzTj8Wnr65li1dcTve5aCmufIf/YY+hA40YcQJEKFHXKxzFq2ZOZT2xw7+h5RnRs+Co3fAgueRMAB7ZsAjSJ2hiBNoEwGnfmjXQ76rjppaUNG/CTSayWFmJXr5qmTokLRfiii6h56UvJPPQQhSfX4A0PExwtbGwYDP7f/0vdG99Q/eAGZkXm0uA08+QX/xqvIUpj+MJZGEYIIYQ4FaUUNzXdSt7L8MvB/wAg7LmEPZdkKMsj7Ru4cd9lAPg7BvCfG4JC5cjJYNcl6P7a19jT4+MXf0c47dPZdvF0PZ0pV7Ogi96n97LvoiT5zhhbXt5O4uEHqL3hVYTtCI4ZIRQbfy3ke2OleVAKji64YFr8tt5md6wOANfbS9lU4EMo5xBNhzGO3neWkW5CnJSyTXShAhWf+re+heKGdXT8TLFjyzoO/2gnNVELq6MePwzEbbp7ajiSysb0DIrlOg7GriDqBaiwidUQJnzZnOl8SmeFoQwiZoycnyHnZcfvMwwa37KYiFWGe07fliTdpoAZiaDzefzMTuyeEUK9HeTXDpBb04c3UgTbAL9/7PhY7BStnb+c3tkEuTz+8DDFHTuoaZtFXbyEl8pSsuNUgoBY3RLSB+7Hao1jxFwOZftpW3h59QO2eRG41Q/h9OAALbPnEYvaGMpH6zxFM4JjnvtZ8Sk1wV274sZNuAsXYsZjOHPnnuVOiQuNEYngzJmNtX49QaFA7rHHCC1ZQmX/flCKoFhkx+rrAWj92w8Tv+EG3KyHO5TFHcpieFLPTQghxMzRGuogVRmhyWlBYdCdbuCgM0BD2aQ/lOTfZ/+GiulzZXY5PYcbxk488r0ueuUVJIcepHbAxPJtGutmTc8TOQNCizpo+W6Ewz1psg0+fbcs4Fd7U7y6XCRWU8uli5eQVyVuuPq1tDV3A7B/5LmTtvXboV9SVOBqhQZigSZfiRM57NF0sJE569sx3GrWTUnSTYiTUrZZHfqjAT+g46Ll7N6wjoM7ttE3lCPjN9DUX4vZNELOCIgtaSRy2CSsbSIVH7/sUDAaieQPVtuYZB2zC0Gr20HWT1dLAugA45gRb+6sBKV0+hRnj5Gk2xSJXHkl3sAARqgGjSbIVwhyZfAANOixBQKM6Pm/msfJOD3dFJ58Equtjeyvf03Tu95FRcUoe0O0h2oJimUGf/w9so/vwwk8dNGj/ZYYu3yXusEnqAvXArBv43rcSJTmaImiZ1DWzZjaJuQHYMoHamnnTorbtqFLJcqDg7JqqZgSTs8sVDiM29pKcctWiuvXA6BiMXQQ4B0+DFoz9LV7yT3+BHX/7bXM3x8lKBZwLp49zb0XQgghzq6EXcer298MQGn/boaMYcpmGc/2SFseKlAky0P0eHVjJx3zNbbg53GbWin4OZrcC6fes90cpcWbx6GUR7b+EGiNF7LYfN8/0pgJ0f7hfyA0u5HuzvlEw9Wb7cnMMFrr0RH1R+W8LIEKUFrRUvJQWhNRGSJ9NfQ+UiZgL1bTkVkzMr1UiJNStVFUAAQBwWAWszVBpLaeXHIEgGJ2hFC5g6SZwq74ZCM2+SafPD4t21vI7uyk7uDgaLLNiMycFFJZl+gvVaezl4MSIfOFlQKYYcOGzhzlOBSefRZdzuEdyBGkjibcjtAeZm0tynEu2KRb3Z/8CaXduyk8+yyFp54GwI2FydktBBqyOzZSeOp32IUSuuQT5Mu0zG9g9tw2zNlXQShBKZ9jz7PP0LdzO3E1QmPCxlF9eP4yANRMG+l21DHTS/Nr11J4+mnKu3fjLl6MO1sSHuIPF166hPL27eQ3biT105+ObtfZLJRKozFYWLOG1P33UznUR/6JJyiufxYlNQWFEELMYEbUYeFgF4Ph5GhiTStNyskdd2B1Z8WvkPKGGSr3YykL27hwPkeVoYgsb2Lpr3q49KG5YBl4EYsdNzaT2bgGfygNmRLRhobq6JEgwLYdfv7ZT5Pad5DU9ucY2LWTkl8k56cZLPdTi8stB1O85FCalx4cYu7T9RjRWRjRbsyoW31gGekmxEmZjTH0SA6dLeLtGUSXPeL1R0bgKgX4RMqtpEOaZMQgXRsaPdcumuiCjZEsY8RtlGNihGZO0s01xl6LUlB8we3M0AzG1AtfeglKKSr7nxmXILG7YnR89Bq8A9/DTybR5TJGTc30dfQMUpZFdOVKdCZD7ve/pzI4SO+yVhzHpAzkf/dzgnQSlKa0+qX0/Y+/oe9wAa01Nc0tBF6Z/Zs38sS/f5dSLsu8OY1YlPCCGJojtR9m2nLgJ/n+UFizpjrtz7ZxenvPfp/EBcnu6SHxmldDoYC/f//YDtMcXXXtqCCTobx799ghidqz1EshhBDi3GPNa6Fl5eW42ql+d9OAgr3xfnzGPkOP1iYe8QYZLA/gaY/2UPf0dPoMcrqq39ubn6tjzlPt+PEQycs72fk/Lqe8cx/eM3shX0YphWEYtDR0clnnlbgbhnB3pHnm3x8g7SUZLA/ga5+a2CxY9qaxBwiqF8JBKYOZaK9uk6SbECelasNYC1rB1+iRPMFgljmXXclf3PdD3vvtH/LmT3yRq2++mFmVefiGQf6YRRHskg0oCCDIVNBlHxWaOTXWQ8bYyLZiUHjB7cywDMaZ4/b2HkmA9INxJAvqGMRWdaCUIkhXh2+qcPiCXmkyfPEy3MWLMeJxShs34rgW3UvbMVWewq4tGLEaor0R8i95K3bnUgplk3IloOIFbPnNz3jwa18m0dJGc3cXlm3iuQ14uo7RUJXppeSffRa7p4fIJctp+f/eO93dERcIpRS1r341Vnv76LaaV72Sxve8m+hNN6IikXHHlw8eHP23mZCabkIIIWYu5Vi4bpiruJIb09fQWWolXo6glCLl5lDttViL27HmVaeRJivDxM0E9XYjCbvuNK2ff5yuONHr2rFsl7a9DdQMhzCLPv03z6eU6oOyP3psKagm31ynenGrtaa3cS7rHvvV6DE1bgPUz4EFtxI0Xo5WYfzcQYLUJoyaI0lLmV4qxEkpw4CIDY4JjklQqmCYJoZhogyD2pZmLNukTrURIgJaYwaalhGD+DF/q0fNpJFuCbuOBruJmBmn4OVfcDsz5xU7w+zOLkrbtgHgzn0J7qKlEGjsxuoHiJ9MARf+xakzqxcjFMKdP5/i9u3EVq8mnjnA4R98Hbu1DVC4C1toCLZQIcKOPpeaaJkg0KjiMImmZlKH+1l2zbWEzM1QGsLjmIUnZtpItyP0kUn0uUcewW5oAMvGbm6WaX1iSkVWrCB2zTWUn9uDEY5Qe+utRK+6iqF7v463/wBBsYg/PIzd3k6QyRC54nJ0EGA11E9314UQQohpt7D3KgDyfYod6c2Eyy7DtXnaL+4ad1zGS5HxU+BDzIqfrKnzmhGySPxRD4V1g9RX6mk/WM++5uoAhKd7D7DaWA6mgXItvEwJ09eYpoXv+/h+hZDpsqewFkZs4g1NtLqdYIWg6yoqlRRe5keoShk/nUQnGiDsnHR2iBCiynCdsWT30dWUjzOvey5DI/s5kNsFaCrhCvFAc3zazXBnzkg3U1kMVQ4DkA+ypzl6YpJ0myJ2cxNWeztGNIou/I6mt79+dJ/WGrujHSORwGpsnMZennmhJYspbt6MWVND+qf/ScNb3kJh/Xr84SG8/j7Cyy6l8a8+Q34gz9DOYfzaAjWxJ8nkfSy/SPpwjlA0xsVXXwk7RqiUymi/Zmyk/gwbOq6O+wZR2LiRIF+gsn879W964zT1SlzI2j5y9wnbGt72Vhre9lbSv/wlB/7XuymlUpg1cfJPPAmA+rN3nu1uCiGEEOesxtpO1pSeIB5EybonjhTxtU+D3UwpKBIxYydp4fxnuBZm2EYHmkX75/Nc8y4Mz6dgFjkUHqKt2IjOV1AJFzM5toiCaZokmlrwF1RrYJeLBQ7/dgMb9/yIfDpJi9dNs2Fix9vQ2R3YgYFCnbAIgxDiGM5YokxXxr8n6WIFfyRHtD9Li1PD/pBCoUFBvKGP5EDTuOOVO3NSSFEzRtxM4BgulaD8gtuZOa/YGaYcB2VblLdvRxcKBJUKhl1dTUcXixSeWQeAVX9hjwixOzqI/9ENpH/8E7yREUrbt5P8zr9R2roVTJOm2/4XOlPEtqt/+DUtC/HtHTQkUrgWFFPPMf+SpZA/DPlB7MCjHMzHZOYl3I7nJ5OUtmyhuGEDAKElS6a5R2KmsVvGVlfzhoZH/23ELszFYYQQQogXotFupqLLDKkSIffEpNpQ+TBDlQEAouaFN9LtqIa3L6Xv7x8H4PK9s/jNn/WRCzQ7RvbRdACstlasubXs/eHv6OmcP3pexspDoMFQlHcO8eDXfzm6L14XxklchlIGfrE6AkXF3LP7xIQ4zyj7mKRbcfxIt2Aoi7e+Ws95IS0sNl8Cvo8R2ozX2gSbx7dlzKCablErNjoqubHywleZPq/n6v3mN7/hFa94Be3t7SileOCBB8bt11rzoQ99iLa2NsLhMDfeeCPbt28/Y/2JXbcas76eyv79lHfuHN3up1Kj/77Qp5cqpYhcfkV1sYhymcKzG/D6+wGwauoxTBN/II11JNuuDINydDZaa2JRmzvevJirZw3D9v+EICBLOybt+BqIh07xyBc4DcPf+hbpn/4nKpEget114xIgQpwNdk8P7oIFKNvGTyZHt1+oKzILIYQQL4RtOvSE5+Aol4OlfVSC8Re5eb86TUmhCJuRkzVxQbDiDrGr21GOQUz3EDlYwCh5HCxtpf8bn8RZ3k2ssZHmP7qcZ5LPsmXfegAybh4MRTBSwNs5PK7NllAX+GWCYhLDPbJIxQy/MS/E6WjLQNVFwFDowvgRW8eOfDNQVC+8DQwzhNXoYDWPvUepiIXZFGamOHYkcs7LvOB2zuukWy6X4+KLL+aLX/ziSfd/4hOf4HOf+xxf/vKXefzxx4lGo9x8880Uiy98uddTcefOwZndiztvHoVnN4xuPzbpZiQuzJVLj+UumE9owQLcxYvIr1+HCoUIL19O5MpVELLQ2RLxujB1rXGitSFGvA4OFOoZKYXpL8TxahdBrA0aF5ALuoEQpgJlndfh+sIcM1S+tGMn7pLFmDU1uAsXTmOnxExlJRLYHR24S5YQ5MeKiZqSdBNCCCHGqXUaqHcaqbFqGSz3j27XWlP2SzQ7bcyJLsJQF/b3W3d+LUaNg7I8lB0hCNuUGyL4uSwq7mIYJnWzu7HiYUqNin+b+xC/b1uP6Rs0mU2snH0DAKZt0z5/IZFQHGWFwHJw2o4soiBJNyFOyTCMao1wraFQofzs/tF9x083BVCJMEHdZVhLVxFe0kBocT1mYxi7OYLddOHeKDheyAjT7nbT7LSd8F7968M/5aHDP5lUO+f19NJbbrmFW2655aT7tNbcc889fOADH+DWW28F4Bvf+AYtLS088MAD3HbbbVPeH2fOHPxkCrO2lsq+vaPb/XSG8GUrwPOx2zum/HHPNaEFC6gMDmLV1VF5bi9OVxdBoYByXUBVV3jKF/E9H9MyKIdmEe5eTF3PkdWbnvstjHh4sW7yIx3YuoypFNGWC3uU4KlorQmyWQzbgUiE5r+4c7q7JGYoIxJG91cwa2qwenvBslCSdBNCCCHGqbFq2Rfsxg98nhp5hAa3iVq7gTa3g6gVw9PejKj9H5pfj2E/B3Gbpj0hQtu3ku+I8/vP3sjGPV/HjsSYF1vMZS9/Fb/f9hM8DgFgBgb5cJmafJhZiy4mX8wy78qrcR+LoD2glEOFqqV8pJ6bEKdnhBwCXQBApwtjO7RG1UbQ+RJYJuTL6FQBFXEwXJPEzbPI/HY/aHBnJzCj9jQ9g7NPKUXGT5HxUrjG+Fl3ewu7GMmPTKqd8zrpdiq7d++mr6+PG2+8cXRbIpHgyiuv5NFHH50w6VYqlSiVSqO/p9PpST9mePFiyrt3YyQSmHW1o9v9kWEKa54CIHbDDc/zmZx/jHAYIxSq1nFzbKh4BLkcda97PRQraFPh7xliyao5PPmzbaQH82SG8rQcTbr1XAs915Luy+BlnyNiVVfuPHYu+kxh1tXh5/Moy8QfHqK0cxeRyy6TLxdi2tgdnaR/XL2r4/X1AWDGLswi0EIIIcQL1eS0jNZty5bSHCg9R8KqZyh8mKyXJutn6I3Mm+ZennlKKcwah8rhPMv7rmZjbJihrurF64AxBMVhUuURDhaeoxQpYBZNKspjUbILA4OOaCePDAzRsHgel770Vg49/mt0xUNXclgtR2ply0g3IU7LXtZFqS8FSqE9H+0HKNNAZ0vo5JEZLOWxUW/KHBvZFb+2k/i1nWe7y+eEqBmj5BdxlEMpKOEaLl7g4RohHGNy9SQv2PHMfUcuBluOq3vV0tIyuu9kPvrRj5JIJEZ/urq6Jjz2eEYkQmTFCoLhYbK/fhg/lwNmVk23o7r/+Z/o/vq9BCNJgmy1bkVoxXKMjlrwNTpVIMiWcELVvG+pUMH3g9Hzg0BTLlTGB6h5wYbrhOy2VoKREfz+AYobN6GLRZye7unulpjBrObjVzByUdYFe/9GCCGEeEHqnSYa7fHXISlvmI2Zp8n4aTSwKH7x9HTuLKt97TzMGpfKgSy9uy9n1tefpnbtAWp3ZQgZIbJBmm25TTzn7aZkVlg2OAc3cLCD6veLpQuvJFZXD6UAXXFQdgRdKWC391QfQJJuQpyWMhRmb1N1kZJ8heBIou34hRVGzcBr75Npcdsp6xIZP81IeRCo1uVMeSOUg9Jpzq6SV/I4d911F6lUavRn3759z+v88KWXjhYaL23ZAkAwA5NuVmMj7uzZxG65BWfhQqLXX4/b24vZmoCwDYbCW7+P1t46YnVhTNtgYG9y9PzB/Sn2bOrHPraOmznzPlDdhYuq9dscZ3Sb/TwSwUJMNXf+fMKXXDJab9CQUW5CCCHECQxlcFX99cyNLKQz1EOrM1ZiJmrWcFXdakLmzChIbsVd3Nk1WM0RbD/OktxsGjaPUP/gFtqtDhxVLUEDEFVRGpxmwmsLxNZXKBSyzJ61lJbeeQT5seSAEbFwmlqrv8gMECEmRcVCELJAgb97EK01OleCiFNdaOFYknQDoM5upNFpwTVCHC5XB2/ljiyGM1kX7PCE1tbqm3B/fz9tbW2j2/v7+1m+fPmE57mui+u+8GWnnZ5ujFiM0KJFFLdsIbJiBTrQhI9MCTTr615w2+cbIxql6zOfZujerwPV4eVGYwwVcdCALvvEIzYpAnpMH739EOVMDmdZF0OHMsTrIpiZHBwZAKdm4B++0zsLIxrFamhAA6HeXpw5c6a7W2IGc3t7q/UZlQKtMSIz44JBCCGEeL46wt10hKszFPbld/P74QdRGLSGOrg4cfk09+7scjprCLIeVr1L5eC19P7+i9XvEf/0JOqOlWQrabJeGtcM0b70Yn78Hz9hRddVhMPVm3v1rQ1UBscGMihLoawjtaVkpJsQk2IkwtX6bZkSQb5EZcshjLoo2vPhuFJOagYOeDmZJrcVN+viOi3sze9kafxSin6eVreDQrlw+ga4gEe69fb20trayoMPPji6LZ1O8/jjj7Ny5coz9rihRYsobd9O5dAhUg/8EK01lX37KKxZQ/7JJzHj8TP22Oeqhre9lYa3vRUAZRioRBgqPiiwU3lqSyWcIMD1A7yhHId2DQGaSsnDOvZDdAYm3UKLFlHYupUgnydIpcg/9RRO58ycTy/ODVZjI05XJ5gmKhLBnTd/urskhBBCnPO6Ir3c1vmnvK7zv7O68ebp7s5ZF7uqDT9XxhspYda3YzSvxKi/BHOggasOXEbrjjrihyPMVQuIWDEqhSLDqQGGkv2k8kkaGlrJPfYUujxIUBjACOnRtpUk3YSYFCPmYs1thnwJ/ACdLhIczqBH8hj1UXDMahLbNsGdOQsmnEq904ihTLJeGk97ZL0UGS9NX+kAfaWDk2rjvB7pls1m2bFjx+jvu3fv5plnnqG+vp7u7m7uvPNO/s//+T/MmzeP3t5ePvjBD9Le3s4rX/nKM9Ynd8ECwpdeSu7hh/GSSUrbts3Imm6nYtRGCHYNgh8QPDdIwhur5eYXK/Rv7ifvQU1DhLraCEHfkcUsZmDSze7pAfToFGV79mycWbOmtU9CtN59N21/93fT3Q0hhBBCnEfiq7sY/tfN1RvvLdcBEFTyJL+zg07idBIDq4/Sfz/A6z/8UUprtqDSBhiKIFOkuH4byrkMBYRXHDPzQ828awQhXigVcUEDRQ+tj9kedsYWUgh8zOaZN1hoIk1uK/uKu8l7OQbLA5SC4vM6/7xOuq1Zs4YXvehFo7+/973vBeAtb3kLX//613n/+99PLpfjHe94B8lkkmuuuYaf/exnhEKhiZr8gymlqL/9TRTXrcMfGWH4G9/AP2YFVEm6gZGIoKJudVniIwm3QFX/aQOd+Ix019Mxu57gkSNJ1bCNijgTN3qBMgyD8Lz5FNauBcDpaJeVS8W0U4Z8uRVCCCHE8+N0xbEaw3iDY1OyDHusjpT2PRRN7H/PJylv/zlGopZZn/4mQz/6PZXv/RRvcAB34WUA2I0JKGTBNiBknvBYQoiTM0wDXAtKXnX22REqfNzINue8ThVNqRa3g7iVIOOl6CsdpBQUUBhH6lGe3nn9Sl5//fXoY9Ozx1FK8ZGPfISPfOQjZ7FXEFmxAmfePHQ+T3nPHoxELaFly1Cug4pETt/ABc4I2aiogzYUZIqoRBgjFiI7kCVSqRBVEO0fRg0fU7fBMGZssqn2jW8gtGwZBD61r371dHdHCCGEEEKI581KuIQW1JHNlKAcgAYd+Git8QY2YSXa0crEqOvGbGjArG+h71trMOKzMBp6cerKaH8IsyaG6RhQACqBrKIuxPNkdtUTjOTQI/nq4JZYCBWyMec0ga/BVDP22vtkGpwmYmYc1wiRrAxhKRtNQFlPbvVSeYc6A4xQCMO28G0LDIPSpk14fX2YjY0SvEeosFNdo8gP0F6AFbFpe9F88g9uAl9X9wUaYi7KNjEaotPb4WlU+/KXw8tfPt3dEEIIIYQQ4g8SW9lOfu0A2gbtB+hSCgJNZc/PMZe+EWU5GPVzsfyXoiwXs6a66qsOAjBslGogyIERNlFGpHq94MolrRDPh5EI4/clq+WbAg0VD+VY2PNbp7tr56SoFUOhcI0wBiYpb+R5nS9zhM4Qu6OT4sZN+MkUfjIJyNTSY9mL23FXzMJor8VsS2DNbUGZBtEXL60m2DTVN4B8GT2SR8nwViGEEEIIIc5rVmOY9g+tJHZtJ/HruwkGv0/u53cR9G/HCJsY4XrMUC1O17WoWDdBfrA67dRQqGNqt6lKBT2SR6cKGCEp+C7E82E214Cnq9NLSx5Ga60MDjqN1Y0v4UBxDweLe0lXks/rXEm6nSHhS5aD71Pevh1drBbak6TbiZRloKzxYWjUR6EhVk26Hbl7ZXbUTVMPhRBCCCGEEFPJCJkYIROnp2dsY/ERQvN3o9zqlC0r3ooRaUSZJjCWEAivaIaKV/1FISPdhHgB3Kvn4r5kKe6Ll2B1ybX26cStBAtiF1HWJSq6/LzOlXeoMyS6ahWx666jsGUL/qFDOHPnEll51XR365xj9TadsM2e24KZL1PZ1ge5EkZdFGVJgVQhhBBCCCEuBPFrOwGw295K+NJLserrcXt7cXp6GPzWJsrPZQjSZTA8lOmhK9WF8JSlsOpCaF2u1qIK2TJCR4gXYHQmmSl/P5OhlGJx/GIOl/oYqQyi0Vhqcuk0SbqdIXZLC3Z3N+X9+wmiUQh8LBnpNmlGxMFd3j3d3RBCCCGEEEKcIaG5cwnNnTtuW/zqDpLp3dWkW2BhtiQwjABdqFT3X99J+cHN1RkxpkzcEkKcHc1uG+2hLjJeElDU2JMbISjvUmdQ4paX4PX3A1A5eAh3/vxp7pEQQgghhBBCnLvs9hiVvizYBipk4nbFqX1RK4mVDdRe3YjOlasJNwBbxpAIIc6e3uh8Aq1RKDz8SZ0j71JnUOjii5n/+GMMfuGLAESuvHKaeySEEEIIIYQQ5y7DMTFjLv5QEV0BI2KjXBuyJbRlECRz1VpuGpQjJWiEEGdPm9vJ23vuRClFKpUC3nnacyTpdgYdrS9gxGLjfhdCCCGEEEIIcXKNb16MitpQ8sEyUOUyfsiGYgV//whowFAQlpVLhRBnz7E5ncnmdyTpdhY0vO2t090FIYQQQgghhDgv2C3R6j+qYxfQZRMjESZAQ7a6uimBxpDF1oQQ5zip6SaEEEIIIYQQ4pylHAsVc6sLJyjAVKjaCMTc6e6aEEKckiTdhBBCCCGEEEKc0+z5rZj1MfA1+BqdzGOEnenulhBCnJJMLxVCCCGEEEIIcc6zFrRCxCYYzKISYVRNeLq7JIQQpyRJNyGEEEIIIYQQ5zxlm9izm/GOFDBXhixUJ4Q4t0nSTQghhBBCCCHEecPqbZruLgghxKRITTchhBBCCCGEEEIIIaaYJN2EEEIIIYQQQgghhJhiknQTQgghhBBCCCGEEGKKSdJNCCGEEEIIIYQQQogpJkk3IYQQQgghhBBCCCGmmCTdhBBCCCGEEEIIIYSYYpJ0E0IIIYQQQgghhBBiiknSTQghhBBCCCGEEEKIKSZJNyGEEEIIIYQQQgghppgk3YQQQgghhBBCCCGEmGKSdBNCCCGEEEIIIYQQYopZ092Bc53WGoB0Oj3NPRFCCCGEEEIIIYQQ0+1ojuhozmgiknQ7jaGhIQC6urqmuSdCCCGEEEIIIYQQ4lyRyWRIJBIT7pek22nU19cDsHfv3lO+kEL8odLpNF1dXezbt4+amprp7o64gEmsibNFYk2cLRJr4myRWBNni8SaOFsk1l4YrTWZTIb29vZTHidJt9MwjGrZu0QiIQEozoqamhqJNXFWSKyJs0ViTZwtEmvibJFYE2eLxJo4WyTWnr/JDMyShRSEEEIIIYQQQgghhJhiknQTQgghhBBCCCGEEGKKSdLtNFzX5cMf/jCu6053V8QFTmJNnC0Sa+JskVgTZ4vEmjhbJNbE2SKxJs4WibUzS+nTrW8qhBBCCCGEEEIIIYR4XmSkmxBCCCGEEEIIIYQQU0ySbkIIIYQQQgghhBBCTDFJugkhhBBCCCGEEEIIMcUk6SaEEEIIIYQQQgghxBSTpJsQQgghhBBCCCGEEFPsnEm6ffSjH+Xyyy8nHo/T3NzMK1/5SrZu3TrumGKxyB133EFDQwOxWIzXvOY19Pf3j+5ft24dr3/96+nq6iIcDrNo0SI++9nPjmvj/vvv56abbqKpqYmamhpWrlzJz3/+89P2T2vNhz70Idra2giHw9x4441s37593DFPP/00N910E7W1tTQ0NPCOd7yDbDZ72rbXr1/PtddeSygUoquri0984hPj9m/cuJHXvOY1zJo1C6UU99xzz2nbFBOTWJs41u6//34uu+wyamtriUajLF++nG9+85unbVecnMTaxLH29a9/HaXUuJ9QKHTadsXJSaxNHGvXX3/9CbGmlOJlL3vZadsWJ5JYmzjWKpUKH/nIR5gzZw6hUIiLL76Yn/3sZ6dtV5zcTI21YrHIW9/6Vi666CIsy+KVr3zlCcccOnSIN7zhDcyfPx/DMLjzzjtP218xMYm1iWPtd7/7HVdffTUNDQ2Ew2EWLlzIZz7zmdP2WZycxNrEsfbwww+f9PtaX1/faft9ztPniJtvvlnfe++9esOGDfqZZ57RL33pS3V3d7fOZrOjx7zzne/UXV1d+sEHH9Rr1qzRV111lV61atXo/q9+9av63e9+t3744Yf1zp079Te/+U0dDof15z//+dFj3vOe9+iPf/zj+oknntDbtm3Td911l7ZtWz/99NOn7N/HPvYxnUgk9AMPPKDXrVun//iP/1j39vbqQqGgtdb6wIEDuq6uTr/zne/UW7Zs0U888YRetWqVfs1rXnPKdlOplG5padFvfOMb9YYNG/R9992nw+Gw/spXvjJ6zBNPPKHf97736fvuu0+3trbqz3zmM8/npRXHkVibONZ+/etf6/vvv19v2rRJ79ixQ99zzz3aNE39s5/97Hm9xqJKYm3iWLv33nt1TU2NPnTo0OhPX1/f83p9xRiJtYljbWhoaFycbdiwQZumqe+9997n8xKLIyTWJo6197///bq9vV3/5Cc/0Tt37tRf+tKXdCgUOm2fxcnN1FjLZrP6ne98p/6nf/onffPNN+tbb731hGN2796t3/3ud+t/+Zd/0cuXL9fvec97JvGKiolIrE0ca08//bT+9re/rTds2KB3796tv/nNb+pIJDLuvU9MnsTaxLH261//WgN669at4763+b4/mZf2nHbOJN2ONzAwoAH9X//1X1prrZPJpLZtW3/ve98bPWbz5s0a0I8++uiE7bzrXe/SL3rRi075WIsXL9Z33333hPuDINCtra36k5/85Oi2ZDKpXdfV9913n9Za66985Su6ubl5XFCsX79eA3r79u0Ttv2lL31J19XV6VKpNLrtL//yL/WCBQtOenxPT48k3aaYxNrJY+2oSy65RH/gAx845TFiciTWxmLt3nvv1YlE4pTPQbxwEmsTv6995jOf0fF4fNwXXPHCSayNxVpbW5v+whe+MO68V7/61fqNb3zjKZ+XmJyZEmvHestb3nLSi9NjrV69WpJuU0xi7dRe9apX6Te96U2TOlacmsTamKNJt5GRkUm1cz45Z6aXHi+VSgFQX18PwFNPPUWlUuHGG28cPWbhwoV0d3fz6KOPnrKdo22cTBAEZDKZUx6ze/du+vr6xj12IpHgyiuvHH3sUqmE4zgYxthLGg6Hgeqw3Ik8+uijXHfddTiOM7rt5ptvZuvWrYyMjEx4npg6EmsnjzWtNQ8++CBbt27luuuum7BdMXkSa+NjLZvN0tPTQ1dXF7feeisbN26csE3x/EisTfwZ+tWvfpXbbruNaDQ6Ybti8iTWxmKtVCqdME0+HA6fsl0xeTMl1sT0k1ib2Nq1a3nkkUdYvXr1lLY7U0msnWj58uW0tbVx00038fvf/35K2pxu52TSLQgC7rzzTq6++mqWLl0KQF9fH47jUFtbO+7YlpaWCef5PvLII/zbv/0b73jHOyZ8rE996lNks1n+5E/+ZMJjjrbf0tIy4WPfcMMN9PX18clPfpJyuczIyAh/9Vd/BVTrLpyq7ZO1e+zjijNHYu3EWEulUsRiMRzH4WUvexmf//znuemmmyZsV0yOxNr4WFuwYAFf+9rX+OEPf8i//uu/EgQBq1atYv/+/RO2KyZHYm3iz9AnnniCDRs28Kd/+qcTtikmT2JtfKzdfPPNfPrTn2b79u0EQcAvf/lL7r///lO2KyZnJsWamF4SayfX2dmJ67pcdtll3HHHHfI5OgUk1sZra2vjy1/+Mj/4wQ/4wQ9+QFdXF9dffz1PP/30H9TuueCcTLrdcccdbNiwge985zsvuI0NGzZw66238uEPf5gXv/jFJz3m29/+NnfffTff/e53aW5uBuBb3/oWsVhs9Oe3v/3tpB5vyZIl/Mu//Av/+I//SCQSobW1ld7eXlpaWkYzwUuWLBlt95ZbbnnBz01MHYm1E8XjcZ555hmefPJJ/v7v/573vve9PPzww8+rDXEiibXxVq5cyZvf/GaWL1/O6tWruf/++2lqauIrX/nKpNsQJyexNrGvfvWrXHTRRVxxxRUv6HwxnsTaeJ/97GeZN28eCxcuxHEc/uf//J+87W1vGzciQLwwEmvibJFYO7nf/va3rFmzhi9/+cvcc8893Hfffc+7DTGexNp4CxYs4M/+7M9YsWIFq1at4mtf+xqrVq26MBbumO75rce74447dGdnp961a9e47Q8++OBJ5/h2d3frT3/60+O2bdy4UTc3N+u//uu/nvBxjhbA/fGPfzxuezqd1tu3bx/9yefzeufOnRrQa9euHXfsddddp9/97nef0HZfX5/OZDI6m81qwzD0d7/7Xa211nv27Bltd//+/VprrW+//fYT5jQ/9NBDGtDDw8MntC013aaOxNqpY+2ot7/97frFL37xhPvF6UmsTS7WXvva1+rbbrttwv3i9CTWJo61bDara2pq9D333DPh8xKTJ7E2cawVCgW9f/9+HQSBfv/7368XL1484fMTpzfTYu1YUtPt7JJYu3XCPh/r7/7u7/T8+fMndaw4OYm1Wyfs87He97736auuumpSx57LzpmkWxAE+o477tDt7e1627ZtJ+w/WlTw+9///ui2LVu2nFBUcMOGDbq5uVn/7//9vyd8rG9/+9s6FArpBx54YNJ9a21t1Z/61KdGt6VSqXFFBU/mq1/9qo5EIqcsBni0MG+5XB7ddtddd8lCCmeQxNrkYu2ot73tbXr16tWT6r8YT2Jt8rHmeZ5esGCB/ou/+ItJ9V+MJ7F2+li79957teu6enBwcFL9FicnsTb597VyuaznzJmj77rrrkn1X4w3U2PtWJJ0Ozsk1p5fIuTuu+/WPT09kzpWjCex9vxi7cYbb9SvetWrJnXsueycSbr9+Z//uU4kEvrhhx8et0RsPp8fPead73yn7u7u1g899JBes2aNXrlypV65cuXo/meffVY3NTXpN73pTePaGBgYGD3mW9/6lrYsS3/xi18cd0wymTxl/z72sY/p2tpa/cMf/lCvX79e33rrreOWz9Va689//vP6qaee0lu3btVf+MIXdDgc1p/97GdP2W4ymdQtLS369ttv1xs2bNDf+c53TliGuVQq6bVr1+q1a9fqtrY2/b73vU+vXbt20iuEiPEk1iaOtX/4h3/Qv/jFL/TOnTv1pk2b9Kc+9SltWZb+53/+50m/vmKMxNrEsXb33Xfrn//853rnzp36qaee0rfddpsOhUJ648aNk359xRiJtYlj7ahrrrlGv+51rzvtaylOTWJt4lh77LHH9A9+8AO9c+dO/Zvf/EbfcMMNure394Jcie1smKmxpnV1BMvatWv1K17xCn399dePXgcc6+i2FStW6De84Q167dq18hn6AkmsTRxrX/jCF/SPfvQjvW3bNr1t2zb9//7f/9PxeFz/zd/8zWReWnEcibWJY+0zn/mMfuCBB/T27dv1s88+q9/znvdowzD0r371q8m8tOe0cybpBpz059577x09plAo6He96126rq5ORyIR/apXvUofOnRodP+HP/zhk7ZxbCZ+9erVJz3mLW95yyn7FwSB/uAHP6hbWlq067r6j/7oj/TWrVvHHXP77bfr+vp67TiOXrZsmf7GN74xqee+bt06fc0112jXdXVHR4f+2Mc+Nm7/7t27T9pnGX30wkisTRxrf/M3f6Pnzp2rQ6GQrqur0ytXrtTf+c53JtW2OJHE2sSxduedd+ru7m7tOI5uaWnRL33pS/XTTz89qbbFiSTWJo41rcfuEv/iF7+YVJtiYhJrE8faww8/rBctWqRd19UNDQ369ttv1wcOHJhU2+JEMznWenp6Ttqn070+MvrohZFYmzjWPve5z+klS5boSCSia2pq9CWXXKK/9KUvad/3J9W+GE9ibeJY+/jHP67nzJmjQ6GQrq+v19dff71+6KGHJtX2uU5prTVCCCGEEEIIIYQQQogpI8spCSGEEEIIIYQQQggxxSTpJoQQQgghhBBCCCHEFJOkmxBCCCGEEEIIIYQQU0ySbkIIIYQQQgghhBBCTDFJugkhhBBCCCGEEEIIMcUk6SaEEEIIIYQQQgghxBSTpJsQQgghhBBCCCGEEFNMkm5CCCGEEEIIIYQQQkwxSboJIYQQQgghhBBCCDHFJOkmhBBCCCGEEEIIIcQUk6SbEEIIIYQQQgghhBBT7P8Haks2mkbRlZQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_plot(obstype='temp')" + ] + }, + { + "cell_type": "markdown", + "id": "c9f0ae66-9077-451d-b13e-20994d16f438", + "metadata": {}, + "source": [ + "See the documentation of the [make_plot](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_plot) method for more details. Here an example of common used arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f4351d2a-fab5-47a4-9756-6aa98ba18492", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQ4AAAHjCAYAAABisoJ7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb5fXA8e97JXnvOLZjZzk7IRsChECAlk0pqwVaKAFKgRZ+hDLaQgtllFI6WC27jFBSWiijlLZsaICEEEbCCgmEhMR2Ysfx3pLu+/tD1vWVLduyLWv5fPLkeWzp6uqVLN1x7nnPUVprjRBCCCGEEEIIIYQQQtgY0R6AEEIIIYQQQgghhBAi9kjgUAghhBBCCCGEEEII0YMEDoUQQgghhBBCCCGEED1I4FAIIYQQQgghhBBCCNGDBA6FEEIIIYQQQgghhBA9SOBQCCGEEEIIIYQQQgjRgwQOhRBCCCGEEEIIIYQQPUjgUAghhBBCCCGEEEII0YMEDoUQQgghhBBCCCGEED1I4FAIIYQQQox4hxxyCIccckhIy5511llMnDhxWMcjhBBCCBELJHAohBBCCCHCavXq1Vx77bXU1dVFeygBPv30U6699lq2bdvW77IVFRVce+21rF+/ftjHJYQQQggRqyRwKIQQQgghwmr16tVcd911MRk4vO6664IGDl988UVefPFF6/eKigquu+46CRwKIYQQYkSTwKEQQgghRJwzTZO2trZoDyOuJSUlkZSUFO1hCCGEEELEFAkcCiGEEEIM0GuvvYZSiqeffrrHfX/9619RSrFmzRrrtldffZWDDjqI9PR0cnJyOP7449m4cWPA43qrm3fttdeilAq4TSnFRRddxMqVK9lrr71ITk7m+eef73PM//3vfzn44IPJzMwkKyuLRYsW8de//tW6f+LEiZx11lk9Hhes9t8f//hH9tprL9LS0sjNzWWfffax1nXttddyxRVXAFBaWopSCqWUleXn8Xi44YYbmDx5MsnJyUycOJGrrrqK9vb2gOeYOHEi3/jGN3j99dfZZ599SE1NZc6cObz++usAPPXUU8yZM4eUlBT23ntvPvjggz5f/8MPP8y3v/1tAA499FBrXP712V/n66+/zqJFiwA4++yzrWUffvjhXtdvmia33XYbe+21FykpKRQWFnL++edTW1vb57iEEEIIIWKZBA6FEEIIIQbokEMOYdy4caxcubLHfStXrmTy5MksXrwYgJdffpkjjzySqqoqrr32Wi699FJWr17NkiVLQqq115tXX32VH//4x5x66qncfvvtfTbrePjhhzn22GOpqanhyiuv5De/+Q3z58/vN9gYzP3338/FF1/MrFmzuO2227juuuuYP38+a9euBeCkk07iO9/5DgC33norf/nLX/jLX/7C6NGjATj33HO55pprWLhwIbfeeisHH3wwN910E6eddlqP5/riiy/47ne/y3HHHcdNN91EbW0txx13HCtXruTHP/4xZ5xxBtdddx1btmzhlFNOwTTNXse9dOlSLr74YgCuuuoqa1wzZ87ssezMmTO5/vrrATjvvPOsZZcuXdrr+s8//3yuuOIKlixZwu23387ZZ5/NypUrOfLII3G73SG+u0IIIYQQscUZ7QEIIYQQQsQbpRRnnHEGt9xyC/X19WRnZwOwe/duXnzxRX7+859by15xxRXk5eWxZs0a8vLyADjhhBNYsGABv/zlL1mxYsWgxrBp0yY++ugjZs2a1edy9fX1XHzxxey77768/vrrpKSkWPdprQf8vP/+97/Za6+9eOKJJ4LeP3fuXBYuXMhjjz3GCSecEBDQ3LBhAytWrODcc8/l/vvvB+BHP/oRBQUF/P73v+e1117j0EMPDXiNq1evtoKws2bN4sgjj+QHP/gBn332GePHjwcgNzeX888/n1WrVvXaGXnSpEkcdNBB3HHHHRx++OF9dlAuLCzk6KOP5pprrmHx4sWcccYZfb4nb775Jn/+859ZuXIl3/3ud63bDz30UI466iieeOKJgNuFEEIIIeKFZBwKIYQQQgzCmWeeSXt7O//4xz+s2/7+97/j8XisQNPOnTtZv349Z511lhU0BF9w7fDDD+c///nPoJ//4IMP7jdoCPDSSy/R2NjIz372s4CgIdBjCnQocnJyKCsrY926dQN+rP/1XnrppQG3X3bZZYAvKGk3a9YsK2gIsN9++wHwta99zQoa2m//8ssvBzymcHjiiSfIzs7m8MMPp7q62vq/9957k5GRwWuvvRaVcQkhhBBCDJUEDoUQQgghBmHGjBksWrQoYLryypUr2X///ZkyZQoAX331FQDTp0/v8fiZM2dSXV1Nc3PzoJ6/tLQ0pOW2bNkCwOzZswf1PN399Kc/JSMjg3333ZepU6dy4YUX8tZbb4X02K+++grDMKz3x6+oqIicnBzr/fKzBwcBK7Nz3LhxQW+PVj3Bzz//nPr6egoKChg9enTA/6amJqqqqqIyLiGEEEKIoZKpykIIIYQQg3TmmWeyfPlyysrKaG9v5+233+ZPf/rToNbVW/af1+sNentqauqgnmcwz+9wOKzfZ86cyaZNm3juued4/vnnefLJJ7nrrru45ppruO6664b0XN3ZnzeU2wcz9TocTNOkoKAgaM1LwKrvKIQQQggRbyRwKIQQQggxSKeddhqXXnopjz32GK2trbhcLk499VTr/gkTJgC+Wn3dffbZZ+Tn55Oeng746vTV1dX1WK57Ft5ATZ48GYCPP/64R6afXV/PP2nSpIDb0tPTOfXUUzn11FPp6OjgpJNO4sYbb+TKK68kJSWl18DghAkTME2Tzz//PKApSWVlJXV1ddb7NVwGMjV7IMtOnjyZl19+mSVLloQ9oCuEEEIIEU0yVVkIIYQQYpDy8/M5+uijefTRR1m5ciVHHXUU+fn51v1jxoxh/vz5rFixIiAo9/HHH/Piiy9yzDHHWLdNnjyZ+vp6PvzwQ+u2nTt38vTTTw9pjEcccQSZmZncdNNNtLW1Bdxnz9CbPHkyb7/9Nh0dHdZtzz33HDt27Ah4zJ49ewJ+T0pKYtasWWitre7B/mBo90Ck//XedtttAbffcsstABx77LEDfHUD09u4hrrsKaecgtfr5YYbbuhxn8fjCWkdQgghhBCxSDIOhRBCCCGG4Mwzz+Rb3/oWQNDA0e9+9zuOPvpoFi9ezPe//31aW1v54x//SHZ2Ntdee6213GmnncZPf/pTTjzxRC6++GJaWlq4++67mTZtGu+///6gx5eVlcWtt97Kueeey6JFi/jud79Lbm4uGzZsoKWlxerqfO655/KPf/yDo446ilNOOYUtW7bw6KOPWhmLfkcccQRFRUUsWbKEwsJCNm7cyJ/+9CeOPfZYMjMzAdh7770B+PnPf85pp52Gy+XiuOOOY968eSxbtoz77ruPuro6Dj74YN555x1WrFjBCSecENBReTjMnz8fh8PBzTffTH19PcnJyXzta1+joKCgx7KTJ08mJyeHe+65h8zMTNLT09lvv/2C1pY8+OCDOf/887nppptYv349RxxxBC6Xi88//5wnnniC22+/3fqMCCGEEELEFS2EEEIIIQatvb1d5+bm6uzsbN3a2hp0mZdfflkvWbJEp6am6qysLH3cccfpTz/9tMdyL774op49e7ZOSkrS06dP148++qj+5S9/qbsfsgH6wgsvHNA4n332WX3AAQdYY9h33331Y489FrDMH/7wB11SUqKTk5P1kiVL9LvvvqsPPvhgffDBB1vL3HvvvXrp0qV61KhROjk5WU+ePFlfccUVur6+PmBdN9xwgy4pKdGGYWhAb926VWuttdvt1tddd50uLS3VLpdLjxs3Tl955ZW6ra0t4PETJkzQxx57bI/XEey1b926VQP6d7/7Xb/vw/33368nTZqkHQ6HBvRrr72mtdY9XqfWWv/zn//Us2bN0k6nUwP6oYce0lprvWzZMj1hwoQe677vvvv03nvvrVNTU3VmZqaeM2eO/slPfqIrKir6HZcQQgghRCxSWkepirQQQgghRALweDwUFxdz3HHH8cADD0R7OEIIIYQQQoSN1DgUQgghhBiCZ555ht27d3PmmWdGeyhCCCGEEEKElWQcCiGEEEIMwtq1a/nwww+54YYbyM/PH1IdQiGEEEIIIWKRZBwKIYQQQgzC3XffzQ9/+EMKCgp45JFHoj0cIYQQQgghwk4yDoUQQgghhBBCCCGEED1IxqEQQgghhBBCCCGEEKIHCRwKIYQQQgghhBBCCCF6cEZ7AInANE0qKirIzMxEKRXt4QghhBBCCCGEEEKIKNFa09jYSHFxMYYR3zl7EjgMg4qKCsaNGxftYQghhBBCCCGEEEKIGLFjxw7Gjh0b7WEMiQQOwyAzMxPwfSCysrKiPBohhBBCCCGEEEIIES0NDQ2MGzfOihfFMwkchoF/enJWVpYEDoUQQgghhBBCCCFEQpSzi++J1kIIIYQQQgghhBBCiGEhgUMhhBBCCCGEEEIIIUQPEjgUQgghhBBCCCGEEEL0ENeBw1WrVnHcccdRXFyMUopnnnkm4H6tNddccw1jxowhNTWVww47jM8//zxgmZqaGk4//XSysrLIycnh+9//Pk1NTRF8FUIIIYQQQgghhBBCxJ64Dhw2Nzczb9487rzzzqD3//a3v+WOO+7gnnvuYe3ataSnp3PkkUfS1tZmLXP66afzySef8NJLL/Hcc8+xatUqzjvvvEi9BCGEEEIIIYQQQgghYpLSWutoDyIclFI8/fTTnHDCCYAv27C4uJjLLruMyy+/HID6+noKCwt5+OGHOe2009i4cSOzZs1i3bp17LPPPgA8//zzHHPMMZSVlVFcXBzSczc0NJCdnU19fb10VRZCCCGEEEIIIYQYwRIpThTXGYd92bp1K7t27eKwww6zbsvOzma//fZjzZo1AKxZs4acnBwraAhw2GGHYRgGa9eu7XXd7e3tNDQ0BPwXQgghhBBCCCGEECKRJGzgcNeuXQAUFhYG3F5YWGjdt2vXLgoKCgLudzqd5OXlWcsEc9NNN5GdnW39HzduXJhHL4QQQgghhBBCCCFEdCVs4HA4XXnlldTX11v/d+zYEe0hCSGEEEIIIYQQQggRVgkbOCwqKgKgsrIy4PbKykrrvqKiIqqqqgLu93g81NTUWMsEk5ycTFZWVsB/IYQQQgghhBBCCCESScIGDktLSykqKuKVV16xbmtoaGDt2rUsXrwYgMWLF1NXV8d7771nLfPqq69imib77bdfxMcshBBCCCGEEEIIIUSscEZ7AEPR1NTEF198Yf2+detW1q9fT15eHuPHj+eSSy7hV7/6FVOnTqW0tJSrr76a4uJiq/PyzJkzOeqoo/jBD37APffcg9vt5qKLLuK0004LuaOyEEIIIaKjWtfyL+9rvGy+icLgXtf1pKu0aA9LCCGEEEKIhKG01jragxis119/nUMPPbTH7cuWLePhhx9Ga80vf/lL7rvvPurq6jjwwAO56667mDZtmrVsTU0NF110Ef/6178wDIOTTz6ZO+64g4yMjJDHkUhttoUQQoh48ZL3LY5zn2/9vi7pSeYY06M4IiGEEEIIIRIrThTXgcNYkUgfCCGEECJePOR5kh96fmn9/ozrLo5yLI3iiIQQQgghhEisOFHC1jgUQgghRGIrJ7ABWpmu7GVJIYQQQgghxGDEdY1DIYQQQsS22z0rAFjuXBb09/4eu8pc1+v9H5qbui3/MM20hLRuIYQQQgghRP8kcCiEEEKIAenQbvbpOBGFolgV8N+kB6z7tNbs03EStbqedjrIIJ00Uvi393UaaaZc7yKD9D6De8vdv6KdDraaZZiYvS43ihwcOABNLtmUsYsHPP/gZMeRjFVF4XzJQgghxKB9rf17fKl3UEM9pWospxrHcJXrh9EelhBChEQCh0IIIYQYkJ3sZrPeBsA2XR5wXwNNfKI/t37fQx0AG/UW67YqamjT7aSo5KDrf8r7IrupIYdMlhh79zqOLJVBCYUsNRbxL++r7NY17KaGbbpcAodCCCFigtaat/UG60LYJr2VN/X7UR6VEEKETgKHQgghhBiQcr3L+rmdDtp1B8kqqfO+0OoMlutKJqvxPW5v0+3spgaAGWoSTyb9KaT1aTRvet4b0BiEEEKI4VZHQ4/s+RbdGqXRCCHEwElzFCGEEEIMSPfAXIWu6vW+XtdB8OXs6yoZQNZgiSq0jWFXH0sKIYQQkRNsv1hPYxRGIoQQgyMZh0IIIcQI1qxbSCUFhaKFVtJVWtDlWnQrySRhYPCVWWHdrlCc676Kw9USLnaeyUrvswGPS8JFB+6A2xSKn7l/zxg1usfz1OoGFAqNDggG9se+7H89b7DcsQyHcoT8eCGEEInHv4/7o/cvaK05x3EyTuXkfu/jfTbf6s0BaiEXOc/AxMSFkzu9K1llruMgtQ+nOb7B37zP8YZ+11reoz0UMRoFaNt6duoqbnU/xAXO75CqUob+QoUQYhgprbXufzHRl4aGBrKzs6mvrycrKyvawxFCCCFCdnL7Rfxbvw7AwWoRLyQ/FHS5/+u4nvvNx1FANlnU00g+eUxnImv5EDduDAzSSWUcReyn5vMT57nUUE+RMZo/ex7nJe9qZqrJjDUKedN8r9cxaa3Z25jNpa6zKVT5Ib2OVt3GVe5beMh8kjbaeTfpKWYb0wb6dgghhEgg3+r4P14w38CDFwPFYrWAN/V7pJBMPrmUqrEhradK7+FLynDj5gHXr9mmy7nRczfppKLRtNGOBy8unGSQxmw1jU/1F1ad3xIKOUIdSLvuoJFmXmctTbRwqeNsbnRdOozvgBAiWhIpTiQZh0IIIcQIVqmrrZ+rOmsLBlOBbwqxBpppQaPZzR6WGAtwm76MQhOTRprJV3nMcEyi1DGOUsYBkKOyKDRGMduYCvgam/RKQbFREHLQECBVpZCtMmmjHfBNDZuNBA6FEGIkK9eVuPEA4EVT1lnKoo12knD1vS+yaaYVt3Zb6yzXldY+L4sMPHgBcOPBwEGWykBpFbCOGY5JAOzWNfzL+yoAZVKTVwgRByRwKIQQQoxg/oAgBNYX7M5eo8l/Egbwf47v8Yz5csCyf0+6jVyVHXDbcucylrOs63fbz+Fin64sJ2NCCCH8NW8dOPDipYo91n0XOc/gR87TQ1rPO+aHLO34buc6KwP2iQcb+/Iv81Xr96ONpfw56Ua+13EFT5j/BWCamshyp2+/16Rb+L33AWtdQggR66Q5ihBCCDFCebSHXXRlHNbTSJNuCbpsRZCTmwLymGgETvNKI5UcojMdY6wtcBhsvEIIIUaODu22MunT8NURbKHNun+wdXQrdJW1j0nCxaRu0539y6arVOu2NNvPGSrN2k9W9NIoTAghYolkHAohhBAJpEzv4lXv27xjbmCbLidZJfVYplW3UacbMNGUUsJuaskig0KVz3c6fkyScgUsr7UmubMelAMDLyZZZLDQmEUR+eyt9mKrLsOBg32NuSilejxnJExUY5nDNBpo5jVzLcv1spCnoQkhhIgvz3lfw4OHN8z32GaWQbddj1t7GEsRqSqZTNLJUVlsM8tppoVkkkKubwhY+7pW2vhcb6NDu5mhJjFBlTDbmM4870y2U04qqcwypgAwQ01iNHkAzFJTAtZ3iLEvrbTTqJs4ueOiob0RQnRTrWuZoSbxLcdRHO5YEu3hiAQgzVHCIJGKXgohhIhvz3hf4jT3jwGYQDHjVXGPZbbo7QFTlBepObyR/Bg3uO/ss8vkUmMRV7su5Ab3nQBc7brQui/YbdFwgfsaHvY+BSANUoQQIoHt234yH+pNGCgOUAtR3SOHnfz7LsDaz9lvGwj7frL7OgazH+xvvyvEYLyt1+PGwwRVwqbkF6I9nBErkeJEknEohBBCJBB7vaQclRU04y6LjIB6hqOVLyMiS2X0maHnvy/oOmMksy+LrnE00BTFkQghhBhO/v1dFplkq8xel7Pvn/z7ucHus+yP7b6OwaxzKGMRojeG9lWk82hPP0sKERrJOAyDRIokCyGEiG8/d9/CH7wPAvBf1wMc6tivxzJ/8/6bs9w/tX5f4fotpzqOidgYh9MN7ju50Xs3AM+67uEIx4FRHpEQQohwa9Pt5LTvDcBitYDXkv8S5REJETumtR3BdiooZBRfpfwv2sMZsRIpTiQZh0IIIUQcuN2zAsDqyui/rfsUpw/MT62fx/ZS+L17QfiBFIiPdfbMDck4FGLkCLY9XGossn62bzsHs76lxqIBr0OEn//v0qxbrdt629cJMVK5lBM0uJGMQ79g+4i+9LXNH4n7BwkcCiGEEDHsv97/8TPP76nSe0ghmYsdZ/K6+Q63eB+kSu9Bax0wRauI0WSRwThVxFhVFHSdM9QkfuY4j9fNd3DgYIaaFKmXM+wySbd+btASOBQi0T3rfYUHvP+gUleDhkyVTotu40t28KL5Ji6cZJLBhY7Tcar+T31+4v4t23UF5bqSJFyY2uQrKvjC/Io9uo7rXcsj8KpEdxe4r6FBN1l/F6/2MpupTFAlnOk4MdrDEyKmOHEA4MEb5ZFE35kdP8HEy069GwOj3+Ur9R7qaOBjczOnOY5lm1nG6e7LUBikkcIMYxLluhIXLup1A3uo41PzCw43lliNkRKRBA6FEEKIGPax/pxNeqv1ezW1fKa38JL5FgDz1Iwe9ZvAd/UzVaUEXedolce1routLMZ8lTtcw484+3vRSHMURyKEiIQP9SZeMN8AYB81myyVgUZTq+sBX8ZNC23sopqxBL+YYvequYaP9ec4MDhKLcWrvFZNWGliET0veN9gJ7vJJN2XSaogl2yWGouka6wQ3bg6wzwjPeNQa82/zddoppV8ctnPmNfvY77SFVSxB4Adeic79C7K8NVTTcLFJtN3TH60Opg9qpZK7Vv2S72DWUjgUAghhBBRYG9iAr5i8PYGKL92XsbXHYsHte5EnFYR0BxFMg6FSHj2beSfXL9kvjGTSl3NhPZDeizXWxZ2sPWNU8U8mfwnAMa2HUQ1tT22xyIy3NrNLqoBmK5KeTLpT1EekRCxzYULkMBhA0004ytrMNuYFtK24zeee7nW80fAtz+opd66z5/BWUAeTyffycOep7jAc03nspU9V5ZA+s/VFEIIIUTUlOtd3X4PDBxKbadAmaprqrJkHAqR+OzbQ3+91tHkoVC9LtebFt1KTedJYgld21b/eiuowtTmkMcsBmYX1Wh8/TwTqSavEMOla6qyh5HcCzdg/0Bo244S2wWmcl1JmW0dJmbAMvbtUVmCBw4l41AIIYSIIbt0NaPI5i7vX1llrmOd+aF1XxJObvDcSaWuRqHQaIrlJCqAv8ahgSEZh0IMg3bdQQNNpOkU2lQHo1ROxMfQoJtoMBsx0XxhbkMBBg7y8ZVdMJRBCsm00gb4tp2/8dzLo95/orVmgTGLXzh/RBvtNNPKo55/4sbNfsY88simhnqKVYH1fMWqgA36M3LIZIvezlQ1MeKveaSq1NVUmntIJYVW2mSfJ0QInLYwjxdvwO+JrlE348XLw56n+Kf5Mk6cePCEfNGhGN+234mDe71/o1139Fymc//gX6cDgye8/+UT/XnAcu6Ono+NVyPnEySEEELEgXntx9FAE8UUMEmNY7qaxGQ9nnlqJqOMHFaZ68hU6UzW49nbmB2QYScgn1zrxH83NdEejhAJ51nvq3zPczkAe6mpvJf8dMTHcIX7ZlaYvudVKGYwmSOMA1GqK8twU/ILOEyDPaqev3v/zSpzHe+YH7KbGv7j/R8/cp7OOvNDTnD/yHpMgXcUNdQzihx+67zCuv13zp+xtmMD1dRyhedmnkm6O3IvdoQ7rOMsPtfbyCGL/zPO4FLnOdEekhAxz99VGXzTlUdS4PCv3n+x3PMrXDiZzHgWq/nsr+ZzWYjbjiXGQiqS3+JOz6O+urYKCvQoFqm5ZBppmNrkYpev1M80NZEdyau4x/MYq8x1PS5Ye4IEHePVyPkECSGEEDGuSbdQTyPgK8BsNfpQUGqMBQi4rdgoCLaaEW20yqMe34FbKFMThRAD09JZLwp8U3ujoYkW62eNJkdl9tgeFqhR4IBR5JJlZpClMkjWSdb95XoX5d1qFjZ0bjtMTMbY1jdJjbVKH0idw8jRWlt1w1w4GWXkkqOyojwqIWKff6oyjLzOyv5jPzcespRv259v5JKtMkN6fIpKJoVk67EAKBhnFFk/+zPtncrJaPICl7VxKwkcCiGEECLM7IWV9zPm8XDSzT2WWU7iNTQJJ4dyMIbRlLFLAodCDAN7Jq89gBdJTTrweR9w3cQkY1yvyy93LmM5y7je/Sd+7b0H8NeLDawh20470LOOnqEMilUhX+ly2a5EUD2NVmODOca0hGzoJcRw8DdHgZHXIMW+jb7XdQMzjcmDWo9/vzGUZRuSGsjm/kE9f6yR5ihCCCFEjCgLUuRfDJy/YcxuamjT7VEejRCJxX5SVkt9VJqF1Oi6gN/t9Qj7Yi96X6YrKScwCOhvIRCsjp6/7tUe6mjVbaEPVgya/bNWHGJjAyGEL0PXz407iiOJPPt2PdR9g+ifZBwKIYQQMeB98xP+Z65lGqVoTOYZM6I9pLg1Q03Gi0kGaezWNYxTY6I9JCHixhZzOy+Yb/CB+SmbzK24lYdiVcBK1x94znyNDu0mhyw66GAsRXy341K+5zyBYx2HDOu47vQ8yjrzI3bonTSoJpJ1EgaK8aqYFJUc0jpmGJM4wjiQWl3Po95/0kobJRTSRDP7qfl8pDeTRxZLjIU9HnuwsS8FZh7v60/Yp/1EpqtJFJGPQ/mmBC53LmOKMSGsr3kk22R+ydPel5hOKSaafY050R7SkG3XO3nB+wZPeP9DEkn8zHU+Bxp7R3tYIgGN1KnK93v+TiGjmKomAIosek4fFoMjgUMhhBAiBjxvvsHNXt90hm8bR3OK45gojyh+OZSDdeZHgC8jahwSOBQiVGv1Bi713ARAOmk06xY+0J9Sriv5g+dBPtCfolBcbJzJ7eYKNutttHrbhzVw2K47uMzzG8DXOX2+msm3HEdxtevCAa1nibGQZ5Pu4Qb3nawy15GEi2yVyVJjEVe7LuQG950A/NR5Xo/HXuv6P1p1G7nt+wCwRe8gmSSr4+a+5lwJHIbRm+b7/Mp7FwBHq4M5z3lalEc0dO+ZH/N/nuut36d5J0rgUAyLgIxD7QHVx8IJQmvNTzy/o5U28snlfMdpAQ2zxNBI4FAIIYSIAfYpWWPU6CiOJP5l0dVpuqGzoYEQIjT2bVE6qTR31jEs07usmoCZpDNGjcaBAy/eHrUCw83ekCSdtF4L0Yeq++P9P/e3zlSVgkKhOyc12zN5WpDpy+Fk/0wVqfwojiR8tDUZ3kfqZYrhYu+i7BkhNQ5raaC1czucq7KHtI8QPUngUAghhIgB9pOky5znRHEk8S/TdrDYqJuiOBIh4o89mHGK42j+5H0UgG26nKrOxigz1WQucZ3FPebf2KbLhj0AYq9Z9W3HUfzO9dMhra+3QvahNN8wUHg7A0BeW+Bwp949pDGJQPa/+Q+d34niSMJHAociUpxq5AUO7cfRi4350kwpzCRwKIQQQsSADeZngG96yWjyojya+CYZh0IMnj2YMV1Nsn6+2XOf9bO/eVMJhWyjjFoaaNGtpKnUYR9TpBtH3e5ZwSpzHQBe7cVL8GYwj3r/yUd6k/X7UmORnLgOQeDfvKiPJeOH2e2zs0lv5eSOi6I0GpHIPjS7tkUXu28IuKCaqKr0HuvnNd4POFlH/7vl7uiI9hDCRgKHQgghRJR9rf1MnDiYyRSucH0fQxnRHlJcy7QVw26QjEMhQvaady07zArGUkSxKuAIYwkPuH7Nq9632WxuJZN0JhvjuaAzA2wfYzYdZgeNNFOuK5mqJoZtLKY2mdh+KC204sbDBEqYpMZylHFQ2J6jL5+Yn3OB+xprG1KgRqG1poBRtNBGEk5mMIlW1U4W6bToNhp0E1prPucrNppbeN/8lBVJN0dkvInkee8qdps1jKOIYlVIHtnRHlJY2DMOlxkn4sTJZr01iiMSicqeZdigm7vluiamTXorGaSRhIsM0mPi+M+jJXAohBBCiDBo1i2s1u8DUMpYvus4Lsojin/2ujaNRP/AUYh48YXexnp82c/7qXlMMEqYQAnVupY6Gny3G/NYaiwCwIHBOu1rRFSuq5jKxLCNpZpaqujKIPmKco41DmGGMTlsz9GXbbrcem3T1ETfdkVBjs60MlumGhOZZUwBsLISUVBr1lNJNR2mOyJjTTSb9TY2dH4Ol6i9E6bBgT14M9uYhonJLlOmuIvwS9ZJ1s/pKjXh6/1prWnoPN7LIZNioyDKI/JxKwkcCiGEECIM7EX/FxlzoziSxJFBmvVzg5apykKEqsw2PXSZ40Tr595qAharrpOzcsLbICVY/bcfO88K63P0/fxdr+fHjrM523kyAA97nuICzzUALDT24vzObr/292f/9m+zXm9kJ7vxai8O5YjYuBOB/W//fee3oziS8LJnHCp6/14JMVQ/c/+O27wrALjedQlLjIVRHtHw2q538p/2/wFwiLEff0u6LboD6tSQ1EA290d7GGEhc6GEEEKIKLKfqI+NcO2uRCUZh0IMzkBrCdprz4W70UP39RkYFBG57rqB2+au12l/X8p66SbtX8aLl0pb1qQIjT1oW0Li7BftgUNDTsPFMLJ3VXbrxG+OErDNkGPpYSEZh0IIIQatTbdTriv5s/tx2pWbMWo0b+v1QZfVWrOPMYfvOo5jolES2YHGiCq9BzceHvf8hzf1e9ZtKSTRjlsOdsIkiwwMDDJJxzMCDpiFCJd2OsghkzoaQwwc+pZJI4UXvW+x3LGMZJXUz6P6tsn8kn96X+EZ8yUcGFYzklyycSnXkNbt16ibqda1POV90SoV0XMcW0nCRUe3bbM/iJhHNk26JehjS1QhThwUMZqN5hcUO2Jj2ly8aKeDbDKppzEgqzXaNptbecb7Mmv1hkE93h5ofs77Gj9ynh6uoQkRwB44HAldlXfpaooYTRV7onos7dEetuoynvG+xNt6gzRHEUIIIQA+0Z+zpMM3TQsNCsW+ai5JBJ7caa1Zwwf8x/s//mW+yprkx6Mw2uj7k+dRfuu9H4ViNlPJUVmkkMwiNZcD1d6c6zgl2kNMCBmkYWJSTyNV1ER7OELEjQ/1Z9TRSD65ZJPZ7/IL1SwucHyHe7yP8aZ+l416C/PVzEE/f5NuYV7HNwHIIYv9mc8StZCfJ/0orCe/r5lvc4p7OeCrLTs2SNfeMWo0YxjNAWoB01WpdXsxBSThooZ6NrIl6Pp/47icx73/oYxd/NTzO951PB22sY8E683PqKeRsRSRopKjPRwAWnQrczt8NYhzyGSOmj7gdbTqNuvnV/Xbw9qJXIxsLjWyAofbdQW72I1CMZbodWHfrncyp+MbABQwisk6cRIlEj5HurGxkUsuuYQJEyaQmprKAQccwLp166z7tdZcc801jBkzhtTUVA477DA+//zzKI5YCCHiR7CpaaPIIUtlBPzPNjJxdQYTy3uZ2jUS+N8vjSZPZQe8RzlG1pAzdYRPtuoKeDTIVGUhQqK1tjKiclV2SA0pnMpJvsq1fh/qdOUK2+PTSCHHyGKUI5dklUS6SuvjkQNjH2f3/VX3/3lGTkCNwmwj07o41tvrTTNSyVHZfS4jgvNqLzvxNQwZpXKiOxgbez3iNFL7/dwE+5+qUnpdpxDh5LJPVR4BgUP78fWYKDZGKadre59OKpkJ1JQm4TMOzz33XD7++GP+8pe/UFxczKOPPsphhx3Gp59+SklJCb/97W+54447WLFiBaWlpVx99dUceeSRfPrpp6SkpPT/BEIIMYJ1PyHKIoOnku8MuuzB7aezVm+gihradceIDJLZDygeT7ojIMAlwsfeHKVRmqMIEZIGmmimFRhYjSh7DbqhXhiy1xX8juMb3Oi6dEjr64193/Vr52V83bF4QI8vUYVs0lsp15VorYMGWUsoZBtl1NIgmWUDUEWNlSEVS+U77J/NUx3HcJPr8gGv4xHPM5zn+UXAOqcwISzjE8LOSdfFDg/eKI4kMgLq80axLqp9HBc4v8PZSSdKc5R40NraypNPPslvf/tbli5dypQpU7j22muZMmUKd999N1prbrvtNn7xi19w/PHHM3fuXB555BEqKip45plnoj18IYSIed0Dh2n0fsHFfgKwU+8etjHFMn92QQZpZJE4VyFjjaF89Q1BMg6FCJU9+2kgJ15jAxqkDC2DqoKBNWcZrPIhNqXyj62FVupp7HMZkMyygagYYIOeSAnHZ9PeHKX7OoUIJ5etZJAbdxRHEhn2bXo066LG6vYrHBI649Dj8eD1entkDqampvLmm2+ydetWdu3axWGHHWbdl52dzX777ceaNWs47bTTgq63vb2d9vZ26/eGhobheQFCCBFmT3j/y3azgn+ar5CvcrnQccaAMy1Wep+lVtez3vyMjeYWiimgmlrGMYZFxpxeH3ewWkS1qsWFkyfNF7jMOGeoLyeuvOp9m0lqLMWqgGIKQpoGKAYviwwaaZaMQyFC9JL5JoepA2ihlQONvUN+3CQ1jq+p/dmuK3jRfJMf6e/iwsVd3pWs9W5gmy6n1BjLn1y/ZLwaE3QdXu3lV567WW1+QDEFjFZ5zDFCryF3q+ch0khlg/kZlVT3u3y5rmQCJWSo1IDO0KGao6bTqtpx4qBcV5KjsnosM0NNYrGajxMnFbpKMstCVKX3cJDaBzeeqLxn//X+j016Kx+an1Gt66xacXW6gUmMI1OlD6q+IYDZ2egHYCoTeMDzBE96XwjLuIWw22R+yQRKcGJwr+dv/N37n2gPCfBt68uoZIoaz5mOEzjGcciQ1/m2uZ58lcsUPZ4klRTWuqibza1c77mTNt1Ou+ogmwyqdA2ZKj3o8tW6llLGkqHSA2rjJoKEDhxmZmayePFibrjhBmbOnElhYSGPPfYYa9asYcqUKeza5ZtOUVgYGA0uLCy07gvmpptu4rrrrhvWsQshxHD4jec+PtGddVw1jFfFAw4c3u/5O293dhRcohYymfGcbZzM1a4L+3zc+a7v8Iu222ikma+8FVzmHFmBw3+br/G8+QYAryX9JcqjSXwZKg20ZBwKEaqHvE+xUW8hgzTOdp4c8uMmG+OZbUzjVe/boGGz3kYKyfzKc5e1zOfmNj42NzHeETxwWMkebvLeA/i6FX/DOJSDjH1Cen6tNdd5/kQb7eSTy0w1ud/HZJJOpkpnqbHIt60YoFRSWKM/AHxByL2Y2mOZbJXBGr0egB3sHPBzjFTbdDlv6HcBOEd9K+LP/4T3ef5q/guAvdmLNHxTzA0MSlQhS41FHOzYd1DrtmccTlUTaaSZBi37KBF+29lJB24ySaeYwpj5nLm1h4/ZzMd6M620hyVw+Iq5hufM1wD4tjp6yOuzW29u5B/m875fOr++YymilLFBl0/CxVhVxFJjEXOM6TSQOAlmCR04BPjLX/7COeecQ0lJCQ6Hg4ULF/Kd73yH9957b9DrvPLKK7n00q6aKw0NDYwbNy4cwxVCiGHVfZrMYIq2++v8pJNqZVlkhVj8t0QV8pn+ss+6UIkqoP7KIDJcxMD4p4I30oypTQyV0NVZhBgy/4nlYMoo2KdkletKUuhZw7av/Y39vkzSQ96nANRQTxu+mUC5nU2nQjWQZe3sr7esl7qO3d8TEZryKE/1s9cizle5OFXg6fJgPzNAwBFYqkpGMXKOgURkObWTDtx48Q7pMxtubjzWF8GegTsU9m3GGDU6LOv0CxZwzVaZ/b6nsfSeh0vCBw4nT57M//73P5qbm2loaGDMmDGceuqpTJo0iaIi34lbZWUlY8Z0XQGtrKxk/vz5va4zOTmZ5OTwpcAKIUSk9AwcDqyQvb3b4VQ1kSeT/jSgx/sDh620UUsDeWQP6PHxzH9go1CMIT/Ko0l8mSrdOjhtokVqSgrRj0Z80/p7m4LVl1ACh2V9Bg679kXnOL/FcueykJ/b/tgDjAXc67oh5McO1tgQgoIlAbUfJXAYKnsgdjD1J4fK/7fKJJ1/Jt8T1nXbj8EONw7kLOdJYV2/EH6L2k/iI70ZDQM+Vh9OjbqZ0e37AcMTOLzc+f2wrNPPf85j90vnRXzT8fWwPk88SPjAoV96ejrp6enU1tbywgsv8Nvf/pbS0lKKiop45ZVXrEBhQ0MDa9eu5Yc//GF0ByyEEMNIodBoPtdfcbtnBQCrzHU9lltqLGK5cxm3e1awylxHm27H29mdbTCZAIHF4ivJUyMvcFhEPi7l6mdpMVT2QGEDTRI4FKIPpjatwOFQMw7v9/wdI0j/xZXeZ8lT2UGDgn/1Phd0XX7+fVD3fRL4auJZj41QN037GF803+RqepbqkIzDwamgq5FM8TAHDu2fI/BNe9+qdwDDk+1oDxxKtqEYTqmdzQpbaYupGT6G7XNvdktmGCx/Q5IkXOSTG5Z1+r1ovtXjtkRrehKqhA8cvvDCC2itmT59Ol988QVXXHEFM2bM4Oyzz0YpxSWXXMKvfvUrpk6dSmlpKVdffTXFxcWccMIJ0R66EEKEnf+gNYUk7nBezc89t3KV5xayyKCY0eSpHMB3xb+Gel403+Jv3n/TqtvIV7mgfTV/phmlnO8M3kCqL+cbp/GluYN6mrjacxtPJ3XVwPJoD2PalwCQSzabU14c+guOER7twYmDOUxnhjEp2sMZEcarYuao6Xjw0KRbkHM0IXrXTKu1f8gYRMbhLDWFv7lu5QXvm2zUW0D7ApATVAnHOg7hTe+7/Eu/xu2eFawzP+TRpD8AvuyT/Tq+RYfuoIh8DjL24WCjq36cqU3mdxxPra6nhjr+bb7Ozzy/J4dMJlBCpkrHpZ0sZBZTjYmc4ghvfaveTFbjudBxBk95X+QLvZ13zY/Yp1tzsAKdx/5qPo000UxrRMYV757yvsguczfFFDBJjRtU9msornDfzGrzfRp1M7kqm6TODrRaaxYwi+nGJL7j+EbYn1fbMqwkcCiGU4pKtmZdtNFuBRKjzX5RKVwZhx7tZTbTGG+MCakszfS2I6mhDgcOdiT/L+jF/HfMDznP/QuadQsF5FHKWApUPi7lZFqCNT0JVcIHDuvr67nyyispKysjLy+Pk08+mRtvvBGXy/cB+clPfkJzczPnnXcedXV1HHjggTz//PM9OjELIUQiceFiH2MOVfgyNWqpZ7waY9Xk8Ggv9TQC8IH+lBSSmazGg4JsMplvzGR/Y/6An3dvx2y2uLezk91U65qA+3ZRbWW8NNMaU1dIh2onu9nOTmAnpZREezgjQittfKQ3WT8LIXpnbyKUxcCDNdkqkxMch/OVrqDK3GMF6g8wFnCm8wRqqeevnn9RSz0f6I3W48r1Lr70Z3hRyD7GHMbZOi9XU8tmvTXguTSaWhqYoSb59lmdz7XQ2IsZRv+NUcIhXaUxRo1mZ2d23Fe6gn0IDBw6DSc79E7KqWR3t/2dCG6L3s5mtgFwqNp/2J7nI72Z9/QnABzJgV11DDuPceYa0znMcUDYn9eeX5UoxzciNtkDha2xGjjUQw8ctuhWNrIFgCwdWrZ8BZW+WotAIy1ByyZ9pcv5TH8JwAw1iZMcR1r3DdcFjViX8IHDU045hVNOOaXX+5VSXH/99Vx//fURHJUQQkSHfZpM91T7m5yX8zWH70D9V567AjpiTlLjwlYjpUQVslPvZhfVuLXbutJnn8plYiZUDURpjBJ5/k6YIIFDIfrTpJutnzOHMK1/uXMZy+k5FXm5cxkPd3ZttjfHstc9/I7jGz2mMfc1xfcB101MMqLXnDCUqchjVRHlupIqamjXHSSrnrUfRRf7+3ie89Rhf54M0ngm6e6IBfECpyoLMXzSAgKHbRAjx9PhnqpcobtKG4QyhbhVt1lBQ/A1PwlWNsm+LbrSeQGnOo4Z4kjjn7QYFEKIEcS/i1YoslQGThzWffYi5N3rRIWznod/XRrNLqqt2+07f9/viVMTaqAHNmLoUuhqYtaq26M4EiFiXwNdgcOsYcqm8G/72minhnogcNs4NshFle77BbtiVRDmEQ5M95q9/S2zU/cssi8CVUSgo7LW2nqeElUY0cw/e+AwWB1QIcLFfgzUFkPHQOGeqmwP8IXSTKn7PqWRnl2Tuy8nx+0+CZ9xKMRI5NVe1pobcConVd5q8oxs0klnkjF89WJEfPHX1skkgwYaMdEBRcjHqiKSScKDFwdGWHeaxaqQPLJJIokz269gvjGLEx2H80/vy7hw4sZDIfl8ZG5mtjEtbM8baVpr1pjrcSoHG7wbKWUsleyJ+sluLKvWtZSZO3nc+1/a6eD3rp8N+qQuVdkCh5JxGJK13vUopXBqBwsds6M9HBFBLbqV8RTTTOuwNRIqpoBcshhFDi953mKd/pCXzdU4ceDBy8uet5iqJvKW+T7rzU9RSlGpq0knjQ468OCxwi4pJPtqeEVRCYUk4SKNVN7xfsRnji09pkqPYTTZZDCaPHbqKiaO0FIV73g3gAKHdrB3H9sWF06KKWAPdRSRH/L6G3UzX+odPOd9jXXeD5njmM5ZjpPw4sWBg5XuZylTu0gnla1mGQ4cZJAW8YCANEcRkZKqujIOW2Koxqo9cKjDEDjcoXeSTy6NNPfZTKla17JL7+bPniescw0IvGgGsNHcQjJJfGRuIpUUOnBTjBy3gwQOhUhIFbqKr7nPBHwbaNPr2zD/xnk5lzjPiuLIRLTpbtMCypPfwFAGpjYDCgp/3VhMXfJ71nTlnzvD12n+D86fcavrKm5w38mN3rtZY67nbvOvAMxhGtsop5JqrvT8nu84w1+cPFJqaeBr7u8BWCfGgByA9OE/3v9xnucX1u/XcBHZZA5qXak9pumIvnRoNwe7zwDAiZMmx/roDkhEVANNbKcCgDSV2s/SgzNOjaGWBmpp4CzvT3vc/xyv85z7daCzzhzTSSWFhWoWS41FXOk4P6TC95EySY2jKultcjr2ZjXvc4H7Gl5PXhmwzDg1hnqaqKeJHexkMQuiNNro8WgPS92nA+DAoNnxYa/Lvq8/pYIqRpHTVXcwBGvNDXzDfZ71+/PeN/hcb6OJFl42V/tu7Dz8KSKfeWoGS41FYT22CYUpzVFEhKTaZ10QOxmH9ovB4ZiqfLnnZuo6Sxtd6Di91+X+7X2d8z1XA74GjLWdWe+NOjDj8Fz3VbynP0GhWKIWslQtolSNHfI4E0Hs7H2FEGFTQVd6tf1qThJSW0f4+Hfb/pOw7idjhjJQyjedOUtlhPVkzb+uLJXRY6pOvsojhywAKtmDW7vD9ryRVq53WT/7g4ZAQOF/EaicwOl+fdU3609AfZ8YmqYTq+zTcjx4aNcdURyNiDR7cD1tmIro95UN0l0Gadb+x//faTgxlGH9jzalFClGMumkAQTUa/QrNrouFA1lexbPKjubsAF4MX1d7nvR2Flr09+oLVTB3ttyXRn0dvtnKtKfo4DmKBI4FMMo4OKpjq2Lp/5j/6FOVdZaW4290kjp8/tsP75Mt9XAbuyWcejfZmSSTrbKJNvIlEZGnSTjUIgEZD8BtB+kGHKQMuJ1zzjsT/dC9eG03LmMGz13B3Tz/GfS3ZzpvoId5k40mp1UM574DLT1VptLpir3rnudsHJdySymDGpdKbZpOm2Scdivim5B2wpdJVfZR5AW24llyjAFDnurP2XPyPY7w3E817kuHpZxhNtUNYH1eiO7qMarvThUV+1gezOsvuo1JrJg9YunqdKgy/qPBwY6Xd4eFMghizoaqNBVNOELUhoYVpDiMsf3WeY8cUDrD5fAGodyTC6GT2rAMVBsXTz1fx+HGjhsodVaxxRjYp/L2o8vv+c4npu89wLQYGsM5tZu60LHdFUatqaQiSL6l+uEEGFnz3Sy8x9AiZHLf9AaK1e6XbbrVwXkkaRcAYG13j7L8SBY9kke2QEHcyJQ9+yQoWTo2KfptEjgsF893ntGZnbUSGU/sUwdptqBvV00KQxSy64kji6w+F+XBw9V1ATeh2Qcdt+PB9s3ArTrDjrwzTLIYGD1uO3vbZHyfZ4qqKKeRgBctkZwuSprQOsOJ6lxKCIllo+B/EHzoU5VttcnzOxnmxHYRKUrIcHeHGUn1dZ3VC7y9yQZh0IkgDrdwK8997BFb6dG12FgUMAommnBRFtTkBp08M5RYuSJxAFrq27jTu9K3jLfo1LvYYwaHXB/ra6nzjqod7LImAvAUmMRm8xtoDRPeV9ksRGfNaEaaWI6k6inkSScjFEFLDEWRntYMWWtuYHnvK+xWW+jXjdSTyMlFNJGOwvULB71Psu/zFcDHrNH11FPI6PI4amkO3ud0hZY4zC2rrbHmhe8b/C69x0KGEUTLUxXpTSZzXJ5eQSxT1VOJYXHvM9RpnfxmvdtdurdjDeKudBxOkc4Dhz0c4xTYzjDOJ6PzM18zlZMNOMo4kTjCHawk83mNiqoZJwaw3xjVjheVtg85X2RL/RXvGN+SKvZxk61m/FqDN91HMfRxsFMVCVsMDdxVPv3KVKj+KPrGqYZpRSrAvZX83HhJGUElot5yfsWL3lXU0Q+jTRTyjiqdW3QZe2zDwbS2XuLuZ09upapTMCpnJxkHEEDTWw2t7JNl5Ov8tCYuPFgYjJZjR/y6xosqXEoIqWYAg5R+9JGB819lAeIhnBNVbbXJ+wtcLjO/Ih/el9mt65lPGPIV7lMYAwHqr1Rnf8ANplfco/nMWaqySTh4kjjoCGNLRFJ4FCIBPCVruAO7yMAFDKKaaqU6aqUtfpDOuiqU9XUrY6DGHkGOlV5KFpo4xeeWwHIJSugpgj4rv55O6enufFQo32Fik9wHM7Vntv53NzGWjbwO1fPIvrxYKPewia+BOBc49sUqnyudl0Y5VHFltXm+/zO+2cAplNKgRpFhkpjqbEIgFXmuh4XPL7UO6jqnEqyQ+9kLzU16Lpjub5PrHnRfJMHzCes3z/QnwbUJROJr6VbjcM7PSt5S79n3bbR3MJEVTKkwGGOyuLPSTeyvONXbDA3Ar7ay9cnLQfgBvedrDLXsdRYxL6dF5JixePe//CM+TIAC5jFp/oLPtVfAPBM0t0AHNN+Lpv4kk36Sz7Um5hGKckqiS/1dqqooURHtoNvLHjFXB2wbfmYzXzJ9qDLNmp79lDoU5U/0pusv80h7GvtZ29w30mL2cZSY1HM7Hsl41BESopK5nX9DgBHszTKowkUtsCh7by2t4vIb5vr+b33AQCmUcrRxsFkGOm86fHt3+brmQBs0J9xt/kYAF9XiznH+a0hjS0RybVkIRKAvW5DFplW0eeMboEaex0HMbJF4oDVfoDswtmj0H33KbvJqisbo6SzFlYTLXGbKWuv61SsCgdc7H0ksL9HeSqnx2ck6H/bVeW+aobZp1vGWn2fWBPsfZT3bGRp7VbjMNhFpnB1J7efLI5WudbP9u95rLFnLeeRHfT2AjXK+tn+nfLXOfTXQBxJyoNsW3rbbgcGAULPOLSvz/43iMXPkzRHEZESy/VVwzZVWfc/Vdl+jpynsjuPI7u2Cf5M5962I6KLZBwKkQDs9WIucZ7F9zuvkixqP9nK4oLAOg5iZIpkxqH9ufYx5vQoMnyXZyWXem6yfk+2TePqXhcqlg78Q+Wvp5JMElc6z5eubEHYa8486LqJUiOwGcdyejbnuc/zNy72/AqAsj5qYNozDltoHepQE1qw2mvyno0s3WscBg0chilzd1/HPO43Hwfgm46vW7cvdy4L+p2PBS266/vweNLtjOrYFwh8T85xfou/dfwbCPxOFasCPtCf4sVLJXsC9m+Jrrdux8EETFUeQMahfX1nOU62fo7Fz5M0RxGRElgvPLbqq4Yv49Be3iD4NsN+jvxn141MMSawXe/sWkdn8NH+Hn3f+e0hjStRSeBQiATwtPcl62d718JkXAHLNchU5RHPf8ga6YzDYM+X1K3ek/3zWmL7HJfpXcxk8jCMcHj5D0JKVOGIDxre7lnBKnNdj9vfMt+3fg61ELX9KvqT5guczclBl7MXBm/Vkj3Xm9s9K/hQfwZADplW3VGpCzmytATUOOwlcBimz8Q/vP+1fi7ppdNyrLEHVtNUKikk00Z7QBZmCV2vxd4QxP4ay3XliCq672+ylEsWDTTjxdtrECOgXtkALhaWBTQ9iO3Pk0xVFpFSRD4OHHjxsspcx8kdF0V7SBb/hck9um5I6wnlYkP3izi+ZbuyE/3rsC9n35aLLhI4FCJOfa39TN7W6zExGU0uc5nBHGOq1WAC4I/Oa/jc3MbPvbfiwMAh1QlEp0gfrgY7QLZPTYbAjMMpagKz1VRqdEPANIN4sKzjJ/zDfAEvXsZSxNWO2KitFC3T2o6gjTYMDKaqiQH3zWASHXQw3ZjU4/PQm/2N+ZxlnMS/zddZY35Aua4MGnxII5UZahJuPDiVI8iaRq7TOy7jX+ardOAmgzRyyOZY42CmG5P4iee3wMCyy27xPMh1Hl9G8YnG4TycdPOwjFsMH/vfO41UGIapyjv1bvZv982IKKaAQ439OSBOGkb5X3sqKSilSLUCh10BxWIKmK9mUq8bA2Z7TFel7KWmUKPrKTd3sciYE/HxR8P9nr/j1A72YgpnO7/FY97nqKeRdNKCLl+layhiNPnkMJ4xQZcJpkbXUspYslVmzGdzSnMUESkO5eBZ1z08432Jj/TmmCr74+38HtRQx0fmJuYY0we1nirTl8E9itxeL8g06CYmM55iNZo05SvhZZ/W3KSbObrjXMrNSsZSxIHG3jF/ASJaJHAoRJwq15XWAchualmoZjPXmEGe6qq9s8AxiwWOWfyf9wZfZ1c98jr6iUDRmqocTPeMWJft91Eqh4/15wCUE1u1WfqzU++2mr6UsSvmivxHUoNuYjsVAIwip+dUks7zpvnGzJDXOUrlkKKS2U0NQK+BwxSVzGfa15xmui4dxOgTV7mupAM34KsjmkE604xS9jPmWcsMpMbhLl1Ne2cjrlibEiVCY/97p6jkoFvvoWbulutdVtOdCRQz15jOaJU3pHVGij9A6M9kTiWFWhoCAq6pRgplehfV1OLVXQGibJXJJ52NVCribH82FGW6ki2djVBmqslU6mrK2EUzwTu87mK39T9zIF2V2cFWysjRWWQYoT8uGiTjUETS1x2L+VhvpsKMre2O0r5LU15MmnrZHoRiF9VUUEUFVeTazn/9TG2yma104CbNVr7GoRykk0ozrTTQzHZzJxVUkUk6C4xZuJSrx7qEBA6FiFv2A68Ukvhn8t29LptBGvU0BkwDESNbZKYq9/18yd2mKrtsu6RYrs3Sn+6vdSRNS+vO/rc70jiIB5Nu6mPp0IXy+QiscShdle2adWD9wm85jmS5cxkfmp9Ztw3kPWvWXfsjqY0YnwKnKgc2R3HixINnyBmH9u/q2c6TWe6MrfpzffEHCP3blVSVArpnFmaxKqBa11JBFaY2MZRBMYFTlUcKe/2xTJVOknKBxrpo0V3AVMEQM3601tbj4mFfK81RRKTFYq3P3LZ9rG3nUBqkBExDDpJtXE2ttb0p7rZNySKDZlqp143sZDcA09TEuNovRZrMWxQiDmmtqaVrGkxaL9M+/PxZPg3SHGXE0zpyGYd2wQ6PuwcOnXRNJw2sCdV7A4xYZJ+KlISrR/fokaSslzpfQxXK58Ne47AtTE0dEkUdDQG/+99Pe7B1IFOVq3Wt9XNtt3WL+NDaR41D/3cpnIFDe63SeOB/7SnKn3Hof08CszD93yUPHqo6s6LHBtTsHTmBQ3vH0yzSSeqcVeDGE3T5wXw+9lBnZTvHQ71MaY4iROBnfygNUuzHf8EuHPR1MSLTdm7s/17GwzYkmiTjUIg4scH8DBOT/3hf5x3vh6STRgNNGKh+28b7C8Y204pXe3FIva8Ry79zjHRzlGC6N0dxqq5d0mjyGEUO2WRaJxvxwqO91s+jyI3iSKJrq1nGF/oriimgmRbGq+KwrXssRRSQh4HBf7yrONTYn72MqQHLOJSDJFx04JZGHzafm9sopoAydqHRJOFinPLVE7MHuXubqvye9xMaaKSJFmaraZQaY3EpJy7txIOXIvIj8jpEeOWSxSQ1jnbdQYotcKhQpJFCI81D+h616w7KdCWF5NNMC2OJt8Ch77X7p7v5g+yttKG1thpglaqxjKcYL16udP+e37l+SokqJIsMCsjrUaIjkTXZGvJlqgxrVkFvGYcuXExS46jTjRQQ2hT2teYG5quZ1Og6Shk79EEPM5mqLETgZ99e1sFPa80L3jd5znwVjeZq10UUqcBji21mOZkqg8mMx9SmdVHH7gPzU+aq6ezRdUzodgxaSglePLTjpoRCmmllgioJ0ytMTBI4FCJO/MJzKy+ZbwGwv5rPPGaw1FjE1a7+Gy9kqnRrfkQjzeSQNZxDFXEgFroqd2+G4bBlHBrKIEOl86XeQb3ZOHyDHAatqg20b+r1l8mvRHs4UfOo95/c6PWVUDjVOIYfOE8J27oPduzLa+pR9uo4hl26mt947uUvSb/vsVwqKRI47OZO70rWsgGAs4yTKFGFfMtxFNAt47CX7LLj3OdR05nxfpXjAq4xLmKNud7KIlqtP8Ct3VIjKM5s0+V8qXeQhAtDGQGBw5TOablDydzdriu4xfsgAHsxlUMd+4Vl3JFgatMKpHefqgzQji/YCnCL6yqK1Giu8dzOY+ZzHG9+nRMch+PGwxdsJ0X3PLlNVN07nvaXcfiW+R7V1DKeYgwV2qS4Gz13sV5vxIGDW11XDX3Qw8zU0hxFCPrJOKylgRM8P7R+399cwPccxwcss9J81jovftL1p6DP8kvPHeymhnGM4afO8wLuu8Z1EUs6TrN+TyWF3zp/MvCXMoLIVGUh4oQ/3dqBw2oy0KPRQC/sLeobbFeAxcgTyeYodsFrHAYGFuyBQ+iqV7KHugFNm4w2/8lSFhlWFspIVE7XFJEiNTrs6y8JYfqffzphi5a6e372qTtjVEHAfsQ+vbu3Gof2IGw5lXi0x6oP5Nc4hGLnIjr8wRx/Vpg9cGh9j4YwVdn+Hc1XOYNeTzR0bxwDfddQDVaDNbOzpIx9+m6ia+x8rQpFOqnWZ8uLNyCABtCm26nGV/JgILUK/e9vEflxMZtGMg6F6H+qcvcSNMFK0gTUNwyyzWjT7VYTvZIg93cvh1CsCkb0MXsoJONQiDjh30BOUMU8mRz8ykpv7N3pGnVT8IJzYkSJhanKfdU4hM66UJ2rqNBVTFbjwzq+4eI/WcoMMbCfqOwHdVc4zw37+lNUMvnkUk1trw0HrEwpyTi0+A/ADQx+7rwgoERASkBdyJ7vmanNgEzEcl3JLqp7HPg36CbygnQ4FLHLP33UnxVm33p3Tcsd/PeonK4Tv286vj7o9USD/XVbGYe274rvO9H1eS+xTcO2AocqgypdE9AwJNH5L6Jlko6hDFy2i4VuPAHHAPZt+NgQ64x1aLfVpTteapNJcxQhAj/7wQOHlX3+3v22YN//Cl1lu79naYwC8nDgwIu313WIQBI4FCLG3e5ZwaveNdTjm65ZwsA3bIEZhyPnoFX0FMmMw36nKtN9qnJgErx9J367ZwV3JF0d5hEOj66Mw/R+lkxMt3tWsMpcxxrzA8D3dx5FzrA8V4kqpFrXUsYubnM/zCWuswLuT7PVIRM+/oPtMYwOCBqCr0RACsm00R70PWvqlklYriuDHtA3SWZ73Omecejnyzj0fY88eDip/cJBZWV8ob+yfl7p/Revmm8PYbSRZc94717jEDqD7La3xB74+pv33xSqfOs4rJGWgJqIicy6iNa5L3QppxU568AdGDjEHgQIrf5lYGAgPk76JeNQiP4Dh91nkQQ7zthgbgR8F7vyg9QTD9ym9Nw+GMqggDxrxsRgzq9HGgkcChGjvjR38Afvg3xubqNG1zGFCRSpfE51HDvgdY1jDAepfdBombIngMgfsAZ7vu7NUYxugcOvGYup1028ab7LGr2e173vcIhj32Ed51C1mK3MVdNJJYVpamK0hxNRz3pf4X/mO2w0t9BICyUUUaTy2c+YN2wnyWc6TqDcrOS/5iqeNF8k3ZMWUEvR3vl0pJys96VDu5msxjONUsb2cnJ+sLEvLbqVXNWzFq79wtMocihVY3nM8y++rhbzhf6Kr6josZyID27tyzh0WRmH/qnKvu/ZYRzAW973aKAJpQf+PWrRrVbwzKu9cfUZ8WgPpYxlnBrDSY4jAJiuSq3vSh2BdXhLVCE/dHyXjd4tbOJLnvG+TI2u860LD220BwQeE5HWmgmqhMlMYFznSbu90Zm9Qcoqcx2PeJ5mKhNIJ42vGfuH9BwPef/B19ViFIpvGIeG9wUMEwkcCtH/VOVGmljCQj5kExMoCWiW9G/v67xirmYUOUxQJSw1FgWtifo3z3N8XS3GiYOvG4uDjmOZ40Q26M/QWnOMcXAYXllik8ChEDFqs97KA94nAJjKBKYbpSw1FnGu89sDXpepTN7Q7wK+grNCREK/U5VV98Bh4EH0EY4DaaGVh8wnQcNavZ5DiO3A4U52s05/BEBhP93OE81r5lru9v4VgAPUAqYY41lqLGK5c9mwPeeFzjPYrWu4pf0h0JBrZvEDugKHKZ0n5yZmjwyXkWgnu1mtfZmgJ6jDgi6z0dzCdioo1D0/v422+mx7qON58w0ySaeeRnJtUzUbR1Adt0ThzzhMUt0Dh4qznCcBcDu+bOLB6NBuK1iYr3KDdsCMWQryyGGpsYhvO44GfO/X/8x3AKjS1QGLp6lUbnVdxe1qBas977NT7w4oA9BAU8IHDutoYE3ntuZryhcI7D5V2W+tuYFHzWcBON34Jkc6DgrpOZ4yX+JzvY0M0njOeV+4hj6s7EESCRyKkSqgq3KQwOFn+kve4n0APmYzHt21vVhlruOuzmPN84zTuMF1SY/Ha635q/kcrbQxU03udZtyreviobyMEUcCh0LEKHua9nLnWYMKGPpl2qcq6/i5yi/CL7JTlbuEMlW5e8YhBE5Z6q2OXSwpsxVwjpepU+FiL169Ium3jFNjIvK8+eSShIsO3D0+I6kq2fogttI24gOH5SF8PjNVOujgjbS6Z4mZmFYZjVyVRa2uD7qciH3+DLCeGYdd2+7lzmUsZ3AXAha3n0Kl3oMDB88m3RMXjSz6EkpzpuXOZTzmfY71eiPtdFi3N+pmClX+sI8xmgLrj/n2471lHNqXPc95akjr11pbj4unfa1kHAox8BqHAU3ZbMcxyx1nBl1/LQ1WuZV42j7EOumqLESMGkyh6N5k2ZqjdK9RJUamyE9V7impW1flYGOy7/DjIXA4mDpNicL/9zEwKCJyJ8VKKetz0v0zkmbL6hlKY4dE0V8xceiqR9ZKW8BVfuj7wpO9xtBI6hybKKyMwyBdlcPBf7IXL91v+zM2xIta/u+ZPWA0EgLrAduaztphTlu+in9qfI9lQzzeraOBFloH9JhY032WhRAjReBU5Z4JDf5tgn+pNlud2bIQthehXCQVAycZh0JEmb/ulr+hgN8G8zPr56Fu9Lo3R5FaXyNXtJqjBJPcLXD4jrmhx2ezkFFW17P15saY/uxqrSk3B34CFO+01tzhfYSP9eeALzDgUq5+HhVeJRSxlTLqaKDJbCbD8AW/UuyBQ902ojvK9/x8Bg9sZ6kMK0uzkeaAKch9BQ4LVb7tcYkfGEk0oWQcDla72cFuagF6ra0Zb+zb90e9/yRXZXGx48we+6dg+4GREFgPFgxMUvapyj0DhwO56BTKtiwWBWQcxuixjBDDTdly17pnHGqtrcZHTpy48dDceZHAfl8+vZe8KDNtgUNpehI2knEoRJS9bK5mdNt+/NZzP5vNrTToJhp0ExMpYV/mcpZxElOH2GQh05ZxeKPnbm73rhjiqEW8CncWSZ/PpfuekuPEyX9c93OCOox0Unlbb2DvjhMDlnEoBzc7r2AUOeyhjvu8fx/2cQ/WHur4lfcusslgNtM4xNgv2kMadm26ndz2fbjJcw+5ZPEj47v8I+mPER/HXGM6EyghjRSrQx5AgRrFOMZQwKgR3xiqgSZ+6b2DLDKYzdRei4Xbu4F3n658hedmiilkLF0n6qPJ40C1Nycah1PKWArJp3mEv9fxRmuNx8o49AcOfcKxr9jJbpJJYjzFzFXTh7y+WDBZjWdV0l/5kXE69TTyK89dHOP+QY/lLnGcxXtJT5NDJgqFEwetJPb3w63dXOb5DVmkM51Svun4GhA4y8Be47BK76GYApaohT06vfemXFeSSTqljGUaE8M6/uEkU5WFCMw49OINuO9Kz+9x4WQmkynpPNZoooX0trmktc+lij1Mp5QbnZf2uv4yXUk2mUxhPJPUuOF5ESOQZBwKEWXlupLGzpOzMWq0L9sDrMyYmcbkIRcRt2ccarTV3U+MXJE/YO35fEopvuZYzEd6My95VtNIM9t0eY+swumqlD3UAYE1BGNNua6knQ7a6WCaSiZPZff/oDhXritpo5022hlDChOMEhYae0V8HCkk8RXlgO+AcWrniaQHDzvYCUCbGtlTle2fzySVRL7KDbpcpuraXzTqJuur26bbqcB3pb+YAmuZ3dRQTAGlxli2Ugb4phGK+GEP4jh7TFUeunJ824ntVPRoihWvUlQy+6q5rDE+oNVsw4OX7bqix3KTDN9JawduNBoPXit7JlHtoppW2mgFximHVc/RZTvt9Ge4dmg35VSi0QPKDCrHd+zcSDM5KjOs4x9O0hxFiO41DgNnJ5XpXVRTSzW1LFCz2NZ5t7+JShvtbGIrc4xpva6/girqaaSexl6PdcTASeBQiCiz10S71nkx33AcGvbnsJ8IgtQ5HMliaaqy33LnMl4w3+BV821aaKWOhoDpkaHWkoo2e02VI4wDoziSyLFvv05xHDOsHZT7ElALk66/g9Q47GL/7hxuLOl1ue6lLfz804MA8lR2wO8lqjDgcY1BGquI2GVvVBGsq/JQJXK9qeXOZTzsfYqNegvlurLXchrFFPAF2wGo04kdWLdva5Ya+1o/B8s43Mlu67M2kM/GYOoixgL7UZHUOBQjldHHVGV7DcMcer8o0Nf33n4cGE/bh1gnU5WFiLLuJ1/DwT71DGC3rhmW5xHxIxK1dQYyJcdeo8j+nfDd1/W98Gc8xaLyCHyXY00ktl+hCPiM2MaUQle2dpse2YHDwI7fBb0uZy9t0WirxWb/7tkbofjWV9gtU1ECh/HEXm/ONQzNUWJlOzFc/K+pjXZqe8m2HWXLetmlqyMyrmjp7e8dLOOwYpABQPv2KG5rHErgUIxQgVOVAwOH9hqG6Sot6ONdOBlNXq/rD9wGxc/2IdZJxqEQ0aZhtppGnW4ImP4VTpmkk0k6jTTjxBHQ2U6MLJHMOLTr7wB5mprIXmoqbjz82P3rgOAFQDJJpJGCu1uX11jh1m626h2MpYgW2pigSiLyvLW6nk/1Fp70vsAm88shlzUIhdaaXVRTo+uooR4XLhTwd++/+Z/5zrA/fzD1upFUUjAxudXzEG9538OpnHyht1vLXOu5g3u8j0VlfLFgq95BFhm4cfOI9xleMN8Mutw2s5x0UjEwuN5zp1VXdKfeTRYZePCwRW8nnVRaacPA4C3zPb7q6Jqmucp8h5M7LorI6wpFnW5gnjGDZY6TmGfMiPZwYk5AxuEwNEdp0W3MUzOo0w0JWah+pppMldpDB26+13F5wHZYa009jVTZLtg+7v0v2/VOrnb9iHFqTDSGHHZaa/5pvsy/vf9jg7mRfHLRaErVWGsZly3jsKOzq3KdbmBvNZta6inu44JGd0orZqtp1Or6YTt2Hg4SOBSi21RlbQb8PEEVk0YKeeSQarv468KJF5N0UpmlpmCo3vPf0kllLzWFZlrJJWt4XsQIJNEDIaLsHb2Bj/Vm39UT1fvVk6FwKie7U9ZS0nYge6jjLfP9YXkeEfvCWfC+/+cKPUh5hfNcrnCeyw3uO1llruvRvdVfm221fj8mOyuX6ypu8T4EwAwm8XVH8MYT4bbO/Ihvui8AYDxjmMDwByw7tJv3+QQABw7SSSWHTNJI7bPr7nBSKLLJYBfVtNNBpd5DJum4dVdApEm3BEy9HWn26Hrr9Xu12et70U67VYOtQTda071rdJ31mPGkMVGN5Svtqys5ilxabHXb2uiI2mchmLf1et7yvs9r5lo+SP5ntIcTc+w1DoejOcrHejMb9GcAFCdgxuHvXD8FsPZfHbbtDsBbOvCYazNb2WxuZX/vPM5xfiti4xxOtTRwmvvHAbeNp5iTHUdav7tsjU/8zXjKdCXv6Y8B33YkVGv1Bj7Rn5OEK65qmEngUIjepyo308ob+l0ADjX2J0V1lZtx4+F7xvGMV8Vc7bqwz/W/Zq6lgSYmq/Exd74QzyRwKESU+eu0FKvCPq+ehEOJKmSPrqOCKkxtDvvzidgV/dYowWWpjK4GQTaGNjAx0egeNRBjgb3W3yiVE7HntZ/wp6iUoO9duNXRYEUVXDhJIZl0lRaR5+5LFhnWFECHcpClMgLGmqSSoj7GaLJf1c9XuVYtu+4aaAr+ntmuA+SpbLJUBun4phH5l3FoA2/n9zSW3mulfVug7rWUhI890NWzOUo4ahx2bR8HklUWb3rff6keDQAgtmv2DlR5kMZl3RuE2Wsc+rNcm2z1UAeyzfC/dyWqMK4CA9IcRYjAz77H1lXZXh85i/SAOtUAY1RBv9uJRt1sXeRMxNIY0SSBQyGiqEW3UkM9QESm75SoQj7Um/DgoYoaisgf9ucUsSVWpyr7LXcuYzk9G2yMbtvPOqCo0FXkxljHYnudpuFocNQbe22yZY4Tucx5zrA/57+8r/KW25dB81PneVzpPH/YnzMUKzxPc77nagDOdJzA+c7T+Kv3X5zjvhKAcxwn80Pnd6M5xKjap/1EdusaknDxbNI9vZ5sP+V9ke+6LwXgDMc3+bHzbAC+0/Fjtpm+DMOHkm5mgiru8djStkPZyW5yyOLJpD8N0ysZuKK2A6ijIUpbv9jnCZpxGMauyp3bxwLyEqarcjC97b/y2/YN2pQulmv2DlT32sQA+xnzAn631zj0X/RqsNVDzexWj7s3zbrF6txeQnzVL5PmKEIEZhx67YFD20yFTDICpioDXOW8oN+SPAF1UxOwNEY0SbqREFEU6YLhAZ1Hg1wdFiNHrE1V7o/9hCMWszQCM2oid6Biv1LrxDHsz3e7ZwXXev5o/R5LtaXsmUxPe18CArsqt9AW8THFEnt2e18ZOvYDdft7Zv+Mj2F00Mf6G6TEWldl/6uVjMPg7DUO/dNJw5Vx6NVedrIbSMxpyqGwZ9rZxeK+bLDKgryWlG4n/cEyDhttJRNCzTi0HzvHWwarTFUWIvCzb2+O0hCQgZxOiu0YLouMkOp4l8Vpx/V4IBmHQkTRTr2b/dR8knAy25g27M83k8kcpPbBjSfhu/qJ4CKZcRjOA+RUUoB6DIyAIvOxwsBgqVpEG+0UMCpiz2ufquwaxl36nz1PsE5/yBZzOw7tYCoTGaNGs8iYM2zPOVAzjcmcYhzNOvMjtusKduidnZ8bn9YRHDhsNluYqiaShItJalyfy9oP1Ft113uWpTJYwt5kqvRepzkfoBZQSB7NtOHWbly9LBdp/uyGaGVcx7rgNQ7DEzjco+s4QC3AxGSaUTqkdcWr7tvmFJLZR80mj5zoDCjM3NrNM96XmEgJ7bQxQ00lW2VwpHFgwHI5ZHGQ2seXYdT5VbTXWs0itMBhja7vXI/JVDUhbK8jEiRwKAS+UlmdXwV7xntDt4zDIxxLqNCVNNPCVBXa/mO3rmF/NR8XTqbE2fYh1iV84NDr9XLttdfy6KOPsmvXLoqLiznrrLP4xS9+YV1x11rzy1/+kvvvv5+6ujqWLFnC3XffzdSpU6M8epHotlPBWr0egOP5+rA/X6bKsIrObtcV/SwtElE461YNxFCfz38ya2KyVe8Ix5DCaqsuY5VeB0CGSovY89q7TA9n4PA1822eNF8A4FC1H2mqiKXGImYZU4btOQdqrCpijCpgK2WA729iz3hp0+3RGlrUVVDFO/pDoP+srzRbMfI2fO+ZR3t41XwbE5OFzOr1sTXU8YZ+D4BdVDOO2OgY6w8cSsZhcAEZh2GucdhAk3XcMV73nN4+Eri6ZRxqNG/q95jI2F4eEV92Us1L+i0A9lJT+W/yn4MuZyrT+iycyrGArx6ZX6YKbapyNbXWeg5XSwY97miQGodCBE7T92p7jcPADOQDjIUckLRwQOveShlvd55b/5/63tAGKgIkfODw5ptv5u6772bFihXstddevPvuu5x99tlkZ2dz8cUXA/Db3/6WO+64gxUrVlBaWsrVV1/NkUceyaeffkpKSko/zyDE4AVOVR7+Oi2BU5UTZ4qMGLh4m6qcqlKsq5P2RiSxop0O6+fkXqalDQf7lVrHME5Vtm8vnk66K6TpItFg38ZV6Comq/HW7yM547Dctq8Z20/g0D5VubUzcLiLauuEt699lf2+Cl3FOBUbgcOuqcqScRiMPXAY7q7KDYOYippoXMoZUNzO0RnIboyhzuNDYa8pdrCxqNflgmWADybjMPAxoQUbY4VkHArRLXBon6qsA5ujDEaFTFUeNgkfOFy9ejXHH388xx7ru7I1ceJEHnvsMd555x3Al21422238Ytf/ILjjz8egEceeYTCwkKeeeYZTjvttKiNXSS+SHcaLLE9hwQOR6Z4napsr1VXZsZefc52bQ8cRq74vz1wOJzTQv3bi3xyYzZoCIHb0XJdyWzVNXNgJNc4LKfrO9PfvsZ+ct+iW32PD/FAvPv7HyusqcpaAofB2DOXe3ZVHprBNL9INN1rHPo/jw00obWOq67AwYRa4zdY/VR7xmEGoWXrd2+gEE+kOYoQoGxtNgK7Ktu+24O80BStmuMjQcI3RznggAN45ZVX2Lx5MwAbNmzgzTff5OijjwZg69at7Nq1i8MOO8x6THZ2Nvvttx9r1qwJus729nYaGhoC/gsxUO26g2pbrbbINEfpygZZZ36EW7v7WFoksohPVR7iiZF9yulavYGTOy7i5I6L+IP7gaEOLSwCM3YiFzgc7hqHWmvazHZ24auJGutXb+3j+6/ndZJ01wl7kxlbDTsiaae52/q5v+x2e2DYP1W5wgwtcGi/b3cM1SKVqcp9s3dn99ev9AdZh7qvGEzzi0TTPXDo32678QRkq8er3SEey3avn9qh3Vb2YBIuX92zEHRvoBBPJONQiN67KtfqrpjKYC80VetawHcRrIC8QY5QBBPxwOGXX34Z0ef72c9+xmmnncaMGTNwuVwsWLCASy65hNNPPx2AXbt8V+ELCwN3dIWFhdZ93d10001kZ2db/8eN67vQuBDBHNxxOi+Yb5JPDucZp/bapTKcMlU6NzkuI5N0vmQHT5jPD/tzitgSyXybsHZVtmXTzWEab5vrecF8k196/xgTWUQd9qnKKpIZh8PbVbmCKnI69saJwQJm8lfXLWF/jnCar2byI8d3SSeNN3mfSl3NJDWOdFKpZeRe5NvBTpJJYhxjKKGfGoekWj/7pxOWUYkTB8UUMpGSXh87mjwKGUUm6THVgMt/gi7NUYLzai9ZZJJHNinat/0KZ41Dv1CnoiYa/0UdhSKd1IALTfb3J17t1LvJII1CRpFPbq/Lda+f+mfv43yhvyKDdI5QB/b6uO66N1CIJxI4FKL3qcrVuoZkkhjPGArJH9S6K/UecshkBqU41PCV8BmJIh44nDJlCoceeiiPPvoobW3DP23o8ccfZ+XKlfz1r3/l/fffZ8WKFfz+979nxYoVg17nlVdeSX19vfV/x47YK9QvYl+FrqSRZtx4mWyMj9jGbYJRQiPNmJgBNRbFyBDJ5ij2U/ShPps9my5DpaFQeDr/xUJAKLDGYeJkHPqnfLTSTopKZrIxvp9HRFeqSiGHLJppAaCJFsr0LpppZSe7+3l04qrQVbTTwQ52UmIMvMZhha7Eg5cKKilQvXcNz1aZVLKHRpppoDE8gw8DCRz2za08NNBIDfUoFdiBesgZh4NofpFo7J2qm2kN+Bza35941UATTbRQyR5yVVavy3WvcVihq/DgpYlmilToF88bAzIO4ytwKM1RhAjMODRtF8B3UU07HWxnJwVG78cafamlnjoa6VCe/hcWAxLxwOH777/P3LlzufTSSykqKuL888+36g0OhyuuuMLKOpwzZw7f+973+PGPf8xNN90EQFGRb8pOZWVgLZ7Kykrrvu6Sk5PJysoK+C/EQLTrDqrwTe2YoSax3LksYs8dqzWoRGRF4nA1nFfW7dl0DyTdxDGOg63fy3X0ax622zJIEjFwCHC07T2PZfaaNuVUWVPnRvL2zv8dMTAopO+DcXtZgFbdmXEYYo1DezFz+3TCaPNvf2SqcnDBMpfDFWSVjENw9tEwKxEyDu0ZgH39jQNqHOo2ymz77v9znjHI54uvYLT9e2UkfsUwIYIyeqlx6D9OUyjGDCLj0NSmdWEh3rYN8SDiW6z58+dz++23U1FRwYMPPsjOnTs58MADmT17Nrfccgu7d4c3I6ClpQXDCHyZDocD0/QdPJaWllJUVMQrr7xi3d/Q0MDatWtZvHhxWMcihF9gN+XI1gwL7Kwc/YCLiKx4zbixB8XceCih68JOLASEApujRLCrcpCmBuEUj93pxnbrHu//rNTRQLNuidawosr/HRnDaJyq78+JoQwr+O2fqhxqIy97MfNY6hhrdMuiE4H6Knkw5KnKts9Bxgg9kUvq4zvXEEPfk8EKtaFBSrepyoNtYhCOBgrREs6ZGELEq8Aah10X9PzbhEJGDarhnz2jO962DfEgal2VnU4nJ510Esceeyx33XUXV155JZdffjlXXXUVp5xyCjfffDNjxowZ8vMcd9xx3HjjjYwfP5699tqLDz74gFtuuYVzzjkH8BXsv+SSS/jVr37F1KlTKS0t5eqrr6a4uJgTTjhhyM8vhN1n5pc87X2R981P2UtNxYmDuWp6RMcwhtHMVlPpwMOH5iZ+2PFLjnAcSBvtvOJZzSf6c2YaU/ip8wdMNyZFdGxi+EV2qnL4Mg7tgUMPXiaoYmYxmQyVzh5dN6R1h4O/xqFCDUsArzf2jMNwPu9b5vvs0bW8Yq6hgFG4cDJJxUc93wmqhHnMoJ4mVpnrSCeV2UzzTaPVe5ikQuvcmSg6zA4mqfEUMbrfjsp++6g5NNPMqM56ZXkqmwXMwouXNJXa6+Ps2UaxlEllWBmHEjgMxhNkOxKufUUSLhaqWXTgGbEZIK4gF5PGUkQSLu70rqSGek50HB6FkYVHQLOSPv7Gad2mKueqLBYwCzfuAU1jTyOVBWomXkyydHpcReDsNZllqrIYqRxBahyu9W5gmprIGEYP+kJ1YIb7yNzfDKeoBQ7fffddHnzwQf72t7+Rnp7O5Zdfzve//33Kysq47rrrOP7448MyhfmPf/wjV199NT/60Y+oqqqiuLiY888/n2uuucZa5ic/+QnNzc2cd9551NXVceCBB/L888+TkpLSx5qFGLinzBe43nun9Xsm6fzMdX5Ex+BUTt5Nfpob3Hfye+8DPGQ+ybPmK+yhzlrmA3Mjs82pEjhMYPEWOHTYMw61myKVz6dsAQ2H6QOGtO5w8Nc4TCZpyB2kB8J+wu/qJ5NsIO7yrORJ8wUAFjGHIxwHsthYELb1D6eZxmReTH6IwvbFbNNllFBIOZWgoYY6JhEfAdBw2amqWaM/AAg5+LubGjbrraSTitf08qL5Jh24maOm9fm4dFJRKDQ6pmq3yVTlvnl0V8ahI8xTlbfpct7XnwLxV48uXLp3VQY42rGUx73/5VnzFVab78d14NCfXWxgBDRX6q77VOW1egNttDNLTRnQ863XG/lMf0kaqaTH2YUgaY4iRPeMQ99x7IPmP3hd+2I/97iuH9R6G+O4cVI8iHjg8JZbbuGhhx5i06ZNHHPMMTzyyCMcc8wx1nTi0tJSHn74YSZOnBiW58vMzOS2227jtttu63UZpRTXX389118/uA+pEKFq0+0Bv0dz6l+WyiCNFNrpCAga+sXC9E8RftGaqhfejENPYK1Oov9Z9dc4jGR9Qxi+rsr2Mgb5Ki/uTvizyCAJFx24rem2AA0xFMyKFPvfMtSMw2JVwGa9lWZa2UqZ1QW2v+mEhjLIJJ0GmmIs41CmKvelrxqHQ26Ogr05SnxtR8IlWP3ZBt1MDpnU00g1tbRpXwOqeNRg1RTL6PPCmb05SqNupq2z+VKo2yU///FpsSqI6IW6cJDmKEIEn6o82NIFdgHZzyO0Gddwinjg8O677+acc87hrLPO6nUqckFBAQ888ECERybE8KvTgV0moxk4XO5cxjrzQ/7RmVXUnQQOE1ukMw6HymnrOu7BS4mKsRqHVsZh5OobwvA1R/E3wxhNHk8n39nP0rFHKcVENZbNeitNdNU1bIyhYFaklA+iTmUJXcttMD8b0OP9gcNYyjj0n6TIVOXgvPapyiq8gUOZOhZ8qnIjTSwy5vCVWQH4vqeTVWx3re+NP8sng76z/wxlWBd07NvigRwLN+gmKxgdL3V37aQ5ihDgsHdV1oGBwxSSySN7UOttkIzDYRXxwOFLL73E+PHjezQs0VqzY8cOxo8fT1JSEsuWRa7LrBCRUkFVwO/RPuixB1/8FL7iza+bazm54yKWGosAWGWuY6mxKKIdoEX4RTLjZrhqHLrxkEc2KST3KLAeLR2dzVGSIpxx6LZ1cw52cjoYt7ofohxfllq0t1FDUaIK2ay3WtlyEFudfiMlMHDYc5sfjP3vvlFvCXp7bzJVOujo1ji83bOCVeY663d/1mUjzdzuWSH7sW4CMw4DTw2GnHHYeSLnwBGQcTaS9JZxONWYaP1eTiWTic/AYQ31QGhT0dNIpQM3zbRat9kvVPQnYHs2gMfFCrl0IQSoIF2V/d/tElU46EzipoCMQwkchlvEA4eTJ09m586dFBQEpqXX1NRQWlqK1+vt5ZFCxLc3zHep1fXkko0Dg28ZR3Kc8bWojumbjq9TqsbykvctPtfbmKhKmGlM4Uu9g3fNj3jTfI//me+QQxYttLLZ3ConXHHOf9Aa6SkyQ3227oFDpRTLHWeyzvyIdjr4u/c/nOo4ZojPMnhWxqGK36nKFbqKC9zXUGlWU0IRc9V0TnFG7z0dqr3VLNpVBxW6km2UA7HV6TcSGnQT//K+ygSKSVdp7KNmh/S4qWoiB6q9aaODHeZOFqk5JJMUUmDjAGMBeWYOjTTRrjsi+p243/N3XjXfpqwzUJjSWVPNn2noxcsDnieYrko5yrE0YuOKdX1OVR7iVNCuaazpcTetNFySbN1BF6sFmJikkcI3HV/nI3MzHjys9DzL0qRFURzlwN3r+Ruvm2sZxxgmqBLOdp7U72MOMw6gXO+iUu+xtitTBpBpWaPrOUAtwEQzVU0YyvCjQmocCtHVsAx80/fbzHbmqul48DJeDb45bpvuYD81DwcOChgVjqEKmwEFDk3T5H//+x9vvPEGX331FS0tLYwePZoFCxZw2GGHMW5c/0W37d2k7JqamqQZiUhoG80veEu/D8DJxpHclvSLKI8IlhgLWWIs9AU9TKyMwts9K3jDfJd6fFOr/VP9aqinUTcPqPudiE2ROFwN55V1Z7cahwBfdxzAzd77AdjHnBMbgcNIZxzq8E1V/kqX86L5JgATKeFgx76c5jh2SOuMJgMHqzu3uX6xVHcvEsr0Lmu/s5C9mGyEdoKeq7J4U78H+ILh6/RHAPxUndfvY2t1g/W+79S7mahKBjP0QVljrudp8yUADlb7ktHZOMGhu7IbNrOND/UmjkICh36BXZX9gUOfcGUcjuRpY/bmKF/pciqoIpcslhgL2ay3UsYuPtfbojfAQVptfmB93040DufbjqP7fcw2Xca7+mMAvtQ7ALhcfT/k59xDLas7mz0dqw4Z2IBjgAQOhehqwgW+Goctqs065hhKpuAealmrNwBwnjp1aIMUPYR0ltHa2sof/vAH7r77bmpqapg/fz7FxcWkpqbyxRdf8Mwzz/CDH/yAI444gmuuuYb999+/xzouvfRSwHfl8pprriEtrasOhtfrZe3atcyfPz88r0qIGFRmm15xlqP/q7KRtNy5jOUsC/h9rbmBp8wXeyxboSuZrqTbcrxKlKnKEDhNyd4AIhqi1RzFHXDCP7TAoX0K2A+cp8Z9dvHYINNqY6nuXiTY/6aHG0tCfpx9SnIl1UFvD+Wx5VQykcgFDu2Nkp5IusM6Admn/UQ+1p93LRcD5Q1iSbCpyl01DofGn3E4ki842vdf+SqXCl1FLQ006xbfZzTKU/sHy/49+pnz/JAeU6IKrcCh/bZQBdbMjL9gtJbmKEJ0a47iDWhiZ+++PlABzVFGaE3d4RTSWca0adNYvHgx999/P4cffjguV886Sl999RV//etfOe200/j5z3/OD37wg4D7P/jAd3VIa81HH31EUlLXyVVSUhLz5s3j8ssvH8prESKmDaZAfTT1NsYyXcl0JHAY7yI/VXlozxeQcah9J7n2z2hZFAMBpjatjJ1IN0fx2k/4VfgCh/GwjepPsHp+jSOsxmGZLaAeLJDaG/vfv0bXBb09lMdGOqDv/wxnkh6QtdC9CYEEDgMNV1dlj/ZYJ4SZI/gkzp5xOErlWumcFbrKOrltphWv9uJQQys5EUn+Wrg5ZFnZvf0Jtg0JtfYqBF78icdgtP3SraGkOYoYmQylrC+DiUmbbrfuG0otXHs5mkypcRh2IZ1lvPjii8ycObPPZSZMmMCVV17J5Zdfzvbt23vc/9prrwFw9tlnc/vtt5OVlTWI4Yq+1Oh6skjnTu9KPNrLuc5vk60yoz0sAbTqNhppshqPxMNJuX2MCoVGY2DwF88zfN2xOIojE0MRrYzDobLX7/MH6VJUMvnkUk0trbotaidd7Z2NUQCSIlzjMLA5ysADhx7toYkWHvY8xYPmP6zvejxso/rjfw0Gyqpx16zb+npIwqnSe3DhxI1nQH/TfHKt7qf+bNoM0kLK8PE/jxMHu8w9DLH0Jh7toZFmVnie5g39bp/L+gOl3V9r9+BXvW4Y2qASjMdW8sAxiMChW/uaXTzseSrgb+TWbmubMpIL1dsvfH1m+poNGSjO6biSbZRZ953YcSGubheAYrEpndaaPbqOPZ0XFQaybfEHCf2fi1RSyCX0c8L4zzi0z8QQYmTqMVXZ1iwpVQ0+cBjv24dYF9JZRn9BQzuXy8XkyZN7vf+hhx4KeV1iYI7vuMBK/9doPtVf8EDSr6M8KgHwT/MVnjVfJQkXB7FPXGzMznaczPccJ3CH+xHqdD3v8ynv6U94Ur/Aw9wc7eGJQQpHFslAnyscz2c/mbJPz73BeQmXen7Nh2zij96/cInzrCE9z2Bc7b0NhcKFk6sdF0b0ue3vxWACh5/qL9i341s4cVJEPktYyEJjLxapOeEcZlQUU0gBo9hNDQ4MNFDPyAoYbaMcNx7yyaF4AB1IDWUwV81gvf6UZlpw4mCOmh5Sc4sSihhFDnuoYwcVQxk+AFv0duZ1fBMnTgoZxSTVez3tRWoOi9UCLnB9J/D12DIOnTjZHIf15IZT31OV+/+br9efcVDHd3DhZAyjmWCra7kEXy3ly1yh17FLND93/pCrnBdws+c+XvW+TT2NtNLGR2wiw5aJWUsDKdp38Wmd9jX+esN8N+YCh1XsYULHIThwMIdp/DPpnpAf+33Ht/iP93+81VnPbI6aNqCmOQEZh3GYxSo1DoUINlXZnnE4hKnKcb59iHWDntfk8Xi49957ef311/F6vSxZsoQLL7wwaIOTk046iYcffpisrCxOOqnv2m5PPfXUYIc04pXryoAdkr3Wj4gu/7SoDtwUGvlx0VnQn62aZ2STRzYbvJ9hdv6Lt+k0oqe4nqpsC5YVqlHWAYf9wCOS3HjQaDpwk65SI/rcQ+2q7N82efCQSjLZRiYlRiEpavAHbrEiX+VQRwMajbdz32ivozMS+P++1dRRYgwsizQJl/X58uAN+TNRrArYQ13A8w9Fme0zmkJSv5lro4wcilVBwG32Do4ePFSyhw7tDuh2O5IFljwYeHMU/5R0Nx5SVUrg30hBnpEzojMO/Z+zbJXJKCMHh+lA4zsmtNfFTSXZmn6rtC/IFMlZAqHyf6+9eElVqT2+b33JUVkBn6iBXvCyZxTF51RlCRwK4bAFDk1MWrW9xuEQpirH+fYh1g06cHjxxRezefNmTjrpJNxuN4888gjvvvsujz32WI9ls7OzrUBJdnb24EcreuXRHnZ1FjA3MDAxpYZPDLHXefqB85QojmTg/Fe6XzZXW2cSjTSTM4CpJSJ2xOtU5WDNUQBS6QrUtUZpGqo9eDfUzsYDNdSMQ3ttyEucZ/N957fCMq5YYCiDYlXINt01FbBVRye4HC3+44AkXOSTO6DHlqjCgIJcJSFmLNqDCOE4DrGv4yLn9/ih87sDXkewE/QKXRXRjs+xbKg1Du1/oyuc53KG4/gwjzAx+BvRHd/xQ14w38BEc5RxEA+Y/wDgetdy9jfmAzCt7Qi2U0HaEE6ih4v9732U46ABP95+/JijBnYsac84jIfZO92ZtuYo3WuvCjFSOAIyDk3a7BmHQ5iq3KhbrJ/jcfsQ60I+y3j66ac58cQTrd9ffPFFNm3ahMPhO8A48sgjg3ZThsDpyTJVeXjsotraGaWRQhMtVOhKtNZxkd2W6Cp0lfXzQIpAxxL7BrhBAodxL+6mKvcWOLRlQUUrm8xeZ3ConY0Hyt8oBsA1iMYs9m3TQJpnxIsSCgNqiI20jMOKzhP8ElU44GOB7p+HUOuYJaskCsijipqwBA4rGHrTnmAn6BUR7vgcy+xZ3D1rHPYv4BiH+DzGiST759h+ec0eFDOUATqyF/tCFfj3Hvh3Mk2lWi98oNlF9gZX8ZhRZP9rSsahGKkM2wwZE5MWwptxmISL5AjXHB8JQj7DefDBB1mxYgV33XUXxcXFLFy4kAsuuICTTz4Zt9vN/fffz6JFi4ZzrKKbv3v/A8Aa8wM+925jPGNIU6lkk0mBGkW1ruWo9nNoUq2MVYXc5/qVNEsZJg95nqRcV/Ku/ogcsng4qasG4Ervs2SQxhQ1Ho/2Mob8KI508OwHaI26Sao6x6lonYQM9eMyWY3neOPrbNVl3OJ+kD96HmGiGstPnedZy0QtcKiHlvXXn0c8z5CqklljrucrXR5wX6XeTRGjGaWyQ56q/Jz3NRpo4m3vetaZH1FMASkkJ2T21X5qLu20877+1DcdZgQFDpvNFmapKXTgZpwaM+DHzzVmsK85ly/1dtJIY44xLeTH7qPmsJsaUknut7TFs95X2KJ38IL3DfboWmYbU9mlq33BBWCX3k0JhSSrpD7rG/bFPlV5X+aSqlJ43buWA4yFg1pfohlqxqEXk/3VfFpoHdC01ZFqMuNZoGaRSgopJDOVCdTTxJ2elaSTxgGOBdZn1ozBwGGTbmGxWkALrYwdxMXwOcY03jR9TXTmqNC3KwDppLJIzQU0mTo97o5FpTmKEDBDlVo/rzc/43Bjt/X7YGocbjA/42nvS+zQO8khk/lqVljGKQKFfIbzr3/9i7///e8ccsgh/N///R/33XcfN9xwAz//+c+tGofXXntt0McuWLAg5Cvd77//fqhDGvGu8/yRL/UOkkliXzWXCZSw1FjE1S5fcf4b3HfygPcJdulq3tMf81N9HgvVXlEedeLRWvNjz6+tNGsHjoDmIT9338IuqskgjeWOZbjitKaSvcisvcaMiC8DqVsVrucKhyMdB3Gk4yBucN/J7d4VNOkWPtAb+YX+kbVMtKah2k+6HUNtIRvEFZ6bqaeRHLJ6nGQVqdEU4eu8aajQpj3d5lnBm52dTw9QC5jMeJYai5huTAr30KPuMtf3uaW9a6ZDtOpgRkMFVbylfcdUpYMIuH3H8Q2+4/gGN7jvBOBbjqNCfqxSinXmRwBUsodieg8m3eJ5kLf1Buv3j8zNlFDIJHxjTiOVSWocS41FzB5A8LLbiKyf6lQD7+gPedf7EVc6L5BZGQw9cPiu+TFv6/XA4LNCR5I8lc0H+lMAJqtxfM5XADyvV1HsLeAAxwLrfbdPbY0Vn+jPWaM/ABhUoPgK57lc4Tx3UM/9rv6YLXo7WWSQZkS2pnA4SI1DIeAUxzFc5/0T4Mv+/1LvsO5LGUTg8D/m//iN917r98rO8m0ivAaUGnHqqady5JFH8pOf/IQjjzySe+65hz/84Q/9Pu6EE06wfm5ra+Ouu+5i1qxZLF68GIC3336bTz75hB/96Ee9rEF0p7W2pgDlkGkVnbYXn85SGWSpDHZp35enXFeyEAkchlsN9QG1Gbx4adcdJKsk3NpNJXsAyCUrrouD2wOHTbYaEiI+ReJwdTgOkLNUBumk0kQLGk2zarXua4tSUMg+zc/e/TkcmnQL9TQCfW9DBrJtKcdXczWFZHJV9oAfH0+6d9Vri1IdzGiw168cyjT0wXw27MGjcl3ZZ3ChLMh05uzO45ehjsPPPlW5mEI2s41mWq2A/Ehn34YNpquyf5uSQxYZKm0YRphY7Fl69tIbAO2d+zH/ZzYWpyqXh6F8wGDYz33iNUAtgUMhepYPadBdCSlpg2gyaO8lAJBP3uAGJvo04DOcnJwc7rvvPlatWsWZZ57JUUcdxQ033BC0m7LfL3/5S+vnc889l4svvpgbbrihxzI7duzo/lDRixrqaacD8E0nejLpTz2WWe5cRg5ZnO+5GgisSSLCp/vGCnw1WJJJYifV1kHC3sZsq9FIPLKftEnGYfyK3lTl8BwgL3cu40u9g3u9fwOgTjdY97XQ2tvDhtVQG5T0pcIWVNnPmBdQBmEwtNbWvmCyGh9035FIkpSLFJKtoHLLCJqqHI7agMCg9lv25/N9hucEXc6rvVZjN7tfOC/kJMcRA37e3ti3P8WqwEqHrtBVA27OkIjstVK7Mg59+tt227cp8RrMiTT7+9R9m9SI78JsLE9V9v+9M0mP6EWnWhqsbXm8ftakOYoQ9JghYz+vHMxU5e4xjkS9GB5tIW+xtm/fzimnnMKcOXM4/fTTmTp1Ku+99x5paWnMmzeP//73vyGt54knnuDMM8/scfsZZ5zBk08+GfrIR7DbPSs4reMS6/e+ruTb73va+9JwDmvEClb83X/lxB5UjPe6P5m25ihPeV+M4khEOES6OUo42b9LV3tus36O1jTUYNk64WLPxgrHidIe6qyLTvG+TQpVli3rcCRNVbbvm4ojfJJd3C3jMJjbPSs4vuOHAd+frseH97O503ZSMUaN7ndsI02wcguhNkcZiduUobJvy+0XvwCqOmcJxepUZXvWX6T/3olwTC3NUYQI7KoMgTPZBtIc5XbPCk7uuIg3zfcCbk9BGqMMh5DPcM4880yKior43e9+xwsvvMD555/Ps88+y3XXXcdpp53G+eefz0MPPcTjjz/e53pSU1N56623mDp1asDtb731Vp9ZiwLO6LiMVtrZrWtwagdzmMYkNY7vOU7o9TFzjemcaZzIa+bbfKa/ZJtZzkQj8QrgR1Ol3sM8NYOdejdVndOS/V3fdpm7maumk0Yq01V81w87xNiXbxtHs9p8n9Xm+9KxO05FMuNwuKbkHGMcTLGrkD96HuErXWHdHq1pqMOVcfiady23eh5iHGMoUYWc6Dh8SOu71P1rvjC/YioTmK4mcZ7j1DCNNLZlqHSqdA3gC/J6tAdnmKeUx6I63cACNYsUkgfVwGAoJlDMAWoBLbRRo+sD7nvP/JifuH/HTl1FBVUkk4QTBwYOWmnFgYMkHb5awN/suIDtdG0nJjGOxWo+LbSxS+/u45Ejh2mvcagGNlX5Rvdd7KvmkkoK5zpOGb5BJpAsMvia2p8GmnBg8BPHD3jC+x868FiB21idqny/53HmqxmYmJziOCaiz32z+372U/NIJ5XvGSdE9LnDRZqjCNEz23aD/ox5agbZZDJK5fb7+Ec8z/CY+RzVZi0uHExmPHuow4mD4x2HcZRx0HANfUQL+cj53XffZcOGDUyePJkjjzyS0tKubjgzZ85k1apV3Hffff2u55JLLuGHP/wh77//Pvvuuy8Aa9eu5cEHH+Tqq68exEsYOV4211BHA3lks9hYQC7ZHGAs5EBj714fU6jyyVVZ7GAnANupYCISOAynbbqcDfqzgNv8gcPt7ORDvQmAC9R3Ij62cJpsjKeWequ2TQ31jCInuoMSAzaQulXhFM7nm2NMZw7T+Y3nXmrpCkpEL+Ow66Q7nIHDr3Q5L+m3AF+X2n2M4NM9Q/Wm+R4f6k0YGHzf+DZHOA4MxzBjXhaBU1ZaaSdzGLpfx5rNepvVgCHS2TlFKp/Vnc0TpuvAi2Zb9Hbe0oHZAVnkkUk6X9KEBy91nXU9h6pdd/Ci+WbAbdkqkzWdjTy+sgUUR7KhNEd5W2/gA/0pDhz8x7h/+AaZQJRSlFPJJr2VNFL5j/PPvGi+yXq9kV26Gq/22jIOYytw+DGbre/2rcbPI/rcb+p32UU1xRRwkGOfiD53uEiNQyF6Bg7raKBK+5Jv8sju9/Ef6U28Zr4NwGK1gDyVTTEFLDUWxXVZsFgX8pHz3nvvzTXXXMOyZct4+eWXmTOn5wnMeeed1+96fvaznzFp0iRuv/12Hn30UcAXeHzooYc45RS5UtmbJt1CHb7pDLPU1AHVpQqsNSR1DsPNXkfKr7FzqrL9/Y7Xeix23etWjVI50RuMGJJ4nqrst5+axxa93fo9WvXr3No+VTl8XZU7Oqf/ARzjOHjI6/Nvj8ZSxCWus4a8vnjRvUFKC609bktE/vqYDhwUkR/R5+5rqnKw45CbXVdQpxu41HOTb5kg+9XBCFaPN8P2t5djIp++Aof98X/OisjHocLfVT5RlahCNumttHQ26SlRhazXG/HipYoaW43D2Jqq3GLL7B9MLbLBsjcbjOfjaQkcCtFzqrLXtg8K5UKnfd/9oOsmSo2x4Ruc6FXINQ4feeQR2tvb+fGPf0x5eTn33ntv/w/qxSmnnMJbb71FTU0NNTU1vPXWWxI07EfFEOpc2b+AUs8n/ILWOOzMOAyox0J81mOxK6b/ulUitiXCVGW/7gcXrVGaqjxcNQ7bcVs/JzO0qZttup1qaoH4rQ01WN2LZLfqkVHnsDyKAZ0MlWZ1K/Z33O0+LrtiCoflWMXeqdHPPi1X9mM+g+2q3JEgwZxo6H48Ffj53xWzU5XbbBfoUgZQi2yo7M0G43kfJs1RhOj52fd2fi9Gk0ey6r8+YSLUO41HIZ/hTJgwgX/84x/DORbRTb1upIU2/u75N/8yXyWZJDroYOwAD878B3PJJPGCdxX/5/geSSp89YNGug7tJoVkvHjx4CUJF7d4HuRx73943/wEBwZezIQ4qPa/hjRSeMjzJEc5lkZ5RGKwIj9VOfz8ddt8r0Wzh1pO7rgIAFObaDRLjIVc4frBMDx7F/9JtwNHWOt+ttsyDpOHUOi5XFfSpJvJJpMGmga8D4l39uzCNFJo0dHpvh1JHWYHzs5/0dr3lKhCmnQzaDBNkwpVhVM7WGOux0Bhoq3941hVSDqpAKSQzKOef9Kq27nSeX5IJxG98ZcNsWvWbSThwsRkq7mDr3QFE1TxoJ8jEQTPOPTpa1+xU1dRxGiq2JMQxziR5H+/8sjmQ+8mq/RLPrnsNKtjtjmKvSRIqhrejMMdeie5ZHOP5zE2mlsoYBS7qYnrz5o0RxECTO3tcZtCMYbRPW7/0tzBPzzP0646OMFxOC9432Cz3oYTB7lkD+kYQQxMSIHD5uZm0tNDn9bTffm8vDw2b95Mfn4+ubm5fZ5Y1dTUhPw8ie4J7/Nc5LkOhWIqE9lXzWWJWsgVznMHtJ591GzOd5zGvd6/sUq/y0a9hXlqxjCNeuRZrzfSRjtzmc7byU9wo+duVpnraNBNTFETmKzHs68xj5RhPsCKhNMdx/Gk93le02v5p34Ft3bjkiC06MVw50ksc5zIWY6TmN5+JJVU00aHlWH0gf6UJlp4wfvmsAcO/c1RwlnfEMIXOPxexxWs1u/jwsnlxvf5yTC/H7EmR2VZP7fQRotK/MBhBbuterST1LiojGGyGs8n+nO2UsYeVccpHRfzfmfNRfDVnpzLdPY35lOqxjIBk93Jazmu43ze1uv5jfdevuE4hH3U4Gt7Bgsc7qSK7cn/Y0H78WxmG4vaT6Iq5e1BP0ciGGyNwzIq2cVuFIqJyFSxgfAHq2uo52zvzzhCHYgTJ9XUsoMK21Tl2Mo4bLVlHKZ1BvuHy+EdZ7NNlwXcZmAwIY5rtUtzFCFgtDGK1uSPmNT+dXbim3as0WR2q0ndoluZ1XG09fuvvfeg0WSTyU+MH3Cx68yIjnukC+ksZ8qUKSxfvpxly5YxZsyYoMtorXn55Ze55ZZbWLp0KVdeeaV136233kpmZiYAt91229BHPUL4pydrNNkqgyyVQa6RTbpKG9B6XMpFPl0diip0JfOQwGE4NOgm68Qk18jGUAZZnX8ri4JCY1SURhheqSqFbJVpRYR2Us14gm8TROzROrK1dYZ7qnKq8k2T8tdZ8h10pKOUwqkHVqdrKIYtcKi7AodJQwgcVnQelDlxkm/kkqkSv76fXQaB+8wG3TOYlGjsNQLzQ+hQOBzsNXArdFWPeoJppJJtZDLayMOhHDhw4MJFtsqw9jFDrUHYGGSqcoWuIkdl+bYf2lcHsVE3j7jvhZ1H9zVVuXf249QCI2/YxpeIilRg3VEnDit7vUJXxexU5UjVONRaB5Rp8jMxKTQiW7M1nKTGoRA+SqkeZXhSjcBtSvdjAP/3J5Vkso3MgAvDYviFdJbz+uuvc9VVV3Httdcyb9489tlnH4qLi0lJSaG2tpZPP/2UNWvW4HQ6ufLKKzn//PMDHr9s2bKgP4u+ldsO/O9yXcscY/qg12VP6y+Tmj5hE1B7srNezXLnMpaTuJ/zkoCi97sYryRwGI8ifbg6nAfIM4xJbDPLAbg/6UZGqRwOaT+dt/UGwHcCEs4pxN35s3XC2RgFApujDHYqhqlNazs1RY0fkd3mugeEGoM0zEg05UOoixwu9ufdZpZZtfD87nZdy9FBmv58y3E0L3R2Qh5qDcKGXjIOwddc6Uu9A/Dty6erST2WHSkGm3EYC5+zeFXSWWrDz/4+l+ldMTtVua1zqrITJ041fN3pq6mlw1bn1y6eP2umlhqHQvh1n03T/UJvbzGLkx1Hjsjj2WgLaYs/ffp0nnzySbZv384TTzzBG2+8werVq2ltbSU/P58FCxZw//33c/TRR+NwhHbiVFVVRVVVFaYZuEOcO3fuwF9FgrIfkBUPcSdZ0keHQzF4ZQF/o5FRnLWvbpkitkU6cyFSz2evYdegmxilclC2A3Iv3rA2Lelu+KYqD705iv3ka6j7kXjVvYNysGBSognn8cNg2RuCfaa39Nge9DYu++OGuo8JlnG4szODofsF1emM3MChvaNl90y3UAOHI3X7Mljdjxmb6SqhUK4rA4JKw33xayD8U5WHu6NyX9/9eG42KDUOhejiUs6AL0VKt+1K9+ZqfrK/iY4BneWMHz+eyy67jMsuu2zQT/jee++xbNkyNm7cGDBtDnwpq15vz2KZI8mfPH8hjVQ+MD9ll97NOMaQodLII3tI652sxnOscQg7zJ383ftv1uuN3Oe6gQKVGFNoo+UVczVfU/vjxsPexuxoDyciJlDCIjWHZJKo0w3RHo4YtPifquyXaSsN0NQZFHLYsv+Gu0aUf5qfa4idj7sbao3Dr3QFKzxPM4NJoOAQY99wDi9uZHbrqtw0AqYqt+l2DlR700YHYynq/wHDYJYxhW8aX+MT8wse8P6DDNLw4iWFZApVPuN6yVafpMZxrHEIe3Qdr5trrYZHAE26hXoaGaNGc5vrF/02NTHRLFEL+UR/QR2+/VUBvuOevY3ZHGTugwsnr5ir+bpjcZheefyZpMZ1ZhqqHgGqvrbdKSRzoNqbJlqCFrUXvcsnl6lMYAeVaLxUU8P+zGM3NdRQH/Cua3TMBJn8XenThtBReZ35EWvMD9hgfkalrg6aUd+iWyllLApFlsqgSTfTSDM5KiuuL9TLVGUhuhykFvGZ3mqVaciwlWN71fs2G8yNTKeUMirJJ5cmmhmjRjNXDX4Wphi84UvB6MU555zDtGnTeOCBBygsLIyZK2ixQGvNLzy30UY7+eQyU00mV2Wz1Fg05PdpijGBJ5P+xNL27/Kh3sRWs4zNepsEDofAq7380fsoHjzMVzM50XF4tIcUEYXGKNZ5PgJgbz0ygqWJIpq1kobzADnLnnHYGTg0lLKuYvqyaYaviY+9q3I42WscDiZw+KH5Gb/23g3AwezLj51nh21s8SSrR8Zh4k9V/khv5k39HhC9bPj9jfk8nnQHxW1LOgMhinEUMUGVsNRYRN7/s3fe8W1V5x9+ztXw3o6d2Nl7kwTCCpuyyiyUWSAUSkvLKhToDwptgZbVltGyW8ooo5RSdqEtK0AgjJCEQMggO3Zsx3Yc2/GQdO/5/SHr+l5ZsiVbw5LPwycfNO44so7OPfc97/v9itALouO0kTzvvpebvfeZRmMBtshqNlPNcvk15xurGePoPXBYLetYLD+3vfZRl4TBdxxHcJvvIVbI1bynf8ZvnFegiaFZOvi1XM8KudocZyLVw10mV5n9LFlamqmKEIKVma/xd/01zvP+nC/lOs7RTmSJsQIkjKa7bxsYg6asNZBxmCn6Hzj8n7GYm3z3AjCdiaajdDAjxXAO0uZzg+ticzw4SJtv6hunIsocRaHo5i73dZxsHMkRnvMAv2lagBeM//Jn/R8AnK+dwghRZo4BRzgWJKO5Q56EBw43bNjA888/z8SJExN96kFPI7tM7ZBiUWAabOQHZUsMhGGi2LyZVmWmA6OORjNgkMp6K9ES0HIEv8ahInVI9Ep3cFZ5vLBmlAVKE+0Zh/HViDJLlWOs92TVOOyPOYp1jB/Ki0TBLn0tQyDj0Do2JzM7R0ppGoi5cJIjsnsaiIUh1HYF5EU1hwmlZ9lpcYWtFOWskKvx4aOORoaTuqYLAyFQqhzKkKO3a4X1txSsTaWIDOv80SpP4bU8HkwGKbEoVbb+dotFYa/jgfVeKNKxYzCjMg4VCjvWYKF1YTdYCiNP5KTFGJDKJDxwePjhh7NixQoVOAyBdaK/nzaXh1w3x/wcZziO5TXj3R7nU0TPYLkxSzTWz6qMdlKXxLgqJ4ZQkw7N8vn0OAcO42WO0jlAc5RtljFqoeM7MWlTKpIvhl7GYWBsHkZxv411YsFOms3A+oHaXrzm/nPE+4YyGntT/5DjvD8E7P07HKEctDssvyvr9axK1vRwuh0qBMZIR8jAYXgCv6UcsnCI2I5/QwXrYmwrbeZjaxAx3nIb0dDeleCQNYBSZev8+Wn3HyJa2EoX40GJMkdRKKzYdcq7r9mBwKETJ9c5L0ITWlqMAalMwgOHf/nLX1i4cCFffvklM2fOxOWyl4+dcMIJiW7SoOF+39PmY+tEoi/u8T3Oe8anPV4/SJvfw3HIurL5mv4uVzrP70dLFTB03QQzRQalFFHPTpW1mmIk0xwlrhqHISYd1oxDq/B/PEiMOUr0wZ+3jI/MxyOH0BgVTH5QxmFzCMOMdEKXOtvZAST32nSP73Fe1d8xn8eiLdZ+/JbxEb/hil63bw1hhBOo7PC3qVv/sUrWsidDU36jO3AYKvjXd8Zh8G9METnW4PVHxucIBBJpyzgfLM7KXuk1r6fRBg6t9yqLDb98gBsXpQytEndljqJQ2LFmEH4hV5uPv5GbARjBsCErIzLYSHjg8KOPPmLx4sW8/vrrPd4bquYof9Nf4kHf0+ySLUxiDHto0/iu4+g+93tbX8K1vt+zW7bjxkWJKAT8mj6NNPGJsYJTHcfYJiXTxUQudJzGv/VFrJYbWWV8w3RNZX/2h1qjgamMJ0/kMF6MTnZzouKPvif4ne8vSCQTxWjezXgqqv0P0fbhG7mZFnZjSEMN6ClIoies8TzfCFHGPmIPmmimkSbAnnEY72yN7sBhPM1RIj/2YuNzrvD+lmbZwhgqmCOmMUZUxrRtqUQRBewtZrNSrsGNO+YB3sFGrWxgDBUUiDzmi1kJP/9/9Q/4pe8edss2nDiZy3QmamO40HH6gI89RlTyiPMWbvbdR62s51zPNTzhviPs9qGyS33o+KQPp3AykVHMF7NoYTe1smHA7UtVjF4zDnsJHHYFZoMNiBSRkykyeNx1B//VP+B/xuKuEcphy2AfLKXK7bKDWUxBE4JxYmRE+0gp2cfzXZplKzo6Y8VIpjCOydo4jnUcMuTmj7bfltL5VygoJI9rHBfylP4yO2Qj//F9wM/1Oygkn4mM5peuS5PdREUXEc2ev/jii4gPOHv27F7fv/TSSzn77LO54YYbKC8fuhkQVtYYG1gqvwJgH7EH87VZEQXzNsitrOiKzM8Sk82I/RZZzc4u98BtssYWOCwU+QyjmCpqzW2nowKH/WEL1axmA0hSbsV0lfyGHTQCfpdKKWVUE5g22lkuvwYY0rpQqUaibz0SdbNTLAr4uMvwIJAFm6iMQymlqXUa81LlfpqjbJRb+UKuAWCGmMT+jnkpLSY/UEpEIcvkKrz4aKeTTbIq2U2KK9XUsoGtIGG+lvjA4Xq5xbw+7CGmUiHK2EubGZO2ZIlMvuc8gUt8N9JOJ5/Jlb1uH07Psp1O8nBSLIr4tOsYm9O8X/RGfzQOpZRmYDbYgEgRHac7vk2N3MGrxjt04qETexnrYClV9gqdlawBCSNEZC7aO2k2r0elFJkaZXtoUznFcVQ8mzsoGSxBYIVisOAUTkaJEWZsYpn8itVyA+A33TrWcUgSW6ewElHgcM6cOQghIgou9JUx2NDQwBVXXKGChhas5Z4PuW5iqjYh6v1udv6Uox0HAXCH78/80ndPj20CVFhKfZRGXf+x6itVppjGobVfdNBJE80UEdrhMhTWkrOhrAuVaiTcHCVB57PrlPn7dqJuuqxBSWeMM9kC4vgaGs4ojFesv+8bnD/hpCHi+B4OTWiMoIwtVAPdWVLpSrJlNKznv8X5Mw537Bfzc4wTo1glv6FK1vY6Nw0Etlw4zcxg8Bs85JFju3YPZekNXQZnHHYTbuzeTbs5xquMw4FzuXMhi42lvGy8DdjLkwdNqbLlN+SOMAveqmf4bcfBPOz6TczblUoEfjNK31Ch6MZ6LQ6UKAMcqu2TjOYowhDRqLVx40Y2bNjAxo0bef755xk3bhz3338/y5YtY9myZdx///1MmDCB559/vs9jnXzyybzzzjt9bjeUCETYwa630/d+1sBVecjHoQxQRtreH7oT5YES7PaUSgR/79H2g0rVh1KeRBfIxDNwOJxSM8OwO+Ow+/IWz4xDn+XYsXZVDpQqR6tvaA8cRX5NSWesY9Yu2ZLElsSfZAcOrYtq8dLWDHyuTjw0dMkThCKQcRgc1A8YPNg0Dhm617LAGBkYRyNZ9LGWgauMw9gQbrweLFlqHovubqTSHLbxCHU9CgSBlb6hQtGNdezbLKtDvq5IPhHd5YwZM8Z8fOqpp/LHP/6Rb3/72+Zrs2fPZtSoUdxwww2cdNJJvR5r8uTJXHvttXzwwQfMmjWrhznKZZddFkXzU5svjbW8qL/JGmMjblxoaOSJyCZfTbIZr/SSRw6t7Lb9sCoZjhMnOWTxF99zbJO13OS8HLfw/60rRTkaGmWUsNvi4KaInFpZjwsXwyjGiy/i7y3WbDKqEELwvO8NFsvPI96vRu7AhRMfOsUUcK/vSS53LmRahNmulWI4rq4+9rjvBU5wHN7fj6BIIMk0R4knDuFgBMNop4MM3GyXO4IyDuOXreGVXsopwYdOLtkxOeYO2UiTbKZVtuHGRWYUgcN1xiZ0DPLJpYXdQ8q4qTcq6C6r20V6Bw6baKGCcupoSOiNeqPcxQ7ZwHq5hQzcePDEbVGtUpSTSzbZZHK25yqyyWSONo0zHMcyWRtnbpcnciiWBRhI2ukwX2+X7SD87xeQhxsnTumgVtZTPgQz6ANjZOhS5dA0y1YqKKeNNgrIi3cThwSVotw0R7EyaDIOpTVwGNlC2Xq5hSLy1fWoi8A3qwKHCkU3gbGhkDxq5A7yyKGNdjVmDDKiTo9YuXIl48aN6/H6uHHjWLVqVZ/7/+UvfyE3N5dFixaxaNEi23tCiCETODSkwf6e0/HgJYcs9hF7sEDMi3j/N40PecZ4DYDD2Jci8s33DtT2pDnjc/bznMYKuZrV+gYWOr7DNOEPClVQjkRSww5WyW9i+8GGCI/rL/C29DuWPuO8K2nt+IXvTp43/gPAfGaRKTIi2m+GmMQCMY/rnBcxynMwjxn/4nXPIjZnLup7Z+BM7VieFC+xSH7Ca/Jd2mQ72SKr359DkXgSIcqdyNLoB1y/5njvRTTI5Tzge9qecSiNuKVY+oROLX5TBT1GN3fP6K9yjc9v+DCV8VHpQJ3tvYoVcjUOHPxcu5ARRKZDle6UiiLzjq01zRfM1hgbqe7KnqskcTIarxnvcqH3FwBMYDSnakfHbVHtT84beNB1Ezd772OR/glv8D7/1hfxkvEWSzNeAPwafGvlJiSSEgpt+7dbnJUfdN7Imb4reVsu4Qn9Ra52/iAubR7M9Bo4DHOtaGG32c9yRWwWTYY6lzvO5Xe+v/RY3Bg0GofWjEPRd8ahV3q5ync7EkkFZZzn+E48m5cSBH5bKmyoUHRTLAvIIoMmWmjqGv8mMJoTtMOS3DKFlagFFqZNm8att96Kx9Mt2u7xeLj11luZNm1an/tv3Lgx7L8NGzZE25w+GTt2LEKIHv8uvvhiADo6Orj44ospKSkhNzeXU045hdra+Jer1LPTTPnPJot8kUuRFrnGnDX1v0wrsU3sHMKBJjSKLZp11tKhYlFglr6pMtP+YSu90JK3GmItRS8VxabodCT/irQC3JqbfPzaRLU04LGsJveGUzgpEyXm82pZF9sPpogLySx3ivck2VZyKGsRCco49Nk0DmNjjmIdXwpFvml8Fc2+eWRTpBUo18YuCkT34poHb8RjXSqSrOuT9XpUKPKimtNESyBokS9yKdDyzKxc62f34DXHPEfQb9OafVihKemNwKKHQ0RujtIsu0uVc1WpckxwCVfIzPXBWKocicbhdurNtheJgqi0etOV7sChujYrFAE0TeuhtV+sxoxBR9TfxoMPPsjxxx/PyJEjTQflL774AiEEr7zySswbOFA+/fRTm2HLl19+yRFHHMGpp54KwBVXXMFrr73Gc889R0FBAZdccgknn3wyixcvjmu7rJPTExyHc5/rV/3e/wLnqSG3OclxBO/4Pu6xvRCCSlHOerllyE6SB0qyNaQCBMxtyijmhYz7+nWMvbSZbDW2A/4A4FhRGdF+I4NMdiYyppetFYOBRJujJBKb7ia1tky71AscdgdgHnHdwgRtdET7dchO6tkJwFQxgcudC2PSnnQgOPjawu4eWWjpQkD/uJB8chKYCWa9Lt7jup69EuDofLlzIZezkCM6z+N9+RlN+Ev8c0W2LTgYXFbZLrszDpVmb/80DlstJkPRLG4oeqdQ5Pfoh4OmVNlijhJJqbL1WnawNj8ubUo1lDmKQhGaAvKopjsR5VBt3yS2RhGKqAOHe++9Nxs2bOCpp55i9erVAJx++umcddZZ5OT0veJ4/vnn9/r+X//612ib1CvDhtnLtG677TYmTJjAwQcfzK5du3jkkUd4+umnOewwfyrso48+yrRp01iyZAn77hu/DjvQwFO1TWw49P7W41p/iIH31sstNNNKi9ydNI2+VKXaNGBwMJzk6CHpUmc7O4CBicfa+0ktY4kscBi8nyK1SCdXZYB8csklm1baqJZ1tv4Z38Bh941UrFyVqywZvNFcH6yZv/EypUhVgs0bmmUrJaIwOY2JI1JKsx8kelGr2tZvEytoXinKzVL0alnLZDGONkvgMDiobw0qDqcUDQ0Dwza3GkqYGYdRuCo3WwOHKuMwZpRS1OO1VM04TOaYMFhR5igKRWiyRKbt4pNFZPJbisTRr7ucnJwcfvjDH/brhDt37rQ993q9fPnllzQ1NZnBu3jh8Xh48sknufLKKxFCsHTpUrxeL9/61rfMbaZOncro0aP56KOPwgYOOzs76ezsXq1ubm6OuA3v6B/zofycJfpyxjKSUlHIfBHdqvyXxlp8UmciY3AIjQoRWsNoihjHmdpxrDE28LjvBd7TP+VJ9+8pFUUcKQ5AExpO4eAp/WUucp4ZVRuGOmWUcoDYkywycYjYZBlFylP6y1TJWlboqxnPKEpFIUc5Duz38RZoe9JKG+v0TXzPcyVedCaLsfzUeV6vpidztOl8S1vAZqOK+3xPcqZ2nCqLHOQktVQ5zn1DCMEh2j5sNLZRI3fwnvzEfC9W2oOh8MnujMPgcsj+8IDvaSpFOZPlWPJEbsS6pff6/kaDbGKWmEwWmRym7TfgtqQTeZaMqHJKucR7Iyc5juBC52lJbFXsaZItHKDtSYfsjDh7fKAsM1bxiv42dbKBkQynWBRSRnFCzh1gmpjAAjEPgUa1rGMy42iX3cFBh2W6O4vJ7JbdOpdO4eQwbV86ZGfMDI5SDcMMHIbKOAxNi6VUOU9lHMaM8YxiGatoo93MaB88GofRZRzulM0cKPZCR+cT/Qu+a1xKnWxgmEjs+DCY8KEzjpGMFiOS3RSFYlBxhLaAbfp2mtnNCIYxR5ue7CYpgogocPjyyy9zzDHH4HK5ePnll3vd9oQTTuj1/RdeeKHHa4Zh8OMf/5gJEyJzdO0vL774Ik1NTZx33nkA1NTU4Ha7KSwstG1XXl5OTU1NzwN0ceutt3LjjTf2qw3/Mz7gTv1RwD95PUo7kCMcC6I6xqfGSl6UbwJwNAeGvbGcpI3lUfdtLOg8g82yis2yivVyC6WiiEucZ3N9510goVW2qcBhFHiklzfkewDsLWYn/PxP6S/ztrEEgP3EHA7T9uP/nD/q9/G+4ziC7ziO4Cx5JYsNvzNzvdzJBH10r4HDA7Q90RCsYxNIv27nsATfLCr6T6IzDhPBbtr5inUAXXYlfuKZcajHuFT5t74HqGcnheRxqnZMxPvdqz/FJrmNTNz8zHEB5zu/O+C2pBMBLVeAOhp4S9ZTr+9Mv8Ahzbxl+I27wi0qxpqPjGXcoj8IwGTGcrx2aMIX1PJEDoul//q1tatUu8NigOISDjOTYSVre1Rh7JItfCpXIhB4pBd3BMYP6YRumqP4rwsRaRzSHTi0/r4UA2OYVkSz3mp7bbCUKntsrsp9/0bWyU28Lz/rfkFCHjmmzvpQZBjFIOAAba9kN0WhGFTc6LqMG11DwyQ3VYkocHjSSSdRU1NDWVkZJ510UtjthBA2PcFI0TSNK6+8kkMOOYRrrrkm6v0j5ZFHHuGYY46hoqJiQMe59tprufLKK83nzc3NjBo1KqJ9t1nKYEpEYb90YaosZaHlou8y2WGi2JwwB0qkM0UGpRRRz84hq+nTX6r7WUYYKwLflxsnxfSvD4ViuLCX9XfgCbNlN8HaUEN5FTkVSHTOQqI1FcPJNliDe7HGVqocg2BJoIQyg4yIf9v+8lT/uFBIdGYqQwWrHIcbF5140vLaZ9WdS1QWmPXvWCQKktL/7Ncif+CwrReNw+DvvlKU86lciUSynR2MYWDzxFSjN43DcLRIa19TpcqxYqromUQxWEqVrdc7VwSmBVaNwwB5ZKtrFEoXVKFQpB4RBQ4Nwwj5OJasX78en8/X94b9ZPPmzbz55pv861//Ml8bPnw4Ho+HpqYmW9ZhbW0tw4eH1+LIyMggI6N/dffWoNPz7nv7JVxuPcaPnWf1uf1pjmN4w3iva1+7tmK93Ml2dmBIA00ood5IsOr5JTpwKKU0HbLHiJE8n3FvzI59pfP73K8/ZT5vobWXrf3YdA5lLXPo21ldkTwiKT+LFwkJHIb5Pca1VJnYlSpLKc1gxygxPGJzk3p2mtpTe2jTlClKCKwZUQXkUUcD9eykQ3ZGXA6eCiRDd84ahPuz6zdM1sYl5LxW7Nci/xyp3aZxaJ/uWudRPfevZYwYaoHDYI1DlXGYLGZrU3q8NlhKlaPVONwWYnHmNMe3uc11dUzbpVAoFIr4MyAl946ODjIzM6Pax5qpB/4bpe3bt/Paa6+xcGH8bnYeffRRysrKOPbYY83X9txzT1wuF2+99RannHIKAGvWrGHLli3st1989KFWSX8ZXRaZnOu1Z1cepM2P6IZvsbHUfBxJ4MqahXO/72neMT7mIG0+laKcFXI1PnzU0Zg0k49UI1mOyvf4Huct/SN20x6Xcwd//x8ayzjFc0mv/dLat9IxeyedScdS5XCGIKniquzBa/7NMon82vo731/Mx8l0eR/M5FmCaNYyuWpZx3gRWcVAKpBo3bl7fI/zX+MD83lFkvqf1XjhfcNfGtlhcU4ODhyGyjgM995QwJpxeI/vcdos+pBhA4fWjENljhIzpjK+x2uGNBK/2hcCq8ZhX4HDe3yPs0J+DfjH3M6uKhZlkqJQKBSpSdSBQ13XueWWW3jwwQepra1l7dq1jB8/nhtuuIGxY8dywQUX9Lr/smXLbM81TWPYsGH84Q9/6NNxub8YhsGjjz7KwoULcTq7P3JBQQEXXHABV155JcXFxeTn53PppZey3377xdxR2ZAGUzuPxokDJw6yyGCZsYoJYjS7ZAubqeYjYxnZZHKh8/SQxzi8cyG7acOQkrlMY4I2JqT7WjB7aFN5yfUAr+rv8KbxIe8bn/GBsZTvakcxU0xmp9zFNqOG4Q4VOIyE7Ya/jKlQ5DNWjIz7+c7z/Jwv5VraZSfDKGY+s5imTeAC56kxPY9TOPmr81aWG1+zQq5mh2zkA2Npr/1yjKhgjpjGLtnCdrkjpu1RxJ5EB/ISXap8lOMgnuIPXOW7jXp2mjc58c04jJ2rsjVDKiuCLLjX9He52nc7XullIqPZV5vLTxx9Z6EPRYrIZ76YzU6aKKOUCspoooVrfHfwT/efkt28mJGoLLD9Ok9D4A+cT2IsnXiYpI0ltx9VFLGgjGKudvyAv+kvUi3rON/zf/zL+J/5vssS1B9NhbkAF2AsI9lDTKVJtvTIRkx3pOwep5fL1az0rbGNZeHGbg3BZMaSgXvImsrEA6fmZJ6YwTK5yryGzvOchIHB97QTuM/9q6S1zZpxGM4c5Q7fn3lKf5lO6WE8o9nINjJwkU8uR2gLOF6LrxGmQqFQKOJD1Hc5v/3tb3n88ce54447uPDCC83XZ86cyd13391n4PCdd96JvpUD5M0332TLli0hA5N33XUXmqZxyimn0NnZyVFHHcX9998f8zbU0cgWqs3njeyilCLyRS4evOySLQBskFvDHuMLuZoWdlNCEZO1sczXZkXkVFoo8jnKcSCr5QbeMT42byw66ORLuRYIlN/OHMAnHDpsZTubqWazrE6Ipt/Xcj1fynVoaEwR4xBCMEObxD7aHjE/11nO4zmL47nH9zj/0v/bZ78sF6Us71pR3iK3x7w9iviRiECe/XzxZ7QYwWjnCH6p34PXEshOlYxDqyZbdgQZh5vkNvO3uYeYyixtMjO1yQNqQ7pSJAr4Qq6mEw9u4WabrKGZVlvgNx1IRBaYT/r4Qq5BR6eScuZofomKvbTkzSEcwsFEMYYa6gFYKzfbzVEs2VFbqMYhHehSN01chmnFrPCtBjDlQIYKVg1YL96u0FC3xnG4a8U2WcNaNgFQIPLi18AhSAZu28JbW1egezNVyWoSAF5pdVUOnXH4jdzMGrkRgH3FHNpkO220M4xi9tCmMlZLjNu7QqFQKGJL1IHDJ554gocffpjDDz+ciy66yHx9jz32YPXq1TFtXKw48sgjbSuqVjIzM7nvvvu477774tqG6hClL8c6DuEh1818Y2xmpsdfQh1KDwSgWbbS0qVdNFObxPPu6LXtLncuJJssLvXdBIBGt6bhUFthHwg2c5QwZgzxOF8l5fwrI779NMDlzoUcqx1i9suqMP3DpgvF0CvvSjUSn3GYHKaLiayXW8znidI4HGjgsN1SHhhJqbJ1LLrNeTWHOvYZ0PnTGSEElaKcDXIr1bKOSlFOs2ylWtYhpYxoES4VsGrTxkt8v5YGM9g0V5s+aDI2rdejOtlgey84+KWjU0sDFfidp63X8lDztXSmr/Ex3C8jMCd14RzSLrnxYKQoD3kBbZZ9a0/Hk0gyDq2l/jc6L+Morz9p43jHYUp/V6FQKFKYqN0wqqqqmDhxYo/XDcPA6/WG2MNObW0t55xzDhUVFTidThwOh+1fuhJKMycwUa0QZb1uF/z6QIJVVg0w62RxqK2wDwSrS5z1u4sHHbKTHTQCidcui6RfFpBHDlm9bqMYPCS6dDjR5wsQnGkV14xDGTtzFGuGVCSlytaFpnD6jopuAtfOJpop79J0baeDnTQns1kxJREZh8nS+e0L629gJ7ts74VyVrd+Duv1LtwCbrrSl+t8X+Yo+eSmTeB9sBDud9WU5LHKazVHEaEzDgO/qywybc7bg2msUCgUCkX0RJ1xOH36dN5//33GjBlje/2f//wnc+fO7XP/8847jy1btnDDDTcwYsSIITHZ+MBYyjP6q+SRQyceiijAh8+cqGaLLCopJ1Nk0CJbObrzfKZpE7jL9QsAamU9y41VjGAYrbQxSowIe6522cEWWc2T+sssN762XdillNTLnbhwkUcWa4wNZJPFcErpsJSlKOx8YazmOf0N8++5WVZTQiHZZJEh4rfKvtJYwy7ZwkiG08JuRifY5dGLjzKK8eDjC7ma0R0HI5Ho6GSSyQmOw7jb9QvGUkkTreSTm1aZO+lO4kuVE3e+4Eyre7yPcYB7z7j0Td2WcTgwjUNrqXJWHxmHS40vceGklCKaaY37IkY6MIIyyighj2w2y21kkcEYKqiStRSLgmQ3LyZ48DCWSjropJD8mB13ibGcUop4Qf8f/zYWUUAuOgYjB5HRQYUoJ4csssmild04ceLDhxuX7bdZQC4lFLFI/wRd6oBkX8dcKinHiYNcstgitzO6l7lWOmF17M0kg046KafULPsON3YHgkKJMOEZaoygHAdaj2zQNtnBFd7fmvcHsaZNtrPMWMUr+jtIDM5xnsRkMY53jU/QEGwwumVrgjMONxhbaWE3PqlTQB4unPzGdz/5XWNFIip0FAqFQhE/or7L+eUvf8nChQupqqrCMAz+9a9/sWbNGp544gleffXVPvf/4IMPeP/995kzZ05/2pty7JZtfMvjT83PI4e9xWw+kH5X5ECJDMA3GW8ihGBsxyGslGtZpH/K753/h0M4eE1/l5/4fg3A0eJAfu28NOz5vpBrONjzPfP4ExhtvtcpPXzCFwA04qWRrwDYwFa+kIOzzDzZSCnZz3M6Ojo5ZDGPGUwUYzhIm8/1zp/E9dxXeG/lA+l3h7za8QNucl4e1/MF87z+H+q6sh2LKKCDTlpp68re2sWD+jPc7ryaYaKEr+Q3VHVphhWgtI4GK8k0R0kkwZlWr8p32UkzxcQ+OGQLHIoBlipHoXF4lvdnbJZVZOLmKu0CcpJkSpFKDNOKqdMbqKO7jHU1G6mSNcwiPbQhN8sqNnXpoMUqGCql5GjPBXTQSQmFTBcTmS2mcpA2n6scvetaJ5J8kUt9xif8xnc/7xmfcqDYixtcFyOE4HrvXbyrfwzALlrZRSvX63eB7teTa9KWcrfzF5zqu4zNspq/6S/yC+ePk/yJEoN1DOugEw1hBg0hkoxD5agcaypFWcgS8m3U8ID+DHc4r8EVJuNvIKyWGzjc211OvMz3NXc5ruME748A+4JWsKvyffqT3Kc/ZXutg07miukcpM1noeM7MW+vQqFQKBJH1KXKJ554Iq+88gpvvvkmOTk5/PKXv+Trr7/mlVde4Ygjjuhz/1GjRoXVG0xHrBpUeeTYStFGad2r2YFMmGJRCPhvuGu7bm6q6T7GcFHaa9aMVW8rkwzyRa75r1B0Zx8EJoJa1/9VmWlo2ukwJ9UZQX/PeGfWVeEvic4kg1JRlPBMPuuvNAM3mWT0WGEOaIUFUP0odUjnUuVQ2m7x0i2zuyoPsFRZdl8fMglfqmxIg+1d15ZCCijQVLA+EsK5DIfTcE1FrJ8lVqWBO2k25y7FojCh18FoEUKYbSvQ8iJqXycemmllpNadPTmUdJ+DA1TBphehxu5O6aGzq1IlL47u3UMVa18MhTWwG0uC+32VrDUXkMEeZA41HwzGhWvQjhUKhUKhiI5+1VUdeOCB/O9//+vXCe+++27+7//+j4ceeoixY8f26xiphFUr5wzHsXwh15gRmcoQJT4HanuxSv8G8F+wK0SZLRjzY+f3ej2fz+J4drLjSH7jusJ8rkudnE6/E28GblsQs0rWqjLTEDTTrc+yQJvHc+4/JuS8Ukrze58gRidFUNoa9Pm181LOc57MVd7buFd/0ny9itoegcPp9NRAVQwOkrlkk9DAYYgb2SpZy8w4ZJX5Ylqq3G4+zhLhMw7r2WmK1M/RpirB+QjJF6Ezo6rSSOM3cN0opYjMCHQyIztm999nf20uD7lujslx48XlzoVcjv03ofWxTl4lg69l6dMn+iJY49CNywwKQuixu8UyNwr3u1L0n76C/lWytlfZov4SvPhbJWttvwW7OYqrx7bg7y+B+eOe2ox+mTkqFAqFYvDR77scj8dDXV0dhmFfqRw9enSPbYuK7NlSu3fvZsKECWRnZ+Ny2S88jY2NwbunNIGsMfBPBF433gP82SRFIfSH7IYUNcxnVlgB71D0dhPrEA5yyaaVNnMSHdC26aCTRnZRQmGEn2xo0GJxsIuX0HworIGBZAlKh8oWC+5/VbLWJkivTHYGN/bvNLHnSyR5IW5k42V4EFNXZas5Si8Zh/ZrgtKNipRwmVFVaeIIb0jDrFCIpealrb+lqE5ZXwsXVbKWqWI8Lpx48Q2p7PngjMNMMmyBwVB/Oau7b64qVY45w7vMm8IRr/4ZPIfroJN1cnPIbYNLlQNtKqGQenYCfUtuKBQKhSJ1iDpwuG7dOs4//3w+/PBD2+uBbDVd7+nOdvfdd/e7ganKS/qbfGys4HPjKyYyhnJRwl7aLF7T36VUFFEo8kNm9+2nzeUSx9lskFt50PcMf9NfokHuZJIYSxH5lFLU63n70tvKJ5dW2vDhYyyVbKMGEGTg5rDOc5iojcGQBuvZymhGcKrjGBY6h64uSUDDB0KXP8aae3yP0yh38ZWxlulMZJgo5iTtW3E/byik5WZCE/5A8z7aHE7RjmSp8RVNtPBj7y9x4CCbLEDyO99fKBT5fMfRt2yBIrmkc6nyTDGJqWI8q+UGAOYxgwd8T3GP/jjF5POG+68xy8YaaKnyx8YK3tDfZ6n8kgZjJ5PFWCopZ09tZsjtPzVW8lffP5kuJpBFJkdoC/rd9qFGqMwoJw5e0d/mCsd5TNUmJKFVsaNONrKPmI2GxhQxvl/HeEN/j3eNj/lGbqFNdpAlMtgt25kmJlBCIQu0eTFudWKwZhweqx3CJmMbrbQhgInaWJ7X/8MRjgUcIvbxG8uIoVP+H+w6H2zMFGrs3il3sY/YgwzcTBOp/bsZjLiEi8mMZS2bbK/vJWaRSzbtsiP0jgNgu9zBWrmJSWIsLXI348UossnkY305IxlOM63kkM1wUUIeuWSLLHPfF/T/MU1MYBoTqBTlPG68AECmChwqFApF2hB14PC8887D6XTy6quvRuyKvHDh0Cuj+q+xmEf05wCYyzQO0fZhupjI23IJAAeJ+SH3O0ibz0HafG723sd78lOaZSvZXS6BB2nz+/x793UTmydyQPrLDQIC6oH9qqilTJZgSIO1bGQtG/EaPhYyhAOHsnvVPREZh3/TX+RLuQ4Njf3FXA7Q9uR853fjft5QWHPFAr1ugTaPBe553Oy9j7/o/6CJZts+G9jKf4z3VeBwkJKsDEBITIZjgNnaVL7nOIEbfHcDMF4bxbvGx9RLfxZEtaxjvBgVk3MNtFT5E+MLbtUfBGAq4ymnlP21eeyrzQm5/WfGSh41ngfgeO0w9VuLglAl7D50GtnFl3IdU0ntAEg1tSyWnwMwRRvXr2O8Y3zMPfrjAMxmiml2VUoRB2nz+ZZj/9g0NsFolhHoIseZLBHLAXjdWMSbxoc4cHCv/CV1NLBCrsYtY288MVgJLlXOEZm2CUCowGEN9XwsVwBwsNg7ru0bqkzQRrPW2GR77TO5EoCDif3f/Bu5mZeMNwHYm9kskcsxMCggj120AP7F9IC+rlXj8A3jPd6U/oSSZxx3moHDrBgt0CkUCoUi+UR9l7N8+XKWLl3K1KlT49GetMGqCVIqisgXuTZx/so+yn0CYsLBr/VFXzexwTdOVi0SLz7yRa7/edek0SO9wYcYUrQkOOMwIC5dQB4FIi8h5wxHb9li+SKXfHJNAx8rQ6nEK9VIdAZgMjUVrRlGmbjJI8csn6qilvHEKHAou8dcRz8yDq2aUTkiK+TYb8X6+yrvo5xNYScvwr9rqmL9DKE0lCM7RvfcpUQU2rKKknk9GijWRVcDw/wslWI4n8tV6OjU0mCWs3vw0ik9ZAh3UtqbSHRpzzgMLj0Oda2w9pO+5rOK/pFLdtj3rDI6scI6fpRpJYwwhlFFLbtpC7m9VU7DaoxiHSf81SgKhUKhSAeiDhxOnz6d+vr4uHmlE4ELsAsnL7kfRBMab+kfme/3pVsXStw7EvrS28rtyjgMMJZKNrIN8E+Un3HdhVu4yO6YjYGBl6EdOLSWKsc747BNttPILgCmi4lJF5TuLch0uXMhlzjOJr9zXo9shXS4AR8KpHOpMoDDEjg8xnEws7Qp/Nz3OyC2fXSgpcrWwOEvnD/m245Det3eqkF1qfPsqM83lMnr5UY8HcYtuxZh/zQOrVqgL7jvj1lJf7KxLiRIpGkotMG71Xy9Stb6y9m7hq1mWhlGcULbmQyCr+HBc51QY/c2W5BaBQ7jQW9zTuvcNFZYx48zHMdSK+upkrW2+wormRYDr8C+mWTYTFN60+pVKBQKRWrRu81cF83Nzea/22+/nWuuuYZ3332XhoYG23vNzc19HyzNucf3OKd4LjG1tXLJ4VTvZdzje9x2UR7Zz2yAvujrJjY/aCJinfBJJNvZAXSXIHgtxxuKtMruldZQhgux5FbfQ+bjwTARtwZ9QjlSOoTDFPC23lislRs5xXMJp3gu4R7f4/FvqCJikluqnNjAobXP6ui239Rtvodi1jfturLRlyp7ZXiXylAoY5T+E84cBfwluqmONajc32tIPFyZBwPWUmWrpp/dSbnW1kea45DVNRgJvi4UBOk7hs44VIHDeGMNzIH9e7DK6MSKqqDxo6/v1Wp8EugPlaLc5sidqQKHCoVCkTZEdJdTWFhoK/OQUnL44YfbtunNHGWoMK7jMDLdmWSRwTxm8Dlf0Ukn/zU+4F3jY44SB1JGMcUUMkZUxKUNfZUq3+L8GdfJi7hffxoDgx85zuBrYz0/0X+ND50FnaezLfN93LjoxGPLhhmK1Mh6yihhGEX9zuDoizf1D1novQYNjQmM4hBt30GRSWS9uQoX9HnGfRf55PAL7138Vy7GixcDyafGSlpp40Pjc3bTznXOixLVbEWEJDrjMNFYMw4NJIdp+/Cu+0ke8T3Hi8ab/MZ3P5tlFXe6rhvQeQbqqmwdY/sKHM7rPIl22cFYKjlA2zPuixnpRjEFVFBmOg9nk0kbfpOBb+Rm/qcv5ghH6prN1Mh6RjCMYgpsbveRcrvvYTx4mMEkLhkE16BYImyBw+5xaZwYxVQxngbZRJWssRnoWJ2F0xnr4kc+uYyhkrGMZFNXNUqoK0Wn9DCaCty4+jTtU/QPa7C7kDzOEidwv3wKsMvo9Id/64s4zXsZAsEcMY33M56hXXYyihFk4GYYJUwXk3iTD2mljXJKqcVebRYw0bnO+weyyWQ0I/i544e00W5uY5U6UCgUCkVqE1Hg8J133on5ib/55hvWr1/PQQcdRFZWlhl4TGVa2c1uOqiknGyRiVf6zIw9Lz62sp06GqmjkXIRH22qvvS2JmijAZguJwKwl2MW88QMLtSvB7rLH1TGoZ8adlBHA3U0UCIK43KOKllLA00AlIsSJmtjB4W7ZyhzlGD21mYDMF2byGv6u4A/4Ghg0EY7bbRTK5W0wWAh0YG8ZJYqB2cclooiSkUR/xOLzYDAFrl9wOcZaODQmiXu6iVjUUrJN3IzHrwMp5RZ2pSozzXUyRe57KDRfJ5Hrhk4bKcj5cuVt7Kd7exgOzv6pXG4RW6nlgZqaWCONi0OLUwewaXKAYZRbFaIVMs6mw50PMpBByO6ZZGwmVaKtXw2GdvM10JmHFLLFqoBKBT58W/kEMTaZ5tooUQrIHC5GWjG4S7ZYl676qR/TNxOHVvxXxOLRD65IovWLn3D4KAhdJchb5HV5rgzT5vBJ/KLHtsoFAqFIvWJKHB48MEHx+yEDQ0NnH766bz99tsIIVi3bh3jx4/nggsuoKioiD/84Q8xO1eyONtxIt9y7M87HnvpU53sNpKIV4lZpHpbAX0fAE3TcOHEiw8PXgzDwN2V+TLUzVESURZYRfc5fuW8lOMdh8XlPNESTdDnWueP+J3+F/P5SDHcdLBt77oxVyQfezB46GgcWjOMrnNexG36w+joMQkU2cfc6EuVrRmH7l4yDuvZaW47W5tqG8MVkSGEII9cGrsWasZQYbshto7FqUigP+eR069sVGupYoWIT4Z9stBs44G1VLn7c26TtUyzLNq1xKEcdDASrHE4RowM2qLn2B3IeMskA7cYOg7UiUQL+ru304kbFx68A844DBiFAab5iTUYmUeObc4buEewPncI/z3GNts8uYx2o3vOl4m93FqhUCgUqUtEGodWvvjii5D/Vq5cybp16+js7Ox1/yuuuAKn08mWLVvIzu4WKj/99NN54403ov8Eg5CRojzkDelO/BqQTpyUxUlwu796WzkW0fgqas0b4KFujhL4HjNwU0JhXM8Bg0srKJqgT7bIoojurANrkLxd9j4mKJJDaud3942wZhxaM7GFgxEMA+yBkv4y0IzD4JuxcAzWcSLVyLG4fGYF3dSmcsahlNKmM9YfrKZu6WYKYh3vrAsJ1gBplay16UAPnVJlu6vyBEbbnoe6/geCTMG62YrYEfx3b6bVzIhtHmDftF77dtGClLJHMNgqzxM8VlrdkoN1UTvonvNlCxU4VCgUinQh6vSIOXPm9FpS7HK5OP3003nooYfIzOx5wfjvf//Lf/7zH0aOtK9oTpo0ic2bN0fbnEGFCycCB0/oLyKRFFPQFXwR5JBJEy1UUEa5KEUTUcdsI8J6E+uIIi48glJ204YALvBca94AD+VS5TXGBspFKQYG2WTFtJS+Vtaz0ljLO8YS3tM/oZA8DOSgCgj0ZY4SzDQm8jlfAZBPnqkjpjIOBw/RlCrvkI0sN77mHeNjVuhf4xFeJoox3OW6LmLThMGTcRh0YyxG45QaIHja+zIztcnMdkzt13liqXHYW8bhZ8aX7ClmsJNmxotRUZ9H4WekGM4O2YgDjTKKGUMF26hhFCMgiZqcA6FNtvOW/hFllNBOB9NE9FIXb+jv4cHHcEoZIcriNkdJFmWihDliGjtkI3f7HuNJ/SXzvUwyEAi2ye0INKYynl208ozvFfYUM5ikjU1ewxOAdXzMJINJYozt/VBjdyDIlCfCGw4pBkbwvGuVvq5LwTSPYRSzztjU777pQyePHNpoZxJj2SEbzWBkIBhcRgkZuNHQqKCcYRSzkW0YGGR0XasMaTBCDCNTunEKJz/3/o639SUUkEcWGUr/UqFQKNKIqGeGL7zwApMmTeLhhx9m+fLlLF++nIcffpgpU6bw9NNP88gjj/D2229z/fXXh9x/9+7dtkzDAI2NjWRkpLYWRiYZjGAYmWSQRSYzxCR+4vge2zMXs9BxMnPFdL7vOIWPMv4Rtzb09yb244znu0qVfbzHZ+ZxhrI5yqP687xjLGG13MBtrqtieuz3jc84zvtD/qD/FS8+ZokpXOo4J27al/0hEnMUK3e4r6aDTjroZDXrzddV4HBw0td3usRYzvHeH3Gn/leWsJz35Wc8ajzPZlkV8Tki0cmMF1aN1+CMmhyRxSaq2UQV5+vXcZHvV/0+j08OrFTZa9m/t8Dhjb4/sVR+hVf6uNr5g6jPo/DzTsbfaMpcSkPmp0xzTmQz1egYbKKKT42VyW5ev1gnN3Oq7zI2U0WFKOMZ911R7b9btnGS9yeskRtw4YrrHCVZnO04kSUZz3Ge42TcuGiWreY/HZ12OthMNc208DvXz9lOHf+RH/Ck/nKymx53rOOjjk6+yLWNZcFjt5TSEmRSgcN4EXyN/oDP+Zr1rGcLS+RyntBf7PexPzdW0cJudAxW8Q3V1NEi7cHgqY7x7Mr8nJ2Zn7E88yXOch5vmRf621ZHI5/IL1jHZr6W67lHf5ytbGe2mMIFjlNT2mxKoVAoFHaivsv57W9/yz333MNRRx1lvjZr1ixGjhzJDTfcwCeffEJOTg4/+9nP+P3vf99j/wMPPJAnnniCm2++GfBrDhmGwR133MGhhx46gI+SfDLJIEdkk29ZgQ08zhe55r940l+9LbdwkUeOWZoTyBQayhmHttJAYpsJaD12ochPSN+IlmiDPuE0IFWp8uAhmoxDax/NIYvdXU6J22QtUxgf9bkTbo4irGYI9sBhXtDNbiQZteGwZ3n3p1S5e3Em3JjdITtNU4/KNNOeSybWUjxI3VJla9lhfzJ8qmWd+TheJmCDhVDXWpfs1m+rkrUcr3XrDKdqn4gGq8SNGzdCCHLIYhctQM+xu50Ocx/l7B4/+rpmDqRvBuu5bjNqzGBwXpjyc+t4GdBfDCX3kUv2oJzTKhQKhWJgRB04XLlyJWPGjOnx+pgxY1i50r9aP2fOHLZvD+1Weccdd3D44Yfz2Wef4fF4uOaaa/jqq69obGxk8eLF0TZnULEq83XyM0K7y13uXMjlxF/MfiBlc2WixBQD11XGYQ/B51hinfD9zvVzDtT2iunxY0G0ZabllCAQ5n4aGgYGHSrjcNAQzXe6zXJDcIp2NA8YTwPR3awk2sXZisPmqmwPHOb3uNntfzvturID0zgMZzJgDez0xy1XEZpgaYhGdtEuO8hKMV0u62/yZMeRUe9vvdYdru0XkzYNVkLNxfbu/C5fyNWAP4BS6ezuF6lumBMJ1vExUIKaS7YZOAzGqv2oMg7jR18LWv3tm4Y0qA66jm+WVWbiQbjAYagF9FDzgXMdJ/FL1yX9aptCoVAoBi9Rp1lMnTqV2267DY/HY77m9Xq57bbbmDrVrxFVVVVFeXno7KOZM2eydu1aDjjgAE488UR2797NySefzLJly5gwIXpdHoWdgQQOrZOCXV36NTo6hjTC7ZLWBDT6SiiM+Y3ku0a343assxljRbSBQ4dwUEhej/3bVOBwUBJNNsMUi47SP43eTazu8T3OKZ5LOMVzCXf7HjNf/6v+PKd4LuEe3+P9am+0aLbAod01NPhmNziwGA2ROtmHw7o4E84cJTAWgTJGiSUjQwRhrUHaVKHK0uZQn6nP/eleJBiK/ctq8FElaykgzzTRCQ6wpCNWuYQM3IBfziFA8LWiJch9VxEfwl2jA69/Zazr1/W0np09qok2WiRIwmUKlosS83HAYCjUeKkWtxQKhSI9iTrj8L777uOEE05g5MiRzJ49G/BnIeq6zquvvgrAhg0b+MlPfhL2GAUFBfziF7/oZ5MVvTEQva352izW6hupod6mS+fFZ04mhwrP6a8zQYxikhjDHmJazI77mbGSh/VnMaSkknJGieExz2aMFdGaowAsdHyHf+uL2Mg2c2LajipVHixEmgH4a++f6KCDSYyhWBRyoDafS7VzeMN4j63Gdh70PcNFzjNt+/zJ9ze+kZtZY2ykEw9OHLTL7nGkXbazUq7hbWMJv/Hdjwsnk8RY9tRmcqfr2ph+Tgg2R7F/7uDyuk489Jdcclgg5qGh4e7HONmXOcpPvb/FI73MYBLFooAjNKUZFStGiRH8VFvIU8Yr7KadEQzjz/qz3KZdneymRYUDjYPEXnjw9Usnt0k2m314jKiMQwsHN1ki00w6zicPIQRHaAfQIBsBgZQypuZog43dss18HBiDpjGBtWwCwDDsCyvNcrfZX8YJu9GhInZolsDhAjGXepoYzjC+lGvx4aOIfP6mv8hljnOj6p91RiOHiL1pki3soJFxYiRLjS85UOxFpsjgO9oRIfcbJSo4VOxDjshmppgE+J2ep4rxNMgmHDiopJz52syBfXCFQqFQDEqiDhzuv//+bNy4kaeeeoq1a9cCcOqpp3LWWWeRl+fPNjrnnHPC7j9x4kTOPvtsvve97zFp0qR+NlsRDmvmTLR6WwUijxrqe7zuwTvkAoeLjE9421gCwI3uy2J23BXGGlPQeqaYzHccR0bsUJtoojVHAbjNdTWrjfWslZvM1zqkyjgcjPT2nT5rvMZGuY1MMviB4zRmaJO42vUD/tT5NwBeN97jIuyBw1eMt3nP+BSAo8SBOIXD77zZdUOeJbJYLdfbxqiP5Qo261VxCRz2lnEYnCUT0G/sDzXsYLH8HOhfxqE18yM441BKyaP683TioZwSznWcpMTmY0iuyOZW11Xc0/kEEsl6tvCS8Ra3kVqBw9VyA+/JzwAoEgVR779WbjL78C3iZzFtWyqQRfc1+AM+o0N20kQz78ulgD84UmDJpk83rKXHGV1/iwaazNd0ERQ4pNXsL/uwR/wbOESx6vRe4/whRzkO5GjPBTTIJqCrMkj6v6totE13il28Kz8xnweybHfJFpDwD9c9Ifcr1gp4PeMR22tfG+tZLTeYz092HMlsbWrEbVEoFApF6hC9BSSQl5fHRRdd1K8TXnzxxTz99NPcdNNN7Lnnnpx99tmcfvrpDB+uUttjwUDK5sKVKA1FgxSbMUoMyy6sQtI3Oy/nGMfBMTt2rOmvI+54Mdq2s8o4HDxEknEopTTLjyaI0Vzu9OuBlVKEGxcevCEF0QO/mXxyeSnjAQCe0l/mAu91AFzoOI07fX9lC3b92x3sRJc6jn7oA/ZGbxmHudIeOGy1lN5FizVjsD8LLB4ZPuOwgSYzG3K2NtX8LhSxQwhBAXk00Qz4+3GqZZg1d0mLgL3sNlLs17uhV6qcRZbtebWss0mIVMlaCkT6Bg53051xmCkCpcrZ5nXcK+xzwBZrf1MGGHHDurgXuHaH0xksFZEHDgPuyYB5TQ8snkUrzROss3ih47SI91UoFApFahFR4PDll1/mmGOOweVy8fLLL/e67QknnNDr+1dccQVXXHEFa9eu5amnnuK+++7jqquu4tBDD+Xss8/m3HPPjbz1ih7YhfqjiwtXEjpANhQNUgKBEydOyiiO3XFTSKssWo3DAOO0UVgl45TG4eDBHgwO/Z1ag1XWPqoJjQpRzia5rYeukTXYGK5fCwS5IqeHD4mOTh2NjGBYlJ+md3rLOAw2MWmmtd/Bos5eAn+RYF3sCc4Srx7iAZ1EkUeOGTj04KWenQyL4bgfb6yBgP5ozgV+uw4clFPSx9bpR1ZQ1n81dbbfW5WsZToTE92shGEtVc7syjjMsQRTfUGLx/ZAtQocxgvNtvjln1SFug5Uy1r2IPIsv2ZLhmkh+dTRYH7H0V5ngucCymVboVAo0peIIksnnXQSNTU1lJWVcdJJJ4XdTgiBruth37cyefJkbrzxRm688UaWLFnCj3/8Y77//e+rwOEAGYg5ysgwE4ahGDjcLncAUEGZrVykv/ikD6dwssRYbr422AWk+xs4DJ54+vBxcufFYYMyB2nzVSZVEgj+NnSpo6Hxe99fzNeCv8tKytnENhrZxXc6f2L+NrzSa+qiWvcJznDMDJORt9XYzghHbAOH1iDck/rLfGysMJ9vkfasRy8+OmQnWSLTNIP6k+4vy+6rb3os+ogZov8ah25ctt+IT/qokd3SEYPVRCkdyBe5toD2732PcLsrdcqVA4GAHLKiztz1SZ95vRvBsJhn/qYCWdgzrLYZ223zocd8/0priYBWogsc2sxRVKAoblg1DgNZ86Hm6U/4XuQIbUHEyQLWhYYSUUidbDCfRxM49BpearrGjgAqkKxQKBTpS0RXGaswcrBI8kD45JNPePrpp3n22Wdpbm7m1FNPjdmxhyoDCRyOERUscT3H4d5zbZpfXumNrlY1xemQndSzk3JKmKfNiMkx53m+w065iwzc7MMezNAmUUz0WlSJpD/mKAAjGU4u2ebNSC45fg2loEyzb+RmGmjiHWMJpziO6pcbqCI6eitVftV4h3O915BFBhMZzZHaAVzuPM+2zYOuG3ELN4/6nmexsdT2nS5gHnO0afzYeZblfN0I4GnXXXxtrKdDdpIh3Fyn/4F6uZOf+H7FZ44XYvMhuzhM25f1GW/xR98TfGp8QbMtKyubeczgK9aZ2ZXFnr1YIPbkt64rOdRzNhJ/vz9OO5QJ2uiw57Eaq/SnVDkgBRGcrTiu8zA0BBMYxRHaAVzgVNfHeJFHtuVxDg/pz/Atbf+UCRYF+nZ/sg1v9N1LC62MZxQ3OmOn55tKWDUOM3BTTR3nOE7if8Zi3jY+5kX5P3PxLx1pNvz9RyAolPkAZFtclYPlaqwZh8pVOX6EKlX+juNIXtD/x8fyC7x4yCOX1+S73OS7j5tcl0d0XGvG4VhRyQ7ZaGZZTxMTIm7fNfrvEAgycJvXwVzLWKpQKBSK9CLqWdATTzzB6aefTkaGvbTD4/Hw97//vc+MwUCJ8jPPPMPGjRs57LDDuP322zn55JPJzVUrVQPFrnEY3dfrEi7mOKaR5c20Bw6HWMZhlazFwKCWBpxRBMzCIaVkm6yhjXaGUUypVsQUbdyg19AKZF5BdBmHI7RhtgwGHT2kDpKQAg9e/78hFpweDAR/p1Wylk48dOJhjKhkjFbJGFFh22aSNhaAIpHf8zsVMFqrYKI2Juz5xmqVjNW6XVt/pt9KPTvxycgy1aMhS2RSSSYVoiy0YYSA1cZ686nEn3nj//37b9J0dNtNcigGGjgMZBxajVE6ZCc7aAT8GUDjtJGD1n09HcizZBwGjCJ20ZLEFkVHoM15/dCbq5K17KadDWxlpjY51k1LCawZh514qJK1DBPFSLr1/2ppSNus3xatDXR/cMqp+Recs60Zh0Hjsy3jUGWYxY1QpcrDRDEefLR1zdEb2QXYdUr7wvr95ZNLPTsB2EGjX04kQqpkjc1YJ5fsmFToKBQKhWJwEnXg8Pvf/z5HH300ZWX2m5iWlpaISo2nTp3K/PnzufjiiznjjDMoL0/PiViyGEjGYYBxYhT1cqf5fKiZo1jFnmNRTryLFnOSN0ubzPPuewd8zETQt41GaIZTanvuQAv5mS/wXMdThl8zNbgUShEfpAz/rVq1im51XsVhjn3Dbnu5cyGX03d5eW/nA7+u6ka20UQzu2WbX5A/xvTW1vmdp7BSrrG9Vh10A2bNVAyFVeMwVhmH1u9ivjZLlfLHmVDldX1974MFKaUZ3O6PMUoq6e7Gi2AziFB6rVWyNm3/Pq22QKC/D+VYgqnBc0BrsChflSrHDRGiVBm6/uZBl1br77gvrOY2wZUe0QTHg4OVqkxZoVAo0puoA4fhBOS3bdtGQUHfpZdr1qxh0qRJ0Z5WESGxCByWikLbpGSoaRzG2mEyXg7N8aa/Gocu4SKTDDq63JStGVn27bqHn6EWnE4WskfxcDfbLE7J4fROY3k+6Pp9dW1SLeuYJMbG5LyREhxoMTB63AxZb5JDYdU47I85ircr8GjNEI/14oWid0LptPX1vQ8WdtNu/s76m3EI/oDRUHXItZYqQ/ffJDhwmK5YKwQCpabZlkWcHuYoUpmjJAItRKky2LM8s8mijfao+qe1VDm4qiCaOW/gnAKBRCq9S4VCoUhzIg4czp07FyEEQggOP/xwnM7uXXVdZ+PGjRx99NF9HkcFDeOLT/a/VDnAJMbyXxZjoCMQnOy5mJliCplBwv/tsoM2OpgpJnGD62LKRWmYI6YOUkq+NNYymgo66GSCCK9tFgmbjCreNT5mPKPoxMM0MT5GLY0//Q0cAoyjkq/ZAPgnvz/z3MrRjoNsmmHWwLaP2JeqKnon8J1ukdv53PiSTbKKYgpw4KAiDpk1ofrQDG0ic4xp7KKVX/ju4veu/2O0GBHzc4ejSBT0WCTxSYORDGcb/kDqm8aHvGV8xCp9HbXUk0UWxzsO43zHKQzXhpmB8WBzEyv/1t/lDeMD1hgbyA3KqpRIxotRzBHTzNc+1b9gXzGHFlqZLMbF+FMrgpnMWPZgGrvZzTdsAVIn47BFtrKnmEEnXkYT2W/HkAb/MF7nI2MZu2Ub4xjZq45nujNSDGdfMYdlchUONDbJbRzVeT475S6yycKJg+u9d/KW/iFXOL+fdn8rq6tyIPhTQqH52iZZhVd6WWR8ikSyRVZTQiFZZFIo8hPd3CFDqFJlsC90TGJMl9yHl7u8j/JT53m9yuDslLsQ0p9ZqGMwWYxnBGXsohknTmqNeh6Wf0cgmCBGc5hjvx7H+NRYSY2+AwcOcsmmEy8jKWeeiI0muEKhUCgGJxFHlgJuysuXL+eoo46y6RG63W7Gjh3LKaecEnLf4uJi1q5dS2lpKUVFRb1e1BobGyNtkiIE1gCMo58Zh4VaPrrhP45EUksDRbKGYRTbttsma9jINpbI5Rxm7MfJjiP73/BBQgNN/EH/KwDjGcWxjkMGdLw3jQ/5me82AI4RB3Ol8/yBNjFh9NccBWBZ5ssUduxJB5104uU+4ynel5/ZAocuS3bWUNPRTBahzFEWGZ9wofcXgL/Pn+k4rkdwK5bns3KN80LyyOEK3y1sNLZynH4o5zpPism5IyE4SNlOJ0vll2bQEOBB/RkAcsg29c6W6auYrI3luxxtCxyGolN6ONl7CeDPztmDqbb3J4oxHKTN5wbXxYB/8eIm/T466GSamMAFzu/G4JMqeuMK5/fNv3kAaxbWYKaZVpbKrwDYQ0ztY2s/9ezkPO/PASgin+87TjH731DkRMe3ONHxLRZ6ruFZ49+00UGG3Eo+OabMSDOtrDe2UmGUc512UZJbHFva6DAf54s8AGZrU8zX6mhgO/X8wncnK+RqBIIFYh4Ha3szTBT3OJ4iNthLlbsDh9ZMeU1oZubftfofONf5HVvQN5hVcj1PGC8CsI/Yg0Mce7PR8TY3e+8D4CnjZd6WSwDYV8wJGTh8wPc0TxuvmM+LyOcsx/FDegxRKBSKoUDEgcNf/epXAIwdO5bTTz+dzMzMPvbo5q677iIvL898PNhNIVIZ3VqqLPoXOAylcaIJ0aOMKYtMM1snXcqZrfpmJaIwpscbnmIZmdaJarQZh+APklhvxINLlq1mEKpUOfEEvtMqS4lySNOTARBJ1qq1NKqaxJYDBgf7WmQr1WGuTzlkmYFDgDbpv9kO9Otw+oZWc5VM3CH/vtbXdtJs/m7SVVNtsCGEoFKUs15uMV/ryxRnsNBs05uL7Ldr1dDMHcIlysEMF8Msz6T/7xK09tEpQ0tvpDJtFjO8gq4y2OBFn2pZa/abAnIpEHmq38QZe6lyN1ZJgnxp/w6qZW2vc9cWa5m59Thdj+toMF8LGHQFE6ynmEmG6gsKhUIxBIi6lnXhQr9Iu8fjoa6uDsMwbO+PHt2zhCOwD8B5550X7SkVUTAQV+UAoW5Wj9IO5FbXVbbXHvb9nct8vwHSJ/Bj1Yk5Ujtg4MezBEJ+4jxrwMdLFv0J9ReIPOpk9yTU6uQHqlQ5GYTKALT2+Xtc17OXNisu5w7Xh5KpI+YOCvbtopVWGTrT7DTHt7lX/5v5fHvXzZOnS6MwbODQcqN2qLYfj7tv77VN1kCuChwmjuDAYUuKlCpb+1dehOYo1t/Zec6TlflOF9c4L+Qe/XEApmoTuMV5JfM99koaTxjN3lSmXXYv8BXiLz0OvlZsNLaZgaSpYkLKmLylMuFKla0Zhy7hskUVq2Qts+jOFg3GuiBineMGxoDbfA/ZjhVK1z74On2M42A1higUCsUQIOrI0rp16zj//PP58MMPba8HLi663nsAwOFwsH379h6uzA0NDZSVlfW5/2DmbM9VuDzRu2rGkk+Nlebj/pqjhLpZfdtY0uM1a6mpR6ZHxuE2y4QoFjpvHxrLYnq8RGLLFutHlnCw8UQDTbZJqDWw7ZXpEXhOJQLf6AfGUvO1WBtx9FWqDPbfRaIDhxlBuq1613+heFv/yPb8df09fu78YXepsgg99ltNNvIiKAG/3/e0+bgiCodLxcAIzrRvThFzFKtDaqRZP9bgdAVlvWw5tCimgAzcdOKhStaSGyIQG87sK5WxVgYU4K8OCh67f+u733ysFjQSQ7hSZas5yia5zbbP4/qLHO04KOwxX9TfNB8HjHAC7JZt7KTZfN5BJ7f6HuI6V3dpvpSSTbLKtl+kCxYKhUKhSG2iDhyed955OJ1OXn31VUaMGBF1QEHK0DeSnZ2duN3JDboNlBbZilMm9zOUUUwBuUwQY3pMCiKlkjIOFHvhwUutrEciaZVtrDTWMMuie2N1xQ123UtVdskW9hF74MbVw20uGn7ovR6BIFfmMIkxjBD+byaVGIg5CsB8bTZ1egP17CSHbCaLsdzr+xuXus4F7KXK4YI1ivixQzZypucKkJKRDGe8GEUZsdWrsnsqh+5DZRRzsLY3Xuntd5Z0f7FmCU5lPE0048FLBx5cOJD4b56yyCATN8UUsIsWJPCN3MzvfY9YSpVDaxxaMzz6ciA9x3MVq4xvKKOEWWIyR1o0QRXx5VTtaLYY1aziGzLJJDNMBulgo9mSyR28WBOKTunhef0/jKGSbJHJvtqcOLYutRBCcKnjHD43VuHDx7vGxz226UwTWRYrmRZX6VzNP2+0jt3jGEkeOUxjAqPEcM5yHJ/gFg5NrBmH1vnYPtpsrnNcxMP6s2xgC25cZJJJO+28YrzF1I6jWJHxim1hbK2xkYu8v2K5/Np8zbrQ8GffP/jEWME4RpJNJrPFVJbJVTxv/IdOr4cbXZexU+7iAs91jGIEEoON+IOWyk1ZoVAohgZR36UtX76cpUuXMnVqZCLcAf74xz8C/onZX/7yF5u5iq7rvPfee1EfM1Kqqqr4+c9/zuuvv05bWxsTJ07k0UcfZa+99gL8wcxf/epX/PnPf6apqYkFCxbwwAMPRO0AnSdycYXJOkkUgYnAQdp8MkVGH1uHOYaWx3L5NS3spoRCGmgC/M561hIIqz5YumgcrmUjH8sVANwlruvXMaSU/FP/D220U0Yx87XZHKTNTzltz4GYo4C/hG5rl8lEO53Uy52UyiIuxR84dAqrxmF69J/BjvU7baKZtwx/Ft0eYirHOg7B0U9d1EgIFzh0CAcbjK1sZTvDZGKF9q2Bw9VdLuABxjOKDOGmQTZRIgoZIcookyW8Id8H/AYT/zU+6FPjsFVaMw7DBw47pYfnjDcAv9j8kY4D2E+b278PpoiabzsP4UzflV3fZzNLja+S3aSIaCWy/hWgWtaxSH4KwCymME2bELe2pSJHOQ7k9/ojAMw2epZ8pqPGoVXXLjCOWa8VI8QwvwM9/rnlQE3jFJFh1Tg0LEkXU7UJfJuDuUV/EPDPv4sooJkWADZRxXa5g7Gi0txns6zmQ/m57fjWhaxFxsf80/gPAP/n+BE3OH9CXudcDGngMpzcyGVsldv5t1wE+K+PoY6jUCgUivQl6sDh9OnTqa+vj/pEd911F+APqjz44IM4HN03qAFX5gcffDDq4/bFzp07WbBgAYceeiivv/46w4YNY926dRQVFZnb3HHHHfzxj3/k8ccfZ9y4cdxwww0cddRRrFq1KioTmCfdvyffnR/zz5AMKkU5q+UGW7ZMsFi8Ow1dca2lkv0tx2mi2RQbn6VNSVktIMOWcRg91r+fQCCRtr+vMkdJLgFzD4DbnFdzqGOfmJ8jklJl8PeVrXI7O2ikQ3b2e9EjWsJlCQJc5jiXi1xn2l6TUpLdOdv8XC2y1Vw0CW+OEllGmNWw4jBtP6UZlQTyyTV13Gqoxyd9tgWOwUg0Ga1g1909VIv9bz7VsZas17CDTDJ6NflKB6y6jaECh3O16fzBdW3C26UIXaoMPWVFsrDfq1RRy1i6A4ctIaQXrJmCVp3pHzpPxyEcVFLOVrab8zbr/G2qGM8GudV/HFWqrFAoFEOCiGbEzc3dmhe3334711xzDbfccguzZs3C5bLfeOXnhw6cbdy4EYBDDz2Uf/3rX7bAXTy5/fbbGTVqFI8++qj52rhx48zHUkruvvturr/+ek488UQAnnjiCcrLy3nxxRc544wzEtLOwUYgcGgN6ASbW7jSMOMwMDHKItMUCe/vMSD1dA2tDLRUeaRlYltALk202P42yhwl8Vi/0za6A4eVIj46Z5H2oUpRbtbGVcs6xotRYbeNJcHmKFbGWLI1AgghyCeXXV2ZHbssQZtwx2qxmVeED+xYAzoVcfo+FL2TK7LZIf2BQx2dWhp6aB8ONlpsGa1938Dbr0+qnwVj/Ztsk7Xkk2MLHKabOYqUEo9lnhcqcNif679i4IQrVQZ6yIpkCneQSUqN7f3mEGZP1oUG6xwsMDerFGW2BT2rBniGyDDPpxyVFQqFYmgQUeCwsLDQVmYppeTwww+3bROpOco777zTj2b2n5dffpmjjjqKU089lUWLFlFZWclPfvITLrzwQsAf0KypqeFb3/qWuU9BQQH77LMPH330UcjAYWdnJ52d3RNJa2A1XQhki2kIM/Os14zDNDG32NU1uaoU5f0qLe6QndTIejQ0DIxBf9PZGwO9cbBmHOaQRRMttLCbRr2JQi1fZRwmAet3upNd5uNEBLj7DBziv2GpkrW2Mqh4EmyOYmW0GBHy9TxyugOH0ho4dHKP73HeMz61bW916s0PE9hplx3UGQ3meKvMB5KD9UbahZNNRhWVjsH9XbTYNA57v4HfLdtokDvNDHDVz3qSKTIopYh6drJRbkUPyvRKt4zDNtluuy64Rc8sbBU4TA7Wv/p/9Q9Y6PgOmvAHEx3CgRuXuWjvkvbbuRqjnsDarEd6aZRNPY5vzzjsnoMFtIYrxXCQK3Di4GTPJVTRHYzMsMzfVKmyQqFQDA0iChzGOti3bds2Xn75ZbZs2YLHY5+E3XnnnTE914YNG3jggQe48sorue666/j000+57LLLcLvdLFy4kJoa/4WwvNw+gS4vLzffC+bWW2/lxhtvjGk7Bxs3OX/KFDGem3z3mhPl4IxDq5FBOmQcdkoP26kjhyzG0D9jlL/pL3Gp7yayyeRQsS+XOM+OcSsTx0A1DisZznCGsYNGckQ2QsJu2qnwHsAX7ldV4DDJ7Kad/ZnLHto0ciNw++0fkZUqjxMjTT3Vaur63iFGhCsvFggmaWNDvpcvcs2P1cQuNDTKKOYd+TGLfZ9TQB5TxXhz+2EUU0Ihe2uzOUo7MOQx79ef5nrfXWSRwZHiAM51fGdAn0vRP6wZoRoal/luZqnjhSS2qG+aZAtuXOSSHdIF2Mr1vrt5WH+WHLI4XhzG0Vp499WhzPvuZ1gnN3GW90paacOF07xGpZs5yizPcbbnKuNw8HC240RyyOZHvht4Sb7FA/rTXGyZU37iep453hMAWMla275b2W4+fkZ/lev07nurkzmCUVqFzVE9VMbh713/xx+5gft9T/Ge8SlllFBKEdPFRP5s/AMnDsYzmgO1vWL7wRUKhUIxKIkocHjwwQfH7IRvvfUWJ5xwAuPHj2f16tXMnDmTTZs2IaVk3rx5MTtPAMMw2GuvvbjlllsAmDt3Ll9++SUPPvggCxf2T0Pq2muv5corrzSfNzc3M2pUYjJkEsVwUUoR+bbV9WCNFOvKdDpoHAY+327abY7R0RAoA2ujg3JRSqlITEl+PLBq6vQr41Aro4YdgD8oaw0h1dGAwzL8+NIkY3WwY70ZlBgUaQWM1XqW5MbjfL1l8A4TxaYJU3CJVTwJFzh04AiZeQN2ncJANlINft1fD15cOHuWbgkYrg0jS4TWzK2SNUgkbXRQoZVRLFLLgT1dyBc5ZlC4E4+trHew0ip2+zOK2EVBHyWDVbIGHZ1W2hirjVRuqGEYp42k2WillTbAvrCVbuYo7RbJClCBw8GEW7jIE9lmqXxz0Bx8ijYOBw70EFIv1rGrJahMucxRSoUos5mhhQocjhDDAP9imXlNE1AiikD375Mh3AnTJFYoFApFcok6OvLoo4+Sm5vLqaeeanv9ueeeo62trc9g3LXXXstVV13FjTfeSF5eHs8//zxlZWV873vf4+ijj462OX0yYsQIpk+fbntt2rRpPP/88wAMH+7XYautrWXEiO7StNraWubMmRPymBkZGWRkpP+FMriMKVgjJd0yxpoj1CLrDatO2U+cZw24TcnEGujrz21DKUVmpkZweVeVrLX1H18a9J9Uw4EjocY9vfUh61iTyGCNO4w5SjbhTbHyLBmHAbLING/Aj3YcxP2uX0fVDutnvsL5/aj2VcSO4HG/iWZaZVscM3IHTrNV47CPjMNAP9PQ+IXzori2K9UJp/+YbhqH4QOHisFAriW4HxwAFEKQRzZNXdIZVqzXlJ3Y5ZTOd5zCbG2q7TWftAYO7beGlzsXcjnd93ZfGeu4TX8IgHma/f5KoVAoFOlL1PWHt956K6WlpT1eLysrM7P6euPrr7/m3HPPBcDpdNLe3k5ubi433XQTt99+e7TN6ZMFCxawZs0a22tr165lzJgxgN8oZfjw4bz11lvm+83NzXz88cfst99+MW9PKhEcOOyRcZhm5ijWz9dfsWdrtlSq60cNNONAE5qpnRe8Ul4la2xZncocJTFE6nIcu/NFhtUhMpGBw3Aah5mEXxgKpedUSpHl/eizuKwBneH0vL4qEkMoDcrqQZ512NKlPezCGTaDNkCgnw2ndNC7RSebUopCLiykk8ahLnU6gj5P4DPbr/+KZGG93gTrjANkkRVyv22WuWiw/EeohXG7xqGjx/tWonVyVygUCkV6EHXgcMuWLTZX4gBjxoxhy5YtIfawk5OTY+oajhgxgvXr15vv1dfXR9ucPrniiitYsmQJt9xyC9988w1PP/00Dz/8MBdffDHgX7H76U9/ym9+8xtefvllVq5cybnnnktFRQUnnXRSzNuTSlSKcmYzmUzcZOJmhfE1B3eexTmeq9lobEu7jENb4LAfN/9fG+vJJ5cxVDCS4f12ZR4sxKJUaX8xl73FbArJw4kTgSCLDF7W37atcKdD/0kF7Fmk8b8djLQPjaCUaUxgLzGTrF6y/WJNGcUcpR3IBEbbxrPMXgIws8VUyinBiQMHGuWUMkZ0a6LmRbnosNz4mnJRyr5iDgeKPXGFKZFWxJ+ZTGJPMdMcww8We/Oh8Xmym9UrgetWPrm9ygF4DA8TxRj2FDOYq7KE+kQIwT5iD8YxklyycXRNl9NJ4zBQig3+4GAR+ab5hipVHhxYs4ibg3TGAfbRZlNJOe6uK5LAH/zNxM23Ohayd8cpfG18gxMHWtf1KpeeGdTWcudAHwhHSxRZzgqFQqFIH6IOHJaVlfHFF1/0eH3FihWUlJT0uf++++7LBx98AMC3v/1tfvazn/Hb3/6W888/n3333Tfa5vTJ/PnzeeGFF3jmmWeYOXMmN998M3fffTff+973zG2uueYaLr30Un74wx8yf/58WltbeeONN8jMTNwN7GCkSBRwpvN4OvCY/z6WX/Cc8TqL5VJ7xqFM/cm0tQwk2pt/gP8Y7/Oi8SabqWYvbWa/XJkHEwM1RwG4znkRn8gvqKYOHz4kknY6WSKX21x9VeAw/ent5tMlXDTRzGfySxYZnySsTVO1CbzkfoAzHMfaAv3uXtyWr3CeRy0N+NDRMailHmtOTrQZGC/qb/Ka8S5L5HJ+5rwg6s+giB0/cp3JSrmGzVRTTS2L5Cf8SX8y2c3qlcBNfF/XrBrRwAdyKUvlV7YguSI8EtjINlppM/VM0ynj0Jo5JoHrnD+2PFeBw8GAtfqlJUTG4d/dd7M+8y2aM5dzlHYAEn8F0Hq28gFL+YI1LJErqKCMax0/YnPmuwzTinscJ1D1EVymHApbxmE/q3MUCoVCkXpEPXs888wzueyyy8jLy+Ogg/yOfIsWLeLyyy/njDPO6HP/O++8k9ZW/0XnxhtvpLW1lWeffZZJkybF3FE5wHHHHcdxxx0X9n0hBDfddBM33XRTXM6fylRYym2tNxtVstaWGZMOgZ/mAWYcWkssh3eJSqcyAzVHgfA6UQBNslt3R2kcJoZEl59FUxpdIcrYLnewnR14pTehmXf5IpcsS3myo5dAuVv4szmsJX45lnKxaDMwrLqovf1eFIkhjxwaaOoa82QPbd/BRuAmvq9rllVGQ/WzyKgU5T30FjxpZI7SEpTBZpVokFIFDgcDtlLlEBmHVnr7XeeI7F6DfIE5WF9lyv52DFwPXKFQKBSpR9SBw5tvvplNmzZx+OGH43T6dzcMg3PPPTcijcPx48ebj3NycnjwwQejbYIigVh1+vbX5vGc8ToQCBxaS5VTP+NwoJMha+Dwckf/HLsHEwM1RwH/ZLWAPHaFEO9ukt2vpUPgOfUYPKXK4B9rlsqvkEhqqGcUI3rdPpZc7lxIjbGDu4zHgN4DhwCZZNoChxnCZf5gos3ASCdd1HQgT+TSIJvMnhus7TuY6JQeMwOur2uW9fpk1RRVhGdkiN9jOug5BwjWzMu2uL4nWtZCEZoM4caNCw/ekBmHVnr7XV/qOIfznd8N+353xmHfgUO7HrgqVVYoFIqhQtSBQ7fbzbPPPsvNN9/MihUryMrKYtasWabZiCK9qKR74rxSdpvMvKS/SblFxD8dAj8tAyy/sIrop0NGR6xKlcooDhk4/MhYZj72ytTvP6lAosvPogscdt/0VMs6RonEBQ4BskR31mBfpfkZQaYJS4wV5uNoMw6rpV+4PpuslNdFTQcCmXuBvttMK1JK/qg/AfiDzIOFaG7gA/0MVIA6UkL9nVrYzT2+xwdVP+gP9/ge53n9P7bX7vM9yb/0/wJQL3cmo1mKEOSTSz072SprOMVzie29g7T5Zl+0ztd7HKOPOW1UpcpSmaMoFArFUKTfQjeTJ09m0qRJAH1quRUVFUWs99bY2NjfJiniQKUo50fa6bxhvE+zbOXHjrP4yljLV/IbHtdfMLdLh1X4VtnGXDGdPHIYRk8NmN74rudSssliGhMYLSrCurWmErEKMl3j/CGL9E95Xb5LE80IBG7cbGW7uY2uXJUTQqJdla301YdOdRzNBmMLrbRxt+8xnnHflaCW+cm2OSn33taTtCN4yPg7AFlkUkQ+JRQyQYxmpjY54nM+pb9MAXkcIvZhgTYv5XVR04FA5l7gt2JgMK/zJKqpw42LedoMDtT2SmYTTdpkO/uIPZBIxlIZdrtm2cpzvjcYzQjyyGVvMTuBrUxdDtX25WTtSN4w3qMTL+WUkIGbP/v+QSYZ/MjZtzzPYOOn3t9SLxtZL7fSITvNbDbwZ7CaWYgSpjKeqWI8pzmOSWKLFX9wXYsA3tDfZ6v0z5vaZAdV1LDa2EAeOZzv/C4LtHlMZhxr2djjGH0F+PoqVf6J51c8a/ybNjrQEJRQSCXlUV3vFAqFQpHa9Ctw+MQTT/C73/2OdevWAf4g4tVXX80555wTcvu777673w1UJBe3cDFTm8xDxrMAzBKTaRA7eU9+RgNN5nbpEDjcJKtYJlcBUCIKI97PJ33821iEgcFIyjnMEXuTn2QQC3MUgHOcJ3KEYwFPdr5ovuajnTbazefpkLGaagw2jcP9tXl8wxbWyy3ky8RnMWRa3Jz7+tsc5zjUDBy208FoUYFbuDhQ24sRUeibLje+5mPpz1a83vGTqNusiD35IqeHrt3XrDcfbzC2DprAoQev2X8mivBVH1Wylk/xm9rNFdMZr41KSPtSnWnaBNpop40OAKrpztr8TH7Jj5LVsAHwuvEem2UVuWQxToy2GdvlipzuzDQBpRSxnzaX2drUJLVWAXC649sAbJc72GX4qzcMDGpkPQCfy684n+8yQRsNQvYYvwDy+shI1qVf0zpc4PAz+SW7u+ZsOpIGmhgnRqrsZYVCoRhCRB04vPPOO7nhhhu45JJLWLBgAQAffPABF110EfX19VxxxRU99lm4MLVLOoY61olBlazlPMcp/KNL6zBAOpSaWk0KopkM1VBvGonM02akfAlTgFiYowQooxiBCBtIUuYoiUESC+XKaM4X3dkqRTnr5RaaaaVF7u7zZieWZFqyhPsKd1rLvjQ0XnY/2K9sQZvuXC9lZorE0ZdWYF86Y4nEumBn1RwOZptFR/Nb2v5xbVO6EU43zqpNmkro0p/dn08e5zhO5BrfHeZ7d7iuYR9tj2Q1TdEHlzsXcjn++WWNrGds5yGA/TqSG0Yqo6+Mw0DVhyOsxmHP69sR2gF9tFihUCgU6UTUgcM//elPPPDAA5x77rnmayeccAIzZszg17/+dcjAYTDr16/n0UcfZf369dxzzz2UlZXx+uuvM3r0aGbMmBFtkxRxxqY9Rl1IwfB0MEcJaEDlkROVxmG6is7HMsSkCY1cssMaDaiMw8ST6KLYSILP1uBZtaxlihjfy9axxY01cGj0sqX9JiybzH6XGKebLmo60JdWYAttCWpJ31jHTTfhXcit+oYj0+galQiCFxHduPHgsf1NU4lAgEhD62GOkmWTa1AMZsooxokTHz5bXwynsZvXp8ZhV6ly2AWInstpKttQoVAohhZRBw63b9/O/vv3XLHef//92b59e4g97CxatIhjjjmGBQsW8N577/Hb3/6WsrIyVqxYwSOPPMI///nPaJukiDOByYELJ81GKxVO/3MnDvSuG+x1chMnd17MAm0elzsX9jL5GJxIKfHiRUPrczK0S7YgkTzm+xfvy8/YIRvNCVw6TaSkjK2RRg5ZtsChhsBAIhD8R3+fU+QlYfeVUrJAm8cVzu+jif6XTQ91Ep9xGJ2mYuD3U0geVbKOKSQucJgpum+a+yrNtwZpssnqZcvwNMlmPPhw4KCEgrTQRU0HAkFhBw50dJw4EQhzcaxFDtKMw16mc/U0kk0WbbSn1TUqEVgXMxxoFJJHPTtpkE09jCoiYX8xj4ucZ5AjsmPZzD5plq14pc8MNjuFkxZpX8jLssg1KAY3mtCooIxt1FArG8y+uFpuCLn9g56n+ZX70rDXmb5clY0Q1/JQSQQKhUKhSF+ivgOfOHEi//jHP3q8/uyzz5pmKb3xf//3f/zmN7/hf//7H2539wXssMMOY8mSJdE2R5EAimUBIxiGFx+r2UCuyGacGIkPnbFUcp3jIkoo4t9yEb/Q7+I5441kNzlqmmhmk6xCIpnM2F63fUj/O8M79+d6/W42GVVk4GY/MYertR/wI0fqiaWHI9YOvEszXuRs7UQcXcNO4PgzmMhoUUGzbA35b5mxyuxbn8uvBtyOoUxiw4bR96ExopJMMmiixVZemQhO0Y5kV8bntGesZIn7uV63HSdGsjPjM5rdn7Ms46V+ne9e/Uk+l1+RgYt7nL/s1zEUsadSDCcDt5mZ5cNny6gPztJKJtbAYW8ZhxvkNtpoJ48cVRIfJd91HMU8pgOgY3CG9m2aMz7nh47Tw16zQv2rMxr4t7GIX+h3cpE38b/3X3j/QKXnAOrxuyU7QmQcWhdPFIOfDzOepTnjcy5wfNfsZxlhxoE75aNc6/t92GP1FTgMaCCC/1r+M+18DtH2GUDrFQqFQpFqRJ0WduONN3L66afz3nvvmRqHixcv5q233goZUAxm5cqVPP300z1eLysro76+PtrmKBKApmn+CaXsLssNrExXU0ceOWSJTDMq0Sk9yWpqvwl8LomkQMuPaFsfPgpFnlnWXKoVJVSTLd7EyhwlQIkoZJgoMrNUA0c3hNFraXiG7F5gUCXNsSMWweBYn69clNBBJ2DXHE0EDuEw9Z3C6zz50YTmHwMFlNC/TMHAONJGB+O08I64isRSJPLpJPw1rFmGlltIBlZtYVcvgcOAHl8Lu6nQVEl8NOSIbP/1qeuC1UQLTuEkX+RGJWmSSYaZxd8cRrIjnrQGldg7cfTInu1v9rQiOZSKIgBbX8wlO6xIb3vXtTUU3a7KoW8LDaxjjZMyrUQFmhUKhWKIEXHg8Msvv2TmzJmccsopfPzxx9x11128+OKLAEybNo1PPvmEuXPn9nmcwsJCtm/fzrhx42yvL1u2jMpKdfM0WKlkOBvZRhPN7JZtVIpyVslv6MTDOc6TKNYL+aHvegA8vdx0DVaiMSmw6sk84f5d2pZ+xdIcJUCov9UwUcLz7nvD7vML7538Qf8roAKHAyXa0uFEn8/aP6z6f+mIXRs1PceQVKSv8X8wmaN4IyxVDlyzXDgZRnHc25VuVIrhZjBmB42A3agiEjzSS36nf44cXCKcCFpku+25A0ePAKbSOExNrH3xMd+/uMgXOqO1TXaEPUZfGYcey9wrm6y0MQFUKBQKReREHDicPXs28+fP5wc/+AFnnHEGTz75ZL9OeMYZZ/Dzn/+c5557DiEEhmGwePFirrrqKpvhimJwUSnKzYlztawLclqusemmdKagUcq2KG7iA9kbDhwMpzSu7Uom8QgxWc1jAi7LfWmGWbO/fF2OkIqBk4iMw2hLla39o2qIBA7duCilKMmtUQToyzxkUGUcWkuVRW8Zh/6+ViHKlUZsPxgtRpiPG2RTv47hFi4yyaCDzqQEnxuD2u1Aozno2pupAocpT29ZsB30P3BonddrCbdWUygUCsVgIOIZ5KJFi5gxYwY/+9nPGDFiBOeddx7vv/9+1Ce85ZZbmDp1KqNGjaK1tZXp06dz0EEHsf/++3P99ddHfTxFYhgvRrGnmMEhYm/qaWK+mM3+Yi6Hin15XX/PpqvSW5nXYKVV7maBmMeeYobtJiGYP/n+hhcfk8RYTtAOwyF6L2lMZWKtcQgwUYxmfzGX8YwyJ5/r5BYu9t7Ig76eEgZgz6TxqYzDAZHojEMrkfShMoqZK6axn5gT1h0y1VlsfM7Dvr/jwsksMZkTtW/125VZEXsqRBmzmWq7puWRQzGF7CvmUCGGJbF1duzmKKEDh//1fcAcMY0DxJ4cJvZNVNPSivGMNh+vkt8wq+NYjuv8Ia/ob/e57599z3Kp52Z+4LmOnK5S4GSUKpdqReRbxlQnTkpFEYXkk0cOB4u9VVA5DRgrKjlKHEgZJWTgts2fPjNW8g/fv3vsI6U0NV3DlSp7u+b1DjTmi1lxaLlCoVAoBjsRZxweeOCBHHjggfzpT3/iH//4B4899hgHH3wwEydO5IILLmDhwoUMH977Sr2UkpqaGv74xz/yy1/+kpUrV9La2srcuXMjMlZRJI8skcHSLmOKH8t6LnB+l1t8D1BFLav0dTyo3WRu60nBjMNVfMNi+TkAI8LcGHbITq723Q74y9meybgrYe1LBvEIHM7SpjBFG8+H+jLztRZaeUR/jjFUcJHzrB77uCwO3apUeWDE4zuN9HyRoAmNetnEVrazTm6OU6uSy0v6m/xRfwKAc7QT+bP7t0lukcJKlshkC1W2DJsWdlNIHkvkcmoYmcTW2bGOh+HMUZ40XuYt+READ7huTEi70o1xWiVdcRVaaWMdm1knN2P4DI53HNbrvrf5Hjb1Wkfg15dMtDO3lJI3jPdsczOBYLGxlCaaAdgotyW0TYr4ME+bwUsZD3Cz9z4A1sgN/NP4DwBV1HG3/jinOb9t2ycQNITw+r6BUuUJYgwvZTwYj6YrFAqFYpAT9fJiTk4O3//+91m0aBFr167l1FNP5b777mP06NGccMIJve4rpWTixIls27aNUaNG8e1vf5vTTjtNBQ1TgHy6yx9aulbLAyW9tTTYzDNS0RzFqltYGaZUzbpNsSiMd5MGARZzlBhmIoQrBe8Ik6nqVBmHKUt/XJwD/aOenXTI8GLuqYpVu3GEUEYVg5GSEKXj+eQB/uz0wUIkrsrW61aF6m/9YnQY86JoKw4yuoyUmtltGqUkgnp29ljQ9eFjZ1fQEJTOaroRMEwZJSpsrztC3Pb5LIFDZ5g+3YZfI1PpYCoUCsXQZUDRgIkTJ3Lddddx/fXXk5eXx2uvvdb7yTSNSZMm0dDQMJDTKpKA1S04IOxtnWhaxb5T2RwlkwyKKQi9jcXl9VBtn4S0K5kYccpOC2c+0BxG98laaqMyDgdGojMOrUR6vpE2g5S6XrZMTax6qtc5L0piSxThyBc9y+QLhT9wGG6cSgZWV+VwJYZV+DV5i8gnR2QnpF3pxogBaBnrFpOxQNDGh890j08EofRig88/UgUO04rLnQu53Lmwx/caqgrAFjgMkXGoS92ce6nAoUKhUAxd+h04fO+99zjvvPMYPnw4V199NSeffDKLFy/uc7/bbruNq6++mi+//LK/p1YkAWvGYeDGyRo43EWL+TgVNQ67xePLwuqNDTUXVHuQKXaEMx9op6OHWDuowGEq0x9NxQrLb+se/fFYNmdQsFpuAKCUIjKFugkbjGSEuDkOLI558PIH71+5x5f8vtmXOYqU0maMougfLuEKmakVKPG8x/c4p3gusf0L9A9vGOmWRAagQwUO62Sj7bnqH+lJ8PdqDRJ2v9b7AkS7JcicKTJj2DqFQqFQpBIRaxwCVFdX89hjj/HYY4/xzTffsP/++/PHP/6R0047jZycyITszz33XNra2thjjz1wu91kZWXZ3m9sbAyzpyKZ5FlLlbtuoM50HMdauYmdchd/018y3081V+VOw8MYKnEKjQlidMhtpJTc5X2UCsrII5ejtQMT3MrEE6/stD20qdzt/AW3+x6mg0586GholIliqowa8h0TbdtbV8BDTXoVkZNMjcNIz3eG41jyyeV+/Sn+rP+Dv+uvMVWMZ1HGU/FqZkK4z/ckz+v/pZgC9hVzOMd5YrKbpAjDdc6L+Ni3ghflm+xkF43sopru7Nff6g9QQC7TxASOdByQtHZaF1JcIaZz9XInY6gkX+QwV0xPZNPSjgPEXmyU29hOnfl3f8f4mHEdh1Emis3F1U7pYSPbWGmsZadsNiU4MnAzWYxhJMNpopnbfQ9zp+u6hLS9VtYzA/919Su+AWAXzZRSTAcdVFI+JBZDhyJ7a7PJJ9cMVIeqCOor47BR7mICoykS+cwRU+PXWIVCoVAMaiIOHB5zzDG8+eablJaWcu6553L++eczZcqUqE949913R72PIvlYS7cCE5A9tZlsllWskRtt5QuppnHYInbzBatBQrkIXZK0k2ZWsBqASSKbKdr4RDYxKcQryFQmSvie4wR+6vObQhSSTxPN7JItVLODaQQHDi0ZhzK1gtKDjf5oDsaKSPvQPG0Gm2U1jfouwJ/NvFR+iSGNlHb9XCnX8mGXAdPx2mGc4jgqyS1ShONIxwEc6TiAG7iY8zw/5++GXYaljXbaaGezrEpSC/30pXFYTR3r2AQSZmvqhn8gFIhctshq22sSodBRQgAAaWNJREFUyXbq2C3bOFDbC/BXXOzoyuZbZnzFbtrM11tp5335GQBZRuIytzbLajNg2N12qMffzjVsNPUXFelFpSinTJSY1Rwtsq3HNn0FDmupZz1bQMKezIxfYxUKhUIxqIk4cOhyufjnP//Jcccdh8MRnSC0lYULF/Z7X0XysJUqW8pJK0U5a+RGWylDqpUqWz+PNbPSSpWsMR/vr82Ne5sGA9bAoTYwOdQe5IkccxXcmikTqqTKZSnBU+YosWTwuSoHCM5+8aGzg0bKB6A1lmysffsa54VJbIkiGi5wnsrfPaH1m5tJrlFKX4FD63VLZZQNDKtpmhuX7W8/RYzjefe9ABjSoLBzTzx42Wr5+wNsZwfDKGYHjSGvdfEiknNlKu26tMW6sN8SYszqq1RZjSMKhUKhgCgChy+//HI826EY5NjMUSwTj4oQRhepZo5i/TyhRPHBPvEO9ZnTkXiZowSoEGU0y1abPqbVgCaAKlWOHfHSrYzsfJGfMZT7a5WsDZsRnAoExpAM3GENmBSDjwrCOxGH0mRNJH2VKtuvW8pReSBYAyZa0FhmHa80oTFClLFZVlEddD2rkrVMFmPZIRvZzg50qUftzNwfQl1Xg8lSeqtpSxbd2a3NtCKltGl5+2T3vMoRIuPQNo4oZ3aFQqEYskSlcagYuuSTiwMHbpwsNb7kl957+JnzfCpFOU4clFJMDTuA7ozDermT3bTzvO8NFneV6FnxSR2Jwb7aHK5z/Tihn8eKVaQ8P0TGYZ1soErWUUAeLbQOmRXXeAeZKkU5m2QVheRTww4KyWOzXsUWx3ZGixHmdsocJT4MVldlgOFBmYWVlFMvd8a6SQmjRtbjxkU+uZSKorAGTIrBR2C8zySjhxNtjbGDdcYmJmljk9Ay8FikG1whMg530kwZJeygMawplSIyKihDICinlBbLnEEgehhQVFJOLfVk4CaXbHbTjkAwnFIKyCOLTLLJ4sTOH7O/Yy4XOk9nmCiOS7sD42YmGejoYa+h2WSFfF2R+uSJHBzSgY6OAwcndv4Yl+akTbajSY022nHiwImTHGHvB02ymVbZTh45tLKbStQ4olAoFEOV1BWMUiSUTDJozVjOQWJvaqjnDv3PvG68xygxAh+6GTSEbnOUx/R/MaXzSK7T72SjsY1m2Wr794H8jP/KxdyiP5SsjwVAi7VUWfQMHN7ve5qLfb9mFy2cJo7lXMdJCWxd8oi3kcYYKumgkxp2IBA00cJj8l8c2XmebTsVOIwd/S0dTvT5nMLJzozPuMvpNw+oopbtckcfew1e7vY9ynL5Na20cb/z18lujiIKMkUGlZT3CBoCPC5fYH/P6UlolR9riaFL9FwHXic3U0cDAsEIhiWyaWlHkShAIqlhB5c5zmVnxmfszPiMtowvuNX5M9u2Y4X/2lZLA620MY8ZaGhsZBt5ZNOY8SlnayfwJh9yk34fP/b+Km7t/pv+Iu8YS+igk8PY13x9mpjAfswxn6tS5fTlNfefOUM7FvC7fDeyi2bZymfyS97iIz5iOXnk8jPH+Tzousm27899v+NX+j20sJsLxKkcqO2ZjI+gUCgUikGAChwqIkIIgRCCUlFkvlYla6kQPW9GAuYo1vKGQpFPvsi1/QuUREiMOLe+d6w6Vfn0LFW2lvmM0Epxi56ZHelIPDUOwW5EYz1Xe9ANulVzR2kcDozEuyp3E+3ZskQmxaLQfG7N8kk1AmOhgcEoSzatIjWwXveCaWE3HbJnUDERRKpxaGAwSlP9biAUi255gRZ2kyUyyRKZCCHIDCrzLRcltucjxDCMrnlODfUIIRhm6VPNcRzbrPOwUq37nG5cOC3B5iyROLMWReKxjmFO4SBf5KJbpF8MDPJDLJy3W8a2Iq3A1mcUCoVCMbRQgUNFVPzAear5uErW9CjRgW6NQ6ug8uPu23nefa/t3xQxDrBr6SUDa8ZhbqjAoeVzDCVTA8MS0I2XxmEAqwZPa5B4ty3jUKrAYawYzKXKAayB/GQbUQyEbUojKqXp6ztLpNGFlUg1DrPJooC8hLUrHbEZxPUR6AueF53jPNGUXwh8Jz9zXmAuirXI+I1t1r55ruM75uPpYiLTtAnm8yyVcZjWWMewi5xn8k/Xn7Au52WTyeXOnuaVHXSYj3/sPCuubVQoFArF4EYFDhVRYXUWrJK1IQXDO7FnHGpoPTTLAEvGocSQycs6tGUchlhxtd58FZKfsHYlG3u2WOyDTCMtfcdhGYp200677J6sOlWpcsxIlVLlAFbpgJYkG1EMhMAYUkKhyuxJQfrStY3EfCIe9J1x6G9XpShXupoDxGYQ10egL7i/VIpy87VaGvBKL0IIc2EkURmHJRSajx04bNn92ahxKZ2x9skqWUsTzbTRbr5WQz1ei2ZqANVHFAqFQhFA5ZwromIEpZyoHc4q4xu2yO28pr/LvmIOThxslzsoE8U00swpnkvowMN+Yg7jxWhcIcp7HUFuue4kxbE1KThA7ImBQaElK0NKyU2++3DhZBoT2N8xb0jdfMXbHGWSGMvhYj82y2oaaKKAPDx4mMZEqmQdE8VowF9WE0BXrsoDIvGlygM7X6pnHOpS5ybffeSJbKYzkYO0+clukqIfjBUj2UfswUq5hlKK2UUzeeTSShvDKeUyz80MF8MoFgWc4TiOExyHxb1NjXIXu2Ub4xlFpnBTElRO/YLvv+yrzcEnfczWpsa9PelONBmHU8Q49hdz2SyrcONmtKhgrjYdl+HE0TVXGi0qyBO5NMpdcVsUud/3FB10MowiRooRaKJ7juUQGrtlm/k8UwWF0pqRDGcfsQeNsolF+ics179mImPYSTO5ZDFBjGa5/jV36o+iCYFDOskQLpYZq8xjZKk+olAoFEMaFThURIVLuHjWfQ+FHfPokB7+oP8VHz42ym0Ukc8Z2rG8Z3xKs2ylmAIO0uZzg+vikMdyCoeZ1ubDFzJjIhFso4YP5FIAckS2+XoTzdyqPwjAOEZynyt+AuaDkXgHmSZqY5iijeMt/SMATte+zbPGv/mcr6iSNUzEHzhU5ijxIdEh8P70oTzrzXoKZhzW0sDt+sMATGIsd7t+keQWKfpDDll8LFcA8CvXJXzPcQIAL+r/4wzvFQCslhtA+jP/EhE4rJI1PGv8G4A5TGNEkN7wc8YbvGl8CMCDjpvj3p50J5fuuUFfGYcztEm8nfE3bvbeB0CZKMGFkw/lMsCfoTqaCkvGYXwWRX7pu4dW2sgik29rB9s0gp04bdlkWUKVKqczFVq5OYatk5sRCBaIeeSQxQq5ms2ymu/Ko3lB/g8kZOA29crBf/1O1hxdoVAoFIMDVaqs6BeB1ekW2UoF/hKInTSTibuHCUo4nEEZh8kinDmKtcTHatIwVIi3OQrYS9+tk1Jr6Z8KHMYOe+FwYjMO+4OtPDAFzVFsZYJDcAxJF8KVqYbS+A3lvhwP+jT1UrqaMUUTmhk8jLS02DoHqggqFYVuTeUOOvGEKBMdCLrUacWfUZjRNS/TLbrFDjTaLfp1KpssvRlBqW3xLp9cCkQeeZaxYzs7zMd6kGlhFplDquJGoVAoFD1RGYeKflEpymmSzTSz26+d0hUfOMlxBFdrkRmI2N1ykxc4tJYJWTXVrDdeR2gLEtqmwUC8zVEgvHaY9W+vXJXjQyJuAaQcWNaq9aamOY4GAvHCaqx0jOOgJLZEMRDClamGGr/iqVdnxXrdOtixT4/3t3X1vTKKcYeQClFET35XeXqkZiZWs4lgjTno0lTuGiJb2G3TIBwogaAhwF7aTC53LuRTY6X5mhOHzTFXmaOkNy7hooxiamkAYJoYz/Pue7nJey8f6P6Km22W61XwXEsFlhUKhUKhAoeKfhG4oW+jnQq6S6T+6Psbf3LfENEx7BmHyQsIWW/0rDeI1uBVX+L46Ui8zVHA/nf9Qq4xH//F9xxuXFzuXKgyDmOI1YQoFVyVM4TbXzKFh41yaxxaFV+qZZ35eCiOIelCuJL54ZTiwGHTXl1lrOce3+MhHUpjSbjrFvizzWqoB+xZ3YqBkSdyQPqDfNFi/f2/qr/D5c6FtkzRsz1XkR3COOkgbX6/+lKo/mHtp35zFH/GoRNnSB1qRXoxzBI4HNGVhWytCrJmHAbjVreLCoVCMeRRpcqKfmGdbJzkOIJXXA8xlfG8ZrzLwZ3fi+gYg6VUOZA9IBDkkAXAH3x/5V7fk4xkOEeLAznScUDS2pcs4m2OAjBLTOaHjtMZwTA2ySrucl7HgWJPdrKL230Ps8JYbQ8cShU4HAgGiXUvj4WL842Oy6igjA48PKW/HINWJY522cF0JjBLTKE8hLO8IjXIt5XMdweNHMLB3113cbI4kv3EXPYXcwH4ve+RuLfJmoGbF1SqXCPrqWAYs5jMfDEr7m0ZKuwj9mCWmEwu2Tb9t0gIXOuKKeR9+RnFHfNZa2zkv+5HuUD7Lh48NMtW898aYyPvG59xt+9xm0FFpFizIgOl9tZ5lhMHZRQzg4nMEdOiPr4i9bjdeTV/dv6Wvzh/y08d5wH2RZGdxi6KKQi5yGedrysUCoViaKKWkBT9wnqjMkIrY19RQbO3lWrqqJMN6FLHIXqfaFhLUJPplhtYmc8l23QdXCM3sIpvAPiudhRjREXS2pcsEuHAWyjyKSDPXOmeKMaQKTLNrJ4tsprpYqK5fTIDzOlAIrJIw52vv0zRxlGt+zP31htbSKX7l2rqWMV6kFAg8vreQTEoye/FpOd4x2Fs6MqGfUV/h5qusaxVtpFrMduKNVbNT6sGI/j73VZq2EoN+4t5cWvDUKOVNlbKtYA/m3icGBnxvoFrXSNNgL9ao45GDtLms0xbRY1Rb9t+u6yjmVaaaaVR7oq6rdaMw8B8TZf2jMP1bGU9WyiWBVEfX5F6HO7cv8dreZYxajs7aCR0X4uXzrVCoVAoUgcVOFT0C7tYfCsImKNNo9qow4ePOhoZwbBejuCfuAbwST3xNq9dBFbmw5UpX+P8YcLbNBhIhDkKwEhLKV2VrOW72tH8z1hsPt9D686GUBqHA8OwBF5ToVQZgrTBLKY5qUBfBhaK1MCqfRuqTDVQSvq5scqMllfLWiaLcXFrkzXjMLhU2aqtqUrkY0fwWDSOyAOHYL/WAeymHfD3n8uxlyPf4nuQm3z3AuAhuuxGCMo4NEuVreYoDjODX7nlDl2sY8fOMEFDhUKhUChAlSor+ol1shG4kbJOqqtl3zf41tKHwZBxaA2GBrTJssikiPyktCvZGAM0togUW7+hroeIvF3jMLbOk0MNe8ZhIs438JxDq0abVTMwFQhnvKRILaxB39707Ubaxq749tVWepaidp97aOvzxoto5zi97Q/+vuQN46ZsDeZ19idwaF206Oofdo1DzbyeOlUOwZDFel2yGuoEY8SkfkChUCgUqYyaLSj6RQmFlFFMBhk0yWbAPykuJI8ySvjSWMee2sxej+EUyTdH0Q2dUlFErsxheFeG5GZZTQF5VFBGnshBiCSlQiaZRJQqg7/fZJJBGSXslm2M1MrJwE02mbxvfMaF8jQqKKONDpYZqzjFc0nYY+lSx4uPedoMrnFe2OOGeqhjNUdJROgwFn2omALyyCGPHDQ5uH+LutT50FjGNllDm+ywBXCCs8IUqUMWmZRQiBsXLhm+Vr5SlFNAHi6cPOB7mkNDuB3HCo/0Ukk57XRQgL0Mvlm2MpZK6migEmWOEiuGU0o2WQynNGJnZSuVohwnTnO+M45KPjdWsY9jjx7bZuA2H3eGWDDbLKtZp2/iOf11vPg4x3Eihzr3Nd9vlx2MpoI22s3+YQ0cOoUTT9dxlev20KWQPEooxIsPL16cOHssjjhw2HTNFQqFQjE0SfuMw1//+tcIIWz/pk6dar7f0dHBxRdfTElJCbm5uZxyyinU1qZWOVwyKBB51NHIVrazQ+4E4BrHhRSKAtayiWt9v+/zGNZV7mRp19WJRjbJKmrYQY7wG6Pc6/sbS+RyqqnjXuevktKuwUAizFGALuOLTrZQzVdyHVPEeH7sOIudNLNELmcTVWzIfJuLHd9jrBhpE5AP/rdabuAt+RG/0//Cm8aHcWx1apJ4jcOBBw6FEJSJEqqpY4lcEaumxYXtcgdHeM/j+77/42L913wqV5rvBYyXFKmHEAIXTrazg6/lhrDbXeQ4k7Giknp28qp8JyhQH1s2UUUVtTSyixJRaHvva7mBTVTRRgeVlMWtDUONYaKYNtrZwFY2yaqo958jptGSsYwrxPcB2MA2btLvDblthjXjMIQRy32+JznO90Mely/wtHyFU32X2d5vZBdbqKaenabWpq9HxqE/gOlSOQRDlhnaJJZlvEQzrbTTSQu7uZDTaM9YyW73Cv//M1ewNOOFZDdVoVAoFEkm7QOHADNmzGD79u3mvw8++MB874orruCVV17hueeeY9GiRVRXV3PyyScnsbWpQYXovhkJ6I5pQqOi6yalkV20y45ejzEYXJWtWlCBz2TNEgrWJBpKJCrjcJgoNm9cqmQtQoge5crgd/Lu618g+AvQTu/9byhidVVOdO7eQPpQYFzZRQutMnw5VbKpJnR5ah45pvGSIjUJXB+2swNfGHd3TWjmdgYGO2iMW3sC1y43LkopCnqv+xpWoanAYaywGhz1VrIejsDidblWYrvmhcJtyzjsGTgM3m837bZ+aTVHyTc1Dq2uypaMQ6VxOKQppQjNcn0e5RyBEAKH5hiyFTcKhUKh6MmQWGZ0Op0MH94zALRr1y4eeeQRnn76aQ477DAAHn30UaZNm8aSJUvYd999e+yj8BNO66dSlFvE4euYIEaHPYY9cJicUmWrZlrgM1k/jzVAOtRIlDmK/2a7nM2yyvw+QgUOQwnIB/Oo73l+7PNnibb1EbgeisgEqxzGQuMQgseV+JpODIRwumeqTDn1qRTD+VyuwsCglgYqCa0dGDx2lYvSuLQnMFZWiPIeQenqrsW8IvLJiaOz81CjN3ftaPip6zz+YjzHN3JzWN3WDNEdOAxljhIcOJRIW78Mpa+qMg4VodCERgH5pjmK0kVVKBQKRSiGRArEunXrqKioYPz48Xzve99jy5YtACxduhSv18u3vvUtc9upU6cyevRoPvroo2Q1NyWoDHLCDWAVh99myeYLxWAoVbaLyPs/07au18ootk3ehxqJyjgEzJudBppolx32jNYoROizRKb5uENlHPYgUeXnoc/X/zNaM3+39cOUIFGE66tKazP1CbWYEYqKCLcbCG2yncbATX5QAFNKaZ5XBQBiS1/u2tEQ+G6aaQ0ZhMyIMuMw+LVQju7WjENNauZzlXGoyCLDfDyM4iS2RKFQKBSDlbRfZtxnn3147LHHmDJlCtu3b+fGG2/kwAMP5Msvv6Smpga3201hYaFtn/Lycmpqwge9Ojs76ezsNJ83NzfHq/mDljKKOV4cxmq5nk1GFZ8ZK9lLm8UB2l5UyTpWyNXc6LuX34lrwpqkDIZS5d2ynQPFXhgYVMhhXOm9hXyRyyw5maMcByalTYMFW9AnzuUq87TpaIYG+G96x4mRHKsdwlpjI+/rn7LRsY1x2sg+j2Od/LbT2cuWQxMjgcHgYAZytgXaPFbI1RgY/MT7KybqY9hsVLGXNpOv5QbyyeW/GY9GdKyvjfU8ob/AKuMb1sutjBEVnOv8Dqc7vh1Vm57WX+F9fSmfyZXkkc3dzl/wkbGcMkpootksAxzFCPYRPc0PFKnFIdre7JItLJdfc7X3du5wXcM+Ws/vdTyjWCDmoaFxu/dhHtL/jgsnL7jvj1lb6mQDh4n96KSTGWKS7b0dspG9xWwEMFEbG7NzKuzu2tZS4P5wkvYtv5GcXMsxnReQITLIFplIQ6IJjSa655XB5ihSSkpEIS2ylVbaTT3EYzwXkEkGU8Q4Nslt5vbXeO8gW2TRLFuZwGhGiuHM0qYQmHa5VOBwyHOCdhify1VIJGNFZbKbo1AoFIpBSNoHDo855hjz8ezZs9lnn30YM2YM//jHP8jK6p9Y/a233sqNN94YqyamJJrQOMF5OK943wbgE+ML9tJmcazjEJpo5h/efwPwqbEybODQYQ0cyuQEDr+Ua3lffgaASzi53/c0AJMZy29cVySlTYOFWJWZRoITBx90fQ9VspaDtb2ZI6bxGu8C8LX8hnH0HTjMthhQ9KWxORQxbAH61NEuOsZxML/y/ZEv5BoANhl+Y4J1xmZzm3bZYcs4Dcdy+TV36Y+Zz7+Rm8nXc6MOHD6v/4fXjHfN5+/LpfzTeAOAcYxiI1sB2Mp2WxBAkZqc5DiCDjw8430VgCXG8pCBw1JRxGL5efcLXbKiLXJ3zDJPd9LM29JfFTFdm2h7r5o6PpBLAZjI2JicT+Enmyw0NAwMWylwf/ix8yy2e3fwnPG6/wXp/+fCiTdIQ9Mj7YHDDjpZLr82n5+rnchLxls00MRu2tkud9gWztrpNOdYFaKMA7Q92csyL3OJtL8VUPTB3e7rk90EhUKhUAxyhkSpspXCwkImT57MN998w/Dhw/F4PDQ1Ndm2qa2tDamJGODaa69l165d5r+tW7fGudWDE2uJlFWnx6YD1MuqvL1UOUkahxYzA2s2VokoCrX5kCIQOExEZpq19D3wndhLA0PrQAWTKawZhypwGExiFQ5jm7XaV9llOK2wSLaLdN/e9llnbDQfl1Boe0+VjKYHdm3f0H1mZJjvOpz+ZX+wlrYG62f20BxWxAwhhPn3bmHgJk2h+opOTyfuYI3D4HlVhSgnl/BalsUU9DAS81rmXKpUWaFQKBQKRV8MucBha2sr69evZ8SIEey55564XC7eeust8/01a9awZcsW9ttvv7DHyMjIID8/3/ZvKBJOzzAvQgFxp+jOONSTrHFYQB47LVlB33YcnJT2DCYCQZ94GqMECKUfNjKMjmZvqFLl3pE2V+VElyrHN3AYcHfvC6uTehEFQN96rH0dB2CTrDIfB48flUPYnT2dsC6WBX//5jZhvutYanNa9fWCsxhtur1hDFwU/Sevq1x5oBmHELqvGCECh8Eahy2y+/sXCK5zXsR/3N1SDXO16eZ4mUkG/8q4j+fd95r/LncuNKUUQJUqKxQKhUKh6Ju0DxxeddVVLFq0iE2bNvHhhx/yne98B4fDwZlnnklBQQEXXHABV155Je+88w5Lly7l+9//Pvvtt59yVI4Aqwj8x8YK83GexcWxNwHxZGscWkXkK0SZ7UZwKLspBzASmHEYygzF+tr/jMURHSeL7lJVlXHYk0RrHMay3L2ir8BhhIGZqhCu6dXUcZc3Mo1EgE7poY5G22vW0sFxQRpRajxJD6zf46fGypDb5IkcM7hkJZZGKdaMs+CMw20q4zCu5HcZpDQP0BwFIv9+ggOHD+l/Nx9nk4UmNFvf/Mz40uxv+SH6ImALHKqMQ4VCoVAoFH2R9oHDbdu2ceaZZzJlyhROO+00SkpKWLJkCcOGDQPgrrvu4rjjjuOUU07hoIMOYvjw4fzrX/9KcqtTg1yRzdWOH1BCIbto4XV9ERBUqtxbxmGSS5V/7v0dZRQzh+lc7/gJ2416KhnOTCYzmoqEt2ew0V2qHH8qKWcPMZUxVLBDNgAwQYzmcsdCnDhZKr8ks2MmuR178E/9jbDHsQUOpco4DMZIoG4lxNaZ+0ztOP7r+isniyM4gv05WRzJIcynGH/G9w+8v+Annl/32O8B39Pkd8wlp2MPsjpm8ZLxFllkMldM517HL3nJ9QCF5HOt/geyO2ZzROd5vbZjg7GViZ2HM4xi5jGdcYxEQ6OBJioo42ztRA7T9uM/rr9yhjiW72pHcZimFqLSgUyRwWuuPzOaEeymncM7F4bc7nn3vXzk+gdHcgCF5FNOCdv7UQ4fik/1L/ih9wbzudXpF6BO1jOK4cxisgocxoF5YjqTxFjcuGiT7QM61mQxln+7/sIPxKlMZRxHcgDnipN6SB0EAoe/9z3C7M7jeUp/2XzveO1QANzCxc2On5JLNlvZjoHBCeLwsKY8XotuojP95c4VCoVCoVAMkLSfLfz973/v9f3MzEzuu+8+7rvvvgS1KL0YKYbTQBMA9V3/t97ItPaiA5TsjMONbGML29nCdvZ1zOEl4y2qqKGKGkaIYQlvz2AjkRqHw0UpK+VaDAyGyWIAskQmw0WpLajsQ6dR7gp7HKs5hso4DEUyXZUHdr5x2kjGMZJllsy+zbKKd/VPAb/cgVWzNECdbLBl14C/b9TIHeznnMtOuYud+PuUgcH2EMewUkUtO9gJwFQxnnVyM0bXfy6czNImU66VUk6pmYVYLkr7/8EVg4rDHfvR6m2jkV0gN4Tc5iBtPgBTjHH8V/8AgG1EXw4fig48tjExOKNsM9VspYat1KjAYRzowMM6uQmA7XIHE8Tofh8rW2RxmGNfVso1bDd2mP1msf45DbLJ3K6zK8i3TdawVm60HWOaNsF8PEObSKvun3PtopWR2vCw5nRea8ahUBmHCoVCoVAoeiftA4eK+JJp0ZTr6HKxtd7I9G6OktzAYaA02YGD4ZSGLGEcyiQycOgSLoZTSjV1do2uEDe+TTK8Q61d41AFDoOJZQZgtOeLFZc7u7O8tsrt3K8/bT5vkz0XKnaHyQoK9K1C8nHiMMegcNsHsPbP4x2HsdlXZUoynO/4rq191seK9GGUGEGj3NXr9Q3gZ84L+JP+NyB2pcodQdqteUGlyoHz5JBFAXkxOaeim2Bt5wn0P3AY4HLnQi6ne6z4wFjKernFfB4wRwlVwWGt8AjWTLzS+f2w57Sao7jUrYBCoVAoFIo+SPtSZUV8yRI9zSiyyMTRFRTsTUA82aXKgRus4ZTiEA7TXKGIfLJFVsLbM9hIpDkKdAdra6g3y6hG0DOAGyqrLIAqVe4dw2aOEn/i7eI8HHsmn9XgKEAtDSH3DfQ3IQQ5FkfSnTQjZfiAZ/ACg3WsCDaqUKQnuV2LYx68dEpP2O3KKDavc7EKHAYHK3MsY56U0jT6qRDlA3YyV/TEqrUaqSFTtARrZAZKlUNpRlvHnOAFz+Dx0YrSOFQoFAqFQhENaplRMSCy6b5pftX3Nsv1VeSJHCYyikaaaZVtLNI/4WDH3j32dVgzDmViMw47jU7/Tb/MopJy/qcvRpOCYRQzQYxKaFsGK4k0RwEYxyh20EipKGKZ8TV7O2ZTRjEONPSugJeGxnLjaz41/r+9Ow+Psjr7OP47z0wmC1lIgCQkQGRRBHcBFRSwuODS1lbaarWordbWYt3qUtrXWpcqrRtUxVpKkVqUWqVqi622WrCICgKiiCKrLBLWLISEJDPPef8IGWYymSRkmyTz/VwX1zXLM2fOTG5mueec+/5II5zjIsbwKUGDTIH22f3aZLdqQtX1Ydf7rV8HVKXjncG61Xt13G0hDUvktXNSoS3iKMEkqLvSVHIwmeLIifibf+quD4shqWal9BGmT/B8rumpUrtPVlKB8lRsS5VpMiLu70P3U5XafeqtXipTufqYXOUpWxu1VVZWWaZ7qz9GdDzpplvwP1OpytRLWfUe5xhHg01/VdtqHbAHdH3V3Xrcd1eL7jt01VmCvEoI2Wa6wl2to80AFalUg1qwhRbR9TO91Vu9ZGU1x/+Kvu18udVfS3url3LVS7u1Vx559Ja7VF+p/IGW2Y+Dx6SrmxKUEBZ7PZWpJCXKyipZSfKa6B/xQ1cckjgEAACNIXGIFgndqvyW3q/5MmWlR7yTdb//d/pMm/T16kna4yyJ+HAdy63KhWZPsFba0WaAvlL9A0nSIBVoQeKcdp1LR9WezVEk6UHfHTqi8kx9br/Qg4E/6K+e32qwZ4D2ez6UJAVsQKmVJ+pd+4FuqL5X7yQ+HzGGMUarEufr3uon9Ja7NGJr1w67W59pkxYGluhIU6BrvZe2y2PrKEJXHLaHttiqXFdh0jvB07V/91B5Jkd5ygnWD5OkOxMmhR2zMvHvuqbq5/qz+7LWaKO2a5cyFZk4vNc/XX9335Qk3eC5Qqc5J+rVxD+05sNBJxC6PXif3a9epv7EoSQtS/ybxlVeocV2uda4m/SgvSOsFuvhCq0bPDPhfp3sHBM8/1BgZjC59GoCcdkWLvKcrZmBF/S6u0iFdrd2qyhq4ri5kp0kFbq7JNV8NqpUlbbawuCWZUk6wQzRGGeExntGBy8zxqg4aVmT7iN0xSFblQEAQGP4tIAWifYFaJvdoUyTrt22SOWqULFKI76Ie82hxGGgnbcq19Y3lKTUkNUjPVgxFNSeNQ6lxmtjeoxH6UpVifaF/f3qHcukKr1Ot1FJKldFyEqhyG1fXV14jcO234Le3jUVo/3da69rSGg9zW12h4ZqUMQxtXFnZNRbNFCKV+kh20Pr2z5aV77JCb7ufGF3tqihRuhrY3qU+oYSdXrbUt3XioYSx80aX5G1fR3jBEsoeOVp8LWuKaptaI1DVhwCAICGkThEi4Q2owi11e7Qac5JWhv4XFJtIrFO4jCsxmH7rjgM/YKVGPKh+TzPmHadR0fW3onDZCXJkSNXbtTamEebAXrPrtRO7VWlrVKi8dV7XN1i87XeCLyjC6u/L6n+QvNdXXvXOAzVHnEU7e/eFPkhiZatURLTta8becrWzQnRGw+gawtN2DXWIEWKjK2WNNQIfW1Mq5M4qo3bbGXRKbcN1U0cnqghrTp+nzpNTiTpPGe05gRe0X5VqLey9aLv8RbdR2hX5YQGtjQDAABINEdBC6Wo/hWH/3YXaZt7KDk33R+5/Td0q/IfAs9rmn92608wivBC9YcSGvX90h+v3HZujmKMCX4hj7YaMPQL2xd2p6b5Zx9W3ISu0GjKSqGupit0VW4roR1J62t6UGWrg41W6uv2jfgRmrBrqAFYrdDY+mPghRbdd+hrY+gqbb/1q1C7I+4PrS/0c8KfAy+3+vh59TQFe8N9R7u0V1Ljq6ebghqHAADgcPAzI1okqU7icKD6qYe6a6O2aovdrvPNaK2zW7TE/UivBxbpXM8ZwWOPNUfql94f66/+f2m33as5gVf0Y89EOaZtE1Wz/X/TB+4nOlIFSjdpylS6zjDDJEn9TF6b3ndn0t4rDqWabpLFKlWZrT+p9xVnnPa4xVquVTqx6ivyyKNc9dKZzqk6wTm60fHDtkPH4YrD8MRhe99fx+7wmq8cjTbDZWUjOuXusnt1X/V0DVKBEk2CvuP5aoxmiY6gpzI1ypysBHma1NjrVOcEfd/5lha4S/Sxu1bzAq/rYs+59R67MLBEk/0PKVE+neuM1uSEmvq7k6ru1uvu29qnMhUoT3kmW71DVjLO8D+vsWaEHONonHNa6zxQ1GuYc4y+6ozTG+47+qe7UKdXXqp/J8xSipPc+I2bIN/kaJw5TQEb0KfaIKlmNWkvZWmwGaCve85p8X1Uy6/TzcnyyKNeymzxeAAAoGtjxSFaJNmEb1VenviSjnYGaJf2aq02Kctkaq02aZU+02J3RdixRzsD9VPvDxQwAe3QHn1o12i3itp8zv9y39Jcd77W6nOd44zSbhVpkV2mRXaZesdZl92GtHdzFOnQSopoKw6/7f2y3tcq7VO5KlWtch3QBm3Rh3ZNk8YPWynUhC2GXU0sE3kdPnHo5Oh/9n0tsssi4qnQ7tJT7lyt0+fqppS4a6qDcFauFtvlWmiXqsQ0/jpyinO8rvR+/eB74VotcN+Leuxy+7GW29V6x36gfxxsxCNJf3ff1BZ9oWKV6nN9oa8449TTHEr4vGoX6k37rv7jLtaVnotb9gDRoOOdo5WgBO1XhQ6oSsvsKm3XrlYbv7uTrlcT/6DXkmapXAe0Q3u0W0Vy5OgCz1j90PvtFt9HsS3V23a53rJLg7sLAAAAoiFxiBZJDllx6Mgo0fj0g5Av1RU6EDxd3/Y/STrdGXboGFv/Ma0p9D5+5r0ubF55bEEMitWKQ6mmiYnf1t8wJ0vpEZc11iylVnhtsvjbqhwI+4LIVuVQPZUZ3LJXN55CY2Wkc1K7zgsdT2h93mpb3cCRh+TVqYsXTYndFzwd2sAo9L00Q2m6JeF7YberHTNRPmXV0xEcrStX4T8yRvt801Khf8tLPBfqRm/zarjWFVqqIy2k2Q8AAEB9SByiRUKbozgHaxaG1lcKLRwfLblTt9B4W6u9jxz1kM8kBM+nK5UP0CFsO9c4lJpWgzC1nr9RU+Omm5KDidCm1Cbretq7xuEhHXu9YU2NzdrXorrxFN6QgteIeBfaeCS0VlxDctRDnoPvkQ29Xu21JcHT9mAzo2pbHfZ6mKqUiNvVjplvcmRMR//f1vllmLSw82312SX0/a57PT+aNVdoqY663bkBAADqosYhWiQh5AuUczA1kK0seeWVX34tcT9Ugryqll8fuWs0tfpp3ZRwlay1wS83oYXGf+n/rWYFXoy4nzHOiBb90m5tTQojYAParp0192ty5LquvrCHzuMQNwYrDkNrEJbYsohO3FLNipq6/ue+HxZT0dQ2YCnRPn1qN2hC1fUtn3Qn8rm7LXh6k93a5o9/lbs2eLqjb1WWpHzlaqO2qkilKnP3K9XpJmttWNKGL9kIbSYR2p22IR7jUW/10lYV6gu7I/ieZIzR1OqnJdW8Ty12lwdv41dA1lptt7vDxqr7Gljm7leJalYq0uCrfdT9Gzwf+Ke+7flym95PUit2yi5TefA0P4YAAIDGkDhEi72VMEdVxi+frflQ6xhHC3zP6EH/H/Rv920ZGR1jjtTHdq1+GnhIdwam6hfe63Wb9xpJ0gWesVrivKC5gfla6n4U9kv4Wvu5ilSiN9139V3PhGZ3E/xe1c/0vJ2vgFw5MjpZx2hGwn36SWCKUpSkAuXpHs8NLX8yupBY1Dj8mfc6fVK9XjvtXt3s/5X+5pseccyfvQ9phbtau2yR/KZajwae1ja7QyOrvqV3E//a6H0s9P1ZM/x/1XK7Ku4apFSoMnjaldvmj7+3eilbWTrFOV7HmqPa9L5aw/HOYG0OfKGd2qPt2qUj1U0TqibpX/Z/wWPSxJfseJcQkjisamLiUJLu996iXwWe1E67V7/wT9Pr7iKts5u1/2ASx5Ej9+AqQ0mqVJUW2xX6StUP1F1p6qveutV7jU4wg8PG/UI7lSifstVDxznh16FtfN97iY43g/VIYJZW2NVa4L6nfXZ/qyfhnvE+qB3aLSuroc6gVhs3dDcIP4YAAIDGkDhEi53iOSHisuHOccpWD5UfrMsUWrepWv6wbT29TJZ6mSz9130vMjForSpV0+G0VGXN/oC73exUwNZ8IXNllWR8OsY5Utv8hdqjYu1RsU70DG3W2F1VcEVMO6YOjzYD9JndpGr5tTXK1vZBngIN8hQEzz8Q+L32ab822y+adh/OQPVzemuTu7VV5tyZFIVsg/TI0+xEfJMdDJ1+Tp4STeRK0Y4mST5tVk0cbbU7dKSOUKHdHdY8oM2fM3R44SsOm7ZVWZKOcwZrjX+jpJqtrZvtF8GkoaSwpKEk7bP7tc0WqlwVKpc0yjlZl3gviBh3q92hSlVpi7aHlQ9B28kyGTrfO1ZPu/NUZmv+hqUqa/UfFgZ6+mmg+rXqmFLd8gu8pgEAgIaROESbucF7hWZUPS8psklCffWAbvReqRsVvh35+9X/p2cCL0mq+RLV3BxW3fu7wDkz7HJHTkSx83gXi+YojnGUZ3L0ud3W5JpRQ8xALbbLtVclKrcVSjHJjd6mvliLB0/6n9XN/vslSQNNX73oezzGM+pYwuqtqiZx/cXB0ga1WJ2DhJCPTlVNbI4ihcfXZvuFilTa4PH7tD/sdfBSz4X1HhfamIOSG+0rLeT1YJ8tkzrJ818aVn6BVdQAAKBhNEdBm8kz2cHTdbdzNb0L7qEPtKFbaw6HtTYiCVVb2Lz28lz1DKvXiNg0R5EO1ejaqxJV2AONHB3+Rbm2XiXqZztVu5L2V7dRU7Wt1g7tCTumvhqbiC8JzVxxmG5SgyvSNtvtEdfX/ZFmn/aHrbwObTwWalvYMZ0jcdVVpIdsTd4Xsnq0owstU0H5BQAA0BhWHKLNdDMpGqqB2qUiletAsH5TrnrJYz06t/K7GmQKNMD0U7rpJiurH3gvDRsj9Nf8+uqxFdkSLXKX6S13qda4G5VgakLaWqtyVai/6aM+prcylKoqVcqVVYIS1EPd9XD1TBkZpSpFfvnjrlFGY6rlV6bS1d20XifHphhk+mmn3a0DqtJU/2yd7pysMZ4RUY8/2hmg4+1gVala11ffLSOjwc4AHakjlGA8spLOdE7VYKd/+z2IDsq2c1flzqafydMgFahSVXrN/z9V2WodoXxtVaGsrFKUrCS2gsa98K7KTV9xKEnHmCNVavepSn6dak7Q53ab9qhEiUoI/p+s0AEdZwarTPv1ZuBdZam7jKQ+9SQOy2y5dto96qNcVeiA+pm8Fj02HJ7QzyjP+f+h952P9D3nG0p0OvYPDNmmh47RkXLlymv4KgAAABrGpwW0qbsSfqxLqm8KnjcyWp/4H32/+v/0rPt3vWWXhhWE/7bny2E1xMJ/zT+0tabWSneNvlld09QkXzkaoL6SaronL9YKLbBLIm5zlDlCJzlDdVnVLYcuU/+4a5TRmKPMEZJqOlq3pyyToXXaLEm6O/CY+gRytc7zn6jH/9x7nX7uvU73Vj+ht9yletd+oP8G3lOifMH6mJOcy/Wwb3K7zL8jc0kcNuhk5xj9O/Fp9a/8krZouxYHVkiSRpjj9L/E52I8O3QUYVuVDzNxmGKS9K79QJK0zn6uTKVrX9KKeo+tfU3rqUyNcUaooJ6k4Gd2o6YHnpUknWSG6iSHWr3tKfTzynR3juRK431naEAb1CVsTR/ZNdpot6qnMmM9FQAA0AmQOESbqrttyspqh/aEbWMOLQi/ze4I+yDe2IrD2jpkktTdpB26rZG8rlf+eraR7bJ7w2pCSVJPkxlcrYhw7d0Mou52PK/xNOl26SZV6SZVKTZJJSoLJg0lhZ2OZzbk/xppw/plKyuiu20vkxXDGaGjaW5zFCny9a2hrcW1r2m1p+sTWoajpyEJ1N7qqw+4TTs7fOLwgK2UJCUrKcYzAQAAnQGZErSp+moybbM79FPvD/RQYGbEdVttoYZoYPB86Jel+lYchn5putM7SV/znBM8P6zy6/rYro24zQ7t0WZ3W/C8T1697HtSxpBK6QjqfpE2tml/l9qGJ9+sukF/d98Mu6659TG7mtCeraw4rJ/HeJSvHG3RoRp00ZpSID61ZMVhbQ3X4PkodQulpjVxCn0P/IZz3mHNBS1XX0fipjb2iqVy1dQPTjYkDgEAQONIHKJNZStypc7v/XM1w/crdVe6iut0laz7gTv01/wZgb9ogfte2PWr3M+Cp2u/gE3zz5YUfSWIldX9/t8Fz/dQJknDDqSlxf3ru/1O7ZV0KDZu9F4ZPP+Wu7RF99eZrHc3B0+TOIwu3+RoS0jzioaSO4g/YSsO7eGuOKybOGzZ613oeyaNUdpffSsOv+gEicOK2sQhNVsBAEATkDhEm/IYj65wvqbNdrvW2c/llUfv2ZWSpJ96r1WlrdKcwCvB7cvFNjyROMQM0v3eW/S/wPsqtLsjVo5lKkMJSlCu6Smv9eqSyhv1rv1AZSqXTz71UIYqDjZF6a8+GuIM1Dr7ubbYQiXIqxQl6xrPN9vt+UDjBpp+usb5pv7ovlizXfQw81tfdr6kPiZXfw+8oc/sJmUoTSV2ny6unKSV9hOlKFmltkwb7BZtsttUZauUYpLb5sF0ME7Ik0mSIbprvN/Uqe4JestdohQl60hTEOspoQMJ7ap8uCsOT3NO0G2ea/SfwGIlGZ8ucs5q9jy22kItdz9Wf/VRiknSEGdg4zdCqxpiBukXnkl6NvB3FWqP+phsldmO3V159IFvB+OWxCEAAGgKEodoc7/33SdJOqvySr1tl0lW2m/LdZP3KknSHhXrt4E/qcTu02faFHbbI5x83eJ8Tx556l0ZVruVeYwzQntVrJftG8Hr9qtCA9RH2aanJOkqz8W60XulhlV+XUUqkSQNM8fq5wk/au2HjBboaTL1uO8uPX/gnypVmars4X0xP9szSmdrlBLk1UP+mdqkbdpqd2iFVgePWegu1SL7viTpFHN8u9dxjBUrq9r+KNTti+47noskz6EVqtmmR4xnhI4ktB5ufXV0G3KcM1jHOYOD9QjHe0Y3ex4b7Ba9Yd+RJI3WcH4MiIH+Th/9zLlOVarWlMDv9andqNV2XaynFZW1Vkv1UfA8NQ4BAEBTkDhEu8k3OcGkxRd2p4482LX3Vu/V+m3gT5Ki1wZqSq2nP/lfirjsOu/l+rF3Ythltb+wGxm97Jt+GI8A7amnyVSpLdMBVTbr9jd6r9Rr7v/0pvtuxJf7HdoVPP1kwt06xjmyRXPtLJa7H2tU1SWSJEdOjGfT8dVuaQdC+Vqw4rBWa8RW6PvlVzzjWjwemu9n3uv068AMWdkOXeNwt4rCzieYhChHAgAAHMI3R7SbPiGrIbaGdoJUZvCLWEtqA9XtlCxJvdUr4rIv7E5JUq568qG5A6tdCVHRzMShFL023V5bEnJM/KzSccO6KlPjEGiO0OYoh9tVuTVR37Dj8JkE5ahmZXLtZ4yOqO7cvPLEaCYAAKAzYcUh2k3oF5tZ1S/qNHOCHOMo0fjU22Trc7tNm+w2fa3yOo00J+kW73f1kP+P8sqjBOOVMUY3eq+U3/plZTU98Gxw+/Ioc5IK6/mwXlu77oCtVKJ8mup/WoXaLUnKM9nt8KjRXLUrQ8tVIWttsxrY5Kn+v3HRwaY8KUpWhtKaP8lOxoacJm0INE9rrDhsTIU9oCQlqkrVSpBXjgn/nTdgA9pp9wTPkziMvTyTrUK7W3tUrGq3WglOx/phsspWq9DuCrvMw/oBAADQBCQO0W4u9XxZ2eqpq/2T9bxe1fNVr+pbzvn6k+9BvZowQxkmTV+uulb/sv/Tv+z/dFfVb4O3NTLyyNGVnq9rpfupzqu+WilKUoIStF/lmq8FGm2GK0mJylKGnvM+ou4mXf2cPEnSddV36W/uv5WkRJ2soTrDGaZrvZfG6qlAE4TWXqpUlZKaUcS9v+mjVKWoTOXqrjTd7v2+9thivRdYqVOcE3SV9+tx1VHbhqQOWXEINE9Luio31dDKC7RdNT+GrfLN16A6DXpW2bX6beBPSlGShupInWCObpN5oOmOM4P1uf1Ce1SsHWaP+qhjdWOfFXhRt/gfkFce+RWQJDmsOAQAAE3AT41oNz1Mdw1w+oSt0Cg62EV5oNNPPU1m1GSGlZVfAVWoUtu0Q1ZW+1Uhj5zgVrGttlAHVKmd2qsRnuM12DNAyaYm+bRNO3RAlSpWqXqYTPV2sjXA6dvGjxgtUfu3k6QKHWjWGNkmS2Wq6XBZrH060zlV2aaHMpw05Tg9dJTTv1Xm2lmEJg6pcQg0jyck2VLdRisOy7Q/eHqH9kRcv80WSpLKdUDdTVrY6yViI9kkaY+KJUWv1xxLW22hAgoEk4YSK88BAEDTsOIQ7apuzblyVYSdH22Ga4VdrWgq7IHwgvDOOD3tzpMk7dJeSTXbU+tu66qt65OuVL2c+GTzHwDaTXLICsNyHVCmMg57jLrxlm9ymtRop6uixiHQcsYY+ZSgKlW3yVZl17raH/LeWJskDLUtpDTHxZ5zW30OOHyh28U7YuKwI9deBAAAHRtLTtCuspUVdn6vSsLOdzMpDd7+gCrDPpAf6RzavlW7sqxu7UJrD3U5pK5h55EUslX5gG1eg5TQL3JGRr3qxF+8Yasy0DpqG6S0RXOUXdobluSvLwlFY5SOp6MnDutrIGfDKt8CAADUjxWHaFeOcdTf9NEWu11SZPOK/qaPstRdJSqVkVFArnxKUKWqJEn3+afrM3ejstVDXnl0ohmqYeYY7bfl2qG9yjIZGuEcFzbmG+47GmGO035VaIgZ2D4PFC12nHOUttrt2moLdUf1g3rCd5dyTM/DGqOHuitbWQrIKt10i1iJGm9ojgK0jhPNEJXrgHIP8zUpmvmBBZKkhe4SfRxYq57KVKnKlKJkzfH/XTvtHm20W+W1Xl3ivUBl2q/+qin9UWDyWmUOaJkBpq9O1lAVaZ/+EXhTJzk19ZRj6Y/+F1Rqy7TS/USJStAR6qMilcgjR44cHWXiq1wHAABoHmOt5efGFiotLVVGRoZKSkqUnp4e6+l0CuMqr9Biu1yStDdxabD7cX0mVz+kRwNPB8+fYYbJyGiMM0J3JkySJN1b/YTecpeGXVbrm1U36O/um5KkdYn/UR/TsQqWI7pfVj+mKYGnJEkvJzyp8Z7RMZ5R57bIXaazq2q2ad/i+a7uT/hJjGcEdE79D3xJ27VLfZSrdUn/afF4J1R+RWvsRnnl1UhzYs1l5mg97v454thh5hgtsx9Lkm71XK37Em5u8f2jdWxwt2ho1fmSpAnOeM3xPRyzubjWVWrliWGrV3sqUz/wXBrxOQkAALS+rpQniu/lN4iZ0C09jdXdCd2y6pFHGSZN6SZV6SY1eHnt+dDLDo1fsz3HkaNctc7qELSPjr71q7OhxiHQOpJMTQ3WA2peGYW6at8Hu+vQ+1ueya73f+l2u0tSTXfnnspslftH6wgthxLr96yddba8S1KWyaj3cxIAAEBD2KqMmOgTkhDaandokAqiHptsDjXJSFM3veh7POKYhhpe1H54z1VPeQ0h35nkd6AvYV1B6AJzEodA8yUf/EGruR3fQ5XaMu072EX5GOfIsPe4aYHZEV2Vd6tIknSE6aObEq5q8f2j9SSZRPVUpnarKObvWfU11RnpnKQbvfHZHAwAADQfWRTEROhKsjv8v9Fl9itRP8ymhKw4TJLvsO6nylYHv3RRQL7zCe2KXF9hdxwe6lIArSMlmDislLVWxjQ/ET/F/1TwdL7C36ey1SMicVjbyZn3tI4p3+Roty3SNu3QxZWTZExNaZW2TNhN88+WVPMj6jT/bL3lLlXhwZWpYXMTMQMAAA4fiUPExJnOqXrEO1l/CrykLbZQv/M/px97JtbbvCLRHlpxmHiYicMH/TM0ypykRPn0Dc/5LZ432leesnWGGaZq+eW3gVhPp9ML7aDpUKkCaLbaEhquXFWp+rDemy6rulkfup9pl/ZokCmQYz06RoPUz+TpMs9Xwo69wXuFPnA/VbnK5cqq2JZqtV2nI80RutLz9VZ9TGgdt3i/pwp7QAvdJdrgbtEWu13r3c0q1wFN9v6gVe/Lta7OqLpUG+1WJShBLwReU4U9oHJVqJeyNFQDVSW/TnaGKsf00vmesa16/wAAID7EVeJwypQpmjx5sm688UZNnTpVknTgwAH95Cc/0dy5c1VZWanx48dr+vTpysnhV9m2dKxzlI51jtLvA3/RHhVpj4q0S3uVU08NQk9IMtFnEg7rft62y/X2wSYsz3oeadmk0e56mkwttR+pUlUqU3msp9PpUeMQaB3JJjG4hLdCBw4rcfiG+65KtE+StMx+rHSlarQzXGOcETrbMyrs2Iner2liyPlp/tnyuwGNcUboIs/ZLX0YaAOXeC6QJJX492mPLdZ7dqW+0E695S7VZLVu4nC3irTcrg6e32lrVqf2UKaGOAPVU5ltvtoRAAB0fXGTOFy6dKmeeuopHX/88WGX33zzzZo/f77++te/KiMjQ9dff70uvvhivf322zGaaXw53RmmTwMbJNXUsMsxkYnD0O2VCYcZsrU1hlKUrAylNXueiA1jjPJMtjbarTGvF9UVhK44JHEINF+yDq2Er1ClujfxdhX2QDBpWGuw6V9v7d76NFTPFx3Ljd4rdYPnCvWsPEX7VdEm72HRxjzPGa2Zvvtb/f4AAEB8iou9amVlZbr88ss1Y8YMZWYe6kBYUlKimTNn6pFHHtG4ceM0bNgwzZo1S4sXL9a7774bwxnHj6Z1zT2U7PAcRuLQWqutB4uD55ucFtWgQuzkq6bOYbFKVWZZddgSJA6B1pGs5ODpCtv0Bim13ZNDUauw6zLGBGv1brOFYQ2qWkO0z03EFAAAaE1xkTicNGmSLrzwQp19dvi2nmXLlqm6ujrs8qOPPlr9+vXTO++8E3W8yspKlZaWhv1D89QW6k6Ur95C3lL4ikOvPE0eu9SWKUE1W5v5EN151f7tkpSob1RerynVT+mArYzxrDqn8BqHJA6B5ko2oSsOG04cltsK7bP7tcXdrk3uVvkUXnKD96eurfbv65VHU/y/14Sq6zWh6no9XP1H7bUlzR631JZps/tF2E6M2tf1PsQUAABoRV1+q/LcuXO1fPlyLV26NOK6wsJC+Xw+de/ePezynJwcFRYWRh3zgQce0N13393aU41L/UxvdVe6ilWqzXZ7vcdc5fm6vu1cKCMja5r+a/0X2qlilSpRPh2pgtaaMtrZwwk/1eP6hb5ddbPetO9qQWCJhjnH6hzP6bGeWqcTtuKQFbhAsyUfbI4iNZ44vN//Oz0UmCmpZqVvT2Vqghmv2xO+r1STIr9o/NSVHWWO0EK9pxKV6TeB3+tYHaUP9Inma4Heskv1su/JZo17VdUdetUuDLvMSvqmOV/frtNkBwAAoCW69IrDLVu26MYbb9ScOXOUlJTU+A2aaPLkySopKQn+27JlS6uNHW9yTS8Vq2bFZrQtN17jVTcnRSlOsrqZlCaPXbtNuVJV6m7SWz5ZxERPk6k0002pJiXY3KP2b4vDw1ZloHXUrXHYkH3aHzxtZeWRo/6ePspzspVuUpVlMtpsnoi97kqXe/C1t1LV6qUsBQ4mi7e14L2sVGURl1lZ5TnZSjPdmj0uAABAXV06cbhs2TLt3LlTJ598srxer7xerxYuXKjf/va38nq9ysnJUVVVlYqLi8Nut2PHDuXm5kYdNzExUenp6WH/0DxhNQ7VuoXDQxORfUz0vyc6h4merwVPt3asxIvwrcpd+uUfaFOhKw4bK51QtzbrCc4QutzGkdBtwz3UXfOSnlA/ky+podrOjduv+mv+3ua9ptljAgAA1KdLf3M866yz9NFHH+mDDz4I/hs+fLguv/zy4OmEhAS98cYbwdusWbNGmzdv1siRI2M48/iRblKVpppfxlu742BocokaUp1f0xrpoCFu2IpDAM2VbA4lDstV0eCxu+zesPO8H8WXrJCe27UJ59r6zkUqVbltOH6i2Wsj62sbGfVoco9vAACApunSNQ7T0tJ07LHHhl3WrVs39ejRI3j51VdfrVtuuUVZWVlKT0/Xj3/8Y40cOVKnnXZaLKYcl85zxmin3aNddq9GHbhE4zynyUo6zzNao53hzRqzyJZoq1uoAeorv/waYPq27qTR7vqYXI02w7XHFuu/gXd1qb1JU7y36QgnP9ZT6zTYqgy0jlz11GnmBPnlqryRrsoZJk0ZNlUVqlS+cnSyOaadZomOoK/JVZ6y5cjRcKfms+cZzjBl2nRtcws1rvIKFTh5mpZwp3JNzyaNudhdrsE6Qtu1U44cuXLVS1lKUzfq1wIAgFbXpROHTfHoo4/KcRxNmDBBlZWVGj9+vKZPnx7racWVZ3wP6qzKK7Va6yRJywMfS5KKVNLsxOE6u1mz3BclScPMMRrqDGqdySJmeppM/TvxaV1QeY3etO9qk7tN37Dn6QiROGwqEodA60g0Pr1rV0qStmtng8e+4S5WicpUYPL1SeK/2mN66EBO8ZygDZ43wy67O+EGSdK4yolabFfoA/cTXeN+S7mepiUOnw/8U6/rbUnSQt8cneqc0LqTBgAACBF3icMFCxaEnU9KStITTzyhJ554IjYTgiQp3XST6jRMbsl21NCC4z1NVrPHQceTbXoEY4Uty4eHGodA62hq6YRyW6G9Kqm5jdiijHDNfT8LPZat7wAAoK3xzREdQppSIy5rSbfB0A/V3/Kc3+xx0PFc7f1m8DSJw8NT25VaYsUh0BL5IQ23Gnod+sIeWo1Iggd1fcdzUfD04TT9qv185MhRrpq2ShEAAKC54m7FITqmdNMt4rL1doum+WcfdvfJaf7Zeso/N3g+X3RU7kpCV+18EfKFfZp/dthxdeNmmn+23nKXaowzIuy62svjwXa7K3iatCHQfL3VS0ZGVjYsOVhXaFKxD4lD1BGaTK4bR9Hes0KP7a1e8ho+ygMAgLbFpw10COkhKw77KFenmhO00n6i3/mfU0AB3eL9XqNj3F79G31i12un3aPuStexOlIFJl/HUN+wS8lTtk43J+uAKlWlak3zz9a/3P9ppfuJSlUmSUpVNw0xA3Wu5wxZazWu6grtsUUq1G595m7UXf5pcmXlkUfDzDFxs/rOaz0aqoEa6hyprzpnxXo6QKflMwk615yhPSqSp4HNGw/5Z+pUc4KylKFveM5rxxmiM8hTtkaZk3VAB4LdlXfbIl1cNUnFtlSF2q1P3Q360F2jmb77JUlP+P+sfJOro9RfX3a+FMvpAwCAOEHiEB1CasiKw60q1HWey/Si/zVJ0gp3dZPGeMddoaX2I0nSBWasjDEa44xQL2ocdilJTqLW2I3arSLttHuVrGT913037JhilWqN3ahzdYaKVap37ApJkkcerdXnIUdW63P7hY53BrfjI4ghI/VSlkY4x2mQUxDr2QCd2i7t0XK7Wo4c+a0/YuWXtVYL7RJVqVrHmCM17GBHXaBWL5OlpfZDVcuvavklSVttoZbYDyXVbEUuVZmq3OrgbVa4n2iZXSVJetTzs/afNAAAiDskDtEhpCt8q/JQHVoluLWJdexqt4TlqqfmJdLspivLNznabYu0Xbui1sKsvTx0q2CesrVF28OOG+oM0ou+x9tusgC6pHyTq+V2tVy5KtRu9alTFmO3ilSl6oPHsk0ZkRzjKM/k6HO7LfheFfqe1UtZ2qHd2q5dcq0rxzhhtRCJKwAA0B5ojoIOoW5zlIFOX/VQd0nSF4peP6qW3/pVqN2S+CAdD2r/xn75tcXWJALrbhfcdrAGVGjdqGzTI2Ksbkpuq2kC6MIaqk9X9zLelxBNbd3evSpRhT0Q9mNY9sEdE375tVN7JR2q7dtNycpQWjvPFgAAxCNWHKJDSDfhicM8k6M8k619dr/223LdVzVdF3rPVG/10ga7RQXKU6WpUrZ6aI8p0ezqeUpUgipVrTy+oHV5eSZbjhylKkW7VCSvPEpUovarXFLN9q633WWaUHW9Cu2uYGzkm2wts+Fj8cULQHPkmWxJUg9laHVgnd4OLNP8wEKdYI7WT33Xaq27STnqqZ3aozxlx3i26KjyTbY81qNuStLNlQ/I53iVoTSVaJ/yTa5W2bXKVU+tDqxVmdmvgA3IpwTlmRwZEx/1eQEAQGwZa61t/DA0pLS0VBkZGSopKVF6enqsp9MpudaVkdF9/umqtFW6z3ezSm2ZtrjbdUr1NxRQQInyqVJVYbeb6blfVwdqavz0Ua6ucL6mWxK+p1STEouHgXay35YrUT494H9Kb7lLNdoM1/e9l6iXydQeW6zp/jlafLCuYa1R5mTd5L1SqSZF91ZPl7Wubk24Rj6ToGSTFKNHAqCzes7/D13j/7kCCkRc55GjLHXXLu3VEA3U24lzlWJY3YxIZbZcjjXqVXWqAnKDl/uUoDc9s/XVwI+0V8UaogH6RBuC159nxuilxOmxmDIAAGiCrpQnYsUhOgTH1GwzTTepqm1wm25Sle30CH4p8x8sHB4qtNFFqklRhpNG0jAOdDv4N043qUo3qcpw0tTb6SVJyjE9leV0V7obvoo1y8lQppMhSerhdJckZTisNgTQPL1Ndr1JQ0kKyNWug1tLM0wqSUNElWpSJCN55VUg5MfRKlXrSG9/pbup2muLw2obSlIP072dZwoAAOIViUN0KDd6rww731OZ8ilBVaoO+yW+1nq7OXj6Z94f6lueC9p8jug4bvReqRt1ZZMvD70eAFqiTxPLYuSb3MYPQtzLVo+w5l2pSlG6UpWvHG3SVpVqf9jxPUkcAgCAdkJzFHRoxpgGaxbWNsaQ+HIGAGg/tTUOW+s4xLdkkxh2Ptv0OPgZqP74SRIlNgAAQPtgxSE6vK864/SF3am33KUqUamsappf9FB37bZFKlCeupkUHWHyYz1VAECcSDHJutg5V0vdj2Rk1EMZWqfN2ndwZdhp5gT55NMI57gYzxSdwRgzQntssfZpv/KUrXOc02sud4bLkaM17gat1+eqVLWy1UPHO4NjPGMAABAvaI7SCrpS0cuO7CdVD+gJd07w/FhzityD25fHOCN0Z8KkWE0NABCn7q1+QpJ0Z8Ik3Vx9v54MPBu87mgzQB8kvhKrqaELubf6Cb3lLuXzDgAAnURXyhOx4hCdRt0ty9mmh8pVIelgUxUAANpZ6PtPmrqFXZffxDqIQGNqm4HxeQcAALQ3EofoNH6S8D39KjBd5TogSbrS83Wd7RkV41kBAOJZaLOlukmdhmr0AoejsaZfAAAAbYXmKOhUEnWoeHiuesZwJgAAhEuvu+JQJA4BAADQubHiEJ3KVO/Ptd3ukpWr/qZPrKcDAEDQeM8Y/UVT9afAS/IYR9/ynB/rKQEAAAAtQuIQncol3gtiPQUAAOpVYPJU4M3TJm2TJA11BsV4RgAAAEDLkDgEAABoRaF1DwEAAIDOjBqHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACN5YT6ArsNZKkkpLS2M8EwAAAAAAAMRSbX6oNl/UmZE4bAV79uyRJPXt2zfGMwEAAAAAAEBHsGfPHmVkZMR6Gi1C4rAVZGVlSZI2b97c6QMCsVFaWqq+fftqy5YtSk9Pj/V00AkRQ2gNxBFaihhCSxFDaA3EEVqKGEJLlZSUqF+/fsF8UWdG4rAVOE5NqciMjAxeVNAi6enpxBBahBhCayCO0FLEEFqKGEJrII7QUsQQWqo2X9SZdf5HAAAAAAAAAKDVkTgEAAAAAAAAEIHEYStITEzUXXfdpcTExFhPBZ0UMYSWIobQGogjtBQxhJYihtAaiCO0FDGElupKMWRsV+gNDQAAAAAAAKBVseIQAAAAAAAAQAQShwAAAAAAAAAikDgEAAAAAAAAEIHEIQAAAAAAAIAInSpx+MADD2jEiBFKS0tTdna2vva1r2nNmjVhxxw4cECTJk1Sjx49lJqaqgkTJmjHjh3B61euXKlvf/vb6tu3r5KTkzVkyBBNmzYtbIx58+bpnHPOUa9evZSenq6RI0fqtddea3R+1lr94he/UO/evZWcnKyzzz5ba9euDTtm+fLlOuecc9S9e3f16NFD1157rcrKyhod+8MPP9To0aOVlJSkvn376je/+U3Y9R9//LEmTJigI444QsYYTZ06tdEx4xExFD2GZsyYodGjRyszM1OZmZk6++yztWTJkkbHjUfEUfQ4mjdvnoYPH67u3burW7duOvHEE/XMM880Om68IYaix1CouXPnyhijr33ta42OG2+Ioegx9PTTT8sYE/YvKSmp0XHjDTHU8OtQcXGxJk2apN69eysxMVFHHXWUXn311UbHjjfEUfQ4OvPMMyNei4wxuvDCCxsdO54QQw2/Fk2dOlWDBw9WcnKy+vbtq5tvvlkHDhxodOx4QgxFj6Hq6mrdc889GjhwoJKSknTCCSfoX//6V6Pj1vcgOo3x48fbWbNm2VWrVtkPPvjAXnDBBbZfv362rKwseMwPf/hD27dvX/vGG2/Y999/35522ml21KhRwetnzpxpb7jhBrtgwQK7fv16+8wzz9jk5GT72GOPBY+58cYb7a9//Wu7ZMkS+9lnn9nJkyfbhIQEu3z58gbnN2XKFJuRkWFfeuklu3LlSvvVr37V9u/f31ZUVFhrrd22bZvNzMy0P/zhD+2nn35qlyxZYkeNGmUnTJjQ4LglJSU2JyfHXn755XbVqlX2ueees8nJyfapp54KHrNkyRJ766232ueee87m5ubaRx999HCe2rhBDEWPocsuu8w+8cQTdsWKFfaTTz6xV111lc3IyLBbt249rOc4HhBH0ePov//9r503b55dvXq1XbdunZ06dar1eDz2X//612E9x10dMRQ9hmpt3LjR5ufn29GjR9uLLrqoKU9rXCGGosfQrFmzbHp6ut2+fXvwX2Fh4WE9v/GAGIoeQ5WVlXb48OH2ggsusIsWLbIbN260CxYssB988MFhPcfxgDiKHkd79uwJex1atWqV9Xg8dtasWYfzFHd5xFD0GJozZ45NTEy0c+bMsRs3brSvvfaa7d27t7355psP6znu6oih6DF0++2327y8PDt//ny7fv16O336dJuUlNTonOvqVInDunbu3Gkl2YULF1prrS0uLrYJCQn2r3/9a/CYTz75xEqy77zzTtRxfvSjH9kvfelLDd7X0KFD7d133x31etd1bW5urn3wwQeDlxUXF9vExET73HPPWWutfeqpp2x2drYNBALBYz788EMrya5duzbq2NOnT7eZmZm2srIyeNkdd9xhBw8eXO/xBQUFJA6biBiqP4astdbv99u0tDQ7e/bsBh8XiKOG4shaa0866ST7f//3fw0eE++IofAY8vv9dtSoUfYPf/iDvfLKK0kcNgExdCiGZs2aZTMyMhp8DIhEDB2KoSeffNIOGDDAVlVVNfg4EIk4iv6Z6NFHH7VpaWlhyQxEIoYOxdCkSZPsuHHjwm53yy232NNPP73BxxXviKFDMdS7d2/7+OOPh93u4osvtpdffnmDj6uuTrVVua6SkhJJUlZWliRp2bJlqq6u1tlnnx085uijj1a/fv30zjvvNDhO7Rj1cV1X+/bta/CYjRs3qrCwMOy+MzIydOqppwbvu7KyUj6fT45z6GlPTk6WJC1atCjq2O+8847GjBkjn88XvGz8+PFas2aNioqKot4OjSOGosdQeXm5qqurG5wzahBH9ceRtVZvvPGG1qxZozFjxkQdF8RQ3Ri65557lJ2drauvvjrqWAhHDIXHUFlZmQoKCtS3b19ddNFF+vjjj6OOiRrE0KEYeuWVVzRy5EhNmjRJOTk5OvbYY3X//fcrEAhEHRc1iKPon61nzpypSy+9VN26dYs6Loih0BgaNWqUli1bFiwftWHDBr366qu64IILoo4LYig0hiorKyPKtSQnJzc4bn06beLQdV3ddNNNOv3003XsscdKkgoLC+Xz+dS9e/ewY3NyclRYWFjvOIsXL9Zf/vIXXXvttVHv66GHHlJZWZm+9a1vRT2mdvycnJyo9z1u3DgVFhbqwQcfVFVVlYqKivTTn/5UkrR9+/YGx65v3ND7xeEjhhqOoTvuuEN5eXlhL3KIRBxFxlFJSYlSU1Pl8/l04YUX6rHHHtM555wTddx4RwyFx9CiRYs0c+ZMzZgxI+o4CEcMhcfQ4MGD9cc//lEvv/yy/vznP8t1XY0aNUpbt26NOm68I4bCY2jDhg164YUXFAgE9Oqrr+rOO+/Uww8/rPvuuy/quCCOGvpsvWTJEq1atUrXXHNN1DFBDNWNocsuu0z33HOPzjjjDCUkJGjgwIE688wz9bOf/SzquPGOGAqPofHjx+uRRx7R2rVr5bqu/v3vf2vevHkNjlufTps4nDRpklatWqW5c+c2e4xVq1bpoosu0l133aVzzz233mOeffZZ3X333Xr++eeVnZ0tSZozZ45SU1OD//73v/816f6OOeYYzZ49Ww8//LBSUlKUm5ur/v37KycnJ5hdPuaYY4Ljnn/++c1+bGgcMRTdlClTNHfuXP3tb3+joHwjiKNIaWlp+uCDD7R06VL96le/0i233KIFCxYc1hjxhBg6ZN++fZo4caJmzJihnj17Nuk2IIbqGjlypK644gqdeOKJGjt2rObNm6devXrpqaeeavIY8YYYCue6rrKzs/X73/9ew4YN0yWXXKKf//zn+t3vftfkMeIRcRTdzJkzddxxx+mUU05p1u3jBTEUbsGCBbr//vs1ffp0LV++XPPmzdP8+fN17733NnmMeEMMhZs2bZqOPPJIHX300fL5fLr++uv13e9+N2x1Y5Mc1sbmDmLSpEm2T58+dsOGDWGXv/HGG1aSLSoqCru8X79+9pFHHgm77OOPP7bZ2dn2Zz/7WdT7qS0u+Y9//CPs8tLSUrt27drgv/Lycrt+/Xorya5YsSLs2DFjxtgbbrghYuzCwkK7b98+W1ZWZh3Hsc8//7y11tpNmzYFx61tSjFx4sSI+k5vvvmmlWT37t0bMTY1DhtHDEWPoQcffNBmZGTYpUuXRn1cqEEcNfxaVOvqq6+25557btTr4xkxFB5DK1assJKsx+MJ/jPGWGOM9Xg8dt26dVEfY7wihpr2OvSNb3zDXnrppVGvj2fEUGQMjRkzxp511llhx7z66qtWUlgtKRxCHEV/LSorK7Pp6el26tSpUR8XiCFrI2PojDPOsLfeemvYMbVNO0Lr4aEGMRT9daiiosJu3brVuq5rb7/9djt06NCoj68+nSpx6LqunTRpks3Ly7OfffZZxPW1RS9feOGF4GWffvppRNHLVatW2ezsbHvbbbdFva9nn33WJiUl2ZdeeqnJc8vNzbUPPfRQ8LKSkpKwopf1mTlzpk1JSYkI4lC1RS9DCzRPnjyZ5ijNQAw1HEO//vWvbXp6eoNFYkEcNfW1qNZ3v/tdO3bs2CbNP14QQ/XHUEVFhf3oo4/C/l100UV23Lhx9qOPPuILewhiqOmvQ36/3w4ePJgulHUQQ9FjaPLkybagoCDsi/nUqVNt7969mzT/eEIcNf5aNGvWLJuYmGh3797dpHnHG2IoegydfPLJ9vbbb494DMnJydbv9zfpMcQDYqjpn4mqqqrswIED7eTJk5s0/1qdKnF43XXX2YyMDLtgwYKw1vbl5eXBY374wx/afv362TfffNO+//77duTIkXbkyJHB6z/66CPbq1cv+53vfCdsjJ07dwaPmTNnjvV6vfaJJ54IO6a4uLjB+U2ZMsV2797dvvzyy/bDDz+0F110UVibbWutfeyxx+yyZcvsmjVr7OOPP26Tk5PttGnTGhy3uLjY5uTk2IkTJ9pVq1bZuXPn2pSUlLA225WVlXbFihV2xYoVtnfv3vbWW2+1K1asaLALTzwihqLH0JQpU6zP57MvvPBC2Jz37dvX5Oc3XhBH0ePo/vvvt6+//rpdv369Xb16tX3ooYes1+u1M2bMaPLzGw+IoegxVBddletHDEWPobvvvtu+9tprdv369XbZsmX20ksvtUlJSfbjjz9u8vMbD4ih6DG0efNmm5aWZq+//nq7Zs0a+49//MNmZ2fb++67r8nPb7wgjhp/PzvjjDPsJZdc0uhzGa+IoegxdNddd9m0tDT73HPP2Q0bNtjXX3/dDhw40H7rW99q8vMbD4ih6DH07rvv2hdffNGuX7/evvXWW3bcuHG2f//+DSYk69OpEoeS6v03a9as4DEVFRX2Rz/6kc3MzLQpKSn261//ut2+fXvw+rvuuqveMQoKCoLHjB07tt5jrrzyygbn57quvfPOO21OTo5NTEy0Z511ll2zZk3YMRMnTrRZWVnW5/PZ448/3v7pT39q0mNfuXKlPeOMM2xiYqLNz8+3U6ZMCbt+48aN9c6ZVT7hiKHoMVRQUFDvnO+6664mjR9PiKPocfTzn//cDho0yCYlJdnMzEw7cuRIO3fu3CaNHU+IoegxVBeJw/oRQ9Fj6KabbrL9+vWzPp/P5uTk2AsuuMAuX768SWPHE2Ko4dehxYsX21NPPdUmJibaAQMG2F/96les8KkHcdRwHNWuanr99debNGY8Ioaix1B1dbX95S9/aQcOHGiTkpJs37597Y9+9KPDTvp0dcRQ9BhasGCBHTJkiE1MTLQ9evSwEydOtNu2bWvS2KGMtdYKAAAAAAAAAEJ02q7KAAAAAAAAANoOiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAQJ84880zddNNNcXffAAAAaB4ShwAAAIiwYMECGWNUXFzcKrebN2+e7r333tabIAAAANqcN9YTAAAAQNeXlZUV6ykAAADgMLHiEAAAoAvav3+/rrjiCqWmpqp37956+OGHw65/5plnNHz4cKWlpSk3N1eXXXaZdu7cKUnatGmTvvSlL0mSMjMzZYzRVVddJUlyXVcPPPCA+vfvr+TkZJ1wwgl64YUXGr1d3a3KRxxxhO67777gHAsKCvTKK69o165duuiii5Samqrjjz9e77//fti8Fy1apNGjRys5OVl9+/bVDTfcoP3797f20wcAAACROAQAAOiSbrvtNi1cuFAvv/yyXn/9dS1YsEDLly8PXl9dXa17771XK1eu1EsvvaRNmzYFk3x9+/bViy++KElas2aNtm/frmnTpkmSHnjgAf3pT3/S7373O3388ce6+eab9Z3vfEcLFy5s8Hb1efTRR3X66adrxYoVuvDCCzVx4kRdccUV+s53vqPly5dr4MCBuuKKK2StlSStX79e5513niZMmKAPP/xQf/nLX7Ro0SJdf/31bfEUAgAAxD1jaz+JAQAAoEsoKytTjx499Oc//1nf/OY3JUl79+5Vnz59dO2112rq1KkRt3n//fc1YsQI7du3T6mpqVqwYIG+9KUvqaioSN27d5ckVVZWKisrS//5z380cuTI4G2vueYalZeX69lnn633dlLNisMTTzwxeN9HHHGERo8erWeeeUaSVFhYqN69e+vOO+/UPffcI0l69913NXLkSG3fvl25ubm65ppr5PF49NRTTwXHXbRokcaOHav9+/crKSmpFZ9FAAAAUOMQAACgi1m/fr2qqqp06qmnBi/LysrS4MGDg+eXLVumX/7yl1q5cqWKiorkuq4kafPmzRo6dGi9465bt07l5eU655xzwi6vqqrSSSeddNjzPP7444Onc3JyJEnHHXdcxGU7d+5Ubm6uVq5cqQ8//FBz5swJHmOtleu62rhxo4YMGXLYcwAAAEB0JA4BAADizP79+zV+/HiNHz9ec+bMUa9evbR582aNHz9eVVVVUW9XVlYmSZo/f77y8/PDrktMTDzseSQkJARPG2OiXlab1CwrK9MPfvAD3XDDDRFj9evX77DvHwAAAA0jcQgAANDFDBw4UAkJCXrvvfeCCbWioiJ99tlnGjt2rD799FPt2bNHU6ZMUd++fSUpogmJz+eTJAUCgeBlQ4cOVWJiojZv3qyxY8fWe9/13a61nHzyyVq9erUGDRrU6mMDAAAgEs1RAAAAupjU1FRdffXVuu222/Tmm29q1apVuuqqq+Q4NR/9+vXrJ5/Pp8cee0wbNmzQK6+8onvvvTdsjIKCAhlj9I9//EO7du1SWVmZ0tLSdOutt+rmm2/W7NmztX79ei1fvlyPPfaYZs+eHfV2reWOO+7Q4sWLdf311+uDDz7Q2rVr9fLLL9McBQAAoI2QOAQAAOiCHnzwQY0ePVpf+cpXdPbZZ+uMM87QsGHDJEm9evXS008/rb/+9a8aOnSopkyZooceeijs9vn5+br77rv105/+VDk5OcHk3L333qs777xTDzzwgIYMGaLzzjtP8+fPV//+/Ru8XWs4/vjjtXDhQn322WcaPXq0TjrpJP3iF79QXl5eq90HAAAADqGrMgAAAAAAAIAIrDgEAAAAAAAAEIHEIQAAAAAAAIAIJA4BAAAAAAAARCBxCAAAAAAAACACiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAAAAAAEQgcQgAAAAAAAAgAolDAAAAAAAAABFIHAIAAAAAAACIQOIQAAAAAAAAQAQShwAAAAAAAAAikDgEAAAAAAAAEIHEIQAAAAAAAIAIJA4BAAAAAAAARCBxCAAAAAAAACACiUMAAAAAAAAAEUgcAgAAAAAAAIhA4hAAAAAAAABABBKHAAAAAAAAACKQOAQAAAAAAAAQgcQhAAAAAAAAgAgkDgEAAAAAAABEIHEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAAAAAAEQgcQgAAAAAAAAgAolDAAAAAAAAABFIHAIAAAAAAACI4I31BAAAANC6/H6/qqqqYj2NmEhKSpLj8Ns4AABAayBxCAAA0EVYa7V582bt3r071lOJGcdxNHToUCUmJsZ6KgAAAJ2esdbaWE8CAAAALff5559r9+7dys/PV2pqatytvHNdVxs3bpTP59NRRx0lY0yspwQAANCpkTgEAADoAvx+v1auXKn8/Hzl5ubGejoxs3fvXm3cuFGbNm3Saaedpvz8/FhPCQAAoNOKr5+hAQAAuqjamoapqakxnkls1W5R3r59u+bPn69t27bFeEYAAACdF4lDAACALiTetifXVbs9OTc3V7t27dKqVatiPCMAAIDOK74/WQIAAKBLMsYoOTlZe/fujfVUAAAAOi0ShwAAAOiwFixYIGOMiouLD/u2xhhRzhsAAKD5SBwCAAAAAAAAiEDiEAAAAAAAAEAEb6wnAAAAgNZ1XfVdWu2ui+kchjqD9GTC3U06trKyUrfddpvmzp2r0tJSDR8+XI8++qhGjBgRcWx5ebkmTJig0tJSzZ8/X927d2/lmQMAAKAWiUMAAIAuZrW7Tu/ZlbGdhNv0Q2+//Xa9+OKLmj17tgoKCvSb3/xG48eP17p14cnP4uJiXXjhhUpNTdW///1vpaSktPKkAQAAEIqtygAAAIiZ/fv368knn9SDDz6o888/X0OHDtWMGTOUnJysmTNnBo8rLCzU2LFj1bt3b/39738naQgAANAOSBwCAAAgZtavX6/q6mqdfvrpwcsSEhJ0yimn6JNPPgleds4552jQoEH6y1/+Ip/PF4upAgAAxB0ShwAAAOjwLrzwQr311ltavXp1rKcCAAAQN6hxCAAA0MUMdQYdVo3BNptDEwwcOFA+n09vv/22CgoKJEnV1dVaunSpbrrppuBxU6ZMUWpqqs466ywtWLBAQ4cObYtpAwAAIASJQwAAgC6mqd2MO4Ju3brpuuuu02233aasrCz169dPv/nNb1ReXq6rr75aK1ceavLy0EMPKRAIaNy4cVqwYIGOPvroGM4cAACg6yNxCAAAgJiaMmWKXNfVxIkTtW/fPg0fPlyvvfaaMjMzI4599NFHw5KHRx11VAxmDAAAEB+MtdbGehIAAABomfLycn3yyScaMmRIXHccrn0eNm3apM2bNysnJ0eXXXZZrKcFAADQKdEcBQAAAAAAAEAEEocAAAAAAAAAIpA4BAAAAAAAABCBxCEAAAAAAACACCQOAQAAuhDXdWM9hZii7x8AAEDrIXEIAADQBfh8PklSWVlZjGcSW5WVlZIkv98f45kAAAB0ft5YTwAAAAAt5/V61bNnT23btk2SlJqaKseJr9+IXdfVli1bVF5erkAgEOvpAAAAdHokDgEAALqIfv36KRAIBJOH8ch1XRUWFkqqWXWYnJwc4xkBAAB0XiQOAQAAughjjAYMGKCXX35ZmzdvVq9evZSQkBDrabUba62qq6vluq7Kysrkuq7y8/NjPS0AAIBOy1gqSAMAAHQp5eXl+uc//6l169bFZbMQa618Pp+GDRum0aNHy+PxxHpKAAAAnRKJQwAAgC6ooqJChYWFqqioiLvkoeM46tatm/Lz80kaAgAAtACJQwAAAAAAAAAR4qvVHgAAAAAAAIAmIXEIAAAAAAAAIAKJQwAAAAAAAAARSBwCAAAAAAAAiEDiEAAAAAAAAECE/wcjAFhSW5yYmgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Import the standard datetime library to make timestamps from datetime objects\n", + "from datetime import datetime\n", + "\n", + "your_dataset.make_plot(\n", + " # specify the names of the stations in a list, or use None to plot all of them.\n", + " stationnames=['vlinder01', 'vlinder03', 'vlinder05'],\n", + " # what obstype to plot (default is 'temp')\n", + " obstype=\"humidity\",\n", + " # choose how to color the timeseries:\n", + " #'name' : a specific color per station\n", + " #'label': a specific color per quality control label\n", + " colorby=\"label\",\n", + " # choose a start and endtime for the series (datetime).\n", + " # Default is None, which uses all available data\n", + " starttime=None,\n", + " endtime=datetime(2022, 9, 9),\n", + " # Specify a title if you do not want the default title\n", + " title='your custom title',\n", + " # Add legend to plot?, by default true\n", + " legend=True,\n", + " # Plot observations that are labeled as outliers.\n", + " show_outliers=True,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "7ec5ac1d-0753-4afa-b648-97c118533b86", + "metadata": {}, + "source": [ + "as mentioned above, one can apply the same methods to a Station object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "403d6e8e-ada3-4ab8-b943-947a71ba91a0", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dfn3Huz9yYkEMLeewkoLnC06rdaR2sFtU5cta2/aqu2atXaOvqt36pt3aNDK7a1ihtUZChTQAIJkEBC9t6593x+f4Rc7oVA1t28n3346L3nnnvOJyHJvfd93kNprTVCCCGEEEIIIYQQQgi/Mvy9ACGEEEIIIYQQQgghhATqhBBCCCGEEEIIIYQICBKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIACCBOiGEEEIIIYQQQgghAoAE6oQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIUTAa2xs5Ic//CEZGRkopbjtttsGfEylFL/85S+d91944QWUUuzbt2/Ax/bmMYUQQggRuiRQJ4QQQoigpZTq1X8rV67091L95o9//CMvvPCCv5cxYA8++CAvvPACN9xwAy+//DI/+MEP/L0kvysuLubiiy8mISGBuLg4zj//fPbs2eO2z/79+/nVr37FrFmzSExMJCUlhYULF/Lhhx/6adVCCCGEOB6rvxcghBBCCNFfL7/8stv9l156iQ8++OCo7WPHjvXlsgLKH//4R1JSUli6dKm/lzIgH3/8MXPmzOHee+/12jl+8IMfcOmllxIeHu61c3hKY2Mjp556KnV1ddx1113YbDYef/xxTjnlFDZv3kxycjIA//rXv/jNb37DBRdcwJIlS7Db7bz00kuceeaZPPfcc1x55ZV+/kqEEEII4UoCdUIIIYQIWpdffrnb/bVr1/LBBx8ctT1UaK1pbW0lMjLS30vptaamJqKjowd8nPLycsaNG+eBFR2bxWLBYrF49RwD1fX9/OMf/8ju3btZv349M2fOBODss89mwoQJPProozz44IMAnHrqqRQVFZGSkuI8xvXXX8+UKVO45557JFAnhBBCBBgpfRVCCCFESDNNkyeeeILx48cTERFBeno61113HTU1NW775eTk8K1vfYuVK1cyY8YMIiMjmThxorNs9s0332TixIlEREQwffp0Nm3a5Pb8pUuXEhMTw549e1i8eDHR0dFkZmZy3333obUe0Jree+8955qeeeYZAJ5//nlOO+000tLSCA8PZ9y4cTz11FNHPX/79u2sWrXKWQa8cOFCAH75y1+ilDrq+9VdT7Uje7m5Ht81U6/ruatWreLGG28kLS2NrKyso57nqry8nKuvvpr09HQiIiKYPHkyL774ovPxlStXopRi7969/Pe//3V+Hcfq+TZhwgROPfXUo7abpsngwYO56KKLjrmW7r72rn+Dzz//nFmzZhEREUFubi4vvfTSUc/fvn07p512GpGRkWRlZfHAAw9gmma353r33XdZsGAB0dHRxMbGcu6557J9+3a3fbp+pgoKCjjnnHOIjY3l+9//PgBvvPEGM2fOdAbpAMaMGcPpp5/OP/7xD+e28ePHuwXpAMLDwznnnHM4cOAADQ0Nx/x+CCGEEML3JKNOCCGEECHtuuuu44UXXuDKK6/klltuYe/evTz55JNs2rSJ1atXY7PZnPvm5+fzve99j+uuu47LL7+c3/3ud3z729/m6aef5q677uLGG28E4KGHHuLiiy8mLy8Pwzh83dPhcHDWWWcxZ84cHnnkEVasWMG9996L3W7nvvvu69ea8vLyuOyyy7juuuu45pprGD16NABPPfUU48eP57zzzsNqtfKf//yHG2+8EdM0WbZsGQBPPPEEN998MzExMfz85z8HID093Xvf7ENuvPFGUlNTueeee2hqajrmfi0tLSxcuJD8/Hxuuukmhg0bxuuvv87SpUupra3l1ltvZezYsbz88sv86Ec/Iisrix//+McApKamdnvMSy65hF/+8peUlpaSkZHh3P75559TUlLCpZde2uevJz8/n4suuoirr76aJUuW8Nxzz7F06VKmT5/O+PHjASgtLeXUU0/Fbrfzs5/9jOjoaP70pz91m/348ssvs2TJEhYvXsxvfvMbmpubeeqpp5g/fz6bNm0iJyfHua/dbmfx4sXMnz+f3/3ud0RFRWGaJlu3buWqq6466tizZs3i/fffp6GhgdjY2GN+TaWlpURFRREVFdXn74cQQgghvEgLIYQQQoSIZcuWade3N5999pkG9Kuvvuq234oVK47aPnToUA3oL774wrntvffe04COjIzUhYWFzu3PPPOMBvQnn3zi3LZkyRIN6Jtvvtm5zTRNfe655+qwsDBdUVHR7zWtWLHiqK+1ubn5qG2LFy/Wubm5btvGjx+vTznllKP2vffee3V3bwWff/55Dei9e/c6twH63nvvPWrfoUOH6iVLlhz13Pnz52u73X7U/kd64oknNKBfeeUV57b29nY9d+5cHRMTo+vr693Ode655/Z4zLy8PA3oP/zhD27bb7zxRh0TE+P2fTvy6+rua+/6N/j000+d28rLy3V4eLj+8Y9/7Nx22223aUCvW7fObb/4+Hi3YzY0NOiEhAR9zTXXuK2vtLRUx8fHu23v+pn62c9+5rZvRUWFBvR999131Nf/f//3fxrQO3fuPOb3aPfu3ToiIkL/4Ac/OOY+QgghhPAPKX0VQgghRMh6/fXXiY+P58wzz6SystL53/Tp04mJieGTTz5x23/cuHHMnTvXeX/27NkAnHbaaQwZMuSo7UdO2AS46aabnLeVUtx00020t7c7p2z2dU3Dhg1j8eLFR53HNVOrrq6OyspKTjnlFPbs2UNdXV2vv0fecM011/Sq19s777xDRkYGl112mXObzWbjlltuobGxkVWrVvX53KNGjWLKlCn8/e9/d25zOBy88cYbfPvb3+5Xf79x48axYMEC5/3U1FRGjx7t9u//zjvvMGfOHGbNmuW2X1epapcPPviA2tpaLrvsMrd/f4vFwuzZs4/69we44YYb3O63tLQAdDv0IiIiwm2fIzU3N/Pd736XyMhIHn744Z6+dCGEEEL4mJS+CiGEECJk7d69m7q6OtLS0rp9vLy83O2+azAOID4+HoDs7Oxutx/ZU84wDHJzc922jRo1CsDZ96yvaxo2bFi3+61evZp7772XNWvW0Nzc7PZYXV2dc43+cKw1H6mwsJCRI0e6lQ/D4Sm9hYWF/Tr/JZdcwl133UVxcTGDBw9m5cqVlJeXc8kll/TreEf+XAAkJia6/fsXFhY6A7iuukqVu+zevRvoDP52Jy4uzu2+1Wo9qs9fV7Cxra3tqOe3tra67ePK4XBw6aWXsmPHDt59910yMzO7XYMQQggh/EcCdUIIIYQIWaZpkpaWxquvvtrt40f2OTtWFtixtusjhkR4Y03dBVwKCgo4/fTTGTNmDI899hjZ2dmEhYXxzjvv8Pjjjx9zgIGr7gZJQGcwp7eOta+/p9Jecskl3Hnnnbz++uvcdttt/OMf/yA+Pp6zzjqrX8fz9L8/dPapc+2h18VqdX97Hh4eflQgMykpifDwcA4ePHjU87u2dReEu+aaa3j77bd59dVXjxkoFEIIIYR/SaBOCCGEECFr+PDhfPjhh8ybN88nwSPTNNmzZ48ziw5g165dAM4BAZ5Y03/+8x/a2tr497//7Zbt1V3Z5LECcomJiQDU1taSkJDg3N5dFltiYiK1tbVu29rb27sNFPXF0KFD2bp1K6ZpugWjdu7c6Xy8P4YNG8asWbP4+9//zk033cSbb77JBRdc0G2pqKcMHTrUmS3nKi8vz+3+8OHDAUhLS+OMM87o17kMw2DixIl89dVXRz22bt06cnNzjxok8dOf/pTnn3+eJ554wq3UWAghhBCBRXrUCSGEECJkXXzxxTgcDu6///6jHrPb7UcFnzzhySefdN7WWvPkk09is9k4/fTTPbamrgwv14yuuro6nn/++aP2jY6O7vaYXQGjTz/91LmtqamJF198sdt9XfcD+NOf/tSn7LvunHPOOZSWlrr1k7Pb7fzhD38gJiaGU045pd/HvuSSS1i7di3PPfcclZWV/S577a1zzjmHtWvXsn79eue2ioqKozInFy9eTFxcHA8++CAdHR1HHaeioqJX57vooov48ssv3YJ1eXl5fPzxx3z3u9912/e3v/0tv/vd77jrrru49dZb+/JlCSGEEMLHJKNOCCGEECHrlFNO4brrruOhhx5i8+bNLFq0CJvNxu7du3n99df5/e9/z0UXXeSx80VERLBixQqWLFnC7Nmzeffdd/nvf//LXXfd5Sxp9cSaFi1aRFhYGN/+9re57rrraGxs5M9//jNpaWlHZblNnz6dp556igceeIARI0aQlpbGaaedxqJFixgyZAhXX301P/3pT7FYLDz33HOkpqZSVFTkdowf/vCHXH/99Vx44YWceeaZbNmyhffee4+UlJQBfb+uvfZannnmGZYuXcqGDRvIycnhjTfeYPXq1TzxxBNHZYX1xcUXX8xPfvITfvKTn5CUlNTv7LXeuuOOO3j55Zc566yzuPXWW4mOjuZPf/qTM2uwS1xcHE899RQ/+MEPmDZtGpdeeqnze/7f//6XefPmuQV7j+XGG2/kz3/+M+eeey4/+clPsNlsPPbYY6Snp/PjH//Yud/y5cu54447GDlyJGPHjuWVV15xO86ZZ55Jenq6574RQgghhBgQCdQJIYQQIqQ9/fTTTJ8+nWeeeYa77roLq9VKTk4Ol19+OfPmzfPouSwWCytWrOCGG27gpz/9KbGxsdx7773cc889Hl3T6NGjeeONN/jFL37BT37yEzIyMrjhhhtITU3lqquuctv3nnvuobCwkEceeYSGhgZOOeUUTjvtNGw2G8uXL+fGG2/k7rvvJiMjg9tuu43ExESuvPJKt2Ncc8017N27l2effZYVK1awYMECPvjgA2eWYH9FRkaycuVKfvazn/Hiiy9SX1/P6NGjef7551m6dOmAjp2VlcVJJ53E6tWr+eEPf4jNZhvQ8XoyaNAgPvnkE26++WYefvhhkpOTuf7668nMzOTqq6922/d73/semZmZPPzww/z2t7+lra2NwYMHs2DBgqO+98cSGxvLypUr+dGPfsQDDzyAaZosXLiQxx9/3K3P4ZYtW4DOIRY/+MEPjjrOJ598IoE6IYQQIoAo3Z8uuEIIIYQQws3SpUt54403aGxs9PdShBBCCCFEkJIedUIIIYQQQgghhBBCBAAJ1AkhhBBCCCGEEEIIEQAkUCeEEEIIIYQQQgghRACQHnVCCCGEEEIIIYQQQgQAyagTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAYPX3AkKRaZqUlJQQGxuLUsrfyxFCCCGEEEIIIYQQfqS1pqGhgczMTAzj2HlzEqjzgpKSErKzs/29DCGEEEIIIYQQQggRQPbv309WVtYxH5dAnRfExsYCnd/8uLg4P69GCCGEEEIIIYQQQvhTfX092dnZzpjRsUigzgu6yl3j4uIkUCeEEEIIIYQQQgghAHpskSbDJIQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIYQQQgghhAgAEqgTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAIIE6IYQQQgghhBBCCCECgATqhBBCCCGEEEIIIYQIABKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIAGD19wKEEEIIT6rUNXziWMNb5sfYsHCv9WaGGVn+XpYQQgghhBBC9EgCdUIIIULKRnM7P7Df4bzfbG9hnjGdW61L/LgqIYQQgc6+4Q84Cj9C1xWi4oZgyTkD6/Sb/b0sIYQQJxgJ1AkhhAgpldS43V9prudrcxc3WL5HmLL5aVVCCCECnX3jk9BYAoCuzcdevVMCdUIIIXxOetQJIYQIKVW61u1+PY3s5QD5ZqF/FiSEEEIIIYQQvSQZdUIIIUJKvW4ki3RKqcKOHYBUkviT4+88Yfm5n1cnhBAiUIUv+Qrd1oDuaESFxaDCYv29JCGEECcgCdQJIYQIKQcp5wBlbts6sFNPg59WJIQQIhiosFgJzgkhhPA7KX0VQggRUlxLX3eHf0AOg6mlnk/Mdf5blBBCCCGEEEL0gmTUCSGECClJxHOSmkorbSTrBKYYY0nXyYQRRp3ZQLwh2RJCCCGEEEKIwCSBOiGEECFlg97OZv0NNqxEqgiSVAJvmR8CsIt9zGSin1cohBAiENk3/AFH4UfoukJU3BAsOWfI1FchhBA+J4E6IYQQIaWeRgBiiUYpxTQ1nl1qLw00k28WMtOQQJ0QQoij2Tc+CY0lAOjafOzVOyVQJ4QQwuckUCeEECLoObQDi7JQpxto0E0AxBANQJZK53O9AYB8Xei3NQohhBBCCCFETyRQJ4QQIuiNaTuLA5Si0UQQBkCs6gzUjVLDGKGGckCXsk3v8ucyhRBCCCGEEOK4JFAnhBAiqJWbVdRQh0YDMIg0IlQ4o9UwAIaqTGp0HTkMBpQfVyqEEEIIIYQQxyeBOiGEEEHtdfNdGml23t/LAdDwmu0xACzKwiCVyja9mwKziA7dgU3Z/LVcIYQQQgghhDgmCdQJIYQIWnVmA3+xv+68b8WCHQcAKSrRuf1s4xRSzWRA87ZjJf9jPdPXSxVCCCGEEEKIHkmgTgghRNAq11V8Q4HzfleQTqFIJM65fbFlAb91/AWAVke7BOqEEEIIIYQQAcnw9wKEEEKI/qpStc7bOQwmDBsWLMxX07Gqw9eiJqnRfMdYRDopbNV5tOsOP6xWCCGEEEIIIY5PAnVCCCGCVr1uJJUkLFjIJZt2OnDgoJo6t/3iVAwWLFRQhcbkjo7fUKVr/bNoIYQQQgghhDgGCdQJIYQIWlXUUkE1DhwsNGZTFb6exvDNvBf23FH7PmH7Oc9YH6CNdp42/8a/HB/6YcVCCCEClZE2GcITwLBCeELnfSGEEMLHpEedEEKIoNWsW523U40kolUUACkkHrVvskogU6WRQhKRhFOhq322TiGEEIEv7Px/+HsJQgghhATqhBBCBK8WWpy3o1Rkj/uPNoZRRiUAa/Vmby1LCCGEEEIIIfolqEtfH3roIWbOnElsbCxpaWlccMEF5OXlOR/ft28fSqlu/3v99dePedylS5cetf9ZZ53liy9JCCFEHzRzOKMump4DdYNJ5zQ1h5PUVFp1uzeXJoQQQgghhBB9FtSBulWrVrFs2TLWrl3LBx98QEdHB4sWLaKpqQmA7OxsDh486Pbfr371K2JiYjj77LOPe+yzzjrL7Xl//etfffElCSGE6APX0tdIInrcXylFLfV8oTfxhd5Ii9na43OEEEIIIYQQwleCuvR1xYoVbvdfeOEF0tLS2LBhAyeffDIWi4WMjAy3fZYvX87FF19MTEzMcY8dHh5+1HOFEEIElhaXjLoo1XOgDmCeMZ1KRy0HKKWAIiYwylvLE0IIEUTa/3UxZvEa6GgEWwzG4LnSt04IIYTPBXVG3ZHq6uoASEpK6vbxDRs2sHnzZq6++uoej7Vy5UrS0tIYPXo0N9xwA1VVVcfct62tjfr6erf/hBBCeJ8FCyPUELIZRKTuXaAujhiaaGYSoyjWZV5eoRBCiGBhlm+Btlow7dBW23lfCCGE8LGQCdSZpsltt93GvHnzmDBhQrf7PPvss4wdO5aTTjrpuMc666yzeOmll/joo4/4zW9+w6pVqzj77LNxOBzd7v/QQw8RHx/v/C87O3vAX48QQoielelK8nUR+zlIdC+GSQAMU1lUUctmdrJH7/fyCoUQQgghhBCi94K69NXVsmXL2LZtG59//nm3j7e0tPDaa69x991393isSy+91Hl74sSJTJo0ieHDh7Ny5UpOP/30o/a/8847uf3225336+vrJVh3gvmb/b+8ab5Pk27mOutlnGc5zd9LEuKE4Fr6GtnL0tdUdTjrulLXeHxNweZ9x2f8n+M1rFj4H2MRl1vP8/eShBBCCCGEOGGFRKDupptu4u233+bTTz8lKyur233eeOMNmpubueKKK/p8/NzcXFJSUsjPz+82UBceHk54eHifjytCxz8c7/COXgXAEDNTAnVC+EgzLc7bUb2Y+gqQrBKct6uo9fCKgs/7ji94z/wMAIc2JVAnhBBCCCGEHwV1oE5rzc0338zy5ctZuXIlw4YNO+a+zz77LOeddx6pqal9Ps+BAweoqqpi0KBBA1muCGIz2v6HYl1OOx0cCP/ULXNnftulbNbfOO/XaOlRKISvNLsOk+jF1FeAZBKZpSbRShvtdHhraUGjTbU5byvlx4UIIYQQQgghgrtH3bJly3jllVd47bXXiI2NpbS0lNLSUlpaWtz2y8/P59NPP+WHP/xht8cZM2YMy5cvB6CxsZGf/vSnrF27ln379vHRRx9x/vnnM2LECBYvXuz1r0kEpt26kBrqaKGFYtO9+fxOXYCdw/0L63WDr5cnxAmpUTfTpDv/3isU4YT16nkpKpH1eitbdR579QFvLjEomNo8fBvtx5UIIYQQQgghgjpQ99RTT1FXV8fChQsZNGiQ87+///3vbvs999xzZGVlsWjRom6Pk5eX55wYa7FY2Lp1K+eddx6jRo3i6quvZvr06Xz22WdS3nqCMrVJG+2dt9EcoMztsSaXjB6AL/XXaC0fdoXwttPar2CD3gaADSuql+lgMUQRhg2AKulRRy2Hs4A7tGQYCiGEEEII4U9BX/raGw8++CAPPvhgr44TGRnJe++9N+C1idBRrxvJJoP9lALwsmM5u/U+rrFeTL1uZCy5fEMBGlDADDWBcl1Fukrx67qFCHXtLkGlwaT3+nlKKeaoKTTSTCzR3lhaUGkzD38fE1WcH1cihBBCCCGECOqMOiF8oU41OoN0AK+a/+EO+28AaFBN7DgUpAPQwCd6HaVU+n6hQpxgOg5lugI00tSn57bTwUa9nVV6PQ26b88NNa0uPep26UI/rkQIIYQQQggR1Bl1QvhCg248alsLbcxqu5DhDHFuiyWahkPBgkoppxPC69oODYKwYeUKy//06bnzjenYTCuttLHL3Mt0ywRvLDEouAY5a2UYjhDiBGaddhOOwo/QdYWouCFYcs7w95KEEEKcgCRQJ0QPGo6RqbNV53GQcuf9cWoE6/QWAKqQQJ0Q3tZKZybYYJXBr2239+m5ySqBz/RXAOzSe5nOiRuoq3f5G1dJDXZtx6rk7YEQ4sRjnX4z1uk3+3sZQgghTnBS+ipEDxp1s9t9xeGG9S0cLhlLJI6RKod0UqjWdT5bnxAnqnDCGEImo8jp83PHqZFMUCNJJJ48vc/jawsWWmvKdCXxxBJLNAaK5eYH/l6WEEIIIYQQJywJ1AnRg2ZaSSXJeV/jMnyECOftWBXDbr2PMiqp0NU+XaM4sa1yrOe5jn/ycsdbrHNsYbW50d9L8rp23UExZRRRcsys1+MZoYbwjd6DAj4yvzhhJzUX6mJy1GBMTBppYhCpFOuynp8ohBBCCCGE8AqpbRGiBzW6jgq6D7y5bnedllhFrbeXJQQApjY5t+Ma7Dg6NzggmQSKIz7378K8zDU4F6di+vz8YSqLxcZ83jFXUa2/powqMjjxJjX/y/yIDXo70JktnE8RG8ztfl6VEEL4h25vQLc1oDsaUWExqLBYVFisv5clhBDiBCOBOiF6cLxsnSgiCcPKFDWWUQxjvpqBiYMObffhCsWJ6lPzS9Y7tjKYdEqpRAOxRDHTmMhGxzamhfCABNdJrbFE9fn5hjKYrMawjd1YMNhl7iXDcuIF6lwH3wxnCBkqBTgxswuFEKLtxRnQWHJ4Q0wmEdfk+W9BQgghTkgSqBOiB8cL1DXTQjOwUq/nevU91urN2LGzR++ntL3Cd4s8wsnGTG61LvHb+YVvvOtYxeOOFwD4gXE+Cy2zubrjLlaYn7HYWMC0EB6Q4DqpNEZF9+sYmSqNIjo/kO3UBZzMTI+sLZhUugy+6aCDz/UGInQ4pjYxlHTHEEIIIYQQwtckUCdEDxq1e6AuhkhGkkMee2mjA43JGIYz2zKZx7mTdJXCx461bNe7/bLWQg52ZgepVC6xnOPzNQjfqXQpsU5VyaSQePgxHdqTh2t1AxPUKKKJIJfsfh1jnBrBPDWNBprYp4s9vMLA97T9r/zV8TYWDFJJYraaTCpJOHBQrqvIUKn+XqIQQgghhBAnHAnUCdGDZt3qdt+ByaXWb/GK/V98zS4A4lUsg1Qq11gvAWCvPsB+86DP19pKG9W6lmpq2R3gkyybdQvNtPKq49+YWnObdQlKqZ6fKJyqXIJxt1mXUKQPl+uU6yp/LMlnqqhhm+78/TtXndqvY4wwhrJadw7eMB2a+623YVEWj60x0O0x99N6aHJ1BdVEqgi+MrcBnZl2GUigTgghhBBCCF+TQJ0QPainEYUinDDeszxHsiWBEcZQLrWci0ObOHAQqSLcnnOrdQm34vvS0/cdn3Nex/UAAT/F8iNzDd/tuMV5/zvWRQwl048rCj77dDEWLIwih2SdgIlmKIPZz0H24/tAsS9V6lrn7WSXTMK+SCOZpcZ3eM38D9vYxR69n5EqxzMLDAKtqs15+1XbY3xpbnXed/3+CiGEEEIIIXxHAnVC9KCNdjSaVtrItKaRrQYBkK5SIMASwFSgLeg46nUjqSQ5J+e26JaA+34GMru2k0wCY1UuMURjMSyk62RMTCaokcTR90mowaSNNqapcTTTSppK6tcxlFIMVunEEUMUEezRRYwkx7MLDVBF5kE2ukx3naBGUkYFY8iljgZedLxJua7iYuvZflylEEIIIYQQJx4J1AnRg67SMIAIwv24kr7RAT658Rtd4AzSATTTepy9xZEKdQmf6a8A+B/jTKAz8BSlItiq89ij9/tzeV5XqEvYqHcAkKji+32ckUYOlY7OEuJtOp/FnOyR9QW6N8x3+Upvc96PUdGkGEnsdOwB4K/m26wwP5VAnRBCCCGEED4mgTohehCsgbpA10iz230J1PVNiS5noZpNG+1MUKOc2zvLQPfSSDOtuo0IFZo/s67DMlJI6PdxxpLLfDUdCP2+fq5s2ua8nUUGCcQyimFkkUEplVgwyCCVjeZ2phnj/bhSIYQQQgghTiwSqBNufm9/Ea01t0pjf6dW3e68HU6YH1fSN4GdT9dZ+uqqRUugri/2c5CVeh0A31VnObenqATnP36lriFLZfhhdd5XxeFAXbLqX486gOHGUD7XGwDocHSArYcnhACtNXU0OO+fYZxEhApnpDGUA5QCYAe+oYAN5jYJ1AkhhBBCCOFDEqgTAOSZezit/QqqqAXgl44/8HbYn5hvTPfvwgJA26GMOoXCFuC/MsHUo66RJrf7zbT4aSXBqcp1mIJLoGq6msAetZ/9+iCFupgsQjNQV2yWkUMWQ9UgEnVcv/sbxqgozjIWkK8LKdQlaK1D/iLFrPYL2aZ3AzCW4dxkvRyACBXOq9ZH2WJ+w6vmfwjD5pa5KIQQQgghhPC+wI46CJ8pp9oZpIPOcs8aXee/BQWABrOJvfoAtdQDnWWvof4B3lfqdAMKgzCstGMnnWSaJaOuT0p0OZmkUUsDyS6ln1Eqkp16D0MZzE69l3mEVrC9Rbfylv1DtIIqXUMEYViNgb2UdWCnVFeSzSDKdTXpKtlDqw1MrbrN2cPyGwoYqgY7H7vQuphRZg6PtP8FgKIQnx4shBCuws77G2bFNnR9ESpuCEbqBH8vSQghxAlIAnUC6PzAe6QTvWfYK+a/+JH9Qef9iCAqe4XAHibxnvkZ/zI/dN4vo8oZEBU901rzguOf1FDPKDWM0425zseWGv/Dr/gDBRTxF8c/uNp6kR9X6nmbzG+40vEz5/3XbI8P+JgT1Wg+Yg3fUMAu9pJOaAfqXINv0UQSq6LdHnfN0OzutUEIIUKVkT4VI32qv5chhBDiBCeBOgFAk25hOhPZzHYcmAA06xO7FNGO3Xk7igjmGFP8t5heCpbSV9eyzS4v2N9kg7mNZ2z3Y1EW3y8qQP2f/RW2m/nUUMePjat42XyLDeYOwgkjl2xOMWa6ZXrGGjHMVJNooZUoIjC1iaEMP34FnlVMKdFE0oGDWKIYrXIGfMxRKodpahzRRFFklkDofLuO0q47aONw381ooo7aJ0nHM11NIAwb8cT6cnlCCCGEEEKc8CRQJwA4QCkb+NptW8sJnlHXpjuct5tppVCX+HE1fRfIGXXd9b3awk62mDu5U1/PcDXED6sKTA/Zn6Hy0OCE0QzjGfPvzsdSSeIPtnuOek6UiuATcy0AxZSRzSDfLNaLfm9/Eej82Wk61M/wWdsTHgnq5qohbNQ7AJiqx/F9zhvwMQOVa4sDAKOb4H6EEc4uvZcGmqg+Yn8hhBBCCCGEd0mgTvDrjqd4wvHCUdtP9NLXauqIJtIZFHDtAxaogiWjzsBgtppMm26nnkaKKEGhSCSe3Xofw5FAXZeuf1EDg0aa3R47smSxy2w1hRpVTwON7DL3kW0J3kDd8/Z/8rjjeSp1DTZsLDLmMUNNIJIIRnkgmw4gV2UxQ03AgoV2Onp+QhCrMmuYwChKqWCIyuSHlu92u1+ySqRBN3Wb/SqEEKHKseddzOI16No9qIRcjMFzseSe7e9lCSGEOMFIoO4E16xb+NrMo+GICZwANY46mizNRKujS6NCnUM7KNOVziAdQIpL36ZgEIgZdW26nXY6KNIlrNNbALBgOMutK6iiyDwIUvnq1H6oBNvEZKW53u2xqWpct89JU0l8oTdiYHSWcgbx9zNP72GX3geAFQtbdR5b9E7CCXMbgjAQ6SqFr/Q2AAwzhOtegUpq2cYuAJYY/8NVx+hhmEIC+zhADfXYTfuAB3YIIUQw6PjoNmg8XEHh2Pl3CdSJAWvSzRgYRKqIE2K6vBBi4EL7E4no0f/aX+Yt3dnU34qF77CY8ENDEx7Vz/Gg/Wl/Ls9v/mm+x9/Nd9zy0yYyym/r6a1Az6j7r2MlqW2zedFc7tz2D+v/8jfr4ySTQBhh7Gaf/xYYgFz7iXUFWLocq6R1iMoknWTCsJFPoVfX5207dAFWLBgo7DjYpncTRyynqjke62UYrsKIIwY4ujQ01FRxuOz8eBcfZhgTSSYBBw4OUOaLpQkhhBAh6Z6O35PYNoPI1on8sOMufy9HCBEE5BL5CahcV/G5YwONNLPesQWFQqMJJ4zhlmzaHIcDAy36xCx/rdK1zmESVqzYsBBnxPh5VX0TmBl1bVixYMfh3DbDMoF63egMkHTXv+5EZWqTDFLYR3G3jx/r3zhdJVNGFYCzv12wqtI1zp+XEQxF03klOkF5dsjBeEZSSx3xxHn0uIGkyqzlA8dqBpGGAgaTfsx9o3UUMUQzTGWxRxeRQ2f24r/sH9Km2oknjlgVxUnGNB+tXgghhAhO9TQCne/bXIfVCSHEsUig7gS01tzM9+y3A539rzQwiFT2RnxCja7jt46/OPf9q/k2j3HiXfmp0NXO2/+0/YHFlgV+XE3vBXpG3S4K3YJ0AFFEYlM25/1gDyx5Uh0NxwzSAWjVfaAu2SVTKtgDn5UuGW7O7EANT9vu8+h5wgwb35h7QHcG6pNVgkePHwjeNj/hBfNN5/00lXLMfUcbwyg0iynUxWzX+ZzGXLTWXG2/y9krcZwawcbwt7y9bCGEECKo5em9ztthhPtxJUKIYCGBuhNMk27mN/Y/uWzpDNV1fSiNJ5Yz1Ems01tooKmzP5G2Y1Un1o9KI82cpKYSQTiDVJq/l9MvgZhRV9VNEC6ScKKJ5ALjTL7WeeSbhSEbKOmra9t/cdQ2KxasWJitpnCyMbPb5yUTz+nqJFppwxLkHQ6Gk80gUsmnkCaaseNgCJmMVcM9ep45agqmMnFgstvcR7JlikePHwgiXT4cJJPAWCP3mPuOUbmcpKZiwaBcVwJQrMuYqEazUW+njXaqgjwILIQQQnjLE/YXeNf+KdvYTTSRzu2SUSeE6I0TK/oiqKaODXq7835XMKcrA8dQBm+H/4nvtC/jHXOV8zlpJPt+sX60ydzBF3oTAENU8EzMDOx8Oo6aIBmGzRkEzlApvGV+AMBOvYd56sQuqbNrO//VK533pzOeDWzHjoMIwnkv/LljPtemOnvTFepi4nRM0DYubtVtfKzXApBAHC20OR/zdCA3TSXxmf4K6Pz5m8MUjx4/ELhO8p6lJpF+nIy6kcZQ59/A7Y58UlQSE9Vo1hzaBp3ZjsH6syWEEEJ40xuOFXxF56Aq1wvVXVnpQghxPBKoO8E06sMvDlYsaDRppDBSDXXbb4zKZb86SKNupsKsJs1y4gTqXnX8mypdQwapDFfZJKjQ7VnlawpFEvHUUI8Fg/GMcD42RY0li3QaaSbP3MO8E7z3VZWuZQiZNNPCMLL4reX/sVHtwIqFROJ7fP6Z6iTWsYWDuoISXc5gdex+ZIHKdbDDBEYySKWxi71eCeIOJoOxajgKRbPLtOdQ0ugy3Tu+hx5/iSqe520P82/7R6zU63jE/mdOVjMZy3DKqCSCcFppC9qfLSGEEMJb7u34vVtixDiGU0gJ0UQFZMWLECLwSKDuBNPVzBRw9go7SDntdLjtp9F8rTsnTP6y4w9kdKRwie1c5lum+26xflKoS9hBAQBnqfl+Xk1oKdTFVFMHdP78uU6TzFaDOEAZaSRxUJf7a4kBw7U/3RnGPGbZJjOLyb1+fqSKYJu5m2wGsUcXHXdwQKCqMmtIJ4Ua6hhpyeEp26+8dq5EFcc3uvP3viREf/7adAeJxNNIExcZZ/W4/2WWb/GNmc9yxwdEEcFBKvjm0N9GgCFkBu3PlhBCCOEttbreLSB3heV/+JXjScqposAs4mszj7ftn9Cu7Nxh/SGRKsKPqxVCBKLgbl4k+qxBH86oSOVww/kYot32c21G/x8+5s/8g8UdV6J16F8Fcu27dKX1Ij+upO8CvQStwSWjByCcMOft0WoYMURRTrXbVcgTlev3Kk71feLweDUSKxaKKHEGoIJNJbWUUUk7HaToxJ6fMABR6nD/mFDNqKuhjhrq6MBONFG9es69lptJJ4VmWinQRc7tlkM/Wzv1Hm8tVwghhAhKrhf8rleXcZttKckkAFBOFTPbL+RX5pM85Hia1eZGP61SCBHIJKPuBFOj65iuxmPDSp1uoOJQzwRTu0/izCCFcQx3ZpYBpJBEta4L+Sb/jbqZoQzGxBG0gyQg8IZJ3N3xOPv1QbdtVizO24NVOjlkEa0isMmfJh62P+O8HdPLoIqrISqTXIaQqhJp0q09PyEAufZ0STYSvHquKA5fzXbt5RZKXAOQMUbvfqYshoXJagwNNFKiK5zbs8kgU6VR7jIhWwghgp2yRaMxABMwULbonp4ixFGqqXfezjIyAJhtTCZTp1Gl64gl2lk14drmQwghusin4RPMHvY7s5Wmqwl0xXKO/GAapSLdgnQAZVRSRqXzilAoMrXJy+a/MDEZRGpQDZKAzh5wgUhrzWOOF3DgHhB2YDpvK6UIU1bW6a0Y2qBVtxGhTswR9o26mf+Ynzjvx6q+f1AYqjLJYw95GgbrDE8uz2dch4+kKO9m1EW6BuqCNLDZE9e/866ByZ6cZzmdm+zuZcf7KGafLiZKRx7jWUIIEXzCl0p2kxi4rguNMUTxE9vVADhwsF5vPXpfmaAuhOhGUJe+PvTQQ8ycOZPY2FjS0tK44IILyMvLc9tn4cKFKKXc/rv++uuPe1ytNffccw+DBg0iMjKSM844g927d3vzS/GZjxxrWKBmcLZxMkuM/+Ei4yyuMS7me5Zvu+0X61IKG+dyuyLEsydqqMc8FDyK7Ue5YSAJpIy6Ot1AIoeHcgwilSstF3KH9Ydu+51izGaemsZENYp8s9DXywwY+eY+wrA572fT94Cxa+ZrJcH5e1umK5mmxnGamsMQMr16LtfS15ZQzahzCUBG9iFQN04NZ4GaQRrJZJLKAmYwnfGcpKYSjQTqhBBCCIA23c7o1sXs0fuJIYpzjVOdj81Sk0kgFoXCQBFDNJPVGFp023GOKIQ4UQV1Rt2qVatYtmwZM2fOxG63c9ddd7Fo0SJ27NhBdPTh4NI111zDfffd57wfFXX8kp9HHnmE//3f/+XFF19k2LBh3H333SxevJgdO3YQERG8zT4rzGrW6s2008F8ZnBt2CVcyyXd7uuawVPv0itrr3mAUyyzvL5Wf6k0Dwc0pqvxflxJ/wRiRp3WmloaqHQpY8xWmd0OBohXMazWnVezvzHzGWUMI0zZjtovlGitUUrxRMcLdGDnJsvl7NR73Ae89OOfNZ5YLFhw4KDCDM5A3T5dzEa9A4A/qHu8ei730tfQ7FHnGoB0DUz2ZKSRw2f6K+f9EirIVdns0ftJ0DIVWwghhAAo0iUUHippbafDLVsuw0ih1tEAdBY0NdLEFr2TOUzxw0qFEIEuqAN1K1ascLv/wgsvkJaWxoYNGzj55JOd26OiosjI6F3pl9aaJ554gl/84hecf/75ALz00kukp6fz1ltvcemll3ruC/Cxv5ivo1CMIoerLBced984DmeTRRBOK51Xe25w3Mvl1vOwqqD+0TmmSmqIIoIE4hiqvJvB422BklH3I/uDPOP4m9u2sGP86RmvRqJQaDQ/cNzBcuP/ONtyii+W6Tdvm5/w/Y4fOwNzdzuecD4WRyw/tlzJuWphn4+rlGKaGsc+XewWbA8mJbqcVBIJI4wh/cgq7ItIHU4WGbTRjhmiQ3NcA5B9KX1NIZGT1FTW663YcWDBQipJ7GE/tdTToTuwhXhAXQghhOjJAV2GFQv2Q61eRqqhzscWGfO5U13LQ/pPbs+R0lchRHeCuvT1SHV1dQAkJSW5bX/11VdJSUlhwoQJ3HnnnTQ3Nx/zGHv37qW0tJQzzjjDuS0+Pp7Zs2ezZs2abp/T1tZGfX2923+BqFbXk6uyKaGcycaY4+4br2KJJxYrFto4nJIdQTjrzaP7K4SKaupoppUSyoOyP1ogZtTVm01uQUMLFjJUarf7ZnE4oB6Oje1maJScH0+lrnHPnnPRQgvfsSwi3ojt17GbaKGCasqoHMgS/aaCaiqooZZ6bIZ3A0E2w0YZlVRQTQ11Xj2Xv8QQxQg1lKFqMJH0/u+bUgq0woKFcMLIYTA5DGYYWYwhl3Jd5cVVCyGE73R8+nPaXp5N61M5tL00m45Pf+7vJYkgUke9M0hnwSBeHc46T1GJzLJOwYqFMGxYsTCCoZgBcmFdCBFYQiZQZ5omt912G/PmzWPChAnO7d/73vd45ZVX+OSTT7jzzjt5+eWXufzyy495nNLSUgDS09PdtqenpzsfO9JDDz1EfHy887/s7GwPfEWe95n5Jd/oAppoYThDjrvvYJVOWcQa/p/lWn6mruN96/NAZ+nUG+aK4z43mFW6XNVKxrvN670tUDLqzCMGSPw/yzW8Eva7bvedYoylwbaJBOJoo4M/Of7hiyX61fGmfXVgJ4fB/T521+CXFlpp1sFXzlmvGwH3npneFHWo31qoTn3dpfeRrwup1NV9zoC7ynIhbbTTRjuttJFsJLCXA+xkD/so8dKKhRDCtxx5b6Ard0BrFbpqB468N/y9JBFE6vXhCobHrXdxj3WZ2+OLjfk0hG+mPmITccSQT2FIJ0AIIfovZOoXly1bxrZt2/j888/dtl977bXO2xMnTmTQoEGcfvrpFBQUMHz4cI+c+8477+T222933q+vrw/IYF0m6USpSGxYiTB6l00Rp2LAAqONYcxSkwgnLGQnIgJU61rmqClEqDCGBGHpa6Dl02mt3QYZxBJNrnHsILFSCqvFyhmOuZTqys4eHmYTMYZvAjX+UK8bGcFQ8jl6eMYCNWNAmWTj1Ag0GgsWqnVtn/qSBYJGOrOffTXYJYoI6mgIyqBmb3SV1/TnIsR4YyRTzLEYGMwwJjBK5TBLTSKGKMrNqhC67CeEEEL0XaVZzcP2Z5z3Y1UMhnJ/cXS9f7oxl4O64oR4ryuE6LuQCNTddNNNvP3223z66adkZWUdd9/Zs2cDkJ+f322grquXXVlZGYMGHe6JVFZWxpQpU7o9Znh4OOHhgV0m2abbeVt/AsBcNbXXz7vVugToDLjs1vuooZ69+oBX1hgIdugC1urNoOER6x3+Xk7QO0ApH+rDJeMNNBHL8Ye5AEQQwed6AwAF7Gcyxy/VDmZb9M5ug3QAy8P+OKBjt6hWPjc7v4/B1qdOa009XRl1Pf/MeEKkigAdmlNfTW1SdaikN8VlInBvTbWMY63ldef9Nx3vs153ZgGczkkeWaMQQggRrHbrQvaw33m/p2qASBXhfI+2m0KmMs6r6xNCBJegvgauteamm25i+fLlfPzxxwwbNqzH52zevBnALQjnatiwYWRkZPDRRx85t9XX17Nu3Trmzp3rkXX7g2t5XarqezaFUopzjYVMUWMxMWnUx+7zF8wUMFmNYaIaxdABlBwGgkAofC0xyxnPCBKJYwRD+aXlZmYbU3p83jhjOFPUWCaokZTqCu8v1I/KzSrGkHvUsIRhZPep4X93XN8kNgRZoK5JNzOcIUxRY5nUQ09NT+n6fodi6etBXUEqSUxT45mvZgz4eCkuryPSCFsIIcSJ7saOXzlvW7EyWKUfZ28Yq06c97pCiL4L6kDdsmXLeOWVV3jttdeIjY2ltLSU0tJSWlo6y5YKCgq4//772bBhA/v27ePf//43V1xxBSeffDKTJk1yHmfMmDEsX74c6AxI3XbbbTzwwAP8+9//5uuvv+aKK64gMzOTCy64wB9fpkdUmTUk0NmQPrkfgToAi7KwWX+DiWa3uc+DqwscO3Q+W/ROduiCzrLfIBNIwyTyzULydSHbyaeGeq6wXsDPbNeRoVJ6fG48cWzW37BN7+aALvPBav2jxWyhhjp2sc9t0jJAPQ1HlUz0VazLMRt08ATq2nUHG/R2drOPzfobn609ikgUCgsGDtPR8xOCyB5dhEazUW/3SI18yqHy2XDCqNahOXxDCCGE6I1Ks4bGQ1UAAHbsZKmM4zwDElze6xbrcm8vUQgRZIK69PWpp54CYOHChW7bn3/+eZYuXUpYWBgffvghTzzxBE1NTWRnZ3PhhRfyi1/8wm3/vLw858RYgDvuuIOmpiauvfZaamtrmT9/PitWrCAiYmDZLf5USS21NKBQpJPcr2NMVKOJJJxSKshjb0imaHeVB8YS3TnpMIj5c5iE1pqp7efTgd25rS99sVxL86oI3WydfIrYRzFWLMxVU/nc9jd+0fE4Vm3h5vArBnz8WBWcGXXb9W4Wd1zlvH9kENNboohEo2mkmXbVQSQWn5zXF77RBZRRSTSRjFMjBny8LNJJJ5kyqijQRR5YoRBCCBGcdrGX/ZRixcKN6vssC7vceUHrWNwy00P4va4Qon+COlCn9fEDEdnZ2axatarPx1FKcd9993HfffcNaH2Bol138H/2V4DO4E2Cy6jwvhithpFDFkkqgW3mLrCc68llBoRGfThQF4wCJaPuK/Nr0kmhkhocOMgkjWHq+P0jXQ0ilamMxVAWmkK0zBo6yxEXqBlUUEOmkUaEEU62pbMEtqeSid5IIYEpaiw2rLTTMeDj+UqpriCNZCqoJgwbI44zgMSTwpTNWTPeShuRAyw9DiRVupbZajI11JGrBj7sKM6IJZ0UBqsMopVveggKIYQQgajQLGGumkod9eRashjai4F0KSQygVFEqnAc2vTBKoUQwSSoA3Wid/boIucgCeh/6euZlnk0djTzjS5gu2M391tvC/qssyN1ZR25ZiIFK39m1L1jfsoBSgG42DibkSqH0yxzev38TCOdTXwDGtJ1/zJAg8EevZ/P9FcAZBmdAbquAS6eEKbC2Ky/AYKrj1i+LqKcKgCesd3PpT66KBBBmPN2K+0+OaevrNYbWae3ADDGyPXIMeNVbOfPr4YaXUeiivfIcYUQQohgslXvZI3eBMAIldOr5ySpeLaxCzSM1L17jhDixCGBuhPAle0/w4KBRjNFjWM64/t9rDONeezSe2mmlTJdSYZK9eBK/evbrdfhwEE0kYxWPQ8mCUSBklG3UxcwlMEoYLga2ud+f4NJ5zQ1hzbagyoTrK8qXUodUkjw+PFdM0PrXXqnBLoqXeu8neyF78uxhHN4enerbvNIL7dAYWoH89Q0IokglSSPHPMkYxqY0EIbu819zLJM9shxhRBCiGDw/9p/y4d6NQd1BRPUKCKJILeXFSTJbqWvtV5aoRAiWPUrUNfR0UFpaSnNzc2kpqaSlOSZN/3CO7aSh4POlOrvG+cxztL//kSRKtw5SryA/WQQGoE6h3bwMWtx0NlAvjgEBhj4K6PO1Cb/Mj/CxCSLDO613dTnYyilqKWejXoHVm2hyWwm2gi98roKs8p5u7+ZrsfjGqgLpknNFfrw9yXFC9+XY4lQhwN1bbT57Lze1mQ2s0p/hQMHc9Rkj2VCp6hEZ0boTr2XWUigTggR3CzDFuMo/ARaKiEyBcvQU/29JBHAPtFr2a7zAZyDlTJ72bokkTgUCo2mwqz22hqFEMGp14G6hoYGXnnlFf72t7+xfv162tvb0VqjlCIrK4tFixZx7bXXMnPmTG+uV/SRqU1nkG4EQ7nYevaAjjdCDWWYyqJRN7NfH/TEEgPCQSqIIRIbYUxiFL+z/czfS+qXQMioq6UB89DP3Dij/0Hhqy3fpc3xGvt1Cc+ab3CLMfDhCoGmSB8klUSy1CAGM/CedEdyLeEOpoy6Ql3i/L5keuH7ciyhWvq6i30YKHIYwknGdI8dd5wazng1gmJdRp7e47HjCiGEv9jO+F9s/l6ECBquQ9MAYohyu+h3PBZlYbExn6/NXc52MUII0cXozU6PPfYYOTk5PP/885xxxhm89dZbbN68mV27drFmzRruvfde7HY7ixYt4qyzzmL37t3eXrfohRpdxxsd75FNBqkkMdoYRqoaWPZjskpgrz5ABdWUu2S9BLsqXUsdjVRSzTBL9oACTIHCXxl1B3U5wxlCJmkDCj5NNEazW+8jnHD+7fiYGl3X85OCSLNuIUKFY8fBDp3PIC+UkcfoKFJJZCiDMXSv/twHhDgVQwQR7NH7SRvg36y+iHAtfQ2hjLqvzTxSSKSYUpJdJioP1HA1lDy9lyQSgioQLIQQQniCTVudF8kTiGWoGtyn5zfoJuw4yFaDqDfldVQIcVivMuq+/PJLPv30U8aP77632axZs7jqqqt4+umnef755/nss88YOXKkRxcq+u4Dx2quMO9w3o+jb33CupPsMmq8Moia0/fE9WvxZU8sTwuEjLoiXUIBRQBkqrR+H2e6Gs+PLVfxkOMZKnQ1a83NnG05xVPL9LvtOp/l5gcATGM8hvJ8IC3OiKWCGqCGYoKnnPsTcy011DOCoT4dWBPumlGnQyOjTmvNjfZfYcdOGsncYvmBx449hEFEEsEe9mMxLR47rhBCCBHotNbkU+S8MF5LA1PUuD4dY4jKZLXeSJmupIQyj3xWE0KEhl4F6v7617/26mDh4eFcf/31A1qQ8Jyt5k6iiaSJFsAzvZ4ySOFkNRM7DlpoHfDxAkULrSxUs2il3SuZTf7gr4y61eZGTlNzaKGNaar/g0ssysIYlcsQBmHByn4dWmUBrlNYkwzvTMuM5XBfv2DKeGo+9LclWkX69LypKomT1DQsGJiH+lUGuzoasB8qzYlXMdiU54q6DMNgjjGFRt1MnIrBoR1YlATshBBChL4aXc9UNY7VurN3dxrJzFNT+3SMNJXsvF0Z4gMlXre/yxvme8QQxRnGSVxm/Za/lyREQBvw1Nf6+no+/vhjRo8ezdixYz2xJuEhr+v3nEE6cG8s31/ZxiA+1V923jEHfLiAUalrWKnXA3A55/t5Nf3n/3w6+IfjXYooIZ5YzhlgBtxwYwhFdPZC3KR3eGJ5AcN14uu3DO80q44iEgMDE5NG3eSVc3iaQztoO9QfLpIIn567jXa+0BsBuIXQ6InoOkF36gAC58diYLBGbwLdmU0QzBnJQgjR9urJ6MptYNrBsKJSJhD+/U/9vSwRgKqpdQbpAMqp4juWxX06hms7iqoQqlTqznLzA/5lfghAKRVchgTqhDiePgfqLr74Yk4++WRuuukmWlpamDFjBvv27UNrzd/+9jcuvPBCb6xT9NEHjtVE6QhGkkMScZxnOYNFxrwBHzdOxXCusZBSXUE9DR5YaWBwzQ6MUr4NDoSSZt2CgWKGmsholTPgssVRDGO+mk4jzZTqSg+t0v/Oa7ueNXoTBgYjGOK1LE6lFLFEU0cDDQTH1NdmP/4uhrm0EG+nw6fn9pYqXcMERhGpwhmlcjx+fNfAXJWu8WgPPCGE8DXdXAbmob//ZkfnfSG60cDhC6CDSCVHZTFcDenTMbIZxCw1iTbaqdPBU/nQV426mU3mduf9dh0a77GE8KY+N0X69NNPWbBgAQDLly9Ha01tbS3/+7//ywMPPODxBYr+KdTFFFLMbvZxne0yfmy7iomW0R45dhMtbNDbKdNVVJqhcfXHLTjg4yweb/FH4etus5B6GvlKf43q+5+Xo8QZMezR+9msv6HYDJ3S1416Bw00YWKyi33EerEnScyh8tcWHRyl6s0uWcBR+Lb0NRQDdZXUsI1dfKm/9kq/v66WCjasVLpk7wkhhBChzDVQN0rlcIHljF5PfO0SpSJYr7eyRe+klApPLzFg7DYLqXFJ8AiWKg8h/KnPn6Tr6upISuqcwrdixQouvPBCoqKiOPfcc2XaawDJ03tpppU4Ysgiw6PHnq4mEEs0FVSzi70ePba/NGv/BQc8yd/DJPLYQzV1JBDLZMMzgeGxajhh2NhKHm0h0uC/xSUYBZDixSykQSoVK1ZqCI6puc3aNWju299Fm0ugrkPbfXpub3ENnqUw8D6lR8pQKUQTSQd2qgiNCzdCCCFETxpcgk0LLXO41bqkz8dIdukfXhXCF7t2UkAt9VixYMFgN4Vo7Z9e2kIEiz4H6rKzs1mzZg1NTU2sWLGCRYsWAVBTU0NERGhkIoWCrimm9TR6vKwuiwzSSWG2mkShWezRY/uLa+lrZIiUvvpjmMQ2czdz1BSSVWKf0/+PJVpFOrObqkKg0W6T2cxIlUM4YdiwkkwCSXhnmAR09hCzY6eRZkwd+I0lm2lhmhrPJDWGTB8PdrG5dIMIlYy6NtqYrsYzVg0nlSSPHz+OWGcv1FCaBC6EEEIcT4tuZaoaxwQ1qt+vryk6kdEMY6oahxEQnaa9Y4eZz1w1hXDCGEwGM42JbDN3+XtZQgS0Pveou+222/j+979PTEwMQ4cOZeHChUBnSezEiRM9vT7RT64BjWQPTHt1NdIYSr6jkHwNJ+lpXMa3PXp8fwiV0ld/ZtRprfmz4+/UUM9g0jnHstAjx3W/2lhDpkrzyHH9ZQ+dpbwAlxnf4vmwh716vhgV5ayDbqSZOC+W2XpCI81s1J19TBYw3afnDnOZiNoRIoG6Ql3ChkPfzyQvZG66ZoOGQiBdCCGE6I1yqpyDzvrbUzfFSCSPvaAhXSf3/IQgpLXmGcffqKeRFBIpooQis4T3jdVMxDPVN0KEoj4H6m688UZmzZrF/v37OfPMMzGMzqS83Nxc6VEXQBKIZYGagUKRQKxHjz1a5TJPTUcBtTo0BkrYtJV5aho2ZfPIdNxA4OuMugpd7cwUy/VQNh3ARDWKU405NOhGinVZ0L+oF5j7maOmYMPKdMPzUziP5BqYa6Ap4AN1rqUk3uzd1x3XHnUdhEjpq0s5qjdKrLMZxOlqLk20UKODo7xaCCGEGCjXLPL+tpZIJA6FQqNDtvT1EfufmWVMwoqFNJJ5yXwLCP0pt0IMVJ8DdQAzZsxgxowZbtvOPfdcjyxIeMZacwtFlJBKEoYaeFN/V1kqnc16B020UKLLMbXp8XP4Wj6FrNYbQUOCivP3cvrNnxl1uylkvd4KwERjlMeOG00Un5hrO89hFnKWxWOH9ovtejdr9WYAlqnve/18MS6B5wbdCCrd6+ccCNfmzLHKt0HzkBwm4fJG2NPZ1QCDjQw+0msAiDVD4yKHEEII0RP36qWEfh3DoiwkEU8VtW4X1kLJv82P2aC3oVB8Yfu7M1BXoav9uzAhAlyfA3VXXXXVcR9/7rnn+r0Y4TldTb37+8JxPEopbrb8gHfMVRTpg3xofsEiy3yPn8eXXK9iebNfmC/5OqPudfu75DKECML4lnGax4471hjOVDWOMl3Jbr3PY8f1lzxzL5mkk66SGa1yvX6+LJXOKJVDi26lQTd7/XwD5Z5RF+XTc4dij7oD5kGGkEm2yiBFJ+DpWH46yZyiZlKkD7KXA549uBBCCBGgmnQLOQwmmqgBfXaYZIyhSJe4vQcJFVpr9ukDDGcIo40cctRg5qgpFOsyivRBfy9PiIDW578INTXu0f6Ojg62bdtGbW0tp53W+w/n+fn5FBQUcPLJJxMZGYnWGqVCt4mmL7WarWSoVOp0g1eahwMMN4ayw5HPEDJD4g9tOGGk0dkbwqqC94XSnxl1+zjAHooAz2bUjVBD2aR3kEFq0PcNa9PtaKVp0I2U6nJyVbbXz2mi2XUowOmarRao2mgnk3SaaXbLBvQF16mv7Tq4f9YATG1iUzaadDNlVGEzbD0/qY+UUrTQRjW1ZOtMms0WoozgnZwthBBC9MYBStlH51C9VNX//nK1up4CXYQFS8h9Ht5m7maQSqVIlzCSoSQa8ezSe7FgCeHRGUJ4Rp8jEsuXLz9qm2ma3HDDDQwfPrzH51dVVXHJJZfw8ccfo5Ri9+7d5ObmcvXVV5OYmMijjz7a1yWJI9SpRgp0Z8DEW/3WRjMMTVdj/B1eOYcvbdV51NHAcDzXW83ffJ1R15WVqFAk4rny4SQVTzRRlFLBF3qTx47rD/m6kNfNdwGYwEjCVZjXz+laPtpAo9fPN1BV1FBCGQBxysc96lyGSdhDoEfdAcr4Un8NwMnM6GHv/huvRrJeb6WOXeRTyCTGeO1cQgjhTbYF9+PY/ym6dg9GQi5G9sn+XpIIUF091sIJI5r+X6CKOVQ94MBBK21EBvFQuyP93fwv2/RuAK43vgfAJDWGlXodK/V6GnSTz9ucCBEsPJI6ZBgGt99+OwsXLuSOO+447r4/+tGPsFqtFBUVMXbsWOf2Sy65hNtvv10CdR7Q6FLe5q0PuiPVUMYxnDgVE/SZJx26gzo6h2KkeqGHky/5M6MuXsUyl6lEq0iPZyWmqESadHPQN9r1RD+TvjpymESgc/375evBLuE6jLlqCgrD+cY5mJWYZZyu5lJLAyONHK+dJ1dlMU2NI4E4DpqVTArulqVCiBOYZczFWMZc7O9liAB2Z8ejrDY3UKVrOUOdRIZKGVAWXJyKoevaej2NIRWoa9ItzFfTqaeJMcYwACYZo2kxWwnDRr7ex1Tl/cFqQgQjj32aLigowG7vOQPh/fff57333iMrK8tt+8iRIyksLPTUck5o9S5ZM966SpFoxFNOFV/rXeTr4P53q+LwpEJvNFs/EbTqNj4y16DRzGCCx4+fQgKFFFNNHQ7twKKCc6KEa6BxkWWBT84Zow4HnFz7vwUqX/z9OhaLMlhzaNDHlBDICiukxDno4VLlvYFPGUYaGx2dmdXnc4bXziOEEEL4k9aaJx0vOyfD1+oGqsLWD+iYrm0+GnUz6SFUE/qxXkOe3ksE4QxRmQAMUqms01sA2Kn3MhUJ1AnRnT4H6m6//Xa3+1prDh48yH//+1+WLFnS4/ObmpqIijo6U6G6uprw8PC+Lkd0w21qohczUk42ZlKoSzDRNJnNRBvBmYFSZdYwVY0ljHDGqRH+Xo7H+LL09aCuYLaajAMHk5XnAxwLjJmEm+GUU8VBXUGWyvD4OXyhRbcwU01EocggxSfnTNIJzFFTsGPHoR0+OedAuA+T8G2gzurykmgn8L9XPalym/ia4LXzpHD42KE6tU4IIYQo1ZWkk4KJSbpK4fuW8wbcUy5XZTFHTaGDDreqgmD3mfkVYdrGAjWDSWo0hupMt5+gRjJfTaeRZvaaByA4r70L4XV9DtRt2uTeI8owDFJTU3n00Ud7nAgLsGDBAl566SXuv/9+oLMRtWmaPPLII5x66ql9XY7oRqPrB10v9nhyYLJebwWgStURHaSlYpXUsEl/A8B8pvl5NQPjr4twNdSx9lAm0jTD81fGTEy+0BsJJ4zdupAsgjNQV061s2fYrarnCxueEKHCnf82pzLHJ+ccCPeMOt/2qLO6vFsM9kCdQzvYqw9PYU3Be9nCrpnIpWaF184jhBDeZlbvQtfswWwsRsVkYiQOx0jy3IAsEdx2631UUkMrbXzHWMRN1ssHfMw22p3v0+pV4PcS7q09ZhHfsAe7tvM9y7ed23PVED7XGwAYp0MnQUIIT+tzoO6TTz4Z0AkfeeQRTj/9dL766iva29u544472L59O9XV1axevXpAxxadGmkmnDAiCSdWey8jxTVDo0rXMEQN8tq5vMkffcN8wZejJOq9nAU1UY0ik3RKKGOX3supzPb4OXyhXrsEoXyULRbrWvoaBD3qas0GIggnkTjidLRPo8/ugbrgHiax3cznD46XAbBgOEtOvCGbQYxQQynUxRQfGgQihBDBqP2f34bGksMbYjKJuCbPfwsSAWWnLqCVNjJJY5Ia7ZFjxrgO/dKhE6jbpfcBmlQSyXb5jDiUTMarkezRRWw+lCghhDiaZzu+98KECRPYtWsXTz75JLGxsTQ2NvKd73yHZcuWMWhQcAZ6Ak2zbqWNdtpoJ0J5r5x4KIMZzTDClI1SHbxZFE26mclqDE20kEb/x6sHAn8Nk2h0Lbf2Ql+xLDUIO3amqnE0ErxlAa5r91X/NbdhEkHQo65a1dKq26ijkSij/1PU+sOt9DUIyoSPZ78+iBUrDhwoFEO9GKhLV8k06EZGkTOgyXdCCCH8b7VjA7v0Pmp1PZdbzifVSPL3kgJGgd7PdDWBEl1OjpHV8xN6Ic7lwm1DEL/HPVIlNdhxUEENGepwuxerYcWmrQxhEINUKqY2nWWxQojDehWomzZtGh999BGJiYlMnTr1uLX4GzduPOZjHR0dnHXWWTz99NP8/Oc/7/tqRa+00Oq8HaW8NzkoScWTx17QsE8Xe+083naAMrbonQAkqng/r8ZzfNmjztt9EXPUYMqpolxXMcIc4vHj+4qv+ke6cr1S2xgEGXVdfdWSXfqe+YolhEpfvybPmRX4ou0RIr34WmAog3gVx3adz36z1GvnEUII4X1XddxFIZ3v63ONIZzP6X5eUWCwazt/dLxKB3YmqJGcbMz0yHFdh0kEwwXV3nIdoHbksL40I5n3zc/JM/dRSwNJhM7nLyE8pVeBuvPPP9856OGCCy7o98lsNhtbt27t9/NF7zS7Buq8OOJ7rBrOSWoaBooyXeW183ibrxqu+4K/MuqqdS2z1CRiiXZLb/eUFJcX+EqXUuVgE6HDma+mY8Fwy3TzphgdxTw1DQPDq33KPKFDd5CtMhnDcIYpz1yp7guryzRhR5AH6qp1HQvUdByYjFbDvH6+rsBqPY206w7ClM3r5xRCCOF5Jubh20GeXe5JJbqcBWoGrbR79HU1WSUwX01HoXx6kd3bDAzmqWlEqoijLr663q/SNSSFUKKEEJ7Sq0Ddvffe2+3t/rj88st59tlnefjhhwd0HHFszbrFeTvKi2VII40cvtCdGZRW7fMqao+pdAnUBXogoy98+WK/Wxc6B4vcpW7w+PFjiCIMG+10uAVWg803FDgb6PoqezNKRbD60O9pR4D3Xduj97NBbwM6yyl9zX3qa2B/r3qy2tzABr0dhWKEGur186WoRGdjzCpqGUSq188phBDC81ppc94+IH1Hncqo4mO9FoDJxhiPHTeCcOd7wwV6hseO609aa1aZ66mjgSE686iLd+4X4GsYSY6PVyhE4OtzdOXLL7/ENE1mz3Zv5r5u3TosFgszZhz/D4zdbue5557jww8/ZPr06URHu5d/PfbYY31dkjiCe+mr9wJ1KSqR2Woy9TRi18H7obZddzCaYUSpiKBPvfZbjzrdzBhysSoLwxjs8eMrpZivZnCQcgyCt49FV5AxDBsxPpqSbFVWZ5DT9W9DICoxyxnOECIIZ6zy/SSwUJr6atFWxjKcRBXv1V6lXUapHCaokTTqZirNKgZZJFAnhBDBKIzDQZVmWo6z54nFWxU4MUE29Ks3SqnEQDGekcw2Jh/1+FCVyUQ1miaa3UpkhRCH9TlQt2zZMu64446jAnXFxcX85je/Yd26dcd9/rZt25g2bRoAu3btcnvseL3vRO+100ECcbTS5tXSV+jMnMjXhSQQ59XzeNM+DpDHXizaQoIK3q/jSL7NqNvHTvaAhjQvZUJVUMU3uoBwwtBaB+nfC0UcMcQS7dP1RxFJOx1uZfGBqFRVUkARAFepC31+/lAK1H1NHi20Mg7fBDwVim16NwBV1PvknEIIITyrXXe4Te9u1oH9vsGXynUVaSRTS71HK3Bi3YZJhEagbre5j3hi2ckeTlWzj3o8nHC+1p3TlCuDuFJGCG/qc6Bux44dzkCbq6lTp7Jjx44en//JJ5/09ZSijyp0DbWHPijFE+vVc6WQQD6F1FJPh+7AFoR9iSoPXclJIj7opw75K6OugmoAEonDqrxTBp18qLSujXYaafbZMAZPadYtzjcls9UUn547ighqqXcriw9ElW5Xq31fhh4qpa92bXdmT8b56PfENbug8tDfAyGEEMGlEvegSaBn4vvSPl1MOVXYsDIcz7WUiFWHexY3hsgwiZ26gH0UY8HCuG4qJI4sfRVCHK3Pn6jDw8MpKysjNzfXbfvBgwexWoO3T1koqcJ3wxHGqOGYaKxYqdQ1DFJpXj2fpx3QpYxQQ8kkzW10uOibXLJJUYlezUgcrYbRpJoJw0alriFWBVeg7k3H+yw2FlCla5lojPTpuSNVBOjAf8PdgZ25airttJNGks/PHyoZda5X5GN89HsyiFRmqAnYsAV8QFgIIUT3qnUtkxnDFnYCUvrqqpFm5qqp1NHAUMNzg9NidRQz1AQsWEgI8hY8XSp1DSepadTTyMhu+uQOIpVZahIQOsFJITytz5G1RYsWceedd/Kvf/2L+PjOPya1tbXcddddnHnmmT0+/9RTTz1uydfHH3/c1yWJI3TV+luweD2jzlQm683OIQLV1DGI4ArUbTF38rFeA8A9lpv8vBrP8lXpa4fu4EP9BQBzOLoPhSd9qb8GOoPRw/D9VNCBeNLxCpv1N1iw8Jn1NZ+eu6sEPtBLX/foItboTYDvhm24cgvUBfGkuwaanbd9lXkap2L46tAgkDM4ySfnFEII4Tm/t79IvlnoDNKBlL66+sRcy9d6F1asHp1MH6uina+fwdyH2dUXepNz4OAo4+gJuYONdOcQuhQdOoP8hPCkPgfqfve733HyySczdOhQpk6dCsDmzZtJT0/n5Zdf7vH5U6ZMcbvf0dHB5s2b2bZtG0uWLOnTWh566CHefPNNdu7cSWRkJCeddBK/+c1vGD16NADV1dXce++9vP/++xQVFZGamsoFF1zA/fff7wwydmfp0qW8+OKLbtsWL17MihUr+rQ+f0kmgblqCvEqzut9sFx7NARjjwH3ia8J/luIh/ij9LWKOudtb5Yruo9yr/Xaebyl62cthQSf99ebosYSQzR27Ni13WvlyQPl+u/qj9JXi0ugzhHEpa91ZgPT1XgiCGeMyu35CR7g+u8VzJOZhRAntvDLVqGbDqKbK1GRKagYz2VOBap/OT7kPvv/cVBXYHN5HRxCJtHdDKW7pv3nfG5uwMTkKduvOM0y15fL9QuHdqC0wVw1lQyV4tFWPzZlI4JwWmmjMUR61LXpduaoKcQSRRpH967OIoO5qjOOEE6Yr5cnRFDo86e1wYMHs3XrVl599VW2bNlCZGQkV155JZdddhk2W89/tB5//PFut//yl7+ksbGxT2tZtWoVy5YtY+bMmdjtdu666y4WLVrEjh07iI6OpqSkhJKSEn73u98xbtw4CgsLuf766ykpKeGNN9447rHPOussnn/+eef98HDvT83zlC/0Jppp8UkTcdcPZ8EeqPNHYMCbfJVRV2pWOG97s9Q62PtZVFEL+Ofn7CAVzky1RpoDdviLvwPnhjIwMDAxg7r0tZpaNujtAMxhik/O6XrRptxRTYO1KejK04UQQsVkoGIy/L0Mn9ps7mT7oWFArooooUAXHbV9nbmFvRwAYK9ZjEtsL2QV6YPspIB23cF56jSPHz+WaFppoz7IA3XtuoMGs5ENehvNtDJbTe724rRSimJdRhElpGnftzoRIhj0K60iOjqaa6+91qMLufzyy5k1axa/+93vev2cIzPcXnjhBdLS0tiwYQMnn3wyEyZM4J///Kfz8eHDh/PrX/+ayy+/HLvdftyeeuHh4WRkBN8LdbNucfaTSPbBB91BpJJFBrXUOwMRweSfjhUkk0AS8Zyhgr9cyx+jJEp0GQpFFhlMUKO8dp4kEhhEGs200BBk/SyadQsddJBGEqPV0SUA3nbkRLFADdTV6DqSSSCVZKK6uYrvC1YstAd5oM71b7G3+5Q6z0MC2WSwn1LeYAUft62hJGK1T84thBCi/6qOuPhpw0rHoazyRt181P5lVGIc+t8r5r+4mot8sk5/2qX30oGdbDKYriZ6/PixKpoKXR30/drednzC9+y3A50/R3ONKcfcN0UlUKRLqKIOU5tBP9BPCE/rVaDu3//+d68PeN555/VrIWvWrCEiIqJfz+1SV9dZgpeUdOzIfF1dHXFxcT0Ovli5ciVpaWkkJiZy2mmn8cADD5CcfHTqLkBbWxttbW3O+/X19f1YvWeU6SrGqRG00U6uyvb6+eJUDAcoBQjKQF051VRRixUL8YZ3+/n5mm/y6aCYMiaqUZTocq8Gh2NUFAcpB3BONQ4WldRix0G5n6Zhug4UaNBN/ono9kLFod/HSAb2WjAQIxhCB3a/DLPwlEpdwxiVSwttPusbGq9iKT70+wmdpSz7zGJyjME+Ob8QQoj+aaeDOGJoopk4YkkingI6M+nqca92qjHrGKtGsF5vwY6dcqr8sWSfq9A1TFZj2K9LSVOef38whEwUihgV5fFj+1KNPtwOR6NJ5thVJLkMoY5G55C4NNX952whTlS9CtRdcMEFvTqYUgqH4/hZCN/5znfc7mutOXjwIF999RV33313r87THdM0ue2225g3bx4TJkzodp/Kykruv//+HrMBzzrrLL7zne8wbNgwCgoKuOuuuzj77LNZs2YNFsvR+d0PPfQQv/rVr/q9dk/ap4vZofMBONdY6PXzpQR5X6Ku4GKKF150/cEfPeo26O1s1XkAjFI5XjtPjEtWWHdXeAOZ6+9Gih9KX+OOyKgLRFprKg/9Pqb68fdxP6U00OTWry7Y5OtCduo9AKT7aJq1UgobVtpoBzrLrf9rfsIy43KfnF8IITzBvvU5zKJP0HX7UPE5GENOxTrpKn8vy6s2mtudAbka6qhx6T18ZAXDQSpYqzc77wdjz+D+2KkL2Ky/ASDHC8PMOrB3Bkd1Z3+3cBWcfdu2kue8bcfBCIYcc994I5YCR2dAeB/F3fayE+JE1qtAnWmaHjthXJz7gAPDMBg9ejT33XcfixYt6vdxly1bxrZt2/j888+7fby+vp5zzz2XcePG8ctf/vK4x7r00kudtydOnMikSZMYPnw4K1eu5PTTTz9q/zvvvJPbb7/d7VzZ2d7PZutOkS5mgZqBA4dXyxC7JJPIPDUNhYGtf5XUftNstjBLTcKBgyEq09/L8TitfZNTF6HDOVnNpIEmRnmxrDNOBX6w6VjqdAML1Aw02qOTwnorkzTmq+kYGLTqdp+fvzdqdQMnqamAZoQXA7496Zr8Gsylr020sEDNoJ0On5Zaf8s4lR1mPoUUM02Np0L7J4NUCCH6y77uN9BYAoAu34x5cH3IB+qyyKCOBgopcW6zYWWOmoL1iPf2rn/Xs8ggQ6XQbLYQZfinXYWvVLhURKQanr/gGqeinaUwDTQF5YCFlx3/okbXk0AsbbQzUuUw1nLsfumT1GhOUtMwUOzV+5nFJB+uVojAN6DISmtra5/LVV944YWBnLJbN910E2+//TaffvopWVlHfwhuaGjgrLPOIjY2luXLl/dq6IWr3NxcUlJSyM/P7zZQFx4eHjDDJrbonXymvwLgPuM2r58vRSWw+tD47UgdGN+D3qpXTazS6wE4V4VG2as/MupW6fV8owuIJtKr5cOufdbqdd8Gz/hbKZXO38sLOMPn53cok8/1BgBupsHn5++Namqd36NM5b/+oF2ZdI4gDtR9bK5hrz5ALNFkKt+UvgK8GvYoVbqWwW3z+VxvwKKDNytRCCFOBM26hXf0qqO2W7A4X5M7dIdzyqlrm5sDlHJAl1JAERMZ7ZP1+ou3p9LHHPEe1x/VFwP1puM93jU/BeBmyw/4re3/HXf/HDWYLw59hpxjTuESy7leX6MQwaTPXRsdDgf3338/gwcPJiYmhj17Ostr7r77bp599tken5+bm0tV1dH9DGpra8nNze3TWrTW3HTTTSxfvpyPP/6YYcOOzhyor69n0aJFhIWF8e9//7tfffAOHDhAVVUVgwYF/oj2/eZBxjGcuWoqo8jx+vniiXV+sA220lfXhq2uQaBQ4aupr13/7sfrQ+EJccQwS01ivBqJieeyfH2hys/ThaNcer410+rz8/eG6yTfFB8NQOiO5dDLokMH189YF1ObROgwJqnRnKJmdjttzZuSVQKL1HwmqtGU6xOjd5EQQgQr18DbHDWF89TpXGScxWQ1xmWfzlLYh+zPcE3HzzFQWDAYwRByGEyeudfXy/a5Kl3DOEZwmjGXZB3v8ePHqRjn7cYgqhp53f4uKa2zSGudw2pzAxMYxXCGMJj0Hp87WuUyV01hrBpOoS7pcX8hTjR9DtT9+te/5oUXXuCRRx4hLOxwWu6ECRP4y1/+0uPz9+3b120fu7a2NoqLi/u0lmXLlvHKK6/w2muvERsbS2lpKaWlpbS0dE497QrSNTU18eyzz1JfX+/cx3UNY8aMYfny5QA0Njby05/+lLVr17Jv3z4++ugjzj//fEaMGMHixYv7tD5/qKSGAvazUxf4pM+ToQySiceKBTPIPti6lk/GqtAI1Pk6o840TQwsWLB4PbiSpOJZr7eyXe9mn+7b3wp/a9QtzqulKV4OaHYnksMlKc26xefn741qXUsCnRmZ/ghmdukq8wnWjLpaGviGPWzVebSpDr+soYkWtuvdtOsOKs3guoAjhBAnkiqzlkTiUSgmGCOZZ5nGTGMiY4zO5IkEYik1OwcF7TcP0kwrJhoHJvkU0UAT+brIn1+C1+3XnV/3bvZRqIsJMzxflhpL1KH/j6Y+iCa/1ukGGmmmnkZaaecbCohXMdxmW9rjc7NVBpv0N+zR+6nTgVntIYQ/9bn09aWXXuJPf/oTp59+Otdff71z++TJk9m5c+cxn+c6Ofa9994jPv7w1QiHw8FHH31ETk5On9by1FNPAbBw4UK37c8//zxLly5l48aNrFu3DoARI9xr5Pfu3es8X15ennNirMViYevWrbz44ovU1taSmZnJokWLuP/++wOmvPVYGnUzaw41eD1VzfZZJkWmSqdcV5NPcL1Qu5ZPhmJGnS80qRZKqQAgAc9fYXRlUzYSiKOWerfsq2BQRoXzCmnXmzFfilKHM+paAjSjrkLXUEsDCkWq9l+gzujKqAvSQJ1b9qYXpzAfz6O2nzGn/bsUUMQt9vt5Lewxv6xDCCHE8VVS4xwekUYKt1qXAPB7+wuEE0YtDRygjCmMY53egkYziDQ+sD7H9x0/YYveyZOOl/mZ7fiD+oLZzzseZ4veSSJxPGd92CvniDt0obKBpqDKqHPta9hOBxYsTFPje/Vci7KQq7LZofPdBpQIITr1OVBXXFx8VNALOjNrOjqOffW+a3KsUoolS5a4PWaz2cjJyeHRRx/t01p6apa/cOHCXjXUd90nMjKS9957r0/rCBT7dQkLjdlU6RoyVc8px54SfSjw0EgzrbqNCBXYAc0uzbqVmWoiDkwG+bCPk6/4ovTVPSvR+wGoOWoyldQQRhhaa5+X9fVXA4en1CaoOJ+fPxhKX6sOBV81miQjwW/rsCgLaHAEWXl1lxrqmaOm0EY7OWqwX9bgOpynmcDM4BRCCOFe+pro8v5kCJmMZCgJKp6N5nbONk4mlSSmq/FEEckIaw4jHEOxKSuxRPOV42tmWCb64SvwvjiimaUmUaarmGqM9co5YlzeQwfTwLRGl/e30USSQQo5fRiaFn8oQFlPI+26gzDVtz7yQoSyPpe+jhs3js8+++yo7W+88QZTp0495vNM08Q0TYYMGUJ5ebnzvmmatLW1kZeXx7e+9a2+Lke4OKDLWGmu42u9izTluxHXriWPri/4ga6Car7UX7NRbyeM0Hhh8HXpa4NLVmKMD7ISO5Sdr/Q2vtAb3SZwBTq375MfyqyjgqD01a1Rsx/Kg7scnvpq99saBqJcV7FWb2aT3kG4ny6aBENgWAghxJE9dBOcty+wnEkJ5Xyuv+JFx3L26WJW6nVs0Nudgw4usZ7DV3obn+h1ziECoehDvYb1eitNNHstkBTjUm0RTKWvrtVJTbRQwH5yjexeP991aEYwfYYUwhf6nFF3zz33sGTJEoqLizFNkzfffJO8vDxeeukl3n777R6fv3dv6Dcc9RfXcsBUH/Z4GqtGUKVqsePonPjnw2y+gahya14ffNOVeuL7jDrvB6CmqLE0qxasWDlglpJm8V1AeiDcvk9+KLOOUdEsUDOw43D2YAtEJ6mph/od+u/30TlMIkgz6lwDnv7ohwgQThgKhUbToiVQJ4QQgcqBg5PUNBTurxlKKc42TqFQF9NEC1vNPGaoiUQSzkyjM3MuVw1hlppEGDba8U9PVF/oGj7nzQutru+hg6n01XWt4xhBOGG9Ln0FmKEmUK8aqaWeYrOUQZZUbyxTiKDU509s559/Pv/5z3+47777iI6O5p577mHatGn85z//4cwzz+zVMZqamli1ahVFRUW0t7e7PXbLLbf0dUniEH9NlnTg4HO9AYAKHTxZToGSweNJvs+oO5zy7osAVIyKdvZhPHioN14waHT5PsX4o0cdEXymvwJgPEe3LggEeXovX+hNgPtVfV/rmmIdtD3qAuAChFKKKCJookUy6oQQIoAd0GV8oTcC7uWXAFZl4XOz8/39F+ZGvtJfA3CluhCATJXGer0VgEgdQajqutga58X3uXEcnvoaTKWvrmu91HIu4SqMHKP3bTesysoqvR6AAl3EDEKzfFqI/uhXasWCBQv44IMP+nXCTZs2cc4559Dc3ExTUxNJSUlUVlYSFRVFWlqaBOoGoFrXkUoSccSQhvcnvnZxT1sOnib/NbqOdJKJJYZkLw9C8AdfZNRV61qSiCeeGJ9kUqa4NMev1MHzs9asW8kkjUEqtbMHmo8FQ0lFZQAMQQDX0tfgDNRVm3WkHXod8FdGHXSWWzfRQpP0qBNCBBEjcQRmay04WsESgZEYmBe3PKWeYw9Wm67Gs0ZtYr8+yGb9DQnEMph0xqjDE2ENDExMt2SBUNKuO2ijM6nEmy1e4ohhGFk00xpUmegObTKIVKKJ5MeWq7AYfXuP+x1jEf9U71Gsy/ij4zUusZ7rpZUKEXx6HairqanhlVdeYcmSJcTFuTdDr6ur46WXXur2sSP96Ec/4tvf/jZPP/008fHxrF27FpvNxuWXX86tt97av69CAJ0917r+S1S+Czwlk3go4BVNQ4AGAbpTTjVlVFFGFSmG7wKboaSaOud/EXi/H1a6SiGdZGKIojqIelmUUEYVtYQT5pfzx6nDV2oDtaQiDBtDGYzG9Gsz4cMZdcFZ+lqhqimn878kH74OHGkwaUQSQWqIZCsLIU4MYRf9199L8KlG7dqaI8btsSyVwQFdyhAyqdI1WLCwkz2MUsMAMJRBLtm00+GT94D+UK1rGUYWdhxkefGCdIyKYi8HgM6hUMGijEoOUkEs0X0O0gEMM7Ko0rXYsBKGLagGxQnhbb0eJvHkk0/y6aefdhuIi4+P57PPPuMPf/hDj8fZvHkzP/7xjzEMA4vFQltbG9nZ2TzyyCPcddddfVu9cONWyunDkqcUlUAZVeRTRIku99l5BypQMni8xfv5dL4vs8tSGZRRRQH7yddFXj+fJzi0g2rqAP/1DHO9Sh6IwXS7trNGb6KQYr9MxXVlDfbSVz+9DhypWbVRRAm79D6/rUEIIcTxHa/X8GJjARmkksdedlBAFbWMZ6RbiWyiiqOIEtbqLbRp93ZGoeAApezlAPs5SLyK9dp5YgL8fdqxdK11IO1vxhjDOEApn+mvKKfKU0sTIuj1OqPun//8J48++ugxH7/uuuv4yU9+ws9//vPjHsdms2EYnfHBtLQ0ioqKGDt2LPHx8ezfv7+3yxHdMDCYp6ZhxUKyjsdX7cqSg3RiT4ZKZT7TsWAJmXHgvu5R16ibmaumYsPKILzfAHa4GsJJairluoovHBtpsbYSqQK7L0qtbuBkNRM7dkaoHL+sIZww5qvpQGdPmUCzTxczW03Ggcl45d8yo65hEhqNqU0M1efh6H6VQiLz1XTa6SBRx/nsdeBI4YcmaXeVDAkhhAgMv+34M9/oPRw0K9jANpKIJ+1QZYwri7JwgeUMDugyNusdNOpmxhi5bvvMNCZhM60YGOTrQsarkb78Urxui7mTRcZ8anQd09UEr53HNUja4FKOHOi6Ar0DGbQxT82gWbViU1becaziSuuFnlqeEEGt14G6goICRo489h/fkSNHUlBQ0ONxpk6dypdffsnIkSM55ZRTuOeee6isrOTll19mwgTv/QE8EXxqrqecajJIIdrwXcN612y0YOpR8am5nipqGaay/L0Ur/BFj7oteidrDg0AyDIyvH6+eBVLjspyDh3I14VMVKO9ft6BqKfR2Sg3008TkZVS7ND5VFPHcIb4ZQ3Hs0vvdQ67WGDM8OtaDA6XbjhwYPQ+8TwgfKm/ZrveTRSRhBv+KbUGnGXeoTwJUAghgtFvHc+69aYDaKS524vWD9p+DMD9Hf8HwN22ZW6Pp6ok53uyx+0v8JewX3tjyX7zvvk575ufA/B3y++9dh73yofm4+wZOLTWHhm0caFlEfc4ngAN8cRyJRKoEwL6EKizWCyUlJQwZEj3H/JKSkqcmXLH8+CDD9LQ0ADAr3/9a6644gpuuOEGRo4cyXPPPdfb5YgjNOsWMkglS2WQq3z7QTyFROaoKbTSht/SN/ooEMoRvcHXGXWGNpimxhOOjTSSfXLO8y1nsNbcTAttvOh4i98Z/88n5+0v1yujR5aV+FIM0VRTR4MOvCu1+WYRYxlOgoplohrl17VYlcVZN+7AJNhybesP/fvG+mG6sCvboe+ciYld27Gqfs2uEkIIn2p/92rMolXQVgcR8RjZpxB29rP+XpZHFOmDzGr7jvN9SRg2HDgYRBqXWo7fxN+1162rbxkLqTcaecv8gPfNz/nAsZozLfM8vnZ/qXctDfbiMIlwFcYpahb1NBIV4JUiXZp0M+MZSbiyMW4A1RBDVSanqFnU0UC5ltJXIbr0+p3z1KlTeeutt5gzZ063jy9fvpypU6ce9xhaa9LS0pyZc2lpaaxYsaIPyxXHUkktW8kDDTk+zhCLVdFs1NtppwMzSBqwl+lKoomkkWaSVYK/lxO0vtRbqaaOXJXts+avpxqz2cN+DAz2mgd8cs6BaODwlVFvvsnrSayKBu2+nkBRSAl72E+bbud3xs/8uhaLS0ZdME5+bfRAGYonhKswZ8CzjXas/RsyL4QQPmUe+ByayzrvNLV23g8RRWYxDTQ76y26Mp4PUMqd1uuO+9xbrUu63T7RGM14y04eN5/HhpXdeh9nEjqBOtdhG9FEevVc+bqQYsrI1IHXoqQ7DaqZbewCPbCKEauyUkE1O3Q+ySRwYdtNzDQmcbX1IlKVDPsTJ65e1/TcdNNNPProozz55JM4HIc/vDgcDv7whz/w+OOPs2zZsuMcoTNQN2LECOlF5wWuJae+DjwppZxZaa6NzAPZW+aHNNJMFBF81zjb38vxCm+Xvtq13TmZypdZiXEqhplqIgYGaw+VWwQyt4lqfgyedAUJW2jFru1+W0d3NpjbaKOdwWQwkhy/rsXi8rIYbAMlOstQOgOxcXSf/eArrhOOpfxVCCH8L18X4cBBOGHcZiyhIOwjfmZcy/XGZUSr/mdhj2U46STTgZ2v9S4Prtj/uko7Y4n2es/ars9vldSgtS9Gwg2M+8Tggb2//aftSarC1/M/xpl8oFfzS8f/8rD9mYEuUYig1utL3BdeeCF33HEHt9xyCz//+c/Jze1sJrpnzx4aGxv56U9/ykUXXXTcYxiGwciRI6mqqjpuvzvRdw26idlqMo00k+GDpv5HmqLGkkoSYdiCogF718TXZlpD6mqNL0tfN5rbma4mYOLweZ+4dFIYQy5pRhLfmAWMNYb79Px90UIb09V42rH7dbpwrsqmmRbCCKNeN5IUQJmkqSqJSYzBjp04w78BJqtbj7rgyBDu0qpbmaRG48DBSDXUr2sxzMN/i95yfCjNoYUQws+6Br610c4sy2QGG+kkGvEkEj+g4440crBhI5sMNprbaNGBP+irtwaTToQKJ8YH7SRGqWGAIpJwGnTTMcuNA0W9B1u7DDM6q8HSScFAkUUGLbptQMcUItj1KZry61//mrVr17J06VIyMzMZNGgQV155JWvWrOHhhx/u1TEefvhhfvrTn7Jt27Z+LVh0r5Ia1uktbNe7iVThPj+/oQy26J18qb9mP6U+P39fuU6nDd3SV+9ejVthfsZX+ms26h2cZVng1XMd6ULrYraxi4/NtXxsrvHpufuqWteyQW/na51HGP5r7t9KG1t1Hl/pr2lULX5bx5Hs2s5/zI/Zqnf6tTS4i3vpa2BlHvakWtWzUW9ni97p92mr7S7nv8t+7InxQgghfMOt+ubQhcNbrUuOWdbaW3EqhoXGbPZTyhadxy69b0DHCyRf6E1s1t84K0i8SQFb9U7W6S1un1MClevQC0+9f/uF7UYiiOAApbxpvsfv7S965LhCBKM+N42ZNWsWs2bN6vcJr7jiCpqbm5k8eTJhYWFERrrX+1dXV/f72CeyBrf0Y99fgZllTKJON9BOB7vNvQy1ZPp8DX1hxcJ8NR2FIjmUhkn4qE8cdJYFnqxm0kqbzyfnupbaVgZ4uXWjS0+4OH+Wvrqcu1E3Bczcl66hLhAYQfMcNZj5ajoa3VkiHCDfp95wb4Hg379rroFCX0ygFkII0RPlfO+b4uFqktONuaw1N2Ni8h/Hx0w2xnj0+P7QrFtooRXwzfsT19ftKmoYhm/fW/dVI83MVVOxYWWI8sznPqUUt1ivAA3/Mj/kb47/0kxrjz0UhQhFvQrUFRUVHXPaa3eKi4sZPHhwt4898cQTvT6O6D1/T5ZMJ4XP9FcA5Om9nBHgjWS363w+1xsASPHzB1pv8faH4w16O5/qLwEYPIAmsv3h+oapUgd2cN+tNMCfwyRczu26Jn9z7Wvp7+ASQKmudP5tsKvgKn11DVr7s8wa6MzaPPQnqAUpXxFCCH/L03ucr2+eDjx923IaV9o7h0F9bK7lF9zo0eP7Q4XL+0tf9GJ2fd0Ohp7fFbqKNYd6RV/MOR477l3W62nXHTzQ9n+YaLRd8/8s1wR8WyUhPK1XgbqZM2dywQUX8MMf/pCZM2d2u09dXR3/+Mc/+P3vf8+1117LLbfc0u1+S5YMLL1adM91kmOcH4IBZ1rmMcUxlnoaecvxIcusl/t8DX3RlXkSTpjXpzj5ki971HW9ibBgIZ5Yn50XIJM0ZqlJFOsyiijx6bn7yn2YhP/6jbhm2rpm4Ppbpa4mnRTiiCGH7i/w+JLrdNIO3RFUGXXVuoZBpBJHDNlqkF/X8jfbEyzpuIM9uggbNhzagUVZen6iEEIIr3AvfR1YX7ojxago5qjJlOkq5wCGYPe8/Z+kkki2GsSllnO9fr4slcFolUuDbgr4ahFwbyOU4uHAb5iycbPlB3xofkGBLmKt3sxJappHzyFEoOtVoG7Hjh38+te/5swzzyQiIoLp06eTmZlJREQENTU17Nixg+3btzNt2jQeeeQRzjnn+FH1goICnn/+eQoKCvj9739PWloa7777LkOGDGH8+PEe+cJONI26iUzSaKWdOOXboAlApkqjQldTTJkzTTyQxRBNOilEEO7TclFf8mY+XZ1uIAwbg0jFgsXnV7nSVQrb9W5iiSbQB2NpOgOLzbQSq73fjPhYEokjhQQiiAioQF0VtZRRSRmVhCv/9fDrYnN5WQy2HnWV1HKQCg5SQZSfG3nnGIOJUpFUHPpg2EKbT5pxCyGE6F4UkWSQigMHNmXz+PEbaWYvB4jQ4Witg/79da1qIIIINuudjFG5Xj9ftIokT+8BOktfA51d28lmELXUk0Ccx48/VA0mXxcRTyxPdLzIqLBhIVsFJUR3evXpOjk5mccee4yDBw/y5JNPMnLkSCorK9m9ezcA3//+99mwYQNr1qzpMUi3atUqJk6cyLp163jzzTdpbOwswdqyZQv33nvvAL+cE9defYASyqmjgcH4tgyxS9cfz2AYK75F76SMSqJV6GTTge+Sf9aYm1int3CQCpZav+Ojsx6mlGKiGk0plXyov6A1gCdDlehySiinlnpi/NyjrpJaDlDq1hfO3wKpXBPAplwy6oIuUHf4jb0vynR6EsXhYGEzgTPARAghTkRf612UUkEk3rmQ09W+opW2kPib/7n5Ffs5SARhPukXl+zWfznwA3UHKGU/B2mgiSTl2QxNgKst3+XX1h9RThX/1h/xofmFx88hRCDr0zCJyMhILrroIi666KJ+n/BnP/sZDzzwALfffjuxsYczv0477TSefPLJfh/3RBdLNPPUNOpoJFtl+GUNM9Ukoomigw6qdI3HG9V6ikM7nG8g/FEm7Cve7FG3xtzMqWoOTbQwgVFeO8/xnKJmEYaNSBXB046/cpt1qV/W0ZNGlxKQOD+WvqYc0aQYoFW38X/2V3jHXIUDk1utS/gfy5k+XVc77cxX0+nATppK9um5u+OaURdsgbom3cJcNRUDRQap/l6Oe6BOtwZVGbEQIrDtcOTzqOM5inQJTbQwWg3j+5Zvc4ZlYD2SrROW4ij8AN1QgooZjCXnDA+t2P+6SlK9NdhqqhqLXdnpwE6JrmCkGuqV8/iC1pohajCxRBNGGDbD8xmIR0olidlqMlYsGL3LpfGrZn24girKC22EwlUY49UoRjCEehp52v5XRqghzDAmevxcQgSiPk99Haivv/6a11577ajtaWlpVFZW+no5IeN983MOUsFg0rEqn/+zdlKaL8yNAOzhACkEZqDOtXeGPzOcvMFXPer+br7DPn2AOGI433K6T855pF/abiatbQ4Nuok8vTdgA3X1bhOZ/ffz5to4ulp3ZtRVU8fPHY87t6c4En0eqNurDzibWycqz5dO9FUwB+o26R3Oxs7Zhn971AFEupTfBkNLBCFE8Fint/Kq+W/n/Y16O/m6kO06n1ut/e+HbZ17J9a5d3piiQHFru20HhrsE+Ol9yJWrKzWnZ8D9ur9jCR4A3WNNPOOuRKAhcZsn5wzyYhnnd4CQIr2f1Z8T1xf1yO91G7jVMtsfsktXN7xE8p1Nffb/8i/wp7yyrmECDQ+D9cnJCRw8ODBo7Zv2rTpmJNixfFprZ0lT/6s3R+jhjNTTWKmmkiZrvDbOnriGqiLw38ZTt7mrYy6Ft2KTVuYrSbxLWOh33qQKKW4ynIRJ6uZxBLFR441fllHT7oy6sKw+bUHWwqJzFVTmaEm4MDRuTaXIGIUEVjwfbN/1/KOQCjXDOZAXYQOY5aaxAI1w+MT/frD9Qp7k8vAIyGEGKjWI4L/is62Jr+3vxjw7Vf8ocEH2f1nGSdzqprDLDWJfzje8co5fMX9vUmCT87p2v4jGIZJNOOaUee9vrizjMmcomaRTALbzF08b/+n184lRCDxeaDu0ksv5f/9v/9HaWkpSilM02T16tX85Cc/4YorrvD1ckJCvW7EPBSUSfLjh7MkFc+Xeitf6q/Zr0v9to6e1JuNztsxSpqb91WhWcxBKlint6L8nJo/yRjNp/pLvtEF7DGL/LqWY2k8FKDwZzYddP5tWKM38ZXeRr4uBNzfuDfTynpzi8/X5dpXLTkAmgS7T30NrkDdar2R9Xor5VT5eymA+xv3Jh38/YqE9zi0A3uQ/b4J/zpysqgG2umghPKQmTrqSV2Z9OC99yPzjGl8qbeyXm9lh5nvlXP4SqmucFap+Oq9SaSKIPrQBa46Xe+Tcw5Es8vrujdKX7sMUYO4z3YrVdRSTBl/tb9NbRB8f4QYKJ9/yn7wwQcZM2YM2dnZNDY2Mm7cOE4++WROOukkfvGLX/h6OSGhilocOIgjhqH4r9wpJUiaoNapBgDiiWUQaX5ejWf5ovR1LwdopJkEYhmmvN9c93iyGXToCqRiF/v8upZjqdcNRBFBNv7pHdklkTjnz0fVoSu19UdMf/XHIJj9+iBh2JjEaBK07ydWH8nG4T40HXT4cSV906bbnR9OkwMgMxE6/8bGEYMNKy1aSl/F0b7TvoyI1glEt03mt/Zn/b0cEUSON708kN+D+kspne2FkklggvJOb2GlFAuN2cQQxSa+CehBXz05SAUaTTrJjFMjfHbeHJVFFBFUUuuzc/ZXV+mrgUEY3u3hN1mN4W/WJ0gglk/5kgftT3v1fEIEgj41M+vo6OC6667j7rvvZtiwYf06YVhYGH/+85+5++672bZtG42NjUydOpWRI0f263iiM1AHUE8jEV7qEdAbaSQxlEwcaN5yfMgecz8Phv2YTBVYwbCuIEUdDUSqcP8uxou8Vfra9fNWS4Pfx6RnqBTnegL1jXkDzbTShkOZfl2HRVmYyCgcmM6yyDbamaLGkq8LiSKSbJVBnW4gwUe94hza0TmlWnVmslkM35feHsl16qs9iEpfq3Ut09V4mmn1ewC9i01Zqaczg7lFBe8HNuE9Du1w3q4JoGnUIvBZsRCGjXaXCyoKxRTGUqVrySW7X8dt/fNoaCw5vCEmk4hr8ga6XL8rMouZriZQqatJUN67KBZDFOkkk6FSKdIljFL9+7zob7W6nhlqIgd1OUl4fqLpsZiYNNPqs57TA5GmkhnPSCwYXm+DE6HCmWVMogM7g0h1y+YTIlT1KVBns9n45z//yd133z3gEw8ZMoTs7M4XUX/1uAoVVS4BimQf9VHozmAjg0IOv7nZofPJa99LpkrjZGPmgJr7elKl2/crMDJPPMUXL+xVLn0z/N0HK9ltkmmt/xZyDB26w+vNm/uiVbWzS+9lv9nZJ7SOBjbrb4DOEt1yXUU1dSTgm0BdNXV8pDt7C55tnOyTc/YkWHvUVVLDBr0dgDnGFP8u5hDXUpiuSdtCuIpQEXRdUzpehpQQRyrSB92CdOGE0UY7m9jhnGwuDtuid7JBbwPwavAsWw3ib/yXAr2fA7qMUQRnoO5rvYuv9NcA5Bi+u/jVVZbcRAumNjFU4E5/3WrmcYBSMkjxyfkGqVQsWDhIBR/oL3xyTiH8qc+//RdccAFvvfXWgE767LPPMmHCBCIiIoiIiGDChAn85S9/GdAxT2QNNDFfzWCBmsEQlem3daSQyLeN08gkjXDCGEYWDu3gG7OAfzje4XXHu35bm6tKapijpnCamkOOCt0BJt7KqKvR9cxVUzhdzSXbj6XW0FnOeaaaxzw1DasfBiH0pMGlgX5sAEwY7grk19NIu+7o9oqkLwOeVQEYNHf9OQqqQJ1rAN2PF2xcRbr0qGuW0lfRjUh9OKtdLtmKvmg8og+d60WWSgnUuXFoB1+bu8lhMMPIYrzhvSqmFLcLqMH771DppyQI197ZjQE+hKlrfTE+en+rlOIsYwEL1AwGkSJZdSLk9SmjDmDkyJHcd999rF69munTpxMd7f7Lecsttxz3+ffccw+PPfYYN998M3PnzgVgzZo1/OhHP6KoqIj77ruvr0s64ZXocj7XXwFwrbrEb+tQSvF62P/ye/uLzm3/cXzMVp0HGlbYP+O7lrP9tr4uO8x81urNAPxG/dS/i/EwX2TUfa3zWHPo+/eU4d/fV0MZ7OUA+bqQSB0RcFcf3ScM+z9Ql6ISndkrFbra2V/EVaWu9tl6KlynqgXAlFII5oy6w/9u/i5J7xLl0oqhu581IWzK6vybVBYgQ1BEcDhyYIRrj6wKs5oAvHbnN0W6hI8OZSCNVyPIUN7LgHKttAjUliS94Rpk9OVrahyHJ/LW6QavTegdKK2183fQl+9vbdj47NBn3l3mPqZYxvrs3EL4Wp8Ddc8++ywJCQls2LCBDRs2uD2mlOoxUPfUU0/x5z//mcsuu8y57bzzzmPSpEncfPPNEqjrh0Ar5XQtcf2h8V3O6biGSmoopNiPqzpsj3mAEQwhRSUynCH+Xo7XeCujrtAsZiRDGaTSyCLdK+foi1lqIjasNOtWqqgllSR/L8mp0WxkGFlEEE62H7Ndu8xQEyhUxRzQZRTpEppdgidDyMSC4TYZztv26gOkkcxgle7TZs3HE0cs49QIOujA1P7tK9gXtWYDw8gimqiAGZIjpa+iJ2GEOW9L1mX/aK1JbpsJQCpJ5EW87+cV+caRpdIRhDFbTaZEl1Pk0oZFwDP2vzGUTNJVCrdZlnr1XOmkMEmNpolm6nSDV8/lTVZtZTTDiFDhXpuS251pajx71QH264MU6zK/V64cSwutOOjsMeqrjDqAGcYEtundlOoKdul9TEECdSJ09TlQt3fv3gGdsKOjgxkzZhy1ffr06djtwZO9EEhaaSeFRGqoD5islC7RRhQlupxa6slQqewx95Nr9K/BrydorVFKU6arcGiTKMN748T9wdsZdR1mBxZloeT/s3fecXKV1f9/P3dmtveeTbYlm03vIT2EoiIgIqKIUgXBryKCCCo/BZEiVlQQQUURUUQRFFFEEQKkh/SebO+9952Ze35/zO5kJtnN7uxOubOZN6+82J255czszL3Pc55zPh9pJIYoQ1SvaZg4KsWAI2mdqoyTqOtQ3ZRSBcAHWBPgaCBSRXBQTpBDJsekhG6XtoGhiU0j/qmo65N+KqWGAazslSNueoOB5ogUAQ6NmGChXjU5P2txBmizBgiXcKKJJIJw7EGU9AzhP8JchqGhqsvx0T5oWQRnV1ViGGFYsDjduWOJZYfsJ4VEusTYLYP+poV2euhjpxxgtWmJT8+VoOIcnTScdJoNRkqopIhyEiTOr1rqYcrCQTlBNlNoEON+nzukiwxS6KGPeHxnTnIqmSqN/XKUTNKpps5v5w0RIhD4fZZ93XXX8dRTT532+K9+9SuuueYaf4czKaiQappoxY6dRD86E42VFyw/ZgArW2R3wO20u+llu+ynk26mqoyAxuJrfFFP16Ba2C/H6KbHMFU7rslpo+nSuE4WjGAmcb32MeKIpoxqfm3/M73DJKL81apyWAp5yP4L2uhgOQv4gBb4RCZAhDpZ4dNP8DiVupu8GCPpGa1F0E0vzbQ53V9DhHDFHErUTRjX776vKumNSLlUO5N0ABkkM40MmmjlvcHWuBAO3pNdNNJCJmk+F/531XNrDuLW167Bik1/VtMBZJCKjk4Z1RRS7tdze0I7ndTRRAddfk3UzVJ5RBBODfXs0Y/47bwhQgQCjyvqbrrppjM+/9vf/nbUY/zmN7/hv//9L6tWrQJgx44dVFRUcP3113PXXXc5t3vsscc8De+sxFVE3EjVREPM1wqYzjTiVRw6ga2qcE1CZKjkAEbiG3y95uc66MrQUn18trGRr3JYpRahIzTozQFYfhgZ1+SEEaqcErQ45qp8dHTSVArhhLNKLaZLurFjJ0HFYfLTG1gm1axTyyiVKqZoKYS7JMgCSQQnxe37GAhgJGOnTK+mSVqYQTYKxRRljO+m+3sZPEnPEP7D9XrjL7fpyUYL7UQRQQ99AR9j+ZOhxK4ZMxkkM99UgFm3kEEKKSQxoA8Qpo18XynRK/mx/TeYMDFPzeTz5qv9Fbpf2WLfzQI1c1BmIs3n1WEpJLJSLUKh0Iw0IPOQjkH9NX8bgWVqJxfBjZzobHIxHkv2YzfXdJXNdLKIUzF+0eUOESKQeJyoa211v2hYrVYOHTpEW1sbF1xwwaj7Hzp0iKVLlwJQXOxoV0tJSSElJYVDhw45t/NnmXGwMyR4GkMUESp8lK39T6SKoJs+jkoJR6V4sP00MH9fV3FYo1Sd+ApfrKwb0VkyQcWxXfYDUGSw1UdXDR0jVNSBo1V4m+wDgUgt3GmsAoBAqvgn2f8b20tsFofO6ROm+/xyzrEQjMmlnbKfl/Q3ADhfrSJLGUPTxvW9DFVLhRgWl6HAMSkJXBxBTKM0O1tfrdgCOsbyJ0OvebbKY1f43wD4+MBt7NIdc4l21XVGzdod+n5+Y/8rANlMmbSJuj/o/+A1fSMA71te9vn54rQYiqScZtqolFqfn88X2MXu1FX1txFYiovWuNG6RFxxTSL6M1EXpixYlY3tso/9csxwJnIhQngTjxN1f/vb3057TNd1vvCFLzBjxoxR99+4caOnpxyRRx99lFdeeYVjx44RGRnJmjVr+P73v8+sWbOc2/T19fHVr36VF198kf7+fi666CJ+8YtfkJ4+sgi+iPDtb3+bX//617S1tbF27VqeeuopZs70nZ35eBERLFhYpRaTq6YGOpwR+YzpMrbr++iim7/b/8cV5g8GJI5O6Xau9GUbVKB1Ivh6dala6lioZpFEPLPVdJ+ea6zMVjNYr5bTRz+10hDocNywYWeFWogZk2H0I1NUgrMvutllRXQI12SsL3jXvpPv2X9Fo7SQQya5ahqLtbk+PacnhLuI2/dJcCTqyvVqlql5tEg7OQa6D7i/l8FRnRjCv7guJ7UTvMLzgeTUa3Y/A25J8smIiDiT/66mNa4LYh3SdcYukzppIpooNBRpk7DDYghXkxbX98qXnKetpFrqAeiXAcNUzI+VdulkiZpLJBEsUAV+PXcSCaxVS7FhxyzGtS7ulC7OUQsIw+J3Y7nVaomzWKBBmskwSBdBiBDexispaE3TuOuuu/jJT37ijcONmXfffZfbbruN7du38+abb2K1WvnQhz5Ed/fJKpavfOUrvPbaa7z00ku8++671NTU8PGPf/yMx/3BD37A448/ztNPP82OHTuIjo7moosuoq/PeBUBzbRRKGVsl33DTrqNwkptIe/IDnbJIY4HcNW8hXZ2yH62y76zYsXZ25RJNQfkOO/ITpKUMfQQZ6gsNstu3peDHNILAx2OGw00s1MOsFX2urkbBpIUl4lLq4vD69AEp0l8Zyahi84hOcE7+nYOcYIEFcclpg1kKmPoHQJuVcn9QdL6elxK2S2HKaWKu8w3BjocJ+7vZXAkPUP4F9fK7z766dZDJgCeUiuNbr/3nAXVq67VzpEqwvmza5tiF2f+LBVKGd300Ek3R13GpZYPP4Np3UNo82/CtO4hLB9+xouR+x9XLdoo5Z9EnRUr22Wf4ecmI9FKB3vlCFtlD21+XkBIVvFskT3skP1OYysjUkMj78tBtsgeolWUX8+tKeX8fBm56jBEiInicUXdSBQXF4/JtbWvr48nnniCjRs30tDQgK6762ns2bNnzOd844033H7/3e9+R1paGrt37+bcc8+lvb2d3/zmN7zwwgvOttxnn32WOXPmsH37dqdGnisiwk9/+lO+9a1vcfnllwPw+9//nvT0dP7+979z9dXGKo2vlFo0FCkkMp3AuamOxhptKcvUfMqkil/b/8I3LJ8PSByurYixxAQkBn/hi9bXQ3KCSCLIIoMClef144+HSBXBBdoq9uhH2C/HDNX20+X6eTOARh3APDWTLKZQRZ2zgkVDY4Eq4LiU+HRQWipVfNX2PWKIYia5vBb2S1IM1oIejK2v++UYsUSTw1TymBbocJwEo95fCP9y6n2qijpmYYxq7WChRurRUCgUZsx0SY9hFtJ8hWsyMoqTiTrXNsVOujkTB+QYGho6Oj30OscOpqz1mLLWez/oADHSe+VLXKVlmqXVUItxY8E1+ePvbgiLspBAHG10uOnAGQ331lf/juPc2oN93AUSIkQg8ThR52r2AI7EVm1tLf/617+44YYbRt3/5ptv5r///S+f+MQnWLFihVcn1O3tjuqQpCRHxcju3buxWq184AMfcG4ze/ZssrOz2bZt27CJutLSUurq6tz2iY+PZ+XKlWzbtm3YRF1/fz/9/ScndB0dHV57TaPRIV300EcPfcT4eUXDE+JVLHbsNNOGGXPAkimdLuL+RkmceBPfC6sqstUUGqXFUK3WkRJBInGkqST26kdYapoX6JAA94mCv53DRiKZePrpZ4GaRT8DFKhcTJiwYqWFdjQ07GLHpLzfclEkFSxVcymSChJVnOGSdADhEkY+OZjQCMMS6HBGRURIJYle5RCSt2jGiTnCtfU1SJKeIfyLa6JuDjOolvpQos5D+hkgjhja6MTOAF2jJKgmA13SzRw1Azt2tyRQConMIJswLG4Ls6ciIkQTRThh9NKHIPzB9irLtPnMNeX74yX4DffWV/8k6tJIJpdpxBJNmwRfS3u93sRcNYM+GSArADI5s5lBC63EGbigQMPEHDWDTukmUfxrBJROMrlMJYZo2vHfnDtECH/jcaJu7969br9rmkZqaio//vGPR3WEBfjnP//J66+/ztq1az099RnRdZ0777yTtWvXMn/+fADq6uoICwsjISHBbdv09HTq6uqGPc7Q46dq2J1pn0cffZTvfOc7E3wF48O1tD/G4Imn5EFtLBs2v9t5D9Hp8n75WyDW33i7os4qVl7X38GKjbnk+ySRM15uMV/F5dYvUCKVvKL/1ziJOpeJglEGXLPUdBpooUFaCCeMfgbIUVPJVpkgoKPTRqdPzEKOSCF75Ajg0K00ItFapNOUZK4Yf8LWTidvy3YALlCnLz4FEleNuv4g0fsL4V9cXUqPUkyxVHIBqwMYUfDxpr7FrRJ6tEqyyUAbnRwVhyHdOpY7H49UERRTAUDLGaqRamnkXdnp9tgt9m/xGbmM35oe9X7AAcTVHdei/LOQE6OiKKMKOPPfwaiUUsWRwc9Xiub/BcVILZwTehkINEmrIRc1C6XM+R1M1PxbwRuv4iijGnBoTYYIMVnxOFE3UTOIqVOnEhvr/QTNbbfdxqFDh9i8ebPXjz0a9957r1ulYUdHB1lZ/mlDda/YMW5FHcAyNQ+bstFDH9VST7zyf6JOCaxVyzChkcjkaw3xZUVdjTSwQa2gh14KNGO0vQ5RoPJYqRYRhoUOl6rJQBNDNOvUMjQ0w7i+zlQ5LFZziJVoNrMLgBQSWKrm0af66aWPKqnziYtXs7SyXi3Hio05BjEjORXXhGowTHibXdo+Us4gnB4ITMrE+WolNuykq5RAhxPCgJy6nNQc0hvyiK32PRSoXCxidk5cz1RJNln4qvVkMs11Ucm95bJtxP2fs73Ch7VzOaoX0UAzvYMVv730Ya/chF63G2krRSXkoWUsC+pW2GkqnWgiifbjHCHY7qOn0jQ4VrFhY3YAKnwXqVn0qj6iiaRKag2ZqHP9u/p7Idq1HTmkURdiMuM1jbqx8uMf/5ivf/3rPP300+Tk5HjlmF/60pf45z//yXvvvce0aSf1eTIyMhgYGKCtrc2tqq6+vp6MjIxhjzX0eH19PVOmTHHbZ/HixcPuEx4eTnh4YBy2OuVkUsIoiYCRMGHmXXkfgBKpZC7+r1YpoZItshsgIIlCf+Ltirp6mvmfbAVgMXO8euyJkqMy2S/H6KOfBr050OE4OSTH2S77AUhS/m0NGIloLYpSqXJzWExWiZiVyVlhUCqVLGK218+9Rd/LNnFUZRdoxkzUxbhMZoJhwhtILZ2xsE+O0kqHoTVUQwSOU+9TZ0quhDidLbKHjbLD7bFgTIx4glWsbB4cxwEkcPLe6pq0a5KRJ/C/1/9OqVQRSYQzSQeOLhXrG5+DrhrnY/aYTEy3HPdS9P5nm+4Q3M9V/tMvdZXiCYb76Kls1fc65woztVy/nz9OxbJd9gFwm1zDYub6PYbRGNJgViii/eQmPMSpGoghQkxWPE7U5eXlnVFbrKTkzI6ey5cvp6+vj+nTpxMVFYXF4l6G3dIydsdBEeH222/nb3/7G++88w55ee5VPsuWLcNisfDWW29x5ZVXAnD8+HEqKipYvXr41oq8vDwyMjJ46623nIm5jo4OduzYwRe+8IUxx+YvuqSXWeQRraJIM1g1xaksVAWsUAtpopUTeimYzvd7DK6TAF9UDAUaX1bUBVI4djQ0pfER7XxOSBmN0oxVrH5r8TgTQ0LACcQZIp4hklUC7dKJhmKBmsUcNYMFOL6fzbRSqJeDlzubrx64kx7pJY9pzFX5htWINCkT0UTSTW9QTHj/Y9/EXPKJUhF8UHlXUsIbxBJDKx1uxiohQgzhmqjLIytkOuIhJXolBeRiw064CkNHpyMINcE8oYWTbuULmcXHTCc1pbNUBuvVMupoZpN9Fyn2FSgU52sr+UvY487thsaCaSRzu3YtD+tPoaNjQvPb6/AHdrE7368UH8hZjESwV9QJwnwKSFCxAVnUT3FLOLf5/fxjoWPw7xpLtN81x1NIZJmaTy999GP167lDhPAnHifq7rzzTrffrVYre/fu5Y033uCee+4Zdf9Pf/rTVFdX893vfpf09PQJfblvu+02XnjhBV599VViY2OdGnLx8fFERkYSHx/PzTffzF133UVSUhJxcXHcfvvtrF692s1IYvbs2Tz66KNcccUVKKW48847efjhh5k5cyZ5eXncd999ZGZm8rGPfWzcsfqKBpo4TimI8TXqcrVp7LQdII5YagmMpoAVG1FE0EMfSZOw9dUVr1fUSTMJxNJGp5vjknEQDspxppFBsVQy2wCtldqgIYHRksIpJFJONXZ09ssxzuUc8ga/nzFEUyTldOrdVFPHbG2GV87ZIM0cpxSF4vOasdyzTyWWaKzYsIs90KGMSrFUcoQikMCs/I9GrIoGcdcHDRFiCNf7VCmVlEt1AKMJPrrooZp6uul19hE3TuJWsE7pptxeQzIJtNHBYm0OM7Rs5/NZagqbZQ8mNNrocOo410qjc5sBfYBIwumlj0yVxpfCruP+vsfpoZdjUur31+RLWqWdZBJopcOvC6xDHT7RRNItvX47r7fYK0fopS8gnT9wcjE8nljaDZp4F4RwwgJilJasEtgthwCYIql+P3+I4KRcarCIiW7pJUNLNWzBgCseJ+ruuOOOYR9/8skn2bVr16j7b926lW3btrFo0SJPT30aTz31FADnnXee2+PPPvssN954IwA/+clP0DSNK6+8kv7+fi666CJ+8YtfuG1//Phxp2MswNe+9jW6u7u59dZbaWtrY926dbzxxhtERPjHLckTXK27UzF2Rd1MckghkSZaeV/fH5AYSqSSHvpIJ9lQFU7ewpcVdRVSQxudRBHBdLJH38HPLNRm86r+FpXUckJKA6Ir4oqIUCTl6Oh+d8QajfmqgPfloPP3FJVIPtmkkkQjLTyn/43nBv5GFJE0h++c8Gppp3SzdbDl9cNqPXdabpzQ8XzNAjWLN2ULRVQwIFbCDHytaHZrfTVeAn1IO7WXPmxiw6z8rrgRwsCc3vo6eZNMvmCnHKCbXuKJoX1Qn3Uyv4e3WL/J3/X/OX8/VfIlSkXyRdNn+IX9BRo52aFTLBXOn5tVO/U4JDKm4NDOzFIZHJdSWgxavTReWmh3vg9pJPvtvMnEY8ZMN71BpzvZI71OA45A3VOTScCEiXY6qQ9QYcOZ6JN+iqQcQVigZvn9/PHEYsaMDVtILiHEmLly4DYOSSEAvzI/xPXmKwIc0eh4bcR88cUXc++99/Lss8+ecbvZs2fT2+ud1RWR0SuGIiIiePLJJ3nyySfHfBylFA8++CAPPvjghGP0NZESzgq1kD4GSMRYyYBTidGiyVPTyGUqsSoGEfF7ufTQANbo1YfewLv1dNBFN6vUYlpoJ1sNr/EYSKYzjQJyiVOxVEt9oMOhh16no2GMZqzPW66aSjop9NBLMgnMJIdILZL5WgGt0s5RKcaOnQWqgFppIFOlj37QM1Ckl7NOLaOLHvI0/+nkjJc0lcQiZpNMAlVSx3RlXH21ZBKc94BAOGmPxkyVixU7Fkx0SjeJanJXMofwDNdE3TzyySBUHeEJQy3lscSQo6YRSTjaJGvfdMV2SpWzqxbaENPJJp0UuuhBx44NOwvVbDr1LmK1GLdEZpzmuGbOVzPRReiim3apmDT9Fq4apol+1MlN1OKxYQOCT3eyWdpYrZYwwAAzyQ1IDCkqETuOz7oRzRIqpJbztVU0SyupAZBdUkqxTi2jm56AVPSFCD7+Zn+TVulAQ8Pif4uGceO1SP/617+SlDT6l/V73/seX/3qV3nkkUdYsGDBaRp1cXHGTjYZjf1yjJ1yADBmNcWpxKtY/qdvBYFGWvy6wmcVK610ABi0dXPi+DLtuVHfwUE5gQUz0zXjJS5mankcHmwBnKEHvuKvw82R2VgDiRvMV3C//WeAQz/mMtMFAPw77BkAzu3/DDvlADtkPyeknEwmlqg7RolT/PtT6pIJHcsfpKok9uvHAKihwdBGCFv1vVRSSzrJfl/4GAvd9DpbVDpVz6R02w4xflwXlA5TRLnUjLhtiNMZcjmPI4YD4rhmJUtCACPyLdZT9Kii1OmdLvlaNnX2RrfH3pEdNNBCLDE0uiTqhsaCA9gopAxwtBNPlqtUk5u2cILfzjtWUw8j0kSr0/RqqTYvIDG4tikb8f2rkQbe1rcB8EEtMNq4ffQ5O0O6pYfoYZL2IUIM8f+sP6YaRxFHPwMckzN7KhgFjxN1S5YscZsMiAh1dXU0Njae1lI6HB/+8IcBuPDCC90eH6qustuNrwlkJIZWWhKJC4qWotVqCf2qnx76OKGXkmbyX6KuRTpYqRZixsJ8babfzjtZSCGJNWop8SrGkG3D+WSzXi3Hht0Q4sWu4vlGS9SlkczV2qUIjoqEU/+euUyjkRZSVRKlUsl5rJjQ+Sr1GlaqhVgIY44KjOaLJwSTo1jzoPyB0QxehnDVAOmSbt+uJoQIOk5tfe2ihz7pJ0KFByii4KFfBrAOVi25JsCDrYLJE3rF3Wwkahi3yQKVx3q1nK2y11mVBI7x8gyyqZF6lqi5JBDr1LJ1TWJpk+gi1S9W1qql6Ajpg22+/iBKRXKBtpo+6Q+6Kmq35GaAFvWTJZ6LtPV0SCc2jDcvdm1nDpQG8zJtAUrXMGOiUuoMoUsdwriYT0l5GbFSdTg8zuxcfvnlbok6TdNITU3lvPPOY/bs2aPuv3HjRk9PGbT0i+/dy4YGZEadpJ1Kqkpk02BlzXG9jHWm5X47dzOt7BisPjRyhYy38KaZRK/0sVG2A7AO//3NPCFai6JcaqighhRJRNd1NC1wLUCtclL30miCpUopfhf2/RGfv8VyFX8ZeJ1SqWKlPnE90YNS6PzuPa2+M+Hj+RrXaoBavcnrDrjeokd66cEhJZHsR0c/T3BNUhshgR7CWAx3n2qQZrJVZgCiMT4DYsWMCU1pbt+nOC2aRD2OVjpoklb6ZYBwFYZVrGhomJRBL2Ie0qt63cowIzm9oi5bTWGnHHBL0sHJRZcSqWSvHAHgS+o6wL3LQve6cEjgaKKFLbIHgFvUVX49d6Fe5qj2Fv8tyHuDZhft75QAJaHCtDCOSyllUkWyJAREKuhM1MlJ3bxAJTMjCHNWPtZJU8B1qUMYm1PvBzvtB7CarYYsPHHF40TdAw88MKETbtiwYUL7BxOz+i+iSd5HU75JFljFig0bmaQzV3nHmdHXfES7gD+q1yiTan6h/5Gb+YTfzu2aPfenTb0/8ZWZhBEGLmPhAm0Vb+vbqaKOBtVChh9XkE+lRhoIw0I2mcwLgioyVwrIY4EqoEYaOCrFEz7eYb2QNJLIUlPIwfgT8Bkqm3lqJuVSTTV1gQ5nRJqklViiiSeWApUb6HCGxVXsvUO6AhhJCCPimqibRgb1NFEl9WQHwXUiEHzL9hOesD+PCY2PciExRJNALLlMI1KLYIe+nxrqWdF/JUU4zIzetPzOr4uivsQuOgrl/NwM1/pqUiZes/ySROL4h/4Wv7a/hKDTJQ4H2KNSTCJxZJJOgcoDHBX5k5GeQVMEgKhhkpq+JEUlUim1NNFmuETTmWjR20ginjhi/FqFeCpL1FxsYqWdLtrpJMFAOuTVeh3RRJFLJnkqMLrDrpV8wWZYEsL/DGmGh2EhmkiKKOdl/b9cbbo0wJGdGY8zSCaTiYaGhtMeb25uxmQa24rdpk2buPbaa1mzZg3V1dUAPP/882zevNnTcAzNdJVFlfhuktdCO130UEM99sEPoNHJ1NLokm7CsBBPDJV6rd/O3SGdzFJ5ZJJGqh+18QKFNyvq6qSJApVLFhlMM6CRxBAxKop++skig69bf0CJXhmwWFrpYKbKpY5GYggu7Yw0lUSNNKChcVRKuHXgW+gyvmuMXezEqmjCCaOXfiyasVevAKapDIqknEjC2ahvH5NxUSBooZ1OuqmizrCToHSSyWYK08mixaXKNEQIcL9PtdFJAblUENKpG4k26UAQbNhpUe10DX7/NaWwiQ0bdjJJo40O7OhoaJPqe1dPk/MzE04YCSM4qp9rOocFpllMVRnU0Ug9zU7d2EjCSSSOUirJU1MBR6umaXBKZMwr6fjokZPmfcO1CfuSKaQyjQxmM5126fTruSdCI6200E4Z1ST40YDjVCyYqaKeTrqN186uIFOlUUg50yZoNjZeMlQqGaSST47x3p8QhiNJxZPLVLLIoJtekkgIisVjjxN1I01Y+vv7CQsLG3X/l19+mYsuuojIyEj27NlDf38/AO3t7Xz3u9/1NBxDc1COc1xKfXZ81wtToDQCxsMXzJ+hklq2yl7+rb/rt/PWShPHpZQaGvzqfuVPfFVRVy7VnJAyKqkjTRk3yfl98z08brmPcmr4s/46f9ZfD1gsR6SIw1JIFz1kBVkbl1KKaWTQSAvV1PF7/e9UMT4n3TKpZofsp5I6ZpHn5Uh9w3SVxfnaKhppZZccopbG0XcKAEbQ0hmNFC2RCmopoZIqA1cnhggMrom6Lro5TBH79aMBjMjYuI4pBzgpr5KsEpmjzaCeJoqppJ5mAOzoFFPh9zh9xZB5xiyVR3vEHi41n3fG7V0r7noHq8ve0XdSQhUJLtrOV5ouoit8PwtUAXOvn0baF/IJv7ODiK90EnHLcd+8GD/Q61JRFzlM9aEviVIRVFHHYQppI3gSdUbQXwP37hXXrhYjsF3fT6GUMYB1wmZj42Uq6dTRSBHlFMvkucaF8D6d0s0eOUIZ1UQRxQBWGmjmkJwIdGijMubW18cffxxwTOCeeeYZYmJinM/Z7Xbee++9MWnUPfzwwzz99NNcf/31vPjii87H165dy8MPP+xJ7IbnXG0Fm/T3+aDJN444tdLASrWIcMKYS/C01i3R5rJWLSOcMHbrh/12XtebbzA45E4Ub1bU1Ug969VyBrAaWrDVpEzMVfnkMpVOevib/b/ca/58QGJxTaJkqMC1T4yXD5nW0WBvopk2YomhSC8j2zTF4+O8ob/HBdpqrGJlrWmZDyL1PkopFjOLTbzPAFYu7f8cz4X9gIXa6Pc4f9JJN+vUcgSdLOX538Yf5JPDOWoBEYTTElr1DnEKrnepWUwnXSX7bMFpMjBN0jlCNIIQJZGsV8vR0ckkjRSVyGoWc5Dj9NDvbPWZLNUmIkIXjvbVsRo0uVaRDel5DiWvotTJ54Y0/FJUEggMYKWLHsMZQXlKL/3On/3d+hrjaiQURPqkNrGxRi3Fgpk0kgIWR4HK41x1Dv0MUKs3jqO0xncM/T3DsBCujV6k4wtmqGyWqwVEEk73YFt7iBDDUaxXsE4tQ0dnpsrhoO5YfOkU41+Xxpyo+8lPfgI4bpRPP/20W5trWFgYubm5PP3006Me5/jx45x77rmnPR4fH09bW9tYwwkK3tN3UqM38iB3+uT4xVLBDtkPwCfVxT45hy9Yps2njQ4OSyEWMfNzud8vYo6u7R/BVIHoCb6a4OzSD7NJdgGQr3J8cg5vMVPLJUtNYZPsollaaZF2kgLgOua6AhosZi+uPGS5k+kqiy/Yvk0zbRyVYi5gtcfH+bf+Hm/r2wB43vQjb4fpM0zKQvfgxO4oJezQDxguUVcj9Wwe/F7erD4Z4GiGp0DL5X05CIBVtwY4mhBGw7VL4zglHJcSBkKfkxF5i21OE4lCyikXh3zMF9U1XKqdx/W2rzkTUkMEi7vdaHTT61yAjFUxo2ztwNVsokccCboh3bbhEleu+sVN0mo4IyhPcf0s+Lv1NY6Tf6NgMhLaJvs4KsWEYSFDpQYsjngVy3vyPgBFlAcsjuEY+nu6/o39zVSVznEpccp/hAgxEkcpZvOgkeUGbYXz8aGFHyMz5kRdaamj3P7888/nlVdeITFxfBPPjIwMioqKyM3NdXt88+bNTJ9u3Eqd8bBCLaSNbt6yb+NCk+cT3NEo0auYwwwSVBxzteCpqAO41vRR/mV/h2baeN7+KjeZ/WMqsUjNwYxGIsFlFz8evFVR1yO9HNeLmUIaMUQxQxlfdPlq06VU2erooY9nbX/lq5ab/R6DRcwsVnOIIJx4iQlK4Zu5Kp/VagntdFIqVeM6RrPexmI1mxSSSA8ibchPaBdRKKX8Rf83YEyx4iaXSpkUg7a+RqsoPqKdT7XU00pnUImKh/A9rvepGKLoosdwbV5GQUTodJlYuCZhkklEKcUy5rKTA9gGq+ySVMK49UWNRqd0s5BZmJWZ/DGOQ05tfdVFp2+wymy4RN0SbR4VUksdTZRLNXkERijfa4iwUM0ihihi/ayV66rNGwyVK+CopuuVPpaoucxQWc7W6EAwR81gjVpCO13OhLxRGPp7xgQwka2U4iPa+ZyQUhqkhT7pJ0KFByyeEMZls30Xy9V8dHQuVufyKL8ETkopGBmPC2k3btw47iQdwC233MIdd9zBjh07UEpRU1PDH//4R+6++26+8IUvjPu4RmSnHKBOGikS36yE1FBPEeVsk73MNHiV06mcoy1ks+ymVKrGnQDwlHKpZr8cZbccJm6Mq7HBhi8q6ppoYx/HqKWBCBVGuApMmbsnrNGWUkoVjbTwqv1/AYnhEIXsk6MUSTkmbWxGO0YjX8thm+zlhJRSLZ5r1HXpPTTQzD45RifdQZWgmWOawf+ZPw2AGRPtuvFu6M20Ysbx2TJylXAf/eyVI7RJBw3SHOhwQhgI10TdkKvhgAyMtPlZTR/92LE7f++nH/PgevuQnpVV2enHih07ldSyX45S6KMxqL/ppY8DHGePHKZjjIkf1yqyPhk4RbPt9AqzKCI4b+e7/PblvSz67afo/9OF2LY9OvHgA0Qp1RyQ42yVvST5+R4xNM42Y6IjSMwkqqWePgbYK0fQvSgfMx7yVQ5bZS/HpIQq3TgVYyKCFRsAcQFuDVcodsth+umnUJ8c17kQ3mevHGGXHGKfHGO5tgBtMP1l0+2j7Bl4xrVUUFVVxT/+8Q8qKioYGHAfUD322GNn3Pcb3/gGuq5z4YUX0tPTw7nnnkt4eDh33303t99++3jCMSwpJNJMBwfFN0K02/R92LAzj3xSA6ijMB4KyGUKqdTSyB7xj06da+l9IMu1/YW3KuqaXbTWVmmLvXJMXzNT5fBx7UO8qv+PnRykWdr8nsgYet+MnEAZjWSVwGI1hwNynO36Po/3L6KcauqJIJylap73A/QxKSQ6q3zqDGgoUS41TpfHLIypUQewVM1jK3upp4kTlJFO8Gk2hvANrvepTJVGjTRQQS02sQW0msWInNo+2McANmyEYSFmcML8p7CfECFh9Kp+FvVf5nCMnCQViq5JtqgxGiNESBgWzFix0U2Ps+0Vhq+o+5TpEsKP3Y/W1Q70Il3N2LqqMK++d8LxB4IhfcJIItw0+fxBColEEE4f/bQFQeUKOMyv6mjEjInsAJuAxagozlEL2SOH2SZ7DVON3jjoN2/BzCI1J6CxLNJm85r+Ng20cIJSFlAQ0HhCGJOhSvQ4YtA0jViiaaeTVmV8R3SPR0FvvfUWH/3oR5k+fTrHjh1j/vz5lJWVISIsXbp01P2VUnzzm9/knnvuoaioiK6uLubOnetmTjFZCCeMZWoeVrF5/dhdejc5KpNE4h3iywa4eHtCqkoijhgyVAoR+KdU2bX0PtrPWh3+whcVdfXSxFI1Dzt28lSW14/vC8zKzFTSBweKERRJuV8TZv16P/PUTProJ08Fd+tMBinYsROnYmjXO4nXYse8b7lUs0otppV2sg1qdnAmklWiU8PCiJPdBGJZoubSTiepyriLNdlMYRrpJKp4yvVq1mvLAx1SCIPgmqiLINxpgNBKR9AtQPqaTunmHLWAE1KKBTMD2BjAygBWp5baFJUKChKBBWoWPfQa2qndE0ZLsg1HhBbhrP7pp58e6WO5mo8NO9OGcatMVPH0GUm1f4JkqjTCsLhp9fmLOBXjbDM2onTEcAzd523YDXFPnUIqc8knTkXTIC2kG+C7XCG1nKvOoZGWgGs4ZpNJOinMVTOo0RsgOJtXQviYTnEsFMSc0v4/dG8wMh7fje69917uvvtuDh48SEREBC+//DKVlZVs2LCBT35ydDHrm266ic7OTsLCwpg7dy4rVqwgJiaG7u5ubrrppnG9CKNixcpuOcwb+nteP3YRFWyW3RyQY46BWZChlCJRxbNXjvIv/R26/ODYM7QaHUs0mpo8AzFfUyKV7JHD7JdjJA62JgUDedo06mmmnGqO6sV+PXezameH7Ge/HHNOPIOVTC2dg5xgi+zhBGUe7XtAP8522cdxKSVfC672fHAkwoZK5F0rS43CP/WN7JUjhBNm6MWafC2XE5SxQ/ZzwEcV5iGCE9e67wR18v5ixO9boOmkm/flIO100USbm77OcImrLrrZJ0d5V9/pzzB9Ro+c1OQba+IpgpNSHX0M0EvvYAvUUXpV/xn2DH5EhI36DvbKkdMMRvyBq4lWsDgPu153kl2MRQLFNC2dgxwfHH+VBjocACqllvfkfY5KMVPV6clufzJLy6OIcnbIAf6o/yOgsYQwLk7zk8F2fMtgnVowJOo8rqg7evQof/rTnxw7m8309vYSExPDgw8+yOWXXz6qztxzzz3H9773PWJj3asyent7+f3vf89vf/tbT0MyLBdqa6hSDfTRT4veRpKW4LVjN0kr56uV9NBHgcrz2nH9yVptGRbdTD8DnNBLWWrybWtcHtNIUYmTVp/uVLylrlErjaxRSzChMUcFj+HLGm0pH1CrsWLnbX0bN/Jxv53bbbAXhI6vrixRc1ivlmPFRolewTnagjHt9w3rD6mSOuYwg1gVzSItsC0S48GkTFyuXUijtIy5lfxJ2x/4i91hQJGvcvhN2Hd9Eluv9DldaZMNaiQxRIHKZZ1ahiC0ivFbDUL4D9fvVR7TWKeWoaO7ubSfzfzHtpmv2B6hmnrCXZJOmaTRSbdzAjJcZ8JQ8q6fAexix6SCu9zEvfV1bF0Rru9LH/2nVOUNfwwrNizjjNFIdNCFbXAimqT8b6CWQiLr1XIEQQsSN61GaWWFWkisiiZHTQ10OFygVnNMlWBXOv+ybzRENXqTgZKZM1Q2F2sbOKoX0SxtAZG5CWFseqWPPJVFEnHM0xyt0c5EnRjfYd7jRF10dLRTl27KlCkUFxczb54jwdLU1DTifh0dHYiIw7Wqs5OIiJOrYXa7nddff520tDRPwzE0YcrstAMuooIVXrygVUkdG2UHANdyudeO60+SVTybZBcAx6WUpfg2UbdF9tBBFwUEZ2JzLPhiKPS+fpCtsheAmVrwvHeLtTlUUMcJKSVSIrDrdr+ZOri6cQZ6IDNRstQU5/d0vb6cT41xv5fsb1BNPVFE8G3T7UHZ+gqORPV22Qcwptbf/+pb2CH7ATggx/iV/pBPPneurbgpBh+YTlGp7B80FKmW+kmRNAjhHVwTdSalsVl3jJkaaQlUSIZir36EEioBR8JtiBoanD9HETlsRW2kinSu2PXSf1rbT7AxrtZX10SdDIzpGFaxTopEnXtCxf+LOSkq0Tl2iJbg+OwdkxJ2ygEQeMwceF3CD5vW82nbV7CKzdE+bIAPpmsbc0qAF6LDVRhZKoN/8y4Ax/QS1ppGl+EKcfZwQi/jkJwAIEscupNDJky2yVhRt2rVKjZv3sycOXO45JJL+OpXv8rBgwd55ZVXWLVq1Yj7JSQkoJRCKUVBwelij0opvvOd73gajqGZoXLIVzl0Sy8143BMPBNdrsYIQVohNo+ZLFCzqJF6jkuJT88lIidLXwPsUuQvvGUmUShlZJPJdJUVdCtV52sr0XWdKqmjkjpy8c8KabO0kk4KccQwTWX45Zy+YpbKY7GaQ500jbn1wiY2rFjJYxpztXzuMN/g4yh9x42mj9Nr76NK6vil/iJf02454/bteicxRDGAFQGqVD05eF+UullvJQ2H1ucMle3143sTpRS3m67jVf0tKqSG/+ibuMR0XqDDCmEITt6nEjlZ9dMUJK1yvsQmNr6jPzHqdiMlnFwf76E36BN1fdLPNDIIJ4z4McpwhLlkNvrpp1dcXF9HeN8sk8TEpF06mUIaUUQEZKFsSDpCRw+aVvZe6SWHqZjRfHLf9hSzMnOxtoGD+nHKqDbEIleb3slUMoglihQDVPN/SruEXfohaqSBp+1/CiXqQrhxglLHXIx0lmqOgiCLMoNM0tbXxx57jK4uhy7Gd77zHbq6uvjzn//MzJkzz+j4unHjRkSECy64gJdffpmkpJMinWFhYeTk5JCZGfiLojdJVPEUicMuuk5GrjYcDx0uibrYIB18TVdZHJITZDPFKTjrK7rpdSauYgIsfupLvG0m0a53kqTiqZEGrBi/RPhUYommVhrIZSrFUu63RF0TrdTTRD1NRKvg/H4Oka0yOSYlJBI35ptaM2000AK0MIcZvg3QxyzV5nLIVkgicfzJ9hrd0sOHTeeyWlsy7PbFVDgNKOYyg732w+SYvX9vaxp8jxtowRQECsr5Wg6F9jKymUKl1AU6nBAGwXVBKYE4Eoglnji68b1urdGpkYZB0wjHvTeWaOzomDFhxYYNGxGEj6hT7Jaokz7flNz7kS66qcJx7TCPMVmhlHI6jzpaX09qtY3UPmv2fGpkSNrponaw8tIXRmOjYVImppCKjh4QM4vxUEY15VQTThgRmjFiNqHRQhs5ZFIm1QFfmKujkerB76ERFu9XaAs5IMdII9l5rQxx9nBQP45JTPzZ/i9aaOdxy31uFeY1egPpKoUiqWDaoKbipNWos9vtVFVVsXDhQsDRBvv000+Pad8NGzYAUFpaSnZ2tqGFr71FsuvqsJcdj7pcHExjg7SibprKQBDKqWGnftCn5+p0rUAMVdSNmROUcXCwZHiumjnh4/mb2Wo63fRyjBKOSDEXssYv53X9vqcEeeurSZmYp/LZLYdp0rc42oLUmfsvXIWjg12jb56aSWv4Lr5v+xWP2Z/l+/Zf87T9RerCt552H9NFd2tJPUIxz+l/42N80OtxubafGGGwPBqzyMOKjSIq2CtHAh1OCIPgepdK0hJos3fSRifVXu5CCEYqqXNOPBXKbRwzxJkmGpHqZKLBVd8tWBlP6yvgkqgbW+trIJJavsC18yZQ7pwxKorjUuoXwzhv0Dm4QBBroHnCHDWDv/Em7RRxQkqZQWATda5jHCOM7yzKwmw1g0Nygv/qm9FFDxkGnkV8w/Yj3tK3OX+/j9tI46Q78i/1FymRShKJ4xLNkYuatIk6k8nEhz70IY4ePUpCQsK4TpiTc9L5b8GCBbz++utkZWWN61hGJ4kEVqqFWLCAeEva34EFM2vVUgSI58yaSUYlUosglmg66fa5dXuHdLJGLUUB+SrXp+cKJN4eYJZJNevVcvroZ44WPEYSQyzQZrFOLaNBWnjB/hpXmi4iU/leC9MkJtar5fQzQFKQJ+oAlqi5WDBjwUKpVI1qYFMnjaxUizBjDioDkuEwKRMmTMSpGBKJI40kslUmddLIlFM+Sw3SzDI1D4tYKKSMApXruP77gAGxsl4tZwAraSrFJ+fwJgVaHgtUAbHEYBN7oMMJYRBcF5SSXNoZm4KkVc6XuLYLRhPprNQFyGUqZVQDI0+Wp5LO6kEjKF93LfiD8SbqVmmL6JRu4ohBRGetWoqOkDDG9tlO6QqSejB33BeoA7Og79DGK6WTbu6yfhdEkazi+abliwGJZzSGiiACldgcjjlqOsvVAiIJp8qDavTt9n382v4XTGjM0LL5uvlWr8STTAJr1VKs2EgwyPxzuZpHDFFYMFMptYYwAgnhHyIknGymUEcT2UzhDfsmrjd/zPn8UOFAikpyFhkMjcsnXaIOYP78+ZSUlJCXN3FR+bKyMqzWyVummqji2SEHAJgi3k0OFEo5W2QPAPHKGBfK8ZCsEumUbp9bt7fQztbB92sJc316LqPgjYq6A/oxpxjwN9WZHZ2NyCJtNqu1JfzQ/gwIPGR9kqfCfK+FWSTlzvctIYi/n0OkqWS26w6DhBNSNqohS7FUOA0VruYSn8fnD+4w30Cl1PJz+x8olxpOSBlTcL+ul1DJ++KoDk4hkS2yB000+qSfCHW6K+NEqKbe+Rm7m5u9emxfEKuiaZY2DnCcY1Ic6HBCGAS3RJ1LZaivF++CAddkZSzRbok6159HMizqpY9tg0ZQPZOhok5Otq1GjuDYOhyFUk6xVJBIHBey2jl2/oL69LDba9PWoVe8S39/I63h8F6mjSulJ+hkLDpdOm8CJfmSohKcZbO/sL8AgIbG3ebPEa7CRt4xQHTgkHYyUkVdnpbFLptjXJEvOaNsfZK39G38Uf8HAKl6ktcSdVv1vVRQQypJhqlcS1FJbNf/BjjGqDl+krkJEVi6pId/yTvO34uo4A39Pa7nY4DDGKidTsD9PjmkXWrHjogYusvT40Tdww8/zN13381DDz3EsmXLiI52v5jFxY1thepsINmHg87J0lr3AW01B/UTNNBMr/S5tWp4k8nUincmvF1RVysNLFFziCZq1Coqo3K56UL+q2+mXGr4p76RJ+Q+zD4Wi3ZvOQnO1nRXFmizWKsvpYNuiqVi1O3LpIZFajYxRDNbBbdGnSuL1GzWqCV00EWRlLOBFW7PF+kVzCWfBBVLNFF00k0r7RTqZSwwzfJqLK6TsNgAVUt4yjptOSVSgR07HXoXcVpwxB3Cd7hp1Eksy9UCFIy52mky04+V5Wo+GhrJJGAX+6D2J3xeuxqbshFDNCu0hcPuH+7meBr8FXWu7btRHowVh6rJOulxaPUNHWOEZF/Yxb8B4GHrT9is76aVDhbq5Sw2zRlP2AHDho1lah5mzG5SPP5kmZpPI63s5pDTzCRVJVGklzPPZCw5lV69jwJyiVKRzDXQuGUGOSxT89FQ2BhbNfonBm7nbX07CodpSrpK5mHbL/iWeeKVjEPzWSNJbixUs1ijltJJF0VSwQdZG+iQQviBE3ops8gjgVhqaCRNJbvN91ulg6VqHmZMzHeRb3LVIbViczMdMhoez1YvucRRHfHRj37ULQM5lJG028fe0rJ+/XoiI8e+KhZsxBGDBTNWbLTo7V499tAkLYLwEQcbwUCP9LFD9hNHDIV6OQu9PJkdolYanD8Hc2LTE2SC7dZ90k+pVLNXjhJOGDkqOM1elmsLmK6y2C/HiCCMY1LCfHW687Q3cTd7Mc7K7HjJVVMd1WFolOpVo25fKlUckOMIwkwt1/cB+olslclW2YsJE6VSfdrzpVLJCcqwiY1rtct5U9+CGRM/tv2W35m+79VYOt2SwcFR6aFjd1YcNtMWsHasEMbBNVFn0SwckhP00U8/AwGMKrCICDo6/7C/xS45BMDF2rk0SItzm+vMHyNXO3PViGsVb/8kaH111TmL9mDcO5QgsmFzVkzByK6vQySoOLbLPiIIp0jKWUxwJerqpZndchhwT9r6k3AVxjYcVZ0tOOZBvdJPkZQzD2Ml6lpUO4coBGFEg5ZAkKBiOSjHGcBKvz5Al/Rgx86ztpfppJtvmb9IGx30ywBRRNJIC0f0QqdxSg99HJJCNJvGHaYbJtTW26v3OXUzkw3g+DpEjjaVrbY9KBQ/tz1Pk7TwLfMXDV0pFWLiHJMSKqjlOKWkkcxuOUQmaVh1KxbNQifd7Bm8BuapkzJrQ66vAFashk7UeVyzunHjRue/t99+2/lv6HdPeP3115kyxf+W4f5CKcVabRkRhFNG9YQTJ640SDPhhJFLZlBfiBZrc0ghkQ66OE6Jz85TPZioyyQt4I5JvsSbFXVb9b1skd0kk8AdpusDbgk/ET5r+gRZZNCPlWftL/v8fK5mL55MKIzKTHLIYxoa2piMAHbpB7FgZhGzSXcRdQ12Zqk8Z0vFvmHeh/1yDB2dbDK5zXQNH9M+iELxovzLrW3LG7hX1AVHMti1mjnU2hgC3BN1CuXUHpsMrZrjpZ5movsXsVG2Ox+bq/Kd7s5pJI/puhrBydbCvkmQ+OyUbkyYSCXRoypi18TEUBsUjF6VN1flM4VU+ujniBR5HnCAMYKZxFyVTypJzt8jiaCXPo5gPPkDV01II3XeKKVIGUyKNUsbf7W/QXr/ar5h/xGP2J+iijp+aHuG3IHzSRtYxbyBSyihigjCmE4Wq1lCDFEc4Dh/tP9jQrE0qzas2IgmklwDLd4vUrPZF/YqS9U8yqjiEftT1NEU6LBC+Jin7X/CipV8sjlfW0kcMdTQQAW1AG4LM64L2pZTKuqMjMcVdUPurROhpqaGzZs309DQgK7rbs99+ctfnvDxjUSMRJHLVBJUHPXSTIaXRL876aafAfTgzdEBkKemEU0k09U0DutFfNJHuSA7dpaoudRIA5n43kxgMlAldSxXC2iSFnLVtECHMyEWabOwYSeTNLboe8fkXDoRUlQi8ynAhGYYDY+JEKNFE6diWCpz6Zd+Luy/nk9rl/G+HKCbXn5v+YHzdXbrPUxV6UQTSSJxQb2QcCrpKgUNxTxmEi5hNEgzacoxYd6vHyOScKaQSifdLNJmk2yPJ4l4ooniFft/udZ8uddiiVQRLFCzsGINmkRdJmnMZjpRKpJW6Qh0OCEMgOvypUINVjm10ytnb6LOdaFniBkqm2gi0dCIJpJIbfTWzwjX1tdJUFHXrNqwi51GWklWY2/lzGYK88jHoiy0i0uibpRFtJkqB1BMI53/6pu5T24LqvtZp4uOYVyA7hEzyMaKnQjCsWBGEJaquVjFePrkQ21yvfQZbp6wQM0iSeLpx0ql1JJAHG10kEYy9w38lDoa0dDQccypY4gijhjSVDKLtdkctRcxjQyKxiBdciaG2gq76SXCR1JF4yFChTNbzSBKIggnjGQSKdLLmWIyTmVkCO8iIsQSzaxBw7qpKp1kEpivCqiVBmaQPaKhTiapzKcApRzGbEY2+h6XUNOmTZv45S9/SUlJCS+99BJTp07l+eefJy8vj3Xr1p1x39/97nd8/vOfJywsjOTkZLebnlJq0iXqcrWp/NO+EQROUEoGE0/UiYjzwxeom6+3uMx0AXdaH2GnHKTYXskDltt9cp5t+j5nJVC2ZpxVIF8y0frNvXKEXYNtarOC0PHVlXSVwhptKS/r/6Fa6imTamb60P13t36IBlrIYvJUDO8I/yu/t/2dW23fAoEt9j3O5x6Wr5A76LJVRIVTwHy5aUFAYvUVSimuNn2ER+1Pc0COcZ/1p/wy7CEAXrC/xsv6fwG4RvsomtL4ueXbvNz/X+qp5EHbk15N1B3TSzgoxwFHi1YwEKuiOUYJCNSHVrtDcGpFHUSpSBCcbVtnI65VAEN8yLSOm8yf8Og44a4VdZNAo26o4slTyRelNA5TBOIYCwwxknPswF8vRa/dRZa9j70mxc40Mx+9PIPv2p4yrFvpcHTKyc9RoMwkcrWpdNGFDbszWbxHjpAogdHMOxP1NDnb5Izk+gqOVr1DUgjAI/anAEgingaaeVH+BTgqbW8xXQXAe/r7nKudw32W2wBHh8x+OcbT9j/xqPmucS9UuxrcjGRiE0iuMl/CJtsueqjlqBSxnuWBDimEj6inmbdkGwAf1NYyTWVQShWlUkU5NazDfdErxq2yuotDnAABq5pkFXUvv/wy1113Hddccw179uyhv99x4W1vb+e73/0ur7/++hn3v++++7j//vu599570bTgrzQZjQ3qHA6rIkB4w76Jc7VzJnzMbnqdg9tA3Xy9yRWmD3JEL8KGnbfsW7nQtMbr5xhqs4oi0jERmKR4q/XVKlaO6cXkMg0NxWwV3Ik6gGXaPPbohxGEIilnJrk+OY8uOs2DWiwpBmqf8AbLtfnMIIcyqpwixWkk86r+P+7QbgCgUVq4QK2mmx4KfJgMDRQbtBWUSiV79MPskP3s0g+yXFtAh3SxTi2nSmqdeo5KKW7QruCYlKArnV/aXuTz5qu9EsfQNS2aSJ+Z8HgbN4MlHzt9hwgOQq2vp9N5SkVdBikkSKzHq/6u14XJoPk3jQwSVTyxRHtU2eYmei+wVi3FgmVEWQq9tQhsjmq0CBvMbQ9jKun8R99MjbWRJy3fnsjL8BupJLFeLUcQYiQqIFUjJmXiWu2j1NGEXey8Lduxoxvy+u9uOpcQsDiG43LTB0iVJF6Uf6FQJBHPAq2AfHLZJDtplnZSVRJxg+ZlcSrG+TPAem05sXo0NuwUS8W4Tb5qpYEVaiHRRDHLgAZzc9QM1qplKKBOQouBk5kivYzVaglmTKxUC4lxKVwa0jPtoY81ailmTEx1qZINc1nE6peByVVR9/DDD/P0009z/fXX8+KLLzofX7t2LQ8//PCo+/f09HD11VefFUk6gEtM53GN7W4GsFKnN/GIfGXCpfOdk0yofoO2gp/b/wDAWvtS3yTqBleBjLgC5CtkAjV1xXoFG2UHAIvULMMNWsZDpkqnFIcRwiG9kItNE2/jH452OrEPOnNNhvfNlblaPgu0mRTr5YDjWtRJN8/Y/sKXTdejlKJa6nh7cJXrWrxXQWYUzjOtoEQqeFH/FwjssO9nubaAd/QdlFJFLNHcZ77Nuf1XLTeR3b8BxGGycavpU15pnxqaVBhJ0Hk0XGN1XZkPcfZyaqJuSOC/nwF+Yn0WheJOy40Bii4wdLm0LILDeCVG83ysN5laX0WEt2QbVmwsUrM92jfF5bpTShUnpBQYeyXy0ILbTjnA+/aD/Nj0DSK0wJgzeMJhKWKrOCrfowO4QP30YNU5QE7fBuppptHFGMUouN6TUgx2X73OdDkm0XjW5tBYTiOZv4X9AoCf2Z4D4A7zDc7t7+AGt/0TVBybZTcAP7L+hmfCvzuuOAqljJ1yAIDb1bXjOoYvmanlsGXwdYbrYaNsHSKYOSrFzu6dq9TFxLkULg3lSeqlyXkN/Ky60vm8q3mEFeO14bvicaLu+PHjnHvuuac9Hh8fT1tb26j733zzzbz00kt84xvf8PTUQYlJmfiS6Vre1rdTJXW8q7/PeaYVEzpmu95JLlOJIJwcdWbXr2BglspjuZpPo7RSQqXXjz/Ux55IPPlajtePbyS8tSjwS/uLZJNJhkrhHtPnvHTUwLJBW8GHtLWUSw3P6a9wD755Xa3SQS7TiMDC9EloXHKf6TYu0y5AEF6zv8022UcxFST0L0MQrtQucm5rtPYRbzFHm8EyNY8GaaaIcvqkn2bamM10Fmmz3RJxqSRxv+lLPGP/C/XSxC/tL/J/5k9P6Pw90ksf/cxmOitNiyb6cvxGqkpkoZpFNz10n5KMCHF2cmqiLl9lUyuNlFPN/fafAYrbzdcFtZmRp3RLL3lMYwArF2qrOV9bNa7jxBLNPDWTPvoZEGO394xGJ91O0W9PF8AyVArzVQHlUu1M0lkwe9Rd8UnTxbypb6Fa6imhkrnkexRDIOgdrEo1Y/apJq8nXKitYbccpl4afa4V7Cmd0k0e04ghys0Awyh8UFvLM+ZH0NCYpjKcj7sm6EbiKu1iCrVyNurb+Ku8wZPyAOHK80RWkV5ODlNJVYkUGLCiLo1kzlcrqaTOaSgQYnLSK33MJAeFRqZKc3O2HqpKb3KpknVNvrt+9o1ebe5xoi4jI4OioiJyc3PdHt+8eTPTp4/eHvfoo4/ykY98hDfeeIMFCxZgsbhfpB977DFPQzI8eSqLA/IcWUyhXKonfLxu1UMZjuNsYGJJPyOQp6axV46SSOxpK8neoJ8BigcTgKkyeRwoR2O8FXVWsdJMO620UyE1rDEt9XJkgWGKSqVDuqmSOvKYxkH7MRaYPFuZHwuddFM2WLm3dhLqY8wzzWQeMwE4LqX8w/4WGprzZlcvzc5tg11DcyRmqlx2y2HSSKZH7+NNfQuRRFBEBUuY67atUooNphU8aP85EYTxD/tbXGza4GyPHQ8VUkumSqdMqlgm8yf6cvxGkkrgwKCuXs2gE3eIs5tTE3Vd9FA+OL4ZchcslSry1eReZHOlnQ5n9fc6bTmfNn9kXMeJUOEcHtS1ahuUYwhWdukHySaTdjo9riKOI5ZDcsLtMU807gDiVSzHpIRsplAk5UGRqBvSeRxJiy8Q9Es/5VJNLlOpknryDGRUVkuD83uX6IFZib9I1ZK4Vhtfl0KBlocgNNNOEnHskcOsVks8OkaX9NCr+mmSFqqkzqlLbCSUUvTQR500ksUUuvUeorWo0XcMEXTU0EAhju6eRBWPJhqRRBBDlLOrqY9+0kmmhXa3BZ5wl4q6foNX1Hncf3rLLbdwxx13sGPHDpRS1NTU8Mc//pG7776bL3zhC6Pu/+ijj/Kf//yH+vp6Dh48yN69e53/9u3bN57XYHjmqOloaJRTzX45OuHjdcjkan21KAuL1GyaaOMtfRt2sXv1+G6twmpyX7C9oVFXJBX8RX+dTrpZyORoex3iecsP0REOUcg99h/65BxuduBM7s/bXJUPKOycdO8eMiCByaGhORwpKpFoomigmc2yi09av0w9TcxhOo9b7jtt+xVqAf+y/IoBbLwt23na9sKEzl8hNRyXEvoY8IpBkb9IcWt9bQtcICEMw6murzGnjGm66XVWQZ0tdLiNWcZ/DXUdH7oeMxj5hu1HVFADwG/Mj3i0b8owY5itlj97dIw5OAoRSqnisBR5tG+g6Bl0TjZSoi5Ty6CPfo5RQoXUBDocN5poc/482fSFAT5vuhoNRSOt/NH+D4/336Uf4nX9Xbrp5RwWYFbj8qP0OQu1WXTRw1GKnYmcEJMPVx3bKCKJUzH00kcjLTTiaK2vkBrqacaKjSQX6SvX1tcBgyfqPP6WfeMb30DXdS688EJ6eno499xzCQ8P5+677+b220d37Pzxj3/Mb3/7W2688cbxxBuUzFS5zCKPeBXjEC2cIF24uphMjkTAfDUTMybCCaNCashTWV47tqsw86mTgMmGQnEJG9jKHvbKYRb0XUqelsU/wp522+4+68/oohsdna+YPkuudnJlrEQqWK+WUSpVTNXS/f0SfEqWNoXlaj4mNBKIZaN9B+ebVnr1HCO5DE1G5mr55JBJK+100k08sUQRSYHKJZxwUmTyDXaHSCaBbnqop5kL1CoKpYIsNWXYibVFWZitzSCDFPoY4C37NnSzjqbGp9XaxEktnWD6jkaocM5VyxnANmnuXSEmxqmur6d+f+armVRJvZ+jCizuY5bxf09c9z3VoCKYqJBactVUookikgjCNM9a9lJJYpVaRLFUooAsNYVU5VlrY77KYS75xKloOqTTo30DxVDrq5HMhqa4uO42uyTGjEAKiaxSi7FjnxRFEKcyR02ngFziVSzWcbTCV0gN6wbnBtMMPO7IJ5elap6jGluvZLE2J9AhhfABQwsR4FiMsLgk34aecx0rp7ok308zkzAwHifqlFJ885vf5J577qGoqIiuri7mzp1LTEzM6DsD4eHhrF271uNAg5k0lUw19RyWQipk4j3zrhVicYztfTc6aSqZ3+t/B+CElJGHFxN1ru+Xmhzv10iYlIkIFU7b4ECykHIK9XKapc1ZGdcn/fzI/oxzgrROW0YuJxN1h6SQTYNirN8z3ePfF+AHHrLcyXkD14JArTRyvumPXj3+ZPx+jsQibTb9DNA+WEXYSgetdFA9OLHO0FIDGZ5PSVEJVEgNXfTwtmwHYHPYyJVyU1U6y7T5vKa/TQttzsnneHB3pwuuZGgL7RySQixiNpxGUQj/c2rr66kT5ENSyPP2v3Or+VP+Di1gdHlpzOK6b1cQV9Tt04/wD/1tAB403+Hx/mkqmX1yzGmo0S5dHlcqztRyOUwhuuj06sHhSDxUceJpm68vcW1bbjaYodBWfQ/V1JNJmlcMn4xGkpZAIy0cliKKpcLj/ffLUachxa1ecq/3BdO1aeyxHwYgzG7hCvOHAhxRCF/Q61JRF6ki3Krkhp4busZEEO52HXTVqBswuEbduK1Xw8LCiI2NZcqUKWNO0gHccccdPPHEE+M9rRvvvfcel112GZmZmSil+Pvf/+72vFJq2H8//OHILW8PPPDAadvPnj0xHSulFDeaPs55aiVpKpn/2bdO6Hj1ejML1SwuUKsMpe8wERZqs1inlrFEzaVEvGso0S09nKMWsEotJpspXj22EbnG9FHWqqUkEU8MUWQxhRdcytxfsP2TWeSRSBw5ZPIP+1vO547rJfzD9ja5TGOhmsU52sJAvASfMlflc5fpJmaSQ5008kPbM149/oBYWaEWslotMZxzmC+423wzt2hXcb5ayWq1hGgimUIaH9bWk2RAnRdvcY/5Fp6xPMJFaj0F5HGuOoc0zqyBeaPp48xRM5hOFl+3/WDc5+6VXs5RC1irlpI+yjmNxvnaKtaoJcxSeZRKVaDDCRFgTk3UTVGpZJBKFBHEEUM2U6iRhgmPm4KJDuliqZrHh9TaUa8pZyJOolmvzmGlWmSoZI2nuLpxjsfl2qRMXKZd4Ky4SCbB40RMuArjMu2CwYorHZHxaQD7C5vYmKlyWKUWs1zNC3Q4TvLUVM5Xq1is5lArTYEOx4mIOKtvJpPcy6l8xXQjH1LrmKGyecj6pEf7Nkkr56gFrFfLmYXxjCSGWKrN407TDeSTQ6GU84ztpUCHFMIHDGlwgmMxwvUeN/ScCRMr1WI+ql3gds0Pc9OoM3aizuOKOpvNxne+8x0ef/xxurocVRQxMTHcfvvtfPvb3z7NHOJUdu7cydtvv80///lP5s2bd9r2r7zyyphj6e7uZtGiRdx00018/OMfP+352lr36rV///vf3HzzzVx55ZWnbevKvHnz+N///uf83WyeeB/+Em0uP7X/DoBD+gk+YFoz7mM10OQU5H5AfXnCsRmBXDXNuVITaQvnC+bPeO3YHXTx/qBu1gfU+N/3YOFS83lcaj6PY3oxiwcup4seXrS9zu3m62mTDgop4xglgKMCCv3kxeuQXsheDqMjfEitm5DgvVGJUzF8yXwtj9l/C8Au+6FxXAlHpolWp339F5X3PsdG5TbztYCjtSq139FG3E0v+TL5HG9ducL0QcBR3fae/j7naueMOvm71HQe37Q9RgmVtOud2HQbZs3zD185tc5rWoKK8zz4ABJLNFtlLyZMFOrlFGjGHfCH8D2nJuoUijoanY8NaX4e1gsnNG4KJkqkkj1yGBMmMlXauI8TroWzVw7TRQ9tdHgxQv/S4mKEMZze3FjQxY51UItovFWKAwywXfYRQTilUmloV/cW2tkvxwBINNA9IlOls3GwAn2uGMeQo0t6nBP2YKtS94SbzJ/k3n6HaWOLvZ27zJ8leowyFAfkOEelmETiSFPGXSCcqtL5tOkyfmp/DoDD+olR9ggRjLhr1EVgcZnI9UgfjXoLhVJGD31En9L+H45rRd1JjTpddBSKx+2/p0/6udt8c8Ad5z2eIdx+++288sor/OAHP2D16tUAbNu2jQceeIDm5maeeuqpM+6fkJAwbFJtPFx88cVcfPHFIz6fkZHh9vurr77K+eefP6o7rdlsPm3fifJBbS1r1BIOSSFP2J/nTsuN4z7WUSkmlmhiiSZrklSILVAFXK5dyJv6Frayl17p85quxtnUiujKDJXNp7RLeE3fyG4O0SStfGjgs1RKLZmkEUkE7XRSTjVN0ko0kVxru5sIwshlGk9bHgz0S/AZU0hlmZrPCSllP8e8emxXLaCz6fMWq6LZFPYnXrH9Bxt2bjZ/ItAh+YU7zDdwBzeMeft1ahkt0k4DzVRQy/RxtPm7tgwF2+r/PG0mOfapVFHHMUq4lPMCHVKIAHJa6+spLYnTyXJIh1Do79ACgi46e+QICcSyTM13a9EZD8kqkS7pcWuXDzba9A5iiCKKSOKJHdcxvmO5gwfkDmJUJAPqzPpc5pVfR6/YiLSXoeJz0bLPB+Cz2pWckDIqpIbf2P/KI9pd44rFH7jJIxiosj+HTBaoWZRKJQfEu2OvidBMGxoaicSN654cLMSrWH5m/hYP2B7nOKX82v4X7jTfOOp+3dLDUSkmmQQ2aCsM3xqczRSmkk4n3Rzj7DIjOluw6jbiiSWScMIlDE3TCMPCAFZ66eMEjiRdBqmsUO7dYfHEkkoS3fS6zdne1rfzUev/IYP/fdR0IXPUDH+/NDc8TtS98MILvPjii24JsoULF5KVlcWnP/3pURN1zz77rOdReoH6+nr+9a9/8dxzz426bWFhIZmZmURERLB69WoeffRRsrNHXjnr7++nv7/f+XtHx+krl0kqHgsW0kkhVSVy3F7CLNOZE4Yj0SxtdNJNFz2keSiIa1QiVQSxRBNOOEkkUCTlLFCzvHLsDi8JMwcbFmUhRSUSSTgxRHHdwD20SycxRKGhkU4yA1hZruZTJOWU6zWsUUs4JiVEq8gJreQbHaUUFrGQTjIpJNKj9xKleac1qIse58+T3UziVM7RFrBV2wPAbC2wNzejkkg8YVhYquZRLOXjmhRoaMxRM+iRXpJdnKyCgTym0UU3c5hBi94W6HBCBJhTXV9P1ahroY1UknjX/j63yDf5vuVrk7qlvl6aWaRmUyeNhE0wSQcwmzzCCSNcWcZdwRtoOlQXXfTQRc+4q+HytZwxb2teeBMsvOm0xxeZ5tBsayWFRN7Rd6DL+A2BfE2dNDJPzaSfgXFrofoCi2bBJIoppBJPHHaxB7xiBaCZVnR0mmnDYlA3U2+xTJuHFRvxxPBf+2bmq4JRq5W36ntZqRbRQDMJ40yW+5MEFUcjLQxgNZwWYgjv0KE6aZdOrNjQNMd1eDbTGcBKKklU6NUsUXOplybSXUxsAMKUxekM69pC20wbOjrgSOZVSz1zCOxcxuM7THh4OLm5uac9npeXR1jYxAcVvuK5554jNjZ21Gq+lStX8rvf/Y433niDp556itLSUtavX09n58guT48++ijx8fHOf1lZw0+8bjZ9kkLK2Cp7+Ye8Pe7XMqSjkES8IW5w3mKmyqWVdqqo47h4bwXEW8LMwciPzN+gOmIzt5iuwoaN6SqLm0yfoDD8TT5h/jCV1LJLDnFUL+Y+20/ZInuwYec9y8ii+JOF6do0iqhgu+ynGM+FdUfCvYLz7ErUwWCFmXnsFWZnG7O0PKqoY48c5ogUj+sY2/S9HJViuuklSgWX9lSByqWZNg5xgi2Dcgchzl5Oc311qUK2YKY2fCtZKoNyqnlef5Xd+qEAROk/aqhnm+yllCqymHhnR5SK5ASlHJQTlFPjhQj9j1Gq1LOZwlptGbU0slsOU4Vx3YjLpJrDUkiRlBuq9RUgR5tGIeVskd2UizE+k+4ViAkBi8MfLFPzaQjf7jTC+qrt0VH3eUn/NztkP6VSxedMV/khyomhlHJqRAdzNXGIkTlplnOy+66ZNo5RwhEpYr8cY68coYYGZpLrtq/rfaTTpbjCNanbTue4TFe8jcfLBl/60pd46KGHePbZZwkPDwccFWWPPPIIX/rSl8647+uvv84rr7xCUlISn/3sZ5kz56RlcmtrK1deeSVvvz3+BNaZ+O1vf8s111xDRMSZ2ylPrRRcuXIlOTk5/OUvf+Hmm28edp97772Xu+46WQLf0dExbLJutspjtVqMCdO4LxyH9UKmkEaeypo0RhJDrNaWcK5+DmZMvGd/n0+YPuyV42qiWKeWoxASMdaAxdcMlafHqRhnkjJOxaCUYo6awRq1BBMa/7K/wxw1ndlMJ1/Lca5OTGbO01ZSI/VoaPxbf48FmncqOCMknHVqGSa0s6r1NcTYWKrNY4NagUlpvK8f9Hj/Hr2XeWom08kOyorqGC2aDWoFOjqJk7gyKsTYOLX1NZVEIginj37MmByGXmoGJVKJIDxse5I8Nc2jCqlgwnVsmOIFraylah6NylE5UCTlzMC4umoj4br4FcgqdaUUy9V8jlAEQKFeRrbJmPIzPfRyvlpJNz3kK2N9V+armTSoZqKIoEYaDNFqWiuNrFSLiCRi0l5bhlDKoQW6gNl00kWmSmePfpil2vCmI7+2/YUe6WOuyseExqwg0ZU9X1tFhdTQRz82sWGe5JWSZxu94kjURbok6mJVNIhD21ah2KBW0EU3BVqu276u3XWd4tDBbZdO3tS3MoVUagd1cptp8+2LGAMef2r37t3LW2+9xbRp01i0aBEA+/fvZ2BggAsvvNCtYs3VGOKFF17g+uuv58Mf/jDHjx/niSee4JlnnuGaa64BYGBggHfffXeir2dYNm3axPHjx/nzn//s8b4JCQkUFBRQVFQ04jbh4eHOpOWZyNdy2C77EYRyezXfs9ztcTy79ENsFUdr2Y9MX/d4fyNzrukciqzl1NDAfjnG49znleNWUc9m2QXAA17SvQs2htPRmqnlslX2Ao7KBSsO3ZZnzI/4Pb5A8DHTB7jV9i0A+uwDfM18i1eOe5RipzFKUpDph4XwPXO1fHro5X39IArFr+Qhj6riGlUr/xOHA+aV6iJfhelTuulhlxxCE80wrU8hAsNprq9aGn04pET0weeeCvsO37P9kgdsT9AgLRyTEvKZnJPpoY4J8E6ibqqWzma74350qZzHRayf8DH9jWuiLtYP8iXSVYd01yI9TajIFFTMFFSMo7pxikqjFIdb9VEp4kJW+zye8XBQTrBRdgAOcX0jkaTi2TY49ryWywMcjYNCKWOH7AfgK9wY2GD8xC3mT/JF2wMU6eV83/Yr/hz2s2G3+6v+Bu/qOwG4yzR284lA000PmwbnfuVSwwwDm7+E8BxnRZ3LvH5IOqOLHrbp+9gu+wCYolLd9nXVwh26vzxo+zn/1t3zUEZom/Y4UZeQkHCaa+pIrZ6u/PCHP+Sxxx7jy192uJT+5S9/4aabbqKvr2/ESjVv8Zvf/IZly5Y5E4ue0NXVRXFxMdddd92E44hSkXzedDWv2t+ijU526QdZri3w6BhFegXTySJFJTJXzZxwTEbjc6areEN/j3pp4iXbv/mkeWSzkLFytrcijsRU0rlWfZQ/yT+xYiOZBNaoJaQSfFU64yFOxXCxdi4VUuvmMjhRhi7sYVjOKk3EEGPnWtPlmOwmGmjmN7a/crtl7PeXYDaSGCJZJYKAjk4bnZO+1SjEyIi4J+qSVQL3m28jiQQ313FXQfwmAwyefcWfba8zmzzSVSof1NZN+Hiz1XRWqkU000axHvg2nvFgEo155BOnYojC963+/X/aAF0uLZkxmUTcchxwLLSsUAtpoc0QbVEj4dbKaTAXU9d4jDARBijVqyggl0QVT4EKjoqxiXKhaQ1P8yA/tP2abfo+brV+i19ZHnbb5pe2F6nS68giAzPm07S+jMwnTRdTL8000coz9r/wqOZ5cUwI4zKkLed6TxiqqAOcGnTxxGJRFrd9E4lnuZpPN71USi2z+i9CE8UMsrBgppl2UlQifYNO0IHE40TdeM0gCgsLueyyy5y/X3XVVaSmpvLRj34Uq9XKFVdc4fExu7q63CrdSktL2bdvH0lJSU7zh46ODl566SV+/OMfD3uMCy+8kCuuuMLZtnv33Xdz2WWXkZOTQ01NDd/+9rcxmUx8+tOf9ji+4chVU6mlgXDC+Ln1DzwUdidZamyl8y3SThMt1NBAiVQyQ5t8qwPztZk8aP85sUTzPduv2C2Hx1V56MpQWStATChR50QpRbyKxS4O4UwdnXWm5YZ3c/ImvfRzTErIZgpNegsp2sSTlBoaUUQQT9xZ9V6GGDvLtfncYXuYSML5m/4mtzP2RF2dNJFMwmCCy1gTsLGSTAImTCQRR63eQLIpIdAhhQgQp5pJAPw/8xdO226ouiyBOKrEuNpgE6FSaumhl3JqaZZ2ZnqhBW+mymWH7CcMCzvlAA3STJpK9kK0/uOElFFFHRmSEvB7ar7KYaccIAwLW+x7sJqtp00CjYAdO9FE0U2P4RZChuKJJ8YQ+mH9MkCP6qVK6qiQWrLHOCcLdnJUJp8xXcYXbd9GodhtP0SRqdyt9bdEKqilkR56+aLpM0GlP7xWW8Y18lXCCWOjfQc2c6j9dbIwoA8QQxR99Ltp1MUSPVgkEY1ddCIIH3ZBO0nFs0scerciQh/91NPEfFXAJ7SLeMD+BI3SwlQJfDWy34So4uLiqK93H1ydf/75/POf/+See+7hiSee8PiYu3btYsmSJSxZsgSAu+66iyVLlnD//fc7t3nxxRcRkRETbcXFxTQ1NTl/r6qq4tOf/jSzZs3iqquuIjk5me3bt5Oamjrs/p5yk+kTbLL8CUF4Uf7F92y/GvO+r9r/x7P6y/QzwIfUOq8IDRuND2prqQvfSipJHKaQn9mfY0CsEzqmW9vEWebCORr3WW6jJfx9OsL3cjD8X0F1E/YGS5RDJ7OUKk5Q5pVjForDEjwYnLFCBIaFahYXaevopZ+tsodu6Rl9p0EqpZZm2jChUWAw7aGxMlflo1A00koVdYEOJ0QAObX1dSQu084nX2XTRgd/0F/1R2h+5/u2X7FJdqGheN7yQ68cM1ZF84z5u+joHOA4z9uD770b0gkyQmVYkornJtMnsGLjAMcplPJAhzQsZVJNNz1EE0mYwRKJeWoaccTQThfFUhnocNgvx/i3/h499HGtdvlZJcUQpiwcDfsP4YRxmCJutv4/53N90s8T9j/QQy+5TOV75nsCGKnnpJPMtdrl9DPAPo5SJtWBDimEl+hWvbTSQS/9RLt0LqWSxABWWmijjCr66Gchs0/bP44YzIO1ak20Uk8TUUTwE/P/4+vmWzHhuAYYYSHB49Ryc3Mz999/Pxs3bqShoQFd192eb2lpGXa/FStW8O9//5tVq1a5Pb5hwwZee+01PvKRj3gaCuedd55b28Rw3Hrrrdx6660jPl9WVub2+4svvuhxHJ4Qp2Io0HJJJgErdg7rhTxt+xP/Zx69Yq9RWlitllAiFWSrKYa1hZ8IkSqCSCJIJpFmWkkigRKpYLYavz1yGsmcoxZixUqsRHOGucBZR4KLG1hKkFbnTIQ8sphLPnEqmgq9hjXa0gkdzy52ugfLsc82h+EQY8eiLEwni1SS6KOfL1kf5MPaej5lvnTUfZuljdVqCe10MC1IV/4zVRqzmU4//Txre5lDUki4WLjdcj2v2d+mUup4R9+OLsJ3LXdRECTi1SE851TX15EwKzMzyCFBxRFFJD16L1FacDkej4ZVbKxUi2ilnYXKO+ZGAIu0Wc4JzN/tb3K16VLD6ZaNxKu2/7FMOUTu56r8AEfjYAZZZJBCOOGU6JXM1YwRlytDTrmxBuwiyVaZpJDIHDWDaD+0Mo9Gi8tkPEMLntZOb5GjZTJFpRFBGDFEcl7/NUxRacwgmwu11RzXS5mmphgu4TsaQ6Z5U0knnDDe1XdOeqOQswVXp1bXApx4dbJAYj4FmJWJLO30oialFOvUMkqlEht2Zqk8OsVhOqGUYr1aTjc9hrh+epyou+666ygqKuLmm28mPT19zGXoX/nKV9i6deuwz5133nm89tpr/P73v/c0nKAkXsVSGrGRrL5z2S772Gk7QK/08RXLZ8+433bZ5xRg/bpl5OTjZOAi8zretx2gnS6OSymzGX+i7pCcYI8cwYyZcC3Mi1GGCHZmaNkctB8HAZPdxNVmzxcMXOlyuXnEBIngbojAMFXLoFF3LGz9Sf8nb+vbxpSo2yp7nPeBYHFfO5WZWi6HOAFAoZTzqu0tAN7Wt3OCMjftp4v0daFE3SRmrBV14NBk/I++CYBiKliA95JZRuAN/T3qaSadZJK0BK8dd4E2i5tMn+AR+1M0Sxu79UNMNQVHou6X+otOc6Y/hf0kwNE4yNOyqLU7dG0PcYKPcH6AIzqdoU6SQLrkjkSYstBDLztkP9UGaGN3M3A5CxesAQ6Hvw7AdQP38Ja+HQTMmLFhI5Zojof9J8ARjo/rzJfzTftjAPzU/jtuNn8ywBGF8AZuklYucy3XNtdDnACBa9RHhz1Gr/RSjkOLNEHiuM10jVODsY8+3peDAHRLT0ANVDxO1G3atInNmzd7bMywYcMGNmzYMOLz559/Puefb7ybnS9Zry2nRCrplG5+aX+RO803njHxGUkEa9VSdISpBMcga7zMVwWsV8vpZ2DC5cpOZxjOTsfXECOzQCvgC9pn+J++lSqp45e2F/m8+epxH8/duCRUURdiZC7QVnGndiN/0v9JO51YMHOf9ac8ZLnzjPtFEckatRQNLWiNX2apPNawlF0cxI7OOWoBeWoam/RdNNNKOGEIwjQy+I++mVv4VKBDDuEjPEnUzVP5rFKLMWGiThonVaKuVW8nXaWST45P3AnnawXk2adhw06pVHn9+L7CKjbWqCXEEGWYJMosNZ31ajkDWKnTm0bfwc+IiHMsYlQDtWSVSJ00OduaA0md3sRSNZd44shjWqDDCSgzVQ755BBOGDZs5KlpbDCtCLg25HhJJYlPahfzvn6AbumlWK+YlPruZxsjzbXyVQ4XqFUclSIshJGjMkesxL7Z/EkW6nNQQB1Nbl1Q67TlmHUz3fRyQi9jiWmuz17LaHicqJs9eza9vb2+iOWs44Wwx7hi4Ivsk6Mo4CHrk3zD8vkRy4vf09+nkRayyZyUba+uTFfTnLbas/XxV9MB9EgoURdieNJUMl80f4anBl4A4Le2v3Kr6VPjHpQMtZuAMVeyQxiHpdo8lobNI82axDftP6GKejbat9Nn7idChY+43zv6DjroYqbKDdrBc5yKwapsTv3Ri7VziVDh/EN/i176AYgmkhIqqdMbJ2WbY4ghxp6oS1DxbJd9AFTIZWfcNpiwi50jejEH5RgCzNEmNuYZjukqi1IcCbqXbf/hi6bPGNIEwZUe6WW77MOKjVVqsWGudzNUFltkDzq6uxuKQeilDzt2wLjjkGSVAOKItUvvJkYLXJzlVLNHjgDwvbPcGfR+y5e43/IlfmZ7jvf09zlXOyeotauVUsxUObzEvwE4oheFEnWTALe5lstiRKpK4m3Z7vy9Qmr4tXpk2GNcb76C6xneyDRBxTkruU9IGUsIXKLO42zPL37xC775zW/y7rvv0tzcTEdHh9u/EJ7xkPlOfmz+Bikk8X39V/xdf3PY7XTRnStPqQYQ1PU1+eSwUM0imQSOSNHoO5yB3sGKukgVStSFOJ08NY3PaB8hnhj2c4x6msd9rGZpI4ZoppFBNsGpHxbCv9xluYlfmB9gnprJUYrPaDBkFSsdOEr+jebk5ynPWB5mo+V5/mf5HZ81X8kd5ht4K+z37LC8xCbLC3zVdDOzVB46wvOT1DwgxPCuryPhOvZpdmlXC3YOSyEX2q53vhfzmOn1c8xW0/mW+Yskk8BuDvEv/R2vn8PbVEot4YQxlXTmGUSfDiBChfMBbQ0ZpHKEolG1sv1Nq3QQTSSZpJGPMZMS56gFjqIDNCqkNqCxlOnVpJJELtNC47ZB7jDfwMthPw/qJN0QV2mXsFDNIol4ntT/GOhwQniBVmknjhiymUKGOqkrWUAu8YNGfhbMfFz70LhcnOepfGapPKKI5JiUeC3u8eBxRV1CQgIdHR1ccMEFbo+LCEop7Ha714I7G5ivFVAsFXTQRQqJ1EjDsNs1SSsFKpc+6SdXTfVzlP4nSoukS3qIJYYYoqiVRqao8Tnv9gyK+0cZQLQ2hPEwKzMJxGFHZwppFOnlZJjGJyjcRgdddNNFN5aQDXyIMbJOW8ZdtkeJI5p39O3UyafdBh9D1Eszs1QefTIQ9PeBWdr00x5brM1x/tynBviJ/VmSSeBp2584oB/nfsttTg2REIFhi76HKCJ4076FHbJ/wserlFpiiCKKyFErphKJJ51k4onFLsE/1iyyl1NMBa/a3yKSCHrpQwGJWrzXzxWuwpitptNND6kkc1wvAYObWzbRRhc9dNFjuMowk2hoKPJVDlVSR5aBjH1aaKObXrrpRYxRhHgaZsx008NCCqihgbkELhFbTxONtNBOp5vBWojJwWzTdBqszaSQSLPeyucH7uMpy3cmfWfaZKaVDjroooMuotTJuX2ylogNO2FYsGFjuZo/rr/zDJVNhdQSSxT/07dwv9wWsIpuj2eS11xzDRaLhRdeeMEjM4kQIzOLPPoZoJ5mduuHht2mjGpnVvcDao0/wwsY/2f6NF+z/4AyqeItfSvXmi73+BgiEtKoCzEqc7QZdOmOCcFRKWYdy8Z1nEY56XqdbBA9nRDGJ1/l8IDpdr5u/yH10sxb+lauMZ0ugFtGNcelFICPqPP8G6SfWauW0hC+nUsHbuFt2c5RvZgN+jlcZbok0KGd1dxhfYhDUoiGxhq1ZNQquNEY0mM7Vztn1G0TVRz1NFNPs1MEOpi51fYttg4awwxRa9lKnOYbfdMrtA9yN9+jjkaesv+Jr1s+75PzeIsm1/upi0i4EZilTeff9veokQZOSBlZBqrEapST1aZGrbzOU9Nopo1m2iiRCiBw85qmwfcrhcTQnHaSUhz+FtdYv8rf9f9xUD/BvfJ/Qb/YeTbTyMl7Q8op17iG8G2YlAm72DGp8a1GzVS5rFPLeFO20CAtNNBMOoFZJPY4UXfo0CH27t3LrFmTR8Q30MzQsjlHLSCCcPQRBC/K9GrWq+XYsDNfFfg5wsCw3DSfD+hrqKSWx22/5yPa+R6vdvVIL6vUIsyYKVAh58AQw7NUm8cH1RoqpJZf2//M5aYLSVPJHh+nX6ysV8vR0YetiAoRYjiUUiw3LaDAnksrHTxue47LtAvcxG3BMXG9QFtFl3QzU+UGJlg/MbQKmq9y2CtHSVYJbNP3ORN1DdLM92y/ZLd+CBNmPmhay73mkRMPNrFxl+1RaqWBZmkjUXm/aulsQKGxVi1lACvxKtZrxz31sz4crlo0XS4aNcFKGCc14uaRz3xtFgkm31X0mJSJi7UNlEoVGoot9t2sNY1vUcofdEsv69RyBJ1MPxqohV35GtJagt5VjYrJREs8XTNwgSpglVqMGROVYqykcSddznFItsoMdDjDkqZOGiE1BdBQQkQoUHlMJ2tcY74QwYFJmbhQW8MJvYxmWrnOejd/C/sFKWeBlNRkRAmsV8uxo59mMjSUnBtvkg4cY/IN2jkU2yvQ0PiX/V1uMl85oZjHi8eJuuXLl1NZWRlK1HkRi7LQThfvy0EiJBxd9NNKNQ/IMae5wjfUrYEI0++s0ZaSq03lf/atAByXUlYqz9yGW1Q72wbFp0MX5BAjsUybzxwtnzftW0HgIesvyNeyPdbnqKDa+T39trrdF6GGmKSs1Zay3nQOv7G/RKO0cMXAF/mo6UK3z2CRVPC27hDK/Yq6KVCh+pXHw+7jX33vUCTlNNtbecx8L0opHrI+ya/1vzi322c7wi794Iji16VSxa/sfwYclRNz8L5g/9lAArGcq53DfZbb/H5u12ReJz1+P7/XUcop0nep6TweHMXx2Rt80LSWz1jvAmC9nMPacVaP+4Mq6tg8eD/9srreb+fVkgogqeCMncG52jS22/YBYLfr3BigSdxw1EqjcxxyozJOXK4ku+pNSuD0Jrvo4R3ZAcB5amXA4gjhe24xX8UxKeZJ+x+pl2Y+MXA7V5g+OCl0+M42jkmp8xqX5KNq6ytMH+Jb9p8C8Av7H4MnUXf77bdzxx13cM8997BgwQIsFnfXqIULF3otuLOJC7VVxOrRNEoLFVJDrnK3CK+QWuaRT7yKPasqw5aoeWSzhR56KdTLWKl5lqhrljbnz0ZrnQhhLBYyCwtm7Oj8UX+VMN3CLaar3PQPRqPJReD81FWeECFG4zrT5fRKH5v0XRyWQo7YirnNdA3mQb1D1wnN2XQ9+77lHv5mf5MqqWNB/0cIUxZsYmMG2QwwwCJtDnaxs13fx3Z9Hyu1RazSFrsd4/MD97NMzaObXhKIG1MFV4jhCdR7F0uU8+cO6QpIDN6kXe9ioZrFgFhJ8lOL4iptMZeoDdTRxMv2N85YhRpo3MdvxrqfzlczuUL7EDv0fRyRIgbESphBXHTdxyEJgQvkDCSTwAq1kD76GcAWsDiaxPjvVQjv8WnTR2iRdrbouzkmJTxq+yWfN11NhAoPdGghPMDVTMpXRTg5KpOrtUt5T99FpdRSJ00B6ZTyOFH3qU99CoCbbjq5mq+UCplJTJBootgth0ghkSKpIBf3RF29NHGcMsxiGpeDSbCSpTKooIYYoiiXao/3d7hwRtFFT0gzLMQZSdESsdodA8Ye+tDQKNLLWWiaPeZjtEsnZkzYsJ9ViZQQ3mGVtphVYYtZ3v9xKqWWWKIpk2ryVQ7g+FxaMGPFdlYlgj9h+jBP2v7ITjlAJBEMyAA27CxWc/i06VPcYb6BTw3cQbO0YcbEz61/YG5YvjOhNKAPUEcjZVLNfDWTd8L/EOBXFGI8WJSFCMLpo59e6Qt0OBPCpttoVx2UShWL1GzutNzol/NmqjS6VA979MNMI4MKvYZszZjtkS20u1zvEgIdjhvxKhYzJmpoIJZoiqWSOep0g5xA0CxthGFhAKvhEpxDpKhEdsoBANIkcC2nddJ4co5g0PcqhPdYri3g2bDvsbr/KiqklgjCecj6JDeZP8EMzZgOySFOZ0CsmDChUMThm4VDszKTqpKooZ4YojigHyPDtM4n5zoTHlthlJaWnvavpKTE+f8Q42OemkkcMTTRylEpdnvOKla2yh50dFarxRPquw42ClQuaSTTRQ/75JjH+zfRShc9mDGRRkh/IsTInKetpDj8LR423UkkEXTRw3FKPTpGkVRgw04eWaRIaNAXYnx8wvRhooigk25OyMnPYI00YMVGGBbifTQ4MSp/CPsRLeHv8xXTjaxiMXdoN/Bm2O+cbSu/tDzEY+Z70dD4q7zB6/q7zn1LqaKESkxoLFcLAvUSQniBZWoeGhplVCMyvKZvMFCnmiiRSgDyTlmY9TW3mj5FAnFUUcfz+qt+PbcnlOiVWLExhVSmkeG389qP/YWBN79E/0uXYH3zS9iP/WXY7RZps4kicvA6bZz5T7lUM4CVdFIMZXLhSjyxmAabi10rJ/1NNfV00UMUEczi7OlWOtv5e9gvaAzfQTrJPKY/y6qBTwb1/eRso1SqsGMnh0yfGsDcYLrCmYP4rf2vPjvPmfC4oi4nJ8cXcZz15KlppJDIbDX9tJtWqVRzjlpIJ11MU/4brBiBbJVJHDGEY6FEKmmSVo/KXIdaxWzYSdRCtushRiZChTOVdGaqXKaRThzRvGR9g1ds/0WA2y3XsVZbOuL+xXoFU0glQoURTRQm7exJqIfwLvlkk00mySqBvfoRLjGdB0AnDgF9h5D/2XU9m6ocYvJxKoZ4LZZMLY1YddJcIEHFMUNlk0g8Nuw8a/sr89VM5msFlEglq9US2ukg6yyqSJ+MTCGNhWoW8cTyvn6QFabglFsZGucJQpKW4NdzzyOfROKYqXIM3UIcQxRL1Fxs2InRokffwUtYN90HXQ6DCHvVJuxlb2KafdVp2+Uylamkk6TiqZZ6v8U3GvHEsFTNo40Ow5paKaVYrRbTQx8JeM+UxlPapYs1agn1NIfMJM4i0ge/F8kqAREhkgiuGvgyL4U/EeDIQoyGiNA8aEAT6eOW5TlqBtFEsnRwgTAQjOuszz//PGvXriUzM5Py8nIAfvrTn/Lqq8ZdmTM6s7Q8Sqhkpxxgs77b7bnjUsJW2cNBOXHWTTI0pXGZ6XwqqeOwFPJt68882t9dfyJU4RRidGZpeRRSzm6O8A/e4m/yJn+XN/m9/W9n3O8tfSv/k63slsN80nSxn6INMRm50nQRdTSxRfbwO5fP3ZDTpUIRzdi1EycTd5hv4OWwnw8rAH2RaT0/snydZlp5V97nX/o7AByUE2yTvRyRYmZoWX6OOIQ3ucZ8GfvkKO/KTr5t82w8YCRcxybJfm7rnK5lU0Et78tB3tV3+vXcY6VJWvmPbGKvHCHJoA7NBVouhZSxQ/azWz8c6HCcvK6/xx45jBmzT6tNJsoAVvbIYd6W7fRIb0BiOCQn2Cp7KZYKcrSpAYkhRODYGv4XcrVpHKeU12Qjj1p/GeiQQoxCD7300Q/4XrvUpExEq0j2yGFe09/GKlafnm84PK6oe+qpp7j//vu58847eeSRR5yadAkJCfz0pz/l8ssv93qQZwOJKp6L1Hq66eHU22q51LBKLcKChQXa2ee2+yFtPW/at1JDA2/r24d1xR0JHZ21aikaWsj1NcSYmK6y+ZR2KW/p22inHVDEE0u3nNllsEYaWa2WYMbEHBVylAwxfpRSXKKdS4XU0ksf3dJDtIqiY7CiLpZoQ0/AAslSNY9Z5GHDzlZ9DwBb7bs5T60kXFlYpuYHOMIQE2GhNpurtIvZrR+iVKo4qB8PynFRrTSwXM0nlmhm+dkgLFyFcak6jxbasGLzaEzlLwr1Ms5RC4ggnDVqSaDDGZaZKpd1ahmC0ENgEk2nMiBW2ukE/J8A9pR12nLCdAv9DFCol7PIAz1gb9EkLc6fjf5+hfAN12qX0yldVEodz9v/zh3m6z0ykQvhX1qknbVqKaD8Mtf6mPZB0iSFARngFfubfMp8ic/P6YrHd+YnnniCX//613zzm9/EZDrZ2rV8+XIOHjzo1eDONnpVH5tlN5tkF616u/Pxg/pxtst+NskupquzrxrgfNNK8rRptNBGKVWUS82Y9y2ScrbIHjbJLr+5qoUIbsKUhU+YLqKJFqzYsWKjiVbe1d/HJiO7k+2RQ2yTvWySXczUQhIBISaGWZnZLLvZLYc5oTt06joH29Ri8V8bWLAxQ8smVSVTTAX/0TdTYavmP7KFd2QHXdIbEowOcqaqdJZrCyimkjKq+ZHtN2e8LhuVYqlklxxio+wISMWYrnQ2y252yH4qpNbv5x+NE1LK+3KQTbKLVJUU6HCGJVJFUEU9W2QP7+g7sOr+r7Y4lUbXxJPBDa2SVDybZTfvy0GOB0jjr1F87x4Zwthcb/4Y81QBTbRSQiUP2n4elPeUs4UOutgie9giu+nF96ZS55lW8ra+zXG/1Pf5/HynMi4ziSVLTl/dCg8Pp7u72ytBna2sUUsoULlEEs4JypyPH9OLmUIqS9Rc8jk7Jxn/z/R/rFPLyWYKV1vvHPN+TYN97BC6CYcYO2u0pfzT/Cs+q13JWpayRM1FQ+MLtgdG3OeYXso0MlivloeMS0JMmKVqHnPUDGKI4gTlWMVKKx3kMpVztXMCHZ6hudF0BQvULBKJ44fyG8IJYyY5rNaMWZkTwjM+Zvog/wt7jlkqj//om1kw8JFAh+Qx9dLEVDKYSU5AJE2uNV3OIjWbFBL5pf1Pfj//aBzTS0gmgfkUMNfAFerPWB7hI9r5JBDHrIGLAh0OlYNOlgXksUzNC3Q4Z2QeM5mvZpJIPMfFM+Mub1EpdUwlgw1qRWgB7CzmK+Yb2RT2JxarOfze/nem9q9HFz3QYYUYhiGtZvDPonUBuSxWc8ggNSDXKY8TdXl5eezbt++0x9944w3mzJnjjZjOWlJUIlVSRzaZlEk14BBNNCtHh3KLtBGtRQUyxICxxDSXJlocosJEcUg/Mab9NBTTyCCFxLNW0ymE5ySrBD5gXsNsbTofNq3ngBxnACtH7IXs04+6bVusV/Cs9a9Eq0h66WMAa6gtMcSEmaYyKJYKMkilRuoplWryVQ4ddDFA4Cs3jMwSbS6HpRAbNv5i/zcRhFFDA6mhxZpJQbaawjptGd3SSz/9mMXM/f0/5WvWH3BcN4775pmooo5q6iiknCkqze/nX67N55AUoqOzRd9DrTT6PYYzYVU2YonmKMVMV8atUF+nLaNN76CLHlJUIi0u3TCBoFyqma6yqKKOaIw9X5ihZXFMStFQvKVvc6sG9AdW3UqKSsCKlVbaQ+O2s5h52kzO0RbQzwADWEkino8NfJGP9X+Re60/Zo+BNCjPdjrlZKIuxg+JulSVRKXUYsaEBbOzw8VfjDlR9+CDD9LT08Ndd93Fbbfdxp///GdEhJ07d/LII49w77338rWvfc2XsU56Zqnp9NDHcUo5qB8HoIFmtsgeamlktoFXFf3Bny0/o5ZGtsgevmt7etTtddHZru+nijpSVVLoJhzCY+4w38A9llsoCXubNjrYzWG+bvuh2za/sP2RL9gf4KgU00wbf7L8JEDRhphMzFJ5WLFRRDm79UMclxIOyQlaaD/r7wWjMUfNYCY5dNJDO5200Uk3vRTgXy2wEL7lQm01vfRTSBk/kGd43P57fmp/LtBhjYkhR3oNLSCul1NJ5yfm/0cL7eyUA7xuf9fvMZyJbfpeyqhGR2cq/k9kesI800waaeGAHKfQpRsmEPxO/xtHpIgeernG9NGAxjIa+SqHh0130kwb22Ufb+nb/Hr+RtXKDtlPA81kcXYZ9YUYnu1hL9EUsZPPmC6jS7p5Q97jJ/Znucv6aKBDCzGIa0VdnPJ9ok4pxUuWx6mijjdkE0/a/+jzc7oyZjOJ73znO/zf//0fn/vc54iMjORb3/oWPT09fOYznyEzM5Of/exnXH311b6MddJToHJZouYSTSRdg8L1lXotF2qr6ZAu5mpn9+RshspirVpCvTRTKGVs1nezTls24vZVUscyNQ8bdmYaeEU2hPFJ15LJIROASHG3A7ejE00kNuzkMpUpKjUQIYaYZOSqqc7r3T79GH0ywFzysWHjHC1kiHAmNKWxwbSCans9PfQRSQTpJDPXlB/o0EJ4kXPUAt5kC9300EkP8cSw236I3aZDLDPwd+SQfoIslUmLtBOlIjEp0+g7eRmlFAu1WWSTiR07v7K9yIv2f2LGzOfNn+Jjpg/6PSZXhmRLUkjEpPn//fGEuSqfFWoh4YRRqlexUlsUsFiGEsBhWAzrljuEpjRmqjymkYEFM7XS4NfzN7vo06VpIbmSEA6jHYA4FUOiFk+6nkw8cUxV6Txhe57bzdcFOMIQfdLPGrUUBaSrFL+cs0DlaB9D+wAAWRRJREFUsVjNIYYoBvzs/DrmRJ2IOH++5ppruOaaa+jp6aGrq4u0NGOvdgULWWoKx6SEXvqopxlwtEcMrTJdrj4QyPACjlmZ+ar5Zq6w3gYCj1h/wb/DfzPi9sellE2yC4BVARw4hZgcTFUZbJHdlEk137f+iq9bbgXgf7KVbnqJIpK94a+GKjdDeAWLsvAV801caf0S4DDGAbhUnceHTecGMLLg4HHLfTxuuQ+Ah6xPApCjMgMZUggv8ynzpXzJ/qDz91Y6aKWDm63/jxkqm3O1c7jDfEMAIxyeTfou/q6/CcBH1YUBi2OVtpgoFcExKaGaehgc5jfaWgKeqBtKohjdEAEgT01jpxwAQLNrXG2+NGCxNEsb4EhwBsNYpEDLoYo6AN7X/WtI2DT4XkHI8TWEO3eYb+AOHPeOqX3reFn/D9v1faFEnQGoo5GtsgeA27jWL+dM0RzSZE20UiKVfjnnEGNO1AGnXfSjoqKIijK2BkIwoSmNW7Sr2COHaaGdd+w7QzeSU1iqzWOuyqda6jkshYjIiIORIr2ceeQTr2JZpPxv+x5icnGn+QZm2LN4V3+fJ+zPc4f5BjQ0EEdlx3SVhaY8lv0MEWJElmnzySeHYiocq4ekMFcLVYV5SpyKCXQIIXxArIrmG6ZbsaPTK31UUkulXkufDPC+HGSPfoQ5agYfMq0LdKhu2LE7fw60du7/M/8fHdLFa7aNbGcf4HAOfcX+Xz5u+lBAYmqXTpJJZK7KZ2kADBFUVDrS0wi6DTQzKir9jNsv1ubwOe2TvKlv4agUsVM/wAptoZ+iPYlVrIRh4Ry1gLkqOO4TeWoaG9QKuuim2cX8zR+0STuL1BwiCCNHTfXruUMED981f5U39PdolBYuHvgc/w57JtAhndU0Bygv8g3T53lD3qNNOrjf+jMetNzhl/N6lKgrKCgYdYWmpcW/YqCTjblaPo/bfk84YZyQEhqlFYVCkJBrKY4y1yw1hSNSRBQR1EgDU9Xwg6hyqjlOGTax8bD2FT9HGmKycZnpAl6x/5dyqokgnBK9Ek0pmmihSMrJU1mBDjHEJCNDpZCo4hARBJiusnjIcmegwwo6jFhVFcI7PGD5stvvP7M9x5/s/6RBmjGhcUg/YbhEnc7JDpVLTecFLhDgKtMlAHTTyxQ9ld/pr9BJN0f0ooAl6gr1Mlppp1yqma8V+P384de859H2aSqZOdoMntFfwoyZo3pRQBJ1lVJLKx2USlXQVA+blZl6mjgmJUyVDGy6DbPm0dR03NTTzH5xmIN9Tl3ll3OGCD5uMF/BU/0vsE+OEivRPDTwJF+z3OJskw3hX9qk0/mzP/Mi15gv4+7+76FQ9Nn7+ar5JuKV7/VlPboafuc73yE+3tiaB8HObDWdTNKpoZ5DUogVG4IwlXRyCa34ACxT89nBftro4ISUMZXhE3V75Sg6OtlkMiskIh7CC3zS9GHe0DfRRgfP6X9jtbaYNjpJIp7FKuR6HcL7PG/5kUMXQ1kdFZwhQoQYkTvMN3Cj6eNcOnArB+QYT9r/yF2WmwIdlhuuFXVG+U7fYb6BLumhdKCS7bKfn9mf45vmLwSkffIYJXTQRQoJQdMNcZV2Cb9Sf6ZYKvmF/QVuMH/c7zGUSQ1tdBBNVFAtHK5WS6gShwtyOTXMINsv523ipEZdSqhjKcQZ+KPlx7xk/zffs/+KR/Sn2CArOFedE+iwzkrqaUJDI4k4kvz4vU1U8Txhvp97bT/iEIU8Z/8bXzZf7/PzepSou/rqq0N6dD6mQMtD0JlKOjv0A8xT+SxWc6iVRnK0UKIOIIdMkohntvr/7d13fFRV3sfxz7mTThoJIQmQhNCL9CYdFAR0rbh2imUtK4L6WNbdtaCuYgXXsvrs2te6i+1Rd20Iiii9Iy2U0CIEEkISSJl7nj+QkUgCAZLMJPm+feX1mpl77zm/GX5OZn45pQWL7UqG0qfc8+KIoaNpTSH7iXc0GlFOXkuTSg57Aci2OWy3O+lpOpFt95BqtGuYVL3met8XOS4xJopYomhFGjEmijx3H9FOze+sWpHDR9R5AqRQBxBpIkggnrakE2di+cj7FecG1fzayD/Z3fQ0p7DL7qk1I8MSnDgibQPakk4s0bjWrfGlMHb/XHgqoLBWzcBJNgkkkUC8iSHDZtZYoc6xhm6mA/kUEocGoUjFWjqpNHbjiSSCCMJ4uOQFBob0rBXrQNY12TYHF5dscmlUw2uYdnXaE4SHWKJ43/tFjRTqKv1bRMlYM+JMDIOc3mzjJ5baH/nUncUS+yMeHK2z87MxQeeynZ38YJfwqvf9cs+x1vKRO4Pldg1RVP/2zVI/xB/24XeBXc4CdwUL7HI2sY22jkZtiogEgmZOEqtYz/d2MevY7O9wygjEEXWH/CPkL6xgHTPtXB7x/q9fYpjnLmWBXcFmttPG1J7fq02cxqxkHbPsPLb8vEFCTSqzdlMt2ITjkJZOKuvZzFy7jFV2fY31m2G3sNiuYp3dRKyJrrF+pXa6KuhCujsd2cNevrY/+DZ9lJp1aC3LGKIINsE12ncvpxOtTBq57ON7u5j99kC193lCu75K9Trd6ctCdwUllODFpZNpQ3PTzN9hBQzHOJzpDGaX3UMxJZTYkiP+Z93LPt+H4dr0gUUCW0OiudVzJZ95v6XUeplvlzPQ9KSQ/TX2V2ARETm6bqY9GaYnpXjZYLfQg1P8HZKPi+u7HUgj6gDCTChXOaPZShYuLv/0fsgVnnNrrP8sm02uzSOdZnhw/DKiruTLiXg3fw37syG8EZ60oQQP++sxr+vpnEKuzaMUL+vdTaR5ajZ2F5eBpicuLgk2rkb7PhntacEA0wOAnbbm1jnPp8B3O0oDIaQSepvOrGMTLi7r3E0keRr5O6R6J40mP6/f7J9RsGc5Q8j17sPF5X3vF1wWdHa19lfpQp3rusc+SarE2Z6hXFv6Z9/9rTZLO/39ioPhW7sAgAw3k3aelmWOZ9tf1p6Ip/ZMAZDA5jEeHgr+H/7t/S+Z7AA4+NdYoolw/Lt7n4iIHJRikn2fEQZ4e/Bbzyg/R/QL72GFukAbUQdwY9AVdCs+WJxb4a7jfe8XvmODnF5M9Iyttlk2q9x1zLLzARhoeuIxnmrp52i8Gz+D/O0H75Tk4934GZUZt5FMY1/OrXTXc7qnX/UFWY5Mu93XfwMnokb7PhmtnObMtgsB8HpdKvViV4G8wwt1mnkjlZBoGrGRrQA86/0nA5wemnFYg0ptKV/Z77FYelPzG/YADPf0Z7L3GQD+5n2TSz2/qdYcCLxPCEJDE8PvPBcRycEv/m1oroXqf+USz1n0Mp1oRhLPe98+4vhGdyuxRHEKbejm6LWTqvW34Mn0N919X7I0alNEJHC0NS3oYU4hlSZkkOnvcMpw7eEj6mq+EHUsLU0qbwVP5VrnYtJNM/JsPtluDt+7i5lS+gJXlvyh2vpe424kkXi6mHaM99T8hgwno73Tgu6mI81IYr2t+enW+yj03a5NhadoE8kIZwCtTBqZbK+xfvPtL4W6BugPrXJsIz0DeTXoEdJowix3HleX/NHfIdUrOeRhf17j1V/fuzqYVtzmuZokElhp1/GpO6ta+1OhLkA1NYkUcACDYS2bSNFC9WWc6nRjvl1OKaXkse+I49vZSUNiWM0GImvRBxapHU5z+rLKrscAIQSTQO2ZZiIiUtelmSYst2vYTQ4/uuvJt4XHvqiGHD6izhB4ozFCTDDne4bT0kkl1kQTbSJpaGLIYS/5FLLIXcnbpR+Ta/OqvO9MdlBECcvs6lq3gVork8Yiu5ISSsgjv8b732dr7wixIkrIsruIogHZbs6xL6gCoYTQiIYkEFfjG39I7ZRikjnXM4xMdlDAfla661jprvN3WPVGls0mhSRiiKKR8c/3rggTTkenNT+xi1BCWWs3VGt/emcKUBM9Y9kXupg/eq7nTud3DHK0DfThGpmGpNKELLKZ6c474vhS+yMb2YqLSzvTwg8RSl1mjGFN6OcUhC0jL2wxX4e87u+QRETkZ0EmiAmeMRSwnx/ZwAJ3hb9D8im7Rl3gjag7ZFLQOKaHPMP0kGf4IPQ5NoXMpIRS1rKJ8aV/4APvl1XaX7Et4a/e18gljyYk0sf4Z2rTiWpoYkg3zfiJ3Xzt/lDj/e87rDgYZWpXoa6TaUs+haxmA2vZWCN9rrUbySaHMEJrpD+pG8JMKBtDvsbFspTV3FTygL9Dqje22O1sIYu97KM1aX6L43xnOM1IIoe9PFv6ZrX2Vek16qRmRZiDw7CjTSSYg3/hlLIGOT3JtDuIMGG8W/opFwWd6TtWZIvpZ7qzj3zamOb+C1LqrMN3YdYaFSIigaWNaU5TEgkmmC225qbUHYtbZo262vO7I9FpRCzRFPw8xfJf3v+QSx43B42vkvb/Ufouw0w/1tqNpJjkGt/RryoMND1JIZlwwnir9GMuDfpNjfUdRih9TBeCCSbKNqAWpRbppildTTtiiWGnu7vah5G41mU3e4GDf/gXOR5JTiNamVSMNRygiDOLfseHIc/Vyves2mSuu5Shpg/5FNLetDz2BdUkzITSx3QlhZ2EmVAWeVfS3dOxWvpSoS7ATQoa5+8QAtajwXfSpKg/WJjnLmcHu3yv1+fud2xhBw2JprGJ93OkIiIiUpNaOqls4ycAltgfGcN5/g3oZ2VG1Plhs4STkRU2B4CmBwbwlf2e70oXMdEztkqmDj7kfZ5scmhAOCtDPj3p9vzhseA7SSzqC0C+t7BGC3Wz3YXsYg/JJBDm1K5RYsmmMUvsagCG07/a+9vLPrx4Aa0xLCdmSehHXFH8P/zb/QyAyaXP8GDwLX6Oqm570/ux77v9bzxD/RrL2UGnMa7kDrDwAMG873muWvqp1VNfv/nmG84++2yaNGmCMYYPPvigzPHx48djjCnzM3LkyGO2++yzz9K8eXPCwsLo06cP8+YdObVS/C/OxPBA0M10Ne2xWJ4qfRWv9fKldw5xxDLI9Ga85wKNdhIREaln2pDOANODnqYTO+0ef4fj462lI+oON8j0oi3pdDcduaP00ZNq6yPvV5xRfCWNiGWQ6cWDQbfU2jXDYkwUZzqD6WO6cICiGut3lncerU0a/Uz3gNrhuLIOL5btttW/Rl22zaW76cippiunmNbV3p/UTWM85/EbM5TGxPO+9wvuLHnM3yHVWYH23b6P6cJY5zya05TF7o+sczdVSz+18zfhzwoKCujSpQvPPvtsheeMHDmSHTt2+H7eeuuto7b5zjvvcOutt3LvvfeyaNEiunTpwogRI9i5c2dVhy9V4PagayihlBz2spM9rLYbWGHXspw1fGPn0dXp4O8QRUREpIY1NnGstOtYYJfzo7ueA7bmCidHU1vWqDua10IeZQNbmGMX8Yl3JqOLJzC6eAJPlLx4XBt35Ni9rHc38607n9VsJN0044agy6ox8upXwH7m2qUst6t5oPjZGsm79TaTOXYxc+wi2tbCdZkb8cv00x12V7X3t4dcFtmV/GCXUEJptfcnddMIz0DeCnmSbHLIIJPXvR/yWMnfT/j/+Vybh9d6ybeFFNniKo62djv8u30Xp72/w6G505RUpwmb2EYWu3ik5H+rpZ9aXagbNWoUDz74IOeff36F54SGhpKUlOT7adjw6GsRPPnkk/zud7/jyiuvpEOHDjz//PNERETw0ksvVXX4UkXeCZpGd9OBUIIZU3I7T5e+TgRhnGq6coZT/UPoRUREJLAYY7jJM5amJLKCdXzpzvF3SAC+KXcATi39GB5sgvkm5E22hc7mMs/ZbHF3MMP9nj97p/Gc941Kt3NJyS084H2ORsRxlTOax4LvrMaoa8Zfg/7Mo0F3EEYYf3H/xlfu99Xe525+GYXWqBZO5WxKIu1MC8IJZbut/oERh4/ai9cadXISgk0w34W8zUgzkAIKudv7FJ+7s0+orZHFV9GgqAuNinrzf+6MKo60div73X6Av8MB4ErPaM53hhNGKG/Y/6uW4mrt/IRwHGbOnEnjxo1p27YtN9xwA7t3767w3OLiYhYuXMiwYcN8jzmOw7Bhw/j++4p/0RYVFZGXl1fmR2pOK08aWEMzkvBYD01NIs1MEmGE0tDE+Ds8ERER8YOWTioulh6mI8vdtf4OBwAX67vtqcUfw7s5HYg3sUSbSGJMFC4uMUQxw/sDn3m/Peq1m+12/s87g322gDhi8OLS1mlRZpMmf/G0vRDTqAOExWPiO+Bpe+FxXd/WaUFjE4/BEEsUz5T+kxJbUk3RQqHdz26bQxMaE08sSSah2vqqLjFOFAdsEek0I8KE8ZPNrtb+sm0OHU1rWpk0mpJYrX1J3dfN6UCcicVgaERDJpc8TccDoxh04DIWeivecTzfFvJa6fuMKLqSUQeuJt/ux/z830Mlz9P9wHmMOnA1Dxe/UCMF7EC1z82nmUkiySQQQjBxAfLdvqlJJMKG04BwUklmjruoyvuovZ8QKmHkyJG89tprfPXVVzzyyCPMmjWLUaNG4fV6yz0/Ozsbr9dLYmLZN+3ExESysrIq7Ofhhx8mJibG95OSklKlz0OO7cqgC1jDRpazhnl2GavtBl4P1loBIiIi9dVFziiKKGKhXck/vO/6OxygboyoO9ykoHF8HvIyuaGLKGQ/M+1cJpX+5ajXfO79lt+WTGSRXUkn04Ztod8GzOZpwYP+QuiYuYTdsInQsXMJHnT051Kei50zGe70I5d9fG1/YIPdUg2RHrTZbucp72tsZydNTSJ9nC7V1ld1Gus5j1Vk8B/3G76rhi+8h1tnN7PSrmO93UxjE1etfUn98GLwQ+SGLeQ6zyWsZRMZbGEey7iztOLvoivsWq4tvZtZdj5fM5fNbGOA6UF/urOaDFaxnq+Zy2T3ab5x59fgswksa9nEXLuU9XYzaaaJv8Mp43dBF7GbXDaznek/byxSler0rq+XXHKJ73anTp3o3LkzLVu2ZObMmZx++ulV1s9dd93Frbfe6rufl5enYl0N6+V0ZrznApa7a9hlc2hs4khw9MtXRESkvjLGcL5zBhvtFlzjMtu7kAGeHn6Nqa6MqDvcoYW9TzVd8eBQQimdi35Dvi2kj9MFL16SacxTIX9mp93NZ+53tDXp5Ng82jjpfl8YvKoZY+junMJCdyVwcA25tlTP2nHZh017jSW6WvqoCR1Na/qb7hgMW90sqnP5xiCCGGL6sJd9tDSp1deR1BuH3sOiTSRNSGQHO3FwyLX7OLvoOrLYRQxRXBk0mss957De3cyzpW+QTAK7yaURDUk3zQ6OKjaQ5DbmJ3ZhgXhiOWAP+PcJ+tFn3m8ZavrgYhnqnOrvcMpo57TgNHMqmexgljufA7aIMFN1u27X6ULdr7Vo0YJGjRqxfv36cgt1jRo1wuPx8NNPP5V5/KeffiIpKanCdkNDQwkNrV1bodc1XZ32PO/czwMlz/KNO59BTi9/hyQiIiJ+NsTTmxdL/gUWTnP6MgD/Furq2oi6w30e+jIAbQ6cQSbbAXjf/QIAg2GKvY1VbgYf/7z+Um/TmUeD7/BPsNWsmUlkI1sBWGXXcxZDqqWfw9dbO8MTGGs3nYhWThrflR4cSdfMVvydqyossMuZaecCkKARdVKFJgWN840OPvSdNMfuZTkHl15YX5LJe97P2W53stiuAmCo6cN/Ql88oq1v3PmcUXwlu9jDeptZc08iwPzH/Yb5djkGw/ueijcQ9YdYE02iacQM9wcA1tvNnGLaVFn79apQt3XrVnbv3k1ycnK5x0NCQujRowdfffUV5513HgCu6/LVV18xYcKEGoxUTlS0ifT9iIiISP3WzrSkt+nMbnLJcP3/Zafsrq91q1B3yEhnIEvtj1gLEYSxy+Swxm4grqgXFksqSYQTTl+nm79DrTZtTYsaybv99gDtaIEHDwnU3o0RWpJKP9ON3eSSaXdUa1/7bIHvdhQNqrUvqb8OfR+NJIIutCOEYIIIIs/mE2HD6MEplJgSejinlHt9BGG+24Xsr6mwA461Lh1pRbxpSIQJ93c4R7jQM5I57mIKKOTvpe/wVMjdVdZ2rS7U5efns379et/9jRs3smTJEuLi4oiLi2Py5MmMHj2apKQkMjIyuOOOO2jVqhUjRozwXXP66adz/vnn+wpxt956K+PGjaNnz5707t2badOmUVBQwJVXXlnjz0+O36SgcUwiMNY5EREREf9qaVKYb5cTTBCL7EqybDZJppHf4vHaXwp1dW1E3SF//fmLylOlr2Kt5SHv85QeNpIwkyxu9VzJQ8H/468QK1T0SndsTgbgAg6mYUtCxx//mmmtTRrz7DKiaMAes7fK4zwkhzxWswGAEBNSbf1UtzAnlCyy2W53EkE4e+zeals0fh8HC3XhhBFkavVXYQlgv/5O+lTpq7+sNffzbP9BTq8K1+eM4JeiVCEVT31d4a6lKYnkmQI8ODQz1TsitSZZa1nMarx46UYHf4dTrgFODzazjTBCWeCuZLm7hk5O2yppu1a/Oy1YsIChQ4f67h9aJ27cuHH87W9/Y9myZbz66qvk5ubSpEkTzjjjDB544IEy01QzMjLIzv5ld6GLL76YXbt2cc8995CVlUXXrl3573//e8QGEyIiIiIS2CJMOK8ET+Gqkj+ynLW86n2PO4Ou9Vs8ZUfUVeNCXAHg0BfQy4LOJsh6CCOUB7zPgoX7gyb5Obry2ZIC8P0buT/fP34RJpwuph1L7WpmufOw1lbLWnyHf4E/fARObTTBcwV3lj7GYlbxf94ZjAs6v1r6OTSiLlqj6aQGHe9gkvDDR9RVsEada136FV9MMQd3lp7oGVunlhPYyz7fchHxJta/wVQgxkSRGTqLQUWXsZAV9Cu+mJzQBVXyR4BaXagbMmQI1toKj3/22bF339i0adMRj02YMEFTXUVERETqgM6mHQnEUUwxH3ln+LVQ5z2sUGeoW5soVKSxifeNIElyE8BQL0YytTHNCcJDBOFk2WySTUKV91Fof5kSd/gInNqoo2lNO1oSa6JYYddWWz8tTQpJNCLe1N6pwlL3RZhfCnX7fy7Iv1D6Nu95PyPDbiGPfCIIowmNySKbIDzMdOfhtV485uAfgV4pnc4Kdz157KMBEcxwvyeIIPo53ci029lLPskmgRuCLgvI9d2zbS79TDeKKaW1SfN3OBVqbOJJpBFeXFqZNL525zLc0/+k2637vyVFREREpN5q77SklUljtl3AHruXXJtHrPHPDpn28BF1pm6PqCtPRdO86qJE04h/uf8FYK3dSDJVX6jbf9iIunBTu0fUDfb0Zn/pAZbbNSz0ruSRoNtxTNVOD/daLzPtPCyWXnSq0rZFqlLZqa8HC/IPlD5bZqfnPPLLXLPMrua+0qd5IPhmAO4qfYIc8o5oO9PdTgtSWMpqsBDnjQ3IQt1ucphjFwPQh85+juboHgy5heHF49lid1BUWqRCnYiIiIjIsVzlGU22dzcl1sudJY/xQsgDfonj8BF1Tj0ZUVdfdTHtGWh6sp8DbLBbGEzvKu+jLk19BTjd9CWRRuRTwFabRappUqXt55CH5eBsrECdSicCEG5DGWpO5QBFxBDF2OI7aE0a4YSSRwFFFBFLNIk0opgSYogig0ymez+jh+nIc+6bNCCCAvbj4tKAcCyWZiST7jSj2C0hjhiiaECuPbKYFwgO39U60EfAdjSt+YPnOj5yvyLb5nBl8R94OWTKSbWpQp2IiIiI1GmXBZ3NH0ufIItsdrs5tC1pwe+DLsNiCSGYZ7z//GWh72q00F3hu13X16ir71JNMt/aBQBEeiO4yDOKBiaiSvuoa4W6Biac79yFAKy1m0ilagt1Zb741+JdcqXuC3KCWGxXkUseLWwK2eSQRz7tTAvWhX7pO++p0lcBaGvSOa/k9+xiD9NKX2EBKymlFAeDi2Uv+TQmjkVhH/iuTTswmM1sx3UtxbaEEBNc00/zqHbYXb7bjYj1XyCVEGdiuC/4Jv5x4F2yyWG3m0u+W0Ckc+JrYapQJyIiIiJ13r9Cnma93cztJY9wt3cqDUw4e9jLI6X/SzQNSKYx0SayWmNoTjNSaUIfpwuJxFdrX+JfPZxTmBH8GmNK7mCuXcbw4vHMCX23SvvIc/cRTywxRBFF9eZuTehs2tHSpLLF7mCN3cAw+lVp+zvtHhoQTgzRpFXxaD2RqhZvYsm1eb4iXRMSj5iiemg5gb12H7d4ruRl73R+YCnRRNLetGSCcwU9PZ1wMOxkT5lrbwwawyve6WTaHfyfO4PRnhE19twqY7vdSSghNKcpLU2qv8OplI9CnufB0udY6K6kTfEZbAudfcIbCalQJyIiIiJ1Xi+nE0Vu8c+LcIfzj9J3GeL0IY4YfiKbdqYlUaaad4L8+fN6MyepXq5RV59Emgj6ebpTXFJMA8JJII4vvXMY5qm64lM2uez++SfOxFRZu/7S3GnKztLdtCSVXYeNfivPPlvAbHcB33kXsdBdQQsnlbuCr6OZSarwmj3kUsB+CthPmAmt6vBFqlQrDhaniigm1SSTbXOIpfz1VWNMFE1NY0opJYRgDIYDFPHb4FG+c9JoWuaaNiaN3TaHtjRnm/2p+p7ICcojn3TTjC0266j/XweS7k5HSigljBDSTTNmunMZ6jn1hNpSoU5ERERE6oV+phu/91zONO8rLGcty921hBLCnc613B184wn/5VukIptDZ9K6aDif2dksLFnJVs+3Vdb27p8Xlm9AeK3fTAKgNc3ZRwE/kkFje/QRp0vsj5xfcqPv/tfuXLp7O3J10IUVXpNtc323NfVVAt15nuHcUHovAFttFgDXey6t8Pzfey5nQtAYHih5FoA/Bd1w1PbbkM5e8tnLeha6K6so6qrzjTuf1XYDHjyk08zf4VTaW0FPklB8Kpvtdu4rffqEC3VVu5WOiIiIiEiAcozDAKcHKSQTTBCRRNDRtCbGiVKRTqqFYxwu9pzJRc6ZNDGNOa1oDJl2R5W03dKkMsD0YIDTo0ra87d4J5bfOqP4rTOSPJvP4KLL8Vpvuedm2z0MdU6lEQ3x4BBBOM96/8nzpW9V2H6RLWag6Ul/050k06i6noZIlejmdOC3zig6mTY0JZFOpi3JpuLdow/tkhxtIok2kcfcNbmVk8ZA05N4YvnE/ZrfFt/EEyUvVelzOFGudYklmgGmB8Od/oQ4If4OqdIinQZcan7Dmc4QmphEHi39+wm1o0KdiIiIiNQbv/EMpYEJp4RS8inkUs9vfOv8SP0WfPo0PD1vwWl1Lp6etxB8+rQqafeh4P+hpUllmV3DHLuYZe7qKmn3S3cOs+3CgJy2dqJeD3mMYkpYbFcx1y5ls91e7nnrbSZfuz+QTQ5eXArZzyq7nvtK/+pbYP/XNrONb+0CvrOLiDFR1fk0RE5aV6c9r4c8xjnO6bQwKZzjnFapPyhNChpXqd9pISaY9k5LdpNLPoX8n/s1r7jvVUXoJ20LWcyy85htFxJUCzdeein0Yea7y3jf/ZzHS1+s8D3paDT1VURERETqlb94buUf3nexWH7jDPF3OBIgPC1G4Wkx6tgnnoDOpg2pNKGQ/axzN3Gy3z1LbAlFFAMQSTWvrVjDLnRGssxdQyH7ecn7bx50bjninMN3cL3KuZBcm8c6u5nt/MTU0lfYY/cyOXhimWuyD7sm0HeRFDnk0Ai56tjsaIznPHa5e5hvl2Fw2G8PUGJLCPbzDrC/K/4z3ehAghPHBM8Yv8Zyop4MvosF7nI+8H7Jw6UvcLZzGi2clEpfrxF1IiIiIlKvnBU0hPdDn+OD0L+RfhwfnEVOVHOnGZlsZy/7+Nj7NftswUm1t49C3+3q3q24pg3w9GQjW8kmly+93x0x/TXLZrOPQt9Im4lBY3gz9EnO8ZzGbnLJZg8/2ewj2s0jnxAOFiAambjqfyIiVWBS0DimhzxTLSO/ezmdeCt0Kn2dbmxhB168rLeZVd7P8Sh1S8liJ8tYw2a7jSGe3n6N50T91jOKYILZzHZKKWWFXXtc16tQJyIiIiIiUo1OMa25P2gSFviORcxwvz+p9vJsvu92VB0bUZdEI8Y452GxLGE1m+y2MscfK/07L3r/hQcPY815tDbNAfhz0O9pSAyleFloVxzR7lq7kWJKaEEKcbb275IrUlW6OO0JJ5Qd7GKd3eTXWDLZwdqfY+hlOvs1lpM13jOaxsSTTyH/8P7ruK7V1FcREREREan33J8W4+5agc3LxESn4iScgpPYrUraDjbBtCCFhkQTQRjb7c6Tam8fBfQ0nXDxkmqaVEmMgcIYQzunBU3dxhygmNtKHuHPwTfQwzmFUlvKLptDGk3JZg+pThM8xuO7LoIwctjL7sN2eAXwWi/NTVMiCCecMBxH41VEDmlOU1JpQkMT4/c1LzfYLfQz3cgjn7Ra/t7W0qQQRwwpJolQjm9DDBXqRERERESk3iv+6BLIP2zzgsgmhP1uTZW138Zpzi72ALDAPXLE1/HYY3NZYJcDMIQ+Jx1boPmfoKvoZNpwTsn1/MfOYn/Jfv4b+hIb7VbedT8FoD0t+XPw78tcF29i2WZ/Yje5WGt9i+/nkMdn7mwARjgDa/bJiAS4Nk5z1rARLLRy0/way0q7jjl2MQA3O+P9GsvJMsYQZRow3y5nkV1Fod1f6WtVqBMREREREalmrUhjoOmJ+/MupSdjN7m+2/Gm4UlGFpg6OW0ZSE/WsJEsm83viv/EDruLVqSRTyHdnY5HXDPI9CKWaHLIY4/dS7yJBcpuPhGvjSREyjj8vangsPUv/SHLZtPXdCMID+1o4ddYqsIY5zzibUNKbAn3lP6Ve7ihUtepUCciIiIiIlLNIpxwNtvtZLKdWBtFkbeI5+3beK2XW4OvOq626kPhKdkk8EXYKzQ+cCqr2UCWu4tc9gEHC3Ivhjx0xDXFpoRv3PkAbGCL77X5ye72ndOojhY2RU5UhBNOJjvYbLfR0Ebjuq7fpocvdFfw/c8j6lo7zf0SQ1X6XdBF3FP0FLnkkeHNrHShTpPzRUREREREakBz0xSAXPbRsKQnfyqdyp+9U9lr9x1XOwW2kCQSSKcZcaZub4zwXsizjDAD2Es+HhzOdU7nueD7yj23FWm0MCk0Jp4tdofv8S12BxGE054WdDCtaihykdrjNOdU0mlGPoXsNHv8Fscau4FmJHGa6UuMifJbHFXFGMMZTn/SaMo2fqr09FcV6kRERERERGpAJBG+2y6WUkppTDzr3M3H1c5u9pLFLjaylcg6tuvrrw1werDb5hJMEB48lFBKK6f8dbQaOjFssFvYyW52HjaKLo98UkwSG9lGHHW7sClyIsJsCHvIpR0t2OJuP/YF1WCvu49mJpliSiihxC8xVIcQQsingLa0IMNuqdQ1KtSJiIiIiIjUgLdDprE3ZBF/8txAOs0AyCKbH8k4rnbyD1tHKtrU7UIdwIzQ18kLW0xe2GLeDp5W4XkJ/DKtNZtfpgcvt2tZYzdygCKamaTqDFWkVkoxTdhLPstZy0a2+iWG7exkoV3BTnaTUst3fD1cB9OK3eSygrWstZsqdY3WqBMREREREakBISYYDES7kSSZRjjWwYOHp0te43vvIlba9Tg4XBt0MZd6flNhO3k233c7qo6PqIOfX7dybv9aEgkMND0pxUvBYVPMsu0vU/kSnUbVE6RILZboxIP34O3sw9bArEmHF9cTTZxfYqgO7Uw6vUwnwgjlJ7urUteoUCciIiIiIlKDJgWNY1LQOG4quZ+/e98FYJm7xnc8uzTnqIW6fAp8tyPrwYi6ykpxkvnWLgAg1Ib4Hs+2ub7bdXXzDZGT0ejw0ah+KtSV2SSnDm360tppzvzS5QDEuZGVukaFOhERERERET+41PMb9tp9ZLiZFFNCJjvIp5D1djPNDwyhl9OZf4X89Yjr8m0hXU07GhNPnI0B44fgA1C8iWWEM4Bsm1Nmg44DFNHNdKApSYSZUD9GKBKYmplkhjh9yLY5ZJHtlxi2uDtoRwsSTBytTfnrUNZGzU1TBpve7COfbHIrdY0KdSIiIiIiIn7Qz+lOv5DuPFX6Kt+482ls4/nKfg8cXLtuobuCc4uux2tdOjvtuDX4ShqZhmxnJz/aDJqSSLgT5udnEVj22UIW2pUkEMdedx/7KOAnm802fsJjtES7SHlSTTIz3bkYDK3cFL/EsJ1dbGALq+0G7jeT/BJDdQg2wWSxizV2I03dhEpdo0KdiIiIiIjUe6HjFmCL9mFL8jEhkZiQqBrre1LQOCYxjp12N15cHir+G15ckp0EpnpfoZD9fOnOYWnxKl4NeYwfbQbhhNHP6VZjMdYWvZxOLPeuYRd7WMcm7i99lu3sJI0mPBt8n7/DEwlIUaYBLU0qm+12FrPaLzEstqsooZQUkmhDc7/EUF36mm5ssVlsJatS56tQJyIiIiIi9Z4JiarR4lx5Gpt4AFp5fpn2FU4YhRzcGGGFXcclRTfTzXSgSDuYlqspiSTSiA6mJUu9qwmxwXQ17dlHPp1NW3+HJxKwggmilNIya8XVpHAbSifTliKKiHfqzhp1AEmmEc1IJMqkM6cShVAV6kRERERERALIpKBxR9y+ovg2/u3+l5/YDfbgsXc8T/kjvIDW2kljvXcz6y00sYl8bL8G4E7PtRijxfxEKhL/84YS+RRywBbV6HqOe+0+/mO/AaC/6VFj/daUlk4aa72bsNZbqfNVqBMREREREQlwrUwqaTTF/fm/BBNHc9PU32EFnDYmnQE/f9HPcrPpZ7rhweEUp42fIxMJbKc6XQlyPeSRzzb7Ey1Nao31Pd37GYNML4LwcLqnX431W1PacfB9qcQU8Y1G1ImIiIiIiBxb6cKn8W7+Crt3MyY6FU/zYQT1uMnfYfncFzyR+4In+jaeGOT0ItgE+zusgNPcNGW+XU4RxUQTSZ7NB2CKud3PkYkEOsssOw+A9e5mWjrVX6iz1mKM4e/ed1lsVwHwiFP3/l9t46Qz2y7UiDoREREREZHKKl30DORvB8Dmrqd0z+qAKtQdcmjjCSmfx3g40xnMCruODLuZVJrQ2MTRmrRjXyxSj13ojOBbdyE/2V38r/sOIxhY7X1eXvI/zHB/IJc8AHqYjrSqg/+vxpgohjv9WWc2sEYj6kRERERERKQ+cXDYZrMII5S97MNrvUQ7/t0oRCTQdXU6sNKuJYJwimxxlbZtreU7u4hZ3nnM9S6hmZPMpZ7fsMluJY+Do14dDDvtHsKdsCrtO1AUU8Jum1upc1WoExERERERkTrjOs8lvO9+gYsLHOA6zyX+Dkkk4Blj6GLaM8cuYob9oUo3lNjBLoYVHzYS2IWX3H8D0JymXGhG8mDoLeTbwirpLxBND34Gb2gJscQe81wV6kRERERERKTOaO+0JIVkNrMNgEQT7+eIRGqHzqYte+0+drGbMSW3c5YzhPFBF5xQW9Za7ih5jHnuUjLZTnOakk0OJZTSgHDiaUgh+2lkGpLgiQMg0kRU5dMJKJEmgjyTV6lzVagTERERERGROiPBxBFjIsEevO+1rn8DEqklkpxGrHTXAfB/7gwy7fYTLtRtZydPu6+Veaw1aaxjM0UUs4e9AHwc/L+0d1qeXOB1jOPvAE7GN998w9lnn02TJk0wxvDBBx/4jpWUlHDnnXfSqVMnGjRoQJMmTRg7dizbt28/apv33XcfxpgyP+3atavmZyIiIiIiIiJVZaJnLKeargw2vTjD09/f4YjUCiOdQdzrTCCWaKJoQCghJ9TO3SXTuL74HlqTRjyxJNKIlqTS1+nOOc7phBJCEB4GmZ60MClV/Cxqv1o9oq6goIAuXbpw1VVXccEFZau8hYWFLFq0iLvvvpsuXbqQk5PDpEmTOOecc1iwYMFR2+3YsSNffvml735QUK1+mUREREREROqVK4LO5Yqgc/0dhkit0tVpT9eQ9rxw4G2yyGaj3UKJW0KwE3zMa3NtHg0I5znvm7zmfZ+f2A3A/Z5JhJqDBb9JQeO4uGgSRRzcrCKTHb5j8otaXYEaNWoUo0aNKvdYTEwMX3zxRZnHnnnmGXr37k1mZiapqakVthsUFERSUlKVxioiIiIiIiIiEujOcU7j3+5n7CKHTWyjNc2Pec0dpY/ypvdjoomkBSm0IJUOTkvuCP5dmfMeDr6NJ80fCbHBZJNTTc+gdqvVhbrjtXfvXowxxMbGHvW8devW0aRJE8LCwujbty8PP/zwUQt7RUVFFBUV+e7n5VVugUARERERERERkUDSyMQRRSQtTAoZdssxC3VFthgsJNCQXeQQb2IJMh7aOOlHnNvC+Xmqq4EE4qoh+tqv3hTqDhw4wJ133smll15KdHR0hef16dOHV155hbZt27Jjxw4mT57MwIEDWbFiBVFRUeVe8/DDDzN58uTqCl1ERERERKqZ07gLbkkhlORDcCRO4y7+DklExC/aOOls9m5js93GSruOkQw86vnb7U5ecz8AoAMt+TD0bzUQZd1VLwp1JSUlXHTRRVhr+dvfjp4wh0+l7dy5M3369CEtLY13332Xq6++utxr7rrrLm699Vbf/by8PFJStCCiiIiIiEhtEXLuu/4OQUQkILQlnX6mGx4cdttjT0/dfdgU1hhT8cAoqZw6X6g7VKTbvHkzM2bMOOpouvLExsbSpk0b1q9fX+E5oaGhhIaGnmyoIiIiIiIiIiJ+1dppzhy7GIAS13vM83fbXN/t05xTqyusesPxdwDV6VCRbt26dXz55ZfEx8cfdxv5+flkZGSQnJxcDRGKiIiIiIiIiASOSBPBmc5g2puWbLM/Ya096vkb3a0k05ie5hTaOi1qKMq6q1YX6vLz81myZAlLliwBYOPGjSxZsoTMzExKSkq48MILWbBgAW+88QZer5esrCyysrIoLi72tXH66afzzDPP+O7fdtttzJo1i02bNjFnzhzOP/98PB4Pl156aU0/PRERERERERGRGldEMRk2k1BC2HWM6a/b2QlYFtgV2iCiCtTqqa8LFixg6NChvvuH1okbN24c9913Hx999BEAXbt2LXPd119/zZAhQwDIyMggOzvbd2zr1q1ceuml7N69m4SEBAYMGMAPP/xAQkJC9T4ZERERERHxm+IPL8Ld9v0vm0k07at160Sk3upi2jGDH1jPZtawgcYVFOC81ss07ysUU0IfutLP6VbDkdY9tbpQN2TIkKMOwTzW8EyATZs2lbn/9ttvn2xYIiIiIiJSy7g7l0JR7sE7RbkH74uI1FMtTSqdTVsiaUCmux2cg0W5h0tfYK67FAeH8UEXEEUk/U0PCijkFNOKUBPi79BrvVpdqBMRERERERERkarV0qSx1K4GoIftyOWcwya7jQe9z/nO2e89QGfTlq/tDwA8EHSzP0Ktc1SoExERERERERERnxamGb1MJ4IJwsvBnV/XuZvpZtqz2m4klBBKbCnZ5NLHdCGEYNqY5v4Nuo5QoU5ERERERERERHySTALz7XIArAuudVnHRhbbHwHYzwEW2OXstjmsZRMxRJFktLZ/VVChTkREREREREREfEJMMNFEkkc+u8llg93C7aWPEkUDIgjHg8N2drKJbXSgJXcFXY8xxt9h1wmOvwMQEREREREREZHA0pZ0WpFKDJF84X5Hb9MZgyGaBgDEEUswwawnk8Ge3n6Otu7QiDoRERERERERESkjwglnvrscLCwuXUUpXjqZNswN/jeO4/BAybN8485noOlJAnH+DrfOUKFORERERERERETK6G06U2pK2WKzSDYJRJkG9DVdcZyDkzOjTSTRJpIYJ0rTXquQCnUiIiIiIiIiIlJGoonnO7sIgEy7nQgbzkehz/uOTwoaxyTG+Su8OkuFOhERERERqfeCuk/Au/kr7N7NmOhUPM2H+TskERG/GukMIiE4nv+UzsI1ljM9g3GMtjqobirUiYiIiIhIvRfU4yaCetzk7zBERAJGKyeNVqSRZXcBcInnLD9HVD+oUCciIiIiIiIiIuWaFKTprTVJYxZFREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAEOTvAOoiay0AeXl5fo5ERERERERERET87VCN6FDNqCIq1FWD3bt3A5CSkuLnSEREREREREREJFDs27ePmJiYCo+rUFcN4uLiAMjMzDzqiy9ysvLy8khJSWHLli1ER0f7Oxypw5RrUlOUa1JTlGtSU5RrUlOUa1JTlGsnxlrLvn37aNKkyVHPU6GuGjjOwaX/YmJilLRSI6Kjo5VrUiOUa1JTlGtSU5RrUlOUa1JTlGtSU5Rrx68yg7m0mYSIiIiIiIiIiEgAUKFOREREREREREQkAKhQVw1CQ0O59957CQ0N9XcoUscp16SmKNekpijXpKYo16SmKNekpijXpKYo16qXscfaF1ZERERERERERESqnUbUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAFCrC3UPP/wwvXr1IioqisaNG3PeeeexZs2aMuccOHCAG2+8kfj4eCIjIxk9ejQ//fST7/jSpUu59NJLSUlJITw8nPbt2/PUU0+VaeO9995j+PDhJCQkEB0dTd++ffnss8+OGZ+1lnvuuYfk5GTCw8MZNmwY69atK3POokWLGD58OLGxscTHx3PttdeSn59/zLaXLVvGwIEDCQsLIyUlhUcffbTM8ZUrVzJ69GiaN2+OMYZp06Yds02pmHKt4lx777336NmzJ7GxsTRo0ICuXbvy+uuvH7NdKZ9yreJce+WVVzDGlPkJCws7ZrtSPuVaxbk2ZMiQI3LNGMNZZ511zLblSMq1inOtpKSE+++/n5YtWxIWFkaXLl3473//e8x2pXz1NdcOHDjA+PHj6dSpE0FBQZx33nlHnLNjxw4uu+wy2rRpg+M43HzzzceMVyqmXKs412bPnk3//v2Jj48nPDycdu3aMXXq1GPGLOVTrlWcazNnziz381pWVtYx4w54thYbMWKEffnll+2KFSvskiVL7JlnnmlTU1Ntfn6+75zrr7/epqSk2K+++souWLDAnnrqqbZfv36+4y+++KKdOHGinTlzps3IyLCvv/66DQ8Pt08//bTvnEmTJtlHHnnEzps3z65du9beddddNjg42C5atOio8U2ZMsXGxMTYDz74wC5dutSec845Nj093e7fv99aa+22bdtsw4YN7fXXX29Xr15t582bZ/v162dHjx591Hb37t1rExMT7eWXX25XrFhh33rrLRseHm5feOEF3znz5s2zt912m33rrbdsUlKSnTp16vG8tPIryrWKc+3rr7+27733nl21apVdv369nTZtmvV4PPa///3vcb3GcpByreJce/nll210dLTdsWOH7ycrK+u4Xl/5hXKt4lzbvXt3mTxbsWKF9Xg89uWXXz6el1h+plyrONfuuOMO26RJE/vJJ5/YjIwM+9xzz9mwsLBjxizlq6+5lp+fb6+//nr7v//7v3bEiBH23HPPPeKcjRs32okTJ9pXX33Vdu3a1U6aNKkSr6hURLlWca4tWrTIvvnmm3bFihV248aN9vXXX7cRERFl3vuk8pRrFefa119/bQG7Zs2aMp/bvF5vZV7agFarC3W/tnPnTgvYWbNmWWutzc3NtcHBwfZf//qX75wff/zRAvb777+vsJ3f//73dujQoUftq0OHDnby5MkVHndd1yYlJdnHHnvM91hubq4NDQ21b731lrXW2hdeeME2bty4TCItW7bMAnbdunUVtv3cc8/Zhg0b2qKiIt9jd955p23btm2556elpalQV8WUa+Xn2iHdunWzf/7zn496jlSOcu2XXHv55ZdtTEzMUZ+DnDjlWsXva1OnTrVRUVFlPhTLiVOu/ZJrycnJ9plnnilz3QUXXGAvv/zyoz4vqZz6kmuHGzduXLlfaA83ePBgFeqqmHLt6M4//3x7xRVXVOpcOTrl2i8OFepycnIq1U5tUqunvv7a3r17AYiLiwNg4cKFlJSUMGzYMN857dq1IzU1le+///6o7Rxqozyu67Jv376jnrNx40aysrLK9B0TE0OfPn18fRcVFRESEoLj/PLPEB4eDhwcMlyR77//nkGDBhESEuJ7bMSIEaxZs4acnJwKr5Oqo1wrP9estXz11VesWbOGQYMGVdiuVJ5yrWyu5efnk5aWRkpKCueeey4rV66ssE05Psq1in+Hvvjii1xyySU0aNCgwnal8pRrv+RaUVHREVP4w8PDj9quVF59yTXxP+VaxRYvXsycOXMYPHhwlbZbXynXjtS1a1eSk5MZPnw43333XZW06W91plDnui4333wz/fv355RTTgEgKyuLkJAQYmNjy5ybmJhY4bzlOXPm8M4773DttddW2Nfjjz9Ofn4+F110UYXnHGo/MTGxwr5PO+00srKyeOyxxyguLiYnJ4c//OEPwMF1JI7WdnntHt6vVB/l2pG5tnfvXiIjIwkJCeGss87i6aefZvjw4RW2K5WjXCuba23btuWll17iww8/5J///Ceu69KvXz+2bt1aYbtSOcq1in+Hzps3jxUrVnDNNddU2KZUnnKtbK6NGDGCJ598knXr1uG6Ll988QXvvffeUduVyqlPuSb+pVwrX7NmzQgNDaVnz57ceOON+j1aBZRrZSUnJ/P8888zffp0pk+fTkpKCkOGDGHRokUn1W4gqDOFuhtvvJEVK1bw9ttvn3AbK1as4Nxzz+Xee+/ljDPOKPecN998k8mTJ/Puu+/SuHFjAN544w0iIyN9P99++22l+uvYsSOvvvoqTzzxBBERESQlJZGenk5iYqKv4tyxY0dfu6NGjTrh5yZVR7l2pKioKJYsWcL8+fP5y1/+wq233srMmTOPqw05knKtrL59+zJ27Fi6du3K4MGDee+990hISOCFF16odBtSPuVaxV588UU6depE7969T+h6KUu5VtZTTz1F69atadeuHSEhIUyYMIErr7yyzMgDOTHKNakpyrXyffvttyxYsIDnn3+eadOm8dZbbx13G1KWcq2stm3bct1119GjRw/69evHSy+9RL9+/erG5iX+nntbFW688UbbrFkzu2HDhjKPf/XVV+XOWU5NTbVPPvlkmcdWrlxpGzdubP/4xz9W2M+hRYA//vjjMo/n5eXZdevW+X4KCwttRkaGBezixYvLnDto0CA7ceLEI9rOysqy+/bts/n5+dZxHPvuu+9aa63dtGmTr92tW7daa60dM2bMEXO0Z8yYYQG7Z8+eI9rWGnVVR7l29Fw75Oqrr7ZnnHFGhcfl2JRrlcu1Cy+80F5yySUVHpdjU65VnGv5+fk2OjraTps2rcLnJZWnXKs41/bv32+3bt1qXde1d9xxh+3QoUOFz0+Orb7l2uG0Rl3NUq6dW2HMh3vggQdsmzZtKnWulE+5dm6FMR/utttus6eeemqlzg1ktbpQ57quvfHGG22TJk3s2rVrjzh+aGHFf//7377HVq9efcTCiitWrLCNGze2t99+e4V9vfnmmzYsLMx+8MEHlY4tKSnJPv74477H9u7dW2ZhxfK8+OKLNiIi4qgLIh5anLi4uNj32F133aXNJKqRcq1yuXbIlVdeaQcPHlyp+KUs5Vrlc620tNS2bdvW3nLLLZWKX8pSrh07115++WUbGhpqs7OzKxW3lE+5Vvn3teLiYtuyZUt71113VSp+Kau+5trhVKirGcq14yueTJ482aalpVXqXClLuXZ8uTZs2DB7/vnnV+rcQFarC3U33HCDjYmJsTNnziyzHW9hYaHvnOuvv96mpqbaGTNm2AULFti+ffvavn37+o4vX77cJiQk2CuuuKJMGzt37vSd88Ybb9igoCD77LPPljknNzf3qPFNmTLFxsbG2g8//NAuW7bMnnvuuWW2KrbW2qefftouXLjQrlmzxj7zzDM2PDzcPvXUU0dtNzc31yYmJtoxY8bYFStW2LfffvuILa+Liors4sWL7eLFi21ycrK97bbb7OLFiyu9s4qUpVyrONceeugh+/nnn9uMjAy7atUq+/jjj9ugoCD797//vdKvr/xCuVZxrk2ePNl+9tlnNiMjwy5cuNBecsklNiwszK5cubLSr6/8QrlWca4dMmDAAHvxxRcf87WUo1OuVZxrP/zwg50+fbrNyMiw33zzjT3ttNNsenp6ndzBribU11yz9uBImcWLF9uzzz7bDhkyxPc94HCHHuvRo4e97LLL7OLFi/U79AQp1yrOtWeeecZ+9NFHdu3atXbt2rX2H//4h42KirJ/+tOfKvPSyq8o1yrOtalTp9oPPvjArlu3zi5fvtxOmjTJOo5jv/zyy8q8tAGtVhfqgHJ/Xn75Zd85+/fvt7///e9tw4YNbUREhD3//PPtjh07fMfvvffects4vOI/ePDgcs8ZN27cUeNzXdfefffdNjEx0YaGhtrTTz/drlmzpsw5Y8aMsXFxcTYkJMR27tzZvvbaa5V67kuXLrUDBgywoaGhtmnTpnbKlClljm/cuLHcmDXK6cQo1yrOtT/96U+2VatWNiwszDZs2ND27dvXvv3225VqW46kXKs4126++WabmppqQ0JCbGJioj3zzDPtokWLKtW2HEm5VnGuWfvLX6M///zzSrUpFVOuVZxrM2fOtO3bt7ehoaE2Pj7ejhkzxm7btq1SbcuR6nOupaWllRvTsV4fjXI6Mcq1inPtr3/9q+3YsaONiIiw0dHRtlu3bva5556zXq+3Uu1LWcq1inPtkUcesS1btrRhYWE2Li7ODhkyxM6YMaNSbQc6Y621iIiIiIiIiIiIiF9pSykREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERkXpsyJAh3HzzzfWubxEREZFApEKdiIiIiFTKzJkzMcaQm5tbJde99957PPDAA1UXoIiIiEgtF+TvAERERESkfoqLi/N3CCIiIiIBRSPqREREROqJgoICxo4dS2RkJMnJyTzxxBNljr/++uv07NmTqKgokpKSuOyyy9i5cycAmzZtYujQoQA0bNgQYwzjx48HwHVdHn74YdLT0wkPD6dLly78+9//PuZ1v5762rx5cx588EFfjGlpaXz00Ufs2rWLc889l8jISDp37syCBQvKxD179mwGDhxIeHg4KSkpTJw4kYKCgqp++URERESqnQp1IiIiIvXE7bffzqxZs/jwww/5/PPPmTlzJosWLfIdLykp4YEHHmDp0qV88MEHbNq0yVdUS0lJYfr06QCsWbOGHTt28NRTTwHw8MMP89prr/H888+zcuVKbrnlFq644gpmzZp11OvKM3XqVPr378/ixYs566yzGDNmDGPHjuWKK65g0aJFtGzZkrFjx2KtBSAjI4ORI0cyevRoli1bxjvvvMPs2bOZMGFCdbyEIiIiItXK2EOfckRERESkzsrPzyc+Pp5//vOf/Pa3vwVgz549NGvWjGuvvZZp06Ydcc2CBQvo1asX+/btIzIykpkzZzJ06FBycnKIjY0FoKioiLi4OL788kv69u3ru/aaa66hsLCQN998s9zr4OCIuq5du/r6bt68OQMHDuT1118HICsri+TkZO6++27uv/9+AH744Qf69u3Ljh07SEpK4pprrsHj8fDCCy/42p09ezaDBw+moKCAsLCwKnwVRURERKqX1qgTERERqQcyMjIoLi6mT58+vsfi4uJo27at7/7ChQu57777WLp0KTk5ObiuC0BmZiYdOnQot93169dTWFjI8OHDyzxeXFxMt27djjvOzp07+24nJiYC0KlTpyMe27lzJ0lJSSxdupRly5bxxhtv+M6x1uK6Lhs3bqR9+/bHHYOIiIiIv6hQJyIiIiIUFBQwYsQIRowYwRtvvEFCQgKZmZmMGDGC4uLiCq/Lz88H4JNPPqFp06ZljoWGhh53HMHBwb7bxpgKHztURMzPz+e6665j4sSJR7SVmpp63P2LiIiI+JMKdSIiIiL1QMuWLQkODmbu3Lm+AlZOTg5r165l8ODBrF69mt27dzNlyhRSUlIAjti0ISQkBACv1+t7rEOHDoSGhpKZmcngwYPL7bu866pK9+7dWbVqFa1atarytkVERERqmjaTEBEREakHIiMjufrqq7n99tuZMWMGK1asYPz48TjOwY+DqamphISE8PTTT7NhwwY++ugjHnjggTJtpKWlYYzh448/ZteuXeTn5xMVFcVtt93GLbfcwquvvkpGRgaLFi3i6aef5tVXX63wuqpy5513MmfOHCZMmMCSJUtYt24dH374oTaTEBERkVpJhToRERGReuKxxx5j4MCBnH322QwbNowBAwbQo0cPABISEnjllVf417/+RYcOHZgyZQqPP/54meubNm3K5MmT+cMf/kBiYqKvGPbAAw9w99138/DDD9O+fXtGjhzJJ598Qnp6+lGvqwqdO3dm1qxZrF27loEDB9KtWzfuuecemjRpUmV9iIiIiNQU7foqIiIiIiIiIiISADSiTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgEgyN8BiIiISN3jui4HDhzwdxgiEmDCwsJwHI0VEBERqYgKdSIiIlKlioqKWLVqFa7r+jsUEQkwjuPQoUMHQkND/R2KiIhIQDLWWuvvIERERKRusNaydu1aiouLSU9P18gZEfFxXZeNGzcSEhJCmzZtMMb4OyQREZGAo0KdiIiIVJni4mKWL19Oeno6cXFx/g5HRALMnj172LhxI5s3b6Zv374kJyf7OyQREZGAoj9zi4iISJUpLS0F0LQ2ESnXofeG7du388knn5CVleXniERERAKLCnUiIiJS5TSlTUTKc+i9ISkpiaysLFauXOnniERERAKLCnUiIiIiIlKjjDGEh4eTm5vr71BEREQCigp1IiIiIscwc+ZMjDEqKlSTqnp9N23ahDGGJUuWVElcx2vIkCHcfPPNfum7ttJy2SIiImUF+TsAEREREanf+vXrx44dO4iJiTmpdlJSUtixYweNGjWqosjKN3PmTIYOHUpOTg6xsbG+x9977z2Cg4Orte9jGTJkCF27dmXatGl+jUNEREROjAp1IiIiIuJXISEhJCUlnXQ7Ho+nSto5UdrpWERERE6Wpr6KiIhItbih5F4GF13u158bSu6tdLxFRUVMnDiRxo0bExYWxoABA5g/f3655xYWFjJq1Cj69++v6bC/MmTIEG666SZuvvlmGjZsSGJiIn//+98pKCjgyiuvJCoqilatWvGf//zHd82vp75u3ryZs88+m4YNG9KgQQM6duzIp59+CkBOTg6XX345CQkJhIeH07p1a15++WXgyKmvh9r96quv6NmzJxEREfTr1481a9aUifnBBx+kcePGREVFcc011/CHP/yBrl27lvv8Nm3axNChQwFo2LAhxhjGjx/ve+6HT31t3rw5Dz74IGPHjiUyMpK0tDQ++ugjdu3axbnnnktkZCSdO3dmwYIFZfqYPXs2AwcOJDw8nJSUFCZOnEhBQYHv+HPPPUfr1q0JCwsjMTGRCy+8EIDx48cza9YsnnrqKYwxGGPYtGkTXq+Xq6++mvT0dMLDw2nbti1PPfVUmT7Hjx/Peeedx0MPPURiYiKxsbHcf//9lJaWcvvttxMXF0ezZs18r/Xhr/fbb79Nv379CAsL45RTTmHWrFkVpYeIiIgcg0bUiYiISLVY5a5nrl3q3yDcyp96xx13MH36dF599VXS0tJ49NFHGTFiBOvXry9zXm5uLmeddRaRkZF88cUXREREVHHQtd+rr77KHXfcwbx583jnnXe44YYbeP/99zn//PP54x//yNSpUxkzZgyZmZnlvn433ngjxcXFfPPNNzRo0IBVq1YRGRkJwN13382qVav4z3/+Q6NGjVi/fj379+8/ajx/+tOfeOKJJ0hISOD666/nqquu4rvvvgPgjTfe4C9/+QvPPfcc/fv35+233+aJJ54gPT293LZSUlKYPn06o0ePZs2aNURHRxMeHl5h31OnTuWhhx7i7rvv9j3vfv36cdVVV/HYY49x5513MnbsWFauXIkxhoyMDEaOHMmDDz7ISy+9xK5du5gwYQITJkzg5ZdfZsGCBUycOJHXX3+dfv36sWfPHr799lsAnnrqKdauXcspp5zC/fffD0BCQgKu69KsWTP+9a9/ER8fz5w5c7j22mtJTk7moosu8sU6Y8YMmjVrxjfffMN3333H1VdfzZw5cxg0aBBz587lnXfe4brrrmP48OE0a9bMd93tt9/OtGnT6NChA08++SRnn302GzduJD4+/qj/LiIiInIkY7WCq4iIiFSRwsJCfvzxR9q3b88oz+/8XqjrY7owK/SNY55XUFBAw4YNeeWVV7jssssAKCkpoXnz5tx888306tWLoUOH8uOPP3LxxRfTunVr3nzzTUJCQqr7KRzB5mdhC7LKPhgWixPTHFt6ALt79RHXOIldAXD3rIWSwjLHTEwqJiwOW7gLu29b2QtDInEatjqu+IYMGYLX6/UVj7xeLzExMVxwwQW89tprAGRlZZGcnMz333/PqaeeesSab507d2b06NHce++RIyLPOeccGjVqxEsvvXTEsU2bNpGens7ixYvp2rWrr90vv/yS008/HYBPP/2Us846i/379xMWFsapp55Kz549eeaZZ3ztDBgwgPz8/Ao3pahojbpfrw/XvHlzBg4cyOuvv17med99992+QtoPP/xA37592bFjB0lJSVxzzTV4PB5eeOEFX7uzZ89m8ODBFBQU8Omnn3LllVeydetWoqKiyn39K7NG3YQJE8jKyuLf//43cHBE3cyZM9mwYQOOc3DSTbt27WjcuDHffPMN8Mu/5T/+8Q8uueQS3+s9ZcoU7rzzTgBKS0tJT0/npptu4o477jii30PvEZs2bWLTpk2kpaX5RgSKiIiIRtSJiIiIkJGRQUlJCf379/c9FhwcTO/evfnxxx/p1asXAMOHD6d379688847eDwev8RauvwlvD88XOYxp93FhIz6BzZ/G8VvDjzimrBb9gFQ8vn12B1lp/MGj/w7nvaX4F37PqVf/0/ZdtNOJ+SCD447xs6dO/tuezwe4uPj6dSpk++xxMREAHbu3Fnu9RMnTuSGG27g888/Z9iwYYwePdrX5g033MDo0aNZtGgRZ5xxBueddx79+vWrdDzJycm+vlNTU1mzZg2///3vy5zfu3dvZsyYcRzPuHJ9H3reFb0WSUlJLF26lGXLlvHGG78UmK21uK7Lxo0bGT58OGlpabRo0YKRI0cycuRIzj///GOO7Hz22Wd56aWXyMzMZP/+/RQXFx8xvbdjx46+It2h2E455RTf/UP/lr/+d+vbt6/vdlBQED179uTHH3881ksjIiIi5VChTkRERKSSzjrrLKZPn86qVavKFFtqUlCnq/C0OLPsg2GxAJjIpoRc9m2F1waf8Xy5I+oAPG3Ox0nuXfaCkMgTivHXO58aY8o8ZowBwHXLn5t8zTXXMGLECD755BM+//xzHn74YZ544gluuukmRo0axebNm/n000/54osvOP3007nxxht5/PHHKxXPsfquauX1fbR48vPzue6665g4ceIRbaWmphISEsKiRYuYOXMmn3/+Offccw/33Xcf8+fPLzO673Bvv/02t912G0888QR9+/YlKiqKxx57jLlz51YY66HYynuspl47ERGR+kiFOhEREakWHZxWx7VGXLXFUAktW7YkJCSE7777jrS0NODg1Nf58+eX2RxgypQpREZGcvrppzNz5kw6dOhQHWEflYlMwkSWv7OpCQrD/DzNtTxOXJuK241IwEQknGx4VSYlJYXrr7+e66+/nrvuuou///3v3HTTTcDBddfGjRvHuHHjGDhwILfffvtRC3VH07ZtW+bPn8/YsWN9j1W0icghh6Y8e73eE+rzaLp3786qVato1ari3A0KCmLYsGEMGzaMe++9l9jYWGbMmMEFF1xASEjIEXF999139OvXr8zIwYyMjCqL+YcffmDQoEHAwamvCxcuZMKECVXWvoiISH2iQp2IiIhUi78FT/Z3CJXWoEEDbrjhBt/ulqmpqTz66KMUFhZy9dVXs3TpL2vtPf7443i9Xk477TRmzpxJu3bt/Bh53XTzzTczatQo2rRpQ05ODl9//TXt27cH4J577qFHjx507NiRoqIiPv74Y9+xE3HTTTfxu9/9jp49e9KvXz/eeecdli1bRosWLSq8Ji0tDWMMH3/8MWeeeSbh4eG+zS5O1p133smpp57KhAkTuOaaa3ybaXzxxRc888wzfPzxx2zYsIFBgwbRsGFDPv30U1zXpW3btsDBdfHmzp3Lpk2biIyMJC4ujtatW/Paa6/x2WefkZ6ezuuvv878+fMr3DDjeD377LO0bt2a9u3bM3XqVHJycrjqqquqpG0REZH6xjn2KSIiIiJ135QpUxg9ejRjxoyhe/furF+/ns8++4yGDRsece7UqVO56KKLOO2001i7dq0foq3bvF4vN954I+3bt2fkyJG0adOG5557Djg4mu2uu+6ic+fODBo0CI/Hw9tvv33CfV1++eXcdddd3HbbbXTv3p2NGzcyfvx4wsLCKrymadOmTJ48mT/84Q8kJiZW6eixzp07M2vWLNauXcvAgQPp1q0b99xzD02aNAEgNjaW9957j9NOO4327dvz/PPP89Zbb9GxY0cAbrvtNjweDx06dCAhIYHMzEyuu+46LrjgAi6++GL69OnD7t27j1iX72RMmTKFKVOm0KVLF2bPns1HH31Eo0aNqqx9ERGR+kS7voqIiEiVOXzX12Mtbi8SqIYPH05SUpJvt1Yp36932a0M7foqIiJydJr6KiIiIiL1VmFhIc8//zwjRozA4/Hw1ltv8eWXX/LFF1/4OzQRERGph1SoExEREZF6yxjDp59+yl/+8hcOHDhA27ZtmT59OsOGDfN3aCIiIlIPqVAnIiIiIvVWeHg4X375pb/DqJWaN2+OVtERERGpWtpMQkREREREREREJACoUCciIiJVTqNsRKQ8em8QERE5OhXqREREpMoEBR1cVaOoqMjPkYhIIDr03lBaWurnSERERAKT1qgTERGRKhMcHExkZCTbtm0jJCQEx9HfBEXkINd12bJlC4WFhXi9Xn+HIyIiEpBUqBMREZEqY4yhefPmrFy5kjVr1vg7HBEJMK7rkpWVBYDX6yU8PNzPEYmIiAQWFepERESkSoWGhtKmTRs+/vhjsrOzSUxM1Mg6EcFaS0lJCa7rkpeXh7WW5ORkf4clIiISUIzViq4iIiJSDXbt2sUnn3ziGz0jIgIHC3ahoaH06tWL/v37q5AvIiJyGBXqREREpNrk5eWxa9cuDhw44O9QRCRAOI5DZGQkTZs2VZFORETkV1SoExERERERERERCQD6E5aIiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEgP8HUVKE05Gal5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "favorite_station.make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "d15ba9cb-5914-4d06-9fd9-4ad7c547b0ec", + "metadata": {}, + "source": [ + "## Resampling the time resolution\n", + "\n", + "Coarsening the time resolution (i.g. frequency) of your data can be done by using the [coarsen_time_resolution()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.coarsen_time_resolution)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "02f28392-3c7b-4dbd-b535-85c42ba874f5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tempradiation_temphumidityprecipprecip_sumwind_speedwind_gustwind_directionpressurepressure_at_sea_level
namedatetime
vlinder012022-09-01 00:00:00+00:0018.8NaN650.00.05.611.365101739102005.0
2022-09-01 00:30:00+00:0018.7NaN650.00.05.49.785101732101999.0
2022-09-01 01:00:00+00:0018.4NaN650.00.05.18.155101736102003.0
2022-09-01 01:30:00+00:0018.0NaN650.00.07.112.955101736102003.0
2022-09-01 02:00:00+00:0017.1NaN680.00.05.79.745101723101990.0
\n", + "
" + ], + "text/plain": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65 0.0 \n", + " 2022-09-01 00:30:00+00:00 18.7 NaN 65 0.0 \n", + " 2022-09-01 01:00:00+00:00 18.4 NaN 65 0.0 \n", + " 2022-09-01 01:30:00+00:00 18.0 NaN 65 0.0 \n", + " 2022-09-01 02:00:00+00:00 17.1 NaN 68 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:30:00+00:00 0.0 5.4 9.7 \n", + " 2022-09-01 01:00:00+00:00 0.0 5.1 8.1 \n", + " 2022-09-01 01:30:00+00:00 0.0 7.1 12.9 \n", + " 2022-09-01 02:00:00+00:00 0.0 5.7 9.7 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65 101739 \n", + " 2022-09-01 00:30:00+00:00 85 101732 \n", + " 2022-09-01 01:00:00+00:00 55 101736 \n", + " 2022-09-01 01:30:00+00:00 55 101736 \n", + " 2022-09-01 02:00:00+00:00 45 101723 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:30:00+00:00 101999.0 \n", + " 2022-09-01 01:00:00+00:00 102003.0 \n", + " 2022-09-01 01:30:00+00:00 102003.0 \n", + " 2022-09-01 02:00:00+00:00 101990.0 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.coarsen_time_resolution(freq='30T') #'30T' means 30 minutes\n", + "\n", + "your_dataset.df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "2c4cbdce-829d-4202-81e0-6ca74dde05b4", + "metadata": {}, + "source": [ + "## Introduction exercise\n", + "\n", + "For a more detailed reference, you can use this [introduction exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Introduction_01.ipynb), that was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summerschool 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/examples/filling_example.html b/docs/_build/examples/filling_example.html new file mode 100644 index 00000000..d90308f3 --- /dev/null +++ b/docs/_build/examples/filling_example.html @@ -0,0 +1,566 @@ + + + + + + + Demo example: filling gaps and missing observations — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Demo example: filling gaps and missing observations

+

This example is the continuation of the previous example: Apply quality control. This example serves as a demonstration of how to fill missing observations and gaps.

+
+
[1]:
+
+
+
import metobs_toolkit
+your_dataset = metobs_toolkit.Dataset()
+your_dataset.update_settings(
+    input_data_file=metobs_toolkit.demo_datafile, # path to the data file
+    input_metadata_file=metobs_toolkit.demo_metadatafile,
+    template_file=metobs_toolkit.demo_template,
+)
+
+
+
+
+

Missing observations and Gaps

+

When there is no (specific) observation value for a timestamp we have a missing observation. If there are multiple consecutive timestamps without an observation value and the number of consecutive missing timestamps >= the gapsize threshold, we label the period as a gap.

+

The default gapsize is set to 40. As mentioned before, the gaps and missing observations are localized when importing the data from file. To change the default gapsize use:

+
+
[2]:
+
+
+
your_dataset.update_qc_settings(gapsize_in_records = 20)
+
+#Update the gapsize BEFORE importing the data
+your_dataset.import_data_from_file()
+
+your_dataset.coarsen_time_resolution(freq='15T')
+
+
+
+
+
+

Inspect missing observations

+

To get an overview of the missing observation use the .get_info() method on the missing observations.

+
+
[3]:
+
+
+
your_dataset.missing_obs.get_info()
+
+
+
+
+
+
+
+
+
+ -------- Missing observations info --------
+
+(Note: missing observations are defined on the frequency estimation of the native dataset.)
+  * 3 missing observations
+
+ name
+vlinder02   2022-09-10 17:10:00+00:00
+vlinder02   2022-09-10 17:15:00+00:00
+vlinder02   2022-09-10 17:45:00+00:00
+Name: datetime, dtype: datetime64[ns, UTC]
+
+  * For these stations: ['vlinder02']
+  * The missing observations are not filled.
+(More details on the missing observation can be found in the .series and .fill_df attributes.)
+
+
+

These missing observations are indicated in time series plots as vertical lines:

+
+
[4]:
+
+
+
your_dataset.get_station('vlinder02').make_plot(colorby='label')
+
+
+
+
+
[4]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur of vlinder02'}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_filling_example_7_1.png +
+
+
+
+

Inspect gaps

+

To get an overview of the gaps use the .get_gap_info() method on the missing Dataset.

+
+
[5]:
+
+
+
your_dataset.get_gaps_info()
+
+
+
+
+
+
+
+
+There are no gaps.
+
+
+
+
+

Outliers to gaps and missing observations

+

In practice the observations that are labeled as outliers are interpreted as missing observations (because we assume that the observation value is erroneous). In the toolkit it is possible to convert the outliers to missing observations and gaps by using the update_gaps_and_missing_from_outliers().

+
+
[6]:
+
+
+
#first apply (default) quality control
+your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example
+
+#Interpret the outliers as missing observations and gaps.
+your_dataset.update_gaps_and_missing_from_outliers(obstype='temp',
+                                                   n_gapsize=None) #It is possible to change the definition of gapsize.
+#Inspect your gaps using a printout or by plotting
+#your_dataset.get_gaps_info()
+your_dataset.make_plot(colorby='label')
+
+
+
+
+
[6]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur for all stations. '}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_filling_example_11_1.png +
+
+

When plotting a single station, the figure becomes more clear

+
+
[7]:
+
+
+
your_dataset.get_station('vlinder05').make_plot(colorby='label')
+
+
+
+
+
[7]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur of vlinder05'}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_filling_example_13_1.png +
+
+
+
+

Fill missing observations

+

Missing observations typically span short periods, so interpolation is the most suitable method for filling the observations. To interpolate values over the missing timestamps use the fill_missing_obs_linear() method. The specific settings that are used for the interpolation can be changed with the +update_gap_and_missing_fill_settings() method.

+
+
[8]:
+
+
+
#Update the specific settings
+your_dataset.update_gap_and_missing_fill_settings(missing_obs_interpolation_method = 'time')
+
+#Interpolate the missing timestamps
+your_dataset.fill_missing_obs_linear(obstype='temp')
+
+#Inspect the filled values by plotting or printing out the info.
+your_dataset.get_station('vlinder05').make_plot(colorby='label')
+your_dataset.missing_obs.get_info()
+
+
+
+
+
+
+
+
+
+ -------- Missing observations info --------
+
+(Note: missing observations are defined on the frequency estimation of the native dataset.)
+  * 892 missing observations
+  * For 28 stations
+  * Missing observations are filled with interpolate for:
+    temp:
+                                           temp
+name      datetime
+vlinder01 2022-09-14 17:45:00+00:00  14.657143
+          2022-09-14 18:45:00+00:00  14.485714
+          2022-09-14 18:30:00+00:00  14.528571
+          2022-09-14 18:15:00+00:00  14.571429
+          2022-09-14 18:00:00+00:00  14.614286
+...                                        ...
+vlinder28 2022-09-12 07:15:00+00:00  13.600000
+          2022-09-05 18:15:00+00:00  21.300000
+          2022-09-14 18:00:00+00:00  14.800000
+          2022-09-14 08:45:00+00:00  15.025000
+          2022-09-14 18:15:00+00:00  14.800000
+
+[891 rows x 1 columns]
+  * Missing observations that could NOT be filled for:
+    temp:
+ MultiIndex([('vlinder02', '2022-09-10 17:10:00+00:00')],
+           names=['name', 'datetime'])
+(More details on the missing observation can be found in the .series and .fill_df attributes.)
+
+
+
+
+
+
+../_images/examples_filling_example_15_1.png +
+
+
+
+

Fill gaps

+

Because gaps can span longer periods, interpolation is not (always) the most suitable method to fill the gaps. The following method can be used to fill the gaps: * interpolation: linear interpolation of the gaps. Use the fill_gaps_linear() method for this. * Debias ERA5 gapfill: Use ERA5 and a debiasing algorithm to fill the gaps by calling the +fill_gaps_era5() method. * Automatic gapfill: A combination of the interpolation and ERA5-debias. For the shortest gaps interpolation is used and debias-ERA5 for the longer gaps. Use the +fill_gaps_automatic() method for this.

+

Here is an example of using debias ERA5 gapfilling of temperature observations.

+
+
[9]:
+
+
+
#Update the settings (definition of the period to calculate biases for)
+your_dataset.update_gap_and_missing_fill_settings(
+                                                  gap_debias_prefered_leading_period_hours=24,
+                                                  gap_debias_prefered_trailing_period_hours=24,
+                                                  gap_debias_minimum_leading_period_hours=6,
+                                                  gap_debias_minimum_trailing_period_hours=6,
+                                                  )
+#(As a demonstration, we will fill the gaps of a single station. The following functions can also be
+# directly applied to the dataset.)
+your_station = your_dataset.get_station('vlinder05')
+
+
+#Get ERA5 modeldata at the location of your stations and period.
+ERA5_modeldata = your_station.get_modeldata(modelname='ERA5_hourly',
+                                                                    obstype='temp')
+
+#Use the debias method to fill the gaps
+gapfill_df = your_station.fill_gaps_era5(modeldata=ERA5_modeldata,
+                                         method='debias',
+                                         obstype='temp')
+
+
+
+
+
+
+
+

To authorize access needed by Earth Engine, open the following + URL in a web browser and follow the instructions:

+

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=gOIKcfY39t-LaSM_esufmUl1XAlzLqE3KVIYY7vUJ04&tc=5laNPc-Y_M4z8qVxTUtp71dwfdgRuNHjkYgSdWvirrQ&cc=3Auxy8YEGzBho3lWk01G2QP8A9QF5VEoEoHxuxl65-0

+

The authorization workflow will generate a code, which you should paste in the box below.

+
+
+
+
+
+
+Enter verification code:  4/1AfJohXnKdN9MAKx-q9l7U6FHNF4FR7u6VH8zU5WXCgT1sZMJKO7TfV3G3ig
+
+
+
+
+
+
+
+
+Successfully saved authorization token.
+
+
+
+
+
+
+
+*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API
+
+
+
+
+
+
+
+(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)
+
+
+

The gaps in the station are now filled. To inspect these filled values, you can plot them

+
+
[10]:
+
+
+
your_station.make_plot(colorby='label')
+
+
+
+
+
[10]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur of vlinder05'}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_filling_example_19_1.png +
+
+

If you want more details you can inspect the DataFrame with the gapfill values, or print out the information.

+
+
[16]:
+
+
+
#inspect the gapfilldf attribute direct
+your_station.gapfilldf.head()
+
+#or print out info
+#your_station.get_gaps_info()
+
+
+
+
+
[16]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
temp_final_labeltemp
namedatetime
vlinder052022-09-01 19:45:00+00:00gap_debiased_era520.470136
2022-09-01 20:00:00+00:00gap_debiased_era520.200433
2022-09-01 20:15:00+00:00gap_debiased_era520.018491
2022-09-01 20:30:00+00:00gap_debiased_era519.836549
2022-09-01 20:45:00+00:00gap_debiased_era519.654607
+
+
+
+
+

Filling gaps exercise

+

For a more detailed reference you can use this Filling gaps exercise, which was created in the context of the COST FAIRNESS summer school 2023 in Ghent.

+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/filling_example.ipynb b/docs/_build/examples/filling_example.ipynb new file mode 100644 index 00000000..185a1b70 --- /dev/null +++ b/docs/_build/examples/filling_example.ipynb @@ -0,0 +1,592 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "22d1edf5-474a-4d54-a156-8db22360fc6e", + "metadata": {}, + "source": [ + "# Demo example: filling gaps and missing observations\n", + "\n", + "This example is the continuation of the previous example: [Apply quality control](https://vergauwenthomas.github.io/MetObs_toolkit/examples/qc_example.html). This example serves as a demonstration of how to fill missing observations and gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1353eb89-00b1-4595-b3ff-6cbe91ee2316", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "70c58a51-8c28-4045-a078-8e7ad4ea4284", + "metadata": {}, + "source": [ + "## Missing observations and Gaps\n", + "\n", + "When there is no (specific) observation value for a timestamp we have a *missing observation*. If there are multiple consecutive timestamps without an observation value and the number of consecutive missing timestamps >= the *gapsize* threshold, we label the period as a gap. \n", + "\n", + "The default gapsize is set to 40. As mentioned before, the gaps and missing observations are localized when importing the data from file. To change the default gapsize use:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4c071bd3-3094-4efe-b7a6-6184c5fc133b", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_qc_settings(gapsize_in_records = 20) \n", + "\n", + "#Update the gapsize BEFORE importing the data\n", + "your_dataset.import_data_from_file()\n", + "\n", + "your_dataset.coarsen_time_resolution(freq='15T')" + ] + }, + { + "cell_type": "markdown", + "id": "19735eeb-84b7-4109-a26a-4dbde3c38f09", + "metadata": {}, + "source": [ + "## Inspect missing observations\n", + "\n", + "To get an overview of the missing observation use the .get_info() method on the missing observations." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "08520854-25db-4742-8006-3f21b066c5cb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n" + ] + } + ], + "source": [ + "your_dataset.missing_obs.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "04cecab3-7117-477f-bade-36d007ca2ade", + "metadata": {}, + "source": [ + "These missing observations are indicated in time series plots as vertical lines:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "eb684e4f-ffc0-4766-a442-5b58ac873e50", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU9fnA8c93NvedEJJwBAhXuBFBUPDAC1DbSq31aFVQ64m2aKutttVWrVe9Wm1ttd5Hf60H1hMvFEUBBTkEJNw3Cbnvc+f7+yPsZpYEcu3uzG6e9+vly83u7Mw3S5KdfeY5lNZaI4QQQgghhBBCCCGEsJVh9wKEEEIIIYQQQgghhBASqBNCCCGEEEIIIYQQwhEkUCeEEEIIIYQQQgghhANIoE4IIYQQQgghhBBCCAeQQJ0QQgghhBBCCCGEEA4ggTohhBBCCCGEEEIIIRxAAnVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHAACdQJIYQQQgghhBBCCOEAEqgTQgghhBCOV1VVxc9+9jOysrJQSjF//vxu71MpxR/+8Afv188++yxKKXbs2NHtfQdyn0IIIYQIXxKoE0IIIUTIUkp16L9PP/3U7qXa5u9//zvPPvus3cvotrvvvptnn32Wa665hhdeeIGLL77Y7iXZbu/evZx33nmkpKSQlJTE2WefzbZt23y22b17N3/84x+ZPHkyqamppKenM336dD766CObVi2EEEKII4mwewFCCCGEEF31wgsv+Hz9/PPP8+GHH7a6f+TIkcFclqP8/e9/Jz09nblz59q9lG5ZtGgRxx57LLfffnvAjnHxxRdzwQUXEB0dHbBj+EtVVRUnn3wy5eXl3HrrrURGRvLwww9z0kknsXr1anr16gXA//73P+677z5mz57NnDlzaGpq4vnnn+f000/n6aef5tJLL7X5OxFCCCGElQTqhBBCCBGyLrroIp+vly1bxocfftjq/nChtaauro7Y2Fi7l9Jh1dXVxMfHd3s/Bw4cYNSoUX5Y0eG5XC5cLldAj9Fdntfz73//O5s3b+arr77imGOOAeCMM85gzJgxPPjgg9x9990AnHzyyezatYv09HTvPq6++mqOOuoobrvtNgnUCSGEEA4jpa9CCCGECGumafLII48wevRoYmJiyMzM5KqrrqK0tNRnu0GDBvG9732PTz/9lEmTJhEbG8vYsWO9ZbOvv/46Y8eOJSYmhokTJ7Jq1Sqf58+dO5eEhAS2bdvGzJkziY+Pp2/fvtxxxx1orbu1pvfff9+7pn/+858APPPMM5xyyilkZGQQHR3NqFGjePzxx1s9f/369SxevNhbBjx9+nQA/vCHP6CUavV6tdVT7dBebtb9WzP1PM9dvHgx1157LRkZGfTv37/V86wOHDjA5ZdfTmZmJjExMYwfP57nnnvO+/inn36KUort27fzzjvveL+Pw/V8GzNmDCeffHKr+03TpF+/fpx77rmHXUtb37vn32DJkiVMnjyZmJgYBg8ezPPPP9/q+evXr+eUU04hNjaW/v37c9ddd2GaZpvHeu+99zjhhBOIj48nMTGRs846i/Xr1/ts4/mZ2rp1K2eeeSaJiYn89Kc/BeDVV1/lmGOO8QbpAEaMGMGpp57Kf//7X+99o0eP9gnSAURHR3PmmWeyZ88eKisrD/t6CCGEECL4JKNOCCGEEGHtqquu4tlnn+XSSy/l5z//Odu3b+exxx5j1apVfPHFF0RGRnq33bJlCz/5yU+46qqruOiii3jggQf4/ve/zz/+8Q9uvfVWrr32WgDuuecezjvvPPLy8jCMluuebrebWbNmceyxx3L//fezcOFCbr/9dpqamrjjjju6tKa8vDwuvPBCrrrqKq644gpyc3MBePzxxxk9ejQ/+MEPiIiI4K233uLaa6/FNE3mzZsHwCOPPML1119PQkICv/3tbwHIzMwM3It90LXXXkvv3r257bbbqK6uPux2tbW1TJ8+nS1btnDdddeRk5PDK6+8wty5cykrK+MXv/gFI0eO5IUXXuCGG26gf//+/PKXvwSgd+/ebe7z/PPP5w9/+AP5+flkZWV571+yZAn79u3jggsu6PT3s2XLFs4991wuv/xy5syZw9NPP83cuXOZOHEio0ePBiA/P5+TTz6ZpqYmfvOb3xAfH88TTzzRZvbjCy+8wJw5c5g5cyb33XcfNTU1PP744xx//PGsWrWKQYMGebdtampi5syZHH/88TzwwAPExcVhmiZr167lsssua7XvyZMn88EHH1BZWUliYuJhv6f8/Hzi4uKIi4vr9OshhBBCiADSQgghhBBhYt68edp6evP5559rQL/00ks+2y1cuLDV/QMHDtSA/vLLL733vf/++xrQsbGxeufOnd77//nPf2pAf/LJJ9775syZowF9/fXXe+8zTVOfddZZOioqShcWFnZ5TQsXLmz1vdbU1LS6b+bMmXrw4ME+940ePVqfdNJJrba9/fbbdVungs8884wG9Pbt2733Afr2229vte3AgQP1nDlzWj33+OOP101NTa22P9QjjzyiAf3iiy9672toaNDHHXecTkhI0BUVFT7HOuuss9rdZ15engb0o48+6nP/tddeqxMSEnxet0O/r7a+d8+/wWeffea978CBAzo6Olr/8pe/9N43f/58Dejly5f7bJecnOyzz8rKSp2SkqKvuOIKn/Xl5+fr5ORkn/s9P1O/+c1vfLYtLCzUgL7jjjtaff9/+9vfNKA3btx42Ndo8+bNOiYmRl988cWH3UYIIYQQ9pDSVyGEEEKErVdeeYXk5GROP/10ioqKvP9NnDiRhIQEPvnkE5/tR40axXHHHef9esqUKQCccsopDBgwoNX9h07YBLjuuuu8t5VSXHfddTQ0NHinbHZ2TTk5OcycObPVcayZWuXl5RQVFXHSSSexbds2ysvLO/waBcIVV1zRoV5v7777LllZWVx44YXe+yIjI/n5z39OVVUVixcv7vSxhw8fzlFHHcV//vMf731ut5tXX32V73//+13q7zdq1ChOOOEE79e9e/cmNzfX59//3Xff5dhjj2Xy5Mk+23lKVT0+/PBDysrKuPDCC33+/V0uF1OmTGn17w9wzTXX+HxdW1sL0ObQi5iYGJ9tDlVTU8OPf/xjYmNjuffee9v71oUQQggRZFL6KoQQQoiwtXnzZsrLy8nIyGjz8QMHDvh8bQ3GASQnJwOQnZ3d5v2H9pQzDIPBgwf73Dd8+HAAb9+zzq4pJyenze2++OILbr/9dpYuXUpNTY3PY+Xl5d412uFwaz7Uzp07GTZsmE/5MLRM6d25c2eXjn/++edz6623snfvXvr168enn37KgQMHOP/887u0v0N/LgBSU1N9/v137tzpDeBaeUqVPTZv3gw0B3/bkpSU5PN1REREqz5/nmBjfX19q+fX1dX5bGPldru54IIL2LBhA++99x59+/Ztcw1CCCGEsI8E6oQQQggRtkzTJCMjg5deeqnNxw/tc3a4LLDD3a8PGRIRiDW1FXDZunUrp556KiNGjOChhx4iOzubqKgo3n33XR5++OHDDjCwamuQBDQHczrqcNvaPZX2/PPP55ZbbuGVV15h/vz5/Pe//yU5OZlZs2Z1aX/+/veH5j511h56HhERvqfn0dHRrQKZaWlpREdHs3///lbP99zXVhDuiiuu4O233+all146bKBQCCGEEPaSQJ0QQgghwtaQIUP46KOPmDZtWlCCR6Zpsm3bNm8WHcCmTZsAvAMC/LGmt956i/r6et58802fbK+2yiYPF5BLTU0FoKysjJSUFO/9bWWxpaamUlZW5nNfQ0NDm4Gizhg4cCBr167FNE2fYNTGjRu9j3dFTk4OkydP5j//+Q/XXXcdr7/+OrNnz26zVNRfBg4c6M2Ws8rLy/P5esiQIQBkZGRw2mmndelYhmEwduxYVqxY0eqx5cuXM3jw4FaDJG666SaeeeYZHnnkEZ9SYyGEEEI4i/SoE0IIIUTYOu+883C73dx5552tHmtqamoVfPKHxx57zHtba81jjz1GZGQkp556qt/W5MnwsmZ0lZeX88wzz7TaNj4+vs19egJGn332mfe+6upqnnvuuTa3tW4H8MQTT3Qq+64tZ555Jvn5+T795Jqamnj00UdJSEjgpJNO6vK+zz//fJYtW8bTTz9NUVFRl8teO+rMM89k2bJlfPXVV977CgsLW2VOzpw5k6SkJO6++24aGxtb7aewsLBDxzv33HP5+uuvfYJ1eXl5LFq0iB//+Mc+2/75z3/mgQce4NZbb+UXv/hFZ74tIYQQQgSZZNQJIYQQImyddNJJXHXVVdxzzz2sXr2aGTNmEBkZyebNm3nllVf4y1/+wrnnnuu348XExLBw4ULmzJnDlClTeO+993jnnXe49dZbvSWt/ljTjBkziIqK4vvf/z5XXXUVVVVVPPnkk2RkZLTKcps4cSKPP/44d911F0OHDiUjI4NTTjmFGTNmMGDAAC6//HJuuukmXC4XTz/9NL1792bXrl0++/jZz37G1VdfzY9+9CNOP/101qxZw/vvv096enq3Xq8rr7ySf/7zn8ydO5eVK1cyaNAgXn31Vb744gseeeSRVllhnXHeeefxq1/9il/96lekpaV1OXuto26++WZeeOEFZs2axS9+8Qvi4+N54oknvFmDHklJSTz++ONcfPHFHH300VxwwQXe1/ydd95h2rRpPsHew7n22mt58sknOeuss/jVr35FZGQkDz30EJmZmfzyl7/0brdgwQJuvvlmhg0bxsiRI3nxxRd99nP66aeTmZnpvxdCCCGEEN0igTohhBBChLV//OMfTJw4kX/+85/ceuutREREMGjQIC666CKmTZvm12O5XC4WLlzINddcw0033URiYiK33347t912m1/XlJuby6uvvsrvfvc7fvWrX5GVlcU111xD7969ueyyy3y2ve2229i5cyf3338/lZWVnHTSSZxyyilERkayYMECrr32Wn7/+9+TlZXF/PnzSU1N5dJLL/XZxxVXXMH27dt56qmnWLhwISeccAIffvihN0uwq2JjY/n000/5zW9+w3PPPUdFRQW5ubk888wzzJ07t1v77t+/P1OnTuWLL77gZz/7GZGRkd3aX3v69OnDJ598wvXXX8+9995Lr169uPrqq+nbty+XX365z7Y/+clP6Nu3L/feey9//vOfqa+vp1+/fpxwwgmtXvvDSUxM5NNPP+WGG27grrvuwjRNpk+fzsMPP+zT53DNmjVA8xCLiy++uNV+PvnkEwnUCSGEEA6idFe64AohhBBCCB9z587l1Vdfpaqqyu6lCCGEEEKIECU96oQQQgghhBBCCCGEcAAJ1AkhhBBCCCGEEEII4QASqBNCCCGEEEIIIYQQwgGkR50QQgghhBBCCCGEEA4gGXVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHCACLsXEI5M02Tfvn0kJiailLJ7OUIIIYQQQgghhBDCRlprKisr6du3L4Zx+Lw5CdQFwL59+8jOzrZ7GUIIIYQQQgghhBDCQXbv3k3//v0P+7gE6gIgMTERaH7xk5KSbF6NEEIIIYQQQgghhLBTRUUF2dnZ3pjR4UigLgA85a5JSUkSqBNCCCGEEEIIIYQQAO22SJNhEkIIIYQQQgghhBBCOIAE6oQQQgghhBBCCCGEcAAJ1AkhhBBCCCGEEEII4QASqBNCCCGEEEIIIYQQwgEkUCeEEEIIIYQQQgghhANIoE4IIYQQQgghhBBCCAeQQJ0QQgghhBBCCCGEEA4ggTohhBBCCCGEEEIIIRxAAnVCCCGEEEIIIYQQQjiABOqEEEIIIYQQQgghhHAACdQJIYQQQgghhBBCCOEAEXYvQAghhPC3t5oWsYntJBDPTOMEBhn97F6SEEIIIYQQQrRLAnVCCCHCzu/cD5OntwNwZ8QNzFeXEKkibV6VEEIIp2ta+Si6oRJ9YA0qYzwqKpGIidfbvSwhhBA9iNJaa7sXEW4qKipITk6mvLycpKQku5cjhBA9SpNuIr1+CnXUA5BFOg00sjb6bdJVqs2rE0II4WR1T+ZC1T5QBmgTEvoSc0We3csSQggRBjoaK5IedUIIIcJKnt7uDdIB5FNEKRV85v7axlUJIYQQQgghRPuk9FUIIURY+U5vZQB92M1+PCnjaSTzL/O/nMMMW9cmhBDC2aLnrACt0Y3VqMh4UMruJQkhhOhhJFAnhBAirOzW+9nFfgAUCo2mmDLWmZtsXpkQQginU1GJzf+PlvY1Qggh7CGlr0IIIcJKgS7y3n4/8mkmq3EAHKCEEl1u17KEEEIIIYQQol0SqBNCCBFW8i2Buj6qN+OMXO/Xmw5OghVCCCGEEEIIJ5LSVyGEEGGlgGLv7UyVzgg12Pt1nrmdY42jbFiVEEKIUNC08lF0QyX6wBpUxnhUVCIRE6+3e1lCCCF6EAnUCSGECCue0tdYYkgknlFqKMeridRSxy69z+bVCSGEcLKmbx6Dqn2gDNj2LiT0lUCdEEKIoJJAnRBCiJBXritJII5iysjXhUBzNp1SiiHGQJbolQD00Rl2LlMIIYQQQgghjkgCdUIIIULeuQ3Xs0SvQFvuy6IXANlkEUsMtdSRJz3qhBBCCCGEEA4mwySEEEKEvHxd6A3SpZLMMDWIoWoQAIYyGH7w9ja9mwbdaMsahRBCCCGEEKI9EqgTQggR0rTW7OOA9+tSytmsd5Cqkrz3DVc5ALhxs9mUrDohhBBCCCGEM0mgTgghREjbSwHV1AIQR4z3/lzLtNeZxvGcYZxIDv35n/lx0NcohBBCCCGEEB0hgTohhBAh7Utzlfd2DXXe27lGjvf2ZGMc75mfsZ09vOteLOWvQgghhBBCCEeSQJ0QQoiQ9m7Tp8QRwyQ1xuf+EZaMuuFGDnONc5isxrGS9bzsfivYyxRCCCGEEEKIdkmgTgghRMhqMBswlEEjTWzRO733xxBNOqk+214a8SO+0mtJJoH3zc9xa3ewlyuEEEIIIYQQRySBOiGEECHrWzbxsvkWjTQxzZjImqg3qYpaTV70+yilfLadYoxnjvFD6mlggfkhb5mLbFq1EEIIpzIyxqP6HAOx6ag+x2BkjLd7SUIIIXqYCLsXIIQQQnRVpa7x3h6phpBrNJe7ZpLe5vbnGDN4yXyLk9Rktpm7wRWUZQohhAgRUWf/1+4lCCGE6OEko04IIUTIqqTKeztRxbe7/enGNGKJZrH+in+a/wnk0oQQQgghhBCi00I6UHfPPfdwzDHHkJiYSEZGBrNnzyYvL8/7+I4dO1BKtfnfK6+8ctj9zp07t9X2s2bNCsa3JIQQohMqqfbeTqT9QJ1hGN4hE7v0Pmp0bcDWJoQQQgghhBCdFdKBusWLFzNv3jyWLVvGhx9+SGNjIzNmzKC6uvmDW3Z2Nvv37/f5749//CMJCQmcccYZR9z3rFmzfJ7373//OxjfkhBCiE6o1JZAnUro0HOGqxwANJrNlgEUQgghhBBCCGG3kO5Rt3DhQp+vn332WTIyMli5ciUnnngiLpeLrKwsn20WLFjAeeedR0LCkT/QRUdHt3quEEIIZ/HNqIvr0HNyjRwwm2/n6W2MZ0QgliaEECIENfzvPHRtEbp8Jyp5ICo2XfrWCSGECKqQDtQdqry8HIC0tLQ2H1+5ciWrV6/mb3/7W7v7+vTTT8nIyCA1NZVTTjmFu+66i169erW5bX19PfX19d6vKyoqurB6IYQQnWXNqEvoQOkrwDAGkkQCA+hDiS4P1NKEEEKEIPPAGqjaB8pA1xxAJ/S1e0lCCCF6mJAufbUyTZP58+czbdo0xowZ0+Y2Tz31FCNHjmTq1KlH3NesWbN4/vnn+fjjj7nvvvtYvHgxZ5xxBm63u83t77nnHpKTk73/ZWdnd/v7EUII0T7rMImkDpa+DlT9qKCKdWxmrc5r/wlCCCGEEEIIESRhk1E3b9481q1bx5IlS9p8vLa2lpdffpnf//737e7rggsu8N4eO3Ys48aNY8iQIXz66aeceuqprba/5ZZbuPHGG71fV1RUSLBOCCGCoJIa7+2ODJMA6Gtkem8X6CK/r0kIIYQQQgghuiosMuquu+463n77bT755BP69+/f5javvvoqNTU1XHLJJZ3e/+DBg0lPT2fLli1tPh4dHU1SUpLPf0IIIQKvylr6qjrWo643qRgH3/4kUCeEEEIIIYRwkpAO1Gmtue6661iwYAGLFi0iJyfnsNs+9dRT/OAHP6B3796dPs6ePXsoLi6mT58+3VmuCFMn1v+U3nVTiKkbQ1bdVM5quMLuJQnRY1RYS1/pWOmrS7noTSoA+RKoE0IIIYQQQjhISAfq5s2bx4svvsjLL79MYmIi+fn55OfnU1tb67Pdli1b+Oyzz/jZz37W5n5GjBjBggULAKiqquKmm25i2bJl7Nixg48//pizzz6boUOHMnPmzIB/TyL05Olt3smTZVSw0dxm84qE6DmqdEvpa0IHp74CZKp0AAooQmvt93WFknJdSbFZRoFZRJEutXs5QgghhBBC9GghHah7/PHHKS8vZ/r06fTp08f733/+8x+f7Z5++mn69+/PjBkz2txPXl6ed2Ksy+Vi7dq1/OAHP2D48OFcfvnlTJw4kc8//5zo6OiAf08i9LjxHTJSZemZJYQILE9GXRyxuJSrw8/zBOoaaaKUnj2p+9bGB+nXcDwDG6bzq8Z77V6OEEIIIYQQPVpID5PoaBbE3Xffzd13392h/cTGxvL+++93e20ifDSZTfzVfJ4qXUOSSmB+xFzvY1praqnz2b6cSmp1HbEqJsgrFaLnqTzYoy6xE9l0AJmke28X6CLSVLJf1xVKrBcXCimxcSVCCCGEEEKIkA7UCREM1aqWW5seAiCWGJ9AXQ21uDFbPWePzmeYGhSkFQrRc3nKzhNVx/rTeWSplkBdvi5iJEP8uq5QUmEZyCE9+4QQQgghhLCXBOqEaEc1LT0P62mgwWxgauP5KBQptEz4jSfWu+0uvZ9hDAr2UoXoUb4zt9JAIyerKcxwndCp5x5ljOR0PY18XcRGvZWTmRKgVTrfPgq8t7fr3ZjaxFAh3RlDCCG6LOLo69ANlegDa1AZ41FRiXYvSQghRA8jgToh2lGjWwJ1Jia3Nj3MOr0ZgAhaemKNUcNZrtcAsN3cDa7jgrtQIXqYL81VNNDIJ3o5szixU8/tr7L40PwCgBXmukAsL2Ts1vu9t2uoY4fey2CVbeOKhBDCPhETr7d7CUIIIXo4uWQuRDusGXUAj5sve283WQZJ9COTsWo4qSSxk31BW58QPdX/ud+mLxn0IYPLXT/u1HMnqFHE0Dwg6Ev9TSCWFxKqdA0lNA9TiiOWSCJYqzfavCohhBBCCCF6LgnUCdGO6kOmuB465dUj28jiW72JUirYrHcEYWVCtHjf/TlPN77Gc00LeNv9id3LCYrteg+72Y/GJEF1bphEtIpiImNIIZFM0jlgFgdolc62Re9kmBpIMonUUEsjTXxprrJ7WUIIIYQQQvRYUvoqRDuqdW37GwE59CeKSBpoZKPeFuBVCdFCa81vGh/gO7YCMEQN4EzjpLDvM1ZGBQApKqmdLds2wTWKL9wrWaZXs05v5hR6+XN5IWGNuZHNeqfPfV+aPTfDUAghdEMlaI1urEZFxoNS0qdOCCFEUEmgToh21FhKX1NJpvRgmdih0owUhpmDWK83s1XvolE3Eqkig7VM0UP9uvHP9CeTEcZgtpq7MVBMVKPZbO4g1zXY7uUFTKNupOpgtqt1qEtnjFItk17z9DZO4Vi/rC2UWMt+RzOURJVAL5Uif7+EED1W/XOToGofKAO0CQl9ibkiz+5lCSGE6EEkUCdEO6w96n7vupab3ff79KbzSCWZXJXDer2ZRpr4fsNVxHeyHM9fTjSO4RcRc2w5tgieMl3BX93Po9Fkks5UNYFP9XL+a77H6a7jySV8A3VlVHpvp3Yxoy7XaHl98vT2bq8pFHnKXKOIZIgxkDfNj0HDXn2AQaqfzasTQgghhBCi55FAnRDtsJa+xqs4fu+aR75ZyBK9ko1sw8RkjnEOo9UwLnf9mLNc01niXskmvZ0KXRXUtdbqOraxh03mduKI5YqI84J6fBFcy801aDQAQ1Q2Oao/n+rlAOSZ27AMJQ47ZbrCe7urGXW5Ksd7uycG6ip0FVprjlFjGaD60E9leR/bzX4GIYE6IYQQQgghgk0CdUK0w1r6Gqdi+HXElQCcUPcTGmkC4Cu9hj6qN32NDACKdKktzelNTEp0GSWUsUFvCfrxO+sD9xKGqoFkqywMDFwqjCNLAbBV7yaBOKqo4dqInzJRjeGZhtcA2BTmgacSSwl6VzPq0lUqvUihmDIKe+AwiU16O1vYCRrGGMPJVn28j+3W+21cmRBCCCGEED2XBOqEaIe19DWeWO/t+6NuotKsJkpFYigDpZT3sV9EzOEXBL/09BtzPVMbzgeag3ZOVqNruaBxPjXUAfBx5HNMc020eVWh5XPza6qppTdpjFW5DFB9iCGaOurDPkPMHxl1AD8wTuUVcyHr2MwenU9/S1ZZuLP+jOSqHLKtGXUSqBNCCCGEEMIWEqgToh01ltLXOFp6zh1nTACHDdVUtAQLPSWRTrXG3MgA1Y+NunlSabml55jomN16PxpNEaUMVv1xKRdHMZJKqkgjhQazgSgjyu5lBkQpLYG6VJXc5f1kqnSqqAZgqbmKH7vO6PbaQkWe6Ruoy1AtU28lUCeEEEIIIYQ9HBZmEMJ5fDLqVOwRtrSfYfmVdnpG3Tvmp94gHfgGXkTHeIIpfcnwTujsb2Syni18rlewg712Li+gfDLqulj6CjDVmOC9/YX5zRG2DD+b9Q7v7eEqx6f09X/uj/lL03M2rEoIIYQQQoieTTLqhGhHNTXe29bSVydSltvOzqdr3UPNGngR7avT9RTQ3FfNWrI4/JABCcPJafXccGAN7KbR9Yy6KcZ4JqhRJBIf9OEvdivUJRyvJhJDNINUPwwM5rl+ykr3eraxm1fc7zFcDeIM10l2L1UIIYQQQogeQzLqhI9v3Xl84V5p9zIcpVbXeW/HOTxQZ82oc3rp66E91CSjrnP26gLvbWsmVK4x2Ht7o94W1DUF02Zzh/d2dzLqklUiJZTzmf6at8xFaO3s3xt/yddFLNErWaJXUk0tLuVCKcWDkbcw1hjOAYpZodf1uCxDIYQQQggh7CaBOgHARnMrveqO4ZjGH3Fq4xwy6o7lf00f2b0sRwil0ldrjzonl7426ka26t0+95Xq8sNsLdqyy9JDzCdQZ82oM8NzoESjbmSx+TUpJHGp60eMYVi39ud5zSqpZj+F/liio93f+CQj6md6v55mHO3z+LURP/Xe3q/D//UQQgghhBDCSaT0VQDNH/qtAakKqrxldT3d4aa+OlGoDJPYqwvIVTls1buoox6AUil97ZRl5iqy6E0p5T6BumFqIACZ9PL52Q0nb7g/op/K4Gv9LXt1AclGYrf2l6ty+IAlQHNws68rwx/LdKz9utD7ewcwVfkG6jJVuvd2AUVBW5cQQjhB1A/+D9wNmOXbMZJzwBWeQ5mEEEI4lwTqBOCbneNRoOUDGrRMfVUoYomxeTVHZoRKoI4DrNebfe4rk9LXDjO1yX/Md8mnkGEM4ofGDO9j8SqOEWowG/U2FplL0VqjlDrC3kKLqU3ucf+TDXoLA+nLza4rur3PXNVSLrxJb+dkpnR7n05WTJn39ueR/2aM4ZuRmEoSkUTQSJO8Dwghehwjs3nIkNE3vN8LhBBCOJcE6gTQMj3SSjIpmqWoJI7lKBJVvOMDHj6lrw7utVWlq1vdJxl1HbfW3EiuysGNmzSSyTLSfR7PVn3YqLdRTiUFFJNF+mH2FHq2mbsZq3JpoIFEElqVbXbFcDWIcSqXZBIpp9IPq3Q269/2kcYQYpXvBQilFJmks4d8CdQJIYQQQggRZNKjTgCHCdTpnl36WqLLqTfrWWx+xTK9mn36gN1LaleolL5W0hKoiyISaM6oK9Kldi0ppHykl/I/82M2652cZ5zR6nHfPnXhMVBCa02xLmM5a/iP+Q5b9C5+YJzil+B5jtGftTqPz/UKVpjf+mG1zuYJvsUTS4KKa3ObPqo3AIWU0qSbgrY2IYQQQgghejrJqBMA7CHfe1uh0Gjye3gT8bkNv+ZLvYoGGgHf4IdThcrU1wpd5b0dTRQNNJKntzO8fgaboz+kl0qxb3EOd3L9RazS33m/Pt01rdU21p/VTXo7JzE5KGsLhC/dq/h50x3s0QVkqyzOME7yPnaUMdIvx+hDb1y4cONmt85v/wkhzhOos/aiO1SmSgfd/HekkFL60DtYyxNCCFu5t70HTXWYResx0kdDRAyuwa0vigkhhBCBIoE6wbvuTzlwMHsulSQiiKCQEvJ7cMlThVnFPl1AlSXza3gIBOpCZeprFTXe25EHM+pMTBSKr81vmeU6wa6lOVq1rmGpXu39OpF4hqlBrbaz/qzuMltny4aSrXon6w72M4zR0Xxjrvc+5q/fyQgVQV8y2M3+NrOLw0m9bqD0YD/IzCOURFuDeHvM/fRxSaBOCNEzNH48H6r2gTJwaxMS+kqgTgghRFBJ6WsPt0fnc37jfPbofG5y/YzFUS+RqXoBzX2MtIP7nAXSQv0Z6/AddpBrOD9QZ+Xkf7kKWjLq/hxxM69HPEYi8TTRxD/d/7ZxZc62Se/w3v6BOpX/RT3eZunnEJXNAPoQQzQb2BLEFfrfAUq8t/MpZM3BbMIoIhmk+vntOJ7JuUWUegfIhCPrNO+sI2TUjVXD6UsmAHsoCPi6hBBCCCGEEM0ko64HqtI1zGv8A6cZU9mp93KyOpZFeikazXAjh9FqOKbWVFHNvMY/8PeoP9q95KDLM7d7b0cRiQuDwWTbuKKOCYXS1780PsdSc5X364FGP6apozGbTOppIE9vP8Kze5Ym3cT1TXcyWY3jBfcb9CHD+9hk1zimHmaQQl+VyX4KaaQp5DPEDh1mUE0tI9RgkkjApVx+O0626uONbu/R+SGRQdtZTbqJz90ryKYPddQzVA087La9VRr7Dgbo8nRLn8Nd5j7+0PQoM4zj6aVS2iy9FkIIIUSLb9zrecL9H05zTWWA6stkY5zdSxJCOJwE6nqgZ92v8R/zXf5jvouB4S2RnGWcCMBzUfcxvv777NL7edF8k7/T8wJ1myzBoq+iXmWEMcTG1XSc7zAJ55W+Vusafu3+s899STRP081VOXyjN7BD76VO1xOjom1apXO8Zn7AM+7XeIbXWj12pJ6JhjLop7LYofeEfKDu0BL8GurYqLfxt4g/+PU42SrLe3uX3s9wwi9QV0YllzfdAsBQBnBn5PzDbus7kKTl7+FjTS/wsvkWL5tv0Y9Mtro+Dth6hRBCiHBwd9M/eFt/wrPm60xR41kc/ZLdSxJCOJyUvvZAB3QJaaQAvn3MrKWdqSQB0EBjj5z458nqiiCCIWqAzavpOGsZpBMz6r5qY6JmAvFAS78xE5OteldQ1+VU+WYhkxmHgWIMw4gmihQS+YFxCmNV7hGfm01z4KmUCip19RG3dbICWgJ1lxizGa9GkEQ8p7mm+vU4g1R/jlVHcbKaEtKv15FYh7jEH2baq8dQNdCboWu9cKFRxBELwAGKe+T7gxBCCNFRW8ydfK3Xei+mVxO+7TWEEP4jgboe6EX3/yihzOc+Fy56HQzeAaSoJO/tMiqDtDJncJtuby+wwSqbSBVp74I6wfDJqHOer/XaVvclqQQAco3B3vuk/LXZq+ZCvmItJprvGSdzo3Epe6I/579Rf2WQceT+bJ6ea9BcyhmqPKWvccTyz8g7+Z5xMvOMixio+vr1OIkqnmV6NZ/o5ewldF+vI7EOx5lkjD3itjEq2tsD8Fu9iUcan6XebOAJ8/+oOfgho5Emdui9gVuwEEIIEcI2mdt511xMAcXeC+h7Q/icTAgRPBKo62EadCP7KWx1fya9MFTLj0MKlkCdrgjK2pwiT29HoRivRvJ942S7l9MpTp/6utXcRTqpPvclHsyoG8swJqkxDKQfm0wJ1EFL2Wdv0kg1kkkxkohQHetYYA3UhXL5qydQl6XSUUqRpBJIMZLaeVbnJdKSYVZpmUocTqzfl/X7PZyHIm7h3YgnGa5yeMD9FDMaLqWeBp9tJKguhBBCtNakmzi78Rr+0vQcUxhP/MFs9FCvdBBCBIf0qOth9uj8NksiMw+Z/pemkr23V5rrWGvmkW304Zh2sjDCwZd6FbXUsUZ/xwXqTLuX0ym+Peqcl1O3QW+hiFLv1y4MolUUADlGNiua1gGw0dK8vqfSWnvLPjNVL34RMadTz/cE6rJI54AubmdrZ6o364knjjrqyaT5b1RnX4eOSlDx3tuVlhLRcGL9vqzf7+HMcjX3Lc1vKqSIUsoPya7uQ2/JDBBCCCEOUaVr2GBuIUK72M4e4lQMuTT3Ygb4xlzPd+ZWznJNx6Vc9FUZ7exRCNHTSEZdD2PNrPFc2YHmQICVNaNuTtOv+UnTjdzceF/gF+gAX5grvbcPN1XTqZw+9fXQzK4oory3h6gBbfbE6qnKqKCBRqB1IL0j+qkMFIp8itiu9/h7eUFRpMrYQz611JNBWkCPlUSC93Yl4Xml2/p9Wb/f9pzpOgloLnX1MFDsp5B1erP/FiiEEEKEgSXmCk5s/Amb2ckkxvBS5IOcbhzvffyRpmeZ7/4TwxpO58KGG2xcqRDCqSRQ18PspiVQEkPLVE1rfzqAVEtGnUcmvUO611VHxRLDFDWefmQyQY2yezmd4lv66qxAXb1uIB/fCZ4uy58ga0+sPL0dUzuvdDeYCizTTrPo3ennZ6ne3mBtwSGve6go1i3Zl2lGSkCP5SnBBqgI05IU6/eV0IHSV4/JajxDGchYhnvv8/x9CeWyaiGEaIuKjIeoRFAuiEps/lqITrC+Nw40+jLOGMFo1dziZSJjKNMtGeq11NmxRCGEw0npaw+z2dzpvT1A9aVYlwHQhNtnO+swCY839If8wDyFn7i+H9A12klrzf+Z71BDLSPUYKJCaJAEHDpMwlmBur26oNV91sAiQK7KYZveTTW1bNO7GaoGBmt5jpNvKVfN6kJGnTULryBES1+LDv59Alr1NvS3BMsU1Kowzaizfl+JHSh99ZhojGYLO33uc+HCjVsCdUKIsBM99xu7lyBC3C7Le+OlrnMBGGz097Z4sSq2nOsIIYRHSGfU3XPPPRxzzDEkJiaSkZHB7NmzycvL89lm+vTpKKV8/rv66quPuF+tNbfddht9+vQhNjaW0047jc2bQ7+8R2vNe+7FDGMgFxtnc4kxm9nGaVxpnM9c1zk+26ZaSl8zaCmL/dIM75OXKmq8Ew2zVOezmOzm5GES1g/0wxnEJa7Z3OC61GebHxtncJYxnTSSedP9cbCX6CjWLLiulL72JtX782DNzgslxZZ+hukqsIE6KX09vOFqUKv7PFnYu3tAlrUQQgjRGdZz3gEHewaPVyOIs7Qd8jhAcY+vIhFCtBbSgbrFixczb948li1bxocffkhjYyMzZsygutr3Q9YVV1zB/v37vf/df//9R9zv/fffz1//+lf+8Y9/sHz5cuLj45k5cyZ1daGdmrxfF1KtatnMTlbpDVwdcSH/F/UIf436PSe7jvXZ1lr6eoBib++w78ytQV1zsFkDGp7m9aHEycMkNukd3ttXRVzAE5F3cWukb9B8vDGCd8xPKaGcT/VXNOjGIK8y+ExtYmqTj9xf8ob7I0xtssXcyWrzO+82XQnURapIbxZafqgG6ixXmXuplIAeK4ZoXLgAwnYam/X76sgwCY94FUc2fXzu82R5llNJua5s62lCCCFEj7NXF7BT7/N+3V9lAc3nZZONca22b6SJUiqCtj4hRGgI6dLXhQsX+nz97LPPkpGRwcqVKznxxBO998fFxZGVldWhfWqteeSRR/jd737H2WefDcDzzz9PZmYmb7zxBhdccIH/voEge9VcyD59gD705jzjLJRSh93WmlEHcLY6laV6NV/obyjWZQH/0GwXaw+1rpQb2s3JwyTy9DYicDGKoUxQI9vcZrQxjCuM81ikl/GBuYT/mO9ysevsIK80uL4x13NC44Xefy0Dg2nqaD7XKxhEf6YZRzPDmNalfWeqXhTqEgooQmt9xN95J7JOCA506atSiiTiKaWih2TUda7nUq6Rw26zJUOgv8pirW7OYN+j80lWif5ZpBBCCBGimnQTo+vPoI4GoDl7PU61ZNFd4TqPDeZmDlDi87wCXRS2n62EEF0T0hl1hyovLwcgLc13OuBLL71Eeno6Y8aM4ZZbbqGmpuaw+9i+fTv5+fmcdtpp3vuSk5OZMmUKS5cubfM59fX1VFRU+PznRLv1fmqpYz+FTHVNOOK2qSQTTyxRRNKbNLKNPuRTCMAyc3UQVmsPn4y6QybhhgJrGMYpwyQKdQk3NtzN2+5PaMLNt2xipDH0sNv/JOL7bNW7yCWHA2Zo9lbrjD3k+/xLmZg00Eg6qRRQRK7KaXO4S0d4MvHqaaCc0Mt68s2oC2ygDiDhYPCqqidk1HUyUDdCDSaJBKKJJJF4BjOAvmQyllz26QP+XqoQQtim8bPf0vjhPOpfPonGD+fR+Nlv7V6SCBFrdZ43SOfC8A5J8zjBmEQJ5UQS6XNxPVQrH4QQgRM2gTrTNJk/fz7Tpk1jzJgx3vt/8pOf8OKLL/LJJ59wyy238MILL3DRRRcddj/5+c39djIzM33uz8zM9D52qHvuuYfk5GTvf9nZ2X74jvxvlyUNO1v1OcKW0MfoTXHM11TErOK76IVMNVoCe+Hcp843UBd6GXVOLH39W9NL/N18mR3sBWCwyj5i4Ok4YwJ9ySCP7dzvfjJYy7TNrjaa8S/XayiilDONk7g58oou79tavp2vC7u8H7sUWaa+HjqZOhA8AxYqwjajrsp7uzPDJADuj7iZAzHL+JXrZ/zcdQmjjCHso4BvyWOH3uPvpQohhG3cea/iXvc8+sBq3Ouex533qt1LEiHiC3fLZ6QHIn7DV9Gv+TyeoXrxadSLlER/xX2uX3nv9yRDCCGER0iXvlrNmzePdevWsWTJEp/7r7zySu/tsWPH0qdPH0499VS2bt3KkCFD/HLsW265hRtvvNH7dUVFhSODdZ7GpgYGfen4oIQEFcex6ihGqaGkk0pZCGbmdFR+iPeoc2Lpa7EuZTDZbGc3R6vRzDJObPc5w4xB7DMPePtfhXNZ3ZGmZh5vTOzWvoeobKaqo4lSkZSG4O9tMIdJQEs5aA21uLUbl3IF/JjBVKlbsskTO5lRZ6jmvy1JqnkIhfViT1vBZiGEEKKnedV8j2PUWGKI5gRjUpvbTDLGApBt9GWaeTQGBlX68NVeQoieKSwCdddddx1vv/02n332Gf379z/itlOmTAFgy5YtbQbqPL3sCgoK6NOn5YNIQUEBRx11VJv7jI6OJjo6uourDx7PdL4+9CZSRXbquVlGb4p1KRvYwkb3Vv4WeXsglmi7ghDvUee0qa+1uo5/ma+g0UxgJF9E/6dDz7M2rg/3/ldHCtQNVznd2rdLufhSfwMartOHzyR2Kk9JZSQRnQ4sdUWCiscT366kmpRDenWGOk9GXRSRRKuoLu3jFxFzAMgzt3nvO9LPsBBCCNETbDf3sEbnUUc941Quo9WwI26fppL5Qjdn4E3Uo4OxRCFECAnp0letNddddx0LFixg0aJF5OS0/6F29erVAD5BOKucnByysrL4+OOPvfdVVFSwfPlyjjvuOL+s2w61uo7Cg41L2yt7PRxP0OAAJZTocr+tzUnyzSJGMYQT1TH0JbP9JziMb+mr/bbond7MviP1pTuU9Wc03IMA1kzX3vj218w1uheoswa3Qm1AwlZzF3l6O2MYzm9cVwVlEEYov14dUafrGaty+Z5xcrf35ZliBy0XgYQQQoie6lVzIYPJZgRDuNg4u93zliyf9iTSo04I4SukA3Xz5s3jxRdf5OWXXyYxMZH8/Hzy8/Opra0FYOvWrdx5552sXLmSHTt28Oabb3LJJZdw4oknMm5cy3jsESNGsGDBAqB58t/8+fO56667ePPNN/n222+55JJL6Nu3L7Nnz7bj2/SLVeZ3pNCcldTVQJ01aLBJb/fLupxmnd7EBrayXm8mzehaA387GQ7rUZdn+TnpTNAp2ycIEN6BugaaiCCCPvRmgOV3M55Y+nUzWJxIgvd2qA1IWGmuJ5s+rGMTEUEqQU0gzvv/ajO8ylDKdAWb2MG3Oo8DuqT9J7QjXsV5+waG+++oEEII0Z415nfNlUdsZYbr+Ha3z1ItbYgKCP/haUKIzgnp0tfHH38cgOnTp/vc/8wzzzB37lyioqL46KOPeOSRR6iuriY7O5sf/ehH/O53v/PZPi8vzzsxFuDmm2+murqaK6+8krKyMo4//ngWLlxITExMwL+nQPmP+Q5lVDKIflzuOrdL+xihBntv55nbOdY4yk+rc4ZKXc1eCoDulxzaxWmlrz6Buk68pj2l/1WtruNbnQfAKDWUZ6PuI/lgcG0/hd3OIrMODAi1AQl/d7/ELvaRQhJzjHOCcsxYmv/GV1FDjaoLyjGDZZPe4b09opuZmh7Zqg/Fuoy9FIRlTz8hhBCiozzvsxFEMFi136s8kXhiiaGWOp9hdkIIASEeqNP6yBlD2dnZLF68uNP7UUpxxx13cMcdd3RrfU5RoItYZW5grMplu97NeGNEl/YzimGMZAgJKo7tYTjlb1MXs7+cxKf0tZ3fj0DabO7gM3MFy8zVZJKOwjfQ257BKpuxDCdaRXlLtsPRXl3gvZ2ikuilUrxfW/v0dZUnQwyaA9GhQmtNnm7ugZZAHFlGcPpFWvu2NdIUlGMGi2/QvOO/i0cyXo1EoYgikj26gIGqr1/2K4QQQoQSU5veQN0Qld2hXuBKKTJVOjv0HgnUCSFaCelAneiYp92v8ZVeC8BvXdeQqrpW0jnWNZzvmraCBpdpANf7cZX262r2l5P4Tn21z8fmUuY3/QmAoQzkfNeZjDA6PmV5oOrLNnZTrWvJdxdB52afhAxrtuCALpakH4lnQidAVQhl1BVRSikVQHCD5lGWH7QGGoN23GCwDn/w19+3NJXEKnMD0NyPciASqBNCCNHz7NL7qaMe6Nx7bBa92MEeiimjQTcS1clhf0KI8BXSPepEx+w293GCmkQW6VwW0bWyV4DeKs1bErpSr6dWh1dp2B5zP1PUUZygJjGqnUlNTmUtlLSz9NUa9Oyt0nwCRh0RoSKYbIwHYA/5YVv+au3t1dXekUdiHY5QcXDiZyiwK2geYbl21ajDK6Nuq97FZDWOU9VxjFIdD5ofibVFQLj2LRVCCCHas1nv4Bg1lhPUJI5R49p/wkGZqqVi4ID0qRNCWHQpUNfY2Mju3bvJy8ujpCR8y9LCgdaa/5rv8bleQTxx9FPda04/1ZjQvF9gg7nFDyt0jlX6O5br1XyuVzBUDbB7OV2iHDJMwlO2CPBK1F/5RcScTu9jqmr+WVMo3nF/4re1OcluAhyos/Soq9KhMxxhq7nLe9tfZZodYb2S3RhGGXVu7eZjcylf6bWs05voZxnW0h3WbMc8CdQJIcKEK2cmxrDZqNShGMNm48qZafeShMNt1Nv4Wn/L53oFWUbv9p9wkDVQJ+WvQgirDpe+VlZW8uKLL/J///d/fPXVVzQ0NKC1RilF//79mTFjBldeeSXHHHNMINcrOqmcSqpo/oA+wOh+WdJENZolrKCEcr7R65nImG7v0yk2HgwuRREZsr2WfEtfbQzUmc0f2nuRQrpK7dI+zjZO4xu9nkXmMv7tfpurXRd2e7iC0/hm1PkneGIVqhl1BRSRRW9iiOr2xYXOiLRm1IVRj7r1erP333+qcbTffo+sQdSNluC8EEKEssjT/mr3EkSIsb4HdqYSYDDZDFHZlOgK8s0iqXUTQnh16M/BQw89xKBBg3jmmWc47bTTeOONN1i9ejWbNm1i6dKl3H777TQ1NTFjxgxmzZrF5s2bA71u0UH+DgQMUv3Zwi5KKA+rcsQm3cQWvROAoWogESo02zc6IaOuzKwgVSXRh97dyoYaawxnl7kPhaKvymCX3ufHVTqDW7sZRD9iiQ5IRp11mERVCA2TKNBF5FPIDvZ2OdDbFeHao26ruYvxagRRRDJVHe23/fZSKWSQRn+yiNFR7T9BCCGECCOmNvld48MsM1d77xuuBnX4+Qkqnq16N6WUU4Bk1AkhWnQoGvH111/z2WefMXr06DYfnzx5Mpdddhn/+Mc/eOaZZ/j8888ZNiw0e3yFE621b6DOD1MkrZlmu8MoULdD7/Vm0ITqIAnAJ1PGrkDd1/pb1unmYP1F6uwu70cpxfdcJ3Of+0neMD9ihnk8lxld77HoRMv0Gnawl3hiSdaJvk0G/SBCRRBHLDXUUknolL6W65bsv2QSg3bccM2oW6bXsEZvBGC4Mciv+85WfVip17NPH8Ct3biUy6/7F0IIIZzqLXMRD7if8n6dTCIpKqnDz8+ylr72gB51nmo8IUT7OhSo+/e//92hnUVHR3P11Vd3a0HCf25v+itvuj/2fu2PjJ3+lqy83Tq/2/tzinxdyGnGVMp0JSP91GjdLgqFRts2TOJLc5X39ljX8G7t60RjMve5nwTCr1m91po9B3+HBqi+GEZg6h0SiaOGWip06JS+VlDpvd3ZQSTdYQ3UhVNGnfWiynA/X4jIUr1BNw+vKaSULNLbf5IQQggRBkp1OZMYwwrWkUN/TnEd26nn96QedaY2Oa7+PPobWfRTmdwd8UsSVFz7TxSih+p2fV9FRQWLFi0iNzeXkSNH+mNNwg+adBMvuP/Hfg547xvgh0BdnIolnVSKKA2rUsQ9FPCR+SUAF6qzbF5N93gCdXZl1H1pfuO9PdXoXpldODerL6KUOuqBwAyS8EhQ8RToYqoIndLXcuzKqLMMk9DhF6hTKL/3/Dv0Q4Y1O0AIIUJR/UsnomsKoK4UYlJRcZlE//Qzu5clHOjf5jusYB0AX0e9RoIR384zfPWkQN1X5lrWsJE1ZnOG/1zXORyt2q7WE0J0oWXleeedx2OPPQZAbW0tkyZN4rzzzmPcuHG89tprfl+g6JqVej3Z9CGFJAaTzV8jfsdYI9cv+/YEFfZxgCYdHuVhFdqawRO8wEAgeAZK2BGoa9CN5OntTFSj+Z5xsk8GZlf0I5N4YoHwCtT9ufFfjKv/vvfrQAbqkmjOSKukBq3tGzDSGZ7sPxcu779/MERaelM2hVHpqydQ14fePpNt/SGTnvMhQwjRM+iaAqjaB+56qNrX/LUQbSjV5UBzj9v4LmSHZdLLezs/zN9DnzVf98m6D6fzeiECodOBus8++4wTTjgBgAULFqC1pqysjL/+9a/cddddfl+g6Jrteg9fsYYyKrgm4idcGXEBvVWaX/btGUoRTyx7dHicvPhm8ASv1C4QPJ0fTBsCdav1d+RTyEq93mfiaFcppbw9A+t0A/Vmfbf36QQb9BZKKfd+HYiJrx6egRIaTa2uC9hx/Kn8YOlrEvFB7WUSjsMk6nUD+QcbVAciIGzNoAv3DxlCCCGEVamuACCVpC6dr0SrKFJp7mkX7sMkPjW/8p6PAOSZEqgT4kg6HagrLy8nLa054LNw4UJ+9KMfERcXx1lnnSXTXh3EmtmQqXodYcvOG6dGkkQCFVSxQ+/1677tUm7NqAtiqV0geCa/2pFR58+yV4+xKpc4YthHAbsIjwEm+/QBn6/74d9yRKsM1YsoInHjpkqFxkAJT0ZdcicaMvuDT+lrmGTU7bH0Eu1uhmtbrO8v4f4hQwghhLAqozlQ15kBEofylL+Gc1b6Xl3ADr3H575w6z0thL91OlCXnZ3N0qVLqa6uZuHChcyYMQOA0tJSYmJi/L5A0TU+gTo/N/fOUulUHMxAy9Pb/Lpvu1RYMuqSVPczwexkZ+nrTnMfk9QYUkhkmp8CdekqlRqaM8F2hcmkYevJSRrJ9FEZATtWBBHe7LBK7fw+dVprb0ZdsLNbwzGjbh8HmKzGMUoNYYga4Pf9Z/pk1BX6ff9CCCGEEzXpJioP9v/1ZMV1xXByGMNwxqlcqkznn6d1xevuDxircsmhPwnEc5Qa6XPOJYRordPDJObPn89Pf/pTEhISGDhwINOnTweaS2LHjh3r7/WJLrKWIPm7ubdvg//wCNSVa3ua1weCJ6Mu2FNftda8Yr5HEaWkksQIBvtlv9Zyvd1hEKgr15XspzmgMU1N5OPo5wJ6vERLz5TKEBgoUUe9N5stKciBOuvU13DJqNuh9/KVXgvA5erHft+/9KgTQgjRE5VZJtR3J6POpQzW6U2goVRVkOCH1jFOorXmKfcrbNTbiCWGDNJYrb9ji96J1jqoLU6ECCWdDtRde+21TJ48md27d3P66adjGM3ZO4MHD5YedQ5iLUHK9HegToXfJM4KrMMkQr1Hnaf0Nbg26e0UUQrAccYE79+G7gq3QN0acyPjVC5pJHOCMSngx7P2CgyFQJ1Pv8ggD3axlr42hMnUV+vvzADV1+/7zyKdU9Vx1NGAO8gXB4QQQgi7lB3sTweQ0o2MOuvnjgpd1dJsOkys1t+RThqTVDzRRBGlItlp7qOKGsqp7NZrJ0Q463SgDmDSpElMmuT7AfOss87yy4KEf3gyG6KJ8nuGWG/SSCOZEsr5ztzq133bJZwy6gybetSt1hu9t/3Vnw58By3sIf8IW4aG5XoNa3UeABeo7wX8eImWE8BKy8+5U/lMYA52Rl0YTn21BuoCMUwizohlo97GXgropVP8vn8hhBDCiUosQ8HSVHKX92P93FFuSRwIF5+ZX7NErwDgr67fsYJ13sd26/3dykYUIpx1OlB32WWXHfHxp59+usuLEf5ToIuB5rIkf6cUK6X4kTGLxfortuidFOgiv2ftBZsnoy6GaKJUaPdMsKv0dbPewSD6E4WLMWqY3/Ybbhl11oEb/urjdyS+GXXOHyZhb0Zdy1tiuPSoC3SgDmC4kcNes4BiyijSpaSr1IAcRwghhHCKgGXUhRmf817XRArcxd6vd+v9jCXXjmUJ4XidDtSVlpb6fN3Y2Mi6desoKyvjlFNO6fB+tmzZwtatWznxxBOJjY2VGnU/ajQb6aVSMLX2+8RXj2SVwKaDY7WXmquY7To9IMcJFk9GXbCb1weCXVNfd+l97KB5opM/S+xSSCKReGKJRunQ/huhtSaCCFJJIoIIhqqBAT9mApYedSEwTKJCV9KfLKqp7VZz5q6ICsOpr55AXRyxpNH1K/5Hkqty+IRlQHM7BAnUCSGECHeltATqUv2WURdegTqtNZW6hl6k4MZkpBpyyAX40K+UESJQOh2oW7BgQav7TNPkmmuuYciQIe0+v7i4mPPPP59FixahlGLz5s0MHjyYyy+/nNTUVB588MHOLkkcolxVsfHgkIeJjA7IMaYaE8DdfPvLMAjUeaa+JgU5gycQWqa+BlexLvPe7qVS/LZfpRSDVD++1Zv4Qn8T0kH9Wup4y1wEwBQ1Pijfh/VKbWUInACWUO4tcQ52v8hwy6jTWntPgrNVVsB+3nz6lprbgpIpKoQQgRJ5wp3oxhp04VpU73GoyLj2nyR6HJ+Mum6Ub1rbfFjbf4SDzXoHi/RSAM43zsRQRthVyggRKF3qUXcowzC48cYbmT59OjfffPMRt73hhhuIiIhg165djBw50nv/+eefz4033iiBOj+wZs0kB+iD7rHGBAbQlwGqD006tDNPTG16A3XhkVHXLNilr8W6JdvW35k7fVUm3+pN1FFPISVkEJhM0UCzXn319zTmw/EpfQ2BjDrfgG9wM7N8MupC/O8awD59gFyVQyzRjDSGBuw4Q9QAxqkRpJIYEgNLhBDiSFwjzrN7CcLhnm96g9fc7zNGDcfAYFg3KiSsn9XCLaPuC0vZ6xhjOAAD6MskNYYoIqmh1q6lCeF4fgnUAWzdupWmpvY/2HzwwQe8//779O/f3+f+YcOGsXPnTn8tp0ersnxQSlCBGfGdppJpoIEleiXb9G4e4taAHCcYKqn2lomG+sRXsK/0tYgyoLlUNdLPff6sAyV26/1kBKikO9D8dfW1MxKUpfQ1BIIonsnBAOmkBPXYEWGWUfeVXssqvQGAqQQuy22Q6sfag8Nk+pgZATuOEEIIYTe3dvNP9/+xUjcPRbjKuIBjjaO6vL8ka+lrmGXUfalXeW97Bs0NNPqySn+HGzfVpgTqhDicTgfqbrzxRp+vtdbs37+fd955hzlz5rT7/OrqauLiWqeQl5SUEB0d3dnliDZUWD6MW7Np/C1b9SFfF7GfQhp0Y8gOYSjR5YxXI4ghmjEMt3s53dZS+hrcQJ0no86fZa8eh6bJT2SM348RDD79TILUf81aUhEKgTprRl26Sgvqsa1/w8Jh6qu1gfNUY0LAjmMdJlRA8RG2FEIIIULbm+Yi1uvNHK8mUkoFg43sbu3PmlFXEWYZdZVmFVPUOJowmaia2zFFqUgGq2w26x1s0jswtYmhDJtXKoTzdDpQt2rVKp+vDcOgd+/ePPjgg+1OhAU44YQTeP7557nzzjuB5v5Tpmly//33c/LJJ3d2OaINVTp4gbqv9bdoNHt1ATmqf/tPcqBSyllzMBtkvDHC5tV0X8vU1+AF6hp1ozcIlY7/yxXDpfFsqS733u5O4+HOSLD8DagKgdLXIksJda8gZ9SFW4+6XXo/CoVGc1wAA3VJJBBDNHXUU6CLAnYcIYQIBrNkE5hudOVuVGI2GC6MtNC/kCv842tzLSYmS/RK3or8J6e7pnVrf8lhnFH3mf6aEsoZqPoRo1oScnJVDpv1DmqpYzf5DMR/Q+iECBedDtR98skn3Trg/fffz6mnnsqKFStoaGjg5ptvZv369ZSUlPDFF190a9+imTVrJjFApa9wSPCE/eQQmoE6n55YAQgyBZthQ+lrCS0BqGBk1IWqUh38jDrr34CKUMios5a+2tmjLsQz6tzazfvm58QTy0Q1OqCBYaUUmSqdnXqvBOqEECGv4bXvQ9U+UAZoExL6EnNFnt3LEg5Qpit42P0sicRzjBrHacbUbu8zKUwz6qp0jffzQTZ9fB4boQbzNs0xhU3mdga6JFAnxKGCnmc6ZswYNm3axPHHH8/ZZ59NdXU155xzDqtWrerQ1FjRvgrd8kc+IaAZdb59w0KVT0+sAASZgs2bUaeDN0wi0AMA+pFJXzIZR67f9x1MZQS/R12oDpOIJCKgGcFtibQE6kI9o26X3k8d9VRRE5SftSyay1+LKaNBh/ZrJ4QQQrRlmbkajaaCKo4yRvhlmrpvRl34BOr2WD4bWj8zAgxW2fQlk0lqjLTMEOIwOpRRd/TRR/Pxxx+TmprKhAkTjvhH6ZtvvjnsY42NjcyaNYt//OMf/Pa3v+38akWHVFHjvZ0UrIy6EA7UWaeVBnvKZCDYMUwi0AMA+qoM9lHAPgpINEN34IdvRl1wSl+jVCTRRFFPg8+gGafylL6mk+qXE+DOsJa+hvrU1016u/f2cJUT8ONlql54/uQcoJj+ZB35CUIIIUSI+cKn96t/hjRFqyjveVoF4VP6am1VY/3MCDBYDWg+r9cFfGduAVewVyeE83UoUHf22Wd7Bz3Mnj27yweLjIxk7dq1XX6+6JjKIA2T6E8Wx6kJROCiPoQzKIp8Sl9TbFuHv9gxTKJcVzJNTcSFwaAA9CqMUdEkEEcVNT6lkaHGjow6gBPVZGqpIy2Ix+wKrTXFB6cHB6KEuj3WQF1TiGfU5VkCdblGMAJ1loESuoj+SgJ1QggRiup0PSc1/JQkEhihBvNo1G12L8kxaqnjJDWZEsqYosb5bb/T1RSqqSXV4edpnbHLJ6PON1CXpXp5b+dLywwh2tShQN3tt9/e5u2uuOiii3jqqae49957u7UfcXiVlrTpRBW47KM+RgZLD47dTtGh+8ZiZ0+sQApmoG6vLuALvRKAi9XsgByjl0qlStf4lNmGmhLLMIm0IGXUAeTpbexiH711cKeodlYNtdRRD9iT3WooAxcu3LhDvvTVJ1CnBgf8eNZA3QEtZSxCCBGqtupd3iFra/RGHkUCdR7vm0vYrHcQTyz9/HhBags72ap3kaaDd24YaNZqqwGHBOp8p8VLoE6ItnR6mMTXX3+NaZpMmTLF5/7ly5fjcrmYNGnSEZ/f1NTE008/zUcffcTEiROJj/fN+HrooYc6uyRxiEpL6WsgM+p6k+qdKBjKDcQD3V8t2OwofbVeDfP0qvK3dFLYyV6KKQvZUe52ZdTFq1jQzYEwJyvUJQykHwnEMkoNtWUNUURSizvkh0lUmdXkMphIFcEg+gX8eNn0YazKpYZanyxlIYQQoWWj3mb3EhxJa+0NPmWrPn5tz+H5vFZBNVrroLf+CITt5m4G0Y9MlU7OIdU2KSQRRSQNNIb0Z0ghAqnTn3TnzZvH7t27W92/d+9e5s2b1+7z161bx9FHH01iYiKbNm1i1apV3v9Wr17d2eWINlgbxicQF7DjRKpI0g9OSQ3ltOVA91cLNjtKX61XwzIt6ez+5AmimpiUhWgPj326gGQScOEixdI8ONDiiQWghjq0Dt7PRWeVUM5O9rKeLbhx27IGT/lrqGfUbWYHeWzjO701KGXESSqBb3UeW/UuDkhjaCGECFnWjOymEL9o5U9FlHqz/g8t5ewuz/C/Jpqop8Gv+7ZLHtvZwV5W6HUMVL4XDJVSZB68sC+BOiHa1umMug0bNnD00a2bZ06YMIENGza0+/xPPvmks4cUnVRpGe2dFMDSV2gOyhTqEgooCtkrQJ7m9bHEEKdibV5N9ymlQDcHtILF+iZrTWf3J2v/wGJdSpoKrfKAr8y1fKs34cLFL43LcKngdc6NO5hRp9HUUkcczvw5L7IOdsGe7Naog5NfQz2jrvDga9mL5KBkn1qDgUW6JODHE0IIERh5Zkugro6GkD2/97fdR+i51l1JKt47kKmSamKI9uv+g83UJpv0DgByVH+iVVSrbbJUOrv1fgoppUk3EaE6HZYQIqx1+uw9OjqagoKCVvfv37+fiAj5BXOCSh2c0ldoCcrU00B5CGY5aa1JII4pajynGMfavRy/aCl9DR5PoM7A8GZZ+pu1f2BRCA6U2GXu40zjJKKJpJ+RGdRjx1sCc9UOLn/1yW61YZgEWDLqQnhADmAZyhGcgKf1977o4LGFEEKEnlgVTRLNF/pNTMe3zQiWQAbqEiyf1yosvcZD1R4KvD83Iw7TJ9fzGVKjKQzB83ohAq3TkbUZM2Zwyy238L///Y/k5OaMlrKyMm699VZOP/30dp9/8sknH/GqzKJFizq7JHGIqoNTXyOIIJrWVzD8KRPfSX/B7LvlD1v1Lr7SzZOIZ6kTbF6Nfxg29qjLIC1gmWLWjJ1QHCjxX/Nd3jUXAzDDOD6ox/YJ1Olaejv0wrgT+kVGHsyoC+Vynxpd6z1BDlZmou/vp5xwCyFEqPrAvYQKS3VOJTXEB7CVTqjwDdT5d7J5omoJ1FVZeo2Hqjyzpc9hrmp78ry1AidfF9JH9Q74uoQIJZ0O1D3wwAOceOKJDBw4kAkTJgCwevVqMjMzeeGFF9p9/lFHHeXzdWNjI6tXr2bdunXMmTOnU2u55557eP3119m4cSOxsbFMnTqV++67j9zcXABKSkq4/fbb+eCDD9i1axe9e/dm9uzZ3Hnnnd4gY1vmzp3Lc88953PfzJkzWbhwYafWZ5dE4jlWHUWG6hXwVPUsnz+yReQS+OmC/rTEXOm9PdVoXdIdijwZdcEqfTW16e1JFaiyV/AtfS0KwUCAtcF+sE9GrCXdTr4y7lv6mmLLGiJVBOjQ7lFXbMloC1ZmonWKcSgG0oUQwiP6wsWg3ejaYlRsLwhiqwo7VOgqTmr4KbXUEa9jKTikz2iVroYAnt+FilJdzmQ1jmii/D6kKcmSUVdJ9RG2DA3b9G4mqtHEEcM4ldvmNiMZwvFqIjXUka8Lg7xCIZyv04G6fv36sXbtWl566SXWrFlDbGwsl156KRdeeCGRkZHtPv/hhx9u8/4//OEPVFV1LtV38eLFzJs3j2OOOYampiZuvfVWZsyYwYYNG4iPj2ffvn3s27ePBx54gFGjRrFz506uvvpq9u3bx6uvvnrEfc+aNYtnnnnG+3V0dGj0CnBrN0v1appoYjwjAn48n/HaIdgMdLve451cG26BumBl1JXocm8/r4AG6qylryEYqCs+mNafQBwxKrh/T6xXwp1c+lrsU/pqV0Zd89tiKPeosyMzMVJFkkISZVRwQBezW+/3e2mQEEIEg0pozpZSiYGfmO0E+bqQ7/TWwz5uza6D5rYx75ifMtM4njoafLLBwtl3epu3Cqev8m8LkwTLa1gZBqWv6/VmVur1ANxp3NDmNvEqliW6OWHCmq0ohGjWpaZy8fHxXHnllX5dyEUXXcTkyZN54IEHOvycQzPcnn32WTIyMli5ciUnnngiY8aM4bXXXvM+PmTIEP70pz9x0UUX0dTUdMSeetHR0WRl+TetORjyKfKWbAXjQ1IfetOfLMqoDMlJf1/rtaSSRDTRjGW43cvxi5apr8GxjwIMDDJJZ7QaGrDjZJBGNn0op5KSEOyB5Qme2FHSeWjpq1M5ofTVM0wilDPq7MpMTCOZMirYzh6G1Z/OluiP6O/n8iAhhBD+lc+RL7RXat8Mr0/M5ZzbeD0GBjFEUxz9VY8YNuEJJimU39/bPD0BITwy6qyTg4cfpvTV+jl1lwTqhGilQ4G6N998s8M7/MEPftClhSxdupSYmJguPdejvLwcgLS0tCNuk5SU1O7gi08//ZSMjAxSU1M55ZRTuOuuu+jVq1eb29bX11NfX+/9uqKiogur9w/rFYkBQQjUpapk9pAP+Jb2hYoDupgSyokmKuATcoPFc6oUrNLX3TofE5P9HCBeBa6HSapKZjfNP9+hNkzCrd2U0Pz3Kd2Gkk7f0lfn9j6xBpjseJ0A+pJBDbXegF0o8i19DV7AM/6QacJLzVX82HVG0I4vhBCi86wVMWkke89XPA4NHH1jrieReCqppoZaCigmi/AvjfV8xupDb6KUf88REiyVDxU6dAN1ZbqC2xr/wmrzO6D5Inuaarvd1EDV13t7t84PyvqECCUdCtTNnj27QztTSuF2u4+4zTnnnOPztdaa/fv3s2LFCn7/+9936DhtMU2T+fPnM23aNMaMGdPmNkVFRdx5553tZgPOmjWLc845h5ycHLZu3cqtt97KGWecwdKlS3G5WvepuOeee/jjH//Y5bX7UyAnErXF+iGwOMSCJwClujmomkpS2FwNDHbpq8/PHIH7mfP5WQuxoHAZld7Aabo6/IWEQLEGUGqoC/rxO8oTYIoj1ie4GExlVLCFXUBz/0VDdXo4uu2swxyCGajTSvuk8n4pgTohRAhqWvs0NFZjHliDkTEeIuOJGHeZ3csKGGug7tAgHfgG6kxt8pD7aZ/78sxtZLnCO1BXrxu8mYeB+HzlO0widAN1T7j/wxPmf7xfZx2hJ7M1K1FKX4VorUOBOtP0X2ZOUpJvQMQwDHJzc7njjjuYMWNGl/c7b9481q1bx5IlS9p8vKKigrPOOotRo0bxhz/84Yj7uuCCC7y3x44dy7hx4xgyZAiffvopp556aqvtb7nlFm688UafY2VnZ3ftG+mmXUEO1PUK4eAJNH8oB0JuWu2RtJS+2hCoC+DPnG+z+tAKChfbPCQhLkRKXwfQh14qxdZ+NxGWTLpGmgI+OTsQ6nQDx6uJgO9k7kD7oTGDOHcsq/mOXDWYPXKFXAgRgpqW3wdV+0AZmBv/Awl9wzpQl99Oj+kqS4ZXnt7eKpi3SW/nJCYHZG1OYX0/8/fEVzik9DWEM+rWm5sZxiC2sINj1DhmG6cddttYFUNv0iikhF16XxBXKURo6FKPOo+6urpOl6s+++yz3Tlkm6677jrefvttPvvsM/r379/q8crKSmbNmkViYiILFizo0NALq8GDB5Oens6WLVvaDNRFR0c7ZthE0DPqrJM4QyyjrlE3ehvrpxA+gbqWqa/BCdTtClK5tbVZfVGI9agrsnlIQnwITH3VWvOh/hI3biYwyrZ1eKa+QugG6raw09ugOZg/b7+NvIbfRl7DlPpzWaM3sk5volxXkqwSg7YGIYQQnXPolNdDVVgyvN52f9Lq8e/Mww+iCBff6jzv7UB8vkqwtI4J1R51B3Qx/zHfBeAYxvBZ9MvtPidbZVGoS9jHAZp0ExGqW6EJIcJKp2t63G43d955J/369SMhIYFt27YB8Pvf/56nnnqq3ecPHjyY4uLWbwhlZWUMHjy4U2vRWnPdddexYMECFi1aRE5O62aVFRUVzJgxg6ioKN58880u9cHbs2cPxcXF9Onj/Al2Jbqc0Qxlihof0DJEjzgVSyzNr2moZdSV0tJLMDWsMursK33t5+cpWIfqpVKAUMyoK/Pe9nwPweQzTMKhgbpyKnHT3DrBjtfII9Jy/aoxRAdKWMuYAjmJ+XCmHZygrdEsN9cE/fhCCCE6zvqecZfrBs5RM7xZ2dCS4aW15nX3+2TQizM4kSlqPMPVIFbrjUFfc7AtdH9GHDGcbZzKmcZ0v+8/EcvU1xAN1C01V3lvn+jqWIblFHUUE9QoBtKXffpAoJYmREjqdKDuT3/6E88++yz3338/UVEtmQZjxozhX//6V7vP37FjR5t97Orr69m7d2+n1jJv3jxefPFFXn75ZRITE8nPzyc/P5/a2uYPop4gXXV1NU899RQVFRXebaxrGDFiBAsWLACgqqqKm266iWXLlrFjxw4+/vhjzj77bIYOHcrMmTM7tT47bNRbWc8WvtHryQrSBzRPKV+oBU/KtCVQR9uNTkNRS0ZdcIZJuHETRSQZpBGrujcQpj3pNGcHlVJBk24K6LH8qVxXessaehH8jLpQKH31CWba8Bp5+AbqQudnzMrzocvAoLcNr+XUg4G6DNLkxFsIIRyugUaiiSKSCG6MuJQprvGMM0YAEEMMB3RzgsV2vYdElcABislXRRTqEjbpHazU66jXDXZ+CwFVbzbQiJsGmlhkLmOsMdzvx0g8eI4YTVRIvZamNinWZWwxd/JS05ve83TPeUB7XMpgld7AdvawG2mXIYRVp/NLn3/+eZ544glOPfVUrr76au/948ePZ+PGw19RsU6Off/990lObgmMuN1uPv74YwYNGtSptTz++OMATJ8+3ef+Z555hrlz5/LNN9+wfPlyAIYOHeqzzfbt273Hy8vL806MdblcrF27lueee46ysjL69u3LjBkzuPPOOx1T3noknuymfioraE3Q01Uqe3Q+RZShtQ6ZoQzhmlEXzGESWmtW6+9opIls+rb/hG7qpVK8ZYkllJNB25OYnaaQEiqoAiCF4JcBhkLpq295cIpt64igZWBQE0cejuRUnn5DvUnFpVoPQAq0gfRDoThACV/qb5jLOe0/SQghhC02mzuop4FB9MdQBr+ImEOZWcF77sVsZw9b2AnAW+YiPtNfE0M05xqz+E5vZZu5m3oaWKnXMVV1LDgTajawhZfM5s+x040TA9LXOpF4XLiopyGkWgkVU0Z2/Yk+9w2gL8eqozr0fGsZsQyUEMJXpwN1e/fubRX0guaBE42Nhy8T8kyOVUoxZ84cn8ciIyMZNGgQDz74YKfWovWRAxHTp09vd5tD9xMbG8v777/fqXU4RaWu9gafsvF/o9PD8QRPmmiigiqSbQhEdIU1oy6cetQFc5hEJdXerKNkI6Gdrbvv0OElGSo0AnXlusp7245+XT4ZddQE/fgd4TNww4Y+fh6hnlGntabg4GQ6O8peATKMXt6/P07N4BRCCNH8nuEJDCVa+qSlGEmYByd5f2WupUE3kqe3A1BHPSe6jiHRHc8SVjJA9WGLubPDWVShxloaPE7lBuQYySrB2/6jQlcG5BiB0Nbgi3gVSy8jpUPPl0CdEIfX6UDdqFGj+Pzzzxk4cKDP/a+++ioTJkw47PM8k2NzcnL4+uuvSU8P7zHedvCdSBS8fnrWMrUiXRoyjcPDN6OuWTCGSRT5TDMNfHAlVIeXVNBy0mXH70d8CJS+FllKX9NtmIzrEWF5W2zSTS2/UCGilApvgNGuQF0CLR/2qhwaGBZCCNHct7ae5lLLQy+STVUT2Kn3Ukc9q/QG8szt3seGq0EYhmKHew879B4G6X5cwg+DuvZgsU7FDVRboQgVQTyxVFNLOVXtP8Eh2uqnN0mN6fDzJVAnxOF1OlB32223MWfOHPbu3Ytpmrz++uvk5eXx/PPP8/bbb7f7/O3bt7e7jeiaYE989RihcjheTaSJJop1GUMYELRjd0epbhkvH4g0drsEs/S12DJ9NRjTJUeqIZysjqWMCvaYBV3osmkPn4w6Ap95eKh44jhBTcKNm0QV/ON3RDEOyahTLVPBQ3GYhM8gCRwQqNMSqBNCCKeyXnA99CLZycax7NH51FDLcnMNmw5m1PWhN8kqkVyjZQjgJjN8P9/lU+i9HcgLYMkkUk0tFTo0A3X9yeJU4zjOdc3q8PMlUCfE4XU6UHf22Wfz1ltvcccddxAfH89tt93G0UcfzVtvvcXpp5/eoX1UV1ezePFidu3aRUODb8PMn//8551dkjhotyWjboAKfL8wD61giV4J+H7YdroSS6AuLYyGSQSz9NW3XDEl4MdLVol8opcBsEXvCPjx/KXCcnU0yYaMukQVz+d6BQAx2pm9NoOdnXk4oV76Gowr/+1pbkkeQRNNji21FkIIceSLZJOMMVzZ9DsA0ppSvBdnhxs5ACSoOPqRyV4KyNPbQ6pPdWcUHBymAYEN1CWpBPbpA5QTOqWvVZbS17kR5/C7iGs79fwM0ogikgYa2W7u8ffyhAhpnQ7UAZxwwgl8+OGHXTrgqlWrOPPMM6mpqaG6upq0tDSKioqIi4sjIyNDAnXdsE8XkE4KKSSRrTKDdtx0a+mrJcPK6fbrQtJIIZM0suht93L8JpgZdYXWAQBBCK6MUJartzp0rt5aT7rsyahrKX1tq5+IE8gwCf8o0WWkk0I88fRVGbasQSlFAnGUUSGlr0KIkGOkDkVHJaGr96Pi+6Di7flbGgy+F8lSfB4boQaTShKlVLCM1Wg0w8lhhjGtZRtjMHvNAkqpoJCSkBny1RnBylT39Piuoga3dtsyDKqzfC5Ed+H81lAGPzbO4FNzOVvZRa2uI1bF+HOJQoSsDheOlZaW8uijj1JRUdHqsfLy8sM+dqgbbriB73//+5SWlhIbG8uyZcvYuXMnEydO5IEHHujc6oWP/RRSRBlb2EVGEDMprJlU1gwrp9tHASWU8R3b6GOEz0mYsjTV6sgwle4IdkbdYJXt7SGWF0KBOk8ZQwQRxBL8ExBDGSQSD7TdT8QJGnQjOfQnnVQZJtENJZRRRBk72Uu8pQQ12DzB4WopfRVChJioc98hes7XxFy7h+g5XxN17jt2LylgfC+S+b73GsrgOGMCqSQRRSQazSa2+1Tt5Koc0klhFENZb24O2rqDyZqpnhnAIWZJltYkFSHSp67S8h6f0MVzjkgVwV4KaKSJFXqdv5YmRMjrcKDuscce47PPPiMpqXUvr+TkZD7//HMeffTRdvezevVqfvnLX2IYBi6Xi/r6erKzs7n//vu59dZbO7d64cPnik8wA3WHDJMIFZ5eCJFEkBlGVwB9AnUBzqoLdrlipIpksMoGYJPeganNgB/THzwZdckk2FYW4g3UOTSjbrX+ju3soZpaMkizbR2hHqhzypCchIPTAyWjTgghnMdzIbfYMsiprYtk17p+QhNun57ExxktwwOPUxMooowNbAnbIItnknoyiQHN9rJWXJSHSJ+6KsvF30QV36V9TFUt04K/NL/p9pqECBcdLn197bXXePDBBw/7+FVXXcWvfvUrfvvb3x5xP5GRkRhGc3wwIyODXbt2MXLkSJKTk9m9e3dHlyPa4AnUKRS9g9jjyVqmVhxCpa+enn79VRaGCpGpBB1gDdSZmN6edYHgO0wiJWDHsTpFHUsGadTRwCa9w6cc1qnKdXOgLsnGQQ4JKh60MzPqmnQTW/ROoDlr0s5yD+vU10YdeoG6Mt0SqLNzSI7nynoVNWHbt0gIIULRN+71XNx4E0cbo9ljaeB/aOkrwFTjaBKJ5yg1kizVm3Iq6a+yvI8fZYz03g7XIMsg+pGl0klVge1nbe1hHCp96qyDL7pS+gpwnDqK0QwjTSVLnzohLDocqNu6dSvDhg077OPDhg1j69at7e5nwoQJfP311wwbNoyTTjqJ2267jaKiIl544QXGjOn4OGfRmic1O4M0IlSX2g92ifUKXKiUvlboKsoOZp70J6udrUNLMDPqfEtfgxMczjLS+UfTvwH4ylzLCMPZgTqtNeUHSxg8/UfskGQpfXVa4GSH3uvNXstVObauJZLQnvpagjOG5MSrONDNf4NqqSPO0idRCCGEff7jfoet7GKrucvnYu6hpa8AcSqW9dHvHjaTbKgaSG/SKKSEL8xvaDQbiTQi29w2FFXpGj7WSwE4UR0T0GP5ZNSFSKDOmjWf0MWMuqHGQIooYb3ezBq9kb/p20OiP58QgdbhVBuXy8W+ffsO+/i+ffu8mXJHcvfdd9OnT/Mo5j/96U+kpqZyzTXXUFhYyBNPPNHR5YhDaK29qdnBLHsF3ytwRZYUeifbY5mQax0NHg6sJ12BHidRrisZp0ZwmppKbx2cQN1Uw5Iir51/9baGWtwHhxLYnlFHc+Ckmlrb1tEWa7/B4TYH6iKUdZiEZNR1lbVXjZS/CiFCScN7l9Pw+mzqnhpNw+uzaXjvcruX5DfXNf6RtTqPuIP9ck1M+tCbq10XeluLHOpI5Z5KKa5zXcSJ6hhqqeNNvSgg67ZLsAZJgG9GXUWIlL5ae+kldrFHnVLKe25fQRXrdXj2OhSiszqcdjVhwgTeeOMNjj322DYfX7BgARMmTGjzMQ+tNRkZGd7MuYyMDBYuXNiJ5YrDKaXCm5ES7EBdtIoikXgqqfYZ8+5k+brQu+ZwC9RZ86RMAtfDTWvNSr2eKmoYpPoTZUQF7FhWx6ixRBKBieaAWdT+E2xWbjmJsTOjztOjDpqz6rra9DcQ9ukDxBNLNbXkGnZn1LW8LYbi1FefHnXYF6izDrKo0jVkBLABtxBC+JO5ZwlU7QNlYFbsgoS+7T8pRCw31/Ct3uStvlAo9lPILr2vyxcTJxpjuN39V+KJZZW5gR+5ZvpzybbyJEEAZAX481VIZtRZ+h4ndrH0FWCacTQLzA+JJ5Z5jX8knVSGGYO4P/JmfyxTiJDU4Yy66667jgcffJDHHnsMt7vlw4vb7ebRRx/l4YcfZt68eUfch9aaoUOHSi+6AAjmFZ+2eMoei0Mko24vB6ikmhiiyaK33cvxK2tJYyBLX/dxwJspE8xyxVgVw0nGZFwYvKc/p1bXBe3YXVGhW062utq/wx+sgboqhw2U+E5voZpakkhgAPZ+IAr1YRKejLpIImwtN/UMkwColow6IYRwBM/nhSzSWRP1JrcYV3GBcRa3R1zf5X2eahzHVHU0btw86H7a25c3HBToYu/tQCdC+Ex9DZGMuko/DJMAOM91Jmuj3mK+ay57dAHv6yX81f08hbrEH8sUIiR1OFD3ox/9iJtvvpmf//znpKWlMWHCBCZMmEBaWhrz58/nxhtv5Nxzzz3ywQyDYcOGUVxcfMTtROcV61Imq3GMVsMYYEOG2ETGeBvN1prODpxAy4fZOupJM+zr4xQIvqWvgQvU5Zkt5YrBHuiQQS8aaESjvUMInKqKWiapsYxVufRTmbatw3oCZS1VcALPiXAFVba+RhD6gbrSg3/bUkmytQ+hT2BYAnVCCGG7Jt1E4cHKl/4qi1xjMMlGIhOMUYw3RnR5v0opjjJGUEcDGs1yc42/lmw7n0SIAAfqeukUxjCco9WokDn/qPDJqOt6oC5D9WK4kUOSSiCWaG9F0FJzVbfXKESo6tQ4yD/96U8sW7aMuXPn0rdvX/r06cOll17K0qVLuffeezu0j3vvvZebbrqJdevCc4S3XfIp4iu9lvV6sy19sOKNGFbr71inN7GKDUE/fmeV6paG63aWhwWC79TXwAXqNtnYV8xaHrlJ7wjqsTurTFewQn/LtzrP598m2HxKX7WzAif7daH3dqbNJZKhPkyi9OAwiUBPp2vPoaWvQggh7FVIqfcCrifo9IuIOfwiYk63923tH7zEXNnt/TlFviVQlxXoHnVGIuvYxDd6A3t1QUCP5S9VBzPqoogkWnW/Bc4vIuZwX+RN3q8fbXqBet3Q7f0KEYo6PRp08uTJTJ48ucsHvOSSS6ipqWH8+PFERUURG+tbmlNSIimuXWEtOQ3W9E2r49QEnucNAL40V/m8YTtRGc5ouB4IRpCmvu7XB5iqjsZABT2jzlpqax1E4ERVlrIAO4dJWDPqrGtyAk8PmGQSj9i0OhgirBl1OjSuaHs06SZvGYrdFyCk9FUIIZwlkNlhx6qjOFqNIp44inRo9KvuCGuPukBfSEz3Gc4XGq/hAPqSpBKIV/5rtXGcMYEfqzPYqfewQ+/l/MZf8EbU437bvxChokOBul27djFgwIAO73Tv3r3069evzcceeeSRDu9HdFyRZYiD9Q99sEyzBObWmBuDfvzOKrFk1KURXqWvvhl1gRsm8bX+1jt1dbgxKGDHaUuuJTC43r25C5ccgse3LMC+AQ7WjDrnlb7aM7G6LRFYp76G1jCJMkvzabsvQFiHlbzu/oDZrtNtXI0QQgjfftb+DTr1U5ns0HspoZzteo9f922nPTrfezvgpa+WRItQGc63TK+miFIG0vbn/q5IV6k8E3UP2fUnNg9LNBtZa+Yxzsj12zGECAUd+nh7zDHHMHv2bH72s59xzDHHtLlNeXk5//3vf/nLX/7ClVdeyc9//vM2t5szp/vp1aK1YsuVFzsy6oapQYxXI6nQlWxxeCkihHdGnQpSRp2nR10ayaQT3J+5wWRzqjqOPL2NNXwX1GN3VpVPo107M+paju2kYRJVusbbw8zfHxy6IlJZp76GVkZdoVlMOimkkhz0LNdDzXadxla9ixfd/+MD8wtWmRuYYIyydU1CCNGT+ZRx+jnopJRiuMphmV7NHvKp0jU+mdWh6jtzK/3IZLwxIuDnuqkkoVBodMgM5/Nk8Sd1oz9dWyJUBHdGzOcl91us0N/yQNNTPB91v1+PIYTTdShQt2HDBv70pz9x+umnExMTw8SJE+nbty8xMTGUlpayYcMG1q9fz9FHH83999/PmWeeecT9bd26lWeeeYatW7fyl7/8hYyMDN577z0GDBjA6NGj/fKN9TRF1tJXGzLqlFLUUcd29hCv7Zs02FGeYRIAKSTauBL/C8YwiUpdzV6a+2cMVzlBb1ofbURRTS17KADdfJXYCdlYbbFmr3Wn0W53pehE0kgmlhhqHDQpt8Dng4P9E5hDeZjEAUoooowiymzthwjNmQdRRFJysGdeWRhNARRCiFBUQSUD6UsxZWQEoN9arpHDMvdqoLmP8dEqtD/T7db72UNzRt1gnY1Ludp5Rve4lIs0kimmzKdSyqkadCP1NPePSwjA+e1PXN/nj02PEUUk+bqQbeYuBhsdr/ATItR1aJhEr169eOihh9i/fz+PPfYYw4YNo6ioiM2bNwPw05/+lJUrV7J06dJ2g3SLFy9m7NixLF++nNdff52qquYPsWvWrOH222/v5rfTc1lTpNNtyKiDlpTwamod3zy89GBGXSLxRCgH1012gfXjeaCGSVgHSVgHOwTT8cZE720nT4Wy/i4E4kSmoxJVAiWUs5cCCnFOL1Br/xd/X+HvilAO1Pn20rH/tbT2G6zDOcFhIYToiXbovexkH1XUBKTfWij1D+4I67nlNMs5ZyB5qqJCIaOu0qdixP/nt3Eqlt9EXEUEEXymv+YR93N+P4YQTtapCEVsbCznnnsu5557bpcP+Jvf/Ia77rqLG2+8kcTElkymU045hccee6zL++3pPE1HI4ggCXvK6zItV+cKdBEJyrlXPTwZdSlhNvEVglP6usHcwrHqKAAmqbEBOUZ7TjSO4RP3clCaV9zvObYHVqXPMAn7AnXpKsV723ql9q2mRSwyl/KpXs6DEbdwiuu4oK6rVFdwvJpIE24G0T+ox25LKE99LdDF3ttOCNTF0RKoq6XexpUIIUTHRYyZi24oRx9Yi8oYh4oKj17Ggc5gH8sIJqtxROBii7kTApuAFnAluoxT1HHsYT8TjeBkB3qqoiqool43+GWSaqBUWtqo+Lv01eMnru9xZ9PfOEfNJJYYTq+fy8KopwKe3SiEEwQ9lejbb7/l5ZdfbnV/RkYGRUVFbTxDdIQnUJdOStDLED36WN708yliCM4M1GmtveVYaSo8Tr6sglH6ulSvZpleDcAfVdv9KAPtFONYruL37NeFfKe3UarLSXXgv2eFdkbpq0+TYsuV2rvdj7NKN/f5e879RtADdbv1fpbolQBcbvw4qMdui3WYRKhNffX5EIb9ZcSxPoE6yagTQoSGiONusXsJAZHvczHH/xl1Y1zD+KppLQDKNPg98/x+jGD6wlzFIr0UgFFqaFCOma5S8Zy6F1NGXzKCctyusPZgTgjQhehUlcym6A/4WeOt/OVgRt1b7kXMjnDmxXkh/KlDpa/+lJKSwv79+1vdv2rVqsNOihVHprWmmDLAnkESHtYMDusHRqepodZb0hZugyQgOFNfvzCbAysRRHCMYU9GXYSK4BzXDEaroRylRrLY/MqWdbTHMygBAnci0xHW3pVFluEzkbolg6zQchIfLD7NrQPQM6ezIrAOkwitqa+BbBTeFTFEe2/XasmoE0IExsUNv2Ji/Q8ZWTeL6fU/tXs5juVpj5BEAnHK//2k+6jeDFbZAKzQ31KvG/x+jGCyo51EL0v1g3VQoBMFqwdzkkrgSuMCpqjxDFUDudf9BFoHblieEE4R9EDdBRdcwK9//Wvy8/NRSmGaJl988QW/+tWvuOSSS4K9nLBQrWu8gSfrH/hgs16dc3KgrkS3NFpPDfvSV/8rNyu8wwiOVqMCcrLXUacax7Feb+FL/Q3fmptsW8eR+JS+2phRF6UivWXxnsA+QLlqafK/SC+jRtcGdV2+J8Iy9bU7nNyjTjLqxJForWkKsQxW4Rzvm0tYrzeznT0s02so1M7pw+oknnPzQL4/TFVHA82Bm81maPep87xeCcQFbYKtdbJskcMDddYezIGuGDnVdRyNNLJF76Ra17DIXBbQ4wnhBEEP1N19992MGDGC7OxsqqqqGDVqFCeeeCJTp07ld7/7XbCXExaKVTlu3CSRwCDsy0q09qjLd3Cg7gAlaDSpJDFMDbJ7OX5nBLhH3Qa2spv9pJDEJJuy6TyyVR/v7d20ztR1gsqDpa8GBnHYOxHZE8i3XqW1TkAGKLIE8YLBGtR3QnAppIdJHHwtI4lwxEWIOCl9Fe14rmkBMXVjiK0fy0kNF9m9HBGCanStT2YPwDJztT2LcTDr65QZwOz10Wqod3LpajYG7DjB4On7Gsxzkz6qN6kko1A+F1WdKNDDJKyUUvwm4iomqFFsZif3uZ8I6PGEcIJOBeoaGxu57LLL2L6961dIoqKiePLJJ9m6dStvv/02L774Ihs3buSFF17A5ZLGkF3h+dBdQZWtTUf7qyxGqMEMVtm84f6ImfWXsdjtvHLE3bo5oFNKRdCukAVToEtfPa9fGRVkqyy/778zfAJ1Ot/GlRxe5cHS10Tibesf6eG5UltKBU26yadfo0ewSy08wSUDw+dKsl1COVDXi1RGq2GMUyNs/1kDKX0V7bP2VK0huNm8IrQV6VLebVrMzY33e++LJIIpajz7zIJu7bvuyVzqHk6k7pHk5v8/mdvd5drOOmwoK4DZ6wONfpRQjkb7HDPU1Ol6ymi+kBnIwOahEkmg9ODr5/TJr749mAM/yPAsYzoVuooM0uhPFvvMAwE/phB26lSgLjIyktdee80vBx4wYABnnHEGP/7xjxk2bJhf9tlTWf+Q97Lxg+5IYwiro9/kJDWZTWxnsf6K65ru4EcN1/GXJueM1LYGdKyBnnAR6KmvTnr9kkkkgeZgqyeA6DSejDrPOu3kyajTaEqp8OnX6BHsUgtP9m0GaY6Y4hWqU1/rdQOf6GWs15uJdMioPWvpa51k1Ik2WLMuQ72flQiupe5VnNM0j3+Zr3jva6SJ5XoNn+kVNq7MmfbpluBlIDPEQqVfdXsKsAY2gxeoS7e0MCrC4aWvlh7Mgc6oA3ApF2e4TuQAJbxsvuUdaidEuOp06evs2bN54403unXQp556ijFjxhATE0NMTAxjxozhX//6V7f22ZNZ/5D3tnGYhMdwNYhE4pimJjJdTWGzuYOX3W/x96aX7F4a4BvQsTvQFAiBnvrqpNdPKeVdw26935HNZT2lAcE4iWmPNZBfrEsppaLVNsEstTC16T0ZdkLZK/hOfQ2lYRJ7HBRA94i1ZNTVSKBOtMEnUIcE6kTH1arWf1M8lymdeuHOTu+bS8imD2cbp3KKCtx096wQaYPTnnxd6L0dzPOTdJXmve30YRI+pa9Buhg91TjaeztPh3YPRCHaE9H+Jr6GDRvGHXfcwRdffMHEiROJj/f98Pnzn//8iM+/7bbbeOihh7j++us57rjmN4qlS5dyww03sGvXLu64447OLqnHs/4ht3Pqq8cNkZfy84hLcCkXf2x8jE3sAA0L3B9ybYT907isJ3ADVF8bVxIY1oI3M8CBOie8ftmqD9/prdTTQCElZGD/QAIPU5veK45JQSgLaE+65e/Dfl1E7zYCUcE8MdynD3gHNjglUOdT+hpCze13OSiA7mHtySg96kSbLG9YdUh5tOi4Sksje48kEimnUgJ1h3BrN8vM1exmP3vMfO6O+GXAjuWTUUfoBup8++cG77yyFyne20UOL32t0tYedcE5x81VOd7beea2oBxTCLt0OlD31FNPkZKSwsqVK1m5cqXPY0qpdgN1jz/+OE8++SQXXnih974f/OAHjBs3juuvv14CdV1Q5FP6mmLbOqw8JWy3R17Hy+Zb7NR7+Vp/S4NuJEpFtvPswPKcwBkY9KW3rWsJBJ/SV619I3d+4Hn9Iokg0wFBsaPUSPapA5ToMnaZ+8hw2b8mjwpdxQD6EkcMwy0nF3aZrMZxrDqKDXoLm/Q2IlTrtgOFQQzUven+GIAT1ETmGj8M2nGPJCJEe9Q5KdPVQ3rUifa4LX1UJVDXddPqz2eD3oqB4qOoZ5lgjLZ7SQFXZcnm8chUvSjXleynkHrdYGvfZif5Wn/L1/pbRqthjFA5DDEGBOxYCSqOeGKppjakS1+LdRk59CeeOPoTvPdU6wXVYoeXvlqHuAR66qvHEDUAAwMTk02SUSfCXKcDdd0ZJAHNAykmTZrU6v6JEyfS1BQ6H4qcxPqHPN0BGXWHmqaOZo/OJ4f+rNbfMVmNs3U9EUR4e5tF2hw0DAQV4NJXFy6SSKAXKRgq6IOjW4lTMazTmwDYQz6TsHcSrVWFqmYX+wAYyRCbVwP9jEyWNa0GYLm5lj4qo9U2wTwx3KJ3kUYKn+uVPGjcErTjHkmkanlbbAqlQB3OC9T59qiTIIxozW3J6q2jHq21IwahhJo9Ot+btVqvQ6e3ZndYG9l79COzuYoD2KsLGKyyg7wqZ/rC/IZa6livN3OtK/CVLZkqnW16d0gH6gooYjt7AEgOUrYYNFdfRBBBE02OHyZhoulFClXUBC1QF6OiGaT6UahLMHDJe4YIa0H/lH3xxRfz+OOPt7r/iSee4Kc/tb8sMhT5DJNwYKBuujGFKCL4jq18Ya5s/wkBZGqTr/Rayqkkg7T2nxCCAjn1tUJXsUpvoIIqx5wAW8tvnTb5tUJXem8nBfFE73AmqFHeLKcv9SpKdRs96oJ0YrhL7+fv5kuUUMbJxhTGGSOCctz2+A6TCKFAnQMz6qw96qT0VbTFmlHnxqRaJr92SZ2lv19dD+n1Z21k/17kU1RHr2Gc0TKdVcpfW3xpfuO9Pc2YEPDjeaakllIRskNifD9bpQTtuEop0g9WRwV7uFdn7dMFFFNGPQ0kq8SgHXeEGkwl1azQ3zp+4IYQ3dHpjLrLLrvsiI8//fTT7e7jqaee4oMPPuDYY48FYPny5ezatYtLLrmEG2+80bvdQw891Nnl9UjWP1LpDil9tTrGGEvtwWyKL81V3MCltq2lgipv8CrNSLFtHYEUyOtK1ob1WcoZZcPWoITTTszLLWUByQTvJOZwolUUx6mjKKeSTJVOma7gODWBOl3fHLxWvYI2ndb6weE4FfgPDh3lO0widAJ1FbqKKWo8JibZZNm9HMB3UECNlkCdaM19SJ/MUsodMSE7lGitfQKclbTONAtH1kb2vVQyLuUiR2UzQY0igThKdbmNq3OWVJKZosZTSAm5anDAjzdSDcGNm2iiOKCLHXPxqDOsQbJ0gpsE0Uulkq+LgjrcqyusF3tTgniOa60G2a3301uFZ+KFEJ0O1JWW+kauGxsbWbduHWVlZZxyyintPn/dunUcfXTzxJatW7cCkJ6eTnp6OuvWrfNuJ2msHee56hNLDHEq9sgb2yBX5ZBGMiWUs8Rcgdt04zJc7T8xAKxvKqkk2bKGQLNOffV3Rp0Ts3aycW6gzmkZdQBDjYE86f4vaMgwerFUrwKa+4lt07spa2MSrL+V6nK+dLcE6qxTvOwWGYI96hp1IwvNz6mhlmz6OOYiRKSKxIULN27qJKNOtMF9yHtUma5wzHtLqKik2ueiQmUbvdvCUaW29sdqfn/tpVJYpTcAcBbT7ViW47i1m5fNtzAxmaTGBOXzlUsZfGWuBaCQEp/ztFBhDZIFu1qpl0oB3ZyJXqNrHfnZDpozJqG5P12E6nRIocuyVcvFyN16P0cT/j05Rc/U6d+qBQsWtLrPNE2uueYahgxpvwfTJ5980tlDHtY999zD66+/zsaNG4mNjWXq1Kncd9995Oa2pL7X1dXxy1/+kv/7v/+jvr6emTNn8ve//53MzMzD7ldrze23386TTz5JWVkZ06ZN4/HHH2fYsNaN150gnVSOVUc5suwVwFAGV7kuYLm5luV6Ne+Zn/E942Rb1mINQqSo8AzU+QyT8HOPOidOluynMlAoNNpxgTqnZdSB77/bfgq9t3uRwl4KAt5TRmvNDxvmUaNrmaLG48bNFGN8QI/ZGaEYqFujN1JzMKPGSUFPaC5/raLGm1UthFXrjLrAXygIN4f+za7UPSRQh3XiZHN/rF6WzKf2yga3mLuY1XAZEbgYZgzirah/BmahNiuj0nvRNlifE6z/Dk7vs3Y4xQd/fgyMoF/Yn6BG0aSaL3AV6GJyVP+gHr+jyg5mraaSHNTjOrmSRgh/8kuPOsMwuPHGG3n44Yf9sbsOW7x4MfPmzWPZsmV8+OGHNDY2MmPGDKqrW968b7jhBt566y1eeeUVFi9ezL59+zjnnHOOuN/777+fv/71r/zjH/9g+fLlxMfHM3PmTOrqnJcRoLXmC/0Ny/Rq9jqsP5fVJGMsi/RS6mn0Nv63g2+adngG6qwDHvwdqLO+IQ5wSKAuUkXSl+Y0eEf3qMMZGXXWE5wDuth7O0M1T8sNdE+ZpeYqCnQRa8ljh97DucYs74csJ/AJ1OnQCNStMzd71x2M/kOdEXuw/FUCdaItbu2bUVdiltmzkBCWzyGBuh6TUdfSo87TyL63z8TMsiM+f4u5gz3ks4O9LDNX+zwWOetfRP5wAa4T7ibyhwuInPUvv6072IotActeQWqPY/13CNUeYkUHf37sGJzWSCNf6m/4Rm/gAMXtP8EGWmvvhZXUICc++AbqnHXeL4Q/+S1PdevWrR2a2lpXV8ejjz7KJ598woEDBzBN35O0b7755jDPbG3hwoU+Xz/77LNkZGSwcuVKTjzxRMrLy3nqqad4+eWXvWW5zzzzDCNHjmTZsmXeHnlWWmseeeQRfve733H22WcD8Pzzz5OZmckbb7zBBRdc0OH1BUM5ld6Sh2A2O+2sM4wTGa2Gsl8X8Wf3v/h1xJW2lDdbM+pSVXCvAAWL9VU1Axios6ae2+17rpNZ4P6QAorYpw/Qt41ppnawZtSlBLHR7pFYT3BKLD18+qgMb8lQAcUMCFCpyn3uJ9nOHiapMfw84hLOc50ZkON0VQShN/V1ibkSA4MhZDPBcFYJiCdQVyc96kQbrBl1EUQ4vieTE/XcjLrm99coIolWUYBvxlhxOxl1numwzfuqpkrXkKCa+yO6sk9o/v+g0/y5ZFv49LEOVkZdJ/4dnMqzbjs+W3kunELr32+nqKHWW3UQ7Aql/viWvgoRrjodqLMOe4DmwNb+/ft55513mDNnTrvPv/zyy/nggw8499xzmTx5sl+DNeXlzR8609Kam0quXLmSxsZGTjut5Y12xIgRDBgwgKVLl7YZqNu+fTv5+fk+z0lOTmbKlCksXbq0zUBdfX099fUt2QIVFcEr3fCZShTkZqedYSiDPiqD9XoLACWUB+3KnpU1MBGuPeoCWfqqUIxQgynUJfR3SEYdNJeVeq46fml+w7muWTavqFm5T0ad8wJ11qbj2bS0AyjQRQHJmNxrFpBAHL1I4YAu4YfG6X4/RncppRhJcyPsUMm63aS3U08DW9nNaDXU7uX4iFXRoKFGetSJNlh71DXRRIFDs0ecbLfez0D6spN9QM8bJuHJpgPfjLGidkou8/R2n6836x1MUKP8tj6nsGN6aWf+HZyoTtd7pwrb8dnKMzUXnBuoK8G+z1P9VRa9SCGdVKKIDOqxhQimTgfqVq1a5fO1YRj07t2bBx98sN2JsABvv/027777LtOmTevsoY/INE3mz5/PtGnTGDNmDAD5+flERUWRkpLis21mZib5+W2nynruP7SH3ZGec8899/DHP/6xm99B1/heKUuxZQ0ddWhPATuuUvWEjDrrMAl/B+q+0N+wU+8ljWTvlWcnON6YyP3uJwFnBeoqrD3qHDJMoi+9MTAwMb3BkyQSyDIy8HxmzteFR9hD131sLuU1830ALnbNJlI58wSrgCJKKA+JHnVaa+8HzgH0dVzT6ZbSVwnUidbMQ3rUOfVDqZN9Y27wBukAKqk5wtbho+pg6Wui5b01WkWRSDyVVFPcTsllnukbqPvO3MoEI/wCdUU+pa/BCTql+5Qgh15GnTWz147PVlmqJVCX79C/iWXavp7fUSoSFwZ5bKfGlHMLEb46Hajr7jCIfv36kZjo/8ySefPmsW7dOpYsWeL3fbfnlltu8ck0rKioIDs7OyjH9uk94dBhEh6HBuqOYmTQ11DWA3rUWTPq/Dn11a3d7NUFgHMGSXhMMcYzRg0jTaX49K2xW7l23jCJSBXJGcaJVOgqlunVQPPvQiYtpRaBOjH8Qq/03j7LNT0gx/CHXiqVEl0eEk2wCyimnObMzVwjx+bVtDZejSSReJpw02A2EGVE2b0k4SCHTn2VQF3naK350vRtGVPVQ0pfPRfCEvG9aNhLpVKpq4/499vUJo00MJbh5FNEpurF/8yP+AnfB8C9+3Nw12MW52H0ygVXtLccNtTYEXTyLX0tO/yGDlWkS5mmjsbAYIRqf1Civ2VaAnUFOPNvonXwjx0VSpkqnQO6hAKK0Frb0k5JiEALbndM4MEHH+TXv/41O3fu9Ns+r7vuOt5++20++eQT+vdvmYyTlZVFQ0MDZWVlPtsXFBSQldV2fy3P/QUFBR1+TnR0NElJST7/BYs1pTzdwaWv4IwpPT5vLDL1tVPyKfL27HJaoC5ZJVJFLZ+ZX/M/8yO09m8mYVdVYCl9dUhGHUA1tXyuV3gzxtJUss8V3P36gN+PqbXmc/cKoHlgwyQ1xu/H8BdP2U4FVTToRnsX0448c5v3dq5yXqCugEI+1ytYqldRrnpGSZ7ouEOnvjo1e8Sp9pDPXnzPVyt6QOlrnVlHPc1DjxLwHUaUfvDvdwnluLX70KcCzWWvy/VavmUTZVSwTm/mY3Mpf25sHhrRuPBnNC74Ie7Pb6VxwQ9pXPizwH0zAWbHBf10a+lrCGbUHdDFfKG/4XO9wuecOlh8AnXame0A7Myog5bXqIFGmRYuwlanA3U5OTkMHjz4sP+1Z9KkSdTV1TF48GASExNJS0vz+a8ztNZcd911LFiwgEWLFpGT4/shZeLEiURGRvLxxx9778vLy2PXrl0cd9xxh/3+srKyfJ5TUVHB8uXLD/scO1lTyp08TAIgG/sDdT0ho87wCdT5zy7dUlrjtEAdtAQpKqhqNQXPLk7MqIPWAZ0UlcQwNYjTjKkMUv1Ypzf7/Zif6xVsYzeT1Bjmu+YSq2L8fgx/Se/E5EC7HdAljGQI49UIhqlBdi+nFevfWevfXyGgjYw6h/ztDhXbzN2MZiijGea9r8pBWeWB8q65GICpagJXus7zecwTjDIxKbNcLLP6wpKFOMs4gdnG6aSRwl/dz7Hd3BOgVdujyJpRF6QL+nEq1tv2IBQz6qznkNaLmMGSQcvnYadmGZdqmzPqQqCPnxDd1enS1/nz5/t83djYyKpVq1i4cCE33XRTu8+/8MIL2bt3L3fffTeZmZndSlWdN28eL7/8Mv/73/9ITEz09pBLTk4mNjaW5ORkLr/8cm688UbS0tJISkri+uuv57jjjvMZJDFixAjuuecefvjDH6KUYv78+dx1110MGzaMnJwcfv/739O3b19mz57d5bUGSqgMk4CWKaHxxNr2xt1II3HEUENdj8io82fpq1Mnvnrkqhze53MANprb6OPqbfOKmjMaY4lG09xTwykODdSlkkSO6s8yczVV1FCqK9js3kG9amC0GuaXkoJ15iaySGeFXsd1xsXd3l8gWS96FOtS+ij7f5YOZw/7+Y6toJ15sSbN0gvU2nxaCGidUVegi6WMqRP2kM96mod0RRFJA409IqNurd5EL1L4Uq/iFnW1z2O9SMHAIJkEvnCvZIDqw2Z28mPXGd5t9ukDpJFMCeX8KuJnvOZ+nzf4sPkxDgRo5rk9GnUj8cRRTU1Q3yN6kdI85MsZBQ6dYg38ZNoQqItUkaSTSgVVuLX/zuP9qYwKkkiggipbMuoO7eM3kuCXKAsRaJ0O1P3iF79o8/6//e1vrFixot3nf/nllyxdupTx48d39tCtPP744wBMnz7d5/5nnnmGuXPnAvDwww9jGAY/+tGPqK+vZ+bMmfz973/32T4vL887MRbg5ptvprq6miuvvJKysjKOP/54Fi5cSEyM8zJArCnlvZ3eo44sskgnnyLW6I22rGG3zqeGOuKJJVHHY0NGe8AFqvR1t24ZpuLEjLrhluDTJr2dk5li42qa7dL7qKWegfSzeyk+hreRURehIphijOdjcynlVDK28XsA7IpeTIalf11XPdj0NPkU0Y9MzjVmdnt/gdTbcjXb6RPrnH6xRjLqxJEcmlFXQy1V1PhM8hSHZ/39jyWGBhqpDPMedVW6hj+7/4WJyTFqLKcZU30en2oczf/MjyilgvOamj+zRBPF6cY0b0DhY/NLSignkXjGMowlqqV/arhl5+zQe6mmBgODVJ0UtPPeDJXGHp3PJraHXPDdN1DX/fOfrhik+rFCr2Mdmxz5+uXrQiqoIpoo+hH8i/eh0MdPiO7qdKDucM444wxuueUWnnnmmSNuN2LECGpra/1yzI70oYqJieFvf/sbf/vb3zq8H6UUd9xxB3fccUe31xho0TqSyWoc9TSQZukJ4URRRhQJKh50EZv0DkxtYqjgtkks1CUAJBKPYQS9RWNQBGrqa42u5Vh1FFVU+5QxO0WuymEEg0lRSRQd/He2k9baG0hPdNCEXIARxmByyaGAImKJYbwaAcAJxiQOmMVsYzfVNP+dztPbyejmiWqlrvb2URqg+hKh/PbWExA+GXUO76/j9Is11una0kdGHMqaUTeYbDJUL/brQhKVBOo6wjrRcwSDMZVJFM7J3g6Er8y13p+bo4yRrQIYg1Q/7/uXxziVyzZzN0e7RgMtrTwSiCPOiCNTt7zH/avpFabrWpz1rt11ngzLGKKJNIL3s9F8vg+NNFFDLfEh9Ipae2VaSyyDKUklgIZ6Giin0nHtenYdrLKpp8GWqgPfPn4SqBMd86fGv1NDHTXUcm/ETUQrZw8481uk4tVXX+1Qj7l7772XX/7yl3z66acUFxdTUVHh85/onNV6I1/ptazRGx35Ie1QI1RzH8Na6thNfjtb+5+n35TTJ+R2h/WU1fRjoG61/o5lejXr9GayDQcG6owcNrKNZXo1X+pVdi+Hamq9za6d9vPWX2WxJuYt5rku4jLXuVwdcSEAv3Zdydcxr3O8muTdNs/c3u3jbdIt+xhhtN/L1G7WzDRrI24n8smoc9jPGfg2mZaMOnEoa0bdNnazTK9mjw7+uUGosvbQbFSNfK2/5Qv9TVhn1X1qLvfenmoc3erxKcZ4nwuWAF/rb1msvwKgXjewn0KgpTrAGoxZpJdSHkblw+W6uU9fMsEdaGXtWxZqF2nydaH3th2lr+D8HmyedjgKRT+VGfTjZzn89RHOU6Nrucv9OA+6n+Zx979ZpTfYvaR2dTqtYcKECT5Xr7TW5OfnU1hY2KqktC2zZs0C4NRTT/W535PW63a3PaFJtM3T8DSdVCId1APrcHJVDm/zCQCbzO0MdPUN2rFrdC211AHO7OXkL4ErfW1+U44gwucN0il6k0YqSZRS4ZfgUndZMx2cOpH50Em0nr/tA1Qfb18Za5Ctq/Is+3DiZNJDpVv+PhQ5fJiE9eeslwOzqkP5w5oIvLamcto1bCoUWS8kDFB9+ebgB489Op+RKvx6Nrm1m/+632W8GsFA1ZfjjYmttklU8VxunMsr5ns+wyQ8WXZ7dcuUXE+grvXAgBBsrHYYnoy6YE+eP/QiTX8H9jY+nAKaJ60mEEeCTRURh/Zg+3/2zjs8jurqw++d2V3J6rZkW5YlW3KRe+8d021675gOCRAHAiQEQiBA+EiBEEIgIRAgdDChg0MxuHe5d1uyJMtVvdiSduZ+f0i7mrXVVtoq3/d59LDenbn3rFjt3Dn3d35nAKG1yen6nk4mKSiqpGTRlRliPNXUuO/tFIrmWGVu9LgvXmquZaI2MngBtQKvE3UXXHCBR6JO0zS6du3KKaecwsCBA1s8f8GCBd5OGbYckUXE+VGqLKV07yIEa8fHW6zeWAvNlZyhTwnY3MHofBUM/FX66roo9xTd0YXus3F9hRCCASKD5XI9+RygQlYFbYEF4dGRea5tTqPPP2i/g5er3wfqGnO0l81mQxfZcEjUWZVp+WZoJw1cipo4YkKqYYkLj9JXqZpJKDw53qMOII/Q/psLJawemn1FL/fjPLm/Q5qr75F5HOUYOXIfnUV8k365Q7T+vGy+7/FclaxL1DXWGOv4NbQv107BxJAG5dSpKwPdeT6cN2lC4d4q2VJOGmoebI2pUgNNqujuVsnazNC2U1GEBl+bizz+vUPmBCcQL/D6k/3oo4+2a8IZM2a06/xw4rba3/At//Hb+KWUc4xqIHhmp95yqjaRC7XT+dpcyOfmDzwm5wbMp8668xyqiRNf4I+ur+Wy0r3QCkV/OheZWgbLjfUA7JQ5jBKDgxZLqJv8N0cPunKWmMZauZm1cnO7jYzXy23EEs0g0ZfhouUNnWDTl15MFqPZKLezS+YGO5xmcX2vhep3WjjfrCn8z/FdX0Ep6rzBtSEUTScyRJr7+dwO+jv81PweDY0kOnORdnqTx83RLyLP3E9frRc/dT4KNCjqrIlgV5IhkQQEwp2g6xhpOtxJOgi8oi5cN2kqZBWVVNGTZMaJYUGLw9ODrTBocTRGY6rUQBMtokgkgUJK1OaOokWqZQ3vGV8QRV1j0Dhi2G2G9voe2uBRp+s6hw4dOuH5wsJCdL11KptFixZx7bXXMnnyZPbt2wfAf/7zHxYvXuxtOCHNGnMztbLWb+MfDAGzU29J03pwSBYhgQyRygZze8Dm9iwRC6/EiTf4o/Q136Pja+iWLwwQfUgkgVR6MLf2CTYG8PN1PFaT/6QQTaI0hRACTQgOU8QRitnZjl0np3Sy3FxHOZXkywOkiG6+C9RPJGmdyZUFlFPJarnJr9/j7cGQBkXU3QCFqkpYedQpmqOxzSSVqGuaw2YR3xpL+MT5LRuN7Q2JejrXWRbUs8zM4tc1f+KWml93KP+mI7KI/RzmCMUM1vo3eVwnEcmTjnuZrI1yP1dZr6g7KqsZJPrShXj32lkXOgnEogWqJWqAKJENpb9BVdSF0Xd/vtyPE4N9HPBYTweaUPaoOyiPMFT0J5mkoPjTuXAlCffJg43aKCgULlaa6xki+lOLEycGBzhCASfms0INrxN1TXVara6uxuFouUZ93rx5nHXWWXTq1Im1a9dSXV2nCCstLeX3v/+9t+GENFUcJcvc6rfxrV2JTvTXCF2u1M+hmhq+NH/kY/PbgM1rNV0Ot8SJN2geijrfJOqsN069ROB8Bb3l5/ocPnQ8zyGOsFJu4A/OfwUtllA3+W8Jq0n3EnNtm8fZKHdQQVX9mKPapcwLJK73X8VR1sttQY6mcYopcyfjw0JRF0Y3a4rAYC197VS/052nmkk0yYvG25xbeztXOH/Oz2ufpNCVqBcJHsqWt8xPecZ8jTfNT/nWXBqscH2OtZtrNJ1aPD7KYn9RVX/uHpnLVrmbIko9VEv7I5fygH4bAEOuT2XRz74m8uelRN5TTuStwdv0aw9lFo++oHrUhZGaOs9jYzp4FSTHe9SFEvs4yCa5kwMcCapntev/jxOnuxRXoWiM98wv+UYuwYlBLHVd5Y/K0Pc2bHXp61//+legTmnxr3/9i5iYhi98wzBYuHBhqzzqnnjiCV566SWuv/563n33XffzU6ZM4YknnvAm9pBnqOjP2+ZnjNeH+2V8q2dBuHjUAczWZ/Az5+MALJVtTwB4i2fpa/glTlqLfxR1B5ksRiMQDBDpPhnTH+hCZySDsGMnmSQqqKRcVhIrogMeSzg0k2iOGdp4pooxFFPGa8Y8UkVymzwlt5vZzBQTKaGMSRZ1Q6hzpj6FQ7KQIxTxQO0f+Yf9d/TX0oMdlgdHZDFTxBgEMEj0C3Y4jdJJRHKGNoUqeYyYVtxYK04urKWvI8VANDSi1OekSeyWZXsplUzVxuCUTvqJ3qSJHswQ49kot7uVtgBLzSyu0c8PRrg+x6WKg9Yl6qzHuJJ8VRbj+WjhOYZHciTEfMHagrV7beC7vlpLX8MnUZcrTyyNDgbJJDFNjMXEbNQiIJhYN6K7asGzXrJW+OTJ/WHVsEQRWJaaWUCdj3tnEU+hLPG4FoQqrU7UPfvss0Cdou6ll17yKHN1OBykp6fz0ksvtTjO9u3bmT59+gnPx8fHU1JS0tpwwoJNciflxjH+ZPslNuF7o0urZ0E4JepSRTK9RU/2yn2sNDdQY9bg0PzfMchquhyOiZPW4o9mElvkTndS9TfiTp+M6S86iUiu0GbxqjmPXHM/K80NnKZPCngchR6lr+H3eRuvDee39rs5o+YGAL4yf2xTom6lXM8CuRyAP2gP+DJEv3KtfgFHZDG/cv4JgLVyC/1JD25Qx3FQHmGJXAPAePyzIeQL9smDbJG7cGDHKZ1+uR4qwhOrou4YNWTVdy2tlFVEB7EZUKhiVcmXUsamenuHFNGNGBFFAYc8knRQ19muo2Dt7hglvEzUyRMTdS6/IheevmDhn6grkw2JujgR2NLX8FXUWStIgpeoSxBxbJI7KKaMvbIgaHE0hoe1SxC7zVsTqXlyP5MIn81gReAolqVskbuAug1B17qjyqLQDlVavVrOzs4GYObMmXz00Ud07ty2G8/k5GR27dpFenq6x/OLFy+mT5/Qaj3dXoaIfkih8aO5yi+JgjxzPwPpQ5Lo4mEiHA5crJ3JEnMNOXIfWWxlAiP8PqeBwQgxEDs2ugTxwhJIzCZK1b3F2hlnoBb6f6fT9HG8as4D6m5SgpGoM2Td5y0SB4lh+nkbKBr+X2+X2W0aw3peOHR8tXL8IjDUCBdV9QCRwRa5ixpq2SsLPLpTKk5urEqRBEuZ9BFKiEYl6o6nzKKQKrYk5FxJmAlihNtTNJIIBoo+RBLR7oZAoYJn6WvLn48IHGhomJhU1VswHLWo8jodl+wbrw3nDfsf6E4SA8JgrdMSpVg96gKrqOtiUdQVhVEzibwQUdQJIRgg+rBcriOfA1TIKmJCZPMiVCqUBoo+TBajKaSYbDMfWmeVrzjJ2G3mMpwB6EJnijaGVeZGAGqoDfnNY68jW7BgQbsmvPXWW5k7dy6vvvoqQggKCgpYtmwZ9913H7/5zW/aNXaosVnuQkidLXIXp+H7RMF2stnGHpB76B3CvmGN0Uek8az8N1CXSJmg+T9RlysL3F5T8QH26ggk/ih9dSVb4omlO6HfYdjlLxaBg2yZF5QYdslc9+ctVP3DWiKJznQhniJK2W62MVFXf15n4uhKF1+G53dCPlEXJqrqTEuCdrvcQ19Uok5Rh1VR11nEudttFsrisFvXBAJrcs7l/QkNSZghlhJ4BzbWyTqf5GNUuz0AwxlvS1+FEETTiXIq3Uq65hR1PUV3Ltdn41z2FLLmI2oObUB0G45wxGOb9KCP3kXgCAVFnUB4JEdDnQoqsWHDiTOoiTqAAVoGy411AOyUOYwSg4MajwtrhVIwN6LTRA93tU9bN5MVHZ9c9rOB7SDhUnE2USLSvdY4SjWx3qfDAkabIsvPz+fTTz8lNzeXmpoaj9eeeeaZZs/91a9+hWmanHbaaVRVVTF9+nQiIiK47777uPvuu9sSTsizXe7x07h1X0qxRAfVzLMtTNXGuB8vNbO4hxv9PmdpEE11A4mvS1+r5FFy62X3A0RGWOzK96IH08U4lsosPjG/o1bWYhf2gMbgal4SRadWleiEIkIIMkVGm3d0K2QV+dQZM4fLZ8dK6CfqwqPz9wAtA5dwarvMZjanBDUeRehgVdRZPa2sHkiKBprqnOxa08yxXcxsfQbdSeJK5z38YK4A6pRoHSFR51LF6eg4aN013ZWoa03pqwvnptegogCEBvmLICYlLBN1wVTUJchYOhNHMWVh5fe3Te7BiZMedA2Kv7GVAR6bXNmMIjQSdaFi7dJP9EYgkEh2qESdogk81soi0cMHt4qj7uYSoYjXibrvvvuO888/nz59+rBt2zaGDh1KTk4OUkpGjx7d4vlCCB566CHuv/9+du3aRUVFBYMHD/ZoTtHRaKsSpTmOymPslfuA8LwBHiAy6EE3uoku6N43H24TpdJqqhvYncVAIjy6vprNHNk6dslcJomRlFLBcG1Au8cLBEIIuosknNKJEycb5HbGiKEBjcFVGhCuZa8uhosBlMsK4kSM1zu635vLyBTpRNGJsdowP0bpH7qTiB0btThDMlG3XzZ0OQvlzt+DRF/60ovOIo598mCww1GEEFZFXRfRkKizeiApGrCa8meQSjb5QMOapouId/8erdeeSo52CG9eV+lrNJ1ave6NEp1ANvgRWTv9dYTkZXNoUmOMGEI1tSRYEuGBQNd093o0nP6eXZsEDuF/7+yWGEJ/MkknTsSy28wNmdJO1+/Iho24ACeArUSKCNJFT7JlPttldocp8Vf4lgPHbWpbv/er5DEI4Y+M1xmSBx98kPvuu4+NGzcSGRnJvHnzyMvLY8aMGVx22WUtnn/TTTdRXl6Ow+Fg8ODBjB8/npiYGCorK7npppva9CZClW71ZV7+yPLvknvdaqnMMPN9AtCExkCRwXq5jY/Nbz06ZPoLV5v6CBxEhMAF2F/4uvR1u9zDUpnFZrmT3qJnu8cLFMerNgOJlJIj9Yq6cGwkYSVd68lmdrFMrvO6tOBVYx47ZA4b5HYu0s/0U4T+QxOau4tYnjzQ6vOOyWp/heRBuHjUDRb9yGM/q+Um5puLgx2OIoQwZIOirouHoi58buwDibX01ZWkg8arBKxK7qowKj1sDpcqrjVlry5cxzZ0fa37byQRaCIwG8XBYi/7WCM3s0nuIDYI/mYu/7JwUcga0nA3YwlmkwQXw/QB7CCH1XIjP8qVwQ7HjeueLYmEoCfGXKrDcio9OvYqFC6sa+VkkVRX+lrP0RDv/Or1FWrr1q1cf/31ANhsNo4ePUpMTAy/+93vePrpp1s8//XXX+fo0RMXDEePHuWNN97wNpyQZqo2liliDJkig3Kz0qdjH5JFnCImMFGMZFCYGt5ajXoDIVl2KeoCLf8PNJqPtwbCtRnAZDGKSfU/m+SOgM5dSrm7pCtc/elcDLA2lPBCHbzW3MwKcx3TxFiGiwFMEKHblbQ5ztFmMF2Mo5tI5IB5uMXjy2QFGdUzGVd9MZOqL/frDbJLzm/HRmeLEX+oESEcjBZDgDqfnY7QTVHhGzwVdQnux0fC5MY+0BQ3UfraWJWAtayz0uJnF864kmydROuVcK5E3TGqMaThLn1tquy1IxHsShKXqrOMCmpkbcDn95YSyt2VKMFskuAiRXRzb5CvNDeEzO/QZe0SCr+ji7QzmK3NoBuJfGJ+G+xwFCGIZ+lrksd3f6h3fvU6URcdHe32pevRowe7d+92v3bkSNOL77KyMkpLS5FSUl5eTllZmfunuLiYL7/8km7durXhLYQygiVyDYvkao9sri/Ilwf4Qa5guVzn0SktnLAmfbaZ/vHxs+LqlhZoQ91AY93d8kXp63bL/5twStQN1vqxRe5imczia2Mh0kcdcFtDoYfRbvAXMu1hwHGNAFrLEnMtJZSzSK7mJu2SkO6q1ByRRLJQrmKHzGa5XNfi8avNTZRRyUa5gyy5hdVyk99icy0+upMU9F3tlphS3+BFIMgytgY5GkWoYFo86qylmYVhVCrnbzaa2ymRZewwsz0UdVYaU9RZVWeVHUVRh/eKOg9lIcfcpa8dvewVPLsExwdh7dtVNDSQciV3QhmrkjdUSsUni1EAVFPDZjOwm86NUSWPulVIobARPUIbxJfmjxyikFXGpoCu9RXhgWutrKOTSMJxHnUdTFE3ceJEFi+uK12ZPXs2v/jFL3jyySe56aabmDhxYpPnJSQk0KVLlzpz8sxMOnfu7P5JSkripptu4s4772z7OwlBuouG7pi+NlK1XnzDNfFkLdn1t6LOlKb7d9bRFXW+L32t+39jw0Yfkdbu8QKFLnQmaiMBOEghu2VuwOY+4mG0mxCwef1BuuiJvd7O1JvS15eN9+lFCv3oxfW2i/wVnt+ZrI1yP15irm3x+H8b8zw8W1pzTlswpYmGTgapYeEdOU4MZ7DoRxfiWSHXBzscRYhgVdQlaZZEnVLUAXV/51fU/JzU6mkMrzmvyZuKRhV1wtMwO9wxpEE1dUIBrxJ11oQlRxsUdWHa5MkbSqWliVoQDNOtiZxwKGc/EiJNEqxM1kYxUPQlnli/bvy1lsOyiK50oS+9GEDwN+9HaoOYKSbQR6TxmfzO3cBMoXBxUBYCdZZkutCJFBHu16yepaGI1xKHZ555hoqKuoTHY489RkVFBe+99x79+/dvtuPrggULkFJy6qmnMm/ePLp0adhlcTgc9O7dm5SUlDa8hdClm2UnydelPsHs5OQrBmgZCASpJLt3Sf1FBVXupFW4JjZbiy+7vprSJAIH3UgkQcQGvHNqe5msjeI7cykZpPKZ+T33aP7vLgx4eC6GQmlAe7AJG33pRSElROLAaTqxac1fOpzSyW6Zi4HBKDHY46IYbkysT9R1Jp6vjIUUy1Jm66dwcROee3tkrlv10osefrs5KaeSA9SV4vYh9BPoQ7R+bHHuAgJjdaAID6xdXxNlAtF0Ip44bKHimh5kNprbSSOZPeQhgFii6UQkhZTixOk+rjFD9+jjElThjvU9eJNk80jUySp30vJkKH11bVBH0Sko6zerKi0cytk9qiFCZJM1U2SwTdZVr3nrE+wPCinhMEUcpohTRdMCnUAyUhvEAqOuw/V2M5s0vUeQI1IEiqPyGKvlJhY4l1FCBdfazme0NsT9umEaJIg4nNIgRXQHOK70tQMl6gzDID8/n+HD67yGoqOjeemll1p17owZMwDIzs6mV69eIV+m4wu6WhR1vk7UlUmroi48E3UpshuROMhjv99UJy46QmKztVj/ssx2Jupy5X5WyY0ATKXlrs6hxlXaubwu/stOuZd/GR/wM/16dOH/G8AjHuUTCX6fz98M0zL5wPyaw7KIvRTQl17NHr+fw+4b8LT6ZgzhShcRz96IH/hb7Zv8zXyTN81P+dFcxXnazEZvfFzdYTU0ctnPx8a3/Mn+K5/HVSQbSuBC2Z/OhUuZWYvTqxJqRcfGqqiLEVHUUEsBB9khc4IXVAjxoTmfH1kFgATKqKSMSjoTRzENfnWNlTVaE3VVIa4aaA3WRF00rW+MEG1J6pXJCmqo8/k6GUpfXYq6YK17PRR1YVDO7rHJGiKlr1Y/75BI1IWgtcvxFVqnMzmI0SgCySa5kzNqbnD/u8B5kHcdf3H/u0iUslnuBGAEAwGOK30N7U0sr0pfdV3nzDPPpLi47V+2vXv3difphg0bRl5eXpvHCnW6YSl99auiLjwVYpqm0bP+Jj5XFvjVV8Ca2AyGT0cg8WXpq1X50kdrPjkTivTSUugtejKE/iQQy3+NbwIyrxMn08RYJogRdLMk7MOVDEvJc2vUUHmWzltpIvx3NruLJJK0znQikkQSmKSNZIu5+4TjjspjHKIIaNixy+cAFdL3Ru4llpv0BBH6iTq7sNNX1H2H7JR7Pbp9Kk5erIo6m7ARW1+eV45vG3CFK011LB9MPw8VXWNljR2t9NXamCfKi9LXXiKFyWIUk8Uoj+RmlBcNKcKVBm/mICXqLImcX9b+ketq7ueWmoeoljVBiaclrD56oWJb0p1E932eNw29pJTcUfMIc2p+yZjqCymXvvlODUVrlwGa1Us5+MlMReA4fuN3qbnWI59gFUola0mA5yZNqG9iee1RN3ToUPbs8c1ueE5ODrW1odHBxh94etS13C3QGzqCog4abuIrqPJIPvqajpDYbC2+LH316Pgapt2Ff6nfymZ2skZu5g3z44DMmSv3s0iuZoVc79XOf6ji7SIoTzZ4hHSERB3AXNscfmO7k0JKeN/8iqXyRBXwPnnQ/dha8rPTD+oga/fHcGko5GpMUk0Ne2VBkKNRhAJWRZ2ORowrUWdZ45ysVMsaVtcr2hOPU2YP1Pu6kzA2bI0267FeezpG6WvDhke0F6WvTulkqcxiqczikOWmrblkn5Y6Fa33aRCbitb7NLTUqW0LOogY0nAnvIO17rUmcvI5wAfmV7xpfkKW3BKUeFqiMARtS4QQ7mtnLgWt7iS/U+bwmvkR75lfsFnu4i3jU5/EE4q/owGi4f5kg7k9iJEoAs3xyetDFHl4kluFUt2pS9RZN2mOdqTSV4AnnniC++67j8cff5wxY8YQHe25ixcXFx43DIHA06Ou0Kdjd5TEk7UsLk/u95sypKMkNluDVVHX3q6v1p2KcOr4amWGNp4pYjTV1LLV3EW2mU+GlurXOYPdac3XeHZ+PfkUdS5GWJo2NPZ7yD3ufefIfe5jRzHYp7FYFXWdRbxPx/YXw8QACsQhTEz2y0Nh4a2n8C9WRZ2OTpyIBgnl+F6FGm6sMTfRjURSRTJdRWc+Nb93v3aBOJ2NYjtTtDGMEI03k4k+zpst3PEsfW19oq6zZV3pUjxD86WvjlmveBld6GFVpQZr3ZsqejBTm8AGczs11Lj/rpeaa93NvkIJJwZjxBAcOE5IjgeT6do4NFOjmDJ2mDmM1Ae1eI7VUqgbifzB+TI36pcQIRztisXqNRgqnXETRQI/1a9hubmO1XIj++RBetb7kSk6NtYqn6GiP5FEki3z6UdvAA5amnkmi/pEXRiVvnqdqJs9ezYA559/vofPnJQSIQSG0fpylmnTptGpU8ftutSFBHR0DAwOmP7xqBMIYsJYsZNGw018ntzPMPzTvbBEdozEZmvwZelrrtyPQCCRZIr0dkYWHIQQzNQn8oTz7wAsk1lk4N9EXansWJ6IVv+PTeaOFo8/Iovcn5uOlKiz7to2lqhbYa5zf+cPEBkskquxobPEWMOV+jk+jSUcFXWxItrteVnAoSBHowgFmlLUHeUYTulsVCl2MlAja1loriaP/eTJ/Tyo3c6nNCTq+mppLLS93ewYHa301Xpd9ab01boBbPUga23pa7WsYa/cR6YWXpuVpdYNwyCte9NEMgvMFR7P6ejkmfubOCO47Ja5rJGbgdDp+gp1G77L5ToAdpDNYaOI/iKdrXIXI7RBpIhu/Nf4hunaOOzYeMb5byqpcq9HDlFIb1L4yPgfV9nObVcsVq/BUGm4ARBDFGvlZmKJ5omav/Ok4166hMkmpqLt7Jd1FYs2dDbVe9HtkQ22ah6lr6IrEF6lr16vgBYsWOCzyb/88kufjRWKaELjAu005puL2MZuqmVNu3cyXJTUK+riiEETXlcwhwzWm3irGsXXuBSInYmja4jsAPkLzSNR13ac0skScw0ROJghxoeFD1ZTTBFj3I+Xmmu5Wj/Pr/NZFXUdoctwnIjhPv1m/mm8xyq5kSxzC6O0phViu2UeGhpJdKYHXQMYqX9JFAkk0ZkjFLPd9LSAkFLymfk9BganiPHcrl3JIYr4wvyBT83v+IN8gE4+9ERydZYFwmYx6mEsHgYdABX+x+pVqKMTW6+ogzpFUGfC47Pta0ZVn89uGm42ztam8ZTxD/e/U1vRpKejdX11rXsT6UxvkdLq87pYPkPWJENrkn2X1tzNt+ZS4ohmb8SPYdUIr8yS2AyWoq6ziKcbXdxKRjs2NDS+k8uDEk9LWK9LXULou8da1bDB2M7L5nvuROzP9Ru4Xb+Sa2vvQ0NDQ1BNDQJBf3rThzSOiGLWyM383niJy/VZ7Wqq5tkZN3Tup+6yXYtA8JLxDv+W84h1RvMH+wPBDkvhR0plOavkRmKIYrQYwkJZ13jJWu5qrWjsLk6C0ldX99b2UFBQwOLFizl06BCm6Vma97Of/azd44cSnYh0L5DWys1MEqN8Mq7rAhwX5mqdPloamaSjC51l5jru4Cq/zOMyPy2mrEOUIjaHr0pf18tt7s9uuJcLj9eGEUMUGaRSYlEi+YuOpqgD6CV6UMlRhpHJpTV3c5aYxqW2s3jT+JR/2H/n0QH1oDzi3sV1Sc07CmO1oeSZ+zlKNdlmHhlaXflmttxHpsggV+6niFKG6pnYTRvRdCJTZPCO8Tk32S71WRwlYaios5bJHAmDDoAK/3O8os66pimn6qRN1FXW3zwI6hJT48RwOhOHgUknIlq16etZ+hr+iTqXpUIhxV6t46ybjFYlclQrur46cXKMao5RzS65l/5hVFngqagL3jqkNz3diToHdio5Sp7c767ECiVc16XOxIWUmteaqJtnzqcvvVnLZmKI5ivjR47JY4wQA8mSW5BIkkmilHKkgJn6RD43FpBALINEX7LMrYzVh7Y5Fuu1O5SED91EIrfbruRp45+AaipxMrDcXIdEUkFV3b1G/SaftdzVmrRLrveoi5adGERfbMJGBL4RUPmLNn0LLVq0iH/84x/s2bOHDz74gJ49e/Kf//yHjIwMpk5t3nD1tdde4/bbb8fhcJCYmOjxJS2E6HCJusnaaN4y6ww8l5pZTNJ8k6hzXYDjwzyBMkWMxhSSHXI32TKfIlnqF3VIKJqf+gtfNZNYbKx2P56ijW5XTMEmWkQxWPRjpdzARnMHf5WP+FWF5FLU2bE164MTTlynX8gkMYqptVdRTQ2vyg95tfZDAM4yp3GFPtt9rOvCmERnjwReR+BK/VxuMH8JwAvOt/iT41cALDZX8675BQA3a5chhOAB2y3Mr1nEIrmafOcBrtMuwK755vdR7OFRFx6JOut3r7UETXHyYh7nURcjGqw8ymUFhNZ9fMA4RjUAfUVv1jk+QRMa+yOXejVGRyt9tXqf9vJCUWdN9haZJe7HzSmcaz48B1l5iNcq95Id5eRwJ41rLvwF1+jnM9c2x7vAg4Snoi54G9RdtHhc+fg4YqjkKEc5RiElIeNx5sJ1XQq1+4Q+Ig0bNpw4ySafHPYxiL5sZTfbyWa7mY0dG9eJC7nTfjWfGt9TI2u5xX45vUUKEUSwyLmaT83vGCz6tStR51LUdSLS4zsmFOhBV+KIoYwKlag7CbD6ME7XxvG++RXgWe5qTdq5FHWdRCRb2Q0SBst+AYq2bXhdMzlv3jzOOussOnXqxNq1a6murltMlJaW8vvf/77F83/zm9/wyCOPUFpaSk5ODtnZ2e4fX3WTDSWmiNFMECOYKsawzfTN+6uWNVRT19o8Lsz91nShM1WMYaDow6naRFaa6/0yj9X8NJQMYv2BLxR1UkreNb5ktBjCWdpUpmvjfBVe0LAaFy83s/w6lzuRTmzI7Ri3lU4ikmH6AAbShwxS6U1P4onhFDGBJcYa93FSSveF0dr5uqNwujaZVJKZJsbygfkVh2WdUsBqaOtKbI/QBjFFjGaSGIVE8pH8xmdxhKOizvrdW6gSdQo8FXWaOF5RV9nYKR0eU5oedh1tVfZ0tNLXXEunaG+8T62Kur0UkEoyl2pnM02MbfIcs3gXsmgbETXVDCquZXCpoFCW8qbxCVvMXW17AwHmKNVMEWOYJsaSEkQLigu1M5gpJjJTTGCg1uDzmhtinb9rZa377y4pxO4T7MLOnfo13KPfwPnaqXQjkXO0GfQWPZnMKIaJTDJEKkP0fozQBhEnYkjSGkrEz9VPcY/VWMf61mJKE4FgqhjDxdqZ7X1bPsfaIXev3MfREPcfU7QPDY2ZYgKDRF9mioluoYo1UZdALNPEWGaKCW5P/3DaxPI6UffEE0/w0ksv8fLLL2O3NygDpkyZwtq1Lf/xV1VVceWVV6Jp4eur5g0DtAx2yb0slmv4wlyAKdvXhROO6/ga5oo6gIv1M9km9/Cl+SMLzVV+mcPqSxJKBrH+wJoWaquebqfcyx7yWCs3s18eZpDo64vQgspki5r1S+NHv87lLk3vAH+fx7Ms4n22Rn7NVsdXdKITP8gVvGN+7vaaKqXcvZHQvYOVvULd98eF+ukskqs5QgkLjbrvLOvurbX5xj22G1kms8hhH+8ZXyJl+xq8uLB61IWLos763XuEkuAFoggZXF1fdeo8k1zNJADKZV2izld/M+FCKeVuNXx7vGGjLY3GOkbp6wGgrnyyG11afV5ny0ZGISXkc4CPzP+1SpXnWk9paOzjABvlDrLkFq/iDhaHZCFL5BoWydVBVbbfaLuEryL+xVcRrzBDG+9+Ps+PvtRtodByTQ01RR3A0/b7ecp+H+87/kp2xPc84biXrY6vuMB2OtfqF7DO8alb7TnXNsdD+ZkqkuktegJ13aQrzLZtgmyRu9gkd7BYrqEiRDdSXOsviWSHqVR1HZkfzZUskCvYKnfTW0txl2Jby10XmqtYJFeTwz63cMJzEyu0O6J7nS3bvn0706dPP+H5+Ph4SkpKWjz/5ptv5oMPPvB22rBFCMHkenVFEaU+keIWm2X0pDuD6Bu2nTitDNQakkD+kiq7pNo2bGHv69cSvih9fdX4ADs2hoj+3KZf2SFUYdO0cVyhzaY7iXxifkeVn25cpJQeirqOhqt5jaZpbuVYOZXubkvWnazudLxEHcBP9WvIII0M0ZNXzLrrmeu7K5IIelnUHjO08VyqncVwMYAvzR/4n7nYJzFUyxr605vxYjixluRGKBNLNPZ6xw2lqFNAg6JOr79uxVpKXy+uvYu4Y6P4xPw2KLEFC191dHYIOxPECPqL3r4IK+i4EjupItmrJmqRIsJtQVFJFf1J5yxtKhla67u/W2/stofJzb+HPUKIqK6tSsiQS9R5WOQkBC+QVuBehwnNnZRr6W/ibv1aJogRVHKU9+pLBL1lqaXUcHKIWuKM0YYwQgykG4nskDnBDkfhR8rr77UiicAmbG5xwEGOIKWkWtZQVJ+At96PWL/P/XUv6Cu81tMnJyeza9cu0tPTPZ5fvHgxffr0afwkC0899RTnnnsuX3/9NcOGDfNQ5QE888wz3oYU8kzWRvGZ+T396M1aczODtPapk4pECfs4yD4OchqTfBRl8EilO1F0ooqjfkvUuXwnkkjoEEmn5vBF6esycx1HKOaILOYC/TRfhRZUEkUCJpKDFDJKDOY940tutF3i83mqOOpWiXRERZ2Vydoo5pnz6Ul35huL+cz5PWvkJvfrHa2RhIs+WhpHOcoBeYQyWcE3ziXEEU0cMaSLnh4LZiEEl+uzubx2LgnE8ZrzI7qIBMZpw9oVw26ZywGO0FN2D5vO30IIkujMfg6rrq8K4ERFXaxlI62WWgDy5cHABxZEfKmWzZP7KeBQ2Je+5pr76UQEJqZXZa8uOhPHUY5hYLKTHC4TZ3t1vrX8eEeYeF952COEiOo6TfRAIOhOEsWytOUTAojVNzXUvPN8wURtJPc5n6YbXdpsxVQgD9GT7uzjYMgm6nqK7qyX2wDYQU5wg1H4lfJ6NVxc/WZ1V7oQSwxJJFAkS6kSDdc96/2ITdhwYKeG2pC/Nnq9ur/11luZO3cuK1asQAhBQUEBb731Fvfddx8/+clPWjz/qaeeYv78+Rw8eJCNGzeSlZXl/lm3bl1b3kPIM0WMIY4YdrGXb03vzIAbI1RbY7cVTWhuZWC2zKda1vh8jsL6MquO8PtqCWuiri2Kuip5lLVyM1DXaaqraH2JSahzv34LmSKdLLmFp5z/oFbW+nyOUOm0FgimaKOJI4Z9HOQR4y88Yf6dr+RC9+sdsfTVRaZWV15xiCIudP6U1XITk8UovnG8dsKx52ozecP2B2qp5b/yG+6pfbJdcxvScHfRC7dkqEupcITik66kUXEiJyrqTlSH7pG5AY0p2PhKUQcd5+/tFeMDDlKIjs6d2jVen398osrbZJ+O7u4OuE2Gh592kSUR1iVEuienkYxAcIDDbA2x32OhxY6hI94rjNWGMVWM4RBFPG++4VEe2Fq+NH9kHweJI4bhZPohyvZj7ZAbLupXRdsol3X3WzH164ZEkUA5FWSTTwllnhU+x62VXaq6KkLbx9BrRd2vfvUrTNPktNNOo6qqiunTpxMREcF9993H3Xff3eL5f/7zn3n11Ve54YYb2hJvWDJSG0QtTgCWyvab2HfEXZ8pYjQROJBItpq7GKkP9tnYVbKuwxSEvpzdF2iWRN2Lzrd5xfkhXzpeJlJEuJ//Rc1T7OcQKSKZK/XZjLWoez4xvqW/SCeWaMZrwwMau78Zrg8gw0jDkCZJojMfGvO5ynauT+fw6LTWAUtfrQwVmTgtXRtd9KMX3UQi/TtAaX5TDBAZLKTOn86lCkrTehDfSHc9TWhcbpvNfc6nqeQoWXIrlbKKaEuZnzccoditlg23ZOg4MYwYonFiUCLL6OzH7suK0KchUedS1J2YqAuXxIivKPFhR+ck0QUk1FBLBVVhUyZ/PDZ0JogRrJNbGa0P8fr8qWIMJbKcAurUmW1R5Z0mJlNECRLJMVntsaYKRayfo4QQ+Z7tKZLdG8ihVvpaISuZLEbhxCCFbsEOxy9M1EayuL751zIzi4v0M1p9rilNdylpsuhKhBaan/8+ohc6OgYG20+ya8fJhqvhlOu6Zq1iKqfSIxl9/Fo5ik4UUxbypa9eK+qEEDz00EMUFRWxadMmli9fzuHDh3n88cdbdX5ERARTpkzxOtBwxiHs7jKnvXIf+fWGuG3FuuvTURoj9NJSWCHXs1JuYKXc4NOxrablHSWx2RwuA26A1XITS+Va1tQr5AD2m4f5l/kBH5nf8DfjP3xmLHC/JqXkNeO/bJG7WCHXc5k+K6CxB4IH9FvYTS4r5HpedL7jkwYvVjwUdR289NUmbPQTvU54fhe5LJVZpNebF3dErLu2LqZoY5o953z9VKAusfe9saLNcze3SxjqSAHL5TpWy43sIS/Y4SiCTEPpa9OKui3m7oDGFGx8qaizdq88Esa+kH82XmWFXE86qaSKZK/PF0K4k3SAh49oa0nSElgu17FCrme1xeIhVLF+jkLFo84h7PSo70Abaom6XPazVGaxUm4goZENt47AFEu56nfGMq/OzZX7OUY10Pj6J1RwCDt9RBoAm+Uu/lL7WnADUviFalnjFkG5LDOO7xp/oBnPbNdGeYcrfXXhcDiIjY2lR48exMS0/mZ07ty5PP/8822d1oOFCxdy3nnnkZKSghCCjz/+2ON1IUSjP3/84x+bHPPRRx894fiBAwe2O9aztGlMFWMYJPqyzGifqi6cDE9bi9XrYInZftWhlVKznAliBBPECPo0klToaJyvn8ZTtl94dJ60GsD+zfiPx676Crne/fh7czkr5HqmiNGcqk1knGifj1YoMlkbzdmi7u9xEzv42lzY8kleUCmrGCeGMUmMIg3vbwbCjbn6HG7WLuVq7TymMdatjEkgjoGiZd/ScGWmNpGnbL/gAnEamaQzUYxkmja22XPOF6dznjaTFLrxgfllm+c+KAvdj8OtYYf1M+EvT1JF+HC8om6AyOCP+i+ZLEaRSndGiIEUUcIKc31zw3QofKmos5bwFRKeibqj8pg7QdBWK47j/bTakuybLBrGsK6pQhXX56gTkUQIR5CjacClZjzAEb9Y3bSVA/Kw+3G4bYC1lonaSC7WzmS4GMAn5rccla0v+7N6M4Zyog7gF/pNXKSdQRrJvGy8H+xwFH6gzCKKcDWhihHWrvEVHKQhUXe8TYyr9LWSoyFtC+F1os7pdPKb3/yG+Ph40tPTSU9PJz4+nocffpja2pb9nlauXMnrr79Onz59OO+887j44os9fryhsrKSESNG8MILLzT6+v79+z1+Xn31VYQQXHJJ8wbyQ4YM8Thv8eL2d+kbLgawWK5hq9zd7vLXI3S80teRYiBR9X80u03f+tGUinJWyPWskOtx4ntPslCjv5bOPbYbmWdvSIgvNlcDdebCy+sbRbjIMw/gNOt2JT40vsbEZIlcy036pR2y8YYQgltsl7NYrqGGGpaZ63w6fhGlrJIbWSazoOP9+k7gGtv5vOB4lFcdTxEtOrkVMsNEZtg0OWgLQ7T+3GO7kcn6aPpr6Vykn0FP0b3Zc6boo1hirqWAQ+w1Cyg222amfaCZxUeoo/xjFFYM6amo6y6SuNt+HRfopzNBG8l6uQ0NjXecnwczzIBiVcx2bqe3WKJFUReuDVyKfZC4tCqJInAQJTo1c3TjTLUopreYu9oURyBxNZMIFTWdizRLkrS9FUa+xGMDLMyuq62ls4hHINggt6OhMc+Y3+pzt8hdaPXf0wO00N6EvcF2MQfkEbLJZze5IV/eqPAea/WYS1FnFaGUU8UB05p8T/Q435VzMDCoseQGcuV+aswaPjcWeJXI9hdee9TdfffdfPTRR/zhD39g0qS6jqPLli3j0UcfpbCwkBdffLHZ8xMSErxOyDXFrFmzmDWr6dK85GTPHbNPPvmEmTNnttid1maznXBue5mgjUBDq0uCmGvaNZZnM4mE9gUWItiFnUu0s/jaXMhqNpIr97epNKExKmWV+3E0bfOECkf6id7cql3Oh+bX/M9cwnZzDx+b37JErqU/vYkUkRyUR9jNXnaTS7lZyb/NeSTRmSnaaC7SWu9dEW7M1mYwSYxkm9zDM8a/+aXtNmLa6Bd2PKWyYZcnroM3kzie39nncqFxBmO0IUgRujtUvmSubQ5zmdOqY6NFFHP0i/jQmM8K1vOF/IFrucDrOcO59NWq9A2X7okK/2Eep6hzMdc2h2pZw9HaYywz1/GS+Q63m1cySOsbjDADygHzCBE4SKdnm7zUrFjtUY6EqaLOF91LU0Uyn9hepI+W5t5Mag7bhF9CbSXmofVo3UaAPZq+ohczxQTWyM18ZS7ElGZIb0YV1XcPDjUfUOtnOk8eoC+hUeliva52o+M0UTue+/SbKJCHWCU38oTxIlfq53h0NW6KteYWNARDyGSUGBSASNtHmuhRt2FOXUI4M8RVgArvqMCSqKtX0nkk6mQlBfIQnYgkmSR6HOc7GS064eq3WMlRd7OgU6uvYx8HkUietf2an9iu9vM7aR6vE3Vvv/027777rkeCbPjw4aSlpXHVVVe1mKj797//7X2UPuDgwYN88cUXvP766y0eu3PnTlJSUoiMjGTSpEk89dRT9OrV9IWkurqa6upq97/LyspOOCZOxDCMTEopJ5YYSswyErS2LTispa+h0snJF6SJZA7XdzJcZmbRS/dNoq6ChkRdY/43HRUhBBlaKiVmOUNFJnNrn6ScSnrQld3kcYe4kr/Lt4G6ErT/GUsYK4ayWm7iDG0qutBbmCF80YTGUC2TZcY6AFaaGzhVn+iTsctoaCbRWGOBjsxwbSDDtfZbBXRkztam86zxGgBLzSyu1b1P1FXJowwR/SmXlSSHWelruuhJF+LpTiI2Ou53jKJ1uJImWiMFHhHCwXRtHF+ZCxlCP35R+39cYzuPa/TzAx1mQNlJDtXUsJs8D/VRW7Bu5nYIRV071GFn2aa1+ljb8JsafT5exFJWvxm3Re5iqAjNzpfVssbdRK29Poe+phc9SaMHXUQ8hyhs+YQA4fKzSqIzdmEPcjT+Y5Q+hCgjkghpp6vszLU19/Gc4+EWN/2WmmtxYrCHvLCwNbGKPXLlfjJRibqORJk1UVcvwrHe45dTQT4HOMox8jjQZOkrQCVVdCGew7KIfOpUvpFEeAh9goXXW0ERERGkp6ef8HxGRgYOR+h4IBzP66+/TmxsbItqvgkTJvDaa6/x9ddf8+KLL5Kdnc20adMoLy9v8pynnnqK+Ph4909aWlqjx03Xx5HDPpbINe1qmOBqjpBAXIe6mHj61LVPdWil4iRV1AHcql/BBsdnnK+dioFBFJHcqF3CEse7TNRHuo9bbKzhFfMDVstNjBfDubaD3wiB/z5vJR5dX08uRZ2iZcZpw7DV75G19XO3Re5is9xJLgWkaM2X24YautBJEp3Zyh6+NH8MaW8Qhf9xe9Q1sTF0i345i+zvkMM+vpfLeKT2OZzSGcgQA4q1s2IfkdbuNV6ixR4lXJtJ+EJR5ysmaaPcj5eEsE+dL8qF/UWq1p089rNebmNn/Wc92Egp3X5W4aZSbwvP2x7hZ/r1rGIjH8tvWWA23dxKSkmOme9OYIzXRrRKgRdsPJWbodW4RNF+Kqylr6KRZhKy0v3/vafofsIaI8qSqHOVRrs6IgMco5qnjH/4PnAv8TpRd9ddd/H44497KMiqq6t58sknueuuu5o998svv+SWW27hgQceYOvWrR6vFRcXc+qpp3obTqt59dVXueaaa4iMjGz2uFmzZnHZZZcxfPhwzjrrLL788ktKSkp4//2mzSgffPBBSktL3T95eY13shuvDXc/busF3imdRBHJNDGW8zT//b6CwQRtBKPEYKaJseyTB1s+oZVUWhR1vipvDBdiRTT9tXTiRIz7J16LZZQ2mAGWHbEvzB8YK4YyUPThQv10IkVotl33JRPFSIaLAUwX4yiydAZuL2UeXV9PLkWdomWiRCfO0WYwTYwljhgOmd4rClyLDw2NlPoOeuGEawFdyVGPG0rFycfxXV+PJ0ZEMVYfSg+60YNuDNH6+7wzfCiRV68AAN8YtqfRg7O0aUwQIzzM8sOJYhq8PIPttzZZjGKsGMZUMYatIdyNuESWMVWMYaoYE3LG/6GYQCmlnGrqGluEm+9rW+ijpXl0qW+uOcr35nLOq7mdsWIoY8QQLtROD0SI7caqRg6Vz5nCd3g0k6gvebXe4xfKEnf5f2ON/aKFVVFXl6h72/iMEWKgW4VcyVEPsU8w8DolnpWVxXfffUdqaiojRowAYP369dTU1HDaaad5KNY++ugj9+O3336b66+/nrPPPpvt27fz/PPP869//YtrrrkGgJqaGn788cf2vp9GWbRoEdu3b+e9997z+tyEhAQyMzPZtatp49iIiAgiIlpObFh34r43l/EYP/M6no1yBxvkduBEY8RwxyVZXSRXI6SgWJb6xFvDWvoac5Ip6lw05qPVX/R2P97LPnbLXOKI4RbtskCHFxTSRU9y5D7K2M5es4Bnecgn45ZaFHXxSlGnaIQMkcon5ndAXdfl8/Bu08W16OxB17BUVR9/o9YlxDyUFIHj+K6vTfFr2+3c5Pw1+81DjDWGntDFs6NgVdn6IsHSW0vhh9oVVFMTUmWG3lAsreqwwHxXyIoDIA3k0UJEp0QQOiImmZHaILbIXVRxlBy5j7/4aN3ga4opZbGs+yyNYnCQo/EkFBN1Hr6vYWYn0Vas3unLjXVs1Xc36gH6mfk9O9kLEi7RzuJ225VBiNZ7rJ+zTXJnECNR+INyeeK9vdWjztrxtTELCWvpa7EsZYOxnQVyORVUuf3qoO67IUYEz0fTa0VdQkICl1xyCeeeey5paWmkpaVx7rnncvHFF3uUf8bHe15M//jHP/LMM8/w+eefs2jRIl5//XVuv/12XnnlFZ+9maZ45ZVXGDNmjDux6A0VFRXs3r2bHj3a75eWKpK5Q7uKIaI/q+RGtrVhN86662HdDekoTK5PZkokK8z1PhnzZC59bY4o0Yn79JtJJAEnBqPEYO7RbyBOOzlUYEII941QrizwWVco6y5PnFLUKRqhtTvZjXFUHuNQvZdne43mg0Uo3qgpgkNLijoXU/Vx7sdL6w3COyJfOn8kik6cr53GbO2Udo8XIRyME3XVHNkynwJ5qN1jBppiGXhFXfU7M6j+10Bq3p5G9b8GUv3ODKCu8ZmrOiafA+SG6PeX9XcW7HLh4+lCvLvsLC9Eur7uMfPoQTfGiqGM0kIrsekvYkU0z9ke5iH9J9QKJ1NqrjyhPL5MVvCG8V+GkkkaPRgrhgYpWu/pK3pxh34VafRgobkqJPzGFL7D2kwirr701VUCC3BEFrkfN7ZWtpa+fmH+wMTay0glmcliFJNEg7DqgCXhFwy8VtS1tRnEzp07Oe+889z/vvzyy+natSvnn38+tbW1XHTRRV6PWVFR4aF0y87OZt26dXTp0sXd/KGsrIwPPviAP//5z42Ocdppp3HRRRe5y3bvu+8+zjvvPHr37k1BQQG//e1v0XWdq666yuv4GiNDS+Ul5zskksAjtX/lBttFzNZPafX5i8w1dCaOYso65I7yZG00LxhvEUs0f3G+TicimaGPb9eYJ3Ppa0skigQKKUEg2Cx38omt+WYwHY0Bog+r5EYkkl1yL8NF+xshKEWdoiUmaiOBut0/b29UrLYAYZuoQyXqFHU0KOqaT9T1Ej1IJZlDFFIrnThNJzYt9H2SvKHcrMQpnNTIWpaZWbxm/z+fjDtZG8ViYzU96c4XxgJutV3hk3EDRQmh41EHdeWvP7CCdFLZZG73WeMzX2K1FAi1pnNCCNJEMttlNnlyP1JKhBBBjWk3ueznEPvlIW4lvP4+2sOttsu5t/b3bJW7ySSdN41P+LntBvfrK8z1VHGMTezgNv0K7rHfGLxgvSRKdKJMVpDHfkYwkCXmWs7UpwY7LIWPqJLHiCeWcirdSjqroq5IltGVLhymqNG1srX0daW5kVii2cYe7tauI1l05QdnnW+jVW0bDALWVzwuLo6DBz19x2bOnMnnn3/O/fffz/PPP+/1mKtXr2bUqFGMGlWX+bz33nsZNWoUjzzyiPuYd999Fyllk4m23bt3c+RIw/+E/Px8rrrqKgYMGMDll19OYmIiy5cvp2tX3/gA3axfxr9t/0cUnfhUfsfPap+gRta26tydZg6fmN9SQjnXaOcxVPT3SUyhxJnaVJY5PiCKTvwgV/Ar55/abTauSl+b5hb9ct62P8Nux3e8bX+Gbh2snLolBmgNpUXbZbZPxnQp6mzY6ETznpiKk5OuogszxQQqqOIT81uv1JxWBUevcE3UKUWdop4GRV3LHYBHa0OooZYlcg0FIjz91ppjiVzDx+a3SCTnajOJstxItIer9HMYKvqzj4O8YnwYdg1cPEpfQ6CD6ShtMJ2IJId8lpnrgh1Oo4RSA47GcF0DjnKMQh96BLcV6/pvoBb6HU19yVx9DmPFUHaQw9POf3pUIS01G9TL4VjFdaN+MV2IZz3beM34qOUTFGFDESWUUo6J6W4iEWu5xy+mjMMUEUUkmSL9hPOtFXar5UZqqeUm7VL+aP+lh7VYsBN1Xm9HFhYW8sgjj7BgwQIOHTqEaZoerxcVFTV63vjx4/nqq6+YOHGix/MzZszgs88+49xzz/U2FE455ZQWFxy33XYbt912W5Ov5+TkePz73Xff9ToOb4gRUVxlO5c/GC8TL2PoLVJ4z/iS62wXtHjuFnM352gz+MFcST/Ru8kuaeFMrIhmJAMRCDoTx0DRhxyZT4ZovJNua7DKnaOVos6DWBHNxfqZAKTQLcjRBJ4RYiBjGIpTOJlvLOIyfVa7xyytT9TFExP0XWJF6JKupSKNFdTiZJW5sdXK4cOyiMliFJUca9f3YjBJpycjGEQFlSw213Bdzf1sNLfzjuNZ+opeXFZzN4O0fmw0t/OW488heaOp8A2tVdTBiebg4ZqobgpXssDAYIruu4qJgaIvNqmTTk8yRCpbzd0M1vv5bHx/IqVkm9zDSDGIBGJJFJ1bPsnPDBH93Q0/dvhog8/XeHR9DYHk5vEMIINCUUI0nSiQh0gK8v9Xa6KusZv6jkxvrScDRB/2y8OM0gZzTfW9xGuxVMgqiihlnBjGQXnEw2c9XJisjcZZvxm0xFwTEupNhW/w9C6t+46zCzuRRHCMandpbBXH6KOduFbuI9KYyQRWsJ5YYiiihEv1swFPn8oD4Zaou+6669i1axc333wz3bt3b/UH/p577mHp0qWNvnbKKafw2Wef8cYbb3gbTtjyku13zKy9jiVyLTnOfeyXh3jAfmuz58wz5/O5+QOAT7xLQhUhBDfql/CU8RLvmJ9zlpxGBm2/IVWKOkVTzNDGk0sBh2URu+Refm/eRzetS7vGLKsvfY0TquxV0TSTtdH825gHwN3Ox7nBvIif2K6mk2hehbmTHLdHVw8Rfh1fAXppPdhDLuVUslvmurt4/rT2UdJIZr5czHxjMQCvOj/kXvtNwQxX4Ue8UdR1dCWmNVlg7creXoQQXGqbxcPOZ8kx9zFJG8VgwiNRt05uJUtuAWCmNpFEkRDcgIDeIoUIHFRT4zMlvq8JdUVdvIgly6z7/7pfHmI4A4Iazw6z7v9jdxID1rAklPiD/QFiieZp5z/5J+9x2PQU3czSpoflxogudCZqI/mfuZiDFLLZ3MlQPTPYYSl8gKclQsPfbCzRHKPavZkSTSd60v2E88doQ1lCFjXUUMUxThUTmalNADw7Px8MN4+6RYsWsXjxYq8bM8yYMYMZM2Y0+frMmTOZOXOmt+GELRP0EZxrnEIqySyWa3jceIFL9bMbzfq6sC5MM7X0AEQZPMZqQ6lfv7PdzKYVa/gmqbCUlalEncJKhHBwjXYeq+RGcmUBfzfe4lHt7jaPJ6V0K+oSQnAXWxE6TNfG8RP9avLNA2yQ2/g/45+YQnKf7eZmz7NeBxrrZBUO6EJnvBjBd7Ju805D43xOBQTz5HxiiKIWJ31EKs8Zb7QqgakIP0zZUJHROkVdB0/Umf5T9ZytTeNhngXqlCU/43qfju8vsswtnC4ms0fmca4WGvcIutDpL3qzSe5kt8zFKZ3YRGj5JRYFoQGHN1hvhPfL4JaxV5iVZIhU+pBGmkgJaizBwpUAjxMx9BFpxBPLeDGcTeYOqjjGHN17H/lQ4XJtFjoaWeYW3jO/VIm6DkJTlgh36tcw31jMMuo2tDNFBpo4cX3RRcRzrX4+ZbKCQoq5Tb/CLT5LJZlztFM4JAvJD3LDG6896gYOHMjRo77pjniy877jr3TTEtkgtyOR/Mf4uNnjXQvTbnTp8Dctrm6c0P7SAlczCRs2HNjbNZai43Gn/VpWyg3kcYAsc0urPSMbo1JWuRUiSlGnaI7eIoVn7b9mgJbBXgooo4JvjKUclceaPc8zURd+O9wuBll8gCaJkfwn4o98L5dhYFJBFdFEsVXuoZZaPjS+DmKkCn/h+q4E0LxU1AV78exrDsgj7JX7AOhBV+J93DF8sOhHPHVjZplbcUqnT8f3F0vMtXwrl7KHPE7TJrZ8QoBwKR6dGOwx84MczYmEWgOO4+keQoqVgxSyTK5jqczCxGz5hA7MXNscfox4i00RXzBCG0ia1oNbbZdzoX5GsENrM9P18XxjLuUAR1hsrqFcVrZ8kiLkKaZuMyKKTkQIh/t5Q5juJB3UJeqa4u/2R3nT8Se+crzi8RnvrMWzWe5ildzIYnNNu+4L24vXW0B///vf+dWvfsUjjzzC0KFDsds9Ex9xcaF3QQhl7tCvYpGxmrVyC88Y/+Z221UeO00unNJJAYeA8L45ay3poid2bNTiZJvc066xXKWvMUQpbwLFCaSJHlyuzWaxXMN8uYilZhantLHTcCGlROAgic4MoOmLg0Lh4gn7PVRxlO/MZfwoV/Cm8UmzXRldXWJjiApr1ead+rXMEtNxCAexIhq7sPNP++M4pZMKjmJKk7fNz1gjN/Gk8RJX6eeGnGpF0T4MlKIO6pSFo6svwIbOpdrZ3G27zudzaELjfv0WXjc/Yqfcy0fm/7hcn+3zeXyNNYnTvZG1cbAYI4aSJbaQJ/ezg2wySQ92SB54qk1Cr5TTI1EXZA8o62essfuvk5W5tjnMZU6ww2g3vUQP7tavZb65mGUyi1eND5lrC//3dbLjKu8/XjH8E/1qTGlSJis4RjV32q5p0/iTxEhyZD7HqCZLbmGC8K6S1Fd4vepNSEigrKyMU0891eN5l0GjYRhNnKlojAQRx3BtAN8Zy5ghxrHG2MQ5tlNOOG4fh9w7PSdDos4mbAwQGZTJSo7JakpkWZt3BV3NJKLxTQc1Rcdjpj6Bt2o/BWCpXMsptC1Rd4hCqqlhHwcblVorFI1xrX4BfzfeJoNUvjYXcaO8pNGklJTSnaBIEz3CeuMhQ0slQ0v1eO74Xfv/1nyDKSWJMoFzam7jL/aHGKT1DWSYiuP4wPiKKnmMQlnMErm2XWMZ0iCGKKLoRG/Rs8Xju5NIFxJIIBab98vXkKNIlrLZ3Mm35hKK6tUB1dQwQfPPDcFYbRgPG8+SSTofG99ymTYr5L9DXEkcB/aQ2phI0bqxx8gD6rwFzyU0ynJduBR1UXTCIUKvkiSZBn/Vg7IwiJF4zh9KyWCF75ijX8Szxmv0JoUF5nLukFd5qLAU4YerYc7xuYEuIp7f2O/kOefrAAxs45pxsjaaj81vyRTprDe3+e263BJer3SuueYa7HY7b7/9tlfNJBRNc6F2Bs8ar/GjXEWS2YVzOOWEYzpKuZM33Klfy13O32Fg8A/jXX5pa7p7b3O4FXWq46uiCSaLhg57yyzt6L3FujOsFnyK1jJaG8Ic/SJeN/5LtpnPPGM+V9jOOeG4wxRxjGrg5LgOPGv7NRvkDq6vvR+ndPLH2n/xasRT7tetHdxa081NdXxrH07p5KHaZ8mlgFiiGSr6tzthNkoMZro2jt/Y72zxWE1oJIhY9sg8iszSFo8PdZYYa7jM+TOP5yb7sbPiDG0cl2pn86H5NTvMHP5nLuYsfZrf5vMFrmtqd5JC6m/Xas+yvZ1VH/6gKbVJqNBdJLofB7urolq3dXwGan25Tb+Cl4332WsW8LbxGTfoF4fUd4qi9VTLGneziKY2cNqrmpyijaaGWtbLbfzPXMxtNF3p4k+8XmFt2rSJrKwsBgwIboeejsRobbC7zLOpC/4+eYDJYjQagkHi5FAUTNfGEU0kI8VgD5NlbzClyVCRiYag90lqEqtomQyRykQxEhs6R+UxDGmgC+87mFgXnN1JbOZIhcKTq7Tz+NL4gYGiLy8a73C5PvuEReR+eZhTxHhqqGWICI+uje2hn9abZNmVSBwk0Z1lMou9ssD9Xf6s8W8+NxZgF3ZGiUH8n/3+Zsf70PyaF53vkCnSOSyLQK3RvUJKSYqo+/8hEHTxUQdOb/w800QP9sg8SiijTFaEtRfoYRo6K6aSTCcima6N89t8Qggu0c5kgbmcUWIwy811IZ2oc0onhykGAl+S6LjkMzANZHkeIjYNNM/1gLXZx442rk/9hZSSfqI3felFcoh2Bu8kIoknllLKg+5RZ21mkYxK1HVUrtUv4L/GN2SKdP5pvMeP5kpeczwd7LAUbaDY4sHZ2U8enANFH+KIppgylplZmNIMSqWU14m6sWPHkpeXpxJ1PsQu7PQVvdgm97BT7m00SbDF3M3S+jKTX4ibghFmwOmr9WKQ6MdCuQokPCV/4fVuVwnl7t9bR2/AoWg7Qgh6iu7MM+cDdWbb3bREr9vRK68TRVuZoY2jv0hnkVyNhsZZNTcxW5vBXNscd8LukCzkB7kSgOltLM8ON2JEFPfoN/K48QIArzo/ZI5+Een05Hnnf9jPYZCwls10I5EL9TMa7Z4upeR1539ZKteyVK5lOAPc5vqK1mPHzmXaLB6w3RqU0qE0PH3qhoj+AY/BVxykoeRukjaSTJHBGG2oX+c8RzuFW3mYb+VSthi7eMR2V8iqSg5RhEQCgVc6aV3qO0MmDWr09WgRRRo9yGM/2+QeTNNE00LD7qKMChbJ1QCcKkKnAcfxdBdJlMrykPKosyr9FB2L8dpwtjm+pnfNTCqoZIvcRUpNN35jv1PdH4YZxdau1sI/Hpya0JisjeYL8wcKKWGluZ6Juv8U703hdaLu7rvvZu7cudx///0MGzbshGYSw4cP91lwJxMDRAbb5B6qqSFX7idDeHr3WDufNtfBpKMxVRvDCmM9UFeS6G3noUJZ7H6cSIIvQ1N0MCZro9yJutNqr6e/6M0qx0de3cSoEgpFWxFCcL/tFr4zl5ErC1hiZrHG2MRUfQxjxTAAjtDwfZbkIzVTOHC77Uq+M5dSQjnPGa/zN+M/DBJ9mSRGsUnuoLtIoqfozj+N93jY+AubHF+ckKz7xlzCt3IpE8QIyqmsS/iEZn4i5IkTMUHz9zm+ocQQwjhRZ7ledBNJAVEHOjQHE7QRfGcuo4BD5Mh9J6w3Q4VQv55epJ/BMjOLnXIvuRSQTmj8Hj1+byGsEJsqxhBLFMWUUWZWEKcFRx0b6p8zhe+I1qI4XZvEEVlMKeU8Z75OutGT22xXBjs0hRe4Or6Cf8v7r9bOw4nBYnM188z/hUei7oor6mp0b7qpQdUlhFDNJNqJK/mWRGd2yb1kHHfB316fqHNgJ70VpssdhcnaaP5svEo8MWwyd3qfqKPE/ThJdPZxdIqOxBRtjPtxNTXoUmer3M1gL0oM1YJP0R5m6TOYpc/gypqfU1iflFtirmWsVpeo89h4OIm+z5JEZ0ZrQ/ib8SYJxFJNLavlJmzCxs22y5hrm8P5NXeQwz4SiOOh2me4xXY5p+mT3GOsMjfSmThWyPW8a3/W62uJIjRIE8nux+He+dV6vZhrm+O1grutTNHG8J25jO4ksVpuPGG9GSoUyIPEEk05lSFpJREvYlklNwKwRK4NmUSdRylnCK9DjlHNGrkZgH0cJI7gJOoq5VF0dCSSJE6e6+rJyruOv7DO3MrEmsuwY2efPMQbzo+53nZhsENTtJJSWU4UkVRxrM2NJlvDNH0sNzt/TS1OCuQhquRRokRgG1N6rdPOzs4+4WfPnj3u/yraxlDRnzhiOEIxW+Quj9ec0skuuReAfqJ3m7yzwpWJYiR9RS9KqeBrc6HX5xfKEvfjk+nGVuE9w0Qmyxzv85j+M2KIYj3beN/4yqsxPBQSIXhjoQgPHrb91P14qdnQWfOI5fvsZLuhmGubwzv2Z/mpfg1jGMKl2tm8Zn/abRj8uv1p/m57lARi+a/8hrnOJzBk3cZhtazhD8bLlFHJaDGY87RTm5tKEcJYFXW5YZ6oC5an6TQxlhS6cZAj/GCuDNi83rJXFlBOJbFEezRvCATGtvdxbnyN2u/vxbnxNYxt759wjLUJ1dJ2NKHyNZ6lnKGbqOtl8Y0OZtJ9u9yDgcEQ+p1U91cnMyO1Qbxsf5K79Gv5i/EatzkfZou5q+UTFSFBEaVUcQwdnS7SP6WvAN1EIldos4kkgnnmfJaZ6/w2V1N4rajr3bu3P+I46emj9aKMCqBBPeciR+5jnBhGGZUMF5nBCC9oJGoJOKgrr86SW6mUVUR70b31iEWBcrLd2Cq8Qxc6o8Rguoou/Nb4KwBvG5+SbebhxOAC22lcrs9udgwbNkaLwUQQgUPYmz1WoWiKwaIfPehGskjCRsONQ6FH6evJ9X2WJnqQpvcgVxYQr8UyThtGutagLu8s4rnJdil/Nl4lVkbTnUQ+Mb7jYtuZrJWbqaYGgMGiv7oZC2MyRCojGIgUktX1aqZwxZVQ6UxcQEuJR2uDOVTfyMK6ERBquNbC5VSSqgW2y3Xtot9ARQEIDaQJMSnoAy/3OGa8NowkEugtelIsy5oYKfAclA3eh6GcqAuFpPsxWe32iowOsFJGEVyu0y/gr/INNDTGMYy7ah/jGv0CbrZdGuzQFC3g6mptYBCv+ddreKY+kdfN/wJ110trpUYgaJPz6X/+8x+mTJlCSkoKe/fWKb3+8pe/8Mknn/g0uJMJawep4zucbpfZLJFr2Si3kxqg0ohQYrJWt2tpYLDIWOPVuSfzja2ibaSKZHrXl5fnsp/35JfMk/P5s/PVZs/LlwdYLNewVm7BLrzeA1Eo3GhCo7/oTZbcwjzzfxTVG+cqhXCdsm6e429uJd3xvGD7LVUcY4lcy1+N1wFPtctkLfAeIwrf0U/rTYRwsEFuZ4G5go3G9mCH1GZcCuxAJ1OiRRSjRF2ThK1yt8f3Sihh3bQOtKKuNUSLKNJFGmvkZj4y54fM7zFcPOp6eSTqCoISwz550P047SS8vzrZuVm/lKWO98hiK0tlFk87/0mNWRPssBQtUGRpJtEF/ynqoCEHAbBUBl457XWi7sUXX+Tee+9l9uzZlJSUuD3pEhIS+Mtf/uLr+E4a4kUsKXQDPBtHQJ0s28UALfQWK/7mXHEKs7UZ9BO9eNf83KtzPW9sE3wal6LjMke7iP7CUz28Ue6gVJY3ec4ySzJgklDJAEX7sH7Xu64JHs0kVHOcRpmhjWeEGMgEMQIT2GXupcA8xFRR15RjgjYi2CEq2snl2mzGiCEMFf35k9H8BkqoUmSW0E/0ZroYywwR+A7OZ2vTmCbGMkoMZnkIlW1a2VG/aZ1E55DdaJ1iuYlbHoSyqMawllT3EF2DGEnzhILfpFXJpxJ1Jx/RIopBWl8G0od0UnHi5B3zi2CHpWiBEhoUzP70qIO6DYUztClMFWMolMXUylq/znc8Xifqnn/+eV5++WUeeughdL2hfGTs2LFs3BjeZQjBJrP+xuwwRRSaDTdk1l3FgaJPwOMKNlP1sSw1s9glc1ltbiLfbP0F3fPGNjQXeorQY5I2ip31vpAuJJKvmvFJ/J+x2P3YunhXKNqCVUHiUlm7Nh46ERlwQ9twQQjBhdrprJDrWSnXs9hcwwK5nMVyDRvktpBU5ii840b9YvbKAjbJnXxvLuPJmhfdfoThwk72sl5uY6FcjSECH/swbQCL5Gqy5BaWhGD5a7lZyX7qmiJkhvDfrFWh2xYfZX9wwNJMIpRLX60VQhvNHUGJIU8l6hTA8/bfkEM+BRximZkVkt+JigasVgP+7PrqogsJ9WvI7ayX2/w+n5U2NZMYNepEtUhERASVlZU+CepkZZIYSaZIpxMR7CDH/by1FDaUFyz+IlZE8wv9RsaJYewml+eMN1p9rlLUKdrCKdp47tNu5kP78zyo384ZYgo2dN4zGt9pK5XlfGJ+RyIJXK2dy0RtZGADVnQ4Blg2ZVyKOlfX10SlpmuWKXpDB+fF5mqPZkw2VZYe9kRrUfze9gtu169EQ+MJ8++sk1uDHZZXWNd1A4KwATvJkmAKRZ+6PeQRSzR96cVYbUiww2mS6do4Ltdm05k4PjL+R6WsCnZI5MoCepLMNDE2IDexbSVGRHG/fiupdGcLu9hl7m35JB+Th0rUKWCSPooH9Tt4SP8pC+QKzqi5gd1mbrDDUjRBIBV1AFM8rpeBVaB7najLyMhg3bp1Jzz/9ddfM2jQIF/EdNLSVXRhh8zhKNUei7hI4aAHXUklmRgvGil0JObYLmaj3EEX4tls7my1F4iJSSrJxBHj9zp2RcdBCMETjns4V5/Jr213sE3uwY6NCll1gidSgTzED+YKetCVQkqIFJHEiZggRa7oKGRqGejo9CKF9XIb5bISgSCFbqRaSoYUJzJGDMGBnV6kUCrLqaGuVEGp6ToO19suZKDow0GOIJE8WvM8t9U8zNvGZ8EOrVXsCLL/WlfRhUyRQSIJlMoKDptFAY+hOfLkfsqoYDe5xAn/moW3h84iHg1BMWUMEf2DrsSplbXsIZ99HKCMCoQQQY2nJWJFFPkcZCSDyDI3B3z+GllDOqlEEuG2H1KcnPzWfhcOYWOv3Ee66MlPah/hkpq7eKj2GX5b+1eklMEOUVFPoBV1Lp+6PqSRY+b7fT4rrU7U/e53v6Oqqop7772XO++8k/feew8pJStXruTJJ5/kwQcf5IEHHvBnrB0eq1rOtYgrkxX8YK5kP4dJFz2bOrXD000kcp/tZio5yvdyOX93vtWq81abG8nnAPHEYlddOBVtwC7sPGT7CXbsLJKrT/BE+tT4jitqf852sjlFTOBXttuDFKmiI9GLHlypnUMuBXxrLuVJ59/Zz2GOUMyN+iXBDi+kiRQR7Ir4lsnaKD6TC9zPn4yK9I6M1WLgG5bwhvkxv6z9I1XyaBCjah1WS5NgfS7v1W+kkqNsZTcvGe8EJYam8ChJJLSVTtfo5+PAzkK5ireCnCjeI/Nw4gTC4/vuKu1cNARr2cy/zA8DPv8WuZsc8jlGNckh7OenCAy361fyo+MtrtLORQIbze382XiVp41/8pX5Y7DDU9RTTF0ziRiiAnJvP4i+9KYne8jjQ/PrgCZtW52oe+yxx6ioqOCWW27h6aef5uGHH6aqqoqrr76aF198keeee44rr7zSn7F2eKzm4a5FXL484H6u90mcqAO4VrsAGzpTxRj+a37TYolBkSzlEHW7xH20tECEqOigXK7PIgI7E8QI1skt7DHz3K9tszR7Gaj18ehkplC0FSEEI8RAutKFM8QU3je+YqoYgx0747XhwQ4v5OkmEhmpDSKZrvQnncH0ZYL6vXUohoj+jGAgg0RfBIJEEkgXPXnD+DjYobVIN5HIFDGGIaJ/0K4ZM/WJ7jXVi8bbXFj9U2ZV38KrzsAnTI4nnLzDTtHGo1Pn2R3sMmKPTrlh0HwuTevh9o/ebu5p4WjfY1XmdBGq6uZkJ0HEMUEbQZyIIU7E0E0kEkUk08RYXgyxzYyTmZL6v9uEAJX265rOIK3OouIQRW47lUDQ6kSdNXt4zTXXsHPnTioqKjhw4AD5+fncfPPNfgnwZKIn3YmiziB8q7kbCK/Fir9J13pyqXY2i+UatshdfGk0v7vh0S03DHYWFaFLlOjEXfp1rJDr2S6z+Zfxvvs168L4YdtPgxGeooNymT6LwxTxjVxCAYdYLNdwlpjGIK1vsEMLC36iX83OiP9xuT6Li/Qzma2fEuyQFD5EFzorIj8kK+ITFtjfpJASVsmN/Nn5CpfU3MVzztdDtlzpW3MpS+QaDstCNOG1C41P6C1SuEybxWK5hiJK+VouZIFczsvO94PenMO69g31zS+7aNg8yWM/W8xdQYvFunGYKdKDFoc3ZNZ7NB7giPsGPFC4lDmdiCRSRAR0bkXoMtc2h3mOv7HQ8TYDRAaL5Gq+NZfyQM3TlMmKYId30lNc71HXOQD+dC4mWxT8Xxg/BGxer1YHx3sdREVF0a2bqun3FZrQuEKbzXgxnHIqKZXlqnX4cfxUv5pM0hktBvOm+Wmzx3qaNatEnaJ93GK7nHFiOKPEYP5uvM1BeQSAHfWfs0QSSBKqs7DCd/TQujKIhqTcODGMubbrgxhReBEhHNiF3b07rui4TNRHcJN+KX+xPcRF2pmsN7fxvPM/3OX8XbBDa5QaWQOAA0dQ47jbdh3na6dypTiHJBLoRQpb2MXH5rdBjSvPUk0SDE9OEdUdYlJAj4CYlLp/N8N12vmcLaYRSzQfGl8HKMoTqZRVjBFDGSOGkiHCo5LEqvzbIXMCOrcrMRjKTTcUwUMTGvfYbuQG7WLGMIR/mu/zjPPfwQ7rpOaoPEY1ddfPQCnqAM4W07hIO4M0kgN6ffSq/VlmZmaLxqRFRaFlSBtudBIRrDQ3ALDCXB9Wu4qBYLg+kBqnk7VyC5EygmpZQ4RofKFbIA9ix0YtzqB0VVN0LLqIeCZro3jOeJ0edGWhuYpZYrrFqF59xhS+Z6Q20K2wNpFM0EcEOaLwY65tTrBDUASAv9sfBeDPta9QwEFMJAvM5cENqgmOUQ0QdBXPYK0f7zv+ynPO14k2o3jF/IBIIvjU+J6LtTOD1ozgCHUdrruTGJTfUcQ1C706fpo+njucj2JgkCv345TOoHSY3ib3sEZuAqBHmHiuuTbSOxHJLnNvQK0dXMqcQHSOVIQnl+uzmaSNYmD1WRiYrDTXUy4riRXRwQ7tpKRIlmBDx4kRUEXdUC2T7c5s8jhArIxhqbGWyfrolk9sJ15dRR577DHi41UNvz+ZpI3i78bbACwx1x5X+qo6/QFMFqPIkXXmr1lyCxPFyEaP2yR34sQgmSQyRGpgg1R0SG7Xr+Rj4xvyOcgLzjcZZO/LYYqIJZphIjPY4Sk6IL+x3cVD8qfsknvpoiUEOxyFIuT5hf1mvjQXskSuYY/MY788HHJJi+r6DZ6IICvqXMy1zUFKSVXtUb42F/Ge+QXXmRdwuj454LEckEfYJfcSQxSztVMCPn9b6C1SOEubyo/mSt40P+EX8iYGicBbFByRJe7HiSQEfP62MEj0JZmuHOAwW2TgyoZrZC1V1DWeCaQyRxF+pIke3KPfyLvGF3wvl/OK8QE/t90Q7LBOSgopwYlBNJ3oRUrA5tWExoP6HfzB+Ccb5Q7+YLzMx/qLfp/Xq0TdlVdeqUpd/cwkbRTRdKKv6M1Scy09RXeGi4GUyDJSlaIOqKsT/85cRrroyXpzGxO1kY0elysLkEgOUqjUiAqf0EdLI0JEYEiDNXIzO806Q9FyKlXZq8IvuBrh9KN3kCNRKMKH8WIYOTKfPiKNTeYOeuihlahzK+pCJFEHdfY25+mn8o75OePFcN4wPg5Kom6ZmQVABVUkioSAz99WxmhD+cL8AajzSLbaFgSKwnolYjSd6CQiAz5/W+gnenOAwwDssHj++huXPx0E1utKEZ5cp1/An4xXGEYm843F/ES/usmKLoX/OCgLAajkKDEBVjVeqJ/GQ85nSCWZclnJemMbI/SBfp2z1R51wZK/n2ykimRma6ewQW5jkVzN1+YiNsht1FBDjIgKdnghwRQxmoMcYYVczzfmkiaPc6kRU+gWkPbNipODydooAGpxsthc7X5eeUgqFApFaDBWG8Y+DrJIrmZ1fSlgqOCUTkxMIPgedcdzgXYa08RYVsoNvG9+ySpjQ8BjsHZOnaL5v7TIV1i9kLcHMOFkpbBeUZdI+Gwc9hI9iKSuvDmQv7diaUnUoarFFM0zQOvDzdqlbGQHC+Ry3nJ+FuyQTkoOcMT9OFkkBXRuu7Dza9vtFHCIJXItzwbAr7BNXV8V/uUcbQa9SWEqYymp90/IDIM264FigJZBl/qL6jIzC1OaJxxzTFZzkLqsuyoZVviSc8QpnKVNY4DI4Adzhft5lahTKBSK0MDaGXm7uaeZIwPPsXojbAi+R93x6ELnKv1cBtOPMWIIfzJeCXgM2WY+U8UYxovhTVZM+Jvab39GzefXUf36GGo+v47ab3/W4jkeiToz8Ik6U5oUUgJAUhgpEXWh01/UKcZ3yzxqZW1A5nX504FS1Claxw22S0inJ5PEKJ433wh6d+yTEVcjP4DuAU7UQZ1nYQapTBVj+FYuZY+Z59f5Wp2oM01Tlb0GiAu1MzjAERbToNZRXUsb0ITmbpNcSEmjC6J98qD7sUqgKHzJdH0cS821bJfZ5LDP/bwqr1YoFIrQoK/ohVa/xA1kOV1rcJW9AkQQemr/q7XzKKaUNXIzC8wVXFB9B5fU3MUlNXfxRO3f2SsL/DZ3haziK7mQxXINlRylswiO0snIno+582Nk8S7MnR9jZM9v8Zx+ojeCuuqjrWbgvNZclFDuVmomhpkVh+sex4mTPdK/N74uXB1fQTWTULSOcdowMkQqy2QWubKAr8wfgx3SSYdnoi4x4PNHiU5cq5/PYrmGQkqYbyzy63ytTtQpAkekFsEYMdTjOZWo8+RMbSqjxGBiiGKpzDrh9VyPJhwqgaLwHfEilnv0G5goRlJZb0QMdWXrCoVCoQg+EcLhbiK1XWY3qrwPFtVWRR2hpaiDujXo7+w/5wXbo/xEv5oqjlFolrDW3MxTxj94qPbPfpt7hbkegzqVistmIlyIFBFcoc2mn+jNdrKpljUtn+RDCmWx+3G4NJJwMUIbxGDRjx50JdvMD8icHoo61UxC0Urus93CNDEWHZ0nnS+pisMAc8CaqCPwijqAO2xXMVT0J52ePGu85te5VKIuRJmijUYg0NERCAaIPsEOKaQYrg0gS26hgiqWmGtOeD1b5pJGMhE4VKJO4XNutF3KWrkZGzai6URXuoSNcbNCoVCcDAwQGUTTiRS6kSP3tXxCgDgmGxR1oeZR5+I6/QJutl1KFxFPnIghQcRSSAkCwV6zgPOqb+eoPObzeeebi+gt6jr5TdHG+Hx8f2PDxi65lyqOsSbA3ohHaEjUdRVdAjp3e0kkgS1yF/s5TC7+U2xaKZdV9KAbMUQFTbmpCD9O1SZSQRWVHMUpnVxY81OPKi6FfzlIcEtfATqLeBJFZ7LJJ5cCtye+P1CJuhDl57YbOByxgl/pt/GAdgsztPHBDimkGCUGu3eiG1PUZcmt5HEAHY0xYkigw1N0cHqIrsyz/42CiMUURq5id8R3wQ5JoVAoFBama+M4Rg072ctauTnY4bipocGDKzLEuwbOtc1hnuNvfBzxIl84XuZp231ksYVv5BLeND7x6VxlsoI3jI/ZKwuYwEhmiek+HT8QWFWAS80T16b+xNVIAgirbrngWfmS68ebXiv75SH2c6iuu7BMCMicivBHCMEL9t/yT9vj7CSH+XIRf3W+EeywThpcpa8xRAW1yeZk0dDoyJ/f9Ta/jaxoF66LbJyIAQEO1bXUgwjh4GwxjYMc4SCFrDO2MlIf5H7d9UdTTS2Dtf7BClPRgTlDn+J+rP4+FQqFIrQYLPq5yyiXmmu5VD87yBHVYfWoC8XS16aYpo0lhihAkEp33jE+Z5XcyD/tT/hk/FedHzJI9KVAHmKAnk68FuuTcQPJFDGavvQiWXQNuIrzsCxighiBhkY6qQGdu71YPX7z5IGAzGlV5iRrwVHmKMKT0doQeoruGE6T3qTwvbmMIllKF6XM9CuFsoRKeZTJYjQZomdQY5mmjeULYwAO4eC/xv+4Qp/tl3mUoi7EmWubw1zbnGCHEZKcbzuNZXIde2Qer5kfcaTen6NIlrJZ7gRgpBgY1Iy7QqFQKBSKwDNBG+E2919irg1yNA1YPeoiQrT0tSlGaYPJc/xIFcdYKrN4y/iMrebudo972Cziz8arLJNZ5LGfe/WbfBBt4MnUMiilnCVyDfOMrwPqjbhDZrNCrmeZzCIpzJpJWD1+8wOVqAty90hFeNNdJPFT/Wr2UsBGuYOf1DzioWpV+J73jS/J5wBL5VpSg2xrdYo2nlJRwWq5kS/MH9hl7vXLPGGdqFu4cCHnnXceKSkpCCH4+OOPPV6/4YYbEEJ4/Jx9dss7qi+88ALp6elERkYyYcIEVq5c6ad3oGgPF2qnM0Mbz/36LWw1dzOu+mKOyWqWG+voTzpTxRhmaTOCHaZCoVAoFIoAEy9iuVg7k0liJEWylDJZEeyQADgmwzdRB9BZi2eyGE06PelBV/7sfLVd460xN9G35jS6kch4MZwb9IsZqIWnL7MQgkn15a/FlLFN7gnY3Nst3Y0HaOHVgC5aRLkbYPjT78mKK1GnoZFEeCU2FaHBHfrVTBfjmCRGsUyu49Kau4MdUofmv8Y3TBAj6Ct6caN+SVBj0YTGbdoVTBGj6UoXvzWVCOtEXWVlJSNGjOCFF15o8pizzz6b/fv3u3/eeeedZsd87733uPfee/ntb3/L2rVrGTFiBGeddRaHDh3ydfiKdhIlOjHf8Sq75F5+lHXJ1I+M/7FUrmUnOSyWaxis9QtylAqFQqFQKIJBkujMMrmOPPazwlwf7HAAqAljRZ2Lfzv+j1LKyecAy+Q6Lq6+k0tq7uLh2mdZbW70aqx3jM+xYWMzO+kpuvN3+6P+CTpAuHzq7Nh4uPZZdpo5AZnXlaiLphM96R6QOX2Jy6fuCEXUmrUtHN1+XN0ju9EFXeh+n0/R8cjQUvna8Qq7ZS6HKGSPzOWWmoc4LIuCHVqHo1iWslCuYoVcTzwxpGvBLX0FuMV2GRvlDgo4xHpzKwWm73NFYZ2omzVrFk888QQXXXRRk8dERESQnJzs/uncufldk2eeeYZbb72VG2+8kcGDB/PSSy8RFRXFq6+2b8dQ4T/u029iohjJIYp40niRpZYSl8na6GbOVCgUCoVC0VGZogXG8NkbPDzqRPh41FmJFdE8Z3+YBY7/cKU2m2JZxnJzPX8yXuFntY8jpWzVODvMbF4w3sKOzixtOv+2/5+fI/c/l+uz+dD+PD3pzpfyR37n/Jvf56yWNWTLfAAyRQaaCL/bu7O0aXQniSqOsZldfp3LlCaHKARU2auifWhC4xX773nG9iACwZvmJ/zN+Waww+pwLDfXuR+HSkfweBHLfbabGSj6sFpu4m/Gf3w+R4dvJvHDDz/QrVs3OnfuzKmnnsoTTzxBYmJio8fW1NSwZs0aHnzwQfdzmqZx+umns2zZsibnqK6uprq6YeFVVlbmuzegaJEx+jA6GZFEyUiSZGdy2U9/0RsQJKsLsEKhUCgUJyWTtdE4sNOP3iwzs5BSIoQIakzh7FFn5fJ68+yV5gY6izhqZS1RdCKSSGbUXMM7jmfpKZpWdr1jfM42czdDRX82yZ1M0caETOJSH3ApVJdgHt6E1nUoRCS0+tyeojtdtHgOUUQs0WhoFMoSv3Zi3Sp3M0IMpFSWM0SEZyVJN9HF3eBhqbmWkdqgFs5oO8WUUYsTUIk6Rfs5Q5/CQNmH+51Pk0wS+fIAF1TfgU3YuFyf3WKjgR+MlfxorsSG7tGhvFY60YXG9fpFXKSf4e+3EdJsMXczWgxhl9wbUiKc6/QLecL5dzJI5Ygsximd2ITv0msdOlF39tlnc/HFF5ORkcHu3bv59a9/zaxZs1i2bBm6fqLM+ciRIxiGQffunguL7t27s23btibneeqpp3jsscd8Hr+i9fxSv5VLzbtZQV1pi5CC5/SHgxyVQqFQKBSKYJEqkrlUO5u3zc/YInex0FzFDH18UGM6ZknURYZxos6Fq+nZTjOHJeZa7nA+AsALzjd53PZzAHShY0jDXWJYa9byWO3z5LCPSCK4QbuY2/QrgvUWTsA+/cl2nd9JRHK1di7/Mj/gPfNLLjbP5AL9dB9FdyKrzU1kyS0A/FRc7bd5/IlVJbPUXMtPucZvc6lGEgpfkyZ6sMzxPkNFJr+ufYb35Bc4pcEWuYvLtLPdKlfr96Dr8dPGP1lgLseGzjAGECOiqJY1rGEzhjTIkfu4UDs96JtMweQL8wd3EnOiGBncYCz0EF05Q5vCF+YPZJv53CGvYrQY4rPxO3Si7sorr3Q/HjZsGMOHD6dv37788MMPnHbaaT6b58EHH+Tee+91/7usrIy0tDSfja9omRnaeIaK/vQSPdknD7BR7uBs2/Rgh6VQKBQKhSKInKZNYqG5igFaBovN1UFP1FVbmkk4OkCizkV/LZ1YEUOcM4bOxPOjuZKp1VdxmCL6iDR2yb0si3if7iKJD+V87NgYL4ZTSjkDtT7EiZhgvwWfMkufwb/MD4C6rsP+TNQtMde4H4/Th/ttHn8yTGQyQQzHgYPDFPtV/VokS5ghxmFg0o9efplDcfIxXBsIQA+tK53NeFJEN2Zo47m05m6KKaWYMmZqE3nW/mtMaTK95mpGa0PoSxpV4ih7ZQE9RNe6z72AeDOWOGJIII7Ta27gW8drJ2Wy7pisZrWs8z7tK3rRQ+sa5Ig8cSXqoO67frSmEnVtok+fPiQlJbFr165GE3VJSUnous7Bgwc9nj948CDJycknHO8iIiKCiIjQkOufrAgh+NbxOjZh4/HaF5gux9EryK2bFQqFQqFQBJeLtDP4Cb8l3zzAXlHAQ/w0qPFUdwCPuqZIFkkURCxmYPXZrJGb0dAwMcmXBwB42fk+p2gTmGfMZyd7QcL/7P9muj4uyJH7nonaSPfjlX5uZLJSbgCgE5GMEoP9Ope/0IVOrIjhW3MpSMiR+8gQqX6Z6yCF/ChXATBbzPDLHIqTl7m2OdypX+O+Jy2WpaxgAyYmh4xC9pr7qKCKLLmVNcZmUklmjn4RD9pu9yibdEon59fewffmcgDKqCCe2GC9raCxQW6nhroGM6FU9urC1UAI4BtjMXfbrvPZ2OHnNtoO8vPzKSwspEePxhM4DoeDMWPG8N1337mfM02T7777jkmTJgUqTEUbcX25xYkYErS4IEejUCgUCoUi2ERpnRgjhgKwS+51d3sMFh3Fo64pbMLGGdoUThOTmKtfz3AGEE0UDuw8Yfyd02vnsMRcw6/1n3CHfhXTtLHBDtkvJIoEZonpDBH9yZH7MKThl3lqZC0R0s4g+jJVjMEh7H6ZJxBYb8KXyDXNHNk+imWDl3gC6n5B4Xus96RdtAQyRToXa2dym34F5VQikYxjGFPEGM7SphInYk7wNrMJG4k0NME8IosD+h5ChV1yL5mkM0T0YxShtxExRPTnBu0i+oneLJAr3BtTviCsFXUVFRXs2tXQGSg7O5t169bRpUsXunTpwmOPPcYll1xCcnIyu3fv5oEHHqBfv36cddZZ7nNOO+00LrroIu666y4A7r33XubMmcPYsWMZP348f/nLX6isrOTGG28M+PtTtI25tjnBDkGhUCgUCkWIMEUbzTIjizR68IWxgJttlwUtlo7mUdcYLzrqfJufc75OmtYDu2lnDZvcrxdThgD+Yn8oSBE2T/Vro5GVB8B5DGyRiOhkIm5Y6/U4kSKCzeZOoE4h1lf4vsyynEq2sBuAXiLF5+MHksmiLlHXjS5sN7PhRDtxn1BCQ6Kus4j3zyQKBfUenjTclz7nfL2hzF/AdG1cs/etSaIhUVdICX0bKdU+LIv40Pia8WI4m+RO5tgu8t0bCAGyZT47yAEJ6VrofcfpQqerSGSXuZfuJPHb2ud40HYH/bTe7R47rBN1q1evZubMme5/u3zi5syZw4svvsiGDRt4/fXXKSkpISUlhTPPPJPHH3/co0x19+7dHDnSsLt6xRVXcPjwYR555BEOHDjAyJEj+frrr09oMKFQKBQKriNd0wAAPoVJREFUhUKhCH2u1s/jS/NHtshdvGJ8wE36pUHz+umoHnWN4bpJzTbzyWM/2WYeMUTTSUQwwVIaGmrI2kqoKQehQU050tG2crNMkeF+vENmN3qT3V7KZaX7cRzRPh8/kIwXw+hNT/ayj8/M73mcn/tlnhKlqFMEieMTdy1h7RZd2ISi7gXnW/yf8Q8AbOicrk9utuN2uBEOzV/utl1HD9GVh5zP8Jb5GVFGJ57XHmn3uGGdqDvllFOQUjb5+vz581scIycn54Tn7rrrLrfCTqFQKBQKhUIRvgwSfXFgpz+9sWPnO3MZp+uTgxJLR/aoa4oMLZUMUpmudTwvuuYYoGVAfcXrdpnNLHzvh1ZOhftxjAjvRF2U1onuIpG9ch/b5B6OyGIPRZGvKPZQ1KlEnSJ0SbKWvlJCoSzh2tr76EUPjshiimUp69hKZ+IpppTRYggvOd/hcfvPTxjrr8432GBs53u5jJnaBIaI/nxrLqWaWi7UT/ept5ovCYdEXTeRyHX6hdzn/D8AlppZPhk3rBN1CoVCoVAoFApFcwgheNB2O1fU/hzkXl5wvhnERF2t+3EE4esnpmiZTJHufrzB3O6XOcppUNTFhrmiDuqM2Vcadc0xlpvrOFef2cIZ3lMsS92PVemrIpTxKH2Vxbzq/JAF9c0lupPEQeqSWFUcw4GdlXID241sfq7fgF3YiCWavxpv8L1zOYtZTSVHAXjL/IxMMthJDhLJXuc+fqpfjS78VG/eDqyJum4kBjGS5okV0YwUg1grt7BZ7uTRmud51HF3u8ZUiTqFQqFQKBQKRYfmXG0mE8QI7Nj4Ua5ktbmRsdqwgMdxzKqo4+RQ1J2sDBB9uFa7gM1yJ9+Yizkmq32uoqyQVe7HHSFRN0EbyQRzHQLYKXP8MoeHok6VvipCGGsziQLzEG+bnzFODCNXFjCIPhg46SVS0NDoTzp57GePzOOf5ntsMXexTe6mO0msYD2VHKUzccQTRy/Rg0yRTqlZjh0b3UQiP5qrOFWfGMR32zgHKAQgkYSQb5Zzi345OXIfnxsLeMZ8lTPMKUxpR6dalahTKBQKhUKhUHRodKFzvX4RdzofRUfjqdp/co/9BkaIgaw2N7He3Moiudrvcawzt7ofd8Sur4oGYkU0lVSRJbeQSALzjPlcYzvfp3OUWUpfY8O89BVgqOjPCrkegBTTPz5bLo86Hb1DJDcVHZcki0fdVrkbCaySG7lSO4fXHE97HLvHzGNozTmYmHzhXECZqGCHzGEbe6jFCdQlqec7XmW4NhCA6cY4rq99gHx5gIUhmKiTUroVdaFa9mrlJtulvGl8whZjFxqCd52fM8WhEnUKhUKhUCgUCkWTXKufT765n/lyMf+Ti1hRs46f6dfziPEcPehKd5L8nuzoRQqpdGesNox00dOvcymCz336LRyShayWm3jSeJEr9XN8Wl5mbSYR0wGSThkiFTs2anGyXWb7ZQ6Xoi6B2KA1lVEoWkOipfR1g9zGUY7SX6Rzh37lCcf20dK4S7+W+eYiVstNIGGUGMTF4iyqtRqmi3GskZvcSTqAyRa111LpfWdrf1NOJUc5BoRHog7gCm02H4tvWCU38rL5PreZVzBMG9CmsVSiTqFQKBQKhULR4YkQDn7ruJuvqhdiYNCPXrxrfE4GqWSTT6bIIEZE+TeI+rxALy0Fe4iX8Sjazxh9CBGGA01qdJHxnF1zM3+zP8IArY9Pxq+gofQ1rgMo6mzCRj/Rm61yNztlDoY0mk1sbjS385HxDU7p5AjF3Ga7glHa4GbncCnqElQjCUWIk0gCKXQjAge5FGBgUixLm+yafZ1+AX813iCZrtRQwy6Zy62Oy92f9el4NvRJFcn0IgWJREiokbUhVV6aI/cxQGRQTQ0ZIjXY4bQKu7Bzqj6Jz50/MEoM5t/GPJ7Rft2msVSiTqFQKBQKhUJx0vCy/UnOrbmN5ax3P3ebfgV/tf8miFEpOirP2R5mo9zB9bX345QGf3K+wsuOJ30ytkfpawdQ1AEMEBlslbupoZZsM59+eu8mj/2T81XeM79w/1szNP4mHmlSKWdIg5J6RZ3yp1OEOhHCwSx9Bq8YH7ifm6yNavLzPUwbwA+ONxkvhuPEYIPc1mJC+lRtIq+ZH5En97NObmUcw0JGabpBbnMrawcK32xuBIIb9It5x/icVXIj641t3K1fT7ro6fXvVfNTfAqFQqFQKBQKRcgxTMtklDaI08QkxovhxBDFtfoFwQ5L0UHpr6VzujaZSCJIJ5WF5mry5H6fjF1hKX2NFTE+GTPYnKlNZY52ESPEQGbWXscKc32jx1XKKkpkKeNoaArzrvE5Q2vOYYfZeNlssSxjshjNNDGWkaJ55Z1CEQpM08bSix4MFwMYKvozS5vR7PETtZFoQsMh7K1qmDRGG+p+fEvNrzmv5vZ2x+wrlppZ7scjxMBmjgwtokQnZuunMIxMpouxnFNzK/825nk9jlLUKRQKhUKhUChOKt6zP0eEcPB47QvMlBMZrw0PdkiKEMF+2l/AeQzzyGa0pCFgi2z3mHEihp/p1/N74yUAXnN+xG/sd7Z73DIsiboOoqi7yXYpkUYEr9f+F4B5zvlMcIw44bhV5ibmy8UAxBNLab2j1W6Zy/3Op/nE8dIJ5xymyO3F1Uuk+PFdKBS+4TLtbC6NOIunnP8A4EbbJT4d39qVdAc5ZMt8ss18MrTgl5ouq0/U2bAxLghd2tvDL/SbmC1mMKH2UgDeND5hjn6RVx6lSlGnUCgUCoVCoTipiBB1HVfjRAxdtPggR6MIJfQ+s9AzL8I++WH0zIvQ+8zyybh32K5ishjFQNGHvxivUShL2j2mZzMJP/srBpBLtbNJoTspdOMt81OqZc0Jx1jN76/Vz+dJ/R5SSSaF7mwyd3JzzYm+UAfqO0gCJIeJOb3i5EYXOjZhI07EEOcH1exA0Yff6XM5m2nEEk2mSGeeOd/n83jLYVnEPnmQUWIwl2uziBKdgh2SVziEnRH6QEYwkF6ksFyu52PzW6/GUIk6hUKhUCgUCsVJyVzbHOba5gQ7DMVJQDeRyAhtENvkHnrSnTXmpnaPWWFR1PnjJj5YOISdU7WJFHCIQkpYKzefcMwKYx1R1Kkd79Kv4xf2m9kR8T8OUcg+DrJKbjzhnIM0JOrCpYukQgH+u1ZpQuMB+638n+M+yqlks9zFenObz+fxluXmOsqoIEtuobtIDHY4beZJ+73kUkAs0awzt3p1rkrUKRQKhUKhUCgUCoWfuVo/j3hi2UEOrxoftnu8MtnxSl9dTNZGuR9bvaoA1plbmS8X48TgVv1y0kVPoC7pMFj0BWCPzKNW1nqcd1Ap6hSKRukjeqFTV5a5Qzbu8RhIlpoNitnJlvLccOM0bRITxUgqqeLPxquUyYqWT6pHJeoUCoVCoVAoFAqFAjAPZmEWrMC59V3MghWYB7NaPqmVjBaDOcoxAHc3w/bQVXRhjBjKKDGYCBztHi+UmKKNpgddGUI/5hlf86TzRfdr/3S+x1QxBh2NYSLTo5viAJEBgBMne2Sex5jWRF13VKJOoXDhEHb6il4A7JA5mNIMajyVHGWcGE4X4pmojQxqLO1BCMFIbRBODEzMJpvjNIZqJqFQKBQKhUKhUCgUQM2nV0JFAQgNpAkxKUTeut0nY+tCp79IZ7PcyS65F6d0YhNtvx1bbW4kj/10o4tHsqojkCky2OaYT0rNVCplFZucO8CEy/VZvGZ+hIlJJulcq11wwnkutstsBtDH/W/lUadQNM0AkcEOmc1RjpHHAXoTnIYrUko+ML6imDJSSaar6BKUOHzFFG00LxnvAPCDsZIJtK4xhkrUKRQKhUKhUCgUCkUAGCAy2Cx3UouTHLmPfqJ3m8cqpASARNHZR9GFDkIIIoSD0WIwZbKCSBHBM+arLCOL/vQmXsRyrjaTKM3TZH6Q1pfJZl2p3H552OM15VGnUDTNKDGIIlGCiSTHzKe3HpxE3WGKKKYMgIFanxaODn2maGM4RzuF/fIw8+TX/EK2zmtQlb4qFAqFQqFQKBQKRQCwKr5edr5PjVnDInO11+NUyaNUcRSARDpeos7F/xz/5jH7z1gh11PJUVaaG9hONlvlbm7VLz/h+DTRg6VyLUvlWrbK3R6vuUpfI3AQT2xA4lcowoUk0Zklci3LZNYJZeOBxGoLMMDyfRmupIhuHKOatXIz5bKSreaeVp2nEnUKhUKhUCgUCoVCEQDO007lbG0aGhrPma+TWDOes2puZLeZ69U4LjUdQJJI8G2QIYQQgrO0aVyknUE8sZRRQX/SuVe/ic5a/AnHp4ke7sd5cr/Ha4dlEWkkM02M63ClwgpFe2nubyeQbDc7VqIOYI5+ERmkAvC2+WmrzlGJOoVCoVAoFAqFQqEIAMO0TDaZO4nAgQM7tTjpRQqvG//1apxCWeJ+3BFLX60IIbhAP51SyrFhI4d8brBd3OixySRhr3d3siYbKmQVBykkjwMcozogcSsU4YRHoo4DQYujSJbQX6QTgYNMEf6lrwCnaBPIJp9CStgp97bqHJWoUygUCoVCoVAoFIoA4BB23nU8S3bE99zJNXQhnhz28ZzxOvvNw0gpAdz/bYojstj9OKkDl766uFQ7i6/tr3LYsZyvHK/QQ3Rt9DhNaPQUyYBnoi7f8jit/nWFQtFAqCjqVsuN7JQ5VFNDugiOT56v6UoXOhMHwE4zp1XnqGYSCoVCoVAoFAqFQhEgxmp1Xf+SbV0ZZmSSK/fTXSTxkPPPbDF3k6715Bg1fOz4e5NjeJa+dvxEnU3YOEUfD8BUxjR7bBrJ5JBPMWWUy0piRTR5skEhZE1IKBSKOuJFLHHEUEZFUBN1rr9VHZ3UDpJUF0IwQGSwXK6ngEOtOkcl6hQKhUKhUCgUCoUiwMy1zeFybRYDa84mW+azVm6mhlrWmVsBWOZcS289lWSS0IRnIVShRVGX2IE96tpCmugB9YLEfHmAQaIve2WB5+sKheIE0kQPNsud5MsDmNI84XsnELiShCl0wyY6TrpqgNaH5cb6Vh/fcd65QqFQKBQKhUKhUIQRPbRuzNXnECdiKDJLWGiuYje5lFDGmc6bMZ0mb9v/zAX66R7nnWylr94wWhtCjsznCCXslrkMoq+HQqiXStQpFI0yRRtNlBlJGZUckoUkN1Fi7i+q5FGOUPfd1lHUdC5GiyHsENkUiiI2sq3F41WiTqFQKBQKhUKhUCiCxO/scwF4zvk6F4sz+avxHyRQSy0Cwe+cL/C687+kimRut13JEK0/BfIQAoFEKkXdcXQR8SyVWQDslDkAbJDb0NEwMJWiTqFohlVyIwD5HCCZwCbq8jtwiXqqSGaZXIeURquOV4k6hUKhUCgUCoVCoQAi5qwGKZG1lQh7NAgRsLnn2uYAMETrT4KM5XXzY5w42WruZhGrKZeVHHQe4T3Hc2yTe+qOpR/96B2wGMOBASLD/Xi7zOagPMICcwUaGtdpF9JfqN+XQtEY1uRYrtzPWIYFdP7cDqx8tX4vtQaVqFMoFAqFQqFQKBQKQDhi6/4bERe0GM7SpwEwgZE853ydQ7KIGllLV7pgl3bmVP+SlXI9EkmNcBKvxQYt1lAk05qoM7NZZKxhhjaeReYqEkQsdmEPYnQKRegS7M6ve2QeI8UgaqglU6QHfH5/ki56YsdGDUpRp1AoFAqFQqFQKBRhy1zbHOba5rDbzCVDpDKi+nx2kuN+fbI2KnjBhSixIpqedGcfB9ku9/Cm+THzzUUAXKqdHeToFIrQJdiJulVyI+tkXTOdflrHUr7ahI1+ojdb2NG64/0cj0KhUCgUCoVCoVAo2kFfrRcAo7XBHDWP0VN0pxYn52ozgxxZaHKuPpNt5h4OyyKWmGsB6EoXxmhDgxyZQhG6BDtRt8RcA4ADO6PFkIDP729u1C/hkO0wT3Jfi8eqRJ1CoVAoFAqFQqFQAM41zyNrypGH1iO6jUA4YrGNuTvYYbl5zf40Qgiec74OwHn6qUGOKDRJII4f5UoABHU+g5O1UYgAeg4qFOFGCl3R0DAxyTH3BWzeleYG4s0Y9sq6OceIoUSKiIDNHyh+ZrueMluZStQpFAqFQqFQKBQKRWtxrv0bVBSA0GDPlxCTElKJOleiydV4QtE4U7TRuKygInDQl15MEWOCG5RCEeLYhI0rtNmslBvYKfdSI2tx+NnTcbeZy4yaa9AQGJgMI5Nb9Mv8Omc4oBJ1CoVCoVAoFAqFQqHoMEzQRiAQRBFJJUfZzE4ytfRgh6VQhDwSyW6ZC8A6uZXxYrjPxv7I+B9RRLLO2Mpy1vNz/Qb2yQN0Jo4iShEItrCb6fo4n80ZrqhEnUKhUCgUCoVCoVAoOgzxIpYZ2jh+MFe6n7N2g1UoFI0zRRvNu+YXACw11zJe802irkbWcn/t0+zjIAKBRJIn97NZ7kRHYxzDeMf+DFvZ4+GVd7KiBTsAhUKhUCgUCoVCoVAofMlA0df92I6N3iIliNEoFOHBFG0MQ8lkvBjO58aCdo9XKsuZduwqzq6+iRLKSCcFiaQ3KW5POhBcqJ9Bqt6DM/Qp7Z6zI6ASdQqFQqFQKBQKhUKh6FBMFCPcjxOIQxd6EKNRKMKDwVo/okUnVsoNLJZreKj2mTaPdUQWM8+Yzyo2spQsKjlKDgWMF8PZSwEVVAEwQYzgF/abfPUWOgRhnahbuHAh5513HikpKQgh+Pjjj92v1dbW8stf/pJhw4YRHR1NSkoK119/PQUFBc2O+eijjyKE8PgZOHCgn9+JQqFQKBQKhUKhUCh8xVRtLNdo5/Mz/XoetYVOQxCFItT5qe0aZmnTGURfPjC+4kvjhzaNc03tL3je+R9GMIBIIrhaO5crtXM4Xz/NfcwQ0Y9r9fN9FHnHIaw96iorKxkxYgQ33XQTF198scdrVVVVrF27lt/85jeMGDGC4uJi5s6dy/nnn8/q1aubHXfIkCF8++237n/bbGH9a1IoFAqFQqFQKBSKk4pULZlXHL8PdhgKRdhxhT4bB3auMu8BYJ3cxmxOadW5nxnfM00byz+d77HO3EIpFSTRmd/qd3GP/UYAlplZ7uO3yN3M0Mb7/D2EO2GdgZo1axazZs1q9LX4+Hi++eYbj+f+9re/MX78eHJzc+nVq1eT49psNpKTk30aq0KhUCgUCoVCoVAoFApFqDPA0nxlu5ndqnNyzH1cWXsPUUQyRgxlGAPopaVwhT6bs/Rp7uNGiyF8bX+VzsSyUm6kr9Z0buZkJawTdd5SWlqKEIKEhIRmj9u5cycpKSlERkYyadIknnrqqWYTe9XV1VRXV7v/XVZW5quQFQqFQqFQKBQKhUKhUCgCRl/RCx0dA4MdsnWJuiy5mRliPAvlSmzoRGudGKEN9EjSAUQIB6fodSq6EQzyeewdgZMmUXfs2DF++ctfctVVVxEXF9fkcRMmTOC1115jwIAB7N+/n8cee4xp06axadMmYmNjGz3nqaee4rHHHvNX6AqFQqFQKBQKhSIAaN1GIGN7Ikv3IuJ7IzolBTskhUKhCDgRwkGGSGWX3Mt2mY0pTTTRfIuDt4zP+F4uA+D/7PczVOsfiFA7JEJKKYMdhC8QQvDf//6XCy+88ITXamtrueSSS8jPz+eHH35oNlF3PCUlJfTu3ZtnnnmGm2++udFjGlPUpaWlUVpa6tVcCoVCoVAoFAqFQqFQKBTB5s7ax9hhZuPE4A3706RpKc0eP6z6XHbKHKLoxJGIFS0m9k5GysrKiI+PbzFX1OEVdbW1tVx++eXs3buX77//3uvEWUJCApmZmezatavJYyIiIoiIiGhvqAqFQqFQKBQKhUKhUCgUQSeeGBbJukac22UOaTSdqKuRteyReQBkinSVpGsnHfq350rS7dy5k2+//ZbExESvx6ioqGD37t306NHDDxEqFAqFQqFQKBQKheL/27v3qKrq/P/jrwPKRUEuhoAKSKZ4SULTEhTFC2H5a8xsunspndRUsvl6yemrZlYyqamj+dVvk2aOtymdcqkzqRmWmnnBS6iBImQ2MprhBVFQzuf3h19PnuAgGnKO8nysxVqwz2d/9vts3gvw5d77A8C1NL5qQYlrPafusDmiYhVLkhpZGtzMsqqEWzqoy8/P1+7du7V7925JUnZ2tnbv3q0jR47o4sWLeuyxx7Rjxw4tWrRIxcXFys3NVW5uroqKimxzdOnSRbNmzbJ9PWLECG3cuFE5OTnasmWLevbsKXd3dz311FOV/fYAAAAAAAAqXZTbL0Hdd+ZwmWP3WQ8pTCFyk5vdfrgxt/Strzt27FCnTp1sX//xj3+UJPXt21evvfaaVq5cKUmKiYmx2++LL75QQkKCJCkrK0s//fST7bWjR4/qqaee0smTJxUUFKT27dtr69atCgoKurlvBgAAAIBTFX36uMz5n+wWk/Do8XdnlwUAle7qK+oyrnFF3U6Trh+UK1/VVFvLPTe7tNveLR3UJSQkqKy1MMqzTkZOTo7d10uXLv2tZQEAAAC4BVmP75Hy/y1Z3GQKjsv4lP3wdAC4XdW2+CtGTeVpqS5/+dq277ce0oeXPtFxnZSPpYb+Un2sNlvTJElndU7Rbk2cVfJt45YO6gAAAAAAAFDxPCzV9Y3ZKxmp0BTJ0+KhfxZv1HTrB5KkanLXy27PKc3sk3T5+XR1LNe/NgDs3dLPqAMAAAAAAEDFC7P8sqjmj+Y/kqStZo9tWxPLnXr90ruqIW8lurXTc+69Kr3G2xFBHQAAAAAAAOyEWUJsn/9gjumiuahvrRm2benmoFLNVp1RvtZZN6udWytnlHnb4dZXAAAAAAAA2Ln6irofdEwfWf+jHP2oSNXXv3VchSrSMZ1QuOoqwe0+3e/GQhIVgaAOAAAAAAAAdq4O6o5Yj2m3OaAmljv1nTmsNpYWyjZHVaALOqJ/6zH3bk6s9PZCUAcAAAAAAAA7Vwd1m4t36nN9LUn6vVs3/U+1CfJxq6nXi2bp3zquRLd2zirztkNQBwAAAAAAADsNLPX0iKWrjpr/aLPSFGdppRxzVE+6/z/5uNWUJPm5+cpPvrJYLE6u9vZBUAcAAAAAAAA7ARY/nbKc1Q7zrSRpi0lTCzVWN0u8bcxL1fo6q7zbFkEdAAAAAEiq1mqoTNFZmeN7ZKlzjywevs4uCQCc6r/cn1e0JUrnTIEOmMMaUu0Zubu5O7us25rFGGOcXcTt5syZM/Lz89Pp06dVq1YtZ5cDAAAAAABww2ZcWiCJK+h+i/JmRVxRBwAAAAAAAIcI6CqPm7MLAAAAAAAAAEBQBwAAAAAAALgEgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFVHN2AbcjY4wk6cyZM06uBAAAAAAAAM52JSO6khk5QlB3E5w8eVKSFBYW5uRKAAAAAAAA4CrOnj0rPz8/h68T1N0EgYGBkqQjR46UefKB3+rMmTMKCwvTDz/8oFq1ajm7HNzG6DVUJvoNlYVeQ2Wh11BZ6DVUFnrt+hljdPbsWdWtW7fMcQR1N4Gb2+VH//n5+dGwqBS1atWi11Ap6DVUJvoNlYVeQ2Wh11BZ6DVUFnrt+pTnYi4WkwAAAAAAAABcAEEdAAAAAAAA4AII6m4CT09PjR8/Xp6ens4uBbc5eg2VhV5DZaLfUFnoNVQWeg2VhV5DZaHXbh6Luda6sAAAAAAAAABuOq6oAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4gFs6qJs0aZLatGkjX19f1alTR4888ogyMjLsxly4cEFDhgxR7dq15ePjo169euk///mP7fU9e/boqaeeUlhYmLy9vdW0aVPNmDHDbo4VK1YoMTFRQUFBqlWrlmJjY/XZZ59dsz5jjMaNG6fQ0FB5e3ura9euOnjwoN2YtLQ0JSYmyt/fX7Vr19YLL7yg/Pz8a869d+9excfHy8vLS2FhYXr77bftXt+3b5969eqlBg0ayGKxaPr06decE47Ra457bcWKFWrdurX8/f1Vs2ZNxcTEaOHChdecF47Rb4777YMPPpDFYrH78PLyuua8KB295rjXEhISSvSaxWJR9+7drzk3SqLXHPfaxYsX9frrr6thw4by8vLSPffco3/961/XnBelq6q9duHCBfXr108tWrRQtWrV9Mgjj5QYc+zYMT399NNq3Lix3NzcNHz48GvWC8foNce9tmnTJrVr1061a9eWt7e3mjRpomnTpl2zZpSOXnPca6mpqaX+vZabm3vNul2auYUlJSWZ+fPnm/T0dLN7927z0EMPmfDwcJOfn28bM2jQIBMWFmY+//xzs2PHDtO2bVsTFxdne/399983ycnJJjU11WRlZZmFCxcab29vM3PmTNuYl156yfz5z38227ZtM5mZmWbMmDGmevXqJi0trcz6UlJSjJ+fn/nkk0/Mnj17zO9+9zsTGRlpzp8/b4wx5scffzQBAQFm0KBB5rvvvjPbtm0zcXFxplevXmXOe/r0aRMcHGyeeeYZk56ebpYsWWK8vb3N3LlzbWO2bdtmRowYYZYsWWJCQkLMtGnTrufU4lfoNce99sUXX5gVK1aY/fv3m0OHDpnp06cbd3d3869//eu6zjF+Qb857rf58+ebWrVqmWPHjtk+cnNzr+v84hf0muNeO3nypF2fpaenG3d3dzN//vzrOcX4P/Sa414bNWqUqVu3rlm9erXJysoys2fPNl5eXtesGaWrqr2Wn59vBg0aZP73f//XJCUlmR49epQYk52dbZKTk82CBQtMTEyMeemll8pxRuEIvea419LS0szixYtNenq6yc7ONgsXLjQ1atSw+9mH8qPXHPfaF198YSSZjIwMu7/biouLy3NqXdYtHdT92vHjx40ks3HjRmOMMadOnTLVq1c3H330kW3MgQMHjCTz9ddfO5znxRdfNJ06dSrzWM2aNTMTJkxw+LrVajUhISFm8uTJtm2nTp0ynp6eZsmSJcYYY+bOnWvq1Klj10R79+41kszBgwcdzj179mwTEBBgCgsLbdtGjx5toqKiSh0fERFBUFfB6LXSe+2Kli1bmv/+7/8ucwzKj377pd/mz59v/Pz8ynwPuHH0muOfbdOmTTO+vr52fxTjxtFrv/RaaGiomTVrlt1+jz76qHnmmWfKfF8on6rSa1fr27dvqf+gvVrHjh0J6ioYvVa2nj17mmeffbZcY1E2eu0XV4K6vLy8cs1zq7ilb339tdOnT0uSAgMDJUk7d+7UxYsX1bVrV9uYJk2aKDw8XF9//XWZ81yZozRWq1Vnz54tc0x2drZyc3Ptju3n56f777/fduzCwkJ5eHjIze2Xb4O3t7eky5cLO/L111+rQ4cO8vDwsG1LSkpSRkaG8vLyHO6HikOvld5rxhh9/vnnysjIUIcOHRzOi+tDv9n3W35+viIiIhQWFqYePXpo3759DufE9aHXHP8eff/99/Xkk0+qZs2aDudF+dFrv/RaYWFhiVv4vb29y5wX5VdVeg3OR685tmvXLm3ZskUdO3as0HmrKnqtpJiYGIWGhioxMVGbN2+ukDmd6bYJ6qxWq4YPH6527drp7rvvliTl5ubKw8ND/v7+dmODg4Md3rO8ZcsWLVu2TC+88ILDY02ZMkX5+fl6/PHHHY65Mn9wcLDDY3fu3Fm5ubmaPHmyioqKlJeXp1deeUXS5WdIlDV3afNefVzcPPRayV47ffq0fHx85OHhoe7du2vmzJlKTEx0OC/Kj36z77eoqCjNmzdPn376qf72t7/JarUqLi5OR48edTgvyodec/x7dNu2bUpPT9eAAQMczonyo9fsey0pKUnvvPOODh48KKvVqnXr1mnFihVlzovyqUq9Buei10pXv359eXp6qnXr1hoyZAi/RysAvWYvNDRUc+bM0fLly7V8+XKFhYUpISFBaWlpv2leZ7ttgrohQ4YoPT1dS5cuveE50tPT1aNHD40fP14PPPBAqWMWL16sCRMm6O9//7vq1KkjSVq0aJF8fHxsH1999VW5jte8eXMtWLBAU6dOVY0aNRQSEqLIyEgFBwfb0ubmzZvb5n3wwQdv+L2h4tBrJfn6+mr37t3avn273nzzTf3xj39Uamrqdc2B0tFv9mJjY9WnTx/FxMSoY8eOWrFihYKCgjR37txyz4HS0WuOvf/++2rRooXuu+++G9of9ug1ezNmzFCjRo3UpEkTeXh4aOjQoXruuefsrjzAjaHXUFnotdJ99dVX2rFjh+bMmaPp06dryZIl1z0H7NFr9qKiojRw4EDde++9iouL07x58xQXF3frL17i7HtvK8KQIUNM/fr1zeHDh+22f/7556XerxweHm7eeecdu2379u0zderUMX/6058cHufKA4BXrVplt/3MmTPm4MGDto+CggKTlZVlJJldu3bZje3QoYNJTk4uMXdubq45e/asyc/PN25ububvf/+7McaYnJwc27xHjx41xhjTu3fvEvdnb9iwwUgyP//8c4m5eUZdxaHXyu61K/r3728eeOABh6+jfOi38vXbY489Zp588kmHr+Pa6DXHvZafn29q1aplpk+f7vB9ofzoNce9dv78eXP06FFjtVrNqFGjTLNmzRy+P1xbVeu1q/GMuspFr/VwWPPVJk6caBo3blyusSgdvdbDYc1XGzFihGnbtm25xrqqWzqos1qtZsiQIaZu3bomMzOzxOtXHqr48ccf27Z99913JR6qmJ6eburUqWNGjhzp8FiLFy82Xl5e5pNPPil3bSEhIWbKlCm2badPn7Z7qGJp3n//fVOjRo0yH4Z45cHERUVFtm1jxoxhMYmbiF4rX69d8dxzz5mOHTuWq36URL+Vv98uXbpkoqKizMsvv1yu+mGPXrt2r82fP994enqan376qVx1o3T0Wvl/rhUVFZmGDRuaMWPGlKt+2KuqvXY1grrKQa9dX3gyYcIEExERUa6xsEevXV+vde3a1fTs2bNcY13VLR3UDR482Pj5+ZnU1FS7pXgLCgpsYwYNGmTCw8PNhg0bzI4dO0xsbKyJjY21vf7tt9+aoKAg8+yzz9rNcfz4cduYRYsWmWrVqpl3333XbsypU6fKrC8lJcX4+/ubTz/91Ozdu9f06NHDbpliY4yZOXOm2blzp8nIyDCzZs0y3t7eZsaMGWXOe+rUKRMcHGx69+5t0tPTzdKlS0ssd11YWGh27dpldu3aZUJDQ82IESPMrl27yr2qCuzRa4577a233jJr1641WVlZZv/+/WbKlCmmWrVq5r333iv3+YU9+s1xv02YMMF89tlnJisry+zcudM8+eSTxsvLy+zbt6/c5xe/oNcc99oV7du3N0888cQ1zyXKRq857rWtW7ea5cuXm6ysLPPll1+azp07m8jIyNtuBbvKUlV7zZjLV8rs2rXLPPzwwyYhIcH2b4GrXdl27733mqefftrs2rWL36E3iF5z3GuzZs0yK1euNJmZmSYzM9P89a9/Nb6+vubVV18tz6nFr9Brjntt2rRp5pNPPjEHDx403377rXnppZeMm5ubWb9+fXlOrcu6pYM6SaV+zJ8/3zbm/Pnz5sUXXzQBAQGmRo0apmfPnubYsWO218ePH1/qHFen/R07dix1TN++fcusz2q1mrFjx5rg4GDj6elpunTpYjIyMuzG9O7d2wQGBhoPDw8THR1tPvzww3K99z179pj27dsbT09PU69ePZOSkmL3enZ2dqk1c5XTjaHXHPfaq6++au666y7j5eVlAgICTGxsrFm6dGm55kbp6DfH/TZ8+HATHh5uPDw8THBwsHnooYdMWlpaueZGSfSa414z5pf/jV67dm255oRj9JrjXktNTTVNmzY1np6epnbt2qZ3797mxx9/LNfcKKkq91pERESpNV3r/HCV042h1xz32l/+8hfTvHlzU6NGDVOrVi3TsmVLM3v2bFNcXFyu+WGPXnPca3/+859Nw4YNjZeXlwkMDDQJCQlmw4YN5ZrblVmMMUYAAAAAAAAAnIrlpAAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFENQBAAAAAAAALoCgDgAAAAAAAHABBHUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAqrCEhAQNHz68yh0bAADAFRHUAQAAoFxSU1NlsVh06tSpCtlvxYoVmjhxYsUVCAAAcIur5uwCAAAAUDUFBgY6uwQAAACXwhV1AAAAVcS5c+fUp08f+fj4KDQ0VFOnTrV7feHChWrdurV8fX0VEhKip59+WsePH5ck5eTkqFOnTpKkgIAAWSwW9evXT5JktVo1adIkRUZGytvbW/fcc48+/vjja+7361tfGzRooDfeeMNWY0REhFauXKkTJ06oR48e8vHxUXR0tHbs2GFX96ZNmxQfHy9vb2+FhYUpOTlZ586dq+jTBwAAcNMR1AEAAFQRI0eO1MaNG/Xpp59q7dq1Sk1NVVpamu31ixcvauLEidqzZ48++eQT5eTk2EK1sLAwLV++XJKUkZGhY8eOacaMGZKkSZMm6cMPP9ScOXO0b98+vfzyy3r22We1cePGMvcrzbRp09SuXTvt2rVL3bt3V+/evdWnTx89++yzSktLU8OGDdWnTx8ZYyRJWVlZ6tatm3r16qW9e/dq2bJl2rRpk4YOHXozTiEAAMBNZTFX/soBAADAbSs/P1+1a9fW3/72N/3+97+XJP3888+qX7++XnjhBU2fPr3EPjt27FCbNm109uxZ+fj4KDU1VZ06dVJeXp78/f0lSYWFhQoMDNT69esVGxtr23fAgAEqKCjQ4sWLS91PunxFXUxMjO3YDRo0UHx8vBYuXChJys3NVWhoqMaOHavXX39dkrR161bFxsbq2LFjCgkJ0YABA+Tu7q65c+fa5t20aZM6duyoc+fOycvLqwLPIgAAwM3FM+oAAACqgKysLBUVFen++++3bQsMDFRUVJTt6507d+q1117Tnj17lJeXJ6vVKkk6cuSImjVrVuq8hw4dUkFBgRITE+22FxUVqWXLltddZ3R0tO3z4OBgSVKLFi1KbDt+/LhCQkK0Z88e7d27V4sWLbKNMcbIarUqOztbTZs2ve4aAAAAnIWgDgAAADp37pySkpKUlJSkRYsWKSgoSEeOHFFSUpKKiooc7pefny9JWr16terVq2f3mqen53XXUb16ddvnFovF4bYrIWJ+fr4GDhyo5OTkEnOFh4df9/EBAACciaAOAACgCmjYsKGqV6+ub775xhZg5eXlKTMzUx07dtR3332nkydPKiUlRWFhYZJUYtEGDw8PSVJxcbFtW7NmzeTp6akjR46oY8eOpR67tP0qSqtWrbR//37dddddFT43AABAZWMxCQAAgCrAx8dH/fv318iRI7Vhwwalp6erX79+cnO7/OdgeHi4PDw8NHPmTB0+fFgrV67UxIkT7eaIiIiQxWLRqlWrdOLECeXn58vX11cjRozQyy+/rAULFigrK0tpaWmaOXOmFixY4HC/ijJ69Ght2bJFQ4cO1e7du3Xw4EF9+umnLCYBAABuSQR1AAAAVcTkyZMVHx+vhx9+WF27dlX79u117733SpKCgoL0wQcf6KOPPlKzZs2UkpKiKVOm2O1fr149TZgwQa+88oqCg4NtYdjEiRM1duxYTZo0SU2bNlW3bt20evVqRUZGlrlfRYiOjtbGjRuVmZmp+Ph4tWzZUuPGjVPdunUr7BgAAACVhVVfAQAAAAAAABfAFXUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4AII6AAAAAAAAwAUQ1AEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOACCOoAAAAAAAAAF0BQBwAAAAAAALgAgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFENQBAAAAAAAALoCgDgAAAAAAAHABBHUAAAAAAACACyCoAwAAAAAAAFwAQR0AAAAAAADgAgjqAAAAAAAAABdAUAcAAAAAAAC4AII6AAAAAAAAwAUQ1AEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOACCOoAAAAAAAAAF0BQBwAAAAAAALgAgjoAAAAAAADABRDUAQAAAAAAAC6AoA4AAAAAAABwAQR1AAAAAAAAgAsgqAMAAAAAAABcAEEdAAAAAAAA4AII6gAAAAAAAAAXQFAHAAAAAAAAuACCOgAAAAAAAMAFVHN2AQAA4PZjtVp14cIFZ5cBwMV4eXnJzY1rBQAAcISgDgAAVKjCwkLt379fVqvV2aUAcDFubm5q1qyZPD09nV0KAAAuyWKMMc4uAgAA3B6MMcrMzFRRUZEiIyO5cgaAjdVqVXZ2tjw8PNS4cWNZLBZnlwQAgMshqAMAABWmqKhI3377rSIjIxUYGOjscgC4mJ9//lnZ2dn6/vvvFRsbq9DQUGeXBACAS+G/uQEAQIW5dOmSJHFbG4BSXfnZ8O9//1urV69Wbm6ukysCAMC1ENQBAIAKxy1tAEpz5WdDSEiIcnNztW/fPidXBACAayGoAwAAAFCpLBaLvL29derUKWeXAgCASyGoAwAAuIbU1FRZLBZChZukos5vTk6OLBaLdu/eXSF1Xa+EhAQNHz7cKce+VfG4bAAA7FVzdgEAAACo2uLi4nTs2DH5+fn9pnnCwsJ07Ngx3XHHHRVUWelSU1PVqVMn5eXlyd/f37Z9xYoVql69+k099rUkJCQoJiZG06dPd2odAADgxhDUAQAAwKk8PDwUEhLym+dxd3evkHluFCsdAwCA34pbXwEAwE0x+OJ4dSx8xqkfgy+OL3e9hYWFSk5OVp06deTl5aX27dtr+/btpY4tKCjQgw8+qHbt2nE77K8kJCRo2LBhGj58uAICAhQcHKz33ntP586d03PPPSdfX1/ddddd+uc//2nb59e3vn7//fd6+OGHFRAQoJo1a6p58+Zas2aNJCkvL0/PPPOMgoKC5O3trUaNGmn+/PmSSt76emXezz//XK1bt1aNGjUUFxenjIwMu5rfeOMN1alTR76+vhowYIBeeeUVxcTElPr+cnJy1KlTJ0lSQECALBaL+vXrZ3vvV9/62qBBA73xxhvq06ePfHx8FBERoZUrV+rEiRPq0aOHfHx8FB0drR07dtgdY9OmTYqPj5e3t7fCwsKUnJysc+fO2V6fPXu2GjVqJC8vLwUHB+uxxx6TJPXr108bN27UjBkzZLFYZLFYlJOTo+LiYvXv31+RkZHy9vZWVFSUZsyYYXfMfv366ZFHHtFbb72l4OBg+fv76/XXX9elS5c0cuRIBQYGqn79+rZzffX5Xrp0qeLi4uTl5aW7775bGzdudNQeAADgGriiDgAA3BT7rYf0jdnj3CKs5R86atQoLV++XAsWLFBERITefvttJSUl6dChQ3bjTp06pe7du8vHx0fr1q1TjRo1KrjoW9+CBQs0atQobdu2TcuWLdPgwYP1j3/8Qz179tSf/vQnTZs2Tb1799aRI0dKPX9DhgxRUVGRvvzyS9WsWVP79++Xj4+PJGns2LHav3+//vnPf+qOO+7QoUOHdP78+TLrefXVVzV16lQFBQVp0KBBev7557V582ZJ0qJFi/Tmm29q9uzZateunZYuXaqpU6cqMjKy1LnCwsK0fPly9erVSxkZGapVq5a8vb0dHnvatGl66623NHbsWNv7jouL0/PPP6/Jkydr9OjR6tOnj/bt2yeLxaKsrCx169ZNb7zxhubNm6cTJ05o6NChGjp0qObPn68dO3YoOTlZCxcuVFxcnH7++Wd99dVXkqQZM2YoMzNTd999t15//XVJUlBQkKxWq+rXr6+PPvpItWvX1pYtW/TCCy8oNDRUjz/+uK3WDRs2qH79+vryyy+1efNm9e/fX1u2bFGHDh30zTffaNmyZRo4cKASExNVv359234jR47U9OnT1axZM73zzjt6+OGHlZ2drdq1a5f5fQEAACVZDE9wBQAAFaSgoEAHDhxQ06ZN9aD7H5we1N1vuUcbPRddc9y5c+cUEBCgDz74QE8//bQk6eLFi2rQoIGGDx+uNm3aqFOnTjpw4ICeeOIJNWrUSIsXL5aHh8fNfgslmPxcmXO59hu9/OXm10Dm0gWZk9+V2MctOEaSZP05U7pYYPeaxS9cFq9AmYITMmd/tN/Rw0duAXddV30JCQkqLi62hUfFxcXy8/PTo48+qg8//FCSlJubq9DQUH399ddq27ZtiWe+RUdHq1evXho/vuQVkb/73e90xx13aN68eSVey8nJUWRkpHbt2qWYmBjbvOvXr1eXLl0kSWvWrFH37t11/vx5eXl5qW3btmrdurVmzZplm6d9+/bKz893uCiFo2fU/fr5cA0aNFB8fLwWLlxo977Hjh1rC9K2bt2q2NhYHTt2TCEhIRowYIDc3d01d+5c27ybNm1Sx44dde7cOa1Zs0bPPfecjh49Kl9f31LPf3meUTd06FDl5ubq448/lnT5irrU1FQdPnxYbm6Xb7pp0qSJ6tSpoy+//FLSL9/Lv/71r3ryySdt5zslJUWjR4+WJF26dEmRkZEaNmyYRo0aVeK4V35G5OTkKCcnRxEREbYrAgEAAFfUAQAAKCsrSxcvXlS7du1s26pXr6777rtPBw4cUJs2bSRJiYmJuu+++7Rs2TK5u7s7pdZL385T8dZJdtvcmjwhjwf/KpP/o4oWx5fYx+vls5Kki2sHyRyzv523erf35N70SRVn/kOXvvgv+3kjusjj0U+uu8bo6Gjb5+7u7qpdu7ZatGhh2xYcHCxJOn78eKn7Jycna/DgwVq7dq26du2qXr162eYcPHiwevXqpbS0ND3wwAN65JFHFBcXV+56QkNDbccODw9XRkaGXnzxRbvx9913nzZs2HAd77h8x77yvh2di5CQEO3Zs0d79+7VokW/BMzGGFmtVmVnZysxMVERERG688471a1bN3Xr1k09e/a85pWd7777rubNm6cjR47o/PnzKioqKnF7b/PmzW0h3ZXa7r77btvXV76Xv/6+xcbG2j6vVq2aWrdurQMHDlzr1AAAgFIQ1AEAAJRT9+7dtXz5cu3fv98ubKlM1Vo8L/c7H7Lf6OUvSbL41JPH01853Lf6A3NKvaJOktwb95Rb6H32O3j43FCNv1751GKx2G2zWCySJKu19HuTBwwYoKSkJK1evVpr167VpEmTNHXqVA0bNkwPPvigvv/+e61Zs0br1q1Tly5dNGTIEE2ZMqVc9Vzr2BWttGOXVU9+fr4GDhyo5OTkEnOFh4fLw8NDaWlpSk1N1dq1azVu3Di99tpr2r59u93VfVdbunSpRowYoalTpyo2Nla+vr6aPHmyvvnmG4e1XqmttG2Vde4AAKiKCOoAAMBN0cztrut6RtxNq6EcGjZsKA8PD23evFkRERGSLt/6un37drvFAVJSUuTj46MuXbooNTVVzZo1uxlll8niEyKLT+krm1qqecnyf7e5lsYtsLHjeWsEyVIj6LeWV2HCwsI0aNAgDRo0SGPGjNF7772nYcOGSbr83LW+ffuqb9++io+P18iRI8sM6soSFRWl7du3q0+fPrZtjhYRueLKLc/FxcU3dMyytGrVSvv379dddznu3WrVqqlr167q2rWrxo8fL39/f23YsEGPPvqoPDw8StS1efNmxcXF2V05mJWVVWE1b926VR06dJB0+dbXnTt3aujQoRU2PwAAVQlBHQAAuCn+p/oEZ5dQbjVr1tTgwYNtq1uGh4fr7bffVkFBgfr37689e3551t6UKVNUXFyszp07KzU1VU2aNHFi5ben4cOH68EHH1Tjxo2Vl5enL774Qk2bNpUkjRs3Tvfee6+aN2+uwsJCrVq1yvbajRg2bJj+8Ic/qHXr1oqLi9OyZcu0d+9e3XnnnQ73iYiIkMVi0apVq/TQQw/J29vbttjFbzV69Gi1bdtWQ4cO1YABA2yLaaxbt06zZs3SqlWrdPjwYXXo0EEBAQFas2aNrFaroqKiJF1+Lt4333yjnJwc+fj4KDAwUI0aNdKHH36ozz77TJGRkVq4cKG2b9/ucMGM6/Xuu++qUaNGatq0qaZNm6a8vDw9//zzFTI3AABVjdu1hwAAANz+UlJS1KtXL/Xu3VutWrXSoUOH9NlnnykgIKDE2GnTpunxxx9X586dlZmZ6YRqb2/FxcUaMmSImjZtqm7duqlx48aaPXu2pMtXs40ZM0bR0dHq0KGD3N3dtXTp0hs+1jPPPKMxY8ZoxIgRatWqlbKzs9WvXz95eXk53KdevXqaMGGCXnnlFQUHB1fo1WPR0dHauHGjMjMzFR8fr5YtW2rcuHGqW7euJMnf318rVqxQ586d1bRpU82ZM0dLlixR8+bNJUkjRoyQu7u7mjVrpqCgIB05ckQDBw7Uo48+qieeeEL333+/Tp48WeK5fL9FSkqKUlJSdM8992jTpk1auXKl7rjjjgqbHwCAqoRVXwEAQIW5etXXaz3cHnBViYmJCgkJsa3WitL9epXd8mDVVwAAysatrwAAAKiyCgoKNGfOHCUlJcnd3V1LlizR+vXrtW7dOmeXBgAAqiCCOgAAAFRZFotFa9as0ZtvvqkLFy4oKipKy5cvV9euXZ1dGgAAqIII6gAAAFBleXt7a/369c4u45bUoEED8RQdAAAqFotJAAAAAAAAAC6AoA4AAFQ4rrIBUBp+NgAAUDaCOgAAUGGqVbv8VI3CwkInVwLAFV352XDp0iUnVwIAgGviGXUAAKDCVK9eXT4+Pvrxxx/l4eEhNzf+TxDAZVarVT/88IMKCgpUXFzs7HIAAHBJBHUAAKDCWCwWNWjQQPv27VNGRoazywHgYqxWq3JzcyVJxcXF8vb2dnJFAAC4FoI6AABQoTw9PdW4cWOtWrVKP/30k4KDg7myDoCMMbp48aKsVqvOnDkjY4xCQ0OdXRYAAC7FYniiKwAAuAlOnDih1atX266eAQDpcmDn6empNm3aqF27dgT5AABchaAOAADcNGfOnNGJEyd04cIFZ5cCwEW4ubnJx8dH9erVI6QDAOBXCOoAAAAAAAAAF8B/YQEAAAAAAAAugKAOAAAAAAAAcAEEdQAAAAAAAIALIKgDAAAAAAAAXABBHQAAAAAAAOAC/j9Uvk9SMCsE5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder02').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "87c51e9f-7a5e-4254-a9bb-cf46a9f3891c", + "metadata": {}, + "source": [ + "## Inspect gaps\n", + "\n", + "To get an overview of the gaps use the .get_gap_info() method on the missing Dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5b948da5-2ec3-412d-af69-632ed6abfbb1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are no gaps.\n" + ] + } + ], + "source": [ + "your_dataset.get_gaps_info()" + ] + }, + { + "cell_type": "markdown", + "id": "c24c3802-459c-4260-aa75-582b9582338f", + "metadata": {}, + "source": [ + "## Outliers to gaps and missing observations\n", + "\n", + "In practice the observations that are labeled as outliers are interpreted as missing observations (because we assume that the observation value is erroneous). In the toolkit it is possible to convert the outliers to missing observations and gaps by using the [update_gaps_and_missing_from_outliers()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.update_gaps_and_missing_from_outliers)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4e023c8a-9898-4bc0-9bcc-cf5953212c04", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwdVd348c+ZuVtyb/alaZruhZZS1iJQZN8RBZTFR1ERFZFC/eH2qOgjrg/q46PysLogoIIgFVBk38q+Q9lbui9Jmj25Nze5y8yc3x9z1yxN0qRJ2n7fr1chs505c+acM2fOnZmjtNYaIYQQQgghhBBCCCHEmDEmOgJCCCGEEEIIIYQQQuxupNNNCCGEEEIIIYQQQogxJp1uQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0w63YQQQgghhBBCCCGEGGPS6SaEEEIIIYQQQgghxBiTTjchhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEJkNDU1cc4551BRUYFSit/+9rcTHSUAZs2axec///nM9IoVK1BKsWLFigmL03D88Ic/RCk10dEQQgghxASQTjchhBBCjBml1LD+TfaOkp3p+uuv55ZbbpnoaAzqa1/7Gg8//DDf/e53+ctf/sKpp5460VHa6W6//fZRdS729PTwwx/+cI/O10IIIYTozzPRERBCCCHE7uMvf/lL3vSf//xnHn300X7z99lnn/GM1qRy/fXXU1lZmffU1mTyxBNPcOaZZ/LNb35zoqMybm6//XbeeecdLr/88h3avqenhx/96EcAHHvssXnLvv/97/Od73xnlDEUQgghxK5IOt2EEEIIMWY+85nP5E2/+OKLPProo/3m7y601sRiMQoKCiY6KsMWjUYJBoODLm9ubqa0tHTM9heLxfD5fBjGnvmChcfjweORJrcQQgixJ9ozWz9CCCGEmDCO4/Db3/6Wfffdl0AgwJQpU7j44ovp6OjIW2/WrFl89KMfZcWKFRxyyCEUFBSw3377ZV7hu/vuu9lvv/0IBAIsXryYN954I2/7z3/+84RCIdavX88pp5xCMBiktraWH//4x2itRxWnhx9+OBOn3/3udwDcfPPNHH/88VRXV+P3+1m4cCE33HBDv+3fffddnnrqqcyrtuknowb79tctt9yCUoqNGzdm5iml+OEPf9hv3b7fPUtv+9RTT7F06VKqq6upq6vrt13uulprrrvuukz80tavX8+5555LeXk5hYWFHH744dx///15YaS/s3bHHXfw/e9/n2nTplFYWEg4HB5wnwC/+tWvOOKII6ioqKCgoIDFixezfPnyQdcfqUgkwuWXX86sWbPw+/1UV1dz0kkn8frrrwPuk2n3338/mzZtyhzzrFmzAEgkEvzgBz9g8eLFlJSUEAwGOeqoo3jyyScz4W/cuJGqqioAfvSjH2XCSJ+fgc6rZVn85Cc/Ye7cufj9fmbNmsUVV1xBPB7PWy+d35599lkOPfRQAoEAc+bM4c9//nPeeslkkh/96EfstddeBAIBKioqOPLII3n00UfHLB2FEEIIMXLys5sQQgghxtXFF1/MLbfcwoUXXshXv/pVNmzYwLXXXssbb7zBc889h9frzay7du1aPv3pT3PxxRfzmc98hl/96ld87GMf48Ybb+SKK65g6dKlAFx11VWcd955rF69Ou+JKtu2OfXUUzn88MP55S9/yUMPPcSVV16JZVn8+Mc/3qE4rV69mk996lNcfPHFXHTRRcyfPx+AG264gX333ZczzjgDj8fDfffdx9KlS3Ech0svvRSA3/72tyxbtoxQKMT3vvc9AKZMmbLzEjtl6dKlVFVV8YMf/IBoNDrgOkcffTR/+ctf+OxnP8tJJ53E5z73ucyypqYmjjjiCHp6evjqV79KRUUFt956K2eccQbLly/n4x//eF5YP/nJT/D5fHzzm98kHo/j8/kGjdvVV1/NGWecwfnnn08ikeCOO+7g3HPP5d///jenn376qI/9K1/5CsuXL+eyyy5j4cKFtLW18eyzz/L+++9z8MEH873vfY+uri62bt3Kb37zGwBCoRAA4XCYP/7xj3zqU5/ioosuIhKJcNNNN3HKKafw8ssvc+CBB1JVVcUNN9zAJZdcwsc//nE+8YlPALD//vsPGqcvfelL3HrrrZxzzjl84xvf4KWXXuKqq67i/fff55577slbd+3atZxzzjl88Ytf5IILLuBPf/oTn//851m8eDH77rsv4HbsXXXVVXzpS1/i0EMPJRwO8+qrr/L6669z0kknjToNhRBCCLGDtBBCCCHETnLppZfq3ObGM888owF922235a330EMP9Zs/c+ZMDejnn38+M+/hhx/WgC4oKNCbNm3KzP/d736nAf3kk09m5l1wwQUa0MuWLcvMcxxHn3766drn8+mWlpYdjtNDDz3U71h7enr6zTvllFP0nDlz8ubtu++++phjjum37pVXXqkHaprdfPPNGtAbNmzIzAP0lVde2W/dmTNn6gsuuKDftkceeaS2LKvf+gMB9KWXXpo37/LLL9eAfuaZZzLzIpGInj17tp41a5a2bVtrrfWTTz6pAT1nzpwB02MgfddLJBJ60aJF+vjjj9/usaX3lXvOB1JSUtLvePo6/fTT9cyZM/vNtyxLx+PxvHkdHR16ypQp+gtf+EJmXktLy6DnpO95XblypQb0l770pbz1vvnNb2pAP/HEE5l56fz29NNPZ+Y1Nzdrv9+vv/GNb2TmHXDAAfr000/f7jEKIYQQYvzJ66VCCCGEGDd33XUXJSUlnHTSSbS2tmb+LV68mFAolPfaHsDChQtZsmRJZvqwww4D4Pjjj2fGjBn95q9fv77fPi+77LLM30opLrvsMhKJBI899tgOxWn27Nmccsop/faT+123rq4uWltbOeaYY1i/fj1dXV3DTqOd4aKLLsI0zR3e/oEHHuDQQw/lyCOPzMwLhUJ8+ctfZuPGjbz33nt5619wwQXD/s5d7nodHR10dXVx1FFHZV7/HK3S0lJeeuklGhoaRrytaZqZp/Qcx6G9vR3LsjjkkEN2OH4PPPAAAF//+tfz5n/jG98A6PfK7sKFCznqqKMy01VVVcyfPz8vr5eWlvLuu++yZs2aHYqTEEIIIXYO6XQTQgghxLhZs2YNXV1dVFdXU1VVlfevu7ub5ubmvPVzO9YASkpKAJg+ffqA8/t+g80wDObMmZM3b++99wbIfCNtpHGaPXv2gMf23HPPceKJJxIMBiktLaWqqoorrrgCYMI73QaL83Bt2rQp8xptrvQotJs2bdrh/f373//m8MMPJxAIUF5ennldc6zS7Je//CXvvPMO06dP59BDD+WHP/zhgJ2zg7n11lvZf//9M99Kq6qq4v7779/h+G3atAnDMJg3b17e/JqaGkpLS/ulZd8yAFBWVpaX13/84x/T2dnJ3nvvzX777ce3vvUt3nrrrR2KnxBCCCHGjnzTTQghhBDjxnEcqqurue222wZcnv4gfdpgT2cNNl/3GSBhZ8RpoCe41q1bxwknnMCCBQv49a9/zfTp0/H5fDzwwAP85je/wXGcIeMx0CAK4H6XbrgGW3e8R1cd7v6eeeYZzjjjDI4++miuv/56pk6ditfr5eabb+b2228fk7icd955HHXUUdxzzz088sgj/M///A+/+MUvuPvuuznttNO2u+1f//pXPv/5z3PWWWfxrW99i+rqakzT5KqrrmLdunWjitdg57uv4eT1o48+mnXr1vHPf/6TRx55hD/+8Y/85je/4cYbb+RLX/rSqOIphBBCiB0nnW5CCCGEGDdz587lscce48Mf/vC4dAQ5jsP69eszT7cBfPDBBwCZESrHIk733Xcf8Xicf/3rX3lPJvV9NRUG72wpKysDoLOzk9LS0sz8vk8+pdft7OzMm5dIJGhsbNyB2A9t5syZrF69ut/8VatWZZbviH/84x8EAgEefvhh/H5/Zv7NN9+8YxEdxNSpU1m6dClLly6lubmZgw8+mJ/97GeZTrfBzsny5cuZM2cOd999d946V155Zd56w+1AAzetHMdhzZo1mScFwR2sorOzc4fTsry8nAsvvJALL7yQ7u5ujj76aH74wx9Kp5sQQggxgeT1UiGEEEKMm/POOw/btvnJT37Sb5llWf06ksbCtddem/lba821116L1+vlhBNOGLM4pZ9Gyn36qKura8DOo2AwOGCYc+fOBeDpp5/OzItGo9x6660Drpu7HsDvf//7ET0VNxIf+chHePnll3nhhRfy4vb73/+eWbNmsXDhwh0K1zRNlFJ58d64cSP33nvvaKMMuE/+9X0NtLq6mtraWuLxeGZeMBgc8HXRgc7rSy+9lJcOAIWFhQDDyisf+chHAHck21y//vWvAXZoxNa2tra86VAoxLx58/KOsauri1WrVk34q85CCCHEnkSedBNCCCHEuDnmmGO4+OKLueqqq1i5ciUnn3wyXq+XNWvWcNddd3H11VdzzjnnjNn+AoEADz30EBdccAGHHXYYDz74IPfffz9XXHFF5rXRsYjTySefjM/n42Mf+xgXX3wx3d3d/OEPf6C6urrf02eLFy/mhhtu4Kc//Snz5s2jurqa448/npNPPpkZM2bwxS9+kW9961uYpsmf/vQnqqqq2Lx5c14YX/rSl/jKV77C2WefzUknncSbb77Jww8/TGVl5ZilXa7vfOc7/O1vf+O0007jq1/9KuXl5dx6661s2LCBf/zjHxjGjv2Oe/rpp/PrX/+aU089lU9/+tM0Nzdz3XXXMW/evDH5JlkkEqGuro5zzjmHAw44gFAoxGOPPcYrr7zC//7v/2bWW7x4MXfeeSdf//rX+dCHPkQoFOJjH/sYH/3oR7n77rv5+Mc/zumnn86GDRu48cYbWbhwId3d3ZntCwoKWLhwIXfeeSd777035eXlLFq0iEWLFvWL0wEHHMAFF1zA73//ezo7OznmmGN4+eWXufXWWznrrLM47rjjRnycCxcu5Nhjj2Xx4sWUl5fz6quvsnz58rxBRO655x4uvPBCbr75Zj7/+c+PeB9CCCGEGDnpdBNCCCHEuLrxxhtZvHgxv/vd77jiiivweDzMmjWLz3zmM3z4wx8e032ZpslDDz3EJZdcwre+9S2Kioq48sor+cEPfjCmcZo/fz7Lly/n+9//Pt/85jepqanhkksuoaqqii984Qt56/7gBz9g06ZN/PKXvyQSiXDMMcdw/PHH4/V6ueeee1i6dCn/9V//RU1NDZdffjllZWVceOGFeWFcdNFFbNiwgZtuuomHHnqIo446ikcffTTz9N5YmzJlCs8//zzf/va3ueaaa4jFYuy///7cd999O/RkVtrxxx/PTTfdxM9//nMuv/xyZs+ezS9+8Qs2btw4Jp1uhYWFLF26lEceeYS7774bx3GYN28e119/PZdccklmvaVLl7Jy5UpuvvlmfvOb3zBz5kw+9rGP8fnPf55t27bxu9/9jocffpiFCxfy17/+lbvuuosVK1bk7euPf/wjy5Yt42tf+xqJRIIrr7xywE639Lpz5szhlltu4Z577qGmpobvfve7/V5bHa6vfvWr/Otf/+KRRx4hHo8zc+ZMfvrTn/Ktb31rh8ITQgghxNhQeke+OCyEEEIIMcl9/vOfZ/ny5XlPJAkhhBBCCDFe5JtuQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0y+6SaEEEIIIYQQQgghxBiTJ92EEEIIIYQQQgghhBhj0ukmhBBCCCGEEEIIIcQY80x0BCY7x3FoaGigqKgIpdRER0cIIYQQQgghhBBCTCCtNZFIhNraWgxj8OfZpNNtCA0NDUyfPn2ioyGEEEIIIYQQQgghJpEtW7ZQV1c36HLpdBtCUVER4CZkcXHxBMdGCCGEEEIIIYQQQkykcDjM9OnTM31Gg5FOtyGkXyktLi6WTjchhBBCCCGEEEIIATDkZ8hkIAUhhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEIIIYQQQogxJp1uQgghhBBCCCGEEEKMMel0E0IIIYQQQgghhBBijEmnmxBCCCGEEEIIIYQQY0w63YQQQgghhBBCCCGEGGPS6SaEEEIIIYQQQgghxBiTTjchhBBCCCGEEEIIIcaYdLoJIYQQQgghhBBCCDHGpNNNCCGEEEIIIYQQQogx5pnoCAghhBDDscXZxr3OIygU+6h5nGAumegoCSGEEEIIIcSgpNNtmLrP/jf63Sg4GgyFKgugO2IjmgYwZhbhPXkm/ssPAsB67RrsTY+juza5O4p1gHZAGRAoy04XVODZ/wt4Fi8b1+OO//YNko9swl7ZMupjH8425uIVqNIm8CZxVs+GpAmGF8+R+1Lwq+0fu/XaNehEBOUrwrN4GdZr19D7jSR6kxcdD4w8nu3xnZ28w6Zmr8fYdx0qGMFpmooq60QFOgEFWqFqWtHhAoj7cbZMR1VEMQ58DSNggccDoVo3L/mKUJ4AWtvQucEN3PRBqBZVPANz1ol5eWzA/OkrwqhciO/MO0n885M4re9DIuzmV0AVz0B5AqjqA1C+IoC885LLeu0arLdvhp7WTJ5Px8N+5sgB8x4MnJfUlA8wZq9GFXWje02UP46zZj46sje6o3RM8ufODmOiwlR190F3IVgGakYzur4S3ViL7i3BPOZ90I3olnLoLQDDi7N+NlhB8AUwD6zKq9PSBssbffPYSDzsPMO3rF8CsJ+azzPXPw9WFNB91lRQUIUx9RCc+hfB6oWiaRjle2M9eQj2qwF0RynGosdBN6L8vaA0eAyc9/ZCN01Fx8tQZVX90spYsBzdHkJVtKJ7QhhTtkFxB866ORiVbThrFuCsWwCUDXlOVEUB/osW9Uu73PKRKX87cC0YqvyOVOKfn0THwyh/MXrDd0g+sgk8d6Ebq8FIgBfUjPfQzdWo0k50ZxW6vRjdXg2JYlRZFarqCYyZa1BVzVAcQTdX4WytxSjrctM0XIruLEFvmIvTPA0Vmt0//Rq6IWqNOP5ifJhHPYu9ej7mQe+hm6ajo7XojlLMxSvQTdXoaC2qrAOsFrSjMerqUUVxKG3GWTcLVdiLjpSAZWDUNuDUT0OVh1HlLW7dEylC1bWi20LojTPRCS90lkHS178qGGdqr9JJc21QdfdhTN2KmtqAjhShSrogEEM3TUFNaYJYAfa7+2Ae9gp4LLcO7ChDd5aAVu7xzF2P3jALVbcVPDb2s0dgHvEidBVDeYe7rDgMKpUA/pgbDoAnCd1F6J4gzqq90evngDUH3RsY3/ZkQcStO5MenNUL0OGF/doEIzlHqnYtqjCKql4PhT0ow8HZuAhn7V7ghCb8vE9EmOMVL2PBclRhF05DDaoyjN5SDZYJKHRXHSRA9xaB40NVTZ6yONJpY9HjqLK3wQFQqJIu7JX7Y9Q2oqpasNfshVFX7+bprdMwqluhIIqa0oxuqYKkF1XWCcEoKAfntYPRtgfz8JfQjVMh4YWkD2frTJS3HHPhPhT8atmYtxlyZcJuWpl3nzucdmHvN6/BenMtqnQdqrAHdBKUxvlgPjq8YLttfGPOBqALVb0eVdYOpg2As2EWqqQLvWk2xqK1OFvLM/WeMa0eZ9UC936rvBvzgLfAG0GVt0OwG+e1gzGOeAFMx42gY4BtYL94GNgezCUvutOvLsaYtQln3RyIByBchNYGtNSAUQOB/nk0XXdpK46x9ypURQvO6we751MrKOlEBeLY7+2Dufh1KIq4+eDFwzAOfsPdj6PQnaUQC4DXQdVtdttloW4o7MF+ZTG0l6Mba0HVYez7IqqkCYwETmMdqqrBvU6UdqKCSZwN89FtfjCSbvoseg9jznp0w1Sc1Xu71w+tMJe8BIaD/dpBqOIIKAcKYujVe+O8vwASftAGeFT25HoNCHonTVk05j6EjpioihZUMA6mPeR9QXetOawyIJ1uw2Sv2AqqIDOtW2N5y4c7ba/pxHm/Pdvp9vq10N0w8E5jbdm/4x1Yr187/p1uV7+Bro/mzdvRYx/OOubiFW4hBax/nuwujBSTWN9Nwa+2H9dMWoZq3U6316/FeWFpqhEe26F4Tha6tRJz/7+DcrAePAHfZTekGrapxm0oigoGAbDu+yi+y25ABXrcZVYCOte6f8fa+t+TWBZ0rkV3rsVqX5Xf6TZQ/oy14UQ2A+BseMi9eKbmA+jOtWhlwPoH3M4+yDsvebvuG36sLROPxNXBIfNe7jwdL8U88zU3/2gjlVYnQzgAxAYNYyT5czzDGM8wddP+mcaG77SHSTyxFCLFAJj7PApA4tpLMusQCaa2jmE/tiWvTksbLG/0zWMjYePk/G2D1T3Imhp6m/Pj0LkWp2s9yb/ul8oTnZjnuseWrnMgVe+kjl23duaH2hrDPPdVEtdegu+yG0hcewmeZddDqBvrtk/jWXY91r9Ph3AhEM9s0zeMzN/tceJXvzF4p9tA5W8E14Khyu9IpdNTK4PE1aeg66P4rliRlzd8J91D4pETMumDVnnpqZvm4jnuYQh1g9IoDdYd52XSURV1Q20DiSeOhXAJms68OEzmelq4zKOedTtnFr9A4toDM3WwuTiVV8IBdFEQcOsR8yMPumUwFMW67T+yeQfwHPk81v0fSV3zHKzlnwCt8J3yqLtOxP1hBz05vpai13TmT0/gtUE37Y9n2bNuuQrEIRR1y1xVKwR7oTCG8+yReI5+LrtheQfKl8hOK9z1fW4nd2b98s7sslDOdVr1aWH4OlHlnVh/OR/CJamZw78ej1V7Ms2tn7ffJhhqvzpZgqYE34n3ZturD5wCYS+D1fs7cmy7ajtjZ8bLPPfVVNvuRLeeeGxpdoVIcbb9B+jOzgmL52inzXMfzc+7oSjOGwfhOfIFCHXj3HIBnmXXAWDd/XH3+omGom6Uym6TLo/2s0cC4DnuKVRVSyZY677TIVyC/ap7jzXWbYZcg4U9nHZh4s/dYFfjW7Y8lS4K0Fj3nzpkeXbi7rUmt7wCWHef5eahFcfg+ei/se7L5iXPUc+5dUWkGB0JY5y5GtCZNLWfPRIzt940HTAdnJx0BnCe+zCeo5/Duu3Tqcil29DFqQ078+KaW3clrr0Ez4mPpPb3YXzpc5yqb52bLszsB5+VjVOwF8Ct89NCUZRuycTfeWFJXtvM/OyKbF12/8n4lq0g8fCJ2evu/cdn4w6Y59wDRRGUL4n1r4+5+UwrPGfd58btjYPcbQGUJvHAaW5nYPrXGSvnOmHZ0GtPmrJonrsi1cZ/PL8/Yjv3BfYHvf32PZDJ0UoRQgghhpDQ2ZvBBMkJjIkQQgghhBBCDE1prSf4YfzJLRwOU1JSQsf79YR6PKC1++te0IeOJkc0DaBCXlSxD1XkTutEBB2PoJPuExs6mf7FUKG8hZlp5Q1hhGoyr+uNFx1JoMMJnKaeUR/7cLbRyQjajoIvgROOgKMxSkrwzJmNUVG+/bgmIqnwFMpXhE5EcBqi6EgSkr4RxzPxYgPJX78GW4bXg73TlCj4yFQKLt4LbfWgCj2gwelsBtsB00AVhXBaNwEajBBm1Qy0pwtVaKAKfRjBKnQyivIGcV9J1djhTaA1yhvECFahfCGUrygvjw2UP5U3iPIVYYSm4nQ3ouNhtNWL8hYCoHwh3PwbJPOTW855yaUTEZxII9qKks7z6XgQ9w+Y92DgvJTNO0mccNg9Nk8Qs6I29Ujz6PPnzg5josK0mtagE91oJ4FZVoUTiaBUAOULYZSWYLfVoxM9oAyMYvfcKG8Q5S3EmBLMq9PSBssbffPYSPzMuoGfWO6vu3XU8H7rj3GiTehoE5gBsHrAjqNKZmGWzsYITnHjkezFCFa7eTPmQ3cn3fxldbvHluwBpTCKi9BRG2UWuuWitKxfWtltW9HJKNqKoYIedDKK096Achy0AWbVfJQuwwhUDnlOVMiLURvql3YDlb8duRYMVX5HyuluJP1aiNIV6HACu74ZHI22e1FBE7utCfedGIVRUozutlCebHrabfU4vS2QaAN/Eh3rRLdsAOVBe0swpx8IPTbKV47yhjArp/VLP6e5B2tVO4mfvzTx9bPob6EX/38twZhquGUp6IOEH52MANl6yG5ryJa9kiKcjm3uNCYqFEJ3tqDtGMpTgFE5A6crdc1TBmbVTJxIBN2dRMccDF85JAPE790Mj6yHrnE+ZgNYUELozo9NmmuD1bQG3duM7tkEug1n05OoZBTt2KiiqehYL5heMP2o4ikoQ6O7I2i84AmiSuvQXe+j4t3uK/rBYnRXvbsPDaq0Ch3uBMMPniJU1Xx0uBkME4WNKq0FDTqaQHsrUaHp+OYeBQnfuLYntdGJ094M2kAVlOOpntuvTTCSc6TtbvAlsnWdUpjlNe510ROc8PM+EWGOV7zstq1oqxttxTCKinAi3eCk6oTyGnSPjfIEAAOjtHSXSb9+01Y3VsNb6Fg7OAlUaSU67D4dDgYEDGjb6D7Ib/oxqmej2xvRTi/KTkDpFIj2uOtbEfAqtGWjw42A170e1x2CClRiVkzBqKjAqCgf8zZDrnTYTk9Tak5+m397bRqnrd3919UFipw2fiFmxbTttvHxJVJtvSawutFOHFXgQUeiYAZQ/gqMkhB26yZ0bwdgunknEcDwl7vtV38Me9tqSHZCrBWMHnRPI7rzfSAJ+FEls9G9SVABMEyM6rno7h7wlrj1adUsiNpgFmIEyjEra1He4KB1lxNrQRud6Ob3wOpFaxNjygJ0tAe0DXYCVWjgbHkMYp3uE2Ml08AoRDs+lL8KCqswKqajWz+A3la0lUSVVKHjgFmECk7DO20RuifhtjNt9x7T6YoAmnQ7TnkKsTd3u+v1dKOKNHbzB5CMg/JgVNbgNL0LiW4cEpjl03A6omAUgunHnDYPp8uLYZahvAWY1WWZc6sKvW7fyCQpi05XR+p+qAdV6AX0kPcFEd1L2T7T6Orqori4mMFIp9sQ0p1uQyWkEEKInesbyau4zr4NgDKKaQw8P8ExEkIIIYQQQuyJhttXJK+XCiGE2CW06+zjKxGiyG9GQgghhBBCiMlMOt2EEELsEtpz3hmzsIkQ3c7aQgghhBBCCDGxZPTSYeo++9/od6OjHsrWmFmE9+SZ2dFLBxqeOWco5cx0QQWe/b8w/qOX/vYNko9swl7ZMr5DvHuTOKtnQ9IEw4vnyH0p+NX2j9167Rp0IoLyFbmjl752Db3fSKI3edHxwMjj2R7f7v7Gk5q9HmPfdahgxB3CuqwTFegEFGiFqmlFhwsg7sfZMh1VEcU48DWMgAUejzuKaGrob+UJoLUNnRvcwE0fhGoHHLZ7qOHDE//8JE7r+5AIu/kVUMUzUJ4AqvqAzDcacs9LLuu1a7Devhl6Wuk7fLj9zJED5j0YOC+pKR9gzF6NKupG95oofxxnzXx0ZO/tDic+VsNMj0UYExWmqrsPugvBMlAzmtH1lejGWnRvCeYx74NuRLeUQ28BGF6c9bPBCoIvgHlgVV6dljZY3hhqaPjt6ch50g3Ac+1cYlYv9BuTV0FBFcbUQ3DqX3S/R1Q0DaN8b6wnD8F+NYDuKMVY9DjoRpS/1/32iccYcmhwY8FydHsIVdGK7glhTNkGxR046+ZgVLbhrFmAs24BUDbkOVEVBfgvWjT46KW55W8HrgVDld+RSvzzk+h4GOUvRm/4DslHNoHnLnRjNRgJ8IKa8Z47NH1pJ7qzCt1ejG6vhkQxqqwKVfUExsw1qKpmKI6gm6twttZilHW5aRouRXeWoDfMxWmehgrN7p9+Dd0QtUYcfzE+zKOexV49H/Og99BN09HRWnRHKebiFeimanS0FlXWAVYL2tEYdfWoojiUNuOsm4Uq7EVHSsAyMGobcOqnocrDqPIWt+6JFKHqWtFtIfTGmeiEFzrLIOnrXxWMM7VX6aS5Nqi6+zCmbkVNbUBHilAlXRCIoZumoKY0QawA+919MA97BTyWWwd2lKE7S0iPVKfmrkdvmIWq2woe2x2V9ogXoasYyjvcZcVh0oPS4Y+RGcHUk4TuInRPEGfV3uj1c8Cag+4NjG97siDi1p1JD87qBejwwn5tgpGcI1W7FlUYRVWvh8IelOHgbFyEs3YvcEITft4nIszxipexYDmqsAunoQZVGUZvqQbLBBS6qw4SoHuLwPGhqiZPWRzptLHocVTZ2+7nUVGoki7slftj1Daiqlqw1+yFUVfv5umt0zCqW6EgiprSjG6pgqQXVdYJwSgoB+e1g9G2B/Pwl9CNUyHhhaQPZ+tMlLccc+E+FPxq2Zi3GXJlwm5amXefO5x2Ye83r8F6cy2qdB2qsAd0EpTG+WA+Orxgu218Y84GoAtVvR5V1g6mDYCzYRaqpAu9aTbGorU4W8sz9Z4xrR5n1QL3fqu8G/OAt8AbQZW3Q7Ab57WDMY54wR21FMAxwDawXzwMbA/mkhfd6VcXY8zahLNujjt6Z7gIrQ1oqQGjBgL982i67tJWHGPvVaiKFpzXD3bPp1ZQ0okKxLHf2wdz8etQFHHzwYuHYRz8hrsfR6E7SyEWAK+DqtvststC3VDYg/3KYmgvRzfWgqrD2PdFVEkTGAmcxjpUVYN7nSjtRAWTOBvmo9v8YLgDmBmL3sOYsx7dMBVn9d7u9UMrzCUvgeFgv3YQqjgCyoGCGHr13jjvL0h9e88Aj8qeXK8BQe+kKYvG3IfQERNV0YIKxsG0h7wv6K41h1UGpNNtmOwVW0EVZKZ3dChbe00nzvvt2U63gYZQTou1Zf+Od2C9fu34d7pd/Qa6Pv9pkvEa4t3658nuwkgxifXucNbbk0nLUK3b6fb6tTgvLE01wmM7FM/JQrdWYu7/d9yh0k9IDeOsydxhhKKoYBAA676P4rvsBlSgx11mJaBzrft3rK3/PYllQefaAYftHmr4cGfDQ+7FMzUfQHeuRSsD1j/gdvZB3nnJ23Xf8HOGD09cHRwy7+XO0/FSzDNfIzNkvHKwHjx5yOHEd8aQ72MRxniGqZv2zzQ2fKc9TOKJpdmhxPd5FIDEtZeQHe48mNo6hv3Ylrw6LW2wvDHU0PB9XZm8mn/aj1Og/DTolrxlyuoZZCsNvc35cehci9O1nuRf90vliU7Mcx9NBZQzjPwQQ4Ob576aGk78BndI92XXQ6gb67ZP41l2vTvMfLgQiGe26RtG5u/2OPGr3xi8022g8jeCa8FQ5Xek0umplUHi6lPQ9VF8V6zIyxu+k+4h8cgJmfTJHZZet3aim+biOe5hCLkfhVYarDvOy6SjKuqG2gYSTxwL4RI0nXlxmMz1tHCZRz3rds4sfoHEtQdm6mBzcSqvhAPooiDg1iPmRx50y2AoinXbf2TzDuA58nms+z+SuuY5WMs/AVrhO+VRd51I6uPbenK8uKHXdOZPT+C1QTftj2fZs265CsQhFHXLXFUrBHuhMIbz7JF4jn4uu2F5B8qXHSUahbu+z+3kzqxf3pldFsq5Tqs+LQxfJ6q8E+sv50O4JDVz+NfjsWpPprn18/bbBEPtVydL0JTgO/HebHv1gVMg7GWwen9Hjm1XbWfszHiZ576aatud6NYTjy3NrhApzrb/AN3ZOWHxHO20ee6j+Xk3FMV54yA8R74AoW6cWy7As8wdVMq6++Pu9RMNRd2Z8cvS5R3AfvZIADzHPYWqyrajrPtOh3AJ9qvuPdZYtxlyDRb2cNqFiT93g12Nb9nyVLooQGPdf+qQ5dmJu9ea3PIKYN19lpuHVhyD56P/xrovm5c8Rz3n1hWRYnQkjHHmakBn0tR+9kjM3HrTdMB0cHLSGcB57sN4jn4O67ZPpyKXbkOnv/vVmRfX3Lorce0leE58JLW/D+NLn+NUfevcdGFmP/isbJyC7uBSKpDz4EgoitItmfg7LyzJa5uZn12RrcvuPxnfshUkHj4xe929//hs3AHznHugKILyJbH+9TE3n2mF56z73Li9cZC7LYDSJB44ze0MTP86Y+VcJywbeu1JUxbNc1ek2viP5/dHbOe+wP5geAN6SaebEEKISafN6eCb1i94zHmeFtpBg4EaekMhhBBCCCGEmCSk000IIcSkc5t1H39z/p03z8l5TnMq1cCmcY6VEEIIIYQQQgzf5HgeXwghhMjxn84vt7u8keZxiokQQgghhBBC7BjpdBNCCDGpxJzJM4iJEEIIIYQQQuwo6XQTQggxqZyYuGCioyCEEEIIIYQQoyadbkIIISaNTbqBV3lnoqMhhBBCCCGEEKMmnW5CCCEmjZX2e0yhcqKjIYQQQgghhBCjJp1uQgghJo2/Ow/SROtER0MIIYQQQgghRs0z0RHYZZT4IQJoQAGmAbYzsmmAkBfzwOpMsEb1ATjJHkh2uzMcO7sTw8xOGx6M6gPG6WCzzAOrsaIN0BUf/bEPYxunvhZV2AOAqmgDx4BQFFXrGzKuRvUB6KJpqILKzDRFCej2gTZGHs9JRJV04TTWoAIx1NRtOI1TUIHsx+aVx0Z3loJjZJYbxWF3mQIMj5uXlOHmK+2AY2V3YHjAG+qXxwbMn8qAggp3uqASetvc8AzTnecNgelDlczMnIvc89Iv/J7mVFxSeT4Vj0HzHgx4HlVpNo103I/yx1EVbeh4ASR8Y5I/d3oYExSmqm2E3gBo5aZhRRs64YOkF6dhGhgWqmYbxAOgQUeDbtlUCkr8eXVaxiB5Y6h67BHn2e0u7ytdVFW/JcqNQ09qlFPDA4FyjLk9OB8UQtyfPTZ/Tlkqb08du8/dpk9aOdumoGpSZbC2Ad1WhjJs1LTU35Vt6O4QOObQ58RjDJx2KXnlbweuBUOW35EqqIRkFLzBTPl06mtR5R3gKFCg28qzdVTNNugtyEtPNaXJTSePBb44urM0m3YeC91Ziu4tcM9DLABOQf/0s5wdi78YF059LQRimbyRroNzp1VZGJSVrXMCMZShUdMa3DJW2wCO4eaLdH4q7EVN3QYxv7tNTRM66XXzRqwgtff+NcG48kyea4OqbUyVq6RbzjwW+BLu34U9kPChpjVktwGI+d22RIoq6nbXD3WDwl0/tR4FsWy4ab5E9m/DcddzDLeuTHghGXCvHePZnjQc0Aq0GrxNMIJzpEq7wHDcfJq6drj1flHqujix531CwhyneKXTPFMnpO8TwL3OKA1xv3u+Peauk359j7NhGioYIU15bFTNtsx1Uk1ryJTTdDsE00EV9mTnp8o75JRbTbZ8p+4XKImgqt36c8zbDDkyYce7yLvPHUa70JgbR7d1Z64V6c2H08Z3rzW2m3cCvZm6LtOOK2932y0120gv1G1lmbagKu1Et5WDYWfSNJOeuXR+OuMY7nRPoft/24S4D7Ry86rlA9W/jZmpu2obIFoIBb2ZNhIKlOGA4aTCNMB0svu2DTctIHNPiJHNF3nx7ynIxCPv3nvqtvx2XCCOqmyDhNctX6TaeYU96PYytwx6k5D0uvV9Om23TXH/9sXdtIyEchKrz3V6EpVFp742mzdS99lD3RdQ6Ie27WZhNxyt9STrXphcwuEwJSUldHV1UVxcPNHREUKI3Y7Wmr3iJ6HR1NO0Q2G87fs3exmzxjZiQgghhBBCCDGA4fYVyeulQgghJtQWtrGVbTvc4QawUdePYYyEEEIIIYQQYvSk000IIcSEWuWsG3UYG/XWMYiJEEIIIYQQQowd6XQTQggxoVbp9aMOo0E3j0FMhBBCCCGEEGLsyEAKw9Q152Z0ZAw+/hry4vlwLcF7PgpA4p/n4dS/MLyBFGadhO/Mv4/nYRP9+L+xnhu/gRQ8n/tz5mOO1oOnuB+BTPpQtT6KXvjhduOa+Od56N5WVEElvjP/TuKf59H7xQ/tHgMp1G3BPOlxVCCG9cRxmEc8nz+QQnULurUCHCOz3Ji/xl02koEUpi3Jy2MD5s/UR1UDF68j9ru5wxtIIee85Er88zycjY/2H0hh2hKSt3xu4LwHAw+kULcF88TH8wZSsB46Gd1QJwMpDDWQwrz3MgMpmCc8if3kMejGqZD04vnc7WBY2M8ekR1IYWtd3kAKuXVa2mB5o28eA3hf79iTbh03bMqZuoIYV+RMKyis6jeQQvJPn8T5oBLifjyfubXfQArWA6eit9UM+sFUz+duwn72CMwPP4/9wuF4jn0KVdVKcvnZeI55CuuRk9EbZw57IAXPKTP7pV1aXvnbgWvBUOV3pGK/m5sZSMF+6Gqs5xrwnPkH7KeOzgyk4DntIawnj8U84nns545wB1Jors4OpDB7FZ4TnkBNaXEHUmioxXriODzHPIWa4tZjurcA+4lj0Q21MpDCLshzwZ+x/n4OnvOWYz91NLqxFhI+PJ/7c2ZaTWkmPZCCecKT7kAKlW0kl38Cc8mL2M8fDo6B5/gnsZ5MXfMKe7EeOwFifszjV2A/dwR6Sx0ykMLA66h57+E5dgVqSjO6tRJV2eoOpNCQ+kh3wkfy7+fi/dxfssnWG0C3Zgc9UtO3orfUoeq2goLkrZ/Fe8Ff3OtFQcxdVpkz2nS/gRTcgROSd53t1ovjOJBCpj2ZM5DCoG2CEZwjNX0LGA7mCU9krh3WwyejN86SgRR2crw8n7vJbdul2rn2k8dmB1JomsLuMpCC5zO35g+kUNlG8m/n4Tn+SdSUFpJ/PwfP8U+6ee/x4/Ac+5Q7kEJtg3vdhEx5B0j+9XwAvJ/7i9t+g8z9Aj1BVHUBRS/8cMzbDLkyYQ80kMIA7cJckSU/RLd1Yx73ZN5ACsNp46vpW0HZbnnNGUjBevQEtx335LF4Tn0E64ljSS/0HP8E1oNuW1BVN+M5/UF3IIUqN02Tfz3frQdzaUj++bOZdMYx3PXOuZvk8k/kD6TQNGW7Ayl4Pvdn7Jc+hPecu6Ggl+Rfz8dzzFPu8VS2guG4dfdnbssMpJD882fd6fRACq2V2YEUUvkinSeSfz3fHUhhWw1YPjyf+Wv23vuJ4/ActyLTjlOBONbDJ+cNpOA5/UH32rB1mnuvnhpIIZ0myb99EvPI5wFQvriblptmZNK333V6EpVFz/m3YL9wGOaHs/fZQ90XhAtz7qe3QzrdhqsrDirVqNPkN/pHMt0Zx16ZfSLDaX4T4p0D7FDnd4o4lrvuOLNXNkNn9oZ0VMc+jHWMaQ2g3L91W2q0nEgxurd7yLg6zW9CdwM6VJudjnzY7XBjB+I5ieiuEoyp20A56MYajKlNqcov1TsYiKFKO911U8tVbp2WzkvaBtvuvwPHgnhnvzw2YP7UNvSmGtm9rW6nSu4+4p2gDHRPc+Zc5J6XfuFn8rnOi8eQea/PPN2ZTSOlDTet2irci9xgYYwwf45bGOMcpm6Y6jZSAWPqNqy2CreDDTBq3W+lWdtqMuvgmNnt+9RpGYPkjYHqsZiOE6KQbnr6hzOEwW+xdTafpuPQ24qzrhCiXsDJHFu6zgHQ7eWZY8fpn35GTRPWNreMWQ21qIoOKOxF17t/u53fZt42fcPIsJyB0y4d5YHK3wiuBUOW35FKn1OrN1M+jWkNWO1lmbyhKtozdVAmz+Skp26a4qZZIAZKuyODpdIuXY+pkjBWezkk/MCuU08LlzGtAWKBbN5I1cG507qjOLt+qt6msAddX+uWsfSNY0VHzjXPvf6hlVtPbZviduq4a473YQ5sEl0bdMPUVLmKu+2DQDxT5jAdCMTR9bX5SZdeN4cq7cyso+trM+tlluX8AJi+KcsND3A7AmKFw4r3WBw75LcnM4uHahMMY7+6s8QNv6Yp215N/ei5o2FOtjbBZI1XOs0z15j0fQK41xnlDK/Nv5PjOdppo7Y+P+8GYm4HUOo6qetrs23+dDsE7Xa8pctvqrxDTrlV5JVv3VgD4RJ0xL3HGvM2Q47+YetB7z36bbvOD7Y3e61AAXpYbfz0tSa3vALodDuuvdxtt2yrySxTFR2ZtqDuLEVVtLuBpdI0k565VH46YzrudOq65u40VZGm20SDtG+MaQ3uNTDYk9lf5hwX9rqr19e69XjuvlP1OuSf50y+yI1/Ttss7967sSavHYdy3PpNZy8UqqIdTNsdjbytws1nWmXr+201bnqDu7/28lSiDHKdnkRl0ZjWkGnjZ9JkiPsCunKugdshr5cKIYSYUG/o93aow00IIYQQQgghJjPpdBNCCDGhmvTof0UVQgghhBBCiMlGOt2EEEJMmLhO0EF4oqMhhBBCCCGEEGNOOt2EEEJMmCbaJjoKQgghhBBCCLFT7NKdbjfccAP7778/xcXFFBcXs2TJEh588MHM8lgsxqWXXkpFRQWhUIizzz6bpqamCYyxEEKIXPJqqRBCCCGEEGJ3tUt3utXV1fHzn/+c1157jVdffZXjjz+eM888k3fffReAr33ta9x3333cddddPPXUUzQ0NPCJT3xigmMthBBinbOZU+Nf5OLEf010VPY4Ng7fTf5qoqMhhBBCCCHEbs8z0REYjY997GN50z/72c+44YYbePHFF6mrq+Omm27i9ttv5/jjjwfg5ptvZp999uHFF1/k8MMPn4goCyGEANY7W1ihX5roaOyx/mE/wlXeb050NIQQQgghhNit7dJPuuWybZs77riDaDTKkiVLeO2110gmk5x44omZdRYsWMCMGTN44YUXBg0nHo8TDofz/gkhhBhbTUpeK51IW2mk3emc6GgIIYQQQgixW9uln3QDePvtt1myZAmxWIxQKMQ999zDwoULWblyJT6fj9LS0rz1p0yZwrZt2wYN76qrruJHP/pRv/nmsXXwbhQcDYZClQXQHbERTQMYM4vwnjwzE67n4MuwNz2O7trkzoh1gHZAGRAoy04XVODZ/wujT7AR8v+/g0g+sgl7Zcuoj30429ivHYsqbQJvEmPBGkiaYHjxHLnvkHH1HHwZOhFB+Yoy08klSfQmAx0PjDye7fGdl7AjpCpbsd9ajApGMA5+D/v9A1CBTkCBVqiaVnS4AOJ+jAPfxH7/AIwDX8MIWODxQKjWzUu+IpQngNY2dG5wAzd9EKpFFc/AnHVi3n4HzJ++IozKhQAYs0/FaX0fEmE3vwKqeAbKE0BVH5A5F7nnpW/41ts3Q09rJs+n46EGyXswcF5SUza7aVTUje41Uf44xrxN6Mje6I7SMcmfOzuMiQpT1T0D3YVgGdjvHoQxfw26sRbdW4L9/kmgGzH2exd6C8Dw4qyfDVYQfAHMA6vy6rS0wfJGOo/V69F/X7Pboyi0NCp3v+6eoKAKY+ohOPUvgtULRdMwyvfG+xk/9qugO0ozx6b8vaA0eAyMvTagm6ai42Wosqp+aWW/fQjGfu9jv7MI49A3cDbOhuIOjMNfxNkwE2P+Opx1C4CyIc+JqijAf9GiQY8vr/ztwLUgvX20axUBAoRjW2j32qyq8OGgWWb9hNt8/zvs9DZmn4qOh1H+4uy14fVjMWa3gZEAL9ir52Mc+LabPgeuQrcXo9uTkChGlVWhql7HWT8HVdUMxRF0SxXGkc/ibJyJqmhFh0vRnSUYs7fgNDuo0Oz+6dfQDVFr2PEW48t+5kioasN+bQnGnDZ01O+Wt9eOzUyrsihYLWhHY7+1P6ooDqXNGIe/iP3eAowPvQ6WgbN+lntNe28RqrwF4+A3IFLk1lP7v4PeOBOd8EJnGSR9oCf22NVepZPm2qDqnsHZMAs1tQEdKUIlvBCIoVsqUYYNsQKMI59Fx33gsdw6sKMM3VkC2q1VVajbXd8fA4/trm+Z0FUM5R3usriPTCXsj7nhAHiS0F2E7glifOgV9Po5YM1B9wbGtz1ZEHHrzqQHY6916PDCfm2CkZwjVduFKoxiv7U/FPagDAdjYT3O2kJwQhN+3icizPGKl/32IajCLowD3nHbufPXgGUCCt1VBwnQvUXg+FBVk6csjnTafv8kVNnb4AAoVEkXxkFv4Kyfhapqwfjw8zjN1W6ePvRlnA2zoCCK0qBbqiDpRZV1QjAKysE88lm07UH3BtzlCS8kfRgHvYPylmMu3MctskO0+UcjE3bTyrz73IHuPfryfS6E9eZa7HcPQhX2gE6C0m57Lbxgu218Y04j0OVeZ8rawbQBMA5aif3OQozZm3E2LsA4aGWm3nPWz8KYtw6naSqqvBtn43zwRlDl7RDsdtPTMsB03Ag6BtgGxpHPgu1Bx/zu9Iefw9lch3H4ixAPQLgIrQ1oqQGjBgL982i67jI+tBJn8wxURQvmkc/hbJzpxq+kExWIYyx5ER0ugqIIJD1unLoL3f04Ct1ZCrEAeB1U3WZ0SxWqtwAKezCWvADt5ejGWlB12K8fiyppAiPh3mN+sHemHaeCSYyF9eg2PxhJAOxV8zHmrEc3TMWYv9q9fmiFbqoGw8E46A3st/cF5UBBDGPuOpz3F0DCD9oAT06r3WtA0DtpyqL9+rEY+32A/c7+qGAcTHvI+wKztgIeG7oMKK31BDdRRieRSLB582a6urpYvnw5f/zjH3nqqadYuXIlF154IfF4fsfJoYceynHHHccvfvGLAcOLx+N524TDYaZPn05XVxfFxcU79VjE5PA3+9/8Z/KXHGrsz9c9X+DDxsETHSUhdjtfTf6E39t3jmmYQQppC7w8pmHu6jp0F3PjJ6BQROnNW3acOpwH/X+coJgJIYQQQgix6wqHw5SUlAzZV7TLv17q8/mYN28eixcv5qqrruKAAw7g6quvpqamhkQiQWdnZ976TU1N1NTUDBqe3+/PjIaa/if2LC87b9FCO/c7K+jVsYmOjhC7pbF40q2v3j6dSgLutB9gMYuI0ouR90wgdBGZoFgJIYQQQgixZ9jlO936chyHeDzO4sWL8Xq9PP7445llq1evZvPmzSxZsmQCYygmu5edNwFQKD5k7DfBsRFi97TO2TzmYTpounXPmIe7K/uX8zjP8Crgpo/K6Xjr1tGJipYQQgghhBB7hF36m27f/e53Oe2005gxYwaRSITbb7+dFStW8PDDD1NSUsIXv/hFvv71r1NeXk5xcTHLli1jyZIlOzRyqdPQjbU2BlqDAhX0oaPJEU0DqJAXVexDFbnTOhFBxyPoZLc7nUzfBCmUtzAzrbwhjFDNgN/F2pl0JIEOJ3CaekZ97MPZRicjaDsKvgROOAKOxigpwTNnNkZF+fbjmoikwlMoXxE6EcFpiKIjSUj6hhXPzU4DC7pK0bqG416ZA1ffSdeWCX56pkTBR6ZScPFeaKsHVegBDU5nM9gOmAaqKITTugnQYIQwq2agPV2oQgNV6MMIVqGTUZQ3iPsdOI0d3gRao7xBjGAVyhdC+Yry8thA+VN5gyhfEUZoKk53IzoeRlu9KG8hAMoXws2/QVCpG/yc85JLJyI4kUa0FSWd59PxIO4fMO/BwHkpm3eSOOGwe2yeIGZFbeo7AqPPnzs7jIkK02pag050o50EZlkVTiSCUgGUL4RRWoLdVo9O9IAyMIrdc6O8QZS3EGNKMK9OSxssb6Tz2Fg8ZfWh+h6qem2qIhZxr0FB0qFB/ZCZZUswS2djBKe48Uj2YgSr3bwZ86G7k27+srrdY0v2gFIYxUXoqI0yC91yUVrWL63stq3oZBRtxVBBDzoZxWlvQDkO2gCzaj5Kl2EEKoc8JyrkxagN9Uu73PKRLn87ci2w411sjrzO3GQCgMKkQ4/HoNtn0BTy9HvddChOd2PmWyxKV6DDCez6ZnA02u5FBU3stibcD9EojJJidLeF8mTT026rx+ltgUQb+JPoWCe6ZQMoD9pbgjn9QOixUb5ylDeEWTmtX/o5zT1Yq9pJ/PwlmOj6WfS30Iv/v5ZgTDXcshT0QcKPTrplPl0P2W0N2bJXUoTTsc2dxkSFQujOFrQdQ3kKMCpn4HSlrnnKwKyaiROJoLuT6JiD4SuHZID4vZvhkfXQNc7HbAALSgjd+bFJc22wmtage5vRPZtAt+FsehKVjKIdG1U0FR3rBdMLph9VPAVlaHR3BI0XPEFUaR26631UvNv9LmawGN1V7+5DgyqtQoc7wfCDpwhVNR8dbgbDRGGjSmtBg44m0N5KVGg6vrlHQcI3ru1JbXTitDeDNlAF5Xiq5/ZrE4zkHGm7G3yJbF2nFGZ5jXtd9AQn/LxPRJjjFS+7bSva6kZbMYyiIpxINzipOqG8Bt1jozwBwMAoLd1l0q/ftNWN1fAWOtYOTgJVWokOd+N+L9GAgAFtG9EOYPoxqmej2xvRTi/KTkDpFIj2uOtbEfAqtGWjw42A170e1x2CClRiVkzBqKjAqCgfss0/GumwnZ70Ww75bf7ttWmctnb3X1cXKHLa+IWYFdO228bHl0i19ZrA6kY7cVSBBx2JghlA+SswSkLYrZvQvR2A6eadRADDX+62X/0x7G2rIdkJsVYwetA9jejO94Ek4EeVzEb3JkEFwDAxqueiu3vAW+LWp1WzIGqDWYgRKMesrEV5g4PWXU6sBW10opvfA6sXrU2MKQvQ0R7QNtgJVKGBs+UxiHWCZUPJNDAK0Y4P5a+CwiqMiuno1g+gtxVtJVElVeg4YBahgtPwTluE7km47Uzbvcd0uiKAJt2OU55C7M3d7no93agijd38ASTjoDwYlTU4Te9CohuHBGb5NJyOKBiFYPoxp83D6fJimGUobwFmdVnm3KpCr9s3MknKotPVkbof6kEVegE95H2Bo4fXDt2lv+n2xS9+kccff5zGxkZKSkrYf//9+fa3v81JJ50EQCwW4xvf+AZ/+9vfiMfjnHLKKVx//fXbfb20r/R7ups9v6BYFYxJvNW0IMUb3A9hx/4wH7obhrdhqJbARavHJA7DFZ79J3T9+D0N4bvi56DcD1Mm/u8yd2akGEq7KWn+7na3zaRlKp1if5hP/LKloHeDBzqLwviWXQ/KIXHNpfguuyF18U0V31AUuoMAmeWqZAdG3u2TxwbNn8ogcHkXsd+WuDfhAyxHO+4ADpB3XnINGn6olsR/f3tkeS8njdBGJq0Ilww/jD1VcRfpD8j6ll1P4pqlbrkjVSaBxLWXZNZJL0vLrdPSBs0boVqcL62kPP6hUUe744ZNfV6Y7COdD3Om4z/9ViZPpI8tXedAqt6JDP5ZAd8VPydx7SX4LrvB/f+y6yHUTeKq/8ym3Qjy3EBpl7a98jGca0HX72fjj/YfJdZWUPGVmZRSzLbA88OOa+acKoPE1b9B10cz6ZHJP1+9jsQ1SzPpg1b56VnclUkzlIZIyK2z0vO6g6ANd1spu7sk3xU/d8vDd3+Zdx4zeSVcAkXZ61Om3g5F3e3SeYdsfeRe81J1ulbu/GsvgUjqRm13uM6Ptdyy1h102wmpMkdRN2jlpvcVOd841irTlgDc9dLrA4n//ra7vlbZsEI512nV55YiVS8krvrPcS/Pue3JtDFpE6TybibfjlW4Ykjpc5pu5yauWZpdGCnOtv92cf3ybrpuzGtvXAeQvX6is+U1tU26PCb++9upcH+RXU5Ovk3dYw3V5h+N7d7vDtGm6aq+Cmwnp8wpQA+v3A1QXiF7r5Rux+XmJd+y60n836VunioK4/vqdYDOpGmmHuwjL51T077v/tKt/2DQNnRfmXbmd3+Z3V/6HKfq2751d17dDAPX4znxz22b5d17p/LTQNfdTPy+ep07gEOkyE0npd3rcvq4U9dxwN3f/12aulZvt8U+KeS28fP6I7ZzzsK6lxnWt4f8ptsu/aTbTTfdtN3lgUCA6667juuuu26cYiSEEGIoq5z1Ex2F3Z7Wmh568W9nnV7km5VCCCGEEELsTLv+zwFCCCF2KS/oNyY6Cru9t/VqEiS3u06CJLvww+5CCCGEEEJMetLpJoQQYly97rw30VHY7d1tP4qFvd11NHrE33UTQgghhBBCDJ90ugkhhBhXH+gNEx2F3V6XjuSNVDqYRt0yDrERQgghhBBizySdbkIIIcZVvW6e6Cjs1rTW3OQsRzP0q6NvOavGIUZCCCGEEELsmaTTTQghxLiKMn4jIu+J2ukiQWJY655vfYNW3bGTYySEEEIIIcSeSTrdhBBCjCv5jtjOc0niB3wo/okRbXNY/By+lvjvnRQjIYQQQggh9lzS6SaEEGJcDfWB/7Gwp47J+ZTzCg2M7PXdepp4Qr+wk2IkhBBCCCHEnks63YQQQoyb4XxnTOyYmI6zmYYd2rZRt6C1nBshhBBCCCHGktLSyt6ucDhMSUkJzTe8RPDNCNrWYCrMqUGcxuiIpgGMmcWY+1ViHlwNgNP0Bk7LO+jwZgB0dBs4FhgeVLAmM62K6jDnfgRjykHjevz2681Yb7div9g46mMf1jbetWDWo4I96IYYWAaqvBzv6SfgPemo7cbVaXoD7ASYPowpB+E0vUFyeQP2ugS6t7jfPt+u3sIrDS9i2AaO6dBU0wPAlG2FGLbBcY/VUb2tCO9OT+VhqG7Gc4YXzA5UQQCURkc2g+2AMlFTPOjOeoh7IVGKqpqJUbMKymxUeQijchE6ug1VUAmeADgW9panQWtUYQVG5SJU8QyMqkV5eWyg/KkKKlEV8/Hs8x9Y79+BbluN7m1FBWsAUMUzwPRilMwG0+cGlHNecjlNb2CvewAd2ZrJ8+l46PppA+Y9GCQv6U3g3Yoq6ka3d4G2ITkFo+YgdEfZ2OTPMQjj7eRqXlZv0VTTw7RtRTi2zuS/Q5rmUufUUGmUUVM3Y0ziNax4ttyFjkbBcmBKFbRFoLcMVA3mwiB24xvQGwfHAyXl6JZqlFEBRZV4D5+aV6elDZY3NlSUsF/ZFWNSLG5+qJm5nUkqYjYJUxGwNKajaQx5cKYewoemfxFn81Po3naM6v1RZXPRm6txVsfRnWVgfOAemxUBU6HKS9DbfJCoBM9UzFmz+6WV3fo4xDqAKKpIoelE9zahEybKAOVZhO7cCxXaa8hzYtSF8H10Tr+0yy0f6fI3nGvBXdaDfMH6LkksAA5oibNva5Lp3UkAaqI2RkEVz5ZFuGvvEFWU00J7Zvt1/seZpqYMmt7W+3dAshe8Baje493y+cYz6JgBdKCKPThdH6AswKNRRZXoVgOSleCvdtOz+Qk0a8C7DYq6UYk4TthCW17wghGcDZ1eiE0HajHnHdL/HLzdivV6C2zp3tGsI3YiNa0eZkzB3CcGRiVGaZlbB3vXgmVglJaBJ4mz9W10MoryW6jqIDq6AeJJsL1QGEJHOtGqF5IhjMoasDdB1AuJEEyZDl0d6G0BnIgPkrUQDaLf65nQx1z93//QTrm+7FCYLXeh7c1QuAlUL9rbiVYOxP0ofxKd8EBvARRHwG9jmBY6HEQnAuCYGKYXXb4VHQ6hAnG0L4lqLUeXhCHpwQj24nQVg1agwFBetIqjDUBpDI+CpNcNM1IG0RmYc8+CSNH4ticL6tFdzWjLg0pMx5h6dL82wYjOkWcLKtSB074OjATKA6p4H3TzVPBUTfx5n4AwxyteduvjYDWBZaHKitEtPWAByoTSvaHDAkoBP+a8GbtM+vUL0/gAu/1eSITB0VAcQDd7wZOAQBJleNFOM1gmOh7EKCpFO03gi4KlUKoUbccg0IvyxCEagqSJDrahE35IFGD4ZoKqxZy+N+b+B+A96agh2/yjkQ7baXw57z53oHuPvpKPPoP9xjvYLVtR3iQ63A6ODYmpGNUHb7eNb1Q1o2ONbnn1taKMHgiY6HYDtBesaRgzPejmDTixGCiFUeJDt1WAXYcqKkRVNeJ0vgO+DijsQEUDUNaC44uB0mB5MWwPurXcTd+yDrf+7CgGZaATQYxANbqtAE0AQ01D1e2HEaoZvO7Sq6CwHq3eR3UHIOkDfy3aCYMnDjEfqiKMLlyLtjzQVooRjOPYHlTSi06EMKwSKKkC9T464bYLVYGJbi+GaCnEZ2HMOh4STWhdD3Si/EF0pA0ShtuOqygBpwb7rTg63gNWD6qmHYJrIeZDh4vBWwDeZlRxF3iS6EgF9PjANlGmg7Zr0RtrIVYGZghjalnm3KpSP2pK4eQpi+1vohPNblqUmmA4Q94XdFcbVF1yGF1dXRQXFw+aj6XTbQjpTrehElLsev7X+hPfs3494LJLjc9wlLmYs8yTxjlWYnf39eR/c719OwAzmMpmGgdcr97/LBWqdBxjNj7+mPw7l9k/HpOw9mY2H7BhwGUnGkfwb9/vx2Q/u4rPJr7JXc5DmJjYg7zCe5BayBv6PQAOVvvyun43s+x+7x84wVwyLnEVQgghhBBiVzbcviJ5vVTssRr1wN89KqSA/+e9QDrcxE5Rr5syf59oHjHoegfGz+AnyevGI0rj6gW9ckzC8eLhIuPcQZevctaPyX52FW86q3jHWcOBah9KKRp0PQOV+Xu6qsn8vUDNoSEnbwohhBBCCCFGTzrddnNxJ8HH40v5dOLrfC/5m4mOzqRSP8gNZoIEn058nTPiF/OE/eI4x0rs7tL5zsCg3CkZdL0W2nnc2f0+bt8wSGf3SCWxOMSz/6DLt7KNsN5zXj98yVnJ+6xjpX6fpcanBl0vqrMjx06hKvP3Kr2eNXrTTo2jEEIIIYQQexrPREdgVxH70YuoV7rcd+sNhZF6D3gk0wDG3BI8H67Fe/psAOz1D+LUv4DudJ/KcL/bY4Nh5nzTzUYVTcPc93zMOaeNKN5baORB/TRoCFHIz7xfG9H2yfs3YD/XQPLZhlEf+3C2UdUrIbgVVdCLs7UAkgYUhvB99Bj8Xzxnu3G11z8IVgw8Acw5p2Gvf5D4b5pw1jroaFG/fV44pYILG8/AtBW2qfO+6WbaikVvVuC1XqSLV0aUZjuDqtuCcUgn+DtRThF4k2jd5B4LJqq6Fx3tgd4AOlyOUVKM2utNjGILigIYFfv0+6ab0/gy4ICvBKNiH1TpHIxpS/Ly2ED5UxVUoqoW4T3i+ySf/ym69R26e7bQWVgIOJSVHkjIU4ZRua+7L8g7L7ns9Q9iv3sbOlKfyfPpeDjvLxgw78EgealwLapkI6o4go7EwbTQ7dMwAvvjtFWMSf4cizB+llxA3JxDV43NnG0Wx9lnZvJfOu+lp01Mws1/RznscLyGFU9uhyjut0CqPeg2DR1V6GQV5sFxdPg9dFSB5Qd/CL21DqXLoLAMz5G1eXVaWjpv6J6cb7qVzmFa1Zswa/Rlwo+XeX/+NBuiWylIahwFhnb/RXyKVeVeOmZcgX/z2+hYJ0blvqiKBTjvzMF+00a3VkDpa+jwe2D0gKFRwQDO5nII14CeglE3s19aaXUfOhZD+brBb4C/A8wOdLgI5UuiO/dGN8xH+WcNeU6MaSF8n9unX9rllo90+RvqWvCS81bm7znGTHDglI09HLYtzpxO95tuU3psogVdrK0Iccuhe1GhSghSSBS37hvsh4i05PM/hWQUvEHoOB/7uQastQ+gI34wIhghE22sRve634zCqEC3+qG7CowqNz0TD6GK16KKWqCkC7oDOOEClDbcb3naFdARQrdPh55ajLqD+qWf/V4bemMY4s4ocpDYWYwFq3ASUzD3aUEnqjF8VThtFajqlejeAIavCgp7cTo+ACsBRVGMcgPMrTjhAMox0EYAYhYqGEFHSlBFASjYim4rh54QqqoAHYmjt1ZAjx8dqYbeQuia2C+meD4+d6dcX3YoTG5HBbahKurRtkIVRt22Q7gYVRyBuB+ntQKjbgv4LDBt6ChD9xSAYwAKNWMTunEqqqwD/AmctXMxZm2EaBBKO91l3qRb8ToG+ONuQhiOG15vITpchG6qRjdNxyg9Eh0uGt/2ZLAZHY9C0oNumYkROKxfm2BE56h4HUZRF461EeWLgcdBJRfgbJ4FRuXEn/cJCHO84qXVfeBpRUe9GCUenBYDLAUYYM6BsAarFLQPY1bdLpN+/cIsfQ2tHgEr9R2ukIWzpQpV2IMqjuBEi1DBDkh43fIcVODvQBWH0dECSBaiAlEo7AEzidNQC0kvxoxN7je4YgVgl6B7pmBWzsI86GD8XzxnyDb/aKTDduqfz7vPHejeo6/4TcuxXn4b3bsZ5Y+j42FAo1unY/gP3H4bf/pWsJrc8lrU6n4PzVTo5mIwNXROw5gbwWmLkP4qhyqNoeunoSNTUSUKY+YGtL0ZFeqCUBhnWw3G7A3gS7gbJD1ge3A2zHLTefZGcAycLXWoghg6XAJ2EbQXg/age6ZilO+NCtYMWndpzwaMyq1QvBmncSpKAzoEBV0ofxyntQxjRgOUNUHch7NpJkZNEyS9bl3XE4TeEBT4UGUb0N0FKK8FgSTO5jroLEO3TcOoOAQK14F/KxjdKKsUTRs6GkD5k6hiP0TqsNcqIAY6iZrRgFG7Ht1Zgm6qBsMAXy/GjM3gtdzwHRMcBf4ktNbgfDAPeovc7+iVBDPnVoW8qIrApCmLWj+HTnag/J2oIsC0hrwv6K0bXneadLoNU/z/VuJXBZnpvk39kUwn/7Y6c5OVfPxy6B54tLncpqNuehVn2ysj7nTboLdm/rZSH9ceid7LnkTXR/PmjebYh1rHd8UtuD0MYN11mTszUkzsuTX4v7j9uGbSMlSLOec0ko9fTvL3S3G/6hvtt8/DKAEGf9JoMtFdJZgLbwPlkLjmUnyX3UCqBnZXCEWh261wEtdciueyG1CFYfcDsx24NzcM8n3paFNmub3qzrw8NlD+1AAbHsR7xPexX/4f0A6FQGFmjZexlYGtHQjVurNyzkuuvuGn42evupPEf397yLyXN6/Iwbfs327+0UYmrZxwEtg2aBgjyZ9jEcaBVPRZUsD2aJoy6TLaeA0az+IF7sewAd+y60ncvxQi7ncJjNOvhqmQuPaSzDpECtHEgW0kXtyWV6elpfOGewxZ3wt6+OusaQMd6ojESRLq2JJ9WTJnJxUJzRHbEtB0S2ZETqdzLay7j/hPvwXhEqAT3xU3wlQydQ6k6p1IMWDhvLIub58O4LviXySuvQTfZTe4/192PYS6SVz1n27aXXMKhAvQNGW26RtG9u8m7Je3DdrpNmD5G+RakH6C0IeXzU49AL9+up1p0b7fdktw3KZOvnOoianNTIcbQD3b73TLnFNlkLi6Fl0fxXfFLam8Ueqmz1dfInHN0kz6oFV+ehZX41u2HELdbh3mC2HddmkmHeluhhqDxLWHQrh4wHMgJjfPJ+4lcdV/Yv7H70hce0mmDk7nFSechKIeoA5w6xyUA6Eo1lX/mc07qWXp/IRySNz9EdDKnX/tJRBJvUqtDSZ0BIUU656h8+tOq8f7ThcvwLfsiVS5CrrtBKXdG82ibtAK66Yv4LniF9kNq1szbQkAvA6UdaXOF1j3nuWuX5BwwyrrcsNNU33OQagHqlpJ/P1cCJdgE8X9hWcnHzv57cm0xAPHD9kmGHK/RQ4ORfiWPZMJP3HNoRC2YZB6f8gwd2B6soa5M+Plu+Jfmbad57IbsO5bml0hUpxq/2kgjvPGJCqLI5z2XXFjft4NRbH+embmOmld9Z/4lrmfH0lcc5Y7n1S5joQy26TLo3XjxQBu2fWl7wXrSVxzHE64hGSpe481VJt/NAYNm/73Hn3FvrsGbB++ZY+k0kUBmsQDS4Zu47/bA33KK0DiH5emrjVL8Bx1PdY/snnJt+x6Ev86DiLF6KIwniVPu7FNpal148X59aaZBJJY/zoDILPMuvFifN/9JYmr/jN1wOk2dHGqLhw4j6avlZ7v/tvd3++/lD3HqfrWuu3cbBw8sWzdnN5Hbj1e1A2BUDb+v/9Cpm1mE82rKxPXXIpv2YP5191rLk2F694XeM+4F4oiECki8dCpbj7TCs9xT6fi9ml3WwClSfzfsalrdSpuPdlrgAb0mslTFtNp77vsn/n9Edu5L0jkvEGyPfJ66W5uo67P/B0jQVInJzA2Qog9nR7FjfGh6gCMEVy2Jv4WfHwkdZKn9MsUEeJItZifOtcPa7soPYRyusuHetJNCCGEEEIIMTLS6babWRQ7nemxo6mKHUZcJ9iY86QbQBtdExQzIYTY8Y6wIoIElA9HnnXqZ7NuxMEhQjdxnSQ5yMilfTXQwkI1Lzutm5ABzYUQQgghhBg70um2G+nVMdayiRbaiRDlTb0q70k3gFbdPkGxE0KIHTdT1XKo2n+iozEp5dbzHXQOe7t63cQCY05mOkovXUTGMmpCCCGEEELs0aTTbTeyWee/K3+t9RcUiiJCmXktumO8oyV2U79J3oIzyHNL6fmWHvl3BIUYyEFqXw419qeQwERHZdLJ7XRbw/BHIK1nG3sziyAF+PExlxk06padEUUhhBBCCCH2SNLpthvJHTRBAXc7j7DceYg4scz8VuRJNzF6GrjC/t9Bv8+Vnt9F9zjGSuzO4iQ43TiWNv8rHMKiiY7OpJL7GQF7mK+Wgvuk2xw1gyi9xEmwjs1s0607I4pCCCGEEELskaTTbTeS+7RDDVVYqZuvqpzRElvlSTcxJvSwPoivsmNLCjEqDzlPcaX1f5yTXMY8Y+awthnNoA27Cq11XqfbYE+fDiRBkpAqzJsnP8wIIYQQQggxdjwTHQExdq62bs38beLhEBbxCfNkkthcaV8NQIt8002MAQ3szWwYwatsQoxGmChX27fgxUcRwaE32ENclPw+bzmrmcdMmmklTHTojVLKKO43soX8MCOEEEIIIcTYkU633UgzbZm/kyRoo5NHnGdZYhzEMepQbGySyDe2xOhpNB+wYRjryUiTYngKCNCb8yp8GcV0EM5bJ4lNkl566B3v6E1aL+qVrGUTJiYjHRu2gzBxEhgYmVFh5YcZIYQQQgghxo50ug2XwUjvZwYNRwW9mUnlDaIxYBidE8o7+NMdWmuiOTeiIYKsYzMb9FZ6nTgv6TcBaLe7KCaET/lYZn4GQ23/DWMV9KKHF70xoeM+MFPfJPImAQX+OMo/dGeh8gbRvqJMOilvEAyNtkd74ibBS5IeK5s2/kR+OgFKK3Qyla/Sy1OHrYYdeaNfHuubP9Mpaavs/40+yeuk5kc9ih6vSaXKPy/9wx84HiPOe7lp5Jhg2OBLpgIY3zfpdc5/x8pOzYX+BNgmkCqD3iQoB7Ryp1X+OtljU/3qtGyETdD5J88Bot6Bj8ODmTdtDfFtsnQo20tlWylMnbOGMlEBCx3R+cdm5Owr59gZIM113JctY/4EOulFOUbmbzfP6QG3HfA4Bkq79LJBrg/pstSmO1mr3adNp1PDRvJHq456FTb9c7+dE7X39BoqKKUl9VppK9t50i19TpWZKZ867nOP2XH3opPevPTBMvPT05dKM61A6ez6qXk66XXL7wSVXTF6Ou4Dw8nmjdR5zJv2WKDccpKutzPlKJ13dJ/8lLr+YZupsBKpMACdUycJV59ylVvmFLhl0p/I3ya3LYGbmpn1U2Gm18uEpXPSXPWpkbXK7mc79erO0LedBIxNveKxQPUJf4T1vtgx/drB6fsEcPOX0rtFXTBQGz/v2plub0DO3zpTXjPbpMtjTjnPLd/4E+CPZe6xBr0nVfntsx0x+P1u/3uPftv6LXTS6V+mh1OeByqv4KZn6prktt36pFG6LeixsumbTtO+9WZa3/n+hNs2Sl3P3HaSGrIuzFwDHSOb39NxcIyB45BbN8PA9Xhu/O1s2ywvbdL7yr3u+pJgZ9M4fU3QSY+bTobjxjV9LUinbbp97U2mt8yJ0eSU18bP7Y/Y3jkb5uVEaa3H9s5wNxMOhykpKaGrq4vi4uKJjk4/rzpv86T9Io/az/M0rwy4zofYj1d5p9/3jTb5VzBFVY5HNCfUjxLXcJXzux3e/g+en/JZz1ljF6Fd1EanngWJU0a0zQI1h5X+f+2kGE1erzhvc1TiU2Ma5mb/U1SriqFXnKQc7RCKH5h5oqqvckpopyszfRJH8SjPjGqfHjx0B1aOKozJ7Cn7ZS5Kfp/NNFBBKW10jjiMjxrHscVp5E1WAXCWcSJ3+H47thEVQgghdgP/tp/kMHUAWulduk0mhBgbw+0rkifddmFh3c1RiU+j0f2eEknz4eUV3h7whqxeN+0RnW6baBjV9tXIRbVVd/C+s3bE24X1njd6qaUt6vW2AZd58ZIkOeCyoTTp1l26gbeN1kE73IC8DjeAS41P0eV08jJvD7qNgdruwAEWFkmdxKsGf5psV/aqfofNqfptRzrcANbojeytZvOmdjvd6nXzWEVPCCGE2G2sctZxTnIZAEEKaAsM/LCDEEL0Je9t7MJedbJPr3kZ+KYykbrB9+Prt6xeN+28yE0i6/TmUW1vDtKhuSc5OX4h51hfHfF2XUR2Qmwmt4uTP+CzyW8NuGxHO9wALkp8f4e3nQyanFa8I/id52jzEJrV9j/qP5yROiP0DHufu5r3nXWjDmOjridGPPP6cotuG2ILIYQQYs9zj/NY5u8YceRlMSHEcEmn2y7sFf1W5u/PmGdsd93EADf7e0qnW5NuHdX2tap6jGIy+T1gr+CQ2Mf5cPw/+EXy9wBs0628x1rsIb6xNZAovST1jnc07YreddbslAFL1jG6zuOJ1kL7iNKlwCigeQw6gHbnpy1X6/WjDsPA4C29KvMDTt8nDoUQQgjhPulWQhEANg77xz/KRYnvTXCshBC7Anm9dJgiR/0dvTHhfq9RASEvRJMjmwaMmiCek2dQ8PMjAUg+/T2cTY+hu1MdYMkomY+xeoPZaW8Ic9/z8R79s0ycenWMJeogNuqttNrt1FDJNvI7mPZTe+PHxzt6Tb9jGk6nW+93nsV6ZDPOus5RH/twtjFPvB9V2g6Gjf36ge5HuLUHc79pBG/7znbjmnz6exDvBH8p3qN/RvLp79FzSRFPNZ6AY3noCVoURj0YWuEoPeA0kJnnj6efcHtwwm9D1ez1GAe9hQp243ywADVjM6qgO/V1TIWa0oTuKIWkF+f9fVAzt2IesBI8NsowwF/q5iVPAEwfaBt62wHtfiDVX4oKTqFwRjnvHL4FNPgdH1986h26Nt7Nup5uNJrCpEPco1hf7OWEc6by+PJG5nQl8duaHq/bh99UaBIzFe9W+Oj0G/R6vgvx3sx5yZV8+nvY790GiW7SeV4Fp2DMOhHrgdMGznswYN5Rdesw9luJCkXRvX5UIIb9xkHo5tkQKRqT/DmcMP7pHIGjlgwrv40kPzpK0xX6w5jFM3eesdcKdCQEjoGxz2qc1fPQDdOgJ4h5+lNghNEbZqF7CwADvX42WH4wPRjzSvPqtLT47cegO9eDFQNvkMNI8FxhjMenF/CDI8ry1jUxsHNePVVAREdZpPbi5ZwfF/pqvnET3kF+aO7xwKoyH9Xt+xFzHDePl8zE+tdx2G8UoyNFmMf8C4wwKhBzPy6rwH71YHRDLcRDUFjUL63MY+5Ab6pDzdyEbqzFmLcWVdGK/cqHMOasd/Pc2r3BKRz6nIS8+C7Yp1/apeVdH/pcCzxH/ZT39fafdPvx8x2csKWXKT1uh3nf8uvDR5w4TTmjxlZQiqOdAQfZid9+DCTC4CvGeetnWI9sRs25DWfNXMABA8wDX8NZMw81Ywt600x0VzG6uRoSQSgswpj5Isa+b6OmNKGCUZyGqTirFmDM2oia0oxuL0eHi3DeWeTmQW91//TrjIMlTxhMVuZHHsR+4TDMo17AWbM3um0aRIowT7wfZ+1cdNs0VGUr0A0ajH1WoUK9qIoW7FcOQU3dht5aC7YHY8FqnFXzUTO2oEo7cN7eD90dxFiwBr25Dmf9bPeD0OEidwCOif5Ac2Vg51xfdiBMY68VGHutQdU2oNvLUBXtqEAMp74WY1oDOhbAfu4IPCc/6n4wWuGW17byzAexjbkbcNbPwpi5GUwH64FT8Zz6MDpShCoJ46yfhSrvSH3AXqEKckaW9ljo7hDE/dgvHoazdi7EKyHhG9/2pC/uflzfNrFfOxjdPLd/m2AE50jNWAe+OMaCd1GFPaA0zsrFOGv3Ajsw4ed9QsIcp3iZx9yBKux264RZW3De3ys7CFRLrbtuT9CtC4oLxzyeVwYr+Xn03Lx2moGiq+f6MT1285h/oco2444mBqq8HfupozAWfICa0oT94qEY+6wG28R5fz7GvPXgj2HUNuA0TgXbg6psRRX0gALr8ePBMfCc8gjOljqwPWB5cN7fB+wijDnTCd72nYHvST0BVOkc/J9+itHIhN2xntz73HSbv+/9Qa7o+T/HWdOAmvsOKthDejAG+/WD0M1zttvGV3M2gOp1y2tJV2ZwCeftRagZW3De3QfzQ2/grJqXrff2We3WFQ21qKo2zMNfAm/cTdPCHqzHj8dz2kPZy01qkATr4ZPddD71YbBNrMeOxzzkdexXDoGED90ddAcuaKoBu8S9zx+k7tKtJZiHv4wq7cB6/HiMWRvd4ylvA18S+7kleE54EgpiYLv79pzwBDoWcPfRVgEJL3hsjOlbcBqmoso63fg/egK6s9Rt69qlmMc8iippB2XjrN4HY95qnDV7udfdwhjOyoPQ3X53wATAPPQVjLnrcTbPwH79IJQ3gbY87nErsJ88BjV9KxgaFeh103L13m6+A/JG+DMUeI1JU5eZR9yLbqhCzdqIKoyBcoa8L+iuGl67Qzrdhsl5rx1UQXZGrM9TP8OcdlpjJDtimZsse/Vy6B7km2N2LOfvOPbq5XmV0iPOs7yu3wPgIZ6hl3i/ID6qjuMq53cDvl66Wm8YeL85knd+gK6PDngsOzy9nXXM/Va6I4QA1t1nussixVjbhn5aJZOWoVq8R//MnV67lEDqolUYy38Fd6jpyUS3VmIuWAXKwfrnx/Cd8FjqwpG68QxFUamRd6x7zsJ34hMob+qpIm1DLPXEUG6eygTuLtexNhbEQnC4+90wBRir72VmNL/LsdDWHNjq7uvA1gSmTs93z1tlzMFWsLglQX3QxFT3Ync3Zc5LLnv1cujNeZrJjqFjbdjxTpJ3zh067+XM09vKMc9dlRphxsikFeFCyH1KbxT5czjTgVS1OtL8Nqz8GOtz/saoLDqJfTKNDfOsf2E/cgJE3I+BmvNfByDx8EnZkYl6A+7/kzbOO215dVqabl6ZHb3UjuEH9o1Badzp1+mW2+EG7ivdzbQN2OHmxUMSCwMDrx78FrvQcvNnZnTdWBs63oH12EkQ9gKxzLGl6xxI1TupY6enf3qb81eRePQ4fCc/RuLRE/EctwJC3Thv7YfnmGew7j0Tev1k8tz2zkHcJnnnB4N2ug14fUhdC1qP/H/Uqil8sJ16/Oy1UaZF8/efW34T9B+BawNbiRDN/JqfK3NOlZG5NvjOWIm9Ykm2sXrWJqz7Tsd34hMkHjnRnZ+Tnk5iNp5TH4RQNyiNUdWKdccBeI56DkLdbj02pRn74ZMhXAwMkefFpGMe+Cb2g6dgLnobe8WRmTrY3G8l9lNLIFyI7i0FSt31P/4vtwyGojhv7Yfv6Gfd+gbwnPQ41r1n4DvxCbdO//sC0ArzzH+TePR492YLMjenE651GPl1tPX2MMN0EvvgOf5Jt1yZNoSimTKHP4HyJXFWHgAfeSizmSqOoIz8+tioagXTnZdeXxVHsstCOdfpPqOXuutFcN7ZF8IlqbkjuB6PUXsyzbrnrKHbBEPsV28rd8M/855se/XeM6DHy6D1/nCOZQyPfULD3InxMufntINPehz7oROzyyPF2fYf7JSyWBEryJvOttPGME/HbLdtkpt3Q1GcVQvwnPSE29548wA8Rz8LgHXX2XiOexrQUBB3y2Rqm0wH08oD3HkffSC7HLDuORPCJTjr3HusgdscMffaP0qDhp1q82+v0816VIM9Bd9H/pFKFwVot9wNUZ71llKgNK+8gptuvhOfwH7kRIxP/BPr3o9mlnlOftxNm0gx2jIxpm8GdCZN+9abKMB08tIZj+2ep488jPPWfqnIpFqs6TbRIO0bc7+VJK69BM8Z/87sz3PUc9k4AM5b+8NHH3S3S+/7Iw+hfO7bRSp3pNZAPFtXK+1um9M2MxetzKvLPCc+inXfR7PX3Xs/mo07YMzeBMEejLp6rLvPQqd/dClz7xedVQvwnfhkKm202y62PWRa7LmXCVuDbU+ausxctJLEikvwnfxofn/Edu4LnJZehkM63XZhW3M+1j5QhxuQGbWznBIaaclb9pDz9M6LnNgl5X7o3tJ2v86QHQtTy1fxxIj48NE4wAf9l5mfpZgQzbqN+cYc4JLxj9wksZ6t2+1wGwk/PuI5HXCdRAbsdBNCCCGEAHjRWUkZxan2mBBieybJT4NipBI6STPtI9rmWHUY3zC+kPmYeRJLPgIq8uR2sr3CW4QZ/fewtB59x53Ys0ynJvMUb64qVU6xCjHPmMllns9MQMwmj8FGyN0R8T5PvHXq8JiFLYQQQojdxy+Sv2dKbAnHJj7D162rJjo6QuwSpNNtF9UwwFMg29NKBxWqlB95v5oZ6VSjd+uPjIuRs3Ie0R7OyJDDkf4wux6j8MTux9fnoesKVcrrzrv91ismxP/zXMD/81wwXlGbtMZyIJwqKvKmO6TTTQghhBADaNTNdOG+Yq617jfo1f9Yf2T/2EdZHD+LP1nLJyKKQkw60um2i6pnZDdcSSzudh7hjORXKCKYmb9GbxzjmIldmRfPgN//G43003MxPfAr0EIk+oxqGlJBnnPeyEz78FJAgFecwQdV2NOMZafbPKYTyCn3rXpkT1ELIYQQYs8QVdnvWj2hX+zX6fa08yofsJF39Vpect4c7+gJMSlJp9suqmEHbrg0mgpdQnFOp9t7eu1YRkvs4uIk+r1qNlacMfg+nNgzvO68y1YaM9MJkvQSo0E385XEDyYwZpPHWHa6eZSXWE65X6s3jVnYQgghhNh9dPV5Gr4r9Smatc4mXnBW8nJOR1uC5LjGTYjJSgZS2MW06U4ecZ7lLuvBHdr+Lv0ws5mWmV4jN1dinPQQ6/MSmxAD66H/SEABfDypXwIN39dLqVM1ExCzyWMsO93COpI3LdcFIYQQQgykq8/3ntNtiOMTn6OZ/KfeWukYt3gJMZnJk267mJvsu7gw+R3e0WsyAyKMVAfZG6yNun6soibEdsk33cRw9fQZRn0Re3GkOiQz/XLqNVPFnmvrGA6ksJF65pMdfUyegBZCCCHEQPp+DzzdCRej/2dkxvIHQiF2ZdLptkvR3GrdA8BmGkj2+Q7ScOU+6rs7V4Y7mj5i55DXS8WOeoc1HGEclJn+RvLnExibiWdj9/s1eTS6iLCa9ZnpjXrrmIUthBBCiN1HF/lPx38r+QvmxU4knOp88+OllCJg977PFGIkduhRqWQyybZt2+jp6aGqqory8vKxjteko2YUwzYbtAalIGBCbITTgKoswHvC9Ey45uxTsDc9Cb2t7gw7Bhr3EQ4zkJ32BGibdSjrWDnqY+mll0ICePAM+aSI97RZJB/bgq7vHvWxD2cbZ/UCKO4CpVHT6sExoboVc++hX0w0Z5+CjnWgAmUAvDqjhr1q2wi0lqBtk3jAxh8zUbhJOtA0kJnnsQxATYqnaVRFG866OVDYgzF3Pc762VDYk10+pRndVgaWB2OOu9zY/20wHJRS4A26ecnwgekFx4Zk+pcqd3lbgckjdXbefh+ZWcCxW2JUxNz5AVuTNGBryK061pZ4qOu28TqamOmmVFvAIGEq3i/30RFw+/XLYg7hgJcv9zkuc/Yp2KvuAiuWzfMFlZgzjxs878GAeUdVtWfSiJgfAnGM2kYcwwfR4Jjkz4GmLRx6A25H9lD5a6TTA4VZGPNiYoxpWTT2WovuDoJWOOvnoKbVo+uBWAHOun3A6MWYswHdWwBaoeMBsLxgmqi6UF6dlsmTZfPQ4a3gJHBMP9300BYwWDG9YBg5PquIIHPU9LzBFhppplv34MFAD9KZmzBgY7GHOV0WHg3KG0IV1WIeFsd5O4GOBjPHRiAGyq14VW0jugGIF4K/oF9aOevnYMzZgLN+Fsbea3AaalBVrRjzV+M01GBMa8DpLQTtG/qcFHjwnjZr0GPPuz7kXAvemzkbK+ebd4MZqvwOJncU41yqbB460Y3yhTLl0/lgAWpKC6DBAKe+NlUHzXLzTKQIrRUkCsBfgDFrM07DVFTNNlRBL05rJcaC1TiNNagpTei2CoiEUDVNaMcEVdY//aJJpA9/8nJWzYeiCM4He6NqWtCpOthZvSAzrao7gBigMvW2qmzFmP9BpmxhmW6ZmuvmJ4rDGHPXoXsKs+VwwyxwFHSHQLvX7AlV5B3T68torlnGXmvd+mlqI7qtEgWoQMwtc4EYOhbAWLAaHAOUAwp0dxDdWpk5HKOo210/GAVDu+trdz2VWpab4sofy54C00ZHg5D0Yuz9Ac66uRArca8d49me9KR+aLYNjNqGgdsEIzhHqqodvEm3HVbQC0pjTNuGEwuC453w8z4hYY5TvJz1c6CgJ9POzdwnANpQ7rq9hW6eLvSPLp5AJBDHHzMxUBgY9AYsvDE1aDvNxMQoGKAOGOG0s24fKGkCrQCFclrdY26oQdU0udfM1kpwlFu2GmrAl8TwxzPzlVaoVNvGLbcKbCOzHNvEmLsenQhhzqh2i+xA96SGD1Vcl1fN9X3SrYX8wZc+rA4hSZJn9Kt0EaFb9+BPh929Nf8+N9Xm3x7PEht7Y0vm/LuVjR68POekp5raASrhlteibGdhup2iarbhNLjtljSnoSbTFlTVrTgNU8FjoXQLqqA3Uw9m6joNaJVNZ8dw65sFq9HtZRjzV0PSi+4pBJR7WpNB8AQGrbuMvdei28tQReFMGwlAVbaBJ+mGmfCCL+nmgwWrIeFx2+catx63PGA6mXyRzhPG/NXocDG6UUMyhPPBAgh1geG419ucdhwFMYxp29C9PjDchpeztRZj9ka33TatHuVLoJM+dCSUl7YoDYG4m5Zrgm66uEeRPbkK8BiTpi5zPljgHlumfmfI+wJV5oV1283CqSyr9bDe+YpEIvz1r3/ljjvu4OWXXyaRSKC1RilFXV0dJ598Ml/+8pf50Ic+NJzgdhnhcJiSkhK6urooLi6e0LhcZ/2Vb1hj+4RHNRVsDjw1pmFOBgmdZEH8FBpoHlU4v/V8j694PjVGsZrcPpG4lAecnZsXOv2vEVD+nbqP8XZE/Dxe1+/t0LYLmM0qNoxom0XsxauBe3ZofxPlOfs1TkhesMPbLzM+i0/5+I19c+aJyb94/4dzzdP4k7WcpdYPt7v9mcYJ3Om7eof3P9lclPgef3H+uVP30eN7C8OQh+GFEELseZ60X+K05BcB+LL5SV633+VV3tnuNrd4f8F/mKePR/QmjNaaovhBWNt5m+jjxkkEtJ8V+iXKKeVvvt+wtzFr/CIpxDgabl/RsFrUv/71r5k1axY333wzJ554Ivfeey8rV67kgw8+4IUXXuDKK6/EsixOPvlkTj31VNasWTNmByKydsawywN9sHx3sNpZT2efx593RJma2I7W8bRNt+70fYzFOZlsPtAbR7S+kfMLzzXmDzhfnTGi7Tew6736t05vHtX2h5kH8Cf7rrxXlP9o3eUuMw4YcvvVzsg6Nie7fzmP7/R9bEC+9ymEEGLP9J5eg4n79Myhxv68Tv6Pq8YAt9Ab9oBPM/QS226HG7jfdptqVNFIC++yhkY9ugcghNgdDOv10ldeeYWnn36afffdd8Dlhx56KF/4whe48cYbufnmm3nmmWfYa6+9xjSie7qkTnKX89CYhxsjMeZhTgYnJS8ckw7Fg9XAeX531NlnCPCds48ualTl0CvuIjqcLrrpGXrFHE5qQAk/XpaYB7FRb+V2/a/MMBM+PHmvUvYVpZekTuJV3h2N9rgb7WiYC9QcOnDzp4mJjc1L+k2iTg/T1JQht2+kZVT7n0zadGe/kcN2hpeclcw1+r82LIQQQuzuXnRW4sPLNKaxwJnT77vEDk6mPZK2J3wPdTjtD7/2McXItvWb2Pk/6gsx2Q3rSbe//e1vg3a45fL7/XzlK1/hC1/4wqgjJvI9Zr+wU0Z/HOrXil3VWD3BV8qe86Rb2zgM6/0Da/d5xQ/gd84dO7ztIjWfu+1HWer8KK9kb6/DLW2tM7pOrPG23tkyrPX6fo0pSCGHcyBJnU2TdMM3SZLf2LdQQhGe1K/Rg9mdBlVZpdcPvdIYWOm8Py77EUIIISab9/U6eomxnq0cb39uwHVyO9y8eNjg7P6dbmE99BsrWsGUnB/Ym/TYDfwkxK5qhwZSyBUOh3niiSeYP38+++yzz1jEaVLqqvk92sr5FlX6K5ojmQbwGJj7VRJ68ZMAxG87Gt36Djjpm8KBAzkWeLLKx3HnTB3tofTT7fQQMgoHXnb4ndhvt0Iy5xeeHT32YWzjXXYdeN2P3lq3fcr9GGRvAarCoviDK7d7HPHbjkb3NKEKp5A8O8mTyxtZcPEVqKT7RJBWqW+lp6MzwDTkz4Pb6NruXseHqm7G88m/g9fCuvNcPJ+4BzxWJm1VeTu6vQxQmeVqWoO7TEF+gg98QtYYmncr8vPYk8sb2bctgcfJ37LXo6i9aAYNf9hMgaXzQrMMsAxFh9+gudDtDKnusWkuNPnyuflfmozfdjS6eWV+3AwPqnIRyWsuHTjv9Y866Pw0wjLBY2Pd/kl0c3XmQ7u56w8nzKGmv4LmK3x5wLwznPym9Bq28IVBlw8e5oNuvhyjsqhq6yHpXg48n7wL6+/nolsqwTHwLrselIO1/BPuR1nBTdP0xt78Oi0tdk01WG7n9x9S/yyDfnksV9+fFaKppwg35rzqWMcUtrANG4dvXPtt4nx70OfYej0qkz9jFIGngMTVF6PrK8Ax8V52nfsBcU+24Wzd9qnMsaNUv7TyLrsWa/nH8Zx9D9bdZ+E5bzmqvIPkjRfhOW851t8+id5Wk03s7Z0TBeZB1f3SLi3/+uBudDDDvxYMVX635zWn/7drYtdUgx0H04912zXYb7fi/co1WHd9IvOBXM/5f8P6u1sHWf/4OFhedGtFJj3V1Ho8n7wLVdEOpoVuqXLrrPOWoypS9Zjlwfr7OW4+0+b287SYdLzLriN5w0V4L/k91l1nZ+pg77LrsO76BLq52v0YdOpEej55F3gtVFmqHH3iXqy7zwKtMvWR5xP3gDeJded5kPS48//x8WxdZKWbs3277sfZGF5fRhumqq3Hc95dmXKlyjsyZU5VtYDtIXnDl906Ps3ypNoSqWCqW9DNVahqt5ZNXrPUXd/ygMdyl5Xn/GBn5vzAodzw0IrkjRehG2tS1+I+H9He6e3JbIU7aJtgmGG6adIMaDz/cZfbDgM33L71/gjCHPb0ZA1znOLlXXYteLLtYOvv52bW0a2V7ofe03XBANfvkcTzMY5Dq+NGfN/Qpa4Z9bF7L7sOvNk3kVR5B8nrL85cO5M3fNmtNyFz/URpVFULuqUqs026PCavXQqAd9n16OaqzI6sO89FR0KocpviD64c/J7UU0BgmfuK6HCedLOwqCY7AF6Tbs0JO5l/sKk2v//8pwcNL7z3j6AnmblWpAcxGE4bP7+8Zvdt3XGe246762w8n7oT685zM8s8n7wL63a3Lagq2/Ccf7ubvqk0TV67NL/eTElek01ntJvu3q/8geSNF7mZJd2Gbh28jZmuu6y7z8T7lT+AJ0ny2qWpcwyqrAOUduvuy67P5OvkNUvdaTu1j9Q9IWTzRW78SXoz8fAuuz57733nuXjOy73uWli3fzIvjT3n3565Nli3f8rNZ7bHrXPBzavn3OMejGm7adlUnT3Oga7Tk6Qu8152HdY/zsJztnvsMPR9QdiM9z+eAYy40+28887j6KOP5rLLLqO3t5dDDjmEjRs3orXmjjvu4Oyzzx5pkLuGpJOfR/o2+oc7nXRwmqLZ2T1NfSqggQNRuB0XO8MaNnIQCwdc5jRF8zs98qO1Y9PbWUcVRdybYED3pEY5jBSjzaEred3TBN0N2Dho/FT32BiWh/SJU332OdT0ZKJ7A6iiblCOe4Es6k5FOBVp00YVuB0c6eUqr07Tg/ydnedz+uex6h4b3wCjBPptnfl/ejfp//scMLVmWjQbVvrvuM7P67qnqX/cnCS6p2l4eS9nXm4aod3R2HRPYf7FeKAwRpA/+06rQfLWQPNGOz3gvDEqizoSyrQeVVG3W/ZS6aZSoz3p7uw6eZVhnzotw85ehNKPVA+Ux4Yy26jLe2XjIGNfGp2WAa+1fQ4rL3+m46Q7/WDnH1u6zgHyjn2g9FOhbnS3W8Z0pAhV2OvefKb+To9OlReRvhHL+XvAtMvEpf/1YSTXgqHK7/ZsYICnE+04aAfseKZ8qqKIe8zp/FPYm6mDMnkmJz11d8hNM9N2G5AFvdl0TNdj2hi47KbCEJObKoqA7UnVJYV5dUl6WvcGctZP1dvpcpQqW5Cfn9LXP7TK5i87nUcmuLMtbQyvL6MNU0dC+eUqp8yhcEcXTaVzRk5bIi13OrO+aWeXmTn1Ud/TkFqmI0XgDHDLMU7tycyi4bQJhthvOu+qUHdOe3WIen+IMHdoerKGuRPjlU7zzDUmfZ8A7nlNjfY5FvFUqB27bxiDY++Xd00779qpI0U5bf7U9ROdLd+pbTJJkVPO88tzCMIlaMO9xxr0njSnPRfVPeyr5tFLnI26PvWarYGd8/rtRmcrK1X2afltunWQsLNt/u3Rnb7MNcVNF7e3ZDjleaDyCmTbcT2F7nWmO5RZ5rblCjLXqkz6ptK0X72ZDjN3fnq91HXNXSF1QrbTxoTUtTK1bTqcTBxSHf06UpRf5aSnc+vmnLjkXgN0pCivbZZ37526buRdd3PaeOn0QelsOintLk/X990hN70BlM4pp9u5Tk+SukwVRTJ5I68/YnvnrO+96iBGPDTZ008/zVFHHQXAPffcg9aazs5O/u///o+f/vSnIw1OTALrnNF95HyysfXO6ZwUo7e7Dtwhdp4SitikGzKX6tOMo3Fw8l7rEGOvkRapS4UQQgiR0UGYd/Va1ust+HHfJLL7fO/uXdbyA/u3melm5PVSIUbc6dbV1UV5eTkADz30EGeffTaFhYWcfvrpMmrpLmqj3r1GqYvvpoND7A5GOuiAEK/ot7jR/htTqeZzxlmca5xKCQP/yijGjgZuT/57oqMhhBBCiEkirLNvHv2XeRlv++4f8PvXFjae1At1TVoGUhBixJ1u06dP54UXXiAajfLQQw9x8sknA9DR0UEgEBhiazEZ3W8/OdFRGFM9xCY6CmIQMeLEtXSKinx+vIMOhvCOdn/M6SLCPmouISPIWcaJVFE+nlHcI/3Q+T+0lvc5hRBCCAERsp/EqDOmsJcxk8QgDzsU4X4vXDrdhNiBTrfLL7+c888/n7q6Omprazn22GMB97XT/fbbb6zjJ8bB2oG+3bMLM4cYyVBMrG16sM/eiz1VnCRWn9dFQxQynRqKCHG8cThfMs/ja94LAdjLmEUL7RMR1T1KgiSv6LcnOhpCCCGEmATCOQMpXJb8MdNjRw34sEMV5VRSxjHqQ1SrCrR8kFXs4Ubc6bZ06VJeeOEF/vSnP/Hss89iGG4Qc+bMkW+67aLa6ZzoKIypGMMbRURMjOusv050FMQuoJseKlU5paqIZ53XuNzz+cyy2Wr6xEVsD9JCO4/bL0x0NIQQQggxCURyXi8N000LHQOu10I7G2ngKf0Kb+nVJLEGXE+IPcWIRy8FOOSQQzjkkEPy5p1++uljEiEx/mxsHO1gqBH3wf5/9s47Po7ibPzfmb2qO+nUq5tcwDamGGNC7xAgoQRIgECAkEYPkDcQSAJJ3oSWRughgST8UngJNbTQe7exjbtxt9X76SRd253fH3t30lm6JsmyZe+Xj/Dt7szs7OyUZ56deR4Li5xZrtbRqfwUisE2ICx2P9w46UuhKF+kVvBb7UfsKadSJcoS56eImrHK3m7Py/q73GD/3o7OhoWFhYWFhcUOxk9qj+vb4sJJBNNjaViFcWyvTFlYjANyVrpdfPHFaa8//PDDw86MxY7jrcgnHO34wo7OhsVOgkBst6Xgr6n3eVp/lYtsZ2yX9C3GDxoypcINYDqTOFU7lomyKum8pXTLjEjnmj0HFrEcwzASq9otLCwsLCwsdk8GrnTLGHbAVtSwtdLNYjcnZym6o6Mj6a+5uZnXX3+dJ598ks7OzqzTWbt2LS+99BJ9fX0AwzLWfOuttzJ//nzy8/MpLy/n9NNPZ/Xq1UlhjjrqKIQQSX+XXHJJzvfa1fm5cfeOzoLFTsT2tr3wtPHKdk3fYnywrZv5bZklpw9SuAEUCZ/lwTQDo6V0CxJmCatGJS0LCwsLCwuL8Uu76so6bAUl2LAxmRqMbez2Wljsbgg1Cq7JDMPg0ksvZdq0aVx33XVpw7a1tXH22Wfz+uuvI4Tg888/Z+rUqVx88cUUFRXx29/+Nuv7nnjiiZxzzjnMnz+faDTKjTfeyLJly1ixYgUejwcwlW577LEHv/jFLxLx8vLyKCjIbmub3+/H5/PR8M1nyFvgB0OBFMjyPIzm3pyOAeQ0H7ajJuA4d08A9FWPoW95G9W5HgDV2wyGDlJD5JUT7NnKJmMLDR6N/zcrn8f38GRdPrmgIfm77Td8xXZC0vnwv1YTfWsr0fcbRvzs2cSRUz6G/HqEK4SxqRCiNoTDhe2LB+H6wYVpn0Ff9Rh39N3Fcq2Ox/fwcNaaHr5+61GUryvH6MujpayPsmY30hAYmkocV6gSXJqLBaVrARJhatf5sKmdY3WHmLwRuXcTuLugrxBcQdBaAQGGQFZ0o3p1VJ8bWsvAZ0Pu9SnSE4U8J6JoOqq3GeEqBpsLjCiqeYmZuN3DFl8erxc08U6NK6mOnbWmh8Pq+pjaZX6hKuvT6XBpLCuxc90RJdzxdht7tYUpDhq0uE0HFht8dkIaLC110Gczy88dNeizyUTaJ4rDedp5P/qqx4gu/Ssq0JCo87JwKnLiEeiL9h2y7sHQdUn41iDK1yMKulE9BmhhVMNkEHuh2kpGpX7GjzeVd9DX2J5Ul4Ah61e2x+1lYWqaCwgbYXTNyJim1DT2qJg1Km2R/MdQAQ0iGqIyjGpxoNoqoK8E7QttqOBalN8JYSfC7sbYNBn0AnD7sB1cldSnxYm8fi1GyzJW9S6gyS0TdWNgHbOhDXKgEGcee3GN/ZucpZ045PXvhH/CT//6IAV9QWyGwsD8iiSAkAbrC2y8X+3iyK195IcV64ucHFl2PvqCWeifgmotQVR/gAquBa0XpEK4nBgbKlHtlRAtRVZOHFxWvqdQvQqR123WWW87uLtQLaWQ14dqmI7aPBNsNRnfiazy4Lh4r0FlF2fg+KB6m1mjr8t6LKimnEPWbEjbfrPlOu07/ML+fSKvX4sKBxAOL6rpe0Tf2orR+AyqwwuyB5EnIX81dHvB3QeRYow2D/jLwChGVk4E+0tQug5R1ILwdaE681EdhaBFEb5uCBaiOvIxGidDVzWyfM6g8tM/74TmHiwZfudE7rcYo7UGbfZWVKAKRDmqrQQ55WOUPx9EOcIbQAU2gq4jijsQRQa4G1AthWYj1t0QUlDYgeooQeQrREEDqrECFfAiyhV0K4xNVaigE7pKIehiR5t01Y6oGfH4MloyFfmPQUEDsrweFXQgvD3gDKHaixHF7RB0YWytQe6xBuxR0HRoL0YFPGBIEAIxZQNqy0REeTM4whhL90bOWgHdBVDcbl5z94FQoAQ4Q+ZvocCmQ8CDCnhRWydgbJmIcO2P6vaOrTzpbYVICBW1o7bWgtp/kEyQyzsSJWsRXj84NoIzaJZb12yMjbVA8Q5/78myShuhRnPuYmiKWRVzUM19o14/x+pZ8T0Fznbo8oLPQDW5QdfMuhedjOpREPKB4UROrMw6n816K+2yK2e5LZ2cVqFKKNIKh/XsovoDcL8DuvlhUuQHMdZNAp8fUdiJaitFFLZBxG625/wguLsRRe0ovw/CTvB0Izw9oBkY62oh4kDOXIVqK4aQExXxQEcVwleDtu++uH5w4ZBzUuEqRpbNwX7M7wCoDR5NA5kdonlxE6AvcXzOmiB/bPoiqv6jpHluXObXZn4tZVrB3/6N6CcrgE0Idx8q2gsoVF0tqDnpZfzJm8BoNdtrYRtCi4AA1VAGzghG8wS0Gc2oNgOisY+VpV0YGyfHyieKnLEGRDOisBO8AYz1tcjZK8Bubp0lagNdw1g5EyJ25OyVYGgYa6YjijpN+TDsxejMB6VBVyXCW4twl6fuu7RGRM1GRHE9xrqpYIuAciK8XWY/XleFnLEeCtsg7MBYNRNZuwHCDtA1VHc+qs+NcEhExWZUZwHCGQJ3EOPzGaj2YlRLNcIzG1G2Ajx1IPugpwScreDPB3cfIl+iWmoxNmughQADOXUDYtIGVGspxpYahFRgjyD3XA2ajlo7HaRhjuXOEEbdBNSqPaDPA8oGngEbjd02RKFzh/SPQ6bhfRNCveBpR+TrII2M84LARBtVfz2Nrq6utPqlUVG6AaxevZqjjjqKhoaGtOEuuOACmpub+fOf/8ysWbNYsmQJU6dO5aWXXuLaa69l+fLlw85DS0sL5eXlvPXWWxxxxBGAqXTbb7/9uPPOO4eVZlzplqkgtxcPhR/jcuMXmQOOEDdOpopJvOL4K8XCt93vt72YGjyGeppzivN97UKOkPM5M3JF0nmJpNf12Whmb6flqvAvedB4dEzv2eFcgFu4xvSeo8WlkZv5i/7EqKY5T8zhPeejnB/+AY8bL2UML5H0OJcgxOisaNoetKlOakKHDXlNQMr1lBJJi/NDPCIvZdqXRG7ir/qTAOTjSXJjPxR2bHS7FmeR650TvwpQHjoo6/AHin34WI28/xIIzuNU/uz61YjTsrCwsLAYO/YPnc4KtTZx3Oz8kG7Vw03RO9lHzmSOmMGx2iE7MIc7B+eGr+GpUd6B8VV5Ev/P8etRTXNH8qr+PmuNzfxI//WwHdatc75GjagY5ZxZWOxYstUVjdoynnXr1hGNZt6v/fLLL3P77bczYcKEpPMzZsxg06ZNI8pDV5e55LW4uDjp/D/+8Q9KS0uZM2cON9xwA729vSnTCIVC+P3+pL8dyWvGh2Nynz5CCCX4SF88JvfbHkSNKMYwtkVuVFtpU52DzhsY6Gr3WErRpFrH/J7tZL9EfWej08i+X8hWJXan/ccAHCj3BUBDSxvewKCF9qzzsSPYqLamvKaASkqHvDaLqWkVbmAqleJ4cGfMy3j3nLVZNaDlMGRXqbLMgbJAofgnzxJRkVFJz8LCwsJibGhVyTJCF908rb/CP4xnuT76ay6J3LyDcrZzYCiDDcZWNqSRVYZLmzG0V8/xys+id3G1/sucFG4aMsnUxUZVtz2yZmExLsjZkcK1116bdKyUoqGhgeeff54LL0y//Q+gp6eHvLzBk6n29nacTmeu2UlgGAZXX301hx56KHPmzEmc//rXv87kyZOprq7ms88+4/rrr2f16tU8+eSTQ6Zz66238vOf/3zY+RhtVrN+zO61jDX8XL+Hk2xHjtk9R5NN1NOYxZLnbdmgtrJIDb3CMkSYvCwm9OOdJnaA0k11jtsvXkvV6syBYmyrBk61pfLmyB9wCxf7i704QRzGy+rdjGmvNNZRrmW/TXCsySRgNQ6odw7shGNerg4SczOm/YWYcnLbdHZVNqgtGW3gDWQ01z8aGKxXW9hTTB3FVC0sLCwstheGMmjb5uNmp+FPWklvYBBSYV4y3uEUecxOvXJ+e9BIK7PCQ5uwGCmv8yFBFcIlhj+33ZloHMbH+W1llg1qC4ey/2hlycJiXJGz0m3RokVJx1JKysrK+O1vf5vRsynA4YcfziOPPML//u//AiCEwDAM7rjjDo4++uhcs5Pg8ssvZ9myZbz7bvJE9bvf/W7i9957701VVRXHHnss69atY9q0aYPSueGGG5IUi36/n4kTJxJ5aSO9q/pAVwhNICryMJp6czoGkDVetOmFaHsWAWC0r0F1rMcImJNT1dMEykAICZ4KzuxaypdVkCaPjXdrXKwtsg+7jLJhqVpDr+ojT5iKJn11B8baTiKfNo/42bOKozaDaETk9WI0dkMURGkZjuOPwHZg+on4pva3mBkOExWCtUV2pndEOOSNiZRv8WH05tFS0UdZkxvN0CiWPtZWtOJrkrgMJ0Ju4sKKvSijCKOpB2kITnx2MqEVf2anWN9R2Yn9omJQHZDvRqAw2jeArkBoyAo3Rss6iEgwipBVeyAK10IRyGIPonQ2qqcJ4S5FaHZQBtGt7yKUQrhLOMK3nAJvL+t9dtYW2fHiJkiYKR1BpnZFqAqYq4TKe3Xa3BqbCuy8NtnNsZv6mOwPU9qnaMozV+E0eG3oQlCXrxGNCXA2pRLvJU6b0YnRuQZjyzsYgYZEnRfeamTRNFRL2ZB1D1LUpWidWXc8PRht7Qh0MMqQNfti+H2jUz91cw//EaX5nNo017ThIRUtFTG7Hk3upHPbHpc35SEMhrxur3CS3wQRYwl7yz5qK/all1DaNIOVn9HbqkbeFrc+i+rtgkgUWV2N0dIB0SKErRw5vQi97jNEXzcKG6KoFDqKQCtGeMvQ9i9P6tPi6BtepqT9Ka7r6UyqG/E6ti0+vLRgfhneQ07J2CRmiqn8+R1BYUcjZT0RwprApSscumKDz84nlS4Wlzs5oLGPkqDBihInesnLqKZi9I1B0+6Jscl8tkinab+otBjVIsAoBXs5cvLkwWXV8C4EO1BGAFEgwehEdW5FRQVCCkTBvtAzFbwzMr4TrdqD7cgJg8ouzsDxwRt4geujHVmPBetFHdPbI2nbby4sN9YyfdNalB5GaA4Izzfb56KFEFFgdCJ8dlTraoiCsgmErwTaAVUEzlh51r2HiqyNtdVuCAcwOrtAd4LdjizeC9WlIVQNyErk9P0HlZ++vI3oR03waW6mBCzGBlHagjhkEtosA2zFyMICsw9Wm0EJZGEByqajNi9FhbrBrpDlPozOdYhQL0rZEPk+VEcLyggCHmT5ZOjdgArZQHciq2eg2tox2iTKr4Gqhl4vxjsdEMpeOT3aOO85akTjy6jKVFufRYU3gliPsHViGI2AAVEHwqZjRGyIsAPcQXAKhKajehwQcYBhRzg9qLzN0Gs3bb7ZdfC7wBUCQ0O4wxg9boQuQEiEzRN7X4DUEQ4XGDZUlwOCxWBMwTb7qxiB/DGVJ3HWo9rrISJATESbePggmSCXd4SoR3j8GE1rETJq2gMtnYVqLwV76Y5/77HjPhnk66UzkmSG+sp3OLgRjjDmE5FRuip03hZ/58PGN1hs/IsyWcI3a87frvkaUZoN70KkBcJBRGkxRnOnadtTaMjyPVDtUdAKQdiQUyZlTDNQ3sG19XPTym2ZjiG17Ndqf4PSyprcn93YhFH/DCrYAXoEUViIaouCMMARRTg1jN6tiKiGMvKQhTWovq1g60bpIJylEAyCIwhaABF1o8ICJdtBt4Geh8zfCxzVaJNnos2che3AuUPOSYW7FOGbQlP1yD5uTu+IIAKvEG5ZnjTPjcv8sniPlHGjHy8iumINqmkrSAPV2WLa1FJlyKr90sr4FLdDX5PZXrV2FAGEWzPrinKBnICc6MFoWIHqC4CQyKJ8VJcPxASEJx9R3IrRtBBkO9jaQCmwd2DYuxEo0O0I5UR1eiHqAE8vwpmP8tsAFxh5SN8kVJsDhAscE9Em7QWeitR9V3QVOBtQvUtMW6VROyJ/BirsBxGCiEAUBlEsRulAwINwCJRhg4gTVAFClCKKqlHBZRDuMfPtdpv9eKQIxVRs04/D6OkEvR6MTvB4oL01IcfJkiKQZehLAqieXlQ4gCzvxlCrzD61Lw/hLsYwNiBcAbBHEOEiVMBmloUUCNckjK2lEC1DaF60yf07MUShE1GWN+b9Y8rj5tUQbgbViSiwm/Utw7wgXJTdLrtRs+mWLcuWLePYY49l//335/XXX+fUU09l+fLltLe389577w2pCMvEFVdcwTPPPMPbb79NbW1t2rA9PT14vV7++9//8sUvfjFj2vF9upttt1MgRmfFk6jxULDBVFAG/7QnBOqzilfn0djrggmZA46QVx1/4zA5DwB/7cOouvS2kkYTx423mYMKEL4rZmOtuwAKA/iab0gbt/XBCXh7uhLltPyRrZRe+XPYSZwhjIh8P44r7wNhEL77chxX3G8aKo6vo/L2QMA0rB6/Lny5b42Ol90kqthMA8sf2UpNz+BVWbqAkksm0/bAJrQhehBdgKbM9ABqevRB9fcWeS2X/e32oeu/t5rwLdfnVvcGlBFKJsoK//i1UThmFHSZhogBx5X3Eb77MrPdEWuTQPieSxNh4tfiDOzT4gTv9IEaPPmN1wMHNiJEUYAbF04cdGLW2f/YH+AEbWhbcAPp+31+yhVdCjBi9bA/o5LQL3+YqBPxZ4v3ORDrd7pT22Rw3Hgb4XsuxXHF/ea/V94H3gDhW6/rL7sc6txQZRcn1fiQzVhQRjHvPbKC8p7BW0Hi7TcXLtfO41f33ma+UyEJ/+H3qLqeRHkk6s9V9xK++7JE+aBEcnkWdCXKDKGg22v2WfFzAQ8oaca12u64xHHjbWZ7uOGOpPeYqCt+H+T3j0+JftvbY8aL1x36+yNzzIv16UqY5++5FLpjXox3hXF+tBnY1gIeU06ItTnyA6CEWd433t4fR4mELAGY4eLhgfAt15vhlehPyztgnBbbCASxfiF863Vj3p4HypNxRkUmiNXdRL0drXQtMhJ/p3E5N3z3Zf0Xuwv65b9xzqC6G+8bk+SNewH6x09Uf3uNxYm3x/At18fSvb3/OgPqbWyOlUrmUEJSdMnEnJ+jktLEToRVj9RT2ZNiGYO3Gtd3Uu8g6Sq/FXRjQJszrQJn1e6GaK/QP1eKy3ED65LjyvsI33W5Wafy/TiuuhdQiTJN9IPbkFTOsWPHDXeY/R+klKG3JSFn3nBH//3i7zjW327bdyf1zTB0Pz4g/wNls6S5d6w+DTXuJvJ31b2Q3w3d+WY5xRzpJJ47No4D5v3uujw2Vu/8K2kHyvhJ+og078yv+pgUvX7sbLply5w5c1izZg2HHXYYp512Gj09PZxxxhksWrQoZ4WbUoorrriCp556itdffz2jwg1g8eLFAFRVVQ0n+7s0RRRwuDiAtcbIbOvtKMa7zaadiWrKt/s9HjNe2O73sNh5CccUbmBuQQgNsBMyU+b+8cUimRbaR7VPXGGszRzIwsLCwsLCYrdHkGz6IxfzGBYWuyJZbS/df//9ee211ygqKmLu3Llp9/x/+umnKa9FIhFOPPFEHnjgAX784x/nntttuPzyy/nnP//JM888Q35+Po2NjQD4fD7cbjfr1q3jn//8JyeffDIlJSV89tlnXHPNNRxxxBHss88+GVLf/ejAzztqAVPVRC7ijB2dHYsdyGdkb7NsuKxn9A3XWoxPokRx4saJwobGRCq3y33GdFn3DkIgcOHAzuiaInhXLRzV9CwsLCwsLCx2TXYHecvCIheyUrqddtppCScHp59++rBvZrfb+eyzz4Ydf1vuv99cunjUUUclnf/LX/7CRRddhMPh4NVXX+XOO++kp6eHiRMncuaZZ/KTn/xk1PKwK7LKGDvnDaNJiPCOzsIuQy/B7X4PP4Htfg+L8YGBQTfmkvkL5dm7nTHn0cSLm2566SOEAxsM4bRjOMS3AltvxsLCwsLCYnciswqtmnLqseysWlikIiul28033zzk7+Fw/vnn89BDD3HbbbeNKB0wt5emY+LEibz11lsjvs94p5hC2unMOvxKtQ6l1Lia+OpKx7CWLo87QirMruHXyWK0mCm3n4dMtRt8e9XQBvy2AYNtug0XA2NA6hYWFhYWFha7OtlITtYczMIiPTl7L/3kk08wDIMvfOELSec/+ugjNE3jgAMOSBs/Go3y8MMP8+qrrzJv3jw8Hk/S9d/97ne5ZskiBVWUUSXKqBUTWaXW06v6aKGdAL1p4/kJ0EDLmNj1Gi1a6dgNptO7Hr30WUq33RSBSFKCTaSa2XIap2nH7cBcjX++Kc9gC02ECOPhWWDsHOFYWFhYWFhY7FooFBoyrV22Jkbm3dTCYlcnZ6Xb5ZdfznXXXTdI6VZXV8ftt9/ORx99lDb+smXL2H///QFYs2ZN0rXxtLJqZ+cMjudJXqFBtTBH7sHT9vuYETo+Yzw7dg4S+7LG2Ei1Nn6Ubk2qFU/mYBY7GWFSeDKy2OXZdtVZI82cKA6jRlRknYY1YiRTSAE/sl2CT5oeHYPipR2cIwsLCwsLC4vxTiZHCAoyKuYsLHZncla6rVixIqE0G8jcuXNZsWJFxvhvvPFGrre0GAa32n/Is5E3iBDlY+MzJooq5ou9+UytIpRG0REhwjtqAcvVGo7iwDHM8choUm1sv01pFtsLfZTsTVmMfzzk8XPtqu16j119e+lHjn8nFG4WFhYWFhYWFmOFpXCzsEiNzDWC0+mkqalp0PmGhgZstpx1eBbbiQmygn3EngBsVY30GL18XTsFI8tJ50q1bntmb9RptJY1j0t2bRWIRTrENuvUqimnWBbumMzsAjiwM1nW7OhsWFhYWFhYWFhYWFgMIGct2QknnMANN9zAM888g8/nA6Czs5Mbb7yR44/PvH3x6KOPTruN9PXXX881Sxbb4CUPTWgcKPelRW+nhQ5WsZ4vysO5hluySmOVsWE753J0aVKW0s3CYmcik6fLbVed5eHarvnZ1dmbPcfsXopdf9WghYWFhYWFhYWFxWggVCYXoNtQV1fHEUccQVtbG3PnzgVg8eLFVFRU8MorrzBx4sS08a+55pqk40gkwuLFi1m2bBkXXnghf/jDH3J8hO2L3+/H5/PR9tZaPPVRMBQIgShxodqDOR0DyFI3ssqDrDItkKlAI6qnAdVrKo1UsB2UYo3YxA/kHykK6ggF7W6NFaUOmjyZ9aQ1VLDO9Rq3Rv/Iz6N3A/CY/Q+cqh3L9yO/5En9ZVpoT5tGKUVsdb2D0dCD0dCDvqZjxM+eTRwVaQG9DdxBVGsnREGUFmP/wgFo02tT5ve6yB38n/9hNAW6gCaPjYqeKLOWllDcnEc0mEdXcYinu3+LVFrKPDSrVn7Q9AukEhz74gS+9ORE8sjLWObbnT0NnNfUovQuRL7pekC1bALdAGlDlHpRTWtQUYHQChDVM8G1FVEokb48ZGEtKtiOcBaCZgelozcu4oHIP1jpbGejz06bW6PJoyXVsYqeKBU9OiV95jbQoqCO5ixipaeHZWVO5rSEOLVvDtFgO584twDQ5tYwhFln9ZjWZeB7GUhFT5R5rYJH9ZuQUkM4ixDuUoS3CtWdP2Tdg6Hrkgq3xupOH6qj3byuFaLVzET1eEalfjZFW/kf4w66ikMUtjuRSqALRVex6SFy23Pf6vgyzaqDt1mQiPOw9kts0pGx3VycfzOtdA5Kc6jjCzmdY+2HDLst6pvfhb4O0MOIigmotg6gAGEvRkwoQdWvRAW7QdgQRcUQ8IC9COEuQtuzKKlPi7O+6UWu7LgcX0inw6Ul6sa2dSxOrZjASud/c2oWwcV/ZFHbc3ze/SEhTeCOKjxRyaoiyZJyB2uLHOzZFqYwZLC+0E5LnsZFPRfwvdYzUb0eVKTFfLZwN0iBKC5GdeoICsFVjKyqGlRWRv1SVKgD9B7w2sDoQjVvQhimGkpU7IeITEB4J2fsH0WJG9s+pYPKLo4KNLKxewGX+a/KOBbco93Et+1fGxQ/Pr746eU33b9mncPPWk8fy8pyd2EypyWE3QBdajTrBdQ2lHD46mIuF+dToCtkgQ2jeR3oCmwSUViM6tIRwpcoT71+GfRtgEgTuPsg1IHRtgWhO1AOL7JmPsoPwl6JsJcgJ88a/A7WdxH9uBH976tzfgaLMaDIj/1b+yCnCbD7kEUeVI/Z3lAKWeQBodDrVkOwGzSFKC1CtW+EcAClbAifD9XWCJEe0PKRldNRnRtRUQU4kdV7oNrbUR0GqgeEVokK5hF9sg62pncWtd1wgPvJU4c9voy2TKVvfhd6N0F4LYgWjM6lCHSULhEOByoMGHawK4TbCw4d/DpKt4NwIfLLUNG1CD0C0Sg4bajuENh1UALhtqF6dPPBpR3hqUb1dZlfWzQD4S1GGAKjW4BRgnBPx7bX6ai+vLGVJ+1NqJY6lKEQzglokw4YJBPk8o5UtB2RF8Bo3ADooAlk2TToLQBb4Q5/779ruo8lxuqUMkNRuxMxhOxyLAfyKh/TVRzi252ncKo8dtTfyUif1Rx/2yDahygpRrV2gA4IgayciuqMgj0fhA1ZXZk2ze9Hf8mG4tasZKz4caA4TFG7C4eygxDUF3clyi9VnAOK5/L9wLm5lUWkBWPLq6ieZjDCiKJSVHsfCIWwKXBJVMcGiCqQHkSZ2T9iBEBFEfnVqN4+0MKg/AhNQ4UUKtgCyoaQXkTVgeCuQpswHW3SJLTptYPmpFf7r2O9s4smjzYsmWEg8fnEzd0n80VxMEiZJPMLb2XKuPraDegbN2O0NIFQqM64jO9Dq56VXsbPD6CCbWZ71TtA9UKeDdXRC9KNcNYgKgsw6ldAb3tCzlW9eQh7NeT5EF4/Rv0CCLWCakGIIEpvQelNgAG6DeEoQgUkKBc4FLKwCtUdAVmAkh5k6TRUpwDNjXBXo03YE9zFKfsuFdyAsDdjtC6AcBgMG6J0b1RfN4IwKhxFFChU+2ugh1BBOyKvAIQTFXYibCXgrECU16I6PoPeVjAMREExqgegGJzTsU0/HCPQC5EWVNSP8LpQHW1m3bJJRFERwlaEsbIbw9+H6vUjSoMYXSshEkboDkRhFYZ/OdCN0iJIZyVGVwShu1E2O1rJDIxmL0KVIpz5yIn9NuOFz4kodo1Z/5jp2GjZigq1IqIBKLCBIOO8IOCKUnLkdLq6uigoKEhZj3NWugH09PTwj3/8gyVLluB2u9lnn30499xzsdvtuSaV4Gc/+xmBQIDf/OY3w05jexBXumUqyNHmvsg/uFa/dVhxZ4vpfOp8mkeiT/Pd6E8A+L3tRi61fR2A6cFj2crgLcIDOVwcwD/sv6VclgwrD2PNDZHf8LD+OF0EUoYpoZA617tp0/GrAIeHzmU15kq/eWIv3nP+36jmdWdiavAY6mnOKc45nMwWmniPhQD8j/Yt9hUz+Ub0h8PKQwmF/Nf+EHtrY7dSZ7i8Z3zKseELsgrrwM7f7b/h7uj/4x21IHF+s/MtykXmdnVR+HoWGEtZy+aMYc/jFB5yDa+/2F4sMJZxWPicrMPn46HFld4Rz7YopZgSOjrhNSsbI75ny5P5m+OOnO6zI/m7/gzfjvw4Y7iVjv9SKyekDTMxeMSgDy4unAQJjSiPixzPMEtOG1EaFhYWFhYjY5GxgpPD32a2mMEWVc9mGrKOO4UaNlIHwKXa1/m9/cbtlc0dTpfqpiJ0cE5xiijgh9q3MZTBCrWWF9XbOHFkNG9zLIfwvOvBkWR3h7FX8CTWsWVU07xInsEDjl+MapoWFjuSbHVFOdt0A/B4PHz3u9/l3nvv5Te/+Q0XXHDBiBRuAOeffz4PP/zwiNLYldiish8ot6UAL0CSF8A61a9kmy6mZEzjHbUgoXgaDyxRq9Iq3DQ0jpJfSHk9ToHwcpntvMRx3wgnozszSila6cg53gHaPqwZUDde0N+iQHiHnY82OnlfLRp2/LGkQ3WhZdlt7idmcap2LBuVKcQKBNOYRKvKrsxLRVFWCjeAx3mJxp1si3Wz0ZZT+G56CKlwTnGEEBw9oF1nY8Q32/LfWWhVHUymOm0YG1pGhRuYqwm3ZaQKN4A+giNOw8LCwsJiZGxRjUwS1bynFnKcOCRlOPsQ1oXiCjfY9U22rFLrc45zpvwi19ov5n8c3+Z6+/fopDsre9IbspTjdjZCKjzqCjeABWrZqKdpYTEeyMqm23/+85+sEzz11FOHlZEPPvgAl8uy6RPnE2PpsOP6hOm9rkb0L98cqHTbV+7Jm3rmFSWrjHUcLg8Ydj7GkkwTfB2dA8U+WaVVSlHid7e5BneXpFv1EE7jyTYVlbKUn4uruCz6MwBWsBZjhB6LPjKW8D2yXxW1o6hXTVl7Z/KSR6fhpy62qlShWMdmtqgGZjM9Y/w9Rfb+eEOEWWKsolI7LOs425vNqj7nOK10UENF5oAD+I39R0yPTuaX+n1ZhW9XnTnna0fypvERm0hflgcxF13pKBQ2kXpYnyxq+Fh9lnRuX2byGatHZKNtV/44YWFhYTFe+Gn096xWG3BgT3zwG4oI0bTp7Gwf8Uab9UbuyqRD5bzE7z1lLTOZykoyO51rHsbH7Z2B4XyUz4ZO5adNdVIiCrdL+hYWOytZbS+VMruVHUIIdF1PG+aMM85IOlZK0dDQwIIFC/jpT3/KzTffnNW9xor4ksH6Mx7Hs9hv7uGVAlHqRrX25XQMIKcWYD92Eo5vzwEg+tnDGJvfQHVtBED1tYIyqKeVJpeiJGggDUVLnsZf98rnb7PzM+b5q/Ik/p/j13SrHspC5iqQI+R8Xnb8BYDnoq9zVvSqjOlcpn2d2/52KpFXt6B/0jjiZ88mjpz1HvgaEI4wxvoqVERD2J3Yjp6L+2ffS5nX6uChnLJiK96IImAX/G12Pheu6Ob8m06idH0ZetBFcWkl3jaZMZ+9LZ20Ge1U1nsQgBzegtBRRUzZgNxrC+R1QVcZeAPg6Ii5/xTI8g5UwIYKuaChCoqiyL0/ReZFwGlH+Kag+lpNm242FxhR9LaVBAkRtAk25dvYWGDjzYnupDp24Ypujt4SZLLfVM6VBA2KnBNxlO1LxdGLeeDVFvZqjzAt5GO1y7RtsbHARkgTLC1zErCbRt0GvpeBXLiim4uWB6jqVVRqFaZtB98U5KSjMT4+cMi6BynqUska5IS1kO+HXgn2MGrzVAjNRLUXj0r97NL9dMkA7aVBiltdSENgSEV7qbnSp7jVhWZolMsSIqU2Wlvrk8IUt7ooMgrI17wZ201PicHnbBx0n1THQkomlE0ZVlsUZU9idDtBl8gqP6qpANVcieorQjt0M0Q2ozq9qKALIZ0YGyeDno9wetEOrEjq0+J8/PyhiLaV+EIGbS6ZqBvb1rGBXCG/wa/t16V1tjOQ4P2TIeTHUFEM+pduRwXUezU+rHRyWH0IT8RgY4GN1UV2fB8cwfGfHo1qL0ZMexsim8HeZ9ogstkwPp+Maq2CcDGirGpwWdU8Ad0OyO8A3QVFLQhvJ6quBvL9qM17YGyYiZDlGftHUZ6H8ztzBpVdnOhnD/PKhl9R6O/IOBYI4FH7HzhNOzYp/sDxpaN3A1scPSwvcXDJcWUAfFEexmajnpVk/vL/wKstFEQUfrvgvS1HcPgbNRzVV0d+6wQ0LYx0SihbBR1FkB+AnhKM9nzoKINoIaKsCgpeQVStRRS3IHx+VFsxqqkMPL2Iwg7oLUR1FGBsqYX2akTRnoPKz9joh86Q5f54J0Ue+DHGllq0OetQHdUQqUS1FyNnvYdqL4JIpfnug3Uow0BWtEBBGJHfjKqrBFsEQh4ISyhrgeZy8IUQRU2oLRMwur3Iyh5Ulx1j00QIOqCrGMIuMugStv+zzy0b9vgy2jKVKHsSihuQlfWmfaICPziDqNYyRGkrBF0Y66ci9/kMbDpIHdqLUd0FYJh9sJi6AbVpEqKqEexhjAUHIOcuAn8BFHeY1zw9IBQoAa5gzIOOAnsUur2ogAe1oRZj02QQsyBuf2ms5ElPJ0qPQsSG2jADgnsPkglyekcVa5GebijYCO5e0AxomI2xfjoo3w5970tLNuFrtWclM2wruww8V97qpVqVjfo7GemziponwNUJbUVQFELVF6KiEhDQOxH6gKAPpezIqtRtMZ0sl+q4UpbTURrC2WqQb+TRIFtpLg0MWX7bHu/XNjWnZxfT3kbkfwKG2ZQoCKBW7gGlbYiSNtTWiYjyJojaUY3lUORH5AUQpa1m3Y44oMBvtk1pYCyfBVEbcr8lqOZyCDtQYTc0V4O7HG3vvXH/7HtJMkOvCtLS9zldDpEkMwyX+Hxi/+YQxSofr/Qmyfy2fS5OGbfvZ39E/3Q1ODdAXi8YYUChNk6D4Oy0Mr6s3Qiq3WyvhW0ILQpSoLZUQ14vRt0ktFmbUU1uVLzfK2/FWDcVWqqhqA9t9grQOhBFneANYKyYZfaD9tiAo2ugaxiL9jXLef/F5vHSvRCVTai6agjlYXQWgJLQUQmOGoS7NHXfRSeidh2iuAljxSzw9IGhIQq6wBVEra9F7rUCfJ0QcWAs3hc5ayWETFle+X2ooBthNxDVW1BtxYi8XnD3YSydg9FeDI3V4JiKnLIY8utBhsy8FTRBW7Epx3l0qJuO0egwbQSikHusQdRuQDVWoDbUgqaDNJD7fYbQdIxls/vHAlcQY8MU1MqZEHKBsoFT63+5Tg2R7xizcTFj26t4Ffqi4GsDTxghjYzzgsBEG9VPfHX72HQbCRdddFHShEpKSVlZGccccwwnnHDCWGYlK+JKt8222ykQ7lFJU9R4KNhgdi7BP+0JgexWhNR5NPa6YOgtRDY0opgKz29rX+Ueu6m8LA8ehJ8AhRQklpOfKU7kUfUsnXSnvd/R8iD+b89DUHVjt9rLceNtIMyVROG7rjBPdhdAYQBf8w1DxlFKkRfah2WPbKGmR0+U0/JHtlJ65c/NDm68k+/HceV9IAzCd1+O44r7TSE3Puv09pjG7SFxXfj8Od9m2zq2/JGt1PQMVqQrISm6ZCJtD2xCG6IH0YXpPKHOY3asA9/LQFKlj7ea8C3X51b3BpQRSibKCr8v+zR2Vwq6zAkT4LjyPsJ3X2a2O2JtEgjfc2kiTPxanIF9WpzeOwuQQwwvQ9WD78mzecl4jwaaecvxD/aTs7LKdvD3qT9CKMx548D6qQuI/vL6RJ2IP1u8z4FYv9OdetB03Hgb4XsuxXHF/ea/V94H3gDhW6/rL7sc6txQZZd4vhTjQ6qx4D7bz7jYdlbG+LqAkksmA/Bd7WxsSuM+458Z8xpv77qAzXfeSHW9N1Eeifpz1b2E774sUT4okVyeBV2JMkMo6PaafVb8XMADSppxrbY7LnHceJvZHm64I+k9JuqK32d+HImHj/fb3h4zXrzu0N8fmWNerE9Xwjx/z6XQHesDdoVxfrQZ2NYCHlNOiLU58gOghFneN97eH0eJhCwBmOHi4YHwLdeb4ZXoT8s7YJwW2/T5sX4hfOt1Y96eB8qTcUZFJojV3US9Ha10LTISf6dxOTd892X9F7sL+uW/cc6guhvvG5PkjXsB+sdPVH97jcWJt8fwLdfH0r29/zoD6m1sjpWNzDBcUsr7AN5qXN9J7Ripq/xW0I0BbU4AKrt2N0R7hf65UlyOG1iXHFfeR/iuy806le/HcdW9gEqUaaIf3Iakco4dO264w+z/IKUMvS0JOfOGO/rvF3/Hsf522747qW+GofvxAfkfKJslzb1j9WmocTeRv6vuhfxu6M43yyn20SXx3LFxHDDvd9flsbE6uw/qO5KBMn6SPiLNO/OrPiZFr8+odMtqe2kqgsFgzltC//rXv47klhYpKKOYBlqAfptuAGfI41mntrBALaMTs+NZo9YTJLPtpEXGcgJqP4b2q7fz4Ccwoq1RFrmz83ebFjuaTG3SgT2xvblKVrDR2ArAU/orWSvddnUUKqe2NtCMQC5xzpVfykrpZmFhYWFhYWFhYWGRGzl/DtB1nf/93/+lpqYGr9fL+vXmlpSf/vSnPPTQQxnjT506lba2wfa3Ojs7mTo1extGFqZzgDh59Cs/bQN0qU7h5B21IMnQ9UrWs6+YmTH9TroxxoEya7wZRt9VcDEy9+EWuzcD7QmeJo9FIJjJVNaoDYzxAuydllxtJdZl8Eo9ZBzVxCFiXuaAFhYWFhYWFhYWFhY5k7PS7Ve/+hV//etfueOOO3A4HInzc+bM4c9//nPG+Bs3bhzS7lsoFKKuLrXRT4vB7Mueid8u0a90kwPWRpwujx8ybrZOBcbDCrLtZezTIj1e8nZ0Fix2EaaKiZwsj2QV63nKeIV/6s/Sp4IE1e5toF9X6W2kbstwVrp1qC4qZWnO8SwsLCwsLCwsLCwsMpPz9tJHHnmEBx98kGOPPZZLLrkkcX7fffdl1apVKeMN9ID60ksv4fP178HWdZ3XXnuNKVOm5Jqd3ZYiCrAJe8Kk18BVRwMVZYfLeTxq/z2fGst5RX+fz9lIA81UijKcOAhl2GaqIdnZrVVvMRp3dBZ2SwqEN3MgC4sM2LDhwM4x8iCeN94E4FvRG/lW9Eb+YruVc22n7NgM7kCy9ZQb78tzVbo5cbCJerrpQSLGxcpmCwsLCwsLix2PQDCFGjawdUdnxcJipydnpVtdXR3Tp08fdN4wDCKRyBAxTE4//XTA9HB64YUXJl2z2+1MmTKF3/72t7lmZ7fl+/JCVrCOj9USAC6T57GJOmxC4xR5TCKcTdg4XTueTaqeCbKSRcYKAPJFXkaFG0CIMB7s2+chRonlRmrjmxbbj4G2Ay0shouXPIQQnKYdR4Nq4SN9Ce+wACBhp3J3RSfzSjc7NmqoYD1bqFfNWaftwkkQcyXhKrWevZjBUtYMO68WFhYWFhYWuw8VlFoKNwuLLMlZ6TZ79mzeeecdJk9O9mLy+OOPM3fu3JTxDMP8Yl9bW8snn3xCaam1nWW4SCTn2L7ML6L3cKjYHydOTtIOp1gWpozzfduFTNKredZ4HYAuAlRRlnFSGyEKO7HSbZGxgmeM13Z0NnZL9hMzgf/u6GxYjHM8mF6hJ4hKfmm/hmv4Fe/optJtONsldyXM/jc9+zGb6XISNaoCiaTH6MUjM2/9jivcAH4WuTvJxp6FhYWFhYWFRTpqKCdK1DLzY2GRBTkr3W666SYuvPBC6urqMAyDJ598ktWrV/PII4/w3HPPZYy/YcOGYWXUoh8bGlNkDZ+opXyuNpKHmyKR2VV5jahI/K5TTXxB7MvT6tW0cbJZabEj+cT4jBWs29HZ2C1ppTNjGInM2Ri8xfhnpb6WSWmu7yFq2aS2Uk05e8hkBzpX277J/fq/AEvplo3SzSvdhAjzjjIVlb/RH6LYKOQAMYfUn8GgklIaaQXgXbUg473iylELCwsLCwsLC4ewU6FKLaWbhUUW5Kx0O+2003j22Wf5xS9+gcfj4aabbmL//ffn2Wef5fjjhzbavy09PT289dZbbN68mXA4eYvjVVddlWuWdjsqKMVQBpuU6XhisqhGCJEhFlSL8sTvetXEIXJ/ntbTK912djYqy/nGjiKb7aV5OAnQl3PaEWWtuhnPLDXWpFW6rVHmx5cN1DGJmqRrVZQhEChUyu2Sa41NFFKAB8jc841PQiqc1UePuWI2AXoTx7fqfwTgOHEIj6eII5H4CeSUn55htGMLCwsLCwuLXZNiCnEKx85u+tvCYqcgZ6UbwOGHH84rr7wyrBsuWrSIk08+md7eXnp6eiguLqa1tZW8vDzKy8t3XqVbno2kOYcUYKjcjgFcGnJGUf/poukYwU7Qg+YJ1W/K2hAgVf/vdT7zdR0i5tJAS2I7UK2YkNUjVFKaWHlUp5qYrU0n05xu/fQuijpduHsHVJXhPnsWcVRLKbjMshC+LlAS5QgjK4aeWg9Uuq3z2fA7JC1umTgudoeRfU5QIqd8DnRGIXaCab3wBlCtJeAMIUraUG3FYA8nNA7CEUZ154MS/dcL/OY1AQgJygCE+RuFUv0r0AwBQU0k6licdT4bhSEDtx7zihtPw5GPT+TTbRcUhBUilgaY6UQktHvcyLwyNqt6/A5Jq1sb9FzrfDYqe/Wkeh7UBC2FXipn5CM6QtA7YAVOmrok8vvLiLADHGGErwvVmwdR+6Dw2aQ58FgZirhkYUiFNPrrhRF7gIHnkAIxcJHfgDQVKpFGon6lyFem+2ZznHSPIZ5VlLZByAEIVFuxWW59LtBtqNZSEAaipM0sVwQq4DXbFALybEl9GsD39V9xRIq6sW0dmyKSlW4OYaecYppoS7nS7ZTI99igttIRKxnBYJlPAd12gS8cKzthHlPVhiPoRkTtiWfD0f/xR/j8iWdHaIPrQVtxoo2J0lZUVwHCHun/XdgVa4uyv8xT1S0pBpVdnFf0d3H4NApCOi5dDTkWgKl0W6kGr/YNER5yfAGBcOQzS0xnsVqJjk6EKNWUU096m3DddoE7quizCdZP78LX6cTWUorw+cEwn1d1FfSXT0kbhJyoPjfoGggNUdxuhnGEwBFBdef3l50jZJZdyNnfdg1H+rZpsdOhWkrBEUbF6ka8Dx54LPIDZttDoFqLwRlG2KNmXYi1LZRMqk/x8Y+wI1a/2lFBJyBifRPscDX8COSfnI6zSFOUtpnl5zTblXCGwR5rc94eiNjNch5IxG62wRgiP2CGzzeV9InwEbv5juPpxrEP+GAmlBnOkOZ77XND1NbfN27HZ0+SJ0XsmhJm/zyUTJBlmvEyQSizTsbGjiH7/RzSHMmzK2OALDcMGQFIG0ZIOWrvZMTPGivzxBgTmycAqKDLfNdhOyBgm3wbEhRGTuWjpECmkOMG5jOXd5BNearWUnD1TzqFI2z2d7FxUpS2JtppfPxEGghPT//5WHuPh0k8U7x9x+YLuEKIUlM+l0XTiQTbQDfNT0jVL0sNxRPOe4iqKPmh/TLq3eLzibxof0glBFJzI4sG24ofiKwOobqC/W1OCRAqdXseUJ5J7dXZb1ZDlLT3y7tdBYiS9v58dRUkZEGRH+gv31iZDuo342kOPK+EeRxyJsazeN1MJ2PG+654XJyh/ncsFMIeNfNS2pqkKDDvIcw+FxJzQoRCeHuSxoB42gk5f+Dcu6Qtedx1hBGFXRCxJYZX1VVg1rWufLMN2qJm3x67d7xsAfN+Pn+s3sWfdYj6NEbjYsa211Ka9OyQeV6A0wb+wY+0LUIplZX02tHRwd///ncuvPBCCgoKkq51dXXxyCOPDHltW4466ij22GMPHnjgAXw+H0uWLMFut3P++efz/e9/nzPOOCOb7IwZfr8fn89HV1dXxmcbLWYEj2MLQ3vkLMLHv21/QEjJseELALhM+zq/s9+YVdrTgsdSRxNlFPOe8//YI5Td6sQtzrcpE8XZPcAYclDwqyxmZcrrL9r/zNHaQTmnWxk8hE78zBBTWOrMvG16PBKvC9nw/2y/5qu2k5LO3Ry5i9v1B1PGmS2m8w3tdG6I/gaAfDx005PV/fZlJp+ziS3Ot/CIzPapxoJrgrdwP/9MG6acYpppx0c+Dc73kEIOCqOUojA0jxBh5ogZLHA+lTbNLaqBGVm20zjxlWIAJ8ojeNpxX07xR0JA9VIaOjDr8D+zXcmPbN9LOndI6Gt8qlaYK7Kcn2IT/UomXekUhQ5IfHS43/Zzvmk7k5mhE9motg6pgNuWPFx4yONs7WR+Y/9R1nkdS34XeZgb9d9lDLfA8STvGAu4JnpL0vn9xCw+dP47ZbyfRu7k1/qfAThLfpG1ajOLVeq+NB15uGh3LRhWXItdi3/o/+ER/Wk6VBf32G/mQLnPjs6ShcUuzYGhM/lMbT+HYh3OBbiFa7ulP1ZcE7mF+/X0Mty2LHQ8xV5yRsZwB4S+wjL1edowk6lmppzKM44HcsrDWPNg5P+4Sv/frMI2Oz+kQHiZFDySZtpyuo9AcKQ4kP86HxpONi0sdhqy1RUNnhGm4J577uHtt98eMjGfz8c777zD3XffnTGdxYsX84Mf/AApJZqmEQqFmDhxInfccQc33pid4mhXpyONulRDcpjtADYa/d5iasXErNP+jnY2x8tD6aKb5foaHFk4SRAInoy+nPU9xpINbEl7fZZM//UkFS7Mr+ZBFcoQcvySixJ1gqwcdM4n+reXThtiM+FEqihW/bYG42WaDUtYRS99vGy8l3Wc7c1K1qe9XkkpBXg5UhzI1+RJQyrcwPTgXIq5uqlVmXYwfh65m6NC57Nv6BQei744KN10+AZs8y2igApKzFWJMZaOsXffjSo3T1ZThlipe6DYl8PFARwk9qVRDfhCqxQrjLVJRv/jq13zMZWz2XxF6iVIC+0sMVbllNexZEOGcnThZLaYzgwxhVIxeLVcvG6lYqAyZJKo5jLtvOFlFAhZThgsYtSrZt4yPuYztZqGHLzpWliMlL9En+DI0HkcHjqX/xd9ekdnZ8xoUkOvuhktdhXbqjoGeTnYJp1MNbNFdnOICpHZOeAm6llkrMj6/juKTPOqgSw0lgMwg8kZQg5GoViglqKrndt2uIXFaJG10u2JJ57gkksuSXn9e9/7Ho8/nsqCTD92ux0pzduWl5ezefNmwFTcbdmSfUPfleklmPLar+Q1APxTf5Y9RC1zxWxmiqkpw2/LTFnLK8Z7HCDmsI7NzGBKxjgKxf/Tn8n6HmNFi9FOFeVpw5QzvNV5rthXvYEe/nY1lqk1WYetEYOVbgX0b0FZx+ZB1/tEkBJRmDjOdWI+X8zhXWNhTnG2JxszCCJ5ws1aNvOW+pg9ZG3asHGFZwsd/CB8Gw/oj/KhWsxqtYGnjeSt+3Zhx5lGOd41wDZXB36aaEMO6NrraKJPpe5TRptMyiINSTH9ytght8cLeEct4H21iNeMD/hT9DG+FP4Ot0X/yL36P5gywA5cXOk2XUxmrpiFC2fGPMbLZ7VKr0jdkWwy0turDBIiTASncFA6RD/XSCuGSu3EZL7ch1KKOEDMoVV1UjaE4i5bdvwGfIudhaIBbbtNde64jFjsdrxqvM9HagmfqKW8aXy8o7MzJkSNKBNEZdLHt9FmUUyxMt75yFhMbw62SV9y/CUre9lg2trOhhY6iKrMDpJ2JJlkuDiVlLJembL/ETL73Q0DCdDLqp1YDrOwGE2yVrqtW7eOGTNSL7GdMWMG69Zl9iI5d+5cPvnkEwCOPPJIbrrpJv7xj39w9dVXM2fOnGyzs0uTztvjmfYT+UBfTIBe1qgN2LFxnDwk67RPk8dRTTnvq0XcHL0ryblCOtaxibXGpqzvMxYsUitYlWb1kQd3ytVGmUisdNtFlW5BFSKag2faqiEEioEr3YbCh9c0sBojTDhNaCgcoMQD+EQt42/6kzvNasN2utJel0riiz3DadpxacOWUAiY3oHvNf5Ox4C0Vxhrk1Z3AfhIvVx5IskKURcOqun3VGxD45Ex/OqfybmJjkE7XQlvmNvadINkT8uP6S9yZfQXvGZ8wAJjGQYGm2kYcD9TQAzQyyK1Mqs2a4sNfc20Z1wRtqMY+IypmC2mAVA6QLkdJ0qUdWoLW1QD/4m+xoPRR5OuV4pSPOSxQC3jceO/aetYJqLoZGmpwmIXZ+CHlnSr9i0sRpuBK6B3F8cvbaKThWp50se30Wax2nlXhOfC1hxW7E2iiilysGySigpRklU4haJlJ/f0uVYN/og+FI20Jj6Mn6AdOqx7lVPMamPjsOJaWIw3snakoGka9fX1TJo0tE+6+vr6xAq2dNxyyy10d3cD8Ktf/YoLLriASy+9lBkzZvDwww9nm50xxz/7Ecx5cMxst0NC2MjtGBCFTmxHTSDvkS8CEH7xWxib34JQbNJthGlThmkLUYLdiNkF1eDZqXl8cNIiTol8D4lkf/biB7aLs/4SA+bWtrlyNvVGMz30USnK0u7Huu9bx3Do29WUtriR/IeuETx7NnFsZz8KHtPopf7GkabhyYgdOcWL99Wbk/L2sfos6fjBV1soCRq0uSTfPa6Mh15tx//dO1CdTjC0nPL5OscljKd2kXnb9PZGTN6Edti7kNeH8cFByP2WgHuAkdWKZmgtRukaxgcHI/dbgtxrhWlAUwCaC4wwSBsIG0rpdMQMpSogpEGXU/J2jYvvHleWSPfBV1s4ui6KHqo2VXTxNDyV+C76I0v+vpXKHh1NmfUVzHRCmqCz8CXy3Mt4UCW/l4E8+GoLp6zvxaFj2sKW/fmI/utsDnu7mr6WB2NqlPR1SUzcmCgjgqbxUf2tI1H1E6HPPSh8rvVzZfjchL2wiMPAHpZJxwD2sEQikDxBV5r69v/Ym7Bj9qA04seCf9Hl0BL5WsyZKNSQ93WEZeI9DnXdPG6mk7vBIU2nCtvkS+6xCNWTBwi0gz9E//BAVH01hJzYznkSZAjj07mmoWIEauNks00JiSh3J/VpywxzBWWquvF2jYtLj6s0+x9KKVPFg5ZKDfwY0DjAuP/z6k1Q4MSBRFJ3/2oEmwiSz2PJSaALqPNqTOjWEbE63pynIf/+NQpWTkH1uck783E0+UV6nKFEHvTXj0I1VEHIBXbHoLKynfUIxqJ9kXMXY3y2N/LATxBlregvnIicvwD9rSNQ66eCsqWub/Fjh4b99GmJshtIKx08+GoLR9QF8YWMQWPBd48rY8/YKufSFFvFAy98A3vdEg4PGQgEQeN7ifbr+tZyDpR7s8moo5c+OlR6pXL8nXojioBd8N4bF3Do29XUHPMsxscH0K2uBaHQjnoT46MvIPdbjLFoP1SPB9VUAWEn2B2IqUvRDnkfUdmMcPWh6mrQPzgIecACRGUztJagevLQ3z8YVV8Dyju4/ILWdpSdlaOBtnMKiT53MrZTHsL/8Weoxhroc2M7+1H0jw9ANdaYY5YwDWJrB38IeX2I0lg72mcZxpK9UbqGdvCHGB9+AbnfEoQ3gP7eoaheN9rBH6Ev2he1abJpLDrWf+3wdZcubdjyz2jLVHKPRcgDP0ZWNaJaY4a5nSFUXQ2ipg5CTqLPfhnb2f/udzbQk2cacY8hJm9GbZqEmLQFhCL66NewnfOYWd6eXvPaQOPhAwyVoxnQ60ZFbegvnISxrhbCXohq2+XZH2Q6BtNi46JGz9mHgSeAsEVRCjA09DePQNVPGiwT5PCOxKRNoEXRDv4g5qgB9DePjPX72pi+d4dDUBf+TlrZJNMxkDaM4YCu8D0jro+j8Z5tZz0Crj6MD005WP/wwH5HCo2VZtig2/Sa4LQlxV/oOCPjs8aPJYIu7sk6n9eFnfyQ72RV5tLxGF1hlTZN25n/QuS3k+jPStvQnz4VedCHiMpm9OdONvtNJczxc/4npiOamjpUXY3ZJ5a2IFxme4w+fiYosJ39b9SWiaBEbL5wECroQVb78L56M+EXv8UTm1+nIGSOsXbDlKUaPRr7nj94V0J8t8B8ufega9sSl2dK+wyEitn8l5uIOi8gPOlkHCeltu0WOO7nGPWdaAd9YM59YkWVsj0PKE8xZROICNrBHyA8Pf2y3ruHIvdbjP7hQWhHvYXx4ReIfzvUDv4Q/Q1TFhTlLWjHvYawRRFlLeAMEX38TLMfHIgSRP/vq2Y5n/Nv0CXRx89EO+m/6C+ciIraIOgyy76xEqJukPaUc2Fj+Uy0L72I8PQQffxM5AELQJgOE4QtSvQ/X8b21SdNJwaxe9vOesJ0vgCo1lJUVENoBmLCVrPfj40B0X+fiQp4TVk36sZ25r8Tc2/jg4OQX/goIcfhDqK/eaTpBCI2TmjHvo6cshlj80Rzru4IQ8SB7ezHEEIRfep0M65Q5lzsjaNi/WN8fN5mnJZjNy5mOrZ95Z8Yn81Bzl0EbnOXUKZ5QXdB6sVSA8la6TZ37lyefvppDjpoaKP0Tz31FHPnzk2bhlKK8vLyxIq28vJy/vvf/2abhR2KauoFEbcFoLYR+rM/Vo29RN/pXwlibH0XepO/vmixKLYBSbh1OKw+xD/VEjMeBnvK2owraoZippjK87wJgD1DFTj4vSoqmzxDPsvwjtOHkbUbiLt8jDbFVrt0F6D7B3/F+8RYmnR8aH2Imh6dOo+prJhfH0C1OWMDcm751Ha04L4Nqr0IOXkLCIPo5onYTn0u1vnFRghPDyizG4tfF3F3h9DvvVAPA+GkpxOY9cvda3BoffIqoUPrQ5T1bvP+9DB0b8Un8pkQMJUq0F9f3b0GuoDJ3Q20e7o4lOT3sm367njyKjkf4feqqEhb95LPDSwjlDTLqqkcelz95TSC+mkbsDDYFkz+wLDtcTb1yx1MbnuD0hhUH0XG+2bMV3DbgcHMl7FxcmIwlJO2EH3mFOg1y15ONoWq6DOn9g+YeizvSg3q0z4wFgGkrBtH1euJ+lcsCof8WFMzYPXetqv+wPTMeaQ4EMFqUgzhaCqWh9ixWzePo8smgd9ckWifvDEWub9cos3liWdHH/wO5aQtprBz2nNE/3MKtlNeAG8AY0Mtti+/aPZb8fLJVN+CelLZDaSbHg6tD1HZm/zO3DqJdjpLxla6xVZOgqmQrKGCLrqprF9DUSJ+rL+ItV+AA+W+/Nswx+D1Wdhxib/TwlD/2KDVbkR//qT++lPZnOiDov85xTzfl5coT7W1BlnRYvZZQiGK2zHW12L70ov9/VhxB9GWspggnam9WuxMCEBO3QA9HmTtRqLPn5Tog2XtBqLPnwg9LlRLYSJOot/29pjt6Ev/NfsgQJ7+LNHNk7Cd+jwIA2PTJFAi0Q7piY8Rw1vVPuqMQP4Z3nHqMMbGydhOed5UaBa3mx+kYm0Omw5aH8b62n6FG/SHHYAobk+EMdbXJsIlruUNWFU2MK14eoCxYQoE4qtpsx2Pc3t284NX/zg5UJ6Mjw/RpooMMkHm+6q2IjP9SVsHyKvlpofmYaY53GeXQZVkTmLEMsJQ54Kx++eQr+1Vx+WkZDk43k8AZl8Ql/9gUJrbylxDPWvycfb5lAP+n5scNnSacvL6JLkETw/G5onYTnvW/L2+FtuXXgDMtmX78gvEJ46J9uvpG9xupUpcj88X8PvQW805lr71bSq2kfltMVlqKFapDRjKwCZseMkjQO+Q4YDB8kx8ntsbMOfCadA/c4Bemnj/xFSYmduzSow1A9srYJbnqc8R/U8ZssKUW+LI059NyIKqTUdWNJtpx/rQRHkOZOB5YT6csb4WW0E3xobY+bgMHZcxU8g38bHSVtCdSNf2pRfNMF7TIZ2xodZUuA28d6xfB7NvTsjF8XoRz/+GWjMvcTl/4Nw7Vs/655qxuZTql7JlZTPYI8jyFvMdxLSowtObVLbxvEWb4/FTzK2NsRsXMx0nyv60Z/vLJMO8QPVlt7I6aynliiuu4Le//S333HMP+oAb6rrO3Xffze9//3suv/zytGkopZg+fbplu23YCD42+ld33WS7YlipzIxN1IAxtfU02nhw4SW1Z0tnDob7LXInGxsiYcvA+m7FWmMTa9iYNowdW2Jr81BbSwEmDNhe2kn3oOsCQaEY/nbI8UAow3bso8QXmC/Mr8t2Yeen2uV8SR6FRLKeLbTRmXEL+f5iNgeIvTlMzKNDdXG6yP0jjoWFhYWFhcX4R09j3iiOCyeTqAaglz7W6psAsrIRbmGxO5P1SrczzzyT6667jquuuoof//jHTJ1qbmtZv349gUCAH/7wh5x11llp05BSMmPGDNra2tLah7NIhaKQAg4Qc+jEn3LCmom9xR7MZRYRdD6KrZwbbyileNZ4gwipDZJqO8uX712UApGfMUw2A7jFrsE6YzNP6C9RRRkNtKQMN/CrfKo+bOD2Uj2mOMrHwwRRgUBSKoqYLKpHKec7H9nYMQwSZIackjj+sf1SABbpKzg48jWgv+xSMVNOY4EyVww7lWO3sYNkYWFhYWFhkUxERTMqBg5hLvO1vfmL/iQA86Jf4ZjowSwje+dsFha7IzlpJX71q1/x4YcfctFFF1FdXU1VVRXf/OY3+eCDD7jtttuySuO2227jhz/8IcuWLRtWhndnFPCY8QIL1DJKKcrJlttA9pOzmCCrWMYaCkdgPHtH0k1PWoUbgEOk9vhoMXKyWekmdrJtuhbbj3eNhdys35VW4QbJqx+nDOW5FNMTbAmFFOHDgR07Ns7RvsQi53/41Pk0Lzv+kuRsYVdjaTi98Koh+Zvj10NemyNnJMwGGIktF0NTjI98zCXzG9RWDpT7DCO3FhYWFhYWFuOdbHanGEKhKRvNtNFMGxGivMQ7Gedk6VDWB3qL3YCsV7rFOfDAAznwwOG5Bga44IIL6O3tZd9998XhcOB2u5Out7e3p4hpMZAKkZ176lRcqZ3PFtXAp2p8ugJvUenriQM72oiGAItM5OFOY73BRGWY9FvsOmTrZj5Z6ZZ6te5G5xvYhZ3/jdyLUorrbN9Jur4rK92ela+RbpGaDRsTUqz0sws7M8QUVqi1GdufEIJaMYHP1Go2qwYOEJYHcQsLCwsLi92RTKvjAd5UH9GoBn9cPZ5DeJ0Ph7XDJayiuDMHs7AY12SldNu8eXNKr6VDUVdXR03N0JOpO++8M+t0LFIzUqXbEdqBHGccwlc5iZ/pd4079VRrBpfbs5kOfJY2jEVm8smDIWxqgTlhFwl/TBa7OxuzVLoJ4EscxdX2i5gtp6cMZ4+tVC0QXhDgEs6k67uy0u09/dO01/Nwpb1+sjySsB4Bhn4nA1vsFFHDZ2o1UaJMFROppYYNDO3cwcLCwsLCwmLXJFuF2SrWJ35rSNy4WMoaDhfzeVN9lPN9e+jFl3MsC4vxRVZKt/nz53P66afz7W9/m/nz5w8Zpquri8cee4w//OEPfPe73+Wqq64aMtyFF144/NxaJBip0g3gl/ZrWGWs48f670YhR2NLq0qvdJskqrGUbiNnpCvVBMJa7babkK3SLQ83T7juyTrd79uGHjNqROWQ53cFPmdT2ut2kX7oLhclrM2QBsCL+lu8bvQLyD30Jdncs7CwsLCwsNg9MIaxSq2QAtroJEAvPxNXDUvpFrKcrlnsBmSldFuxYgW/+tWvOP7443G5XMybN4/q6mpcLhcdHR2sWLGC5cuXs//++3PHHXdw8sknp01v3bp1/OUvf2HdunX84Q9/oLy8nBdffJFJkyax1157jcqD7eqUUzIq6cyU06iinAaaRyW9sSLT9tJZAzy0WgwfD3lAIOd48RVwlsJt92Gjym51lD13qwZDUkXpOFufmz2ZHBrYSW+vcr7cO+31eLv8xFhKANP9vBMHDaqF48VhrFP/yiG3FhYWFhYWFuOddEo3Jw4kgj5CFOOjna7E+elMIk/k8S+eG9bHdoVii9HARFk1ovxbWOzMZPVJu6SkhN/97nc0NDRwzz33MGPGDFpbW/n8888BOO+881i4cCEffPBBRoXbW2+9xd57781HH33Ek08+SSBgTuiXLFnCzTffPMLH2bUZaJS+chRWusWZy+xRS2usyLS9dF+x5xjlZNfFjRNbhhU1mRwlSATScqawy6OASlFGCYUZw9pGSelm30UdpfSpID0ZrSWmZz8xC5mm5SkUhjL4TK1OnAsRZpVax5e1o0Z0bwsLCwsLC4vxRzplWYgwfYSoopxLtHMpijni66aHQlHAcvU5ujLYkynDuu+zxuvDzbaFxbggp9mP2+3mrLPO4qyzzhr2DX/0ox/xy1/+kmuvvZb8/PzE+WOOOYZ77sl+y9FYox1QAWv6zNmlAFHgQPnDOR0DyAlebCdMTqRrm3MR+qZXUN31+FUAFfYjAQPodkjywwYSEA4ff5vV3xmOxvbSOF/kUF7gzSGv/f3CVRz96gT2XFWEMARKKrrzw+R3O/CqPKSQWT97NuWlL/4CorAVNB05bT3oGkrZsM2fmpSv1iFWuj0yy0tB2MDvkFwk98I25yIi+4Qxtjgg4swpn2Ejgq3HiCmVdrwPTlHWir58b4QngNx7Ffqq2Yi8mK01BaKiFdXlhbADuddy9FWzkfstQjqiYNPAXQZhP9jyEDYndXo95b1RUBCV0OrWqPdqvDax35TpHtRimzMvUT+BRBqyeA8zXzUHY7R/joz20euw0666qPdqlNmq6Cybwlu2VfQRTLyXbXlklpdvrAzgCxuJOh/PRzRF3QMo7HbjUe6k9yhq2s0y8gZQfQ6EM4ScshnVPg3V5RtR/azP78TbbRvUBuLHeoFGMb6c+4RUx92iB39+CImkvNuHpgR+ERh031yPA/kRPCIP4Y8gDYERCzNh2lJEtxd0ib5yDnLaelR9Nao3H33lISDakbNWQZ8bhIaxvhaiLrA50WYX03NCCYvVyqR3+36Vk+mdEfIiiu7Yu6/3asypPW80mgQAEU3Dpg9t+NfvECwtdbBfSxiHrmhxa2zw2dBO/YyqhVNRXQUUrtwHrwginSGQCl0qqN2I0ViFDPoQ+UWD3pG+fG/krNXoK2Yi9/sMY9MkKGpHzvsUY9NE5NSNGGv3AAoyvmfhc+C4OHl19+dqY+L3I7O8HLulj+qAnhgL+hwOqudclLZc3MLFVuc75O99Lz0bn8cVaAMUwVAbnfYIWwrzKTLWsmbAvQBWqvV803YWqZYQvl/lJD9s0O2QvBlrn3MXz4WJ9UhhoNsMtHVTkXutQF85E7nXalRnAao1CiEvIr8IUfMpxsbJiIom8AZQzWXI+Z9gbJqIKG9BdRShugqQE+swmhTCWTO4/Fr6IGx5O9vZULH/Rz8+AIrbCS3ej+jEerQuDdlVhL74C8hJLahOO6KkC1QXylDoy2cjvH1Q3IKc9yn6qj2Q+y2BqA1j4yTknOXoq2YiitqRey+DgNfsp2avRG2YgoraoMsHug3Ujh2tRY1n2PJPrvJkpjBi6nsYmyYhqupRnYWIiA3cQVRzGcIWhT4Xcv4nqIgNpAFCQacP1VGUKEfhDaBayhCuoCmXzf8EpUvoKoCiTjOtiJ3EjV19JAQmWxS6vaigC7nfYtS6aRCuQgVdo/bsQ42LosCJ8ofIW7Q/jqIOpDMISkHUhqzdiGqbMUgmyOUdiZp2hCuIvnw25PUipIGcXoex1g2GZ7u/9x6/H93QhyUDDHUMZBXHbthwS9eIZPyR1nF9+d6IvG5zjFk1u3+eANBWA1FQvV4wbIiifJQ/TJ8RJCKjGZ9VSEF+QeGw8xkxovTJYFZlXtDtRDMkUaknXXdIB64CD/rKQxDFa8GItcOiTuScZRgbJyEqmpEHLMBoLoeohpy7yJRDXH0IaaCayyBqQ5S0Q14vCIU2/xOUIVEhR+I6UTtyzgqE8CH3MHcHPTIrn2O29FIdMOWq/LBBn13weWH/R87ztFPwiXwKKaADP930cIX8Br807uVdtYCvciKr2DCob4zLM3u2R5LmuXGZf0N0MZfZhpYP7V+xoy/fjL5yDiKvh7inKVm7CdU2Pa2ML6d2gegxx5nCDpDmSCXnLEdfuSdi0haMTVORc5Yl+j1j4yRk7UaMhipEaSfGpqlg70OUtIKn1yxPXZr9JoAhwZDI+Z+AIVFhO+ia+Z7qK5HzPoWQ0+wPlUA1VyJUMTgKUs6F5X5LMeqrEEXtaDEZCQQUtSOcYeS8haiePPMdR21mnnpdEHSBEqiOYgg5wKYjJm4x++qQA/L6kPMWQkcRqqEKjDJz7u1rBRk155gD5DiRF0JOr0N1OUEzhUN97VTk1A2oLROQ09aBPWK2w9YSEAZy72XoK2aaY4q7DzllI8aqPSFij72UAfNBTYBLG7NxMdOxvvgLyFmfo6+chcgLglRmPWusRgXzh5wXaJX58OGQVTcJoZQa0/1fXq+XpUuXUltbS35+PkuWLGHq1Kls3LiRmTNnEgwGxzI7GfH7/fh8Prq6uigoKNiu9zo7dDXPqFeHvPaJ40nmh89IHK92vszkFN7rcqVV72BC5PCc492oXcJN9itGJQ+58q3wjfzD+E/K6z3OJWhCG3b67aoLvwrgFk6K8OHYxVbVFATnZnQN/i3tq9xrz3716UJjGYeGzwHgEu1cbrX9gLPD32eRWkFLbGXiaNl485JHk/ODEb3jXCgI7kc4zWbGW7UfcI39m6N2vy+GLuYt9XHi+Bn7/XwrcmPGFZ6ZsKFxtDiIRWoFAXqJEEHHwI2LZucHw149ttRYzfzwmRnDlVHMZudbCDE6E+M/Rh7l+/ovAXOLQ4jwsNI5RR7Ni8bbRGOCnIak1fkxbpHeYcH24P/0F7gwcl3K6z+S3+VnjqFtpmbiiehLXB/9Ne10cpQ4kBfU23hwJ7azzhTTWOh4Ek9o35zT1pDoGFRRxgbXG8PKn8X4xq8ClIcOGnT+P/YHOEE7bAfkyGJX5ZHoU3w3+tMhrw2UM2aJaSxyPjOWWdvuHBo6m4Vq+Zjft4Qi6lzvjPl9R8qc0JdYqzLbOP2O/Bp3O24a9n3e1D/mxMjFWYc/U5zAE+rlpHOHiXk847gfj8gbdj5GgiuY3oP5RCp53v4n9tBq+WP0X9wT/Tufs4nHbH/gTv2vbFENbKExZfxKymiiNeU84H37/7G/ZpmZshhfZKsrGnOLyYWFhTQ0NAw6v2jRopQeT3cXPt9m1UEcD272EtM5V36Zi+VZ/Ey7kkpGb6VbqVaUcxyJ5N/6iwTUyLZBDRcNiRPHkNemUDNiZUyx8DFF1lAhSnc5hZtSKqPCDWCmmJoxzEDcAzwq9tKHW7i4zv7dJMPsI1G4eXBTRAFlFFMrJrDWyCxEjRaRDG7U95UzR/V+l9jO5Qx5QuL43/qL+Mhe6a8hsWNLWqEpkUTReVctZJ6YQ5AQOgbXaBfxluPvaAy/zXSm8HC7LQ7so6ZwAzhOO4TL5Ne5WJ7Jd7SvDTudRtWWULiB6cGrSbWNRhZzZpWxPu31Y7TBSo1sOU07lna66CXIx2opkOw8oV41DbvvjNefBlroUzvXxzOLsaFAeHHjHHS+hfQ2WC0scmWjkdqGaFzOkAg6lZ/LIj8bo1yNDdnaTx1t/PjpVj075N7DRVc6m7Isr69rp4zoXlNEbnPYaUziO9rX+I74GnOYwYHswydqKVNCR7NP6BQe1/87ovyMNiUUMpVJ7KHVAqbDurjTp4ui17NALUso3Bwp7M6ac7fBY0Sc4yIXZbTZbWExXhlzpds555zD9ddfT2NjI0IIDMPgvffe43/+53+44IILxjo7OxW9KYxnT2MyUkj+4riN+xw/40f27+EUQyucxgIPbgwMPmcTn+6Ar20AK9TalKtaviZOGuPcjC86lT+rcE/qL3Fm+Ar+EP1bVuFdAwbSPhUC4DA5j+PFoYnzI1Hs9BKkAz8ttLNUrWEl64adVi4oldkhxDyR/utgrnxFO56H7LdQywQOEfvznPEmBWT/5VPHIEI0SeFpYGDHxlwxi6liAjOp5TAxDycO9pEzkWL4w0G2dWqSGF0judPkJH7nuJH7HD/nx7ZLh53OUEJeE60jydqw6cnwIeMLIvdVaHFswsb+wvyKPHDVZNx4sp8AvapvWM4uJJKDxVwOEfuzXm0Zdh4txi89qpfgEONyJm/jFha5snqI7WvbYqBooIWX9XfHIEdjQ6/Rxzw5J+VH5+1JBJ1PjM/G/L4jYaOqY18xkzzSr1ovwsc8OTI5boKoQMthWv2hWszd9pu423kTJbKIj/mMEGG66WGN2sB7xqcjyk+u6Cr9x+V2unjQ/r+J42PkwUxlIkUU0EuQfej/+OxKoVhroJmfaJekvMcUavhHNPUuJguL8cyYK91uueUWZs6cycSJEwkEAsyePZsjjjiCQw45hJ/85CdjnZ2dik0M/TXmAu20Mc5JegZ61vt4Bw3ALWm22Q1369XuwiqVnbLKQOFXAfwqO++leaLfHlyQUOL3bfYfDkjTGLZ9PIVKEjRXqfQrgkYLfwbvrTY0fDI/bZjh4BYuLtfO5331KXuKKcNaJahv44kqQpT31SIaaGEtW3hXLeQf+rOM1MpAR5ZKtxmidkT3SYcnB6XktnTEvHANpEntGKXbq8b7Ka8JwClTfyXOhi/IffDhxY6NYnxJilkfXraoRvLob8vZttcoUT5Qi3hffTrIVpzF7kEn3UOuwl9qrB4itIXF8Mlm/I+vutxKI/WqeXtnaUzwix5eNt4dtimFkfJvY+dafZWJhWoZC9Qyekm/+nqKqBnxrhabsFFDRdbhN9NAREX4a/RJChksQ461grOe9G3kXPFlJmv9q/mcwsFy5wu85/g/ABawFA3JZGpwpVAKGyi2Gk0plZMrWMsf9UdHLJNaWOyM5GTTLRKJ8L3vfY+f/vSn1NaObPK0efNmli1bRiAQYO7cucyYMWNE6W0v4vt0N9tup2CAUmEkiBoPBRvMff/BP+0JgfrsInqrcX1n+wivecG9MYaY1C+aeR7V9d7tcs+hcNx4GwhTURC+K2YvrrsACgP4mm9IhCsJzk9S/gEsf2QrNT16opyCf9qT0BWXgRpz3fLok+/HceV9IAzCd1+O44r7TQOV8Xfm7YGAByBxXfiGVoTEbD8OSZ1HY68LJgDwJXEUd//t3xT3DLHyRkhcV3cRvNMHarBBc12ApgBvzO5goD6RthM7odj21sQ7GyIf4Vuuz63uDSgjlEyUFX5f9mnsrhR0JQzIOq68j/Ddl5ntjlibBML3XNpvpLw7eatrT7Vg6qoHks61PbDJrAPbMor9WPD3qZWdCtMG8cA86AKiv7w+USfizxbvcyDW73Sn3srruPE2wvdciuOK+81/r7wPvAHCt17XX3Y51LmB4wFAcfCAxAQhVfvItgxTjS+6gJJLTIc+v5TX8BPj94lrz9r/yE8jd7KYlYPixd+pLmDznTdSXe9NlEei/lx1L+G7L0uUD0okl2dBV6LMEAq6vWafFT8X8ICSZlyr7Y5LHDfeZraHG+5Ieo+JuuL3QX7/+JTot709Zrx43aG/PzLHvFifroR5/p5LoTvWB+wK4/xoM7CtBTymnBBrc+QHQAmzvG+8vT+OEglZAjDDxcMD4VuuN8Mr0Z+Wd8CWQ7FNpx/rF8K3Xjfm7XmgPBlnVGSCWN1N1NvRStciI/F3Gpdzw3df1n+xu6Bf/hvnDKq78b4xSd64F6B//ET1t9dYnHh7DN9yfSzd2/uvM6DeFgb4uOEIpj70pSFlDl3Ao1f8hW/IU3nAeJRvaKdRJPrr+8zQiWxUW5HIxMr5SVSxmX5zUinlGZLnHm5cHMJcZmnT+I39RwB0ld8KujGgzQlAZdfuhmiviXIbIMcNrEuOK+8jfNflZp3K9+O46l6zfGNlmugHtyGpnGPHjhvuMPs/SClDb0tCzrzhjv77xd9xrL/dtu9O6pth6H58QP4HymZJc+9YfRpq3E3k76p7Ib8buvPNchLKHJfjzx0bxwHzfnddHhurd7RbwswMlPGT9BFp3plf9TEpev3o2nSz2+088cQTuURJyaRJkzjppJP46le/utMq3HYn5Ngvehw2fSo4SOFmMbrk4+EJ5z0Ui8JRT9vD6CivLXYehlLYW+ROl+rO+EV+NBAInrHdzzXaRZxkO4ISChPX6lQTx4jh242zsLCwsLCwGF8s09ekvf6b6J/xhedxXfQOntBfSrp2oNgH6DdVATBPzqGa8mHl5S0+4R7976w3LFMVFrsOOWtaTj/9dJ5++ukR3fShhx5izpw5uFwuXC4Xc+bM4c9//vOI0rQYGbZh2PDZUaTbWmoxOuzF9lOEj2QboMXOiWLwakeL3BkrA9kSwRdth3Or/X/YS86gWvRviVmrNnG29qUxyYeFhYWFhYXFjmeFsTbt9XqaE2Zefq//FWPALpfz5amcLU9OMgFTLcpZ53wt53wECRElCsDTxis5x7ew2FnJWdMyY8YMfvGLX/Dee+8xb948PB5P0vWrrkpvT+umm27id7/7HVdeeSUHH3wwAB988AHXXHMNmzdv5he/+EWuWbIYBRzYk+xw7cy0Wp5ttjt7yCnbLe08a6XbLoe10m102LCDHBAcJw9mqW5uV31If5xrHd9Muq6hoWfw4GthYWFhYWExPlmTwTlJ3I5giDDr1GZWqw3MEtMAOETbn+9Gf8IUamimjVoxkaVqDUIIXDiGdLCTCh/5hAihgHf0BVxruzhjHAuL8UDOSreHHnqIwsJCFi5cyMKFC5OuCSEyKt3uv/9+/vSnP3Huuecmzp166qnss88+XHnllZbSbQfhwpnRYPzOQpvqTHs9oHo5L3wFf1S9KZxWW2TiVHnsdkt7JB5MLXZODGul26jQpbqRiDFXYl5j+ya/1/8KmE4llpP8xVtDWko3CwsLCwuLXZS+HE1bfGQsYZY0lW5ekccF2le4Q/8TAB1qOShYa2xippjGYjXYRmwquuhOOA57Ub3NFtVAegtoFhbjg5yVbhs2ZHbTnY5IJMIBBxww6Py8efOIRqMjStti+LgzuNPemWgh/Uo3hYFfBawtbyPgUG3/7Za2GAeGNC1yw1rpNjqsVht2SFmWUoQNjWhMsbat17RIzPGJhYWFhYWFxa7HGjamve7EkVjtZkPjUf15DpT7MFtOB+B47dCE0g2gkAIe0P/FieKInJRuposEEwd2XtHf48xcHsTCYidlzK3nf+Mb3+D+++8fdP7BBx/kvPPOG+vsWMQYT8btW1V6m24CSYHwIsaRc4idiQlUJHklGm3GyzZmi+yxFNyjw46yVymFpILSxPH7+qdJtlkslaqFhYWFhcWuS6YtoCHCVFHGH7SfUE4Jb6qP+FH0N4nr+4vZiZ0sBeTjJ8Az+mvMZiq2HHa4GCgqKUUgCBPhHv3vw3sgC4udjJxXul18cfq91Q8//HDGNB566CFefvllDjrI9JD20UcfsXnzZi644AKuvfbaRLjf/e53uWbPYpi4hWvczKyCKkQh+XTSPeR1r8jjCcc9BMUrlnpnGOzLrO2afgdd2zV9i7FnnHQdOz2NRssOu/ex8mD+Y7xGD328oxbiIS/xVdvCwsLCwsJiVyU7Ka6BFs7TTuFm/S4AXjc+pEN1USR8eEQe35Rn8KlawSK1gnliDivUWv5s/Bs9xw+znXTjxEGQECvUWuDAXB/IwmKnI2elW0dH8pf4SCTCsmXL6Ozs5JhjjskYf9myZey/v7l1bd26dQCUlpZSWlrKsmXLEuGEsLagjSXjaaVbPc0pFW4WI+dS27mZAw0DGdtW2oE/Y1gB2MeRR93dnbinKYuR0ah2nNJNx0j0q110U0NFhhgWFhYWFhYW451sP5xOohqv9HCZ9nXWqy00qzYOD30dn8jnXce/qJRlfBpdDsBmVccsMZXVagPOHC1sR4jgowADgzzcKJRlmMZi3JPzrPapp54adM4wDC699FKmTZuWMf4bb7yR6y0txoDx5FGyS1kKt+3Jsdoh2yXduK2qGirYSmPasBoaIUuRY7Gb0UTbDrv3FFGT+O3BTesO2upqYWFhYWFhMZZkp3abLicDcJP9CgBmB09iPVtAmfLLV+Tx3M6DzBbT8asAC9Vy9mAK4RztwgoETmy0EyFMJKZ0s9RuFuMboZQalZ1Bq1ev5qijjqKhoWE0kttp8Pv9+Hw+mv73TfIW+EE3wCaRVR6M+p6cjgHkVB+2+RXYjpwAgL7lHYzGhfyp7XZAUdmjoynQBTR6NE7v25sSChDeCWgzz0KbePh2ec5vhP+Hfxv/HXT+kHeq2G9hGV94vxJNF+iaorGql8qGvKTj2Q1VdOl+dE1xZM1ReBvEoGfPprxE/jJw14G7D6MBCGuIggLspxyD86snA3Bm+AqeN94clNfD6oLcyDc50nEE2sTD0be8Q+iheozPI9Dry/odxc/p79ZBz4712Bf3GCirGpFHhJD2ToTdA1JHheowV2wLRIWBCrRBnxPVW4gsqkRMWYos0KHQjSzdGxVoYLm7k3flUjRDcUh9EKmgwy1ZUexgo8/OuvISnpi2uP/+sfqpOk0HKirQgPCUIUpmY593OZGF96LaVqB6WhDeKjro4rfe11DSTk3JYVzp/A4ASyJLuE7dybs1psMOgUChOKwuyFc+DzAhoCfq/EafnU/LnZSsn0fNQm1Q3QNi9U9D13Qaq3qZ3ziN2Q6JPa8OCgKorgAIHRWoQhbORbUVZ/3eB4bp0rt4V3w6ZJ2vbMjDo7s5ynFQTnU81z5j4LmHy1+gosE9KB82XSMaK4uB+ZxcPQN7Q4gN0S1DlF9/GicHG6jqLURFYE15M4VtLlSglGJ9Bhv3rsPVvgZ3n518vQiXtxRVVw2iBMNTyC8PepKF8xp4//Dkvv/SJX5mtocp69Vp9GjsIWo5svhsZOW8UevHgo8eD12bINSFLiW9RgCpoN0lWVzu4P1qN0du6aM4qLOs1MnnRXbk57VMWVGB0VZMVV4Tc9qDuImipKIjP4K7roy+Xh/tuJky5VCqGrxJ70T1vIARCiBsPZAHQusC1YrR60LYdAjOQjXviXBPzfie5aR8HF/bIzEeFAT3IzxA2XxYXZC5zSFquyLs01vIfLFXTmNBpvY7kL/rz/DtyI/TpnfpEj/uqEGfTbLEvyf7LSzj5BUGtl4XeTJEID/M5HA3MmxH2XXK3XugWuwQLAWtHG1yLYb/ZYRzDeS1QIEf+sDotiF0G8IVAa0K1eFGdU+EcBVa7QGDyk9f2oqxsh38loOHnQ0dHTl1Ay0uG12zNuHXPbTmCVR7MeUFDaiwg9Y8Aa4QR7Xk446CyAshSp2gb8TokQjdDg43qrcX4exF9eUjfYUo22ZUlxf6PMjyEgx/D6reBwEHqrcC+vKgfseO2fZv75X1+IJu0K5183zFRxQ32BN9clNVX6KfP9Z+KM7qwpzSTBz3/guh1UHBFkAHdwA0HdWTh/D0QsiB4fchy1rAEQZNhy4fqs8NSgISUbMV1VKCyO8GRxhj6wRkRROEnFDgR7WUIaQBQgESbLEt6dIAm4KgC/xejPYSVNtEZPUJ0FUwKN9L9VVsFg0px9pMMkA8jKFBQ1UPlQ15lBc0kO/qwuPpoKgX8qJehL8WWXjoIJkgq/KMH3s2IvI7UYH1YAuBXSG02Rj1ExCydHhpZnn8pv4x3Q3Nacsnl+OOqgjlopQTGvcH3eA9sZhVVQ0Z09izoZKA3p04niEmc0TjnO0q/8THXyVbUEGQhXkYLRGIxupq3jRUpwKjEEPZ+OuUj9PUHQGa5MQJX4T6vlHN538rFqDXd6csv54qgadBpZTjmqp6qcxr4uBwHe6o2ZR6vWGcjcUIRxi8vTj1QoStHcI2VK8X6XGhbK2IvG5UyInQvaD1gbsXbGFUWwlE7IiyBlSvB0IuhCpHRSuRVTO4f84yfvyVz5JkDoDKHp3WPBsri+3cv28BX5en8LDj1kR/d1zoQt5VCwF40f4QR8kDuSH6G+7U/8Z+zMIpnHykFgP98szB9UFcyk5QRJJk/vj8IE41ZdRjrv6/7Klyblh8BHmdLeCIoHo6AQPlr0H69s8g49ejIo1me81rBVsfwiYx2twIIVGBGuTUKEZrI0SigED6FEZTBfRVQ4EDOWEzqm8twt0Jni5URyGiuh4cMSNGUQ2idoz6Kgg7kFWNICRGYznSrmP0ehGiCNXuBewQrkZUzkZ6qlLOhZVtLcJXB661GG1FCN0Gshhh6zL74m4PsqIVCrdA2IHRWIks7ISoHSI2VNADoXyExwt561BBzeyrnQZGUxn4i8A/AVF9GIKtYN8Cwg+yABVsQ4VsCLtCFOZBsAZ9RRT0XjDCiAnNiNJ10O1BdRSDdICzwxxL7BGMlkoI2cDQwB6F7kqMtVOgzwfChSjt90crChyIcvd26zNyPVY9n6CirQhbBxRIkDpGnRd6y0FUmnLsNnEC1RoVPz2Krq4uCgpS+9odNaXbCy+8wIUXXkhLS/rtMcFgkLvvvps33niD5uZmDCN5n/enn346GtkZNeJKt0wFOVJcwTlDnm91foxX5G23+8a5NPwz/mI8njHcQO81A7lInMFf1ZMA/Fq7jivtF4x6HuMcF7qId9WCIa89a/sjx9sO3W73Hmu+Fb6RR43n0DE4T57KQ45bRpTe7dEHuTl6V8rr14vv8nPnVcNOP2SEODByFqvVBmaJaSxyPgPASmMdc8OnJcIN9JSYitPFcTyn3sgYLs69tp/xLdtZw877UDytv8I5kWtSXt9PzOJD579H9Z7pKA0eSIDeQefzyaN7iPNXat/gJu0KpoSPooe+lOnasdHoeB+PzOO+6D+4PfonWungBu27HCLncXLk2wCcIA/lP44/JuLdH/0n10Szq5P/o32LX9pTl+VICakwvtDoet39m/0OztZOHtU0U5Ep/9+T5/AHx0+22/3fNRZyXPhCAE6Qh9GoWvhMrR5Rmj3OJWgiewPKFuObJ6Mv8/XotZkDxviL/TbO1b68HXO083NK+Hu8YryX8vpyxwtMk5PGMEc7hq+Fr+I/xuujklYq+eJJ+z2crB01KvfYUXw59F1eVe+PaprllPBz21V803YmP4jcyv36vzCysMF1iTyXB4x/AXCQ2I83nTuPwfsNxlZmhU9MG+ZUcTSPOe8e9XtfHv4ZD6WZT02iis0kf6R04kQnmrW8e5N2BTfaL8kYLqB6sWOjjU7qVBPz5d5DhisMzkvp5KyGCp51/JFqyomIKGWiOHHtoejjXB79GQB32n7MJbZzWagv45zI1WyhkVomsIGtALhwEiSElzx66MOGRiTNjhY7NnSMRF38ubyK6x3fzfjMFhZjTba6opzdO1577bVJf9dccw3nnHMOZ599NmeffXbG+N/61re44447mDx5Ml/+8pc57bTTkv5y4dZbb2X+/Pnk5+dTXl7O6aefzurVyZOEYDDI5ZdfTklJCV6vlzPPPJOmpqac7rMjGQuFG0CB8GQVzsvQ+XELF4eJeUykcsgVc6OJP409t2K5/bxu7ghO1A5PGCBtUM1J13pVX85bbftUetcSX7Edn1sGt8EpnQn7gKvUevwqAECFKE0K58jCvoMUMiGAaCm6qoF2357SX6ZhlG1itanOtNerRfmo3i8TLpyDzkkEkW0EtRIKmSGm0KRayZceaqgcFK8AL4XkU0oRAsE7MUX2SfJIKimjVtTwS/1+uo0AF8uz2ENM4WXjPZYaZh/bZXRzn/5PHFlaKSgVRbk+bk44hYOvctKoptmq2kc1vXS0kP5exaJwu95/4PZSGxrna7mNx0MxlILYYtdltdqQU/hghvFod2C58Xna6+27ieOhNjV6z1lC4ZDnV+VYP3dGRkvGmcYkZjGNw8Q8Wung0ujN+IL783f9mawUbgAfqSVMiMkWq9R6RmkNx6jQRGvGMEfI7WOcfw+mpL0+lF3jGUxKyLs2bEPKvO6YbJ2Phz/rjxFWmVd6Pxh9lIrQwewZOoHTwpfyv+F7B72nTXp9SoUbwARRyWw5nUJZkKRwA5glpyZ+r1SmnfZ52pyEzL+BrUykimlMTNwjRJhZYlpGu82FFODBjUQgkfzO+At9KpjxmS12DxpUC5/pqygMzqM0eCCHhbaPPfLRJGebbosWLUo6llJSVlbGb3/724yeTQGee+45XnjhBQ49dOSrkd566y0uv/xy5s+fTzQa5cYbb+SEE05gxYoVeDymEumaa67h+eef59///jc+n48rrriCM844g/feS/1lcazxG4Ehz4/l7vUikWY5ZOw/N07a6BwyzPvqUwwMttDIFtXIZtXAJFG1XfLaxdDlBVC6zYAw3pkiJiR+b7tS6ebIXfzdeIbZYjr7y734tf36jOn1ZJgET5UTh5fRAcyX+/CpvgKFYoGxjGO0gyiiIOnrsx07kH7w7BwgmKTyfBT/SubEQb1qYp/Ql/nU+TQTR6nubVbpt8tPpibt9dGmkIJBtrYMFEFCOHAQjq1CbaOTNtWZUIB+UR7GBmNL0ldF/zbt6EnjZb4oD6dWTuAbtlP5XfQvzGY65+hXU0UZjbRxiJjLb6IP8TfHHfxE/z1+1Z20HTIVB4u5TBUjr1uZ8Ekv8aoiGLlX1RY1dnbNWjPcq0Rs3w8K1ZTzRXkYAdVHQPXiHkLBmyt+AvjIH4XcWYwHGozcPmju7t5xG4xm6mlOG+YP0b+yQdVhYPAr2zUcox08RrkbW+JezTW0hFmN4bLt2BbnE+OzEaW7M9A2DFubEplQpMXHxXVs5krtfJ4z3uQ8eSrPG2/QTldObbJb9TBF1LBVNdKJn0ZaqaIs5/xtD5pUZqXbYdoB2+Xes7TppNNbDvUxao7YgypRTpPRymcMvcI8RJBifPTQx95iT6aHjmOiqMLA4H3H/wGDnRA+pb+SUHbNEJP4jfEQNXoFF8d2hSiluDjyo7TPUyFKUl6byVSOFAcSRU9SCF+gnc6e+lTWsYlP1NIkGT6KHvNImp52OgfEU3TRzedqI/uImRnjWuzaNKs25oVOp4TCRP3eqLbu4FxlZtS2l2bL7NmzefTRR9lnn31GPe2WlhbKy8t56623OOKII+jq6qKsrIx//vOfnHWW2cGsWrWKWbNm8cEHH3DQQQdlTHMsbLptavgP/23/fwBJNt2aPHYu7jsM0Le7Tbc/Rx7jCv0Xg87Hbbod/H41QlfomqK5qo/ybexKVTV42ENNYZOoJ1RtY05DDZOMqu1i060yePCQ3ksPqwvyH/kHnLaCXcimm/l/WdVIwxGbmWh3Jmy6RUObCegBDCR9Fd1U9zgy2nR7z72ZZXJTSptut9b8A23SEf33z9GmG8ASXx8vqQ9pKy5jP9tczredBnqI8/QbeLrGXFI+kSo2sDWlTbfF5S4c62exx0JvGptu/fZbJjQUUGRvocLTh8zvwes3kBIKAtORhZnsPaSun0ujq9gsU9uZ2UtNZ4pt4pjZdHu+/GNo6MnCXotp66a9KsI3mk6gQ+/kfbEopU23LwebyOvVUBHILy+HthAtAY023Un93k3MaO/G3WfHiGp0eKCsYW8COFmR18kHh9SxeF5LRptup2rHUVF4wHaz6Ya0ETVChFSIdpfks3In71a7crTpFsVdV0pfr48efAQmlw2yU7O9bLq9qX/EiZFvJT1f3AbKnC4bR/RNoprS7WbTDeDI0Hl8pJYA5laRq6O/Srqei003w65T5JqCvdVj2XTbTUjYIM3SptthLXnkR7Xd1qZbg97Ip2JlWrtbQtPYWuWnsiGPmWoq02yTd0mbbq9H3qdPC9FSFaSswZWlTbf04+C2Nt20iANX957j2qbb3/QnKW5wDMuGm6bZ2FLlZ0JDAeiKA+37kl9dih07C+s+piXajktz8XlVc9ZpFmqFNFQFcAgHBzfOoFj37RQ23ZpVN89N+TxN3ZF80X44WnX+qOezrwJer38jbflNbSjB0HWCWpjGql5qG4o5Rn2BxXI1CyvXU5XXxCHhOlxRhTQEQW8Ye2MJwhFCeXvRo3by7L0QtmP0eujLU3jsvWh5PQmbbkrrw3B3I7QIRnsJhG3YyptRvXkQciNUOT1RHx9X9PDKPn7++JW2IW26lXimc0jZ+UPKDAAzQyeyUW3FhZMW54fYhbmT5XNjI3uHv4yPfHrp47g6xaxmPwfXBzFUdJAd521tupVSlPjI/L2nSjhyoZeD/aUUOJ2WTbfd3KbbZtnAmqoWQvUdiXbVUtXHxdpXdw+bbtny4osvctddd/HAAw8wefLkUU177dq1zJgxg6VLlzJnzhxef/11jj32WDo6OigsLEyEmzx5MldffTXXXDPYvlAoFCIU6l9m6/f7mThxIpttt1MgRsfDp6jxULDBXBUY/NOeEKjPLqK3Gtd3RmZjJxWPRV/gguh1g84vmnke1fXe7XLPoXDceBsI88tG+C7TOw7dBVAYwNd8A0op8kL7oIZYw7L8ka3U9OiJcgr+aU9CV1wWEx7HOfl+HFfeB8IgfPflOK64PybkxsrB2wMBc/CPXxe+wUvYicVIuYpymzqWsn4KievqLoJ3+kAN/qSnC9CUqTguEUXYAs20eJzMuCB5m2PinW1DnUcjfMv1udW9AWWEkomywr9rbTneLhR0gTJrhePK+wjffZnZ7oi1SSB8z6WJMPFrceqrA8xd9Y+kc20PbEIbanQZxX4s+PvUq6gUYMTqYRxdQPSX1yfqRPzZ4n0OxPqd7tSDpuPG2wjfcymOK+43/73yPvAGCN96XX/Z5VDn4uPBY/oLXBBJ7oNTtY9syzBT+92W/4ncxj26aZfneu073K7/Kel6/J3qAjbfeSPV9d5EeSTqz1X3Er77skT5oERyeRZ0JcoMoaDba/ZZ8XMBDyhpxrXa7rjEceNtZnu44Y6k95ioK34f5PePT4l+29tjxovXHfr7I3PMi/XpSpjn77kUumN9wK4wzo82A9tawGPKCbE2R34AlDDL+8bb++MokZAlADNcPDwQvuV6M7wS/Wl5e/rDi206/Vi/EL71ujFvzwPlyTijIhPE6m6i3o5WuhYZib/TuJwbvvuy/ovdBf3y3zhnUN2N941J8sa9AP3jJ6q/vcbixNtj+JbrY+ne3n+d/nqrF3ZRvfnR1DJHCpkB4ILwdTxmvADAB47HmCtnJ659PXwtTxovA2nkGUyZf68LJiSdK6aQ9tjuqvpJ56DpYkCbM9dsZtXuhmiv8WcfKMcNrEuOK+8jfNflZp3K9+O46l5AJco00Q9uQ1I5x44dN9xh9n+QUobeloScecMd/feLv+NYf7tt353UN8PQ/fiA/A+UzZLm3rH6NNS4m8jfVfdCfjd055vlJJQ5LsefOzaOA+b97ro8Nlbv/B5oB8r4SfqINO/Mr/qYFL0+o9It5+2ltbW1g5avDmT9+vVp4x9wwAEEg0GmTp1KXl4ednuybaf29uHZ0DEMg6uvvppDDz2UOXNMpwSNjY04HI4khRtARUUFjY2NQ6Zz66238vOf/3xYeRjPFKWwgbGzEaB3SIWbxc5JFIMm1UYNIHI3IWlhsduQaXvpWHCg3Ce+vJbPjU07NjMWFhYWFhYWOzVfkPsklG7/F32BuY5+pds3tTMTSrdc1S099HKQ2I8PY95PLSzGOzkr3a6++uqk40gkwqJFi/jvf//LD3/4w4zxzz33XOrq6rjllluoqKhIq8DLhcsvv5xly5bx7rvvjiidG264gWuv7fe+FV/ptqvjk2O3mm0kdKVxoiDGgQZ9d0Ei2daohUQwmWo2kd3KTut9WuxO1Kkd7+DnMDGPY+XBfGasZqlas6OzY2FhYWFhYbETc7I4ihVyHY8az/M340nWhDZwhJzP1faLOEoeyLe1r/Gy/i6K3GxuhQjjUs6UjlEsLMYbOSvdvv/97w95/t5772XBggUZ47///vt88MEH7LvvvrneOiVXXHEFzz33HG+//TYTJvQvT62srCQcDtPZ2Zm02q2pqYnKysHe/ACcTidO58gNSI83RsNo9lgQ94Y5FNJS0ux0OLHHPGvqhAjjJ4AdW1o34XGsFY0WuxNbjKFXX48l1bKCNtVJC+0ZvalaWFhYWFhY7N7UahPo1P0cKvfHRwHvGQt4X1/EN2ynUyIKmc00nuTlmEfW3Gxufs6GlA78LCzGG6O23+ukk07iiSeeyBhu5syZ9PX1ZQyXDUoprrjiCp566ilef/11amtrk67PmzcPu93Oa6+9lji3evVqNm/ezMEH75oeoIaLG1fmQDsB6Va6SWv74k5DXP1ZKooTCl07Ng4S+1FBacb4lgLVYndjs8rStud25iva8UxjEtOYtKOzYmFhYWFhYbGT8yf7L3nGfj+NyvTI3Imf5/Q3AHOLaSf+JA+m2VJHM0Wkt39mYTFeGDUtxeOPP05xcXHGcLfddhs/+MEPePPNN2lra8Pv9yf95cLll1/O3//+d/75z3+Sn59PY2MjjY2NCaWez+fjW9/6Ftdeey1vvPEGCxcu5Jvf/CYHH3xwVp5LdydcYnysdOtRfThSLNC05b5w0+L/s3fe8XEUZ+P/zu5ek0469eZug22MwZjewfSeACHJGwIklCSE9oYkJIQ0AoEX8gsECCWBhBZSIHQwvfdm3MAF96re7qRruzO/P/budCfdSTpZtmSz389H9s3u7Oyzs8/MPPPslG1AsbCnLkeJ00gLblwDXAHSGeXm8CVjIyM/0g3gUu0sLCFZy8aRFsXBwcHBwcFhlFMgfAghuMb1vwCMoZqH5FNIJfFpXiaLoS3TpKMxltphlNTBYeTI20sxe/bsjHXYlFLU19fT1NTEHXfcMeD1xx13HABHHnlkxnGlFEIIr9BssgABAABJREFULGvwQ0/vvNPeGePwww/POH7vvffyne98B4Cbb74ZTdM4/fTTiUajHHvssYOS88tGAcOzM+vWpo0OYjmmJrrQt7E0DoMhOQJRIPhEfTbC0jg4jE5GyxQKn+bjG9oJ3GLdj5nnVBAHBwcHBweHLyf7it35kf4dbrUexJKS+63H+a5xOtPFZOCdvNOzkNTTNPyCOjiMAHk73b7yla9kON00TaOyspLDDz+c6dOnD3j9a6+9lu8tc6LUwKNhvF4vt99+O7fffvuw3XdHZHtZ0y2ounKe0x2n26jGWaPNwSE3YaIjLUKK7xnf4AbrryMthoODg4ODg8N2giY0jtMO5UO5kPlqKb8z/8wR2v4Jp9vQcNaXddhRyNvp9tvf/naLbnjYYYdt0fUOWwdvDqfbaNtBMkR3znPOmm7bBxrCmT7q4NCL0eSUHiOqOVd8jb+r/460KA4ODg4ODg7bCYfp+zJdTiEio2xQ9Vwav4YrjAsoxAfk3gzPwWFHJ28vha7rNDY29jne0tKCrg9upNFbb73Ft7/9bQ488EA2brTXjXnwwQd5++238xVnB2B0dLSEEImdZTIZTR1BgFbVkfOcJhyn22jGQOcAMZs57DfSojh8SRhtHw1yIVX+Cwxvbc4wjh9pERwcHBwcHBy2M67TL6deNVNCMStZx0q1flDrOTs47MgINZg5mmlomkZ9fT1VVVUZxzdt2sSUKVMG3Jn00Ucf5ayzzuLMM8/kwQcf5PPPP2fy5Mn8+c9/Zu7cucydOzf/p9iKdHZ2EggEcDdMx1vs4z33w8zQdhq29BdZy9knflrWc194XmKc2HYLSJZE9iRCrM9xLx4iaVOfZjODT/m837RcGPxTv4larYqj4+dQgI/pYjJ3uq5mqjap32v748LYr7lXPpb13GfuuUzRdqwd9/aOnMZilmc9N5YaNtOElbbu0h+Nn3OR8W3qVTPHRc/lC9ZgIfHhYRemMK+f9/a463aO14d/JGq9bOJ66y/cbz1OjajkA9cjXGZey2PyRWLEB51OIT7GUM1y1uR1fwODWir5P9dPOF0/dtDXnRL9AS+q3B8C/u66nm/pJ+cly5bSIYPUxQ7KugvU74zLuMK4gAmRw2igBYBi/MSIp8pvFWUcrO3F3mJ3fm39aVBrdmloyCHsOpVkoetppupDL/ODpU11UBc9mAK8RIhRQwVztP34h3xqi9MeSw0rvC+zSTUyOXoE5ZQgENxjXEuVVsGe2q5Mixyb2nzg5/r3+a3rkkGnv9bcxDTzmJznv6mdyH3uG7b4OfKlOnIAHQSHPDq1hgrWeF8ffsEcRiXvmJ9wpHlOXtcU4KXF81HGsiU7KrtFTuKLPNuvbOwtZvK2599bLtAIMyZy8IitZfk7/VKucH1vRO6dD/+wnuT8+FWAvfZyN/33sXqz1P0CE7UxQ7p3SWSvDNt/MPzB+BmXGGexb/R0FqplAAQ9n+IS287hcmbsxzwqX8h5/hHjFk42jsx5fjh4IP4E37N+OWC8u4zf8VvzVkwsSkWAJ1x3ZPRj3pXzOCJ2dipcRTlRonQMMGLMi5tx1PEb42K+ZhyXce6q+E08I19jhVrHTmI8y9WanAMs/uW6mVP1owd8jmy8ZL3DV+M/pI4q/lf/Ds+o13hNvt8nnoFOOSUpu3WwfEU7kv+4bxmSbA7bJzfF7+UX1h/7jXO5/l2uc/14G0lkk/QVdXR0UFyce7fdQQ8NuvXWW7n11lsRQnDPPfekwrfeeis333wzF1100aDWdLv22mu56667uPvuu3G5eirhgw46iHnz5g1WnBEhSoyLYlcPa5rvyk9ynivZxtsku3FnPd670V3JugHTimNymXUNe2ozuEL/HhaSj9Vi/mDes0WjOjbIvqMsk1SI0iGnOxpZpzazmvU5z2+gPsPhBrBG2Z3+56w32ExPXoWJ9utwAygWRVsgbW5eUu/yF+vfRIhylDiAgFbEd/XTceX51auLMG3k3uHYk0N/JZINbOYDOR9LDX5h+IYBFm+tZODdmoebQuHLue36w+ZzAMzSeurhsdRklN9GWnlMvkScOEdpB+a8TzH+1O/+HG6D2TG4TCsZMM5wUCoCrHG/RpQYFhYbaRi2kbqbaWST1Ug5JfxS/yGttNNMG181L+I68y5aZBtdaVPfw0TySv99Nb/f86UiMBSxt5jSRBs01OngjbTmVeYctm9CeToEALqJ8KL15ZjlMFw7FA/U4d5eyNeBNJzcYf2Lb0b/l041uvOyWbWlfsfz+EiZpE5UDRwpB0OxcR61XkAqyUTR4+hr3MZrctWr5n7PH6TttdVlGKyj8105jz8aV2Jislqt52uxizk59n0Ojv4PR0e/wyvmeyl7TEejkZYBy7+GhoHBF6zhX/KZlI6bymSxtZyX5DssU6sZSzXr1eZ+7aQt0Z+j9YO4y/U7LjS+xU+tG/hCrskaT6LydrgBvC8XcHrsYq6L38V6tXnIcjpsP8wbxGZ8o7l9HLTT7eabb+bmm29GKcVdd92VCt98883cdddddHd3c9dddw2YzrJlyzj00EP7HA8EArS3t+cl/EjwHp/yrvx02NJ7X87PelxDw0/BsN1nMAx26O9gO5SbaGKpXMVlxtnsI3ajijIelE/ygPXEkGX8gtU5z6U7CnYExlFDOZmOxAK8CAQeXBTjp6LX+VVyPV2qm8vN6wFBCYPvrAe2Uv4tk6tSv0/WjwDgIG1PvDmcZEMlSoxqKvocl0gMDG61HuRdNfiy29LPVGYYGSevIXI7uRaznKXWKo4Rh6SOtdCWNe4CtZTDxL6MoTrr+SBdWaeb96ZgEBuwlG7DjwfVWkXGx4qwivKq+wEOYs8hpaclpqdaSCbHj6Akuhefys85Rzstpb8L5FLeUfNoo0dfNqr8OtfPqTdznqujirE53tPWZrI2bouul8hRsyurw9YnvQzkwwXmVRntxI6GqUwWWkvpztMZn4sOlfvj0/ZEdAhOpOGigWaeUC8zJ/pt/ms+P6hrulWYZXIVMRXnM/nFVpbQJtPpZuZ1bSE+3FswwmwCdYOO66cQgA/UAt6SH1MtemyxhgGcYMPNQLtdbosPgTuLCYOK92/5LAdoszlOHEqAIpawipfkO3ysFvGJWswf5D2E6MKDu88H1/SPnmUEUpvJuTGIEWcqk3hWvs7/M/8GwBvyI/aOn8Z6tZnZzGAD9egDLMExRmyZ7XGW/hX2E7OopZI2OlL9zPSlP4Y6k6KBZl6XH3KNdTu/M53NEr8MfK5WDBinSeXvwN1WDNrptnr1alavXs1hhx3GggULUuHVq1ezbNkyXnjhBfbbb+C1mmpqalixom+mvf3220yePPTdTbYlN8aHb1e3JSq7oemnYJtPt/DhzXqsqJfzTyJzjirqzQPycQqEj58Y52FgMEPsxOXmdayVGwmryKB2oE0nl1GvIXa46SlCiD55X4CPA8RsFHaD29zLqfK+ms/O0aMJE6GDIHuJGcwWMwZ1v6010m2JWpn6PV2bAtjOox/p382qc7mYwU6U0L+MSSeTgZ5ymECPsfrfxGiwwdDez6g6gPIRGlmZy1npxc2V1v/jGP3glGHTRCv7i1l9nJEfyAVcYpyFK8tItTKK2VXsNKhRbAPtuCkAXWzbXYWP13qmSK9kHQdqezJZDM151HuEl0KxTm3iLvfv2FebBcB6NjNfLs0wiDeohrzu857MPcp7E434xODLyXAyUYzd4jS2dYfLYeRoVe1Duq6RVk6OfR9T5edU2F64x3qEfeNfG7b0RvOX/MFyQ+yvW7RswZaSHN2zhJV82/wJy2XPB92wiqT+T9qoYRXhRvMe9oqdyk7Rozgudh4tMvtHreFkS3Zu3E/M2qJ77yamDjpuiC4Ayinh5+b/G1GnW3/3y2bzbA3Sn78/YsR5Sb7DbtpUWmjHk7Dd3LjoJkKMOBoa0V5L/7gwmEbPsh2zmJ6a+eLFw3jq2EQj+4jduNG6mw/lQp6QLwHQRmfKiRfsZ7SphkZNlg/Z+XKgNhuJpIswGhpHiP2HbRZCmDAKxTPWq8TVyDnxHbYNgxnRuEZu3AaSDI2813TbUq6//nr+8Y9/8Pe//52jjz6auXPnsnbtWn70ox/xq1/9iksuGfw6ONuC5DzdJ/b9MXuuqEFIgdIUxcWl0Bm390EQIIrdqM5Yv2EAbawf45gJeH9lOyhvfGsq+69voS5kV5ZFMZnwhAqKPLUQ6wQlwVOCMfMcjAOu3GrPunvkZJb3Gkn24+v3Ys7LY5m2tDT17MGiOEVBN0KSCMcSYdEnjIadV0B3ZxBLWkhN0lVk4g+68CoPLmGk8ks/5EVESTPoFnLRdLB0lDIw9plMwV9+gj8yK+s6VF48NH/6NVSsA+EOYBxwJeZ71xO+1ECud0PcM+h3lDoWGvkKPNkwaZNXoWZ+juYPYa2dgFbdiFbQlYwE1Y2IjmKIuZErpiBrGzD2mA9ui7guafbpFMUkYZcgqgt0CTXdFigwNWj26dQV7YF74rEZOma+dz3W2pdQwU32gVgnGAVoZVNxnzGX2CMnINuWQ7wb3PYII+EfgzA8iKrdEe4Af7b+gRVtI+z28IuDV6Y2vFgl13P/Owdw1pIQgZhtfgfdGpv8Oq+M82G+fGQW3bMNj3R9CxXF8Qdd+OrW4Zq+FOEPoYU94IlifbYrwdYaVEcgER8KiwPonWbu95441tHZmlWnk+ExwbIB09jScLY0OzvbIGfZi1MXLCUku1LnS4I+pJQoTdFVZCIQFAXd+JQHSygaizoYM2UBIugHS4Od1iBWj0duqsXsLiR69Jv4RQQ21kHYhyUEctUkLNNN1IBl09t47agN/PHKzKnyTz9Zz07tcWrNwgzd0CceNWz1WOTWCrAyHX8q8dfpFiypKOCAJpBWlE0+xeqAgf7CEdR+MhnVUUzJfm/hFxE0TxQ0haUpWLAbVn0NZqSQZr/s897r9nkNrb4aUbsZ1VqGNn49orQVuXgm2piNWItnEl+xEwalA75nEXDjPndXJvz0f+kg2Of5fvZRO0euDzOzy09BLJ53WzBQ+R2IP5j38CvzT6nw00/WUxSTBN0ar39+InNeHsvsygWwdjyakFiGxDv9c9Ta8VBTj1Vfi9ZegmqugqgfUVSKGPMW2s5LEdUN4A+hNtcgV01Cq61HVDWh2kpRHcWoZdORDXUIz5i++dcUhtjo23ziy45K/Ksf9Qry0z1Q+32MuXYCkY5yVEeAgoPfQK0bR6SjHMpbKVIxhBSIKatQ/m70shbk4l0RpW2o5gowDbRJq5GrJyFqGu1ytnQahPyIyetRmytQqyeiTAM6AmAZoEb245sYU9hHX5tpw91JP/V2/uExogYGaD/E5BfRJqxB1G5CtZcgStvAF0FtqkXUbYawF+uTPdEPfxM0CUJBewDVVprKRzFlFWr1JMS49aBbWK/MQT/idegohtJ21KpJiNJ2Ujf2hkl97zJMCPpRES9y/izUyikQq0VFvHTLMKZmDenZgUFdU3DwGxglrWjeCJoCTANr0Uw6W+rSbAJFd5GFQFAYNBJ2LUSLwd2p8CoPutBpLOqkJOjFkhaucWvQvBE8E1ZBQRihSeSSPZArdgJZOKw2QVdnJ5a08n52IQW6plNYXDwkO0N1xojLOGEtOsh3IjL6BaLYg+qMIqTAo3nwFBcMi/2j7f0woiCIXDMBUduEWjXe7icAtIxBmRDr9iClTktJvI+cGhq1wZKtbqepzhjBNDssdx9J0FUUpzBooEsNU7MwigtQ+z5DoGwzyERhKm1Hvr8vYtIaRHUjcv7uaFNWg6kjV01CjNuA8EYQtfWo+mowDUR5KxR0g1DItw9ESQ398DdRG8aAaaBMF3LlZLqEm/k7RTj1ts9SNkddyEJHozbuzctmyMU3Ypcx/YNHOXJ9mGmtcXQEFoqgW2Oz3+DlcV5u2Kck5/WPX7Irs5b4KRyzFgq60ROWnlw8k1DLWOgI4FFuDKH3eUfa5FUguhATliNK2rArA5DLpiKqG5Bf7Iy+x2fIVWNT9Z42eTVy0W7IzbWIinb0veaBK4wob4bCbuTbB6Id8bpdbwJIDaSG9fqhIDX0OW+ApWO9dRDarp8jF8+EqMeuD5VANdYgVBm4s5dP/ZAXUSEX2qz5drv3zoGI2no7UmkrwhPD+mQ2+sHv2u/YNJCvH4p20LsQ8YISqLYyiLrBsBDj1qM21yACHVAQxnrrIGgrRW2uBVmJts+biEAzaCZyzWTEuDWoteMRNQ2IgihyyW6oDg/o9ocxbfZ8tMmrUevHIhfvCq44WLr93EJivXcAorLJblN8YdSimXbbHXclXkramC9dgLfve+sdjhdrhDs7B9U2FCv/kMuzNusZVEsRom4joiACmkIu2BVVX4eKFCGKSvtcE6rRGPP+dwdc021ILv8NGzbw1FNPsW7dOmKxTO/7TTfd1O+1P//5z5FScuSRR9Ld3c2hhx6Kx+PhJz/5yahzuKWz57wqikXaVKpgd8Z5FYwPKmxt7EJuCKWcbl9b0kRdV7avuwriad7aeBfm4vu2qtOtQHj7bKb67funU7cpc9phcdCTV1gFbeeQD43k4MqeOAqIp/JH3+MDEHYlZj5xgh0lWEx8Qwj+Qs6F38soxlx8H4Q2gb/Odrotvg+58Ie2BZV2jx65+g+PBpJDsFVTJe6Zn4GQyGdOwHXYm3Zllnxh/i7w2V+szCdPwT3nTYQnkacSxnbZ+RaIq2Q9kcJInu/6BDO0OdPplszTdGJBZNgevi83vmM7AhLHAVRoI0posOEt8NfxddVOWVc3TYVxtEN6KtrJ2jh+uMQi0NXzTgNxi7FdFmNCFrFB6F7GsU3VuE9/lJTVLCTWsydQ1Nlrim0w88tetveugnGK06ZOZtfxeEb8bGkMZzh5rChtpFsuuZJx+i+bFhowJlgEod1QCWPDffJcYi8fDsFiDKBgl4UAxF4+EpSwS3GwCAPwAPt8VMOYjf4+TrcDN0fRFUAwQzfM0Ibhq8esviPtROIvEFPsu7kLlF3rjO2C2m4L86ndIaET7sSzJescHYg9cTJ6sBgdGNNrsGNx0IN718+JvXYYriNfI/bnC9EPeQf8Icz7z8Y48H3Mp07GCPlJ6kd/71WF4nT/fSEdP+3rcAM4e0mIMV0WpI92yKMtGKj8DkT6ujzQ804tAWMT5dP9i/uIvb1/Sjf0E58hNvc43HPeQL5yhK1XQdsIUZ1dqOAUjKNfAH8IhEJUNWH+5+sYl9wB/hDCF4baelvfOgOoxAiKJKOxnnawSbhpMPb9mNgrR+DZYz7i7QNwJcvb7HnE3tnPDnfYozcV4DrlWbsM+rsw7z8L98V3EvuzvdC5MecNzKdPwn34myAk5iOngxK4T3yO2CsXQjAx+lmNjt3L1ca++lrea3RyvjZU9nD/5UIF46jgTIxD37TLlTtu2wmJMocvAt4o8qN9MI5+tefC0g6EK80mFdidp8SxVPzSDvtcVZOdbip+LyOytANBB+Z9e6TqXYhTgAEYW5wX/cVxz56XqtuTmE+d3McmKM5S/fpTxxRgUhNMzjrQYKM95U4/4dkee/XpE6HTTa56P9uxwYQL0CExbTCfZ+9JY2A9ySWnC3DhGdI7sb8h9dj5+cqRSy79nEV2PfDs8bjn3EnspcPT7lkMQuJO1AVjujNHiPfImdt2Gy47DRikHQZFwfQpwAYELdy7LMjUXX8X5uKZuOfY5dn8eG+MAz4AwHz0NNwHvwcoKOy2y2TimmR5tD7ax0792Jd7zgPWkydT0Blgv8864LbP0mwOAAuI52Uz5GIfbXdOX/IAtan+ri1X0uavC5n9Ot32e3I3dEvgPur5RL4IQGE9fRKFqfIsAdnnnchVASCA+4QnMvLUfPRU3Ie/ifXKEWhfeRrzqZ4NJ4wj3sB86mQIFqMiHrTTVtkyJ/LU+mgf9PR6U5egS2RaPkMc+fHeGEe/inl/YjOM5EehYHEiB7KXC32PD4j9+UKM459L3c99yR09MgDyk70S9wFcZo9MPtsuFu60fCgI99TVQiE/2cuWJWGbZfS9nz4B9+Gvpuw4hMR8+riMD1r6GY9BURChrcd88hRbz5TAOMPe6FAumon74jvtyEIRe/okiLtJ9T5lWjshFcT7vrfeYVfQro+S9F+uBra/c4X1c+y8dx/5cqY/Is2O7X2NtWFw65Pm7XR75ZVXOOWUU5g8eTJLly5l5syZrFmzBqUUe+458Lo5QgiuuuoqfvrTn7JixQpCoRAzZszA79+x1uMaPNt0oGG/JNdkGK2sMzflPFe0g63ntiNRJkqAbipF30V5891MwcFhRyM2iqdETBqG6aUODg4ODg4OX15OEIcNqrdroOccXOHgsL2T96fBK6+8kp/85CcsWrQIr9fLo48+yvr16znssMM444wzBrz+3HPPJRgM4na7mTFjBvvuuy9+v5+uri7OPffcIT3E9szocblB8Sh3uj3NaznPBQZY68thdDKYxfodHHZkRnIHv4GopoJySjLWR3RwcHBwcHBwGCy7aFMGtCNcGE5fzmGHJu8e75IlSzj7bHuYpGEYhMNh/H4/v/vd77jhhhsGvP7+++8nHO7byQiHwzzwwAP5irNds1quH2kRMiga5U63F+XbOc+VaNtuh0SH4SO5vpuDw5eV3gskjyZKRDEttPfZUMLBwcHBwcHBYTAIISjE12+cOCaxEdzR2MFha5N3j7ewsDC1jlttbS0rV/bsTNjcnHvHmM7OTjo6OlBKEQwG6ezsTP21tbUxd+5cqqqqhvAI2y9vWB+OtAgZFGoFA0caQRbKpTnPleI43bZHklucOzh8WRGjeBRZbiN59Mrs4ODg4ODgMLrwiCxr//Ui2GuNMweHHYm813Tbf//9efvtt9lll1044YQT+PGPf8yiRYt47LHH2H///XNeV1JSghACIQRTp/bdhloIwdVXX52vONs1r6kPOGSkhUijAO/AkUaQSD8jQkqE43TbHnGmrTl82VGjeBSZJjQK8dHVZwrs6JXZwcHBwcHBYXThHuQaziUU007nwBEdHLYz8na63XTTTYRCIQCuvvpqQqEQ//nPf9h555373bn0tddeQynFEUccwaOPPkpZWc+i6m63mwkTJlBXVzeER9h+2aAaRlqEDLwM/BVi5FC00ZHzbDkl204Uh2HEcbo5OIxmiijM4nQb3SP0HBwcHBwcHLYvdLRBO+ccHLY38nK6WZbFhg0b2H333QF7quldd901qGsPO+wwAFavXs348eMRwjHYF6glIy1CBuWUJDZhHn0MtKbQk/IVfqi6nT1MHRwcdhhGg2PLLwpB9V06YjSP0HNwcHBwcHDYvpBIGmkZaTEcHLYKea3ppus6xxxzDG1tbUO+4YQJE1IOt912243160fXZgLbCqXUqNu1zie8o7YbNVAHz1IWCrmNpHFwcHDY+owGx1auDXZGg0PQwcHBwcHBYccgafH4RvXMKweHoZH39NKZM2eyatUqJk2atMU3X7NmDfH49rFTSWNVNwUtntRIsLhb4oppqbDm1tFiJEIC3BrEZGYYECUejEPG0EUYieKdOg+HbowQiNoOI5cETSV2ddTcIBPrmGlutLEHb9VnzLYu2nsHbeagN+uoaPKlntV0S4y0Z4+7Je6Y/XzZ8ibutp/NHdPQ0UjmhxUzSXYrNbeBFlNYqychCkMgFKK6AZQGpe00Tgj1K3upKKZ+zFQC0QD4ygHQxh6MKI+i2j0g9ezvJMs7Sh0bJT48BWhlbci146AgjBi/HrluLPgiqThCNEJLGcrS0RLntV2XgFAoAVHd1i1LgKkJNKXwWmnp617wBvromDb2YOS6NyCamNorY6AZUFhjh4vGQqgelGnrK4A3ALoHrXTn1Lsg3NLzu1f6kS8eRbcslIC4JujwCN6p82Bm0b24W+LDk6E7SX0zylpTeUTEA54ooroB03Khwt6cZbdHP3V0BBaSWJY46WHdbSBiipy6k0u/8g1nSVPGbAdzrmexwwKFyvmsvY8VTFwLXQWAQK4dh6huQFk6KuohvnYiuhZHjFsPEa8dp7sAJTWkgJbKMO8dtLnPu93g1xnXJdCUzNCN4a3Hco/NFUKnw19IINiJAKK6oLFAQ5u5juIlE1FhHyLxbHiiqZnOoqoRZenIqIeoq29eGevGIcYlytjENciGSoQUaJNW27+rG1BdhaAM+nvPEoXpllnzLsk7dR5O2mhQEI0NqS0YsPwOAj89G+xs8Ov444qQS/DhQQ3s92Y1Y1ZPRFQ2gRIoAbK+KlUHiXHroasQZRrImJu4S+Adu9HOJ6EQ3jCqtQxt8urUMVrKUV0FiMomVNwNyp/IL4lCId0CPWI7/Ry33+hCJf6VqyZBYRdy9USobMJK1MF6WlhUtqALC5Toadtks12O1ttlS1k6sqESbfw6W5/8IbQJ61DdPmSiHKq1E0CJVP014ksWePVUeZcoom67oe2vPRlKGMAT01G92kEdu/7HraFNXGvnn2ahWssQmgRP1P7tC0PUgzZ5tZ1/IlGPdvtQrT3Lv4iikB3f3wVC2fET8Sjs7kk3iSfa81uXdnqmgTZpDXLlJMyoDyw967MJBJrbSNWPEjnoNqx32B3TkKsnQWEQDMs+IfWcNkG2NH0xF9naZ1HeBrpp22HeCAgQ1Y2oLj8oHRBE3HEEAiMm0BLjG6JuE1dMT2ioQHPr/doApltBTOb97L31YCh2RjJsoYi5rUHpY39xLLfCFdMTObEF9s+6ceANJ9qYcT39BEBJHVCoiBclNaKevnL68GwTO42Y3V5ZOXR4oLBYOxGjqJ0ewwT7mRPtpDZ5tV1OlbDLVkMlwmUifOHUcYREeO3yaJdzQIrUeWXpdn8i0symWnsQSHqf1IsHIeN52wy5SNkj4Sa7iyUUUU3R4dF4py7TydZ7V/dNu61n7GZvj42fyOre5RnActv2fDKSqGwHEbfbkMKuVJam7JSqJmSDbbeoRDUoGypTtqAob0U2VCEMM1WHpurBdJToyWclwNLs99RZhDZpNco0bBs6kfeYPtBc2e3D1ZPsNrCzCFHYlbKRECBkM8Iw0SatBtMAw+y5t6lD1M5L1VqGMnWELlN6kZJ/0mpUyJ+Sw64r7b63Nn59hh2HL4KoboSYK9VOyPoqNG8E2WjbvLhjEHfbtlsyjXVj7fieqJ2XIX+auW6/hGT7JbXs/ZWhtIv9xTHc2fM7o45ZPQlt3IaMfnZSF4h6weXuc40oLoCNA5UAEEopNXC0Hp5//nmuvPJKrrnmGvbaay8KCzO/ghcXD35B+6KiIhYsWMDkyZPzEWGb0tnZSSAQwN0wHVGcfafFAEVMEmN5z/3woKfNrlObmRo9Ouu5n+nf42rXpUOWeai8YL3FV+IXDiquF3fGxgYlFGEhE87E7N4qPwV8YPyXKcZ4AO6NP8oV1h+YJaZzun4MFxrfokm2snfsNASCCBHaCVJFOS20YfXjBXvH/W/20mbm8bTbD82qjUnROVhYiIRTKEkhPiLE+Ko4irfURzTSmnf6B4u9edlz3zBKnB9Xxv8fN1uDv//3xTfZRCNvqg+ZwBg+44uMPNmPWXzAAsDWU0VPA95Xb3sWbNXQKMFP6wALuLow6PDMsx3jI8DT1qucEe+/fgjgp4P+HdVJiijgdv1qzrGu6HdklQAOEnvziVrEFMazlFWYWP2m/Zn7WaZoEwYlx9bgDetDvhr/IbuJqXSoIMvIYihtIRWUEiaSWvfscu27fMxifqZ/jyP1A/q99ujod3hLfdxvnCddd3KsPnJb7pwWu4i58o2MY0mnbj70d00NFTTTxv5iNjuJ8dzl/l3q3HK5mnPjV1IrKnlTfoyFySFiHw7X9+My45z8H8hhqxFUXVRG99vidD51P8ku2pRhkGhkOSNyCU/z2la9hwA8eIhgd64fdt3CKfqRADxjvcad5j8x0HlJvZuyzZ407uI68y4O1fdmvKjlTP0UCkSunYq3jCesl/hm/EeAvZB6jNwf2p9y3cUxuv1B4QexX/Ff+QIhuod030u0s/iD+2ccFTmHt/kkr2srKGWWmM6PjXM5YoA6PBctqp1yUdLn2Izo8XQQZGcxkUWeZ/pN42bzXq40/zik+3d7Fg6LjXJr7EGukDcM6VoXBnHMVPhc/Wvc4frtFsvUH4dE/4eP1KKs5/wU0Oz9cKvePx2pJAXR3XOe9+DOcC7l2676KSBGjF2YwqueB/HhpYMgD1hPAGRtH5N6eWv8Aa6wbsyZtoZGyDN/q9q5Sil2iR7HmizeCjcGsTTdyQcDg3WeNygTgS0V0WErc2LsAl6R722z+4U88zFE3uPNBiTpK+ro6OjXD5Z3aTrhhBNYsGABp5xyCmPHjqW0tJTS0lJKSkooLS3NK61DDjkEn2/rNPTbkg6CrFBrecx6cdDXtKr2nOcmijHDIFX+BETRoOMmHRcGtiOynBI0RE6HG0CIbh5ST6XCc/T9CBLibfUxj8uXAKjUynjEfSsLPU9zvvZ1jhYHcb5+BpMY1688vlG+8+qWUCFKuVq/FJn4apYkuavgNCayVK0cksMNRk7fklSLitTv3Zk+YPy/qH/ztHqVcaKWhSyjuNdKfh+wgFoqMdD77HgbIYYrbYCvBxfJb68SOaDDTUOjTlSPmMMNwJ9jul86nXlsux6km/+oZ6mm70jEdBTwnprHaeIY7nffSAED191lvTod25qDxJ5UUMqHaiFfsHar3KOZNnamZ+T3TfJe5svPud36ByHVf4fxU/X5gOmPdPksTBvplmQo014VKufYtEPFPswQO/G2+pjF8guOj57H7eY/eNR6gTvNf/GZ+oKn5WscIfbjWfc9PO65w3G4jUKGawf0pANpe2ceA5fvLeFw9uNd18P80fh56liTagPsJTfekh/zoVrIq+p99mdWKs4jci6fsZw/WPdwiXkNy9Twf4wAWCyX84rV06H6iXZev/H31HYFIKS66SYyZIcbwHXG5QAcpR+U97XNtPGKem+LOoO9HW7JY8njzWpge61dBYd070IKhs1G2V2bOuRr472cJh/KBVsqzoB0qNwfG3vbilsbTWj9jsfuPZqrd7u6NzPR0q4fQ1XG+RDdxDCpp4WX5DtoQqNUBLjMOCdn+5jUv0/V5ynbNxulFG91O1cIwa2uX2U9F8NM9S8HS3JEaTXl3GX+a4vlc9j6rFYbgG23keMaNYjhaFuRvEvUa6+9lvp79dVXU3/JcD7MnTuX2trafEUYlYTo5g7rIZoTBs9AtKqOnOcmirHDJVZelDL4UYpJTCw0BCtZz0wxcOP8uPVS6vdEbSxjsYcsfyIXYyl71My+2u4UCz+VWhm7a9MIE6WF/vN1dO+8umW8YL3FJDGOQ8TeGce7CDOJcXzOStayCVeeDVSSidrocbpNzWNUVLeKsIfYhbZejrIAfo7XDmVcQrd6GzbphmAjrVRRnmqsB0IiGc/I1lnlBDIMMaBPOJtTpDDhJMtmyLwo32EX+h9ZcgCzmaPtzyRtHFMYT3AQI+lKhlCnDCeGZqRGTvT3QWBLmc/nffL1BfkWl8au4U35UdZr3rI+GlSncsIIO92KxMBO3sGiUH10FWCqPomfGd/jbuP3rGI9r6kPuN78C2fGf8yr8j1msQuTGMue2kz202ZlSdlhNKALPeOjxlAJExk40ihHKcVGtu4O9V/VjmK2PoNK0TMdtDnx8e09NZ9brPuJYzFJjOUAbXYqzj/kU8TTRpwtUSvzuu9n8guWy9XcYt7P6bGLuS5+J9kmzXw9dhl3y4dT4ULR14GfpIhCKoT94f5t+TEPy+fykqk3C9RSAGZp04acxody4RbJkI1K7HfVRidx1f/yOu0DfATMxVBs+VyM1+qGLa3P1Uo65dAciYOlvza1gvwGhgwHHtw5zx2pHZDz46ULFz8yvsuBYq/UsaYc/aAGmrkq/qc+ZfAW835+EPs1EZX5EeNN60Nelx/2O3uodBuNEpuj7cfOTMx6bqCZFOkkbU0NwUYaeFq+who5sg4Wh/4xpcl6ZS+vMpx1Vn/82rxlm9wnF3lbR8ldSLeETZs28fbbb9PY2IiUmYX+0ku3/bTK4eIdNY+r47dxm/vXA8ZtpT3r8SIKGSdGplOfbU233vQeLg49O4tOE5Mpxs9z6s2c169gXUZ4P20WG2Q9XYR5X87nIL2ngbnMOGdQ06/A3gRiR2SVXM+p8YuQyFTjXYCPKFEkinqagOyGho6ONYhGa9IIOXmTVNPjdMs2qiYXq1jP3mom+4lZfKAWoKEhkXQQ4rv66dzq+hVF0dkpB5SB3qcRVygaaWEGU+gSYdpUB2GifRx16eQzInRrUKaV9NnNd6BxR+WU0E4nGgI3rj75ECfOa3yQGK3aN7Vi/FxjXMaB+p7sHD2a/1hz2Z3prGMjbeQ2okfDLtXf0U4lpLp4VL6Q8dxDmSLZH+kp6egcxr48oV7i6dirXKydxS9c38clXKk4t1sP9ZveZMaykzYRrxjZDwrZNlLYnWksYWWftmComMrkdONYbozfTUdCn5ppY192RwhBuSjhVO3o1Nf7TaqRRyy7U+6MeBtd+PBssV50DHGEz2hhk2rkj/F7tvp95snPAFLOKiD14ffxxMyLCBGuNH7AN7UTEXG4Wd5nrzOVVhculatAtx2Fm2miTlSxSTUCUCfs0TWfys/ZQ+zCrdYD/MG8h3Y62YUprGMTc3mDk/Uj2E30OLg6VJBV2BuljaOWK43vs0rl3jgtfUTvB1vo7BLA4/Il9tZ3Y5oY3PI12aa+fqI+w1TmsE5HqhClqcaihQ5q0uyf3gx1pFstlUO6LhvJ9z8Q2foGkNnOFuBlnlrC4ew7bPL1JtzPBnX95fXWohh/zpG7QdXFGeI4nlSvpOyzpP2lIThZPwI3LnRT8AYf9Ts1eyVrOSJ6Fl81juYb+olYyuIe82G+YC2TzLH8zPU9wC7jPzP/H205+qAAu7ITB2h7Dv2h88AlXHzHOI2rzJv6nsuhU9nooDNlg81iOgvUMq417+Ae9++HUVqH4WS5WoOBwQyx01Ybbd2bBtm8Te6Ti7zXdAN46623+Mtf/sKqVat45JFHGDNmDA8++CCTJk3i4IP7X+D5vvvu4/vf/z5ut5vy8vKMTpkQglWrVuX/FFuR5DzdpcW/pzrcMzRZagpNihxhgdAEyLSs1RLnvDr6vjX8a26MS8xreOrJevZqjOG1EhWtSqYACA1UwikpNLSxB+P+2rNb50GBqIoRiGZWtI+edBKzP66ioLvH6Oj/2bOHgYxjQtNAJptilbrGfcHf7IVpAfPxr4DSUBEPHVVBpn6Qe/puveddCh79H1RXI6KwCvfXniX23xMJnz8Hwm57Ucts7yTbO5LD1xHfUpL5o9Vuxjj5WfBEMZ85AeOYl8EV61ljtaIZ1VIOSqTOi0lrEidBClu3FPZmCho9ugYghAa6F6127wwdi/33ROTmj8FKjDxQ0k7QU4z3hxuI3DEWop22pMmh6LoXdBeisBZRaBts6e8lndh/T8Ta8HZKz5UQRHTBx1Uu4nefn1X3gKz6ptVtxjjJziNibnDHMJ84Bbm51l5stFf8zDQFuuwxDgfS6aT+psimO4PRt3z1MRFnsHL2DQP0jWNMXANRNyAwTnoW89njUfXVYBkYF/wNIRTmi0fZ+YpAbapFKTuN7gKTT/du5PRnMtenWfO39ZQkN5tI043eOrYlRG4ewAHqCUC0I7l+MCGXjrrru7hXjwXTwHO+/Wy4e5ys5uNfRdVXoSzDLje98sp7wT2YLx6FcczLmC8diXHC84iKFuIPnIlxwvOYT52MWj82lT9SA3ud8cREE02gpJ0vUlO8d/DmPnmX5PWnutijodsuf0NoCwYqv4Phmvjt/N66E4A1f1uHz1S4XEW8/th32OPjCgJn3o/1/LFJ5cI49QnMZ4+38+fFoyDqQTVW2YviCzDGr8U4aa69+YI7jtpcY9dZJzxvb57QUg5RD+bc41Cba0G6M8qA0kgLO5spjDYUCtcFf8N84NsYZz+I9fxxyM01YBq4Lvgb1vPHIjfXIKqaEMLWR+PEZ8ETQ5S32uXo6FcwXzoSlIZx4tyUPuGJYj59IsTcGCfNxXzxaNTGWkAk6iYY6Y0UMvWz/zZrS8LJNG2nBkhNpuIIBFJT6BNXY5zwHKKqCdVcjqhoAZdd5kRtPcRdxO87C9f3/tbzADE3qrlnqQFRtxm1qRZRZ49IiP/1PDt+oo1Vm2rtdJO40hwDQtnxpEb8gTNR68fZi4mr7M8mEIn6UWY9n29+puzJ5CYRSmA+eQpyU1+bIHeaPfV28r2Kuk0glG1vJNoO88lTUOvHphb1z9V+pz8bmkCkjzvoZQNITWWcz+fZUzXjFtgZSaw03cp1z8HKlS0/85HLdcFfbNsuYeeazx7fs5FCY6W9eVjMBYkykC6D0hJTELeRnQZ2fThQf1FmyV/P+X9HeHsciKK8hfh952CcaLed8fvPwjhpLkCq/USTiJp6VL09yyNZ3gHid58LgOt7f0NtSgzsSPQXVJefjvIupn7wYqpP6rMSMyiGYDPkImWPmGmDBISG1D0sri7i8FMKsn70BVi+3zEEOl24Tpprl7nE5i+5ynN6/mrp5TVtoxfz6ZMwjnkJc+5xGF95GvPZE1LnjBPnYj7xFVR9FaKqGeO0x+38TeRp/O5zM+vNBPG/2lPoXd/7Gyhhxzv7IeIPnGkrYEI3VUMlWAYIPavuuC64B/OVObjOfgg8UeJ3n2u/Y6EQ5a2gSbvuPv/vqc5c/K/n4brg7xC3P+6q5vJUPonaerveT5OfqAfVUAWWYaeT7Hs/cwLGic/1tLvuGOaTp0DcSDWvxmmPJ9qGGswnvmJv5mAaqTyJ33sOxjGJmW2uuJ2XG9JnbYhU/zb7exseX0O2OLpMm9mUpTy7zrsb8+UjUs8OPf2CXO+s0xNjfOePB1zTLe/PN48++ihnnXUWZ555JvPmzSMatRW4o6OD6667jrlz5/Z7/a9+9St+/etfc+WVV6JpI7cuUr4UdBsZDkI97SVmC/dx3CTD3SbyizaaEsN9p3SYFJo5nDxKZvyWbSuGJPtg8Qg3HjxE077KTF4RoLDblRFvoGcfMG+gx3hJ/JuMIyqbSVoZqiMxvDlYjN9y9U0jDS8eO39Cm1Axe0i+bFsB4WN6DLxc7yRXeBSQzB8V8tuVpZColnK70hUJhwaAO44osr+KJs+nDzLS05y5QmXpligJZncfHZNtKzIbSDsyxBJfYGPBHhmS+mp2g6Whoh2pd5H+XnqnL9L0XChFgamY0mESG4TupR9TwZ48Qml2XnUEEObg9TdpqA65fOcTZyj6mCo3g5Ozb9i+unecVOMMiPJWu+yZdidWS3Sokk5dO9AzSbCw28XkFX2nIhTFM+svIKuObVUSeiqwy0BRXBLfXJ7qoCefLb1nozqKwXSnrklHl8LOn0QZU80ViECnvSNg4rdqD2Tkj957BodUGfVetrxLMqE93Lf85dEWDFh+B0H69NKiuEJXoGJd7LaimsJuDa2yGbOjuEd/Ap09+ZPUGdOVyk/VWmbnmTtuG4NFwZ58TNZj/q6EDiZ3D+xBZNFhh9GDQKBVNkPMjVbZgtlRnKqDk7oiTBcE/ak3Kypa7RebLEeJsgWZ+pRs/1DJclgG8dHhbEvSWz/7a7OGKywgsyOB3fFQzeV2uXIlypWrp8whlO2Aa+41+sfVY0uk0k8Lp+InOvOpdFORe1WaiXOquQLi7j5vKVvbKvrJv3zyM92eTMnfPrBNkEuuVBpB+wN8UieT6aYcbr3ipx/L+EyQpW1IR9uCZ88pxxBsl966tSXvZEvlSq8HUrZKkrjb3rEzsVxIn3Iioc+8gK1op4FdHw5cnvvmr1bRS3fdcVRLT9upmit6bP5k+4kCTfWU10R5T8ZJyZRenlvKoTOAP9YB9O6Tpv2fh82Qi6z2iJJoZpiadonMMtXWh4cwUfyby8ASaWVOAGpQ5TlbeQXs/EzokN3OpO3aHOhM2YIq6O/J30Se9qk3k2mmH0/GS7RrdoSEbAn7mt7jnpI2fmVz6tpkOikZEo5D1VyRMXpCNVek6nXIfM+pej9dfiVScmT0vVvK+7a77YGMjyUi0Gk7IQNBuwwKZZ9P1veJvE3lQ0fSEZXe38oMD3e7OKg4WcqzqGzOeHbo6RfYgSzvrHtwIzLz9npde+213HXXXdx99924XD2KftBBBzFv3rwBr+/u7uab3/zmduVw2xpsVFt3rY+hUjbCazANlf7WTXBwcHCA7W9cVL4LCW8Nsm3coVAYw7B2l4ODg4ODg8OXG1+OdbnDO8imOg4OMASn27Jlyzj00EP7HA8EArS3tw94/XnnnccjjzyS7213OJarNSMtQla21eKZw4kH96hYO8rBwWF0s73VEvoocLrl2khhNDgEHRwcHBwcHLZvCkUBx2j9L0/l4LC9k/en6pqaGlasWMHEiRMzjr/99ttMnjzwgqXXX389J510Es8//zy77bZbxmg5gJtu6ruY4o5IvWoaaRGyEmBkF4kfCoU5dv9xcHBw2J4xxMg7tsZQzSwxPeND0XBuQOHg4ODg4OAw8mTbXXzb3FdjD6azgrWpDVgcHHY08na6XXDBBVx22WX8/e9/RwjBpk2beO+99/jJT37Cr371qwGvv/7663nhhReYNs3e5aj3RgpfFhpoGTjSCDBb24VPrMX97pIzmvDgZn9tj5EWw8HBoRciseaGQ/7MYCd21iZg0P8aqduCKlHGArW0z/FWOqjJY7dhBwcHBwcHh9FLro0MtgVXun7AP6PPYKAjEInd5p1PfA47Dnk73X7+858jpeTII4+ku7ubQw89FI/Hw09+8hMuueSSAa//4x//yN///ne+853vDEXeHYbufra1HklCdG83DjeAKLFtttWwg4ODw7bgc1bYayLnvwLEsDNe1GU97qb/zW0cHBwcHBwcHAaDT3i5wjifS81rAXvUXe+9RhwctmfytuiFEFx11VW0trayePFi3n//fZqamrjmmmsGdb3H4+Gggw7KW9AdDduDP/qopGzgSKOMXAtwOjg4OGyPCARf1Y4aaTEA8AoPdVT1OR5xFjh2cHBwcHBwGCZO049FR6eKMmqpQiC22w3+HBx6M+TP6G63m6KiImpra/H7/YO+7rLLLuO2224b6m0dtjIVonSkRcgbH96RFsHBwaEX29tOoaMJNy6O0g4YaTFSTBRjR1oEBwcHBwcHh63ISK3plqRClHKGdhyNtLKRBqYwnlY6R1QmB4fhIu/ppaZpcvXVV3PrrbcSCoUA8Pv9XHLJJfzmN7/pszFCbz788ENeffVVnnnmGXbdddc+8R977LF8RdrukGr0zlCvENvfSDevM9Jth2OkG34Hh5Fmb233UTO1YqIYw7tq3kiL4eDg4ODg4LCVGA1LWhyozebf8lkAwkT4uf59BB0jLJWDw5aTt9Ptkksu4bHHHuPGG2/kgAPsL/Hvvfcev/3tb2lpaeHOO+/s9/qSkhJOO+20oUk7gsw9aTUHLRiLJgVSU7RWRChr9qJJgaEZ1FcEU+He50u1EvyVtjNLm1zM64dvSKV7494B5qyPMKEzjo7G7tFKUBKEhvBVoMLNoCSioAp9t+9u9eesJHOk200/m8chr41hz48rsz5b3zAEK0zGNZfhkQaNWistFfb6dbmuQRN4KwJUtPiwPj4eApsR7hjMXIKK60QNwbOH5954okDYu5ca+/0M4l3gKkyFzWO6kKsERAoRFT5UcxikAk1kDQOpY2pj19bI4ryQiX+18mZCC2ajF3QR338e0SW74vV0IxQoBLKqGSPkhagPsdc8gkt2xb37AmRBlLBHsq7IoDwi6XALIoZGmfIzpS0MSoHhRQQmIgIT0cbPybi/sd/PkOteQ3WsAUCFmxGeEkTFrgBo085ANX+GirYjfBUAiMBE0D1oVbNS7yL9vfRO31p0L6q7MaXzIjCRf9atYE2a7ulSQ2qKlooIoChr9mJIHUuTdFTECTS7KKmox7VwNqIoiKvbjXDFMad/QX2kEtVamoivaKnoztBFs8KFCwOtOYaSsl8dL5HFFOv+AXUnl37lG86VZsyKU6819ZEzmRfJcGeFRXGzngoXVpQhkYSb29OeLcquVQsxgoVg6nR9Ngtj1yVYjdVo4XLWLNuHarMbbfYCVMRLTBPINROJmR6CHvh07ybenLOxz7uNTjsZX/PKPrrRW8e2CG8ZRDtBmZC+cYMwoGgMWt3+yA1vQbwLEZiEKJuG+8IA1sc6qrUMa/lXUPE14AqjdEnMUIhdlmM1V9MdLWBjJZQ0u9GkSOnaTgtn45q9kOjCmVgHfgCrJ6L7g+iHvIW1ciLmzCVEV+1Eu+YZsL5sqgrzj+/23aRgtpiBW7gw08rfUNqCgcrvYDlQm80m1ciLO0XYwxzLPGMdzyfK59GfHIa58wYMLYbpsShaMh32/JTo4plE91mA3hLAaisnbPpYV2kxrXglrJiCXt4MgU5oKUOf8xrW6gmIkjbM7iJEWwBzp1XEWir5otTdJ//GrSmiuMODlnjdo6Gj4GAjgfjLczBrGoh+tB+RqesJxtpRraUEPj4QlQgT6KAmGkOTEJ0/i3igC29RG+KQtzE/m4468AO0mI61YjL6XvOwPt8DUdqAvu/HyKAf67N90fZciFw7DiJu6CiDmBfMkXjmHvf4oj2a++gr5LZ/hhrOlaYhdar1SoyKQkTlW1grp6DVbEJ1FyCibvBEUM3lCBREvOhHvooKe8CwQLOgtQwVLAZpf/gShV12fFccXDE7fsyAzmIoa7PPhb3YxogAb8SuilHgMiHoR4UK0fd/H2vtBDZQguoqQJMCl+aisaKL2uZiTBknppl5PbsuNTyaB3dFMcUtOnErzuZEuzimuYTSj4/CCmxALwziskDEXchdlrEpXI1qLc2ZpqXJrPctb/YhJBRUb8QoDFO0YA90XwR0ib7HZuSqQlCBAdvvJquFsBaltSLCrJZJCEkfG6BTdLOqoiEvXSrQCimvrB42OyMZri8PEWvuHLQ+ejQvbRURvM2q3/wsa/YSkH48mpelFRsyzldVjMEnvH3kshYeCN529L0WYi3dG23X5ShTAwSh7jJEWCMeKUBKg3W10Yw0x1ROwMDYZnZaMryxvB2rubvPs9t5o2iriFLW7EFIUucrl+3D2OL1CClAgSoOIfb5CGvFJChvRTv8DWRDFZgu9APfJb5qIlpBF5pp2zYq7kYUdyAKu0BT6Ee8CqaBChWgmiog5kbGPJj7zqPZq/POTPsdvrjPAZyzsXSLbYZsJO0RWf9xRj+3t114in4U78hPaVTNLFDLeMh6isk/KGTfeYWUfbY7oqAbt1SAwtxlOfXhqj7lubzZl7LbxKQ1FKsYRQtmoZe0InSJ0AT6Pp9gLZqJ2Gktcs1u6Pt+jErUe9bKKYjpy6GpDkrDyDUzQW9DlLaDP9RTD7oSDY6lg6X35HO3zw4f/jpy9QT0Q96CaAGyvRiUBm014B5j9/Oz6I718fHo+89HrpmCKGtI2EgTQeqI4g7wRtAPfQvVVgKBdoi7bZk6/RD1gKWhOgOoiA/hkoi69aiWMkRXAfjC6Ie+iWwtg/o6cE/Gmnc8FG3C0rqJ7D8PtXQa2l4LsBbPgkLLrt/q3aDHAIW1eAZi0mpUfTXajM9Bt0CTyI11CN1C3+cjrAUz7bbAG0FMXY5aMh0Z9aCURtwDBjoWFt3uOKGi2FZtF3OFOyrizGwZn1EHW/OOR5+9AmvxnlAYQ2gSbZfVqOZaiJUhKmv7vDNjnAGPDlwGhFL5DbsKBAL8+9//5vjjj884PnfuXP7nf/6Hjo4dyxvd2dlJIBDA3TAdUaznfb0PLydoh/EP1/9L7c56bORc3uDDPnH3ELvwvueRLZZ5S/hYLuLg2P/0OW6g57UO3XHaITzmup266MF0EsowSrPxuOt2jtcPyzimlKIgutuAO9d8VTuKf7v/NGjZtifmyc84MPYNwJ5yltzkoohCXNjOohBdVFLGWfpXucI4n2et1/mm+aOcac5mBofoe3Oj64pt8gxD4cLYr7lX9j/qVSBS+xrtI3ZjiVpJLZXEMVlDjxPIjQs3LkysjHWo6qhiArW0iSDdKkI9TTk3EXHjYicxgT8aP2eOvv8wPOGWUa+amRg9vM9xDS2jrM1kZxbzBWDnlwcXCntNSQuLIgoJ0uNcvkP/LRuo5zrrLgCu0f+XX1l/GpqMnncpEdvPWhy3mPfzpvyI/ZmFS7iQSC4xzuKM2KW8rN7jGO0gVskNLGXlkNKvpoIGmgeMN4E6ztK/yi9dPxzSfbYGz1lvcGr8IgAu08+hUpTxovUWa9RGxoga3lOfjphsF4gzuM3zmxG7v0Mmm1UTk6LD41gvI8BGz9ujfmf7U6M/5Dn15kiLkeKvxrWcbXx1pMUAYJ3cxGnxi1im1hDvZ5OuAEV0EMwr7dliBivUWhZ5nqVGVKCUYkz0YFrpoIJSVrpfYVzsEOKYCATdRNDQMND73TDMi6fPmpVe3OjouDBoT8g5RYxnsfvZvPXznNjP+E9iJM9i97PspE3oE+em+L380ropr90k/2H8P75mHJeXLIPhTvOf/Mi8btDxD2I27zKfasqpp7mPXeLDQ5goPrzMZCr7a7P4VC1hqVpBM+0A3Gb8mguMr+cl58zIiaxgbc7zrZ6PUh/ptyV3mA9xuXn9gPE8uIkSA2B3pnGAPpuHrbnUUMmShN2R/LTow8t69xvsFjuJzTQNi5yz2IXvG9/gXONrw5LelqCUYpfocXQS4iCxFy+rd4kRxRpkefDiJpLISw0NNwYRYuzCFKIixgfu/1Ik+g4E+LJzVuwnPCKfB2CJ+3kmafktLRJVMWbFTsGtDKRQXKafzQXGN3jCeolvxu1+6VHagRytHcRlxjkcGP0689Tnw/4cg6WSMn5vXL7F7WXSV9TR0UFxce5+T96fhz0eDxMnTuxzfNKkSbjd7nyT2+EJE+FR+QLz1GepY4tZnjXurmKnbSVWTipybKSQ78YPH8lFCARX6RcO6HADuDv+cJ9jb1kfD6p63ZGnl66U61K/k0ZiIT4K8HKb8Su+rZ9CF2HWsJGJjOHfci5/MP/Wb5qf8jnxkRgOkAd7absNGMeFgQc3lZTykVpEGQG+YG2Gww3sfAvRTYQoAtDR0NFw42I+y1iqVrGR+n71KEacz9UKdtemb+mjDQuVlGZdM613WUvvWCgUEWIIBBYWfgoZR23qfDklzGcJp+pHAzCZcfzLeqZfOYx+BksXsu2N2y3hMuMcHnX/mZ+6L+B/Xd/hcte5uISLR9y3ssD9FLPFDIKEhpz+YBxuAGvZxH7arCHfZ2uwd1p5/FAu5Hz9DD5VSwjRTatqx4unzyjpLcFAx8vg7IlX1QfDdl+HLaeGClz5T6LoQwlFTBbjWKHWDRx5hPme+MZIi5DBVeZNnBv7+UiLAcDT8lUWqy/6dbgBdObpcDMw+FR9zh+NK6kRiZHUQrCPtjsVlODFw5vqI36tX0yYKN1EmEAdEtmvww1gTNaNY2LEMTlDnMDBYi+KKKRIFfLT+I3cbf4nL9mrRXnqd32OduELtSYvhxvANG1SXvEHSw0VecV/l/n8WD+Peprx4eljl4QTDs0wET5iIQ/IJ3hbfUw7QQx0JjOOh625tFrt3BT/O29YH7JYZu83pdNEa7/nR2r953Gits8xHXsQR/pGcFFilFCMFzedhNhX7E6lKMeFiyJsB9FuTENHZ7yo5S75b76mH4dIswbduNDR2FlMBPJbW3cBSzhY22toDznMCCF42XM/T7ju4Gn1Kh7clOVhYyQdbgLbLo4Qw4uHJaykVXWwV/SrPGA+sXWE345J/wg/FKekR7j5i/E7VrGBkOrmX9azrFebWaJWpeJ8Vz+dy4xzANikGrdc6C2giVbusfr6H7YWeTvdLr74Yq655hqi0Z6vQNFolN///vdcfPHF/V47d+5czj//fK644gqWLFmSca6trY0jjjgiX3G2CwwM7rHsEWxKKVoSX3J6M01M3oZSZadymDZSCBPhc7WC7xnfGJQB/gJvc1f8n6lwTMW52PztoO7lEzvmRgqmMvm1eUvGMR2NLsI00MIt5v28JN9JnbvD+icXxK/iExYPmPZo3zDjLO0USgfYsShGnEpKaaKNKspYx+bUuRKKsl7zQ+1MDAwsJGvYSBh7OLKFpHMAh0o15ZSLkvweZCuhC3t3p2zUUJn63UALBpkjdJNf8EN0MUZUp4630M691qOMo5af6uezmg00kntaN0BpjnwGcIn+1/fcXnAJF1O08RQLP1PE+C1Oz4e3X+O/GD+Haftu8X2Gk0pRxmQxDoAlaiWWklxlXIgCVrIOhaKJtmG7nz0qNTaouOmOY4eRRwiR8+NdPrQT5GO1mI/UwmGQautygfzlSIuQQROtzJVvsFb2nfa/rVmu1vR73k8BQJ7uJTiYPTlRHM639VMyjl+tX4qBQT3NrJbr+ap+NJ6EA38wH4ABNtCQ9XiMOHer/3Cu/jU2et4mQpQ/ywe5xLyGNXnkdbXocWI1qeyOoo05ZOiPrbXhTY2oHDhSBgq3MpgixqccbOn0dgQlO/pHi4M4X/86q1hPuwpyu/UQv7Bu4tj4uXwtdsmAd+2iO+e5QnwjNmI23c5KYiUGMvTOn3Y6mcok6mnmPPMXrFBrWcjS1KyOhSzDwmKZWs2z1uv4lJdqylPlJ0YcC4muNO4yfsdzxj3cqF/BeOoGlHOG2ImpW8lxOxTGihr21Wfxde14fqyfm3I85oOClLbtyQxqqKSdTtaxmf+azxFSuXVmNKKU4lP5OX+K38dv4rfwkPXUsKYfTMuPoeQ3wGH6vlyuf5cgXSxSy3jWep1XrHdT56cnfB1RGR3QUb4tmKc+5x3zk21yr7w/R3766ae88sorjB07llmz7K/xCxYsIBaLceSRR2as15a+KcI///lPzj77bI477jiWLVvGbbfdxj333MOZZ54JQCwW44033tjS59lq7LqwnJ03laMpgV8UsK6slZJWD5oSWELRURbNGRYCGssWskR/E3eln6qKAhprbMWu7jKp7rIoD1vs62rBjP7HXmdL0xCeUlSkFZRCFFSgVcxE+Gu26nMW4MONm1iiw1NVX0D15gImfxHIeLZdW8fRoYIERTjns6/kdXZyHcqVxSfzhvqoT5yq1gJMJVPh91qf4HRVziL5DovdCzm7OYguK9hcbvL63hEWTo7kkNnuwKpQPSgLhI7w16BC9ZgLm1H1MVS0EFHuRbVG7HnYQmQNA6ljsWdWI/+7Yqvm90C8xolAmPqdm3nu0i+YogJ8WrgcC8HE5tV40IhSTHN5jGnNy9BjXkK6i89rNIp8rXQHorQH4qwJuCiNWHR4dEwNdtc3EGu6EZAITxlaySR7bQV/bYaOqVA9qmszqtv+Gqsirfb6Dv5atKrdkY0LUV319rpdHtuRJ3wVoOkIXzmIhMMn7b2ko0L1yOZFqO6WlM4LXwVufy2Ht+zGmk0rGP+FP0NvgJQuVYhS4mWTaGttoi5egSE7EL4wE1oLiEmDoMvFZzUCuuw03GIjp5fNpKu1A00JJohaPi/bgBsDvVX2W54PaNuFqL50ULqTK06+4f7S/Lo1nYWla3PUO4FUeM/W2axXm4kJ2Sf/DtHHYpWMY7+NYUrDEpepeLL6Er7ZOo5qtTPrPBHW1bqYUS8piigsAY2lFvuHDuFDfS2rfF2snqrTUNOdqtOS5NKN3jq2JcTn34NsX4kKbgKXB2LdYMYQZTuh1+yJVjYV2bIEFWlDK90JUVCF6ihANsRQ3YWoeBNq0xJULGivzVBWhmq3EJSAtwyttjaV3z8Q+3Nh2WG8suEe5offxS3jdBVF8cclk1okhrKXk1pc6aU9HmBToSenLo1rLaNLddNSHmHpzNaMvDtPnIE74bBML39DaQsGKr/58DvjMh7bfBOrrdX8w3UtP+Aq5q17m/KlzUStKD7LpCsQY58GP12yi7hm0lAi8Xf46NJctHk11lZLdttsMjYSodSMgC9MadRiXLuCuIsOt2BenRtv0Eur5qXd42LRWPrk34RVRcyaV8Fp/5yIQNCBsyP6aOL90iN54JzFNE5uotPtoj0Qgy4/pVYMpaA9EENoMGOzoigqkZqkodxkUouFP66QaDQXSca0wXTrr3Qb76HV7IRqX4MyFeBBq5uKam1FtUlUFwi9BhUpwHxsI2zYth2pjzkZgJgLLvjPq330FfrqcO/w2NYSulUk5/nyVi8+5SEoIoNO87mNl/KtyGxc8VUgmpDtixBYKEtDuN2oGCBd4FIInx/cFnRaKMsFwosoqkSZKxBWHEwTPAYqGAWXBUogfAaqywLcoLkQhXWocIfdy9Ulwl/GmeYqvhM06JIFrPcU8MQML3QXoilBkShkbVkLJa21g7KlpVB4yvx8Rzud+paNFCoPcdcXGe3idKG4tPhI2ltaWGb9mybrnzzk2o1w6yoiZoigawxvjDMxuoqQirzeUTLczmuoQg9XbSxggypFGoqPK2+lNnoqGCUDtt+zYi7OZhaNZV0UtG8mqvW1K6ZZEC0dO2hdCig/bvcGYsNsZyAE40slX2mc0m/e9JZrVdkHXNi2H+9Id9ZrOsuiBFo9GEojLiR7ls/ilI5D2Gw2osS+fFG6mSW8yVda7fsGhJ9YzVrkpkWoaAuYYUR5Gaq5DSxACL5dUUphp5duTccSsLbWSt2zSBQSq1k74LMOt52GEIwpk3ylof/8y8ybLr5vTmfq+rXMDAeQKsraQAzaQVcKaUj8BUVUtC9Gmgs5VAhWVLqY0C7xqRhCQYN/NYGua0CHPejiLzoYcZ3ysIkmDSKamw9qNBq8XpbWKdaN1/jxtIuG1WboTTJt2bo8o587kF34gPsPWCtW41rxPuEmQZtop7pdoEkI6m4+q9FSNn62/NSKQpTHLCbXr6VGulH4CfmilLR/ymucSql3BuNqplJZ3wDdrSAMRGmZvQ6mqw4KAgh/J3LTxxBtBtWEEBGU1YSyGgAJloFwl6JCGigvuBVaSS0qGAetGKUVolVMQbUL0H0IXx362GngK8uqOyrehIqsRrgakc0fQywG0qC9YgJLg68xHsVES6KKJW1tP8NjRVERF6KgGIQHFfMgjHLwVCOqJqHaFkJ3M0iJKC5DdQGUgWcnjJ0OQYa6Id7E16Od7FVQTG2bjhT3EDY0RGkpwihFLgkiO8Oo7k5ERQTZsQTiMYTlRpTUIjs/A4IoPc7lnnLObvMTsTTixt+oqHBxacMsasUujPUsJTyujWba+IG5G8HiOO1l0QHLRX9hJRRtedbj6eF/q1t5W69hTOkEDm8dS3lcIcwQFBsgyNkvSL4z0zu42WN5r+n23e8OfjH/e++9N/V79uzZfPe73+XSSy8F4OGHH+bcc8/llltu4bzzzqOhoYG6ujosK79pjFub5DzddcYNFA/TWgCb6kLMXvoQAJ89sIExXYN8Zn8d3guWDYsM/XFO9Kc8pl4ijsmn08+kbpN/q98zifsX/4e9oiHEbk2MnAwWY5V0ULfu31mv+Yl+Hte6fkTk7mkQ2pTKp8jd04he/EN70crtnaJO3JfcAUISu+0i3BffaS9cnPy+5e+CkP1VInleBLJvs53+5acPvXQslae9ERre/+0g8qeAvSBqlvMoCf7E17W095JOzvT9dbT9/hIKNuVRPaXlEUpL5RWdgcGn8WWluMNeBBtwX3IHsdt+CEF7pKH7F/8HQOzPF6biJM8lSa/TwNavtrvWZ9eNYazHIjfnHmlnC6JlyiA0otf+NKUTyWdL1jmQqHeCuUdZun/xf8T+fCHui++0/7/kDvCHiF1/RU/e5aFzvfPuUdefOVE/3H6+fsrHYPJwoPKbDxtUPaW37IyuwBIQvuX/4doYS+VHSn8uvZ3YbT9M5Q9KZOZncUcqzxAKgn67zkoeCxWC0uxrnbK7XeL+xf/Z5eHKGzPeY0pXOgNQ1NM+peptf5d9XVJ36KmP7DYvUacrYR//84UQTNQBO0I7P9ykl7VQoW0nJMocRSFQws7vX9zQc40SKVsCsOMl4wOx635mx1eiJy1/2qZTolebnagXYtdfsc3Lc7o9mWRYbIKE7qb0drjSdRiQ5DtN2rmx29LWPg0W99h/2zl9dDdZN2bYG7cD9LSfqJ7ymrgmWR5j1/0ske4NPefp0VtZ0oGr4XKMe2YPm83Qm5z2CAxo03RUXQ+WTCtz9up2gyp3Wcor9PSVknZcui65L7mD2K0X2TpV1In70tsBlcrTVD3Yi4x8ToTdV95o13+Q04buTcrOvPLGnvsl33Givu1dd2fUzZC9Hk+TP902y+h7J/QpW7ubku/S26EoCMEiO58SG+mknjvRjgP2/W69KNFWj+71WSHTxs/wR/TzzjpVmPHmzwZc0y3vkW7pjrR8+OKLLzj55JNT4a9//etUVlZyyimnEI/HOfXUU4eUrsPwEyU+6tb86q+YesWOu6bblxmBBnmuJegwOjDYMaaWjgRHageMtAhZGStq6E7bIbZThSgf5LprDg4ODg4ODqMTgT2LK/t8IgcHh+Fgy1e7HSTFxcU0NDQwaVLPfPE5c+bwzDPPcNJJJ7Fhw4ZtJYrDAOynz+IJ8+WRFiOD/sY7jdTiqA5bF81xum23uMh/p2eHxAYCo/gjgpbmdLN3WXOcbg4ODg4ODtsz+Wy44ODgMDTyHoPb0tLCRRddxIwZM6ioqKCsrCzjLxf77rsvzz33XJ/jhx12GE8//TR/+tOf8hXFYSuxj7Zl8/a3Nb4dePfSLzPaCC1667DleBxnzJAoxZme5ODg4ODg4LAtcextB4etTd4j3c466yxWrFjBeeedR3V19aB3g/nRj37Eu+++m/Xc4YcfztNPP80DDzyQrzgOW4HdmIoHd2Ikw+jHGem2Y6Ll/03AYZTglMmhMZlxIy3CoHC+ijs4ODg4ODg4ODgMjrydbm+99RZvv/12aufSwXLYYYdx2GGH5Tw/Z84c5syZk684DluBgDbA4uSjDJ9wOvg7Ik7HfvvFP8Stxr/sTGfySIswKATCcaw6ODg4ODg4ODg4DIK8h5JMnz6dcDi8NWRxGEWU0v/OKqMJZ3rpjokz0m37pVg4TrehsLe220iLMGhixEdaBAcHBwcHBwcHB4dRT9692jvuuIOrrrqKN954g5aWFjo7OzP+HHYMqigfaREGjTPiYsfEGee2/VLC9jVadrQwS58+0iIMCsH29WHGwcHBwcHBwcHBYaTIe3ppSUkJnZ2dHHHEERnHlVIIIbAsZ7fBHYHxWh0L5bKRFmNQONNLHRxGF6XC2RBgKOwpZoy0CIPGI9woZ7Sbg4ODg4ODg4ODQ7/k7XQ788wzcblc/POf/8xrIwWH7YvtZUFvcKaXOjiMNmpV1UiLsF1iaHk3yQ4ODg4ODg4ODg4OoxihlFL5XFBQUMCnn37KtGnTtpZMo4rOzk4CgQDHPHQUey2rQZMCqSmaqsNMb6ijTbYjNUVbdYzSBnfG+coGX0YYYHNdF6undLJy5w4AdmqLs3OH5OHozwFQXQ2gJEJoUFidCmv+GrRxh6KVTd0mz31P/GEutn7HlC8CTFoZYPdPy/s82yHsw2H6fvy04lYCDVrqfHN1hIoGL5oUoAkaqrsAOKJhD6pkGa9o72XNn8oGH5NQlBIhWthOSaOGEdfYWG7x3yM6eXXvrqyyfuJ+nF21nZGty0FaoOloZVORrcsxX27AWheFcBGiugDZ0A2WQugiaxhIHYs/tRIWt26T/O6POHFiNc28cPZ8CokRKjQRwMQ2C90SSCForgqzc6vFmPhYQpaL16qbKSqtp7usi5aSOEvL3FR1W7T4dC53f5+J1GBueBuhFMJXjqiYgfDXoZVOydAx2boc1bYKGdoI2PopfBVoJRPRJx2DtfpFZMca6G6GwmoAhL8OoemIonGg6YmEet5LOrJ1OXL9W8jQ5pTOJ+VQTZVcvOTHlH4a71OOsulOhRWmRHQjCrupazNASoKqkPl1OrKjKE0/o/ym+TxKrSKu5c5+09Sk4GjjYParPSAv3ckVJ9/wQGn+p/wV1jWsJiajOeudZFhpgsZEWaxs8KFLHUuzaKoOc9ymEP6whTsO62pgbLOHDtOgVfewZkonszdZ7BmbRJPqYHlJJ7HWYtp1neZCjYWzm2mcYrJw582p93qNdhmXb5yQVTd669iWEHv1p8j25RCsB8MD8QjIKASmoNfti1azJ9bmD6G7Ga1yJqJ4PKqhDGtNBNUZALkWa+NCRLwdhEBUlKGaBMgKcFWhTZjQN/83vw2RNpqs9aws2oApmxnbGUeZBkoolhb5aQ+Vs8bvzflOqhp8CCloqOnm3UM3s3LnDgSCsHdRn/KRLH9DaQsGKr/5Yq1+EWXFELobYvsgV7QT//QTiCuQ7YiAC9W8DExQhkAEyqEVGqTF0+7FLBrXzf6bw4yNBwkQQfiDlMQFgQ6BsgxiOiwp8+DpKKBN+mnVfHwwRfXJv2mflzL7o0p2/7QcgRtX3k/isDURFU2IA8ej7yLBKEMrKUZ2BmiVC1gjN0OpnwqtmK4NHxOOttBhdNBYGWNiZ4zCmEBKnVa/orYDPNIiKt2srFKMCUfxRLxELY2ltVDTajC1dRpVwQpQddDtR77VBlG5zZ85nhj1+Zs/fURdQzE1spxNWjMbqzuwsKhs8LE3u3K8MYfPKzfw6OYnEjaSxi/H/DhrPf+u+TGv8n6vehwaq7uB3G1WMnz0pg5q4mGqRQdeV4RSmbChTBcYFsQNVMyF8EWIeSzQTfRQAZguLKnT5REUF7Sid3vAZSJdJqKzEOGNgDTAF4EuH1g6COgyNDxSAgo0RditUKaBESwkGimkxQrw6LQCVMifapPc1UWMayihTbbToXVRUF3KHo2TOJR9tritDcvlPCkfosjXzrRWH1OsCTRSwOdjq/msvYlO2clYrY5PqlcMKj+T4VLRjeYPMrVBYgiFZVgsK3Mh28ppM1y4NTcbqjtRSCobfExR4/iW6ysZct6l/sWS6o3UNRTzM/G9DLnvij1Es9aWsx+RPBbQirlkzPe3up0hqgt4c9ObvGl90Ccv0DQaqkNZ8+/Qht0oU8WsFOtYVL2+3/ztqDYpa/CgpERoGj+puwSPcKfkWKmt5daKR9h/czelZpx9zKlUVE4i3NjER/FFmCiWV2kUtRYQ0l2YCJZNjFLZ4KNUFvN91//grgkMWneGO/9kQzerzDX8k2f6PPvlNT/kpvo7EmVCoVcXsYcsYFbDSmqiOlhxPi9uoqDVDUIS8Hgp85TR0bWMuKUwLYN1JTq14RhuI4JmabR5DHxRgeaK4tZjKMtLIFqEpTejTBdxy8WK4kKqXDOZNHEO+vRdMPadPew2QzrJtK2GeRn93MHYheaHn2J+vhzVsAE0iWpvAqnYYFmsra3gjfblCEnKpk3PX1HaSkXMZGqDpEiL4BYmEW+c4jYfcXRatAI2jw0xu16nIGxiomgtt3C1lRMS5Wzwhzi9fC/0hvmgtYLRAkqBqw3pCqJQaJYLqdxo7UVYphtZGKTLI/B0+AkLQdwyWF9k4G0vIiJ0Gg0vC8YKGgt1qhv8IGVmf4YQ480Qfl8bU8MhjIhBoVmCr3gXVKwTRBTiAlESweRTsECFCrHcFm7pg7gHVDFCVCBK61CRxRDrsuX2+aDTC/FSFJMxdjoK2dXOuvgnrJafESkQ7N5RSa1ZiTIEWnkpaJVYC0Korm5ULIRWFUSqpRAXEC5A+MqQcjXCGwJXHBErRYUMMN2gCYR3PHJDBcTLiWoenho7P/VuO0pitFSF+7y3SLWOt8EaVJ2cDJdRym9azrf78FqcWyoeoaTBoFE2c6i+H49UvdZPHwlC1YrxTUHKYjEKZZyuQAw0SV1TLUJWssjdyrJxZsrHUa6VEaqWvF2yhBfPfJmOjg6Ki3MvvZK30+3QQw/l17/+NUcddVQ+l223JJ1u7obpiGI941wRhcSIEyW2Rffw4qbdO2+L0hhuXrM+4KvxC/t9tjliP57z/I2zYj/lafkKkRxxDXRMLIopxMCglQ4E0FvxPLgAwd+067hE/o4x1LCY5QPK+pl7LlO08YN/uO2IVtXBztGj6GJwm5fcYPyUd6x5PK/ezFjoXEfnILEnYSLMdd1DkbZ9LHT/1/h/eFm+w0vqXSxMYphZ4wkEqo9G2RjoaGip/DAwOFjsxTP6XzjeOp+FahkdBHPKsNL9MmO0mi1/mK3ABfFf8qD1xJCuLSdACx19js9hXzzCw4dqIbuInXhHfQLAcRzCa3xAlBhuXP0upP9n/Tec7zpjSHJtL6yQa5kZOxGw15UMExn0tdn01YOLDu+nwyrjaCGouqiOHoCkrzPETyFlFNNBkG4ixHOU8VwsM15ggjFmuER12MY8ZD7N+eYvctbfvRlPLRuoRybiH8hsXvU+uDVFHDTJZVYAVlnrmBE/IeP8X4xrOMc4lYVyKfvGvgbYdmST94Os6d1mPshPzRsyjunoWPQs49Jf2zcceHH3se2KKKSbMAV4CdKdkMO26dy4sLCwspT13vgp4DP3XB6ST/FH8+9MFuMI0c17rofxasMzg2FG9HhWqfV48dDgfg+P5uZ+83G+b/4qI56GlrV+yjdOkv3Zg49YRBVljBdjeMV1X8ZI5kOj3+JDtRCALvcCdK2nf1EdOaBfmyTJ/2gnca/7/wYlz5bykPkU55m/6HO8lgoaacvQySRjqGax+1n2iZ1GAy2E6MZAJ46Z6hckmc5klrIqFX5Q/wNnuI5PhU1psl/sayxlFRWU4cbgdtdv+Xr8MsZTy3LW5JR9tLStERmhJLZ3n+PHiIN5Ub2dCtdRySnakZSLUn7luoiYihOI7olCsZfYlXc8/wEydWgw6GgZ5dJAp9HzPgXCtwVPNTo4PXYxz8rX+xzP1tcEcGFktTWSM6csJDoaYaIAPGT8kdONY/vE/238Vu61HqVSlGOg87b7X5wdv4IFcimG0AmpbtroRKFSNqKfQkziRBK2tC2hSNnUWqJO7y33HkznPc8j9nP1mmWYrguL3M+wk5iQ90zEu8x/8b/m7wH4m+s6ztRPyev6wfCj+HX8y3qGdvrfA6AAL0UU0kDLgGkGKErVlweJvXjFc3/q3PPmm5xl/pTdxFQ+U19QQSkrWZ8zLQ2Rsi16U0UZMUw6CWGg48JgXzGL99V89ghO5fWqfw3odMt7I4VLLrmEyy67jPvuu49PPvmEhQsXZvx9WdAQlFKMmSi0YguWfa+hcrjEGjbqRGW/DrdCfCxVq1gl1+PGldPhBqQa1k66aKMDD64+Ki2AKHGmMYk/qr9znfHjAR1u46hhttiFQrb/BiMXfgooo2TQ8d+Tn/KCeiurQ+RN9REr1brtxuEG8D3XN3jYcyurPK8wmfE5S1nv5ql3eUzPDxOTt9THFJmzmS127de41RDUieohy7+12UVMHjCOK8c4oD2Y0SeffHgJim6+pZ/MBeLr1FJJMX52ZWeWsJIJjGEctewm+h9lVbwd6dhQ2UmbwEx2ZhqTKMY/qGvKCTCZcVk7yQU7cD1WJArZW2TfmbWOKooopINQ3g43gM2iaUvFcxhBdtem5uU0Sne4AXzCZ1wau4bjoufy1dgPeUt+vDXEHBTpnZyJ2tjUJk8e3FRRzr7a7gDUUU2AIsoIsLOYmDM9b5alM/ReZns5JezKTkOTdwC7VSCwkBRTSIAiDHRu1K9gmfECR7A/QboR2O1G8o3EiQ/aMbWvmMV91mM8b71FAT4+Uou427h22BxuAAeKPdlTzGBnJrJL7Dg+k19wkj4HD25caSvsDEbmXHEEAoMep5mfAt5nPgrFZpr4QM1ncuwIbojfzSdyMQCFoiAV/xrzDs6IXcqd5j95w/qQIKFBPdslxlmDijcc1Irs/RQTmVOLPLg4K/ZTvHgI0oWOlqrjeztll7IKFwZaYuzyhdZv+Kv5b26K3cu3YpdzfPx83vc8goFBA82sp54fx29gdzGtX4cbQDml+T7uVsGrebOOy35b9dRZfgroJspj8kWKsO2o9Wpzqo6cKMYCEFYRNqqGvO6fnuc6OidpR+wQDjeAfXLs/J6rZclla1hYhIkSI46OjkAwjUn8yboPS2U6lhfIpTxhvUwHQRar5YwR1Xwj9r9sUPW00E676uQd179Z5XmFY8RB7M8eGOiUUswkMY4L+RbF+KmjOm1QgI7M0SLOZylfi13C1eaf+5w7VT+aasqZzQxOj13MPdYjOfMqF+l9ocBW2AytWbWhlKRzEB8UuokQSnzQyUWyzk2Xu05kLm1znHEoX9dP4AO1kN3F9AEtDYnK2S52EKSdTiSSGHG6CPOm+pDP3HN50nPXgM8EQ3C6feMb32DJkiWce+657LPPPuyxxx7Mnj079f+XBYliHZtTldiW7OQ2Y4gG09Zkguh/5EAXYdy4eU6+wS7alEGne4H2DVZ7XucYDgZINUDJgrCQZQhlOzR3Y+d+01pPPfPVUspEyaDvv73RSYiyQeiWGxce3HwgF2R1Qia/Qo4ZxQ6k/igVAf7kuiqjwuyvUUhvsswsX2AtLBSK++SjBPpxmCj6flEaTewiBi578Rwj0vbX92Bqrw6fFw/dRDjbvIIb1N38Vz1PjBif8QVr2cQq1hEn3qejWNBrB+Gksbij83X9BJaxmgaaBxW/hQ5W5fjKVjRIx932ypOuO7KW2eliEodr+wO2kzuf0iYQKUeGw/bJTDE1w/kxEL2/QkeJ8Vf5H15XH/K8fJP7zMeGW8QhoQmNnZkA2DL68DCNSQBUaKU0eN9jk/cd3k2MWsmGT3jQ0DIcbXPYPyNOM238j37yoGQq7lUvK1S/u78rFHFMOumigyACwRXWjRxufZtW0clMduYS7WzCRNASJVeRu6ObRCCooJTX1fv8ybofC8m3tVN40X0ve+vZO89D5W7XtVxtXMZiltNJiOvMuwjgZ5PnbT53P8df9Gu2uL1SqJSdUUJxqrNYkfbBtJFWfmPdwm/jtwFQRI/TbZFaxtPyVX5kXsft8YcQg+ya7S623TI/uTZHaqWd/9N/kvXcKjbwDK8RFlEmMSbDFsvmVvDhRaKIESdMhEvNa7lJ/p3H5IuYWLwhP2KG6OkvbWATH6qFlNL/xk3VlA/mEbcJlVkcgN1po+RDdNNOJz/Qv8X/ur4DwGq1IXV+UsLp9pJ8h43YTjeBSJW/wVKAl98bP8pX/FHLvmIWYDsTt4T02TQhunFhsIzVBFUXp8UuTn3U+b15Jx/JhWymiQgxThVHM4vpdBLCg5vztTN4wHUjf5D3cGb0x7yg3uZ95lOAjz8bv+ZTz5NsFk0008YaNqbuqaNzMnM4Iq2eT3+zz6rX+a/1PAdFvslXIhfy1egPuSH+V36g/w8fuP/LUlaykvWsURuIqGhez96hepxXxWL47dH35KfcJf+dcyRZbwaa4VVFeYbeCwRjs/Rxf2dcxt5iJm+pjwdVF+T6CJhtMIuFZA0bssTOTt7TS9euXdvv+QkTJuST3KgnOb30D2efx6GfjLPnAeuKpsowlY2+jHB1YyFIlfM8wJrJnbxz6CYe+7q9hsTXlnfxg83j2KfTVnDV3Zha/0oUVKXCwl+Lsdt30Kd/fZs9e3lkH459eAwHvVXHPu9V53h2qKiupbl+U795A1DZ6KNCllBhlCOr3GxsWEvYCmdcUzppCb7iVnRPDPe6aogbdLvh0aNb+fmlfTurNVSwxvs6ANbSh1HxboSrAH3617GWPkzkmlbkCoUKF6FVFSAbu0Eq0ETWMJA6pr5oH9h63FZMWENo5gpcvi5ikULwRvDr3aCE/Vfdid4tIOxFNlcSDETw7roYszBMl89iZcBFZdgCbykz3DNBmqjGBXbarkJE6U5oJZPRxh2aoWPW0oex1r+JareH/avuRoS3DK1yJq4jbiL+6uXIpsWoSCuiwP7CoJVMBt2NqNwd4bLzNP29pGMtfRhz0X2o0OaUziflsD6dhfnGBsx3N9vvQ4P3Kpba6+M0+nBJnbhupXSnpLSegspNEOjE1+VC6CbxzWNYSyk0l+fUz+5Ku3LvrbPJ8FRjct66kytOvuGB0oxW6ayuX95v2ctVFsepWjy6mxWVjUwoehsj5EUzDbqq2/E1F2M2VxGOFNK87zLGRbsxOgsh5kEaHuJrxxCUBh1ewUf7NTDv0FYe+vri1Ht90X0vB7z+r6y60VvHtoTI3dMh3AxWDPsbUmI9Id0DJVPQxx6EtfY1iAcRpVPRyqdjfbwL1jxQzeWIuvdQkRWgd4OmEF4PcnUNqrUGzAq0mnF930ngcVS3QhQEkZqG6W/E7QuhmirAF6a7fjzhtZNo1n0DvpOG2m4eOmcpj319BXsyg3e9D/cpH8nyN5S2YKDymy/xVy9HxUIItx/V8H3MNzYg659EtflB60IUaFC0DIJ+8IUhXoZsKYTOSpBlrK5RlLnep7BiE67SVgh0INoD0FYKuokIdBKL+KGtmFj9GCId5SyucPXJv8krAlQ2+dAtgZb/t0OHrYy2x3xk8xj0GRtQoVoQVaiWcrSJH6I6i0BUIfwhVGgNWBbxska6S7vw+9oRTRUgFKblwojqaCXtyLZyIv4wvkALqr4GFfITqgziC3kQa8cgIj7iHSWoiBd31HbgjZRe6IeOSdUZ68Rm1lba68JObq5kjKzKqy0IW2HWa/U0VHalykCpEWB5RQMSmTpWYgRYVrG5TznZu/hzPMWtuKrrIeJB+LvAE0W1liHKWiHiRW4YgzZ1ObhM0C1oLUOFCkFq9jqXE1ej1o9DVDWCO4ZctBvaLp9DsBjKWu1zvjAIZdsinqj9Wyh73bhQISrkR24Yi1w/lmXuEgjaa7oV6D5C1Qp/o6DQ8lGqlwxrW6tN/BCKNiH8zVjxCMQN4hvHY8rd8bWOTcVfWdnIJtU4YNtZ2ejDkBqFFRsR/iBl7nY0bxR0k+b2Oqw1kwgrH2bCLgGy9hNqVDkhLczKyqY+52sb/UgpB2y/S1Ux1XrlNrEztKoCoo0drDbXZ5WrqnosS+UqyhrdffLLJz0IXWNtZeug8tclDeK6mXrWiY1lRGUMU7eIVupMLZ2P5m5H6ywiGojgbShFmQKFoDVWgqfbRTRagKUMVo2JUtnoo0gVMEavHTE7LT28WWtiRcXAurbf2C58vo/Asl0UVlEXrJyIHuhElHRgtZShl7Sh4i5UaymiKAq+DrTSdlRnMTLmQSsMIQq7QJfIlZMg7kabvhTVUgZRDypeCG21iMAY9Fmz8P74nGG3GdJJpi03vZ/Rzx2MXRj54/2YH30OrEX4wiizG1CojZNAzUS2lNFktdCqddBcGaGi0ZvKTzFhHQEZoczdjlHShmaYSKEQm6sR7jixphrCO6+luKUQYdrthqxoQ62ZQLStgligG33nLygW3WiBdkRRF3LVJLQZn4Mr4YgxDbB05JLpEHehzVgCUkcu3wlR2o5sqsCKeaE9gFI6sr2KVYU6jT6tz7uvaiygZNLnFBtduMesx1PWhFw5GQwTUxno/k6EJ4rcWIe280q0kjaIuZFLp6NNWg0xN1g6KliECvsQbg1RvQ7VXozwRMEXQX6xM6q1DNVUhyicgaj8nHDBSpTeRawrQMATQXQGwBdGFGmopknIdTroUUCiTV6NGL8a1VyBXD8GoSlwxdGmLQPdQq3YCTRpeww9UeTGsailU7HCPiyl0V3Q49yM+Ew6SmL92sq6brCpsjPjvFnlxmiIo0mQuqKlMso0bTIVjd4+Za/d6qBJa6O+MjSgr2Zn/xoK4gpXYSfxoggIC2P1OOJtlYTihayqtjKu8VeXUzZuPLX3fWX413QbTbz55pv84Q9/4JNPPmHz5s08/vjjfPWrX02d/853vsP999+fcc2xxx7L888/P+h7JJ1u64wbKB6mYbib6kLMXvoQAJ89sIExXX1H4mTFX4f3gmXDIsNgmBk5iUemH0Tdpm03AsP9i/8DYY8ejN16sX0wWIxV0kHdun/3ib+nmMG7HrujGrl7GoQ2pfIpcvc0ohf/ENQO0Ckr6sR9yR0gJLHbLsJ98Z22UZv0Cvq7IGR/rU2eF4H+58xnpZeOpfK0N0LD+78dRP4UAJVlyoXQ7OP+Ojuc9l7SyZm+v47YdT9Dbcy+eUZW0vIIpaXyis7+v4I6AMUddocJcF9yB7Hbfmh3qkiUSSD25wtTcZLnktTXdTNrac+6Su+5H2aXWw/IrhvDWI9Fbh5gCHxSD9PC0Wt/mtKJ5LMl6xxI1DvB3I2m+xf/R+zPF+K++E77/0vuAH+I2PVX9ORdHjqXbA9OFIfzqCdz2kB/5WMweThQ+c2XVHkXGrFbbkZt7ErlR0p/Lr2d2G0/TOUPSmTmZ3FHKs8QCoJ+u85KHgsVgtLsa52yu13i/sX/2eXhyhsz3mNKVzoDUNTTPqXqbX+XfV1Sd+ipj+w2L1GnK2Ef//OFEEzUATtCOz/cpJe1UKFtJyTKHEUhUMLO71+krRunRMqWAOx4yfhA7Lqf2fGV6EnLn9ZOi15dikS9ELv+im1entPtySTDYhMkdDelt8OVrsOAJN9p0s6N3fbDnpPB4h77bzunj+4m68YMe+N2gJ72E9VTXhPXJMtj7LqfJdK9oec8aXpbEiLQeOWw2wzp5EwbBrRpOqquB0umlTl7tbZBlbss5RV6+kpJOy5dl9yX3EHs1otsnSrqxH3p7YBK5WmqHuxFRj4nwu4rb7TrP8hpQ/cmZWdeeWPP/ZLvOFHf9q67M+pmyF6Pp8mfbptl9L0T+pSt3U3Jd+ntUBSEYJGdT4mPLqnnTrTjgH2/Wy9KtNWjd+ZQknQbP8Mf0c8761Rhxps/G/413QAefPBBDjroIOrq6lIj3/70pz/x5JNPDiW5IdPV1cWsWbO4/fbbc8Y57rjj2Lx5c+rvX//61zaUcPtmcmIY82hmjBidC9w7OHyZ6D0c+8syvXQ4qRCjY90ZBwcHBwcHBwcHB4fhI2+n25133snll1/OCSecQHt7O5aVWMegpIQ//elPwy1fvxx//PFce+21nHrqqTnjeDweampqUn+lpU7HZrDsJ0b/Wjnb6xplDg47Er2dbn7hON3ypbbXArAODg4ODg4ODg4ODts/eTvdbrvtNu6++26uuuoqdL1nwcK9996bRYsWDatww8Hrr79OVVUV06ZN48ILL6Slpf/tZ6PRKJ2dnRl/X1bGaXUjLcKAOE43B4eRp/fy9+mLRDsMjmwLwDo4ODg4ODg4ODg4bN/k7XRbvXp11l1KPR4PXV15rL+0DTjuuON44IEHeOWVV7jhhht44403OP7441Oj87Jx/fXXEwgEUn/jxo3bhhKPLiZp28P0Uqej6uAw0vQe6VaQZQddh/6ZzuB3gXZwcHBwcHBwcHBw2D4Y/D7tCSZNmsT8+fP77FL6/PPPs8suuwybYMPBN7/5zdTv3Xbbjd13350pU6bw+uuvc+SRR2a95sorr+Tyyy9PhTs7O7+0jreJYgyhkRaiH3ZmAuOoHWkxHBy+9KTvFKghEGL0L5Y62qjVKkdaBAcHBwcHBwcHBweHYWbQI91+97vf0d3dzeWXX85FF13Ef/7zH5RSfPjhh/z+97/nyiuv5Iorrtiasm4xkydPpqKighUrVuSM4/F4KC4uzvjbmozmrmkdo3uNoS9YS61wOqoODqMJHX3gSA59cDZScHBwcHBwcHBwcNjxGPRIt6uvvpof/OAHnH/++fh8Pn75y1/S3d3Nt771Lerq6rjlllsyRpaNRjZs2EBLSwu1taNndFTvtZBGE7rQ0Ye2we02o85ZfNzBYcRJH+lm5D+A+kuPQFCMf6TFcHBwcHBwcHBwcHAYZgbdO1KqZ82eM888kzPPPJPu7m5CoRBVVSPj+AiFQhmj1lavXs38+fMpKyujrKyMq6++mtNPP52amhpWrlzJFVdcwU477cSxxx47IvJmYzQ73QC0UTxqpZRiCoSzdpSDw0iTvqabB9cISrJ9UkmpMyXXwcHBwcHBwcHBYQckryEJvTsFBQUFFBSM3C51H3/8MXPmzEmFk2uxnXPOOdx5550sXLiQ+++/n/b2durq6jjmmGO45ppr8Hg8+d/MpaHMno6lEiDS1g4fTBjANCSN1eHU8fYCHzVhQJrJmGk3FRlhUbDtNw2orhlLrKkRPd5zLN9nR9hPkTtOIqAEKlgELvtmoiAMyr42Fui7ScdYUZMRFgXV9n0S+SQKqsFlQUwk7kF/2dsz1zdzTfgRRSX+1XwRVNAPLhNRFLJ/G2ZKZuGLoMI+QPScL07svCuSzt3kg2V7UAGa0UfHREE1qrupr37qnp7/zXBPGgCaYf95S1Pppb+XPumHNmfKlpBDqy7EagxDXGaICWB/A0jkTkJ90vMIUwfDQhR0I0N+kD0jsXKVzVz6KYaqO4O5ZhjTVKgByqJAJQLpzyaFQi8KQdxuDlTQjygIo7oKQWp2ngqF8IfATMYpst8pAlwaTWl1mhev/SOHbmzTeixDBjssSqKoLgukbtc3QoLRs7lO+rMjRJ/8ViE/wm+XMVEURHX7EN5Iz++CblRnceqy/t6JAhqrw1SLiqziZ5a//NuCActvvugesKKge1LlUwWLEAXdqTKmun2pOsjWGVdGfgp/yI7jC4NuosK+nrzzhe16zDTsfAz5QemJdiCltIhkoXUYlahgkf1ug/6e95gob8mw8EVI1eHJts0btXUhUbZQIkOfcMURiboqqV+qO2GDmqJXUR0hHdlGbYPdBOa2SRGgFYUyypXwRXrKnD8Elm7nczqWnrAlEskUhRJlNJQIB1PxMMyedJPoZs9vkYinhP1eQ4Ug9bRMGWJeMLhreuzJHvsiXR97p6n6yc/0sJbQXRVK2GFg2xqdxRnxoW/72/sdkeMeucIafdukbWVnJO3RfG2o9HCqXIrsdtxAaSbzPNXGJPoJgN3OaDJVF2S752CfNa/wENNU/Ty7rbuxnkt8kYy2UxQFU+U02X4m7bTU8UR5T8ZJpZ8q34n+AiBKbBto2G2G9MdOpR1PPzoou1CUxKA73mPj2wZo7vKclp8io7z23DtlxxV02/nq71nF3LblbFtQ+CI9+ZvI0z71ZjLN9OMqETaNVHuWsqG7ClFSy1lOUm2gaYART3vHILxRW5aiYCofUvdW2HUupPqE0KMXGfLHXT1yJPOVRJ2f0e6aCRuvJ4+T+ZXMJ3QTLCN1b+EP2fmNAt2y8zJYRJol14fc9V+iBG+juixlW6TnSUIXcr2zuCEhrenLhVDprUw/aJpGIBAY8Gt8a2vrYJLbbujs7CQQCNDR0cFs96lspKFPnCPEASxUS2mmLe/0j+cQHvfeORyibjXuMR/hYvPqVFhHxyKtk0qPTn9XO51/yWeIEAWgAC8BitlMY87rC/HRRZiD2ZPzjDP4rnllIp6GRZrDpRfHaYfwhHt0592WIpWkLnow7XRSTTlrPK/zI/M6nrPeYAMNvO9+mPGijnHRQ/HgJkgXLgwCFKX08RX3Axyk7TnCTzK8xFWcQHQvJJIpjOdnxvf4nvlLAH5vXM44ajnb/Gleae7GNBaxLOPYT/TzuNb1o2GTe2tyavSHPKfeBMBPAbVU8QVrUufnsB8VopTn1JuE6AbgL8Y1/NK8mSbsevtM7RT+5r4OgKiKEYjaenOQ2ItXPPfznvyUObGzALhY/zb/z/VzAMoie9ON3fGawU7M8z6x1Z93tPK89SYvme/wN/XfVD2YZBJjCeBnPkszjs/R9uc59z3bUswRRypJSXQvYsTZVezMJ57Hc8ZdpzYzNXo0AKdqR/Mv983bSkyHbcR8uYT9Y2f0G0cg2J1pLOhVfpLY60kqpopJfOp5citIOXroVCF+Ef8jj8oX6SCITNhKvzUu4efG9zPi/jX+b66ybiZI34+X2SihmP3ELOLEWaCWYqDTTBvF+GnD/pi3P7M4STuSX8qb8OFBRydENxoaB4jZTBB1FIlC/mRctd2M4t0lehyr1Qa8ePHjy9umL8CLRBIh1udcFeU00pJxrIhCjuFg3uAj2unATLOLsyEQhL2L8pJpOAmqLiqj+w35eh2NFs9HeEWPA+df1jOstjbyV/kvGmjJ2SWvpCxlpyQpoZhCfFn7ZUmOEgfyjOevQ5Z5a/K12CU8I1/LOKajUUIxGzxvIYTgnOgV/EfNBeBAMZtXPQ+OhKg7DN+IXsZ8tZS1bKSMEkJ0ESOOQKCjYw7Gc5IHApGh0+OpYx2bMuK4MIgP830Hw0HsyccsIkq8zzkfHmaLGejoSCVBwI+M73KSPocfx6/nWO0QHrCe4Dn5BhGi/FQ/n18ZFzFXvsEZ8UsBOEv/Kne7ruVdax7Hx88nmqVeTGKgU4iPncUkThNH49ZcbJSNbKaR/+f6+VZZ8/jC6G+4Vz2acay3jy7pnxgI1WkRq15KR0dHv3sB5DXS7eqrryYQCORzyQ7FGFHNRtW3cp+j78er5nv9XptrENXeYvfhEW4rcrI2h3vEw6xU6wjSleEwc+PCQlJDBbtr0/iOfhr3yh4l7iZCNxECFNGB/QXA6mVYdBFmDNW8x3zeNefjwoWOhoGOQOQ0FMf0Gum2I6IJjdO0Y1iqVtJIC2vVRupEFWsTlfYStZLF6gtixIklKs44Jvtps3hWvg5AOTtemXUJF1PFRJaqVWygntq0kUKdKsSe+q4czJ68zbycacxiekbnrZG+Hwx8wju8gm9FTtAP5zPzCzbThIXMcHQDfMJnvOv6D8/H3sKNCwOdH5m/T3XWAHYXU1O/PcKNBzdRYgQT+xg3qObU+Vyjs4xRPCV9W3CcfijH6YfyavR9lqiVqeM6GuvYxC36L7nY+l3GNRUMv0Ex2tGExnhRxwq1ljVqA0qpnJ3zetnIbDEDH152S9NRhx2HwRjVCsUxHMRilmf9ICeR7MvuHC6G7hjYXigWfnbWJrKLmsJMduId9SmG0Dld67t8yt76bgQt245KjnrP5trQ0CinhJ8Y53GZcU7q+A9jv2WxWs4KtZZaKpnOZBaxnN/IW9ibmSxkKTH+P3v3HWdHVT/+/3XO3La99/SQBiEkFCG0BARCURFBRZFiV0TA/rF/LD9BRQHB9vUjVRAVEFSUTpDeUiBAet9kd5Ptd3dvmZnz+2Punb13S3YTNrsbeD99RHbKPffMmfc5c+bcKTY5hCmkgDJVzGF6dlYaB4KpagKbzHZixAig/ePfcNk4fj8sSIAAFj2pH176DrhpNF10s5sW1gYeotQ+asj0cxnb/kiByiNCuN+PSXsSIuiXiYPLT+0/8P3gZf7yj1jvAQs+7J7B6YlP0sCurAEIjWIStTTRzHvUSbxh1rORbQC00UFbahB4MLPU1L3ZxFF1ifUBwibEPeYhwNtWB5dm2lhh3qTFbedh87S//oXW+8cop28fd4R+wcnxi5ikanjOLAe8umow2NgovLs1eogNmsZQF4RotN+vzmxpFdDArqx1iykcMob3lxd4td8gY4AAn9TncYSeSyvt/Nd9CRScqI/iPdZJAPwi6F0Yc7NzD0UUMEdN5ybnHsKEeMp9mRIKOV2fyIf0GXS7PXzW/i65RPbYlhoM7UTZTStfDn0CgOvtW6mmfL+9ZOxnoa9zZ/yfWfnqe1wczoDb3tirQbfzzz9/zJ7fNh7Uqar+ewTvqpJpTPQPBEXk0040a53BLic80jp0hHM58qp0eerEu//gV4IkBeTxHuskrrQuYYqqo4pyGvFOztMH3HY6USj/oJKplgqaaOZMtZgt1POqWUOQHKYxkVf7XHmUFiQwrg+mI6lalXOTezcAL5nXmK2m+ctWuxvZaXZxrFrAMvMGU6hDK53V0Jeot9+gG8AcNZ3VZiNxEiSMzSJ1FHGS9BBjsqrheV4d8HP55DJXzeDj1nl81v6uP7+T/peL5/DWL6kfLVNUHVvZCXgDr/OZw0a20ZFqizqIssZsYqGez8PuMyRIciyH82zGwORkXZeVZiH57KKFjlTdbzS9Jw6VlAHQZbr9q9wA8lXe/tnAA8wH9Glc69xMD3EMxm/3/ub+p9+6Fe/QN5cuUkdRSRkJEuwwjYP+kFJPE8vNGwCcoU4czSyKUVJBKTVUsLPPSUlfOSpCvsklRoJiCmiiufdWbgwvsJJl7ut81H0Ps/S0PaZ1oLvM+hhftC7kBud26t0mTtRHMUNP6bfeAnUw89QsCsjjebMCgwLcrH6phUUVZbwZ/A/hPreS/STwZY5InEM1FfQQYzUb6aYHB4eXWcUkaihM/bA6gWr+HPgllj7wfnyZoib4f79Pn8yd7r/8aZX6/8FvjvL6w+mBuiQ2SeysE/BM6XlPs4yZ9qnDyt9cxv4Hh3JK2E7DgMu8n/J01pV+fa/g+X/OXZxtvZv5ek7W/Ol6Em+E/01d/Pisz7gYdtDE4eoQNpvtbGEHk1ODcD3DGPybrGr3ZvNG1XuskyhVRdyT8AbdXAxlFHOUnsd3EtfyOuv8K0stNBdb54xldt8WAirAr4PfZ2Hyw3xAn8bL7iq20+DHnIE9DrgBexxwAwas7+m0EySJECZOAoPZ6wG3EAEM/evV3lIobGxy+gwwllLEC2Yl11jfIKiCXEH/H06+lfwFhSqfqUxgF808bbxziD86dxMkQLWq4Gn3FX4T/F9+aN9I2ISHHLxKl+lRqndMZH//aFOg8viy/gRXub/Lmh9AYw+xj/fVsF9NeaBcHr4/1anee84L6D2x3GVa+I51qT/dTnTYzxOZrQ+MgaN36d4r8krovXQyfUvj7527eMJ5nkfcZ6ihwl+eIIlOlUYxhf0aq9lM4z363SwP3c/fwr+iiAIAuunhaH3YoPlJYlP6Nh1M6iuzHF50X2WOmu5Pr3LX8mf3XzxrlhMjzmo2slDNJ4DFNDWRSkopfRte6QYwW02nnBImUM3Nzt08aV7iebPCG7RVQQ5Sk/p9JpC6BeZ5s5KpGR1sYMBfYSIH0KDbYv0uv13KI5c2OvwBN4AcIvzWvpPZ9MbPs32uBJzWp8wKUgNoncZLp8W0M0NNpopy/83BW0z2pfLF8hZOAL4TuJQrrUuyTtICWLxoXiNCyJ8XIkgFpWORxTFXoop41izjZbOKV8zr/vyHnae5NPF97nce41/OE9Sb3pM8eWP121NYhfYwnNHrFnMvl1oXECdBI80Dvuwpic3L7qqRz+Q4YykLrTRXBC7mntCNg56kKKX4jnUpz5hlVFHOkRxKHd4A94X6bH5pfZPm8Is8Gb6j34AbQLEu5HfBH/ImG1BKcZI+Juukz2D8H3h+H/rhATngBt4PV2lz1EFZywx7ehpRr8xyyScXF7ff+UC6nwvg4rCbtmHlbyZjf76wp/Y3iZ014JZHbr8yayfKNxI/I2n639LWSgdnsKjf/ARJlpnXKaeUABZb2EEP8WGdZ03T/fuB48kxan7Wy6e+HPgER6hD2Ew9DfTeWXAQk9Fq2KfsYg8OtWaxInQ/t4V+zhl6UdYgWTB1LVKI4H55LmiQIKUUYTDksfcvAkxgD3kb+nAYjHe7ep8BxiaaKSCPa+1bBvxcp+ni184d/K99A7937/IvjLHQ1NPIVnaw2mzk6sBXuTD5Nda6m1nLJv9q18FUUUaIIEfr0b3778LA2VnTeUT2acBND3M4ba+e6dbQ0PCOu9It/Uy3bdN+S+7OJC4OBohHHMIxCwUoNIFIiEQs5t8PnLk8PQ3QXB7jvydt52vXPwVA21OLYeuT0JNqXJ1Y74MRrUjvdCCCNfuDBE/51ahuf8+lj5N8dBv29o4Btz1zWqNwMf2Wq4h3mb0bS+Kmfl3tu04oEsbEHKyz70EXdoAyOM8e4z3I3Qmw7qAOjv/bi1l56/ussuSjl2NirahICcFTfkXy0cvp+fQEzO4QuEGIWBBzvKe3KjXwNPTOs4dVNfY7A+gpm9BHv+Q9rHfFYahZa7yHV6aoqkZMcynYAdxlC1Cz12DNWwXa9QbMg3leLOkQWEFwHUimB2RSy3PKsSaflBVjyUcvx9nyRHZ86hCqcALhi18hfusRmI7t4Ca8eAXIKUcFQqiyg1ER7wqezP2SKfno5Tir/wZ2rDfmU/mw730/yUe3Yeqjg+4jB5fuSJJwzCI0aQvWUS97D/yMhSESx3nuaBI767yHoZIdr+nnKKTr5kAxHcA7qdnr2Blsnb2d3ss0e8JJrFjv7eyxPvUsGXGxsNAxk7WtRbNe8x5ybRTW4StxVhyKqa/DxCKYc/5JyErgvjkH05ODMWA2TwE7iLIC9NRZ/O2klX6b9hF9FjeHfjpobPSNsbcidm0RDHaA1CFU8RRM60YwDgTzUAW1JP96Ju5rxZiuPAJn3g26ByKx1JNRFc4zCzE7aiCeC+GcfuUdOOsO3NUz0bNX464/CH3oa6iK3ThPLELPfR33+WNw1x8EJoSDoTuSGDC2VGr//P2D6wn++kQ+F/hIv03Iqn/7cCwYqv7urfitR2ASUVQoH/eFn5N8dBvWkbfhrJzrbZ0Ga+GzuCvmoWevwV0923vpRmMlJHIgnIOeugx9xCuo6gZUTg9ufR3u8vnoua+n2rEy6MzHeeVw3B21dBMhEgv4xw4rEsTqdgfd7WLsBT7wd+xHTyZw2mM4r87DNNVBVx6B992L89pcTFMdqrIJiAEKa8EKyO1Gle/GWXoievpGrw7ZFnrBCtwV89Gz1kBhB+5LR2K6c9ELVmJWz8LdNNnrJ0TzwfR2fMfsRQoFwXFzbNAzn0fPexVVsxPTXI4q342KxHC3T0BP2I6JRXAeOYXA+/8Byntuj+nMx+zufXSAnroZd9MU9OQtoA32ve8ncM593sswCqK4m6agynsHB1Q44wBkOd7D7ZNBnMcX426YDrEisIOjclwMvO9eKGzvfXi6o3GfXYjbMAW68vql6fT09vFNRGPFwAzQZw1M2oIKJgksWAE5PaAM9nPH4GyYjutaWX3+wdp+6H98HqxvnZ42EYuwGiC+RrGfYePSk+pz9T2/Ge62kNqWUFxnfUdm+fdNM11exWf9HZXbg7v8MNTsNbgrDvNf4uM0VnsPoe/Jxbia7hyH/Fg49RD28dNP6zudCLsQc1CAxsKJQOjMewkU7/ae0o7y2sb/LEEvWIGqbsR57GT0ghXgKu/4eegqCCXRdfW49XXgKlSFV99RBvuf7wGjCLz/ftytk8BV4Fi4yxdgEvlYkyrJu/87I95nyOSnHd2efZ47jH5h19k/xtm8C+uwZZDjPZMYZXCfPWbg+pxRvmrqJlAJrAXLIONFB+5LR6Bnr8FZtgB93HOY5b0XOOgFK3CePdbrC1buInDiU94LPCp2oXJ6sP/5HgLn3Jf97CijsO872yvnc+4HR2P/8z1Yi/6Ls/RE78UF3bmAwjRUkUzmELMGrjeRs++HLZOwTlqKKujA/td70HO9HyZVeTMEkjiPvJvAex+AUBJc77sD7/kXJh7xXhawu9x7EYPloiduw62vQ5U1oyIx7H+e5b3wa2cNiWSE8JkPYBV0gDY4y+djHfaq348jJ4bz/DHQE/ZeVAJYJzztHRu2TsJ59hhUKIFJhrwyAZx/n+59VhnvXOzZhZh1B3nHarLv/jMKHMvFiUBOLOgtHcW66PQkssYmCpf8C9ZPw5qzGnK8+uM848WCE4/QHeq/z3aVxDl847dH7plurvvO7uGarR1YKif1oF4IRfv8khdNEsr4xbXv8vR0QTRE6KGMX142PwLR7CtFvC8E3IxbVJNRnE0PZfweMjqS/9mMqe/CgkG3fahpogawsVIPqhx4He9e+sCstV7nD7DrU786dhYyrbkdyB50y/xVEsDZ9JBXlvm1BFPTZselqY64m/0WTMwQ0+OHAkxzGdb0jaBc7HvOIXTGQ6lBglTTld+FSjWG9sZphM58CGWlt8f0DrC59gBvWEktHyDG/DLN5NqY1vXeJ1vXg0l9Tzpek1GM0piWtZCfurQ/Y79kcjY91Ju3dMyn8pH8z3xMfeYtzf33kYWiIJq6amhXuV9GGO2V1Y5agh3ZDWBv7BlCWP1jkb7xuS+xM9Q6ezs9vM/kJLO3JThU3UzNc9cdRPp1YXra37EfOB06C1FA+KB1ANgPnOmvoxKpqyFcl5zNLqdktGmlqeeTDRYbI9uO7aHOuonsPCSjmNb1OC+EoSMEJNHT3/SWqd507B010JmKmUTmr3NeeetpG7H/vYTAmQ9i//sMAksegfwo7ppZBE57DLu+FpJex8GC3vhMydwHwajFKQ9NYrka+OrAAevfXpThUPV3b6XL0yjtHxv0R1djP3xSb/zU7fBOzM98CPvfZ3jzo6krOxJJ3M2TCLz3X5AfBWXQ5buxV88icOpjkB/12rHyZuwHzkRFe68pTx87iI7Pdlr00rPXwN/PRs9ci/3wu6EjB3DRs1ZjP3ISdORgnN5bqvV5qXY7v8urR6c+7sUOEDjrQex7phE44yGvTd8w3ftx4Nz7SPz7dOj0YkuZcXIVSGf/NiPb6B0b3HUHETj9Ya9/oID8Lr/OEbRRgS7c1bP8EykAld/Vb7hSl+8G7fU13NWzQHnr+cvyM47TWa/n7F3PXTsTOopSczP7JvvvuKhnrc5q2wHsHbV+PPZdP7Of23uR+AB91l3eoKQ+9++96dfXYiV6zwKG7lcMfXzu308G2FN87f9+RiCzzzVYPoe9Ldn7YE/nGeCVlzV9U28/+MyHcB4401+uOwtBuX5bUBD1Xqyyr9u6v/ppfadDSSDj/NGKQuigtdmxm9+Fu3EagbMe9Pobq2cROPVRAOy1MwksedRLO5T06mTqM+n66K6elUrc7V0O2HdPg44i7Hov4Ee6z5CpX9p9+vx76tPYz1ngVKLPSR0rUkMee6rP6Wmz0zvW6HM3Zff1Nk7z+ylW7U4S9/Tevhs468GsvqCu3emlnSrTdDvoU/TOB69N1a63n865H3dNan76tbydhQSh3zan4z4way2JR95N4Ny/++kGTn2sNw/gpXnufanvS333B+5DBVPP78zMXzou0vlfM8vLS2chISCYee599wfQZz7o9+NQLnZ9TW/eAT1hB0Ti6JoG7Po6jDJ4b6n24shNla2XEeOVpatJ/xyWdYwxYNnWgG1C1kr7qS72HZsIpspen/Vgb5mkYsECCvrcFBWKWpjO4V19OE56KULsHYXKuo1VCDE+vFNvlXwrMm83EkIIIYQQQrx9yKDbGBruPcCivxwi8nwDIcahynfoSwHeisJBrnQTQgghhBBCHNhk1GIMBQZ4ALAYnrK36csBhDjQVaiysc7CAadIXj4hhBBCCCHE25IMuo2h0Kg/oe3tI6wOnLdKCvFOUqwHf4ioGFih3F4qhBBCCCHE25IMuo2hfHLHOgsHrGLkxF6I8aj30fdiuIrk9lIhhBBCCCHelmTQbQwVyi1F+6xcnhslxLgkPybsPTkWCCGEEEII8fYkg25jSAaO9l0V8twoIcajfCVXuu0NjcJS8nxPIYQQQggh3o5k0G0MTVQ1Y52FA1aNqhzrLAghBlAgV7rtFSWHYSGEEEIIId62AmOdgQOFPrgUNidwXIe4StKdZ1PYFcY1Lq4y9OTZ5HYFsYwGBR15cXK7AmijcJWhO88GoKmqmydO2Q5AqSrGmnUe7pZHMdFG74uSXYABFATzeqeD+Vizzhv17Q5+eCb2w1txN7SB62WL/CCJaLe/7d15dr9tHWjbC7vChEzQTyMe7cb0SYPXDkUXt4J2UVO2gG1hjMWqQ9qy8jVRVffLqzXrPIi3QbjYn1YHxTE7w2AHIT8IXcms7eg3Db3z4s7IF+g+UuW7cVbPhrwozFmDvW4GOqfLy7cBVdWEaS2GZBA921seOGwlBByU1l6ZJLsgEAErBMaBnpbUhy0IF6PyqtBTTsn63gHjMxBBFU/z8lU5H9O2EeyYF6+AyquCQARdMdffF5n7pW/6zht3QCJKOubT+Rgs9oB++y0e7SZY1YS9ehbkR1E9EVQkhpq0je5GB9NZkBWP+V0hMCYrPvO6AiijMAq68pLkdQXIMZHBY2VPsTPcz+zHNOMqQWdeYsBt7Vs/K2a+AZ0F4GrsNTNRk7dgdtRBdx7JNfPROoqeuQ7TkwNozMYQ2GGMFeDNaU1+mwaQS84eY6NvjL0lKgDGHnhZIBdVNhuz+3VwbS/GiyYTOMXGWZ7EdBbgrDkcdAcqEgNlQIGatA2zoxbi+ZBb0K98nTWz0TPX4ayZgZ77Bu62Caiy3eh5r+Fuq0NN3opZPxPcXP8zyWgMx9igFLE8h1CXQhtFND/JE+c1MXOQzcuqf/twLBiq/u4tVTkfEh0QKvTrp7NqPqquCXBBg7t5Mnr2Gpy1M9Cz1mHaCzGWC4k8yC1AT17hlVlVIyqvC3dXOXr+Sq/sqpowLaWYjgJU3Q6MUhCs7B/jbXGwzT5tg9j/nBWHQXEbzqpDUXVNmEgQOgtwXpvvT6vyNiAKBpzVM1H5PaiyXeh5r+GsOwh9yOvgBHC3TfDjSRW3ouesxkTzvHZq1lrMxingBDAdBeCmrxhVqLHa+PLIuDk26BnPe3WtdgempQTlalQk5tW5UAITi6DnrwTbAssBBaajANNcCsYrQV0Q9dbP7QbL9dZ3FaazAFXUgburHOVYXvtpFCqnp7csAjYmmg/xMHru67jrp0O8HBKhUTkuOq/NRxW3QCgOxoBjoSZtxTRNTx3vBk7TVS4ted3kdgUImgCWsmjJ6/KPm8HqJnQoibNmJiq3G5TBnbIVZ91BOG5wj8fafZ2OqPC46mf0RKMow4Dbmu5DZW5LLM8hpyuQ9Zl0+QZVwP+OpGuTVLafZkFXiICx/POuijUz0bnd6FleP1dN3gKOV+/tXVUoV2G6c3FdjVMQJtKtx0Vd3NtpZ83hqJKtYLwf5VRpC3r2av/YqQ9biburAhwLPXcV7rYJEI6hA0ncXeXgBFDlu1E53aBI1VsNyYC/HDuAnr0WnAL0tInAyPcZMvlpt24k8zx3OP3CwKkKd10jzppZqLxuvMJK9deagv3rc0Z5qoltoHq8+lrU7rVV0HtcqavH3TYJPXu13+652yb4fUFV0Yy7bRIE416Z5nZ75ZnaBEhtjqt7y9m2vH1z2EpMUwV63muQCGGieWAUprGaHjtMV1Bn1BuDk2cR7tJYr81HH/IGpqnSO+6l+kgoUKXNEEqi570KPRHIiYGT+u54CBOLeN/RXAaJIAQcdHCb11bbAS//817FtBVjdtTQY+dgVs0lUNgO2oU5a3A2T/LLx+R2407Zio7morRX7u6myejpG3G316GmbEEFExg7gGkt8uJt9mqcNTNAG1SkBzVxG2bNTIzjDTulihmFQmkFQT1u6qKzaj5q5np/21EGJm3D7KjBjuXQntu/Xd9U3gqrhq4DyhgjPdc96OjooKioiPb2dgoLC1nlruXIxAcAWKTexZPmRQAOZSa7aKWJZk5UR/KCWUkPcT8dhcKQXdTftj7Pd4NfGL2NGUH32A9xgf2VfvMtNE6qMeyriHweDNxErVXJVrOTl9xX+bJ91T59/wPBP/Bua+E+ffZAdqfzT6qp4Bn3Ff7rvsQxaj4XBN7LbD0dgFfcVRyXOB+AT1kf5Mbg98cyu6Pmm8lruNa5JWteDRXsZNeA639af5A/uH8bcFkeOXTRQwmF7Iw8O9JZHTV/tP/Gj+zf0MAuKihlFy2DrvtefTJ/C/2Kzye+x33uo7TSwbX6m0y3JnO8PoKf2L/jCutiksqmNuMq061mJzPjp/rTCkVP5LX9ul0Hoped1zgz+Wk6iFJGMc20+cuOUfNZGv7T2GVOiAPMrfbf+ZL9E7rxBng0ChdDAIvP6vP5ReibY5xDcSDrNj1UxI/BweEQDuK+8G+ZkXGcAwgS4BvWp3nAfZLl5g0AAlhYWMRJjGh+DlOzeSF894im+Va9L/E5HnafHnDZYnU0S80L/eYfwgxeZ12/+Q8Fb2KR9S4Avpq8mhsd73hYQB6ddPFd/QV+5P466zNBvBPsJMlB85iZrhD7y73Ow4RNkCZa+K59HbtpzVo+V81gs9lBlK49pnOkmsvT4bv2KQ8NZjdT4ov9aQsLh72/cCRMkArK2E7DPuVjbxRRwM7wM2g1/u72eMp5mSXJT+AOMp7Rl+lwSFSt9seKBjP+tnScm6GmoFPF1mB2caSayyw1lcP0HCopZbqaxFLzYtaAG9BvwA2gXJWOSp73h0P0DIop9H9PDuD90uTg+le6WH3Cq50oC+0PMSu+hEuS3+A0fTwXc86gv0lXUcYSjud71mX9ltWoipHcnAPGR633crJ1DIUqn0KVT7ku8QfcAOpNo/933QBXA75dzVL9f4VrpxOgX4wCLNSHD5pWetC44AB/uP0p1nE0pAYdE0OcBKSfL/nZwEdopQOAr7o/5X3Jz7HCeZOvBD5BkSrIGnAD6DTRrOm8VN0X2Y7Qc/2/u4llLStSBaOdHSEOaKdax/kDbkUZ7bSNwxPm+bHKlnibyFU5nKdP51A1ky3sJGD63xSUxOYXzs1sMfX+PAd3xAfcAOao6UOvNMqWqBP6zSumkDlqOu2mY8DPdNE94PzvJa/3/45mrDNdTeKawP9wh/nHAJ8ylDL4yS3AFD1hj8uFGAkfsE7jrMBJfDxwLp+2Ptxv+UXWORyjDus3fwp1hAn50wN9driqKMs6504PuO3tFd9xkmynod/5u4U1rOvHA1hUUDKs7z1KHzouB9wATrCOpCSjfSmmgOAAN4fu7TX143Nrx7GwCjFNeZfhbmEHL5tVrDGbaKODi6z302LaOFwd7K+fS4TQIHfxVnDgvkhhgqqmjQ5/MNHOGFFPv+QgPXiRQ8RfZmGRIEEFpTzjLGMz9QMOSAK00sFi62i+ELig37JiteeD7dvdFYGLuSd0I1cELs6a32LaOU4dzgnqSKbxzulwvEvPY5E6yp+eQDVJvNsTFN5gUDpGNZoT9VF8SJ/JERzSLy079bnCA/yFAJNVLeeq0zhZLczqyKZlDkKWUQx4v6ifpo5nFlNxcAkR5HT7kxwafw8/c/7QL40OsgfdBrvK9Z1OKeWfOPVkDLpVUsqH9RljlS0hDki1qpIP67O4XF/EdDUZF4NGU0oRp3LcWGdPvA0UqXxeM2uJ0sWb7oask+O0HmK00O5PGwyTqRvxt1HP1m/91r6R9m59TL+T0B5ivGk2sIntA36mnkYmUO3/MA/eVaovsJLH7OcwxtBlevsqfwldT4PZhW2crJPbHCIksWmkedD8KRQTqNrXzRNin5RknJtOYxKL1dEcpw7nM4EP80V9YdZLAFtox0ITJkiEMOfrs/b5e5VSfj8+cxhoIvv27PjM8wOAEziCwBBDRgqFg0sPiUHO6nsdyVxO1/0H7seTo9Q8/+8JqnrA85vBxi8GI4Nu++AIdQiHMosFHOwfCBrNbj5rnY+FxbLUpeYAMeIkGPiZQwfyFQ75KpfyQQYNJ6u6rGWZJ5kODi6G580K/uTeT5Ua/C2kC/UCvhT8OK0D/GpWMsQvXO9U680WnjHLeMq8fEBfSbm3DtYH0U6UAAEKyWc7Df6g2wSq6aL3OTN55DBBV3Nb6GecY53WL6304NyBfqUbwMcD5/G4eY4pTED3+UUmc6C8IhUrSin+Ef4dy8L3cSwLAEWCJF10s97dQqfJvjy+7/RAJybCM0tP9f/2bkPSNNHCHH3QGOZKiAPTraGfMlHXsMy8zkI1n8W8i2IKudX8nSedF8c6e+IAd5TuPeF6iVcppP+PcKHULY6Z6mno92PUYIZzvMwhwqHMGlZ6o2mGntLvJDR9lV9b6i6DvpLY7KLFv0oVwMVQQB4fsb/E15M/y/qBMJ9cvm19niKVnzXo1kOMQ9QMCgbYJ2lz1HR5K7gYdcUZ56Yb2cprZg2H6dm8z3o3Pw99g4v1Of7yDqJ0EyNOkoPVQYT1W+s/1yhvkNngXfBzpJpLYB8f3R/vc9v2U7yMHiItk/rf5daFQ6b/Mquy2tjx6DA9mxBBcgijjeZgBr/i2GJ4bY08020I6We6bQ39lELj/Toz2MjmQM9t68vVsHF6G8e/8lceD93GEbd9CtO6AYZxhYgqmUH4kmV7vQ1vRefc23HXtw2Yvb0d4R2O0Feu9R7oCyT/7xOAgq48ksUdTFh3L+BdqdQVXolS2YMI8VsOx3Q1oPKqCV+yjPgthxP7/EXgaPb+IttxpqSF4CduAcshefMlBC+63S8nAFXcjmkrAvCXq4rd3rJhb7pGlUzPirH4LYcPHJ86SOSKFmLXl4Lb95kaGrTlPXw1z7vFNXO/ZPLS7/uMDy8fiWu+NGjsDSijjHAt0A7Jmz4Ou0sxffZ/ZgduT3E8ho/jHjHDqaeqYrf/MOLgx28hefPF0FoCRhH8yrWgIHnrhf46tJSk0la42vhtWg0VbIo8ATBobPSNsbcidu0QP1zoYHYedJDEzy/H7CpNbdsvvaZB99al5P99wt/2gdqN4Fd+SfK2CwledLv334/fiipqJ3Hd5QQ/fivJmy6B3WX9Pmsy/r+XwppZTMGqgTspg9W/4R4Lhqq/e8vfpzpI8g/X465vI/ilX5K89SLv4AYEP3UTyZsv9ssH24K24t7yLN9F8BO3oorbQLuYlhKvzfq4N8+0FYFrkbzlIthdivw2eOAJfuWXJK+7nOCVv/JiI7Ufg1/5Ze90SVvqgdaK4MdvActBFXV49SgdOwaCn7jVj6f08Q/H8tqpWy+EltSPS67OqF1vh5Z7BFTsyqpXqrjdr3OqtBVcTeLaK7x+V5qr/b4EgCpt7V0fSPziS976ru5Nq7j3ai90n7bG1WAUiesu99rFQdrV/SH4lV9m9ZMAv08wVLsycHvtUSWt3jPgU3Hbm27ZfugVw3iN5/1xDpAtc6u970qfI6T7ucmbL+5dr7XYa1NcPcDnDyx9Y1cVt5P45RX+sTNx7RVe/IF//ATj19f0Z9L1MfGLLwFe+aWXpz9LRwGqOEbhtu+OeJ8h06BpD6Nf2DHxR5ikm1XnYJj1uaSlX331PnsJwYtvJ3nrRQQ/cQvJm3rvHAp+4laS//dxry9Y3Ebw0zcBxi9Tvx3sI7Oc09OhK3/ltX+ply2AgtZijMmMz+w6nu5nhq78FVgOiV98qXcfF3WAMv3a7qy2GQZuxzPyj2P5+cg6907FU9Zx96aPp86lU/n79E2o0hav//Z/n/DizNWEvpra7l9eQfDi2/3+dfL/PuEfq9Otxvhs1bL7+FnjEanzgoFavQ4VY3LiG0M+003eXjpc6TdbsOdAGSqILBfyurxfx/LJxSS7GO6ogrfu6DLpt3oMYH9UGBVOgEp9YTL1K2I8jI73/gKQT26/ATdIlU+iExMq6J12R6+Dt1/Zgd6yiYdSfxv85ksZVDA1uJBaPvzBtjS3X4wNGp/Gyf5vn3QwZO2LrL/7pT9wPvYUewPKLCPjeP9NBKHfNV7ZxmvDP1KGtX3xkP86IRVOeHUv/dascKLfOuk6pQDLVVltmm+Q2BjVdqxvHoyDiQWytxV62xzI2vaBqHCitw7GQ169027v34kgA7U5KuP/s7LUNfiDoAerf8MtwyHr797KqPfp+qnCCW+b02UaTGaVD0Zll2ciVU6pN4j566fmqWDS+55U3RUHHhVOgKt7Y4OMtiQ9bQey11dubz1Kxw594il1/MOoVFrZbdLbuyXfB33rVWadA2863ufqisy+RHpW5nR6/cy01B4GX5Tp/Z49tKv7Q1Z/Mm2Y7cpg7TXgx25W+ql2/50Ug6O7tRnH7Mx+cDLjakOjyTpZO4D1i11lso+d6boNGX8PUL/TMup5v/ocj2Di3p0hI95nyExi0PPdofuFJh4Ax80oFwWY4dXngeoreOWZOiZ5fbc+ZZTuC9qB3vJNl2nfdjOt7/x4yD+ueRuSik0zxHlJ+hiY/hEjcx9nzBvwu/u285nblJn/VN9M0ads0t+VedzN6ONlpq2CtldOqbdX++mnyzadH7+ejv82MquPnzkekT4nGugzwzxXlR7tGMrLPEEVw3YYs8c6C0KIAYz0s2yEEEIIIYQQ4kAmg25jKF/JoNu+6Pv2PyHE+FBK0dArCSGEEEIIIcQ7hAy6jaF8udJtn6Tf0CKEGF8q9vBiFCGEEEIIIYR4p5FBtzGUQ2Sss3BAqtRyYi/EeFSq5Uo3IYQQQgghhEiTQbcxEiKIVlL8+6JMFY91FoQQAyijZOiVhBBCCCGEEOIdQkZ9xkiYQd58IoZUquRqGiHGowoZdBNCCCGEEEIInwy6jRG5tXTfycPahRifqlT5WGdBCCGEEEIIIcYNGXQbI3nkjHUWDlilcnupEONSiTzTTQghhBBCCCF8yhhjxjoT41lHRwdFRUU0fvkhcl5qB9eAViRrgrxS/xIRJ0TCstlR3Ul1Qx7HMA+0RtfksW7nmzQnW3AsQ2N1NxrFxmntvLiwgR1nhHkl8necjf/BrX8O07YRANPVAK4D2kLlVfvTqqAO65ALsKadMarbn3xgE84zO0g+vcPfdl2Th7uzC1xDvW7kpcoNVDXkYjnK39bahgJwXH8aYEJDIYczB60D6Jo8Nu1cS2Nyl79OVUMuFZVbyM1vIZyTpKi+Ep0M0ZDTzZ1nNPPTixsB+E/wj5xkHd0vr87G/4Adg0AEa9oZOBv/Q/zaRtz1LqarICvffbcjPQ3489zlTZAcH9VDTdiGPrINwm0otwCCSYxp9PKOhVvZhdsVhZ4IpqOMUFEJasZKdKENBRF02RxMVwMqpxwCEXBt3J0vAi6EitBlc1DF09B1C7NibKD4VDnlqIq5BI/9Dslnf4zZvQrTvRuVV+3ltXgaWCF0+SHed0HWfsnkbPwPzut3YDrr/ZhP58N9c/aAsQcMvB9z16OKNqMKOzGdcbBsTEsdOjIPt7nMX/+Jqlcp2AnasYhbCT8+ZzVWU+DmgQWTaqYPGSt7ip3hfmYs0nSNy3M7nvXr63F1x+PwJ7q7YijbIlaRpLSlGForMMkKrMPjmI43iHXZJJLQGQF320RsU8DOnCQvHNvAiwsbeOSMrbwYupt5ejbAoLHRN8beititR0F0J9hdgAXGAeNCqBBVfjB64gm4Wx7DxNrQ5YegymbjrpqGs9LB7C6D4lcwHW+A7gZtUHkR3K2l0FENpgo9YXK/8jPqn5hYDBWKQlhDuBWsVkxHASqUxLTNxOyYhQpPGXKf6Lp8QhfNIXjW1AG3L7P+7cuxYKj6u7eSz/4Ykl0QzIPWC3Ce2YG9/t+YzjDoTnS+hdFrMD1hVDgJugyzOwzRCtAVXnkmHkQVrkcV7IKidohGcDtyUEaj8roxThm05mNaJkJ3LXrCgn7l57zRjNncAXF3r7dB7H969mrcRBXWnF2YRCU6VIHbXIaqXIHpiaBDFZDbg9u6FuwEFHShSzVY23E7IihXY3QEYjYqrxPTWYQqiEDOdkxzKXTnoypyMJ1xzPYy6A5jOiuhJxfax/aYHTin/7EDxujYwJ2oSAOqrB7jKFRul9d36ChEFXZCPIy7uww9YRuEbLAcaC3BdOeAqwGFmrQFs7MGVdIK4QTu+unoKZuhKw+K27xlwSRo430mHPcKQrteej25mI4CTGMlpnEiuvh4TEfBqBwXVeUKyNuOymvCxLsgGcDsmoyOHJ3VJxg6TXiw8mXKGyLkuGFmFDtszn+dWqeLYMghEgiikrNxt04BXU67jvJE5asA/frGw53ODeQyr7Z/2zdmsbSH6e3V7bzsrhrWtpWYQmZb04nWGF6rX0GuE0ZbFhuqd/dbv1gVclzjwaxOriVqxWis7uYoazN5gW6s7gi5RfnEmhyMrTDATp1PbmeEKns6QfLQUyYcEOU3YJrFr2DUw2DbAKh8G3dbBSq3G1XYidtVgMprhUTQq895CsKtqMIOTFcOJHNRkS7I7QYribujFpJB9KQtmI5CiOWAU4TprsIqn4K14HDCnzxvxPsMmdJpu/XPZp3nDqdfGP/j3dgvvobp2YoKxzHxDsBgdk9Eh+f3q89Z5TlxO9iNuPZmVMFuCMTBUpimQrAMtNWhp3fiNneC432fKo5h6uswnTWoIoWevAnjbEXlt0N+B25DNXrqJgglvA8kA+AEcDdN8cp56mZwNe62CaicGKajCJwCaCkEE8B016BLZ6Lyqgdtu0xgE7p8OxRuxd1ZgzKAyYecdlQ4jru7BD1pB5Q0QjyEu2UyuroRkkFIWpjuPOyeXHpyXPJLGlHRHFTQxo0kYOsEnLYS4s0VvFFSREFuA0U5beRr6LAtCk0cunMglKCjMEm0s4yq9RUElUPQuJhJ2wnXbse0FWEaK1FaQ6gHPWkrBG3crRPAtcBVEE6Q3F2JWXMQxAoImAgU5fn7VuUHUWWRcVMXjXkGk2xFhdtoyW8jacUIbaumsGM62tTSWJfLxh1rstqqLXWdfPdXN9He3k5hYeGgcSyDbkNID7r1LUhjDPMS72Gd2UKQAEm8hvHN0INM1RMAuM6+hf+xr/E/EyFMDK9DslAt4Inw7aO4JfvHXc4DXJL8BgBf1h/nl+7NACgUhv6h9UzoLo7QcwG4JPEN7nIfyFpeRAEuLp10cY4+lQus93Fe8otZ67wQupvDUif2wvMX599cnPw6AD8KXMnXAp8a4xyNX9fY/8f37F/h0nvCfl3g2xyrF/CE+wIAVwQuHqvsjYpJsRNpogWAB4L/j5P1QqriC+kgyiRqWRt5GIAN7lZqVAVhQnwi8U3+Yv69x3Qz2z8hhBDi7eB/kj/nOudWAO4O3MB5ttcvPVEfxcOhm/utf1Ds3WyncY9pTmMiG9k24LI7AtdwbuD0t5jr0fGS+xonJD4y4LKlwT+xOPkxf3oqE3kz8h8Azox/isfN8ygU05jIBrZmfbaUYurDT/GE+wJJY3O2/bns7w3dwzmJL7Cdhqz5W8JL5VEX4h3rf5M3cLXz+2Gvr9FZ50P74hP6PApNHn8wf6WLnkHX+0Pw/+NC6+y39F2j6SvJq/i1cwcAS0N/4hg9nw3uVg5JnJm13ie7zuU35T8cctBNbi/dR0opZqgpACSxqaMKC4uNpvcAOkdNz/pMDmH/7xlMHpV87m9TVJ3/dyddBLAABhxwA3jTbPD/bqS53/J2OrFSafzH/S/PO8v7rSMvUujvTbe3XPvGnch2tJ7f7wDzUeu9zNOzuSJw8dt+wA1grp7p//0D+9e4uH7cbGUHUeNd/ffexGcpi7+L/Ph83mTDgGmlRQhTRvF+y7MQQggxFo7S8/y/H3T/6z8iptHsHnD9T1kfypqexywqKc2adwgHDfjZECHO1IvfQm5H12w1bdBlOYSpogzwTu43sY0m4/X9j9bzAe98IUiw32dbaGOju42TrWNYEjieb1ufz+pjPO+spJW2Ab5Tnpkt3rmOzmirhmNfB9yCBPy/b3Hv4f/M34iT2ONniinYp+8aK9PURP/v9Hn2FFXHkWouJRnPl3/NXTOs9GTQ7S14V0Zg19OIg8PqjEGlmWoKCzjYn84ciMpVb4+DwlTVe1XLFnZwCsdSQiEK5c+PZAw2vulkDLqlOiuZywHmM5sz9SIA/ur+J2tZHVWUmMFHkd+p1piN/t8y6LZnx6oFnMsSf3C3glIKVf4Y52p0fUAtYQJVRAjzkllJXfx4Vpm1/vK1ZhMb3W1sZBsm9b9dpjUrjcwDLkCSJAUqDyGEEOLt5HR9AsepwzmCQ3jIfZoqvCupGgYZdEv3YdNWsda/ujztnzzBdCbSVxH55OgD5xyhQOXxAX0adVT584IEudK6hAmqxj9PSJ/cX5L4BjNjp3KT8zfO1Is4hvmsZkPWeUOYEBOo5lHzrD/vVOs4XFyKyCdEkEfMM8QGOMnP6XNOIcQ7yZHqUE5QRzKdSfv1e1xcjuNwCsgjRIguerDT9+dmUCgCWBzMQUxRB9adMLMzzqdXp86zLWWRIEkr7f6yV83wBt3k9tIhpG8vbfrtC+St7MQ4BiyFVZPH9vrNvJJ8laTlsLp6J1UNucwx01gYPAKrJg97R5TbE3/Hthwaq7sJEWLDpBbenNvCeUddwNcDn8ZtXI67axWmw7us2ntujw06kPFMNxtVMAFr+pnoqgWjuv3Osibs13bjPL8za9vdnV3etIafV9xJWUOIEqeQGYGp/LPqOaoacgk7IQqtAuqrO2mljaqGXOqcSpaEF2HV5HHbtjtJOjYRK8Km1PMc6oKdFAY7MHlRahtKSCRtGksc/nR6K3ef3IGFJhpeiVKqX17dxuXgJLzniVUtwG1cTvLuHTgbEpiewux8992O1DTgz7Mf2gw7B79MdlRVNhF4XxCsVlROBJTBdG4Fx8Uoi3WV26hsj6NiIQqSE7AqJqOrV0OJgyrNR5fP7fdMN2fbf8EYVG4ZunwuqnASumJuVowNFJ8qpxxVNovAnPOx37wL07wG05Px3K7CSWAF0UVTwQp5CWXsl0xu43KcDf/GdG73Yz6dD1NfN2DsAQPvR7MFgttRBVFMS7v3fK9kFbp6Aaa1JGv9Vdtf4yV7BcWBQnJqSjjdOnHI2Nib2NnXNEYrzfiONu5I/APHcmms7ua05kYKeyxy7RDNlZrJLcW09wTZrmDNrB0c1pSkoEdjuxbNRWA1VbNbK3blaV5+VxNvzm1h44Iedkde8PftYLHRN8beivg/P4ZpXQfdzWAFvThzk1BQh645Gl13DO7WJzE9LejKeaiS6Zitlbhr4pi2EtBrcXYuB7sTLIUqLcI0hCBRDoEarClT+5Wfs/sxiLUCXagChaEN09OISVgoDSowF9M2A5U/Y8h9oifkE3rPNKzDKwfcvsz6ty/HgqHq796y37wLkj0QzEH1nOzVz+VPYWIaaEUVBnDb16JsIGBQBeWY3RqS5RCu9Mqz6XEM6yDYAAVRVCKO22Fj7CAEQedNhbYgxCYCtVgHHdl/H7y2G3vZLtgW3ettEPufqquHSVVYc2Kgy9HFJV4bHFwPtkYXl0Agibv9NUyyCxW2UZV5mK5NEE+CE4TcfExnG0b1QDIfXV4NzhboCkIiH6omQnsrpiGC2xmCZC105WHe6GaQC+1HRfg7R42fY8Ouv2GcrZC7BVQPJtiGUS7EvWcumkQAenKgsBPCDtqyMR15mEQEXAttBTGl2zEd+ahIHBNKonaXYoo6IBlA5/XgtheCUaBAqyBGxTEaUAYdUJAMeml2lkDXJKzp74fOgtE5LgbXg1WPyqnHtDdh7AAqMRFdc2K/PsFw0nx4+yNss3dSEmwjpyDGtNYkWAlqA5XkFS7ANNVAoAIshV0d4uf2H6hqyEU7GmNBQ3U0azpUU0hiZwfKATd1LK5qyKXaKefM8EkHVD/jbvshWnfuRDva35Yrm84nx4R4iddYUbUZqyGOdjRBK8DWau+c4HhzBC+rVeysjlLSEEQ7GsvSbK/uAGBB41RO5wT/e15puBFtdhFKKJpLHUp3hbAcC0fB+qIQha25LNKnAmGsgyYdMOXXL029FqflPkh0eM+bKoxgmoIQSEAkidJBjNsEtoWJ56ELijFuI4S6wFYoVYxxYhDpQQXi0JXvPecrrxmTCEMiBx2aDKoWa+JMrHmHETz1hBHvM2RKp+3ufDHrPHc4/cLkI0/hLF+Fs2s7KpjEdLR4z4VL1KArD+9XnzPLU1c0YWI7cVs2QGg3SndDxMK0aDBBsOvQkwOYpk24sRgohS4KYZrLwJmAKshFVezEbVsFoVbIbUV1RaBkF24oBsqAHUQ7AczuUq98S1q99rO1EJTGJPLQkUpMcw6GCFrVoSYcis6vHrztMqshtx6j3kRFI5AMQbgW43Z4z6WLhVBlHZjc9Rg7AM3F6Lw4rhPATQaw4yF6nByaCqFWtRBKWiggHrHRLcUkuwtojRezdEKEsmSSMrrIVUmiIUN5p8JKWrgBl10lSdrdPKauqiIvrsi1XezqXZTm70LHwrgdBXQHNAWhKLqwHRWwSXYUYfVEME4AYzm02/moLZMojk0CKx9dU+LvW1UcRlXljp+62LISk2gC2kgUubyglpHXUEw4MYFDQsdjTZnKY9sfZ7O9HddycatzaK10+MHlN8gz3d6q9KDb1sBPKVQj88bRHbVRXlw/m4sD5xD7wyyI7hjeB/NriXx6eKOpI6Vj6k2Y+q5R+77Qt64G5f0alvjVZd7MzkKc4nZqt95FEfk0Rp4f8LN+WabKKfaHWcQvuxSvB3iAK+gg9MXfgHJJ3PAFQpf9ltRTNb3l+V0Q9Rqc9HJV1LH339MnxgaNT6WJXNlO7Loi78H1AyzHuJBf601n7JdMg6afX0viJ9/Yu9jLKCOM9suKDrkdeUiF7d6JExD64m9I3HApdHoHjtC3rgYgcePn/XXSy9J21EY5c/UjbIo87s8bNDZGsB2LXTvEperpOMyYjv/4a35MpLct3eZAqt3pHPygGfrW1SRu/Dyhy37r/feLv4H8KImrvt5bdnsRc6ouj8JNnxhw2Z7qx3DKcKj6u7f8fao0ieuvxdR3+eXhx8/lvyZxw6V++WBUdnkWtvtlhjLQme+1Wel50Tww2vus1N0DUuhbV3v14Zs/y9qPfqx0FEFB7/HJb7fzu7zPpWOH3vbIO+al2nSjvPk3fh46U23A2+E4P9Iy61o0z+snpOocBVEwyivvb/209zNG+X0JwFsvvT6Q+Mk3vPWN6k0rP+M4rfqcUqTahcRVXx/1+pzZn0wbkT5BKnb9uB2pdMWQ0vs03c9N3HBp78LOwt7+3wGuX+ym28as/savAXqPn5je+pr6TLo+Jn7yjVS6P+1dTkbcFkcpavrmiPcZMu3xfHeIPk175VXguBl1TgFmePVugPoKvedK6X5cZiyFvvgbEr/6ghdTBR2ELv81YPwy9dvBPrLKOTUd+ubPvPYPBu1D9+X3M7/5s97vS+/jVHvbt+3Oapth4HY8I/+ZfbOsc+9UPA103PXzd/mvoaATOgu8clLGOy6ntzt1HAe87/vVF1LH6v4XzIw3mX38rPGIPeyzDtPDJPsb8ky38apaHvK5TwoPsPvBhXinKEZu+xZCCCGEEEKITDLoNkbkzTr75kB7CKMQ7xRl8oITIYQQQgghhMgig25jRAbd9k2JnNgLMS5JmyaEEEIIIYQQ2WTQbYxUUDL0SqKfUmTQTYjxaOoB9lYiIYQQQgghhNjfZNBtDGg0ARUY62wckMqVDFYKMR7NVFPHOgtCCCGEEEIIMa7IoNsYsKTY91mpKh7rLAghBjBdTRrrLAghhBBCCCHEuCKjP2MggFzltq+KlbxIQYjxqEKuQhVCCCGEEEKILDLoNgZCBMc6CwesYgrHOgtCiAGUq9KxzoIQQgghhBBCjCsy6DYGLKyxzsIBS95eKsR4pChGrkIVQgghhBBCiEzKGGPGOhPjWUdHB0VFRbS+WU9+dwCMAQUqL4TpSoIxdBHjmOBHyO0KYGExS09hdt5s3uxcwzo2YyubUG4ubXTQnW9ze+n1nFi8EACT6MTEOzHJqDed7Ep9s0IFc/1pFcxH51ejQqN7Yms6E5iOBG5j94Dbnjn95eRPeMYsozvX5t/J3/Cys4rfuHfSkNsGQG5XgBzC9Kg43bk2uV0BDucQinQ+j+a8xIk9h/ELLsc4XVyrfk9r+w42mXraClxWT03SURbk/uBvOdE6auC8JjpTeVKoUAEm0Ym7owvTmYRkaNB8Z04D/rzE8ztI/vIV2NYzWsU9sCIFZ9aQ89kZGLsblRvgXudhHtx1DwbDOdbpnFFyOu7uLYABnY9VMQkTaEflalRuCJ1XgUl2oYJ5gAJjcDq2gDGoYB46rwIVykeFCrJibKD4VME8VKgAnV+DG92JiXdg7B5UMBcAFcrHi988UCqVUO9+yWQSnbidOzF2F+mYT+eDeHjA2AMG3I8m2YlxuiCUxO3o8LYtkIdVVguJ8LD3+55ifH+nMVZp2o3ruCP2J5YnXyVUUsXZ3cfyNKt4Ur/B7mKbU1un8VnzfmpUFbrQ2zcqmMf7zJd5o7Ke3IIC3qx4LGvfDhYbfWPsrUhufxa3qxHT1QhWBOxucOKooilYxVPReVVePpI96LxKLzZjIUw06cWXHcVprscku0EpdGEBpstBWblevSgu6VdWTvN2TLILY8dQeQFMsgu3ZQfKdTEarIpZKFOCjpQPuU9UfhBdm48qCA24fZn1b1+OBUPV373lRneCcUFplCnDdCRw6pvANRinB5Vn4TQ3Ai6g0EWFmKiNCvSWp9Ncj9uzCxLNEE5iYm2YXZtABTDBIqyJ86HbQYVKUcF8rPK6fuXnNnVjr24hcfULY98+i/4ODhL+7kJ0jfbqUl4IEmFMshPobYec5h29da+oALe1wZvGQuXnY9p2YZwYKpCDLp+E294Ejhd/VsVk3M5OTDSJibnoUCkkI8Tv2woPb4T2Ud5mDcwuIv8v7x03xwa7cR2mpwnTvQVMM+6WJ1DJLozroApqMLEesIJghVGFVShtMNFODEEI5KGKJ2Da30TFo2D3QF4hpr3e+w4DqrgC09EGOgyBAlTFLExHE2gLhYMqrgUDpiuBCZaj8icSmn4CJEKjclxM9wmMbsNtaQKjUTmlBCqn9+sT7M0+Mk4UQgm/rbvPfZSni7bSEO9kc6ANowzduTbg9XsVisdCt/CzyK082PE4CsUdoWs4KP8gXu1cxXeS19Kt4hycP5PrE98cF32CkUjjotYvscZswihDLNehsqsIMNTpaubmH8xX4xfzw+SNPGCW0p1rc3zXfK4IXsRsPTUrTdc4fMn+Cc/lrKK8pYfcpCHPgaZCm7J2CwMooL4UzoudwqWRTwIaXVx8wJRfv2k7ir3jVUysBdwEqrgc0xEFZbzGJqKheTPGBawwunIqpmUnxu1BOQkoroKubm99uxOCCmM7mI6dQNA7Hk84EhUpxyqrQpeVoctKR7zPkCmdttvdmJqT3effU5/GbW7x/rW3gyKjj5+LVVa3xz4+oUSqr9cIdhTjxlE5AUxnF1gRVLgMXZSPs3sLpqcVsLzYSUTQ4VKv/xqO4TSsgWQbxHaD7sZ078S0vQkkgTCqaCqmJwkqAtpCV07HRLshWOS1pxVToMsBKxcdKcUqr0UF8wZtu9zYLoxuwzS9AXYPxljoqtmYrm4wDjgJVK7G3fYoxNrAdqCoDnQuxg2hwhWQW4Eum4jZvZaunh3ckbiHpiKYHpvE+aHzieWVclr5T8npsci1XQodTXskTlEUAo7CtqAj36E7YFGzPZ9IV4CzYkfySOHTzGiwOcUsYJaegS6vxm18HRJRXBJYpXW4rV2gc8EKY9UdhNseRFslqGAOVmXv42hUbhCVHxw3ddFtb8Ukohi3G5UbBAyvdL7K780/CIQKObZ0MRfF3pP1mU7TQ8mcOtrb2yksHPyOPHm42DDp2nwCgxRkEZCM5fIGjRgMr7KLydTTSDMx4gCU4dJMh7d+KCPYRvAEdH9QBSFUQQhdlz/kutX2bF63H6WSMp4KbOZkfQoXJ36Gi+uvU0QBXXRj4wCwhmf9v38R/DBBazo7zS7+N/5fDAYLCye1HByK9vBMt77lqEIFWFP2vWwDR1TBFxbs8+f3pwcTf+OfrkUX3Xwv9DnCeu8fYm+VzRxynaHiU+fXwFs4EKtQAVbZIOmHGHbseSr3OR/vdNasdzHTsbg0eTGwm+26mk2mhVeNd+b6Oq+xUVUyX8/hA9apzNbTAXg+to0eYhysavul+VZjYziCE44dcp1+HcV8oDw9UUKAiXv1nRaj9+y6t3p8GOnjS9+yHKh+BpmzxzRGovysWSUET6gj59OHvuW0xGjKbqP3tu4NR+SDEhNp1qx39ZnzvTHJx9jZX32CKqC3rWu0t7HT7SBmclhlNgz4ic+q63nDrGctLQDkhCdgqRJed1p4LLkWgNOs9xEIvn36MQvsE7jHfhkLjYPLBtpTf2/jGTbz9fBXeDa+lddTZbKJ/1JkTeKa4DFZ6axy1rLB6eINd5c/r5ZK70IGurPWPc4qIRicvv83br8rIXDIyLePQ9mf56TptHVB//7iUHRZKbrsrT3CZKi+CRwxxPIj39L3751KIB3Hpw+x7seHkd5p5ADXxJ5mFy1Uk+QTkU+SYwxr4z8kQXLoJA7rQaGYalXzJ6cVgEODH+IIa/Ewvv/AMVAfNdfN567ELwEIWlP5RJ92WncM7w5Gub10hCzUC7JuG93CDn/ADSCJ7f9drN6ezyU7TR/HdDWJJpp50P0vE3Q1c9WMrHWidPmDbID/dxlFnKy9q//+YP8Fg3cBppOxLkC5PKydrWYnd7kPkCDBOfpUpu/DgJsQfS3U86nE69Q87D7NRrMta/k/zGP80LmRzyS+C0CX6aaHGCD1UgghxDvTFYGLuSd0I5cHLhp0nfvMo6xlsz9dSB4AL7mv+fOO1ofttzyOhXP0qcxSU3EyfnhP/93Abv7pPE65Ks76zEPO0xhj2OLWs9R5AYAb3T+x1H2RAnL99XbQRE/GOVZahMh+2BIh3h5mq2mAV/82udtQSpFLjr98hpq8x89PZQKtqQuIAKpU+R7WfvvI3M4m07zP6cig2wipVuXYGQNraROo4ubA1RzOIcxmKgvUwRSb8Xtl21sxX82h3Xi3jzzoPkW36eEr1if9E3kg6+CbqYMubGziJsENzu3kEqGGin7rlY/iVSbj1f3Oo4A3kDtPzx7j3Ii3C0tZfMv6PHPVDHqIE+3zC3Lai7xKZewY7rD/6c+rQF6iIIQQ4p3raH0Yvw58P+skdjAFqUG3F91XAVAojtRz92v+Rtt0PYkwvY9OyCHs/x3A4jrnVtazxZ+nUaxjMznxQ5mVWML7k5dijPEHJruIcU3gG5ysFjKZOmYxtd935qhwv3lCCM8V1sWcrk8A4GbnXgDuCPyC3wV+yOf1RzlOHcEFvHfQz+9kF/9wHmcGkzlaHUbtO+QOowpK0Kkhs0aze5/TkWe6DSH9TLf6U+4g7/UucA1ohSqJYFpj/nRHSZJESyfKVSitaSnpprg1TJ7JIUfnsK24hThxtk/qYsmSDxP50uEA2K/cgLPlMUx76sATa/WfmUOkpHc6p4zAvE8QOOKLo7r98euWk3x4C86KXYNue+Z0VPXQVhInr9Ui30QI6iCbinfh4FDcGka5CqMNbSXxftM1bUWEDn+KQEkzBBOoNdNRyQBJrXh8YSufvGoTHZHlg+bVfuUGTKITFSogcMQXsV+5gZ6vJDFbgph4ZI/5Tk8DvfNa+v+KNlbU1I3oQzag8jpJNFaiSloJRKIoFBiFqt6N6ciBeBh320RUWRd6/ivoiA2BAOTXerEUKkAFIhjjQNsmL3ErBPm1qMJJWFNOyYqxAeMzVIAuP5jQ2X8hcf+HcXe/CYkOL14BVTgJFYigKg/zL1PP3C+Z7FduwH7tZuje7cd8Oh/OU8cPGHvAgPtRVa1FT12DKohieixUOI67bhamcyamtXj4+32IGN+faYxVmmrCPyGai7E1zqR6dH017s4a3O4Ceha/QqHphF1lmJ4cbK0wG6eCnUd7MMlrhzUTP7WcD3/l61n7drDY6Btjb0Xshhqwu4C+hzEFORXomiNx65/3nkdUUIcunYn9xJE4L0cwrcXouY+B2YkK93jPPglo3DdmYBprMPESVElFv7LSs+/GtOSjynZjuvPRVQ1Q2Iq7YRq6vBl33WzcDbOBkiH3iSrLIfzpuYSvHPg29qz6tw/HgqHq795K3P9hTLwDFS7EbPofkg9vgcDfMDsrQScgCGrSG5imSlRxG6atAtNSiGmphEQhqqQCVfE4evI6VEUTFHZimipwt9eiS9q9Mu0oxrQVYTZNx22qQ+VP7V9+O6LQ1f9HLjE+WCc8jbNmFtaCNzCNEzFdtZjWYqwjlmIaKzFdtaiSVrB3YVyDnlCPKohDcRPuhimo3B5MZxHYGl27A7e+DlXagSrdhbtxKnQWoCbsxjTnYzZPxiSC0FYCyVD/pmCUqRnF4+bYoCb8E12zHVWzA9NZgCpqh0gM01iFqmqEWA7O63Owjn4JArbXBraWYNqKwHjPY1XTN2I2TUFN2A4BB+fpY7GOfR7aC6G01VtW2OE9OwkgHEs9dwoIJCFagOnOw109E7NxGtjTMD2RUTkuWkcsRRU3Qk6n13YmA7hrZmM6Du7XJ9ibfaRq16Nyu1CVGyG3G6Vd3M1zcdfPADefDtVFc0kPLi5FrUG/n9tdAkVtQYKuRa7ORZWEaWvZjXLBaEVxafm46ROMVBoxN0ZC2ewu6aawNYB2Na526SyxKWwNoVxwtTvgOQEoJreV0eFEMdrQUwJT5jyLym3H3VGNXd6C3lYNtvekpJ72CsKJELqnGNwQqmL81MW9ndZzH0OVvOY9HhWFKmrHWTEPXbsTVbELZ90M9IR6L6a316Erd0NOF6qqCbOrApJBVEkb5HWBcnFfORzjBLCOeQGzswYSQUiGcLdPRgVLsQ6eQ841XxzxPkMmP+3GFVnnucPpF/Z89QbsletRxRtQud1gkqAM7tpZmI7Ze+zj62mbgHZU5UZUSQtY3h1U7qYpqKJ2zJap6LnrcbeX+u2erqvHXT0bt7EGVRrFOuxVCHaiSlsgL4r7yuHoY58DK3UhiavB0TjPHw1OAGvh8970y0egp2zB3TAN4hHoKMAYDbuqQVdDpH+MptsuY8fRM1ejynbhLjvc259GQVEbKhLHeWMO1hHLoKDTi4Pnj0Yfvtz7Hldh2oohFoGgi5qw1euX5UchtxvnpSOgpRSzsxbUBPQhz6OKGkEncHdOgIp67zhR3IqdFyOxaTrh5iK09vpdeu7r6GmbMDtqcNfM9I4fRmEtfAG0i/PKAlRhJygXcmKYNTNx35ydevaehoDq3blBDXnBcVMX9fQHMZ0WqmwXKi8OloP7xgwSjZXEYrnsLtFMaavI+ky01qLu0QvkmW4jxVm6HVTvr1dmdyxreeFuIOPS59LmzF9bYkzcnQvkctD6EhJrVvQOui27EaI7Bv7SWMYljPFW7GU3jv6g2/XLMfVdWfP6bnvmdD6a/OZ0OblAnKm7+wdgeXPugNOhI5/zKimQuP9MDBDoLOTdG9vJvaphj3n1yzK/1ht0W3Yj7nOXpjrhsT3me6Dp8cTsLsea91dQLvo/7yZ02W9THdtU5za/C5Xn/XJq//M9hC77LSqSulLJTkDbeu/vWHP/cxLbhrb1mLb12C2rswfdBorPWDNu51YA3E0PegfP1HwA07YeozRs/Lc32AdZ+yXrq/umH2v285G4Pm/I2MucZ+LFWGe/QqoHC8rF/s9p0BEBYoOmsac093V6JNIYzTRN4zy/sxE54yESj5+I7ixEA2VzvFs8Ejd+HozyDhqdXp0uJ8hJj+cSXa3gK9npDhYbfWPsLbGjgyww0NOUnYe29bjtG0n+6dBUTLRhffARb5nqvQLXvv80f/vM7rbsVHfHsD74MokbP0/ost+SuPHzBL74G8iPYt/xUQJf/A32v86CjlxI3fqyp31gWuLEr18++KDbQPVvL44FQ9XfvZUuT6M0ieuXYOq7CH1rqR8bAKFT/07i4Xf75YNRWeVpGqcTOOkhyPceCq0M2Hd9yC9HVRCF2h0kHl8MHUUY2rLyMJ7baeGxTnjaG5w54jkSN87322DriFSsdEQwBXmQutrHOvM/Xh3M78K+4/ze2AECxz+L/cCZqWOei333B8AoQkse8dbpTN05YMbHjRtmXVv29BgeG0zjPAJffNqrV5E45Hd5da5iN+T1QG4M9+njCZz4TO8HS1tRoUTvtMJbP+SdbPnrl7b1LsvPOE6rPj2MUBuqtA379gugoyg1c/jH47dyXLSOWJrVtgOp9nnPfYKhvtckizAUETrlPj99+99LoCMIxCkkQGHzAHe0ZN2V5PVJiwj2ptvcNuw8DHedsehnZM6LABECFDZnnweU97lDa7BzAnAoS1852AzWh15O9e1OIXLZb0k8usj/TE5nYW//DzBtbcPO50hNj1Sa1gcfyY7d/C7c5QsIHP8c5Edxb7mYwBd/DYB97zne8RMDBVH//WXp+g7gPH08AIGTnkRV9D4bz/7nWdBRhPNylJxrRr7PkGmwtIfTL0zcFgWnktAX706ViwIM9gOnD1mf3bh3rMmsrwD2ve/3jjVLFxF4z7+w/3mpvyxwwjNeW9FZiOnsQJ+9BjB+mTpPH4+V2W5aLlgubkY5A7jPHEfgxGew7/hoKnOpndOZrg9tWXnNbLsSN36ewCkPp77vOELpfZxqb90/ftz/HkJ2b57yvJdLqUjGhSP5XSizy8+/+9zCrL6ZdeHS3rbsgdMIfXEpiYdOJXjZbwkoF/3AEjDKP3+0zvs7FHSiQknsf7zXizOjCLzfuwPGXb7AO2YDKEPi32d4g4HpX2fsjOOE7UCPM27qovXBpak+/mO9ZXL/aQQ6C8kH8puhb7w5a4f3Qq/x0UsRYhjSl+MLIcYXjRp6JSGEEEIIIYR4h5FBN3HAGOgZb0KIsSeDbkIIIYQQQgjR3wE96Pbf//6X9773vdTW1qKU4r777stabozhe9/7HjU1NeTk5HDKKaewbt26scmseMsm6uqxzoIQYgD6wD6UCCGEEEIIIcR+cUCfKXV1dXHYYYfx61//esDlP/vZz/jVr37F7373O1544QXy8vJYsmQJsZg8E+ZANJm6sc6CEGIAWh3QhxIhhBBCCCGE2C8O6BcpnHHGGZxxxhkDLjPGcN111/Gd73yHs88+G4DbbruNqqoq7rvvPs4///zRzKp4ixQwSdeOdTaEEAOwDuzfb4QQQgghhBBiv3jbnilt2rSJhoYGTjnlFH9eUVERRx99NM8999ygn4vH43R0dGT9E2PPAAVKXqQgxHgkt5cKIYQQQgghRH9v2zOlhoYGAKqqqrLmV1VV+csGctVVV1FUVOT/mzhx4n7Npxi+KsrHOgtCCCGEEEIIIYQQw/K2HXTbV9/85jdpb2/3/23btm2ssyRSqpUMugkhhBBCCCGEEOLAcEA/021Pqqu9N102NjZSU1Pjz29sbGT+/PmDfi4cDhMOh/svKApDJ959jgqwNDhuv2ljwCiDYxkCjkIZhVHgWK6XTn6QyPxKP1ldeRhushuSUW+G6/R+ibZ6p3UAXXnYPpfHvrLmV2J37YD2+JDbvsdp8Oe5yuBaBu2Xj8GxXCxH49bXonK7AVBlzeBqyO+ipbaTqiEG3XTlYZiCOlROuT9NQQKiITB6r/M5HpjU/+uidtyd1ahIDFXTgLuzChWJ++upgINpKwZX+8t1oXdrtFKADnixpLQXV8YF1+79Ih2AYH6/GBswPpWGnDJvOqccepq99LTlzQvmgxVCFU3290XmfumXfndTKi+pmE/lY9DYgwH3oyruLSMTD6PCcVRZMyaeA4nQ8Pf7CMT4PqcxRmmq2p3QEwGjvDIsa8YkQpAM4u6oA22jqhsgHgEDpisP42qMgq4im5KMNs03SGyMXjumvDx0N3mTOgCRUvT0bty1uRAP925bOKMulbaktj3kfaZPWbkNVajqVB2s3YFpLkFpB1WX+ru8GRPNB9caep8ENNZAZZeSVf/24VgwZP3dWznlkOyCYJ5fP936WlRpK7gKFJjm0t42qroBenKyylNVNXrlFLAhFMe0FfeWXcDGtBVjenK8/RCLgJvTv/xsd9/yL0aFW18LkZgfG+k2OHNalXSAsnvbnEgMpQ2qbodXx2p3gKu9uEjHU24PqqYBYmHvM9WNmGTQi41YTurb1VhuOgTGz7FB1e5M1aukV88CNoQS3t+53ZAIoep29H4GIBb2+hIpqiDqrZ8fBYW3fmo9cmK96aaFEr1/a9dbz9VeW5kIQjLi9etG4bjo9ye1C0aBUYP3CfZiH6nidtCuF6epY4fX7hd42zZEmunzBNcCy1Gocdgn2J9pZJ8DkDpHMgQcjTEGFN5yNMrBn+dYLoFUmfttQvo8AbzjjDIQD3uJBqwDp/z69jN21KHyOv2qpAIOqrrBP06quh1+PU33Q7BcVG537/xUfYeMemvord+p8wWKOlGVXvs54n2GDH7a8XayznOH0S/U0+OY5qh/rEh/fDh9fO9Y43j1NdLjt3V+P660xeu3VDeQXmiaS/y+oCpuwzSXgnb8MvXLM5PJLmdc7U1353r/dSyIh8AoL1btEKj+fUy/7ardAV25kNPj95FQoLQL2k2lqcFye7/b0V5ZgH9OiO6Ni6z8d3t9M9cOZp971zRk9+MicVR5MySCXv0i1c/L7ca0lHh1MJiEZNBr79Nl2+DdaahCca8sO/MzCqvPcXoc1UW3vrY3NlLn2elYMMkgjlb++IVKtV09uQaa9xjCXjrGmHEyvPDWKKX4+9//zvvf/37Aa6Rra2v56le/yle+8hUAOjo6qKys5JZbbhn2ixQ6OjooKiqivb2dwsLCIddvMs1MiZ+Ei8t0NYlVoQf4dPI7/Mm9H4DlofuZo6fv20a+TfwyeRPfcn4JwGf1R3jcPEeb6aCVDqooYyLVWCrACvMmuUTYRQsWFp3h5e+4tyS2m06q4gsByCOHg9UM/hu6A6XG+MRCvKP9IvlHvutcz1w1g/fok/he8LKxzpIQQgghxrl/2o/zQftyACZQTYw41VSwka2crk5kpXmTbmKsDj/EcvMG3078kmdYBsA0JvJU+M/UxY8HIEgAjSZOgkPVTF4K3ztm2yXEgSRuEhwcP4MgAU7QR7HabOAl8xoAjwRv5ZLk18lREd6l5nFT6Koxzu348Ffn31yU/DoAn7XO5/rgd5geezfbO3aQqFo95FjRAX2lWzQaZf369f70pk2bWLFiBaWlpUyaNIkrr7ySH//4x8yYMYOpU6fy3e9+l9raWn9gbn+oVGUcr49gmfs65ZSwyqylkd3+8qGu1nonWGgtAMf7+yHzFJvNdn9ZPY3kEGGD2cq71Dy2GO9XgyrK3nEDbgBFqoCDmMxWdtBFDx+z3icDbmLMXRG4mLOtUzhITx7rrAghhBDiAHGadTyFdj4RwsRJ0E2MVawlSIB7zcMATKCKj8a/zKcDH6JSl3GUOZT1Zgulqogfxm/w06qkjHoaASikYEy2R4gDUViF+Lh1Lj92fsNmt54CvJcVVlLKCdYRbLAeG+Mcjj9n6EWECVFKEVvNThzXoZm2YX/+gB7FePnll1mwYAELFiwA4Mtf/jILFizge9/7HgBf//rX+eIXv8hnPvMZjjrqKKLRKA8++CCRSGS/5usj+j3ESfCCWcnfnUdoNN6gW5AAJQx9tdzb3Xw1h2BqvHe72dlv+Qa28i4O5erAV9lFC+ANZr5TPRO+i9bQy/y/wI+5wHrfWGdHCAIqIANuQgghhNgrYRXi2sC36KaHZlrppgeAJL23KW+nkQdYyvvtS/m3+yTdJkYrHbxsVnEnD/jrHaJm+H8Xqczb14QQQznTWuT/3YV3e+nsd/jdeHtSoPI4X5/FTnbxH/dJlpoXiBEf+oMpB/SVbosXL2ZPd8cqpfjhD3/ID3/4w1HMFSyxTiBpeweP+51H2U0r4L19U65SghwV4afW17neuYUteFeyHc5cQipAl+niNdaxgtX8KXk/TuqSuHfyFYJFqgAUXKTfP9ZZEUIIIYQQYp+dYS3icfd5SlURS90X2GZ20k2MBMl+6xoMr7POn7bpfW5gtSr3n8FciAy6CbE3DlUziRAmRhwXw0ymcK5eMtbZGtdOsI7kVvfvAPzevmuvPvu2eabb/pJ+ptvWsuso7Bz+w19ty6Az3ongWC4KRSA/h8BxteT9/T0AJO7/EG79c8N7kcKUUwmd/ddR3f6uc/6F/czIvkgBBcYC4xj/IapYCu1A4KLb/Ic52v9Z4j0EMhkiUQvlz/1kj3lN3P8hTM9uVE45obP/SuL+D9HzyaMO6BcppKkJ27BOfQwViWE/fhLWsc9mv0ihchdmdxm42l+uZ3mdlL16kULdwqwYGzA+Uw9VjXx2A7HfTx/eixQy9kumxP0fwt38SP8XKdQtJHnLRQPHHgz8IoUJ27BOeSzrRQr2g6dhdkyQFykM9SKFg97wX6RgvfsJnCcWYXbWQDJI4KI7Qds4Tx/b+yKF7RNSD4xWUBTOatPSBouNvjH2VsSu3dPtJApyK/q9SCF504dx15ZDPEzgY7f2e5GC/e/TMQ3Vg75IIXDRH3GePhbruGdxnjuGwOInURW7Sd59LoFFT2I/fBpm8+Rhv0ghsGRyv7JLy6p/+3AsGKr+7q3Y76f7L1JwHrwe+5kdBM7+A86TJ/ovUgic8SD2E4uxjn0W55ljvRcpNFX2vkhh6moC734cVbXLe5HCjlrsx08isOhJVJXXjpmeHJzHF2N21MqLFA5AgYtvw/7reQQ+dDfOkydidtZCIkTgotv8aVXVRPpFCta7n/BepFDeTPLuD2AtfB7n2WPA1QROfgL7idQxL7cH+9F3QyyMdfJSnGeOxWybgLxIYeB11EFvEFi8FFXVhNldjirf7b1IYUfqId2JEMm/fpDgRbf3FltPBLO790dONXE7ZtsE1ITtoCB564UEL77dO17kxLxl5b2PUOn/IgXvxQnJv53rtYuj+CIFvz+Z8SKFQfsEe7GP1MRtoF2sdz/uHzvsh07DbJ4yrBcpHAh9gtFKw6SmXQuUYzLOmQxgsBydMc8l56LbvL5dqp/rPLG490UKjVW8XV6kEPjYrdkvUihvJvnnDxE4+QlU1S6Sfz2PwMlPeLH32EkEFj/pvUihdod33AS/vgMk/3QBAMGLbvf6b+CfL9Cdh6rMoeC5/x3xPkMmP+2BXqQwRL+wc+H/YpqjWCc9kfUiheH08dXE7aAcr75mvEjBfuTdXj/uicUETn8Y+/HFpBcGTn4c+z9eX1BVNhE46z/eixQqvDJN/ukCrx3MZCB524V+OeNqb73z7iV59weyX6TQWLXHFykELroN54WjCJ53L+T0kPzTBQQWPeltT/lu0K7Xdn/sDv9FCsnbLvSm0y9S2F3e+yKFVFykYyL5pwu8Fyk0VGPsIMGP3dF77v34SQROWur341Qkjv3QaVkvUgic9R/v2LC9zjtXT71IIV0myT9/GOv4ZwFQobhXllsm+eXb7zg9jupi4IJbcJ47Guu43vPszPMCoy2M42a8BMalIbeTQ5u/9/Z+ptuoao+DSnXqDNmd/gGmA7bKmtZ26qSzLY6zoslf5DathHjbAF9osgdFXNtbd5Q5K5qgLePSyWFs+x6nU/OUDSpV6ZSB9FXlum4HKG9905y6pbSzkGBPJ0Nxm1ZCdAcmv7Z3uvM4b8CNfcjnOGLai9A1DaBczM5qdE1jquBSo4ORGKq4zVs3tTzrosp0LBkHHKf/F7g2xNv6xdiA8Wkc6El1snt2e4Mqmd8RbwOlMd1N/r7I3C/90vfj3GTlY8jY6zPPtPWWkTLaK6vmMu8gN1gaQ6S5T9MjkcYop2l21HhHD0DXNGA3l3kDbICurQfAbqj218G1ej/fp03zDRIbo9eOmd44TeehZzfuhlzoCgKuv23pNgfAtJT6247bv/x0dSN2g1fH7B21qLJWyO3B1Ht/e4PfVtZn+qbhs92Byy6d5YHq314cC4asv3srvU/tHr9+6rod2C0lfmyosha/DfJjJqM8TWOVV2aRGCjjvRksVXbpdkwVdWC3lEIiDBw47bTw6LodEIv0xkaqDc6cNq29HdN0u01uN6a+1qtj6RPHstaMY553/MMor51qqPIGdbw1R3szBzaOjg1mR02qXsW9/kEk7tc5LBcicUx9bXbRpdfNoIrb/HVMfa2/nr8s4wfA9ElZZnqANxAQyx1Wvkdi2yG7P+kvHqpPMIzvNW1FXvrVjb391dSPnvua5njrE4xWGio1bdn+VOqcqU99Tp1HpcvcP8akzxPAO84od3h9/pHY1v2Ypq6tz47dSMwbAEodJ019bW+fP90PwXgDb+n6m6rvkFFvFVn12+ysho4iTKc3yDbifYYM/dM2g5579PvshjA4wd5jBQoww+rjp481mfUVwKT7cS2lXr+lodpfpspa/b6gaStGlbV4iaXK1C/PTCq7nLFcbzp1XPO+NBXX6T7RIP0bXbfDOwbmdfvf5+/jXO92bFNf67Xjmd+datchez/7cZGZ/1TfTNHn3HtndVY/DuV67ZvprZOqrAUsx3sbeXMZ/ghUur1vqPbKG7zvaylNFcogx+lxVBd13Q6/j++XScZ5gXJN1viFti2K2sMDb1cfB/Qz3cQ7yTjpUAshhBBCCCGEEEIMgwy6CSGEEEIIIYQQQggxwmTQTQghhBBCCCGEEEKIESaDbkIIIYQQQgghhBBCjDAZdBNCCCGEEEIIIYQQYoTJoJsQQgghhBBCCCGEECNMBt2EEEIIIYQQQgghhBhhMugmhBBCCCGEEEIIIcQIC4x1Bg4U1uIJ8HoXuAa0QpVEMK2xvZoG0JMLCJ422U83cPhlOFsew7Rv8WbEWsG4oDRESnqnc8oIzPvEqG93+IoFJB/egrNi11ve9uF8xnllMaq4EYJJ9Ox1kLRABwkcf8iQeQ0cfhkm0YkKFfjTyYVJzBaNiUf2Pp8t8f1XsHtJle/GefUIVF4n+vA3cN48DBVpAxQYharejenIgXgYPX8lzpuHoee/go7YEAhAfq0XS6ECVCCCMQ60bfISt0KQX4sqnIQ15ZSs7x0wPkMF6PKDAdBTT8fd/SYkOrx4BVThJFQggqo8zN8Xmfulb/r2azdD924/5tP5UIPEHgwcS6pqq1dGBVFMj4UKx9EHbcF0zsS0Fo9IfO7vNMYqTTXhKYjmgq1xXl+AnrUOs7MW01OE8+apYHaiD30denJAB3E3TgU7D0IRrPkVWW1a2mCx0TfG3pJAPthdgOmzQEFOBbrmSNz658HugYI6dOlMgh8L47wMprXY3zYV7gFlIKDRMzZhGmsw8RJUSUW/snJeOxJ96Js4q+ai37Ucd/NUKGxFH/M87qbJ6FkbcDfMBkqG3CeqLIfwp+cOvnmZ9W8fjgVD1d+9paeejol3oMKFvceGZYvRU5tBJyAIzppZ6PmveeUzfzWmpRDTkoREIaqkAlWxDHfjNFRFExR2YnZVoI9/GnfzZFTZbkxHMaatCD11G26Ti8qf2r/8dkShy96nbRD7n/PU8VDRjPPKQvS0ZkxX2Ktvryz2p1VJF9i7MK7BeXUeqiAOxU3oY57HeWM2+qhlYGvcjVO8Y9obc1Glu9CHL4fOAq+dmrcKs3kyJhGEthJIhvo3BaNMzSgeN8cGNeEp3E1TUDU7MJ0FqEQQIjHMrnKUdiCWgz7+aUw8BAHbawNbSzBtRWCUtz35UW/9cAwCjre+bUF7IZS2esviIVCpAgjHvHQAAkmIFmC689BHvYTZOA3saZieyOj2J3M6vbYzGUDP2IDpOLhfn2Bv9pGqbUflduG8Og9yu1HaRR9cj7s+F9z8Md/vY5HmaOXLee1IVG47+rBVxN88BD1rHdga0NA+ARJgegrADaEqxk9d3Ntp581TUSWvgQugUEXt6AXLcTdOQVXsQh/3LG5TpRfT73oRd9MUyOlCGTC7KiAZRJW0QV4XKBfr+KcxTgDTE/GWJ4KQDKEXrEIFS7EOnuNV2RHuM2Ty025ckXWeO5x+YeiifOyV63FeX4DK7QaTBGW8/lrH7D328fW0nUC7d5wpaQHLAUAvWIGz6mD01K24m2ejF6zw2z134xT0QRtwG2tQpVHczbMg2IkqbYG8qFeetgbL9TLoanA0+vinwQlgYmFv+rhncLdOQB/zPMQj0FGAMRp2VYOuhkj/GE23XfqoFbhbJ6HKdmEd/wzu5sle/oraUJE4euHzmI4CKOiEZMDLUzTX+x5XYdqKIRaBoIuasBWzqwLVkwO53eiFz0FLKWZnLagJOMsWo4oaQSe8c8y1M/1+nMpLog+uxzSHQScBcFbPQk/biNlRg561xjt+GIVprATtohcsx3ntEFAu5MTQ0zfgvjkbEmEwGgKqd+cGNeQFx01ddJYtRh+6FmfVPFReHCxnyPMCq7YMHh26DihjzBh3Uca3jo4OioqKaG9vp7CwcKyzI4QQQgghhBDvWMYYlFL+f4UQYiwMd6xIbi8VQgghhBBCCHFASA+0yYCbEOJAIINuQgghhBBCCCGEEEKMMBl0E0IIIYQQQgghhBBihMmgmxBCCCGEEEIIIYQQI0wG3YQQQgghhBBCCCGEGGEy6CaEEEIIIYQQQgghxAiTQTchhBBCCCGEEEIIIUaYDLoJIYQQQgghhBBCCDHCZNBNCCGEEEIIIYQQQogRJoNuQgghhBBCCCGEEEKMMBl0E0IIIYQQQgghhBBihMmgmxBCCCGEEEIIIYQQIyww1hkY74wxAHR0dIxxToQQQgghhBBCCCHEWEuPEaXHjAYjg25DaG5uBmDixIljnBMhhBBCCCGEEEIIMV50dnZSVFQ06HIZdBtCaWkpAFu3bt1jQQrxVnV0dDBx4kS2bdtGYWHhWGdHvI1JrInRIrEmRpPEmxgtEmtitEisidEisbb3jDF0dnZSW1u7x/Vk0G0IWnuPvSsqKpLgE6OisLBQYk2MCok1MVok1sRokngTo0ViTYwWiTUxWiTW9s5wLsySFykIIYQQQgghhBBCCDHCZNBNCCGEEEIIIYQQQogRJoNuQwiHw3z/+98nHA6PdVbE25zEmhgtEmtitEisidEk8SZGi8SaGC0Sa2K0SKztP8oM9X5TIYQQQgghhBBCCCHEXpEr3YQQQgghhBBCCCGEGGEy6CaEEEIIIYQQQgghxAiTQTchhBBCCCGEEEIIIUaYDLoJIYQQQgghhBBCCDHCxs2g21VXXcVRRx1FQUEBlZWVvP/972fNmjVZ68RiMb7whS9QVlZGfn4+5557Lo2Njf7ylStX8pGPfISJEyeSk5PDnDlzuP7667PSuPfeezn11FOpqKigsLCQhQsX8tBDDw2ZP2MM3/ve96ipqSEnJ4dTTjmFdevWZa2zbNkyTj31VIqLiykrK+Mzn/kM0Wh0yLRfffVVTjjhBCKRCBMnTuRnP/tZ1vLXX3+dc889lylTpqCU4rrrrhsyTTE4ibXBY+3ee+/lyCOPpLi4mLy8PObPn8/tt98+ZLpiYBJrg8faLbfcglIq618kEhkyXTEwibXBY23x4sX9Yk0pxVlnnTVk2mJgEm+Dx1symeSHP/wh06dPJxKJcNhhh/Hggw8Oma4Y2Ds11mKxGJdccgmHHnoogUCA97///f3W2blzJx/96EeZOXMmWmuuvPLKIfMrBiexNnisPf300xx33HGUlZWRk5PD7Nmzufbaa4fMsxiYxNrgsbZ06dIB+2wNDQ1D5ntcM+PEkiVLzM0332xWrVplVqxYYc4880wzadIkE41G/XU+97nPmYkTJ5rHHnvMvPzyy+aYY44xxx57rL/8j3/8o7n88svN0qVLzYYNG8ztt99ucnJyzA033OCvc8UVV5if/vSn5sUXXzRr16413/zmN00wGDTLli3bY/6uvvpqU1RUZO677z6zcuVK8773vc9MnTrV9PT0GGOMqa+vNyUlJeZzn/ucWb16tXnxxRfNsccea84999w9ptve3m6qqqrMBRdcYFatWmX+/Oc/m5ycHPP73//eX+fFF180X/3qV82f//xnU11dba699tq9KVrRh8Ta4LH2xBNPmHvvvde88cYbZv369ea6664zlmWZBx98cK/KWHgk1gaPtZtvvtkUFhaanTt3+v8aGhr2qnxFL4m1wWOtubk5K85WrVplLMsyN998894Uscgg8TZ4vH396183tbW15oEHHjAbNmwwv/nNb0wkEhkyz2Jg79RYi0aj5nOf+5z5f//v/5klS5aYs88+u986mzZtMpdffrm59dZbzfz5880VV1wxjBIVg5FYGzzWli1bZu68806zatUqs2nTJnP77beb3NzcrLZPDJ/E2uCx9sQTTxjArFmzJqvv5jjOcIp23Bo3g259NTU1GcA8+eSTxhhj2traTDAYNH/729/8dd58800DmOeee27QdC699FJz0kkn7fG7Dj74YPODH/xg0OWu65rq6mrz85//3J/X1tZmwuGw+fOf/2yMMeb3v/+9qayszAqIV1991QBm3bp1g6b9m9/8xpSUlJh4PO7P+8Y3vmFmzZo14PqTJ0+WQbcRJrE2cKylLViwwHznO9/Z4zpieCTWemPt5ptvNkVFRXvcBrHvJNYGb9euvfZaU1BQkNW5FW+NxFtvvNXU1Jgbb7wx63Mf+MAHzAUXXLDH7RLD806JtUwXX3zxgCenmRYtWiSDbiNMYm3PzjnnHPOxj31sWOuKPZNY65UedGttbR1WOgeKcXN7aV/t7e0AlJaWAvDKK6+QTCY55ZRT/HVmz57NpEmTeO655/aYTjqNgbiuS2dn5x7X2bRpEw0NDVnfXVRUxNFHH+1/dzweJxQKoXVvkebk5ADeJbmDee655zjxxBMJhUL+vCVLlrBmzRpaW1sH/ZwYORJrA8eaMYbHHnuMNWvWcOKJJw6arhg+ibXsWItGo0yePJmJEydy9tln8/rrrw+aptg7EmuDH0P/+Mc/cv7555OXlzdoumLvSLz1xls8Hu93q3xOTs4e0xXD906JNTH2JNYGt3z5cp599lkWLVo0oum+U0ms9Td//nxqamo49dRTeeaZZ0YkzbE0LgfdXNflyiuv5LjjjmPu3LkANDQ0EAqFKC4uzlq3qqpq0Ht8n332Wf7yl7/wmc98ZtDvuuaaa4hGo3zoQx8adJ10+lVVVYN+98knn0xDQwM///nPSSQStLa28j//8z+A98yFPaU9ULqZ3yv2H4m1/rHW3t5Ofn4+oVCIs846ixtuuIFTTz110HTF8EisZcfarFmzuOmmm7j//vv505/+hOu6HHvssWzfvn3QdMXwSKwNfgx98cUXWbVqFZ/61KcGTVPsHYm37HhbsmQJv/zlL1m3bh2u6/LII49w77337jFdMTzvpFgTY0tibWATJkwgHA5z5JFH8oUvfEGOpSNAYi1bTU0Nv/vd77jnnnu45557mDhxIosXL2bZsmVvKd2xNi4H3b7whS+watUq7rrrrn1OY9WqVZx99tl8//vf57TTThtwnTvvvJMf/OAH/PWvf6WyshKAO+64g/z8fP/fU089NazvO+SQQ7j11lv5xS9+QW5uLtXV1UydOpWqqip/FPiQQw7x0z3jjDP2edvEyJFY66+goIAVK1bw0ksv8f/9f/8fX/7yl1m6dOlepSH6k1jLtnDhQi666CLmz5/PokWLuPfee6moqOD3v//9sNMQA5NYG9wf//hHDj30UN71rnft0+dFfxJv2a6//npmzJjB7NmzCYVCXHbZZXz84x/PuiJA7BuJNTFaJNYG9tRTT/Hyyy/zu9/9juuuu44///nPe52GyCaxlm3WrFl89rOf5YgjjuDYY4/lpptu4thjjz3wX9wx1ve39vWFL3zBTJgwwWzcuDFr/mOPPTbg/b2TJk0yv/zlL7Pmvf7666aystJ861vfGvR70g+//de//pU1v6Ojw6xbt87/193dbTZs2GAAs3z58qx1TzzxRHP55Zf3S7uhocF0dnaaaDRqtNbmr3/9qzHGmM2bN/vpbt++3RhjzIUXXtjvfubHH3/cAKalpaVf2vJMt5EjsbbnWEv75Cc/aU477bRBl4uhSawNL9bOO+88c/755w+6XAxNYm3wWItGo6awsNBcd911g26X2DsSb4PHW09Pj9m+fbtxXdd8/etfNwcffPCg2yeG9k6LtUzyTLfRJbF29qB5zvSjH/3IzJw5c1jrioFJrJ09aJ4zffWrXzXHHHPMsNYdr8bNoJvruuYLX/iCqa2tNWvXru23PP1Awbvvvtuft3r16n4PFFy1apWprKw0X/va1wb9rjvvvNNEIhFz3333DTtv1dXV5pprrvHntbe3Zz1QcCB//OMfTW5u7h4fBJh+KG8ikfDnffOb35QXKexHEmvDi7W0j3/842bRokXDyr/IJrE2/FizbdvMmjXLfOlLXxpW/kU2ibWhY+3mm2824XDY7N69e1j5FoOTeBt+25ZIJMz06dPNN7/5zWHlX2R7p8ZaJhl0Gx0Sa3s3EPKDH/zATJ48eVjrimwSa3sXa6eccoo555xzhrXueDVuBt0+//nPm6KiIrN06dKs18N2d3f763zuc58zkyZNMo8//rh5+eWXzcKFC83ChQv95a+99pqpqKgwH/vYx7LSaGpq8te54447TCAQML/+9a+z1mlra9tj/q6++mpTXFxs7r//fvPqq6+as88+O+vVucYYc8MNN5hXXnnFrFmzxtx4440mJyfHXH/99XtMt62tzVRVVZkLL7zQrFq1ytx11139XsEcj8fN8uXLzfLly01NTY356le/apYvXz7st4OIbBJrg8faT37yE/Pwww+bDRs2mDfeeMNcc801JhAImD/84Q/DLl/RS2Jt8Fj7wQ9+YB566CGzYcMG88orr5jzzz/fRCIR8/rrrw+7fEUvibXBYy3t+OOPNx/+8IeHLEsxNIm3wePt+eefN/fcc4/ZsGGD+e9//2tOPvlkM3Xq1Lfdm9hGyzs11ozxrmBZvny5ee9732sWL17snwtkSs874ogjzEc/+lGzfPlyOY7uI4m1wWPtxhtvNP/4xz/M2rVrzdq1a83//d//mYKCAvPtb397OEUr+pBYGzzWrr32WnPfffeZdevWmddee81cccUVRmttHn300eEU7bg1bgbdgAH/3Xzzzf46PT095tJLLzUlJSUmNzfXnHPOOWbnzp3+8u9///sDppE5Cr9o0aIB17n44ov3mD/Xdc13v/tdU1VVZcLhsHn3u99t1qxZk7XOhRdeaEpLS00oFDLz5s0zt91227C2feXKleb444834XDY1NXVmauvvjpr+aZNmwbMs1x9tG8k1gaPtW9/+9vmoIMOMpFIxJSUlJiFCxeau+66a1hpi/4k1gaPtSuvvNJMmjTJhEIhU1VVZc4880yzbNmyYaUt+pNYGzzWjOn9hfjhhx8eVppizyTeBo+3pUuXmjlz5phwOGzKysrMhRdeaOrr64eVtujvnRxrkydPHjBPQ5WPXH20byTWBo+1X/3qV+aQQw4xubm5prCw0CxYsMD85je/MY7jDCt9kU1ibfBY++lPf2qmT59uIpGIKS0tNYsXLzaPP/74sNIez5QxxiCEEEIIIYQQQgghhBgx8iolIYQQQgghhBBCCCFGmAy6CSGEEEIIIYQQQggxwmTQTQghhBBCCCGEEEKIESaDbkIIIYQQQgghhBBCjDAZdBNCCCGEEEIIIYQQYoTJoJsQQgghhBBCCCGEECNMBt2EEEIIIYQQQgghhBhhMugmhBBCCCGEEEIIIcQIk0E3IYQQQoi3icWLF3PllVe+475bCCGEEGI8kkE3IYQQQoh3oKVLl6KUoq2tbUQ+d++99/KjH/1o5DIohBBCCHGAC4x1BoQQQgghxIGvtLR0rLMghBBCCDGuyJVuQgghhBAHoK6uLi666CLy8/OpqanhF7/4Rdby22+/nSOPPJKCggKqq6v56Ec/SlNTEwCbN2/mpJNOAqCkpASlFJdccgkAruty1VVXMXXqVHJycjjssMO4++67h/xc39tLp0yZwo9//GM/j5MnT+Yf//gHu3bt4uyzzyY/P5958+bx8ssvZ+X76aef5oQTTiAnJ4eJEydy+eWX09XVNdLFJ4QQQgix38mgmxBCCCHEAehrX/saTz75JPfffz8PP/wwS5cuZdmyZf7yZDLJj370I1auXMl9993H5s2b/QGyiRMncs899wCwZs0adu7cyfXXXw/AVVddxW233cbvfvc7Xn/9db70pS/xsY99jCeffHKPnxvItddey3HHHcfy5cs566yzuPDCC7nooov42Mc+xrJly5g+fToXXXQRxhgANmzYwOmnn865557Lq6++yl/+8heefvppLrvssv1RhEIIIYQQ+5Uy6V6OEEIIIYQ4IESjUcrKyvjTn/7EBz/4QQBaWlqYMGECn/nMZ7juuuv6febll1/mqKOOorOzk/z8fJYuXcpJJ51Ea2srxcXFAMTjcUpLS3n00UdZuHCh/9lPfepTdHd3c+eddw74OfCudJs/f77/3VOmTOGEE07g9ttvB6ChoYGamhq++93v8sMf/hCA559/noULF7Jz506qq6v51Kc+hWVZ/P73v/fTffrpp1m0aBFdXV1EIpERLEUhhBBCiP1LnukmhBBCCHGA2bBhA4lEgqOPPtqfV1payqxZs/zpV155hf/93/9l5cqVtLa24rouAFu3buXggw8eMN3169fT3d3NqaeemjU/kUiwYMGCvc7nvHnz/L+rqqoAOPTQQ/vNa2pqorq6mpUrV/Lqq69yxx13+OsYY3Bdl02bNjFnzpy9zoMQQgghxFiRQTchhBBCiLeZrq4ulixZwpIlS7jjjjuoqKhg69atLFmyhEQiMejnotEoAA888AB1dXVZy8Lh8F7nIxgM+n8rpQadlx4QjEajfPazn+Xyyy/vl9akSZP2+vuFEEIIIcaSDLoJIYQQQhxgpk+fTjAY5IUXXvAHo1pbW1m7di2LFi1i9erVNDc3c/XVVzNx4kSAfi8sCIVCADiO4887+OCDCYfDbN26lUWLFg343QN9bqQcfvjhvPHGGxx00EEjnrYQQgghxGiTFykIIYQQQhxg8vPz+eQnP8nXvvY1Hn/8cVatWsUll1yC1l7XbtKkSYRCIW644QY2btzIP/7xD370ox9lpTF58mSUUvzrX/9i165dRKNRCgoK+OpXv8qXvvQlbr31VjZs2MCyZcu44YYbuPXWWwf93Ej5xje+wbPPPstll13GihUrWLduHffff7+8SEEIIYQQByQZdBNCCCGEOAD9/Oc/54QTTuC9730vp5xyCscffzxHHHEEABUVFdxyyy387W9/4+CDD+bqq6/mmmuuyfp8XV0dP/jBD/if//kfqqqq/IGtH/3oR3z3u9/lqquuYs6cOZx++uk88MADTJ06dY+fGwnz5s3jySefZO3atZxwwgksWLCA733ve9TW1o7YdwghhBBCjBZ5e6kQQgghhBBCCCGEECNMrnQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEEIIIYQYYTLoJoQQQgghhBBCCCHECJNBNyGEEEIIIYQQQgghRpgMugkhhBBCCCGEEEIIMcJk0E0IIYQQQgghhBBCiBEmg25CCCGEEEIIIYQQQowwGXQTQgghhBBCCCGEEGKEyaCbEEIIIYQQQgghhBAjTAbdhBBCCCGEEOL/b+/eo6Ku8z+OP4eB2RkZkvslubohokamSApJqBCa66bSyX65KXlZdQXy189L1lHLrDglkWfLX3vsmObR8JT1O67SSV1Dk1ZCbS3XC3khTixubqJHQOUy8/vDZWoCSm1gWn09zvEc+M738/m8v99hxjPv+bw/HxERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXExJNxERERERERERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXExJNxERERERERERERdT0k1ERERERERERMTFlHQTERERERERERFxMSXdREREREREREREXMzT3QGIiIjcLJqbm2lsbHR3GCIiNzWTyYSnpz4GiYhI59P/NiIiIp3MbrdTVVXFv/71L3eHIiIiQGBgIJGRkRgMBneHIiIiNzAl3URERDpZa8KtR48eWK1WPDy0uoOIiDvYbDbq6uqorq7GbrcTHR3t7pBEROQGpqSbiIhIJ2pubnYk3EJDQ90djojITc9qtQJQXV3NmTNnSExM1Iw3ERHpFPqqXUREpBO1ruHW+iFPRETcr/U9uby8nLKyMux2u5sjEhGRG5GSbiIiIl1AJaUiIr8cre/JZrOZ/fv309DQ4OaIRETkRqRPACIiIiIiclOyWCxcvnxZSTcREekUSrqJiIjINSspKcFgMHDu3Dl3hyLiMq76u66srMRgMPC3v/3NJXFdq7S0NObMmeOWsf/TtK7lpvJSERHpDNpIQUREREQESE5Opqamhu7du/+sfiIiIqipqSEwMNBFkbWvpKSEYcOGUVtbi6+vr+P4e++9h5eXV6eO/VPS0tLo378/r7zyilvjEBERcScl3UREREREAJPJ5JJdho1Go1t3K/b393fb2CIiIvIdlZeKiIh0kVlNS7jn8kS3/pvVtOSq4718+TJ5eXkEBwdjNpu5++67KS8vb/fchoYGRo0aRUpKikpO23HhwgUmTpyIt7c3YWFhFBYWOpUArlu3jsTERHx8fAgNDeXhhx/mm2++cbRvLXvcunUrCQkJmM1mBg8ezKFDh9x0Rb98aWlp5ObmMmfOHPz8/AgJCWHVqlXU19fz6KOP4uPjw2233cYHH3zgaPPD8tKvvvqKMWPG4Ofnh7e3N3379qW4uBiA2tpaJk6cSFBQEBaLhdjYWN58802gbXlpa79/+ctfSExMpFu3biQnJ3Ps2DGnmJctW0ZwcDA+Pj5MmzaNJ554gv79+7d7fZWVlQwbNgwAPz8/DAYD2dnZjmv/fnlpdHQ0y5YtY9KkSVitVqKioti8eTNnzpzh/vvvx2q1kpCQwL59+5zG2LNnD0OHDsVisRAREUFeXh719fWOx1euXElsbCxms5mQkBAeeOABALKzs9m1axcrVqzAYDBgMBiorKykpaWFqVOnEhMTg8ViIS4ujhUrVjiNmZ2dzdixY3n++ecJCQnB19eXpUuX0tzczLx58/D39yc8PNxxr79/v4uKikhOTsZsNtOvXz927drV0Z+HiIhIl9BMNxERkS5y2HacMvtB9wZhu/pT58+fz6ZNm1i7di1RUVG8+OKLZGZmcvz4cafzzp07x+jRo7FarWzfvp1u3bq5OOj/fI8//jilpaVs3ryZkJAQFi9ezIEDBxwJlaamJp599lni4uL45ptvePzxx8nOznYkeFrNmzePFStWEBoaypNPPsmYMWOoqKhweynhL9XatWuZP38+n376KRs3bmTWrFm8//77jBs3jieffJLCwkIeeeQRqqqq2v27nT17No2NjezevRtvb28OHz6M1WoFYNGiRRw+fJgPPviAwMBAjh8/zsWLF380nqeeeoqCggKCgoKYOXMmU6ZMobS0FID169fz3HPPsa+ojfYAAAyfSURBVHLlSlJSUigqKqKgoICYmJh2+4qIiGDTpk1kZWVx7NgxbrnlFiwWS4djFxYW8vzzz7No0SLHdScnJzNlyhReeuklFixYwKRJk/j73/+OwWDgxIkTjBw5kmXLlrF69WrOnDlDTk4OOTk5vPnmm+zbt4+8vDzWrVtHcnIyZ8+e5eOPPwZgxYoVVFRU0K9fP5YuXQpAUFAQNpuN8PBw3nnnHQICAvjkk0/4/e9/T1hYGA8++KAj1p07dxIeHs7u3bspLS1l6tSpfPLJJ6SmplJWVsbGjRuZMWMGGRkZhIeHO9rNmzePV155hT59+vDyyy8zZswYTp06RUBAwI8+LyIiIp3FYNeqoSIiIp2moaGBI0eOEB8fzyjjdLcn3e4y3MGuX63/yfPq6+vx8/NjzZo1PPzww8CVxFB0dDRz5sxh0KBBDBs2jCNHjjBhwgRiY2PZsGEDJpOpsy+hXbaaeuyn652OGXx/hUdMd+yXmrEdOdumjfHOYABajtVCQ5Nz26hb8PA3YztzEfvXF5wbWk0YY32vOrYLFy4QEBDAhg0bHDOBzp8/z6233sr06dPbXfNq3759DBo0iAsXLmC1Wh1rdxUVFTFhwgQAzp49S3h4OGvWrHFKWHQVe91p7PWnnQ+affHoHo29+RL2b4+2aeMR0h8A29kKaHLeLdLQPRKD2R97wxnsF6qdG5qsePjddk3xpaWl0dLS4kgEtbS00L17d8aPH89bb70FwOnTpwkLC+Ovf/0rgwcPbrNGWkJCAllZWSxZ0naG6G9/+1sCAwNZvXp1m8cqKyuJiYnhs88+o3///o5+d+zYwYgRIwAoLi5m9OjRXLx40TFzMTExkVdffdXRz913301dXV2HGzJ0tKbbD9dTi46OZujQoaxbt87puhctWuRIiu3du5chQ4ZQU1NDaGgo06ZNw2g08qc//cnR7549e7jnnnuor6+nuLiYRx99lK+//hofH5927//VrOmWk5PD6dOneffdd4ErM91KSko4efIkHh5XinJ69+5NcHAwu3fvBr57Lt944w0eeughx/3Oz89nwYIFADQ3NxMTE0Nubi7z589vM27re/OXX37JP/7xD373u98RHBz8o7GKiIhcK810ExERkTZOnDhBU1MTKSkpjmNeXl4kJSVx5MgRBg0aBEBGRgZJSUls3LgRo9HornBpXHWIy8s+dTrm9V9xdFt7L7av66i7a2ObNt0bcwG4OG0HLWXOySPLmxmYJvam6d0vufSYc4maZ0Yk3lvvv+rYTp48SVNTE0lJSd+N3b07cXFxjt/379/P008/zcGDB6mtrcVmuzIlsaqqij59+jjOGzJkiONnf39/4uLiOHLkyFXH4krNX6ymZe8LTsc8ek/ANOoN7HXVNG4Y2qaN+b+vJDCbts3EXuNcquw1chXG+IdoqXif5o/+x7nfqBGYxv/fNceYkJDg+NloNBIQEMDtt9/uOBYSEgLgVMr7fXl5ecyaNYtt27aRnp5OVlaWo89Zs2aRlZXFgQMHuPfeexk7dizJyclXHU9YWJhj7MjISI4dO8Yf/vAHp/OTkpLYuXPnNVzx1Y3det0d3YvQ0FAOHjzI559/zvr13yXp7XY7NpuNU6dOkZGRQVRUFD179mTkyJGMHDmScePG/eRM19dee43Vq1dTVVXFxYsXaWxsbFNC27dvX0fCrTW2fv36OX5vfS5/+Lx9//Xh6elJYmKi214fIiIioKSbiIiI/AyjR49m06ZNHD582OkDfFczTe+H1xjnMjyD768A8Ai3Yi2b0GFbyxvp7c50A/B6IBbPwT9YEN/q2tl89fX1ZGZmkpmZyfr16wkKCqKqqorMzEwaGxtdOpYred4+BWPP+5wPmn0BMFh7YHr44w7bet37ersz3QCMvcbhEZbk3MBkva4Yf1h2azAYnI4ZDAYAR5Lzh6ZNm0ZmZiZbt25l27ZtvPDCCxQUFJCbm8uoUaP46quvKC4uZvv27YwYMYLZs2ezfPnyq4rnp8Z2tfbG/rF46urqmDFjBnl5eW36ioyMxGQyceDAAUpKSti2bRuLFy/m6aefpry83GnW3fcVFRUxd+5cCgoKGDJkCD4+Prz00kuUlZV1GGtrbO0d66p7JyIicr2UdBMREekifTxuu6Y11Tothqvw61//GpPJRGlpKVFRUcCV8tLy8nKnBdrz8/OxWq2MGDGCkpISp1lZXckjzBvCvNt9zGD2dJSStscY59dxv0EWCOp4nayr0bNnT7y8vCgvLycy8kpi6fz581RUVJCamsrRo0f59ttvyc/PJyIiAqDNgvat9u7d6+ijtraWiooK4uPjf1Z818tgDcVgbX+HToOnGcO/S0nb4+Hfq+N+uwVh6Bb0c8NzmYiICGbOnMnMmTNZuHAhq1atIjf3yizJoKAgJk+ezOTJkxk6dCjz5s370aTbj4mLi6O8vJxJkyY5jnW0cUmr1nLulpaW6xrzxwwYMIDDhw9z220dv2d4enqSnp5Oeno6S5YswdfXl507dzJ+/HhMJlObuEpLS0lOTnaa0XfixAmXxbx3715SU1OBK+Wl+/fvJycnx2X9i4iIXCsl3URERLrI/3o94+4Qrpq3tzezZs1y7BYYGRnJiy++SENDA1OnTuXgwe/Wplu+fDktLS0MHz6ckpISevfu7cbIf3l8fHyYPHmy414GBwezZMkSPDw8MBgMjllDf/zjH5k5cyaHDh3i2WefbbevpUuXEhAQQEhICE899RSBgYGMHTu2ay/oJjJnzhxGjRpFr169qK2t5aOPPnIkORcvXszAgQPp27cvly9fZsuWLT8rAZqbm8v06dNJTEwkOTmZjRs38vnnn9OzZ88O20RFRWEwGNiyZQv33XcfFovFsdHDz7VgwQIGDx5MTk4O06ZNc2wksX37dl599VW2bNnCyZMnSU1Nxc/Pj+LiYmw2m6NsOjo6mrKyMiorK7Farfj7+xMbG8tbb73Fhx9+SExMDOvWraO8vLzDzSKu1WuvvUZsbCzx8fEUFhZSW1vLlClTXNK3iIjI9fD46VNERETkZpSfn09WVhaPPPIIAwYM4Pjx43z44Yf4+bWdGVZYWMiDDz7I8OHDqaiocEO0v2wvv/wyQ4YM4Te/+Q3p6emkpKQQHx+P2WwmKCiINWvW8M4779CnTx/y8/M7nC2Vn5/PY489xsCBAzl9+jR//vOf3bZ5xc2gpaWF2bNnEx8fz8iRI+nVqxcrV64ErswyW7hwIQkJCaSmpmI0GikqKrrusSZOnMjChQuZO3cuAwYM4NSpU2RnZ2M2mzts06NHD5555hmeeOIJQkJCXDqrKyEhgV27dlFRUcHQoUO58847Wbx4MbfeeisAvr6+vPfeewwfPpz4+Hhef/113n77bfr27QvA3LlzMRqN9OnTx1EyPWPGDMaPH8+ECRO46667+Pbbb9usY/dz5Ofnk5+fzx133MGePXvYvHkzgYGBLutfRETkWmn3UhERkU70/d1Lf2qBcbl51NfX06NHDwoKCpg6depPnt/RLpVyY8vIyCA0NNSx66i074e7xV4N7V4qIiJdQeWlIiIiIp3ss88+4+jRoyQlJXH+/HmWLl0KwP33X/0uqHJja2ho4PXXXyczMxOj0cjbb7/Njh072L59u7tDExERkeukpJuIiIhIF1i+fDnHjh3DZDIxcOBAPv74Y5W+iYPBYKC4uJjnnnuOS5cuERcXx6ZNm0hPT3d3aCIiInKdlHQTERER6WR33nkn+/fvv+72aWlpaEWQG5vFYmHHjh3uDuM/UnR0tF4fIiLyi6SNFERERERERERERFxMSTcREZEuYLPZ3B2CiIj8W+t7smbIiYhIZ1LSTUREpBOZTCYA6urq3ByJiIi0an1PbmxsdHMkIiJyI9OabiIiIp3I09OTwMBAqqurAbBarXh46DsvERF3sNls1NXVUV1dzblz5zQLWUREOpWSbiIiIp0sMjISwJF4ExER9zp37hz//Oc/aW5uxmg04uXl5e6QRETkBqSkm4iISCczGAxERUVx6tQpvvjiC/z8/LBYLO4OS0TkptTU1ITNZqO5uZkzZ84QHR2Nj4+Pu8MSEZEbkJJuIiIiXSQlJYVLly7xxRdf0NzcjMFgcHdIIiI3Jbvd7vhCZPTo0Xh66mORiIi4nsGuLXtERES6TFNTEzU1NdTV1WnXPBERN7JYLAQHB2O1Wt0dioiI3KCUdBMREREREREREXExbZ8mIiIiIiIiIiLiYkq6iYiIiIiIiIiIuJiSbiIiIiIiIiIiIi6mpJuIiIiIiIiIiIiLKekmIiIiIiIiIiLiYv8PZoO055aketYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#first apply (default) quality control\n", + "your_dataset.apply_quality_control(obstype='temp') #we use the default settings in this example\n", + "\n", + "#Interpret the outliers as missing observations and gaps.\n", + "your_dataset.update_gaps_and_missing_from_outliers(obstype='temp', \n", + " n_gapsize=None) #It is possible to change the definition of gapsize.\n", + "#Inspect your gaps using a printout or by plotting\n", + "#your_dataset.get_gaps_info()\n", + "your_dataset.make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "dc9f60c4-f471-4ad2-9710-6100ba6168c7", + "metadata": {}, + "source": [ + "When plotting a single station, the figure becomes more clear" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a5bb6973-1f80-4d90-ad4c-e888289688b5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAADM5klEQVR4nOzdeZwT9f3H8ddMstn7AJYFlvsSRDwQpSoKeOFVj59aj3qAqPUABK3Wq94Wqq1XtWqr4kG11rMeVaxWRbF4n2hBBeS+FtjN3rtJvr8/lmSTTXaT7GY32eX9fDz2QWYy85nPTL4zmXz5zvdrGWMMIiIiIiIiIiIikjB2shMQERERERERERHpalTpJiIiIiIiIiIikmCqdBMREREREREREUkwVbqJiIiIiIiIiIgkmCrdREREREREREREEkyVbiIiIiIiIiIiIgmmSjcREREREREREZEEU6WbiIiIiIiIiIhIgqnSTUREREREREREJMFU6SYiIiIiHaqiooLzzjuP3r17Y1kWs2fPbnNMy7K48cYbA9OPPfYYlmXx008/tTl2e8YUERGRrkuVbiIiIpISLMuK6e/dd99NdqpJc//99/PYY48lO402mzNnDo899hgXXXQR8+fP56yzzkp2Skm3bt06TjnlFAoKCsjLy+P4449nxYoVYcs1d178/ve/T0LWIiIi0hJnshMQERERAZg/f37I9BNPPMGbb74ZNn/XXXftyLRSyv33309hYSFTp05Ndipt8vbbb7Pffvtxww03tNs2zjrrLE477TTS09PbbRuJUlFRwcEHH0xZWRnXXHMNaWlp3HXXXUycOJEvv/ySHj16hCx/+OGHc/bZZ4fMGzNmTEemLCIiIjFQpZuIiIikhDPPPDNk+sMPP+TNN98Mm99VGGOoqakhMzMz2anErLKykuzs7DbH2bx5M6NGjUpARs1zOBw4HI523UZb+Y/n/fffzw8//MDHH3/MvvvuC8BRRx3F6NGjueOOO5gzZ07IervsskuXPS9ERES6Ej1eKiIiIp2Gz+fj7rvvZrfddiMjI4NevXpxwQUXsH379pDlBg0axM9//nPeffdd9tlnHzIzM9l9990Dj6a+8MIL7L777mRkZDB27Fi++OKLkPWnTp1KTk4OK1as4IgjjiA7O5vi4mJuvvlmjDFtyumNN94I5PSXv/wFgEcffZRDDjmEoqIi0tPTGTVqFA888EDY+t9++y0LFy4MPFI4adIkAG688UYsywo7XpH6IGva91lw/OAWdP51Fy5cyMUXX0xRURH9+vULWy/Y5s2bOffcc+nVqxcZGRnsueeePP7444H33333XSzLYuXKlfzrX/8K7EdzfaSNHj2agw8+OGy+z+ejb9++nHzyyc3mEmnf/Z/BokWLGDduHBkZGQwZMoQnnngibP1vv/2WQw45hMzMTPr168ett96Kz+eLuK3XX3+dgw46iOzsbHJzcznmmGP49ttvQ5bxl6nly5dz9NFHk5ubyxlnnAHAc889x7777huocAMYOXIkhx56KM8880zEbVZXV1NTU9Ps/ouIiEjyqdJNREREOo0LLriAK664gvHjx3PPPfdwzjnn8OSTT3LEEUdQX18fsuyPP/7IL3/5S4499ljmzp3L9u3bOfbYY3nyySe59NJLOfPMM7nppptYvnw5p5xySliFitfr5cgjj6RXr17cfvvtjB07lhtuuCHskch4clq2bBmnn346hx9+OPfccw977bUXAA888AADBw7kmmuu4Y477qB///5cfPHF/PnPfw6se/fdd9OvXz9GjhzJ/PnzmT9/Ptdee20Cj25kF198Md999x3XX389V111VbPLVVdXM2nSJObPn88ZZ5zBH/7wB/Lz85k6dSr33HMP0PBo8Pz58yksLGSvvfYK7EfPnj0jxjz11FN577332LhxY8j8RYsWsX79ek477bS49+fHH3/k5JNP5vDDD+eOO+6gW7duTJ06NaSSbOPGjRx88MF8+eWXXHXVVcyePZsnnngisB/B5s+fzzHHHENOTg633XYb1113Hd999x0HHnhgWGWix+PhiCOOoKioiD/+8Y+cdNJJ+Hw+vv76a/bZZ5+w2OPGjWP58uWUl5eHzH/sscfIzs4mMzOTUaNG8dRTT8V9HERERKQDGBEREZEUNH36dBN8q/L+++8bwDz55JMhyy1YsCBs/sCBAw1g/vvf/wbmvfHGGwYwmZmZZtWqVYH5f/nLXwxg3nnnncC8KVOmGMDMnDkzMM/n85ljjjnGuFwus2XLllbntGDBgrB9raqqCpt3xBFHmCFDhoTM22233czEiRPDlr3hhhtMpNu6Rx991ABm5cqVgXmAueGGG8KWHThwoJkyZUrYugceeKDxeDxhyzd19913G8D87W9/C8yrq6sz+++/v8nJyTFutztkW8ccc0zUmMuWLTOAuffee0PmX3zxxSYnJyfkuDXdr0j77v8M3nvvvcC8zZs3m/T0dPPrX/86MG/27NkGMB999FHIcvn5+SExy8vLTUFBgTn//PND8tu4caPJz88Pme8vU1dddVXIslu2bDGAufnmm8P2/89//rMBzNKlSwPzDjjgAHP33Xebl156yTzwwANm9OjRBjD3339/pEMoIiIiSaSWbiIiItIpPPvss+Tn53P44YdTUlIS+Bs7diw5OTm88847IcuPGjWK/fffPzD9s5/9DIBDDjmEAQMGhM2PNFLkjBkzAq8ty2LGjBnU1dXx1ltvtSqnwYMHc8QRR4RtJ7hft7KyMkpKSpg4cSIrVqygrKws5mPUHs4///yY+kZ77bXX6N27N6effnpgXlpaGpdccgkVFRUsXLgw7m3vsssu7LXXXvzjH/8IzPN6vTz33HMce+yxreoPb9SoURx00EGB6Z49ezJixIiQz/+1115jv/32Y9y4cSHL+R8H9XvzzTcpLS3l9NNPD/n8HQ4HP/vZz8I+f4CLLrooZLq6uhog4oAPGRkZIcsAfPDBB8yaNYvjjjuOCy+8kM8++4zRo0dzzTXXhCwnIiIiyaeBFERERKRT+OGHHygrK6OoqCji+5s3bw6ZDq5YA8jPzwegf//+Eec37YPNtm2GDBkSMm+XXXYBCDw2GG9OgwcPjrjcBx98wA033MDixYupqqoKea+srCyQYzI0l3NTq1atYvjw4dh26P/p+kebXbVqVau2f+qpp3LNNdewbt06+vbty7vvvsvmzZs59dRTWxWvabkA6NatW8jnv2rVqkBlbLARI0aETP/www9AQ0VuJHl5eSHTTqczrF88f8VhbW1t2Pr+Pttaqlx0uVzMmDEjUAF34IEHNrusiIiIdCxVuomIiEin4PP5KCoq4sknn4z4ftN+wZprndXcfNNkgIT2yClS5cny5cs59NBDGTlyJHfeeSf9+/fH5XLx2muvcddddzXbeX+wSIMoQEOrsFg1t2yyR1c99dRTufrqq3n22WeZPXs2zzzzDPn5+Rx55JGtipfozx8a+nXr3bt32PtOZ+itdnp6elilZPfu3UlPT2fDhg1h6/vnFRcXt5iHvyJ527ZtsScvIiIi7U6VbiIiItIpDB06lLfeeovx48d3SEWQz+djxYoVgdZtAN9//z3QMApmonJ65ZVXqK2t5eWXXw5phRXp0cTmKte6desGQGlpKQUFBYH5kVqXdevWjdLS0pB5dXV1ESt94jFw4EC+/vprfD5fSMXS0qVLA++3xuDBgxk3bhz/+Mc/mDFjBi+88AInnHBCxMcxE2XgwIGBVmzBli1bFjI9dOhQAIqKijjssMNatS3bttl999359NNPw9776KOPGDJkCLm5uS3G8D8a29yAFCIiIpIc6tNNREREOoVTTjkFr9fLLbfcEvaex+MJq0hKhPvuuy/w2hjDfffdR1paGoceemjCcvK3vApuaVVWVsajjz4atmx2dnbEmP7Kn/feey8wr7KykscffzzissHLAfz1r3+Nq1VcJEcffTQbN24M6X/N4/Fw7733kpOTw8SJE1sd+9RTT+XDDz9k3rx5lJSUtPrR0lgdffTRfPjhh3z88ceBeVu2bAlr0XjEEUeQl5fHnDlzwkaq9a8Ti5NPPplPPvkkpOJt2bJlvP322/ziF79oMV55eTl33303hYWFjB07NqbtiYiISMdQSzcRERHpFCZOnMgFF1zA3Llz+fLLL5k8eTJpaWn88MMPPPvss9xzzz2cfPLJCdteRkYGCxYsYMqUKfzsZz/j9ddf51//+hfXXHNNoEVRInKaPHkyLpeLY489lgsuuICKigoeeughioqKwlqfjR07lgceeIBbb72VYcOGUVRUxCGHHMLkyZMZMGAA5557LldccQUOh4N58+bRs2dPVq9eHRLjvPPO48ILL+Skk07i8MMP56uvvuKNN96gsLCwTcfrV7/6FX/5y1+YOnUqn332GYMGDeK5557jgw8+4O67747aWqslp5xyCpdffjmXX3453bt3b3Wrslj95je/Yf78+Rx55JHMmjWL7Oxs/vrXvwZa8/nl5eXxwAMPcNZZZ7H33ntz2mmnBY75v/71L8aPHx9Scduciy++mIceeohjjjmGyy+/nLS0NO6880569erFr3/968Byf/7zn/nnP//Jsccey4ABA9iwYQPz5s1j9erVzJ8/H5fL1S7HQ0RERFpHlW4iIiLSaTz44IOMHTuWv/zlL1xzzTU4nU4GDRrEmWeeyfjx4xO6LYfDwYIFC7jooou44ooryM3N5YYbbuD6669PaE4jRozgueee47e//S2XX345vXv35qKLLqJnz55MmzYtZNnrr7+eVatWcfvtt1NeXs7EiRM55JBDSEtL48UXX+Tiiy/muuuuo3fv3syePZtu3bpxzjnnhMQ4//zzWblyJY888ggLFizgoIMO4s033wy03mutzMxM3n33Xa666ioef/xx3G43I0aM4NFHH2Xq1Kltit2vXz8OOOAAPvjgA8477zzS0tLaFC+aPn368M477zBz5kx+//vf06NHDy688EKKi4s599xzQ5b95S9/SXFxMb///e/5wx/+QG1tLX379uWggw4KO/bNyc3N5d133+XSSy/l1ltvxefzMWnSJO66666QR0bHjx/Pf//7Xx5++GG2bt1KdnY248aNY968ec0O5iAiIiLJY5nW9BorIiIi0oVNnTqV5557joqKimSnIiIiIiKdlPp0ExERERERERERSTBVuomIiIiIiIiIiCSYKt1EREREREREREQSTH26iYiIiIiIiIiIJJhauomIiIiIiIiIiCSYKt1EREREREREREQSzJnsBFKdz+dj/fr15ObmYllWstMREREREREREZEkMsZQXl5OcXExtt18ezZVukWxfv16+vfvn+w0REREREREREQkhaxZs4Z+/fo1+74q3aLIzc0FGg5kXl5ekrMREREREREREZFkcrvd9O/fP1Bn1BxVukXhf6Q0Ly9PlW4iIiIiIiIiIgIQtRsyDaQgIiIiIiIiIiKSYKp0ExERERERERERSTBVuomIiIiIiIiIiCRYp650mzt3Lvvuuy+5ubkUFRVxwgknsGzZspBlNm7cyFlnnUXv3r3Jzs5m77335vnnn09SxiIiIiIiIiIisjPo1JVuCxcuZPr06Xz44Ye8+eab1NfXM3nyZCorKwPLnH322SxbtoyXX36Zb775hhNPPJFTTjmFL774IomZi4iIiIiIiIhIV2YZY0yyk0iULVu2UFRUxMKFC5kwYQIAOTk5PPDAA5x11lmB5Xr06MFtt93GeeedFzWm2+0mPz+fsrIyjV4qIiIiIiIiIrKTi7WuqFO3dGuqrKwMgO7duwfmHXDAAfzjH/9g27Zt+Hw+nn76aWpqapg0aVLEGLW1tbjd7pA/ERERERERERGReHSZSjefz8fs2bMZP348o0ePDsx/5plnqK+vp0ePHqSnp3PBBRfw4osvMmzYsIhx5s6dS35+fuCvf//+HbULIiIiIiIiIiLSRXSZSrfp06ezZMkSnn766ZD51113HaWlpbz11lt8+umnXHbZZZxyyil88803EeNcffXVlJWVBf7WrFnTEemLiIiIiIiIiEgX0iX6dJsxYwYvvfQS7733HoMHDw7MX758OcOGDWPJkiXstttugfmHHXYYw4YN48EHH4waW326iYiIiIiIiIiIX6x1Rc4OzCnhjDHMnDmTF198kXfffTekwg2gqqoKANsObdDncDjw+XwdlqeIiIiIiIiIiOxcOnWl2/Tp03nqqad46aWXyM3NZePGjQDk5+eTmZnJyJEjGTZsGBdccAF//OMf6dGjB//85z958803efXVV5OcvYiIxOIH30+sNZv4p/dNvvYtZbS9C6c7f84B9t7JTk1ERERERKRZnfrxUsuyIs5/9NFHmTp1KgA//PADV111FYsWLaKiooJhw4Zx+eWXc9ZZZ8W0DX+TwXWHPUn2t5XgM2BbWN0yMNtrQqaBsHlNp+2BuaRNHkj67DEAeD67F++q/2DKVjVutGY7GB9YNmR0a5h25WIXjsJ1/D9af8BaofbuL6j/9yq8X26Je1/jnW4uppXrwrFbD7Jf+HmLuXo+uxdTV47lysU5diaez+6lbn4NnlcyMJXp7Z5nqsW0B+biPPxByFsPde6GstSUv6xl9sC5xzScY2eGHdOw8glYeQNwDDqsYZlvHoWqkkB59b/XNFa8/GXPt6q8y3wmXTGm1SOT9PNHB65pfnUvnYqv5H8hZa+1ZeOa+ju40/toyLwDrX1YsGRsWPmLdL0MvjZ43z8wUK4i7WdHHs9o17aw8y/O74K2rt+SZH83NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2uzSR927BQu5Hgn7nWkV7xhS78sRX8X67FVNelzLHTzEV0+qWQUWxg75vnRH18dJOXenWEfyVbqudt5FnZSYkptU3m7yV0wCoeWgEVKyPcUWbjNllCckhVu7B8zDrKjt0mxHZFvk1M1pcJHAsc4rJOH8ZNQ+NoPbqs8Cd30FJph7X3Gux7BhP8R3HLViL5TOnuOHfSO9HiBWvlCl7ElXwNc2v5u78hpuqplpRNi6rn8P93qcAsLHx4WNXayiLn1jafPkMul4GXxvq5lyZWuWqhWtbs+dfjN8FbV2/JTo/RUREOr+Q36UJvHcLFu33RLTYZRn3NVR0iKQYt6lmgOfKqJVuXWb0UhER6ZqqqQ287kUPAErM9mSlIyIiIiIiEhO1dIvC39Jt+//WkVPlBGPAAivbhamsD5kGwuY1nbZy0rDyXFi5O5avK8fUlmPqKwLbNPX+1gMWVloWpr4SKy0by5WLndOnQ/fflNdh3HX4NlXFva/xTjcX08pyYuW5sItzWs61rnzHuhaWK7fh2Lrr8G2sglpXu+eZajGtnDSMYyuk1WA81VhpWeHHbEdZs9JysHN6Y7lyw45p0/IJYLlyAsv6yjdgPJX4y6v/vaax4uUve6aivst8Jl0xppWThl2cE7im+fkqNmBq3SFlr7Vl45y6q/i7r6Efzt2sYXxrfsTGptx6Hyo2hZS/SNfL4GsDtemBchVpPzvyeEa7tjU9/+L9Lmjr+i3GTvJ3Q1g+ney8UczOk5diKmYqx0zVvBQz9WMCYb9LE3nvFiz4fiT4d66dXRRTbN/6Ckx5PaayLmWOn2IqppXtotxU023Xvl179NKOZBfn4GzhQLZWIion2pOV23Ahtvu2XOGVCpoeR8uVi1UIdmGPJGWUCtr2ucVSPh092qf8+suedE52Th9I0H8S1FIXeN2DbgD48FHqMvTosUvU9UPKsItOU67a+v3Qnt8vnem7QURERKJL5L1bsLbej0RreCGSLLbbEdty7ZyHiIhIm1RTE3jd0+oeeF1itiUjHRERERERkZio0k1ERFJaTVBLt6KgSrctbE9GOiIiIiIiIjHR46UxqjjpVcy3lW0ehrbp0MwhQyj7BQ2lTEa3hmlXLnbhKFzH/6ND97v27i+o//cqvF9uSdowvlauC8duPch+4ect5ur57F5MXTmWKxfn2Jl4PruXuvk1eF7JwFSmp/Rww+0R0x6Yi/PwByFvfcjQ3yH8ZS2zB849poUN2R2xfEJg+HAAzzePQlVJoLwmYmhxaCx7vlXlXeYz6YoxrR6ZpJ8/OnBN80vksPM1JngghcLA65zPHqPm2/NDyl+k62XwtcH7/oGBchVpPzvyeEa7toWdf3F+F7R1/ZYk+7uhqc523ihm58lLMRUzlWOmal6KmfoxgbDfpYm8dwsWcj8S9DvXKtozptiVJ76K99utmPK6lDl+iqmYVrcMKopje7xUAylE4R9IYbXzNvKszITEDBmauaUhlMNWtMmYXZaQHGLlHjwPs64y+oLtzbbIr5nR4iKBY7lj6Omah0ZQe/VZ4M7voCRTj2vutVh2jKd4hCG7ow3xDUR+v41Di0MKlT2JKvia5pfIYecPqD2Fz813OHHyJ+dvudhzIwDrnnCTXbm9maQar5fB14a6OVemVrlq4drW7PkX43dBW9dvic5PERGRzi/kd2kC792CRfs9ES12WcZ9DRUdIinGbaoZ4LlSAymIiEjnVk1DS7cMXAywitnL2pVKqqnnsyRnJiIiIiIi0jz16SYiIimtZkelWyYZHOY4gA/Tn+UU+ygc+goTEREREZEUpl8sIiKS0mpNw0AK6bgC8/KsHCx9hYmIiIiISArTLxYREUlp1dQAkGGlB+bNck4hx8pKVkoiIiIiIiJRqdJNRERSWg0NLd0yglq6iYiIiIiIpDpVuomISMoyxoT06SYiIiIiItJZqNJNRERSVj0eDA3DxKeTHmVpERERERGR1KFKNxERSVn+/twAMiw9XioiIiIiIp2HKt1ilZ8O1o7XFuC0w6cjzWs6XZCOY6+iQFi7aE9ILwDb2fgXvJJ/2nJAZmE77mBkjr2KoCDCvseyr/FON7eMw8IqzIyaq120J1affRuO6Y5pe2gVOHwdk2eqxSxIB09eQ9nxl6Wmf/6VbGfguDU9pmHl03ZCekHD8S3ac0ccGrex4722CpS9rvSZdMWYTjvkmhaQWRhe9lpRNvyPlgJkNGnpFrH8RbheBl8bQspVso9nlGtb2PkX53dBW9dvSdK/G5r+dbbzRjE7T16KqZipHDNV81LM1I/ptMN+lybq3q2pkPuR4ERijG0VZoLDSq3jp5iK6bQb6ohiYBljTExL7qTcbjf5+fmUlZWRl5eX7HRERHYqq8x6RtROBuBk+wj+5rojyRmJiIiIiMjOLta6IrsDcxIREYlLrQlu6aaBFEREREREpPNQpZuIiKSs6uDHS9Wnm4iIiIiIdCKqdBMRkZTVUp9uIiIiIiIiqcwZfREBKBvyKKbcBkNDx3kOG7y+0GkIn9d0OicN5/hisl/8OQB1L52Cb91iqK9o3JjPS2Al29EwbdmQ2YOMC5Z32D4DVP7fq3g+WA9ltfHva7zTzcW0LawemeStPbfFXOteOgVTXYKVWYjr+Geoe+kUaucMw/d1L/Da7Z9nqsXMScP165ux0ivA+BrKUlP+smY7sQcdjuv4Z8KOaVj5BEjLwe67f0OIn94En4dAed3xXtNY8QqUvYr6rvOZdMWYThvnEQMD1zS/mr8MheqtoWWvFWWjxjRf6Vb30inh5S/C9TL42lD/2NmN5SrSfnbk8YxybQs7/+L8Lmjr+i1J+ndDU53tvFHMzpOXYipmKsdM1bwUM/VjQtjv0kTduzUVcj8S/Ds3PT+m2O5+j2C2VoPPpM7xU0zFdNi4szzNFdsQqnSLVVktWDtGmTOAx9f4XtPplpYprcX75ebAbN/mr6C2tJmNmh0/JgHjheqSNu1Ca3i/3AyljT9649rX1k43nec1mJLqqLn6Nn8FFesxOcWBad/yPcBrd0yeqRaztBacbvCPleJr4aLg8zQcv6azmyuftaWNywfi7iivwe+1QVjZ27GJTv2ZdMWYHl/INS2guqThpg0ay0grykZISzcrtNLNt/mr8PIHYdfL4GtDxHIVab8izevga1vE8y+O74K2rt+SlPhuiKSznDeK2fnyUkzFTOWYqZqXYqZ2zCa/SxN179ZU5N8TJubYpmRHhRuk1vFTTMUsi/CbIgJVuomISEr51vcDm8xW/uV7l0+9S+hBATlkMYDiZKcmIiIiIiISM1W6iYhISrnf+xSPeJ8FYAyjGGUNY4K9L2c7T0huYiIiIiIiInFQpZuIiKQUt2nsQ7DAyiXLyiTPykliRiIiIiIiIvFTpZuIiKSUCioDr+e7/kih1S2J2YiIiIiIiLSOnewEREREgrlNY6VbLtlJzERERERERKT1VOkmIiIppZyGx0vTcZFuuZKcjYiIiIiISOuo0k1ERFKKe8fjpXmoHzcREREREem8VOkmIiIppXzHQAo5VlaSMxEREREREWk9DaQQI8ekfvBtJfgM2BZWtwzM9pqQaSBsXtNpe2AuaZMHBuI6956Bd9V/MGWrGjdWsx2MDywbMro1TLtysQtHdfRukz5rDPX/XoX3yy1x72u8083FtHJdOHbrETVX594zMHXlWK7cwLTvzBo8r4CpTG/3PFMtpj0wF8s+APLWQ527oSw15S9rmT1w7jEt4jENK5+AlTcAx6DDAPB88yhUlQTKa/B7beEve75V5V3mM+mKMa0emaSfPzrs87MHH4mv5H8hZS/WslEeY0s3594zwspfpOtl8LXBCipXkfazI49ntGtb2PkX53dBW9dvSbK/G5rqbOeNYnaevBRTMVM5ZqrmpZipHxMI+13alnu3loTcjwT9zrWK9owptvPoQXi/3Yopr0uZ46eYiml1y8BR3APein4OWMYYE99ps3Nxu93k5+dTVlZGXl5estMREenSak0d+bV7A3CgtQ9vpT+W3IRERERERESaiLWuSI+XiohIynDvGEQBIM/SyKUiIiIiItJ5qdJNRERShts0VrrlaiAFERERERHpxNSnW4x86yvw/FgDxoAFVrYLU1kfMg2EzWs6beWkYeW5sHJ3LF9Xjqktx9Q3/tA09ZU7XllYaVmY+kqstGwsVy52Tp8O3W9TXodx1+HbVBX3vsY73VxMK8uJlefCLm75B7ipK9+xroXlym04tu46fBuroNbV7nmmWkwrJw3j2AppNRhPNVZaeKf0/rJmpeVg5/QO9IcXfEyblk8Ay5UTWNZXvgHjqcRfXv3vNY0VL3/ZMxX1XeYz6YoxrZw07OKcwDXNz1exAVPrDil7sZQNf39uALlRBlIwdeVh5S/S9TL42kBteqBcRdrPjjye0a5tTc+/eL8L2rp+i7GT/N0Qlk8nO28Us/PkpZiKmcoxUzUvxUz9mEDY79LW3rtFE3w/Evw7184uiim2b30FprweU1mXMsdPMRXTynbhM9UxnQOqdItR+e5/w7IyExLL6ptN3sqGTutrH98HKtbHuKJNxuyyhOQQq/I9/oZZVxl9wfZmW+TXzGhxkcCxzCkm4/xl1D6+D7VXnwXu/A5KMvW45l6LZZvYFt5x3IK1WD5zihv+jfR+hFjxSpmyJ1EFX9P86h4eCcYXvnCUshFc6RZtIIUWy2fQ9TL42lA358rUKlctXNua3b8Yvwvaun5LdH6KiIh0fsH3cK29d4sm2u+JaLHLhzzW0Hm9SIopj7HSTY+XiohIyigPfrzU0uOlIiIiIiLSeamlm4iIpIRNpoSPfF/Rnz4YDAOt4mSnJCIiIiIi0mqqdBMRkZTwke8rbvM+BMCB1lh+6Tg2yRmJiIiIiIi0Xqd+vHTu3Lnsu+++5ObmUlRUxAknnMCyZeHPhC9evJhDDjmE7Oxs8vLymDBhAtXVsT1/KyIiHWOpWRF43d/q2EFjREREREREEq1TV7otXLiQ6dOn8+GHH/Lmm29SX1/P5MmTqaxs7Nx58eLFHHnkkUyePJmPP/6YTz75hBkzZmDbnXrXRUS6nKW+xkq3S51Tk5eIiIiIiIhIAnTqx0sXLFgQMv3YY49RVFTEZ599xoQJEwC49NJLueSSS7jqqqsCy40YMaJD8xQRkeiW7WjpZmEx3BqU3GRERERERETaqEs19yorKwOge/fuAGzevJmPPvqIoqIiDjjgAHr16sXEiRNZtGhRszFqa2txu90hfyIi0v76WX0YZQ1jV2sImVZGstMRERERERFpky5T6ebz+Zg9ezbjx49n9OjRAKxY0dBq4sYbb+T8889nwYIF7L333hx66KH88MMPEePMnTuX/Pz8wF///v07bB9ERHZWxhhe8r3Fd+ZHcshOdjoiIiIiIiJt1mUq3aZPn86SJUt4+umnA/N8Ph8AF1xwAeeccw5jxozhrrvuYsSIEcybNy9inKuvvpqysrLA35o1azokfxGRnVk9nsDrNNKSmImIiIiIiEhidOo+3fxmzJjBq6++ynvvvUe/fv0C8/v0aRj9btSoUSHL77rrrqxevTpirPT0dNLT08PmZ9w7ibSvyjFeAw4LR59sfBsqQ6aBsHlNp+2BeTh2LwzEdR33NL4tSzDuxnxM5UbwecB2YmX3xlRuxMosxOrR8X3RZT//czzflOD9cEPc+xrvdHMxrZ5ZOEZ2i5qr67inwVsHDldg2jFgO57/lOErzW33PFMtpj0wD6vIBbkbMdUlWNm9w46Zv6xZuf1wDD064jFtWj4BrLwB2D0bWpR6l7+GKV8bKK/B77WFv+yZVe4u85l0xZh2vxxcPx8S9vk5j/gLZuuykLLXUtmooz7wOt2KrdLNddzTYeUv0vUy+NqQNrZvoFxF2s+OPJ7Rrm1Nz794vwvaun5Lkv3d0FRnO28Us/PkpZiKmcoxUzUvxUz9mEDY79J4791iFXw/Evw71+4zLqbYmfMOw7t0O74tVSlz/BRTMR19sskssuGi6OeAZYwx8Z02qcMYw8yZM3nxxRd59913GT58eNj7/fr1Y9q0adxyyy2B+WPGjOGoo45izpw5UbfhdrvJz8+nrKyMvLy8hO+DiIjAVlNK39oDATjSPoh/uh5IckYiIiIiIiKRxVpX1Klbuk2fPp2nnnqKl156idzcXDZu3AhAfn4+mZmZWJbFFVdcwQ033MCee+7JXnvtxeOPP87SpUt57rnnkpy9iIj4Bbd0c+nxUhERERER6QI6daXbAw80tISYNGlSyPxHH32UqVOnAjB79mxqamq49NJL2bZtG3vuuSdvvvkmQ4cO7eBsRUSkOSGPl+JKYiYiIiIiIiKJ0akr3WJ9Mvaqq67iqquuatO2am76EOuTMvAZsC3sHc/0Bk8DYfOaTttD83GOLybtmMEAeFe8jm/dYkzpisb9qtwIPi/YjtA+inqOJu2A37ZpP+JV/6+VeD9YT/2i9XHva7zTzcW0e2bi2L2QjBv3azFX74rXwVMDzgwcQ47Cu+J1PG9tp/7lGkxpTrvnmWox7aH52CNexOq2FlPVUp9uXqzcvjh2OwPHkKPCjmnT8glgFQzB7rt/wzLfPokpXxcor1bBEF7tXcXqwbszyzmlFaWugb/seZeXdZnPpCvGtPvm4Dp718A1LfD5/fdWTMmSkLLnLzdNyxlAnakLvI51IAXvitfDyp//evlxDy93jesFwJmrMjjOjAdnBr7/jQyUq0j72ZHHM9q1ren5F+t3wT2ex3nP9wljflrDoRtsxrqz41o/Fsn+bmiqs503itl58lJMxUzlmKmal2Kmfkwg7HdpvPdusQq+nwn+nWv3PSCm2DU3foj3mxJ8W6pT5vgppmLafbKp7hdbdVqn7tOtI/if013tvI08KzMhMa2+2eStnAZAzUMjoGJ9jCvaZMwuS0gOsXIPnodZV9mh24zItsivmdHiIoFjmVNMxvnLqHloBLVXnwXu/A5KMvW45l6LZcd4iu84bsFaLJ85xQ3/Rnh/U7aLw8/em7Od/8dvnRfHk3JAypQ9iSr4muZXc3c+GF/4whHKGcC3vh8YW/d/AEx1nMiDaTdH3W5L5dNnWRx/0YkAPPX4m+RWuiGnmLo5V6ZWuWrh2tbs/jXzXfCNbxkX1d/AVlOKEyevP/ExhZXVMa8fD52fIiIinV/I79I4791iFe33RLTYZRn3NVR0iKQYt6lmgOfKrt2nm4ikJg9eVrOB//mWJzsV6SRqaWzplqjHS/OsHAAs7ITES3UbTQmfmiUADGcgNlaSMxIRERER2bmp0k1E2k01NclOQTqJRA+kYGPxvOs+AGqsN4HSNsdMdaW4A6/Pd55Kd+tHoCp5CYmIiIiI7OR2jv/+F5GkqKY22SlIJ6GBFNqu1DRWuuWTm8RMREREREQEVOkmIu2o2qilm8SmthUDKUio7UEt3bpZzfcrISIiIiIiHUOVbiKScP6epPR4qcSqPvjxUkuVbq1RZsoDr9XSTUREREQk+VTpJiIJZ+2odtPjpRKr0MdLVenWGmrpJiIiIiKSWlTpJiIJF6h00+OlEqPaBA+ksDMKaemmSjcRERERkaRTpZuIJJy/0q1GLd0kRokevXRntJ2ywOtuqNJNRERERCTZVOkWq0QdKRus7MYflFZaduzBLUeCkoidlZ2WGqXEYUVdxErLBlfujmPaMG1leADTzsmlKBswsX94/uMWPi9SDLvh+EZYB2xq0pxA2/p0S5myJ1EFX9MaZ0a6XtnNlJnQgRRcMY5e2lysptsPvjakXLlq4drW7PnXzHeBv6WbjU0OWXGvH4+UO44iIiISnya/S+O9d4tVtN8TUcXwO1AkKWKtxjHG7KQ1ErFxu93k5+dTVlZGXp5aDojE4oDaU/jcfIeNTWX6V1iWviylZQ94nuJSzxwA5qXN5ZeOY5OcUeczqvYoVpg1dCef9RkfJDsdEREREZEuK9a6Iv0/tYgkXCaZAPjwUY8nydlIZ6DHS9vO39It39LIpSIiIiIiqcCZ7AREpOvJtNIDT/VWU6NKFImqlsbHS9NjfLxUGj3nXcAu1mDqqWeg1TfZ6YiIiIiICKp0E5F2kElG4HU1teSjljfSMrV0az1jDBfV30A5lQyy+rHI9XSyUxIREREREVTpFrPyg57B/FQHPsACctKgsj50GsLnNZm2e2fjnDyAzN8fCED9e9fiW/UWpmJT48bqK2loJmRBWnbDtDMDq2AI6b9c2GH7DFB91SI8/16Nb3lp3Psa93RzMTOc2EPyyV18aou51r93LdSWQnoBaRN+R/1711J3fxqe/xRAjav980yxmHbvbJyn/hErdwt4ahrKUthB21HW0nJw7HYGaRN+F3ZMw8onYGX3wh50GADe756Eugr85dXK7sWZ/dN4Zf+GZatNDbSiS7dA2dtY2WU+ky4ZMycN15RdA9c0v9qnJmJKV4SUPX+5aVrOAOpMcKVbbC3d6t+7Nqz8RbpeBl8bPK8d1ViuIu1nRx7PKNe2sPOvme+CdWyinIb9GWkNjnv91kj6d0NTne28UczOk5diKmYqx0zVvBQz9WNC2O/SeO/dYhVyPxL0O9cqGBJT7PL9/4FveRnUeFLn+CmmYuakUdHTaq7YhtBAClH4O8db7byNPCszITGtvtnkrZwGQM1DI6BifYwr2mTMLktIDrFyD56HWVfZoduMyLbIr5nR4iKBY5lTTMb5y6h5aAS1V58F7vwOSjL1uOZei2XHeIrvOG7BWiyfOcUN/0Z4vzQ7h0Fn9wDgc9c/GWUPizlnv5QpexJV8DXNr+bufDC+8IUjlDOAq+r/wN3exwH4j+sJxtt7R91ui+Uz6HoZfG2om3NlapWrFq5tze5fk++CN70fcGz9BQBc6pjK3LTL41q/NXR+ioiIdH4hv0vjvHeLVbTfE9Fil2XcBz5VWUjqcZtqBniu1EAKItLxguv8q6lJWh7Seejx0tZbZlYEXo+whiQxExERERERCabHS0Uk4aygardqapOYiXQWwZVu6ap0i9lK31q2mjIG0Ac3lexqD012SiIiIiIisoMq3UQk4UIq3Yxaukl0tWrp1iov+v7NXO+DAJxoT+Zn9p5JzkhERERERPxU6bYTuMfzOO/5PgFggr0vs5xTkpyRdHXBlW41aukmMQgeSCFNlW4xqwp6fLtAowSLiIiIiKQUVbp1YX/wPMxL3rcoN5Wk4WQDW/jC9x3V1HCV84JkpyddWmOlW5X6dJMY1FEXeJ1uxTZ6qUCVqQ68Ps3587jXf8rzCpd55uDFx6H2/jztujuB2YmIiIiI7NxU6daFfev7gU/NEgD2ZQ+2Urpj/o9JzEp2Bnq8VOKlgRRaJ7hSO4uMuNffYDZTSjkAS4MGZBARERERkbbT6KVd2DqzKfD6Ode9EeeLtAcHNj+z9mSoNYB7PU8wq/5W3vV+nOy0JIWFDqSglm6xqqKxpVs2WXGvX2rKA6+3mG0JyUlERERERBqo0q0LW89mAPLJpZfdg+7kh8wXaS8ZVjoL05/kNPsYfmAVf/E+zbn1Vyc7LUlhtUGPl6qlW+yCHy/NbE1LN7YEXm+llLKgSjgREREREWmbVj1eWl9fz8aNG6mqqqJnz55079490XmlHGtAHmz0gjFgWZDhgJom0xA+r8m0VZhJ2qH9A3Edg4/Au+odqC5p3Ji3BgwN3WI5MhqmbRdWXr+Y8zXGBFq0FVtFgX+3mTLWm00YY7Asq6UQAKQdNYj6t9Zg1lXEva9xTzcXM83GHhC9g3DH4CMwNduxMroFph0/q8W7yAv1zvbPM8ViWoWZUN8XsreBr66hLDXlL2vODByDj4h4TMPKJ+DOTGdt/8Hsbu+Cd+mz4KlpLK+ZhTgGHgxAnpVDGmnUUY+biqifYbBA2dta3WU+ky4ZM9NJ2lGDwj4/q9swjHttaNkLKht+/oFevvEtC8yLtdLNMfiI8PIX4XoZfG0IKVeR9rMjj2eUa1vY+Rdh34IfL822MmNaf3tuLs94HmeWcwrrCG35vMysZJy1R9Rjn/TvhqY623mjmJ0nL8VUzFSOmap5KWbqx4Sw36Wx3rvFK+R+JPh3bk6/mGLbuxTgW10O9b7UOX6KqZgZDqxuabA8+jlgGWNMLCdLeXk5f/vb33j66af5+OOPqaurw19x069fPyZPnsyvfvUr9t1331jCdRput5v8/HzKysrIy8tLdjox22bKKK4dD8Bh9gG86vorx9ddxBu+9wFYk/4ePa2uX1kqifeTbx3H111IOZVMdZzI9WkzWlz+oNrT+cR8g4VFZfpX2JYa2ApUmiom1Z2J21RiMPSgAA8edrOH85jrtmSn12kcWXcu7/o+AmBr+sdkWy0/Yrrct5pf1F9CidnOr5yn8qz3dZaZlVhY7GYN5ybHTI5xtu3mWkRERESkq4u1riimX7933nkngwYN4tFHH+Wwww7jn//8J19++SXff/89ixcv5oYbbsDj8TB58mSOPPJIfvjhh4TtiLTOOrMx8Dq4pVvj++rXTVrHtmyWsZL1bOZbE/1cz7WyATAYKoP6n5Kd2xaznW/M96xiHXXUU2wXMcAuZow9KtmpdSrxPl7qwMF35kc2s5Uvvf9j7Y7vCoNhifme9UGPm4qIiIiISNvE9HjpJ598wnvvvcduu+0W8f1x48Yxbdo0HnzwQR599FHef/99hg8fntBEJbq/e1/FYFjtW8/bvg8pogdpOBlpDQFgpDWEvaxdqTG1zKq7ldH2Lkx2jOd4x2FJzlw6kz4UYmFhMDFV3uaRE3jtpoJcstszPekkSmjstP84xyH8Ke26JGbTefkHUsgkI6ZWpAOsPmSRSRXVLDKfsbe1GxvMFn5kFQBlO0YyFRERERGRtoup0u3vf/97TMHS09O58MIL25SQtI4xht95HuBHswoHDn5m7cEIazAT7H25zDkNgFnOKcxyTuHmuvu43fcQH/m+4g3f+6p0k7ikWWn0ppANbGG9iT4oR67VWOlWbirA6tWe6UknsdWUBl4X0i15iXRy/j7dsmIcRMG2bHaxBvGl+R+luHnffMpB1j78aBoq3UqNu91yFRERERHZ2bRqIIVgbrebt99+mxEjRrDrrrsmIqeUVNb7rxhPeuMMi4ZOIIOniTCv6bTTxrF7ITkfngpA7ZMTMCVLwOcJWrCZIM5MMmZGruRYaday3KwGYKBVTDcrH2joyL6pfDuXHF82pbhZy0YqTBU5zfQDVLHfP/B+U9LQcWW8+xrvdEsxs5zkl14UMUe/2icnYKo2YWX1Iv2M96h9cgK1N0zErO7ZuIH2zjOVYjptXDdej+WsC5rZVONKVtEY0s94L+TdyOUTvrZhSY80YAM1W/KC4lhgO7EKRwdi5dJYttxURsghskDZ8/i6zmfSFWNa4BhTFLim+dXcWwSe6qAVCCkbW4JaurW2f8naJydgNn8ZmkyE62XwtaH+3umN5SrSfkaal6RrW/j5F75v/sdLIz1a2tz6bzid9Dq/b2C5A+y9ed/7KQDbia3SLenfDU11tvNGMTtPXoqpmKkcM1XzUszUjwlhv0uj3bu1Vuj9SFAidlpMscsKHoAqT/P70lU+E8XsdDHdjlpiEXel2ymnnMKECROYMWMG1dXV7LPPPvz0008YY3j66ac56aST4g3ZOdT7Gj8sCD3gkaabW6beh29TY8WDqdoEvvoWNhwUxNv8h/q9WckYRlFpVXOifTg3pM1sdtlZzil8Z37kce+LACwzKxhrjY64rG9TZeiPqiYpNTuvrdNN59V4I+YXsnjVJqhYH1jNVG3ClKYT8sG1d56pFLPeB3Z9Cws1WaUq/FHR5spnmg+KqvyfSXBcA776kFi5BLd0i73SLWLZa7q5SNOxLNOVPudkxzSEXNMCQq5XO1YIKhslZnvg3R5WQYSNRtcQq0kyEbYffG1otlw1Wb3ZeR14bWv2+yFo3/wt3ZqOXNrS+i6vj6edd/GcdwHr2cyxjoO5zftXAMpibOmWMt8NkXSG80YxO2deiqmYqRwzVfNSzNSN2eR3abR7t9Zq9n4m1tjB90qpdPwUUzGb+03RRNzDCL733nscdNBBALz44osYYygtLeVPf/oTt956a7zhJEHWmk18zrcsMysYaPWNury/nzeApWZFe6YmO7ng1pblVCQxE0klwZVuhWgk5dYwpnFwkizCK92aYwEnOA9nX8ceHO84jOHWoMB7sbZ0ExERERGR6OJu6VZWVkb37g0/kBYsWMBJJ51EVlYWxxxzDFdccUXCE5TYVO9o7QCQZUXv22ckQ+lHb3pZPdjo2wKO9sxOuiIXTmwcQFWLy+UFDZzgjqOlm3RtJTRWuvW0uiUxk86rHg9eGv73N5aRS5ua5ZwCgM/48A+OUmY0kIKIiIiISKLEXenWv39/Fi9eTPfu3VmwYAFPP/00ANu3bycjI/6bfkmMyqCKj1haPIy0h7CWjaw1Gyk26the4tfT6rHjVcuVbrlq6SYRhD5eqkq31vCPXAqRHy+NlW3ZFJDLdtxq6SYiIiIikkBxP146e/ZszjjjDPr160dxcTGTJk0CGh473X333ROdn8SoygS1dIuh0m2gVRxoGaHHS6U95Qa3dItjIAXpmipMFSfVzWCR77PAPI1e2jqVQZVusY5e2px8Kw9ALd1ERERERBIo7pZuF198MePGjWPNmjUcfvjh2HZDvd2QIUPUp1sSBbd4iOXxUtuyGWEN5kvzP5ab1dSaOtItV3umKDupXKux0q1Cj5fu9Cqp4n++5QxjALXUsYs9GJeVluy0OqXqoP9sac3jpcG6kcdPNPTpZozBsqxoq4iIiIiISBRxV7oB7LPPPuyzzz4h84455piEJCStUxXcp1uMP75GWEP40vwPHz5+NKvYzRreXunJTiwvaPRStx4v3el58FKPl152IQDj7D2SnFHnFfp4aVabYuVbuWDAi5dKqsmhbfFERERERKQVlW7Tpk1r8f158+a1OhlpvSoT9OMrxh9Lo6xhDKYfPa3urPCtYTdblW6SeN2tAva2RlFKOYt8n3FY7RQ8eNnTHsk9ab9NdnqSBOc4T+Qa54XJTqNT8xgPi31f0o/eGAzDrAFtircLgyhhG5ZlsclsJaeNlXgiIiIiItKKPt22b98e8rd582befvttXnjhBUpLS2OO8+OPP/LGG29QXd1QWWSMiTcVCRLc4iEzhsdLAUbYg1jJWj42X/MVS9srNdnJDbD68N/0Zzjd/jmFdONT8w0fmi+Z7/1nslOTJOmLBm9pqxJKmeW5lbVsJIsMLnWe06Z4mVYGS/iBb8z3/GTWJihLEREREZGdW9wt3V588cWweT6fj4suuoihQ4dGXX/r1q2ceuqpvP3221iWxQ8//MCQIUM499xz6datG3fccUfMucydO5cXXniBpUuXkpmZyQEHHMBtt93GiBEjwpY1xnD00UezYMECXnzxRU444YSYtwOQdtZIrE/d4DNgW9hFWfg2V4VMA2Hzmk7bQ/NxTurXGPegW/CueQ9T2jiYganaDD4v2A6srCJM1WasjO7YPUc3m19rHi8daQ0JvF7mizyYQsac8XgWrsXz3w1x72u8083FtHtkYO9eGHV/0g66BVNfhZWWFZjmN2XUv+TFlGW3e56pFtMemo+VfTJWt7WYmm1YWUVhx8xf1qycPjh3nxrxmDYtnwB2wRDs/hMA8HzzGKZiQ6C8Br8XLM/KIc/KwWGcQB1efC1+nv6y5/uxrMt8Jl0xpt0nG9e03cI+P8ce5+LbsiRQ9lb61rIwbwvv981gihVeFlsj7aBbwspfpOtl8LXBnrNnoFxF2s+OPJ7Rrm1Nz7/gfSszjaOMBo8QHOv6TY2wBgdeLzMrOJT9Wzz2yf5uaKqznTeK2XnyUkzFTOWYqZqXYqZ+TCDsd2nTezeg2fv6eATfjwT/znUU7xdT7LRfjcb3TQm+rTUpc/wUUzHtoizS+jvhsejngGUS1MRs2bJlTJo0iQ0bNrS43Nlnn83mzZt5+OGH2XXXXfnqq68YMmQIb7zxBpdddhnffvttzNs88sgjOe2009h3333xeDxcc801LFmyhO+++47s7OyQZe+66y7efPNNXn/99bgq3dxuN/n5+ZSVlZGXlxdzbh3tkNqz+a/5HIDy9C9Ii6Fj8npTT7faffHgYbQ1nE/TX2zvNEX4We3JfGWW4iINd8YXyU5HOsi5ddfwpO9lAL5wvcSudvT/pJHmfej7kkl1ZwIw3XEGd6Rd3aZ4i31fcHDdWQCc7ziFe9Oub3OOIiIiIiJdVax1Ra0aSCGS5cuX4/F4oi7373//mzfeeIN+/fqFzB8+fDirVq2Ka5sLFiwImX7ssccoKiris88+Y8KExlrzL7/8kjvuuINPP/2UPn36xLWNzsL/eKkTZ0wVbgBpVhrDrAEsNSv4wazCa7w4LEd7pilCOi4A6qjXKIk7kXVsCrwuTlBLt51ZmSkPvC6g7f8hFNzyeWkzLZ9FRERERCQ+cVe6XXbZZSHTxhg2bNjAv/71L6ZMmRJ1/crKSrKywh8N2bZtG+np6fGmE6KsrOFxoe7duwfmVVVV8ctf/pI///nP9O7dO2qM2tpaamtrA9Nut7uFpVOH//HSWB8t9dvb2g3LWDgtB0vM9+xp7doe6YkE+CvdAGqpI4O2nffSOYyxdsVjedlOWciIttI622n8biqw2l7p1s3KZxgDSCc9IfFERERERKQVlW5ffBH6OJht2/Ts2ZM77rgj6simAAcddBBPPPEEt9xyCwCWZeHz+bj99ts5+OCD400nwOfzMXv2bMaPH8/o0Y391Vx66aUccMABHH/88THFmTt3LjfddFPY/Po3fqJqaTV4DZbDwuqVhW9TVcg0EDav6bTdNwfHsAIcI7o1LL/te8z2Ffgq1gW2ZSo3gfFhWTZk98JUbsLKLMQuGIRj8OSIeftHL80mM7YDtsNB9j485XsFDCzwvc+edmilm3fZdnw/llL/+ea49zXe6eZi2oWZOAbnkXbkoBb3xbft+0AfAXb3XfBt+x7f927qF5diynLaPc9Ui2n3zcHK+wJyS6CqBLLDO6/3lzU7pzd2/wnY3XcJO6ZNyyeAlVOM3a3h8UDfmvfxVWwIlFf/e01j+aVbLtjxUHtLlW7+suddV9FlPpOuGNNRnI1zYr/ANS3w+a38N76ynwJl72a6YeWcit1tKFZ6Ylo3+rZ9H1b+Il0vg68NZkvPQLmKtJ8deTyjXduann/B+1bWP6ilWzOVZC2tH+m7pNDqxofmK771/UCtqWs4V5uR7O+GsH3tZOeNYnaevBRTMVM5ZqrmpZipHxMI+13a9N4NiHpfH4vg+5Hg37lWrzExxa5f8BPelWWYkpqUOX6KqZhWryzqusXWU1vclW7vvPNOvKuEuP322zn00EP59NNPqaur4ze/+Q3ffvst27Zt44MPPmh13OnTp7NkyRIWLVoUmPfyyy/z9ttvh1UUtuTqq68Oac3ndrvp378/Vb9cgNOKr0KrOVbfbPJWNlRQ1j1/LFSsj2k9r2XjmF0W8T3/46Wxjlzqd7C9X+D1Y54XyCCdWc7GFouVR76IWVcZV8x2YVvk18xocZHAscwpJuP8ZdQ9fyy1V58F7vwOSjL1uOZei2VHvxj4IHDcgrVYPnOKG/6N9H6EWH7BlWw11JJPbsTlUqbsSYvqCb2mBea/9AswEQbLaKFsxKul8hl8vQy+NtTNuTK1ylUL17bm9s9r2WyfcXtguqCZc6il9SN9lxRbvQIV4uvNZgZb/cKW8dP5KSIi0vkF38O1171btN8T0WJXnfBqQ+f1IimmekfDp2jsds4jzOjRo/n+++858MADOf7446msrOTEE0/kiy++iGn000hmzJjBq6++yjvvvBPSV9zbb7/N8uXLKSgowOl04nQ21DGedNJJTJo0KWKs9PR08vLyQv46A//jpfG2dBtk9+U653TmOefiwMG9nvlcX39Pe6QoAjR9vLQ+iZmIdF4hfbol6HHQvlZja9j1bE5ITBERERGRnVlMLd323ntv/vOf/9CtWzfGjBnTYsfnn3/+ebPv1dfXc+SRR/Lggw9y7bXXxp9tE8YYZs6cyYsvvsi7777L4MGDQ96/6qqrOO+880Lm7b777tx1110ce+yxbd5+qvAZHzU09EOXFWelG8C1zovYaEqY5mkY/e5b80NC8xMJFlLpZmpB4yiIxC24T7duCRhIAUIHuFhnNiYkpoiIiIjIziymSrfjjz8+MMjBCSec0OqNpaWl8fXXX7d6/aamT5/OU089xUsvvURubi4bNzb8SMjPzyczM5PevXtHHDxhwIABYRV0nZm/lRvE/3ipXw8aH8EsMdvbnJNIc4L7iaqlLomZiHRepaax0i3fivx4abyCW7qtM5taWFJERERERGIRU6XbDTfcEPF1a5x55pk88sgj/P73v29THIAHHngAIOxR0UcffZSpU6e2OX5n4e/PDeJ/vNQvzUqjgDxKcVOCKt2k/TTt001E4ldK4+Ol3UhMv5V9rcb/pFpv9HipiIiIiEhbxT2QwieffILP5+NnP/tZyPyPPvoIh8PBPvvs0+L6Ho+HefPm8dZbbzF27Fiys7ND3r/zzjtjzsWY+DtUbM06qewez+Ms8L4XmM6idS3doGHkulLjVks3aVfppAVeq083kdbxt3Rz4Gj1f7Y0VUzw46Vq6SYiIiIi0lZxV7pNnz6d3/zmN2GVbuvWreO2227jo48+anH9JUuWsPfeewPw/fffh7zXUl9xEmq+9yXu9zxJhakiAxd7MpLd7OFc4jy71TELKeBHVlFGOXWmHpeVFn0lkTilB7d0M2rpJtIa+eSyhzWCAvIS9t1ZTBH7WXtRQVVItwUiIiIiItI6cVe6fffdd4FKs2Bjxozhu+++i7r+O++8E+8mJYJlvhV8YRqO9zhrT3pa3djTHsle9q6tjllodYcdDQG3UkofeiYiVZEQwX261alPN5FW+db8QAnbGWz1i75wjNJtF8vNarawLaTPOBERERERaZ24K93S09PZtGkTQ4YMCZm/YcMGnM64w0kcDPCX+n+wma38YH4KzP9r2s2MtIe2OX6h1S3wusRso4+lSjdJvIyg0UtrVOkm0ipuKgDIJTvKkvHpa/Vii9nGBrbgNV4cliOh8UVEREREdiZx15JNnjyZq6++mpdeeon8/IbOm0tLS7nmmms4/PDDo65/8MEHt/gozNtvvx1vSjsNHz5meW8BYBdrUGB+cOfXbVFIY6XbFvXrJu0kHY1eKtJWdTv6Q8wlJ6Fx+1q9+NL8Dy9eNrNNLZ5FRERERNog7kq3P/7xj0yYMIGBAwcyZswYAL788kt69erF/Pnzo66/1157hUzX19fz5ZdfsmTJEqZMmRJvOh0m+z8nkbHeAz4DloXVIwOzrSZkGgib13TaLszE7tPYMiH99IWYyg2YqpLAPFOzDYwB28ZK74ap2YaVXsA01x3AeoDAYAe5ZJNrJaalQ3BLt2s9d1LsLeKI98YybcupeL/fHve+xjvdXEyrIB27d/R9TD99IRgv7GiZkX76QtImVeD9rhxTmdnueaZaTLswEzLGYWWWYWpLsdK7hR0zf1mzsgqxC0dHPKZNyyeAlVmIldMHAF/JN5iqrYHyGvxexM8pqE+3WtN8pVvOf0/Ft6ESX0l1l/lMumJMq0cmzj0Kwz4/1y/fx1RuDCl70cpGvNJPXxhW/vzXy+DtBF8bXD/PDZSrSPvZkccz2rWt6fnn37eynGzgQgDyWrj+N7d+S59BsRU8mMLGZls8+8/PZH03NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2u7S97t2C70eCf+faBcNjip39YcM9hymtTZnjp5iKafXIwJvhgYlXRi3DcVe69e3bl6+//ponn3ySr776iszMTM455xxOP/100tKid7x/1113RZx/4403UlFREW86Hca5V0/SJ+QlPK6V0xsrp3dMy/5U+wiYhkq3sh2PFvW1eiUsl2PtQ9glbRAve99mmVmB21SwqXcVzv5FOPcuih4gyZoeRyunN47h4BiepIRSQts+t1jKpyPG8uuXYQW3dGt+IAW7T3bIjYB0LnbRHsAe7boNK6d3TOUvuAxbOXSactXc+VfqW4O/kWhLLd3i+X7xC/5OWW82N7uc//zsDN8NIiIiEl173bu15n4kmHOvnrCXWt5L6nG6Y+sDuVWdsGVnZ/OrX/2qNas268wzz2TcuHH88Y9/TGjcrsQYE3jtxQuEtkpoq6H2AIYygB/MKrb4tgGQZyX20SWR0MdL65OYiUjnVE5l4HVLLd1ao5jGSrd1ZlNCY4uIiIiI7GxiqnR7+eWXYw543HHHtSqRxYsXk5GR0ap1dxbVVi0YsLEoII8sMtndGpHw7cxyTmEWUxIeVwQgI+jx0poWWrqJSGT+QRQg8QMpDLb7sQuDqKaGV7zvcJzj0IS2qBYRERER2ZnEVOl2wgknxBTMsiy8Xm+Ly5x44okh08YYNmzYwKeffsp1110X03aSofKcN+FLd8MzvLaFVZiJKakOmQbC5jWdtofkkXboAFznNfSf5fl6Hr7V72DKfgpsy1SXgPGBZWNlFmKqS7DSC7i22wbOOiyH3vTkHMdJAFyXNr1d97vu4SXUv7UG7ycb497XeKebi2kVpOPYvZCsxya3mKvn63lQXwlp2Tj3mIbn63nUP1tJ/UsWlGe1e56pFtMekofjgHlYBesa+mbIDO93y1/WrKwiHLufg3OPaWHHtGn5BLDyB2EPOBgA7zePYqo2B8qr/72msfxiHUjBX/Z8K8u6zGfSFWNaRVmknz86cE0LfH6vn4cp+Tak7EUrG/HyfD0vrPz5r5dW4W64jno4sJz/2uD7eFygXEXaz448ntGubU3PP/++9etRCIc0LJPbQmvk5tYPPjZNHWTvwyXOKczw3MQas5F/exdxjvOksOWS/d3QVGc7bxSz8+SlmIqZyjFTNS/FTP2YQNjv0va6dwu+Hwn+nWv33iem2FVT/433m5KGPt1S5PgppmJahZlU9o/twVHLBD+z2AGmTp1K8Oiltm3Ts2dPDjnkECZPbrlSJRncbjf5+fmsdt5GnhV+o98aVt9s8lY2XFxqHhoBFetjWs9rQY8LBzLMGsj5jlOAhlZp7ck9eB5mXWX0BdubbZFfM6PFRQLHMqeYjPOXUfPQCGqvPgvc+R2UZOpxzb0Wy47xFN9x3IK1WD5zihv+jfR+hFh+C70fc0R9Q/m/3HEut6ZdGnG5lCl7ElXwNc2v5u78hpuqplooG/FqsXxaNhmzy0KXyymmbs6VqVWuWri2Nbd/xrLoduEAAP7ovJIZzrPiWj/42ETylPcVptVfDcBdzmu4yPnLsGV0foqIiHR+Ib9L2+neLdrviWixyzLua6joEEkxblPNAM+VlJWVkZfXfP//rerTza+mpibuR0Ife+yxtmxSgByy2r2yTaS9pAcNpFCnPt1E4hZ829nSQAqtlUnj93oVNQmPLyIiIiKys7DjXcHr9XLLLbfQt29fcnJyWLFiBQDXXXcdjzzySNT1hwwZwtatW8Pml5aWMmTIkHjT2Sllk5XsFERaTX26iSROewx2kxl0jlar0k1EREREpNXirnT73e9+x2OPPcbtt9+Oy9XYYmX06NE8/HDkPmKC/fTTTxH7fautrWXdunXxprNTyrFU6SadV6x9uolIdDnt8J8wGUEt3WqMKsZFREQklNd4uabuDs6u+w3T627kfd+nyU5JJGXF/XjpE088wV//+lcOPfRQLrzwwsD8Pffck6VLlza7XvAIqG+88Qb5+Y39bHm9Xv7zn/8waNCgeNPZKbXHjyyRjhJc6VZjVOkm0hbt0tLNUks3ERERad4H5nPu9D0amP7Rs5o3XPOSmJFI6oq70m3dunUMGzYsbL7P56O+vvn+mfwjoFqWxZQpof2RpaWlMWjQIO64445409kpZSdoQAeRZAju022h72Pu8TyuPgpF4mCCenXLa4c+3bKCWrpV6xFwERER2eEez+O85/uEpb4VIfPXmU1Jykgk9cVd6TZq1Cjef/99Bg4cGDL/ueeeY8yYMc2u5/M1jIQyePBgPvnkEwoLC+PdtOygPt2kMyukG6+k/YU/eB7iC/M/7vXMZ09rVyY5xiU7NZFOwcJiD0Yw0h7CAKtPwuOHDKRgqhMeX0RERDqXelPPvnUnUW1qMRgG0IdcslnGSqqpYb3ZjDEGy7KSnapIyom70u36669nypQprFu3Dp/PxwsvvMCyZct44oknePXVV6Ouv3LlylYlKo2yUUs36bzSLReHO8bzV+8/KDeVlFPJJkqSnZZIp9Lf7sNYezTZ7dDHZ4alwU5ERESk0UZKWGoaWrf1ogf5di755FJhqvjRrKKKakpx0438KJFEdj5xV7odf/zxvPLKK9x8881kZ2dz/fXXs/fee/PKK69w+OGHxxSjsrKShQsXsnr1aurqQvt0uuSSS+JNaaejgRSkK5hsH8grvrcBddYuEg8bi+dd97Vb/Ew9XioiIiJBgh8fPdFxBHelXQPA+fW/5UfvqsAy3SxVuok0FXelG8BBBx3Em2++2aoNfvHFFxx99NFUVVVRWVlJ9+7dKSkpISsri6KiotStdMtyQvBTNrYFPhM6DeHzmk5nOLCHd2uc1W0YvppS8AZ1Vm18ja8tG4wPg0V5WsOsjhxIwR7eDe/2WqjyBM2McV/jnW4upgXkNfYD1myu3YZhXHlY2UWBabtPFb7yXDB2++eZajEzHODNBLsaMA1lqSl/WbNs7G7hfTVGLJ8AjozA8r7KjSFxgt9rSfCACnURRjENlL0ab9f5TLpiTNsKuaYFuHKh1k1I2YuxbMTK7jYsvPwZH2A1bD9oOf+1IaRcRdrPSPOSdG0LO/8i7FtLWrt+JtEHUkj6d0NTne28UczOk5diKmYqx0zVvBQz9WNC2O/Slu7d1pvNgcX6Wr0aX9P4er3ZzGh2oamQ+5Hg37nOrNjuC/NcUFYLppX72lk+E8XsfDHTneAmqpgr3bZv387f/vY3pkyZQl5eXsh7ZWVlPPHEExHfa+rSSy/l2GOP5cEHHyQ/P58PP/yQtLQ0zjzzTGbNmhVrOh0uf815UfetNVwn/yum5eZ5nuNiz41Ax/bplvPv/+uwbbVV02PpOvlfuE5OUjIp46I2rR1r+WyNjKABFWoiVLp1prIn4TIuXtvu24i1fAYv15muCW09/1q7fkZQpVtzrVB1foqIiHQtLd27rfPMD7wutooCr/sGvV5rNkZct633M/mbf9Wm9UXai+V2Q/6voy4XoelLZPfddx/vvfdexIqn/Px83n//fe69996ocb788kt+/etfY9s2DoeD2tpa+vfvz+23384111wTazo7nZ87DuZs+wROs4/hMMcByU5HpM2CW7qp3yiR1GFbdqDirQoNpCAiIrKzWx/0eGlw67be9GRPayS7WyOabR0vsrOLudLt+eef58ILL2z2/QsuuIDnnnsuapy0tDRsu2GzRUVFrF69GmiouFuzZk2s6ex0iqwe7GYPZ4w9iv7tMFqdSEcLbk1TG6Glm4gkj/8RU/XpJiIiImuDK92CHi/Ns3L4yizlG7OMDWZLMlITSXkxP166fPlyhg8f3uz7w4cPZ/ny5VHjjBkzhk8++YThw4czceJErr/+ekpKSpg/fz6jR4+ONZ2d0iznlGSnIJIwruCWbhpIQSSlZJLBdtw6N0VERAQXaexhjaDUuEMeL821sgOv3VQkIzWRlBdzpZvD4WD9+vUMGDAg4vvr168PtGBryZw5cygvLwfgd7/7HWeffTYXXXQRw4cPZ968ebGm0+Hco57AlEBDD44WuGyo84VOQ/i8JtNWQTrOSf3IeuKIhsVfPxff6oVQW9a4MV9Qqx/b1TBtOyG7Nxnnftv+Oxuk6uw38Ly7FrO5mnj3Ne7p5mI6Law+2eT9MLXFXOtePxeqt0JmD1xHPULd6+dSd3tvvJ8Ugcdu/zxTLKZVkE7axb/DyiwD42koS035y5rtwh5+HK6jHgk7pmHlEyAjH7v/xIYQP7wcEsf/XtNYTQX36VZHfdj7gbJXWttlPpMuGdPlIO2EoYFrml/NI7tBxcbQshdj2YhV3evnhpe/CNfL4GuD5++nNJarSPvZkcczyrUt7PyL87ugLetnWOlgmh9IIenfDWE728nOG8XsPHkppmKmcsxUzUsxUz8mhP0ubene7YND1vGTWUt38smyMvHLIyfwutxUEknI/Ujw79ysnjHdF7qHP4bZUAkekzrHTzEV02VTnudrrtiGiLnSbcyYMfzzn/9kv/32i/j+iy++yJgxY1qMYYyhqKgo0KKtqKiIBQsWxJpCUplNVRC4wJjGke8iTje/jNlYhef9dYG5vrWLoGoTzfKPOuetg/L275i8Kc/76zAbq4LmxL6vrZ9uMq/OYNZE/58T39pFULEecooD095vzoI6u2PyTLGYZmMVpJU0jrLSdATSYN6ahuPXRLPlszJo+eC43prQ91oQ0ll7hEfYwssedPbPpEvGrPGGXNMCytcSGKHKX0ZiLBux8q1dFF7+IOx6GXxt8Lw/PkK5glS8tkU8/+L4LmjL+llkAM0/XpoS3w0RdZLzRjE7YV6KqZipHDNV81LMVI7Z9HdpS/du603DQH7BrdwgtKVbOZEr3Zr/PbEppvtCs6ai8fdMCh0/xVRMUx1b38d29EUazJgxgzvuuIP77rsPr7dxg16vl3vvvZe77rqL6dOntxjDGMOwYcPUd5uIhAykoD7dRFJLZqDSrQZjTJKzERERkWTx4Qs8ldLX6h3yXnBLNz1eKhJZzJVuJ510Er/5zW+45JJL6N69O2PGjGHMmDF0796d2bNnc9lll3HyySe3vDHbZvjw4WzdurXNiYtI5xYyeqlRpZtIKonWElVERER2Dl4aH6Fr2tItg3ScOx6ea+7xUpGdXcyVbtDQB9uHH37I1KlTKS4upk+fPpxzzjksXryY3//+9zHF+P3vf88VV1zBkiVLWpWwiHQN6SF9uqnSTSSVZFoZgdcawVRERGTn5TWNT7kFj1wKYFkWuTQ8eqqWbiKRxdynm9+4ceMYN25cqzd49tlnU1VVxZ577onL5SIzMzPk/W3btrU6toh0HmpJI5K6MoPOz4bBFPKTl4yIiIgkTXBLt770Cns/lxy246ZCLd1EIoqp0m316tXNjloaybp16+jbt2/E9+6+++6Y44hI16U+3URSl79PN4AHPX/nlrTZyUtGREREksZL8y3dAPKsbDDgbmYgBZGdXUyVbvvuuy8nnHAC5513Hvvuu2/EZcrKynjmmWe45557+NWvfsUll1wScbkpU6a0PlsR6TIy1KebSMq6zHkO1Z5aPvJ9yZPel7nZOQvLspKdloiIiHQwg2E3hpFupdPb6hn2fu6OwRSqqaHe1JNmpXV0iiIpLaZKt++++47f/e53HH744WRkZDB27FiKi4vJyMhg+/btfPfdd3z77bfsvffe3H777Rx99NEtxlu+fDmPPvooy5cv55577qGoqIjXX3+dAQMGsNtuuyVkx0QktTlxYmFhMOrTTSTF7GGPZKspZSMlANTjwYVuokVERHY2Xrx8y49goMjqEfZ+npUDOwY6L6eK7uqSQiRETAMp9OjRgzvvvJMNGzZw3333MXz4cEpKSvjhhx8AOOOMM/jss89YvHhx1Aq3hQsXsvvuu/PRRx/xwgsvUFHR0OHiV199xQ033NDG3RGRzsKyrEC/burTTST1ZAUNplBFdRIzERERkWQJ7tOtR4QKNf9ACgBuo8EURJqKayCFzMxMTj75ZE4++eRWb/Cqq67i1ltv5bLLLiM3Nzcw/5BDDuG+++5rddz25tinF3xf3VCLb4GV58K460KmgbB5Taftfjk4Jw8MxHWOnop31ZuY8vWNG6tzg/GBZYMrr2HamYXdfZeO3GUAXNN2w/Pv1Xi/2xr3vsY73VxMKzsNe5duUXN1jp6KqSvDcuUHpn0n+PC87sVUZ7R7nqkW0+6Xg+XbA3I3Qn1VQ1lqyl/W0gtwjg5/9Dti+QSsnL44Bh0GgGfJY1BbFiivwe9Fk46LamqopT7sPX/Z860t7zKfSVeMaeW7cE0Lb6Fs9x2Pb/v3IWUvnrIRC+foqWHlL9L1MuTaEFSuIu1nRx7PaNe2sPMvzu+Ctq6fFdSvWyXVFNB4DUn2d0NTne28UczOk5diKmYqx0zVvBQz9WMCYb9Lm7t3e77/RgAKyIv46GiulRN4XRGhX7eQ+5Gg37lW911jui90HFiM7/vtmMr6lDl+iqmYVp4LR+9c+DBqEcYyxpjoiyVOTk4O33zzDYMHDyY3N5evvvqKIUOG8NNPPzFy5Ehqamo6Mp2o3G43+fn5lJWVkZcXodJCRFptUM0kNlJCf/rwQ8abyU5HRIJMq7uap3yvALDE9S+G2QOjrCEiIiJdTa+a/SmjnGHWQJak/yvs/Svr/8A93scBeNv1BAfYe3d0iiJJEWtdUUyPlyZSQUEBGzZsCJv/xRdfNDviqYh0Ta4dgymoTzeR1BP8eGmlHi8VERHZ6dSbespoeDqgkIKIy4yyhvEza0/605vVvvDf+SI7uw6vdDvttNO48sor2bhxI5Zl4fP5+OCDD7j88ss5++yzOzodEUmiDMvfp5sq3URSTRaZgdfq001ERGTnU0Jp4HWh1T3iMnlWDh+Zr1jDRlawpoMyE+k8OrzSbc6cOYwcOZL+/ftTUVHBqFGjmDBhAgcccAC//e1vOzodEUmi9B2jIdaq0k0k5YRUupnU6vpBRERE2t9Wsz3wutDqFnGZkdaQwOv/+Za3e04inU1cAynU19dzwQUXcN111zF48OBWbdDlcvHQQw9x3XXXsWTJEioqKhgzZgzDhw9vVbyOUtbjQYyVGX3BGFh9s8lbOQ2AmodGQMX6KGv4V7TJmF2WkBxi5R48D7MuvEPMDmdb5NfMaHGRwLHMKSbj/GXUPDSC2qvPAnd+ByWZelxzr8WyY+y2ccdxC9Zi+cwpbvg30vsRYkUSPHqpMQbLsgLvpUzZk6iCr2l+NXfnN3SU21SMZSMWLZbPoOtl8LWhbs6VqVWuWri2Nbt/MX4XtHX9lkYv1fkpIiLS+YX8Lo1w7zYM+DbbwW5n96OQyJVuQ60BOHDgxcsysyLs/Wi/J6LdF5Zl3Ae+Du2GXiQmbhPbkyBxtXRLS0vj+eefb1VCTQ0YMICjjjqKX/ziF62ucJs7dy777rsvubm5FBUVccIJJ7BsWeNJu23bNmbOnMmIESPIzMxkwIABXHLJJZSVdWzFlYhE5u/TDaAuwgimIpI8waOXVqGWbiIiIjuz5lq6uaw0hlkDAPjW/MiJtdM5qW4G93ge78j0RFJW3I+XnnDCCfzzn/9s00YfeeQRRo8eTUZGBhkZGYwePZqHH3447jgLFy5k+vTpfPjhh7z55pvU19czefJkKisb/vd9/fr1rF+/nj/+8Y8sWbKExx57jAULFnDuuee2KX8RSYwMq7HSTY+YiqSW0MdL1aebiIjIzigNJ6fYR3GsfUizy/zOeRkvpT3AhfbprDRr+cD3Gfd65vO298MOzFQkNcX1eCnA8OHDufnmm/nggw8YO3Ys2dnZIe9fcsklLa5//fXXc+eddzJz5kz2339/ABYvXsyll17K6tWrufnmm2POZcGCBSHTjz32GEVFRXz22WdMmDCB0aNHh7TMGzp0KL/73e8488wz8Xg8OJ1x776IJJD/8VJoeMQ0j5wkZiMiwbIsDaQgIiKys3PiYKw9mqH2gGaX+bnjYACWmhXYxqbUlFNKORvZ0lFpiqSsuGudHnnkEQoKCvjss8/47LPPQt6zLCtqpdsDDzzAQw89xOmnnx6Yd9xxx7HHHnswc+bMuCrdmvI/Ntq9e+SRVfzL5OXlNVvhVltbS21tbWDa7Xa3Oh8RaVk/ejOaXbCsHS1prOjriEjH0OOlIiIi0t0qYJZzSkzLznJOoYA8LvBcB2ggJhFoRaXbypUr27TB+vp69tlnn7D5Y8eOxePxtDquz+dj9uzZjB8/ntGjR0dcpqSkhFtuuYVf/epXzcaZO3cuN910U6vzEJHY1Vn1LOF7MFBGRbLTEZEgGr1URERE4tXSQEwiO6O4+3Rrq7POOosHHnggbP5f//pXzjjjjFbHnT59OkuWLOHpp5+O+L7b7eaYY45h1KhR3Hjjjc3GufrqqykrKwv8rVmzptU5iUjLgkdBKgkaklxEkk83zSIiIhKvkP+00/2DSPwt3aZNm9bi+/PmzYsa45FHHuHf//43++23HwAfffQRq1ev5uyzz+ayyy4LLHfnnXfGlNOMGTN49dVXee+99+jXr1/Y++Xl5Rx55JHk5uby4osvkpaW1mys9PR00tPTm31fRBKnp9X4KHgJqnQTSSXZZAVe66ZZREREYhFc6VapgZhE4q9027499IdxfX09S5YsobS0lEMOaX5EE78lS5aw9957A7B8+XIACgsLKSwsZMmSJYHlLCt6507GGGbOnMmLL77Iu+++y+DBg8OWcbvdHHHEEaSnp/Pyyy+TkZERIZKIJEMPqyDwusRsS14iIhImpE83PV4qIiIiMQhuKV+tPmFF4q90e/HFF8Pm+Xw+LrroIoYOHRp1/XfeeSfeTTZr+vTpPPXUU7z00kvk5uayceNGAPLz88nMzMTtdjN58mSqqqr429/+htvtDgyM0LNnTxwOR8JyEZH49SSopZspTV4iIhImU4+XioiISJw0EJNIqLgr3SKxbZvLLruMSZMm8Zvf/CYRIWPi7xtu0qRJIfMfffRRpk6dyueff85HH30EwLBhw0KWWblyJYMGDYp5W+k3/AzHp27w+sBpY/fJxre+MmQaCJvXdNoeko9z316BuGlHPoxv42eY0sYBKkzFBsALOLBy+mAqNmBl98TqMSr2g5MgWY9NxvPJJjyL1se9r/FONxfTLsrEMbpH1FzTjnwYvLXgSA9MW3nbqH+tArbltHueqRbTHpKP1f9KrIL1mMotWDl9wo6Zv6xZOf1wjDw54jFtWj4BrILB2L3HAuBd+hymYi3+8hr8XjSFVlCfboS2dPOXPd+Ksi7zmXTFmPaAXFyn7BL22ToOmoPZ+l1I2YunbMQi7ciHw8pfpOtl8LXBucvgQLmKtJ8deTyjXduann/xfhe0df3skD5ZQm+ak/3d0FRnO28Us/PkpZiKmcoxUzUvxUz9mEDY79JE3bs1fbw0+H4k+Heu3e+AmGJn3D4e75Kt+LZUp8zxU0zFtPtkk17sgOuinxOWMcbEdPZE8dprrzFlyhS2bNnS4nI1NTXce++9vPPOO2zevBmfzxfy/ueff56IdBLG7XaTn59PWVkZeXl5yU5HpEtZZdYzonYyAP9nH87fXXclOSMR8as1deTXNnQHMZh+/C9jQZIzEhERkVS3wWxhcO3BABxnH8Izrj8lOSOR9hFrXVHcLd2CBzqAhn7VNmzYwL/+9S+mTJkSdf1zzz2Xf//735x88smMGzcupr7bRKRr6qnRS0VSlos05jnncKPnXiqp5ur6PzI37fJkpyUiIiIpTI+XioSKu9Ltiy++CJm2bZuePXtyxx13RB3ZFODVV1/ltddeY/z48fFuWkS6mCwrkywyqaJao5eKpBjLsjjKMZFpnmsA+MosTXJGIiIikuqCK900eqlIKyrd2joQQt++fcnNzW1TjGSo+dMX2Ans0805sR8A3jXvx9WnW9rY6R26356Fa1OmT7f0S8a0mKt3zfv4+21y9D8I75r38fx3J+/TbcCCuPp0c/Q/KOyYtrZPt6axmrO7tQuVppqeQf27BZc99emW2jH9fbr5r2l+9Z/9udl+QWItG9F417zfYp9u/utl8LXBrEi9Pt2au7Y1Pf/i/S5o6/oABeQFKsbXmU2B+cn+bmiqs503itl58lJMxUzlmKmal2Kmfkwg7Hdpou7d0qw00nBSj4dqakLuRyL16RYtdu2fvlCfboqZkjFrimMbmDNhfbrF6vXXX+dPf/oTDz74IAMHDuzITbeK/znd1c7byLMyo68QA6tvNnkrG1oF1jw0AirWx7iiTcbssoTkECv34HmYdZUdus2IbIv8mhktLhI4ljnFZJy/jJqHRlB79Vngzu+gJFOPa+61WHaMp/iO4xasxfKZU9zwb6T3I8RqzgG1p/C5+Q4bm4r0L7EtG0ihsidRBV/T/GruzgfjC184jrIRTYvlM+h6GXxtqJtzZWqVqxaubc3uX4zfBW1d32/32p/zg/mJXLLZktEwOJHOTxERkc4v5HdpAu/detXsTxnl7GIN5uMnvm/x90S02GUZ94GvQ6ssRGLiNtUM8FyZ+D7dBg8e3GI/bCtWrGhx/X322YeamhqGDBlCVlYWaWlpIe9v27Yt3pREpBMrtLqDAR8+tuOmBwXJTklEghRbRfxgfqKcStymgjwrJ9kpiYiISArLIoMyyqk0VclORSTp4q50mz17dsh0fX09X3zxBQsWLOCKK66Iuv7pp5/OunXrmDNnDr169dJACiI7ucKQwRS20cMqSF4yIhKmL70Cr9ebTap0ExERkRZlWZlgoFoDKYjEX+k2a9asiPP//Oc/8+mnn0Zd/7///S+LFy9mzz33jHfTItIFFQb15VZCKSOSmIuIhCu2igKv15pNjGRoErMRERGRVOcfTEGjl4qAnahARx11FM8//3zU5UaOHEl1tUYxEUlF//K+y6z6Wzmy9lxOqpvBNlPa7tsMqXQzerxcJNXsYg1mD2sEI60hzPE8wEl1M6jQ4yIiIiLSjCwa+kKvoTbJmYgkX8Iq3Z577jm6d+8edbnf//73/PrXv+bdd99l69atuN3ukD8RSZ6T62fyF+/TfGq+wW0q8NH+nZaGPl5a2u7bE5H4nO08gY/Tn+ck+wgcOHCbCkwHXBtERESkc8oKGoBQ9wyys4v78dIxY8aE9MNmjGHjxo1s2bKF+++/P+r6Rx55JACHHnpoyHxjDJZl4fV6401JRBLAhy/wpZhJBnlWDjbt3+di6OOlaukmkqryrJxAf24WFugmWkRERCLwP14KUGEqyU1iLiLJFnel2/HHHx9S6WbbNj179mTSpEmMHDky6vrvvPNOvJsUkQ7go3GI8Mn2gTzimkON9SbQvo+RhT5eur1dtyUirTfLOYVZTAHAbc3DUJnkjERERCQVXeO8kEJPN97wvU8F61TpJju1uCvdbrzxxjZtcOLEiW1aX0TaR3ClW3BFWHvrSeNj6ap0ExERERHp3Mbao3HzCBsp6ZDuakRSWdx9ujkcDjZv3hw2f+vWrTgcjphivP/++5x55pkccMABrFu3DoD58+ezaNGieNMRkQTxmeRUuhXSjWEMZA9rBGnx/z+AiIiIiIikmBHWkGSnIJISLGNMXFXPtm2zceNGioqKQuavX7+eoUOHRh2Z9Pnnn+ess87ijDPOYP78+Xz33XcMGTKE++67j9dee43XXnst/r1oR263m/z8fMrKysjLy0t2OiLt5iHPM8z03AzAA86bOMd5Uods1xhDQe1YaqljN2s4n6W/2CHbFRERERGR9vEP72tMqf8NALc4Z3OF87wkZySSWLHWFcXcrORPf/oTAJZl8fDDD5OTkxN4z+v18t5778XUp9utt97Kgw8+yNlnn83TTz8dmD9+/HhuvfXWWNMRkQQrofHRzo5s6WZZFsVWESvNWtaZTR22XRERERERaR8jg1q6LfWtSGImIskVc6XbXXfdBTS0SnnwwQdDHiV1uVwMGjSIBx98MGqcZcuWMWHChLD5+fn5lJaWxpqOiCTYVpOcSjeAYnqxkrWU4qbSVJFtZXXo9kVEREREJHF2sQZxv/NGRtpD2NUamux0RJIm5kq3lStXAnDwwQfzwgsv0K1b636U9+7dmx9//JFBgwaFzF+0aBFDhui5b5Fk2RJU6RY8uEFH6Gv1wt/H6nqzmeHWoA7dvoiIiIiIJE6mlcE058nJTkMk6eLutfydd95p0wbPP/98Zs2axbx587Asi/Xr17N48WIuv/xyrrvuujbFbk8VR7yI+b66oWLAAivPhXHXhUwDYfOaTtv9cnBOHkjGdT8DwLN4Lt5Vb2LK1zdurM4NxgeWDa68hmlnFnb3XXD9omP7vKu55SM8/16N97utce9rvNPNxbSy07B36UbOWye2mKtn8VxMXRmWKx/n/lfjWTyXukd8eF7PxlRntHueqRbT7peD87g/Qf5GqK9qKEtN+ctaegEnjOrP0n1GUkEV3ckPHNOw8glYOX1xDDqsYZklj0FtWaC8+t9z7n91LEUMgL5WYx+R68xmhjMoUPZ8a8u7zGfSFWNa+S5c03YLXNMCRevZo/Ft/z6k7LWmbLTEs3huWPmLdL0MvjZ43jokUK4i7WdHHs9o17aw8y/O74K2rt+SZH83NNXZzhvF7Dx5KaZipnLMVM1LMVM/JhD2u7S97t1C7keCfuda3XeNKXbFYS/g+347prI+ZY6fYiqmleeionds45LGPZACwNq1a3n55ZdZvXo1dXV1Ie/deeedLa5rjGHOnDnMnTuXqqoqANLT07n88su55ZZb4k2l3fk7x1vtvI08KzMhMa2+2eStnAZAzUMjoGJ9lDX8K9pkzC5LSA6xcg+eh1lX2aHbjMi2yK+Z0eIigWOZU0zG+cuoeWgEtVefBe78Dkoy9bjmXotlx3aKb85OZ5eze+PESXn6F1iW1XL5zClu+DfS+zs+g1jd55nP5Z7bAHgkbQ5nOI5LnbInUQVf0/xq7s5vuKlqKs6y0ZIWy2fQ9TL42lA358rUKlctXNua3b8Yvwvaun5LdH6KiIh0fiG/S9vp3i3a74loscsy7gNf3FUWIu3ObaoZ4LkycQMp+P3nP//huOOOY8iQISxdupTRo0fz008/YYxh7733jrq+ZVlce+21XHHFFfz4449UVFQwatSokIEZRNqiwlRxRt0M/mKqSEt2Mp2Ij4Yv2UIKsCyrQ7ddbPUKvL7d8zAveP/NvWYk2R2ahYiIiIiIiEjixNYeLsjVV1/N5ZdfzjfffENGRgbPP/88a9asYeLEifziF7+Iuv60adMoLy/H5XIxatQoxo0bR05ODpWVlUybNi3q+iLRGHy4TQWGCP9TI83y0fA/SB09iALAfvZePJV2J1PtE+lG3o7PT/+jJSIiIiIiIp1X3JVu//vf/zj77LMBcDqdVFdXk5OTw80338xtt90Wdf3HH3+c6urqsPnV1dU88cQT8aYjEsbCJs/KwYq/eO/U/JVcPZJQ6VZsFXGiYzK72kPpYRXs+Pw6trWdiIiIiIiISCLF/XhpdnZ2oB+3Pn36sHz5cnbbbTcASkpKml3P7XZjjMEYQ3l5ORkZGYH3vF4vr732GkVFRc2uLxKrHCuL5133UWO9SW2yk+mEetLxlW5+s5xTmMUUANzWPAzqM0pEREREREQ6p7gr3fbbbz8WLVrErrvuytFHH82vf/1rvvnmG1544QX222+/ZtcrKGjoJ8qyLHbZZZew9y3L4qabboo3HRFJsEKre7JTEBEREREREen04q50u/POO6moqADgpptuoqKign/84x8MHz68xZFL33nnHYwxHHLIITz//PN07974w97lcjFw4ECKi4tbsQsikkg9KEh2CiIiIiIiIiKdXlyVbl6vl7Vr17LHHnsADY+aPvjggzGtO3HiRABWrlzJgAEDOnx0RBGJTU+1dBMRERERERFps7h6mnc4HEyePJnt27e3eoMDBw4MVLjtvvvurFmzptWxRCTxkjF6qYiIiIiIiEhXE/fjpaNHj2bFihUMHjy4zRv/6aefqK+vb3OcjmD1yoISAANY4LKhzhc6DeHzmkxbBek4D+obiGv3OxDf6oVQW9a4MV9d42vb1TBtOyG7d/vuZATOg/rieXctZnM18e5r3NPNxXRaWH2yo+Zq9zsQqrdCZo/AtGP3aryf5ILHbv88UyymVZAO9YWQWQbG01CWmtpR1jy2g2+KCyimiL5Wr5BjGlY+ATLyG4434Pvh5cYya7tC3muLQNkrre0yn0mXjOlyhFzTAnL7QcXG0LKXoLLhZ/c7MLz8RbheBl8bQspVpP2MZ9/b+doWdv7F+V3Q1vVbkvTvhqY623mjmJ0nL8VUzFSOmap5KWbqx4Sw36Xtde8Wcj8S/Ds3q2dMsa3+OZgNleAxqXP8FFMxXTZWXhasa67kNrKMMSb6Yo0WLFjA1VdfzS233MLYsWPJzg79wZCXlxdzrNzcXL766iuGDBkSTwodyu12k5+fT1lZWVz7JtLZ3FL/ZwCuS5ue5ExEREREREREUlesdUVxt3Q7+uijATjuuONC+mUzxmBZFl6vN+ZYBx10EJmZmfGmICLtIM/KSXYKIiIiIiIiIl1G3JVu77zzTsI2/tprryUsloi0zSznlGSnICIiIiIiItJlxF3p5h+FtC3Wr1/PokWL2Lx5Mz6fL+S9Sy65pM3xRUREREREREREkinuSjeA999/n7/85S+sWLGCZ599lr59+zJ//nwGDx7MgQe23BniY489xgUXXIDL5aJHjx4hj6halpWylW5l/R/GVKc1zrAt8JnQaQif13Q6w4FjXG9y/v1/ANQ9dwy+DZ+Ct6ZxORNUEWnZO6YtSM8j4+K1idupGFRMfhHvxxuhytM4M9Z9jXe6uZgWkJ9O/uZftZhr3XPHYCo3Y2UX4Tr5X9Q9dwy1N+2J7/teYOz2zzPVYmY4cF1zI1bajo7OLZsw/rJm2dj9DsR18r9C3o5YPgEcGdh99mlIe+2ikDj+95rGileg7NV4u85n0hVj2haOCX0D1zS/mvv7Qa2bkLKXoLLhV/fcMeHlL8L1MvjaUPfX8xrLVaT9jGffY51uLmaUa1vY+Rfnd0Fb129J0r8bmups541idp68FFMxUzlmqualmKkfE8J+l7bXvVvI/Ujw71xnVkyxy4r+CmW1Df3Xp8rxU0zFtC3c6UEDg7Qgwq/wlj3//PMcccQRZGZm8vnnn1Nb2zACXFlZGXPmzIm6/nXXXcf1119PWVkZP/30EytXrgz8rVixIt50Ok7wDwsIPeD+6Ujzmk5XefD9sL1x1vYfwVPVcAHy/wULTBuoK299/q3k+2F75H2PZV/jnW5uGQO4oxdo3/YfMduWNhzTHdO+DVmNFW7tnWeqxazygMM/siChZaxpWTO+wHELCROpfBofeKoaju/2H8Pi+N9rq0DZ60qfSVeM6TMh17SAunLCyl6CykZg05HKX8OLkOtl8LUhpFwl+3hGubaFnX8R9q0lbV2/xdjJ/m5o+peImO2Rp2J2/rwUUzFTOWaq5qWYqR/TZ8J+l7bXvVvI/UiwWGO76wJppczxU0zF3HEOxSLuSrdbb72VBx98kIceeoi0tMaWX+PHj+fzzz+Pun5VVRWnnXYath33pkVERERERERERDqFuGu+li1bxoQJE8Lm5+fnU1paGnX9c889l2effTbezYqIiIiIiIiIiHQacffp1rt3b3788UcGDRoUMn/RokUMGTIk6vpz587l5z//OQsWLGD33XcPaS0HcOedd8abkoiIiIiIiIiISEqJu9Lt/PPPZ9asWcybNw/Lsli/fj2LFy/m8ssv57rrrou6/ty5c3njjTcYMWIEQNhACiIiIiIiIiIiIp1d3JVuV111FT6fj0MPPZSqqiomTJhAeno6l19+OTNnzoy6/h133MG8efOYOnVqa/IVERERERERERFJeXH36WZZFtdeey3btm1jyZIlfPjhh2zZsoVbbrklpvXT09MZP3583IlGMnfuXPbdd19yc3MpKirihBNOYNmyZSHL1NTUMH36dHr06EFOTg4nnXQSmzZtSsj2RURERERERCR+FaaKezyPJzsNkXbV6iFEXS4Xubm59OnTh5ycnJjXmzVrFvfee29rNxti4cKFTJ8+nQ8//JA333yT+vp6Jk+eTGVlZWCZSy+9lFdeeYVnn32WhQsXsn79ek488cSEbF9ERERERERE4ldJFXd7Hqfe1Cc7FZF2E/fjpR6Ph5tuuok//elPVFRUAJCTk8PMmTO54YYbwgZGaOrjjz/m7bff5tVXX2W33XYLW/6FF16IOZcFCxaETD/22GMUFRXx2WefMWHCBMrKynjkkUd46qmnOOSQQwB49NFH2XXXXfnwww/Zb7/9Yt6WiIiIiIiIiCSGBy8b2Ewl1RTQcj2CSGcVd6XbzJkzeeGFF7j99tvZf//9AVi8eDE33ngjW7du5YEHHmhx/YKCgnZraVZWVgZA9+7dAfjss8+or6/nsMMOCywzcuRIBgwYwOLFiyNWutXW1lJbWxuYdrvdADiPG4r1pRt8BmwLqzATU1IdMg2EzWs6bQ/JI+3QAYH4zp9diW/1O5iynwLzTHUJGB9YNlZmIaa6BCu9AKtwt8QdrBhlXDuO+rfW4P1kY9z7Gu90czGtgnQcuxdGzdX5syuhvhLSsgPT5qJK6l+yoDyr3fNMtZj2kDws12SsgnWY2lKszPBj6C9rVlYRjt3PiXhMm5ZPACt/EPaAgwHwfvMopmpzoLwGv9cW/rLnW1nWZT6TrhjTKsrif+c6cHv/ywe+z/natxQsuGGXvRmxtSak7CWqbPg5f3ZlWPmLdL0MvjbYQeUq0n525PGMdm1rev7F+13Q1vVbkuzvhqY623mjmJ0nL8VUzFSOmap5KWbqxwTCfpfaI36BKfk24fduwfcjwb9zPy5y8mS/ht/aFVRRQF7E9dNO2wXvNyWY0tqUOX6KqZhWYSbO/k54Pvo5YBljTDwnTX5+Pk8//TRHHXVUyPzXXnuN008/PVDx1dF8Ph/HHXccpaWlLFq0CICnnnqKc845J6QSDWDcuHEcfPDB3HbbbWFxbrzxRm666aaw+WVlZeTlRb4QiIjszIbWHMo6NpFBOvtauwMwwd6X69KmJzkzEREREUlF59Zdw5O+lwH4yvUyI+whSc5IJD5ut5v8/PyodUVx9+mWnp7OoEGDwuYPHjwYl8sVb7iEmT59OkuWLOHpp59uU5yrr76asrKywN+aNWsSlKGISNfjNhWso2Fwml4UkmflBP5ERERERCLJsbICryuoSmImIu0r7kq3GTNmcMstt4S0HqutreV3v/sdM2bMaHHd1157jfPOO4/f/OY3/O9//wt5b/v27YF+11qT06uvvso777xDv379AvN79+5NXV0dpaWlIctv2rSJ3r17R4yVnp5OXl5eyJ+IiES21KwIvD7UsT/Pu+7jedd9zHJOSWJWIiIiIpLKcmisdKukOomZiLSvuPt0++KLL/jPf/5Dv3792HPPPQH46quvqKur49BDDw3pry14UISnnnqKs88+myOPPJJly5Zx77338vDDD3PGGWcAUFdXx8KFC+PKxRjDzJkzefHFF3n33XcZPHhwyPtjx44lLS2N//znP5x00kkALFu2jNWrVwf6o4uV58st1K7f0PAMr2Vh9cjAbKsJmQbC5jWdtgszsftkY/dp6HfMVGzEVG7AVJU07lfNNjAGbBsrvRumZltDPzw5fbCL9ogr77bybajEt6ES7/fb497XeKebi2kVpGP3zsa5V88WczUVG8F4wXJg5fTGVGzEt6EC73flmMrMds8z1WLahZmQsRIrs6yhb4b0buHHbEdZs7IKsQtHY+X0DjumTcsn0NB3W06fhjJS8g2mamugvPrfaxorXv6y5yup7jKfSVeMubXbtxTtmsXm3lWMtBofC/Bt/hpTuTGk7CWqbPiZio1h5S/S9TL42mDKcwPlKtJ+duTxjHZta3r+xftd0Nb1W5Ls74awfe1k541idp68FFMxUzlmqualmKkfEwj7Xdpe927B9yPBv3MH522jV7qHTdlOKk3zLd08X27Bt6GyoU+3FDl+iqmYVo8MPBmemM6BuCvdCgoKAhVYfv3794+63h/+8AfuvPNOLrnkEgCeeeYZpk2bRk1NDeeee268aQANj5Q+9dRTvPTSS+Tm5rJx40agod+5zMxM8vPzOffcc7nsssvo3r07eXl5zJw5k/333z/ukUsrD30ehxXeeXNrWH2zyVs5DYDav0+EivUxrmiTMbtj+8yrOOAfmHWVHbrNiGyL/JqWW1IGjmVOMRnnL6P27xOpvfoscOd3UJKpxzX3WizbxLbwjuMWrMXymVPc8G+k9yPEilfKlD1p0QHAf4p/wcSl/2RXa2hgft1TBzV0lNtUAsqGX4vlM+h6GXxtqJtzZWqVqxaubc3uX4zfBW1dvyU6P0VERDq/4N+l7XXv1tz9yJnAwdkOdju7X4uPl1bu94+Gig6RFFNpYmuhGXel26OPPhp3MgA//PADxx57bGD6lFNOoWfPnhx33HHU19fzf//3f3HH9I+UOmnSpLAcp06dCsBdd92FbducdNJJ1NbWcsQRR3D//fe3ah9ERCRcFhlc5PglhzvGJzsVEREREelkKlpo6SbS2cVd6dZaeXl5bNq0KeQR0IMPPphXX32Vn//856xduzbumLEMvJqRkcGf//xn/vznP8cdX0REorOwNHCCiIiIiLRKpQZSkC4s7oEUtm7dyvTp0xk1ahSFhYV079495K8548aN4/XXXw+bP3HiRF555RXuvvvueFMREZEUkGNlaeAEERERkU7o8vrfc0jt2fhI3iOcGr1UurK4W7qdddZZ/Pjjj5x77rn06tULy7JiWu/SSy/lv//9b8T3Jk2axCuvvMITTzwRbzoiIiIiIiIi0gpf+ZbyX/M5JomVbrH2jSXSGcVd6fb++++zaNGiwMilsZo4cSITJ05s9v2DDz6Ygw8+ON50RERERERERKQVyihPdgp6vFS6tLgfLx05ciTV1aqJFhEREREREenMtht3slPQ46XSpcVd6Xb//fdz7bXXsnDhQrZu3Yrb7Q75ExEREREREZHUV0ryf8Pr8VLpyuJ+vLSgoAC3280hhxwSMt8Yg2VZeL3ehCUnIiLSVh48OIHNZitOU0V2shMSERERSRHlVCY7BbV0ky4t7kq3M844g7S0NJ566qm4BlIQERFJpno8GDyAI9mpiIiIiCRdMkcsDaaWbtKVWcaYuM60rKwsvvjiC0aMGNFeOaUUt9tNfn4+Jc98RebSavAaLIeF1SsL36aqkGkgbF7TabtvDo5hBThGdGtYftv3mO0r8FWsC2zTVG4C48OybMjuhanchJVZiF0wCMfgyR26/95l2/H9WEr955vj3td4p5uLaRdm4hicR9qRg1rM1bfte/B5wXZgd98F37bv8X3vpn5xKaYsp93zTLWYdt8crLwvILcEqkogu1fYMfOXNTunN3b/Cdjddwk7pk3LJ4CVU4zdbWjDMmvex1exIVBe/e81jRUvf9nzrqvoMp9JV4zpKM7GObFf4JoW+PxW/htf2U8hZS9RZcPPt+37sPIX6XpZs/VbDqg9iTrLsGvJfjy1+ka86yoi7mdHHs9o17am51+83wVtXb8lyf5uCNvXTnbeKGbnyUsxFTOVY6ZqXoqZ+jEB7L45rB9axchBpwJw05rduKzy0ITfuwXfjwT/zrV6jeGMrPv4pFs13cjnEdcc9rJ3DVu/fsFPeFeWYUpqUub4KaZiWr2yqOhm6HnKnpSVlZGXl9fsORB3pduECRO4/vrrOeyww+JZrdPyV7pFO5AiIpK6dqs9muVmNVlkUpL+EbYVd5emIiIiIl3KZ74ljK87DYBfOU7lT2nXdej2V5n1jKidDMDJ9hH8zXVHh25fpC1irSuK+/HSmTNnMmvWLK644gp233130tLSQt7fY4894s9WRESkHe1qDWW5WU0V1dzkuY+b0i5JdkoiIiIiSVVqygOvC+j4Bia5QT3tulOgbzmR9hB3pduppzY0P502bVpgnmVZGkhBRERS1kzHWUxx/B9vexfjiH/gbhEREZEuJ3jk0gIrt8O3n0tjlxHlRpVu0jXFXem2cuXK9sgj5VXNfhc+dYPPgG1hF2Xh21wVMg2EzWs6bQ/NxzmpH67TG/rE8y59Bu+a9zClKwLbMlWbA32TWVlFmKrNWBndsXuOJu2QOzt0v+v+vgzPwrV4/rsh7n2Nd7q5mHaPDOzdC8n606QWc/UufQZTX4WVloVj5Cl4lz5D/ctl1L/kxZRlt3ueqRbTHpqPPeZJrG5rMTXbsLKKwo6Zv6xZOX1w7j4Vx8hTwo5p0/IJYBcMwe4/AQDPN49hKjYEyqv/vaax4uUve74fy7rMZ9IVY9p9snFN2y1wTfOrf/syfFuWhJS9RJUNP+/SZ8LKX6TrpXfpM4zfcW0wn/Wi90IPFSteiLifHXk8o13bmp5/8X4XtHX9liT7u6GpznbeKGbnyUsxFTOVY6ZqXoqZ+jEB7KH55E7YDCc1fJce+u5L1G59OuH3bsH3I8G/cx3F+2H3n0DmoAyqqaGciojrV13yLr5vSvBtrUmZ46eYimkXZVHVP7bqtLj7dNvZ+J/TXe28jTwrMyExrb7Z5K1saClY89AIqFgf44o2GbPLEpJDrNyD52HWpcD/OtgW+TUzWlwkcCxzisk4fxk1D42g9uqzwJ3fQUmmHtfca7HsGE/xHcctWIvlM6e44d9I70eIFa+UKXsSVfA1za/m7nwwvvCFE1A2AttoqXwGXS+Drw11c65MrXLVwrWt2f2L8bugreu3ROeniIhI51dZbHH8srfx4WPRA+9gtcO9W7TfEyPO6s0mtjKAYr7P+HfYImUZ9zVUdIikGLepZoDnyqh9urXqGZv58+czfvx4iouLWbVqFQB33303L730UuuyFREREREREZEOU4+Hb8z3fGt+TFoOuVYOQLMt3UQ6u7gr3R544AEuu+wyjj76aEpLSwN9uBUUFHD33XcnOj8RERERERERSTAPnmSnEBhMwU0leghPuqK4K93uvfdeHnroIa699locDkdg/j777MM333yT0OREREREREREJPE8NDSg6U8frCTlkGs1VLp58VJDbZKyEGk/cVe6rVy5kjFjxoTNT09Pp7JS/buIiIiIiIiIpDofDX24jbSHJC2HPHICr916xFS6oLgr3QYPHsyXX34ZNn/BggXsuuuuichJRERERERERNpROi6GWP0Zag1IWg7+x0sByo0a8UjXE9sYp8DNN9/M5ZdfzmWXXcb06dOpqanBGMPHH3/M3//+d+bOncvDDz/cnrmKiIiIiIiISALUUscKs4ZiqyhpOeRZaukmXVvMlW433XQTF154Ieeddx6ZmZn89re/paqqil/+8pcUFxdzzz33cNppp7VnriIiIiIiIiKSQFlkJG3bwS3d3GrpJl1QzJVuwSOJnHHGGZxxxhlUVVVRUVFBUVHyasZFREREREREpHUyklnpZjVWulWgSjfpeuLq082yQsc0ycrK2nkq3NKaHKqmw7tYzcxrOp1mY/dqvLBYWb3ATgsK0EIQR3p8OSeA3Ss78r7Hsq/xTre0TIaDaKysXpBT3PDvjmmroBYIGnq6vfNMpZhpNvjSImwoclnzH7eweWHl0wI7reH4ZvVqEqfxvbYKlL2u9Jl0xZgWIde0gJDrVWi5SZSI5S/C9oOvDSHlKhWOZwvXtvDzb4cYvwvaun5Lkv7d0PylrHOcN4rZefJSTMVM5Zipmpdipn5MC7xpsLlXNQCZVnq73buF3o8E2RE76kAKwfdKqXL8FFMxLcLvhZthmeAmbC2wbZv8/Pywiremtm3bFtOGOwu3201+fj5lZWXk5eUlOx0RERERERGRNrnL8yhXe+4A4Km0OznRMTkpebzifZvf1T9AtVXDL+yj+G3axUnJQyResdYVxfx4KTT065afn9/m5EREREREREQkOaqpDbzOpOOfqPIbZQ3ja5bhMz4Wmc+SlodIe4mr0u20007beR4nFRER6WD3eB7nPd8nAEyw92WWc0qSMxIREZGuqNrUBF4ns0+3IVZ/Bll9WWHWsMj3KcfXXoTTcug+SLqMmCvdoj1WKiIiIq2z1LecqfVXUWbKceCgj9UTt4nQr4mIiIhIAlTTWOmWaSWvpZtlWVzrvAiD4X++5fzH+19+Muv52reUAvKY4vy/pOUmkgitGr10Z+Qe8xRmoxeMActq6NCxpsk0hM9rMm0VZpJ2aH8y7z8EgPq3LsG76h2oLmncmLemoe9/C3BkNEzbLqy8fqRP6dgmt9UXv039W2sw6yri3te4p5uLmWZjD8gl9+szW8y1/q1LMDXbsTK6kXbYn6h/6xJq78rHu6gH1DvbP88Ui2kVZpJ2zu+xsreBr66hLDXlL2vODBwjf0HaYX8KO6Zh5RMgsxDHwIMbQix9Fjw1jeV1x3tNY8UrUPa2VneZz6RLxsx04jp1l8A1za/28bEY99rQspegsuFX/9Yl4eUvwvUy+NrgeeGExnIVaT878ngGXdvWmc18af4HwFAGkGflcMw7r1Cz5sHG8y/O74Kw8zeB3yVJ/25oqrOdN4rZefJSTMVM5Zipmpdipn5MYHqPDAYefBBX3PM+WWS0271byP1I8O/cnH6B2Gc4jgPgHvM4LstFqXFTipufzDrK9/gbvtXlUO9LneOnmIqZ4aC8W2znQMyVbj6fL9ZFuySz2g1Wpn+q4aRvfLfJdPPLmPJ66l//CX8k78o3oGJ9MxsFfDtaOvg8mO0/tnU34lb/+k+YdcFDN8e+r62fbjKv3ofv+9KouQaOZU4xaTumvR+dBdWOhnjtnWeKxTTl9ZC2DjymYbavhVYz9RV4V75BWpPZzZbPHcv7X/s3i6+i2VjxCi97OzbSiT+TLhmzyTUtsNT2H8HsWM5f9hJUNvy8K98IL38Qdr0MvjbUv75XhHK1I0ASr20lbA8s8SvnqcxyTqFm1Yjw8y+O74KI52+CvktS4rshok5y3ihmJ8xLMRUzlWOmal6Kmcoxu5c7OOyNAQBkktFu924R70cM4P4pLPYs5xTG2qM5rG4KALXUNtwr+cyOfFLn+CmmYhp3NbGIbYxTERERaTdbzfbA60Irxv82ExEREUmAjCQ+XtpUBq7A6+DBHkQ6K1W6iYiIJNmWoEq3nnRPYiYiIiKys8lM4kAKTWUEjaRao0o36QJU6SYiIpJkJWwLvO5hFSQvEREREdnpZJJKLd2CKt2MKt2k81Olm4iISJJtNaWB14WWWrqJiIhIx0mplm5Bj7rWUpfETEQSQ5VuIiIiSbbFNLZ064n6dBMREZGOkY4L20qdaoHglm7V1CQxE5HESJ2zS0REZCflH700kwyyrKZjwYqIiIi0j1Rq5QZN+3RTSzfp/FTpJiIikmQlOwZSKFQrNxEREelAqdSfG4SOXqo+3aQrcCY7ARERkZ3ZeXXX8v/t3Xl8U3W+//H3Sdu0pWlLW2jL0hZEZFMExQWQTUHADZG54qgso46iIKI/UdGrjiuMgsBFvXgdBWVAHAdURp0RFYuCK/uwCFJBRgQRLN33fH9/lIamTdoU0iYtr+fj0ceDs33O55x8cpJ8OEuKktXeaqv/Dr0j0OkAAIBTSOV7qAWDUCtUoQpVqUpVxNNL0QTQdPORrWu8tLdYckqyJDnCpLwS92Gp+rgqw7bkKIVemuqKG9Lpd3L++LFM7i/HV1aSJ8mULxQWVT4cGiGr+WkNsq2VhY0+Q6Ur98mZcbTO21rnYW8xI0JlOy221lxDOv1OKjoqhTd3DYcOLlXpJ2VSob3+8wyymLbkKKn0dCn6V6m0sLyWqqqotTBH+f7zsE+r1ackKypJtnaDJUll2xdLxbmqqNfK006Gq/YO5jWZ16RJxnSEKWz0GdVePyuxh8zRH9xqz1+1USGk0++q1Z+n42XlY4NbXXnazobcn8eObevNR9qhDDlMM10acpFb3m7vvzp+Fpzs8jUJ+GdDVY3tfUPMxpMXMYkZzDGDNS9iBn9MSd8lHtAng/e5Li+tr+9ubt9HKv3OtZqf5jV2hOzKVakKVCRbz5ZyZmRJhaXBs/+ISUxHmGwtI6UtHkvYjWWMMbXPdurKzs5WbGyssrKyFBMTE+h0cMx2524dNIf1nvNT/eDcpxArRP1t5+mu0HGBTg0A6qRj4RD9RweUrBbaG5Ee6HQAAEATZ4xRs6LuMjI61+qmteFvBjolN20L++mwMtXeaqsd4f8KdDqAR772ijjTDY3SC2WL9UrZW5Kknuoqh5op2+QGOCsAqLs85UuSoqxmAc4EAACcCopVIqPyc28iFXwPcKp4mEKR4UEKaPwa9YMUPvvsM1155ZVq3bq1LMvSO++84zY9NzdXkyZNUtu2bRUZGamuXbtq/vz5gUkWfpVvClz/jrWiFWM5FGM5ApgRAJyY3GNNN4dougEAgPpXoELXvyOD7J5u0vH7zBVyTzc0AY36TLe8vDydffbZuummm3TNNddUm37PPfdo1apV+utf/6p27dpp5cqVuuOOO9S6dWtdddVVAcgY/pKv4023V+3T1dpKDGA2AHBiSkyJilUiSYqi6QYAABpAlCI1zjZSJSrVHaHXBzqdaiqeYFpA0w1NQKNuug0fPlzDhw/3Ov2LL77QuHHjNHDgQEnSrbfeqpdeeknffPNNnZtuWS3nyxg/nHprk2ynN1f01jGSpKKF58hkZqj8jny1LRumiLt+O/kc6iDnzEVy7j7qU3r1Ksym2LyJrsH8Sv870+zYzT+LFp4jk3dQVlSywsdvUNHCc1T031fJHIpX+d0OTzE2yf7kw7JCynya3YrrqPDxG9zGea9Pm6y4DpIkk/m9x2lVY9VV0NQeamU74/gxrULh3HjJWVJ1Tr/URoXy+qxafxWrOn68rHxsKJ55d1DVlQmzSUfK/+2ocnmp1/efj58FJ7t8TXh/AgDQuP3Zlqjs021K3XqWpPr77lbb7wlPsSsuLy1UkbKiXpBK+MKB4JNtFdQ+kxr55aW16dOnj1asWKH9+/fLGKNPP/1Uu3bt0qWXXup1maKiImVnZ7v9SfLfDwunZPKOH8xMSZ7vwY1vzRN/MhVP6Ai0MvfnfeSb4023qGP3ITAleVJxzrF9Wj5sCkN1SjbcpGNPVvH9xavYb9XHeYrhLN+/HpapmHaygqb2UKvKx7TjIz0dr/xTG65V1BSr0vorHxuCrq7KjicTVeWeKl7ffz5+Fpzs8jXGDrb9CAAA6sRySs3zKn33qKfvbrX9nvAk4thJFUam2u9AIGj4+F24STfd5s2bp65du6pt27ay2+0aNmyYXnjhBfXv39/rMtOnT1dsbKzrLyUlpQEzhq8qLi8NVajCrLAAZwMAJ4/LSwEAAKQIyx7oFAC/afJNt6+++korVqzQ+vXrNWvWLE2cOFEff/yx12WmTZumrKws199//vOfBswYvqpoulVcWgoAjV3Vy0sBAABORRWXl0pyPWUVaKwa9T3dalJQUKAHH3xQb7/9ti6//HJJUvfu3bVp0ybNnDlTgwcP9rhceHi4wsOD7wkucFdxeWnVy7EAoLHi6aUAAABSpPg9jqajyZ7pVlJSopKSEtls7psYEhIip5Mb0TR2FWe6RVqc6QagaYjiTDcAAACF03RDE9Koz3TLzc3V7t27XcN79uzRpk2bFB8fr9TUVA0YMEBTp05VZGSk0tLStHr1ar3++ut67rnnApg1/KHi6aVcXgqgqeDMXQAAAO7phqalUTfd1q1bp0GDBrmG77nnHknSuHHjtHDhQi1dulTTpk3TDTfcoN9++01paWl66qmnNGHChEClDD9wGqcKXE03fqQCaBp4kAIAAID7Pd2Axq5RN90GDhwoY7zfWDE5OVkLFixowIzQECoabpLUzKLpBqDxqvwJxoMUAAAAqj9IwZIVwGyAk9Oom244NeVXbrpxeSmAJoIHKQAAAEjjQkZqkO1CvVn2fqBTAU4aTTcfhU/uIdu3WZLTSDZLtlZRch7IcxuWVG1c1WFbh1iF9m3tiht2yRw5938pc/QH1ziTd1Bylkm2EFlRyTJ5B2VFtpDV8swG3+7I5wepbO3PKlnzc523ta7D3mLaWkYq5KwWrpzyTIHr35WbbmGXzJFKC6XQCNew9XSmSlYUyhx11HuewRbT1iFWtha3yor7SSb/sKyo5Gqvb0WtWdFtFNLthmrTPdWnJFnNT5OtTW9JUtm2xTI5+131WnnayaiovbKMrCbzmjTFmLY2DtnHdqn2+oWcP1Xm8Fa32vNXbVQIu2ROtfrzdLysfGwIad3ZVVeetrMh96etZaQ+63b8vqRVLy+t+v6r62fByS5fk0B/NlTV2N43xGw8eRGTmMEcM1jzImbwx5RU7XdpfX13q/x9pPLvXFubPl5jd7S1U0e101azS1vuK1SvbW3k/LUgaPYfMYlpaxUle9tQyYfHBVimpuszoezsbMXGxiorK0sxMTGBTgeSdjgz1LN4hCRpbMjV+r+wJwOcEQDUXYZzn54v+6v+UbZKRkbv2v9XZ9rOCHRaAAAAAGrha6+IM93Q6OSr8plu3NMNQOP0rvNj/W/ZEknSSNsQGm4AAABAE2MLdAJAXeXJ8+WlANCYHDFHXf9uofjAJQIAAACgXnCmm4+Klnyn/M05MmVGCrEUcuya3srDkqqNqzpsS4tRyFktFHJOYvn8v2yU89etMtn7XOsqv9a9VLKFut+jKKGTQrtc16DbXbbhkEr/fVhlXx2o87bWddhbTKtlM4V0jpP9+s6SpALj+emlzl82SmXFUohdtqSecv6yUWWbMlX6SZacR6PrPc9gi2lLi5GV+LkUfVCmoKZ7upXKim6rkA6XyZbU0226p/qUJCsmVbZj94Uqy/hAJucnV71WTKsa60Rrz/yY3WRek6YY09bWIfsVp7mOaRVKdyyVObLTrfb8VRsVnL9srFZ/no6XlY8NZn8bV1152s6G3J/nJBRp1Omna9l1uzUhtPqxver7r66fBSe7fE0C/dlQbVsb2fuGmI0nL2ISM5hjBmtexAz+mJKq/S6tr+9ulb+PVP6da2t1vk+xi5d8p7LvMuX8NT9o9h8xiRnSKkrFib6dw8Y93WpRcZ3uvtA/K8byz6WMVpsoxey5SZJU+HInKfdnHxe0KWJKll9y8FV2+1dl9uc16Do9slmKLZwkSXq77CP9vuRuSdLToffontAq+9LRWhF/3KnClzupaNoYKTs2YGkHmn36Q7JsPr7Fj+23ymqsT8exG696mu4hVl0FTe2hVpWPaRUK58RKxll9Zj/UhmsdNdVnpeNl5WND8dP3B1Vdldmcan30Ze0NT1ey1cJtmtft8/Gz4GSXrwnvTwAAGj+336X19N2ttt8TtcXOini+/Ob1QJDJNgVKLb2fe7qhack2udrj/I/aKEmSlGK1CnBGAHDyEnTq/ucAAAAA0FRxTzc0KjvNHj1Y9pz26xe1slrqv0KGBzolADgpcYpRmBUW6DQAAAAA+BlNNzQqBTp+P7coNQtgJgDgHwlWXKBTAAAAAFAPaLqhUan8EIWLbOcGMBMA8I8WoukGAAAANEU03dCoVD7TLdKKCGAmAOAfLa34QKcAAAAAoB7QdEOjUqAi178jFR7ATADAHyx1sToEOgkAAAAA9YCnl6JRqXx5aYQ40w1A4xYimx4PmxToNAAAAADUA850Q6NSWOlMt2ZcXgoAAAAAAIIUTbcAurPkcR02mYFOo1HJr3xPNy4vBQAAAAAAQcoyxphAJxHMsrOzFRsbq8wd++XID5WMkSzJirLL5JW4DUuqNq7qsOUIkxVjlxVtV7+i32tH0WY5ip3abb0ry7LKY5TkHVu7JSusmUxJnqywKFn2aNkcrRp0+01OsUx2sZy/5Nd5W+s67C2m1SxUVoxdttYOPVHygp4q+19J0rth/6uhIf2O51qcc2xZS5Y9WqY4pzz3g/lSkb3e8wy2mJYjTCbkiBRWKFNaICusWfXX91itWWEO2RzJsuzR7tOLc2SKcmRKct3GW3aHa15nzgGZ0jxV1GvFtKqxTrT2TG5Jk3lNmmJMyxEmW2uHrGi72+vnzD0gU5TtVnv+qg1XjRTnVKs/T8fLyscGFYW76srTdjbk/qx8bPO2fZXff3X9LDjZ5WuMHeDPhmr5NLL3DTEbT17EJGYwxwzWvIgZ/DEluf0ulervu1vl7yOVf+faohJ9iu38OVcmp0Qmrzho9h8xiWlF2ZVjChTXpY2ysrIUExPjtYa5p5uPbK0dCq1hR56IAhUq125TqT1SoRGd/BrbX6zo8gOxrY3nH4UNrfLlpRFVznSresC27NGyWki2FgkNkltwOrnXzZcPwpAE/zRQqq072l6tkYPGw+ZoJdXzfxJY9mif6s+thu1qNHV1sl9y/dngrBY7yD4bAADAyamv724n+33E239OAoFmyw7xbb56zgM1qHgSJ5dJ+q6g8uWl3NMNAAAAAAAEKZpuAVRoyptuzRQZ4Ewaj4LKD1Lg6aUAAAAAACBIcXmpj3JHvSezLU9yGslmyYqLkMksdBuWVG1c1WFbWrTCLk1T+JSeKlChJm7O1uX7slSY2/P4ygozJeOULJsUEVc+bI+WrUVX2Ue82aDbXTRno0pW/qiyTb/WeVvrOuwtphVtV0i3BEUtv0L5pvKDFNybbqXr58kU58iyRyv03DtVun6eihcVqvQfETJ54fWeZ7DFtKVFK3TIfCnmZ6k4u7yWqqqotcgEhXa/SaHn3lltn5b9+IlM1o9u462YVIW0G1w+z78XSPmHXfVaMa1qrLqqqD3njzlN5jVpijGthEiF//FMhU/p6fb6Fb87Ws7DO9xqz1+1UaF0/bxq9efpeFn52FD2+UWuuvK0nQ25Pysf27xtn9v7r46fBSe7fE0C/dlQVWN73xCz8eRFTGIGc8xgzYuYwR9TktvvUqn+vru5fR+p9DvXSjzbp9h517ynsm1HZHKKg2b/EZOYVlyEclv7dnkpD1KoRcWDFPaF/lkxln/OSLPaRClmz01qXniu1r+eoTZ5ZT4uaFPElCy/5OCr7PavyuzPq33G+mazFFs4SaOL79K7zk8kSRnhn6iNleSapfDlTlLuz5KjtSL+uFOFL3dS0bQxUnZsoLIOOPv0h2TZfHyLH9tvlbn2qZf5JXme7iFWXQVN7aFWFce0ygrnxJZ/qarKD7XhWkdN9VnpeFn52FD89P3BVVfHjm2eeN0+Hz8LTnb5mvD+BACg8av8Ha6+vrvV9nuitthZEc+XNzqAIJNtCpRaen+tD1Lg8tIAMca4PRQAvql8eWnVM90AAAAAAACCBU23AKHhdmIKTKHr3zyAAgAAAAAABCuabgFSQNPthFRuVkbQdAMAAAAAAEGKpluAFKiw9plQTf6x/RapCFmWFeBsAAAAAAAAPKPpFiCFhjPdTkSBq+nGWW4AAAAAACB40XQLEM50OzEVzUoeogAAAAAAAIIZTbcAyafpdkIqmpURFme6AQAAAACA4EXTLUAqP4UTvqt4AEUzznQDAAAAAABBjKabr2LDpYr79luSQm3Vhz2NqzrcPFwhPRJdT+Hc0sKuwvBIyRZ6/K/yQhXDVogU2aK+t7KakB6JUnMP2+7LttZ12Ns8IZasFpG6tniyzlB7DbQu0Jyw/66Wqy3xbFmtzpMt8WzXsK1DvhTibJg8gy1m83CpNKa8dipqqepfxUK2UNd+q7pPFd68+nLhzcv3b+LZx+Lo+DqOTTtZrtprSq9JU4wZait/raqKbFG99vxUGxU81p+H42XlY4NbXQV6fx47ttW4fZXff3X8LDjZ5WsS8M+Gqn+N7X1DzMaTFzGJGcwxgzUvYgZ/zFCb63epSz19d3P7PlI5ER9jWy0ipRAruPYfMYkZaivvEfnAMsYYn+Y8RWVnZys2NlZZWVmKiYnxW9x3yj7SdSV3S5KeCr1H/y/0Jr/FbqraFQ7UQR1WWyVrd8THgU4HAAAAAACcgnztFdkaMCdUUnGZpMSTOH1hjNFhHZUktbDiApsMAAAAAABALWi6BUjle7pF0HSrVZZyVKpSSTTdAAAAAABA8KPpFiAFlZ5e2szyfk8flDtsMl3/ThBNNwAAAAAAENxCa58FkpR12gKZHJtkVH7jvBCbVOZ0H5aqj6s67AhTaN/WKnir/PLSNz44pMEHb1ZhyfHLTeUsk2shW0j5sGWTIhMUcVtGg22zJOWNfE+la3+Wsorqvq11HfYW02YpLiFU2l0+S0svZ7oVv3utTMFhWZEtZB/xNxW/e62Knj5dzi1JUpmt/vMMtpiOMNn/3+OywnMl4yyvpaoqas0WKlu7IbKP+Fu1ferc/6VUkuu+XJhDtja9y0Ps/UhylspVr8emVY1VV67ayy1pOq9JU4wZalPo0DRFvX2F2+tX+FIHqeCIe+35qTYqFL97bfX683C8rHxsKFk49nhdedrOhtyfNktWQqRifrrZ+/ZVfv/V8bPgZJevScA/G6pqbO8bYjaevIhJzGCOGax5ETP4Y0qu36UV3+Hq67ub2/eRyr9zw2N9ip3d9hWZIwWS0wTP/iMmMUNsym5W6q1s3dB081VWkVRxRpqRVOo8Pq3qcE3zHC1S2aZDrstLux8uVlhRmZeVmmM/JiWZMqng8MlvRx2VbTokHa3UEKzLtp7ocNVxZUYhh0tck7xdXuo8tFnK/VnG0do17MzoLpXZGibPYIt5tEgKzZYqnpXirOGg4Cwt339VRx/aLBUdrT5/0dHj87viHqvXytNOQrXaO7aKRv2aNMWYpc7y16qqgsPlX9qk4zXip9qo4Dy0uXr9SdWOl5WPDR7r6tjigTi2mcMFNW9f1fdfHT4LTnb5mgTFZ4MnjeV9Q8zGlxcxiRnMMYM1L2IGd8xjv0td6um7m+ffE8bn2ObwsYabFFz7j5jEzPLwm8IDm09zwa9yTb7+4VyleDVXqDycfYQacXkpAAAAAAAIdpzpFgBGRrGKVqwVrWbaI6k40CkFPVPp394uLwUAAAAAAAgWjfpMt88++0xXXnmlWrduLcuy9M4771SbZ8eOHbrqqqsUGxurqKgonXfeedq3b1/DJ1uJJUsxlkMxlkNW434JGtDxtlsCTTcAAAAAABDkGnXHJy8vT2effbZeeOEFj9MzMjJ00UUXqXPnzkpPT9eWLVv08MMPKyIiooEzdeewmmmZ/Xktsz8vh9UsoLk0FkZSmlrrUquvulkdA50OAAAAAABAjRr15aXDhw/X8OHDvU5/6KGHdNlll+mZZ55xjevQoUNDpAa/M/pRP+tq2xDFW7GBTgYAAAAAAKBGjfpMt5o4nU69//77OuOMMzR06FAlJibqggsu8HgJamVFRUXKzs52+0NwsGTpT6F3BjoNAAAAAACAWjXZptuhQ4eUm5urGTNmaNiwYVq5cqVGjhypa665RqtXr/a63PTp0xUbG+v6S0lJacCsUZP2VltFWoG9NBgAAAAAAMAXTbbp5nQ6JUkjRozQ3XffrR49euiBBx7QFVdcofnz53tdbtq0acrKynL9/ec//2molFGLztZpgU4BAAAAAADAJ436nm41adGihUJDQ9W1a1e38V26dNGaNWu8LhceHq7w8PBq40MGtpW25UlOI9ksWXERMpmFbsOSqo2rOmxLi1bYpWmuuKHnTFLZj5/IZP14fGWFmZJxSpZNiogrH7ZHy9aia9W06l34XT1VsvJHlW36tc7bWtdhbzFLoy0d7RqiySHjasw19JxJMsU5suzRrmHnjYUq/Ydk8sLrPc9gi2lLi5Zl6yPF/CwVZ5fXUlUVtRaZoNDuN3ncp9XqU5IVk6qQdoMlSaX/XiDlH3bVa+VpJ6Oi9pw/5jSZ16QpxrQSIhX+xzOrvX629sPkPLzDrfb8VRsVQs+ZVK3+PB0vKx8brEp15Wk7G3J/WtF2hXRLqHH73N5/dfwsONnlaxLoz4aqGtv7hpiNJy9iEjOYYwZrXsQM/piSqv0ura/vbm7fRyr9zrUSz/Ypduhl7VS27YhMTnHQ7D9iEtOKi1BI6wTp49rfA5YxxtTtbROcLMvS22+/rauvvto1rk+fPurQoYMWLVrkGjdy5EhFRkZqyZIlPsXNzs5WbGyssrKyFBMT4++0AQAAAAAA0Ij42itq1Ge65ebmavfu3a7hPXv2aNOmTYqPj1dqaqqmTp2q0aNHq3///ho0aJD+9a9/6R//+IfS09MDlzQAAAAAAACavEZ9plt6eroGDRpUbfy4ceO0cOFCSdKrr76q6dOn66efflKnTp302GOPacSIET6vgzPdAAAAAAAAUMHXXlGjbro1BJpuAAAAAAAAqOBrr6jJPr0UAAAAAAAACBSabgAAAAAAAICf0XQDAAAAAAAA/IymGwAAAAAAAOBnNN0AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADws9BAJxDsjDGSpOzs7ABnAgAAAAAAgECr6BFV9Iy8oelWiyNHjkiSUlJSApwJAAAAAAAAgkVOTo5iY2O9TqfpVov4+HhJ0r59+2rckcDJys7OVkpKiv7zn/8oJiYm0OmgCaPW0JCoNzQUag0NhVpDQ6HW0FCotbozxignJ0etW7eucT6abrWw2cpvexcbG0vxoUHExMRQa2gQ1BoaEvWGhkKtoaFQa2go1BoaCrVWN76cmMWDFAAAAAAAAAA/o+kGAAAAAAAA+BlNt1qEh4fr0UcfVXh4eKBTQRNHraGhUGtoSNQbGgq1hoZCraGhUGtoKNRa/bFMbc83BQAAAAAAAFAnnOkGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPCzoGm6TZ8+Xeedd56io6OVmJioq6++Wjt37nSbp7CwUBMnTlRCQoIcDodGjRqlX375xTV98+bN+v3vf6+UlBRFRkaqS5cumjt3rluM5cuXa8iQIWrZsqViYmLUu3dvffjhh7XmZ4zRI488olatWikyMlKDBw/W999/7zbPhg0bNGTIEDVv3lwJCQm69dZblZubW2vsLVu2qF+/foqIiFBKSoqeeeYZt+nbtm3TqFGj1K5dO1mWpTlz5tQaE95Ra95rbfny5erVq5eaN2+uqKgo9ejRQ4sWLao1Lryj3rzX28KFC2VZlttfRERErXHhGbXmvdYGDhxYrdYsy9Lll19ea2xUR615r7WSkhI9/vjj6tChgyIiInT22WfrX//6V61x4dmpWmuFhYUaP368zjrrLIWGhurqq6+uNs+BAwd0/fXX64wzzpDNZtOUKVNqzRfeUWvea23NmjXq27evEhISFBkZqc6dO2v27Nm15gzPqDXvtZaenu7x+9rBgwdrzTuomSAxdOhQs2DBArN161azadMmc9lll5nU1FSTm5vrmmfChAkmJSXFfPLJJ2bdunXmwgsvNH369HFNf+WVV8zkyZNNenq6ycjIMIsWLTKRkZFm3rx5rnnuuusu8+c//9l88803ZteuXWbatGkmLCzMbNiwocb8ZsyYYWJjY80777xjNm/ebK666irTvn17U1BQYIwxZv/+/SYuLs5MmDDBfPfdd+abb74xffr0MaNGjaoxblZWlklKSjI33HCD2bp1q3njjTdMZGSkeemll1zzfPPNN+bee+81b7zxhklOTjazZ8+uy65FFdSa91r79NNPzfLly8327dvN7t27zZw5c0xISIj517/+Vad9jOOoN+/1tmDBAhMTE2MOHDjg+jt48GCd9i+Oo9a819qRI0fc6mzr1q0mJCTELFiwoC67GMdQa95r7b777jOtW7c277//vsnIyDAvvviiiYiIqDVneHaq1lpubq6ZMGGC+b//+z8zdOhQM2LEiGrz7Nmzx0yePNm89tprpkePHuauu+7yYY/CG2rNe61t2LDBLFmyxGzdutXs2bPHLFq0yDRr1szt2AffUWvea+3TTz81kszOnTvdvreVlZX5smuDVtA03ao6dOiQkWRWr15tjDHm6NGjJiwszLz11luueXbs2GEkmS+//NJrnDvuuMMMGjSoxnV17drVPPbYY16nO51Ok5ycbJ599lnXuKNHj5rw8HDzxhtvGGOMeemll0xiYqJbQWzZssVIMt9//73X2C+++KKJi4szRUVFrnH333+/6dSpk8f509LSaLr5GbXmudYq9OzZ0/z3f/93jfPAd9Tb8XpbsGCBiY2NrXEbcOKoNe/HttmzZ5vo6Gi3L7g4cdTa8Vpr1aqVef75592Wu+aaa8wNN9xQ43bBN6dKrVU2btw4jz9OKxswYABNNz+j1mo2cuRIc+ONN/o0L2pGrR1X0XTLzMz0KU5jETSXl1aVlZUlSYqPj5ckrV+/XiUlJRo8eLBrns6dOys1NVVffvlljXEqYnjidDqVk5NT4zx79uzRwYMH3dYdGxurCy64wLXuoqIi2e122WzHd2lkZKSk8lNyvfnyyy/Vv39/2e1217ihQ4dq586dyszM9Loc/Ida81xrxhh98skn2rlzp/r37+81LuqGenOvt9zcXKWlpSklJUUjRozQtm3bvMZE3VBr3j9HX3nlFV133XWKioryGhe+o9aO11pRUVG1y+QjIyNrjAvfnSq1hsCj1rzbuHGjvvjiCw0YMMCvcU9V1Fp1PXr0UKtWrTRkyBCtXbvWLzEDKSibbk6nU1OmTFHfvn115plnSpIOHjwou92u5s2bu82blJTk9RrfL774Qm+++aZuvfVWr+uaOXOmcnNzde2113qdpyJ+UlKS13VffPHFOnjwoJ599lkVFxcrMzNTDzzwgKTyey7UFNtT3MrrRf2h1qrXWlZWlhwOh+x2uy6//HLNmzdPQ4YM8RoXvqPe3OutU6dOevXVV/Xuu+/qr3/9q5xOp/r06aOffvrJa1z4hlrz/jn6zTffaOvWrbrlllu8xoTvqDX3Whs6dKiee+45ff/993I6nfroo4+0fPnyGuPCN6dSrSGwqDXP2rZtq/DwcPXq1UsTJ07kc9QPqDV3rVq10vz587Vs2TItW7ZMKSkpGjhwoDZs2HBScQMtKJtuEydO1NatW7V06dITjrF161aNGDFCjz76qC699FKP8yxZskSPPfaY/va3vykxMVGStHjxYjkcDtff559/7tP6unXrptdee02zZs1Ss2bNlJycrPbt2yspKcnVBe7WrZsr7vDhw0942+A/1Fp10dHR2rRpk7799ls99dRTuueee5Senl6nGPCMenPXu3dvjR07Vj169NCAAQO0fPlytWzZUi+99JLPMeAZtebdK6+8orPOOkvnn3/+CS0Pd9Sau7lz56pjx47q3Lmz7Ha7Jk2apD/84Q9uZwTgxFBraCjUmmeff/651q1bp/nz52vOnDl644036hwD7qg1d506ddJtt92mc889V3369NGrr76qPn36NP4HdwT6+taqJk6caNq2bWt++OEHt/GffPKJx+t7U1NTzXPPPec2btu2bSYxMdE8+OCDXtdTcfPb9957z218dna2+f77711/+fn5JiMjw0gyGzdudJu3f//+ZvLkydViHzx40OTk5Jjc3Fxjs9nM3/72N2OMMXv37nXF/emnn4wxxowZM6ba9cyrVq0yksxvv/1WLTb3dPMfaq3mWqtw8803m0svvdTrdPiGevOt3n73u9+Z6667zut01I5a815rubm5JiYmxsyZM8frdsF31Jr3WisoKDA//fSTcTqd5r777jNdu3b1un2o3alWa5VxT7eGRa2N8JpzZU888YQ544wzfJoXnlFrI7zmXNm9995rLrzwQp/mDVZB03RzOp1m4sSJpnXr1mbXrl3VplfcUPDvf/+7a9x3331X7YaCW7duNYmJiWbq1Kle17VkyRITERFh3nnnHZ9zS05ONjNnznSNy8rKcruhoCevvPKKadasWY03Aqy4KW9xcbFr3LRp03iQQj2i1nyrtQp/+MMfzIABA3zKH9VRb77XW2lpqenUqZO5++67fcof7qi12mttwYIFJjw83Bw+fNinvOEZteb7ca24uNh06NDBTJs2zaf84e5UrbXKaLo1DGqtbo2Qxx57zKSlpfk0L9xRa3WrtcGDB5uRI0f6NG+wCpqm2+23325iY2NNenq62+Nh8/PzXfNMmDDBpKammlWrVpl169aZ3r17m969e7um//vf/zYtW7Y0N954o1uMQ4cOueZZvHixCQ0NNS+88ILbPEePHq0xvxkzZpjmzZubd99912zZssWMGDHC7dG5xhgzb948s379erNz507z/PPPm8jISDN37twa4x49etQkJSWZMWPGmK1bt5qlS5dWewRzUVGR2bhxo9m4caNp1aqVuffee83GjRt9fjoI3FFr3mvt6aefNitXrjQZGRlm+/btZubMmSY0NNS8/PLLPu9fuKPevNfbY489Zj788EOTkZFh1q9fb6677joTERFhtm3b5vP+xXHUmvdaq3DRRReZ0aNH17ovUTNqzXutffXVV2bZsmUmIyPDfPbZZ+biiy827du3b3JPYmsop2qtGVN+BsvGjRvNlVdeaQYOHOj6LVBZxbhzzz3XXH/99Wbjxo18hp4gas17rT3//PNmxYoVZteuXWbXrl3mL3/5i4mOjjYPPfSQL7sWVVBr3mtt9uzZ5p133jHff/+9+fe//23uuusuY7PZzMcff+zLrg1aQdN0k+Txb8GCBa55CgoKzB133GHi4uJMs2bNzMiRI82BAwdc0x999FGPMSp34QcMGOBxnnHjxtWYn9PpNA8//LBJSkoy4eHh5pJLLjE7d+50m2fMmDEmPj7e2O120717d/P666/7tO2bN282F110kQkPDzdt2rQxM2bMcJu+Z88ejzlz9tGJoda819pDDz1kTj/9dBMREWHi4uJM7969zdKlS32KDc+oN+/1NmXKFJOammrsdrtJSkoyl112mdmwYYNPsVEdtea91ow5/r/EK1eu9CkmvKPWvNdaenq66dKliwkPDzcJCQlmzJgxZv/+/T7FRnWncq2lpaV5zKm2/cPZRyeGWvNea//zP/9junXrZpo1a2ZiYmJMz549zYsvvmjKysp8ig931Jr3Wvvzn/9sOnToYCIiIkx8fLwZOHCgWbVqlU+xg5lljDECAAAAAAAA4Dc8SgkAAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAoIkYOHCgpkyZcsqtGwAAIBjRdAMAADgFpaeny7IsHT161C/LLV++XE888YT/EgQAAGjkQgOdAAAAABq/+Pj4QKcAAAAQVDjTDQAAoBHKy8vT2LFj5XA41KpVK82aNctt+qJFi9SrVy9FR0crOTlZ119/vQ4dOiRJ2rt3rwYNGiRJiouLk2VZGj9+vCTJ6XRq+vTpat++vSIjI3X22Wfr73//e63LVb28tF27dnryySddOaalpWnFihX69ddfNWLECDkcDnXv3l3r1q1zy3vNmjXq16+fIiMjlZKSosmTJysvL8/fuw8AAKDe0XQDAABohKZOnarVq1fr3Xff1cqVK5Wenq4NGza4ppeUlOiJJ57Q5s2b9c4772jv3r2uBllKSoqWLVsmSdq5c6cOHDiguXPnSpKmT5+u119/XfPnz9e2bdt0991368Ybb9Tq1atrXM6T2bNnq2/fvtq4caMuv/xyjRkzRmPHjtWNN96oDRs2qEOHDho7dqyMMZKkjIwMDRs2TKNGjdKWLVv05ptvas2aNZo0aVJ97EIAAIB6ZZmKbzkAAABoFHJzc5WQkKC//vWv+q//+i9J0m+//aa2bdvq1ltv1Zw5c6ots27dOp133nnKycmRw+FQenq6Bg0apMzMTDVv3lySVFRUpPj4eH388cfq3bu3a9lbbrlF+fn5WrJkicflpPIz3Xr06OFad7t27dSvXz8tWrRIknTw4EG1atVKDz/8sB5//HFJ0ldffaXevXvrwIEDSk5O1i233KKQkBC99NJLrrhr1qzRgAEDlJeXp4iICD/uRQAAgPrFPd0AAAAamYyMDBUXF+uCCy5wjYuPj1enTp1cw+vXr9ef/vQnbd68WZmZmXI6nZKkffv2qWvXrh7j7t69W/n5+RoyZIjb+OLiYvXs2bPOeXbv3t3176SkJEnSWWedVW3coUOHlJycrM2bN2vLli1avHixax5jjJxOp/bs2aMuXbrUOQcAAIBAoekGAADQxOTl5Wno0KEaOnSoFi9erJYtW2rfvn0aOnSoiouLvS6Xm5srSXr//ffVpk0bt2nh4eF1ziMsLMz1b8uyvI6raAjm5ubqtttu0+TJk6vFSk1NrfP6AQAAAommGwAAQCPToUMHhYWF6euvv3Y1ozIzM7Vr1y4NGDBA3333nY4cOaIZM2YoJSVFkqo9sMBut0uSysrKXOO6du2q8PBw7du3TwMGDPC4bk/L+cs555yj7du36/TTT/d7bAAAgIbGgxQAAAAaGYfDoZtvvllTp07VqlWrtHXrVo0fP142W/lXu9TUVNntds2bN08//PCDVqxYoSeeeMItRlpamizL0nvvvadff/1Vubm5io6O1r333qu7775br732mjIyMrRhwwbNmzdPr732mtfl/OX+++/XF198oUmTJmnTpk36/vvv9e677/IgBQAA0CjRdAMAAGiEnn32WfXr109XXnmlBg8erIsuukjnnnuuJKlly5ZauHCh3nrrLXXt2lUzZszQzJkz3ZZv06aNHnvsMT3wwANKSkpyNbaeeOIJPfzww5o+fbq6dOmiYcOG6f3331f79u1rXM4funfvrtWrV2vXrl3q16+fevbsqUceeUStW7f22zoAAAAaCk8vBQAAAAAAAPyMM90AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn9F0AwAAAAAAAPyMphsAAAAAAADgZzTdAAAAAAAAAD+j6QYAAAAAAAD4GU03AAAAAAAAwM9ougEAAAAAAAB+RtMNAAAAAAAA8DOabgAAAAAAAICf0XQDAAAAAAAA/IymGwAAAAAAAOBnNN0AAAAAAAAAP6PpBgAAAAAAAPgZTTcAAAAAAADAz2i6AQAAAAAAAH5G0w0AAAAAAADwM5puAAAAAAAAgJ/RdAMAAAAAAAD8jKYbAAAAAAAA4Gc03QAAAAAAAAA/o+kGAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn9F0AwAAAAAAAPyMphsAAAAAAADgZzTdAAAAAAAAAD+j6QYAAAAAAAD4GU03AAAAAAAAwM9ougEAAAAAAAB+RtMNAAAAAAAA8DOabgAAAAAAAICfhQY6AQAAThWlpaUqLi4OdBoAcEqz2+0KDeVnEACg/vFpAwBAPTPGaN++fTp8+HCgUwEASGrRooVSU1NlWVagUwEANGE03QAAqGcVDbc2bdrI4XDIZuPuDgAQCE6nU7m5udq/f7+MMWrXrl2gUwIANGE03QAAqEelpaWuhltycnKg0wGAU57D4ZAk7d+/X/v27VPfvn0VEhIS4KwAAE0R/9UOAEA9qriHW8WPPABA4FUck7ds2aL09HSVlZUFOCMAQFNE0w0AgAbAJaUAEDwqjskxMTHasmWLjhw5EuCMAABNEb8AAAAAAJySIiMjVVxcrLy8vECnAgBogmi6AQCAOktPT5dlWTp69GigUwH8xl91vXfvXlmWpU2bNvklr7oaOHCgpkyZEpB1NzaWZckYE+g0AABNFA9SAAAAACT16dNHBw4cUGxs7EnFSUlJ0YEDB9SiRQs/ZeZZenq6Bg0apMzMTDVv3tw1fvny5QoLC6vXdddm4MCB6tGjh+bMmRPQPAAACCSabgAAAIAku93ul6cMh4SEBPRpxfHx8QFbNwAAOI7LSwEAaEC3lzyqAUU3BOzv9pJHfc61qKhIkydPVmJioiIiInTRRRfp22+/9Thvfn6+hg8frr59+3LJqRc5OTm64YYbFBUVpVatWmn27NlulwEuWrRIvXr1UnR0tJKTk3X99dfr0KFDruUrLn18//331b17d0VEROjCCy/U1q1bA7RFwW3gwIG68847NWXKFMXFxSkpKUkvv/yy8vLy9Ic//EHR0dE6/fTT9c9//tO1TNXLS3/88UddeeWViouLU1RUlLp166YPPvhAkpSZmakbbrhBLVu2VGRkpDp27KgFCxZIqn55aUXcTz75RL169VKzZs3Up08f7dy50y3nJ598UomJiYqOjtYtt9yiBx54QD169PC4fXv37tWgQYMkSXFxcbIsS+PHj3dte+XLS9u1a6cnn3xSY8eOlcPhUFpamlasWKFff/1VI0aMkMPhUPfu3bVu3Tq3daxZs0b9+vVTZGSkUlJSNHnyZLd7n7344ovq2LGjIiIilJSUpN/97neSpPHjx2v16tWaO3euLMuSZVnau3evysrKdPPNN6t9+/aKjIxUp06dNHfuXLd1jh8/XldffbWefvppJSUlqXnz5nr88cdVWlqqqVOnKj4+Xm3btnXt68r7e+nSperTp48iIiJ05plnavXq1d7KAwCABsGZbgAANKDtzt362mwOXAJO32e97777tGzZMr322mtKS0vTM888o6FDh2r37t1u8x09elSXX365HA6HPvroIzVr1szPSTcN99xzj9auXasVK1YoKSlJjzzyiDZs2OBqqpSUlOiJJ55Qp06ddOjQId1zzz0aP368q8lTYerUqZo7d66Sk5P14IMP6sorr9SuXbsCfjlhMHrttdd033336ZtvvtGbb76p22+/XW+//bZGjhypBx98ULNnz9aYMWO0b98+j3U7ceJEFRcX67PPPlNUVJS2b98uh8MhSXr44Ye1fft2/fOf/1SLFi20e/duFRQU1JjPQw89pFmzZqlly5aaMGGCbrrpJq1du1aStHjxYj311FN68cUX1bdvXy1dulSzZs1S+/btPcZKSUnRsmXLNGrUKO3cuVMxMTGKjIz0uu7Zs2fr6aef1sMPP+za7j59+uimm27Ss88+q/vvv19jx47Vtm3bZFmWMjIyNGzYMD355JN69dVX9euvv2rSpEmaNGmSFixYoHXr1mny5MlatGiR+vTpo99++02ff/65JGnu3LnatWuXzjzzTD3++OOSpJYtW8rpdKpt27Z66623lJCQoC+++EK33nqrWrVqpWuvvdaV66pVq9S2bVt99tlnWrt2rW6++WZ98cUX6t+/v77++mu9+eabuu222zRkyBC1bdvWtdzUqVM1Z84cde3aVc8995yuvPJK7dmzRwkJCTW+LgAA1BfLcOdQAADqTX5+vnbs2KEuXbqoWbNmGlB0Q0CbbhdYZ2t1+OJa58vLy1NcXJwWLlyo66+/XlJ5U6hdu3aaMmWKzjvvPA0aNEg7duzQ6NGj1bFjRy1ZskR2u72+N8Ej54E8mYPuTx+0mofL1j5WprBUzh2/VVsmpGeiJKlsZ6aUX+K+bFqMbPERcv5aIPNTjvuCDrtCOjavU345OTlKSEjQkiVLXGcDZWVlqXXr1vrjH//o8b5X69at03nnnaecnBw5HA7X/buWLl2q0aNHS5J+++03tW3bVgsXLnRrWjQEk3tQJu+g+8iI5rLFtpMpLZQ58l21ZWxJPSRJzt92SSX5btOs2FRZEfEy+b/K5Ox3X9DukC3u9DrlN3DgQJWVlbkaQWVlZYqNjdU111yj119/XZJ08OBBtWrVSl9++aUuvPDCavdI6969u0aNGqVHH61+huhVV12lFi1a6NVXX602be/evWrfvr02btyoHj16uOJ+/PHHuuSSSyRJH3zwgS6//HIVFBS4zlrs1auXnn/+eVeciy66SLm5uV4fyODtnm5V76fWrl079evXT4sWLXLb7ocfftjVFPvqq6/Uu3dvHThwQMnJybrlllsUEhKil156yRV3zZo1GjBggPLy8vTBBx/oD3/4g3766SdFR0d73P++3NNt0qRJOnjwoP7+979LKj/TLT09XT/88INstvKLcjp37qzExER99tlnko6/ln/5y1903XXXufb3jBkzdP/990uSSktL1b59e91555267777qq234ti8Z88e7d69W6NHj/ba4AQA4ERxphsAAKgmIyNDJSUl6tu3r2tcWFiYzj//fO3YsUPnnXeeJGnIkCE6//zz9eabbyokJCRQ6ar45a0qevIbt3Fhv++kZq9dKudPucq94M1qy8QW3ylJKrjlY5V97d48ilwwRPYbOqvk79+r8C73S9RCh6Qq6v0Rdcrvhx9+UElJic4///zj64+NVadOnVzD69ev15/+9Cdt3rxZmZmZcjrLT0vct2+funbt6pqvd+/ern/Hx8erU6dO2rFjR53y8YfSf7+qsq+mu42zdR4t+/C/yOTuV/GSftWWibi7vIFZsnKCzAH3S5XDhr2skC7XqWzX2yr99P+5x027RPZr3qlzjt27d3f9OyQkRAkJCTrrrLNc45KSkiTJ7TLeyiZPnqzbb79dK1eu1ODBgzVq1ChXzNtvv12jRo3Shg0bdOmll+rqq69Wnz59fM6nVatWrnWnpqZq586duuOOO9zmP//887Vq1ao6bLFv667Ybm/7Ijk5WZs3b9aWLVu0ePHxJr0xRk6nU3v27NGQIUOUlpam0047TcOGDdOwYcM0cuTIWs90feGFF/Tqq69q3759KigoUHFxcbVLaLt16+ZquFXkduaZZ7qGK17Lqq9b5fdGaGioevXqFZD3BgAAFWi6AQCAE3b55Zdr2bJl2r59u9sP+IZm/+OZCrvS/SwVq3m4JMnW1iHH16O9Lhv5l8Eez3STpLDfdVTohVVuiO/w/9l8eXl5Gjp0qIYOHarFixerZcuW2rdvn4YOHari4mK/r88fQs+6SSGnXeY+MqK5JMlytJH9+s+9Lht26XyPZ7pJUsgZI2Vrdb77AnbHCeVY9ZJby7LcxlmWJUmuBmdVt9xyi4YOHar3339fK1eu1PTp0zVr1izdeeedGj58uH788Ud98MEH+uijj3TJJZdo4sSJmjlzpk/51LZuf/O07pryyc3N1W233abJkydXi5Wamiq73a4NGzYoPT1dK1eu1COPPKI//elP+vbbb93Ouqts6dKluvfeezVr1iz17t1b0dHRevbZZ/X11197zbUiN0/jGmrfAQBwomi6AQDQgLraTq/TfdXqZf0+6NChg+x2u9auXau0tDRJ5ZeXfvvtt243aJ8xY4YcDocuueQSpaenu52R1ZBsraKkVlEep1kRoa5LST0J6RTnPW7LSKml9/tk+eq0005TWFiYvv32W6WmljeXsrKytGvXLvXv31/fffedjhw5ohkzZiglJUWSqt3UvsJXX33lipGZmaldu3apS5cuJ51jXVmOZFkOz0/otEIjZB27lNQTW/wZ3uM2aymrWcuTTc9vUlJSNGHCBE2YMEHTpk3Tyy+/rDvvLD9LsmXLlho3bpzGjRunfv36aerUqTU23WrSqVMnffvttxo7dqxrnLcHl1SouJy7rKzshNZZk3POOUfbt2/X6ad7P2aEhoZq8ODBGjx4sB599FE1b95cq1at0jXXXCO73V4tr7Vr16pPnz5uZ/RlZGT4LeevvvpK/fv3l1R+een69es1adIkv8UHAKCuaLoBANCA/jfssUCn4JOoqCjdfvvtrqcFpqam6plnnlF+fr5uvvlmbd58/L50M2fOVFlZmS6++GKlp6erc+fOAcw8OEVHR2vcuHGu/ZmYmKhHH31UNptNlmW5zhyaN2+eJkyYoK1bt+qJJ57wGOvxxx9XQkKCkpKS9NBDD6lFixa6+uqrG3aDThFTpkzR8OHDdcYZZygzM1Offvqpq8H5yCOP6Nxzz1W3bt1UVFSk995776San3feeaf++Mc/qlevXurTp4/efPNNbdmyRaeddprXZdLS0mRZlt577z1ddtllioyMdD3o4WTdf//9uvDCCzVp0iTdcsstrgdJfPTRR3r++ef13nvv6YcfflD//v0VFxenDz74QE6n03XJdLt27fT1119r7969cjgcio+PV8eOHfX666/rww8/VPv27bVo0SJ9++23fruX2gsvvKCOHTuqS5cumj17tjIzM3XTTTf5JTYAACfCVvssAADgVDRjxgyNGjVKY8aM0TnnnKPdu3frww8/VFxc9TPDZs+erWuvvVYXX3yxdu3aFYBsg99zzz2n3r1764orrtDgwYPVt29fdenSRREREWrZsqUWLlyot956S127dtWMGTO8njE1Y8YM3XXXXTr33HN18OBB/eMf/wjYAyyaurKyMk2cOFFdunTRsGHDdMYZZ+jFF1+UVH6W2bRp09S9e3f1799fISEhWrp06Qmv64YbbtC0adN077336pxzztGePXs0fvx4RUREeF2mTZs2euyxx/TAAw8oKSnJr2d1de/eXatXr9auXbvUr18/9ezZU4888ohat24tSWrevLmWL1+uiy++WF26dNH8+fP1xhtvqFu3bpKke++9VyEhIeratavrcunbbrtN11xzjUaPHq0LLrhAR44cqXYfu5MxY8YMzZgxQ2effbbWrFmjFStWqEWLFn6LDwBAXfH0UgAA6lHVp5cCFfLy8tSmTRvNmjVLN998c63ze3tSJZquIUOGKDk52fXUUXhW9WmxvuDppQCAhsDlpQAAAA1g48aN+u6773T++ecrKytLjz/+uCRpxIi6PQkVTVN+fr7mz5+voUOHKiQkRG+88YY+/vhjffTRR4FODQAAnCCabgAAAA1k5syZ2rlzp+x2u84991x9/vnnXP4GSeVP4/zggw/01FNPqbCwUJ06ddKyZcs0ePDgQKcGAABOEE03AACABtCzZ0+tX7/+hJcfOHCguCtI0xUZGamPP/440Gk0Su3ateO9AQAISjxIAQAAAAAAAPAzmm4AADQAp9MZ6BQAAMdUHJM5Qw4AUJ9ougEAUI/sdrskKTc3N8CZAAAqVByTS0pKApwJAKAp455uAADUo9DQULVo0UL79++XJDkcDtls/J8XAASC0+lUbm6u9u/fr6NHj3IWMgCgXtF0AwCgnqWmpkqSq/EGAAiso0eP6pdfflFZWZlCQkIUFhYW6JQAAE0QTTcAAOqZZVlKS0vT4cOH9dVXX8nhcCgqKkqWZQU6NQA45ZSUlMjpdKqsrEwHDhxQUlKS4uLiAp0WAKAJsgx3DwUAoEGUlZVp7dq1WrdunYqKimi6AUCAJSYm6oorrlBiYmKgUwEANEE03QAAaEBlZWX6+eeflZuby72EACCAIiIi1KJFC8XGxgY6FQBAE0XTDQAAAAAAAPAzHp8GAAAAAAAA+BlNNwAAAAAAAMDPaLoBAAAAAAAAfkbTDQAAAAAAAPAzmm4AAAAAAACAn/1/AyxGFG2zl6QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder05').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "2704ba92-ca78-478e-8c7c-0b2858339d5e", + "metadata": {}, + "source": [ + "## Fill missing observations\n", + "\n", + "Missing observations typically span short periods, so interpolation is the most suitable method for filling the observations. To interpolate values over the missing timestamps use the [fill_missing_obs_linear()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_missing_obs_linear) method. The specific settings that are used for the interpolation can be changed with the [update_gap_and_missing_fill_settings()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_gap_and_missing_fill_settings) method. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "3081b116-3eeb-40ae-84d1-d7a36d4b4fb4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 892 missing observations\n", + " * For 28 stations\n", + " * Missing observations are filled with interpolate for: \n", + " temp: \n", + " temp\n", + "name datetime \n", + "vlinder01 2022-09-14 17:45:00+00:00 14.657143\n", + " 2022-09-14 18:45:00+00:00 14.485714\n", + " 2022-09-14 18:30:00+00:00 14.528571\n", + " 2022-09-14 18:15:00+00:00 14.571429\n", + " 2022-09-14 18:00:00+00:00 14.614286\n", + "... ...\n", + "vlinder28 2022-09-12 07:15:00+00:00 13.600000\n", + " 2022-09-05 18:15:00+00:00 21.300000\n", + " 2022-09-14 18:00:00+00:00 14.800000\n", + " 2022-09-14 08:45:00+00:00 15.025000\n", + " 2022-09-14 18:15:00+00:00 14.800000\n", + "\n", + "[891 rows x 1 columns]\n", + " * Missing observations that could NOT be filled for: \n", + " temp: \n", + " MultiIndex([('vlinder02', '2022-09-10 17:10:00+00:00')],\n", + " names=['name', 'datetime'])\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAADYuElEQVR4nOzdd3wb9f3H8ddJsrxlZzl7J2QQRgIJIyUJUAJlFFooe5UNSdi0jLIpFFpWmS0lYRR+0DLLaBiFhL0JEEbIgoRsx0OesqS73x+KZclTsiXrJL+fj0ce0Z1On/vqdJJ8H32+369hWZaFiIiIiIiIiIiIJIwj1Q0QERERERERERHJNEq6iYiIiIiIiIiIJJiSbiIiIiIiIiIiIgmmpJuIiIiIiIiIiEiCKekmIiIiIiIiIiKSYEq6iYiIiIiIiIiIJJiSbiIiIiIiIiIiIgmmpJuIiIiIiIiIiEiCKekmIiIiIiIiIiKSYEq6iYiIiEi3qq6u5rTTTmPAgAEYhsH555/f5ZiGYXDNNdeElx966CEMw+CHH37ocuxkxhQREZHMpaSbiIiI2IJhGDH9W7RoUaqbmjL33nsvDz30UKqb0WU33ngjDz30EGeffTaPPvooJ5xwQqqblHLr1q3jyCOPpLi4GI/Hw6GHHsqqVatabNfW++JPf/pTClotIiIi7XGlugEiIiIiAI8++mjU8iOPPMJrr73WYv2ECRO6s1m2cu+999K3b19OPvnkVDelS9544w123313rr766qTt44QTTuDoo48mOzs7aftIlOrqavbee28qKyu5/PLLycrK4vbbb2fmzJksWbKEPn36RG2/3377ceKJJ0atmzx5cnc2WURERGKgpJuIiIjYwvHHHx+1/MEHH/Daa6+1WJ8pLMuivr6e3NzcVDclZjU1NeTn53c5zubNm5k4cWICWtQ2p9OJ0+lM6j66qvF43nvvvSxfvpyPPvqIqVOnAvCLX/yCSZMmceutt3LjjTdGPW677bbL2PeFiIhIJlH3UhEREUkbpmlyxx13sP3225OTk0P//v0588wzKS8vj9puxIgRHHzwwSxatIhdd92V3Nxcdthhh3DX1GeeeYYddtiBnJwcdtllFz7//POox5988skUFBSwatUq9t9/f/Lz8xk0aBDXXXcdlmV1qU2vvPJKuE1/+9vfAFiwYAH77LMPJSUlZGdnM3HiRO67774Wj//6669ZvHhxuEvhrFmzALjmmmswDKPF8WptDLLmY59Fxo+soGt87OLFiznnnHMoKSlhyJAhLR4XafPmzZx66qn079+fnJwcdtppJx5++OHw/YsWLcIwDFavXs1LL70Ufh5tjZE2adIk9t577xbrTdNk8ODBHHHEEW22pbXn3vgavPPOO0ybNo2cnBxGjRrFI4880uLxX3/9Nfvssw+5ubkMGTKEG264AdM0W93Xf//7X/baay/y8/MpLCzkoIMO4uuvv47apvGcWrlyJQceeCCFhYUcd9xxADz11FNMnTo1nHADGD9+PPvuuy//+te/Wt1nXV0d9fX1bT5/ERERST0l3URERCRtnHnmmVxyySVMnz6dO++8k9/+9rc89thj7L///vj9/qhtV6xYwbHHHsshhxzCTTfdRHl5OYcccgiPPfYYF1xwAccffzzXXnstK1eu5Mgjj2yRUAkGgxxwwAH079+fW265hV122YWrr766RZfIeNq0bNkyjjnmGPbbbz/uvPNOdt55ZwDuu+8+hg8fzuWXX86tt97K0KFDOeecc7jnnnvCj73jjjsYMmQI48eP59FHH+XRRx/liiuuSODRbd0555zDN998w1VXXcWll17a5nZ1dXXMmjWLRx99lOOOO44///nPFBUVcfLJJ3PnnXcCoa7Bjz76KH379mXnnXcOP49+/fq1GvOoo47irbfeYuPGjVHr33nnHdavX8/RRx8d9/NZsWIFRxxxBPvttx+33norvXr14uSTT45Kkm3cuJG9996bJUuWcOmll3L++efzyCOPhJ9HpEcffZSDDjqIgoICbr75Zq688kq++eYbfvazn7VIJgYCAfbff39KSkr4y1/+wuGHH45pmnz55ZfsuuuuLWJPmzaNlStXUlVVFbX+oYceIj8/n9zcXCZOnMjjjz8e93EQERGRbmCJiIiI2NCcOXOsyD9V3n77bQuwHnvssajtFi5c2GL98OHDLcB67733wuteeeUVC7Byc3OtH3/8Mbz+b3/7mwVYb775ZnjdSSedZAHWvHnzwutM07QOOuggy+12W1u2bOl0mxYuXNjiudbW1rZYt//++1ujRo2KWrf99ttbM2fObLHt1VdfbbX2Z92CBQsswFq9enV4HWBdffXVLbYdPny4ddJJJ7V47M9+9jMrEAi02L65O+64wwKsf/7zn+F1DQ0N1h577GEVFBRYXq83al8HHXRQhzGXLVtmAdZdd90Vtf6cc86xCgoKoo5b8+fV2nNvfA3eeuut8LrNmzdb2dnZ1kUXXRRed/7551uA9eGHH0ZtV1RUFBWzqqrKKi4utk4//fSo9m3cuNEqKiqKWt94Tl166aVR227ZssUCrOuuu67F87/nnnsswPruu+/C6/bcc0/rjjvusJ5//nnrvvvusyZNmmQB1r333tvaIRQREZEUUqWbiIiIpIV///vfFBUVsd9++1FaWhr+t8suu1BQUMCbb74Ztf3EiRPZY489wsu77bYbAPvssw/Dhg1rsb61mSLnzp0bvm0YBnPnzqWhoYHXX3+9U20aOXIk+++/f4v9RI7rVllZSWlpKTNnzmTVqlVUVlbGfIyS4fTTT49pbLSXX36ZAQMGcMwxx4TXZWVlce6551JdXc3ixYvj3vd2223HzjvvzJNPPhleFwwGeeqppzjkkEM6NR7exIkT2WuvvcLL/fr1Y9y4cVGv/8svv8zuu+/OtGnTorZr7A7a6LXXXqOiooJjjjkm6vV3Op3stttuLV5/gLPPPjtqua6uDqDVCR9ycnKitgF49913Oe+88/jlL3/JWWedxaeffsqkSZO4/PLLo7YTERGR1NNECiIiIpIWli9fTmVlJSUlJa3ev3nz5qjlyMQaQFFREQBDhw5tdX3zMdgcDgejRo2KWrfddtsBhLsNxtumkSNHtrrdu+++y9VXX837779PbW1t1H2VlZXhNqZCW21u7scff2Ts2LE4HNG/6TbONvvjjz92av9HHXUUl19+OevWrWPw4MEsWrSIzZs3c9RRR3UqXvPzAqBXr15Rr/+PP/4YTsZGGjduXNTy8uXLgVAitzUejydq2eVytRgXrzFx6PP5Wjy+ccy29pKLbrebuXPnhhNwP/vZz9rcVkRERLqXkm4iIiKSFkzTpKSkhMcee6zV+5uPC9ZWdVZb661mEyQko02tJU9WrlzJvvvuy/jx47ntttsYOnQobrebl19+mdtvv73NwfsjtTaJAoSqwmLV1rapnl31qKOO4rLLLuPf//43559/Pv/6178oKirigAMO6FS8RL/+EBrXbcCAAS3ud7mi/9TOzs5ukZTs3bs32dnZbNiwocXjG9cNGjSo3XY0JpLLyspib7yIiIgknZJuIiIikhZGjx7N66+/zvTp07slEWSaJqtWrQpXtwF8//33QGgWzES16YUXXsDn8/Gf//wnqgqrta6JbSXXevXqBUBFRQXFxcXh9a1Vl/Xq1YuKioqodQ0NDa0mfeIxfPhwvvzyS0zTjEosfffdd+H7O2PkyJFMmzaNJ598krlz5/LMM89w2GGHtdodM1GGDx8ermKLtGzZsqjl0aNHA1BSUsLPf/7zTu3L4XCwww478Mknn7S478MPP2TUqFEUFha2G6Oxa2xbE1KIiIhIamhMNxEREUkLRx55JMFgkOuvv77FfYFAoEUiKRHuvvvu8G3Lsrj77rvJyspi3333TVibGiuvIiutKisrWbBgQYtt8/PzW43ZmPx56623wutqamp4+OGHW902cjuAv//973FVxbXmwAMPZOPGjVHjrwUCAe666y4KCgqYOXNmp2MfddRRfPDBB8yfP5/S0tJOdy2N1YEHHsgHH3zARx99FF63ZcuWFhWN+++/Px6PhxtvvLHFTLWNj4nFEUccwccffxyVeFu2bBlvvPEGv/nNb9qNV1VVxR133EHfvn3ZZZddYtqfiIiIdA9VuomIiEhamDlzJmeeeSY33XQTS5YsYfbs2WRlZbF8+XL+/e9/c+edd3LEEUckbH85OTksXLiQk046id12243//ve/vPTSS1x++eXhiqJEtGn27Nm43W4OOeQQzjzzTKqrq3nggQcoKSlpUX22yy67cN9993HDDTcwZswYSkpK2GeffZg9ezbDhg3j1FNP5ZJLLsHpdDJ//nz69evHmjVromKcdtppnHXWWRx++OHst99+fPHFF7zyyiv07du3S8frjDPO4G9/+xsnn3wyn376KSNGjOCpp57i3Xff5Y477uiwWqs9Rx55JBdffDEXX3wxvXv37nRVWax+97vf8eijj3LAAQdw3nnnkZ+fz9///vdwNV8jj8fDfffdxwknnMCUKVM4+uijw8f8pZdeYvr06VGJ27acc845PPDAAxx00EFcfPHFZGVlcdttt9G/f38uuuii8Hb33HMPzz33HIcccgjDhg1jw4YNzJ8/nzVr1vDoo4/idruTcjxERESkc5R0ExERkbRx//33s8suu/C3v/2Nyy+/HJfLxYgRIzj++OOZPn16QvfldDpZuHAhZ599NpdccgmFhYVcffXVXHXVVQlt07hx43jqqaf4wx/+wMUXX8yAAQM4++yz6devH6ecckrUtldddRU//vgjt9xyC1VVVcycOZN99tmHrKwsnn32Wc455xyuvPJKBgwYwPnnn0+vXr347W9/GxXj9NNPZ/Xq1Tz44IMsXLiQvfbai9deey1cvddZubm5LFq0iEsvvZSHH34Yr9fLuHHjWLBgASeffHKXYg8ZMoQ999yTd999l9NOO42srKwuxevIwIEDefPNN5k3bx5/+tOf6NOnD2eddRaDBg3i1FNPjdr22GOPZdCgQfzpT3/iz3/+Mz6fj8GDB7PXXnu1OPZtKSwsZNGiRVxwwQXccMMNmKbJrFmzuP3226O6jE6fPp333nuPf/zjH2zdupX8/HymTZvG/Pnz25zMQURERFLHsDozaqyIiIhIBjv55JN56qmnqK6uTnVTRERERCRNaUw3ERERERERERGRBFPSTUREREREREREJMGUdBMREREREREREUkwjekmIiIiIiIiIiKSYKp0ExERERERERERSTAl3URERERERERERBLMleoG2J1pmqxfv57CwkIMw0h1c0REREREREREJIUsy6KqqopBgwbhcLRdz6akWwfWr1/P0KFDU90MERERERERERGxkbVr1zJkyJA271fSrQOFhYVA6EB6PJ4Ut0ZERERERERERFLJ6/UydOjQcM6oLUq6daCxS6nH41HSTUREREREREREADochkwTKYiIiIiIiIiIiCSYkm4iIiIiIiIiIiIJpqSbiIiIiIiIiIhIgqV10u2mm25i6tSpFBYWUlJSwmGHHcayZcuittm4cSMnnHACAwYMID8/nylTpvD000+nqMUiIiIiIiIiItITpHXSbfHixcyZM4cPPviA1157Db/fz+zZs6mpqQlvc+KJJ7Js2TL+85//8NVXX/HrX/+aI488ks8//zyFLRcRERERERERkUxmWJZlpboRibJlyxZKSkpYvHgxM2bMAKCgoID77ruPE044Ibxdnz59uPnmmznttNM6jOn1eikqKqKyslKzl4qIiIiIiIiI9HCx5orSutKtucrKSgB69+4dXrfnnnvy5JNPUlZWhmmaPPHEE9TX1zNr1qxWY/h8Prxeb9Q/ERERERERERGReGRM0s00Tc4//3ymT5/OpEmTwuv/9a9/4ff76dOnD9nZ2Zx55pk8++yzjBkzptU4N910E0VFReF/Q4cO7a6nICIiIiIiIiIiGSJjkm5z5sxh6dKlPPHEE1Hrr7zySioqKnj99df55JNPuPDCCznyyCP56quvWo1z2WWXUVlZGf63du3a7mi+iIiIiIiIiIhkkIwY023u3Lk8//zzvPXWW4wcOTK8fuXKlYwZM4alS5ey/fbbh9f//Oc/Z8yYMdx///0dxtaYbiIiIiIiIiIi0ijWXJGrG9uUcJZlMW/ePJ599lkWLVoUlXADqK2tBcDhiC7oczqdmKbZbe0UEREREREREZGeJa2TbnPmzOHxxx/n+eefp7CwkI0bNwJQVFREbm4u48ePZ8yYMZx55pn85S9/oU+fPjz33HO89tprvPjiiyluvYiIxOIDcwlLzeW8GfyA760fGOMYxhHOAzjcuX+qmyYiIiIiItKmtO5eahhGq+sXLFjAySefDMDy5cu59NJLeeedd6iurmbMmDFcfPHFnHDCCTHto7FkcN3PHyP/6xowLXAYGL1ysMrro5aBFuuaLzuGF5I1ezjZ509OyDFINt8dn+N/9UeCS7bE/VzjXW4rplHoxrl9H/KfObhT7fc9sBRra13S22m3mOl2rjXXeO6ZP1ZlzGuSiTGNPrlknz4pqefZZf6/cHvwoah1expTeCP7kbhjRZ5X0PJ5trbOjp9tqZbq74bm0u19o5jp0y7FVEw7x7RruxTT/jGBtLlWqPn1iwS/3opV1WCb46eYimn0yqF6kJPBrx/XYffStE66dYfGpNsa1814jNyExDQG5+NZfUpCYiWbd+R8rHU1qW4GOAyK6ufG/TDbtD9F0ulca66nv3bpJNnn2fn+P3J/8P8AcOIgiMl2xki+zH4h7li2O686+dmWarY7jiIiIhK3dLhWqMy5O5ToELEZr1XHsMDvO0y6ZczspSIikpnq8YVvD6QfAKVWWaqaIyIiIiIiEhNVunWgsdKt/Nt1FNS6wLLAACPfjVXjj1oGWqxrvmwUZGF43BiF7hQ/s9hYVQ1Y3gbMTbVxP9d4l9uKaeS5MDxuHIMKOtV+c30NVnVD0ttpt5jpdq4113juWdX+jHlNMjGmUZCFY1BBUs+zkxt+zxPmSwDsYGzHV9b3AFRnL8FlxDc0aeR5BS2fZ2vr7PjZlmqp/m5o0Z40e98oZvq0SzEV084x7douxbR/TCBtrhXM9dVYVX6smgbbHD/FVEwj302VVUevCYMze/bS7uQYVICrnQOZqYzC0AexY3D6XRRCqP3Ocfb+IpHWNZ57Ij4awrf7Gr3ACt0uo5IS+sQVS+dVYqT7d4OIiIikh3T8cVJ6BofXGdt2SW6HiIhIl9RRH77dLyLJVmqVp6I5IiIiIiIiMVHSTUREbK0+otKtxOgdvr1F47qJiIiIiIiNqXtpjKoPfxHr65ouT0ObLlMzN/Ld8Tn+V38kuGRLyqbxNQrdOLfvQ/4zB3eq/b4HlmJtrbP1dMPJiJlu51pzjeee+WNVxrwmmRjT6JNL9umTknqe1VtNEyn0p2/49lYq4o4VeV5By+fZ2jo7fralWqq/G5pLt/eNYqZPuxRTMe0c067tUkz7xwTS5lqh5tcvEvx6K1ZVg22On2IqptErh+pBsXUv1UQKHWicSGGN62Y8Rm5CYqbD1MyNvCPnY62rSXUzwGFQVD837ofZpv0pkk7nWnM9/bVLJ8k+z3b3/YYl1rdk4eJu19WcGbgSgL+6/sAZrqPjimW786qTn22pZrvjKCIiInFLh2uFypy7Q4kOEZvxWnUMC/y+w4kU1L1URERsrZ5QpVsO2YxzjOQgYxbjGMEjwef41Fya2saJiIiIiIi0QUk3ERGxtcYx3XLJZnfHzhzlOpBl/MAn1lL+Z76f4taJiIiIiIi0Tkk3ERGxNd+2Md2yyQZgojEmfN/X5oqUtElERERERKQjSrqJiIit1TV2LzVCSbftjJG4ts0D9I21PGXtEhERERERaY+SbiIiYmtNY7q5AXAbWYwxhgGwzFpNwAqkrG0iIiIiIiJtcaW6ASIiIm2xLCucdMslJ7z+ulfOpui5bHp/m4//4Xpc2xWkqokiIiIiIiKtUqWbiIjYlm/bJAoA2dsq3QB2/2oSfR/LxfGZScNSXyqaJiIiIiIi0i4l3URExLYaq9ygaUw3gJzt88K3fV/XdmubREREREREYqGkW6yKssHYdtsAXI6Wy62ta75cnI1z55Lua3cXOXcugeJWnnsszzXe5ba2cRoYfXM7336Xo3vaabeYaXauNRc+9zLpNcnEmC5HUs+z+ohKtxyakm7ZEyOSbt/EnnSLOq9SfTy78NmWain/bmj+L93eN4qZPu1STMW0c0y7tksx7R/T5UibawWjby44DXsdP8VUTJcjlCOKgWFZlhXTlj2U1+ulqKiIyspKPB5PqpsjItKj/GCuY3zD/gD8xvELHnX/GQAraPFtrw+xfBa5u+Uz6q0dU9lMERERERHpQWLNFTm6sU0iIiJxqac+fDuye6nhNCjYrxhHkZO6T2ow681UNE9ERERERKRNSrqJiIhtRXcvdUfd5/A4MSuDEISG7+u6u2kiIiIiIiLtUtJNRERsK2oiBaLHTciOmEyhXpMpiIiIiIiIzbhS3YB0UTlqAVaVAyxCA+c5HRA0o5eh5brmywVZuKYPIv/Zg1PzROJU86sXCby7Hip98T/XeJfbiukwMPrk4vnp1M61/5UfIWAmv512i5lm51pz4XOv2p85r0kmxnQ5cO0/PGnnWb3V+kQKADkT45/BNOq8gtQezy58tqVayr8bmku3941ipk+7FFMx7RzTru1STPvHhLS5VvAOeRBrax2Yln2On2IqptOBNy/Q1mkbRUm3WFX6wNg2y5xFKInTqPlye9tU+Agu2ZzctiZQcMlmqGiqNInruXZ2ufm6oIVV2rmuY8Elm5viJLuddouZZudacy3OPUj/1yQTYwbMpJ5nbY3pBqFKN0exk6xh2QS9wZjitXpeQdp9tqWaLb4bWpMu7xvFTL92KaZi2jmmXdulmPaOmSbXClbptoQb2Ov4KaZiVrZyTdEKJd1ERMRWFgU/Yrn1A++an/KjuZ5hDKSv0ZudjPFR27mGZkEQfF/WYsaYdBMREREREekuSrqJiIitPGm+xILg0wBMYSLDjcHMcEzlYOfeUds5HA6yJ+RS91E1/h98BKuDOAucqWiyiIiIiIhIC45UN0BERCRSlVUdvl1kePAYBXiMgla3jZxMwfetJlMQERERERH7UKWbiIjYShVNybPH3LfS2yhqc9voyRTqyJtamNS2iYiIiIiIxEpJNxERsRVvRKVbIXntbAnZO+SSu2cBhsPAvza2wUxFRERERES6g5JuIiJiK1WEkm655JBlZLW7bfaEPOreC21vZGvEBBERERERsQ9doYiIiK14rRoAPOR3uK2rfxbOPqHfjzSmm4iIiIiI2ImSbiIiYiuNlW4FRsdJN8MwyJ6YC0BgvZ9AmT+pbRMREREREYmVupfGyDlrCHxdA6YFDgOjVw5WeX3UMtBiXfNlx/BCsmYPT/GziV32eZPxv/ojwSVb4n6u8S63FdModOPcvk+n2+97YCnW1rqkt9NuMdPtXGuu8dwzf6zKmNckE2MafXLJPn1Swl53y7LCEyl4aH3G0hbnysQ8at+uAqB+aS0FM9qeeCHyvIKWz7O1dXb8bEu1VH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCaTNtYLrwBEEv96KVdVgm+OnmIpp9MrBOagPvN7xOWxYlmUl9F2RYbxeL0VFRVRWVuLxeFLdHBGRjFZn1dPLtysAMxxTedW9oMPHlD+6mbL7NhLY5Kff7wfT+4wByW6miIiIiIj0YLHmilTpJiIituGlaebSWCvd3CNzqP80NA6c72uN6yYiIiIiIvagMd1ERMQ2qrZNogBQGMNECkB4TDeA+m/qEt4mERERERGRzlClW4zM9dUEVtSDZYEBRr4bq8YftQy0WNd82SjIwvC4MQrdKX5GsbGqGrC8DZibauN+rvEutxXTyHNheNw4BsVW9dK8/eb6GqzqhqS3024x0+1ca67x3LOq/RnzmmRiTKMgC8eggoSdZ5GVboUxTKQA4OqdhWtgFoENfnxf12JZFoZhtLpt5HkFLZ9na+vs+NmWaqn+bmjRnjR73yhm+rRLMRXTzjHt2i7FtH9MIG2uFcz11VhVfqyaBtscP8VUTCPfjWnF9mO/km4xqtrhnxhGbscbxsAYnI9n9SkJiZVsVTv+E2tdTccbJpvDoKh+btwPs037UySdzrXmevprl04SeZ5FVrrF2r0UIHtCHoEtlTh6uQhs8pM1oPU/IG13XnXysy3VbHccRUREJG7pcK1QNeqh0OD1IjZTFWPSTd1LRUTENqqI6F4aY6UbQO6uBWCBf0U9PnUxFRERERERG1DSTUREbOFHaz0vBxczhuFMNMawg7FdzI91j8qGYOi2JlMQERERERE7UNJNRERs4RPzK+abT7GCH+lHbw50zor5sdnb54Vv13+jpJuIiIiIiKReWifdbrrpJqZOnUphYSElJSUcdthhLFu2rMV277//Pvvssw/5+fl4PB5mzJhBXZ26H4mI2Mm31srw7WHGwLgemz2hKenmU9JNRERERERsIK2TbosXL2bOnDl88MEHvPbaa/j9fmbPnk1NTdOYQO+//z4HHHAAs2fP5qOPPuLjjz9m7ty5OBxp/dRFRDLOMnNV+PZFrvgG9XUWOsndrYCcXfNxFDixLA24KyIiIiIiqZXWs5cuXLgwavmhhx6ipKSETz/9lBkzZgBwwQUXcO6553LppZeGtxs3bly3tlNERDr2nRVKurlwMdoYFvfjnb1dVP+3AgD/2gbcw7IT2TwREREREZG4ZFS5V2VlJQC9e/cGYPPmzXz44YeUlJSw55570r9/f2bOnMk777zTZgyfz4fX6436JyIiyTfGGMHuxs5MM3Yky8iK+/E5EeO6aTIFERERERFJtYxJupmmyfnnn8/06dOZNGkSAKtWhaomrrnmGk4//XQWLlzIlClT2HfffVm+fHmrcW666SaKiorC/4YOHdptz0FEpKcyLZNnzVf5wFpCsHEa0jhlK+kmIiIiIiI2kjFJtzlz5rB06VKeeOKJ8DrTNAE488wz+e1vf8vkyZO5/fbbGTduHPPnz281zmWXXUZlZWX439q1a7ul/SIiPZmfQPh2FvFXuYFmMBUREREREXtJ6zHdGs2dO5cXX3yRt956iyFDhoTXDxwYmv1u4sSJUdtPmDCBNWvWtBorOzub7OyW4wDl3DWLrC+qsIIWOA2cA/MxN9RELQMt1jVfdgz34Nyhb6KeetLlP30wga9KCX6wIe7nGu9yWzGNfnk4x/fqdPsbXlyF+VN10ttpt5jpdq4113juWT96M+Y1ycSYjiEFuA8e1eXXuwF/+Lbb6NxXU/a4XPJmFGL5LYLlgVa3iTyvoOXzbG2dHT/bUi3V3w3Npdv7RjHTp12KqZh2jmnXdimm/WMCaXOtkDv/5wS/K8fcUmub46eYiukcmE9uiQPO7vgcTuukm2VZzJs3j2effZZFixYxcuTIqPtHjBjBoEGDWLZsWdT677//nl/84hdx7Sv72PHkneXpcpvTjXNKCc4pJXDSxI43tiHnlBJyp5SkuhnSCeFzT3oEHw3h29m4OxXDkeMgsNFPw/f1GDkGVtDCcBpR2+i8Sox0/24QERGR9OA+dnyqmyDSqgavN/OTbnPmzOHxxx/n+eefp7CwkI0bNwJQVFREbm4uhmFwySWXcPXVV7PTTjux88478/DDD/Pdd9/x1FNPpbj1IiLSKKrSrZPdSwGyJ+bR8H09Vr1Fw6p6ssfmJqJ5IiIiIiIicUvrpNt9990HwKxZs6LWL1iwgJNPPhmA888/n/r6ei644ALKysrYaaedeO211xg9enQ3t1ZERNrSYEUm3TpX6QahGUyrnisDwPdNrZJuIiIiIiKSMmmddLMsK6btLr30Ui699NIu7av+2g8wPq4E0wKHgWNbn97IZaDFuubLjtFFuKYPIuugkR3s0R78L60m+O56/O+sj/u5xrvcVkxHv1ycO/Ql55rdO9X+hke+xVxXnfR22i1mKs61YHUQZ4GTOwMPA3Ce66ROx2o894IrKzPmNcnEmI7BBbhPnNDl86whontplyrdtk2m8M85r7J0uwdxN+QwwzE1fC5GnlfQ8nm2ts6On23tuTPwMG+ZHwMwxZjI5a6zMQyjg0fFJ9XfDc2l2/tGMdOnXYqpmHaOadd2Kab9YwJpc11af80HBL8qxdxSZ5vjp5iK6RiYT92Q2NJphhVr5qqH8nq9FBUVscZ1Mx4jMRUTxuB8PKtPSUisZPOOnI+1ribVzQCHQVH93LgfZpv2p0h3n2vfj/uMdb02c/SLVxMsgGOdB/PXrCs7Faunv3bpJBHn2VLze3Zt+DUAv3Uezn1Z13YqTmCrH993ddy648O87f6UT6yvcOFimmNHXnI/YL/zqpOfba35yPySQxvOwsTCiYNa6qnHxzfu/zLKMTQh+2hku+MoIiIicUuH69LKnLtDiQ4Rm/FadQwL/J7Kyko8nrbH/3d0Y5tEJIMFq4P4f/Bhbg5SWVBDNTWUWuWpbpakicgx3To7kQKAq08W+dM9FOV68BgF+PBTRQ2brNJENNPWyq1KyvFSSRVgUI8PgA+sJSltl4iIiIhIT6Wkm4gkhO+bWgCy67LC6+qoT1VzJM34EtS9tNF5rpN42n03uWQDYJL5v5CW4w3fPsKxf/j2h+YXqWiOiIiIiEiPl9ZjuomIffi+DiXdcuqaqpTqtlXaiHQkeiKFrifdGjlxAhAkmLCYdlVpVYVv7+DYjh3WjeHgj/di+o87wSUpbJiIiIiISA+lpJuIJIR/QwM5u+Tj2OgMr6uzVOkmsYnsXprYpFuooDuImbCYdlVOZfj2QKOEJ468lvova8EBwbOCOAud7TxaREREREQSTd1LRSQhat+qov7TGsx1QbKtULWbupdKrKKSbkbiK93MHpB0i6x0KzIKyd29MLRgQt3H1SlqlYiIiIhIz6Wkm4gkRP227qXOfi5yjRxA3UsldomaSKE5BwbQUyrdmsZ064WHvD0Kw8u173tbe4iIiIiIiCSRupeKSJcFNvsJbg4lTXK2zyOXbCpQ91KJXaInUmgUHtPNyvwx3SqspsRakVFI7h6F5P2skMAWP3WfqNJNRERERKS7KekmIl3WWOUGkL19HjlGNlhQr0o3iVGyJlJwbCvotnrA7KUVNHUv7UUR7hHZNCyvJ7DJT2CTH8u0MBxGClsoIiIiItKzqHtprBJ1pBxg5CfugjLZjPwse5wlzs5dKKbTsU64bjzXGr6vI2fXfPL2KiR3lwLyyAWgtgtjutnm3JMOJeI8i55IIZHdSxsnUghVutnuvOrkZ1trGivdnDjJJxfDMMLjupkVQXzL6hK2L9sdRxEREYlPulyXJvBvJZGEivFvYVW6xahoy1l4PJ5UN6PbFS49IdVN6JJ0b3+6qFtSQ/0nNQD0v3E4uWSH1lOPZVkYRvxflnrtepaGyO6liZxIwXCC1TSmWyafV42Vbr3whN9zebsXUv2/CtxjcqhfUkPOhLyE7CuTj6OIiIjYR1HNnFQ3QaRVhtcLRb/vcDv9Ti0iXeaL7F46IY8cQhMpWFhRFUwibYmudEvkmG6hr7meMHtpY6VbkdE0gULuHgVYNSa+JbXUvFmZqqaJiIiIiPRIqnQTkS6xTCucdMsakY2z0EluQ2hMNwhVuyVyNkrJTJETKSR29tLG7qWZnXS7NTCfycZE3IaLCcbo8PrcyQUYLgPLb1H7flU7EUREREREJNGUdBORLvGv9YEr1JUtZ/tQ17XG7qUAdfgoTkXDJK0kayIFZ7Mx3TJR0ApyfeAe6vGxHSN53n1/+D5HjoOcKfnUfVhNw/f1BEr9uPqmwfgtIiIiIiIZQEm3GFXt9S+sHxrABAygIAtq/NHL0HJds2XHgHxcs4eR+6efpeaJxKnu0ncIvLoGc2VF3M817uW2Yua4cIwqovD9ozrV/oZHvoUqf/LbabOY3XWu+b6qxawI4uznInePULe2xu6lALVWXahNcQqfextrMuY1yciYBVm4T5rQ5fMssntpVkKTbk6gqXtp1HkFqT2eXfhsi/SjtT48U/B4Y2SL+wtmF2O4DYKVQWo/qsJzYO8u7Q9s8N3QXLq9bxQzfdqlmIpp55h2bZdi2j8mpM11adUeT2KurIT6gH2On2IqZkEW1f2Mtk7bKEq6xcj8pgyM3KYV9c2qJpovt7GNWVqPv7ze9h9ujfxPfo+1riZ6ZYzPtUvLkevqgpifb+m4sa3wP/k9lEbMoJnMdtosZneda/XfhGZEDG4J4B4eqnDLNZoq3RqTAfFq9dyDtH5NMjKmL4j/ye8TmnTLTuBECg5CX4aN3UvbPK8grT7bIi2zVoVvjzNGtbg/e2IeW67/KbTL96sTknSzxXdDW9LhfaOY6dkuxVRMO8e0a7sU07Yx0+W61Px8C5jbxq2x0fFTTMU0t9S1jNsKTaQgIl3iW9p04Z29rXtpHk0J6jrqWzxGpLnkTaQQqnTL5O6l31orw7cnOEa3uD9v98Lw7doPNK6biIiIiEh3UaWbiHRJ/dehDL+RZeAeG+pW2nxMN5GORFW6JXAihabZS62ExbSTL8zv2GBuYQzDCRBgR2Nci22yBrnJGp6Nf50PsyqA2RDE4XamoLUiIiIiIj2LKt1EpNMsv4mzr4ucKfnk7lGIwx36SMmJSLrVW0q6Scd8VtPspYmsdHNk+EQKr5vvcZf5KCv4kV0ck5jk2K7V7Qp+UYzhNKj/vBbfV7GVwouIiIiISNeo0i2DmZaJw3BwZ+Bh3jI/BmCGYyrznCfgMJRvla7zfV9P7SIvAEVH9QmvzzUiJlJAF/jSseRNpND0WWdaZsLi2kWNVRu+XURhm9tlj8vF8oWq/WrfryJ3lwIgdEyMbePe1eOLeu+KiIiIiEjXKPOSwS4P3MrA+j35S+BBVplreNP8kGsCf+X3gT+nummSIXxfN13wN47nBupeKvFroKnSLdtIXPdSB03dKBtnMM0kkWMmHus6pM3t8vZofVy3B4L/It+3I/m+HfmVf05yGikiIiIi0kOp0i2DrbM2UU6oCmkUQ6llVXi9SCLUL41Iuk1sSrrl0FQtU2dpIgXpWLImUnBE/LYUzMCkW21E0i2PtqvUcnbIJ2dKPo58B8GKQHh9tVUTHu9uvb4bREREREQSSpVuGeyniAuo5933hW8r6SaJElnpljOpKek2zjGSYxwHM83YiTsCD3Fcw0U8EnguBS2UdJG02UuNyKRb5o3rVmM1dd9uL+lmuAycHie1b1dR81ol/p9CFahlVIa32WRtTV5DRURERER6ICXdMth6NgPQh2KKHR5K6A0o6SaJE9jiJ2dqPvn7FpE1vKlL6V6OXVng/hP7OfbkB9bxtPkKVwfuTGFLxe4iJ1JIxuylkJkzmEZ2L80z8trZEnJ3j+hi+mE1EP19UEkVpVZ5glsoIiIiItJzdap7qd/vZ+PGjdTW1tKvXz969+6d6HbZjjHMAxuDYFlgGJDjhPpmy9ByXbNlo28uWfsOTXp7TcsMdxUaZJRs+78/m60yNrCFoBXEaTjbCwFA1i9G4H99Lda66rifa9zLbcXMcuAY1vYA4R21v+GJ76E+kPx22ixmMs+1OwMP46wy2PvDsQDkTivAcBgttvMYBWThwkcDXqrj2kf43NtalzGvSUbGzHWR9YsR8Z5CYY0TvXxlfR9el7zupUHckecVpPZ4duGzrVENTdWm7VW6AeRtS7r9c86r5Bd8yEXWWVFJNwODVdZa+hq9Otxvyr8bmku3941ipk+7FFMx7RzTru1STPvHhG67Lu0qx3bFmGuqwG/a5/gppmLmODF6ZcHKjs/hmJNuVVVV/POf/+SJJ57go48+oqGhAcuyMAyDIUOGMHv2bM444wymTp0aa8i04vn8WDweT6qbEbNSyvETGrdnsNE//P8S61uCBNlMGQPp12Gc3Hv3ITepLU2u3Hv3IffefVLdjIyywvyRWwPzGfp1X/bmYiB6EoVI57lO4pngq3xofUENdTEneyH9zz1pn9eqZoRvb1w4ySOX8YzCxGQXx6SEzq7sjJhIIYiZcedVrGO6AeRNL6Tu1Wz+b+oitjrKqQr4wxXRBga98LDGWs80duxwv5l2HEVERMSeCr88PtVNEGmV4fVC0dkdbhfTlc1tt93GiBEjWLBgAT//+c957rnnWLJkCd9//z3vv/8+V199NYFAgNmzZ3PAAQewfPnyLj8B6ZrI6oVB25JujRVvofs3dnubJP0FtvppeKyKzWxl6NdNSducNpJuAIVGfvh2dURVjvRsW6wyaqnDSzUODPo4iunn6M0Ix+CE7ie6e2nmTaQQOVFJbgdJN6fHxcAZg9no2IKfAN+aK8PfFRYWZVRSZlUks7kiIiIiIj1KTJVuH3/8MW+99Rbbb799q/dPmzaNU045hfvvv58FCxbw9ttvM3bs2IQ2VDp2W2A+1VYttdTxRfA7RjKEQiOf3YydANjNsRNlViUbzVLmNFzHSMdg9nLsyhyXfj2Q2DSsrCdwRiXOXznIqXNT3auOgvLcNivdADwUhG97qaaIwu5oqthcKeXh24c6f87tWZcnZT/Nu5dmmhpC3WTzyMUwjA63H0QJHgrwUs3b1sfMMKbipZoPrCUA4RmvRURERESk62JKuv3f//1fTMGys7M566yzutQg6RzTMrk78E/WsxkHDnY3dmIIA5jhmMpJrl8BcLzzUI53Hsr1/nu4JfgAX5jf8oG5REk3iVmwLIDTdNB3QzFPnPUGT5z5BhM2jWRR/8fafExkpVuVVQMd5wWkB9gaMWB/LGOIdZYzKumWeZVujd1LO+pa2sgwDMYbo/jI+pI6fLxqvcPPjF3C91daVUlpp4iIiIhIT9SpiRQieb1e3njjDcaNG8eECRMS0SZbqhzwd6xA0+yMGBA1EV5jIqH5uubLLgfOHfpS8MFRCW3fj9Z66vEBsJ0xgl5GERAayL45j1FAIfmUUclGSim3KsPbN1e9+5MEvyoNDVwZ+Tyg4+ca73J7MfNcFFV03F+6uerdnyT4+eamOMlup51iJuFcC1aExgks2VDMpqFlYEDpgEqKctoe77CQpqRbPJMphM+9gJk5r0kmxjTAObkk7vNsS0TSrR/JTLo1jelmYkafV5D649nJz7ZGdVZTpVusxjtG8VHwy/DybOfPeCfwKRB7pVvKvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8eEpF2XJlpl8X1QG7oGsc3xU0zFNMDr9BGLuEerPvLII7n77rsBqKurY9ddd+XII49kxx135Omnn443XPrwN6uQsGi53Nq65st+E3NTTUKbBvCx9SVOHPSnL4c79udp99087b6b81wntdj2PNdJHO7cP7z8nbWqzbjmpprWn3sszzXe5fa2qe9ctzBzU010nGS3004xk3CuBctCX3jFpU3J3NHGsHYfUxjRvbTKir094XMvk16TTIxp0anzLLJ7aZ8kVro5wt+yoUq3qPPKDsezk59tjcLdS43YKt0ALnaeyifuZzjXcSIHG3tzkGNW+L5YK91S/t3Q/F8iYiajnYqZ/u1STMW0c0y7tksx7R/TImnXpQkX+beSXY6fYirmtvdQLOJOur311lvstddeADz77LNYlkVFRQV//etfueGGG+INJwlSaVWxhXI2UcowY1CH2483RoVvf2e2nXQTiRQsDyXdXP6m6qHICTpa44nsXkoafLFLt4jqXprESjdH5OylVmaN6WZZVtzdSwG2c4xkkmM7Bjv6s5dz16jvDI3pJiIiIiKSOHF3L62srKR3794ALFy4kMMPP5y8vDwOOuggLrnkkoQ3UGLTeOEFsVU8TDBGs7MxgQLy2MTWZDZNMkiwPJS02PGjUazdfyv+nAC7Gzu3+5jISjevFXv3UslsWyIq3foZvZO2n8gx3awWP1Gltwb84RlZ82h7MpO2NFZCW5aFEydBglRYSrqJiIiIiCRK3Em3oUOH8v7779O7d28WLlzIE088AUB5eTk5ObH/0i6JFZl0y49hbJ9xjlEssb4NbW/Gf7EmPVNjpduJdx/Adaf9nuwJHZ87qnST1pRaZeHbfYzipO0nk2cvbexaCvF1L23OMAyKKWQrFVSo0k1EREREJGHiTrqdf/75HHfccRQUFDB8+HBmzZoFhLqd7rDDDolun8SoxqoN386NIek2iBIKyaeKmnbHdBOJZG5LugE4esX28dHZiRQks1hWqMrsr8FHeMv8mPfNz8P39aE4aft1Gpk7e2ltZNItju6lrSkyCtlqVajSTUREREQkgeJOup1zzjlMmzaNtWvXst9+++FwhC5oRo0apTHdUqguzu6lhmEw3hjFx9ZXrLHWU2PVkm+o4k3aF4xIujljTbpFzKBbHcdECpJZ1rOZCb4DyCWHQvLZnrH4CbCjYxwuo8sTabep+eylmaTOivjcj2P20tb0IjQDcSXVmJaJw4h7yFcREREREWmmU1c6u+66K7vuumvUuoMOOighDZLOibd7KcB4x2g+Dn6FhcX31g9MNiYmq3mSIZy9XbgGZmH5LBzZsV2Ue6Iq3ZR066nWWZtowE8DfooppNgRSvKMdYxI6n7VvTQ2RUYhWKHEZBU1FFHY1eaJiIiIiPR4cSfdTjnllHbvnz9/fqcbI51XYzVdfOXG2M1oJ8bxrTGJXHJYZa5lskNJN2nfsKfHx/2YfkYffuM4gB+t9XxqfsV031E0EGC8MYpH3X9OQivFjtZZm8K3T3X9ht+5Tu+W/TrJzO6lPquB54KvM5phOA0Huzl27lK8nYwJ1Bs+GvCzySoNJeFERERERKRL4k66lZeXRy37/X6WLl1KRUUF++yzT8xxVqxYwcqVK5kxYwa5ublYloVhGPE2R7aJ7F4aazfRUY6hfBJcCsAe1mQOZ/+ktE0yx7ozVuAocJI9IY/ep/eP6TEDjX486v4L1/vv4S3zYz62vqIeHyutH5PcWrGT9RFJt8FGbOdOImRq99KtVPCn4N8A2M4awQnOQ7sUz4mD96zQOHurrLVsx8gut1FEREREpKeLO+n27LPPtlhnmiZnn302o0eP7vDxW7du5aijjuKNN97AMAyWL1/OqFGjOPXUU+nVqxe33nprzG256aabeOaZZ/juu+/Izc1lzz335Oabb2bcuHEttrUsiwMPPJCFCxfy7LPPcthhh8W8H4CsE8ZjfOIF0wKHgaMkD3NzbdQy0GJd82XH6CJcs4bEte9YdGZA7XHGqPDtZW1MppBz43QCi38i8N6GuJ9rvMttxXT0ycGxQ99OHZecG6fTMP9rzA01SW+n3WIm+lwz64JUPLwFgLwZnpiTbo08RgEeowCXFUqCdFR11HjumSsqM+Y1ycSYjoH5uE/ZvsPXP7LSbRDdl3Rz0PRjThAz6ryCls+ztXV2/GyrtKrCtyPHTeys8Y5RNPa+/c5axQHMaHf7VH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCSTtujTRss6YhPlVKebWetscP8VUTEdJHllDXfBQx+dwQkavdjgcXHjhhcyaNYvf/e537W57wQUX4HK5WLNmDRMmTAivP+qoo7jwwgvjSrotXryYOXPmMHXqVAKBAJdffjmzZ8/mm2++IT8/P2rbO+64o0uVdHl3zMLj8XT68ckW2b001qTbCGMw2bjx0dDmDKbuY8bhPqZlEjNdpHv77SRYFv8kCpHOc53EeZzE7r7fsMT6tsOqI712mWWdtTl8e0iKKt2CBDPmvCqnMnx7T8fkLscbH/EjTCwzWmfKcRQRERF7y/vrrFQ3QaRVptfbfUk3gJUrVxIIBDrc7tVXX+WVV15hyJDorPrYsWP58cf4upstXLgwavmhhx6ipKSETz/9lBkzmn6lX7JkCbfeeiuffPIJAwcOjGsf6aKxe6mbrJhnAnQaTsYZI/nSWsYKaw0Nlh+3kZXMZkoaC1Y0DULv7OVsZ8v2ZeMGwE8AzZLYc0RVuhkl3bbfyDHdTKxu22+yVVje8O1io+s/CEVWPn9nruxyPBERERER6UTS7cILL4xatiyLDRs28NJLL3HSSSd1+Piamhry8lp2DSkrKyM7Ozve5kSprAz98t+7d+/wutraWo499ljuueceBgwY0GEMn8+Hz+cLL3u93na2to/G2UvzYpy5tNE+xu4UkEc1tXxiLmVPZ9crJiQzdbXSrVG24aYx9+GjIeaJPyS9/cr5c0ZbQym3KmMedzIRMnX20gqaupf2outJt0Ijnz2NyVhAH6O4y/FERERERKQTSbfPP/88atnhcNCvXz9uvfXWDmc2Bdhrr7145JFHuP766wEwDAPTNLnlllvYe++9421OmGmanH/++UyfPp1JkyaF119wwQXsueeeHHrooTHFuemmm7j22mtbrPe/8gO139VB0MJwGhj98zA31UYtAy3WNV92DC7AOaYY57henX6urand1r001q6ljcY6RnJH4GEA/msubpF0Cy4rx1xRgf+zzXE/13iX24rp6JuLc6SHrANGxH1cgsvKCSz+ieD6mqS3024xE32uBcsjkm69O18R2VjpBu0n3RrPveC66ox5TTIxpnNQPq6ZQzo8z+a4ju/0OdMVUUk3y4w6r6Dl82xtnR0/2yIr3RI106iBg/esT8EKfafkGW3/iJPq74bm0u19o5jp0y7FVEw7x7RruxTT/jGBpF2XJpp/4Q8EV1dildbb5vgppmIa/fNo6BVbL5q4k25vvvlmvA+Jcsstt7DvvvvyySef0NDQwO9+9zu+/vprysrKePfddzsdd86cOSxdupR33nknvO4///kPb7zxRotEYXsuu+yyqGo+r9fL0KFDqT12Ia52LkDiYQzOx7O64wRlPBonUmjvIqk1hzj3Zl7gOkxMXjYX0zfQi/NcTRWLNQc8i7WuJqFt7RSHQVH93LgfZpv2p0giz7WopFtx57uX5tBU0VpPQ5vb9fTXLl34Sc5nWqI0n73UdudVJz/bEl3pBtu6/W7722G9tZkxxvA2t7XdcRQREZG42flvuEa1h70YGrxexGbqIsbVb0+3D6Y0adIkvv/+e372s59x6KGHUlNTw69//Ws+//zzmGY/bc3cuXN58cUXefPNN6PGinvjjTdYuXIlxcXFuFwuXK5QjvHwww9n1qxZrcbKzs7G4/FE/UsHTd1L46t0KzH68I+sP/Jq1gI2WaVcF7ibs/xXJaOJkuaiK9260L2Upio5XztJN5FEiJy9tKPJO9JJdKVbYr6nIie4iByDT0REREREOiemK+cpU6bwv//9j169ejF58uR2ZwH97LPP2rzP7/dzwAEHcP/993PFFVfE39pmLMti3rx5PPvssyxatIiRI0dG3X/ppZdy2mmnRa3bYYcduP322znkkEO6vH+7CFrBcPIi3qQbwLHOQ9hilVFKOQAbrS0JbZ9khuhKt64k3Zoq3XyWDzo/qbCkiWB1kMrHt+DwOMkem0vuLgXdtm+nET17aaaooCnplrhKt4ikG0q6iYiIiIh0VUxXzoceemh4koPDDjus0zvLysriyy+/7PTjm5szZw6PP/44zz//PIWFhWzcuBGAoqIicnNzGTBgQKuTJwwbNqxFgi6dNVa5QfzdSxv1pggDAwuLUqs8UU2TDBI1kUJXKt0Md/i2Kt16hsCGBjbMWw1A0bF9GbJgbLftO3r20kytdEvMmG6DVekmIiIiIpJQMV05X3311a3e7ozjjz+eBx98kD/96U9digNw3333AbToKrpgwQJOPvnkLsdPFzU09SWOd/bSRk7DSW+K2EoFpVQkqGWSSXJ2zsfzq94EywO4Sjo/kUJOxEQK7Y3pJpnD9DZVmDkKOz8eYGdEz16aQUm3JIzpFpl0W29tTkhMEREREZGeLO5ylY8//hjTNNltt92i1n/44Yc4nU523XXXdh8fCASYP38+r7/+Orvssgv5+flR9992220xt8Wy4h9QsTOPsSPTMnEYDu4MPMzC4Fvh9W3NBBmLvkYvtloVlFpliWiiZJjep/an96n9O96wA81nL5XMF4xIujk93Zt0i5xIIaO6l26rdHOT1aXP/UiDjJLw7XXmxoTEFBERERHpyeJOus2ZM4ff/e53LZJu69at4+abb+bDDz9s9/FLly5lypQpAHz//fdR97U3VpxEuzf4GNcF7sFNFv3py27sxK6OSVyUdWqnY/ahF7Caamqpt3zkGNkdPkZ6jjVHLSPwkw9nnyyGPT++0+/XyDHd6i1foponNhZV6VbU+a7JnRHdvTQzfnQBCFhB+tOXQZQk7LtzoNWPicYYtlhlbEBje4qIiIiIdFXcVz/ffPNNOGkWafLkyXzzzTcdPv7NN9+Md5fSinXWJrxUAzDaGE5fo5hhjkFRlQrx6mf0ovGatJRyhtByPDzpuXxf1tCwyoezt6tLF/mRY7o1qNKtRzC9EeMBprR7aeZUum1kC2VUkt/JcTxb43K4KLcq2UIZLqt7XycRERERkUwUd9ItOzubTZs2MWrUqKj1GzZswOXq3gqGnubRwPO8a35GORVRY2E9mPVHxjiGdzl+X6N3+HapVc4QQ0k3aRKsCCUsnL269j7XmG49TzCq0q27u5dm3phulmXhpQYAD4mdCXaw0Z8N1hY2Uorf8pNldH78RhERERGRni7uq+fZs2dz2WWX8fzzz1NUVARARUUFl19+Ofvtt1+Hj997773brZJ544034m1Sj3F7cD7fWCsBGM2w8PquVLdF6kNx+PYWjesmESzTIlgeqlZy9upa0iQnonupxnTrGSK7l3Z3pVvkmG6ZMnupjwYChN6PheR3sHV8Bhv9+cRaioXFRkoZysCExhcRERER6UniTrr95S9/YcaMGQwfPpzJkycDsGTJEvr378+jjz7a4eN33nnnqGW/38+SJUtYunQpJ510UrzN6Tb5/zucnPUBMC0wDIw+OVhl9VHLQIt1zZcdfXNxDOzcRZKbpoqDUsqB0Kx1eQnqXtQvotLtysAd3B/8P/Z/axdO2XIUwe/L436u8S63FdMozsYxoHPHrOC9owh8VYpVWpf0dtotZlfOtebMymC463FXK93ckZVu7YzpVvDeUZgbajBL6zLmNcnEmEafXFw79m33NQ+mcEw3B00/8gQxo84raPk8W1tnt8+2xqEFADxGYivdBkXMYLrO2sRQo/WkW+NxTNV3Q3Pp9r5RzPRpl2Iqpp1j2rVdimn/mEBCrxWSKf+D0N8cVoXPNsdPMRXT6JNDMCcAM3/f4Tkc99XP4MGD+fLLL3nsscf44osvyM3N5be//S3HHHMMWVkdd0O5/fbbW11/zTXXUF1d3ep9duDauR/ZMzwpbYMjYoydqm0XXYONrs8m2eho50HMdkzn4eCzfGR+ideqZtOAWlxDS3BNSUw1XXdzDMzHnQZfJnbXWOUG4Ohq99KoMd38bW7nGJifFn8ISMfMyojzp5tnL3VEzl5qBTPivKqyasK3k1Hp1mi9tbnN7RqPY7p+N4iIiEh6cO3cD3bul+pmiLTg8npj264zwfPz8znjjDM689A2HX/88UybNo2//OUvCY2bScyIQcAbZ+EblMCkWz+jN/2M3vQ3+1JkFAKJr6KQ9BSZdOtqpVt21Jhumr20J3AUOnENdmN6gynoXho5e2lmdC+NrHQrNBKbdIscrmCdtSmhsUVEREREepqYrp7/85//xBzwl7/8Zaca8v7775OTk9Opx/YUtYYPLHDhZBiD8BgFzHJMS/h+znOdxHmclPC4kr4SmXTTmG49z4CbRzDg5hEp2bcjAydS8FoR3UsTPJHCeGMU+xi7s8Zaz3PB19jPsSfjHaMTug8RERERkZ4ipqvnww47LKZghmEQDAbb3ebXv/511LJlWWzYsIFPPvmEK6+8Mqb9pELNb1+DJd5QH16HgdE3NzROWMQy0GJd82XHKA9Z+w7Dfdqk+Ntg1QLQn74c4zwYgAtdpyTuSbai4R9L8b++luDHG+N+rvEutxXTKM7GuUNf8h6a3an2+x5YirW5NunttFvMrpxrzSWt0q2dMd0azz1zdWXGvCaZGNMoySP79EkJOc+SwWlEV7pFnlfQ8nm2ts5un23V1IZvJ7rSbYpje45wHsA5gWtYYa3hPfPzVpNuqf5uaC7d3jeKmT7tUkzFtHNMu7ZLMe0fE0jotUIy1Z78KsGvSkNjutnk+CmmYhp9c6kZGtt1sWFZlpW4t0THTj75ZCJnL3U4HPTr14999tmH2bPjT6okm9frpaioiDWum/EkaMICY3A+ntXxJ8v61+9BJVVsZ4zkVOcRQKgqLZm8I+djravpeMNkcxgU1c+N+2G2aX+KdPZca67s7xvZMG81AIP+PppeJ3V+HKe3zI+Z3fBbAC52nsoNWRe0ul1Pf+3SSaLOs2T4v+CL/NZ/KQC3uy7nuLH19jqvOvHZFvmcbnNdxjmu4xLapMj4t7ouZY7r+Bbb6P0pIiKS/uz8N1yjypy7Q4kOEZvxWnUMC/yeyspKPJ62x//vUslKfX193F1CH3rooa7ssseyLCtc3VBAbtKTbSKR8vYopP/NwwlWBMid3LXKmshKN3Uv7Rka1vhw5DlwFjkxshwdPyCBoruXtl+JnS6qrMgx3RI/7mZuRBfwOo27KCIiIiLSaXFf/QSDQa6//noGDx5MQUEBq1atAuDKK6/kwQcf7PDxo0aNYuvWrS3WV1RUMGrUqHib02M04A9fMOaTl+LWSE/jHpVDnzkD6H/NMHJ27FrSLXJMN02k0DOsnPoFywZ/woqdv+j2fTszcUw3ImcvTfz3QS5NP6bVWfUJjy8iIiIi0lPEnXT74x//yEMPPcQtt9yC291UsTJp0iT+8Y9/dPj4H374odVx33w+H+vWrYu3OT1G5Bg+BYaSbtK9Nly4mm8KPuTbPh/i+66uS7GyyQrfVqVb5rMsC9Mb+sx3FHXvzKUATpr2mTGzl0ZWuiV4IgWAXKMp6abEuIiIiDTnsxo4ync++/pO5Ne+ufw7+N9UN0nEtuLuXvrII4/w97//nX333ZezzjorvH6nnXbiu+++a/NxkTOgvvLKKxQVFYWXg8Eg//vf/xgxYkS8zekxIpNu+SRmbDmRWAXLQhMpmNUmDk/XEifZkZVulpJumc6sMWnMdTkLuz/p5qBpDNFQpZvR9sZpojqi0s2TlO6lEZVuqNJNREREor1hvs/z1uvh5cpAFb9x/iKFLRKxr7iTbuvWrWPMmDEt1pumid/vb/NxjTOgGobBSSdFj0eWlZXFiBEjuPXWW+NtTo/ROHMpQL4q3aSbBSuaqlOdvbqYdDOaKmTfMj/izsDDGqMwg5mVTTPfOoq6NvNtZ0RWuoW66Hd/GxLtQ7Opm66HxM5eCtFjutUq6SYiIiKAaZncFXyUt8yPWWmtibpvHZtS1CoR+4v76mPixIm8/fbbDB8+PGr9U089xeTJk9t8nGmGSh1GjhzJxx9/TN++fePddY8W1b1UY7pJN2usdDNyDBy5XUu6ldCbr90vM89/He9an3Fd4G7GGMM5yDkrAS0Vu2nsWgrgTEn30swZ063qlXLWnbKCnS8diXWoydQBOzHCGJLw/USP6abupSIiIj2dz2qgn283csgmjxzGGiMoopBvWEEVNay3NmFZFoaR/j0KRBIt7qTbVVddxUknncS6deswTZNnnnmGZcuW8cgjj/Diiy92+PjVq1d3qqE9XXVkpZuSbtLNghWhpJuzV9erhFyGi9HGMAqMPHxWAz6gKqK7nGSWYETSzZGS7qVNSbd0H9Mtf+8iRn+yE6P4gg0FVYxyDI2qHE2UHCNyshNVuomIiPR0663NNOCnAT955IaGtzBgoFVClbWaBvyUUk4/eqe6qSK2E/cV9KGHHsoLL7zAddddR35+PldddRVTpkzhhRdeYL/99ospRk1NDYsXL2bNmjU0NESP6XTuuefG26QeoZamwes1kYJ0t8ZKN2dx4rrmzXbsxX/MNwCoVzVNxkp1pVtk0i1opXfSzeF24Bjo5iJO46Ik7icvakw3vTdFRER6usjuo79xHsCfs34PwNn+q/k+GCqqWWdtop+hpJtIc526gt5rr7147bXXOrXDzz//nAMPPJDa2lpqamro3bs3paWl5OXlUVJSYt+kW54LIidtdBhgWtHL0HJd8+UcJ46xveLefaq6lzrG9iJY7oPaQMTKGJ9rvMttxTQAT+eqORxjexHcUNsUN5nttFvMTp5rzZk+E6s2lKxw9k5c0i2yQqe1WUzD5159MHNek0yM6TDaPc+iK91SP6Zb1HkFqT2eXfhsS6bo7qWtV7ql/LuhuXR73yhm+rRLMRXTzjHt2i7FtH9MiOtaYb3VlHQbbPRv9fZ6axM7MyGmeHHxuKHSBxb2OX6KqZgOA7Jd4KVDMV8BlZeX889//pOTTjoJj8cTdV9lZSWPPPJIq/c1d8EFF3DIIYdw//33U1RUxAcffEBWVhbHH3885513XqzN6XZFa0/r8LklU2T30rxunL204NVfddu+kiHd228HwfKmi+pEVrrl0H7STa9dZjC9kRMppL57qc6rjmXjxsDAwmpz9lIdRxERkZ5jXUTSbZBR0nSbkohtNidl30Wbz0hKXJGuMrxeKOq4/4mjwy22ufvuu3nrrbdaTTwVFRXx9ttvc9ddd3UYZ8mSJVx00UU4HA6cTic+n4+hQ4dyyy23cPnll8fanB7FbDA5LnAI5zlO4hzHsRzm/HmqmyQ9SFTSLZGVbhFJt3p1YctYwcqI7qWeFEykYGTOmG7Vr1ZQett6yh7YRGBL27OFd5VhGORsm8FU3UtFRERkfURCbbAxIHy7n9GboQygH72ptKpS0TQR24s56fb0009z1llntXn/mWeeyVNPPdVhnKysLByO0G5LSkpYsyY03XBRURFr166NtTk9StXzZawq+hznVXX0+9hDsZG6ijvpecyIpJsjoZVuTYO1+6yWlW6SGXr9toTRS3Zi5FuTyN+7qNv3n0mzl3qf3cqmy35kw9xVBDYk9z2TG066aSIFERGRni6q0i2iuq3IKGQtG9lCGWVUpKBlIvYX8xX0ypUrGTt2bJv3jx07lpUrV3YYZ/LkyXz88ceMHTuWmTNnctVVV1FaWsqjjz7KpEmTYm1Oj9I4iP1xt+/HoImjYXqKGyQ9SvaO+Yx8exLBsgBZQxI3/lR2B91LJTM4i1w4i7p/LLdGmTR7abC6+2aCDY3rVqlJTkRERIRcctjTmEw9vqjupR4Kwre9VKeiaSK2F/OVkNPpZP369QwbNqzV+9evXx+uYGvPjTfeSFVVqPT0j3/8IyeeeCJnn302Y8eOZf78+bE2p9t5Jz6CVQqhERwNcDugwYxehpbrmi0bxdm4Zg0h75H9Y953Y9INwNmrey9ea098hcCin7A21xHvc417ua2YLgNjYD6e5Sd3qv3+51ZCQzD57bRZzM6ca60JlgWw6k2yhrjJGp7T8QNi1NFECuFzr8KXMa9JRsZ0O8k6bHSXz7NkaT6RQtR5Bak9nnF+tplV3Zh0M3LAarvSLeXfDc2l2/tGMdOnXYqpmHaOadd2Kab9Y0Jc1wqLzY/4iY2U0Dvqb/hC8sO3qyLGIE8k79iHsDbUQMCyz/FTTMV0O6jymG2dtlFizuBMnjyZ5557jt13373V+5999lkmT57cbgzLsigpKQlXtJWUlLBw4cJYm5BS1qZaMBonMLCaZr5rdbntbayNtQTeXhfXviOTbq4+3Zt0C7y9Dmtj5Ado7M+188vN1jVYWGs798tJ4O11EbGT3E6bxezMudaaqufK2HjJDwAMfngMxUf363JMiO5e2tqYbi3PPUj31yQjY9YHE3KeJUvz7qWtn1eQDp9t3Zp02/b+rG0j6WaL74ZWpcn7RjHTsF2KqZh2jmnXdimmnWPGeq0QtIJsYAsAgyJmKwXwGE2VblVJqnSz1lY3zRppo+OnmIpp1dURC0fHm4TMnTuXW2+9lbvvvptgsGmHwWCQu+66i9tvv505c+a0G8OyLMaMGaOx2+IUSGGlm0iwIjnnn7qX9gzrTl/Byt2/ZPXsrzHrmn/hJV8mdS9tTLoZWQaO7Ji/vjsl1L009N40rfQ+biIiItJ5mykjSOhvkMHNk26R3Uutmm5tl0i6iPkK+vDDD+d3v/sd5557LldccQWjRo0CYNWqVVRXV3PJJZdwxBFHtBvD4XAwduxYtm7d2u74cBItqntpn6wUtkR6omR1b46avVQTKWQs37d11H8e+iPMSHKiqDWZNJFCY9It2VVuADlGNjT+qIyPPHLbf4CIiIhkpHXWxvDtyPHcIDRcTBYu/ASSVukmku7iuoL+4x//yKGHHspjjz3GihUrsCyLmTNncuyxxzJt2rSYYvzpT3/ikksu4b777tPECTEKlvnDt529kn+xJRIpWJ6kpFvEeBANqnTLWEFvU6LIcBjdvv/iykJuenYuzqDB0LFDgY0dPsaugtWhpGF3JN3yaBq/sU5JNxERkR4rcubS5pVuEKp220qFJlIQaUPcV9DTpk2LOcHWmhNPPJHa2lp22mkn3G43ubnRf8iXlZV1Onamaqw0cnicGFndXykiPVuykm4djekmmcH0bvv8KkrNDwYlG4uZffZOABSf2I90TrqFK90Kkv89kBuVdGt9XDcRERHJfOutzeHbg40BLe4vNArYalVQnaSJFETSXUxX0GvWrGlz1tLWrFu3jsGDB7d63x133BFzHAlpTLo5e2s8N+l+UUm34mSN6eZvZ0tJZ+a2SjdnN1RntcrZVF1nBa3UtCEBrICFVbet0s2T/O+CyKT4/YH/44asC5K+TxEREbGfyEq3QZS0uN+zbQZTVbqJtC6mv9ynTp3KYYcdxmmnncbUqVNb3aayspJ//etf3HnnnZxxxhmce+65rW530kkndb61PZBlWkq6SUo1Jt0cHieGK3HdA3OixnRTpVsmsgIWZs22RFGKKt2MiKRbOg/pFqwKkD0hF7PeJGtg8sf2vDHrIsoaKnnP+ox7g49xvet8DKP7uweLiIhIam2xyuhDMR4KGGD0a3F/4bbJFHw04LMaooaQEZEYk27ffPMNf/zjH9lvv/3Iyclhl112YdCgQeTk5FBeXs4333zD119/zZQpU7jllls48MAD2423cuVKFixYwMqVK7nzzjspKSnhv//9L8OGDWP77bdPyBPLJKPe3oHAVj+GW11Lpfs1Jt0SPXOuy3DhwIGJqTHdMlRjd0hIYaVbxMdmOle64Qcjx4HRYCW04rQtA41+1FJHFaFJMHw0RFW/iYiISM+wiVK2UsFWKigxere4v9DIC0++VEVNVG8WEYm6HGlbnz59uO2229iwYQN33303Y8eOpbS0lOXLlwNw3HHH8emnn/L+++93mHBbvHgxO+ywAx9++CHPPPMM1dWhMtQvvviCq6++uotPJ/P4f/Sx5qhlbP7DGuo+qEp1c6SHsSwraUk3aOrCVq+kW0YKVjZ1TXYUpahSN7LSLdj2ZnbnKsli9Ac7MvabyQy6b3S37DPPaBpztVbjuomIiPRIW60KAAwMelPU4v7GSjcAr6UupiLNxXUVlJubyxFHHMERRxzR6R1eeuml3HDDDVx44YUUFhaG1++zzz7cfffdnY6bbM5d+8P3daEsvgGGx43lbYhaBlqsa77sGFKAa/bwmPcb3Bog8FMDgZ8ayNuzsOMHJJj7lO0JvLqG4Ddb436u8S63FdPIz8KxXa9Ot79h/jdYlb6kt9NuMeM911pjVpvhX66SkXTLJota6vC1knRrPPfMn6oy5jXJxJhGkRv3Ka1XKEdWujk8qepeGrFgWlHnFbR8nq2ts+NnW3fIJzLpVhf1h3aqvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8cEYr5W2EI5AL0pwmm0/HvOYzQl3aq3VcgnkvNngzC/L8eq8dvm+CmmYhoeN84BhfBBx+dwt5cefPXVVzz++OMt1peUlFBaWtrdzYlZwSu/wuPxdPt+A1ubBph39kn+OD7N5Vy5G1y5W7fvN1Fyrtwt9BykU5yFTibW7I5ZFcRqsBIeP1zp1sqYbul+7gkEKyO6l6Yo6YbDCN+0gpbOqzhEzmBaa9VB06HUcRQREekhtlqhpFtfo1er9zdOpBDatjLh+y94/dcJjymSEF4vFP22w826PelWXFzMhg0bGDlyZNT6zz//vM0ZT3uyqJkjk1BpJNIe/08+Kh7bgrOXi9xdCnD1S2zi1224wUJjumUo9/BsBvx5BMGqAHm7dX+lLhA9kUIady9NhTwjIumm7qUiIiI9js9qCI/v2ofWk27jjdGMMYazxlrPhoiZTkUkpNuzOEcffTS///3v+fe//41hGJimybvvvsvFF1/MiSee2N3Nsb3g1oikWx8l3aR7+b6vZ/NVawHoe8kgcncp6OAR8WmcwVRjumWmrKHZ9Dl3YGobETmRgpn4as3uUvVSOaV3rMdR4KTP3AEU7Fuc9H02714qIiIiPcsWysK3+7VR6dbHKGaF9SMA32/7X0SadPt0mDfeeCPjx49n6NChVFdXM3HiRGbMmMGee+7JH/7wh+5uju2p0k1SKVgRcf4lYcbE7HDSrWX3UpFEMLIMXAOzcA12p6SLfqI0/FBP7Vteql8uJ7DJ3/EDEiA3IulWYynpJiIi0tM0TqIA0LeVmUsBJhhNEzx9Z61MdpNE0k5cV9F+v58zzzyTK6+8skX30Fi53W4eeOABrrzySpYuXUp1dTWTJ09m7NixnYrXXSr73I8VMZNbVxiD8/GsPiWmbVNd6eYdOR9rXeIHxIybw6Cofm7cD7NN+1MknnOtNcGyiPOvd/JmL23Aj2VZGEZTV8Ce/tqlk66eZ8nkLHIx7oddw8u2O69i/GwzqyMmpSjonvHx8iO+8+qadS+13XEUERGRuHX0N9wWq6nSrQ/FrW4zwhhMNm58NPCdtSrRTaQy525I494Kkrm8Mf4oHVelW1ZWFk8//XSnGtTcsGHD+MUvfsFvfvObTifcbrrpJqZOnUphYSElJSUcdthhLFu2LHx/WVkZ8+bNY9y4ceTm5jJs2DDOPfdcKisTP8BjsqjSTVIpqtItKbOXNs1C2NoMppLevC+UsekPP7Llz+vw/6Rqxq6Imgm2sHuSbnloTDcREZGeyLIsLMviseB/wuv6tVHp5jScbGeMAGCVtZZf++ZweMNc7gw83B1NFbG9uLuXHnbYYTz33HNd2umDDz7IpEmTyMnJIScnh0mTJvGPf/wj7jiLFy9mzpw5fPDBB7z22mv4/X5mz55NTU3o1/f169ezfv16/vKXv7B06VIeeughFi5cyKmnntql9nenVFe6Sc8WVemWjKSboaRbJqv5XyWlf17P5j+sIbCxe7pEZqrIpFt3zQQbOXupupeKiIj0HGZVkG+LPsRzj5Mpq8dxpuNojnYe1Ob2f8u6nqXul7jIeQrLrR953XyP6wJ380LwjW5stYg9xX0VPXbsWK677jreffdddtllF/Lz86PuP/fcc9t9/FVXXcVtt93GvHnz2GOPPQB4//33ueCCC1izZg3XXXddzG1ZuHBh1PJDDz1ESUkJn376KTNmzGDSpElRlXmjR4/mj3/8I8cffzyBQACXy/5JrHClmxHqJiXSnczy7uleCqFx3YpIzQyXkhxBb9P5013VWZkqWJXq7qVKuomIiPQUgY1+LJ9F3lo3vSo9jHIMbbPSDWCKY3sAik0PbiMLn9WAD6ikqptaLGJfcV9FP/jggxQXF/Ppp5/y6aefRt1nGEaHSbf77ruPBx54gGOOOSa87pe//CU77rgj8+bNiyvp1lxjt9Hevdv+QKisrMTj8bSZcPP5fPh8Td2gvF5vp9uTCP0uG0LDGh9mTRDDaXT8AJEEiuze7EjCRApjjGHsaUwhSDBUSaNTPKOYlRGJoqLUJN0s0+KnE5dD0MI9NnJqgPSSmu6lkbOXqnupiIhIT9E4adPx98ymT9ZABuw+IqbHnec6iV4UcUYgNEFinaW/H0TivopevXp1l3bo9/vZddddW6zfZZddCAQCrTwiNqZpcv755zN9+nQmTZrU6jalpaVcf/31nHHGGW3Guemmm7j22ms73Y5EK/vHJgy3QfaEdL1UlHQWTHKlWzW1vGd9BuiXsEwUTEGXyBYM8P57KwC5uxWkcdLNDN/urqSbupeKiIj0TIFNTcO+uPq729mypchKef1oJ9KJMd266oQTTuC+++5rsf7vf/87xx13XKfjzpkzh6VLl/LEE0+0er/X6+Wggw5i4sSJXHPNNW3Gueyyy6isrAz/W7t2bafb1FVW0KL65XKqniuj5vX0mfxBMkc46eYycOQn/uOiL01VqaVWecLjS2qFK91cBkZut3/dAKEK7HAFZTB9Z76Kmr00Ce/F1rQ3e6mIiIhkrsixeF0DsuJ6bORETDUankIk/kq3U05pe0phgPnz53cY48EHH+TVV19l9913B+DDDz9kzZo1nHjiiVx44YXh7W677baY2jR37lxefPFF3nrrLYYMGdLi/qqqKg444AAKCwt59tlnycpq+4MjOzub7OzsNu/vTsmuMhLpSPVoHy6/E6fDGUpeJFg/o1f49hbK2tlS0pG5bUw3pyc550/MnAYELKxgx5vaVWP3UkeBA8PRPccyevZS/dEsIiLSUzR2LwVw9Y8v6RY5mEetKuVF4k+6lZdHV6P4/X6WLl1KRUUF++yzT4ePX7p0KVOmTAFg5cqVAPTt25e+ffuydOnS8HaxXKBZlsW8efN49tlnWbRoESNHjmyxjdfrZf/99yc7O5v//Oc/5OTktBLJnqJmjlTSTVLg5wvmUUUN2xkj+ZIXEh6/T0TSTZVumSfo3ZYoSlXX0m0MB1gAZvpWurlHZ+Ps5+q2SRQgekw3dS8VERHpOaK6lw7ofPdSVcqLdCLp9uyzz7ZYZ5omZ599NqNHj+7w8W+++Wa8u2zTnDlzePzxx3n++ecpLCxk48aNABQVFZGbm4vX62X27NnU1tbyz3/+E6/XG54YoV+/fjid9p5NT0k3SSW/5aeKGgB640nKPvqipFsmM7cl3VI2nlsjpwGkd6Vb7u4eApv9OPK6r5tunv5oFhER6ZGiupfGWemm7qUi0RKSyXE4HFx44YXMmjWL3/3ud4kIGZPGseFmzZoVtX7BggWcfPLJfPbZZ3z44YcAjBkzJmqb1atXM2LEiJj3lX31bjg/8ULQBJcDx8B8zPU1UctAi3XNlx2jinBN7R/TPoNbU590y3toNoGPNxF4Z33czzXe5bZiOkpycU7q0+n2Nzz5PebaqqS3024x4znXWlMRMbFBsZGcpFvk1OOlRCfdGs89c1VlxrwmmRjTMawQ95HbtXhtzXoTqyFUWZaqmUsbGc5tlW5BK+q8gpbPs7V1dvhs6/e7wck4NO1q74/mVH83NJdu7xvFTJ92KaZi2jmmXdulmPaPCbR7reAocpI7tQCz3oz7OjRyIqbaBMxemnPLdIJLt2JuqbPN8VNMxXQMzCd7kBOu7PgcTlgmZ+XKlTHNPlpfX89dd93Fm2++yebNmzFNM+r+zz77LOZ9Wlb7XYVmzZrV4Taxyjl3MgUeT0JixcoOY7q5Zg7BNXMIXLxLSvbfVeH2S9zKrabJO3pRlJR99DGKw7dLrbKo+/TapTerwaRg/2KC3iA52+eltjHO0HAFlqnzKh6R3UuXmz9iWiYOI1Rpl+7fDSIiItK22re9BDb4cQ12xz2WbKIr5bPPndzlGCLJEPB6k5N0i5zoAEKJrw0bNvDSSy9x0kkndfj4U089lVdffZUjjjiCadOmpXZwbZsLbG0q61X3Uulu5XjDt3sbyUm69YuavbQiKfuQ1HB6XAz/z4RUNwMIjekGkM6zl6aC28jitayHOMZ/AZso5TT/Fcx335TqZomIiEgSWUGLwObQdWi8XUsB8iPHhKU2Ye0SSVdxZ3I+//zzqGWHw0G/fv249dZbO5zZFODFF1/k5ZdfZvr06fHuuseJrHRz9Y7/A0+kKyIr3YqTNKZbtuGmkHyqqGnRvVQkYRor3dI06WYFLMx6E0e+o9t/qNrZMSH83vyJjd26bxEREel+wVI/bBsHtzNJt1yyw7cT0b1UJN3FnXTr6kQIgwcPprCwsEsxUqH+r5/jSOCYbrF0b7LDmG6BxT/ZZky3zpQWBxb/1OPHdOtsV7ruqHQD2NMxGa9VQ6ERPU5T47mnMd3sHbNxTDc7d9ksOqovZk0QV9+sqPMK7DGmW0efbfVf1rBqj6/AgN5zBzLwLyOSerwiFRr5eCjASzXrrE3h9an+bmgu3d43ipk+7VJMxbRzTLu2SzHtHxNo81ohsCliEoU4Zy4FcBku3GTRgD8h3Ut9f/1cY7oppi1j1g+Kbdzqbs/k3Hrrrfz+97/n/vvvZ/jw4d29+07zXfsh2RH905tPgtfapHhtbdMwOB/P6o6rAgv2LcLIdhAsC/WnT4Xak1/FWlcTtS6e59rZ5ch1QcDvMDqVdGve/mS2044xYz3XWhNV6ZakiRQAyqxKPra+wrAMAlYAlxH6WGrt3IP0f00yLWYQCLz8Q4vzzL+hgYbv63AUucga5k5pte7A20aGb3tHzm/1vAL7fraZVdseYYHh7v4hGQYb/fFa1ay3NmNZFoZh2OK7oS3p8L5RzPRsl2Iqpp1j2rVdimnvmK1dK0TNXDqgc3+/5ZNLA/6EzF5a/7t3wQz1VrDb8VPMnh3TZ8V2fseddBs5cmS73VtWrVrV7uN33XVX6uvrGTVqFHl5eWRlRb+Ry8rK4m1Sxmr40YfhNsiZmIerr8Z0k+4VVemWpIkUAPoavcACC4syKimhczPVir3U/K+SdaeuAGDAHSPpc/aAFLcofYWTboCzsPtngh1klPCttZI66inHm9TPAxEREUmtwKaG8G1X/84VfuSRSzle6tS9VCT+pNv5558ftez3+/n8889ZuHAhl1xySYePP+aYY1i3bh033ngj/fv310QK7aj8v1LqP68BJ/S5aFCqmyM9TIXVlHRLZqVbXyNyMoVySgwl3TJBsDKie3xR9yeKMkmwuinp5ijo/mM52Ogfvr3e2pTU7uYiIiKSWv6I7qVZnax0yzVywILaBFS6iaS7uJNu5513Xqvr77nnHj755JMOH//ee+/x/vvvs9NOO8W76x4nWBa6aHX2dik5Kd2uLKJ7aVIr3SgO39ZkCpkjsjrLkYLqrExiVpnh26k4loNoSrqtszYxie26vQ0iIiLSPaK6l3ZiIgVomsE0Ed1LRdJdwvos/uIXv+Cyyy5jwYIF7W43fvx46ur05otFOOnWS11LpXvcFXiUD80lrLU2Uo+PoQyk2CikXxKrz5pXuklmCHojukSmuNJt5e5f0rCiHmexk3Ts5BqVwPR0/7Gc4pjIr6z92Gxt5dbAg/w9+CR3WeNpOZ2BiIiIpDuzJoh7+1yc+U6cnUy65ZIDQAP+qDGbRXoiR6ICPfXUU/Tu3bvD7f70pz9x0UUXsWjRIrZu3YrX6436JyFmgxm+0HL2Sd0A5NJzBKwAlwRu5inzFb62luOhgBHGYH7p2Dep3cn60it8e6uSbhnDrIxMFKX2Dy2zOohZFYxKBKYTM6J7qTMF3Ut/6dyX/3PfzizHbliA16rGwur2doiIiEjyNayop+HrOuo+qu78mG5GTvh2bQJmMBVJZ3FfCU2ePDmqq6NlWWzcuJEtW7Zw7733dvj4Aw44AIB99903an3jjGjBYHpeFCWaWR4xHpIq3aQbbKUifDuPHDxGAUD4/2TpazQl3baoe2nGMKsiPsNSUJ0VyXBu+84y29/OriKThansqusxCsKfBwYGKPEmIiKScQIbQxMpOAocnf6xL29b91KAW/0Pcq279SGqRHqCuLM5hx56aFTSzeFw0K9fP2bNmsX48eM7fPybb74Z7y57pEBZ0wWrq4+SbpJ8kV07D3DO4O9ZN3TLfiOTbqWWZi/OFMHK1HaJjLKtptsKpmeSKLLSzVGYsAL1uJ3nOonzOAkArzEfi5qUtUVERESSI7BtIgXXgM5VuQHcmfUHPP4CXjDf4M/mg1xhnYPbUO8t6ZnizuZcc801XdrhzJkzu/T4niJYpko36V5bIpJukV0+ky1yX6VWRbftV5Ir1eOQRWmsdEvXpFtVamcvFRERkZ7BrAuGhwhxdXLmUgjNfB4gSNW2H+hWWD8y0RiTkDaKpJu4fzJ3Op1s3ry5xfqtW7fidMZ2MfD2229z/PHHs+eee7Ju3ToAHn30Ud555514m5Oxglsjkm6qdJNusDWia2dk9Vmy9aUXuxk7sqcxhVyyu22/klyNlW5GjoHDnbrqLEj/7qWG2yB7h1xypuRjKOkmIiIiSdJY5QZ0ejy3RuMdo8K3v7NWdSmWSDqLO5tjWa1XCvh8Ptzujt+YTz/9NCeccALHHXccn332GT6fD4DKykpuvPFGXn755Xib1C2Ktp6Fx+Pptv1FVbr1Tl3SzbP6lJTtOxHSvf3dqTSq0q3jSVESxWMU8JW1nFrqohJ/eu3SW2OXyFRPogDAtjyVFbTS8rzq97vB+Df4MasCuIptcDzR+1NERCQTRSfdutYddLyRmKRbUf3cLrVDJFkMrxeKft/hdjH/9f7Xv/41FNgw+Mc//kFBQdPg6sFgkLfeeiumMd1uuOEG7r//fk488USeeOKJ8Prp06dzww3dM4ZUOnD1z6LgwF4Ey/xkDVf1jyTfFprGU+trFHfbfg3DYLDRn+XWD6yzNnXbfiW5xn43GbPGxKpJ/eQ4hiO9K92yJ+SRPSHVrRAREZFM1ziJAnSteynABGN0+PY35vIuxRJJZzEn3W6//XYgVOl2//33R3UldbvdjBgxgvvvv7/DOMuWLWPGjBkt1hcVFVFRURFrczKeI99B4cG9cPVxkTetMNXNkR5ga8R4an2N7qt0AxhklLDc+oFqavFa1UmfMVWSzzCM0IxXdugOGdEEy7SaknAiIiIiEhasCJA9IZdgZbDLSbcxxjD2NfbgM+trPjS/xLKsqAkZRXqKmJNuq1evBmDvvffmmWeeoVevzo35NGDAAFasWMGIESOi1r/zzjuMGjWq9Qf1QJVPlFL+YGjsvFEf7kiuJlOQJIucObQ7J1IAGEz/8O311iYl3SShwmO6QWgyBSXdRERERFrw/9iA79s6AFwlXRvTLcvIwjQsyi0v5XhZZa1ltDEsEc0USStxZ3LefPPNLu3w9NNP57zzzmP+/PkYhsH69et5//33ufjii7nyyiu7FDuZqvd/Fuv7OrAAAwyPG8vbELUMtFjXfNkxpADX7OHkXLlbu/sLlttjTLf66z8k8Ooagt9sjfu5xrvcVkwjPwvHdr0oeP3XnWp/w/xvsCp9SW+n3WLGeq41KjDy2dOYgh9/tyfdBhkl4ds/WZsYz+jwuWf+VJUxr0kmxjSK3LhP2T7qPGsc+9Muv2b2+8NQgmV+DKeB76aPCbwWOq+g5fNsbV2qP9sqnyrFke/ENdBN7s75STpK8Un1d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5hAq9cKUd1LB3Yt6QYwyzGNN80PAHiv/jNG58WfdKv++TOY35dj1fhtc/wUUzENj5vqAbFNFmdYbc2M0I6ffvqJ//znP6xZs4aGhoao+2677bZ2H2tZFjfeeCM33XQTtbW1AGRnZ3PxxRdz/fXXx9uUpPN6vRQVFbHGdTMeIzchMY3B+R0OQv3D/l9Ts8gLwPit00LdtFLAO3I+1rqalOw7isPo1CCatml/isRyrjWa6vs1X1nf4yaLyuzPujVhcn/g/zg/8EcA/u66gRNdh/X41y6dND/PfN/WsnLqlziKnBSf0I8BfxqRusY1Y7vzqoPPNstv8k3BhwDkTS9k5BuTuqtl7bLdcRQREZG4Nf8bbs3h31H1YjkA2/2wC1ldTLx9V7aCn65cxcBFxXgmFzP0n9vFHaMy524w405ZiCSd16pjWOD3VFZWtjvpZtwlVP/73//45S9/yahRo/juu++YNGkSP/zwA5ZlMWXKlA4fbxgGV1xxBZdccgkrVqygurqaiRMnRk3MIE2zlxpuA0d+bBlUCbkz8DBvmR8z0hjCJVYROaluUJponL20H727vUIpstLtL8EHed58nbus8dijpkfiFawKYvktgqUBrAb9kdQVwaqmiSgcdhgfT0RERDJWePZSA1z9ujamG8A4z2isJ8swq4LUeL0a1016pLizOZdddhkXX3wxX331FTk5OTz99NOsXbuWmTNn8pvf/KbDx59yyilUVVXhdruZOHEi06ZNo6CggJqaGk45JbaKnJ4gsC3p5uzj0gdTjNYe+z3LRn3Kqru+55vgCu4NPk4tdaluVlqwLItSQkm3vkavbt//DMdUPnQ/xQXO39KfPnitaiyUrElXZmVEosijRFFXmN6IY1moYykiIiLJE9gU6sXm7JeF4er6NajhMsjbK1QBFNzsD48XJ9KTxJ10+/bbbznxxBMBcLlc1NXVUVBQwHXXXcfNN9/c4eMffvhh6upavtnq6up45JFH4m1OxmqsdHNqAoWYBbb4CaxrIG+tm4ARZG9jN/oYxaluVlqopAo/oXMuFces2PCwk2M8A4y+eIwCPEYBBko2p6vI6iynJ/WfYb7v66j9sIra97ykWy7XrFbSTURERJLPsiwCG0OVbq7+Xa9ya1T4i2Ly9vKQvX0uNYsqExZXJF3EnXTLz88Pj+M2cOBAVq5cGb6vtLS0zcd5vV4qKyuxLIuqqiq8Xm/4X3l5OS+//DIlJSVtPr4nMetNrFoTCFW6SWwsX+iYHX/PbJZlvcJL2Q+kuEXpY6tVEb7dl94pa8d5rpN42n03T7vvpsDIS1k7pGvMyqaJYOxQ6bbx9z+yesZSVu/9NZipbk18zKqmBqt7qYiIiCRLsLxpWJBEJt3ydi+k9m0vvq/rqHlDSTfpeeLO6Oy+++688847TJgwgQMPPJCLLrqIr776imeeeYbdd9+9zccVFxdjGAaGYbDddi0HUDQMg2uvvTbe5mSkxio3UKVbPMJjR7kMHE6NgxePLZSFb/dLQfdSySxBb2SlW+oTRUbqm9BpZmTVYKE+10RERCQ5wuO5QZcnUIiUPSkPZ18XwdIANW95sYIWhlM9WqTniDujc9ttt1FdXQ3AtddeS3V1NU8++SRjx45td+bSN998E8uy2GeffXj66afp3bupmsbtdjN8+HAGDRrUiaeQeYJlTR94zj6J+5Uh0/W9eFCoJDrNKlnsoHESBYA+SrpJF0WNQ2aDpBuO9P3DLlitiRREREQk+QKb/eTuVoCRZeAel5uwuIbDwHNYb3zf1WHWmdR9XkPerppEUXqOuJJuwWCQn376iR133BEIdTW9//77Y3rszJkzAVi9ejXDhg3T5ADtsALgHpdLsDyQkFljeoqiI/qmuglpKzLp1g8l3aRrTFW6JUxkpZvDBuPjiYiISGYKbGig7sNQcY3n0D4JjZ2zUz7l/9gMQO2iSiXdpEeJq6+K0+lk9uzZlJeXd7xxG4YPHx5OuO2www6sXbu207Eylaufi0F/HcmIlyfQ92JV/0nyNc5cCtDXSN2YbpIZIidScBTZIFEU0YXBSreJFCKPpbqXioiISJI0TqIA4BqQ2MKP/FlF4dvVb2pcN+lZ4r4amjRpEqtWrWLkyJFd3vkPP/yA3+/veEMbMPrnQSmEpr4zwO2ABjN6GVqua7ZsFGfj2mtwu/uqWljBhnNWATDovlH0OqV/kp5Vx1x7DSaw6CeszXXE+1zjXm4rpsvAGJjf6fb7n1sJDcHkt9NmMWM51wDqvqhh5Mp+TN1te+qKGhjlHtqpY51o4XOvwpcxr0lGxnQ7W5xnURMp2GDGTSMiV+WcOgDzkw2h8wpSezxj+Gwz60yMfAdWjYnTRt1LU/7d0Fy6vW8UM33apZiKaeeYdm2XYto/JrS4VghsbAjfTuRECgDusTnk7JiLkefEarAwfSaO7Fa+z1thDC3A2lADAcs+x08xFdPtwPDkwbq2ztwmcSfdbrjhBi6++GKuv/56dtllF/Lzoy8YPB5PvCHTguebE7vtuQXLIyZS6J3aKpG8R/ZP6f7j4VtRh+E0cOQ5cPUPDf6ZTu1PlZo3Kxn/+35MvnQUnl/3Zqedxqe6SYBeu3T2rwsX4f21lyJvASP77UzihuLtpIhKt6yb9yZ7bOLGKUk2q8EM/ZEJGDZKuun9KSIiklkiJ1JovJZKFMMwyN4hn8rHSgGo+7ia/J/Fdm3tWX5yQtsikiiG1wtF8zrcLu6MzoEHHgjAL3/5y6hx2SzLwjAMgsFgWw9tYa+99iI3N30ufrpLcKt9km7pZNXuX2FWBcken8uYL3ZOdXPSRuMXbH5VDkU5mZk0l+71/I6L+WiHLwE4L/uMFLeG6IkUzNQ1ozNKrhhKyRVDsfxmWk8IISIiIvaWzO6lEOpi2ph0q1lUGXPSTSTdxZ3RefPNNxO285dffjlhsTKJnSrd0onVELqaNty6MI1HYFOolPz4e2Yz5oydU9sYyQheQoPwFpKP0wazGEQ2wTKt1DWkC4ys2LpgiIiIiHRG4zWBkWPgKEr832/5s4ow8gyyx+fhX+NLeHwRu4o7o9M4C2lXrF+/nnfeeYfNmzdjmtFlB+eee26X46e74NamXxmcvTV7aSwsy8Jq2NYFS0m3uAQ2JPdXLel5vNa2ma+wycxUzvStdBMRERHpDo29X1z93VE92hLFPSybrCHZ1H9Wg++rWgbeMRJHXup/nBVJtk6VUb399tv87W9/Y9WqVfz73/9m8ODBPProo4wcOZKf/exn7T72oYce4swzz8TtdtOnT5+oN7RhGLZNulUO/QdWXURCwmFAZMVEY7ef5uuaL+c4cU4bQMGrv2pzX8Ey+1S6Vc9+luBHG6G2qU0xP9d4l9uKaQBF2RRtbqebWpDQmIaA4W6qCKme/SzBt9Y1xU1mO+0WM4ZzDSJ+1cpOzq9anRU+9+qDmfOaZGJMh4FzxuCo86yx0s1j2CPpNvAvIxhw03BwGtT9+nkqP94UOq8gtcczls82m0r5d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5gQda1gNpgYLgOcyf0RPn8vDw3f12P5LWrfq6Lg58UdPqay5O9Q6Qtd69nl+CmmYjoMvNlNk4+0J+7+Kk8//TT7778/ubm5fPbZZ/h8odLQyspKbrzxxg4ff+WVV3LVVVdRWVnJDz/8wOrVq8P/Vq1aFW9zuk/khQVEH/DG5dbWNV+uDWAuL293V41JNyPPgSMntV2KzOXlrT/3WJ5rvMttbWMB3vZP6MaupRBd6WYuL4+Om8x22i1mDOcaRPyqNSA5v2p1Vvjcy6TXJBNjmlbUeRa0glRTC9in0s2R78RZ7MJZ6MRcUdF0XqX6eMbw2bb5urWsn7eKTVeuaXe77pby74bm/xIRMxntVMz0b5diKqadY9q1XYpp/5imFXWtENziD43pFoSsYcmbAit/7yIwIHtCLnVLqmN7kLchXFxhm+OnmIq57T0Ui7gzOjfccAP3338/DzzwAFlZTVnw6dOn89lnn3X4+NraWo4++mgcDo1P05bGpFuqq9zSSWPXUoiudJP2WX6TYGnofFPXUkmEKmrCtwuN/Ha2lFhU/ruU8r9vouy+jaluioiIiGSoyJlLncXJuybIm+HBUejE920dVc+WJW0/InYSd3Zi2bJlzJgxo8X6oqIiKioqOnz8qaeeyr///e94d9tjWJYVTrq5lHSLWXTSzT7VWnYX2Bw5NbiSbtJ1lTT9allEYQpbkhnM6lA3WEehfkwQERGR5Ej2zKWNsvq7yRqWDUDdZzUEK2KrFBJJZ3FndQYMGMCKFSsYMWJE1Pp33nmHUaNGdfj4m266iYMPPpiFCxeyww47RFXLAdx2223xNimjWHUm1raekqp0i53la717qbTPv9GPa2AWziIn2ePzUt0cyQBVVlPSzS6VbtWvV1D7QRUELbLT7G87syr02eYo1PeBiIiIJEfjGM8QmkghmfJnefAtrSVrsJvaD6ooPKBXUvcnkmpx/xV/+umnc9555zF//nwMw2D9+vW8//77XHzxxVx55ZUdPv6mm27ilVdeYdy4cQAtJlLo8VwGY7/dGSPbERpkW2Ki7qWdE9zkJ7Ah9M/zG51w0nV2rHSrfr2CrbdvAGBIH6uDre3DMq1wpZtTlW4iIiKSJJHdS5M95EzBfsV4nynDv7aB6tcqlHSTjBd30u3SSy/FNE323XdfamtrmTFjBtnZ2Vx88cXMmzevw8ffeuutzJ8/n5NPPrkz7c14vm/qWLXblwD0OqM/g+7quHpQ2p5IQdoX2Nh9v2pJz2DHSrfwjEVpxqwxwwMHOwrsM7OwiIiIZJbu6l4KkLd7YfgapObNyqTuS8QO4v7p3DAMrrjiCsrKyli6dCkffPABW7Zs4frrr4/p8dnZ2UyfPj3uhrbmpptuYurUqRQWFlJSUsJhhx3GsmXLorapr69nzpw59OnTh4KCAg4//HA2bdqUkP0nQ+N4bgDOYnUnilXW6BzGfjeZMV/uTMk1Q1PdnLQR9auWxnSTBLBjpZvhTNOkW1UwfNtRqKSbiIiIJEd3/hDvLHaROyX0w+yCA1/k9poFSd2fSKp1ur+K2+2msLCQgQMHUlBQEPPjzjvvPO66667O7jbK4sWLmTNnDh988AGvvfYafr+f2bNnU1PTNHveBRdcwAsvvMC///1vFi9ezPr16/n1r3+dkP0nQ7AsYuYYjekWM4fbgXtkDtnjcskanJ3q5qSNqC9YzV4qCeCNrHTDJpVukfmq9OldqqSbiIiIdIvu/iG+/59GcPOap3ngDy9yrfNufFZDxw8SSVNxZ3UCgQDXXnstf/3rX6muDl1cFRQUMG/ePK6++uoWEyM099FHH/HGG2/w4osvsv3227fY/plnnom5LQsXLoxafuihhygpKeHTTz9lxowZVFZW8uCDD/L444+zzz77ALBgwQImTJjABx98wO677x7zvrpLcGtEpZuSbpJk0eM3qHupdJ03stLNsEmlW7p2L62OSLqpe6mIiIgkybsnfEPRtDx6VRbiyE7+OLL5e3moaKjGa4b+bqyhjmx0LSKZKe6szrx583jmmWe45ZZb2GOPPQB4//33ueaaa9i6dSv33Xdfu48vLi5OWqVZZWWoT3jv3r0B+PTTT/H7/fz85z8PbzN+/HiGDRvG+++/32rSzefz4fP5wsterxcA1y9HYyzxgmmBw8Dom4tVWhe1DLRY13zZMcpD1r7D2nwOwXJ7Jd1yrpiG//W1BD/eGPdzjXe5rZhGcTbOHfp2uv2+B5Ziba5NejvtFrOjcw3s3b208dwzV1dmzGuSiTGNkjzeO6WaHwNPsNRczufmNwxjIL2MIkYaQ1Jw5rQiIl9lHLUDzo1bMVeHvi9SeTw7+myLrHRzeuyVdEv1d0Nz6fa+Ucz0aZdiKqadY9q1XYpp/5hA1LXCecf+mRrqGG+MYgkzY/pboKsKyAvfrqaW3hS1ul3W0dsR/KoUq8Jnm+OnmIpp9M3FNdQFT3d8rsed1Xn88cd54okn+MUvfhFet+OOOzJ06FCOOeaYDpNuCxYsiHeXMTFNk/PPP5/p06czadIkADZu3Ijb7aa4uDhq2/79+7Nx48ZW49x0001ce+21LdbnL9gPj8eT8HY3Z7dKN/dpk3CfNinVzehQww/1VL1UjuF2kDu1gNydQ93a0qX9qdLYvdTZy9ktv2rFQ69d+jitfgZbAmXkk8sUY3uGM5gZjqns7JiQ6qYB0WO6GT8fQ/7B01LYmtiZ9Sa5uxVg+S2cJfZKiuv9KSIikhmqrVpqqAOgv9G5QofOyDeakm61Vi200TEh76HZ3dQikfhYXm9MSbe4r7Kzs7MZMWJEi/UjR47E7U5dSeicOXNYunQpTzzxRJfiXHbZZVRWVob/rV27NkEtjE1kpZvLBkm3dOFbWsvGC39gw9xVVL9SnurmpA3XYDfZk/LInmSTsbck7Wy1KthCGRD6Q81jFIT/2Yaj6a84K9jOdjbjLHaRNciNs7eLrCHZqW6OiIiIZKBNVmn4dn+6L+nWvNJNJFPFndWZO3cu119/PQsWLCA7O3QR4PP5+OMf/8jcuXPbfezLL7/MM888Q+/evfntb3/LhAlNVRDl5eUcfvjhvPHGG/E2iblz5/Liiy/y1ltvMWRIU3emAQMG0NDQQEVFRVS126ZNmxgwYECrsbKzs8PPKxUCNqt0SxeW3wrfNrLsVbFlV8GqILVvVwGQPyv5VZySmb6zVoVv7+eYzp1Zf0hha1pnRH4kWFab29lN3u6F5D0xLtXNEBERkQy2kaak24DurHSjabiIaquu2/Yr0t3izup8/vnn/O9//2PIkCHstNNOAHzxxRc0NDSw7777Ro3XFjkpwuOPP86JJ57IAQccwLJly7jrrrv4xz/+wXHHHQdAQ0MDixcvjqstlmUxb948nn32WRYtWsTIkSOj7t9ll13Iysrif//7H4cffjgAy5YtY82aNeHx6GIVWLIF3/oNoT68hoHRJwerrD5qGWixrvmyo28ujoH5OAa2XllktzHdzA01mBtqCH5fHvdzjXe5rZhGcTaOAfm4du7Xdjt9Zvi24W6qajE31BD4qjTU/zrJ7bRbzI7Oteipwe3VdQ2azj2ztC5jXpNMjLm119eUTMhj84BaJhijU3CmdMw1yE3utAJwgCPYQOCzzZiloT/uUnk8Y/lss6tUfzc0l27vG8VMn3YppmLaOaZd26WY9o8JhK8VNpVEVLqlqHtpTTuVboElWzA31ITGdLPJ8VNMxTT65BDICRCLuLM6xcXF4QRWo6FDh3b4uD//+c/cdtttnHvuuQD861//4pRTTqG+vp5TTz013mYAoS6ljz/+OM8//zyFhYXhcdqKiorIzc2lqKiIU089lQsvvJDevXvj8XiYN28ee+yxR9wzl9bs+zROo+XgzZ1hDM7Hs/qUVu8Lbg0NbO/wOG1RsVW955NY62pS3QxwGBTVt11JaTVY4duRSTfbtD9F2jvXoidRsN9sQT39tUsXM4FFg47i0GVv2mYMt+aKj+1H8bGhxJZ35Hxq7HRedfDZZld6f4qIiKQ/Y3A+G5c39fLqb/Tptn3H2r20ZvcnQ4kOEZupibFCM+6kW2cnQli+fDmHHHJIePnII4+kX79+/PKXv8Tv9/OrX/0q7piNkzbMmjWrRRtPPvlkAG6//XYcDgeHH344Pp+P/fffn3vvvbdTz6E7DH9pAsGyIGZNGg08ZAPRSbfUJyvTQVTSbYD9Kt0kfWTj5kjHL9jdsXOqmyIiIiIicdgYMabbALqv+j66e6nGdJPM1W39Fz0eD5s2bYrqArr33nvz4osvcvDBB/PTTz/FHdOKYWyenJwc7rnnHu65556443c3y7RYsdMXOD1O8vYsJH+6xtmKldXQevdSaVtU99IB9qt0k/RhYNhr4oQMseHC1VS9UIajwMmwp8fjHpWT6iaJiIhIhtmUojHdCiJnL0VjuknmijvptnXrVq666irefPNNNm/ejGmaUfeXlZW1+rhp06bx3//+t0W3zpkzZ/LCCy9w8MEHx9uUjGN6g1i1JoFak2CFKt3iEVXplq1Kt1hEdy9VpZt0XoGRx3muk1LdjIwT2OjHv2ZbctypHxNEREQk8arMGvrRm3xy6U1xt+03X7OXSg8Rd9LthBNOYMWKFZx66qn0798fw4jtQuCCCy7gvffea/W+WbNm8cILL/DII4/E25yMEiyLmEShT+onUUgn0bOX6uI0FtGVbkq6SebyvlBG6Z/XgQl96syOH2ATZlXTjy+OQv2YICIiIom3ia1soYwtQG+jqNv2G5l0q1H3UslgcWd23n77bd55553wzKWxmjlzJjNnzmzz/r333pu999473uZklKikmw1mLk0n6l4av8BGe0+kIJIowVI/dR9WA2AVQbp8QpjVTUk3Z6EzhS0RERGRTFWBF4AcsskxsjvYOnEKIiYpVKWbZLK4Mzvjx4+nrk59rpNBSbfOq/X4MEY7oQGC+elTyZJKhssgZ2o+jlynKislsznSJc0WLbit0s3IMWwxm7WIiIhkngorlHTrRfeOJx41e6kq3SSDxf1X/L333ssVV1zB4sWL2bp1K16vN+qfdF6gLKLyqLe6+8Xjb2c9x5TPTmHK0lNYOv2HVDcnLdR9Vk39xzU0rKzHSNOkhEgsjG3joZmGiUX6TDnf2L3UoSo3ERERSZLGSrcio7Bb95uviRSkh4i7vKW4uBiv18s+++wTtd6yLAzDIBjUBACdpTHdOq+BpoSlGyUsO2IFLQKbQ8dMkyhIplt+2AbmHvoXlrt+5MsJJ1FYkeoWxSacdCtQ0k1ERESSo2Zbwqs4lZVu6l4qGSzuzM5xxx1HVlYWjz/+eFwTKUjHopJuvZR0i4eSbvEJbg3Atvy4km6S6Tx5BXzRsAyAAAE68dWXEo1JN43nJiIiIslg0jQsT3F3V7qpe6n0EHFfeSxdupTPP/+ccePGJaM9tpX3+AFkfVcHQQvDaWD0z8PcVBu1DLRY13zZMbgA55jiVvdhx0q3/IW/wlxRgf+zzXE/13iX24rp6JuLc2T7v7xEJt2yaZoUIH/hrwgs/ong+pqkt9NuMds71wKbImcuteckCo3nXnBddca8JpkY0zkoH9fMISk4Q2I3yhhKFi78BDj/hU/495obCK4LTayQyuPZ3meb2WBiNYS6wtqxe2mqvxuaS7f3jWKmT7sUUzHtHNOu7VJM+8cEcAwu4KfRNeHv0u6udHMbWfzKmM0X1rd4qeLV4DvMdv6sxXZ5zx1McHUlVmm9bY6fYiqm0T+P3F4WHPn7Ds/1uDM7u+66K2vXru1xSbes/UeQ95vkfhDZcSIF57heOMf1IuugkaluSrsarNYr3RrbL9ECGyJnLrVnpVv43Et1QyTtZRlZjDGG8621kjfGfoMxaSg5hj0+Y9vSWOUG9uxemi7fDSIiItK2reZXsO23+F5GUbfv/xb3JYz17QcWPBR8ptWkW9YBI3Q9ILbUEOOcBnFfdcybN4/zzjuPSy65hB122IGsrOi3wI477hhvSNmmzwWDKDykN8GtfrIGuVPdnLTij6h0yzL0sdyRqEo3mybdRBJpgjGab62V+AlwfeAers06L9VNaldpTjkv/f1TPNV5DB08mOFMSHWTREREJMM0zlwKUET3di8FKCQ/fNtLdbfvX6Q7xJ10O+qoowA45ZRTwusMw9BECglQ+pd1BNY14Ozjotfp/VPdnLSiMd3i498UUelm0+6lIon0B9c5/IFz+FfwZZzYr3KsudLcCq466n4Afus8nIPYP8UtEhERkUzTOHMpQC+je7uXQnTSrdqqaWdLkfQVd9Jt9erVyWiH7dWevwg+8YJpgcPAUZKHubk2ahlosa75smN0Ea5ZQ3Af07J7bv0n1TSs8uHs5bTNBBUN/7eMwOKfCLy3Ie7nGu9yWzEdfXJw7NCXvL/OarOdvjaSbg3/t4yG+V9jbqhJejvtFrO9c82sDuIa7CZY6idrgD2TlI3nnrmiMmNek0yM6RiYj/uU7Vs9z+xkomMMAFP+L48BiwNUr3oGaPk8W1uXis+2Kpr+8Iz8g9QuUv3d0Fy6vW8UM33apZiKaeeYdm2XYto/JoBjdBGeGZvh8NB3aSoq3ZyGk3xyqaEOL60n3WrPXYT5VSnm1nrbHD/FVExHSR61Q2NLpxmWZVmdfI/0CF6vl6KiIta4bsZj5CYkpjE4H8/qU1qs/27ARwTLg7hHZTP22ykJ2VdXeUfOx1png18dHAZF9XPbvPsXDafxpvkBAKXZH1FghN5Ytml/irR1rq094Xu8/9oKwJilO5M9NjHndiL19NcunbR1ntmR7c6rNj7bXg2+wy/9ZwFwufMsrspq+/MvFWx3HEVERCRu1YPgmGXv4yaL37vOYD/n9G5vw8j6vdnAFoYwgBU5r7e4vzLn7lCiQ8RmvFYdwwK/p7KyEo+n7UpRR2eCP/roo0yfPp1Bgwbx448/AnDHHXfw/PPPd661ghW0CFaEuuY6+9iz8sjO2ppIQVoXiOxeOtCdwpaISGuiKt0M+1W6iYiISPoLEOQj60vesT5lgNE3JW0oNAqA6L99RDJJ3Em3++67jwsvvJADDzyQioqK8BhuxcXF3HHHHYluX48RrAjAtgS+s5e9Z9Wzo6iJFOLvNd3jBDaGjpejwIHThjMjivR0VRHjmhTYsHupiIiIpL8AAQAcOBhrjEhJGwoJ9VCqogZ1wpNMFHfS7a677uKBBx7giiuuwOlsuljfdddd+eqrrxLauJ4kuDUQvu3so6RRvBonUnCTZZvx8OyscfZSV39VuYnYUbUq3URERCTJ/NuSbiOMweQY2SlpQ2Olm4lJLXUpaYNIMsWddFu9ejWTJ09usT47O5uaGpWEdlawPCLppkq3uEUm3aR9Zr2Jua0rs8umkyiI9HRV1IZve1TpJiIiIklgbetqNcEYnbI2RP6d09ZkCiLpLO6k28iRI1myZEmL9QsXLmTChAmJaFOPpEq3rlHSLXZR47n11/ESsaMqqzp8u0CVbiIiIpIEOWQzxdieccaolLWhkILw7ci/f0QyRcxJt+uuu47a2louvPBC5syZw5NPPollWXz00Uf88Y9/5LLLLuN3v/tdMtua0YJlqnTrCp8V6i6ppFvHGruWgrqXithV1EQKqnQTERGRJKjHx2fW1/Q2ilLWBo/RlHTzoqSbZJ6YszvXXnstZ511Fqeddhq5ubn84Q9/oLa2lmOPPZZBgwZx5513cvTRRyezrRktKummSre4NU6kkKWkW4caJ1EAdS8VsavIiRSUdBMREZFkyiU147kBFGybSAHAa6l7qWSemLM7kTOJHHfccRx33HHU1tZSXV1NSUlJUhrXk+TtWUjJ9cMIlvnJmZTX8QMkSrh7qaEkUkeClQHyflYIBmQNTd0XrIi0rTpiTDd1LxUREZFkyiEnZfuOrHSr1phukoHiGtOt+ayQeXl5PSfhltXsUDWfINNoY13z5SwHjv4tL6DqltTQsLwOTHD2sU/iyNE/v/XnHstzjXe5vW1ynLSnrTHdHP3zo+Mku512itnGueb/wUftO1XUvl1l667M4XMvk16TTIxp0Op5ZldR55Udjmcbn22R3UvtOJFCyr8bmv9LRMxktFMx079diqmYdo5p13Yppv1jGhDMgs39Q7OF5qZo5lIADx10L438W8kux08xFdOg5d/CbYjrinu77bZrkXhrrqysLJ6QaaNo4xl4PJ6kxa9ZXIn3X1sB6H3WgKTtJ14FHxyV6ibEpDHplk30GGXp0v7ulC7dS/XaSTKky3lVva17hQMHuSn89bkt6XIcRUREpHW3BeZzeeBvACn9W2M7RvJzY082s5Vl5mpo9ntkUcXZqWmYSAcMrxeKLulwu7iSbtdeey1FRakbZDGTRY3p1tu+1Ud2ZFmWZi+NQ/RECjpeInbk3VbpVkh+hz92iYiIiMSrDl/4dirHdBvuGMTrgfcAyDY1yZtknriyO0cffXTP6U7azcJJNyc4itrvSinRAjQlLDWRQscCm7ZVuhngKtHxErGTOwMP85b5MWus9UD04MIiIiIiiVJn1Ydvp7LSbZRjKDsa4/jSWsYyazWH+s7GZTiZ4ZjKea6TUtYukUSJOemmX9qTK7g1lDhy9nLpWMepscoNNJFCLBqTbs6+LowY+6GLSHJ9bn7D7Ibf4sBBLzxMZiK7OiZxtuvYVDdNREREMlAdEUk3I7VDWdzouoh8I5fXgu/yQvANlls/sMj8CAuL810np7Rt/9/efYdHVab/H/+cSe8h1ABJQJqgUhQLRYqCASyguKCiwsquusCCBewFRL+ggoCoKz9XARHEAiIrKzYMC9joSIcIIgiCkEJ6yDy/PzBDhmSSCU6YmfB+XVeua06Ze+5zck+GuXmec4A/64zuXnouymw3T+ZQkWSMZFknL+iYd9qyVHrdactWrTAFXZ2gsNeucopflPZH083HppbmDlumwi9/kTmQVeljrfSyq5hBNtkSoxS16fYyc8wv2XQ7baRb7rBlKpi/U8o7UfV5+ljMsmrNGKMTh05OLw2s69vDtx21dzS32vxOqmXMsEAFD2xe6m+ar3KqK8m757PE37bfTZrj5gm1Faeatlgl2OLVxJbohbNUMa9/NpzO3943xPSfvIhJTF+O6at5EdP3Y0oaXjNMjbpfqTHTVnh1eqkk9QjoKEn6wb5JYVao8kyBpAKlm+M63vod2fcdlwrtvnP+iEnM0AAdr+Fefbvd4bHb7e7uWi2ZfZmSFVa8dPJNf2rracuu9zHHC1X46V6FldxSaJc9s0iS7zXdCj/dK3Og5K2b3T/WM18+bV2hXfad6S5zLCin6Vb46V4pq3h7FefpYzHLqjV7RpFMvpHk+9dzK117kr//TqplzDLqzJeVXVeSt/+2HdGpmxDdG3iLRgTe4c7heI1PfDaUyU/eN8T0w7yISUxfjumreRHTl2PWPB6gHp8lSvLu9NKSRgUOVnvbRbq64E5JUp7yTv5byW5O7uBD54+YxDSZuXIHc8t8QFFakeNxQJxvN0J8UXlNNzjLO5IrBVmSfPvOpcC55qhJdzyuZcV5LxEAAHDOCbW8O9KtpFCdmo2Tp4Jy9gT8g28NqzpHFR091TTytZFu/qDQnDp/QZR0uVaft029jvxNSWn19E9zh0aombdTAiDpiDnmeFxLbo5VBwAA8ABfGekmSaElprrmlbjDKuCv6FD4gOLruUlSIE23Sis50i3E8u3rlHnbb/pdsqSf4w6piFIDfMbvSnM8rmXRdAMAAGdPuK823QxNN/g/vnb7AFuNQMUOqa2iYycU2jbC2+n4HaaXuu8387vjcT2rthczAVDSUUPTDQAAeEeol2+kUFLJqa6MdEN1QNPNB9izihTcKFQBFwcq7PJIb6fjd2i6ua9k062uankxEwAlHSnZdGN6KQAAOEtCFSLLsrydhgPTS1Hd0HTzATkrj+vw2F8kSQ3nNlNIU3+5D6BvyC9xgU2abuU75DTSraYXMwFQUvH00kiF+9TFjAEAQPUW5kOj3CRupIDqh7uX+oCiY6eu6RZQgz5oZRU43UiBplt5flOJkW4WI90AX1E8vZQ7lwIAgLPJl26iIHFNN1Q/NN18gFPTrSZNo8oqLDm91OL8leeQOSLp5IjAWEV7ORsAkpRccJeCFawmStBHga96Ox0AAHAO8bUR9gFWgIL+mJDH9FJUBwyrcpOtVZy0t0CyS7IkRQZJ2YXOy1Lpdact2+pFKPCaRKfYRcdONY18baRb0MDmOvH5PtlT0yt9rJVedhUzNFC282Jc5ljeNd2CBjZXwdvbpOOFVZ+nj8Usq9Z+M0clnbyemy9du6Esjto7lF1tfifVMmZkkIIGNv9Tv+uzyamuJO+ezz/+th0yR3RQhxWtSLUMaHK2TsWf4vXPhtP52/uGmP6TFzGJ6csxfTUvYvp+TEnb6vyqZT1+8bmRbtLJ0W6FOqE85cvWrrbsqRlS3gnfOX/EJGZkkGy1w6RNrqr4FMsYYyre7dyVmZmpmJgYZWRkKDo6ukpeY2/yFmWnZEqSzj96mQIiA6rkdaqT5UU/aKfZq5X2NfrZ/qsO6DfVseL0ROAw9Q7o6u30fNKJzEKNXvasjrXKUs16cZoS/bi3UwIgqUne1Tqg31RfdfRT6DJvpwMAAKo5Y4zC8i+SJF1qXaQVIe96OSNniXlddFjH1MhqqO0hS72dDlAmd3tFvjWs6hxVPL3UCrZki2DGrzves/9XbxV9KEm6WK3UyGqgLrZLabiVI+frTP19YC9JUtywetIULycEQJKUo1xJUoQV7uVMAADAuaDkjehCfexGCpIU8kdO+VzTDdWAX3d4/ve//+n6669X/fr1ZVmWFi1a5LQ9KytLI0aMUMOGDRUWFqZWrVrp9ddf906y5ShKO9l0C4gL9Pkpf74i2+Q6HkdbUYq2IhVtRXoxI9+XtTTd8Tjymliv5QHAWZZyJEmRoukGAACqXo7yHI/DLB+cXvrHdeZyuaYbqgG/HumWnZ2tNm3a6K677tJNN91UavsDDzygZcuW6Z133lGjRo30+eefa9iwYapfv75uuOEGL2RcthNHTzXd4J5cnWq6zQyeqHirthez8X3GGOVtyVF45yjZc+2K6Fo1U6UBVE6BKVShTn4GhCvMy9kAAIBzQayidJ9tsAp1QvcH/dXb6ZQSqmBJ3EgB1YNfd3l69+6t3r17u9z+zTffaPDgwerWrZsk6e6779aMGTP0ww8/VLrpllH7dRnjgS9ENsnWNFZRm++QJNnz7DI5dkm+2XQ7fuEc2Xenn7xgoDcF2RSTPdyxWPJ/ZyLK+aJ6/MI5su9Mr8rMfFeJWsvfnqvc77MkSRE9YmQL9/3rBvpM7aFCtuan/qb5Ol+rKxNkk07e30SRfjS91NfOIwAAqJxHbKHKbGpTw831vJ1KKcU3d8hTvjIiXpUK+QcHfE+mlVvxTvLz6aUV6dixoxYvXqwDBw7IGKOvv/5aO3fu1DXXXOPyOfn5+crMzHT6keS5LxZ2yWQXOhZNrl3hXaIVckGYgpv53igHU3yHDm8rcr7fR8nppWHlXIeg5Lk+55SoNX+cWuoztYcK+dP7zOfqquhUMv40vdTnziMAAKgUyy7FZvve909JCvljpJukUt8DAZ/h5r+FfW9olQdNnz5dd999txo2bKjAwEDZbDa98cYb6tKli8vnTJgwQePGjTtrOZoio7i/11VAXKCCm/refHpflfvHSLcgBSrICvJyNr4v66t0hbQOV0BMgN803YBzTYTlm//wBQAAOJtCrRCJXhuqiWo90m369On67rvvtHjxYq1du1aTJ0/W8OHD9eWXX7p8zqOPPqqMjAzHzy+//FKlOeZvzdH+O3bp52u36diM36r0taqT7OK7/fnRyBBvKcoqUs7yTOVvylHhvgKFnM8Xe8AX+dNINwAAgKpS8o6qhu4b/Fy1HemWm5urxx57TB999JGuvfZaSVLr1q21YcMGTZo0ST169CjzeSEhIQoJOXu3TS46dsLxOKBmtf11eFzOH9NLw8XowIrkrMqUOXHywyqyZyx3yAV8FDdSAAAAcG66Af6u2nZ5CgsLVVhYKJvNeTBfQECA7HbfuRCNU9OtRrX9dXhc8fRSX7zFta/J+m+abFE2hZwfrqjrang7HQAu+NONFAAAAKpKqEXTDdWHX3d5srKytHv3bsfynj17tGHDBsXFxSkxMVFdu3bVmDFjFBYWpqSkJC1fvlxvv/22XnrpJS9m7exEiaZbICPd3HZqeikjQyqS9Xm67Bl25a7NVnjnaG+nA8AFppcCAABIoSVvpAD4Ob/u8qxZs0bdu3d3LD/wwAOSpMGDB2vWrFmaP3++Hn30UQ0aNEjHjh1TUlKSnnvuOd17773eSrkURrpVXpEpUr4KJDG9tCLmhJG98OTU0vBOUQqICvByRgBKKnmVEq5RCQAAIIXxHQ/ViF93ebp16yZjXF9YsV69epo5c+ZZzKjyuKZb5eUq3/E4jLv9lcvkGZ04XKCghCBF3xjn7XQAlIPppQAAAFJIiZFuRkaWuCY1/Fe1vnupP2CkW+VlK8fxmJFu5TN5J69fWPhLoSKYWgr4NKaXAgAASKMCB2t78GcaFTBYouEGP0eXx00hI9vKtjpDshvJZskWHyH7wWynZUml1p2+bGsSo8BO9R1xi44VOh4HxPneryPsle4qWvWrClf+Wuljreyyq5i22mEKuKiWI6cck+d4XNHd/sJe6a6Ct7fJfiCryvP0tZi2pBgd/aJQtgMBskXYFHKhf32hL669otSMavM7qY4xbQ0iFXxnSy9UyJkpWVdS6eMsa11V/m1bfsGp65L6091Lvf3ZcDp/e98Q03/yIiYxfTmmr+ZFTN+PKanU91JfUsuqoVpWDdW319Gmh/LUfksD2Y/k+sz5IyYxbfERCm4YKLlxuwDLlDc/E8rMzFRMTIwyMjIUHe35kUK7221Q/tZcWWE2tUq/3OPxq6Ot9t26uKCfJGlwwI2aETTeuwn5qKwv0vXzddskS4obGa/4Fxp5OyUAJayzb9GME/O10r5WIVaw3g+apqa2JG+nBQAAAKAC7vaKmF7qZSdCimSFWlzPrRKK71wq+dfIkLPt+GfpJx8YKfyKKK/mAqC0ZfbvNNv+kVK1Ty2tJjTcAAAAgGqGTo8XGWN0WcrfVKBCXVHQRima6+2U/EKOOdV0i6Dp5tLylmt1/pX1FbzaUuRVMd5OB8BpfjfHHI9rWTW8mAkAAACAqkDTzU3587YrZ+NxmSIjBVgK+GNOb8llSaXWnb5sS4pWwEW1FHBxHeUoVwU6eU23kNAQbx6eS0XrDuvEj7+r6LuDlT7Wyi67imnVDlfA+TUUfNv5kqRcnbqmW5hV/o0UitYdVsEnP8m+P6vK8/SlmMfr2vVpg7l6afwxxbdsoY9jr/B4bVS14tozP2dWi99JdY1paxip4OvOU8DFdbxQJZVXsq6k0sdZ1rqqOp+XxBWof7OmWnDLbv0j4FavnZMz4e3PhtP52/uGmP6TFzGJ6csxfTUvYvp+TElO30t9WcG87Sranib7kRyfOX/EJGZAfIQK6rg3cZSmm5vy/pmiYOvUqKoTp20/fbm8fawGEYrec5eOKsOxLU4xnkjT47L7fyJzINtpXWWO9UyXS62zWY6mm/P00vKbbqfnX+V5+kjMMEkvq7t+rZ+lj3fHlfEKvq+s2pP893dSnWMWztyq6D13lfFM3+OqrqSzfz6vUbSutnXXglt2q6afjXTzmc8GD7ymJ/Iipu/FICYxz7WYvpoXMX07ZvH3Ul+We9eXJy9eL987f8Q8t2PmlpiBVx6abl6UZko03axY7yXiR46YY1pn36LzlKAgK0gXWs29nZJPC1SgrrF19nYaAMphyfLZ/3gBAAAAcOZounnRUZPueMwXLvfsMfs1uegtSdKlukg9Azp5OSPfVteqqWa2C7ydBoBy1FSsAqwAb6cBAAAAwMO4e6kXpZWcXmrRdHNHjjl1PTduogCgOqjJSGcAAACgWqLp5kXHnEa6xXotD3+SV+ImCp0D2nsxEwDwjFryz+suAgAAACgfTTcvOqp0x2NGurknV/mOx2EV3EQBAPxBbT+7iQIAAAAA99B086I0k+l4zI0U3JNbYqRbRXcuBQBfZ8nSlTZG7QIAAADVEU03L+JGCpWXa06NdAtViBczAYA/zyabhgfe7u00AAAAAFQBmm5exI0UKi9XuY7HYRYj3QAAAAAAgG8K9HYC57IiU6R6qqVABSraREqWtzPyfc7XdGOkGwAAAAAA8E003dwU9ePtisgJlIyRLMmKCJbJLnRallRq3enLVmSQrOiT+/6uNB3S77JkKdTyzQZS1KbbZTILZP8tp9LHWtllVzGt8EDHOcs1p67p5s6NFKI23S77r9kyWQVVnqevxSxZa/6ouPZMVmG1+Z1Ux5hWZJBs9SO9UCFnpmRdSaWPs6x1Z+Nvm7/x9mfD6fztfUNM/8mLmMT05Zi+mhcxfT+mJL/5rhD10xCZ44Uy2QU+c/6ISUwrIljG5EotH66whmm6uclWP1KB0dEejVk8aitMobIsy6OxPcWKCpYVFSxbA9/4Up1XcqSbG9NLrahgBbTw/Q8TlFZce4AnUVee4WufDQAAoHryp//cxbnFlhng3n5VnAfKUXwnTqZJuo/ppQAAAAAAwB/QdPOi4qmS3IXTfTklb6TgxvRSAAAAAAAAb2B6qZuy+n8isyVbshvJZsmqESqTlue0LKnUutOXbUlRCromSSH3tTs1vdSH78KZP3W9Cj//WUUbjlT6WCu77CqmFRWsgAtqKmLhdco1p0a6udOszJ+6XvlvbJY5mlvlefpazJK15o+Ka8/+8/Fq8zupjjGtmmEK+fuFflNnJetKKn2cZa07G3/b/I23PxtO52/vG2L6T17EJKYvx/TVvIjp+zEl+c13heybPlHRlqMyxwt85vwRk5hWjVBl1XdveqlljDGee0tUP5mZmYqJidG+wOcVbYV5JKbVIELRe+5STN7FyleBLrKaa3XIQo/E9rTMxm/JHMj2dhqSzVJM3ggNKBipxfZlkqSfQpapvlWn3Kf5TP5eUlxr/uhc/935E3+qM5+rqz/+tvkbnzuPAACg0vzh33AZoa+cbHQAPibT5CrxxMPKyMhQdDnX/2d6qZfYjV35KpAkhcszzbxzQclruoUzvRQAAAAAAPgomm5eUvIunKEW13RzV8nppVzTDQAAAAAA+Cqabl7CXTjPTO4fN1KwZClYQV7OBgAAAAAAoGw03bwkV3mOx4zYcp/j5hMKlWVZXs4GAAAAAACgbDTdvCTXnGq6uXMXTpxU3KxkdCAAAAAAAPBlNN28pORIt3AP3RX1XJBnTo10AwAAAAAA8FU03byEa7qdGcf0UoumGwAAAAAA8F003byk5F04mV7qvpw/bqRAoxIAAAAAAPgymm7uigmRiq/bb0kKtJVeLmvd6cuxIQpoW0d5JW+k4MOjtgLa1pFiyzh2d461ssuu9gmwZNUK0xX5f1ENxaidWuqD4Onu5x9oOzt5+lrMP2rNXzlqrzr9TqpjzECbX9WZU115+3z+8bfNH3n9s+H0H3973xDTf/IiJjF9Oaav5kVM348ZaPOb7wpWrTApwPKt80dMYgbaTvaI3GAZY4xbe56jMjMzFRMTo4yMDEVHR3ss7kdFX+jWwvslSf8X+IAeCLzLY7Grq4S8LjqiY0pUfe0M/dzb6QAAAAAAgHOQu70i21nMCSUUT5OUpHD550iHs8lu7DqqdElSbauGd5MBAAAAAACoAE03L+GabpWTpkzZZZck1bLivJwNAAAAAABA+Wi6eYm/XNPNV/xujjke11Ss9xIBAAAAAABwQ6C3E/AXGefNlDluk4xOXjgvwCYV2Z2XpdLrTl+ODFJgp/rK/eDUSDdfvhNn9o2f6MSqX6WM/Mofa2WXXcW0WapZM1DafXKX2pUY6ZZ94yc68dnP0gl71efpazH/qLWIj65z+3z5EkftZRVWn99JdYwZaFNgcpLf1JlTXUnePZ82S1bNMEXvH3q2Dt9jvP7ZcDp/e98Q03/yIiYxfTmmr+ZFTN+PKfnNd4XMhm/KHM2V7MZ3zh8xiRlgU2b4CVdl64Smm7sy8iXrj2uvGZ1s4hQ7fbm8fdLzVbThsHJNiZFu8t2RbkUbDkvppxqElTrWM10+fV2RUeDvhY5NNa3YyuVfHKeq8/S1mH/Umr8qVXuS//9OqmPME3a/qrMy60ry2t8283uu/JFPfDaUxV/eN8T0v7yISUxfjumreRHTt2P6yXcF8/sfDTfJt84fMYmZUcZ3ijLQdPOCLJOjz+wrlaB41bJi1dCq5+2UfJ4p8biWangtDwAAAAAAAHfQdPMCI6NwhaqR1UBdbJeqpa2Jt1PyK5WZXgoAAAAAAOANNm8n8Gf873//0/XXX6/69evLsiwtWrSo1D7btm3TDTfcoJiYGEVEROjSSy/Vvn37zn6yJViyFG1FOn7gjlNj3SozvRQAAAAAAMAb/HqkW3Z2ttq0aaO77rpLN910U6ntqamp6ty5s4YOHapx48YpOjpaW7ZsUWiod6+hFmmFa0HwK17Nwd8YGdVSnDpbF6uNdb630wEAAAAAACiXXzfdevfurd69e7vc/vjjj6tPnz564YUXHOuaNGEqp7/6XcfUxJaoCCvc26kAAAAAAACUy6+nl5bHbrdryZIlat68uZKTk1WnTh1dfvnlZU5BLSk/P1+ZmZlOP/ANgQrU2MB/ejsNAAAAAACAClXbptvhw4eVlZWliRMnqlevXvr8889144036qabbtLy5ctdPm/ChAmKiYlx/CQkJJzFrFGeJlaCgqwgb6cBAAAAAABQoWrbdLPb7ZKkvn376v7771fbtm31yCOP6LrrrtPrr7/u8nmPPvqoMjIyHD+//PLL2UoZFWhpMTUYAAAAAAD4B7++plt5atWqpcDAQLVq1cppfcuWLbVy5UqXzwsJCVFISEip9QHdGkpbsiW7kWyWrBqhMml5TsuSSq07fdmWFKWga5I8e7BVKGRUOxV+/rOKNhyp9LFWdtllzKggFbQK01OB155R/vlvbJY5mlv1efpYTH+rtdMV15795+PV5ndSHWNaNcMU8vcLvVAhZ6ZkXUmlj7OsdVV1Pq2oYAVcUNNr5+LP8PZnw+n87X1DTP/Ji5jE9OWYvpoXMX0/piS/+a4Q2KeRirYclTle4DPnj5jEtGqEKqB+TenLimvYMsYYj74rvMSyLH300Ufq16+fY13Hjh3VpEkTzZkzx7HuxhtvVFhYmObNm+dW3MzMTMXExCgjI0PR0dGeThsAAAAAAAB+xN1ekV+PdMvKytLu3bsdy3v27NGGDRsUFxenxMREjRkzRgMHDlSXLl3UvXt3LV26VP/5z3+UkpLivaQBAAAAAABQ7fn1SLeUlBR179691PrBgwdr1qxZkqS33npLEyZM0P79+9WiRQuNGzdOffv2dfs1GOkGAAAAAACAYu72ivy66XY20HQDAAAAAABAMXd7RdX27qUAAAAAAACAt9B0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICHBXo7AV9njJEkZWZmejkTAAAAAAAAeFtxj6i4Z+QKTbcKHD16VJKUkJDg5UwAAAAAAADgK44fP66YmBiX22m6VSAuLk6StG/fvnJPJPBnZWZmKiEhQb/88ouio6O9nQ6qMWoNZxP1hrOFWsPZQq3hbKHWcLZQa5VnjNHx48dVv379cvej6VYBm+3kZe9iYmIoPpwV0dHR1BrOCmoNZxP1hrOFWsPZQq3hbKHWcLZQa5XjzsAsbqQAAAAAAAAAeBhNNwAAAAAAAMDDaLpVICQkRE8//bRCQkK8nQqqOWoNZwu1hrOJesPZQq3hbKHWcLZQazhbqLWqY5mK7m8KAAAAAAAAoFIY6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCfabpNmDBBl156qaKiolSnTh3169dPO3bscNonLy9Pw4cPV82aNRUZGan+/fvrt99+c2zfuHGjbr31ViUkJCgsLEwtW7bUtGnTnGIsXLhQPXv2VO3atRUdHa0OHTros88+qzA/Y4yeeuopxcfHKywsTD169NCuXbuc9lm3bp169uyp2NhY1axZU3fffbeysrIqjL1p0yZdeeWVCg0NVUJCgl544QWn7Vu2bFH//v3VqFEjWZalqVOnVhgTrlFrrmtt4cKFat++vWJjYxUREaG2bdtqzpw5FcaFa9Sb63qbNWuWLMty+gkNDa0wLspGrbmutW7dupWqNcuydO2111YYG6VRa65rrbCwUM8884yaNGmi0NBQtWnTRkuXLq0wLsp2rtZaXl6ehgwZoosuukiBgYHq169fqX0OHjyo2267Tc2bN5fNZtN9991XYb5wjVpzXWsrV65Up06dVLNmTYWFhen888/XlClTKswZZaPWXNdaSkpKmf9eO3ToUIV5+zTjI5KTk83MmTPN5s2bzYYNG0yfPn1MYmKiycrKcuxz7733moSEBPPVV1+ZNWvWmCuuuMJ07NjRsf3NN980I0eONCkpKSY1NdXMmTPHhIWFmenTpzv2GTVqlHn++efNDz/8YHbu3GkeffRRExQUZNatW1dufhMnTjQxMTFm0aJFZuPGjeaGG24wjRs3Nrm5ucYYYw4cOGBq1Khh7r33XrN9+3bzww8/mI4dO5r+/fuXGzcjI8PUrVvXDBo0yGzevNm8++67JiwszMyYMcOxzw8//GBGjx5t3n33XVOvXj0zZcqUypxanIZac11rX3/9tVm4cKHZunWr2b17t5k6daoJCAgwS5curdQ5xinUm+t6mzlzpomOjjYHDx50/Bw6dKhS5xenUGuua+3o0aNOdbZ582YTEBBgZs6cWZlTjD9Qa65r7aGHHjL169c3S5YsMampqea1114zoaGhFeaMsp2rtZaVlWXuvfde8//+3/8zycnJpm/fvqX22bNnjxk5cqSZPXu2adu2rRk1apQbZxSuUGuua23dunVm3rx5ZvPmzWbPnj1mzpw5Jjw83OlvH9xHrbmuta+//tpIMjt27HD6d1tRUZE7p9Zn+UzT7XSHDx82kszy5cuNMcakp6eboKAg88EHHzj22bZtm5Fkvv32W5dxhg0bZrp3717ua7Vq1cqMGzfO5Xa73W7q1atnXnzxRce69PR0ExISYt59911jjDEzZswwderUcSqITZs2GUlm165dLmO/9tprpkaNGiY/P9+x7uGHHzYtWrQoc/+kpCSabh5GrZVda8XatWtnnnjiiXL3gfuot1P1NnPmTBMTE1PuMeDMUWuu/7ZNmTLFREVFOf0DF2eOWjtVa/Hx8eaVV15xet5NN91kBg0aVO5xwT3nSq2VNHjw4DK/nJbUtWtXmm4eRq2V78YbbzS33367W/uifNTaKcVNt7S0NLfi+AufmV56uoyMDElSXFycJGnt2rUqLCxUjx49HPucf/75SkxM1LfffltunOIYZbHb7Tp+/Hi5++zZs0eHDh1yeu2YmBhdfvnljtfOz89XcHCwbLZTpzQsLEzSySG5rnz77bfq0qWLgoODHeuSk5O1Y8cOpaWluXwePIdaK7vWjDH66quvtGPHDnXp0sVlXFQO9eZcb1lZWUpKSlJCQoL69u2rLVu2uIyJyqHWXH+Ovvnmm7rlllsUERHhMi7cR62dqrX8/PxS0+TDwsLKjQv3nSu1Bu+j1lxbv369vvnmG3Xt2tWjcc9V1Fppbdu2VXx8vHr27KlVq1Z5JKY3+WTTzW6367777lOnTp104YUXSpIOHTqk4OBgxcbGOu1bt25dl3N8v/nmG7333nu6++67Xb7WpEmTlJWVpQEDBrjcpzh+3bp1Xb72VVddpUOHDunFF19UQUGB0tLS9Mgjj0g6ec2F8mKXFbfk66LqUGulay0jI0ORkZEKDg7Wtddeq+nTp6tnz54u48J91JtzvbVo0UJvvfWWPv74Y73zzjuy2+3q2LGj9u/f7zIu3EOtuf4c/eGHH7R582b97W9/cxkT7qPWnGstOTlZL730knbt2iW73a4vvvhCCxcuLDcu3HMu1Rq8i1orW8OGDRUSEqL27dtr+PDhfI56ALXmLD4+Xq+//roWLFigBQsWKCEhQd26ddO6dev+VFxv88mm2/Dhw7V582bNnz//jGNs3rxZffv21dNPP61rrrmmzH3mzZuncePG6f3331edOnUkSXPnzlVkZKTjZ8WKFW693gUXXKDZs2dr8uTJCg8PV7169dS4cWPVrVvX0QW+4IILHHF79+59xscGz6HWSouKitKGDRu0evVqPffcc3rggQeUkpJSqRgoG/XmrEOHDrrzzjvVtm1bde3aVQsXLlTt2rU1Y8YMt2OgbNSaa2+++aYuuugiXXbZZWf0fDij1pxNmzZNzZo10/nnn6/g4GCNGDFCf/3rX51GBODMUGs4W6i1sq1YsUJr1qzR66+/rqlTp+rdd9+tdAw4o9actWjRQvfcc48uueQSdezYUW+99ZY6duzo/zfu8Pb81tMNHz7cNGzY0Pz0009O67/66qsy5/cmJiaal156yWndli1bTJ06dcxjjz3m8nWKL377ySefOK3PzMw0u3btcvzk5OSY1NRUI8msX7/ead8uXbqYkSNHlop96NAhc/z4cZOVlWVsNpt5//33jTHG7N271xF3//79xhhj7rjjjlLzmZctW2YkmWPHjpWKzTXdPIdaK7/Wig0dOtRcc801LrfDPdSbe/V28803m1tuucXldlSMWnNda1lZWSY6OtpMnTrV5XHBfdSa61rLzc01+/fvN3a73Tz00EOmVatWLo8PFTvXaq0krul2dlFrfV3mXNL48eNN8+bN3doXZaPW+rrMuaTRo0ebK664wq19fZXPNN3sdrsZPny4qV+/vtm5c2ep7cUXFPzwww8d67Zv317qgoKbN282derUMWPGjHH5WvPmzTOhoaFm0aJFbudWr149M2nSJMe6jIwMpwsKluXNN9804eHh5V4IsPiivAUFBY51jz76KDdSqELUmnu1Vuyvf/2r6dq1q1v5ozTqzf16O3HihGnRooW5//773cofzqi1imtt5syZJiQkxPz+++9u5Y2yUWvu/10rKCgwTZo0MY8++qhb+cPZuVprJdF0Ozuotco1QsaNG2eSkpLc2hfOqLXK1VqPHj3MjTfe6Na+vspnmm7/+Mc/TExMjElJSXG6PWxOTo5jn3vvvdckJiaaZcuWmTVr1pgOHTqYDh06OLb/+OOPpnbt2ub22293inH48GHHPnPnzjWBgYHm1VdfddonPT293PwmTpxoYmNjzccff2w2bdpk+vbt63TrXGOMmT59ulm7dq3ZsWOHeeWVV0xYWJiZNm1auXHT09NN3bp1zR133GE2b95s5s+fX+oWzPn5+Wb9+vVm/fr1Jj4+3owePdqsX7/e7buDwBm15rrW/u///s98/vnnJjU11WzdutVMmjTJBAYGmjfeeMPt8wtn1Jvrehs3bpz57LPPTGpqqlm7dq255ZZbTGhoqNmyZYvb5xenUGuua61Y586dzcCBAys8lygftea61r777juzYMECk5qaav73v/+Zq666yjRu3Lja3YntbDlXa82YkyNY1q9fb66//nrTrVs3x3eBkorXXXLJJea2224z69ev5zP0DFFrrmvtlVdeMYsXLzY7d+40O3fuNP/+979NVFSUefzxx905tTgNtea61qZMmWIWLVpkdu3aZX788UczatQoY7PZzJdffunOqfVZPtN0k1Tmz8yZMx375ObmmmHDhpkaNWqY8PBwc+ONN5qDBw86tj/99NNlxijZhe/atWuZ+wwePLjc/Ox2u3nyySdN3bp1TUhIiLn66qvNjh07nPa54447TFxcnAkODjatW7c2b7/9tlvHvnHjRtO5c2cTEhJiGjRoYCZOnOi0fc+ePWXmzOijM0Otua61xx9/3DRt2tSEhoaaGjVqmA4dOpj58+e7FRtlo95c19t9991nEhMTTXBwsKlbt67p06ePWbdunVuxURq15rrWjDn1v8Sff/65WzHhGrXmutZSUlJMy5YtTUhIiKlZs6a54447zIEDB9yKjdLO5VpLSkoqM6eKzg+jj84Mtea61l5++WVzwQUXmPDwcBMdHW3atWtnXnvtNVNUVORWfDij1lzX2vPPP2+aNGliQkNDTVxcnOnWrZtZtmyZW7F9mWWMMQIAAAAAAADgMdxKCQAAAAAAAPAwmm4AAAAAAACAh9F0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAACgmujWrZvuu+++c+61AQAAfBFNNwAAgHNQSkqKLMtSenq6R563cOFCjR8/3nMJAgAA+LlAbycAAAAA/xcXF+ftFAAAAHwKI90AAAD8UHZ2tu68805FRkYqPj5ekydPdto+Z84ctW/fXlFRUapXr55uu+02HT58WJK0d+9ede/eXZJUo0YNWZalIUOGSJLsdrsmTJigxo0bKywsTG3atNGHH35Y4fNOn17aqFEjPfvss44ck5KStHjxYh05ckR9+/ZVZGSkWrdurTVr1jjlvXLlSl155ZUKCwtTQkKCRo4cqezsbE+fPgAAgCpH0w0AAMAPjRkzRsuXL9fHH3+szz//XCkpKVq3bp1je2FhocaPH6+NGzdq0aJF2rt3r6NBlpCQoAULFkiSduzYoYMHD2ratGmSpAkTJujtt9/W66+/ri1btuj+++/X7bffruXLl5f7vLJMmTJFnTp10vr163Xttdfqjjvu0J133qnbb79d69atU5MmTXTnnXfKGCNJSk1NVa9evdS/f39t2rRJ7733nlauXKkRI0ZUxSkEAACoUpYp/lcOAAAA/EJWVpZq1qypd955R3/5y18kSceOHVPDhg119913a+rUqaWes2bNGl166aU6fvy4IiMjlZKSou7duystLU2xsbGSpPz8fMXFxenLL79Uhw4dHM/929/+ppycHM2bN6/M50knR7q1bdvW8dqNGjXSlVdeqTlz5kiSDh06pPj4eD355JN65plnJEnfffedOnTooIMHD6pevXr629/+poCAAM2YMcMRd+XKleratauys7MVGhrqwbMIAABQtbimGwAAgJ9JTU1VQUGBLr/8cse6uLg4tWjRwrG8du1ajR07Vhs3blRaWprsdrskad++fWrVqlWZcXfv3q2cnBz17NnTaX1BQYHatWtX6Txbt27teFy3bl1J0kUXXVRq3eHDh1WvXj1t3LhRmzZt0ty5cx37GGNkt9u1Z88etWzZstI5AAAAeAtNNwAAgGomOztbycnJSk5O1ty5c1W7dm3t27dPycnJKigocPm8rKwsSdKSJUvUoEEDp20hISGVziMoKMjx2LIsl+uKG4JZWVm65557NHLkyFKxEhMTK/36AAAA3kTTDQAAwM80adJEQUFB+v777x3NqLS0NO3cuVNdu3bV9u3bdfToUU2cOFEJCQmSVOqGBcHBwZKkoqIix7pWrVopJCRE+/btU9euXct87bKe5ykXX3yxtm7dqqZNm3o8NgAAwNnGjRQAAAD8TGRkpIYOHaoxY8Zo2bJl2rx5s4YMGSKb7eQ/7RITExUcHKzp06frp59+0uLFizV+/HinGElJSbIsS5988omOHDmirKwsRUVFafTo0br//vs1e/Zspaamat26dZo+fbpmz57t8nme8vDDD+ubb77RiBEjtGHDBu3atUsff/wxN1IAAAB+iaYbAACAH3rxxRd15ZVX6vrrr1ePHj3UuXNnXXLJJZKk2rVra9asWfrggw/UqlUrTZw4UZMmTXJ6foMGDTRu3Dg98sgjqlu3rqOxNX78eD355JOaMGGCWrZsqV69emnJkiVq3Lhxuc/zhNatW2v58uXauXOnrrzySrVr105PPfWU6tev77HXAAAAOFu4eykAAAAAAADgYYx0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICH0XQDAAAAAAAAPIymGwAAAAAAAOBhNN0AAAAAAAAAD6PpBgAAAAAAAHgYTTcAAAAAAADAw2i6AQAAAAAAAB5G0w0AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAPo+kGAAAAAAAAeBhNNwAAAAAAAMDDaLoBAAAAAAAAHkbTDQAAAAAAAPAwmm4AAAAAAACAh9F0AwAAAAAAADyMphsAAAAAAADgYTTdAAAAAAAAAA+j6QYAAAAAAAB4GE03AAAAAAAAwMNougEAAAAAAAAeRtMNAAAAAAAA8DCabgAAAAAAAICH0XQDAAAAAAAAPIymGwAAAAAAAOBhNN0AAAAAAAAAD6PpBgAAAAAAAHgYTTcAAAAAAADAw2i6AQAAAAAAAB5G0w0AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAPo+kGAAAAAAAAeBhNNwAAAAAAAMDDaLoBAAAAAAAAHhbo7QQAANXPiRMnVFBQ4O00AACAm4KDgxUYyNdDAPAk/qoCADzGGKN9+/bp999/93YqAACgkmrVqqXExERZluXtVACgWqDpBgDwmOKGW4MGDRQZGSmbjasYAADg6+x2u7KysnTgwAEVFRXpvPPO83ZKAFAtWMYY4+0kAAD+78SJE9q4caMaNGigevXqeTsdAABQSYcOHdKBAweUlZWlzp07KyAgwNspAYBfYwgCAMAjiq/hFhkZ6eVMAADAmSj+DP/xxx+1cuVKL2cDAP6PphsAwKOYUgoAgH8q/gyPiIjQli1blJ+f7+WMAMC/8c0IAAAAAOAQFBSkwsJC5eTkeDsVAPBrNN0AAChHSkqKLMtSenq6t1PxC8YY3X333YqLi5NlWdqwYYO6deum++67z7FPo0aNNHXqVMeyZVlatGjRn3rdIUOGqF+/fn8qRkXGjh2rtm3bVulrFPvqq6/UsmVLFRUV/ak4nji3UunfmS+oypx88Xgra+/evY73oC/EKamgoECNGjXSmjVrPBYTnmVZlrj0NwD8edy9FAAAeMzSpUs1a9YspaSk6LzzzlOtWrW0cOFCBQUFeTs1v/LQQw/piSee+NMXMT948KBq1Kjxp/NZvXq1IiIi/nQcf1HZ401JSVH37t2Vlpam2NjYqkusig0ZMkTp6elOjdqEhAQdPHhQtWrV8tjrBAcHa/To0Xr44Yf11VdfeSwuAAC+hqYbAKBK/KPwaW217/ZqDq1sTfWvoHFezeFck5qaqvj4eHXs2NGxLi4uzosZ+Z+VK1cqNTVV/fv3/9OxPHUn4dq1a3skjr/w1vEaY1RUVKTAQN/5J3pAQECV3JF60KBBevDBB7VlyxZdcMEFHo8PAIAvYHopAKBKbLXv1vdmo1d/3G365efna+TIkapTp45CQ0PVuXNnrV69usx9c3Jy1Lt3b3Xq1Ikpp6cZMmSI/vnPf2rfvn2yLEuNGjWSpFLTSyvyyy+/aMCAAYqNjVVcXJz69u2rvXv3OrYXFRXpgQceUGxsrGrWrKmHHnqo3GlQmZmZCgsL06effuq0/qOPPlJUVJTjmkUPP/ywmjdvrvDwcJ133nl68sknVVhY6DJuWcfVr18/DRkyxLGcn5+v0aNHq0GDBoqIiNDll1+ulJSUco9//vz56tmzp0JDQx3riqe2vvXWW0pMTFRkZKSGDRumoqIivfDCC6pXr57q1Kmj5557zilWyemlBQUFGjFihOLj4xUaGqqkpCRNmDBB0slmz9ixY5WYmKiQkBDVr19fI0eOdMQpa0rwv//9b914440KDw9Xs2bNtHjxYqfXXrx4sZo1a6bQ0FB1795ds2fPrtRU7QULFuiCCy5QSEiIGjVqpMmTJ5fa5/jx47r11lsVERGhBg0a6NVXX3Vsq+iYylOZ4927d6+6d+8uSapRo4Ysy3LUgN1u14QJE9S4cWOFhYWpTZs2+vDDDx1xi6evf/rpp7rkkksUEhKilStXOn7fM2bMUEJCgsLDwzVgwABlZGQ4nmu32/XMM8+oYcOGCgkJUdu2bbV06VKXx1RUVKShQ4c6cmnRooWmTZvm2D527FjNnj1bH3/8sSzLkmVZSklJKXN66fLly3XZZZcpJCRE8fHxeuSRR3TixAnH9m7dumnkyJF66KGHFBcXp3r16mns2LFO+dSoUUOdOnXS/Pnz3fqdnIuOHz+uQYMGKSIiQvHx8ZoyZYrT3505c+aoffv2ioqKUr169XTbbbfp8OHDjucX19eSJUvUunVrhYaG6oorrtDmzZu9dEQAcO6h6QYAOOc99NBDWrBggWbPnq1169apadOmSk5O1rFjx5z2S09PV8+ePWW32/XFF194ZRpZ4cEC5a7Pcvop2JMnSbLn2Utty12f5Xhu/o7cUttOHDvZVDpxpLDUtvxduZXKbdq0aY4mwMGDB102Lss9vsJCJScnKyoqSitWrNCqVasUGRmpXr16qaCgQJI0efJkzZo1S2+99ZZWrlypY8eO6aOPPnIZMzo6Wtddd53mzZvntH7u3Lnq16+fwsPDJUlRUVGaNWuWtm7dqmnTpumNN97QlClTKn0MJY0YMULffvut5s+fr02bNukvf/mLevXqpV27drl8zooVK9S+fftS61NTU/Xpp59q6dKlevfdd/Xmm2/q2muv1f79+7V8+XI9//zzeuKJJ/T999+XGffll1/W4sWL9f7772vHjh2aO3euozG6YMECTZkyRTNmzNCuXbu0aNEiXXTRReUe27hx4zRgwABt2rRJffr00aBBgxzvmT179ujmm29Wv379tHHjRt1zzz16/PHH3Txr0tq1azVgwADdcsst+vHHHzV27Fg9+eSTmjVrltN+L774otq0aaP169frkUce0ahRo/TFF1+c8TGdyfEmJCRowYIFkqQdO3bo4MGDjmbWhAkT9Pbbb+v111/Xli1bdP/99+v222/X8uXLnWI/8sgjmjhxorZt26bWrVtLknbv3q33339f//nPf7R06VKtX79ew4YNczxn2rRpmjx5siZNmqRNmzYpOTlZN9xwg8vastvtatiwoT744ANt3bpVTz31lB577DG9//77kqTRo0drwIAB6tWrlw4ePKiDBw86jVgtduDAAfXp00eXXnqpNm7cqH/9619688039eyzzzrtN3v2bEVEROj777/XCy+8oGeeecbxuyl22WWXacWKFZX5NXiM/WC2itYfdvqx7znZ1DR5J0ptK1p/qplVtCOt9HOP/fF3+Ehu6efuSj+jHB944AGtWrVKixcv1hdffKEVK1Zo3bp1ju2FhYUaP368Nm7cqEWLFmnv3r1OTf9iY8aM0eTJk7V69WrVrl1b119/fbn/oQAA8CADAIAHZGdnmzVr1pjs7GxjjDFd8m4zIbkXePWnS95tFeadlZVlgoKCzNy5cx3rCgoKTP369c0LL7xgvv76ayPJbNu2zbRu3dr079/f5OfnV9l5rMhvz+wzm4O/cfr5ZfBOY4wxebtySm3bHPyN47mpV24qtS1t7mFjjDG/v3aw1LY9fbZUOr8pU6aYpKQkp3Vdu3Y1o0aNciwnJSWZKVOmOJYlmY8++sgYY8ycOXNMixYtjN1ud2zPz883YWFh5rPPPjPGGBMfH29eeOEFx/bCwkLTsGFD07dvX5d5ffTRRyYyMtJRnxkZGSY0NNR8+umnLp/z4osvmksuucSx/PTTT5s2bdq4PC5jjOnbt68ZPHiwMcaYn3/+2QQEBJgDBw447XP11VebRx991OXrxsTEmLfffttp3dNPP23Cw8NNZmamY11ycrJp1KiRKSoqcqxr0aKFmTBhgmO55Ln95z//aa666iqnc1ts8uTJpnnz5qagoKDMnMr6nT3xxBOO5aysLCPJcT4ffvhhc+GFFzrFePzxx40kk5aW5vLYi912222mZ8+eTuvGjBljWrVq5ZRTr169nPYZOHCg6d27t1vHVJ7KHm/x34mSx5aXl2fCw8PNN9+ceg8aY8zQoUPNrbfe6vS8RYsWOe3z9NNPm4CAALN//37Huk8//dTYbDZz8OBBY4wx9evXN88995zT8y699FIzbNgwY4wxe/bsMZLM+vXrXR7n8OHDTf/+/R3LgwcPLvU+Oj3OY489Vuo9+uqrr5rIyEhHLXbt2tV07ty5VG4PP/yw07pp06aZRo0aucyvKuWO+86kB73s9JN958m/MSd2pZXalh70suO5xzu/X2pb/jvbjDHG5L22sdS2rD6LysyhPJmZmSYoKMh88MEHjnXp6ekmPDy81N+dYqtXrzaSzPHjx40xp+pr/vz5jn2OHj1qwsLCzHvvvVdmjOLP8nfeecdMmTLFHDt2rNK5AwBO8Z0LRgAA4AWpqakqLCxUp06dHOuCgoJ02WWXadu2bbr00kslST179tRll12m9957709f3P7PqPG3uoq6zvnC+AGxJz/OgxqG6LzvXI/kafBGU9lznO+GGZQUIkmKubmmwq+IdNpmizz7x7lx40bt3r1bUVFRTuvz8vKUmpqqjIwMHTx4UJdffrljW2BgoNq3b1/uFNM+ffooKChIixcv1i233KIFCxYoOjpaPXr0cOzz3nvv6eWXX1ZqaqqysrJ04sQJRUdHn/Gx/PjjjyoqKlLz5s2d1ufn56tmzZoun5ebm+s0tbRYo0aNnM5L3bp1FRAQIJvN5rSu5PSykoYMGaKePXuqRYsW6tWrl6677jpdc801kqS//OUvmjp1qs477zz16tVLffr00fXXX1/utcWKR2RJUkREhKKjox2vvWPHDsd7p9hll13mMtbptm3bpr59+zqt69Spk6ZOnaqioiLHe7BDhw5O+3To0MExLfRMjqk85R1vWXbv3q2cnBz17NnTaX1BQYHatWvntK6skY2JiYlq0KCBY7lDhw6y2+3asWOHwsPD9euvvzr93ZJOnqONGze6zOnVV1/VW2+9pX379ik3N1cFBQWVviPvtm3b1KFDB1mW5fS6WVlZ2r9/vxITEyU5ny9Jio+PL3W+wsLCHNO7z7bgv1+ooOsbO62zYk/+PbQ1jFTk9wNdPjfs3z2kHOeRYlbSyb8VQTc3U+AVp10DLzK40vn99NNPKiwsdHrfxMTEqEWLFo7ltWvXauzYsdq4caPS0tJkt9slSfv27VOrVq0c+5V8n8TFxalFixbatm1bpXMCAFQeTTcAQJVoZWsq2X0gBw+59tprtWDBAm3duvVPTVH7s4LigxUUX/YXOFuoTWHtIsvcJkkhLcJcbgusHaTA2t6/w2hWVpYuueQSzZ07t9S2P3Nx++DgYN18882aN2+ebrnlFs2bN08DBw50NGC+/fZbDRo0SOPGjVNycrJiYmI0f/78Mq8jVsxms5Vq9JWcspWVlaWAgACtXbu2VKM2MtL176lWrVpKS0srtf70O8BallXmuuIv3qe7+OKLtWfPHn366af68ssvNWDAAPXo0UMffvihEhIStGPHDn355Zf64osvNGzYML344otavny5yzvPVua1veFMjqk8lT3erKyTU7uXLFni1DyTpJCQEKfls3Fn2Pnz52v06NGaPHmyOnTooKioKL344osupyP/We6cr2PHjnntphW2+AgpvuzzboUGKqBdHZfPDWjh+o7AttphUm3Xf2s9JTs7W8nJyUpOTtbcuXNVu3Zt7du3T8nJyY6p+AAA76PpBgCoEv5y19AmTZooODhYq1atUlJSkqSTjZPVq1c7XSR/4sSJioyM1NVXX62UlBSnUQTwnIsvvljvvfee6tSp43KUWXx8vL7//nt16dJFknTixAmtXbtWF198cbmxBw0apJ49e2rLli1atmyZ0zWovvnmGyUlJTldd+znn38uN17t2rV18OBBx3JRUZE2b97suKh+u3btVFRUpMOHD+vKK68s/8BLaNeunbZu3er2/pURHR2tgQMHauDAgbr55pvVq1cvHTt2THFxcQoLC9P111+v66+/XsOHD9f555+vH3/8scLzWpYWLVrov//9r9O6ylzjr2XLllq1apXTulWrVql58+ZODczvvvvOaZ/vvvtOLVu2dCx78pjKExx8shFeVHRqJGmrVq0UEhKiffv2qWvXrpWOuW/fPv3666+qX7++pJPHZrPZ1KJFC0VHR6t+/fpatWqVU+xVq1a5HFG4atUqdezY0em6cKmpqaWOo+QxlKVly5ZasGCBjDGO0W6rVq1SVFSUGjZsWKlj3Lx5c6lRfzjpvPPOU1BQkFavXu0YPZiRkaGdO3eqS5cu2r59u44ePaqJEycqISFBkrRmzZoyY3333XeOGGlpadq5c6fT+wQAUHW4kQIA4JwWERGhf/zjHxozZoyWLl2qrVu36u9//7tycnI0dOhQp30nTZqkQYMG6aqrrtL27du9lHH1NmjQINWqVUt9+/bVihUrtGfPHqWkpGjkyJHav3+/JGnUqFGaOHGiFi1apO3bt2vYsGFu3RGzS5cuqlevngYNGqTGjRs7TVFt1qyZ9u3bp/nz5ys1NVUvv/xyuTdnkKSrrrpKS5Ys0ZIlS7R9+3b94x//cMqjefPmGjRokO68804tXLhQe/bs0Q8//KAJEyZoyZIlLuMmJydr5cqVFR5PZb300kt69913tX37du3cuVMffPCB6tWrp9jYWM2aNUtvvvmmNm/erJ9++knvvPOOwsLCHI3oyrrnnnu0fft2Pfzww9q5c6fef/99x00QSk5LdOXBBx/UV199pfHjx2vnzp2aPXu2XnnlFY0ePdppv1WrVumFF17Qzp079eqrr+qDDz7QqFGjJMnjx1SepKQkWZalTz75REeOHFFWVpaioqI0evRo3X///Zo9e7ZSU1O1bt06TZ8+XbNnz64wZmhoqAYPHqyNGzdqxYoVGjlypAYMGKB69U5OXRwzZoyef/55vffee9qxY4ceeeQRbdiwwXH8p2vWrJnWrFmjzz77TDt37tSTTz5ZqhHaqFEjbdq0STt27NDvv/9e5sX2hw0bpl9++UX//Oc/tX37dn388cd6+umn9cADDzhNdXbHihUrHFOc4SwqKkqDBw/WmDFj9PXXX2vLli0aOnSobDabLMtSYmKigoODNX36dP30009avHixxo8fX2asZ555Rl999ZU2b96sIUOGqFatWurXr9/ZPSAAOEfRdAMAnPMmTpyo/v3764477tDFF1+s3bt367PPPlONGqWnEE2ZMkUDBgzQVVddpZ07d3oh2+otPDxc//vf/5SYmKibbrpJLVu21NChQ5WXl+cY+fbggw/qjjvu0ODBgx3T5G688cYKY1uWpVtvvVUbN27UoEGDnLbdcMMNuv/++zVixAi1bdtW33zzjZ588sly4911110aPHiw7rzzTnXt2lXnnXeeY5RbsZkzZ+rOO+/Ugw8+qBYtWqhfv35OI1fKMmjQIG3ZskU7duyo8JgqIyoqSi+88ILat2+vSy+9VHv37tV///tf2Ww2xcbG6o033lCnTp3UunVrffnll/rPf/5T7rXnytO4cWN9+OGHWrhwoVq3bq1//etfjlGEp0+tLMvFF1+s999/X/Pnz9eFF16op556Ss8880ypOzM++OCDWrNmjdq1a6dnn31WL730kpKTkyXJ48dUngYNGmjcuHF65JFHVLduXY0YMUKSNH78eD355JOaMGGCWrZsqV69emnJkiVq3LhxBRGlpk2b6qabblKfPn10zTXXqHXr1nrttdcc20eOHKkHHnhADz74oC666CItXbpUixcvVrNmzcqMd8899+imm27SwIEDdfnll+vo0aNOo94k6e9//7tatGih9u3bq3bt2qVGGxYf63//+1/98MMPatOmje69914NHTpUTzzxRGVOmb799ltlZGTo5ptvrtTzziUvvfSSOnTooOuuu049evRQp06d1LJlS4WGhqp27dqaNWuWPvjgA7Vq1UoTJ07UpEmTyowzceJEjRo1SpdccokOHTqk//znP47RmQCAqmWZ8q46DACAm3JycrRt2za1bNlS4eHh3k4H8GtjxoxRZmamZsyY4e1UPOa5557T66+/rl9++cXbqfi8sWPHatGiRdqwYYO3U6kyAwcOVJs2bfTYY495OxW/kZ2drQYNGmjy5MmlRmKXJSUlRd27d1daWppiY2Pdeo3iz/Lt27fryJEjGjx4cJn/AQUAcA8j3QAAAHzM448/rqSkJJ+6MUFlvfbaa1q9erV++uknzZkzRy+++KIGDx7s7bTgAwoKCnTRRRfp/vvv93YqPm39+vV69913HVOTi0fonn5nXwCA7+JGCgAAAD4mNjbW70cA7dq1S88++6yOHTumxMREPfjgg3r00UclSb1799aKFSvKfN5jjz1Wpce+YsUK9e7d2+X24ruOouoEBwdXejrquWrSpEnasWOHgoODdckll2jFihWqVauWt9MCALiJ6aUAAI9geikAdx04cEC5ubllbouLi1NcXFyVvXZubq4OHDjgcnvTpk2r7LUBX8f0UgDwLEa6AQAA4Kxq0KCB1147LCyMxhoAADgruKYbAMCj/PkaVAAAnMv4DAcAz6LpBgDwiODgYElcDwkAAH9V/BleUFDg5UwAoHpgeikAwCMCAwNVq1Ytx7WSIiMjZbPxfzsAAPg6u92urKwsHThwQOnp6SoqKvJ2SgBQLdB0AwB4TGJioiSVe5FyAADgm9LT0/Xbb7/pxIkTCgwMdIxiBwCcGZpuAACPsSxLSUlJKiws1Ndffy1JqlGjhizL8nJmAACgPIWFhbLb7SooKNDRo0fVvHlz7kYOAH8STTcAgMc1bdpUubm5+vrrr3X06FFvpwMAANxgjJFlWWrWrJl69+7Nf5oBwJ9kGWOMt5MAAFRPhw4d4towAAD4CcuyFBYWprp16zLKDQA8gKYbAAAAAAAA4GHcVg4AAAAAAADwMJpuAAAAAAAAgIfRdAMAAAAAAAA8jKYbAAAAAAAA4GE03QAAAAAAAAAP+//IU26osJkF5wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Update the specific settings\n", + "your_dataset.update_gap_and_missing_fill_settings(missing_obs_interpolation_method = 'time')\n", + "\n", + "#Interpolate the missing timestamps\n", + "your_dataset.fill_missing_obs_linear(obstype='temp')\n", + "\n", + "#Inspect the filled values by plotting or printing out the info.\n", + "your_dataset.get_station('vlinder05').make_plot(colorby='label')\n", + "your_dataset.missing_obs.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "7838e138-3eb7-4da8-8e7b-b435e88918ed", + "metadata": {}, + "source": [ + "## Fill gaps\n", + "\n", + "Because gaps can span longer periods, interpolation is not (always) the most suitable method to fill the gaps. The following method can be used to fill the gaps:\n", + " * interpolation: linear interpolation of the gaps. Use the [fill_gaps_linear()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_linear) method for this.\n", + " * Debias ERA5 gapfill: Use ERA5 and a debiasing algorithm to fill the gaps by calling the [fill_gaps_era5()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_era5) method.\n", + " * Automatic gapfill: A combination of the interpolation and ERA5-debias. For the shortest gaps interpolation is used and debias-ERA5 for the longer gaps. Use the [fill_gaps_automatic()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fill_gaps_automatic) method for this.\n", + "\n", + "Here is an example of using debias ERA5 gapfilling of temperature observations." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3f66d0f6-2912-40e3-aa50-0cb27821b495", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

To authorize access needed by Earth Engine, open the following\n", + " URL in a web browser and follow the instructions:

\n", + "

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=gOIKcfY39t-LaSM_esufmUl1XAlzLqE3KVIYY7vUJ04&tc=5laNPc-Y_M4z8qVxTUtp71dwfdgRuNHjkYgSdWvirrQ&cc=3Auxy8YEGzBho3lWk01G2QP8A9QF5VEoEoHxuxl65-0

\n", + "

The authorization workflow will generate a code, which you should paste in the box below.

\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter verification code: 4/1AfJohXnKdN9MAKx-q9l7U6FHNF4FR7u6VH8zU5WXCgT1sZMJKO7TfV3G3ig\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Successfully saved authorization token.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n" + ] + } + ], + "source": [ + "#Update the settings (definition of the period to calculate biases for)\n", + "your_dataset.update_gap_and_missing_fill_settings(\n", + " gap_debias_prefered_leading_period_hours=24,\n", + " gap_debias_prefered_trailing_period_hours=24,\n", + " gap_debias_minimum_leading_period_hours=6,\n", + " gap_debias_minimum_trailing_period_hours=6,\n", + " )\n", + "#(As a demonstration, we will fill the gaps of a single station. The following functions can also be\n", + "# directly applied to the dataset.)\n", + "your_station = your_dataset.get_station('vlinder05')\n", + "\n", + "\n", + "#Get ERA5 modeldata at the location of your stations and period.\n", + "ERA5_modeldata = your_station.get_modeldata(modelname='ERA5_hourly',\n", + " obstype='temp')\n", + "\n", + "#Use the debias method to fill the gaps\n", + "gapfill_df = your_station.fill_gaps_era5(modeldata=ERA5_modeldata,\n", + " method='debias',\n", + " obstype='temp')\n" + ] + }, + { + "cell_type": "markdown", + "id": "6cb0626d-a45c-4bd1-ad93-32c933f9d10c", + "metadata": {}, + "source": [ + "The gaps in the station are now filled. To inspect these filled values, you can plot them" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "524065e9-13cd-4359-8ca7-d9cdc931ace9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAHjCAYAAAAXGmnxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xb5dXA8d/VsuQh7xEnjrN3yE6AkEGAsAqk7E3KKCOMQEsLtEBfKKOUWWhpocwABQoEKCPsBAjZJGSR5ezEe8lD1rzvH7I1Yide2j7ffvhU9+rquY8VWdY9Os85iqqqKkIIIYQQQgghhBBCiKDRRHoCQgghhBBCCCGEEELEGwm6CSGEEEIIIYQQQggRZBJ0E0IIIYQQQgghhBAiyCToJoQQQgghhBBCCCFEkEnQTQghhBBCCCGEEEKIIJOgmxBCCCGEEEIIIYQQQSZBNyGEEEIIIYQQQgghgkyCbkIIIYQQQgghhBBCBJkE3YQQQgghhBBCCCGECDIJugkhhBBCiLCqr6/n6quvJi8vD0VRmD9/frfHVBSFP/3pT97tl19+GUVR2L17d7fHDuWYQgghhIhfEnQTQgghRFRQFKVD/y1evDjSU42Yf/zjH7z88suRnka3Pfjgg7z88stcf/31LFiwgMsuuyzSU4q4AwcOcP7555OWlobZbOass85i586drY473O/Fww8/HIFZCyGEEOJIdJGegBBCCCEEwIIFCwK2X331Vb744otW+4cPHx7OaUWVf/zjH2RlZTF37txIT6Vbvv76a44++mjuvffekJ3jsssu48ILLyQhISFk5wiW+vp6jj/+eGpra7nrrrvQ6/U88cQTzJgxg3Xr1pGZmRlw/EknncTll18esG/cuHHhnLIQQgghOkCCbkIIIYSICpdeemnA9vLly/niiy9a7Y8XqqrS1NSEyWSK9FQ6rKGhgaSkpG6PU1ZWxogRI4Iwo8PTarVotdqQnqO7Wp7Pf/zjH2zfvp2VK1cyadIkAE499VRGjRrFY489xoMPPhjwuCFDhsTt74UQQggRT2R5qRBCCCFihtvt5sknn2TkyJEYjUZyc3O59tprqa6uDjiuX79+/OIXv2Dx4sVMnDgRk8nE6NGjvUtT33vvPUaPHo3RaGTChAmsXbs24PFz584lOTmZnTt3cvLJJ5OUlER+fj733Xcfqqp2a06fffaZd07/+te/AHjppZeYNWsWOTk5JCQkMGLECJ599tlWj9+0aRNLlizxLimcOXMmAH/6059QFKXV89VWDbJDa5/5j++fQdfy2CVLlnDDDTeQk5NDnz59Wj3OX1lZGVdddRW5ubkYjUbGjBnDK6+84r1/8eLFKIrCrl27+Pjjj70/x+FqpI0aNYrjjz++1X63203v3r0599xzDzuXtn72ln+D77//nsmTJ2M0GhkwYACvvvpqq8dv2rSJWbNmYTKZ6NOnD3/+859xu91tnuvTTz9l2rRpJCUlkZKSwumnn86mTZsCjml5TRUVFXHaaaeRkpLCJZdcAsA777zDpEmTvAE3gGHDhnHCCSfw9ttvt3lOq9VKU1PTYX9+IYQQQkSeBN2EEEIIETOuvfZabr/9dqZOncpTTz3Fr371K15//XVOPvlkHA5HwLE7duzg4osv5owzzuChhx6iurqaM844g9dff51bb72VSy+9lP/7v/+jqKiI888/v1VAxeVyccopp5Cbm8sjjzzChAkTuPfee1stiezMnLZu3cpFF13ESSedxFNPPcXYsWMBePbZZyksLOSuu+7iscceo6CggBtuuIG///3v3sc++eST9OnTh2HDhrFgwQIWLFjAH/7whyA+u2274YYb2Lx5M/fccw933HHHYY+zWq3MnDmTBQsWcMkll/DXv/6V1NRU5s6dy1NPPQV4lgYvWLCArKwsxo4d6/05srOz2xzzggsu4Ntvv6WkpCRg//fff8/Bgwe58MILO/3z7Nixg3PPPZeTTjqJxx57jPT0dObOnRsQJCspKeH4449n3bp13HHHHcyfP59XX33V+3P4W7BgAaeffjrJycn85S9/4e6772bz5s0cd9xxrYKJTqeTk08+mZycHB599FHOOecc3G4369evZ+LEia3Gnjx5MkVFRdTV1QXsf/nll0lKSsJkMjFixAjeeOONTj8PQgghhAgDVQghhBAiCs2bN0/1/6jy3XffqYD6+uuvBxy3aNGiVvsLCwtVQP3hhx+8+z777DMVUE0mk7pnzx7v/n/9618qoH7zzTfefVdccYUKqDfddJN3n9vtVk8//XTVYDCo5eXlXZ7TokWLWv2sjY2NrfadfPLJ6oABAwL2jRw5Up0xY0arY++99161rY91L730kgqou3bt8u4D1HvvvbfVsYWFheoVV1zR6rHHHXec6nQ6Wx1/qCeffFIF1Ndee827z263q8ccc4yanJysWiyWgHOdfvrp7Y65detWFVCffvrpgP033HCDmpycHPC8HfpztfWzt/wbfPvtt959ZWVlakJCgvqb3/zGu2/+/PkqoK5YsSLguNTU1IAx6+rq1LS0NPWaa64JmF9JSYmampoasL/lNXXHHXcEHFteXq4C6n333dfq5//73/+uAuqWLVu8+4499lj1ySefVD/44AP12WefVUeNGqUC6j/+8Y+2nkIhhBBCRJBkugkhhBAiJvz3v/8lNTWVk046iYqKCu9/EyZMIDk5mW+++Sbg+BEjRnDMMcd4t6dMmQLArFmz6Nu3b6v9bXWKvPHGG723FUXhxhtvxG638+WXX3ZpTv379+fkk09udR7/um61tbVUVFQwY8YMdu7cSW1tbYefo1C45pprOlQb7ZNPPiEvL4+LLrrIu0+v13PzzTdTX1/PkiVLOn3uIUOGMHbsWN566y3vPpfLxTvvvMMZZ5zRpXp4I0aMYNq0ad7t7Oxshg4dGvDv/8knn3D00UczefLkgONaloO2+OKLL6ipqeGiiy4K+PfXarVMmTKl1b8/wPXXXx+wbbVaAdps+GA0GgOOAVi6dCm33HILZ555Jtdddx1r1qxh1KhR3HXXXQHHCSGEECLypJGCEEIIIWLC9u3bqa2tJScnp837y8rKArb9A2sAqampABQUFLS5/9AabBqNhgEDBgTsGzJkCIB32WBn59S/f/82j1u6dCn33nsvy5Yto7GxMeC+2tpa7xwj4XBzPtSePXsYPHgwGk3gd7ot3Wb37NnTpfNfcMEF3HXXXRw4cIDevXuzePFiysrKuOCCC7o03qGvC4D09PSAf/89e/Z4g7H+hg4dGrC9fft2wBPIbYvZbA7Y1ul0reritQQObTZbq8e31Gw7UnDRYDBw4403egNwxx133GGPFUIIIUR4SdBNCCGEEDHB7XaTk5PD66+/3ub9h9YFO1x21uH2q4c0SAjFnNoKnhQVFXHCCScwbNgwHn/8cQoKCjAYDHzyySc88cQThy3e76+tJgrgyQrrqMMdG+nuqhdccAF33nkn//3vf5k/fz5vv/02qampnHLKKV0aL9j//uCp65aXl9fqfp0u8KN2QkJCq6BkRkYGCQkJFBcXt3p8y778/PwjzqMlkFxVVdXxyQshhBAi5CToJoQQQoiYMHDgQL788kumTp0alkCQ2+1m586d3uw2gG3btgGeLpjBmtP//vc/bDYbH374YUAWVltLEw8XXEtPTwegpqaGtLQ07/62ssvS09OpqakJ2Ge329sM+nRGYWEh69evx+12BwSWtmzZ4r2/K/r378/kyZN56623uPHGG3nvvfeYM2dOm8sxg6WwsNCbxeZv69atAdsDBw4EICcnhxNPPLFL59JoNIwePZrVq1e3um/FihUMGDCAlJSUI47RsjT2cA0phBBCCBEZUtNNCCGEEDHh/PPPx+Vycf/997e6z+l0tgokBcMzzzzjva2qKs888wx6vZ4TTjghaHNqybzyz7Sqra3lpZdeanVsUlJSm2O2BH++/fZb776GhgZeeeWVNo/1Pw7gueee61RWXFtOO+00SkpKAuqvOZ1Onn76aZKTk5kxY0aXx77gggtYvnw5L774IhUVFV1eWtpRp512GsuXL2flypXefeXl5a0yGk8++WTMZjMPPvhgq061LY/piHPPPZdVq1YFBN62bt3K119/zXnnnXfE8erq6njyySfJyspiwoQJHTqfEEIIIcJDMt2EEEIIERNmzJjBtddey0MPPcS6deuYPXs2er2e7du389///pennnqKc889N2jnMxqNLFq0iCuuuIIpU6bw6aef8vHHH3PXXXd5M4qCMafZs2djMBg444wzuPbaa6mvr+f5558nJyenVfbZhAkTePbZZ/nzn//MoEGDyMnJYdasWcyePZu+ffty1VVXcfvtt6PVannxxRfJzs5m7969AWNcffXVXHfddZxzzjmcdNJJ/PTTT3z22WdkZWV16/n69a9/zb/+9S/mzp3LmjVr6NevH++88w5Lly7lySefbDdb60jOP/98fvvb3/Lb3/6WjIyMLmeVddTvfvc7FixYwCmnnMItt9xCUlISzz33nDebr4XZbObZZ5/lsssuY/z48Vx44YXe5/zjjz9m6tSpAYHbw7nhhht4/vnnOf300/ntb3+LXq/n8ccfJzc3l9/85jfe4/7+97/z/vvvc8YZZ9C3b1+Ki4t58cUX2bt3LwsWLMBgMITk+RBCCCFE10jQTQghhBAx45///CcTJkzgX//6F3fddRc6nY5+/fpx6aWXMnXq1KCeS6vVsmjRIq6//npuv/12UlJSuPfee7nnnnuCOqehQ4fyzjvv8Mc//pHf/va35OXlcf3115Odnc2VV14ZcOw999zDnj17eOSRR6irq2PGjBnMmjULvV7PwoULueGGG7j77rvJy8tj/vz5pKen86tf/SpgjGuuuYZdu3bxwgsvsGjRIqZNm8YXX3zhzd7rKpPJxOLFi7njjjt45ZVXsFgsDB06lJdeeom5c+d2a+w+ffpw7LHHsnTpUq6++mr0en23xmtPr169+Oabb7jpppt4+OGHyczM5LrrriM/P5+rrroq4NiLL76Y/Px8Hn74Yf76179is9no3bs306ZNa/XcH05KSgqLFy/m1ltv5c9//jNut5uZM2fyxBNPBCwZnTp1Kj/88AP//ve/qaysJCkpicmTJ/Piiy8etpmDEEIIISJHUbtSNVYIIYQQIo7NnTuXd955h/r6+khPRQghhBBCxCip6SaEEEIIIYQQQgghRJBJ0E0IIYQQQgghhBBCiCCToJsQQgghhBBCCCGEEEEmNd2EEEIIIYQQQgghhAgyyXQTQgghhBBCCCGEECLIJOgmhBBCCCGEEEIIIUSQ6SI9gWjndrs5ePAgKSkpKIoS6ekIIYQQQgghhBBCiAhSVZW6ujry8/PRaA6fzyZBt3YcPHiQgoKCSE9DCCGEEEIIIYQQQkSRffv20adPn8PeL0G3dqSkpACeJ9JsNkd4NkIIIYQQQgghhBAikiwWCwUFBd6Y0eFI0K0dLUtKzWazBN2EEEIIIYQQQgghBEC7ZcikkYIQQgghhBBCCCGEEEEmQTchhBBCCCGEEEIIIYJMgm5CCCGEEEIIIYQQQgSZBN2EEEIIIYQQQgghhAiymA66PfTQQ0yaNImUlBRycnKYM2cOW7duDTimpKSEyy67jLy8PJKSkhg/fjzvvvtuhGYshBBCCCGEEEIIIXqCmA66LVmyhHnz5rF8+XK++OILHA4Hs2fPpqGhwXvM5ZdfztatW/nwww/ZsGEDZ599Nueffz5r166N4MyFEEIIIYQQQgghRDxTVFVVIz2JYCkvLycnJ4clS5Ywffp0AJKTk3n22We57LLLvMdlZmbyl7/8hauvvrrdMS0WC6mpqdTW1mI2m0M2dyGEEEIIIYQQQggR/ToaK4rpTLdD1dbWApCRkeHdd+yxx/LWW29RVVWF2+3mzTffpKmpiZkzZ7Y5hs1mw2KxBPwnhBBCCCGEEEIIIURnxE3Qze12M3/+fKZOncqoUaO8+99++20cDgeZmZkkJCRw7bXXsnDhQgYNGtTmOA899BCpqane/woKCsL1IwghhBBCCCGEEEKIOBE3Qbd58+axceNG3nzzzYD9d999NzU1NXz55ZesXr2a2267jfPPP58NGza0Oc6dd95JbW2t9799+/aFY/pCCCGEEEIIIYQQIo7ERU23G2+8kQ8++IBvv/2W/v37e/cXFRUxaNAgNm7cyMiRI737TzzxRAYNGsQ///nPdseWmm5CCCGEEEIIIYQQokVHY0W6MM4p6FRV5aabbmLhwoUsXrw4IOAG0NjYCIBGE5jQp9VqcbvdYZunEEKIrlvmXstG93aWuFayXd1Nf00f5mhP4kLt6ZGemhBCCCGEEEIcVkwH3ebNm8cbb7zBBx98QEpKCiUlJQCkpqZiMpkYNmwYgwYN4tprr+XRRx8lMzOT999/ny+++IKPPvoowrMXQgjREQtdX/A316ve7Z/cWziglkrQTQghhBBCCBHVYrqm27PPPkttbS0zZ86kV69e3v/eeustAPR6PZ988gnZ2dmcccYZHHXUUbz66qu88sornHbaaRGevRBCiI5oxOq9rW/+ruigWhap6QghhBBCCCFEh8R0pltHytENHjyYd999NwyzEUIIEQoNqi/oNkgp5Ge1iBIqcKtuNEpMf3ckhBBCCCGEiGMxHXQLp7ppb6PutoMbUIBkPTQ4Areh9b5DtjV5Sehm98X08HGR+UGEECLGWGny3u6lZPOzWoQLF2VUkUdWBGcmhBBCCCFCqe6Yt3AX1UKTs+1r8M5uQ/fHkDFlzGQ99dnK4V62ASTo1kHuzVWgmHw7mlyBBxy6fZhj3BVNOKqbJOgmhBAd1OC3vLQ3ud7bxWoZeYoE3YQQQggh4pV7bTm4m1e4tXcN3tltGVPG7Ma2u9xKR8i6HCGEEFGtUfVluhUovby3i6WumxBCCCGEECKKSdBNCCFEVGtppKBDRx8lz7t/gevDSE1JCCGEEEIIIdolQTchhBBRrSXoloSJCZpRXK05jyH0Z717C4tc30Z4dkIIIYQQQgjRNgm6CSGEiGot3UsTMTJGM4xfaI9nG7soYi9fuZdFeHZCCCGEEEII0TYJugkhhIhqLd1LE5ub2UzSHOW9b5V7fUTmJIQQQgghhBDtkaCbEEKIqNbSvTQRIwCZShoDlb4AbHbswOFyRGxuQgghhBBCCHE4ukhPQAghhDgct+qmCRvgqenW4pn37yD9OT2GHzU4v7Chn6iP1BSFEEIIIYQQok2S6SaEECJqNTYvLQUwKb6g21GVg9F/D2qjm8aVdZGYmhBCCCGEEEIckWS6dZDS1wwlLlBVUBQwaqHpkG1ove+QbSXLhP6Egsj+MEIIESNaOpdCYKZb4pQU723rynq4IazTEkIIIYQQYaAZkoZ7bx043G1fg3d2G7o/howpYxq1KOl6KGr/NSxBtw4yr70Ys9kc6WkIIUSP0tK5FMDUXNMNIGF0IopRQTFpcFU7IzE1IYQQQggRYinrL430FIRok2KxQOr17R4ny0uFEEJErYBMN7/lpRqDhqRZqbirXdQvqsFZLs0UhBBCCCGEENFFgm5CCCGiln9Nt0S/TDeAhMG+IJx1VX3Y5iSEEEIIIYQQHSFBNyGEEFHLf3lpol9NNwCTX103aaYghBBCCCGEiDZS062DavOeQ3Um+HYogErgNm3sO3Rbp0E7Oovk5ReEaKZCCBEfnnK+wn9di7zbicohQbdJSRgGG9Hl6HEWy/JSIYQQQoh4U5v2LDQ21+9t6/q6s9sEYQwZU8ZUwKK10RESdOsoh9v3jwWBT3hb24c7xuHGXdoQ1KkJIUQ8ecz5Il+4l1LiLsdIAqMYwnDNAM7RzA44Tl+QgLveReP2Jpo2NJL/7AAUjXKYUYUQQgghRMxpcvlut3cN3tltGVPG7M62w93GwK3J8lIhhBBRZb17K4vdK9jCTtIUM4WafCZqRjNUMyDgOEVRME32LDF1W1zYtlrbGk4IIYQQQgghIkIy3YQQQkSVGize268ZHiVLST/ssYmTk6n7oAoA64p6jMMTQz4/IYQQQgghhOgIyXQTQogIaaiq59NHP8LWYOPnrzdFejpRo1qt9d5OI+UIR4LpmGQSp5kxjknEuk46mAohhBBCCCGih2S6CSFEBNRXWHjp2hco3VbM4ue+oqm+id8uuoOCowojPbWIq27OdDOTjE458p8p09hkGn+wgAvUjpVVEEIIIYQQQoiwkEw3IYQIs7pyC/+6/B+4XW5sVjv2Jjt5Q/L5z22v4bQ7Iz29iGvJdEtXUts9VpOkxTjKs6TUtqkRV52rnUcIIYQQQgghRHhI0E0IIcLsk0f+h8PqYN/6PQw6ejB5g3tRtb+ShGQj3zz3VaSnF1Gqqnoz3TJoP+gGeJspKMkarGtliakQQgghhBAiOkjQTQghwmjNwlXs37Qfe6ONgtF9Ofv+87joscswJRvZuXIHW5f8TNnOslaPc7t7xtrJOhpw4clWS1PMHXpM4rQU9P0SUC1urCsk6CaEEEIIIYSIDhJ0E0KIMPrp47XsXbubyr2VTPvVDLL759B3bCFTLp5KzsBctn+/lZVvL/Me77Q7+eLpRbx248uoqhr3wbdqv86lHc50G5OMY7cNAOuKupDMSwghhBBCCCE6SxopdJD+smEoqy3gVkGjoMlJxF3WGLANtNp36LZmYCq6mX0i/NMIISLB5XThtDnQGnSYUoyMPWOC974Tb5zNuv+toc/oAhb/6yuOvXQa5uwU/nX539m7dg/2RjvrPvqRU35zOrNvOTWCP0VoBXQu7WCmm2GIEU2aFneNC+uqelRVRVGUUE1RCCGEEEKEif7Xo3BvqMBd2dTm9XVnt6H9a3YZU8bsyLa+QAcvt/8alqBbByU+OROzuWMXgEII0Zaa4ho2fbkRgL5j+6HR+pKNExITmHj2ZD555H8AbPpiPXlDemEyJ5GclULFrnJwQUN1Q0TmHi5VfkG3dDr2nqtoFEyTk7Fvb0LXS49jrw1DoTFUUxRCCCGEEGGS+LeZkZ6CEG1yWywdCrrJ8lIhhAiTunLf0snMwqxW9486+SgAUvNSObDpAO/c9RY/ffSjJ+DWrLGmMfQTjZAm1cYBtcS73ZHupS0SJ6fg2GXD+kM91lVS100IIYQQQggReTEddHvooYeYNGkSKSkp5OTkMGfOHLZu3drquGXLljFr1iySkpIwm81Mnz4dq9UagRkLIXqyujJf0C0lK6XV/fnDezPw6EHUltSy8u1lWJqPT8tP9x7TWBO/mW5L3Cu5xvlH0kjhROUY5mrP7vBjTROTvbelmYIQQgghhBAiGsT08tIlS5Ywb948Jk2ahNPp5K677mL27Nls3ryZpKQkwBNwO+WUU7jzzjt5+umn0el0/PTTT2g0nYs3Oj7bTeMWK7hUFK2CkpuIu7QxYBtote/QbU3vZLSD0tAOTW/njEKIeOOf6ZaS3XrppKIo9B7Zh6LlO3A5XN4AmznHTM3BagAaquI36LZa9Sy9raGObCWTTCWtw481TfYF3RpXSjMFIYQQQoh44Fi0G9euWtSKpjavrzu7De1fs8uYMmZHtu3paodewzEddFu0aFHA9ssvv0xOTg5r1qxh+vTpANx6663cfPPN3HHHHd7jhg4d2ulzNV68CJ1i6t6Emym9kzDvujIoYwkhYkdduS8YlJLdOtMNYNTso9jxw3b0JgN7ftwFgDk3lYSkBGwNtrjOdPvRvcl7+w+66zv1WF2mnuST03A3ulGb3LjtbjSGmE7mFkIIIYTo8RrnfOQpXi9ElLGqHVs9GVdXJLW1ngLcGRkZAJSVlbFixQpycnI49thjyc3NZcaMGXz//feHHcNms2GxWAL+E0KIYKirOHKmG8CgY4ZQfaDKG3ADSMkyk5jmyd6N55pudWoDCgppmBmo9O3047WZOhq/s2BdVY9tffw+T0IIIYQQQojYEDdBN7fbzfz585k6dSqjRo0CYOfOnQD86U9/4pprrmHRokWMHz+eE044ge3bt7c5zkMPPURqaqr3v4KCgrD9DEKI+GYpaz/optVrGX7CyIB9KVnJJKZ70qIbqutR1fj7tk9VVb5VV6FFwwClAEVROj2GabIve7BxhSwxFUIIIYQQQkRW3ATd5s2bx8aNG3nzzTe9+9xuNwDXXnstv/rVrxg3bhxPPPEEQ4cO5cUXX2xznDvvvJPa2lrvf/v27QvL/IUQ8a9yb4X3dluNFFqM/cX4gO6mKdlmktI9mW5upxtbgy10k4wQOw4AnLhIpGtL+RP967qtlmYKQgghhBBCiMiK6ZpuLW688UY++ugjvv32W/r06ePd36tXLwBGjBgRcPzw4cPZu3dvm2MlJCSQkJAQuskKIXqkTV9tRFXBZDahS9BjMBkOe+yQ44ZRta/Su52cleJdXgrQWN2AMdkY0vmGWxO+QKJROfxzcyTGoxJJnGnGud9O0yoJugkhhBBCCCEiK6aDbqqqctNNN7Fw4UIWL15M//79A+7v168f+fn5bN26NWD/tm3bOPXUU8M5VREjVFVFVdVOd7cV4kjcbjdvzH+V+oo6EtOTuP+nh494vMlsIndQHmU7y9An6EhMT2La3BmMOW0sienJJGcePksuVgUE3ejaFx+KXgN2FfuOJgCc5Q502fqgzE8IIYQQQgghOiumg27z5s3jjTfe4IMPPiAlJYWSkhIAUlNTMZlMKIrC7bffzr333suYMWMYO3Ysr7zyClu2bOGdd96J8OxFNFn59nKqD1ZRc6AavcnAL//v3C7VlBLiUFaLlf0b91Ff4akx1ntknw69tm5691YSM5K8AeDV765k7YercTndJGcm02dUfNWbbMLuvW2ka5luAKbJyTT+4HmurSvrSTk9vdtzE0IIIYQQQoiuiOmg27PPPgvAzJkzA/a/9NJLzJ07F4D58+fT1NTErbfeSlVVFWPGjOGLL75g4MCBYZ6tiGY/frCan7/eBApk988hoyCTmdfMivS0Yk7D9xb0/Q08mbMAO3au1V1EtpIR6WlF1Iq3lrHwnv+CAqYUE2N/Ma5Dj0s+pOZbWVEpGz/fABCXr02b6st0S+hiphu0NFMo5j/3fMOGkS+h2hSmaMZyne4iMpW07k80ijWqVorVct5xLWKlez0OHGQrmfxLfx86Jab/3AshhBBCCBGTYvpTeEc7+N1xxx3ccccdIZ6NiFXFWw9SfbCapIxkmuqt6Aw6Fj32MWn56Yw9vWMBEgGqW2Xv2VvYk1HMPeueAmC7updXDH+J8Mwia9eqIs8NFeb9dz69huV3aRyNzrfk2eVyB2NqUcV/ealJ6XrQLeWUNIYemEhC6o80uu18r67hc9dSPnB/ycqEd4Mx1ai1yr2Bkx1XApBCEnU0gApXqedyrDI+wrMTQgghhBCi55HCVaLHa6xppGTLQRqq6uk3YQClRSXkD8/n9ZtfxlJuifT0YoZ9qxV3rYvEel+B/wYaIzijyFNV1Rt0S0hKIH9Eb3SGrn3XodVpvbfdDldQ5hdNApeXdj3opknSosvSY1aSMSvJaPAs5XURf4HKQ1VQ7b2dRKL39iLXd5GYjhBCCCGEED1eTGe6hVPSV+dgPOgEtwqKgpJpRK1qCtgGWu07dFuTZULTK6mds4lwsjf6LvYHThlE4bh+LHnua0adchTr/vcj06+cGbnJxZDGFZ5ukYkNvoBJfQ8PulXtqySzbxbpfTJJy0sLCJx1llbve6zLGX9BN6va5L3dnaBbi1t0V3ALV5DTdDQW6nHi7PaY0a5C9QXdbtP+igfrnuWypadz/Maj4M4ITkwIIYQQoouSll+Au7gBtcbW5vV1Z7eh/Wt2GVPG7Mi2y+iEGb9v9zUsQbcO0o3NJmG6OdLTECFgb/SrJZWUwAk3zObrf3zBTx+tpba4RoJuHWTbbiVxWgqGBpN3X6NqjeCMIm/Xqp3sXOnJdDvlN6d3ayyNX8DOFYeZbja/TLeEbjRSOJS2OaG7J2S6lVPlvT1I05elv/wXTcsbAHBcYUefH7znVQghhBAiHHRjs2FsdqSnIUQrOkvHVsXJ8lLR4xnNJgZMHkifUQWk5qVhTDFizk0FoHxnWVxmFYVC/afVNH5Xh/0nK0mqJ/DW0zPddrbUcwP6T+pe85aATLc4DLr513QzdqOm26F0zd8tuYi/5+xQ/pluWUoGycenebfrP68J/4SEEEIIIYTo4STTTfRIqqqiKJ5aT0OnDWPotGEB92f2zcRSWktDdQO3978FbYKOP3x7L2n56ZGYbtRzWZzYNnuy2oyjk0hWEmnASr3as4NuZTtKAVA0Cv0m9O/WWFqt7zsSd5w3UgjG8tIWLZluTrUnBN18mW5ZpJN8cip1H1WhTdNhXVlH+tycCM5OCCGEEEKInkeCbh3U8KsvYJ3Fs4ZXo6BkmVArrAHbQKt9h25rBpjRn9AXw9WjIvwT9Wxv/f4Ntn+/lbwhvTjhhpMYMHlQwP0ZfTLZtWon4Kmf5XK6qCmpkaDbYVjX1ENzM2HTlGSSlERQK2mk5y4vtVqs7PhhG8mZyQw6dgjGZGP7DzoCTbxnuqn+jRSCubzU87y5e8TyUl+mW7aSQeLkRJwHHNg2WGla30ivp/qj6CXBXQghhBCxo3Hu57g2VHhqurVxfd3ZbWj/ml3GlDE7st1Q0LFwmgTdOsj5YRGq4qtVpe6rD7j/0O3DHeNeW45reYkE3SLI7XKz7n8/Yq1ppGJXOQMmDWwddCvIaPW4moPVML572UrxqnFZHbpeevR9E0iabiYJWV66e80uVFWlvrKelOzu14P0b8IQj0uebX6ZbglBzXTzPG89qZFCAgaSSUTRKiSflErtW5W4a100LKsjeXpqhGcphBBCCNFxjje3eQIdtH8N3tltGVPG7M6288eOJZhI0E30ONuWbiU5IxlrjScgpEto/WuQkm1Go9UELOOrKa4J1xRjjnVFPc5iB85iB8axSSSRCHiWDLpUF1ql6107Y9XOlTu8twdMGtDt8XIG5TL18mlo9Vryh+V3e7xo0+TXSMGoBDHTTdGA2jMaKbQsL80i3bt8PvkX6TgO2nFVOqn/rEaCbkIIIYQQQoSRBN1Ej7PyzWWU7yzzbv/8zSZWvbOShEQD5z9yMbmD8jhu7gymX3U86z76kZd//W8AaourDzdkj6aqKtaVnsi/NkuHYaCRZEeid7lpA1bMJEdwhpFhtVgZeMxg6sosFE7oftCtcGw/Csf26/7EolSoarr1lEYKrzrfZ7DSj0J600vxdfhKPj6NA5fv8Pw+ahR4oDBykxRCCCGEEKKHkaCb6FGsFiuWMgvm3FQspbUA1JXXs3/DXsC3bK9lKV/vkQXexx7cepDdP+6inywxDWDf0YS+MAHVoZI4JQVFUbzLS8GzxLQnBt3Wf7qO2uIaEtOTyOjTermyCNSkhriRQhwH3eyqgxud/4cdB0OU/nxreMN7ny5bj2liMtZV9dh3WXHst6HvE7znVwghhBBCCHF4UlFZ9ChrP1jN9qVbvQE3AKfN4b2dkBh4MZqWl+a9ve3brbwx/1XWffQjlXsrQj7XWGFdXkfT2gbcdS4Sj0sB8C4vBWjogR1Mm+qs1DYvR84dlOdd6icOzxawvDT4Nd3ieXnpJnU7djzvY+OVEa3uTz0/E+OYRFQ71H1WE+bZCSGEEEII0XNJ0E30KDuWbye1V1rAPv+gmyExsJaUIdHAUaeNJW9oL4zJCZRuL+Gla57n5282h2O6MaFxua+opGm8J6MtWfELuvXADqYl20u8t/OG9Ar6+KqqBn3MSLPS5L0d3OWl8d9IYbV7o/f2RE3rJj2mY1Jo+qkRHCr1EnQTQgghhBAibCToJnqM/Rv3sea9VdQW1zB46hDvfqfDdzFuMLUu4H7VC9dy9n3nUei3rLRqX2VoJxtDrCvrPDc0YJzoCbodury0pynZVuy9nTckLyhjFi3fzm/63cT83jfwvwffD8qY0SSgkQJBbKTQ/GcuXjPdtriLOKCWMpC+ZJLGhLaCbhOS0WbpQA/OMgdue3w+F0IIIYQQQkQbCbqJHuOnT9aSO9gTAOk3wRdAc9p9tZ70bQTdAIZOH865D1zg3a7cI8tLAVz1LpREDYnHpZB8chraZE9WUZLSs5eXWkprGXj0IArH9ydvaHAy3RSNBqfNiepWcTnirz5ZqGq6+TdSiMcMwf+5v+Fh178oYi/Ha47mGM24VscoGoXUi7NQ9Bqsy+poXFoXgZkKIYQQQgjR80gjhTj2tWs5O9V9rHP/zC73fuqVBnoruVypPZcTtcdGenph1VTfxJLnvsbWYKP3qAKOOnUsX/ztMwBvAENv1KPRHD4Ond47A0WjoLpVqenWzLqqHmvz8tL0a3K9+5P9arr1xEy3Xat3UrR8B+Cp6RYMWr3We9vtjL+gm82ve2lCEGu6afy+W3Lj9tZ4ixcW1be8Ow3zYY9LnJhC1d88y57rP6sm+fhUADa5tvGKeyFWtYkJmqOYq/tlaCcshBBCCCFEDyJBt45K1BFQmkqjgFsN3IbW+w7dNmrRDE4P6VRbvO76kNfdHwIwnAH8rO4EFQzoe1zQraG6gQFTBrHlm830HVNIal4a/Sb0R2fQcfDng0DbS0v9afVa0vPTqdpfJUG3Zt6lpUDiFF+HUv/lpQ1qz6vpVtpc0y0hKYG0/OD8vrd01AXiM9MtZMtL/Z63OAy6+Qe1rzhCwCzpxFTQgWGoCcdeX4DzI/cS/uZaAMD36o8SdBNCCCFEdDEboNYGKm1fX3d2G7o/howpY2oUSNCBhXZJ0K2DUvddjdl8+CyCaLRT3ee93Yc8fmYnALvU/ZGaUsRkFmRy3es3Urm3AkVRSM1L49aPfgfA3WN+D4Ahsf3smszCLCzlFnQJempKagK6m/ZE1jUN3tumKSne20OU/pyvOY3d6n4ed77I5+7vOVFzLHN1Z0dimmFlb7RTtddT8y93cPA6l2p0fhlbzvirydVEiJaXKlrPhzQ8zRQM6IM2djSoU32/gyl+GaaH0mXqSTrOTMNiC/ZNVux7bBgKE6hVfZ8UDqilqKoq3XaFEEIIETVSy34d6SkI0SbFYoHU37R7nNR0i2O7moNueWTxP+Nz5JMDBAbjeprMvllkFGQG7LM1eC72D+1c2pYJZ09Gq9NiKa1l8xcbQjLHWKGqKg0/WND3TyDppFQMg43e+2ZoJ/Oq4RFO0kxlF/t5x72Iu51PRm6yYVRWVOqtHRbMzqUBmW5xuLy0SfXPdAte0E3r92cuHpsp1OMLuiUrSUc8Nmlmqu9xn1UDsAvflzAW6tmjHgzyDIUQQgghhOi5JNMtTjWojZTgWQLZXynw/v9BtYxyqqhTG0hp5wKtJ9j2/RacNidDZwxn+PEj2j2+z6gCb5Buy5KfOfayaaGeYlRxW13s+XsR9576T7R1Cr8tPxd3uZOEoaY2s2PMSjIJGLBhpxpLj8iiSclO4ax7z6F0ezGDjx0atHH9a7rFw/JSu+rgL87n2KwWUaqWU4OFvuSTrWQENRtN5/dnzkXsP2+HqsM/0+3I7+nJp6RR8skBHn3kLcqH1HKl67yAL2FOVI5lr3qAfvQO2XyFEEIIIYToSSTTLU75LyEd0Bx0G6Ap8O7radlulfsqqdhdTn1lPW63L9slZ2AeI04YxdYlP5Oam3qEETz6jC5g3FkTyCjI5KeP11K2syyU0446zmIH25/bwtsDP6d2S613f+LRKW0ef4vuCsZrRnoei7NHNFVIzUtj1nUnctFjlzHxnMlBG1cTZ5luJVTwgOtZFro/Z6u6i0zSKVTyOUUzLaiBWf9MN2ccBt3q/boDJx9heSmAaVwyCUtyeGvc53ydtII3nR8H/C34Uv2BbeqekM1VCCGEEEKInkYy3TrIMuJV1ArwFAdSwKABuztwG1rvO2RbSUtAN7MPia+eHPQ5znc8gAsXSZjY4N7GEKU/ZpI5XjsFgOM1U1CAYnc519nvJleTxRhlOP+nvznoc4k2/73jP/z89SYAHtz8KEnpSTx11qPYGm1kFWZz/Zs3M2Ra+1lJiqLQd0whaz9YA8A7d73JDW/G//PXwlnuIHd/BhqXgs1oZ9vE/Qz5qQDT5OTDPiYDXzCzGku72Tiibdo4q+l2UC313k4hCbPieQ21/H+wBDZSiL+gmwVP99JETGiV9ptEDFIKvdmni9Rvma05DqvaxDfqCgAqqArpfIUQQgghOsMy+GXU4gZwqm1fg3d2G7o/howpYxo01Jk7dk0mQbcOUksbQWnpyKhCk//F26Hbhz9GLWnE+d2BoM+vUq3hJde72LBjxMAEZRS5ZDJdM4lLtWcBcLH2DC7WnsH9jr/zqOsF1rp/5jtWc49uXocu1mJZU12T97YxxVN7bP+GfditdlwOF8NmDO/wWBPPmcy+DXvZuaqIouXb2blyB1n9czBnx1ajja5wljnQubT03p3NV3N+5Ks5P2JuSmJX4jeHfUya4nteqtVa+irBq3PWk8RbTbditdx7+yrdedyuuzok59H5Bd3iMdOtpZHCkZoo+NMoGo7RjGOxewVOXHziXsKpmuneZhPlqgTdhBBCCBE91H31vq6RR7wG7+x2MMaQMXvymKrVSkfI8tI4sdO9jzM0sxii9GOEMpg0xYxZSW4za8SsJJPenH3UgJUt6s5wTzdsVFWlsaaBugpPhz6DyeANXugSPDFnp93ZqTHNOakMPnYoBqMBp83JU2c9xsbP1gd34lHKWeYAoNceXzOKXqYckgyHv+APyHTz65QYr+or6zn48wFKt5fQVN/U/gM6yGg2cdWL13LNqzdw6m9OD9q4kVKs+pZm91KyQ3aewEy32M8QPFTLku2UTmQInqmZxcWaMxilDCGDNC7TzvHeV65WB3uKQgghhBBC9FiS6RYn1qk/8457EQD/0P6JK/XnHvbYW3RX4MDJH51PALDGvYmRmsFhmWe4uV1u7hp5O2rztyMtWW4AWoPn5W+1WCnZVtypTpPHXnociWmJvHTN8wDUV9QFcdbRy1XuCbolNvi6Sw5SCo/4mIBMN2qPcGR8WP3eShbe818ALv/HlUz45aSgjKsz6Djq1LFBGSsaHPQLuuWTG7LzBATdVBfEUR8PVVW9jRQ6s2z7Bt0lANzv+DuqqnK8MsV7nywvFUIIIYQQIngk0y1O1Pt1sEvVtF3U3t9EZTTHKGOZqoxnu7o7hDOLLK1Oi9mvQYIxxeS7r7kbZENlPQvvfafTY/s3Xqiv7BlBt5ZMtxkfj2VG3USmKGM4QzPriI9J98t0q1LjP+jm9lv66d9xVAQKCLqFNNPN92cu3mq6NWHz/kztNVFoi1lJJlWTQppiRt/8HVyFZLoJIYQQh6WqaqSnIISIMZLpFida6vpAxzIexmqGsUxdB4Dd7QjVtCKufFcZbpdvSVlCsi9DS6v1BURMZhOdlZTpC27W9bCg25n/mcpv7rkRQ7axnUdAul+mWw3xv7zU5dfkQKOV7zUO9ZTzFb51r2K5e513Xy8lJ2Tni+dGCnV+X7akKJ1vUHKL7grv7SzSKaZcgm5CCCFEG3Ys207u4Fyev+JZRp40mqmXTyc5I7jNn4QQ8UmCbnGipa4PQLLSfsZDmmJmsNKP7epuflK3YFcdGBR9KKcYEaU7Sqkr8wV6dAm+n1Hj1w3SmNx+8OhQKVm+oFtPW14KoM3p2OslPaCmWw/IdHOELtOtaPl2nA4XBpOB/hMHBHXsUKtSa7nFcT8H1DIsah15ZGEmmVwlEzOh+9CqU+K3ppv/ly3J3ewKnKWkU6yWU04VqqqiKHG0DlcIIYRox4bPfiJnYC671+xi1OyjSEr3/V21lFt44cp/4nK6SclOYfNXG9n23RamXj6d8WdNjOCshRCxQIJucSIg46GDF18TlJFsV3djx8FGdRvjlZGhml7EWGsbA7Y1Gt+FpOJ327/WW0cZU4xoDTpcdif1lfVdn2QMUYwa9AUG3E1utMkdCyj5Z7q95fqUn9UiAKZrJgVk2sQL/86i/h1Hg+EfF/4Np81J75F9+N2Xfwjq2KG2Q93Df5vrTvYln9GaIYDndRDKAI82oHtp55qmRLvuZrr5y1IyQAUHTizUk0r7ZQqEEEKIeGBraOLla/+N0+b5nHDmH3/JCfNme+//8L73SM1Lo6a4mrpyC6pbRXW5qSmpYfePu+g3vn+kpi6EiAExvfbpoYceYtKkSaSkpJCTk8OcOXPYunVrm8eqqsqpp56Koii8//774Z1oGNR3IeNhqmY8xykTmKSM5if3llBNLaKslkPb+Pou7jUa38vfkJRAZymKQnKmJ0Onp2S6WdfU49hnR5PY8WBSgdKLP+lu4hRlGumksMm9nR/dm3nP9XkIZxo5/kE3/2zKYNA0L4n2P0es2Knu896+Tnch7xqe4V3DMyEPvOritHtpvdrIQ45/0Y/ejFQGM0dzYrfGm6ZMZKYyhRHKIHa59wdplkIIIUT027NuD0lpnuunhKQE7I02733blm6lal8lVfsq0Wg1zHv7VgZOGUjV/io++NO7LHv9+0hNWwgRI2I66LZkyRLmzZvH8uXL+eKLL3A4HMyePZuGhoZWxz755JNxvVzG0oWMh5GawXyvrmGVuoGV6vpQTS2iDs10U91+F91+r36DydCl8VOa67rVV9XjdsfPBX1bVKeKq8LzDaCug0tLATKVNO7QXcvx2qMp0PSinCqKKWO92naAPNa5Q5jpptVrWp0jVvgH3QYoBWE7r38jBWcc1XQrVSv4QP2S3RxAh4aTtFO7NV6CYmCxuoLN6o64/d0UQggh2vLjwtXUltai0WqwNdj44unPUFUVp93J9y8toWjFDnQJes669xwKxxVy3kMXe79Y3bVqZ4RnL4SIdjG9vHTRokUB2y+//DI5OTmsWbOG6dOne/evW7eOxx57jNWrV9OrV68unUs7MRe2WUEFFFDMBlSLPWAbaLXv0G1Nn2R0swu79gMfQWcbKQCMVYajQYMbN2vcG4M+p2jgn+l2zv3nMerkMd7tvmMKKdlSDIAptfOd/wBvppvb6cZaaw2o/xBvXJUOz2sZ0GZ3vv7fLboruIUrmGw7h/XqVtxxlHXkzxXCmm4tQTz/c8SKne5IBd3is5FCBb6GB8dqJnR7vAnKKO/tNepGLmdOt8cUQgghYsGBTZ7PKC3N11wOFw1VDaz7+Ed++ngtvYblk9Uvm0nnTgHAkGigYHRf9qzdTen2EhqqG+L6GiDStMfl495WjdrgaPP6urPb0P41u4wpY3ZkW5uXAsvbfw3HdNDtULW1niLtGRkZ3n2NjY1cfPHF/P3vfycvL6/dMWw2GzabL6XYYvEU4U/+7JeYzebDPSzi6psz3QzoSVA6lrWVqJgYoQxko7qdjep26tz1pGjiqwtPk1/QbdDUoWQUZHq3cwf5Xg9d7T7Ud2w/nA4X9kYbtaU1cf0H1+nXREGX0/W3DhOe+nk27LhVNxolphNuW/Hvlhv8TLeW5aWxF7D0z3TrH8agW7wuL/XvMpqlpHd7vHGa4d7bP7o3dXs8IYQQIha4nC6KtxwEICHZiK2+CYCS7cV88bdF9BldQPmuci59em5AaZqRs0ej1WupLa1l1+oiRp10VETm3xMkf3l2pKcgRNssFkj9VbuHxc3VrtvtZv78+UydOpVRo3zf2N96660ce+yxnHXWWR0a56GHHiI1NdX7X0FB+C4Ou6OloHZHs9xaXKI5kxOUYzGTzCfuJaGYWkT5Z7qZzKaA+5rqmry3u9JIAUDRKuz4YRt71+2ham9l1yYZI5yl/kG3ri3HBTApvufaStMRjoxN/llomiAH3VpqusXi8tLH9Hfwkv5h/qy7tdtF/zsjoJGCGj+NFMrVKu/tbLofdEtVUjhVM52jlbG4UXGr8ROgFEIIIQ6nrKgUR5PnM25arzTv/qd/+Tg1B6rZv2Efw2YOp8+owGvC3EF57FxZROWeChb+6V2evfhp3v79f8I5dSFEjIibTLd58+axceNGvv/eV8zyww8/5Ouvv2bt2rUdHufOO+/ktttu825bLJaYCLzVq57aZcmdvJgdoxnOna7HAPiL6zlKqIirjpKNFl9Nt0OXkLpdbrR6LS6HC+MhAbmOyirM9t6u2F3etUnGiIBMty4sL21hwte0opEmkuja0t5odebdZ3PyrafhcrpIzU0N6tjeTLcYXF6aeb6GaYlDSBgxFu4I33m18Zrphn+mW8YRjuyc5eo6AIoppze5QRtXCCGEiEYHfz5A7qA8EtOTMOeYKd1eEnB/Wq80pl42rdXj+k8c4L1dsbOMip1lJCQlcN7DF8Z1HXEhROd1KejmcDgoKSmhsbGR7OzsgOWckXDjjTfy0Ucf8e2339KnTx/v/q+//pqioiLS0tICjj/nnHOYNm0aixcvbjVWQkICCQmd72QZab5Mt84FMI7XTOF8zWkcoxnLy673eN75NvU08gfd9aGYZthZazxBN0WjkHBIh9Iz//hLzvjDHBxNji7X3sru33OCbq4yX5aQthvLSxPxBTit2I5wZGwymU2tsiqDxVvTLcYy3dx2N3X/8wSJEqfayb6jTzuPCB7/RgpxVdPNL9MtGMtLIbDW3k51H70VCboJIYSIbwc3H6B0hyfQdsKNJwfcl9orjT+tebDNx6XmpZFRkEljdQNNzUtSbQ02qvZXkelXzkYIITp85VxXV8drr73Gm2++ycqVK7Hb7aiqiqIo9OnTh9mzZ/PrX/+aSZMmhXK+AVRV5aabbmLhwoUsXryY/v37B9x/xx13cPXVVwfsGz16NE888QRnnHFGp85Vm/lPVCU4F9JK7yTMu64MylgADtVBU3PwIrmTy0sVReFVwyNUqNXc6vT8UVnh/iloc4skd4MLRVUwmU1kD8hp81snRVG63LkUILNfzwm6Ocvs3tvdyXQz+mW6WVUryJeBHaaJ0Uw3V5VfwDY9vAnWWiU+GymU+9V0yyY4X3wNVPp6b+9072OaZmJQxhVCCCGiVUs9N4C+Y/oG3Nd7ZJ8jZq0NmTaM5W8s9W5r9VrKdpRK0C3Iao3PgFuN9DSEaMWiWts/iA4G3R5//HEeeOABBg4cyBlnnMFdd91Ffn4+JpOJqqoqNm7cyHfffcfs2bOZMmUKTz/9NIMHD+7WD9AR8+bN44033uCDDz4gJSWFkhLPtxSpqamYTCby8vLabJ7Qt2/fVgG6WFaHbwllV2slZZKGAT12HBxUS4M1tYhSEjWk983gqpevJS0/OJkgh0rJSsGQmIC90cbBLQe9geh4FLC8NLfrQbfEgJpu8ZfpFkra5vb0sZbpFhB0ywxv0C1eGylU+i0vzQ7S8tJDM92EEEKIeFf88wHAU9+5t1/dtsy+mUy9fPoRH1twVAHL3/Bt600GDm7ez/DjR4RkrkKI2NShq59Vq1bx7bffMnLkyDbvnzx5MldeeSX//Oc/eemll/juu+/CEnR79tlnAZg5c2bA/pdeeom5c+eG/PzR4CnnKyxyfefd7mwjhRaKotBLyWGPeoBiNT4ythRF4cp//zrk5zjzD3NY8/4qdq3ayaYvNzLqpNEhPWekuKqd6Hrp0Zi1aLO6EXTzW17aSMe+HYgl6z76kar9VWi0Go695DgMiV3PpDzU/A9vR6PVoNHFVg+ciGa6+TdSIH4aKbR0L9WgIYPg1A6UoJsQQoiepKmuCVNqIgnVDfQamk9G7wxu++T37N+wlx9e+77d4Fn/iQMDx7NYaaxpPMzRQoieqkNXP//5T8c6sSQkJHDdddd1a0KdoaqdTzPtymOi0QvOd/iX6z/YVDsJGBjDMEZoBnGT7rIuj9mLbPZwgEpqPOMqwQsWxLO03unsXbeH4bNGUlZUCnEadHMesOMsdkCJA103gm6By0vjL9NtxZvL2PzVRgAmnTM5qEE3vbHrz3skuSr9gm4Z4Q66+dd0i59MNyMJjFaGkqmkolGCE4QtpDdTlfHUUk8VNUEZUwghhIhWFXvKObBpPwDZA3PR6rUUjutH4bh+HH3xVG8t3cPpNSyf0aeOwe10s+mLDQDYGppCPm8hRGzp9tWPxWLh66+/ZujQoQwfPjwYcxLtUFWVjeo21qtbAThGGUeGkspYzXDGa9rORuyI3kouNMcki9Vy+im9gzHdiLGua8BtcYJWIfHoFBRtaJZ9jj55DFqdlp+/3kTVvkpmXXdiSM4Tac5yT+BEm6lD0XX9uQxcXhp/H0z86611tUFHvHFV+wfdwhs41Pn9mYunTLcN6jZqqWMQhUEbM0FjYK9azD6KOagGt/OuEEIIEW2q9/uaEmUUBJZqaC/gBqDRarj6xeso3VHiDbq1NFUQQogWnQ66nX/++UyfPp0bb7wRq9XKxIkT2b17N6qq8uabb3LOOeeEYp4CuNA+n6/dy7HSxEjFt3z3DcPj9FKyj/DIjvEf4yCl9CO2g24lt++m8VsLAMMtU0IWdANIykjGfqCKhuqGkJ0jklRVxVnmqemmy+le0MREnAfd/OqtaTrwga0zqvZV0ljbiNvppveoPh36QBgNApaXSqZbt7lUF7XUAQRtaWmLAZoC9rmLqaKWGtVCmmIO6vhCCCFEtKjaX+m9ndGn680PjMm+z7ZNdfH32VYI0T2dXpPy7bffMm3aNAAWLlyIqqrU1NTwt7/9jT//+c9Bn6DwKVL3YaEeB072qcWAJ4CRR1ZQxu+l5Hhv/9bxF86x38hTzleCMnZEOH1LiUMZcANISvfU0musaYibJcz+3PVuVKsnYBHMoFujGn8fTNx+QbdgB8XevuM//PWkB3ns1Idj6kOdq8rXhCPcQbfARgqx1YDicGqaA25A0INiUtdNCCFET1Hln+nWp+tNiRL8gm6yvFQIcahOB91qa2vJyPC8KS1atIhzzjmHxMRETj/9dLZv3x70CQofneq7eKymFoD+ypFbWXfGOZqT+Uz/ItdrLkajKixxr+Qx54vc43gqKOOHm+ryC36FOCEoMcMTdHM73TEVDOkoV5lf0CS7m0E3xVfTrSkOu5cGZroFt+GB/3LVWOpgGslMN41/IwU1dp6zI6lWa72304Oc6dZf6eO9LUE3IYQQ8cx/eWl6N4JuhkSD93rMVh9/n22FEN3T6SvCgoICli1bRkNDA4sWLWL27NkAVFdXYzQa23m06A7/ekTu5uJr/lkJ3dVP05sZ2sn00/QmRUminkbKqGSPejBo5wgntSXTTUPQApOHk5yR7L3dUF0f0nNFgrPcF3TrbqZbvHcvbanpptFpgv6602h9b9luZ+wslUyamUr6tbmYz8tEnxfemm7xuLy0Gov3dnoIM90WuD4I6thCCCFENGnJdFMUhbRe6V0eR6PRYEjyfKkcj1++CyG6p9MpB/Pnz+eSSy4hOTmZwsJCZs6cCXiWnY4eHZ9dG6OFRWkAFdIxc4Xml9RSz3W6i4J+nlt0VzBHexJDbZ6AqitWi483J7V0p+h/R7UsLwVoqG4gq7D7NfaiibM0mEE3/5pu8fdtoNvlCeyEot5arGa6qXaVhGEmtBm6bmdKdpZO8f2Zi9n3skOEMtNthmYyd2vn8Q/XG6xw/8R/XZ9ynvbUoJ5DCCGEiDRVVTEmJzBgyiASEhPQGbqXiW9MTsBW30STLC8VQhyi0+8uN9xwA5MnT2bfvn2cdNJJaDSeLIIBAwbEdU23hHunoF1tAZcbdBo0vZJwH2wI2AZa7Tt0WzMgFd2k3C7NwaI2F85W0uilyaEXOYzRDAvaz+gvsA5SbGaHeDPdQlzPDSDRP+hWGd+Zbt0NmhgDarrFc6ZbCIJufmO6YyjoVvnUQZrWN6IYFFIvCE4Nyo6K90y3DCW4QbdsJYN+mt5UuqoBqFCrgzq+EEIIEQ3qyi1sX7oNgCHTu389ZUw2UUstNuleGnTGR6bi2liJu9za5vV1Z7eh/Wt2GVPG7Mh2Qr4W7m7/NdylkP7EiROZOHFiwL7TTz+9K0PFDOPN40g2R66Lm6qq1OIJ5qSSzC26K0J6Pq1/HaRYLT7eXNMtEplu8Ua1ujAdk4KiBV1+NzPdFL8OT3GY6daSgeaflRYs/oG8luBeLHA213TTZupCvtT7UPHYSME/0y0U3UWTSfTerqcx6OMLIYQQkXbwZ1/5nPxhvbs93mm/PwOH1YHRLOWWgi3h5nGRnoIQbXJaLKEJul155ZVHvP/FF1/s7JCiA+ppxN2cpWFWUkJ+vni4UPVluoX+XEnp/jXd4i/oZi+yYV3mybTMfbC73Ut9jRQaib9vA7P756DT6zCaTe0f3EkBmW6u2MnaammkoE0PbxMFiJMvEA4RkOkW5OWlAEl+QbeGOMxGFUIIIYp/PuC93Wt4frfHG/uL8d0eI5aoqspi90rWuTejoHCd7iKMfs3ShBA+nb4Cqq4OXGricDjYuHEjNTU1zJo1q8Pj7Nixg6KiIqZPn47JZEJV1bBnQMSSWuq8t1NJPsKRweG/JCtmL1TDmOmWlp9On1EFOJ0u9m/ah73RjiHREPLzhktAI4VuLi/1b6RgVeMv6Hbd6zeGbGz/bqixkunmbnKjNjbXuQtz51KI0+WlIc50S1J8v6MNkukmhBAiDpVsK/beDkamW0+zWt3IqY6r0DT/7wt1KR8bno/0tISISp2+Alq4cGGrfW63m+uvv56BAwe2+/jKykouuOACvv76axRFYfv27QwYMICrrrqK9PR0Hnvssc5OKSya/rYWTRBruulm9OnU+S2qr05YeDLd/IuPx8bF/aHUlkYKYajpNuiYwcz/3+08NPM+9qzexY5l2xhxwqiQnzdcAoJuud2s6eb3Ldg37uU85Xwl5Mul44V/plusNFJoyXKDyATd/N/LnHHSSOEH94/e26HIdJPlpUIIIeJdWVEp6X0ySExLJGdQ1+pt9zS1ah0vu97jW/cq9qslaNDgbv7fLnV/yM5r+9taqekmY0blmE35HVtSF5QrII1Gw2233cbMmTP53e9+d8Rjb731VnQ6HXv37mX48OHe/RdccAG33XZb1AbdbP+3ggS/b/8Pvdxt6/L3cMfYeydh3nXkZbqHkky3zhu8aaxniWmYklt2/7gLVJWm+iaW/PsbsgfkkN0/JzwnDzFXmSfopiRq0CR1b71uHlnsTljMNfY/8I26nD84n6BA6cXZ2tnBmGpc8890cztjI2vLVR3ZoFs8ZrrNVo7DoOoZrxnJIKVv0MfvqctLV7z1A/s37Ofs+88DkOx7IYSIY2VFpdRX1uN2ujAmd78OW12FhdriWprqm8gf0ZvE1MT2HxRD6tQGcm3HYMRAKmaGKP2Ywhg2so06GtirFuNUnQFd44Ol6XdLwe1ZwdTeNXhnt2VMGbM727YOfk4O2m9FUVERTmf7WQSff/45n332GX36BGZ6DR48mD179gRrOnEnINMtLEE3v4waNTYvVBW9BqV7SVmdMvjYIfSfNJDV767EUlpLY038ZIi0ZLp1d2kpgFbRkkcWSYoJZ3M6YiM958K+O06+9TRmXX8SWp0WUwhqxoWCq9Kv820EaroFZO2qbf3JjT2pmhTSSaVA0wt9CN7ketryUrfbTe3BGt64bQFarZYVby1jwpyJXPDXSyI9NSGEECHQVN9EfaXn2iqrMDsoY276YgNr3l9NQ2U9J958CuPPnBCUcaPFLnUfAE3YyUSLWUkGBQrV3mxUt+HEyV61mAFKQYRnKkT06fQV0G233RawraoqxcXFfPzxx1xxRftLxBoaGkhMbB35r6qqIiFBii8eTkCmW5gbKcTLkqxwMOf46is5bY4jHBk7VKeKq9LzGuju0lJ/p2pm8L77SyC+ars9e9HTqG6VnIE5nPvghUEdOzE1kRCsJgypgEy3zDBGwZtp4iBrt0XVv0upePQAv0gfx1UPziH5+NC8GPyXlzb0gID4S1c/z8+LN6FP0OOwOnA5XFTtr4z0tIQQQoRIxe5y7+3MfsEJuiUkG9n27RYA9v20J+6Cbjubg24AV+nO4y7ddQD8wfE4G13bvMcMQIJuQhyq00G3tWvXBmxrNBqys7N57LHH2u1sCjBt2jReffVV7r//fsCzfMPtdvPII49w/PHHd3Y6PYK7yY3V3oTWoMWFKyyZbv4Xqu44WZIVDlq9X/2oGCl03x5nhQOaG8EGI9OtRaLiS+W3YgvauJG27bstuF1uGmvir4ttV7QEbCHy3UtjtT5lC2exHccuG45dNlRb6N6XTRhRUFBRaVDjP9OtrqIOh9XzJYlWr8XlcFFTXBPZSQkhhAgZ/6BbVmFWUMYcfMwQ7+3tS7cFZcxo4h90889m699820wyZap8YSVEWzp9BfTNN99064SPPPIIJ5xwAqtXr8Zut/O73/2OTZs2UVVVxdKlS7s1drxq+KaWiXN6cdUfTiNhVjIXTz0j5OdUFAUtniBfrGa6lf3fXlQn6PL0ZM7rFZZz6hL8lrLZY/N5O5TLr4mCNid4QTcTvqBbvCwvVVUVt8sTDPGvv9aTaZK1GI9KxFXtRBfE109H6ZT4CboFZA2GMICpUTQkYqQBa49opFBf6ckkN5lNJGUmU7GrnFoJugkhRNyylPq6gGcFKdMtOSuF3MF5gEpmQQaOJjt6oyEoY0eDwwXd8pQsEjBgoZ4idW8kpiZE1At72sGoUaPYtm0bzzzzDCkpKdTX13P22Wczb948evUKT2Ak1jibi9gn1Rgxq6kkKOF5A9eiwYUrZouPVzxZjNroJmFUYtiCbgGZbnESdHNWOjAdk4xqUzEUBm8JuH/QzarGR6abf3MD/06jwbJ33R62L92Ky+HiqFPHkjc0+t8zjeOTyH9uINp0Hfre4f/wGU+NFFw1fkG31ND++U4mkQasPaKRQn2FJ+iWnJVCal4aFbvKsVqsvHv327jsThprrcz951URnqUQQohgqdhdjjHFiDHFRHrv9KCNmzs4j/WfrKN0eylz/nQu6b0zgjZ2pFnUepJIpIHGgKBbtpKBDTsA1dQe7uFC9Ggd+tQ+fvx4vvrqK9LT0xk3btwRO3r9+OOPh73P4XBwyimn8M9//pM//OEPnZ9tD+Us9QTdLv37bAqmD2nn6ODRocOOI3brIDk9ayKV4Mc+Dkun98uqiZflpcUOrMs8xWbTLg7Ot4EAJsUXwLMSHzXd/P/Ntfrgv/B2rtzBh39eCEBW/+yYCLpVPHaQmhfLABi4+iiMo5PCev6ARgqx+l7WzFXt9/pKD+0bW5KSCGpl3DdScNocWC2ewGJyZjJpvdK89+1aUYTepKe2tJY3bltAdv8cTrrp5AjNVAghRLDUVzXQVNdEU10TyVnm9h/QQSa/jqVN9fHx2bbFSnUDDTRSSD6ZpHn3p+N7/qpVSwRmJkT061DQ7ayzzvI2OZgzZ06XT6bX61m/fn2XH99TOUvt3tvhXJ7VkiESqxeqqqulENnhg8TB5r+8NG4y3cp8y0uD+fpLxNchMV6Cbm6X73dFow1+UESji72grqsq0jXd4qeRgrvW91xqQvxctjRTiPflpS3d6wCSM1MwmX0XTMVbD9JnVAGVeyuo3FNBaq80pl85k4QkafokhBCxrKHK770/I3hfBppSfJ9tmyzxkynuUB3sU4sBSFdSAxJw0hVfUyfJdBOibR361H7vvfe2ebsrLr30Ul544QUefvjhbo3Tk7RkugHocsO3PKulg2ksLslSVZWW62tFG76gWzwuLw1dTTffhWtjnHQvDXWmm/+S1ZbacdEuoA5ZhjRS6I6W51JJ1KAxhLZmYEtQ3IYdp+pEp4T/3y4c6ip8ncFTslIYceIoakpqOLBpH/0m9OeX/3ce//vzQir3VlCytZiVby9j2q9mRmy+Qgghuq+llqdGq8FoNrVzdMcZzX6lU+Io6LZXLfZ+hvJfWgqBmW41kukmRJs6/Sl61apVuN1upkyZErB/xYoVaLVaJk6ceMTHO51OXnzxRb788ksmTJhAUlLgtwuPP/54Z6cU9/wzjbS54cx081ysxmQjBb94hBLOTDeDfyZSDD5vbQhVpptJ8fs2ME66l7qcfkG3ENR082/OEDOZbs3dSxWjgiYxjGu9mxmcOoaVFqJ36slKSoO8sE8haFpqumnTQv88JiuJ3q7FDVhJJSXk54yEer+gW3JWCiNmjWTErJGA5/dZq9My89cn8MiJDwCw6cuNHHvZtJD8fgshhAiPhipPh/nE9CQ0muB9iWVM9vtsWxc/QbfDNVEA0Ck6UkiijgaqkKCbEG3pdNBt3rx5/O53v2sVdDtw4AB/+ctfWLFixREfv3HjRsaPHw/Atm2B7ZSPVCsu0lIrr8NsDt6a/85wlniCHpokDdrk8H3Q92a6qbGRUeNPba7nBkAYr41yB/di6hXT0em19BrWO3wnDqGAoFt2MJeXxl/30rpy3wV8KLqX+l/o+wf4ollLdlYkstwABhTl8/rYPwKQdnk2PB+RaQSFq8bzb65NC/1z2bK8FDxLTOM16Fayvdh7OyUr8Gds+X3rPbIPx1xyHDt+2MbPX2/ip49+ZPycSWGdpxBCiOBpWV6anJEc1HFNfllzVkt8rOKAIwfdANJJpY4GatTQLC9NbboxJOMK0V2KxQKpv2/3uE5/ct+8ebM3aOZv3LhxbN68ud3Hf/PNN509ZY/XUtMtmEv7OkLrXV4aGxf3AVy+oFs4l5cWjutH4bh+YTtfOHiXl2pAmxm8i/2A5aUxXtPtk7/+j7pyCz99ss67LxTLS/0Dee5YCbo113SLRD03IKCmo+r3vhBr3HY3aqPnC5BwPJd5Sjb55GLDxgOOZ/mH4U8hP2e4Ve6twNHkwGg2MX7ORPqM7nvYY8fPmcCy178ns28m6xf9xLizJkb1F4VCCCHaZm+0Y7d6rq2SM4MbdDOm+L5QjqdMt1q1jkFKX/arpW0H3RQze9WDVGFBVVX5+yjEITqdipGQkEBpaWmr/cXFxeh08VnzJZLcNheGQUYMw00kDA1ezYGOiOWgW2Cmm7zxd0dLpps2Sx/UAKbJL9OtSY3d5aWOJgeLn/uKHxZ8T0NzUfYBUwYx/PiRQT+XfyDP5Yz+DFS31YVqbQ4UZYb3S4MWAa9ZZ+wG3QDynx9I7iOFpF+TG/JzPan/AwVKHpXU8KL7HVxq7P0daM+mLzfy8cMf0mSxYkw2MmDywMMeO3jqUMadOYHKvZWs/WAN277bEsaZCiFExx3ccoCF977Dvp/2sOyNpZGeTtRpqPY1UUgKaaZb/ATd1qtb2KHupQkbvWn9GaSlmYITJw1xsnpFiGDqdJRs9uzZ3HnnnXzwwQekpnp+wWpqarjrrrs46aST2n388ccff8To99dff93ZKcU1Z6mTptWeugMJQ8IcdFM0oMZoxz+/KYezplu8UVXVG3TTZQc3qK5RNCRgwIY9ppeX7vlxF72G5rP7x12gQsGYQvau283cf14V9HMFNFKIgUy3SHcu9ZzYP9MtMlMIBo1BQ/rlOWE9Z4qS5K3rFo9LTPdv2Ou9Peb0cUc8VlEUxvxiHD8v3kzfo/qyYdFPDJ0+PNRTFEKITrFb7Wz7bivrPlrDsjeWctItp2BrtJGQKF2XW/h3rQ520M2/KUM8ZbodVMu9t/toWhfH9W+mUEVtQIkKIUQXgm6PPvoo06dPp7CwkHHjPB9S161bR25uLgsWLGj38WPHjg3YdjgcrFu3jo0bN3LFFVd0djphU3/yQtRtVs8FiAKK2YBqsQdsA632Hbqt6ZOMbnYhxrunHOFsPi7/elphbKIAoGt+ecRiphsaSJxhBpdKwojwBivBE6xSVTWoxVkjwV3nQpumw1XlDGo9txaJGLFhxxrDjRQ2frGB3Wt2odFpOP13Z3LiTSdzYPN+UvPSgn4ujX9NtxhopBAQdAvi0uTO8G+6qcZwppt9VxPVr5ShTdOReEwKiVNCHwBLwdfoyEJ93AXd9q7bA3i61+UPb78G5+hTxvDuH95m2/db2bmqCFNqInqjHlNqItPmzgj1dIUQol27VhWx8J7/erc/euB9jMlGeY/y01LPDSA5I+kIR3aeKcVzzaHRamJiRUJHHaQMgAxSMSnGVve3ZLoBVKu19FV6BfX89Se+h3tbNWqDo83r685uQ/vX7DKmjNmR7fq8jl3rd/oqqHfv3qxfv57XX3+dn376CZPJxK9+9Ssuuugi9Pr2L8qfeOKJNvf/6U9/or6+vs37ooFrdSn4dVtU6xwB9x+6fbhjXAcacO+v73DQzVli997W5YW7ppvnRRSLmW7aVB39Pw/+8r727Fm7m7/98jFcdhfTrz6es+87L+xzCCZXudPbyEOXbwj6+CaMVGPBqsZuTbc9P+4CwO10M+WiYwDoPaJPSM5lMpvoNbw3Wq2mVdH3aNTSRAGiI9ONGK7pZttqpeKhAwBk/7FPWIJuyYrvYqRebYQ4Shp2u93UV9ah1WvJGZSLwdT++5tOr2PcmeP59oXFpPVK5/MnPwVA0Sgcd8V0qWEjhIi4bd9tbbXPUlIT/olEscbaRvqMLsBgMpDRNyuoY2f1y+aRoicxmAxx8zdBVVWKVU/QrZfSdsZ9IfkMph8aNBSrZYxhWFDn4Pr+ILg9n+Hauwbv7LaMKWN2Z9u1v2MZrV26CkpKSuLXv/51Vx56WJdeeimTJ0/m0UcfDeq4sS6gc2RO8IMeR+LtXkr8fFMTahqtBqfNE2hwOZztHB39/F9/oeg+aVKMoII1RhspuBwu9q33LFHLKMgkJSu0HY4HThnEHV//MaTnCKbE48wMq56Mu8qJkhCZrE8loJFCRKYQFO5a3+S1qeEJYKb4LQ+poyEs5wyXmgPV9B5ZwJX//jVOe8ffq8fPmcSmLzZSsdu31EZ1q9jqmzCmhD+rWggh/JVsKyY5K4X6Cl839drS0HSUjFU1xTXs3+DpxjntV8HNANRoNXG3lLcaCzY8SSC9lOw2j8lTstnObgC2qbs5henhmp4QMaFDn9w//PDDDg945plndmkiy5Ytw2hsna7a0zlLI7e8tKWRgpPYDx6Fi9bgW/7XmQu5aBUY9A3N8lKI3e6l5bvLGHj0YOor68gbEtxU+nhQ/VIZJfN3oc3Qkfd4f1LPyQz7HOKlkUJg1mDwO+O2JdlveWmdGl9Bt4yCTK7/z00AJCR1/AKpcHw/XG3UU6wtrZWgmxAiokq2FbPx8/UAHHX6ONZ/vBaA2uKaCM4q+tSV+YKQKTmpRzhSABxUfQ0UD5fpNlbjq3G62r0x5HMSItZ0KOg2Z86cDg2mKAou15FTCc4+++yAbVVVKS4uZvXq1dx9990dOk+Lhx56iPfee48tW7ZgMpk49thj+ctf/sLQoUMBqKqq4t577+Xzzz9n7969ZGdnM2fOHO6//35vE4hoF8mgm2S6dZ5O7/uVctljOK2mmbM8tEG3lg6mTdhwq240SmzVwCvbUcqWxZsBT70nEchV5US1qzhLHCjhiRO15ndeNYaXl7pqfEE3TVqYMt38l5fGWaZbV2k0Go69dCor3lpO5Z4K735LaS25g1oXlxZCiHDZt34vugQdTpuTAZMGsPnLDThtTsl0O4SlzOK9bc4O/gqF/Rv3UbK1GEu5hVnXnRj08cOt2K+JQi/aznQboQzESAJN2FijStBNiEN16JO72x28oIvZbA5Y467RaBg6dCj33Xcfs2fP7tRYS5YsYd68eUyaNAmn08ldd93F7Nmz2bx5M0lJSRw8eJCDBw/y6KOPMmLECPbs2cN1113HwYMHeeedd4L2M4WSs9SvpluEMt1cuFBVNaZqE9j32Nh37hbQKqScnk7O3QVhOa/W4PuVcsbZ8tJQNFJoWV4KnsBbIrGVKVK5t9J7O7MguHVB4kE0dC8N6F4cy0E3/0y3MAXdzPi6usXT8tLGmgaWvPANxmQT+SN6M3Ra52rPjDhhNJ888lHAPrmoFUJE2pqFq0hITCAly8yo2Ufx3UtLqNxTQa3UdAtgKfcF3VJygh90e/O3r7Pvpz0oisK0uTPQG8N7/RYsqlOl9j/lfHjcF+TmZGLQGhiq6d/msXpFz9GasTSpNrRoOL3pGhqURoYpA7lbP4/eSm6YZy9EdOnWJ/empqZOLwl9+eWXu3PKAIsWLWo1dk5ODmvWrGH69OmMGjWKd99913v/wIEDeeCBB7j00ktxOp3odBEq7N0Jzgh2L9Xgyzpy4/YG4WKB2uiiaX0jAMajwte2WucfdLPFftDNv3uuNiSZbr5lXY00xWDQzZfpktE39EsnK3aX8+btr+N2uhk1ezSzrj8p5OfsjoBAUaS6lxo1DFh5FIpOQZMcO+9hh3L513QL1/JSxffeWa82huWc4WAptbDo0Y8BmHLhMZ0OuvUZXYA5NxV7o52mOk8BXf/MCSGEiITqA1U0VDdga7SR1S+b1NxUKvdU0FjTiN1q71DDmJ6grvn9Wpegw2QO/ufOnIG57PtpD6qqUrGnnF5D84N+jnBwFts5cHURyh02+s7JZfaoGVyiPXwZqU/1/0ZRFO53/J3/uD5ip7qP5epPzHRP4ULt6WGcuRDRp9NruVwuF/fffz+9e/cmOTmZnTt3AnD33XfzwgsvtPv4AQMGUFlZ2Wp/TU0NAwYM6Ox0AtTWer5pzsjIOOIxZrP5sAE3m82GxWIJ+C+StNl6EqelkDjTjMYU3gtGnV9MNtY6mPovIwuo6RRiOr3v38jliK3nrC2hXl46kL5MUEYxThkRUzWjVr2zgrd+9wbr/vejd19WYegz3exNdrZ/v5Wi5dsp3VES8vN1l6vSL2gbqUw3jYJpTBLGkYkYCmO3uHEkMt1S/Gq6WYje7uKd1VTv6zRlTO58LVlFUbh3xf1c8/J13n0WyXQTQkSQqqpU768CIL13BoqikFmYRVp+GqbURPas24Wqxm62dzC1fElizjaHZBVPzkBf3bOyHaVHODK62ffaAEiqM5KqJmNWko94fMtzaVaSA760i6XP90KESqeDbg888AAvv/wyjzzyCAaD7xuTUaNG8e9//7vdx+/evbvNum82m40DBw50djpebreb+fPnM3XqVEaNGtXmMRUVFdx///1H7Lz60EMPkZqa6v2voCA8yxIPp+GrWhq/q8N5wN7+wUGm9auv5Yq1oJt/klkYg26yvLST4ysu1qgbWatuppLqoI8fKp8/9Sk/LPiOunLft6WhWKJwKK3WF9R1O6O/1mJAoCgE3W97EncEarrFayMFq8XXuKWrzQ90CXrMuZ7asInpSdRXxk9QUggRe6wWK7YGT5AkLT8dgGMvnUZ9ZQPW2kb+cf7feGj6fZGcYlRwOVw0VHner1vew4MtZ6BvKWVZUewG3Rz7PK+nS/8+m5e//TO36K7o0ONu0V3BHbprvdtSE1aILiwvffXVV3nuuec44YQTuO4637e8Y8aMYcuWLYd9nH8H1M8++yygkYHL5eKrr76iX79+nZ2O17x589i4cSPff/99m/dbLBZOP/10RowYwZ/+9KfDjnPnnXdy2223BTwuUoE3t9WF2+IJdoV7aSn4GilA7GW6+dduCqjpFGL+y0tdcbS8VJOkQZMU/ExL/9bjB9WyoI8fKqrb9/oyJBrIKMhEowl9EwhtjGVSttR0U0yasGfqxhtvAFOnoEkKT8ORwEYK8bO8NCDTrRtLizL6ZpLeO53qA9XsXbc7CDMTQoiuqT5Q5b2d3tuz4qfPqAIyCzOxlNRitVgp21mK0+4M+Kza09RVWEjtlUZ9ZT0pIWiiAL6gmy5BF9P19Bx7fQkf+r6dWymQEqdf2gnRVZ1+1z1w4ACDBg1qtd/tduNwONp4hEdLB1RFUbjiisBIuV6vp1+/fjz22GOdnQ4AN954Ix999BHffvstffr0aXV/XV0dp5xyCikpKSxcuBC9/vABrISEBBISWr+xKLmJUAGequ8KGDRgdwduQ+t9h2wraQnopvXu0M8V2Lk0/HUY/Gu4xV6mm18KfRiv9f2DIvGQ6fabt/5OZqmZ4Q0DGc6UoI/fC18Kvn93pGhnq/dlytitdmbffEpYzqvR+b2+7E4ObNpP2c5SCo7qS1Zh2x2lIqkl6BbpLLeaN8pRbW606TrMc0Jfey8UEkYlgk5B0Shha2qTQnwuD2mq88t068Ly0hY6vY7kLDPVB6op21GK1WINSX0gIYRoT/UB32qB9N6eTDdDooE7F9/Dq/Ne5MeFq1HdKuW7ymK2xlgw1FfUU1tcA0BqbmiCbtn9c0jLT6fmYDX71u8NyTnCwdG8vBTA0MmgW8Dy0iBkuikFyajFDeBU274G7+w2dH8MGVPGNGhQzInQgcWanb4SGjFiBN999x2FhYUB+9955x3GjRt32Me1dEDt378/q1atIiur+/WPVFXlpptuYuHChSxevJj+/Vt3VLFYLJx88skkJCTw4YcfdrrxQwvz5ssxm0O/fMxfQNAtBPW02iOZbp2nKApXv3QdGr2WpPSk9h8QxRyqg8/6LYN+MEUZw+3cEPRz5Cu+oFusZLq5XW7vUrKk9CQS05PoP2lgWM6t1fkynCr2VPDIiQ8AcO5DFzJt7oywzKGjVFWNmqDbwRt2olrdJIxKjNmgW58XB4f9nCl+9VviaXlIQNAtpetBN4B+4/t5C2bvXbebodOHd3d6QgjRaQc37Uer1+JyuLyZbuD5XJo3qJd3u2RbMSmZKVTsraBgdF80Ok3YvsiJBvVVvlIAptTQfE5PSErwPqel20tQVTUmn2P/oJu+oHPJHwGZbkH4/GDePrfbYwgRCorFAqk3tXtcp6+E7rnnHq644goOHDiA2+3mvffeY+vWrbz66qt89NFH7T5+165dnT3lYc2bN4833niDDz74gJSUFEpKPIXFU1NTMZlMWCwWZs+eTWNjI6+99lpAY4Ts7OyA+kjRKCDolhf+oFtgplv014/y55/pFs6gG8DoU8aE9XyhUkGN93a2cvjmJN0REHQjNoJuDdX1uF2e34fC8f359YIbwvZhSuuX6eZ/ypKtxWE5f2eoVjeqzfN7GOmgm6JTUCEgGB9LVLeKfasVTboObboOTUKYlpcG+UNztGjpOArdy3QDKBxXyJYlOZhzzJTvLJOgmxAiIrYv24bL4aJgbCGDjx0ScF/ukDzv7f/e+SZ5Q3rhtDkZe8Z4Dmzcy5w/nUtKVngTCyKlwS/olpRx5MYA3ZE7OI/qA1VYLVYsZRZSQ1Q/LpQUo0LicSmgUdB2MvnDvyZsfRxlygvRVZ2+EjrrrLP43//+x3333UdSUhL33HMP48eP53//+x8nnXRSh8ZoaGhgyZIl7N27F7s9sEHAzTff3OG5PPvsswDMnDkzYP9LL73E3Llz+fHHH1mxYgVAqyWxu3bt6lYNuXAIXF4a2Uy32Fte6rcRxkYK8aRc9XUZDlXQrZfiv7w0NoJullJfR2Nzbmg6Xx2Oxi/Tra68znt7/8Z9YZtDRyl6hcJPhuOqdqI1R7h+TPNbWcCy8xjirnWxY+xPACTPTqPwf+EJ7CSTyNnKyWxQt1KiVvBf16ecpz01LOcOpcBMt+4tBy04qh/lO8so31mGOTeV46Is4zRUakpq+M+tC9Al6Mjun82ce8+N9JSE6LGa6qzsXbsbgMbqBjIP6aY+YMogrvjnVbz/f++iT9DjcjhR3W4WPfYRqblpvDH/VY6/9kSGTBvGN899RfHPB7DWNnLOAxeS1ist/D9QCPkH3ZJDHHTbsngzAKXbi2Mu6KaqKg1f1eKud2MYZOz0Z13/mrB1cVQTVoiu6tKV0LRp0/jiiy+6dMK1a9dy2mmn0djYSENDAxkZGVRUVJCYmEhOTk6ngm7ttb6eOXNmTLfHdpb6ApK6nEjUdPNd4Mvy0p6n1C/olkNoluSlYyYBAzbsMVPTzVJa671tDlER3sPxrxmoqr7s05qD0df51b7TRvlfDqDL0JFyRmiCth2ltATeYzTTzb8LrCYtfBnaGkXDU4Y/UGCbDiq87HovPoJuAY0Uupfplj0gB61Bh8vu5ODmrndgjyWqqnJg4z7vBaUxxShBNyEiaMuSnzEmm0jvncGIE0a1CpCYs80UjuvHMRdPZfeaXSSlJ6I16NAadLgdLoq3FPPK9S/wm8/v5KunP6OuwvOl3uQLj427oFt9QKZb6MrA5A32ZBcqGoWSrcUMOW5YyM4VCq5qJ+56z+fMzjZRAGmkIMShOhx0q66u5rXXXuOKK65oVdustraWV199tc37DnXrrbdyxhln8M9//pPU1FSWL1+OXq/n0ksv5ZZbbunaTxEGtQX/RrX6ZZtpFPDrYIim+Q/cofsO3TZq0U7OI/nzX7Z7zsgvL/XrxKm6IIZiV4aBRnL+3BdcKonHpoT13HvW7sZqsaIoxPRSo3J8nbByQpTppigKszRHU6c2kEj3Ln7Dpa6yDp1Bh9PuDFm7+cPR+C2JV/0CSLUlNThsDvQJ4X+fOBxnsZ3GJZ6sQMPAyP7btgTe1Rj77qCFq8YXdNOmhTdrMIt0b2B8pxp9GZWd9emjH7H6vVWgQGpeGonmxPYfdARavZa8wXkc2LSf8p1lOJoc6I3R83sYbI21DTxz7pMB7zVNdU001Vm7nTUohOia0m0l1BRXU1NczSm/Ob3NYzL7ZnHqb38RsM9SbuGdu96kvqqenEF5PH7KX7DbfNceBzfuZ/Tso0I693ALyHTLDN31QcFRfckb0ouyolL2bYi9v50BnUsLOx90Myh672eHYNSErc15Dmptnvr1bV1fd3Ybuj+GjCljahQsCYGrNg+nw4VhnnnmGb799ts2g2qpqal89913PP300+2Os27dOn7zm9+g0WjQarXYbDYKCgp45JFHuOuuuzo6nfBrPKQTpf8T3rLd1r5DtxuduLd3MCvFqWKckIRpagranPAvz/LPdIu15aWGAUayb+9N9h19SJoe3sDIghtf4tkL/8bL1/47rOcNtnLVF3QL1fJSgFq1nu/VNXyuLsWqNrX/gAirLanFaXeSkJyAOSe8ry2tQcus60/kxBtPJq25Oxl4Mk0q91SEdS7tcVb5BYoiXNPNu7w0DjLdtOnhfS4VRWGYMgCAvWoxDvXwXcpjQfWBKpxNDlDhutdvJC0/vf0HtaPXME8nQLfLTen2km6PF81qimso2VbC7jWB9Xlf+vXzLH7uKxqqJaNBiHAr3eF738kdnHeEIwOZs83M/dfVZPfPYeeKHdSVW7D5Lb+P5c6bh9NQ5XuPSsoM3fLSvKH5lO8ux+1ys3t1UcjOEyoBTRS6kOkGvmy3oNSEtdg9ATfo2PV2e9vBGEPGlDGbYzsd0eGg27vvvst111132PuvvfZa3nnnnXbH0ev1aDSe0+bk5LB3r+cNPTU1lX37Yu+bgFBq+tlK05oGrEvrIrK8VKfEbk23SGpZAui0x/ZzVuZf0y1Ey0sB8pVs7+1YWGJaV+7J3rLV20gJ8/JSjUbDWfecwxl/mENqXpp3v7XWSvmu6KqJ54qioJt3iXmsBt1qfO8l2tTwNwAaoBR45oGLvWr0Ne3oDP9aiCnZwclyKBzfnz6jC0jLTw+4+I1H+cN6k5af1mr/lsU/s/Ded+I+6ChENGp531E0Ctn9sts5OpBGo+GcP59P/8kDA7qemlJNmNLiL3u1PqCmW+iWl+qNegqO6gtAWVGZt+t9rPAPuhk62bm0RXJzXTdZXipEJ5aXFhUVMXjw4MPeP3jwYIqK2o/kjxs3jlWrVjF48GBmzJjBPffcQ0VFBQsWLGDUqFEdnU6P4CzxpCtqM8LXrc6ff/fSmKvpFkE6gw6NXouiIWbbhAOUhWF5KRzSTIFyBlAQsnMFQ0vQDYJ30d4VzqbAjKPyndEcdIvwcrvmlPJYbaQQsLw0zJlu4Au6AexU9zGQvmGfQ7C0/P4qGoWk9OBkOaTnp7O/eflQWVFpUMaMZmf+4ZeYzCbSeqWz9buf+fypRdSVeZ7Xqn2VDJg8MMIzFKLncLvdlO3wvO9kFmah60KZiZyBuZjMJnat9F3HWWut/PTRWi558oqgzTUatCwv1SXoMCR2LYOrowZMHojD5iApNZEDm/czdFrs1HULTqabp3xDPHU/F6KrOvzpXavVcvDgQfr2bfvD9sGDB70ZbEfy4IMPUlfn+ab5gQce4PLLL+f6669n8ODBvPjiix2dTo/QUtNN18k2zcES2L3UfYQjo4/b6sJtcYFOQZOsDWvQcuDRgynechBbvY3KPRVkdfJbx0i61fEg29XdVKm1aNEwROlHFun0VnJDds58v6DbQTX6L1gDg27hzXTz57QHpjOXFUVb0M0XFIx4ppu3kQJc/ufrMKxRMdXqefrrZyI6r45yR3B5KcAMzWQaaWKfWsxfHM/zG+dDFNCLq3TncbZ2dtjn0x2W5t/flKwUNNrg/F3IHuB7DyvbGf3vYV21f8M+SneUYDKb6DOqgKSMZHIH5+GwOvjwzwsBKC0qYceybez9aS8DJg+k3/j+EZ61EPGtvryO/JG9URSFnIEdX1p6qOOvO5GyojIq/LLmbQ02XE4XWl34M6xDpSXolpSRHPIvxXuP6MPX//A0Hhw2c0RMBd2cFQ4Mg41oUrXouprp1ry81IYdh+pAr8RvvVMh2tPhT+/jxo3j/fff5+ijj27z/oULFzJu3LgjjqGqKjk5Od6MtpycHBYtWtSJ6fYcrnoXaqMn0BWJJgpwaKZbx9YrRwvL+1UcmLsDgLzH+5E5r1fYzp2UnoTL4ckM3LV6Z8wE3erVRp51vQGAmWTGKMMwksB0zSTSlNAFlwIy3WJieannSwO9UU9CUmi/JW2L2+XG5XBhtwYW7iyPsov9gEy3zMgG3XS5etyNLrRpOmyr6khfaQZcNNY2kpjavUL64eCf6aZJDf9zOVt7HLO1x3G/4+98xvdsU3ezjd1kuTJiKuimqir1zV35ghkwzyrMQtEoqG6V8igLfgfT2g/X8OUznwFw4zvzGTx1KABDZwyH5qDbdy8uZt2Ha9CbEihavp3MvlmcdffZAZ2XhRDBYym3sHu1p8Zi3pD8Lo8z+NghOGyta3Y2WawkZYSu9lm43fz+b6ivrMdpC/11Td5Q37VH8daDIT9fMNm3WrFvbwIF9H26mOmmJHnrsD3qfJE79dcGcYZCxJYOf81744038thjj/HMM8/gcvmWGrpcLp5++mmeeOIJ5s2bd8QxVFVl0KBBUrutA1qWlgJoJdOt8/xWw3rrOYVJvwm+b/b3/LjrCEdGl2LVd7GYTCJmJdn7Xyj1wr+mW/RfsLZkuplzzBFZOvzH0b/jt/1v5sDm/d59/ScOoKm+yRvsjQYBQbcIZGf56//NKIbunsigdWOpHtTo3R8r9adc1X413dIjF7zwvB/4auC4YuzLmMaaRu/vSEpW8JaG6xL03lpIxduKqa+sa+cRsamx1ve7Y/Lr+ppR4Kv56XK6QVEo31nKxs/Ws+T5r9m/UT7zCREqLUu7wfO5pKsUReHK56/hnpV/Zvycid79Vou1W/OLNlmF2fQb359Bxxy+ZFKw5AzMRWkub1GyNbbqodqbu5fq8g1oDF3LCr9I+wsu1ZxFf/qwwPU+rlhtIS9EEHT4t+icc87hd7/7HTfffDMZGRmMGzeOcePGkZGRwfz587nttts499xzj3wyjYbBgwdTWVl5xOMEuMp83zbpcsPfRAFiO9MtoHaTNryBkcJx/cjun0P/iQMojaH6Pgf9Al7na0/lXcMzvGt4hlt0oa3n4b+89ECUB91cDpe3O1+klpa2fOPc0olTq9Oya/VO9m/Yx7bvt0ZkTm2JpkYKLVRVpWqQr7ZIzATdav2ey7TIPZe36K7g34YHvduxVuszYGl4Ny5O2zJ02jB0Bh3OJgf3Tbk7qGNHC6vFL+iW5gu6JaYmojd6vhy0N9jI6pcdcNG+Y9m28E1SiB7GEsQ6s/3G9yezIJNEv9/vxprGIzxCHInBZCCzMAuAkm3FAUkr0cxtdXmvQ7tazw08QbcGGtnFfnayj61q7CQiCBFsnQpdP/DAAyxfvpy5c+eSn59Pr169+NWvfsWyZct4+OGHOzTGww8/zO23387GjRu7NOGeoqWeG0RueWksZ7qpfl0Kw53pZkwxYc4xs2v1TrZ9uyVmUsqL8S3tzA9hDbdD5ZPDTGUKU5XxuKP8dVZX4df5MCsyQbeWOlRag44HNjzCuQ9dCIAxxcj2pdEXdNMkaSLSCKYtTpzUDPTPdIuNb57znxnAoI1jGbB0NLrekfkSpoX/3wVHjH0ZU1duQWvwzD/YQfMLH7uU/BG9AbA32lHV2GzacSTWWl/Gi8kc2NXwt5/dyV3f3cspv/0FV790Hcf/+kTvceW7or9sgBCxKhR1Zv0zWf2D7aLzJp4zmaEzhmE0m9i1ov2Gg9HAsc+32krfxXpuLcZrRnpvr1E3dWssIWJZp78ynzx5MpMnT+7yCS+//HIaGxsZM2YMBoMBkynwg1tVVdVhHtmzOPyWl0aqkYLGLybrjLWUYL9MNyUCq7HG/GIcRSt2kJieyM/fbKbX0K7X2QgX/6WdvZTw1aFL0iSyWd1OGVXkqzntPyCC6iospOWn01DdELHOpcbmi12H1Y4pLZGJ50xm9bsr2LV6Jz8s+I7Tbv9Fl7qXBVv6lbnY99ogioIPDpxUDWqkeGIt6ZYUKvfFRta1Nk0X0Qw3fzq/jw2xmOnmsrswphhJz08P+vgJyUbAk1Fpb7SRkGQM+jkiydq8vFRRFIwpgT9b3hBP7aJTf3M6ALlD8igc3489P+5m3YdrOP/hi4LWuEII4WMJWF6aGpQx/TPd4ml5qaWslp8+Xosx2USv4fn0GVXQ/oO6KatvNose/RiA5f/5gUHHDgn5ObvLv3OpoRuZbgATlFHe26tdG7hMe1a3xhMiVnXoU/zevXsP27W0LQcOHKB3795t3vfkk092eJxoojtzIMo6C7hV0CgoWSbUCmvANtBq36HbmgFm9Ce0/1w6S+0oKRp06Tp0+ZFvpOCKsYsr/0w3wpzpBjD29PGs/O9yDmzcz7LXvuP4a0+ISP2vzvBvYuDf3CAcBigFlKlVHKQMq9qESYnOi9W6Mgs1B6sBSMmNTKabMdn33DTVNZGUnkR67wyKlu/AarHy85LNjJ49JiJza6GqKs5KB/reBhIGR/7fsuz+fdi2WKkz1NP4DzuZW5Iw1GvY37Q30lPrkL3nbsFd50LXJ4E+LwyK6Fz0AUG32Mp0qy31XJw21TWRmJ7UztGdF/C7WR+HQbfmjBdjirHdbvWKopCal9b8OCvFWw7Se2SfUE9RiB7HP9OtOzXd/Plnslpr4yfTrayojHfueguAWTecFJag25hfjOOjhz8goyCThOTwN9/qCkeJHW2WDleFs1vLSwHGa0ZwsmYaVWotP6g/dnkc/YVDcG2oQK2xtXl93dltaP+aXcaUMTuyrSvQwbvtv4Y7FHSbNGkSc+bM4eqrr2bSpEltHlNbW8vbb7/NU089xa9//WtuvvnmNo+74orQ1ocKlaSXTsJsDt9FtqvUiVrnxlFnR5cVmeVEOiV2g27+14JKmGu6AaT2SsOYZER1q5QVlXFg4376jA79H/fu8M90yye8Qbf+SgHL1Z8A2KXuZ4QS2cDC4UTD8lL/D8NN9Z6g2/hfTqJqfyVNdU2s/WBNxINu7gY3FQ8fACBpppmUX2REdD4N39TSuLSO6ow6UKBmgJWc9SlU7avCbrVjMEV2yWZ7GpfVeT78Fkb+A7suoNZnbPxd+OG179i5soht323x7gvWxam/wIC4ldTc4GSdRIvG5uWlhy4tPZxBxwxm/SfrANjxwzYJugkRAv6ZbsHKwDelxmemW1N9k/e2//t1KBlMBowpRnau2MH+9Xs576GLwnLe7nAUNeGqcIKBbn/uSFPM1KuNrFLXA/Czu4jhmoGdHifx5djplC56FtViCV7QbfPmzTzwwAOcdNJJGI1GJkyYQH5+PkajkerqajZv3symTZsYP348jzzyCKeddtoRxysqKuKll16iqKiIp556ipycHD799FP69u3LyJEjj/jYnsIZ0EhBMt06K9KZbgATzpmM261irW1k7f/WRH3QDWCKMhYDOvLICut5Byi+52anuo8RRGfQLeDDbRC7H3aGMcV3wbv4X1/Rb0J/xpw+jtdufInGmkYq91REPJDkqoyyJgrNgXen3vM+Vj24kZz1KaiqSllRaVi+7e4qVVVxVXuez0h3gYVDarqpsZHptujxT6gtrgnYF6xlWP78l1za6m1HODL2qKrqvfj2b6JwJIOPHcLAKYOor6xj58oiZlwzK5RTFKJHspTVAmBITAhadm1LYN1kNsVVfcqmOl8A8dAl8qHU8nnMbvXU+4z2lS8tnUuxg76g+1/2na09iZVNP3HZ8tNotFvgyGECIeJShwpsZGZm8vjjj1NcXMwzzzzD4MGDqaioYPv27QBccsklrFmzhmXLlrUbcFuyZAmjR49mxYoVvPfee9TX1wPw008/ce+993bzx4kf3kYKCuiyI99IIVYyGgCecr7CAtv73u1I1HQDGH3yUexaVUTxloOs/WB11H9wWa1uZIW6jo3qNhI1HctkCJYBGl/Q4x7nk5xjv5GnnK+EdQ4dEYqCxZ1lMvs+KH77wjd8//ISdAYdo08dizknld6jC9iyeHNE5taiJUgEoM2IfH055dCg2yDfcpmSbdHdTMFd76bl7VebFqE3Mz/+Nd1i5cuYUbOParUvFJlu/he8TfXxkx0C4LA6cNk9v9f+RdaPJG9oPge3HKB0Ryk7lm2L+r+BQsQat9tN1b5KkrNSGDJtWNDGHTx1KE/s/zsPb32cE26Inwyjpjq/TLeU8H3O9f8S1NHkOMKR0cG/plt3l5cCXNR4OiuGP8e8088g9Y/RHXAUIlQ69bW5yWTi3HPP5dxzz+3yCe+44w7+/Oc/c9ttt5GS4ssUmTVrFs8880yXxw0157pybAeLPWt4FQUl04ha1RSwDbTad+i2JsuEplcSml5HrifTkummzdKFvftmC61fTDaWupda1HoUp++iOhLLS8Gz/HDwcUMp2XKQtPx09q7bQ+G4fhGZS3tUVfXWdAtn59IWxyjjeEx3Byvd69mtHmCVez1F7r2UqOU8pP9t2OdzOHUVkQ+6GZMDPyjqjJ6g1oRfTmTFf37AUlaLOdvMUaeOjcDsPFo6l0K0ZLp5/q8l6FY1uAHnWA19rLlUH4ju5j3uGr/nMgoy3RRFQYsWF66Yqel29n3nUbR8O1X7KrE32tEl6AKWTwWLf72eeMt0a2qwom9+r+no8lKNVsOAyYPY9MUG6ivrKd1e4m24IITovuoD1ThtTuptdQTzk268Nj0JyHQL0/JS8GQhtnDEQEmLlqCbNl2LNqX7X/ZlmNOpGWDCWlaPbZMV25ZGEoZ17m+wc1057uIGT023Nq6vO7sN7V+zy5gyZke2ncaOfRYO+yf4DRs28MYbb7Tan5OTQ0VFRbin02ENJ7yLVgnOtyJK7yTMu6487P2qquJs7l6qy43cG7MuxgpmOw7aQVVJTjbx2uWfsW32QZ5V/g/joOBfXHXUxLMn88b8V7GUWVj74ZqoDbpVY6EJzx/ZcHYubTFAU8A8zaU4na9Q7/bUfiijigR3dH0wqSv31XQLRaZMRxj9Mt0A9M2dSgcdM4SkjGQaqurZv2EfDTUNJKUFv1h8R7iqfN/kRkPQreWLC6fOE3Sr72NDt85NCcWUbiuJ5NTa5fILummipoNpS9AtNjLddAYdGX0yKdnqyWpMTEsKyfIe/8wJ/9pBsU5VVe6fcg9avZbcwb248oVfd/ixg6cOwVJmwWDSs3vNLgm6CRFEpX6Z2rmD84I2rqqqrP1wDdu+3UJTQxNz/3l10MaOpMBMt/AvLwXPEtPIfDLrGNWl4tjvuQYNxtLSFmkXZ6PoNTh2N2F5v4rsOzp3bdZw9FueQIcQUaZB7djKhrB/lZGWlkZxcevlPGvXrj1sx9Oexl3rQrV53lh0OZFbmhVrmW77ztvCtgE/Mjt3OD/0eYdXJj1O0iRzRLNDRs0+Co3O8zzuXLEDtzs6n0f/Jgrh7lzq7xbdFbxreIZEPBevdqIrDb+uuaab3qgnISkyRe0PzTJpCbppdVpOmDebXsPyqdhdzvLXl0ZiekD0Zbodury0rsD3wbtyb/R+2QOHLNWNguWl4Cs94IiBL2NaDD5uqPe2Vhea59Hol+kWT0G3hqoG7FY7TXVNaLRKu51L/Q2YPIh9P+2haPkOtn73cwhnKUTPU7qj1Hs7d3DwVikoisKnf/2IZW8s5aeP18bN+1lAI4UOZuwGg97ku5azW+1hO29XOIvt4PRcgwZjaWmL5FPSafzOgmOfHct7lUEbV4hYEfag24UXXsjvf/97SkpKUBQFt9vN0qVL+e1vf8vll18e7ulEJW89N0CXF7mgW6zV7nE3ByqVBIUEjSEqCpUmpSdx7GXTyBmYy561u9m5oijSU2rTwQh2Lm1LAp5vBW1E14eTlppuKdnmiL2+Bk8dygWPXuLd1hp8v6ejTz6Kkq3FpOWns+OHbThtkQlaRlvQraWZSkvQzZnoRs3y/PmL/qCb7703GpaXgu9vQyxkuqmqiqqqDDluKJl9M+k/aQDjzpoQknMNnT6cG966mds++T3jzgjNOSKhtrTGeztnUOeyafqMKvAurSpatl3qugkRRKXbfZnauYODm0U6dLqnRpzb6aZo+fagjh0pEVte6l/TzRpdXyYfyn7AjumYZBKOSsQwNHiBSUNhAqaJSeh6G9CYtdh2xFfdUyHaE/ag24MPPsiwYcMoKCigvr6eESNGMH36dI499lj++Mc/hns6UclZ4cAwyIg2SxfRoJvG7+XhVGPg4qrJk0WmGKOrFkX/iQMoK/J8G7n6nRURnk3bAoJuEcx0a2HA87q3q9Hz4cRhd5CWn05GQSaZfTMjNo/03hn0nzjAu603+gIxOQNzOe5XM6gtqWHz15tYFaHXW7QF3VqaqbQsLwVQ+nrmVVtSG9WFjf2Xl2qjZHmp3ht0i/5MN1t9E7f2nsff5jxG37H9mP/h7Zx199khOVdqXhpDpw+ncFw/kjOTQ3KOSLCU+mpZpuZ2ruurVq+l/8T+6I160vtkUtfcaVEI0X21pTVk9c+h4KgCsvoHtzRI4fj+5A/vzbCZI6irqGv/ATEgUo0U9IcsL41mzt02rMvqsa1vRJcV3GvQ1IuycR6w0/hdHZb3o7uerhDB1qnohMPh4Morr2TXrl1dPqHBYOD555+nqKiIjz76iNdee40tW7awYMECtNroWDoTac5iO/YdTbgqnGgzI3eR5d+9NBYy3VSbJ+imibKg2+hTxlA4vj/9Jw1k8zebovICvxj/5aXhr+l2KIPS3F49ijLdGqsaOLBpP1X7Kls1Mwg3p99rqGV5aYtJ504hISmBgUcPZtkbS3G7wr+kOdqCbhyyvBRAW+B73qr2Re9SB1eUNVIA39+GWPgyxtZgQ1VVbA02nPboDxJGI/9Mt9S8zgXdALL65+BocrB79U7Kisraf4AQokNKtxVTsauMij0VQa/hmjsoj4M/H2DL4s3s+2lPUMeOFEWjkNorDVNqYkA5gFA7tKZbNLP7dy4tDO5zlHJauvd2/aKaoI4tRLTr1Cd4vV7Pu+++y913393tE/ft25eCggKAqFgGGE2cJX4X1L0iUzcKQBtjQTd3U8vy0ugKuiUkJpAzIMebdbT5q42MOX1chGflU/NaOSc9P5JNt5+Ac5zClPwxkZ6Sd3mpPYoyafybKKRkpxzhyNBz2PwCMYbAt/HCcf3oN2EAWxZvBmDTlxsYfXJ4/00rCi0oEzXoqhU0GZH/MiVpuhmNSYNxmG8pjnakiX5l+bidLqoOVAW1CHUwJR6dQvY9fXBVu0gYHtlgb4uWvw2xkOkWUMMnDMuJbI02aotryBkY/i7QoWIp8WWnmXM6H3TL6JPhvd1Q3RCUOYme5efFmxk2Y7hcL/hxOV1UH6wGILMgK+jjJ6b5Ct031jYGffxIKNtRSm1xDXqjPqCjaKhl989h8HFDMZgMmFKj4+/44Tj2+AXd+ga3mZlhgBHz+ZnYt1pp/MGCfXcThn7hW+YrRCR1+mvzOXPm8P7773Prrbd2+aQvvPACTzzxBNu3e2oEDB48mPnz53P11fHRHae7Amq65UawppviH3SLzgYA/qJ1eSnAxHMm8/M3m8gdnMfPX2+KqqCbbZsV43Itfb7OIL1/Drm9g//hrbMMzW9N0VTTzeK3LColOzKdS1ssXfDtEe+fec0smuqbqK+s44unFjFq9lFhvViZ/7snWHb7WgAsCWvDdt7Dyfh1HvwaUl2ltPTm0KcZKFrm+RtUsasMZo6I4AwPL3FKColTIhvkPZRO0YEaG0E3e4PvAsIQ4uYnTruTt3//H9Z+uJrBxw7luLnTwx7wDgX/977UvLROPz4pw7fUtqGqPhhTEj3E2g/XUF9Vzzt3vsmo2Ucx8OhBzLr+pEhPKyrUFtfgdno+92YUBL/kRUDQrTo+gm61JTUApPZKC+tnosnnH83k848O2/m6w7HPL+gWxO6lLYyjk7C87VldYFlYRdat+UE/hxDRqNNBt8GDB3PfffexdOlSJkyYQFJSYDrzzTfffMTH33PPPTz++OPcdNNNHHPMMQAsW7aMW2+9lb1793Lfffd1dkpxx1nmCzREMuiW6U5jyv5RJO3UY8rXwqiITaVDvMtLE6Lvm9BBxw1Bq9dRtHwHu3/czRl//CVJ6dHRNLzlD+ylf5/NoGui4wIxGhsp+Nc0iXSmm73RDgokpia2WTtq2PEj+PCBhVTsKseR52DlW8uYcuGxYZtfFTUApJCEQYnce9ih/INEhkITLTk3lXujd3lp3SfVOIrtaNN1pJyShiYx8pmD+hhqpNDkF3QLdaab6lZJyTHjsrvYsngz6b3T4yLoVuuX6dbZmm5AwN+6egm6iQ5yu9y8+8e3PQ2MFNj4+XqKVuyQoFsz/7IIoQi6Gc0mFEVBVVUaa2I/Q7WpvgmrxVO8P61XejtH91yO5uWlSoKCLif4n9/MczIof2gfxtFJWNfK3wPRc3Q66PbCCy+QlpbGmjVrWLNmTcB9iqK0G3R79tlnef7557nooou8+84880yOOuoobrrpJgm6Ebi8VJcb3NTezhiwMoex53r+MKVcTVQH3VRVRW3pXhqFmW46nY5xZ05g8XNfkTe0F5u+3MDk86LjWy+Hf/2GILYH7w59cyMFN25cqgutEvlAQ0vnUoh8ptu5D17IOfefT1p+2x8cFUXhzD+ezfL/LOWnj9ey6t2V9BrWm75jC8Myv2rVc5GeTucv0EPJ4Rd0SyjwLfGo3BO9HUyrniuh/tMaAIbumxgVQTdvTbcYCLrZ/IJuCSFeTqQ36jnusml8848vPOdutLXziNiQnJnM0BnD0Rl0JHfhC4eATDdZXio6YO+6Pbx5+2vev7um1ESsNY1YaxuxN9oxJEbus3G0qNrvH3TLOMKRXaPRaDClmmisaYyL5aW1xTXe213J2O0JVFX1XhPoCxJQNMFPYkgYYiJheCLWFfVYV9TjeMAWkow6IaJNp6MTu3btOux/O3fubPfxDoeDiRMntto/YcIEnM7oX6oSDs6y5qCbhog2UvCvSdPSfTNatQTcIDqDbgCTzptCSlYKBzbsY/nrSyM9Ha+WP7DaTB2apMhf0AMkKL4P1NGS7RZQ0y0rspluqbmphw24tRg2czgms4neI/uwf8M+Prj/PaoPhL5blKqqVOG5UMpQojfoZuyViEbrea+o3Be9QTdXjV/zh/To+P1sCbo5YmJ5qa+mW6iXlwKYzL5grrXWGvLzhcOOZdvYuuRnipZvR6fv/GeSZFleKjqpdHsJBzbuB2D8nIn0GVXgva/6oHQ9BMjql8PUK6YzfNZI8of3Dsk5TKmeJaaNNbEfdKtpXloKkJafFrF5RDNXjZOEUYkkTkshcVroPuem/KI5SKwBy6LqkJ1HiGgS9ojOZZddxrPPPsvjjz8esP+5557jkksuCfd0OizxjVPQb7GCS0XRKii5ibhLGwO2gVb7Dt3W9E5GOyjtiOdqqemmy9GjaCO3VNKcm0pCUgK2Blv0B92afDXnonF5KUDvkX1IykimrqKO8t1lWMotmCOcMaU6VRwHPEGtaMlyA9/yUgA7DhKJfOFZS3n01HTrCEVROPeBC3h13ovUV9ZTW1rDaze9zOX/uDKk3/LW0eBdxhktQbfSP+yh6vlS9pyxBf7u2WfQ6Unvk0Hlngoq91SgqmpUFul2N3cv1SRpUPTR8YWCzru8NPqDbk31/stLQ/8eZ0zxvVc11cVH0K2+ypOd5p+x1hn+y0sbqiTTTbTPP4tr3JkT2P3jLrZ/vxWAmoPV5A6KzsY34TRg8kAGTB4Y0nMkpiVRuacCa20jbrcbjSY6/gZ1RW2xL7gT7uWlu3/cxdu/ewNbo43jLp/O8dedGNbzd5Rjrx3rcs8XI4aBoSvHYP5lBvWf12D7uRHLGxVkXtP+73Pi+7/AtasWtaKpzevrzm5D+9fsMqaM2ZFtU7oK5/++3ddwp4NuV1555RHvf/HFF9sd44UXXuDzzz/n6KM9y+tWrFjB3r17ufzyy7ntttu8xx0amIsk/cn9SDwv9BfaqlsNCLpFkqIo5AzMZd/6vVTtq8LR5EBvjJ76TP40KVoGbRiLanNHXffSFoqiMP6Xk1jz7goq9lSw+auNHB3GOlttcRTb0WbpcZU50BdEz3INA77XWVRmusVA0A1Al6Dn/L9cwuvzX2H70m1oFA3/+c1rTL/qeEbMGhmSc1aqNd7bGVGyvNTd5MZd68Lu8gWJ9OjoN2EAKdlmtDoNjTUNJKV3LagQSq6WoFt65LKeDxVLNd0ClpeGIdNNq9diMBmwW+3e+kGxzOV0YW3OcknuYtDNlJborQ3VUzPd3G43K99azoRfToraz1HRJHDpZCa1pb4vvXat3klW/xyS0pPC0pG4J0tsznRT3SpNdU3e7VhUc7DGezvcy0tddicHNnkyNy1+pUqiTWDn0tD9vTQOT8Rd48Rd46LxhzocB2zoex/5fPpT+iHvnCIa2S0d+53u9Kf46urANFCHw8HGjRupqalh1qxZ7T5+48aNjB8/HoCioiIAsrKyyMrKYuPGjd7jojHjIByc1U4Sj05GtasYBkf+w0RL0A0FSrcX02d030hPqU2KViFhSOSzodozcMogPvnLhwDsXrUz8kG3PTZcpQ7QgiGKnr9DM92iQWJqIr1H9sFpc2JMifzvZkclZyYz555z+PbFxaz/dB371u/hrdtfZ/TJR3HKb37RZiOG7qjGd3GUHiWZbi0Zw069L0ikQ4fBZGD3ak9ZhKq9ldEZdKv2BN20qdGxtBRA27y8VEXFrbrRKNH5RQcELosyJIXn99aUasJutdNU19T+wVHOWtOIqnrKN3Q1002r02JKS6SxuqFH1nR77JSHObjlAE6bE61By6RzpkR6SlEvoElAnwxqDvquPT7960d8+tePuOLZqxg/p3W5GhE8iem+IJu1tjGmg262hv9n77zD2yrPPnwfSZbkvfeecYaz9yYhCYGw96ZQ6AAKZbSMlkJLS0vLaJn9oGWvQtgjzCRkb2fHe++9LWuc7w9FspQ4sWVrHNnnvi5f6EjnvO+DI0vn/b2/53l6SZ6egkqtIjTevU43tW//Pa2+RxobyQPh6s6ltgReFIb4cTOqUBXtX7QQfovsXpUZ3Tgsun300UcnPWcymfjFL35BevrgNuf169c7OuUpeeyxx/jwww85duwYvr6+zJ8/n7/97W+MGzfOek5vby9333037777LjqdjlWrVvH8888THR19mpE9h7FOT/dms6NGCiJIxvxMyveX0VjSQPXRasmKbt5C0pRkFCoFJoOJkt2D10B0NdYmCkbPOytt8bH5aOoT9SABDb5wWwFdzZ2EJYR53aZAdGYMy365AoNOT0NpPaJRpGR3Mc9e+hSr717DlHOmOW2uZrFfdAsjxGnjjgjVyaKbj+BDeFK/iNBY3kjiFPc0mhgqpl4TYq9Z8FBKyOmmsvn71GOwE8mlRtm+EkITwkiblU50pntu6rWBvrTVttHV2sXdKb9C468mNjue29f+2i3zOxNbkcw/bPgdt/1D/c2i2xh0ujVXNpkFNx8le9bulEW3Qag+WkVDSQNgdqf6BvsRkxXLrEvmsu/T3Rj6zBsRdUW1ngzT43zwwLvUFtTiG+jLdc/f6BIHZXRmDCkzUvELGf7fvlSoza+hbG8p4H6nm4+N6NYnZdHNprGa2sUlZ4IuCqfxz1XmXBYBWXSTGfU45S5eoVBw1113sXTpUn7zm984Y8ghsXHjRm699VZmzZqFwWDggQceYOXKlRw5cgR/f/MXxK9//Wu++OIL3n//fYKDg7ntttu46KKL2LLFsUL23XdugN3tYBJBIaCI8sNU3213DJz03InHivRgVEsTUF85bsB5LKmlAKpoz4sgkalRNBTXA2ZL/+zLpNFx01tR+6lJnZWGrkOHJlBLV0uXXb0bd2O7q+XqL1hHkFojBaPeaF0sektq6YmEJ4ZzxRPXsOuDHXzz9Ff0desIiAhk48s/ULqnhBV3nOWUXexmWq2PpVLTzep0U9mIbqgIT46wHjeXN510naexpJYCKEMkJLoJSjjeu8YgYdGtu7WLwm0FGPsMFPQZuCbxBrfMa2mmoO82f3YZdHpq82vcMrez6bQRyYbrdAOYumYadYV19HX3YegzoFJL5/3sSkwmk7Xzo1Fv5Oj6I/R29sppkafAaDDyxFl/xdBnQFAIRKZGIQgCESmRnP3bc6nJq6LyYAUAdfljW3Qr21dKeW4ZgiCgVLvGCb367jWsvnsNgNXx6q1Y0ksVSoXbm2GpvVB0c7XTTTvRD3WWlr78Xv575qeE9e7iTs0Np9zU7v7VBkwHGzE19Q64vnb0GAZfs8tjymMO5bg7cWj3M0676ykqKhpS99He3l6eeeYZ1q9fT319PSaTye71vXv3DnnOdevW2R2/+uqrREVFsWfPHhYvXkxbWxv/+c9/ePvtt62pr6+88grjx49n+/bt1ppyQ0H/xjFEod95Zjxmn2Z74vGpzjH+WIXhm7LTiG79H8ZScB4lTU1GoVRgMkrDmXUq9LV9dHzWgqAR0E7yw3e69NLELCRMTGTjy2bHZ+neEiYun+SxWNxVv8FRpJZe2tlkW8/Ns51LR4IgCMy+dC7ZS8bzzT/XUbStgIaSBuoKaonJjmXGBbNGvBhuEftrG4RKpKabcPx/yc7phorwpH7RrbFMeh1MTS02opuEnG62TlQp13Xb/0UuSVOS0PfqyZifZe1W62psmylYULppbmdj60wbbk03gJpj1Rz65iBgFkODoqTx2eBqulu6MRns73Nr86pJmZHmoYikTW1ejdXJlrN6Cje+dIv1tbCEMH710d3cl32XOVtgTzEvXf881z77kwH/5kY7lkYt2kCtyxoc1BfXs/nVjRRsyWPh9UtYcN0il8zjDlqPN1IIig5223eBBVvRzR1d5IeLVXQTQJXg2s00QRCI/WcaP895hC8Cf0RHHz/nSnwZeENC/3+HzEIHg6/BHT2Wx5THHMmxXhxa/V6H7+JtGx2AeeejpqaGL774guuvv37Q62+66Sa++eYbLrnkEmbPnu3UNK22NnNaU1iYuRXxnj170Ov1nHlmf5eY7OxskpKS2LZt24Cim06nQ6frFyLah1gcz1nYOd1iPC+6afy1pMxKQ9+tQ+PvS7dEazr0FfRSc5tZFAy/K07SolvqrPR+0W1XkWdFt3Jpim5Sa6Rg10QhwjudbrYERQVz8aOXsXvtTta/+B26bh1v3/E6+p4+Fl6/xOHxSkyVxAvRvGB8m1eMa63PhwshTox6BAxQ0+1E0a25XHqim7GtP16FhGq6qeiPRcqi264PdlCyy/y9cPnjV7lt3pisWPI3H7MXW7wsJd1Cl5OcbrbXdjZ3jhnRzbbrtYXqo7LodirK9pZYH6fOTD9pjaDx1xCZFk1jcT2tVS34aHz44MH3uPqf13td2YeR0tNurhnpSsGxp72bjS/9AED+5mNeK7oZdHo6m8yfZSFx7q3nBuAX5s+8qxew+8NdVB+pkqzb9doPHiWuIoLp9eOZqJnn8vkClgXT09dHj8n8Xm6j85Sim4yMt+Ow6LZv3z67Y4VCQWRkJE888cSgnU0BPv/8c7788ksWLFjg6NSnxWQyceedd7JgwQImTTKLGLW1tajVakJCQuzOjY6OprZ2YFv6Y489xiOPPOLU2BzBPr1UGik78ePj2fTKRgDK95WSvXSChyM6GbG3f3Gj0Er7xit1Zv/Ndskez7oH9RVmQUvwVaCMkI6TRmpOtw6bblOBUd4vuoF5l3HWJXPwC/Hj/659nsTJiexeu4vZl85D7efYZ8+qvhupo5EYIkkSYgknhFmKHJYppJGOfqr0Uv8wf0JiQ1D7a1BppPP+tyKCOkuLsdUoCeezBZWd021wh7snaKowi6gBEYH4h/i7tV7fOfedx4aXvrd7zltTs2wdoM4S3bqbx04zBdsNGzCXmGivP1mIkzHT2dxB0rQUGkvqSZo6cA3h3373II1lDfzftc/RWNqAf1gA61/8jmW/WOHmaD2LrdPNVSRMSsQ3yJee9h4Kt+ZjMplc5qpzJbbdb0PcXM8NzGtlQRDQ9/ThG+xLzdEqUmcNXgfdnfSKOvaEHmFPKNQLbdzP7W6ZN4j+74YOsZMYIeI0Z8vIeC8OrzJG2gghPj6ewEDnp2fdeuutHDp0iM2bN49onPvvv9/Ozdfe3k5iYuJIwxsyxnpp1XQDSJmZZhXdSnYXS1N00/WLboJW2jcEIXGhTFo1mebyJqoOV2E0GFGq3O9iEUURZYwPWq2AIkApqV1iH1unmygBp1ujjejmpTXdTsXEM3OYd80Ctr1prnO543/bWHTD0N1uDWIz5VQDICAQJASAALGKKHwFiexYDtBIQYUKQRDwC/Wn+kgVTWWNmIwmt6ednA6/eYFkHnRekwtnYet000tUdNv70W6KtheAAGfeutKtn291BbXWmneaAC26zl5rypw30dvRw+FvDhCWGE7KjFQiUyOHPVbACU63sUJHff93h0qjoq+7z9wRXmZA8jYeo3xfKQCx2fEDnqP0URKdEcOFf7yUH57/lqLthajUShJyEslamO3GaD2Hoc+Avte8XnCl002pUpJ9xkRaq5tR+6ppqWohPDHcZfO5Ctvut8GxIR6JIWtJNge+ykUURQ59c1Byolul2G9GSRJi3TZvsNCvCbTRcZozZWS8G7evLp544gl++9vfUlZW5rQxb7vtNj7//HPWr19PQkKC9fmYmBj6+vpobW21O7+uro6YmIG7pGg0GoKCgux+3Imh1qamm0REN9svhpJdRR6M5NSYdP0uAkEtnUXzqVD7qqk+WkV3SxfVhys9EoOxyUD3hnZ6c7slJ1TaNlLQS8Dp1l5vK7p5b023U7H4pjNInp5CeHIEXz3+mXUHfSjsNR22Pj5fuZy16mdZq36WO1SDlxtwF8Lxt7d9eqn58zU80byratQbaa1pdXdop8XUbcTUbZScS8rO6SZKL71UFEVK95SYhTbRXBvKnbTVtlo7CWqOu0YNvZ7/HHOUDx54D73OLBaq1Crixg8sggwFP5uGQV1jxOlWsruYXWt3WI+Nfea/lbZa2el2KhpKzV1LA8ID8B+kY+akFZPJWpRN4pRkincVU3mwEqNeep9HrqC3o9f62NK4xVWEJYZRsquYvB+P0VBU59K5XEVnUyfRWbEERgR6JL0UICo1ms6mTrqau+y6QkuFMrHa+jjRjaKbrdOtTRw7GzIyYw+HV9qpqamkpaWd8mcwZs6cSW9vL2lpaQQGBhIWFmb34wiiKHLbbbfx0Ucf8cMPP5Cammr3+owZM/Dx8eH77/vTPPLy8igvL2fePNfnqg8Hg8XpphIkUzg7LCGMiWdOIm5CPNVHqzEZTYNf5GZs00ulJiANhF2KqYcaVEi1cymARq7p5lbisuOJTI2iuaKJ6MwYNr3645CuM+j0NOqaCcBc53GGYqIrwxw2gWeHkvBGJr4X9P/b+RzvrmDfwVRadd0an67haOhOjgbtoPObVk+HY8XW6WaUYE23qsOVHPrmAAERAcy+bC4RycN3aA2HSSsn83jh0zy45RFrOrq+Vy858fR09LT3EJEWSV+3ju7WLlbccdaIxrN1unW1jI2F1f4v9nFs/RHA7M7yCzV/TrbVtnowKunS191H2/GNj4jUqCFds/KO1QiAj8aHT/64luqjVa4LUELYboxpg1zrKI+wqX3aJMEu30OhqbyRuvwaOho7CInxTD1JTUD/fbauq/c0Z3qGCrG/w3aSEOe2eW2dbu2Mje8GmbGJw6rOnXfeaXes1+vZt28f69at49577x30+iuvvJKqqir+8pe/EB0dPaKUj1tvvZW3336bTz75hMDAQGudtuDgYHx9fQkODuamm27irrvuIiwsjKCgIG6//XbmzZvnUOdSd6KM9MFvYSCKYCWCQhrpfoIgoNL4UH3EfDNTm18zoh1vV2DyoppuYBbdVBoVUenR1tpD7kaqTRTgxEYKnneIKJQCqTPT0Ov0o9LpBnDWPedQuqeY4p1F1OTXMOWcaUSlnX7hs2vtTnbevY6sO8JJO3suZ+UsdlO0jqEZ74dmvB8KvQqLRmQRjsKT+lNlGssbyZif5YkQB8TUanYZiX0igr90NhNUgrRruuV+Zu6C3tHQQfL01EHOdg0KpYKotCi0/uYFsSiKGPXGEXcHdheNJfV89fjnAEw+eypRadEjGs+2pttYcbo1FPe7gn635RH+e/P/0dXcRUdDu8fKSkiZxvIG6+PIlKEJ5QqlgukXzOTjR8wNfCoOlJM4eeBacKOJnvZ+0c3XxZ1bw+xEN2ltTA0V+/RSzzjdLN8FAL2d0hPdym2cbu5ML7V3usnppTKjF4fv/u64444Bn3/uuefYvXv3oNdv3bqVbdu2MWXKyNM9XnjhBQCWLl1q9/wrr7zCDTfcAMBTTz2FQqHg4osvRqfTsWrVKp5//vkRz+0KRKNI1/o2MIJ2+ult9e4mdWYa+78wN9Eo2VUsOdHN25xusRPirUJmT1sPFz58qdtj0Jf1O8ikJrpJrZFC5eFKqyNxtNV0sxCZEsWE5Tk0VTSSt/Eon/35Iy7965UEneb/16Az/9toOlVE6yPM9dwkjG39MR8GcrpJaxff2Nofr1SczyD9mm5NZQ0kz0ilt72HqWs8WxNPpenfQDDo9F4juum6+jdlIofoOjod/nbppWPDzVBbYN4IVvuqCYkPJTgmhIr95YgmkY6GDkI8VFtKiphMJqpsSm1EOFA/0LZJylipl2fvdHOt6BZh8x3ZVOadopttSren0ks1Nt1KdZ2605zpGTrpJpwQmmh1s9Ot/75RdrrJjGacpk6sXr2atWvXDnpednY2PT1Drxd0OkRRHPDHIrgBaLVannvuOZqbm+nq6uLDDz88ZT03T2NsMvS7MCTUqQ7MzRQUKgUx42IkudMl2tZ000hfdFP5qEjMMTfoaKlqttuFcxe26aVSE90k10jheHqpUq1yef0UT3LBwxfTXNFE0tQUCrbk885db5y26LmlkPPk/yRwbc0ad4U5bAYU3Y7v4mv8NZKr6WZssRHdgqXjirEV3QwSTC899uMxyvaU0NfdR0C4Z52pk8+eytJblnPm7asQJNSkY1AEgfCkcALCA/AN9hvxcP5jrJGCvldvFSiiM2NQKBQER/entbXVtXooMmmy4d/f88Pz3+If5s/CnywhfW7mkK9NyEm0Zs1IbePEVXQ0dpI8PYXMheOcIoqfjtD4MGvmjRTv/4dCa42N0y3aM+mlKo0Khcr8HaCToNPtqFhEE60ICETjvg6iwdg0UpCdbjKjGKfdAX7wwQdDqsn217/+lbvvvpsNGzbQ1NREe3u73Y9k8TnhV3ViBqNwiudOPPZRoIge2MVmqLdpohAjLdEtflICal8NtXm1HPgq19PhnIRt91KFF4hucEJdtz3ur+vWZ5temqg+zZnuR2qNFDobzTcCgRGBkury6myUKiW3vH4ruq5e/EL8aKtp5b8//b9Tdl7U2xSHt3X0SA1Do57unR301vdv+FhFt5QIItOi0HXpKPXA3+HpMLb2C1pScrr5IN300u62brqPF6m2dTF6ioXXL+bCRy7h3AcuQOMnrc2N05ExL5OHdjzKnw/9nRW3rxrxeH4hfmSfMYHJ50wjboK0nPKuoLmqmayF40iYlEj8RHODr+CYEOvrbRIT+D1N6sw0dJ299LT1MO+qBWQ6kOavDdAyfvlEfIN8KdiW75Wdgh2lsaSesr2lFGzOQxvg2ppuSh8lE8/MIXVWGl3NnZJsAjAYlg21gIhAj7mNBUGw/lv1SrCmW6NoFiYVKAgXQtw275BrumltNh6Hst4e7NgZY8hjymMe13aGgsOfPNOmTbNbdIqiSG1tLQ0NDUNK2zzrLHMx3uXLl9s9L4oigiBgNEpv1xwguPYWl3cyNdTaLGCjpCWCqLVqYrNjKdlVTENxPZ2NHQRESKe2VbefDiFRCTow+Uuv0cNApM3NJH1HEb2dPZTnljHt3BlunV/wEfBbGAgC+MRL6/1mm17q6UYKJpOJzqZ+0W20E5YQxg0v/pT3H3iXom0FTL9gJoe/PciUc05O07OklwLWbo1SpOPLFqpvLqLlpUa4zPycxU3po/axuhfrCmrpbuvGzwnOHmdgqekmqAUEX+lsJth1L5WY083W6SIF0U3GjEKpoCK3jK6WLsKTIzjvwQs9HZJLaa1qJu/HYwBknzEBMDuGgmND0AZoPeJulzKps9L5zfe/48gPh0iYlOjw9b6BvtY6Z7V5NSTkOD6GN1Fv00U0KmNk9RaHQvzEBL5+6kvAXDNzwXWLXD6nszAZTbTXmdNLPZ3SrfHX0t3aLcn00gaxGYBwglEI7rvfsHO6cWqnW3DrL9wRjoyMwwjt7RA8eF8Dh0W3888/3050UygUREZGsnTpUrKzswe9fv369Y5OOWawdi4FVNHSW8CmzkyjZJfZCVKyp5icVSOvy+csXvjlhzz9s9cA+F79OgsIH+QKz5M0JZmi7QWAOd3U3XStb8PYaMAnUY0wRJXeXdg2UvB0Tbfu5i5Ekzl9WUpCsyuJSo9m9d3n8OwlT7Pr/R1UH6kaUHTrs3G6+UjY6aYMVGLMgObk/hs622YAydNTKc8tA6A8t4zsJePdHuNAWGq6KUNVknJYSrmmW2NZfzF22657Mp7HPyyArpauMVHTraPRtuO1+XsjOiuGtppW2oCqI5WnuHLsUZtfwys3v4RfiB/Tzp85rDESpySz56NdAJTvLxv1oltdobleoCAILk8vBZh9xTx2vr+d4OhgCrbme5Xo1tHQjslo3oz3uOh2vIOp1NJLRVGkEfNGQKTg3vWTbS3gdnH0fzfIjF0cXuk//PDDI5pwyZIlI7p+NGPndJNYeimYnVnluWX09egpzy2TlOhm2+FSi7RcW6fCP9SfqPRo6ovqqDxUgb5X7za3kKnbiLHRvFj2SZReypOd083DNd06mmwWT6O0icJApM3OIH5iAuW5ZVQdrqSxrIGIZPvi1t7idDt6fiXLVv8co40ryzZFMnlqCocTwwmOCaYuv0Y6oluLOV6FhOq5AShta7qJ0nK62dYckorTTRRFDDoDSh8lCm+q6+Zk/MP8oQh6O3ox9Bm8pqnEcLDUAYX+743YrDgUSgUmo8kq8suYyzfU5tcA5vrBw8G2Y2lNXvVpzvR+RFGkrtDsdAtLDEPt6/p73oikCESTSOmeEjuXnTfQWttK3IR41H5q4id6Voy1pJf29fRJqoNxFz30YnbfRQjubTRh73STRTeZ0YvDd39KpZL6+vqTnm9qakKpHNqHx6ZNm7jmmmuYP38+VVVVALzxxhts3rzZ0XBGFXY13STWSAEgeVoKhdsKKM8tpWBLnqfDscPyZQH2go3UsdxghsSFUnmowm3z6sul27kU7BspeNrp1tHQX2tyLKSX2jLt/Jmkz80kJiuWQ98cOOl1vZc43cYJqXaCG5wgus1IobmiiZJdxRz78ai7wxsQ0SBi6jDHLKV6biDtmm5dLV2kzEwjfW4mESlD74DoKj5/7BPujPsl96T+iuIdhZ4OZ8jseG8bL//kRV6/9RXqjnfhHCm2zRS8sS6UI3TaON0sDmm1n5rYbHNXwJpj1ei6pZdi5gm6Wrutj/1CBq55PBgJkxJJyElEG+RrzcgYrbTVthE3IZ7Y8XHE5yQNfoGTiEwzO+q6W7u9yq3aWt1K9ZEqSneXoNJ49rt0+a0rufKpa/nJSzd7NI4TsaSWAkTiXtHNH1/iiSacEOpMjRSYSt06v4yMu3D400cUxQGf1+l0qNWDix1r167l2muv5eqrr2bv3r3odOabjra2Nv7yl7/w5ZdfOhqSW2if9jZirRFEEQTBXNCx94RjOPm5E46FCF98lifi+/yyk+Yw1Nmml0pPOAqKDCIyLYqG4vrjjrc+t+ywDYVesf/mVYv0RKRTkTk/i/1f7KOprJGSXUV2zRVcib5cup1LATSCdES3zgHShMYK48+YwCePmLtSH1x3gKU329fi1Ns43VRaaQlDtoQIQWQKKRSIpdbnbIWjyNQo/EP96WrpomxvqbXGqCcxttl0Lg2R1u/WNjX3RDHT01QdrKB0t3nRHZ7o+TIDSh+bVFydtATK01F1qIKD6/YDsPhG52Qo2ItunR7rIugO7BzSNt8b8RMT0PfqCUsMp6mskbjxo7+pxGB0t/YLsP4hw6unqQ3Uou/R09veQ/XRKgx9BkxGE33dfRj69Og6dURnxjgrZI9SX1RLyc4iALIWDl7Wx1lEpkZRsNm84d5QUm/39yxl2mw6l3o6vXTy6qkenf9UWFJLASKEwZsiOhNBEFiveZMs3QqaaOUPhn/xtvrJk87rmPwmpvIO0JsGXoM7egwjH0MeUx5Tq6RjiDr1kO/k//Wvf1n/OF5++WUCAvo/bI1GIz/++OOQaro9+uijvPjii1x33XW8++671ucXLFjAo48+OtRw3I5Y3g6Cr+XI/Eff/+oJx6c+R+zQo/+qFF9OxthlxCdDiyJQgTJKWossC2lzMuhs6iQyNZKKA+Wkz8nwdEiAfbF9286XUidhcqK1tkPJbvftzvZVSLdzKUCYGMyq8rkE7PMh2tcfzvNcLD0dvUSkRtLT1jNmarpZiMmKJSIlksayBnrazbvbtjfaUWnRpM5KR9/bh8ZfeuKtLdOFidSI9RgwEoi/Xd1AQRBImpbC0R8O09XcSVN540mptO6mMrCeh398g+i2MGYFTuZ6pJHyChKv6XY8vVQToMU/3POLQtu0a32vZ1PlHcHWhaV20t92gK3o1jy6nW62Dmnb742IlEh2/m879UV1LLxhsSy6AT1t/U4332GKbgAJk5OoK6zF2Geg5lg1NXnVvPUrc63f6MwYHvjxDyOOVQrYpndGZ7hPSLQ43QAaihtImeGeTeKR0lrban0cHOteF5e30GjjdHN3eilAGP0bMC20D3iOKb8VjtdXPv0a3NFjZ4whjzmWxxSPN/EZjCErO0899ZR5eFHkxRdftEslVavVpKSk8OKLLw46Tl5eHosXLz7p+eDgYFpbW4cazqhEX6RDX9iLoBEk52ywkDEvkx3vbKU8t4yi7QWSEd1s00u9yekWkxWLNlBLb0cvpbuL3eawkbrTLbEjmpQlxxer0zo8Krq1VDbTWGIuzj6WarqBWYyafflcNvz7e6oOVXLk+8PMunSO9fXV96xh9T1rPBjh0HnJ51HUgg9/0j8HgJ9gv/WRtXAcfd06DH0GynPLPC66Nala+GzKjwAolVqu92g09tiKblLqXmoymmiuMHcvjUiO8LhbEUBlk3ZtWwNR6vR122xk+TnnO8I/tD910JvS04aDxSEtCILd/7efjajU0za0G/XRjm2q8XDTS8Fc123PhzsBqDxUgcnQ/9nUXNGEyWgaFTUV6wpsRTfXdy61EJlq/k4UBIEj6w+TMDmR2HFxbpt/uLRWt1ofh8SEeCwOKdMg9jvdInGv0w3MKaYqVBgw0CK2uX1+GRl3MORvn5KSEkpKSliyZAn79++3HpeUlJCXl8fXX3/NnDlzBh0nJiaGwsKT65ps3ryZtDTv2DVxFYY6802uKtpHEouFgbDd2So+bm+XArZON28S3RQKBeOXTSJ1djrhKZF2RcBdiaG2D590DdoZ/vgkS+/35RfiT1S6eVe18nClRxerYzm9FCBjXhbdx2vuHFiX69lgRoD6eMpykBBg1y3LQmx2PEXbCynbWyqJmkAtYv9ubwjSEnttay5KqaZba3ULJoN5FzJcIp1LbWsdelN6qa7Lpk6qs0S3MeR0s3xv+If52xVL9w3uF926bRxeY5lum5pu/iMQ3ZKnpRA/MQFtoJby3DLabdyG+l491UerRhSnVLB1ukW5MWV2/NIJXPb4VYiiyN6PdlG03TtqVLbZOd1CPBYHmAXm6qNVlOwqktTGQz1NTBQyyRJSSMD9adiCIBB6/D6nWRbdZEYpDm/5rF+/ntDQ4VtPb775Zu644w527NiBIAhUV1fz1ltvcc899/CLX/xi2ON6O6JBtHaTlGI9NwuRqZFWt0/JriKMRmm4HHptOlx6UyMFMO9UluwsomRnEaV7StwyZ19RL/oiHb17uiTZvRQgeVoqAMY+A1VHPHez3NFo00ghcuyJbqkz04jKiCZtdjod9e309XhPitxA3KG6njtUJ/vGkqclWx+X7XPP3+HpaLVJsQgVpCW6SdXp1ljWYH0slc6lPja1Dr0pvbTPNr3UaaLb2HC66Xv16HUGNP6ak0oS2IpuPbLoBtjXdBtJemn8xHiqj1TR29FLxf4y2uv6P0OjMqLdtqnpaox6A9pALb7Bvm7dCFRpfOxcm7quXrfNPRJaj9d00wZqrd1DPcXWNzfzt2WP8swlT5G36ZhHY7Flv+kYh8UC8sVSkhSxHokhVDCnmLaeIr1URsbbGVYOY2VlJZ9++inl5eX09dnfRD755MnFD2257777MJlMLF++nO7ubhYvXoxGo+Gee+7h9ttvH044owJDgx6Op6qroqXbBVAQBKZfMIOSXcU0ljZQe6yG+IkJng4L3fH0UgHBrkC6N2DbPKF0TwkzL5rt8jkt3UuVYSqUAdJoWX4iaXMzaKpoxGQUqTxYQfK0FI/E0WGbJuQlhYOdiUKpIHVWOjve2QpA/uY8Jq3I8XBUzsfirqwvqqfqcCX6Xr1dPS53Y+t0C0ZaYq9dTTdROu6ttpo20uZkICgEYrKkUTTdNr1U3yud39VgWJxugiDg4+ucvwP/0P7Pz1ab4uajjR3vbaOjoR2Nv4Zlv1hh95qfrdOtVRbdwN7xN9xGCgAafy1R6dHUFdZSfayaIJtGHfWFddYyEd5MX3cfBVvyAXNJBHdnxdi6XnWd0u++K4oiQZHBCIJgJ3h7ioikcDQBWnSdvXQ2SWfjYa94GDBnCmULnsk6szjd2unEIBrsGjbJyIwGHHa6ff/994wbN44XXniBJ554gvXr1/PKK6/w3//+l9zc3EGvFwSBBx98kObmZg4dOsT27dtpaGjgT3/603DiHzXYdS6Nkq7oBhCWGEF5bhndrd0U7ZCGvdxS002LRrKpuacieXqqNeaK/WUun080iugrzb8vKdZzs5AwMZHiHUWU7i726Puso8EsuvmF2qcJjSUmnzXF+vjYhiPWxy9d/zxPrP4r/772OU+E5XRyzppC3IR4BEGg6kilR2Npoz+tWWpON6Wd0006QlJtQQ3FOwop2lZAcHSIp8MB7NNLvbGmm9rfed+pcRPiWXP/+SROTqJsn7lL8GikYEs+aXMyMPQZTmqU4Cc73U6i+3hNN4VSgWaETqSEyUmAxSFv/xlum27qrdQX96eWhsS5v+C97b9Pb6f0nW69Hb0U7yykobgebYDn73cDI4OszdMaS6UhAreIbRSJ5QBMFbLxETyzBrW9z2m1uf+RkRktOCy63X///dxzzz0cPHgQrVbL2rVrqaioYMmSJVx66aWDXn/jjTfS0dGBWq1mwoQJzJ49m4CAALq6urjxxhuH9T8xGrDUcwNQxUhbdEufnW59XLxTKqKb+fen9bLUUgDfIF+mrJlGZGoUFQcr7LrGuQJDdR+WjDApdi61EDchHpXGvNPlyXQ/S22esVjPzULWomyyFmcTmhDGvk92YzKa62ZVHa6iPLeMyoMVHo7QOYTGh1F9pAp9r56yvZ5NMW21q+kWfJoz3Y/tTblRQumltulj0kkvta3p5j2im8XppvFz3neENkDL/i/2UXGgnKpDlXa1qUYL1ceqyP1sD8U7CkmakkzicRHIgm36ZE+7LLoBKFVK0udmMvXc6SMWeJfevIzlt63EL8yftppWu9c66keB6GZbz82NnUstaGyEK29IL7XtIhwY4fnNq4jU/g6wUhHdysRqVioWkCmkMFGR5bE4bGvXys0UZEYjDotuR48e5brrrgNApVLR09NDQEAAf/zjH/nb3/426PWvvfYaPT0nd2zq6enh9ddfdzScUYOt000ZJV0hBCBuYgIhsSEkTUumr6tPErvVOtEiunl+J2s4+Ab50VBSj7HPQEWua91u+gppdy61oFKrSMgxL1gaSxroaHL/zpeuq9daw2ws1nOzoPZVo/XX0lLZTGdTJyW7zY0GLCKCj2Z0pAFY6ggClO0t9VwgQItNXZMQQVrvPanWdGsqM4tugiAQluD+DmwDYZ9e6kWi2/HNH7W/c78jpp03g5isWJKmpVg/R0YTDcX11rpX0y+YedLrcnqpPW21rZTtK6VoewGdTviOT5qaTHdLF4HhgSfdm44Gp1tdYa31cVS6+zqXWrCtiWbbbEWq2IluUZ4X3YKig6wbMVJJdy4VK/nGtIUCsZQ0IdFjcYQJ/ZuLLXJdN5lRiMOim7+/v7WOW2xsLEVF/R0sGxtPXaS0vb2dtrY2RFGko6OD9vZ2609LSwtffvklUVFRp7x+tGNsMaAINC9kfCTudFOqlERnxlC+r4zD3x2kuaLJ0yFZa7qpBWkLlqciZWb/Yr/Exc0U9DV9KI+nMEu1iYKFCcsnkTglGf9Qf5eLkQPRYdO59MSC2GONyaunovZTkzIjlcJt5poyFhHBVljwZuImxOOj9UHjr6GhpN7q6PMErRLuXjq+KJmHf3sNv738QmJf83ydHAsW0S04NkQy78mwxHAWXLeIrEXZ6L2kCYnJZCIyJZK0ORmkzUof/AIHSJmRSm1+DWV7S6g5Wu3UsaXAgS9z6W7rRu2nJnl6ykmvq9Qq1L7m+xS5eylUHCi3Pk6cnHyaM4fO5X+/mjlXzEPjr+XyJ662OuZHg9OtsbhfqInOcL/opvG3Ed28oKab7T1cUKTnv0cVCoXVhd1Y3ujRewwLXfQbYQLw3Pe57HSTGe04bE+YO3cumzdvZvz48Zx99tncfffdHDx4kA8//JC5c+ee8rqQkBAEQUAQBLKyTravCoLAI4884mg4bkMxIQxK+8AECECAD3Tp7Y/h5OdOOFbE+KNamXTS+PqKPkwdRlBLu5GChbQ5GeT9aO68U7yjiPAkz6byeHN6KUDqjDR8tD5EpkXR7OIOW31FOoz1elCBT4q0RbfIlAhrnbuyfaVMWD7JrfNb6rmBNFITPMmEMychiuZmH51Nnay8Y7W1RpUnGw44E5VaxZm3r+K7Z76mPLeMA1/lMnXNdI/EIuXupRG6EGr+Z/677E6TxkK2p72HruO1oSIkkloKEBAewLa3t2AymGiv946FRGtVC2X7SgHwG0Fh+4EIjgmxPm6ra3Xq2FJgxa/OYubFc9B19RIzLm7Ac3xD/BBFEZXP6HAIjwR70e3ke+PhIAgCy3+5klmXziUoMojv/vU1TWWNo8LpVp1XRUBEICGxIUSkRLp9ftu6aDovqOnWXi+97vNx2XGIRhO+wX60VjcTlujZ76susV/89xN8PRbHYE43xbRITEVt0GsYeA3u6DGMfAx5THnMAB8Ukb5w4KS37Ek4/I3/5JNP0tlp7rjyyCOP0NnZyXvvvUdmZuZpO5euX78eURRZtmwZa9euJSysP/VDrVaTnJxMXNzANyhSIHDTZQQFuW7hY63p1ofVhSRl0udkWB+X7i1m1qVzPBiNfSMFbyQyPYqA8ACqj1TRXNHEJY9d4bKi/fry47uTBvBJkLZImTzdNt3P/TW2Ohs7EJQC/qEBhMa7v2ixlPAP9SdlRioFm/NoLG2g6lAlRr05tXC0iG5gTjE1Gk2kzU5n5/+2M+WcaR5pzmJxugkIBOLv9vlPR0RK/yJBKiky7Q3tZC+dgK6zl9hs6dxLqH3VxI2Pp/JgBXX5tfR29KAN9NzCZig0lNRbH0elOTcDISiqf2HVXusdIqQjxGTFEpMVe9pzHtr+J1RqWXADcxfb9LkZGPVGEnKcm9pmcTYFRgbRVNZId0sXBp1eMi5YRzGZTDQU1aPv1eMX7OuR95BK44PSR4lRb6RXruk2LIJjQ9n7yR4AGkobPS66ddIvunnS6TZOSGO5MI8aGthtOsgVynPsXg/cdrmHIpOROT1CezsE3zzoeQ59YhuNRiorK5k8eTJgTjV98cUXh3TtkiVLACgpKSEpKcnrOky6GmO9TffSGGkLIQBJU1PIWpRNxYFyDn1zkEv+coXH/k1Nook+zL8/bxXdFAoFKTPTaKnaQ29HLxX7y0iZ4Zq23VbRDVBLuKYbmFOzAsID6GzupKu5E1EU3fo+62hoRzSKdDZ24Bsk7YWyO5h+wUxEo4nWmlZyv9hrfX40iW7ZS8eTNiudwq3mFNqibflkzB/n9jgsO70hBKIQHK4E4VK0gb4ERATS2dhBg0SKQXe3dFk76yZNS/FsMCeQMiOVyoMViKJIWW4Z4xZlezqk02IrukWmOld0U/up8Q32paeth7a60Se6DQWVWoXJZKK7pRu/UD8UCmn9fbuTI98dor2+Hd9gX5c5t4IigxCUAhp/LTX5NSTmOMdR525aq1qsJR08Uc/NQkhcKEa9URLpmoNhl60gkXht3+eNJQ0e/z7oEqWRXjpZMY4N4k6MGGk3dvI31b0oBdeYD2RkPIFD3/RKpZKVK1fS0tIy7AmTk5Oti+acnBwqKkZH17uRYqg1f5EKfgqUAdL/kNH4a1AoFfS0ddNa3UL1kSqPxWIR3AA0XlrTDSBrYTYIEJMVQ5kL65dZRDdBI0jeVSkIApNWTsZH40P5/nIa3OyqkWu62TN+6QQKtxXQWNrAoa/7vdTe6hwYCEEQmHf1AhImJRI/KYFvn/3GLfPWio383fAy1/X9hlW6n6AUFcwUcrhEeZZb5neUyFTzwqG9rs3lHZeHgm1Rb42Ti/+PlIx5WSTkJKIN8vV4V9yh0GBTNyrSyU436E8xbattlUQjJnfz1h2vcXfS7Tw46V7a67w/5XG4tNW2WtP/Eie7bjN+yU/PIDg6hN72Hra/vcUlc7gDT3cutfDQ9j/xyJ6/8PO3b/dYDEOlo1F66aWW706AxtL605zpHrqQRnpptBDBKsVCFgozWayYybm6nzFHdwlX9N3JbtNBj8UlI+MsHN5emzRpEsXFzuk4VVpail7vPd28XInhuNPNG+q5WZi0MgcfrQ9JU1Mo2JLvsTgsqaUAGi+t6QYwbvE4NH4aavNrOfhVrkvmEEXR2r3UJ1HjFY7TsMRw6+6uuxestqKbVHZJPUlofBiJU5JRaVQIyv6vD59RJLoBTD13Ot1t3VQdqqTqUAVVRypdPudRUxG/NzzN/0xfUiSWEyNEskqxkGd8HnL53MPBsluvUCmoza/xcDRg6DNYC6ar/aQlusVNMKeX9rb3WGulSZnGUlvRzfmOmuDoEMDciKWn/eRu9t7M4e8OcnT9EWst0oFQqVXWAuqdje7vyi0VXNFEYSBixsXR09ZNyow0FEqF1wq9tp1Loz0ounkTGn8NCZMSiUyLIiBcGqJbhI172N0byQMhlfRSgLd9nuQ7zaukConU08R+8Rgfm77jS+NGj8YlI+MMHC4I8Oijj3LPPffwpz/9iRkzZuDvb19rxpV1zzxJW+SLiKITdgAUoMgIIfDQtdanTDoTxmYD4B2ppRYmrsjh44fXUp5bCogsvWWZR+KwNFEA700vBQhPisQ/LABdl46S3cX09fRZu5w5C2OLAVOn+WbfR+KppRbs6rrtK2XWJe6rH2i7IAqUnW4AzLxoFp8/Vk314X4hajSllwKofFSsuH0lO9/fSXluKd8/9y3XPfcTl85ZQ/+Od5AQYP2RKpkLx1G8s4imskaqD1eSPDXFo/FMWpHDE6XPYDQYEU3SWlRHpkVZUyrL9pa6PU3eUeqL6giKDiYsIYzgmODBL3AQ2zHba9vwC5ZOB9yR8vov/0tvRy9R6dE8uPnhAc+xdU13jGHRra6wzlrPLWmq60S3gPAAEiYnUbStgNI9xZzz2/MkX1dxILpbu0mcmoxSqSAi1TWpuKONkl3FNFc04R8WgNJHGllEoXGh1rp4jWWubZw2FKSSXgqgFczrkiAhgEDBH45/lffQS5v/c6D3fLdXGZkTaReGtnnosNPt7LPPZv/+/Zx33nkkJCQQGhpKaGgoISEhhIY6Vmh80aJF+Pp6yRefs/7OTSB22bv77Oq5STzdz5awhHCijrcsL88t81h9ll6x3+nmrd1LLVhqO4TGh1K2z/murtq+Bhqu7Ua3FIyzvKOOTNLUZNT+GmLHx1OeW4rJ5L4vXdsivHJ6qZnsJROszkOFUsGcK+eTc9YUD0flfGZcPIf6wloEhUDFgTKKdxa6dL4asX/H+3eqW1mrfpY7VNe7dM6REJUaRdPxBUPhtgIPR9OPUqWUXJF6hUJB8rRUVBoVAeEBNFc0eTqkU2I0GGksa6C9rg19r94l4mBMdhzxExMIiQuluUq6vwtHEUXRmuasCdCe8jxb13THKOioOVyKthdQtL2Q0j0lJExybhOFEwmx6Zpr29HSm6jNq6Eit4zSPSWExocNfsEYRxRF69+XVFJLwXzfNP6MCaTPy8Q/1N/jzkuppJfacofqep70ecB63EUPGKW1mSYjY2WIy1KH70zXr1/v6CWn5Msvv3TaWN6MwVZ086L0UoCpa6ajCdBi7DNw9IfDzL1yvttj0Nmll3qHe+tUZC+byP6vcmkobuDY+qNkOrmA+77IY1z67B0APKS6jQeQdkFvAL9gP2ZeNIutb2wG4ODXB5iyeqpb5ra4ENR+GjQSS1nzFNFZMUxamYPJJNJY2kBbTStT10z3dFhOR+On4dLHr+KLxz6hs7mTLx//jOteuMllxaOrxf56PbGC9F0MiVOS8dH6oO/VU7itQPLuLU+TMT+T/E3HqDlWTdm+UsKTPNux7lQ0VzRhMpjvIJ3dRMGC1l9L1XGnbGvV8GsES42+nj6ry1IbcOrvC1vXdGfT2HW6WdJLfYN9CU927d9DULSNu7KuzaONCIaL7cZ2cJTnsoo2vbKBrW9uRhAEfv7O7ZJtqKDr7LVuEEqtPIjJKFJ0fLOqva7NWufSnXQ2duDjq6bV1A7Hl56edrrZ4k+/ANgtSr9TrozMYDgsulm6kI6E6upqNm/eTH19/UmulV/96lcjHt/bMDTp0c7wR+wy4ZPoXU6t7KUT+PLxzwAIit7vIdHNJr3UixspAKTNTqe7pQuA/M3HnD5+uVhtfZwoxDp9fFcx+aypFG4vROuv5Zunv2LyWVPcssC3iG5S2iX1NIIgcPNrv8RkMrHxpfXMvXKep0NyGZPPmsKBL3Mp2HSMpvIm1j74Htc9fyNKlfPTVGydbrG4RuxwJiq1iunnz6ShtJ622jaaKpqIkKiQJAXiJiRY63iV7S1l+vkzPRzRwDQU96c5uyqFLSyh36XTXNnskjk8ga6zf2F4OqebnF56vInCcRHJlU0ULATZiFTt9d7ZNbe9rhUA/1B/jzYvEk0ifd06Oho7effuN7j5tV9KcsOl3a5zqbTu4Ww7mDaUNHhEdPvrskfpaGjn2No8OL5v6sepP7fcja/QH0s3o6v2p8zYZFg5GJs2beLf//43xcXFvP/++8THx/PGG2+QmprKwoULT3vtq6++ys9+9jPUajXh4eF2H9SCIIxN0a2qj949ZqFFGepdTrfEKUkERQXRXt9OeW4Zfd06txextq3p5s2NFMDc2j42O46aY9V0NXfR1dqFf4j/4BcOkXKxv+B5Et4juo1bOh6Nn5ry3FKCooPJ+/Eo2UsmuHROo95oFUDlem4no1AoOONnyz0dhktRqpRc+MglvPWr1yjeVURdQS1fPv4Z5z5wgdPnqhb7xQ5vcLoBhCWFs+O9bQAUby/0qOi279M9FGzNR+OvYdENSwhLDPdYLANhW/OuVMIdTBtK+t+HrnIDhY5S0a2307aD7mnSS20Kuo/V9NKqwxWkzc3AZDCSNjvD5fMFRdk43bwwvVQURavTLcgDAo0ti286g32f7aWxtJHD3x7CoDNIsq6r7d9WYIS0nG72HUwbyJiX6fYY9L3mtZPBzwiAL1qUgjTq3gH427juZNFNZjTgcFGntWvXsmrVKnx9fdm7dy86nfkmo62tjb/85S+DXv/73/+ehx56iLa2NkpLSykpKbH+OKsrqrdhqPPOmm5gXnjPuXI+sePj6Khvp2Cr+7uY2nYv9eZGChamnjuDwKggmsobrfZzZ2HrdEsS4pw6titRKBSs+vXZpM5Ko7Oxg3VPfOHyOhgdTR1EZ0STMDmJhBzX1puRkS5BkUGcddfZJE1Jpq6gll0f7ODDh96npdq5aXEW0S2CUDRe4thNn9u/UCjc7tm6boXb8tny2o/88Py3dDV3ejSWgQgIDyBxarK5RqXWB0OfwdMhDUh3Wzeps9KIzY4jMs01jktb0a2lcvTUdLN1up02vdTGdTNWu5eW7SujeHshpbtLiBnn+g3AoGhbp5v3iW7drd0YdObPjOBo5zc3cRRtYL+obKljKDXsRDeJpZfaOt1su0W7C1EU6es2i256P7MDW0qppWDvurNt9iAj4604LLo9+uijvPjii7z00kv4+PQLRAsWLGDv3r2DXt/d3c0VV1yBQuEdRdzdgZ3oFuNdohuYd/BrjlYjiiKHvjno9vl14uhxugEkTEqg4/hNYf7mPKeOXXHc6SYgEC94V02TiSty6GnvQRugRaFUUuhigbezsYO6wjoqD5RjlDsmjWlSZ6Uz9dzpzL1yPmpfNbmf7+VfFz7Bxpd/cMr4Txj+y0Qhg+WKefxSeZVTxnQHydNSCIoOJmlaCj2t3YNf4EIsCwjA7W7roRKVFk15bhn5m/OoPlLl6XAGpHRXMSW7iqk5Vm3nxnAmGj8N/qFmB3fLKKrpNtT0Ut8QPxRK8z1wR8PYFN3K95dZHydOTnL5fEGR/UJVa433vefajqeWAi7pKOwoGv/+z1hdt0RFt0YJp5fa1Mv0hOjW3dJlLXegP+508xekJbppUKM4LlP0INd0k/F+HFa+8vLyWLx48UnPBwcH09raOuj1N910E++//76j045q7EQ3L2ukAJC1OBuVRkVofBhN5Y3WD3J38E/DazxseMZ6bGk37c1kzMu03pCX5ZY6dWyL0y2OKNSCd73XFAoFq+9Zg16np2h7Ad89941L57N1IARGBLh0Lhnps+iGJWQvnUBgRCAhsSGExoVSfayaPR/tGvHYrxs/4ivxR3aY9vOAzy+cEK17UPuqiUiJpHxfKQe+yqWtttVjsdiLbtLcfEmZnmJ97Iru1M6g/nhNN98gXwLCXbdQDU0IQ6lWIigF9H36wS/wAnptHD/a06SXKhQKspeOJ25CPEivFJZbqDzeRMEvxM8tTUUsTjeFUkGBkzcz3UF7bX8dOttUWU9h+/62FZulREe9dJ1uYQlhZMzLJCEnie42929Y2TblsKSXBiCNzqUWBEGwut265PRSmVGAw6JbTEwMhYWFJz2/efNm0tLSBr3+scceY+PGjSxdupTbb7+du+66y+7HEX788UfOPfdc4uLiEASBjz/+2O71zs5ObrvtNhISEvD19WXChAm8+OKLDs3hDgx1/YsFbxTdNH4a5l4xn5aqZvI2HnW6O2sg3jF+zq/1f+ET43cYRANpJLJMmMsSxWyXz+1qtIG+zLtmIWGJ4ZTvLaU2v2bwi4ZAX2kv9/7mSu5f/xN+3nq5U8Z0NzlnTSE8KYK0ORnUF9ZRk1c9+EXDpMOuCK+0bthkPMOUc6bx01d/QdrsDCoPVbLjna28c9cbdi6E4dAumtMhg5HWbvxQyJjbX4+pyIMpprouG5eRvzQ3X5Knp1ofl+6Rnuhm0OlpqTLXWItIjXJpcfTEyUmY9Caay5toqRgddd3snW6nfw92NHZSfaSKqsOVGA1GV4cmKdrr2ojOjCVlRhqZC8e5pQi/b7Af935zP5oALePPmMjO/213+ZzOpKOxg/icRFJnpbmswYkjqG2dbhJNLxVFkZSZaSRMSpRch1WVWkVLdQuVB8sp21syrHIpDaX1fPDgexRuL+Cdu9+gsWzojrm2mlYATAoRw/H0Un+JpZdCfwfTbtnpJjMKcFh0u/nmm7njjjvYsWMHgiBQXV3NW2+9xT333MMvfjH4Dv1jjz3G119/TV1dHQcPHmTfvn3Wn9zcXIdi6erqYsqUKTz33HMDvn7XXXexbt063nzzTY4ePcqdd97JbbfdxqeffurQPK7G4nRTBClR+EqniKUjZC4cB4CP1odjG464fL7vjdt4wfg2W8V9hAhBjFeks0q5iDmKKS6f2x1EpkbRXGGudbPv0z1OGbPtvUaW/Xsql1wwnxteO9spY7obpUrJvGsWULyjkOaKJra8vsllc3U09YtuAXIjBZnj+If6c8EfLmbWpXMIT44kNjuOb55eN6Ix2zCLbkGC9zkqLXXdfIP9qD7quZRJb0gvjZ+YQPaS8aTOSqfqcKXL61I6SmNZI6LJHFNkmmsX9sExIdb/f2dtLHma7rZuVGpzf7LTpZdCf4qgaBLHXIppTV41BVvyKN1TTGh82OAXOAFBEBBF6GnrZsd728j9fPByOFKipaqZqoMVlOwqxjfI8+KIxgtEt5qj1ZTuLqbyUIUkm2FFHq/r1tvRS1dzl0PXHv7+EM9f/i8KtuTxys0vUXmggrd//QY/vPDtkP49LE43g2+/4O8vSMvpBuB7PKZuuaabzCjA4e6l9913HyaTieXLl9Pd3c3ixYvRaDTcc8893H777YNe/8QTT/Df//6XG264YTjx2rF69WpWr159yte3bt3K9ddfz9KlSwG45ZZb+Pe//83OnTs577zzHJpL86upKHa1gUkEhYAi1h9TTZfdMXDScyceK9KDUS2wL2BvEd28rYmCLZNW5DBu8XiKdxWx5bUfWX3POaft3jVSOun/gvqP+i8kCDEum8sTTDt3Olvf2ERgZBAFW/M5SxRHtBssiiLdOzvxnR1A74Eugi/3XJfBkTLrkrls+s8GguNCObbhCH09fah9nZ9OZt/5Sno3bDKe5axfn8Ou93fQWFKPaBJpLG8gIslxoUIv6q2duYLxPtEtZWYaURnR1BfWceCr/ay5/wKPxGFZaCh9lFbhQ2qo1CoEhUDJriIAqg5XkjBJOk1aGor7O5dGprqmiYKFmKz+4vm1+TVMXj3VpfO5g86mDgx9BjQBGkLiQk57brBNB8q2ulZCYk9//miiJq9fZLV9H7ia+EkJKH2UGPVGq6PTW7Bt/iCFmm7aAC9IL23s/51JceM0PCUSNh4FoLG0noDwoX3/b35tI3s+3EVAWAANpQ2IJhG9Tk9PRw8bXvqBPR/u4sxfrWLqmumnXDf0dvQQnRlDQ0MD045m4hcTwM1R0suA6Xe69aC5bybGg42YGnoGXF87egyDr9nlMeUxh3KsTlDBk4O/nx2+MxUEgQcffJB7772XwsJCOjs7mTBhAgEBQ/uw0Gg0LFiwwNFph8X8+fP59NNPufHGG4mLi2PDhg3k5+fz1FNPnfIanU5n7cgK0N5u/tDW/mEugUHOtyebeoyY2s07Dd7YRMGCSuNDeHIEeT+av0AOfn2QmRfNctl8HTaiWyD+LpvHU4TEhRIQHmBN16o5Vk3c+Phhj9eb20Xn5+biwf7LglGnuE4QdTX+of6kzEpj9wc7Adj/xT5mXTLH6fPY13STVmqCjOcJjAxkxR1nkfvpHioOlLPuH19wzb9ucHicdpvPsiBBeguDwdAGaPENNN8Y1xXU0tHY7pG/l74e8/e2VOu5WZi4Ioej64+g8FFSsDlPWqJbSb31uyc2e/jfN0MhOqt/o6w2v9alc7mLprJGAHSdOoKjQ057boit6FbTClNdFpbkqLUR3WLd0LnUgkKhICQulKayRq8T3WzrZUqhe6k3pJdaNk79Qv0luRETadPBtKGkgZQZg5doKtpRSENpI9VHqwiOCWHWxbNZfutKtr+zlcPfHkShVKD0UbLplY0cW3+EM29fNeAGSn1RHXUF5s/dVWGLCY0M40LlCuf9zzkJS023bnrR/GGOW1LRZWQcxdjePiTRbdgtRNVqNYGBgcTGxg5ZcAO44447eOaZZwY/0Qk888wzTJgwgYSEBNRqNWeddRbPPffcgI0gLDz22GMEBwdbfxITXXtDbKjX47coEL+FgWineLd4NPvSOaTPzSAkLpQd72116VydYn/hUam1uXYW086fCUBMVgxH148sZbfj61Z8ks03SUGXhI84Nk8z/5pFhCeba7vt+XDkhewHwtbpJsVdUhnPs+DaRTSVN5I4OZHy3LJhpcm1if3irjc63QDS52VaHxdtP7nmqzuwOEGkmlpqYeKKHJKmpaBUKdn7yW5Ph2NHQ3E9rdUtVB6sICzBtWl/UalRKFRmEUQ0jY7u0M3lTdbH4Umn/54NsnErebIBiSeoze+vxepOpxtgTWftaeuht8N7Utba66TVSEHj5wXdS4+nbUs1U8G2Nl/VkcohXbP+he/Y8OJ39PX0MW7xeC7602WExIZy1l3ncM0zNxCRHEFjaQN1BbUc+eEQh745OKDAbNtI4U71T7hDdf3I/4dcgN/x9FIRUe5gKuP1OCy6GQwGfv/73xMcHExKSgopKSkEBwfzu9/9Dr1+8A5UO3fu5LXXXiMtLY1zzz2Xiy66yO7HmTzzzDNs376dTz/9lD179vDEE09w66238t13353ymvvvv5+2tjbrT0VFhVNjOhFDrZ7uTR10b+4AL7/vTJmZRlttG63VLRRsynPpTqLF6eaPL0rBO+vgDcaUNdMIiQulNr+WrW9uGnb9H9Eg0vJCLfoyHZocP4Iuck8NFVeSOisNH40PxTsKObr+sEtqAlnazSuUCvxCR6ewKzMy/IL9OOvuNVQcqKCuoJZ9nzleJ6j9eD038E6nG0DmgnGkzU4nKj2akt3Fbp37/fvf4fdT7qO3w3xD7qORtmM8LCEcg06PvqeP8twyu8WPp6m3Sy91bU03lcaHkNhQWqtbyDueYuXtNJabnW4B4QGDltewc7rVSuc94GpEUUQUIW1OBhPPzEEb6N46UqHxodbHzV7kdrO8RwIiAlH6eP6eNzI1kqnnTmfOlfOJSo/2dDgnoevqpa/HXOdTqo2wUqankDY7HYVKQfGOwTerWqqa6WnvJiwpnMCIQC54+GI751d0RgzXPPsTLvv71cSOj0MQFHz88Ad8+ffPTxrL0khBUAgERkr3vsPidAO5mYKM9+Ow3/b222/nww8/5PHHH2fevHkAbNu2jYcffpimpiZeeOGF014fEhLidHFtIHp6enjggQf46KOPOOeccwCYPHkyubm5/OMf/+DMM88c8DqNRoNGc/JOue7tY3Tv70A0iqAUUB7P6bU9Bk567sRjRXIQypwIlNPNdl9LPTfwzs6ltgiCwOzL53Lk+8MYdHr2fryb5beudMlclm5/ozG11EJwVDCRqZG0VrfQWNJA5cEKEicnOTxO149tGFsMAKjTtahCvft9BuY0kblXL2D725vxDfJnx7vbOP8h536uBEYEkj43A02AFoVi2KZgmVHO/KsXsvfj3XQ2dfDtP79iyU1L8QsZ+ufSaHC6JU9LoXinuU6ZNtC9qetVhytprzcvSEPiQ8lckOXW+YfDpBU5tFQ2E50VS/7mY8y62Pnp8cOhocQsuvmHBTj0Hh4uwTEhNFc00dXShb5Xj4/We7+b9L1660I2PHnwmqlWp5uAVzmuRkpbbRulx4X58WdMcPv8YQn9DsTt727lzF+ulIRz7HSYTCbrZ5wUUksBUmelkzor3dNhnBL77vPSFJUCI4Pp7ezFZDBRtreUlqrm0zYW2frmZgq3mUvOnPfQRShVJ4uvgiAw6cwcEiYl8vcVfyF9biYH1+VStm8xydNSrOdZNnsCI4MGHEcqWGq6AfS9fYyePDA1dA+4vnb0GAZfs8tjymMO5bgvamhrRIdFt7fffpt3333XroHB5MmTSUxM5MorrxxUdHvllVccnXJY6PV69Hr9SYtlpVKJaRipDL23b0Bt09nFcMLrJx6f7hwh3p+gkhvNz9WPHtENYMaFs/jyb58BYNAZWPbLFS7Jwe/EnF4aIIxe0Q1g1qVzMBlN1BfWse/TPcMS3VrfbAAfAd8Z/oRc6/lW885i9qVz+PwvH2PQ1VJzrIplvzjTaTuaJpOJvB+PYTKaJFVzSUZ6qP3UpM5MY8P/fQ+YawzOu3rhkK+3d7p5p+jmH+pPTFYstfk1VB6qoK+7z2211SxCh4/Whz/seBSFUvoC+cRVk/n2ma8p3V1MQHiAJEQ3XbfO+ruMTHNtEwULtgXh2+vbCE/y3gY/zZU2qaVDEN38QwPQBGjo6+rzuvpiI6E2zya1dFzcac50DZNWTqZsXynHNhxh479/IHNeFjmrpN31vru5C6PeXPs5SCKim9Sxb4QlTacbwNRzp6P0UaHSqDj4zQEW/2TpgOcZ+gyU7i4mcXIS1UermHnh6Wtmh8SEsPruc3j//ncJTQhl48s/cO2zP0EQBIwGo/X3Y9vQRYr42qy7/W7aTd/x5ftga3BHj+Ux5TFHctwzxO66Dt+dajQaUlJSTno+NTUVtdq9BYw7OzvJzc0lNzcXgJKSEnJzcykvLycoKIglS5Zw7733smHDBkpKSnj11Vd5/fXXufDCC90a5+kw1PVZH3tz91ILEcmRpM5KIyY7Dr9QPyoPljt9DlEUremlo9npBjDxzMmU7Cqmo7GDfZ/ucTjF1NhpoOPjZsROE7ojPQSsCHFNoB7APzSAqWumkzIrDVEU+d9979Bc0TT4hUOgq7kTk9H87S7f5MoMxvQLZhI7Po60ORkc/vagQ9e2Yet0k+aO/FBInZmGX6gfCTlJVLjgc38gTEYTrcfrYUWlR3uF4AaQNCWZgHDzv3XexqPWNChP0ljaQMqMVKIzY4jNdo8YYrvgK9ia79W1zZrKGvHxVROREkn8hIRBz/cL9kPXqUMURWtq9FjArnOpG5soWEiamszMi2ZbjxtLG90eg6O01bURNzGBlBmpxE8c/L0lA+1e4HQDmLJ6GhX7yyjZWUTuJ3tOed7BdfvJ35xHxYFypl84a0hi2byrFzJlzXTaatvY8+EuDq7LBcwuQNFkXktIoRPu6bB1usnIeDsO36Hedttt/OlPf7Lr8KnT6fjzn//Mbbfddtprv/zyS37605/ym9/8hqNH7Wt4tLS0sGzZModi2b17N9OmTWPatGkA3HXXXUybNo2HHnoIgHfffZdZs2Zx9dVXM2HCBP7617/y5z//mZ///OcOzeNK7NJLY6TddW2ozLliPrXHqineUcSu93c4ffxedBgx7/qN1iYKFgLCA8hanE38pERzN9Pj1vKh0v5pM6oENX4LAwm5JhKFxjsWpUPlyqeuRUAgISeJqsOVPH/FvyjbVzLicdvr+ndJg6Klu0sqIw2Spiaj79VTvKOQQ98cdKhOlyVVHiDYS2u6AaTPzaS7pZvyfaVDqk/jDDoa2jEZzOJ4SFzoIGdLB4VCwfQLZpI+J4OojBjyN+d5OiTqC+so3VNCXUEtYadJcXImtgu+d379Bmsf/J9b5nUFTeWN6Hv6aCxtwD9scMeqSqOy1uYaS6KbJ5soWIhI6XcifvG3T/jn+f/wSBxDpb2ujerDlZTuKZF0KqCUMPYZyFyQRdK0FElvnMaMiyU6w9zJubOl05pGfCK5X+wjbXYGPr5q5lw2d0hjK32UzLl8LtEZMURnxvDRH9aa0+DrWq3nSCVd+VTY1nQTGV5daxkZqeDwCnzfvn18/vnnJCQkcOaZZ3LmmWeSkJDAZ599xv79+0/ZFOHtt9/mvPPOo7a2lm3btjF9+nTeeust6+t9fX1s3LjRoViWLl16vCir/c+rr74KQExMDK+88gpVVVX09PRw7Ngx7rrrLkm1HLYV3ZSjwOkGMOXsqag0KgIjA2koabDa4p2FxeUGEDjK00sB5l21gKpDFZTnlrHlzU0OXdv+ThN9eb10b+4g6ELv71p6IiofFVc9fR363j4MfQYCI4P4+OG1NJQ2jGhcqXUKk5E2giAw44JZqDQqkqYlc+ibA0O+ts0mvdSbnW7J01Osj4t3FbllzpbqFutjbxLdADLnZ1G0o5CqQxUOuyNdQX1hnfVxVIZ7CqOf7Nbw3kVVk03n0oghpJcKgoA2wLyg7O0cO6JbU1kjMVkxpM5OJzorxiMxhKf0l9nQ9+ipPOTahmkjxXYTRyoCUndrFw9Nv5/7xt3FSzecvqyQJ2irbaVgSz7l+0pR+0rb0DDnqvkEx4ZQl1/Lga9yT3q9+lgVuZ/uoXhnITGZMWTMH3rd0gnLJxEUFURjWQNR6dHkfr6XzsYOUmenk5CTaPe3IEWuUZ7Phz7PcrXiPE+HIiMzYhwW3UJCQrj44otZs2YNiYmJJCYmsmbNGi666CKCg4Ptfmz5+9//zpNPPsnnn3/Opk2beO211/jZz37Gf/7zH6f9z3gjxlFW0w3AL8SfuVcuoLOxkyPfH+Lo+sNOHb9DtBHdvLTwuCNMPDOHwKggUmak0lBUT0dj++AXYU5dNnUZ0UzxwydZg998713Qn46otCh+9uZtjFucTV1BLS1VLfznxn9j0A+UvT802uqld5MrI21mXDgThVJB2d5SdryzdcjXtds0UvDWmm5grgNmcfiU7i4eVu1UR2iqaOLbZ9ZZj0O9THTLWpyNSmMuq1u2t2TY3amdRX2xjejmpm6EJ3626nXD/8z2NE1l/WmKQ61NZ2k6MlYaKYiiSMWBcmrza2mtasE3wDOpY4ERgShsHGOGPoPH//5Oh23atVScST5aNW01rfS099DZ2Dn4BW5Gr+tfW0m9Qcu4hdnWepr7v9h30uvrX/iOlJmpBMcEM+vSOQ4ZRwRBYPVvzkXpo+LYhiN898zXNFc0UbKziMqDFfi7oWHOSJigyOBs5VImK8YB0jHMyMgMB4cbKQy3EUJBQQHnnnuu9fiyyy4jMjKS8847D71eL6k6a+7EUGuu5aIIUY6q1L8Jyyey+dWNKHyUHNt4lEkrJzttbEsTBYBAYXSnl4L5hmHO5fP47pmvAdj+zjZW3L5q0Ova3m+ie4t5QR/xQDyCYvR+YQWEBXDpX6+k8sDjdDS2o/ELZvOrP7L0ZsdS1i3ITjcZR4nOjCUyNYqqw5U0lTfSUFpPZMrpC9K/bviYr42biSeabCGNSUKmm6J1PoIgMPXc6dQcq6a9vo26wlpis1xXG6yxpJ5D68yOwnFLshm/bKLL5nIFGj8Ncy6fT8GWPKoOV1J1qJKEHM81bakvMotugiAQ4Sb3Q0hsCCHxobRWmR2LHY0dg1whXZrKzaKbQqUYsutSG2gWncaK062tptWaSuuJem4WBEEgZUYK5bllGHQGTAYTui6d1XkoNeycbhKpwaXSqJhyzjSKdxbRVNaAKIqSyiLS99qIbhppi27xkxJImZmKUqWko6GDzqZOAsLNG1h1hXXkb86jtbqF4NgQ5l453+HxU2ekkTAxgZaqZvxD/Snd01+CReqNFCzcobqeNp7Fm93QMjJuU3mCgoKoq6uze+6MM87g888/59577+WZZ55xVyiS4rH/vs3b72xk+1PuqYHjLrKXTGD88omotT5se2sz3a1dg180RGy7/Y32RgoW5l21AL9gP9LnZnL42wNDcpHsEQ8hRJl3c4Mv896ucENFrVVzxZPX0NfdR+meEo58f4j2hqG5Ak/EtvNVsFzTTWaIzLt6IfETE+hq7mLvR7sHPb9ALOUIhVRRR6qQQKggjQXVcAlPDKd4RyGNJQ2U7ip26Vy6rv66slkLs72yy3Ds+Dir2HX4O8+lmIqiSHu9+TMvNCHMbelYUWnRPLL7LwREmF3Y9UW1rHvyC3o7vcv5JYoijcedbmEJ4UNu6GEReQw6AwYbZ85oxbaJQqwHRTeAOz6+x65raVeL8+5RnU17bb/oFhwd4rlAbBAEAV2Xjo6GdjoaO6yis1QweJHTTRAE0mZnULS9kJpj1Rw43vAAYN0Tn9Pe0E7anAyW3rwMjf/whOElNy+jpaqFoh2FFO/sL/8g9UYKMjKjCYdFt6amJm699VYmTJhAREQEYWFhdj+nYvbs2Xz11VcnPb9kyRI+++wznn76aUdD8Xq6xG7enraOJ85+k7cv/sbT4TgVpY+SqLRoejt6MegMHPhqv9PG7rRJLw0YAzXdACJSIkmZmUbR9gJKdhVzbP2R056fbyrhvJt/zZyjt/DFun1ox49+RyBA8tQUFly3iKj0aPI2HuXbp0/+zBkqsdlxhMaHERgli24yQ2PiihyqDlciiiJ7Pto1qDheLdZbH9+qusbV4bmclJlp1sclu10ruk1aNZm/FTzFH3P/yoLrFrt0LlcxcfkkAAKjgmgoqR/kbNfR0dBOa3ULfqHmjR13Exhp/ozVder46u+fWwUsb6GruZOAsAASpySTuWDo9ZY0gf0L6N5O3WnOHB201bZaBcmYce7pkHs6/EL77x+7mqSXImnBUvheEARJdeJMm5VufVy8wz11PIeKbaq6SuKiG8CUc8wNAdV+ar55+itaqpqpPlpFS3ULgRGB1BfWsuC6RcMef9LKyQRGBZE4OdHOBCGVdGUZmbGAw+ml1157LYWFhdx0001ER0cP2U7861//mq1bB65zs3TpUj777DNef/11R8PxaurE/sK7McLocyLNunQOlYcqaK1uYfs7W4dlix4Iu0YKY8TpBjD/moXU5FURlhDBrve3M+H4gm0gtpj2IiCgVxnQLBo7vyOA5b9cyd5P95A+N4PNr//I9AtnkWojBgyFigMV1Bwzd1kLltNLZYZIWEIYU8+dTldzJzXHOzhnzDu1iFFDv9ASK0i7oPFQSJychNJHiW+wH10t3YNfMAIUCgXaAK1kU8KGQlhiONlLxnNs41F2f7CTCx662Or6cieWJgrdLd34Brn/9+kXYr8p1FHXDl6ULdxU0URTeSNN5Y0kTk4a8nVaO9Gtx5pSNlqpL65DqVah1fpIIq3N31Z0k7DTzZJeGhARKKnupamz04nJisE/LJC6glpPh2OHvrfP+ljqTjeA5GkpXPnUdXz66IeExofy+q2v4B/qT8nOIgSlwKWPXTlslxuASq1i4fWL+ervn/c/p1HZCc8yMjKuxWHRbdOmTWzevJkpU6YMfrINS5YsYcmSJad8/YwzzuCMM85wNByvpo7+3dzoUSi6JUxKpLuli6ayRprKGqkvriMqbWQFmg+a8nhY/wzhhJBGIpcoz3JStNJn/JkT4XdQtL0AQSFw7u+aCUsY2F3q/6COOwvP4cjKKs65dAmc2oQ66giICOTMW1fywQPvkTozjdzP9josulnatvuF+KGSeD0QGWkxaeVk3rz9VQB2/m/76UU30dxl1xetV3cutaD2VZO1cBxH1x/h0Nf77WrTyAxMfE4ixzYeRRRFjq4/wqxL57g9hvrifvHXXU0UbFEo7YWE4l2FBEYFeU3KsH0ThaF3CdfaNBKw1DoDyN98DIVSSXhKBCExIZKqlTUSdJ296Hv60Pf04R/iefe9pfELwI73thISG0JstucdeCcSnhRBSGwIQZHS2gBMnp5CfVE9pvxaupo7OffBCzwdkhV9b7/TTeo13cDsYsyYm0H67AxK95ag7+2jp62H2PFxqNQ+zLpk5N8Lc6+Yz4b/+wFdVy8mg4mgqOBR89kiI+MNOCy6ZWdn09PjXfU2nEHgwWvw71aBKIIAgr8asUtvdwyc9NyJx0KAD0KQ+dw6sf9GLUoY+o2atyAIArMvn8v+L3Ix9hnYvXYXZ9+7ZkRjttBOMeb27pOETOKE0xcqH02oVCrmXrWA/V/sQ+2rZvvbmzn7NwO30W4qa6R7axspWwOIu2Ls/I4szL92EVte30TJ7mJK95Sw5OZlpxQoT0QURWsjBbmJgoyjTD9/JrvX7qS1poUd725l+S9XEJ0Zc9J5+l491cedbnFC1Ki5+Y3OiuXo8fT30j3FTm2iMxqZuHwSu97fQURKJGW5pZ4R3Yrc37nUFrWffQ25b55ex4Z//8Clf72CrMXZhMRIuzNtU3l/1kJ48tA3UBdcu4iJK3LQ+muISImkrbaV1tpWPv7jh/R19uIXFsDE5ZNY9euzXRG22+nr7ncfqf00HozEjK3Tbd8ne9D6a7niCWml+ZuMJop3mGs+pzi4eehqNH4aEnISKc8toza/hq6WLrvfqSexc7p5gegG5jIyl/7tSt759Ru01rSg66qh5mg1lzx2hVPqbIbEhZK5MIsDX+QCZvebNxFYfANihx6xq2/A9bWjxzD4ml0eUx5zSMdiD4z/7aDvYYf/4p5//nnuu+8+HnroISZNmoSPj/2HWVDQ6Kx/pIgLQOXk/7d6m/TSaEaf0w1gxgWz+PRPHyGaRDqbOjnr7rNRKIbfv6Nb7Bd8FytnOyNEr2LuVfP5+qkvMRlMNJU3seKO1QPeUPT19N9waCRwc+tulCol086dQc2xaiLSIjn09X4W33R6J21LVTNv3PYKBp3B2vkqSG6iIOMgSh8l45aM55NH1hIYFcSutTtZc5+9OF55qIInr/k7bdvN3RpjTKPn8z91Zhob/v09AMU7i1wmuh365gAVB8rR+GuYefFsrxXIU2amYdDpKd5RSM3RKi58+BKUPu5NIfO06PaTf/+Umvxqnlj1V+tzfT19vHXH66y5/3xW/ErajnZbp1tE0tD/lhNyEu061m55/Uc+/dNHIJjFu87GDvK35NFS1cIV/7jaqTF7AnvRzT3NOk5HQJi9C9cvTBqCkS16iTcESJ2VTnluGSqNirK9Jacte+JODDY13aT4ezsVQZFBXPfCjbx795tc/c/raSiuJ2eV875D5145n+LthcRmxzFuyQSnjesOFHGya15Gmijah3bP5rDoFhISQnt7O8uWLbN73tIu2mg0OjrkmKVWtE0vHX1ONzC3o84+YwLtdW34aNUUbMlj3KLxwx6vk/46Qf74nubM0UlITChT10ynpbKZno4eDq7bz/TzZ550nkV0U6gUbl/ASYWZl81h94c7qC+qZ9MrG1h049LTuok6Gjso2m7fRdhbF/IynmX+1Qs4+sNhCrfls/7Fb1l801KCIvsF3J3/20aztr9Dbkh7AKPl4yxtTgZZi7Lp69ZRtL3AZfMc/u4QW9/YBEDWomyv/VtVqpRkL53A3o9309PeQ8muIjLmD70YvzMw6g2kzk7HR+NDcGyIW+cG86I4LO4UpRLCpL/QaipvsD4Oc0B0O5G8jcfMD0SYuGwSO/63jaayRir2l3P536/yejfsijvOYuYls+nr7pPEv2tQbAjaQK01tddWqJEK+h5pi26ZC7I4tvEIDcX1FG0vlIzotuqus5l75Xz0Oj3aQO/6cvUN9OUn/3czgNNT7Ccsm8SjBx/3+s8SGRlvxGHR7eqrr8bHx4e3337boUYKMidTj43TbRTWdLMw94r5vHLzSwDseHf7yEQ30VZ083xNEE8w7+oFPHfpPwHY/NqPA4tux3eUnWFJ91bCE8IJig6hvqierpZuyveVkjw99ZTnC5z8WRYkd3aSGQbaQF8SchIp3F5A0pRkdryzhRW/Wg1AXWEtP768gbjQCH577gVc+O5VBEZ6fgHqLIIig+hp76FifxkADSX1RKY6P8Vd19Xf7VHj791u3pxVk2mtbaWvS8fR9UfcKroZ+gzkb8rDZDQRPylhRE70keAfHgACINo/bzRIfyNXoVSQNicdH636pKYQQ6Wvp4/ejh6UPkoCI4O46NHLaCxr5Mj3h9B19tJW00pInLTTbAcjYVKipOr0xY+P51cf383jy/8MQF+X9DrI2qZJqrXSu59LnpZCXb65iULxzsJBznYfKae51xvLyGt2GRnP4bDodujQIfbt28e4ceNcEY9k6bz4c8TDXWASQSEghGoRW3rtjoGTnjvxWJEciM/KZDR3TqNRbLGOP5pFt0krcvAN9iUoMoj2ujZ62nvwDRrezlM3/emlAcLYFN0yF4wjeXoqKrWSxtIGavNqiBkXa3fOlHOm0VrTMmZdbhbmX7MQXWcvlYcq2PHettOKboY+/UnP2bqTZGQcYfFNZ7D7gx0U7yyi+mgVMy6aTVhCOFvf3EzilGTKc0s59xcrmBruXSkeQ2HaudOpOFBG/MQEjq0/4hLRrW8UiW5Zi8bz+i9fQRRFDDqDWwuSN5U1YjKaAM+klloQBIGfvHQLez/ayf7jNYcAa6q/VDEajFbRMmFSokOL2u7WLmryauhp7aK1rp2yfaWoNCqmnTcDQRCIGRfLke8PAVCTV+P1opsUse1+rOuWnuhmWypEik63oKhgIlIiaSxtoHx/GQadXm4+JeMSui76HOPhJsSOvgHX144ew+BrdnlMecyhHHfGuSi9dObMmVRUVIw50c24oRKEfqFIbOy1e/3E41OdYyxoxXS0Gc2d02gTOwgmEC0awsQgBjDajApUGh/mXbOQH577lrrCOvZ9uof51ywc1lhjPb0UzIuT6RfM5KOH3gdgy+sbufjPV9ids+b+8z0RmuSYuCKHd+9+E9EkcmDdfi54+JJTuv9sb24tyE43meESGhfKuMXjqS+up66ghvfve5fFNy3lx/+sx2QwkZCTyILrFnk6TJcwZc10vnvuG6oOVbL9na0sunGp0+fQdfd/v3q76BYQHkDyjFRKdxfTWN5I1aEK4t3kCKovtqnnNsLu4iNl6jnTGLcom0krJvPWna8DoB/gc1lKtFa3WEXLMAc6lwLUHKvmmYueQhRFkqYmA+YUx8TJSQDEZPVvptXm1zD+jNEn0Hsa25q3Okk63aSdXgowbul4Ag4FoFAqqDhYTurMdE+HJDMKMXxZahY6GHwN7uixPKY85kiOjflDazDqcB7B7bffzh133MGrr77Knj17OHDggN2PzNBppYM2OmiiFa1CO/gFXsz0c2cAEBofSsnOomGPI6eXmpl92Vxis+NIm5NB7he56LpO/iCRMe9iz7tmAamz0+nr0nH424OnPPdE0S00IZTgmBAXRygzmrniiWvwC/EjfmIijaUNvHzjvwmNDyM2O46JZ+bgGzQ6P8MikiMIP17bqvJQBQ0l9U6fw3aB7DMK0uiX3LSUzAXjMOoMbPzPerfN6+kmCifiG+RLSHy/o0vqTrdG2yYKDnQuBQiICEQUzYvI9oYOq3ictci8qR0zLpa0OenETUywqxvnreRvPkbB1nyqDld6OhQran9ZdBspCRMSKN1dQvGOIopHcH/vTIp2FFK0o1BS7zUZGZmxjcNOt8svvxyAG2+80fqcIAhyI4VhYHFtBYwB8ShhchKTVk3m0NcH2Pn+ds68fRXRmTEOjyOnl5rxC/YjaVoKO97ZCkDu53uZc/l8D0clTSaumMzGl8yL2B3vbWPaeTMGPO/ExV1LZQuBkYEuj09m9KJSq7j8H1fx9h1v0N3WjYA5nc/HV82im5Z6OjyXMvuyOfhofWgorif3832suH2VU8e3LJDVfhqP1SFzJtlLJ/C/+94hMiOa6iNV1ObX2DmdXIXJJJI8I5X2ujaHnVquwsemdtVADmQp0VzeL7qFOyi62W7qtFY1IygEJq2aTGCEuaxBdEYMxTvMIsZoqM/6yi0v093SRURKJL/f9kdPhwOYhSxBISCaREmKbmGJ4Vzyl8vR9+rtOt1KibTZGdbHxTuLWP5LDwZznFdufomOhnbCEsL4w64/ezocGRkZGcedbiUlJSf9FBcXW/8rM3S6RbOANBbSJAVBIGOeuTi0b7Af6576Yljj2KaXjgWx8nQsuGYhcePjSZmRSu5n+zwdjmTJXJBFysxUMuZlUnGgnCabRZItE5ZNJGtxtt1zwXJ6qcwICY0N4+bXfsHsS+cQEhfK5Y9fxZr7zycwfHQLuhPPzKF4RyEdDe3kfrbH6eNbarp5e2qpBb8Qf1bfey71BbVUHChn0ysb3TJv5YFyyvaU0FLZTIhEnL22jh5vcrqFJzomumkDtHbvX9Ek2rkNtQFaQuPNXV3r8musrjhvpe94zTQpOVMFQbDWddN1Si9jIDg6mEU/WcqyX6wga2H2oOd7gqjMaGsDkcbSBkwmk4cj6m9A4SPB5hMyMjJjE4edbsnJya6IY0xiEZD8x4hja9bFs2kqa2TrW5upL6xj1/vbmXXpXIfG6BL7nW5+Y0CsPB1J01Lo6+2j+mgVCqWCrpYu/EP96Wzs4OFZD6L2VTNx5WSufvo6T4fqURQKBROX5/DF3z4FYNtbWwaseacN9LUucMC88NMEjO60bxn3oPZVc97vL+LM21bhHzZ6OpWejvCkCBJyEunr7kPjr6WhtJ7IFOc1VNCNMtENYO6V89n/+V66W7vZ/OpG5lw+z1rry1VYOl2DdH6Xtq4u2+6NUqSzsYPU2ekoFAIRqZEOXx8UHUxDcX/69bjF9t3dY7JiaKlqpqe9h7baNkJiQ04a48DX+6k8WI5CUDD9gpmSSBM+EZPRhEFnAEDjJy0hRO2vwag3SjZ9U+ooFArmXb2Qnf/bRm1eDaW7S0ib7dm6bvrj7zWV1uFlroyMjIxLGFZOxhtvvMGCBQuIi4ujrKwMgKeffppPPvnEqcGNZkRRtEkvHRviUUBEIAmTE0mZkWousP3eNqqOOFZvocvW6TZGxMpTIQgCOaumAObfbf7mY4A5HUffq6erpUvyRajdxfxrF5EyM424CfFsemUDvR0DF7207arrF+Ivt1eXcRqCIIwZwc3CjItmU19UR9H2AvZ/7lw3rqXToFSEImeg8dMw9dwZ1ByrJnl6Khv+73uXz2mbUqf2k8bv0lb8sAg1UuXohiOU7Cyi8lCltY6hIwRF9XfIjs6MIXVWmt3r0TYpxjV51QOOse7vn/P1E1/y1T8+58OH3mfPx7scjsPV2KYJqyUmuj28+8/8vfif/Oa7Bz0ditcSkxVLR0MHAPu/8Gzmhclkwthn/tzwkTupysjISASHRbcXXniBu+66i7PPPpvW1lZrDbeQkBCefvppZ8c3aulDjxHz724sNQSYe8V8YrPMN5aFW/JZ98QX9LQPresHyOmlJzLl7KlEpkXRXtfGvk/MKVxSvrn1FAHhAcSOi6P6SBUmk8jeT3YPeF5YYn9No4CIsSWQyMg4m8mrp1gfH1y332lpR13Gbnym+xExJZroLMdrg0qZ+dcsJHNBFmV7S9j32R4qDpS7dL5bXv8Fj+x9jAc2/QGVRhqukODYEP6W/yRPlj/LDf/+qafDOSUtVc201bQCkDwtGYXS8X1sWze1X7CfXTdNgMTJScRPSiQgPIC6ghq6mjtPGsP2HuroD4d561evORyHq7GkloJ0xF0LUq4J2dXSRUNJPa01rZJOtZ60MoeItCjS52VSvr/Uo6nQht5+oV52L8rIyEgFh79pnnnmGV566SUefPBBlEql9fmZM2dy8OCpOwPK2GMrHvkLY8PpZuGChy9FoVSSODmJQ98c4JunvxzyF7SlDp6AgBZp3bh5guTpqXS3mt9LR9cfQd+rt0sXGg3Fl53F0puXkT43EwH47pmvMRntBYCSXUV2v7vIVOelwsnIjEUikiNZfusKotKjKd1Twu61O50y7k4O8vTbX/Dnjz9g3z9rnTKmVFCpVcy8eDaJU5IIiQ3l6ye/dOl82kBfQmJDiM6IkYyzV6FQoA30RemjHPxkD1K6t9T6OGVG2qlPPA22AlTC5KSTXo9IjqDqUAWdTZ188sePeGDSvXYdZ00mE+31bXbXSLH2m919ibwZOGR2fbCDR+f/gT9Mv5/9X0q3dq9fiD+RyREUbSugeEcR5fvLPBaLXtcvTqpkp5uMjIxEGFYjhWnTpp30vEajoauryylBjQXGsmPLR+vDlU9fi65bR2RKFD+8+J3VpTUYth1fpbJA8CQKpYKclZOJmxBPQk4iBVvz7JxuUipY7GlixsXio/VB16VDE6DlyPeH7F7f+8luPv/Lx9bjoCi5iYKMzEjJWjSe9vo20udm8NmfP3bI2XwqNph2WB/PVUwd8XhSY9alc2mva6O5oomCrXk0VzZ5OiSZASjZVURQVBApM1JJm5Mx+AUDcNVT1/Jk+bP8fvsfWfXr1Se9btvB1mQwgoj1fqn6WBW/m/zbk1JwTQaT5IQ3nY3TTeMrb5gOFVt3m9SbAkw5x7w29AvxI3/TMY/FYdDZ/s5k0U1GRkYaOCy6paamkpube9Lz69atY/z48SdfMFoI1oBF4xEAleLk44GeO/E4RINyahRdoq3TbWyJbgARSRGcc9956Lp1xGbF8d5v3jplV0lbOsV+0U3GzMSVOVQfqaJ4RyEHv9pvV8dNdrrZc8YvziQyLYrqI1V8/9w3dq/pe/pv1JbftpLJZ091c3QyMqOP7CXjmbRyMkXbCwmNCz3p7244qExKYjDXz1qimD3i8aSGUqVkyU+XkTYnA5NJZMvrmzwdkswAlO0rpb2+ndI9JSQN4FIbCho/DUofJRHJkQRGBJ30ujbQF/8wf+txSFwIHY3m2lktVS10NZ2cbgrS6/oqZafb7rU7ee83b/P6ra+c5Br0NLaNRKR+Pzdp1RQSchLpae9h+9tbPSb82gmVstNt1CBE+IJSOPX62tFjZ4whjymPqVKYNaIhMOQCHn/84x+55557uOuuu7j11lvp7e1FFEV27tzJO++8w2OPPcbLL7881OG8juDinxAUdPIN0XDpMvWn4vqPkUYKJzL1nOkc++EIh78/RFhiOG/d8Rq3fnCnXdryiXRjdkn4jbGU3NMxbsl4fLQ+6Hv1HNt4lMxF46yvSe3m1tOMW5SNQqnAL8wfhUpJxYEyEiebuwPaOgTnXbVATi+VkXESZ//mXBpLGyjdU0JrbSvTL5xFXHbcsMczzK/ikpbJqJYEEPuK4x0jvYGZl8zh879+gslg4uj6I5x119kucbp88/RX+Gh9CEsMtzpVpMD3z31DV0sXGj8Nq+4629PhnIRBp7fW24tMi3JpkxT/sAC6ms2ZJK3VrWx/ZwsX/elS2qpbrOf4+PrYbRz1dekkJdJIuaZb4dZ8tr29BYAzb1spKZe7vdNN2gJSYEQgvsF+iCaRxtIGqg5XkjAp0e1x2KaX+vhK+3cmM3SCKm/ydAgyMgMitLdD8J2Dnjdkp9sjjzxCZ2cnP/3pT/nb3/7G7373O7q7u7nqqqt44YUX+Oc//8kVV1wxkpjHFJ22Trcx7No6/w8X4RfiR3t9O7ouHRv+fepubQdNeUQKYcQTTQyjc6E1HDR+GmZfPo+kqcl0NLRTm99f40hKN91SQBAElv9yBbqOXgq35rPplY3W12xvbuXfm4yMnVDJmAAAZFhJREFU8whPimDCmZNIn5dJd0sXH/3h/RGN19Xcib5HT0jp6N18CY4OZuH1i0nISaTqUAX7v8x1+hyGPgNf/O1TPn5krVs6pTrChpd+4PvnvmHrW5s9HcqAVB2pJDYrFrW/hpQZqS6d66f//TkP/PgHMuZlAubvqsbSBlpsRLeL/3QZE8/MsR7rJNS5vDa/hkPf9m80S20zMGl6ClmLxhGTFWtXL08K2IluXiAgTTtvBknTUkiZmcqhr/d7JAZdZ7/AKzvdZGRkpMKQRTdbm/DVV19NQUEBnZ2d1NbWUllZyU03yQq0I3TZ1nQbg+mlFnyD/Ljs8aswGYw0VzVz5PtD1ObXWF+3TUm4RP8r8sQSeujle430unN5ksScRMpzy9D36u1udOSabicz9dzpqDQqYrJiaCxtpKvF7CCQa+HJyLiOM352Ji2VTYQnhaPr1JH349FhjdPX3WddiLrSXSQFppwzncqDFQAc/tb5japs3Ucaf2m5jyyuHr2ExCNbSnYVU3mogr4uHenDrOc2VKIzY4jOjCFzYb+Lfe3v3mP7O1utx8nTUwmIDLQe67p6XRrTUDEZTTy25I/8+PJ6AGLHxzHr4jkejsoe30Bf8jflUZtfQ+G2Ak+HY4dteqnUnW4AOasmU5FbRunuEvYOsVazs7G897VBWoJiQjwSg4yMjMyJOFTT7cTC9X5+fkRFySlYw6GL/mLSY70+WfrsDBb/dBmiwUTxrmK+f/5bTCYTRTsKeTDnXp6/4l9888w6asR6AGIF+T13IhNXTkYQBPyC/WiubLY+Lzu2Tkbjr2XRjWdQm19L0fYCdry3DbBf3Km94OZWRsabUPuqWX3PudTm11K2t8TOZeoInc39NawCRrnolj43g2nnzSA0IYy9H++m8lCFU8YVRRFRFE+osyUt0c3y3SW12mQWSveUWB8nTkl2y5xx4+Otjwu25NNe119/LCQ2BI3Nv6Htv60nsf179Qv1Q6FQEBwb4rmABmD8GRNQqs3Vdgq35UuqCYVtyrBa4o0UwNyAKnWWuZOvoBCoPlrl9hgsNQ9723vlezkZGRnJMOSabgBZWVmDdoxsbm4+7eveSlvaK4gdChAxF85TKsBosj+Gk5878TjAB9WCODrf79+F9BujNd1sWf7LFZTuLqK+qJ6d720jfV4GBZvy6OvuI2/jUUpqSum72XzzESvIqaUnEhQZxAOb/sA3//yK4p1F+Gh8OO/BC0me7tq0F29l9qVzWP/ityRNSeboD4dZessy+o4v7gSFYL0Bl5GRcR4zL57N9ne2YjKaOPL9ISoOlJPoYAH6LptFvG2B+dGIIAhkzM9k36d7UPuq2fjSD1z9z+tHNGZbbSuHvjvI+795B0HVfz8ntZQ/i6unr6cPURQl163cIrqp/TTEjqA+oSNkzMvkiieu4YMH3rXrWKpQKfAN9rP7N7R1MXqSzuMCCEDOqilc9tcrUSgd2u93OdpAX+ZeMZ/iXYXUHquh8mCFw59LrsKbarpZmHf1QhrLGqnNq2HPh7uIezB+8IuciO17LjDSebW4ZTxLe8J/EJt6wCQOvL529BhGPoY8pjymUkG7n30H8VPh0MrykUceIThYOgVG3UqbDizF+0XAYOp/7cTj053TqsOYW0+Xza9+LKeXWlD7qll+60reuuM1EiYl8sF979rdbLSFdlkfx8lOtwGJSo9m3lULiMuOw2gUmXWptFI4pER0Rgzjz5jIoa8PAHBs/RGr003tq5bcAk9GZjSgUCqYfsFM3r/vHVQaFbvX7hih6Da6nW4Asy6ZQ+meEg58tZ99n+5h1iVzyFqUPezx3r7zdY5tNKf2ivp+R4/00kv7BSSDziApwaG3s4eEyYmExIXgG+SLUnXq5k/OxC/En5QZqXaCmzbIl8x5mQiCYP03VCgV6HVDWwS4mg5bASQiCJVEa2wlTEpgy+s/AnBw3X4JiW7elV4KMH7ZBN65+w0A8jcfw2Q0uVVo7Wjof88FRASe5kwZb0JsPC64wenX4I4eO2MMecyxPWbb0Da5HBLdrrjiCjmd1EnI6aUnk7Uwm+ylE9nz8S5EUUQb7Iu+pw9jn5FG3/40iljk9+CpSJ+bSfrcTE+H4RXMuXweZftKiUqLZts7W6y13bzlxlZGxhuZfdlcDn97gJLdJWx8eT2LfrKUiJShu5c7x5jopvHXkjYrneqjVXQ1dfLOPW9y3w+/Q+OvHdZ4dYUDF4qXWnqp7eewvrdPUp/L3S3dHPzKXDt12nkz3Dp3ZGoUgkJAPL74XHDtIs773YUALPv5mSz7+Zko1SrJbBzZuo6kLIBMXDkZ4b53iBkXS11h7eAXuAlvbPAUGBHEvGsWUry9kPLcMgq25DFu8Xi3zd/RZCv0Svc9JyMjM7YY8taDVL7ARwOdYjcfGr8hlCBiiSRcCPV0SJLhvN9dQFh8GAadgd62HmuNkq7IfhVZdrrJOIOJK3Lw0fpQtL2AA1/kouvqxTfIV05HkJFxIWpfNakz0+lp6yZxSjLb3t7i0PVdY6imm4W5Vy/AL9gPpY8Sta+aLx//fNhjGfQDO6Ck53TrF9lshVYpYNAbCYoKQuOvQRswPPFzuKjUKgLC+4WEkLj++0eVxgeVxkcy9+tf/uMzvn/+G+uxlAWQ4OhgMhdkUXO0mtzP9tJQUu/pkACz6BYaH0pCTpJXlb3IWjCOmmPVAOz6YIdb5/YWoVdGRmZsMazupVLhxx9/5NxzzyUuLg5BEPj4449POufo0aOcd955BAcH4+/vz6xZsygvL3d/sDaIiIQQyCQhixuVlzBbMdmj8UgJ/9AALnzkUu768rfc+ek9pMw0F2Ttju632Muim4wzUKqUzLtqAWmz0gmICCQ8KZycs6Zw3/rfezo0GZlRzfzrFxGbHUf5vlI2vvQDHY3tQ762q7m/1MBYcLoBKBQKLv/HNXS1dNNe10bZ3hJK95YMfuEA6DoH7mopNafbjItmWx2QxTuLPByNPVFpUfxp/994vPBprnjiGrfPbyte+QZJsyawKIr8+NJ6qg5VWp8LjJS2AGLrxjq4bv9pznQfrbWttFS10NHQJhkxdShMPDOH1FnppMxM48j3h93aTdciugmCMGY2ZmRkZKTPkEU3k8kkudTSrq4upkyZwnPPPTfg60VFRSxcuJDs7Gw2bNjAgQMH+P3vf49W696dyRMREAgSAqw/MvaMP2MCydNSSJ2VTmRqFHVT2+mK0hGviyKaCBKFWE+HKDNKOPP2Vdzx6T1MXTON8WdMYtr57k0VkpEZiwSEBpC1OJuI1EiSpqWwe+3OIV9rl14aOrobKdgSmRLJmvvPQxSh/EAZHzzwHs1VjjWuMvQZrF0tI1IiUdu42xRKaS3oQ+NDaSxtALDW3pQxc8sbv+TRQ4/zx9y/MuXsaZ4OZ0Dq8mvpae+xe07qrqOcs6aQNjudxMlJHP7ukKfDQRRFq4Bk6270Bny0PsRmx1G6u5iu5k72f7HPbXN3NJg3cfzD/CXXtENGRmbs4j1e5QFYvXo1q1evPuXrDz74IGeffTaPP/649bn09HR3hHZaAgQ/1qqf9XQYXkFAWAB5l9Zx9CpzjY1rFeczVeG+2hAyoxuFwnxDduljV3o4EhmZscXC6xaz8f9+oLGkgfa6NpbesnxITg5dl464iQn4BmoJjBpbqeDzr11E+f5yKg6UIYoiL171DD9/8zbCEsOHdH13a79LMGZcLBEpkeT9eBS1n9qucYEUSJ6WwpRzplJfVM/BdftpLG1wqPbfaCY0PmzA55srmtjy+ib6enSkz81k6prpbo6sn6IdhUSkRtJY0mB9TsrppWBusNTV0kVdQS2CINDR2E5ghOc+Y3raezDqjYD3iW5g7hJ/bMNhQhPCOfj1AWZfNs/lc4qiaG3eIXWRV0ZGZmwxarcATCYTX3zxBVlZWaxatYqoqCjmzJkzYAqqLTqdjvb2drsfGc8REB5AQ85xZ4MImUKKR+ORkZGRkRk5UenRZC7IIiIlkqDIIEp2Fw/putq8aqoPV1K8s4igMSa6KVVKzvnteYTFh1GbV41voC9v3PYKjWUNg18M1mYxYO6Eef0LN/JE2TM8XvA0C65d5Kqwh4UgCCRPS7XWhdr5/nYPRyR9Oho7+O7Zr/nxPxso3Fbg0ViqjlRaBbez7jmHX7xzu1cIRzlnTQEgPCWCg+s867DsbLKpXxnufVkxyTNSUaiUFG0r4OBX+2lx0Jk7HDoa2/EPCyBlZirZS+UNehkZGekwakW3+vp6Ojs7+etf/8pZZ53FN998w4UXXshFF13Exo0bT3ndY489RnBwsPUnMTHRjVHLnIgqQk1ztnmhkNgazW98bvZwRDIyMjIyzmDe1QtpLG2gaEchO97dOqRrWqpaAAiOCUGpUroyPEkSEhvC5X+/mgnLJtFe30ZdYR1fP/XlkOridduIbv6h/viF+Ev6dzjz4tkkT08haWoyu9fuxGQyeTokAI58f4jXfvEf3r3nLcr2lXo6HCsam7p8fd2605zpeuoK+juALv7JUrKXTvCKVL+ZF88mKj2axpIGtr6xyaOxeHtDAIVCwexL5qIJ0JAyM429n+5x+ZzVR6pprW6hdHcJiNJKmZeRkRnbSP8bcJhYbs7OP/98fv3rXzN16lTuu+8+1qxZw4svvnjK6+6//37a2tqsPxUVFe4KWWYA/BL8WfTtJDIL45nTmePpcGRkZGRknETOqiloArQERQfTUtWCbhChQNets3YvDUsYOMVuLBAcE8Klf72CkNhQwpPC2fnedj5/7BNMxtOLUvZONz9XhzligmNC8Avxpzy3jKayRgq35nskjp72Hg5+vZ/utm7aalupza9h78e72fbWZpormzwS00Bog3yJSo8mIiWShpKhuR9dhUV0CwgP8KqGJ7Hj4tD4axAUAgqlgrLcUo/F0tlkI7p5odMNYPblc0GEkl1FbP7vBpcL51WH+tds8RMTXDqXjIyMjCN4dU230xEREYFKpWLChAl2z48fP57Nmzef8jqNRoNGc3IXL+XSBDjcBSYRFAJCqBaxpdfuGDjpuROPFcmB+KxMdu7/7ChmUs4kvs55x9NhyMjIyMg4GbWfmgXXLuKHF76lva6NA1/kMuvSOac8v6WyPz3pVHWtxgpBUcFc/a/ree7Sf5I6K43tb28lOjOWZT8/85TXdLd2Wx/7h3rHIn72ZXNpq2lFE6Blz4e7yFqY7fYYtr65iU//9BFgroVnSUEEe3eZpwmJDSE8OYKjPxymsbSB6qNVxI2Pd3sc3a1d1mL20Zne1/hqyS3L+PjhtZTtK2XrG5tInprikThsnW5Sr4d3KkLjw0ibnU7ZvlJCE8PJ33SM7CUTBr9wmFQethHdJsmi22hCdXYKxsNNiB19A66vHT2Gwdfs8pjymEM5VsaFw3dDeA879S9CQqjVambNmkVeXp7d8/n5+SQnOy56BaxdQ1DQ2KofIyMjIyMj40pyzprCDy98i2+QL4Xb8k8vuh1PLQUIHcNONwsRyZFc/c/r+e9N/yZxShKf/eVj4ifEM27xwLWMulu7iM6Mwag3EhwT7OZoh0fOqim8f987dLd2U3mwnAsevhjfINe79ERRpK6wjh//s56D6/Zbn6/Nq6E2r8Z6rPGXjugGkL1kPK3VLSh9lHz7r3Vc/8JNbo+hrrCOyPQo/EP9SZ+X4fb5R8rk1VP54P53UftraK5oorutG79g9ztDO2zTS72gHt6pWHjDEvI351G0rYAtIf4uFd38gvxIm5NOe3070RkxLptHxv34f7jG0yHIyAxMezsM4ZbKq9NLOzs7yc3NJTc3F4CSkhJyc3MpLy8H4N577+W9997jpZdeorCwkGeffZbPPvuMX/7ylx6MWkZGRkZGRgYgdVYak1ZNpq+nj+3vbKWp4tTpevu/3IugMNfpGetONwsZ8zI581dn0VrTSnRaNO/c9SaGPsOA59YX1lFXUEtjaQOBkd6xieij9WH6BTOJSIkkMjWK9S8OYTvZCXz7r3V8/eTnFGzJO57mOrDoovHXuiWeoTLvmoV0NLRTebCC8n2l1BXWuT2GuoJaGorqKd1d4jWOSls0fhqW3rIc0SSSvymP3R/s8Egcfb19JE5OIjY7jqBo7xDJB2L8GRPxD/UnKDqYnrZu2uraXDbX4e8OUbyjiL4uHSr1qPWVyMjIeCFeLbrt3r2badOmMW3aNADuuusupk2bxkMPPQTAhRdeyIsvvsjjjz9OTk4OL7/8MmvXrmXhwoWeDFtGRkZGRkYGS5fKFIx6Iyq1iu+eWTfgeSW7i2kobkA0iSy+6QymnTfDzZFKl6W3LCNtdjrd7d2EJYbz9VNfDnhebUG/Qys603tcICvuWE1HYwfVR6so3lXs8i6I297ewva3t1K4tZCOxg4USoGgqIFFD02AtJxuGj8NK351FsnTU2kqb+L75752ewx1Nu+zGC96n9kyZc009D19BEUFUbSjEFEU3R5D1aFKKg6UU3OsmpDYELfP7yyUPkoW/3QZHfXtFGzNZ+d721w2l1Fv3nBQS8yBKiMjI+PVotvSpUsRRfGkn1dffdV6zo033khBQQE9PT3k5uZy/vnney5gGRkZGRkZGTtmXzaP+dcuQqlWkb85j2Mbj9q93lbXxjf//IrinYWkzEhF6aPEP9TfQ9FKD4VCwTn3nU9HfTtF2wvY8e5WjAaj3TmiKFKbbxZDQuJC0QZIy6F1OkJiQlhy8zKiMqIp2JzHuicHFhWdQe4Xe/nggXetxf+X/2IFv/78N2QtGbiWnNTSSwHmXjmf+qJaAiODaCprPK171BXU2nQu9SZx15a47HhmXjybjsYOcj/bS/GOQrfH0FBSD4DaT+PVTjeA6eebN0nCk8Ip21vqsoYKf9r/N54oe4Z7v77fJePLyMjIDBevFt1kZGRkZGRkvBtzAfhw4ibE01rdytdPfmFNQdJ16/joD+9TtL2Q6IwYAiICOfeBCzwbsASJTo9m4oocEnISCY0P49iGI3avt9e309PWA0BMlvcVtz/jlmUY+gykz81k5/+2UeCCTqYH1+3n/d++Q9KUZCoPlbP45jNY8auzEAQBjVY94DVSFN20gb6suvNsOps7KNxWwKs/e4mu1q7BL3QSls6lGn8NIXGhbpvX2YxfNhHRJBKVEU3xriK3zm3UG2kuN4ulkamRCILg1vmdTXhSBDMvmUNTeRMHv95P/qa8wS8aJiq1Cm2gr8vGl5GRkRkOsugmIyMjIyMj41GW/WIF2kAtydNSKN1bwgcPvsuGl37g5Rte5NiGo/gF+6IN8uWKf1yN0kfp6XAlyZwr5lF5sILSPSXseNc+hau+qI6UmWlEpUcTmx3noQiHj1+IPyvvWE3R9gLiJiTw9VNfYtAPXLtuOOz/ch8/vPgtGj8NDaUNLPvlSs68daX19cU/PYPb1v6aOVfOs7vOx3dgMc7TzL58HiGxoWQuyEJQKHj1lpfZ/t42TEbXOIws9PX04aPxOV6rcYpXi0VTzp5KSHwo9YV1bHxpvVtTTJsqmqz/VpFpUW6b15XkrJoMmN2P+7/Y5+FoZGRkZNyLLLrJyMjIyMjIeBSFQsHVT19PU3kjKTPSOPBFLl8/8QX1RXX4hfoROz6eix65lMAI72gA4AkmLJtEYGQgsePj6GzqpLOp0/pazbFqSncXU19UR3RGtAejHD5zrpjHtPNnUHmgnNI9xfznxn+z5+Pd6Hv1Ixp3/5f7+P65byjPLSMgMoipa6Zzzm/OtROMgqKCyZyfxbRzZ1qfU6gUKBTSvI32D/Xntz/8jubKZpormqgrrOXbf37F/+57h4biepfN21BcT21+DSW7ilEovFdwA/DRqomfkABAR0M71Uer3DZ3Y0n/v1Fk6ugQ3SatnEzmwnHUFdSy7c3NNJY1eDokGRkZGbchzbsFGRkZGRkZmTFFYEQg171wIxX7y8heOoHY8XGEJYaTvWg81/zzepKmJns6REmj9FEy7+qF1Bytpmh7Abs/3Gl9zVLPDSA60/vSS8EszC69eRkLf7IE/5AAqg5X8umf1vLcZf8cdkfEbW9t5t2736KnrYe48fFEZ8Vw0R8vRaEc+PY4Y14m2gAtYYlhpM/OGMn/jsvRBmi5/YM7mXHhLMKTIvAL9iP/x2M8d9k/2eWijpx1Xtqs41SMW5yNoBSIGx9Pya5it83b095D0tQUEicnEZYY7rZ5XYnSR8m4Rdn4BvuRNieDbW9ucer4rTWtvH//O3z654849M0Bp44tIyMjM1LkfsoyMjIyMjIykiB9dgZ/2PUoxj4j29/dyqyLZxOeHOnpsLyGGRfM4punvyIqPZrS3cWIPz0DQRCoyx8dYkjKjDT8wwLoaeumtboVERGVSsmj8x7izs/uJX5iwpDGMRqMfPm3zzj83UFix8VSfbSK8csmcsEfLj6l4Abgo/Xhr/lPek3aZGhCOBc+fAkFW/P55JG1KJQKgqKD2fLGJmryqll99xp8tD5Om280NFGwJXvJeHw0PlQfreLgV7ksvH6xW+Ztq2ujPLcUAN+g0VOfbP41C/nhxe8o2l5A5cFylt+2Er9gP6eM3VbbyuZXfwSg78alTFo52SnjysjIyDgD2ekmIyMjIyMjIxkCI4IIiQvlrLvOkQU3B4kZF0vOWVOoL6pj36d7qDxYAfQ73YKigry+82tkahTXPvsTzn3wAkSDiaKdhcTnJPKfn/6b7rbuQa/vbOrgf795m/wteXQ0tFNfXM/KX6/mgodPL7hZ8BbBzZbM+VncuvZOJq+eSmtNC3X5NeRtOMr797+DQdefnmvoG1mdvILN/QXyR4PoFpURg1+I+e+laEfhiFOZh4poNKFUm30Ragk26xgu/mEBTD13OolTkohIjWT7O1udNrauq9f6WOM3en5nMjIyowNZdJORkZGRkZGRGSVMWD4JgJC4UL579hs6GjuIzowhISeJ5OmpHo7OOQiCQOrMNG59/07GnzGRmqNV+AX78c7db5yy4L0oiuz9ZDfPXPQUuZ/vpaetm9jsOM6571zO+NmZkq3P5ix8A3w57/cXct7vLyQoKhijwcjeT/fw8SMf0tfTx5bXN/H3FX/h2MYjPHvZ07TWtjo0/pY3fqShpJ6EnEQW33QGEaNAMBcEgXGLs1H7a4jNjqNkj3tSTJffupIny57hyfJnyV4y3i1zuoslPz2Div3lVB2qZPvbW5zWEEXXpbM+lmJXYRkZmbGNnF4qIyMjIyMjIzNKmH7+DMr3lbL9na1UH61ky+s/UrS9EIDUWWkejs65+Gh9uOiPl/LSdS/QVtNGT1sPL179LJNXT8UvyBffED8EhUBzRTMFm4/RVNGMf1gAwbEhdDa0c9Y9a8iYm+np/w23Mv28mQRHBfOfm/5NYk4Su9Zu5+j6QwTHhODjp+blG14kaWoK//3p/3H109cRnXGyY00URerya/EN8SU4OoRt72xh1wc7EUXobu0mdVbaqOkyPP6Miex6fwfluWUcW3+ErAXj3Db3aPkd2hKTGcuMC2fRWtNC5cEKDq7bz7RzZ4x4XFvRbTS5A2VkZEYHsugmIyMjIyMjIzNK0Ab6krkgi/qSekp2FrHt7f6C5TFZ3p/ydyLhSRGc/4eLeP3WV1D0Kehu6WL7O1vpau7EL8Qfta8PHY0d9PX0YTKYMBlMZJ8xgetfuBH/0ABPh+8R0udm8pOXbuGtX72KNsCXluoWert0KBQKAqOCqMmrQuOn5aOH3mfpz860c1ttf3crR384TEdjBy1Vzaj9NOi6emmvbSN5egqZC8Yx/fyZp5ndu8icn4XJaAIgb+NR+N2FHo7I+5lzxTyev/xfABz4MtcpolufjeimDdCOeDwZGRkZZyKLbjIyMjIyMjIyo4jpF87iwNf7SZ2VRvHOIuvzMV7auXQwxp8xkcsfv4qm8kYOfn2ArpYuVFaXkIA2wJeo9GgUCoF51y5iwhkTPRqvFMicn8UVT1zLzve2EZkWRW1eNUt+uozwlEjeu/ctulu7KdlbQuVtrzDtvBks/9Uqtr+1lR9e/JagyCA6GtqJSI5E4aOkq7mT2HFxJE1NYfU9azz9v+ZUAiICSZiUSFt9Gz5+ajoa2wmMCPJ0WF5N1qJsJp89ldq8GvZ+vJtlv1hB4uSkEY0pp5fKyMhIGVl0k5GRkZGRkZEZRQiCwCV/uYK/LXsUbYCWnvYeAGKyRqfoBjB1zXQ6mzpJnZlGc3UL+u4+ulu7USgFRBEmnzWFoOhg1L5qT4cqGbKXjCd7yXgMfQYEQbCmM1777A28eftrpExNQd+rp+poFf9Y+RgqHyXx4+OpL6ojISeRsMRwGksauPaZG6g4UM7yW1d6ZaOJwZi0Mod1T35JR307BZvzmH7BLJfO98ML39Jc0YTaX8PZ96xBpXFeh1kpIAgC2UsmcODLXJRqJbmf7R226NbZ1En10UrKjnd7BTm9VEZGRnrIopuMjIyMjIyMzCgjMDyQq5++jhevepbw5AhCYkMJiAj0dFguJSA8gIDwDEZX5TrXo1LbLwd8g/z46as/Z8NLP7D1jc30tHWh1xkw6Ay01rRy3kMXMeeyeQDoe/UofZSMWzy6Cv7bkmZT9+/YxqMuF90OfJVLyS5z04ZzfnueS+fyFDMvnsWBr/ZRtq+MjS//wLJfrhhWZ+W9H+9i7e/+Z/ec3L1URkZGasiim4yMjIyMjIzMKGT8GRO595sHSMhJ9HQoMl6GIAiccctyZlw4ix//uwGlUoGP1of4ifGMP2OS9Twf7ehyYQ1E2qx0VBoVIbGhdDZ1IoqiSx19llRJH60PStXoa6YAoPHXEp0Rw7ENRwmKDmbfZ3tYeN1ih8fR6/QDjC2LbjIyMtJCFt1kZGRkZGRkZEYpsuAmMxKCIoNY89vzXC40SRkfrQ8Tlk3iwFe5NJY2UFdQ69JUbYvoph7ljq2FP1lCye4SKvaX8cPz3zL/moUoFAqHxmitbrU7TpqWgt8wHHMyMjIyrsSxTzYZGRkZGRkZGRkZmTHFWBXcLKTNTrc+PrbxqEvnsohuo92xFZUWjW+QL6Ioog3Ukvej47/X1uoW62NBIZAwKZHwxHBnhikjIyMzYmSnm4yMjIyMjIyMjIyMzCkYt2Q8Ch8lseNiqS+qc+lcfWNEdANYcssyGksbqDpUyY8vb2D8Usc6C7ccF90EhcAdn9yDX4ifK8KUkZGRGRGy001GRkZGRkZGRkZGRuYUxGbHERobStWhSnb9bzuGAWqJOQOTyURfTx8wNkS38UsnYDKa8PFV093aRW1+jUPXW5xuQdHBpM5MIzojxhVhysjIyIwIWXSTkZGRkZGRkZGRkZE5BYIgkDbHnGLa19NHyZ4Sl8yjPy64AajHgOimUCo46+6z8dGoKN1TwnfPfj3ka22bKITGhboiPBkZGRmnIItuMjIyMjIyMjIyMjIypyF7yQT8gv1ImZlK2V7XiG6Wem4AmlHeSMHC1HNnoFSrSJuTQcGWfBrLGoZ0XVttKx0N7QhKgaiMaBdHKSMjIzN8ZNFNRkZGRkZGRkZGRkbmNGQtzqanvYfS3SXkfr7PJXPYim6jvXupBW2AlsU/WUrxjkJaq1vY9ubmIV3XWmVOLRWNIn4hcsdSGRkZ6SKLbjIyMjIyMjIyMjIyMqchKDKIuAnxAFQeKKerudPpc7RUNROTFfv/7d17fM/1///x+3vsaLOZwzZsc14mZ9HIMQwlfPShkkMfHURRDqESUh/kXJ8OfiUkUSIppXKYUM5McxhmGiJhxja22Z6/P3z3ztv23iFvm3G7Xi7vy2Xv1+v5er4fr9f78X5t78eez9dLlRpWVoX/e607wX1PtFT1ZiHyDSytdbPX6Nzxc7luE3/NnUuZXgrgVkbRDQAAAAByUaN5iEoHlVGVJlV1+NdDDu//6I5YnTp4Ukd3xMrV083h/d+qPLw9VPmeKjp37KzKh1bQLws25LrN+WuKbj4U3QDcwii6AQAAAEAu7moVqrNxZxSz+bD2rY1yeP8HIvb//Votazq8/1tZy6faqOLdgToWGac17/+k07Gnc2wfT9ENQBFB0Q0AAAAAclGlcTU5uzlLulogM8Y4rO/zJ6/eGKBK46qq1LCyylQq67C+iwJPX0+FtKypirUDVbpiaX03aUWO7c8zvRRAEUHRDQAAAABy4eLuourNQlQhtIJ8K/rqVPRJh/X9y4INOh3zp45sjVGttrUd1m9R0v6Fjko4laCk84mKPxGvfWvsjyaM/78bKTgVd5JX2ZIFFSIA5BtFNwAAAADIg5CWd+nEvhM6sjUmx6JQfqVeSlH1ZiHyLOOlJo+EOazfosTN003dXv+3TLrR77tjtWnBRqUkp2TbNvHcRZWqUErVmlaXUzG+0gK4dXGGAgAAAIA8CL3/71Fov/0Q6bB+ty3ZokObouXsWlze/j4O67eoadCloWq1ry3fiqUV9UOkIv7fmixtUpNTdeFUguJPxOvK5SuFECUA5B1FNwAAAADIg3JVyim0bS1VaVJN8SfilRSfdMN9pqelK+nc1X5K+nnfcH9FmcViUfiLDygjI0NB9YK1aupK/b77qE2b+D/OWX/2qcD13ADc2op00e3nn39W586dVb58eVksFi1fvtxu2wEDBshisWjmzJkFFh8AAACA24tftQAd2XJY5/+I1/61e2+4v4tnLlpvylCy7J1ddJOuFjab9rpPf+w/oUoNK2vR0E+VeinVut72Jgq+hREiAORZkS66JSUlqW7dunr33XdzbPfVV19p8+bNKl++fAFFBgAAAOB2VKvd31NMY7fH3HB/F08nWH/2KsdNASSpzbPtFNKipmJ3HJGHj4e+n/KtdV38NUU3H+5cCuAWV6SLbh07dtQbb7yhbt262W1z4sQJPf/881q4cKGcnZ0LMDoAAAAAt5sq91RVSIu75OHjoR1fbVN6WvoN9XfhrwvWn0tSdJMkFXcprgdGPST/GldHFcZFHtWhXw5KkhL+OG9tV4qiG4BbXJEuuuUmIyNDvXv31ogRI1SrVq08bZOSkqILFy7YPAAAAABAkoo5F1MJX08ln0/WpYRLit12Y6PdLpy+tujG9NJMFUIrKqzXfSpXzU+Hfz2k79/6VqtmfKetSzZb2/gE+BRegACQB7d10W3y5MkqXry4Bg8enOdtJk6cKG9vb+sjMDDwJkYIAAAAoKip1ba2nJyLqWLtIB25waLbxdOMdLOn+RMt5V+jvAJCyitmyyFtmLNOqSmp8qsRoEemPa6yVcoVdogAkKPbtui2Y8cOzZo1S/PmzZPFYsnzdqNHj1ZCQoL1cezYsZsYJQAAAICi5q7WoXJ2ddbx3+K0/cutupx0WacOnfpHU00TzyZaf+aabracnJzUbVx3WZwsatqnucpV85ePXymVCS6jex5uIjcv98IOEQByVLywA7hZNmzYoNOnTysoKMi6LD09XcOGDdPMmTN19OjRbLdzdXWVq6trAUUJAAAAoKjx9PVUxVoVFbPlsP48fErvPjxTFicnPTr9cbmX9MjXtMeEU+dVzKWYPH095VXW6+YFXUSVquCrl1a/onPHz+nwpmhVb3GXfLlrKYAi4rYtuvXu3Vtt27a1WRYeHq7evXvriSeeKKSoAAAAANwO6j3UUB6lSujojlgZSfHHzmhm5ykqW8VPw1eNynM/CX8mKD01XQmnElSyLNd0y47FYlHpwNIq/UjTwg4FAPKlSBfdEhMTdfjwYevz2NhY7d69W76+vgoKClLp0qVt2js7O8vf318hISEFHSoAAACA20iL/7RSi/+00ns9Z6mEr6fij53V5YuXdSzyd8WfOKdSFfI2Guvi/9291N3bXc5uzjczZABAASvS13Tbvn276tevr/r160uShg4dqvr16+u1114r5MgAAAAA3AkGfj5Efd/vr/ueaCnPMl6q0qSaDqzfn+ftM+9eyig3ALj9FOmRbq1atZIxJs/t7V3HDQAAAABuRJ0O9bRq6kolnrmo4i7FFPZYs1y3SUm6rNTkFElSST9uogAAt5siPdINAAAAAG4F5UMrqHTQ1cvbHP71kJLOJeayxd+j3CTuXAoAtyOKbgAAAABwgywWixr3CFOVJtVUwqeE9q3dm+s21xbdmF4KALcfim4AAAAA4ADVm9XQkS2HdfHMRf22KjLX9pk3UZCkkox0A4DbTpG+phsAAAAA3Coq31NVnqU9lZGeoeSEZKVeSpWLu4vd9pcvXFKVJtWUnnpFPuV9Ci5QAECBYKQbAAAAADiAUzEn3fPve3Up4ZIObYzWwQ0Hcmx/5vczOrLlsH7fdVQlSnkWUJQAgIJC0Q0AAAAAHKRa0xoyxkiSIr/fnWPbC39xIwUAuJ0xvRQAAAAAHCSk+V0Krl9JxVyK68jmw7qSekXFXbL/2nXxNNd0A4DbGSPdAAAAAMBBnN2cVaZSWR3Zclhnjv6lfWui7La9cDpB0tVpqUwvBYDbD0U3AAAAAHCgex5uIldPV1VuXFUH1u+z2y7z7qWeZbzkVIyvZgBwu+HMDgAAAAAOVKPFXfLwLqHYrTHavOhXJZ9PytImIyNDF/+6KEkqWZappQBwO6LoBgAAAAAOVKx4MdXpVE+SVLZyGe1dnXWKafK5JGWkZ0jiJgoAcLui6AYAAAAADnbPw01UqoKvTkWf0q8LN2VZ/+fhU9afuYkCANyeKLoBAAAAgINVrB0oF3cXSdLJ/Sd09thZm/X71kTJ4mTRXS1rqn6XRoURIgDgJqPoBgAAAAAOZrFY1KxvCwXVC1ZKcop2LNtqXXf54iUdjzouF3cXHfrloAJqBBRipACAm4WiGwAAAADcBHeH11Hc7t+VnpauXz7dqPS0dEnSL59u1IGIfZJFav3M/fIpX6qQIwUA3AwU3QAAAADgJigdWFqNe4YptO3div8jXt9P/UZpl1MVuXKXKjWqoispV9S4R1hhhwkAuEmKF3YAAAAAAHC76jC0kybf/4Yq1a+kDXPX68zvZ3R0R6wkqVH3JvKr7l/IEQIAbhZGugEAAADATVI6qIwem9FH8X/Ey8OnhCJX7lKpQF+VD62g5v9pWdjhAQBuIopuAAAAAHAT1XuwgVo91UYuHs7KSM9Q/LFzKlGqhCo1qFzYoQEAbiKmlwIAAADATdZ6QFudjTurug80UKnypVSuGtNKAeB2R9ENAAAAAG4yi8Wih//bUxaLpbBDAQAUEKaXAgAAAEABoOAGAHcWim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAej6AYAAAAAAAA4GEU3AAAAAAAAwMGKdNHt559/VufOnVW+fHlZLBYtX77cui4tLU0jR45U7dq1VaJECZUvX159+vTRH3/8UXgBAwAAAAAA4I5QpItuSUlJqlu3rt59990s65KTk7Vz506NGTNGO3fu1LJlyxQdHa2HHnqoECIFAAAAAADAncRijDGFHYQjWCwWffXVV+ratavdNtu2bVPjxo31+++/KygoKE/9XrhwQd7e3kpISFDJkiUdFC0AAAAAAACKorzWiooXYEyFLiEhQRaLRT4+PnbbpKSkKCUlxfr8woULBRAZAAAAAAAAbidFenppfly+fFkjR47Uo48+mmMVcuLEifL29rY+AgMDCzBKAAAAAAAA3A7uiJFuaWlp6tGjh4wxev/993NsO3r0aA0dOtT6PCEhQUFBQYx4AwAAAAAAgLVGlNsV2277oltmwe3333/X2rVrc70um6urq1xdXa3Pz5w5I0mMeAMAAAAAAIDVxYsX5e3tbXf9bV10yyy4HTp0SOvWrVPp0qXz3Yevr68kKS4uLscDCdyoCxcuKDAwUMeOHeOmHbipyDUUJPINBYVcQ0Eh11BQyDUUFHIt/4wxunjxosqXL59juyJddEtMTNThw4etz2NjY7V79275+voqICBADz/8sHbu3Klvv/1W6enpOnXqlKSrhTQXF5c8vYaT09XL3nl7e5N8KBAlS5Yk11AgyDUUJPINBYVcQ0Eh11BQyDUUFHItf/IyMKtIF922b9+u1q1bW59nXoutb9++GjdunFasWCFJqlevns1269atU6tWrQoqTAAAAAAAANxhinTRrVWrVjletC63C9oBAAAAAAAAN4NTYQdwq3N1ddXYsWNtbq4A3AzkGgoKuYaCRL6hoJBrKCjkGgoKuYaCQq7dPBbDcDAAAAAAAADAoRjpBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwsFum6DZx4kTdc8898vLyUrly5dS1a1dFR0fbtLl8+bIGDRqk0qVLy9PTU927d9eff/5pXR8ZGalHH31UgYGBcnd3V82aNTVr1iybPpYtW6Z27dqpbNmyKlmypMLCwvTDDz/kGp8xRq+99poCAgLk7u6utm3b6tChQzZtdu7cqXbt2snHx0elS5fW008/rcTExFz73rNnj5o3by43NzcFBgbqrbfeslm/d+9ede/eXZUqVZLFYtHMmTNz7RP2kWv2c23ZsmVq1KiRfHx8VKJECdWrV08LFizItV/YR77Zz7d58+bJYrHYPNzc3HLtF9kj1+znWqtWrbLkmsVi0QMPPJBr38iKXLOfa2lpaXr99ddVtWpVubm5qW7dulq1alWu/SJ7d2quXb58Wf369VPt2rVVvHhxde3aNUubkydP6rHHHlONGjXk5OSkF154Idd4YR+5Zj/XNm7cqGbNmql06dJyd3fXXXfdpRkzZuQaM7JHrtnPtYiIiGz/Xjt16lSucd/SzC0iPDzczJ0710RFRZndu3ebTp06maCgIJOYmGhtM2DAABMYGGjWrFljtm/fbu69917TtGlT6/o5c+aYwYMHm4iICBMTE2MWLFhg3N3dzTvvvGNtM2TIEDN58mSzdetWc/DgQTN69Gjj7Oxsdu7cmWN8kyZNMt7e3mb58uUmMjLSPPTQQ6Zy5crm0qVLxhhjTpw4YUqVKmUGDBhgDhw4YLZu3WqaNm1qunfvnmO/CQkJxs/Pz/Tq1ctERUWZRYsWGXd3dzN79mxrm61bt5rhw4ebRYsWGX9/fzNjxoz8HFpch1yzn2vr1q0zy5YtM/v27TOHDx82M2fONMWKFTOrVq3K1zHG38g3+/k2d+5cU7JkSXPy5Enr49SpU/k6vvgbuWY/186ePWuTZ1FRUaZYsWJm7ty5+TnE+D/kmv1ce+mll0z58uXNypUrTUxMjHnvvfeMm5tbrjEje3dqriUmJpoBAwaY//f//p8JDw83Xbp0ydImNjbWDB482MyfP9/Uq1fPDBkyJA9HFPaQa/ZzbefOneazzz4zUVFRJjY21ixYsMB4eHjYnPuQd+Sa/Vxbt26dkWSio6Nt/m5LT0/Py6G9Zd0yRbfrnT592kgy69evN8YYc/78eePs7GyWLFlibbN//34jyfz66692+xk4cKBp3bp1jq8VGhpqxo8fb3d9RkaG8ff3N1OmTLEuO3/+vHF1dTWLFi0yxhgze/ZsU65cOZuE2LNnj5FkDh06ZLfv9957z5QqVcqkpKRYl40cOdKEhIRk2z44OJiim4ORa9nnWqb69eubV199Ncc2yDvy7e98mzt3rvH29s5xH/DPkWv2z20zZswwXl5eNn/g4p8j1/7OtYCAAPO///3PZrt//etfplevXjnuF/LmTsm1a/Xt2zfbL6fXatmyJUU3ByPXctatWzfz+OOP56ktckau/S2z6BYfH5+nfoqKW2Z66fUSEhIkSb6+vpKkHTt2KC0tTW3btrW2ueuuuxQUFKRff/01x34y+8hORkaGLl68mGOb2NhYnTp1yua1vb291aRJE+trp6SkyMXFRU5Ofx9Sd3d3SVeH5Nrz66+/qkWLFnJxcbEuCw8PV3R0tOLj4+1uB8ch17LPNWOM1qxZo+joaLVo0cJuv8gf8s023xITExUcHKzAwEB16dJFe/futdsn8odcs/97dM6cOXrkkUdUokQJu/0i78i1v3MtJSUlyzR5d3f3HPtF3t0puYbCR67Zt2vXLv3yyy9q2bKlQ/u9U5FrWdWrV08BAQFq166dNm3a5JA+C9MtWXTLyMjQCy+8oGbNmunuu++WJJ06dUouLi7y8fGxaevn52d3ju8vv/yizz//XE8//bTd15o6daoSExPVo0cPu20y+/fz87P72m3atNGpU6c0ZcoUpaamKj4+XqNGjZJ09ZoLOfWdXb/Xvi5uHnIta64lJCTI09NTLi4ueuCBB/TOO++oXbt2dvtF3pFvtvkWEhKijz/+WF9//bU+/fRTZWRkqGnTpjp+/LjdfpE35Jr936Nbt25VVFSUnnzySbt9Iu/INdtcCw8P1/Tp03Xo0CFlZGTop59+0rJly3LsF3lzJ+UaChe5lr2KFSvK1dVVjRo10qBBg/g96gDkmq2AgAB98MEHWrp0qZYuXarAwEC1atVKO3fuvKF+C9stWXQbNGiQoqKitHjx4n/cR1RUlLp06aKxY8eqffv22bb57LPPNH78eH3xxRcqV66cJGnhwoXy9PS0PjZs2JCn16tVq5bmz5+vadOmycPDQ/7+/qpcubL8/PysVeBatWpZ++3YseM/3jc4DrmWlZeXl3bv3q1t27bpzTff1NChQxUREZGvPpA98s1WWFiY+vTpo3r16qlly5ZatmyZypYtq9mzZ+e5D2SPXLNvzpw5ql27tho3bvyPtoctcs3WrFmzVL16dd11111ycXHRc889pyeeeMJmRAD+GXINBYVcy96GDRu0fft2ffDBB5o5c6YWLVqU7z5gi1yzFRISomeeeUYNGzZU06ZN9fHHH6tp06ZF/8YdhT2/9XqDBg0yFStWNEeOHLFZvmbNmmzn9wYFBZnp06fbLNu7d68pV66cefnll+2+TubFb7/99lub5RcuXDCHDh2yPpKTk01MTIyRZHbt2mXTtkWLFmbw4MFZ+j516pS5ePGiSUxMNE5OTuaLL74wxhhz9OhRa7/Hjx83xhjTu3fvLPOZ165daySZc+fOZemba7o5DrmWc65l6t+/v2nfvr3d9cgb8i1v+fbwww+bRx55xO565I5cs59riYmJpmTJkmbmzJl29wt5R67Zz7VLly6Z48ePm4yMDPPSSy+Z0NBQu/uH3N1puXYtrulWsMi1LnZjvtaECRNMjRo18tQW2SPXutiN+VrDhw839957b57a3qpumaJbRkaGGTRokClfvrw5ePBglvWZFxT88ssvrcsOHDiQ5YKCUVFRply5cmbEiBF2X+uzzz4zbm5uZvny5XmOzd/f30ydOtW6LCEhweaCgtmZM2eO8fDwyPFCgJkX5U1NTbUuGz16NDdSuInItbzlWqYnnnjCtGzZMk/xIyvyLe/5duXKFRMSEmJefPHFPMUPW+Ra7rk2d+5c4+rqas6cOZOnuJE9ci3v57XU1FRTtWpVM3r06DzFD1t3aq5di6JbwSDX8lcIGT9+vAkODs5TW9gi1/KXa23btjXdunXLU9tb1S1TdHv22WeNt7e3iYiIsLk9bHJysrXNgAEDTFBQkFm7dq3Zvn27CQsLM2FhYdb1v/32mylbtqx5/PHHbfo4ffq0tc3ChQtN8eLFzbvvvmvT5vz58znGN2nSJOPj42O+/vprs2fPHtOlSxebW+caY8w777xjduzYYaKjo83//vc/4+7ubmbNmpVjv+fPnzd+fn6md+/eJioqyixevDjLLZhTUlLMrl27zK5du0xAQIAZPny42bVrV57vDgJb5Jr9XPvvf/9rfvzxRxMTE2P27dtnpk6daooXL24+/PDDPB9f2CLf7Ofb+PHjzQ8//GBiYmLMjh07zCOPPGLc3NzM3r1783x88TdyzX6uZbrvvvtMz549cz2WyBm5Zj/XNm/ebJYuXWpiYmLMzz//bNq0aWMqV658292JraDcqblmzNURLLt27TKdO3c2rVq1sn4XuFbmsoYNG5rHHnvM7Nq1i9+h/xC5Zj/X/ve//5kVK1aYgwcPmoMHD5qPPvrIeHl5mVdeeSUvhxbXIdfs59qMGTPM8uXLzaFDh8xvv/1mhgwZYpycnMzq1avzcmhvWbdM0U1Sto+5c+da21y6dMkMHDjQlCpVynh4eJhu3bqZkydPWtePHTs22z6urcK3bNky2zZ9+/bNMb6MjAwzZswY4+fnZ1xdXc39999voqOjbdr07t3b+Pr6GhcXF1OnTh3zySef5GnfIyMjzX333WdcXV1NhQoVzKRJk2zWx8bGZhszo4/+GXLNfq698sorplq1asbNzc2UKlXKhIWFmcWLF+epb2SPfLOfby+88IIJCgoyLi4uxs/Pz3Tq1Mns3LkzT30jK3LNfq4Z8/d/iX/88cc89Qn7yDX7uRYREWFq1qxpXF1dTenSpU3v3r3NiRMn8tQ3srqTcy04ODjbmHI7Pow++mfINfu59vbbb5tatWoZDw8PU7JkSVO/fn3z3nvvmfT09Dz1D1vkmv1cmzx5sqlatapxc3Mzvr6+plWrVmbt2rV56vtWZjHGGAEAAAAAAABwGG6lBAAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAABwm2jVqpVeeOGFO+61AQAAbkUU3QAAAO5AERERslgsOn/+vEO2W7ZsmSZMmOC4AAEAAIq44oUdAAAAAIo+X1/fwg4BAADglsJINwAAgCIoKSlJffr0kaenpwICAjRt2jSb9QsWLFCjRo3k5eUlf39/PfbYYzp9+rQk6ejRo2rdurUkqVSpUrJYLOrXr58kKSMjQxMnTlTlypXl7u6uunXr6ssvv8x1u+unl1aqVElvvPGGNcbg4GCtWLFCf/31l7p06SJPT0/VqVNH27dvt4l748aNat68udzd3RUYGKjBgwcrKSnJ0YcPAADgpqPoBgAAUASNGDFC69ev19dff60ff/xRERER2rlzp3V9WlqaJkyYoMjISC1fvlxHjx61FsgCAwO1dOlSSVJ0dLROnjypWbNmSZImTpyoTz75RB988IH27t2rF198UY8//rjWr1+f43bZmTFjhpo1a6Zdu3bpgQceUO/evdWnTx89/vjj2rlzp6pWrao+ffrIGCNJiomJUYcOHdS9e3ft2bNHn3/+uTZu3KjnnnvuZhxCAACAm8piMv/KAQAAQJGQmJio0qVL69NPP9W///1vSdK5c+dUsWJFPf3005o5c2aWbbZv36577rlHFy9elKenpyIiItS6dWvFx8fLx8dHkpSSkiJfX1+tXr1aYWFh1m2ffPJJJScn67PPPst2O+nqSLd69epZX7tSpUpq3ry5FixYIEk6deqUAgICNGbMGL3++uuSpM2bNyssLEwnT56Uv7+/nnzySRUrVkyzZ8+29rtx40a1bNlSSUlJcnNzc+BRBAAAuLm4phsAAEARExMTo9TUVDVp0sS6zNfXVyEhIdbnO3bs0Lhx4xQZGan4+HhlZGRIkuLi4hQaGpptv4cPH1ZycrLatWtnszw1NVX169fPd5x16tSx/uzn5ydJql27dpZlp0+flr+/vyIjI7Vnzx4tXLjQ2sYYo4yMDMXGxqpmzZr5jgEAAKCwUHQDAAC4zSQlJSk8PFzh4eFauHChypYtq7i4OIWHhys1NdXudomJiZKklStXqkKFCjbrXF1d8x2Hs7Oz9WeLxWJ3WWZBMDExUc8884wGDx6cpa+goKB8vz4AAEBhougGAABQxFStWlXOzs7asmWLtRgVHx+vgwcPqmXLljpw4IDOnj2rSZMmKTAwUJKy3LDAxcVFkpSenm5dFhoaKldXV8XFxally5bZvnZ22zlKgwYNtG/fPlWrVs3hfQMAABQ0bqQAAABQxHh6eqp///4aMWKE1q5dq6ioKPXr109OTlf/tAsKCpKLi4veeecdHTlyRCtWrNCECRNs+ggODpbFYtG3336rv/76S4mJifLy8tLw4cP14osvav78+YqJidHOnTv1zjvvaP78+Xa3c5SRI0fql19+0XPPPafdu3fr0KFD+vrrr7mRAgAAKJIougEAABRBU6ZMUfPmzdW5c2e1bdtW9913nxo2bChJKlu2rObNm6clS5YoNDRUkyZN0tSpU222r1ChgsaPH69Ro0bJz8/PWtiaMGGCxowZo4kTJ6pmzZrq0KGDVq5cqcqVK+e4nSPUqVNH69ev18GDB9W8eXPVr19fr732msqXL++w1wAAACgo3L0UAAAAAAAAcDBGugEAAAAAAAAORtENAAAAAAAAcDCKbgAAAAAAAICDUXQDAAAAAAAAHIyiGwAAAAAAAOBgFN0AAAAAAAAAB6PoBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAAAAAAAAOBhFNwAAAAAAAMDBKLoBAAAAAAAADkbRDQAAAAAAAHAwim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAej6AYAAAAAAAA4GEU3AAAAAAAAwMEougEAAAAAAAAORtENAAAAAAAAcDCKbgAAAAAAAICDUXQDAAAAAAAAHIyiGwAAAAAAAOBgFN0AAAAAAAAAB6PoBgAAAAAAADgYRTcAAAAAAADAwSi6AQAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GAU3QAAAAAAAAAHo+gGAAAAAAAAOBhFNwAAAAAAAMDBKLoBAAAAAAAADkbRDQAAAAAAAHAwim4AAAAAAACAg1F0AwAAAAAAAByMohsAAAAAAADgYBTdAAAAAAAAAAcrXtgBALh1XLlyRampqYUdBgAAAIAiys3NTU5OjO8BJIpuACQZYxQXF6czZ84UdigAAAAAijAnJyeFhobK1dW1sEMBCp3FGGMKOwgAhev333/XmTNnVKFCBXl6evKfKQAAAAD5lpGRoSNHjqh48eKqXr26nJ2dCzskoFBRdAPucFeuXFFkZKQqVKggf3//wg4HAAAAQBF27tw5xcbGKjIyUk2aNFGtWrUKOySg0DCcBbjDZV7DzdPTs5AjAQAAAFDUZU4rTUtL008//aT9+/cXckRA4aHoBkCSmFIKAAAA4IZZLBZJUpkyZZSSkqJ9+/YVckRA4eFbNgAAAAAAcDh3d3dduHChsMMACg1FNwC3rYiICFksFp0/f76wQ7nlGWP09NNPy9fXVxaLRbt371arVq30wgsvWNtUqlRJM2fOtD63WCxavnz5Db1uv3791LVr1xvqIzfjxo1TvXr1buprZFqzZo1q1qyp9PT0G+rHEcdWyvqe3QpuZky34v7m19GjR62fwVuhn2ulpqaqUqVK2r59u8P6vN1wLnUMR51Lb7Z/8jm7Ph+ycyucy/IS561g3759qlixopKSkgo7FOSAy8jjTla8sAMAABS+VatWad68eYqIiFCVKlVUpkwZLVu2jDtO5dNLL72kV199VcWKFbuhfk6ePKlSpUrdcDzbtm1TiRIlbrifoiK/+xsREaHWrVsrPj5ePj4+Ny+wm6xfv346f/68TeEmMDBQJ0+eVJkyZRz2Oi4uLho+fLhGjhypNWvWOKzf2wnnUsdw1Lm0qLrTzt05adWqldavX2+z7JlnntEHH3wgSQoNDdW9996r6dOna8yYMYURIgDkiKIbABvPpo3VvozDhRpDqFM1ve88vlBjuNPExMQoICBATZs2tS7z9fUtxIiKno0bNyomJkbdu3e/4b4cdSfhsmXLOqSfoqKw9tcYo/T0dBUvfuv8WVWsWLGbckfqXr16adiwYdq7dy93o8sG59Ib58hzaVF1u5+709PTZbFY8nw94aeeekqvv/669bmHh4fN+ieeeEJPPfWURo8efUudhwFAYnopgOvsyzisLSayUB/5KfqlpKRo8ODBKleunNzc3HTfffdp27Zt2bZNTk5Wx44d1axZM6acXqNfv356/vnnFRcXJ4vFokqVKknK/9SSY8eOqUePHvLx8ZGvr6+6dOmio0ePWtenp6dr6NCh8vHxUenSpfXSSy/lON3gwoULcnd31/fff2+z/KuvvpKXl5eSk5MlSSNHjlSNGjXk4eGhKlWqaMyYMUpLS7Pbb3b71bVrV/Xr18/6PCUlRcOHD1eFChVUokQJNWnSRBERETnu/+LFi9WuXTu5ublZl2VOx/r4448VFBQkT09PDRw4UOnp6Xrrrbfk7++vcuXK6c0337Tp69rpZqmpqXruuecUEBAgNzc3BQcHa+LEiZKuFnvGjRunoKAgubq6qnz58ho8eLC1n+ymsX300Ufq1q2bPDw8VL16da1YscLmtVesWKHq1avLzc1NrVu31vz58/M1TXvp0qWqVauWXF1dValSJU2bNi1Lm4sXL+rRRx9ViRIlVKFCBb377rvWdbntU07ys79Hjx5V69atJUmlSpWSxWKx5kBGRoYmTpyoypUry93dXXXr1tWXX35p7Tdz6vr333+vhg0bytXVVRs3brS+37Nnz1ZgYKA8PDzUo0cPJSQkWLfNyMjQ66+/rooVK8rV1VX16tXTqlWr7O5Tenq6+vfvb40lJCREs2bNsq4fN26c5s+fr6+//loWi0UWi0URERHZTntbv369GjduLFdXVwUEBGjUqFG6cuWKdX2rVq00ePBgvfTSS/L19ZW/v7/GjRtnE0+pUqXUrFkzLV68OE/vyZ2Ec+nNO5dK0htvvKFy5crJy8tLTz75pEaNGmUz3XXbtm1q166dypQpI29vb7Vs2VI7d+606cNisej9999Xx44d5e7uripVqth8tnOzdetW1a9fX25ubmrUqJF27dqVpU1UVJQ6duwoT09P+fn5qXfv3jpz5oxNmytXrui5556Tt7e3ypQpozFjxti8h9efy6ZPn67atWurRIkSCgwM1MCBA5WYmGhd//vvv6tz584qVaqUSpQooVq1aum7777Lc0xJSUnq06ePPD09FRAQkO15Oye5vc/z5s2Tj4+PVqxYodDQULm6uiouLi5P75l0tcjm7+9vfZQsWdJmfbt27XTu3LksI+Jw1cWLF9WrVy+VKFFCAQEBmjFjhs3nd8GCBWrUqJG8vLzk7++vxx57TKdPn7Zun/k7b+XKlapTp47c3Nx07733KioqqpD2CChaKLoBKNJeeuklLV26VPPnz9fOnTtVrVo1hYeH69y5czbtzp8/r3bt2ikjI0M//fRTgU8lSzuZqku7Em0eqbGXJUkZlzOyrLu06+8/plOiL2VZd+Xc1S9CV/5Ky7Iu5dClfMU2a9YsaxHg5MmTdouWOe5fWprCw8Pl5eWlDRs2aNOmTfL09FSHDh2UmpoqSZo2bZrmzZunjz/+WBs3btS5c+f01Vdf2e2zZMmSevDBB/XZZ5/ZLF+4cKG6du1q/U+3l5eX5s2bp3379mnWrFn68MMPNWPGjHzvw7Wee+45/frrr1q8eLH27Nmjf//73+rQoYMOHTpkd5sNGzaoUaNGWZbHxMTo+++/16pVq7Ro0SLNmTNHDzzwgI4fP67169dr8uTJevXVV7Vly5Zs+3377be1YsUKffHFF4qOjtbChQutX+aXLl2qGTNmaPbs2Tp06JCWL1+u2rVr57hv48ePV48ePbRnzx516tRJvXr1sn5eYmNj9fDDD6tr166KjIzUM888o1deeSWPR03asWOHevTooUceeUS//fabxo0bpzFjxmjevHk27aZMmaK6detq165dGjVqlIYMGaKffvrpH+/TP9nfwMBALV26VJIUHR2tkydPWotZEydO1CeffKIPPvhAe/fu1YsvvqjHH388yxe6UaNGadKkSdq/f7/q1KkjSTp8+LC++OILffPNN1q1apV27dqlgQMHWreZNWuWpk2bpqlTp2rPnj0KDw/XQw89ZDe3MjIyVLFiRS1ZskT79u3Ta6+9ppdffllffPGFJGn48OHq0aOHOnTooJMnT+rkyZM2o6wynThxQp06ddI999yjyMhIvf/++5ozZ47eeOMNm3bz589XiRIltGXLFr311lt6/fXXre9NpsaNG2vDhg35eRscJuHPBB3bE2fzOBt3tXiQdjkty7pje+Ks2/55+FSWdUnxV68DlXjmYpZ1p4+czjYGeziXZuWoc+nChQv15ptvavLkydqxY4eCgoL0/vvv27S5ePGi+vbtq40bN2rz5s2qXr26OnXqpIsXL9q0GzNmjLp3767IyEj16tVLjzzyiPbv35/rviQmJurBBx9UaGioduzYoXHjxmn48OE2bc6fP682bdqofv362r59u1atWqU///xTPXr0sGk3f/58FS9eXFu3btWsWbM0ffp0ffTRR3Zf28nJSW+//bb27t2r+fPna+3atXrppZes6wcNGqSUlBT9/PPP+u233zR58mR5enrmOaYRI0Zo/fr1+vrrr/Xjjz8qIiIi2+KXPXl5n5OTkzV58mR99NFH2rt3r8qVK5fn92zhwoUqU6aM7r77bo0ePdpaKM7k4uKievXqFdp5KeNkktJ3nbZ5ZMRe/WeLuXwly7r0XX+fW9Kj47Nue+7//j7861LWdSfzf+26oUOHatOmTVqxYoV++uknbdiwweb9TUtL04QJExQZGanly5fr6NGjNsXzTCNGjNC0adO0bds2lS1bVp07d86xMA/g/xgAd7SkpCSzfft2k5SUZIwxpsXlx4zrpVqF+mhx+bE8xZ6YmGicnZ3NwoULrctSU1NN+fLlzVtvvWXWrVtnJJn9+/ebOnXqmO7du5uUlJSbchxz8+frcSbK5Rebx7G+B40xxlw+lJxlXZTLL9ZtY5rvybIufuFpY4wxZ947mWVdbKe9+Y5vxowZJjg42GZZy5YtzZAhQ6zPg4ODzYwZM6zPJZmvvvrKGGPMggULTEhIiMnIyLCuT0lJMe7u7uaHH34wxhgTEBBg3nrrLev6tLQ0U7FiRdOlSxe7cX311VfG09PTmp8JCQnGzc3NfP/993a3mTJlimnYsKH1+dixY03dunXt7pcxxnTp0sX07dvXGGPM77//booVK2ZOnDhh0+b+++83o0ePtvu63t7e5pNPPrFZNnbsWOPh4WEuXLhgXRYeHm4qVapk0tPTrctCQkLMxIkTrc+vPbbPP/+8adOmjc2xzTRt2jRTo0YNk5qamm1M2b1nr776qvV5YmKikWQ9niNHjjR33323TR+vvPKKkWTi4+Pt7numxx57zLRr185m2YgRI0xoaKhNTB06dLBp07NnT9OxY8c87VNO8ru/meeIa/ft8uXLxsPDw/zyy9+fQWOM6d+/v3n00Udttlu+fLlNm7Fjx5pixYqZ48ePW5d9//33xsnJyZw8edIYY0z58uXNm2++abPdPffcYwYOHGiMMSY2NtZIMrt27bK7n4MGDTLdu3e3Pu/bt2+Wz9H1/bz88stZPqPvvvuu8fT0tOZiy5YtzX333ZcltpEjR9osmzVrlqlUqZLd+G6m76Z8Ywb7D7B5zB/4sTHGmNNH/syybrD/AOu20x+YnGXd1iWbjTHG/Pzxuizr3us5K9/xcS69OefSJk2amEGDBtksa9asmU0810tPTzdeXl7mm2++sS6TZAYMGGDTrkmTJubZZ5+120+m2bNnm9KlS5tLly5Zl73//vs2n7MJEyaY9u3b22x37NgxI8lER0cbY64et5o1a9q8xyNHjjQ1a9a0Pr8+R663ZMkSU7p0aevz2rVrm3HjxmXbNreYLl68aFxcXMwXX3xhXX/27Fnj7u6e5f3NTl7e57lz5xpJZvfu3Tn2ld17Nnv2bLNq1SqzZ88e8+mnn5oKFSqYbt26Zdm2W7dupl+/frnGezNcGr/ZnHd+2+aR1Ofq5/XKofgs6847v23d9uJ9X2RZl/LpfmOMMZffi8yy7tL4zfmK7cKFC8bZ2dksWbLEuuz8+fPGw8PD7vu7bds2I8lcvHjRGPP377zFixdb22TmyOeff55tH5nfL7788ksza9YsM2fOnHzFDdxOmPQOoMiKiYlRWlqamjVrZl3m7Oysxo0ba//+/brnnnskXZ120LhxY33++eeFdlHmUk/6yetB2wvjF/O5egp2ruiqKpvtj+Sp8GE1ZSTb3sHNOdhVkuT9cGl53Otps87Js+D3MTIyUocPH5aXl5fN8suXLysmJkYJCQk6efKkmjRpYl1XvHhxNWrUKMdpUZ06dZKzs7NWrFihRx55REuXLlXJkiXVtm1ba5vPP/9cb7/9tmJiYpSYmKgrV65kmXqSH7/99pvS09NVo0YNm+UpKSkqXbq03e0uXbqUZTqUdHWa0LXHxc/PT8WKFbO5lo2fn5/NVI5r9evXT+3atVNISIg6dOigBx98UO3bt5ck/fvf/9bMmTNVpUoVdejQQZ06dVLnzp1zvKZN5ogsSSpRooRKlixpfe3o6Gjr5yZT48aN7fZ1vf3796tLly42y5o1a6aZM2cqPT3d+vkLCwuzaRMWFmadSvVP9iknOe1vdg4fPqzk5GS1a9fOZnlqaqrq169vsyy7kY1BQUGqUKGC9XlYWJgyMjIUHR0tDw8P/fHHHzbnLOnqMYqMjLQb07vvvquPP/5YcXFxunTpklJTU/N9F8n9+/crLCxMFovF5nUTExN1/PhxBQUFSbI9XpIUEBCQ5Xi5u7tnGWlSUJr2bq6729vG6OFzdaSWT0ApDf9htN1tH5vZR6nJqTbLfAOvfqbrd26oSg2r2Kxz9cz6eb7ZOJdmfy6Njo62GTEqXT03rV271vr8zz//1KuvvqqIiAidPn1a6enpSk5OVlxcnM122Z1/8nL30cwRrdfGdn1fkZGRWrdunXWU2bViYmKsx+Lee++1+SyGhYVp2rRpNufJa61evVoTJ07UgQMHdOHCBV25ckWXL19WcnKyPDw8NHjwYD377LP68ccf1bZtW3Xv3t36Wc4tpsxzyrU55evrq5CQkFyPiZT399nFxSXL+SUv79nTTz9t/bl27doKCAjQ/fffr5iYGFWtWtW6rjDPSy5P3S3nzpVtlll8rv6d5lTRU55betrd1v2jtlKy7WgxS/DVz53zw9VV/F7ba3Na/PN3g40jR44oLS3N5ne5t7e3zfubOXIzMjJS8fHxysjIkCTFxcUpNDTU2u7afM/MkbyMEgXudBTdANgIdaomZdwCMTjQAw88oKVLl2rfvn03NE3tRjgHuMg5wCXbdU5uTnKvn/WP4UyuIe521xUv66ziZQv/rniJiYlq2LChFi5cmGXdjVwQ2sXFRQ8//LA+++wzPfLII/rss8/Us2dPawHm119/Va9evTR+/HiFh4fL29tbixcvzvF6NE5OTlm+nF47PSIxMVHFihXTjh07snz5ye5LS6YyZcooPj4+y/Lr71posViyXZb5R+71GjRooNjYWH3//fdavXq1evToobZt2+rLL79UYGCgoqOjtXr1av30008aOHCgpkyZovXr19u9W2J+Xrsw/JN9ykl+9zfzOkkrV660KZ5Jkqurq83zgri74OLFizV8+HBNmzZNYWFh8vLy0pQpU+xOR75ReTle586dK7QLvXv7ecvbzzvbdc5uzgqsE2R3W79q9m8s4VnGS55lvOyuLyicS+2fS3PTt29fnT17VrNmzVJwcLBcXV0VFhZmnZZbEBITE9W5c2dNnjw5y7qAgIB/1OfRo0f14IMP6tlnn9Wbb74pX19fbdy4Uf3791dqaqo8PDz05JNPKjw8XCtXrtSPP/6oiRMnatq0aXr++edzjenw4Ru7eVZe32d3d3ebQqP0z96zzOLg4cOHbYpu586ds3lekJwCSkgB2f8+sLgVV7H65exuWyzE/p3Kncq6S2Xt/w3oCElJSQoPD1d4eLgWLlyosmXLKi4uTuHh4QX62QFuZxTdANgoSncNrVq1qlxcXLRp0yYFBwdLuvoH/7Zt22wu7jxp0iR5enrq/vvvV0REhM1/7eAYDRo00Oeff65y5crZHRkREBCgLVu2qEWLFpKuXkh6x44datCgQY599+rVS+3atdPevXu1du1am2tQ/fLLLwoODra57tjvv/+eY39ly5bVyZMnrc/T09MVFRVlvah+/fr1lZ6ertOnT6t58+Y57/g16tevr3379uW5fX6ULFlSPXv2VM+ePfXwww+rQ4cOOnfunHx9feXu7q7OnTurc+fOGjRokO666y799ttvuR7X7ISEhNhcfFtSvq5LVbNmTW3atMlm2aZNm1SjRg2bL2ObN2+2abN582bVrFnT+tyR+5QTF5erhfD09L9Hkl57ke+WLVvmu8+4uDj98ccfKl++vKSr++bk5KSQkBCVLFlS5cuX16ZNm2z63rRpk90RhZs2bVLTpk1tRvnExMRk2Y9r9yE7NWvW1NKlS2WMsX7x3bRpk7y8vFSxYsV87WNUVFSWUX9wDM6l2Z9LQ0JCtG3bNvXp08e67Ppz06ZNm/Tee++pU6dOkq7ekOL6GxhIVz+T1/azefPmPOVzzZo1tWDBAl2+fNk62u36c1mDBg20dOlSVapUKcfRudcXzTOvZ5bdKLcdO3YoIyND06ZNs46Qzrym47UCAwM1YMAADRgwQKNHj9aHH36o559/PteYqlatKmdnZ23ZssU64jU+Pl4HDx7M0znwn77PUt7fs2tljkq8vogZFRWlhx9+OF+vfyeoUqWKnJ2dtW3bNuv7m5CQoIMHD6pFixY6cOCAzp49q0mTJikwMFCStH379mz72rx5c5YcufZ3N4DscSMFAEVWiRIl9Oyzz2rEiBFatWqV9u3bp6eeekrJycnq37+/TdupU6eqV69eatOmjQ4cOFBIEd++evXqpTJlyqhLly7asGGDYmNjFRERocGDB+v48eOSpCFDhmjSpElavny5Dhw4oIEDB+bpjpgtWrSQv7+/evXqpcqVK9tMgalevbri4uK0ePFixcTE6O23387xguKS1KZNG61cuVIrV67UgQMH9Oyzz9rEUaNGDfXq1Ut9+vTRsmXLFBsbq61bt2rixIlauXKl3X7Dw8O1cePGXPcnv6ZPn65FixbpwIEDOnjwoJYsWSJ/f3/5+Pho3rx5mjNnjqKionTkyBF9+umncnd3txah8+uZZ57RgQMHNHLkSB08eFBffPGF9SYI149QyM6wYcO0Zs0aTZgwQQcPHtT8+fP1v//9L8vFxjdt2qS33npLBw8e1LvvvqslS5ZoyJAhkuTwfcpJcHCwLBaLvv32W/31119KTEyUl5eXhg8frhdffFHz589XTEyMdu7cqXfeeUfz58/PtU83Nzf17dtXkZGR2rBhgwYPHqwePXrI3//qKKsRI0Zo8uTJ+vzzzxUdHa1Ro0Zp9+7d1v2/XvXq1bV9+3b98MMPOnjwoMaMGZOl2FCpUiXt2bNH0dHROnPmTLYXth44cKCOHTum559/XgcOHNDXX3+tsWPHaujQoTZTnfNiw4YN1inOcCzOpdmfS59//nnNmTNH8+fP16FDh/TGG29oz549Nuel6tWra8GCBdq/f7+2bNmiXr16yd096yihJUuW6OOPP9bBgwc1duxYbd26Vc8991xuh0+PPfaYLBaLnnrqKe3bt0/fffedpk6datNm0KBBOnfunB599FFt27ZNMTEx+uGHH/TEE0/YFMbj4uI0dOhQRUdHa9GiRXrnnXfsngOqVaumtLQ0vfPOOzpy5IgWLFigDz74wKbNCy+8oB9++EGxsbHauXOn1q1bZy2G5BaTp6en+vfvrxEjRmjt2rWKiopSv3798nxe+Kfvs5T7exYTE6MJEyZox44dOnr0qFasWKE+ffqoRYsWNlNVjx49qhMnTthMl8ZVXl5e6tu3r0aMGKF169Zp79696t+/v5ycnGSxWBQUFCQXFxdrfq1YsUITJkzItq/XX39da9asseZImTJl1LVr14LdIaAIougGoEibNGmSunfvrt69e6tBgwY6fPiwfvjhB5UqlXW4/owZM9SjRw+1adNGBw8eLIRob18eHh76+eefFRQUpH/961+qWbOm+vfvr8uXL1tHawwbNky9e/dW3759rdPkunXrlmvfFotFjz76qPVOc9d66KGH9OKLL+q5555TvXr19Msvv2jMmDE59vef//xHffv2VZ8+fdSyZUtVqVLFOjIj09y5c9WnTx8NGzZMISEh6tq1q81/ibPTq1cv7d27V9HR0bnuU354eXnprbfeUqNGjXTPPffo6NGj+u677+Tk5CQfHx99+OGHatasmerUqaPVq1frm2++yfF6STmpXLmyvvzySy1btkx16tTR+++/bx35cv3Uyuw0aNBAX3zxhRYvXqy7775br732ml5//fUsd0EbNmyYtm/frvr16+uNN97Q9OnTFR4eLkkO36ecVKhQQePHj9eoUaPk5+dn/eI9YcIEjRkzRhMnTlTNmjXVoUMHrVy5UpUrV86lx6tfkP/1r3+pU6dOat++verUqaP33nvPun7w4MEaOnSohg0bptq1a2vVqlVasWKFqlevnm1/zzzzjP71r3+pZ8+eatKkic6ePZvl2lZPPfWUQkJC1KhRI5UtWzbLaMPMff3uu++0detW1a1bVwMGDFD//v316quv5ueQ6ddff1VCQgIjSm4SzqXZn0t79eql0aNHa/jw4dYp9/369bO5vtqcOXMUHx+vBg0aqHfv3ho8eLDKlcs6rW/8+PFavHix6tSpo08++USLFi3K0wh4T09PffPNN/rtt99Uv359vfLKK1mmbGaOZE1PT1f79u1Vu3ZtvfDCC/Lx8bEpYvXp00eXLl1S48aNNWjQIA0ZMsTm2mXXqlu3rqZPn67Jkyfr7rvv1sKFCzVx4kSbNunp6Ro0aJD1fFWjRg3reScvMU2ZMkXNmzdX586d1bZtW913331q2LBhrsck0z95n6Xc3zMXFxetXr1a7du311133aVhw4ape/fu+uabb2z6WbRokdq3b39T/jlzO5g+fbrCwsL04IMPqm3btmrWrJlq1qwpNzc3lS1bVvPmzdOSJUsUGhqqSZMmZSkmZ5o0aZKGDBmihg0b6tSpU/rmm2+sI8YB2GcxOV11FcBtLzk5Wfv371fNmjXl4eFR2OEARdqIESN04cIFzZ49u7BDcZg333xTH3zwgY4dO1bYodzyxo0bp+XLl+fpouxFVc+ePVW3bl29/PLLhR0KbmN5OZe2a9dO/v7+WrBgQZ77tVgs+uqrrxidcxtJTU1V9erV9dlnn2W5SQ2yl5SUpAoVKmjatGlZZoZkJyIiQq1bt1Z8fLx8fHzy9BqZ3y8yRyF6enrqP//5zw1GDhRNjHQDAMBBXnnlFQUHB99SNybIr/fee0/btm2zTmOaMmWK+vbtW9hh4RaQmpqq2rVr68UXXyzsUHCbu/5cmpycrOnTp2vv3r06cOCAxo4dq9WrV3NuguLi4vTyyy9TcMvBrl27tGjRIuvlEjJHul5/t3EANwdFNwAAHMTHx0cvv/xyvq+RdSs5dOiQunTpotDQUE2YMEHDhg3TuHHjJEkdO3aUp6dnto///ve/NzWuDRs22H3tnO6ECMdxcXHRq6++mu11sgBHuv5carFY9N1336lFixZq2LChvvnmGy1dutSh1/D673//a/f80rFjR4e9TlFzq597q1Wrpmeeeaaww7jlTZ06VXXr1lXbtm2VlJSkDRs2qEyZMoUdFnBHYHopcIdjeimAvDpx4oQuXbqU7TpfX1/5+vretNe+dOmSTpw4YXd9tWrVbtprA7j9nTt3TufOnct2nbu7uypUqFDAEd0aOPfin2B6KfA3+/eyBgAAuEZhful0d3fnyx2Am+Zm/+OgqOLcCwA3pujOfwHgUEX5GlQAAAAAbg1MpgP+RtENuMNl3uo7MTGxkCMBAAAAUNSlpKRIkq5cuVLIkQCFj+mlwB2uePHiKlOmjPV6HZ6enkX6IvAAAAAACkdGRoaOHTum5ORkpaenF3Y4QKGj6AZAQUFBkpTjhXIBAAAAIDcZGRk6deqUpKuj3bjrNe5kFN0AyGKxKDg4WJ6envr+++914cIFlStXThaLpbBDAwAAAFBEGGOUlpYmY4wSExOVkpKiihUrFnZYQKGxGK5yCOAaJ06c0HfffaezZ88WdigAAAAAiiBjjJydnVWnTh21adNGxYsz3gd3JopuALKIj4/XmTNnlJqaWtihAAAAAChiLBaLPD09Vb58eQpuuKNRdAMAAAAAAAAcjFsUAgAAAAAAAA5G0Q0AAAAAAABwMIpuAAAAAAAAgINRdAMAAAAAAAAcjKIbAAAAAAAA4GD/H/IE86oTTGSqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_station.make_plot(colorby='label')\n" + ] + }, + { + "cell_type": "markdown", + "id": "37e4da59-953b-4fed-ab7a-a33325f31e66", + "metadata": {}, + "source": [ + "If you want more details you can inspect the DataFrame with the gapfill values, or print out the information." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1fd0c99f-4d86-4dbb-936c-226d949f1d30", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
temp_final_labeltemp
namedatetime
vlinder052022-09-01 19:45:00+00:00gap_debiased_era520.470136
2022-09-01 20:00:00+00:00gap_debiased_era520.200433
2022-09-01 20:15:00+00:00gap_debiased_era520.018491
2022-09-01 20:30:00+00:00gap_debiased_era519.836549
2022-09-01 20:45:00+00:00gap_debiased_era519.654607
\n", + "
" + ], + "text/plain": [ + " temp_final_label temp\n", + "name datetime \n", + "vlinder05 2022-09-01 19:45:00+00:00 gap_debiased_era5 20.470136\n", + " 2022-09-01 20:00:00+00:00 gap_debiased_era5 20.200433\n", + " 2022-09-01 20:15:00+00:00 gap_debiased_era5 20.018491\n", + " 2022-09-01 20:30:00+00:00 gap_debiased_era5 19.836549\n", + " 2022-09-01 20:45:00+00:00 gap_debiased_era5 19.654607" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#inspect the gapfilldf attribute direct\n", + "your_station.gapfilldf.head()\n", + "\n", + "#or print out info\n", + "#your_station.get_gaps_info()" + ] + }, + { + "cell_type": "markdown", + "id": "5f753cb4-eb5b-4479-a949-a58c3a18928a", + "metadata": {}, + "source": [ + "## Filling gaps exercise\n", + "\n", + "For a more detailed reference you can use this [Filling gaps exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Gap_filling_excercise_03.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/examples/gee_example.html b/docs/_build/examples/gee_example.html new file mode 100644 index 00000000..ff3d6c70 --- /dev/null +++ b/docs/_build/examples/gee_example.html @@ -0,0 +1,1557 @@ + + + + + + + Demo example: Using a Google Earth engine — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Demo example: Using a Google Earth engine

+

This example is the continuation of the previous example: Using a Dataset. This example serves as a demonstration on how to get meta-data from the Google Earth Engine (GEE).

+

Before proceeding, make sure you have set up a Google developers account and a GEE project. See Using Google Earth Engine for a detailed description of this.

+
+

Create your Dataset

+

Create a dataset with the demo data.

+
+
[1]:
+
+
+
import metobs_toolkit
+
+your_dataset = metobs_toolkit.Dataset()
+your_dataset.update_settings(
+    input_data_file=metobs_toolkit.demo_datafile, # path to the data file
+    input_metadata_file=metobs_toolkit.demo_metadatafile,
+    template_file=metobs_toolkit.demo_template,
+)
+
+your_dataset.import_data_from_file()
+
+
+
+
+
+

Extracting LCZ from GEE

+

Here is an example of how to extract the Local Climate Zone (LCZ) information of your stations. First, we take a look at what is present in the metadata of the dataset.

+
+
[2]:
+
+
+
your_dataset.metadf.head()
+
+
+
+
+
[2]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
networklatloncall_namelocationgeometrylczassumed_import_frequencydataset_resolution
name
vlinder01Vlinder50.9804383.815763ProefhoeveMellePOINT (3.81576 50.98044)NaN0 days 00:05:000 days 00:05:00
vlinder02Vlinder51.0223793.709695SterreGentPOINT (3.70969 51.02238)NaN0 days 00:05:000 days 00:05:00
vlinder03Vlinder51.3245834.952109CentrumTurnhoutPOINT (4.95211 51.32458)NaN0 days 00:05:000 days 00:05:00
vlinder04Vlinder51.3355224.934732StadsboerderijTurnhoutPOINT (4.93473 51.33552)NaN0 days 00:05:000 days 00:05:00
vlinder05Vlinder51.0526553.675183WatersportbaanGentPOINT (3.67518 51.05266)NaN0 days 00:05:000 days 00:05:00
+
+
+

To extract geospatial information for your stations, the lat and lon (latitude and longitude) of your stations must be present in the metadf. If so, than geospatial information will be extracted from GEE at these locations.

+

To extract the Local Climate Zones (LCZs) of your stations:

+
+
[3]:
+
+
+
lcz_values = your_dataset.get_lcz()
+# The LCZs for all your stations are extracted
+print(lcz_values)
+
+
+
+
+
+
+
+

To authorize access needed by Earth Engine, open the following + URL in a web browser and follow the instructions:

+

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=EilDDu9N_IN7ZxxlE8vHRyOhvajPnAULh-m6NKErDfA&tc=6gnXS_wEbNaFrF2IbPoa4ClUF8zPJXCu5eV4Z-p7mIE&cc=g2TqjaVuDM_wFOuJbQqeoAvDR8bLFGxRCM7W-4wlKJo

+

The authorization workflow will generate a code, which you should paste in the box below.

+
+
+
+
+
+
+Enter verification code:  4/1AfJohXk4_ehQtiIn6aGEgF_Pv9ImRjoTVbH17orBc6cNf-eI4_kuuJ_0kLY
+
+
+
+
+
+
+
+
+Successfully saved authorization token.
+
+
+
+
+
+
+
+*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API
+
+
+
+
+
+
+
+name
+vlinder01         Low plants (LCZ D)
+vlinder02               Open midrise
+vlinder03               Open midrise
+vlinder04             Sparsely built
+vlinder05              Water (LCZ G)
+vlinder06    Scattered Trees (LCZ B)
+vlinder07            Compact midrise
+vlinder08            Compact midrise
+vlinder09    Scattered Trees (LCZ B)
+vlinder10            Compact midrise
+vlinder11               Open lowrise
+vlinder12              Open highrise
+vlinder13            Compact midrise
+vlinder14         Low plants (LCZ D)
+vlinder15             Sparsely built
+vlinder16              Water (LCZ G)
+vlinder17    Scattered Trees (LCZ B)
+vlinder18         Low plants (LCZ D)
+vlinder19            Compact midrise
+vlinder20            Compact midrise
+vlinder21             Sparsely built
+vlinder22         Low plants (LCZ D)
+vlinder23         Low plants (LCZ D)
+vlinder24        Dense Trees (LCZ A)
+vlinder25              Water (LCZ G)
+vlinder26               Open midrise
+vlinder27            Compact midrise
+vlinder28               Open lowrise
+Name: lcz, dtype: object
+
+
+

The first time, in each session, you are asked to authenticated by Google. Select your Google account and billing project that you have set up and accept the terms of the condition.

+

NOTE: For small data-requests the read-only scopes are sufficient, for large data-requests this is insufficient because the data will be written directly to your Google Drive.

+

The metadata of your dataset is also updated

+
+
[4]:
+
+
+
print(your_dataset.metadf['lcz'].head())
+
+
+
+
+
+
+
+
+name
+vlinder01    Low plants (LCZ D)
+vlinder02          Open midrise
+vlinder03          Open midrise
+vlinder04        Sparsely built
+vlinder05         Water (LCZ G)
+Name: lcz, dtype: object
+
+
+

To make a geospatial plot you can use the following method:

+
+
[5]:
+
+
+
your_dataset.make_geo_plot(variable="lcz")
+
+
+
+
+
+
+
+
+/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:48: ShapelyDeprecationWarning: The 'type' attribute is deprecated, and will be removed in the future. You can use the 'geom_type' attribute instead.
+  if geom is not None and geom.type.startswith(prefix) and not geom.is_empty:
+/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:715: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead
+  if pd.api.types.is_categorical_dtype(values.dtype):
+
+
+
+
[5]:
+
+
+
+
+<Axes: title={'center': 'LCZ'}>
+
+
+
+
+
+
+../_images/examples_gee_example_11_2.png +
+
+
+
+

Extracting other Geospatial information

+

Similar as LCZ extraction you can extract the altitude of the stations (from a digital elevation model):

+
+
[6]:
+
+
+
altitudes = your_dataset.get_altitude() #The altitudes are in meters above sea level.
+print(altitudes)
+
+
+
+
+
+
+
+
+name
+vlinder01    12
+vlinder02     7
+vlinder03    30
+vlinder04    25
+vlinder05     0
+vlinder06     0
+vlinder07     7
+vlinder08     7
+vlinder09    19
+vlinder10    14
+vlinder11     6
+vlinder12     9
+vlinder13    10
+vlinder14     4
+vlinder15    41
+vlinder16     4
+vlinder17    83
+vlinder18    35
+vlinder19    75
+vlinder20    44
+vlinder21    19
+vlinder22     3
+vlinder23     1
+vlinder24    12
+vlinder25    12
+vlinder26    24
+vlinder27    12
+vlinder28     7
+Name: altitude, dtype: int64
+
+
+

A more detailed description of the landcover/land use in the microenvironment can be extracted in the form of landcover fractions in a circular buffer for each station.

+

You can select to aggregate the landcover classes to water - pervious and impervious, or set aggregation to false to extract the landcover classes as present in the worldcover_10m dataset.

+
+
[7]:
+
+
+
aggregated_landcover = your_dataset.get_landcover(
+                                        buffers=[100, 250], # a list of buffer radii in meters
+                                        aggregate=True #if True, aggregate landcover classes to the water, pervious and impervious.
+                                        )
+
+print(aggregated_landcover)
+
+
+
+
+
+
+
+
+                            water  pervious  impervious
+name      buffer_radius
+vlinder01 100            0.000000  0.981781    0.018219
+          250            0.000000  0.963635    0.036365
+vlinder02 100            0.000000  0.428769    0.571231
+          250            0.000000  0.535944    0.464056
+vlinder03 100            0.000000  0.245454    0.754546
+          250            0.000000  0.160831    0.839169
+vlinder04 100            0.000000  0.979569    0.020431
+          250            0.000000  0.881948    0.118052
+vlinder05 100            0.446604  0.224871    0.328525
+          250            0.242406  0.526977    0.230617
+vlinder06 100            0.000000  1.000000    0.000000
+          250            0.000000  0.995819    0.004181
+vlinder07 100            0.000000  0.433034    0.566966
+          250            0.002911  0.149681    0.847407
+vlinder08 100            0.000000  0.029552    0.970448
+          250            0.002911  0.030423    0.966666
+vlinder09 100            0.000000  1.000000    0.000000
+          250            0.000000  0.974895    0.025105
+vlinder10 100            0.000000  0.129686    0.870314
+          250            0.000000  0.125173    0.874827
+vlinder11 100            0.000000  0.273457    0.726543
+          250            0.000000  0.204337    0.795663
+vlinder12 100            0.000000  0.803321    0.196679
+          250            0.004188  0.313829    0.681983
+vlinder13 100            0.000000  0.006042    0.993958
+          250            0.000000  0.044648    0.955352
+vlinder14 100            0.000000  0.803469    0.196531
+          250            0.000000  0.835386    0.164614
+vlinder15 100            0.000000  0.798196    0.201804
+          250            0.000000  0.918644    0.081356
+vlinder16 100            0.367579  0.232926    0.399495
+          250            0.448841  0.217178    0.333981
+vlinder17 100            0.000000  0.989899    0.010101
+          250            0.000000  0.980923    0.019077
+vlinder18 100            0.000000  1.000000    0.000000
+          250            0.000000  1.000000    0.000000
+vlinder19 100            0.000000  0.447270    0.552730
+          250            0.000000  0.343485    0.656515
+vlinder20 100            0.000000  0.129964    0.870036
+          250            0.000000  0.039639    0.960361
+vlinder21 100            0.000000  1.000000    0.000000
+          250            0.000487  0.962068    0.037445
+vlinder22 100            0.973231  0.026769    0.000000
+          250            0.884010  0.115990    0.000000
+vlinder23 100            0.399503  0.600497    0.000000
+          250            0.272793  0.712724    0.014483
+vlinder24 100            0.000000  0.960773    0.039227
+          250            0.000000  0.946138    0.053862
+vlinder25 100            0.790001  0.152027    0.057972
+          250            0.899936  0.063972    0.036092
+vlinder26 100            0.000000  0.148975    0.851025
+          250            0.000000  0.174383    0.825617
+vlinder27 100            0.000000  0.011601    0.988399
+          250            0.018481  0.084840    0.896679
+vlinder28 100            0.000000  0.489951    0.510049
+          250            0.000000  0.721950    0.278050
+
+
+
+
+

Extracting ERA5 timeseries

+

The toolkit has built-in functionality to extract ERA5 time series at the station locations. The ERA5 data will be stored in a Modeldata instance. Here an example on how to get the ERA5 time series by using the get_modeldata() method.

+
+
[8]:
+
+
+
#Get the ERA5 data for a single station (to reduce data transfer)
+your_station = your_dataset.get_station('vlinder02')
+
+#Extract time series at the location of the station
+ERA5_data = your_station.get_modeldata(modelname='ERA5_hourly',
+                                      obstype='temp',
+                                      startdt=None, #if None, the start of the observations is used
+                                      enddt=None, #if None, the end of the observations is used
+                                      )
+
+#Get info
+print(ERA5_data)
+ERA5_data.make_plot(obstype_model='temp',
+                    dataset=your_station, #add the observations to the same plot
+                    obstype_dataset='temp')
+
+
+
+
+
+
+
+
+(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)
+Modeldata instance containing:
+     * Modelname: ERA5_hourly
+     * 1 timeseries
+     * The following obstypes are available: ['temp']
+     * Data has these units: {'temp': 'Celsius'}
+     * From 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:00:00+00:00 (with tz=UTC)
+
+ (Data is stored in the .df attribute)
+
+
+
+
[8]:
+
+
+
+
+<Axes: title={'center': 'ERA5_hourly : temperature_2m and Temperatuur observations.'}, ylabel='temperature_2m \n Temperatuur (Celcius)'>
+
+
+
+
+
+
+../_images/examples_gee_example_17_2.png +
+
+
+

GEE data transfer

+

There is a limit to the amount of data that can be transfered directly from GEE. When the data cannot be transferred directly, it will be written to a file on your Google Drive. The location of the file will be printed out. When the writing to the file is done, you must download the file and import it to an empty Modeldata instance using the +set_model_from_csv() method.

+
+
[9]:
+
+
+
#Illustration
+#Extract time series at the locations all the station
+ERA5_data = your_dataset.get_modeldata(modelname='ERA5_hourly',
+                                      obstype='temp',
+                                      startdt=None, #if None, the start of the observations is used
+                                      enddt=None, #if None, the end of the observations is used
+                                      )
+
+#Because the data amount is too large, it will be written to a file on your Google Drive! The returned Modeldata is empty.
+print(ERA5_data)
+
+
+
+
+
+
+
+
+THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!
+The timeseries will be writen to your Drive in era5_timeseries/era5_data
+The data is transfered! Open the following link in your browser:
+
+
+https://drive.google.com/#folders/1iSjU6u-kFeRS_YikiyaPoc09SNbmvvO1
+
+
+To upload the data to the model, use the Modeldata.set_model_from_csv() method
+(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)
+Empty Modeldata instance.
+
+
+
+
[10]:
+
+
+
#See the output to find the modeldata in your Google Drive, and download the file.
+#Update the empty Modeldata with the data from the file
+
+#ERA5_data.set_model_from_csv(csvpath='/home/..../era5_data.csv') #The path to the downloaded file
+#print(ERA5_data)
+
+
+
+
+
+
+

Interactive plotting of a GEE dataset

+

You can make an interactive spatial plot to visualize the stations spatially by using the make_gee_plot().

+
+
[11]:
+
+
+
spatial_map = your_dataset.make_gee_plot(gee_map='worldcover')
+spatial_map
+
+
+
+
+
[11]:
+
+
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/gee_example.ipynb b/docs/_build/examples/gee_example.ipynb new file mode 100644 index 00000000..873b202c --- /dev/null +++ b/docs/_build/examples/gee_example.ipynb @@ -0,0 +1,1594 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "b1600459-c400-47fa-a3a2-b3114f4a5a34", + "metadata": {}, + "source": [ + "# Demo example: Using a Google Earth engine\n", + "\n", + "This example is the continuation of the previous example: [Using a Dataset](https://vergauwenthomas.github.io/MetObs_toolkit/examples/doc_example.html). This example serves as a demonstration on how to get meta-data from the Google Earth Engine (GEE). \n", + "\n", + "Before proceeding, make sure you have **set up a Google developers account and a GEE project**. See [Using Google Earth Engine](https://vergauwenthomas.github.io/MetObs_toolkit/gee_authentication.html) for a detailed description of this." + ] + }, + { + "cell_type": "markdown", + "id": "b8ed4367-693b-4692-bba4-aee9ceb8c311", + "metadata": {}, + "source": [ + "## Create your Dataset\n", + "\n", + "Create a dataset with the demo data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8ec045a4-be37-4c1b-bed4-df4dbf27dc51", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "\n", + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "87479c13-6a41-4c53-ae7f-4c4eaaceef08", + "metadata": {}, + "source": [ + "## Extracting LCZ from GEE\n", + "\n", + "Here is an example of how to extract the Local Climate Zone (LCZ) information of your stations. First, we take a look at what is present in the metadata of the dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "0f94ec85-b403-41f2-bc4b-e256c93d9516", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
networklatloncall_namelocationgeometrylczassumed_import_frequencydataset_resolution
name
vlinder01Vlinder50.9804383.815763ProefhoeveMellePOINT (3.81576 50.98044)NaN0 days 00:05:000 days 00:05:00
vlinder02Vlinder51.0223793.709695SterreGentPOINT (3.70969 51.02238)NaN0 days 00:05:000 days 00:05:00
vlinder03Vlinder51.3245834.952109CentrumTurnhoutPOINT (4.95211 51.32458)NaN0 days 00:05:000 days 00:05:00
vlinder04Vlinder51.3355224.934732StadsboerderijTurnhoutPOINT (4.93473 51.33552)NaN0 days 00:05:000 days 00:05:00
vlinder05Vlinder51.0526553.675183WatersportbaanGentPOINT (3.67518 51.05266)NaN0 days 00:05:000 days 00:05:00
\n", + "
" + ], + "text/plain": [ + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry lcz assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) NaN 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) NaN 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) NaN 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) NaN 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) NaN 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.metadf.head()" + ] + }, + { + "cell_type": "markdown", + "id": "86003003-5fd8-4b6e-a613-073efc27cf4c", + "metadata": {}, + "source": [ + "To extract geospatial information for your stations, the **lat** and **lon** (latitude and longitude)\n", + "of your stations must be present in the metadf. If so, than geospatial\n", + "information will be extracted from GEE at these locations.\n", + "\n", + "To extract the Local Climate Zones (LCZs) of your stations:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "48431035-f130-44dc-9f35-5bfdd84fcff3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

To authorize access needed by Earth Engine, open the following\n", + " URL in a web browser and follow the instructions:

\n", + "

https://code.earthengine.google.com/client-auth?scopes=https%3A//www.googleapis.com/auth/earthengine%20https%3A//www.googleapis.com/auth/devstorage.full_control&request_id=EilDDu9N_IN7ZxxlE8vHRyOhvajPnAULh-m6NKErDfA&tc=6gnXS_wEbNaFrF2IbPoa4ClUF8zPJXCu5eV4Z-p7mIE&cc=g2TqjaVuDM_wFOuJbQqeoAvDR8bLFGxRCM7W-4wlKJo

\n", + "

The authorization workflow will generate a code, which you should paste in the box below.

\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdin", + "output_type": "stream", + "text": [ + "Enter verification code: 4/1AfJohXk4_ehQtiIn6aGEgF_Pv9ImRjoTVbH17orBc6cNf-eI4_kuuJ_0kLY\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Successfully saved authorization token.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "*** Earth Engine *** Share your feedback by taking our Annual Developer Satisfaction Survey: https://google.qualtrics.com/jfe/form/SV_doiqkQG3NJ1t8IS?source=API\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 Low plants (LCZ D)\n", + "vlinder02 Open midrise\n", + "vlinder03 Open midrise\n", + "vlinder04 Sparsely built\n", + "vlinder05 Water (LCZ G)\n", + "vlinder06 Scattered Trees (LCZ B)\n", + "vlinder07 Compact midrise\n", + "vlinder08 Compact midrise\n", + "vlinder09 Scattered Trees (LCZ B)\n", + "vlinder10 Compact midrise\n", + "vlinder11 Open lowrise\n", + "vlinder12 Open highrise\n", + "vlinder13 Compact midrise\n", + "vlinder14 Low plants (LCZ D)\n", + "vlinder15 Sparsely built\n", + "vlinder16 Water (LCZ G)\n", + "vlinder17 Scattered Trees (LCZ B)\n", + "vlinder18 Low plants (LCZ D)\n", + "vlinder19 Compact midrise\n", + "vlinder20 Compact midrise\n", + "vlinder21 Sparsely built\n", + "vlinder22 Low plants (LCZ D)\n", + "vlinder23 Low plants (LCZ D)\n", + "vlinder24 Dense Trees (LCZ A)\n", + "vlinder25 Water (LCZ G)\n", + "vlinder26 Open midrise\n", + "vlinder27 Compact midrise\n", + "vlinder28 Open lowrise\n", + "Name: lcz, dtype: object\n" + ] + } + ], + "source": [ + "lcz_values = your_dataset.get_lcz()\n", + "# The LCZs for all your stations are extracted\n", + "print(lcz_values)" + ] + }, + { + "cell_type": "markdown", + "id": "35933b04-cd3f-4f5e-a557-596701a4125e", + "metadata": { + "tags": [] + }, + "source": [ + "The first time, in each session, you are asked to authenticated by Google.\n", + "Select your Google account and billing project that you have set up and accept the terms of the condition.\n", + "\n", + "*NOTE: For small data-requests the read-only scopes are sufficient, for large data-requests this is insufficient because the data will be written directly to your Google Drive.*" + ] + }, + { + "cell_type": "markdown", + "id": "9d055961-92bb-4f5e-b9e6-3ac26f2271ac", + "metadata": {}, + "source": [ + "The metadata of your dataset is also updated" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "c90d4a3f-11f9-44e2-9e53-cc145569e984", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 Low plants (LCZ D)\n", + "vlinder02 Open midrise\n", + "vlinder03 Open midrise\n", + "vlinder04 Sparsely built\n", + "vlinder05 Water (LCZ G)\n", + "Name: lcz, dtype: object\n" + ] + } + ], + "source": [ + "print(your_dataset.metadf['lcz'].head())" + ] + }, + { + "cell_type": "markdown", + "id": "1c35c91a-2bc8-485c-92df-47ed68927667", + "metadata": {}, + "source": [ + "To make a geospatial plot you can use the following method:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "d5afd195-1aae-4254-a742-e917fb429d6a", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:48: ShapelyDeprecationWarning: The 'type' attribute is deprecated, and will be removed in the future. You can use the 'geom_type' attribute instead.\n", + " if geom is not None and geom.type.startswith(prefix) and not geom.is_empty:\n", + "/home/thoverga/anaconda3/envs/metobs_dev/lib/python3.9/site-packages/geopandas/plotting.py:715: FutureWarning: is_categorical_dtype is deprecated and will be removed in a future version. Use isinstance(dtype, CategoricalDtype) instead\n", + " if pd.api.types.is_categorical_dtype(values.dtype):\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAQhCAYAAADvW1QwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zM9x/A8dddLnsJGUQSJLFJ7L1H7Vl7VUu1ZqnS+hWlFNUatWtXbUpprdp7xt4zZBAikT3v7vdH2tOryHJxSbyfj0ce3Pf7Ge/vGbl3Pkuh1Wq1CCGEEEIIIcQ7RmnsAIQQQgghhBDCGCQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIIYQQQryTJBkSQgghhBBCvJMkGRJCCCGEEEK8kyQZEkIIkSOtXLkShULBuXPn0iwXGRnJxIkT8fX1xcbGBktLS8qVK8eXX35JcHAwAIcOHUKhUKT7dejQobfwZEIIIXIKlbEDEEIIIbLq/v37NGnShEePHtG5c2cGDBiAmZkZly9fZtmyZWzdupXbt29TunRpfv3111TbiI6OZvjw4VhaWlKiRIm3/ARCCCGMSZIhIYQQuVJycjIdO3YkJCSEQ4cOUadOHb373333Hd9//z0ALi4u9OrVK9V2evXqRUJCAmvXrsXV1TXb4xZCCJFzyDQ5IYQQudJvv/3GpUuX+Prrr19JhADs7Oz47rvv0mxj+fLlrFmzhoEDB9KxY8fsClUIIUQOJcmQEEKIXGn79u0A9O7dO0v1b9y4wdChQ/Hx8WHmzJmGDE0IIUQuIcmQEEKIXOnGjRvY29vj7u6e6bpxcXF06dIFgA0bNmBhYWHo8IQQQuQCsmZICCFErhQZGYmtrW2W6n722WdcvXqVZcuWUapUKQNHJoQQIreQkSEhhBC5kp2dHVFRUZmut2HDBpYsWUL37t356KOPsiEyIYQQuYUkQ0IIIXKlUqVKERERQUBAQIbr3Lt3jwEDBuDl5cXPP/+cjdEJIYTIDSQZEkIIkSu1adMGgNWrV2eofGJiIl27diU+Pp7169dneYqdEEKIvEOSISGEELlSp06dKF++PN999x0nT5585X5UVBRff/217vXo0aPx8/Nj6tSpVKlS5W2GKoQQIodSaLVarbGDEEIIIf5r5cqVfPjhhwwcODDVw1A/++wzQkJCaNKkCUFBQXTp0oXatWtjamrKtWvXWLt2LQ4ODty6dYtdu3bRsmVLXF1dmTZtGgqFItU+a9WqhaenZ3Y/mhBCiBxCdpMTQgiRoy1cuDDV63379sXb25uLFy8ya9Ystm7dyu+//45Go8Hb25v+/fszbNgwAE6fPg1AcHAwffr0eW1fK1askGRICCHeITIyJIQQQgghhHgnyZohIYQQQgghxDtJkiEhhBBCCCHEO0mSISGEEEIIIcQ7SZIhIYQQQgghxDtJkiEhhBBCCCHEOylPbK2t0WgIDg7G1tb2tWdHCCGEEEIIIfI+rVZLVFQUrq6uKJVpj/3kiWQoODgYd3d3Y4chhBBCCCGEyCECAgJwc3NLs0yeSIZsbW2BlAe2s7MzcjRCCCGEcXVZdJLrjyONHYYQQhiFJiGWoIV9dTlCWvJEMvTP1Dg7OztJhoQQQrzT7j+L5mZYMkpzK2OHIoQQRpWR5TOygYIQQgiRh2y/FGzsEIQQIteQZEgIIYTII7RarSRDQgiRCZIMCSGEEHnE/htPuf8sxthhCCFErpEn1gwJIYQQ77oktYYpO28YOwyRDguVAgcLJUo5CUSILNNoITxeQ3yy9o3bkmRICCGEyANWn3rI/VAZFcqpFEDH0tY09rTB1ETx9xUhRNZoSVJr2X8/mi03YniTlEiSISGEECKXexGbyOx9d4wdhkhDx9LWtC5lj0N+RxQqM5BD4oXIOq0WbXIirc1MAPjtRtZ/ECTJkBBCCJHLzT1wl4i4JGOHIV7DUqWgsacNDvkdUVqmf+6JECJ9ClNzHPJDY081O+7EZnnKnGygIIQQQuRiD0JjWHXS39hhiDTks1BiaqJIGRESQhiMQmWGqUnKOryskmRICCGEyMWm7bpBkvrNFxGL7JOyWYJCpsYJYWiKlPV3b7IhiSRDQgghRC516v5z9lwLMXYYQgiRa0kyJIQQQuRCGo2WyTuuGzsMIYTI1SQZEkIIIXKhrReCuBoUaewwhBAiV5Pd5IQQQohcJjYxmel7bho7DCFyhXEjBhEVGcHsZWtSvX/j6mWWzZuJ3+kTREdFUrBQYarUrMMHnw6lqKc3/Tq35typ469tf9nGP6lSs3Z2hS+ymSRDQgghRC6z+Mh9QiITjB2GELne4X27GfnJB9Sq14ipcxbjVqQYYc+fsffPbcz/YQo/LFzOzMW/kpSUqFcvKSmRIR90xdzcgvIVKxspemEIkgwJIYQQuciTiHh+Pnzf2GEIkevFxcXyzcgh1GnYlNlLV+uuu3kUwadiFSIjIgCwd3B4pe7E0Z/xIjyMtX/ux9zC4q3FLAxPkiEhhBAiF/nxr1vEJamNHYYQud6JQwcID3vOhwOHpXrfzt4+1esbflnKH7+tZ+mG7bgUKpydIYq3QJIhIYQQIpe4GhTBb+cDjR2GEHnCI/97ABTzKpHhOn6njjN94v/4+rsfqVClenaFJt4i2U1OCCGEyAW02pSttLVyvqoQBqHN5D+mx0EBjPy0L+/3+ICO3ftkU1TibZNkSAghhMgF9l4P4dT9MGOHIUSeUaSYNwAP7t1Ot2x8XBwjPu6NV4lSjJ4wNbtDE2+RJENCCCFEDpeYrGHqLtlKWwhDqlm/IQ75C7Bi4ZxU7/+zgQLAxNHDiHgRzo+LVqJSySqTvET+NIUQQogc7tdTD3kQGmPsMITItaKiIrl57YretXwODnwzfQ5fDOzLsA+70+OjT3Av6smLsOf89edWHgcFMn3BclYumsNfO7YxZ/k61MnJhD4N0WvHxtYOC0vLt/k4woAkGRJCCCFysBexiczZf8fYYQiRq507eYyuzevpXevQrTcTfpjDqq17WDZ/Fl8N/ZiY6CgKFipM1dp1GTJqLAAbVi0jOSmJQb07pdr2tzPm065Lj2x/BpE9JBkSQgghcrCf9t8hIi7J2GEIkWtNmrWASbMWvPZ+Wd+KzFy86rX3d524lB1hiRxC1gwJIYQQOdT9Z9H8evKhscMQQog8S5IhIYQQIoeauusmyRrZS1sIIbKLJENCCCFEDnTiXih7r4ekX1AIIUSWSTIkhBBC5DBqjZbJf94wdhhCCJHnSTIkhBBC5DBbzgdy/XGkscMQQog8T5IhIYQQIgeJSUjmhz23jB2GEEK8EyQZEkIIIXKQn4/c52lUgrHDEEKId4KcMySEEELkEI8j4lh85J6xwxA5mEoZj43FM5TKZDQaFdHxTiRrLIwdlhC5liRDQgghRA7xw55bxCdpjB2GyIEsTF/gZHcXW4unKBQvt1vXahVExTvzLNKb+KR8xgtQiFxKpskJIYQQOcDlwBdsOR9k7DBEDmRr8YRiziexswzRS4QAFAotdpYhFHM+ia3FEyNFKF5n4cxpdGlWN80y40YMYni/num25evuwIHdOwwVmvibJENCCCGEkWm1WibvkK20xassTF/gVuACSkXaI4ZKhQa3AhewMH1h8BhCn4YwddxoWtauQBUvF96rVpahH3bj9LHDBu/LGFrU9GH10oXZ0vYHnwxh8fptBmlrv99N6jRsYpC2xEsyTU4IIYQwsj3XQjjzIMzYYYgcyMnubrqJ0D+UCg1OtvcICKtssP6DAh7xQYfm2Nrb8/nX3+JdqgzJSUmcOHyAKWNHse3QGYP1lRdZWdtgZf1mbSQlJmJqZoajs4thghJ6ZGRICCGEMKLEZA1Td8mokHiVShmPrcXTTNWxtQxBpYw3WAxTvh6JQqFgzR/7aNKyLUU9vfEuWZo+Awbz67a9unKPgwL47KMe1CjpRq3SHowa+CHPn72M/Z/pYlvXr6ZZ9XLUKOnGd/8biVqtZsXCn2hUqSQNKhRnyZwf9fr3dXdg46plDOrdiWrehWhZuwJ7d+iPtMya8g1t6lWhenFXWtauwLwfviMpKUmvzKG9u+jRqhFVvQtS38eL4f17AdCvc2uCAwP4YeL/8HV3wNfd4bXvha+7A5tWr2BI365UL+5K+4bVueR3hkcP7tOvc2uqlyhMn/bvEeD/4JXn/odareaHiV9Tp2wR6pX3ZNZ349GiP/WxX+fWTBk7iukTxlDfx4tPe72v6/+faXJJiYlMGTuKxpVLUdW7IM1rlGfZvJm6NiIjIpgwahgNfL2pVdqD/l3bcuv6ldc+27tMkiEhhBDCiFad9Ofh81hjhyFyIBuLZ6+sEUqPQqHF2iLUIP1HhIdz/NB+un3QD6tUhjfs7O0B0Gg0fNavJxEvwlm+6U8Wrd1C4EN/Rg/6SK98wEN/jh/ax4JfNzNt3hK2bljNkA+6EvI4mOWb/mT4mAnM++E7Ll84p1dv/o9TaNKyLRv/OkrL9p35cnA/7t95eRaXtbUtk2bOZ8uBU4yeMJUt61axeukC3f0j+/fw+ce9qdOoKRt2HWbx+t8pX6ESADMX/4pLIVcGjfwf+/1ust/vZprvyeKffqTN+93YsOcIRb2K89XQj5k0ZgQfDR7Buh0H0Gph6rhRr62/avE8tm9ay4Qf57Fyyy4iXrxIdR3QH5vXY2pqyi9bdzNu6sxX7q9d/jOH9+7ihwXL2XboDFPmLMbVzUN3f9TAvoSFPmP+qk2s23mQ0uV8GdCtPRHh4Wk+37tIpskJIYQQRhIWk8hP++8YOwyRQymVyVmqZ6JISr9QBjzyv49Wq6WoV4k0y50+dpi7N6+z88RFCrq6ATB59kI6Nq7J1YvnKfd34qHRaJj441ysbWzxKlGKqjXr4n//DvNXbUSpVFLUqzgrFv7E2RNH8alYRdd+01bt6Ni9DwBDRn3NqaOHWLdiMV9PmQHAgM++0JUt7O7Bw3t32b19Cx8O/AyApXNn0KxtRwaNHKMrV7JMeQDsHRwwMTHB2sYmQ9PQ2nXpQbM2HQD4aNBn9G73HgOGjaJ2g8YA9PjoE74ZOeS19dcsXUS/ISNo0qINAGOnzuTE4f2vlPMo5smIr799bTuPgwPxKOZFxWo1USgUeonQ+TMnuXrRj4MX7mBmbg7AyHGTOLhnB3t3bqNTz77pPue7RJIhIYQQwkim7LxBVHzWPvCKvE+jydrHNLXW1CD9/3f61uvcv3sbF9fCukQIwKtEKWzt7Xlw97YuGXJ198DaxlZXpoCTEyYmSpTKlxOVCjg6ERaqP7LlW7ma/utKVbn5rylfu7dvYd2Knwl46E9sTAxqdbJeP7euXaVj9w8y9CzpKVG6rO73+R2dASheqsy/nsmZhIR4oqMisbG106sbFRnBs6dPKF/h5ZoulUpFGZ+KoNV/r8uUr5BmHO069+CTHh1oW78qtRs0pl7jZtSq3wiA29evEhsTQz0fL706CfFxBDx8kFpz7zRJhoQQQggj2H31MZv9Ao0dhsjBouOd0GoVmZoqp9UqiIl3NEj/RYp6oVAo8L932yDtmar0P3YqUKBS6SduCoUCrTbjZ21d8jvD/4YNYODnX1GrfmNs7OzYvW0Lvy6ZpytjbmG4Q2n/Ha9CoUi5ZvrqNY0mc9Mb/8vSyirN+6XL+7LzxEWOHdzH6WOHGT3oQ6rXacCMn38hNjYGR+eCLNv4xyv1bP+e2ihekjVDQgghxFv2NCqeMVtkMbNIW7LGgqh450zViYpzIVljmA//9g4O1KrfiPW/LCM2NuaV+5EREQB4epcgJDiIJ8Evk/t7t28SFRGBZ/GSbxzH5fNn9V9fOIend8rUvYvnzlCosDsfD/uCsr4VKVLMi8dBAXrli5cuy+njr98GXGVqhlqtfuM402NrZ4+Tc0GuXPTTXUtOTubGlYtZas/G1o7mbTvyzfSf+H7+cvbt3E5EeDily/ny/FkIJioVHsU89b4c8hcw0NPkHZIMCSGEEG+RVqvlq9+uEB5rmHUdIm97FumNRpuxj2sarZJnUV7pF8yE/03+EY1GTc82Tdi3czsPH9zj/p1brFn+M33avwdAjboN8C5VhjFDB3DjyiWuXPBj7PCBVKlRm7K+Fd84hr07trF1/Wr8799lwYypXL3oR7e+HwNQpJgnT4ID2bXtNwL8H7Bm+c8c2P2nXv1PR3zJ7m2/sWDGVO7fucWdG9dYvmC27r6rmwfnT58g5HEw4WHP3zjetPTo9wnL58/mwO4dPLh7mylff0FUZGSm21m1eD67ft/Mg7u38b9/l707tuHo7IKtvT016jbAp1JVRvTvyYnDBwgKeMTFc6eZ+/0krl26kA1PlbvJNDkhhBDiLVp3JoADNzO3XbJ4d8Un5SPwecV0D17VaJUEPq9IfFI+g/bvVqQo63ceYsncGcyYNJZnT0NwyO9ImfK+ug0MFAoFPy1bw7RxX/Jhp1YolUpqN2jMV99+b5AYBn7+Fbu3b2HK2C9wdHZh2ryleJUoBUCD91rSq/9Apo0bTWJiInUbNWXAZ6NYNGuarn7VmnX4YdFKFv/0A8sXzMbGxpZK1Wvp7g/+YgyTvhpB67qVSExI4FJA9u241mfAEEKfhjDu84EolErad+lFo+atiM5kQmRtY8OKRXN49OA+JiZKyvpWYt4vG3Xrr+av2sjc6ZMZP3II4WGhODo5U6l6LQo4OWXHY+VqCq1W+2aTGnOAyMhI7O3tiYiIwM7OLv0KQgghhBH4h8bQ4qejxCVl/5QckXMUtjVhQkNnnF3dUKjMstSGhekLnGzvYWsZoreGSKtVEBXnwrMoL4MnQjmBr7sDs5asplHzVsYOReRA2uREngYHMuHgU4KiXv6/qkmIJWB2lwzlBjIyJIQQQrwFyWoNIzZelERIZEl8Uj4CwiqjUsZjbRGKiSIJtdaUmHhHg60REuJdJMmQEEII8RYsPHSPC49eGDsMkcslayyIiHVLv6AQIkMkGRJCCCGy2ZXACDlcVYgsyM71O0KA7CYnhBBCZKv4JDXDN1wg+Q3PHRFCCGF4kgwJIYQQ2Wjarpvce/bqGS1CCCGMT5IhIYQQIpscvfOMlSf8jR2GEEKI15BkSAghhMgGL2IT+WLTJWOHIYQQIg2ygYIQQgiRDcZtu0ZIZIKxwxB5jEr9DOsEP5SaWDRKK2LMK5NsIgdpCpFVkgwJIYQQBrbtYhB/XAo2dhgiD7FIvEWB6LXYxJ9EwcuzqrSYEG1Rk+c2PYg3K2nECIXInWSanBBCCGFAjyPiGPf7VWOHIfIQm7hjeIR+hm38Mb1ECECBGtv4lPs2cceMFKF4U/N++I5vvxxu7DAypVfbpuzbud3YYbwxGRkSQgghDESj0fLFpktExicbOxSRR1gk3sI1fDJKktIspyQJ1/DJPDL5yaAjRONGDGL75nUAqFQq7PI5UKJ0WZq3fZ92XXqgVObcn6v7ujukef/TEV8y8POv3lI0rxf6NIS1y39m896Xyey4EYOIioxg9rI1r6134+plls2bid/pE0RHRVKwUGGq1KzDB58OpainN/06t+bcqeOvrb9s459UqVk7zdjaNahGUMBDdp+8jKOzi969j4eN5MeJX9Ooeesc/fcgPbk3ciGEECKH+eWkP8fvPjd2GCIPKRC9Nt1E6B9KkigQvc7gMdRu0Jj9fjfZeeISC1ZtomrNOkyfMIahfbuSnJxzE//9fjd1X6MnTMXG1lbv2gefDNGV1Wq1RnuWLet+xbdyNVzdPDJc5/C+3fRu15TEhASmzlnM1gOn+W7Oz9jY2jH/hykAzFz8q97z7ve7ye5Tl/EuWZqyPhUpX7Fymn2cP3OShPg4mrZsq0uI/61Ow6bExERz7ODezD1wDiPJkBBCCGEAd0KimLbrprHDEHmISv0Mm/gTmapjE38ClfqZQeMwMzPH0dkFl0KulC7vS/+hI5m9bA3HDu5j+6a1unKRERFMGDWMBr7e1CrtQf+ubbl1/Yru/sKZ0+jSrC5//LaeFjV9qF3Gg9GDPiImOkpXZu+ObbzfpBbVvAtRr7wnA7q3Jzb25TldW9aton3D6lT1Lki7BtXY8MvS18bt6Oyi+7KxtUOhUOheP7h3h5ql3Dl2cC/dWjagipcLF86eQqPRsGzeTFrU8qWadyE6v1eHvTu26bV75+Z1BvXuRI2SbjSsWIL/ffYJ4WEvfwiS3jP81+7tv1G/SbOM/WEAcXGxfDNyCHUaNmXOinXUqNsAN48i+FSswshxkxg3bRYA9g4Oeu+Bo7MLi3/6kRfhYcxa+ivmFhZp9rN1/WpatO9E645d+X3DqyNUJiYm1GnYlN3bt2Q49pxIkiEhhBDiDSUmaxix8SIJyRpjhyLyEOsEPxRk7u+UAjVWCeezKaKXqteuR8ky5di/6w/dtVED+xIW+oz5qzaxbudBSpfzZUC39kSEh+vKBDz05+CencxZsZ65K9bjd/oEy+fPBuBZyBO+GtKf9l17sfXgaZZt/IPGzVuDVgvAjq0bWfDjVIaMHsvWA6cZ+uU45v84he2bsj4a9tPUiXz21Tf8fuA0JUqVZdm8mfzx2wbGTpnJlv0n6dV/EP/77BPOnUyZbhYZEcHH3dpRqqwP63YcYMGvm3n+7BmjBn6YoWf4r4jwcO7fuUUZ34oZjvnEoQOEhz3nw4HDUr1vZ2+f6vUNvyzlj9/WM+PnX3ApVDjNPmKio9i7YxutOnShRr2GREdFcv70q4l5uQqVuHDmZIZjz4lkzZAQQgjxhuYeuMPVoEhjhyHyGKUmNkv1TLJYL7OKehXnzs3rQMqUqqsX/Th44Q5m5uYAjBw3iYN7drB35zY69ewLgEajYdLM+Vjb2ALQumMXTh8/wlBS1s4kJyfTuEVr3ZSx4qXL6vpbOGMaI8dNokmLNgC4eRTh/u1bbF6zgradu2fpGQaN/B816zUEIDEhgaXzZrF43VZ8K1dL6aNIUS6cPcXmNSuoUrM261cuoVRZH4Z9NV7Xxrcz5vJetXL4379LXExMms/wX4+DA9FqtTi7FMxwzI/87wFQzKtEhuv4nTrO9In/4+vvfqRClerplt+9fQsexTzxLlkagOZtO7J1/WoqVa+lV87ZpSBPgoPQaDS5dt2QJENCCCHEG/B7GM78g3eNHYbIgzRKqyzVU2exXmZptYBCAcDt61eJjYmhno+XXpmE+DgCHj7QvXZ199AlQgCOzgUJe54yra9EmXJUr1OfTk3rUKt+I2rWa0jTlu2wy5eP2NgYAh4+YMKoYUz8165ranUyNrZ2WX6GMj4VdL9/5H+f+LhYPunRUa9MUlIipcr6pDznjaucPXmUGiXdXmkr8OEDatZr9NpnSE1CfBwAZuZpT1n7N+1rRple53FQACM/7cv7PT6gY/c+Garz+4Y1tOrQRfe6VYcufNS5NV9N+l7vz8/cwhKNRkNiQgIWlpaZiiunkGRICCGEyKKYhGQ+33gRTeY+mwiRITHmldFi8sp22mnRYkKseaVsjOqlB3dvUdg9ZfQjNjYGR+eCLNv4xyvlbP81bctUpf/RU6FQoNWkTAU0MTHh57VbuXjuNCePHGTdisXMnT6Z1dv3Yfn3B+3x02dTvkIVvTaUJiZZfgZLK2vd7/9Z1zNv5QacCxbSK2dmbpZSJiaa+k2aM3zMhFfacnRxSfMZ3DyKvFInX/4CAERGvCB/AccMxVykmDcAD+7d1o1gvU58XBwjPu6NV4lSjJ4wNUPt37t9k8vnz3L1oh8/TZ2gu65Wq9m9fQvv9/hAdy3iRTiWVta5NhECSYaEEEKILJu84wYPn7+dKUni3ZNs4kS0RU1s4zN+flC0RS2STZyyMaoUp48f4c7N6/TqPwiA0uV8ef4sBBOVSpcgZYVCoaBi1RpUrFqDT4aPpnkNHw7s/pM+Awbj5FKIwIcP9UYsDMmreEnMzM15HBzw2i2nS5fzZd+uP3B190ClSv1jdFrP8F/uRYphY2vL/du3KOrpnaE4a9ZviEP+AqxYOIfZS1e/cj8yIkK3bmji6GFEvAhn4erfXhvvf21dv5rK1WsxZvIPete3bVzL1vWr9ZKhu7duUKps+Qy1m1NJMiSEEEJkwf4bIaw788jYYYg87rlND6zjT2doe20NZjy3ydrambQkJiYQ+jQEtVpNWOgzjh/ax7L5s6nXpBltOnUDoEbdBvhUqsqI/j0Z/r+JFPH05lnIY47u/4tGzVtTNgMbBFy+cI4zxw5Ts14j8js6cuWCH+FhoXgWT1kbM2jkV3w//its7Oyo3aAxSQkJXLt8kciIF6kmGpllbWPLBwOG8OPEr9FqtFSsWoPoqEgunDuNjY0tbTt3p+sH/flt3Sq+GtKfvp8Owz6fA4/877N7+xYm/DCHa5cvpPkM/6VUKqlepwEXzp6iUfNWeveioiK5ee2K3rV8Dg4UdHXjm+lz+GJgX4Z92J0eH32Ce1FPXoQ9568/t/I4KJDpC5azctEc/tqxjTnL16FOTib0aYheWza2dq+M6CQlJfHnlg0MGjmG4qXK6N3r2L03vy6Zz91bN3RriS6cOUnNeo2y9H7nFJIMCSGEEJn0PDqBL3+7kn5BId5QvFlJgh3GpnvwqgZTgh2+NuiBq/84fmg/jSuXQqVSYWufj5JlyvHlxGm07dxdt2heoVAwf9VG5k6fzPiRQwgPC8XRyZlK1WtRwCljI1U2Nrb4nT7J6mWLiImOolBhd0aOm0Sdhk0B6Ni9DxYWlqz8eS6zvhuPpaUVxUuVoWe/gQZ71sGjvsahgCPL5s8i8JE/tnb2lC7nS/8hIwBwLliIX7buZvaUCXzaqyNJCYkUcnOndv3GKJXKdJ8hNR2792bi6OGM+Hqi3iYE504eo2vzenplO3TrzYQf5tCwWUtWbd3Dsvmz+Grox8RER1GwUGGq1q7LkFFjAdiwahnJSUkM6t0p1X6/nTGfdl166F07vHcXEeFhKTvg/Ydn8ZJ4Fi/J1vWrGfXNd4Q8Duai3xmmzPk5Y29uDqXQZnYVVg4UGRmJvb09ERER2NllfRGdEEIIkR6tVssnv/rx1/WQ9AsLARS2NWFCQ2ecXd1QqMyy1IZF4i0KRK/DJv6E3hoiLSZEW9TiuU33bEmERPbTarX0bNOE3v0H0qJ96olLTjRryjdERUQw/vvZRotBm5zI0+BAJhx8SlDUy38XmoRYAmZ3yVBuICNDQgghRCZs9guUREi8dfFmJQnKPwGV+hlWCecx0cSiVloRa17prawREtlHoVAw/vvZ3Ll5zdihZEr+Ak70+fjNpycamyRDQgghRAYFhMUy8Y/rxg5DvMOSTZyItGpm7DCEgZUqWz7XbUTwwSdDjB2CQeTO05GEEEKIt0yt0TJy4yWiE5KNHYoQQggDkWRICCGEyIClR+9zxj/M2GEIIYQwIEmGhBBCiHRcD47kx79uGTsMIYQQBibJkBBCCJGG+CQ1n2+8SJI612++KoQQ4j8kGRJCCCHSMHPvbW4+iTJ2GEIIIbKB7CYnhBBCvMbJe89ZcvS+scMQQkcV+xjrkCMok6LRmNoQ41KPZKtCxg5LiFxLkiEhhBAiFWExiXyx6RK5/2hykRdYhF2iwPW52ATvRaF9uaOhVqEi2rUpz8sMJT6/rxEjFCJ3kmlyQgghxH8kJmv4dLUfQS/ijB2KENgE7sJjfwdsg3bpJUIACm0ytkEp920CdxspQuMJCniEr7sDN69dMXYoqfK/d4dGlUoSE527ptreu32TplXLEhsbY+xQsp0kQ0IIIcS/aLVaxv5+hTMPZBttYXwWYZdwPTkYpSYhzXJKTQKuJwdhEXbJoP2PGzGI4f16GrTN3KBFTR9WL134xu38NO1buvf9GGsbWwDOnjyGr7sDkRERr60THRXJ3O8n0a5BNap6F6RRpZIM6N6efbv+QKvVsm3jWnzdHV77Ne7zwWk+1z/lqnkXokVNH0YN/JDTx4/olfMqUQqfSlX4dfGCN34PcjpJhoQQQoh/WXbsARvPBRo7DCEAKHB9brqJ0D+UmgQK3JiXzRGJjHocFMCR/Xto27lHhutERkTQp30z/vhtPf0Gj2D9zkMs37yDZm06MPu7b4iKjKRZmw7s97v5yteAz0ZhambG+z36pNnHoJH/Y7/fTbYdPsPkWQuxtbPnk+7tWTLnR71y7br0YNOvy0lOztsHTUsyJIQQQvxt/40Qvtt5w9hhCAGkbJZgE/xXpurYBP2FKvZxNkX0qnMnj9OjdWOqeLnQuHIpZk+doPvwfHjfbuqULYJarQbg5rUr+Lo7MHvqBF39CaOGMWbYgNe27+vuwMZVyxjUuxPVvAvRsnYF9u7Y9tryarWab74YSotavlTzLkTb+lVZs2yRXpl/Rrt+WTSXxpVLUa+8J1O+/oKkpCQA+nVuTXBgAD9M/J9uFAUgOPARQz/sRp1yRaleojAdGtfk6IHX//n89cfvlCxdDpdCrmm/if8y9/tvCQ4MYPX2fbTt3B2vEqUo6unN+z0+YOOeI1hZW2NhaYmjs4vel/+9uyyfP4v/Tf6BClWqp9mHtY0Njs4uFCrsTuUatRn//WwGfDaKBTOm4n/vjq5czboNiYgIx+/U8QzHnxtJMiSEEEIAt55EMWzdBdkwQeQY1iFHUGjVmaqj0CZjFXI0myLSF/I4mMEfdKGcb0U27TnK19/N4Pf1q3UjDJWq1SQmOpqbVy8D4HfqOA75C3Du5MsP136njlO1Zp00+5n/4xSatGzLxr+O0rJ9Z74c3I/7d1I/BFmj0eBSyJUfF65ky4FTfDJ8FHO+n8SeP7bqlTt78igBDx+wdMN2Js1awLZN69i+aS0AMxf/ikshV90Iyn6/mwBMGTuKxIREVmzawW97jzN8zDdYWVm/Nu7zZ05SxqdC2m/if2LfvX0LLTt0wrngqzsEWlnboFK9uvdZcOAjvhjYl/d79qVj97RHhV6n50efotVqOfjXTt01UzMzSpYpz/kzJ7PUZm4hyZAQQoh33vPoBPr9cpaYxMx98BQiOymTorNUzySL9TJr46plFHQtzJjJP1DMuwSNmrdi4OdfsWrxfDQaDbZ29pQsW55zJ48BKetlevUfyM1rl4mNiSbkcTCP/O9TuUbtNPtp2qodHbv3oainN0NGfU0Zn4qsW7E41bKmpqYMGjmGsr4VcfMoQqsOXWjXpQd//fm7Xjk7+3y6uOs3aU69xu9x+thhAOwdHDAxMdGNoDg6uwDwJCiQilWrU7x0WdyKFKV+k+Zpxv44KAAnl4xvex4e9pzIiBcU8yqR4TpxcbEM798LrxKlGD1haobr/Ze9gwP5HZ0IDnikd93JpSDBgQFZbjc3kGRICCHEOy0hWc2nq/0IDJed40TOojG1yVI9dRbrZdb9u7fxqVQVhUKhu1ahavW/E50gACpXr83ZU8fQarVcOHOSxi3a4OldggtnTuF36jhOLoUoUswrzX58K1fTf12pKvfv3n5t+fUrl9CtZQMa+HpTo6Qbv639hcdB+usAvUqUwsTERPfa0dmFsOehacbR46NPWDLnRz7o0IwFM6Zy+8bVNMvHx8djbmGeZhk9WRiWnvDFUKIiI/hx0cpUR40yQ6vV6v1ZAlhYWBAfl7f/b5RkSAghxDtLq9Xy9darnPUPN3YoQrwixqUeWkXmPuBqFSpiXepmU0SZV7VmbS6ePcWt61dRmZpSzLsEVWrW4eypY5w7fZwqNWoZtL9d235j5uTxdOjai4VrtrBx9xHadelBclKiXjmVylTvtUKhQKvRpNl2x+592HH8Aq06duXOzet0b9WIta8ZoQJwyJ+fyBcvMhy7QwFHbO3teXDv9Ynevy1fMJvD+/Ywe+lqHPIXyHA/qXkRHkb481AKuxfRux7xIhyHAm/Wdk4nyZAQQoh31uIj99nsJzvHiZwp2aoQ0a5NM1UnuvB7JFtlfGrWm/D0LsHl82fR/mtE4+LZ01jb2OJSqDAAlarVIiY6mtVLF1C5ekriU6VGHc6dPM65k8epks56IYDL58/qv75wDk/v1KeSXTx3Gt8q1ej6QX9Kl/PBo5gngQ/9M/1sKlMz3cYP/1bQ1Y0uvT9i1pJf6TNgMFvW/vLaNkqW9Xnt2qbUKJVKmrfpyM6tm3n65NVNMGJjonWbUxw7uJd50yfz7Yx5lCxTPsN9vM6aZYtQKpU0bNZK7/rdWzcoVc7njdvPySQZEkII8U7aez2EabtvGjsMIdL0vMxQNMqMTbXSmFjwvPQQg8cQFRXJzWtX9L6eBAfSpU8/ngQHMXXcaB7cvc3BPTtZOHMavT8ehFKZ8hHTLl8+ipcuy86tm3SJT+Xqtbhx9RIP79+lSjrrhQD27tjG1vWr8b9/lwUzpnL1oh/d+n6calmPYl5cv3yB44f243//LvN++I5rl85n+pld3Tw4f/oEIY+DCQ97DsD0CWM4fmg/gY8ecuPKJc6eOEYx75KvbaNW/UZcOn821aTq7s1reu/nresph8YOHT2Ogq6F6dW2CX9sXs+92zd5+OAeW9evpmvz+sTGxPDwwT2+GvoxHbr3plK1moQ+DdH7ighPe6Q7Jjqa0KchPAkOxO/Ucb79cjhL5vzIkNFj8SjmqSsXFPCIp08eU6NO/Uy/f7nJm00uFEIIIXKhG48j+Wy97Bwncr74/L4E11yA68lBaZ43pFGaE1xjPvH5fQ0ew7mTx+javJ7etQ7dejPhhznM/2UjM78bT+dmdbHP50D7br34eNgXemWr1KjNrWtXdLvG2Ts44FW8JM9Dn1HUq3i6/Q/8/Ct2b9/ClLFf4OjswrR5S/EqUSrVsp179uXm1ct8OfgjUCho0fZ9uvTpx/GD+zL1zIO/GMOkr0bQum4lEhMSuBQQjlqtZurYUYQ8CcbaxpbaDRoz6pspr22jTsOmmJioOHX0ELUbNNa792En/REYExMTzvuHYu/gwK/b/mL5gtksnvMjj4MCsLPPR/FSZRjx9bfY2tmxdvkioiIi2Lx6JZtXr3yl3yo1arNs05+vjWvBjCksmDEFUzMzHJ2cKV+xKovXb6NaLf3plbu3baZmvUa4unmk/4blYgqtNvd/K4iMjMTe3p6IiAjs7OyMHY4QQogc7FlUAu3nHyfoRd5eFCxyjsK2Jkxo6IyzqxsKlVmW2rAIu0SBG/OwCfoLhfblIZhahYrowu/xvPSQbEmEjM3X3YFZS1bTqHmr9AvnQOtXLuHQ3t0sWvObsUPJlKTERNrUq8zUuUuoWLWGscN5LW1yIk+DA5lw8ClBUS9H4DQJsQTM7pKh3EBGhoQQQrwz4pPUfPLrOUmERK4Tn9+XoNpLUMU+xirkKCZJ0ahNbYh1qfvW1giJzOvU60OiIiOIiY7C2sbW2OFk2OOgQPoN+TxHJ0KGIsmQEEKId4JWq2XMliucf/TC2KEIkWXJVoWILNbF2GGIDFKpVK9MG8wNPIp56q0fysskGRJCCPFOWHDoHlsvBBk7DCFEJlwKkG3vRfaS3eSEEELkebuvPuaHPRnf4lYIIcS7QZIhIYQQedrVoAhGbLhk7DCEEELkQJIMCSGEyLOeRsbz8apzxCW9es6HEEIIIcmQEEKIPCk+Sc3Hv/rxOCLe2KEIIYTIoWQDBSGEEHmOVqtl1ObLXAp4YexQhDAoRUQopnf8UMTHorWwIql4ZbT2jsYOS4hcS5IhIYQQec7cA3f541KwscMQwmBMAm5heXAdptdPotC8nPapVZqQVKYmcQ27o3YvacQIhcidZJqcEEKIPGXH5cfM3Hvb2GEIYTCmV49ht3A4ZleP6SVCAAqNGrO/75tePW6kCI1r28a11ClbJM0y40YMYni/nplqt0VNH1YvXZgt8YicQ0aGhBBC5BmXA18wctNFY4chhMGYBNzCZu13KJKT0iynSE7CZu1kIgfONvgI0ZPgQBbMmMaJQ/sJD3+Ok7MLDZu14pPho8nnkN+gfWWX0ROnotW+nb6atelAnUZN305n4o3JyJAQQog84UlEys5x8UkaY4cihMFYHlyXbiL0D0VyEpYH1xm0/8CH/nRv1YhHD+4xbd5S/jzqx9ipMzl97DC9271HRHjuOBTV1s4eO3v7bO8nKSkJC0tLCjg6ZXtfwjAkGRJCCJHrxSWq+XjVOUIiE4wdihAGo4gIxfT6iUzVMb1+EkVEqMFimDL2C0xNTVm0ZgtVatamUGF36jRsyuJ1v/P0yWPmTp+kK9uipg8/z/6BLwf3o3qJwjSpUob1K5fotRcZEcGEUcNo4OtNrdIe9O/allvXr+juL5w5jS7N6vLHb+tpUdOH2mU8GD3oI2Kio9KN9fih/bRvWJ0aJd0Y2KsTz0Ke6O79d5pcTHQUY4Z+TPUShWlcuRS/LllAv86tmT5hjF6b8XGxjB85hJql3GlWvRyb16zU3QsKeISvuwO7t2/ho06tqOpdkJ1bN70yTe7W9Sv069KGmqXcqVXag24tG3Dt0gXd/fNnTtK3YwuqeRfivWplmTb+S2JjY9J9XmEYkgwJIYTI1TQaLV9susSVoAhjhyKEQZne8UOhydxIp0KjxvTOeYP0HxEezonDB+japx8WlpZ69xydXWjVoTN7/tiK9l/zz375eS4lypRjw+7DfDR4ONMnjOHkkYO6+6MG9iUs9BnzV21i3c6DlC7ny4Bu7fVGmAIe+nNwz07mrFjP3BXr8Tt9guXzZ6cZa1xcHKsWz+O72YtYsXkHT4IDmTl53GvL//jtWC6eO82c5WtZtGYL58+c5MbVy6+UW7V4PmV9KrBh12G69OnHd/8bif+9O3plfpo2kR79PmXrgdPUqt/olTbGDB2ASyFX1v65n3U7D/LRoOGoTFNWqgT4P2BQ7840admWTXuPMX3Bci6cPcXUsaPTfF5hOLJmSAghRK720/477Ljy2NhhCGFwivjYrNVLMMyowkP/e2i1Wop5p74GqZh3CSIjXhD2PFQ3LaxClWr0GzwCgKKe3lw8e4rVSxdQs15Dzp85ydWLfhy8cAczc3MARo6bxME9O9i7cxudevYFQKPRMGnmfKxtbAFo3bELp48fYWgasSYnJTF2ykzcixYDoNsH/fn5px9SLRsTHcX2zeuYNncJ1evUB+DbGfNoUqXMK2XrNGpK1w/6A/DRoOGsXrqQMyeOUtSruK5Mr34DadKizWtjexIcRN9Ph1HMuwQARYp56e4tmz+Llh060av/QN29LydOo1/n1oydMgNzC4s0nloYgiRDQgghcq3tl4L5af+d9AsKkQtpLayyVs/c2rBxZGLnAZ/K1fRe+1auxuplKTuy3b5+ldiYGOr5eOmVSYiPI+DhA91rV3cPXSIE4OhckLDnz9Ls18LSSpcI6eqEpl4n8JE/yUlJlKtQSXfN1s6eol7er5QtUbqs7vcKhQJHJ2fCnutPQyzjUyHN2Hp/PIiJo4fx55YNVK9Tn/datdfFevv6VW7fvMbOrZt15bVaLRqNhqCAh3gWl+3Ss5skQ0IIIXKliwEvGLXpkrHDECLbJBWvjFZp8sp22mnRKk1IKl4p/YIZ4FHUE4VCwYO7t4DWr9x/cPc2dvb5yF8gY4e+xsbG4OhckGUb/3jlnu2/NjcwVel/PFUoFGjTmS5oappKHQNsH6dSmaYbi6VV2snnwM+/okX7Thzd/xfHDu5j4cxpfD9vGY1btCY2NoZOPfvS48NPXqlXqLDbG8cv0idrhoQQQuQ6jyPi+HjVORKSZec4kXdp7R1JKlMzU3WSytREa5+x5CQ9+RzyU6NuQzasWk58XJzevdCnIezYuolmbTqgUCh016+cP6tX7vL5s3j+PT2sdDlfnj8LwUSlwqOYp96XQ/4CBok5I9w8iqIyNdXbxCAqMoKH9+9lW59FPb3p/fEgfl67hcbNW7Nt4xoASpfz4f6dW6+8Hx7FPDE1M8u2eMRLkgwJIYTIVWITk+n/yzmeRcnOcSLvi2vYHe1/RideR6syI65hd4P2P2bydJISExjY6338Th3nSXAgxw/u45MeHXAuWIiho/U3Kbh47jQrFv6E//27rF+5hL07ttHjo08BqFG3AT6VqjKif09OHD5AUMAjLp47zdzvJ+klJtnN2saWtp26M/O78Zw5cZS7t24wYdQwlEolChTpN5AJ8XFxTBk7irMnjxEc+IgLZ09x7dIFihVPSRA/HPQZl86dYcrYUdy8doWHD+5xcM9OpowdZdA4xOvJNDkhhBC5hkaj5fMNl7gWHGnsUIR4K9TuJYnuMRabtZPTPG9IqzIlusfXBj9wtUgxL9buOMDCGdMYNegjIl6E4+jkTMNmrfh0xJfYOzjole89YAjXL19k0azp2NjaMnL8d9Ru0BhImWI2f9VG5k6fzPiRQwgPC8XRyZlK1WtRwOntnsvzxfjJTB7zOUP7dsPG1pa+nw7jSXAQZhbmBu3HxMSEiPAwxg7/lOehz8jnUIDGLVoz6POULbxLlC7Hsk1/Mnf6ZD58vyVarRb3IkVp1qaDQeMQr6fQZmJC5YQJE5g4caLetZIlS3Lz5k3CwsL45ptv+Ouvv3j06BFOTk60b9+eSZMmYZ/GIVdarZZvvvmGJUuW8OLFC2rXrs3ChQspXrz4a+v8V2RkJPb29kRERGBnZ5fhekIIIXKXH/fcYt7Bu8YOQ4hMKWxrwoSGzji7uqFQZW3qk0nALSwPrks5R+hfa4i0ShOSytQkrmF3gydCmdWipg89+w3U7YyWm8TGxvBe1TJ8Pm4yHbv1NnY4IoO0yYk8DQ5kwsGnBEW9/HehSYglYHaXDOUGmR4ZKlu2LPv27XvZwN+L3IKDgwkODubHH3+kTJkyPHz4kE8//ZTg4GA2b978uuaYPn06c+bM4ZdffqFYsWKMGzeOZs2acf36dSxkO0EhhBB/2+wXKImQeGep3UsS3WdCykGsd86jSIhBa25NUvFKBlsj9C65cfUy/ndvU65CZaKjIvl59nQAGr7X0siRibct08mQSqWiYMGCr1wvV64cv/32m+61l5cX3333Hb169SI5OVmXNP2bVqtl9uzZjB07lnbt2gGwatUqXFxc+P333+nWrVtmwxNCCJHHhMckMmnHdbacDzJ2KEIYndbekcQq7xk7jDzhl8Xz8L93F1NTU8r4VGDF5p1vdSMHkTNkOhm6c+cOrq6uWFhYULNmTaZOnYqHh0eqZf8ZmkotEQJ48OABT548oUmTJrpr9vb2VK9enZMnT742GUpISCAh4eXC2chImTsuhBB5jVarZfulYCb+cZ2wmERjhyOESMeuk5eNHUKGlS7nw/qdh4wdhsgBMrWbXPXq1Vm5ciW7d+9m4cKFPHjwgLp16xIVFfVK2dDQUCZNmsSAAQNe296TJ08AcHFx0bvu4uKiu5eaqVOnYm9vr/tyd3fPzGMIIYTI4QLDY/lw5Vk+W39REiEhhBDZJlMjQy1atND93sfHh+rVq1OkSBE2btxIv379dPciIyNp1aoVZcqUYcKECQYL9h9jxozh888/1+tPEiIhhDCuZcceYGehoqKHA56O1iiVmd+iVq3R8ssJf3786xaxiRk/aFIIIYTIijfaWjtfvnyUKFGCu3dfLmiNioqiefPm2NrasnXrVkxNX783/j9rj0JCQihUqJDuekhICBUqVHhtPXNzc8zNDbv1oRBCiKzbfyOESX9e1722tzSlgns+Knrko6KHAxXc82Fvqf/9IDFZw8PnMdx9Gs2dv7+uBL7A/3ns2w5fCCHEO+qNkqHo6Gju3btH794pWxBGRkbSrFkzzM3N2b59e7q7wRUrVoyCBQuyf/9+XfITGRnJ6dOnGTgw923LKIQQ76L4JDVjf7+qdy0iLonDt59x+PYz3TVvZxt83OyJTVBz52kUD5/HkqzJ8OkOQgghhMFlKhn64osvaNOmDUWKFCE4OJhvvvkGExMTunfvTmRkJO+99x6xsbGsXr2ayMhI3cYGTk5OmJiYAFCqVCmmTp1Khw4dUCgUDB8+nMmTJ1O8eHHd1tqurq60b9/e4A8rhBDC8Db5BfI4Ij7dcnefRnP3afRbiEiIvEv9PJzESzfQxsWhsLTEzLc0JgUc0q8ohEhVppKhwMBAunfvzvPnz3FycqJOnTqcOnUKJycnDh06xOnTpwHw9vbWq/fgwQOKFi0KwK1bt4iIiNDdGz16NDExMQwYMIAXL15Qp04ddu/eLWcMCSFELqDWaFl85J6xwxAiz0u660/Mll0knLsEas3LGyZKzKv4Yt2xBabeRY0WnxC5VaaSofXr17/2XoMGDdBq05/u8N8yCoWCb7/9lm+//TYzoQghhMgBFIBKmamNSYUQmRR/+gIRs5ZAUvKrN9UaEk5fIOH8FexHfIxF9YpvP0Aj27ZxLT9MHMOxaw/far8tavrQs99AevWXpR25mXwHE0IIkWVKpYJeNYoYOwwh8qyku/6vT4T0CiYTMWsJSXf9DR7Dk+BAxo8cQpPKpans6UzzGuX5/puveBEeZvC+cpM1fx7g/Z4fGDsM8YYkGRJCCPFGOlV2w9LUxNhhCJEnxWzZlX4i9I+k5JTyBhT40J/urRrx6ME9ps1byp9H/Rg7dSanjx2md7v3iAgPN2h/uUFSYsrZZ/kLOGJpaWXkaMSbkmRICCHEG7G3NKV9RVdjhyFEnqN+Hk7C2UuZqpNw7hLq54ZLUKaM/QJTU1MWrdlClZq1KVTYnToNm7J43e88ffKYudMn6cq2qOnDz7N/4MvB/aheojBNqpRh/coleu1FRkQwYdQwGvh6U6u0B/27tuXW9Su6+wtnTqNLs7r88dt6WtT0oXYZD0YP+oiY6KhMxb1x1TJa1a5IZU9n2tavyh+/vVzqMWPSOIb07ap7vXrpQnzdHTh+cJ/uWus6ldiybhUA40YMYni/niyZ8yNNKpembYOquuddvXQhkLIMZOHMaTSrXo4qXi40qVyaaeO/1LWXmJDAjEnjaFKlDNVLFKZnmyacPXksU88ksockQ0IIId6YTJUTwvASL90AjSb9gv+m1pB4+YZB+o8ID+fE4QN07dMPC0tLvXuOzi606tCZPX9s1VsP/svPcylRphwbdh/mo8HDmT5hDCePHNTdHzWwL2Ghz5i/ahPrdh6kdDlfBnRrrzfCFPDQn4N7djJnxXrmrliP3+kTLJ8/O8Nx79/1J99PGEOfAYP5bd8JOvXsyzcjh3DmxFEAKteoxcWzp1CrUw52PnfqOA75C3D2VEpyEvI4mICHD6hSo46uzdPHj+B//y6L1m5h7opX19Dv27md1UsXMG7aLP44co5ZS1dTvFQZ3f2p40Zz+fwZps9fyua/jvFeq3YM6t2Jhw9kAxpje6NzhoQQQgiAsq72+LjZczkwIv3CQogM0cbFZbFe+lvdZ8RD/3totVqKeZdM9X4x7xJERrwg7HkoBRydAKhQpRr9Bo8AoKinNxfPnmL10gXUrNeQ82dOcvWiHwcv3MHM3ByAkeMmcXDPDvbu3Eannn0B0Gg0TJo5H2sbWwBad+zC6eNHGJrBuFctnku7zj3o+kH/lDgGeHPlwjlW/TyXarXqUqlaLWKio7l59TJlfCpw/vQJPvh0KAf37ATg3KljOBd0xaOYp65NSysrJkyfg6mZWap9Pg4KpICTC9XrNMDU1JRChd0pX7Hy3/cC2LZxDbtPXcG5YCEAPvh0KMcP72fbhjUM+2p8Bp9MZAdJhoQQQhhE09IukgwJYUCK/4zGZLyeYY8nychuwf/wqVxN77Vv5WqsXpYylez29avExsRQz8dLr0xCfBwBDx/oXru6e+gSIQBH54KEPX9GRt2/c5v3e/TVu1ahSnXWLF8EgJ29PSXKlOPcyWOYmpliamZGpx59WThzGrEx0fidOkGVGrX06hcvVea1iRDAe63bsWbZQlrVrkDtBk2o07Ap9Zs2R6VScefmddRqNW3rV9Wrk5SYgH2+/Bl+LpE9JBkSQghhEE3KuDBj721jhyFEnmHmWxpMlPrnCqXHRImZT2mD9O9R1BOFQsGDu7eA1q/cf3D3Nnb2+chfwDFD7cXGxuDoXJBlG/945Z6tvb3u96Yq/Y+nCoUCbWanC6ajSo06nD11DFNzcypXr4W9gwOe3iW4cOYU504dp8+AwXrl09sooaCrG9sOneXUsUOcOnqIKWO/4Jef57Bs0w5iY2IwMTFh/c6DKJX6m81YWVsb9LlE5kkyJIQQwiBKFbSlcD5Lgl5kbWqPEEKfSQEHzKv4knD6QobrmFfxxaSAg0H6z+eQnxp1G7Jh1XJ69R+kt24o9GkIO7Zuos37XVEoFLrrV86f1Wvj8vmzeHqXAKB0OV+ePwvBRKWisLuHQWJMjWfxElw8d5q2nbvrrl08dxrP4i+n+1WpUZttG1ejMlFRq0HjlGs167Br+288vH+XKjXrvNJueiwsLWnQtAUNmrag2wf9adegGndvXqdUOR/UajVhoc+oVL1W+g2Jt0o2UBBCCGEQCoWCpmVcjB2GEHmKdccWYJrBn12bmaaUN6Axk6eTlJjAwF7v43fqOE+CAzl+cB+f9OiAc8FCDB09Tq/8xXOnWbHwJ/zv32X9yiXs3bGNHh99CkCNug3wqVSVEf17cuLwAYICHnHx3Gnmfj+Ja5cynvCl54NPhrFt01o2rlrGwwf3WLV4Pvt3/cEHn7xcdVS5esq6oSP791D178SnSo067Ny6CSfnghT19M5Un9s2rmXL+l+5c/M6gQ/9+XPLRiwsLCnk5k5RT29adujM1yMGsm/XHwQ+esiVC34smzeTI/v3GOy5RdbIyJAQQgiDaVLahZUn/I0dhhB5hql3UexHfJz+waumKuyH98fUu6hB+y9SzIu1Ow6wcMY0Rg36iIgX4Tg6OdOwWSs+HfEl9g76o1C9Bwzh+uWLLJo1HRtbW0aO/47af4+8KBQK5q/ayNzpkxk/cgjhYaE4OjlTqXotCjg5GSzmRs1b8eWEqfzy8zy+nzCGwu5FmDhjni7pAbDLl4/ipcrwPPQZxf4euapcvRYajYbKNTI/emNrZ8/yBbOZ8e3XqNUaipcqw5wV68jnkLIm6NsZ81ky50dmTBrL0yePcXAoQPlKVajXuJlhHlpkmUKbmVVxOVRkZCT29vZERERgZ2dn7HCEEOKdlZisofKkvUQlZPCQSCHeAYVtTZjQ0BlnVzcUqtcvwk9L0l1/YrbsIuHcJf01RCZKzKv4Yt2xhcETocxqUdOHnv0G0qv/QKPGId4d2uREngYHMuHgU4Ki1LrrmoRYAmZ3yVBuICNDQgghDMZMpaR+SSf+vPzY2KEIkaeYehcl3+iBqJ+Hk3j5Btq4eBSWFpj5lDbYGiEh3kWSDAkhhDCopmVcJBkSIpuYFHDAsqEswhfCUCQZEkIIYVANSjhjolSg1uT6WdhCiEzYdfKysUMQItNkNzkhhBAGZW9lSrWicpCgEEKInE+SISGEEAbXRLbYFkIIkQtIMiSEEMLgmpR2NnYIQgghRLokGRJCCGFwHvmtsLWQZalCCCFyNvlOJYQQwuAUCgUe+a24Fhxp7FCEyFPin0UQeu4eyTHxqKwtcKzihYWTvbHDEiLXkmRICCFEtpBkSAjDibgZyL3Vh3l64ibafx26qjBR4lyrFF696mNfys2IEQqRO8k0OSGEENnCI7+VsUMQIk94cuQap4YuIeTodb1ECECr1hBy9Lruvsi4FjV9WL10YZplfN0dOLB7R5pltm1cS52yRQwZmniLJBkSQgiRLQo7WBo7BCFyvYibgVyatBFNYnKa5TSJyVz8dgMRNwMNHsOT4EDGjxxCk8qlqezpTPMa5fn+m694ER5m8L7epjV/HuD9nh+8cTvN2nRg2+FzBohIGIMkQ0IIIbLFibvPjR2CELnevdWH002E/qFJTObemiMG7T/woT/dWzXi0YN7TJu3lD+P+jF26kxOHztM73bvEREebtD+3qb8BRyxtHyzEeykpCQsLC0p4OhkoKjE2ybJkBBCCIPbffUJu689MXYYQuRq8c8ieHriZqbqPD1+g/hnEQaLYcrYLzA1NWXRmi1UqVmbQoXdqdOwKYvX/c7TJ4+ZO32SrmyLmj78PPsHvhzcj+olCtOkShnWr1yi115kRAQTRg2jga83tUp70L9rW25dv6K7v3DmNLo0q8sfv62nRU0fapfxYPSgj4iJjnptjP9MUzu8bzdt61elenFXRn7yAXFxsWzftI4WNX2oU64o08Z/iVqt1ov339PkHj64x4fvt6Sqd0E6NKrBySMH9foJCniEr7sDu7dv4aNOrajqXZCdWze9Mk3u1vUr9OvShpql3KlV2oNuLRtw7dIF3f3zZ07St2MLqnkX4r1qZZk2/ktiY2My8aciDEmSISGEEAYVnZDM11uvpF9QCJGm0HP3XlkjlB6tWkOo3z2D9B8RHs6Jwwfo2qcfFpb6014dnV1o1aEze/7Yilar1V3/5ee5lChTjg27D/PR4OFMnzBGL6kYNbAvYaHPmL9qE+t2HqR0OV8GdGuvN8IU8NCfg3t2MmfFeuauWI/f6RMsnz87zVjj4uJYu3wx389fxoJfN3Hu5DFG9O/N0QN7mffLRr6bvYjNa1ayd8e2VOtrNBo+/7g3pmZmrN6+l7FTZjB76oRUy/40bSI9+n3K1gOnqVW/0Sv3xwwdgEshV9b+uZ91Ow/y0aDhqExT9iwL8H/AoN6dadKyLZv2HmP6guVcOHuKqWNHp/l8IvvIbnJCCCEMavmxBzyPSTR2GELkeskx8Vmsl2CQ/h/630Or1VLMu2Sq94t5lyAy4gVhz0N108QqVKlGv8EjACjq6c3Fs6dYvXQBNes15PyZk1y96MfBC3cwMzcHYOS4SRzcs4O9O7fRqWdfICUxmTRzPtY2tgC07tiF08ePMDStZ05KYuyUGbgXLQZAk1Zt+fO3jRy8cAsraxu8SpSias26nD15lOZtO75S/9TRQ/jfu8PC1b/hXLAQAMNGj2NQn86vlO3VbyBNWrR5bSxPgoPo++kwinmXAKBIMS/dvWXzZ9GyQyd69R+ou/flxGn069yasVNmYG5hkcZTiuwgyZAQQgiD2n8jxNghCJEnqKyz9sFYZW1u0Dj+PfKTHp/K1fRe+1auxuplKVPRbl+/SmxMDPV8vPTKJMTHEfDwge61q7uHLhECcHQuSNjzZ2n2a2FppUuEAAo4OuPq7oGVtc3La05OhIWGplr/wd3buLgW1iVCKc9SNdWyZXwqpBlL748HMXH0MP7csoHqderzXqv2uthuX7/K7ZvX2Ll1s668VqtFo9EQFPAQz+KpJ54ic8xUGZ/8JsmQEEIIg9FotNwOiTZ2GELkCY5VvFCYKDM1VU5hosSxslf6BTPAo6gnCoWCB3dvAa1fuf/g7m3s7PORv4BjhtqLjY3B0bkgyzb+8co9W/uXB8eaqvQ/nioUCrSatN8DU9NX67zSDum3kxGWVtZp3h/4+Ve0aN+Jo/v/4tjBfSycOY3v5y2jcYvWxMbG0KlnX3p8+Mkr9QoVlnOi3pRSAZU8HLgX9DTDdSQZEkIIYTAxicnEJanTLyiESJeFkz3OtUpl6vwg59qlsXCyT79gBuRzyE+Nug3ZsGo5vfoP0ls3FPo0hB1bN9Hm/a4oFArd9Svnz+q1cfn8WTz/ni5Wupwvz5+FYKJSUdjdwyAxGkox7xKEBAfxLOQJTi4FAbh8PuvbZRf19Kaopze9Px7El4P7sW3jGhq3aE3pcj7cv3MLj2Kehgpd/K2Cez5CoxI49zAcTUJShuvJBgpCCCEMxtbCFE+ntH9qKoTIOK9e9VGaZexn10ozFV496xm0/zGTp5OUmMDAXu/jd+o4T4IDOX5wH5/06IBzwUIMHT1Or/zFc6dZsfAn/O/fZf3KJezdsY0eH30KQI26DfCpVJUR/Xty4vABggIecfHcaeZ+P0lvtzVjqFG3AR6e3owdMYhb169w/vQJ5k2fnOl24uPimDJ2FGdPHiM48BEXzp7i2qULFCuekhB+OOgzLp07w5Sxo7h57QoPH9zj4J6dTBk7ytCP9E4p5mjNjccRBL6Iy3RdSYaEEEIYVKfKMtVDCEOxL+VGhfFd002IlGYqKozvin0pw/77K1LMi7U7DuDmUZRRgz6iVZ1KfPvVcKrWqsuv2/7C3sFBr3zvAUO4fvkiXZvXZ8ncGYwc/x21GzQGUqauzV+1kUrVazF+5BDa1q/Cl4P7ERwUQAEn457To1QqmbXkVxLi4+jZpgkTRn/GkNFjM92OiYkJEeFhjB3+KW3rV2XUwI+o3bAJgz4fA0CJ0uVYtulPHt5P2ca7a/P6LJgxBee/R6NE1jwIjcHFzhKP/Jk/7FuhzcyquBwqMjISe3t7IiIisLOzM3Y4QgjxTtNqtYz9/SprTj8ydihC5AiFbU2Y0NAZZ1c3FCqzLLURcTOQe2uO8PT4Db01RAoTJc61S+PVs57BE6HMalHTh579Bup2ShMiu2mTE3kaHMiEg08JilJjYaqkaAFrrj8MIWB2lwzlBrJmSAghhEEpFAomty9HMUdrJu+4YexwhMgT7Eu5UWlSD+KfRRDqd4/kmARU1uY4VvYy2BohIXK7+CQND8Ni8XK2JiCDdSQZEkIIYXAKhYL+dT0JCIvll5MPjR2OEHmGhZM9bs0rGTsMIXKsuEQ1TxIzftaWJENCCCGyzZiWpTnrH871x5HGDkUIkc12nbxs7BCEACAmIeO7msoGCkIIIbKNhakJc3tUxMrMxNihCCGEEK+QZEgIIUS28nKyYVK7csYOQwghhHiFJENCCCGy3fuV3ehYsbCxwxBCCCH0SDIkhBDirfj27x3mhBBCiJxCkiEhhBBvhY25irndK2KiVBg7FCFyrciQSC79foEzq09x6fcLRIbI5iTi3WOiUGBlpsLSzARzlRJ7y6zvCSe7yQkhhHhryhW2p3NlN9afzegJEEIIgOCrQRxfcoQ7h2+hSX556KpSpaR4/ZLU/rgeruVkKqrImxQKBRYqJUqlgmS1loRkNbGJyWiT1SQka4iIS6ZIfktc7C2IT9RwKzA+w21LMiSEEOIVWq2WuQfucvNJJGExibyITUKt0eLrno9KHg5ULuJAcWcblFkY5RnauDhbzgeRqNakX1gIwc1919k6ejPqxORX7mmSNdzaf4O7R+/Q8YfOlGxc2ggR5k1nTx6jf5c2HL3qj5197j7Y9sP3W9K514e07NDZ2KFkSFJiIm3rV2H+stWU9a1IQrKGuKS0t8t+GBbHw7C4vxvI+PcXSYaEEEK8Ys3pR8zce/uV63eeRrPZLxAAWwsVFdzzUbmIA219XfF0sslQ24XzWdKgpBN/XQ8xaMxC5EXBV4Nemwj9mzoxmS2jNvHBqn4GHSEKex7Kgh+ncPTAXzwPfYadfT5KlC7HJ8NHUbFqDYP00a9za0qWLc/oCVN113J6IvJPfGlZuvEPqtas85Yier1Df+3keegzmrd7X3etRU0fevYbSK/+A19bb9/O7axbsZib1y6jVmtw8yhCk1bt6P7Bx9g7OODr7pBmv5cCwlO9vnDmNBbN+l732sbWluKlyjJk1Fiq1KyNQqEgn40VfT8dytRvx7Fk/bZMPjFotBkvK8mQEEIIHbVGy7G7oXz75/V0y0bFJ3P0TihH74Qy98BdulRxZ3iT4rjYWby2jkaj5Ye/bkkiJEQGHV9yJN1E6B/qxGROLD1Kp9ndDNb/yAF9SEpKYtKshbh5FOH5s2ecOX6YiPAwg/WRnbRaLWq1GpXKsB95K1Suxn6/m7rX338zhpjoSL6dMV93zT7fy2QhKTERUzMzg8aQUWtXLKZdlx4olRnfKmDu95NYsfAnevUfyNAvx+HkUohHD+6xafUK/tyygZ79PtV7/n8EBz7ikx4dadMp7b+DXiVKsXjd7wBEvAjnl5/nMfTDbhw+fwMbWztiEpNp0a4zP3w7lru3buBdMvtGPGUDBSGEeMfFJCSz++pjvth0iWrf7eOD5WdITM7cFDa1Rsu6M4+o/8NBpu++SURc0itlnkUlMGjNeRYeumeo0IXI0yJDIrl96Fam6tw+dNNgmypERkRw/sxJho+ZQLVadXF186B8xcr0G/I5Dd5rqVfu26+G07BiCap6F6Rj45oc3rcbgBfhYXw5uB9NqpShenFX3m9Si12/b9bVHTdiEOdOHWfNskX4uqeMNgQFPNKNutQtVxRfdwfGjRgEgEajYdm8mbSo5Us170J0fq8Oe3e8HDk4e/IYvu4OHDu4l24tG1DFy4ULZ0+lWw/g6IG/aFOvCtW8C9GvSxuCAx699r0xNTPD0dlF92VhYYGZmbnu9abVK+jZpjFb1q2iRS1fqnoX1L1XE0YNo4GvN7VKe9C/a1tuXb+i1/bBPTvp2qI+Vb0L0rJ2BRbN+p7k5JSEWKvVsnDmNJpVL0cVLxeaVC7NtPFfvjbOsOehnDl+hPpNmr/+D/o/rlzwY+m8mYwcN5nPx06iQpXqFHb3oGa9hsxcvIo2nboD6D2/o7ML1ra2TB7zOWV8KuiN8qVGpVLp6nmVKMXgL8YQGxPNndu3dVOo7fLlo0KV6uzeviXDsWeFjAwJIcQ7KOhFHAduhLD3xlNO3XtusPU78UkaFhy6x5rTjxhQz5OKHvkIj0ni4K2nbL8YLOuEhMiEByfvoc3kvxlNsoYHp+7h267iG/dvZW2NlbUNB/fswKdSFczMzV/tT6NhcJ/OxERHMeWnn3EvUox7d25iYmICQEJ8PGXKV+DDQcOxsbHlyIG/+Hr4p7gVKUb5ipUZPXEqDx/cxbtkGQaNHAOAQwFHZixexcgBfdh2+Cw2NraYW6SMOC+bN5MdWzcxdspMihTzwu/0Cf732Sc45HekSs3aurh+mjqRz8dOws2jKHb2+dKt9yQ4kM8H9KFrn/506vkB1y5fYMakcW/0/j3yf8C+nduZufhXTExSxh9GDeyLubkF81dtwsbOjs2rVzKgW3u2Hz6HvYMD50+fYOyIT/ly4vdUqlaTgIcP+Par4QB8OuJL9u3czuqlC/h+/jK8SpQi9OlTbt+4+toYLpw5hYWlFZ7FS2Y47p2/b8LK2oYuffqlev910xbHfz6EqKhIfl73e6ZG4tRJiez4bR229vYU8fLWu1euQiUunDmZ4bayQpIhIYR4B2g0Wi4HRbD/Rgj7bjzlxuPs3Y43Ii6JH/Zk7ifaQgh9CdEJWaqXmMV6/6VSqZg0cz4TR3/GptUrKF3eh8rVa9O8XUdKlC4HwKmjh7h60Y+tB09T1DPlg6xbkaK6NlwKufLBp0N1r3t8OIATh/fz15+/U75iZWzt7DE1NcPC0hJHZxdduX+mmOUv4KT78J2YkMDSebNYvG4rvpWr6fq6cPYUm9es0EuGBo38HzXrNcxwvY2rluNWpBhfjJ8MQFGv4ty5eZ0VC37K8vuXlJTI5NmLyF/AEYDzZ05y9aIfBy/c0SWWI8dN4uCeHezduY1OPfuyaPZ0Pho0nLadu+viHPzF/5j93QQ+HfElj4MCKeDkQvU6DTA1NaVQYXfKV6z82hgeBwVQwNEpU1PkHj24h5tHEUxNTTNcZ9m8mRw98Be/bN2FQ/4C6Za/c/M6NUq6oQDi4mKxtrFh+vzl2Nja6ZVzcilEcFD27j4qyZAQQuRhD5/HsPDQPfbffMqzKMN8QBJCvB3mNq+OxGSEWRbrpaZJy7bUbfQe58+c5PL5cxw/tJeVi+bwzfQ5tOvSg1vXr+BSyFWXCP2XWq1m6dyZ/PXnVp4+eUxSUhJJiQlYWlplOpZH/veJj4vlkx4d9a4nJSVSqqyP3rUyPhUyVe/+3duUr6CfVPhWqpbpGP/NtbC7LhECuH39KrExMdTz8dIrlxAfR8DDB7oyF8+eZsncmbr7GrWahIR44uJiea91O9YsW0ir2hWo3aAJdRo2pX7T5q8diUmIj8PM4vXrOFOj1WZi9wFSphfO/3EK0+YtpWSZ8mmWVSoUqJQKinkX56ela9ECMTHR7PljC18M/JClG7ZT1vflqKaFhQXxcXGZiiezJBkSQog8SKPRsuqkP9/vvpXudqRCiJypWE0vlCql3rlC6VGqlBSr4ZV+wUwwt7CgZr2G1KzXkE+Gj2LCqGEsnDmVdl16YG5hmWbdlYvmsHb5IkZNmELxUmWwtLRm+sQxJCUmZjqO2NgYAOat3IBzwUJ698zM9TcnsLSyzlI9Q7K00k/4YmNjcHQuyLKNf7xS1vbv0a/YmBgGjvyKxs1f3anO3NyCgq5ubDt0llPHDnHq6CGmjP2CX36ew7JNO1IdycmXvwBRL15kKu4int5cOHuapKSkdEeH/O/fZczQj/lo0HDea91ed12BAlOVApVSiUKR8j0pWaMlSa0hWaNFpTLFvZinrnzpcj4c3LOT1csWMnXOYt31iBfhGRppehOSDAkhRB7z6HksozZf4vSD3LHbkxAidXYudhSvX5Jb+29kuE6JBqWwc7FLv+Ab8CxekoN7dqT0V6osIY+D8b9/N9XRoYvnTtPgvZa07tgVSFlj9PD+Pbz+tYZFZWqGWq3/Q5t/PoRrNC+vexUviZm5OY+DA/SmxKUnI/U8vUtwaO8uvWuXL5zNcB8ZUbqcL8+fhWCiUlHY3SP1MuV98L93F49/JQr/ZWFpSYOmLWjQtAXdPuhPuwbVuHvzOqXL+75StlRZH0KfhRD54gV2+fJlKM4W7TuxdvnPbFy1jJ79Pn3lfmREBHb29kRHRTK8X08qVavF4FFfp8RmaoJWC4nJahKTtSSSiUTexISEeP3DUu/eukGpcj6vqWEYkgwJIUQeodFoWX36IdN23SQ2UUaDhMgLan9cj7tH72Roe22VuYpa/esarO8X4WF88Wlf2nftSYnSZbGytuX65QusXDRHt5tclZq1qVS9FiMH9OGL8d/hXtQT/3u3UaCgdsMmeBT1Yt/ObVw8dxo7+3z8umQBYaFP9ZKhwu4eXLngR1DAI6ysrbHP50Chwu4oFAqO7NtDnUZNsbCwwNrGlg8GDOHHiV+j1WipWLUG0VGRXDh3GhsbW906m//KSL3OvT9k1ZL5zJw8jo7d+3D98kW2b1pnsPcSoEbdBvhUqsqI/j0Z/r+JFPH05lnIY47u/4tGzVtT1rciAz4bzbAPu1GosBtNWrZFqVRy6/pV7t26wZDRY9m2cS1qjZryFSpjaWnFn1s2YmFhSSE391T7LFXOh3z5C3Dh3KlXdpR7+iSYm9f0d7JzLeyOT8Uq9B04jBmTxvL0STCNmrfGyaUgAf4P2LR6BRWr1qDHR58wZtgA4uNiGTl+MmGhz7A0NSH0X39PHQo46jbS+K/k5GRCn6YcsRATE82e7Vu5f/smHw38TK/chTMnGfTF/zL9XmeGJENCCJFHjN9+ldWnXr8VrBAi93EtV5iOP3Rmy6hNaSZEJmYqOkzvbNADV62srClfsTKrly4k8OEDkpKSKehamI7d+9B/yOe6cjN/XsWMyeP4akh/4mJjcS9ajM/GfAPAgGFfEPTIn4G9OmFhacn7PT6gYbNWREe+3MSlzydDGDdiEB0b1SA+Po6dJy5R2N2DgZ+P4adpExk/cjBt3u/GpFkLGDzqaxwKOLJs/iwCH/lja2dP6XK+9B8yIs1nSa9eocLuzPj5F36c+DXrVi6hnG8lho4exzdfDDHY+6lQKJi/aiNzp09m/MghhIeF4ujkTKXqtSjg5ARA7QaNmbNiPYt/ms6KBT+hMlVR1KsEHbv3BsDWzp7lC2Yz49uvUas1FC9Vhjkr1pHPIX+qfZqYmNCuSw92bt30SjL0y8/z+OXneXrXvvtpEa07dmXE/yZSpnwFNvyylE2rV6LRaHAvUpQmLdvRplN3HgcFcGTfHgDa1quSat///Dmm5t7tmzSuXAoAC0sr3IsU5espM/TOJ7rkd4aoqEiatmyX3lv7RhTazK6SyoEiIyOxt7cnIiICO7vsHRoWQoicatqumyw6LGf4CJHTFLY1YUJDZ5xd3VCosrZGJfhqECeWHuX2oZt6a4iUKiUlGpSiVv+6Bk2ERN4R+jSEjo1rsn7XIVzdUk9O3oSlmQlx2TAbYdTAjyhZpiz9h458bRltciJPgwOZcPApQVEvY9AkxBIwu0uGcgMZGRJCiDyignvqZz8YQnFnGyp5OLDhXPZucSqESJ1rucJ0mt2NyJBIHpy6R2J0AmY25hSr4ZXta4RE7ubo7MKEH+byJCgwW5IhpUJh8DaTEhMpXqoMvfoPMnjb/yXJkBBC5BE+bvmypd2uVdyZ0LYslmYmtPYtxOjNl3kcEZ9+RSGEwdm52BnkQFXxbmnUvJWxQ8gUUzMzBnz2xVvpK+MnMAkhhMjRCtlb4GRruPNFrM1MmN21At938sHSLGURbN3iTuweXo9Old0M1o8QQojcKyYhGSszVbaMEL0NMjIkhBB5hEKhwNctH/tuhGS5DaUCqhTNT9PSLrT0KUThfK+eIWJvacqPnX1pVrYgY7ZcIdRAp90LIYTInWITkzFTKUGrIFGd8e20cwJJhoQQIg/xdbNPMxlysTOnuLOt7rWWlD108lmZ0aikM41KOeNgnbEF3k3LuFC5iAMDVp3j3MPwNwtcCCFErpaYrEGpUGBlpiI2A1vB5xSSDAkhRB7i657vlWvVi+WncWln6pdwpoSLDQoDTmXIb23G6v7VGbL2whuNSAkhhMj9NFotcUlqVEolyZrcMUIkyZAQQuQhPm72r7xe93ENlMrsm8ttYWrCol6VGLftKuvOyG5zQgjxLtNqtZibmZCcIMmQEEKItyyflRlL+lQhKj4Je0tTKno4ZGsi9A+ViZIpHcrjZGvBnP13sr0/Id5Vz0PCuHjiCrHRcVjZWFKhVnkKuKR+4KYQxpKQpEaBQjcVOyeTZEgIIfKYpmVcjNKvQqHg86YlsLNQMXnHDaPEIERedefqPTb9vI2zh86jTn55uKSJyoSqDSrR+ZN2FC/nZcQIc56ggEe0rOXLht1HKFW2fJbaGDdiEFGREcxetuaNYvF1d2DWktU0at7KIHHldMkaba5ZOyRbawshhDCoj2oXo1RB2/QLCiEy5OTes3zVcyKn9p3VS4QA1MlqTu17ed/Qwp6HMnnM5zSrXo4qXi40qlSST3u+z4WzpwzeV1623+8mdRo2SfXe2ZPH8HV3IDIi4i1Hlb3Umpw/KgSSDAkhhDAwpVLBiKYljB2GEHnCnav3+PGLuSQlJqVZLikxiR9GzuXO1XsG7X/kgD7cvHaFSbMWsv3wWX5atpaqNWsTER5m0H7+KykxMVvbf9scnV0wMzfcOXC5QUKyGgtTE2OHkS5JhoQQQhjce2VcKFfYzthhCJHrbfp5W7qJ0D+SEpPYvHi7wfqOjIjg/JmTDB8zgWq16uLq5kH5ipXpN+RzGrzXUlfO192BjauWMah3J6p5F6Jl7Qrs3bFNr61ZU76hTb0qVC/uSsvaFZj3w3ckJb18roUzp9GlWV22rFtFi1q+VPUuCMDeHdt4v0ktqnkXol55TwZ0b09sbIyu3pZ1q2jfsDpVvQvSrkE1NvyyNNVn0Wq1tK5TiV8WzdW7fvPaFXzdHXj04H6a78WiWd/TwNebWqU9mDRmhF6y1qKmD6uXLtQr36VZXRbOnKb3Hh3YveOVdoMCHtG/SxsA6pYriq+7A+NGDEozltzE5C2sWX1TkgwJIYQwuH/WDwkhsu55SBhnDvplqs6Zg348DzHMqI2VtTVW1jYc3LODxIS0D1ee/+MUmrRsy8a/jtKyfWe+HNyP+3du6e5bW9syaeZ8thw4xegJU9mybhWrly7Qa+OR/wP27dzOzMW/snHPEZ6FPOGrIf1p37UXWw+eZtnGP2jcvDVoU6Zf7di6kQU/TmXI6LFsPXCaoV+OY/6PU9i+ad0r8SkUCtp37cnvm9bqXd+2cQ2Vq9fCo5jna5/t9PEj3L9zi6Ub/2DavCXs3/Uni2Z9n+77lxEFXQszY/GqlFgOn2W/301GT5xqkLZzhFwwU06SISGEENmiYUlnKqRy7pEQImMunriCRp257YnVyWounrxikP5VKhWTZs5n++Z11ClblA86NGPOtG+5fePqK2WbtmpHx+59KOrpzZBRX1PGpyLrVizW3R/w2RdUqFKdwu4eNGjagg8GDOGvP37XayMpKZHJsxdRupwPJUqXI/RpCMnJyTRu0ZrC7h4UL12Wrh/0x8raBoCFM6YxctwkmrRog5tHEZq0aEOv/oPYvGZFqs/TtnMPHt67w5ULfn/3l8Su3zfTvmuvNN8HU1NTJs6Yh3fJ0tRr3IxBI8ewdsViNAY4R8fExAT7fA4A5C/ghKOzC7Z29unUyj1yQS4ku8kJIYTIHv+MDvVZfsbYoQiRK8VGx2WpXlwW66WmScu21G30HufPnOTy+XMcP7SXlYvm8M30ObTr0kNXzrdyNb16vpWqcvP6y6Rs9/YtrFvxMwEP/YmNiUGtTsbaRn+jFdfC7uQv4Kh7XaJMOarXqU+npnWoVb8RNes1pGnLdtjly0dsbAwBDx8wYdQwJn45XFdHrU7Gxjb1KbrOBQtRt9F7/L5xNeUrVubwvt0kJibStHW7NN+DEmXKYWlp9a9nrUpsTDRPggNxdfNIs+67LjdsrS0jQ0IIIbJN3eKOFM5naewwhMiVrGyy9m/HMov1XsfcwoKa9RryyfBRrPr9L9p27sHCmRmfynXJ7wz/GzaAOg2bMnfFejbsPkz/ISNJTtLfJMHSykrvtYmJCT+v3cr8VRvxLF6SdSsW07ZBVQIfPSQuJmXd0Pjps9m4+4ju67e9J/h1297XxtKhe2/2bN9CfFwc2zauoVmbDnqJTlYolEq0Wv0P/UnJOX9L6bdBm/NzIUmGhBBCZB+FQoFH/jf7oCHEu6pCrfKYqDK3G5eJyoQKNbP37BrP4iWJi43Vu3b5vP623pcvnMPTO2Xd4MVzZyhU2J2Ph31BWd+KFCnmxeOggAz1pVAoqFi1BoNGjmHD7iOYmppxYPefFHByxsmlEIEPH+JRzFPvy82jyGvbq9voPSwsrdn463JOHNpP+649043h9vWrxMe9HG27fP4cVtY2FHR1A8AhvyOhT5/o7kdHRRL86GGGng9SpuEBaDTqdErmPrkhGZJpckIIIbJVYQcZGRIiKwq45Kdqg0qZOj+oWsPKFHDJb5D+X4SH8cWnfWnftSclSpfFytqW65cvsHLRHL3d5CBl17cyPhWpWK0GO7du4upFPyb8MAeAIsU8eRIcyK5tv1HOtxJHDvzFgd1/ptv/5QvnOHPsMDXrNSK/oyNXLvgRHhaKZ/GUJGvQyK/4fvxX2NjZUbtBY5ISErh2+SKRES/oM2Bwqm2amJjQrnN35nz/LR7FvF6Z3peapKQkJowaysfDviA48BELZ06jW9/+KJUpYwrVatdl+6Z11G/SHFs7e+bPmIrSJONJbKHC7igUCo7s20OdRk2xsLDQrYvKzUwUCpINsK4qu0kyJIQQIlu5yjQ5IbKs8yft8DtyMUPba5uZm9JpQFuD9W1lZU35ipVZvXQhgQ8fkJSUTEHXwnTs3of+Qz7XKzvw86/YvX0LU8Z+gaOzC9PmLcWrRCkAGrzXkl79BzJt3GgSExOp26gpAz4bxaJZ01LrVsfGxha/0ydZvWwRMdFRFCrszshxk6jTsCkAHbv3wcLCkpU/z2XWd+OxtLSieKky9Ow3MM12O3TrzdJ5M/XWPKWleu16eBTz4qNOrUhMTKRFu/cZOOIr3f1+g0cQ9OghQz/sho2tHYO/+JrggIyPDLkUcmXg52P4adpExo8cTJv3uzFp1oL0K+ZgJgoFKhMlCck5f7RLof3vJMdcKDIyEnt7eyIiIrCzk3MthBAiJ9l4NoDRv102dhhCGE1hWxMmNHTG2dUNhcos0/VP7TvLDyPTPnjV1MyUUTOGUqNJ1TcJNUt83R2YtWQ1jZq3eut9Z8X50yf4uHt7/jp9lQJOzsYOJ88xUSpQKd9OIqRNTuRpcCATDj4lKOplf5qEWAJmd8lQbiAjQ0IIkYNoNFqeRMbj/zwG/9BYHoRGc/zuc1QmChxtzHGyMef9ym5UK2aYaTBvg0yTE+LN1GhSlWlrvmHz4u2cOeiH+l8fMk1UJlRrWJlOA9pSvJyXEaPM+RITEggPC2XhrO95r1U7SYSywdtMhAxFkiEhhHjL/pvwpPwag//zGB4+jyUhOe051hvOBdCktDODG3rjZGuOmUqJuYkJZiolZipljjvxW3aTE+LNFS/nxZg5I3geEsbFk1eIi47D0saSCjXLG2yNUF63a9tvTBg1lJJlyzN51kJjh5PnmCgVmCgVuSoRAkmGhBAi20QnJHM58EWWEp707LvxlH03nqZ6T6VU6BIjMxOl3u/NVUrMVSav3LcwVeLtbENFDwfKF7bHwjRzO1ilpVA+C4O1JcS7roBLfhq3r2/sMPRcCgg3dggZ0q5LjwyvExKZZ64yITYx920pLsmQEEJkg7+uPWHctquERCa89b6TNVqSE9XEJmbtp3MqpYIyrnZ0ruJOr+oeKBRvNtJkrjLBydacZ1Fv/70QQgjxduSsOQkZJ8mQEEIY0LOoBCZsv8aOK4+NHUqWJWu0XA6M4HJgBKfuP+f7932wMX+zbxeF81lKMiSEEHlZLs2G5NBVIYQwAK1Wy8ZzATSZeThXJ0L/tePyY9rOPcatJ1Fv1I6bbKIghBB5mlqjNegU67dFkiEhhHhDj57H0nvZGUZvvkxEXPpngeQ290Nj6Ln0NI8j4tIv/Bqf1PNClcM2dhBCCGE48Ulq4pPUqJRKTE2UqEyUqP7eVEGpUGBqosTaTPXGU68NTZIhIYR4A3uvh/De7MMcuxtq7FCyVWh0Ah+vOkdcFtchlXezZ1jj4gaOSgghRE6TrNGQpNaQrNaQrNGi1mjRaLUkqTXEJCZjolDkqBEkSYaEEOINnHsYRnzSm+0Ml1tcDYpk1OZLZPWs7kENvPB1z2fYoIR4x4Q8fsy2jetYs3wx2zauI+Rx3pmWK94NyRoNCUlqrN9wLaqh5IwohBAil4pJyH3biL6JPy8/pnQhOwY39M50XZWJklldfGk55+g7k0AKYSjXLl1k6bzZHNm3h+Tkl//vqFQq6jVpRv8hwynrW8F4AQqRCVpSvn9ampqQqNag1mTth2yGICNDQgjxBqLj361kCOCHPbf469qTLNX1dLJh3+f1mdCmDHW8HWUdkRAZsH/XDvq+35oDu3foJUIAycnJHNj9z/2dRoowZ9qy/lc+6dHR2GFk2sZflzP0w27GDuOtiEtSo0CBucp40+YkGRJCiDcQ/Y6NDP1jxIaLWd5hzs3Bir61i7G6f3XOj2/KvB4VaV/BFXtLUwNHKUTud+3SRb4a+gmJCWlvTZ+YkMCXQwZw7dJFg/W98dfl1CzlrpeAxcZEU7mYE/06t9Yre/bkMXzdHQjwf5Buu/+UjYyIMFis/5UQH8+CH6bw6YjRumsLZ06jS7O6adZ79OA+4z4fTNOqZani5UKLWr58Obgf1y5dAGDciEH4uju89mv7pnVptr9v53b6d21LnXJFqeZdiLb1qzJ+5BBuXL2sK9Ohay9uXLnM+dMn3uAdyD2SNRqSNRqjJUSSDAkhxBuIegdHhgBiEtX0X3WW8JjEN2rHzsKU1j6uzO5WEb+xTVg/oAb96xSjSAErA0UqRO62dN7sdBOhfyQmJLBs/myD9V2tVl1iY6K5fvmC7tr5Mycp4OTMlQt+JMTH666fPXGUQoXdcC9azGD9p0er1b4yUvaPvTu3YW1rS8WqNTLc3rVLF+jeqgGPHtxl3LSZbN1/illLVlPMuwQzJo0FYPTEqez3u/nKV426DXB196Bu4/de2/6sKd8wetBHlCxTnjnL1rLt8BmmzV2Cm0dR5kz7VlfO1MyMlu3fZ+2KxRmOPbdTa7QkazQojHBYkSRDQgjxBmIS381kCCAgLI6Ba/xIUhtm/Y/KREkNzwKMbV2GQ180YN/n9fiqRSmqFHEgh+3EKsRbEfL4MYf37s5UncN79xhsU4WiXsVxci7I2ZPHdNfOnjxGg/daUtijCJcvnNNdP3fyGFVrpoy6/PHberq3bEjNUu40qlSSr4b053noMwCCAh7Rv0sbAOqWK4qvuwPjRgwCQKPRsGzeTFrU8qWadyE6v1eHvTu26fXt6+7AsYN76dayAVW8XLhw9lSqse/evoX6TZpl+Fm1Wi3jPh+ER1EvVvy2i3qNm+FetBilypbn0xFfMnvZWgBs7exxdHbR+9q6/lcu+Z1l9tLVOOQvkGr7l8+fZeXCOYwc/x2jvvmOStVrUaiwO2V8KjDgsy9Y8OsmvfL1mzTn0N5dxMdl/UiD3EalVKDl7a8dkmRICCHewLu4ZujfTt0P49s/rhu8XYVCgbezLZ/W92LzwFqc+7oJnzctIWuMxDvl1NFDqNWZ284+OTmZ08cOGyyGqrXqcPbEv5KhE8eoWrMOlavX4uyJowDEx8Vx5aIfVWulJEPJSckMHvU/Nu05yuylqwkOfMT4z1MSnoKuhZmxeBUA2w6fZb/fTUZPnArAsnkz+eO3DYydMpMt+0/Sq/8g/vfZJ5w7eVwvpp+mTuSzr77h9wOnKVGqbKpxXzx7ijI+FTP8nDevXeHe7Zv0GTAYpfLVj8d29vap1ju8bzcLZkzl2xnzKFmm/Gvb37XtN6ysbejap1+q9/979k4Z34qok5O5ctEvw8+Q26lMjJOWyG5yQgjxBrJjzVDRAlY0Lu1CeGwij57Hcu5huMH7MKRfTz2kUSlnGpZyzrY+CtiYM6xxcRqUdOKz9Rd5EBqTbX0JkVNER2dtXV5W66Wmaq26TJ/wP5KTk0mIj+PWtctUrlGb5KQkNq1eAcCl82dJTEigaq06AHTo1ktX361IUb6c+D09WjciNiYaK2sb7PM5AJC/gJMuyUhMSGDpvFksXrcV38rVdHUvnD3F5jUrqFKztq7NQSP/R816DV8bc2REBFGRkTi7FMzwcz56cA+Aot4lMlznwd3b/G/YAPoNHsF7rdunWfbh/bu4eRRBpXr50XvV4vksmDFV93rv2WvY2qW8H5aWVtjY2vE4MCDD8eR2xtpRTpIhIYR4A4ZeM5TPypQVH1ajmKM1kDJ1Y+nRB0zddQMj7jyarm//vE5NrwLZfpCej1s+dgyrw6Q/b7DuzKNs7UsIY7OxsX2r9VJTpUYd4mJjuHbpPJERL/Dw9CZ/AUcq16jN+C+GkBAfz7mTx3DzKEqhwu4AXL98kYWzpnH7+lUiIyLQaFKm0j4OCsSrRKlU+3nkf5/4uNhXdn9LSkqkVFkfvWtlfCqkGXNCfMrUMjNziww/Z2bPT4uKjGB4/15Url6bwaO+zlTdf7Tv2osGTVtw5eI5/jfsE/4bgrmFJfFxsVlqO7cxUSqIT8raod5vSpIhIYTIomS1hoRkw52XY2qiYFGvyrpECFKmTnxczxNzUyXjt10zWF+G9iA0hsk7rjO5/euniRiKlZmKqR3L07CkE1/+dpnw2KRs71MIY6hRtwEqleq1mwSkRqVSUb1OfYPF4FHME5dCrpw9cZTIiBdUqV4LAOeChShYqDAX/c5w9sRRqtWuB0BsbAwDe71PrfqNmDpnMQ4FHHkcFMjAXu+TlPT6f6uxsSmjvfNWbsC5YCG9e2bmZnqvLa2sSUs+h/woFAoiI15k+DmLeKacneZ/9zaly/mkWVaj0TBm6McolUqmzl38yhS31HgU8+LC2dMkJSVhapqyc6advT129vaEPAlOtU7ki3AcCjhm+BlyM3OVCbFGWoMra4aEECKLVCZKOld2M1h733UoTw3P1Bff9q5RhOZlMz7lwxhWn3rEryf931p/75UtyIZPapLf2iz9wkLkQi6FClEvE5sAANRv2gyXQoXSL5gJVWvV5ezJ45w7eZwqNevorleqXovjB/dy9dJ5qv593f/uHV6Eh/HZmG+oVL0WxbxLEPb8mV57/yQDGs3LkQCv4iUxMzfncXAAHsU89b4Kumbu/1lTMzM8i5fk/p1bGa5Tqmx5PEuUYtXi+bqRrH/79zbg86ZP5qLfGWYvW4N1BkfhWrR7n9iYaDauWpah8gH+D0hIiH9lVEwYniRDQgjxBsa3KYObg+Ubt/NpfS+6VHF/7X2FQsHsbhVolI3rcgxh3LZrTPzjGskG2mEuPSVcbPm1XzU5o0jkWf2HDMfM3DxDZc3NLeg3eLjBY6hasy4Xz57i1vUrVKnxcu1OlRq12bzmF5ISE3WbJxQs7IapmRnrViwm8KE/h/7ayeKfftRrr1BhdxQKBUf27SHseSixMdFY29jywYAh/Djxa7ZvWkeA/wNuXLnE2hWL0z27JzW16jdOdae5+Ph4bl67ovcV4P8AhULBtz/O4+GDe3z4fguOHviLwIf+3L5xlSVzfmR4vx4A7PljK8sXzGb0N1OxtrYh9GmI3ldsTHSq8fhWrkafAUOYMWksP0z8mvNnThIc+IjL58+ydf2vKBQKlP/aIOb8mZO4eRR9q1uVG4sC402RA5kmJ4QQb8TWwpSZXSrQdfHJV+Z7Z1Szsi6MblYy3XIWpib83Lsye6+HsO7MI47eCc1ah9lsxXF/9t0IoX4JJ+oVd6KWtyM25m/27SZJreHQrWf4h8YQFptIWHRiyq8xiYTHJJKQbLxvpEJkp7K+Ffh+3mK+HDIgzfOGzMzNmTbvZ8r6VjB4DFVr1SU+Po5i3iUo4PTyBzKVa9QiJjoqZQvuvzcryF/AkUkz5jNn+iTWrlhM6XI+fD72Wz77qIeunkshVwZ+Poafpk1k/MjBtHm/G5NmLWDwqK9xKODIsvmzCHzkj62dPaXL+dJ/yIhMx9yhWy96tGpEVGSEblMCSNnIoGvzenplq9epz+J1v1O+YmXW7jjA0rkzmDh6OC/Cn+Pk7IJv5WqMmpCy0cHGX5frtuFOzacjvmTg51+lem/kuEmUq1CJjb8uZ9vG1cTFxVHA0YnK1Wuxattf2Nja6cru2vYbHXv0yfRz50YWpkrijJgMKbSZXTGWA0VGRmJvb09ERAR2dnbpVxBCCAObs/8O8w7eJTGTa4iqFcvPyg+rYmWW+WQhICyWDWcD2HgugKdRGTuU0RhUSgWVijhQr7gj9Uo4Uc7VXu8noGl5GhnP2jOPWHfmESGROfcZhUhLYVsTJjR0xtnVDYUqa9M6r126yLL5szm8d4/eGiKVSkX9ps3oN3h4tiRCudkXn/aldDkf+g353NihZMrdWzf4uFs7th8+q5fI5VXW5ipisrgzqzY5kafBgUw4+JSgqJcJlSYhloDZXTKUG0gyJIQQBhKbmMyJu8/Zf/Mph289JTZJjY25ClsLU2zNVdhaqLCxUOmuOViZ8kGtom+8A1uyWsOBm09Zd+YRh24/y/II1dviYGVKo1IufNmiJM62r9/t6cjtZ/T/5RyJb2nKnRDZxRDJ0D9CHj/m9LHDREdHYWNjS/U69Q2+RiivCAp4xOF9u+nx4QBjh5Ip/5wvVbtBY2OH8lYoFQpMTRRZ2pBIkqG/STIkhBApAsJiGb7hIn45/GwigPzWZkzrWJ73UtkYwu9hOL2Wnjbq1AkhDMWQyZAQeZGpiRKNVpvps4YMkQzJBgpCCJGHuOe3Yt3HNehbq6ixQ0lXWEwiA371Y8yWy3pbqt4OieKjlWclERJCiHdEklqDmYlx0hJJhoQQIo8xUymZ0LYss7r6GjuUDFl3JoAlRx7oXq84/oCIODk7SOQdKT/s1pLj57AKYURxSWqsM7vZjlYLaN/oUHJJhoQQIo/qUNGNEi42xg4jQ8JiXm6OcP7hC+MFIkQ2eBGvIUmtRZucaOxQhMjRYhKSsTLL+DpabXIiSWot4fFZX1sqW2sLIUQe9l6ZgtwOuWvsMNIVFpsyEhSXqOb20ygjRyOEYcUla9l/P5rWZiY45Cdl3ZAiYzsqCvGuiVUrsFApiU/W8NqtDbQpP1wIDwtl//1o4pOzPjQkyZAQQuRhTcu4MO9gzk+GwmNSfmKeqNbITCKRJ225EQNAY081piYKQJIhIdKiVKRsrJCsSW1jBS1J6pQfMvzzbyurJBkSQog8rHxhewraWfAkMt7YoaTp+d/JkCqD5w8Jkdtogd9uxLDjTiwOFkrkr7oQGaNUKijpYktcYjL+z2OBlHV44fGaNxoR+ockQ0IIkYcplQp6VPdg5t7bxg4lTR75LQEwkU+IIo+LT9byOFp2ShQiMwIiUo6L8Ha2wc5CxaWAF6gNNItANlAQQog8rmd1D8xVOfe/extzFRPalgXAzERptO1VhRBC5Gx3n0Zz/tELHKzNqF4sP/aWbz6uI99xhBAijytgY07HSm7GDuO1vmxRikL2KSNDSqUCTydrI0ckhBAiJwuNTuT0gzDikjRUKeJAkb9nF2SFJENCCPEO6FenmLFDSFW7Cq70rOahd61kQVsjRSOEECI3SUzWcO5hOA/D4qhWNH+W2pBkSAgh3gHezjbM6OyLdSbOb8hOdhYqfupWgdldK6D8zzqhEi6SDAkhhMicrB7WLcmQEEK8I96v7Mauz+pRuYiDUeNoUtqZPSPq0a5CYRSpnLVSr7iTEaISQgiRWznamHErJGtn1MluckII8Q7xKGDFhgE1WHT4HrP33SH5lbMbskfhfJZ0quxGp8puuOe3SrNsucJ2eDvbcPdp9FuJTQghRO7m6WhDaHRYlupKMiSEEO8YlYmSIY2K07xcQTadC2TrhSCeRiUYrH0rMxNKF7KjnKsdZQvbU9bVjtIF7V6ZDvc6CoWCzpXdmLrrpsFiEkIIkXdFxWdtihyAQqvN/Wd9R0ZGYm9vT0REBHZ2dsYORwghcpVktYbj957zm18ge649ISFZk+G69pamlHW1o9zfSU9ZV3uKOVq/8XlBSWoNH644y7G7oW/UjhBCiLzNwcqU8Fj9ZEiTEEvA7C4Zyg1kZEgIId5xKhMl9Us4Ub+EE5HxSey68pjf/IK48TiS6MRk/vmRmZOtOeX+k/i4OVimuu7nTZmaKJnfsxI9l57ialCkwdsXQgiRN3g723DWPzzL9SUZEkIIoWNnYUrXqh50rZqy3bVGoyUuSU2yWou9lelbjcXe0pQtA2sz98AdFhy6h/otrW8SQgiRe8Qmqt+oviRDQgghXkupVGBtbrxvFWYqJSPfK0nXqu785hfE7mtPiIxLIi5JTWxiMvFJGZ/SJ4QQIm9RKuD+szfbbEeSISGEEDmem4MVnzUpzmdNiutd/2fkKjZRTVyimpjEZJYde8Bmv0AjRSqEEOJt8XS05u6zmDdqQ5IhIYTIodQaLaHRCTyOiOdJRDxPIuIIi02ioJ0FRQtYUcTRmkJ2FhnepS0v+mfk6t+jV9Pf98HGXMXKE/7GC0wIIUS2y29tBpIMCSFE7hOfpCYk8u8k5+9fH0fEExL58tenUQnprpMxUylp5+vKqGYlcbazeEvRZ05UfBIn7j3nyO1nnPUPQ6lQYGVmgrW5ChtzFVZmKmzMTbD6+7W12b9+//frlF9VWJun/N5cpXztxg1KpYJv2pRBrdHy66mHb/lphRBCvC0J6jefKi3JkBBCGJBWqyUyPvllUvN3kpOS8MTxJDKBJxFxr2wDmlWJyRo2+QWy88pjBjX0ZkA9T0xNlAZp+008jYxnk18gh28/4/zDcIMf7mptZkKd4o40Ke1Co1LOFLAx17uvUChoWb6QJENCCJGHaQzwvUWSISGEyCCNRktoTMLfU9Zejujo/T4y/o13tsmKmEQ1P+y5xTn/MBb0rIylmclbjwHg4fMYfj5yn81+gSRm4ryizIpJVLPnWgh7roWgUEBF93w0L1eQD2sX0yWDXk7W2da/EEII47Mye/NURpIhIYQAEpLVPI1M4Ml/RnRSRnjiCIlMICQy3uAjHIZ28NYzei87zbIPqr7VrbBvPI5k4aF7/Hk5mLf9Fmm1cP7RC84/esHBm89Y2KsS+azMcLI1x9ZcRVRC8tsNSAghxFsRFf/m/79LMiSEyPOi4pN009ZSG8l5EhHP85hEY4dpMOcehtN18Ul+7VcdJ1vz9Cu8gbP+YSw8dI8DN59maz8ZdfL+czosOMGyD6rg6WSDp5M1lwIjjB2WEEKIbOD/PAYF8CY/g5NkSAiR5wS9iGP67ptcDYogJDKB6HdwZODmkyiGrbvA6v7VMTHwbnNarZZDt56x4NDdNzr1O7s8CI2h/fzjLOxVGS8nG0mGhBAij4pNVFOtaH7O+IdluQ1JhoQQeUaSWsOyYw/4ad8d4pLe/rqdnObk/ecsOHiXoY2Lp184g+4+jWLouovceBxpsDazQ2R8Mh8sP0MJF1tjhyKEECIbnX8UjpeTNfeyuMW28bccEkIIAzh9/zktfzrKtF03JRH6l9n773D2DX5i9l+ejjZUL5bfYO1lp2SNlus5PGkTQgjxZpI1WuIS1ViZZi2tkWRICJGrPY9OYOTGS3RdfIo7T6ONHU6Oo9Zo+WzdBSLjDbOV9z9n+AxvYrjRJiGEEOJNBEfEU6qQXZbqSjIkhMiVNBota04/pNGMw/x2PtDY4eRowRHxbD0fZLD2FAoFw5uUYHzrMgZrUwghhHgT5x+9oHIRh0zXk2RICJHrXA2KoMPCE3y99SoRcYYZ8cjr1p5+hFZr2D2vP6pTjBmdfQ2+QYMQQgiRFdeDI3FzsMxUHdlAQQiRa0TFJzHjr9usOun/1s+yye1uhURl+admaXm/shu2FiqGrLuQrYesCiGEEOmJS1JjaqLANBM/pJORISFEjqfVavnjUjCNZxxm5QlJhLJq3ZlH2dLue2ULsvLDqlibmWRL+0IIIURGPQiNxcctX4bLSzIkhMjRHoTG0Gf5GYauu8DTqARjh5Nr2VqoKGBjlm3t1/JyZO3HNXCwMs22PoQQQoiM8HuU8TPwZJqcECJHik9Ss+DQPRYdukeiWqZfZZWpiYLPGhenXx1PLLN55MbXPR8bP6lJr2WnCYmUxFUIIUTOJ8mQECLHOXz7GeO3XeXh81hjh5KrlXW1Y0YXX0oVzNp2o1lR3MWWzZ/Wotey0/LnJ4QQIseTZEgIkWM8iYjn2z+vsfPKE2OHkusNauDFiKYlMDV5+7Oh3fNbsenTmvRZdoabT6Leev9CCCFERsmaISGE0ak12v+zd9/xkZX1/sA/Z870PpPek+29F0B6R4oCiiKKIuLVq9frtdefetGLXaxYUEEFFBEUKUtf6u5mW7ZlW7LpyaRN7+38/shu2GWTzSSZmTPl834ZWTIz53zDJpPzOc/zfB/c++oxXPKjzQxCafDNa5fgC1cukiUInVBu0uJvHz077d3riIiI0olhiIhk97MXjuLbTx5EIJqQu5SCcMWySrlLAABY9Cr8+fYNOH9BmdylEBERTYhhiIhk1dzhxM9fPCp3GQVlX68HPc5gTuz7o1crce+t63D18iq5SyEiIjoN1wwRkWx84Rg+/dfd3DcozT76553jfy4xqFFu1qLSrEGlRYtykxaVFi0qzVqUmzWoNGthN6ghCKlvUDddaqUCP7t5Ncw6JR5q7snYeYiIiKaLYYiIZBONJ9HvCctdRkEbDUQxGoji4MDkz1GLCpSbNagwj4WkCrMWFcfD04IKExZXzb4bnagQ8H/XL0etTY+fvnA0J0atiIiIGIaISDZ2gxoWnQqeUEzuUopaNJFEryuEXldowseX11hwy8Z6XLuyGgbNzH9tCIKAT1w0D9euqMadT7biudbBGR+LiIgoHbhmiIhkIwgC5pYZ5C6DprCvz4MvPboPG//vBXztn/vQ2u+d1fHqS/T43a3rcN9t69FUyr9/IiKSD0eGiEhWc8qM2NXtlrsMSoE/EsdftnbjL1u7sarOivdtrMe1K6qhU4szOt6FC8tx9twSPHNgEIcdXhwZ9GPEH0G1RYdqqxY1Vh2qj39UmLUIRRMYDUQw5Ivg8ZZ+PL1/gOvNiIhoVhiGiEhWc8uMcpdAM9DS40ZLjxt3PtGKG1bX4BMXzUO5WTvt42iUIq5bWQ2srE7p+fUlegDAFUsr0eMM4v43OvG37T3wReLTPjcRERGnyRGRrK5ZUQWdamYjCyQ/XziO+7d04Z2/fB2HHLObPjdddXY9vnbNErzx5Yvx/65Zgjq7LqvnJyKi/McwRESyqrPr8dnLF8hdBs1SvyeMd9+zBa8dHcn6uU1aFT58bhM2f+4i/Pr9a7C+0Zb1GoiIKD8JkiTl/Yxrr9cLi8UCj8cDs3n2LWCJKLviiSRuuOcN7O31yF0KzZLyeAvtm9bXyVqHMxDFIYcXhwZ8OOTw4rDDh8ODPoRjbOlNRFTokpEgeu6+KaVswDBERDnhsMOH9/52C1xBttkuBJ+8aB4+e/mCjG7mOl2JpISu0QAODvhw2OHFE3sHcGwkIHdZRESUZgxDRJSXOkYC+NAfm9E1GpS7FEqDd6yqxvfftQIaZW6uCYvGk/jTlk789PmjbMBARFRAphOGuGaIiHJGU6kBj378HKyqs8pdCqXBv1r68YHfN8MdjMpdyoTUSgU+ct4cvPi5C/He9XXIoUEsIiLKkmmFoW9+85sQBOGUj0WLFo0//tvf/hYXXnghzGYzBEGA2+2e9TGJqLiUGDV46I6zcMXSCrlLoTRo7nDihnveQI8zd0f7ykwafPfGFXj8E+diTb1V7nKIiCiLpj0ytHTpUgwMDIx/vPbaa+OPBYNBXHnllfjKV76StmMSUfHRqUX86pa1+NA5jXKXQmlwbDiArzy2T+4yprS81oKHPnoWRyaJiIrItDddVSqVqKysnPCxT3/60wCAzZs3p+2YRFScRIWAb163FHV2Pb79ZCvyf3VjcXv16AjeaBvBOfNK5S7ljDRKEb/5wFpc+/PXMOSLyF0OERFl2LRHho4ePYrq6mrMmTMHt9xyC7q7u2ddxHSPGYlE4PV6T/kgosJ0+7lN+H/XLJG7DEqD7z1zGPnQs6fCrMVvPrAWapHLaomICt203uk3btyI++67D5s2bcI999yDjo4OnHfeefD5fDMuYCbHvOuuu2CxWMY/6urk3c+CiDLrg2c3YkOjXe4yaJb29LjxzIFBuctIyep6G759/TK5yyh6c8sMqLPrYNJOeyILEVFKZtVa2+12o6GhAT/+8Y9x++23j39+8+bNuOiii+ByuWC1WtNyzJNFIhFEIm9OX/B6vairq2NrbaICdmzYj6t++ioicW6amc/mlRvxzKfPh6jIj9Zt33z8AO57o1PuMorOsmozwvEE2obe3AfKrldjXoURA54QepwhGasjolyXtdbaVqsVCxYsQFtb22wOM+1jajQamM3mUz6IqLDNKTPiM5ctkLsMmqW2IT+2tI/KXUbKvnjlIqjE/AhuhWBxlQkLK0zY3+89JQgBgDMYRXOHEz3OEOaXG7Gkir/7iWj2ZhWG/H4/2tvbUVVVla56MnJMIioMHz63CQ0lernLoFn6Z0uf3CWkTKcWsazGIncZBW9BxVi4OTjgw+HBqafeHx3yo3XAi/WNNhjUubmpLxHlh2mFoc997nN4+eWX0dnZiTfeeAPXX389RFHEzTffDABwOBxoaWkZH9XZt28fWlpa4HQ6x49xySWX4Be/+EXKxyQiOkElKjg6VAA27XcgFE3IXUbK1nO9WkZtbLLjyOBYuJmu7Z0u6NVKLKwwZaAyIioG0wpDvb29uPnmm7Fw4ULcdNNNKCkpwdatW1FWVgYA+PWvf43Vq1fjjjvuAACcf/75WL16NR5//PHxY7S3t2NkZCTlYxIRnezaFdVYVMkLn3zmj8Tx/MH8aKQAMAxl0qo6C7Z1OKd+4hkM+yNweEMoM2nSVBURFZNZNVDIFV6vFxaLhQ0UiIrE862D+MifdshdBs3CJYvK8fsPrZe7jJS4AlGsvvM5uctIiVIhoNqqQziWyPl9khpL9HB4wginqSnKggojjg0HEE/m/WUNEc1S1hooEBHJ4ZLF5VhTb5W7DJqFl48MwxmIyl1GSmwGNeaXG+Uu4zQlBjXW1FuxscmOVXVW1Nl0SEoSup1BDPkiMGlEbGzKzVEti06FUDSRtiAEAEcG/ViVo+8Ly2ss2NBoQ71dj6XVZmiUvPwiyhX8aSSivCMIAr513bK8ac9Mp4snJTy5t1/uMlK2LkemymlVCqxtsGJZtRmjgSh2dbuxrcOJlh43elwhnDwo4osk0NzhRFOpQb6CJyAqBFRZtBjMwMiVQsi994RFlSbs6/OgudOFbmcQB/q9KDVquM6JKEcwDBFRXlpea8EnLpwrdxk0C4/tzp+uciN++aacCQKwpMqMtQ02CAB2drmxvz+1ZgMSkHOtwdfUW3HIMfPN2s8kmYNT5AKR+Gmf63OHcHjQhw1NNmhVvBQjkhN/Aokob33y4vncaySP7ep2o3s0KHcZUxr1R/DSoaGsn7fOpsPGJjvKjBq0Dnixs8uFUGz608qODvozUN3MrGu0YXunK2PHD8dyq0thnV2HHtfkG8Q2d7hg06vZFIZIRgxDRJS31EoFfnTTypy7802py4c9h/7V0p+1RfkapQLrG22YV25AjyuEbR3OWTdCMGhyYx+eRZUm7O7KXBACgGCOtWyvMGmnfM6AJ4xDDh/WN9qyUBERvRXDEBHltcVVZvy/a5dCzQXJeemfu/uQ601N/7GrNyvnWV1nhVWnwvZOF9qGAmk7rl6tTNuxZqrcpIHDG0Yiw3/VuXZjRELqX/D2ThdW52gDCKJCxqsHIsp7HzirAZs/dyHevbYW2Vg/3Viih02vyvyJZKJUCDhvfimW11hQbtIgk30qjo0E8IfXOzN3glk65PDiQIrrc2aqsUQ/NmrS485IUwG5O5dpVQro1SLcwVjGz2XVqzN+jlSpRAFHprk2atgbyejPGxGdTv7bRUREaVBt1eEH716Jj5w3B/e90YmdXU4cSeNaiWqLFjesqcUNa2owp2yszXI4lsCBfi8+9pedGM7xPV1Sta7Bhm9fvwyLKt9cixVPJDEaiMLhCWPQG8agL4I+VwhP7utHj3Py9RCp+u7TB7GuwYaVddZZHyvd/rEzc6NCFp0KCyqM2NHpmsb4wfTJHYYWV5qwu8eTlXO5grnTrn1JlRl7eqf3dfe6Q1jXaMOODK6rIqJTcdNVIipYnmAMu3tc2NXlws5uF1q63QhMY02BTiXiqmWVuHFtLc6eUwLFJLdsO0YCuOV3W9HvCaerdFn818Xz8D+XLpj063yrZFLCq20j+MvWLjzXOjirc9fZdXjyU+fBrM2dEbd4Iomz7nox7Z3kRIUw1lFtwAtfJPNrXNbWW7Gz253x80xkY5Md2zqcWTmXUSMiGE0gVxrKra6zYnePe9qvKzdp4ApGEcv0nEKiAjadTVcZhoioaMQTSRwe9I2Fo+MB6eSRDbWogE4tYlGlCTeurcXbl1fBqEltAL3XFcQt925DVx50R5tIrU2HFz57ATTKmS22/+fuPnzhkb2IJma+iebbl1fiZ+9dDaU4/ZEMX3hsCpYpDWGq1xXEa0dH8PzBQTx/ML1d5JZUmeGPxNCdhhG1VM0rN6JtKPsd5VbWWqY9MpJP5zsTs1aJcCyB6AwDzYZGG5o5OkQ0YwxDREQpcgejECBApxZn3YRh0BvGLfduk+XCc7Z+fNNK3LCmdlbH2HpsFP/x553whGa+NsSsVeL8BWW4aGE5LlhYhlKjBgAgSRJGA1F0jQbQNRo8/hFAl3Psz85AFEaNEref24Tbz2s6ZYRJkiTs6/Ogtd8LnVqEUaOEQaOEQa2EQSNCqxKxv8+D19pG8NrRERwbSV/zghMsOhUaS/RZv1ifV2ZA23D6v56pNJToMeQNz6gV+ExlcxRqKutn2ULcqlchEk8ilGPd8YjyBcMQEZFMRv0RfOD3zWgdyOyi+3RaWGHCU/99HsQ0rNxuH/bjtj9uR7dz9iNkggAsrTYjkQS6RwMpT3G06FT46PlzsK7BhmdbB7FpvwN97uyNxExEIQDLa7I/crG2wYqdXe6sntOiU0GvVmDAk911dMtrzNjXJ//P3fxyI46m4YZILoU7onzDMEREJCNPMIYP/rEZLTNYLyCHe29dh0uXVKTteKP+CD7ypx3YLdM6lVylEgXMLTPi0DQ7jM2GWqlANJ690RlRIWBhhUmWmwGlRjVG/PI2UBAEoKnEkJbRxTml6TkOUTGaThhia20iojSz6FX4y0c2YkOTXe5SprS2wYZLFpen9ZglRg0euuMsXLWsMq3HzXexhIQeZxCqLPVOLjWqsxqEgLFmDXIEIbNOKXsQAsa6MaYrwJh1bPhLlA0MQ0REGWDUKHH/bRtw9fIquUs5oy9euQhCBjZn0qpE/PJ9a/DR8+ek/dj5TKMSEctSuzObIbt77qxrkG/Rf4VJK8t5T2Y3qHAwjUFQLc6smQkRTQ/DEBFRhujUIn55yxr8+5Pn4rI0TkNLl4sWlmV09EqhEPCVty/Gne9cxo0kj6ux6rJ2rmAkjnKTJivnWlhhQkuPfN3P+lzBtKx5m40qiw7+tLZKz/tVDER5gWGIiCjDltda8Ltb1+HJT52bU1PHPn/Foqyc5wNnNeD3H1wPvZp3urN5edvnDiMYjWN1hjezXVFjQb8nhEzNyFvXYMPcMgPq7DpsaLRBozw99ARjScwtM2SmgBRsbLLjQH96pwdmsxMfUTHjhFQioixZWm3BPe9fi8MOH37+4lE8uW8AcrWweceqaiypzl7DmYsWlePh/zgbH75vO4Z82e0ylisWVZqwvy+73eT8kQR297ixtsGG1gHvaa2aLToVaqw6GLVKJJISRAGIJiR0jASmbJFu06swv9yY0alxjXY9dnS9efweZwgWnQor60w45PDCG4qfVE92pwWesLDChO2d6e/6NuTL702cifIFu8kREcmkbciHX7zYhsf39CNLy0gAAEqFgBc+ewEaSrJ/J73fHcJnH96DLcdGs37uE0qNaswtM2a9bfHaBht2dsk3lcykEVFq0sKgEQEJcHjDZ2w60FiiR7lZi2g8AYc3Ao1SAZ1KhE4tIpmUsL/PgxnuKZqyM7WX1qlELK+xoHM0gCFfBIsqTVnt1AeM7YulVYlpD/jLaixZD85EhWQ63eQ4MkREeWvTfge2tI+g3xPGkC+CD53TgHeuqslIQ4BMmFduwt3vXY1PXTIfv3ypHf9s6UMiC6nolo31sgQhAKi26vDgHRvxr5Z+fPvJgxjxZ3eUSCEAP795DTY22fG7V4/h+88czsp/cwCIJ+Sd9uSLJOCLpN7prHM0iM7R2e8XNRvu4OSjU6FYAs2dTogKAWvqrfCEYtAoFYhksYNeY4kBezMSWvL+PjVR3uDIEBHlnURSwvc2HcJvXzl22mMXLizDt9+5DLU2vQyVzU7XaADf23QIT+1zZOwctTYdNn36fBg18t8L84Ri+PGzh/GXbd1ZCyRfumoRPnbB3PF/v/pnr6Z9rcdkllabs3auQrGh0YZuZwgOb2pTxhQCsjbKuqHJjuYMjC7W2XToccm7STBRvuOmq0RUsLzhGD710G5sPjw86XP0ahFfvHIRPnBWAxR51sYsmZTwub/vwaO7+9J+bEEA/nrHWdg4p2RGr79nczue3j8AvVqEUaOEXq3E8hoLrl9Tg1LjzLuWOQNRPHvAgSf3DeCN9tGMBKM5pQZcs7Ia/3Pp/FNGDj/10G48vqc/7eebyIpaC/b2curTTKystSCWSKJ1ILvT4Cazus6KPb3ujASvdY027JCpRTlRoWAYIqKCEojE8fKRYTy934GXDg3BH4lP/SKMrdH43o3LMa/clOEK0yueSOKTD+7GpgPpHSH66Plz8JW3L57Ra/f3efCOX74+YVBRKgRcvKgcN62rw4ULy6AUZ96o1BWIYnePC+FYEpF4AtF4EtF4EpHjH9GT/hlNJBCJJRFNJMf/Ofb42OsMGiUuWliOSxaXY06ZccLzfW/TIdyzuX3G9U7H/HIjjg75s3KuQmXSKqFTiVCLCihFAarj/1QqBCgUAkRBgEIQxlq5CwIEjE04SyYl9LpSH2E6k7X1NuzqdmVkIptOpUBSQlan+hEVIoYhIsp7nlAMLxwcxKb9Drx8ZHjGFwdqUYH/unge/uOCuVAr82c3gUg8gY/+aSdePjL5CFiqmkoN+NzlC3HVssoZjZRF4glc9/PXcXhw6rvyFWYNvvL2xbhuZXVerN36v6cOTjjdMlNW1VnR0uPO2vnoVNVWLWqsOnhCMRwZnH4wXddgO6W7Xbo1luhlX6dFVAjYQIGI8tKoP4JnW8cC0BvtI4iloVVVNJHEj547gif3DeB7N67AygzvuZIuGqWIX79/LT74x+ZprUtQiwpUWDSoMutQYdHinLkleNfaWqhmMVqz9ZgzpSAEAIPeCP77ry34x64+fOedy1Bnz+21W5FYOjfJnNqgNwyjRkzz5pyUqn53GP3usdGhBRVG6FQi9qQ4dXF9ow3bMzx9zahVZfT4RHQ6hiEiktWAJ4Rn9jvw9H4Htnc6M7b4+ZDDh+t/9TpuP7cJn7lsIXR5sAGoTi3i9x9ch/ffu23SC7brV9fg6uVVqLRoUWXRwm5Qp31E5miKQehkrxwZxg33vIHn/ud8WGXa/yUVsWz2NAcw4AljabUZBwe8WW2nTqc7MTJUa9Wh0qLFnl73pDdgNjTa0ZyBvYTeSptHo9dEhYJhiIiyrms0gE3HA1A2pwwlJeB3r3bgmQOD+O4Ny3HOvNKsnXumTFoV7v/wBtz5xEE8vqdv/GKt3q7Hd65fhvPml2W8hsMz3Ltl2BfB/z7Rih/ftCq9BaVRhUmb9XMe6PdmZZSBUtPrDqHXHYJdr8L8ChNaB7xQiQKaSsfWmXUMB7IShABAzLOGL0SFgGGIiDJOkiQcHfLj6X0ObDrgwMEBedsLdzuDeN+923DNiipctawK584vhUWXu9NTrHo1fnTTSnzhyoXY3e3G/AojGksMWbtwOjKLRf+P7urD7ec2YWm1JY0VpU9DiTzT+LZ3urI22kCpcQZj2NbhhEohwJeU4AxkP6xytJAo+xiGiCgjJEnC/j4vnt4/gE0HHDg2nPpmj9nyxN4BPLF3YHzTxgsXluOCBWVYWm3OycX/FWYtrlxWmdVzJpPSjKbJnezeVzvwk/esSk9BaVYvUxgCgB1dTiyrNmM/9x7KKdmeOnmyaJxryYiyjWGIiNImmZSws9uFTfsd2LTfgT53fmwcmEhK2N7pwvZOF37wzGGUmTS4YEEZLlxYhvPmlcGiz91Ro0zrc4cQjM7uAu3fe/rx+SsWotqqS1NV6TO31AhRIWRt09eTJSWgYySAWqsOvXnys0KZlY6mMUQ0PQxDRDQrsUQS24458fT+ATzbOohhX0TukmZt2BfBIzt78cjOXogKAavrrLhwYRkuXFiOJVXmvNvIdTZePDQ062PEkxLue6NzxnscZZJFr8IVSyvw1L707umUqkA0gcXVWoYhAgAYNLnf2IWo0HCfISKatnAsgdfbRvD0fgeePzgIdzAmd0lZU2o8adRofmlOd0qbrS3to7j1D9vScrfaqFHijS9fDHOGWgdH40m0DnhRZdGizKiZVmDd3unEu3+9JSN1pUKvFpFMSghzo82ip1MpIAjCrEdjiYod9xkiorQLROLYfHgYW9pH8M+WfvgjcblLksWIP4J/7OrFP3b1QiEAq+ttuHBBGS5YWIZl1ZaCGTU6NuzHx/6yM23TdvyROL7w97345S1r0t74IRRN4OMP7MTmw2Mb1CoVAirMWrxjVTU+cdE8GDRn/lW3rsGGZTVm7O+TZ+1OMJrA2gYrdna5ZTk/5Y5QLMnGGkRZxpEhIpqUJxTDCwfHNkF9+cgwIvEk1tbbsLObLYEncu3Kavzw3SugUebvVBdJkrCr243PPtyCztFg2o9/84Z6fOedy9IaGr/62D48sK17wscqzBp8+arFeMeq6jM2xXjp0BBuu2972mqaLrbaphOUCmBhpRkH2FiDaMamMzLEMEREpxj1R/Bc6yCe3u/AG+0jp40MbGyyY1sH71pO5qw5dvzmA+tyulX3RCLxBJ7YM4D7t3Ri7yQbvKZLtUWLq1dU4YIF5Wgo0aPaqpvxaNHrbSO45d5tUz5vbYMNd75jKZacocX3va8ew1P7BqAQBAgCxj4gIBRLZPy/ybxyI9pm0cKcCotepUCVVYf2HOzCSZQPGIaIaFocnjCeOeDA0/sH0NzhPONeF2sbbNjZxTvYZ7KwwoQ/3rY+J7unvdWgN4wHtnbhweZujPijstSgVAiotelQZ9fjlo0NKbcP90fiuOInr6TctXBjkx0fv3AuLlxYPuHjyaSEj/1lJ55tHTztsYUVJkiQsH/vXgTbtkGKR6EunwP9grMgiLMLvoIAaEQF1wzRKWx6FXRqEf3usNylEOUdhiEimlL3aBCbDgzg6f0O7O52p/y6BRVGHBnkHeypVJq1uO/D67GoMvfekyRJwu4eN+57vRNP7RtAPMd2evz0pfPxqYvnTzmV7iuP7cODk0yPm8i8MgO6nEHc/Z7VuHpF1YTP8UfiuOFXr5/2PZ4I++F6/LsIdLTArBNh1Ajod8ehNphhvfaL0DWsTLmOt6qx6vKmDT1lV5VFg0g8CWegeJrUEKUDwxARTahtyIen9znw9H4HWgdmNh/dqlcVVfe42TBplPjNrWtxztxSuUsBMDYV7ql9A7jv9U7syfC0r9maW2bANSuqUWnRosSgRolRDbtBA7tBDbNWidfbRvH+3089Pe4EUSFAIYzt46IQgO/esAI3ra+b8LldowFc94vX4QmNfZ9LkoSRh74A1cgR/PpdIq5bJkIpCjjoSOLT/4rj1Q4B5R/4MdTlTTP6WlfXWbG7xz2j11Lhayo1YMgbRoAd5ohSxjBERADGLuIO9Huxaf/YFLh0zT83apRF201uulSigG9dtwzvXlcLlaiQpYYhbxh/2daNB7d1yTYVLp1UogABAqKJ1KeVNZUa0DFy6vf/z29ejWtXVk/4/L9t78YX/7EPABDqbMHQ376GJ+7Q4LKFpzbHCMUkrPhBDKOVb0PptZ+f5lcyNoJYYlThQL9v2q+l4rG4yoS2IT83ZSVKEVtrExWxZHJsCtSm/QPYdMCBHmf6p99UmDXwDzMMpSKWkPCVx/bh7ueP4JaNDXjfxnqUmTRZOffubhfue6MTT+7NvalwszF2QTi9r6fEoD4tDH3/mUO4clnlhCH1XWvr8OetXdjf50Xw0GtoKlXi0gWnP0+nEnDHRgHfePY1bPjkd+AOxxGIJOCPxOGPxJGY5L+7Ta/C/HIjdnW74PByTQid2cEBH1bXWdDS60H+38Imyi0MQ0QFIJ5IornTiWf2O/DMgcGMX1yZ86xTWi4Y8kXwk+eP4BcvHcVVy6rQUKI/4/PnV5hw/gw2dY3Gk3hq3wD++EYn9nDq1biJumr3OEN4dFcv3rO+/rTHRIWAz1+xCB/8QzOSkQBqLZi0NXetVUAykcDWtkEoVKcGXZ1KAZNWBZ1KhE4tQq1UQBQEHHJ40cxW2jkvNtoD355nEHf2QaExQL/oXOjmroegyH77/N09HmxosqG5g983ROnEMESUp6LxJN5oH8Gm/Q482zoIZyB705/UMk33KgSxhITH9/Sn9FyFAKyqs+LCheW4cIpNXYd8YTy4rRsPbOvGsC+SzpILgis48c/HL15qw03r6iYMOmsbbAAAlb0Gu3YmEYhIMGhOf96rxxJQm6wQlKcH11AsiVCMfx/5RpIkeF57EJ43HoJCoYFGMCOGKIZbN0NdPgfl77kTon7yNu2Z0utiow2idGMYIsoj4VgCLx8Zxqb9Djx/cBC+sDxT1QppylUuS0rArm43dnW78ePnjqDUqMb5C8qwsckOZyCGzpEAOkYD6BwJYIgBaFJKhYCukYk3kO1xhtA+HMC8cuNpjxk1SjSU6BFfcRn6t/wN33sxhv+96tTAs7c/iQd2SdBtvPqMm7pSfgnsfwGeNx6CRT0fFlUTBGHsBlA44cLwyB4MP/Z/qHjfd7P+d97vDmNRpQmHHFxjRpQuDENEOc4fiePFQ0PYtH8ALx0aRigmf0chv0whrNiN+KN4dFcfHt3VJ3cpeaWx1HDGDU23dYxOGIYAYHGlGV2jFbCc/0F874X7sHdAwoc3iLDrBTxzKIFfvp6EoqQB5nXvyFT5lGWSJMG75e/QKStgVc895TGtaEOJegmGe3ch3L0PuoYVWa/PpOWlG1E68SeKKAe5g1E81zqITfsdeLVtBNEc24xx2M9RCMofJQY12s7weHOHE7dsbJjwMYNm7Nek5ax3QWkuxUtb/4an7+sBACg1WuiWXQ77ee+HQnPmNWCUP+KeQcRcfbBq10z4uE4sgwAlhv72NRhXXg7rBR+CqJ04TGdC9+jEo5xENDMMQ0Q5YsgXxrMHBvHMAQe2tI/m9FQ0jZLTgSh/vLWL3FttO+aEJEkTTnmKndS+27DkQugXX4CEdwhSPArRXH5awwQqAImxkW8FJm6SIAgClIIKNRorBvZtxnDvQZS//wdZC8SDvgga7Hp0ORmKiNKBYYhIRn3uEJ7Z78Cm/Q5s73LmTctUi06FAQ9Hhyj3LakyoXXgzOsrHN4wup1BNJQYTnssnjx1VFYQBCgtFWmtkXKL0lIBhcaAUGIYWmXJaY9HEz7EpBDeZj4f5Wobft7/D3i3/xPWc9+XtRorLFqGIaI0YUsoIhn4I3F89bF9eNt3X8T/PtGK5s78CUIAoFPzPgrlPp1KhDeU2vq2f0/S4S8az6MfTEoLQamCcdWV8MV7EUm4T3ksKcXhirbCKOqxxNCICrUdawzzEWzZlNUafaFYVs9HVMh4RUOUZS8fGcZXHt2HPnf+tkhVKXgfhXLfkmozdnaltifLj587gpV1Vpw3v+yUz791ZIiKg+WcmxHpOQDHQDP0YgW0og2JZATBeB+AOD5UdS1EYWwaXYO2Es3DrZASMQhidvZgOzzog1GjhD/CZjZEs8UrGqIs8YRi+MIje/DBPzTndRAiygdr6q0pByFgrI35Jx7Yddr6opPXDFHxUKi1KH/vd2C78DaEFV44I60IxXuw2jgHn6p5Nxq1VePPdcV9UCjVgCJ795eTEjB/kg6IRDQ9DENEWfDCwUFc/pOX8fCOXrlLSYsY75ZTDqu2anFowDvt13nDcXzk/u3wht+cgpTI4UYmlFkKlQbmDdej9PovAwBuqbgMN5RdiDK1bfw5kWQMzf5D0C2+IOt7DiXyaW41UQ5jGCLKIFcgik//dTduv38HBr2F03AgGJV/ryOiiahEATqViGBsZoG9fTiATzywC8Ho2PSjpdWWdJZHeUjbsBLauuV4YPh57PIdRlwae//rjQzh94NPwo8YLBtvyHpde3s9qLPrsn5eokIjSFL+31rwer2wWCzweDwwm81yl0MEAHh63wC+/q/9GPFH5S4l7aosWgx4wnKXQXSaDY12NHc6Z32cFbUW3PvBdTg44MMH/9CchsoonyUjQYw+8SME27ZBpVBBpVAhGA9CZSpDyTu+AE3NYlnqmlNqgKgQcPQMmwoTFaNkJIieu29KKRuwgQJRmg37IvjG4/vx1D6H3KVkTCTHNoElAoDlNZa0BCFg7K779b98A7/5wFpUW7ToZ/gvagqNHmU3fh2xkR4E27dDSkRRVj4HujlrISgm3o8oG44dX+O2ut6KAU8YjuPfpxadChadCgaNCK1ShEoUxqfxxRMSQrE4HN4wnAF2pSPiyBBRmkiShMf39OObjx+AK1jYv2AsOhU8bO1KOaTUqEYskYQnxVbaqTJrlfjhu1fi9691YFtHeoIWUSYoFYBZp4Y7GEUqS93KTRpE4km+l1NB4sgQUZYNesP46mP78PzBIblLyYo4O2xRDhEEoNSowSHHmTdXnQlvOI6vPLYfT37qXHSMBHDf6514ttWR0sUmUTbFk4AzkPq07CFfBEuqTPCFY/x+pqLGMEQ0C5Ik4e87e3HnE63whYtnv4c4f3NSDtnQaM/oqM2IP4L/fGAXHrrjLJw1pwS9riD+srUbf93eDXeBjwJTYWsd8GFjU2Z/fohyHbvJEc1QnzuED/5xO77wyN6iCkIAwxDljhW1FjRn4UJuZ5cL3336EACg1qbHl65ahC1fugTfvWE5yk2ajJ+fKFO2dTixqs4qdxlEsmEYIpqmZFLCA9u6cMVPXsErR4blLkcW3HuFcsHGJjv29nqQre/GP2/thDv45jQknVrE1SuqEI6x1Tzlt/ah9E8xJcoXnCZHNA3do0F88R97seXYqNylyEYUgESeZqEKswZGjRIapQiVUoBSoYAgAMFIAkO+cEG2QS9EJo0STaWGrE/tiSUkPLlvALdsbBj/3EPN3fAW2cgwFR7uHUfFjGGIKAXJpIT7t3Ti+5sOI1Tkd4ETElBiUGN0Ggt15aBVKdBUaoBJq0IklkCXM4hBbwSDmHzzW6NGRLVVB4tOhUg8iYMDXsTyNfkVqMYSPaKJJPb2eWQ5f0u3ezwMReIJ3Ptqhyx1EKVTIb3NNZboUWrSjE19EgTEE0n4I3EcHfIj//snUyYwDBFN4diwH194ZC92dLnkLiVnzC03YjQHFtwqBKDGpoNepYRaKUCtFCEKwGggio6RAA4OTG/qhz+SwJHBNzcvNKpFrKgxIZaQcNDBYCS3NfVWHOj3IBKX7++hazQ4/udHd/VhyDd5uCai7JlXboRBLWJPrwedJ/2cjj9eZkA8KU34GBU3hiGiSSSSEu599Rh+/NwRbjL6FqN+eS8A1zfaEIomcGzYjx5nKGPn8UcT2NntBnAiGJkRS3LEKNtEhYC19ba0baiaqrhnEL6WpxEdOAqIKujnrkfF4vcDGHt/+M3L7VmthyiTBAF5OXJiN6hQa9Njb++ZR4vbhgNQCMCGJjv29Lj5e73AmbWpRxxuuko0gSODPnz+kb3Y0+OWu5ScVWPToc+VuSAymQ2NNjR3yjtKZ1CLWFhpQjwpMRhlmN2gRrlJjUMO/9RPTiPfnmfhfObnAE5cIQoAkjDbSvDq5hfRjVJ88sHdWa2JKJOUCiHvOoWuqLWg2xmcdov7KosGNr0ardOcPUD5Y1WFGv/6zOXcdJUoVZIk4ZVXXsFfHngAOw73oDNigH75pVCV1MldWs6qtWY/DE13PwxJkhDpa4V/7/NI+oYg6K0wLrkI2jlrIAgzb6YZiCaw6/iIkUEtYnmNCYmkhFYGo7RaUGHEiD+a9SAU7tkP56afYazhqoA3G68KCHg9uPjSS1H7H/cCELNaF1EmCYLcFaROq1JgeY0F22d4Y2zAE8GoP4rGEj2nzRWgSosWe3tTv1ZgGKKi5/f7ceMNN+LZ556FSmmECC2iSR/c2/4B84YbYL3wNgj59FsiS3pc2f8F0tqf+qJ5KZnA6JM/RqD1ZTSUKLG2RsLBIQEHH3kZ+oYVKLnh61CodbOu6eRgpD/+CzqRlHDQ4UOU0zBmxKRRYkm1GTs6nbIs7PY2PwYIIsZ6dp/8sy8gkZAwOjwMacfzMK28IvvFEWWIQhCArDWqn7l55UaEookZB6ETogkJsYQEvVpkN70CU23Ron8o9eczDFHRu+22D+P5F15CmXYNdGIZBEGAJCXhjXXB3fwoRHMZzGuvlbvMnNPvDmNeuRFtQ9m5a69WKuCLpP4Ly/3aAwgfegV/uFmNm1eLUCgESJKE546IuOn+/XA9+wuUXPP5tNYYjCVPCUZL661ISsDBAS+DUQqMx0NQa58n622zTxbq2Hl8atxEo4djI0XhYzsZhqigKBS5fdNPIQDrG+3Y3ulEumbz9blDWF1nwe4eebpTUvrNKTOM/x5OFTddpaL25GsteOSRR2BVLYBeWT4+AiQICljUTTAoa+Dd+gikJO8aTcSuV2ftXCWG1M+VjIYR3PU4/vt8EbesVY7/khcEAZcvFHHX1SICra8g7h3JVLkIxpLY3e3Gnh43lAKwut6KlXUWqJV8230ro0aJDU12ABKaO5zwy3iXVpIkIDlVcJX4nkAFJ5ffmSotWswvN2FbR/qC0Am7ezzY0GhP70FJNjrV9L+Tc/l7nyhjwrEEvvv0Idz6rV8DggCDsnrC5xlVNUj4RxEd4l4iE2nt96Ders/KuQya1AeyIwOHEY+E8YF1E7/m/WuVkCQJ4c7sLIB/Mxh5IArA6jor5pcbs3LuXGZQi9jYZIdwIgRNY+QvUwRBgLpy7qmz404hAQKgrpqfzbKIMk6R4nTwMpMGS6rMWFBhRFOpHtVWLUqNahg1SohpHl2aX27E+kYbvMEoDg9mrtnBzi4nmkoNGTs+ZcfSajMO9E//+4TT5Kjo7Oxy4vOP7MWx4QCS8RgEQYQwyX0BBVQAACk+vU41xcIfTUAXTaDcpMn4fiue0DT+DhJxAMBkA1c61fE2ssl4GiqbnlAsid3HuxQWa4tXvVrE8hoLWvvlnQ43GdPa6zD6xI+O/9vJ7w3S2IcgwrSCU+SosFRbdRMGjjKTBvV2HQQI6PeE0O8OY/gM7/dKBaBTidCoRGiUItRKBdSiAipRgKgY+1AoBCgEASdWKUmSBAljLesTSQk6lYheVwhHszQNOyEB5SYNOkYCWTkfpZ+oEGa89othiIpGKJrAD545jD++0TG+l4K6Yg6kZAyRpBta0Xb6axLDgEIJVUltlqvNH8P+CGptOlh0qukFlmka8UegVACp5AZ1+RwICgWeOJDAJ887Peg+eTABSQI0VQsyUGnqmjucqLZqYdaqcMhR+C1edWoRK2osaB3w5mQIOsGw5EKEu/chsPdZjF+tQQKOdyAsveazEI2nv18Q5bPDgz5YdEo0lRqhViqQTEophZ+3iicBXyQxrTWeucAXzv7NMUqfNfXWGTfVYBiiorClfRRfenTvKbvHA4C2YQWU1iq4fIdRoV0HhfDmj0QsGYA33gXD4vMh6kzZLjmv9LpCmFdmQDSeRCiWmV+AkgSUW7Tod4enfK5otEG/8G349vNv4NKFSSwqfzMQ9XuS+OITSehrFkBdMTcjtU5HvzuMfoRh0ioL9pex7vhI0CFHboegEwRBQMmV/wVd42r4dj6O6GA7oBChm7cR5vXvhKZyntwlEmWEJxRHS5Hur3ds2A9RISCRZ3st0dhG7LPpLshNV6mg+SNxfO/pQ/jz1q5JnxMZOIrBh74CRRIwKqqhVOgRSXoQiA9AaS1Hxfu/D1FvyWLV+WtZtRmHHL6Mbdy3qNKU8ghKIujByENfRNLdj5tWKrC6VsDRYQl/3plETG1G6c0/gMpWlZE6Z2JlrQV7pthBPd/oVCKW11pw2OGFJ1SYQY+ICsfcMgPahzlVLp8sqjTh6KDvtG0YkpEgeu6+KaVswDBEBWvz4SF89bH96HNPvTFozNkH77ZHEWjdDCkegai3wrjyCpg2XA9Ry4Xu07Gy1oJ+z/SmVaSq1KjGiD+a8vOTkQB8u59CeO/TiHqdUBlM0Cy9DOa110I05NY0pw2NdjR35v6oSSq0KgVW1FpxZNA37Z3hiYjkUkjvw8Wg0qxFKBaf8GYbwxAVte7RIP73iVY8f3Bw2q+VJAlIxCEoVRmorHiIArCqzophfxTdzvRszmrVqwr6wnpOqQHH8nzx7okQdHTQB1cB/10RUWHinkP5Q6cSUWHWoHN04muM6YQhrhmighGKJvCrzW34zSvHZrzBpSAIAIPQrCUkYOfxTc+W15gRS0gzbhCgU4nHW7dq8mK9yUz1udMTGuWgUSqwstaKtiEfmgv474iICpub03nzxvJaS9p+3zAMUd6TJAlP7XPgO0+2ot8z9eJ6yq59fV4AwLwyA+xGDQQA0XgS/kgczkAUo4GxaW9lRg3KzRoY1CIAIBBNYNgXwZAvgvbhQMHP47bq1BjMcHvydFMrFVhVa0HbUIBTS84gGQkgcPBVxD2DEHVm6BefB6WpVO6yiOgtfGGOaOeDaqsWu7rS9zuHYYjy2pFBH775+AG80T4qdyk0hbbhADBBoFEqAJWowLA/gmF/foWBdDLrVHkThlSigNV1NrQN+9E8iw4+xcC360m4X/o9kIjDrjHAEw3BvfmPMK65BraLb4egEOUukYiOcwVSX5NK8ik1aFLqLJsqhiHKS55QDHc/fwR/2tLFNph5Lp4E4sni2nR0Ijp1flwUl5s0MOuUHAlKQaB1M5zP3YNryufilurFKFHrEEjE8MRgO/6w898QRBVsF90GKR5F4NCriPQcAAQB2voV0C88B4LIKbtE2ZSQALNWCW+BbnNQCOaXG7G3L73ruhiGKK8kkxIe2dmL7206ND69iqgQ5EOoX1JlRr8nhLahwp6ymA6SlITvlb/gHFsN/qth9dh6RAAGUYWryprQE/biuR3/hLpuKTybfopYwINFNiMSkoSje56BerMdJe/6FtTlTTJ/JUTFxapXMQzlMLtBnfZjMgxR3mjpceMb/9pfcHuxEAGAP8fnqm9ssqO5w4ncj2y5ITp4DBGPA+9cdMF4EPLFo/hN9x5sdvUgmhjbnNj9r2+jTK3EQ1cvwVyzDgBwxBPCJ7d0oe1vX0XFR34NUccuqUTZolfz0jiXZeJGuGLqpxDJa9gXwef/vgfv/OXrDEJUsFyh3AxDerWIlXUWbGMQmhYpMtYdsEytBwAEEzF84egr2B4bwv/e9W7sP/h9bNtxJz728UsxGI7h14cGcWKniwUWHf5ywVwg4od/77OyfQ1ExUinyo8py8XIpFWibcif9uMy/lLOiiWS+NOWLtz93BH4IhyypsLmDcWxotaCvTkU+OtsOkgA9nDfjWlT2ioBAPt9w6jRGvHvwXb0RnzYtvNOLFtWN/68tWubsHxFHf7jjt/jfXPKsLrUAAAo16lwebUFLx55A9j4Llm+BqJiFIwmuG4oR80tM6Klx53243JkiHLSG20juPpnr+LOJ1oZhKhoHB30obFEL3cZAMY2zR31R9DrCsldSl5Smsuha1yDBx1H4I1H8YyrE+9+z1mnBKETPnTbBWioK8Hfjo2c8vkSrRJCjNsFEGXT4UEfTFolaqw6uUuht1CKQkaOyzBEOaXPHcJ/PrAT77t3G44Mpn8olCiXhWJJBKMJ2A3ydRFTCMCGJjtaetwIxtjlbzZsl34Uw1IS/9n6AgZCAazfMGfC54miAmvWz0Fv8M258ElJwmaHH0IZGygQZVufOwxfJIZFlSa5S6GT9GXo5hzDEOWEcCyBn71wFJf8aDOe2ueQuxwi2Qz5IrAbNCjJQMecM1lYYcKGRjvKTZq07epd7FQltSj/wI8QaFgJQSGgvW1wwudJkoS2IwOwnbRw+w+Hh9DtC8G4+u3ZKpeITuINxdE25MPaepvcpRAAQQAGPJkZKRekEys285jX64XFYoHH44HZzK47+USSJDzXOog7n2xFj5PTcYhOUCqAlbU2hGJxxBISFIIAQRgbuRGO/1nA8X8KgAICjv9v7PHjxzneyAzjnzn1H0hIEo4NB+Bkq/qMGn3u11C0v4RDR76P8nLLKY89//x+XHnZd/Efiyqw2KrDP7vd2NzvhnnDDbBd9GGZKiaiE+aWGVBq1GDYF8GxEW4tIAerTgX3NBoNJSNB9Nx9U0rZgGGIZNM+7Me3/t2KV44My10KEVFGxX0jGP7zp9FUa8SPf/I+XHbZMoTDMfz1oS34zP88gHBUQjwydtdTV9EE/fobYFhy4XhbbiLKDeUmDRpK9AjFEjjs8CGWyPvL6LxQZ9OhZxrT5KYThthNjrLOF47h5y+24Q+vdSCeBxtNEhHNltJUitKb7kL3Uz/A1Vd+Hyq1ColEAsmkBOPCc1B5xaeOj+IJUGhyo4kGEZ1uyBfBkC8CANCpFFhabYaoUKB92A93MDe3SCgEBk3mIgvDEGWNJEl4bHcf7nr6EIaPv5EQERULVWkdyj7wU0T6DiHqOAJBVEHbtAYqa6XcpRHRDIRiSbSctPXAggojzFoVdnS5ZKyqMGlVmWtzwDBEWbG/z4NvPH4AO/kGQURFTBAEaGsXQ1u7WO5SiCjNTnTBXV5jRq8rBBdHitJGKTIMUZ5yBqL44bOH8VBzN/J/dRoRERHRme3r88KmV2FumQHtw2y4kA5iBtdPMgxRRsQTSTzY3I0fPXsEnml0/yAiIiLKd65gDAIEVJg1GPRyacBsZXKNOcMQpV1zhxPfePwADg545S6FiIiISBbOYBR1dh1KDGqMprh9gUEtoqFED6N2bPNtSZIQiiWwv6+4r6n63ZnbfoVhiNLG4Qnj/546iMf39MtdChFio73w7X4KiYFWQKGAqn4NjCuvhNJcKndpRERUJHqcIVh0SqyotWBvr+eUxzRKBRpK9LDq1IgnkxjyRtDrDqF1wHfacRZUGBFLSOgo0n2OBjxhlJs045380olhiGYtEk/g96914BcvtiEYTchdDhH8+56Hc9PPYDEp8c5zjYjGJDz+6iNwbH8UJe/8KnRz1spdIhEVsGTYj2Q0CFFvhaBUy10OycwTimNvrwcNdh0AARIkJJISBjzh8aYLUzky6IcAYH2jDTu7XCjGnUlqbTqGIco9Lx0awv8+0Vq0dyoo90QcbXA+/VPcdl0J7v5cLTTqsQ40Xn8Ct3ytEy/88zuovON3UJpKZK6UiApNuLcV3tcfQqhzNwBAodLCsPxSWN52M0S9RebqSG5dztlN9ZIAbO90YWOTHds6nOkpKo8oFKk1UdCrFJhfbkVPqsedeUlUzDpHArj9vu247b7tDEKUU3w7/4XaSg1+8cW68SAEAGajiL98uxFqMQH/nk0yVkhEhSh4dBuGHvwyLAO9uKH0QtxWeQ0uMCxFbM/zGPrz55AIuOUukQpEc4cTiypNcpeRdQPuMMQp8tCiSiPMejV297hTPi5HhmhaJEnC7149hh8+cwTRRFLucohOE+9uwXvfaYE4wTumxSji6nNNePLwbgC3pO2cybAf/r3Pwr//JSTDPiht1TCtuhL6hW+DoBDTdh4iyk1SPArnUz/BIl093l9xOURh7Od+ob4e60yL8IuBx+B++X6UvP2/Za6UCoGEsa1LTFolfOG43OVkTZ87hBqbDqUGNfa8Zf2VSiFgTYMNzZ3OaW/lwjBEKfMEY/js3/fg+YODcpdCNDkpCeUZbh2plAKENG56FXM7MPjgl5DwjQIQAEhI+J2IdO+Fds5alF//NQhKVdrOR0S5J3D4dSTCflxdd914EDqhRGXBuaZleKH1ZdguuQMKjV6mKqmQDPkiWFVrRUuvW+5SsqrPFUKfK4RFlSbEEkm0DwfQVGpAUpJmPHWQ0+QoJXt73bj6568yCFHOU1YvxSMveSFNEHiC4SSefM0PZfXStJxLkiQM//P/kPC7MPZ2qgAgAtLYn8Mdu+B+/cG0nIuIcldstBcmlQmlKuuEj8/T1SKZiCLuHcpuYVTQWnrdWNdgk7sMWRxy+NA+HMDSajN6XUF0jQZnfCyGITojSZLwpy2deNc9W9DrylyPd6J0Ma69Dkc7g/jWbwZOCUSxuIRPfq8bvmACxtVvT8u5ov2HEBs8hrEx+beORikACfDtehLJGDfcIypkCrUW4UQEseTEU5Z8icDx5+myWRYVgX19biyoMMpdhmwO9HsRS8xutgenydGk/JE4vvSPvXhi74DcpRClTFu3DNYLPoS7/ngfHn7egxsvNiMak/DX5zwYHI2h5OrPQGWtTMu5wj0HAEEBSJNNy1NAigYRG+2BpnJeWs5JRLlHP/9suF++Hy3+I1hvXnLKY5IkYYu3FZryuRDN5TJVSIUqEpfQMRzAmnordnW7xz+vVAiYU2aATa+GLxxDOJaEXi1CrVQglpCwr88z+UGLDMMQTejggBefeGAXjrFTHOUhy1nvgqZ2MRw7H8dP/9kKQVBAWX8+Kq+5DurypvSdKLUun0RU4FQltTAsOg//OvI6REHESuM8iIIIfyKIZ53NaA/1oOzKr0IQ+KZB6RdLStjV7cbGJjskAMFoHO1D/kn3MKqzc4TyZAxDdJqHt/fg6//aj0ic3eIof2lrl0Jbm561QZOeo245ICUxNuN4ooucJBQaA9SlDRmtg4jkZ3/7f2M0mcDDR17Av11bYBT1GI26AIUC9is+Cf2Cs+UukbJMSiYQ2P8Cgi1PIjbaA4VKA/WC82Be9w6o7DVpP1+qDQR6nCEsqzZjf7837TXkI4YhGheKJvD1f+3HIzt75S6FKC+oqxZAXbUAUUf7BOuGxm4mmNZex25yREVAodKi7PqvIDrUgcCh1xCOBGCxVcGw9CKIOrPc5VGWSYk4Rv75HYTat+PyRUpcvE7AkC+E+3c+g6EDz6Pkxm9BW79ctvo4SPkmQZqo5VKe8Xq9sFgs8Hg8MJv5hjMTbUN+fOKBXTg86JO7FKK8EvcOY/ChLyPudmBshEg6vo4oAd38s1D2ji9BEHnfiYiomHi2PgLfq/fj0dvUuHLxm+3WAxEJ7/xjDFv6taj82P1QqDSy1Vht1aLfHZbt/JmUjATRc/dNKWUD/oYm/KulD19+dB+C0YTcpRDlHaW5DFW3/RyB/S/Cf+AlJEPe45uuXgXdvPUQBDbtJCIqJpKURGj347hlrXhKEAIAg0bAr25UYtn3/Agefg3GZZfIVCVQZ9MXbBiaDoahIhaOJfDtJ1vxl63dcpdClNcUah1Ma66Gac3VcpdCREQySwY8iHiduHapesLH55cpML9CBcfAEUCmMKRXKeAOxmQ5d65hGCpS3aNB/OeDO7G/j4vniIiIiNJGMTYjIDRJ1pAkCaGYBCjkuQzXqxSotesLemlEY6kePSk+l/M3itCm/Q5c/fNXGYSIiIiI0kyhM0NX0Yg/7Zi4K++WziR6nXHomtZkuTJAqxwLQpO13c53lRYtVtdb0TkSTPk1DENFJJZI4ttPtOJjf9kJX3jiXbKJiIiIaOYEQYBhw7vx/OE4vvNsDNH4m73KDjqSuPWhOLRlddA2rc56bfMrjAUZhCw6FTY02TDiC2P3SZvPpoLT5IpEvzuETz6465TdiYmIiIgo/QxLLkDM2Yf/ffZB/GpLEhfOAQZ8wOvHEtDYKlB64zdlabCjUxfWpb9GqcCqOisO9HnQ3OGa0TEK678ITeilw0P4zN9a4OJCOSIiIqKssJ77PugXngN/yyY8OdoFQaVDydvfBsPi8yAoJ26ukGnxxMRT9/KNIABr623oHA2kvNnsZBiGClg8kcTdzx/FL15qk7sUIiIioqKjLmuE/bKPyV3GuGTe7y4KWPUqVFt02NE1s5Ggt2IYKlBD3jA+9dfd2HpsdmmZiIiIiApD25APTaV6dEyjwUAumVduhDcUQ+tA+pqAMQwVoDfaR/Cph1ow4o/IXQoRERER5Qh/JAG1GEO1VZt3G66ub7ShpduNWJqHtxiGCkgyKeFXm9vw4+eOFMQwKBERERGllzMYQ4WoQKlRjRF/VO5ypqQSBaystWJ7Z3qmxb0Vw1CBcAai+J+/teDlI8Nyl0JEREREOWzQF0GdXQeLTgXPZLvD5oBykwYmrTJt64MmwjCUx/yROF44OIin9g1g8+FhROKF0SGEiIiIiDKrxxnC+kZbxkZcZmtJlRl97iCGhjO77INhKM8wABERERHRbDSVGqBVKXI2CG1osmN7hxPZWPXBMJQnDg54cffzRxiAiIiIiCgljSV6WPVqBKNx6FQiNCoRrmAURwf9cpc2Ib1axPwKI5pnuXfQdDAM5ThJkvCXbd2484lWRBmCiIiIiChFJq0SLT1uuctISZ1NBwnAnh5PVs/LMJTDPMEYvvToXjy93yF3KURERESUZ7qc+bGf0Ko6C444fAjGsn/jn2EoR+3ocuLzf9+LjpGA3KUQERERUR7yhuKYW2ZA+3BuXk8qBGB9ox3bsjgt7rQaZDszTSieSOLu54/gPb/ZCrtBLXc5RERERJTHcvV60qJTYVGlSdYgBHBkKKcccnjx1cf2Y+fxXureUO5vhEVERERUrJKxMKKDHQCSUJc1QaHRy13SaXzhuNwlnGZumQG+cBytAz65S2EYygU7Op24Z3M7Xjg0dMrnjw4Fcnpok4iIiKgYSYkY3K89AP+up5CMjq3LUSg1MKy4DNYLPwSFSitzhW8yaXPrcn9dgw17etyIJbPROHtqufVfp4hIkoSXDg/hns3tZ+zxbtWrATAMEREREeUCSUpi5J/fQ6h9OxaoVqLeuAACBPTG2nB49zOIDXWi/L13QhBVcpcKAUDbUO600c7FTV4ZhrIsnkjiib0D+PXL7TjkmHpocG+vG2atEt4cHOIkoonFnH3w7ngc0bbXkYyGoSqphW75lTAuvxSCyLddIqJ8FmrfgWDbVpyjvxo1qjnjn7eIpahQ1uOl3n8gcGAzjCsuk7HKMYurTDkxFQ0ANjbJ2yhhMvytnAWJpIT9fR681jaCh5q70esKpfzaWELC6npzVjefIqLJJQIuxD1DUGgMUNprIAjCKY+Hew9g9JFvwGLW4D8+di4qKy146cWDePqpXyLSthUl1381J+4WEhHRzAT2PAursuKUIHRCqbIaFaoGePY8mxNhSK/OjUv9dQ22nAxCAMNQRkiShPbhAN5oH8HrbSPY0j46q5GdHienyRHJLeYagOvFexFqawYwNs9ZVdoA6wW3Qj9vIwBAisfgevy7OGtDI5546nMwGsfmjP/PZ96O557bh2uv/hG82x6F5Zz3yPVlEBHRLMXdDlQpyid93K4ox6inPYsVTazUqMaeXrfcZWBJlRm7unNratzJGIbSxOEJ4/W2EbzePoI32kbh8IbTduwBTwQlBjVGA+wuRySHmGsAjj/9D5KREMZmYCsASIiN9GD4H3ei5JrPwrj0IgSPvI6oz4Xf/O7L40HohMsuW44PfvA8/PnvT8F81rsgKEQ5vhQiIpolhd4Cn3vyi3t/0gOFzpLFisYoFUD8pD1Lm0oNObE+JxRLIEd6JUyo6MJQMinh2dZB7Oh0YtgfQaVZixqbDjVW3fg/Tdqpp7B4gjFsOTaKN9pH8FrbCI5luONbmUnDMEQkE9fmP4wFIQl4c3s2AWOfUMD57K+gX3A2IgNHMWdeFRYurJ7wONe9cw1+f+9LSPidUJrLslM8ERGllWHZRRjq/inciWFYxVPfywNJL3rj7bAs+2DW6tEoBaystaFt2IcyowaHB/1YWGEc36pFTstrLNjX55G7jDMqmjCUSEp49egwfvTskSn/UsxaJWpsetRYdag9KSjpVCKaO514o20E+/o8WU25xhxri0hULBJBD0JHtwLSiRGhk42tF5KiIQQPvw5BISIUikGSpNPWEgFAKDh2Q0NQ8OeZiChfGRafD1/zY3jF+W+s0pyLWtVcAAIG4p1oibwGpakUppWXZ62elbVWNHeOrcfxheNY32hD12gwJ0ZjovGE3CVMqaB/I8cTSWw95sRT+wfw7AEHRvypjax4w3F4B7w4OODNcIWpU0xwYUVEmRf3DgPS2AjQxARAISLudkDbtAYDzY/ilVcO4YILFp/2zPvvfw26yiYoDNZMlkxERBkkKNUof+93MPrvH2Fb1zNoDosQACSlBDTVi1B+3Reg0BqzVo8v8ua69FhCStvUOINaRCA68zCzsNKEwyl0TpZbwYWhWCKJN9pH8dTeATzb6oArGJO7pLSInjwJlIiy5s1faBJOjASdSgKkJBRaE7QNK6GrmoNbP/AbPPHkZ7F8eR0AIBaL4wfffxJPP7kbJdd8FoIgIOYagH/vs4i7HVBoDTAsOh+a+uUTjigREVFuEQ1WlL/3TkSHuxDu3gtIEjS1S6CpnJfVOmx6VUpbtUyHRafCwgoTdve4sKzGAm8ohm5ncNrHUYv58fusoMLQVx/bh1c6A/CECiMAncwd5HohIjmorJVQV85DdPDY8RGit765j31Ov/BtEAQB9nd+HaOPfB2rV3wZ55y7EDXVVry0+TBGhtywnPNeGJZcCPdrD8Dz+kMwKDWYr7diMBaCo2UTdPUrUHrD16DQ6GX4SilfJKNhRIfaAUmCunwOv1+IZKQua4C6rEG289fadGm78a9Ti1hRY8H+Ps/4tLv9fR4ImP4eQU2lBuzry50ZVmdSUGHoXy39BftLweFJX3c6Ipoe6/m3Yujhb5z0mRPNE8Y+TGuuhdJUAgBQmstQfuvPEDj8OloOv4aW3jDE2nNRdc2VUJc1wrfnGXhefwi31izFu6sWQqMQIUkStnsc+M6xZjif+BFKb/y6DF8l5TopHoP71T8j0PIUEtGx3wmiWgP98sthveBDUKg0Y8+TJEjxCASlGoIw2fROIioEWlV6OpOub7Shbcg/YeCRAGzrcGJlnQV7elJrhmDV589+egUVhgpZOJ5ke20imeia1qD0HV+Ec9MvkIz4AYUIJJOAIMC05lrYLr79lOcLSjWMSy+CcelFp3xekpIIbPk7zrfX4f01S958viBgg7UK/1W/Ct9v2wbLSA9UpXVZ+dooP0jJBIb//nXE+g8icdKCZIUUR7DlKcRHOmG/9ovw7XwcgZZnkAh5IIgq6BefB8vGd/P7iahApWtNucMbnnKEqX3Qj2qLFv1T3KCvserQ0u1OS13ZwDCUR9hem0g+hkXnQj9vA4JHt46t89EYoF9wDkSjDQCQCPsRPPgK4p4hKHRmGBafd1r77PhoHyIeB65ceN6E5zjfXou7u3Yj2N4MCy9e6ST+vc8h2teKufMq8J3/uwlXXrUSLlcAf/j9Znznzn8i3L0Pjj/8FxAOoEm5CHZdJYJJL9oP7oDj8Bsof8+3oalZJPeXQURpFk9Tyzi7Xo0eZ+iMz/FHEyg1aWDSKuELxyd8jkmjhFIhIAca2aWMYSiPGDX86yKSk6BUw7D4/NM+7935b3he+iOkZBwWlRn+eACel++Dcc01sF18+/gGq1Ji7GaGSVRPeHy1QoRGoYQU500POpV3699gseiw+ZWvobx8bDNHnU6Nr339etTXl+DDH/otEPbiMv3NMIm28dfNl1bileC/Mfr4D1D1H7/lZr9EBUapSM/IkCbF6Xado0E02HXQKBWndWlWKxWosWlxyOFPS03ZwsnEeUSRpm94Ikof//4X4Xr+N9hoWICv1N2KL9W+D1+v/yCutG2Ef+e/4X7lz+PPVVqrICrV2O5xTHisI34nfLEQ1OVzslU+5QFJkiAFnLjjPy4eD0Ine98tb0NVlRUCcEoQAgCloMZKzdsQ8w4i3LE7SxUTUbY0dzixsNI06+MkpjHC1OUMQRQE1Nv1qLJosajShNX1ViwoN+ZdEAIYhvIK22sT5RZJSsL76gNYZpiL60rOg0k51sBFo1DjAutqXGxdC/+OfyERGuuoo9DooVt6MR4ZbENn8NRFqKFEHL/q2Qu1qRS6ueuy/rVQ7pLiUSTiCSxZUjPh40qliAULqyBg4ju7drECKoUW0eGOTJZJRDKQALgCUZi0s5s95AtPryPdoC+CbmcQA54wDjl82N3txv7+/Oge91YMQ3mE7bWJckvU0Y6YdxDnmJdNuD/Q2ZblSCZiCLU1j3/OeuGHkLBW4pMHX8TPOnfi+ZEuPNDXig/vfxaHw17YrvsCpzLRKQSlGkqNFnv39kz4eCwWx4H9vdBj4rvDSSSQkOIQJpmeSUT5bcgXwZxSw6yOUcxdixmG8kgxf6MS5aJkJAAAsCgn3mncKOogCkokI29uVidqjSh//w+gO+vdeCbgwvePNePPjiMIz9+IilvvhrZ2yYTHouIlCAK0Sy/B7377Evr6Tm97+8c/vIyRER80wsRbS3THDiMpxaGbtyHTpRKRTEKxxNRPOgNvOA6LrjjXphfnV52nwvEk5pUZ0DYckLsUIgKgslUDADrCAyhRnb6Woyc8iIQUH3/eCQqNHtZzb4Hlbe8DEjFAVHI/GDojy9nvwXDbFpx7zrfwrf+9EVe9fRVcrgB+f+9m/PhHT0FdOQ9DjjYcDG/HAs1qiIISkiShP96B3ZHXoF94LlS2Krm/DCLKEJN29vv61Nr08ITyc6rbbDAM5Rm7UQMwDBHlBKWlHLrG1XixfxcW6xthELXjj8WlBDa5mqEylUHbtHrC1wuCACg5dYmmpjTaUfa+H2D02V+OdY478XmNFuaNN8H8tpvhff0h7N/yNxyO7YFVUYKA5EMw4YGucQ1K3v7fMlZPRJlk0ojY15faZqhnokvTBq75RpAkKZ9agU/I6/XCYrGg7tMPQ6GZeJpAoaix6tDnPnMfeCLKnthoL4b+8nkYEgLOMy9HraYcIzEPXvfugyPmQtm7vgHdJGGIaCZirn7EhjshiGpo6pZBodae8ph/73Nje2HpTDAsuQCamiUTrmkjosKwodGO5s7Tp9BOl1mrhD8SR5q2LpJVMhJEz903wePxwGw2n/G505qX8c1vfhOCIJzysWjRm5u4/fa3v8WFF14Is9kMQRDgdrtTOu4vf/lLNDY2QqvVYuPGjWhubp76RUWqzx1CQ0lhBz6ifKIqqUX5rT9CbO5KPOncil/3P4ZHhl+Eu7IGFe+7i0GI0k5lq4Z+wTnQzV13ShA68Zjtgg+i7B1fRMnl/wlt7VIGIaIC1+9Jz01ybziOJdWnT/kudNOeJrd06VI8//zzbx5A+eYhgsEgrrzySlx55ZX48pe/nNLx/va3v+Ezn/kMfv3rX2Pjxo24++67ccUVV+Dw4cMoLy+fbnlFodKsRddocOonFghJkgApyQ5blLNUtmqUveOLSIT9SPidEHUmiAbb1C8kIiKahSVVZrQOpG+dj1ZZfOtXpx2GlEolKisrJ3zs05/+NABg8+bNKR/vxz/+Me644w7cdtttAIBf//rXePLJJ/GHP/wBX/rSlyZ8TSQSQSQSGf93r7e4FnsNeoujq1y4ey98zY8i1LELUjIJXWUT9Kuvg2H5JVxsTjlJ1BohaifuLEdERJRuGlV6r4cOD/ogCkCiAKbKpWra/wWPHj2K6upqzJkzB7fccgu6u7tnfPJoNIqdO3fi0ksvfbMghQKXXnoptmzZMunr7rrrLlgslvGPurq6GdeQjzpHg1jbUNh3nX0tmzD40FcwJ9SC710j4pfvUuMCWw+cm34K55M/hiRxA1oiIiIqXnaDGvt6Z9844WS+cBxLqs+8xqbQTCsMbdy4Effddx82bdqEe+65Bx0dHTjvvPPg8/lmdPKRkREkEglUVFSc8vmKigo4HI5JX/flL38ZHo9n/KOnZ+KN6ArZ7m4XltUU5jdr3DMI17O/xEfPVmL7p1X47/NV+MhZSvzrdjX+9D41/Ac2I9D6stxlEmWFlEwg7htFIuBGAfS7ISKiNGks0SOegW4HamVxLUuY1jS5q666avzPK1aswMaNG9HQ0ICHH34Yt99+e9qLm4xGo4FGo8na+XJRUgLaBv2YV25E25Bf7nLSyrfnGRg0Ar57jQoKxakLf29arcQfmpPYuvvfMC69SKYKiTJPSsThbX4Uod3/RsTnAgDoyhtg2PhuGJZcKG9xREQkq6XVJuzqdmfk2EccPigVQLxIJuHMaqKh1WrFggUL0NbWNqPXl5aWQhRFDA4OnvL5wcHBSdcl0ZvC8SRG/BFUW7VTPzmPxBxtuGiuAINm4g5IVy8REHEcy3JVRNkjJRMYfezb8L/+Z9y82Id/3KbGX96vxnn2Poz8+4dwv/qA3CUSEZFMVAoB7mA8Y8f3ReJYUFGYs48mMqsw5Pf70d7ejqqqme1qrVarsXbtWrzwwgvjn0smk3jhhRdw9tlnz6a0ouEOxiBJEuyG2e88nDOUarjP0CPCGwIUSu4XTIXLv+8FBI/twKO3qfGbm9S4ZqkS716lxL8/osY3r1TB88ZDiA53yl0mERHJYE2DLeN7TqqVxdOSf1ph6HOf+xxefvlldHZ24o033sD1118PURRx8803AwAcDgdaWlrGR4r27duHlpYWOJ1vbgR1ySWX4Be/+MX4v3/mM5/B7373O9x///04ePAgPv7xjyMQCIx3l6OpDXgisOnV0KkLY46nbu56vHYsgfaR08dnYwkJ9+2UoJm7UYbKiLIjtOdJXL5IiSsWnf4z/bmLlCg1ifC3PC1DZUREJKdamw67ul0ZP48AhqEJ9fb24uabb8bChQtx0003oaSkBFu3bkVZWRmAsbbYq1evxh133AEAOP/887F69Wo8/vjj48dob2/HyMjI+L+/5z3vwQ9/+EP8v//3/7Bq1Sq0tLRg06ZNpzVVoDNrHw5gbqkBSkX+f/MaFl8AtcmOG+6L4/DQm4FoNCDhQw/F0ONKwrT+ehkrJMqs2GgPLp438c+yShRw4RwgPjrzTp5ERJSfTFolYlnoe60ooh1MBKkA2hN5vd6xFtuffhgKjV7ucmS1pt6asQV12RQd6Ybz719DxOvEunolTBoJr3dIiEMB+9Wfg2HRuXKXSJQxjl+8D59YH8Rd16gnfPyiX0XQoliLshv/X5YrIyIiuaxtsGJnlzsr51rfaMP2zqlHoJpKDbDoVPCFYxj0huGPJLJQ3dSSkSB67r4JHo8HZvOZ1z9x4UWB2dXtxoYmO5o7nFM/OYepS+tRcce9CBx6Da3HdgCJOPRvWwDjissg6i1yl0eUUaoF5+H+HZvw1cskGN/SSKTVkcQbxxIoufptMlVHRETZZtYp0TYUkLsMAEC1VYsaqw4dIwF0jJxaU2OJHhVmLfpcIfROsa5JFACVqEBY5rZ1DEMFqKXbhWqrFv1n6kKQBwSlGsZlF8O47GK5SyHKKvO66zB04Hm84w8x3PMuJRaUKSBJEl7vSOJDf01Aa6+EYdF5cpdJRERZsqDchB1dmV8rdMJEa4ZqrFpUWnTY3e2a9BqzczSIztEggDeDUTAah1YlQiEIiCWSCEQScAajGPFHsLzWiu2d8t7AZxgqQNGEBLNWhX7kdxgiKlYqew1K3vUtbPvnd7D8ez7MLVchHJPQ54pDV16Pkhu+CUE58RQ6IiIqLIsqsxuEAODkLFRj1aHSrMXuHhf6pnGj/eRgNBlvKDbTCtOGYahAHXL4Up7vSUS5R1u3DFUfvx+Bw69jaOAIIChQPmcttI2rIAhFtLKViKiIKRVAIJq5PYUm4wvHsKbeCoc3jD53KGOtvC06+beGYRgqYPv7PKg0a+HwcoSIKB8JSjWMSy8Cll4kdylERCSDtQ127OxyYVGl6XijgrFgZNCIODrkhzuYmZGVgwO+jBz3ZBadCnt65b9pzzBUwEKxJJbV6BmGiIiIiPKQLxyDShRwyHF6ODFpRNgNajgDURkqm72FlaacaPjFuRYFrgC2HSIiIiIqSq0DPoRiE3dbm1tuytsgBAD+cPan/02EYajAJZJ5v40UEREREZ1EoxTQn6F1PNmgU4s4MuiVuwwAnCZX8MLx3Nj8ioiKQzIaQqB1M8JHtwDxCMTSRhhXXQV1WWPGzx0d7oJ/33NIeIag0JlgWHIhNHXLIAgcIieiwrKqzoZtOTDFbKaMaiWGo7lxjcowVOByZQiSiApfbLQXo498HTHvCC66ZBnKyyx47vnXMbDrSVjPvxWWs2/KyHklSYLrxXvh2/EvKBRaqAUjogjDv+cZaBvXoOz6r0Ch1mbk3ERE2VZqVGN3j1vuMmbFH8md61OGoQLnyYH+7URU+KREHKOPfhP1FSo8ufNHmDOnHAAQi8Xx7Tv/ie/c+SeoSmqhX3AOktEQpGQCCo0hLaM2vu3/hG/Hv2BTL4JJVQ9BGNukNpQYwkjXXjg3/Ryl131+1uchIsoFc8uMeT0qBAChWAKiACRyYDUHw1CBM2mVcGWo7SIR0QnBtm2IOB3464vfGQ9CAKBSKfHNb92IV145gubX/gzvtscQ6T849pilEsa118K09hoICnFG55UScXi3/QNGZS3M6sbxzwuCAL2yAjYpAufBV2C94FYoLRWz+hqJiORm0ojY2+eRu4y0MOlUGWsNPh1soFDg9GrmXSLKvHDHLixaUoeVKxtOe0wQBNx669sQGe6BcdCNdbpLcJbuClQGLXC9+HuM/PO7kJIzmzseHWxHIuiGUVU74eMGZTUAAaFjO2d0fCKiXLKk2oJQjqy1mS2TJjeuURmGCtiGJvuEfemJiNJNSiagPcNO4rrjj52rvwZN6iWoUy/AWfrL8Tb9VQge3YrA/hdndt7E2F1FhTDxL1UBIgRBgBSX/+4jEdFsqEUBRwYL57quzKSRuwQADEMFa2OTPSc2siKi4qCpXoS9uzvQ3T0y4eOP/mM7LGobVMKpv/yqVXNQoaqHf9dTMzqvqqQOUIgIxYcnfDyScEKSElBXzJnR8YmIcsXKOmtBLX1QibkRQ3KjCkqrjU32vF9YR0T5xbDkAohaA+74yO8RDEZOeewfjzTjsUd3YI5ixYQNEyrFekRHumZ0XlFvgWHRefDEOxFLBk55LCHF4IodgcpeC03dshkdn4goFwgAelz5u6/QRA45fKixyt/pMzcm61HabGAQIiIZKNQ62K79EjY/dieaGj+DW299G8rKTHj66X149eVWaBV6zFVPHEgiUggK5cynS9guuQPRgaMYcG+BQayCRrQglgwikOiHpBRRcd0XuNcQEeW1VfVW7O52y11GWnlCMehUIspNGgz5IlO/IEMYhgoIR4SISE66xlWo+ODP4N3xOH517xYkY1GoShtgXHUl/C2b4Eu6YRbtp7wmIcXRGT8M3dKzZ3xeUW9Bxa0/gq/5Mfj3PAt/sAeCSgfDyoth3nADVNbK2X5pRESyMapF9DiDcpeREQ5vGAa1iA2NNjR3umSpQZAkKQc6fM+O1+uFxWJB3acfhkKjl7scWdj1anjCMSSSef/XSUQFJhmLwHHvf0IdiOAs7eWwK8daXAeTPuwIv4ShZD8qP3g31GWnd6KbCSkRBxQiR4OIqCCsa7BhR5c8QSGb5pcbEY0n0OWc/XTAZCSInrtvgsfjgdlsPuNzOTJUIOZVGNkwgYhykkKlQdnN38Hww9/AC66HYVSWQAkl3PEhKNQ6lN3wtbQFIQAQRP5qI6LCsLTaXBRBCACODvmhVAjY2GRH64AXvnA8K+flb4wC0Vdgi+qIqLCorJWo+sivEGrfjtCxnYgnE7BXzYdh8QVFO6JPRHQmJq0SI3751tLIIZ6UsK3DCaVCwIoaC5SigNZ+L8LxZMbOyTBUIPTqme3eTkSULYJChH7+WdDPP0vuUoiIcpZKIWBptQVDvjD6PWG5y5FFPClhb58HAKBTiVhTb0U8IeFAvweJNK8IYRgqEHaDWu4SiIiIiGiGmkoNKDWqcWjAh5Zet9zl5IxQLIFdxzvpram3jv85XRiGCsRoICp3CUREREQ0TQa1iPoSPQ4O+NAxEpj6BUXKrFXiyKAv7cflpqsFom3ID4tOJXcZRERERJQipQJoKDHg4ED6L/ILzcJKE/yRRNqPyzBUQOaWGeQugYiIiIhStKLWitYBr9xl5DyNUoHtGdqHiGGogAjgnhpERERE+WBDkz3t618KVZ09c11HGYYKyLERv9wlEBEREdEUNjTauD/kNCgVmbvhzzBUQFzBGKfKEREREeWwlXUWbC+SjVTTpX3YD7WYmUDEMFRgSo0auUsgIiIiogksrDDi4IAPUpr3yil0sYSE+RXGjBybYajAuINssU1ERESUa+psOvR7wojGk3KXkpeMmsx0TWYYKjBHBv0wabh9FBEREVGusBvUiCaS8IXjcpeSt5wZ2lOTYajASADmlWdmGJGIiIiIpsegFmHRKTHojchdSl5rH/bDoBbTflyGoQIkZrDjBhERERGlRhSAxlIDOkaCcpeS95ISMCcDjcIYhgpQ1yh/4IiIiIjktrLOigP93FQ1XVRi+qMLw1ABSiTZooSIiIhIThu5qWraZeIKlyvtC5DNoIKTXeWIiLJOkiREeg8gOngMglIF3Zy1UJrL5S6LiLJsfaMN27ipatoFIulvQMEwVIBKjRq0DwfkLoOIqKhEB4/B9dQPER7qhlqtQjyRgCsJGJZeCNvl/wmFSit3iUSUBStrLdjBTVXTrtKixZFBf9qPy2lyBUalEHB40Cd3GURERSXmdmDk4a9gQbUCz734FQTCf8Co6zf46c8/gHjbaxj9112QuMsiUcFbWGHCQQc3Vc2EBrs+I8dlGCowK+uscAdjcpdBRFRUvFsfgdWkxIsvfRkXXbQEgiDAZNLhPz9xGf70l48h2L4T/r3PyV0mEWWQVa/CgCfETVUzQK1UoHMkM7OeGIYKjCfEIERElE2SJCF8aDM++tELYbWe3vb1ndevQ319CdzP34NE0CNDhUSUDRpRAS83Vc2IZdVmDPoys08Tw1CB6XOH5C6BiKi4JOKIR8KYN69iwocVCgXmL6iElIjDv/fZLBdHRNkSjDIIzZZGeXo0yXRXPoahArOwwiR3CURExUVUQm2yYsf2YxM+HInEsG9vD+bNq0C0fVuWiyOibPFFEnKXkLfsBhXWNdgQiSehVABlRg3mlhmwtNqc8a58DEMF5kC/Bxua7LDoVHKXQkRUFARBgHbZ5fjjH15GW5vjtMd/9cvnMDTkxarVDUCC2x4QFTKDWpS7hLyzut6KSCw53oEvngSG/RG0DweysmEtw1CBiSYkNHc4EYsnsKzaLHc5RERFwbz+esQkJc49+1v46d2bcOTIALZta8PHPvp7fP6zD+JT/30Ftmw9BkVpk9ylElEGGbXctWY6TBol2ob8CETlG1VjGCpQwVgSx4b9sOo5QkRElGmizgTLpZ/AyIgPX/jcg1iy8PN421nfxBP/3oXv//B9KC0zobd7GMZVb5e7VCLKIJ2KI0PTsbjaDJ/MTScYXwtYMJbE8lord0AmIsoC/eLzYeo/CN/OJ7B2/Rxcduky1NbZ8de/bsNrrxyE5W03Q1O9UO4yiSiD9GpeWqfKblBjdw5sTsu/sQJ3bDgAUSEgkeTuX0REmSQIAmyX/AfUVQvRuutx7LzrcQCAvm4Jyt75FegXniNzhUSUaRJ4vZUqg1qEMyD/OkqGoQI37I9gVZ0VLT1uuUshIip4giDAuPQiGJdeBCkeAwRAEDldmahYHBzwYX2jDds75R/xyHX+SG60IueaoSLgD3MjViKibBOUKgYhoiK0r9eDSotW7jJyXq5sUMswVATahgNY22CTuwwiIiKigheOJ2HlFidTSiQlVJo1cpfBMFQsDju82NhkR5lJ/m86IiIiokJ2yOHDhia73GXkvFKT/CNoXDNUJPyRxHhXuVKjGrU2HdRKEQLGFvuFY0k4A1EM+8Iwa9WosGgQi0s4POiTt3AiIiKiPNTc4cTqOgvahgOyt4/OVWpRkLsEhqFiNOKPYsQ/efeOYX8Ew/4IAGBFjQVdziA8Ia47IiIiIpqO3T0elBrVqKsyo3XAK3c5OafXFZK7BE6TozPb2+fBggqj3GUQERER5aURfxStA15saLRDo+Sl9wn1dj2GfBG5y2AYoqnt7HKhnGuNiIiIiGasudMJvVrExiY7dGpR7nJkV5UjHfcYhmhKSQloKNHLXQYRERFRXnMFY9jW4YRSIWBjkx0mbXGuWCk1qtHrCspdBgCuGaIUBaMJuUsgIiIiKgi+cBzbOpwQBWBptQkGtQrHRvxnXNNdKCotWgiQ0OcOy10KAIYhStGBfi8WVBhxZNAvdylEREREBSEhAQf6xzr3bmyyY8TvlLmi9FvbYIOoEBCOJhCMJeAKRDEayJ3QxzBEKZPkLoCIiIioQMWThXmlFUsksbPLI3cZk+KaIUrZ0UE/NjRyAzEiIiKidAvHCnNJQl8OtM8+E4YhmpbmTifWN9rkLiPvWHQqrKm3YmGFCYL8+4sRERFRjinUjVlHA1GUGtVylzEpTpOjadve6cK6Bht2drsgFeaIblqUmTRoLNEjEEngkMOLXd1uAIBNr8LcMiOiiSQOO3yIxJPyFkpERESysulV6HbmRne1TGgqNeRscwiODNGM7OhyYXWdFQqOcpyizqbDxiY75pUbMOyLYHunC60DXpw8DdgVjGFHlwt7ez0AJKypt8pVLhEREeWAOWWFvcF925AfxhzdW4lhiGZsV7cbK2qtUBZ5IppbZsCGJjvqbDr0uELY1uFE21AgpddG4hJ2dbuxroFTD4mIiIpWgc+0cQVjWFJtkbuMCTEM0ay09LixpMoMlVg8gUghAEuqTNjQaEO5SYP24QCaO5zomcUCwR1dLmzgWiwiIqKi1Dac2tYlRo0SK2otqLXpsKHJnlfXX82dTmxozL2aGYZo1vb2ebCgwgSNsnC/ndRKBVbUWrC2wQaTVonWAR+aO10Y8kXSdo7m42uxiIiIqHjMLzfAE4pN+Ty9WoRVr8LeXg96XSE0dzixLEdHWybT3OlErU0PjTJ3AlHhXr1SVh3o92JJtVnuMtLKqFFiTb0Vq+qsEAVgb68HO7tc8IQy1+3lyJAPRg37mhARERULu0GT0vOWVpvR+5ZZKLt73Hm37UnHSAAra3Pn5i/DEKXN7m435pfn9wJAu0GFdY02LKsxIxyLY1e3Gy09boRi2en45g3FCy5UEhER0eRcwam7rC2pMmF7p2vCx5o7ndjYlF+BqLnTmTMNFRiGKK3UOTTsmapKixYbmmxYWGGCMxDDjk4X9vd5IVfH693dLpSbUrtLRERERPlvbplh0sd0KhHOwJkD07YOJ9bW585oy1RUogB/NDc2mWUYorQ60O9DnV0ndxkp0atFbGi0weEJo7nDhcODPrlLAgDEEhLqbHq5yyAiIqIsODLoR/twAOsabLAbTt+cdHmNGQ7v1GuUW3pcWJcnzZgm+jrlwsUJlHaVZi16nDPvrJYNK2st6HeH0TzJkLPcdna70FRqQMdIai26iYiIKL/t6HJBoxSwqNIEs04FSBLcoVjK1yoJCdjR6cKKWgviiSQEQYCoEKAQBCgEQCEIwIl/Ajgxl0c6/n8SJEjS2L8nj2+QKIoCjg76U2rwMB0WnQqDKQS8bGAYorRr7fdCpxYRypHhz5PZDWrU23Vo6fHIXcqU9GoO3BIRERWTSFzCIcfsZqqMbeqePgKAxVUmmDQqeEIxxJNJxBMSookkYokkovEkIsc/plJh1qDSrIVNr8aRwdTaiWcawxClXSCawPpGO7Z3OuUu5RQ2vQo6lSIvghAwNuVwWY0Z+/u8cpdCRERERUoCcHAgtYCmUgjQKBVQK0WoRAFqpQJKUQFRAQx6whj0RjDojWBJlSmzRU8DwxBlxJA3t6bJGdQibHo1juXZtDNfKAaFACQLfGdqIiIiyn+xpIRYNAFMMTtIn0PbiHAeDmVElzOERZW5kfpVooA6uz7vghAw9t9xTR51hyEiIiKayo5OF1bXWVFrlb/pFsMQZYyQA122BQFYUmWe9fxbOXWMBKBV8UeViIiICsfuHjf6PSHZN43lFRZlzMEBH5bXWGStYW29DXvSvJAw20YDUaystcpdBhEREVFaJSXg2Ii8jRQYhiijjg76sKJWnkCkU4s4Npx/U+Mm0jESgCIHRtqIiIiI0imVLnSZxDBEGRWOJ7G31yPLEOiKGgucwTPv2JwvhnwR2UfZiIiIiNItLnOXKIYhyormTifWN9ogZml4o9Ksxa7u3NxQdaaSElvKERERUWGRu4kCwxBlzfZOF8pNaqxvtEGjzOy3XpVFi1iisMLDvj4vKs1aucsgIiIiShubXi3r+RmGKKsGPBFs73RBpxaxsckOszb9feYXVpqwu8ed9uPmgoYSvdwlEBEREaVNLMk1Q1SE3MEYtnU4EY0nsaHRhnKTJm3Hjifk/aHKpKODPhjUotxlEBEREaXFdBZQVJg0KDNqIKZx1QXDEMkqHE+iudOFEX8Ea+ttsx75WNtgQ3uBdJCbiDMYQ1OZgZ3liIiIqOAZ1CJW1lqwvtGGCrMGg74Ihv0RJCTAolNhdb111udI/xwlohlISsDO4w0PlteYEU9KODgwvY1SdSoRHSOFG4RO2N/nxao6K0SFAH8kjgF3CN5wXO6yiIiIiKbt6KAfCytMcAWjGPVH0FhqQKlRA3cohrYh/6T7RXpCMezpcWN1vRW7u90zPj/DEOWcfX1eAMC8ciMMGhF7ez1IpZHailoLtnU4M1xdbmg5aU2UAGBJlRlGjYiWXg+iMvfrJyIiIkqVLxLH4cE3b4C3DwdSnuWTlIC9vR6sqrOecm00HZwmRzmrbciPPT0e1Fh0WNdgg+oME0QXVBgLrpV2qiQArQNeNHe6sLrOKnc5RERERFmTSErY1+fByrqZ7cfIMEQ5r9cdwo4uF0xaFTY02WE3qE55fEOjHe1D/oJrpT0T+/s8sOhUUz+RiIiIqEAkkhJa+72os01/zyJOk6O84QxE0Xx8GlyFSYNqmw6JpITmzuKYGpeKQDSBDY0W/jchIiKiohJLSNDNoOMuwxDlpUFfBIO+iNxl5KQjQz4IAlJaZ0VERERUKI4M+rGh0Yath4Mpv4bT5IgKjDsYw/xyo9xlEBEREWXdvn4vyo3qlJ/PMERUgKz61N8EiIiIiApFKJpAiUmT8vMZhogK0JA3LHcJRERERLKYzl6VDENEBahzNIjyadwVISIiIipGDENEBaqhRC93CUREREQ5jWGIqECFYkm5SyAiIiLKaQxDRAXKFWDrcSIiIqIzYRgiKlBVlunvwkxERERUTBiGiApQrVWHXd0uucsgIiIiymkMQ0QFqMysQVKSuwoiIiKi3MYwRFRgmkoN2N3tlrsMIiIiopzHMERUYMw6pdwlEBEREeUFhiGigiPIXQARERFRXmAYIiowWiV/rImIiIhSwasmogITjSfkLoGIiIgoLzAMERWYYX9U7hKIiIiI8gLDEFGB6XOFoBK5boiIiIhoKgxDRAVGAlBr08tdBhEREVHOYxgiKkB2vVruEoiIiIhyHsMQUQESOU2OiIiIaEoMQ0QFKBiNy10CERERUc5jGCIqQJ0jAYgKjg4RERERnQnDEFEB8kcSWFBhlLsMIiIiopzGMERUoExapdwlEBEREeU0hiGiAjXgDstdAhEREVFOYxgiKlA9rhCqLFq5yyAiIiLKWQxDRAWszs7NV4mIiIgmwzBEVMCCEbbYJiIiIpoMwxBRATvk8EKnFuUug4iIiCgnMQwRFbB4ElhQYZK7DCIiIqKcxDBEVOBU3HyViIiIaEIMQ0QF7thIQO4SiIiIiHISwxBRgXMGophXZpC7DCIiIqKcwzBEVATsRo3cJRARERHlHIYhoiLgDETkLoGIiIgo5zAMERWBtqEA7Aa13GUQERER5RSGIaIiMaeU64aIiIiITsYwRFQk4smk3CUQERER5RSGIaIicdjhg0rknkNEREREJzAMERWJUCyJUnaVIyIiIhrHMERURJQKjgwRERERncAwRFRElCJ/5ImIiIhO4JURURFRcs0QERER0TiGIaIiwmlyRERERG9iGCIqIiLDEBEREdE4hiGiIiIKDENEREREJzAMERURjgwRERERvYlhiKiICBwZIiIiIhrHMERURDgwRERERPQmhiGiIsKRISIiIqI3MQwRFZFhX0TuEoiIiIhyBsMQURHpGAnAblDLXQYRERFRTmAYIioyc0oNcpdARERElBMYhoiKzLFhjg4RERERAQxDREXHGYyi3KRhZzkiIiIqekq5CyCi7Dvk8GFjkx3bOpxylzJubYMNwWgcwUgcvkgClWYtjBolOkcDGGLjByIiIsoAhiGiIrWtw4kVtRbs7fXIWodZq0RjiQE7u1ynfN4ZiAIAVAoBc8sMaB8OyFEeERERFTBOkyMqYgcHvFjbYJPt/CatEiVGDfb2TR7IYkkJvnCc0/qIiIgo7aYVhr75zW9CEIRTPhYtWjT+eDgcxic+8QmUlJTAaDTixhtvxODg4BmP+aEPfei0Y1555ZUz+2qIaFpiCQk7u1xY32iDmOW0YdYqUW7SoGNk6hEfXziGpJSFooiIiKioTHtkaOnSpRgYGBj/eO2118Yf+5//+R/8+9//xt///ne8/PLL6O/vxw033DDlMa+88spTjvnQQw9NtywimoXtnS7UWLVYWWvJyvnmlBmgU4kpT30rM2kyXBEREREVo2mvGVIqlaisrDzt8x6PB7///e/x4IMP4uKLLwYA/PGPf8TixYuxdetWnHXWWZMeU6PRTHjMyUQiEUQiby6o9nq90/gKiGgi3c4Qup0hzC83QikKODjgS/s5BAFYW2/Dnl43YonUh3oqzFp0O0Npr4eIiIiK27RHho4ePYrq6mrMmTMHt9xyC7q7uwEAO3fuRCwWw6WXXjr+3EWLFqG+vh5btmw54zE3b96M8vJyLFy4EB//+McxOjp6xuffddddsFgs4x91dXXT/TKIaBJHh/w4OODDsmoz5pSlZ4PWOpsOG5vsKDNqsKPLNa0gpFcp0DbkT0sdRERERCebVhjauHEj7rvvPmzatAn33HMPOjo6cN5558Hn88HhcECtVsNqtZ7ymoqKCjgcjkmPeeWVV+JPf/oTXnjhBXzve9/Dyy+/jKuuugqJRGLS13z5y1+Gx+MZ/+jp6ZnOl0FEKdjf78Wx4QBW11lQY9NN+/VmrRLrG22YX25AjyuEbR3OGbXIXl5rhSsYm/briIiIiKYyrWlyV1111fifV6xYgY0bN6KhoQEPP/wwdLrpXywBwHvf+97xPy9fvhwrVqzA3LlzsXnzZlxyySUTvkaj0UCj4RoComzY3eOBQgDWNdgwGoieseGBUiFgabUZggDs7/Nge6dr0uemQq9SyN76m4iIiArXrPYZslqtWLBgAdra2nDZZZchGo3C7XafMjo0ODg4rfVAc+bMQWlpKdra2iYNQ0SUXUkJ2HF8H6ASgxpNpQZIAERhrANdNJGELxzDoCeMPWkML8FYEitqLOgcDcAbjqftuERERETALMOQ3+9He3s7PvCBD2Dt2rVQqVR44YUXcOONNwIADh8+jO7ubpx99tkpH7O3txejo6OoqqqaTWlElCGjgShGj2+Img17+zyoMGmwoMKEpDS21kgCcPyPkCCNfeLE54Sxf0qQEIkl0eUMIhpPZq1eIiIiyh/TCkOf+9zncO2116KhoQH9/f34xje+AVEUcfPNN8NiseD222/HZz7zGdjtdpjNZvzXf/0Xzj777FM6yS1atAh33XUXrr/+evj9fnzrW9/CjTfeiMrKSrS3t+MLX/gC5s2bhyuuuCLtXywR5adBXwSDM1hvBACiAMwtM8BuUCORlNA64EU4xnBERERE0wxDvb29uPnmmzE6OoqysjKce+652Lp1K8rKygAAP/nJT6BQKHDjjTciEongiiuuwK9+9atTjnH48GF4PGPTaERRxN69e3H//ffD7Xajuroal19+Oe68806uCSKitEhIQPtwYHxPI7tehRW1VrT0uDliREREVOQESZLyfl93r9c71mL70w9DodHLXQ4R5QG7QY25ZQa09ExvzyMiIiLKbclIED133wSPxwOz2XzG5057nyEiokLgDESxvdOFeeVG6FSi3OUQERGRDBiGiKioHRzwod6ug17NQERERFRsGIaIqOgdHvSjxqqDUTOrBptERESUZxiGiIgAHB3yo8KsgYmBiIiIqGgwDBERHdc+HMCiKpPcZRAREVGWMAwREZ1kd7cLlRat3GUQERFRFjAMERGdJJ4EqhmGiIiIigLDEBHRW+zqdmNOqUHuMoiIiCjDGIaIiCagY6ttIiKigscwREQ0gQP9XiytPvOu1URERJTfGIaIiCZhULPNNhERUSFjGCIimkQknpC7BCIiIsoghiEiokm4gzG5SyAiIqIMYhgiIprEoDcsdwlERESUQQxDRESTCMeTKDGo5S6DiIiIMoRhiIjoDEpNGrlLICIiogxhGCIiOgOjhh3liIiIChXDEBHRGSgVgtwlEBERUYYwDBERnUEskZS7BCIiIsoQhiEiojPwhuNyl0BEREQZwjBERHQGwz621yYiIipUDENERGfgCcXZRIGIiKhAMQwREU3BplfJXQIRERFlAMMQEdEUBDaUIyIiKkgMQ0REU5DkLoCIiIgygmGIiGgKAjg0REREVIgYhoiIiIiIqCgxDBERERERUVFiGCIimgInyRERERUmhiEioimwgQIREVFhYhgiIpoCW2sTEREVJoYhIiIiIiIqSgxDRERERERUlBiGiIimwFlyREREhYlhiIiIiIiIihLDEBERERERFSWGISIiIiIiKkoMQ0REU9AoRblLICIiogxgGCIimoJRo5S7BCIiIsoAhiEioikoRfaTIyIiKkQMQ0REU4gnpKyeTyUKsOhUWT0nERFRMeLcDyKiKfgj8bQdS6NUYEmVGWqlApIExJNJRONJhGIJ+MNxeMMxhGJJeEIxqEQBFSYtrHoVdGoRCkFALJFEIBLHsD8KZyCatrqIiIiKEcMQEdEUhn2RWR/DolNhQYURB/u92N3jTuk1sYSEXncIve7QhI+vqLXAF46jYyQw6/qmohCABRUmGDRKKBUCkpKERFJCMJrAIYcv4+cnIiLKBIYhIqIpOINR6FQiQrHEjF6vEgVUmrXY3ulKa117ez0AgNX1Voz4I+hxThyaZsOkVWJJlRmdI4FJQ8+iSiNEhQIH+r1pPz8REVEmcc0QEVEKKsyaGb92Ra0VhwczN3qyu9uNHmcIG5vsUCrS0+yh3q7H+kYbovEEtnU4MXiG0bFDDj8O9HuxotYCMU3nJyIiygaGISKiFMy0ocHCShN2dqV3RGgy2zqcaCzVo9qqndHrBQFYWWvBkiozup1BbO90IRJPvXnE3l4PVtdZZ3RuIiIiOTAMERGlQKua/sarggDE4skMVDO5tqEAXIEo1jfaoEqxJbhJo8TGJjsqTBrs6fWgdWDm0912dLmwsck+49cTERFlE8MQEVEKktL022uvbbDhWBaaG7xVKJbE9k4XrDo11jfaoFZO/FZfZ9dhfaMNsUQS2zqccHhn3ygCGBuhWtdgS8uxiIiIMokNFIiIUjDd5gkGtYhjQ/4MVZOaYX8Ew/4I7Ho1ait1SCbHAl1SkhBNJNE2FMhI0wUA2NXtwvIaC/b1eTJyfCIionRgGCIiSoErEJvW85fVWLCtw5mhaqbHGYzCGczunkRJCTg66MPcMgPah7M/OkZERJQKTpMjIkrBgCeEZdXmlJ5bZdFiZ1duBCE5heNJuAJRVFpm1tCBiIgo0xiGiIhSkJSAQw4vVtZapnxuvV2PLPdNyFnOYAyiIKDUqJa7FCIiotMwDBERpSieBPb1ebCm3nrG5w14MrMOJ1/1uUMIRuLY0GRL2z5IRERE6cAwREQ0DUkJ2NXtnrRb2twyA7oz1JQgnwVjSTR3uFBp0WJpitMNiYiIMo1hiIhoBnZ0ubCh8c39dDRKBRpL9DJWlB96XSEc6PdibYOVo0RERCQ7hiEiohlq7nSObzC6staKztEgO6elaGeXGwsrTdDNYDNbIiKidGEYIiKahW0dTmxosmPIF5a7lLxzoN+LGpsOFp1K7lKIiKhIcZ8hIqJZas6R/YTyUduQH7U2HTRKBYZ8EbnLISKiIsORISIiklWvKwSbnq23iYgo+xiGiIhIdocHfVhQYZS7DCIiKjIMQ0RElBPYTIGIiLKNYYiIiHLCnl4Paqw6ucsgIqIiwjBEREQ5o8qqlbsEIiIqIgxDRESUM/b0uGHTs9U2ERFlB8MQERHljFhCwoIKk9xlEBFRkeA+Q0RElFMOOrzQqhQIx5ITPm7RqbCo0oQ+VwgVFi28oRiODvmzXCURERUCjgwREVFO8YbiWF5jmfRxURCwrcOJXncIO7tcODrkx/pGGwxqdqMjIqLpYRgiIqKc0+sKQiFM/JgnFD3tc9s7XdCpRSys5BQ7IiJKHcMQERHlnAFPBCtrrRM+phAmTkkj/iiODfuxqm7yUSUiIqKTcL6Y3AAAN65JREFUMQwREVFO8kViE36+1KSe9DWxhISWHg/WNdgyVRYRERUQhiEiIspJbUMBrKi1YF65cfxzJq0S8cTUr93b60aFWZPB6oiIqBCwmxwREeWsvb0eAMDSahMUggLBaBztw4EpXxdNSKi26DDojWS6RCIiymMMQ0RElPMO9Pum/ZpoYuLW3ERERCdwmhwRERUkttomIqKpMAwREVGBmqQ3NxER0XEMQ0REVHBKDGocG/HLXQYREeU4hiEiIiooWqUCFr0KI/7TN2clIiI6GcMQEREVDJ1KgfkVJhxLoeMcERERu8kREVFBqLFqISoU2NfnkbsUIiLKExwZIiKivLe8xgxPKI5uZ1DuUoiIKI9wZIiIiPLaxiY7tnU45S6DiIjyEEeGiIgob21oZBAiIqKZYxgiIqK8tLjKhOZOBiEiIpo5hiEiIso7BrUIZ4Cts4mIaHYYhoiIKO8srbFg0BuRuwwiIspzDENERJR3jg375S6BiIgKAMMQERHllcVVJoz4OUWOiIhmj2GIiIjyilmrkrsEIiIqEAxDRESUV0KxhNwlEBFRgWAYIiKivOLwhOUugYiICgTDEBER5Q2TVokhH7vIERFRejAMERFR3qiz6eUugYiICgjDEBER5Q2jRil3CUREVEAYhoiIKG+weQIREaUTwxAREeUFrVKBQw6v3GUQEVEBYRgiIqK8sLDShFhCkrsMIiIqIAxDRESUF1Qif2URERUCk0aJVXVWucsAwDBERER5on3YL3cJREQ0S7U2Hcw6FVp63Fhdb5W7HIYhIiLKffPLjXAFY3KXQUREM6QQgBW1FrgDUfS5QwAAf1j+93X2KCUiopxnN6jlLoGIiKah3KRBtVUHfyQOdzCKUX8Ue3s9pzynYyQAlSjIuh6UI0NERJTzBr1huUugHGbW8t4uUa6psenQ0uNG25AfI/4oJoo78STQVGrIem0n47sHERHltAqTBp2jQbnLoBw0p9QAi06FfncI3nBc7nKI6LiFlSbs7nan9FzTDG5m6NQilldbAAHY3e2a1cgSwxAREeW0+hI9Bn0RucugHLKkygSFIGB//5v7Tll0KnhC8q8/ICJApRBSfu6uLjfq7Dr0OEMpPV+pEDCn1IDmTicAYEWNBQcd3hkHIk6TIyKinBaMJuQugXKESaPEokoTWgd8pwQhYKxDFRHlhs7RQMrPlQAoIGB5jWXK5zaW6NFYoseBk37+9/Z5sKjSBJWYegA7GUeGiIgoZ+lVChwZ9MldBuUAnVpEpUWLQ46Jvx8MGl7SEOWCSrMWjmmu8+xyjk2FnldmgNWgRiAShy8ch02vhk4lIilJ8IZjaB/yY6IBoH19XqxtsGFnl2va9fKdg4iIcta8CtNp3Yeo+GhVCjTY9ZMGIQBwBaOotGjh8Lx5EWbSKFFfoodRo0QomoBWLaK5w5mNkomKVoVl+mHohLbhADD85qhSryu1qXMAkJRmNk2OYYiIiHKWVsnZ3MVOJQqYW2Y8ZVrMRI4Ojm3Ku6LWApVCgUFvGL3u0CmvUwjAggojjgxyA1+iTJHrffuowwdRISCRnF4oYhgiIqKcJQgzmwNOhUGpELC40oy9famPDp5pJDEpAe5gDEqFgPg0L5iIKDVybYXgjyagViqmHYZ4y42IiHLWTKc9UP5TCMCyasu0glAqhtiZkChj6u162bZC0CoViMaT034dwxAREeUsOXclJ/kIArCqzoqWXnfaj63iqBBRxlRZtLKd26xTzeh1DENERJSzwrHJ22qXGtVYWm3G3DJ5dy+n9Ftbb8OuFDdsnC6dRszIcYkI6HbKt0G2PzyzfcYYhoiIKGeZdSpoVW/+qhobMbBgXpkBI/4oDvR70T4cwIpaCywzvCtIuWV9ow07ZtAeN1U6JcMQUSasrrdiwCPPeiEACMaSMxqZYgMFIiLKWc0dTtj1aqyoNSKZlODwhNHSc/oakr29HqxryOxFNGXehkb7+K7ymaJV8z4wUbotqzFjXwamtU5XnU0PbyiG6SwNZBgiIqKc5gxGU9obhqtA8tvGJju2ZWEPIJ2Klz5E6bSw0oSjgz7MoHdB2jV3OmFUi1jXYENPiq/h7REiIioIfS755qrT7GQrCAGAScswRJQuK+ss6HMGEYnnzu0ofzQxrVkCDENERFQQHN4Iyk0aucugadqQxSAEAAK4dxXRbK2staCp1IA9PR74o5M3upFLU6k+5efy9ggRERWMWpuO+8jkkfWN/7+9ew+Oq7zPOP7sfVfai1ZXS5YsycFgMLZj4wsEmLaBwmQYGmimaTyUTjv0EgZSoKUBWlpoJ62ZTjtNmKY0k7SQTsow4Q/SSxooEwodCBffsI0BY4ys+8WWdle7q9Xuavf0D2MT44u0knbP7jnfz4xmYH3O7k86eu199n3P740uaAnkckpl5yr6eoCVbOyMKDk7p/0X2Ny4GjTVL/yDMcIQAMAyXE4+9a8VW7qj2nWs8g0vxqbN63YF1KoNKyNK56o/BJ1yPLXwD8UIQwAAyxiJ80a3Fmxa1WBK57+Qz6WpdK7irwvUqkjAo/aITweGayMESVJTvVf9k/EFH889QwAAyxiOZ9RY7zW7DFzAxq6I9g/GTXnt9oaAKa8L1KLmoFfhgFvvj6XMLqUkXY0Lv19IIgwBACymu6m0fwhROetXRnRoOKGiSY2n6n0siAEWoiPil9vp0OBUxuxSSuZ1lRZv+FsBAGApbu4bqkqXtYf1/ti0qXuR8LsBzM/ndio7V9RkjS4pjWdKq5uZIQCApYxzg3zVuWRFSEePJ5UvmLsXidNBGALmc1lHuGaDkNvpUN/xdEnnEIYAAJYyMJVRJOAxuwx87KLWoAYn06ZsytjdWKfPtNRre2+jJKloVM/GkEC1quWPDDoaAsqXuA6XMAQAsJxSNtxD+fQ212s8kdFM3py1cc0hr44eT+vNvilt6Y6aPjMF1IJMvvo2UV2oaF3pH4RxzxAAwHI8Jd5Ai+XXEvJpKp1VMmvOG6vmoFf7Bz9pB7x3IKaGRbxRAuxmxqQxuxz8HlfJ5/CvBQDAct4bnZbPzT9xZuptqlciM2fa669uCWru55bLFA1pKp03rR6gVqSy5o3bpVrMUlj+pQAAWE4qW9DlKyNml2FbIb9bB4fjpr2+3+3Ue6PTpr0+UMumM7X7oUEmV/qsFmEIAGBJiRLbq2L5XNQaVMak+4QkaUNng5KztfvpNmCWoM9dcgOCajKZzpZ8DmEIAGBJH06k9dkuZofMUOqmh8ttOF57G0UC1aCWN612Ox0aSxCGAAA47XgyJxcbbVacmd2oNnZGCEPAItX7are32oqIX4uZ0yIMAQAsazieUVvYZ3YZtlMwcZlNvmDe8jygljUHvXp3JDH/gVVqsfvLEYYAAJbG3jKVFzTx0+WPTpS2+zwAyeNyqC3sV6qG22ofGjnZRXRTicujCUMAAEtqrPdqa09Uk6nS15BjaYZMWqbmczs0a2LjBqAW1XtdWtMa0qGR2u/AuKYtqH2Dpc1uEYYAAJbSUOfRtp5GpbNz2nUsphpujFSzhmMZbeisfPOKsN9b8dcEallTvVctIZ/etUgr+sV8GEIYAgBYgsfp0PbeRmXzRb11bErZOWYIzBRYxE7wS5XO1u7+KECleVwOBTwuHZucMbuUZbF+ZUQfTqRKPo8wBACoeZ3RgDobA3qzb8rUTmb4xGJ2gl+qmXxRIX/tdsMCKmnzqqhpS1rLYa64uA/ACEMAgJq2pTuqyVROfSes8emmVTgc5rQ0X2xHKcBu+izWbOREKqdNqxpKPo8wBACoSfVelzavatDu/hizQVWoaNLNWjmWRwIL4vdYKwYcT2a1byCurT3Rks5jLhkAUHOidR5FAh7tHYibXQrOIzlrzv07MzmCMbAQAY81Y8BHx9PyuBY+M22tSAgAsLzmoFf1Prdlbvq1qomkOS3N07k5U14XqDVetzlLWcttMp3T+pUL72ZJGAIA1Iy2kE8el1NDMevc9GtFIZ9bsZnKzwxd3hGWCX0bgJrkclozDEkqqZsoYQgAUBNaQz4VJY0mZs0uBfNoi/hNeV2Pm7c1AKTjyYX/O8HfGgCAqudxORTyu3XcpKVXKI0ZHd0iAbfeGS5t53nAzqw8izqRzC34WMIQAKDqbVoV1dHj1moDa2VuE5bfXLIirHzBwu/ugGWWynJ/nUQYAgBUuYDHqUN84l9TzGhvPcbySWDBPC6H+if5gEkiDAEAqtzlKyNK0y65psRmFr5EZTlc3BbUwBTdBYGFuqw9LLbkOokwBACoamyiWVv8HqeGK9ztL+yv/D1KQK26qDWoD8aTZpdRNQhDAICqNkgb7ZqypjWofLFy9+7UeZw6NDJdsdcDatXKhoC29kQ1MJlWJs+HTKeUFIYeffRRORyOM77Wrl17+s9nZ2d11113qampScFgUF/60pc0Pj5+wec0DEN//ud/rvb2dgUCAV1//fU6cuTI4r4bAICltIV8mkpXdskVlibgreyu9utWRpTJs4wSOJ+LWoPa2BnRcDyjXcdiytFo5AwlzwytW7dOo6Ojp79effXV039233336T//8z/17LPP6pVXXtHIyIh+9Vd/9YLP9zd/8zd6/PHH9U//9E968803VV9frxtvvFGzs9wICQB25/c4tSJszp41WJxKL5GLm7C5K1ArVjfX69iJlPYP0YTmfEr++MbtdmvFihVnPZ5IJPTP//zPevrpp/X5z39ekvTkk0/q0ksv1RtvvKErr7zyrHMMw9A3v/lNPfzww/riF78oSfrXf/1XtbW16Uc/+pG+8pWvnLOGbDarbPaTvSamp5keBwAr6p/KaF1HSGPTfEBWC1aE/RqOVy4M9TTV6chEqmKvB9SafLFIo4R5lDwzdOTIEXV0dGj16tW67bbbNDAwIEnas2eP8vm8rr/++tPHrl27VqtWrdLrr79+zufq6+vT2NjYGedEIhFt3779vOdI0s6dOxWJRE5/dXV1lfptAABqRN/xtByV37YGi9DdVFfR12sJ+Sr6ekCtGZzinsv5lBSGtm/frqeeekrPP/+8nnjiCfX19enaa69VMpnU2NiYvF6vGhoazjinra1NY2Nj53y+U4+3tbUt+BxJeuihh5RIJE5/DQ4OlvJtAABqyEy+qJ6merPLwDzqvC69O1q5lRoel0Pvj9ERCzifgNdldgk1oaRlcl/4whdO//eGDRu0fft2dXd364c//KECgcCyF3c+Pp9PPh+fBgGAXTQHveo7wQaB1Wz9yoje7Juq6OvtHYhX7PWAWlPncSnDHm3zWlJr7YaGBl188cX68MMPtWLFCuVyOcXj8TOOGR8fP+c9RpJOP/7pjnMXOgcAYD/FCrZqRulCfrfeHansDdqzdJADLsjPzNCCLCkMpVIpHT16VO3t7briiivk8Xj005/+9PSfHz58WAMDA7rqqqvOeX5vb69WrFhxxjnT09N68803z3sOAMB+2BOjel3WHlKdx6VktnLhpKPBr3dHWSIHXMhYYlZrV4TMLqPqlbRM7v7779fNN9+s7u5ujYyM6JFHHpHL5dKOHTsUiUR0xx136A//8A/V2NiocDisr33ta7rqqqvO6CS3du1a7dy5U7feeqscDofuvfdefeMb39CaNWvU29urP/uzP1NHR4duueWW5f5eAQA1KjvHLEA1cDkdWtngV2O9Tz63U7P5gikte7uidRqJ02EQuJBC0dD49Kya6r2aZL+28yopDA0NDWnHjh2anJxUS0uLrrnmGr3xxhtqaWmRJP393/+9nE6nvvSlLymbzerGG2/UP/7jP57xHIcPH1Yi8clfnF//+teVTqf1e7/3e4rH47rmmmv0/PPPy+9nXwkAwElZZoYqzuNyaF1HRD63U7lCUZOprIZjGQ1Mnfwyi9MhfUg7bWBBYjN5betp1GS6cvfz1RqHYRg1vxB7enr6ZIvte38op6+ybT0BAOXXWO/VFJ9sVoTb6dCmVQ3qn5zRRDI7/wkVtqEzogNsIAksWCTgUSJjr82Ji9kZDX7zy0okEgqHwxc8dkn3DAEAUG6NdV6taQ2aXYblOR3Slu6omoNe7ToWq8ogJIk9p4ASXcJ9QxdEGAIAVLWpmZzeHUloe2+jPC7eCS83h0PavKpB7RG/dvfHNDZdnSHoFO4VAhbO53ayrHQehCEAQNVLZgt6s29KTfVebVrVYHY5lrFpVYM6GwLaOxDXcA2EjKDPpeNVOmMFVKONnRGWGM+jpAYKAACYaWw6q7HprC5qDcrldOjwGO2VF+OzXQ2KpbPaV2Oblq5sqNPhca45sBAnZ4XYrHo+hCEAQM05tezjs10RHU/mNBw3r7tZLdnYGdH07JzeHoybXcqihAO8bQEWwut2ak1rUO+MTJtdStXjbxUAQM16ezAhl0Pa1tuow2PJkjsmORxSW8iv5qBXdV635JBmcgXFZ3JqCfnkcjjUdyJd83t0rF8ZUSY/Z8qeQMvJQfcE4IJCfrd6m+qVKxQJQgtEGAIA1LSCIb3VN6Wg16XtvY0ajM2cdZN9tM6j1rBfIZ9bLqdD2bmCYjM5jcRnNTZ98uvThmKfzDb1NterNeTT9GxeR8ZTmivWxq4U6zrCyhWKOjhc2yHolJF4Rm6no2Z+/kClXNYeViZfUN+JtA5YZLxXCmEIAGAJqdzJJguStLIhoNaQT6lsXqOJWcVm8orNLH6fjb4TafWdOLn2vt7r0rrWoLxuZ9XuxbP241a6hyz2yfBQLKNtvY16q48NJIFTtnRHtbs/ZnYZNYswBACwnOF4pmz3EaVzhTOWm3VFA2qPBDSTm9Ph8aTyBfNmLS5uC8rtdOrdUWuFoJ93cCiu5qBXJ1K1vXQRWA6rGut0YChudhk1jTAEAMASDMYyGvx4SZ3P7dD6lWEFvG4Nx8oXyD7totagfG6n5WaCziWTL2ptex1hCJDkcjqUM/EDGCsgDAEAsEyyc4YODn8SSNojfnVF6zQ7V9CR8ZQy+cKyvt7qlnoFfW4dqPHGCKXaNxDX5lUNmp6dY0NJ2NblK8N6Z9j6H4CUG2EIAIAyGU3MajRxsjmDx+nQuo6Qgj6PxqZn1T85s+jn7WmqUyTgqfnucEux9+M9kta01isc8OrAUNzUJYpApXlcTrNLsATCEAAAFZAvGjo08smGoS1Bn7qb6jRXNPThREqp7Ny8z7GqsU5N9R7tG7RvCPq0IxNpSWk11Hl0SVtIfSfSVdnUAlhObqdDR9iAeFkQhgAAMMHxVFbHUyfftDsd0toVQUUCXh1PZTU4NaOVDQE1Bb1yOZ2ayc5pJDGrgakZDdBI7ZziM3m92Tclh05uxpubMyzdSAL2tr4zon0fz45iaQhDAACYrGhI74+dee/LsckZHVvCUjq7MnRyM15J2rAywp4rsKRsvmh2CZbBYkMAAGBJB4YTWtcRNrsMYFld1h5m1nMZEYYAAIBlzS5zBz/ATA6HNJOb//5CLBxhCAAAWNbR42ltWtVgdhnAsrhiVZTls8uMMAQAACxtYjorl9NhdhnAkgQ8Ln10Im12GZZDGAIAAJY2HM8wO4Sat6Ezoql0zuwyLIcwBAAALC81y30WqF3NQa/eHoyZXYYlEYYAAIDlcdM5all3U72yc4bZZVgSYQgAAFjeNDNDqFGrm+u1p59ZoXIhDAEAAMuLz+TloIcCapDPw9v1cuKnCwAALM8hyU1HOdSYjZ0RvTeaNLsMSyMMAQAAy+tqDChf4J4L1A6X06HJFN3jyo0wBAAALK856DO7BKAkV6xq0FA8Y3YZlkcYAgAAlucQS+RQWwamZswuwRYIQwAAwNLqvS69M5IwuwxgwToifo1NZ80uwxYIQwAAwNIubQ8rO1c0uwxgwVZGA2aXYBuEIQAAYGn5AkEItWV8OquNnRGzy7AFt9kFAAAAlIvLIR2ZSJldBlCSgakZDUxJvc31KhSLGpiikUK5MDMEAAAsa01bSDO5gtllAIvSdyKt48mcNnU1mF2KZRGGAACAZYUDHrNLAJYkky9o32Bc23oaxb7By48wBAAALMkh6aPjLJGDNbx1bEqXrAgpHOAul+VEGAIAAJa0pSeqE6mc2WUAy+a90aRWNwfNLsNSCEMAAMBy1q4Iad9A3OwygGX39mCcTnPLiHk2AABgKR6XQ6OJWc0VDbNLAZasPeJXyO9Wvdctj8spOQydXASK5UAYAgAAlrKqsU5Hj6fNLgNYFm6nQx+Mc+9bubBMDgAAWEq9j896YR3ROq/ZJVgaYQgAAFjKwNSM2SUAqBGEIQAAYCnxmbw2rWowuwxgyYI+tw4OJ8wuw9IIQwAAwHKGpjIKeFxmlwEsSSo7p229jWaXYWmEIQAAYDnHU1mtp/0wLODNvilt7YmaXYZlEYYAAIAl7euPKeSnmQJq29aeqA4OsVSuXAhDAADAkvJFQ6tb6s0uA1i0rT1R7ToW0+xc0exSLIswBAAALMvv5r4h1CaX06H3RqbNLsPyCEMAAABAlbm4LahUrmB2GZZHGAIAAACqTNjvMbsEWyAMAQAAyzLMLgBYJH53K4MwBAAAAFSZuQJNEyqBMAQAACzLYXYBwCLlC8wNVQJhCAAAAKgyk+ms2SXYAmEIAAAAqDIj8Vl1NgTMLsPyCEMAAABAFVoZJQyVG2EIAAAAqEKJTN7sEiyPMAQAAABUocPjSZbKlZnb7AIAAABqQSTg0Zq2oJxyyJChuaKhQsGQz+PUnv6YijT/wjIzDCla79VQPGN2KZZFGAIAAJY1k5tb0vkel0PrOsIyDOmd4YR2H4ud87hVjQGF/B4dGple0usBn3ZwOKH1K8M6OMzvVjmwTA4AAFjWweFpbetpLPm8S9pC2tITld/t1NuDCe0fSuhC274MTGV0aGRam7oa5HGxuxGW11Q6z+9VmTAzBAAALG3vwJS2dEc1mc5pNJHRbL541jGRgEcdDX6F/B4NTs3o8HhyUa+1bzCuDSsjend0WnOsm8MyGY5n1Bb2qStap/2DceX53Vo2hCEAAGBpc0Vpd/8ny9tagj41h7yq87g0kytodHpW8Zn8snXuOjCc0MbOiN4ZmVaBN61YJuPTWY1PZ+VyOtTdWKe2iE8HhxLKnCPcY+EIQwAAwFaOp7I6nsqW9TX2DyW0qSui/UMJGitgWRWKhvqnZtQ/NaPWkE9rWv06MJwwu6yaxT1DAAAAZbBvMKGNXQ1ycqsHymQimdWB4YTWrgiZXUrNIgwBAACUyb6BuD7b1SAHgQhllJydk5cGC4tCGAIAACijvQNxbV4VNbsMWNhwPKPPrmowu4yaRBgCAAAosz39MW3pJhChfD6cSDE7tAiEIQAAgArY3R/TxW1BrW6pN7sUWNBUOq+NXQ1ml1FzCEMAAAAV8sF4Sh8dT2trT1QNdR6zy4HF9J1Iy0PHjpIQhgAAACps17GY5gpFbetp1GXtIbl4A4tlcCKV496hErHPEAAAgAlS2YLeOjYlSQr6XFrTFpLTIR0ZT2l6ds7k6lCr+idn5Hae3GwY8yMMAQAAmCyVLWjfQFyS5JB0SVtIXrdDB4enTa0LtWcimdXWnqh2HYuZXUpNYJkcAABAFTEkHR5P6t2RaX22K2J2OahBg7EMm/0uEGEIAACgChUM6cBQQp+lQxhKNJaYZW+rBSIMAQAAVKmiIb0/Oq32iN/sUlBjRqdnzS6hJhCGAAAAqtjsXFGRAG24UZrhWEbNQa/ZZVQ9whAAAECVe38sqa09LHtCadrCzCjOhzAEAABQAw4MxdXBcjmUwO/hrf58+AkBAADUgOycoTDL5VACl5O3+vPhJwQAAFAj3h9LaltPo9lloFYYZhdQ/QhDAAAANWT/UEwdDSyXw/zmikWzS6h6hCEAAIAakp0zFPK55WBTTcwjnskr6HOZXUZVIwwBAADUmMPjKW3tprscLuyj42lF6rza2hNVYx1tts/FbXYBAAAAKN3bg3GtbAhoOJ4xuxRUseFYRsOxk78jl6wIyaGT9555XA71NNUrkclrIpk1t0gTEYYAAABqUK5gKPjxcjmDG+WxAIfHkpKkxnqPZvNFHZlIKex3KxJwK5GZM7k6c7BMDgAAoEYdHk9qK93lUKKpdF4zuYIkaXp2TmvaQiZXZB7CEAAAQA17eyCm7qY6s8tADRtNzJpdgmkIQwAAADUsVzCUzOTV1RgwuxTUqKlUzuwSTEMYAgAAqHFTM3mlZ+cIRFiU5qB9O80RhgAAACzgVCDqbWbJHBbO4ZDCAY/ZZZiGMAQAAGARUzN5DccyuoI9iLBA23oadWhk2uwyTENrbQAAAAvJFQzt6Y9pS3dUB4YTys0VF3zuZ1rq1Rz0KZHJKztX1FyhqLliUYWi1Bb26+BwooyVwwwjNt+nijAEAABgQbv7Y+ptrldTvVcfHk8pPpM/65iQz62L2oJyOhzqO57W0Y+/ziWWzmldR9jWswhW43DI9pv2EoYAAAAsqu9EWn0nToabi9uCitZ5lcjkFQ54NJ3J64PxpPYNxBf0XPmioSPjSV3WHta7owQiK6jzuJT+eL8huyIMAQAA2MAH46klP0euYOij4ymtXRHS+2PJZagKZmoK+pSemjG7DFPRQAEAAAALNjtXVP9kWr3N9WaXgiVqsnFL7VMIQwAAAChJJl9UJjensJ9FRrXs6PGlzxbWOsIQAAAASjY2nVVXY50cDrMrwWJ1RNiklzAEAACARTk0Mq1tPY1ml4FFCvvtu9nqKYQhAAAALNqbfVPa2Bkxuwwswv6huDavajC7DFOx0BMAAABLcnQiJb/Hqdn8wjd4hfmyc0XtHYiro8GvaJ1XAY9LLqdDQ7GMbfYfIgwBAABgSVK5gjZ0RnRgKGF2KViEkfisRuKzp/8/7Hfr4rbgsrRjr3YskwMAAMCS+dy8rbSK6dk5eV32uJ72+C4BAABQVgOT9t6802qOnkjLaYNOgYQhAAAALNl4Mqvuxjqzy8AyyeQKWt0SNLuMsiMMAQAAYMkiAbcy+YLZZWAZNdV7zS6h7AhDAAAAWJKOBr9aQn5NJLNml4JlVDQMs0soO7rJAQAAYNE6owEdT2Y1Mjc7/8GoKdOZObNLKDtmhgAAALBoLSGfsnPsL2Q1qxrrdHg8aXYZZUcYAgAAwKLZpQWznQQ8LtV5XWaXUREskwMAAMCiFYrWv6/ETuq9LnVG6/T+mPVnhSRmhgAAALAEqaz17yuxC7fToS6bLI87hTAEAACARfO4Lrwz58bOiNojfm3tiSrsZ1FSNdu0qsE2M0KnEIYAAACwaHXe8wccv8epgakZjSZmtetYTE6nQ1u6o/K6eQtabXqb67XrWMzsMiqO30QAAAAs2lzx/J3kNqxsUGwmf/r/4zN57e6PyedyaGtPVJ9pqa9EiViAlpDP7BJMQRgCAADAou0fjGtNa/Csx1tDPr0zHD/nOclsQbuOxXT0eFrdjQFt62lUtM5T5kpxIcdOpM0uwRQs3AQAAMCizRWlgam0Ll0RUjjgUa5QlNvp0PFkVhPJ7Lzn909l1D+Vkdspbepq0L7BePmLxhnWrgjZ7l6hUwhDAAAAWJLsnKH3lvhmeq4o7RuMa0t3VLv77XfviplCNm5swTI5AAAAVI3d/TFt6200uwzbcDkd+sBGrbQ/jTAEAACAqvJW35S2E4gq4rL2sBIZ++4VRRgCAABA1dnbH1OrTTucVZLdu5zb/NsHAABANcoXDa1qrDO7DEvragxo32DC7DJMRRgCAABAVdrTHyMQlVFLkJk3whAAAACqkiGx/1CZrG6p196BuNllmI4wBAAAgKq1fyihi9vO3tQVi9fbXKfJ1Px7QNmBfZuKAwAAoCY4HQ6zS7CMrmhAJ1I5JWft20Hu5zEzBAAAgKr2/lhS61dGzC7DEobiGV3SFlJjvdfsUqoCYQgAAABVLzmbN7sESzCMkxvbZvIFNrcVYQgAAAA14NjkjK5YFTW7DMvI5AqaKxTNLsN0hCEAAADUhJHEjNxO7h9aLrk5whBhCAAAADVhNJHVplUNZpdhCa0hn94ZmTa7DNMRhgAAAFAzPpxIKeB1mV1Gzettrje7hKpAGAIAAEDNiM3ktYHOckvidjrUP5k2u4yqQBgCAABATXlnOKFIwGN2GTVrQ2dEY9NsuioRhgAAAFBj0rmCLmkLmV1GTdrWG9XegbjZZVQNwhAAAABqzr6BmFpDPrPLqCnbehr1Vl/M7DKqitvsAgAAAIBS5YuGuhrrNJG0x3Ivh0Pa1NUgp8OhZHZOH4wnZRgLP3/zqga9dWyqfAXWKMIQAAAAatKe/pi6ogENxjJml1JWa1qDyheKZyxvW9MaVK5QVP/kzLznX74yrP2D8XmPsyPCEAAAAGpWR0N1hqHLO8LyeVxyOqQTqZyOTaZLmsk5pTno1URyVonM3BmPH5lIyeWQtvc2au9ATPnC2U/e21yvsN+t/UOJxX4blkcYAgAAQM2Kz+TNLuEMF7cF5XQ4ztrQNOhzfby3j0MHhxcWThwOqSXk03ujyXP+ecGQ3uybUmdDQC0hn44eT2l6dk6rW+oV9Ll1gBA0L8IQAAAAatYH40kFPC5l8gVT6+huqlMk4DlvAEllCzo4fDIgrWkLyuN06t3R6XMee8q2nka92Tf/fT5D8YyG4idnxy5rD+mD8aTmiiV+AzZFGAIAAEDNMiS5XQ7JxAmijga/xhOzC7p/R5KOjKckSWtXhFTndWkqndNQLKO54smlbi0hn3qb67RrEQ0P3h1NaltvlK5xC0QYAgAAQE0rFhdxM84ycTkdqvO6NTI3W/K57499svzN7ZR6muoU9Lv17si0ji+hS95bfTGtXxk+PROF8yMMAQAAoKaZmIW0pTu6oKVs85krSscWOLO0EIOxjBrrvZpK55btOa2ITVcBAABQsxrqPMt2v1DI75bDsfDjm4NevbUMQagc4jN5tUf8ZpdR9QhDAAAAqFmronVLfo72iF9be6LK5gtaGQnoiu6oXM75U1FnNCATJ6XmdWhkWtt7G80uo6oRhgAAAFCzAl7Xos9tDnq1aVWDxhKz2nUsplzB0FA8oz39MTXXe7W1JyqP6/yhyOte/GtXyu5jU7qoNWh2GVWLMAQAAICalS8srof0mtagioa0byB+ztmd8WRWu47FFPZ7tK23UfWfCl0NdR69N1L9+/gUDGkmN6e6JYRGK6OBAgAAAGpWbhEb6lzRHdWBwbjyC+i8MJnOabJvSk6HdElbSJJ0PJnV1EztNCYYic9q86oG7R2Im11K1VnSzNBjjz0mh8Ohe++99/RjR48e1a233qqWlhaFw2F9+ctf1vj4+AWf59FHH5XD4Tjja+3atUspDQAAADaQLSEMOR3Stt6o9vTHFhSEfl7RkA6PJ3V4PFlTQeiUvQNxbeP+obMsOgzt2rVL3/nOd7Rhw4bTj6XTad1www1yOBx66aWX9NprrymXy+nmm29WsXjhX9R169ZpdHT09Nerr7662NIAAABgE4313gUe59Gl7SFbb0b6Vt+UtvVEzS6jqixqmVwqldJtt92m7373u/rGN75x+vHXXntNx44d0759+xQOhyVJ3//+9xWNRvXSSy/p+uuvP38hbrdWrFixoNfPZrPKZj/ZiGp6mg2lAAAA7OjIeEoel0P5wrlnepyOk3sBvTsyrUMjyXMeYydvHYtpa09Uu47ZNxT+vEXNDN1111266aabzgo32WxWDodDPp/v9GN+v19Op3PemZ4jR46oo6NDq1ev1m233aaBgYHzHrtz505FIpHTX11dXYv5NgAAAFDjpmZy2rQqqrD/7M/417QG1d1Ur7eOxZTKLc9eRFaw61hMGzsj6ooGzC7FdCWHoWeeeUZ79+7Vzp07z/qzK6+8UvX19XrggQc0MzOjdDqt+++/X4VCQaOjo+d9zu3bt+upp57S888/ryeeeEJ9fX269tprlUyeO70/9NBDSiQSp78GBwdL/TYAAABgEW/1TWl6dk5rWuu1vbdRl7WHtaU7qiMTKfWdSJtdXlXaP5TQYCyjTV0N6mla+l5NtaqkZXKDg4O655579OKLL8rvP3tH25aWFj377LO688479fjjj8vpdGrHjh3avHmznM7z564vfOELp/97w4YN2r59u7q7u/XDH/5Qd9xxx1nH+3y+M2afAAAAgCMTaUmEn1LsG4xLkjZ2RpTJF3RkIiWjmneSXWYlhaE9e/ZoYmJCmzdvPv1YoVDQ//3f/+kf/uEflM1mdcMNN+jo0aM6ceKE3G63GhoatGLFCq1evXrBr9PQ0KCLL75YH374YSnlAQAAAFiE/UMn90wK+lxa3RyU3+vUZCqnvhNpldh4r6aUFIauu+46HTx48IzHfvu3f1tr167VAw88IJfrk82cmpubJUkvvfSSJiYm9Cu/8isLfp1UKqWjR4/q9ttvL6U8AAAAAEuQyhZ0YPiTzWTrvS6tbqlXndetyXROHx1PWSoclRSGQqGQLr/88jMeq6+vV1NT0+nHn3zySV166aVqaWnR66+/rnvuuUf33XefLrnkktPnXHfddbr11lt19913S5Luv/9+3Xzzzeru7tbIyIgeeeQRuVwu7dixY6nfHwAAAIBFSucKOjj8SefmOo9Tq1uDqve6NZXO6aMTaRWqKB2tbqlXyOHVQjsKLKq19oUcPnxYDz30kKamptTT06M//dM/1X333XfGMaeW0Z0yNDSkHTt2aHJyUi0tLbrmmmv0xhtvqKWlZbnLAwAAALBIM/mi3vm5cLSuI6QPxlPnbW1eSa0hnwanZpSdWfh9Yw7DqP1bpKanp0+22L73h3L67NsNAwAAAKi0DSsjend0WnMmzxBd0R3Vnv6YitkZDX7zy0okEqf3Pj2fRe0zBAAAAACSdGA4ofUrw3I6zK1jKp0r+RzCEAAAAIAl2TeY0KauBlNrWEwWIwwBAAAAWLI9A3Fd1Bo05bWdDml8erb088pQCwAAAAAbaqr3Vvw1HQ5p06qo0rlCyecShgAAAAAsi8XMzizFtp6oWoI+7emPLep8whAAAACAZXFsckatIV9FXmtdR1hvHYtpIpld9HMQhgAAAAAsm+6m8m914/c4NZVefAg6hTAEAAAAYNnMLOLenVLUe11avzKi0cTSw5B7GeoBAAAAAEnSB2NJBbwuZZYhFHlcDoX8HtV5XYoEPPJ7nHpnOKFdxxZ3j9CnEYYAAAAALJt80dC6tpDeHoyffqw94lfQ55bP7ZTH7ZTb6ZDTcXJnoKJhqFA0lC8UNTtX1GyuoHSuoNRsXrmCoal0TlNpaSiWWfZaCUMAAAAAlpXLKa1qrFN7xK+BqRmNJirbZW6hCEMAAAAAltWe/rgkaWBqxtxC5kEDBQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC2RBgCAAAAYEuEIQAAAAC25Da7gOVgGIYkqZidMbkSAAAAAGY6lQlOZYQLcRgLOarKDQ0Nqaury+wyAAAAAFSJwcFBdXZ2XvAYS4ShYrGokZERhUIhORwOs8tZlOnpaXV1dWlwcFDhcNjscmyP61FduB7Vh2tSXbge1YdrUl24HtWnnNfEMAwlk0l1dHTI6bzwXUGWWCbndDrnTX21IhwOM0irCNejunA9qg/XpLpwPaoP16S6cD2qT7muSSQSWdBxNFAAAAAAYEuEIQAAAAC2RBiqEj6fT4888oh8Pp/ZpUBcj2rD9ag+XJPqwvWoPlyT6sL1qD7Vck0s0UABAAAAAErFzBAAAAAAWyIMAQAAALAlwhAAAAAAWyIMAQAAALAlwhAAAAAAWyIMVcDOnTu1detWhUIhtba26pZbbtHhw4cveM5TTz0lh8Nxxpff769Qxdb2xBNPaMOGDad3PL7qqqv0k5/85ILnPPvss1q7dq38fr/Wr1+v//7v/65QtfZQ6jVhfFTWY489JofDoXvvvfeCxzFOKmMh14MxUl6PPvroWT/ftWvXXvAcxkf5lHo9GB+VMTw8rN/4jd9QU1OTAoGA1q9fr927d1/wnJdfflmbN2+Wz+fTRRddpKeeeqrsdRKGKuCVV17RXXfdpTfeeEMvvvii8vm8brjhBqXT6QueFw6HNTo6evqrv7+/QhVbW2dnpx577DHt2bNHu3fv1uc//3l98Ytf1KFDh855/M9+9jPt2LFDd9xxh/bt26dbbrlFt9xyi955550KV25dpV4TifFRKbt27dJ3vvMdbdiw4YLHMU4qY6HXQ2KMlNu6devO+Pm++uqr5z2W8VF+pVwPifFRbrFYTFdffbU8Ho9+8pOf6N1339Xf/d3fKRqNnvecvr4+3XTTTfqlX/olvf3227r33nv1O7/zO3rhhRfKW6yBipuYmDAkGa+88sp5j3nyySeNSCRSuaJsLhqNGt/73vfO+Wdf/vKXjZtuuumMx7Zv3278/u//fiVKs60LXRPGR2Ukk0ljzZo1xosvvmj8wi/8gnHPPfec91jGSfmVcj0YI+X1yCOPGBs3blzw8YyP8ir1ejA+yu+BBx4wrrnmmpLO+frXv26sW7fujMd+/dd/3bjxxhuXs7SzMDNkgkQiIUlqbGy84HGpVErd3d3q6uqa91NyLE6hUNAzzzyjdDqtq6666pzHvP7667r++uvPeOzGG2/U66+/XokSbWch10RifFTCXXfdpZtuuums3/9zYZyUXynXQ2KMlNuRI0fU0dGh1atX67bbbtPAwMB5j2V8lF8p10NifJTbf/zHf2jLli36tV/7NbW2tmrTpk367ne/e8FzzBonhKEKKxaLuvfee3X11Vfr8ssvP+9xl1xyif7lX/5F//7v/64f/OAHKhaL+tznPqehoaEKVmtdBw8eVDAYlM/n01e/+lU999xzuuyyy8557NjYmNra2s54rK2tTWNjY5Uo1TZKuSaMj/J75plntHfvXu3cuXNBxzNOyqvU68EYKa/t27frqaee0vPPP68nnnhCfX19uvbaa5VMJs95POOjvEq9HoyP8vvoo4/0xBNPaM2aNXrhhRd055136g/+4A/0/e9//7znnG+cTE9PK5PJlK/Yss474Sxf/epXje7ubmNwcLCk83K5nPGZz3zGePjhh8tUmb1ks1njyJEjxu7du40HH3zQaG5uNg4dOnTOYz0ej/H000+f8di3v/1to7W1tRKl2kYp1+TTGB/La2BgwGhtbTX2799/+rH5lmUxTspnMdfj0xgj5RWLxYxwOHzepb2Mj8qa73p8GuNj+Xk8HuOqq64647Gvfe1rxpVXXnnec9asWWP89V//9RmP/fjHPzYkGTMzM2Wp0zBYJldRd999t/7rv/5L//u//6vOzs6SzvV4PNq0aZM+/PDDMlVnL16vVxdddJGuuOIK7dy5Uxs3btS3vvWtcx67YsUKjY+Pn/HY+Pi4VqxYUYlSbaOUa/JpjI/ltWfPHk1MTGjz5s1yu91yu9165ZVX9Pjjj8vtdqtQKJx1DuOkfBZzPT6NMVJeDQ0Nuvjii8/782V8VNZ81+PTGB/Lr729/azVHZdeeukFly+eb5yEw2EFAoGy1CmxTK4iDMPQ3Xffreeee04vvfSSent7S36OQqGggwcPqr29vQwVolgsKpvNnvPPrrrqKv30pz8947EXX3zxgvezYOkudE0+jfGxvK677jodPHhQb7/99umvLVu26LbbbtPbb78tl8t11jmMk/JZzPX4NMZIeaVSKR09evS8P1/GR2XNdz0+jfGx/K6++uqztpH54IMP1N3dfd5zTBsnZZtzwml33nmnEYlEjJdfftkYHR09/fXzU36333678eCDD57+/7/4i78wXnjhBePo0aPGnj17jK985SuG3+9f8LIhnN+DDz5ovPLKK0ZfX59x4MAB48EHHzQcDofxP//zP4ZhnH0tXnvtNcPtdht/+7d/a7z33nvGI488Yng8HuPgwYNmfQuWU+o1YXxU3qeXZTFOzDXf9WCMlNcf/dEfGS+//LLR19dnvPbaa8b1119vNDc3GxMTE4ZhMD4qrdTrwfgov7feestwu93GX/3VXxlHjhwx/u3f/s2oq6szfvCDH5w+5sEHHzRuv/320///0UcfGXV1dcYf//EfG++9957x7W9/23C5XMbzzz9f1lrd5Y1akE5uKClJv/iLv3jG408++aR+67d+S5I0MDAgp/OTibpYLKbf/d3f1djYmKLRqK644gr97Gc/O+8N5Vi4iYkJ/eZv/qZGR0cViUS0YcMGvfDCC/rlX/5lSWdfi8997nN6+umn9fDDD+tP/uRPtGbNGv3oRz+6YAMMlKbUa8L4MB/jpLowRipraGhIO3bs0OTkpFpaWnTNNdfojTfeUEtLiyTGR6WVej0YH+W3detWPffcc3rooYf0l3/5l+rt7dU3v/lN3XbbbaePGR0dPWPZXG9vr3784x/rvvvu07e+9S11dnbqe9/7nm688cay1uowDMMo6ysAAAAAQBXiniEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtkQYAgAAAGBLhCEAAAAAtvT/nSyDIACkbKwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_geo_plot(variable=\"lcz\")" + ] + }, + { + "cell_type": "markdown", + "id": "276baaf0-f20a-49ee-b2ac-ca9d2e6daf5e", + "metadata": {}, + "source": [ + "## Extracting other Geospatial information\n", + "\n", + "Similar as LCZ extraction you can extract the altitude of the stations (from a digital elevation model):" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "bd5fb85d-dd74-4af4-98cd-67c9ac721a70", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "name\n", + "vlinder01 12\n", + "vlinder02 7\n", + "vlinder03 30\n", + "vlinder04 25\n", + "vlinder05 0\n", + "vlinder06 0\n", + "vlinder07 7\n", + "vlinder08 7\n", + "vlinder09 19\n", + "vlinder10 14\n", + "vlinder11 6\n", + "vlinder12 9\n", + "vlinder13 10\n", + "vlinder14 4\n", + "vlinder15 41\n", + "vlinder16 4\n", + "vlinder17 83\n", + "vlinder18 35\n", + "vlinder19 75\n", + "vlinder20 44\n", + "vlinder21 19\n", + "vlinder22 3\n", + "vlinder23 1\n", + "vlinder24 12\n", + "vlinder25 12\n", + "vlinder26 24\n", + "vlinder27 12\n", + "vlinder28 7\n", + "Name: altitude, dtype: int64\n" + ] + } + ], + "source": [ + "altitudes = your_dataset.get_altitude() #The altitudes are in meters above sea level.\n", + "print(altitudes)" + ] + }, + { + "cell_type": "markdown", + "id": "9b6f3e83-1dff-4a0a-991a-aa258a484d8e", + "metadata": {}, + "source": [ + "A more detailed description of the landcover/land use in the microenvironment can be extracted in the form of landcover fractions in a circular buffer for each station.\n", + "\n", + "You can select to aggregate the landcover classes to water - pervious and impervious, or set aggregation to false to extract the landcover classes as present in the worldcover_10m dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "66ddba0d-52c7-40f3-9c9c-4d6aa88c932b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " water pervious impervious\n", + "name buffer_radius \n", + "vlinder01 100 0.000000 0.981781 0.018219\n", + " 250 0.000000 0.963635 0.036365\n", + "vlinder02 100 0.000000 0.428769 0.571231\n", + " 250 0.000000 0.535944 0.464056\n", + "vlinder03 100 0.000000 0.245454 0.754546\n", + " 250 0.000000 0.160831 0.839169\n", + "vlinder04 100 0.000000 0.979569 0.020431\n", + " 250 0.000000 0.881948 0.118052\n", + "vlinder05 100 0.446604 0.224871 0.328525\n", + " 250 0.242406 0.526977 0.230617\n", + "vlinder06 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 0.995819 0.004181\n", + "vlinder07 100 0.000000 0.433034 0.566966\n", + " 250 0.002911 0.149681 0.847407\n", + "vlinder08 100 0.000000 0.029552 0.970448\n", + " 250 0.002911 0.030423 0.966666\n", + "vlinder09 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 0.974895 0.025105\n", + "vlinder10 100 0.000000 0.129686 0.870314\n", + " 250 0.000000 0.125173 0.874827\n", + "vlinder11 100 0.000000 0.273457 0.726543\n", + " 250 0.000000 0.204337 0.795663\n", + "vlinder12 100 0.000000 0.803321 0.196679\n", + " 250 0.004188 0.313829 0.681983\n", + "vlinder13 100 0.000000 0.006042 0.993958\n", + " 250 0.000000 0.044648 0.955352\n", + "vlinder14 100 0.000000 0.803469 0.196531\n", + " 250 0.000000 0.835386 0.164614\n", + "vlinder15 100 0.000000 0.798196 0.201804\n", + " 250 0.000000 0.918644 0.081356\n", + "vlinder16 100 0.367579 0.232926 0.399495\n", + " 250 0.448841 0.217178 0.333981\n", + "vlinder17 100 0.000000 0.989899 0.010101\n", + " 250 0.000000 0.980923 0.019077\n", + "vlinder18 100 0.000000 1.000000 0.000000\n", + " 250 0.000000 1.000000 0.000000\n", + "vlinder19 100 0.000000 0.447270 0.552730\n", + " 250 0.000000 0.343485 0.656515\n", + "vlinder20 100 0.000000 0.129964 0.870036\n", + " 250 0.000000 0.039639 0.960361\n", + "vlinder21 100 0.000000 1.000000 0.000000\n", + " 250 0.000487 0.962068 0.037445\n", + "vlinder22 100 0.973231 0.026769 0.000000\n", + " 250 0.884010 0.115990 0.000000\n", + "vlinder23 100 0.399503 0.600497 0.000000\n", + " 250 0.272793 0.712724 0.014483\n", + "vlinder24 100 0.000000 0.960773 0.039227\n", + " 250 0.000000 0.946138 0.053862\n", + "vlinder25 100 0.790001 0.152027 0.057972\n", + " 250 0.899936 0.063972 0.036092\n", + "vlinder26 100 0.000000 0.148975 0.851025\n", + " 250 0.000000 0.174383 0.825617\n", + "vlinder27 100 0.000000 0.011601 0.988399\n", + " 250 0.018481 0.084840 0.896679\n", + "vlinder28 100 0.000000 0.489951 0.510049\n", + " 250 0.000000 0.721950 0.278050\n" + ] + } + ], + "source": [ + "aggregated_landcover = your_dataset.get_landcover(\n", + " buffers=[100, 250], # a list of buffer radii in meters\n", + " aggregate=True #if True, aggregate landcover classes to the water, pervious and impervious.\n", + " )\n", + "\n", + "print(aggregated_landcover)" + ] + }, + { + "cell_type": "markdown", + "id": "10e19c71-322c-4508-879c-8d70ca7b873f", + "metadata": {}, + "source": [ + "## Extracting ERA5 timeseries\n", + "\n", + "The toolkit has built-in functionality to extract ERA5 time series at the station locations. The ERA5 data will be stored in a [Modeldata](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#modeldata) instance. Here an example on how to get the ERA5 time series by using the [get_modeldata()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.get_modeldata) method.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "21f6430d-8d3b-49cf-8d63-8f909b72085d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n", + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['temp'] \n", + " * Data has these units: {'temp': 'Celsius'} \n", + " * From 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAGUCAYAAACLEs3JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9foH8E/2bpruvVltQZClbBAZogiKingVFBUVVO5VUbwOUK9c53Ur3p+CA1wg6kUFFQFFBFkyZBa690rS7HV+f6Q9PWna0pGkSXnerxcvmpOTk2/2Oc95vs/DYxiGASGEEEIIIYQQQgghpEfxe3oAhBBCCCGEEEIIIYQQCtQRQgghhBBCCCGEEBIUKFBHCCGEEEIIIYQQQkgQoEAdIYQQQgghhBBCCCFBgAJ1hBBCCCGEEEIIIYQEAQrUEUIIIYQQQgghhBASBChQRwghhBBCCCGEEEJIEKBAHSGEEEIIIYQQQgghQYACdYQQQgghhBBCCCGEBAEK1BFCCCHtSEtLw5VXXtnTw/AyYcIETJgwoaeHQUhQW7FiBXg8Xk8PgwSBtWvXgsfjYf/+/T09lIBreuwFBQU9PRRCCCEdQIE6QgghPtV0QNDWvz179rDrtrwuLCwM48ePx7ffftvm9rVaLaRSKXg8Hk6cONHqOk0H5y3/SaVSnz/eC43JZMKKFSuwY8eOnh5K0Dl+/DhWrFgR9AfDxcXFWLlyJUaMGAGNRoOoqChMmDABP/30U08PLeB27NjR7vcV99+Fij7zoePZZ5/FV1991dPDIIQQ0k3Cnh4AIYSQ3umpp55Cenq61/KsrCyPy5dffjluueUWMAyDwsJCvP3227jqqqvw/fffY+rUqV63/+KLL8Dj8RAXF4d169bhmWeeaXMMb7/9NpRKJXtZIBB04xERwH3QvnLlSgCgjL4Wjh8/jpUrV2LChAlIS0vr6eG06euvv8Zzzz2HWbNmYf78+XA4HPjwww9x+eWX4/3338ett97a00MMmAEDBuCjjz7yWLZ8+XIolUr885//7KFRBRf6zIeOZ599FnPmzMGsWbM8lt98882YO3cuJBJJzwyMEEJIp1CgjhBCiF9Mnz4dw4YNO+96ffv2xd/+9jf28rXXXovs7Gy8+uqrrQbqPv74Y1xxxRVITU3F+vXr2w3UzZkzB1FRUV17AEHKZDJBLpf39DAuCEajEQqFoqeH4fNxTJw4EUVFRR6fjbvuuguDBw/GE088cUEF6mJjYz2+fwDg3//+N6KioryW9xYOhwMulwtisbinh9JhwfJZ9AWGYWCxWCCTyQJ2nwKBgE5UEUJICKGpr4QQQoLKgAEDEBUVhbNnz3pdV1RUhF9//RVz587F3LlzkZ+fj927d7e5LYZhoNfrwTBMt8e1a9cujBgxAlKpFBkZGfjwww+91jl37hyuu+46REREQC6X45JLLvGaxttWraCmKXjc6WUTJkxAbm4uDhw4gHHjxkEul+PRRx/1ul+DwQCFQoH777/f67qSkhIIBAKsWrWq3cdXXl6OkydPwm63t7lOQUEBoqOjAQArV65kpwSuWLGCXefkyZOYM2cOIiIiIJVKMWzYMHzzzTetPge7du3Cfffdh+joaISHh2PRokWw2WzQarW45ZZboNFooNFosGzZMo/XsKCgADweDy+++CL+85//IDU1FTKZDOPHj8exY8e8xt2ZMe3cuRP33HMPYmJikJSUBAAoLCzEPffcg379+kEmkyEyMhLXXXedx2u4du1aXHfddQDcgbCm56bp9Wz5PDVJS0vDggULOjQOAPj+++8xduxYKBQKqFQqzJgxA3/99Vebr1lrcnJyvALYEokEV1xxBUpKStDQ0MAuX7BgAZRKJYqKinDllVdCqVQiMTERb775JgDg6NGjmDRpEhQKBRs874gXX3wRo0aNQmRkJGQyGYYOHYoNGzZ4rcfj8bBkyRJ89dVXyM3NhUQiQU5ODrZs2eK17q5duzB8+HBIpVJkZmZi9erVnXla2qXVarF06VIkJydDIpEgKysLzz33HFwuF7sO93355ptvIiMjA3K5HFOmTEFxcTEYhsHTTz+NpKQkyGQyXH311airq/O4n6aamD/88AMGDx4MqVSK7OxsfPnll90e0yuvvILMzExIJBIcP34cNpsNTzzxBIYOHQq1Wg2FQoGxY8di+/btHrdv7zPfVq3MBQsWeGSVtvb9xh3f2rVrPW6rVCpx9uxZXHHFFVCpVLjpppvafX0OHTqE6dOnIywsDEqlEpdddplHmQUuk8mERYsWITIyEmFhYbjllltQX1/vsc7+/fsxdepUREVFQSaTIT09HbfddpvHOi6XC6+88gpycnIglUoRGxuLRYsWeW2r6TXdunUrhg0bBplMhtWrVyM3NxcTJ070Gp/L5UJiYiLmzJnDLuvI54XH48FoNOKDDz5gX6em75a2fnfeeust5OTkQCKRICEhAYsXL4ZWq/VYp+l36Pjx45g4cSLkcjkSExPx/PPPe4399ddfR05ODuRyOTQaDYYNG9bh7wRCCCHNKKOOEEKIX+h0OtTU1Hgs4/F4iIyMPO/t6uvrkZmZ6XXdJ598AoVCgSuvvBIymQyZmZlYt24dRo0a1eq2MjIy2CDWrFmz8NJLLyE2NrbTjyUvLw9z5szBwoULMX/+fLz//vtYsGABhg4dipycHABAZWUlRo0aBZPJhPvuuw+RkZH44IMPMHPmTGzYsAGzZ8/u9P0CQG1tLaZPn465c+fib3/7W6vjVyqVmD17Nj777DO8/PLLHpkTn3zyCRiGOe+B7vLly/HBBx8gPz+/zWmb0dHRePvtt3H33Xdj9uzZuOaaawAAgwYNAgD89ddfGD16NBITE/HII49AoVDg888/x6xZs7Bx40av5+Dee+9FXFwcVq5ciT179uDdd99FeHg4du/ejZSUFDz77LP47rvv8MILLyA3Nxe33HKLx+0//PBDNDQ0YPHixbBYLHj11VcxadIkHD16lH2eOjume+65B9HR0XjiiSdgNBoBAPv27cPu3bsxd+5cJCUloaCgAG+//TYmTJiA48ePQy6XY9y4cbjvvvvw2muv4dFHH8WAAQMAgP2/s1obx0cffYT58+dj6tSpeO6552AymfD2229jzJgxOHToULen21ZUVEAul3tlbDqdTkyfPh3jxo3D888/j3Xr1mHJkiVQKBT45z//iZtuugnXXHMN3nnnHdxyyy249NJLW532zvXqq69i5syZuOmmm2Cz2fDpp5/iuuuuw+bNmzFjxgyPdXft2oUvv/wS99xzD1QqFV577TVce+21KCoqYr9Pjh49iilTpiA6OhorVqyAw+HAk08+2aXPe0smkwnjx49HaWkpFi1ahJSUFOzevRvLly9HeXk5XnnlFY/1161bB5vNhnvvvRd1dXV4/vnncf3112PSpEnYsWMHHn74YeTl5eH111/Hgw8+iPfff9/j9mfOnMENN9yAu+66C/Pnz8eaNWtw3XXXYcuWLbj88su7NKY1a9bAYrHgzjvvhEQiQUREBPR6Pf7v//4PN954I+644w40NDTgvffew9SpU/HHH39g8ODB5/3M+4vD4cDUqVMxZswYvPjii+1mEf/1118YO3YswsLCsGzZMohEIqxevRoTJkzAzp07MXLkSI/1lyxZgvDwcKxYsQKnTp3C22+/jcLCQjaYWFVVxb6XHnnkEYSHh6OgoMArWLpo0SKsXbsWt956K+677z7k5+fjjTfewKFDh/Dbb79BJBKx6546dQo33ngjFi1ahDvuuAP9+vXDDTfcgBUrVqCiogJxcXHsurt27UJZWRnmzp3LLuvI5+Wjjz7C7bffjhEjRuDOO+8EgFZ/R5usWLECK1euxOTJk3H33Xezz8W+ffu8xl9fX49p06bhmmuuwfXXX48NGzbg4YcfxsCBAzF9+nQAwH//+1/cd999mDNnDu6//35YLBYcOXIEe/fuxbx589ocByGEkFYwhBBCiA+tWbOGAdDqP4lE4rEuAGbhwoVMdXU1U1VVxezfv5+ZNm0aA4B54YUXvLY9cOBA5qabbmIvP/roo0xUVBRjt9s91nvllVeYJUuWMOvWrWM2bNjA3H///YxQKGT69OnD6HS6Tj2e1NRUBgDzyy+/sMuqqqoYiUTCPPDAA+yypUuXMgCYX3/9lV3W0NDApKenM2lpaYzT6fR4fvLz8z3uZ/v27QwAZvv27eyy8ePHMwCYd955x2tc48ePZ8aPH89e3rp1KwOA+f777z3WGzRokMd6bZk/f36r42qpurqaAcA8+eSTXtdddtllzMCBAxmLxcIuc7lczKhRo5g+ffqwy5qeg6lTpzIul4tdfumllzI8Ho+566672GUOh4NJSkryeAz5+fkMAEYmkzElJSXs8r179zIAmL///e9dHtOYMWMYh8Ph8bhMJpPXY/39998ZAMyHH37ILvviiy+8XsMmbT1nqampzPz58887joaGBiY8PJy54447PG5fUVHBqNVqr+WddebMGUYqlTI333yzx/Km98Wzzz7LLquvr2dkMhnD4/GYTz/9lF1+8uTJNh9nSy2fU5vNxuTm5jKTJk3yWA6AEYvFTF5eHrvs8OHDDADm9ddfZ5fNmjWLkUqlTGFhIbvs+PHjjEAgYDq7u5uTk+Pxfnv66acZhULBnD592mO9Rx55hBEIBExRURHDMM3vy+joaEar1bLrLV++nAHAXHTRRR7fVTfeeCMjFos93ptN3zcbN25kl+l0OiY+Pp4ZMmRIl8cUFhbGVFVVeazrcDgYq9Xqsay+vp6JjY1lbrvtNnZZe5/5lt9DTebPn8+kpqayl1v7fuOOb82aNR63BcA88sgjXtttzaxZsxixWMycPXuWXVZWVsaoVCpm3Lhx7LKmz9bQoUMZm83GLn/++ecZAMzXX3/NMAzDbNq0iQHA7Nu3r837/PXXXxkAzLp16zyWb9myxWt502u6ZcsWj3VPnTrl9T5mGIa55557GKVS6fEZ6ejnRaFQeHyftHzsTd/vVVVVjFgsZqZMmcL+NjEMw7zxxhsMAOb9999nlzX9DnG/66xWKxMXF8dce+217LKrr76aycnJ8bpvQgghnUdTXwkhhPjFm2++iR9//NHj3/fff++13nvvvYfo6GjExMRg2LBh2LZtG5YtW4Z//OMfHusdOXIER48exY033sguu/HGG1FTU4OtW7d6rHv//ffj9ddfx7x583DttdfilVdewQcffIAzZ87grbfe6vRjyc7OxtixY9nL0dHR6NevH86dO8cu++677zBixAiMGTOGXaZUKnHnnXeioKAAx48f7/T9Au4piR2pGTZ58mQkJCRg3bp17LJjx47hyJEjHaq1tXbtWjAM0+WsrLq6Ovz888+4/vrr0dDQgJqaGtTU1KC2thZTp07FmTNnUFpa6nGbhQsXenTTHDlyJBiGwcKFC9llAoEAw4YN83ium8yaNQuJiYns5REjRmDkyJH47rvvujymO+64w6uWE7eWlN1uR21tLbKyshAeHo6DBw924dk6v5bj+PHHH6HVatn3fNM/gUCAkSNHekxX7CyTyYTrrrsOMpkM//73v1td5/bbb2f/Dg8PR79+/aBQKHD99dezy/v164fw8PBWX6uWuM9pfX09dDodxo4d2+rzOXnyZI/MoEGDBiEsLIy9H6fTia1bt2LWrFlISUlh1xswYECrdS4764svvsDYsWOh0Wg8nvvJkyfD6XTil19+8Vj/uuuug1qtZi83ZXT97W9/g1Ao9Fhus9m83oMJCQkemZ5N0zMPHTqEioqKLo3p2muvZaewNhEIBGydOpfLhbq6OjgcDgwbNsxv7+vOuPvuu8+7jtPpxA8//IBZs2YhIyODXR4fH4958+Zh165d0Ov1Hre58847PbLF7r77bgiFQvZ7Izw8HACwefPmNksBfPHFF1Cr1bj88ss9nv+hQ4dCqVR6fR7T09O93ot9+/bF4MGD8dlnn3k8ng0bNuCqq67y+Ix05vPSET/99BNsNhuWLl0KPr/5cPCOO+5AWFiYV8kGpVLp8TsiFosxYsQIj896eHg4SkpKsG/fvi6NiRBCSDOa+koIIcQvRowY0aFmEldffTWWLFkCm82Gffv24dlnn4XJZPI4eADcTSQUCgUyMjKQl5cHAJBKpUhLS8O6deu8psu1NG/ePDzwwAP46aef8Mgjj3TqsXAP/ptoNBqPWkSFhYVeU6yA5qmPhYWFyM3N7dT9AkBiYmKHir7z+XzcdNNNePvtt9mGE+vWrYNUKmVrp/lTXl4eGIbB448/jscff7zVdaqqqjwCay2f16bgRnJystfylnWfAKBPnz5ey/r27YvPP/+8y2Nqbcqm2WzGqlWrsGbNGpSWlnrUy9PpdK1ut7tajuPMmTMAgEmTJrW6flhYWJfux+l0Yu7cuTh+/Di+//57JCQkeK0jlUq9gjxqtRpJSUkegdam5a29Vi1t3rwZzzzzDP78809YrVZ2ecvtAef//FVXV8NsNrf6fujXrx8bgOmqM2fO4MiRI17PQZOqqqp2x9ve+xqA1/OVlZXl9Tz07dsXgLumW1xcXKfH1NZU5A8++AAvvfSSV33K801d9jehUOhRm7Et1dXVMJlM6Nevn9d1AwYMgMvlQnFxMVuiAPD+3lAqlYiPj2frt40fPx7XXnstVq5cif/85z+YMGECZs2ahXnz5rFdU8+cOQOdToeYmJhWx9XR5/+GG27Ao48+itLSUiQmJmLHjh2oqqrCDTfc4LFeZz4vHVFYWAgAXs+bWCxGRkYGe32T1j7rGo0GR44cYS8//PDD+OmnnzBixAhkZWVhypQpmDdvHkaPHt2lMRJCyIWMAnWEEEJ6VFJSEiZPngwAuOKKKxAVFYUlS5Zg4sSJbD0khmHwySefwGg0Ijs722sbVVVVMBgMUCqV7d5XcnKyV/H2jmirWx43YNNRbR1YOZ3OVpd3pjPgLbfcghdeeAFfffUVbrzxRqxfvx5XXnmlR3aPvzQVsH/wwQfbzGLKysryuNzW89ra8q48110ZU2vP97333os1a9Zg6dKluPTSS6FWq8Hj8TB37lyPwv1d0dHXvel+PvroI496Vk24mVqdcccdd2Dz5s1Yt25dm0HAzrxOwPlfq19//RUzZ87EuHHj8NZbbyE+Ph4ikQhr1qxptfC8Lz9/XeFyuXD55Zdj2bJlrV7fFERr4uvnyxdjau19/fHHH2PBggWYNWsWHnroIcTExLCNZ1pr5tMaHo/X6vhbvq87+70nkUi8TtYECo/Hw4YNG7Bnzx7873//w9atW3HbbbfhpZdewp49e6BUKuFyuRATE+ORwczVMoDa1vf4DTfcgOXLl+OLL77A0qVL8fnnn0OtVmPatGnsOp39vPhDR967AwYMwKlTp7B582Zs2bIFGzduxFtvvYUnnngCK1euDMg4CSGkt6BAHSGEkKCyaNEi/Oc//8Fjjz2G2bNnsx0wS0pK8NRTT3kV56+vr8edd96Jr776qt0pngzDoKCgAEOGDPHLuFNTU3Hq1Cmv5SdPnmSvB9xZCAC8Ouu1zGDoitzcXAwZMgTr1q1DUlISioqK8Prrr3d7u1xtHXA3TTsTiURs4NXfmrLMuE6fPs1O3/XVmDZs2ID58+fjpZdeYpdZLBav17C97BaNRuO1vs1mQ3l5eYfG0DT1MyYmxmfP70MPPYQ1a9bglVde8ZhS7m8bN26EVCrF1q1b2QwlwN3woCuio6Mhk8lafT+09pnsrMzMTBgMhoC9r5syQbnvp9OnTwMA+972xZg2bNiAjIwMfPnllx739eSTT3qsd773dWtTnVt+n/nrey86OhpyubzN714+n++VyXjmzBmPbqsGgwHl5eW44oorPNa75JJLcMkll+Bf//oX1q9fj5tuugmffvopbr/9dmRmZuKnn37C6NGjO3UypaX09HSMGDECn332GZYsWYIvv/wSs2bN8vhcdObz0tEMu6bfo1OnTnlMGbbZbMjPz+/y+0qhUOCGG27ADTfcAJvNhmuuuQb/+te/sHz5ckil0i5tkxBCLkRUo44QQkhQEQqFeOCBB3DixAl8/fXXAJqnvT700EOYM2eOx7877rgDffr08chsqK6u9tru22+/jerqao9MBV+64oor8Mcff+D3339nlxmNRrz77rtIS0tjMwGbAi7cGlJOpxPvvvuuT8Zx880344cffsArr7yCyMhItiPf+ZSXl3tNf2tNU/fFlgfcMTExmDBhAlavXt1q8Km116S7vvrqK4/6Xn/88Qf27t3LPmZfjUkgEHhlDb3++ute2UAKhQKA93MDuF/3lnXD3n333TYzilqaOnUqwsLC8Oyzz7b6GnX2+X3hhRfw4osv4tFHH8X999/fqdt2l0AgAI/H83jsBQUF+Oqrr7q8valTp+Krr75CUVERu/zEiRNe9Su74vrrr8fvv//e6ra0Wi0cDke374OrrKwMmzZtYi/r9Xp8+OGHGDx4MJtN6YsxNWVJcd/be/fu9fgOA9r+zAPu9/XJkyc93n+HDx/Gb7/95rFeamoqBAKB12egKzVDWz6GKVOm4Ouvv2anrgLuLtzr16/HmDFjvKaFv/vuux6fobfffhsOh4P93qivr/f6vA8ePBgA2Gmn119/PZxOJ55++mmvMTkcjlafq7bccMMN2LNnD95//33U1NR4TXvtzOdFoVB06L4nT54MsViM1157zeOxvvfee9DpdOctJdGa2tpaj8tisRjZ2dlgGIZ9vk0mE06ePOnVEZ4QQognyqgjhBDiF99//z2bTcY1atQojzP4rVmwYAGeeOIJPPfcc5g+fTo2btyIyy+/vM0z8jNnzsSrr76KqqoqxMTEIDU1FTfccAMGDhwIqVSKXbt24dNPP8XgwYOxaNEinzy+lh555BF88sknmD59Ou677z5ERETggw8+QH5+PjZu3MhO48rJycEll1yC5cuXo66uDhEREfj00099drA/b948LFu2DJs2bcLdd9/tUTS9PcuXL2fH215DCZlMhuzsbHz22Wfo27cvIiIikJubi9zcXLz55psYM2YMBg4ciDvuuAMZGRmorKzE77//jpKSEhw+fNgnj7FJVlYWxowZg7vvvhtWq5UNTnKnA/piTFdeeSU++ugjqNVqZGdn4/fff8dPP/2EyMhIj/UGDx4MgUCA5557DjqdDhKJBJMmTUJMTAxuv/123HXXXbj22mtx+eWX4/Dhw9i6dSuioqI69FjDwsLw9ttv4+abb8bFF1+MuXPnIjo6GkVFRfj2228xevRovPHGGx3a1qZNm7Bs2TL06dMHAwYMwMcff+xx/eWXX47Y2NgObasrZsyYgZdffhnTpk3DvHnzUFVVhTfffBNZWVkeNa86Y+XKldiyZQvGjh2Le+65Bw6HA6+//jpycnK6vM0mDz30EL755htceeWVWLBgAYYOHQqj0YijR49iw4YNKCgo6PDr2BF9+/bFwoULsW/fPsTGxuL9999HZWWlRwaVL8Z05ZVX4ssvv8Ts2bMxY8YM5Ofn45133kF2djYMBgO7Xnuf+dtuuw0vv/wypk6dioULF6KqqgrvvPMOcnJyPJo4qNVqXHfddXj99dfB4/GQmZmJzZs3e9Vy64pnnnkGP/74I8aMGYN77rkHQqEQq1evhtVqxfPPP++1vs1mw2WXXYbrr78ep06dwltvvYUxY8Zg5syZANx1+9566y3Mnj0bmZmZaGhowH//+1+EhYWxWXfjx4/HokWLsGrVKvz555+YMmUKRCIRzpw5gy+++AKvvvoq5syZ06HxX3/99XjwwQfx4IMPIiIiwiubrTOfl6FDh+Knn37Cyy+/jISEBKSnp7daOzU6OhrLly/HypUrMW3aNMycOZN9LoYPH96hBkQtTZkyBXFxcRg9ejRiY2Nx4sQJvPHGG5gxYwZUKhUA98mUiRMn4sknn8SKFSs6fR+EEHLBCGyTWUIIIb3dmjVrGABt/luzZg27LgBm8eLFrW5nxYoVDABm48aNDADmvffea/M+d+zYwQBgXn31VYZhGOb2229nsrOzGZVKxYhEIiYrK4t5+OGHGb1e3+nHk5qaysyYMcNr+fjx45nx48d7LDt79iwzZ84cJjw8nJFKpcyIESOYzZs3e9327NmzzOTJkxmJRMLExsYyjz76KPPjjz8yAJjt27d73EdOTk6r42rt/ptcccUVDABm9+7dHX6c8+fPZwAw+fn551139+7dzNChQxmxWMwAYJ588kmPx3bLLbcwcXFxjEgkYhITE5krr7yS2bBhA7tO03tk3759Htt98sknGQBMdXW119gUCgV7OT8/nwHAvPDCC8xLL73EJCcnMxKJhBk7dixz+PBhr/F2Z0wMwzD19fXMrbfeykRFRTFKpZKZOnUqc/LkSSY1NZWZP3++x7r//e9/mYyMDEYgEHi8nk6nk3n44YeZqKgoRi6XM1OnTmXy8vK8ttHeOBiGYbZv385MnTqVUavVjFQqZTIzM5kFCxYw+/fvb3X91jQ9z239474HWz73Tdp6b7b1eWnpvffeY/r06cNIJBKmf//+zJo1a9hxcbX1HdHac79z5072fZmRkcG88847rW7zfHJycrw+Ww0NDczy5cuZrKwsRiwWM1FRUcyoUaOYF198kbHZbAzDeL4vubZv384AYL744guP5a291k3P39atW5lBgwaxz0/L23Z3TAzDMC6Xi3n22WeZ1NRURiKRMEOGDGE2b97MzJ8/n0lNTfVYt73P/Mcff8xkZGQwYrGYGTx4MLN169ZWt1FdXc1ce+21jFwuZzQaDbNo0SLm2LFjXr8Lbb3n2nPw4EFm6tSpjFKpZORyOTNx4kSv77+m53vnzp3MnXfeyWg0GkapVDI33XQTU1tb67GtG2+8kUlJSWEkEgkTExPDXHnlla1+xt59911m6NChjEwmY1QqFTNw4EBm2bJlTFlZGbtORz4To0ePZgAwt99+e6vXd/TzcvLkSWbcuHGMTCZjALCfkabH3vL7/Y033mD69+/PiEQiJjY2lrn77ruZ+vp6j3Xa+qy3fI1Xr17NjBs3jomMjGQkEgmTmZnJPPTQQ4xOp2PXafoscN8/hBBCvPEYJkCVeAkhhBASELNnz8bRo0fZ7ri9TUFBAdLT0/HCCy/gwQcf7OnhEOIzaWlpyM3NxebNm3t6KIQQQgjpIVSjjhBCCOlFysvL8e233+Lmm2/u6aEQQgghhBBCOolq1BFCCLkgVVdXt1vIXywWIyIiIoAj6p78/Hz89ttv+L//+z+IRCK/1eIjwctms6Gurq7dddRqdbe6VBJCCCGEEP+iQB0hhJAL0vDhw1FYWNjm9ePHj8eOHTsCN6Bu2rlzJ2699VakpKTggw8+YLtDkgvH7t27MXHixHbXWbNmDRYsWBCYARFCCCGEkE6jGnWEEEIuSL/99hvMZnOb12s0GgwdOjSAIyKke+rr63HgwIF218nJyUF8fHyARkQIIYQQQjqLAnWEEEIIIYQQQgghhAQBmvrqBy6XC2VlZVCpVODxeD09HEIIIYQQQgghhBDSgxiGQUNDAxISEsDnt93blQJ1flBWVobk5OSeHgYhhBBCCCGEEEIICSLFxcVISkpq83oK1PmBSqUC4H7yw8LCeng0hBBCCCGEEEIIIaQn6fV6JCcnszGjtlCgzg+apruGhYVRoI4QQgghhBBCCCGEAMB5S6S1PSmWEEIIIYQQQgghhBASMBSoI4QQQgghhBBCCCEkCFCgjhBCCCGEEEIIIYSQIEA16gghhBBCCCGEEELOw2azwWw29/QwSJCSyWQQi8Xd3g4F6gghhBBCCCGEEELa4HK5kJeXB7PZfN5GAOTCxTAMZDIZsrKywOd3fQIrBeoIIYQQQgghhBBC2pCXlwer1Yr4+HgoFAoK1hEvDMPAaDSisrISeXl56Nu3b5e3RYE6QgghhBBCCCGEkFY0TXeNj49HTExMTw+HBDGFQgEAKC8vh81m6/I0WGomQQghhBBCCCGEENKKpumuTUEYQtrTlHHZnVqGFKgjhBBCCCGEEEIIaQdNdyUd4Yv3CQXqCCGEEEIIIYQQQggJAhSoI4QQQgghhBBCCCEkCFCgjhBCCCGEEEIIIYR0yYgRI7Bw4cIOr//6669DpVL5cUShjbq+EkIIIedRpjWj3mjDpkOlYMDg8StzenpIhBBCCCGEkF6IAnWEEELIebz+8xl88kcxe/nRK7Ih4FNBYUIIIYQQQohv0dRXQggh5Dy0JrvH5ce+Oor9BXU9NBpCCCGEEBIM9Hp9m/9MJlOH1zUajR1at7NGjBiBBQsWYOHChQgLC0NkZCRefvll6PV6zJkzBwqFAikpKdiwYQN7m++//x6DBg2CWCxGdHQ0Fi9eDLu9eV9Yr9fjmmuugVwuR3R0NFasWOF1v2azGYsWLUJMTAxkMhkGDRqE7777rtPjv1BRoI4QQgg5D53ZM1D3yR/FeH7rqR4aDSGEEEIICQZqtbrNf1dccYXHurGxsW2uO3HiRI91U1NTW12vKzZs2IDIyEjs3r0bCxcuxLJly3DVVVdh1KhR2Lt3L8aPH4877rgDDQ0NyM/PxzXXXIPBgwfjjz/+wH/+8x+sX78ejzzyCLu9xYsXY8+ePfj000/x7bff4pdffsHx48c97vPWW2/Fvn378NFHH+HAgQOYPXs2Zs+ejWPHjnXpMVxoaOorIYQQch4RcjESw6Uo1VoAAAI+UK4zg2EY8Hg0BZYQQgghhASn/v374/nnnwcAPPvss3jjjTcQGRmJf/zjH+yyjz/+GPv27cNXX32FuLg4rF27Fnw+H4MHD0ZpaSmeeuopPP/88zAYDPjss8+wevVqzJw5EwDw6aefIiUlhb2/M2fOYMOGDcjLy0NaWhoAYOXKlfjxxx/xzjvv4I033gjsExCCKFBHCCGEnMehYi0bpAMApwsorjNDa7JDoxD34MgIIYQQQkhP0el0bV4nFHqGWyorK9tcVyAQeFwuLCzs3sA4srOzPcYUHh6O3NxcdlliYiIAoKKiAidPnsTQoUPB5zdPvhw/fjxMJhPOnTuH2tpa2O12jBkzhr0+JiYG6enp7OWDBw/C6XR63C8A2Gw2aDQanz2u3owCdYQQQsh5NE19jVKIcHGqBqcrDTDZnCioNVKgjhBCCCHkAhUWFtbj656PSCTyuMzj8TyWNQXlXC6XT+7PYDBAIBBgz549XgFIXz6u3oxq1BFCCCHtsDucaJrdmhKpwNDUCBTUmmC2O1GiNffs4AghhBBCCPGR/v3748CBAx5Bu507d0KhUCAjIwMDBgyAUCjErl272Ourq6tRUFDAXh4xYgScTifKy8uRk5Pj8S85OTmQDydkUaCOEEIIaYfJ5kKDxQEA0MhFSI9WQCUVosHiQH618Ty3JoQQQgghJDT8/e9/R0VFBW699Vb8+eefWL9+Pf79739j0aJFEAgEUKvVuOGGG/DYY4/hf//7H/bv348bb7zRY6rswIEDcfXVV+O2227Dhx9+iJMnT2Lnzp149NFH8dlnn/XgowsdNPWVEEIIaYfR5mD/logESNLIIGv8n3sdIYQQQgghoSw9PR1ffvklHn74YYwYMQJqtRrz5s3Dv//9b3adN998EwsWLMD1118PhUKBe+65B3q93mM7n332GR555BEsX74cVVVV0Gg0GDx4MGbNmhXgRxSaeAzDMD09iN5Gr9dDrVZDp9PRHGxCCAlxeVUNmPzyLwCAOUOTsHJmDnKe3AoAGJ6mwRd3jerJ4RFCCCGEED/S6XQoLCxEVlYW5HJ5Tw+HBDmTyYS8vDykpqZCrVZ7XNfRWBFl1BFCCCGteGHrSZypNKBS39ztVSEWQCERYlRmJBxOFxQS+hklhBBCCCGE+A4dYRBCCCGtWLenCNrGbq9N5I2BOavDhQOF9QAAk80BuZh+TgkhhBBCCCHdR0cWhBBCSAu78qqh4wTp0qPkiFfLMGNgPABgeKoGAGCwOlBYa8KAeCpzQAghhBBCCOk+CtQRQgghLVTqrOAWcM2vMaHeZEduorvOhEwsZDPqiuqMFKgjhBBCCCGE+AT//KsQQgghFw6GYfDgF4e9lofLROzfU3Nj0S9WhXC5CF/sLwnk8AghhBBCCCG9GAXqCCGEEI4Gq8Mjm44HQMDnIVIhZpf1jVGhoNYIu8OJ/BojzDZnwMdJCCGEEEII6X0oUEcIIYRw6EzNtemiVRIwAJwuBmp5c6COz+fhhuHJMNpcOFttxMkKfQ+MlBBCCCGEENLbUKCOEEII4TBYHRiepsHARDXi1VLEhkkQGyZB31ilx3oD4sOQFC5DpEKEl388jRPlFKwjhBBCCCGEdA81kyCEEEI4DFYH9hW4G0XcMTYd/5yR3ep6N45IgVIixL2fHMKvZ2qw41Q1NZUghBBCCCGEdAtl1BFCCCEcVruL/VsqErS7blqUAskRMiRrZNCZbf4eGiGEEEIIIT7z3XffgcfjoaampqeH4jNz5szB5Zdf3tPD6BbKqCOEEEI4LPbmxhASYfvns1Ii5CiuMwMADhfr/DouQgghhBBCiNupU6fQv39/7N69G5deeim7fPXq1WAYpp1bBr+QzqhbtWoVhg8fDpVKhZiYGMyaNQunTp1iry8oKACPx2v13xdffNHmdhcsWOC1/rRp0wLxkAghhPQwi6M5UHe+jDq1TISxWVHoF6uC1mxvd11CCCGEEEIudBaLxa/bj4yMRFRUlF/vw99COlC3c+dOLF68GHv27MGPP/4Iu92OKVOmwGg0AgCSk5NRXl7u8W/lypVQKpWYPn16u9ueNm2ax+0++eSTQDwkQgghPczCmfoqOU+gDgD0FjtOVTagSm+Bxebw59AIIYQQQkgQcLlc0Ov1PfLP5XKdf4AcZrMZt956KyIiIiCRSDB06FD88ssvHuts27YNffv2hUQiwUUXXYT9+/ez150+fRqTJk1CWFgYZDIZsrKyPBKf9u/fj3HjxkEulyMyMhKzZ89GeXk5e/2IESMwf/58LFy4EBqNBuPHj8fMmTMxY8YMjzFYrVZoNBq8+eabAICNGzdi6NChUKlUCA8Px8SJE3H8+HF2/f79+wMARo0aBR6PhxEjRgDwnvp6vsffNP33m2++QW5uLqRSKYYMGYIjR46w6+zZswcjR46EQqGAUqlETk4Ofv311069Dp0R0lNft2zZ4nF57dq1iImJwYEDBzBu3DgIBALExcV5rLNp0yZcf/31UCo9u/e1JJFIvG5LCCGk9+vM1FcAyE1U43SVAbVGG0p1FmRGt//7QgghhBBCQpvBYIBare6R+9bpdAgL63gDs8WLF+Pbb7/Fu+++i4yMDDz77LO46qqrcObMGXadRx99FC+99BISEhLwyCOP4Oqrr8a5c+cgkUiwaNEi2O12/PTTT1CpVDh8+DBUKhUAoKamBlOmTMG8efPw2muvwWQyYdmyZZg9ezb27NnDbn/Dhg245ZZbsHPnTgDAiRMnMH/+fOh0OvZ53LRpE8xmM2666SYA7uf4/vvvx9ChQ6HX6/HYY49h1qxZOHHiBAQCAXbu3Inx48fj66+/xpAhQyCRSDr9+GNiYtj1Hn/8cbzwwguIjY3FnXfeiQULFuDgwYMAgJtvvhm5ublYvXo1hEIh9u3bB5FI1OHXoLNCOlDXkk7nrg8UERHR6vUHDhzAn3/+yUZo27Njxw7ExMRAo9Fg0qRJeOaZZxAZGdnqularFVarlb2s1+u7MHpCCCHBIitGCYfTBYXk/D+TYTIh1FIR+sQoUaW3UqCOEEIIIYQEBb1ej48++ghvvPEG5syZAwBYt24dkpOT8cYbb+CSSy4B4A7UzZo1CwDw6aefIiUlBevWrcNtt92G0tJSzJw5k81YGzBgALv9559/Hjk5OXjjjTfYZR9++CEyMzNx9OhRDBw4EACQmpqKt99+m11nwIABuOuuu7B+/XrcfffdAID169dj8uTJCA8PBwDMnz/f47F8/PHHSEhIwKFDhzBs2DDExsYCAKKjo5GcnNylx//UU0+x6z799NPszMuHH34Y119/PUwmE+RyOcrLy3H//fdj8ODBAIDc3NyOPP1d1msCdS6XC0uXLsXo0aPbfNLee+89DBgwAKNGjWp3W9OmTcM111yD9PR0nD17Fo8++iimT5+O33//HQKB9zSoVatWYeXKlT55HIQQQnqWzmxHXpUBACDi8867foJahgq9BRV6C0q1Zn8PjxBCCCGE9DClUskmCvXEfXfUiRMn4HA4MHHiRHaZRCLB4MGDcfLkSTZQN27cOPb6mJgYpKens9NM7777bjz00EP4+eefMX78eMydOxcjR44EABw9ehR79uyBXC73uu9Tp06xgbpBgwZ5XCcSiXDVVVexgTq9Xo8ff/wR77//PrvOsWPHsHz5chw6dAharZad8pufn49hw4b55PFzcbeZmJgIACgtLUWfPn2waNEiLF26FOvXr8eECRPwt7/9DdnZ2R0aQ1f0mkDd4sWLcezYMezatavV681mM9avX4/HH3/8vNuaO3cu+/fAgQMxaNAgZGZmYseOHbjsssu81l++fDn+8Y9/sJf1en2bEV1CeorJ6sA/vzoGi92JGJUUK6/O6ekhERKUrPaON5MAALVczP6tu4AaSqz9LR978+sg4POweEIWBiR0fAoGIYQQQkgo4/P5nZp+Gsr+/ve/Y+bMmfjyyy/x448/YsyYMVixYgX++c9/wmg0YtKkSXj55Ze9bseNiSgUCq/rb7nlFkybNg2lpaX43//+B6lUimuuuYa9/qqrrkJSUhLeeustJCcnw+VyYdiwYR6zGX1JLG7ep+fx3Cfrm4KDL730EhYsWIBNmzbhhx9+wIsvvoj33nsPN998s1/GEtLNJJosWbIEmzdvxvbt25GUlNTqOhs2bIDJZMItt9zS6e1nZGQgKioKeXl5rV4vkUgQFhbm8Y+QYFNrtGLToVJ8f6wCn+8v7unhEBK0LI7mAr0dCtTJmutT6Ew2v4wpGH22rxjfH6vA5iPl+LNE29PDIYQQQgghLQwYMAAikQjbt29nl1mtVhw+fNhjCiu3MUJ1dTUKCgo8MsYyMzPx0EMP4YcffsCiRYvwwQcfAAAGDx6M06dPo2/fvsjJyfH4d764yOTJkxEXF4e1a9fik08+wYwZM9g6c5WVlSgoKMBjjz2GmTNnYsiQIaitrfW4fdO6TqfTa9udffwdMXDgQDzxxBPYtWsXpk6dirVr13bq9p0R0hl1DMPg3nvvxaZNm7Bjxw6kp6e3ue57772HmTNnIjo6utP3U1JSgtraWsTHx3dnuIT43QOf/4k/Cupgc7iw+m9DMThFAwA4UFiHez4+yK4nEfJhd7ogEvSKWD0hPtXZZhIRChGGp2ngcDFwMYw/hxZU7K7mx9qBGcKEEEIIISTAwsLCcPPNN+Pxxx9HVFQU0tPT8eyzz8JisWDJkiXYt28fAHc5r6ioKLaZhEajwbx58wAACxcuxIwZM5CdnY3a2lr8+uuv6NOnDwDgH//4Bz7++GPMnDkTy5cvR1RUFE6ePIn169fj008/hVDYfsjp2muvxZo1a1BQUIDvvvuOXR4VFYXw8HC88847SEpKwrlz5/DPf/7T47aJiYmQSCTYvHkz0tLSIJPJvPoKnO/xd4TRaMQ999yDG264AVlZWSgsLMThw4dx5ZVXduj2XRHSR+mLFy/Gxx9/jPXr10OlUqGiogIVFRUwmz1rBOXl5eGXX37B7bff3up2+vfvj02bNgFwdxZ56KGHsGfPHhQUFGDbtm24+uqrkZWVhalTp/r9MRHSHfsL61FcZ0al3orCWhO7vLjOjMqG5hRhrdmOknpTa5sg5ILHDdRVNVix/VQVdGY7zlQ2tLq+SiLCvoJ6HCrSorj+wqlRZ3e6zr8SIYQQQgjpUa+//jpmzJiB22+/HZdeeiny8/Pxv//9zyOJ6emnn8YDDzyAUaNGoaqqCps2bYJUKgXgzlhbunQpLrroIlx11VXIzMxka8mlpaXhl19+gdPpxJVXXomLL74YDz74IMLDw8Hnnz/ctGDBApw9exaxsbGYPHkyu1wgEGDt2rU4cuQIu83nnnvO47YikQirVq3CBx98gNTUVLYRRFcef3sEAgHq6uqwcOFC5Obm4qabbsKkSZPw4osvduj2XcFjmNA9/d80b7ilNWvWYMGCBezlRx99FB9//DEKCgpafbPweDz2NmazGbNmzWILFiYkJGDKlCl4+umn2a4i56PX66FWqzvdNpmQ7hr9720o1VoAAC9fNwjXDHXXBVj7Wz5W/O84u55IwMP/zR+O8X07n2FKSG/2xs9n8NIPp9H0w5gZrcDZaiOEfB76xqnw7b1jvH57tCYbBj/1IwBgfN9ofHDbiACPumdMenE7ztW4A/5Pz8rFzZek9vCICCGEEEJ8T6fTobCwEFlZWa02TSCEy2QyIS8vD6mpqVCr1R7XdTRWFPJTXzvi2WefxbPPPtuh7chkMmzdurXbYyOkJ4g50/QKao0orjMiOUIBm9MFHg9oeqsrxELUGvxThJOQUNZgcYD7y3K22ggAcLgYHC/T4/eztRiVFeVxG5VUBCEfUEpFcDIXTpYZt3EGtwEHIYQQQgghpOtCeuorIcRTjaG5kP1rP5/FlP+4i4LWGmzgxrW1ZjsKamnqKyEtOVs5ASTgJNCt/uWc9/V8HpI0cmhNdpyqMPhzeEGFG5vTmi6cbreEEEIIIYT4EwXqCOlFrHbPbB6L3YlXfjyNc9XewQO9mQ6sCWmp5WcIAJZN7Y8kjQwAsPN0NU5VeNeqy4xWIjchDGmRchgtDr+PMxhYHc2ROh19nxBCCCGEEOITFKgjpJdwuhjYWhR3ZwC8su0MjpTqvNbXmmxeywi50BltzUG2frFKXJIegTvGZWDhmOau4u+2klWnlotwrEyPfQX1KLoAGrW4XAysjubvmwNF9T04GkIIIYQQQnqPkK5RRwhpZm5RI4oHsLW2HM7m6XwXJakhEQmgkNDHn5CWlGIBRAIe7E4GpyoN2Lp0LPh8Hq4floxXfjoDndmOLw+VoFJvQUyYBM/MyoVcLER2fBhK081wMQxK680YEN+7GwnpzDYMiFehQmeB3emC3myHy8WAz2+9yRMhhBBCSKhzOqkmLzk/X7xP6EidkF7CZPOcbsettGXnZNodLtF5LSOkLYeLtbgoORynKhrQL04FAPi/X89hz7laXJIRidvHZvTwCH1rT3497I2B7Qn9otEvzh1wU0iE+NslKfj2SDkq9BbsyqsBAIxMj0BKhAJRSgn25tcBAC7PNgDoWJfwUFWqteBEefMUYIPVjAq9BQnhsh4cFSGEEEKI7ykUCjAMg7KyMkRHR0MikYDHo5OTxBPDMLBaraiqqgLDMFAoFF3eFgXqCOkljFYnUiJkKKozeywXC3keBfKVEiEMVgd0VPydnMdn+4rw8MajGJaqwf7CerwwZxBWfXcCdY3vnd1na1FjsOGR6f17eKS+4XIxKKozspfvHp/pcf2SiX2w9LK+6Pv49+yyhzcexZTsWKyYmYMxWVGoM9nw04kq3DnO87a9zS+nq5Adr0KtwQaJSAAe3J2mKVBHCCGEkN5GKBQiKysLBQUFKC4upiAdaRPDMOz7RSjseriNAnWE9BImm8MrSAcANgcDp6s5/VYtE7kDdVT8nbRjy7EKLP/yKABgf6G7/tijm46y2WYAYLI5sfN0FR6e1q9X7LBsO1kFS2MzCR6AkRmRHtfLxAIAwMmnp6HeaMf0V39BvcmOnaeroZaJUKG3IK/KgBilBE6nCwJB7y0Dm19jwnFORp2QD5TUe3//EEIIIYT0BgqFAgMGDIDVaoXNRrW+SevEYjEkEgn4/O4dB1CgjpBewmxrey580yzX/nFKpEcpUW+yodZog8XuhFQkCNAISag4Ua7HfZ8cgqsxJtcvToVTFQ1skG54ihrg83GoSIsT5Q3QWxxQy0Q9OGLfWL3zLPu3XNL250IiFCBOLcAVA+Oxbm8RrA4XdpyqxuDkcFTqLKgyWFFlsCJe3Xuzy7ScQH+UUoxaow35NcZ2bkEIIYQQEtr4fD5kMhlkst67j0eCAwXqCOkljO0E6gBAJOBByOdDJhYgUilGLI+POz7cD4kwMFk/BosDg5LUuHFkKtKjuj5fn/jfp/uKMCxNg91na3HNkESsumYgLnt5J5sx5WB4SFLL4HC5M+10JnvIB+oq9WakRipwrEwHh5NBRgfeo9Nz3YE6APj+WDliwySQiwVIjpCjuM7UawN1JfUm1JtsiFaKYXW4YLY7kRGlgJPqXhJCCCGEENJtFKgjpJcwWR1ey46tmIKhz/wEq8MFu5PBv2bnYlBSOHg8Hv7z42nsOVcLmyMwB9d/5NdhT34dfjtbi2/vGxuQ+ySdV1BjxAe7CwEA6ZFyPDdnEEQCPi7NiMQXB0oAAIeKtUiOaA5Cac02pEDeI+P1lVMVBmw8WMJe5k7xbcvIjAiEy0XQmuzYfrIKSyf3QWWDFZUNVhTUmDAiPfK82whF//nxNPYXuIO0fAAuAGerjYhR6Xt0XIQQQgghhPQGFKgjpJdwMQxGpGnwV5keMrEAEQoxlFIRRqRFoERrhothkBapYGuJqaRCqKQB/ArgwbMVbRB5YetJlGktCJeLcO3FSchNVPf0kHrM1r8q2L/njkiBqLHOmljIR1K4DCVad1ZdvcmO4WkaOF0M6gyhX6ejqM7kcbkjGYIiAR+XD4jFFwdKYLQ5YXcxGJKshlQkxKnKhvPePlRxS+/lJIbhVIUBNqfLYzosIYQQQgghpGsoUEdIL6EzO/BHY5bLk1fl4PrhyQCAj24f2er6t4/NwO1jMwI2vr7//B42pwtMkAXrGIbBu7+cYzOoopSSCzpQt4UTqJuaE8f+fbhEywbpAOCvMj3qjO4AXbE29JsIFHchUAcA0wfGsZmGeVUGlGgtqG6wIq/agMevzPb5OIOBgzPL/tW5Q3DDu3tQ3WCFzhT6AVtCCCGEEEJ6Wu9tSUfIBcbGOXoWB6juXKcEaVNQrdmOjGgle9lqb7/WX29WobPgUJEWANA/ToW0xjptDMNAxOdjWKoGEQoxAKDOaEOfWCWGp2lgtnlPuw41hbXNgbqBiWHIilG2s3az0VlRUEnc57x+Ol6JsVlRGJamQYxKAmMr09FD3a68ao+sS4VEiHF9ohAhF6HaYMW453/Gn0X1PThCQgghhBBCQlsQHs0TQrrCxinkHpSBukZBllAHo9WBUxXN0xQtAarZF4x+ON4cgJmW25xNpzPbcahYi/2F9YhqDNQBwJlKA/YV1PeKbp/cqa9HS/Wwd7AxgkQowKQBMZAIeegXp0KdyYr9BfX4q0yPwtrQf15aKq41eTSukYsFqDfaUGeyw+5kUFRn7hXvB0IIIYQQQnpK8B7NE0I6hdsUQiwIvo92kCbUwdSiW67lAs6o23Ks9UBdpd6K2DAJUiPlGJ6ugUwk8LidLsRrkzEM4zX1NVwubmNtb5dmRMLqYLCvoB488NAnRgm1TORV96434IYvh6aGQyEWIknT3FhEwOfhf0fKAz8wQgghhBBCeongO5onpIt0JjuK64w4XFSPfQV10F5g9ZI8AnVBnFEXbFpOT7xQA3V1Rhv25tcBANIi5egXq/K4rlJvRWGtCUqJyCOIJxXyYbWHdhaixe5CZowSCokAQj4PQj6vwzXqAGBYmob9u9Zow5kqA0QCHir1Fn8Mt8dU6i0orDEhTCoED0BapAJ8Pg9CzokBl4vpcDYiIYQQQgghxBsdzZNeY/UvZzH2+R24+q3duO6d3zH91V97ekgBZQ2Vqa9B1k2iZUad9QKd+vrTiUo4Xe7XZmpuHNsdGPDMmFPLRZg9JJG9bHG4cLbaELiB+oFMLMBXi0fjjrEZcLgY8AAkc7LEzic9Sgm52J1lWK6zQCLko8Zgw+nK0H5eWrr/0z/x7q/noLc4wOMBt1yaBgB4cGo/nHx6GtKjFGAA/Fms7clhEkIIIYQQEtKC92iekE5qOf2uKehwIfjw9wLsz28u4B6MgTpekM59PVPVgOx4JSRCPhLCpVCIL8xm2GFSEYakhAMApnG6vQJAYa0RFyWpkZMQhmSNHKOzopAWKQcPgEjAQ0K4zGvqaKj5bF8Rtp2oRJhUCKVUiITwjgfqBHwesuPDAADVDVZEyMUYmBjW676DpJzvFYVEiLgwKQBALhZCKhIgXO7OQmywOHrdYyeEEEIIISRQLswjUtIraVsE6i6k6VdP/e84HJwD42CsURes3t9VwNYSK9NaLthC+NNy4zAtNw7lOjNiVVKP6346UYnDJToAwKT+MRDweVDLxWBqTbA7Gew+W4s952qRHCHviaH7xHNbTqLO6P4OyYhSoA9n6m9H5Caqsb/QHSzXmm0o11u8vpNCXUm9mf27weJAtEricT13urDebIdG0fE6f4QQQgghhBA3CtSRXiNMKkRiuBRlWgsYwGPqXm/n5EwnHZGmYafhBRNekLaTaJmJub+gDtev/h3PzMpB39iwHhpVz7DanVj+5VGYbU5EKMSQCPk4WqpDrdGG9Eg5wmQiKCTun43MKAUON05xHJgYhjpjaNeEjFFKYHO4YHcybHZcZwxMVLN/p0QooJaLwDDuem2iXhI459ZvlAj54PM9P9N9YpQw25xgAGhNNgrUEUIIIYQQ0gUUqCO9xrFSPUq1zcXbXUFWC81fLHYnuA/1j4J6KCX00e4Il4vxCtTZXQz+yK/DmUrjBROoq9Rb2CzMHaeqAbintDIAHE73m0trsuP2sensbTJjlOzfR0v1SI9qvhxqFq87iJON9eQuSlLjjZsu7vQ2BiY1B+p0ZjtOVTYAAErrzUiLUvhmoD2MW8+R30rc3eZwsQ1Jels2ISGEEEIIIYFCR/OkV/jb/+3BX2XuqXk8HsAwCPlOlB1VoTdDJRXCaHWgafZrWCc6VgZaMMVPjVYHopRi1Bi8s8FOluswY1B8D4wq8F7bdgbr9hYhOaK5LptMxEeDxbPRRpSyOUMqgxN8ilZJvAKewe6FLSfx2f5i8Hg86Bo7RAv4PIxIj+jS9jKjlZCJBDDbnTDZHBiYqIbTxaDaYOkVgTqGYRATJgafB0QoxLhjXIbXOmp58/sj1N4PhBBCCCGEBIveMR+HXNBMNgfyqgxskKop0cNsd0JnsvbYuAKlSm+FwdIcpBML+ZCKgnDqa5DNfDVaHfizWNtqkA4APtlXDNcFUhD/UJEWgDv7q4ne4p7C2EQi5OOu8Vns5Yzo5gy66gYr8qoa/D1MnzpXY0SNwYbqBitsjVmDThcDWRc/OwI+D9kJ7gxMvcWBo6U6HC/Xo6YhtKcENzHbnThZYUCN0YZIpQTXDUv2Wiecc4KguqH3f/cSQggJPQ0W+wWzf0cICV0UqCMh74HPD6NC7z4oTFCLMTi5eQrahBd39tSwAuaRjUchEjRHwdIjPbN3DFYHAGDbicqgaLDBIDh2jhZ+sA83v/8HezktUo4PbhvKfilKRQL8UVDXM4MLIKPVgZMVegBASjvNIGJaNA5IjZSz0x8FPB7KdRbYHD3//uqo/BojBC2Cx1IhH1kxXZ/COzBRDT7P87nqLZll3MfR1N21peQIORLCpRDweagN8ZqFhBBCeqepr/yCjEe/Q/oj3+JYqa6nh0MIIa2iqa8kJFnsThwr1eGjPQXYfrKKXV5ncqDe1JzZI+TzoLfYESYN3qmg3VVvsrEZQUI+DwJO8SityYbL//MLsuPDsPN0NS7NiMSbN10MiZCPr/4sxZUDE6Bu46Db14IsoQ4Gi2cAZUiKBiPSotEUaiqpN2Pn6WpckhEZ+MEF0OESLZuNmRmtRKXeAnMr08ZtLYK8UpEASRo5iupMbDMTndnu1Qk0WGlNdjhbxIwdLgbx4bLWb9AB913WB8um9cOvp6vx+Fd/QSYWQG/pHYG63WdqEBvmbrgRGyZtdZ1olQT1RhtSIuTQNwb2XC4GO05XYcfJaogEPNw6Jh1JmtDtDkwIISTEMdz/guPkMSGEtESBOhKS8muMmPPO717LLS0CDNUGGw4U1mNiv5hADS2guM0QBiaq8b97x3ik8z/73QlUN1ixs8HdIOD3c7UY/8J2uBgGRqsTh4rqIeDx8a/ZuRD2ks6UHVVQa/K4rJAIIBXxIRLwYG+M4ORXG3tiaAHVNO0VABI1slaDdIA7a66ljGgFiuqan8eQCtSZvTO+wuUiDE3RdHmbEY1dTqPDpKgyuLN8uc9PKHtgwxH27/A2amCmRshhtruQX2PE4RItAKBCb8Fta/c3r8Tj4fErs/05VEIIIaRVdqcL5brmxnMmW+jMBCCEXFgoUEdC0sd7Cr2WqaRCmG1OOFrUndD3kqlnrdGZ7RiUFA4Bn4d+se4pe/zGjLrdZ2vw+f4SAIBcJIBULECd0QaGAYxWd5OADQdKAQBXXZSAMX2iAjLmYGgm4XIxHh0sAUAqFIDH42F832hsO1EFBkBetaFnBhhABwvr2b8PF2u9rucB0CjEGN5Kk4XMaCXbJTYrWoEag7VbU0cDxWJzYlBiOGqNVhTWmdjOtgMT1eznpztSIuTIjg+DXCxAbyiD4+BkU0qEfPSPV7W6nkYhxuDkcAj4gKKx83RJvQkDE9U42ji9qLdMBSaEEBI6Nh4swW9nanCsVIcwmYj9LTLaHD08MkIIad2FlUJDeo0vGgNQXGOyorB4YpbXcq2p9x4YlmrN+LNYiwOF9eDOTLTYnfjnpmPs5UdnDMC3943BqMxIvHz9RZAI+bg0oznw8u3RMr+PlRdE3SSOluq8AihNDTgyo5XsRIiiWlOvLjjMMAwONQbnwqRCHC5prtUSoXBnTTEAHpjSF6/OHeJ1+7nDk3HTyBQAQF610aMZRTDTW+z4o6AOZ6uNbJAOAC7rH+uT7UcqxCisNWJ/YT1+y6vxyTZ7ksneHNQekR6Babme3ZCdLgbv7cqH1eGEweLAgUItfvyrEu/sPIv8GiMbpAN69/cxIYSQ4PTuL+fw5aFSnK4yeJwwMlmd7dyKEEJ6DmXUkZDE49SUEPCAJI0MaZFyLJ6Yha1/VeBkRQOUEgGilBKv2lq9yef7izE6KxIuFzBtYBy7fMuxCtQ0Tr0blqrBvBEp4PN5WH/HJQCA/Y9NhoDPw9Cnf4LZ7sT3xyrw1NW5EF0g019/+KuC/ZvHAyLkYkSp3NMW+8apEC4TQWu2w+Z0obLBgnh11+uWBbPCWhPqGov+Z8UoUWe0oUJngUomxNUXJaKqwQonw2BoauvTQfvEqjB5QCzyqgywO12oNoRGp0/uTrpYyIPNwYDPA0ZndT+rdOepKvxyphpKiRApETLEhIX+e8fMyT5ViD13G6wOJ+7/5E9s+asC//3lHCr0Flx7cSKOluiw6WApkiNkGJYajlMVBsSESYKu+zMhhJDebcOBYhRwSpmEy4QQCwVI0shgc1CgjhASnChQR0KOy8XAysmCcTJAYZ0ZVgcDsZCPVdcMxJL1h1CqNcNgNaG4tnfUiGrNthNVKNWaEaUUs3X4LHYnntp8HCI+H/3jVFh1zUCv6XyqxuYalw2IweYj5dCa7PgtrwYTAlDLLxjy0348Ucn+zTBArdEGV2M8N1YlhZYTyMmvNvbaQN3BouZpr8kRchxsrFe35NI0LJnUp0PbSNLIsDff3R23va6xwYT7+ja97mmRCqRHK9q4Rcfl1xjx3q4CAEBlgxUnKgxwuhiPJi+hxmhtnhoklwjYvw1WBxZ9tB+/5dUCcNejA4A95+pQqnVnV+rMdnZ5Q7WDMuoIIYQE1OFiLayck/YT+sfgq0NlqGqwYnqLDHFCCAkWF0b6DOlVLG2c/VI0HkAOSdEgk3PA/eGeQqQ98i0yH/0Ozl42jbEpM0jNKe7+v8NlqDPaUGeyoU+sCn1iW68nBQBXDmreQfn2SLn/Borg6fpaXGfC6Urv2nNysfv9kxopR4K6uatlfm3vbShRUGNkA0iJnG6nMnHHz+EkaWS4KEmNlAg5yjgFmoOZ1mRHYrgUmdEKXDEwDvdd1gc3DE/2ybaTWwlWWkP8jL3Z7kSyRoaMKAViOM1CbA4XKhpfc6nQfWIAcE/JTwx3ZzkbOEG+JI0MNqfLYxkhhBDiT0I+Hxq5CAqxAOP7RmHOxc2/9//36zn0f+x75DyxBc9tOdmDoySEEE8UqCMhR292QCTwDvtwl9w5PsPresbFoKohNAIJHWG0OiAR8iHk89hAHcMw+OD3AnadBaPS2t3GhH4xUDQGqLb+VQGbw//ThJke7iaxjZNNx9UUqItXS1HJeZ8U1PTeQN2ec3UQ8oGUCBkYNL/2Te+JjsirMiK/xoiSOhPMIVKUWWe2o1RrwdlqI4anReAfl/fFovGZPtl2a4G6lt2oQ43F7kRxvRnnaoxsR2TA3eX2o4UjkR0fhnV3XII3b7oY4sbp86VaMwprTXBxPu8l9WbIxQIU9eLgNyGEkOBSZbCi3mSH0eZEbqKa3WeWi/iwOFywOFww2pwhU2eXEHJhoEAdCTk1BqvHwWITCyfINCzFu6aWC0ClPjRqaHXEztPVqDXa4HAxmJrjrk93sKgex0r1ANwdLC9OCW93G1KRAJdnuwvo6y0O/Hqm2n8DDpKUuu+PVbS63NkYUBAK+OgXG8Yuz+/FgbpzNQZYHe4OuG/vyGeXyyUdz6h7/7d86C0OuAAcLdWHRNaq1mRj/1bLxT7ddpLGe5q0xR7aGXXcQKNU5N5tOFRUj6te34UPfi/Ac3MGYmiqBpnRStwz0R3wlIn44PHg0V1ZyOehUm9FYS8uR0AIISS46DglF+4an4nYMAnCpEKY7C6PmrXUlZwQEkwoUEdCzpESLVuQXCzgQS4WIFwm8piSJRG1nhHUm36EuY+l6ezgmt8K2GXzR6V1qNPqjEEJ7N9tBbF6C5PVgUONddiaiAQ8hMtFCJM2Tx9O1sgg5POglAiQFtn9umXBSGeyo8bgDljFhUnRVEKNByBCLmr7hi1kRHk+P/oQ+IyZbE5kx4ehb6wSUUrfBurkYqHXNq0ByFT1J26gUSp0f7f+lleDo6U6rN55Dn81nhwAgLsnZOLSzEi4GMDFAEqJANEqCWJUEsSGSTAkWQ29JfjfI4QQQkLfF/uLUaW3IEYlQZ8YJZQSIaKUEijEAmjkQkiEPAh4QLhMhDAplW4nhASPkA7UrVq1CsOHD4dKpUJMTAxmzZqFU6dOeawzYcIE8Hg8j3933XVXu9tlGAZPPPEE4uPjIZPJMHnyZJw5c8afD4V0wuf7S9A0m2pydiyOPzUNfz45BbePbZ7uyuPxIG8lWMfNpAl13KLsapkIlXoLtjQG2iIVYo/6c+0Z1zcKA+JUuDglHLVG/2cc9mS+lcXhwryRKR7L7r+sD/58YgouGxDLLotVS+FwMTBYnZiWG9dyM73C2ZrmOn1hMhGaEuEYeNY8PJ/MGKXHZW0IBOrOVRtwvFyP05UGPLP5BO5ZdwCnKxt8tv0kjef011DPqOMGGiWNGXVNDSQAz265EqEAVw1KYG9jsDpR3WBFjcGKUq0Fh4p1OFfde7NUCSGEBI9HNx3D6SoDqhqsaLA4wOPxwOfz4AJQb3LA6mDgZNz7LsfK9OfdHiGEBEpIB+p27tyJxYsXY8+ePfjxxx9ht9sxZcoUGI2eBwF33HEHysvL2X/PP/98u9t9/vnn8dprr+Gdd97B3r17oVAoMHXqVFgsvae+WaiqM9o8gm1j+0S3uW7LOnYCPg9vbs/z29gCjmEwMj0Cw9M00CjE+Oj3AqgazwbeOCIF0jayCluSCAUQCvg4WKTFzlPVfqtTFwwzX3eeqsK+gjqPZRKh9/PUJ0YBjVwEqZCPxesPotbQe6ZMA8C/vz+BhzcegVjIg1jAw9ESLUR8HiRCPpLCZa3WWWtLBqdxS5RSHBJZqyqZCJdkREAjF+F4uR7fHfVtfUbu8zcoUR2Q2o/+5JFRJxLAYnfiQGPH4CSN9/tl9pBEhLcI9io5mQqh8B4hhBAS2ix2B2KVIvB5gIAP9ItrPrF4RW4cxAIe+Lzm/dPedDKfEBL6QjrHd8uWLR6X165di5iYGBw4cADjxo1jl8vlcsTFdSwrhmEYvPLKK3jsscdw9dVXAwA+/PBDxMbG4quvvsLcuXO9bmO1WmG1Nh/I6/V0RsZfzlYbUMCpbzQyPaLNdZu6WTZxuhicrjTAYHVA2YkaXMGqqN6EvfnuoJPJ6sS7v+bD5XLh8uxY/O2S1E5tKyVCjqOlOrgYoExrRlqUH6d79mBK3ffHKvBXizOmDpd3EEUpEaG+MWPRorfibLURkUqJ13qhau3uAo+6YzZnYyDGxWD1LUMR3om6bYnhMoTLRNCa3VNpQ2FHd19+HU5WNIA7MzwmzHevbzKnTt2RUp1HnbZQ5FGjTijAgcJ6Nvg4OjPKa32ZWIB5I1Pw1o6z7LIwiRB6s7vZCDcbmBBCCPEHo9WJEl3j8RkDmDm/ZU/OzMWmQ2UeswB0ZjtcLgZ8fjCcWiaEXOhCOqOuJZ1OBwCIiPAM3qxbtw5RUVHIzc3F8uXLYTK1Xcg6Pz8fFRUVmDx5MrtMrVZj5MiR+P3331u9zapVq6BWq9l/ycnJra5Huq+w1sjW0hIL+UhvJ6D0+FXZWDq5D3ITVOwylVSIb/4s9fcwA4J7sPvhngLYHC44XO4Mpzi1tFPbSolszogpqvNPofeO1MsLtMkDYjAl2zuIPyI9AtMHxiJMKoRaJsKWY+U9MDr/sDtdbXYh1chFSOlENh0AKCVCNFibu72GQraUuTFDrOkHUMDnIVLhw0Bdi+fQ4gjtQJ3N4UROQhguTglHuEKE3/Jq2OtGZUW2epubL00F91gnMVyG0VmRyE0MC/nngxBCSPDjniTLjFbg7vEZHtc/OLUf7pmQidzEMAxKVCM5Qt7rZlAQQkJX6KcVNXK5XFi6dClGjx6N3Nxcdvm8efOQmpqKhIQEHDlyBA8//DBOnTqFL7/8stXtVFS4a3zFxsZ6LI+NjWWva2n58uX4xz/+wV7W6/UUrPOT42V6tpbWJekR7QZ/Zg9JAgBcPTgRE1/cAQBosDhwtsrQ5m1CSb2xOXNpxyl3t9YopQRLJmZ1elvc4Iy/AnU9zWRzoKZFDb7ZQ5K8aqwBQKJGjiUT++D7o5UA3Jl4T1yVE5Bx+ludse2MtwaLAyppx+vTAe4ArEwkgMEaOtlSRqt7570puTNaKfHKwO2OZI0cMpGADQhaQ7xGXZ3RxmaiSoQC7D7bXJ/u0ozWA3XxahmyE8LYLtTF9WbYXQyqG6xIDO/ciQRCCCGks7j7O0NTNZjY3/PYrmn2id5ix8d7isADUKI1IzqMfqMIIT2v1wTqFi9ejGPHjmHXrl0ey++8807274EDByI+Ph6XXXYZzp49i8zMTJ/ct0QigUTSe6bFBbMzVc0F3xPDZe2s2Sw9SoGchDD2QPNIqc4vYwu0Sr0FKqkAdifDZkgtm9qv04EWILCBup6a+br7bA0OFmrZy1IRH3Ht7IxFc6a61rYT3Ao1Vfq2a22+OW9Il7apkDQH6oyc7LpgZbK5x9gU9I/tZAbq+YzOisSyaf2w8n/HAYR+11fu1CARn4cjJVoAQJ8YJWLa+Qw9Mm0Abn5vL/rFKtEvPgz1JhucLgY1Bvf/vgyOEkIIIVw3vruH/VsibHsSWb9YFRLDZajUW1BYa8KQFE0ghkcIIe3qFVNflyxZgs2bN2P79u1ISkpqd92RI0cCAPLyWm8q0FTLrrKy0mN5ZWVlh+vcEf+p0DVnRGUnhHX4dnOGNr8vKtsJVIQKp9MFjUIMIY8Pu9MdbchNDPN4nJ3hEair9dfUV79stsP2nvNsImG1u9qtSxatkjRP3WMAsy34A1AdUa6zICXCO8gtEfK7vHPKrfnYYAnujDqXy4VolcQjEBur8u2JFh6P59HMJdS7vtocLiSGS6GWiVBQa2QDnKMyW8+mazKmTxT6xqpwstKAbw6XweFkUGe0wepwBf37hBBCSOg6V23w6GLWXoO1KKUENQYLkjXykCjfQQi5MIR0oI5hGCxZsgSbNm3Czz//jPT09PPe5s8//wQAxMfHt3p9eno64uLisG3bNnaZXq/H3r17cemll/pk3KTrXExzPtagpPAO3+6qixLYv4vqzLCHeIaL2eHCwSIt6s128MAgNkyCuydkdrkAbrxayma3+D2jjumZnDpuJmX/OCWWTMpCkqbtrEwejwdFYwDK5nShuqF31C05W21EUZ3Za7nN4Q7+dgU3UKczB3dA02BzorDWhGpOHZpYP0xz4Z69b6smYKg4U2VAqdaCBosdJyuas5pHZXk3kmhpQn93Z26G8QxYhsIUaUIIIaHp3V/OedSoEwvaPuSNU0thdTDIrzXibHXvKI9DCAl9IR2oW7x4MT7++GOsX78eKpUKFRUVqKiogNnsPgg9e/Ysnn76aRw4cAAFBQX45ptvcMstt2DcuHEYNGgQu53+/ftj06ZNANwH50uXLsUzzzyDb775BkePHsUtt9yChIQEzJo1qyceJuEYEO8uaH5RshqDktQdvl2UUsJOcxTygX0Ftee5RXAzcaYXOlxApd6KMVnRXd6eUMBnpxIX15n8EkzryYS6tbvzcbhIy16OUbmzg87X4EIjb55GfKqyd+y8Ga0OrwAlnwdkRCkgamdHtj1qWfPzpDMH7zRhp4vBM5v/8loe68OOr02UEiEGJ6sxNFUT8h3k1FIRhqSEY0iKBrUGK4Y0fv+213W7yYS+MezfJpsTFyeHY0hyOGqoYDchhBA/YQDEqCQQ8nmIVorRJ9a7HnETDafTPZ1EIoQEi5CuUff2228DACZMmOCxfM2aNViwYAHEYjF++uknvPLKKzAajUhOTsa1116Lxx57zGP9U6dOsR1jAWDZsmUwGo248847odVqMWbMGGzZsgVSKRUX7WkHC+tRprMgWiXpdBfR9Cg5KvQWOFzA98cqMaobga2exj1LCLi72XKDJV2RGilHUZ0JDVYHtCZ7l7OrgtHr2/Jg4WRRXp4di5svTTvv7aKVUjb77ExVAy7Pjj3PLYLfwaJ6lNQ3Z9TdMCwZcWop/n553y5vU80JaOotwZtRV64z4/P93l2f26uz1lV782vxZ7H7dyUnvuPT9ION0erAz6eqAADDUsOxK68WOrMdCWopwuXn/44YlqaBUiKEwepAYa2JbbBRqjVjmF9HTggh5EK160wNqhqsCJeLsO+xy9tdN1zOPdlIgTpCSHAI6UDd+bJ+kpOTsXPnzk5vh8fj4amnnsJTTz3VrfER33p6818ob6wvJxJ0PkNlbJ9o/N5Yp6ypGHqoMraol5askbexZsdd1j8GaZEKpETI/ZoBFOiJr4W1RkhFzZliMSoJLk7tWC22rFglDhTVAwBOV/SOjDq1TASVVIiGxoBacoSs3dotHcE9G91eweaeVt1gRUaUHGVaC6QiPib2i0G4QoycTtS77CjuWfmW3YZDSVGtEYOTwyEW8tE/VoX9jQ1ZWuuW3BqRgI/RWZHY+lclzHYncuLDIBULUNVLppITQggJLlaHE1FKCRLDZUjoQJdxlVSEkekRYBh0+6Q3IYT4SkgH6siFZfuJKjTFVAVd6EwwNTcOz289BQAo8FPDhEBpmVGX3EpzgM5aMPr8NR67o7MZkL5yutJdX6vJJRkRyEno2LRpbgD0XE3vCNT9llfDBumilGIsmdSn29uM4GRf+qsZiS9UNVhxrsY9vnsv64PFE7P8dl/xnE6y9SHcNbiwzoQ/i7UAgLTI5s9DZnTHAnUAMKFfDLb+5W7Q9Fe5u/t2epTCd4MkhBBCGpXUm3G48YQ8t0Z1E4ZhPPZJBXweTpTrobc46LeJEBI0Ah6oy8/Px6+//orCwkKYTCZER0djyJAhuPTSS2lqKWnTZ/uKcK4xAMDnAYvGZXR6G6mczqah3MGzwWLHPE7LeQBI8kFGXaAEupfEr6eroRALYGwMbnYmMDU8vTnzrkLXC7oFuxiPqakZUR0PtrRnfN9ovLrtDBim5wKyHaHjZLlxp7r4Q0J4c/C8PoRr3hTVmZEQLkWEQoLcBDUSJstwttqI4Wnnr0/XZEK/5jIDcrEAsWGSXtF9mxBCSPBgGAa5K7bCZneBzwOyopXIaAy8mWwO7D1XB6eLwUd7CrFyZg7SOEG5cLkYeosDWlPonlgjhPQuAQvUrVu3Dq+++ir279+P2NhYJCQkQCaToa6uDmfPnoVUKsVNN92Ehx9+GKmpqYEaFgkRdYbmH04XAwxKDu/0NoQCPsRCPmwOF+wuBkarg+3qGUrKtBav6aPJ7XQvDRY9Fb7JrzWyQTqpkM/utHXEAE5tsVqjDU4Xw3bHDUU6sw0ykYCtE5YR7Zszx0NS3HXIGiwO2F3B2+G0zmSDWMCHzeny+/QWbsMOvSV0A3XVDRbUGW0o01rw9NU5GJLSsWnjXPFqGfrFqnCqsgEmmxMFNaaQ/O4lhBASvMx2J4zW5hknp6sMuFbsLu3x+s95eHvHWchEfJjtLkx55Rfcz8msb9oncLoYuFwu8PnBW8aDEHJhCMi30JAhQ/Daa69hwYIFKCwsRHl5OQ4cOIBdu3bh+PHj0Ov1+Prrr+FyuTBs2DB88cUXgRgWCSEta6Z1ZtoVV5jUfXDIMEB+jbHb4+oJ5TozHC7PUJ0vM+p0JjvO9aL29LWcWljZCWEQdqKzaZhUhCile1qn08XgVEWDz8cXSBU6KxukA7r+OWqNQuz+bJlbTMsOJpV6C2xOF8KkQjhdDOqNNr90OAaAWE6DCkMQN9g4nxPlDbDYXYiQiz2ykjuLm1UHHnCsVB/U7xVCCCGhpbVGEOFyEc5UNuC/v5wDAJjt7pOJNocLtQYbTjSWY+gXp4KQz4Pe4kC1gbLqCCE9LyCntP/9739j6tSpbV4vkUgwYcIETJgwAf/6179QUFAQiGGRELEvvxb782vBg7sRQaRS3OVsDLVMhJrGH+C8qgbkJnasVlkw4e6IjMmKQuR52s53xvgXtqOw1oTEcBl+e2SST7bZEhPgdhKCxsYjfB5wcReygWLDpOx75n+HS5Hth8YDgVJQY2ycdugOXvoqow5wd1UOkwkRJg3eQswiAR/Z8WGo1Jtx/6d/AnDXLPz0zkt9fl/cBh1Gm9OrJk4oKKk3IUwqRP84Fcw2Z7c6QU/sH4PfztbA7nRBa7QjLlyK4noT+saqfDhiQgghF6pagw0qibvUCY/HQ0qEHFFKMR7/+hh7gvuucRmwuVz4YHch3v8tH38W1+PLe0ZDKREiMVyGSKUYlTqLx8k2QgjpCQEJ1LUXpGspMjISkZGRfhwNCTXPfHuSLQoLAKkRXQ8uRColOFvtzqTLD+Ki9+3hdpOcPSQR1w5N8tm2m1L/y3Vm2BwuiH3YwbMnYhQOpwt/lbnPlroYIE7d+R2v2UMS2W2s21uEh6cP8OkYA+mH4xVskG5QohpZHezceT5OF4M6kw2nKw0Q8LwLNQeLP4u1ON549rxJpFLil/vifnacLgY1BhuiVf65L3/54a9KfHesAgDw0nWDkFdlQGqkokvfCyPSImCwONhGPpUNVhTUGClQRwghxCfKtGY0NE19ZRjk1xhxrKwBe87VAXA3Xlt6eV9IRQJsO1GFwloTjpXpYXU4ERsmRWGdCYV1JpTpLBiU3IMPhBBCEKCpr1wHDx7E0aNH2ctff/01Zs2ahUcffRQ2G6UaE082hwuAy6O+WVZM1wN13K6FxSEaqOPzgEszIjE0VYNwhW+zl5Ibp7a5GPcOjz8EspnEb3m1HkX9UyM7/97hZp0pJUKYrKE7jVHLycbsF6fy6GrbHdUNVpyqcE+XdjKAzRmcdeqsdu+plrEq/5w1Fwv4iAuTQCkRIEYlQXVD6DVP4L5fTDYnLv/PLxjwxBb869vjnd4Wn89jg7fu77AIGKyhW7uPEEJIcDHbHYhVNWd+x6rEyK82sCeXVs7MYbPdm2ZY2BwuHC/Te9St1Zl7z/HoC1tOYuHafbhn3UH8WVzf08MhhHRCwAN1ixYtwunTpwEA586dw9y5cyGXy/HFF19g2bJlgR4OCXKlWjMOl+g9JktyC/x3ViInaFNQG6o16iz4/VwtDhTWQyYUnP8GnZDCqUFVVOfrQGbgM6z2F9ahpL454MgN1HYUtzNqmc6C4nr/BDAD4Uxlc429f187yKv2Y1eFyTyTs03W4Kw9ZnW4A4giQfPjjg3zT5abSMhHhd4Kg9WJqgZrSNa80XG63+nM7gC108UgXN61KbBNnz8XA/x+rg4FNaF5soQQQkjwKao1o7Kh+XfL6nDhqz/LoBALcOWgeEzqH8ted3FKOPv3wSKtRyd4bQh3am9p48FSbDtZhe+OluNIsa6nh0MI6YSAB+pOnz6NwYMHAwC++OILjBs3DuvXr8fatWuxcePGQA+HBLktx8qRkxAGISegkJvQ9bpyl2ZGIS1SjrRIOdI70f0zmFjszdlKvu5A6t9AXeDVGdxdTgF3mDC5C8XwkzQy8HmAkM9DmFSI4rrQC/DqzHZc9tIOVOgs4POA0ZmRPn3vyEQCjzCsqZXMtWBgaRwX97F3ZTp0R4hadIzTmkIvUMcDcFGSGsNSNagxNDdlyexibcP0KM+p1tpWCn8TQgghXWHkNCjqF6eCuPFkdr3JjrnDUzzW5XYwP1RUjwiFGENTNbgoSQ2HM7C1lP3leJke3PP5odyBnpALUcADdQzjbnsNAD/99BOuuOIKAEBycjJqamoCPRwS5E6UN+CvMr1Hl9Pu1DTKTQxDQa0JBbWmkA1EWR3NOyI3/ncP3tye57NtByJQF8iprycq9GyX0zi11KPAf0cJBXw8MysXDhcDvcXhkaEXKuqNNpytNsLJuLOZzvm44zGPx4OIU7csWKcHNwW5+Zz6eTF+mvoqFHgGQkPxDH1BnQmHS3TYX1iPCl3z1N2u1jZMj/IMlLfWoY8QQgjpCpOted/joSn9UN14gilJI8OoTM/65/3jVJCL3fuEh4q0UEqEOFBYj8MlOpTqQm8/rzVnqw0oqW/+7a4zht4JQ0IuZAEP1A0bNgzPPPMMPvroI+zcuRMzZswAAOTn5yM2NvY8tyYXmhqDBZEKMZoSYKJVEqjlXa/LJhcLcUlGBKKUYraoeajhZtS5GHjU1eguj0Cdj5+fnugtcK7aAJVEgOQIGW6+NLXL20mPUiIxXAaNXIQKvfX8NwgyLTOXbA7fZ7xxMxcNwRqoa+Vx+2vqq5Af+oE67piL693fBwI+DyldbOiTxslilor4MFiC831CCCEk9Jg4GXW/nKlmTwxfPyzZq9SHUMDHoCT3DJ1SrRl2R/O+tS4Ef69bU1hrhETgLvchEwnYZmKEkNAQ8EDdK6+8goMHD2LJkiX45z//iaysLADAhg0bMGrUqEAPhwS5qgYbao02MIy7S+XYPlHd3qbD6YLd6UK4TARDCKaBtww2JGlkbazZefFqKYamaDA0VQORMPi6dnZGcZ0RMWFS8Pl8JIbLcM+ErC5vK0IhRqnWjHqTHbWG0NvRqTfaEM1pPFJrtLPTQH2lqVgzA8AYpIG6cJkIUcrmwD8AxIb5J6OOx+OBm1RXH4JTX6UiPqKUYkQqxDjX2C07NULe5W7QaZxmLha7CzV0dp8QQoiP8ADEqCRQSQXY+pe7YzmfB8wZmtTq+tzpr+dqDJCJ+IhRSeDjqjI9psZghVgkhN3JAGBwrsYAe5A2+yKEeBOefxXfGjRokEfX1yYvvPACBALfFsYnoa8po4MBcKRUh75xXZ/22iRRI8f+Qi10ZgMOl+gwOqv7wb9Aatm5sit119oiFPBRUGtErdGGCp3vAoBA4FtJbP2rEqcr3Z1Irx+W3K1teRQZDsHpemU6M6qNzePuE6Ps0jTg9sg526s3Bt9z5HIxKKwzgWEASWOgSSURQiHx38+gQMCD0+E+pR+KNepOVxpQZ7QhTi2B2ej+3smI7tq0VwBICJdBLOCzXYH1IfhZIoQQEpzKdRZUNbhPpjZY3L9Z4/pGIyG89f3ZizmBupMVDbA5GVQ1WJEfos3muOxOFz7aUwSni4FEyIPZ7sKJ8gZU6i1I0vjuuIEQ4j8Bz6hri1QqhUjkuyl8JPQxDIOsaIVHXaO2fmw7o7qhuV7DH/m13d5eoKllIrauBuDZydYXIhTujo6hXsvCYLVjaIoG/WJVSOlCt1cuu9OFCIUYSokA+TUGH40wcHQmOwbENwe5sxO63jm5LXJJ83uyxhh8WYcWh5OdBtN0RjnGT9Nem3AbSoRagJdhGLaGnIRTjTozputNeAR8HvtZ5AGIVnateywhhBDSUtNvFvfE8NzhbZ+oHdLY+VUi5MPqcLGlZHpD/dTvjpbj0owIJIZLESbtnR1tCentAp5Rx+fzwWunWJXTGZzdAkngme1O7Mmv81iW5IOgVHKEAjjr3u7J8oZuby/QzlQZ2DocMSqJzzOjNI2BOrPdCbPNCZnYt9tnAtRN4mCRDgeK6gEAcd2c3qiUCNnAZVFt6BUZPlKiwwnOez073veBOiUnMy0Ys8eM1ubflnF9ovHYldk+n/7bkogz97U+xHaODVYHnI1NfASc3+zMbmTUAUB6lAJ5VQYwAP4oqIfeYvc4iCCEEEK6Qmt273uopELMHJyA3Xm1mNS/7frnUUoJvrtvLPrEKiES8LHrTA3qjLZeEcz66PdC7C907wPfPjYd//drPgDKZCcklAQ8ULdp0yaPy3a7HYcOHcIHH3yAlStXBno4JIi1dkbLFxl1Q1PC8dm+YgBAXnXoZUdxM918Oe21SaSiOculzmRDotg3GXuBbCahM9sh4AFiIQ82B4Oxz2/HsRVTuzzNMVwuhljIh83hggsMLHanzwOk/hYbJmELCfsjoy6c09TEZAu+GijcbnBquajLnUs7QyQUAHDfry4Ig5ftqW6wYmCiGkqJEAZr83dxdwN1903qA6VEgMJaE8AARbVG5CaGd3O0hBBCLnSpEXIkqGXQKMR4ZtZAuFyMVxOJlrj7QwOT1IhSScAH4HQxEIRwsTqJSIARaRGQSwToG6vEqMxImG1O1IRgnWVCLlQBD9RdffXVXsvmzJmDnJwcfPbZZ1i4cGGgh0SCVGtntBJ90DhheHpzi/b8GmPI/Rhzn5dkHzaSaKLhBOrqjTafT60NRD5ddYMV209Vs5cjFZJu1yJTSoSoc9jgcDI4Wa7HYE5tk2DGMAx+PVMNI6cb2gA/ZNRNHxiPH09UAQCUkuALYnIz6uTiwPz0iRq/VyRCPqbkxAXkPn2lpN6Mo6U6AEBiuBQRcjE0ChFSI7v3fTAwSY2sGBU2HSoDABTWmilQRwghpFucLga78tzlbLJilF06oVpjsOKPxpk8ZrvTY6ZAKDHZHPgtrwYAMCxVA6VEhN1n3c/N5PrQmxVCyIUqaGrUXXLJJdi2bVtPD4MEEYPVjqxoJWSi5rdpvLr7HRq52xDweSjXhc6PltPFeNSn80dBWG5GXa0P69TxAthOQmf2HHdaN2vUAUBC4/tGyOfhrzJdt7cXKL/l1SBeLWW7mMWGSRCl9H1ttnh1cwDH4gjOjLrMaAUGxKkQ5+fadE2EAvd3l0IixKNXDAjIffpKcZ0RyRoZBiWqYXcyqDPZUKa1IFLR/ecuK0aJQUlqpETIUVxv8sFoCSGEXMi4UzrzqgwYtOKHDu3fl2rNuPm9vZj00g4U1TX/HnGz8EPNlwdLkRIhw+DkcFx1UQLSIuUYnByO9CgFyrShc8xDyIUuKE4VmM1mvPbaa0hMTOzpoZAgYrA6PaamRinFPpluKBUJIBcLYLI54XAyKK4zhUwHpAaLne1oBQDJEb7PqItokVEXimoMNgh4gLMxfS81susF8JvEh8twrEwPh4vBqcrQmTJdobcir7q5g5k/6tMBgIKTRWeyBt8OrsnmxNnG50FntuN0lQH3TMhEToLab/cpbKxRZ3OEXu3VWqMdlXoriuvNEDcGHBM1snZrzHZUvFqKIyU6CPlALU3DIYQQ0g2VegsKaozg84DG0qoIk4k6VJ9YJhLg1zPu7LMYVfOJKJPVCajaulVwK9OaUa6zoKjOjEem90dyhBx/FmvBA5AR3f39YUJIYAQ8UKfRaDx29BmGQUNDA+RyOT7++ONAD4cEMZPV8+DWl1Mwo5QSFNWZwMB95u3SzCifbdufuHX7lGIBEsN9H2CM8FNGXZNA9JKobrCyQTrANxl13EYmhbWhkwXUsrGDP+rTAfDI9OROsw0W3LPjZToLyo6U49ZRaX69T6lIAAGfxx44hJKz1QbYnC7IxXy25qAvaoQCQH6tke2yd44TRCaEEEI6w+VicMmz27zKqoxI13ToxJJGLoJMJHA3UOM0mDIF4X5MR52qaIDdySBGJUFKhBwqqQjZ8WE4XdmAv0r1PT08QkgHBTxQ95///Mfji5PP5yM6OhojR46ERhMaNZ9IYLRMO/fVQSLg7gLalOIeSlNfdWY7MqMV0Jvt6BOjQt843xfE91dGXSCbSdgcTsSoJGz2YWpU988g9o9rPrVaoQ+d9wzDuHfW6ow2OBkG2fH+ySCzOJzQyEXg8XioMVj8ch/dYbR673THdrMb8PkwjHu6uqMxUscwjE8y0gKh6aQAtzGIr06WvL39LKyN06PrQ6zJBiGEkOBR2WCBSipEg8XhEawbnhbRodvzeDwkaWQ4U2WAyeZEWqQcEqEAZnvwzQzoCKPVAT6fhyilGEabg80qVMtESNLIEC4Xw2xzQBagWr2EkK4L+Kd0wYIFgb5LEqK4Z7OuG5aEK3LjfbbtlEgZ/ihw/32ivMFn2/W3epOdnb43d4QGMSrfBxoSw2WYmhOLCIUEA5N8H9RhAtBO4nSlwWOKcKoPuuP25QbqdKEzXa9MZ/F4LpL80IAEAKw2BvWNjU5Olgff1ODW6s1Eq/xbq07Ib5r66sKAx7fgrZsuxsT+MX69T19ptZlPuG++b9KjFDhZ4f7erTVQoI4QQkjXFNWaoLe4f99TI+QobDwJ39FAHeAu63CmygCni0FB44wJQysn90LBqcoG/Hi8EgAwMDGM7XobGybB7+dqgVoTSurN6BMbovN6CbmABCRQd+TIEeTm5oLP5+PIkSPtrjto0KBADImEAD6Ph5HpEXC6GEzNifPpAW4ypyZdKB0ocqe+qmUiv9xHRrQSq28e5vPtBjKPqOWUhTQf1KhLj1Kw0/UaLPaQ6RZsbvFc+DIzlSua06DBGoQ12VwMg+FpGhwp0cHqcCFcLvJJzcv2cN8fZrszZLLHtp+qQkm9CRq5CCIBnw30+qLrNgCkcTJcZeLg6xBMCCEkNFToLBiRHgGH08nWD1ZJhJ3qbt/aCUxziDaTqDfaMDozEvm1Ro9ZAwPiwlCcYoJQwEdJvYkCdYSEgC4F6vbt24ft27ejqqoKLpdnd7+XX37Za/3BgwejoqICMTExGDx4MHg8HphWClXxeDw4ncF3gEd6RrXBir2NbdJFAt82KOb+KHODX8FOxznQ91egrjfgZk+pZSKo5d1/rsLlYrgav7dcDFBSb/JJkwp/49aL+9fsXI+pzb4UpWzeri0Iu75W6K3YV1DPXo71QzZqSy0Dua1lqQWjLcfKUdN4AkPIeQwJat8E6tI5gbqTFQ0wWB1QSmgaDiGEkM45U2XAH43HCk2Gpmk6dSK1tXrPrZXLCAUl9Wb8drYWAPDA5f3Y5VEqCQ4UaQEAl2fHYmL/nhgdIaQzOr1n/Oyzz+Kxxx5Dv379EBsb61Fvp63aO/n5+YiOjmb/JqQjrJyirlKhbwN18ZwDTrsz+IIKbbE01s+QiQUeB9ChJBDNJPSc4Ksvpr02SYmQs1OPz1QaQiJQxz0rPDUnzm9ZgDJOdprdGXzdE1oG5GPC/DvtFWgtUBcaGXU8HhAhF0PI50EmEbDNU3yVUccN1EUrxajQWZAV4/t6m4QQ0pv9frYGD288CrvThRFpEXj1xiE9PaSA21dYh2GpGhisdpyscGfUdWbaK9B6Rl1r5TJCAXdfJ5xzkjoxXIbByeHg84Jz1gMhxFunA3Wvvvoq3n///U7VmktNTW31b0LaY+EE6nRmu08LsUcqmw/SK/UWuFwu8Pm+DQb6w7kaI1s/Y/0fRZh9cZJf78/mcEHsoyBpIIvo13Myl4am+q5JjZCT2Xm8XI/J2bE+27a/cM8KK/xYPJjH44HPc2cbOlzBF/zWtmiM4u9GEgAgaPGe14ZI9m5BjRl1jUHFnDD39CE+z3fPWbJGhkiFGLVGG6oNtpCZEkwIIcGkUmdlG6P9WaLt2cH0AIvdiT/y68AwQCRntsCI9M4F6lo7CRWM3es7QtvGzJsolRh/FmsBAOlRdGKMkFDQ6aM2Pp+P0aNHd/kOV61ahdjYWNx2220ey99//31UV1fj4Ycf7vK2Se9i5Uyfu/eTQzj59DSfbTuSM03PxQBVDTbEqf1/4N5d3KYA/gw0LPpoP37Lq4XJ5sCZf13h0yysQORaVRuan6coHzYMiFVJcKqxCP6pytBoQmJ3OhEXJkGYVASJ0L/BUrGAD0sQTnsFgAq9BWFSIVt0OjYAGXVCgefzXR8iU1+Lao2IVUmQFqXAO38bilKtGdUNVp+VIIhWSVHHCZyGypRgQggJJnbOSbEQnWTRLVV6K8JlIijEQvB4gEwsQ1WDFYM62QiNm1EnFfGhlok8ZvWEknKdBRq5GHFqiUfDObWs+bhHZ6aTY4SEgk7vdf/973/Hm2++2eU7XL16Nfr3954Yn5OTg3feeafL2yW9D3fKXlyY1KcZWRp58w+WSMhHuc7ss237E7ddfLwfA4s2hwsGqwMuJrRq+AGNWYCcgEJfHxbMTeB0vazSW3y2XX8q01lQobeiTGdBYZ2f3+eNH1EXA7hcwTX9VSzge0zJDURGHb9lRl0IZI5Z7U4opUIYbU5YHU5oFGLkJqp92sxHwOdB0ViTjs8DDJbQ+o7piqMlOo/gJCGEdJfZ7mQbdRksoRlY6o56kw31JjtKtGYU15tRUm9GTrwKEmHnmhRFKyW4b1IW7hqfAYvdhUq9FQ2W0Jz66nQx4PEYnK40eCQgqGUiCPlAhFyEAE5wIYR0Q6cz6h588EHMmDEDmZmZyM7OhkjkWaT9yy+/bPf2FRUViI+P91oeHR2N8vLyzg6H9GINnJ0OXwelBHweZCIBzHYnbA4XyrQWDEnx6V34RZm2OTjUWk0NX9FwphDUGW1+a0DgD3VGG5t5ODorEqMyI3227Shl8/vw3kl9fLZdf6pvDA4YrA58uq8Iy6cP8Nt9iQR8WOzuM/x6ix3h8uB437hcDP4oqIOLcWdFTh8Yj4GJnTvj3hUt60iGQuaY1mzH6cbOedwSAb4WLhexJwNqOBmwvc22E5Wo0Fvw7i/nUKGz4NqhSbh7fCaSfVg7kxByYappsLKzFJxBWHLC31orJ9GVbqY8Hg//mNIPx8v0eGfnOQChO/V1z7la6C0OZEYrPErXiIV8iIUC1JnsKKgx9eAICSEd1elA3X333Yft27dj4sSJiIyM7HSWU3JyMn777Tekp6d7LP/tt9+QkJDQ2eGQXox7jOurIuZcKqkQ5sbU9lDJGuOe4WutS5WvRLYI1PmSv5tJcF/LxHAZm7njC9zCvKHwnrE5nIhWSVDUmEkX7cfAC+DZnbnGYA2aQJ3B5g4IAUDfOBVWzMwJyP3yWwbqQmC6idHa/B0TJvVfZ+kIhRgl9e73ZaW+dwbqGIbBf346jWOlenbZ+r1FGJMVBQAUrCOEdAt3P8QeZFnsgaA12TAoSQ1j40kfrcnWrVkUCklzJl4oNpOoM1rRL04Fs92JlFZ+X8JlIphszpDYfyWEdCFQ98EHH2Djxo2YMWNGl+7wjjvuwNKlS2G32zFp0iQAwLZt27Bs2TI88MADXdom6Z3O1hjYv33ZubOJWiZiM6+qDaExjZG74+DPrpWeGXW+OYgOVKo9d3qhrwNF3MK8odAYoExrYYN0ABDtw3p9rVFKBKhzN8WF1R48Z/d1nEw27mvob14Zdcbgf8+YOFkERqsD//3lHBI1MgxL03jUu+muGJVnQ5/e6GCRlg3SRSrEMNkckAgFWLz+IGYPScTL1w/u2QESQkIadz/EHqT1Yf2puM6EIyU6AMBbN12M6blxcHYjYCkTNwfquI24QkVRnRn7CuoBAAMTw72uD5OJUKazQOvjBn2EEP/odKAuIiICmZmZXb7Dhx56CLW1tbjnnntgs7kPqKVSKR5++GEsX768y9slvY/e3ByUSvJDoI47nTMUfpCLak2QiQUwNwZAfHnQ3JJnRl3wBxe4DFYHhqdpwOfxkBju2+coWiXByMZuYg5n8O8Uf/1nKZI0MjZzyd+BupwENRsYjFAGRzYdAOjNdrYLXEaUImD3y82oe/KqbGREB3+nNW6grsZgxb++OwEAeH/BMEzq77vPE7d2jr2XTtn68PcC9u9HpvfH2L5RuPzlX8AwwDd/lmHZ1P4h0cSIEBKcFGIhFGJBY01R1wUXfGmwuPf3eADSIuXg8XheTZw6yuZwoabBiv5xKkiFfI+mc6GiTGtyPx88HgbEe2cWjkiPQLjcnVXXYHEgLIAnLgkhndfpQN2KFSvw5JNPYs2aNZDLOx884fF4eO655/D444/jxIkTkMlk6NOnDyQS/3fgI6HFaONO8/T91Ne7xmdib34dAEAXAkXeC2qNHkEzf+5EcJtt+Cqjrpl/p2f8cqaaPaM4PC3Cp9uWi4XN7xmzHSIBH3+7JNWn9+FL3x+rYIN0gP+nvkpFzWejLUGUUVdvsuOPxtdtYGJYwA5muBl1k/rHIDUycEHCruJ+75o5Xe98PdU+ifOdnl/d++rlVDVY8N1Rd91djVyEqy5KgFQkwPxL0/DG9jw4XAzW7i7AI9O9m2sRQkhHHC/Xs7XUGAA2p6vTjRRC2aFiLbu/191SAt8eLcPfPzvcvCAEA55nq4zs83Hb6DSv6802J/acc+8LFdebkCPzf61eQkjXdbrr62uvvYbvv/8esbGxGDhwIC6++GKPfx2lVCoxfPhw5ObmdjlIt2rVKgwfPhwqlQoxMTGYNWsWTp06xV5fV1eHe++9F/369YNMJkNKSgruu+8+6HS6dre7YMEC8Hg8j3/Tpk3r0hhJ1zAMAwHnIDfBD4G6fnHNZ5t05uCvRcGd4iAXCzzqgfkaNwjoq4y6QO3znKlsnjJt93HWG7dG3cmKBmw/WeXT7ftay+YF/s6oS1BLkZMQhj6xSo+uzT2NWxvuvV0FmPXmbwG5XwHnTd+d6TiBZLI6kBWjxMBEtcf05QQfZ6dyD6p0vbDr6yd7i9kuw3NHpLBB7FtGpbJdqdftLYTBGjyfE0JI8Hts01EMXvkDBq/8Aeeq3fs7fB7QJ0YJc4sGCMOe+RGDVmzFkKd+AOPvAsE9wGBxoF+sEuP7RkHVzZqqLU9GhWKNugq9BVnRClycEo7UCO8TgxnRCuQkhKFfrAq1huBPUCDkQtfpjLpZs2Z1+k6uueaaDq97vq6xXDt37sTixYsxfPhwOBwOPProo5gyZQqOHz8OhUKBsrIylJWV4cUXX0R2djYKCwtx1113oaysDBs2bGh329OmTcOaNWvYy5TxF1gmm9NjOqo/pgdxgy4N1uA/UNRymjr4O13dnxl1/t5XLNM2Z5D1jet6UeHWtKxvdrba0MaawYGbHSUS8Pxen83icOGvMndNLm42Vk/Tt6gnGKgmF9yTDaESqKs32ZFX5X5fN5UHCJMKu30Q1FJsWPN3uslqR63B6tcus4Fkc7iwbm8hAPcBNDfrNkYlxawhCfh8fwkaLA58vq8Yt41Jb2tThBDi4XRVA3viVtQ4zdPFAGeqDDDbnQhvXE9rsqHeZIfTxYDPA2oNNkT5+WRdIJmsDpRpzdCa7ThbbcTcd3/HjSNScPXgxC5tr2XTulAoicNVZ7ShtN6MvGp3oeDkSO8MQ4VEyO6jVTf0ziZOhPQmnQ7UPfnkk52+E7XaP6m1W7Zs8bi8du1axMTE4MCBAxg3bhxyc3OxceNG9vrMzEz861//wt/+9jc4HA4IhW0/fIlEgri4OL+Mm5wfN3tMKuL7JXtMJhIgXi1FrdEWEnXYfjxRCSEfUElF+PC24X69r0hF885crY+6vvIQmJS6aoO18f6A3IQwn25bKREiTCZk6ycW1ZlgdTiDcqqJxe706BIcrZT4fbqnkRPw/vpQGYam+nbqcVfVt8gsjPVjIxYubq2ck5UNqNBb0CdGFdR1ybjd4Jr+9kdGc2qkAtFKMaoNNugtTox8dhvO/Gt6r6ivZHe6cMPwZHzyRxGGpmq8SjfcPjYDn+8vAQC8tysft1yaCqEfM6QJIb0HtzO33clAwAMak3c9aowW15nZE0QuBvj2aDnmj0oL5FD9qrQxSCcV8mBxMNhzrg6TB8R2eXuxKgmEfB4cjc9ZMJ1s7Igxz/3Mvv45CWFQSryPcbkna6nzKyHBr9OBuq7gZqb5U9OU1oiItg8OdTodwsLC2g3SAcCOHTsQExMDjUaDSZMm4ZlnnkFkZGSr61qtVlitzWcm9Hp9F0ZPuOoMNsSFSWGxOzAg3j+B3nqTHXqLAzaHCxU68/lv0MN0ZjscLvf/WdG+zRRrSSUV4sXrLkKkQux1ljGYmTmZmDwekKTxbV0tuVjABr8kQj4uTglHudaMtKjgaxLQMossEGfSBfzmYEOpNng+Uy13SLnZXP6klIiQGiGHwerAvesPAQBemDMI1w1LDsj9d4XJ5kBmtAJGqxMVjd1Yk/zwHRCtkiBMJkJ14/QbhViIs9UGZMX497stEBQSIR6Y0g9LJmW1ejDUN1aF8X2jUFRnQpJGjt/P1mJs3+geGCkhJNQoJSII+e7gm1wshIth2ACNyerZDCglQsY2eGpZCiPUVTVYkZsQhrPVRgDux903tuu/H0IBH3FqKUrqzeDzgLgA7Sf4gtXuhJgPmOA+Sd3W6a4ohRiJ4TJIhHwqu0BICOjUKdy33noLkydPxvXXX49t27Z5XFdTU4OMjIwObcfhcOCnn37C6tWr0dDQAAAoKyuDwdD1aWQulwtLly7F6NGjkZub2+o6NTU1ePrpp3HnnXe2u61p06bhww8/xLZt2/Dcc89h586dmD59OpzO1s+urFq1Cmq1mv2XnBy8B2GhokxnRoXeAq3ZgZEZ/snKqTFY2TOT3MyjYNW0k6WWiTy6SfoDn8/DnKFJmNg/pls7Pq3x5wRA7lRUkYAPRStnFLuDx+NB3lhryupw4fdzdajUB+f0AW5WqkTI92uX4CYaznRyvTl46p/oWhygxARoB9zqcKKwzuSRlRrsB0vnqo04W21kg3SAfzLqAHfh8yY6ix0/Hg/umo+dJREK2vzcXTc0Gfk1Jvx6pgZf/VkW4JERQkKRw+nCgcJ6OFzuQJ3B6vDIouOWuyiuN7FBOsCzVmtvUFpvxrEyvUfmW3f3V5tOSrkYd6OOUClZUaI1Q2tpbirCbezFFamSoFRrxrkaIwpqjAEcISGkKzocqHvttdfw0EMPoX///pBIJLjiiiuwatUq9nqn04nCwsLzbqewsBADBw7E1VdfjcWLF6O6uhoA8Nxzz+HBBx/swkNwW7x4MY4dO4ZPP/201ev1ej1mzJiB7OxsrFixot1tzZ07FzNnzsTAgQMxa9YsbN68Gfv27cOOHTtaXX/58uXQ6XTsv+Li4i4/DuJWY7BiRHoEBieHIzPaP9lKkYrmOlVKiRA2R3CnuWdGKzAsTYPByeE9PZQuCcSMtr/KmhvFpHazA1hb5C2Cf9ognT6gN9sxIi0Cw1I1WDwxC/+9Zajf7zNBLYNSIoREyIc2iBq0yMUCJHKaIcQGqE4Pv5U3fbAfLIkEPIxI0yCZk0Xnj67bADA6MwpJGilEAh5yEsJgCIFaob4yOTuWnZr0w/EK2BzB0yWZEBKcqhqsuCQjErIWgZikcCmGp2lg4QStuCeFsqIVcIVI0KmjWv6WqqTCbpe1CMWGEha7Ex/8VoCYxqm7UUoxLs1sfQZYXpWBbTbhdNFvDiHBrsPpJqtXr8Z///tfzJs3DwBw9913Y9asWTCbzXjqqac6fIf3338/hg0bhsOHD3tMJZ09ezbuuOOOTgy92ZIlS7B582b88ssvSEpK8rq+oaEB06ZNg0qlwqZNmyASda4odkZGBqKiopCXl4fLLrvM63qJRELNJnzsRLkef+S7W4j7a+olt6C81uyeBhulDL5aY012nq6GiwGilGLk1xiRHuXd0SkU+LPz2LHS5mnnSql/ZvbLxZ7vkZbZWsGi3mTHHwXuz9CEftEBqf2lkgnZ6RTlOst51g6cExV6lGqbxxOoqa+CVjJfW9bLCyYMw+Dnk9UwWB0I59Sy8VdG3dOzcnGu2oCpr/yKv8r0fm92EghFtSa89vMZXJQcjtGZkcho40STVCTA5AEx+OrPMjRYHNiVV41J/bteX4kQ0vvVGmzYlVfjtbxEa0GJ1oJ6U3PwijvtPq/a6PcmZIHWMju9b6yq2/s5Lcs8mGxOnzdS8rWSehM+3ONOlOkbq8QPfx/f6nrnqg144PPDsDaeFDpV0RCwMRJCuqbDR7L5+fkYNWoUe3nUqFH4+eefMXnyZNjtdixdurRD2/n111+xe/duiMWeXffS0tJQWlra0eEAcB9U3Hvvvdi0aRN27NiB9HTvzml6vR5Tp06FRCLBN998A6m08wdoJSUlqK2tRXx8fKdvS7qmUmdBv1gl5GIhEsL9c1At4PMgEfLZHy2tyY6oIO06aHO40HQytMZgQ5Xe4vdAXUm9CUV1JtQZbRjXNxph3dxZCUSJ+NOVzTse8X4q2D8kJRwCHg/nGqcNBGuGlJazwx6oAIhU1PyTYrA6oDXZAtZhtT0td+h7MlAXrIFdwJ2F2T9OCQY8GKx2RIdJUGew+S2j7oHPD+Obw+5pnzkJYX6dFh8o+wvrsOFACTYcKMFDU/th8cSsNte9YmA8O+312yMVFKgjhLSLu78xMj0CVocTZpsTpyrdZT+afute/vEUPt9fDImQDwYM+saoWv09CmVGqwNZ0Qq2y2nf2O7PvvHu/Bq8GXXPbzmJzUfKYbI5kBQuA48HJLeoy3ykRIt4tQxhMiHu/eQQe7wDuEvcGK0On5eIIYT4Toc/nVFRUSguLkZaWhq7LDc3Fz///DMmTZqEsrKO1VhxuVyt1norKSmBStW52gKLFy/G+vXr8fXXX0OlUqGiogKAu8usTCaDXq/HlClTYDKZ8PHHH0Ov17ONHqKjoyEQuDNj+vfvj1WrVmH27NkwGAxYuXIlrr32WsTFxeHs2bNYtmwZsrKyMHXq1E6Nj3TdH/l10DXWjTtZ1oC4MP8cKMpEAvaHSxekARfAO/0+EDW23tl5Fh/vKQIAfLNkNAYlhfv9Prsrn1Nzw19ZQJU6KxukA4K35hj3bLo6QMEyqcizmsLpSgNGpPd851fuc8HjubNSA6G1qa/cjIdgozM7sL9QCwCIUUlQ1eCuv+iPZhKAu6FEk7/K9ODz3CclxMLQ7YD6Z7GW/fui83xnjusbDaXEnYX64/EK2BwDQ/qxE0L8i/tbNnlALHg893TG5kCd+/fl97O1HrWXj5W5j30MFjuUQZ4h1hEMw+B0pYEN0gFAHx80IkoIl0IlEaKhMUDHrf8XbPYX1KOozuSx7P7JfQEAe8/VoqDWiLd3nEWZzn1iv2UGXYPFgcJaI7IT/NOwjxDSfR3eIxwzZgy+/PJLr+XZ2dnYtm0bvv/++w5tZ8qUKXjllVfYyzweDwaDAU8++SSuuOKKjg4HAPD2229Dp9NhwoQJiI+PZ/999tlnAICDBw9i7969OHr0KLKysjzW4daRO3XqFNsxViAQ4MiRI5g5cyb69u2LhQsXYujQofj1119pemuA2J0uGDk/jv4MSnEzjar0wTNVryVji52FmADU2IrgBHe4xfC7y19ZMxa7Exq5CCIBDzKRwG/ZkS2z04K1Rp3N4UKYVAipiI/P9xWhpN50/ht1U8sCxtwMx57E5/HYbIIopQRCQWCCIdwEhqb7D9bALuCZrdF0AkMs5Pvts8T9HotWipGskePVbaf9cl+BcpgTqBuY1P4BUNP0VwDQWxz4rZUpbYQQ0kRvtiNWJUF6lAKRKjFuH5uBW0alITchDNFKMVtyokxrRqRchP5xStx8SSr6x6mgkYuw4UBJDz8C39h4sBQnynWQck5s+KLxWZRSwgbpZCJBUNeoE4t4EDbuV0iEPPSPUyE9yp1R98HvBXh441EU1Jpgc7jYIJ1YyPeo18s9sUQICT4dzqh75JFHcODAgVavy8nJwc8//4yNGzeedzsvvfQSpk6diuzsbFgsFsybNw9nzpxBVFQUPvnkk46PHOevdTVhwoQO1cPiriOTybB169ZOjYP4VqXeAqGAB0fjXM/uFodtDzflm1vDKtgYrXbwee5OVEI+LyCp6hGcZhv1PgjU+btGWkm9iT2rbHc6/RaMCZeLIBYATbHTYJ3KWG+yQd94Rn1XXi0cTv9PLJQKgy9QZ3U4Uap1d77LTQjDU7Na7wruD9ypRkqJEDqz3WNKcrDRm+2IVIiht9jZA5SkcJnfukxzM+qqDTYANlTogrOLckdYHU4cL3dnrmRGKzo05Zw7/XXzkXJM7B/j1zESQkJXvcmOygYr0GCFQuzeD0xQS3GsTA+JkIcjpTo0mO0QCvgw2GxIFQtx1UUJ+GhPISI5gbxQ12CxQyQUeDSt8sXU10hF82+S2e70OkkeTPRmB3ucZHcyOFnRgGSNHBa7E9tPuhs1SoV8CPg8ZEQrMDIjEikRcvx6poY93jlQWI95I1N77DEQQtrX4aP9QYMGYdCgQW1en5ubi9zc5gOge+65B0899RSioqI81ktKSsLhw4fx2Wef4fDhwzAYDFi4cCFuuukmyGT+mV5DQkul3gqL3Z3N8f/snXeYG+W59u9R7217717b695NLwZDDh0SE0IIHAgphJxAOCmkQRICpCcfCSehpEASSCBAaKYYTHHvfdfe3pt6LzPz/THS6NV27Uqjka3fde3lXa9GMyuNZt73fu/nfigKMKexbI8UowZF7KhzB2g+o25sM4N0YSFcNLZUOurSpBeNLQHQpul1qsrTghy7iTWjbuwAs0AAF+b40tfMC3VkqVCxUYUVlWbB9k2WvmqVUk6oE6kDE+AmgWPds+lq5gMAhfrxbumAyLtvT8XxfhfCUUF86Qy7c+fKX3PkyDFTyPtZrOGPSaPAlUtL8OqhATQPuHGw14EuKzceaijUY3mlCU2lBhzrd+HZnV341uXzBWkulU7aRjwYiUYzzCvSIV+rTMkYx6xJXFzxBcV7PwqG43lzDMsde75OgS3NI/BHu/9evawM9//XAoy4A6iPlgY7fCG8c3wIAHfPypEjh3hJmy3n2WefxX333TdOqAMAmUyGz3zmM/jMZz6Trt3nyGLIrDitQpY2NweAhJIut4gn0CPuuIiYrm6mYyFLX1Mh1KV7WNhj8yf8rEmT6zBPJ0dNngYd0YGwWEsZ/YRQp5JLBHFhquRSLCzR4+SQBxGGy5DJNC5/GMsrTAjRDMrHBC2nm7GOOgCgGVa0OWwTiYjpfM0KJ3BLB8PinRhNB1n2umyGQp1KLsUlCwvROeqDSi5By6ALi7MgDzRHjhzCI5dKsLTcCH+Y5ru4Hul1okivQoFOAYVcgmN9TqysMsHlj6DCooZcKkGZSQ2aYWHWyGH3hWDRZneUDymgnRzyQF4qSYn4KJNKoFVI+YVOr4hLX33h+LFplVLMK9JDIpFg89FB/v83LiqCUS1PcHcvLTfxFTodVi8Yhk3rPCtHjhyzJ20zt7Elp/v27cN9992HV155BQaDIeF3TqcT11xzDX79619j6dKl6TqkHFmC1SNct8oKS9wtImanC5kvZlILE4RPug1T6ahLF0I56ooMal6kk1ATNwwQA2S3MqG6GasVUhwfiLvobN4QRj3BjHZTdvjCOBAVUNbW5Am6b1Ko+/IF9diwoBAjnhCYdNlK54hrQqEunY668edFgHAJZBuHep389zMV6rjHmvHSAa789UhfTqjLkSPHxHRavfx1pn3UA6s7iK+/cAh2bxghmrt2vnZkAEf7OKdUzBGtU8nQHM0ps3lPA6FuTMVAKjuT61VyXqjzibjra0ysrLCo8dE3LgLAZXy/e4Jzy+mUMpxVN94sU6BX8RU6gTCD5kE3FpYaxj0uR44cmUewJf1f/OIXuOiii8aJdADXpfWSSy7Bz372M6EOJ4eIIfPQ8tLcnfHa5WX89xqFeFuUk+KlEI0kgLhQp5FLYPWmLjdqJrmRs4EU6pZXGmFIU2czEyEef2ZtJV69+5y07Geu6AkHnVBCmXaCz9DJwcyWv5KlQq8f6ccHJ0cE2zcp4r5zfAjLf/QOLvz5Vhzrd06xVQZhWaytsSQsYKRTqDOq5VCMyZIMnAaOOoVUgvnFM5/4kCHoYigXz5EjhzghhaO/bu/CzU/vxpAryIt0AHC0z8W56BVS7Gq3gWbYhAVep4gXpWfKWKdbKp3fJqL8NSxAtu9smV+ix9oaS0J38d0dNv79vaCxYFyDLwCoytOgJl/L//xxq3Bjohw5ciSHYELdrl27cPXVV0/6+yuvvBLbt28X6nByiJj20Xi79TxteoU6E1HeKeaQ9x57vKwz3eJljAKdAksrjPCFGRzqcc5dYEuz8ayHEOoOdDuhUabHUUcO4px+8a62HiHEoOI0NmQhUckliGlTpSY1/nbH2mk7X6YbsjR5yBUEzQjn2CI1KLVCyg/620a8k2yRWbpsPuzqsCWUkadTqKMoalyuUKzbbLbh9IX5e9fCUkNSpc1kCHpLhoXtHDlyiBcye3ZPpw0A55waW0EQCDPwhmg8t6cHtzy9C3JpfAAm1riOZPCPddSl8D5FVvKMrdQQCzTDYlurFbs6bHyzLAAJZa+XLSqecFutUoZywoGYy6nLkUO8CCbU9fX1Qa+fvHW2TqfDwMCAUIeTQ8TEAmIBoMgwPmw8lRhUMqyoNGFRkhMroXEQLsN0hruTSKUSfhV22B1MmbiQjvVJlmUThDogUYRNJRatAuvr8rCgRA+PiMsiyMF4wQSh/emAoihooiu4WoUUZ9fnQ58mZ+NMGXEHoCdyHSdqYJAuSEddPiGwt4tUqCPPmRWVJpSb1WnP9SOFuqYSvWCO4VRzYtCJs2rzsLTChDXVlqS2zdMpeddrzlGXI0eOyYgJVFQ0YwwAPndWFXZ8+2JcMK8AuugCpZIYz25rtcIfjmBFhQm1BVpRN06bKRGGRQFxT01l6Su5GG7zibMLuZ9wnscqGSIRBm8c4ebRCpkEFzRO3kH8rPo8mDVymDVyXLu8PL0HmyNHjlkjWK1fQUEBWlpaUFNTM+Hvm5ubJ2w8kePMY9QTvzGWpvDmOxEyqQSnhjxwByPwibjkykq4/YrTLF6SnFWXx5cK7mgbRX2hbpotJiedhjqKorDz/otx0xM7cSSazWJKU76hXiXHiQEXHL6wqBsDkCKiEB1fY2iUMnhD9LgMmUwx6ArAHYi/FukW/0nIjDryPWgfyXyTjYkgX6e/f37dhGUzqeYXn1oKhVSC//rtRzg24IYvSzPqjva5sL3dCoAriU+WxmIdRluDsIog1zFHjhziwROMQC2XIhim+S7zEgCxO+yVS0thUMtRoFfCE80tC0YYzC/WYcgVhE4pwzM7uxErihh0+sfvJItgWRZdVi/sxMJSKp3f5L3a5RPnYixZAi2TUPjVOyfx/J4evuz13Pp8voHVRFi0Cv71e3F/D2rytajME7bZVo4cOaYnbbPLm2++OSGPbsOGDXjooYcmfCzLsnjooYewYcOGdB1OjixCJZdALgFKTSpct6Js+g3mAMuyfLbHWEeWmCBD3kuNwjjqACQE0e6ITkLFil4lhycQgVouQVOpAZo0NZMAgJvXVsGokuHkkAe3/Wk3TonMBcOybEL3TCEn/aVGFXRKGYIRcQh1p4Y9vEgspai0l9OTkEKdUSXnBV2yvF9MeIJhaBVSFBmUgoh0AFBXoEOFRQOFjNtfKEtLX0c9Ib7su7Fo8uqBycjl1OXIkWMivvfSEdTd/wYW/uAtPpYgFp02r0jH52F+7ZJ52P6ti/CVC+tw29nV+PNta/HzTy5Fj90PluVcdnIpJdrohZnyzvEheIIRyIj7ayqFunPrC/jvVWkcR84FciFUKZPgt++dwqArgAjD4uc3LMH/XtY45faXLCziXf7/OTSArSeH03q8OXLkmB2zEuo++ugj3HzzzVi/fj36+voAAM888ww+/vhj/jGPP/54gkPuu9/9Lo4cOYK1a9fin//8Jw4dOoRDhw7h+eefx9q1a3H06FF85zvfmeOfk+N0QKeUo9ioRijCpL3siqIo0NH6AZZNX6ODuULelMmg93SzsNQAQ7RscEebFQyTgtcnTS8xTTPI0ylh1ipAMyyoNHZjLTaqEIwKvNvarKLLMQmEGX4gr1fKBMuoA4AQzcITjMDpD2Nvpw1/39Wd0CBGaGSSeG5eoUEJiUS4Lr1k6SsLoDq6Yt1l9fLXHTHhCdLwhuiM5MQpohlKYTo7hbpvXT4fxx+8DK9+5Rw0Ficv1JHiXqYbsOTIkUMcfHxqBP1TOOCuXFLKf19mUqPUpIZJo0CZSY1iowoXzS9EVfS+E4wwUCuk6Bz1ZXUumS9EI0yziETvoVqFNCFXbq4sqzSh2KBChUWd0JRLTPhCEdTka2HRKPBu8zDUcikoCriwsQC1hbppmxlZtEooiLHQvi57ug85R44csyBpoe7FF1/Exo0boVarceDAAQSDXJmi0+nET37yk0m3q6urw7vvvguv14sbb7wRK1aswIoVK/DpT38aPp8P77zzDurr62f/l+Q4bfi4dRQ9dr9gzhd5NPE9wrCizRwjOyEWCFy6t7Y2DwBg94XRMgenRzqFM4ATGfZ22dHvCKS91POGFWUIECV6YgtnJjuiuYMRmAR0kcVCrcM0ixv+bwfuf+kIjvRlpstpKMLgw5MjfJZPoYCfHWCMUMcCtflc6XiYZtFrF5e4CwDe6PVPI5CbjkQedRtmq1AHcA1DFpcbZ+VGnEeIey1D4iyNTiddVm9Wv/c5cqSDLzyzD7s6JhdRrlxaOu7/7ji3FnecWwuAG3fdsCKeQebyR3B8wIXfbjmV+oMVCHJ8U1egxapqS0rHl3qVDIOuAHpsfvSI8D4NcE1FOka9sPlCoBkWvhCNB65ciD/dtgYrKs0zeo6qgnjn15xQlyOHOElaqPvxj3+M//u//8MTTzwBuTy+gnH22Wdj//79U267atUqHD16FPv378dzzz2Hf/zjH9i/fz+OHj2K1atXJ3/0OU47AuG4myNdzQDGoias7WIM2bV6gnwJHQUIvsK3PirUAcD2trmXv6bDR/Tivl78bmt84Jnuc0elkKGOGOQ4/OIS6nzBxLLTfK1wjjr1BKUimSrl67X7sLTCxP9cJHCjArLrK82yqCXOGTE2lIg5d4fcQVz3+20JHeTSxbA7gGd2dvHl/bHOuGcaDUT+55lU+vrrd0/iwp9vxfk/24pd7YkdDHPkOJMJRWiUmzVQSClIKG4RzKKNz7uWlBtRna+d4hk4rltZzrvKpRRQZlIldIHNNsjxzb2XNOIv/70mpc+vlEmhji62OEU2tovhncBUsLRiZgJdjHPqC2DWcOdTr92PW57ahV0ij7jJkeNMI+kZf0tLC84777xx/280GuFwOGb0HMuWLcOyZcuS3XWOMwDypugLCeNu0yllsEVL87qtPjQUJl+2lE46rT4+IFgll6bdmTaWs+rjQt2ONituP2fihjDTkc6jfmFfb0KGXroaSZCQ+SjDIhN4vWM+O/l6IR118dvKuloL/CEauzps/Aq/kHTZfDjY4+B/FrKRBJDoqKMZFrUFcTGmbcSDC+dP3pVNaFiW5c8bmmGxv9uR4ORNF4POAP6+q4vf15nqqtKr5Lh8UTEsWgWWlpsyfThpJ0Iz+O2WUzgx6EZHNLPx1j/thkkjx57vbBD8Ppcjh9hw+ONVDBsWFOLJz63GL99uQb8zAI1CioUlU5c3xigzqXF2XT4+bh0FzQJ9jgDsvmGwbHojQtIFOb7RKFPv/mZZFjqVFP4wjRG3OLu+TtSsq8qSXFTQXRfWw+UP4w8ftgMAPjw1inlFer6KJkeOHJknaUddcXExWltbx/3/xx9/jNraiSdijzzyCPz+ma2S7tq1C6+//nqyh5XjNMFBdDcdcAojfsRcNlJKnN0YHUR7eG0aBiXTMa9QD0u0dHJXuxUREU6kYxlxUgmFcxvysa7WkvZ9rqmJ76NZZJlS/jCN2nwNykxqrKg0QaMQzoVZna/BmmozVlSacHLIg0O9TnzQMgJnBsqDnf4wGggXW5GAWX1AYjMJZoyjTmy5hr4gjaXlRhQSrsNUBnRPRoFeiRMDbvijpeTBCINH3jyR9v2mkn/u7cE9zx/E41vbMDQH0f7xm1fioWsX41OrK1J4dOLk9SMD+O17rdhyYggUBRhUMkQYFqOeEIZFOjnOkUNIyCZiRjU3BjOo5ZhfrMcPr16EG9fMvLv0DSvj5a8FeiXmF+vx4cmR1B2swKysMmNtjQUGVXoWZa0ebi4ixGLVbBgr1BlUMpg0yb8Wy4kyWZ1SJtr4nxw5zlSSFuo+//nP43/+53+wa9cuUBSF/v5+/O1vf8N9992HL33pSxNuc/z4cVRWVuLLX/4y3nzzTYyMxG8OkUgEhw8fxu9//3ucddZZ2LRpE/R6cTmacghHvyM+yRGq62CxkXPZ0Kw4S47IFvTTBcSmA4mEwvraPMgkFOaX6Hn34WxJdcOOUITBQDRsmWZYfHRqFIvKjCndx0SQq9mDAonKM8UbjKB91Ic+hx9n1+dPv0FK901jd6cd+7sdOCe67xDNYPOxAUGPAwD67H6cipaYfmpVOc5tKJhmi9RCCnU0w2JBsQF///xa7Lr/Yjx4VZOgxzIdzkAYB3ucCSJJupv5AEDeBGXZ21uzq/zm41OjeOlAHx7d3CzaUikxwbIsHt/aBgBgWOCJz67Cp9fGRYdj/ZnJtMyRQ0yQ2bcxEYbMn0uGjU3F0ClloACMuIPY3+3IWHbsXOmz+7Gvy45dHTbo0hAFQ1EUZBJueuwPM6IU68ZWHFXna2fljlxRZeK/9wQj2HJiCE9+1C7axno5cpxpJH2F+9a3vgWGYXDxxRfD5/PhvPPOg1KpxH333Ye77757wm3++te/4tChQ3jsscdw0003weVyQSqVQqlUwufjXAXLly/HHXfcgVtvvRUqlbDlSTnEwwCRT6NXCeMCqieygdpHRZgbFaRRZlJDo5Di02sy47T43hUL8bNPLoFGIZv1DTxdFRb9Dj/fLECjkHKdz4zpv4aUEm4jsa1CeokMl4ky49KJhtjf2hoL/nOoHwDwysF+bFo9cwdAKiBFk+tXlCfk1QmBQipBbb4WNMtCQlFQK6Q4q05Y4XSmjBWY5FIqwV2XLhQyCUwaeWJDliyrxoot8MilFKrzps+MOtPZ2jLCu5CXVZhw8YJC+IjJ8LE+Fy6aX5Spw8uRQxQ4/WGUmlTQKqQoMarAMCwoanaNudQKKc6pz8eW5iGEaRalRhVeOzyAr1zUkIYjTy/kverefx7E725aMaOsvmRQKSQI+TmXt80bQqkp/e7yZPAGIygzqhBmWCyrMGFVdXL5dDEK9Vx32x6bH3IpBZmEwq/fPQWZhMKtZ88u5iZHjhypIyklhKZpbNu2DXfddRf+93//F62trfB4PFi4cCF0Ot2U2y5duhRPPPEE/vCHP+Dw4cPo6uqC3+9Hfn4+li1bhvx8cU5ecggL2cxBqGYS5ORdjAHvVm+ID9gWsoSRpFCvxNvHB/Ha4QF4ghH8+bbZh/emep2OLCH0hWgMOgOQy9IvTpUQYqBfoDzFmeIPx49HK/A5Q56jJUYVavK16Bj1Yke7FYPOAO9gFYJAmIZGIYUvRMM4i7KQuUJRcfHfL8JVeRKXPwyjSgZngDt3ykxqSCTCKGYFOmWCUJdNQedhmkFbNDKhNl8HhSzpQoVx2L0h2Hwh1BVMPa7KVn6/NR6f8uUL6kBRFJpK4w7lozlHXY4ccPjCfJWJXCrBR62juOf5g1habsTnzqrGBY3JZZw2FOmw+RjXIGjQxeXc0TQDqXTu1yyhYBgWgTANCtxY8li/Ky05dVqFDC4/dy/stnpFJ9TZfWH0RSs5/vucGqybQ67cikozemx+hGkWA64gVDKJYNFDOXLkmJqkrs5SqRSXXnop7HY7FAoFFi5ciDVr1kwr0iXsUCLBsmXLcPXVV+PGG2/Ehg0bciJdDh6y7Moi0MR6VVV8JcruC4suzJxcPcyE2ABwgsPP3mrBa4cH8MHJkVmVelJpssn02BOzvoR6jUoMav4vmijYN5OQ5clqubCDcDJH0RemcdXSUgAAywKvHe4X9FgGnQH4QjQkFGAUoMHIWKSS+GtPM+IuJbH7wrxIBwhT9hojX5fo3PMExfV5moqOUS/fqXZe8dxiOyI0g/UPb8HyH72Dr/7jQCoOT3Ts6bRhT6cdAOdm37CAc87V5Gl5N+6xflfGji9HDrFAjv1MGjkO9Thg84bwfsvIrErsK4hrOsMCrSNe0XWsn45BVwAfnhrlF3yVMgkKdKl3fhuI8UKvXXydqJ0TlEXPlhWVZli0Clw0vxANhVoEIgye2dmVK3/NkUMEJD2DW7RoEdrb29NxLDlyJHRYKhNoBUunkkNJuCDEljEkk1BoKtGjrkALg0DlwGOhKAr/tSQuuLx5VPi8sckgHXVVeZoEZ0Y60avl0Cpl0KtkKBS4ScF0dFnjr8nWk6OC7tsUDbtuKjUgGGZw1bJS/nevHBRWqIt9lhk2M91EZYQzLBIVc/ocfjy7sws/fPU4trcJ+95MhWvMdU+IRhIxCsaU2AZF7j4kaSEaycyfo1Ank0r4UvVTwx7Ri7vJMuIO4rsvHUXMqPnF8+t416ZEQmFBNPez1+7PSPOZHDnEBMuyWFxmRH2hDgaVDIeIDuaz6QxdMUFXULGNd6ej1+7D8op4BnGZSZ2WzrXkwl6/Q3xCnUYhxaJSA2oLtNDPMafvprWV2PfdDXj61tVYWGpEU6kByytMeOlAX4qONkeOHLMlaaHuxz/+Me677z689tprGBgYgMvlSvjKkWMukKWvQpbIkXl4vTZx3ZQ/OjWCYwNutI14cagncyVBVywp4b9/7fDshbpUL9L1EEJdl9WHVVXp7/gao65AC3cggh67H8GIeMQF0vFoFtiFqVJI0TzoxrF+F2xernxvcbS5x5E+J18mKATkJOSmJ3YJtt8YMqJ0NMJwQuGJfhe++/JRPL2tAzvaxNM0weFPbBKTSaEuEBaXq3kqSKFuXtHcG2GtrDRjZZUZa6otopwgzpaWQTeu+d02tAy5UVegw+3nVONqQsQHkLDIcmwgV/6a48xmwBnAkT4nWoc90KtkONTrAMCJSFV5yTueKyfYJtscdR2jXhwgxsFlabpP5Wnj0TuDIuxC3TbqxdF+F9pHvNDOUaiTSyW82PmbG5fDH6Kxrc2K77x0NOeqy5EjwyQt1H3iE5/AoUOHcNVVV6G8vBxmsxlmsxkmkwlm8+zCLHPkiEGWEC4oEa7DKeneO9rvEGy/M8FLvCaGDJTvxZhXpMe8Iq7MfV+XPelJZLqaSZCOutXVZiytSH/H1xiXNhXh3Pp8nNuQj2d2dAm23+kgBaqxIki6IVeiY8exuNwICoBSSuHGP+4QrIsa2VSkyCB8kyIZUfoaibqjagvioddiysT0hegEcS6Tpa8BEYne09FCdApvTIFQZ1DLsa/Ljo9bR0+bnKBhdwA3PL6dz1p1ByL4zNoqyMdkYy0qjV+7j+fKX88YaIbFnc/sxZqH3sXC72/GTU/sxJ+2dWT6sDIOOfZzB2iMerjFlKUVplm5yIoNKj7/U6OQYkWlKSEmIxvwh2gsLo9fJ9K1oERmEIvR3UuOoS7+xQcpEdQ8wQj+tbcHGxYU4eL5hVhfZ8Gjm5vn/Lw5cuSYPUnL8O+//346jiNHDgDAqCe+ctWQgknPTCEniicG3FM8UnjIEPriDIgNJFcsKcUv3zkJAHjjyADuOLc26edgU9xOIl+rhExCIcKwODnkwZqa2YfqJsvt59Ti52+fBMsCrcOeWb0e6cAViA8shRaoSKEu5tKSUlzwc5BmMeIOoW3Eg6bS9Auq2wjHWlEGypMTS185l1iFRcOfr0K6C6fj5JCbz+L54nm1WCZgh9zxpa/Z46iLdXzVKKQpmTSS5+mQ6/QQ6l7c14fV1Wa81zKCxWVGPPm5VRNelxYSjro2EYnYOdKLLxTB28eG+J+3t1nRbfOBZljR3FMzgY9oUtVli38elpXP7t4plVAoM6nRafXBF6Kxv9uRUJGQDbSOeHCkl3DUpSkiJ18v7utwgDg3Cg3KOZf/bj46gHuePwR/mMY3L5uPzmYv2ka82NZqxTc2zhessVSOHDkSSVqoO//882e9s3A4DLVajYMHD2LRokWzfp4cpy/krcAiUNdXAJhXpMOW5mEA4Ff9xQI5ac3XC/eaTMQnFpfwQt1rh2cn1KWSUITB1pMjALiJ8oWNBYLuXyWXYtOqCnxwcgSBMNf9UQydGj1EU4ASAUvIAU6oW1lpRojIhBsrzb55ZCDtQl0wQiMYiR9DoT4Tjjqy9JV7FeRSCSotGrSPetFp9YJhWFEMgqUSCkuizsd7L50HhQCdk2MU6JVQSCVgwSJMswhEaLAsm5bsoVTiC0V4R29DkT4l7yMpYIlxgjgb9nfbcbDHgTytAs9/Yd2k3cvnFenxxC2rsKjMkPFFqRzCMVEzpgGHH3/8sD3jY4xM4iWa6rQOE0JdpWnWz1lh0aAzmmHbVKLHBy0juO3smlk/n9A4/ZGEn9Pl/C4nBEB3UHyOOncgfm5U52mneOTMWFhi5E0BL+7vxT0b5uGVg/2w+0L477/swZ9vWzPnfeTIkSN5khbqPvzwwyl/f9555036O7lcjsrKStB09pS15BAOlmXhjgoMEgqCTl5J916fyDo8kSH4ZgHFy4moL9RhfrEezYNuHOzhVmMnCigWCrsvXrbhC9GgBY7TeGZHJ14/MsCft702nyiEOh/hwhSqKUsMk0aBfd326Pecu27sROyNI4O4b+P8tB6H3Zs4uM546Stxcq6rzYNGKYXTF8aQK4ASgd+jiTjW50L7qBcGlUxQkQ4Azq3PR8uPL8OmP+7E7g4bWBYI0QyUAh9HstAMi+98YgGaB92onkVm1ESQgvKwCLORZsMTt6wCy7LwBCOTinQsy0Ihk+CShUUCH12OTDORUEez3PkfCNNQycV9HUgXnmBclGoeiJeCL5lFI4kY5Hjt2IAbFmcADMNAIhG2O/xssXkSr4npyqgjFxLnFQkXwzNTSLflRNmDyVKZp8Gaagt2d9rQOuxBhUWDLpsXJ4e4fERfMALNHLPwcuTIkTxJf+ouuOCCcf9HrnpPJ8J95zvfwf33349nnnkGFotwoe85xI83RPPOm7mGoyYLmS0UC74XC7EJvoSCKAasVy4tRfNgC+QSCjvaR1FhqUxq+1Rm05L5KkqZBBUCBuADQIiOi8sKKYU+hzgcMKQLs1DgjDq9UgaK4t7nWEadL5h4X2gf9eLEgCutOZQjY0SOTJS+Sidw1AGAQibB0T5u4tXr8ItCqIuFihsFbj4CxBdl8nUKWLQKBMM0AiFa9EKdXiVPueOHPE+HTxNHHcCNE/WqxHPrg5Zh3PbnPWBZoKFIh7fvmX3FRo7sxRuMTPo7hy+MYqO4rwPpYsQdgE4pRXWeBseimY3lZvW4TM9kqCSEOr1SCpsvDKs3LHiW7WwZdgcglQCx9et0LUSatXIU6ZUIRBj4JxCSMw0ZiZMKRx0AXL+yDLs7bQA4V91jN63AN188jLZhD674fx/jvfsuSMl+cuTIMXOSXkKx2+0JX8PDw9i8eTNWr16Nt99+e9rtH3vsMXz44YcoLS1FY2MjVqxYkfCV48xlhJiUSAUueSowKGFQSZGvVeBwrwPff/mIKNrWMwwLOqpsSUVQHgcAlywsxMISA5RyKV49NPPur+koYyOFumCEGTcRTDcmIo8tRLPjOmdmCrIDrU7g10QioVBmVKPEqIJWwU2wVHIJLGMEoGd2prf5xognkNDxNhOldHIio45m4uIpmWXWa898RhDDMLBo5KDAdQz+n+cOZOQ4wjQLmzcEbyixbFmsfOelI7j/pSP4z6F+0ExqViAKE0pfTw9H3WRIJBQYliuN9wbFNxnOIQyBMA3dBIuzVRYNHD5x3FOFhmFY6FVyaJUyuAIRXphZOsfs0E8sKsHf7liLq5eWgqIozC/WY9ApriqSyWBZFka1Aia1HMUGJb59+fy0OeV1SjmG3EE4/WG4RDAXGIuMaMQzmw7AE3H54hIoZdzz/udQP6rztAiEOEerVinlc3Zz5MghHEnblozG8W6jSy65BAqFAvfeey/27ds35fbXXHNNsrvMcYbQS5ScapTCrqDmaZXwBhm4WBqj3hBaR7y4cEERLmwsFPQ4xuIkmgKIxV3SUKiH3ReCJxjB3k47QhEGCtnMNf9UVqdax3QsMwrcFdc0RnwSi7gbjrowKWRG4JVJKfRa/XxJU5/DD9uYzmkvH+jDty6fD0OahMQemx92Yp+FGRDqEhx1ROkrWX7UY8v8JMkTotEaDe8P02zC6yYkpGM4IPKGEmGawcsH+uAN0Xjn+BCuXFKSkufVKWXQKWXwBCMYcp8+jrqJIMWZWKalLxTB5qODONbvQolRdUZnlJ0puIORhDLPGF02H+/0PdMYcgdwsMcBAFhYokdtvhYGtRyrqsxzet7KPA0q8zTY323HK4f64Rp0o98ZwOLyFBx0mvEEI9jbxcVqnFVnwRfOr0vbvhQyCeRSCmGahTc0ueMzU5CxL6ly1BlUcmxsKsZ/DvXD4QvjveZhVOVpcWLQjWF3EAPOQEajbnLkOBNJWX1hUVERWlpapn3cD37wg1TtMsdpht0XglImQZhmUCRw8LtUQmF5pRGdVh8cvjAsWgV+/c5J/PLtFhTolfj5J5fBohU+H66T6HxnEliEmgyKorC+Ng//PtAHf5jG4V4HVlVPX8aeDrnITgh1VXkaFAtc3kgKdYV6ZYIYkylIsZDsOiokMcHUFQiDYdgJRZdSkxo/3dyMH1+zOC3HMFY0zUTpq5xY9SZLX8XmqHOOEeaE/hwBwP990IYD0WxDAAhExO2wOtrnhDcqRK+rzUupY7jQoIRnJILhLHfUsSyLi37xAQp0SqyrteDeSxsTfk9mOGqi7tsIzeLpbR1QSCVwF2Y+7zNH+hkbjUAihsWvTLC304b1dXkIhGjIpBSOD3DXxv/Z0JCS5yfzjrPlNSaP06xJ/z1KJuGEui6rT1RZiRGa4SNkKKS2WuD6leX4z6F+AFz564JiPfodRqjkEvQ6MptJnSPHmUjSQt3hw4cTfmZZFgMDA3jkkUewbNmyVB1XjjOQ6nwtX+7UVCp8eOuvNi3H1pMj6Bz1wuELYVvrKAajE6WWQTfW1+UJfkynRtz89yqFOAYJADcx/feBPgDAjjbrjIS6dFBqUqPcrEav3Y8uqw+WOWS3zAajOj7YHXYHcazfKej+J8KolsOikcMWFZwzgSEq1LEs4A5EEAgnTsTydQq0DnvQOuzBOfX5uGxRatxIJA5CfFLJJBOWVqWbxIw6svRVXI668aKm8O7Dba2jCa7qoMgddbs6bPz3a2tSe/0r0qvQPuKFJ+o0ysS5mwpG3EF0jHrRMeqFUj7edc0S/urRaKakQS1H67AHgTAzocsqx+mHbwrHUraISKnm/ZYR7GizAgDW1cavL/UpalZFVh+IsbRzIshzoXXEgy0nhnDxgvQ1n4ldnTzBCEY9wbR1mE0W8rqoUkhT2njvnPp8btGZYcGyLPQqGQ73cePajhEf1ucMzjlyCErSo79ly5aBoiiwYxLh161bh6effnra7SUSyZQrz7mOsGcu5MTalIHups2Dbnzv5aMAgHMb8mHWKhAIM9AqZeh3ZGYyHYqwmFeoAwvgskXi6YZHipY72q24++IkVnlTaDq7ZGER3jwygBKjDxRFoVLgZhKko86klme8Ky/A5T7NKzaAYVkUCCxcxlhaYUSYZuAJRDDiDvACvExCYXmlCcEwg1EP54b8338dRmOxATX5qSnfiBGM0JBKKNAMi8o8TVoyEqdDJqGwtsYChmWRp42/F0a1HAYVlz3U68i8o87tD6M6T4NOK3csmSgTHhuQLnZH3a52K//9utrULuLMK9LBHQyjSK+aNL8rGzhGdKpcOEHjGHIYSTpOLRoF+p0B2LzZISCkG6c/hBse3wGphEJ9oQ6P3XR65TlP1PV1Xa0FgTBzRmbUhSIMemw+lJtVkEslKDOpUWpUweEPp6R5wuFeBw73OlBqVKHEpEpZvma68QYjWFCsx4lBN1oG3fjo1Ghahboykxpt0aqWEbd4hLoeW3zMkOp7g1RCYWNTMZ7Z2YV3TwxjWYUJa2ssiDAsrJ7sdnjnyJGNJP0J7+joSPhZIpGgoKAAKtXMBvYvvfRSws/hcBgHDhzAX/7yFzz44IPJHk6O0whytWxs9pcQ1OTHb8JmjQK3n1ODW/+0Bw5/GC/u78X1K4UP8ei2+XBy2AMAeKC2SfD9T0aFRYMykxp9Dj/2ddkRjEzfoTFdOsnuTht67X4YVDKYBXaQkavSDn8Y21pHBd3/RNAMi51REWHZHIOnZw1LYWc75zjqcfh5Rx3NsNjTaUd9gRZXLCnBa4cH4A5G8N9/2o1/3LkOxcbUCa1H+5z8BESdoZIVhUzCO680isTbbblZg+MDLgw4AojQTEI4tNDYfGFepAOAogx0ABzbdXCsC1NMRGgGezu5UrR8nRJ1BakVmR+8elFKny9THO+PC3UTdXgm5YEwEVRu1nJCnd0XAsuyGRHZxYTTH8ap6Dhg8DTqBBxjogyw2P1jQYle6MPJOH0OP/ZEry8LSvT4xaeWAQD8ITol7qn/+6ANbxwZBAD0OwNYWDI+e1yMuPwRnBiMV5mk2/lNCpjtI14sr5xbPmCq6LDGI3HM6tQv4pxVl8c3++qz+/kxTGGWdAbOkeN0IulP+AcffIBNmzZBqUz8wIZCITz33HO45ZZbptz+6quvHvd/N9xwA5qamvD888/j9ttvT/aQcpwmeIJhVFrU0CikGWkVX27WgKK4Vf5OqxdLy024aU0l3jk+iAM9DrSNeFCXorKDmeILRlCTr4VcSmWka+VUrK/Lwwv7ehGMMDjY7cDaFLtKZgLLspBJKNQXaFFhEd41JZdK+OB3AHAFIqAZNqMdev2EwKEVuClLjIvmF+Lj1lE4fCG8fKCPF10kUYebMxDBo9cvQfOgG4MOP/xhBpf95iP84MqFuGZZ2Zzfx3/s7sagMz6hHevWEgqyyUpoTBfTcrMaxwdciDAsBl2BjK7Wj+1WXGwU/lpDuj8L9MoE4UZsHB9wwR39zK+tsZzxQtJkHCcdddPEWTAsJ9bJpRK+ZJ9mWLgCEcGbBIkNl//0LgFmGRaFeiWGo+XPVRY1TBoFnP4wBpynnzA5HZ1WLwr1Sli0Cly9tJT/f3WK4k8qxtxrsqVhx1hBt9iY3vt6mVnNL2B1jnqnebRw9Nvin4m8NIxt1hBRDscGXFhZaYLNF8bQabhIkCOH2El6Cf+2226D0zk+h8ntduO2226b9YGsW7cOW7ZsmfX2ObKfF/b1odvmR/OgB/IMCB0quRSlUUdPx6gXJo0cZq0cI54QwLIJdnOh6Lb70THqxckhT8bEhskgy712EGVg08GmsPbVF6LRafWhdcTLl1cKDTmJ1CtlCQ0uMsGWE0P892RYu5AsLjfiSJ8TfXY/XP4wKIoCRXGloBQAsCy0Shn+8NmVuGFVBQZdATh8Ydzz/CH87K0WuAJzmzgMOgMJuTtCOy1jKAiXXGiM8ESGMpPZbELDsiyGXYGEZi+ZyKjL18ffoxF3UNRdX3e1x/PpyPyoHImciDrqFDIJaicobScjVKRUPHuJjBA4E0sfx5KQIZYdVYpJ4fCHeZEOALzR+3qPzTdtTqHTH8aQyw+rJ3jalObZPEG4AmE0D7rTcu8i7z0SiispzQb8Y0qk032fIuMqejMUfzMRVUT1T20azAN5OiXmFXHPe6zfhWFPEF1WL5z+yLjYqxw5cqSXpGdxk5Uh9Pb2wmicnX3a7/fjt7/9LcrKyma1fY7Tgw5ixSpTIfixnCx3IAK7L4y6Ah3UCin8YSYjK2oDRH5VBivjJiQhp65teqEuHaaTy379If99plwX37x8Pi6YVwCpBHAHIxhyZ3bV8Z3jcaEuUz4fuVSCcpMaYYbF0T4nnP4wWBZQyiRgAYx4QgiEadQV6PCVi+pxxRKumYRBJcN/DvXjs0/uGteJNBlODLjgJ4TbvAxdT2RSCe+uHOuoO29eAb5yYT0evX5xyvP5ksHhC+M3W1r5+b+EyszrVaBLnHSNfb3ExK6O+PUuE07ibMAXivAlWvOL9ROWdpNTPpqNCwbk/d+W4YUPMUDGgqRyoUsskItsL35pPd746rkoNqpAs4nl0xPxu/dOYe1P3sPKH7+Lb714JN2HKgjfePEIAmEGBXoF/mtJ6fQbJEklIdQxLBexkg14BRbqyO7nfRlcTBtLmCjJTdfYYW0Nd1+jGRbFBhUoikLbiAfW3PU4Rw5BmXHp6/Lly6OuCAoXX3wxZLL4pjRNo6OjA5dddtm0z2M2mxOEPpZl4Xa7odFo8OyzzyZ5+DlOJ2KrZVIJlbCSJSRn1+chGKHR7wjgeL8TlRYNzBo5Ggp16HMIL8B4gvGBSb8zgHkq8ZQAlZnUqLRo0G3zYcAZmHHJZ6oW5BiGRV90lVMpk2SsbfxVS0vRa/OifdQDk0aBfocfTaWZy3wZJVwFZebMlUvHynTIsho5MVl3+MIoNkqRr1PisZtW4MolA/jpWy1oG/Gi1+7Hp5/YiWduX5NUaUe31YfjAy6MeoLQKCTwhbgJYKYcdQDnqvMz9Djh6fx5BTh/XkGGjipOj82HZRUmHOp1gGW5stNM5OWNjTsQq1AXoRnsjmb2WLQKNBSm3tFg9QTxP88dxKArgJWVZjx6w5KU7yPdNA+6+Wv9RI0kgPH3AocvjHJzoqPOnnPUJVxDRVwRPmvIPEq9So5Cg4rPFfWFaDAMO2k2W4RhIZMAoCioFSJbzZwFYZrhs9GUMil+/NpxNA+60VCow3evWJiSBUlyrKRTylBsUGZFFiTDMtAopHzzkXTHwZAi2IiI3JrBMI2mUgP8YTptpoa1tRY+p84folFuUiNfr8CgKyC66p4cOU5nZizUXXPNNQCAgwcPYuPGjdDp4oNThUKB6upqXH/99dM+z69+9auEm0GsGcXatWthNicX1Pnwww/j3//+N5qbm6FWq3HWWWfh0UcfRWNjI/+YQCCAr3/963juuecQDAaxceNG/P73v0dR0eSdgliWxQ9+8AM88cQTcDgcOPvss/H444+joSGJzpY5koJhWD5bi2ZYFGYgIwngsqxiIb5H+lz40gV1kEkkONzrRPuIF/d/Yr6gg5lYZ0wAougoOpaf3rAEhXolavK1074uVIr9Xa5AGLGFxWCEgVaRmc6IfQ4/htxBdNv86Lb50TbixSUZORIO0oGilGYmow6IOxzDdHw2rpITQp0/lJCFtnFRCarzdfjMkzsx6gnh+IALP93cjB9dszgh620q3msewgOvHgcA5GnlvFCXKYcuwJX9+cP0uNJXsdBh9eJgjwMAcPWyUlzYWJiR48jXJb5HQZG+Xnu77DCq5WgqM2JBsT4t9wONQoaPo41pLCK87s8E0gk1eT5dolIXc45ZtHExItf5lRMwY0RE+rmYC2SZuyralIrMV/WHaWij3S1jglLs345RLzhNn0V/BhZTUw0pWlbnaXGg24GWITeO9Tvx8HWLU7KPMpOaz2P2BCP4uNUKb0j83aWHXUFepFMrpPw5kS7y9fHxyYhbPELdkCuAY9Hrqz5Ni/dkTp3VG8KAM4Aumw+DjgAWZXAhOkeOM40ZX+V+8IMfAACqq6uxadOmGXd5Hcutt946q+0m4oMPPsBdd92F1atXIxKJ4P7778ell16K48ePQ6vlVkLuuecevP766/jXv/4Fo9GIr3zlK7juuuuwbdu2SZ/3pz/9KX7729/iL3/5C2pqavC9730PGzduxPHjx2f9d+eYGrK0w6CSZayMcXmlif/+UHTyenZ9HoqHlVArZDja58TictOE26YDmokPYDPRCXc61tZY0GPz4/UjA9Cr5II6hEgLvkWrSHnnxZnyj13d+Mt2buWxoVAH9xzz1eaKnZjY6jIYwr64jBvMufxhvlObQSVHWQ23mu+eICC9sViP5+5cj5ue2AGlXIrdnXb8dUcn7ji3dtr9eYIR7O20ozZfC4c/jOp8LT65yoyL5hehOi9zjRpiIqNYHWJWTwhrayyIMCyuWFKCSxYWZ+Q4zBoFJBR48V2sr9cbRwbQY/ejx+7Hp1alpxO4WiGFQSWDK5D5UvrZQjaSmKjjK5DoqCvUK/lFBtIBm+nMTzHgD9OwaOQIMywqzZqscD8lQzASF6eU0cUctTw+PfGGItAqZWgf8eALz+zFhfOLsL1tFM/fuT5h8Yfs0pmtkGXAChmF9lGu229NvjZlTmeFTIJSo5qvSAC4LEixC3XktaBAAFcXOQ/xBCMIhGmoMtRBniQ2NwHSF/lSqFehrkCLthFvQhOJbGk8kiPH6ULSV+XPfe5zc9rhhx9+OOXvzzvvvBk/1+bNmxN+/vOf/4zCwkLs27cP5513HpxOJ5566in8/e9/x0UXXQQA+NOf/oQFCxZg586dWLdu3bjnZFkWv/71r/Hd736X71D717/+FUVFRXj55Zdx4403jtsmGAwiGIyvtrhcU2dq5BgPKbpkcrBVm6/ju3ge6nUAABaXmfCP3T0AgMsXFQsm1DEMy09apRIqoWxQLPTa/TjvZ+8DAC5onFkpX6reXXLQZvOGUGpWp+iZk4OchJ4a9iBMM/jfjfMzciwAEhoxaFPUJW42MCywq8OW8H8KmYQvG7RNUtJWX6jDLz61DJ99ajcA4OmPO/C5s6qnPf87R7147cgAAGBhiR4vfumsuf4JKSHWUGIiR12YZjDgCGDIHcDq6sw0JTg+4OLfpzJT5gRNiYTCWXX5vJNMjEJdhGbwRvQcU8gk2LBgcmf+XCkyqOAKeDDkCmSlMDPqDmBZhQlyKYXGoonLg8l7wbA7yGdl1eRrcd3yMpi1CjSVTd0t9kzg5KAbtqir7tiACyGagVKWecEgVUznqPMFabA6Ft956ShODXtxargdAPCrd0/i/ZaR+OPGZJhlI6SjjmbjjvT6FJfYr6kx48OTND/2dvq5snMxQ84T0l32CoxfHO9z+FGXhuYNybKNyIRO5wL+2to8tI14QU7JnDmhLkcOQUlaqKNpGr/61a/wz3/+E93d3QiFEidbNpttki05LrjggnH/Rw5AaXr2N9pYN1qLhZvw7Nu3D+FwGBs2bOAfM3/+fFRWVmLHjh0TCnUdHR0YHBxM2MZoNGLt2rXYsWPHhELdww8/jAcffHDWx50DCd26lDMsc0sHEgmFJeVGbG+zYsAZwJArkHAjFPImFSBWmeVScU7Sys1qmDVy2H1hHOl1TjmhTPU8kxy0lZtVqMpQRt2CEj3/vUomgTsQwYDTjxKj8MKhLxRJWJHXZHCFfEGJHquqzBhxBxBmWJQY1MjTKQBw1+mpmkWc21CAi+cXYkvzMPqdAbx2uB/XLp/avdRr92F+sR6eYATl5swJTmNZUm5EoV45YX7jDY9vx6FeJyQU0Pyjy2dc4ptKKApYVmEEy2Y20xAAbj+nRtRC3a4OGx9HcFFjYdrKjgBOqDs17EEgzMAViGTMZT4bWJbFjnYb3IEISo0qGNTTl+8W6JX8e95UasQvNy1L81FmD75wBHqVDO4A50L2h+jTSqjTKqVYWm6ESi7lHXLVeVqsqDQhGGHgCUbw4v6+cd3l//RxJ0pNKgw4A4gwLFqH3Tj7kffw7B1rM9qgZy6QomWQEO3qC/UTPXzWhGmWH0PF7ptiJxRhkKdVgIUw3bbztAqUm9R8x9dumy/jQh3LsryYq5JLoFelb4y3tsaCf+/vRV2BDmGagUouRTiS/WJ4jhzZRNKzggcffBC//OUvsWnTJjidTtx777247rrrIJFI8MADD0y7vd1uT/gaHh7G5s2bsXr1arz99tuz+RsAAAzD4Gtf+xrOPvtsLFq0CAAwODgIhUIBk8mU8NiioiIMDg5O+Dyx/x+bYTfVNt/+9rfhdDr5r56enln/HWcqw0R5jzpDWWMxllaY+O8P9jhgIiZIQnY8IoUMsQ7KKYriHYZWbwj9zunLtFLV3p3MYhtxhzKWQ1aVp+WDrwMRBlZvKKGDsZCMuhPPT00GyzQK9Ers7bKjy+ZHvyOAfd12vqwJAEY9U58rd54XL3f944cd0543XVYfmgfd6LX7ccXS1HfKmy09dh8O9DhwsMcx7m8oi7pAGRYYnMFnJx0c63PhYI8TR/qc6Lb64AtlbsJGCpWhOSzapYvXDvfz31+xtCSt+yokOg4Ou7Kr/HXYHeRFpfqiyQUG8uMw4g6ibcST7kPLOkIRGod7nPzrCYzvfpnttA57cKjXiUO9Diij96wQzWB/twPH+l3otfvw0OvH+cdfu7wMAECzLHrsfkSilh+ajWbGZtnnhYR01PlDpFCXWoGIbN7TPOiGJyB+oa412nVULqVw76WN028wRyxaRUL0QK8IuuO6AhHe4RYIM2ktV75sUTEO/2AjHrp2MU4OeXC414mBDI1TcuQ4U0laqPvb3/6GJ554Al//+tchk8nw6U9/Gk8++SS+//3vY+fOndNubzQaE77y8/NxySWX4NFHH8U3vvGNWf0RAHDXXXfh6NGjeO6552b9HLNFqVTCYDAkfOVIDvLir8lguR4ALCVKWw/1OFBkVKK+UAetUirohKmXyA9J56rZXFlSFg+WPRItF56IVHsCSaGuOm/6ZhbpQiqh0Fgcn4zKpRS6rZkZ0I16485UrUKa0VzDYoMKZSZVwue51KhGXYEWGoUUI56pRe81NRZeND8x4OKdVpPRafVCq5CiJl+L6jwN/rmnB8/v6cb7zcNz/lvmgia68BBh2HHlr6Tzr8eemXMm5hJmWODKx7bxpcmZQKOQotSkgkUjT3CGioEwzeDNo9xinUYhxUXz09t0o4go7RpyiSfIfCZQAL5wfi0uml84pfNlrHCdK6sazzvHh+ENRhKuo74scD/NlLv/vh8nhziBlnQdkw7S/xzqhz26cHnFkhI8cv1i1BKZtKoxTmTHFG5tseMJRqBVSFFsUCZcA1PdXXpsl22xi7+eYARDriAK9cqERgfphKIo1OXHX/duEQh1Y5taaNJobFDKpKAZFp3EwnMuoy5HDmFJWqgbHBzE4sVc5yGdTseXm15xxRV4/fXXZ30gRUVFaGlpmdW2X/nKV/Daa6/h/fffR3l5vDyquLgYoVAIDocj4fFDQ0MoLp44MDv2/0NDQzPeJsfcId0kZm1mS3wSGkr0OlBiVKNt2AOdQsav3ApBHzFxF0OA7WQsLo8LdYd7nYLtl3RhSjIc30eWv5o0cox6MjOxHiUGcd4QnfauaFNh0SnQ5wjAF6KhkklgVMtRZlKjfcQLo1qW4BaYCIqi8AXCVfeHD9omfWznqBcRmoVMKkHnqBdVFi1++c5JfPPFI/jWvw+n7G+aDVpFYtYSSTmRq9ibAaHOG4zAoJYlTHSLM9RxG+Cuc/2OAGy+MJyTZBhmio9bR3kBYMOCorROkACgiJhID2dZQ4lCgwrfvnwBnr51Nb58Qf2kjyPvphqFZFwOJcOwGW/Ok2lG3AGUmNTwh2jolFKUGlXwBsUtqiQDWXJJuoMsGgWMahkK9QpsPjqIxiI98rQKfPOy+VDKpPjRVU384h9ZJq+USTLqCp4rLn8Y3hCNQVcQ9ug1UEIh5aW8Y5sx+EX+mg04/JhXpIMvRPO5r0IgJYbeXSIT6qQUJozUSCUP/OcYvvb8QQCAWS1HmneXI0eOMSR9tSsvL8fAABemXFdXx5er7tmzB0rl9F14Dh8+nPB16NAhbN68GV/84hexbNmypI6FZVl85StfwUsvvYT33nsPNTU1Cb9fuXIl5HI5tmzZwv9fS0sLuru7sX79+gmfs6amBsXFxQnbuFwu7Nq1a9JtcsydBiJs2qTJTAljjCKDig+qPdzjhEomRalJjSF3EDvbhXObkC5DMecTLSGEuiN90wt1qZI6SZeJJcPnDNlQYsQdSuh4KCTuQBgGwn2ZSUcdec4GIgyc/jCq8tTQKKQYcAaxr8s+7XNsbCpGpUUDtVyCHrsfrxOlhySPb23Dv/b1wukPY9PqChjUMt5xadGmvzvcVJA5gd4xk6EK0lFn80NoDvU4cGLAjQAx0S3SZ06o20oEw7eOZKZ8fDJePUSUvS5Jb9krkN2OuplCGup8IQatw/HS16se+xgN330TF/xsq/AHJiJODLjRbfOBBeAJ0uh3BuAOnj7ipY64Xz1/Z3yMXWJSwemPYNgdAsMCLUNuWL0hflH37IaC+FiCAh779HIAXNfUTC2UpQLSsRS7h1VaNClfrC0c04xB7OLvgDOAk0MeeIIRFAp4jyog9vXNjekvt52OEeLcVgiwgL+yKt5hxO4Po2M082JljhxnEkkvCV977bXYsmUL1q5di7vvvhs333wznnrqKXR3d+Oee+6Zdvtly5aBoqhxJQ/r1q3D008/ndSx3HXXXfj73/+OV155BXq9ns+QMxqNUKvVMBqNuP3223HvvffCYrHAYDDg7rvvxvr16xMaScyfPx8PP/wwrr32WlAUha997Wv48Y9/jIaGBtTU1OB73/seSktLcc011yR1fDlmDhmUWymCIPilFUYMHgvAHYygfdSLpjID8nQKqGRSeAJh6NIYIh7D5g1BKqFAMywKdJkVoqai2KBCvk6JUU8Qh6dqKJHi0tRLFxbheL8TEZrFwpLMlpuTQl2eTgFZhpYd+x0BuKJZMxVmNQwCnKeToZRJsarKhM5RH0Z50UyFpRUmjLqD8IVpfOaJnZBJJfjLf6+Z8DmkEgqPXrcE3//PUZwa9uC+fx1GTb4OC0sT328WLFZUmtBl86HMrIY3RPNlppYMO3Tr8rlQ9DDNwulL7KyXaUfd2DIWhUySUXHXoI4PScSUmUQzLGzeECiKc/2c3zh9d+u5Upgg1GWXo26msGOWbRxjXJQ0w8LuC4FhWEjOUCuHRinFikoTOq1e2Lzc5zWbSztJfv9+K3a326BTSlFu1iQsMlWYNWgo1KF12MOfJRq5hI938IdoGFQyPrNLQowvsvn1idAMVlaZ4Q1G0DzoBpD6fDog0VHHNWgQrlpkNpD3quf39uAL59cKsqhfk6+F3RuCXCoRRedtsmqiVoCGKauqE1sB5+IJzkz2dtrwerTj/bn1+bgojR3vcySStFD3yCOP8N9v2rQJVVVV2L59OxoaGnDllVdOu31HR0fCzxKJBAUFBVCpkl8hefzxxwGM7yT7pz/9CbfeeisA4Fe/+hUkEgmuv/56BINBbNy4Eb///e8THt/S0sKX8ALAN77xDXi9Xtx5551wOBw455xzsHnz5lkdY46ZQQ6sxOAeu35FOVZWmbGswoxysxp6pRxv93Ll0N02PxaWpv8YB5wB0NFSW2OGHWNTQVFcp9z3mofh9IfRY/OjMm9ysTVFvSSgV8nRHXUhZbK7KcB1TYth9YTwfvPIlB1w0wXZ7KTH7k9wK2QCuy/Mi3QA99lWyaU4GXXO9Nq598/pD0/6uV9XZ8GiMiNODXvgD9P4/F/34j9fORt5xETjo1OjGHAGYNbIcfdFDQkZgZl21AHA/m4HAO4z3URkOpIZdbHXQkjGDrqLDMqMTkaqic7N/rB4hLpumw9bW0aglktwdl2eIM19qvM0+J+LG1BsVGFRqXH6DUQCy7Loc/hRalRPL66NuRe4gxFelDNH73kMC7gC4Yw77dPBTO4RezvtONLnTMh4PR1yoliWxc/eauFPgeZBd8J9vDpfC3+YTjhFfGEGrUMeYBF3TrgIMd/hDxHfZ+/r0+8I8G7zugIt8rSKhNzkVEFm1JFORbFC3qscvlBaO26TsCxwKBrpIobzqp/Iro7Q6c9xrcnnzsHY2NLuzV63ao7Z89KBPvxtVzcAoG3EmxPqBCSpWVw4HMYXvvAFfO973+PLTNetW5fgTpuODz74AJs2bRpXJhsKhfDcc8/hlltumfFzzaR7pEqlwu9+9zv87ne/m/HzUBSFH/7wh/jhD38442PJMTf8oQhWV5shoaiMZiTFuLQpMY+wqdSAXrsFEYZFn8M3ztGTDmxE2H6hPvNiw1QsLuOEOgA43OeYUKhL9fR/yBXAqiozpBIqLSvOyaBXybGk3IhBZwAyCYUigwo2byhBTBKCsV2JM9n1FeCyvIbd3QiGaeTrlMjTKXDV0lKUmVR488ggXIEwzFoFum1eLC4zTfgcFEXh4esWo32E6wzY5/Djl++cxEPXclmpgTCNIoMKlRYNf+2wesmy6MwK/1V5WqysNEEhk8A1Jm9LrZAiX6fAqCeUkWYS4QiDVZVm7O3mJoaZLHsFgCrCIRARUSVWTzSbyB9mUJ0vzLUmT6fEPZfME2RfqWTUE8I5j74PjUKKG1aW44dXL5r0seTIq9SoQqlJDYc/BItWmdDF2+YNnZZC3e/eb8UzO7tgVMtx7fIyfGmCPL9YubxSJsHSChMYlkVEZI1WZkMwwiS8/xS4vzFGhGYSFnCVMk68jUTH62NdcyPuINbUWHC8z4m3jg7i1JAb//riWen8E9ICKUi1jXjRNuLFtSvKp9hidli0Ckgo8B1Exe5CjEQYyCQUIgwLo1qe9my2GOQColMErxE5TpgvwDyEoiisrDLj7eOcUaFAr0KYZsblieY4fXm/eRhvHx0ARQEyCZXgfM6RfpL6pMnlcrz44otz2uFtt92W4F6L4Xa7cdttt83puXNkL102H/Z02rGrwwaFTHw3gDydArs6bNjXZUe7QNlJ5OpdiQjEy6lYUm6EXinD+to8wbr2tgy6sbeLO2dKTZl/ff7zlXNwaVMR+p0BHOhxZCR42EYIVAopBVmGB1OVFjXcgQhCNItghIFWKcM1y8vwo2sWY3G5ESGaxZAriM5pck9Ucin+8NlVyNMq0Fikx7F+F+866LX7cLDHgV1Et1I7UUKXaUedWSvHvm4HdrTbJsyhu3RhMdbVWGBQyccJeemm3xngRTogMRctE5Qa46XANq94mkmQk6MKi3qKR+Y4NcyV6/lCdFKT6X5nAHu77HBHXVJmQpizi6yxSKrY2jKCIVcQJ4c8k+bfxpruqBVS7OqwYU+nHf1O4d23qcY3ppnQ2NLCt44NJTSaCEZYDLqCaBngzq+xbuABZwC7O2zwhGhYvSHs6bRP27BIjEzk2qqaokJhtkglVIIYLvaSxl67j2/mJuQCKBkF8crBPhydQQ5zOgnTcXlbn+aGRjHI8tdTwx70ZcD9nyNzHO13YsQbBsty51+XNZdTKCRJz+KuueYavPzyy7Pe4WRW/97eXhiN2VPekSN1RGgGv3j7JP+z2FbOgxEalRYNllYYUZ2nSbCepxOy9KvMJO7J4fnzCnDoB5fiH3euw0Xz02+JDkUY9Ni8qLSo0VCkQ4lRHK/PgmIDFpcZUWZWJ5RfCoWVcGFmsuNrjIsXFOOHVzXhR1c34Tc3Lkv43U1rKrGk3IhKi2ZGbrJiowpfPL8OLUNuHOxx4J3oCm+X1YdSkwqLSg1oiq4wk6+DJcP5juSKPFmeFUMmpbCzw4ZTwx4c7hF2EuAcczyFhsyKmhIJBWl0fBCiGTACdtmeClJgrRBBhqqYOTUUbwjRQGTPTsRERRExZw+ZLRnLZjud8AYjONTj4H+2TtIAwRsVq7TEpFzsospM8AYTS9tl0vi8gGVZvHa4P6ELbIzYNXTA6UvojNxl9fGufQqASS3PymxHpZTCvCIddMr4gmdVXnqyyK5eVoo8rQL5OkXqSx5SzCDxXhYJeJ+qsGh4ofTlg/346NSoYPueiE+vqeS/F+p1WFVt4b/XKaUYybIu5DnmhnqM+WJsU7Qc6SXpmVxDQwN++MMfYtu2bVi5ciW02sQbyFe/+tUJt1u+fDkoigJFUbj44oshk8V3TdM0Ojo6cNlllyV7ODkEJBih4fSHU95xyTZmtdwkgow6gFs9+9O2Thzvd+GPt6zEoR4uJ2Znu1WQcGunnxDqRD45nIlzK5XRV8PuALaejA+YyJXhTJKvV+JInxNKGYXBDLgefnbDUtz81E44/RFRCHXFRhVuOat6wt+VmNQ43OuEXEJheIb5ONetKMPDb54AwwLvHB/Ety6fjwFHAHZfGP2OAG49m4tkSHDUZVj4N6q5/VOYuHRmRaUZf93RBQDY323HOQ35gh3bWFdLcYYddQDX0MIf5o5r0BVAqQgWKRIddcJdiztGvfjw5Ah2dVjxgyubMu54nAkxRx2Q2M19IsYG2MulFN+xk1yws4vIXZkqPjo1gjAhRLePevmF7H6HHwU6JQIRms+p1arikyWHN4RhVwB6lQyeIJ2QN5Yt+EJ0Qukl6b585/gQ3jw6iImKK0LRst9hdygho+7UsAcapRTeIJdr5/CHYfeFUI30B+6nkl6HHycJsVshlaTtuvy9K5rw7M5uBCMMukTezZMszS0VcGE2T6tIcBBlIqKCxOoJ8iXAJoGqBRaVGvl9eoI0rKfhwkmOyRm7YBqJMHD6wjBmOFbmTCHpmdxTTz0Fk8mEffv2Yd++fQm/oyhqUqEu1jH14MGD2LhxI3S6+ABOoVCguroa119/fbKHk0MAIjSD83+2Ff1OP5aWm/DyXWen9PnJEicx1b97ghEcjK54tw57cM2yMrx6uB8tQx4MuAJpd7kFwvFJdLkIJqupZK6NFshzRiqhoMpwFluM6jwNLBo5bL5wwmBbKBqL9XAHIpBJgPlFU7tZMk2lRYNCvRIjniBODLqn3wBcycvKKjP2dNrRNuJF+4gHp4bd8IdoWDRyvhkBmdWXaRG3yKBEkUGJYXcQAxMIkssrTfz3B4gyVCEYcSe6eMQgBKkVUl6o67R6RSHU9UbL2CkKgpbZv7ivF4+93woA2NhUjKuXlQm279mS6KibRqgjxv8KqQQhmuHPyYSMutOw9PXdE8MJP/tCNAZdAVi0Cpz1yHsAuFy2YISFhAKK9Sp4AjT6nX6cGvZgzU+2AOC6e3/0zYsEP/654gtFQM7/Yk5ahmHxy3e4CosIA/z0+iXosXnx9PZO+EI0RqNu6VNDbvjDNC8gjHqCqDCp4Q3GF8iy0XkYHJM/WG5RpzWPzaSRY8gVFP1rNUTcqyrMwt0TCg1KaBQS+ELc+9KTgUgTkmF3kBPp1DJUCHRvVMgkKDer0RkVLDP9GuQQFm8wPhfVKqXotvvx1LYO3JuFGbrZSNKKyNiurTPlBz/4AQCguroamzZtynVQzSJkUgnUcilq87VpcemQZWoRhoVZJO6oZRUm/vuDPQ6UmdXQK2XQKKQ42utMu1DHRGcxEgpQCZT7lgoYhkEgzIzrxJrKoSYpxORnuLSR5GdvtcDuC0NCcQ6JD06O4Px5BYLtf8jlx7IKE0Y9IdGfMwa1HAqpBAU6BTpGvbjn+QP41abl0253ycIi7OnkBK0tJ4YRplk0Fukx4gny+WEGlRy1BdpoQ4/Mnh96lRwKmQT1hTqo5JJxK5GVFg3fVe1Aj0PQbsExl4JMQuHwDy5Nu0t4JhRHG7EAQNuwB2fVCecwnIyeaCZPsUElSMfXGGtrLXjsfe773R22rBDqWqMdnQv0ymljLMh1epmUQl2hHo6oKGc+jR11NMPi/WjzpZjQBABtw174TDSUMgmCEQaRaB4Vw3JjAK1ShmqLJqFsVKhM2FRDunllEooX5F87MoDm6MLN0goTPrmqHE993AEpRYFl4wuYKrkUjUV6dIx6ETuTlAopZBJO4Ku0qMeV12YDgXCiUFeVZgdvlUULnVLGO7/FiosQEssFdDXnaZW8SAdwHcAzCcuyWFBiwLArgDy9cO/ZwhID+hx+qBXScZEZOU5vQjSDhkId/KEIXIEIFhTrx3Vsz5E+Zp00HgqF0NLSgkgkuRvh5z73uZxIl4Xk6RRoG/FiW+toygPPR8dkswjVdn06Gov0UEedWge6HbhueTkc/jD6nQG8dWww7fsPRgdsEoEm7XOl2+rFbX/ajZU/fhc/faslrfsaJvJKZBLxNB+RSSVYUWkCy3Li7rdePCzo/ofdQezvdqDb5kt5iXo6UMmlGHaHMOwO4qUD/QjT03cz3EC0hX/n+BB2tlvRMsS56gqjjrC7LqzHe1+/AAe/fynmicBZePmiEpwa8uD9lhEc7U/MoaMoinfVOXzh6MRTGGIuCpNGDo1SJgpnqpbIZjo+4MrgkXB4gxFeOBQ6n25FpZl305DNUsSK1RPkF1Gmc9MB3KQzhi9E48SAG0f6uPd8bNfX04mDPQ7+dZpHlAe3j3rQZfXyrioiNx4mtQIFegU6rD4ME4ubnVka7E0KdfdcMg9v/M+5iNAMfv1OPK/4fy9tBEVRuOPcWr6BQOy12d9tR8uQGxGGwcamInzlwno8ecsqPHr9UgBAt80/rgt6NhCMCpEahRRPfW4V7jyvLq37C9M02ka82N9t58usxQgpugoZ0aCSS6GSx8eYfXZ/xl6njlEvnt3ZhRMDLli9IUG7tN92Tg3CNAuXP5IQy5Pj9Kdz1ItTwx70OgJwBSI4MegeN47NkT6SnuH6fD7cfvvt0Gg0aGpqQnd3NwDg7rvvxiOPPDLt9jRN4+c//znWrFmD4uJiWCyWhK8c4mRtjQVrayw4uy4PH6c4TJV01C0o1gvWdn06ZFIJFpdzDU76HH6o5VKsrjajKk+DI31OBCPp6yjGMAwv0AnZ4WouGNUKvN8yArsvjANESPZETBQingykmFFXKJ4MmmKDCvu6HWABFOoVqC3Q4sSAMDe0IVcAW4hyKlMW5EdcML8AZrUccimFPK0C/TPoJlZboENtAfee7+2yoUCvxLpaCy5eUCiYEy1Z6gt1yNcpoJZL8e1/H8aR3sRzYnllvKva/m6HYMdVW6BFY5EOVXlatI8IX6o9EUvLTfz3MXdWJtEopNh1/8V44Yvr8c3LGwXdt1Ypw+Iy7h7UOuwZt6glNk4Nz7zsFUhclC/QKbG2xgJ9NPqiwqLG/928As/fuQ7/s6Eh1YeaUd49McR/fx7huG4b9sAbpKPldlKUmFRYXmnC6mozKiwarKm2oC5fCznReCEYYWa0wCE2fKHxrsDn9/SgPXpvX1tjwdn1efxjlNHAupijLraQqVHI8IfPrsJ9GxtRna9NbN4zQSao2In9fVqlDBcvKML6urxptpg9W04M4SBxL/KJNCSeZdkEJ3ORUdhFyHMb8mGOjqciDIuBDHVd7rH5MELMl8ZWraSTmnwtlpYbsbbGggiTfdebHLNHJqWwpsaCJWUG/v/Eeq04HUlaqPv2t7+NQ4cOYevWrQnOuA0bNuD555+fdvsHH3wQv/zlL7Fp0yY4nU7ce++9uO666yCRSPDAAw8kezg5BOK8eQXY1WHDtjYrnv54duXPk0FOPjyh9Ilfs2E5Uf7aPOhCsVGNLquPW11IY4vyYIQFHVWzavPFI0RNhVEjR11UQDne70zI2AOQUhGF7Kia6WYBJLGuowAXdr2t1SqY8LKvy47fb23jf84Goe67/7UQN66tRJhmYfWG0DnDspJLFnKuOoblnEY7220Jpepiw6yRY9QTgj9Mo9vmx64Oa8LvM5FTF6YZfHRqFC1DHuzrsuPq320TZL/TUU1c77ptmZkQkVAUhSKDCquqLVhZJfxi4tqa+D73iNxVRwp19TNxshJKnTsYxq4OG7a3cZ8NjUKGyxaVYG1tHspF3kwpWbZEhTqKAq5bUc7/f/uoFz12H4ZdQfhCNAYcARzodmBPpx0UBZw7rwBto16E6cSVLrHni01EQu6RQoZBZwC/fOckVlaZoZBKcN/GxoQxQ8ztG4wwYFkWgehCqXJMxwnyvpeNr0sg6hgkXVzpQq+SJyyajm0uJBaG3UE+p9KgkqFA4MVrqycEOyH69mTovjQ2U1YtoAM+T6vAiQEXdnXY8O/9fYhk4eJAjuRhWRbvN49gd4eNj/UBxHutOB1J+k7w8ssv47HHHsM555yTcBNtampCW1vbFFty/O1vf8MTTzyBr3/965DJZPj0pz+NJ598Et///vexc+fOZA8nh0A0FOqxYUEhSo0q9Nh8CSUrc4XMfFghssk2OYE+2OPAhY0FqLJoUGpS4e00lr+6AmEsqzBhRaUJ9TNwJoiFmDMoTLM41j952dpczx7SUbe6WjxO3JgDE+DKxVdWmrGtNbUO1Mkgy3yq8zSCD2Zny7wiHVZXm7Go1IC+GXZUu4QofzWoZFhTbRb156Sp1IgLG+NZa64xE8il5SZ+ACSUsDv2GMTQ8RXg3IdGtRx6pQzlZnEcUyZZWxu/vom9/LWNEOrmJfl5jAkx2SiuJMOwK4BhFzfhXlZhQkOhjm+g1T7ihS848QTIpJGjKo9rwKOWS6CSSbCwxIAlZcbsfM1YFssrTVhZaYJOJcW9/zwIqzeEfV123H5O9bj7OilcBSMMn+U2tlw/X6fE2XV5WFxmhCcLM+oqLRqsqDQlLBKni7HdgsU6+e6yenlB1huiedetUKyptqDaooFaLsXCEn3GHHUjhKlBLqUErT6iKCqh/DzTWX05hGF/tx0LS/RYWWnCpU3F0Ci4z55YrxWnI0lf7UZGRlBYWDju/71e74wcM4ODg1i8eDEAQKfTwenkbNdXXHEFvve97yV7ODkEwqiRI8Kw6I92LRxyBVGcIvt5vyN+09OrxdHxNcayinhJ2oFuB25cXYmu6A3qcF/6Shq9RMfZ6rzscNQBnLD5wr5eAJwzaGVV/PVL5ZCC7ABGTmQzTX2Bjg8Cd/jC2OexI08rB82waR9UWYlBXKfVB3WWhIwXGVR8c4j2GeazLa808w0YXIEIdnfa8VA0jDwUYXDjH3fAolVgRZUZX76gPm3HPlNKTWp8bUMj3m/hRFvHmIm1VilDY7EBJwZcaBl0wRuMpKVxD4l9TCfNVF3P50q5Wc0LD3na7BCb08nKKgsoiosLELtQ12PzotSogkEt58vTp4IllmxUMimAMFyBsCDXy0yxs8MGbyiC6jwNLmzkyvWvW1EOlmVRV6ibtATdqJbDolHA6gny2XWxDMdsLPG0+8M4EF2UqDoxzDspiw2qCXPZyNLHQJjmHfvKqIBHMyy6bT7kaRXY3m4Fy3LdKrOJYITmx312XwgHuu0JsQipZqxQJ9bmG712P59NqFPKBI+4UCmkvNv/+IAbbRmKiSAddUK66WKoiM/g/m47agvEuziaIzX02v3YHR2f/9eSUmgUUniCEfhEeq04HUn6LrZq1Sq8/vrr/M+xC+aTTz6J9evXT7t9eXk5BgYGAAB1dXV4++23AQB79uyBUpkblIuZJeVGVFk0UMok6Jmh82UmkKtES8qMUzxSeIqNKpREJ7CHex0o1CuwqNSAAr0yofwy1Qw6480S1IrsGWwuJ4XNaXLq5gJZVltuFqZF/UyQSSVYUMKVv9IMiyqLBr4Qg/eah6fZcu6MDVwns3rETHWeFo1Feli0cnTOUKiTSihcs7yUn8xXWtR8eZzdF8L+bgfePTHMTwTFgFEt55yOeuWETo/rlpfhjnNq8NhNKwQRKQadAZDzWLE46ooNKiwpM6JAr+QXRTLJP/f24K87OvFe81BGyn2MajkWRq8pzYMuOEUsynRYfeh3BtBl9SF/Bo5e0phv1spRalJBr5TBFe0q2DzowrvHh/CvvT2iDrpPhpZBF8I0i06rj39fH7iqCQ9evQi3rK+GP5R4jpnVcpSZ1NCrOIHiH3euw3N3rsX1K+IdgMe6Y7OBIHEPf+VAPwCuFPhXm5bBrB0fZ1GgV6LUqEKBTolgmOEz6pQyKX71zkks+P5mXPjzregY9eK5z6/DR9+4EP/8wvRzEjFBOiM7Rn348t/2p3V/WoUUsui9RkKJ1806SDQPM2VgXFNfqEsYZ3ZlqIHLiDv+OiwtF36uROZBT1Uxk+P0gXTOaZVSlJvVKDaq0r6QnCNO0q/0T37yE1x++eU4fvw4IpEIfvOb3+D48ePYvn07Pvjgg2m3v/baa7FlyxasXbsWd999N26++WY89dRT6O7uxj333DOrPyKHMBjVCvQ5fCg2qDHgCEy/wQzZsKAIrxzsh90bQpkIs2iWVZgw4ByEN0Sj1+GHKxBGMEJDQnH1++lY3XuXaArQZ0/da51u5hXpoFFI4QvRODiFSMKVTs/+dYtN2igAKrm4bhiLygz8qniPzYcSkwpDrvSXSpBNWRRSKmuEumKDCu2jHuiVsqQm4wtLjPzjrZ4Q7yAkBUsx5ReaNHK+QyP5XsX4/Hm1gh6P3ReGSaPAaPRYxOKok0klcAe5a6yMotJ2jZ0pT3/cgeZBNxRSCZp/dFlGjmFNjQXH+l1gWWBPpw0bFhZNv5HAsCyLvmhua7lZPaP3jBTqWBboj44rnP4IzFolHn2zGe+3jAAALppfmDWNlabing3zcO3yMjQPurGiarxbiqLA30NVMgns/jDs/jDvZllTwzUXON7vxuajg9Cr5KJ1Qk1FLIsN4O6Zh3qd+NL5dZM2TwiEab6iIxCOwKyVIxhhYFDJoFfJEIo+36lhD25YWT7hc4gdlz+MYoMSg9HS6EpLesfDFEVBp5TB4Q+DYQF3QJxCHdlkyqIT/p5eYlQnZFL3ZGgBqZ+Yd2UiIa6COB/F0nwqR3ohhTq1grtWDDoD8Apcfn4mk/Qrfc455+DgwYN45JFHsHjxYrz99ttYsWIFduzYwZe0TgXZGXbTpk2oqqrC9u3b0dDQgCuvvDLZw8khIFV5GtAs0Ovwo3XYnbLn7bP7YfOGIKU4Z4zYuO3sGly/ohzLKk3I1ynRUKTHlhPDONLHtUifiXMgWWy+uMvQmAVNAWLIpBIsKTdiZ7sNfQ4/hlwBFEWdOqmaa9MMy5dBaERY3rmYcIWyAPocAZwcSv+ghmzKEqLZrBHqJBIKDYV6HB9wYUe7FQzDQjIDR9kSYkWZdKAlCHUZGNRPhl4l50sYx5a+ZoIuq5cX6QDwn1MxMK9Ij7eODeGY34Uemw+VGSr/Z1mWn5SVmdUzOi/TwQWNhRhyBbCm2oKFRMMaMTHiDvLX5YoZCgykLE+WcsWcPaSzyu4LnRZCnUwqQX2hHvWFEzfbGHEH+ckRKWaNzWLTq2Twhmh4Q7QorifJQrriD/U6oZFL8LUpuvuSpa+uII2hqJgloaiEfNKfv9WM7W2juPWsaiwhOkhnA3ZfmBfpAG7MnW6Majl//lhF2lU6SHwOHriqSfD9V1nUkEspvolLppzeQ4SzsMQg/LWQrHgSg9s9R/ohS1y1CinkknjUQA5hmJUkWldXhyeeeCLp7cLhML7whS/ge9/7HmpqagAA69atw7p162ZzGDkEpsqiQW2+Fga1HL5w6oIkzRo5llWYYPeFUGoSn6NuTU1iBlpNvhYLSwzQKqXotc2sxCdZXER5U6E+uyYnyyvN2NnOZSkd6HbgskXF4x4zl0v8gNOP1dVm+EI0GovEl5HRVBofzGiVMpjUcuzrtKfdGZStpa8A0FCkg4QC1AophlwBlJimFuyHXAG81zzMD549wQh8oQg0CllCUw0xOeqkEgqrqswIRpgpy3f2dtrwzM4uXNBYwK/iLyjWY8PC8Z+juTC2zEkspa8Ad81TySQI0Qy+9e8j+PvnMzNGsPvC8EZFk0yW2J8/rwDnzyvI2P5nQg/hOJnpa0U2pdKrZFhUZoRcSvHOHvLza/Nmnxg1Uz5oGcFfd3RgwBnAABF7EcvhBOJZbDFI4W5sh/VsgDzm28+pgVEth0I2+cIbmTfnDcQnjyo511Tj02sqsbvDirYRL/69vw95WjneOT6ElVVmXNA4PldbjIwta68SYIEiT6fgRZexYwixIKEoLC03gmGBkgzcp/J0SjQU6tE67EGI5vKHnf6w4GMssvNsnl7412FFddwBTMbz5Dh9CdEMlpQbQVEUTBo5vygeyQl1gjEroY6mabz00ks4ceIEAGDhwoW4+uqrIZNN/XRyuRwvvvhirmlEllJh0aB91AuWBVL1GXX6w3ivZRgj7hDytPKsCJAuNqj4EOcOqxfL0hD2ayNuyEJ3uJorZLeyI31xoY5KUTuJLquPbz5w1iRlMplkXpEeCiknMjAsi16HH70OP4bdwbS6lkiBSq+UQSbNnmxDs0aBo9HMk26bb1qh7lCPAw+/2cz/zLDA3k47zptXADsp1E2QdZRJ3IEImgfdkEupCQPzf/PuKfzq3ZMAuMYBscHw+tq8lAt1YwPoxVL6CgCVFi3vJspUHhCQWOJUnuFYhtZhN3Z12HCox4EHr1okumYxvURubcUMXytyGCGVUjgabdAUu5aRjjqxigip4LH3T2JPp2Pc/5PXdNUYEYsU6kjHUbYQ69oKALesr5pWlFISQp0nRAp1UhQaVHj4usW47vfb+P9/4qNOAJzInS1C3VhnpBCOOtKl2pHBa+1UHOp18PfNTLhqKYrCmhoLP+4HuHuDUcBM7WCETsi2NamFH9tUWbR8s7RAmIHDF4JJRIuhOVJP+4gXh3u5+7JFq4RMGhXqMpDXe6aStAJw7NgxXHXVVRgcHERjYyMA4NFHH0VBQQFeffVVLFq0aMrtr7nmGrz88su5PLosRCWX4uy6PIRTWFZ3sMeBETc3GI3ZysVImGZwoNuBj06NYF6RDmuqLWDB8seeashw6HQ49tLJ6moLfnr9EqyoMqE2P/WOt0FnAKurzaAoCo1FE5cPZRKFTIJ1dXlgWa5Ed8DhAwsK3TZf2oQ6mmH5Lp5ahXTSnB+xMr9Yj7U1FtAsm+AomQx3IIL1tXloGXTxovb2NivOm1eQ6KgTUekrwOVsWbQKMAyLD1qGcdGCxKyxS5uKeKHO4QtBr5SCoiio5KkXXdVyKYxqOe+sE5NQt7razE8IhlyBjOXUkU2TKjIcy/DkRx14bk8PAOBTqyqwqlo83a4BJGQ4zdxRF/9eTWSNxu5/ljGlr9nOhydHsLfLjvnFeqyvzYNZq0Cf3TejYPaxpa+kcJWNjjqLRo61NRawSPxbJiPBUUcIFuS2//7y2fAGI/jEbz8iBH7xjivHQjMMCnRKvsFalSX9jroiooRy1C3O0tcKiwYGtRwqmSRji/nzi/UwqmVw+rlzr8vqwyIBhTqaYXHR/AIc7nVCJZMmvG9CUmJU8Vm7/znUh1vW12TkOHIIBctVlbFAmUnNN59hWMw4pibH3EhaqLvjjjvQ1NSEvXv3wmzmnER2ux233nor7rzzTmzfvn3K7RsaGvDDH/4Q27Ztw8qVK6HVJt6IvvrVryZ7SDkExOYN4/iAC3JpakK+ycwFsTkESH66uRlPfNQBAPjeFQuxu5Mr7UyXy4JcMRabK2g6zFoFPrW6YsrHsHMYO58cdvOOursvqp/9E6WRv/73GgBcEP0PXzsOAOgc9WJ1mibX7kAYFq0CVk8I3hCNPkf6m1ekkiKDCrs6uM/UuprpRcZumw872q0J/7ejbRQAEh11IlvtXVFpxu+3tgHgrn3to17ccW68icSCEgPOn1eAD06OIBBmELs6fnByBKEIkzBZnSvNQ25epJNLKVG9VssqzWCiF4kIw6YtC3Q6emzxz9FMXWLpYmmFiRfqDvY4RCjUkaJm8q+VmhCj+Yw6zenlqHvn+BCe2dkFAPjnF9ZjTY0FHVYvfKHp3Qljxfpsd9R1WH38NV89g4ZQCikp1MWFybECplYpw7kN+eiydgMAPm4dndC9LEZG3EFepAOASgEcdVcsLsWzO7nXSiPCTo4sy+Ld40NgAeTrFOix+WZ1fZkrRQYVL9IBQJdtZh3qU4VGIcPamjy818w11xl73gtFY7GeF+q2t9pyQt1pwpMftQNAwniUZVl8eGoU7kAEFRY1FDIJZJL4dZhmWUhSVCmVY3KSviofPHgwQaQDALPZjIceegirV6+edvunnnoKJpMJ+/btw759+xJ+R1FUTqgTOaZoY4MwzcIXoufcopnsHqtViG+QEOOs+nxeqDsx4EJTqQE0w4JJU52+jxiI6pTZkzU2JSm6nu/vtEMjl0KtkCIYEbeToK5Ai2UVJrj84bSKZyaNAh/874VY9IO3oj9n1zlTlafBikoT3IHIjBx1ZL5ahUWNHpsfR/qccAXCic0kRCZyL60w4Tc3LsOWE8P46NQI/vhhOwadAXz3ioX8Y75wfi0+ODnC/6xVSFGgV+LVQ/24PoXdDGN5SEoZhZ3f3iC6ldEKMxe1AAAnB93Ir8+AUDdH8SmVLCWC8WNdpcVEY5Ee588rQI/dl0SeX/z+qVZIsbjMiGCE5oWnBEfdaSDUNQ/GnXMxN7jLH0G+TgFXIIxQhHs9zBo5JBSFQJhGmGaxsNQAlWysUJfdjjrymNkZuN4SHHWh+PV/IsFidbWFF59uWlOVNVNJb4gc98kEyUBrKjNgSbkRoQgDucjuAQAnQsfOjlFPCK4MdaatytOgsUiHlmhjMKE7v4YiTIKreKqc23RyYWMB9nXZARbwhbKv23SORJ7f041fv3MKDn8YUgmF9XV5fM72znYrSk1qyCUUzm3IB5DYuC1Cs8iQXnxGkbQyMm/ePAwNDaGpKbHzzvDwMOrrp3e3dHR0JLvLHCIiNnCQUlzG0VyFuj5H/GYn5iy2dTV5UMgkCEUY7GizYtgVQJhJXzkWOYgVs9NwMgJhGrs6bPjw5AiWlBtx9bKyhN/PZGA+GX0OP3xhGr4wnbC6I0bKzBoc7HGAArC1eRhfPL8ubSuhDm8IMgmFCJM9HV9jlJnVONDjAMvOrHkKOWBdVWVBj60PDAvsbLPiBDEZFptQV6BX4uplZei2+fCfQ/0AgM4xK/Pra/Mwv1iP5kGus7Y3RCNg86E7xRMDf/QaY9IoErLAxAJ5bznQbcdZ9fmCHwM5GavIYDMJAJhXpINKLkEgzOBQryOjxzIRt55dg1vPTs5dkVD6KpPiSDSjbmk5J9ZbtPHr2IhIO1LOFJZl+c90iVHFd3MfcgUSui8DXGi8SibhcxqbB11QjVnITGgmEco+oc5PjHGuf3w7tnz9gikfP1kzibFNNoDEBmAnh9yw+UIwaxSid9W5iQWoEoGiCHRKGY71u0AzLCgAT3zYhjDN4rPrq6BXZX4cQZY5A5mLgikzq3mRrkivxPq66e9HgTCNYJiBXiWDzTc3V/gzO7vwxw/b+Z8NGRrjbVpdiR+9dgLeEH1axBGc6XRZfRhyB8CwgIQCOka8vFA36AqgJXrPuiG6SBzLqAOACMMAyL75abaR9Cz34Ycfxle/+lW88MIL6O3tRW9vL1544QV87Wtfw6OPPgqXy8V/TUUoFEJLSwsikZwinw3QDIt9XXZIJRTUCilodnzXwNnQTzjqyqYJkM8kaoUUa6KlRn0OP3RqbtDsTMONyh+i+Y46UglgELGAORkdo1587undeOrjDrx8oA9Aagx1LMtimMhRKTGK95wBgEqzGresq4RCJsHBXidf6pMOPKEIIgwLlUwiqjLGmaCUSbGiwgSFTMI3lZiKQWcAEoq7ZlwQ7YapU8rw8JvNaB/xYmm5EZ9eUwGNSEXuuy9qwIISPeRSCif63Qm/oygKn1gcbxwhpbg8kNZhT0qPweoJQi6lRNtVenGpEbG5+b5uR0aOIZa7plFIMy76yqQSLI5mIvXY/LBmuXAFJKaHkQtSsVD9Qr0K84p00KtkGHZl99874AzAHRWY5hfHs1XHNnWJoVfJ+HumboIFUYVUAo1CCrmUQjALg73dhDOqsXj6rFmdUgaNQgqKAnxRYVIlk0xYiVFiVPOuzl0dNqz68bsJpdliZZT4TJeahBHqKIriF/ZODLrx0BvN+OlbLfjL9k5B9j8dvjEidKauw0qZFCsruTFKIMLgqqWl026zs92KpT98G7X3v4ELf7Z1TvsfcgX4Jn5apTRjjjqKorCq2gKVXIITA+5cU4Es5+SQhxfpKAAv7O/lf0fem2JNQ2RjHHU50k/SQt0VV1yB48eP41Of+hSqqqpQVVWFT33qUzh69CiuvPJKmM1mmEymhNJYEp/Ph9tvvx0ajQZNTU3o7ubs6XfffTceeeSRuf01OdJCt9WHFT96B9c/vh3H+l3wR2+cqRDqyIw6ncgFqfPmxVfQDEo5qvM0sGgVYOcSuDYB5CoVzSDr3FEANxGJCQA7220pK1G1ekIJToICkYoMAPDszk588dl9eGF/H6QU14n16Y/bp99wlsRyewIRBgqZOAWqqdAoZCjUK1GVp4HdN/WkXCWXoipPCxYsNiwswit3nQW9SoaOaKnk0X4XvnxBfUYaEMwUrVyGYqMK+XoFgmNK16rytDCoZJBQAM1y2TyphGVZ+KJldRKRvkYNxVrEordODrmnfnCaWFhqwPxiPRaUGERxLpHlr7FObNlMYjMJKQr1StTma3nxxaCWY9gdhDsQSbmjVGgSyl6LDfz3FID6Qh1MqsRrtlohg0LGiXETlV0rZBL4QtxnOJSFGXUewhU3n3g9JiP297Is4AnF73XySbqbryEyHGvyNQnVG2KFnPiWCtjcJ0+rgF4lQ8wso1FIE96fTOINRviSXKVMMun7LQTK2DWqQAuXf+pF+lNDbmw5MQS5lAIFzh18aA6RBWQkiDdIw5TBhSOtUoY8rRLzi/Xoz7I85ByJyCRATZ4GDMtlYiYIcQyLhkIdykwqGKLmFClRxRRJU/RTjkSSVkbef//9Oe3w29/+Ng4dOoStW7fisssu4/9/w4YNeOCBB/Ctb31rTs+fI/WUm9V8yUAf0dnNOc2NaiaQK4hmkbuAzm0oANAMAHAFwrBHVxvsvnBKV/mKDSosrzDhQPSmnimL+1ygKArnNhTgxf298Idp7I02f4gxW22zy+bjW9RLKC7LR6yEIizea+GyxiwaOWy+MD44OQpfKAJNivMYXzrQixf39fE/a5XZJ9SVmtX4qHUUvXY/emx+mDUTi7CBMM1nuC0pN0KrlGFphRnfuKwR9zx/CBUWNR69bknGM8Wmo9ikwt5uO3psfvQ6/KgriHdIbhvxwkVMlEY8IWxtGU5Z99NAmOE/g8OuIA73OrCEEIHEQENh3GXT5/DDG4zMOWohGWzeEMwaOa5cWooVlRMvPArNskoT//3BHgcunF+YuYMhmO15SUYgyGUS2LwhDLuD0BDXryqLBg6fE/1OP4IRGsosXIQAwJe9AsCCksRzeyK3bFOpHh9+48JJn48sBc1GoY50Ss2fgaOOdM75Jun6SrK6xoJ/R938HaM+tI34cFbdbI9WGPqd8fF1qUm4+1fHqDdh0u0L0dgvkhxMdzCCcPTYMtVAIUaBXontbVb02v2wesMwqCcf9/9lRyefkwgAXTY//vhRO35304pZ7XuIEOokFJddmykqzGq8cWQAfQ4/umw+VOalvztxjtTDsiy2RhuXyaUUOkZ96LX7+eY7w64ATkXvTYZotl8S+wAAtZpJREFUGbycKH2lc0KdICQ96j3//PPntMOXX34Zzz//PNatW5cwsGtqakJbW9ucnjtHepBEgyRfOdiPEM1gfrEOWoV80pKNmRKhGb7ERaPIXLvxmRJzicVW+JdVGKGQSdFt9aZUqJNIKFi0CqyuNkMulWR8cDJbzm/khDqA61qZCkPKwW47n8NmUMlF4XKZjBvXVOCx91th84Zg84VRbFRCJZNiW+soLllYPP0TJMHeTjs+bh3lf061ECgEjUV6LK80QSGVoN/hn1Q46rH5sLbGggjDYlFp3IlxzbIy+EI0rllWJqigM1sWlHCr0XKpBL12X4JQ5w/RWFNtxskhD3GNlOE/h/rH5T3OBi8RAj3gCqDT6hOdUGciFm5YFtjfbY8ulghDl9XLT7RuXleJ9XXTdyNON2JtKPHSgT488J9jqLBocM+GediwsGhG241dsFHJpfAEIwiE48JTVZ4Wh3qdYFmu5Le+UIdspIUQ6hqL9QiEafx2yym8fXxo3GOlEgrziqZ2mSUIdVlYfqaQSfjmCQtKpnfUkeLtVF1fY5Ad1k1qeVpiSlKNjHCLrRPwelOTr0WX1YtQ1NFXX6CFXiT3ULLqJtPHRJoJdndY8bv3T6F12AMJReG5O9fjN1tO4o3DA6BZFuEIA41CikCYhoTiyrHbhj043u/CwtLpz/exDLg4EVcqobCuNi+jY19yrPn/3juFYVcwpY2ucgjDnk4bVlSaEWFY2DxBGDVyyCQSDDj9KDdrEprbxKIpyJzPcBbed7KRWV31AoEADh8+jOHhYTBM4ht11VVXTbntyMgICgvHrwJ7vV5RT7rPdC5oLMArB7nw8+ZBTmFfTQT2zgarN8QP1H0hOmGQIkZIl1iEYXGwhys96rT6sCyFjguGYbGtbRSBMJO1kxIAOLc+HxTFTcY+PDmSkk6kbx8f4ld+Z95ZMDNoFDLceV4tHnmTc2EOOjn36B8/bE+5UGcb0xFRrNlsU1FsVOFANItMLZfiskUlE7aM77L6+Ky/s4kGAxRF4TNrq4Q74DlSoFdhf/TvvWxRMc6fF//d3i4b/1oYVDK4AhGMeIL44avHUiLU+cfk/hQbhCuzmiljS/73dNgEFerIUiOxZGGWm9XI0ypg9YZwqNeRMoflXOm1++EKRHCs3wVmlnZpiqKglEngCSY2U6rOizuLuqzerL0nNg9wQp1MQqE2XweHL4Tfb01cnI7dL2mGnXYSpCDGS8Esc9QxDMtXJEiomd3LNYQg5wvHFxpUEzSTALiO6yYNt6Ds8Ifxn0P9+MpFDXM88vQS++zIJFSC0JhuJBKKF+kAoHXEi9YRLwJhOuMLxWSOtTHDFRRkdcs3XzyS8Lsuqxe/e3+82YQCcH5jIbY0DwMA3jo2gOp8TVKLqSzLYig6fqQZFgMZLjdtLNLjWDRLeHeHHTSDnFCXhexqt2F7mxUAcMmCQrxzgjtHu6w+lJs1Cc7lmKOZLI3NOeqEIWmhbvPmzbjlllswOjo67ncURYGmp86iWrVqFV5//XXcfffd/DYA8OSTT2L9+vXJHk4OgSAnSBqFFI1FerjmmFE36gmCQjxQOhtcQOfNy+ddYqUmFUqNamxrHcU1y+c+eY5h94XQFF1hri3IzkkJAJi1CiwpM+JQrxPNg26sTIGYSU5eSkTcfCTGZ9dV4Y8ftvNCWoFegV67P+UTbKuH7IJqRp4Iu3hOx5JyI75xWSNePtCHI31OrPjRO5BSXC7MknIT38lv0BnAknIjVDIpGrJ00g5w79O5Dfl8h+Tboh0z3zgyAClFocKiRr5Wic+sq8R9/zoMuYSC1RvGvf88iJ/dsHROHQw9wTCMahmcfm4gJlahbmmFEYeiCyK7O9PXiGUiyOwdsTQ6oigKFy8ohNMfxtIKE0I0I4pSULI7brl55iV7Y4f5MVGAFJ6qiLKqTqv4c8YmIhRh0DbCLXDWF+oS3GQkFg0nwsqlFC5onFqUJoW6bCt9JUs8dUrZjO6FBpUca2ssCNNMwgRxMiGJoii89bXz8INXjuJInxMOXxhOXzjjYs9U+KJOQaEX2uYX63nHp0omQW2BDmqFFEPOAKryM1vWaPPG43FSndWaLDV5GiwsMeD4ACdSqeUSMCz3ft385E5UmtWw+ULI0yohoYCaAi0oUNAopCjQKzHiDuI3W1rROuLFZ9ZWYv0MnXE2byjBNZvpc7iSWDzJ0yog8mbKOSbB7gtjeaUJcqkE84r0GPGEIJdK+EY/5D0qdk0qMamxqsoMhp1+MSlHakjawnT33Xfjk5/8JAYGBsAwTMLXdCIdAPzkJz/B/fffjy996UuIRCL4zW9+g0svvRR/+tOf8NBDD83qj8iRfvJ1Siwp5zrO+UI0DvQ4sOXE4JwaKTSVchPzGJnMXJgp5zYUoNysxqfXVMDuCWJvlx072kfBpHBl4d0TQ9jX7cC+bkdCiVo2cv68+GTDMcdMw0CI5l1GAETbrZJEq5Th84QbbMQdwoAzMM4BN1dGicHs3i47lFlYLl1u1uDLF9TD5g3B6g3B5g1hxBNCr92P4wPx4PzWEQ8O9zqxu9OGEgEDt1NNbYEO3TYf9nTase3UKOjooOdgjwN7u7jsugUlBly/ohy3rKvic3r+vb8Pn3lyZ4LrKFkcvggv0gFAoQhjB/QqGY72xQP4D3Q7BBUkSCeHmM6zn96wFH/47Cp8+YJ6UYh0QLw7LgCUW2YuapLjBwqAMuqOIs/tKmJS2G31zuEoM0e3zYvV1WbML9ajqZQbR3mDifd2CQXUFnCiSJhmpy1Fl0goXqzLNqGOvI+bZ7iopFPJsKvDhv3djoT752SOOgAoMqhg1irQ5whg2B3Eb7ecSulYLdXExntCRzc0EaWYgQiD4wMu7OuywyaCcmEyF9uizex9yqCW8yIdAPjDDKQSCnZfGEPuELrtflzWVIIPvnEhPrOuCmfV5eOhaxfjrWNDGHXHx2inhty46Yld+OOHM2suRrq7gcw3mCOvyVZvCHs67fAG595cMIewHO1z4kC3A7s7bCi3aHCwx4E9nTYMRTus+4j5pyZ6TXL4wtjbZcf+bkeumYRAJC3UDQ0N4d5770VR0cwySMZyzjnn4ODBg4hEIli8eDHefvttFBYWYseOHVi5cuWsnjOHMJCii0Yhhc0XTrhpzQYyi0YjkkyMqbBoFfjNjcsRDDOIsEClRQ27L4ydHdaU7eP9aAMCAKLtyDhTziOFOiLTcDb67r8P9EGtiF+yCvXimTxPxS3rq1Cbr0WpUQUJxU0sulLcwXCs8Jfpgdxc+PG1i6CScee9VMKJJP8mGmX4wxGUmVSotGhE3fV3Jvzik0uwptoCo0aOq363DQAnRhTquY5qX7qgFhRF4a6L6hImU1KKwi/ebpn1QgnZCEgtl2a8vGkiKIpKOI+DEQZH+oTrdDqQEOwuDkedWOmxc9czo1rOh04nC0UBqqjwGAyfXo669hEvdrTb0DzoRkVUyPSPEdoL9Srk6+LXM7LR1mTEcuqyLaOO/BxXzbDpD+ki8gUjKNIrUTdNllqPzYfWYQ8qLRrolTL8a18Pro5eZ8WIXCpBsV6JiiRcqamAHKfpiCxAxxyrZlIBWUo/k6Yj6WRllRm/3bSM/1lCAU98dhU2f+1cfG59Fa5fUYbv/NcCAFxcxx3n1uKJj9oRohmwAN8B9uQQ56796Vst2NU+/dyBzOkzqeUJ2byZoNISvybrVTKoFVJ0WXPdX7ONXrsPZSYVzqqzJOSsxxr9RGgWZSYVGot1UEfvNQqimUTOUScMSQt1N9xwA7Zu3TqnndbV1eGJJ57A7t27cfz4cTz77LNYvHjxnJ4zR/ohSzF8IRpquRRtw3Nb4Y4wDEwaOZQyCdRTrIyKib2dNvz7QB/CNItumx86hSxhUjdX7IToUqDLbiFiWYUJehU3kHbOcdA34PTzDpLzGvKxtMI45+MTAq1ShiuXlqDfGQDDcmGs7SOpc4aEaYYXQaUSClIJBaNa/KL3ZKyvyUcgwg3OGQZw+kIIhhkc6XOgZcCFPnsAfY4Aum0+mKboupYNrKrOw4gnCJsnCJZlwbIsghEG/jCN1mEPn41WZODKDQDOebStzYonPurAh6fGR1DMBCshAqQiOzJdGFUyKGXxgeEeActf+6MuBori8hNzTEyEZnjHR7K5oaTOTIETCbRyCZQyCXqsXrSNeJCvU/Bu+64sddT1EK6gmAjjC9IwquLX6QjDjBHqpnczGVQy6JXShMYS2QDZwTJ/hmMcvVIGmYQ7RwIRBkPuINpGvNAqJ79+KWUS7Om0o9vmQyBMwx+iwTDMnCpB0kmv3Y9BdxD7u+2C7rehUM93z2VYTlCyaBWwzeAcTDcGtRwmjRwSistyzSQmjQIXEY1yGBY4qz4P84sNqLBosKDEkOAQtXlD+PsuriGRlKLAMCwqLRpcsaQEAJfx9ZV/HMCwO9ExNxbSUecMhKHIsJOadNS5AxGY1PKEcvYc4icQpqFRyGD1hOAPMYldtaNOuiEXN9YedAYhjbq35UTkQk6oE4akZ3OPPfYYPvnJT+Kjjz7C4sWLIZcn3iS/+tWvTvscNE3jpZdewokTJwAACxcuxNVXXw2ZLHsnl2cCS8tNfLA5ALgCEbx0oBdXLSud9XPafWFeZMiGTo0AcPWyMjyyuZmfZAy5g2ido2BJYifKDfL12S1EyKQSbFpVAYYFPjo1jFPR14kdl040PX/b1Q27L4y6Ai2e/NzqrJqc3LyuGo9v5VZWvUEaL+zrwQ0pCt8lz5dYdo8uSz5LE2HUyHH4gUuhV8rw63dP4rfvtaJl2I0r/x/nhKghMnPUWVAuPx2NRXp0jHpxfMCNEXcQuzps8IVoLCwxJDTY+cZl8/HWsSEMEqvrj77ZjHPr8yFJMiSmYzTuTBJzCblZq0AH4aLa02HDF8+vE2TfsYy6Qr0yYXAqBvZ12fD28SHsbLfhuc+vy+jnYMAZ4K87yTqByPsARVGQyyTwhhkADM792VYUG1TYef/FqMrT4viAC712PyI0I/rGU2MhM/wqog4ybygCZ3Qs9a3LGvGZdVV4/fAAzp9XgHydMsHZNBXuII0R9/TuOzFxtD9eiVGdP7NzhnPYchl+HqLr61QLDXk6Jd8lXhntKHxswA2bN4Q8kS2CRojyZaGvN1IJhYYiHY72ueAP06DAiUxD0whIQtDvCPBzBIMq8+ManVKGs+vzsK2Vc8KNekIo0CsTGl7F+NO2Dt45u2l1Bd45MYQumw8SCfjnsHuD+OGrx/HzTy6d1Nl++aJinBhw4m+7egA2scFOJsjTKjgnK8UJdQPOANpHPMCC2VXa5RAepz+M1mhuqkUrTxhDxLpqxxy15DVWTnYbj4hzweN0I+mr3j/+8Q+8/fbbUKlU2Lp1a0IQJkVR0wp1x44dw1VXXYXBwUE0NnL5ZI8++igKCgrw6quvYtGiRckeUg6BkEklOHdeAfZ22uANRFBmVs+pZOr/PmjDno64Q0KbBc0kAM5dcVZd/EZdX6CdU17UWNyBeC6ARZPdQh0A3LK+Gg+8eowX6WbDySE35hXq4AlGUG7WZJVIBwAFeiWuWV6Kf+7lGpE4fWEc73dhYQpKGKwTrHrrpnAZZAOx8rn6Qj2q8zQYcPgRirCQSCi+E5VcSmXdeTARJUYV5hXqYNYq8OzOTqysMsMdCKOuILHMR6uUYWGJHsUGBVpHfPAEIzg+4MKrh/uT7gTrJvJkxNyURU+UUf70+iW4cP74jvHpIBiJix9i6fhK8sK+Xvxjdw8ArskGGUshNAn5dHNx1FGJDaXkEgomjRwsy+LeS+aBBTdBzcY4iF47KdRxrxGZUadVyaFXyXHjmkrcuKZyxs8biwvxBbMryzZWgSChgMbimd8DDWo5rGPy6aYS6qQSCkUGFfocfoRpBo1FOuhUcnTbfKIT6oYIsVWZgfvavCI9jva5wLJAkUGJEqMKETrzE/GYWEBRgEEkDvq6Ah0//t/dYcV/LRlvVnAFwvjz9k4AXKfMr1xUjy6bF8UGFQxqGb65cT6+6z+CYITFa4cHAAC/vXH5hItunOAswcoqE+y+MGryM9tEi6IorKox4/1mLqanqVQPTyC7rkFnOuScVauUQ6uQYn6xHgqZBGq5FAzDoq5Ah2CERgnRbEwuyZW+Ck3Sd4PvfOc7ePDBB+F0OtHZ2YmOjg7+q719+mDMO+64A01NTejt7cX+/fuxf/9+9PT0YMmSJbjzzjtn9UfkEI77L5+PT66sgD/CoGXIgy0nhmfdovml/X04Nezhfxa609VcuIaYGLeOeLG7I3UlWZ4xA/hsx6iRY1trYonen7d14smPZhakCwAfnRrFzg4bjva7cMnC7Fy1++9zavjvTwy68ZM3jqfkeSdqTHE6OM0AoNKiQceoD4EICwZAhGFhj66uZ0OX6JmQp1Pg5LAHuzps+L8POvDRqVG4AhH84lNLxz32qVtXo23Ul3CN+MXbJ5MOkyebNNRkeHV+KshJ+Joai2CZhEPO+KRZLB1fSc6pjwtzH58ameKR6afHPt4tNlPGlr6SY4Aww6J5kHOZblhYhEsWFqGhSJ+0e1QM9Ng4YUohlaAomq1KZtTNtpFWbDtfmBZtOedYRt1BPgNJKqGwsWnm5YyGMdmr5zUUTHsfiDWCCUbHrPu67OgUYQl1H/E5ykRmaGNRfGFo0BXEgR4njvULlwk6GY5ooyy9UjanTuep5LrlZTi3IR8A8PLB/gkf89qhfl6Mv25FGUpNalzYWIgjfU5sa7Xi1LAHD127GN1Rt+1rhwfw6FvNEz4Xw7D4x54e7OtyQEpRWFye+diXaiI79Fi/G/uJBjE5xA+ZD6+SS6CSS9E86MbhXif6HD64gxHs67LjaJ8LgUncvjmhThiSFupCoRA2bdoEiWR2Kz4HDx7Eww8/DLPZzP+f2WzGQw89hAMHDszqOXMIh0Etx9PbOkAzLCQU1y1qtvlsZAkXkB3NJGJctqiYX/WUSSjoVbKUDJRZluUHsUB2dMKdDqNanjAY18ileGZnF17c15uwqvPaoX5s+sMO3PjHHfj1uycTnsPpC2FNtQXLKowoNWdnXtT8YgOfMwZwgcKDzrmXlrj8YayqMvPd7xRSyWnhNAOA6nwtFhTroYjmlJnUMijlEqypseC86EA52yEbJpRb1DirLg8XNU7sHKMoCpcvKsb6WgtfBtRt82FL81BS+yRdmEsrTMkftEDML9ZjfW0elpQb8fGpUfzu/VZsOZHc3zobKAq4amkpVlebU+J6TTVn1+chZiz7aJY5haliLo66BChqnOiypMzIT2SzFZZleTGzzKzmhUYvUb4520WH2HYsmzjxEjNvHIkLG+YkKwZWVppQZVFDq5CizKRCnm767UnH8OIyA9ZUmzHiznz22lgGiPFwJhba5hWNb9RANgDLFKPeEKQUBZphRSNGNxYbcHLIDQB45/gQ9nUlLtRHaAb/771WlBhVWFZh4uMaagu0WF1txppqM6zeEBaXm/DYTcsR0x//8EE73pvgXj7g8mNJmRFrayxYU2NJ7x83Q5ZXxseyZSbVaTPmPFMIRuL3H5VcyndcB7h7iZP47JuI6zRZ+poT6oQh6U/W5z73OTz//POz3uG8efMwNDT+QjQ8PIz6+vpZP28OYdCr5LhmOecmY1jgQI8D3bPoxBYI0+OaC6hF2HlwMvQqOe/sijAsdrbbeKfPXPCF6ASH4unijCLz2HxhGgPOAE4MuhMmeTvardjVYcPOdhv+trM7YftDvU7s7rThYI8Tn/7jLlzyyw8EO/ZUctdF8WvcsDuIn26eeAU1GfqdAeztsvMTtdPlnAE4ESvMsHwWhsMfgTsQwe6OeAv5bMdIDILaR7zY3mbFSkLQHcuiMiN2tNvgCkSgUUixtNyI37/fltQ+yVzD+sLMdtKbCplEgh3tVhzudeK7rxzFz95qwb/3902/4RypsGjw208vx7++eBbuulB84xKTRoElZZyronnQjWFX5rKkRj1BLC4zYG2NBZVJujPHTrvHLkwd7nPy5WPZis0b4hffSCHTH4q7YieqJpiJKEFu5wtlR+nZni4H//1ZdXlJbRuiGXTZ/PCGaPQ5AjPKeS0lGsEc6XNhd6cdJwZcU2yRGcjOnjPNJ0wlC0oMuHh+Ib50QR1f3jbXBmBzhWFYeIM06GiTJUokZe9qhRRf2zCP//mRN5sTPq/vNQ9jwMkF8edpFagt4EpVK8wa7Om0Y3enHf85yN3HLl5QhB9dw0U+rau14L5/HR5nfvjr9i7s7bJjV4eNb6iWaVZUmvjv+xwBbG0ZTtrZnyNzJDrqpHzHdQAIRGg4/PExItmcjnTUhURQGn8mkLRQR9M0fvrTn+L888/H3XffjXvvvTfhazoefvhhfPWrX8ULL7yA3t5e9Pb24oUXXsDXvvY1PProo3C5XPzXdHz44Ye48sorUVpaCoqi8PLLLyf8nqKoCb9+9rOfTfqcDzzwwLjHz58/f9pjOZO4eW0V/71SJsEbRwaSfo5hYpJtUMlw8fxC0djaZ8q1y+PlrxqFFF2jcy+nICfQRrUcutOkvO/s+ny+gy0FoMKsRmORHq8e4lbXWZbFrnYrVHIKUopb7emMvp5vHRtEv8OPEkO87E1s4e4z5fyGAnxmbSW00YH4Kwf7cLjHMafnHCU6eFbnabBMxA6p2fDNjfNx36XzsGF+IeoLtJBJKJQaVVhZPbmYlU2srjbj/25eiSuXlKChUIdLFxZhxRRC3bkNBbh6aSmKDUoEwjQO9TpxpM+JthHPpNuQ2LwhBKMDao1CivrCzObdTEVdoQ4rKk2oK9DyDuad7VbROCsyybkNRPlra+Zcdcf6XVEBxJZ8MwnifaQAFBpUMKplkEspaBRSFBuU+PjUKIJhGod6HHjlYB9/z8gWnP4wavO1UEglKCdeH5s3hPpCLdbVxku6gxEaG3/1IVb+6B3c/NSuaZ+7tkCLxWVG1BfqMi6qzBS9Kj4hXEZM9mfCghIDLEQ5vHEGmWVkx+bqPA0WlOjh8InPUUe66zNRbl9sVOGpW1fjm5fNx4aFRWgqNcw61iZVuALxc5p0/IiBT64sR20BV/65p9OO95qH+d89uyu+0Hzz+vh8qcKiwa3rq1Bi5HITd7RxOXefWVuFT60qx852G2zeEB55M76A6wlG8IcPuZgYnVKGxmJxLKyVmdT8dUsmobCkzIhPP7Ezw0eVY6aQ1UwqmSSh3D4QpjHkCqDSosaSciMsWgVODbkRoRkopERGXU6YFYSkVYAjR45g+fLlAICjR48m/G4mqx1XXHEFAOBTn/oU//jYYO3KK6/kf6YoCjQ9dUC/1+vF0qVL8d///d+47rrrxv1+YCBRQHrzzTdx++234/rrr5/yeZuamvDuu+/yP+e60SaysNSA5ZUmHOh2IBhh8O6JITx49aKkhDay7NUViKA/BSWAQnPevAIU6BUYcXMr5icGXVg+xQR7Jti98YGJ0x+GJgMrq+lAKqHwyVXl+P3WNrAAeqJOOpmUwt0X1WPQFUCXzYdwdIXGE4ygy+ZFVZ4GHSNetA57EtwXhQZxBUHPFImEwh3n1uLlA9xqKs0CX/rbfrx819mzzt8aJUKoO62+rOuIOB2XNBXhkqYiHOxx4JrfcZ1f+50BaLLIgTsVJUY1Soxq9Np98IdprKmxoMgweXl3Tb4WDLgcIfKK+9qhAfzPhoZp9/fu8bijXey5oGUmNZ99U2ZSoc8RgNUbQuuwBw0TlGqdSZzTkI/H3m8FAHx8ahTXrUhNF+lkYFkWHVGBuNSYfHMp8ppOUQDDsnD6OWdYhKbhC9GQUkCfw49P/mEHQhEGDYU6XLl09p3mhaa2QIf37rsADMPyAjnAOapbh71oHfbynZeVMim6bdx1YCaO4UCYwZE+LkfMnS1h7sSbvqY6OUddvk4JW0JJ1vQZvmQzmBFPEN4gDX+YRjBCi8adBCQ2k5Bn+Lis3hCO9bugkUvg9oehV2cmK7nPFneWaeTimofJpBJ8Y2MjvvjsfgDAj187gbPq8jDsDuLDk1xuaIVFjfOJBRWVXIqGYj3+vKMLAPDXHZ1YH3WV3v+JBXjn+BDsvjBeOdiPz66rwqpqS4KA6wlGUCSSsS9FUVhRacJbx4YQYVgc7HVCr5QiFKGhENHnKsfEkPcipVya0MAmEGbQ5/Cj1+5Ht82Pw71ObDs1Cn+YSYhqCRMaDc2wkEooRGgG/jCd0Agsx9xI+sr3/vvvz2mHc92e5PLLL8fll18+6e+LixNDal955RVceOGFqK0d30abRCaTjds2RyK3rK/CgegEatAVRMeoJ6kSKtLmr5BSqM0Xb6D5ZMilEpzXUIAXo6VYT2/rwE2E23A2WL1B6JRSeKL5NadLYD7Alb/+fitXoqdTyhCK0DjW78LeLjtu/ONOqGQUyvI0cAcjsHlD6LL6MFQUxCObm6GQUigzqdERLbMuFChUPh3U5Gvx1Ysb8OjmZjAsV87z3J5u3H3R9CLLRDx4dRPuurAOF/ycKwc+HXINJ2J+sR7v3nseXtzfi0CISao7YjZwx7m1uOPcqe9NMeYX67G9VZHQAfHVw/346sX10y6YvXk0voAlxkYJJOVmNaosGgy4Agl/1452a1qFuthioZhZUWmGRiGFL0Tjo9bRjByzzRuCKyoQxdwlSZHQTIJKuHZJJRSM0S6fvXY/qiwanBr2oMvmA8OwWddUQiKhEmIJmgfdUMkkqCnQwqKNO8Py9Qr02Py8U7rP4YdcSuHFfX1YWmHEWXXxbE5SqHJkiaPO6Q9DJZNArZBCr0pufHNWXR623Hse/rm3F2GagWUGGXclhKOuNl+LAWcAnaM+bGsdxUXzxdOYilxwy/T4ZkmZEaeG3LD7wui2+9Ckzkzzgm6iwYYxQ2LhVGxsKsayChMCYRr9Dj/ufGYfGgiH+k1rqsZdpz6xqAQfnxrFluZhvHl0EP4QDbVCCpNGgXsvbcT3XuYMMA+8egyv3HVOglCnU8pQJaLmT8srzXjrGLfwp5RJ4AnRsHpDouyUniORQDgCuZSCSiaBRiGFREJBIZMgFGEQCNP4285ukIba9lFvQryTTErBF4qLfZ/47Uc4OegGC+DTayrw8HVLBPxrTm9mrQK0traira0N5513HtRq9YwHieeff/5sdzknhoaG8Prrr+Mvf/nLtI89deoUSktLoVKpsH79ejz88MOorJx8UhgMBhEMxm+yMynbzXYuX1SCb//7CF/nvrfTPmuhLkSzUGapO+aW9dW8UJeKgOI+h58X6QBAexoJdbUFOqysMmN/lx0yCQVGQkGrkOHhN47DqJbDH4rApFHA6gmiNl8LuzeE3R1WLCo1oNPqTQgxLdRnZ0OJGIvLjFDLJQjRLKyeIH7x9kmsqrLwq6vJoFHIUEwMjE4ncZdEJZeivlCPPK0S0EKwDqBiJF+nAMOyaCjSIRxh0Gn1oXXYg5YhN+YXT978wB+isT1abiOhgHlF4i17BQCtUoYIw6BQr0SeVsFnWu5st+KW9dVp2+8V/+9j2L0hVOdr8ffPr0vbfuaCQibButo8vNc8jBF3cNr3Ph10EHEPNfnJC3UsodRRVOK1Sxad4JYYlfj7rm6+8UAowmDIHcjqyWCEZlCgV3IuhGjESox8nRI9Nj8cvjDCNIM3Dvfjl++chD/MIE+rwNv3nIe8aIxEgV6JEqMKKrlElOWcE+EPMwhEuC9tkg3E9Co59Co5f+2fiVhblafBVy6sR7FRhWFXAM/s7EJjsS7h3BUDZPf2qrzMndsMwwJgwbBAY5EOfXY/mkozI9T1ERnGOpX45ggUReGPt6zEjX/cCVcggo9OjfLlrAqpBJ9aNd7lbNYqoFZIoZRRUMlkuP+lI3jgyiYYNXLctKYSf9vZheZBN472ufDCvl4wRDyAP0SjzCQeoW4F0VAi5tBy+MJZfW0+UwiEGYRpFmGa5qOEKi0ahCIMDGoZ9hFZohsWFCIQobGv08F3K4/QLFqG4lqHNxAGCy7CQiLyRc5sI+kaKavViosvvhjz5s3DJz7xCb689Pbbb8fXv/71GT1HIBDA7t278dprr+E///lPwle6+Mtf/gK9Xj9hiSzJ2rVr8ec//xmbN2/G448/jo6ODpx77rlwu92TbvPwww/DaDTyXxUVFak+fNGhkktxFVF+8uzOzqS2HxoTfm2aQdaIGFlSbuQtw05/GO0zzImajB5bYojs6dQYAAA+f24tSkwqOPxhnN9YiFvOqoZKLsP8Yj2+dEE9fnfTMriDNNpGvDjS58TP3m7B0X4XKIrCHefU8M+TraWvMSrzNPCGuBtlbNXqV++enHX2ljc4dTD56UQyzrPTleo8Ley+ME4NeRLKZF87NHVe6EenRvgBNcPOLOMp05Sa1Oi1+3Go18k7cHa229KaU9dt86HfGUCfY3YdzYXinPq4u+rjDHR/Narl+Nz6KpzbkI+l5aakt2cTHHWJ1y6VXIJt37oIA84gNh8bRKc1Lqx0jmZ3J1inP4x9XXb0OfzjFhzydfGfbd4Qbj+nFiuruE6PVm8IX//XoaiYAli0Cgw4A+gY9Yn+XAW4hhf9xHHO9l6VzD3ApFHgvo2NuHldFe6+qB7uQAQtgx68sC/9TWmSYcOCuLuvPENizKEeB5p+8Bae/LgTTn8YLUMetI1kTtAccMXPFYtGnGO+Qr0KP71+CfRR0TkS/Wx+YnExL6iP5RefXIrPra+BKxDBSwf6sL/HDoBzET9wVROUMgprayz43futONLr5LcrNihF1V11cZmRX1CJIYZOwTmmJxBJbCYBAO5AGN02H5oH3Hw+pZQC/vjZlXj29nX44BsXJDQ623JimH+cO5onyQJ8XEmO1JD0J/6ee+6BXC5Hd3c3NJr4zWTTpk3YvHnztNtv3rwZlZWVWLduHa666ipcc801/Ne1116b7OHMmKeffhqf+cxnoFJN7cS5/PLL8clPfhJLlizBxo0b8cYbb8DhcOCf//znpNt8+9vfhtPp5L96enpSffiiZNOquCBp9SZ3cR4k8leWVRgxvyQ784YoisLisvhq4++imUGzpYew+i8qNYjqppwK/j979x3eRmH+Afx72nva8t4riZM4eyckkBDC3qO0hF0oFFraH93QQQe0ZRRoyyZQ9iqUFSBk773jvbetvdf9/pB8luKd2JZsv5/n8fPY1ul0lk/S3XvvWF6UyPWh+/J4C7z+AJQSAfeVopZhapoKc7K0sLh8yEtUYGGuHudNMqDd3n3FOdalIWcrRS3FzEw1MjRSCMPNWfdUG7lsp6FyePyYk6XF7Cwtss8gs4WMLTmJcpSkq5Gpk8Lk8KDrWPnTI039BrC+iuhPl6WXDnlKZywUJalQkqHG4nw9poYzO4wOL8rbzu6iSF9sbh/X7yuybC4erZhkwNqFWXjxpjmDmoA53AqSlPjdZVPx+m3zcdUZPP7pPer0ChG6LsYL+LxwFq0cmTppVECrtjO+sqH6c+dr+3DX6/vx+Fel3O8iy1S1p5VvRgbq2m0e8HgMHr+uBAmK0HKbStvx8vZqAECWTo6paSrMzdZGXayJV6dabDjVErrozQBRfZFGg1DAx/xcHWZnaaCXC+NqKI2Az2Bejg6TkpVI18XmfTldK+UyZmQiPubn6LigcCxEVqmkauM3S2tOtg5v3bkAWpkQC3P1WDM1Gd9b2HcbHIZhMCVVhTSNBNl6WVQwbkGuHmumpmB3tRF1RifWH2/hbsuOsxZBUhEfk1NUEPIZKMUCzMxQw+QYuLcmiT1P5DCJ8KCWrgoue8RnybQ0DXi80O0GpQQ/X9M9XLPD7sUHBxqwuawdk1PV3LmMdYy0YRgrhvwp+dVXX+HRRx9Fenr0QVlBQQFqa2sHvP8Pf/hDXHPNNWhubkYwGIz6Gmh4xJnaunUrSktLcfvttw/5vhqNBoWFhaio6DsAIxaLoVKpor4mghmZWu4Esdnihs8/+P9fSboaicrQgeehegsW5g695C9efGd+d1n0Nyfbzurgr97YHairM47trIHeSIR83Lo4lBnHsqETlhfXzsWLa+fi9qW54PEYuH1B7Ks1YX+tCZtK27GzqhN3L89He0QPl8QxXvrK5zGYlKxCvdnFBS4B4PGvh5ZV5/D48dQ35XhnXz33nEVOcyLjk0EpgUoqRJ3RhbI2B3eVs6bTieNNvbde8AeC2HCyO1BX2+mKCgrEK7mEj8P1Fmyv6EReYnep7q6qMwtqD6Q5oidQapyX8OQkyFGcqsa6nTVY/rdNY/q1z4CBVibksuy6MlPe+/4i1BldUft1WWvfFQ7xJBhksam0HV8eb+F6OQGImtCqOq33VldADuie6G1QSvD4tTMAhErWO+xeODx+ZOpkONZoxd4aEw5ElCrFq5qIclMRnxeTPpB8Hg/7a83YVtEZ1eMz1g43WLCn2ohTLTYkxej4Rq8QY1lBAmZkaOD0BrC72ojjzZaB7zhCGiIuXMf7RZOpaWp8cu8SvHbbPPzru7O5LNi+rJqShBarBzWdTryxuxYvbq3ibrt/ZSGXqRa5jz5+3cyR2fiz8PxNs/HoVdNh8/hxsN7CDYoj8S3yWKFrqE7X8MLI2LxUFB0mOr2v6N/Wl+KvX57Criojdy4zVtowjBVDDtQ5HI6oTLouRqMRYvHAB/2tra144IEHkJQ0ek1cX3rpJcyePRslJSVDvq/dbkdlZSVSUlJGYMvGNj6PiepL89rOgQO1XW5fmovpaRrMztJiYZ4eqXHe1Lw/S/ITuKbOFpcPB+vNZ7yuyEDdUPu3jBU3LsjkygQ+2N+IttPKoC+cmoxklQQKsQDJKjHmZmuRqZNFBerGekYdAExOUSFTJ0WKSswdhO6vNWHLEErYmi1uPPFNGZ7dWMn9bjCT8MjYd95kA7L1MqRrpVyplEEpxieHey/p2lHZCQEv+iM/Hht0ny5yGzN13Z8TO88w+3QgkaV5Y+FzaW+NEVvLO2B2hsopx5LTr0mkaWRYOdmAK2el4a5z8gBEB7Jk4QEEpS1jI1DXanPDGwiVGGVE7Ls7KjowI0ODpQUJWJATfUJ/ekZdl2WFiVg1xQA+j8G/N1diZ2Un1DIhzilMxJwsLcZCW6DIQN3k1NG7oO0LBFFvdGJPtRFTUhSYl6PD9DQ16jrj52KoJXxyyzA9T4ZHE4/H4FDEMWwsSxkjM3OKxsCU7wydjOv3NRAhn4cHVhXishmpkIkEeHN3HXdbToI8KgEACGWgxuOFtRS1FLOztFhWkID5Obox9xk0UXX1lwe6M+p662+tlUdnfCtEAizI1XHHZW02D1qsbmRopUiQizArU4PCZCW8Q0jcIf0bcqBu6dKleO2117ifGYZBMBjEY489hhUrVgx4/6uvvhqbNm0a6sP2ym6349ChQzh06BAAoLq6GocOHUJdXfcbntVqxXvvvddnNt15552HZ555hvv5pz/9KTZv3oyamhrs2LEDV1xxBfh8Pm644YZh2ebxZn5Odybc67tqB50NFAwGsbOqE/trTWixuMEfYxPcIhlUkqjyld//78QZZdXZ3L6oqTrjtdeYSiLEdxaEDkK8gSBeCpfxdJmSqkaL1Q2r248Ouxeri5MhFfHRZusO6I2HQQKJCjHqjC40Wz2YnaUBAMzK1GBbefug19GVcRFprPZ7JEMzK1OLmk4nGkwulLZasawgAW02D/6zqy6qMXmXd/fVo93ugUbafTA2FgJ1kfuzQsLHlBQVrpmdHtUjdTg1mbvfZ1I08Z3FAQBLCrr71G0dxT51wWBoEM7ZZJCz0WNfIRML8OLauXj82hlcoI7PY6AKBy48/iBsbj8O1JnhCwR7W2Vciew5m64NBdNZlsXhBgsO1ZuxtbwD0zI0UfeJPBl/a28dzn9iM378ziG0Wt1YMzWFy1roGoZgdnqxr9aEnVWdcHnju/y1KiJQZxnFANDfvyrD0sc24trndsLmDmBPtRFHGi2o7hiZ8vmhajA5uf+nPDyBMVZmnLY/xjI7JrLdSWFyfA8+OhP3rMhHq9WN6g4HqjocUc/1vSvyopZNUIjj9jwpSy9Hi9WN3dVGbCprR2AMvDdPdB5/ZOlr6FxTKuwZEjq9j7FSKsSuKmNUVniH3Qu9XAytXIQDdWYcrDNz0+DJ2RtyoO6xxx7D888/jzVr1sDr9eLBBx/E1KlTsWXLFjz66KMD3v+ZZ57Bhx9+iJtvvhl///vf8Y9//CPqayj27duHmTNnYubMUDrwAw88gJkzZ+Khhx7ilnn77bfBsmyfgbbKykp0dHQf3DY0NOCGG25AUVERrr32Wuj1euzatQuJiYlD2raJIvKqT73RiYc/OT7gfSrabHjg3cNQSQSYnq7Gj1cWjuQmjoo/Xj4VCXIRhHwGhxvMWLezZsjrOH2QxHjNqAOA2xbnQBS+8vjl0ZaoK6dzs7V4/nuz8dJNc/DKzXO5ptEdNg/yE+VYUZTIfbCMZdl6GYpTVUhWSyATCpCTIMeBOjNe3l4z6IPjzogDWbVUgNxEObSUUTchFBiUWF2cBI1MiMp2B7L0oexmpzeAV04LfrfZ3PjyWKjXjcMbQIpKHNV+IJ5l6KQoTlUhUSlGi9WDz+9fir9eU4I101JGpMdUs2VsZdRFDpTYOoQg/9lqsbox+5FvUPK7r/DHz06c0TpOHybRl+/Mz0RBkoJbxuUL4EQfJd7xJDJDPiPcd2z98VbsrzEiQS7EnCwtklXRweDI0td6owtlrXZ8dLARMhE/qoKhK+h133n5KElXI1Utxa/+e2wk/5yzFhmo0ytG770nsmwyXStFSboaGVop/nuoadS2oT+V7Q7uxDbWF08iA3VKsSCqn+JoqmizRwWeDWO83Ulffr5mMlYXJyEvUY4LntzK/X5vjRkSQegdjwGglcfvcd0/NpTD7PSBxwAKER//O9L/UCsSe8EgkKGVIt8g5wJ0/gALflePWB6DomQFCgzRPa+VYgHX8krIY7jP5MmpSkxL7+7XTkNFhs+QIwFTp05FWVkZnnnmGSiVStjtdlx55ZW45557BlUe+tZbb+Grr76CRCLBpk2bonpUMAyD++67b9Dbsnz58gEP1O+8807ceeedfd5eU1MT9fPbb7896Mcnob4M2XoZajqdCLDA/lojajoc/Ta0f+bbCu4AqcXqwaL8sdufrsui/AQUJCmxM9w36UCtGTcvGto6JEIerp6Vxj030nEQjOqLQSXBjfMzcaTBgmNNFnx4oAE3h3vX6RVinF+cHLW8w+NHdbhM5fSePmNVhl6O401WyEV82Dw+rJxswAtbqxEIsvjmZNugmsNHZtRZXH5YXH6IxvF+Q7pJRfxQn0enD3IRDwvzdHhrTx38QRavbq/B7UtzuZO+t/fUcz2/kpQSdDq86HTakKiI/5OfBIWYe520WT2obLPh1R21OFRvwpL8RKikAgSCLC6enjosg1Qip2fGe486IPR+WZyqwvEmK443WdFp9/Q5bXA4dWUAWd3+M+41Fj1Mou91KCVClLfaoRALuEbXe2uMKDkt+yfeRA6Hygg3w2+zuQGGQYfDi8UF0h5ZMvkGBR65fCp0MhF+/O4hAKGLOkqJELkJ3VlFXRPmF+cn4rZ1+yHkAccaLTA7vdDI4i8Az7Isqtu7M9hOL6kaSckRgTp/gEWt0QmX1x830+MjS5z9gdgOuIgM1Nk8fmjlQjg8PsjFo3vcZXR44Q0/F0I+My4uzvZmRoYGNrcftZ1OqKRC3PzybhSnqsHjMeAxDAAWT10/E+cXj167qKEqbbWhLbwP+4PBqN6CJD6ZnF6un6BMJIDbF8ChejO63n7EAh5KW+xQnPa65/EYqKVCODx+sGx3TvwH+xtx+cw08JhQ1VSn3YN8w/jLgo2FIWfU1dXVQaVS4Ve/+hXeffddfP7553jkkUeQkpISVXLal1/96lf43e9+B4vFgpqaGlRXV3NfVVVVA96fxJ/lRQbu++NNNty6bm+/y0eObk5WiaEfxQO2kXTpjO5A9d4a45Dvn5uowK8umgJ/kIU/yHJ9A8arG+ZnYn+dCR5/cMCy6eqIK/GRDeXHMoVYgNwEORzeAA7UmXHB1O7gZFf200B6K32Vj9OSadJTYbhvj8MbxA/eOIi0cDDA5vHjtR01AEJDJLr63/CYUN8sly+AKSnKmJZYDVamVgqlRACHN4C399bjvMe34PVdtTjaaMW/Nlfi0S9L8bevyrD2lT3D8njNY6z0FQCWFnRn/G+rGJ3y18jsqGz9GQZII97z+9sTcxLkEAl4UdPo9lQP/TN2tEVmyXdl1JW22GB0eCER8LB2YXaP++gVYnx3QRYKkhTw+EMlZFPC/dzUMiF3vNT1mSgR8vGnK6YiwAJlrfa4zWZpt3vgCvdF4jPAHy4rHrXHjgy4N1ncKE5VweNncaDOHFUCFiuRbT26GrrHikYmisrcrDO60Gkf/eyYyNK63npnjSf/vHEWTv3hAszL1mFzWQee3VSJp7+tgNMXRIFBgfOLk+I6ULkorzvZwuoO4K099THcGjIYjohsVblYgBe2VMHhDUTcHoBYwCBb33MmQV6iAt4AC18QUITfr7yBICrb7eAxDMwuHxe4JWdvyJGAnJwctLf3LK/o7OxETk7OgPf3er247rrruHG/ZOxbVthdeiMT8ZGpk+HrE629Ltth93DTTKVCPtK1sphM/hoJl81I4xo6t9k8cHmHfgDojjholArH98FJYZIS88ONtCvbHdjRT3P4yogr8Xnj6CpNbqIC09JUKDAo0Wx2c733tpS3w+EZuMdDb4G68X5QS7pl6WXcPsMAEPJ4XFnCC9uqYLR78M3JVrSEB7YsyU/ArEwtCpIUSBkD2WIAIJcIkaKWQCnmg8eEgo1CfvdnBg+ATMhHqkaCeqOj7xUNUlfpq1IsgEoyNrJ3l8agT111e/dznXOGmYzRGXV9L5eqliBRIcL0NBXEgtCx475a04iUPg+nyIy69HAQPciymJqmgk4hQlYvJ0FdIqfcFqd2lxTlJoae6zabBzZ3KJiRpZdBJREgRS2JaiMRTyL3F6lIgCTV6AXBIzPqWiwupGqkKDAoMCtDgwZj7KdURl4cUMbBe06PPnWu0e9TZ4po/6GK4XCN0aCRiSDg85CoFEMm4kMrE0IjFUIlEcCgFMd1kA4AFuZ2B+rkIj4ytFLUdZ79ZzEZOc6I81OLy4d/buoeSKeSCELDIRQSZPbyGZWulUInE0Iq5CFDJ+OGAx6sM8GgDLVV6a1PMjkzQ46WsSzba2DFbrdDIhn4g3ft2rV45513hvqwJI7Nz9FzJ04ubwCbStvxp89P9rrswYhsOpcvMK76sMlEAijCQZJAkMWGU70HK/vj6WUSz3h2U0RGwWv99PVLUklwxcw0lKSrMSk5/qd/DdaLa+eg2eLBtooO/O7TE1gdLm/w+oPYVDpwv6l2W88PQ3mMr8iT0XPNnAzs/dVKXDQtBSyAinY7l2UXCLBY+tjGqL6h509Jxu5qI8pb7WNqOvCUFBVsngCCbCh7Kz8iqzYIwOkLYGelETurzj7L6u/XzsBT18/ALy+afNbrGi2zs7Tc58W28o5RCWBFNuLvCh4NVVSPun4CdclqKRrNbhxptHITMY0OLyrb4/tksCF8UVIjE3IBmO0VnTjWaIXN5Yeun2qC400W7vspERNSI8tfazpC68/UyWF2+dFscePwWUydH0mRGZhSEW9UL9Dq5SKuJ26zxY0kpQTlbXbsrzOjdhiC+2er1dodqIuHoNTpgTpLDIK/Za3dk521cVjKPRL+cPlUHP/9BbhpYTaKkpW4ZXEO3rhjQaw3a0A5CXKu16bDG8CuaiO2j9BUdjI8IgN1z3xbDpev+2er2496kwsddk+vvSGfvH4mDjx0Pk7+YQ2+uH8Z10c8yIYylg83WKI+v8jZGfQnwgMPPAAg1EfkN7/5DWSy7ihrIBDA7t27MWPGjAHXEwgE8Nhjj2H9+vWYPn06hMLok4XHH398sJtE4oRcLMAPlucjWS3B9vJ2uP1B1JtcuOLZ7fjg7kVR5VUH6qJHd8e6ce5wm52t5QIs7+9vwMXTBz+Z0O0LRGXUxftVtOFwfnESDEox2mwefH2iFU1mV68N3Bfk6rEgd+z3MuzN+VMMqOl0ggVQEJEt+OXxFlw0vf++n5EZdXOytBDwmXEV/CaDk6WXQS8XgQXg9gXxqwsn4fGvQwdfXeUMOQly5EQEVMZSr8elhYmoMzrRanVjUrISSqkAJ1tCJ3ISAQ/FaWqIBTwcbbTg2jkZZ/w4nXYPfvreYaSoJTh3kmHgO8QJiZCP+Tl6bC5rR4vVjYo2OwqSRvaCRlfppUzEh2GEp3BHBpUje7furTHGbR8crz+I5nAAJiM88fV3nxyH2emFSiJAcaqqz2BVs8WFnREnusURgbrI13BVhx3T0tVI1UixcrIBVe12VHc4cKDOhFmZ2pH4s85YWYsNoY5bwKQk1UCLDysej0GSWox6owvNFjfyDQrMzdaCYRi0WmJfotUe8TleOMKv28GIDNTpZEIY7aOfHcPnAVk6GZy+AM6bPHbei4eDUiLgvsYChmGwKE+PDw82AgCmpqpwrJECNfEsSSnG/Bwd/AEWpS2hi25KSSjZxOUPQCUR4NxJSYNqj3Lrkmy8tK0K6Vopms1u5BoUCATjO9t9LBn0u8DBgwcBhDLqjh49CpGo+wqHSCRCSUkJfvrTnw64nqNHj3JTWo8di55QNV5KICeiq2al40+fn8RXJ1qQrpVx5a1tNk9U2cGB2uhA3VjK6hiMTF13AHt7RQesbt+gyqdYlkXJ776KCs5NhECdkM/DDfMy8dSGcgRZ4M3ddfjp6qJYb9aoKsnQ4M1wT49Vk5Oglgphcfnw7clWuH2BfveDrkCdkM9gX/i1NVYO7sjwefCCSfD6g3hxWzWMDi9S1VKsmZaML4+1gM8AT39nFgJBliuVAwCNdOxkKVw1Kx1XzeoeruL2BfDJoWa4fAHweAxqOuzodPhwpMGMLJ2Mu8I7VE1mN6o7HKjucPRblhiPlhYkYHNZ6CLRwTrziAbqfIEg14iaxzC447V9Z7SeuoipqEw/XeokQj7EAh48/mDUceLeGiNumJfZ5/1iKciy+M1FU1BvcnJlnh8caOCme5r6mYr3iw+O4Fi49FWvEEVlNeRGTn4NZxTyeQwump6CH79zGACwvyb+AnUzMjVgd4S+18TgIkGKWop6owsWlw86uQh7a0Kfl1NSRjdo2JuOiH5O8XCCOzlFBQGPgT/Iwuj0Rb1OR0t5qwO14cf97oKsUX/8WLp9ae4Zf4bFysKIQN2xJisqOxzISZCPub9jojhYb0azxQ2pkAevP9QL8eLpKXjim3IAgNXlw8OXTBnUupQSIVZPTcZ7+xoAAPtrTWg0xb6lwHgx6DO6jRs3AgBuueUWPPXUU1CpzuzDrWs9ZHyRiHjYcKoVQTbUGDdVLYHHH0Rtp4ML1PkDQRxpCF1lEfAYlGRoojKIxoNzJxmw/ngLWq0e+AIsvjreOqjpne02Dzz+INc8GgDEE6D0FQC+Mz8Tz2ysQCDI4rMjTfjRygII+BPjbwdCJ15zsrRweP1os7mxcnISPjjQAIc3gB2VHTh3Ut/TvoqSlJCJ+Ggyu+ELhE4Ax1uWKhmcS0pSsbmsHU6vH6/urMF7dy3CI5f7UdZq5zIk1u2oQb5BDp1M3GuT4LFCIuRjcb4e35xsg9MbwN3L86CWCvHq9hq8vK0aAM7oBKHJ0n1wOVZ6+HVZXZwMpUSA4jQ1NpxoQzDIjtiwkN9/eoILKAh4DGzugftp9kYq5KMwSYGiJCXm5+r6XXZejg4Wlw9yMR+tVjc8/mBcl75KhHzcuiTUt3npo9/inxsrYHf7kawSI0UtwffPye/zvpF9RnNP6/8XWWZcG9EHam62DjkJMrh9QWwua8cdy+LrBDk5oiddqnb0X1spEReMxQIe5mRr4fIG4qKXUmTQNh4m9ooEPCwrTMShejOkQh6c3jN7fZ+NyHLbsZT9PVEtjBgokagUQ8zn4V+bKnHj/CxIacBZ3Ol6fXkDLAIsUGt04tYlOfCzLMCGht0NJXlqfo6eC9SlaSSQiQTYVdU5biuhRtOQUy9eeeWVYXngiooKVFZWYtmyZZBKpX32viNjg0EpwcXTU/HRwUa4fUE0WUIlH3VGJ+aHX6inWmxcHbw/yGJ/rSlur4afqTnZOrRaQ1dHGQAf7K/HlTPTBjxh6u2KpUQwMT7cklQSXFaSiqoOB2o6HdhVZcSSiOboXn8QQZYdtxmG6ToZlw0HAPedW4APDjQgVS3B9orOfgN1L908FwBw/hObUdZqh1TIh3iC7DckWkmGBjKxAOVtdnTavTA7vdDIRFFlTB12DyraHAAc+NHKgpht63BYMcmAb062AQhloSzM1eOhj0P9+D451MQF6lzeAEQCHl7ZXo1AkMXaRdl9vpdEvg9/eawZRxrMI/tHDDOT04tjHx+Hxx/Ep0eaRiwrMHKquUp65iVaXfcrydAMGBhtMLlQ3eGAWirEP2+cFSrlPsMhFqOh65g2MvsQAFqsHtyzIj9qyvfpAhHN+1JPe16y9HK8dus85CTIkRbRJiJdKwOPYdBsccPl9cPt80MSRwOpzJHDAWKUUQeEsg9ZAMcaLXD7QscWseQLBKOmGcfLhbY/XD4Vi//yLQBwmW2jqWt/kYv4EE6gC7djVbpWhiy9DLWdTnTaPQiyoXOgv311Cr+5ePQmPJOBeXwBrkdd1wW35YWJUEqE+MmqM6toijzObAwPx6los1GgbhiM+qd4Z2cnrr32WmzcuBEMw6C8vBy5ubm47bbboNVq8fe//320N4kMk7WLsvFROPVZyGfAsixqO7s/4A9G9KfjMUCaRoqcMZzV0RuFWIBfrJmEv31VCl+Axc4qI97YU4fvDZC6Hzkdjs8AWrmo30bT482KSQZ8+FaovP7bU21RgbpdVZ1Y+8oepGuluHdFPq6bO76Cu0lKCR5YVYjnt1ThVLMNXn8AszO12F9nwlt76vDAqsIB+87ZXD6opAJk6+L3xJWMvF9cMAm//OgomiwuPPTxcfzjhplRt9cZnVCI+JCJBUhSj2xfsZG2oqi7b9HGU234wfJ8nD8lCVvK23Gk0cKVjT+7sQL/3lyJIMuCZUONya+d23sfuy+ONnPfOzz+M84UixWHJ8BlZVe02SES8KAYgZ6VofL80HNz/3mFuGoQWeNnq6s3ncsbwHmT+754ES8uf3Y7VFIhpqd3T2zN1ElxTqEBF07rv/fozYuykaWXw+Ly4uJp0X1uhfxQtlNvrp+biZe3V6PV6sb64624bEba2f8hw8Ts9EEsYKCSiJCgGP1jm9uW5GDtoiwkKsQQ8HlYkKvHwTozKtscCARZ8Eco+3QgLl8AhUkKlLfaIRbyoI+T477I8mRzP2XaI8Xi9EIp4SNHT8c0Y8XCXD1qO51gwGBpgR77akx4aVsNHlhVRL2T44jF7QOfAQR8Hne8cHHJ4Pup9yY3QQ6lRACb2w8+j4FYwOC9fQ347oLsYdjiiW3UXzk//vGPIRQKUVdXh8mTu6eqXXfddXjggQcoUDeGzcjQoCRDg8P1ZvgCLAxKEeye7g/4ww0Wrv9WolKMFqsbGeMsUAcAhcnKqD4jf/n8JM6dZIi6+n26emP3FfcAC3TYvRNi6muXZYWJ4PMYBIIsvj3ViocieiNUttvBsqHnqL8+RmMVj8cgO0EOl88PpYSPd/c1wBLuJeb0BvD50WZcM0CDfKPTB48/CG8g2O9yZHybkalBg9kFuYiPfTVG/PaTY/jBinyux5XZ6YPdG4DdG0CCfOAp7fEsVSPFpGQlTrXYcKLJik6HB1IRH3wGUIj5uP+tg7h7RT6ONJjB5zHw+1nIRHy8vL0aZa02XD8vM2oQgdXtQ2dEGZxWLhpz/R6VEgHcvgA3nKaq3Y75ObphbyUgFymQppEiXSvD4vyEge8wHI8ZnmbtDQTh8gZwsM6ETw43QSYSRH1exAOjw4vD4TYfHXYPsvWhklS9XBwa/KLoP0i+MC8BC/OG/rxm6KSwOL3I1sujjili7VijBWVtdnj8LNrtnpictOvlIuyq6sTf1pchWS2GiM+DkM8gzaBAaYstarLuaFJJhLh4eioe/7oMbl8QSml8vOfIRHzo5CJIhTyMdgyTZUO98YIscKTRiqMNFkyLCHiT+PTdBVlYPTUZc7N1ePjj4+DxAJWEjz99fgLXz82i/2GcsLp8CLBAIBykkwh5OO8sh2fxeAxmZGiwtbwDgSALuVgEiZDPVXaQMzfqnwhfffUV1q9fj/T06CuwBQUFqK2tHe3NIcPs5kVZ+PE7ZgBAm82LA3Wh761uHz47Emr+LRXy0Gr1QCbkISFOrh4OpyydDJH9gB3eAH754VG8esvcPsu7eyt9jZcSiNGglgoxO0uLPdVG1HQ6UdVuR25i6CS6st3OLRfZn2c8ydTJEAgCVnegx1j79/Y39Buoc/u6s2gm0j5DepII+Tj5+wtwx7p9+La0Da/uqMWkZBWuD7cYMIf7kjDM+Bg6cvc5edha3oEt5e14Z289Hr92Bq5/fif21piw/kQr1p9oBQAUGOS4oDgZnQ4v3txTj1MtNlhcPvz1mhJuXYfrzVEZ4G/evgCyMZgF4AsEcd1zO3Ggzgy5WIDzJifhewuzY71ZZ00a0bfN6vLhztf3w+7xQykW4MELiuKqNcL+iFYG2Xo5vjjWAgC4clbaiDZXXzUlGSIBH1UdDry9tw73ntt3H7zR9OQ3ZVyZOhCbQTY2jx83v7oXXn8QerkIf7xiKr460YoOuxfrj7fELFAHRGesxctnOMMw8PhCPfyazG44vf6o3okjyekNRB1Dj7ehc+PV1DQ1TA4vPjrYCIYBDv7mfBT9+gu8sbsex5ps+PiexbHeRIKeGbLnTUoalosnM8OBOiDUd73d5sHuaiNWF/fd5oEMbNRTdhwOB2SynllURqMRYvHYLsUhwIXTUriyBomQB4kgtIv973AT159OLRViZqYG83L14PHGX9ZYulaGSclKzMhQc1lxm8va8f6Bhj7vUx8RqJuZoUFJhnrCXYWIvKLz7anug/qqiIbheYnja/hIl2ydDClqCRRiPkR8BhkaCdLDDbf3VBujmoZ3+fhQIy5+eitufmUP8hMVmJ2pjYsJdiS2+DwGSWoxlGI+MrTSqN5QaRoJZmdpMTtLO2KDBkbTrCwtPjrUiDabBy9vq4bT68eCXD2KkpRIVIiQrJJAKxMiUSGGWiZCmlYKtUQArUyIUy02bAlPSQWANqsbIn7oORHxeWMySAeESiP/ccNMFCUr4fYF8ftPT6DN6h629XfaPXhvXz1qOhxgR7G/V1GSAnOytJierobLH8D5xaHyV5vHj02l7QPce3Ttq+3u4ZemkWJhrh7FqSruPf1stVndeHdvPf78xUlu0i8Qeu0vzNVjTpYW2XpZ1EWuWDraGMou5DMMZmVooJOPfuBFLRVi1ZTQPtPp8KLV6saUFBXmhodKxMqm0jZ8dLABCrEAOQky6GTxcx7U9RnBAlHvlSOt3ebhMmiB0ORjMjbc/to+/Oa/x/D+/gbUdDpQkKRAUbICLMviztf2RV3EILHh8Pij2g9cPL3/VgyDNSNTw32foBBhQa4Op5qtw7LuiWzUoyRLly7Fa6+9xv3MMAyCwSAee+wxrFixYrQ3hwwzsYCPH60shFTIh9sXxJ4aEyxOH97ZW88t02L14GCdGaJx2iBWJODB5vbjUL0FPIaBUszHrEwNfvfJiV4DLkB3oE4k4OFgvRmH6y1xc2V1tJwbEajbWNodqOs62dDJRdCOwwxMANDIRdj5i/Nwz4oCeAMs6s1uzM7Ucre/v79nkLe6w4FjjVbsqjKiot2O/XUmjMPKYHIGvr8sDzZPAPUmFz4+1MT9fl+NCftrTWg2D1/gJpYydDJcMTPUh8vq9uO1nbX4yflFWP/jZfjO/Cxk6WW4aWE23rxzIW5fmot7VhTg7e8vhMnpw9FGC/66vpRb18kWG7yBUOApVTO2y4LTtTKcN8kAu8cPX4DFup01w7buHZWd+L/3j2D53zbhmW8rhm29AwkEgX21JhxpsKDF4salET11/ne4qZ97jr79Nd0no0I+g51VnTjeZEWicnj2q4p2Ox784Aie21yFzacFKRfm67Gv1oRtFZ3YW23sYw2jp83m5gZsBVgWB+rNSFLF5vV19azuSp4dlZ040WzF3hpTVGB1tLVa3TA5fbB7/KjucMZV79AkZfe2fH60ZdQet8nigsMTCp7yecyoZfKRs3dJRNDno4ON+OrH5+CXF07BkQYLvjrRir9/VdrPvcloaLG60WEPXcAV8XlYcZZlr11K0jXc9512L3ZVGfHpkea+70AGZdQiJbm5uejs7MRjjz2G559/HmvWrIHX68WDDz6IqVOnYsuWLXj00UdHa3PICLp0RmrUJK3Xd9bgSLhfS06CHDMyNJiXo4tqsjzeXDQ9GYvy9JicosLi/AQcqDPD7vHjvrcOwuuP7iPm9QfRHM54kEaU70y0dP98gwIZulDGwe4qI2zu0MFr10F+bhxP+BsueYlyzM/RITdBHnXy8M7e+qi+h0Co91GXKSkqLM7TYyFNWCIA0rRSrJqShHSNFGaXj5sq2DXpSyaKnzLBs3XPinyuh9JL4aw6IFTa2/UVKUsvw6xMDbQyIawuH94NX0TqiMg6S9eO/d6paxdlQxjOEHxjdx33vJytfRETX0ez59DCPB0W5+kxL0eHLWXtWJyfwDXe/+ZkK2zu0W943xuPP4Aj4QyyLL0M/oj37eG6+BaZWV7dEZ01l5ugwLwcHWZnaqM+I2LleFN3RkWySoyl+QkxG5S1tCCByyTZeKodywoSMC9bG9OpopFlaIVJirgKSnX1DgaADada4fGPTuahxemDIPy4IzEMh4yci0tSuX3m44ONCAZZTEpWYmZG6DO30ezC+uOjF/QlPXXYuqsspqWrh61thF4hRqYudOzEMMCcLA0UEgGCwdhO1h7rRu3TqaamBoFAAFOnTkVZWRmWLFmCyy67DA6HA1deeSUOHjyIvLy80docMoJUEmFUg+mXtldz309PV+NQvRl7qo3jurRzSooaOyo7sb/WBJc3gOzw0IzDDRY8/nVZ1LKlrVZ0xTUFEeVoEy2jjmEYnBue5OgPsthW3oGqiNKd8Vr2GilVI8XuaiOqOhzciHMAaLN5sKOyI2rZTnv3h+2JZiu2V3aOWmN3Et+EfB7UUiEazC40W9yo7QyVKTrCwZrxFKjLSZDjknB2ldHhxRu76gAAty/NxYtr5/boCSYTCfDnK6fD5PSh1ujEa7tqAADHm20AQhPJr5oVP9Myz1SSSoJLpoeeF7PThw96yco9E/vCpUsMEyo9Hi2L8xOwvbITe6qN+ORwE4R8Hjc91eMP4utwP8JYO9Zo5S7Gzc7Sjkj/MYNSDHn4NVzVEZ2ln66VYk+1EfvrTDgZ3qdj6Vj4Ii0QqqYwOr199uodaQI+j5uE6w0EUWd0Yk+NCburjdzFjNHW1TcUwLAF04dLIMhyFwgdngB2nNY/d6Q0mJxcgFsVJ8M1yOAkKMRYVhA6Dm2yuLGnxogklQQPnF8Y+sztdOLViHNCMvpqIiq7bl2cPazrPqcwEecUJiJLJ8O+WjMO1pnRZov9BaOxLCaXkdRqNX71q1/h3Xffxeeff45HHnkEKSnDUyNN4sPVs9O4q/mm8IGqJDx6PlUjQXGqCjnjOENqUZ4eV89KR4JChN01RjxyxTTu+fj35krsj8iW+uJoC0QCBudNMiBRIUJOghzT09VR2XUTRWQK9oaTrVH96cbrIIlIeYkK3LYkh+uV1RW4zdBJ8eWx6KuQkdkSWXoZlhYkxGSaHolPxakqTE5RwqAUo67TCbcvyF0QiKesjeFw74p8dJ37v7K9Gl5f/5kfWXoZLpyaDJ1chIpWO/bXGtHp8GJyshI3LczGFbPS+73/WHHb0hzu+5e2VZ/1lW2b24eT4Z4zRUlKqCSjdzFJJhLggVWFSFKJYXb68M7eOlw6o7v8NbLEO5YiP9vnZOnQbvcgUyvFrEwNEgeY9jpYDMMgJ/x5WNfphDMiyJSqkWBWpgbZehlahrE34Zk61tQdqMvSyzB3FIO7vbkyIgjv8gVQlKSETi5CbUfvbUlGmjHic1w9iq+nwShKUUb1VfxylMpfu6ooAEA7ji/oj1eXz+x+jf33YCMAYHqaBg+uLkKySoxjTVa8ubsuVps34XX1ABfwGC4rfbj84fKpWHfrPPzwvAJMT1MjTSPF+/vrB74j6dOoBurWr1+PTz75pN8vMj5k6uTwBaJPCi6algq7JwCTw4fjTVZkjIPyor4YVBKIhDx02L3gMwzAsnhw9STIhDzMzdbi/rcPwen1w+Ly4fWdtfD6WWwua4fJ6UN1hwNNZnfMrjrH0oJcPReg/O+hJrywtYq7bSJk1ElFoQEAXb2yuq4q1xtdeHdfPYyO7iy6rh4TDEI9Dp0xbIhN4o9OLsLJZhtcvgBarG5YXD7IRHwwDKIadY8HBUlKrJmajNmZWjAMg8+O9d8XRSLkg8/nwejwgs9nsK/WBJZlcbLFBoMqfnpEna3iVDUW5YXK4Ws6nfjs6Nn1izlYZ+amMc7N1p3t5g1ZSYYGrVYPXL4A1h9vhUEpRpomFEjYVtGBzjgo9dwX0Z9uTrYWnnBri1MtNmiHcYjClTPTsbo4CUIBD098052lLxLw0W73oN7ohN3jgyNGmWJdjjV2l77WdjohifFFgikpKkxKVgIIBYRKW21we/14fktVj7Yko6EtYp/VyuPrvcegkKDB5OJ+/vpkK/yBkX+O2m3dAebhDiSQkXf+lGQu4/ezo81w+wJQy4QoydCgxeqB0xvAy9uq8Nf1p0ZlfyLdOu0edIbPI/xBdsTecyYlq3Ck0QKjIzT9lZy5UQ3UrV27FpdffnmfX1dcccVobg4ZQVl6GTThlHWFmI/iVBWun5eBo40WuHwBGJRipKjHdsPugfzf+YXI0Erh8Abw0CfHcduSHMzP1WNvjQkNJhee+qYcr2yvhi18IH317HSu/GKi9afrIhHy8ejV03HfufnwB9mo/jYTIaMOAK6anY4jvz0f9yzPQ3Fq9xRXX4DFhxGTgzvCH34sQsG6rpMPQgAgO0EOpUQAm9uPslY7OuyhA2QegJyE8Rf0vnlRNvbXmdBoduHtPQNfwb1yVhrkYj4cngC+OdEKk9MHmZA37jK9b1+aA5mQhxkZajz65SlYXGfey21fbXQQarTNz9HhwG9WQSsT4ttTbbj2uZ24uCRUjZGbKMfW8o4B1jCygsEg9oZ7+KkkAuQnKnC0wQJfgEWGTjqsF99WTUnChpNt8PqDeGFrdVTp7w3zMsHn81DaYsfW8thNxDU6vGg0dwd6JAIe8mL8Oc4wDK6YmYapaSrMzNBgTrYWbn8QHx9uQmnL6JcKR7awKEyKr/fl7AQZVBE9Po0OL/bUjPzgjcjgYMoYH+wzEUlFfKyemgwAsLn92BjO4JqdpcWB36zCtFQVKtsdeHZjJWrDg/TI6Di9fH2k2qBk6qTQyIRw+YJR53Fk6EY1UNfS0oJgMNjnVyBAGSHjhVIihF4uRoFBgbnZOnx231LMydJCKxOiMEmBJJUEQsH4nPraRSsXI1ktweQUJVLVEhxrsuA3F0+BKPx3v7C1issYE/AY3L4kB1l6GYqSlSgwxNcB22i6tCQVYiEfEiGP+/mxq6cjQzd+MzAjKSVCqCRCaOUipGmk0ET0NXpzTx1YloXbF+ACvGIBD8lqybhogE+GT6ZWCqmQj8kpSgSDQTRbXChJVyNdJxvWzJ54MTdbxwXzd1cbo/pb9iY/UQGpgA+VhI/D9WbIxXzIxQIYhqk8MV4sLzTgqtkZOFRvQYPJhf977zBY9sxKYCMHScQio04i5EMnF0EpFkAtFUAm4qO0yQKxgIfyVjs+ODA8ffjO1I7KTji8fszP0eF7C7MRYFnu4ptCPLyvuQydDD9fM4n7+YF3D6EmXL6ZrZcjRS1BmkaC13bWnvH/+2wdjyh7TVCEprbHauJrpItLUnGs0YqD9WbUdjqhlgiRqpag2eIa+M7DLDJLPjmOJr4CoaE6MhEf6og+ceuPjXz5K4/XfW6QrqHjmrHoypnpYJjQBeSXt4faLnS9f6tlIsjFfCQqRPjlh0dww/M78bP3D+NIg/msH9cVriyp7nDQEINebK+Ivpg1Eu1y3t/fgO++tAdmpw8FBgU0UiFOtVCw7kyNWqRkIpbxTXQqmRDlbXZsLG2H2xdAp8OLHZWdKGu1QztB0tkfurgYJ5tt2FbRiTd31yE3UYF7V+QDAIIsuBH0V85KA4/H4ESzDaUtNvB4E/v1cs+KfBz4zSo8+51ZuO+8Alw7JyOmk9li4faluXj+pjlcxggAVLU7sL/WFNWfzuMPwuT04e7lNIyHdNPKxXD7Atz7T0WbA4cbLKjtdI7LtgMMw+D6uRncz+/u6z9ok6GTQSriw+oOwBtg4fAE0G734trndo2rchwej8Fdy/O4LO2vTrTipW1Db+btCwRxqN4MAEhVS5CqkfZ/hxE0I1MLi8uP6g4nNpV3whMuWdxV1QlrDKe/rgu3sdhdbcTkFCWsruEfJBHptiU5uHBad+bKBU9uwT1vHIDd40eWXo5Gsxs7Kju5UqfRVt3u4Pryddi9aLa4Y7rfdEnTSDEjQwMAaLd5YHL50GRxo7yt/+D+SIgs175oenwNsZEI+bh/ZSEsrlCwOVklwZfHWnpMoB9uXRdZEhQiXDYzvp4TMjgL8/S4bk4GTrXYsLfGhNd31XK3rbt1Ho797gJ8Z34WHJ4AdlYZ8c6+Bm4Q1JnyB4JY9cQmnPf3TVj5+Ga8sbt24DtNMNtPG0o3Ehl1TWYXd6xQ3mbHN6fa4qaH7Fg0ame+sbqiR2JnZoYGc7O1mJetRV2nE21WN5bk6zE7SzthyvSyEmQ4pzABuQlyHKwzoazVhu+fk4vchO4TZR4TCkw1ml2Yl6PF3GwtpqSo+lnrxCATCXDR9BTkT+DsQiDUtF0bUQr91p56bIso8RLwGJwbMYSDkC6XlKRiaUECEpVifHuqFfmJchQmKTA5ZXy+/145K50b2vP+/gb4Bgi4rZySBKVEAD4TKh8HAINKDME4uyiQppHi8WtLuJ///PlJfHKocUjrONls5fpgzolBNl2kOVla6BUiyER88HmhrGIg1B5gc2lsSj3rjU5sOBkqP01WSbC6OBnbKzqwJD8Bc7O1IzKRm2EYPHrVdBQlKXHZjFS4/UF8drQZr++shdXlQ5pGArVEgB+8sR+XPr0N1z23c9i3oT97a01ot3sQWTwRL9PsuwKcQOj1MS9HB7t79Pv5ef3d50bx8txEytbLka6RQirkocXqRmsvE+iHE8uyXLDdoJRwPSjJ2MLnMVFDJR778lRUGTwAKCUCJChESFSIoJeLcLTRjPXHzzxj88vjLWgwuVHZ7kAgyOLPX5xCPZXWcuo6nag3hv4HKokAC3J13GfncIo8H1FJBJifo+MyHcnQjdrR6Nq1ayGV0hvuRKKQCLG3xoQ9NSbUGp1otXmwraIT+2tNE2aiqUoixLJCA6o6HChtteNIgwViAR9/uaoEF09PwSOXF+O+8wqQpZejqt2BPdUm7K0xIUExMTIOycAMKgk3ORkAPjrYgJ9/eJT7WSsX4pnvzIrFppE4d9PCbGwt78ChejP21phQ0e5AfqIC+YbxGahLUIixakoSgNBU5K7pZn15+JJiHP3tapz4wwXoOl0er71Tz52UhLuX50Eh4iM/SYkfvXMIL2ypGvRF1OoOB0oy1JCL+Zgd48md5xQlotPuhdMbQDAILqMOCE1Vj4X/7KrlBm3cOD8TQj4P35xsw7aKDuytMWHV5KQReVylRIhP71uCknQN10+sw+7BoXozGs1uWNx+7Kk24UijBburjbCNYsbhTQuz8LMLJkEl7T6eiZdg1Jqp3ZnqjWYX9lQb8fnR0c36YFmWG17DY8A14I8nGTopGswuuHzdr7H/Hhy558npDXCD6CZqr+bxYkGuHjfMywQAOLwB/Oqjo1GfN7cvzcWrt87HK7fMQ6fDixPNNvxzY8UZPRbLsnhha3SmuNMbwM8+OEKJQmHbIsperW4/SltsI1LtWJyqgkEp5h5nd7UR+2pHvrfleDVqgbpXXnkFSuX4PDkgvVtWkICFuXqUpKvxzclWWJwjWwYSrxbn6ZGllyFVI8Gm0tCJ47wcHZ75zix8d0E2frSyEADQanWjOFWFudnacdfQnJy5knQN7liaA0V4Umdk1UmiUjxiJ4Bk7MvSy3BuUSIEvFDGWKJChLxxnqF63dxM7vt39g48VAIAWizdUwZTxnEGx09WFeKec/NR2mJDkAX++PlJ/PidQ4M6kdlXY8LhegscnkDMm96nqKW4bUk27lyag2vmpOOi6cno6hZxotmKB98/PKrb4/IG8HZ4XxPxebhhfmgfDEY8r7wRPNoW8nm4dUkODj50Pl5aOweR/061VIBCgxyJ4Qm5j60vHbkNOc3cbB3uXp6HHL0M09PUWDnZwPXojbUMnQxT07orF5JVYrh8QXx+lpORh4JhGCQoRJiersb5xclx2SIoRS3Fojw9pqapwA+/yNYfb4HbNzIZMmaXF8WpSszM0KAoic4Zx7pfXDiJC9psLm3Hazt7lqPmJsqxKE8PjVSIVqsHr+2sGfLjHKgz4XC43LLAoEBq+ILbjspOvLnn7Epqx4vT+9ON1Hk4w0RX+UxKVoIHBu/vj20P2bEqPj4xybg0M1OLfbVGHG6w4GijGZ2O7l4cE+lK2aQUFWxuP5rMbhyqN/W5XGW7HcebrNhbY5owgxPIwJLVEszL0cMe7mc4OVnJfcC22zwTvp8h6ZtEyIc3wMIfDE0HTlZL8JPzi2K9WSNqSX4C0jRSSAQ8WF0+NAyi9KXJ3B2oG8+lVgI+D3cuy8MPz83nfucLsPjd/04MeN+aTgf3fWGMT6D5PAa/ubgYv7xoCh67ugTPfmc21y6CZYFt5R2j0mfQ4vKh3ujEi1uruGm6F09PQUK4L1tkwIw3CkEYPo/BeZOT8MYd87l2CRaXH5OSVTCFJ7B+fXzke4xF8vmDONFsw5FGCxojXmfxIDKrrsXqQZvNg9Lm0Wt67vYFcKrFhiMNFrRZ4+u56cLnMWixuHGs0cq1B7B7/Nhwsv9s5TNlcfpxvMmGg/VmlLfZaCDAGKeSCPGHy6ciL0GOLL0cf/j0BDaXRbcnkIkE+PVFU2B2+dBideOjA41DDgS/sKU7m+6uc/Lw56umAwhlyP/vcFPcvr5GSzDI9ihZV8tGrnJrRUSg7lRL6P3/3X11o/rZM15QoI6MGD6PwaK8BCQoRKjpcKLV6oZEwENugjwuGgqPpgW5eiQqxWgyu/v8AKpos0MjE6I4VYkk5fgsvyJnZl6ODkXJSiQoRPAFg/jZBUUQ8hika6V01Zn06w+XT8WX9y/F5/ctxT9vnB3rzRlxfB6DO5flQsjnYV+taVBX05sieueM19LXLnweg5+cX4TnvjcbOQlyfHa0Ga/uqMFnR/rPJKrtDAU8lWIBdHE4DOru5d3Bx2aLGwfqzCP2WCzLYv3xFjzxdRmWPrYRf/+6jLtt7aJs7vuojLpRzJbKS1Tg5ZvnQirkY0aGBt+casMVs9KgFAvQavPgRNPoBaOaLaFjniSlGDPDAxzixZqp3X3q5KLQRMp3BhhCM5zarB4IeAwMyvjOdJ6TrUWSSgx/xEn2f4fY43KwzK7uwSc7K42IwyRDMkSri5OxZloKajod8AdZ3P2f/Vz2W5c8gxzv3LkAiQoxTjRbccsrewe9/tpOB9afCPW2MyjFuKQkFecUJuKOpTnodHixq8qIP35+cjj/pDGnot2OnAQ55CI+eAyQqBAjewQTQpbkJ0AU7vUrF/GhEPOxt8aEk6N4IWS8oEAdGVE8BggEWaRrpWg2u6FTiFBrdCJZNb5Phk4n4jPw+gPIT1T0+kbFsixUEiH4DAO3j6UsKRJFLRXC4fGjw+6FyeGDw+NHikaKNpsHSRPstUSGJidBjkkpKkxJVU2YTN0105Lh9ocuiLy9t37Aq/PNlshA3cS4iLS6OJmbQA4Av/jwSI9m3128/iAaTKFAXVaCLC5L9M4pSuRK83g8Bk2mkWsi/tyWKnz/9f3YXNadVXTr4mzcuSwXJRHBqMjsgdH+SJ+ZqcXNi7JxqN4MpzeAZrMbLp+fa9o+0g7UmXCkwYzKdhtyEuVweANQhnvoxYvcRAU32MzhDcDvD4Q/a0enj1+j2QmXL4g2mxcifvy9prrIRAI4PH7kJsi4TM1NpW1R7WyGi8MT4F4rMjE/Lt9ryND9eFUhLigOBcad3gBuW7eXy0IGALGAj/m5eji8fgj5DIQCXp+fR6cra7Vxk+zXLsrmyuvvXp7PTTX9+FDTiA5BiXcZWhn+b/UkfG9BFoIs0G73YCRz2+RiAebnhoZOObwBuL0B6GRClLfZRvBRxycK1JERdc2cDJicPpS12rG72ogmsxs8gOsfMFFcPTsdFpcfZW32Xnug2D1+HKw3o9PhRVK4uTAhkbrKxc0uH443WVFndMLrDyJLPzGCL4QMlkEpwYXTQmVtRocX/zvcf/PzpogedamaifPZdOWsNFxSkgog1PT5gXcO9Vqa0mh2cb0xs/Tx2T9VIRZw04wDQRabykemNG9XVSf+Gu7zVt3hxIJcPa6clYaVk5PwywsnRy0b+VTG4uLbjQu6+zXWm5zITZCjw+7F7z89MeIN1v/yxSlc+sx23LZuH6raHbB7/MiOw33nyllpmJ+jg1IigNUTQGmrbdRKdDdFTCiuMw4uKBEL2XoZ7J4AqjqcmJamBhAqmf/82PD38zM6PNzrRimOr8AuOXN8HoMnr5+BeTk6CHjAlFQ17n/7YI/3oX9cPxN2TwBbytoH3WP29V11qDM6oRALcPH07nJ2nVyEn10wifv5oY+P40SzBX/6/CTarG54/BNnEqlUxMfCPD3WTOt+fka6BVVknzo/C3Q6fPj40OgO7BkPKFBHRlS+QYEpKUrMzdKAxzCYkaHBrCwtRBNk6muXLL0chUkKzM7Uwuvv2TvHHHFlUhuHZUUk9hblJWBpfgIytFLsqTZiZoYGuQlyZOri7+SHkFiLLEFct7Om38BEs3niZdQBoabPj1w+levLxzDAwbqefVRrI/rTZcfxhYHLSlIhF/Eh5DM4UGsZ9vW3Wd344VsHuWDmfefm4+07F+Dxa2dgUX5Cj+XZGJW+dknXyrAoTw8gVLqcpVdgdpYGc7J0+OJoy4g9LsuyXOWAVMjH/BwdilNVKIjxEJLeXDQ9FXtrjLC5/RDwGMzO0qBxBLMxI0WWeXY13I9HmToZJiUrMSdLizyDAklKMebl6LCxdPiD4SZn93OinEBD5yYCiZCP5783G1l6ObaUtWNTaTu+Oa3XYZZehqIkJWZnauDy+ge13q7WFf5gEJmnVQ1cNyeDy3KuaLPjwqe24fktVfjFh0ex9NGNUW0vJgK72485WVqUpKtHvM1HV6COxwBqiQDpWgmazC6YI17jZGAUqCMjqjBJCYZhsLfWjBarG4fqzXEz9Ws0pWqkqO5wYH+dCbuqeo6pjkwBn0gTccng/fLCyUhQilHT6USTxY2D9Wa02TyQiiZW0JuQwZiZocH09FD2x7FGKw70EoACQg3djzSEgjoiPg/6CXahRC0V4uFLpiBBIcKuKiOe/raixzJLCxKx7Wcr8Mbt83HlrPQYbOXgXDs3Aw5vAL4AizqjE1vL2we+0yC5fQE8/Mlx2N2hk8elBQm4PzyxvS/RPeqGbVOG5OrZ3f8vhUSA/bVmbKvowK8/Pobb1+3lvl7cWjVsj9lodsEWfp48/iB2VxthdvowJ1s3bI8xXNI0UqwOl+T5gyz215pR2e4Y4F7Do8MeEZSSxO9xX6ZehlMtNuyrNaHD5oFaJsSeaiO+Ot6Kmo7hfa46bN3PiYaOhccdjUwUNdDqkc9ORGW2ZehkKG21YX+dGXtr+h6+14VlWS7YlqqR9iiV5vEYPHLZVDAMolp/bDjVhjabB498NvAgpfGk0+nFvloTDjdYIOSP7Ll4ll6OO5fmIjdRAYvbjwaTG2WtdpS32Uf0ccebiRcxIaPuvMlJmJqqglzER4FBgRlx1lB4NPB5DC6bkYZFeXqopUKUt0bX6bfb3JiersbCXD0K4ripMImt1cVJyEuUcyd9FNQlpHcMw2Dtwmzu51e21/RYJhhk8cC7h9Dp8CJTJ8O/vjtrQvYHXTUlCQJe6HBwZ2UnHJ7oTAY+j0G6VobF+QnIS4zfzye1VIQpKd3DdX73vxPwDcP012CQxU/eO4wvjrUgMZxN9OR1M7ieeH3eLyKJM1a9ti6YmgxFuITw6xOtWLswC8sKEmBQimFz+9FsceNEsxXv7qvHodMavJ+pk83dxzd6uQjzc3RcZl88umVxDve9TMSH0TE6GR/WiAu0Onn8fpana2WYn6PD3GwtgiwbFax/f//wDt+IzKjTjnBpHomNNVOTMT8nFLSv7XRGfTZLhHzcvTwPl0xPgUEpxgPvHOp3XWanD05vKNDX18T2aelqfPrDJVh3y1xMSVHhwdVF3L71+dEWbCnr+4JOMMjC5Q3A6vZhb03PJIuxoMHkxGs7a7C/1oT2iOm3mhGc+tolUSlGRTgwp5YKkZMgw3921o74444nFKgjI25mpgbHmqxweAMob7PHXUPh0ZKXqMCOyk7sqTHiVEt0oK7B5MKRBgt2VnVCOsHKgsngXTA1BS5vgDsBHOkeE4SMZRdNT4FOLoJBKcaBOhN2VnZG3f7Xr0rxebgEsNPumXDTyLswDINzJ4fKVLyBILZXjN2m26qIzKSKNjteH4aTgke/PMVNxW23efCbi6ZArxi4VDEeMupkIgEuCvclsnv8mJmpxbLCRKRrpVBKBAgEWTSZQ5kOz22uHJbHjByY1WrzYHe1ccCgZizNzdZy09Od3gC2n/Y+MVK6sjMBQC+P39JXiZCPeqMTe2tM2FHZiStnpnH/zw8ONPTa1/JMmSLawAzmNUbGHoZh8NAlU7j3xGe+rUCbrTuA9LMLJqHR7MJXJ1rx4cFGuLx995KLHDjRV6AOAIpT1chNVODz+5fiByvy8auLpnC3/faT4332q/vgQANW/G0jrvrnDnznhV34eISmHY+knZWdeOjj47jqXzuwOSIoORoX+q+enc5V0dncPlR3OPHZ0Wb4h+EC2kRBgToy4krSNfjH9TNw0bQUXDg1GedPSY71JsVEvkGB6elqZGilqD+tB0qDyYlMnRTT09XISaCeY6Rvj1wxFX+/Zjr+/d3Z+N2lxbHeHELilkTIx+PXlsAfDkbc8+YBNJicCARZ/Omzk/jXplBggscAz3xnFianqGK8xbGzcnJ34+cNJ0dmEMNouKQkFQWG7s/Qv31Vio8PNSJ4hsGE13fW4LktobJQHgM8e+NMTAuXVA8kMlAXy0DV1XO6M6Ce/rYcV81Kx4tr54a/5uDGeRkAgC+OtWDRXzac9eNFBurSNBLMzNBg1ZSks17vSGEYBncs7c6qq24fndIse0QPrsQ4D0otLkjApGQl+DwGYiEfywsTAQDNFvewBvYj+5LFc98+cnaKU9W4bm4mJAIeZmdp8N+D0QGwn64uwuopSZiSosKlz2zrcz2RPeaGcqHtyplpmJOlBQBUdTjwwpaepf82tw+PflmKFqsH5W12+AIs7n/7EJ7bXNlvz1t/IIh399bj21Otg96ekXSssbtfq1jIQ6ZOipmZGiSrR/71pZWLuAEfQRZI10qRrJbQUIkhoEAdGXE6uQiXzkjDzMzQIInsCRqIStVIcKTBgkazC9+ebIPb130Fp93mRbPFjSMNFqTr4rdZN4m9cycl4arZGbhganJc9vwhJJ4sLUjE1PCkQqPDi5tf2YOr/7UDz2+twpwsLRgG+O2lxVgRMaFsIlqUlwCJMHRI+G1pGxfYCgRZ/OWLU3hrTx0OD1Np5EialKJCeZsDPAZIUUvgD59cXfz0NhxpMA9pXW/vqcNvPj6OOVla8BjgD5dPxbmTBh9wCkYkDcRimESXOVla/GhlASanKFHZ7sBV/96BhvDFwnStLGqAVYfNgye/Los6PhmqrkAdnwGazKF+qiVx3vLkkhmpXDDV5vajrMU6wD3OntPT/Rzr4zwoxQODUy22cAamC9dEBH/fG8by13a7h/t+Ig32mYjuXZEPhmGwuawDz2+pimpTsCgvAUanFyearWgyO/HYlyd7zcI600Adj8fgD5dPhV4uxOwsLZ7aUB4V0AKAp7+tQEd4f0zXdq97a3k7dlT0nnXbYfdg5eOb8eAHR/DIZ71v82g71tT9XsaAQYPJhYN1ZiSrRuf1deP8LO77BpML7TY36o2jM7BnPKBAHRk1ty/Nxe1Lc2O9GTFTmKTEXefkgscwoWaeESc9x5os8AXY0NWGOD9gI4SQsYLPY/D09TO5aaUVbQ4cDL/3Hqw34+W1c3FTRC+7iUoi5GNJeHJpu82DY02hk5Ymswv/3lyJX3x4FM9u7DloIt5k6aVIUIgQZAGJkAdv+ETpZLMV7+ytx/rjg5t2+v7+Bvzio6MAgH21JvzmoilRJxyDEZlRF8M4HRiGwaUlqdzwgqp2B6785w5Ud4Qyx75/Th4+/eES3H9ePoIs8OSGcuwbRCP33jg8ftSGT8ICLMDnAYvz9HE/pEUs4OPymaFgHQvgwQ+OjPhjusLBUAYYleyWs5GslkDIZ2By+tBicePcSUnQhf+n64+3wBJRsno2fIHu10xmHE+YJmcvTSvFikmhzMwOuxcbT0Vncj/znVm4dXE23H4W/9xUhZrOnoNLBlv62pvJKSrcvCgH+2tN8AVY3PfWQTjDGZ2V7Xa8sr0aACAS8PDm7fPxwMoCGJRi7K0x4f53DvXo5QqEenIalKFpqlXtDvw3xpljgSCLE+FAXapGgq9OtIJlgUKDAgmK0XlPnpWpiapW8PpZvLmnblQeezygQB0ho0TI5yFdK4NCzIdaKsTzW6tQ0WZHm9WNBIUYBQYF9HIR+CM8iYcQQiYStUyI52+aA7mIj3PCJVvZehneumPBhM+kixSZLfZNuPy1trP7yvdYyIbXy8UQ8nnINyiQlyDHKzfPRXGKColKMd7YXYefvnsY1f1MqgwGWTz7bQV+/sERdMXZ7liag5sXZw95W6J71MW2R1tuogIf3r0IueH/YapGipte2oPaTgeUEiGmpqmRqpFCLuZDJRHgha1n1q/uZLOVe97kIj4EPB5SepnGGI++Oz+L67fWaHYPsPTZ8fgD8EcEpZLCJ/fxSisTckE0s8sLkYCHy2akAgC8/mCP0sUzVZSkRIFBgZwEORbkxu8AEjI8rpmTwX3/7r76qNuSVBJoZSKoJQJopEI8/nVZj4E3TRGv06EG6oDQRYpp4Yz7qg4HfvvJCaw/3oLvvbSb29/vWpaLTL0c960sxKxMLTz+IDrsHi6QF4lhGPzk/O5p4E9tKBuWgUZnqrrDzl0QSFFJMSNDA41MCK1cNGrvyQzD4LsLMrmfVVIhshNkOFB7ZheDJpoxHRHYsmULLrnkEqSmpoJhGPz3v/+Nuv3mm28GwzBRXxdccMGA63322WeRnZ0NiUSC+fPnY8+ePSP0F5CJ5rsLsvDY1SWwuHzYcLINnx5pws6qTuyo7ER5mx1rwk2fCSGEDJ/CJCW+fuAcvHrLXDx21XR8cf8yzMuh0vFI50YELbv660RmMWSNgQwXhmGgkYlQ0WbHprIOLC1IwP9+uBizw/2IbB4/7np9P5c5Eane6MSNL+7GX78qxbQ0NXgMcPOibPzywslndFIT2RYv1oE6AMjQyfDeXQtx7qREHG20oN7kwk0v70G7LVTedd3cTOQmKmB1+7G5rGNQ5a+Rvf/sHj/+9PlJLnvQ6Qvg++fk4m/XlIzI3zPcZmRouAb37TYPrO7hyRLrTbPZzWV7igQ8COL8Aq06YnBVV/bcNbPTMS9Hh8IkBd7YXdtv367BOtpoQXmbvddsJTL+LCtIRIo6FKTeWNqONmt0gPyH5xXg/bsXwezy4fOjLXhxa3Qvua6MOoYBks4gK1Uk4OHJ62dwQ/ze3VeP77++H01mN+bn6JCqluCu5Xnc8v93QRFXIv/c5iqYIiZE76814YInt+C/hxq54F+90YX39g3vZOShOBpRzuvxB3Co3gyT04eHLpnSz72G32Uz0jA5WYniVBUsLh/2VJvw0raegU7SU3x/MgzA4XCgpKQEzz77bJ/LXHDBBWhubua+3nrrrX7X+c477+CBBx7Aww8/jAMHDqCkpASrV69GW9vYba5M4kthkhI5ehl0ciHWH2/F3hojFuXpMTdbi+lpg2tSTQghZGhSw5k9187NgFRE07VPl6yWYGpaqETlWKMVLRY36iJ6yWTp4j+jDgCW5OkxP0eHeTk67KjsBI/Hw9+uKUG+QQEAKG214YInt+KXHx3Fbz85hvveOohLn9mGS5/Zhp1Vod5DB+vN+OvVJXj4kilnnHkQD1NfT6dXiPH4tTOQlxj6X9Z2OnHzK3tgCwelVk1JwswMDfINctz8yh5c+NQW3PjiLuyrMUatp6zVhiMNZvzwrYO4+ZU9eGFLJS59ZhsO1JnBsqFBANPS1FBKxs5kcoZhMCm5u0Tr8me3w+sfmWwYi6v7BD8vUTEijzGckpQSLMjVYU6WlhuCMSVVjWCQRVmrHWVtdmwbhqES5nAQcDQmUpLY4/MYXD071O8wEGTx/oGeQa10rQyFSQokKUXYX2vCtc/t5C4ivHLzXHz6wyV4ae0ciAV9f6ZvONmK29ftxR3r9uLD0x4jL1GBhy+ZAiGfweRkZffvDQp8cf8yyESCqGWvnhXaXpvHj39HTMo+UGvCqRYb3tpTjyUFCdzvn/62vM+psiPtWGN3fzohj0GWXoYMrRRZ+tH9LFeIBUjVSHE8XIabppGios3Woy8g6Ukw8CLxa82aNVizZk2/y4jFYiQnD37K6OOPP4477rgDt9xyCwDg3//+Nz777DO8/PLL+PnPf97rfTweDzye7gaoVuvIN6ElY1d2ghyripPx/JYqGB0+dNg9aLd5oBQLsDCPUv0JIYTExrmTklDRakemXobXd9agpmNsZdQBwMJ8PV4IX62flanFssJEyMUC/Pu7s3HZM9sgEfJQZ3Tizd11yEmQc6Ww09LUMDktSNNI8ehV06NOts5EV7IZwyCuSj81MhHW3ToPV/1zB5osblicXtzx2j489905+MHyfFw2Iw2//PAoKtvtaDCFMlYEvAqsu3UegFAfurv+sx/1nU4EWSDAsthU2t7jcT65d8mo/l3D4VcXTcaNL+4GEOox1WByIncEAmlWd3fG2HmT47/8PkEpxq6qULDW7Qvg3hUFAIBbl+RgX7iE7eVt1VhakHjGj+H2+bkyva7BNmT8u2Z2Bp7+NtT/9L19Dbj7nLyo90uRgIevfnwOzn9iM8pa7Wi2uHHLK3tw3uQk3L40NzwMp/8kh398W47D9aGg0IE6M4wRmXC3L83FdXMzsCBXj+pOB/53uAmXlqRicX4ChL1kut6/sgAfHWqE1x/EqztqcPPibKSopVFluZeWpOJUsxWV7Q7kJcqxvbwD504e/cnXkYGwgw2h7/MNcijEox/+WZCrx4ZwH8KuTMi9NUZu2Bfp3bh/J9y0aRMMBgOKiopw9913o7Oz90ktAOD1erF//36sXLmS+x2Px8PKlSuxc+fOPu/35z//GWq1mvvKyMjoc1lCAGBJfgKy9TKopQKAZbEkX487l+XG1cE8IYSQieV7C7KQqZehrNWOV3bUoKI9NHBAyGeGNFUvlqamqnHupETMydJiT0QmWL5BgRdumoPHr53J/S4yc0cq4uPJ62bgyx8tPesgHQCuFDAeyl5Pl6KW4rXb5mF+jg52bwC7qoy47vmd+OZkCy57Zhs2l3WXofEZ4ESTBU9+UwaWZfHLj46iqt0BX5AFEz6LkIv4kIn4of1ELcbyojMP2MTSvBwdl23LMMAT35SNyON8sL8Bc7K0WJKvx/lTBp9MECuZOhnWTE1GqlqCFquby2g6f0oS1xtsY2k7KtrsZ/wYVW3dFwVMwzScgsS/TL0MC8P9CKs7HHhjd++DBmZnaTE5WYmiJAX21Jjw5y9OoeR3X3F9JU/3ly9OYvYfvkLRr79AbacDaqkACQoRnF4/HvnsJB757CT+ur4U9UYnGIZBdoIcK4oMePzaGVheZOg1SAeEMvPXLsyCRhqaGPtWeHsP1oUC1jIRH4VJStwwLxN1Ric2lrbj48OjP1QiGDFIQicXYXKKEulaKTK0sbngFtlzUibiI10rxc7KvmMyJGRMZ9QN5IILLsCVV16JnJwcVFZW4pe//CXWrFmDnTt3gs/vmSLb0dGBQCCApKToqHdSUhJOnTrV5+P84he/wAMPPMD9bLVaKVhH+jUvR4eaiCbd7RWd+PXFo9szgBBCCImUqBRjQa4eZa12OL0B1HSEPqcydDKuN0+8M6gkMDt9OFBnBgPA7vZBES7BXJSfAI8/gI0/XQ6n1w8+w0DA5yFdK4VEOLzl0F0nkPH6tOUblHj4kmLc9HIog+xUiw23r9vP3e4NN1MPsEC73Yunv63AJ4eaUBXOQBQJePj0h0vQYfPgX5sqsLUidNK1emoKHr6keJT/muEh5PNw3iQDPj3SDJYFtvSSKTgcdlR2os3mQYpagmnp8Z9RIhHyIeTz0GQJBW/rjU4UJCkh4PNw86Js/PHzkwCAV3dU45HLp53RY5xosXHfS4f5tUji261LcpCuleDzYy34w6cnkK2X97hY8ucrpwMAHvnsOEpbQwFhi8uHtS/vhkTIx4JcPW5elA0Bnwd/IIijjRZ0OkIBX48/iGlpKiSpJFHTZT3+IOqMTmTohha8un1pLt7cXYcdlZ042mDB5TPTuNdGSboGfB6DFZMMUEoEsLn92HiqDb5AsM/g30hweP1YVpiIY00WyIR8nGwOvb7uWZE/atsQaUqqins+3L4AGkwuWJxe+PwBCPspW57oxnVG3fXXX49LL70U06ZNw+WXX45PP/0Ue/fuxaZNm4b1ccRiMVQqVdQXIf2RCPl49/sLcfOiLMxIV+PqWenIHuWeAYQQQsjpHlhVCJ1cBKC7z9pY+3y6clY68hLlkIr4+Oi0iZRiAR85CXIUp6oxKUWFfINi2IN0QHfpazxm1HWZkqrCu99fyGVFqSSh6/cLc/V4+44FKE5VQS7iQyzgIRBkuSAdAPj8QTSZXRAL+dhVbYRaKsDMDA0eXD0pJn/LcFk1pftivdXth30EBhuYnKHSO5ZFVHl5PCtOVSFLL4NYwIvqXXndvAzIw1mIH+xvhNnp7WsV/aqLGFxjUA19MAAZu1ZNSUKQZeDwBODxB3Hbur3YWt57kPz/Vk/Co1dNw33n5qMkXYUmsws7Kjvw96/KcPcbBwAAf/j0BI7Um6EU85GmkeCaWel47db5eHHtXLx95wKsnmKASiKAVibk+iIORZJKgktKQlOPbR4/novoVTczUwMgFPRfURQqa7e6/dhTbeyxnpEk4PHw2NXTsfn/VkDAZ5CgEKE4VYVzi2JTas/nMZgfHuAVZEN96vxB4OuTNAOgP+M6UHe63NxcJCQkoKKiotfbExISwOfz0draGvX71tbWIfW5I2Qw5uXokK6VIUEpxqQU5YicKBBCCCFDoZGJ8ODqoqjfZerGRtlrl9xEOaraQ+VOnY4zCxycrXgufY2Um6jA+3cvxP3nFeDDHyzCncty8dpt87AgT4+P71mMl26eA42sZ3N/PgM8+XUZNp1qhUIsgNXth14hGvODWpYXGtD1H+PzGNR2nHk5Z29c3gDXI6rF6sbemtE9gT9TOrkIjSYnEhRitERM51RJhLhmTqiKSCkR4LMjzWe0/mZL9zr1cgrUTTR/vnIaVheHguQefxDPfFvR62tDLODjurmZ4PN4ONxgRVWHE05vEIFgEEcbzLh93V5sKmuHN8DC5gkgN1GBohRluJcdMDdHj3MnJ8Hq9sPk9J3xdOebF2dz339xrIX7fkaGhvs+Muj/9Yno2MJI+/RIE4ofXo/pv10PuycAf5CF2elDUnjKbixElr82mV3Qy4Woi6guIz1NqEBdQ0MDOjs7kZKS0uvtIpEIs2fPxoYNG7jfBYNBbNiwAQsXLhytzSQTyO1Lc/Hi2rm4fWlurDeFEEIIAQBcOycD+Yly8BhAJxMhJyH+J1NGygqX6jZbPNykudEWZOO79DVSilqKH68qRL5BiV9eOJkr0RLweViQm4BdvzgPWx5cjstmpGJuthbpWin8LHCowYKnN1bC5PThoqnJePbGWTH+S86eWiZEejgw7Q+y2DXMmTBOrz+qB5tGJhrW9Y+UbL0cATbUCL68NTp4edPCLMzI0KDT4cU/N1X22TesPx327qF8icqx8ZyQ4SMS8PD0DbOwujgJxakqHKgz4fZ1+1DRZut1+abwQAIA+PDuRbh7eT6y9HLY3H4kqySYkaHBPcvz8Nqt83qcY0VOiPX4zmwi66RkFRbnhwJPkcNhZoQz6gDgnKJECPmhD4CvT7RyF29GQ1fg2+r2o7rDAbPTB4MytgHwyECdgMegwezGu/vqY7hF8W9MB+rsdjsOHTqEQ4cOAQCqq6tx6NAh1NXVwW634//+7/+wa9cu1NTUYMOGDbjsssuQn5+P1atXc+s477zz8Mwzz3A/P/DAA3jhhRewbt06nDx5EnfffTccDgc3BZYQQgghZDzj8Rj8+3uzsf3n5+LAQ6uwdlF2rDdpSFLUUhQkKZCulaDB6ERpS+8neyNpLJS+DhbDMMjUyTEtTQ21VIhMnYwrd2QQGiaRopVGnQCPZUvyErgA646K4W147vYHo37uLVsxHmUlyJBvkCNdI8HeGmNU0CE3UQGNTIhAkEWj2YVvTw29nM0UUTKbpIpd1g+JnVCwbib0ChF8ATbcg24vN9gmUmNEoC43UQ6lRNDjSysX9TqkL3Kq8Omvxy4vbavCPzaU4akNZTjSYO51mVsX50T9nK6VwqDs3ndVEiEXnGo0u7g+caOh2eLq8buulhaxMjlFxbVXAAMsyNFCyGdwx2v7RjWIOZaM6WES+/btw4oVK7ifuwY6rF27Fv/6179w5MgRrFu3DmazGampqTj//PPxhz/8AWJxd0S5srISHR0d3M/XXXcd2tvb8dBDD6GlpQUzZszAl19+2WPABCGEEELIeJVvUMZ6E84Yj8fgrnPycP/bhwC4sbmsDUXJo/v3BMORunEQp+PcvjQ3Kjvlia/LsKuqEwty9fjxqsIYbtnwOneSAW/tDWV67A9Pcxwu7tMyeDTSsRGoMyglSFXLsLmsHQ1mNzrsXiRGZOjctDALm8LDN17bWRNV9jcYFld3VlJKDMvzSGyJBHz888bZuO65nTjeZEWj2YV73zyAl26eC6Wk+7XSlVEnE/Ghlgp7vDf1RxzRauj01+OLW6uwo7IDG0+1oyt0tLvKiDfvWNBjPSuKugdGdK3r9nV7sSBXz23LqilJ2FoeijN8faIVU1JHp499k7lncFMd44sCfB6DeTl6fHOyFb4AiwALlLbaUdpqR5vNQwH6XozpQN3y5cv7jcCuX79+wHXU1NT0+N29996Le++992w2jRBCCCGExEhxqho5ehlYAEcbR7/8tav0daxMyz0Tkdkr48nsbB3kIj4c3gDMTh/qOp3I1A9tMmRfTg8MxPrkeSiWFiSgttOBIAtsPNWKa+dmcredU2hApk6GOqMTW8s7UNluR17i4Evmnd7uQF2GdmwNryHDSyEW4JWb5+KKf+4ACxa1RidufXUv1t06DzKRACzLchl1qRppr1lz/ZEIIgN1QeyvNeJHbx+CxeWF3RMAywJ8HiAXCxFk2aj+iZvL2vG39aUIBoOwefxwe/3g8YBEuRhCPg8nm62oN7mwZloK0jRSrJychIc+Pg4A+OZkK+5fWTAMz9DAujLqhHwGM9I14PEYZOti/7q6fm4GFubpsSBXh52VnWi3ecCywLen2nDDvMyBVzDBjOnSV0IIIYQQQk6Xb1BAwOehptOJ9cdbuAy30TKeSl/7Ml777OrkIvgj9pcvjp3ZgITeeE4rtVOPkYw6INRjqqbTiTqjE/trzVG38XkMvrcgi/v59Z21Q1q3xdXdt28sBS/JyDCoJFh361zIRQK0Wj3YW2PC91/fD48/AKPDy72OuiZWD4U4svTVF8CRBgvqTS5Y3QEEWYAF4A+G9klbuMfbsxtDgygP1plwtNGC48021Bld8AWBYBBw+QLg8xk0mt0obbGhoi3UxzFVI0VxOIuuvM2GXVXDW0rfl+ZwRp1WJsLeWhN2VxsRD8WlK6ck4bYlOShMUiJTJ0NNpxO1Rife2lMX602LSxSoI4QQQggh487dy/MwL1uHbL0Mf/z85Kg+dldG3VCzPUh8WFKQwH3/+dHhC9RFZtQJeMyY6uuXqZNiVqYGBQYF2iOGP3S5Zk46xILQqeUH+xvg8Ph7LNMblmWjAtpjpRyYjKx8gxJPXDcDyvCU5K3lHbjvrYOobO8eZpJ6BoE6hViAknQ1CpMUqDc6sW5nDdRSAZIUIkxNVeHKmWlYmKvDnCwNvjM/AylqCZ7bXImHPzmGz480QyrkcZOh0zQSfG9+Fv52TQnuP68AJelqZOllqOt0cI/309VFuHh6Cty+IO598+CITzq1uX2whV97kdnO8dIP86fvHcbM33+N/3v/CB69aioydVK0WNz4wRv7Y71pcWd85aoTQgghhBAC4LxJSXjg3cMAALPTC6VYgHtW5MHi9uOjAw3YPcwTPSN12EKBjNNLHcnYII3oY3W4wYLqDvuwTD92ebv3h8jHGAtUUhGqOxwwOX29lnRrZCJcPiMN7+yrh0IiwEcHGvHdhVm9rCkawzAoTlVhb40p/DjxEVAgsTc1TY1Xb52L7764B2qpEDurOnGo3szdnqYZel8zlUSIww0WAACfYdBkdsPrD+KcklT844aZAEK96gDA6vKh2eIGnwHKWmwob7NHZaY1mt34yepCaGQi7KjswOEGC/gM0GjqHuawMFePZ78NZeR12D246eXd+ODuRdArRmYKa0tEqa5MJADDACwbP9m7Do8f9nAgcVKyGm02D9y+IBpMLhgd3pgPvYgnlFFHCCGEEELGHbVMiA0/OQfT0lTosHvx5IZy7K81Yc4j3+Cx9aU43mSFze0fka/p6WrMzdZi7SACFST+/PqiKVicp+d+fmlrzbCs1x6RZSYXj718iVlZWkiEPJS22noNQt+6JBtzsrVotrjxz00V8PgHF6jusHvBZ4BMnWxc93UkQzc7S4dXb5mLnEQ5rC4/Wq3d2ZxnklEXmVlmdHrh9QeRqBBj7aLu9+qu4RRrF4X2Z4ZhsLPKCCGfwcwMNfb+aiXuWZGHmxZkQSMLBZZmZWoxN1sLPp+HN/bUcX30JUI+Xlw7B/mGUKC/ptOJp7+tGLFJp00RgTo+jwHLAolK0RkFNUdCZLbytooOfHzPYqRrpTjeZKWsutNQoI4QQgghhIxLeYkKyIR8iPg8GJRivL+/AelaKfgMA6mIHzUQYTi/VFIh1FIhtJQdMCYlqyWYm6Pjfv7fkSZYnL5+7jE47bbuIMNYzBxRSYRIkItRnKJCg6lnCV9Rsgqq8HTOJosbt766Fw99fAx7Bshetbh8CLAAGxedtEi8mZ+rxx8vn4opKaF+b3yGgV4uQrp26ENeJEI+shNk0MkEcLj9SFCIYPP4kKHruS69QgyFWACDShwqeWUYZOjkSFSKoZWJoobMSIR8yEUCJKnEyNHLYXR4uds0MhHW3ToPCQoRCgwK7Kzs5KbBDrdmc3c2n1jAQ4FBAV+AjZupqkvzE7nvt5V3oChZBZZlka2XQy4SoCqitHmiG3uXcgghhBBCCBmkt7+/ENN/+xXabB68f6ARALBysgEvrp0b4y0j8exHKwvx6o4amJ0+WFw+bCxtxeUz089qnXXG7uBWvPSMGooMrRQfHXShwexCbacT+QZlj2XuP68A355qAwBsr+jE9opOHKwz438/XNLrOlmW5YZJxEt5Hok/uYkKfPiDRfjjZyextCAB5xcnn/G65mbp8N7+BgCA3RtAll4Gg7L3QNart8wDADzxdRkA4MerCgGg1yE6KRopNpW1ox4u1JtcUeWtaRopfrSyEL/+7zEAwBfHWrCsMLHHOs7WJSWpmJauRrPZjT99fhJVHQ4I+QzSziCoORIy9TJuQvT+WhNc3gB+f9lU3LZuHyrb7ZiSqsJPzi+K9WbGBcqoI4QQQggh4xbDMDi/OBlJKjE0MiH0chEye8meIOR0qyYnoasS8+9fl2H3WU5tNEdk5WXp5We1rliYkanByskGFBoU+NfmSuyo6JkVVJKhQYq6O+gh4jOo7rDjmn/v6HWd63bUQCURwKAUIyNOggkkPkmEfPzh8qlnFaQDgHk5OhQlKaCRCpGoEKEwqWfA+XRd2dL9mZmhwdRUFQxKMX7wn/244tntsLm7X/NXzkqDJDx19usTLQiMwDRyuViA4lQ1zptsQIpGijnZWizOS4irkvLF+aHyV28giN3VnSgwKLG0IAF5iXJsLm0bMAN3oqBAHSGEEEIIGdduW5KNVqsHZqcPLl8AD11SHOtNImPA98/JRde5dL3RhU1l7We1vqqO7rKu3ISxF6g7d1ISbl2Sg7I2O/bVmPDUhvJelwtE9N/yBljYPQHsrTHh2Y0VPZbdX2uCyelDm80Dm3twk2IJORvXzMnA+h+fg7WLsvGd+Vl44aY5A96nq29df1ZOScKxJivabB40Wdw4WG9GTUd3Fq1MJMA54Sy6DrsX+2pGLiDVbvdge0UH9tWY4q6gfGlkn7ryDmTqZbh1SQ4q2x040mjFU9+UxXDr4gcF6gghhBBCyLiWpZfhmtnpuH5uBr6/rP+TLUK65BuUKDB0T3utNzrOan2Rk16LkgfO4olHRUlK5BsUUEkEqDf27FMHRE+3lYn4UEn40MqE+PBAAx798lTUss0Rze8NqpGZhElIbwaTJTcUWpkQdy3LRZpGAhE/1Eev/rRejmumpnDff3GsZdge+3T/+KYc87J1WFaQgGvmnF3J/nBblKcHE07w2xbOyi1OUWFJvh46uQgNJhf+/lVpDLcwPlCgjhBCCCGEjGtysRB/vaYEf7lqOu5fWRjrzSFjyJWz0rjvN5W2I3gW5WpaWfcAiUljNFCnV4hhUIphdfvRZHHDFNE0HwC8vgCXGScT8uH0BgAwMDl9qGx3YPtp5bKRAzYMSgrUkdEzmCy5oWAYBj+/cDLm5+jhDbDodHhR3RE9HGHFJAOE/FCUav3xln7fT7481oLKNjv+tr4UXn9wwMdnWRYvbq3CJ4ebsOFUG/bUGLG/1oSLpqUMeN/RpJGJMC1NDQA41WJDm80Ng0qCF26aC6PDi1qjEx8eaBixybhjBQXqCCGEEEIIIaQXl8/sDtQ5PAG8uqP6jNfljMw0E4/dmX5XzExDYZISGpkQ7+2vj7rtoqe3IlUjwcI8PRbl6wEAVrcfCXIR0rVSuH2BqOU7w4E+AY9BfkT2IiFj1a1LcjApWYkEhQh1RlfUbWqpkOvR1mxx43CDudd1NJicuOs/+3He45vxzMYKvL6rdsDHtbr8eOSzk7jvrYNotbqRrpFiaUEiGCZ++tN1WRJ+DlLVEjSYQs+RVMTHd+ZlQiMVotXqQWX72WUwj3UUqCOEEEIIIYSQXqSopZiSogIAsAhlgJwpHhM6URcJeFFlsGNNvkGBslYbfP4ANpe2o7YzdEJtcnjA5/FgdvpgtHvxpyumQREOSHY4vGgwhabFdvEFgrB7Qtl3/iALtVTU88EIGWMy9TKcarHBH2Th9PTsu7hmavcwjC+P917++sXR6N8/9U1Zj+zV0zVZuoOCUiEf7XZPP0vH1ncXZOHbn5yDL3+0FGJBd0hKJxfB4vJBJuKjwdR7af1EQYE6QgghhBBCCOnDpSXdpWM7K89s8qvLG0Cj2QWLywchj4mrKYxDNS1Nje0/OxduP4vtlZ347SfHAQAbS9txqsUGpzeA6+amw6CS4EcrC6Lu6/EHuay6Nlt0ICFBQYE6MvapJEKkaSQwO33YV2vqcfuqKcnc6//dvfVo7CUg9enR5qifrW5/n8NbujRHBOoc3gA8/iDyEuMzSzVFLcEvPzqKmX/4Brev28eVueYmysEwob+3uoMy6gghhBBCCCGE9OK6uRnc961WD+xu35DXsW5nDVfKJRnD2XQAIODzkKqRIEEhgkYmRLvdgxe2VOFksxVZehmSVGLkhgMEaxdlozAp9L1UyEOySoyOcKZPq9Udtd4EBfWoI+NDvkGJ4lQVMrRSuL3RWXU6uQiXTE/BykkGmJw+rHx8C/6xoZwLYNcbnThcbwYAFBgUXPbtaztrcKShZ+CvS5O5+/WUqZOiwKBAhk46zH/Z8GAYBgIeD4Egi2aLGzXhTNvsBDnyDQpkaKX43+EmOHrJSJwoKFBHCCGEEEIIIX3QysXQyYQAAG8giB+/e3jIQyUq2rpLZpVS4bBuXywwDIPdv1wJADjWaMVj60/hha3VqO10oihJieVFBgCAkM/Dn6+cBp1MCJcviBarB7uqQlmJbacF6tSysf+8EAKEStyPN1mxp8aEBrOrx+1PXj8TlnDA3+UL4NmN5Xh+SxVsbh8+i8imu3xmGu5engcAYABc8exOfOeFXfjoYM9hCy0RE5TrjC6Ut9mRrpWNwF83PLp6WALAjsrQkJlZmVrMyNCg3uTCgTrzhM6qo0AdIYQQQgghhPRjWrqa+/7rE604528b8afPTg76/uWt3dMfZ0Ssa6yblalBvkEOlUQApZgPnUzEZdN1mZ2lQ1HElNvHvy6Dy+vH1vLuCbCFSQooRGN3wAYhkYpTVZifo8OcbC0ajD0DdQDw4k1zccvibPAYIFuvwONfl+G+tw7i08NN3DIXT0/BHUtzccO8DKyYZECAZbGjshObS9tx6TPb0RgRBIzsUTctTYU52Vpk6uMzow4AFuUlcN/vqOhuKTA5RYVMnRQZOikazBO3Tx0F6gghhBBCCCGkH4HTMujqjS6s21nTI6ulNyzLRk0wtI+jcq6Xb54Hn59Fp8MHmyeARKUYv720uMdyV81O575vMrux5NGNeGN3Hfc7i8sH3hju20dIJL1CjN3VRuyrMaGqj6wwtUyIhy8pxqs3z0VLOLt0Y2k7jjVZAYR6QWbp5ZCK+PjzldMxOUWFdG0o8PbNyTYcbbTg6n/tQHlrKFu3OaL09WijFYfrzUjTxG9G3bQ0NZSSUHB+Z1Unl6WcqBSjzuhCvdGFqgk8+ZUuWxBCCCGEEEJIP+47txBycRX215jQ4fCCxwBCPoN6owOZ+v4btrfbPFHBOdk4yxz72QVF4cEQDCalKHtdRn9a/7nOiAmWWToZZmRqRnALCRldqRoJpqapEAgCDm//gfllRQb8+7uz8b2XdsMfcUHgoukpUcv95PwiPLCqENsrOvHr/x6F3eNHs8WNK/+1Az85vwhN4ew6HhPKStPLRXE9tIbPY7AgV4+vT7TC6PDiVIsNU1JVyNbLMCtTA7vHj1aLe+AVjVOUUUcIIYQQQggh/ZiXq8Nz35uD75+TC5VEgCAL2D0BvLmnDv5AEC9sqcTTfUxlrGizR/0sF4/tYRKnu3B6Km5enIObF2djQa6+12U0EX35luTrUWBQoCgpFNSrNTrhDwyt5x8h8UwvF+NYoxUnm62oNw5cvrkwT48/XjEVQGjYhFTIx0XTUnosxzAMlhQk4P27F2FqmgoAkJMgx28/OY7a8OMEWeB4kxUW19CH3oy2RXk9+9Rl6OQ4UGdGWasd9X2UDU8E4+tyDiGEEEIIIYSMkDuW5SFZLcUP3zoIAHhhazWe21wNlrs9t8dU14r26ECdVDjxTsGSVGJk6KRosbghFwvw5h0z0WJx4ZJntgOgQRJkfNFE7M9m5+ACZtfNzYRSIsTKyUkIsmy/06ETFGK8dccCvLu3Hn/7qoz7vUIs4LJ31TLRGW796FmcH9GnrrITty/NhVoqxLQ0FSraHChttfVz7/GNMuoIIYQQQgghZJDWTE3mSsoCwdA0RgDQSAT44ZsH8PMPDkctH5lRZ1CKkaiMLgOdCAxKCUwOL1LVUvAYBolKMcwuH/IS5UjXSpGsksR6EwkZNmqpEAalGNl6GXjM4MtPL5yWApGA12+QrotSIsStS3Lw5h3zceWsNGhkQrx5x3zkJsiQoZUiTR3/r6kCgwIJ4bL43VWd8AWCAELTonVyEfRyIdzeQCw3MWYm3uUcQgghhBBCCDlDAj4P185Jx1t76gEAyWoJmixumN1+fH2yDQDwu8umQiwInWxHBurabJ5xV/o6GAI+D4lKCao7HGi3e8CyLJrMLm7IhlpKGXVk/JAI+fAGgmjr9MA3gmXdDMNgZqYWMzO1cPsC2F9rQlVHqARWIYn/UA/DMFiUp8f/jjQhJ1GOdpsHqRopMrQyHKgzo9HsQoPZhXxD/31Ax6P4/+8RQgghhBBCSBy5aFoqF6jzBoJIUUlgcfvg9QeRpBLj/Mc3wxdkoZYI0WAK9VkS8JhQs/QEeSw3PWZmZWqglQkh5PPQaHJhb40ROQky+AMspqSqYr15hAyrWZkamJ0+KCUC+PwBCAUjG6CXCPlotboxL0cHrz+AvMSxEdx68IIi/P6yYkiEfJxotiJVI0VhshIzjWoIBXw0mJwUqCOEEEIIIYQQ0r8FuTpoZUKYnD44PAEc+M25+PfmSu72f3xbDpYFmhCaWigR8uD2BXGkwYIMrSxWmx1TcrEAB+rMAID9dSa8v78RQKj8bW62LoZbRsjwY1lw+7vV7YdeMfKZtKWtNuypNgIAfnK+dMQfbzika2U43mTBj985hEaTC1/cvwwGpRgH6y0AQq0GlhfFeCNjgHrUEUIIIYQQQsgQCPg8rC5OBgC4fAFsKm2DUiLgvtI1EiQqRAi3soPbF4RWKkRuohxpmrFxAj3cJierMD9Hh5J0NTacbMWcLC2y9TIUJStjvWmEDDtNxDCH0ZrAanP7MCtTg/k5OmTqxs4Fgf/sqkVZqx0ObwA/ee8QMvUyzM/RYWamBh12T6w3LyYoo44QQgghhBBChujCaSl4e2+o/PWjg414/qY53G23L83F6ztr8JuPj3O/M7l8yNDLIBJMzFyJRKUYu8PZPnaPn+tPt+7WebHcLEJGRGTfRZPTO+KPx7IsDtZZcLLZCh6DMXVB4FcXTcG2ig7UG13YW2PC1rIO7r1CPQZ67Y2EifkpQQghhBBCCCFnYWGeHolKMaanq7GlvB1fHG3mbnN4/HhqQzn38wXFSbh2Thoeu3p6LDY1LmTrZShOVSFZLUGn3YN0jRQz0jVIHQPTKQkZqgKDAkVJSqilQjSZ3SP+eMebrGgwOqCTCTE1TQ0Bf+yEehRiAf5+zQx0Dch9bkslpqWpkKGVosU6MTPqxs5/jxBCCCGEEELihJDPw4s3zcapZhvcviDue/sgtpS1o8PuwV3/2Y8OeyiL5qJpKZiTrUNhkgqTkifu0IR0nQzHm6ywOr3wB1m02z0wubwj3mSfkFhQSAQobbVBwGfQYhm5QJ3XH0RFmw0vbq1EkAWMTh90ctHAd4wz83J0+P6yPKilQjx+7Qx4/SxarG54/UH4A8FYb96om5h5hIQQQgghhBBylqalaXDpjFS8v78BvgCLW17ZC4YB/EEWU1JUKGu14aeri5AzQSe9RpII+SgwKFDeZud+V5RE/enI+HT+lCQYlGK02Tx4e28d7liWOyKPU9Fmx4X/2Mr9zAC4dk76iDzWSPvxqgLcsjgbSSoJvj7RitJWG6o6HGixupE+wYbwUKCOEEIIIYQQQs4Aj8fgL1dOg83tw/rjrVBJBTA5Q43jBXwGG3+6HBljqKn7SMtNkMPjC8Dk8kEnE9FzQ8YtqUiALL0MeoUIaokQwSALXtd0mTMUDLJ4d1899lQbUdZmg0IkwMopBqRrpGg0u8BjAJlIgEzd2LwwIBbwkaQKZdjmJspRkqFBlk4Glo3xhsUABeoIIYQQQggh5AwJ+Dz844aZePKbcizNT8B9bx/E1bMzcP3cDApEnWZVcTLWn2gFANjcfqyakhTjLSJk5KilIuytMQEAWqxupJ7lgIc2mwc///Bo1O92hYcu3LIoG6rwAIupaeqzepx48KOVhfjRysJYb0bMUKCOEEIIIYQQQs6CWMDHzy6YBJZlsePn503Yya4DmZqm4soBgejJmISMN9PSVKjtsKPF6sEdr+3DNXMycPOi7CGv55lvy7G3xohTzTYkKkRwePzoSjLL0sth9/iRopGAx5xdxh6JHxSoI4QQQgghhJBhwDAMRAI6We7LpGQV7B4/97NaSqejZPzSykUob3cACE1lVR5rPqNA3Ss7atAZHk4DAHqFiPv5VIsNOQly3Lksb1i2mcSHMX2pZ8uWLbjkkkuQmpoKhmHw3//+l7vN5/PhZz/7GaZNmwa5XI7U1FTcdNNNaGpq6nedv/3tb8EwTNTXpEmTRvgvIYQQQgghhJDx7yfnF+KH5+bjwdVFY3I6JSGDtSQ/AT9bXQSVRAC5iA8Rf2jhl9IWG9Y8tRVyIR8ZGgkKkxTITZRjYY4OszM1EPEZKCUCLMrTj9BfQGJlTF/CcDgcKCkpwa233oorr7wy6jan04kDBw7gN7/5DUpKSmAymXD//ffj0ksvxb59+/pdb3FxMb755hvuZ4FgTD9NhBBCCCGEEBIXblsyMtMvCYk3uYkK3L0iH//4tgIuXwD1Rueg7mf3+CEX8fHK9mqcbLYCAM4pTMTSggQAwO1LczH3kW/gDbDwBvzgn+WQChJ/xnQEas2aNVizZk2vt6nVanz99ddRv3vmmWcwb9481NXVITMzs8/1CgQCJCcnD+u2EkIIIYQQQgghZGI5pzARO6s6UWN0wu0LQCLk97v88r9uhMcfhE4uwtxsLaakqHDPufkwKCXcMm/cMR9KiQA+fxCCIWbqkfg3of6jFosFDMNAo9H0u1x5eTlSU1ORm5uLG2+8EXV1df0u7/F4YLVao74IIYQQQgghhBAysYkFDIR8BkVJStSb+s+qa7W6kaaRQibiIxhkoZYKkaGTRQXpAKAwSYkUtRSZevlZT5Ml8WfCBOrcbjd+9rOf4YYbboBKpepzufnz5+PVV1/Fl19+iX/961+orq7G0qVLYbPZ+rzPn//8Z6jVau4rIyNjJP4EQgghhBBCCCGEjCFZejk67F6carGhrrP/QN2WsnYcbrCg1erB7cty8eLaubh9KZWLTzRjuvR1sHw+H6699lqwLIt//etf/S4bWUo7ffp0zJ8/H1lZWXj33Xdx22239XqfX/ziF3jggQe4n61WKwXrCCGEEEIIIYSQCS43UY5paSpIhXy0Wt39Lmtx+bjvtTIatjJRjftAXVeQrra2Ft9++22/2XS90Wg0KCwsREVFRZ/LiMViiMXis91UQgghhBBCCCGEjCPpWhmONobaY01O6T8eERmo00iFI7pdJH6N69LXriBdeXk5vvnmG+j1Qx9bbLfbUVlZiZSUlBHYQkIIIYQQQgghhIxXmToZ5uXoMCdbC4c30O+yDo8fMzM0WJKfAIOSkoEmqjGdUWe326My3aqrq3Ho0CHodDqkpKTg6quvxoEDB/Dpp58iEAigpaUFAKDT6SAShdJIzzvvPFxxxRW49957AQA//elPcckllyArKwtNTU14+OGHwefzccMNN4z+H0gIIYQQQgghhJAxK1EpxtEGC1y+AIx2b7/LlrbacLDeDABIUkn6XZaMX2M6ULdv3z6sWLGC+7mrT9zatWvx29/+Fp988gkAYMaMGVH327hxI5YvXw4AqKysREdHB3dbQ0MDbrjhBnR2diIxMRFLlizBrl27kJiYOLJ/DCGEEEIIIYQQQsYVhmGwvCgRZa02GB1eBIIs+Dymx3JNZheON1qgkwuRpJJAI6PS14lqTAfqli9fDpZl+7y9v9u61NTURP389ttvn+1mEUIIIYQQQgghhAAAgiyLynYHkpRiNJldyNDJ0GByQi0Vgs9j0GHzoqbTAaGAj3abBwUGJRimZzCPTAxjOlBHCCGEEEIIIYQQEs8Kk5T49lQbWm0e1BmdyNDJcPd/DuBoowUAkKQSY1FeAtptHijEfPz6oskx3mISSxSoI4QQQgghhBBCCBkhCUoxktUSJMjFMDlDferUUgFkIh78ASBDK0MwGMSUFBU6HR7kG5Qx3mISSxSoI4QQQgghhBBCCBkhySoJ6o0u1BtdqO10wuz0YltFJ3f7vloTKtqFMDt9SFKJIRXxY7i1JNYoUEcIIYQQQgghhBAyQjTS7sEQFpcP/9lVi2UFCajrdCLAshDyGchEAkxNVaMwibLpJjoK1BFCCCGEEEIIIYSMEHXEBFez04tvT7Whos0OPo9BIBg9BPNPV0wb7c0jcYYCdYQQQgghhBBCCCEjRC8XYVGeHlaXDyebbZAKeViUp0NRkgp5BgU2l7Whss2BNK0UqRpJrDeXxBgF6gghhBBCCCGEEEJGSIJCjAN1Jrh9QWikQphdPgDAzy6YjJIMDdy+AFgWWJCrh4DPi/HWklijQB0hhBBCCCGEEELICGEYBgtz9dhfa4LZ5YNCzEdhkgJFyaF+dLcvzcXtS3NjvJUkXlColhBCCCGEEEIIIWQE8Xmh8IuQz8DlDUInF0MipOmupCfKqCOEEEIIIYQQQggZQf/67iwI+Tw88XUZWJbFfecVxHqTSJyiQB0hhBBCCCGEEELICBKGe88pJaEwDPWiI32hQB0hhBBCCCGEEELIKKBedGQgFMIlhBBCCCGEEEIIISQOUKCOEEIIIYQQQgghhJA4QIE6QgghhBBCCCGEEELiAAXqCCGEEEIIIYQQQgiJAxSoI4QQQgghhBBCCCEkDlCgjhBCCCGEEEIIIYSQOECBOkIIIYQQQgghhBBC4gAF6gghhBBCCCGEEEIIiQMUqCOEEEIIIYQQQgghJA5QoI4QQgghhBBCCCGEkDhAgTpCCCGEEEIIIYQQQuKAINYbMB6xLAsAsFqtMd4SQgghhBBCCCGEEBJrXTGirphRXyhQNwJsNhsAICMjI8ZbQgghhBBCCCGEEELihc1mg1qt7vN2hh0olEeGLBgMoqmpCUqlEgzDxHpzhoXVakVGRgbq6+uhUqlivTlkDKB9hgwV7TNkqGifIUNF+wwZKtpnyFDRPkOGivaZiYNlWdhsNqSmpoLH67sTHWXUjQAej4f09PRYb8aIUKlU9OZBhoT2GTJUtM+QoaJ9hgwV7TNkqGifIUNF+wwZKtpnJob+Mum60DAJQgghhBBCCCGEEELiAAXqCCGEEEIIIYQQQgiJAxSoI4MiFovx8MMPQywWx3pTyBhB+wwZKtpnyFDRPkOGivYZMlS0z5Chon2GDBXtM+R0NEyCEEIIIYQQQgghhJA4QBl1hBBCCCGEEEIIIYTEAQrUEUIIIYQQQgghhBASByhQRwghhBBCCCGEEEJIHKBAHSGEEEIIIYQQQgghcYACdYQQQgghhBBCCCGExAEK1MWZP//5z5g7dy6USiUMBgMuv/xylJaWRi3jdrtxzz33QK/XQ6FQ4KqrrkJrayt3++HDh3HDDTcgIyMDUqkUkydPxlNPPRW1jg8//BCrVq1CYmIiVCoVFi5ciPXr1w+4fSzL4qGHHkJKSgqkUilWrlyJ8vLyqGUOHDiAVatWQaPRQK/X484774Tdbh9w3UeOHMHSpUshkUiQkZGBxx57LOr248eP46qrrkJ2djYYhsGTTz454DonAtpn+t5nPvzwQ8yZMwcajQZyuRwzZszA66+/PuB6xzvaZ/reZ1599VUwDBP1JZFIBlzveEf7TN/7zPLly3vsMwzD4KKLLhpw3eMZ7TN97zM+nw+///3vkZeXB4lEgpKSEnz55ZcDrne8m6j7jNvtxs0334xp06ZBIBDg8ssv77FMc3MzvvOd76CwsBA8Hg8/+tGPBtzeiYD2mb73mW3btmHx4sXQ6/WQSqWYNGkSnnjiiQG3ebyjfabvfWbTpk29Hs+0tLQMuN1kBLAkrqxevZp95ZVX2GPHjrGHDh1iL7zwQjYzM5O12+3cMnfddRebkZHBbtiwgd23bx+7YMECdtGiRdztL730EnvfffexmzZtYisrK9nXX3+dlUql7NNPP80tc//997OPPvoou2fPHrasrIz9xS9+wQqFQvbAgQP9bt9f/vIXVq1Ws//973/Zw4cPs5deeimbk5PDulwulmVZtrGxkdVqtexdd93Fnjp1it2zZw+7aNEi9qqrrup3vRaLhU1KSmJvvPFG9tixY+xbb73FSqVS9rnnnuOW2bNnD/vTn/6Ufeutt9jk5GT2iSeeGMpTO27RPtP3PrNx40b2ww8/ZE+cOMFWVFSwTz75JMvn89kvv/xySM/xeEP7TN/7zCuvvMKqVCq2ubmZ+2ppaRnS8zse0T7T9z7T2dkZtb8cO3aM5fP57CuvvDKUp3jcoX2m733mwQcfZFNTU9nPPvuMraysZP/5z3+yEolkwG0e7ybqPmO329m77rqLff7559nVq1ezl112WY9lqqur2fvuu49dt24dO2PGDPb+++8fxDM6/tE+0/c+c+DAAfbNN99kjx07xlZXV7Ovv/46K5PJot6LJiLaZ/reZzZu3MgCYEtLS6OOawKBwGCeWjLMKFAX59ra2lgA7ObNm1mWZVmz2cwKhUL2vffe45Y5efIkC4DduXNnn+v5wQ9+wK5YsaLfx5oyZQr7u9/9rs/bg8Egm5yczP71r3/lfmc2m1mxWMy+9dZbLMuy7HPPPccaDIaoF/SRI0dYAGx5eXmf6/7nP//JarVa1uPxcL/72c9+xhYVFfW6fFZWFgXq+kD7TO/7TJeZM2eyv/71r/tdZqKhfaZ7n3nllVdYtVrd799AaJ/p733miSeeYJVKZdRBP6F9JnKfSUlJYZ955pmo+1155ZXsjTfe2O/fNdFMlH0m0tq1a3s9gY50zjnnUKCuD7TP9O+KK65gv/vd7w5q2YmC9pluXYE6k8k0qPWQkUWlr3HOYrEAAHQ6HQBg//798Pl8WLlyJbfMpEmTkJmZiZ07d/a7nq519CYYDMJms/W7THV1NVpaWqIeW61WY/78+dxjezweiEQi8Hjdu5ZUKgUQSsHuy86dO7Fs2TKIRCLud6tXr0ZpaSlMJlOf9yM90T7T+z7Dsiw2bNiA0tJSLFu2rM/1TkS0z0TvM3a7HVlZWcjIyMBll12G48eP97nOiYr2mb4/m1566SVcf/31kMvlfa53IqJ9pnuf8Xg8PUrqpVJpv+udiCbKPkOGD+0zfTt48CB27NiBc845Z1jXO9bRPtPTjBkzkJKSglWrVmH79u3Dsk4ydBSoi2PBYBA/+tGPsHjxYkydOhUA0NLSApFIBI1GE7VsUlJSn/XjO3bswDvvvIM777yzz8f629/+BrvdjmuvvbbPZbrWn5SU1Odjn3vuuWhpacFf//pXeL1emEwm/PznPwcQ6q/R37p7W2/k45KB0T7Tc5+xWCxQKBQQiUS46KKL8PTTT2PVqlV9rneioX0mep8pKirCyy+/jI8//hj/+c9/EAwGsWjRIjQ0NPS53omG9pm+P5v27NmDY8eO4fbbb+9znRMR7TPR+8zq1avx+OOPo7y8HMFgEF9//TU+/PDDftc70UykfYYMD9pnepeeng6xWIw5c+bgnnvuoc+nCLTPREtJScG///1vfPDBB/jggw+QkZGB5cuX48CBA2e1XnJmKFAXx+655x4cO3YMb7/99hmv49ixY7jsssvw8MMP4/zzz+91mTfffBO/+93v8O6778JgMAAA3njjDSgUCu5r69atg3q84uJirFu3Dn//+98hk8mQnJyMnJwcJCUlcZH/4uJibr1r1qw547+N9ET7TE9KpRKHDh3C3r178cc//hEPPPAANm3aNKR1jGe0z0RbuHAhbrrpJsyYMQPnnHMOPvzwQyQmJuK5554b9DrGO9pn+vbSSy9h2rRpmDdv3hndf7yifSbaU089hYKCAkyaNAkikQj33nsvbrnllqgMiYmO9hkyVLTP9G7r1q3Yt28f/v3vf+PJJ5/EW2+9NeR1jFe0z0QrKirC97//fcyePRuLFi3Cyy+/jEWLFtEQkliJde0t6d0999zDpqens1VVVVG/37BhQ6+145mZmezjjz8e9bvjx4+zBoOB/eUvf9nn43Q1Of7000+jfm+1Wtny8nLuy+l0spWVlSwA9uDBg1HLLlu2jL3vvvt6rLulpYW12Wys3W5neTwe++6777Isy7I1NTXcehsaGliWZdnvfe97PWrlv/32WxYAazQae6ybetT1RPtM//tMl9tuu409//zz+7x9IqF9ZnD7zNVXX81ef/31fd4+kdA+0/c+Y7fbWZVKxT755JN9/l0TEe0zfe8zLpeLbWhoYIPBIPvggw/+f3v3D9LWGodx3FvEpIHWf7SxCkpRLLYgFBcDgmKdCiJOijSIW7WDFXQIIiIFURCK1rqoCILFwYK6KUXEqYN6aP1DjQQnKYiDXSpK9bnDxVyDHn29CPdw8v1AlnNeXn95eUjkl8P76unTp7bvL57EW2bOY4+6/4bMVNnWfN67d++Un59vNNbtyEyVbc3ntba2qri42GgsbheNOoc5PT3VmzdvlJmZqXA4fOH+2QaXU1NT0Ws/fvy4sMHl+vq6Hj58qLa2Ntu/9enTJ3m9Xk1PTxvXlpGRob6+vui1X79+xWxweZnR0VH5fL4rN6Y823z5+Pg4ei0UCnGYhAEyY5aZMw0NDSotLTWq363IjHlm/vz5oydPnqilpcWofrciM9dnZmxsTB6PR/v7+0Z1ux2ZMf+cOT4+Vm5urkKhkFH9bhWvmTmPRt3NkJmbNV26urqUk5NjNNatyMzNMlNRUaHq6mqjsbhdNOocprGxUcnJyVpcXIw5Fvn379/RMa9fv1Z2drYWFha0vLysQCCgQCAQvb+2tqYHDx7o1atXMXPs7e1Fx0xMTCgxMVEfP36MGXNwcHBlfT09PUpJSdHMzIy+f/+uqqqqmCOjJenDhw9aWVnR1taWBgcHdffuXfX3918578HBgfx+v4LBoNbX1zU5OXnhCPGjoyNZliXLsvTo0SO1trbKsizjE27ciszYZ6a7u1vz8/OKRCLa3NxUX1+fEhMTNTw8bLy+bkRm7DPT1dWlubk5RSIRraysqLa2Vl6vVxsbG8br60Zkxj4zZ0pKSlRTU3PtWsYLMmOfma9fv+rz58+KRCJaWlpSeXm5Hj9+HPcn7cVrZqR/nsyxLEuVlZUqKyuL/r973tm1oqIi1dXVybIsvpvIjG1mBgcHNTs7q3A4rHA4rJGREd27d0/t7e0mS+taZMY+M+/fv9f09LS2t7e1tram5uZm3blzR1++fDFZWtwyGnUOk5CQcOlrbGwsOubw8FBNTU1KTU2Vz+dTdXW1fv78Gb3f2dl56Rznf0EpLS29dEx9ff2V9Z2enqqjo0N+v18ej0cvXrzQ1tZWzJhgMKi0tDQlJSWpsLBQ4+PjRu/927dvKikpkcfjUVZWlnp6emLu7+zsXFpzvD8dRWbsM9Pe3q68vDx5vV6lpqYqEAhocnLSaG43IzP2mXn79q2ys7OVlJQkv9+vly9fanV11WhuNyMz9pmR/v21fX5+3mjOeEBm7DOzuLiogoICeTwepaenKxgMand312huN4vnzOTk5Fxa03XrE+9PR5EZ+8wMDAzo2bNn8vl8un//vp4/f66hoSGdnJwYze9WZMY+M729vcrNzZXX61VaWprKysq0sLBgNDdu31+SlAAAAAAAAADgf8XxUgAAAAAAAIAD0KgDAAAAAAAAHIBGHQAAAAAAAOAANOoAAAAAAAAAB6BRBwAAAAAAADgAjToAAAAAAADAAWjUAQAAAAAAAA5Aow4AAAAAAABwABp1AAAAAAAAgAPQqAMAAAAAAAAcgEYdAAAAAAAA4AB/A7v5APRFgYpCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Get the ERA5 data for a single station (to reduce data transfer)\n", + "your_station = your_dataset.get_station('vlinder02')\n", + "\n", + "#Extract time series at the location of the station\n", + "ERA5_data = your_station.get_modeldata(modelname='ERA5_hourly', \n", + " obstype='temp', \n", + " startdt=None, #if None, the start of the observations is used \n", + " enddt=None, #if None, the end of the observations is used \n", + " )\n", + "\n", + "#Get info\n", + "print(ERA5_data)\n", + "ERA5_data.make_plot(obstype_model='temp', \n", + " dataset=your_station, #add the observations to the same plot \n", + " obstype_dataset='temp')\n" + ] + }, + { + "cell_type": "markdown", + "id": "bf1fae3e-b969-4f82-b63b-3bde86da9257", + "metadata": {}, + "source": [ + "### GEE data transfer\n", + "\n", + "There is a limit to the amount of data that can be transfered directly from GEE. When the data cannot be transferred directly, **it will be written to a file on your Google Drive**. The location of the file will be printed out. When the writing to the file is done, you must download the file and import it to an empty *Modeldata* instance using the [set_model_from_csv()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.modeldata.Modeldata.html#metobs_toolkit.modeldata.Modeldata.set_model_from_csv) method. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "77647240-3ba4-4fa3-90b8-eb1ef783c172", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!\n", + "The timeseries will be writen to your Drive in era5_timeseries/era5_data \n", + "The data is transfered! Open the following link in your browser: \n", + "\n", + "\n", + "https://drive.google.com/#folders/1iSjU6u-kFeRS_YikiyaPoc09SNbmvvO1 \n", + "\n", + "\n", + "To upload the data to the model, use the Modeldata.set_model_from_csv() method\n", + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n", + "Empty Modeldata instance.\n" + ] + } + ], + "source": [ + "#Illustration\n", + "#Extract time series at the locations all the station\n", + "ERA5_data = your_dataset.get_modeldata(modelname='ERA5_hourly', \n", + " obstype='temp', \n", + " startdt=None, #if None, the start of the observations is used \n", + " enddt=None, #if None, the end of the observations is used \n", + " )\n", + "\n", + "#Because the data amount is too large, it will be written to a file on your Google Drive! The returned Modeldata is empty.\n", + "print(ERA5_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "fd658a15-06cc-4841-852f-e1bb29809bdf", + "metadata": {}, + "outputs": [], + "source": [ + "#See the output to find the modeldata in your Google Drive, and download the file.\n", + "#Update the empty Modeldata with the data from the file\n", + "\n", + "#ERA5_data.set_model_from_csv(csvpath='/home/..../era5_data.csv') #The path to the downloaded file\n", + "#print(ERA5_data)" + ] + }, + { + "cell_type": "markdown", + "id": "cec4bea4-bdb7-4298-b7ff-f9547403e7ea", + "metadata": {}, + "source": [ + "## Interactive plotting of a GEE dataset\n", + "\n", + "You can make an interactive spatial plot to visualize the stations spatially by using the [make_gee_plot()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_gee_plot)." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "bc8d896c-bba7-490c-b173-1f501c44e08f", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spatial_map = your_dataset.make_gee_plot(gee_map='worldcover')\n", + "spatial_map" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/examples/index.html b/docs/_build/examples/index.html new file mode 100644 index 00000000..03bad6e9 --- /dev/null +++ b/docs/_build/examples/index.html @@ -0,0 +1,185 @@ + + + + + + + Examples — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
+
+ + + + diff --git a/docs/_build/examples/qc_example.html b/docs/_build/examples/qc_example.html new file mode 100644 index 00000000..1b93ab70 --- /dev/null +++ b/docs/_build/examples/qc_example.html @@ -0,0 +1,707 @@ + + + + + + + Demo example: Applying Quality Control. — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Demo example: Applying Quality Control.

+

In this example we apply Quality Control (QC) on the demo data. ## Create your dataset We start by creating a dataset.

+
+
[1]:
+
+
+
import metobs_toolkit
+your_dataset = metobs_toolkit.Dataset()
+your_dataset.update_settings(
+    input_data_file=metobs_toolkit.demo_datafile, # path to the data file
+    input_metadata_file=metobs_toolkit.demo_metadatafile,
+    template_file=metobs_toolkit.demo_template,
+)
+
+your_dataset.import_data_from_file()
+
+
+
+

A number of quality control methods are available in the toolkit. We can classify them into two groups: 1. Quality control for missing/duplicated or invalid timestamps. This is applied to the raw data and is not based on the observational value but merely on the presence of a record. 2. Quality control for bad observations. These are not automatically executed. These checks are performed in a sequence of specific checks, that are looking for signatures of typically bad observations.

+
+

Quality control for missing/duplicated and invalid timestamps

+

Since this is applied to the raw data, the following quality control checks are automatically performed when reading the data: * Nan check: Test if the value of an observation can be converted to a numeric value. * Missing check: Test if there are missing records. These missing records are labeled as missing observation or as gap (if there are consecutive missing records). * Duplicate check: Test if each observation (station name, timestamp, observation type) is unique.

+

As an example you can see that there is a missing timestamp in the time series of some stations:

+
+
[2]:
+
+
+
your_dataset.get_station('vlinder02').make_plot(colorby='label')
+
+
+
+
+
[2]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur of vlinder02'}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_qc_example_3_1.png +
+
+
+
+

Quality control for bad observations

+

The following checks are available: * Gross value check: A threshold check that observations should be between the thresholds * Persistence check: Test observations to change over +a specific period. * Repetitions check: Test if an observation changes after several records. * Spike check: Test if observations do not produce spikes in time series. * Window variation +check: Test if the variation exceeds the threshold in moving time windows. * Toolkit Buddy check: Spatial buddy check. * TITAN Buddy +check: The Titanlib version of the buddy check. * TITAN Spatial consistency test: Apply the Titanlib (robust) +Spatial-Consistency-Test (SCT).

+

Each check requires a set of specific settings, often stored per specific observation type. A set of default settings, for temperature observations, are stored in the settings of each dataset. Use the show() method, and scroll to the QC section to see all QC settings.

+
+
[3]:
+
+
+
your_dataset.settings.show()
+
+
+
+
+
+
+
+
+All settings:
+
+ ---------------------------------------
+
+ ---------------- IO (settings) ----------------------
+
+* output_folder:
+
+  -None
+
+* input_data_file:
+
+  -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_datafile.csv
+
+* input_metadata_file:
+
+  -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_metadatafile.csv
+
+ ---------------- db (settings) ----------------------
+
+ ---------------- time_settings (settings) ----------------------
+
+* target_time_res:
+
+  -60T
+
+* resample_method:
+
+  -nearest
+
+* resample_limit:
+
+  -1
+
+* timezone:
+
+  -UTC
+
+* freq_estimation_method:
+
+  -highest
+
+* freq_estimation_simplify:
+
+  -True
+
+* freq_estimation_simplify_error:
+
+  -2T
+
+ ---------------- app (settings) ----------------------
+
+* print_fmt_datetime:
+
+  -%d/%m/%Y %H:%M:%S
+
+* print_max_n:
+
+  -40
+
+* plot_settings:
+
+  - time_series:
+
+    -{'figsize': (15, 5), 'colormap': 'tab20', 'linewidth': 2, 'linestyle_ok': '-', 'linestyle_fill': '--', 'linezorder': 1, 'scattersize': 4, 'scatterzorder': 3, 'dashedzorder': 2, 'legend_n_columns': 5}
+
+  - spatial_geo:
+
+    -{'extent': [2.260609, 49.25, 6.118359, 52.350618], 'cmap': 'inferno_r', 'n_for_categorical': 5, 'figsize': (10, 15), 'fmt': '%d/%m/%Y %H:%M:%S UTC'}
+
+  - pie_charts:
+
+    -{'figsize': (10, 10), 'anchor_legend_big': (-0.25, 0.75), 'anchor_legend_small': (-3.5, 2.2), 'radius_big': 2.0, 'radius_small': 5.0}
+
+  - color_mapper:
+
+    -{'duplicated_timestamp': '#a32a1f', 'invalid_input': '#900357', 'gross_value': '#f1ff2b', 'persistance': '#f0051c', 'repetitions': '#056ff0', 'step': '#05d4f0', 'window_variation': '#05f0c9', 'buddy_check': '#8300c4', 'titan_buddy_check': '#8300c4', 'titan_sct_resistant_check': '#c17fe1', 'gap': '#f00592', 'missing_timestamp': '#f78e0c', 'linear': '#d406c6', 'model_debias': '#6e1868', 'ok': '#07f72b', 'not checked': '#f7cf07', 'outlier': '#f20000'}
+
+  - diurnal:
+
+    -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5}
+
+  - anual:
+
+    -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5}
+
+  - correlation_heatmap:
+
+    -{'figsize': (10, 10), 'vmin': -1, 'vmax': 1, 'cmap': 'cool', 'x_tick_rot': 65, 'y_tick_rot': 0}
+
+  - correlation_scatter:
+
+    -{'figsize': (10, 10), 'p_bins': [0, 0.001, 0.01, 0.05, 999], 'bins_markers': ['*', 's', '^', 'X'], 'scatter_size': 40, 'scatter_edge_col': 'black', 'scatter_edge_line_width': 0.1, 'ymin': -1.1, 'ymax': 1.1, 'cmap': 'tab20', 'legend_ncols': 3, 'legend_text_size': 7}
+
+* world_boundary_map:
+
+  -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp
+
+* display_name_mapper:
+
+  - network:
+
+    -network
+
+  - name:
+
+    -station name
+
+  - call_name:
+
+    -pseudo name
+
+  - location:
+
+    -region
+
+  - lat:
+
+    -latitude
+
+  - lon:
+
+    -longtitude
+
+  - temp:
+
+    -temperature
+
+  - radiation_temp:
+
+    -radiation temperature
+
+  - humidity:
+
+    -humidity
+
+  - precip:
+
+    -precipitation intensity
+
+  - precip_sum:
+
+    -cummulated precipitation
+
+  - wind_speed:
+
+    -wind speed
+
+  - wind_gust:
+
+    -wind gust speed
+
+  - wind_direction:
+
+    -wind direction
+
+  - pressure:
+
+    -air pressure
+
+  - pressure_at_sea_level:
+
+    -corrected pressure at sea level
+
+  - lcz:
+
+    -LCZ
+
+* static_fields:
+
+  -['network', 'name', 'lat', 'lon', 'call_name', 'location', 'lcz']
+
+* categorical_fields:
+
+  -['wind_direction', 'lcz']
+
+* location_info:
+
+  -['network', 'lat', 'lon', 'lcz', 'call_name', 'location']
+
+* default_name:
+
+  -unknown_name
+
+ ---------------- qc (settings) ----------------------
+
+* qc_check_settings:
+
+  - duplicated_timestamp:
+
+    -{'keep': False}
+
+  - persistance:
+
+    -{'temp': {'time_window_to_check': '1h', 'min_num_obs': 5}}
+
+  - repetitions:
+
+    -{'temp': {'max_valid_repetitions': 5}}
+
+  - gross_value:
+
+    -{'temp': {'min_value': -15.0, 'max_value': 39.0}}
+
+  - window_variation:
+
+    -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': 0.002777777777777778, 'time_window_to_check': '1h', 'min_window_members': 3}}
+
+  - step:
+
+    -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': -0.002777777777777778}}
+
+  - buddy_check:
+
+    -{'temp': {'radius': 15000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0}}
+
+* qc_checks_info:
+
+  - duplicated_timestamp:
+
+    -{'outlier_flag': 'duplicated timestamp outlier', 'numeric_flag': 1, 'apply_on': 'record'}
+
+  - invalid_input:
+
+    -{'outlier_flag': 'invalid input', 'numeric_flag': 2, 'apply_on': 'obstype'}
+
+  - gross_value:
+
+    -{'outlier_flag': 'gross value outlier', 'numeric_flag': 4, 'apply_on': 'obstype'}
+
+  - persistance:
+
+    -{'outlier_flag': 'persistance outlier', 'numeric_flag': 5, 'apply_on': 'obstype'}
+
+  - repetitions:
+
+    -{'outlier_flag': 'repetitions outlier', 'numeric_flag': 6, 'apply_on': 'obstype'}
+
+  - step:
+
+    -{'outlier_flag': 'in step outlier group', 'numeric_flag': 7, 'apply_on': 'obstype'}
+
+  - window_variation:
+
+    -{'outlier_flag': 'in window variation outlier group', 'numeric_flag': 8, 'apply_on': 'obstype'}
+
+  - buddy_check:
+
+    -{'outlier_flag': 'buddy check outlier', 'numeric_flag': 11, 'apply_on': 'obstype'}
+
+  - titan_buddy_check:
+
+    -{'outlier_flag': 'titan buddy check outlier', 'numeric_flag': 9, 'apply_on': 'obstype'}
+
+  - titan_sct_resistant_check:
+
+    -{'outlier_flag': 'sct resistant check outlier', 'numeric_flag': 10, 'apply_on': 'obstype'}
+
+* titan_check_settings:
+
+  - titan_buddy_check:
+
+    -{'temp': {'radius': 50000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0, 'num_iterations': 1}}
+
+  - titan_sct_resistant_check:
+
+    -{'temp': {'num_min_outer': 3, 'num_max_outer': 10, 'inner_radius': 20000, 'outer_radius': 50000, 'num_iterations': 10, 'num_min_prof': 5, 'min_elev_diff': 100, 'min_horizontal_scale': 250, 'max_horizontal_scale': 100000, 'kth_closest_obs_horizontal_scale': 2, 'vertical_scale': 200, 'mina_deviation': 10, 'maxa_deviation': 10, 'minv_deviation': 1, 'maxv_deviation': 1, 'eps2': 0.5, 'tpos': 5, 'tneg': 8, 'basic': True, 'debug': False}}
+
+* titan_specific_labeler:
+
+  - titan_buddy_check:
+
+    -{'ok': [0], 'outl': [1]}
+
+  - titan_sct_resistant_check:
+
+    -{'ok': [0, -999, 11, 12], 'outl': [1]}
+
+ ---------------- gap (settings) ----------------------
+
+* gaps_settings:
+
+  - gaps_finder:
+
+    -{'gapsize_n': 40}
+
+* gaps_info:
+
+  - gap:
+
+    -{'label_columnname': 'is_gap', 'outlier_flag': 'gap', 'negative_flag': 'no gap', 'numeric_flag': 12, 'apply_on': 'record'}
+
+  - missing_timestamp:
+
+    -{'label_columnname': 'is_missing_timestamp', 'outlier_flag': 'missing timestamp', 'negative flag': 'not missing', 'numeric_flag': 13, 'apply_on': 'record'}
+
+* gaps_fill_settings:
+
+  - linear:
+
+    -{'method': 'time', 'max_consec_fill': 100}
+
+  - model_debias:
+
+    -{'debias_period': {'prefered_leading_sample_duration_hours': 48, 'prefered_trailing_sample_duration_hours': 48, 'minimum_leading_sample_duration_hours': 24, 'minimum_trailing_sample_duration_hours': 24}}
+
+  - automatic:
+
+    -{'max_interpolation_duration_str': '5H'}
+
+* gaps_fill_info:
+
+  - label_columnname:
+
+    -final_label
+
+  - label:
+
+    -{'linear': 'gap_interpolation', 'model_debias': 'gap_debiased_era5'}
+
+  - numeric_flag:
+
+    -21
+
+ ---------------- missing_obs (settings) ----------------------
+
+* missing_obs_fill_settings:
+
+  - linear:
+
+    -{'method': 'time'}
+
+* missing_obs_fill_info:
+
+  - label_columnname:
+
+    -final_label
+
+  - label:
+
+    -{'linear': 'missing_obs_interpolation'}
+
+  - numeric_flag:
+
+    -23
+
+ ---------------- templates (settings) ----------------------
+
+* template_file:
+
+  -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_templatefile.csv
+
+ ---------------- gee (settings) ----------------------
+
+* gee_dataset_info:
+
+  - global_lcz_map:
+
+    -{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'}
+
+  - DEM:
+
+    -{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'}
+
+  - ERA5_hourly:
+
+    -{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'band_of_use': {'temp': {'name': 'temperature_2m', 'units': 'K'}}, 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''}
+
+  - worldcover:
+
+    -{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'}
+
+
+
+

Use the update_qc_settings() method to update the default settings.

+
+
[4]:
+
+
+
your_dataset.update_qc_settings(obstype='temp',
+                                gross_value_max_value=26.3,
+                                persis_time_win_to_check='30T' #30 minutes
+                                )
+
+
+
+

To apply the quality control on the full dataset use the apply_quality_control() method. Spatial quality control checks can be applied by using the apply_buddy_check(), +apply_titan_buddy_check() and apply_titan_sct_resistant_check() methods.

+
+
[5]:
+
+
+
your_dataset.apply_quality_control(
+        obstype="temp",  # which observations to check
+        gross_value=True,  # apply gross_value check?
+        persistance=True,  # apply persistence check?
+        step=True,  # apply the step check?
+        window_variation=True,  # apply internal consistency check?
+    )
+
+
+
+

Use the dataset.show() or the time series plot methods to see the effect of the quality control.

+
+
[6]:
+
+
+
your_dataset.make_plot(obstype='temp', colorby='label')
+
+
+
+
+
[6]:
+
+
+
+
+<Axes: title={'center': 'Temperatuur for all stations. '}, xlabel='datetime', ylabel='Temperatuur (Celcius) \n 2m-temperature'>
+
+
+
+
+
+
+../_images/examples_qc_example_11_1.png +
+
+

If you are interested in the performance of the applied QC, you can use the get_qc_stats() method to get an overview of the frequency statistics.

+
+
[7]:
+
+
+
your_dataset.get_qc_stats(obstype='temp', make_plot=True)
+
+
+
+
+
+
+
+../_images/examples_qc_example_13_0.png +
+
+
+
[7]:
+
+
+
+
+({'ok': 64.28984788359789,
+  'QC outliers': 35.707671957671955,
+  'missing (gaps)': 0.0,
+  'missing (individual)': 0.00248015873015873},
+ {'repetitions outlier': 29.658564814814813,
+  'gross value outlier': 4.869378306878307,
+  'persistance outlier': 1.0085978835978835,
+  'in step outlier group': 0.17113095238095238,
+  'duplicated timestamp outlier': 0.0,
+  'invalid input': 0.0,
+  'in window variation outlier group': 0.0,
+  'buddy check outlier': 0.0,
+  'titan buddy check outlier': 0.0,
+  'sct resistant check outlier': 0.0},
+ {'duplicated_timestamp': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},
+  'invalid_input': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},
+  'repetitions': {'not checked': 0.0,
+   'ok': 70.34143518518519,
+   'outlier': 29.658564814814813},
+  'gross_value': {'not checked': 29.658564814814813,
+   'ok': 65.47205687830689,
+   'outlier': 4.869378306878307},
+  'persistance': {'not checked': 34.52794312169312,
+   'ok': 64.46345899470899,
+   'outlier': 1.0085978835978835},
+  'step': {'not checked': 35.53654100529101,
+   'ok': 64.29232804232805,
+   'outlier': 0.17113095238095238},
+  'window_variation': {'not checked': 35.707671957671955,
+   'ok': 64.29232804232805,
+   'outlier': 0.0},
+  'buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},
+  'titan_buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},
+  'titan_sct_resistant_check': {'not checked': 100.0,
+   'ok': 0.0,
+   'outlier': 0.0},
+  'is_gap': {'not checked': 0, 'ok': 100.0, 'outlier': 0.0},
+  'is_missing_timestamp': {'not checked': 0,
+   'ok': 99.99751984126983,
+   'outlier': 0.00248015873015873}})
+
+
+
+
+

Quality control exercise

+

For a more detailed reference you can use this Quality control exercise, which was created in the context of the COST FAIRNESS summer school 2023 in Ghent.

+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/qc_example.ipynb b/docs/_build/examples/qc_example.ipynb new file mode 100644 index 00000000..02d5a24b --- /dev/null +++ b/docs/_build/examples/qc_example.ipynb @@ -0,0 +1,687 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "f1af75bf-618b-4e94-b957-220ebdfc6b21", + "metadata": {}, + "source": [ + "# Demo example: Applying Quality Control.\n", + "\n", + "In this example we apply Quality Control (QC) on the demo data. \n", + "## Create your dataset\n", + "We start by creating a dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "62021dd4-8466-4287-80f7-112ad5c692a0", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "your_dataset = metobs_toolkit.Dataset()\n", + "your_dataset.update_settings(\n", + " input_data_file=metobs_toolkit.demo_datafile, # path to the data file\n", + " input_metadata_file=metobs_toolkit.demo_metadatafile,\n", + " template_file=metobs_toolkit.demo_template,\n", + ")\n", + "\n", + "your_dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "324eab20-b913-4e76-9ad5-638cfeaa89d3", + "metadata": {}, + "source": [ + "A number of quality control methods are available in the toolkit. We can classify them into two groups:\n", + "1. **Quality control for missing/duplicated or invalid timestamps**. This is applied to the raw data and is not based on the observational value but merely on the presence of a record. \n", + "2. **Quality control for bad observations**. These are not automatically executed. These checks are performed in a sequence of specific checks, that are looking for signatures of typically bad observations.\n", + "\n", + "## Quality control for missing/duplicated and invalid timestamps\n", + "Since this is applied to the raw data, the following quality control checks are automatically performed when reading the data:\n", + "* Nan check: Test if the value of an observation can be converted to a numeric value.\n", + "* Missing check: Test if there are missing records. These missing records are labeled as *missing observation* or as *gap* (if there are consecutive missing records).\n", + "* Duplicate check: Test if each observation (station name, timestamp, observation type) is unique.\n", + "\n", + "As an example you can see that there is a missing timestamp in the time series of some stations:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e1a0b0f7-817d-40bd-888d-98d2b215e367", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOoAAAHjCAYAAACdNfCwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xV9f348dfn3Huz9yYkEMLeewkoLnC06rdaR2sFtU5cta2/aqu2atXaOvqt36pt3aNDK7a1ihtUZChTQAIJkEBC9t6593x+f4Rc7oVA1t28n3346L3nnnvOJyHJvfd93kNprTVCCCGEEEIIIYQQQgi/Mvy9ACGEEEIIIYQQQgghhATqhBBCCCGEEEIIIYQICBKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIACCBOiGEEEIIIYQQQgghAoAE6oQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIUTAa2xs5Ic//CEZGRkopbjtttsGfEylFL/85S+d91944QWUUuzbt2/Ax/bmMYUQQggRuiRQJ4QQQoigpZTq1X8rV67091L95o9//CMvvPCCv5cxYA8++CAvvPACN9xwAy+//DI/+MEP/L0kvysuLubiiy8mISGBuLg4zj//fPbs2eO2z/79+/nVr37FrFmzSExMJCUlhYULF/Lhhx/6adVCCCGEOB6rvxcghBBCCNFfL7/8stv9l156iQ8++OCo7WPHjvXlsgLKH//4R1JSUli6dKm/lzIgH3/8MXPmzOHee+/12jl+8IMfcOmllxIeHu61c3hKY2Mjp556KnV1ddx1113YbDYef/xxTjnlFDZv3kxycjIA//rXv/jNb37DBRdcwJIlS7Db7bz00kuceeaZPPfcc1x55ZV+/kqEEEII4UoCdUIIIYQIWpdffrnb/bVr1/LBBx8ctT1UaK1pbW0lMjLS30vptaamJqKjowd8nPLycsaNG+eBFR2bxWLBYrF49RwD1fX9/OMf/8ju3btZv349M2fOBODss89mwoQJPProozz44IMAnHrqqRQVFZGSkuI8xvXXX8+UKVO45557JFAnhBBCBBgpfRVCCCFESDNNkyeeeILx48cTERFBeno61113HTU1NW775eTk8K1vfYuVK1cyY8YMIiMjmThxorNs9s0332TixIlEREQwffp0Nm3a5Pb8pUuXEhMTw549e1i8eDHR0dFkZmZy3333obUe0Jree+8955qeeeYZAJ5//nlOO+000tLSCA8PZ9y4cTz11FNHPX/79u2sWrXKWQa8cOFCAH75y1+ilDrq+9VdT7Uje7m5Ht81U6/ruatWreLGG28kLS2NrKyso57nqry8nKuvvpr09HQiIiKYPHkyL774ovPxlStXopRi7969/Pe//3V+Hcfq+TZhwgROPfXUo7abpsngwYO56KKLjrmW7r72rn+Dzz//nFmzZhEREUFubi4vvfTSUc/fvn07p512GpGRkWRlZfHAAw9gmma353r33XdZsGAB0dHRxMbGcu6557J9+3a3fbp+pgoKCjjnnHOIjY3l+9//PgBvvPEGM2fOdAbpAMaMGcPpp5/OP/7xD+e28ePHuwXpAMLDwznnnHM4cOAADQ0Nx/x+CCGEEML3JKNOCCGEECHtuuuu44UXXuDKK6/klltuYe/evTz55JNs2rSJ1atXY7PZnPvm5+fzve99j+uuu47LL7+c3/3ud3z729/m6aef5q677uLGG28E4KGHHuLiiy8mLy8Pwzh83dPhcHDWWWcxZ84cHnnkEVasWMG9996L3W7nvvvu69ea8vLyuOyyy7juuuu45pprGD16NABPPfUU48eP57zzzsNqtfKf//yHG2+8EdM0WbZsGQBPPPEEN998MzExMfz85z8HID093Xvf7ENuvPFGUlNTueeee2hqajrmfi0tLSxcuJD8/Hxuuukmhg0bxuuvv87SpUupra3l1ltvZezYsbz88sv86Ec/Iisrix//+McApKamdnvMSy65hF/+8peUlpaSkZHh3P75559TUlLCpZde2uevJz8/n4suuoirr76aJUuW8Nxzz7F06VKmT5/O+PHjASgtLeXUU0/Fbrfzs5/9jOjoaP70pz91m/348ssvs2TJEhYvXsxvfvMbmpubeeqpp5g/fz6bNm0iJyfHua/dbmfx4sXMnz+f3/3ud0RFRWGaJlu3buWqq6466tizZs3i/fffp6GhgdjY2GN+TaWlpURFRREVFdXn74cQQgghvEgLIYQQQoSIZcuWade3N5999pkG9Kuvvuq234oVK47aPnToUA3oL774wrntvffe04COjIzUhYWFzu3PPPOMBvQnn3zi3LZkyRIN6Jtvvtm5zTRNfe655+qwsDBdUVHR7zWtWLHiqK+1ubn5qG2LFy/Wubm5btvGjx+vTznllKP2vffee3V3bwWff/55Dei9e/c6twH63nvvPWrfoUOH6iVLlhz13Pnz52u73X7U/kd64oknNKBfeeUV57b29nY9d+5cHRMTo+vr693Ode655/Z4zLy8PA3oP/zhD27bb7zxRh0TE+P2fTvy6+rua+/6N/j000+d28rLy3V4eLj+8Y9/7Nx22223aUCvW7fObb/4+Hi3YzY0NOiEhAR9zTXXuK2vtLRUx8fHu23v+pn62c9+5rZvRUWFBvR999131Nf/f//3fxrQO3fuPOb3aPfu3ToiIkL/4Ac/OOY+QgghhPAPKX0VQgghRMh6/fXXiY+P58wzz6SystL53/Tp04mJieGTTz5x23/cuHHMnTvXeX/27NkAnHbaaQwZMuSo7UdO2AS46aabnLeVUtx00020t7c7p2z2dU3Dhg1j8eLFR53HNVOrrq6OyspKTjnlFPbs2UNdXV2vv0fecM011/Sq19s777xDRkYGl112mXObzWbjlltuobGxkVWrVvX53KNGjWLKlCn8/e9/d25zOBy88cYbfPvb3+5Xf79x48axYMEC5/3U1FRGjx7t9u//zjvvMGfOHGbNmuW2X1epapcPPviA2tpaLrvsMrd/f4vFwuzZs4/69we44YYb3O63tLQAdDv0IiIiwm2fIzU3N/Pd736XyMhIHn744Z6+dCGEEEL4mJS+CiGEECJk7d69m7q6OtLS0rp9vLy83O2+azAOID4+HoDs7Oxutx/ZU84wDHJzc922jRo1CsDZ96yvaxo2bFi3+61evZp7772XNWvW0Nzc7PZYXV2dc43+cKw1H6mwsJCRI0e6lQ/D4Sm9hYWF/Tr/JZdcwl133UVxcTGDBw9m5cqVlJeXc8kll/TreEf+XAAkJia6/fsXFhY6A7iuukqVu+zevRvoDP52Jy4uzu2+1Wo9qs9fV7Cxra3tqOe3tra67ePK4XBw6aWXsmPHDt59910yMzO7XYMQQggh/EcCdUIIIYQIWaZpkpaWxquvvtrt40f2OTtWFtixtusjhkR4Y03dBVwKCgo4/fTTGTNmDI899hjZ2dmEhYXxzjvv8Pjjjx9zgIGr7gZJQGcwp7eOta+/p9Jecskl3Hnnnbz++uvcdttt/OMf/yA+Pp6zzjqrX8fz9L8/dPapc+2h18VqdX97Hh4eflQgMykpifDwcA4ePHjU87u2dReEu+aaa3j77bd59dVXjxkoFEIIIYR/SaBOCCGEECFr+PDhfPjhh8ybN88nwSPTNNmzZ48ziw5g165dAM4BAZ5Y03/+8x/a2tr497//7Zbt1V3Z5LECcomJiQDU1taSkJDg3N5dFltiYiK1tbVu29rb27sNFPXF0KFD2bp1K6ZpugWjdu7c6Xy8P4YNG8asWbP4+9//zk033cSbb77JBRdc0G2pqKcMHTrUmS3nKi8vz+3+8OHDAUhLS+OMM87o17kMw2DixIl89dVXRz22bt06cnNzjxok8dOf/pTnn3+eJ554wq3UWAghhBCBRXrUCSGEECJkXXzxxTgcDu6///6jHrPb7UcFnzzhySefdN7WWvPkk09is9k4/fTTPbamrgwv14yuuro6nn/++aP2jY6O7vaYXQGjTz/91LmtqamJF198sdt9XfcD+NOf/tSn7LvunHPOOZSWlrr1k7Pb7fzhD38gJiaGU045pd/HvuSSS1i7di3PPfcclZWV/S577a1zzjmHtWvXsn79eue2ioqKozInFy9eTFxcHA8++CAdHR1HHaeioqJX57vooov48ssv3YJ1eXl5fPzxx3z3u9912/e3v/0tv/vd77jrrru49dZb+/JlCSGEEMLHJKNOCCGEECHrlFNO4brrruOhhx5i8+bNLFq0CJvNxu7du3n99df5/e9/z0UXXeSx80VERLBixQqWLFnC7Nmzeffdd/nvf//LXXfd5Sxp9cSaFi1aRFhYGN/+9re57rrraGxs5M9//jNpaWlHZblNnz6dp556igceeIARI0aQlpbGaaedxqJFixgyZAhXX301P/3pT7FYLDz33HOkpqZSVFTkdowf/vCHXH/99Vx44YWceeaZbNmyhffee4+UlJQBfb+uvfZannnmGZYuXcqGDRvIycnhjTfeYPXq1TzxxBNHZYX1xcUXX8xPfvITfvKTn5CUlNTv7LXeuuOOO3j55Zc566yzuPXWW4mOjuZPf/qTM2uwS1xcHE899RQ/+MEPmDZtGpdeeqnze/7f//6XefPmuQV7j+XGG2/kz3/+M+eeey4/+clPsNlsPPbYY6Snp/PjH//Yud/y5cu54447GDlyJGPHjuWVV15xO86ZZ55Jenq6574RQgghhBgQCdQJIYQQIqQ9/fTTTJ8+nWeeeYa77roLq9VKTk4Ol19+OfPmzfPouSwWCytWrOCGG27gpz/9KbGxsdx7773cc889Hl3T6NGjeeONN/jFL37BT37yEzIyMrjhhhtITU3lqquuctv3nnvuobCwkEceeYSGhgZOOeUUTjvtNGw2G8uXL+fGG2/k7rvvJiMjg9tuu43ExESuvPJKt2Ncc8017N27l2effZYVK1awYMECPvjgA2eWYH9FRkaycuVKfvazn/Hiiy9SX1/P6NGjef7551m6dOmAjp2VlcVJJ53E6tWr+eEPf4jNZhvQ8XoyaNAgPvnkE26++WYefvhhkpOTuf7668nMzOTqq6922/d73/semZmZPPzww/z2t7+lra2NwYMHs2DBgqO+98cSGxvLypUr+dGPfsQDDzyAaZosXLiQxx9/3K3P4ZYtW4DOIRY/+MEPjjrOJ598IoE6IYQQIoAo3Z8uuEIIIYQQws3SpUt54403aGxs9PdShBBCCCFEkJIedUIIIYQQQgghhBBCBAAJ1AkhhBBCCCGEEEIIEQAkUCeEEEIIIYQQQgghRACQHnVCCCGEEEIIIYQQQgQAyagTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAYPX3AkKRaZqUlJQQGxuLUsrfyxFCCCGEEEIIIYQQfqS1pqGhgczMTAzj2HlzEqjzgpKSErKzs/29DCGEEEIIIYQQQggRQPbv309WVtYxH5dAnRfExsYCnd/8uLg4P69GCCGEEEIIIYQQQvhTfX092dnZzpjRsUigzgu6yl3j4uIkUCeEEEIIIYQQQgghAHpskSbDJIQQQgghhBBCCCGECAASqBNCCCGEEEIIIYQQIgBIoE4IIYQQQgghhBBCiAAggTohhBBCCCGEEEIIIQKABOqEEEIIIYQQQgghhAgAEqgTQgghhBBCCCGEECIASKBOCCGEEEIIIYQQQogAIIE6IYQQQgghhBBCCCECgATqhBBCCCGEEEIIIYQIABKoE0IIIYQQQgghhBAiAEigTgghhBBCCCGEEEKIAGD19wKEEEIIT6rUNXziWMNb5sfYsHCv9WaGGVn+XpYQQgghhBBC9EgCdUIIIULKRnM7P7Df4bzfbG9hnjGdW61L/LgqIYQQgc6+4Q84Cj9C1xWi4oZgyTkD6/Sb/b0sIYQQJxgJ1AkhhAgpldS43V9prudrcxc3WL5HmLL5aVVCCCECnX3jk9BYAoCuzcdevVMCdUIIIXxOetQJIYQIKVW61u1+PY3s5QD5ZqF/FiSEEEIIIYQQvSQZdUIIIUJKvW4ki3RKqcKOHYBUkviT4+88Yfm5n1cnhBAiUIUv+Qrd1oDuaESFxaDCYv29JCGEECcgCdQJIYQIKQcp5wBlbts6sFNPg59WJIQQIhiosFgJzgkhhPA7KX0VQggRUlxLX3eHf0AOg6mlnk/Mdf5blBBCCCGEEEL0gmTUCSGECClJxHOSmkorbSTrBKYYY0nXyYQRRp3ZQLwh2RJCCCGEEEKIwCSBOiGEECFlg97OZv0NNqxEqgiSVAJvmR8CsIt9zGSin1cohBAiENk3/AFH4UfoukJU3BAsOWfI1FchhBA+J4E6IYQQIaWeRgBiiUYpxTQ1nl1qLw00k28WMtOQQJ0QQoij2Tc+CY0lAOjafOzVOyVQJ4QQwuckUCeEECLoObQDi7JQpxto0E0AxBANQJZK53O9AYB8Xei3NQohhBBCCCFETyRQJ4QQIuiNaTuLA5Si0UQQBkCs6gzUjVLDGKGGckCXsk3v8ucyhRBCCCGEEOK4JFAnhBAiqJWbVdRQh0YDMIg0IlQ4o9UwAIaqTGp0HTkMBpQfVyqEEEIIIYQQxyeBOiGEEEHtdfNdGml23t/LAdDwmu0xACzKwiCVyja9mwKziA7dgU3Z/LVcIYQQQgghhDgmCdQJIYQIWnVmA3+xv+68b8WCHQcAKSrRuf1s4xRSzWRA87ZjJf9jPdPXSxVCCCGEEEKIHkmgTgghRNAq11V8Q4HzfleQTqFIJM65fbFlAb91/AWAVke7BOqEEEIIIYQQAcnw9wKEEEKI/qpStc7bOQwmDBsWLMxX07Gqw9eiJqnRfMdYRDopbNV5tOsOP6xWCCGEEEIIIY5PAnVCCCGCVr1uJJUkLFjIJZt2OnDgoJo6t/3iVAwWLFRQhcbkjo7fUKVr/bNoIYQQQgghhDgGCdQJIYQIWlXUUkE1DhwsNGZTFb6exvDNvBf23FH7PmH7Oc9YH6CNdp42/8a/HB/6YcVCCCEClZE2GcITwLBCeELnfSGEEMLHpEedEEKIoNWsW523U40kolUUACkkHrVvskogU6WRQhKRhFOhq322TiGEEIEv7Px/+HsJQgghhATqhBBCBK8WWpy3o1Rkj/uPNoZRRiUAa/Vmby1LCCGEEEIIIfolqEtfH3roIWbOnElsbCxpaWlccMEF5OXlOR/ft28fSqlu/3v99dePedylS5cetf9ZZ53liy9JCCFEHzRzOKMump4DdYNJ5zQ1h5PUVFp1uzeXJoQQQgghhBB9FtSBulWrVrFs2TLWrl3LBx98QEdHB4sWLaKpqQmA7OxsDh486Pbfr371K2JiYjj77LOPe+yzzjrL7Xl//etfffElCSGE6APX0tdIInrcXylFLfV8oTfxhd5Ii9na43OEEEIIIYQQwleCuvR1xYoVbvdfeOEF0tLS2LBhAyeffDIWi4WMjAy3fZYvX87FF19MTEzMcY8dHh5+1HOFEEIElhaXjLoo1XOgDmCeMZ1KRy0HKKWAIiYwylvLE0IIEUTa/3UxZvEa6GgEWwzG4LnSt04IIYTPBXVG3ZHq6uoASEpK6vbxDRs2sHnzZq6++uoej7Vy5UrS0tIYPXo0N9xwA1VVVcfct62tjfr6erf/hBBCeJ8FCyPUELIZRKTuXaAujhiaaGYSoyjWZV5eoRBCiGBhlm+Btlow7dBW23lfCCGE8LGQCdSZpsltt93GvHnzmDBhQrf7PPvss4wdO5aTTjrpuMc666yzeOmll/joo4/4zW9+w6pVqzj77LNxOBzd7v/QQw8RHx/v/C87O3vAX48QQoielelK8nUR+zlIdC+GSQAMU1lUUctmdrJH7/fyCoUQQgghhBCi94K69NXVsmXL2LZtG59//nm3j7e0tPDaa69x991393isSy+91Hl74sSJTJo0ieHDh7Ny5UpOP/30o/a/8847uf3225336+vrJVh3gvmb/b+8ab5Pk27mOutlnGc5zd9LEuKE4Fr6GtnL0tdUdTjrulLXeHxNweZ9x2f8n+M1rFj4H2MRl1vP8/eShBBCCCGEOGGFRKDupptu4u233+bTTz8lKyur233eeOMNmpubueKKK/p8/NzcXFJSUsjPz+82UBceHk54eHifjytCxz8c7/COXgXAEDNTAnVC+EgzLc7bUb2Y+gqQrBKct6uo9fCKgs/7ji94z/wMAIc2JVAnhBBCCCGEHwV1oE5rzc0338zy5ctZuXIlw4YNO+a+zz77LOeddx6pqal9Ps+BAweoqqpi0KBBA1muCGIz2v6HYl1OOx0cCP/ULXNnftulbNbfOO/XaOlRKISvNLsOk+jF1FeAZBKZpSbRShvtdHhraUGjTbU5byvlx4UIIYQQQgghgrtH3bJly3jllVd47bXXiI2NpbS0lNLSUlpaWtz2y8/P59NPP+WHP/xht8cZM2YMy5cvB6CxsZGf/vSnrF27ln379vHRRx9x/vnnM2LECBYvXuz1r0kEpt26kBrqaKGFYtO9+fxOXYCdw/0L63WDr5cnxAmpUTfTpDv/3isU4YT16nkpKpH1eitbdR579QFvLjEomNo8fBvtx5UIIYQQQgghgjpQ99RTT1FXV8fChQsZNGiQ87+///3vbvs999xzZGVlsWjRom6Pk5eX55wYa7FY2Lp1K+eddx6jRo3i6quvZvr06Xz22WdS3nqCMrVJG+2dt9EcoMztsSaXjB6AL/XXaC0fdoXwttPar2CD3gaADSuql+lgMUQRhg2AKulRRy2Hs4A7tGQYCiGEEEII4U9BX/raGw8++CAPPvhgr44TGRnJe++9N+C1idBRrxvJJoP9lALwsmM5u/U+rrFeTL1uZCy5fEMBGlDADDWBcl1Fukrx67qFCHXtLkGlwaT3+nlKKeaoKTTSTCzR3lhaUGkzD38fE1WcH1cihBBCCCGECOqMOiF8oU41OoN0AK+a/+EO+28AaFBN7DgUpAPQwCd6HaVU+n6hQpxgOg5lugI00tSn57bTwUa9nVV6PQ26b88NNa0uPep26UI/rkQIIYQQQggR1Bl1QvhCg248alsLbcxqu5DhDHFuiyWahkPBgkoppxPC69oODYKwYeUKy//06bnzjenYTCuttLHL3Mt0ywRvLDEouAY5a2UYjhDiBGaddhOOwo/QdYWouCFYcs7w95KEEEKcgCRQJ0QPGo6RqbNV53GQcuf9cWoE6/QWAKqQQJ0Q3tZKZybYYJXBr2239+m5ySqBz/RXAOzSe5nOiRuoq3f5G1dJDXZtx6rk7YEQ4sRjnX4z1uk3+3sZQgghTnBS+ipEDxp1s9t9xeGG9S0cLhlLJI6RKod0UqjWdT5bnxAnqnDCGEImo8jp83PHqZFMUCNJJJ48vc/jawsWWmvKdCXxxBJLNAaK5eYH/l6WEEIIIYQQJywJ1AnRg2ZaSSXJeV/jMnyECOftWBXDbr2PMiqp0NU+XaM4sa1yrOe5jn/ycsdbrHNsYbW50d9L8rp23UExZRRRcsys1+MZoYbwjd6DAj4yvzhhJzUX6mJy1GBMTBppYhCpFOuynp8ohBBCCCGE8AqpbRGiBzW6jgq6D7y5bnedllhFrbeXJQQApjY5t+Ma7Dg6NzggmQSKIz7378K8zDU4F6di+vz8YSqLxcZ83jFXUa2/powqMjjxJjX/y/yIDXo70JktnE8RG8ztfl6VEEL4h25vQLc1oDsaUWExqLBYVFisv5clhBDiBCOBOiF6cLxsnSgiCcPKFDWWUQxjvpqBiYMObffhCsWJ6lPzS9Y7tjKYdEqpRAOxRDHTmMhGxzamhfCABNdJrbFE9fn5hjKYrMawjd1YMNhl7iXDcuIF6lwH3wxnCBkqBTgxswuFEKLtxRnQWHJ4Q0wmEdfk+W9BQgghTkgSqBOiB8cL1DXTQjOwUq/nevU91urN2LGzR++ntL3Cd4s8wsnGTG61LvHb+YVvvOtYxeOOFwD4gXE+Cy2zubrjLlaYn7HYWMC0EB6Q4DqpNEZF9+sYmSqNIjo/kO3UBZzMTI+sLZhUugy+6aCDz/UGInQ4pjYxlHTHEEIIIYQQwtckUCdEDxq1e6AuhkhGkkMee2mjA43JGIYz2zKZx7mTdJXCx461bNe7/bLWQg52ZgepVC6xnOPzNQjfqXQpsU5VyaSQePgxHdqTh2t1AxPUKKKJIJfsfh1jnBrBPDWNBprYp4s9vMLA97T9r/zV8TYWDFJJYraaTCpJOHBQrqvIUKn+XqIQQgghhBAnHAnUCdGDZt3qdt+ByaXWb/GK/V98zS4A4lUsg1Qq11gvAWCvPsB+86DP19pKG9W6lmpq2R3gkyybdQvNtPKq49+YWnObdQlKqZ6fKJyqXIJxt1mXUKQPl+uU6yp/LMlnqqhhm+78/TtXndqvY4wwhrJadw7eMB2a+623YVEWj60x0O0x99N6aHJ1BdVEqgi+MrcBnZl2GUigTgghhBBCCF+TQJ0QPainEYUinDDeszxHsiWBEcZQLrWci0ObOHAQqSLcnnOrdQm34vvS0/cdn3Nex/UAAT/F8iNzDd/tuMV5/zvWRQwl048rCj77dDEWLIwih2SdgIlmKIPZz0H24/tAsS9V6lrn7WSXTMK+SCOZpcZ3eM38D9vYxR69n5EqxzMLDAKtqs15+1XbY3xpbnXed/3+CiGEEEIIIXxHAnVC9KCNdjSaVtrItKaRrQYBkK5SIMASwFSgLeg46nUjqSQ5J+e26JaA+34GMru2k0wCY1UuMURjMSyk62RMTCaokcTR90mowaSNNqapcTTTSppK6tcxlFIMVunEEUMUEezRRYwkx7MLDVBF5kE2ukx3naBGUkYFY8iljgZedLxJua7iYuvZflylEEIIIYQQJx4J1AnRg67SMIAIwv24kr7RAT658Rtd4AzSATTTepy9xZEKdQmf6a8A+B/jTKAz8BSlItiq89ij9/tzeV5XqEvYqHcAkKji+32ckUYOlY7OEuJtOp/FnOyR9QW6N8x3+Upvc96PUdGkGEnsdOwB4K/m26wwP5VAnRBCCCGEED4mgTohehCsgbpA10iz230J1PVNiS5noZpNG+1MUKOc2zvLQPfSSDOtuo0IFZo/s67DMlJI6PdxxpLLfDUdCP2+fq5s2ua8nUUGCcQyimFkkUEplVgwyCCVjeZ2phnj/bhSIYQQQgghTiwSqBNufm9/Ea01t0pjf6dW3e68HU6YH1fSN4GdT9dZ+uqqRUugri/2c5CVeh0A31VnObenqATnP36lriFLZfhhdd5XxeFAXbLqX486gOHGUD7XGwDocHSArYcnhACtNXU0OO+fYZxEhApnpDGUA5QCYAe+oYAN5jYJ1AkhhBBCCOFDEqgTAOSZezit/QqqqAXgl44/8HbYn5hvTPfvwgJA26GMOoXCFuC/MsHUo66RJrf7zbT4aSXBqcp1mIJLoGq6msAetZ/9+iCFupgsQjNQV2yWkUMWQ9UgEnVcv/sbxqgozjIWkK8LKdQlaK1D/iLFrPYL2aZ3AzCW4dxkvRyACBXOq9ZH2WJ+w6vmfwjD5pa5KIQQQgghhPC+wI46CJ8pp9oZpIPOcs8aXee/BQWABrOJvfoAtdQDnWWvof4B3lfqdAMKgzCstGMnnWSaJaOuT0p0OZmkUUsDyS6ln1Eqkp16D0MZzE69l3mEVrC9Rbfylv1DtIIqXUMEYViNgb2UdWCnVFeSzSDKdTXpKtlDqw1MrbrN2cPyGwoYqgY7H7vQuphRZg6PtP8FgKIQnx4shBCuws77G2bFNnR9ESpuCEbqBH8vSQghxAlIAnUC6PzAe6QTvWfYK+a/+JH9Qef9iCAqe4XAHibxnvkZ/zI/dN4vo8oZEBU901rzguOf1FDPKDWM0425zseWGv/Dr/gDBRTxF8c/uNp6kR9X6nmbzG+40vEz5/3XbI8P+JgT1Wg+Yg3fUMAu9pJOaAfqXINv0UQSq6LdHnfN0OzutUEIIUKVkT4VI32qv5chhBDiBCeBOgFAk25hOhPZzHYcmAA06xO7FNGO3Xk7igjmGFP8t5heCpbSV9eyzS4v2N9kg7mNZ2z3Y1EW3y8qQP2f/RW2m/nUUMePjat42XyLDeYOwgkjl2xOMWa6ZXrGGjHMVJNooZUoIjC1iaEMP34FnlVMKdFE0oGDWKIYrXIGfMxRKodpahzRRFFklkDofLuO0q47aONw381ooo7aJ0nHM11NIAwb8cT6cnlCCCGEEEKc8CRQJwA4QCkb+NptW8sJnlHXpjuct5tppVCX+HE1fRfIGXXd9b3awk62mDu5U1/PcDXED6sKTA/Zn6Hy0OCE0QzjGfPvzsdSSeIPtnuOek6UiuATcy0AxZSRzSDfLNaLfm9/Eej82Wk61M/wWdsTHgnq5qohbNQ7AJiqx/F9zhvwMQOVa4sDAKOb4H6EEc4uvZcGmqg+Yn8hhBBCCCGEd0mgTvDrjqd4wvHCUdtP9NLXauqIJtIZFHDtAxaogiWjzsBgtppMm26nnkaKKEGhSCSe3Xofw5FAXZeuf1EDg0aa3R47smSxy2w1hRpVTwON7DL3kW0J3kDd8/Z/8rjjeSp1DTZsLDLmMUNNIJIIRnkgmw4gV2UxQ03AgoV2Onp+QhCrMmuYwChKqWCIyuSHlu92u1+ySqRBN3Wb/SqEEKHKseddzOI16No9qIRcjMFzseSe7e9lCSGEOMFIoO4E16xb+NrMo+GICZwANY46mizNRKujS6NCnUM7KNOVziAdQIpL36ZgEIgZdW26nXY6KNIlrNNbALBgOMutK6iiyDwIUvnq1H6oBNvEZKW53u2xqWpct89JU0l8oTdiYHSWcgbx9zNP72GX3geAFQtbdR5b9E7CCXMbgjAQ6SqFr/Q2AAwzhOtegUpq2cYuAJYY/8NVx+hhmEIC+zhADfXYTfuAB3YIIUQw6PjoNmg8XEHh2Pl3CdSJAWvSzRgYRKqIE2K6vBBi4EL7E4no0f/aX+Yt3dnU34qF77CY8ENDEx7Vz/Gg/Wl/Ls9v/mm+x9/Nd9zy0yYyym/r6a1Az6j7r2MlqW2zedFc7tz2D+v/8jfr4ySTQBhh7Gaf/xYYgFz7iXUFWLocq6R1iMoknWTCsJFPoVfX5207dAFWLBgo7DjYpncTRyynqjke62UYrsKIIwY4ujQ01FRxuOz8eBcfZhgTSSYBBw4OUOaLpQkhhBAh6Z6O35PYNoPI1on8sOMufy9HCBEE5BL5CahcV/G5YwONNLPesQWFQqMJJ4zhlmzaHIcDAy36xCx/rdK1zmESVqzYsBBnxPh5VX0TmBl1bVixYMfh3DbDMoF63egMkHTXv+5EZWqTDFLYR3G3jx/r3zhdJVNGFYCzv12wqtI1zp+XEQxF03klOkF5dsjBeEZSSx3xxHn0uIGkyqzlA8dqBpGGAgaTfsx9o3UUMUQzTGWxRxeRQ2f24r/sH9Km2oknjlgVxUnGNB+tXgghhAhO9TQCne/bXIfVCSHEsUig7gS01tzM9+y3A539rzQwiFT2RnxCja7jt46/OPf9q/k2j3HiXfmp0NXO2/+0/YHFlgV+XE3vBXpG3S4K3YJ0AFFEYlM25/1gDyx5Uh0NxwzSAWjVfaAu2SVTKtgDn5UuGW7O7EANT9vu8+h5wgwb35h7QHcG6pNVgkePHwjeNj/hBfNN5/00lXLMfUcbwyg0iynUxWzX+ZzGXLTWXG2/y9krcZwawcbwt7y9bCGEECKo5em9ztthhPtxJUKIYCGBuhNMk27mN/Y/uWzpDNV1fSiNJ5Yz1Ems01tooKmzP5G2Y1Un1o9KI82cpKYSQTiDVJq/l9MvgZhRV9VNEC6ScKKJ5ALjTL7WeeSbhSEbKOmra9t/cdQ2KxasWJitpnCyMbPb5yUTz+nqJFppwxLkHQ6Gk80gUsmnkCaaseNgCJmMVcM9ep45agqmMnFgstvcR7JlikePHwgiXT4cJJPAWCP3mPuOUbmcpKZiwaBcVwJQrMuYqEazUW+njXaqgjwILIQQQnjLE/YXeNf+KdvYTTSRzu2SUSeE6I0TK/oiqKaODXq7835XMKcrA8dQBm+H/4nvtC/jHXOV8zlpJPt+sX60ydzBF3oTAENU8EzMDOx8Oo6aIBmGzRkEzlApvGV+AMBOvYd56sQuqbNrO//VK533pzOeDWzHjoMIwnkv/LljPtemOnvTFepi4nRM0DYubtVtfKzXApBAHC20OR/zdCA3TSXxmf4K6Pz5m8MUjx4/ELhO8p6lJpF+nIy6kcZQ59/A7Y58UlQSE9Vo1hzaBp3ZjsH6syWEEEJ40xuOFXxF56Aq1wvVXVnpQghxPBKoO8E06sMvDlYsaDRppDBSDXXbb4zKZb86SKNupsKsJs1y4gTqXnX8mypdQwapDFfZJKjQ7VnlawpFEvHUUI8Fg/GMcD42RY0li3QaaSbP3MO8E7z3VZWuZQiZNNPCMLL4reX/sVHtwIqFROJ7fP6Z6iTWsYWDuoISXc5gdex+ZIHKdbDDBEYySKWxi71eCeIOJoOxajgKRbPLtOdQ0ugy3Tu+hx5/iSqe520P82/7R6zU63jE/mdOVjMZy3DKqCSCcFppC9qfLSGEEMJb7u34vVtixDiGU0gJ0UQFZMWLECLwSKDuBNPVzBRw9go7SDntdLjtp9F8rTsnTP6y4w9kdKRwie1c5lum+26xflKoS9hBAQBnqfl+Xk1oKdTFVFMHdP78uU6TzFaDOEAZaSRxUJf7a4kBw7U/3RnGPGbZJjOLyb1+fqSKYJu5m2wGsUcXHXdwQKCqMmtIJ4Ua6hhpyeEp26+8dq5EFcc3uvP3viREf/7adAeJxNNIExcZZ/W4/2WWb/GNmc9yxwdEEcFBKvjm0N9GgCFkBu3PlhBCCOEttbreLSB3heV/+JXjScqposAs4mszj7ftn9Cu7Nxh/SGRKsKPqxVCBKLgbl4k+qxBH86oSOVww/kYot32c21G/x8+5s/8g8UdV6J16F8Fcu27dKX1Ij+upO8CvQStwSWjByCcMOft0WoYMURRTrXbVcgTlev3Kk71feLweDUSKxaKKHEGoIJNJbWUUUk7HaToxJ6fMABR6nD/mFDNqKuhjhrq6MBONFG9es69lptJJ4VmWinQRc7tlkM/Wzv1Hm8tVwghhAhKrhf8rleXcZttKckkAFBOFTPbL+RX5pM85Hia1eZGP61SCBHIJKPuBFOj65iuxmPDSp1uoOJQzwRTu0/izCCFcQx3ZpYBpJBEta4L+Sb/jbqZoQzGxBG0gyQg8IZJ3N3xOPv1QbdtVizO24NVOjlkEa0isMmfJh62P+O8HdPLoIqrISqTXIaQqhJp0q09PyEAufZ0STYSvHquKA5fzXbt5RZKXAOQMUbvfqYshoXJagwNNFKiK5zbs8kgU6VR7jIhWwghgp2yRaMxABMwULbonp4ixFGqqXfezjIyAJhtTCZTp1Gl64gl2lk14drmQwghusin4RPMHvY7s5Wmqwl0xXKO/GAapSLdgnQAZVRSRqXzilAoMrXJy+a/MDEZRGpQDZKAzh5wgUhrzWOOF3DgHhB2YDpvK6UIU1bW6a0Y2qBVtxGhTswR9o26mf+Ynzjvx6q+f1AYqjLJYw95GgbrDE8uz2dch4+kKO9m1EW6BuqCNLDZE9e/866ByZ6cZzmdm+zuZcf7KGafLiZKRx7jWUIIEXzCl0p2kxi4rguNMUTxE9vVADhwsF5vPXpfmaAuhOhGUJe+PvTQQ8ycOZPY2FjS0tK44IILyMvLc9tn4cKFKKXc/rv++uuPe1ytNffccw+DBg0iMjKSM844g927d3vzS/GZjxxrWKBmcLZxMkuM/+Ei4yyuMS7me5Zvu+0X61IKG+dyuyLEsydqqMc8FDyK7Ue5YSAJpIy6Ot1AIoeHcgwilSstF3KH9Ydu+51izGaemsZENYp8s9DXywwY+eY+wrA572fT94Cxa+ZrJcH5e1umK5mmxnGamsMQMr16LtfS15ZQzahzCUBG9iFQN04NZ4GaQRrJZJLKAmYwnfGcpKYSjQTqhBBCCIA23c7o1sXs0fuJIYpzjVOdj81Sk0kgFoXCQBFDNJPVGFp023GOKIQ4UQV1Rt2qVatYtmwZM2fOxG63c9ddd7Fo0SJ27NhBdPTh4NI111zDfffd57wfFXX8kp9HHnmE//3f/+XFF19k2LBh3H333SxevJgdO3YQERG8zT4rzGrW6s2008F8ZnBt2CVcyyXd7uuawVPv0itrr3mAUyyzvL5Wf6k0Dwc0pqvxflxJ/wRiRp3WmloaqHQpY8xWmd0OBohXMazWnVezvzHzGWUMI0zZjtovlGitUUrxRMcLdGDnJsvl7NR73Ae89OOfNZ5YLFhw4KDCDM5A3T5dzEa9A4A/qHu8ei730tfQ7FHnGoB0DUz2ZKSRw2f6K+f9EirIVdns0ftJ0DIVWwghhAAo0iUUHippbafDLVsuw0ih1tEAdBY0NdLEFr2TOUzxw0qFEIEuqAN1K1ascLv/wgsvkJaWxoYNGzj55JOd26OiosjI6F3pl9aaJ554gl/84hecf/75ALz00kukp6fz1ltvcemll3ruC/Cxv5ivo1CMIoerLBced984DmeTRRBOK51Xe25w3Mvl1vOwqqD+0TmmSmqIIoIE4hiqvJvB422BklH3I/uDPOP4m9u2sGP86RmvRqJQaDQ/cNzBcuP/ONtyii+W6Tdvm5/w/Y4fOwNzdzuecD4WRyw/tlzJuWphn4+rlGKaGsc+XewWbA8mJbqcVBIJI4wh/cgq7ItIHU4WGbTRjhmiQ3NcA5B9KX1NIZGT1FTW663YcWDBQipJ7GE/tdTToTuwhXhAXQghhOjJAV2GFQv2Q61eRqqhzscWGfO5U13LQ/pPbs+R0lchRHeCuvT1SHV1dQAkJSW5bX/11VdJSUlhwoQJ3HnnnTQ3Nx/zGHv37qW0tJQzzjjDuS0+Pp7Zs2ezZs2abp/T1tZGfX2923+BqFbXk6uyKaGcycaY4+4br2KJJxYrFto4nJIdQTjrzaP7K4SKaupoppUSyoOyP1ogZtTVm01uQUMLFjJUarf7ZnE4oB6Oje1maJScH0+lrnHPnnPRQgvfsSwi3ojt17GbaKGCasqoHMgS/aaCaiqooZZ6bIZ3A0E2w0YZlVRQTQ11Xj2Xv8QQxQg1lKFqMJH0/u+bUgq0woKFcMLIYTA5DGYYWYwhl3Jd5cVVCyGE73R8+nPaXp5N61M5tL00m45Pf+7vJYkgUke9M0hnwSBeHc46T1GJzLJOwYqFMGxYsTCCoZgBcmFdCBFYQiZQZ5omt912G/PmzWPChAnO7d/73vd45ZVX+OSTT7jzzjt5+eWXufzyy495nNLSUgDS09PdtqenpzsfO9JDDz1EfHy887/s7GwPfEWe95n5Jd/oAppoYThDjrvvYJVOWcQa/p/lWn6mruN96/NAZ+nUG+aK4z43mFW6XNVKxrvN670tUDLqzCMGSPw/yzW8Eva7bvedYoylwbaJBOJoo4M/Of7hiyX61fGmfXVgJ4fB/T521+CXFlpp1sFXzlmvGwH3npneFHWo31qoTn3dpfeRrwup1NV9zoC7ynIhbbTTRjuttJFsJLCXA+xkD/so8dKKhRDCtxx5b6Ard0BrFbpqB468N/y9JBFE6vXhCobHrXdxj3WZ2+OLjfk0hG+mPmITccSQT2FIJ0AIIfovZOoXly1bxrZt2/j888/dtl977bXO2xMnTmTQoEGcfvrpFBQUMHz4cI+c+8477+T222933q+vrw/IYF0m6USpSGxYiTB6l00Rp2LAAqONYcxSkwgnLGQnIgJU61rmqClEqDCGBGHpa6Dl02mt3QYZxBJNrnHsILFSCqvFyhmOuZTqys4eHmYTMYZvAjX+UK8bGcFQ8jl6eMYCNWNAmWTj1Ag0GgsWqnVtn/qSBYJGOrOffTXYJYoI6mgIyqBmb3SV1/TnIsR4YyRTzLEYGMwwJjBK5TBLTSKGKMrNqhC67CeEEEL0XaVZzcP2Z5z3Y1UMhnJ/cXS9f7oxl4O64oR4ryuE6LuQCNTddNNNvP3223z66adkZWUdd9/Zs2cDkJ+f322grquXXVlZGYMGHe6JVFZWxpQpU7o9Znh4OOHhgV0m2abbeVt/AsBcNbXXz7vVugToDLjs1vuooZ69+oBX1hgIdugC1urNoOER6x3+Xk7QO0ApH+rDJeMNNBHL8Ye5AEQQwed6AwAF7Gcyxy/VDmZb9M5ug3QAy8P+OKBjt6hWPjc7v4/B1qdOa009XRl1Pf/MeEKkigAdmlNfTW1SdaikN8VlInBvTbWMY63ldef9Nx3vs153ZgGczkkeWaMQQggRrHbrQvaw33m/p2qASBXhfI+2m0KmMs6r6xNCBJegvgauteamm25i+fLlfPzxxwwbNqzH52zevBnALQjnatiwYWRkZPDRRx85t9XX17Nu3Trmzp3rkXX7g2t5XarqezaFUopzjYVMUWMxMWnUx+7zF8wUMFmNYaIaxdABlBwGgkAofC0xyxnPCBKJYwRD+aXlZmYbU3p83jhjOFPUWCaokZTqCu8v1I/KzSrGkHvUsIRhZPep4X93XN8kNgRZoK5JNzOcIUxRY5nUQ09NT+n6fodi6etBXUEqSUxT45mvZgz4eCkuryPSCFsIIcSJ7saOXzlvW7EyWKUfZ28Yq06c97pCiL4L6kDdsmXLeOWVV3jttdeIjY2ltLSU0tJSWlo6y5YKCgq4//772bBhA/v27ePf//43V1xxBSeffDKTJk1yHmfMmDEsX74c6AxI3XbbbTzwwAP8+9//5uuvv+aKK64gMzOTCy64wB9fpkdUmTUk0NmQPrkfgToAi7KwWX+DiWa3uc+DqwscO3Q+W/ROduiCzrLfIBNIwyTyzULydSHbyaeGeq6wXsDPbNeRoVJ6fG48cWzW37BN7+aALvPBav2jxWyhhjp2sc9t0jJAPQ1HlUz0VazLMRt08ATq2nUHG/R2drOPzfobn609ikgUCgsGDtPR8xOCyB5dhEazUW/3SI18yqHy2XDCqNahOXxDCCGE6I1Ks4bGQ1UAAHbsZKmM4zwDElze6xbrcm8vUQgRZIK69PWpp54CYOHChW7bn3/+eZYuXUpYWBgffvghTzzxBE1NTWRnZ3PhhRfyi1/8wm3/vLw858RYgDvuuIOmpiauvfZaamtrmT9/PitWrCAiYmDZLf5USS21NKBQpJPcr2NMVKOJJJxSKshjb0imaHeVB8YS3TnpMIj5c5iE1pqp7efTgd25rS99sVxL86oI3WydfIrYRzFWLMxVU/nc9jd+0fE4Vm3h5vArBnz8WBWcGXXb9W4Wd1zlvH9kENNboohEo2mkmXbVQSQWn5zXF77RBZRRSTSRjFMjBny8LNJJJ5kyqijQRR5YoRBCCBGcdrGX/ZRixcKN6vssC7vceUHrWNwy00P4va4Qon+COlCn9fEDEdnZ2axatarPx1FKcd9993HfffcNaH2Bol138H/2V4DO4E2Cy6jwvhithpFDFkkqgW3mLrCc68llBoRGfThQF4wCJaPuK/Nr0kmhkhocOMgkjWHq+P0jXQ0ilamMxVAWmkK0zBo6yxEXqBlUUEOmkUaEEU62pbMEtqeSid5IIYEpaiw2rLTTMeDj+UqpriCNZCqoJgwbI44zgMSTwpTNWTPeShuRAyw9DiRVupbZajI11JGrBj7sKM6IJZ0UBqsMopVveggKIYQQgajQLGGumkod9eRashjai4F0KSQygVFEqnAc2vTBKoUQwSSoA3Wid/boIucgCeh/6euZlnk0djTzjS5gu2M391tvC/qssyN1ZR25ZiIFK39m1L1jfsoBSgG42DibkSqH0yxzev38TCOdTXwDGtJ1/zJAg8EevZ/P9FcAZBmdAbquAS6eEKbC2Ky/AYKrj1i+LqKcKgCesd3PpT66KBBBmPN2K+0+OaevrNYbWae3ADDGyPXIMeNVbOfPr4YaXUeiivfIcYUQQohgslXvZI3eBMAIldOr5ySpeLaxCzSM1L17jhDixCGBuhPAle0/w4KBRjNFjWM64/t9rDONeezSe2mmlTJdSYZK9eBK/evbrdfhwEE0kYxWPQ8mCUSBklG3UxcwlMEoYLga2ud+f4NJ5zQ1hzbagyoTrK8qXUodUkjw+PFdM0PrXXqnBLoqXeu8neyF78uxhHN4enerbvNIL7dAYWoH89Q0IokglSSPHPMkYxqY0EIbu819zLJM9shxhRBCiGDw/9p/y4d6NQd1BRPUKCKJILeXFSTJbqWvtV5aoRAiWPUrUNfR0UFpaSnNzc2kpqaSlOSZN/3CO7aSh4POlOrvG+cxztL//kSRKtw5SryA/WQQGoE6h3bwMWtx0NlAvjgEBhj4K6PO1Cb/Mj/CxCSLDO613dTnYyilqKWejXoHVm2hyWwm2gi98roKs8p5u7+ZrsfjGqgLpknNFfrw9yXFC9+XY4lQhwN1bbT57Lze1mQ2s0p/hQMHc9Rkj2VCp6hEZ0boTr2XWUigTggR3CzDFuMo/ARaKiEyBcvQU/29JBHAPtFr2a7zAZyDlTJ72bokkTgUCo2mwqz22hqFEMGp14G6hoYGXnnlFf72t7+xfv162tvb0VqjlCIrK4tFixZx7bXXMnPmTG+uV/SRqU1nkG4EQ7nYevaAjjdCDWWYyqJRN7NfH/TEEgPCQSqIIRIbYUxiFL+z/czfS+qXQMioq6UB89DP3Dij/0Hhqy3fpc3xGvt1Cc+ab3CLMfDhCoGmSB8klUSy1CAGM/CedEdyLeEOpoy6Ql3i/L5keuH7ciyhWvq6i30YKHIYwknGdI8dd5wazng1gmJdRp7e47HjCiGEv9jO+F9s/l6ECBquQ9MAYohyu+h3PBZlYbExn6/NXc52MUII0cXozU6PPfYYOTk5PP/885xxxhm89dZbbN68mV27drFmzRruvfde7HY7ixYt4qyzzmL37t3eXrfohRpdxxsd75FNBqkkMdoYRqoaWPZjskpgrz5ABdWUu2S9BLsqXUsdjVRSzTBL9oACTIHCXxl1B3U5wxlCJmkDCj5NNEazW+8jnHD+7fiYGl3X85OCSLNuIUKFY8fBDp3PIC+UkcfoKFJJZCiDMXSv/twHhDgVQwQR7NH7SRvg36y+iHAtfQ2hjLqvzTxSSKSYUpJdJioP1HA1lDy9lyQSgioQLIQQQniCTVudF8kTiGWoGtyn5zfoJuw4yFaDqDfldVQIcVivMuq+/PJLPv30U8aP77632axZs7jqqqt4+umnef755/nss88YOXKkRxcq+u4Dx2quMO9w3o+jb33CupPsMmq8Moia0/fE9WvxZU8sTwuEjLoiXUIBRQBkqrR+H2e6Gs+PLVfxkOMZKnQ1a83NnG05xVPL9LvtOp/l5gcATGM8hvJ8IC3OiKWCGqCGYoKnnPsTcy011DOCoT4dWBPumlGnQyOjTmvNjfZfYcdOGsncYvmBx449hEFEEsEe9mMxLR47rhBCCBHotNbkU+S8MF5LA1PUuD4dY4jKZLXeSJmupIQyj3xWE0KEhl4F6v7617/26mDh4eFcf/31A1qQ8Jyt5k6iiaSJFsAzvZ4ySOFkNRM7DlpoHfDxAkULrSxUs2il3SuZTf7gr4y61eZGTlNzaKGNaar/g0ssysIYlcsQBmHByn4dWmUBrlNYkwzvTMuM5XBfv2DKeGo+9LclWkX69LypKomT1DQsGJiH+lUGuzoasB8qzYlXMdiU54q6DMNgjjGFRt1MnIrBoR1YlATshBBChL4aXc9UNY7VurN3dxrJzFNT+3SMNJXsvF0Z4gMlXre/yxvme8QQxRnGSVxm/Za/lyREQBvw1Nf6+no+/vhjRo8ezdixYz2xJuEhr+v3nEE6cG8s31/ZxiA+1V923jEHfLiAUalrWKnXA3A55/t5Nf3n/3w6+IfjXYooIZ5YzhlgBtxwYwhFdPZC3KR3eGJ5AcN14uu3DO80q44iEgMDE5NG3eSVc3iaQztoO9QfLpIIn567jXa+0BsBuIXQ6InoOkF36gAC58diYLBGbwLdmU0QzBnJQgjR9urJ6MptYNrBsKJSJhD+/U/9vSwRgKqpdQbpAMqp4juWxX06hms7iqoQqlTqznLzA/5lfghAKRVchgTqhDiePgfqLr74Yk4++WRuuukmWlpamDFjBvv27UNrzd/+9jcuvPBCb6xT9NEHjtVE6QhGkkMScZxnOYNFxrwBHzdOxXCusZBSXUE9DR5YaWBwzQ6MUr4NDoSSZt2CgWKGmsholTPgssVRDGO+mk4jzZTqSg+t0v/Oa7ueNXoTBgYjGOK1LE6lFLFEU0cDDQTH1NdmP/4uhrm0EG+nw6fn9pYqXcMERhGpwhmlcjx+fNfAXJWu8WgPPCGE8DXdXAbmob//ZkfnfSG60cDhC6CDSCVHZTFcDenTMbIZxCw1iTbaqdPBU/nQV426mU3mduf9dh0a77GE8KY+N0X69NNPWbBgAQDLly9Ha01tbS3/+7//ywMPPODxBYr+KdTFFFLMbvZxne0yfmy7iomW0R45dhMtbNDbKdNVVJqhcfXHLTjg4yweb/FH4etus5B6GvlKf43q+5+Xo8QZMezR+9msv6HYDJ3S1416Bw00YWKyi33EerEnScyh8tcWHRyl6s0uWcBR+Lb0NRQDdZXUsI1dfKm/9kq/v66WCjasVLpk7wkhhBChzDVQN0rlcIHljF5PfO0SpSJYr7eyRe+klApPLzFg7DYLqXFJ8AiWKg8h/KnPn6Tr6upISuqcwrdixQouvPBCoqKiOPfcc2XaawDJ03tpppU4Ysgiw6PHnq4mEEs0FVSzi70ePba/NGv/BQc8yd/DJPLYQzV1JBDLZMMzgeGxajhh2NhKHm0h0uC/xSUYBZDixSykQSoVK1ZqCI6puc3aNWju299Fm0ugrkPbfXpub3ENnqUw8D6lR8pQKUQTSQd2qgiNCzdCCCFETxpcgk0LLXO41bqkz8dIdukfXhXCF7t2UkAt9VixYMFgN4Vo7Z9e2kIEiz4H6rKzs1mzZg1NTU2sWLGCRYsWAVBTU0NERGhkIoWCrimm9TR6vKwuiwzSSWG2mkShWezRY/uLa+lrZIiUvvpjmMQ2czdz1BSSVWKf0/+PJVpFOrObqkKg0W6T2cxIlUM4YdiwkkwCSXhnmAR09hCzY6eRZkwd+I0lm2lhmhrPJDWGTB8PdrG5dIMIlYy6NtqYrsYzVg0nlSSPHz+OWGcv1FCaBC6EEEIcT4tuZaoaxwQ1qt+vryk6kdEMY6oahxEQnaa9Y4eZz1w1hXDCGEwGM42JbDN3+XtZQgS0Pveou+222/j+979PTEwMQ4cOZeHChUBnSezEiRM9vT7RT64BjWQPTHt1NdIYSr6jkHwNJ+lpXMa3PXp8fwiV0ld/ZtRprfmz4+/UUM9g0jnHstAjx3W/2lhDpkrzyHH9ZQ+dpbwAlxnf4vmwh716vhgV5ayDbqSZOC+W2XpCI81s1J19TBYw3afnDnOZiNoRIoG6Ql3ChkPfzyQvZG66ZoOGQiBdCCGE6I1yqpyDzvrbUzfFSCSPvaAhXSf3/IQgpLXmGcffqKeRFBIpooQis4T3jdVMxDPVN0KEoj4H6m688UZmzZrF/v37OfPMMzGMzqS83Nxc6VEXQBKIZYGagUKRQKxHjz1a5TJPTUcBtTo0BkrYtJV5aho2ZfPIdNxA4OuMugpd7cwUy/VQNh3ARDWKU405NOhGinVZ0L+oF5j7maOmYMPKdMPzUziP5BqYa6Ap4AN1rqUk3uzd1x3XHnUdhEjpq0s5qjdKrLMZxOlqLk20UKODo7xaCCGEGCjXLPL+tpZIJA6FQqNDtvT1EfufmWVMwoqFNJJ5yXwLCP0pt0IMVJ8DdQAzZsxgxowZbtvOPfdcjyxIeMZacwtFlJBKEoYaeFN/V1kqnc16B020UKLLMbXp8XP4Wj6FrNYbQUOCivP3cvrNnxl1uylkvd4KwERjlMeOG00Un5hrO89hFnKWxWOH9ovtejdr9WYAlqnve/18MS6B5wbdCCrd6+ccCNfmzLHKt0HzkBwm4fJG2NPZ1QCDjQw+0msAiDVD4yKHEEII0RP36qWEfh3DoiwkEU8VtW4X1kLJv82P2aC3oVB8Yfu7M1BXoav9uzAhAlyfA3VXXXXVcR9/7rnn+r0Y4TldTb37+8JxPEopbrb8gHfMVRTpg3xofsEiy3yPn8eXXK9iebNfmC/5OqPudfu75DKECML4lnGax4471hjOVDWOMl3Jbr3PY8f1lzxzL5mkk66SGa1yvX6+LJXOKJVDi26lQTd7/XwD5Z5RF+XTc4dij7oD5kGGkEm2yiBFJ+DpWH46yZyiZlKkD7KXA549uBBCCBGgmnQLOQwmmqgBfXaYZIyhSJe4vQcJFVpr9ukDDGcIo40cctRg5qgpFOsyivRBfy9PiIDW578INTXu0f6Ojg62bdtGbW0tp53W+w/n+fn5FBQUcPLJJxMZGYnWGqVCt4mmL7WarWSoVOp0g1eahwMMN4ayw5HPEDJD4g9tOGGk0dkbwqqC94XSnxl1+zjAHooAz2bUjVBD2aR3kEFq0PcNa9PtaKVp0I2U6nJyVbbXz2mi2XUowOmarRao2mgnk3SaaXbLBvQF16mv7Tq4f9YATG1iUzaadDNlVGEzbD0/qY+UUrTQRjW1ZOtMms0WoozgnZwthBBC9MYBStlH51C9VNX//nK1up4CXYQFS8h9Ht5m7maQSqVIlzCSoSQa8ezSe7FgCeHRGUJ4Rp8jEsuXLz9qm2ma3HDDDQwfPrzH51dVVXHJJZfw8ccfo5Ri9+7d5ObmcvXVV5OYmMijjz7a1yWJI9SpRgp0Z8DEW/3WRjMMTVdj/B1eOYcvbdV51NHAcDzXW83ffJ1R15WVqFAk4rny4SQVTzRRlFLBF3qTx47rD/m6kNfNdwGYwEjCVZjXz+laPtpAo9fPN1BV1FBCGQBxysc96lyGSdhDoEfdAcr4Un8NwMnM6GHv/huvRrJeb6WOXeRTyCTGeO1cQgjhTbYF9+PY/ym6dg9GQi5G9sn+XpIIUF091sIJI5r+X6CKOVQ94MBBK21EBvFQuyP93fwv2/RuAK43vgfAJDWGlXodK/V6GnSTz9ucCBEsPJI6ZBgGt99+OwsXLuSOO+447r4/+tGPsFqtFBUVMXbsWOf2Sy65hNtvv10CdR7Q6FLe5q0PuiPVUMYxnDgVE/SZJx26gzo6h2KkeqGHky/5M6MuXsUyl6lEq0iPZyWmqESadHPQN9r1RD+TvjpymESgc/375evBLuE6jLlqCgrD+cY5mJWYZZyu5lJLAyONHK+dJ1dlMU2NI4E4DpqVTArulqVCiBOYZczFWMZc7O9liAB2Z8ejrDY3UKVrOUOdRIZKGVAWXJyKoevaej2NIRWoa9ItzFfTqaeJMcYwACYZo2kxWwnDRr7ex1Tl/cFqQgQjj32aLigowG7vOQPh/fff57333iMrK8tt+8iRIyksLPTUck5o9S5ZM966SpFoxFNOFV/rXeTr4P53q+LwpEJvNFs/EbTqNj4y16DRzGCCx4+fQgKFFFNNHQ7twKKCc6KEa6BxkWWBT84Zow4HnFz7vwUqX/z9OhaLMlhzaNDHlBDICiukxDno4VLlvYFPGUYaGx2dmdXnc4bXziOEEEL4k9aaJx0vOyfD1+oGqsLWD+iYrm0+GnUz6SFUE/qxXkOe3ksE4QxRmQAMUqms01sA2Kn3MhUJ1AnRnT4H6m6//Xa3+1prDh48yH//+1+WLFnS4/ObmpqIijo6U6G6uprw8PC+Lkd0w21qohczUk42ZlKoSzDRNJnNRBvBmYFSZdYwVY0ljHDGqRH+Xo7H+LL09aCuYLaajAMHk5XnAxwLjJmEm+GUU8VBXUGWyvD4OXyhRbcwU01EocggxSfnTNIJzFFTsGPHoR0+OedAuA+T8G2gzurykmgn8L9XPalym/ia4LXzpHD42KE6tU4IIYQo1ZWkk4KJSbpK4fuW8wbcUy5XZTFHTaGDDreqgmD3mfkVYdrGAjWDSWo0hupMt5+gRjJfTaeRZvaaByA4r70L4XV9DtRt2uTeI8owDFJTU3n00Ud7nAgLsGDBAl566SXuv/9+oLMRtWmaPPLII5x66ql9XY7oRqPrB10v9nhyYLJebwWgStURHaSlYpXUsEl/A8B8pvl5NQPjr4twNdSx9lAm0jTD81fGTEy+0BsJJ4zdupAsgjNQV061s2fYrarnCxueEKHCnf82pzLHJ+ccCPeMOt/2qLO6vFsM9kCdQzvYqw9PYU3Be9nCrpnIpWaF184jhBDeZlbvQtfswWwsRsVkYiQOx0jy3IAsEdx2631UUkMrbXzHWMRN1ssHfMw22p3v0+pV4PcS7q09ZhHfsAe7tvM9y7ed23PVED7XGwAYp0MnQUIIT+tzoO6TTz4Z0AkfeeQRTj/9dL766iva29u544472L59O9XV1axevXpAxxadGmkmnDAiCSdWey8jxTVDo0rXMEQN8tq5vMkffcN8wZejJOq9nAU1UY0ik3RKKGOX3supzPb4OXyhXrsEoXyULRbrWvoaBD3qas0GIggnkTjidLRPo8/ugbrgHiax3cznD46XAbBgOEtOvCGbQYxQQynUxRQfGgQihBDBqP2f34bGksMbYjKJuCbPfwsSAWWnLqCVNjJJY5Ia7ZFjxrgO/dKhE6jbpfcBmlQSyXb5jDiUTMarkezRRWw+lCghhDiaZzu+98KECRPYtWsXTz75JLGxsTQ2NvKd73yHZcuWMWhQcAZ6Ak2zbqWNdtpoJ0J5r5x4KIMZzTDClI1SHbxZFE26mclqDE20kEb/x6sHAn8Nk2h0Lbf2Ql+xLDUIO3amqnE0ErxlAa5r91X/NbdhEkHQo65a1dKq26ijkSij/1PU+sOt9DUIyoSPZ78+iBUrDhwoFEO9GKhLV8k06EZGkTOgyXdCCCH8b7VjA7v0Pmp1PZdbzifVSPL3kgJGgd7PdDWBEl1OjpHV8xN6Ic7lwm1DEL/HPVIlNdhxUEENGepwuxerYcWmrQxhEINUKqY2nWWxQojDehWomzZtGh999BGJiYlMnTr1uLX4GzduPOZjHR0dnHXWWTz99NP8/Oc/7/tqRa+00Oq8HaW8NzkoScWTx17QsE8Xe+083naAMrbonQAkqng/r8ZzfNmjztt9EXPUYMqpolxXMcIc4vHj+4qv+ke6cr1S2xgEGXVdfdWSXfqe+YolhEpfvybPmRX4ou0RIr34WmAog3gVx3adz36z1GvnEUII4X1XddxFIZ3v63ONIZzP6X5eUWCwazt/dLxKB3YmqJGcbMz0yHFdh0kEwwXV3nIdoHbksL40I5n3zc/JM/dRSwNJhM7nLyE8pVeBuvPPP9856OGCCy7o98lsNhtbt27t9/NF7zS7Buq8OOJ7rBrOSWoaBooyXeW183ibrxqu+4K/MuqqdS2z1CRiiXZLb/eUFJcX+EqXUuVgE6HDma+mY8Fwy3TzphgdxTw1DQPDq33KPKFDd5CtMhnDcIYpz1yp7guryzRhR5AH6qp1HQvUdByYjFbDvH6+rsBqPY206w7ClM3r5xRCCOF5Jubh20GeXe5JJbqcBWoGrbR79HU1WSUwX01HoXx6kd3bDAzmqWlEqoijLr663q/SNSSFUKKEEJ7Sq0Ddvffe2+3t/rj88st59tlnefjhhwd0HHFszbrFeTvKi2VII40cvtCdGZRW7fMqao+pdAnUBXogoy98+WK/Wxc6B4vcpW7w+PFjiCIMG+10uAVWg803FDgb6PoqezNKRbD60O9pR4D3Xduj97NBbwM6yyl9zX3qa2B/r3qy2tzABr0dhWKEGur186WoRGdjzCpqGUSq188phBDC81ppc94+IH1Hncqo4mO9FoDJxhiPHTeCcOd7wwV6hseO609aa1aZ66mjgSE686iLd+4X4GsYSY6PVyhE4OtzdOXLL7/ENE1mz3Zv5r5u3TosFgszZhz/D4zdbue5557jww8/ZPr06URHu5d/PfbYY31dkjiCe+mr9wJ1KSqR2Woy9TRi18H7obZddzCaYUSpiKBPvfZbjzrdzBhysSoLwxjs8eMrpZivZnCQcgyCt49FV5AxDBsxPpqSbFVWZ5DT9W9DICoxyxnOECIIZ6zy/SSwUJr6atFWxjKcRBXv1V6lXUapHCaokTTqZirNKgZZJFAnhBDBKIzDQZVmWo6z54nFWxU4MUE29Ks3SqnEQDGekcw2Jh/1+FCVyUQ1miaa3UpkhRCH9TlQt2zZMu64446jAnXFxcX85je/Yd26dcd9/rZt25g2bRoAu3btcnvseL3vRO+100ECcbTS5tXSV+jMnMjXhSQQ59XzeNM+DpDHXizaQoIK3q/jSL7NqNvHTvaAhjQvZUJVUMU3uoBwwtBaB+nfC0UcMcQS7dP1RxFJOx1uZfGBqFRVUkARAFepC31+/lAK1H1NHi20Mg7fBDwVim16NwBV1PvknEIIITyrXXe4Te9u1oH9vsGXynUVaSRTS71HK3Bi3YZJhEagbre5j3hi2ckeTlWzj3o8nHC+1p3TlCuDuFJGCG/qc6Bux44dzkCbq6lTp7Jjx44en//JJ5/09ZSijyp0DbWHPijFE+vVc6WQQD6F1FJPh+7AFoR9iSoPXclJIj7opw75K6OugmoAEonDqrxTBp18qLSujXYaafbZMAZPadYtzjcls9UUn547ighqqXcriw9ElW5Xq31fhh4qpa92bXdmT8b56PfENbug8tDfAyGEEMGlEvegSaBn4vvSPl1MOVXYsDIcz7WUiFWHexY3hsgwiZ26gH0UY8HCuG4qJI4sfRVCHK3Pn6jDw8MpKysjNzfXbfvBgwexWoO3T1koqcJ3wxHGqOGYaKxYqdQ1DFJpXj2fpx3QpYxQQ8kkzW10uOibXLJJUYlezUgcrYbRpJoJw0alriFWBVeg7k3H+yw2FlCla5lojPTpuSNVBOjAf8PdgZ25airttJNGks/PHyoZda5X5GN89HsyiFRmqAnYsAV8QFgIIUT3qnUtkxnDFnYCUvrqqpFm5qqp1NHAUMNzg9NidRQz1AQsWEgI8hY8XSp1DSepadTTyMhu+uQOIpVZahIQOsFJITytz5G1RYsWceedd/Kvf/2L+PjOPya1tbXcddddnHnmmT0+/9RTTz1uydfHH3/c1yWJI3TV+luweD2jzlQm683OIQLV1DGI4ArUbTF38rFeA8A9lpv8vBrP8lXpa4fu4EP9BQBzOLoPhSd9qb8GOoPRw/D9VNCBeNLxCpv1N1iw8Jn1NZ+eu6sEPtBLX/foItboTYDvhm24cgvUBfGkuwaanbd9lXkap2L46tAgkDM4ySfnFEII4Tm/t79IvlnoDNKBlL66+sRcy9d6F1asHp1MH6uina+fwdyH2dUXepNz4OAo4+gJuYONdOcQuhQdOoP8hPCkPgfqfve733HyySczdOhQpk6dCsDmzZtJT0/n5Zdf7vH5U6ZMcbvf0dHB5s2b2bZtG0uWLOnTWh566CHefPNNdu7cSWRkJCeddBK/+c1vGD16NADV1dXce++9vP/++xQVFZGamsoFF1zA/fff7wwydmfp0qW8+OKLbtsWL17MihUr+rQ+f0kmgblqCvEqzut9sFx7NARjjwH3ia8J/luIh/ij9LWKOudtb5Yruo9yr/Xaebyl62cthQSf99ebosYSQzR27Ni13WvlyQPl+u/qj9JXi0ugzhHEpa91ZgPT1XgiCGeMyu35CR7g+u8VzJOZhRAntvDLVqGbDqKbK1GRKagYz2VOBap/OT7kPvv/cVBXYHN5HRxCJtHdDKW7pv3nfG5uwMTkKduvOM0y15fL9QuHdqC0wVw1lQyV4tFWPzZlI4JwWmmjMUR61LXpduaoKcQSRRpH967OIoO5qjOOEE6Yr5cnRFDo86e1wYMHs3XrVl599VW2bNlCZGQkV155JZdddhk2W89/tB5//PFut//yl7+ksbGxT2tZtWoVy5YtY+bMmdjtdu666y4WLVrEjh07iI6OpqSkhJKSEn73u98xbtw4CgsLuf766ykpKeGNN9447rHPOussnn/+eef98HDvT83zlC/0Jppp8UkTcdcPZ8EeqPNHYMCbfJVRV2pWOG97s9Q62PtZVFEL+Ofn7CAVzky1RpoDdviLvwPnhjIwMDAxg7r0tZpaNujtAMxhik/O6XrRptxRTYO1KejK04UQQsVkoGIy/L0Mn9ps7mT7oWFArooooUAXHbV9nbmFvRwAYK9ZjEtsL2QV6YPspIB23cF56jSPHz+WaFppoz7IA3XtuoMGs5ENehvNtDJbTe724rRSimJdRhElpGnftzoRIhj0K60iOjqaa6+91qMLufzyy5k1axa/+93vev2cIzPcXnjhBdLS0tiwYQMnn3wyEyZM4J///Kfz8eHDh/PrX/+ayy+/HLvdftyeeuHh4WRkBN8LdbNucfaTSPbBB91BpJJFBrXUOwMRweSfjhUkk0AS8Zyhgr9cyx+jJEp0GQpFFhlMUKO8dp4kEhhEGs200BBk/SyadQsddJBGEqPV0SUA3nbkRLFADdTV6DqSSSCVZKK6uYrvC1YstAd5oM71b7G3+5Q6z0MC2WSwn1LeYAUft62hJGK1T84thBCi/6qOuPhpw0rHoazyRt181P5lVGIc+t8r5r+4mot8sk5/2qX30oGdbDKYriZ6/PixKpoKXR30/drednzC9+y3A50/R3ONKcfcN0UlUKRLqKIOU5tBP9BPCE/rVaDu3//+d68PeN555/VrIWvWrCEiIqJfz+1SV9dZgpeUdOzIfF1dHXFxcT0Ovli5ciVpaWkkJiZy2mmn8cADD5CcfHTqLkBbWxttbW3O+/X19f1YvWeU6SrGqRG00U6uyvb6+eJUDAcoBQjKQF051VRRixUL8YZ3+/n5mm/y6aCYMiaqUZTocq8Gh2NUFAcpB3BONQ4WldRix0G5n6Zhug4UaNBN/ono9kLFod/HSAb2WjAQIxhCB3a/DLPwlEpdwxiVSwttPusbGq9iKT70+wmdpSz7zGJyjME+Ob8QQoj+aaeDOGJoopk4YkkingI6M+nqca92qjHrGKtGsF5vwY6dcqr8sWSfq9A1TFZj2K9LSVOef38whEwUihgV5fFj+1KNPtwOR6NJ5thVJLkMoY5G55C4NNX952whTlS9CtRdcMEFvTqYUgqH4/hZCN/5znfc7mutOXjwIF999RV33313r87THdM0ue2225g3bx4TJkzodp/Kykruv//+HrMBzzrrLL7zne8wbNgwCgoKuOuuuzj77LNZs2YNFsvR+d0PPfQQv/rVr/q9dk/ap4vZofMBONdY6PXzpQR5X6Ku4GKKF150/cEfPeo26O1s1XkAjFI5XjtPjEtWWHdXeAOZ6+9Gih9KX+OOyKgLRFprKg/9Pqb68fdxP6U00OTWry7Y5OtCduo9AKT7aJq1UgobVtpoBzrLrf9rfsIy43KfnF8IITzBvvU5zKJP0HX7UPE5GENOxTrpKn8vy6s2mtudAbka6qhx6T18ZAXDQSpYqzc77wdjz+D+2KkL2Ky/ASDHC8PMOrB3Bkd1Z3+3cBWcfdu2kue8bcfBCIYcc994I5YCR2dAeB/F3fayE+JE1qtAnWmaHjthXJz7gAPDMBg9ejT33XcfixYt6vdxly1bxrZt2/j888+7fby+vp5zzz2XcePG8ctf/vK4x7r00kudtydOnMikSZMYPnw4K1eu5PTTTz9q/zvvvJPbb7/d7VzZ2d7PZutOkS5mgZqBA4dXyxC7JJPIPDUNhYGtf5XUftNstjBLTcKBgyEq09/L8TitfZNTF6HDOVnNpIEmRnmxrDNOBX6w6VjqdAML1Aw02qOTwnorkzTmq+kYGLTqdp+fvzdqdQMnqamAZoQXA7496Zr8Gsylr020sEDNoJ0On5Zaf8s4lR1mPoUUM02Np0L7J4NUCCH6y77uN9BYAoAu34x5cH3IB+qyyKCOBgopcW6zYWWOmoL1iPf2rn/Xs8ggQ6XQbLYQZfinXYWvVLhURKQanr/gGqeinaUwDTQF5YCFlx3/okbXk0AsbbQzUuUw1nLsfumT1GhOUtMwUOzV+5nFJB+uVojAN6DISmtra5/LVV944YWBnLJbN910E2+//TaffvopWVlHfwhuaGjgrLPOIjY2luXLl/dq6IWr3NxcUlJSyM/P7zZQFx4eHjDDJrbonXymvwLgPuM2r58vRSWw+tD47UgdGN+D3qpXTazS6wE4V4VG2as/MupW6fV8owuIJtKr5cOufdbqdd8Gz/hbKZXO38sLOMPn53cok8/1BgBupsHn5++Namqd36NM5b/+oF2ZdI4gDtR9bK5hrz5ALNFkKt+UvgK8GvYoVbqWwW3z+VxvwKKDNytRCCFOBM26hXf0qqO2W7A4X5M7dIdzyqlrm5sDlHJAl1JAERMZ7ZP1+ou3p9LHHPEe1x/VFwP1puM93jU/BeBmyw/4re3/HXf/HDWYLw59hpxjTuESy7leX6MQwaTPXRsdDgf3338/gwcPJiYmhj17Ostr7r77bp599tken5+bm0tV1dH9DGpra8nNze3TWrTW3HTTTSxfvpyPP/6YYcOOzhyor69n0aJFhIWF8e9//7tfffAOHDhAVVUVgwYF/oj2/eZBxjGcuWoqo8jx+vniiXV+sA220lfXhq2uQaBQ4aupr13/7sfrQ+EJccQwS01ivBqJieeyfH2hys/ThaNcer410+rz8/eG6yTfFB8NQOiO5dDLokMH189YF1ObROgwJqnRnKJmdjttzZuSVQKL1HwmqtGU6xOjd5EQQgQr18DbHDWF89TpXGScxWQ1xmWfzlLYh+zPcE3HzzFQWDAYwRByGEyeudfXy/a5Kl3DOEZwmjGXZB3v8ePHqRjn7cYgqhp53f4uKa2zSGudw2pzAxMYxXCGMJj0Hp87WuUyV01hrBpOoS7pcX8hTjR9DtT9+te/5oUXXuCRRx4hLOxwWu6ECRP4y1/+0uPz9+3b120fu7a2NoqLi/u0lmXLlvHKK6/w2muvERsbS2lpKaWlpbS0dE497QrSNTU18eyzz1JfX+/cx3UNY8aMYfny5QA0Njby05/+lLVr17Jv3z4++ugjzj//fEaMGMHixYv7tD5/qKSGAvazUxf4pM+ToQySiceKBTPIPti6lk/GqtAI1Pk6o840TQwsWLB4PbiSpOJZr7eyXe9mn+7b3wp/a9QtzqulKV4OaHYnksMlKc26xefn741qXUsCnRmZ/ghmdukq8wnWjLpaGviGPWzVebSpDr+soYkWtuvdtOsOKs3guoAjhBAnkiqzlkTiUSgmGCOZZ5nGTGMiY4zO5IkEYik1OwcF7TcP0kwrJhoHJvkU0UAT+brIn1+C1+3XnV/3bvZRqIsJMzxflhpL1KH/j6Y+iCa/1ukGGmmmnkZaaecbCohXMdxmW9rjc7NVBpv0N+zR+6nTgVntIYQ/9bn09aWXXuJPf/oTp59+Otdff71z++TJk9m5c+cxn+c6Ofa9994jPv7w1QiHw8FHH31ETk5On9by1FNPAbBw4UK37c8//zxLly5l48aNrFu3DoARI9xr5Pfu3es8X15ennNirMViYevWrbz44ovU1taSmZnJokWLuP/++wOmvPVYGnUzaw41eD1VzfZZJkWmSqdcV5NPcL1Qu5ZPhmJGnS80qRZKqQAgAc9fYXRlUzYSiKOWerfsq2BQRoXzCmnXmzFfilKHM+paAjSjrkLXUEsDCkWq9l+gzujKqAvSQJ1b9qYXpzAfz6O2nzGn/bsUUMQt9vt5Lewxv6xDCCHE8VVS4xwekUYKt1qXAPB7+wuEE0YtDRygjCmMY53egkYziDQ+sD7H9x0/YYveyZOOl/mZ7fiD+oLZzzseZ4veSSJxPGd92CvniDt0obKBpqDKqHPta9hOBxYsTFPje/Vci7KQq7LZofPdBpQIITr1OVBXXFx8VNALOjNrOjqOffW+a3KsUoolS5a4PWaz2cjJyeHRRx/t01p6apa/cOHCXjXUd90nMjKS9957r0/rCBT7dQkLjdlU6RoyVc8px54SfSjw0EgzrbqNCBXYAc0uzbqVmWoiDkwG+bCPk6/4ovTVPSvR+wGoOWoyldQQRhhaa5+X9fVXA4en1CaoOJ+fPxhKX6sOBV81miQjwW/rsCgLaHAEWXl1lxrqmaOm0EY7OWqwX9bgOpynmcDM4BRCCOFe+pro8v5kCJmMZCgJKp6N5nbONk4mlSSmq/FEEckIaw4jHEOxKSuxRPOV42tmWCb64SvwvjiimaUmUaarmGqM9co5YlzeQwfTwLRGl/e30USSQQo5fRiaFn8oQFlPI+26gzDVtz7yQoSyPpe+jhs3js8+++yo7W+88QZTp0495vNM08Q0TYYMGUJ5ebnzvmmatLW1kZeXx7e+9a2+Lke4OKDLWGmu42u9izTluxHXriWPri/4ga6Car7UX7NRbyeM0Hhh8HXpa4NLVmKMD7ISO5Sdr/Q2vtAb3SZwBTq375MfyqyjgqD01a1Rsx/Kg7scnvpq99saBqJcV7FWb2aT3kG4ny6aBENgWAghxJE9dBOcty+wnEkJ5Xyuv+JFx3L26WJW6nVs0Nudgw4usZ7DV3obn+h1ziECoehDvYb1eitNNHstkBTjUm0RTKWvrtVJTbRQwH5yjexeP991aEYwfYYUwhf6nFF3zz33sGTJEoqLizFNkzfffJO8vDxeeukl3n777R6fv3dv6Dcc9RfXcsBUH/Z4GqtGUKVqsePonPjnw2y+gahya14ffNOVeuL7jDrvB6CmqLE0qxasWDlglpJm8V1AeiDcvk9+KLOOUdEsUDOw43D2YAtEJ6mph/od+u/30TlMIkgz6lwDnv7ohwgQThgKhUbToiVQJ4QQgcqBg5PUNBTurxlKKc42TqFQF9NEC1vNPGaoiUQSzkyjM3MuVw1hlppEGDba8U9PVF/oGj7nzQutru+hg6n01XWt4xhBOGG9Ln0FmKEmUK8aqaWeYrOUQZZUbyxTiKDU509s559/Pv/5z3+47777iI6O5p577mHatGn85z//4cwzz+zVMZqamli1ahVFRUW0t7e7PXbLLbf0dUniEH9NlnTg4HO9AYAKHTxZToGSweNJvs+oO5zy7osAVIyKdvZhPHioN14waHT5PsX4o0cdEXymvwJgPEe3LggEeXovX+hNgPtVfV/rmmIdtD3qAuAChFKKKCJookUy6oQQIoAd0GV8oTcC7uWXAFZl4XOz8/39F+ZGvtJfA3CluhCATJXGer0VgEgdQajqutga58X3uXEcnvoaTKWvrmu91HIu4SqMHKP3bTesysoqvR6AAl3EDEKzfFqI/uhXasWCBQv44IMP+nXCTZs2cc4559Dc3ExTUxNJSUlUVlYSFRVFWlqaBOoGoFrXkUoSccSQhvcnvnZxT1sOnib/NbqOdJKJJYZkLw9C8AdfZNRV61qSiCeeGJ9kUqa4NMev1MHzs9asW8kkjUEqtbMHmo8FQ0lFZQAMQQDX0tfgDNRVm3WkHXod8FdGHXSWWzfRQpP0qBNCBBEjcQRmay04WsESgZEYmBe3PKWeYw9Wm67Gs0ZtYr8+yGb9DQnEMph0xqjDE2ENDExMt2SBUNKuO2ijM6nEmy1e4ohhGFk00xpUmegObTKIVKKJ5MeWq7AYfXuP+x1jEf9U71Gsy/ij4zUusZ7rpZUKEXx6HairqanhlVdeYcmSJcTFuTdDr6ur46WXXur2sSP96Ec/4tvf/jZPP/008fHxrF27FpvNxuWXX86tt97av69CAJ0917r+S1S+Czwlk3go4BVNQ4AGAbpTTjVlVFFGFSmG7wKboaSaOud/EXi/H1a6SiGdZGKIojqIelmUUEYVtYQT5pfzx6nDV2oDtaQiDBtDGYzG9Gsz4cMZdcFZ+lqhqimn878kH74OHGkwaUQSQWqIZCsLIU4MYRf9199L8KlG7dqaI8btsSyVwQFdyhAyqdI1WLCwkz2MUsMAMJRBLtm00+GT94D+UK1rGUYWdhxkefGCdIyKYi8HgM6hUMGijEoOUkEs0X0O0gEMM7Ko0rXYsBKGLagGxQnhbb0eJvHkk0/y6aefdhuIi4+P57PPPuMPf/hDj8fZvHkzP/7xjzEMA4vFQltbG9nZ2TzyyCPcddddfVu9cONWyunDkqcUlUAZVeRTRIku99l5BypQMni8xfv5dL4vs8tSGZRRRQH7yddFXj+fJzi0g2rqAP/1DHO9Sh6IwXS7trNGb6KQYr9MxXVlDfbSVz+9DhypWbVRRAm79D6/rUEIIcTxHa/X8GJjARmkksdedlBAFbWMZ6RbiWyiiqOIEtbqLbRp93ZGoeAApezlAPs5SLyK9dp5YgL8fdqxdK11IO1vxhjDOEApn+mvKKfKU0sTIuj1OqPun//8J48++ugxH7/uuuv4yU9+ws9//vPjHsdms2EYnfHBtLQ0ioqKGDt2LPHx8ezfv7+3yxHdMDCYp6ZhxUKyjsdX7cqSg3RiT4ZKZT7TsWAJmXHgvu5R16ibmaumYsPKILzfAHa4GsJJairluoovHBtpsbYSqQK7L0qtbuBkNRM7dkaoHL+sIZww5qvpQGdPmUCzTxczW03Ggcl45d8yo65hEhqNqU0M1efh6H6VQiLz1XTa6SBRx/nsdeBI4YcmaXeVDAkhhAgMv+34M9/oPRw0K9jANpKIJ+1QZYwri7JwgeUMDugyNusdNOpmxhi5bvvMNCZhM60YGOTrQsarkb78Urxui7mTRcZ8anQd09UEr53HNUja4FKOHOi6Ar0DGbQxT82gWbViU1becaziSuuFnlqeEEGt14G6goICRo489h/fkSNHUlBQ0ONxpk6dypdffsnIkSM55ZRTuOeee6isrOTll19mwgTv/QE8EXxqrqecajJIIdrwXcN612y0YOpR8am5nipqGaay/L0Ur/BFj7oteidrDg0AyDIyvH6+eBVLjspyDh3I14VMVKO9ft6BqKfR2Sg3008TkZVS7ND5VFPHcIb4ZQ3Hs0vvdQ67WGDM8OtaDA6XbjhwYPQ+8TwgfKm/ZrveTRSRhBv+KbUGnGXeoTwJUAghgtFvHc+69aYDaKS524vWD9p+DMD9Hf8HwN22ZW6Pp6ok53uyx+0v8JewX3tjyX7zvvk575ufA/B3y++9dh73yofm4+wZOLTWHhm0caFlEfc4ngAN8cRyJRKoEwL6EKizWCyUlJQwZEj3H/JKSkqcmXLH8+CDD9LQ0ADAr3/9a6644gpuuOEGRo4cyXPPPdfb5YgjNOsWMkglS2WQq3z7QTyFROaoKbTSht/SN/ooEMoRvcHXGXWGNpimxhOOjTSSfXLO8y1nsNbcTAttvOh4i98Z/88n5+0v1yujR5aV+FIM0VRTR4MOvCu1+WYRYxlOgoplohrl17VYlcVZN+7AJNhybesP/fvG+mG6sCvboe+ciYld27Gqfs2uEkIIn2p/92rMolXQVgcR8RjZpxB29rP+XpZHFOmDzGr7jvN9SRg2HDgYRBqXWo7fxN+1162rbxkLqTcaecv8gPfNz/nAsZozLfM8vnZ/qXctDfbiMIlwFcYpahb1NBIV4JUiXZp0M+MZSbiyMW4A1RBDVSanqFnU0UC5ltJXIbr0+p3z1KlTeeutt5gzZ063jy9fvpypU6ce9xhaa9LS0pyZc2lpaaxYsaIPyxXHUkktW8kDDTk+zhCLVdFs1NtppwMzSBqwl+lKoomkkWaSVYK/lxO0vtRbqaaOXJXts+avpxqz2cN+DAz2mgd8cs6BaODwlVFvvsnrSayKBu2+nkBRSAl72E+bbud3xs/8uhaLS0ZdME5+bfRAGYonhKswZ8CzjXas/RsyL4QQPmUe+ByayzrvNLV23g8RRWYxDTQ76y26Mp4PUMqd1uuO+9xbrUu63T7RGM14y04eN5/HhpXdeh9nEjqBOtdhG9FEevVc+bqQYsrI1IHXoqQ7DaqZbewCPbCKEauyUkE1O3Q+ySRwYdtNzDQmcbX1IlKVDPsTJ65e1/TcdNNNPProozz55JM4HIc/vDgcDv7whz/w+OOPs2zZsuMcoTNQN2LECOlF5wWuJae+DjwppZxZaa6NzAPZW+aHNNJMFBF81zjb38vxCm+Xvtq13TmZypdZiXEqhplqIgYGaw+VWwQyt4lqfgyedAUJW2jFru1+W0d3NpjbaKOdwWQwkhy/rsXi8rIYbAMlOstQOgOxcXSf/eArrhOOpfxVCCH8L18X4cBBOGHcZiyhIOwjfmZcy/XGZUSr/mdhj2U46STTgZ2v9S4Prtj/uko7Y4n2es/ars9vldSgtS9Gwg2M+8Tggb2//aftSarC1/M/xpl8oFfzS8f/8rD9mYEuUYig1utL3BdeeCF33HEHt9xyCz//+c/Jze1sJrpnzx4aGxv56U9/ykUXXXTcYxiGwciRI6mqqjpuvzvRdw26idlqMo00k+GDpv5HmqLGkkoSYdiCogF718TXZlpD6mqNL0tfN5rbma4mYOLweZ+4dFIYQy5pRhLfmAWMNYb79Px90UIb09V42rH7dbpwrsqmmRbCCKNeN5IUQJmkqSqJSYzBjp04w78BJqtbj7rgyBDu0qpbmaRG48DBSDXUr2sxzMN/i95yfCjNoYUQws+6Br610c4sy2QGG+kkGvEkEj+g4440crBhI5sMNprbaNGBP+irtwaTToQKJ8YH7SRGqWGAIpJwGnTTMcuNA0W9B1u7DDM6q8HSScFAkUUGLbptQMcUItj1KZry61//mrVr17J06VIyMzMZNGgQV155JWvWrOHhhx/u1TEefvhhfvrTn7Jt27Z+LVh0r5Ia1uktbNe7iVThPj+/oQy26J18qb9mP6U+P39fuU6nDd3SV+9ejVthfsZX+ms26h2cZVng1XMd6ULrYraxi4/NtXxsrvHpufuqWteyQW/na51HGP5r7t9KG1t1Hl/pr2lULX5bx5Hs2s5/zI/Zqnf6tTS4i3vpa2BlHvakWtWzUW9ni97p92mr7S7nv8t+7InxQgghfMOt+ubQhcNbrUuOWdbaW3EqhoXGbPZTyhadxy69b0DHCyRf6E1s1t84K0i8SQFb9U7W6S1un1MClevQC0+9f/uF7UYiiOAApbxpvsfv7S965LhCBKM+N42ZNWsWs2bN6vcJr7jiCpqbm5k8eTJhYWFERrrX+1dXV/f72CeyBrf0Y99fgZllTKJON9BOB7vNvQy1ZPp8DX1hxcJ8NR2FIjmUhkn4qE8cdJYFnqxm0kqbzyfnupbaVgZ4uXWjS0+4OH+Wvrqcu1E3Bczcl66hLhAYQfMcNZj5ajoa3VkiHCDfp95wb4Hg379rroFCX0ygFkII0RPlfO+b4uFqktONuaw1N2Ni8h/Hx0w2xnj0+P7QrFtooRXwzfsT19ftKmoYhm/fW/dVI83MVVOxYWWI8sznPqUUt1ivAA3/Mj/kb47/0kxrjz0UhQhFvQrUFRUVHXPaa3eKi4sZPHhwt4898cQTvT6O6D1/T5ZMJ4XP9FcA5Om9nBHgjWS363w+1xsASPHzB1pv8faH4w16O5/qLwEYPIAmsv3h+oapUgd2cN+tNMCfwyRczu26Jn9z7Wvp7+ASQKmudP5tsKvgKn11DVr7s8wa6MzaPPQnqAUpXxFCCH/L03ucr2+eDjx923IaV9o7h0F9bK7lF9zo0eP7Q4XL+0tf9GJ2fd0Ohp7fFbqKNYd6RV/MOR477l3W62nXHTzQ9n+YaLRd8/8s1wR8WyUhPK1XgbqZM2dywQUX8MMf/pCZM2d2u09dXR3/+Mc/+P3vf8+1117LLbfc0u1+S5YMLL1adM91kmOcH4IBZ1rmMcUxlnoaecvxIcusl/t8DX3RlXkSTpjXpzj5ki971HW9ibBgIZ5Yn50XIJM0ZqlJFOsyiijx6bn7yn2YhP/6jbhm2rpm4Ppbpa4mnRTiiCGH7i/w+JLrdNIO3RFUGXXVuoZBpBJHDNlqkF/X8jfbEyzpuIM9uggbNhzagUVZen6iEEIIr3AvfR1YX7ojxago5qjJlOkq5wCGYPe8/Z+kkki2GsSllnO9fr4slcFolUuDbgr4ahFwbyOU4uHAb5iycbPlB3xofkGBLmKt3sxJappHzyFEoOtVoG7Hjh38+te/5swzzyQiIoLp06eTmZlJREQENTU17Nixg+3btzNt2jQeeeQRzjnn+FH1goICnn/+eQoKCvj9739PWloa7777LkOGDGH8+PEe+cJONI26iUzSaKWdOOXboAlApkqjQldTTJkzTTyQxRBNOilEEO7TclFf8mY+XZ1uIAwbg0jFgsXnV7nSVQrb9W5iiSbQB2NpOgOLzbQSq73fjPhYEokjhQQiiAioQF0VtZRRSRmVhCv/9fDrYnN5WQy2HnWV1HKQCg5SQZSfG3nnGIOJUpFUHPpg2EKbT5pxCyGE6F4UkWSQigMHNmXz+PEbaWYvB4jQ4Witg/79da1qIIIINuudjFG5Xj9ftIokT+8BOktfA51d28lmELXUk0Ccx48/VA0mXxcRTyxPdLzIqLBhIVsFJUR3evXpOjk5mccee4yDBw/y5JNPMnLkSCorK9m9ezcA3//+99mwYQNr1qzpMUi3atUqJk6cyLp163jzzTdpbOwswdqyZQv33nvvAL+cE9defYASyqmjgcH4tgyxS9cfz2AYK75F76SMSqJV6GTTge+Sf9aYm1int3CQCpZav+Ojsx6mlGKiGk0plXyov6A1gCdDlehySiinlnpi/NyjrpJaDlDq1hfO3wKpXBPAplwy6oIuUHf4jb0vynR6EsXhYGEzgTPARAghTkRf612UUkEk3rmQ09W+opW2kPib/7n5Ffs5SARhPukXl+zWfznwA3UHKGU/B2mgiSTl2QxNgKst3+XX1h9RThX/1h/xofmFx88hRCDr0zCJyMhILrroIi666KJ+n/BnP/sZDzzwALfffjuxsYczv0477TSefPLJfh/3RBdLNPPUNOpoJFtl+GUNM9Ukoomigw6qdI3HG9V6ikM7nG8g/FEm7Cve7FG3xtzMqWoOTbQwgVFeO8/xnKJmEYaNSBXB046/cpt1qV/W0ZNGlxKQOD+WvqYc0aQYoFW38X/2V3jHXIUDk1utS/gfy5k+XVc77cxX0+nATppK9um5u+OaURdsgbom3cJcNRUDRQap/l6Oe6BOtwZVGbEQIrDtcOTzqOM5inQJTbQwWg3j+5Zvc4ZlYD2SrROW4ij8AN1QgooZjCXnDA+t2P+6SlK9NdhqqhqLXdnpwE6JrmCkGuqV8/iC1pohajCxRBNGGDbD8xmIR0olidlqMlYsGL3LpfGrZn24girKC22EwlUY49UoRjCEehp52v5XRqghzDAmevxcQgSiPk99Haivv/6a11577ajtaWlpVFZW+no5IeN983MOUsFg0rEqn/+zdlKaL8yNAOzhACkEZqDOtXeGPzOcvMFXPer+br7DPn2AOGI433K6T855pF/abiatbQ4Nuok8vTdgA3X1bhOZ/ffz5to4ulp3ZtRVU8fPHY87t6c4En0eqNurDzibWycqz5dO9FUwB+o26R3Oxs7Zhn971AFEupTfBkNLBCFE8Fint/Kq+W/n/Y16O/m6kO06n1ut/e+HbZ17J9a5d3piiQHFru20HhrsE+Ol9yJWrKzWnZ8D9ur9jCR4A3WNNPOOuRKAhcZsn5wzyYhnnd4CQIr2f1Z8T1xf1yO91G7jVMtsfsktXN7xE8p1Nffb/8i/wp7yyrmECDQ+D9cnJCRw8ODBo7Zv2rTpmJNixfFprZ0lT/6s3R+jhjNTTWKmmkiZrvDbOnriGqiLw38ZTt7mrYy6Ft2KTVuYrSbxLWOh33qQKKW4ynIRJ6uZxBLFR441fllHT7oy6sKw+bUHWwqJzFVTmaEm4MDRuTaXIGIUEVjwfbN/1/KOQCjXDOZAXYQOY5aaxAI1w+MT/frD9Qp7k8vAIyGEGKjWI4L/is62Jr+3vxjw7Vf8ocEH2f1nGSdzqprDLDWJfzje8co5fMX9vUmCT87p2v4jGIZJNOOaUee9vrizjMmcomaRTALbzF08b/+n184lRCDxeaDu0ksv5f/9v/9HaWkpSilM02T16tX85Cc/4YorrvD1ckJCvW7EPBSUSfLjh7MkFc+Xeitf6q/Zr0v9to6e1JuNztsxSpqb91WhWcxBKlint6L8nJo/yRjNp/pLvtEF7DGL/LqWY2k8FKDwZzYddP5tWKM38ZXeRr4uBNzfuDfTynpzi8/X5dpXLTkAmgS7T30NrkDdar2R9Xor5VT5eymA+xv3Jh38/YqE9zi0A3uQ/b4J/zpysqgG2umghPKQmTrqSV2Z9OC99yPzjGl8qbeyXm9lh5nvlXP4SqmucFap+Oq9SaSKIPrQBa46Xe+Tcw5Es8vrujdKX7sMUYO4z3YrVdRSTBl/tb9NbRB8f4QYKJ9/yn7wwQcZM2YM2dnZNDY2Mm7cOE4++WROOukkfvGLX/h6OSGhilocOIgjhqH4r9wpJUiaoNapBgDiiWUQaX5ejWf5ovR1LwdopJkEYhmmvN9c93iyGXToCqRiF/v8upZjqdcNRBFBNv7pHdklkTjnz0fVoSu19UdMf/XHIJj9+iBh2JjEaBK07ydWH8nG4T40HXT4cSV906bbnR9OkwMgMxE6/8bGEYMNKy1aSl/F0b7TvoyI1glEt03mt/Zn/b0cEUSON708kN+D+kspne2FkklggvJOb2GlFAuN2cQQxSa+CehBXz05SAUaTTrJjFMjfHbeHJVFFBFUUuuzc/ZXV+mrgUEY3u3hN1mN4W/WJ0gglk/5kgftT3v1fEIEgj41M+vo6OC6667j7rvvZtiwYf06YVhYGH/+85+5++672bZtG42NjUydOpWRI0f263iiM1AHUE8jEV7qEdAbaSQxlEwcaN5yfMgecz8Phv2YTBVYwbCuIEUdDUSqcP8uxou8Vfra9fNWS4Pfx6RnqBTnegL1jXkDzbTShkOZfl2HRVmYyCgcmM6yyDbamaLGkq8LiSKSbJVBnW4gwUe94hza0TmlWnVmslkM35feHsl16qs9iEpfq3Ut09V4mmn1ewC9i01Zqaczg7lFBe8HNuE9Du1w3q4JoGnUIvBZsRCGjXaXCyoKxRTGUqVrySW7X8dt/fNoaCw5vCEmk4hr8ga6XL8rMouZriZQqatJUN67KBZDFOkkk6FSKdIljFL9+7zob7W6nhlqIgd1OUl4fqLpsZiYNNPqs57TA5GmkhnPSCwYXm+DE6HCmWVMogM7g0h1y+YTIlT1KVBns9n45z//yd133z3gEw8ZMoTs7M4XUX/1uAoVVS4BimQf9VHozmAjg0IOv7nZofPJa99LpkrjZGPmgJr7elKl2/crMDJPPMUXL+xVLn0z/N0HK9ltkmmt/xZyDB26w+vNm/uiVbWzS+9lv9nZJ7SOBjbrb4DOEt1yXUU1dSTgm0BdNXV8pDt7C55tnOyTc/YkWHvUVVLDBr0dgDnGFP8u5hDXUpiuSdtCuIpQEXRdUzpehpQQRyrSB92CdOGE0UY7m9jhnGwuDtuid7JBbwPwavAsWw3ib/yXAr2fA7qMUQRnoO5rvYuv9NcA5Bi+u/jVVZbcRAumNjFU4E5/3WrmcYBSMkjxyfkGqVQsWDhIBR/oL3xyTiH8qc+//RdccAFvvfXWgE767LPPMmHCBCIiIoiIiGDChAn85S9/GdAxT2QNNDFfzWCBmsEQlem3daSQyLeN08gkjXDCGEYWDu3gG7OAfzje4XXHu35bm6tKapijpnCamkOOCt0BJt7KqKvR9cxVUzhdzSXbj6XW0FnOeaaaxzw1DasfBiH0pMGlgX5sAEwY7grk19NIu+7o9oqkLwOeVQEYNHf9OQqqQJ1rAN2PF2xcRbr0qGuW0lfRjUh9OKtdLtmKvmg8og+d60WWSgnUuXFoB1+bu8lhMMPIYrzhvSqmFLcLqMH771DppyQI197ZjQE+hKlrfTE+en+rlOIsYwEL1AwGkSJZdSLk9SmjDmDkyJHcd999rF69munTpxMd7f7Lecsttxz3+ffccw+PPfYYN998M3PnzgVgzZo1/OhHP6KoqIj77ruvr0s64ZXocj7XXwFwrbrEb+tQSvF62P/ye/uLzm3/cXzMVp0HGlbYP+O7lrP9tr4uO8x81urNAPxG/dS/i/EwX2TUfa3zWHPo+/eU4d/fV0MZ7OUA+bqQSB0RcFcf3ScM+z9Ql6ISndkrFbra2V/EVaWu9tl6KlynqgXAlFII5oy6w/9u/i5J7xLl0oqhu581IWzK6vybVBYgQ1BEcDhyYIRrj6wKs5oAvHbnN0W6hI8OZSCNVyPIUN7LgHKttAjUliS94Rpk9OVrahyHJ/LW6QavTegdKK2183fQl+9vbdj47NBn3l3mPqZYxvrs3EL4Wp8Ddc8++ywJCQls2LCBDRs2uD2mlOoxUPfUU0/x5z//mcsuu8y57bzzzmPSpEncfPPNEqjrh0Ar5XQtcf2h8V3O6biGSmoopNiPqzpsj3mAEQwhRSUynCH+Xo7XeCujrtAsZiRDGaTSyCLdK+foi1lqIjasNOtWqqgllSR/L8mp0WxkGFlEEE62H7Ndu8xQEyhUxRzQZRTpEppdgidDyMSC4TYZztv26gOkkcxgle7TZs3HE0cs49QIOujA1P7tK9gXtWYDw8gimqiAGZIjpa+iJ2GEOW9L1mX/aK1JbpsJQCpJ5EW87+cV+caRpdIRhDFbTaZEl1Pk0oZFwDP2vzGUTNJVCrdZlnr1XOmkMEmNpolm6nSDV8/lTVZtZTTDiFDhXpuS251pajx71QH264MU6zK/V64cSwutOOjsMeqrjDqAGcYEtundlOoKdul9TEECdSJ09TlQt3fv3gGdsKOjgxkzZhy1ffr06djtwZO9EEhaaSeFRGqoD5islC7RRhQlupxa6slQqewx95Nr9K/BrydorVFKU6arcGiTKMN748T9wdsZdR1mBxZloeT/s3fecXKV1f9/P3dmtveeTbYlm03vIT2EoiIgIqKIUgXBryKCCCo/BZEiVlQQQUURUUQRFFFEEQKkh/SebO+9952Ze35/zO5kJtnN7uxOubOZN6+82J255czszL3Pc55zPh9pJIYoQ1SvaZg4KsWAI2mdqoyTqOtQ3ZRSBcAHWBPgaCBSRXBQTpBDJsekhG6XtoGhiU0j/qmo65N+KqWGAazslSNueoOB5ogUAQ6NmGChXjU5P2txBmizBgiXcKKJJIJw7EGU9AzhP8JchqGhqsvx0T5oWQRnV1ViGGFYsDjduWOJZYfsJ4VEusTYLYP+poV2euhjpxxgtWmJT8+VoOIcnTScdJoNRkqopIhyEiTOr1rqYcrCQTlBNlNoEON+nzukiwxS6KGPeHxnTnIqmSqN/XKUTNKpps5v5w0RIhD4fZZ93XXX8dRTT532+K9+9SuuueYaf4czKaiQappoxY6dRD86E42VFyw/ZgArW2R3wO20u+llu+ynk26mqoyAxuJrfFFP16Ba2C/H6KbHMFU7rslpo+nSuE4WjGAmcb32MeKIpoxqfm3/M73DJKL81apyWAp5yP4L2uhgOQv4gBb4RCZAhDpZ4dNP8DiVupu8GCPpGa1F0E0vzbQ53V9DhHDFHErUTRjX776vKumNSLlUO5N0ABkkM40MmmjlvcHWuBAO3pNdNNJCJmk+F/531XNrDuLW167Bik1/VtMBZJCKjk4Z1RRS7tdze0I7ndTRRAddfk3UzVJ5RBBODfXs0Y/47bwhQgQCjyvqbrrppjM+/9vf/nbUY/zmN7/hv//9L6tWrQJgx44dVFRUcP3113PXXXc5t3vsscc8De+sxFVE3EjVREPM1wqYzjTiVRw6ga2qcE1CZKjkAEbiG3y95uc66MrQUn18trGRr3JYpRahIzTozQFYfhgZ1+SEEaqcErQ45qp8dHTSVArhhLNKLaZLurFjJ0HFYfLTG1gm1axTyyiVKqZoKYS7JMgCSQQnxe37GAhgJGOnTK+mSVqYQTYKxRRljO+m+3sZPEnPEP7D9XrjL7fpyUYL7UQRQQ99AR9j+ZOhxK4ZMxkkM99UgFm3kEEKKSQxoA8Qpo18XynRK/mx/TeYMDFPzeTz5qv9Fbpf2WLfzQI1c1BmIs3n1WEpJLJSLUKh0Iw0IPOQjkH9NX8bgWVqJxfBjZzobHIxHkv2YzfXdJXNdLKIUzF+0eUOESKQeJyoa211v2hYrVYOHTpEW1sbF1xwwaj7Hzp0iKVLlwJQXOxoV0tJSSElJYVDhw45t/NnmXGwMyR4GkMUESp8lK39T6SKoJs+jkoJR6V4sP00MH9fV3FYo1Sd+ApfrKwb0VkyQcWxXfYDUGSw1UdXDR0jVNSBo1V4m+wDgUgt3GmsAoBAqvgn2f8b20tsFofO6ROm+/xyzrEQjMmlnbKfl/Q3ADhfrSJLGUPTxvW9DFVLhRgWl6HAMSkJXBxBTKM0O1tfrdgCOsbyJ0OvebbKY1f43wD4+MBt7NIdc4l21XVGzdod+n5+Y/8rANlMmbSJuj/o/+A1fSMA71te9vn54rQYiqScZtqolFqfn88X2MXu1FX1txFYiovWuNG6RFxxTSL6M1EXpixYlY3tso/9csxwJnIhQngTjxN1f/vb3057TNd1vvCFLzBjxoxR99+4caOnpxyRRx99lFdeeYVjx44RGRnJmjVr+P73v8+sWbOc2/T19fHVr36VF198kf7+fi666CJ+8YtfkJ4+sgi+iPDtb3+bX//617S1tbF27VqeeuopZs70nZ35eBERLFhYpRaTq6YGOpwR+YzpMrbr++iim7/b/8cV5g8GJI5O6Xau9GUbVKB1Ivh6dala6lioZpFEPLPVdJ+ea6zMVjNYr5bTRz+10hDocNywYWeFWogZk2H0I1NUgrMvutllRXQI12SsL3jXvpPv2X9Fo7SQQya5ahqLtbk+PacnhLuI2/dJcCTqyvVqlql5tEg7OQa6D7i/l8FRnRjCv7guJ7UTvMLzgeTUa3Y/A25J8smIiDiT/66mNa4LYh3SdcYukzppIpooNBRpk7DDYghXkxbX98qXnKetpFrqAeiXAcNUzI+VdulkiZpLJBEsUAV+PXcSCaxVS7FhxyzGtS7ulC7OUQsIw+J3Y7nVaomzWKBBmskwSBdBiBDexispaE3TuOuuu/jJT37ijcONmXfffZfbbruN7du38+abb2K1WvnQhz5Ed/fJKpavfOUrvPbaa7z00ku8++671NTU8PGPf/yMx/3BD37A448/ztNPP82OHTuIjo7moosuoq/PeBUBzbRRKGVsl33DTrqNwkptIe/IDnbJIY4HcNW8hXZ2yH62y76zYsXZ25RJNQfkOO/ITpKUMfQQZ6gsNstu3peDHNILAx2OGw00s1MOsFX2urkbBpIUl4lLq4vD69AEp0l8Zyahi84hOcE7+nYOcYIEFcclpg1kKmPoHQJuVcn9QdL6elxK2S2HKaWKu8w3BjocJ+7vZXAkPUP4F9fK7z766dZDJgCeUiuNbr/3nAXVq67VzpEqwvmza5tiF2f+LBVKGd300Ek3R13GpZYPP4Np3UNo82/CtO4hLB9+xouR+x9XLdoo5Z9EnRUr22Wf4ecmI9FKB3vlCFtlD21+XkBIVvFskT3skP1OYysjUkMj78tBtsgeolWUX8+tKeX8fBm56jBEiInicUXdSBQXF4/JtbWvr48nnniCjRs30tDQgK6762ns2bNnzOd844033H7/3e9+R1paGrt37+bcc8+lvb2d3/zmN7zwwgvOttxnn32WOXPmsH37dqdGnisiwk9/+lO+9a1vcfnllwPw+9//nvT0dP7+979z9dXGKo2vlFo0FCkkMp3AuamOxhptKcvUfMqkil/b/8I3LJ8PSByurYixxAQkBn/hi9bXQ3KCSCLIIoMClef144+HSBXBBdoq9uhH2C/HDNX20+X6eTOARh3APDWTLKZQRZ2zgkVDY4Eq4LiU+HRQWipVfNX2PWKIYia5vBb2S1IM1oIejK2v++UYsUSTw1TymBbocJwEo95fCP9y6n2qijpmYYxq7WChRurRUCgUZsx0SY9hFtJ8hWsyMoqTiTrXNsVOujkTB+QYGho6Oj30OscOpqz1mLLWez/oADHSe+VLXKVlmqXVUItxY8E1+ePvbgiLspBAHG10uOnAGQ331lf/juPc2oN93AUSIkQg8ThR52r2AI7EVm1tLf/617+44YYbRt3/5ptv5r///S+f+MQnWLFihVcn1O3tjuqQpCRHxcju3buxWq184AMfcG4ze/ZssrOz2bZt27CJutLSUurq6tz2iY+PZ+XKlWzbtm3YRF1/fz/9/ScndB0dHV57TaPRIV300EcPfcT4eUXDE+JVLHbsNNOGGXPAkimdLuL+RkmceBPfC6sqstUUGqXFUK3WkRJBInGkqST26kdYapoX6JAA94mCv53DRiKZePrpZ4GaRT8DFKhcTJiwYqWFdjQ07GLHpLzfclEkFSxVcymSChJVnOGSdADhEkY+OZjQCMMS6HBGRURIJYle5RCSt2jGiTnCtfU1SJKeIfyLa6JuDjOolvpQos5D+hkgjhja6MTOAF2jJKgmA13SzRw1Azt2tyRQConMIJswLG4Ls6ciIkQTRThh9NKHIPzB9irLtPnMNeX74yX4DffWV/8k6tJIJpdpxBJNmwRfS3u93sRcNYM+GSArADI5s5lBC63EGbigQMPEHDWDTukmUfxrBJROMrlMJYZo2vHfnDtECH/jcaJu7969br9rmkZqaio//vGPR3WEBfjnP//J66+/ztq1az099RnRdZ0777yTtWvXMn/+fADq6uoICwsjISHBbdv09HTq6uqGPc7Q46dq2J1pn0cffZTvfOc7E3wF48O1tD/G4Imn5EFtLBs2v9t5D9Hp8n75WyDW33i7os4qVl7X38GKjbnk+ySRM15uMV/F5dYvUCKVvKL/1ziJOpeJglEGXLPUdBpooUFaCCeMfgbIUVPJVpkgoKPTRqdPzEKOSCF75Ajg0K00ItFapNOUZK4Yf8LWTidvy3YALlCnLz4FEleNuv4g0fsL4V9cXUqPUkyxVHIBqwMYUfDxpr7FrRJ6tEqyyUAbnRwVhyHdOpY7H49UERRTAUDLGaqRamnkXdnp9tgt9m/xGbmM35oe9X7AAcTVHdei/LOQE6OiKKMKOPPfwaiUUsWRwc9Xiub/BcVILZwTehkINEmrIRc1C6XM+R1M1PxbwRuv4iijGnBoTYYIMVnxOFE3UTOIqVOnEhvr/QTNbbfdxqFDh9i8ebPXjz0a9957r1ulYUdHB1lZ/mlDda/YMW5FHcAyNQ+bstFDH9VST7zyf6JOCaxVyzChkcjkaw3xZUVdjTSwQa2gh14KNGO0vQ5RoPJYqRYRhoUOl6rJQBNDNOvUMjQ0w7i+zlQ5LFZziJVoNrMLgBQSWKrm0af66aWPKqnziYtXs7SyXi3Hio05BjEjORXXhGowTHibXdo+Us4gnB4ITMrE+WolNuykq5RAhxPCgJy6nNQc0hvyiK32PRSoXCxidk5cz1RJNln4qvVkMs11Ucm95bJtxP2fs73Ch7VzOaoX0UAzvYMVv730Ya/chF63G2krRSXkoWUsC+pW2GkqnWgiifbjHCHY7qOn0jQ4VrFhY3YAKnwXqVn0qj6iiaRKag2ZqHP9u/p7Idq1HTmkURdiMuM1jbqx8uMf/5ivf/3rPP300+Tk5HjlmF/60pf45z//yXvvvce0aSf1eTIyMhgYGKCtrc2tqq6+vp6MjIxhjzX0eH19PVOmTHHbZ/HixcPuEx4eTnh4YBy2OuVkUsIoiYCRMGHmXXkfgBKpZC7+r1YpoZItshsgIIlCf+Ltirp6mvmfbAVgMXO8euyJkqMy2S/H6KOfBr050OE4OSTH2S77AUhS/m0NGIloLYpSqXJzWExWiZiVyVlhUCqVLGK218+9Rd/LNnFUZRdoxkzUxbhMZoJhwhtILZ2xsE+O0kqHoTVUQwSOU+9TZ0quhDidLbKHjbLD7bFgTIx4glWsbB4cxwEkcPLe6pq0a5KRJ/C/1/9OqVQRSYQzSQeOLhXrG5+DrhrnY/aYTEy3HPdS9P5nm+4Q3M9V/tMvdZXiCYb76Kls1fc65woztVy/nz9OxbJd9gFwm1zDYub6PYbRGNJgViii/eQmPMSpGoghQkxWPE7U5eXlnVFbrKTkzI6ey5cvp6+vj+nTpxMVFYXF4l6G3dIydsdBEeH222/nb3/7G++88w55ee5VPsuWLcNisfDWW29x5ZVXAnD8+HEqKipYvXr41oq8vDwyMjJ46623nIm5jo4OduzYwRe+8IUxx+YvuqSXWeQRraJIM1g1xaksVAWsUAtpopUTeimYzvd7DK6TAF9UDAUaX1bUBVI4djQ0pfER7XxOSBmN0oxVrH5r8TgTQ0LACcQZIp4hklUC7dKJhmKBmsUcNYMFOL6fzbRSqJeDlzubrx64kx7pJY9pzFX5htWINCkT0UTSTW9QTHj/Y9/EXPKJUhF8UHlXUsIbxBJDKx1uxiohQgzhmqjLIytkOuIhJXolBeRiw064CkNHpyMINcE8oYWTbuULmcXHTCc1pbNUBuvVMupoZpN9Fyn2FSgU52sr+UvY487thsaCaSRzu3YtD+tPoaNjQvPb6/AHdrE7368UH8hZjESwV9QJwnwKSFCxAVnUT3FLOLf5/fxjoWPw7xpLtN81x1NIZJmaTy999GP167lDhPAnHifq7rzzTrffrVYre/fu5Y033uCee+4Zdf9Pf/rTVFdX893vfpf09PQJfblvu+02XnjhBV599VViY2OdGnLx8fFERkYSHx/PzTffzF133UVSUhJxcXHcfvvtrF692s1IYvbs2Tz66KNcccUVKKW48847efjhh5k5cyZ5eXncd999ZGZm8rGPfWzcsfqKBpo4TimI8TXqcrVp7LQdII5YagmMpoAVG1FE0EMfSZOw9dUVr1fUSTMJxNJGp5vjknEQDspxppFBsVQy2wCtldqgIYHRksIpJFJONXZ09ssxzuUc8ga/nzFEUyTldOrdVFPHbG2GV87ZIM0cpxSF4vOasdyzTyWWaKzYsIs90KGMSrFUcoQikMCs/I9GrIoGcdcHDRFiCNf7VCmVlEt1AKMJPrrooZp6uul19hE3TuJWsE7pptxeQzIJtNHBYm0OM7Rs5/NZagqbZQ8mNNrocOo410qjc5sBfYBIwumlj0yVxpfCruP+vsfpoZdjUur31+RLWqWdZBJopcOvC6xDHT7RRNItvX47r7fYK0fopS8gnT9wcjE8nljaDZp4F4RwwgJilJasEtgthwCYIql+P3+I4KRcarCIiW7pJUNLNWzBgCseJ+ruuOOOYR9/8skn2bVr16j7b926lW3btrFo0SJPT30aTz31FADnnXee2+PPPvssN954IwA/+clP0DSNK6+8kv7+fi666CJ+8YtfuG1//Phxp2MswNe+9jW6u7u59dZbaWtrY926dbzxxhtERPjHLckTXK27UzF2Rd1MckghkSZaeV/fH5AYSqSSHvpIJ9lQFU7ewpcVdRVSQxudRBHBdLJH38HPLNRm86r+FpXUckJKA6Ir4oqIUCTl6Oh+d8QajfmqgPfloPP3FJVIPtmkkkQjLTyn/43nBv5GFJE0h++c8Gppp3SzdbDl9cNqPXdabpzQ8XzNAjWLN2ULRVQwIFbCDHytaHZrfTVeAn1IO7WXPmxiw6z8rrgRwsCc3vo6eZNMvmCnHKCbXuKJoX1Qn3Uyv4e3WL/J3/X/OX8/VfIlSkXyRdNn+IX9BRo52aFTLBXOn5tVO/U4JDKm4NDOzFIZHJdSWgxavTReWmh3vg9pJPvtvMnEY8ZMN71BpzvZI71OA45A3VOTScCEiXY6qQ9QYcOZ6JN+iqQcQVigZvn9/PHEYsaMDVtILiHEmLly4DYOSSEAvzI/xPXmKwIc0eh4bcR88cUXc++99/Lss8+ecbvZs2fT2+ud1RWR0SuGIiIiePLJJ3nyySfHfBylFA8++CAPPvjghGP0NZESzgq1kD4GSMRYyYBTidGiyVPTyGUqsSoGEfF7ufTQANbo1YfewLv1dNBFN6vUYlpoJ1sNr/EYSKYzjQJyiVOxVEt9oMOhh16no2GMZqzPW66aSjop9NBLMgnMJIdILZL5WgGt0s5RKcaOnQWqgFppIFOlj37QM1Ckl7NOLaOLHvI0/+nkjJc0lcQiZpNMAlVSx3RlXH21ZBKc94BAOGmPxkyVixU7Fkx0SjeJanJXMofwDNdE3TzyySBUHeEJQy3lscSQo6YRSTjaJGvfdMV2SpWzqxbaENPJJp0UuuhBx44NOwvVbDr1LmK1GLdEZpzmuGbOVzPRReiim3apmDT9Fq4apol+1MlN1OKxYQOCT3eyWdpYrZYwwAAzyQ1IDCkqETuOz7oRzRIqpJbztVU0SyupAZBdUkqxTi2jm56AVPSFCD7+Zn+TVulAQ8Pif4uGceO1SP/617+SlDT6l/V73/seX/3qV3nkkUdYsGDBaRp1cXHGTjYZjf1yjJ1yADBmNcWpxKtY/qdvBYFGWvy6wmcVK610ABi0dXPi+DLtuVHfwUE5gQUz0zXjJS5mankcHmwBnKEHvuKvw82R2VgDiRvMV3C//WeAQz/mMtMFAPw77BkAzu3/DDvlADtkPyeknEwmlqg7RolT/PtT6pIJHcsfpKok9uvHAKihwdBGCFv1vVRSSzrJfl/4GAvd9DpbVDpVz6R02w4xflwXlA5TRLnUjLhtiNMZcjmPI4YD4rhmJUtCACPyLdZT9Kii1OmdLvlaNnX2RrfH3pEdNNBCLDE0uiTqhsaCA9gopAxwtBNPlqtUk5u2cILfzjtWUw8j0kSr0/RqqTYvIDG4tikb8f2rkQbe1rcB8EEtMNq4ffQ5O0O6pYfoYZL2IUIM8f+sP6YaRxFHPwMckzN7KhgFjxN1S5YscZsMiAh1dXU0Njae1lI6HB/+8IcBuPDCC90eH6qustuNrwlkJIZWWhKJC4qWotVqCf2qnx76OKGXkmbyX6KuRTpYqRZixsJ8babfzjtZSCGJNWop8SrGkG3D+WSzXi3Hht0Q4sWu4vlGS9SlkczV2qUIjoqEU/+euUyjkRZSVRKlUsl5rJjQ+Sr1GlaqhVgIY44KjOaLJwSTo1jzoPyB0QxehnDVAOmSbt+uJoQIOk5tfe2ihz7pJ0KFByii4KFfBrAOVi25JsCDrYLJE3rF3Wwkahi3yQKVx3q1nK2y11mVBI7x8gyyqZF6lqi5JBDr1LJ1TWJpk+gi1S9W1qql6Ajpg22+/iBKRXKBtpo+6Q+6Kmq35GaAFvWTJZ6LtPV0SCc2jDcvdm1nDpQG8zJtAUrXMGOiUuoMoUsdwriYT0l5GbFSdTg8zuxcfvnlbok6TdNITU3lvPPOY/bs2aPuv3HjRk9PGbT0i+/dy4YGZEadpJ1Kqkpk02BlzXG9jHWm5X47dzOt7BisPjRyhYy38KaZRK/0sVG2A7AO//3NPCFai6JcaqighhRJRNd1NC1wLUCtclL30miCpUopfhf2/RGfv8VyFX8ZeJ1SqWKlPnE90YNS6PzuPa2+M+Hj+RrXaoBavcnrDrjeokd66cEhJZHsR0c/T3BNUhshgR7CWAx3n2qQZrJVZgCiMT4DYsWMCU1pbt+nOC2aRD2OVjpoklb6ZYBwFYZVrGhomJRBL2Ie0qt63cowIzm9oi5bTWGnHHBL0sHJRZcSqWSvHAHgS+o6wL3LQve6cEjgaKKFLbIHgFvUVX49d6Fe5qj2Fv8tyHuDZhft75QAJaHCtDCOSyllUkWyJAREKuhM1MlJ3bxAJTMjCHNWPtZJU8B1qUMYm1PvBzvtB7CarYYsPHHF40TdAw88MKETbtiwYUL7BxOz+i+iSd5HU75JFljFig0bmaQzV3nHmdHXfES7gD+q1yiTan6h/5Gb+YTfzu2aPfenTb0/8ZWZhBEGLmPhAm0Vb+vbqaKOBtVChh9XkE+lRhoIw0I2mcwLgioyVwrIY4EqoEYaOCrFEz7eYb2QNJLIUlPIwfgT8Bkqm3lqJuVSTTV1gQ5nRJqklViiiSeWApUb6HCGxVXsvUO6AhhJCCPimqibRgb1NFEl9WQHwXUiEHzL9hOesD+PCY2PciExRJNALLlMI1KLYIe+nxrqWdF/JUU4zIzetPzOr4uivsQuOgrl/NwM1/pqUiZes/ySROL4h/4Wv7a/hKDTJQ4H2KNSTCJxZJJOgcoDHBX5k5GeQVMEgKhhkpq+JEUlUim1NNFmuETTmWjR20ginjhi/FqFeCpL1FxsYqWdLtrpJMFAOuTVeh3RRJFLJnkqMLrDrpV8wWZYEsL/DGmGh2EhmkiKKOdl/b9cbbo0wJGdGY8zSCaTiYaGhtMeb25uxmQa24rdpk2buPbaa1mzZg3V1dUAPP/882zevNnTcAzNdJVFlfhuktdCO130UEM99sEPoNHJ1NLokm7CsBBPDJV6rd/O3SGdzFJ5ZJJGqh+18QKFNyvq6qSJApVLFhlMM6CRxBAxKop++skig69bf0CJXhmwWFrpYKbKpY5GYggu7Yw0lUSNNKChcVRKuHXgW+gyvmuMXezEqmjCCaOXfiyasVevAKapDIqknEjC2ahvH5NxUSBooZ1OuqmizrCToHSSyWYK08mixaXKNEQIcL9PtdFJAblUENKpG4k26UAQbNhpUe10DX7/NaWwiQ0bdjJJo40O7OhoaJPqe1dPk/MzE04YCSM4qp9rOocFpllMVRnU0Ug9zU7d2EjCSSSOUirJU1MBR6umaXBKZMwr6fjokZPmfcO1CfuSKaQyjQxmM5126fTruSdCI6200E4Z1ST40YDjVCyYqaKeTrqN186uIFOlUUg50yZoNjZeMlQqGaSST47x3p8QhiNJxZPLVLLIoJtekkgIisVjjxN1I01Y+vv7CQsLG3X/l19+mYsuuojIyEj27NlDf38/AO3t7Xz3u9/1NBxDc1COc1xKfXZ81wtToDQCxsMXzJ+hklq2yl7+rb/rt/PWShPHpZQaGvzqfuVPfFVRVy7VnJAyKqkjTRk3yfl98z08brmPcmr4s/46f9ZfD1gsR6SIw1JIFz1kBVkbl1KKaWTQSAvV1PF7/e9UMT4n3TKpZofsp5I6ZpHn5Uh9w3SVxfnaKhppZZccopbG0XcKAEbQ0hmNFC2RCmopoZIqA1cnhggMrom6Lro5TBH79aMBjMjYuI4pBzgpr5KsEpmjzaCeJoqppJ5mAOzoFFPh9zh9xZB5xiyVR3vEHi41n3fG7V0r7noHq8ve0XdSQhUJLtrOV5ouoit8PwtUAXOvn0baF/IJv7ODiK90EnHLcd+8GD/Q61JRFzlM9aEviVIRVFHHYQppI3gSdUbQXwP37hXXrhYjsF3fT6GUMYB1wmZj42Uq6dTRSBHlFMvkucaF8D6d0s0eOUIZ1UQRxQBWGmjmkJwIdGijMubW18cffxxwTOCeeeYZYmJinM/Z7Xbee++9MWnUPfzwwzz99NNcf/31vPjii87H165dy8MPP+xJ7IbnXG0Fm/T3+aDJN444tdLASrWIcMKYS/C01i3R5rJWLSOcMHbrh/12XtebbzA45E4Ub1bU1Ug969VyBrAaWrDVpEzMVfnkMpVOevib/b/ca/58QGJxTaJkqMC1T4yXD5nW0WBvopk2YomhSC8j2zTF4+O8ob/HBdpqrGJlrWmZDyL1PkopFjOLTbzPAFYu7f8cz4X9gIXa6Pc4f9JJN+vUcgSdLOX538Yf5JPDOWoBEYTTElr1DnEKrnepWUwnXSX7bMFpMjBN0jlCNIIQJZGsV8vR0ckkjRSVyGoWc5Dj9NDvbPWZLNUmIkIXjvbVsRo0uVaRDel5DiWvotTJ54Y0/FJUEggMYKWLHsMZQXlKL/3On/3d+hrjaiQURPqkNrGxRi3Fgpk0kgIWR4HK41x1Dv0MUKs3jqO0xncM/T3DsBCujV6k4wtmqGyWqwVEEk73YFt7iBDDUaxXsE4tQ0dnpsrhoO5YfOkU41+Xxpyo+8lPfgI4bpRPP/20W5trWFgYubm5PP3006Me5/jx45x77rmnPR4fH09bW9tYwwkK3tN3UqM38iB3+uT4xVLBDtkPwCfVxT45hy9Yps2njQ4OSyEWMfNzud8vYo6u7R/BVIHoCb6a4OzSD7NJdgGQr3J8cg5vMVPLJUtNYZPsollaaZF2kgLgOua6AhosZi+uPGS5k+kqiy/Yvk0zbRyVYi5gtcfH+bf+Hm/r2wB43vQjb4fpM0zKQvfgxO4oJezQDxguUVcj9Wwe/F7erD4Z4GiGp0DL5X05CIBVtwY4mhBGw7VL4zglHJcSBkKfkxF5i21OE4lCyikXh3zMF9U1XKqdx/W2rzkTUkMEi7vdaHTT61yAjFUxo2ztwNVsokccCboh3bbhEleu+sVN0mo4IyhPcf0s+Lv1NY6Tf6NgMhLaJvs4KsWEYSFDpQYsjngVy3vyPgBFlAcsjuEY+nu6/o39zVSVznEpccp/hAgxEkcpZvOgkeUGbYXz8aGFHyMz5kRdaamj3P7888/nlVdeITFxfBPPjIwMioqKyM3NdXt88+bNTJ9u3Eqd8bBCLaSNbt6yb+NCk+cT3NEo0auYwwwSVBxzteCpqAO41vRR/mV/h2baeN7+KjeZ/WMqsUjNwYxGIsFlFz8evFVR1yO9HNeLmUIaMUQxQxlfdPlq06VU2erooY9nbX/lq5ab/R6DRcwsVnOIIJx4iQlK4Zu5Kp/VagntdFIqVeM6RrPexmI1mxSSSA8ibchPaBdRKKX8Rf83YEyx4iaXSpkUg7a+RqsoPqKdT7XU00pnUImKh/A9rvepGKLoosdwbV5GQUTodJlYuCZhkklEKcUy5rKTA9gGq+ySVMK49UWNRqd0s5BZmJWZ/DGOQ05tfdVFp2+wymy4RN0SbR4VUksdTZRLNXkERijfa4iwUM0ihihi/ayV66rNGwyVK+CopuuVPpaoucxQWc7W6EAwR81gjVpCO13OhLxRGPp7xgQwka2U4iPa+ZyQUhqkhT7pJ0KFByyeEMZls30Xy9V8dHQuVufyKL8ETkopGBmPC2k3btw47iQdwC233MIdd9zBjh07UEpRU1PDH//4R+6++26+8IUvjPu4RmSnHKBOGikS36yE1FBPEeVsk73MNHiV06mcoy1ks+ymVKrGnQDwlHKpZr8cZbccJm6Mq7HBhi8q6ppoYx/HqKWBCBVGuApMmbsnrNGWUkoVjbTwqv1/AYnhEIXsk6MUSTkmbWxGO0YjX8thm+zlhJRSLZ5r1HXpPTTQzD45RifdQZWgmWOawf+ZPw2AGRPtuvFu6M20Ysbx2TJylXAf/eyVI7RJBw3SHOhwQhgI10TdkKvhgAyMtPlZTR/92LE7f++nH/PgevuQnpVV2enHih07ldSyX45S6KMxqL/ppY8DHGePHKZjjIkf1yqyPhk4RbPt9AqzKCI4b+e7/PblvSz67afo/9OF2LY9OvHgA0Qp1RyQ42yVvST5+R4xNM42Y6IjSMwkqqWePgbYK0fQvSgfMx7yVQ5bZS/HpIQq3TgVYyKCFRsAcQFuDVcodsth+umnUJ8c17kQ3mevHGGXHGKfHGO5tgBtMP1l0+2j7Bl4xrVUUFVVxT/+8Q8qKioYGHAfUD322GNn3Pcb3/gGuq5z4YUX0tPTw7nnnkt4eDh33303t99++3jCMSwpJNJMBwfFN0K02/R92LAzj3xSA6ijMB4KyGUKqdTSyB7xj06da+l9IMu1/YW3KuqaXbTWVmmLvXJMXzNT5fBx7UO8qv+PnRykWdr8nsgYet+MnEAZjWSVwGI1hwNynO36Po/3L6KcauqJIJylap73A/QxKSQ6q3zqDGgoUS41TpfHLIypUQewVM1jK3upp4kTlJFO8Gk2hvANrvepTJVGjTRQQS02sQW0msWInNo+2McANmyEYSFmcML8p7CfECFh9Kp+FvVf5nCMnCQViq5JtqgxGiNESBgWzFix0U2Ps+0Vhq+o+5TpEsKP3Y/W1Q70Il3N2LqqMK++d8LxB4IhfcJIItw0+fxBColEEE4f/bQFQeUKOMyv6mjEjInsAJuAxagozlEL2SOH2SZ7DVON3jjoN2/BzCI1J6CxLNJm85r+Ng20cIJSFlAQ0HhCGJOhSvQ4YtA0jViiaaeTVmV8R3SPR0FvvfUWH/3oR5k+fTrHjh1j/vz5lJWVISIsXbp01P2VUnzzm9/knnvuoaioiK6uLubOnetmTjFZCCeMZWoeVrF5/dhdejc5KpNE4h3iywa4eHtCqkoijhgyVAoR+KdU2bX0PtrPWh3+whcVdfXSxFI1Dzt28lSW14/vC8zKzFTSBweKERRJuV8TZv16P/PUTProJ08Fd+tMBinYsROnYmjXO4nXYse8b7lUs0otppV2sg1qdnAmklWiU8PCiJPdBGJZoubSTiepyriLNdlMYRrpJKp4yvVq1mvLAx1SCIPgmqiLINxpgNBKR9AtQPqaTunmHLWAE1KKBTMD2BjAygBWp5baFJUKChKBBWoWPfQa2qndE0ZLsg1HhBbhrP7pp58e6WO5mo8NO9OGcatMVPH0GUm1f4JkqjTCsLhp9fmLOBXjbDM2onTEcAzd523YDXFPnUIqc8knTkXTIC2kG+C7XCG1nKvOoZGWgGs4ZpNJOinMVTOo0RsgOJtXQviYTnEsFMSc0v4/dG8wMh7fje69917uvvtuDh48SEREBC+//DKVlZVs2LCBT35ydDHrm266ic7OTsLCwpg7dy4rVqwgJiaG7u5ubrrppnG9CKNixcpuOcwb+nteP3YRFWyW3RyQY46BWZChlCJRxbNXjvIv/R26/ODYM7QaHUs0mpo8AzFfUyKV7JHD7JdjJA62JgUDedo06mmmnGqO6sV+PXezameH7Ge/HHNOPIOVTC2dg5xgi+zhBGUe7XtAP8522cdxKSVfC672fHAkwoZK5F0rS43CP/WN7JUjhBNm6MWafC2XE5SxQ/ZzwEcV5iGCE9e67wR18v5ixO9boOmkm/flIO100USbm77OcImrLrrZJ0d5V9/pzzB9Ro+c1OQba+IpgpNSHX0M0EvvYAvUUXpV/xn2DH5EhI36DvbKkdMMRvyBq4lWsDgPu153kl2MRQLFNC2dgxwfHH+VBjocACqllvfkfY5KMVPV6clufzJLy6OIcnbIAf6o/yOgsYQwLk7zk8F2fMtgnVowJOo8rqg7evQof/rTnxw7m8309vYSExPDgw8+yOWXXz6qztxzzz3H9773PWJj3asyent7+f3vf89vf/tbT0MyLBdqa6hSDfTRT4veRpKW4LVjN0kr56uV9NBHgcrz2nH9yVptGRbdTD8DnNBLWWrybWtcHtNIUYmTVp/uVLylrlErjaxRSzChMUcFj+HLGm0pH1CrsWLnbX0bN/Jxv53bbbAXhI6vrixRc1ivlmPFRolewTnagjHt9w3rD6mSOuYwg1gVzSItsC0S48GkTFyuXUijtIy5lfxJ2x/4i91hQJGvcvhN2Hd9Eluv9DldaZMNaiQxRIHKZZ1ahiC0ivFbDUL4D9fvVR7TWKeWoaO7ubSfzfzHtpmv2B6hmnrCXZJOmaTRSbdzAjJcZ8JQ8q6fAexix6SCu9zEvfV1bF0Rru9LH/2nVOUNfwwrNizjjNFIdNCFbXAimqT8b6CWQiLr1XIEQQsSN61GaWWFWkisiiZHTQ10OFygVnNMlWBXOv+ybzRENXqTgZKZM1Q2F2sbOKoX0SxtAZG5CWFseqWPPJVFEnHM0xyt0c5EnRjfYd7jRF10dLRTl27KlCkUFxczb54jwdLU1DTifh0dHYiIw7Wqs5OIiJOrYXa7nddff520tDRPwzE0YcrstAMuooIVXrygVUkdG2UHANdyudeO60+SVTybZBcAx6WUpfg2UbdF9tBBFwUEZ2JzLPhiKPS+fpCtsheAmVrwvHeLtTlUUMcJKSVSIrDrdr+ZOri6cQZ6IDNRstQU5/d0vb6cT41xv5fsb1BNPVFE8G3T7UHZ+gqORPV22Qcwptbf/+pb2CH7ATggx/iV/pBPPneurbgpBh+YTlGp7B80FKmW+kmRNAjhHVwTdSalsVl3jJkaaQlUSIZir36EEioBR8JtiBoanD9HETlsRW2kinSu2PXSf1rbT7AxrtZX10SdDIzpGFaxTopEnXtCxf+LOSkq0Tl2iJbg+OwdkxJ2ygEQeMwceF3CD5vW82nbV7CKzdE+bIAPpmsbc0qAF6LDVRhZKoN/8y4Ax/QS1ppGl+EKcfZwQi/jkJwAIEscupNDJky2yVhRt2rVKjZv3sycOXO45JJL+OpXv8rBgwd55ZVXWLVq1Yj7JSQkoJRCKUVBwelij0opvvOd73gajqGZoXLIVzl0Sy8143BMPBNdrsYIQVohNo+ZLFCzqJF6jkuJT88lIidLXwPsUuQvvGUmUShlZJPJdJUVdCtV52sr0XWdKqmjkjpy8c8KabO0kk4KccQwTWX45Zy+YpbKY7GaQ500jbn1wiY2rFjJYxpztXzuMN/g4yh9x42mj9Nr76NK6vil/iJf02454/bteicxRDGAFQGqVD05eF+UullvJQ2H1ucMle3143sTpRS3m67jVf0tKqSG/+ibuMR0XqDDCmEITt6nEjlZ9dMUJK1yvsQmNr6jPzHqdiMlnFwf76E36BN1fdLPNDIIJ4z4McpwhLlkNvrpp1dcXF9HeN8sk8TEpF06mUIaUUQEZKFsSDpCRw+aVvZe6SWHqZjRfHLf9hSzMnOxtoGD+nHKqDbEIleb3slUMoglihQDVPN/SruEXfohaqSBp+1/CiXqQrhxglLHXIx0lmqOgiCLMoNM0tbXxx57jK4uhy7Gd77zHbq6uvjzn//MzJkzz+j4unHjRkSECy64gJdffpmkpJMinWFhYeTk5JCZGfiLojdJVPEUicMuuk5GrjYcDx0uibrYIB18TVdZHJITZDPFKTjrK7rpdSauYgIsfupLvG0m0a53kqTiqZEGrBi/RPhUYommVhrIZSrFUu63RF0TrdTTRD1NRKvg/H4Oka0yOSYlJBI35ptaM2000AK0MIcZvg3QxyzV5nLIVkgicfzJ9hrd0sOHTeeyWlsy7PbFVDgNKOYyg732w+SYvX9vaxp8jxtowRQECsr5Wg6F9jKymUKl1AU6nBAGwXVBKYE4Eoglnji68b1urdGpkYZB0wjHvTeWaOzomDFhxYYNGxGEj6hT7Jaokz7flNz7kS66qcJx7TCPMVmhlHI6jzpaX09qtY3UPmv2fGpkSNrponaw8tIXRmOjYVImppCKjh4QM4vxUEY15VQTThgRmjFiNqHRQhs5ZFIm1QFfmKujkerB76ERFu9XaAs5IMdII9l5rQxx9nBQP45JTPzZ/i9aaOdxy31uFeY1egPpKoUiqWDaoKbipNWos9vtVFVVsXDhQsDRBvv000+Pad8NGzYAUFpaSnZ2tqGFr71FsuvqsJcdj7pcHExjg7SibprKQBDKqWGnftCn5+p0rUAMVdSNmROUcXCwZHiumjnh4/mb2Wo63fRyjBKOSDEXssYv53X9vqcEeeurSZmYp/LZLYdp0rc42oLUmfsvXIWjg12jb56aSWv4Lr5v+xWP2Z/l+/Zf87T9RerCt552H9NFd2tJPUIxz+l/42N80OtxubafGGGwPBqzyMOKjSIq2CtHAh1OCIPgepdK0hJos3fSRifVXu5CCEYqqXNOPBXKbRwzxJkmGpHqZKLBVd8tWBlP6yvgkqgbW+trIJJavsC18yZQ7pwxKorjUuoXwzhv0Dm4QBBroHnCHDWDv/Em7RRxQkqZQWATda5jHCOM7yzKwmw1g0Nygv/qm9FFDxkGnkV8w/Yj3tK3OX+/j9tI46Q78i/1FymRShKJ4xLNkYuatIk6k8nEhz70IY4ePUpCQsK4TpiTc9L5b8GCBbz++utkZWWN61hGJ4kEVqqFWLCAeEva34EFM2vVUgSI58yaSUYlUosglmg66fa5dXuHdLJGLUUB+SrXp+cKJN4eYJZJNevVcvroZ44WPEYSQyzQZrFOLaNBWnjB/hpXmi4iU/leC9MkJtar5fQzQFKQJ+oAlqi5WDBjwUKpVI1qYFMnjaxUizBjDioDkuEwKRMmTMSpGBKJI40kslUmddLIlFM+Sw3SzDI1D4tYKKSMApXruP77gAGxsl4tZwAraSrFJ+fwJgVaHgtUAbHEYBN7oMMJYRBcF5SSXNoZm4KkVc6XuLYLRhPprNQFyGUqZVQDI0+Wp5LO6kEjKF93LfiD8SbqVmmL6JRu4ohBRGetWoqOkDDG9tlO6QqSejB33BeoA7Og79DGK6WTbu6yfhdEkazi+abliwGJZzSGiiACldgcjjlqOsvVAiIJp8qDavTt9n382v4XTGjM0LL5uvlWr8STTAJr1VKs2EgwyPxzuZpHDFFYMFMptYYwAgnhHyIknGymUEcT2UzhDfsmrjd/zPn8UOFAikpyFhkMjcsnXaIOYP78+ZSUlJCXN3FR+bKyMqzWyVummqji2SEHAJgi3k0OFEo5W2QPAPHKGBfK8ZCsEumUbp9bt7fQztbB92sJc316LqPgjYq6A/oxpxjwN9WZHZ2NyCJtNqu1JfzQ/gwIPGR9kqfCfK+FWSTlzvctIYi/n0OkqWS26w6DhBNSNqohS7FUOA0VruYSn8fnD+4w30Cl1PJz+x8olxpOSBlTcL+ul1DJ++KoDk4hkS2yB000+qSfCHW6K+NEqKbe+Rm7m5u9emxfEKuiaZY2DnCcY1Ic6HBCGAS3RJ1LZaivF++CAddkZSzRbok6159HMizqpY9tg0ZQPZOhok5Otq1GjuDYOhyFUk6xVJBIHBey2jl2/oL69LDba9PWoVe8S39/I63h8F6mjSulJ+hkLDpdOm8CJfmSohKcZbO/sL8AgIbG3ebPEa7CRt4xQHTgkHYyUkVdnpbFLptjXJEvOaNsfZK39G38Uf8HAKl6ktcSdVv1vVRQQypJhqlcS1FJbNf/BjjGqDl+krkJEVi6pId/yTvO34uo4A39Pa7nY4DDGKidTsD9PjmkXWrHjogYusvT40Tdww8/zN13381DDz3EsmXLiI52v5jFxY1thepsINmHg87J0lr3AW01B/UTNNBMr/S5tWp4k8nUincmvF1RVysNLFFziCZq1Coqo3K56UL+q2+mXGr4p76RJ+Q+zD4Wi3ZvOQnO1nRXFmizWKsvpYNuiqVi1O3LpIZFajYxRDNbBbdGnSuL1GzWqCV00EWRlLOBFW7PF+kVzCWfBBVLNFF00k0r7RTqZSwwzfJqLK6TsNgAVUt4yjptOSVSgR07HXoXcVpwxB3Cd7hp1Eksy9UCFIy52mky04+V5Wo+GhrJJGAX+6D2J3xeuxqbshFDNCu0hcPuH+7meBr8FXWu7btRHowVh6rJOulxaPUNHWOEZF/Yxb8B4GHrT9is76aVDhbq5Sw2zRlP2AHDho1lah5mzG5SPP5kmZpPI63s5pDTzCRVJVGklzPPZCw5lV69jwJyiVKRzDXQuGUGOSxT89FQ2BhbNfonBm7nbX07CodpSrpK5mHbL/iWeeKVjEPzWSNJbixUs1ijltJJF0VSwQdZG+iQQviBE3ops8gjgVhqaCRNJbvN91ulg6VqHmZMzHeRb3LVIbViczMdMhoez1YvucRRHfHRj37ULQM5lJG028fe0rJ+/XoiI8e+KhZsxBGDBTNWbLTo7V499tAkLYLwEQcbwUCP9LFD9hNHDIV6OQu9PJkdolYanD8Hc2LTE2SC7dZ90k+pVLNXjhJOGDkqOM1elmsLmK6y2C/HiCCMY1LCfHW687Q3cTd7Mc7K7HjJVVMd1WFolOpVo25fKlUckOMIwkwt1/cB+olslclW2YsJE6VSfdrzpVLJCcqwiY1rtct5U9+CGRM/tv2W35m+79VYOt2SwcFR6aFjd1YcNtMWsHasEMbBNVFn0SwckhP00U8/AwGMKrCICDo6/7C/xS45BMDF2rk0SItzm+vMHyNXO3PViGsVb/8kaH111TmL9mDcO5QgsmFzVkzByK6vQySoOLbLPiIIp0jKWUxwJerqpZndchhwT9r6k3AVxjYcVZ0tOOZBvdJPkZQzD2Ml6lpUO4coBGFEg5ZAkKBiOSjHGcBKvz5Al/Rgx86ztpfppJtvmb9IGx30ywBRRNJIC0f0QqdxSg99HJJCNJvGHaYbJtTW26v3OXUzkw3g+DpEjjaVrbY9KBQ/tz1Pk7TwLfMXDV0pFWLiHJMSKqjlOKWkkcxuOUQmaVh1KxbNQifd7Bm8BuapkzJrQ66vAFashk7UeVyzunHjRue/t99+2/lv6HdPeP3115kyxf+W4f5CKcVabRkRhFNG9YQTJ640SDPhhJFLZlBfiBZrc0ghkQ66OE6Jz85TPZioyyQt4I5JvsSbFXVb9b1skd0kk8AdpusDbgk/ET5r+gRZZNCPlWftL/v8fK5mL55MKIzKTHLIYxoa2piMAHbpB7FgZhGzSXcRdQ12Zqk8Z0vFvmHeh/1yDB2dbDK5zXQNH9M+iELxovzLrW3LG7hX1AVHMti1mjnU2hgC3BN1CuXUHpsMrZrjpZ5movsXsVG2Ox+bq/Kd7s5pJI/puhrBydbCvkmQ+OyUbkyYSCXRoypi18TEUBsUjF6VN1flM4VU+ujniBR5HnCAMYKZxFyVTypJzt8jiaCXPo5gPPkDV01II3XeKKVIGUyKNUsbf7W/QXr/ar5h/xGP2J+iijp+aHuG3IHzSRtYxbyBSyihigjCmE4Wq1lCDFEc4Dh/tP9jQrE0qzas2IgmklwDLd4vUrPZF/YqS9U8yqjiEftT1NEU6LBC+Jin7X/CipV8sjlfW0kcMdTQQAW1AG4LM64L2pZTKuqMjMcVdUPurROhpqaGzZs309DQgK7rbs99+ctfnvDxjUSMRJHLVBJUHPXSTIaXRL876aafAfTgzdEBkKemEU0k09U0DutFfNJHuSA7dpaoudRIA5n43kxgMlAldSxXC2iSFnLVtECHMyEWabOwYSeTNLboe8fkXDoRUlQi8ynAhGYYDY+JEKNFE6diWCpz6Zd+Luy/nk9rl/G+HKCbXn5v+YHzdXbrPUxV6UQTSSJxQb2QcCrpKgUNxTxmEi5hNEgzacoxYd6vHyOScKaQSifdLNJmk2yPJ4l4ooniFft/udZ8uddiiVQRLFCzsGINmkRdJmnMZjpRKpJW6Qh0OCEMgOvypUINVjm10ytnb6LOdaFniBkqm2gi0dCIJpJIbfTWzwjX1tdJUFHXrNqwi51GWklWY2/lzGYK88jHoiy0i0uibpRFtJkqB1BMI53/6pu5T24LqvtZp4uOYVyA7hEzyMaKnQjCsWBGEJaquVjFePrkQ21yvfQZbp6wQM0iSeLpx0ql1JJAHG10kEYy9w38lDoa0dDQccypY4gijhjSVDKLtdkctRcxjQyKxiBdciaG2gq76SXCR1JF4yFChTNbzSBKIggnjGQSKdLLmWIyTmVkCO8iIsQSzaxBw7qpKp1kEpivCqiVBmaQPaKhTiapzKcApRzGbEY2+h6XUNOmTZv45S9/SUlJCS+99BJTp07l+eefJy8vj3Xr1p1x39/97nd8/vOfJywsjOTkZLebnlJq0iXqcrWp/NO+EQROUEoGE0/UiYjzwxeom6+3uMx0AXdaH2GnHKTYXskDltt9cp5t+j5nJVC2ZpxVIF8y0frNvXKEXYNtarOC0PHVlXSVwhptKS/r/6Fa6imTamb60P13t36IBlrIYvJUDO8I/yu/t/2dW23fAoEt9j3O5x6Wr5A76LJVRIVTwHy5aUFAYvUVSimuNn2ER+1Pc0COcZ/1p/wy7CEAXrC/xsv6fwG4RvsomtL4ueXbvNz/X+qp5EHbk15N1B3TSzgoxwFHi1YwEKuiOUYJCNSHVrtDcGpFHUSpSBCcbVtnI65VAEN8yLSOm8yf8Og44a4VdZNAo26o4slTyRelNA5TBOIYCwwxknPswF8vRa/dRZa9j70mxc40Mx+9PIPv2p4yrFvpcHTKyc9RoMwkcrWpdNGFDbszWbxHjpAogdHMOxP1NDnb5Izk+gqOVr1DUgjAI/anAEgingaaeVH+BTgqbW8xXQXAe/r7nKudw32W2wBHh8x+OcbT9j/xqPmucS9UuxrcjGRiE0iuMl/CJtsueqjlqBSxnuWBDimEj6inmbdkGwAf1NYyTWVQShWlUkU5NazDfdErxq2yuotDnAABq5pkFXUvv/wy1113Hddccw179uyhv99x4W1vb+e73/0ur7/++hn3v++++7j//vu599570bTgrzQZjQ3qHA6rIkB4w76Jc7VzJnzMbnqdg9tA3Xy9yRWmD3JEL8KGnbfsW7nQtMbr5xhqs4oi0jERmKR4q/XVKlaO6cXkMg0NxWwV3Ik6gGXaPPbohxGEIilnJrk+OY8uOs2DWiwpBmqf8AbLtfnMIIcyqpwixWkk86r+P+7QbgCgUVq4QK2mmx4KfJgMDRQbtBWUSiV79MPskP3s0g+yXFtAh3SxTi2nSmqdeo5KKW7QruCYlKArnV/aXuTz5qu9EsfQNS2aSJ+Z8HgbN4MlHzt9hwgOQq2vp9N5SkVdBikkSKzHq/6u14XJoPk3jQwSVTyxRHtU2eYmei+wVi3FgmVEWQq9tQhsjmq0CBvMbQ9jKun8R99MjbWRJy3fnsjL8BupJLFeLUcQYiQqIFUjJmXiWu2j1NGEXey8Lduxoxvy+u9uOpcQsDiG43LTB0iVJF6Uf6FQJBHPAq2AfHLZJDtplnZSVRJxg+ZlcSrG+TPAem05sXo0NuwUS8W4Tb5qpYEVaiHRRDHLgAZzc9QM1qplKKBOQouBk5kivYzVaglmTKxUC4lxKVwa0jPtoY81ailmTEx1qZINc1nE6peByVVR9/DDD/P0009z/fXX8+KLLzofX7t2LQ8//PCo+/f09HD11VefFUk6gEtM53GN7W4GsFKnN/GIfGXCpfOdk0yofoO2gp/b/wDAWvtS3yTqBleBjLgC5CtkAjV1xXoFG2UHAIvULMMNWsZDpkqnFIcRwiG9kItNE2/jH452OrEPOnNNhvfNlblaPgu0mRTr5YDjWtRJN8/Y/sKXTdejlKJa6nh7cJXrWrxXQWYUzjOtoEQqeFH/FwjssO9nubaAd/QdlFJFLNHcZ77Nuf1XLTeR3b8BxGGycavpU15pnxqaVBhJ0Hk0XGN1XZkPcfZyaqJuSOC/nwF+Yn0WheJOy40Bii4wdLm0LILDeCVG83ysN5laX0WEt2QbVmwsUrM92jfF5bpTShUnpBQYeyXy0ILbTjnA+/aD/Nj0DSK0wJgzeMJhKWKrOCrfowO4QP30YNU5QE7fBuppptHFGMUouN6TUgx2X73OdDkm0XjW5tBYTiOZv4X9AoCf2Z4D4A7zDc7t7+AGt/0TVBybZTcAP7L+hmfCvzuuOAqljJ1yAIDb1bXjOoYvmanlsGXwdYbrYaNsHSKYOSrFzu6dq9TFxLkULg3lSeqlyXkN/Ky60vm8q3mEFeO14bvicaLu+PHjnHvuuac9Hh8fT1tb26j733zzzbz00kt84xvf8PTUQYlJmfiS6Vre1rdTJXW8q7/PeaYVEzpmu95JLlOJIJwcdWbXr2BglspjuZpPo7RSQqXXjz/Ux55IPPlajtePbyS8tSjwS/uLZJNJhkrhHtPnvHTUwLJBW8GHtLWUSw3P6a9wD755Xa3SQS7TiMDC9EloXHKf6TYu0y5AEF6zv8022UcxFST0L0MQrtQucm5rtPYRbzFHm8EyNY8GaaaIcvqkn2bamM10Fmmz3RJxqSRxv+lLPGP/C/XSxC/tL/J/5k9P6Pw90ksf/cxmOitNiyb6cvxGqkpkoZpFNz10n5KMCHF2cmqiLl9lUyuNlFPN/fafAYrbzdcFtZmRp3RLL3lMYwArF2qrOV9bNa7jxBLNPDWTPvoZEGO394xGJ91O0W9PF8AyVArzVQHlUu1M0lkwe9Rd8UnTxbypb6Fa6imhkrnkexRDIOgdrEo1Y/apJq8nXKitYbccpl4afa4V7Cmd0k0e04ghys0Awyh8UFvLM+ZH0NCYpjKcj7sm6EbiKu1iCrVyNurb+Ku8wZPyAOHK80RWkV5ODlNJVYkUGLCiLo1kzlcrqaTOaSgQYnLSK33MJAeFRqZKc3O2HqpKb3KpknVNvrt+9o1ebe5xoi4jI4OioiJyc3PdHt+8eTPTp4/eHvfoo4/ykY98hDfeeIMFCxZgsbhfpB977DFPQzI8eSqLA/IcWUyhXKonfLxu1UMZjuNsYGJJPyOQp6axV46SSOxpK8neoJ8BigcTgKkyeRwoR2O8FXVWsdJMO620UyE1rDEt9XJkgWGKSqVDuqmSOvKYxkH7MRaYPFuZHwuddFM2WLm3dhLqY8wzzWQeMwE4LqX8w/4WGprzZlcvzc5tg11DcyRmqlx2y2HSSKZH7+NNfQuRRFBEBUuY67atUooNphU8aP85EYTxD/tbXGza4GyPHQ8VUkumSqdMqlgm8yf6cvxGkkrgwKCuXs2gE3eIs5tTE3Vd9FA+OL4ZchcslSry1eReZHOlnQ5n9fc6bTmfNn9kXMeJUOEcHtS1ahuUYwhWdukHySaTdjo9riKOI5ZDcsLtMU807gDiVSzHpIRsplAk5UGRqBvSeRxJiy8Q9Es/5VJNLlOpknryDGRUVkuD83uX6IFZib9I1ZK4Vhtfl0KBlocgNNNOEnHskcOsVks8OkaX9NCr+mmSFqqkzqlLbCSUUvTQR500ksUUuvUeorWo0XcMEXTU0EAhju6eRBWPJhqRRBBDlLOrqY9+0kmmhXa3BZ5wl4q6foNX1Hncf3rLLbdwxx13sGPHDpRS1NTU8Mc//pG7776bL3zhC6Pu/+ijj/Kf//yH+vp6Dh48yN69e53/9u3bN57XYHjmqOloaJRTzX45OuHjdcjkan21KAuL1GyaaOMtfRt2sXv1+G6twmpyX7C9oVFXJBX8RX+dTrpZyORoex3iecsP0REOUcg99h/65BxuduBM7s/bXJUPKOycdO8eMiCByaGhORwpKpFoomigmc2yi09av0w9TcxhOo9b7jtt+xVqAf+y/IoBbLwt23na9sKEzl8hNRyXEvoY8IpBkb9IcWt9bQtcICEMw6murzGnjGm66XVWQZ0tdLiNWcZ/DXUdH7oeMxj5hu1HVFADwG/Mj3i0b8owY5itlj97dIw5OAoRSqnisBR5tG+g6Bl0TjZSoi5Ty6CPfo5RQoXUBDocN5poc/482fSFAT5vuhoNRSOt/NH+D4/336Uf4nX9Xbrp5RwWYFbj8qP0OQu1WXTRw1GKnYmcEJMPVx3bKCKJUzH00kcjLTTiaK2vkBrqacaKjSQX6SvX1tcBgyfqPP6WfeMb30DXdS688EJ6eno499xzCQ8P5+677+b220d37Pzxj3/Mb3/7W2688cbxxBuUzFS5zCKPeBXjEC2cIF24uphMjkTAfDUTMybCCaNCashTWV47tqsw86mTgMmGQnEJG9jKHvbKYRb0XUqelsU/wp522+4+68/oohsdna+YPkuudnJlrEQqWK+WUSpVTNXS/f0SfEqWNoXlaj4mNBKIZaN9B+ebVnr1HCO5DE1G5mr55JBJK+100k08sUQRSYHKJZxwUmTyDXaHSCaBbnqop5kL1CoKpYIsNWXYibVFWZitzSCDFPoY4C37NnSzjqbGp9XaxEktnWD6jkaocM5VyxnANmnuXSEmxqmur6d+f+armVRJvZ+jCizuY5bxf09c9z3VoCKYqJBactVUookikgjCNM9a9lJJYpVaRLFUooAsNYVU5VlrY77KYS75xKloOqTTo30DxVDrq5HMhqa4uO42uyTGjEAKiaxSi7FjnxRFEKcyR02ngFziVSzWcbTCV0gN6wbnBtMMPO7IJ5elap6jGluvZLE2J9AhhfABQwsR4FiMsLgk34aecx0rp7ok308zkzAwHifqlFJ885vf5J577qGoqIiuri7mzp1LTEzM6DsD4eHhrF271uNAg5k0lUw19RyWQipk4j3zrhVicYztfTc6aSqZ3+t/B+CElJGHFxN1ru+Xmhzv10iYlIkIFU7b4ECykHIK9XKapc1ZGdcn/fzI/oxzgrROW0YuJxN1h6SQTYNirN8z3ePfF+AHHrLcyXkD14JArTRyvumPXj3+ZPx+jsQibTb9DNA+WEXYSgetdFA9OLHO0FIDGZ5PSVEJVEgNXfTwtmwHYHPYyJVyU1U6y7T5vKa/TQttzsnneHB3pwuuZGgL7RySQixiNpxGUQj/c2rr66kT5ENSyPP2v3Or+VP+Di1gdHlpzOK6b1cQV9Tt04/wD/1tAB403+Hx/mkqmX1yzGmo0S5dHlcqztRyOUwhuuj06sHhSDxUceJpm68vcW1bbjaYodBWfQ/V1JNJmlcMn4xGkpZAIy0cliKKpcLj/ffLUachxa1ecq/3BdO1aeyxHwYgzG7hCvOHAhxRCF/Q61JRF6ki3Krkhp4busZEEO52HXTVqBswuEbduK1Xw8LCiI2NZcqUKWNO0gHccccdPPHEE+M9rRvvvfcel112GZmZmSil+Pvf/+72vFJq2H8//OHILW8PPPDAadvPnj0xHSulFDeaPs55aiVpKpn/2bdO6Hj1ejML1SwuUKsMpe8wERZqs1inlrFEzaVEvGso0S09nKMWsEotJpspXj22EbnG9FHWqqUkEU8MUWQxhRdcytxfsP2TWeSRSBw5ZPIP+1vO547rJfzD9ja5TGOhmsU52sJAvASfMlflc5fpJmaSQ5008kPbM149/oBYWaEWslotMZxzmC+423wzt2hXcb5ayWq1hGgimUIaH9bWk2RAnRdvcY/5Fp6xPMJFaj0F5HGuOoc0zqyBeaPp48xRM5hOFl+3/WDc5+6VXs5RC1irlpI+yjmNxvnaKtaoJcxSeZRKVaDDCRFgTk3UTVGpZJBKFBHEEUM2U6iRhgmPm4KJDuliqZrHh9TaUa8pZyJOolmvzmGlWmSoZI2nuLpxjsfl2qRMXKZd4Ky4SCbB40RMuArjMu2CwYorHZHxaQD7C5vYmKlyWKUWs1zNC3Q4TvLUVM5Xq1is5lArTYEOx4mIOKtvJpPcy6l8xXQjH1LrmKGyecj6pEf7Nkkr56gFrFfLmYXxjCSGWKrN407TDeSTQ6GU84ztpUCHFMIHDGlwgmMxwvUeN/ScCRMr1WI+ql3gds0Pc9OoM3aizuOKOpvNxne+8x0ef/xxurocVRQxMTHcfvvtfPvb3z7NHOJUdu7cydtvv80///lP5s2bd9r2r7zyyphj6e7uZtGiRdx00018/OMfP+352lr36rV///vf3HzzzVx55ZWnbevKvHnz+N///uf83WyeeB/+Em0uP7X/DoBD+gk+YFoz7mM10OQU5H5AfXnCsRmBXDXNuVITaQvnC+bPeO3YHXTx/qBu1gfU+N/3YOFS83lcaj6PY3oxiwcup4seXrS9zu3m62mTDgop4xglgKMCCv3kxeuQXsheDqMjfEitm5DgvVGJUzF8yXwtj9l/C8Au+6FxXAlHpolWp339F5X3PsdG5TbztYCjtSq139FG3E0v+TL5HG9ducL0QcBR3fae/j7naueMOvm71HQe37Q9RgmVtOud2HQbZs3zD185tc5rWoKK8zz4ABJLNFtlLyZMFOrlFGjGHfCH8D2nJuoUijoanY8NaX4e1gsnNG4KJkqkkj1yGBMmMlXauI8TroWzVw7TRQ9tdHgxQv/S4mKEMZze3FjQxY51UItovFWKAwywXfYRQTilUmloV/cW2tkvxwBINNA9IlOls3GwAn2uGMeQo0t6nBP2YKtS94SbzJ/k3n6HaWOLvZ27zJ8leowyFAfkOEelmETiSFPGXSCcqtL5tOkyfmp/DoDD+olR9ggRjLhr1EVgcZnI9UgfjXoLhVJGD31En9L+H45rRd1JjTpddBSKx+2/p0/6udt8c8Ad5z2eIdx+++288sor/OAHP2D16tUAbNu2jQceeIDm5maeeuqpM+6fkJAwbFJtPFx88cVcfPHFIz6fkZHh9vurr77K+eefP6o7rdlsPm3fifJBbS1r1BIOSSFP2J/nTsuN4z7WUSkmlmhiiSZrklSILVAFXK5dyJv6Frayl17p85quxtnUiujKDJXNp7RLeE3fyG4O0SStfGjgs1RKLZmkEUkE7XRSTjVN0ko0kVxru5sIwshlGk9bHgz0S/AZU0hlmZrPCSllP8e8emxXLaCz6fMWq6LZFPYnXrH9Bxt2bjZ/ItAh+YU7zDdwBzeMeft1ahkt0k4DzVRQy/RxtPm7tgwF2+r/PG0mOfapVFHHMUq4lPMCHVKIAHJa6+spLYnTyXJIh1Do79ACgi46e+QICcSyTM13a9EZD8kqkS7pcWuXDzba9A5iiCKKSOKJHdcxvmO5gwfkDmJUJAPqzPpc5pVfR6/YiLSXoeJz0bLPB+Cz2pWckDIqpIbf2P/KI9pd44rFH7jJIxiosj+HTBaoWZRKJQfEu2OvidBMGxoaicSN654cLMSrWH5m/hYP2B7nOKX82v4X7jTfOOp+3dLDUSkmmQQ2aCsM3xqczRSmkk4n3Rzj7DIjOluw6jbiiSWScMIlDE3TCMPCAFZ66eMEjiRdBqmsUO7dYfHEkkoS3fS6zdne1rfzUev/IYP/fdR0IXPUDH+/NDc8TtS98MILvPjii24JsoULF5KVlcWnP/3pURN1zz77rOdReoH6+nr+9a9/8dxzz426bWFhIZmZmURERLB69WoeffRRsrNHXjnr7++nv7/f+XtHx+krl0kqHgsW0kkhVSVy3F7CLNOZE4Yj0SxtdNJNFz2keSiIa1QiVQSxRBNOOEkkUCTlLFCzvHLsDi8JMwcbFmUhRSUSSTgxRHHdwD20SycxRKGhkU4yA1hZruZTJOWU6zWsUUs4JiVEq8gJreQbHaUUFrGQTjIpJNKj9xKleac1qIse58+T3UziVM7RFrBV2wPAbC2wNzejkkg8YVhYquZRLOXjmhRoaMxRM+iRXpJdnKyCgTym0UU3c5hBi94W6HBCBJhTXV9P1ahroY1UknjX/j63yDf5vuVrk7qlvl6aWaRmUyeNhE0wSQcwmzzCCSNcWcZdwRtoOlQXXfTQRc+4q+HytZwxb2teeBMsvOm0xxeZ5tBsayWFRN7Rd6DL+A2BfE2dNDJPzaSfgXFrofoCi2bBJIoppBJPHHaxB7xiBaCZVnR0mmnDYlA3U2+xTJuHFRvxxPBf+2bmq4JRq5W36ntZqRbRQDMJ40yW+5MEFUcjLQxgNZwWYgjv0KE6aZdOrNjQNMd1eDbTGcBKKklU6NUsUXOplybSXUxsAMKUxekM69pC20wbOjrgSOZVSz1zCOxcxuM7THh4OLm5uac9npeXR1jYxAcVvuK5554jNjZ21Gq+lStX8rvf/Y433niDp556itLSUtavX09n58guT48++ijx8fHOf1lZw0+8bjZ9kkLK2Cp7+Ye8Pe7XMqSjkES8IW5w3mKmyqWVdqqo47h4bwXEW8LMwciPzN+gOmIzt5iuwoaN6SqLm0yfoDD8TT5h/jCV1LJLDnFUL+Y+20/ZInuwYec9y8ii+JOF6do0iqhgu+ynGM+FdUfCvYLz7ErUwWCFmXnsFWZnG7O0PKqoY48c5ogUj+sY2/S9HJViuuklSgWX9lSByqWZNg5xgi2Dcgchzl5Oc311qUK2YKY2fCtZKoNyqnlef5Xd+qEAROk/aqhnm+yllCqymHhnR5SK5ASlHJQTlFPjhQj9j1Gq1LOZwlptGbU0slsOU4Vx3YjLpJrDUkiRlBuq9RUgR5tGIeVskd2UizE+k+4ViAkBi8MfLFPzaQjf7jTC+qrt0VH3eUn/NztkP6VSxedMV/khyomhlHJqRAdzNXGIkTlplnOy+66ZNo5RwhEpYr8cY68coYYGZpLrtq/rfaTTpbjCNanbTue4TFe8jcfLBl/60pd46KGHePbZZwkPDwccFWWPPPIIX/rSl8647+uvv84rr7xCUlISn/3sZ5kz56RlcmtrK1deeSVvvz3+BNaZ+O1vf8s111xDRMSZ2ylPrRRcuXIlOTk5/OUvf+Hmm28edp97772Xu+46WQLf0dExbLJutspjtVqMCdO4LxyH9UKmkEaeypo0RhJDrNaWcK5+DmZMvGd/n0+YPuyV42qiWKeWoxASMdaAxdcMlafHqRhnkjJOxaCUYo6awRq1BBMa/7K/wxw1ndlMJ1/Lca5OTGbO01ZSI/VoaPxbf48FmncqOCMknHVqGSa0s6r1NcTYWKrNY4NagUlpvK8f9Hj/Hr2XeWom08kOyorqGC2aDWoFOjqJk7gyKsTYOLX1NZVEIginj37MmByGXmoGJVKJIDxse5I8Nc2jCqlgwnVsmOIFraylah6NylE5UCTlzMC4umoj4br4FcgqdaUUy9V8jlAEQKFeRrbJmPIzPfRyvlpJNz3kK2N9V+armTSoZqKIoEYaDNFqWiuNrFSLiCRi0l5bhlDKoQW6gNl00kWmSmePfpil2vCmI7+2/YUe6WOuyseExqwg0ZU9X1tFhdTQRz82sWGe5JWSZxu94kjURbok6mJVNIhD21ah2KBW0EU3BVqu276u3XWd4tDBbZdO3tS3MoVUagd1cptp8+2LGAMef2r37t3LW2+9xbRp01i0aBEA+/fvZ2BggAsvvNCtYs3VGOKFF17g+uuv58Mf/jDHjx/niSee4JlnnuGaa64BYGBggHfffXeir2dYNm3axPHjx/nzn//s8b4JCQkUFBRQVFQ04jbh4eHOpOWZyNdy2C77EYRyezXfs9ztcTy79ENsFUdr2Y9MX/d4fyNzrukciqzl1NDAfjnG49znleNWUc9m2QXAA17SvQs2htPRmqnlslX2Ao7KBSsO3ZZnzI/4Pb5A8DHTB7jV9i0A+uwDfM18i1eOe5RipzFKUpDph4XwPXO1fHro5X39IArFr+Qhj6riGlUr/xOHA+aV6iJfhelTuulhlxxCE80wrU8hAsNprq9aGn04pET0weeeCvsO37P9kgdsT9AgLRyTEvKZnJPpoY4J8E6ibqqWzma74350qZzHRayf8DH9jWuiLtYP8iXSVYd01yI9TajIFFTMFFSMo7pxikqjFIdb9VEp4kJW+zye8XBQTrBRdgAOcX0jkaTi2TY49ryWywMcjYNCKWOH7AfgK9wY2GD8xC3mT/JF2wMU6eV83/Yr/hz2s2G3+6v+Bu/qOwG4yzR284lA000PmwbnfuVSwwwDm7+E8BxnRZ3LvH5IOqOLHrbp+9gu+wCYolLd9nXVwh26vzxo+zn/1t3zUEZom/Y4UZeQkHCaa+pIrZ6u/PCHP+Sxxx7jy192uJT+5S9/4aabbqKvr2/ESjVv8Zvf/IZly5Y5E4ue0NXVRXFxMdddd92E44hSkXzedDWv2t+ijU526QdZri3w6BhFegXTySJFJTJXzZxwTEbjc6areEN/j3pp4iXbv/mkeWSzkLFytrcijsRU0rlWfZQ/yT+xYiOZBNaoJaQSfFU64yFOxXCxdi4VUuvmMjhRhi7sYVjOKk3EEGPnWtPlmOwmGmjmN7a/crtl7PeXYDaSGCJZJYKAjk4bnZO+1SjEyIi4J+qSVQL3m28jiQQ313FXQfwmAwyefcWfba8zmzzSVSof1NZN+Hiz1XRWqkU000axHvg2nvFgEo155BOnYojC963+/X/aAF0uLZkxmUTcchxwLLSsUAtpoc0QbVEj4dbKaTAXU9d4jDARBijVqyggl0QVT4EKjoqxiXKhaQ1P8yA/tP2abfo+brV+i19ZHnbb5pe2F6nS68giAzPm07S+jMwnTRdTL8000coz9r/wqOZ5cUwI4zKkLed6TxiqqAOcGnTxxGJRFrd9E4lnuZpPN71USi2z+i9CE8UMsrBgppl2UlQifYNO0IHE40TdeM0gCgsLueyyy5y/X3XVVaSmpvLRj34Uq9XKFVdc4fExu7q63CrdSktL2bdvH0lJSU7zh46ODl566SV+/OMfD3uMCy+8kCuuuMLZtnv33Xdz2WWXkZOTQ01NDd/+9rcxmUx8+tOf9ji+4chVU6mlgXDC+Ln1DzwUdidZamyl8y3SThMt1NBAiVQyQ5t8qwPztZk8aP85sUTzPduv2C2Hx1V56MpQWStATChR50QpRbyKxS4O4UwdnXWm5YZ3c/ImvfRzTErIZgpNegsp2sSTlBoaUUQQT9xZ9V6GGDvLtfncYXuYSML5m/4mtzP2RF2dNJFMwmCCy1gTsLGSTAImTCQRR63eQLIpIdAhhQgQp5pJAPw/8xdO226ouiyBOKrEuNpgE6FSaumhl3JqaZZ2ZnqhBW+mymWH7CcMCzvlAA3STJpK9kK0/uOElFFFHRmSEvB7ar7KYaccIAwLW+x7sJqtp00CjYAdO9FE0U2P4RZChuKJJ8YQ+mH9MkCP6qVK6qiQWrLHOCcLdnJUJp8xXcYXbd9GodhtP0SRqdyt9bdEKqilkR56+aLpM0GlP7xWW8Y18lXCCWOjfQc2c6j9dbIwoA8QQxR99Ltp1MUSPVgkEY1ddCIIH3ZBO0nFs0scerciQh/91NPEfFXAJ7SLeMD+BI3SwlQJfDWy34So4uLiqK93H1ydf/75/POf/+See+7hiSee8PiYu3btYsmSJSxZsgSAu+66iyVLlnD//fc7t3nxxRcRkRETbcXFxTQ1NTl/r6qq4tOf/jSzZs3iqquuIjk5me3bt5Oamjrs/p5yk+kTbLL8CUF4Uf7F92y/GvO+r9r/x7P6y/QzwIfUOq8IDRuND2prqQvfSipJHKaQn9mfY0CsEzqmW9vEWebCORr3WW6jJfx9OsL3cjD8X0F1E/YGS5RDJ7OUKk5Q5pVjForDEjwYnLFCBIaFahYXaevopZ+tsodu6Rl9p0EqpZZm2jChUWAw7aGxMlflo1A00koVdYEOJ0QAObX1dSQu084nX2XTRgd/0F/1R2h+5/u2X7FJdqGheN7yQ68cM1ZF84z5u+joHOA4z9uD770b0gkyQmVYkornJtMnsGLjAMcplPJAhzQsZVJNNz1EE0mYwRKJeWoaccTQThfFUhnocNgvx/i3/h499HGtdvlZJcUQpiwcDfsP4YRxmCJutv4/53N90s8T9j/QQy+5TOV75nsCGKnnpJPMtdrl9DPAPo5SJtWBDimEl+hWvbTSQS/9RLt0LqWSxABWWmijjCr66Gchs0/bP44YzIO1ak20Uk8TUUTwE/P/4+vmWzHhuAYYYSHB49Ryc3Mz999/Pxs3bqShoQFd192eb2lpGXa/FStW8O9//5tVq1a5Pb5hwwZee+01PvKRj3gaCuedd55b28Rw3Hrrrdx6660jPl9WVub2+4svvuhxHJ4Qp2Io0HJJJgErdg7rhTxt+xP/Zx69Yq9RWlitllAiFWSrKYa1hZ8IkSqCSCJIJpFmWkkigRKpYLYavz1yGsmcoxZixUqsRHOGucBZR4KLG1hKkFbnTIQ8sphLPnEqmgq9hjXa0gkdzy52ugfLsc82h+EQY8eiLEwni1SS6KOfL1kf5MPaej5lvnTUfZuljdVqCe10MC1IV/4zVRqzmU4//Txre5lDUki4WLjdcj2v2d+mUup4R9+OLsJ3LXdRECTi1SE851TX15EwKzMzyCFBxRFFJD16L1FacDkej4ZVbKxUi2ilnYXKO+ZGAIu0Wc4JzN/tb3K16VLD6ZaNxKu2/7FMOUTu56r8AEfjYAZZZJBCOOGU6JXM1YwRlytDTrmxBuwiyVaZpJDIHDWDaD+0Mo9Gi8tkPEMLntZOb5GjZTJFpRFBGDFEcl7/NUxRacwgmwu11RzXS5mmphgu4TsaQ6Z5U0knnDDe1XdOeqOQswVXp1bXApx4dbJAYj4FmJWJLO30oialFOvUMkqlEht2Zqk8OsVhOqGUYr1aTjc9hrh+epyou+666ygqKuLmm28mPT19zGXoX/nKV9i6deuwz5133nm89tpr/P73v/c0nKAkXsVSGrGRrL5z2S772Gk7QK/08RXLZ8+433bZ5xRg/bpl5OTjZOAi8zretx2gnS6OSymzGX+i7pCcYI8cwYyZcC3Mi1GGCHZmaNkctB8HAZPdxNVmzxcMXOlyuXnEBIngbojAMFXLoFF3LGz9Sf8nb+vbxpSo2yp7nPeBYHFfO5WZWi6HOAFAoZTzqu0tAN7Wt3OCMjftp4v0daFE3SRmrBV14NBk/I++CYBiKliA95JZRuAN/T3qaSadZJK0BK8dd4E2i5tMn+AR+1M0Sxu79UNMNQVHou6X+otOc6Y/hf0kwNE4yNOyqLU7dG0PcYKPcH6AIzqdoU6SQLrkjkSYstBDLztkP9UGaGN3M3A5CxesAQ6Hvw7AdQP38Ja+HQTMmLFhI5Zojof9J8ARjo/rzJfzTftjAPzU/jtuNn8ywBGF8AZuklYucy3XNtdDnACBa9RHhz1Gr/RSjkOLNEHiuM10jVODsY8+3peDAHRLT0ANVDxO1G3atInNmzd7bMywYcMGNmzYMOLz559/Puefb7ybnS9Zry2nRCrplG5+aX+RO803njHxGUkEa9VSdISpBMcga7zMVwWsV8vpZ2DC5cpOZxjOTsfXECOzQCvgC9pn+J++lSqp45e2F/m8+epxH8/duCRUURdiZC7QVnGndiN/0v9JO51YMHOf9ac8ZLnzjPtFEckatRQNLWiNX2apPNawlF0cxI7OOWoBeWoam/RdNNNKOGEIwjQy+I++mVv4VKBDDuEjPEnUzVP5rFKLMWGiThonVaKuVW8nXaWST45P3AnnawXk2adhw06pVHn9+L7CKjbWqCXEEGWYJMosNZ31ajkDWKnTm0bfwc+IiHMsYlQDtWSVSJ00OduaA0md3sRSNZd44shjWqDDCSgzVQ755BBOGDZs5KlpbDCtCLg25HhJJYlPahfzvn6AbumlWK+YlPruZxsjzbXyVQ4XqFUclSIshJGjMkesxL7Z/EkW6nNQQB1Nbl1Q67TlmHUz3fRyQi9jiWmuz17LaHicqJs9eza9vb2+iOWs44Wwx7hi4Ivsk6Mo4CHrk3zD8vkRy4vf09+nkRayyZyUba+uTFfTnLbas/XxV9MB9EgoURdieNJUMl80f4anBl4A4Le2v3Kr6VPjHpQMtZuAMVeyQxiHpdo8lobNI82axDftP6GKejbat9Nn7idChY+43zv6DjroYqbKDdrBc5yKwapsTv3Ri7VziVDh/EN/i176AYgmkhIqqdMbJ2WbY4ghxp6oS1DxbJd9AFTIZWfcNpiwi50jejEH5RgCzNEmNuYZjukqi1IcCbqXbf/hi6bPGNIEwZUe6WW77MOKjVVqsWGudzNUFltkDzq6uxuKQeilDzt2wLjjkGSVAOKItUvvJkYLXJzlVLNHjgDwvbPcGfR+y5e43/IlfmZ7jvf09zlXOyeotauVUsxUObzEvwE4oheFEnWTALe5lstiRKpK4m3Z7vy9Qmr4tXpk2GNcb76C6xneyDRBxTkruU9IGUsIXKLO42zPL37xC775zW/y7rvv0tzcTEdHh9u/EJ7xkPlOfmz+Bikk8X39V/xdf3PY7XTRnStPqQYQ1PU1+eSwUM0imQSOSNHoO5yB3sGKukgVStSFOJ08NY3PaB8hnhj2c4x6msd9rGZpI4ZoppFBNsGpHxbCv9xluYlfmB9gnprJUYrPaDBkFSsdOEr+jebk5ynPWB5mo+V5/mf5HZ81X8kd5ht4K+z37LC8xCbLC3zVdDOzVB46wvOT1DwgxPCuryPhOvZpdmlXC3YOSyEX2q53vhfzmOn1c8xW0/mW+Yskk8BuDvEv/R2vn8PbVEot4YQxlXTmGUSfDiBChfMBbQ0ZpHKEolG1sv1Nq3QQTSSZpJGPMZMS56gFjqIDNCqkNqCxlOnVpJJELtNC47ZB7jDfwMthPw/qJN0QV2mXsFDNIol4ntT/GOhwQniBVmknjhiymUKGOqkrWUAu8YNGfhbMfFz70LhcnOepfGapPKKI5JiUeC3u8eBxRV1CQgIdHR1ccMEFbo+LCEop7Ha714I7G5ivFVAsFXTQRQqJ1EjDsNs1SSsFKpc+6SdXTfVzlP4nSoukS3qIJYYYoqiVRqao8Tnv9gyK+0cZQLQ2hPEwKzMJxGFHZwppFOnlZJjGJyjcRgdddNNFN5aQDXyIMbJOW8ZdtkeJI5p39O3UyafdBh9D1Eszs1QefTIQ9PeBWdr00x5brM1x/tynBviJ/VmSSeBp2584oB/nfsttTg2REIFhi76HKCJ4076FHbJ/wserlFpiiCKKyFErphKJJ51k4onFLsE/1iyyl1NMBa/a3yKSCHrpQwGJWrzXzxWuwpitptNND6kkc1wvAYObWzbRRhc9dNFjuMowk2hoKPJVDlVSR5aBjH1aaKObXrrpRYxRhHgaZsx008NCCqihgbkELhFbTxONtNBOp5vBWojJwWzTdBqszaSQSLPeyucH7uMpy3cmfWfaZKaVDjroooMuotTJuX2ylogNO2FYsGFjuZo/rr/zDJVNhdQSSxT/07dwv9wWsIpuj2eS11xzDRaLhRdeeMEjM4kQIzOLPPoZoJ5mduuHht2mjGpnVvcDao0/wwsY/2f6NF+z/4AyqeItfSvXmi73+BgiEtKoCzEqc7QZdOmOCcFRKWYdy8Z1nEY56XqdbBA9nRDGJ1/l8IDpdr5u/yH10sxb+lauMZ0ugFtGNcelFICPqPP8G6SfWauW0hC+nUsHbuFt2c5RvZgN+jlcZbok0KGd1dxhfYhDUoiGxhq1ZNQquNEY0mM7Vztn1G0TVRz1NFNPs1MEOpi51fYttg4awwxRa9lKnOYbfdMrtA9yN9+jjkaesv+Jr1s+75PzeIsm1/upi0i4EZilTeff9veokQZOSBlZBqrEapST1aZGrbzOU9Nopo1m2iiRCiBw85qmwfcrhcTQnHaSUhz+FtdYv8rf9f9xUD/BvfJ/Qb/YeTbTyMl7Q8op17iG8G2YlAm72DGp8a1GzVS5rFPLeFO20CAtNNBMOoFZJPY4UXfo0CH27t3LrFmTR8Q30MzQsjlHLSCCcPQRBC/K9GrWq+XYsDNfFfg5wsCw3DSfD+hrqKSWx22/5yPa+R6vdvVIL6vUIsyYKVAh58AQw7NUm8cH1RoqpJZf2//M5aYLSVPJHh+nX6ysV8vR0YetiAoRYjiUUiw3LaDAnksrHTxue47LtAvcxG3BMXG9QFtFl3QzU+UGJlg/MbQKmq9y2CtHSVYJbNP3ORN1DdLM92y/ZLd+CBNmPmhay73mkRMPNrFxl+1RaqWBZmkjUXm/aulsQKGxVi1lACvxKtZrxz31sz4crlo0XS4aNcFKGCc14uaRz3xtFgkm31X0mJSJi7UNlEoVGoot9t2sNY1vUcofdEsv69RyBJ1MPxqohV35GtJagt5VjYrJREs8XTNwgSpglVqMGROVYqykcSddznFItsoMdDjDkqZOGiE1BdBQQkQoUHlMJ2tcY74QwYFJmbhQW8MJvYxmWrnOejd/C/sFKWeBlNRkRAmsV8uxo59mMjSUnBtvkg4cY/IN2jkU2yvQ0PiX/V1uMl85oZjHi8eJuuXLl1NZWRlK1HkRi7LQThfvy0EiJBxd9NNKNQ/IMae5wjfUrYEI0++s0ZaSq03lf/atAByXUlYqz9yGW1Q72wbFp0MX5BAjsUybzxwtnzftW0HgIesvyNeyPdbnqKDa+T39trrdF6GGmKSs1Zay3nQOv7G/RKO0cMXAF/mo6UK3z2CRVPC27hDK/Yq6KVCh+pXHw+7jX33vUCTlNNtbecx8L0opHrI+ya/1vzi322c7wi794Iji16VSxa/sfwYclRNz8L5g/9lAArGcq53DfZbb/H5u12ReJz1+P7/XUcop0nep6TweHMXx2Rt80LSWz1jvAmC9nMPacVaP+4Mq6tg8eD/9srreb+fVkgogqeCMncG52jS22/YBYLfr3BigSdxw1EqjcxxyozJOXK4ku+pNSuD0Jrvo4R3ZAcB5amXA4gjhe24xX8UxKeZJ+x+pl2Y+MXA7V5g+OCl0+M42jkmp8xqX5KNq6ytMH+Jb9p8C8Av7H4MnUXf77bdzxx13cM8997BgwQIsFnfXqIULF3otuLOJC7VVxOrRNEoLFVJDrnK3CK+QWuaRT7yKPasqw5aoeWSzhR56KdTLWKl5lqhrljbnz0ZrnQhhLBYyCwtm7Oj8UX+VMN3CLaar3PQPRqPJReD81FWeECFG4zrT5fRKH5v0XRyWQo7YirnNdA3mQb1D1wnN2XQ9+77lHv5mf5MqqWNB/0cIUxZsYmMG2QwwwCJtDnaxs13fx3Z9Hyu1RazSFrsd4/MD97NMzaObXhKIG1MFV4jhCdR7F0uU8+cO6QpIDN6kXe9ioZrFgFhJ8lOL4iptMZeoDdTRxMv2N85YhRpo3MdvxrqfzlczuUL7EDv0fRyRIgbESphBXHTdxyEJgQvkDCSTwAq1kD76GcAWsDiaxPjvVQjv8WnTR2iRdrbouzkmJTxq+yWfN11NhAoPdGghPMDVTMpXRTg5KpOrtUt5T99FpdRSJ00B6ZTyOFH3qU99CoCbbjq5mq+UCplJTJBootgth0ghkSKpIBf3RF29NHGcMsxiGpeDSbCSpTKooIYYoiiXao/3d7hwRtFFT0gzLMQZSdESsdodA8Ye+tDQKNLLWWiaPeZjtEsnZkzYsJ9ViZQQ3mGVtphVYYtZ3v9xKqWWWKIpk2ryVQ7g+FxaMGPFdlYlgj9h+jBP2v7ITjlAJBEMyAA27CxWc/i06VPcYb6BTw3cQbO0YcbEz61/YG5YvjOhNKAPUEcjZVLNfDWTd8L/EOBXFGI8WJSFCMLpo59e6Qt0OBPCpttoVx2UShWL1GzutNzol/NmqjS6VA979MNMI4MKvYZszZjtkS20u1zvEgIdjhvxKhYzJmpoIJZoiqWSOep0g5xA0CxthGFhAKvhEpxDpKhEdsoBANIkcC2nddJ4co5g0PcqhPdYri3g2bDvsbr/KiqklgjCecj6JDeZP8EMzZgOySFOZ0CsmDChUMThm4VDszKTqpKooZ4YojigHyPDtM4n5zoTHlthlJaWnvavpKTE+f8Q42OemkkcMTTRylEpdnvOKla2yh50dFarxRPquw42ClQuaSTTRQ/75JjH+zfRShc9mDGRRkh/IsTInKetpDj8LR423UkkEXTRw3FKPTpGkVRgw04eWaRIaNAXYnx8wvRhooigk25OyMnPYI00YMVGGBbifTQ4MSp/CPsRLeHv8xXTjaxiMXdoN/Bm2O+cbSu/tDzEY+Z70dD4q7zB6/q7zn1LqaKESkxoLFcLAvUSQniBZWoeGhplVCMyvKZvMFCnmiiRSgDyTlmY9TW3mj5FAnFUUcfz+qt+PbcnlOiVWLExhVSmkeG389qP/YWBN79E/0uXYH3zS9iP/WXY7RZps4kicvA6bZz5T7lUM4CVdFIMZXLhSjyxmAabi10rJ/1NNfV00UMUEczi7OlWOtv5e9gvaAzfQTrJPKY/y6qBTwb1/eRso1SqsGMnh0yfGsDcYLrCmYP4rf2vPjvPmfC4oi4nJ8cXcZz15KlppJDIbDX9tJtWqVRzjlpIJ11MU/4brBiBbJVJHDGEY6FEKmmSVo/KXIdaxWzYSdRCtushRiZChTOVdGaqXKaRThzRvGR9g1ds/0WA2y3XsVZbOuL+xXoFU0glQoURTRQm7exJqIfwLvlkk00mySqBvfoRLjGdB0AnDgF9h5D/2XU9m6ocYvJxKoZ4LZZMLY1YddJcIEHFMUNlk0g8Nuw8a/sr89VM5msFlEglq9US2ukg6yyqSJ+MTCGNhWoW8cTyvn6QFabglFsZGucJQpKW4NdzzyOfROKYqXIM3UIcQxRL1Fxs2InRokffwUtYN90HXQ6DCHvVJuxlb2KafdVp2+Uylamkk6TiqZZ6v8U3GvHEsFTNo40Ow5paKaVYrRbTQx8JeM+UxlPapYs1agn1NIfMJM4i0ge/F8kqAREhkgiuGvgyL4U/EeDIQoyGiNA8aEAT6eOW5TlqBtFEsnRwgTAQjOuszz//PGvXriUzM5Py8nIAfvrTn/Lqq8ZdmTM6s7Q8Sqhkpxxgs77b7bnjUsJW2cNBOXHWTTI0pXGZ6XwqqeOwFPJt68882t9dfyJU4RRidGZpeRRSzm6O8A/e4m/yJn+XN/m9/W9n3O8tfSv/k63slsN80nSxn6INMRm50nQRdTSxRfbwO5fP3ZDTpUIRzdi1EycTd5hv4OWwnw8rAH2RaT0/snydZlp5V97nX/o7AByUE2yTvRyRYmZoWX6OOIQ3ucZ8GfvkKO/KTr5t82w8YCRcxybJfm7rnK5lU0Et78tB3tV3+vXcY6VJWvmPbGKvHCHJoA7NBVouhZSxQ/azWz8c6HCcvK6/xx45jBmzT6tNJsoAVvbIYd6W7fRIb0BiOCQn2Cp7KZYKcrSpAYkhRODYGv4XcrVpHKeU12Qjj1p/GeiQQoxCD7300Q/4XrvUpExEq0j2yGFe09/GKlafnm84PK6oe+qpp7j//vu58847eeSRR5yadAkJCfz0pz/l8ssv93qQZwOJKp6L1Hq66eHU22q51LBKLcKChQXa2ee2+yFtPW/at1JDA2/r24d1xR0JHZ21aikaWsj1NcSYmK6y+ZR2KW/p22inHVDEE0u3nNllsEYaWa2WYMbEHBVylAwxfpRSXKKdS4XU0ksf3dJDtIqiY7CiLpZoQ0/AAslSNY9Z5GHDzlZ9DwBb7bs5T60kXFlYpuYHOMIQE2GhNpurtIvZrR+iVKo4qB8PynFRrTSwXM0nlmhm+dkgLFyFcak6jxbasGLzaEzlLwr1Ms5RC4ggnDVqSaDDGZaZKpd1ahmC0ENgEk2nMiBW2ukE/J8A9pR12nLCdAv9DFCol7PIAz1gb9EkLc6fjf5+hfAN12qX0yldVEodz9v/zh3m6z0ykQvhX1qknbVqKaD8Mtf6mPZB0iSFARngFfubfMp8ic/P6YrHd+YnnniCX//613zzm9/EZDrZ2rV8+XIOHjzo1eDONnpVH5tlN5tkF616u/Pxg/pxtst+NskupquzrxrgfNNK8rRptNBGKVWUS82Y9y2ScrbIHjbJLr+5qoUIbsKUhU+YLqKJFqzYsWKjiVbe1d/HJiO7k+2RQ2yTvWySXczUQhIBISaGWZnZLLvZLYc5oTt06joH29Ri8V8bWLAxQ8smVSVTTAX/0TdTYavmP7KFd2QHXdIbEowOcqaqdJZrCyimkjKq+ZHtN2e8LhuVYqlklxxio+wISMWYrnQ2y252yH4qpNbv5x+NE1LK+3KQTbKLVJUU6HCGJVJFUEU9W2QP7+g7sOr+r7Y4lUbXxJPBDa2SVDybZTfvy0GOB0jjr1F87x4Zwthcb/4Y81QBTbRSQiUP2n4elPeUs4UOutgie9giu+nF96ZS55lW8ra+zXG/1Pf5/HynMi4ziSVLTl/dCg8Pp7u72ytBna2sUUsoULlEEs4JypyPH9OLmUIqS9Rc8jk7Jxn/z/R/rFPLyWYKV1vvHPN+TYN97BC6CYcYO2u0pfzT/Cs+q13JWpayRM1FQ+MLtgdG3OeYXso0MlivloeMS0JMmKVqHnPUDGKI4gTlWMVKKx3kMpVztXMCHZ6hudF0BQvULBKJ44fyG8IJYyY5rNaMWZkTwjM+Zvog/wt7jlkqj//om1kw8JFAh+Qx9dLEVDKYSU5AJE2uNV3OIjWbFBL5pf1Pfj//aBzTS0gmgfkUMNfAFerPWB7hI9r5JBDHrIGLAh0OlYNOlgXksUzNC3Q4Z2QeM5mvZpJIPMfFM+Mub1EpdUwlgw1qRWgB7CzmK+Yb2RT2JxarOfze/nem9q9HFz3QYYUYhiGtZvDPonUBuSxWc8ggNSDXKY8TdXl5eezbt++0x9944w3mzJnjjZjOWlJUIlVSRzaZlEk14BBNNCtHh3KLtBGtRQUyxICxxDSXJlocosJEcUg/Mab9NBTTyCCFxLNW0ymE5ySrBD5gXsNsbTofNq3ngBxnACtH7IXs04+6bVusV/Cs9a9Eq0h66WMAa6gtMcSEmaYyKJYKMkilRuoplWryVQ4ddDFA4Cs3jMwSbS6HpRAbNv5i/zcRhFFDA6mhxZpJQbaawjptGd3SSz/9mMXM/f0/5WvWH3BcN4775pmooo5q6iiknCkqze/nX67N55AUoqOzRd9DrTT6PYYzYVU2YonmKMVMV8atUF+nLaNN76CLHlJUIi0u3TCBoFyqma6yqKKOaIw9X5ihZXFMStFQvKVvc6sG9AdW3UqKSsCKlVbaQ+O2s5h52kzO0RbQzwADWEkino8NfJGP9X+Re60/Zo+BNCjPdjrlZKIuxg+JulSVRKXUYsaEBbOzw8VfjDlR9+CDD9LT08Ndd93Fbbfdxp///GdEhJ07d/LII49w77338rWvfc2XsU56Zqnp9NDHcUo5qB8HoIFmtsgeamlktoFXFf3Bny0/o5ZGtsgevmt7etTtddHZru+nijpSVVLoJhzCY+4w38A9llsoCXubNjrYzWG+bvuh2za/sP2RL9gf4KgU00wbf7L8JEDRhphMzFJ5WLFRRDm79UMclxIOyQlaaD/r7wWjMUfNYCY5dNJDO5200Uk3vRTgXy2wEL7lQm01vfRTSBk/kGd43P57fmp/LtBhjYkhR3oNLSCul1NJ5yfm/0cL7eyUA7xuf9fvMZyJbfpeyqhGR2cq/k9kesI800waaeGAHKfQpRsmEPxO/xtHpIgeernG9NGAxjIa+SqHh0130kwb22Ufb+nb/Hr+RtXKDtlPA81kcXYZ9YUYnu1hL9EUsZPPmC6jS7p5Q97jJ/Znucv6aKBDCzGIa0VdnPJ9ok4pxUuWx6mijjdkE0/a/+jzc7oyZjOJ73znO/zf//0fn/vc54iMjORb3/oWPT09fOYznyEzM5Of/exnXH311b6MddJToHJZouYSTSRdg8L1lXotF2qr6ZAu5mpn9+RshspirVpCvTRTKGVs1nezTls24vZVUscyNQ8bdmYaeEU2hPFJ15LJIROASHG3A7ejE00kNuzkMpUpKjUQIYaYZOSqqc7r3T79GH0ywFzysWHjHC1kiHAmNKWxwbSCans9PfQRSQTpJDPXlB/o0EJ4kXPUAt5kC9300EkP8cSw236I3aZDLDPwd+SQfoIslUmLtBOlIjEp0+g7eRmlFAu1WWSTiR07v7K9yIv2f2LGzOfNn+Jjpg/6PSZXhmRLUkjEpPn//fGEuSqfFWoh4YRRqlexUlsUsFiGEsBhWAzrljuEpjRmqjymkYEFM7XS4NfzN7vo06VpIbmSEA6jHYA4FUOiFk+6nkw8cUxV6Txhe57bzdcFOMIQfdLPGrUUBaSrFL+cs0DlaB9D+wAAWRRJREFUsVjNIYYoBvzs/DrmRJ2IOH++5ppruOaaa+jp6aGrq4u0NGOvdgULWWoKx6SEXvqopxlwtEcMrTJdrj4QyPACjlmZ+ar5Zq6w3gYCj1h/wb/DfzPi9sellE2yC4BVARw4hZgcTFUZbJHdlEk137f+iq9bbgXgf7KVbnqJIpK94a+GKjdDeAWLsvAV801caf0S4DDGAbhUnceHTecGMLLg4HHLfTxuuQ+Ah6xPApCjMgMZUggv8ynzpXzJ/qDz91Y6aKWDm63/jxkqm3O1c7jDfEMAIxyeTfou/q6/CcBH1YUBi2OVtpgoFcExKaGaehgc5jfaWgKeqBtKohjdEAEgT01jpxwAQLNrXG2+NGCxNEsb4EhwBsNYpEDLoYo6AN7X/WtI2DT4XkHI8TWEO3eYb+AOHPeOqX3reFn/D9v1faFEnQGoo5GtsgeA27jWL+dM0RzSZE20UiKVfjnnEGNO1AGnXfSjoqKIijK2BkIwoSmNW7Sr2COHaaGdd+w7QzeSU1iqzWOuyqda6jkshYjIiIORIr2ceeQTr2JZpPxv+x5icnGn+QZm2LN4V3+fJ+zPc4f5BjQ0EEdlx3SVhaY8lv0MEWJElmnzySeHYiocq4ekMFcLVYV5SpyKCXQIIXxArIrmG6ZbsaPTK31UUkulXkufDPC+HGSPfoQ5agYfMq0LdKhu2LE7fw60du7/M/8fHdLFa7aNbGcf4HAOfcX+Xz5u+lBAYmqXTpJJZK7KZ2kADBFUVDrS0wi6DTQzKir9jNsv1ubwOe2TvKlv4agUsVM/wAptoZ+iPYlVrIRh4Ry1gLkqOO4TeWoaG9QKuuim2cX8zR+0STuL1BwiCCNHTfXruUMED981f5U39PdolBYuHvgc/w57JtAhndU0Bygv8g3T53lD3qNNOrjf+jMetNzhl/N6lKgrKCgYdYWmpcW/YqCTjblaPo/bfk84YZyQEhqlFYVCkJBrKY4y1yw1hSNSRBQR1EgDU9Xwg6hyqjlOGTax8bD2FT9HGmKycZnpAl6x/5dyqokgnBK9Ek0pmmihSMrJU1mBDjHEJCNDpZCo4hARBJiusnjIcmegwwo6jFhVFcI7PGD5stvvP7M9x5/s/6RBmjGhcUg/YbhEnc7JDpVLTecFLhDgKtMlAHTTyxQ9ld/pr9BJN0f0ooAl6gr1Mlppp1yqma8V+P384de859H2aSqZOdoMntFfwoyZo3pRQBJ1lVJLKx2USlXQVA+blZl6mjgmJUyVDGy6DbPm0dR03NTTzH5xmIN9Tl3ll3OGCD5uMF/BU/0vsE+OEivRPDTwJF+z3OJskw3hX9qk0/mzP/Mi15gv4+7+76FQ9Nn7+ar5JuKV7/VlPboafuc73yE+3tiaB8HObDWdTNKpoZ5DUogVG4IwlXRyCa34ACxT89nBftro4ISUMZXhE3V75Sg6OtlkMiskIh7CC3zS9GHe0DfRRgfP6X9jtbaYNjpJIp7FKuR6HcL7PG/5kUMXQ1kdFZwhQoQYkTvMN3Cj6eNcOnArB+QYT9r/yF2WmwIdlhuuFXVG+U7fYb6BLumhdKCS7bKfn9mf45vmLwSkffIYJXTQRQoJQdMNcZV2Cb9Sf6ZYKvmF/QVuMH/c7zGUSQ1tdBBNVFAtHK5WS6gShwtyOTXMINsv523ipEZdSqhjKcQZ+KPlx7xk/zffs/+KR/Sn2CArOFedE+iwzkrqaUJDI4k4kvz4vU1U8Txhvp97bT/iEIU8Z/8bXzZf7/PzepSou/rqq0N6dD6mQMtD0JlKOjv0A8xT+SxWc6iVRnK0UKIOIIdMkohntvr/7d13fFRV3sfxz7mTThoJIQmQhNCL9CYdFAR0rbh2imUtK4L6WNbdtaCuYgXXsvrs2te6i+1Rd20Iiii9Iy2U0CIEEkISSJl7nj+QkUgCAZLMJPm+feX1mpl77zm/GX5OZn45pQWL7UqG0qfc8+KIoaNpTSH7iXc0GlFOXkuTSg57Aci2OWy3O+lpOpFt95BqtGuYVL3met8XOS4xJopYomhFGjEmijx3H9FOze+sWpHDR9R5AqRQBxBpIkggnrakE2di+cj7FecG1fzayD/Z3fQ0p7DL7qk1I8MSnDgibQPakk4s0bjWrfGlMHb/XHgqoLBWzcBJNgkkkUC8iSHDZtZYoc6xhm6mA/kUEocGoUjFWjqpNHbjiSSCCMJ4uOQFBob0rBXrQNY12TYHF5dscmlUw2uYdnXaE4SHWKJ43/tFjRTqKv1bRMlYM+JMDIOc3mzjJ5baH/nUncUS+yMeHK2z87MxQeeynZ38YJfwqvf9cs+x1vKRO4Pldg1RVP/2zVI/xB/24XeBXc4CdwUL7HI2sY22jkZtiogEgmZOEqtYz/d2MevY7O9wygjEEXWH/CPkL6xgHTPtXB7x/q9fYpjnLmWBXcFmttPG1J7fq02cxqxkHbPsPLb8vEFCTSqzdlMt2ITjkJZOKuvZzFy7jFV2fY31m2G3sNiuYp3dRKyJrrF+pXa6KuhCujsd2cNevrY/+DZ9lJp1aC3LGKIINsE12ncvpxOtTBq57ON7u5j99kC193lCu75K9Trd6ctCdwUllODFpZNpQ3PTzN9hBQzHOJzpDGaX3UMxJZTYkiP+Z93LPt+H4dr0gUUCW0OiudVzJZ95v6XUeplvlzPQ9KSQ/TX2V2ARETm6bqY9GaYnpXjZYLfQg1P8HZKPi+u7HUgj6gDCTChXOaPZShYuLv/0fsgVnnNrrP8sm02uzSOdZnhw/DKiruTLiXg3fw37syG8EZ60oQQP++sxr+vpnEKuzaMUL+vdTaR5ajZ2F5eBpicuLgk2rkb7PhntacEA0wOAnbbm1jnPp8B3O0oDIaQSepvOrGMTLi7r3E0keRr5O6R6J40mP6/f7J9RsGc5Q8j17sPF5X3vF1wWdHa19lfpQp3rusc+SarE2Z6hXFv6Z9/9rTZLO/39ioPhW7sAgAw3k3aelmWOZ9tf1p6Ip/ZMAZDA5jEeHgr+H/7t/S+Z7AA4+NdYoolw/Lt7n4iIHJRikn2fEQZ4e/Bbzyg/R/QL72GFukAbUQdwY9AVdCs+WJxb4a7jfe8XvmODnF5M9Iyttlk2q9x1zLLzARhoeuIxnmrp52i8Gz+D/O0H75Tk4934GZUZt5FMY1/OrXTXc7qnX/UFWY5Mu93XfwMnokb7PhmtnObMtgsB8HpdKvViV4G8wwt1mnkjlZBoGrGRrQA86/0nA5wemnFYg0ptKV/Z77FYelPzG/YADPf0Z7L3GQD+5n2TSz2/qdYcCLxPCEJDE8PvPBcRycEv/m1oroXqf+USz1n0Mp1oRhLPe98+4vhGdyuxRHEKbejm6LWTqvW34Mn0N919X7I0alNEJHC0NS3oYU4hlSZkkOnvcMpw7eEj6mq+EHUsLU0qbwVP5VrnYtJNM/JsPtluDt+7i5lS+gJXlvyh2vpe424kkXi6mHaM99T8hgwno73Tgu6mI81IYr2t+enW+yj03a5NhadoE8kIZwCtTBqZbK+xfvPtL4W6BugPrXJsIz0DeTXoEdJowix3HleX/NHfIdUrOeRhf17j1V/fuzqYVtzmuZokElhp1/GpO6ta+1OhLkA1NYkUcACDYS2bSNFC9WWc6nRjvl1OKaXkse+I49vZSUNiWM0GImvRBxapHU5z+rLKrscAIQSTQO2ZZiIiUtelmSYst2vYTQ4/uuvJt4XHvqiGHD6izhB4ozFCTDDne4bT0kkl1kQTbSJpaGLIYS/5FLLIXcnbpR+Ta/OqvO9MdlBECcvs6lq3gVork8Yiu5ISSsgjv8b732dr7wixIkrIsruIogHZbs6xL6gCoYTQiIYkEFfjG39I7ZRikjnXM4xMdlDAfla661jprvN3WPVGls0mhSRiiKKR8c/3rggTTkenNT+xi1BCWWs3VGt/emcKUBM9Y9kXupg/eq7nTud3DHK0DfThGpmGpNKELLKZ6c474vhS+yMb2YqLSzvTwg8RSl1mjGFN6OcUhC0jL2wxX4e87u+QRETkZ0EmiAmeMRSwnx/ZwAJ3hb9D8im7Rl3gjag7ZFLQOKaHPMP0kGf4IPQ5NoXMpIRS1rKJ8aV/4APvl1XaX7Et4a/e18gljyYk0sf4Z2rTiWpoYkg3zfiJ3Xzt/lDj/e87rDgYZWpXoa6TaUs+haxmA2vZWCN9rrUbySaHMEJrpD+pG8JMKBtDvsbFspTV3FTygL9Dqje22O1sIYu97KM1aX6L43xnOM1IIoe9PFv6ZrX2Vek16qRmRZiDw7CjTSSYg3/hlLIGOT3JtDuIMGG8W/opFwWd6TtWZIvpZ7qzj3zamOb+C1LqrMN3YdYaFSIigaWNaU5TEgkmmC225qbUHYtbZo262vO7I9FpRCzRFPw8xfJf3v+QSx43B42vkvb/Ufouw0w/1tqNpJjkGt/RryoMND1JIZlwwnir9GMuDfpNjfUdRih9TBeCCSbKNqAWpRbppildTTtiiWGnu7vah5G41mU3e4GDf/gXOR5JTiNamVSMNRygiDOLfseHIc/Vyves2mSuu5Shpg/5FNLetDz2BdUkzITSx3QlhZ2EmVAWeVfS3dOxWvpSoS7ATQoa5+8QAtajwXfSpKg/WJjnLmcHu3yv1+fud2xhBw2JprGJ93OkIiIiUpNaOqls4ycAltgfGcN5/g3oZ2VG1Plhs4STkRU2B4CmBwbwlf2e70oXMdEztkqmDj7kfZ5scmhAOCtDPj3p9vzhseA7SSzqC0C+t7BGC3Wz3YXsYg/JJBDm1K5RYsmmMUvsagCG07/a+9vLPrx4Aa0xLCdmSehHXFH8P/zb/QyAyaXP8GDwLX6Oqm570/ux77v9bzxD/RrL2UGnMa7kDrDwAMG873muWvqp1VNfv/nmG84++2yaNGmCMYYPPvigzPHx48djjCnzM3LkyGO2++yzz9K8eXPCwsLo06cP8+YdObVS/C/OxPBA0M10Ne2xWJ4qfRWv9fKldw5xxDLI9Ga85wKNdhIREaln2pDOANODnqYTO+0ef4fj462lI+oON8j0oi3pdDcduaP00ZNq6yPvV5xRfCWNiGWQ6cWDQbfU2jXDYkwUZzqD6WO6cICiGut3lncerU0a/Uz3gNrhuLIOL5btttW/Rl22zaW76cippiunmNbV3p/UTWM85/EbM5TGxPO+9wvuLHnM3yHVWYH23b6P6cJY5zya05TF7o+sczdVSz+18zfhzwoKCujSpQvPPvtsheeMHDmSHTt2+H7eeuuto7b5zjvvcOutt3LvvfeyaNEiunTpwogRI9i5c2dVhy9V4PagayihlBz2spM9rLYbWGHXspw1fGPn0dXp4O8QRUREpIY1NnGstOtYYJfzo7ueA7bmCidHU1vWqDua10IeZQNbmGMX8Yl3JqOLJzC6eAJPlLx4XBt35Ni9rHc38607n9VsJN0044agy6ox8upXwH7m2qUst6t5oPjZGsm79TaTOXYxc+wi2tbCdZkb8cv00x12V7X3t4dcFtmV/GCXUEJptfcnddMIz0DeCnmSbHLIIJPXvR/yWMnfT/j/+Vybh9d6ybeFFNniKo62djv8u30Xp72/w6G505RUpwmb2EYWu3ik5H+rpZ9aXagbNWoUDz74IOeff36F54SGhpKUlOT7adjw6GsRPPnkk/zud7/jyiuvpEOHDjz//PNERETw0ksvVXX4UkXeCZpGd9OBUIIZU3I7T5e+TgRhnGq6coZT/UPoRUREJLAYY7jJM5amJLKCdXzpzvF3SAC+KXcATi39GB5sgvkm5E22hc7mMs/ZbHF3MMP9nj97p/Gc941Kt3NJyS084H2ORsRxlTOax4LvrMaoa8Zfg/7Mo0F3EEYYf3H/xlfu99Xe525+GYXWqBZO5WxKIu1MC8IJZbut/oERh4/ai9cadXISgk0w34W8zUgzkAIKudv7FJ+7s0+orZHFV9GgqAuNinrzf+6MKo60div73X6Av8MB4ErPaM53hhNGKG/Y/6uW4mrt/IRwHGbOnEnjxo1p27YtN9xwA7t3767w3OLiYhYuXMiwYcN8jzmOw7Bhw/j++4p/0RYVFZGXl1fmR2pOK08aWEMzkvBYD01NIs1MEmGE0tDE+Ds8ERER8YOWTioulh6mI8vdtf4OBwAX67vtqcUfw7s5HYg3sUSbSGJMFC4uMUQxw/sDn3m/Peq1m+12/s87g322gDhi8OLS1mlRZpMmf/G0vRDTqAOExWPiO+Bpe+FxXd/WaUFjE4/BEEsUz5T+kxJbUk3RQqHdz26bQxMaE08sSSah2vqqLjFOFAdsEek0I8KE8ZPNrtb+sm0OHU1rWpk0mpJYrX1J3dfN6UCcicVgaERDJpc8TccDoxh04DIWeivecTzfFvJa6fuMKLqSUQeuJt/ux/z830Mlz9P9wHmMOnA1Dxe/UCMF7EC1z82nmUkiySQQQjBxAfLdvqlJJMKG04BwUklmjruoyvuovZ8QKmHkyJG89tprfPXVVzzyyCPMmjWLUaNG4fV6yz0/Ozsbr9dLYmLZN+3ExESysrIq7Ofhhx8mJibG95OSklKlz0OO7cqgC1jDRpazhnl2GavtBl4P1loBIiIi9dVFziiKKGKhXck/vO/6OxygboyoO9ykoHF8HvIyuaGLKGQ/M+1cJpX+5ajXfO79lt+WTGSRXUkn04Ztod8GzOZpwYP+QuiYuYTdsInQsXMJHnT051Kei50zGe70I5d9fG1/YIPdUg2RHrTZbucp72tsZydNTSJ9nC7V1ld1Gus5j1Vk8B/3G76rhi+8h1tnN7PSrmO93UxjE1etfUn98GLwQ+SGLeQ6zyWsZRMZbGEey7iztOLvoivsWq4tvZtZdj5fM5fNbGOA6UF/urOaDFaxnq+Zy2T3ab5x59fgswksa9nEXLuU9XYzaaaJv8Mp43dBF7GbXDaznek/byxSler0rq+XXHKJ73anTp3o3LkzLVu2ZObMmZx++ulV1s9dd93Frbfe6rufl5enYl0N6+V0ZrznApa7a9hlc2hs4khw9MtXRESkvjLGcL5zBhvtFlzjMtu7kAGeHn6Nqa6MqDvcoYW9TzVd8eBQQimdi35Dvi2kj9MFL16SacxTIX9mp93NZ+53tDXp5Ng82jjpfl8YvKoZY+junMJCdyVwcA25tlTP2nHZh017jSW6WvqoCR1Na/qb7hgMW90sqnP5xiCCGGL6sJd9tDSp1deR1BuH3sOiTSRNSGQHO3FwyLX7OLvoOrLYRQxRXBk0mss957De3cyzpW+QTAK7yaURDUk3zQ6OKjaQ5DbmJ3ZhgXhiOWAP+PcJ+tFn3m8ZavrgYhnqnOrvcMpo57TgNHMqmexgljufA7aIMFN1u27X6ULdr7Vo0YJGjRqxfv36cgt1jRo1wuPx8NNPP5V5/KeffiIpKanCdkNDQwkNrV1bodc1XZ32PO/czwMlz/KNO59BTi9/hyQiIiJ+NsTTmxdL/gUWTnP6MgD/Furq2oi6w30e+jIAbQ6cQSbbAXjf/QIAg2GKvY1VbgYf/7z+Um/TmUeD7/BPsNWsmUlkI1sBWGXXcxZDqqWfw9dbO8MTGGs3nYhWThrflR4cSdfMVvydqyossMuZaecCkKARdVKFJgWN840OPvSdNMfuZTkHl15YX5LJe97P2W53stiuAmCo6cN/Ql88oq1v3PmcUXwlu9jDeptZc08iwPzH/Yb5djkGw/ueijcQ9YdYE02iacQM9wcA1tvNnGLaVFn79apQt3XrVnbv3k1ycnK5x0NCQujRowdfffUV5513HgCu6/LVV18xYcKEGoxUTlS0ifT9iIiISP3WzrSkt+nMbnLJcP3/Zafsrq91q1B3yEhnIEvtj1gLEYSxy+Swxm4grqgXFksqSYQTTl+nm79DrTZtTYsaybv99gDtaIEHDwnU3o0RWpJKP9ON3eSSaXdUa1/7bIHvdhQNqrUvqb8OfR+NJIIutCOEYIIIIs/mE2HD6MEplJgSejinlHt9BGG+24Xsr6mwA461Lh1pRbxpSIQJ93c4R7jQM5I57mIKKOTvpe/wVMjdVdZ2rS7U5efns379et/9jRs3smTJEuLi4oiLi2Py5MmMHj2apKQkMjIyuOOOO2jVqhUjRozwXXP66adz/vnn+wpxt956K+PGjaNnz5707t2badOmUVBQwJVXXlnjz0+O36SgcUwiMNY5EREREf9qaVKYb5cTTBCL7EqybDZJppHf4vHaXwp1dW1E3SF//fmLylOlr2Kt5SHv85QeNpIwkyxu9VzJQ8H/468QK1T0SndsTgbgAg6mYUtCxx//mmmtTRrz7DKiaMAes7fK4zwkhzxWswGAEBNSbf1UtzAnlCyy2W53EkE4e+zeals0fh8HC3XhhBFkavVXYQlgv/5O+lTpq7+sNffzbP9BTq8K1+eM4JeiVCEVT31d4a6lKYnkmQI8ODQz1TsitSZZa1nMarx46UYHf4dTrgFODzazjTBCWeCuZLm7hk5O2yppu1a/Oy1YsIChQ4f67h9aJ27cuHH87W9/Y9myZbz66qvk5ubSpEkTzjjjDB544IEy01QzMjLIzv5ld6GLL76YXbt2cc8995CVlUXXrl3573//e8QGEyIiIiIS2CJMOK8ET+Gqkj+ynLW86n2PO4Ou9Vs8ZUfUVeNCXAHg0BfQy4LOJsh6CCOUB7zPgoX7gyb5Obry2ZIC8P0buT/fP34RJpwuph1L7WpmufOw1lbLWnyHf4E/fARObTTBcwV3lj7GYlbxf94ZjAs6v1r6OTSiLlqj6aQGHe9gkvDDR9RVsEada136FV9MMQd3lp7oGVunlhPYyz7fchHxJta/wVQgxkSRGTqLQUWXsZAV9Cu+mJzQBVXyR4BaXagbMmQI1toKj3/22bF339i0adMRj02YMEFTXUVERETqgM6mHQnEUUwxH3ln+LVQ5z2sUGeoW5soVKSxifeNIElyE8BQL0YytTHNCcJDBOFk2WySTUKV91Fof5kSd/gInNqoo2lNO1oSa6JYYddWWz8tTQpJNCLe1N6pwlL3RZhfCnX7fy7Iv1D6Nu95PyPDbiGPfCIIowmNySKbIDzMdOfhtV485uAfgV4pnc4Kdz157KMBEcxwvyeIIPo53ci029lLPskmgRuCLgvI9d2zbS79TDeKKaW1SfN3OBVqbOJJpBFeXFqZNL525zLc0/+k2637vyVFREREpN5q77SklUljtl3AHruXXJtHrPHPDpn28BF1pm6PqCtPRdO86qJE04h/uf8FYK3dSDJVX6jbf9iIunBTu0fUDfb0Zn/pAZbbNSz0ruSRoNtxTNVOD/daLzPtPCyWXnSq0rZFqlLZqa8HC/IPlD5bZqfnPPLLXLPMrua+0qd5IPhmAO4qfYIc8o5oO9PdTgtSWMpqsBDnjQ3IQt1ucphjFwPQh85+juboHgy5heHF49lid1BUWqRCnYiIiIjIsVzlGU22dzcl1sudJY/xQsgDfonj8BF1Tj0ZUVdfdTHtGWh6sp8DbLBbGEzvKu+jLk19BTjd9CWRRuRTwFabRappUqXt55CH5eBsrECdSicCEG5DGWpO5QBFxBDF2OI7aE0a4YSSRwFFFBFLNIk0opgSYogig0ymez+jh+nIc+6bNCCCAvbj4tKAcCyWZiST7jSj2C0hjhiiaECuPbKYFwgO39U60EfAdjSt+YPnOj5yvyLb5nBl8R94OWTKSbWpQp2IiIiI1GmXBZ3NH0ufIItsdrs5tC1pwe+DLsNiCSGYZ7z//GWh72q00F3hu13X16ir71JNMt/aBQBEeiO4yDOKBiaiSvuoa4W6Biac79yFAKy1m0ilagt1Zb741+JdcqXuC3KCWGxXkUseLWwK2eSQRz7tTAvWhX7pO++p0lcBaGvSOa/k9+xiD9NKX2EBKymlFAeDi2Uv+TQmjkVhH/iuTTswmM1sx3UtxbaEEBNc00/zqHbYXb7bjYj1XyCVEGdiuC/4Jv5x4F2yyWG3m0u+W0Ckc+JrYapQJyIiIiJ13r9Cnma93cztJY9wt3cqDUw4e9jLI6X/SzQNSKYx0SayWmNoTjNSaUIfpwuJxFdrX+JfPZxTmBH8GmNK7mCuXcbw4vHMCX23SvvIc/cRTywxRBFF9eZuTehs2tHSpLLF7mCN3cAw+lVp+zvtHhoQTgzRpFXxaD2RqhZvYsm1eb4iXRMSj5iiemg5gb12H7d4ruRl73R+YCnRRNLetGSCcwU9PZ1wMOxkT5lrbwwawyve6WTaHfyfO4PRnhE19twqY7vdSSghNKcpLU2qv8OplI9CnufB0udY6K6kTfEZbAudfcIbCalQJyIiIiJ1Xi+nE0Vu8c+LcIfzj9J3GeL0IY4YfiKbdqYlUaaad4L8+fN6MyepXq5RV59Emgj6ebpTXFJMA8JJII4vvXMY5qm64lM2uez++SfOxFRZu/7S3GnKztLdtCSVXYeNfivPPlvAbHcB33kXsdBdQQsnlbuCr6OZSarwmj3kUsB+CthPmAmt6vBFqlQrDhaniigm1SSTbXOIpfz1VWNMFE1NY0opJYRgDIYDFPHb4FG+c9JoWuaaNiaN3TaHtjRnm/2p+p7ICcojn3TTjC0266j/XweS7k5HSigljBDSTTNmunMZ6jn1hNpSoU5ERERE6oV+phu/91zONO8rLGcty921hBLCnc613B184wn/5VukIptDZ9K6aDif2dksLFnJVs+3Vdb27p8Xlm9AeK3fTAKgNc3ZRwE/kkFje/QRp0vsj5xfcqPv/tfuXLp7O3J10IUVXpNtc323NfVVAt15nuHcUHovAFttFgDXey6t8Pzfey5nQtAYHih5FoA/Bd1w1PbbkM5e8tnLeha6K6so6qrzjTuf1XYDHjyk08zf4VTaW0FPklB8Kpvtdu4rffqEC3VVu5WOiIiIiEiAcozDAKcHKSQTTBCRRNDRtCbGiVKRTqqFYxwu9pzJRc6ZNDGNOa1oDJl2R5W03dKkMsD0YIDTo0ra87d4J5bfOqP4rTOSPJvP4KLL8Vpvuedm2z0MdU6lEQ3x4BBBOM96/8nzpW9V2H6RLWag6Ul/050k06i6noZIlejmdOC3zig6mTY0JZFOpi3JpuLdow/tkhxtIok2kcfcNbmVk8ZA05N4YvnE/ZrfFt/EEyUvVelzOFGudYklmgGmB8Od/oQ4If4OqdIinQZcan7Dmc4QmphEHi39+wm1o0KdiIiIiNQbv/EMpYEJp4RS8inkUs9vfOv8SP0WfPo0PD1vwWl1Lp6etxB8+rQqafeh4P+hpUllmV3DHLuYZe7qKmn3S3cOs+3CgJy2dqJeD3mMYkpYbFcx1y5ls91e7nnrbSZfuz+QTQ5eXArZzyq7nvtK/+pbYP/XNrONb+0CvrOLiDFR1fk0RE5aV6c9r4c8xjnO6bQwKZzjnFapPyhNChpXqd9pISaY9k5LdpNLPoX8n/s1r7jvVUXoJ20LWcyy85htFxJUCzdeein0Yea7y3jf/ZzHS1+s8D3paDT1VURERETqlb94buUf3nexWH7jDPF3OBIgPC1G4Wkx6tgnnoDOpg2pNKGQ/axzN3Gy3z1LbAlFFAMQSTWvrVjDLnRGssxdQyH7ecn7bx50bjninMN3cL3KuZBcm8c6u5nt/MTU0lfYY/cyOXhimWuyD7sm0HeRFDnk0Ai56tjsaIznPHa5e5hvl2Fw2G8PUGJLCPbzDrC/K/4z3ehAghPHBM8Yv8Zyop4MvosF7nI+8H7Jw6UvcLZzGi2clEpfrxF1IiIiIlKvnBU0hPdDn+OD0L+RfhwfnEVOVHOnGZlsZy/7+Nj7NftswUm1t49C3+3q3q24pg3w9GQjW8kmly+93x0x/TXLZrOPQt9Im4lBY3gz9EnO8ZzGbnLJZg8/2ewj2s0jnxAOFiAambjqfyIiVWBS0DimhzxTLSO/ezmdeCt0Kn2dbmxhB168rLeZVd7P8Sh1S8liJ8tYw2a7jSGe3n6N50T91jOKYILZzHZKKWWFXXtc16tQJyIiIiIiUo1OMa25P2gSFviORcxwvz+p9vJsvu92VB0bUZdEI8Y452GxLGE1m+y2MscfK/07L3r/hQcPY815tDbNAfhz0O9pSAyleFloVxzR7lq7kWJKaEEKcbb275IrUlW6OO0JJ5Qd7GKd3eTXWDLZwdqfY+hlOvs1lpM13jOaxsSTTyH/8P7ruK7V1FcREREREan33J8W4+5agc3LxESn4iScgpPYrUraDjbBtCCFhkQTQRjb7c6Tam8fBfQ0nXDxkmqaVEmMgcIYQzunBU3dxhygmNtKHuHPwTfQwzmFUlvKLptDGk3JZg+pThM8xuO7LoIwctjL7sN2eAXwWi/NTVMiCCecMBxH41VEDmlOU1JpQkMT4/c1LzfYLfQz3cgjn7Ra/t7W0qQQRwwpJolQjm9DDBXqRERERESk3iv+6BLIP2zzgsgmhP1uTZW138Zpzi72ALDAPXLE1/HYY3NZYJcDMIQ+Jx1boPmfoKvoZNpwTsn1/MfOYn/Jfv4b+hIb7VbedT8FoD0t+XPw78tcF29i2WZ/Yje5WGt9i+/nkMdn7mwARjgDa/bJiAS4Nk5z1rARLLRy0/way0q7jjl2MQA3O+P9GsvJMsYQZRow3y5nkV1Fod1f6WtVqBMREREREalmrUhjoOmJ+/MupSdjN7m+2/Gm4UlGFpg6OW0ZSE/WsJEsm83viv/EDruLVqSRTyHdnY5HXDPI9CKWaHLIY4/dS7yJBcpuPhGvjSREyjj8vangsPUv/SHLZtPXdCMID+1o4ddYqsIY5zzibUNKbAn3lP6Ve7ihUtepUCciIiIiIlLNIpxwNtvtZLKdWBtFkbeI5+3beK2XW4OvOq626kPhKdkk8EXYKzQ+cCqr2UCWu4tc9gEHC3Ivhjx0xDXFpoRv3PkAbGCL77X5ye72ndOojhY2RU5UhBNOJjvYbLfR0Ebjuq7fpocvdFfw/c8j6lo7zf0SQ1X6XdBF3FP0FLnkkeHNrHShTpPzRUREREREakBz0xSAXPbRsKQnfyqdyp+9U9lr9x1XOwW2kCQSSKcZcaZub4zwXsizjDAD2Es+HhzOdU7nueD7yj23FWm0MCk0Jp4tdofv8S12BxGE054WdDCtaihykdrjNOdU0mlGPoXsNHv8Fscau4FmJHGa6UuMifJbHFXFGMMZTn/SaMo2fqr09FcV6kRERERERGpAJBG+2y6WUkppTDzr3M3H1c5u9pLFLjaylcg6tuvrrw1werDb5hJMEB48lFBKK6f8dbQaOjFssFvYyW52HjaKLo98UkwSG9lGHHW7sClyIsJsCHvIpR0t2OJuP/YF1WCvu49mJpliSiihxC8xVIcQQsingLa0IMNuqdQ1KtSJiIiIiIjUgLdDprE3ZBF/8txAOs0AyCKbH8k4rnbyD1tHKtrU7UIdwIzQ18kLW0xe2GLeDp5W4XkJ/DKtNZtfpgcvt2tZYzdygCKamaTqDFWkVkoxTdhLPstZy0a2+iWG7exkoV3BTnaTUst3fD1cB9OK3eSygrWstZsqdY3WqBMREREREakBISYYDES7kSSZRjjWwYOHp0te43vvIlba9Tg4XBt0MZd6flNhO3k233c7qo6PqIOfX7dybv9aEgkMND0pxUvBYVPMsu0vU/kSnUbVE6RILZboxIP34O3sw9bArEmHF9cTTZxfYqgO7Uw6vUwnwgjlJ7urUteoUCciIiIiIlKDJgWNY1LQOG4quZ+/e98FYJm7xnc8uzTnqIW6fAp8tyPrwYi6ykpxkvnWLgAg1Ib4Hs+2ub7bdXXzDZGT0ejw0ah+KtSV2SSnDm360tppzvzS5QDEuZGVukaFOhERERERET+41PMb9tp9ZLiZFFNCJjvIp5D1djPNDwyhl9OZf4X89Yjr8m0hXU07GhNPnI0B44fgA1C8iWWEM4Bsm1Nmg44DFNHNdKApSYSZUD9GKBKYmplkhjh9yLY5ZJHtlxi2uDtoRwsSTBytTfnrUNZGzU1TBpve7COfbHIrdY0KdSIiIiIiIn7Qz+lOv5DuPFX6Kt+482ls4/nKfg8cXLtuobuCc4uux2tdOjvtuDX4ShqZhmxnJz/aDJqSSLgT5udnEVj22UIW2pUkEMdedx/7KOAnm802fsJjtES7SHlSTTIz3bkYDK3cFL/EsJ1dbGALq+0G7jeT/BJDdQg2wWSxizV2I03dhEpdo0KdiIiIiIjUe6HjFmCL9mFL8jEhkZiQqBrre1LQOCYxjp12N15cHir+G15ckp0EpnpfoZD9fOnOYWnxKl4NeYwfbQbhhNHP6VZjMdYWvZxOLPeuYRd7WMcm7i99lu3sJI0mPBt8n7/DEwlIUaYBLU0qm+12FrPaLzEstqsooZQUkmhDc7/EUF36mm5ssVlsJatS56tQJyIiIiIi9Z4JiarR4lx5Gpt4AFp5fpn2FU4YhRzcGGGFXcclRTfTzXSgSDuYlqspiSTSiA6mJUu9qwmxwXQ17dlHPp1NW3+HJxKwggmilNIya8XVpHAbSifTliKKiHfqzhp1AEmmEc1IJMqkM6cShVAV6kRERERERALIpKBxR9y+ovg2/u3+l5/YDfbgsXc8T/kjvIDW2kljvXcz6y00sYl8bL8G4E7PtRijxfxEKhL/84YS+RRywBbV6HqOe+0+/mO/AaC/6VFj/daUlk4aa72bsNZbqfNVqBMREREREQlwrUwqaTTF/fm/BBNHc9PU32EFnDYmnQE/f9HPcrPpZ7rhweEUp42fIxMJbKc6XQlyPeSRzzb7Ey1Nao31Pd37GYNML4LwcLqnX431W1PacfB9qcQU8Y1G1ImIiIiIiBxb6cKn8W7+Crt3MyY6FU/zYQT1uMnfYfncFzyR+4In+jaeGOT0ItgE+zusgNPcNGW+XU4RxUQTSZ7NB2CKud3PkYkEOsssOw+A9e5mWjrVX6iz1mKM4e/ed1lsVwHwiFP3/l9t46Qz2y7UiDoREREREZHKKl30DORvB8Dmrqd0z+qAKtQdcmjjCSmfx3g40xnMCruODLuZVJrQ2MTRmrRjXyxSj13ojOBbdyE/2V38r/sOIxhY7X1eXvI/zHB/IJc8AHqYjrSqg/+vxpgohjv9WWc2sEYj6kRERERERKQ+cXDYZrMII5S97MNrvUQ7/t0oRCTQdXU6sNKuJYJwimxxlbZtreU7u4hZ3nnM9S6hmZPMpZ7fsMluJY+Do14dDDvtHsKdsCrtO1AUU8Jum1upc1WoExERERERkTrjOs8lvO9+gYsLHOA6zyX+Dkkk4Blj6GLaM8cuYob9oUo3lNjBLoYVHzYS2IWX3H8D0JymXGhG8mDoLeTbwirpLxBND34Gb2gJscQe81wV6kRERERERKTOaO+0JIVkNrMNgEQT7+eIRGqHzqYte+0+drGbMSW3c5YzhPFBF5xQW9Za7ih5jHnuUjLZTnOakk0OJZTSgHDiaUgh+2lkGpLgiQMg0kRU5dMJKJEmgjyTV6lzVagTERERERGROiPBxBFjIsEevO+1rn8DEqklkpxGrHTXAfB/7gwy7fYTLtRtZydPu6+Veaw1aaxjM0UUs4e9AHwc/L+0d1qeXOB1jOPvAE7GN998w9lnn02TJk0wxvDBBx/4jpWUlHDnnXfSqVMnGjRoQJMmTRg7dizbt28/apv33XcfxpgyP+3atavmZyIiIiIiIiJVZaJnLKeargw2vTjD09/f4YjUCiOdQdzrTCCWaKJoQCghJ9TO3SXTuL74HlqTRjyxJNKIlqTS1+nOOc7phBJCEB4GmZ60MClV/Cxqv1o9oq6goIAuXbpw1VVXccEFZau8hYWFLFq0iLvvvpsuXbqQk5PDpEmTOOecc1iwYMFR2+3YsSNffvml735QUK1+mUREREREROqVK4LO5Yqgc/0dhkit0tVpT9eQ9rxw4G2yyGaj3UKJW0KwE3zMa3NtHg0I5znvm7zmfZ+f2A3A/Z5JhJqDBb9JQeO4uGgSRRzcrCKTHb5j8otaXYEaNWoUo0aNKvdYTEwMX3zxRZnHnnnmGXr37k1mZiapqakVthsUFERSUlKVxioiIiIiIiIiEujOcU7j3+5n7CKHTWyjNc2Pec0dpY/ypvdjoomkBSm0IJUOTkvuCP5dmfMeDr6NJ80fCbHBZJNTTc+gdqvVhbrjtXfvXowxxMbGHvW8devW0aRJE8LCwujbty8PP/zwUQt7RUVFFBUV+e7n5VVugUARERERERERkUDSyMQRRSQtTAoZdssxC3VFthgsJNCQXeQQb2IJMh7aOOlHnNvC+Xmqq4EE4qoh+tqv3hTqDhw4wJ133smll15KdHR0hef16dOHV155hbZt27Jjxw4mT57MwIEDWbFiBVFRUeVe8/DDDzN58uTqCl1ERERERKqZ07gLbkkhlORDcCRO4y7+DklExC/aOOls9m5js93GSruOkQw86vnb7U5ecz8AoAMt+TD0bzUQZd1VLwp1JSUlXHTRRVhr+dvfjp4wh0+l7dy5M3369CEtLY13332Xq6++utxr7rrrLm699Vbf/by8PFJStCCiiIiIiEhtEXLuu/4OQUQkILQlnX6mGx4cdttjT0/dfdgU1hhT8cAoqZw6X6g7VKTbvHkzM2bMOOpouvLExsbSpk0b1q9fX+E5oaGhhIaGnmyoIiIiIiIiIiJ+1dppzhy7GIAS13vM83fbXN/t05xTqyusesPxdwDV6VCRbt26dXz55ZfEx8cfdxv5+flkZGSQnJxcDRGKiIiIiIiIiASOSBPBmc5g2puWbLM/Ya096vkb3a0k05ie5hTaOi1qKMq6q1YX6vLz81myZAlLliwBYOPGjSxZsoTMzExKSkq48MILWbBgAW+88QZer5esrCyysrIoLi72tXH66afzzDPP+O7fdtttzJo1i02bNjFnzhzOP/98PB4Pl156aU0/PRERERERERGRGldEMRk2k1BC2HWM6a/b2QlYFtgV2iCiCtTqqa8LFixg6NChvvuH1okbN24c9913Hx999BEAXbt2LXPd119/zZAhQwDIyMggOzvbd2zr1q1ceuml7N69m4SEBAYMGMAPP/xAQkJC9T4ZERERERHxm+IPL8Ld9v0vm0k07at160Sk3upi2jGDH1jPZtawgcYVFOC81ss07ysUU0IfutLP6VbDkdY9tbpQN2TIkKMOwTzW8EyATZs2lbn/9ttvn2xYIiIiIiJSy7g7l0JR7sE7RbkH74uI1FMtTSqdTVsiaUCmux2cg0W5h0tfYK67FAeH8UEXEEUk/U0PCijkFNOKUBPi79BrvVpdqBMRERERERERkarV0qSx1K4GoIftyOWcwya7jQe9z/nO2e89QGfTlq/tDwA8EHSzP0Ktc1SoExERERERERERnxamGb1MJ4IJwsvBnV/XuZvpZtqz2m4klBBKbCnZ5NLHdCGEYNqY5v4Nuo5QoU5ERERERERERHySTALz7XIArAuudVnHRhbbHwHYzwEW2OXstjmsZRMxRJFktLZ/VVChTkREREREREREfEJMMNFEkkc+u8llg93C7aWPEkUDIgjHg8N2drKJbXSgJXcFXY8xxt9h1wmOvwMQEREREREREZHA0pZ0WpFKDJF84X5Hb9MZgyGaBgDEEUswwawnk8Ge3n6Otu7QiDoRERERERERESkjwglnvrscLCwuXUUpXjqZNswN/jeO4/BAybN8485noOlJAnH+DrfOUKFORERERERERETK6G06U2pK2WKzSDYJRJkG9DVdcZyDkzOjTSTRJpIYJ0rTXquQCnUiIiIiIiIiIlJGoonnO7sIgEy7nQgbzkehz/uOTwoaxyTG+Su8OkuFOhERERERqfeCuk/Au/kr7N7NmOhUPM2H+TskERG/GukMIiE4nv+UzsI1ljM9g3GMtjqobirUiYiIiIhIvRfU4yaCetzk7zBERAJGKyeNVqSRZXcBcInnLD9HVD+oUCciIiIiIiIiIuWaFKTprTVJYxZFREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAEOTvAOoiay0AeXl5fo5ERERERERERET87VCN6FDNqCIq1FWD3bt3A5CSkuLnSEREREREREREJFDs27ePmJiYCo+rUFcN4uLiAMjMzDzqiy9ysvLy8khJSWHLli1ER0f7Oxypw5RrUlOUa1JTlGtSU5RrUlOUa1JTlGsnxlrLvn37aNKkyVHPU6GuGjjOwaX/YmJilLRSI6Kjo5VrUiOUa1JTlGtSU5RrUlOUa1JTlGtSU5Rrx68yg7m0mYSIiIiIiIiIiEgAUKFOREREREREREQkAKhQVw1CQ0O59957CQ0N9XcoUscp16SmKNekpijXpKYo16SmKNekpijXpKYo16qXscfaF1ZERERERERERESqnUbUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAFCrC3UPP/wwvXr1IioqisaNG3PeeeexZs2aMuccOHCAG2+8kfj4eCIjIxk9ejQ//fST7/jSpUu59NJLSUlJITw8nPbt2/PUU0+VaeO9995j+PDhJCQkEB0dTd++ffnss8+OGZ+1lnvuuYfk5GTCw8MZNmwY69atK3POokWLGD58OLGxscTHx3PttdeSn59/zLaXLVvGwIEDCQsLIyUlhUcffbTM8ZUrVzJ69GiaN2+OMYZp06Yds02pmHKt4lx777336NmzJ7GxsTRo0ICuXbvy+uuvH7NdKZ9yreJce+WVVzDGlPkJCws7ZrtSPuVaxbk2ZMiQI3LNGMNZZ511zLblSMq1inOtpKSE+++/n5YtWxIWFkaXLl3473//e8x2pXz1NdcOHDjA+PHj6dSpE0FBQZx33nlHnLNjxw4uu+wy2rRpg+M43HzzzceMVyqmXKs412bPnk3//v2Jj48nPDycdu3aMXXq1GPGLOVTrlWcazNnziz381pWVtYx4w54thYbMWKEffnll+2KFSvskiVL7JlnnmlTU1Ntfn6+75zrr7/epqSk2K+++souWLDAnnrqqbZfv36+4y+++KKdOHGinTlzps3IyLCvv/66DQ8Pt08//bTvnEmTJtlHHnnEzps3z65du9beddddNjg42C5atOio8U2ZMsXGxMTYDz74wC5dutSec845Nj093e7fv99aa+22bdtsw4YN7fXXX29Xr15t582bZ/v162dHjx591Hb37t1rExMT7eWXX25XrFhh33rrLRseHm5feOEF3znz5s2zt912m33rrbdsUlKSnTp16vG8tPIryrWKc+3rr7+27733nl21apVdv369nTZtmvV4PPa///3vcb3GcpByreJce/nll210dLTdsWOH7ycrK+u4Xl/5hXKt4lzbvXt3mTxbsWKF9Xg89uWXXz6el1h+plyrONfuuOMO26RJE/vJJ5/YjIwM+9xzz9mwsLBjxizlq6+5lp+fb6+//nr7v//7v3bEiBH23HPPPeKcjRs32okTJ9pXX33Vdu3a1U6aNKkSr6hURLlWca4tWrTIvvnmm3bFihV248aN9vXXX7cRERFl3vuk8pRrFefa119/bQG7Zs2aMp/bvF5vZV7agFarC3W/tnPnTgvYWbNmWWutzc3NtcHBwfZf//qX75wff/zRAvb777+vsJ3f//73dujQoUftq0OHDnby5MkVHndd1yYlJdnHHnvM91hubq4NDQ21b731lrXW2hdeeME2bty4TCItW7bMAnbdunUVtv3cc8/Zhg0b2qKiIt9jd955p23btm2556elpalQV8WUa+Xn2iHdunWzf/7zn496jlSOcu2XXHv55ZdtTEzMUZ+DnDjlWsXva1OnTrVRUVFlPhTLiVOu/ZJrycnJ9plnnilz3QUXXGAvv/zyoz4vqZz6kmuHGzduXLlfaA83ePBgFeqqmHLt6M4//3x7xRVXVOpcOTrl2i8OFepycnIq1U5tUqunvv7a3r17AYiLiwNg4cKFlJSUMGzYMN857dq1IzU1le+///6o7Rxqozyu67Jv376jnrNx40aysrLK9B0TE0OfPn18fRcVFRESEoLj/PLPEB4eDhwcMlyR77//nkGDBhESEuJ7bMSIEaxZs4acnJwKr5Oqo1wrP9estXz11VesWbOGQYMGVdiuVJ5yrWyu5efnk5aWRkpKCueeey4rV66ssE05Psq1in+Hvvjii1xyySU0aNCgwnal8pRrv+RaUVHREVP4w8PDj9quVF59yTXxP+VaxRYvXsycOXMYPHhwlbZbXynXjtS1a1eSk5MZPnw43333XZW06W91plDnui4333wz/fv355RTTgEgKyuLkJAQYmNjy5ybmJhY4bzlOXPm8M4773DttddW2Nfjjz9Ofn4+F110UYXnHGo/MTGxwr5PO+00srKyeOyxxyguLiYnJ4c//OEPwMF1JI7WdnntHt6vVB/l2pG5tnfvXiIjIwkJCeGss87i6aefZvjw4RW2K5WjXCuba23btuWll17iww8/5J///Ceu69KvXz+2bt1aYbtSOcq1in+Hzps3jxUrVnDNNddU2KZUnnKtbK6NGDGCJ598knXr1uG6Ll988QXvvffeUduVyqlPuSb+pVwrX7NmzQgNDaVnz57ceOON+j1aBZRrZSUnJ/P8888zffp0pk+fTkpKCkOGDGHRokUn1W4gqDOFuhtvvJEVK1bw9ttvn3AbK1as4Nxzz+Xee+/ljDPOKPecN998k8mTJ/Puu+/SuHFjAN544w0iIyN9P99++22l+uvYsSOvvvoqTzzxBBERESQlJZGenk5iYqKv4tyxY0dfu6NGjTrh5yZVR7l2pKioKJYsWcL8+fP5y1/+wq233srMmTOPqw05knKtrL59+zJ27Fi6du3K4MGDee+990hISOCFF16odBtSPuVaxV588UU6depE7969T+h6KUu5VtZTTz1F69atadeuHSEhIUyYMIErr7yyzMgDOTHKNakpyrXyffvttyxYsIDnn3+eadOm8dZbbx13G1KWcq2stm3bct1119GjRw/69evHSy+9RL9+/erG5iX+nntbFW688UbbrFkzu2HDhjKPf/XVV+XOWU5NTbVPPvlkmcdWrlxpGzdubP/4xz9W2M+hRYA//vjjMo/n5eXZdevW+X4KCwttRkaGBezixYvLnDto0CA7ceLEI9rOysqy+/bts/n5+dZxHPvuu+9aa63dtGmTr92tW7daa60dM2bMEXO0Z8yYYQG7Z8+eI9rWGnVVR7l29Fw75Oqrr7ZnnHFGhcfl2JRrlcu1Cy+80F5yySUVHpdjU65VnGv5+fk2OjraTps2rcLnJZWnXKs41/bv32+3bt1qXde1d9xxh+3QoUOFz0+Orb7l2uG0Rl3NUq6dW2HMh3vggQdsmzZtKnWulE+5dm6FMR/utttus6eeemqlzg1ktbpQ57quvfHGG22TJk3s2rVrjzh+aGHFf//7377HVq9efcTCiitWrLCNGze2t99+e4V9vfnmmzYsLMx+8MEHlY4tKSnJPv74477H9u7dW2ZhxfK8+OKLNiIi4qgLIh5anLi4uNj32F133aXNJKqRcq1yuXbIlVdeaQcPHlyp+KUs5Vrlc620tNS2bdvW3nLLLZWKX8pSrh07115++WUbGhpqs7OzKxW3lE+5Vvn3teLiYtuyZUt71113VSp+Kau+5trhVKirGcq14yueTJ482aalpVXqXClLuXZ8uTZs2DB7/vnnV+rcQFarC3U33HCDjYmJsTNnziyzHW9hYaHvnOuvv96mpqbaGTNm2AULFti+ffvavn37+o4vX77cJiQk2CuuuKJMGzt37vSd88Ybb9igoCD77LPPljknNzf3qPFNmTLFxsbG2g8//NAuW7bMnnvuuWW2KrbW2qefftouXLjQrlmzxj7zzDM2PDzcPvXUU0dtNzc31yYmJtoxY8bYFStW2LfffvuILa+Liors4sWL7eLFi21ycrK97bbb7OLFiyu9s4qUpVyrONceeugh+/nnn9uMjAy7atUq+/jjj9ugoCD797//vdKvr/xCuVZxrk2ePNl+9tlnNiMjwy5cuNBecsklNiwszK5cubLSr6/8QrlWca4dMmDAAHvxxRcf87WUo1OuVZxrP/zwg50+fbrNyMiw33zzjT3ttNNsenp6ndzBribU11yz9uBImcWLF9uzzz7bDhkyxPc94HCHHuvRo4e97LLL7OLFi/U79AQp1yrOtWeeecZ+9NFHdu3atXbt2rX2H//4h42KirJ/+tOfKvPSyq8o1yrOtalTp9oPPvjArlu3zi5fvtxOmjTJOo5jv/zyy8q8tAGtVhfqgHJ/Xn75Zd85+/fvt7///e9tw4YNbUREhD3//PPtjh07fMfvvffects4vOI/ePDgcs8ZN27cUeNzXdfefffdNjEx0YaGhtrTTz/drlmzpsw5Y8aMsXFxcTYkJMR27tzZvvbaa5V67kuXLrUDBgywoaGhtmnTpnbKlClljm/cuLHcmDXK6cQo1yrOtT/96U+2VatWNiwszDZs2ND27dvXvv3225VqW46kXKs4126++WabmppqQ0JCbGJioj3zzDPtokWLKtW2HEm5VnGuWfvLX6M///zzSrUpFVOuVZxrM2fOtO3bt7ehoaE2Pj7ejhkzxm7btq1SbcuR6nOupaWllRvTsV4fjXI6Mcq1inPtr3/9q+3YsaONiIiw0dHRtlu3bva5556zXq+3Uu1LWcq1inPtkUcesS1btrRhYWE2Li7ODhkyxM6YMaNSbQc6Y621iIiIiIiIiIiIiF9pSykREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERkXpsyJAh3HzzzfWubxEREZFApEKdiIiIiFTKzJkzMcaQm5tbJde99957PPDAA1UXoIiIiEgtF+TvAERERESkfoqLi/N3CCIiIiIBRSPqREREROqJgoICxo4dS2RkJMnJyTzxxBNljr/++uv07NmTqKgokpKSuOyyy9i5cycAmzZtYujQoQA0bNgQYwzjx48HwHVdHn74YdLT0wkPD6dLly78+9//PuZ1v5762rx5cx588EFfjGlpaXz00Ufs2rWLc889l8jISDp37syCBQvKxD179mwGDhxIeHg4KSkpTJw4kYKCgqp++URERESqnQp1IiIiIvXE7bffzqxZs/jwww/5/PPPmTlzJosWLfIdLykp4YEHHmDp0qV88MEHbNq0yVdUS0lJYfr06QCsWbOGHTt28NRTTwHw8MMP89prr/H888+zcuVKbrnlFq644gpmzZp11OvKM3XqVPr378/ixYs566yzGDNmDGPHjuWKK65g0aJFtGzZkrFjx2KtBSAjI4ORI0cyevRoli1bxjvvvMPs2bOZMGFCdbyEIiIiItXK2EOfckRERESkzsrPzyc+Pp5//vOf/Pa3vwVgz549NGvWjGuvvZZp06Ydcc2CBQvo1asX+/btIzIykpkzZzJ06FBycnKIjY0FoKioiLi4OL788kv69u3ru/aaa66hsLCQN998s9zr4OCIuq5du/r6bt68OQMHDuT1118HICsri+TkZO6++27uv/9+AH744Qf69u3Ljh07SEpK4pprrsHj8fDCCy/42p09ezaDBw+moKCAsLCwKnwVRURERKqX1qgTERERqQcyMjIoLi6mT58+vsfi4uJo27at7/7ChQu57777WLp0KTk5ObiuC0BmZiYdOnQot93169dTWFjI8OHDyzxeXFxMt27djjvOzp07+24nJiYC0KlTpyMe27lzJ0lJSSxdupRly5bxxhtv+M6x1uK6Lhs3bqR9+/bHHYOIiIiIv6hQJyIiIiIUFBQwYsQIRowYwRtvvEFCQgKZmZmMGDGC4uLiCq/Lz88H4JNPPqFp06ZljoWGhh53HMHBwb7bxpgKHztURMzPz+e6665j4sSJR7SVmpp63P2LiIiI+JMKdSIiIiL1QMuWLQkODmbu3Lm+AlZOTg5r165l8ODBrF69mt27dzNlyhRSUlIAjti0ISQkBACv1+t7rEOHDoSGhpKZmcngwYPL7bu866pK9+7dWbVqFa1atarytkVERERqmjaTEBEREakHIiMjufrqq7n99tuZMWMGK1asYPz48TjOwY+DqamphISE8PTTT7NhwwY++ugjHnjggTJtpKWlYYzh448/ZteuXeTn5xMVFcVtt93GLbfcwquvvkpGRgaLFi3i6aef5tVXX63wuqpy5513MmfOHCZMmMCSJUtYt24dH374oTaTEBERkVpJhToRERGReuKxxx5j4MCBnH322QwbNowBAwbQo0cPABISEnjllVf417/+RYcOHZgyZQqPP/54meubNm3K5MmT+cMf/kBiYqKvGPbAAw9w99138/DDD9O+fXtGjhzJJ598Qnp6+lGvqwqdO3dm1qxZrF27loEDB9KtWzfuuecemjRpUmV9iIiIiNQU7foqIiIiIiIiIiISADSiTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgFAhToREREREREREZEAoEKdiIiIiIiIiIhIAFChTkREREREREREJACoUCciIiIiIiIiIhIAVKgTEREREREREREJACrUiYiIiIiIiIiIBAAV6kRERERERERERAKACnUiIiIiIiIiIiIBQIU6ERERERERERGRAKBCnYiIiIiIiIiISABQoU5ERERERERERCQAqFAnIiIiIiIiIiISAFSoExERERERERERCQAq1ImIiIiIiIiIiAQAFepEREREREREREQCgAp1IiIiIiIiIiIiAUCFOhERERERERERkQCgQp2IiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEABXqREREREREREREAoAKdSIiIiIiIiIiIgEgyN8BiIiISN3jui4HDhzwdxgiEmDCwsJwHI0VEBERqYgKdSIiIlKlioqKWLVqFa7r+jsUEQkwjuPQoUMHQkND/R2KiIhIQDLWWuvvIERERKRusNaydu1aiouLSU9P18gZEfFxXZeNGzcSEhJCmzZtMMb4OyQREZGAo0KdiIiIVJni4mKWL19Oeno6cXFx/g5HRALMnj172LhxI5s3b6Zv374kJyf7OyQREZGAoj9zi4iISJUpLS0F0LQ2ESnXofeG7du388knn5CVleXniERERAKLCnUiIiJS5TSlTUTKc+i9ISkpiaysLFauXOnniERERAKLCnUiIiIiIlKjjDGEh4eTm5vr71BEREQCigp1IiIiIscwc+ZMjDEqKlSTqnp9N23ahDGGJUuWVElcx2vIkCHcfPPNfum7ttJy2SIiImUF+TsAEREREanf+vXrx44dO4iJiTmpdlJSUtixYweNGjWqosjKN3PmTIYOHUpOTg6xsbG+x9977z2Cg4Orte9jGTJkCF27dmXatGl+jUNEREROjAp1IiIiIuJXISEhJCUlnXQ7Ho+nSto5UdrpWERERE6Wpr6KiIhItbih5F4GF13u158bSu6tdLxFRUVMnDiRxo0bExYWxoABA5g/f3655xYWFjJq1Cj69++v6bC/MmTIEG666SZuvvlmGjZsSGJiIn//+98pKCjgyiuvJCoqilatWvGf//zHd82vp75u3ryZs88+m4YNG9KgQQM6duzIp59+CkBOTg6XX345CQkJhIeH07p1a15++WXgyKmvh9r96quv6NmzJxEREfTr1481a9aUifnBBx+kcePGREVFcc011/CHP/yBrl27lvv8Nm3axNChQwFo2LAhxhjGjx/ve+6HT31t3rw5Dz74IGPHjiUyMpK0tDQ++ugjdu3axbnnnktkZCSdO3dmwYIFZfqYPXs2AwcOJDw8nJSUFCZOnEhBQYHv+HPPPUfr1q0JCwsjMTGRCy+8EIDx48cza9YsnnrqKYwxGGPYtGkTXq+Xq6++mvT0dMLDw2nbti1PPfVUmT7Hjx/Peeedx0MPPURiYiKxsbHcf//9lJaWcvvttxMXF0ezZs18r/Xhr/fbb79Nv379CAsL45RTTmHWrFkVpYeIiIgcg0bUiYiISLVY5a5nrl3q3yDcyp96xx13MH36dF599VXS0tJ49NFHGTFiBOvXry9zXm5uLmeddRaRkZF88cUXREREVHHQtd+rr77KHXfcwbx583jnnXe44YYbeP/99zn//PP54x//yNSpUxkzZgyZmZnlvn433ngjxcXFfPPNNzRo0IBVq1YRGRkJwN13382qVav4z3/+Q6NGjVi/fj379+8/ajx/+tOfeOKJJ0hISOD666/nqquu4rvvvgPgjTfe4C9/+QvPPfcc/fv35+233+aJJ54gPT293LZSUlKYPn06o0ePZs2aNURHRxMeHl5h31OnTuWhhx7i7rvv9j3vfv36cdVVV/HYY49x5513MnbsWFauXIkxhoyMDEaOHMmDDz7ISy+9xK5du5gwYQITJkzg5ZdfZsGCBUycOJHXX3+dfv36sWfPHr799lsAnnrqKdauXcspp5zC/fffD0BCQgKu69KsWTP+9a9/ER8fz5w5c7j22mtJTk7moosu8sU6Y8YMmjVrxjfffMN3333H1VdfzZw5cxg0aBBz587lnXfe4brrrmP48OE0a9bMd93tt9/OtGnT6NChA08++SRnn302GzduJD4+/qj/LiIiInIkY7WCq4iIiFSRwsJCfvzxR9q3b88oz+/8XqjrY7owK/SNY55XUFBAw4YNeeWVV7jssssAKCkpoXnz5tx888306tWLoUOH8uOPP3LxxRfTunVr3nzzTUJCQqr7KRzB5mdhC7LKPhgWixPTHFt6ALt79RHXOIldAXD3rIWSwjLHTEwqJiwOW7gLu29b2QtDInEatjqu+IYMGYLX6/UVj7xeLzExMVxwwQW89tprAGRlZZGcnMz333/PqaeeesSab507d2b06NHce++RIyLPOeccGjVqxEsvvXTEsU2bNpGens7ixYvp2rWrr90vv/yS008/HYBPP/2Us846i/379xMWFsapp55Kz549eeaZZ3ztDBgwgPz8/Ao3pahojbpfrw/XvHlzBg4cyOuvv17med99992+QtoPP/xA37592bFjB0lJSVxzzTV4PB5eeOEFX7uzZ89m8ODBFBQU8Omnn3LllVeydetWoqKiyn39K7NG3YQJE8jKyuLf//43cHBE3cyZM9mwYQOOc3DSTbt27WjcuDHffPMN8Mu/5T/+8Q8uueQS3+s9ZcoU7rzzTgBKS0tJT0/npptu4o477jii30PvEZs2bWLTpk2kpaX5RgSKiIiIRtSJiIiIkJGRQUlJCf379/c9FhwcTO/evfnxxx/p1asXAMOHD6d379688847eDwev8RauvwlvD88XOYxp93FhIz6BzZ/G8VvDjzimrBb9gFQ8vn12B1lp/MGj/w7nvaX4F37PqVf/0/ZdtNOJ+SCD447xs6dO/tuezwe4uPj6dSpk++xxMREAHbu3Fnu9RMnTuSGG27g888/Z9iwYYwePdrX5g033MDo0aNZtGgRZ5xxBueddx79+vWrdDzJycm+vlNTU1mzZg2///3vy5zfu3dvZsyYcRzPuHJ9H3reFb0WSUlJLF26lGXLlvHGG78UmK21uK7Lxo0bGT58OGlpabRo0YKRI0cycuRIzj///GOO7Hz22Wd56aWXyMzMZP/+/RQXFx8xvbdjx46+It2h2E455RTf/UP/lr/+d+vbt6/vdlBQED179uTHH3881ksjIiIi5VChTkRERKSSzjrrLKZPn86qVavKFFtqUlCnq/C0OLPsg2GxAJjIpoRc9m2F1waf8Xy5I+oAPG3Ox0nuXfaCkMgTivHXO58aY8o8ZowBwHXLn5t8zTXXMGLECD755BM+//xzHn74YZ544gluuukmRo0axebNm/n000/54osvOP3007nxxht5/PHHKxXPsfquauX1fbR48vPzue6665g4ceIRbaWmphISEsKiRYuYOXMmn3/+Offccw/33Xcf8+fPLzO673Bvv/02t912G0888QR9+/YlKiqKxx57jLlz51YY66HYynuspl47ERGR+kiFOhEREakWHZxWx7VGXLXFUAktW7YkJCSE7777jrS0NODg1Nf58+eX2RxgypQpREZGcvrppzNz5kw6dOhQHWEflYlMwkSWv7OpCQrD/DzNtTxOXJuK241IwEQknGx4VSYlJYXrr7+e66+/nrvuuou///3v3HTTTcDBddfGjRvHuHHjGDhwILfffvtRC3VH07ZtW+bPn8/YsWN9j1W0icghh6Y8e73eE+rzaLp3786qVato1ari3A0KCmLYsGEMGzaMe++9l9jYWGbMmMEFF1xASEjIEXF999139OvXr8zIwYyMjCqL+YcffmDQoEHAwamvCxcuZMKECVXWvoiISH2iQp2IiIhUi78FT/Z3CJXWoEEDbrjhBt/ulqmpqTz66KMUFhZy9dVXs3TpL2vtPf7443i9Xk477TRmzpxJu3bt/Bh53XTzzTczatQo2rRpQ05ODl9//TXt27cH4J577qFHjx507NiRoqIiPv74Y9+xE3HTTTfxu9/9jp49e9KvXz/eeecdli1bRosWLSq8Ji0tDWMMH3/8MWeeeSbh4eG+zS5O1p133smpp57KhAkTuOaaa3ybaXzxxRc888wzfPzxx2zYsIFBgwbRsGFDPv30U1zXpW3btsDBdfHmzp3Lpk2biIyMJC4ujtatW/Paa6/x2WefkZ6ezuuvv878+fMr3DDjeD377LO0bt2a9u3bM3XqVHJycrjqqquqpG0REZH6xjn2KSIiIiJ135QpUxg9ejRjxoyhe/furF+/ns8++4yGDRsece7UqVO56KKLOO2001i7dq0foq3bvF4vN954I+3bt2fkyJG0adOG5557Djg4mu2uu+6ic+fODBo0CI/Hw9tvv33CfV1++eXcdddd3HbbbXTv3p2NGzcyfvx4wsLCKrymadOmTJ48mT/84Q8kJiZW6eixzp07M2vWLNauXcvAgQPp1q0b99xzD02aNAEgNjaW9957j9NOO4327dvz/PPP89Zbb9GxY0cAbrvtNjweDx06dCAhIYHMzEyuu+46LrjgAi6++GL69OnD7t27j1iX72RMmTKFKVOm0KVLF2bPns1HH31Eo0aNqqx9ERGR+kS7voqIiEiVOXzX12Mtbi8SqIYPH05SUpJvt1Yp36932a0M7foqIiJydJr6KiIiIiL1VmFhIc8//zwjRozA4/Hw1ltv8eWXX/LFF1/4OzQRERGph1SoExEREZF6yxjDp59+yl/+8hcOHDhA27ZtmT59OsOGDfN3aCIiIlIPqVAnIiIiIvVWeHg4X375pb/DqJWaN2+OVtERERGpWtpMQkREREREREREJACoUCciIiJVTqNsRKQ8em8QERE5OhXqREREpMoEBR1cVaOoqMjPkYhIIDr03lBaWurnSERERAKT1qgTERGRKhMcHExkZCTbtm0jJCQEx9HfBEXkINd12bJlC4WFhXi9Xn+HIyIiEpBUqBMREZEqY4yhefPmrFy5kjVr1vg7HBEJMK7rkpWVBYDX6yU8PNzPEYmIiAQWFepERESkSoWGhtKmTRs+/vhjsrOzSUxM1Mg6EcFaS0lJCa7rkpeXh7WW5ORkf4clIiISUIzViq4iIiJSDXbt2sUnn3ziGz0jIgIHC3ahoaH06tWL/v37q5AvIiJyGBXqREREpNrk5eWxa9cuDhw44O9QRCRAOI5DZGQkTZs2VZFORETkV1SoExERERERERERCQD6E5aIiIiIiIiIiEgAUKFOREREREREREQkAKhQJyIiIiIiIiIiEgBUqBMREREREREREQkAKtSJiIiIiIiIiIgEgP8HUVKE05Gal5EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.get_station('vlinder02').make_plot(colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "9c0be11b-8d68-4597-9cf4-676c10d3aa1a", + "metadata": {}, + "source": [ + "\n", + "## Quality control for bad observations\n", + "The following checks are available:\n", + "* [Gross value check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html#metobs_toolkit.qc_checks.gross_value_check): A threshold check that observations should be between the thresholds\n", + "* [Persistence check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.persistance_check.html#metobs_toolkit.qc_checks.persistance_check): Test observations to change over a specific period.\n", + "* [Repetitions check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html#metobs_toolkit.qc_checks.repetitions_check): Test if an observation changes after several records.\n", + "* [Spike check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.step_check.html#metobs_toolkit.qc_checks.step_check): Test if observations do not produce spikes in time series.\n", + "* [Window variation check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html#metobs_toolkit.qc_checks.window_variation_check): Test if the variation exceeds the threshold in moving time windows.\n", + "* [Toolkit Buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.html#metobs_toolkit.qc_checks.toolkit_buddy_check): Spatial buddy check.\n", + "* [TITAN Buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.html#metobs_toolkit.qc_checks.titan_buddy_check): The [Titanlib version of the buddy check](https://github.com/metno/titanlib/wiki/Buddy-check).\n", + "* [TITAN Spatial consistency test](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.html#metobs_toolkit.qc_checks.titan_sct_resistant_check): Apply the Titanlib (robust) [Spatial-Consistency-Test](https://github.com/metno/titanlib/wiki/Spatial-consistency-test-resistant) (SCT).\n", + "\n", + "Each check requires a set of specific settings, often stored per specific observation type. A set of default settings, for temperature observations, are stored in the settings of each dataset. Use the *show()* method, and scroll to the QC section to see all QC settings.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "02c8f1d9-c0da-470f-9730-112a89a77f67", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All settings:\n", + " \n", + " ---------------------------------------\n", + "\n", + " ---------------- IO (settings) ----------------------\n", + "\n", + "* output_folder: \n", + "\n", + " -None \n", + "\n", + "* input_data_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_datafile.csv \n", + "\n", + "* input_metadata_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_metadatafile.csv \n", + "\n", + " ---------------- db (settings) ----------------------\n", + "\n", + " ---------------- time_settings (settings) ----------------------\n", + "\n", + "* target_time_res: \n", + "\n", + " -60T \n", + "\n", + "* resample_method: \n", + "\n", + " -nearest \n", + "\n", + "* resample_limit: \n", + "\n", + " -1 \n", + "\n", + "* timezone: \n", + "\n", + " -UTC \n", + "\n", + "* freq_estimation_method: \n", + "\n", + " -highest \n", + "\n", + "* freq_estimation_simplify: \n", + "\n", + " -True \n", + "\n", + "* freq_estimation_simplify_error: \n", + "\n", + " -2T \n", + "\n", + " ---------------- app (settings) ----------------------\n", + "\n", + "* print_fmt_datetime: \n", + "\n", + " -%d/%m/%Y %H:%M:%S \n", + "\n", + "* print_max_n: \n", + "\n", + " -40 \n", + "\n", + "* plot_settings: \n", + "\n", + " - time_series: \n", + "\n", + " -{'figsize': (15, 5), 'colormap': 'tab20', 'linewidth': 2, 'linestyle_ok': '-', 'linestyle_fill': '--', 'linezorder': 1, 'scattersize': 4, 'scatterzorder': 3, 'dashedzorder': 2, 'legend_n_columns': 5} \n", + "\n", + " - spatial_geo: \n", + "\n", + " -{'extent': [2.260609, 49.25, 6.118359, 52.350618], 'cmap': 'inferno_r', 'n_for_categorical': 5, 'figsize': (10, 15), 'fmt': '%d/%m/%Y %H:%M:%S UTC'} \n", + "\n", + " - pie_charts: \n", + "\n", + " -{'figsize': (10, 10), 'anchor_legend_big': (-0.25, 0.75), 'anchor_legend_small': (-3.5, 2.2), 'radius_big': 2.0, 'radius_small': 5.0} \n", + "\n", + " - color_mapper: \n", + "\n", + " -{'duplicated_timestamp': '#a32a1f', 'invalid_input': '#900357', 'gross_value': '#f1ff2b', 'persistance': '#f0051c', 'repetitions': '#056ff0', 'step': '#05d4f0', 'window_variation': '#05f0c9', 'buddy_check': '#8300c4', 'titan_buddy_check': '#8300c4', 'titan_sct_resistant_check': '#c17fe1', 'gap': '#f00592', 'missing_timestamp': '#f78e0c', 'linear': '#d406c6', 'model_debias': '#6e1868', 'ok': '#07f72b', 'not checked': '#f7cf07', 'outlier': '#f20000'} \n", + "\n", + " - diurnal: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - anual: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - correlation_heatmap: \n", + "\n", + " -{'figsize': (10, 10), 'vmin': -1, 'vmax': 1, 'cmap': 'cool', 'x_tick_rot': 65, 'y_tick_rot': 0} \n", + "\n", + " - correlation_scatter: \n", + "\n", + " -{'figsize': (10, 10), 'p_bins': [0, 0.001, 0.01, 0.05, 999], 'bins_markers': ['*', 's', '^', 'X'], 'scatter_size': 40, 'scatter_edge_col': 'black', 'scatter_edge_line_width': 0.1, 'ymin': -1.1, 'ymax': 1.1, 'cmap': 'tab20', 'legend_ncols': 3, 'legend_text_size': 7} \n", + "\n", + "* world_boundary_map: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp \n", + "\n", + "* display_name_mapper: \n", + "\n", + " - network: \n", + "\n", + " -network \n", + "\n", + " - name: \n", + "\n", + " -station name \n", + "\n", + " - call_name: \n", + "\n", + " -pseudo name \n", + "\n", + " - location: \n", + "\n", + " -region \n", + "\n", + " - lat: \n", + "\n", + " -latitude \n", + "\n", + " - lon: \n", + "\n", + " -longtitude \n", + "\n", + " - temp: \n", + "\n", + " -temperature \n", + "\n", + " - radiation_temp: \n", + "\n", + " -radiation temperature \n", + "\n", + " - humidity: \n", + "\n", + " -humidity \n", + "\n", + " - precip: \n", + "\n", + " -precipitation intensity \n", + "\n", + " - precip_sum: \n", + "\n", + " -cummulated precipitation \n", + "\n", + " - wind_speed: \n", + "\n", + " -wind speed \n", + "\n", + " - wind_gust: \n", + "\n", + " -wind gust speed \n", + "\n", + " - wind_direction: \n", + "\n", + " -wind direction \n", + "\n", + " - pressure: \n", + "\n", + " -air pressure \n", + "\n", + " - pressure_at_sea_level: \n", + "\n", + " -corrected pressure at sea level \n", + "\n", + " - lcz: \n", + "\n", + " -LCZ \n", + "\n", + "* static_fields: \n", + "\n", + " -['network', 'name', 'lat', 'lon', 'call_name', 'location', 'lcz'] \n", + "\n", + "* categorical_fields: \n", + "\n", + " -['wind_direction', 'lcz'] \n", + "\n", + "* location_info: \n", + "\n", + " -['network', 'lat', 'lon', 'lcz', 'call_name', 'location'] \n", + "\n", + "* default_name: \n", + "\n", + " -unknown_name \n", + "\n", + " ---------------- qc (settings) ----------------------\n", + "\n", + "* qc_check_settings: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'keep': False} \n", + "\n", + " - persistance: \n", + "\n", + " -{'temp': {'time_window_to_check': '1h', 'min_num_obs': 5}} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'temp': {'max_valid_repetitions': 5}} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'temp': {'min_value': -15.0, 'max_value': 39.0}} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': 0.002777777777777778, 'time_window_to_check': '1h', 'min_window_members': 3}} \n", + "\n", + " - step: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': -0.002777777777777778}} \n", + "\n", + " - buddy_check: \n", + "\n", + " -{'temp': {'radius': 15000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0}} \n", + "\n", + "* qc_checks_info: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'outlier_flag': 'duplicated timestamp outlier', 'numeric_flag': 1, 'apply_on': 'record'} \n", + "\n", + " - invalid_input: \n", + "\n", + " -{'outlier_flag': 'invalid input', 'numeric_flag': 2, 'apply_on': 'obstype'} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'outlier_flag': 'gross value outlier', 'numeric_flag': 4, 'apply_on': 'obstype'} \n", + "\n", + " - persistance: \n", + "\n", + " -{'outlier_flag': 'persistance outlier', 'numeric_flag': 5, 'apply_on': 'obstype'} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'outlier_flag': 'repetitions outlier', 'numeric_flag': 6, 'apply_on': 'obstype'} \n", + "\n", + " - step: \n", + "\n", + " -{'outlier_flag': 'in step outlier group', 'numeric_flag': 7, 'apply_on': 'obstype'} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'outlier_flag': 'in window variation outlier group', 'numeric_flag': 8, 'apply_on': 'obstype'} \n", + "\n", + " - buddy_check: \n", + "\n", + " -{'outlier_flag': 'buddy check outlier', 'numeric_flag': 11, 'apply_on': 'obstype'} \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'outlier_flag': 'titan buddy check outlier', 'numeric_flag': 9, 'apply_on': 'obstype'} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'outlier_flag': 'sct resistant check outlier', 'numeric_flag': 10, 'apply_on': 'obstype'} \n", + "\n", + "* titan_check_settings: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'temp': {'radius': 50000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0, 'num_iterations': 1}} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'temp': {'num_min_outer': 3, 'num_max_outer': 10, 'inner_radius': 20000, 'outer_radius': 50000, 'num_iterations': 10, 'num_min_prof': 5, 'min_elev_diff': 100, 'min_horizontal_scale': 250, 'max_horizontal_scale': 100000, 'kth_closest_obs_horizontal_scale': 2, 'vertical_scale': 200, 'mina_deviation': 10, 'maxa_deviation': 10, 'minv_deviation': 1, 'maxv_deviation': 1, 'eps2': 0.5, 'tpos': 5, 'tneg': 8, 'basic': True, 'debug': False}} \n", + "\n", + "* titan_specific_labeler: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'ok': [0], 'outl': [1]} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'ok': [0, -999, 11, 12], 'outl': [1]} \n", + "\n", + " ---------------- gap (settings) ----------------------\n", + "\n", + "* gaps_settings: \n", + "\n", + " - gaps_finder: \n", + "\n", + " -{'gapsize_n': 40} \n", + "\n", + "* gaps_info: \n", + "\n", + " - gap: \n", + "\n", + " -{'label_columnname': 'is_gap', 'outlier_flag': 'gap', 'negative_flag': 'no gap', 'numeric_flag': 12, 'apply_on': 'record'} \n", + "\n", + " - missing_timestamp: \n", + "\n", + " -{'label_columnname': 'is_missing_timestamp', 'outlier_flag': 'missing timestamp', 'negative flag': 'not missing', 'numeric_flag': 13, 'apply_on': 'record'} \n", + "\n", + "* gaps_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time', 'max_consec_fill': 100} \n", + "\n", + " - model_debias: \n", + "\n", + " -{'debias_period': {'prefered_leading_sample_duration_hours': 48, 'prefered_trailing_sample_duration_hours': 48, 'minimum_leading_sample_duration_hours': 24, 'minimum_trailing_sample_duration_hours': 24}} \n", + "\n", + " - automatic: \n", + "\n", + " -{'max_interpolation_duration_str': '5H'} \n", + "\n", + "* gaps_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'gap_interpolation', 'model_debias': 'gap_debiased_era5'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -21 \n", + "\n", + " ---------------- missing_obs (settings) ----------------------\n", + "\n", + "* missing_obs_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time'} \n", + "\n", + "* missing_obs_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'missing_obs_interpolation'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -23 \n", + "\n", + " ---------------- templates (settings) ----------------------\n", + "\n", + "* template_file: \n", + "\n", + " -/home/thoverga/Documents/VLINDER_github/MetObs_toolkit/metobs_toolkit/datafiles/demo_templatefile.csv \n", + "\n", + " ---------------- gee (settings) ----------------------\n", + "\n", + "* gee_dataset_info: \n", + "\n", + " - global_lcz_map: \n", + "\n", + " -{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'} \n", + "\n", + " - DEM: \n", + "\n", + " -{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'} \n", + "\n", + " - ERA5_hourly: \n", + "\n", + " -{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'band_of_use': {'temp': {'name': 'temperature_2m', 'units': 'K'}}, 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''} \n", + "\n", + " - worldcover: \n", + "\n", + " -{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'} \n", + "\n" + ] + } + ], + "source": [ + "your_dataset.settings.show()" + ] + }, + { + "cell_type": "markdown", + "id": "95401842-6906-48bb-b449-2b4df52a9282", + "metadata": {}, + "source": [ + "Use the [update_qc_settings()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings) method to update the default settings." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "5f30dd72-b67c-4425-a49e-21d248d244fc", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.update_qc_settings(obstype='temp',\n", + " gross_value_max_value=26.3,\n", + " persis_time_win_to_check='30T' #30 minutes\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "0769efa4-576c-4e9c-b5f9-536fb23543f3", + "metadata": {}, + "source": [ + "To apply the quality control on the full dataset use the [apply_quality_control()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control) method. Spatial quality control checks can be applied by using the [apply_buddy_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_buddy_check), [apply_titan_buddy_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_buddy_check) and [apply_titan_sct_resistant_check()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check) methods." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c3ce19c5-6ccd-44a4-8f67-3efd4f59621f", + "metadata": {}, + "outputs": [], + "source": [ + "your_dataset.apply_quality_control(\n", + " obstype=\"temp\", # which observations to check\n", + " gross_value=True, # apply gross_value check?\n", + " persistance=True, # apply persistence check?\n", + " step=True, # apply the step check?\n", + " window_variation=True, # apply internal consistency check?\n", + " )" + ] + }, + { + "cell_type": "markdown", + "id": "05ed9aaf-0998-4a50-b724-f95b5240eca9", + "metadata": {}, + "source": [ + "Use the dataset.show() or the time series plot methods to see the effect of the quality control." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "31918e79-d527-484a-b870-ceb678f8719e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAH4CAYAAAB+C5upAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVdrA8d+5U9ILCb13kKqACCqoIDZU7GUtoGvFsva1d9ey1tcCuipid2XFhoIFFVRElA7SewklvU675/1j0iYzk0ySSWaSPN/PB2XuPffcM8Mkc+e55zyP0lprhBBCCCGEEEIIIYQQYWNEegBCCCGEEEIIIYQQQjQ3EnQTQgghhBBCCCGEECLMJOgmhBBCCCGEEEIIIUSYSdBNCCGEEEIIIYQQQogwk6CbEEIIIYQQQgghhBBhJkE3IYQQQgghhBBCCCHCTIJuQgghhBBCCCGEEEKEmQTdhBBCCCGEEEIIIYQIMwm6CSGEEEIIIYQQQggRZhJ0E0IIIYQQ5fbt28c555xDeno6Simef/75SA8JgO7duzNlypTyxz/++CNKKX788ceIjSkUDz74IEqpSA9DCCGEEBEgQTchhBBChI1SKqQ/0R4oaUivvPIKb731VqSHEdTNN9/MvHnzuOuuu3jnnXc46aSTIj2kBvf+++/XK7hYVFTEgw8+2KLf10IIIYTwZ430AIQQQgjRfLzzzjs+j99++22+/fZbv+2HHHJIYw4rqrzyyiu0bt3aZ9ZWNJk/fz6TJk3itttui/RQGs3777/P6tWruemmm+p0fFFREQ899BAAxx57rM++e++9lzvvvLOeIxRCCCFEUyRBNyGEEEKEzcUXX+zz+LfffuPbb7/1295caK0pKSkhLi4u0kMJWWFhIQkJCUH379+/n9TU1LCdr6SkBLvdjmG0zAUWVqsVq1UuuYUQQoiWqGVe/QghhBAiYkzT5Pnnn2fgwIHExsbSrl07rr76arKzs33ade/enVNPPZUff/yRESNGEBcXx+DBg8uX8H3yyScMHjyY2NhYhg8fzrJly3yOnzJlComJiWzZsoUTTzyRhIQEOnbsyMMPP4zWul5jmjdvXvmYXn31VQBmzJjBuHHjaNu2LTExMQwYMIBp06b5Hb9mzRp++umn8qW2ZTOjguX+euutt1BKsW3btvJtSikefPBBv7ZV856VHfvTTz8xdepU2rZtS+fOnf2Oq9xWa83LL79cPr4yW7Zs4dxzzyUtLY34+HhGjRrFnDlzfPooy7P24Ycfcu+999KpUyfi4+PJy8sLeE6Ap59+miOPPJL09HTi4uIYPnw4s2bNCtq+tvLz87npppvo3r07MTExtG3blgkTJrB06VLAOzNtzpw5bN++vfw5d+/eHQCn08n999/P8OHDSUlJISEhgTFjxvDDDz+U979t2zbatGkDwEMPPVTeR9m/T6B/V7fbzSOPPEKvXr2IiYmhe/fu3H333TgcDp92Ze+3n3/+mZEjRxIbG0vPnj15++23fdq5XC4eeugh+vTpQ2xsLOnp6Rx99NF8++23YXsdhRBCCFF7cttNCCGEEI3q6quv5q233uKyyy7jxhtvZOvWrbz00kssW7aMX375BZvNVt5206ZN/O1vf+Pqq6/m4osv5umnn+a0005j+vTp3H333UydOhWAxx9/nPPOO4/169f7zKjyeDycdNJJjBo1iqeeeoq5c+fywAMP4Ha7efjhh+s0pvXr13PhhRdy9dVXc+WVV9KvXz8Apk2bxsCBAzn99NOxWq188cUXTJ06FdM0ue666wB4/vnnueGGG0hMTOSee+4BoF27dg33YpeaOnUqbdq04f7776ewsDBgm7Fjx/LOO+9wySWXMGHCBC699NLyffv27ePII4+kqKiIG2+8kfT0dGbOnMnpp5/OrFmzOPPMM336euSRR7Db7dx22204HA7sdnvQsb3wwgucfvrpXHTRRTidTj788EPOPfdcvvzySyZOnFjv537NNdcwa9Ysrr/+egYMGEBmZiY///wzf/31F8OGDeOee+4hNzeXXbt28dxzzwGQmJgIQF5eHq+//joXXnghV155Jfn5+bzxxhuceOKJ/P777xx66KG0adOGadOmce2113LmmWdy1llnATBkyJCgY7riiiuYOXMm55xzDrfeeiuLFy/m8ccf56+//mL27Nk+bTdt2sQ555zD3//+dyZPnsybb77JlClTGD58OAMHDgS8gb3HH3+cK664gpEjR5KXl8cff/zB0qVLmTBhQr1fQyGEEELUkRZCCCGEaCDXXXedrny5sXDhQg3o9957z6fd3Llz/bZ369ZNA/rXX38t3zZv3jwN6Li4OL19+/by7a+++qoG9A8//FC+bfLkyRrQN9xwQ/k20zT1xIkTtd1u1wcOHKjzmObOnev3XIuKivy2nXjiibpnz54+2wYOHKiPOeYYv7YPPPCADnRpNmPGDA3orVu3lm8D9AMPPODXtlu3bnry5Ml+xx599NHa7Xb7tQ8E0Nddd53PtptuukkDeuHCheXb8vPzdY8ePXT37t21x+PRWmv9ww8/aED37Nkz4OsRSNV2TqdTDxo0SI8bN67a51Z2rsr/5oGkpKT4PZ+qJk6cqLt16+a33e12a4fD4bMtOztbt2vXTl9++eXl2w4cOBD036Tqv+vy5cs1oK+44gqfdrfddpsG9Pz588u3lb3fFixYUL5t//79OiYmRt96663l24YOHaonTpxY7XMUQgghROOT5aVCCCGEaDQff/wxKSkpTJgwgYMHD5b/GT58OImJiT7L9gAGDBjA6NGjyx8fccQRAIwbN46uXbv6bd+yZYvfOa+//vryvyuluP7663E6nXz33Xd1GlOPHj048cQT/c5TOa9bbm4uBw8e5JhjjmHLli3k5uaG/Bo1hCuvvBKLxVLn47/66itGjhzJ0UcfXb4tMTGRq666im3btrF27Vqf9pMnTw45z13ldtnZ2eTm5jJmzJjy5Z/1lZqayuLFi9mzZ0+tj7VYLOWz9EzTJCsrC7fbzYgRI+o8vq+++gqAW265xWf7rbfeCuC3ZHfAgAGMGTOm/HGbNm3o16+fz3s9NTWVNWvWsHHjxjqNSQghhBANQ4JuQgghhGg0GzduJDc3l7Zt29KmTRufPwUFBezfv9+nfeXAGkBKSgoAXbp0Cbi9ag42wzDo2bOnz7a+ffsClOdIq+2YevToEfC5/fLLLxx//PEkJCSQmppKmzZtuPvuuwEiHnQLNuZQbd++vXwZbWVlVWi3b99e5/N9+eWXjBo1itjYWNLS0sqXa4brNXvqqadYvXo1Xbp0YeTIkTz44IMBg7PBzJw5kyFDhpTnSmvTpg1z5syp8/i2b9+OYRj07t3bZ3v79u1JTU31ey2r/gwAtGrVyue9/vDDD5OTk0Pfvn0ZPHgwt99+OytXrqzT+IQQQggRPpLTTQghhBCNxjRN2rZty3vvvRdwf1lC+jLBZmcF266rFEhoiDEFmsG1efNmxo8fT//+/Xn22Wfp0qULdrudr776iueeew7TNGscR6AiCuDNSxeqYG0bu7pqqOdbuHAhp59+OmPHjuWVV16hQ4cO2Gw2ZsyYwfvvvx+WsZx33nmMGTOG2bNn88033/Dvf/+bJ598kk8++YSTTz652mPfffddpkyZwhlnnMHtt99O27ZtsVgsPP7442zevLle4wr2711VKO/1sWPHsnnzZj777DO++eYbXn/9dZ577jmmT5/OFVdcUa9xCiGEEKLuJOgmhBBCiEbTq1cvvvvuO4466qhGCQSZpsmWLVvKZ7cBbNiwAaC8QmU4xvTFF1/gcDj4/PPPfWYmVV2aCsGDLa1atQIgJyeH1NTU8u1VZz6Vtc3JyfHZ5nQ62bt3bx1GX7Nu3bqxfv16v+3r1q0r318X//vf/4iNjWXevHnExMSUb58xY0bdBhpEhw4dmDp1KlOnTmX//v0MGzaMxx57rDzoFuzfZNasWfTs2ZNPPvnEp80DDzzg0y7UABp4XyvTNNm4cWP5TEHwFqvIycmp82uZlpbGZZddxmWXXUZBQQFjx47lwQcflKCbEEIIEUGyvFQIIYQQjea8887D4/HwyCOP+O1zu91+gaRweOmll8r/rrXmpZdewmazMX78+LCNqWw2UuXZR7m5uQGDRwkJCQH77NWrFwALFiwo31ZYWMjMmTMDtq3cDuC1116r1ay42jjllFP4/fffWbRokc/YXnvtNbp3786AAQPq1K/FYkEp5TPubdu28emnn9Z3yIB35l/VZaBt27alY8eOOByO8m0JCQkBl4sG+nddvHixz+sAEB8fDxDSe+WUU04BvJVsK3v22WcB6lSxNTMz0+dxYmIivXv39nmOubm5rFu3LuJLnYUQQoiWRGa6CSGEEKLRHHPMMVx99dU8/vjjLF++nBNOOAGbzcbGjRv5+OOPeeGFFzjnnHPCdr7Y2Fjmzp3L5MmTOeKII/j666+ZM2cOd999d/my0XCM6YQTTsBut3Paaadx9dVXU1BQwH/+8x/atm3rN/ts+PDhTJs2jUcffZTevXvTtm1bxo0bxwknnEDXrl35+9//zu23347FYuHNN9+kTZs27Nixw6ePK664gmuuuYazzz6bCRMmsGLFCubNm0fr1q3D9tpVduedd/LBBx9w8sknc+ONN5KWlsbMmTPZunUr//vf/zCMut3HnThxIs8++ywnnXQSf/vb39i/fz8vv/wyvXv3DktOsvz8fDp37sw555zD0KFDSUxM5LvvvmPJkiU888wz5e2GDx/ORx99xC233MLhhx9OYmIip512GqeeeiqffPIJZ555JhMnTmTr1q1Mnz6dAQMGUFBQUH58XFwcAwYM4KOPPqJv376kpaUxaNAgBg0a5DemoUOHMnnyZF577TVycnI45phj+P3335k5cyZnnHEGxx13XK2f54ABAzj22GMZPnw4aWlp/PHHH8yaNcuniMjs2bO57LLLmDFjBlOmTKn1OYQQQghRexJ0E0IIIUSjmj59OsOHD+fVV1/l7rvvxmq10r17dy6++GKOOuqosJ7LYrEwd+5crr32Wm6//XaSkpJ44IEHuP/++8M6pn79+jFr1izuvfdebrvtNtq3b8+1115LmzZtuPzyy33a3n///Wzfvp2nnnqK/Px8jjnmGMaNG4fNZmP27NlMnTqV++67j/bt23PTTTfRqlUrLrvsMp8+rrzySrZu3cobb7zB3LlzGTNmDN9++2357L1wa9euHb/++iv//Oc/efHFFykpKWHIkCF88cUXdZqZVWbcuHG88cYbPPHEE9x000306NGDJ598km3btoUl6BYfH8/UqVP55ptv+OSTTzBNk969e/PKK69w7bXXlrebOnUqy5cvZ8aMGTz33HN069aN0047jSlTppCRkcGrr77KvHnzGDBgAO+++y4ff/wxP/74o8+5Xn/9dW644QZuvvlmnE4nDzzwQMCgW1nbnj178tZbbzF79mzat2/PXXfd5bdsNVQ33ngjn3/+Od988w0Oh4Nu3brx6KOPcvvtt9epPyGEEEKEh9J1yTgshBBCCBHlpkyZwqxZs3xmJAkhhBBCCNFYJKebEEIIIYQQQgghhBBhJkE3IYQQQgghhBBCCCHCTIJuQgghhBBCCCGEEEKEmeR0E0IIIYQQQgghhBAizGSmmxBCCCGEEEIIIYQQYSZBNyGEEEIIIYQQQgghwswa6QFEO9M02bNnD0lJSSilIj0cIYQQQgghhBBCCBFBWmvy8/Pp2LEjhhF8PpsE3WqwZ88eunTpEulhCCGEEEIIIYQQQogosnPnTjp37hx0vwTdapCUlAR4X8jk5OQIj0YIIYQQQgghhBBCRFJeXh5dunQpjxkFI0G3GpQtKU1OTpagmxBCCCGEEEIIIYQAqDENmRRSEEIIIYQQQgghhBAizCToJoQQQgghhBBCCCFEmEnQTQghhBBCCCGEEEKIMJOgmxBCCCGEEEIIIYQQYSZBNyGEEEIIIYQQQgghwkyCbkIIIYQQQgghhBBChJkE3YQQQgghhBBCCCGECDMJugkhhBBCCCGEEEIIEWYSdBNCCCGEEEIIIYQQIsyskR6AEEIIEQqNxmQdoDE4BIWK9JCEEEIIIYQQIigJugkhhGgSSngSF+8CYOMC4rg3wiMSQgghhBBCiOBkeakQQoiopykuD7gBuPgQk/wIjkgIIYQQQgghqidBNyGEEE2ADbD4bPGwPCIjEUIIIYQQQohQSNBNCCFE1FNYMehVZasZkbEIIYQQQgghRCgk6CaEEKJJiOF2IBYAC2OxcmRkBySEEEIIIYQQ1ZCgmxBCiKinKcLBv4ASAGycjMIW2UEJIYQQQgghRDUk6CaEECLqufkNk63lj528E8HRCCGEEEIIIUTNJOgmhBAi6hm083lk0CFiYxFCCCGEEEKIUFgjPQAhhBAiGAfv4uJTDPph5UzczAXisUg+NyGEEEIIIUSUk6CbEEKIqFTM/+HiNQBM1vnscfAIBgnYODUygxNCCCGEEEKIGsjyUiGEEFGnhOnlAbdg3CxppNEIIYQQQgghRO1J0E0IIURU8bAJJy/V2E6R2vCDEUIIIYQQQog6kqCbEEKIqFLIIyG1c/IWJnkNPBohhBBCCCGEqBsJugkhhIgya0Js56GIWxp0JEIIIYQQQghRVxJ0E0IIETVcLARKQm5v8mfDDUYIIYQQQggh6kGCbkIIIaKGg3dqeYQLF381yFiEEEIIIYQQoj4k6CaEECIqaFyYLK71ccVMQeNugBEJIYQQQgghRN1J0E0IIURUKOEdwFOHIwtx1yFYJ4QQQgghhBANyRrpAQghhGjZNC6cvIGLl+vRS0zYxiOEEEIIIYQQ4SAz3YQQQkSUgxdx8BKg69yHye7wDUgIIYQQQgghwkCCbkIIISIqHEtD3fw3DCMRQgghhBBCiPCRoJsQQoiI0bgx2VLvfkz2hmE0QgghhBBCCBE+EnQTQggRMW7+BIrD0FNcGPoQQgghhBBCiPCRoJsQQogISghLL5odaIrC0pcQQgghhBBChIME3YQQQkSMDsPS0rKeNI4w9SWEEEIIIYQQ9SdBNyGEEBFjsiFMPRkYtApTX0IIIYQQQghRfxJ0E0IIETFWxoetJ01hmPoSQgghhBBCiPqToJsQQoiIUSQAKgw9OXHzUxj6EUIIIYQQQojwsEZ6AEIIIVquYh4FdFj60vKRVi2TbBw8i0kGdi7CxrGRHpIQQgghhBDNmsx0E0II0eg0Dpx8gMmOsPXp4a+w9dUcFXM3Lj7FwyKKuRGTnZEekhBCCCGEEM1akw66TZs2jSFDhpCcnExycjKjR4/m66+/Lt9fUlLCddddR3p6OomJiZx99tns27cvgiMWQggBUMStlPAYcDBsfZpsCltfzY3Gg4ffqJhVaErQTQghhBBCiAbWpNfidO7cmSeeeII+ffqgtWbmzJlMmjSJZcuWMXDgQG6++WbmzJnDxx9/TEpKCtdffz1nnXUWv/zyS6SHLqKc1pr8Yg9ujwmmBqUwDDBNQGswSnNQBdmnAF3DPq0UlhD2JcRaiLFbIvRKCBF+Gjcefgx7vx5Whb3P5sAbcNsDuKrsSYnEcIQQQgghhGgxlNY6PMl0okRaWhr//ve/Oeecc2jTpg3vv/8+55xzDgDr1q3jkEMOYdGiRYwaNSqk/vLy8khJSSE3N5fk5OSGHLqIEmv2ujnsyeiqgjiii8EvtySiVDgSzgsRWW6WU8TFDdJ3MqsbpN+mysEnOHgQMP32WZlEPI81+piEEEIIIYRo6kKNFTXp5aWVeTwePvzwQwoLCxk9ejR//vknLpeL448/vrxN//796dq1K4sWLQraj8PhIC8vz+ePaFkufntPpIfg54+dJj9sdEd6GEKEhaJVg/VtEn0/v5GiKQkacAPw8HujjkcIIYQQQoiWpskH3VatWkViYiIxMTFcc801zJ49mwEDBpCRkYHdbic1NdWnfbt27cjIyAja3+OPP05KSkr5ny5dujTwMxDRxGQXTk9WpIcRkEtibqKZ8LCywfrWROfPb2SYBAu4AWjyG28oQgghhBBCtEBNPujWr18/li9fzuLFi7n22muZPHkya9eurXN/d911F7m5ueV/du6URNMtiYfdvHDh41T3RTUSeqQpju/fpFMwClEunBVLq/Kwq8H6bmo0OTW0KEZH2e86IYQQQgghmpMm/y3ebrfTu3dvAIYPH86SJUt44YUXOP/883E6neTk5PjMdtu3bx/t27cP2l9MTAwxMTENPWwRpUzyGNljDbueGseP64eRmd+ZGP6JAWg0oPBWO/D+zwS/fQrvfhOwKG9RBl3TPry1GbT21hY0Svcpw2B4FyuDOtka/bUQoqFYGY+TaQ3St5s/sXNSg/Td1Lj4soYWHjQ5KNIaZTxCCCGEEEK0NE0+6FaVaZo4HA6GDx+OzWbj+++/5+yzzwZg/fr17Nixg9GjR0d4lCIaecjAwc0AxNpdnDR4MbCTZOIjOzAhmhkPyxqwb8lTVsZN8PylFaQ4ixBCCCGEEA2lSQfd7rrrLk4++WS6du1Kfn4+77//Pj/++CPz5s0jJSWFv//979xyyy2kpaWRnJzMDTfcwOjRo0OuXCpaFgdPBNh6oNHHIURz52igWW4AmtwG67up8VBTqgULioRGGYsQQgghhBAtUZMOuu3fv59LL72UvXv3kpKSwpAhQ5g3bx4TJkwA4LnnnsMwDM4++2wcDgcnnngir7zySoRHLaKVh2wATFNxzTv3MnvZeDQWiPCX+NQ4ePfSOE44xB7RcQgRDhoPNGixg4MN2HfT4WEPUFhjKw9rsXJoI4xICCGEEEKIlkdprXWkBxHN8vLySElJITc3l+Tk5EgPRzSgAu7A5Cv+8cE/eW/xaUTbsquN9yfSLc0S6WGIMHGzAs1+rBzZomYbudlMEZMa9BwJ/ISF9AY9R7TLYyyhBDdjuIMYLm34AQkhhBBCCNGMhBoravLVS4WoD40LkwNoTEw2AfDThhFEW8AN4PdtnkgPQYSJg3cp4iKKuZkCzkNTFOkhNRoPyxv8HE6+afBzRDM3Gwl1NqGSnJVCCCGEEEI0GAm6iRbLZAcFnEgBx1HIBcBeAE4Y8GtkBxbE6B4yy625cPJu+d8123GzIIKjaWwNP7naw88Nfo5o5uDFkNsadG+4gQghhBBCCNHCSdBNtFglvIBmPwAmawEXAE+e8xyXHTULm2FGcHReCmibCD/eGE/nVhJ0ay40JT6P3fwZoZE0PoNeDX4Oky0Nfo5o5mFryG2LuI58TsTBOw04IiGEEEIIIVqmJl1IQYj6cLO4yhZvIEQp+Pe5z/H0uR9hZQyx3IOS+LQIE+9S0qpL/1IiMZSIcDZg5dIKO9G4UNga4VzRxc1vQF4tjihEU4iDJ7EyDAsDG2poQgghhBBCtDgSSRAtWPU50jR7cPERJfy7kcYjWgJv0M13FqWb33DxA5rIz65saJrMRjlPWY7GlsTDBoq4Aur4GptS+VUIIYQQQoiwkpluosWycDQevg66f3dWa/679HjyClOIUfko7ZuNqvyxUenvGlDex2bpPqPKvrJOtAHKrLQtwL6OqVYuHGEnPVGWljYXilYoeqHZXL5Ns5xibsBgIrFcgIVDUMRGcJQNx6A3Jusb/Dwu5mPhkAY/TzRxsybSQxBCCCGEEEJUIkE30SJpNOAIuv/5by/i0TnXUlHFNFIzkJzc8qmTjy+PY9IQe4TGIMLFJJcCjgOcQfbPoYg5QAwJfISF3o06vsbgZmEjnWcRcF2jnCtamPUMurn5BRvHhGk0QgghhBBCCFleKlokkx14mB90/xNfX0FFwC3y/jGrpOZGIuo5eYdgATdfDhyNkvssEgob5SwmGxrlPNHCwz5cfFivPiz0DNNohBBCCCGEECAz3UQLpYipdr/VcOM2o2dmWWwU54PXaFx8jJvFWDkcG+ejoihgGWkaN05m4GEdEPp7ys0CPOzEQpeGG1xEWKgpn2J4FKHJRbWQIhVFIc/qSwVyAmxPw8rJYRuPEEIIIYQQQma6NXsaNyW8RBF34GlhMz+qY9Aeg8FB9/9n8oN4l5TqoG0ai8WAjy+Pj/QwgnLzNSU8jJtvKOFRXHwe6SFFFSdv4OAF3MzDzRdAYohHFlPI+Q05tEZnUkBoM/3Cw1u0omWonCOwOgo73sBnVdmU8HBYxySEEEIIIURLJzPdmrlCLsNkGeANjiTwJRa6RXhUkacpwcJITFYF3H/y4F84+PwYAJJYiZL4dFAe1lBRBcLAZC0wKbKDiiIe1lbZUlD6/1BmfOXh4SAWWod/YBHg5rdGPJuicWbURZ43R6UrxNadsHESLt7268Ud5PehEEIIIYQQom4kktDMmSyv9Ejj4stIDSVqmOwjn/G4eCOk9o2V+L2psjCWihmBJrSQ5XyhsjI+yJ7QAkKFnIqmeeT0M8lsxLNpnMxqxPNFjkJV8z7zpVlWGnDzXwJuyM+uEEIIIYQQYSVBt2Yv1ueR0cITZXtYRwFnAbkhH+NNfi+CqZq/zc03ERpJdFJ0IFCAY/vBtuzJTsftAV3tKuYCXMxtqOE1KoMOdT5Wa1i8pT9PfX0pd3x8M498eRWFjuqTHbr5tc7na0ocvIeb72t5lP+bzuQvTA6GZ1BCCCGEEEIIWV7anGg0JTyCi+8x6EwsdwDFPm08LIYWnCy7iFuoTcANwCNLrqqlSK70yECRFLGxRKNibiZQgOP576awLy+N9668M4RemscMJGeIs0sD+WXTobz962lYLSaXjv6cQ7uuo8hhJyEm+LJKk211Pl9ToXHi4PEw9aZqLDIjhBBCCCGECJ3MdGtGHMzExX+BTExWUMStfm10eT6plsXNckqYjmZHnY4WwRn0w8IJeGP4qdi4DAczcPFNaa6pli5wMv9CZyxJsQUoBaqGYq9ufm+AcTU+0y+/Xehyi5ModsUyefSnjOq1ihiri7TEwjCOrqmqz++nqsFcjYet9RmMEEIIIYQQohKZ6daMuJldZUtGlcc2YpjSSKOJHm4WU8QV1LYS6Z9b+zD13fvYk5MOOhetS4MjBmgTLKWBElMTcJ/Gu11rMAzQqso+vI+D7UNDSgLcOcHO1LFx4XtBwsTNJlzMQZOFp3xJaRYl/IOy19rO9cRyTcTGGB0SCFSx88KRc1AqtPekh4XAP8M7rIhw1PnICQMWkRSTz2Hd1gAVgcryn72AbGiKUERv9d/68j63HlCnYJkZYMtGYEg9RyWEEEIIIYQACbo1K2aQGTUVXLj5AwuDGmU80cLBDGobcHttwVnc/ckt+OXi0gT6nlrzvupy5lezrzgfbvrEyX9+dbHszuTgDRtZCf/DyQNB9la81k7ebdFBN+9Mv+yA+47r/ydOd01BIy9FevgHFxGJQF6djrRb3Yzpu9xve/WvXS4eNmFt5kGkeP5FERcR/BdQMPl+WxRpYRmTEEIIIYQQQpaXNisGHWts42BaI4wkuphsqPUxj35xDYGS30fKmgxNiSt6lmo6eSrEljloWt4SQI1JMQ+QX0Owx26tOeAGYNA2TCOLtG71OjqUpbi+4jDoWq9zRjsHH9Qx4AaBLgHczKv3mIQQQgghhBBeEnRrJjTFmPxZYztFasMPJurU/kt3Qmz05b6zWSI9Ai+NC0IOpFkBewOOJjq5mY+L/1HbGZbB+2v6FWFNdkEdipIs39GH4Y+8zxkvPsOSbf3ZmRn6TCw756CaSRGKQEwycfAYdQu4EeS4lvfzKoQQQgghREORoFsz4WF1CK0SiOWuBh9LtInhglof8/nU6/F+IdWV/kTOhcMUFiOyM+80RZTwJoVcGfIxNk5GYWvAUUUnJ1+FuUcPOsBSwKZE1yGfm9Yw8YVpZBak8fPmUUx84VUu+M9zIR/v5B3cfFvr8zYV4Smw0dvnkYd1YehTCCGEEEIIARJ0azbcrA+hVRHF3E0J0/GwraGHFBU0JiX8u1bHFDvtHPfMW3h/PFSlP5HzwVLN8l2RraJaxA04eRaTP0I8QmFjcoOOKXq5wt6jmyVh77Mx6RpzTvrzmBa6pGVgNbyJD01t5T+XPliLHhRmM67G6ebHMPSy3eeRWacKz0IIIYQQQohAJOjWDHgowB3SF0sN5OHkJQo5FTe/NPTQIk5zENhXq2O2HOxCiTv6qoW+87t/BczGYlKMh8W1PEpTzA11CrY0dXbOD3ufHnaHvc/G5GZRrY+xWjw8POlFrj3mA1olZGE13BzSoTZBNAMrE2p93qbCU4fluv58A8Q2xoWhTyGEEKL5MSnBbIAbq0KI5k2qlzZhHrIoZCKBKtCFooTpJHJUeAcVdWqfz6lr2l4S7fkUOKMrF9SkIZH7cTVZUafjNHtx8wu2Zhz4CKwhZkY27XskmroFjScMXMyx/f/gxgkfMHfV6FoWUkjCQs86nbcp0OwKe59mHavLCiGEEM2VRlPEVDwsBMDGpcRxR4RHJYRoKpr2t7gWrpibqWvADWjWCcbLeGoxm8/tAacLkmKL+P7Wy4mmnG7xNjiyR8PnRnPxNQVcQBE3YXIAAA/bKeLGOvepmk3lzdCU8B+KubpWxxSWWHF7qm/jYnY9RhV5Lr6s03FKgd3qwWbxcNqhP9fy6Jw6nbMpcLOZuhdQCM7Dj7LEVAghhKjEzfLygBuAi7fR5EZwREKIpkSCbk1UqNVKq+8jI0yjiV6akpDa5ZfEsXDDMHbmeANEx/37LaIpp1uRC67+oGGXaXrYRjG3Y7IaN99RxJ0AFHIJ1HGJqJVJWBkaxlFGN5OdOHmh1sct3jqEDfs6o7U3+KsDxHg16zDZG4ZRNj6NhiY69mjlqUc+N63hzv/dSIdbvmfqu3f776eGCLAQQgjRgrj4zm+bky/RDXDzSwjR/EjQrYnSYZjBYTbxHFGhULQJqV1uURIlLjtxNm+FRRNLQw6rTlbtbdgPdl0lKGLyZ2neiqw69+nmM1xhr+QZvZx1rJS5K7sdecXJbNzXie//OiLoEsqmGnTzzsiqbSDnkGr37slO85kdaJrBgpUFtTxv06DrkVPmgc+n8vrC83CZsRzeY02V160zBt3rOzwhhBCi2fAEKCLm4HGcvBmB0QghmhoJujVRGjv1/+dLaPYzGpy8F1K7Tq32M7LHauLt3plxx/ZdRKSXlFb10MTYBu3fYHCVLW5KeLyevVpw17oAQ9PlZH6djjuu36/0a7eFN38+g4//PDFg8AhAkVyP0UVS7QNEisyg++asPIq/Mnpyzbv3MWfFkVw1837mrhrF6t09/F47Z6XlIM2JjZPrfOyy7f0BxU3Hv8VlR31WJci7zy8AL4QQQrRkwSY7uPi1cQcSJTT5aNyRHoYQTYYUUmiiPCyg/vl8MvCwFqtfsKX58IT4YagUpCVWzIhZt68XkV5SWtWhnRo6Ru4GYgDvbD9FB9x8Us8+PVg5vL4Da0KW1+moLum5aA3j+/2GiTXoTDcX32Chd92HFyEeltX6GF1NvspX5l/AMX3/4Lu1Y3C5Y/hl06FYDDdbD3bl65uu8Wnr4gNi6hGgilYuvqjzsVeN/ZhFW4Zx1diP0Zoq7zcXLuYRw2X1HqMQQgjR1BVzJwRZHWSyFJNsDFo17qAiROOhmDtwMw9IIYHpWJrx90ghwkVmujVRivSw9FPX5XBNR+gzbJSq+PK5LbNzA42n7m6ZHVp+urpy8QH4VJhMgHrfxUqnmPvJ40hc1DYJftPiZk29jlcKjh/0J8cPCD4zMNQchdFG0T6s/R3VdynZxSkUOGLp2XoHk4/8nEO7rqNDyj6/gKXJyrCeOxpo3DiZXufjTx26kE+mXk+hIy5ggNegYz1GJ4QQQjQPRTxZQyEoNw6eb6zhRJybhaUBN4BcinkwksMRosmQmW5NVKDcAnXT3JcRWajL0rakmELyHdFV3dXS4BPvygpGeNfnaTaFoc+yJYJOirkRK3+iomwGYbgUcXNI7bQGU4MlwC0PpcBSTTpBF78Qxy11HGHkWOgBpFK7aqLFQffcOO59MguSmTjkJw7r8hcebWBVJpOP/CxA6+a3hN7DhnodrxSM7bs82F4MDqtX/0IIIURTZ7IbN++E0C54OozmxsU3Po9NNqBxo0pDChoXxTyIyRpsnIida5rtdb8QtSEz3ZooD3vC0o+F/mHpJxppivCduRWgTWkApKoTB0XfrKybjrM3aP92LkTRrQHP4KT+M+ei2cGQWv28cQg/rTvUP/eYWwXN5VZhQ2kl0KbFxXxCDbh5TINX5p+N1pCRm8pDn13F+7+dzOb9vSlb8p0Y66Bb6wMc3WcFCbFOkuNKiI91EmsLFGBrfh9z7gadoaypT/EUIYQQojlwhZin18OPmOxo4NFEB+03X0djshUAN0vI51TcfIbJJhy8jDOEoKUQLUHz+zbSAmg8aHLD0pfJzrD0E41MdlFd3jut4dfNA/lzWz+/ffNWH92AI6ubrZkNG2xx8TW69IOzYXRGYWvA/iPHWzI+tH+fFTv7syWzm8+yviKnjQc/u459ualoHbgKZ9mZqpsBFq08LA257Zin3uKd387gxvfvYORjH3PzCe/yt1Ff06vtJrIK0onjWxL4CUJeYu/BDEO152iiyWvQ/ltS8RMhhBAiEEctKpM6+bgBRxI9YrnAb5uHNTj5kCIuo2ruOycfNdLIhIhuEnRrYkwOUsjpmCwKS3+uZpzTraa8d/vz0yhyxvH+794k6y4PuD2wJ7sVRY6YxhhirYzo3LA/rg6mNWj/Bu2abbVczW5CXcbcLukgqfG5/LFtQHmAbcPebqzd3Qu71Y3HhGJn8Kn4ZhOcLagYHlK7QkcsGzJ64fJY+WDJ6Rx/yM8kxxWV709LPEgxp2MQSwLvh3x+N3/WeszRzMqYBu3fydsN2r8QQggRzUwKgQMht2/O36cqszAAGxeVPlKAlRLupYRHA7bXZDTa2ISIZhJ0a2IcvI7J9jD2GH3BpXCp6QMwJa6A9IQcRvVcBcDvWweyZk8Pflw/Ag/VJNaKkJm/V79Utj40BegGzklh8mcYcxFGDyffUsBEn215xXEczE8IOGPt3JHzOX3oAtbt6cybP5+KUuD0WImLKWH2smPZdrAtsbbgs+ZqM2ssesSH1CrO5sBuKeGuk/8DaEb1WBngNSzGwaso2oR8drOZLZe0MhpCeP5Ol0FWYVyt+9dNcDalEEIIES5ufq9Ve12LAF1T5mE7HlYBqRgcQc1pYxyYIaZfEaI5k6BbE6LRuJgV5l6b54eEyV4cvFFtm1ibk+7pezjz0O8BSIkrYnd2W3q22UU0/mh8t77hZji5WdFgfftqXstLNZoSbqHqMubnvr2Eg/npAStDejzw9arRZBWnEWvzHtc6MYeJg3/i543DyCpKDnhcGVcTXPoX6kwzw9AsuvtCJg2bz2uX3M/ZI77D4fKv9+PkG3QN+RorM1kXctumoJjHCeV39+NfXcFXK4+pwxlCC5IKIYQQzZHbL59bTbUHHWFL/RPNSrgHk9VADia/hXCEgiicyCBEY4u+yIIIysHbQInPthKXgcMZSgL2YDRmNXnPmiKNSSGXE0pl1rTEIuylcaABHbYyoMNmWifmEo0/GsmxDTmmggbsG0Bh42Iszawqojcnov8PX2pcAdlFyQGPmbtmFDN+Pou0hDyS47yve482GZw5/DueO/9pYg13tdnhPCwIw8gbl6cWyy66pe/HasBZw38gPTGfWHugYPMuHDwUcp/usFTijR5uPg+pXWZhKit39Q34+aA1eDyK+WuG43JXzSMoy0GEEEK0XG6WVdlSc+CoofOtRgOT/VSXL7uqGO7EoFXDDUiIJiL6IgsiII0HJ8/6bPt2zSi2H+zETxuOqHZmTM2a19IrKEDXoUCEYUD3Ngfp1XYPoSbFb0yPnRbbYH1bGYOiU4P1H8f/iOWWZlc23M33AbefP/Ir8orjAwY71mf0YtGW4Zw08Cc6pXiDG0pBQoyb1IQihnTbhlHty7Sr/gNvdOGfUVu7ZbbNZ6abm33UVJW5zJ0nv8Ex/Zb4bfeYsGJnLx6bcwWZxSm4PRa/zxBXC6nEJoQQQvgrqvLYUUN7A93MrnGr8hYNq13owMapDTMYIZqYOgXdXC4XO3fuZP369WRlNbeATXTylqL2TUL/9q+nsmDjcA7rtrpefTv5sF7HR58k6pOrTilQtVi61lgO61LT1Pa6U8RjUJdlaKEp5iwKOAkzhNmHTYmDzwJub5+SwwmDfg8YDB/ZYyUxVicHC9IY1n1DHc7aFItRNMSFaG1+xgsb4PyR4eQ/Ibft2CqTUwYv8nsf7s5px/d/jSa3OIn1GT2Ii/F/T5l8U9+hCiGEEE1SbfLGepm4mnkFU80edC1v/BZxJdovgClEyxNy0C0/P59p06ZxzDHHkJycTPfu3TnkkENo06YN3bp148orr2TJEv876iI8DNr6bbv9xDdJtBfTOrF+SwM1++p1fLTxzqZqXa8+Lho1NzyDCZPR3Rv+7plu4BmPmsxmGODdHHRPsNmnR/VexSfX3chjX11V52XhbuoSrIukQvbnpVDksJNTFI/TbeHnjUPYm5OOWfoaZBYk0/+eT/GYob3XNTuxcHrIIzDJqcO4o4+nlhe8gd6HaQm5pCfmsjunNZ1TA//+t3BoHUYnhBBCNG0mmWjW1Po4b4GB5kuRBiTiDR8oFGnE8hiKLvjeXK1YimuytsVUdhWiOiEF3Z599lm6d+/OjBkzOP744/n0009Zvnw5GzZsYNGiRTzwwAO43W5OOOEETjrpJDZu3NjQ4255dDyF5mO4dUX+tkGdtzDpMG+iz1p/ea/U3qBneMYYTfTokJu6PYqsggQ8HnB74Js1R7AvvzXJsTnUJm9BQ+nTRvHF1YkNfh4rY2p9jGlCUUmoM/A0itpXUoxuoc8+LPsZVQpGdF/HO3+/r/bLwrW3H4OEWh4YWdpM5u5PbuKRL6/h3d8m8Z8FZ3Pzf+9k3NMz2JjRDYBr3rmfnOJWON12tK7yO01X+ajSoLVBPI/hN4suyO9C1UyKeCjd2ec51iVwmxhTwgWHf83PG4fx8+ZhfvsLPZOwMqIeoxRCCCGaJoUNtFFxLRLi56zRgGlaooEingT+g5VjsHISCbyPnUkYui+Vr8UsDKdyiEFJcSYhQvvGuGTJEhYsWMDAgQMD7h85ciSXX34506dPZ8aMGSxcuJA+ffqEdaAt3Ra9k4HOe4gH3rXBkYb3y3uc3VXepjZfvrboWHopEyujsHNB+AccYYMcXzHPDh1LPwOCZSEwNUx49jV2Z7ehX/ttHMhPZ9OB7jTMcri62XhA0/aufO+QdMXINJX+XmmfYUBiDNw+3s5tx4ce5BpY8n98bYd2AZ56MQQMlz30+TX8b+kJ3DPxP1ww8uugfStlwcJI7FwS8niaglgepFjfU2M7jfc1jK/yM6rUALRe67Ot8nvVpcFW5d/jaw9cYG1aF3azXMczd/UYbBYPKBjVczk7DnbEo22c8Nzr/HD7FDILU3GbVq55935evPAxEmO8yxGKsbLFvIROxgxSK/V5pyuBaXZFpvlPWqknyn8WPIBR+rPgDWoqYrgR1cQClcHMM3uTpuAwvO+rPRo616GfGJubWJuHuavHMv3H87jqmP8C8ObPZ3L34bPJUvcQb8iFshBCiJalRNu51WXhAZuJgYGBSVzlm11AET1ppcbj4g3AxKAnMdwQqSE3GguDiedFn21/c27lLptJTwU5+lh6GfdQzI2YbMbGqVgZF6HRChE9lNZ1r3vZEuTl5ZGSkkJubi7JyYGrETaG11wfcbPnX3jClM/JgsF5xinEKDvTbQ+Hpc9oklYygqIqlV4D0W4b+t4fG35AEXLDWDvPnFVz4M3UJvGOIbXu33xlOuwY7LvRVozxyPE+m+zY6EhbpljO4k7b1bU+T7T60DOH/7g+4pdaJfX36qW6cqkxiRc973KQbMA7WV/XcEtVociNWYpdNZ2ZW+NKLuHn906DVSdW2lo5bAz0/wnWjaVyWNl65tOcMjqX8cZobnb/C4AE4rBixYaV9+3P0oUOHOI8CaD00rhidqpCYcPKUPqzMPaDBn2OjeV511s84XmVHPJrbGvu6Au/nQFFid7IvAGk7oOxH6JSD6I/vQkWn4NPKP/oDzFOfYkvrNOZYD264Z6IEEIIEYU2mzsY6DwFgHRSyawhPYVC0ZfuPGS7kTMsExphhJHjNDVrHSZdbIo0i+JC183MNRdSUlpoogNt2BIzH1W/Cn9CNBmhxorqnZk9Ly+P+fPn069fPw455JD6dieCWGKuIo4YCijCQGHWs7qmB5MPzC9JIK7ZBd1c2hVSwA1AWV3o1N2Q07RmDoXqwz+dIQXdSgJUZVIoEkkgn2pyBh7+mX/Qrf8vfs2cuNjGbrLIrXEsTcl/PV/VKeAGkKmzedDzos9Pck0Bt7I22/Vu+qjudTpvJGxmB8ZFD2NumQ2LJkFCAYyaBSvHQ1YnGD0bo9tfmHmt4Me/gSsWxn6I2WY3dk6gSJdwlBpOsS5haWmelUTiWWWu5wjLUA6hF5vZgROXz3k1Gicu1rIpEk+7QczwfBJawO3Tm+C3cwPvXHRB6e+9ynPkNIz2BtwAlut1TECCbkKIpqvkxbbgcXiXgiR2QMW3I+aiBZEelohym/R2RqjBaDR79f4a22s0meSy2tzYrINueR7N2K0FrHWYxCrNPzr/yaf273za7OUAhRSTKEtKhfBR66Dbeeedx9ixY7n++uspLi5mxIgRbNu2Da01H374IWeffXZDjLPFW8JKCkqrv9Q34FZZIcXkmvmkGElh6zPSahvYUbddhH7/flh3BJhWvD8WFvxm4jRBgzqGViulOEDQTaPpTVeWsTbAEV7G4V9jGm746nrw2OGIT1EnvRq0/Q/m4pDG0xRordli7vSbXRWqUAInwfzs+ZM+Rvc6H9+YtNbklgZujZ6roGelRMPtZ5b/NZ1UMpOz4fSXfY5PUyms0uv5Rf8JQFvS2U8mxZQw0/MpV1suYBcZfgG3yqrb19RsZGtoDX87s5qdqkrArXTbn5Ngkjfo9r7nC263XVGnMQohRFTwOECXfj4X7Anj1bNortabW/jYM5dteleNM9wqyySLDWaIn89N1Kd5LtY6vD9PDq15MrMIo4N/u288C2mj0umiOrCbfRypDpOZb6LFq3XQbcGCBdxzjzeH0ezZs9Fak5OTw8yZM3n00Ucl6NYAnKaTDXpbg/X/p7macUbohQei3V7zQK3aK6sLdel9xBFDMQ7vktPHPoLitjTlwNvQTgazrwytAEMRxQG3VxdwK2MM/xaGf4v2WNDT/w9910I0CuxFcMWNGF3XlbfdpfeGNvgmYJPezga2hjUIHqrfzBVcRtP4XZuhDwacSVlVsItbm7ays9L75hbjMu40n8aDyWq9nuXmX6STSj6FaJcdPe1l2NOfyj+3DuDwTvksvCmR2KpJ8poQj/YEfb9plx398nTI6BtibwF+t9kqfg/8xWZKtINYFVO3wQohhBBNiKlNLnLdympd+4KAGvhG/0KJWUKsERv+wUWBFEuVawZL4JvHf3Pf6rMsd1fMQlrTqoFHJ0R0q3XQLTc3l7S0NADmzp3L2WefTXx8PBMnTuT2228P+wAFbNI76jSTJlTb9O4G6zsSNpvb63ScEydQGoR74CwALjAm8pb9ybCNLVqV6JqDIjXRn9wOOw+l/Mu8MwGmT0c/Og5leN+/JTgwtYmhQpuBF81+1yvDEnAztwyGDx+AolTovopel7zC1pjqL/gW6xX1Pm9jWa03VLvfXHQ6fH01uBIg+SBcdG95oLYjbZlmVuRi609PhlsH0c3Zke3swURzrOtibKWVSfWH98OeAQQKKK3YbXLRzCL+d0XTLahwUGcH3afffxgy+gXag1/5FeWGI2bDb+dUNFMemOL7Gb7W3MQwS+ACSkIIIURz8oe5uk4BtzI55LGSDYyk9jmSm4LTkqxcn2bn3RwnfWMU/2jTh3c4im/wTSujgOJKaX526320VhJ0Ey1brYNuXbp0YdGiRaSlpTF37lw+/PBDALKzs4mNbZ6R/Uj7zVwedJ92dQBPGsSsQ6m6FVmYZy7kcs6puWETsV3vqdNxBhY8uMsfJxLPLp0RrmFFtSIdeKZbdbS7LbjbQsx6lHLBrv6leyoFO0wbOOIhzru8sBgHhRST1MQrSe7Ue/mXaxoWLFgxcNRx+aK5rxu8No3y12zTSPb+qwt32U6n6yYXL98cw+qh/r+md9N03pfV/QyZv50On/2zYkNuB3jldczbzwXTIOvb67Fqk6TjPyau3R4ONwZzqDqEoao/B3UOhRThxlNxU2Jv79KOAs9mW7knPIVoIqXaLwN7ewXZofz/npyBccbzcMbz1Z7vaffrvG95rhYjFEIIES2ucN7Nj+ZiNPCG7V8cazki0kOKagfIqlV7bRroX86A9UdCv1+xHfUFf5irGGk0z6CboRTPdojj2Q5luaIPJ9+5nW9M36Cbt7prCd3oiE3ZWGNuZKjR368/IVqSWgfdbrrpJi666CISExPp1q0bxx57LOBddjp48ODqDxZ1siNIEEnnn4Tefw9gQOwK6HhDeeBNa9AOS0VjuwcjyOSitbr5JBn/yD2Hl8z36nRsIvFkk+ezLVkl4dEeLMoS5Kjmobb5xXTh0eiMxwAr2DdCp2vgyFkw+058vuSn7IVY30IMB3U2SappB922m7tpSzq72IeuzyzUleOo/HolOgtYO+1k4rQ3+HvmJ24eeCyGV2/wvaHhrhQcjnYFuij4zj8nBtio4PvJsPRUikpfm8xVx/D389czbbT3C0NXoyPxnlgKK+W5NDAwj5gNX98Y9HRXHWmv8/OIBp94vgm+01ZNwZOqcjtjvv0YxqX3VNtsof6TPF1AsgptmboQQojo8Ye5ml3sA2BnC7mJXFce7eEp92vEExtSMTbtsaAf+x8UtfFu2DQa14LJbLz34zCUKYxuGeYBJrv+yQa9lXwKA7axoCigiEPozVa9q5FHKET0qfWvhalTpzJy5Eh27tzJhAkTMEojOT179uTRRx8N+wAFLDT/CLhdZ0+m/At7yVAoGQxxyzGXHQcfPUzV2R7mEbMxznzGr5/9tbyzE83eN79kT+kFRm1VDbgVUMRX5o/sI5OOtA3H8KLWPp1Zq/Y6+yK8xSYAZx8oOgLjiC8xY/Nhzg3gSIABP6POfoqquVOXmWvoYVRN4t60bNDbWMTy+nfUayl8X7b8T3PO+i/KA26Ubr3lKYdf0K0EBwVmIYlG9Acv/2Jz8J29/oCdg6ps1Kgth3vzApZTfP31IVCaerKb6uR3R9rExDjmI8zELO9y1aIUvEspgfg8/nGyg9uPbNo3hraZgS9ctQYO9A6wxw3HvQ2/nQXFqb671h6DNo3ypd+B5JLPcvMvxloOr/OYhRBCRIZLuSnLguFqQjfrGtsacyO/epayUW8PKeAGwO5+FQG3MvmtWbAjD/qEf4zRZLfex0/692rbeNBkksN+nVnrGYRCNEd1isWPGDGCESNG+GybODHQjAURDqsJsqTIkgWuTpQHPyw53v/PuhcIMK1t8Zno499EJfnmBcqtRxXFaFOsQ/ywDJGBwRZzBx0tzTvolonve8IbAqqGNQscJhXvPe/xxtCfYOhP1Z5rhvsTTrYcQ5xqusvRqwZo68rouQLz5P+Dr68F7GQk+L/P8lL8l0pqYLVnA6OMw8Iyjoa0x7M/6D514n+IyepOycqjAQtYnHDqC+iVx0NOe5+26YkVr0OaSvHvC4VGlxf2qKqb5Z9A0w66LWJZ8J3KDbrKTL5OGzBOfANz0+GwM9V3n+EBVf0sTScu/vSskqCbEEI0QU7tLP97SajBpBboSte9LNVrandQQi7++WM1a+L/YIu5k55GlzCOMHoU6iK2mDtDamtgsIGtFHqKeN5W/cx6IZq7WgfdLr/88mr3v/nmm3UejAisbAlVVarN4+j994G7NarVuyj7Nu8OM1iSegVm4H/yA2YWbYy0+g82woItZTN/nQRzrwWPHfouRl10H8pa/V0/c/6lmN9fzDhPHJDbAKOtWYwFLhlp46Vz4zCMhqu6eND0vQtlw4qzmruiqvXzaE8yuDqjUj5Bxa0M2lZr0J/dCH+cDsC8UbO5+rQHeDum6RaoyNI5YevLOOa/mN3WwPTXmNtjHN90PooJu7z5MUpsFs6fHRfwuAX6D0YR/UG3TWwLui9OxVDyt3sw/ua73Rz8E/z7fXAkA4oEO8y+Ir58fxr+QTddQ1GL+iRHjgZaa4qDVIHV2weCvRActoqNMUVw6V3ev196Fzz1PriSvI+VCRfd4zcLNZDZ+jtupvrPfSGEENEnF2/aAQNFHrVIQdDCuHXtZwGq9N3oIz+EXy+o2Hj0B5C+h5c97/KMcVcYRxg9PvF8y5WemgNoFgw8pelXMjiIW7uxqma+7laIatT63Z+d7TsjxuVysXr1anJychg3blzI/WzatInNmzczduxY4uLi0FqjQvkGUMnjjz/OJ598wrp164iLi+PII4/kySefpF+/igpuxx57LD/95Dvz5uqrr2b69Om1OlckBfsyqey7UJ2v9t9xwusw71r8kon3WoxKORCwrxtdj/BBTNNPmJ1IvN82c/nx8PkdFRv+Gou+dy66VekyVAUkZ8H4GST0WUM88agfL2L/Nxc2zqCr4fDA64tcFLngrYv9n1u47KqyJLe6gBuAsh5AdbohpL717Fvh97MqNvz8NxboH+Hc2o4yenjwkEJS2GaJqq5r0enbILM7F53+qnejtQTunoQRH/hCeaW5Liznbmg7CF7YpHJuOgXEEIMDJ0ZiDjx0CiPUIH6O+dDvuJ6qKycaY/jDXEURxbjx1Lh05i+zaeeuzKMg4GeBmd0Opr+Kz+97WzGd7r+EDEsmGjCSsuGRk+t03jV6Y50+n4UQQkSOU7vKA20muvr8qi1cYh2LexmnvwSnv+S3faW5vr5DilprPTVfS9mwYsNKLDEUUERn2vO652OusUb+e5UQkVLroNvs2bP9tpmmybXXXkuvXsGqp1XIzMzk/PPPZ/78+Sil2LhxIz179uTvf/87rVq14pln/HOOBfPTTz9x3XXXcfjhh+N2u7n77rs54YQTWLt2LQkJFb9Ar7zySh5++OHyx/HxDRe8CLffXSvL7xSEyjjuPcwRc2DVGHDGeJcR9f0Do33w6cAL9BJecb/HVOtF9R1yRK1mg//G5RMCtIyD7O4VD7O6wxuHUXj8fyg+fiaWFSMbaIR1M++vulXHDNV+s3Y53WrlrzF+m3LWDm248zWCrXpXWJdlK0Mz8vYn2LezDTu3tCWu/V7i+qwm1ygOGkrawd6wnb+hFJnFxBOHs/S10tq7HLms4IuqFCjSeO+MxmLHg0l3OnKm5YSA/XZXndivM4kjlkxyALDXMDuzqeeuPKCzSSCOQqpUGt48HL8bLK44VG57EtLyKQgyUzpUHkw+93zPJOvx9epHCCEam2XI39HOAnRhBpa+Z6FsTef6v7726H0MpT8r8N6g8/vsEIB3FvmfrA5rn7k6nxLtIFbFhLXfSDu+ZDJLqXkZrgs3SSSQVbpKKE2lsklvb+jhCRHVgq1DrF0nhsEtt9zCc8/VPFPq5ptvxmq1smPHDp/g1/nnn8/cuXNrdd65c+cyZcoUBg4cyNChQ3nrrbfYsWMHf/75p0+7+Ph42rdvX/4nOTm5VueJpB89i+t0nJGUg3HkFxjHzsIYO7vagBtAFrnM9HxCrm66+d201uVT6X30/zXEHhQs9K5zs/VbEr6BhcHoHg07JTurIZfP9lheZYPG1SO6Xt/aOmCGP4DTX/ViQ5//47BjVtKh31Y8hhM3nqDtt1czgyxa7OVAeWVcnT8evfVb9Jb56JxzAPyenxULXVQH4onjXMsp3GoNvKwxRtlBQ36ln/eaZmfmhCkPX6TsZX/gL03dVlKRgbH0/4aLpJSiegfcwJvX7Tdzeb37EUKIxmYb9yz2k14j5uzPsQ6egqX/eZEeUqPZw/7ygBtUpKr5wj2fN92z+NA9h71m4NUvLclBnc0h9MIWxpKjezjASt18Zrvl6DwedbzCYlaEXGjCg5tUklAo9uuD5OvAVU6FaCnC9htm8+bNuN01r4n/5ptvmDdvHp07+1Yv7NOnD9u31y8KnptbGlFP881N9t577/Huu+/Svn17TjvtNO67776gs90cDgcOR0XenLy8yH5Rm8+iavebBSnwzNtQnO7d0GoP/GMyFCXD82+BM6nKERqOfg82jYCM/t5NMYVww2VsbL2dBeYSTrOEvkw4muTpAgyUX5jCGPUZZlZ7WHAJfjNCqkrIAcB24gwuK76Ytxa7a8gU1bAMBSf0t/DRZQ17d7Yhc32o8x9BO+2w/ijvhgELcJ/zCB59FhZlabDzNqSDVQpP1JW5qw9MmwaeWGYCM8kFXoOjfoZhCYAFlf4KKtb/LuwBMsk3C0gyEsMyloawydwBgNYKfeCu0kT/Cp35D2KTfsBlyfL5+TLRbNDbGEp/klX1z2uQ6ssyvTbksYRckSxKBUtcbLTZhXnRXfDfe8EVD0kH4YobyLCE6T2KyS/m0rD0JYQQonFkmAeIwY4DbzGFIu29aXOD+2EyOAjADOsTHM5g2pHOHvbTQ3XBrmxB+2xu3NrNLp3Bcv4Ka78HyWKFuY6RxpCw9hspv5sreVS/UqtjcvEG2RSKHexltvktr/JIQwxPiCah1kG3W265xeex1pq9e/cyZ84cJk+eXOPxhYWFAQNeWVlZxMTUfRquaZrcdNNNHHXUUQwaNKh8+9/+9je6detGx44dWblyJf/85z9Zv349n3zyScB+Hn/8cR566KE6jyPctlBDhZg3n4Xi1hWPszvBhw/Ant7gDDSjT8HPF+MTfHIkwquvUHzPmTzjerPJBt0OkBU0r5NxyquYAxbCqy/5V/grYy+CK/4BgEM5ePXCBF5tIekHghXrqMrc0wNmPAMF6RCfC5f+E6Ob78WKNg30/56AtUdAcelkWmV6C1hccnd5AYts8mhNq7A+j8bg1C421/RzGapXXwZP1UIJCrqPgWITFOi9z0D3iSjl+9420WxgG8MZRLRaqisHCxWVf++U4ERVCrkNojer2UQi8ZxhmcA/rNV/nnQwWlPNREA/sTTtZR7V5fAzBi+EwSeWP04kHkcIL4759RWw8ELQNkjdC1feiJG2z6/dH6yWvG5CCNGE7GBvecANvMtLq64IKaCIcc5L2Y83xciPtncZZTm0sYcaMc96ZnC/+4WQ2mqPBf3uI7B+NCgNoz5BnfpS0IJEC8zfuZLmMbPyoK79TTwbVly4y3PR5lGAS7uwtaCgrhCV1TrotmzZMp/HhmHQpk0bnnnmmRormwKMGTOGt99+m0ce8Ua7lVKYpslTTz3FcccdV9vhlLvuuutYvXo1P//8s8/2q666qvzvgwcPpkOHDowfP57NmzcHzEF31113+QQW8/Ly6NIlcmWf86hhOm5uW/9tmZ0hP72agwJ8QhSlMFj1Y5Pe3mR/Ke7S/l8WKzO6r4XHvQHFOGIpDjDzxY4NJ94lVaY2MVRYVmBHvWBVESvTjjj4v7fw/trQUJgO015D33saKjGnot1Hj8GGo/BZCacVrD8K/eYzqKv+gUKRqXNorZpe0G273k0aKWSTW+3yz5C4AlQmNcBbD6T0vWcmghkPFv9Zt7v1vqgOum0yvbOXldLo9P+Dg7cCCpU2HTxOzNm3wvpR4LazwWLHbLWNvNNeoGuvDjX23YWa21TmpGHzIja0383gFYKrakUyO8kAvHeZAxZgWHAe/HRZxYbszvDsB+iHJqAsvu9rE5NMcppkkFwI0XJ5tn6D9jih6ABGx1FgWDDS+kZ6WI1id6Vr4p50IcM8SKJjqE+e6P36IHnkE0csNqzs0HsZxaERGG1kFGrflA3mrj7w2U2Q2x66rIUznsFIygFAz3zce21b5pcL0fZi1IlvBOz7gG7aeWQrW21uJI1UssmtsVJ8mVhi/CZCZJNHW6r7fipE81XroNsPP/xQrxM+9dRTjB8/nj/++AOn08kdd9zBmjVryMrK4pdffqlTn9dffz1ffvklCxYs8Fu2WtURRxwBeKunBgq6xcTE1GvGXbgV1LTsb/TH8N1VVATSNLgJPpsLACdgwyf4Nvwr4nQMPVUXVpkbGGYZWJ9hR8QmvY2OtGUP+2tsO94YzZdmxXu57Itp5S/mDpzEEdsgY40mNzof8cvp5v1wzfH9aD3QlYpfGWXvHQOd0RPVu9Lys5zD8E89Vdp+p/d9pdGs0uvpR4+wPIfGtF3v4UC4kvL3+wXWVyk0YQLrNfQrfc0S5qMCBNwA1nm2cnoUr9DdwDYAtBkDuecA3sFq7YBHPgdXxRLSEoCCIfDK6+ydcoCarvvbqzY+jw0MzNIvE6YjFrb3h1gTOv2FYXGV72uqzFosdI8jhlFqKAd1Dvs4SH6gmzdrjvHf5o6B/NaQ6v2yZhYkw64+GLEOVvfYzLExI+o6fCGEaHSuz84FXel3f2JHYq9sPrm2qmPHzhhG8DN/soWddKCNX2G27eZe+tKDlaynGNhEy0p2X1TpYtXcMNK7eqjsenVNe1h7DObdp3sDb1sDFAD74VL0hBkow//64ncd+o2yaBej7CSTQFZp4aqaKLxFmBKIo5gSrFg5TA0gR+fRVknQTbRMjT6NZ9CgQWzYsIGjjz6aSZMmUVhYyFlnncWyZctCqn5amdaa66+/ntmzZzN//nx69Kj5C/zy5csB6NChdrMkIkFrTXX/ROby4/wDbijIrul1sPsec/Q7GGf9m/VsxkCxqokm/9ypM0K+A9Nf9fR5HOi4khBmfzV1WmtmmrPxVJmx1YNO/q9Imx1QfteqbK+J6rDZt13qMggwgQuALhVVjz5wfVm3QUdYps4hhaq5EutGTbkTJv0b0rbSJh5Sk0uIGfgLw46+A1uHm1Edbka1eyDo8evMzUH3RQNDl/6eKRkMrko/cxsv9Am4+VL89/sAM3irqFoVrDzg9vup8MB3sPllcE2DDT9gHhzr9x5vSvJ0Qa2qq2WTz296BZvYHnB2mnbZYWeA2R5WhzcnHGDOug0e/Qre+j/M6a9y4p29WJfRdF9DIYRoSVbrDSzkj/Lr28o3lTvTnqGqP5lksxLvNX8n2tVpGWFT5lOcaP6l+K0E0hZYXlpFPS1QWhEremf/gH3HEUuhWf9iRtHgZ/MPtrE75PYa0JgUUoxZOqFhsV7RoPmjhYh2Ic10GzZsGN9//z2tWrXisMMOqzavy9KlwRMuu1wuTjrpJKZPn84999xT+9FWcd111/H+++/z2WefkZSUREaGdzlNSkoKcXFxbN68mffff59TTjmF9PR0Vq5cyc0338zYsWMZMiT6k1seJBt3dRX5Pvknvh8Qdcm3o2DRuXDqdHIo4C+9hS16Vx36ibxNejv7SvNS1ORC41Se9gSeEq5QxBFDkS6hlUoJ5xCjzkGdTTxxPnk/AJYTIH+UrQTar4eMAaUbvEFe/cgc3wBdSgb0/w3WjfDP6XbpXeXNlrAqnE+l0WxmB7mEp8qvUtB39HLOPao999sPZYdZRF/nHWwkjniMwDOUKgmldHskrWaj9y/W/Xin8Cnv/1N2A+0I9jvrkLY1fzRVDbqV++xmaKegLKZkU7DnTtytT6nd4KPIVr2LWGJCvhHgwSxfQn8Kx/Ay75Xva5vh4fKLTuBfh1fNrarhxktQFg/aGQt/nEHlfx+tDa75qJgf/xG9hTuEEEJ45WnfAEflz49dZLBLZ2BikkwieRSwn0z264ONPcyI8lle2mYbbDvMv9GcGzHn3AhGgOrhAGuOhW7+RZ0yyWEP++lD93AMNaJquhYNJFDamjypYCpasJCCbpMmTSpfcnnGGWfU+WQ2m42VK8M33XbatGkAHHvssT7bZ8yYwZQpU7Db7Xz33Xc8//zzFBYW0qVLF84++2zuvffesI2hIe3RNSyTVNUsl0oHigiwzC8ATyzm1sEYPVaRSz4/mb/XYpTRQWvN1+aCkJaQWbEwwOhNrv1PUpzD/ftCU0SJXyCqOVqjN5JdZWkpEHBWkF58BmSEsOw4twO412A8EGD5WiXhqgDa2Haae8Pa31CjHymGd+ZcF9WeI9RQftcrMUIIoq9jC07tispqY1rr8ryJyr4D2j6EzrkQrPtQbZ5Fn3gazLucqoG31DbZTD+/e439By2MUPX3oi7/T5PN07hBbw054JZCUvkSkNEcxh22q3jZVRF0e+/sQn7XgX9PqvSM0r9pymdOV2IYkazlLIQQIhRu7Sa/dFZRWfqUkgDXtPvIJI8CFAoXbr42F7SoojmFlYJJatIL6G2D4EDvsi2+/zf9iwACEBN89tYOz176GN3rPc5IcWs3Fizk6ppvNFux1JjnOF9muokWLKSg2wMPPBDw73Vx8cUX88Ybb/DEE0/Uqx8oW34ZXJcuXfjpp5/qfZ5I+dj9VfUNzn8U3n6S8iWoSnsT1gMkAKOBUFfwZXeEHt6ZR7trKEgQjXLI88nNEEwMNs5VJ6OUIkbF0IPObCXwzL5QK3o2ZUv0KlJJJofAOcN8ZHYKvePsmpdvm5gU6iISVJALmSi1xtxU52NTSEKjy6fYf2R9nsMtQ+iovMsplVJMsozH8ChW6vW+Sx+C2KP3013V4t+mkRSVLisooy2/wffHwbYhaM87cFI8/F2BYYIlm5Suk2ljJPGK7UHiLDWnCoglSN7Ks5+EjAdhrYIBgFNDZ29F6mydR7pKrf+Ta2RbzV1Bi79UZav0sd5KpdDWSPPZ33af5tKDH/P8YZezL6ns51TDsTPLCygouwN95Ifw64WUf+Ew3Iw691vggjA8IyGEEA2lv+NEdpfmNy5bXqoq3UQ5Th3BXg6wRe/0aVNIMXkUhC2FRrTbYu4qDxYpqwt16xQAzJ/PhS9vqrkD5Ya2WzAf/S8UtIYYBwz9HnX68yirm+X8xXhGN+hzaEiPuV/hGc+bOKtbdVUqmUS//NBV1VgcUIhmrNaFFJYsWYJpmuUFCcosXrwYi8XCiBHVJ1p2u928+eabfPfddwwfPpyEhASf/c8++2xth9RsLdN/VbvfGPAr5mNjIS8NSIDcF8HZGvKBVq+AmgjHdYMf/Gcs+LA6UAMXAtCB1iSpBIp0MfEqWGKu6JOhMxmjRrBQ/xG0jQJs2PiHdXL5toNVEuInEk9BabAtlIBHU+fWHgaq3vyigy8LL3fUx/DzeZQlww9Ow4TXfbaY2W1gzZHgjAVMiC+CQQuYaZnNVNtFdR1+RCSpBGpKHWju7APbB0PPZRgdtxJPLGmk0FG1Z4fegwWDbqoTp1vG+91RPtk4hu/NRfSkC6v0hmrPY6BYr7fQnegLumXrfFqRTDZ53sq3j3wOutLstDaU3i+wgKc1ce5uxMTkc4wxMqT+k0hkAL3YywHceDAxceOhZPCf6GTl/TcqAWIVqpX3/Z2lc0gnNbxPtBFsZLtfwM10W+CvUZDdHvosweiwA4DTjHEcIAuN5lbL5SilsGEtryL27B0xPHmbg9XvTCDLlkh2bAKn/V7iF1M3Tn8Z8+RXIbcVWNwYqTksUkORoJsQQkSvPF2AB49fruLK6WpSVBJFZgkWLHQijWJKOET1wkSzW2eQopp/0O0Hz2JSVRIB528cNhfmTK2hKJ2GkZ/Ae09Q/h3LEQO/n4ledxTcdSZ/6brfpI0GOTo/pIAbBK8Qb6CwYiWOWPJlealowWoddLvuuuu44447/IJuu3fv5sknn2Tx4sXVHr969WqGDRsGwIYNvl8oW8p05lDt0hk1tjEsGlplovMPRXtae+MhqRrsR6M6ToF2Q5g04HR2fXsEK92bofNqnOuGQ24biHHBgIVw8jRUjHfpUia59KI7K8x1jLYEyG0QpQ6SVW3ADbzfwZ24GGD0Lt9mrfIjUPlDo2op8ebod70itIAbYLTah3nP6d4LkV39IX03rD8a/2IfCtVhS/kj87MbYdF5+AV+P72LF858n6nVr0KNKnm6gO/1r0H3a1Ohn3kbMiuKBpid1lB0/dXYVTF/6U3EE4sVK61ICfg77xCjF3Zto0AXEUdMwLwYlW3S2zmRMdW2iYRCCskunUGptw32DbgB7AK6Uhocc5BlW8/FxoUhfw6kq1TW4i0kUblyKRYX2DeBswfEKohdiVLei8ZNnu30sXSv/5NrZDZt8Qmcmdlt4cn/4q1C7WX2+JOUq+/kXttUOql2Psf3ogvr2ArAzKtiWTXEwm2PO9jXycGDjypy0wIvuTVsbmh9oPxxbRIpCyGEaHwbzG20Jp29+OZns2GlJ11JUvF0pWNpkQWTA2SRREL5teBuvZ8B9InE0BvV7+YKbNoaMJ2KsjvQ9iJwVBd0c8Dicwg4qSGvLeS1ZldKzd/jotnn5vyQ2zqCXKuWFVJw4mKrDlSMQoiWodZBt7Vr15YHzSo77LDDWLvWP5FkVT/88ENtT9li7a8yCwvAXDwRZv8Tn0DHuBmosb+UPtCACfbtKMNJXPwqeiQN5O1rJ9LGMRELBu5TXvH2tX4kzPg3/HaO9+tq+w04briS7ZbdrNLrGU3TCbpl6+qnNJdJIQmLqpipZakya8uOvTzwFspy1aautklNjaQcuOBf5Y/NRz+FgjaVWmjvMue40mCLaXgLdQScaanY+uVZmGObTp6tffog7WlNBoGTDeudA3wCbgDsHoje342cdtuAioS0H9mfD3qePkZ3vvYsqHE8JpoVZoCiF1Gg8kxRlb679K57pffB98AhgFVD0lxaDY7nX7ZbQ+4/SSWQRAJFlPhcNNuVFWfH6yFvEigPJH9Wvm8xKzmZJhTlLfWLXloecAPg6+uoHHADYOtwLs2dSqd2vgE3gFHqMNbpreWPl46y8bfPap8HMJMcdph76WpEf/VvIYRoidaxmVWlFUkrc+FmPVvoSw+Otgzn/8y3y/fZsGLBQhtascbcyATLUY055Ih41fMhewicO1svPREcqdUcrUFZQAe6di29Do7PYwtNO8i0m9DSDZn/vRPH0lN9N7bZirppSkXaCuCA6f+9VoiWotbfdGNiYti3z/+HcO/evVittY7hiWrkVsmzpV12mH0n3ulsquLP/MvAeRDV9mGIXcHJKfn83H408cRSjIOvzQXEqhjutFyNu3KhgbefwBt3Le0nox964QXsZC+LzOWN9CzDI1PnhNTuKuN8n8eVc1wss33KvZZryx+3hOWldU1qqt02zFdehoI0KtZaau8so8m3oYsTMR//L/run6h2abPh4S/P5jqNIRL2k8WeA7GYD3+KeedCzDt/9v7/tRfQbitYgxTfsHoDuRYsXGdcxHXGRSSr4FUgy3K8haIs8XG08fn5Sd8Nx36Ht4JpaZJ+j4bVGrJWoU56hi50rPU5etLFJ+CmtQVn9rnogzeBfQsq9QOUUZGb8T3zswC9RDfTNP1nPdsC55tMsQZOCXCo0T8sY3Hi4j+5XzD48VzsN+USd3MuV39QFJXvPyGEaIm2mdXPSE7QsXTE9xrDiYuudCCDg7zj+bQBRxcd3Nod9OYpANaaChcp0MFuXCno+wvK5uRgaVGjpsilAy8XrczcOgjznnmw9DR8vpei4EBP9PyKdD4a+Iumc70vRLjVOkp2wgkncNddd/HZZ5+RkpICQE5ODnfffTcTJkyo8fjjjjuu2uVD8+eHPpW1uTOrJo5y2wkcJ1VQnIRqN4+uSSuZFfMVNmVjkvN4vjV/YbfOYLW5gRHGIIaYfVmqS2ckegJ8YCw+jZQj57ElpmndndmnD5JAfI3FD8YbvglNP7I9zz4ycWs3PVQXuhudGWz25aDOZr/ObMghR4U8CtGeJCgcC5ZsiP+Vmlb3Wcx47K/PpHCHb5Ck+8g/2XHWPwAwH/4CisoSuOsq/6fi8YX3MY8xDGwiSxlyPQXw/FvgqRLc2DIC/f7DGJfejdn3V9hQ8T7rN2QLm9P3YgLJJNDVqDm4NET1Z6QawhK9yi8vS1UHyGKb3k0P1bkOz6jhFOpKP4uF46DPBOjjAQxU24dQSd+U77Zh4VCjX63PYa8y20tlT8HMvgzQ6IITodOVYMmC4iPAto1dcSvZYu6kp9Gljs+q8e0kw7/q3CmvguU0+L3ih3XoiK3cn34+gZxmHc8uvY83zI/Ll/zW1dMvHYmn9FejR8OMxS76tjW4dXxsvfoVQghRf+vMLSQQh4kZMD3FFnZysutKn20KxUhjCDZtZb3eRqbOaZJFh0KVoQ+SSFzAxP7mT+fBgr8BTnxnlAe4OLYVgCvBf19ppe+SEIofRavNeke1+7UjHl59hWrzPOf4zrzfqw8EaShE81froNvTTz/N2LFj6datG4cd5l1+uHz5ctq1a8c777xT4/GHHnqoz2OXy8Xy5ctZvXo1kydPDnxQCxRo5oCKK0B3XQE7hvruaLUH2mwDoJ/qgU15PyS6qU4cJBvwViQ9zBjAMGMg2zx7OLi9EwE/QLK7kP3Um6y75+JwPp0Gt4f9fgE302WDP06CPb1AG9h0DJ+k9KL9aDc923jf+kdafJdKJ3sSy5PXP+l+DScubrP+vXGeRAR01t3Ys/s2Slyldz1TZ6LSXwvaXmuFdc/LFO7xDxwd3Nqt4kFRaqU9pe+zwz6HSc+UbzJiPCgU77tzuMV6Wf2eSCPZ5yj2D7iVPb+dAwAwLr8d06PAZfB1/H94i4/ZaHpnmHowfQp5BNNHdcOGlThiKKrhos1AsUXvoAdRFnSrNNNNlxwCePBenLnRjkN8gm4uPEGXeVTnSut5LHWvwVM6g9fMO5WKO62gi0ZA7sVgemcVmm0fYnnaX/Sk6QTdNuvtHK4G8ZteUb7NSMjBPOZdGHIJuIHUT3m+y6CgfXRS7TjaMpyPzDkUUOS7VDVEpiMGfj8FMv1/9n/Y6ObW8bXuUgghGpT9bwvBdKEduRhp/bxLApuxo0suYBUb8ODBCLKYKY8C0kkjv9K2THJIJJ5WpDBGtWeHuYd0S2qjjDkS9rA/cMBt9i2w+OxKWzSc/i847Ad47HNwx1fssjhQ95yF/u5S+PkiKr5TVRQTM9E4tQu7qn06h0jbpoPPmDS3DILfTqf6wmomHPe2z5ZkEjF100kpI0Q41Tro1qlTJ1auXMl7773HihUriIuL47LLLuPCCy/EZqv5l8pzzz0XcPuDDz5IQUHdlro1R5+7vw+4XV07Fb18nPfLj7bC0PmoI75Ald5VOcoyvLxtD9WZYWogscSQpXNpq9J5yfYAn3q+h98nEXTZX0E6XQoGkhWTQ5qRGuZn1jBiiPFNNJ7TBp6YReW3uAv4P+D/5hfy8Ckx3HmC/8yMDrQhnVQyySGTHH72/Nlsg26mNvm5OB/TVWmZQf4pWNJfLw9i+HG3pdjRF7oDVQprdjlsZUUWkdbb4GDl3GYaRs7DiPVNWKvRZJJDhnmA9kYbop07Jg/isyrN4qtkcEW+SsOiMSya2Xou3+qfy7dXrUAZTBejA9k6jwTiceAM/u+B96JurbmZ8ZYjQ38ijcBjVvxbq4Rf0bkX4F1eaqDiK4pRKBQjGERaHaqKXmo9k4/cX/M9pf15qvy7mKnlATfQ6PwT2Zy6o+YCvFFkk97uE3ArY6RPRyd+A1jAvpGPPOeToOI41BgQsJ8+qjs7qVtSZ/NAJ3jmA4K9cJeOrC7ZtBBCRIbRdkikh9BonNrFH6wGwIKBFWvAipIKFTC1yFzzZ3aXfkbsYA+HEfizpDkImtB/2QlVNihYci7GkV+hHpiI8eNkWm8Zh6f7UkqOe4MCeyHq1GmYAxfCT3+D5Ew4/k2M5OzyHnaZGfS0NJ0bfWUO6uyA281pL8J2/9zuXhrStkK/JXD8WxgJvjPrN7Gdg2TTlvQwj1aI6FenJGwJCQlcddVVYR3IxRdfzMiRI3n66afD2m9T9ZteHnC7UqC7r4GP7wYzFraNQH92R/kCtJ/Gr+Ou07x/b6vSWKrXAHCcrqg2e6jRn2+6rIY/J5ZuqZLgXHnQcbls1jvq9EU4EhZ5lvnO3vj2cqp7ez82zxEw6NbWSCezcg6GZlxQN4d8tG03KKc3gIsG++ZqAzxYskk0PBSMVRCj4S9QlmL+dUI6y8b8yjp3HHrfA3BGW5i/D3YkQ2whnP04Rg//wAF477qu0OtoT/QH3ZzKibrjPPTMx2HbENAWsJfA0R+hJrzp09bE5HX9X59tbUnHZbqwGTXfoGhjpLHWDK3c/DTP+1xmPZtEFV9z40aSoSqWEai4ZdDpWig+DGJXoOJW+rRdwir2mLWf6QZgUQqlFQYG2r4d7ewOKFAlEP8L5F5AeR45+xY26F11fk6RsE9nkkRCeQGOylRMRZXg18yPaONJCxp066jaYmAQTywFNSzD9/P1tfgH3Ezs8cVMm5TOecMk6CaEEJG0Tx+kr+rBfp3JWONwlplrAxYEK6smWdXuSjdlskIsTtZULXUHKfzXehfsOcR3Wydvsaq9CT+SeloyAEd9uYcl93/u285eBLde4BNwA1itNzSp2fVltpr+10o6t3WQgFvpt1BlwsUPYXQMfO0ag50M8wBtLRJ0Ey1PSEG3zz//vOZGpU4//fQ6DWTRokXExkpOmDIL9BJ0ySHe2SFGPqrV6yhrjnfn24+DGThh9vzv+3PwOJPWiQadVMVa+sqJuIfSn2+PeBO9bQgsPwFvnrjSX5jWErjsVtZY17JSb+BwmsZdwr1Vl6bF5QduWMoWZKZLKklod1t01uWgY8hNWwPN9Ptkls5BWTOhw63onPPBko1Kn17tMcpw8kq3TP6xbxfZxx9EnfcaFts+zrR+y5v7x6ILLgFXV1AGjI9Hpb+ISv1vtX0WUsQScxUnWsaE8+k1iPXuLajYYtTVN9XY9lrjQqaZH/hs280+clQ+bQgwU66KTvhXoQxmCztZZC5lguXokI9paFmm70W7il0Nsav92qWSRDZ5ZFG3i/wZ9idJIRGrsjKkwxWsyzzBe0Mi9X0oOgpi1nqDo/F/oFq9zkFG19xpFHnTMytgwC0QVc1dgjgVy6HqEJbqNShUea7AZBICLrPxPTjA79OYIk5/8BkusT8b0tiEEEI0nExy2FBapbqNbhUw4Famplyxdf08bio+1HMC77jyH/DiG5BVmoKn2wrUmd7JIKmGN+CWV6JZ8t0o/2OdCfDhQ3D1DT6b1+pNnE7Ty7+wnwB5ra1O/CZqQMVjbYG3/g13nxmwTwdO/tCrGUJ4ijsJ0ZSEFHQ744wzQupMKYXH46m2zVlnneXzWGvN3r17+eOPP7jvvvtCOk9LkOF2oPdMAx0DgHZ2RXumwYcPQFZ1idgVhU5oDXSgLQNULzJ1LhlUzDoZbPRHmaAueBQueLR8u/nT+TD/UvjP85jA9RaDD7vn89/LE2iVEN3r77OrXCCoE19Hrzge8qtWgfR+Lf3o8sBBS4uyoPf+G5w9APi96ChK+mlijeY35S1DHyCBeIy4deTH/TPk44bH2PB0uBMLRWg0GsVt+3PYmD0G3w9ijTaTQpos+Iv5Z22HHxFr1Eb/ehBVpJPCe9ZnWWyuJJ4YiqokMs7WubRRNQfdjjSGschcxlZCm5l1g+tR1lnmhtS2MSwzg9xJrmQQfXHjIZs8iinhadfr3Ga7olbnqZzsOVnZUbFrwZKFLjge8s6m7D2p2j6OMpzk66aTxsClXdVXWKvCXUOutv6qJ5k6m93sJ4FYcilgBINZyB/V53k79UVYczSUtCrdoOHiu8gn8O9RIYSIBs6vrwBnPrpoP5a+Z4EtAeuQyyM9rAaRV2nJ6Jt6Vp37SSSeXF39jeumzKVdgQNKgBFXCHdc4Lf9KCpmdxU5q7kILEr22/SXuSVAw+jnU/RAa+56sJiLZ+by8BFv8EGPsrQ7Aa7wHdVfF9zrfp7LreeEb6BCNBEhBd1Ms5rlZrWUnJzsU73UMAz69evHww8/zAknVF1L33JluxNAV1oqtvcQmPUfalrvmNJxN7OTf+cmptBatWKz3okDJ0vM1fQqGU88cVxhnEs7WrOfg+XxA/Ora2DBJT59eTzw02aT3g/ns+9fyVgt0Rl40lr73bVTNifqnooA7xg1gi/srxKrYmrsSzl7oksT0LrMBDLcmu726Hzu9fGse0aN1V6rOlwNxq7sFFSaGZNKEhtKYqhaWddiyUEnf1FjnwrFOr0Vj/ZgifIkx6FUtL3EOINjrUew0PVHecCtM+3ZVbp0IzPEEvJdVQdaq1ZsDXE55E724tZurKpOWQPCLpPA+UDAm2+mFcmkqiQ66DZsZScuXPzb8wY3Wy+r0/sg36NZueufaHcK3t+TDiq/J7WjFypmIy7tv6wmWu3XWRzKISyj5gBmOqnYqH7ZcopKYjt7AGhHawarfpxhmcBa96by4J42FfrP42HjaOj7G2rYt96728e9DVsOw9J2N55j3sVIzGW52YpLnLfzkPXGJlURVgjRMpjrPwbt/Q7jzvgDEjs226Bbvq64LtOAFQtuqp8IEUgBRRwgK4wjiy7bzN3EEhNyjl2AXezjaMcFmGhsdhv29rfizOhZpZWGU//P79ig+eOiXIauuOH38t+LOGeWmwJrHF0yChln/sD8QztDfh+q3mznxFer7TeeGP7r/przrCc3zMCFiFL1+nZWUlJS6yWhb731Vn1O2WJY7TvBtgNcXQAFm4PkarJnQc/lHBLTjb+GTCdvwK/M8YzgJusUlFKcoI4mk2zW6I3sLv2yv43deDB9w1TLTww6lnwHbMsy6d0mOgMiDpwBy6KXMVDEqdgaA27gna15drKdWXluQBMXs42utqE1HtcUHdBZGKiq74Sg4ojhHMtJJKp4/mFM5gVzJgDZ5DEsaQ0bio/Ge6lXyCEd3mJd7GyUUfNFjUazjwP8ZW5mkKVvPZ5Rw8uh5ru/ZcVMKi/t+JvldP4wV1FMMQs8SxhtHFZjP8OMgWTrvBrblfHg4QTn5Txt+yfDjIEhH9dQqnutPJiU4GS73k1blYZNW3HjxoLBOr2FgapPrc+3tNhNiTu10pYqP+92793mXXUsJhAJWeSEFHADbzB3G8GrjQEMVn05Ug0jR+eyls1s0NsYpPvSnc5kcNAbcHv8v5BfOpt65Ynob66BwuTyqr2e9cDCC1HXXcWBLmv52Pya67ioSeasEUKI5iKvSnGE2gbcKl8PBkui3xxsZ0+tAm4A+zjIbp1BAvF0oT2H3fRv1i/vTvH3F+BwA/1+g3Hv+OVzA1jHFh5wvcBDtn+E6Rk0vPfcX7CRreWPT/zKzd641hx66beYltKbe2WXeEYOJOdC91Uw/h2MNtXfKI4lxj8lkBAtQK2Dbh6Ph3/9619Mnz6dffv2sWHDBnr27Ml9991H9+7d+fvfq6/02LNnT5YsWUJ6um8SxZycHIYNG8aWLU1zGm44mdokT2WhOl2FzroC8s6B9kEaO9NQZz/Lmannst7jreBXebmVoRRrzU3ly47Kcvm0I52Dle9kdVwPeW0JtFbfUNAxJXqXl4YyDb636hpyfzM7x/PdwYfI1Q7SE1dhqC/rM7yotZVdQQNuWoP+z/OwZUT5tkLgdhS3A4d1vhqmvgOG9w5yj9Q/OMy6huXOIoj/mSRba1Q1FzVmQQo8+V9wJXgfA0fY3Wy510O75OgM7gLV5kgpMxbva1ZYqe0E40j+7fkP3enIbvaFdK7WqhUePChqXNFa7i+9mUWeZVERdKvporaAIgoowqXd3GO9lofdLxNPHHe5nuEz+zSfGdGhKDArv0q60h8FRg4qZjNAzfnLokhtk1kX6erfn51UOxbrFXSjIkVBls4lTaV4X6o9/SoCbmXyAuUWVHi+vhrjKu+XiGId/KaHEEKIhlegi2hFMtmEfrOusrLrQYVik7mdzeYOehmhXzs3FYs9gYt6Vaek9MZ+MSXkkE8WuTgOXccFwxQfmF9WG+DMo4CvPQu533p91K/mKPOlZz65lYK4m/oa/C/+8oqAW2VmCuqWs1H20AKZm9jBr+ZS/sHkcA1XiCah1pGUxx57jLfeeounnnoKu70iw/ygQYN4/fXXazx+27ZtAfO+ORwOdu+u/i59S3FAe4NhypKPSvrGu7EzkBLoq7cGu4M/c3pg7nkOM3MqyboiX9RRxnByyKew9AuwRrNF76RjlSTt6uL7oPNKvOGPii+s8XaT76+PJz6Kl1duNndUu99EM0rVPLOojE0pOiUvQyV/QbaRgdahhjyaDq11tcnZ9dZDYcvheAOwlf94Ldulsa6aUP44TxeSEv8XKmUWOPvw154bMA/chvYkBD7B/+4EV6JP3y6njSs/qDmoFUlFNQSSUkgixeLN6VFYKQDSVqXRhjS2spsPPXN43vVWSOcbaxwecsANvLkNfzGX1uKIhlP1rnsw8SqOqy0XcJpxHLvIYL5exDpzMx7twdShpzboFVP5YlaDbSskzYHEeahO16GU93Ontne4I2m3Di1AW6am5eIj1GBsWNlCxXKXvXo/R5b9fqyhAI2PLcMx71yI+ca/KTKbzmsqhBDNSdk16ha9s84BN5/+0PzFZma7v613X9HoC3N+rY/pS3fuUddgw8ouMtjDfty4Od0YH9I12krWsb8JLdldon0rzJ/9ZQIkBMsvq8FSu7QdO8y9OJtQqg8hwqHWM93efvttXnvtNcaPH88111xTvn3o0KGsW7cu6HGVK6DOmzePlJSU8scej4fvv/+e7t2713Y4zdKeStNuVewaSHsVnXMenLcf3m0HxRWvHSe/DJ5DmLd/LKCheAT7je3Qwbv7TMsEjjCGMsf9I5+b35NJDvP1b/zLejO/uv8sn42jrC7U9df6jeV560McZT27IZ9uva3Qwd93AG1JZ3gtZ/6M02PY9O4VFK4ZSYzOoQ7x6XpTQJwNrj7KxhOT4mo986c6u8jAgRMAXTIAig+HmNWo+NKCBiVBljNXYitJKU+9nqcL2FNwCGbxaMg9l3wUFB+CNuNQ7R7xOU677LBtcMA+Mx3R/SFcU8WvDqpN+d8rz4qLV3HE412Kn0cB93me5ybblBrPN9o4jPfML2pMkF/Zl/oHnne9FVL/DSk/xHyBicQTr+I4whjKd+YissjhMNcZAPxq+4hhlup/dp2m5okDDn4v9nBo0naWFyaBNQvV9kFUzFa/9h7Cl6O0oW0zfZdpmAc6wVtPQXZHb4DsnH+Resjq8gBnQQ0z3dKNVMYbo/nNXE4WuSQRzza9m7l6IQAqfTd65Cz4vdLv/MM/hYNdYeuwKr2VBsw3juadb3YzcWI9n6wQQohaO9l1BQvMJZhh/mybZy7gNqpfvdQUrWZDrdqnksTztnsYZxmNw+niWXMGJib96cVJxhgOV4P5TS+vsZ/dOsPnGjFaFesSdlVZkVGYbPDqR5/Co1MqFVQqlboXXZyISgx9Zv4y1vKruZRjLUfUf8BCNBG1Drrt3r2b3r17+203TROXK/gX5rIKqEopJk/2nVJqs9no3r07zzzzTG2H0yztMn1zDqlWb6Nave198ID3f5cYk2ilUpjr+Q0j95zSrD/eoEyhs2ItahfVgS6qA78Zy+lBZ9aVVtFJJIHWtPJZAhfIL56lTInioNtOvZe7PMHfNxYMutCenqp2+YbmvHQBjl1J9R1evWigyAXP/egiuxheu7DmQFiodpoZpJFCZkln9O5peN87BrS7C5W4ANVvMTr+ABQFvkBIiYXEYYsoBmxYycgZz4aDx+OdKVkWoLSAs2qiWdDPz4DiVn7bwWTFxKs4YL5KG6Pm6p7RxoaVY9UR/J/7bR50/x8OXKSQxBFqKK1p5ROuc+FmaMlpvG7/F4cbgQOQAENUP2Kw+wTdTJcVfrwItgyDwT+gRn2GMip6d+LiCc+rHG0Zzohq+m5INd3BHEQfVrMRgPjSCpiDVV8SiPW5Fxyswlhl5+8sYk5B2evTDVJfR8Uv9b7exUMgdi1KVbx+Gt0kinYAfGv+Uv53XZwIz7xP+cd2YTrMfJqO1/yb/O6fo9EUhRDo7EsPslUuq/QGutCRfAp8KuwaZz0HZz3nc4wVKwqFCxfm3T+Aaa+0V7Fxh1QxFUKISCgyi8MecAPYyPaw9xlJs9zzmOy+vVY33iwYdKNjecqOiZZjMZWJFSvpKhWbYaODaoNFG9X225MuPoUJolnQYl9f3AglAa7NczrBk/9DP3giyhJ6HsGl5hoJuokWpdZBtwEDBrBw4UK6devms33WrFkcdljwJXxlFVB79OjBkiVLaN26dW1P3WJk6hy/bVqDLokBqxuLzeQI41AWm8tpq9I4kPArCVmTKDS9Mw+uSU33O/4f1sm0dbcmU+cQTxx2bCQRZOlfJet0dOfY227uwVLNLDQNHGOMrPUssW0RDrhV9eXq8M4A28lesshFF5WV7TYAD7roSG/QzeKB+85A/3UEbB4GHoOTLMfSx9qFo3rYOGOInYvc/Zlt7sSFmw0FnSv1U0ElfVXxd0pzk2UGyBFiy4d7zsAdW8I6vYU2RF/QLcdT/V08F27SVavy5c4GCicujjKGEadimWg5lpme2eVLANezlZ16L4cTPDA2yOhL5Yxu2mWHhz8HV+n7c+sI9C/nw20XUvkt7nHE8L7zW4YnDQrrDMlQZVH9a1UWcANIUN6AzaHGAJ+lMWmkkqdrXqL6XWGVWYA5l6NzrsAbXlMQsxY6XocynOVN8ikkleQQnklkVS5GoXf1x/8jW+FccSzH9diHAydtlP/v/qoGGr35zbOMNFI4SBZDjP5kmTnVHmNBVeSs6f8zrB1Xaa9m7NFbAf8AuxBCiIbVUAlQMjiIqU0MFb05nWtjq95R65nuCsUIYwipynu9MNpyGKMtvt91Y7DX2O8WdrJT763dgCPkoBlkGeyaY4Mf5IqDnHaQviekc6SQxB4txRREy1LroNv999/P5MmT2b17N6Zp8sknn7B+/Xrefvttvvyy5oTzW7f6L/cRvlZ4fJdLmt9fAt9eTVnYwkzN4NJ7+zKXBexmHw6rixW9kvm+0M2gGIPD4wP/s6aqRH4vXac/hhEMUH1YrTcGbFtmCzvRWkfki3soNupt1c7WUygetd1c6367toJtUVS8aViX8M7KySoN7KqYtWgsgAeweJczl1IK1IDFMGAxbWjF57G+y4936IoPV3vseiipCBBZW82kQ9xe9sXNw41vVSzic6CoLKhWmui+9zKMWG9eqP955jLGUlHAIVqsoPplzABJKp6DZJJIAgfI4mbLZfzTdhUAz9ruolAX8aE5p3xpb01BJbuyEUds+Xtcbzy8IuBWJrMrZHaC1rsxd/eBF98gFwsvoXmJPKadH8vfR9dcuTecdpvVVwjtQWd2sJfOtKdzaZWYZJVIPHGU4MSNmyxy2I7/BZxLu5jn+Zk8ClDAkJhjWVJSdsFbuRBM6f8dA6DkUIj/vbyPjXobh6sh9XqODc2lXfzFZrS2oPc9ACXH4fv8vH8/sq+bH/RWdrOPFJ3Ih+45dFbtGGj0oZVK8ev3Isvp3Ol+GgOD/WTyrfkLvehSXmQnEA8ahQGYqEvuQ8/fAIvOgdgCbGe8QIe+o4HxDfNCiCZDa80e9pd/mapuFq8QIjziVAztdRsyOBD2vteYmxgc5VXlQ2XUIU1MX3rwsv2Batt0pSN2bDgJfnM8laRq8yhHkw3mtsA7uq6GtccSqOAehhuSQ5/Jl0s+P+nfa24oRDNS66DbpEmT+OKLL3j44YdJSEjg/vvvZ9iwYXzxxRdMmDCh5g6AwsJCfvrpJ3bs2IHT6fTZd+ONN9Z2SM3OFioKA2iPBb69ispfJHVOB/5vUR5fHv4DAOPUKLraDS6z2/07qyRJJZb/vUAXcollEv91f1XNEd5pxkvNNQy3DKrTc2lo2TXMqDmJMXW6S7f4tiTGPJ/PhvBfw9SKAo7uZfDJFTXPSqyNshxQKmERtL0fXTQaFbsakr4I2L4vPfy2JanE8lussWnvYBgZmK4uqMRvMOOXsNa+lEOcf7CH/b5VUm+aDK+84p2SDtDzT9RF92FuPhTeeIZXzBheIZfLj7AxPYxLautrpa45D8j/PN+UJ6Ado0b4VBIGeNX+COM8o5nsugMgpIuww9UQvtY/eR8EvKjRFQnw33sEKAvQen9n3PBxSaMH3ZaYq4LuUyi24s1Vtp3dHF0pwLox5lsW6xWc4LwMgOwA1Tt36/2c474BgGQSWddtItfuKWa1w4OpnGx2WKh4Dbx01pXonHPgBw+sOpqjUChyeeBkO3efGJ1LI8vzuRUcB4XjIR440QPfmmBawPDAuBmcNXgkf3gSQHt/rqe4/wnAbNvLnGw5xq9fpRR3Wq/mNvcT5dt2sc8v4KZNhX7jadg8EicKlAfOehLj8K9Q49+B8e8A3nD9FjojRAkOejm8wdcj1TDmx7wd4REJ0bw5TAfb9W4yOEAM9vIbehaqX+4Yqlmeuc0m6LaBbbU+ZpCq+bm3N1rjNKtfjZJDPmvNTbU+fySs0YHHqS6633tNsGU4FataFJa4fDxXXI+yOQMeF8xB3XQKSwgRDrUOugGMGTOGb7+tW1WbZcuWccopp1BUVERhYSFpaWkcPHiQ+Ph42rZtK0E3KP9CCoAOPMNsn7NiGVYXo0NI/SZXWk6aRyHJlYJw1bnL9QzfWGaE1LaxHTSrn452pFE1+XdoWiUYrL7Hf5ZIc/FP61W84J5JFrmopO9RSd9X236W/UW/bZXfT0UqDx27HMx47x8gR+WRgH/QzEjOgjsv8NmmTQWvPw+6ohz5m4tdnDbYxcRBAUqUR8CeGipJ9qYbTu3NjaVQTDSO5R9W/5Lovj+H3uBn2WzSQLNKRxlD+drjDboZnddjDvsSllbKWn/yK6iE0t8Hbv/Xymzk4rv5upCbPI8F3V++zLhUAhVBrxhlJ12nlj8+qP1/vvdUSvCbRwFZxk4+6upNd/C7cxtH714LJf1Aub1n87QCR3/YrGFVRTBOAw9+7eTMoTYOaV+nj8IG9aSntBp4pZ8JugI3LsBof3/5ph7GWSSVVgmu/LpWNwP4bMuJfOD5kqV6DRqNAydWLBVLSAH900WweVTFQdoK/7sbfcivqMQcn/426+orSIuWIU7FkkYKWeSym9pV3hWiQdiTwF0MpgfVqg8qoW2kRxRW29jNdvaQTCIufHOX1sRcPBHm3ACeGOi+AibfgWH3DZysqWE1TFOSFeAmXmXmmqPgv3eDMxESszEuuo/H+ta8UqaTahfS+RebK0JqF2nrg6QVUhYP6qqK1+Mi4zTesD/OHa5X+T9P7QOKezlItplLK6P5ftcSorKQpwBlZ2fz4osvkpfnX446Nzc36L6qbr75Zk477TSys7OJi4vjt99+Y/v27QwfPpynn366dqNvpg5Q8UVTWd1w+GdU/jqVEOvhqFE7GEAvRqohDMC/sEUgSVQE2d72zOZHc3FIx60nevO6/WVurnb/OEnSGVQxJSG3TVT+wbPK76eCkh7oPS9Bzt/Q+/6FzjuZbJ3LocYh5W3SqOaD1R3jG1wotWJ36ElZG9qaGi4qOqv25CrvzLU0UoJWD22lUjhCDWWI6o9LuyjSxbR1jKJzyRi6OY5Fa9+L5VFqKEalqfzGeY9jPHF0xZ9j3i/fl3j2i+Bzd1tz14TqZ8CGW03BSQODDlQU6KgcdAPoSFtONsYyUPVmq95V9XAyzAO0oRXxxNGFDuwuPd9ul8mmkkRUm8cxekzC6H42dLgDsAMGZAZeor35QHRWMy17XiTOh1jv7EmMfFSrmYA3j0xfutOVDiQp/5mwBTp4UYUOqg2DVV860pYY7PSiK+2okmd1b6DPFQV5/sVVckPIvSdahiONYQxTA6MyL6doeWKn7iL2xkxib8ohZvIS7OfMifSQwqosf2oeBT7XdGYNQTdz7VEw+y5wJoHHDpsPhxff9GljoCo+h5qBQPmyy5i7+8A7T4Ij1XuDKb8N5vRpWPJqDtJ2Vu3pQ7ca27lw85h7Wi1G3Pj26P38qpf5bTczumO+/jTmy9Mw1x8OVOT8Hm0chi3IHB6zOAHz49sxn3oX85l3ML+Z4l3BhTev2596dQM9EyGiT8i391966SVWrlzJDTfc4LcvJSWFhQsXkpeXxz333FNtP8uXL+fVV1/FMAwsFgsOh4OePXvy1FNPMXnyZM4666zaP4tmxoXvnSbj7Kcxx78FG4djS9/Pvv5v8La5l7XuzaBhsgrtNWutWnEEQ1nGWjSaAyFO7XXj4SX3O1xvvaS2T6XBZau8oFlkrVjopWr+IGyJtNZ0MruzWW1Aq+ovzgwUNuUfEOuuOtONjuRSgK14PPvKKqDiQRcfzlq9hdaVlldWt5RS2UvQbbfA/srJ2E36Hb4WqNtsxXDbzu5q9+/jIL3pSi/VhX5G8KTyKSSxWHvveO717GeRZxkWDEpwkEISe/UBOqqKC73hxuAaL6DBO7supd8abA+djXPdcFwOK7H9lxLb6mzgqtCeZBj8bq4ijhiKK1XErMyNh72Vcs/EK9+gWysjhWydRytSypMXV7aTjPIbE0UUs4O9LCv2cOzWAoq1DUN9jL3TDTiMLNj9QsWB/YAVvrlILBYPx/aNjpmUVZVVo1OGAzpeC57WYMlFKe8ylhjsJKkEEox4hqj+5JLPn1TkZCyqoTJ1N9WRrqojNm0llSRsqpXvF6yj/gsrj8cnd0tsPrTzvwlzkOpnHIuWI1PnsFR734cu7Qr42SFEQzjbeT3FuoRUlcxbtiext4D3Xk2zt4JaOQ6/vFwHfK+XTTR7aR7J7nfovWwLcBOv3P+zd97xUVTrH37OzNb0HkIg9CJSREAEG2LB3hV7F6+9X7E37AX1Z+/t2gt2VBBBEBDpvZNACul1s23m/P6YzWY32d0UklDMcz9cd6ee2ezOnPOe9/1+Vx9Bo88DwfytGmcOj6yp3FWkN8vpdQcFLNPXNt3Y3ch2md/INV7fMAremYr/83n3efTx77Dp2M8A6ElXVNSgTEsA6YiFR74DGTDx+3tv5D+nwuQzsCtWVslNHM0h7XlJnXSyx9DsTLevvvqK//znP2HXX3311Xz55ZdNHsdsNqMoxmnT0tLIyTHKUuLj49m+fXtzm7NPE6osSEkoRhn1C2f1zsCiWMiXhQwRA+gjsugpMpt13FgRzefWF9DRSSKeEllORsPshhBUUs0srXlZcR3JGm0jLhleQ0BDJ05pXgntvwmHLjlmWzUbtr6DlvMJ0hM5Nd6OLeRyDx6yyaOcSgptf2DcTrwYhgwrWK9tIU0mBWzvDXmcOsTNl8ChH0JcPvT5m2F33U127LIWXVt7kh9BpDgaO1JKZsi/mCnnc756UthtA8XtiyhlNosop4pqHOSyk5wG5gExSlREh94Y6koLJSVU0N/aBdew6XgP+p6auDy+1yKXDrc1f8klYQNuYHxWgVmPMSFKkC3CzFy5mO/13/nN+xfveL/iCc/rrNDWsUbfTDIJ/m1LZTnvlbtx++KSurTh3PEGcuf9IOvOIyF9Edx+NvT8B6JLYdAfmO85nRjrnmkSE1jWIwQIU7E/4AZGpmo/0RMAF+6ggBtELi8FGKIMYL3cQrJI4FT1GI5XxmHyaeHp5Wnw2ksEmTb0+gfuOtVwNm6AswVZs53s2wTKVlQRPtuyk07aEk1q/KOv4ne5gK/1XymhfHc3qUOolg4GiF7YaaFu637zfC8CJvQSGhsgOWmZTteeykZ9a2QN6P7zCTWDP7JH0yZmaSSRTtPO4YDfvX5PpVSWE0uDzPkZV9AoIDlvIl1IYaW2nsFKf7wh+vdy+VHBAbc6KtOguDtV1LClU5qik38Rzc5027x5M/369Qu7vl+/fmzeHLnUD2D48OEsWrSIfv36ccQRR3D//fdTXFzMhx9+yODBe6ZYf0cTKaelt5LFCn09W+UO1shNaGj0V3o2+9jpIoU4YtlJCWvkJrLoSj6RHWc8eFkkV5Kr7yRTaZ52QUfwnfydpawJu75h2VonBh+Wu5nj8JXUebsiyy9GpD4ddvtQumwQPLgS9uXQ5Tak4xCEdR3E/ohTXIWFyKWN+qZhhpYbDWak95/Lmvh5LJexoXbbLUTKHKqhFrMwoUjDpTVTdAm7baQyWxWF1zyfkGlJp7uo12q0Y6M6TGctjiiqfVmEbtwsZiXppJBPERLJUtZRrJWSonZMuVepXh5xfQ21qAFGB6F+p5kY95k4YrnB+xDbfFmGv2jz2MQ2/4BKQSFbK2GhI1CNTBj/XAcEHFGAWoWSkg//ucmvO+UGHLK2UbbdnkBTQTMPXvYXxjM5lKZMqV5OmV5BJdVIJIWylEFKX3+p+CgxhFIqqJI19JTdGK+Mqdd0++Y2kIGDOAH5/VGsoYOpjs6gWyc+gjQrZTVJIRx0O+mkrSmlgp0BfdkyWUGGaFwKvy+xXt9Cjsxlvdza5Lb6l3fCPydBnSnOeffDMa/A71eAboL0TXD19Y32K6cypNbs3sZyuS7iZKDSczX66Y/Bd7eAZsNq9fLFxfH0SGo66KYKtVnVCGD0N/ZkdsiCxlUpibmQ08CJOqqcHRSyUK5giBhAFhlsoUEmYXK4zEIJ0RXUUMsSffU+8f3qpJPm0Oygm6qq5OXlkZWVFXJ9Xl6eP4MtEo899hhVVYbT3qOPPsrFF1/MNddcQ79+/XjnnXea2Hvfp1oPPwuiolJFNQe5z/QvO04cTjfCD/BDcaRyEN/rs1jOOsaLMZGjfD4KKWGS515+tL7ZonO1Jzv0xrNygWTRPIOJfxvS//8+SfswZh11DCR0qWRcg9kwEb0AEb3A/75CVkcsO5MSeOsFGgXcAOafjeeAX/mpx2y8uheTsvuF7gPDOg0xY2Kl3IAJlSM5KOKsp0WY2U/0ZW0IhygrFj6VP7LVvYPZ1v/5l8cSHTboNoyB5AVk4QkEBRSjYAQANTSu8TzIZ8rzfidfXeqtcvVtDnmyvhxF6lFQPhEpbYi4rxFmo3yxLqDUlTT6iMbPlL4iiyhsVFJFAvWB1/ksASAKOyoKVdQwvbgfm53BOnb1s7I6/oTu6Nn+LQI7yMWyjKw9MOjWHM3Fbopx788iAzu2oH2m6u+xyLOSuXKxf9kNykU8bTHcTdOVFMaJg5gnl/CTPpvTxNEBRw51Twh/n3Diolo6Qmo/dvLvIjYo061T66+TjqG0gV5X3cSM8+39wV0NXidK5hiwJ2M5/u2Ob2A7cKrnWrJlaNkLvSQDXn8RqtLB5ARPQH9NqvDxFMQjRyGO+l/I/QPZLvPJEl3bqtm7heZo0ymjf4LRP2HFwibrDFJF8/Vwk0VCsyR7mppM292EyhAVZz6FzN4fyn0u5RYHXHUjNThYKJdzJWczUhnCFj04yKb0/wd92HRYfixBWfMnP4+INrIO/5Gr2KRn00/t2W7X1EknewrNHskOHz6cadOmcfDBB4dc/8033zB8+PCIx5BSkpaW5s9oS0tLY/r06S1o7r7PCtaHXWfDQrEspwspmFDZT/RhuDKoxTME6SIFN0aZkkWYmhV0U1CYJ5fglp49RidjrdxMFPawGUgpolPIORQXxlt4r7yaJbUmMBUiEj8EQDoHg5YA9r8RSn1JQZQSurw0NoT7rQh49bX+K8PFoLDtkJUpRLwFlXRD67GFc723hHRP7Ug0GdnQoa501otGupLcZEDrRvUiymUl6/QtfCS/RUNHAMkkolLJFrk9SA8pifiw5a3Vjb7/gniiiSGaXHYikXzP7wxyHU85VejoXKtewIPmxvqcu0qeLAwqj5UFj0LtCON11THQYyKZIpE8n06MBQuqaDyTnCwS/dlTXjTiZCzl84+CeWezX1wSp525lAWp0yimjM1etZEjqvGuFlQnaEkQ9SciZpZ/bQ0ODhJD2Siz2SSzyWLPGlDosmlzBzMmBgojIN5FSQ0ZpHM2mNn3iOASkGHKflTqNWyTO6gUAQGS056FJw+iPiAu4YzHI7YnT+6kv+jVZLs72bfpL3pyoNifciqbrRvbSSe7SmlA6WA8sRTqJcZ8S9UO8N1P9eyZELNn3etby1x9MYkyjiqqGwVKpNcEz/zPl60sgwNuQH02eBSYmy4fXa1vIkvZuz83l3SH6CeEpjtdSG3h+CGZxGZtVyXDaxvvCZTJxoaIwuJCTD7X/z5w3LV+fRIjf6ogu+p29N4j4bRnUez1E8TKeY/AeY/43+uOWPjqdvTZ50HXjdjPeJFFSSvpR8/2u6hOOtlDaHbQ7frrr+fcc8+lW7duXHPNNaiqMVDSNI1XXnmFqVOn8vHHH0c8hpSSvn37snr16oilqv9m1mvhS3SjsLOCdRRQjBULGy2vtyol9wCxH+PFwVRQhVtG1tmqw4yJOGL4UJvGFaazW3zO9iBexOKRnrDrx4gDOq4xexExquCtHqWMcF4MSjVCSGTZRchSn2ajZT10m4QQXqKwM0iEdsdNIYHDxSiWyNX+LCyJERwGQTe6kCfrA0VmTMG6bnn9CJs9o7oRg+YikazRN7FK38Bgpf+uX3wr2SlLmtxmJEPIUFL4r+mqJre9zFSfrbrVtYM8WYhd2EgnmRnyL6qooYxK0nwZc33IYjWh3VNdDTRXdHT60AMPXoooxY0bSb0RhA0bO2R+k21sDTtkATsDRXhrh0NdKamWDvkHcEjJmXzW9TmU5EKGhvmb9hBdOUyMRJMaf7EU/YMpsPZIANaWwNpnjuDoG9eRkLmKgfErWVE91he2hPrvVBSk3wimAhRzcMalBy8mX9BqtdzEeMa03YfQBuTpTc/KxxFDf5+mWybp9KY7WwjWRQ0sExklhvg12+roI7L4h5UMEL0pkMUcwShmswglcSfysSORBVngtkPmJhRz42eF7lVh0zBEbSKretXQv2VJ153sg5hQ/UYKkXQwO+mkLamU1fSnFxvYSgVV/omdfZV8WchS1qC7bKibx6JZqhC9VyMUHSrSAuQBwvSxUrZhU0sZ/ZuHoi4Kaweb0D0W2DIU3Fbouxwlynh+zNIXcDyHd8yFtROb2d7MAlDo3oqsvgPF/qySG6igKuJ2puYPu3cLK7XgxA+pC2TOAChNh5QCRLcNOBQj4KYvPJkF31zu29IGy4+D5Uein/UoKF6jisbqgt7LUaIcSGd0sLFCZQa1jx/K5nt/oZmSeJ10slfT7F//mWeeyX//+19uvPFG7rnnHnr3NmbYt2zZQnV1NXfccQdnnXVWxGMoikK/fv0oKSnpDLqFYVWAeHZDrFjIEKmYMRONrdU18BmksVZuprvIQJEKNqyNMiIa4sKNghIk7r07qZTV/KTPjrjNQNGng1qz91ErnAi1vnMgKwJ+u+4B4BoAttU4GuhvBRIlopgjFwUtEwi/8G4hJeygvgS4oZGC6LYOGVj+V4fqgHtPRdiMubRcdnKC+yoeMt0YFKzqSCK5Xqko2LHhoJYKWc1ApWXfu1+t7/pfX+G+2z8VWyYrSBNGTyRKsUGY5Kd1bMaKxR98k0jWsQkLFp+frIqG5u9wSiSFlLa5jsYqfQN/6UtJII5yfLOl9sVQe5BRS/yljix/HsPv6jCi+qxhv/8sCnmsNJHMn/IfwMiy1dc27vBv+/Nwtkz8AGxLOCrhJH4rrzOUkcY/4YK8t0A4kBn/RdiX+vcVCNbKTfQTPRuVJe0JzNQjG9coCG5VLyfaV87ZVaQFBdyyyCBFJOLGwzAGspx1LJIrydeKuF69iJ6K8VntL/qxQW6lt8jCI73Mpv7vIRSJ6BrekU3fNhheexVQkMC5wP5dKllyZ2ynPsu/mK6kMYBexIsYavZw/aJO9g0WaMt4x/slGzC0zbrRhZ1y3w74Vsoa9MXHwhf3o/kCa1LxIm+fiEjYCcID0kyQlMjA2VCSBUNnMF5/m0/Sa/y9rx8HjuDS8e9S3x+T6Ee/jXL0u6zQ13X49bU1LXnOH6QMbfHx3cLdZMANYBPZuKQbawtKVzuSNQGTu3pNLDz2DWj18hvS4oC7Tsdqd+GZfYn/u1ePFb58uMEyiX7CSxBT2thYQSp8tgjuO65tr6OTTvZEWiTq8+ijj7JgwQIuvfRSunbtSkZGBpdddhnz58/niSeeaNYxnnjiCe644w5WrVrVqgbv60QKapkxM1Ofz3K5NmwgpDmMUoaQVy5YcN9T/Dr5SRyTZ6JP+Ra9tmEKejA7KWaFtp5iGV6nq6MokMWkN+G8Ok4d3UGt2fuolU5E4MPSvAPQMCI7XjDVzxIni4SQx0gOYQggfaEdM6aggFsoRGwZXDsJooqMcwsNuq2G+04NSk934aaQEp70vkH+bupIb5Thgw8aOtU4WMMmblUv26XzJIsEBIJE4igK+J1lRXAoduHB2sCwogYnZVTixI3SoFPkxMVmPSfiNbWGr7Rfmex9uj7gBogu9yKSXoeaX6A8uCy9evMgPCWhjVkCjSh0dLA21obqlWFMFCR5e/BbeTfqZ/S9EPMLSJ++mLQhi4NLaSWScqr4W67gN30eexq/a/Mjrh/BYG4zX+5/bxe2IPe6HPJZIteQI/NZTv2AaQcFzNTrj72/6EsRZSyUy1kol2FrhgOent8b/e6Z8NprNOxCrC6QLNjWvOzpTvZN0pQU1rOVv+VK/tZXUCAjGzV10smu8rb2Bd/KepfunRSxUtvI9nbK6N4TqKIapt1OUCabboLvbwYZB+eYIdq32qrDldejXHoPym0XwZDZPHpFIgI4/eQ3SL1mJZce+R7B93MBM41nzCb2fofJWtl8s597Tde0+PihzIzCsUlv275XW1JEgCTAb1cFBdwAcEcxYvYTmDGhJTf3OgT8dB18fn/ItVUJG1rX2E462ctocZ7rQQcdxEEHHdTqE1588cU4HA6GDRuGxWLBbg/+QZeW/rs1QDbIbWHXFQY4M7XkBt+QBCWO3u99zmZ3wCC4OgU+eQguvz3sfhLJXBbznfd3LjfvnoyjOgooCnKqakgX0shQ9m3nql3BQa0/QAYg0h5GFt8CWiIi8UOEqT64lRjGbTMxwJUuGjs11GLCRDrJ5NJ0eRyAkrUW7j+tWdtuI5fr3A/ypeX/2s0EIBw5el6T26STwuHqqF06T3fRBYGgjMogQ4KBhNfKcuEmJozDLBgZhonEU0ElOhITKpvJYYrnZd63PNVmWUl5If7mQqmFxI+QlfsDJzRaP0LdL+Sx0klmqeVbPLqXt7TPqbruF7568WycXqOtR/RVOG1cIb/rghJRTpB5guKGuGlQXXc+CaJxICiJeEooZ4eMHBzeHaxhI1K3QMV5SG8aIvZ7hK0+eHa0OrbRPluts4gnFpd0k+IejRevX+ctnhhUTJRSznK51r9PDFHEEEU1DnIp5GhlLD/osxodO4g3XgA9tM4jgEnpzHL7NxPozvyR/i2x3mimmu/ejS3qZF9npR48aPeg8Qt/8qjnFZ7fPU1qd8plJSgh0t8VLwgJcTqcrwASlBpEz2X127z5Am8P+Zn9Sjcxt3vjZ0k9Rh9xBwV4pReT2LNLI8NRrleyESNApDvt8Mb/QV5/4/M7+GvEyS9S1w2KI9avpdsSsuiKioIWriQhgCmelzlYDucm0yUtPk974606Clk7AmFfAmroCbR/lGVYcMMF98HUd6GiblI40rM/fJ89f9mB6KPbz9yrk072FJp1B83JyQnrWhqK3NxcMjNDZ2Y8//zzzT7Ov5FCwmtH1VBLD7oSTRR9RY9dOk9FdYiHSkVaxH3MmFBReFp7c7cH3cpkRcT140TrA8P/BpbWgqw9zjBNMJUizDsRGZMbbTdKDOUoJbR5SjIJnKiMY42+iW3sIJ1kvGjU4iSJ+CBh46bQ1xwMP9wAugXGv4ty0E/+dXXfOxceZsi/WCRXMloMa/lF7wJb9O1NbhMnYojaRRdMCxYjswu42nsvZ6vHIYQw9OwieDlEynw1Sn5djGQIa9mCisCOjS/ldHp7s9rMUKFMr6APWWwOMSsuslYjs5ZBzjDqSl26DF7F8SkjQrdZCPYTfUCBF033QRa8+0zwNt9qiUhdItQKopPforrkMoTwQupjYFuNjPsCKs8EUQvxXzQ6RwnlKAhqcbarm2tr2EkJsvg2qDoBkMiq4yBrIsJkTDQMEwMb7ZMg4gCwCStHKWPIlrmsl0a5VTopWISZFBKCgoy/yXlU40AgyJF53KBcyAz+iiw34A6XES1Re6zigO6dGcb/ZpIaZEa7ZdNC7Z100loOc53LMuonEkyoJBGPBBxNyKbszazXt2Kd+CSuDx7GH9AwOeHUZxFqOSS/hCy5BoQXkfoYQXNrjljeHXQ26Y5IWrUSTnzR/+4z/ScuUE9phytpf/6Rq7BiNqRPXn4divqQUFvGizPvYb/3N/G/6X148eVNCKFwkjKuVefoIlKbFXAD+IYZzPDOZ6J6Ihe772CxXIUEnjLdwZWmc1p1/rbgqwoPsvBBQENWnQxjHoFFleCOq98oqgwx7kO8aCg2B9w1kViiUVEwvTeVwnUDiRx8C0FFOmv0TQxWd59ucyeddATNCrqNGjWK0047jSuvvJJRo0JnclRUVPD555/zwgsvMGnSJG688caQ211yyZ4X2d9TcEoXehipTysWetCVDWwD4Dxx0i6d655jrdzydWCHRMIxb0bcp067yoTKn9oiDtvFrJ5doaQJfYZhyoCOacheyMflbh7IHQYMA6Ucul+EMIXOMF0nN9NNyQi5ziRM2LHiwEm0zy2zLuDSh+7NDrrpi46Dr+7F/6D++h704h4oJ7wKgBcvXelKISV0IZX3tW8YrXRs0G0z4dPoBcbv81r1/F0+z2gxlCwyqKQGK2a2ywKyRAZZTQj7ahEichJJKonkspPE2gwKlg/FrESRNGwmn1h/4CL1VPoozZ9UCcdGskMG3ACEAHHtdaiuaK5wX0JWTAxmsyRKHNrq8wVmWkbF/czA6AKsajHzFUMLjvivkVUngYyBwvuQagUi6u+gY+hIKqimgqqwGZ27gzLKoXYY/sGUVMHdG0zFqKgMUxoH3QKpkFWsk1sAOFyMYrQyjLe1LyilAhf15jOFujHokkicuDhEHYFdi6zxqR78Hdq8xmY6ato2jrj2HbaTRW92/fvUyd5JrB5LnKc/FaatCOGhiN0vR9HJvolXelkhg4XfvWgUUYZEslU2PVm2N3K351k8wku3QRvZ9vjhaJVxoGooMfUyDCLhM4j/EpAIUR8MkpoKGZvQ8vYnLz7T0FsNme0uYN7ZcOiXAMzVFu+1Qbff9fmkk2qYSRV3J8rjYMV7R2L3Gcnd81EeowpVLv8ygYnKia06R6ZI5wCxH8sCMskjUUUNubKALXI7NT4n0N2ddf+nwwl4MUIDXqA/ysPHo9dEg8cCFidKVLBOp4pCN7qQLBJQL32dKvdaamvMUNQD3nm5GWeVcMT7zNYO7gy6dbLP06yg25o1a3j00Uc55phjsNlsjBgxgq5du2Kz2SgrK2PNmjWsXr2aAw88kKeeeooTTmhcRhTI5s2beffdd9m8eTMvvPACaWlp/Pzzz2RlZbH//vu3yYXtjWzX8/1ZLg1x4fYH3ACSSNilc113uI2RWSoP/ejkD3Uu3uNeRumyLeI+bjw4cVNGJfP1Zbs16ObBy2D6sYrQGni9le4d3KK9hw/K3fjL8fQEcBwMcT+F3PZAMSjisTJkGtXUIBBBtvWDxQC2yh1hg8hBzD2XRjNji04BX9ANBNkY5Z2xRLNTFrNZz2mTQFFzqaCxplgdEuP7OF6EzghsCQeog7hQP41vtF9JEvEsk2vIIoN4ERtxP3dAICUUZVSSuPY4tr1/CyCMosOvr6brNffyfu9veFi5aZfarUudeGIYRN8gId6GaNYanom7Cksryjca0lWmMUoMYacrjpzceyjU40mxFiG7no9QHFBzeICDG8iqYxsF3eoolRW87/2aGmpx4eFs9TiG7KbAfYVeZdheRP8JFecDGijVYDUGlyZUeopuEY8xQuxPntxJDvnMkYs4X5zMoWKE39HPIz2YhTlIzsCKBYkkhSTKAnT5GmI5+RVqd/SF7OFBy7UDf+IP+TfbZF5n0O1fyvfuf7hqWwrlnndBLYbMa/FYI9+bOumktRRQHDSJUMdIBiMFpJC0G1rV/lRQTYEsIp8ipJAo8aEnOIUInowzhPGngWYL3Cj8icrqK5b+lst3pcm7lZ/02X73drqvYeQ8hz/gVsf4GRoCwTEhpBuaQ6ZIa3bALQobXUnjFs/juPFgw4IZc4uqQ9qDEdFVUBqNUVZhQkQZhk5KdA1QgwUzDfOWNXTcPimLBBHPXdbLeNDyf8iYGqRwBfXBDAKkQMB4/ekUvo/6jOta7l/RSSd7Fc2qp0lOTua5554jPz+fl156iX79+lFcXMzGjUbA44ILLmDx4sXMnz+/yYDb7NmzGTJkCAsXLuTrr7+mutoYzC5fvpwHHnhgFy9n76apG3YUdqKxY8FMktj1rIzRPc38dF0sfS59qcmAG+APoAhgkb5yl8+/K+TIvLABN4Cuu6B5p0nJLfm1dFtXyanZNZRpzTUa3zsYaFXxOzwCWEJnccUQxS8Bzpqh6Kf2pIZaqnEQTwwA0jGSn7Ovw5v9KdIxOkjgPSQZmxsvS8z1v6zTnosnlhWsZ42+ib/0pY33aUcKiGzgcIoyngFq7zY510hlf9aymWyZzzZpfA5CiIgJ+7U4I66vooZt31xIw86Od9ptmNvAwj5PFuLEzXqfe1w4VNQ2CbgBdFO6sESuYUfZUei68d0rdqVA1bHGBuYc6h9xAoQLPecj9OwvkdXj/MdRUCjUinlJ+4hHtFd4WnuL77UmdM3akWVyLTo6IvlVoywo8V1EtysRqtEhH82wJnX4kpVEcshHQUEgyBTp2IWdZXIdebKQqz3345JufxAOjImdPFnIYBHZWVxDg0m3wsHZYNHB7IVj3kQd9wldSaNQRipZ6mRf5qmyAko9vr6JloAsn0i17oi8UyedNMEWfTv3u1/gfvcLaLI+kFSpV9PwySgATej8I1fyi/yzg1vaMXyl/cI/chUWWuiAOfvC4IBbUwQE7fZmQ5Q6iRIAcfWNbBuZ02g6uDwRskTXVstMRAk7CUSeHK3DiZtN5PC3XE4hJThx46CWXNk8LeT2ol90IaLrDZD4PiLjBn/QrY5wk7tDlH4slqtZLFf5HdCF2Q13ToSUzYAHw6StYcCtDsHszzrtSzvZ92nR3cVut3PWWWfx/PPP88033zB9+nQ++ugjbrvtNgYPHtysY0yePJkpU6bw22+/YbHUPzDGjx/PggULWtb6fYzlMrItt4NaaqjFjYcuTTh3toQraFwqFAkJ/CxnU6E3bY/dXgTOCOk1cehPfoI++U/0u+Ygv7qTAbJnq4/9RaWHl0vdFGqSX6u9TClsvuvR3sCUNBtq3HdgW4pInYKwrQ65XTrJTR7rfPVkdlj/pMK6hGvVC5BSRRY8htOTAt6uyPynqCm6DqklhD2GOOsJyFiLPxAYnw9X3txouwqqUBBsZQd/6Uuad7FtRJ0gfTi6idAluK1hgOiNisoO8pmnL6ZGGoNWa4TgpdacnEJTcMlgZmUeM588nRtinqAieSDuWa138dwsc1gm10YscwWa5Y7ZXGzCygDRC68SWO4gQLiREqQWD5b1RvAt/mNwHAKeHuBNR+58CKkZHWQdncWsZofPCEIi+bEpM4F2pK5cSggdEfcjIuldhLneyON8cXKTx/iPeh6F1gXcpV7NZGUSRyqjecp8Bzerl5BPER/r3zNb+5vP9Z+D9tusZzNMCW1uUYcXDVF1GgzpDpcocKmCOFBHIsmjkG3saPlFd7JPkE9uwDvjt1i+m7M3Otm70aTGIPfxPKW/yVP6mxT7ypVrpAMTpiBDqDpcvvJ4HR1X15GItGGIuCzUA6/DNPjSjmx+myOlpNKXee9plHfUBJbaEAvrXOtlg38aXDPJv1UJ5Ti9e19fuFJWs1Ju8OutCVVjxy3/xz1PWPAoxpWWJcAJM2O4Wjl3l87VSzSvwiZURZOGzq/6XEr13Xe/zNHzEPYlKElvI6JC97FjiGK56TsuEacF7feD+Q0c1DJLLiCBWPRpN8ITX0Jxb4yiOkEkrTetJp6oW8t5bHqo72gnnewbdLgVzcqVK/n4448bLU9LS6O4eO+dSWkLtoYRa1dQOJ7D+JHZ/mUZIrLpQUs4znw4kz3PNL2hry0KAh2dCzy38YP1jTZrR0soDdR0+783oTwTECBBLjqFD7tbuO7w1h272Ct9Uu8GRftYpptd6MjUpxtF3HW3BT6/B9aNBq+ZLarKwIRKXp9o44j+oWdUY0SU3zkzQ0k1tKeknfp4vgKVpyHdfRCZ14V0dxImD+KmK5tsdxQ2HDhJJZF5cnELr3rXcBPaxQnAgpk+tF05c5bI8AevvtVnkuIaTZ51LnbCa22FGng04sJ74MV3wGe6MOuzM0j0VPN172N54JDbKf4iEb41OnyqCl3iBS+dbWPCfk3PpjtouqOkoHAgkcuVW0oGqaxOfBfpHAjufpwRa+Wb2F+h+mgonowxmFAQ1s3IyjgCv5eKHo1UjYmDFXqwLtDu1FZZrYfP4AU4WD2gyWPUZULHiRgQhv5iOil0FWmkkIgTFz/LOZhQERiBNIDlcj0XcVrwwXQF/cf/wD8ngtuXJTFKhaHC14fWQavPvA503e3k34WI/R4c3cAxBqxrEYkfsZJy1ugbGaREzqDspJNQ1DR4ttTIWhBwtPsSlnt3IGtOwqI4cUfPRAjjSbhWGtnzKgoLznyQCephu6Hl7UOJ7kCrOhbQqI35vUWa9eKIj5ELT4GqgPHDGU+iHPRjs/b/gT84i70rIylc9tjb19p5+9p646tYopkoIldqNUWaSKY5XTGAAfRiJ8WUU4WKSje6UEARi+UqjuGQXWpHa1mqr2lym2OUsQww9eZ59V7KPJX8qf/DOrYwiiFkkEoZlWh/nwALJgbsFS7DLRivDg9OdzOqp4ljBrZNRUQnnexJdHjQLSEhgfz8fHr16hW0fOnSpWEdT/8tLJGhb3hR2LjHfC1d9XT+1ldglma6tmHQrU8zZ2fAuG3asOLGwwq5Hrf0tFm5WEuIJsqnL+CB8i40vKHP2ujlusNbl1VzTryZ50tc5HgkVgHXJ7UwhX8PZ6O+jWjsQZ1ZKYGnP4eqVP8yTYMtJZJjXqnl1+sUxvWLfLuwY0MobmT8pz4tqjpUcBnC7xYsEbPGBCJkAMkIDgiisSMQqKiUyYogMf32QpeRHanceOipRNbYaglmYeYh9Sbe1j43tNiI51XvJ6SQGFFrqw47Ftx4MWPGhAld6lRvGAwrjyDuxHfpMWopiaqZhFeq+WDgGdx25EONdF28GmSXSk5+vZZvroQTB0f+DTQcGOk7s2DBSeCIBSFBAT1zA9aDy1v8eUTiYvU0uokFVHf/imy3iShLFAIvumsggYLA0jkYkfgOsvQaY8eY6WCq74w3FNwupgwpZZNlnO1BoM5aKLLCGJuE4iZTsHFRd5FBEYZpymp9A0PFAHbIAsqowISJMlnBEHN/AhMo9Defg60N9DvXAv0BO4ALGfMLXUmlm8joDLr9iznHNJ5nM+5spM1epde2sK6ik04MGj5b6iZ4VN2Klvsq0tPLmIqKG4JInQrUS6Fo6FzouZ2r9XOZYr6lI5vdLkgpOT3HjXTcZ7yvORKly93N3l+Y3Yh7zkDXgVo7LDwZCruhF2dAVTIsOQYQMOQPRL8ljeTePtN+5CzT3hV0W6dvYX/Rj9Uy/GSWBTPJJJJmarq6IxIHiP2YzULDJbUJJJKJykmUUc5mfTtWYUGTGld77iPDm4oZE7MsH3VoH2QLkY1HYonmGMUwv7ILG7W4/H3Swz0XYMbMENGfJVsaGp015xrqt/ljo7cz6NbJPkmHB93OPfdc7rzzTr744guEEOi6zrx587j99tu5+OKLO7o5exTlhC7X7EoaB6r7c6C6Py943wdo00CXWWn+sTR0vHh9gQ+FVfoGDlQ73vxihVxXry+QtRJyAkW9JZcc1PrPJ82ksLxvLCudGn0sCqmmfWu0sIy1jTqyOOKDAm4NeesvV5NBt1iiGS2GIlLnsTD2N7SCR8HbBVAg2sjSVJp4+IbL2FJQ0NBIII4aHKSQyBJ9DUepYyIery0I97sMZIBoGz23Ou40X4UXD69on2BG5SttOgnENb0jUIsbFRUbVpzSjWPqG1DYB4BKYOVPOofc/gS5vWy8O/jcyELKwGtz3U0H3WT990n/eRLMvphGHa0l8NuPGvkPaGTEq826lqaYaDqRE7UTGJtTyjqXib+FA1PXNcjoeciKiRgzrCaoOg4yr0ZEzzGEfS0bkQHNKw4wAQFIJoFiWUaq6Hgh7hpZE3adikKUYg+7vin6iCzGigNREGyTuXQTXXDg9A0S3PwtVxCrRAfvtHV44wNVAdOAk4DYaMh/kYqut5FlE9RKJ7rUW62N08neS5RiB73xLWW1tp7Rpk6V7E5ajkM2yHSjFq/0ssRdi/QETN5XTwBf0C2ZBL+xUy3OJt3u9xaKNMlCR8B9teYIpDQhRPhM/JAU9oTnP6Au6525FxH0vF50JjJjPdx4edBveXGYxIA9mc1kEydjmtxuiLLrzplmYWpWwA2gCgcT1RMYqw5nkXcFx3uvxIUHLx6KZAljxIEUyKI2rWpqikJZGnadwAhOXm46y7/sUGUEpXo5S1nDBraSSBxR0k7XEYvZuOxwWpSG6Udy0gEefDN6nXSyT9HhveLHHnuMgQMH0r17d6qrqxk0aBCHH344Y8eO5d577+3o5uxRlIfJYglMjb/JdEmj7IWOxokbF248NLZr7yhKZb3ugfjPjTD8BzDXQHQJH19i5+Qhu5adFq0IDo4y7XMBN4BsmYfS8KdvqwYRvrMwumfT8XmLMLNQrmCBXEaqtZj0bnewX8qPPNqlFpH2KGBkKLYGNx40dMqopAoHO2QB2TK36R3bgNJmdNgzRPiAZWu5x3wtp6lHs408yqhoVJYbDgtmNDQqqcJblOkPuPmRChUzJjLmbwtptsg6kgCjezYdIAsqL51zPuE6W1JXeWpGC3VomuCbKg/rXL7vp7TjzX0e9GiI+zLgxDZkxUSEJQdh3YgQwS1smEFYSCn5dHzGVoVeRSHhjQhaLJzdgEFKXxQUlsv1lFDOWrkZ1TfwUnwTKY2ILgtxJAk9gBhfkFyPwlVxFivkOgpkMdkyL8Q+nezrmPXQz4nVERyNO+kkEjUEG3FUSwfbZQFZJgWEE9AR6GCpN2QqoRyBYdzjReMXfd8wVEhUBWmqQKnTXDPtgAjSF2H56Vr8ATcg5PM6fwCUBFcflVAW1PfeG9igZ7OhCYMnNx6eN9+zy+fKJB0FgdSj0POfQt/yK3rBFKTe+LldRCmzvPMpkxUsYx3VOPDgQQIeNObIRWztYH3UnUSSeBKstU4PWnKnaRLzbJ8xRAxAIimlglVsQO23GC66k6ZrbUOtFxzxrI7l5goe/rlT362TfYsWZbp5PB6uvvpq7rvvvkbloc3FYrHw5ptvct9997Fq1Sqqq6sZPnw4/frtuXofphtLSblfQhsIApsVeHWijYtHB5c+1khH2CyfsYTINGhjAjXMmksxZfytL+dSzmiPJkUk0EhBKDpi4uMw8XEAzrKt6vD27E0sdZfiLbkLpBmR8D7CuhWhasj/XAtvPQ+eukwXoyN27oEmrj+86cF+YEDtFPUoXrI9gB6lU4uT+1yGZlQVNWFLSJvCE9C53MoO5stlXM5ZEfZoG5qaJY8mCptoO4OAQB413cIM7S+yyaWoQTZWOLxoCAQ6Es1STSg9jZKobMyV+/F76pHgCq+3ccpglbuPbdrtrDpwYKR6wRs+0zQpum3LJeKUhsezIHc+BMkvEnRdSnAGWeA30BVCKy9PFjKUgW3WzuawiWzyI3R8u7Hrs96HKyOZq/0DGFkjJ3EkPzILHcl2CqiVThQUv9hzwo23UP7iVKhJJujz9HpB1HchPEoFGi5Ws5H1cgu9aLuS6072Do5Wx3K//kKj5WvlZlzSjVXsW1INnbQ/VTI46OaglmyZx3Z1A6LrjQwsv5/epnh+zPkZ/aWZRiYzgK0K7eprKfv2D1SZjbPOWTKmK7ards9k8a5iFoJfekZzVMEsSkUpIuntphLVQ2NvjgmaBEuwFIgLN794/+Q880mtOGnH49W9zNDn+bMewxFDFJkifZfPN0wMBASUTzR0LVGg5gioPB0SPgtuG16myz8ZrA/gZu+jIY+3Qy/o0NSYEncCetnlgGZ8t8z5/nUjGIxA8IL3fRyylrvM//GvSyHR/1pFYQPbSNi/iHKzI2A8EUhT/X/jSz3lFzc3HmEjIarjZT466aQ9aFHQzWw289VXX3Hfffft8omzsrLo3t3QEtsdujkto+3a59Hhyk+cHNHPTI+k+rtpw/KmQHopbSfSHg4TpqCgRlPUBU5+1xc2vXEb45C1mDGFFJVvaB/fSWN+yT0DPIb7rXSMhJ6nI4QHpcdaeGQCAL3JYo3tpxYdNzogHbyu3FARClGyfrkHDybUsN81BQUTalhr8jSSKPRpUuV2kNh9U1k7cYTqVLQNCSKOs9QJfKP/xhYZWW+jji6kMJDezGIhJOyE0d8gF55ev0FsMQUTpmCZ8iu4gx8BH19i56zhFp7zvsPb2pfMk+Us5Q1GENmdepa2gDSSjSyt836H/51geBg0COdnJGrceXTzymSby8mxJi5PUHmn3Iv/Xi0tEPM7OIdBzeFgXYNIfD/sMRrqDJowURSh1KK9CCf6XMcIZcgun+M89SR+1+ezQC4HYJQylFn6An/JeQnlxBDld8hzxOdgv+8cXA3KZqRUkYV3Qc04sK5DJL7nX7ejievoZN+k4Xekjt9ZwA/aLM40TejgFnWyt3Om5zr/62iicEgn28knkTjstlJu7baBsiqVHz+fTP3zRoAzDl5+G5lpZHo3T8p9z2d/m4qtyxSUiFlJoZES5O8XwpoxGK6lCqE/FQlmBzK3HyIuOPP6e/k757F3BN3WsYU8Cn3mb+EDPX3IapPz9RU9SCCWYj2G+n6PRGqxyJ8mwYIzDLOxoTMQZz7NYmU1j3tfI4FYanHi8PVDBIIUEvlY/55z2DVzh+bikZKyvMf8pkjSNRi6n+sP6lowkeoajYKCRHKL6TL/ZPNU891c7bmfJXI1AkECcUb/4aK74Z3nCP6eNfwl1n0PIdR30eGRJOwTv9xOOmmFpttpp53GtGnTuOWW1ouSvv3220ydOpWNGw1hy379+nHzzTdz5ZVNOxjuDtojKLihUAsKulXK8DNP3ZQubX7+hkQKVqko6Mig7CSBwIyJaGzc6XmaJ813tHsb6yilgiqCs1b07AHw53lQHcvRogJVFYzMMvHfY2zE2/e9EtHWoklJjScN/8NNTwQtAUxF/m2sWBittFx/J0oEBN0CMp+EEPWmF4Ada6Ogm+4xw58T0TcNxaubQJXQfQ2M+xjFZgQDBAIXbpKIR0HpMJ2WLXp22HV2bJyptu9A8gjlIHJkHg5ZS0ETHW09rzf5f1xEbHQy2pHrUeLKEKc/izj9WbrRhZ0Uo6MTrcdQ7m5cNjp/q8ZZw43sgs0yB6BZ5SQ7Kakvi0yxwhUSoyOlI5JfQSR8Yhzf+juWNr6fKkLwWmYM74sX0MouNRYmfIiiViHTHgF3X6SoRdaMRMpoRNTfCLMRFDKhGhmB6BzEUP5mBWDMQhcTqqyyfSmWZX6HX91jgrlnwaYRoAmQCkvVvtzWzcHkY22kxrTuvtZP6cn56ilomnFXP049lMf0V/3ry2QFfcliCYZ+jxfN724aiBAaIn0KMCVouR0bG2Tkcp5O9k3e0b4Mu67OUbKTTprLT9of/uA/GP2KahwUylL//bmrSGNRyU7qB+yB2bhWnNJGjAhv3rQ3UtWg5DYQvSYGZl0IRVkw9HfE8JkIxei7yx+uh3nnNeMMwshQev8Z9CtuQum3GN1ph1nn81PBMN4a6uSyMVbURlnmexb/6CsZRF/WEv7eo6IwVjmwTc4Xp8TgxoOI/xpZNcHoX6ul8EsvWDGufsPFpyCLeqBcewPFsoz+oidu6cVBLeVUkk8RRZSyvQNd1Es1CVqAhq2nO3VGVGBUqXQhlQoqsWPjFe//uNV8OQD9RE96iK7ky0LyKSJDpKJKlfP7Z/HRE0fimvw79eGGht8ZFZBwzgPw+YMEpvaZslZjj9sfaH/DtE466QhaHHTr168fDz/8MPPmzWPEiBFERwdnedx4440R97///vt57rnnuOGGGxgzxhBBnz9/Prfccgs5OTk8/PDDLW3SXodJaayRVUl48eyEurT4diRSdlE6yRRQ3GCeSGLGRCGl/K4tYKYyv0NE7aGxxpb+43/gzwupu5nP8bVv1iYPz87ysO6eGHqmtI1w+96OKgQJ0YsprxlpLLCuAjU4kOPCzSGi5Z2QoEy3BkYNFixGZwSB2uC2I53R8PB3oDcoY9x8MMy+BP3OM1ASilFQqMaBho4VC6kkMUP7i6PVsS1ua0tYq4cPINTi5AAGtev5j1UP5Uftj8Y6fA3Q/zgPpl+HhmAtwPzv0a+7CnP39XQlHScuzJiMbBRFw5y6A09RYBatxD7id+BEkgJcYZsqzYDgv7eI/h1ZfbTvjRui/gKgJ5kkyrh2Szc4MnkVM2PPAgTCnIeUAlnwODgOI3B2VSIhbQoidro/mCSR/oBbHbtDfHuL3I6GjnRFGb8JLVhMeC2wdouHl+Z4WHRHNEMzW+eFNMk0kUmmif73IzyDWM82PHh53PM6Z3CsP+jWUiSSYtnxActOdj+/6/PDrvtAm8YKuY4L1FM4VT26A1vVyd7ATO0v/qd9x3p9CyZhppvIIIm4RhlKDmopDXgmJYl41qW/D+LQ+tLSOhJzsSvOlmun7OGEk+fQC7Pguf/hD1ysPwI563K47XwjY2n5MY13itkJg+ZCWTpsPLTBSgFLjkdPy4bHvwJMOIBr17u4afpOVj1goZep+W7aHc0mmYMLd0Q5ExMmTlfa7n40VAzkL/MS6HEWeDLBvB35zveNN9w+GC8aLlx40RitDiOVRH7U/8ApXaSRTNcONFFIUjSEbRnSeYCxIGpOkEGHF43udKGUcnqKbmwmx79OCME4ZTRz9L+Jxk6prKCf6MEJpnGc6zmdY5oMNQjIGQYPHAdzz0Ap74YybCbJ/TazRH+iw8aWnXTS3rS4x/7222+TkJDA4sWLWbx4cdA6IUSTQbdXX32VN998k/POq59tOeWUUxg6dCg33HDDHhl002vLMNsT/YnrijD+K6UvmV2AkE2vs5hgaKbCp5dFEWcLHnnmaaFnNAQCk2jdwKolWDD7U5sbUk2tLyhXfwPWkdiwUkQptTh50vsGQ5UBHeL2VyLLySSdXHwlTPMmEm4kr0t4YoaL185tnYD/vkhM+hNUVA8BaYKY3xGicYdkiDKgxceNxk5X0rBgxtpA8D2dZKqpQUUlGhtlAZp8ctFJjQNu/pUqzLkATnkBDQ0TKikkUkwZO2QBf+lL2z3otpLIZgPD1fYNugH8x3Qer1esRd/5JugxiKQ3EA00Qph5GcG/AwE/X4M26UaqqMGOFQeGXlcVDrrcfAu9v36F5avTqIzJJv7sqcxMr+ZcvR9pJJFBKtHYqZLVNIUjQHdHxMwG09Xg6g/2RQiLURabTxF2pWl9uNayle1BGiS4+/gCbtDwc5GlVyJi60WB9dJLkOUXg1KO6HI3Ftsmv6ZZR+KVxj1WLj2mUcAtEAnc94OTb69u2pWtOVxuOpsrvfdgQmWZXMt1ygU0dflSmpA77zc0a6wbEF3uRDGVoaNTSgU7ZTHpIqVN2tfJ3kEcMeSGMSDJIY8cPY9M0aUz6NZJI77XZvGx/oPxRsICbQMpBS+j114HtuWILncj1Goj20066CW64ZBO5nuXssm8AXH3mciPHoYdA41M+f3mIs5+HN7avdfV1mhSCzYuCuS3K2gkAlbcA4qzIDUHMtfB+kOpj0IK6LMC8xnPk1rTi7xHxhrLAp+XvZfC7PNpOFz0VCXw9ra/mdJ3zw26FcoSiogsE+HGw0h112Ub6lB9n51QnGA1Muxk+lbYHngOCYoHffJcdgI7gYWAzebGc+f72O0e1rOV9fpWqqWDGNH+45et7EDJuBW9+igQXkOeI4ACivyGU0WyhGw9DymlvxLsIvVUrvM+hIZGKRXEyRjW6Vu4xnwemCt82m6hirx9y3ovQbHXwDEfAkb3oxob8/TFnUG3TvYZWhzN2bp118pGPB4PI0eObLR8xIgReL2tcOHpALQ3elFaUUFcXNtqEQWyRt8ScrlKx2RoWbECoUtcK6kmmqigoBsYGTDR2KnGwTy5mN+1BUw0tb/+QAHF9QE3AJML3OEFmjPiOstL66jQqygUhYjYXyNulyISI64PhUmYqMVJHoUIGfxgtWHMQDtxYadB4CW2CW2SuPr1XjR/Wck6tvCPvgKndLWbkQHAZiJrqfXuAMH4/vREFN7nS/9XkCU3QvSc4CCTJYRobYxR8llOJYovRb8umJSv5pN89p3kX/gZf+oOTvAsYilwi+cx7jRNIh+j5DhH5tMUNdQidYF8/zFfp16A4oWJDyOGGZ9fHG0TIApHMgnBbl9KFUbXreHvX4Jan4klXb2RZVcZb7QUZNGdeLpfxlbZsc5hAEv1tciy88FzbJPbZsS33X1tgOgNGL+vbPJwi6afxbL8XKg5ynjjGoAsuxSZ+hxuPEzX5/CrPo+L1FPbrI2d7PkcoxzC2jB9mTo26ttwSw8WEd5spZN/H40CSRWnU1TbD1DAeQCy4lxE0ltUaNVsJoetcgfxxPKQ/pJh0BQL4pobyCDV/+za1/BIyX93VqDXvIiI/hPivzBWVJyHrBkD5lD9IIl8/1FkcZ35nRf/M7HXYsQ5j6ChMyg6hbzLboMPpoAWBUKH0d+gjPoR/Y8LQrbnd9uvQIjsuT2Eb/TfgqRopMeCfPlVKPBNKiftIOOGO4myhZ/gailpIqVxZuWVN8Orr0CBzzAwrggqGxs3OJ1W+OF6HGc/7l+2Td/BYLV/m7UvHOvkFqTiQsSF1nKuK2m2YWU7BRTJMu7zPM8d5iuJF7GoQqULKf6x2Ro28Yn2AzeZLsF00xV4X3kJHGGSMmwV0L9eH9yOlVpc1OLkLe1zJquTsCidJjyd7P10eDTioosu4tVXX220/I033uCCC0Lf2P8NrJUbQy5Pov0CfYHEhhGD1x2x6M+8Q9Xk6eiT/zT+vfZ/6L4gVw21ZJCKispT2psd0tZGYuOX3gF48OUYBq3qlyq469j2C8jsbfwjVwXpM0kJ+rc3oN87A/3+X9FnXEI/epIlWjd72dXnAJUnC5Gy/m8RmAFpahDrF8NmQs8l1P/9Av7ZSuHXS9Enz0GfPBt98mzklO/QNx1IFDZ+lfOYoy9qVVubSzhx8DraM3urDlVRschYgmYJfaU0/sD8FbcDbvyfXVQJqC70u2egT55N8SMfoa+pnzG0YGYVG1gsVzNaGcoB7IcZM3/Kf4JKhWfof0Vsmy51HDiRc86D9YfjF83VzfDJw0iHUR6fLpJ3+XMIx0qnRknpmcjqcdR97YR5JyL1SVCLQKnECMBJUAsQaQFuYTLw7yf870vbwK26pWyoGogsvQ4y+kHXEL8HH13jBM+e3nYDhZ5Kpv+1hsZSsbrpncrPDWiTAnrwbHxHGZ10sucwRy5ucpsZ8i9GuTve8byTPZuaBi6lUtoI6s/pxvMun0IWyuWkkMjhykiqqMEUMDl9lDLWP8m3r/F8sZtXShRwjkCW3GxkGVcfgyy5HpwjYNj+EFtO0DMjaTsU96Y+g80EJg/i8cNQrr4JoRr9wf5KbywDlqA8eizKE4eiPH44ymlTARCHfQppG4OOazvoJ5amTKeyGZnwu4NKWd1I+1l+dh8U+BxGEVDaHfneM2163kTReMymWJ0oN1+O8sRhJDxxPOLiu8MfYPEJ6PfORP/mVqQu2MC2Nm1fOJrS3PTiJZkEhtCPt0yPEkMUz+hv86E2zb/NHaYr6CMMyRI7Vtawif96n2JMairK/aeiPHEYnPQ89d9F3z9nPHxYH2isxeX/DRdSymo2tem1dtLJ7qLFmW6XX355xPXvvPNOk8d4++23+fXXXzn44IMBWLhwITk5OVx88cXceuut/u2ee+65ljZvr2VTQH18IG3lqtMUiSKu0eyM1AU88SW4G2SobDsQnvoU7j2DROLpQVe6iwxy5U4qZTVxon0zWlzSRTLxlPgGxUrvlfDEOABO5xg+sU1t1/PvzRyqjKAHGWRjZC/JL++CxQFOVDMm4ZY9MJ/cuiyEscqBxOhRVOOgWJb5g21pIsn//WqoryEEiP/cQBS2oBJn+c2tyIVnNjqHrE6Gt17EdfOl9Oji4CXtQ45VG2qRdAwxdFzZ8qlpa/g0/0DABLE/gHkbYATPnOgoXTfBE0cC0I8e5PzvGmqXnlx/gJok+OBp9GuuRumxGjceMkjlRe8HfGx5jitMZ/Gi9wOqqWWaNoPb1cv5WvuNHJnHt9qMsCVh8/Wl9CWL9Tv2C7FWQEUaalQNI0XblXAEssGlMWZLJW55NHAsppTnkfFfGEULcT8g4n6IuL+wrkNGz/RlbWmI5FeAxtqRHUG5OwnQQShwIoCO6H4+wrKD8RzMT7b2qZVKIZGRDGEdmxEIlunrgnxnpRTg2g+EB2HdaLzX4wkSL4/90X+8IaI/Lhk5WN3JvsdwsR/LZNNagA4Zpjyuk38tVmFFSOHvH4i4b5FVx4E3E9RiRLxh0lEpqxnOIFShgoS+9CCXnXjRiCGKLiLF72y/Z8v8t5x1bi3gvqyDpwdSWjEcIFUwaTDpD5TUp/376E9+1vhAXivoKqjG8frRi0FKX3roGRRQEmSEBSBUDXHrpcZrBPvRmwyRRhH9mep9lwfMN7TL9e4KuXoBA+nNZnLqjbsKejfarqa4bSUQRomhvMUXYddbMUPX9ZCyFfzZh4Eo4LXBwjOx16bxygX/4wy16cz3XWWuN/yESSxRVOGghHKGKAMYKgYQQxRlVHC/90We8b7NO+YnGKMcyHT9T8zSQg65JBLHp9qPHMKI+oNtD9VPBIp6+F+aUEknhUJK8ODhRs8j/Gn9pK0utZNOdhstDrqVlQULJHs8HlatWkV5eTnjx49vcv9Vq1Zx4IGGSPvmzUZkPSUlhZSUFFatWuXfrj0cQ/dkwukOJAQImrcnId1LHfGNA251VKeh/3Yu1aN/RRHJ6MJNT5J5peZHJplPR1FA1wEpkUIYIq660Z0SijA075q5zmpSiLbXf1U3y+3+gFtD+otQD7FO6rAKCwPp6w+6seaQRtu4Vx4BJzda3Cw8eFgolwOQRyGpGEG3AaI38cSiI8MaAggE8cRQTS0qAufqwyOcSaCtPpyiLh+TIhN3W7mS1oG6X+fFWfnMehJIO8JUr5vk8RlUBAYzN5KNvv6AEEcRKMuPhR6rUVFIFgkAZMs8zlAn8J73awB+lrN5VLmVL5hOkkjgB21W2KBbLjvZSDaM/RJWHUnQUMdaDWnb0NCDXOjakjk1Gm5Z/53y1hyMEh++09sIoSPS7wfvy9gVL07VKMntTsdr1cTF/E1NeV2gWQAqOIeDZQeK0n6J6UIISiijGgcKCsv0NZgw+QcrsvBeqD7OeJ3wAUry68iYX6D6eOMA1qUI+1L/8VbKDewn+7ZbezvZM+lD9ya3SSWJdJGCV3o7RK92b2GS+17KqMSJi0/NU4nuAB2nPYm1cnPQM0yYSiDrPPB2AVMhQhhGX9vIZQ2bQEJvulPu+8wMHVlJLNH0pQcFFEUU0N8bOTfezEflvskM4Ybo2QhpRpafZ+jfIhAxvwXvNPZL+PHm4GXpm/wZbhLYwFYSRCypIplSWUEtopGBRR0SiYJKEWXEEUO2zGvTa2wrdrCTdTQodR/7JXx3G4F9lHMPbltZo3BVQ3XoSFRFoN12IXLr/rBhJMw7HzyNx1q1G4ZTq3/EOSWT2UEhpmgXl5nO4DJT48noXaXEJ9uiu83gMhuz4RJA4rWaqZNpjiOaQUpf7NgwYcaJiziiyZUFjFcPxiRNJIt4qmQ18cRQSTVLWFl/orFfw/IJNAqJj/7G/9KLhgc3HjyYMLFN5qLrerv2gTrppCNocY/nm2++abRM13WuueYa+vTp0+T+s2bNaukp/xU0nFmqo7/oEXJ5WxNYTgZ1LkgfRNhDwMwbcM28gbkBS/8E7g8n8roLJNhh8wNxxNpEkHNVQ3qp7a+v1ZHkyyIW6SvoKTIZqgxsk2POp35wTPc1sOEQ6gVOJSf0bb1bbh+RRS+6ESXsbJU7GIbRZrMwUeHTDAznkuvB63fB1AB6roRV4wPaFohE9vkbJy6KZCmr5AYOFPu3ut3hKJQlEdc3/N20JyPVwQi1iobai9HYqWgQ0MogjfJuO6jZ0nhWMb7/aqpRSSGBVXIjq+RGLtZP4zj1cEaog/lY+55EGUetcJIg4qiVTspEJf/zfscFplMaHW+WZmhxKL2Xo18zCb64E6pToc8SOPtRf+c+qZ0mEEbYVV/I0dBvE7ZVTe7TECEA807MRPtzLX+XC9qymU3ilV52Wv+CuK+g8iyMclgBVsPII4PUdj3/fqIPlbKaUsrJpwhvXcDNm+wPuAFQfj4y6U1E2mMQMxukBaL+pOE8WaT7dCf7JoHSBeEop4ooWco1ngd5zfyQkbH0L2WDto13ta+olFVMkzOpohozJp70vskg0Ycs0ZWxasudxPdGQrlFC6GBOTdoWQ0Ohoj+FMlStgTorbpw4wJW6RvYRDYAascr6LQrx8SY+U+PX3jNsRjsyxBmX8Cr28XgHArWtQhrsO62ctgX6LFF8PM14ImCYTMQJ73kX2/BTCLxdBcZXK6exU3eR8IG3OrIpxBVquykiBJZxuueTznfdDKxInLAqSMpkeVk0ZUc6oOCythv0GNL4MdrQJqIOupTXjrswTY970ClcTZdIF686OhGhUfv1dB7NXpJb1h5NA37ujIhl0V3vcIif/m0pOK8D8gaOb/NzQVW6lvQn/vQl30X/DCvQULGBsQNVxCrxGASJmzYEEh0dAooZolcw0WcRg+lK4u1VfQXPcmkC1/K6dgCjNWUHqvRr70CvpgM5V0hqgomvIFyYLDOdKnPtMGNGycmvtVmcLrS/hl/nXTSnrTJNKOiKNx6662MGzeO//73v21xyH8ddWV1emkGPP8OuI3Ax1Rgqi+rKzUGlv43hrS4tu+kRjcsk/v0fmDPETour4UHf3Ly7Bl2qmXoACXQIe6pHcWvnr846RUHbB0BCBRRwcvn2LhiTOv1St4rc1Fe8hyYcxApLyAuvhv5zjOw5UAQkthBS3jxrNY7y/UXPdnKDmzSSp6+k7q+QiL1AZcgE4wAGg7YlPMeRH/XDptGQaChiOqGk15A9FyFDuSQz5OeN/jY8lybD+DmaJH14hqZQrQjqSKpUUYbQHWIgH0+hcjLrmXAW9NYnx0DKKB64Og3qRhodG52YgQUFRTWya0cx+FMVifxhvYZ1TiYps3gT8snHOu+jB/0WSzV13CiMo4EpV6zJF8v5Dt9pv+90mMN3H5JyPYHfgfakuF2lde7VzOpfDbCsrVeXBqQNQcjyy8BpQKRMhVhDv3dqyNQv8+Ji1rpxC465m9c5wwmUv4PzAVIdy9EzEyE1dD77CPaV2qgp5LJT9psgGAtHMUBwgXS9zxQK8A3aCD6z7DHq9L3TK2fTtqPXD3y7wuMzNxs8vhQn8Zj3OrPhv438rz2Pu/owVm5bjx+fdwupLBN/aPD27U7CDfx3JAqaiJmV30h612pNXTuHZOI3avTt8bCJf3fAHXv1nurMC9pJHYvLDvAEt74RzngDzjgD//7WKL993g3HlQUxijDSSSOWl9pbiRKKCeOWCqpYicl3KRNob/oyZGmg1t1Te3BFrYHBdzqUIbMgSFzABgvjmjzqqpM0dggIRAvjTPrxLkPI5122Dgao68roedyKMwiqO+LYO0XEzlv2KkUqm03KVjrrcW1cqxP+y8UAvIHIDeMJm5/IyNvtvUjdlJMP5dhpDFPW4w0SR433c5CfTmz5SK6k4Hbl7NmDsicV7LWY71tEq4wE/Bg9L/qSqmrqOFB7f843dwZdOskmCJZikAQRwxevESJjkuEaA1tltu/efPmZrmPOp1O/u///o9Zs2ZRWFiIrgeXZy1ZsqStmrRX4Z9ZeuVVcIc2TyiqhgmvOlh6Z+szkcIRJ6KROlBzFNLVP2Sq8+7GrRmfUWEEC/B42v6z2V3MnzUEttb/PnQJ13zm5JrPjABtjAWeOc3G5WOb14n8p9bLpDwnMAhcg5C1wyDrApRJN/u3+dj0GqrS+k5IX9GDNJIpoZwFcjnXYpij1JUxAtTiDNKL0nd2h3eeQ69IA4sLjn8ZZcy3nKQezm9X3hXxwVx3nG/lTNbomxis9G/TTtQWGdm5dJhom+zD5mJCrdcn8aGhN9LDAxBmNzfc8Bf7ib4c77miUVBTRUFDR0XhLe/n3Gy6hK5KOkcqB7NQX8Yv+p8oUnCkMppNWja57OQe71ReMt/v/4yfr/iGoteehZ19QdXg4K8RJ73UKOsphih6iK5t/4H4ODk2BsXyeNAy6U1CFjxBXSdW7kxEdLs64nHqBiB1ZcOlVJDZQYHVMmlMrgihQcKnQXPNCgpdRVq7nr+f6EkS8ZRSwZ3qJLZqOXzOdIRSC+n3IEuuMzTdUp8O+vvq60bDZ/eDKxpSsmHSTVhiqikVle3a3k72PD7flov+4TRwJEJiPlx5C0pSePfjMlmxT02UtZTsJh2SBVLKfV5uRZMaJZSHnFRqSFMGNyoqOpovZ0jw6jCjP23FwuW21k8o7imsDmO61hKqqMGGBY/U8Hx7AzsWnUosFZw3Ip3M0zLIVZp2LK+kimvF+UyTM8ijkL9ZwZHsOUG3RoZrDTChcrXpvDY/bxwxqKhoYbJ+axr008CnmXfSy+jv9IKKNFB0w+G0oGfjA0iFSqqp0KuIV5oe70gpeWqGk8d+dePV4OgBKl9cEY3FVH9P+UmfDVrT4YBT9eN40DQBAIsw01WmcZpyDD/pf7CC9VRQRYKI4yX1IR77Xyo/rVARwoMY8xXuE/4Pu7D69RYtWPCiRZRoCbwTrGcrBXoRXZT2zfjvZO/ibs+zfKh/C8Dl6lm8Yn5w9zaoCVocdAs0OgDjB52fn8+PP/7IJZeEznAI5IorruDXX3/lrLPO4qCDDtqlzsTjjz/O119/zbp167Db7YwdO5Ynn3ySAQMG+LdxOp3cdtttfPrpp7hcLiZMmMArr7xCenrk2YjdhiNyNsiOsvbRkIolBqpORhZNBjQYC3xrlGvtCVhN8MDxRnCpKoJbUijnoL2Vxbm1EMaFK8ZVxSMzn6DbJ9uYf+e1jLn+hCaPt8Vd993xhaq0DNjxJmTV/24PVoftUpt7ikwKfRlUebJed6yLSGV/+rGZHOKIoZRyvGhIlx2mfog/q9Jtgm//i1w2Ac/FP+OKNgJugYGQQFRMRrp+aRojvt1ITIGdRBHPoC4KU8+00zd11+YV5mr/RFzfVWnfQEhD7NjwNCglNWMmhmhqcfkHLP3piVmYKZZljFEPIJUk8iny75NIPF68uHCTShLlVFIqK0gS8UxUjseKhY2b48icvopMcTbjj09gcY+P+UqfTpdVJ/HjL33ZWQW5FWfhf4xoJph3HlLVECcEO1RX4yApIPDa1iQQ23jApqUSlK3rabr0PLCz3JNMCvUSMtWOeVbsjFDKrKO3u0FNT5HpH9CaUHnX+iSfu3xZI1ELEcIFwgNWQyhf6hZkzgR470785SiFfeHpz/E8MIEapXmZK53sG+RV6JS99gRGn0FCaXd49mPkQ8ciTPUTJzFEU+3Lsin5l5cgR8raB0M/60j3RayVm7Fh5RPzc/tkuWld1pVEYsXcaKJNz+0D398AFenQazmc/CKKPfRnp6GhomLBTG1AgMOFu0Mzl9uLwJLa1hKNnQPEfqz79lSKFhiBSBfw3t8aVu1qOPvBJo8RhR0hFNJJIZUkimT4yfDdgSa1kJORddiwcrgyss3PK4Tw9VfDl9r3oht5FPoz662ueGqnfoC/L6UDK44F4SC45FRiOf4NkkhmrdzMwRzQZHsGzn6NrT+e73//81qNY16qZvbN9QG7z/SfEUNnI3+8FmpCB7USEmoYs7+DeFG/nypUYojyS8bkyUISRByPfdCNaSvqJofN8Oe5mM1eUo79Bhdu3wSwxOOIgu9ugLyBcMCviHEfIxSjD2eUPcf5g/EAz2hv84wyuclr7mTf5hzXjXwvDamywESbClkVbpc9hhaPSJcuXRr0XlEUUlNTefbZZ5t0NgX44Ycf+OmnnzjkkMYC7i1l9uzZXHfddYwaNQqv18vdd9/Nsccey5o1a4iONrQFbrnlFn788Ue++OIL4uPjuf766znjjDOYN2/eLp+/rSjTA2buDpgBS8IHUCYdYgm7bleIF7FIxyCMu70KaRJufxWKNkBVEiBRMKH/fTLsGNpo/x6H/4pM3oFZmDChcqvpEgSiTpUIXUoUVYBuBGoVEXqd7lsX+Jjpl2ZibG8zii8DK5Ige3sO7Duai8Y5mL7cQkN9hVhXFWvePhRb3UP91qt5d1s3Ln56bsTyyqOjTcQInWqp1B/T09O/XvGl6O4K0SKKE5VxVMhq9IAgWRpJrMaYoXXiwoIZ0HyORY3LmGX2MH6eMhju/hMlthyBAg2CbgKBGRPe/B7wwnuAQjVQDWwv1xn0aA3zbolmVI/WB95WsD7sOitm+tOxxh2hNGo8eCihLCh7cAPbQMIBcj9MwkR3Miik1N8RrMaBDQvpJOPGS3/Rkz8dq8ksHsn4mFN4aVUVG785DRCUAatePZnoQ53I2gQeWRwokB/is108Dn3Ib9BlG4rZ6HiNEkPIpP2CV2vkJvpjlDb7NQMtm8CyFtw+Xbu4aUjdglDCu2paMePwfUbbyCWPQoYzqN3aHUi2zI24vr3vbZmkc4g4EAXFyPgTKvHEUi6rkDunQM0RxoZxn0Hya8jc12FJ/8YHckVDbRw10Z0Olf8m/trqpX6Szvd80SxQmgFp9e7s1dSQQCy3mC6jaxOlWPs6TQUdq6mhVjqpoIoKqvzZsPsalYHl7A36O/rqsfDhU/XLy7Jg+QTkvScj7KH7ghoaLl8GeC0uFARWrOzQC+in9myXa2hP1mqbudJ7D0nE+XVvW0LghJSCQEHBiQv7+saZf67VI0kaOZrS5LUoceGzlU2oVFHDUp9bcay+Z1XHrJdbwwbcABKIa7cAbBIJFARMcjakkmp/wC2OGKKKhlAbqi8l62R/qmH8h3QdtBlX5hqsRHF2xT10LxqFPdrNwWmpPGq5pdHuNdJByarhjZYv3h7cl/6LxSgmDf3e05C5fSCvj68zKUDovNXrMi7qNgQhLm50rBHK/uyQBVRTw3q5lUH05Y8NjaveTKvGs+NYYzLWhpUMR29KHnm1Xrbi177IZRMQtxrnENRLoNixYsLEdr3pDMxO9n02yRz//ayc+nvU3pA13+LR6K4aIWRmZhIb2zYlgNOnTw96/95775GWlsbixYs5/PDDqaio4O233+bjjz/2O6u+++677LfffixYsICDD94zUqE3ym3+18o5j6JnLYfZF0JNDIlKIlJAWozg/uOtnHNg++hRpJCAsC9H1hwFGJ1nEbMMkbKaGKJw4UFDw2Tz4P64QdBN6HDkx/SLSiJfFtFFpDLANIaxauOb/a6iSS1ipyOpnXSjdgdn9+qJ8/aVXPG6GarqnRRP3DKjPuDm47g3d1D4dGlEsfUkk8Jz3UuZlJNcv9BUX95iw9YmZSy10kmRLCFDpDFPW8Ih6oF0FWl0I51CSonCjo5uBEdScvDb3TdEqrDoZBj/YUgdjLqbrj53IuEyMp+a4eKLK1ofdAu8oTfEhYfuSsc6XNrCZD6mk0Ie9ZmFFswMFH0w+T7XI9SD+Ftb4V/v8f0vlmhKKafmx0s5e84g8P22BKc3OIOgZu45zWtkTTd4+X1Aop/+BMroH1gkV5KptN8A+299JesJFpAWQoPMa8FxMNI5GMovRJZfCClTEfHTQh4nUEB6AL2opONmziKZdmSRQbJMaNfzZypdmCcNeQebNL5ndqyUa9b6gBtA5VnI6L/A3R8yA4/gmyox14K9kppQv+lO9lkOyvJpEfnD/wIULyQWNNo2hmjuNE3q4BbueegRSqvq1q8PcGAsF3v+TH5rCKxeaPSZzLyMRkZKmgW56nDEqGBts0B0JA6cXLO8ErtXp0uNRl6fT+ltOQS1+2Ft2Pr2Z4Vcy2LZcoOgOiQSMyZ0dGzYsGDGhImj+5t4Z0GDvpUzkdLXnwNAz1qBuOaaRnIRADXUUkYF/emJBYu/r7Gn0JSRTzrJEdfvCvHEhA26GXdHSV+y2EwO1Tgwp24BIlUWxcDv15D3O2CvoCRrOaw/jJ2+38WfJhfld73IrYmn0Uep1359y/sFXQZC5aZgQ60eGbVAPDkyn+neOZRThUQa5g7dNkO3zUHbj7bcEHZskC5SWC030FN0Y6tPjmVML5Wf1waPUbwD5mLFQhdSyCaPzcsH1gfc6ijsg6yJR0RXoCAYRF8KKKLc1w8rkmW4dTcWpX2STzrZOwiXRbpMW7MnSdGHpMNrB5999lnuvPNOsrOz2/zYFRXGLGBSkhHtXLx4MR6Ph6OPrp/NGThwIFlZWcyfPz/kMVwuF5WVlUH/2pvV+qag98rBP6DceS5xD5/DzifiKXw8nlX3xLVbwA0gRsRA3FeI1Echbhoi4xaEbTVgZMV0IRkdHe/Q3+D4F0F1AjpEl8J1V5Bn38wkZSLr2MJfcgkPeF9ol3ZWyZqwgQcAq9i3bsaHdU1C3H0WjP4afBk8W+MbC6qXpijk6o0HNw3pF10B6XeDZSPY50P3q/zrUkhskzbfaZrEerbyj1zJe9pXlOuVbJHbceDEjYdyKv0dNGFzwA2XgbUs9MF+vRp98lz0yX+gT/7T93ou+uNfojvthj5cSvhyix5prbeD9+ieJtRloDcd65bbyPDER11ZoP7d9eiT/8Q5eRbL7nyTH+cbf9OjlbEh98ujEK8GlXNOJcg1q01aK+C72wBDk6wLKW1y1FCEc0YVihui50PFORhzTCZk8S1IPfR9IibAjXY9W5nvXcYmPZtnPe9wp+epdmh5Pevl1rDrcsgnUWnfCYUk4rH6XMbW6VuokQ7GcAAoVYAT41shQVQjTIWADikSxmtg8hjvk3bAbechFIkXL24ZXo+xk32LrCSVnlc8BdZyjAGkB0wqctbv6P/MRV/1gH/bHRSgyaadTvd1ygL0yaQnEz1vKvr295DV4wCoxYUzwNylJLAqYh+iTFb47z0NNUtJDpMBHG55A6bML+P+vyu4anU1o797FM/0K3elqbuFNXJzI//2lnKLehlV1mWU2P4m1zaXWZYPeeWcKM4brmBSGvvDA5AzFPJCZDNjDHzn6v8gkaxiAztkARX6nhMUrpWRDSEOE6Pa7dw9g2ejgpAY2rGbyEFiBJlLrHn0v+FBUqPqtohAbTysP5ygv5jXypuPXMyRs6Zxk3sKDlmLU3fxnv41mw59mvjDv8KsaiC80HMZtkk3s1Rbza/aXO7UnmrSdToxgvP8QWIoRZSxQq5nhW44rX95ZTTH76egChCKBqOm4T3hBVy4ya4zt0hu2G83Pg0sxsRvLW7WsplSKtDRqcXFXywhXxRH/nw62ecJlyEeSe99T6HFKSC9evWKmA2zZcuWsOsARo4cidPppHfv3kRFRWE2B4clS0tb96Hpus7NN9/MIYccwuDBgwEoKCjAYrGQkJAQtG16ejoFBaEDFI8//jgPPfRQq9rQWpbJtSGXt1UQpDkkEWfMZsX9hKDx7OF2CrBgxo0H5YjP4IjPgtZrQKVew5nKBKbpM/hT/kORXkqq0rbpnpWixi/E2RBll7slex7dSOcAZSArTn+OXqd/zhrbz8B4aq4+F++7nyKB6hg4/YconmYnIxkS8XilWjlKzByImdNoXXe6tEmbDxSD6Cuy2CRz+FD/lg/d32JCZaDoQ6mvPCZQDFnJ3Izy0Ml4p90EC84kuPtX97rB9EVFBjz4G7qlBs58FLovg+0N9Oi6riPu2GXAf1p1HZWiJsjNMhRpov0CSaGIIzrkcicu9Ly+8FegMLCg8JvLKRmh0T0qI6y+iR6mkxdthpqIMZPA/SL/9o4RYzGJNvPtaURbZbjGEkNxwAP9DfkZb7jr73WTTVdH7IDuCpE03aD9s3iFENxrupYp3lfYTj5ztcUMVQfwDTOQlq3g9pmGSEM3U6Q9giy/AAYXIsY/7QvEBVODA8s+lH3cSWSS+m0g56ET0b+8A/45DQ4CeuGb3j0WvfJXlDhjwrNElpMm2i/bZG+gBgdSqlBxBrLsItATAIHc+TDYzkCYggeYheybA84SysM+a8XZjyO3DwStG/7E45Hfo/Re3nEN3M3M1Ofv8kRYskhAEfV5FoowIm3vXxLL+8B939fy5MzI/Z2GlFFJOilYMLOJbNazlYNoLD/T0Xikh+1ELkW8ytTMzP1WsL/oxy9ybtj1gY7zdaW/mzJnMuORi3hqzSqmv30SwcPz5oxtBAXfX8xrw07ihPjDSVQSWCs3o6JQdcJzcMJzqAgEgtXojPFMbNa1pJNMkowP24RuShcOEQcyXy7jB/0PNF1DEfDNpGgUoXC/5wW/G3MgSv9/sA2fhWPpEdSVsXLe/Qhz/XfwKs7mXb4OCsRv1/PoobafKVcnezZu6QkbdKsKkinYM2nxKOjmm28Oeu/xeFi6dCnTp0/njjvuaHL/8847j9zcXB577DHS09PbzJXpuuuuY9WqVcydG/5G1xzuuuuuILOIyspKunfvvqvNi8hqfUPI5al0XH1yoohHSsA5HPQYsC8M0j6KI4ZanCiIsIP0G+TDvKw+wFJ9NfkUc57nFmZY32/TdlbL8D8qy56eV9oKTIqJoWIAEtgicyiSpaSKJKJffxpef5oPtW+5ynMPEGxcEI46XbVQZLSRO2KsEsPxYhy/yDlsYBtWLAhghNifDXJrveZWACYU9NOeh9OeB0B++Bhy9RGNtgtGgDsGPnkMy82Xkdalkmpq+Nb8Kkd6LgJgp3J2q6+jOdopye0UgAnHAKU3S/Q1oVeWhip1FayqKWR0dJo/4NbQcEBVJd7D/wdzLsTfs4ouwTr5MoqjZjH8ySrWNfpqSdTeS9C2jIjQWgmnPIsFM/spfZp5ha0jUcQzmH5sJ59qagGJQOBFQwgPpD6HLDKy7kTK1LC6bhVhykktmIkjho0ym4NE+wwqiiPM0kVhxybaL9O5jv6iJ+mkUEEVf8sVHCiMCSxkNMEz66mI2F8Rsb+GPE40djJFOlWyut2ClJ3seZixIh2jYafvexND8GCttjv4gm5feqdzreWCDm/jnoQHr+EKvPU8sAPlwkgq7Q54U6BB0K0pR8a9kQK9iEs8dwKg/3MszLoYbE44+TmUnmsQFhdc/7qhK4kXMCG67Fo/f29CSkmlrCYae6v03AD6kEVKE+OJO4+18cqfbqoCH41ZK6Br6PEJ1GvM1gvp7xnfzwKKI7rgmjDRR21cMdJW9Fd600TymB8LZjx4URA8530XreIYSMgDzY6y/1zM9lpcs86nuYE3+ex7nCZtRvDL+i22oX/BCS+jqR7MmNDQImrdNcSECZMSOVQwXBnEMm0t1TiIdg/DjIkPzE9zunoM56knUSCL+E2fRz5FKD6jHR1J8sT/I3bisxQRutLlXb4mi65sIxcdHQXBarmRQ2l7A4xO9g5y5U5sWKgNkXzTVJLEnkCLg2433XRTyOUvv/wy//wT2ekP4K+//mL+/PkMG7ZrLomBXH/99fzwww/MmTOHbt3qy726dOmC2+2mvLw8KNtt586ddOkSOqvHarVitbb/4CaQLYS2jd9PtO9ANZAoYUeWXg3lPqFM60qUzOsQQhKNHQVBFHaqqcHi04bQ0IMebB48RBNFlshEStgmc6mU1W3quhfJRKEbbauvVVajMWOdmyqXRAE0n8kDBBs+KBI0wq/TkQjfexmwTvUdUwiBLgEar0uJNdG1T3e2mnawv+jHEn01E9R6PZIsMjhMjEAClRFcXevYEKAf2JB0pe2yDg5RhvOx/h02X8nIQNGH7XoB/XOOZUWBBgmF0Hs5isnomQjjiv37yyPfg9UNUujDIhCbR+Hu8jOHKAfyuudTjhGHUI2D4l1w1HI04SxnxdKu2Vuh6EePsOtE/0VItRa0+hJJ4grZlrSaI8RpnK4cwyJ9BbkER9CSSSDmhB/YOf5zqosSIaYCkVCMXaTylZzOirtPIL/cS06Zl1+98/lAfkl22t9oHz0auiHn3AVpOyA9B8XsxYydPiJ8u9uCOGJY1SCg3JNMtpGL1O0Q/QcixtAAjWSkkE6KPwszcILBjYdiysiWue02k++VoUuhTagcqYxul3M2ZKgYSIZIJYsMtskdXOkLWov4z5DFvkk1y0awrYx4nBpq2SC3+QKgnfxb2F54BbJqBAwBtktYIwzdPwE4vNDjF/+2b+tfcC3/7qCbBMgZC18JSAfqYhYJGvL2LUFPPzMmv7bRvkQuO41M7Wk3wYKA7KPX3kC/5A6U/eYjaw+gLuAGGrL2AER0a83Q2kY8oaMoo9IwRtoFNpNDVBOmATFWQfGTcWwr1bi15DVmJnyNOy7yRK6GTgHFHCXGUEk1m/SckPK8HU2+XkgmaY36OnW0d1VMDyUjYtBNIFBR/Q7yKgpCV5j+wYl419WbDOoLzsATU0qwg2kgIZbXpvpPrbuhat4psGYk4r9n4xQuv6KfBy9SgtzeH3b2gMwtiIzNQfp9g+jLMGVgk9fbi+6GJpzvfykk8qU2ndPVY9hP6YOGTgJxOHHhxoOGTizRZImuzJdLwx7Xg5ckEU+xLKOKGqxYWaltaEXkopN9hUJKQgbcANz7YtAtHMcffzx33XUX7777bsTtBg4cSG1t23TEpZTccMMNfPPNN/zxxx/06hXsJDhixAjMZjMzZ87kzDPPBGD9+vXk5OQwZsyYNmlDW1AZJiUy0Aq3vYnCBhVn1C9wDUF390BYt1BFDb3pTjUOKqhCD5PrJoFp3pnsr/RlrdxEDNF8q83kItOpbdbOqgiZbqltWI77f7Od3PZNZE2IjsELnEvqZZvoOzCftXIzE6gPumWIVP6UiwHoJpsuD92hh5+JjArQs9pVRqiDcXpdRGGnkmqiPfHMnvIwHmeAJpnwot9+LkpyPl40FBS/iHJ0t2zE7Zfg+f56qEohacxvFG/rjmfJUSAbBsUlsv98qqlhpb6RviKLHbKAaGHMDOtSDyqraC5NzSpn0fEp7ibF1NDEFfB1uyxO5P0nwvfXQ/ZQGDIb01Ef8bY2EKdwslHPDjn7q6IihSTTFsfG7vUCuoWU8IL2PueYTiAjwURGgonRHInXtYIn5Wz0Ib/DpgbBINWNGDofYarPZnTh5gAlWMi3rQkV2LdgRlaPR+68HzBD/CcoKS+FPUYUNiaqJ/K49hou3EF3uSQSSCaBt71fEoWdE9VxbX4N2WHKYbxobJcd49rVU2RSLMtIELGUU4VD+LIj46cZgTYtBWxLIwYuA4k0SdLJvoVTl+RV+TJfM4EzBSz5G2ZmwJBVMPoFFFN90Ki4CaHzfZ2nXW8ZL1b77pWBj+ZyFZHfG7qv8y8yY8IpnbilB4vYN7L6f9Jm8513Bnas1PxzUoO1Av64CPabj4hahKw8izrTJRG1qNXn9Egv7eNZ2T7kyZ0cLIaxSeZQQlmrQ4axYaQpAhFC0CvZxJg4K3O1mmYNYQWGe7gdGx9q09ghC0gWCYxXDuYQNVImfPuxnYKwATdoXxMFgO4icgKA6sv2qsNTa4Mp34DWuB+jVyeRmFhFWdkujAfLukJ1EkpsOQJhBNw8FuSjX4Ozftwk4/PhvxMRqhG2W8MmBtAr3FH9DFB6oWoqicThxkMKiRTJUqr1GmKUaJJFAmsx+pZ1AT8nLopkKX3IIpeCIO3KQDTp9Y8NNDTWycgSVp3s25ToYfS/Ca95vSfRZkG3L7/80m9gEIknnniC2267jUcffZQhQ4Y00nSLi4tr9jmvu+46Pv74Y7799ltiY2P9Om3x8fHY7Xbi4+O54ooruPXWW0lKSiIuLo4bbriBMWPGtNi5dKm+hiNoH7fTGkJn1HRV2qbcrznYsII5F9x9MerrvUGlDZVUY/d1VSI99P/gL6Ypr/Gy/j/KqeIV70ecrR7XZqVRDlkbFJwJZIgY0CbnALjruz0h4FaHoOirSVTffS4er4dr1Qv8ne6uwnCEjMZOrYycMl6jSxYWnI7ueBSQRvZP6jP+AXS0aLugWze6UGz9GyEEmqaROOeZ4IAbgDTB01+g44sjxRXCrRei2Bw4cSFTNhN/2f1UUMVOYOhBA1l++lPI9x6HTSMAE0RVwrkP4E3dihfYQT6qVMgU6cyXS+kve7JAX94qJ90KvYmAwW6QEIwJ03E25jsFitUFZz3rX64Df7OCv70r6EpakMNpHQUU0Y+enCTGMVW+51+uobNYrmau9g+HqvXp/ONMB/Ox5we2j/4BvTYGZlwOmg2ScuGKm4MCbgBdSWNkXZliOxHb4GEbQxRpJLGu+BYu/+RzHnvqcRRAF3DtmzamndP4fuTGS5KIC5mifowYy2fyJ7JlLn21rHYJulVFCFAliYQ2P18ohBBcazqf27xPkCBjudPzFDFEUY0DYd0MBLuaSVcvZNFdoMciEt9CxM4MWh9pkqSTfQurAKEWIzXfIC6lGjHpdqTTCs/+D77/uf6pPWQGNRc8iSY1VLEHpMZ0ACVenUl5tSx3apwfr/JK3BvGM6THdFjdr8HWEuKD3Q8dOMmWeczVFzNebZ++aEdzt+dZ1tW5s8aWQJmdoAdrF+N+I6LnQpfbkc4DEPbFiKi/W33OUPIWezK5cicL5K7r17Wk4mSUMoQqrXn37kqqOVecxKvyY0yorNcNQ6AftT/4WXlrt8gLZOt5qChoYdyBu9C+Y6uuTUi1eNEYRB/WsBn9owdh1dEEfu/Tqwr4dtqlnHHK2+TFdaWsLAZjAl4CiqF/Jk00rxNqjNjko9/h9R2lngb7V2Qg1x6CGGxoPisoTV4LwFHKGIpsCwG4xv0A7+lf00/24Fd9LmcoE4KMrgL12RKJw4MHJ26k24p87kMoD57MXmyrQd56HkqcMYG7gW1U6JXEK82PFXSy77BSXx92XQnlSF/12J5Ki4Nuw4cPD7ogKSUFBQUUFRXxyiuvNLn/cccdB8BRRx0VtLzug9K05jtavfrqqwCMGzcuaPm7777LpZdeCsDUqVNRFIUzzzwTl8vFhAkTmtXOhlzi/i9b5ex2+WOG0x6IbcOyzKawCxuiy73I4htBj0MkvotQ651biyljAL38Zgp1SE1Fvvs4bDoYUChQvJx32J9ce+IFvK5/wlLWslhfzSHqgW3SzjIqQwbcAPqIttPe29N+sjGqDSdelrCG5fpaRqlGiVuMiCKTdHLZyUrCa28APFBUSm3NofhNi6tPAMs2SPzYOFYbzhIIIZBS8mapi4W1GgmLryK0dUnAJ12ZDl9NhgvuR/tnAnx9B2W61b/NslC7O+LhneeDvhFbff8A1gLjAAKMG5rPQKBOO6ZxGv96wNKq4+4KJ/j+tZzQRewG633/oLGz23gg+PMbAHwR8F7C2Q+jjPgt5LGHMqDdH4JmYcaOjVqfVkk1DqqEg5iqSh73Bdw0ReH18y/EsqMfSuUc9LjggZvuy7YMRZIST7wWSwVV/KK3vZ6QlDKig1h7mygEcr56MhtlNq+7ZvFd+QEkcCgy4bVGou4AcudD4OkJKMjCB8C+PGi7zky3fw9CCKIz7qW65HKQCiL5VYTQkF/cA9XGwO32hS9x09K3UKXkl88TWPPdeoZYB+3mlncM9xe6+KnK+JU/UexFmA5ARP+FOPQz5PqRsHk0xjNGh1OfQ8Q1NlbZwnZe936yzwTdthDgYPif62Hqe5CRYGjauQrgpBf8q0X0fET0/BafI9uTyfF5X5EvuwKCGFHF1xs8jOu/d2QL7mgjnbRwJkyhGCEGk0IixWG0tgLR0JkjFzWa1FvGWmZof3G26fhWtXdX2MDWsAE3MMy+2hN7M3Ipt5FH/IbxlK06Jmh5z4ocZn16JrePu5+8+EAXVBPEF6DcdSbSZUc+EKq/pdN49NLCvpcaML5DNquiI7B/d7/5enZ4Cpih/8WV3nuZoBwW1H8JDIaWUYlbk+jvPOO7/zXuf0lnDOb3n8N7zVXIN5+jIHsY6ULnjGE1fHRxFIqyp43WOmkvpJQ8oP9fxG3cePxO2HsiLQ66nXrqqUE/MEVRSE1NZdy4cQwc2HTt96xZs1p6yrBI2XSitc1m4+WXX+bll1/epXOVUsE2mUsv0a3pjVuB1OKhZiyY8xH2ZQDEieY/JHcVu7QSYy6jJmNyo3XR2HHgZAPbOIyR/LEwDX6/DBQNYkph+1D8QQndzNbZ46lIT6bHgXMoo4LHtdf4QX2jTdpZRQ1SCnCMQXpTAYmwZCPsy0lT285J8q3zbVz0YfPFRtsXnZrzb0NBInXBvd+7WLGwAocbrGaQ+92KPOM+cs07I0b5V3tKgcDPSCK1ZAQwkN4k0rYzR2+Vubku32motXnCZDPU/Ybr2lyejp7fG768j90f+gzlorq72RPaEaJT98UDyH5LQg4UrzQ3zyVrV/nR8gZ2bBzpvsivHZJYm+/vxl1651SmjxoP2RKWnIoYcyXCWj9rpiP5SZsd8tgWaaGnyGS5XEcuO3ne8x43my9ts7Y7ZPhS5t50p6fIDLu+rUkU8exHX8g9E7xpRhGgYyB0v5BGtxYtmXoRHxW0OH+GdE8ym6Uz2cm+g9u6FpH6DNQOA+FBurtDqZHFdfKmX7hz8Wv+6YsTZ5Ww8IbrGfLG77u1zR1FvkdHC5y80ZKRrgHg6oO49GmEuengigmVhXLFHj+b31y8AVkvSnwx8r8PI/OnYpSRZiBqTwDzd60+vpRwSO5Maoihro9aLWOZ8IqDvEdjSY5uuexER1MhK+lNN2pxkx+hZDIcEziMeCWWHi14hsQpMYwQ+0d04AxkNRs5hOGUUoHTp7dkwczr2qe7Jei2TYs0xQhjlbZJAgiHECKi6RwYjvOjK49kZoPlKbWlxGi1bI8JUaJakUJUwSAcXdYgD/kY5tUZLEiMgJtK/QRxOB24cEjI2IAYsCBgiaSLktqCYxiSN1cp56ChsVXmcprnWt4xP84EZTYr9HWUUO6vVkoigdL/TYbNY4hUQ+WpjkO88wxkG383XcKXy7x0iXPy3BltV6HTyZ5Nc4xkanHuW0G3Bx98cJdOeMQRTTkS7plIJIv11fRS2jbo5tW9SC0Guf1d0IxSQZKfx5bwLcltqFHWFFEitDNSLNFIdCyYUVEo//kCmD2qfoOyugd58M197noz40ceRBU1uHBzjecBXjU/tMvtrJBVRjZeZb3grgRIeZrklIRdPn4dE0dYOedACxU1XnRNRygCIUDXfVfqu1ypy7Dr6p55rVkngWX6Bs7SrqUmqhS5fSDa9IuI/Ws8s9z1pSi1GrD0UMTGrxh2772UyHJShPG9+c47kwe0F1FRGa8cTK/47lAxHupm4YQTEfcDAOvYgqmNdWIW1GooSDQEjNThV0Hg9+TO+c8jhcpTo6/3XbeOLX0hzs3D2TOCS500H4HM7x0y6BbbQZMHY8RwZqxzw4bL0bsvp2pgNjuSD2Bdz1582uU0pnc5CmYYbWUjyDWTkbZsqE6G6ApIz2a+Go+u9wMhjRGbBIGFJepInHIQsAUvGvdJN6vVHFJINH7HSN7RvvF9awWXqacbv2MBiq//6+8C+94LITi4t5kTBlkoFeEzJoOyQTqIgfIANG+ARqSnl6GlKILL7kXiB8iSG4039gVg2epft43cZmVKdLLv4HV3R+5426e7qQESDjDBdMn4HGMAL4Dy2DiqYqJJn7ttN7a2Y7k+2coPpS7YqIK7HHmwHVxvYZSLOaD7pQhzLnpVPCw5FpxRMHABSo/6iQEvGvvRhzn6Io5QD9p9F9NGKFJF86aBWo5QHODcnzrdNtCQzv0Rca0PuuGx+gJuUN+nMMyqNhTqjOm15wfd8igMa7bWHMaqw7EJK/YmjBQa0l/0Cht0qwvp1GFCZT3b6C2604+eLJNrURBsljltbqbWHFazKeL6kUr7yl0YNPyUgonBzuhhpcz82g16fZBgadpgiizx3Pv3i5xy2vsEz3SZqH7+Dbj1fJSTX0E/4TVw2BBYkY/+EHDeuv/W/ZaaQsKozxFnvOg/nQUTR4jREc27wnGK6SjecX9JJmlU4yBDpNJP9AAhWSiX4cCFFStFlKJn1yXrhOvzS4jPQW5vrAs8a2No86lO9k1KmqEDW4uLhHZvSetpcdBNVVXy8/NJSwuu8y4pKSEtLa1Z5aF//vknr7/+Olu2bOGLL74gMzOTDz/8kF69enHooYe2tEkdggcPC7QlnGWa0KbH3U4+OA+oD7gBsuokXAlfECM6ThTQQuiAixkz1dSgoBBPLOv/HtJgi9COOkXDP+EV8wuMdZ1DtIjChMp32kxOUY8KsX3zKdJLoOqqxmesPJmklLb9vIQQJMTsvhKEQ7X+1LhLkS+9iSmnH/98eCwHXHxVqAxsZHUSCyvyyEvdaQQCgJVyPZtkNgoKmXoa6dZKRI9Xka5BICXCvhqhlvuPEd2GRgoAx8eY+bDcA2jQA1Kvn0r5zFHE1fSgZOQHXP3Ol7hlNM+OnIRmsoJQcP5zBfXaFc0PvB2xZQ5ChT96HN6m19BJc5GIANHvQDqiNNKjSXrdX0lhDcCFwIXkWBx0/c9mDv9qGua3PdRJB/nJ6Q/0r3+/ERqHDI1vYn3+m/F8cgHvA8GuFqf5Xz0TobQliN81Yq1OPr0vN+LTOKYDs54BDjf3p5t1GztcCcYC2wqE0ljnUiR8BlF/GwLQttUIETzIKJMdXX7dye5ElJ8Hsm4AqYBTwi8Agq/6ncgF677hh6OOZtLjT+M1m9lv28984F3PMFPb6bHuqZgLgPfrHt4JEH8j9MI3NrdBzSHomyqCs7xnTULvvgpx7dX+wfAsFnCSHMcR7N1BtwqtFnfec+AcAaIWMm437iVll1FvmNDyctJAhMVFsiikWAaPV4SiMThj79ASLN2Fe2gm6fzXdFWrsiIHib5h1zUMJelInLg4QhzEVMvd3OZ+jK/0X4knlj/0hbvc728JNbqDJBIopjRkyEsg2jx5IhQ2zDjCuCwCeNBwWcs59qFHWP7rWGo27k+aksrRPWNJfmQxmS+/xqK/H2BUz4doWHUR889EHCc8jaLqEOtASgdElYKjga766Gmw8AwiBrTwTYYvmohcezRMPgNh8iKBVXID/ZSerbr+LiKVjfo2dpBPlusIepLJDnZS7pOcMNeNOfefDX+f0WDvwP6/gJxRhApgnntgp43pv4kKWUUcMRFlS97wfsoD5hs6sFUto8XTPOFKOl0uFxZL0yl9X331FRMmTMBut7NkyRJcLuOmVFFRwWOPPdbS5nQYEnhHfk21DG160Fq2ylwwb8cYvElAA4sxOkzuwHitEAJTiBmRUsoxoeDERT5FKCl5jXdO3gKqA6OjZAw2q997GNutFVy75UXmysXM0P/iSe8buOWuidhWiGowZ+OfRQ/4zHaHYGt7YlEt9CgaA7mDGLf9LzIdRcS6fe5vQb9DCUIjLUplizRmRJ3SxRa5HS8atSUp/HzXQ7z339uR934HUx6DHd6ggBu0rXspwFnxZiZkfm3oA2b+h9Ju3zDi0k/Iv3Uol4yxkdNL56XhVxgBtyBMMGAOxBRQH4BriO5bZ3wPPpt+LZ//eC0P//k40c5K0L0B6+v+28xAiJ/AY2gN3ntbcby2QA/TlrrXNHivB/wL/Cxa83mEweSE6y9GRFWFXJ3UAb/Ln1d7fAG3ANxR7LfFBWnP4e5Szp6qn13lgpf/jjywaokeT1sghGBpr570T/4BJfklRMbt4be1bEXYVyJE8PcpnhgcTZi7dLKP4dyfoMHSSsV/+57b/WAuP+ZZ7r/lv3hVo6+xtufx3Fnz7W5pakdz/RcOgga/5QGvHQryf9eGllXYPhhKgksDS2R5ezWzw3i7KtcIuAFIK7L0CoRtNSLzGqPPkHELIuaPZh1Lair6Mx+iT57b6F/x0V9BjyWAG+P550bqCsmTK7HfUsEfG/bQB4MPLxqpJIXsnze9r7fVZcij1WHN3lZHx0Ety/S17JTFXGmaSAHFrGcr07QZrTp/a9lGrmHEFWa9itIqN/uWYiGyeVwtTqbpvzHJfipFJ05Bveo2tpVovPGXl/QHnMQXXsqong+H3Lc68x/A972f+i7yrrngSAR0EB6w1GA55h2Gn/4z31+rkuZLNFQAswKK4gV7BY3uNdXJyLWHAIbhgYLS6kqF18wPc6ZpAkWUUUoFy1lPvIghxjfOqDMQFKc/C4d8AiYHWGqM/4YMEvoy90y1mBSjr3vfj24sN1eQeU8FFbW7oz/eSUdSQVWTOsEva//roNa0jmaHiV988UXA6Iy/9dZbxMTUpwtrmsacOXOapek2ZcoUXnvtNS6++GI+/fRT//JDDjmEKVOmtKTtHY6DWo51XcJfti+a3riZrNc2IyzZkH4PsvJ0MOchkl4D6PAgkhlzSDHvwNmamsuvxvziR3jKfDOHGesR116DMLvRn/4YSupTkaWE696N4qrHzuFN7XMWy9Xc65nKg+YbiGqlU+Z2WYDocjey5BrwZAE62NYhkl4lSbROYH5PxSXdlJoN+4Fqs5HF98tX5zPhjP9RZYtn7PYFvDZzMqm1pezoYuGEW01ssxtBtyX6Gj7RfzRMOt57CvSA0gKpwkePw5TxQedrS/fSOgZGF/Kb7UMABAr9RE8AblYv4YQfv+f0y8LcQFPzUS67GwD9gZ/A1eC3YKtBefA4pK4g33gOHQUVnWtW/o9rVho33dFLY9jWR0UgkEiO4CB+sb3T/LY7J7CN3LDrF1m+YojSsRkaG/StDHWfHHJdTzJZYf2Bsa6JrPKZagykd707XABvq4/x39oXKXrxaajoBZ7QHfOhBSt4Yu7jnHDWJ2FaJBH3noKwhXc6S5Lx7V4tHGMNfQLNVo6In4a8+jd4/j2oyGBPLF3OtW6LuD6WmIjr2wOPUs7mhKcA2apPrIJqtu1CWVQnex+qqRDNk4V/PjdmDVAvWv5Dvwlgl6BIqAS+hd+dV2FXKrjtSDNTTu647P6OpFo6iLI0KDdbilH5Nfof+KcnbI+gSWsOdlQuozLMhnsPuWIbUKcXJUExAvTCthpsq1t0LPnHhVDcO/TK3/4DWSsRU45BTp8Ecy8gpaaYn786j+7VBbhfs+D+cCqWs0I/V3c3G+RWiijF3MRwTWqxyLLLQYtHxH+OsK2jK10i7hOJAfRq9rbCp182n6VM1/7kdLXeHCCUY3p7skFuIztCvy2hjbWLw58nlvImfqdb2YFEcpxyGL99eBK6wxaiGjTwviH/n73zjo+ieP/4e3avpVcgoSX03kFABRVUxAL2XvGLHbGgYhexYEHEXlERFRuCoNhAaSJK772GkIT0em13fn/s5XKXu0uBkKA/Pr7y/XKzM3Oze7NTnnmezwf6zkPpYXCjy2WXQWZ7/7xCQ3n6bNzAOsDWZitpzxiUQMWylD/11Yxw3QYrh8M3jwU2ylJBM9RcHHn/AbhevYi/9gkgngABAABJREFUtDV8I39GQ0OVKsWVaIyEAHHBG3DBGwDoz82CwhDzgMnNWOtQphYv9VvGHS6B274s44sb6/dw8gTqF1VxH5ejhNLjmvO0xka3KVOmAIan2zvvvIOqVowMFouF1NRU3nnnnWrr2bZtG4MHB4aAxcTEkJ+fX9PmNBhWs4VsPY9EpW741pbpqwEQkYsRkYu96Uk0IlZG1ev+0ILZq/4XCkpYKaaHrkTDGXjRHhWQ5HTDTeol5MlCftP/5E19BptdO5lnOTJhha1yFygaInw1KH9AxCJvSFMMgd//b4ZVWBga35rves/lL3keS5r249T0f5j450u83/UqZs/9n3c6Tjlk57dBCpO378AlXZznGk0qzSimlMyy6MBTPy0wbLauw0vB33uuHSlMMhseM51FW7o17s/b330HL14OhT6Te0Qe4uz3KlSOrn0UPpxKhWOuhGseBUAoOuK2e7gv0szUOxze1+Xby0zsbaN6ckvMmFjCSoplaY3Dtqvjo4oXsTWqpy5RlbF6LwdZqC9noNKTnfo+7DhQUOhDF9ayBTMm3GiEYWM7e3k0fBTP3X8/WXs/hO9j4ZA/516fQ2v54btrUYELtv/E3Hae0HrfMem0T6s0uKmomJVjH6J9RnsTp7RSWLan3GMYaLSXbv12skwqEFaCvO9B5KxxsC7YCb7vTVUv0FMz1Gzw7pwkyO/1Vcjr7Un18jTWJ+KJwYwJJy6v4bq2OFhHynsn8O9AVNy35DjbgBYDEYtg4AZYnwCFPuF9Yjqo58C3jcFtjDmaLnlxgYt+KS5Gdv93qErWBgMdl7PzShe8/GlF+K0OrHJAjgZBCf0971u/2YiYw97UMKw4ZJD1178MVtt6iN4DhRcaAmIJxsG+vuQyWHidwXPV/TfEhVMQajW0NUVViWgJ2N8d+cVTYDIOkH/9+nKalRrGILPu5vZ3DvH933kkRKl8eHUYp7Tx74OlDp0bZpTw21adaBu8MNLGlX2r9mSqK6R7xtA4YsgKSoBgQGY+CWVGyLEsGQQpl9DC3CRk/uqgKlV71unLR8BvN4PLhtplGeZLXwTVzbPut7nBdBH9RQ8OycNky9wjbsORoDrxnrNE/VAYNRLx7JWhjX8AZky8on3ERPM9lC49xMrEEorVYM4WPmuJ4jikphrvRGFCYFbdhJACszBjwcRjad9R+EV7dmWBW7ggIYqkq/ojeq/h4KJdcNjHWJ2yDtHeUHVPJI4eSiCPWm0QKcKZbHmEZu4kPtfmso091Re6djy8VX447r8uO7PZLdz2pMrUUYHjZVZhXa3bTuB4RU2EFFRU8mRBg+zPaoIaG9327DFeljPOOINZs2YRF3dkm4CkpCR27txJamqqX/rSpUtp3TrESdVxhptdDzPHWr2BsSZYy5ag6UUUVzvp1TWCKX5EEY6OpAwHuiccLYoIBAInLm8aAOe8Dd8+gu9AeflAB72VLjxvvp+Nju0IYIO+Dad0YTkC4v4yXSLT3gd3c+N7or9ENHqNtqTUi8t4fWOr3I1y+QK4fBKXvgDNFz3F/vmXcvr+pd6nvCWuDR91vpxmJYf4oXQ5A22GWmQO+fQQHSk450PKvnkAvwksdi/6jCdASqKsFlr13UBkx7r3Mgj3kU534qKRMDgnhBD0EJ1YYPoT+cilQcuWL7OVdmsQkwZzquhLusyihFJyKfA4vwt0dGZfG8X318bgxu311vQ1FGjoNCGBt92f84D5fzVqu0tXka62YD6IUPwH+66ifb14cFVGVYZRK2bW6lsYogzgS/1HVBQKKSJexBAvY3DgQuCmjWjJdrmHu03X86r9R9Dj4XyMPd430hv2NODQKu+h67TfxsFv49iXEEXfd29G3d+FSNVGQeRhdJcZxRw8RCemnjy0hBD8PtYwur/mms4U7SMKKUZwCY1JIN2egDz4LpxkgpN0RPJ9iPB/ANAn/AhlvgtdAdY8GDMaJfGQN1VqKqwaTse0kUzt24cHUq6iyEMSPUD05D39SwC6iw4MUHrymvnxGrc/yR76RHw7e4mk/j2AFKFwpXIeu/T9/MVaj/KiAampyNVnwc7e0Ho99JmPYvLfGDcmgZh68io4gYZHrlsnL3M8aLGAgJIhwFC4woVoPgph3W5ok6wfDH82Ane5qmHFILpop/s/Z3RzSRfFlGJKyEU+PwRZFomcMA8wg2aDXf3BZodICcU+E0qXRSjXPRpQXxmOKo0v/wZ8ry3gdTkdpZEbGk31puvz7oSlV1dk/OciZHpHxJhq5uzTPoW/RlDlliatE/xvLKw7i6TSw95eN+ziz1jfpCs4oSBHcsbrpfS+YwolLVfiwMmv5k84ZWI4WR5bTokLrp9h52/7Dl459dgS8rukizaiJW1JJQwrv+n/gDMFTBkItdJhl6MTXjcpGQ6uZnS1tA+oszawYcEe5IBdX3A9/Hqr97O2Zhgc6ErkuJuwYuFb988UUMR+0gmXYfXqeVJUTfhZe6VlvbSjCUEMYpVgQqWQYvqLHjyz+D7+SurNuDMmECgTXg4BWwchH52PjMxDqAKJji9TlOjxC0kikexcG+G/jWXF6gE+5c2QlUr61Mk0HzeG08e9zmL5T9BvyiYPawiu79qgkYinl+jCbBbQBEELktlDmt+hdvkBu4JAmrUQvvWCQbu3k2gvok/6alY19VWglXQ4bz5w2VG39wSOX6zQ1lebx4mLfTKd+ONUTqHWLIS///77UX3h6NGjGTt2LNOmTUMIQXp6OsuXL2fcuHE8/njNNykNBQEskn/zt7aek9TuR11fOsE9ARrCaytFJJMl/RdzLjTMmLzGNYHwDo5mVBw+Rjel34/oKeth4bXgDoOTv+af1vnAT7QQyQxW+jFXX4gdB6c4riBRxDPedEutVLiczpbgblGRUHw2NHoNLUhY7H8BSiXaxUP/nAzA6ibdcSF4/qQxvN5ndMUkPUGjcNzVyAQHOhqNZQLOvt9Dyirjd9k2AEobQV5r4w8oAtavHsJtnSQ/3UqdIpmKk9bKRtaL1DOZqn0cNKTZF+X9L0vmEi9i2CX3A6AgEJ7/deHGhgWBIIFYTKhk+mxMdHTyKORz7XuGqAPoU4161QGnm7L9nxgCJ0oeNLsNYakIlUuThwhTaqcGVheIqML4IlD4WpvPHMs7OHFhQsWFG4d0YsVCGQ5MqOTKfOKJIZYoWqpm9lq2grM9CIWwG1YyMlOybW0bfoxuyhN/VSznNiR2ZMhlX8FCBQ0oANjWC366G/3hESiRgYajyv23PrBbpnEIwzNkiVxJe9GKg6U98JUHliWne41udPkDVo70r8QRBy9/jT7yZZSBs5FOK3LiHHBFsQU4++8yzG3uJnX0JGKIwoGTgfRiOWtYL7cRpte8bxTIIpzVEM4lNNCpXRORyHRm+6VJl8V4Fk6PQW3deTBvLPKxEQhrhXE6ixyyZA5l0l5r5bwT+PfhzzINXfM9jC1/31Rkyalg3oF86QvIaxGsOCAp6Pk1cP2xbWg9Y7o2mw6ilXdtJfd2g8qbWbsNbhoHG8+DIhMM/Aalw8qQdVbHa3O8Y5PciYsgyoNrzglMO1g9bY0Sl4X+5HD44yo43BJym0JGZ788o8zf0m77ejIvOIVVPzeh/y6DumN9o84B9W3/pxu0nIeKyuTCr8kqviEgz4d/6jxxSiGx4tgdLORRyHK5FoDOWk/kwengSgFRAs3GIKwVyrZELoTCiwEdTBmolr20JbDdtYEVW1CjGyvPD0jSspvh1qBYLWGT3EEP0ZFoIgknjAJZdEyfky+KqJp3u4cI/L2PBZJpXG0eJ26aiSSedb/NRW0KuG7VLCKdxdx2zivVlIyA4ojgQhF7+pC9/HQcc8aSEfJUWBCz/hIKhswI+Q1daEsrEWqsrh16iU6YUGkjWuKWmmflrnj3lSZUetCBvRwkp9E+wA5UWjNYS/jmIp3b34X5s69nXuoQZrYfSWnbXOyPrMEeG80Jo9t/G4v1FTXKt1Puoxf1857XFkck/ZGWlsb333/P/v37cTr9B+RXXql6sBg/fjy6rjN06FBKS0sZPHgwVquVcePGMWbM8as4UQ4JOHDyqTanToxurhAGh2YcuVv4kaIwiEiE3cfDDYxQvTwKiCWKMnSiCPeb5JTGaXDlJO/nfT6D/p2ma3jP+SUKCnlsxyLNPOt+u8ZGN7d04zIfAGEH6Vm06pHoe7/H2mhWwBj9b4eUkh3s9UtzNd0A2U0ptEZz0rXzSY80wjJnzLuds/cvAUB/S3Dx3DDWDDYhBGjLRsL39+NVKQqBhVsEhXZJtK3uTiTDhBGCYUIlAX/v2L5KNwbSiyWE3lwoKLhwo6Kwk710lm1RUdHQ0JEoSFwZLeHVjyjxbGQOIwm79iladd3OHg5467LjYBcHeMb1Fi+ZH6KtEloK/c28QtA8ISt6FLLwEkRixYl8S9G01s+iLmAR5pChfnYcHCaXTHIwYaKYEnR0okUkm+VOSijDgpmDZBFHDNvkHtqqLVjSbAwUnQ3CzYaEcbRslch7fWfynPsdzjw3nPduLCU+D2664gGQQYxomhmWXgnnBIaMB/OePdZ40HQz7zg/R0Ehh3w2y50ISwQSFWMEVxCWXd784pIXkaoTVlResAn46TYYOBu57kxw+R+EuHb1ZGdJAWERYSyRK9nt09dyyMchnfykLSZexOLCzRB1AMGwR6ZRXBABL84FLdCTUSQcJPLhmCOQPTp6lItgSD0cmfG0obS9c3+Fwa0crnDkk78G3QTEYIcqVNyOFO0bC9Y+FIVJPT65O/6/oYNFwSCqV/CjAih/39LbV2FwA3HNI+xtVkKBfhExyn+HKmKq9gnb5d4KeYkmez3jtw9XU3cJ5qegXx6iyeMI644q6yySoUP6/w2QeohQsCa7YXe5AqPnGYUZhzmKhzcsFJSwUhj+ofez/vtV8POtlG9zpmXfwam/9OS91lfT459mvHSXynk/aES6Cym2xFZ8HyBSNlKCHRs2vrF8DcJXlddom7vlOu5wfcxb5qeOmUEp10cwI6+4v4fHGJA2ZP5ViCZPea+LxClgW2+Edkf9hq6U0U/tdlTfH0MkBcF4yZpuh7xm+KlMmssoU0twUMZcbSFtRQp/S8MzJYf8euNS06SGDSv2EHNOFyW0KmtdopnahGB2ZV9oaPyjr2cNG/ny10bcc2chAxduMAixj9AzUC9MxDFnLNUplu5v8TOmKrjvNrGTxDo67GurpHCYHAplMc1EEodlrl/rHLhYzRYjtPyHu/HnsfO0+Yb72VAwnI7X3c6IvQs5c/8SUuRmfnp2CU61jCjZhr16Gqn1oEx7AscOhbKYLfpOiiglkjCsWPlUm8NmfTubqHpeLMck9zs0JgGLMNNJaVNvBv+aoNZGtwULFjBixAhat27N1q1b6dq1K3v37kVKSe/evastL4Tg0Ucf5YEHHmDnzp0UFxfTuXNnP2GG4x0S+Er/gWf1e4lWjq7dQU/7gEQRHzT9WCJc2ILSGQXzwsinyHMtNLeInpGK/vZbWBz5gKB380T23L2Md/mEd/WZ5GzoyR9fPIVFz8esCN650sZ1J4Xmydio7TAUN5uOReZdCaWDARNocWzLvBFXvMR8nJInHglyyPfzAtMPtoEtAymfNNOijcnlpPRVDPMY3ABUKZl+dSnt08z84F4C3/9ETXfsljqOaB6pDiVb/Tskj1oPpSNL9NBGt3KDr4aOCZUNbKc9rdju4YZwoyE+eRnpZ9wRlM18lPBnAt32nLiYLxfTT+vGI8rtIb9XqkXgXSQKUPw9CxIrGRDrExbMOEK8d1nk8qLrfXrQgWWsphQ7Tumk1MPVWP4ur5fbWO7YwsrX70em3wsISN7O5LumMTXiQZbra8kgm4yeZga+eRPMvRtkFdNFRD4AUrcg8/4HzlRE1E9ERNaAw6OO0VRpggkVNxoHySSScJwRvyMSX0JmDYIvuiBL70VyX6WSvjL1Hlg8HJfhwdRFJZidbGQ7No9SWblBNEfmsUrbyBXuewCDvPmQsixoiM1afQt8+RRowd8RmdOcmX+YGH9mjR9BncHrop9/OZT1BxTYFCpkqX7H3u1ZkjeXOBl7ev1wK51A1WhnVYmO+4rC/PNB+ixyresNfjd7c7ASwv4qod1KlslS9st0ulG/AjXHEmnS8KgqX1qJ+EPIi5+D2eMM3rIEJ/S3gowEVxgyazyixc1V1vlv93QLZRDhhgfh7bchox0gICIX7hwNUKXBLSjisqjsUbjUcQqLi09HM+3kvnci+YlBOHJvhTfehNJ4QId+cynp+zUWzNixY1ftcMdt8P5r4IwABPFtdpB3wcvM0jWu1M7jZLX3MeHdzKVi3rGpTvzG2EprEiF0iPrVL63RUbYplabsJz0gXVw1AflOIqR1MRLCChG334ZuD0d/4z3WZaewDgEpIxG3jCWXAtocVUtqjgwOh+5fQAuS66UdNf2eAs9eKsdUwL3vRvKEehMzNoRx02d2XJqxJk9pk86O7TUXgVJdThCgmULNjRpFHz7nqU+Hk79BGfFaQK5mRymkUA4hBGcoA/hO/5UCWcQg0Y8llcJapdvsMbgF26sI+OJpKIojN8rMx92u4uNuVwHQf2lvVp02nkXyH2ZrC7hHOTrvzhNoWPym/cnVbmNt3pqW7GZ/revYxC6GuUcB8KX5VUaqDbB4DoFan50//PDDjBs3jg0bNmCz2fj22285cOAAp512GpddVr1r56hRoygqKsJisdC5c2dOOukkIiMjKSkpYdSoUUd0E/UNBYUCirnR9dAx+44WSt0MdrVBMN6gYIpJCoJwbFixEEeMVwI6AG+871GdNCaK1WmSMdNNxCkxXFh2KXz2HOjGpODS4ebP7aTlh5Z9/ll6DEumNLBtwei+AlDQpAnXf4xHM1HEscL8DWAcfPHWe+CKpvIpUIwj0CBgcwhsWCmRlRZqfcv/IQP+Jl9oxWau242zRZirFC5oXot+bsVCUxqzoxLHlXQG8abSTGxjt18+3R6O/var6I8u4KknzuPtZaE3LifF7IaI340wjvAViFh/9c6GCvcDaEJo0ugIwpkjf/MaxQGWs4auoj0CgcnD+WLBzLOfNGN9Onjfo0Md+GC6ITJQhOFJoWe1hLn3YWxeKqlolf812o04+VsjNfc2yL8SSk9GZk7EbD96b+AjQbSHS04isWB4fBI9D77sBKWRVIwdXv8TKu7P86e44cYHsTgkHzw/n74Z/3heROMvafhXmC2GyED5It+GlaY0pogShrivx4IZC2byKeQAGUHbOkl7F8qq5mzLL2kYvsoL1CGss3xPpN4Iyj2eFU8fOA6ot3JKQs8XJ1C/2O7QKMy7wjAeIQE3WNcjkh41FOoS06D3L+CnY+J5n856D2EzPOb/kuvqv/HHCGXSHkCfICWQ2QpMLggrgDN8RVQE6NUf5GbIw9XmOZ5R4DM/+UKxOlDuGYUyaRDKpFNRHr8AJd4YN99Tnq62Xqkr6N88gP7ELzAr+Pq8UItBair6F4/y02NPIl+dTmTfJYjnB6FMGoxyyUs0IZGLlLN4R53ACIYwpmU/bn3mQ156eQ7OV2P4/Y54wlVjbXyFeyzdHOdxifMupro/OcInEhyFejGxegzWWY+y66VrYIcDpANs6xFxH1RbPoqjU3PsItoFTRcmF8pdt3l/J658EvneVHjqZ8huhXdrua8XctYDfh57xxqF1XiBKkr9zKWtqFlo5in0pjNtGMpAZiiTSf/uOkZ/Ycesws0DzBS8FM2mOzrR5/apGK5zldfuBi7ZOofYUkO0Ytov99E6v8Lz3hh0fKHiu3/izyvQN/oLHKbSrEa8dDXFtepIeonOHkIY/PaNAkG4HkGVRkWXjSDSrhwoKaGbaE8E4SyTq+qsvSdQv7jIeQeR9h5c4644DD8QxOBfW+TU49hTE9Ta023Lli188YWxATWZTJSVlREZGcnTTz/NyJEjuf320N4jAJ988gmTJk0iKso/fKCsrIzp06czbdq0ECWPH0QTgR0HC+RyVukbq+WHCoWPnN8GTbdhpaOof1GJGBEV1NOtMpmqjqQVzdnEThw4ia3EPycQ6JoC7sCN5Pp0jW9MN7CqyM2HlHhLlGPnYY3mscEnxX+0DUjdikz7GLQEv3JDEjYTrpxc43v9tyBe8RC8uy0G6bIXFfcuL+7A4b+hkYfCTAJzHu6ASj6qyYW76wLY6LH0pwC9Ksrbkh6jd2QeLUVTxlhePMZ3E4hWojmtaM4e0oJeL/dYAsOrrbVoYSwkpWA/B3HgxHLee9i/Go8vZ5f51G+wYCEMKxo6pboDJn0Dds/zLLMx9msNRTq49dTA08AcmYWSNDFkuxtSGScUT5qCgkTSkmQ/qXo3Oj1FR8qknTQy0NEJw0bWocBTcFdGKiu1jRWeFBlt8F8IVTxjZdKgwEY42lCxmAPpSq3t7dUJ2oiW5MoNAMQTRw4FhrpbcbnR2hdB7i95K8pYw9vk176FtN8OasonTOwfiyo1Ent3JDezO6bDPchptBENnRYkYcPKFozQ1V6iEwdlFmZUkkVjXndP5yWz/0bwL30th2UOjJgK775JsHMwobi5f0jDeILHixjiRQwdYl9nZdFpoMfBKfnwTSxEetpatcjvMYNFhbGnnfByO16w3anjvylSEElPIEwV6oXKyAnoWaVw0oWAjkicgoiZ5VfPRn0b/xXkUhAQKSA/nwAbfE7ev70OrtsJ1raAjkh4t9p6S6tRmT/e8Zn+fbV5wrHhwu2NBnlCD/TEAcOeINcOgbVnQ2Yq5PsaO/y9l2NFHmdH/8SDb8+CNGPd7gaKF19EbFFjUq/4kIFKT1orLRlrMjxmbjRfEvCdndQ23Kxdxj9yA9kyl32k86O+iMX6P9ypXoNJHBFzTwAKRDG5Hz8C2z2Km394/i6bi2iWX2XZCMJQxdGFLnRV2lMV5W4c0eTsSYGPphBqXrWl9SJH7gooe6yQp+eHvKbWI0dDK1GzMMflrOEm5VLaK6mM/SCaw1srHviHf7nYnaNxbmcTcvsNXHDp35T0+Ran4mC65SVOeSqMQwVw0fYfeHvho/yQcjo3nfs6FreDvDAfcSgRbA1X6fP+LtB1sTd1Lwfr1HtziDKA1/iELqIddumkN11Zwkqk578ySz50WgRbTg9SWsK5b0JaB/j74oqWK25aD15COPHYhJW98mC9inacQN2hQBYFHFCFigQEkLoNnG3AdBBhyg+ZLy9YeHwDotYzQ0REhJfHLTk5mV27dtGli+FinJ2dHbJcYWEhUkqklBQVFWGzVRgQNE3jxx9/pHHj6oknjweUeRY8KiZmab8esdHtgDwUNN2Og2hR/5us6CCnYjp60I6voxNNJCmiKUWyhDIc3pA3iUSoGjJxN2T7Gw+79d/C5+5Mvk9YCuo40Co2TUJ106RFNoRwy97JPuTh+0BrVJEoChAtbuKG8HuP4I6Pf6zRNhNPLJpZIy8uDfIqT+SS0afE0H1XDMPn2Om+Vsd100jWtCpCl7no6CjXPol+4DNYPQxsjYChRlE1G4dtJX/JoqAejfWBRiI+pMENqBiEpUBzK5QpLiQKh/RspFDRhEDv/hNhrdcQvex6DuulxJ20kOImW3FjbE4iCcdZHIXLHhNQ/8d/Bze6rdQ3hGxTLFG0ruEp5rFAgohhrwx8Zjo6KgITJnK1fHQJQjXWWwnEEUc0BziEgoITFxH9fsX52xX+lfScx032RUSoxjMxt12LCxcBbk0ttgSwbgCIqF+Rdo87pVJEu/CsOrnn2qIlzdjCLgSigpOmZDA0FdTo8OxQRQhlo71R3HTWk/zYroLke8cB4EAnWP0alqufIKr7Spy4OFX0IUKGsZP9uNBoQTJOXOTLQuY7lnEvOTQ1G6fHTuniNdenlGBHabUe/fHhsPxCyGkGujTsby23MuSkPBpFvF1nz+ZIUCbdlC8XlAQTFz8yk29W5EGT6yAnGvYAhwqgyPcd06DLAtpZmtJf6VZO72UcuuugmEBqRv+UIa554dkrSQ1Us2BAqpnr+lmwmv97itX/VpwcpmKYMMrnEgXKekLUb375RKOXIO5zEA6EKTuAqysUz+2/ERu0IAbErZUOByWwwIW49SpQCqvcQFQUkUesAN/QyNZzcVdHdkWgYbE4BEG+fP0DSO8UopbyzbebybGPMCp6JhmKgLRAcYaCzT1x4uJZ8/1VeueX42XLeACed73DC9r76LgAwenOa1lo+RSLMKPrOpqmoarqEXlYFcpi2HV64IVV50Gfn0OWiyaStuLoVTrbiAre22A0Y2XYYc0wqvJQsg/8nAOE5s+ta+SF8KIEMNeje3ZjpWYUQTqSpjTiZKU3h7c2C7j++w6d33c4gThWbzkZ68I2nP3A6yRpidzQz8Gk39xcs2UWAjh/3x+s++g0IlxlnLVnIV90vSKgvuCQ0OdHvxQVtU4F/cKEjRgikRgRMMk0YonPAlJFof8NX7Jv36+kr+oOTpuxDoougFO+Q4k7DCfNQ+8/y+j/jfYj+/7IMpObke6zyRclRKsR7JfppIjA53gCxzecsvo5oRxSi0WmfQDuZIPjvekYhG1zQL5YopmrLeQ85TQ6KvUV4F41ar3THjBgAEuXLqVTp06ce+653H///WzYsIFZs2YxYEBwomiA2NhYhBAIIWjfPpATRgjBhAkTatucBoETFxKDnmSltgFpOjLL+u/yr6DpNqw0ryfeAV+Ei8AwUY3A8B0bFnZxAAWFNJlBPDFBOabEvTcivx0Hm04Hi4OIMz9jVf8/WOdWSVMz4NElRHw6GdehtjiTNhN1zSQeFq2ZzVsBdUkpOSwLoHh4pcZsQ5gzieHfwwlYG7ykfUAu+QCY778e1zfjYNOpBhdMXCapl35Cdmp/pFvww0U2frgIOrOHCBlGmQ+vhdJiO7TYbmxqy34AdxMIX0KCqhJJMq2VhjEiJdOYWKIpoiSkAq3+/Rj48wqcQDBxcwmUAeKiqbTtv8JjWBI4cOLEhR0H7ggBwhlAhhzZajvQL6DOAwQ3iIPBZ1guENEQqGohVOhyUzDpDSgxDDsSkJc+w4d9v2a+5QMGO69GR+KmjLAz34XI3fDbzaCboDQGFt3MtkU3g+om5f57CU/IZ8v4y+HTpyGzNZg06PkzYsRrwZWzoueB+SA4UyB8Oa1Nw4PkOvboo3ThW+0nTKgVY5N1G5zbEVYAWyEpbz+j13zFxFMfDEJaXPF5au//8WObs0N8k8D5+dM4luzh9jF/0lJJ5kv3j15D2xOmu9i8M5Kv3jkXUEgFIJ9JN2XRqeshdssKvgolohjODFQTS1Qa5hn6Ir9gCOhhoIP+RSTfFBt8KpiB9nYY+SK89FilUirmSDvdL/6WadZT6rvJJ1DPiDcp2KJ+xV40zJMiwbozIJ8QGGOEB5W5utbLrcewlfWLdcHupclur5eVAQmtVyMsteOuyZLZNBf1v048UmzTd7NPHuQvfV1wRcxqUIYjQERIFsVXYXDzhYkDegqq8HhjRh+GwiT8IgaSdlJECT/rS7lEDTXeB+Jh8208bL6NG50PMUdfwEGZxVr3dq59rjl786D8aCq21S7Oue1LPrZMQhE1M8AVUQwJByCrEvl/69VVliumpE6ECxKUGKQWgcx4Huw9kbY1iOSHEYphALXjhDar4O+LCOBEtRXAyFeI6bWcw/pFR92WmsJahWEtvB7V1mrjZTjj0HomTLmSYOGTleHIbcLch58mnGLKn/eSZv057aCh7NjUbngWR7lr6g0r4YonUZrs86ZEEk6yaFznHmPXmS7iGtf9NCERE6rfu6yhs4L1RKaEI4o05Ixyzjlg1YXoD16KElaK0mwPNHsDAH31WcivnmC2J58popCNjx0gJeyE0e3fBkdtxLaKzzT2sADSjCy4DGELtB/lU8hfci0r9PX/XqPbK6+8QnGxEXo0YcIEiouL+fLLL2nXrl2VyqW///47UkqGDBnCt99+S3x8xSmAxWIhJSWFpk0bRhGwtigfJgzFlY1skbvoLGqviJNFbtB0B856U9jxRVgNJyTfBZMdR0j3TaFqiMtfAF7wqCAVU+ZzXQkvglvvZrX5ay53vcJW0vhDHmajvoOuij+XxHp9G9nkGOSxziiYIzAeXz90lnIhEGMr4M/7ImnXuI7VABoQzUUS/3jC5DA5Ua581u/6fuB7d7Hf5HWAQxQTyGsxaWwJ13/sRpG/sC9FMHRpJEUxFnLJp5NomAEpSST6hUJWhiyJhj+voCYEsqXfjWX7dwASuv+G+apn0YQbDR2hgrzrZnjjXZDlxmXJ2uTvSNdTaKr4e9lupupwiLoimD0SRIcIAweQC26Akkqcb7MepqjvT+S5C4kgnELNjnzndUoOdANFwMllsF7Fb8Gnmdn3xW10v3MySmwWjLmtxu0TYWsgbA0ALZSG2RRer4xkgva6x+BmGHNF0kPIvJvgLCviss+55+JwZra7O7hKmKliAfBhz8urURITFB9ozTMPtjI+RnWDsTeiRBbQjCa8Pn1IQIlHZsRw+bPvs5Yt1d5LQ/IHliPc5IAMBeaCXwisC9hkA0s/UJ2VQuDBFXOI1TK01+g+mc537l8opoRxpv9hq6Ex+889Loa9UYrjv+MU1WCwqjDnlnCGdDh6L5Cujeex0pQOrhaIqPkIy95a12GXda9021DIDhZ7PXosvP0mZLQHIaHzIsTw2nuyrte3Ee9OYsDLhWz1OBS3SRCsGBdJdNjx5wE6xjWRxTLYsVnNEPRQzmLH4JqsfL+BojjJqkfQQgItNsCmJLwTaXQmjLqXgzh40fUeZyj9vcrNNcXJSi9m6j9gx86kpZns9UYlGO3I39OWr3cf5NEO++ggWtWozgJZDLffDm+9DYdbG/2lx6+IoR9XWU5H0r6G31EV4kUsFFxmqFajgr238TmugrtO6fE7evp0WHQVYAKhwcnfYLvgHZy4KAIW6H9il44aj+9Hg+3sDXktup4P5ytT84TCrs9uIaTBTUpS8/cxb/YNJJTl0OzWNeiq/1g9tc9o2uTv4dIdPyCA70eCKMusWSOtxSi9FvglFVPqYV6rWwxTBpFKc7azxxt1oVdy7HDgRM58AlDokbGe2XNGEaHZWfJFby658F0I2KdWtNNdEsOUnzM478I6b/oJHCPoUkcRSkiez6BQ8vAb89X8gCzd6ch6jEMvOw4j0hJZ4wOPY4VaGd00TSMtLY3u3Q1y7IiICN55550alT3ttNMA2LNnDy1btvzPxFyXYGeq9gnvKqH5n0Ihg+ChVyk0pVEDqJcmEBt0EKwJutCGTVUYKgooJopwiihFAI1JoIhSyrDzgf41n5hf4CrXvaSRyeWuu9lsne9X/ld9mbHvTXoU+dkkyA2cPAvscOqrxWQ+V7vF0vGMF8wPstCxnAKK0UJYWn5lmd/nokoGN/3PCxn2ZmdumlvBJ5W6T/L5pSWM+FWhHan0FDU5La57hAkbYdi8IdsB0MoJ/GsCH1L89WfjWn8mmJxwypeIc94Ds8tjcKvIVzDzQVJn6jSOLOCT68IY2sHwhCv3LgyGZBrTnCY1bFPdI0mEFlLAGUTURBr3O1p/jHOV05n5fTs44GEz7wF0DIPVQZ6x28KWIBLdusMGn7wAu7sbRrvUdXDDgyjWwM1yTXlN6hqJajx369fzqvaxNzxemPIQjSoOhkzOLhSaK4XUS2l0j6sfBUBfdjFOk+LREAiibuoHz7WixsS/N4Orx81khDqEcUH2irou+Fb/xY+zMOh9EEdTGp52oUvManbMq8L7w2WD6x+Gj17Cu3lovBtx2mfsQyNNZtC8kqG6SJbQwXG2N0w5Q+bwhuWJkF9h/3gmjoee4aWO1/Jir9uob7XU/yocGpz7dilFk6Mxq0f3TPewGyV+bUC6vqsHfD4BymIgeQeMuh8lIvgiu6w2J97HOQpk4D0qVjvcU7U6aU2QJjO46qMSr8ENYFeO5OIPSvhtTN2FhdUVampMFcDD4jael+/6HSYGzWstRZ73mkf10NN3Oy2B3j/CZ89SvjHraV7P6KhPWFHWiwv3fQJUWl8XNkGUxIP1EOvYyg2uB5lrqZ5bzxd9le50FK3ZKnczz/430Ccgj/blw3QrjKJpVCFf3RTGSalVG7oLZBERYTrm+++slWJtMxrzrOnoKVfiiUFKX0OZROqWgJFXGf4uDPd/Xk4MKo58itjBPka4buMXy0dH3abqUOJ3tO+PqkSojgWsNTS64Q4iBubB5Vvn8NLiiYRrxvujB9s7C8HdZz7P3Wc+D+iI5weBnAtTR0BmuRJ0iLHdEY7+2G/Q6yfERZMRHqGk+DrwlKwMizDzkeV5nna9yXK5JmifduEGXQUpmfvdDYRJF8/1vYMp/W4PfQ8+yHPU3ov2BBoOXRznso+DNVKnlpqK/OJx2DgYeuoGrUkp0FdFjvA/G3f6vHdj3c9wj/sZ5pnfZ6g6sO5vohaolclPVVXOPvts8vKOnDk5JSXFa3Dr1q0bBw4cqKZEw0O5eB7y+8fRi2L90vX1p8Hbb/L95yeTWVQ7Q5WUkpIQhoZwGiZ0zSzM1RrczJgwoZJIHKk0JYoI2tASBdXrKSc8//lCQZBMY55Q7+QBdTTfmN6gj+hCD9GRDfp2eqiduNN0LZcqw2ghkhngqFDC3S8PMUUzJmsRtgaKQp/gFISeb/+VaCmSGaT086pQqahYMKN4nq9I64A+7SWip72L2NcF/dcb0V/9AP2Dyej7O6KvGgbfP0CP9D0BdbfaLelBR5JEYoMZ3cBY2AGYPGcA+qFW6NMmoX/4MrIgEdour0EtwQZsBdw2WHQD8oc7Iac5wUlkVbKKYfjbZSzd5SRfL6ySwPMQWTRVGs7oZgpyIlr+vqlDpoPiS9wt4bQZmFDJIoe5+m/Igz5epLEYRrlTPHl9y3X6A9frb6FPno7++ePo+QlGaOvkGbC7L2AB3Wz8+5XPg7a1VQOFLQOcq5xGR1rThASsBC5qpz+7la45lcK/hKFiKpL2of99Hsy9H7yqWjU3SBTnR5GiNCVOxDDlksrjuYRh76Kjk0yjoOXLkU0e4aL+QmJCobEeBzLESbzQYPibKB3+hifOg77fQeOdEJ6H3N0dkZfEwGlb6fZMAT2eL2DUjBIyi3R26ftoQwo2jxL2V/qPlMnAOTGvVOf1+77FfssDvJpyCS/2qtni+wRqDh3IrQMl2GAGMz2rObz/JpQ0gggLyC7wyteBgnoelITg7vo3Ik8WHLO618ltbM0K/M12HK54sOvS3FzwbhFN31pB0x03k2I/nWdd9c8P+Y77C1YTyLlTGadzEuPV2xhmGsSgvBFYp7+I/t5U9F+vQX/7NWMeym2M/sfl6G++gz57DBxsA4m7jL/Ov8N5r6F0W4IyaTB3v/AOeaktWNz0PA66kzgraw4lemyQbxZwsD0mVKKIYIO+nefcNXMoKEdX0Y6LlbMZSE+iT/4ZTJWjDaQh8qCbSS+QnPpqKQfyqnbVzaOQMuy1MriBwWkaoVTPS1cdwoQNJWYWmDxrblMmIuY7vzyV1/oCgQ0rZkxEetatbjTS5bHnd5VSYq9CZKRFPdP2NKqp+ueArwkVvtAje7PX4AZwx9pPKqmRVvr3KV8aatGKTo97X0BR3VQ9X6rgDoN/LkLOfNKbGldLT8+aoo/SlXYihdIQxlEVBYa9j1l3ESZdvND3dqacdEc10QYGhOqi0ZA5dd3kEziGKMVeI4MbgHzvVdh4FmCFtQoUKOBSYfklyNn3G3ncJvSfRrH9jUfQF1yH1Ix1qwTyOHbzcU1R6/DSrl27snv3blq1OnrX5b179+JyuarP2MBQW5wKG4GNw9HvvwqlURr6Z0/ChrNxAzn7oOWaIjY+UvPQxsreSL4Y0kAqnMGEFHyhoqKjY8ZMISUkEodOHo1FAvkU+G2YVBQ/Dw6JYVR5xFyhbmvWTEQQhhMnTuniTtO13OmaQIyMYofcRwv7YDqIVmyVu4gmklwKjJPPU76E7x8Gi6Dy+nxIu/9OaGk5Ook2bGOPl/esMfEUUETZqjPQvn4UEIZf1vZ38Ztcd/aHRoaxbWbHkdy/6h0/K/v0URYvYXCsUvenWjXFKUofDsoM1sotONcOhplP472PHQPgohfg/Ndg08lYouxMUR7h/byF7A3bijssl+ISi0Hmm94p9MS8+hzEWR8hA3jd/DHk9TJOfvDpgIPwckQQRg/RiUTqTtWptogKEiJR7hGgRhbTZeLtrN8SD3lJ0HUxStxhdI+yqQM3DJoJ+3oAAnYAbYBU4IYyyPsYzNmw7kxYeIu3fuvBpkT92Yvk8e+SVxhk4VrQBKkL7ylpORrSS2ug2otm7iY0Ip4Mstkp9+L0MaZu7Kex/d3XYPIw/KZCcy4yLBfWDgustIbo2meXV/3u2pNsDO9s5ss1TjRNUtDtez6MWEgxETUK6T9Wi9/aINJihsa7IMs3DF2H8ydD/3koZrdxKPXsHPye5Yd90IBMBOVHJVsy3cxYWUCHe99gl4dHJoFYmogEnnC/ykvm8d7iGYUaqU8U8978eQjgu/bnHdsbPYGjQhMS2cdB/8QtpwLCGGOGYhz15kchi5MQURkBdRwJ39fxiAK9iD/lGqQ0A66a7Bm9MPbUZoSoWB/rThMURYMjDCJK+DryF5wDrTDvdr+yF59SCETzxUoHN8woX5N1hO2TCb/4VUoH1K/y6bPut/nGPb9a8QSB4EXTQ3Q3dWDJLjd/vP4A3nXA7r4VGdf7EPcf6OZfSXZb2HwG+q13ktoqi35qd9IiVSJdkvklZxBblk+0vYD9cYH7F6m4CcOKRBKGjT167RwCLMLME+a7iBFRtFd2kvfMi0RvH0rcob6clBjHNZ8GGqR/365xff/Qa9aqPO6rQpO6jJQxHUa0vBLcjcGUhRD+hsJAb0SJ3WN8zyKHeGKwYaUFycdcWdKBs8oNfH3TXTQhgZ3sqz5jXgtCGcY+6XwZ/9vwOQrgUkx83vGiIGqkLu4/zUxm57n8HrWAkrxWpEZEsTTqE27r7WTGPzUkqd/RH4CT6U1H0bqazEeOnkonmulN2BdE1UpDRzntC1y9fmLTTzHMaVOzdVjiJW8S0XsxuimJjfp2Q3n3BI57VGULCcCBLqGvbR6EvGAqcuL34IgxZpu0Tsjll8IjFyEUnRw9rya0iccUtTa6PfPMM4wbN46JEyfSp08fIiL8DTXR0Q23eT/2UGDx1XDJi/6S7xhGpVd+d/D2FTU7XcqVBUFDiwQQEUTQoD4QVY1iqoaGQGDHgYLCbg7gwsVBmUmECCOBWK9hrLLHnESymwPkaHkkqIbBoolIZKm+ihTRjJ/0JYxQh/Cm+UlGOm8nnwIcOFkqV2HBTAEVvGXKST+gRyWD6SZYBuyWqKrgkcFmHjunYZ7dsUKBLEIgOMAhrFgwoZLBYZJpTPGvo/CfqIN4ceUbRo/9MS046aofeGPBIyS6s5j8fB6zrrKCXM35yhn1dTtBUUARy6SHGPjX/xFwTwtGoTxyESTtR0fgUDvSVF/GQbmBDqIlq+RGbtj4Gd+V/EhuZAgjj9uCsJZifvQynF8+CDsGEsrRd+XS7jAiuDJYCWUcIqtBw+OjRWjjuBs3W9StKF39F57l76OGhtJ1CeJ/96DNGQtFYZDzK6LzfrCtRjFnoesgv/WQ4kvJL19fTs9sj1rpdGh61924K3sLhBcEGNyAGqnAHUtcajqHca5JtBYtiSOGTHL8rjsbFWN+9DJcX4yHPd1B2sAVDxMWQHSgQSA4/MNOI0+aT9MLl7BXb06qYhD6JkSq3DGofGy6kse4EoDu9vND1ppEAlEikuTjILw0jmjE2JuQ82435r74dLj8GZREn0Xz3xcSuKQI9Z4obJvyHKL/bBpd9CEmVFxSY6H2Fw/Jlxis9OM80+m8t8yJDvze8lRG7vmNwWnL2ZzYIUSdJ3CkUAUkRh4914ktGIl521WAhG7C4KRCGB62dAYC3zHnf8TotlfL5nD6k1B2Epj3QNN7EKbsastJZwoy/RXQkpCRvyAaT0R+/jhsOAvf9ykfCVc+CVc/DPNvBxQ4+z169TsDaM7T8ysbeQSlv13NvJPuJ9YVRZrMIEKE0Ud05RLTkR8wVIct+k52UL1IhETSTjVULif8aCf02FHd3Cvgl/9x3R2b6ai0ZsC1bSnDjp61n3uv+JxFLU8N0hqJaLGVYsqwYMaESrrM8vIN1Qblhy0AdDf+nG6JOsOBVmmKHJha9Q4wighUlKCCZlWhHUfvFFEOBQVdaGAOLS7lC99bdOKihFJyKSBdZpFPIXEcu0OkIlmCBTNOgjtzNFLq97A0QYkj1E/np9rc4S9YflmlHMZYuT2hLadeMZtPfh1NnqUZ+eHBDKpmJi8CFo0ARgCwFsmlnRzMuSWCnk0dPD3fQaETQMNkchtGcHeE33fR3PBG/ZPV9KEKA8dR4lrTSK41jeR3bQUXum4PEOJTUTBHF3HmWknvR/8G2aZqTzeTk5w+M8lVdCKkhZX6hhNGt38BivUSWopk9sn00BRDvmi0DzJD/K6p65H7u4Cj0vhSnAiH2kCzHeTXhjfuGKHWRrdzzz0XgBEjRvhtPMtPMDSt5szGgwYNIizsX2YkifdsMkx2cPtvKGPji4CabTLzKAjK5SOBTkcgylAXqM7TDSpOtXR0nJ7ZZD/pNJNNyPE5lQt22mTHwWztN25WjcllvOkWejhHcEhm0VprwQjVIBz/xvwab2mf87N7KRIdVajslPvY63OCLlotQx68CQYBg3RGRFl5vGXDbvDrGg7ppIVjMC6ME9hSH32XdLIgKhfyDfGRSHshAiiyVTJ6uyIoXwbti2vBBXc/BrfehWK1epXAmoqG3dSXf78NK1pMAY6cShkiDcER/UAH9Hfe4j7NCpwPUdlk33sd4eFmnnkkj9wz/ua7DiGMGE23IzUV5ydPe07HQ0/gzj9HwprTEY9eiDAFLt6aNiCfGwT3dPNFMO4/qanIt96Cg50BAdYSGHMTSmI6AsFwBrOMUgrwcJoJN0gLg9KW0yu7guxfAMu/uIQzb51FQb6HNyj+INx2R9C2NDRp6UmiO/kUsUZupj2pZJKD/t09sOIS8LCJ6b5cgF4IKEw2wpU2n4r/8Vgw0m4JqhvO/IDimEzmPfQ081CBAno3Fyy5NyqAL6tAFpHm9f8KRBZ5ZMgcUkXDKXFJKXkp28F7BecgrRbEBa8hRr4RkE//aTT8cV3QOkwuB26TJahCrFxxIVkrLqxI6v4zG1zhTNnSAyigfDPwWZdLSSnczyN/vUaGLYHZ7YeDUuvlywmEgCYh7L7QgjY1RsIM6A8oOnR6ECXhL5RmO9AveQbyHjZClD3dIJQBqiqOw38TPi/QocyjjO1qicy73o9TMhRkzu2gecLOi89GaithQzA+RYHp2yd46NnPSe21g1s1gw/RgREpkRijsyun0jsXnUM6mTyuvepNakVzLlbPrvODJF3qbNC38Y1uHGC1oCl9RGdmy9+C5m9GEmGeUPqmcUfXB0RcBtEikh5KR1JpxhZ2oTTej6WjHVfZaUFKSIjKQWKsbXewl0JZxFa5+4hE0irDYhKsfDCCs18vIbsUws3w3tVW2jWp2ui2Rm6utcENoKVadx5dFsxez7UjgcNjADNjZrd+gD7qsTO6FVMa0uAGBpd0faKraMf3LAh6zXePpHT8C/2c1+CXWw3KDjS8aw7VxY6T07nT/QpTFz7p4Z0N/a5aNCc/f3U5XfIM5ejDH/dmzJJvufsM492a6v4Et3Tznutr9sy80eNAokCrNYgbKnif4+tBwGmw0pcrxLlMl7P90jV0o9+rgn+eewu+SIQNQ4x2Vl67W0ow3T0aXTHek+3s4VP3HEaqZx4XUQInEBob5Q6yZV7NDG4Ad9wO702Fg53wUr4IHdr/hbhyAuQ29dgofPuIhEiDEm2ltglpOrbettWh1qvW33//vc6+/Mcff6yzuo4lDIMigIRfRqNv6w9XPA6fvYh3AxZ7iCWnTkTKz2r0g+bI/JDXUpSGUXGNI7bGaju+MGPiIJn0E91YJTdW6d49Vf+YmzGMbu1EKv1FD9bIzczX/0DXdRRFwSzM3tNCKSVL5Eoy5GG/eoRtCyS8iiy4lDhzEVOST6rl3R7/sAoL54hB/CgXUYqdoQxkAT78Zinr4EBXAG7a+CU3bP6Svtf8BKrva12pL2a3hO39odsiJJJkGnGS6H7sb6YKtBEtiSGKAoq4/Lo/mPlSMyj1nObZiuDGcca/333DXx2xqBHWT6ZSdvso0GHKogn8ndSLg9Ge96f81sPz4bpHkL/dCAe6E2hwqzxICyiLRU5/FjHqQb+cYViPqdt9TZBILGZMfrxzfqemPijPJ38aDQe74L1PRyS8+xY8eiESyQKWY/F4qQgB8saH4KMXMcnAzU+zslxuemQmr+nTA67JkgHIsj6IsLWYI1bUzQ0fBdqKFG6UVzBtWl+27OoLSNB9OdaqGatPngVDP4aPXuL0TZtZ0uxkNFPl8GQB4y7HmpiF02FBPvkzvoa51WmS8XPKmHyx/6HAHO23kLwm5S3rL3o0mBgFwJwiN49lOYAYcIxEKgUoCR+gFcXCu1MhJ8U4gHKV8975o3P2VmbMu50zrphFQVgwL4NKZdafE+S60a+fG3gfzw28j9EDzfTJKmbVrhNGt+MO5wiPuJwKWS8h489ACDdKv5+Q7r+RWQ+DqyUi5jtE2PqgVVQXhvhvQYFeisFTUN6HaxrXUimfHrqf65ogVokmXISVizR712/Drv+BFS+cDGXGe2ex2TFd/zhFlKIgiCAcDZ09pLFHptFa1Ix/U3r4pF51fcxSuYpBSl/Gmm4IWPfulPvo76rw3umvdKODaM1sLbjR7Xp1pPffjS+aBjvPhvzyAwefOToiy6PQHWQDDqC4EBe+zFjTKuN7RQ/2yoOUYeeVqZmo46v2AnPhJo5oMslhhbaOzkrdHIJ3STZx8LkYTndcwxq5hdtQuYyq1Vzz5JEZwuvS2BBLFBlHYXQr7/0uXGyVu+lD1zprW2VUxwdZ317jg+gb8pqKwnmczvcsBEA5/Us4/Uvv9ViiuEwZzs8Fm9n77DusaSK4Zvib1RrdJi16hq4egxuAZdVq7E9PJuxpw6A21nQDf2vreVSZgnL1M8AzQeuJP4YeieVQhco9phuZ4ZoTfN9YGoN8awpkt6OiJ1W6d2cEbh1iiaSQYsyYWcZqbnc+xReWV/4zoo3/RSzX15JNHo2IJ5u8aoVzFKsdxtwaOkOjA8hBM2DJNVT0Ex055x645knmqgsolMXEiIYTGqr1qrVchfRokJ6eztKlS8nKykLX/U9x7r777qOuv87hKARbDCBAKrC3N+zrht/iKD+ZfZtTeaL7VCaa76m2ylCEfvHE0KyBPGliRVSVBjcFJeipV/nm/ySlB021xnzPgpCvTjoVxjNFKHQTHdDQ2CPT2M8hUqnw6rhFvYLWjqG4cAVtl4j9GhH7NcOUc2lqHlCLO/33wIHLe/K/mJWoqEgksjgGllzpHVfi7Xk0L87EJPUqtiwCnBHw2bPod/6PhBaHSBKJDe7plkCsVy46IUIl+omrKA4W5+8O5L+y729L/KrLmDJ+BuMmlbH2MyNMRhvYg7m/juI+/XmvmpWe2ZbgRhY3BAuLOhy4OC/DQUw1YdjHGtEiKkDowexpvwOnj5mi4t0ksw0B914Ui/7By1CUSNkpX+I8ab63rNLhb5h0Oks0yc5e0HavUUQCz7wUy4f6F14C5fKJUpYMQGZMBjRkwdWIpMcD1d3rGYpQ+PPtm2F/9V68gdAgaRc8M5e2ufv4bP49NLt1TZB8Ar55hLjbnqSkJJaiIGHL36RvZzI9/dKmuj/x+60qo5voQKpo1qCLxj1O3aeNEtxNsepWyl78CunyGBFdod+HVgX72ZzYiQLb0SzgBQ/csp5nOw/yprScWDti8ROoB6j4O/pbFGTxGWDZibDuQZhyEU0fAEAv7YSc/whs6ApOqyHm4lEO1k0ad3ct4YWRYYRZGtZT9mhgi/oNCgeAozOo2YjYGTUqJ+LfR9q7gB4D5q0QEQ2t1hvh75UgpcIt+vX8plYchpevz7aEraHTkzNJFHFMNT/GWn0rU93RbCaLMGw0Jp5oEYUTJ7vlflpTM6Nba8cQDvms4xZr//CTXMJPlg/98n3unkdzkhAIhimDuNp0PtO12UHrjCScVJ/DhUxzOsr4K6pshz7vLlh6VeAFsx1hcXoVk1uoyZS5DU8KzSJwnfktLL6eivlQwhmfYhEVB1ml2GknUlgpN3ITl1T9QGoJF24cOHEiquQ4c0s3+dTe6Kag0CgUKe0RII5oMqg+LNqMiiuIl6qCioqKGRNTtU+4xjSiztpWGVUplwI0EvUbXtpcTSKU424E4SiKQks9mXSycHvoe8rXU6cqfXnd8gTDiiax19NXD8T6vKO6DroGJv+1a4fcnUhgV0xLbh3yHLviWtP4cClRLxSQXQIt4gQ7z30NS0rwMNwwbHQXHWgh6of/rrPaFpvLSmklbyeBQHvpM++hQXlqIATkNqWwsRE0Hkc0dpz8IpeyQ+6lvai7UOsTqFus1DfSgVaEYeMwuQHX9d3dYf5thprt8HdQ2gZbf/tDOe8d9G0DIKtcME6FzWcgP7Yhbh6HXTgMQbgGwhGtaJYsWcK1117LySefzMGDRsjfp59+ytKlS6st+/HHH9OqVStuvvlmXn75ZaZMmeL9e/XVV4+kOcccItiGQQZy12QuO53Zh7bxhqv6xVVZCPn0XApIFlUr2h0rVHc6pqMTSzQ2LCgIVBTCsRFLNCeJ7iSTSGe1LYpPt1IqDZLFlDLR9ab3cyfRhkgi6CE6MV3zV0Vaq2+lBUl+5OfB0KWBwnHrA01FY6+qpxsX5vxkLKvPpMX7F5FUXBGa9k+T7mxI6MAl2+fVoFYBW04ljwLWyC20Fi2PUetrhvaiFUPFQPqLHggEllBnAa1XBqZJldyv7+HFthPosC+Ka2eGc/761qxY+ADXmkeS5KMOKQbPINDEIaHRpuDpZ73rl6KicLLo7bc5aAjEB3lPdZ8gSYmx8A7HRgxRnEJvok//jsB7NMHOgZDZDmY9hvbRc6i7+qAWVSzYdVVwyvoYTlkZSdicj/gm6xnWX98VFYV4YvzedVnWh4qwCDeW0oaV5i7H7oNHYnADovfAkgsBldPS/sSiu+mdsTZ43r1tyP3tPIrWdgZbXqWLEvX0z3nd/ak35Sf3YsJFOJYgqqrlWCu3ENHAnHgXRZuJ8f7EEhH1A9FlyRUGt2rwR4tTeHLgfXAUYcbhZnis7akA/KQtpov9XApP+pjQ5soTaBBowDafz7obsp5Cpk1HFp3pSVLRd4+B1z6ARedBbgoUJ0FJEyhNgpIkKGjGO8vctHyiCKf73/cbv+H6lN72C3lffIRoNhqRch4i5XJEDTmxhHU7pIwA20pwdYTc2+DMbqAGHjxKKdiVo2PzUby3SwcLtb8QQqIjyZQ5dBJtGKEOIVHE0U6k0kw0Ybh6GmvkZjbJneyWhmjA19p8LnbeRR/HhXS0D6O7/Xya2k+hsb0/sfY+NLL3J5McD+uZ4lkHqkgpWaGv82vberaSRgYHOMSj5tsZKHpRKIuDbpuLKfWG0efLQvbKg9iqGBsBGDCLoIRZA2cRSTifumcDcPd7E8h69wDZ7+xn+cx05rmehsfPgWvGweUPw41joM0yrEUVh48uXEQTiS6OXtG3MsIwKHUksspQyByZzwDRk0bEe9XrawIdvU49OVpSPb2BiooJNQirsMCMCYmOgsAsTeTo+XXWtsookVUb3aLr2cOlmWgSoO4KhumoFc1x4qKZSPK8SUbOcMJoRwq3qIbR2dFkC9gCja9LvjqXJvZAQ8XUvrfwXJ87GHj1D6xP7kmJLZo91iTWH4L0QlixT5Lz9ss41w0O2uYy7KyQ64gT9cfPfo0ykkH080vT3Wolg1so6IjWa1BR6Es3WpBMArE0pTGfanOOTYP/n8Kt6aw+4GLB1jI2pbvQ9aObn/PIp7FICGos1/8ZDu+9BQd6wMGu8MHr6MtqeACSFcTQus84tAple6kv1Hol/O233zJs2DDCwsJYvXo1DodxAwUFBTz33HPVln/88cd54oknKCgoYO/evezZs8f7t3v37trfQT1AOoKR7wUxBO3uz7ZXJjHu8SGk26sm7EuTwUm6m9IYswjidVMPiCeGlComWBWFAoqwexSCNHRKsVNEMXbpIJ0sblAv9ptkgrmLzvAZCG8yXcxauZltcjdz9YW87/6KGe45fOqew1vaDKKIqJZYuaNoU+X1fzPuM91keJroAu2lTymd9CWlXz3JPZ/t5pb1n3mlw39sdw6PDbyfkw6t5qqNX2INskCvgIQOf5JIHInENbinW1ulJSvkOpw4URD0DRF+IEbfC+e8BqYgXnBrh1EQp7DgXAuHUk285P6QIkr40PRsRfnUTTD2WmixBiy5eF3VD/ckgANgyPsovf3DYDR0/pSriW5gT7d4YmhBkl+aRKIhvUYc3fNfAUUsYzUD2oD57ptRWm6ERnuh2UYCTg23nYbz/ddwPfs9+vRn/S4dah+JZfiZbIvIwIGDMGzMt3xAiqgIhRdhayg3uIGJiLCtdX7vR4IeTQMXveZG+4iIz0H0+AViQpB8F7aFRYaC66LmA1nYrD/R9iLvO+ePaJy/3Qq/jAd7+UJR0ikJzGNGo7f9mzX6Zm/uX/WlFMniAALhclgw00G08vP8bQikWhTWt41iRnMLosV1iPCVZIftJzxgipLQ9k+IzISwHDDlAg5KLOHsSmgb4plJMBWCOY/gBjRJp07ppE2MIswiWKtv4VftT3azn9LDyVRPqH4C9Y7FwI/A5iIfzj2BLLgUfVcPeOwPyL2SmogyFthhTdq/i9/NKV1skNvYzE40dIQAYcoPUHysDkJLAHul0LSk8rHC511R3ETHFWIVFQYqB06W6Cv5Rv+ZHeylr9IVVahEi0jmWz/kEmUYlyrnMEwMog0taUwC87XFjHNNYrO+k8X632ySOzlIJtvZSy4FFFKCEydFlCCR9BZdKLGt513zM0QQxjq5lYucdzDMPoqv3AZtTDhhdBcdaU0LGhOPHQez9F+CvukJxNJMGBEea/UtZMgsLxdYKCiJ6fDgpdB2OUQchka74KpHUc55j1LsfKJ9x+XOsZicZVh0HVVKOuW5aFPgRokoNlTMv3oOPn4DPniPwme/Qv/UmPd0JKvkJn7UFtXqd6sJwkSFgbQqLqNDHOYvuZbD5NZO4Y+65eOqiQek5mGeCzy6lDhx4kajFDuHOMzVrvu41DHGG6ZclyiWVT+n+l67hYuwkLPUQTIpkEX0oYtvIBxWLGSSQyvRnBXaOpxqGTwyEvp9C5EZEJNOfJ836JibxmlpywPm1l9ST+fV/ndULTyAQF94Q9ArzWhCO5FCc5EU9PqxQH+1OzvZ67d3FCY32PJrUFqA6kZDJ4PDNBYJ5JBPGXbm64s5VIma6ASODGsOuAm/v4gBk0sZ/o6TXi+WEv5ALudnP4wua384ka5n4cRFFjnBx7ffbySA9mfRtTWrvNG+wLQWm4Cqx9z6wBGpl77zzjtcf/31zJw505t+yimn8MwzwWPDfVFaWsqVV16Jovx7wgbc0/thHvczFHg8XFpshsK4is+VoNsjeGjhQT49t2PIOg/pWUHTI2g4YQmLMJNNZS+NCmjoQTusjmQTO4jUI2ihJBFNJLme8Nlg02o2+WzQttNNbU+4COM8hvLpG+dwIK0rd5aXOvtdIof8gb1SuJz+/V3w5xV44/sveJU+px87lZ2GRluRwlBO5sedpZBTwSV2ILoZD6x8i2hHEY+d8hB2s40VLfqzolczuGUMI6I38v2rV0NmkD7Yey5KymaygT6iK5YGMvKWo4lIxIKZNXILuRRyvXIhv+jLAvIJAeL0L9Ht0fDHDfgNyDYj3ExHkkYmBbKExfo/nKMM8qtDSd4Ld96FPvE7cIZalAhYeDPy9JkIS+CpSH1wXVSFxiKBA5VU/4wQZP+NnW9Idj6FxDTNJPeOW7Fhxv7btf4cb34QsPl0ZEEiIsYIK4knhkJZzDa5h/VyGyoqUXoEYbIiflRE/AlJDxmcbra1tI2sA2L2OsDCsVFc8G4xS3bqSMWNPmgGSefMpQtt+YWlCEBffBn8dCvoNio/k3v/fpPXeo/mihEfGAk1DvcUbMmQ8Pr7pHf9g/XXTOegnokDJ7/Jv9hG6EMmJy62yT00FvVL/BwMSWaFy2PCuNGehg7oisbqR2z0eG0fjvxEsJTBpc+idFscUFZ/7htDkCLoMxOghxH53DmUPvwLuqzEZWUuJfyGJ7BaP6dY2vlB+4Np+jek7tS44u1tPNcvSJUn0PA4CDijDHFSAHQwp8OMxwAFahEZnBzz71knAhyUmXyizz76itQiwAE+Hmxc/Df8bIXtJwEKRGfDqHv5XlzJSfTwZsuR+SgIr4pjUqXIiXLDQzOlCbs8Op7z5WLQwIQJCyYSifOuBWOJoo/oipQSRShYsTBIMQyC1ygX4DQ5udM9AYBF/E26O4suSjsW6X9zmFxakIwqVApl6LVlDvl+RreDZFXL7wOgxGfC/8YFpGto7OUguXpwGhc9rR18/iwBm7pN/vOeHQezXL+wTx4kVxRwt+l6GomjC90Mw9fo5jCEfIMgS+YQ6exM4eE7QI9CxL+PiKg+mgjqdo3SW+0cMkTSF2HYgh4ilXN1aWikk0W6zCKKcDbJHXQVdasweVgP9PzyRVQNhe7qEmHYAjx5JJBNHopUuE29ine0mago6EjyKMCESmtaMEl7j9VsRrEAl7wCvIKKQqlDQwNeW/g437Q7F12t7BWq4yWaD4XMVuhbT0Lp+LdfcgbZhEtbvdIcXa1cwNO8GfjOj7sa3nwD8lKpuJfAe0q6+0vu/edtPut8GXObGIf2uQIOACkAIeicTqA6VB6D/Z+9rpn45ZmHsFEYcK16WICptStS2Ah9fM3GwIC27+qHPn6pZ6ZsuP5Q6xXNtm3bGDw40C01JiaG/Pz8asvffPPNfP3117X92oZFaQbcfhV0+R2QcKALFFTtgbBCX1vl9X3yYND05vUURx8KCSGXAKFRPlD+KVdzUGRypji5yvwllHKFaywA2Xoeny6MgrRyRUkBKPDLbZQURDGAniSRCIB+qBX8eRVeAt02CuTey4LDtW/zvwVCCB4yjUapNJ5N6XsrKxt347qts9j/YX/WzhtMxJOnojxwFUpMNnOL13oMbiLwb/UFyNIoBIL2IrWe7yg4yhfch2QWF6pDq8wrzpoGTctDQiWYy+DWO73XTSgUUcxU13RMwsQQgvD9VTs/qMhZDwa9Eiy8sz5hE1YaEeh27xuqGF6JTC1b5tHGQ5TtxIUY8gk034D3GQZBuKio4wAZdHOczy/6Uly4seOgk3s429njV0ZELEVJnIqIXESrGnIEHWtYTYJf7oyibEoMS186RMtz5nKQDH6hYvJWBn+N8tyZhPVe6Fc2tWA/D6982xCUEKIWBrdyeN65jWew/uFptLrPSqf7I9jy2bVE6NWHDJW/F8cDGvvwBJlichj58Lsozw9GmTAsqMFNSiClvI+FgK5SPP4XdBlkKWLSWMMW1uvbWKKvZKL2Ji5czDm3jLH/TKd53l7jS2ToPnwCDYTDgPgMLDshYhHEvwXl/f3XYAVkwN8z51loGffvMrql43+Yqh/ogD5hLvr4xehP/Whw1NQAQimFpAdAyQVcYN6JaDIZZdSDKJNOR5k0GOWRi1GS9jFdzsbqM/bP1Ofxof4NTlxEEs6D6v/86h5ruoGxphuCji0Kgi6iHf9TL+MJ9U7OFqfQS3ThbPVUhpkGcZZ6Ct9a3+Ae841GfqFwqXoO/1Mu4yYuoQOt2Mk+Lnbe6eXoKfekL6rCCymBWMKEDV3qzNcXoR+BYmcX2gWkFYay8L7/OiEXAT7JBRRxtXYfD+uTeUn7wOvFdzSw+czNZTK018VBmUlhxsNg7w7O1siMZ5FabLX1JxBXp4f3NVVvLaCo2mWVBTMqCkWU8q42s5rctccOEcTDxQcNEUVUlWJqFjmslptYYfma4cpp3n7flMYgYK/PPrH82Wro2HPacM2FzzE/5TQSi7N95kBpCKxd/RjVz4kKfPwKenZl4T7Jucpp9ao8rwiF8abR2LCg7+6G/tgP6OOXwDM/QF4rKkRTgh/ePfj3m+yJTWVdUjefdZqooswJ1AxVPEcpUdyu4NeOqO5gf0dSJvBPcbtRNbfnlWjY/lBrT7ekpCR27txJamqqX/rSpUtp3bp6Vb/nn3+e888/n59++olu3bphNvsPgq+8Ur2keoNg3sOwaSg1+sFshRwe/DqavAxVBFes6kArfmEZ+saT4afboTABpGSJaqFHTCEvjrQxrHM1nBbHAPEihv0yPeg1Eyo6ukHk75NuxYwVK2ZM/CM3MMp0GQtcy8nWC5C/3ARrzoX4dLjkeZREg9dkNwdIl1msl1uxZLcKJpPA0JLzKI5dTW65glPGmRWX2wJnALpgdI6DpAiVYVEN67F1rHCS2p12bXLZ1ng7ZBkng7qicv6lXxgZhB3FVoY+azVc/AJKeAkUlaumBYOAsmiejRzNFebz6uUeqsNJogcSKJCFiEpnAVbMOHDRboubyWPKCC+TPP30TSy+20JLkskmDycuL6uZipneogOb5A6W6CsZpPZlh7aXNDK8/dZ80yO4Xn+PKs8dcv0XI8k0oolIJK6BPd0ABii9mKv7G4h8NyrRRBFOGLkUoCAopNgglPU8gDDFhP2u2z0FBfqr07x9CyTE7aXkzalGKOplz6HE5JDpIVPWSyPgm4dgb08c4YUw/C2ULn8GtLGT0rAqr8HQW3Sms2jnDe83efhmNHQSiKX03LewrjsDh2b0i6SSwwjg5UUTGDP0+SMwuvlCYNGc3L3yXYZ9uYhlszrwzJer0NXAOpuQQCelLW1FylF8X91ghjaHj9yzKKAIC2Y0dFbpm1ivb/fm0Uui4avxsK8rWF3Q6wdYPwRyPdwaUhrEz4ri8wwN9sHgkBCdjj5xDje30Ai/5HPaR6WiIYnLL2Bu6zNJi0utVsntBBoKEhJnEh79PnZc6FnjYXAUzJOgBfm9zHaUiRXze1ta8qDt36Fu74t8vZB2pLCDfUh7BLz5PkbIvQR7NLz3JvKxCxCR+dVXpjUGPR7QwNUOHB3B9FdAtvVswyYt9BAdvR6y5XDgDMnVG00kjyi38b7+lddAFk8M5ylnMN58S43vOUZE8YblSQDud03CqllY70PuV05kHsoA1pwkr0f6Brmdv+S6Gn93OUyo3Kxeyn3a84BxQJBNvpdmIWAV7ghhlFLLkN/dh7x0EkqEse7sR1e2sJswbEzWpnGH6ZqjErfxPcyqKtQplwJwN6ZCsE1BHm6LnH09HE6BlI1w6fMo4f7P9VSlT52K76QoNaM4sGAmDCsFFPntD3yV1nV0wgmjhUimUNa9GE6mDC34YK79drdOcIroxR6Z5v2sohih5xjrtH/kBp5XxnFwfUf0n0eBlDgbO4jddwiHe6I3fFQ1C8I6rKLkvBfgtWksaGpmQdPKohQSDraGeXeDtQQc1XHYCZgyA/n0WQjVcGfsRnt6iNBRWscKZ6qn0qPgZJa/N5HaGnIsbgebEjscs7adQCDO3rOQEksEy5of3yKGZs3J9Rtm8mXnCym21h9PYSjUehQaPXo0Y8eOZdq0aQghSE9PZ/ny5YwbN47HH3+82vLPP/88P//8Mx06GC+I7+RwXEv77utLjQaBmDTU8VcihJXN+g66qcEHr70yE33xjTD/f371Ol2wxS654L0y3rlCMmqgNWj5Y4WeohPr5bagJ40qqldJU0F43caFrmLf1YWEgh6s6LSfFxOGcbbrVD57cyQc9MSYFCTDy1+hP3AFSkI6YVi51jmOa9UR9Dx9DX+vPgvfDZg5opgnWgzjaX1rhRhD4+agSNAFJGF4UCvGkmRZqfafNbot1VeRo+Sg3jcKvSSKlKyTGFt0D8/sXEnO32eCtKGX2WDjUNh4KnqHBWCzg6kI3EEm3dh0iD/IfZZR9X8zISCFZKNnE3+z6xG/aw5cdFvr5tfBJQhgZ1QLzh3fl6Jrwth0Vin2DotRTEa/jCQcgcAhnfRSOvO5NpdzlMHEEkMOBZR63PwtzXbT4rmrafHrIyz6PZj3gYQzp/mlHOIwh+RhEuqQL+VIEYwDIRwr0SSSQz4FbjPNlHjylELcaORSwAXiDMIVG9v0PWxhF2AILkQoYcj77qS0xIq7MAqmv+g5XQQKkmDSbPSHR6BE54EzDJ6ZC7pnXCpNgE9fRD//VZRTv/FrT1sl9Vg+giOCIhQuUM9gt3s/eRTSgiT2kU4pZSQSR3RUJNc8/xN3574LhZGsKraQ9ytcuX0el+yYz4u9RvNq/zuPyNAjpM6kRRO5dut3lJjC2LUzhQdGDOb5metQovxDcVNphiY1P868hsIheZhlcpVf2kxtnpf6WbeHwTNzDI4kADvwx81++d/8+QF+aDuMH9ue5ZMa5BlasukRm8i6LOkNjd+8FXj2OdqeNxez08aU81bxcvz9niqO4zXD/2sIlEPtsUd7jERlvSFZgf8BO4BFHj7NcrT7E/3PC6DZdkTLbajCRJ4sqFbc6XjDIbLYru9H7ukKWwdQYTCpCI2SGa0RbVdXWY+UQO6tRljfARVKdaR+MqKd8Tz1zBawqztIFcJKebnTTNb5cGgKBE1pzIXKWSHX1UIInrDcxUrHBn6RBp1DBtkkicQjvv+uoh1vYgiJmVCJIJwBihHQs0nfQbyMJXtvMmSlQrtVKPFZNKUxsR7S9unu2cQRTXqRE1YMh8xW0GEl9P6NqhhprFhpo7RkkN4XHR2XdFNESYDKtxc9f4a1QQ4ctTDYcho8czLyyXNRbXYai0SkBJuwUUoZe+SBoxKfSqEpg4TRzjJCk3rnyQJE3OfIXI8B1LEW3p+Cd528+XR49mTkE+cirGUIBFbMXKmce8RtC4aarnccOGlMPIWUIH32D76/gQUzxZSyWe4MEFmrCxyWocNLqxXmOEZoI1L8nM40z7MpT7LjYPLCElZ+fzXl40R6ENuh5oSS1UNgTX8g1F5HGGv+wvJ1f6VxNhg0K5TEQnQOZsyEi3A6KvXPk91SJJOaMYjlNQnAK+ex84xtfyf3wl2PnnknAHevmUaeNYZlzfobv0Ol3+R4QbPiDO5Z+wHJZdk8M/DeBm9frY1u48ePR9d1hg4dSmlpKYMHD8ZqtTJu3DjGjBlTbfnJkyczbdo0brzxxiNpb8Oh3RJYfXkVGTQ4/WPE2R8jhcSBi7e1L3hLnRCQc49TZ96+O2Fx1SqlU3531rvRrYCikK79DpwetULpNbjppZGUPvsdaOHsAl5FIocUct2wi/nsYGW+BgX+HgHD38GBky1yJ8u1NaxsPBceWs7gH2bwT1YRkZ1X0vGsP/hOdjRcqcv94BQTXC9gBQYRswICHR2FIZENc4pVH9gl91OGA4lEjSjC3mo1Hc2H0H88lcAJ1QrbKi+6XBCdYXig9PgVccZnND5KXpK6Rmfa0INOZJHDbgKJ7W9524UALrzgA5a18JysZACfAkJHv+c6lCZ7KaYUFYW9HMQizRwWucSIKLI8Xlrlqp4u3JgUgeucd5nY7Ta+mJvC5oNu0C3QbDtc9DJKUmCogoJCNA0rpADBOVucuDggM5CHx0PRBWwXTpQmT6BGLCOGKNqIlryqfeKnmKZ7eBojCad1RBS5QpKdVyksVCqw7iwY9BX6nq4VBjcvBCy9EioZ3ZKVhlFhrg6jTZcz2mSM5fPdi7jTPYEEYsghnySRyHfyN9rFhrMrdi8a0H1PFA9OLKPfPzr7b/4Yem+BLx+B4nggkAOuMqJLsimxRtO8JJP2ubuZn3I6N5z7esXk/6xEH/Y2yhmfecuUCjtxIrZeQzxCwTdUyYwJgWCh/ItWNDe8nrf3qzC4hUBeRDy/pJ5W/Zc5E1mXBYEecCo7f7gQgC1NzqlV+0+gISDRk7dhw2IIIYX/CYWXgtChYwn0vB/m3wAFjQz15M1DjT9ARh1GG38fq/XNDFWPDwXk6vCm6zNyyeerst+RE+eDKwr/qDLP5lfoiKY7qq/QnQR5jeDL8gQFll2C3j7J2CAf9Oex/QQJl+Sj9PvR822SnkonJlvGV/tVSaKR1wJgQg3ggKsN2iopdKMDaRxCAk+b7uZm02V87p7LO/ZvyX52ho8ioUTv8Ss5V02jo8crOpd8Dv96MSy4Hu+4uuEC+PZx9AlnoViCC8+cq5xGE5HIEmkonA+kJ9FEkROCo1i58jn0Dsvhj6vAHQE5qf4ZpBm5diimAT/hRmO4ehoztXk0Fgms1bfSWjlyo1sZDm87q/L2MqGSEPct+eF/o2lhyEX9gJ7+mTQLcldvROdlSCR2nPRW6pbjuDbOECbMVYYGO3GhouBGI6sKA9mR4pAMzpUN+Cn81ieaK0kBIrsCgYKglDLyZSET/siGmlL7yAhqZEzzfJOnUOj8llKINN4TBcFOuY++SnAxs2ONySmX8gUFEOib6kX73F3c+/eb3HHWC0jVMD5+0v0KOuavDOL5riOislAVQSxRRIhw75Pw/UnKVxvlxau65ktm4b3m+bde6XPla+XfW9tytblWniBF8HK+0CWowv9aIYWUUIZLugjDRmORSJqeiYYbhE6kiCROxrGm3ckkZuwFIYhwlbLy46Hoqoln+93N8mZ90JOTkWFhxvP2abAQBt1NqbQjcWMTYdhlqcH962dMdhv71pI40IJQsUQeAtUFJfHgDr0nS4tMJtpexN1rp9Hj8Cae73s7mRGNUFNSvL+1qPycfPpBwDUC+48qICUO/KX3gqPWlgohBI8++igPPPAAO3fupLi4mM6dOxMZWbONqNVq5ZRTTqnt1zY8hr0CVgnLLyf44KXCH6OQ/1yIHHcVhJUwX19CtswjUcT55Zya40DT4iEaqhIl6tik/jdcUaJqnqGACXXRNaD5kpMKXluo8+S5XUAtMU5RfJG8w1OPJI9C1smtxBJFflw2n95sZbJ7Bm9oM0inOb/o2ezmgDeYVYT/gyw9DU71PP/obznT1JMHortzesR/1+j2vbbAG4bwyGMl3PVaPnA5XUZ8wNIaufaaYchnKAPmelMa6tQvFJopSazTtmDDGpSMd0NXQf+oZhUGN19IBWbfD7caRn/NEwL9j9xAIxnHH3IFTlw4cKKjU0wpNizsZD97ZBrOpq8xe8wrpCqtGON4mvflV0HbGEk4NqzHhSEkmAeICzc420HRBUaCNKFnj4GIJeRSwBK5kk5Ka+bpf/iVc6ORTxFlOGhjbU0uAWtESN4JgEhI97yPlcbAxAMB7alPIt4jRWelnZeHyYKZZfpqwgmjhFIA9Nwk7JOn87QWDr2BNcDmEhhzE7w/1fDgrQYtiw9ht+dxKKopByKTufeMpyotDAX8cgt4jG5mTGyQ2xkuamCkqgeEe4xuUlNxvP4uZHTADqxFg8R9kN2a6jYBjUsOE2vPIzvy+O8TJ1AXELD0Mpznvmd8SnwdqSVA6UlgTkMk5iBGPYT+9psEGFiLGnFgYwf+6b3+X2F0k1LysvYBhziMvuxaw+AG0BeIBH4CSgVE5sOouxDhVSvbA6AWwHJDBdoP20OtnQXMvRf6VYTkHgkNwg3qxZyjDqo+YwgMUvryj+1bJrreBGC0egUAr2nTWb26jY/BzdPmdWdRctHHXGMdgVu6+VL/EfeC3wnkDzLBEwsr5iXFBXfeitLM8I6PFzFejroYIkkkji3s9kZmBIPS63fo9TvSHoF86ufA75z9EPbZDzEf+D2mAMf9H5JhyeZdbSYXm84+oucD/gqaRVWoiuyU+8glH6z5xsavaWyQXBIS/OfeFseAF7p841kd4ojysrxKtxk5eTqUH+IpbvTb70BvYah4F1KEruteUb0/9dW0oSUHOEQb0fKIvFwzyAl5LaIBRBQgkJdVuizokz9FyzfCdrcDhNdWYbPyL1KdAa6KX9BtRqZ1QLTcghMXNqwNJuCUGKkycOyrLJ92FRQ1oWJuqLi/FxZPZMLA+7wGNwMqW/so0P8R+GY8uCIgKhfl+oeg+XYECql04gvrlOMieuB4xh2uKczWfiWXAlaa59FOjUHKaK/xXUqJEAIpH+av8R+AXfK/dTNIdBWBC6YuMRyNREpzoncsD6g/XWbR2nE+AmhPCk7c7NnRBD58vVJOEwz4AdwmWDgK/z4uEffdhAgvQuoC+d39sGq4xyHA/11wq2YGXjefL+f8jwGH1vDCqie4fGkec5t8wUlqjzp7boWFhcSMrT7fEe8eLRYLUVFRJCcn19jgBjB27Fhef73ywz3+IQQoI18DtayqXFCSAF8/BhihBvPcfwTkspT3ibOAyEACYYAOjQWfXFf/k0StvXjMQdzjhSRCDaf5LRM9z8tzXz1+hlVnGaTC45egPzeLtXl55FNEJOE0lvGMUa8jmUbsIY0t7MLlKxsf/T3EfQzWjRD3ESLxVR5uJP+zBjeHdNLGPpSf5BIAUvbo3PWaiyJzOK1vWsLSZv1rTiKeler3sTFHHkJyLNBfdCeGKOwej77KeP9OK8tPqUJCy1RhqNM3nkr+o7PQxy8h85FZTPqjmDwK0XwW4HacNCIO97Z+rHx0Cu3vi8RyTwHvPnQ3+sS56JmBJ9nFlDJI9D26G60jBBM80dCJEpXeBVHx/qzSNzJYOQk1yLBvwYwbN5vVrQwb9RUmBYx+pYNSBh9MRR+/FDn5C0jchRH35Ol78Wlw7aMBdcaJhudPqA5NRSNkdjP0id9hH78Q5/g/yB//A67xi9AfXgyvfuI5VPAhZnVEwpvvQUFTKk/wHbI2Y3F55giPjLoAmhVnUmIO494zJmC3BDnY8FHudOGmOcncbrrqWNxyrREhPEa3xVdBhq84iwmy2/h8roDVWUyvg6vA6QApeaXfbdy48auKEIQT+O9j8fXGxlsXyO9eNDj+FkXC5k7INW8bXcHkClq0zFTEy9qHOPTQ4XfHC6Zp33AIz6bZ7HNgpGM4r1wN/A/EPc+jJO8JrCAIhFIGEWtq1xClYn7LsfzNa+bHalTsefM4DlmXUWxdy2RT9Z5xNUG0iCRaRHo3ajvkvuBrRWCoqT9OXEx0veU51K0YI4Tm8hkzfMZg3QIfTPHmay9akUgcPURHCihmLVt5XL3Dy+OV5U6g2/7FRO/bT6fNe9HHL0V/dCH6XxcgbCWgBGtbxffZC2KJnP0ERZSwWP5Dtp6HQwb3uqv22VAx/hdWceqeL/2Ns6L7QujxI3ifkQ5nv4fSpCIyoAvtjsmhoFKF55Ev1rENkyev/PF2yGtJxW9mxj1tsnf9YcfJL5ohZlSm2znbOYoU5+mc6ryKBVrgZr0mKK7CiFmX4hK1QTKN/T7LeXdBfnP8+nNpdd6lweZNn/JARb8INceK4H+6GaZN8XyLZJhyanW3dEzxVMvzGHLmNWz7rAeKrlF5bfF3k56oepC9gMmJ0n0xytPnojx/GsojF0FzwyivobOaTdzmqJ4C6/8zpJT8pC0mlwK60Z62isEpHIwGTAjBwBdGM/5sC3aTLbAui38ItJSSe74pofV9ZmP/P3kGUWVJpJPpP2/6wuxAnPkxpK7C27+FG675Flk0Fll4AQiJcsnLiAnDCdX30yOTGHTNXFo8Opuz1zooiFd42fVRbR9PnUBIWbtVsNvtZsKECbz22msUFxsDXGRkJGPGjOHJJ58MEEaojIsuuoiFCxeSkJBAly5dAvLPmjWrlrdwbFFYWEhMTAyWzI7Iwk7wxjRAYHWU4FZNaKYgLsvNtqCMMRSj2pPKets8v8tbHDn02L8DnJ0gbAUi6RGEYieJRNZZ5hKjVEd+eezwlOt1Jmnv1ji/dFmQk742jI0ehI14k9wzxnOP61k+07+n1OOlpX/5qCGqYJQEBFiLUSYMozlJ7LQZzpn3OZ/nXf0LNHTDC47QJ8NpliUkKnEhr//bcU3ORL7+vD+kdaJXyRJ+ee8h2t2wiPyIWp5EnT/Fj3PrAnEGX1uPL+P3DG0Of7hXsF5uYw9pFFPqZ4BTELhnPgxrz8XPbd7kpPEDt+OKSacgPwx90iwqTvaMfOqo+2jSfhcZVJBlxBSlkvfspwQ9e1CdiKfP9JLLAnSlPSPVoTxuvjMwfz1jivsjHnZPDkjvSUfW5w7GnXcNKEWIpEcRYesAw/PsZ8s0NujbuNp9v/fZWjDjwk1furKOrYa6KYKztNP56dEJBLr6S0S/7zFfMpkedGQVm4K2sdS6/rjwCqwKUkoiH8jD5a7ZpsILxREQZhtrL+DajV/yRp/RNCrLoXvmBha0OoNwewFvLHiUUcOnghLkewSQqiOufgoiFxMvwjlLOYXplheP+L7qEj9qf3Cx6y707+6HFRfXqMz9f73GTylD2JTUpXoOjcohIW4nMc5iyizhOFWr5xX2P+U0cHxxh5xAECilxqauiQnMAoZgxGBkAroT0ECWn06Xj9k6KHYQArO0oqIae0MJiqj49aX0jNxHcK28S0nPNTzf7HcN/5CSUNdcONF0t+eiBN1mXI0R0FbCRsDlhvIDxPJ8+MSveMNPy/+NR3DCRs3OxiXgAFUDXWBVwr2p+N6/j0NqwLVKtSGDvHq1uCZ86nXIEiPeSVqpUCKUgBtFlejSw/ulC8AKuiS5MIOzDixmerdQhw86qHZjCYAFkzBhl3bKDQ8mYcGtuTC8BcsPoyqPGRKE3ROLFegl4Q+3Ec6kS293tcjwWvcft3ChSRcIUDFhwhK0nB27cY/ePuJ7C8H7jyJMWLDUrC0+7a7qGhKcwmMc1AVGrJjPsyz/7O1EnnTdQmAwlefd9mYVWAlDouGUdsofrIKKRVj8+mVA3wrSl52UGu3x69DlD0/BJmx+YYL4PKfyOitfO9Ixxveat10I0II9l5rA54aDQdhB6KAfibOGC2XS6XSiDWNM1zHKdOkR1FE3KC3MxpHYC7diotmtawLWD9FlBaQU7mdHXGufA0wdEvZD8jbY0c8YZ5pvhqsm0Lwgh7dGFdMiDT4abeXph9YTrjSMAfZ4R7bMo7djJLFE00PpyKeWl2tUTjqdFHY4BXkwAwFoCkxYehpT+87w5rl80WJmf+fvWdY0wYn+wKVkuArh+W8MjujyuUF1wIOXosTk+X9XyanIjBcwDv5VRKNnEdGGh7f+8yj4vbJXnA/UUrCVwakzMZ0+k9Kw9TW6v5qg3FZUUFBAdHRoh4Nav/ljxoxh1qxZvPjiiwwcaLj+L1++nKeeeoqcnBzefvvtKsvHxsZy8cU1W7gfd9jdCxB0ydrMD7OvRxMqHW9chMvsa+WVMOwd76eDZHJY5tLIh0NrqbIApcXTSKkgREUgVwmlDWpwA2ghkmhBMgc4VGU+gUAiEWYnyuMXorlUcCsk2MKIEZF8onXgfOUMZuu/4cBpkIfu7e5XAwCOSFq4W3K1dZj3yjDlVLLIxoSJHyqFwlXG8UBqf6xQZJd888ydXi+Y9cowMmwvkB9WSyOjcCL6/OSXFHMceiFdq44kR+bTjQ58pc1ng9zm5R9TUQ0+qSsn4brseXCYaaw0wiVcaNYSwolBJYa8Q+Unq+A78Fp2nkxEy3war76QjCwbNErDFq8RckOjWaA0GqKMAT+SMOJEFO2VVsfuAdQC8UE83QSCUhxEx39BWdynJBJDrIhic2Yq2rohlCYWsb1PGruVNMyYMXnuvdzoFk4Y7UhhO3sxoXK4CIJzawjknp4oKF6DejAc7wY3gCIHNTC4BVnsNtsEB3r5pbcu2Ed2eCIIQfvcXTy97CWWNOuPyxzOufsX0ytjPWua9gqsfgjQWkFmPQ1F/5Cc/CapomaKcfWBTqItt6hX8MNpCzmwYiT+fcKXoQRAIqRkX3RLNjdqX63BrXFhBr0y1/Fz27NBCEyai9HrpjN83yIuHDktRPkTxrZ/Dco3gFlADwwOTu+GOBjFgQBU0I3NlAsI7gt3PMFi/FW2XBUAq8r7qpmQ5Od14vzpMdB5zogcVTiFNwyC0ZYIwIzhtFLRF4Su0aToEFdu+55Ye26gUd4LxUtt4vb8GUZKvGnVb3EEyJpuwE2geerz/GZH5utW0Rc0qCIA1mdfUVUf8bmmQxUz8tHA5/c7qv6qBBiFDB9D1e87jvw+qjY4HZtnUxPURdRSdYdXtiP/bRSJ1FTi1Gi6icpc3PUL697DuIBxgx4P+t4XhsWwIaybMS7oGigqYS471v1R5OdU7CPZ3Y+Exz/gn2lnYgJ2RLekYP6VDNq7jMFnDeCGAVZ6Nv9viu8dKQ7KTLLIJYtcThF9alxOWCzE7PmHnfYdPOCYxBbrQVwcYorUvfuAtdsCo+gy88zoMgeemxdIPaDZ4MVvkU8OR1gqPJGlvQvlBjfQkI7OCAyjmzJsGvKsj5CvvwuHgnBbauFQEg4/34k7oy0trxrMYsvnpCrNa3yvR4taG90+//xzZs6cyfDhw71p3bt3p0WLFlx11VXVGt0++qhhXPrqBJ2Xwo9juGv1B6xq3I3/DZtcyeAGIODHO5HtbvKOF6+5pzPRfI83xwLNUIryNbgBnCR6Hru21xAKSrUGN8DPA0kiUcxuMEMeTiQ6m+UuRpkvRborJLLpsQD+uMG/ougs0kz76UVnb9Iw0yCGMQhd14lzVv3iH9eKt0eJFfvcSJ+wM00x0fPGhURqhylWasGNJM3IZZcabrpAH7rQ8jjlNRhrMvrHMn01q+RGb7pu0HiioaOooIa7KSOXZjRhD7mYMRFNJD1SNNZ5B+RySFzJm9nx1Af4GggOoUNAXg9sRRCR7/0oUEiTmfT26acNiSTRiI60Ziu7vWkSSRllhmeoAIVYDnx3LdqKoYAgB7joWxetH52KM9yJE0gikSJKUFEpw8Eb5ie53fUkRZQQEVOMxeLC6QyyMOnxK05cZIXgUPm3vJVRVkiMgOwquDWD3k0lgxvA1vg2DN31B5GOIjY06kSrwv24VTO6amZ6hwvJiAryzipAa5/PZf0o06x0NLcOzNtAaKU0J1GLQ4s/QMrjo2n/6/OsyM4h7OTZRLbahfjlFnZmAQNnQWwmctrz/JPUExnMq68Srtv8NXPanUOrvD3sj0wmteQQ7fL3khneCF09sSD+z0AC+6gjA9MJ/JfRvDiD0/cv5qNul2OoZf1bZpMTOIF/KXQL6uFUDiZl0V3p2KBNUTq0BrOJ2e2qEUzyuCe2y93F4pkjSb59Q0CWM/f8hQl4cNAjfNT1Ku9YsmGpxptLSzm/i8qs0Q0vjHa8IIIwRqmXclBm0lvUfq/T1taOeKUJqn4IF5IRztt40fwgnZW2tOyzjr2bW+O7bm7f3MGWqdMqGdx8oFkhrRO0XutNEuF/IfOvxTDNq4jwP/2KCEUiD3WovrGbTieLp3nUPYXPLIFRQ8cKtXZFsFqtpKamBqS3atUKi+X4ImevayiJB+Gc1/m082W82WsUeWEhFCAz2sNhIxa6hDJ+1P6gUK8IkdzIzqDFYmlYLzeoG8+xYsrYLvcAcLd6HU7PmaNyznsw9D0wFeONzy5shPbwYhbs9OfKG/t1Cbb7Cikb/7vBv/FN3XCN/JvQNlGl8i5FU0wUmxtTwd1Q/qeD1FFcdgJ5kwQsvNH7aRWbjnujSA/hP/EbgSgVZ8LlYgn7SMeMiYNkkEs+G8JXwD3XQvw+g2w58jDcPBb33+cTONwp0GwrJO7BOLN2g+KEluvgwUsRSsVzdOCkgCIvx0FDI0HE+BncypFDgfff++Uh8lcMwXeSk5qZvYsHA0a4bnORRAllFFLMbvazSP+b89UzyCSHXWIP7R+6D7XZVrzPx1IMw95COcs4PAmtVHa89zADQgi2PR7FoNYCk2JEwMXawKRCjA0eHxZqTgu8v1JzBJ93vZQb139O+9zddLl+IbrnlO/BMyZwKDIpsBpdAofx+jwoeZSp2VxtuqCubrFO0EfpSgbZKBHFDLrkd2679S9yOs/ncNh+rCPfJGL0I8R2XYvSfAfirrvYH9McBRlkLPJHemQSOgqnpK0gpSidbFs8h62xpObvrbbsCfzL4BclUkPXnf8kjvz+hOamdbZn/fiveT9q91sfDotnU3wH8sMSyLfFhrjPI+0/9X2tKtR3ubrCf/35HgvU9/3V9ppEjz5ME5GAVTTsPl5YrUTuWE5zZ3XqtkYo8mPLp2BXbUHHiU0J7dCBj7pcCUIQaS/wyzdvo5uCsuOpn1SPHJnPIu1vduj7jpj7MBTaKim8ZX6KOZa3GW264ojq+NDyHPeZRnGQLFbLTfykLUFKiaXrMsIvewnC8gkzweW9TIy+chtkBDOQeQO1kTMmIh0V3sgibB2i2W2I+A8QTccgIv4MLB6RF5hWOVjdbUEfv5RvJt7BXntthUyOHLX2dLvrrruYOHEiH330EVarwWnjcDh49tlnueuuu6os++OPPzJr1izi4+O56aab6NSpk/daXl4el1xyCQsXLqxtk+oXLbbwZ7M7UaqQxQbAXOHIvImd/CM3MJSTkVKyh0ClP4BOSsN7NxyJYlBluHHzu/4Xh/TD3K5ezRTtY/I8xgDlrE/QS2Nguc8LLVXe/bgvjz5/mIMHYjnrjVKKXeC3sV15AXLwF4jG+4wiWiTk3cy1spQ7EiycHP7fE1NYWLIelCaglw84gWGTj/05mTvWTWdqz5vYHt8WpMZ3HUYEVqb4BzHE18HvfCwxRr2W57S3DQ/JECjFTgRhlFCGCZV9pAOgJO2n+YP3kUaGN6++9PLglUTloYy5pdr2OHHRQbQ+bjwrm4rgno6lVBZ6qRz+B5qt0KPeLUnyEdTIJo/PtO9ZYJnOFrmLH/Q/yIjIRo65OeTpTFEIImjxLzG6AUTZFBbcHTrcunms4PYvHZ6eWDWvysHoprzR79bAC0KELtf0Hii4GaSKiJ/G2WpNFInrF/1EN2KIYh8HWaKvZIblZbbqu5gn/2ALu1AQXoVlEZ+BfvEryDn3VlGjsQD6ovMlmNx2OofFkBMWS4Hnr0fudp748yWeHnh/cB68E/gXovLmxvezz7sRKaA4yMHRcYsQ9+G9FqztNdzoWfDEMBp13Ln2Yx5dMZUJA+7lnZ43gKjq3aiGA6peICv9f/Wwm8NY3bS38UGpyi+gErdY0GtVlfNFsPG5qv5am7ZUlb+q30gav78r2FeHasux+r2P5Fkci2tV3Z9PeRueWNLjaRyp6b1X0R/88ojg16TO+dvmowqY0/48EIJzts9nW3x79iR49pjCJ7/qgiufhPBCHjD9ryY3csyhNk1i0ZRG9HqhmMzQ2hiAYHabYXzbbjiK1NE1CWrFmLixcRcmnvo/FHRszjKu2DKHz7teSpmpwojT6OFCejVX+OPuSMIsDT1eVo/ftRVc674fMKhh9oo/iFeOr/3cFeq5THS/SQaHeUP7lDPFQJbIlbj6uLmsr53PrIZn2XM5mQQfA332uqXxyDn3Ii5/ruKqbRPYgnNJA3DXLfDaB1AW71N/ADEmALIokfbjJXhsFFFW+OG2cAa0OjaRFrW2VKxZs4YFCxbQvHlzevQwSPHWrVuH0+lk6NChfnxtvqIIn3/+Oddffz3nnHMO27Zt4/XXX+eDDz7gmmuuAcDpdLJo0aKjvZ9jDtF6PTRKQ89tSchBtM88RFym96MFM3e5nuY2eRXnK2eENCS0OQ68aNrQkl6iM2vk5irzXctI/mYd29kb9LpE8o9czwh1KD1FR/6Qf1eEpBYHEQFwW+haNoLSV+fjDvFYZWkCFHYH3MiSwVB6Ct/g4vsiF9vaRZFsPv45pGoKTZfc+WoK6KHvafju3xi79iN2RrfghQFjGbvqfW5dP52s8ASWtTilIqMArvJX7Yk/zrnwopUoRipDma8v8W7mg6EL7TjAIQ5xmDCsOHAigTAqCZxc9jxM+grcPtwallLiLn0DJzZKDyUjP3sKcpobBhJbCZz5IcrJs73Zjyep8cYynh6iI+vk1oBrUYRTRClCgPmSV3B+Ow7vJBN3EDHoS2/e5no7Uoq6kCZ2okb+wQ6xj2fcb3GZOpwVuzWyvrwTihKhyW64/hGUGEOIYiC92MA2iikN2j7zEREFH5+4aaCNmwYaNAKtnyogLb+6EuXep8He3UqD27mvo4TthbD/Y++s46So/z/+/MxsXXdzHF1HN9IKCIKgYoLdhWKD3WICttiJih2ISId0h3QfXHdtzef3x+zt7d7uHgcKHPy+Lx6rtzOf+cxnZmc+n3e+3tXvZzdRP6qWeiJeiaGv0pUN2jYWylV87PieFwz3s8m+k/1koCHRdneAbx+GojidVTo8H0a+Cn9fDHu6VXcm7CBNgARFwWEK5rdGZyNcCnaYvQwBjNvwGRWGEF7uUbNwSW3393+oP/B41oOK4cFL9FSRD6cS0NgQBVzk2iUkSvhP/JzcjHPVvidlxMeD3pWXs6rwCEz6Dl+eOg3id0N2c3ycZl1+RblkUsB+pRTIAzPAFg8f6sUHEipyMSB5ZvlrPLzqLbqOmUl2aLyfWykhdSNkNaNFZBhfXh1MhwYnf07+yfkXl2dMRvviKchPhahMuOJxlOQ9Oi/wng5o097yPfAozi1DUDnXPvUesSKap413e+3Ll0XcbnuCBXIF5VQyMa83u5y7Kak8Ql5MHGZhYWnwYVQE5VSivT8Zdnf3OUfQ2KewtvvLa5sJIxqSH4xvUimtfOj4nj9+6gBrh6PaQwgyCa7samTK6CAUJfA1XGK7iw2aXrRom3kWFuEtr2TKXBpZB6BlvAmVLi5kUYFodCFC8b/mDhF9+MX8rt99/xaX2Mbxqza/Tm2lU0XOeAh160CUkBK48EXsH72MD43HoGkogz5FILBgYpjSn48ML3Cv8wV+ds4hj0Kv5k8axjHB4Meh5cKv9vlc4hyHzL8OWXC9a6uCSL4dEbSBR9TbTlkRrLutz/Ke/NprWxWXridVj/boX94yqidC8yBhB+zugV9KlEbr4KqHefy5bG6bZ2d+am9+bjGcpvl7+GzOA+7SJQLY19xIjzXe52lCKn2Vrv/qOv9LxIapHHw2gms+L2X6mqqggRrRSij81OxcDJrG+XtmMyttAFYlqHr+kJI3u94MI18g+LNbeWjVWyxP7sqWhDbu/QDrDmmMnFbKX3ee+myzo2GZXIsZEwoKduxcab+fmeb3/5O+cxwa3xfbiTcoXBhmOO4gg1ARzGTDw7zl/IJ/5G5ucT6OE414YuihdHC32xe+AXqU1CjQpaeNeqG07jzmCgpEZcMT1cEn2iNzdY64OqDECv2mlvPC+WbuO6duxxwLjnkVjoyMZPTo0V7bUlNTj3rcyy+/zGuvvcZdd90FwLfffsv1119PZWUlN9xww7EO45RBCDjrwZdZ+fp4bIeb+W+UUq0ICyCcUMzSzHOb1vHJhvZokTdA32/1BcmFICyk4if96CQjScQRQSgGDDhcaaE1EUIQFxmGEKSZ2adluMnudVuygopCe1ryifMHRqrn0F1pzwbnNgoo0qfMwR/ApoFUv1gSEbWH7s+2Y04gZ1BYDhhuRua007+LSkDVCVcl7LRpZ5TRrahC4qzF4AZw1uHVSGBjnF4h8JP0S9GALbE1KwZKSNJTEZOIpYVo4lPGvD7iHKU3K7VNXhFrNbGZne4S9BVUk21WelAcq6iI0CLUZ4fRiAYMU/rxsfYDNqwk0ZAWxRfw09Q7cCvxEig3wy8PoFWEo5zzGQNED3p6LBanGgbFQJ4s9LvPgoUSlzHM2e0XlG4/19hvohInUhr5/uAlZNmDAYGo7ERi3AfM0f6mMiON7HdfwK3NZaTDi98T/vildAxqyCgxiIPaEcoo9+t6MAUiDT/N8cJIC1d9VkGtHvOwXMSE0chHZ4GsIUC3Woxy7URa0Mivw8KCmR5q/XnOPHGO0otoIlmmrWWq8zNuN4yltWjCfpmBtq8tvP8W7vuiAcUJ8MWLcNUElJv1qDfpVJEfvgJ7uuN1D40W93M0s/E53Lb+U0I0Gzdu/pLJXW7E4VklvM1CaLQeZt5Nrb/D/3BKIUJzsDx6GVaPuVjbV/VsB4gIi6K67N8RgbZgAPcZSpimFJOeaGD82RaiQ+rXOj/U2Z9Vky7HrxG4549YLniDyqd+hopI730H27r/VFGwYMaGHXuV3CWDwJGkd9se2AhvdrqeGzZ+hRGNIKeVzZ+fw9hvg5g7tNrYJyXI53+Egx0B2JEt6fZKGf88EkrTuJMXNerYdxBlytdofIFb1stpDK9/htZmHjRfC11mQnAOlMcdQ8+S84fu4G3TU373RosIphof5Szb5UQSzt0zPkOR0vWE7SY3xMKYawZzWGZTTiZc8BK8OgPvZ9KO3SEIl2GUiTK3o9yGnT6iCx86Z/CNaSrPv9cSduqKuhMotcK7S+1syXQyd1xgBd6GnQOuyPwyKrDUcBLmaYWEEUKRtUX1vZOhYE8Esy+tBECEOHEGg1j8U+kIdCVXRXXrAXLqh5DdXCdMsAXDR6/ib54W+zoRzDeoqFgw01m0waKYOVvryRKxGkUq2FxO1BgisUv/+kgVNmh6oIC0NXdtcb2PtuaEBe0iJUB2wMlAb7Uz7zlqGt1MmDDixIkTjWAslJ7zBbY/b8Lv/FgZArvPCnAGAfs6wzO/Ej7vKX5vXMqNQyeDELTP/ccnRyZ5vwMzRqweZWqaizQi62GBtU+vCuXTq/S/P3DM4GPHd6xjK451g+CbJ5AGE3YpGb9mGqP/+YXtsS2Y1GMcThcnrMFZiOPvC8gd9ht7NzvJDvWYazz0pM1HjpK9Vk+wWztIG5qynwxiiWKT3I5V2v51WnCpU9JzTykH7bokdl+MiRcSj7/K6yj1HD5wfks0keyQe2lOI0IIopfayd1mj3YQ5cKf4MLX3Nu0eVfB7FuoflolDK27M6Eqps0dS6wpHC0x0d/8NPFXK7tyHbxz2X/L+XfMRrfjLYSwc+dOzj+/mqfm0ksvJS4ujpEjR2K327nwwguPq9+TDSNGcinAdriWVNBVo8AVIaOg4MDJ7ncmYD3QxuW7aQILrkMbdx1Kyk4AKqgkSZx6Q4gQglgRXWskdBkVxCvRpMlkt6AIVfEHGhoapZQTI52s1jYxWO3Du86vUVFwoKHEH0R74jxiFtxC3sqzUcrCmDf1ft7sdAO0lr5ezg4zCRn9CWUHv63eJnULtABSDIJOljMrBSkqWBAXCjm1hFZ/3XIUVmHg69YXAFAUFMkbXW7y4yUWsKU/at/vOEIuR2Qur4r6z5GXKGJ9DG4KAs3j4fRNp9SR40HwH4yFUspw4mQPB5mvrSCGCMyYMGOi4T8BFCaANcNRzvmCXApI4FgUgxOPHkoH8rQCL2OjgqCcCowYsOPAgIqK4mWErMRGCEE0sg9kk726Ypiz9Bwcce9SQhm/r9INcV7QDBQeaMi6FluZYXqd96zTMWHCis1rkQPd0XAm4rLOZjqkOjl79mxyM6PhYDt8np2OsxGqE54bgvzjelg7BELKYOi7KG1WArCT/X77V1BOOZFxINxmGMME+8t64RwEl9nGE0UYjUghc/Voyv0awASsuADSlyBtZuSzP4OtduVwU0JbOl/5J9dvno4Mz8MyYQhlGy/HkN0CrcvPyOZrANCaroZvH4KChkSJiOrnT0BVjSINPejumPYJnWrPcxoVrn2yxj7p6kNobmZNfZ/U29Z1n6w6vwRNuARH11ik61xCevxd2z7XBUlXPwTYV1g9bZwQGCw2wgj2MrrR4S+Yex0B00kqDgFRMDcY9gggmh1EswPJr1vsTJprZ8V9IXRKrT+RtHtWdsP/+uFAuWAyEiO0n1fDmw9q15nuZ8+JRplrLVNQdK5MUQ6W1VDZFXpAdOvDaDv202zgndy09UNii228c5eJzJoRbNYQKPGVJWestzNh8MmRk6zf/EzlVXdyqOUFcE7NcwrYeo7++f12cJj9deEXccEw7+5QWiYMqLVdvIihkCLKqPCKJAKdG9aIgW604xCZKHFH0B4fAi99A5VVxiUjjm+eoGjufqLvu40CUeQ+fq88xAF5mH6VY1i76w2/5/97T+1aXqhHNcsyKoipUY28QBTp1A2h86DkfECC8QCYDvj0FUwQKgotRKNaz/lvEIv/SBMJboOkgsApJWTXDEYQ6DmyRq8jRfdfEAjsOGgvWhIn9AyYC9XBPO94h1CC2YvO61VMKTvkvlrHuFnqXIciZAGyrL8+OmGFoBWUUIZRnDpHYKpIwoTRrSsBlLqoOcIJRUXjLvVq3hr4JTmtF6AuvpJrTSOQmsCgCKI7rWLS250Cde8BIx+0HUu4o8y9SC1q0JMFyT1oWbiHhPIcFGBunziseC8Ab5me/I+u9sThRsMlHJKZ7HdmkNvpL7SGm+GrCZDRhY9bXcTwfQu5feNnvNXxGgqDY0AIHM5kOJwMh9txbreraR43m5zcYT59m9ovRMrz6w2FjD9Md/6GWRiJEhFka/kIBJEinO+csxhr8EMrdAxYX+l0G9wAphfZ/5XRTREKcUSzjT0YMZJFDpcoQ+mmtHO3sfupTa6c/Tlam8Ww6FIILYT+070ClHzaoyBd/0Cfj8IJxYyJHPKhIMltLzhWfLjMSccUK7f0qfsadTScNMklPDycrKwsGjdu7N42cOBAfvvtN0aMGMGhQ4dO1lD+Feyuin3moEqsFcH4pklIaFhdddGJhqMkHOuBmpVABLzxsb5cNVuJ4Yb7Sa4HRjeA1kpTvtNmBdwvEMTLaDqKNpTgaxUSwHb2YpQGZjkX8ajxDt1rR/WLowSVUnbWdFh4EZ2z13MwIpUfWp7nP61gwzDKNg+B6wuhqtiE4RCxMd/yiHiMiyOMhKn1d6I8Hggh2PFYGGkfLaF4R3Pd611DUdkS15otsa28QqndWpbPM7kFJ04SiaWQEpJPg0i3YHwnfK2GAA368yiRGFGxu4otVBmZggnShdfSCLQXvwF7KBtdPZGyHTJas87v2V33MGUbBlQ2yx10U9v5bXkqUVFDcNKQbuWtCmoNhVBFoYwKNquLCRIalVJPB7eYD3CTehkvOt/H0Hgp/D0Yby4ViYjfT7SIJEKEsdHyG4mVZ7lTej0RSf3zmP5XaBUXTMzFH+CUeRQUmuGzFyCzCZisMOBzlAHTARCKRAz/EIZ/CID2zQS0z17z7dBYCfdfihKR76N81TdMMj5AM9GIOx1PcUTm8JbhST4xvMQnzSu5ebX+LDYq2MevP17DS91v5/tmw7j189Ws+WsSCxv28T+/K+WgOFzKty6S5EcF88q4VMSFMxCKhjj7C48yKq7DUvbCPbfyqmEidxjGntgLPwORMLGIAv8+i/8E8R3WUlpDqDbGH8J+xw3w1ZNQkIyPCHokBRZshT2BK6fd92MF8+6qP2lAG1Y297NVgpBITcGu2BEXvIoMzYW/LwVFg0HTkL1+dbcOIwQVBSv2am5EASQ9AKXnAlDQ+E9EJxsmjLx+oQE57U140yMdrP/nKMPeA1M5KFbQzHjKAmraFqC6GvwfW22Mmub9ADx1npn7zzHT4YViduVWX8sTl5TySO8Gtd4Hu1O6j1v/ydOkAB1ztrjkEs/kNg84Qvz0VBMaQSbJFZ0tvHVpEGotaZtVEEKQRgqFFIMfB8dSuRbAbQgRQkFW+kZzydw08rOjEAnVRrcMsjBi4ABHICILCpOpKW9Fh9ecrbwRLKplm3JZ7nNb8l1R7CLuJQhaC1oIhM5BCN9oryrHYwulUa3n/DeIFbWnd1UZ3uQRT4Obx+990Uuwboge3WkphZGTof1CNyPsNrmHldoGruFCFBQyPpxAwc5qzm96f0P+qNW1jmG1S7ITYbNBzQVbMwhejjDpHNrRnDreqzZKMy+DWxVMGCmjnA6iFbcbxjJLW4wlMYuoS2fwjrmaZuKOsmVAO7znS/8p+mO3/ciBsAasTNbnhrzgGC4Z+T5GpxW7wWV8EECV373BFsx33EkDceozreqCJ43j+Nk5h1wKUWKOwLi70T55ls/kVfzdoBePLZ+sG9w8MP2XG1E0eLjvQ+xkKPr8XL1fpM/DMPJtftNCOV89++ReUB2xS9vPIucqlmpryaWABaYvGGC7kiYylRXaBsby74xuTU0KFgE2163p/B8EstxsvIyvbb+joqLh5Hnj/e59uVoBuQGydZTEfXDpS0ftX0XBiYYB1avQnr00jMIXPgFn1fpSF85E/xj3XSXjvtPX5FcvNDOu/79LOT1mo1teXh6PP/448+fPJzs7G03z9ujk5/uvONK9e3f++OMPevb0Jonu378/v/76KyNGjDjWoZwyFFJC3F13kfXmC1Dm+XJLaLYKMXKKV/sSYz61kgXu6kHwvh4Etf7v84ePBz1Fx1r3SyQOqdFSaew3IE4CIQSzmZ3kO4u4Sb2MXkpHZtQw5FmNJYCkyBSGyWlDUwI9jgKcBvjTCqNXgHAgoj5kuLknd5j+Owt0fUOIWWHQDT/wkzYHbX8b+OA1sFdFEFWFLtQIx6hJXCycMGQaStpmBIJMcjGgnhZGkRCXYCo1gfz4JdjZE/26Nej3Fcp5esixbnAzVKflAFp+IrwxjdIqIs2wXLB7KmoqZPhT7Dye6LQNiMuewYaD5qTVO6GkLkZ6Ow6v+wLVArJQS/ggrZg38xwsF4spj/oAlTH0pQsL2/0FfVrAkksAA6g2GP0cIjKbaKrvW2UAvr0QcfwestMB/ZSufOj8DiWyBO66Ca0sXCdunXU72qw76FC8hB9+uI3Qcqi0wNiP2rJkXYCKpPYg+PZxuGk851J/uauqkOLx3O2WukJ7bQ8LM/fm8NPyYH74+XrsBhOft72My7Z8T4S9nBXJXXhyyUs82fehGr1JvVCMpxihOOCW21Ea+K/yre3sBB+/DJq+Xt4D3ONRtfd/OPWIDoZLh2QzVVYXWjmbnsxjOUrqdnjoCrTFl8Lvd9c4UsDOdGoLtd+dV7tB42QjXysFn8heAdKIfOF75P1XoJgrEYM/hcGf+u3DX0Ea6YxA5t0CzlhExLcIRXck2bAjd3WBvd28D1h4FdrCqzx7qP6/Yuf1+Ee4UvucJCWObW//yIX/9AXVO/rniZlWnphZMwRS8NSMUJ6aUUSnBgoL7w7FYhSUVmr0mlzC9ix8UGIKgXJIz9/Jc4uf5/Gz7sdpcPE4HmtKuOoka1IoFuXY5ONOShu+1H7x2e5ZcTuUYPIpAoMNf0WHQOr8rjXQgVYUUsKOO2/S5/3ipOqdEVkk3vEyTvkeaoBCFyEeDsWaTjKAHE3Xo4TQIGx24Iv0QHdx4mgJUpQEfLwe/vCpByWFx+8smq1DdJ/p01xFwf7breQsuYz3UXnfPY/XkM2WXsaclRewZpyDLg396wmHqa5AKILXQvBar/1RpzB1Uo9mU3z4vKsMcc1EIxZpq1gpdcPhzYpeaK5QFhOEhW/UH+GWDfDhq9WGauGEyMNQ0NCrz4t2zuSFHuO8B6Ao2JUAMtmhtqRsvgy6+d9dHzHP9Bkptr7V73JsBgjBrugmPNxnIjjt7rmtTc42emesZkK/R9gd489BAnLL2RyclM4j457l/Nj6aXT7zjmLT7QfkEguFIPpITqQRrIre2c5Usp/FaWXZFT4Iy2EN/NtJBgET8T/e3tEN9GOXPNKJjs+plJaCRPVTpZtcjf7yPhX/VfxxGV7ZDYBlH17DziPI9vG6dT16AAFfO770cp9P1qJsMCCu0NJTzp2w+QxG92uuuoqdu3axQ033EBCQkKdf+R77rmHv//2U9oVGDBgAL/++iufffbZsQ7nlCEn6h+Uxy5wf6+KtvEHYSlHxu+B7KYB+4urbBhw38lGG9GUICy1EtgfUXLoJToG5H4zotJDdGCL3MnVjgd5TrmHWdpiL+FSBJcgz/mAnXNv5HBIImhOUGvha8k3oCQ87f4aUQ/5B/5r9BFdWMBKCtO2wjNDATBURGJ76UuoqOm588xmF9D+L5QxT7r3GjFgw04MkSi1VgWrH6gSTOXsG2BnL6qFOAUWXYXWbA1Ki1UA7lRKt7fjjQ+gIgo34bqfdBu/GDEVpc8Mr00RhHGOGohL49QhVSQRRTgFFLu3Sc0MJcMBBcJm+pAu10wD7RccwtnBBm61r2WFpvKy8wO3kU4Z8RaMeMtrLjBg4E5VV+yklD4GvSpEnQZG3X+DHqIDi8RqdlalvLz3OhSlAKBoTn7/4k43S09QJTx1t51zLqmlw0pdQOhhqJ98bp5oJZrSWbRho9zBLPsyDnxZyk+bnEgZTqvGBQSbsvm64dUAmDUrFkclb8x9hBF75/JWp2vICXFx6/hUdHXNW5oR3v4A+dwAFOG9rkq7yUXEr3gcWwsXwv9wSpBfDiy5lPDeMyimlGAsdFBaM09b7m4jzvoeuXwk5DUO3JG/vqM3A33+2wEfJ3JLNQ5n1SLcl8TDZ5PgpvF17jOYIFrTlFXZV0G5vu7J8u6QdgnC4DIsVPo7p593qepvzUTWk9NJA/rv/51mhRlo7Y8i/kuNqPI8CkLiqFo51h3SCH+g2G/blKIMMiJ1fuerznuThV9fQJBm56bN0+nOdwxbHIRj0Vj487bqsTVZDVlpUBZofZZcMnYJFuWC2sfqB+erZ7NMrsNfpFsz0sghH5tr/RJGG3LEVPitBk9kn+mIiByf41ezmbNFL16KeoC7Hx5HBtm0EU3pLtrzvTabLZSwTe4hXfhX8o9mdNsvD9f5OgWCVJJowInjLGsq66if2AMo6rYgH9kDIGT7AAqXjKXqee1z4G8u3/4Tdw6uGeUikHYL/aeWUfJKuI/eWS4rvIypNRFNBAkeldpPNoQQ9BFdWChXeW2/hgtxKk6eN97H784F7u0yP4kGHx4gOzsYsIPxZ+j0B+LpoYQrQSgoFFGKNvM2WHSlV583nDuZpLLAPMj+MMA26Hgv7ZQgSolgkOjFbLkUAHHuh8jlw8ERiV01cPm2n/m6zWgQglB7GUtSenAkON5FeKn5qYguoCiBbe8+wKFHMk+pg32qQ3fM3G24xr3NKm0873yXOKKIE9G0U1oihGCQ0ptZ2iJ2sp+98hBNxNH59WtD7xADvUP+uwRIozBixEi4CCVceK9Za+VWnHWy5NeOoUpfvtP+9KIaUq3htfTsQOfJ9LVdffPrTVx93ltYTbUHDRRVQu/XSil8+dijZ4/57i5evJglS5a4K5fWFf3796d///4B9w8cOJCBAwce63BOCQTVvBuKy3sRyOBWheirXiT/1XcAFRoCWeDODAspolVL34X9VCFRxHnzsNRAJOFs0XbS29CZy5TzmKH94RU6LRBYsRFNJG1EMw7LLDqpbQh2WNxGtyqvjzL4Exj8CY9ghnkf1iBQ9ISEEVO9tpzKcPGThVSR5JUeGEk4hUGFKE8MJwgzFVjRVg6HHx72OMp1/zJaevVVZZCq75VLq+BOLz2Ujvcz4fr7YGtoUS3EeIYXUxHu3RbwUUSM5eDBaYapHNHtN59xpIgEWolaOBxPEcII8TK4AcgjL0FlZ/1LyRDMKXdiFzbPmAe0SgvqvOuwZLZlYa8gLukYTFPRkFVsclH6eguvnsZ3E0a6KLoXeqa2KGAl5pijpKOc7mghGhNOKLFEkkshFKS49wU7KjB7PIsCaJezHTVyD85Cf8+R1NNtgHYBlLT6hDSRTFPRkDxZxNa3HmBzhn6tLXJ3cNcf77Mi8iwyQnWhdU5af+LK8xm5+y9Gnz+NnNDahFmPd1UzgsOEMNoJI5RCuxUWjIHdXfCt3HZmUQucKdh/IJqr+o5CColTanQV6XSkNev5BwChOhEPXIk2bYp3ddtaoWFXK1h4OJf+yadOia7CgYI6GHyzvN/52hy0AJGE0ViksNnWlgr3s66APQVcRjfReinSku/BQVYTftZLFBJKs/n691u5e+Az/lO9XUguOkTPw6v5oZVnylKA9lLSI2MVceV5bqPbvsg00m6tJm4Qjw5HqIXQ+zuwWWBXJzA4oeNfejGFNz6ETG95RQ0q4+xHn+eeoMAVK2tDFyWdPfKgz3YjRhJFLC1EI9ZpW9zcWkqf76DPd377qmkwMqCyTK7lLfE4UURQSjmHZTZJShxRRGDBxCptE+mK//k8UcTRU3TAiUal9CVX3Otn3P6gotCFtowyDMKonDjOshQl0YdPt+r8TjRXJU47xhFvY//2Ebyelfg9BCVkUInvs198sJHrL0HHrE388NvNOBQDT/W6j5xQXyOizQmLKjbTP9ib6uOwzK51/PkUkSROLSdvskjwsTpqQqOd0pJ4EaNHXALSGszjL/TCiwPPboCVo5GlsZRc/TDj1WvYJHfyd78fKFt8KXo1cB3LG3QmODYLcqkbFDsPdKk9dbw+Il1pwQrnBoooRRhtiGdHEEowHd5uSIe1jfjaNb+tTOzIuAFPk1SeTe8Dy1iaFrgYhShM4nXHx7xkfPDkXQjwpP0N3nd+SwmlaGhEEk5XpR29FV2Wf8vxJa1pSqyIYqDak/sNevHJ3kon9ssMkojjdednTFEeOanjris8DYhVyJB+QqSPAykiwW1wCyGIVjTl8MjPyXhjEv65Vg1gKgFbKDXXtL6HVzNx5es82fvBWtdHgHI7ODVZJ7qDGmc/NrRq1YqKihNIBFJPoS8qLt4C1zYFtc6W2qK4rRifGoZj9VCk8UKISoODCuCEDjPoZGxxYgZ+HBBCkEgsh/G/kAVh5oDLE2fC4MMZBRIFhT3yAHEihjRS+M75J2mkUIGVSqw+yroTJyFnf0tF+3moK0chy8JoqCYyUPTg85CPsPX8HiW8wOuYQOSuZxK6qG2xOmxugaeEMiIIo4VoxGq5ydUqgACfPtf9ZyxRmDHRSDSgiTg9FthQgjlLdGJPryUc3tUNHwNaR9+0CwMqRgyUpW2E/Z282idf/zyHM4OhMgy6/4IIz0du7o1pdy9sqeuh9UKk4qihruhCYiCP9alETA3jqdRMOul2FazpSC0Mg1rkjkjTSsPhuZ9xShNlwJU7HHyyvIx2N0rs2AMa0aoQQZjbwL7IucKv9xogLkC1szMFTZWGrJHV3J20nwNrdAW11BTKvpAkGpUdce8uiAblgavR5l6PnFeDSL7NApS0LYBuzKvvUIRCf6UH67VtaBn6e3H51u95fcET7qtKKcnh/Y5XcTg8hbe63Mj4tR+wMqlz3U8ScQRhtKEBTqsJnv4JnGd2yvKZhlv7mBlgmuj+vsC5kvXOf3zaiWsfQj4+r+bWAL0qaLu6M/glybhLN/PqWW0DtDs5SE9SMKgOHM5aROmu1dxtKgohBFHsMvQYUDFgoCkN2cleQgnBgpnmSmMahK1hZ8E5+oGGDDBvc/cjDA54fCRyc2/Y2R1Wja7TeAcc/BsDEF+SCZoWMI2mR+Z6EstyQBw9Ij7MWkyLgj382vTcAC3sSFOxXn3x6V/caeGAniK7aCzcOwZ2dyR8y3Da0YbKpn8T03YDoWoQXZV2AfqtHUnE0V20p2akmw07oSKYDC3rqOsdgGZX9eAIk4ai6qudw+We6mAbSQyRRBFOKRV865xFOKE0EAnskr4RdlVw4mS53AD4Ty121GFcVQglmPsM19e5/fEgQoT65dMF4eLSdaCiYuw8D5quRiy/AEdFCFqbxYjma4gUceRRgBOn7vhzCrArhLZfQumc6wHBhTtnIgCj5mDzZ4O4r++jfNHuMu/TRR8k33QEnd+sGju1fbWOvzVNvXj0TgV605nvmOWVHVAki90GiSNaDq1owt7DMVQEqP4udvagu2jPWXThd20BFaFZ8PRgWDcI1pwH+zsDKuW5yXUfmGKnsfnUVXY9XrQRTWklmrJWbnHf0zIqWH3RIbpOT6/mklRU7KqBO9Z9QuPSQwxt0B3UAPN1yyX8VvY348z5JBoiMBpPbOEZKSVWq4PdzkNoqhMHTgR6Fft19m10ke1QTbBErqGcCrbJAl5XHnMff5F6Lq87PqeUMuY7l3PYkF1vuOGPhnx5fJQg0lV1SriqQtmlg550ZDt7MGFCRSUhJZ+gJ2+kYPnZ5M0ai488YQuDey6Hd9+GimpdZWFKD+7Y+Dnr49L5qWXtlGfhsbmoyrEH/hxzjtnbb7/NI488wsKFC8nLy6O4uNjrc6aiJgmmE003FPkhe/cHicRpLkP0/h7R8jtd2ElzQpqKsGyj8b8MC/2vodTyaJRQxl6pF75oqTRxk9dXQQLlVFJMGcvlOjJkFqulXsW02FV4oaax0o6DCqxEx5Zyx4hSJl5ezLYxg3n+colxyOc+BjeAWOXMN7qVamWMFOe4BR4nTkooZbXcXC0CNVmPD5cbEhZdi/bOW0gJhRSTQRZL5Zpa04brE8JECH/LdWSmfw/X3QMRB/XotKRtcM8YlBjfEHoHTiqxIm4ZB72/hOB8iN0Ht95KZouZxPb7i4ZD/kCJzEMoEqX9Emw2Fb57Ap6ZB48tQnvyD7QKPQJOItktD9BZCUzsfaoQQxQpeEQOCRsY96GTrzjAkIlNKfBK/1ZXXuTlFQWYs91BpCMWOw4kEhU1oMqrIXnI/jJ2aWej3B4wXiNOnNlGt1iiSCCGBq77Ly5+EYa+ia6dSc66ciZfNz+fI0Gx/NymO523hKGpIIZ8CNfeB5GHICQXBr2HuOpRd7/BgXhX6hluNFzCLYbLICIbkDyy4nWvZ6ZD3k7eDVkESCoNFtpfM5e4srq43jVouRjxYLWyVbKpx/8MbqcZOjUQ9G/mrbCkikQiCMWIkSAsGDEgNQU59QOOPUVY8O4fYWTKuoZznBiYDYJeE59CT1uQ3h9jOYyahDL0fXf7pqIhR8zVNCsOnEQQyhrLjxRb1nObOoYr1BE8YbyTIbHbCE18DBH3PKLBDQjFe92uWr/EBVP1ub8WmByVGCuLWZ3Qjt9T+/NNm4sItpUTWllEctFBwsrzXalX+u+wJyyFbdHN3N9rQ4k5DKtqodIQiF/XCI8vQj73o7fBrQq5aQTnN8XUfDPPXyxoftEMjrT7hvnib94zPu3bvo4wCAOHZLWMUDU/qSjs0Q7SU+noKrTgH9JmRnvqV3hsITy1EB5ZjPbZc9X7kdiwk0shwQRTiZU8CtnMdjbK7fzqnMcr9g/41VnToOydXloqy332b5Lb63SNTjRuNlxep7b/BmZhQviRCpwu46NE6lF72HBG5JBw7i+EXPAehhZrMQsjmeQg0dCQaF8/DI8shicXUvraR+iVTSWLGuh833o+gmTy4meYlvs5yeGApQQ6/4b53utYpq33GccWzT//ZxX8GTZPNnqoHXzoOFazxf33z9octrGHyridEMDoKuP3sl7+w0rnBjJdoWyK0YHSfRbkNuZ4or4NiYdQ6mBcr2+4Uh3FbnnAK+NJIikobcbL3W/V00hd89flO3/j3P0LOGyJ9pNaqh8JErllILue/ISmExVCHiilxdPF2J0nhr7ivh/KMd9TTPiEcr55ZCL5j/1IQnELpKZw6OXJ3PvQeYRPKCfk3jL+ntWJ/RwmjBCaKtWp3hZhZojah0NkUkQpa51bajlj/cFhmU2u9NXpjwZZmY7c/zNyz3y0/BsB2M9hlrOeAorJIpdkJY4OaiuyLAdQBnyFOVTnjveCoRIRfxDaLvLad8XIaUzpeD29jqypOmOgkVCcG0PIA3l8VrDwmK7hmCPdIiMjKS4u5uyzvckGq0j8nM76RXJ7ImHEQMmuVjq5ZZUiay6FcTegxHoTBGpbe8LnL4B0eTB6Z0C3zYiQZYiQZXQWJzec9WhoJtK8BBZPlFLOUm0NJVoZPURHv5xuEskRsgnCzD/sJtwZyjPKeJ5DN2D6IxUFKKKEudoyrlCGkyGzWOhY4VWhUdoaIfNuB6mSH5/oy198huEnbQ5fSd1Tru1rA9NeR/MUXCMyYfw1cPnj8PWTVKdeuRbf/R2RezrhaFqd6pFSzwoCBIIZk7tAgtJyFUz0Fi5rFk+ogsRVOfL8t+H8t732FVNKPkWk05xNZZkw+XMorZF2UBkOM++A0TqvSAdaESKC/9Nr+y8QL6LJwEOpEEDyeGTBVYCKiPwcIbz9084IP++00PhwjpHCuTMBxfutDMmHu69FCc8nlGCOzLyQI4uuJIQy4FVdGL7zRp/5Llqc2anfQgiCRBD75CFdiVg/DHeRDwR21ci4wS/ojSOO0HnrKH4YXkJwJdgNs7lz2mJ+vtjb+KmcZmmSN6mXUTh+Bi+90Z18SySJFd5ktmNb2fgjdQO//tKWguBoCCoAy0GPVFx/gr6E7X2Qjyx0Pbf+yM1d7bxwet27Mx3rDkneXWzltn7Va1UjkYIVu/sfgNwwGPKOL3XfHpzHXOdGxhoCFCg5SSja0BPwY3CyByHaLfba1Eg0QBV6IaMqg48n3YMn780LxvtYEXo1a6V/RUorC4Opn0BxVZRK4AptI3fOYn9EKquSu3Dt8DdAUbhqw1esTWxPy7yd/NBqlFc6zdjtv/Bj02qeJ8VeiWYw+0+5EQqzUvvgqFLcNQ2hOZAGz/lNeFM5eEFSEZRLI+I5JDP5UvsFJxqXiGFEiH9XpTZF+EbwONHYRwZDlb58r/1JLv6VPzn3Wq8oCAC2DkBmN0TEHwBA2zAA6/Qn2eipSllKKLzzeopj9/Kocwptnc0ZoQz04iHzql7qh9Ot4BgKwwwQJ4cBv4oT2BOeKaeeaaMZZNGKJmxjj/sYBxqyMAHWD6/Rs/6czG3Un2e73cn9a97DjBO1Xy+u+ehmrjWZ+MKxgBsdL2AHvtF+50X5gNf9rKpGGwinks+tCm1EMzctURUOk80Bx2GyM+LY//pn1c6l0GyoCAVnldwpUJJ3ot18JzbsvMKHXn1rP42HsroEIdRYN01l9LzhI06rKgouCCGYaLiF+xyTUBA4Fo+G3+8CFBxG73mqwBLBlC438XrXm0FKjI5KvZKr+xnyLz/sy5dEPFDMX3cG07tJ3dO3J8+r4KFfvB0hQ1qp/HJzCOsPOeg/tRyrl6lE5yzMeP4DCCqCikivffnzRsOmzsTf/Z7PuXoqHXjJaSOTHN52fskIw/HRdEkpeSnXyh8lDnqHGHgq3ozhXxRmqA3znMuYJ5cd83Ey5wFwRgMKFFyHDJlPhtlbp0kRCTxruAchhV544u4xRLz9JUUFLsqh0Dxo8Tdy4iK9H/c7IUgrOsDVW78lylbKodBE3uh6c4CR6PfFbjdw41MduJEiYuuoIh6zeXvs2LEYjUa++uor5s6dy7x585g3bx7z589n3jxfj86ZjKbOxvDBFJBm3CT21jB4e5pXO2k3wWcvuQxurnZLU2BFCSLsLwBaiEYnd/BHwdEIGTPJZY3cQrpoRiyRAdulkEhDkljBBvaKg+7IkEBh/RLJFnbyqDaFS213857z2+p9EuSRV6G8J1R04/aDUTSqGMwSbY3fvs4ELJZ6mXQpgWlv6ZX+3AUTBBQlwUevonScB4m7/XdirxZ+G5FCV3F86RonG0IIwmuxqgYi8fdMdzbVCNN34KQzbXjVMAHjh2/6GtzcnetKlILCQLWn/zanGP7CyIUhByXuNZS4lxFG78WoAy0RnWdB4zVUR2RoMORtDswdQTW5qMenLFoPwQaS9veHRdd4t6sMh7d9BYGYWuaEMwUpJKBtONulRFQR+/vxojpVfhpaTnAlvND9Tppcu4IfVy5Hm7AI7Zlf0bbrAm9do6brC8zCxKNRY3nm4b/Z8veFEFw9frVvD0xXjmbGgP5UvhbDkBcfRHnifJSHLkeZ1BceHwbBeXhHB2n4PoP+CW99ntP/od7hnh+tXlECqlBpJqq99K1oEph43Q3p/2Msh2se4CXntFqPPhkIsdXCq6Z5+7WHiN4AtBfV/GVRHpEadxuucaebWYSZqYZaOHo+nAzFidR8F0Iqi2mWvV0vTOUiDo8vy6FMdRkGXSmlWUFRNMjfj1mzexvTNA2nELQo2AdAfGk2P/94Xa1Rb8VhcTiM+vt/w7pPGXxgccC2XQ6tpk3OPyiaE6E5MQ35gOvDBvGxcRIvO3VjQhzRtA3Ah3YsGKhUr93VtDAKNuy8rX1FOi3Rvr8X7ZG5aI/NQZt1U/Vl2gI8mw79PsrKEJj+DDr3lsdvUBkO70yjIUmEEsxmdvpwrx6tkEKRKyPkaIgjikj15Di4aspSoEe+15x9q7JktrOX55X7CMVDG3XUHucxtdutpN66ljmFHxM6+2uESZddR4lB7oimLPI46OFslFKySK6std+4epAVoyoqzfAtSPG9nM3A18tdBjbXM1SaANIAt96CMqkPyqTecNe1KGY92tUz6lDb3g2WX8LR18Fq44L7Ywuh7d+P1XJM/UZ3pQNJxOHMT4Tfx+NPXhBSY0bz4bzX/koQCoP2L+ScfYuOytlVBYcGQ94qR9Yh6hdgT67mY3ADmL3NSf9v1tHztZoGN6/R1jC4eWzPaYLl2+d99vRRunKBMhgzJubLFZT5iZytC6YX2Xks28rfFU5eybXyRl7t0dP/Bt84Z9bKGw86f7kPamTpqDKIDLLc70MYITQWqQQJC5OM99NGNCMorJyyh0bwxEtfkTTpArjicVg7kmqZvboo18zvryTaVspHbS5jWtsxOgWDW+4IBP3Y3Dre9mOOdNu8eTPr1q2jZcuWR298BsOEkXKrwO8trPD2zsmcBvhVxo40A3QP0okkQT0exB2FCD2JeFZrmxhg7O5NYI836Ww+hbQRzQglmPVsY7RyLm9pX7q4HaTHMYJQggkmCDt2JFAmy9nOHo+eVXB4RGlp4RxxVmLG+0U8k/Cc4V522e5mnyMXtADXma9HjhhHv4r9rXfxWnQijyCaryaWKGKJJFZE07SepTLXhmCCyKMwYGRkTehTqIJA6IU6rMFoM6+BPV0hMhNx3rukpiQzwNADc0FuDb+tC4oDhnyDLO9OmPkwbQ31j88NIEQEc7FyLjO1RX695Z5QUThEFo1FCvtuuQsV1XWXFOwb+7iYJPxBQFEsRow0yu6P36SXinDCCXWnjgOEikBRDWcOBim92HM45ihFzyXGES8R9BK80O0OJne91Xt3WTR8PBlt/FVEJ/oSap8OuNtwDTQFCu8O2Ga4OoD1++1k/3E52I16WmpoHsYWa2l5/m8cCtlG4ePf6Vwb/8MZAU1CcaUkJqR6brlNHctObR/RIoIQGURu11Kem1kElYEMBwJCs2D8dZhCy3DiIJE4cshHQ3JQszB5cRHTl0FsmMIL5wfRocF/V32tLnh/YAfa/mmHGkYJc/N12MOr0189U4NssnrlaSsC8/lO137DjIlKpxM5/wrY2h+lyQbkkGmQ67uOG5x2rt70Ne90vcnNx6Y67BwOjmVrZDOvtrObnM0VW3+iICjSvc1SUYwByaTud2BV9UiQ5oV7KbKE10lJ7XZoJWcfWsYmawGzG59dfYyLX+ni7b/wztyHvY75ukl78geP5Er7/TQiBRt2+indeMgYKMqg7mgoknnivJ6Ua0VcXNmVNg2uYI62mLasZru2l4Kv74L1ffXGTmDBtUgEYug0OOdjWDHSOyU2aTsk7dT/LokhYNxCWQQHZ16E859uYHDSpdeH7Ol7jzs6K8TDEFUmvddup3Qi68jpNlicvCq+TWnIJnb4FFqKJpI8CgFd9lIRGDASQyQd1JbEaLouUUo5sjAWjCVg95znnVTrRxLR5Xdmi38o/Pss3ltsRVUFdw8w065dC1bKTVixcaHtdtaYfwTgI4f/4hdVUFFoTdP/4A78e6SIBHbLA16y7If277E6L8DHaKaZ4d330B4ajTEq28WGp/NodyQdM0YWsxqO1JUP3L/zKuPw6Vtpvp1owbXqaD7J30dGABn28i3f8WOL4VSadQd+mLWEIvOxXbPdCRV2CA6ggu3NdfDgjxVsPqJR5lep0LFixb8ryLY309dOEC5CaSWasI4tFFHKGm0z/dTux9z3TpuGiv42Kq7vJwrlsnZ9BfBJ/df2tYa1Vp3OUQEldDZO82byCHbbEkooI9Zlu4gU4TxguJEl2hrmOZcxRfuUXnTiyJEkV4++z0uUtYhvW4xgwgB/hmjPQnzHj2OWTrp27crBgwf/3xndzJiweRiXnDgxB9uwRGVTWVAj4qRFddikVhgHr3/ip0cJfb8CdKNbfUOboxDHG1DZh87rNlwZwI/aHLfiL6lKlRIEY+GQzKSUcqY7fyOcEL+lvSUSE0a6Ke2QUrJV7qaAIu+ECeFEhs6C0qH6hqBloBac0VVM40UMlRUqsjgKYvb4T8Xp+SNmTCSlFjDhub+ZsmEvW4vzoPFmRMOtbrk3TsRQQBFtlfpTtONouFwdzhptM1kyj+3s9ZvK7AmJHs1mxICt3EL5Mz+6IlGBnKbIqWfx45iHCUoeQvOOD7BtWXfvo3t/BefMg8y3kTKIAqWE6MbaccyUJwdONMIJoYJKNx9bEGZKqel2EThwss9lInLiJIII8ilCtlihcwLJABKFZqZLRS/S0vfA92fh40BotdTL4Aa+RR7ORKSIBJK6LyFj4SC8lK+EHTDgMz1ast0inEHlbEoX/NpkcICeBGztQ6PEuvH4nI6I3Xgx2Z+dR02hxZ7dgs0bziHtwTup6D4b6+KL6uyB/h/qNxrHCGJCvI0SNxgu9m5kggVPXsXSnRp89DJIP8b60gR49jdsd1yFMDmQajR2DIiwfMo/fI2HDlQ11JizvYyvr7VwUcdA/GL/PVpYkrBOlny6vJyZWxwUxW2hS9fDRMTl84ymoiEJxkIzkUYnoXODtlIas9zFTZUXIL0RYI62jErNjnzxO1dUG2iH28DKkRCRBTnekeANSo+QGZroVQDBCcxOGwCmGvfEYGZeWh/sqj7vx5Rk0evQSg5EJLMxuQsAwZVFLEvsQHSrUTTJ3cmeuACyg8uo1rxoP+91vJK1cW3d73Fk0REKw/WxX7Rzpt4cyDOFoyDp/N0BLrl1OmZMlFNJZ6UNH5sm1XrP64r2oiUfp8UQTAp/Ko0429iXm+jLG5UjKKCYou1+ov43D4Ch01BCi5HPDkZu7wo5DaDxRpTUXUgJWlEkSBtYCqEy0s+ZVZyLxri/ZfzQisEbypgzTv+9Igmjn+iKEw0VlRcc7zHPuYw4Ec1Y5fw6ORgBPjA+d/RG/xHKRSWa9B1XBKHkU1jFioVAwYhBj/KTO3nD+Bgv299nycJW8MdtVK8BEs6dCv2+Q9nTha4557Gy1XuI6Cy+eOcdPtlndbe75otK0tveT/yV95BPEXvL87gn52NaGNP4O2wNmhL4fjnRcIj6QXvUWKQyX67w2paj5BCUspeKDH8GGUHUrnOwd/uBchcXc0/RkdnmT/jL+Tc77HvJ6zQX26xb8BvYcVRI7hpwtGjj+guLMPOE8U6KG03mDcWqGyprQCBpWrCPLQnpAMxp1B+jo0aUVVUUm/B4Nj1klbj4QoJN3nqmZrVSdmg/g8s/ZO2HEzm6QebfGm0kw/plAK2QUpJd7KTUppEUrtJebckSsYrmWPhBm31cRrfR4UZey7VSIfVRjon47wOB/nAu5HvnbJazvtZ2+vwR4k6z15aNhJ8fBASsA4wS8/lraJfYlj3yICkkUEo5TUQqqR4811eoI9gvMzBipIFIJEvmYmm/k8rf7sSfUjc7rR8/Nh0aYFQCWi5AaboRzamgbOuLtr/DMd+DY1Ylx40bx913380DDzxAu3btMBq9f5j27dsf8yBOB1ixITwmNSeaHpF1/xWYfrsT24Z+YLBDrx8QA76sPnDmrfhOhhLS1qKkLwWoNYXuVKENulc0UIRRKWUUyGKWamuxS71yURWqj5EcQi8LXMW/VUoZwVj8GAUgj0KWa+toKJJ50HATdzie8Gkj4p+D0LmASpvgLCpFgzPW6Cal5LIpFo7sn071ZK2BuRCkCqHFMPh9lE5zkRiJEhGsNq4movN2FDZ49VVAMYvlapqLRphE/YqqrA3PGMcDoEmNcGunOh0jkdhWDIcf78d3kRPw1fM4EWwDDEYrjpAcMFphxJsoLVei5dxXzb2oBfN3cTCD6qlckiBi3YS6oBvTSin3qSpaFVmqelRcTiaeAopRLOU4HrkAvngK9vnh9pAKe9amI3ovo+cjO1n39WishxqDuRLO+o7o/jOxE+SVJhPJmR+xdKU6iokxr9L8vofYOeNKKEqADrMRQ99H1FAChiwJo+Mjy4FmfnqS0HwlCeLfeUHrM56eVUlAgVMqZCzrT/hZr/DFgz9xycjP69irE4xlhAqX17pKpq1JbSX9/H2s+/D+LqTr63+4z/Nvid625j4hXKyBR9tXo3+ffQIvrm4pvPcJrXo4x7rPYoJLOhl5+cK6pUunKAkozWehydraK/DWl0jgsPvS/CsxT/1hO6lGN9CpEK7tFcK1vQDOAmChcyUOTZ9rjRgoppRERaczCBOhmDBixkSaCFxpMJpwPaKtuAYPqy0EWi+FnCZ4KnOHQxOxRFXPMdHleTTO282aBv45m7IiUtwK572r3mVZg67sj2zs3n/vmml81uYSbMLAoyuncv15b/oaxZ12ECphFQVsjmjM7qhGlAXp0QZhpTm0zd/BEpfRbXbDfkSXF3DZ+e9R5IqwCyGbCselGA2SziKdH03ePKz/Bu2VlmyTu1FQ2O08QGvRjGsNF9FT7chPzjmQthG29cNLIW622n28UDRE65XQeiUmjFTmJsMrX1Ed1SjRi2gc/XlbtNvBteWP8lHQ04SKEBa5qEOa0JAjzmydSkRCuFY3fUAgUAJUnz0RiJER7PSz/XxxDlPlp4BL9sKBDQf7OMybji9oRRNCRQjO+WPwfl8FbDwPZeAMRPPViOZWIimjyGHEsc/XGLp1cwOeVS7jkcnpcKQ1b7n3dIbzzSi9vw849qh6wjHbRUnnI807Mq+IUoLuuBn+uBoWX0k1z5R+r5a0eIjpaji/aPMop4KHDLcAsExbSxZ5EAHqQ5fg/HYi7O1EndV6Yxmf3lFB/0aR/9XlnTK8FHIXXzw6lMLp9yN3etPBCAnn75nDlvg2IAQllgg9bdDlKDDYKwiyWykJjvQ8CpBgKcLcdQ7J5/3BJPsQLlGH0lRpSPn9T2F//QMAYoa9AY0DGdM8OWn9t1EiM9CsRrB5cvhVQer8fpZyDMPfYVXrcl7Kv4Cnnx2EZyDaFV16c+CSV4gknBgZyXTnb1yh1l59sybaWlQ2NAtjabmDLkEqrcz/feXWVdomlmprjupUsOOggCJCXQVqbPOuw33/7IBd4JxzHZmd7kCgUEAR5VSyTm4lqQbtzgTDLcxwzkJKjUgRhi18G0wcDd9MhNwmYMmFbN0ZdsPQyTy55CUWp/TAavKUR/T3Uek8D7XDfEBDDpiOeenlBC2+nnAlhHG9YfzUo9+DYza6XXaZXlXs+uurS1QLIf5fFlLYz2GkKmHUK4SOeoNy/KQH/dPbz5EC9ndG2iwIUyVdST/hYz1WtBF6OHagl6OAYn7U/uKA7QjD1f586/zDvc/fMVX8Wz3oQH+1O7Oci1nrUbmnCrkUUiltNCWVCMJ8uDCE0CBEr/71D3qab2SV0nWGYdV+Byv211QsFAgvQrnvSq+21tIQ1rz6PGsqXISxkYdh/DUoFt0QohtCnX6JhU8HKELhGXU8E52v1qm99vPdeN43s8PKrBmXMfCyH9ycNgAOuxkKU6D31ygtdV4QYchBuhdKlRRD/a3sFOj39MdAUDMa7Wx6soeDlH57D6ytikLyr8hm/jqW7E3tUW4eh3bTfPrShaXoXIqFQBDeVsl/S4B9OkARCvep1/Nw3Gsot/9da1tNFax5/l34NhrWD8btiDFaYeSrKKnbSRI9TvygTxEaRClszw4sG1jMdiYMP5s94WbQNCyOCipNR0tRVkm9ZyK7k7/4bwf7P5xU3KBczHfaLDBUgiMAG7GUCM2JVD1FVv/zVWzkieOiORY08ChYVEAxg6mWBV8w3MdLhge9yOD9IVpEQsg+/M7Lnf7UNy8eQxUvjU01sS2uJUi9oEu5KYTE8lxdwVQUnefNo3qf2VqK1ZV2lR0aj021UGSuNlBkBceRHRyHM96AqSb3GxBdnk+z3O1khiaRUprJslTXHCYE8eW5GO3lZERWp8F+0n4Mn6VfiubxO5YRz6AVL6H0mcE5Sq9a78exwiLMXCiG8IX8mRLKeMDxItvlXt5UH2ea8VkqbrTTZtomMnam6be37VzEyMl++7JhhxmP4J1GLKiLwQ0Axcl08RMPatcSo0S6Nx/SMtkh97q/Z5JTp+4GnOT1IkGJ9VtUc45cSoxHimkV7Ng5yBEOckR/TkNvdqWRezxDUUcAffcaNtOHbixUVqHHZ3qrp6rBQePd58ORmvdbwG93QS1Gt/rCMdtD8R8ZU6FUoAx/D63LH/D+61AWTYhJ5eOxQTRPUMmy57Fd7sGOgxZKIwA2yG3u49OiDOy7ZTza+1Ngdx2LIthD6GAJwGl8mkEVKl1C0ph71cPw+Bw8Mw++bXMRw3b+4T13eegAt6//hHxzFF+kXww115fKCKxLRrNhyQVsUKw8rgUTZM9k3/sfuM/QuOgAgRFofq+W0LWSWLhpHEqjLWh/3gjzrwQMYLDB0LdR+uhGWg1YBiz9aZTPezh9jYPd5//GuUGj+EabyTZtNz1FBxorx0Yl1Mik0Mh0YuiaNKnxivNDbNgRCC96qUBwB+eE50GJtzEtIrKcQx7cjlXwx3U90/g+abYBCLkHCyYqI3Lh5vv0cT06293uwl1/cOuW6SSU53Lzua+4I8bDrMUs+ulcUt7Wdai/zjVw1bfB2Pt8zci+BXxpfpXi4mLG1+E+HLPRbe/evUdv9P8Emt2I/PhF2NuJUtWJacB0HIM+8G5kcOCfOArdTQw0E40DNDh1UFUVg90QMJ3PghkNjVVs5EIG+W3jD6OUQUghGa2ei9Qk6+RWALQlo2HWreAwU2wpZhAGsP4K4blww3iU+IN++0sRCUcVXE9XaIHmJM3bCBROCDEff8vuCg8ltTAFpj8J1z0E6AJjEBZakHZiBnsS0EPpSLwzmmzyARhKX2YRgLBZej8TL89/ktaFewKsgQKWXoG2qxvcfgsi4muwJ0NFJ5qFHOLaqCH/7YX8h+gs2hBLlE8FtkCVXT3RTG3ExO2f8MhafwtzzTAfgbavPdr8sYwdnOdOjaqCE2+DiidnzZmMHkpHGjqTOeCOvwkMoUjE5c/B5f5TglJJ8bv9TMBXVwfT/oUSskq9J7V7Vr3L3eun0bX8L/6JFHTN3kCfg8swSo35jfoetd9m1L+18384NnRUWutEyDfcA9Ner5Hmrs8/g/ctoEI1szSlO1JR8a06pz9XXQoXcN+U12m4+i0yQxK8DEwnEiYV7uhnZNLIILc8kkoiDUjgEFkoKPT3SPkxiLqJ3k1EKsEhyykb/jr8fiduZbLXDJSkvTD8XRj+LhMcd/D8o5cCBi/FsdJgocgYTLuMtSTbCompKOCrtpcAcNahFfQ4tJrJPW4HIXizy42EVRYRWl5AaVgsSMnOyMZUGs1kmBuQEVptRBQOG1I1YpQOWhTsJSskgRJziJdiK6SGUTrZG9FQNwIK/bfQVN9rN8tgBqi93UUk/ku8vCSPqyqDMJTl8kWzcg4a3mR3+iha04wgg5FxN67nCe36gOulltsApk12VYmt4YBzOnUF3ksGDSC4Xfw0QsBMx0LGGa9yb14pN1LmkfmxkNqLAlThFeNDdWr3X6ERDfxu38IuHuFWnuNdv/vb05K9HKL4xnuRr33qzdu5tTfahIXoVdMlC+L3E33zI+R3mAUbPKqcCieO68exX04EP8UIakvbU1HqjdEtXTQnCDMV/gI0ACXxADx2AQ1JZoel2hgwT1uGE42mpNKARI5oOfyuLXDvv169GCMGJo+dQuYrU6E8prrT+J2Q7T8tXJP116F8rHjNMJGbeJQVFz8H3z1M1btqVw380sqjwrWm6e+r6529cdN0Qu1l/NZsMIXBMd6dSslFW35iZotz3U7AKnNRoSmMC8//gM2xtVBtSdd/fHRUj+9OF3efuQz6fAFBxXoxBcUB5jIAogivDkDR/P9mTZ+sIMTyJcmXTGZj+k/cbn+SP8wf+m17KpAj892VjOticPPCtQ/AK5+DNRKAsBAb310bzjUkcYAj7maDRW8swtcJkqDEcrd6De85v6bS493TKoPAUR0woEq9FvNtg1/0kh0+mXUPyfmlTOpyG5O73oxUVEIfO0TpA+OYE1G7w70mjvmNS0tLq/VzMrFo0SLOP/98kpOTEULw008/ee2/9tprEUJ4fYYODZSvWzu8g6L1f/Ltt2FPdz0VzWHBNuc6tOUjvQ8c+xi+i7CE5ssRZj0KKVVNoj6ig2jlt6KeARUHDhKIJZxQKmQlA4R3DrlO1K4/XtretmhvvoM25SNWb43kbsM13Ge8nicMdzKaIRg3DYLf7gVHMK1zd0J5BFSG6SmURYkw5QukzfdF6iha0Vt0OTEXXw/Qo5GB9kk1J2sNLn3Wa4sFM8VFfqJC8r2FpAoqiTiNowI7Kq3oJTphxIhA1F48YNjbeL53zYr2kRMU7f0qSlnN5SAlZDWD1z9GKDaU+EkoaZcxKH4Faj026jYXjUgViT7bHTgIcnngk4hDQcFQI809WFgw5QTibhSAn8ikOVcxd/It7P+nEaALtD1FB59iKqdTCvO/QQfRkkYihVSS3PPd8SJOjfxvBlUPERWicPDZCD5+ZRGNJ11K9KTzmNbiVh5e9RZCU8i1RPF5m4vZHdGQh1e+yVVbvnG/m+GVRXQ5vNa3emKzFSTG1o+opv/h+BGlRGDBhNJ4M8oLZ7uq9fWBFtXCbMfcf3h+0fMs/HoUkZWFfnoRxJbn8+23D3LBkG/JDEs+aQY3AJsTJs+38/zsSvc2k2LiAfVmXjc8yiTD/fRT6hiB4oEwQqnAitL3W5pNGsttL71JxeQwOo3607UO6nzDmB20vPAHv30saTKATaldaVWwhwdWv61Hu6FHqUXaqzMJnKqRwpBY3eAGGDUHqSUZhFldEdIuY1lsSRYdsnVnaVZwHF+kj2Z/VCO2RHsr9lkh8ZS4K6YG/i2ig+GrfmedEIMbQNCm6fTYsY3OGblMXpjDs8uLeMX5kXv/JcZhfnmGAaTdBK98AcXJ1KSJMTpsjF8zjZE7f/eSI5SOczCf9TPVedwu+eGHBwF4TE6htW0ol4ihtBUtqKCCCA86hkAGGU/0E91odZLpCBKICbgvXIT7pXmp4mkOJZiUSAh7dCy6XFF1XwyujwKokN2E/EkfwYaq1DhXO6kSppp5u9G9ELOvxlkkDPGtoF4FJ1q9yYYRQhDncR+13e3R3ngPbeqHsK0nRlQ6i3TOV852t5FSkiGz0NCwCAtCCF50TCOWSIwYiCaCdKU5VxpGMSH8Cm548jMefvkzbFMi2fhaHi/d9w9hUYU+YzmriUJ64pljdGulNuUSZSgDuuUhOsx3ba3xDkrJoL3zvI67dcjLlJnDCLHVoDySkvN3zCIYB5XGaidyuTGYIRd9Rbexv7M5Ib1GdFw1VM3BlD8fBK1257d7nNZQmHsLVMQQU17IBz8/ws9j/qHhs0+R99wnaE/9iPbcD5AZOHqtrFLl0Of30TRzANvkHr8cjKcKW+UuYoikI62O6bggzDQMM6M+dT7GSf1ImXQhfz6TTY/QxsSKKBd/PKSQQEslsBO2s5JOAjFEEl6tC039BM95/Yfmw9kfkoDT4B3tV2608EH6pbzW/XakagShUOpoCK98jaKp/O5cUOfrOS568M8//5x3332XvXv3smzZMtLS0pgyZQqNGzdm1KhRx9PlcaGsrIwOHTpw/fXXc9FFF/ltM3ToUD7++GP3d7P5+Lg+agb3mzFSnuVbEUfZMhCl52/uRVxptg7tmf6wZgDsbqevLS3XQttqMs2mfj03px6hBPstZ27BhEAhiVhaisaslVsoo4IQgiinAoke+WLEgGNDf1dZdf3uff1JS1oOreCRoUEMVfsxVO1H6y3L2A0M3ruAq7bO4OrhVWwNrjuuGZB5yYgk7yjL9XIbLUX9qEp0IiCEYPVD4ezPdbD5sINnjS+xJvV7FIO3gSOHAtS+78EfN+Pl+R/wqbtNJ9IJETqZ8+mKYBFER6U1vzrnIZFsZXdAzkGl37co7RfimPQ1YGJKl5u5cut37rDy9lmbiK4sZEGaK5qmyrBWw1DZQKmfBvEqpIokggnCghkbNjSXVVFSLbznUQRIHK77pKLQlIaki+akdDXwwM+evBMuhOVA0j+wo5/3dhmEdU8lPZ4ZyZFLm1JxwW840XS+G9f5lFq8zmcaQpUQEkUcRgyUy0oKKAqowB0Nfkukn2HoqrSlq2jLXjJo+MsWbIqBNtfMB0XFoai81u0O9oc2INJeAkJw2T8/8sb8xxBApWJkVXxb7nwznMzuGQyLas1A5ZxTfUn/w38AC2bKpRV5uAkUxEFkDuRVz8Wft76Ie1e9jQHoe3AZvzYf5hM9MHLnH/zQdCiop87gP321nUfOrXZU3mK87F/11060oBvtWMUm9nAQq7ChCpVs8rG7ogYMGJjh/IPCyvOojaz7r4Z9uXP9x24D2Jy0fhwJjSc9Zytb4n0pTuyqkT8aDUDVqlM1giuKGLXzNwos0ewLS6IwNB4MukxttDuQFQ7sQdUOwLyIwNG7Alh+bzAdUw0nJVuh6gwGDGST596+xrmFhiSz11UYzBNy8SX4ppPqSCs+yDX/zKBBWTa5i55nc0xL2ubv4JyDERyeXDPCRIAjFO3bBwm6dAoOnMyVy+hAK6KIwIgRMwaKKaOSozsSIkQYqjh5RmWAWCXab3qpQLCS9XQinbl4R33YsBNMEIPV3nzm/AmZ15Sjqp2OqvfHO9TB/k9PitM+IuSBGyjPjULNakK6MY3dqX9SHpTnryc3ousJpxtAS9GYA/Iw2upz4bvHqLpO7ZNXSDjve4L7LyLSg54jXxbRS3TCiZMiWcI11gf5TS6ggko0NPIpIkqEEyeiud0wlqmOarm/ldKUVuamjH8CdufY2ZbpRFUE7VJUUiLraXWwf4GbDJcx37YSdnWh5jzY7dAqxmz7kdygGOY0qZYb/m7Qg3t6T6TQXM2l2Dx3BzujmmDESYE5zGet2Zh4dO76hLIcGpcf8VmPLt3yA9tjmrIh0V+qsSC2LJdNnw7Eqai0vHYRZaU15MKSo1EECco3nEVqUh7b7Dtptq4MYVAxdGqHOIkckDXxvXM2HUVrCmRxre08dToFQQVWDpGJiooJI6WU87NjLt/xBzkyHwN6Rl4lVpqIwLaU9rQkQcSSShIb5TaKKYMCbz5Vu2qk29VzMNgrcRirI+Am9J5AmSnYN2LRHkR+OawwbqQvnet0H475rXvnnXd4/PHHGT9+PM8995ybwy0yMpIpU6acVKPbsGHDGDZsWK1tzGYziYm+kSDHighCKaHSxSKik4WSsBuOtPZqJ9IX+ipdBSnw0+O4b/eGS+BbiTb6eZRuM2ley4NyKpEumrFQ+oa6l7oMccWUUSrLiRaR2KUdBdUrkCiMEKzzrqHm5PfaIt3oVoVnOnZizHor96yZRmrpYT38t+bk8NYHaBMvQAkpAfRIupaiEU2E/5D3MwlpsQbSYg1stzdgi1PB7jJoxhBFJjlIJM7+n0H8dvjzFjA4SB7+NZmNdY+OgsI6toCE8eLaU3sx/xKtRVOquHz0ggEByElR0CKz4PER8NN9zI5oy8E2/aBcA6Hw2PIpRFYWsSD1LF0JcZGqEl0teJswklbPU/6EEMQTgx272+BWE3bsXuHcKipvGp+gk9oGwmDyk39zz7dW2J+OahCIdgvpMGw+6/5ujVbD6PbKvMe4etuP+i/wG/x2STD3fFiJEYOH0e3M8Z7WBRepg7nf/iIRhBGEmcNkBfwtakMs0SdgdPULLZUmfGl+jeTK3vwyUkHbkk6ZxUOoFILv21xA85wdICV3r/3A/YZbNDt9M9dx3+9mXhqSzEK5kleUCafkOv6H/xbx5Y3Ie/4VcPhGbEeV5iA0jeSb1zL/m4tYk9jBT7oOtM7fxbLkridjuAFRVHns731tSFOS2cIuggkihCBaozsZ29GCI2QDYMVKLvkULBlGbWl2gw8sJsJWQmhlCaWWMCrNIaxJ6kyY1VcJCi/Lo9QcSm6Yt9OpTf4ulid3x+R0MOjQcr5rVZ3ZccX2n9gX1pCFjQOnhRuB+Ag4p6WBKRcFEWo5+WuFhoZTOlnp3EB3tQNL5RqCCVApac1w/9sN5RyOjiGuTDf2xNiK6X9kFQVRkGURiNACZJEfh93aUViLk8m78V6iiWQVm9y8RderF/O28Ulusj3C59rPtV5D4wCpnicSCcQGpK3YLQ8yQh3IXKdvqtVybT0XqoNJpzlqbDDrcVCr6mmocBnevCvCWFvPQ2IljBAqYo+gxOZQzH6c1K7ExxFdb9JLAYaqfZnj+BsWXE1Nw2LGokGU9PuA25Wx7q35FLr1sBQSmC2XutORjRhoIlJpIKqftUARo03jjDSNO7MzEIKEhW9MU4ho9gvODefgeX+fXfYKnXO28FtqP3e6e9OcHZhwMqfZEK815fw9s5nTsC+FhmAOhR2fDpAVEsf66NY++uz4dR9SbrQw6NLv/Kxjkot2ziQ7OJaMsGRv2egYcGj+eYQtjSbx9UFUVJkjTEZCdy5DTTq5vN4/Ov7iT20xK+VGDKgcIadWTrdQQiijgiDMmDC6uSKdOKnASRBmXtbex4CBs+jEQTIRCEopp4MSOIqupdKYg/IIcSKaaCJ1o1vUYSioMZcK4WVwA8iIbOibaQFgsEJwEa87P2G7bVed7scxr3hvvPEG77//Po888giqWu1p6dq1K5s2bTrW7k44FixYQHx8PC1btuS2224jL692j4jVaqW4uNjrA9BWtEAi0VyPioaGuP12aLIChF0nAR40jaCeswDQ/r4QbcIitAlL4LWv8F1kBPxyLwDxSux/fNX/DRop1Q+jdqA12sR5aBOW6J/XPyDYGcpWdrNPZjBA6UFJDaJ2MyZErC/XkSP8iNf3izta6Hf+UnZGNyCxPJezDq3wOQaHBf66yf3ViZOtcjexIupfXuXpg+5KB2zYMWOmp+jE3eo1DEAn05WAsfVqBt/zPmeNe4uixkvRDrZAmzgPh+s51KZ+SIJ2ehZSqEJ3pYPbqF2J1SetsQruSNPgMpQxT6NMvJTtT7wOt94GQXnsiGpMx7xtzPj5JnC6hEgpoTwCrVh/pmzYiTsNDCFdlLa1VgNqRkOvNOybxWX0VaqVU0NoCWpoCZTF4yyKx7HkEtZMegYt0vs9DbGXc/n2X5jboBcNbl5N/G2beNo4g6AjqrucPeBVyfj/A0YpgxilnsMeDvjMgceCZMWXAPZMRYpI4N3rncy7zuFXmNmZ0ARx3pvsC/dVLre3FOSQTxopNBHHRhT8P9RP9Fnwpl+DG8DAQ8tJKs1EGkwMuPwnjgT7l5cOhiSiovkXjk8ShrX+b+e+drSgEivlVJBDPlcZLgAgVFSnOzlwUkQp1JivdUj3Z0dUEz26bPoIQsry3fepxI9iN3b7z6iaw4v7CCA7KJrMkHiOhMThUFRiynJomKdnIGyKa8NV/3zn01fVOOLbbKL4tXD2PhXBB2NCTonBDfSiXgsPFNPn/mRM4wuZ+sAtbJr4Edr6gb6NY/xwdZpLEE8Oo3LScB5c25OK1BjsRvintaD3mjAkEtnn64Dn13Z1w5GXRB6FGD30gmTicGpONkt/NUK90VVpW6dr/S8Ro0T4NbhJJHs4wG1coX+3tkA7NA3t4KfI8h6sZQuxRLGFnWz7awB6Opf0+GiujxPid8OEi6Hfp95tzKXIiCysz08nd8LvaBOWYJuwgL0TvqZiwny0N99DBuC6yiGfeBE4NfZk40p1lK5FRvu+r87IDJqLNC5UBru35VGINm8s2oTFHJzwPXkTfkd7/QOkU8WOg0MykxT+/8gOR4NJGHluTAlx7deAYqcqPHN3hJ7ls7pBVxAKQfZyHl71Bv/EtNSrmDqsdMpYDZpGdEURmcFxzGtyNjvi/PPhHQ1OxcAT/R/2MaxN7nIjieW53LfSu0pz7/1LuXzz9yxN6cpHbS9nW2Tjf7WWPfndh6ieaoHNTtYDDxx3fzu0vWRoWWzRdlJ4lGi1PeX5pDyWj2l8EZfd342PHruZzfnFbJTb6S0618rpVkQJI8RAciwrGKF4z8kqCg1IRCAwoLLGVYyxFx25T7mes0SngP0qQiFdNGej3E4FVrR/ekFBItXzTG3Q/BpIcZiQz/9MebmJn7S/jtKHaxx1auWBvXv30qmT74WZzWbKysqOtbsTiqFDh/LZZ58xd+5cXnzxRRYuXMiwYcNqrbD6wgsvEBER4f6kpupC/dnCuwyxAQPCaEO5+V7avHAdyrPnoAz6lGCCkeVhLoOailc+uQ/0Hzq0npKOe5Wy/2AKSDPu6znciowF5xJFBIfIZLvmW2DjCDn0uvwXiNqP+8EOzqfi+ts44sjGIasX8M/7d+WJRSvZ2gL+DlDeHsV3wT9dq3EeDzqLNjQhlUqsFMgixhuvZab5A9aYfiTftIp1pp8YovZhvzyspxZ+8Lr3b3akFb/+dfqml4JumPBn1KlrdJXSeDPKEyN5esFMNraF17rdAqqBRkUHWP/p2Rx5rS/r2hSTtkefI2I9qozVV1ytXlCrcfAgR0gXzdzfF8pVXuk8Ww4JnCsvoKoCHggoicWy8lLo9Bu60CKRSN5ufzVXn/cWVoMFhGBfZBqZU3/DPrvau2o6PtaC0xZCCG5TxxBJOEWU1rp8a1Yz2hvvuhwyi9Ge+xktS490jpChtRx5ZuEN4xMkE89rDx8i/TxvYUUoDpTr7kX0/5pblm0kM9XkFovmD1T58FYTYYRwttrzjC2i8/8NwWpg2o9iUyg7Il38VaoBafBt2z1jNbHWfEZu+5W4okxvvs6TBIsBpo35b99hk2JirWt9X2v6yZ0m10Cpzt5Qq9a+ax8Ac0GNHqo5jf5oOogZzc/j18bnUBYc5WFQ81OtOjgWTfiuqQeiGpEXEktmZAP2hSay4NuLaVWsy35rEzvyUo9xjP7nZz2SRLreWuEk7aJPWXJjY1Tl1L+vMURi/+A1V8GOKs4wBb55GumosXaNeRwiDuGWX0Nz4dp7kC98hzZhEV999CaPTZpH49wYBq4IJz9Wv2ei41xIn0sgZU6++iWOn8dRKEvc25qIhmSJPHdxsUAIxsJQtV+tbU4EUvxwx1ahmDLmyGUAyCOTwNoKbE2QmS/g0CwUOIvpmTeCykWX4M2zJQAFxl+FMqkfyr1Xo4QWwpoReMkj1jCY9JOLW6/m8QIOtUUuusLv2MIIIUgEiGQ8BYgQYTqlkN9n635SSEAimer4lNfsH7OrsAxm34bX/TjcCjn/agBa0OSkpxrXd9xrvpYHrz7Eyy/9jhpapG87+2m2RzRC1ZwgBBLB0uRubmNKj8OrsRssoCg83Ws82cExrjnyGMwk/tadGjLKjOYjuHjk+zQrrNaZjU4bPTLX8leTgWyJa8M7Ha7m3oFP+43oriucfp6JOcJPQEsdcYX9XprazqGL7UK+d/xZa9uLP88lp6Tq/Pr7a/74TbqQzk9yzlHPtV9moGkaf2iLvLb3oCO9lE5IJJVYKaOczqQzUj2HCCXsqPLgAKUHIQSTKXPh0xfQg6Fqs9G4EJyPL8e167jSGPjqmaNeUxWOWTtq3Lgx69ev9ymaMGvWLFq3bh3gqFODyy+/3P13u3btaN++PU2bNmXBggWcc45/LpiJEydy7733ur8XFxeTmppKc7UxEYRRQikaEs3jBzhMNqEEY8Wmk7tXRHN0e6aEi58HqLeKQ6pIIoEYssgDW81FS1CeG0Nb0YQjMpsd7MOMCasHH4UJI+1Mqex+6A5yalRXbOI4h5d4kHEGvYpTkiGegcH9uGjFOnjEzwKi2mCwd2XYtrSgAfWbc+u/RLASRHelPRZpZrc8QLEsJVyEki50MvwWNCZRxPGk4w2CMFNm9S2Csbdu1ejrNSIIJZ8ir21mjAEJiE0YsONEIlEQaEisZQmcM+ZtONQeVXOw8OsLCdZsSKBBcT6LekDjzHCiReSJv6B/iXglhr6iKz/JOT6p7QKBFTuNlBSitHCKKWUX+3FKp1tQO5LvfxmIKGqG7YY74bIX+MD4HMOtI+lw5xXYfTiTFJh3A1rMYZQuszBxYkqO12c0U9IYr17Dx84f2E9G4PD5d96FTA/PaUksTP0M8fQQgsz1RzE40egm2tJKNCGUECr7f4jt3Evc++6xPc+32m7ygLJwhb+2P0k4YdzjeI4yKlBQ6C7a87Lh5Fbv+x9OHB4bEsTUpRlg8426WpPQFqvRUk0BAPrfTgcY9LkoqrKQA+GpPN5n4r9SVP4NKh2wMcNB+5T/1unQStFTSttQ7ThpLhoR7OLQdaKhoqBt6c/R5M7bB7+k/1GlHAa4V3nmCJoX7mVbXBvvHUK4q5CuT+lKXGU+ryx4ms4pPXAYg9kR04wdMc0AqWd/jHqV8G4LuVa9jkZK/aBqMAsTWGs6ugVIQZg9mkpDnkvG11As5TCxmpdPOgzIx/4CaSLEWsqUeY/S7rNtxP7WlMnvbgMh0JaOgsVjwFyBOO915MxxeP4uodYSJs97jHafbeObP5oz9Z3t3KFeRT+lKxky66jjb00zwsXJd9DEE00CsWSR63f/LLmIOBlDljMGNzm5NIMWypvK51xT8gx/B1Jui+IhcR8A2t8XQNlxRKbl+X++BtP72Ps6wRis9Oaw5QcqJl7mIkupRj+lG1FWPRPBgZN7i5/H1yggiMhtzWBlCDeoF5+kUZ9eqEqzLR27gqfei6DSYKHP2N9AODCKXEx2he9ajHDPg02K9vN7Yz3C0GbyH3XtgxpzaHrWJsJsJSxPPYtGBbspMIVTFFojCtFgZFtMC2479xX3piB7BaCQb4nUz2/01d2OFfcNeIKVnw/D4opOLbcIJrygcMj+Lg8bbz2mvjSpcUhmEkwQAnhH+4obuCRg+z0FvryUWmkkm9lJCEF+ueKrIBAUUsJeDlFKGY1JoYloyHBlIL2Vznyp/eJu25RUuqrtGG+8tk7XMUzpxzy5jAP2HHYci/mrPIZao+EK4wkhuA5snMcQ6fb0009TXl7Ovffeyx133ME333yDlJKVK1fy3HPPMXHiRB588MG6dndK0KRJE2JjY9m1K3DurdlsJjw83OsDECnCKKIEDYkZk5uzR0UhmQQqsWLHgRMn3aKjITIjwBmc8MAoeK4vSof5RFB/oxuSRLxucAPoWDN0UqL2n44FMw1EIsWUeBncACIJwyxMhBGKCW9FXQCznUu8tt1vuJEYNRSarK5xLic8cAlKkHd1mc3sOONTsv5yLuVh+6uMsN2MUzpJF81JIo6uoh0fOmb4tF+rbaYNTXWus85/+Ox/cPDxFRKpT7jfcCOxRHmJIa1oyghlIK3wrehlw4FEYsSAU0q0LT3hxe/hUEdAIaaiAOHyTrn5o6xwdm4LomX9IeCtDQPU7n4J/KXrX6GzhCCCCCOESML41Pmju01Mi21gKPc59tJzq+ewAllMVLAgrJW/1C7XXdt2FkBgfpwzHFcbLkSgOxsChs9n+4k01YwEF6fWW+fLiYAqVBJFHPHEECnCydCqlc3njffSTbSnFU3oQCt6Kh3pKTq4jepmTHRW0lGOxQP9P9RrhAcpBD99ATxwEQhv50lBSBwdMjfS2VXBttfBZYxbM82rIub8tD7MTBtwygxuVbjta9959EQgSoS7q3cbMSB+uh9+mAhW13pVS9U6g9PG4N1zMNsDKD5S0jN7A48tmxK4H5fRblZqPxIrctn1SX+MDs/fTei8XN8/iv3XOxiqBuZ5O9kQCK7s6isHWVL2UhqUjRONIMzVEYSeKIkBacLssLLl435csHcOEdYSEtY14Kqrz0f7/Gn49UEobABZzZEz78J49aMw/nIQdswOK5s/7u8+LnltA+4Z2419jkwaKEns0wLpDdVoKQJX6DuRUIWKLYBaacDARrmdHJEHkdOrd4QsADWbw2STmTYfg9nPM2cqI7TJtupshW2BjGS1vdsa9PvK755wpf7pWCOVc9zUKBI9UyOScGKIZLW2mQYkoqISU5LGZ/t2gtk3nW/huUP4yvQa56hnneTRn154pHUPHp30FcaHRqM8NIrgJwaw44MB7PqkH9dvmq6vGVKSGxRLsL3u87fBVoZwer8P/TNW0qgkC4QgsrKEyJoVUT3hERVXbIlgS3Qzwv3wax4vjoQlkXrbOlpfM58W18wnbW0X8mNVXnd+pkd61cAubT+jbLfxrONt1mne0bY7tL00FQ0JxkI4oSSTwCrNP52YlBLn4GnUNFLddbags0iv1eAGus4SIUJ5xv4WbUULUkQig5Xe3G4cQwe1FVEeRVHMmGl6DBQj6WpzWoumdDa2QGm8zreBuQgGTfVzpCsiN8CIGfw+0XXkjayz1PrUU09RWlrKjTfeyIsvvsijjz5KeXk5Y8aM4Z133mHq1KlekWX1EYcOHSIvL4+kpGOPjvIshy2RCNc/Jxp27BgxYMSAGSP5ohDx4OXQ/nd8raMKFDZAUU8d70hdEU806S7vqnL5szDmYSwNdkDbOTDhAsoTtxBJmDtEvgkNvJbFCqxkk08CMbQRTekoqiMhJVBOBbladQRcN6Udl6sjCL5pAoaLXoQGm6Hzb/Do+SiRvpNEK9Gk1jLmZwI+c/zIbOdSKqWV7XIvY9Tz2Si3Y8Xm1+O4Ve5GQ8OBE+XSSTD2YZIbZjG6vcruJ0Jol3z6p/7da7iOwUpvrzfrPuP1fGd6g4vVoV48KaCnb6soaJpATvoaPn8Vz6kvOziGxanV3HgAJaGwJi6TYOXfe5xOBlqKJtVlsGtARSWfQhw4KKOCSqxsldWOh73G3fD4cDhrOsTtoVmLw6y6P4ShHR20Ey3oITq4jUiv3ruNpuf9jG8ZMwkd9LDxkHqaLn+ikSziaak0wYY9cKNUP6lDhkpaR9TRs3oGIZ5osmQOUYSzS+53bw8SFn4yv811htGMMZxPV6UdyUqC26icLOJ5xjj+FI36fzhRCMKEEpMF915FzfmlV9Z60gt2gxA8/ferGJxOL3Jqm8HC4YhTX1RpXcbJkeuaiFSSiUeg89va1gxy75v+y02EVwZW3jplbuLZZa9ywc6Z4KE0CqedZnk7uXTrD2yLbEKYo5ztH55F05xtXilTt637hH3vdSWx5AgbE9shgLXx7bAb/Ttb7KuH0uUUcJDVho+uDGH6NRa6pED7JMGUi0xccdcPpJKEEQMVWP1TVoTnglpBh5wthGg23m97Oa2vX8KDZz/NpykTYUvNDBqB/c8bYMpXII10dB03re0VtL5+CQ+c/QyvNpzKr48+xq3ZbzHd8YvvOWvgHLXXf3MTjgPNSPNbvMqBg/3oBkMR/S5qyk2I5NsRCY8hBDjR2KZsJ/eZWO4baKBlHITFZaL0nU7Io5egGStJIk7vzMfB7w+StChoHgsJ7dfCxAtQ4nyrzwI0JNnv9lOJPkpnL368MEKIIZI4oskkhwYikcql55P53Gcc+ek6sIYDTojdy6gOsOeJENoknf6y/MnC45Y7MEYVEBxVRvomB6GV8EmbS5jS/XZ3mv2l23/hhk3T/R5vqSwGe6XXtu6ZG+icvcVr22+NB7ExtgUphQfJsUTpZlU/NAcmh5XIigIvJ9Gfzc+lyBXpVhNGWxk4bAhbBWgOQisK60afIAS5IXEUhMTBygsAqKCSddoWn6Zr5RZKZRkznH8wp0ZBlA1sJwgLCgpHyGG2XMIGbZvfU2bJPNq1zaTN3U+S1HwX/ZoqzLkzmIEDd7NM+jF0eaCKOsghnWyRu1BROSgzSVeau9s0pSFJxBNCEJnkuDO96opXjRPJkflYbr4fLnoOkrZC/C7o/ynisZGIHnPwW6bZH4Qd7rwWpcMCCmtkXwVCnd9a6fEDjx07lrFjx1JeXk5paSnx8acm2qi0tNQram3v3r2sX7+e6OhooqOjeeqppxg9ejSJiYns3r2bBx98kGbNmnHuuece87kiPayrdlfkTBV2cxADKg6c2HGgoKAoEudZv8DGmtWPBPzwEDyg8w9EcnzVSU4GVKF6Rc8o7Rdia7/QLYrYETRUkvnR+RdmTD58RiWUsU3bQ2clnU+1H2lBI3f1I4lkrzzEDrmXWKqLIXRwtqf8pU+qK4ocSoet/dDuHYMS7p2iWirLz3gug05qG2Y4ZpEmU9gg/+EK9XwqsbJCbiBfK2ISOjFmuaxgjbaZDxzf8g+73b+Dud1SxnXqwn2G60/dRZwANBfeEUNBruiq9qKlD9lvVXUwbXcnKPLjFREKVw97g9fnPcKQ/YvZG9GAK5YfIkGJ80rDrM9oqjT0KSpRleLoxMlMuZCmIpVlMo8CilniXM0OdS8tlMZkyCwUkw1GvkkaP7DVMhuAZVowm+QOALpLvUT6P+xib/9Xoe0XxH30KXn5IYSaoGz4i8i2Ov9CqPj/Z0CqQopI8EkX8YS4+W7kV4/Dlr56mlb8PrjhHkyG05tr8XiQrrZgivYpO+V+zpdn05/uXvs9q7DlyQISiaOYEjqIwBWq/ofTF6GEUEAJ/HIXNf3BKhr7XFXkvm51AQuTu/t2UA8iRaNPkr+hs5JOKMEuNigJEdmQ25iEshwGHVpGWskhNgVFVo+rPJcyQzBWUzB7IxvyQdsxmDQHBk3icC1vnbI2cfvGz9ke1ZSXe9zJnEYDWfbFMJbNuJjZqX25csTbIAQPL5/C8pSuZIYnszFOd6Q2LDkcMF01Oap+OphHdzIzulN1xNvD9ggOOqvJ7atkX60yCF75Ckrj3PsOhiUhgad63XeU506iFibhdD3PLXO2u4671/s4zcBHz491H8PFz6F0neW3x0vVYcdymf8pYkWUly7oiVLKCSWYclGJZtnqY5rbKLeRZTzCC6NSeWEUrND20d/2JhXoabsHp7wGuVXrYNU5qnsJtZaw/IvziLfqekBxo0RSNy1hmPyCHPKQZb2RuXeBsCPiXkQE6ZE4TdT6V2zHpJhIJp58CqnEhhEDuzmAgsIOuY9YIlFnTq4hyaqEJWcy47qOp2bQpzkuV4bzifYDB5MM7A1J5JHeD7nfwajKQkbsX8AfqX295zGnAxSVXofXsDkunRwPx0JUZQGNSw6zJrmze9uB6EZ0OLKex1ZMRRPwwFkPkliUQV5IrE7LEloAlWGM3vELzQv28XyPu3EYPOhY/JH1Ixh0YAmHQxOxKgYsTgdX/PMjDw184thuwMpRaEm7kL1+42PHDySIWGJFNAVaEXe/G8vfO88CzgIkqy9dyU0dn+CHNy6l5EiKvl30hCsfgpUjYXtfbgdupwiDAnPHBdOrsZ7NtlnuoJhS9iTN486bk3nJ2AUpJU/a17rpffwhhkhXUaASdrMfC2Y0KSmmlO5Ke3e7BBHjrtxdRgXdlHbHdh+AuwxXM9++AqX7TOg+03tnWD7yzuvh7XdAqxl0YYfgIqiMgITdcOM9KCG6g6uEutU0OKb8jJrpL8HBwafM4AawevVqOnXq5C7scO+999KpUycef/xxVFVl48aNjBw5khYtWnDDDTfQpUsXFi9ejNl87Cl2MTLCrdjXTB0KIchL4S2kRG+jBoh4MFRvT6B+Vi6twi/m9xinXO21TXEthBLJcudGgrFgxYYNO8l4FzbYyHbOohMxRLId72ILh8lmlbaJqY5PmWz/hGdnlzB6QlsoSMWLJLUyHL581mds/x+KKPQUHQknlP1ksMypewmShf7OHZKZaJqGXdpZrW1msP06tnoY3EA3EEcQdgpGfmLRHm/F24L+Tg9We7PTNJt++CnGYfLP+QYSp2rgjsEv0vzWeQxZEE5BnMI29jDR8ep/PPITgwYi0SuFW0XxmqcOk003Ub1wrWcbk2zTANwLGEA61V6jEKoXnKqQ8Kr/KzFH+ODhnVROjiD3xQiU7r+724ZyekQHngiMU6+stXqrUJ0oVz2BMulslBf6o9xzDUp4Pk1Fw5M4yvqBZI+Ka0fjMsoij0xyKKeSBpz58/7/RwxUXMWqTL7pJ+91uIYguy7Uftj2cnZF+9II1AeczDoBI5Sz0X69E23CAshtBEjsiooEvv/1ZpKKdUOY0Jw8smwKzQr3AZAbEseXbS5CkRpBzup77VAM2FUjIQ5928MrppJszUcA5x5czI8/XovirMQpFMyuVNI5jQawNzSZtJIMUor9p0a+c9EpTu9TzS4ydAGhyYhg//NHc9HI//E/PACl8XjKpEdCk7hjwNM4FH9zvUfVTUsBTquuN6iag5eWPIcAVOmvmJtHYYHvHkX762o/LQRGUZNT9eThaNWiSylHQ/PJNgC92MImbYf7e2fRhl3mOVgwI+dc73qGaxZJqMYbcx8mwVrAT02H0OCmlTQbNhvzQxXMf/EBtKJkZNaz4EgGexoy83l3IFBKPV0vJhpucVedz6WAEILQXP96iU4Y/GjnKcbIkzvIMwhPGO7kLuVqMjfeQo8r/8DuUZDHIVQqUbl+6BS34avd4Q0MPLAUgO2RjTA7PfQHzcHvzYbxTsdrqIlyYwhD9s7nvgFPUhYaT2ZkAz0KWFGhPBqar8I+/EOu3jKDn36+DpO9opaoNX0sMeX5hNjKyTLH41BVVid1PI47IODn+6icMI+fHnqKnvem0O0ZjW5LPuHvnUY8558fv+3Op4uMlBxpUL1dqvDFi7C9H57vp0OD/lPL6Tu5hEq7ZIW2gV3yABZM9HJVE90rD/GiNi2gwQ2gkGKKKCGFRCqwUuD63kd0IUJU67A9lY7sNs/lYeVW7lDGeu2rKwYoPXhIuRltRxe0x/7Ui5o9/hfaNj3jSWmwE/HUeRC/E5AM3jufPdO6kvlOJ5b/MJCY+/qh3H2D2+AGNWerwDgmo1uLFi3cUWSBPicTAwYMQErp8/nkk08ICgrizz//JDs7G5vNxr59+5g2bRoJCcc3ARsUA1E1otJiiCKeGM4VfUj1IPQ3u5Rf0WA7NF2O1yKsOGDMY+62yfW81HOqSCLFgzctnmgvovQVrHO/RiFYGKj08Fpw44nmae0titBTUO04sHgc/5DzZR6vfIuH3kni6ZkaAR/dMt9nq5PSxk/DMwsdRCvaihakksjfrtDc85T+tBJNsGPnAIeZr61gpP1W9301oHjxakUex6RU35GqVr9vI8QAOou2fF9k57sihWiSuMgwxOcY0XAzNFqD9/toh/suR5nUh1aTrkJ5dhBKanXYdPBpZEDyFC7jidErZHkggyzGi2vd7+evzAOg0qMAxRT1YfffnmmiZVJXxMpltZIWIvT9Ukq38Aj135FwItFcNOIF9X6a0wj2tkN76Uu0p39D++12pCaI8cP7oKLQ5P+h0S1VJNJetKIhyWT54RjxhKdRLk45sykF/r8iVrgi3i9+CbDiOU9XGC3MbjZY/66qoLpkDClB80gFOckVS2sir27O7v8EIWtHw9IrgCqFCfKDotk2+kKirMVs/GIIOe+0ozDuUy7Z+TvNC/a470+5OZT9YSmojmoH8MaEdsxP7sl5e+aSXJRBcqm3IbxP5hr+2NiHRz+JpHvmOnocWgFSMvSir7CiYPBrSAJFnloeWcu4bCzji7DcU4zlpu2Yxy7y287ToJRGMqFV619JnN/2M9pchFM14SVPIKHPVyiT+sCAT6GyuqiaUXO4o6Cv2vLdUSrsCph7M9re9l5bW9Cobhd9gtBKaeIOPqgNNWWPKnzrrOYZNgojDUQil4ihRBQdzYguSSzLYX9YMjcPeRWbMRgk3L/ibdZPHsNn58a4qtEq+kcLp+q+11fn/EClJ31FV0IJRkG4igTptEVtlZZ8enUQVZXjQYK5lDtH5Z3iUZ++SFLiudpwAZb8JkjV6BVVVmIKpeeYX3G4ioQ1ydvFufsXkFiaCcDhiFQyQ/R5oFHBXtKKDoKiuN5/b+yMacY5l86gwugv7FmB7X34IfI2jjQup3vWBg69342p8x7207YaX7e+kNUJ7SkIjWJzXDozmo+oW2S3z/xSxU2mG80K8kPgt7v8jjO+yA8lgAxsMlqxX+P890r5W1vrSpeOopOiR0K/7Pwg4HHVZ1RIpzmDlV4MEN3d27oL7znQLEykiAQilDAaKseXOh4kLJxrHQ4fTQF7CCDAFgyfvIr25O9or32GzGoEYx4nIWQ5X/4xjjBHJYqEJnskc3uX+vRZV8njmJLCn3rqKSIiTg9i8ROBAUp3tmt72cl+IgjjIHooeryIJVyGuKt3Wl2cPkKAuOk+NKcAu0H/bvaOfuug1K+Kr/7QW3RmhDKQv7SlZO5Ngg1nowgFrd0clCZbsGPHgpkBoidjlfP5VZvrTvETCIooJYYIMslDIKj0IGMVCCpe+RQKa3t5JJz7js9Wf960Mw0hSjBJIg4FQQFFlMgy4kUMsUQRLCys1jazVx6krWjOJrmDOKJpI5ohgAVyJUCdCR5PJzQkiXNFXwopxik07j+i8nmhnkb6br6NSQ1b0pl01vOPO01ECBC33uV6HxVaiqbsNOue10akuImpPREiTh+j24XqYD5yfo8VKyoKuzkA6O+YgiBH5vOO8Sk+sH2LAQMhBPOQ7WUv71Oqofo9rDKqAe5740mCWhUJVyLLUFHchjeLOP2LdRwvDMLAOONVrN9rYPt7w3A7EZaMRWa0xn7Lw8QQSR6F7mOcaASL/3/FJ5JEPBulbuDeJ2snEC+VZfQWnZHg5eD6H84cJLo4nZSgcph0NlqlClt6wYxJeDvj7OBybAbZSt3KTVxpNpFluexMOHXOuJOZ4bpjZxx48UfqJ//yokm8/tVUHFYrBrMZIQSbVn3PlohWXgNc0Li/d4dC8G36RXzbehSK5qDne/fCuXPdu50I7r9xKFbnhbT8KA+7NR+DbSGvfvQuZjQeWz6FG899zescUUHQt+npIaeliET6iq44cdJQJLNW28ou9qOd+x68+y6BYxk8tvf4DsOgz/UVdZd3tH2lwcLF572DABY18iwsIQP0LWB3Z2i80b1ljDLyeC7tP0OUiKCCyqO2a0EjtrHHZ/t8udxn2/vm53hgmJO264rxGwdiLqT7A88yPfUs+k/b7X6+Ppo1nhH75pEdHIuoUBg8fx5/DTzbNdDPEULDjKmaK66eoZmSRjQRWLG6ZTALFiSSac6vSWjxF61fcLDdloFQJKnGWAaYpp3iUZ/eaKu0YGrXKG7ZXP3ONcvbyQU7ZvFKr3Hudu1yd5AfFMV3rUbqz5tqwOFy9PQ+vJqLtv/O6As+9Crm44YQ7D1KJLa2uyt9n3oQEbsPY7vZ2A2r4JlycPjnJ3AYLcQVHyHHmKCPx3D0OTWmLId7V73LY30noKmBomMF2H3PaQjL5+/Bw2m2rBTPd/KC9gZ+3ugMaGBamVFJDxwkEodZC2LJ6hjGHFqI2l4gGgQ2TCkIOok2qKiMUgezVttCikzEiZNeSke/x3jSjxwP1Lw08EkJFVAZqX/e/AiAFgeXu2fnhQmdeafTdfTMXIVm+0On5TlGHNNqePnll5/SdNJTjTIqWINOQBhDBOGE0k60IEHEUkyZu3pnFOEYMFBIsc7xpgZONT0d+Gm6qe3JsGdhf28quDxvGsCyS9HS1uO47Q4SieNZ43haK80Id4RR7HqY8ygkjBDMrvQ/EwYcON2LjMEaijOgwc0KHebBoI9R4ryVMjOmo4a6nylIIo5dHCCKCNZpW2lOI47IHFJEAodlNuvkVrJlPk40EoghTISQTDxlVGDEUG+Fjn+DKCWCLJlDBlkckiYyCq1ULQ6rKpxUOCJZiy9ZKECIaiJBjeV2w8Xc43gegH1kEISvsSjkNIp0C3alJ6ioGDDQlbas5x9XTWVJrizAIsyYMZFHIXbs/K7N90pD9aQQ8E4v1Q2aZdLX6HaEbK9IN3fEyv9j2JePhBqMLOzriBMng5Xe/KktcnMNAkTx/8+ZFSZC6CbaoyCIFpG1tt0nM1gq1wLwoLjxJIzufzjZaCmauDlfARSLE239BfgaJHQFwmKvoPORDSxN06sd9jmwlIzwU1tMweY/2OuE4MpuRqav8ZUrr+hiQgiB0VJtyN/4/XgOPBhTJ3d8fJjKhomRxITGox1aS8Uzk1lh3cJ5kW+grfGdpwZtHA/AqD1/kf7lcF7qehvZ3Xozon8Sdw00Y1RPPddeXZAi4lksV7u+CdJFM/bIAyiNNqNNGAWzb4DDjSEzHQJRCKy4GMeK0XDnDdBurs5J7IHFXsa2KgS6PxLazffaEq2c2nWiAYlEEUEJZThqrm/oynMUEZyr9uMX5zyf/SWU8pXjF8YYvI2HLeJVjjwbQdKjxfjcD2sEK599kZWozOqTqUe2KgqNig/xffPzuG34izBSQBSojnKcKU+jhC4GwIadIKX+OrRSRCLI6uutxIoRlVwKKJTFmIQRzDYkcLk6ghbKqalceyZh5bYQPJ0Vgw8sZuTuP3mlxx3u4jzLkjvTKWsjdmHw4aqc27AvLXJ2YnBYcZiOk8SzOAWWXI0EbL9OgIdHwhPnwdtvwxH/TqP7Vr/LpK63Uxhet8jN4XvnccM/M3ik/6PHPDzVFkrDaCPZz0fw7KxyduTAbX1MDEs3EfVAEWUBmLNMrVeQIbM4Yi2h8tmPuN5uAzrCoo6Q3hHlKv9j0ZCslBsxYWSo0pdhar9jHvOxom2S+n/snXWcHEX6h5+qHll3983uZmMb94SEQNDD3R0OuDsOd9fgzg8OlzsOO9wJGhJC3N02su4+M931+2NmZ2d2Z5MQkqz1w2c/zHRXVVdPWqreet/vixQKQ+18MWVJwmBWRWZx5UF3szBpBAjB9/2mwR3XYlx3MjKm+A8dd7fDS9vrufVFUkgggnCCsLODUmqp51e1kGpqGSeGecvVUU+Vx+Dmi6o8D2PTFxhbX0E53IPDPREB7AoObzweVztXdwC2DEfVxBNBKIv0VSzT1/hNul3oVFPLFnYwTAygBSc6BtIj8h5qle4QPy/uUaFMXc19931N4unPdTC4AbTg6DOT+2HaQJaq1RSrclaodQySuWygkJ/VPL7Wf2ad2sI2itEQrGETA0UOjTRRqHYwVy0lQ/ZOz5AUkUAZVWynBGHbgob7gRYpocAaFzDLFriz6jbTQrpo+13CCQmoN9CTwktHycHUUk89jZRRSRW1flqTlVTzozGXdJFMKCG40Fnv8YYDOvxeIQQRSThJxBGk3G70DhyEE0owQV5PuE1qu1/dePavzEB3ZFyW76TMc10F19BIEz8Yc2j08RawYiGqF+ou7g4NNDJXLeFr4xevQLehDL7Qf+QexzPc5HyEecYyqnwyQ+3KQGfSM8mR6R3GTGS0XzhpDeMDXUhO3PCVN4RmdXy+ewGhNaSmC0JNw/aj3NYhA6y8e34QcSGgSUgMF3xySTAT+3VcSx9TejwtaufjJSHgzNEWNt8dQWyYe2ogE+IJffp+yi97D8MR2OBTFJbofXPm1hbyr+9v4tvTHVwzPajHGNzAHXIURzQJxKCjM1jL874/ZVQF8pSHYNw3dGpw8yLgkyuxTP4QfN6/Zy//rztj4W5hwMV/QyZu8ds6WObu9vnsC1JkIlXUBDS4gXvyXEUtGSKZKML9dGYBHLiY4XqR34zFHerGhkniwwPds4LW37w0PMljGFHcM/6f3DnhGsiF1mAOXQZDQ5sHZ3ePhnnQdh3nyxO9361YvJFSOnqbhi6StG4aJtvTGJftf01sjMzkjsnX+2XDHlC5nqvnv0B63bYO7svF4UncMfWmPTS46XRY+dBt8P052O58m7BNgRaN3O+82enjOGrrT7tov+39uDR+ECVBMf7yCwFpPb+2fkUkVHL8q5Uk3FzHUz/rfLVK58d17mdZQmx7T1cFGHDAf6g/+SY2spWweafhcrZzYlhxIMqx8yiYSML3m60p1C5Ye1s4WuIm0Jppe1b7//vU2sOZdtr/vAY3L0rCo29jNP2xxHG7bXTrLGNNXyJNJFNLHc20eB+MABWqmidtt3of8C6MDi8l1TwIVXUxGJHgyEWVXwNAbA+ZQGRYYwi8TKrA4mAlG3hd/4gxzhNZrFb5lThETOJaeSEnyDadrVbPmGpZA5ddQqjN0xYGTHmTE654hx22rZRR6T5KSz5GyZ0YZdehXO5JfXfVatjbjBNDCcbOerYwW1/kTaQAsIntLFNrMTC81+QEOYKPjO8ooYIsUv3CBHsTL9ru50J5MgAy6XoODW/m6HALX2eFkSTD2zRZAhAjIrH7aAvW0ej1VPWlJ4WXtmqEgNsrd4OPQQ2gmHLudD3NCDHQ67nmi9Y+Y6DQcOKimHK2UESzauFd40vqaCCWKK/RslDt8POWSxJ9V9OtlcsPsHPKcA1v6vHQSvj7RSgUldT4ZYV24iK6iz0YuorWZ3gzLZQot15NoSriVOeV3Gc8z+P6a9ztfIYKVe2tE0gXz6TnkyMyiPdkMldOG8Yzz8PMC/DXzGpFYUiN49Z9yaByd4jyqriBLEga0VakCxaKO10030ccN8zOjvsjaXoskq33RHD4oI4aQwBhu4j4H5wkqXowglfPCsUSwFAWFdz5iR15wr/ZERKPATiFhv2h27AMyv8jp7FPaXl9FM0v5tP8XBqOz87G+V0gDSM34+VwSqlkqVpDnsrq8E4kqG73DurSMDQHXHwZoIhoqeWBXx/gp/8eh2WnwukeLC0In7DSVlJF0u4dfx+RvBt6rQpFOZVUU4cDZ4ffcC2buN7xMLWqoy7Sof94BV9DZecIfsiYTFVQlNtpqfXyFApk29jGd4zXXbnb+k8OFhMA9293M5cx7IOXcd34M8aNszDu+xhXVRzDRPeXIuoJnDvWytlj2gznX/c7mN+S2zKQxjRV8crXVzOycg0nrwucQbiDluhu4zMm9JBau51D/xPHtDXLOWXtJwHqGIDOJzmH8U7+sTtv3eWg9WZYnFjAqLO+cmugAkIZxNWX7aS2R3HSXk3Z1jg+X+K/uPD4jw7WVNfSfPFFYKnD/30sYO1Y9B9OR7/xe4o/O5OAyM7v7QH0Y5Oto3fsviQjRuPF67Zgve8QuOossLcu7how5iOY/G9AR2+nAehFt8FrD/yhY+620c0wjD4dWgqQIgOffxU1xIooxovhfh4fSfgIPhu+ngwCdHdSBil3+5+gSzkmbBz9pv5Ae9FYbcrbiFD3hVpDbcC6LTiJlzGMl8M7hNMavx0FLz+KQzdITWxEu/psBh35NePlcBYZKwFQRghq+1NQfxDUHo0qvo8Qgrp9Eoq9Ra7IZKwYRiJx/KLmYcfGRDGCFBIpp4p4ognCThjBDBX55JHlDV1L76VebuA2WOfLbPqJdMKt9Zya+juTU97nF+tbCCGIo+PKvlGZBI+/zsqbX+bCe/tjbB4coGU36SQTzh9bxehKgoSdQTKXJOLRkB0GnHZsbFCFvGl8HNAHMJD2X4Tn/GtVPTtUW5bTGNFmJFqo/L1RolXfNCD5IoTgrfPCeOThT5EzJiNvO3qnbug9KYx5b3KgGEt/kY1EstaT3XqZWkMwQViwYMfGr2ohJUY5icQxmLyA97VJz0cIwSQ5CgD1n7tgW9mUkY0AAK3vSURBVAE+s+kOn3WhMWPcP7j/5/tBdw/mDUsng+P9RFMnYTddTU6cxtljOnr9RAdD6f3hLLoxnBBb57/bIfkWDsgJPFYtD41j+Hk/kHj5cr6bvYagKy/Za/3eG6iq9VC/A1pqMNZ9hL7p607LnqQdzkgxGIlgDos4WEz02y+GzYSkVXRInuCdgHo+7xiIagpDZLsXoINdLazo359LD3kYlzXYfY0qfyOyH64g1Df+YfSxRJGsunZByyqsjKWgozHSQwhBaEhm6G3aYxmkINuNOOaxlOMdl3eoXxu1CS67FLc0QyeL/K1IDYfFDusFrANcCmwrENGveIv0hDlClIhgkjaKbNJx4OS+eYUsnJePd3peF4ft6bcYLPN22o7J7iGE4OUzw3A8Een9e+pvVlqTVoS4GglzuedP1y58geCmGs+96r72whorOWjLT0R26rXafoGoHaM/wzdBxnfvn0ijjMCmXFy85K0ACVY095/U/DKutie6oZyBFet8uqFwWdtCq6+a9wLffHAah6//rlOj/wkTa6Elis68eQvudFF0z2vgCqfDu7kkF765HDoYuj2/x5FPISyBPWRjieJAOQ6L3P+eqdO1SZwtj0MmFiLvOhI5YzJ5M84g7MSnkUc9h5wxlbjrLiaglyLAlpGolhCGs3tG8e7te9vNyCCFyWIUDaqJGuoopQILmnfCNFYO5Xd9KS6Palkx7pV7DQ1X8AIIWgzNwwEDEfPqbqeY7Q7EiijOOaqEhX+5lRpVzwK1gkaafDKXhlCMfwY66bkZ40QU/7ScS42qI10ks05tppFmjFknw2dXAu7Fqu0lofDYW4TfcjuDYnJ5sPXF7UwE5ZN23pFLI82k9BFPNykk2SINJ05KqWSL2kEDTeygBIGg1vOvMJERZIk0Kqgil0xSRAIHyrFd3Pt9S7pIZqPaCsD3+m8sV2vZoUo5WzuOqyzn85n+Pd8od9pv1RgOD72DgQWbq4XjZv6bzI/SeeHxChzjXR2u360U7Vamru5EvIihGPdqVgJR1NNAHQ0IBC50oo0oHAum41g9ApI2wAHvIIPc7uLDA6ykhoswilU5dTSwQ5UySgzGjp1D5CRvma2qyL+O1nMMlfuaEXIQKXoCOyjdabm+anQrEPlkiBTiiOJF17tMsY1huyqhFrcXRAbpJIhYtqgdlFBOPQ1EiLBdtGrSUzlCTOV7fqN6e3/PlvajpLbvR6/7gqiWWo478c0uNbT5Et+NL82Xzwzl5U4cEHaFEIKZ/+j9IfDTxURe5j0Gizy2qO1MEMP4Xs3xhpkKqRBXuo1hNmw4cGCsHgevPeZpwWciWp2ISN6AGPYdJUsO4c4rrmP17z6GE79rNsB1vsVfzkVHxya73nMrWSagG8u834VHKgbc77EEYqlUNRwoxtFEE9WqDjt2vwQMAsEGtZXP9B84SpsGwFXO+6lRdaRkllI74zDq1w+Cl57C/7cJcJ8r4EfgR4G4+58IS1s29p6S1GmyHMV3zGIz2zA2D/PZ4z5fR2MIYb00YqU7cO6QBGIe/Z5HXC+xRm2m6V0Ia4FGzc6lS99kSdwgSsdOYXmFxoCqDRSUrmRHaBI1oYEyqfuGa7a7Xi0NiGOfQJz0kHdTzHP13DnnUc457HHeHHxyJ++yXb/fBlesweVrtGrXzriiBUS31PJt1pTAxxDNzFzTOqPv7Hi7EVrfob7nc1lWp7XGyqEcqHXNXDVJxDFeDuc1438AyG0D2fTrybiitsOU/2ILbiYotoIvH13NsTMicJS115IXUBPHkqBVHRsPQM9ws+omJIk4ZqkFLGIl1dTSSDPV1LHIcP/Yo+QQWnCgY2DFQhJxpJOMjo4QLmTKFYi0cxCZxyFCZ2HrAa7PvlxnuZANRiEu5SIIK/3IIMgjPt9AIyXtjBYGCgODclWNUopIEU6+yEZDc3sEzguUiUmyel00+WS3hazZCsG6Ea+VOWwmicS6RUb7CIkiljoayRQpbFCFTBQjmShGEkGoxyMrjHqamCrHUEQpmSKFSmp6lCbZnpBKAqNFAZPESNaojZSqCqJEOOuMzVxiOZWzLG3u2GpLAWAhvKWOdS+O457fHuOiFe/w+6FrOOjNooDt96TwUoCB5DBRjGSMKMCFi2zh1ohQKFyGYuMDT9DwwbWw4mCYeQnc9Q1GVQIa0s97rZVWT7ca6rjd+QQL1Apmq4VYfV6+ie1CTkJ3Etbb14gT0X4GN7c6TcfXbm8NAd8Vh1omU2XUoIByqjCUQaNqYrIYRRLxbGQrv6nF2IXbu/cQOcnUl+3FTNHGuA2uo77YZVknGj+nj+82BjeAs8f2nTFJbyRORtNEMxKJBQvj5HA/XVRoe34L3B4aEVkb6RgSqVBlqQDYTr8P7ZLLmJMZRV3B7j7nFYz7yG/LGBFAU7kL6KfSCcbu9V5TKAQCCxphhFJDHRLBGrUBBQyQOYS1ixhQKCqo4mbno5SpSgpVEVvUdopUGZVU00gzMnchkUe+EqAHnRBVhLC1+G3qKVIEU+QY+st+bg280Z/S3qNmVPqujB0mf5ajtYM4V57AHf+sIKwFNoWnknvBrzw+7u98n3MQyyssgGBlbH++y5pCg2UncwPNAaffQkcP1hDUj/4rH0uGCYaVr+LH905hdtJIAtPew6qjx9XK2P6sjeo8a2q5PZJ/FZyJbglgdwipABVETUVUp/X/NPOPDLjZjo1QQjhOO2TfHXsXjJKDCScU4/PLcD3zIq5Fh8EPF8BdXyHLMrFjowUnpx6+g0D/Fiqodme+jX6YRrc/QIpIIJRgskglCLtXl2cHJd79rUaoVi2krbRN5oUwEPYNCIvbLVXt9j9T98AqrESLKNaxhUpq2UghDh9tu87Op1Dt8HrDDJMDaKLZXTZjWYDSirTUWu52PkOlRzxbCB2Rehki7mFEwh2I+IfQdmlx7130l9ksVav5zpjNKrWecBHKIrUCJy5KKKeRJpaxhtGygMXGamaqOSxXaxkocrq66/uUFJnIfLWMX9VCmmlhB6WsVZtZozZRrMpZaazH4rlWRKLbcHv2yvcJUW1uzgK4+Y6OGmfQ8wxIGTKF39RitqjtNNLENlXStnN7f6hrpwmjNPjxLHQMztGO79BeInGkk0Q6SSxjLeD+vcJ9vI1+Mn73q9NXvbYC0d6QqcAv02srffk3SxHxrFIbqDCqeM31P742ZjFLLaCYMqKJIJtUGlUzK9WGPvfc72tkiGQiCEMb/sMuy/6UPpFV0blg7MeUobvg+zWBw2dMeg6xIprf1GI+Nb4nVfpHU4QQzJFiKhGEIZGki2TqbBUE9FT7yh0+6cCJ6rcUbdKFuE69E6b8BPZqfDMoekkFzgTOU4h+/mOP7pIUYLw2nCZavImn3EpQChc6xZRRRS0lVFBONb+rpXxsfEdkAKObExdb2MEM57/4VJ/JCmM9m9hGjI98QE3mHAA03cm1s5/gsA3f+oTG+YTxZS5CXHNGh772JCmC5213c53lImKyN2O96GqI2o7N3sL546z8cmU3dqHtRZxnOYFTXmukUVq54YCbQet4zzUGRbIifiBbozM7byhtOfxyJgGfCz+c67flLz+E89ZZGkZYLUc0vuHZGmgurQMGMSGw4LpQ3j43yMeAo6gMjacyNC5g6GhiQynVwZH8a+hZARINKWgM5LHX1vZeQVlQjsCRQ/mia7PyFsh8dyj6rFPx/zeTNH93NsWU85u+iBPsBxLw33Tecbt9rO7xFO8hBIsggrCzme1+Wk8NNFGilzNI5O7UkNZ+X08Q+WzPjZZLONZ5mfe7EWAC2Z5NbGOBsYIMmcIx8mDu1K7gVv1xxHGPoioTYcMYQILmhKMfJyvRyZt87NeG0Oohsm1bZB/L9pdK2+BvvVHIYdpkHtJf9CtzhJjCQJFDkY/2Vm9PNpFEHBKJgUGTagtf2K5K+NY1i0f1V9pCQ2KKUafcQ8naIR3aqYsI7C0R0sM83UaIgfxFHsinxvdoSqPuzVtg5VRAQFBgzUXC3clKfnb9zjA5gDBCsAv3s0kTGluVvxbZYWIKl2iner/X4C8u3dN+s31JNLunb9fTjLt7k/4ym0/1H6imlsv1O/32VVFLFbWtEr9MECMCNWHSS9CExkXyZB4N+oyA4TneMZSgyR7KgRtn8nvyCCpC4/dvRzthXWnPWkg16YjvmKneaOIMeTT/MT4FoJEmlqq1xBPLBrawTK0lQgRTg0EHH4YQ//etEgYy/Gc48mc40iPd9PxTsMXHu+VAIBgQElV2PYT+jNDci8/dRZ83Q6b4ffe94ptwe5opVywtFZeBEYGI+g/5wZF+mdIBjOZgmp55kafLszxbjgJgh8UJ51yH7D8fkboehcG0wl9JayzlkX7/9GnB81ZIXY687O8B+5osusdzYXe5RbuMN10fU537O/LGU/iv5WmOskzr6m71GaSQWKxWLp76AD+kT9pJwcCmk8T6Er599xSSmis48ajn+SUjQCHDgvHcM7B1ECgbhtC56pzHuOa5j4Hf4Ys34efT8TfPuGMknjhZ4/JJbgNsQSqcOMLt5FOw/a+seeJWcAaeFzdaglkRk0+t3We/EIABp90B/72bzkNKO2Y37ZydeZ0r9xy/HS04GCeH70bb+5ZpYjyrLA5wtvNWD6ukiWZeMd5ncug5BAyxDS/vuK0TTE+3P0jrC7mRZoYz0Otqfol+KxEyjPPliR0uu85ER8N74ERrtChgmBjglzBid5il5gNujYXj5CEEYUdoOvLia4ia4RYvtNx3EHL8J2xhW4f67Y+WKHZmme99jJZDOFkeQSxRvGp8QAH5xPhM6KOJZKQcjBSSQlVEJOHkkEEyPWvQ8UexCAvjxDBiiaKOBq+n6V3609ytP4sVi98KsRz5NR+9/wjzxmreddJmO5z5XmAdsp7mgWQRFibJkcQQifOXk2DlNNyPeQHNkSCb8F0h1uK2o017C4AZ6l+ktkzmR2Out71AiSROshzmDfEzlOFN2tFKT/vN9iU2YWWEGBRwn0AQhJ1s0vpUqHx7skV7jQz3O/MwMdm7uKJwh06Plh0N5ia9i/MtJ3JF9OGMOmApgUWpPaMBKbnp92cYW7x4/3ZwJ+zv7KUme5+T5OH0I50wQvi3+pjBwl/AvpAdvGt7gnetT5JILPWiEU67G19xdKyNcNYtOz2OECAvuwI5YzLWGVORMyZDaJNPuLQE5Vn8QjK2m4SX5pBB1C4WvVXJXTD7UHhmAuqup/n0jpsxfj3Br4x4/WEoz8Z7Pyu47rdnWPd/U1h2wBKu+CKPBEs48tjHCdJbKApNdP827cPJtw/BmHtUwH6ki5SA27srQgjetD3Mb9b3+NL6ElO0MV3dpT5H8Lv/os4WFtDLrXPc9/0XH5xJUnMFAnjwl86yWgooHAHK7v6sLPDRdahKdxSKPPJ5OPfGgDUbmwP36ZD4LOQ9R7ifISfej9+zCKizh/Nh/8Dhnbx3C9hqfMr7v29jGisZUL6GjsmMQNxytDtR2IzJMOG/fvWsjiaGlizj4iVv8tfFrxN66L0IraNX+jAxgNGi84R2+4urbOdz5/lbaUvioiCyCHH4CwBUUsvctLcZU1CG32+VuhIx+vPdnveYnm5/kPFyBCFGMA00kkcWi5Vbz229sQWlFMfJ6bxgvI1RlgZfXQTViRgDfocD30Ja/a287XUOegIxMpKD5ASK9DLKcXvIRHr0xByB3OVxTy5/N9rSn+dqGWQ5U9nENhw4CCGIRpqwY0MiWMcWr2dDK+2H3QkiZu+eWDcnVIQQSRg5IgMdnUaaGMFAFrEKHYPJYiS3Wf8GQBGl1FCHCxdRIqKLe77vceGigmoEAulj4K7y6C62R0nBUd/t3F2/P1lEi0hClH13NEy7FVPkGH6QvzF320TPHeqDsmGdMQUFxBCJhqQEd0iURBBFBF8Zv3CYdgBAQNF6X2NvA01+++zYCFXBPe4325f4at4JwI6dZlpQKJpp8SYN6KsMFrmMZgjLWYcLnQySucRyGnashBmhfGX8goFBvIhhmByw6wZNejR5MouHbTfAicCJkHJLDeUNrXv9BZpnjPs744oW8l36ZJy2rjf228xl7B5PrsxkI+7kTNtVCeO04X6SbXZsVKkaDpITCMJONBFUDp8Jw2d6yyhdQ/18MsbyA6ApHCwGYsBc0qd/SZOtmuqVBTh/Ph7QYMLH2IbOQhc6IvZZVPk1gISI9xAWd1KkLFIDLk50BREyjDSSaMZBM20aaha0Nv27+QNgro9HSEsYfHoNhlDIiR+6t5X6hucJ7pj9MH9f8rr7q7Oem08rZ/Y3oZRN+B8/3bieTc/+LUBvPM+DD29ADfseEeS/AJgouzbb654wVnYP42pfxXbkdJ4c4WL4gw27LgyAAedfBa8+QWJDufcNlVezhSlbZvFz5uTdaEOgytMRngz3ov/vqNAyaGhzmgixwV8nBU4MMl4M5W0+pY4G9DFfYhvzLToGjvnT4f3bcHuGBzKUS8IaWqgPimq33e1lrhku5r9xKKPO/davr94+v3ML6oSHERGVMOdEbwnNcLH2lcmEGS1ef/UrL4TBGyP8jOa5ZJIt0oiR7Y+//8kUKdw8KAXLwy9yl/40OgYHfu0g/4KD+SL1OAoTonnSbiVk6NeI019ASP8ov6DdTLpnDhH+IAY6v6nFLFNriRPRxBNDNBHEiRgecb3EgZZxhK44DB79L6w4BLYPhZkXwT2fo5z+4aTxPdRw9E/LOTTRjI6BjkE6yV6Dm69XnwUN4fl/parBodqMcv1Iw4kLgaCCalzoNHgMd27No7Yb047VT7gd8NN96CvEiCh+V0uZ17yO1S07GKYNZLDII1ukcbXlQgCUUqSSxGQxigPluD4hOn6knMoRcgoHynF+qenjiCKdZJKIJ6hdKHcB/Rkvhnn13tqzls3MVUsI7oGhkiPlYOzKRuaEOXQwV+csQMdwJzihiircITBuR3NFJTXMNhZ6i/t6ukUSzhhRQAJtXqZ1qp4h9Pd+d+DskrTf3Zl02nT0EojzTlRavYXD+3g2zlyZSRFlNNOCCxeXWc7gSsu5XGY5gypVSwONXh3QYNGzsgmb/HnOG9e5F+gXOYfy0OjLcVq7x3Vherr1fJKJY6oYyyQxkhacDBI5xNM2Vnfi4krnffxH/5RckdHBGKZ0DXXvh/D1P2D7cKjMgdI81M9nUXj7q5S9chPON2bA5nGweTS8fQ/N/7ofABH5ESLzGETGCcj4J7xtCiTDu9GCQzyxXr8XCxoWNG9CBQGwIbBGLosOB9zvPvuYr/x2HbvhG7/vAjj9ffcN1TB6KSsu/DygXpUbiSrK67C1J2m6mXQfBiVbqJoRzk0H71pD1jblPVg6HRB8kzXFb987X11K6OkXE1C/0Q8F29rG0ULTOfm2/+PDC+1cNdXCv88OomJGBOFBgV8w47QROHB6kzPasSN1K1S3j3RSELvJ++2Nzy7HbgTqmwBDJ6V+O/W2UE5b9WG7Zjz34foJ8NAHqJ+OBJ85VlpdEWFG6zjXTVwFhLdTuMmUKeSKnWjjdQEHaxOIJYon/tpA6lPX8H8p97OF8ajSfGq39qP487NQM95HGf7/Fmo3pLbANLr9YdJJJp0khtAfFy7KqKSKWrapYtaozXyqf4/r64vo4OrhCEWtGe+3KZmE/dfxvUiiiCPRZ+K9hk0kebw5dAxPdlJwoaNoTSpRxjJjjbdOvujnmfq7BVUtaNiw0oLTs1V5PN8kVqy42l3QSaLnrWD9abYOwLjxZ7jjB066eTCP3HAeG8oM1qhNjJADAailnu/VHGapBR28kHorN1guYbaxkM3GNpy0CVkXUsRWiiimjGYcfnVWsp4aVU8oIR1CUFsJJqjHGi3PshzL+uyP6X/pDKLiyyG0HA58DXnh1X7l8unn0RNzn2ccUUQSwW/GYgDSRJLXMFlDHfPUMuJl273fQBPLPQkWoPNQ+r7MENk2mHLi9Oq3tWp8RvRAj+e9SbyIQUcnCDthhJAh2rSLknzeM1ZhGnP7IvcfE8Kzp9hJCAMpdNCaQDbTuqDQGBQOQjB2xwIe+OHOLu3rtDwz0UdPxyqslKtKtqkSDHSiiOBcnyRDOjrLWccbrg/JkClsVv5yKGL7AGjqTP7EBmsDeL5smoBxy/cY1fEISxXCWuK3O1QEdyut1HFyKE24vVhc6FixehbLPW+1/C8DV8xZAJ5SjsOfJen4f5EYDkEazE/uqNf5zbS2cb+c/AmcfT0EtfrvtyZRUHCuAuMJVM1xfvXjTaObyR4SGiS56+gw5l8XSkES2H2GtpqA5Ah49uQgpv9lEdb+7oXqC454gnvH/J2toYn8kj6MESvDaBq2Em4/ChLWdnIkAAG/nOX9Nk4M5d9Bj/KXgiAePD6Uk0fZ0WTnc5EMkYyO7o2gqH71dppv+Q6+u5T23uFIj7SM4eKwwp85yic5SUxDBcl1Rcx892S+f+8UikOTeXzUxSQ2VaC5HGAYBDfXEtFc45OQAfj2enwX+IvCEnF6sxu7aQqCeh9nO4lgg1HIvdardvK77H9GySEMFnmM/zyBZfEDQQSY09QmQrF/ksLWxI+7wpwh/UGSRDxbKWY5a/0m8tXU8pbxMQ86XyQsomNIGwARpX5fe7IuWaKP0asFJ8W0CQnqHmObLw008bnxo/f7nbYrGFN8DMZtX2HcOAvHjT/R/Mr9GNWxGHd/gnHjLJpu/B7XjT9T+99rOixwJfTg325PeeffE2gTcRRgWNj230sZSj5Bwu12vN0o8RqQfJMv9GakkOSKLDa10wLcWZKPIIJYxQaaaMaJy89Y1xqbH0xgV+6ewBFyCnkii/VZnxF5zaXI245FHv4iCP8baRlraKCRo8U0Fls/ppxqflHzuM3xBI2qiSjC20JGPPjqBLY37FpMxYIOnKb9xfu7+IaathJO3/Z0A1hj/4bqoAWUB/3Osdp07/Y42TZpCuuBGqgme4eLJwax7d5IGh6L5K77PoFbj4PQUnw1aF78+hqKw5J21sw+p7Su+2RSNXEjEoYjonMhJAFtyDlo+Sftss6lljPYwna+MX7lS+MnottloQb3u2+8GE4F1X7b80Nj2C3RccPA5mjkmrlPU/TcUEqfHsXmnEKGLOroeTJJjAzQQNcxsV1/mjwyHgq3d7w44nko+AavPpLQCR/+C+Kwf/nVKx/3Jq/cuYzaRyM5d8mzyEOngiZx2SQP3GLju7/YOUseyzDyAZBDZiPvPBoOermt7QMBK4ANVX4tRsmtKMP9rkiQfW+eYLJ3GZpqYcGNkdQ9FonjCfdf0+ORbLk7kosn2cmW6ejDvoEDXwHp4skxlzDyqtc54bcaSpPd8zUZUg/HPLPzAwXXEEIQ+fTjGDl952XbIYQgiXi3w0pxNqyZhL8Gmw9l2YBCFxr1WhAXLX0LdPd76/bfHuXWuU8yqGIN9dYQnJqNV4eczp0Tr0XXrCAEJ677AlCk1G4D3eUTLtqWcMGh2TjkpHcpt0diICgOj2Tqb2EoH8OhgWK8GP6HznN/cbPlUuzUsz2ss+Q1CkKr96ht0+j2B/HNbNSo2iacY8VQ0klmPssYccbbEFyFn9jeiM+RGav92ooVPXcV5hjtYO9n36ysNjoPBXlKfwPlsZ7ZsLLi/671ZFvxPBzWToRH3obGmLZtCFh8OMaSg/zayqRnCaTuDRyujgO5OD2Rp2y3eb9vpwQnLmKJIq+bue3uS9JFx8lW6E5i7OOq8zAefovmG7/DuO1bjB9PA/yz4gbvZox+d8QqrBwsJxBPDFspCpgQwZcIEU6ezOJ160OEE8osFnCl6z4OkZP4THuBH6xvco44nsvk6X6i/+2Nbju7//sqkTKc5yx3EkMUq9iAy8fAG0YI/fvQfdoZrdly23Ol5XzmWt9jg20mz1jv2M+9MuluaELjpqBLGKplImpjPLYN90D+o5zDeD/vL13avzmbdl3GZP9iP+Mn7OctIuivG7Ae8izWKfftsk6WSPV+3moUE0sU9nYSFWvZxJv6x8QS5d0WQhBrY2fB5LfxFybvOHYbWryUaYVzuHLBS5SExHHYCf9h8qmfcsbfD/MrJ4AJWvfK2txP66gv55aBsaCjM04rwH7mfXD7kZCyAjCoWzOU8BVH+NUxMHjY+TIAwmIh/LO3+L5kPXeuX8BvV16GFQtvGR/7LeoDhB76byJn/AXLA1PA3uI/8a8/FFVxGeCvP2tisi8YijvsWx7+MlEPHIU24wDk9aciw6sA9xgvnmhk7gIYPJOOzwUF1ia44GoulqewJOgTrrFe8If7kSI8kXOuwGOpNjzzaiEYedY3TD31f2BxLwoPL1vJQYWzEEBMi8dzS9PaEpgIQX7lBrKrt/D3hS8T6agL0L77nFYkDGDCGZ+yND6PqJYa3jylkeRtbYtSsURzgDb6D5/n/mC0LODVtwcS29RBFdtN/18RkbufsdQX0y3hD5InMjlETmKbKqZUVTBJjKSWBpJEPEHCTqKKZXnIPOQdbdl0jM0D4atLMR5+C/LnwuEvIG0OYgKsnvUUxovhRBJGLQ0olEfXwYpAMZR8trCDZlow0HFhoCFpoImcFrex7gztaOpbAjxYXJ0YB4py/YRqU2Xf8OLy5YXTgjnqBV8jh+KMk5czTB7r3bJducMSKqju0dfXH2WyHM1aYzOr2OA1AjcESKIAMEDvz5qHngbD4zXotMBX/8AIbqBm3Kde/beerh91kJzAYmMV5VRRrNyCzA00YgSYAESIUDShcaic5BX2f0P/iH/rn5Ivsllo/Yjf1dIO9XwXHsDUUOmM6XIiwdhJJZFKH8+Iehqxi57rUbmvSREJpGg9U4bBZN9x/5N5XNxQTlFE20r0c8PPpSK4a58/xm44OJl0f3JFBtPlRLarEtaymWFiAC3tJCp0DH5Sv/tJU1ixEEUEO456Fo561rvd2JEDT70KPhqyaXU7CFIuFiYO5dRjXqDZGgJKcePku2F5C3LIr4A74Vq+6LdvT/gPkkoiA+jHJrbS4tWrEhwkxlNMGfWqkQRi2ProS9Dg8TZriqT2rVsIvbyEpow23dh5LENXOprQeLPawYXbm9CworiICWlONtq/9nrStdJECzEEkSji2BH3BKrsetp8SCQ4M8ggGYspSWCyj5mmjeN6LmKhsZJYEUWpqmC12kg5VcQQyWCRh1CSmcxGnn07cDsAGhqDyWMpq7FgIZYoHrRdv8f9GCEGsVytozF1A86k9aji3MAFlfIaqWtC/XXlr5l6J59+eDbrorK5deK1BDvqabKF+dX9JHs6iY3lTCxazCM/3sXFhz/eLqOw+z4cULKKLz88ixCjBQH0X2swZ0Q9uTsicFkFA0Q2BSJ/j893XxIsghgw7TT+b+C98Mhr+JnKQqoRZ9/WWdVdYj6R/iDpIplaVU8sURgY/KrcL480kUgKCSih0JAEKzs2bGyeN5LGD67E63o5OxvmH4267ShiLFFddRp/mlSZSI1nci4RGCisaNixsZ0SaqhDQ/OE6Dlxel7M5VQRjJ3PjR+xWc/F4dy1BooAGPup93sMkUT1wRWsQwfaqHrQwhcrHFg0wZGDrNitx/qVqaOByWI0CqPHpUv/MyQRS7NHbN1/ezwllPltXVXdgDICXHdLp8O4T3F6wil7cngpwEFyPE/zBqkkUkUNJVR0WrY1xDGKCAaRy0rWA+5Q8U1qGye3XME4OYxrrRf61WvAXzC5fSiqiZtkEU8F1TTT4pdhd5gYwDDRfQSyTUx6AuM/nsvf9WZumXqLd8BfEpHinlD4TCr2N4cPNINHegOZItU7zq9XDTv1FPeVpqiniQg6ZgmUKRsw7jkIVoyD7y6C8v7MTh+PTXewJTzNbXCDtut22XTwGN3qaCCnm2QubSVYBhFPDIUUIXB6x1ez1HxGisGEiRBqXbFsbWgf3ilQKw7AmrHU+7sZ6GS1TGOjfSbf1ruQuJPFCgSHOv7JW/ZfaPTxqLd4NHhTSaKIUkTEp6ighbD9BTDcRncR/okpdWGyX8iSqdwtr/R+z22eThFl2LAyWPQnRSTwT+s5XOtw8gvzvYveOjrr2IRAYKD7JSjbEzJlKrVGPQgIu/IycosPpHJjJls+adOKs+hOzlj+Hp/kHU51SMdEjguSh5Ny6WK3jlm7d2hEYyUHb5nFjtBEZqWM4fuUMbQEzIgKB236gTBHA8VhCWTXbkN6zjm4BVK2Kgr7CZpoYajsnkY3gAlyBM64O+HegwhfeyBjag5iRdLXVGX9iku45zmtto8/gjlC+INIIQknlCJVhoFBCvEMJo9wQnnMejOzjUVsUtvYxHYkgsaZpxEwqcLmAqJE4Au2J5BEHBm4V5ndaQ8UdTRQThXZpBFFBDo69TR6DW7gnpTX0Ui1qmXo+FU7OYJCWFqYkiP57pZGROwO755KaojtQ15cvoTaJSePDOL4YXbs1o637yq1gVlqPr+qhX0q2cRIOYStFBOEnSDshHhCQ4vbGdwAiCxFCzAnCx2wkDyy3Pe0yCVLpO3zfu9LhBA8ZL2en9U8HJ5MwYGwYSXTY6AVQlCGv0t1E818pX5moVrRoW6zchBCm8BzaDcSe+5OCCEYwSAGkYMFDYlEIlirNvlJFpiYmOway2EHktxU7jcxuO+n+1j10iROW/YOuJxg7F42sb3FZZMtfPzXnjumM2lDCkkYIRSpMppooUm1BCwXhN0ve7fCoJiywG1aXcjhv8KJjwGK6pAYSsMSWJAy3EeU3PP/gb966yUTT6jofnqWl1pP9yx0umnBQQNN/KLmM08t47uQl8DeXlxcYcuf72eobMFJDbUc3HIu44LdOQA13EFqB4TYeNl2vzfjN4AFiQ0rSiiqqSOKcKRtOyLjLETC7Yi0CxDhMxkth+zjX8DEpCMRnmz0LlwsVCs4TfsLBTKfr4Ne5SbtUj9N5CZP4gMDxfnaiX/quANFDjasHokXRW3SUvpNXgBB1d4yI0qX88iv93PHnEfaZQJ2J0EBQGoBF62GVKwhubEMXUpSGkq5e+rNPDj+HwHLHrR1Nr8njeCBsVfwe9JwdCFxCY0doQnsCE0ihGAsaF4t8u5ICgmEEozdIggbtJj+k5ZiZC/FLmzemZThydj8RzCXAvaAsXIo3+mzqaUeHYMVrKPaqMUubPxNO5MH9BcAWMkGRGQZqrq9GJ9CRJZ1q2xEfxRNaISLMO992uphZEUDAdWqNmC9VnH7IsqwHHknNJwDC4+io/1XgMvO138LYxnb8PXst2PDKkztqEDUKLeHoY7epybzWaRixUJjgJDS0/gL7/EVuscLy2pRzLs+lMOebaC4XoF0wcT3aZz8OutaKymI7wXJOnLJxI6NUirIJZN1bO5QxoHTz3AWLkIpU27D2+eWF7lTf4p5ahlLjFVsNraTJdv0bsqp9FuFjjCTAnRKvIxmjrEIDel9DjbRwigxuIt7ZmLSswi+7yayKx/zfg91NnLxireptkfwfb8DQWsd2ioCiknvA75drdPkUATbembG695K85MxYHgWfm3hiNAk7Oct3HklYIws4Hv9N4pVGa/o7wcs48DJirZRAwYKw8egFAiRtQyVsAZK8z0TVp/rRQjAQAz7zrspkohd9rUrGCsKOvXyqKQGhUJecw7G/z0FVWlgcSCOforafr/6lVUuK813f8hvjih+wwnxAr0CMOAgGoBsMge9ROHZ5yEENOPAgYvlai0hBFGNW1dKaNUQ3iZBc6p25D46cxOTzmn1ijVQVFPLaNFm/I0QYYwXw/lQfetXR0NyrjzuTx03V2Ti8Di4OHCyiW0UGWVYrjkH1/89CZUZlHjCSW+acmvAkNCdUW8Lw244OG/le8xKG8f6uLxOy85NHkmEs54v+x3E7LSxXLz0LYJdzbw49Eyckefjosnvd+mORIgwXOi0fPgPiuaewPMI4B8QvR1x1bkIW2vyGNPTbZ+TL/sRQRhlVGLxaDS0ZjC6QDuJRB83Ue2cmyCkAj/RxClvIRIKCVE9WzNqmBiA5nMJWbHgRPcLn2plBIO4lNNIIt5rGd4qipCnPAg3HQ8BBiqtl3KJ7i9YGN0HQ0t3l7Vqk9vgRhJxqu/oa0kp+dn2H4pss3nL8ojfvjgtmmifgasNCwOTLRTeG0nTY+GMeeDvaEc922HBJpSeaxRvRUrJ69aHyBSpHQxurVo0F4lTOFKb6t3+o+0tymy/Mc/2AZO0kVytnU8qiWxgKxc7bvFro0L5r2RHddMJQnfgAcu15JON7jG43SIvY47tXWJl37lPTUz2BkIIJj1/DZdO9l98O+fwpygNS2oTft5PBjeA9eWKS99p3HVBk/2L8pE8cNShnA27Ve2vltM5Qx5NCw6+UbNYaf2Sm+Rf/RaWDAwO+9LF6rQatsbW8Pbx9Vgd7pGrUZKOcd8HGDf+jHHTTxgvP4ZyWVCLDoHSAXSaXRBQjjYx9AzZWQa9riVNJHf6vjcwmOH8F0kRIG84AzljCvLe6Yhxn/iVC601mHDpLeCIxvt7lEH7xPNbVuahlrQlb2tdtArqRALkWA7mQDluT0/NxGSP8Z03TBPjiZJt98g/LedynuVEvzJJJDDb9i6h2p/zZs0SqX5h8Llk4MSFEV6BvP4s5IwpbHvuDB65/g86rBju5+fShCGU2aOJaygn2BVYL7uVT/tNp0Va0HQn5cExPDDuCm6ffB1bz30LEdRIKolcajn9D5/j/kQIQejmMTD3JNymMs/zqSoN9e7NfmUtWJjI7iW7MT3d9oB+It0rNt5qdGqmhSbVTLpMZqocxw/Gb1RSjRbagHH7MQHbCeuGLuN/hCQR551ARhCKAxf9RRZB2BhMLhsopAUnCkWVqOUJ+600OxzMNOawlSJvOzKyHOMfF8HTL9MmNKu4/mA7mhSsdWz2O67pGdI5rYkUrMKClH3Lpj5EusM8jhRTeYn7+J/+DTZh5XztRNYbW/hK/QL4645pUmOIyGOL2k45VX7thfQCoxvANDmOy7TT+a/+GcvUWnQMrFgYzkAqRQ2FYrvXJR4gQcSCgALcegtTtLFMMIbzq7GQ31lKvWr0Pruq8De6mYkUOidHZnCt5UIcOHHg5AA52nvNmpiY/HGeOimEp04CiKTBOIOtjq7VMV1Xtn9DWk32HSkigQGiH8nEU0Utq9lAlIwgwgjzjv8L1tl47VR3OOkTw87nrcSTSL6mkc2XvQxvPACt2bwVsG4c6uUnwLGr7IISHnwfbj+GUII5UIzdV6f4pxBCEEow1QSOarnfeN7PCKAh0THcsou/HQ0/n84PT5/PoccN363jaR9fh65L5Kg2LyHfsFNfTpV/6ZYhuSa9n7us/+RC42S2soM0kjrsTxHxNHiiQ/qRxmPWmxkm/7yurxCCcEKpowEBZJJKoohjvlrulwTmkVtDMOY9Ch/cyq4WpQaWreaen+/n3COfpiE4kreGnsZ/Bh5HWt2OnWunala2xOT4bxswCznOrc3eX2TRX2b/ibPdPwRVdJKMoqJNYzOYIIKxM1QbwI+70aZpdNsDMkjmEDGJBhopVZVMEWNw4KBUVZApUkkXSdixE0wQKSTgQmcjWzu005PDS8HtzjpZjGa2Wkgt7tXDFWo9A0U/VrERcLvaCgRhKoRm1UKmSCGOaOqop54GXB6jXV5qC+vuOxCKs6EpmPxUA2vYFODvLGKl33ErfLL/mbTRaDQxQOSgIcn0SXnf1wgRwZxlOdZ7nQyWeWSIFK/rpAsXW1UR6cK9gpwpUgPG5fcWfTJNaFxhOYcPXF8TQjA6Olmkud3fVS1zVQUTWk7hQet1TJFjOtSPFVFkiBQWsIJEYllorGCK5i4nFN5wZsCrDWcSmLMtx3V1F0xMeiWh//cg139Xwz8/238hpe255bDuq1Fj8sfpL7JJE8mkk8JytY7rLRfzkf4d21QxAMf8HIagjCOPfY15qaPbKr7xMAGvwW0DILiq4/b2NLoXr+zYyRGZe+FM9g2jGUots3Gh0+zRpxKAFSsGyi/RUusCvfrPHbDsUADSa0uJb66kMqxN58qtNaXcYu4+6E3h8N6dGPOnw+gvAUWTsmJoTrA3Qc5SpN3tgTPROnJfnraJSaeMkQWMkQWd7k8nmcPkATSqJuJENIdrU/basSeKkXyjZuFCJwg7LnTCCOmQeVmO+Qpj2Ex49nko6dzgd+iWnxlZuYYWa9tcyLAGURizB9mU147AaAxFhjSQ0kOkj6YOaeLf7ztA+S6UKMRBr3u/teBgghju9b7dFabRbQ9IELGsU5uJEGG04OBnNQ9w65Rlkkp/smmgkXoaWcvmTj1menr4WrSIZJaaD+DNkJhBCkEqiHyyKaacZlrcRjdCWK8KGShyeJH3yBf9mK+Wedsqp4pwzY4rdSsOnLhIYYcq4S39Yxay3O+4IaJnh+XuK3ZQymxPNt0kEb+L0r2ff1rO9X4+z3ICbzg+pBkHVqws0leSbnEb3QaIfjTQ5BbNxEalx3urp9+f7TlWm84G/WWaaKaJJvJFFivUWppoYY3axCJjZUCjG0C+6OfxkLPykOtFJsoRWISFJWqN1+AGYDO1Fk1MTLqIy6ZHMjDTyc0fN7KtxrMY79mnhHuRANqkK9rvEwIMFXgfok17WrS2IdyBJznxkkePD2ZEujmk7k2M0gazzuUew3+gf80V2jkMFfk000IjTVw6/W5c4jjmpYxqV7MTo2/6CkjaALNP3fmBw9yaqgqDY7SD/vyJ7COiZTh1hn+4rgWrV1vKl36kU0I5dcvazmdzeCrnrnyfm6e4ZSve/egCRpUuR6C4adINvDP4BDqoIG2a7P6DdrnSFcZpd2Ad/kOfSiJm0rOIkhF8bPu/fdJ2ikigXjUShJ1KqrFg7dQYJG1O1JUXon45GX47FlpCoCEaaDMwfZM1lWah4bLsyjt3NzDC4O6vMQ5/lryDe8b92RhcAbcfBR/9k6Qth1EeuZqwv7xIbYbb7uFW4DTYrkqIUrunZ22OEPYAIQRDZB6fGT96w6liiaLIKAMJ4+RQqnT3xL01vXUgQunZ7s+tQv1B2NhOCRY0VrORPDJZxxa/sr+xmLVqE+PlcHZQQqkqx3dg0kILGprXIl/a5ODVR87l1YY4YCoIA06/HTn0R4IxjW6B2KS2Ekc0FVST1kNWEvYXI+Vg/mN5nBNcfyOcUBao5RyDWyNkrBzqTQbQanxrxtFrwktbGSuHUq5XA1BIMdPEeBZaP2aA4zA0JMuMtZ3WPUc7jk+MmXxu/MgGVch6Veg2Vip/DaN40TENuYmJicn+4sA8K7OvNXVfTf48aSRxuDyAt4xPqFF1LDXWYAiDRcZKcshgba7B6E/fwPqJA6dlF16O/eYjLrwapI7SNZh7HN4pmOb5cwAoyFkAQDZpiM5CuLoB6TK5g/6aM4DBDWAjWxkrhvJbUB00u+dN0079H29/9leunvscn+QewrQdv7MyOoepp34AQvuDeVAEfHg99uGz9/h8TEx6MhPkCJ4y3qCRJlaxkTyVSVUn4d/gXmTSpnyAmvIexvb+qKdf9du/Ki6fVbGdJ0xoT0Z1IZ9/eDZhzgZOOfL/mJcy0p0Nte2I8M2lTDtk2x89tS4hRkQhgxvg9Pv53DaKIWIieS13eH/R1sW7NWxitbF+t9rsW6JPe5EBIgeJpJwqLGhUUO3VKesvs+kv3PHKLlwBdY4kssd7heSTRTrJXu+hVq0sX4Obb6KF7aqEFJnA37QzMVB+HjLN9ZNJKXscVXskSkHOu69AQzxe8UIl4e27UbpGcCfiqX2d1Woj5VQRRgijRefuzX2VA7WxHCmnUkkNj+ivUGe4dVnSZBIWH8N4A02EENTrtANHikFkkwa4B8ZfGD+RQTKjxRDqaOBL4ycchiNgXSEENarO+/10x5VUGTUsYbVfuRii9ln/TUxMTExM9hdCCA6QY7Bjo4Y6fjeWcJPlUnJEOhso5Azn1dgPnco3V0djldCWMC1AW8c9htB0hAB5/OMw+vO2ndnQFgEmYMlhGJsKOFhO3Kfn92cZKQb9ofJhKoTcv80ASz2gaLSFcOxJr/LYcxuZfNtzABx2wlsgLT7JUHYDKzAaGGcj3NG7xm0mJrvLODmMMI8zTzW1zGPZLmq4vWkVgNQDFxC7byb64JOLSGqqIMzVzBefnM9fl/47QHuKYeLPa9jtD2J8kjZWqhqEEAwQbaG1ymXFeP5JjBt/Rj0wa7faNI1ue0imSPW6bbYam3Z4ROylkBwvp3vLbqfE+1kAFjSyPJPfnkykjKCfSPdchP4DjcEilxwysGLF5vkrUe4spKdpR3GWPIb+ZKKhoTUcgFFyD2trB6PKbiG47njKq9t7BwpQGrhsBJmebgH5TV9MGkkMErnkyayu7k63I0QEM1wMpEDkE4ydhcpXK7Dt+o0knGgiyJS9SxcvRAYzTg4jiggEggqq2SZK+Jt2JgfJ8ShgnPPkTuvH+2RlbqCZ+Wp5BwO4b0IGExMTExOTnsyB2jgOkZMYIPrxiP4yycQT5kkQUEkNSikm9bPS8Fgkcx7bxuAZ50LO77SNKRTk/4pIcC9GC0PD+PIiWDURcLmLBJiJWavSOViO3+fn92cYIQdzMod3mkXUFwsWNovt3JFyDKff/yRDH7yA6BlHEHL/oWgD5/BuxhKKjhtBs2UPxvfTgGEK+muUbX+AGj2w4dPEpDeTIhMYIQaRQgIaGjasHfSq23/33ilJGyBnLn7PrcS1dLaIEIiY5mq/7zfMewaLn6edYuRxXxAke4bjTJpIYrDII5s0qpT7PP5qOZXBuL3/1CsPwebRgAZq9wJHzfDSPSRLpHKAGE2jaqKOBmJEJDtUqXf/cfIQntX/QxNNfhl2FG4jXc1OXD57EjoGq5U7acJAcimilHiiKVNVlFKBQKA8N+1GoxDwCE3aCjjV8U/WGlswmgcAOgoN0AlvGc+ow+aw7bXD/A+WsQRhbzI13TqhlEqyPAkUBomcXZTum/QXWfzMPAaLPL7Uf+ZK133YlAUrVkIJpp5GbFixYGGI2H236p7CODmMb41ZCAQuXDzlfJ2HrTfwnv4VkYRRq+pZaaxnkOyYtSdJxHjfv9XUssRYRQJxbGE7ADasRIuIDvVMTExMTEx6Iq3Jv6qpI0jY2ai2Ei0iQYETF/U0erN0jpJDOFhMYOPFN9DUAjSGQUgd0t4Wcqk//yQUjvA5goLGMrAkeG1wWFoIGjyH0dqd++s094gkEccDtmv53vEbCoUDR8ApejB2rFgJUyFME+NYJTYAgkyRwnfGbOzYMTC46I0QEt+dQ8nCA9ituNKQUvj7xVD9b1BhgIbLCGGjw2BEsLbL6iYmvY1BMhdlKJzKRTB2mmmhlErv/ghCqfFkX25FILALC4kXP0xRSz0tTRYIrkfancTrcZTU69AQCpYWqEqDV58i0ErB0yMv4Obfn/HeuTbRSOhNh1NjCQOXFWtYA1fb79uHZ793sWNjhVoHuHXnAYaKAUSIMKxKo2X7wD/cpunptockilh+UfNZwAp2UIoLHenzc47QBiFoy9jTnp6u59bKQNGPEWIQuWSyivVUU4sTnQRiGCkGE08MNmyEEUKZ8s/aNFGOZAD9sIYswH3bG4BGZMhyggfNZ/GNoRw5EEhbBsffj7jsckIJJldkdMWpdmsW66sIF2HU00iICMYiTHt6IIaLgWxRbiPRGmMTG9VWlrKWJpo9LyJBI03kikysPTz8OxCXWc5A4Rb/1DFYqFYghGCaHOcxOFpYZLg9AJVS3OJ8lFudj/O481U0nzUaHZ1So4Jmmr3bHDiJJHx/n5KJiYmJick+I0ukUq4qCSWExcYqcshgpBjMBDGCKlXjV/Yh6/UYGGh2JzK60s/gBkDhsHatC0TyHDjiOei3ASZ9gLj9CGLtwYSJ7j9PSJNJWLGgvMvrHWmihVrqiSCcdWoLd1r/QYtqYasqIo5ommnBhc5iVqGd8iiWU+4BH2eFTmlMwGo3IHQW7hVBnRhLC/l2c2pr0jfJIZ0yVUl/kYUFC/UevepWAmmixxDJKDGEyy1nMjgoHRlV5X1uVWlVyMgqZMo2ZEIZWv4iuOF4KPga4teDcHnbeWL0pRx9zKt8mz6J5y+1MnBTBHWRAhnagIysxtBcnGI5ct/+AHuRWBHl/VzlSbCXIVIoV5VYsEL/3/9wm+bMfA9pTXkbSxQ6BvPVchaoFbyo7vVO1k/RjuRl/b2A9cN7idEtQoR5J+mtXm2b2UYsUVSoam85Bw62U4LLcGGR7stutdrIajZCMNhSriS+6VCMoKVsD5lJlMojOKGIZy+2keO41NtOA02Mk8P35yn2CL5Vv/KF8SMAb1se79rOdGP6y2xqaaBGbSCB2A6ptHV0mmjmHdsTXdPB/cCPtrcY6jgagG2qGIDRWgFleiVWEij0GCXLqeJR3S2sGoSNM7RjvG004+BN9XEHkdYYYQqYm5iYmJh0D7Sx14GzAVVfhJZ3LOxB+OIoOYQ79aeJVGH8S3+HfjKdhcYKAGrbeY1IKTlSHMjH6rvAjdkaweEvw6Dmtb1biVuKsLXwre1VegqZIpVij3xMIFrnBrOYzyq1gUmMZKg2gI9c35FDBhMYzhwWYwDFlMPIrxEjvuas7z7ivR/jadZd7mRqyoZvdgVNgCuoBhHyAAQtAyOCd2JOJkQm7JfzNjHpbozSCrhef5ha5X4uNbYzupX5eL21UkE1i9Uqyl1VaPh7iLroqPUmo8vhzLvdn595Bde2fO++uWljOCM3H3nnER3qWXqYySlaRGJBI5oI6pQ7S7MQgmSZwDpjC+L0O1C2Olh8OJoUnaSQ8cdcDthDYomiQPSngmrvxF2h2OqZxEJbds9ARIje4RHie45XyfO8n30n463JFDaylR2irK2MzwqhPXgVRTEPEBKyBAHMV8v4j/4Z69TmDseMNcXaO7BdtekG7uy66+tIIbnVchnNtLDeJ+HHaeIorpYXUGWdz2r7NwT34hDm/jLbK7ZaSBH1rnoGkIMFjR2U8oNyr974XlMtOKn1SaSgo3cwuAmE6elmYmJiYtJtsE68FevUB7D95TW0/sej9es4GdwVB8jRHCGnUEM9v6h5WI02L/j2RjeAR6w3dN7Y5X8FWx3+SRdE29/vx2Mtze1RmrI5dB598rr2oJ8P3CbDnblwghhOKCFsoBAnro7aUwLGHTGf2kcjWf+4gycf+g4m/wd3ulSF0By8fyme5BQuRORHiOg3GG0zx78mfZcRDCSZeIooo46GDvsDRd8dwmQaaWYtm1nFhp227+vNqiFxXXAFMrKkba+9Dv52ScC6oT1Mjz1JxWGgKKOKQrXDuz0V9zNGSIU8+WHkfQdjXDd1t9o0jW57iBCC/iKbHJEBKAaKHOzYWGNs9JYZwSBGiSF+YacCsGIhh/T93+l9wFCRzxhRQARhNNJMDJGeQFGDPDJJIMZPZHW7j1HS1xOun0gjlii2UsRAckgkltlqoXc10ZcYH5dPEzelRgVpJFFAPinEd3V3ujWjRQEFoj922gbOV1vP437b1QRrQWSI5C7s3f4hX/TD5jn/y4y7iJYRhBAMtBnbthlF2D0Kd0HYOoSHtyeZeOQfyHRkYmJiYmLS3QkSdkaLAhKJQyKpE22GtlYPCF/SZTIh7SaYScQRQjAyaTOHpl7smb0G1i1LbOhZmryTtZGkE3jc1E+2GeTs2FiDe440WhZwlDyQWKJYwAqOFQd3CH3b5hmLZIhkxmpDGXv0T1hmHEjQjGmE3ncEg3I7amO3jmNMTPoiITKYA+QYckSGVzJmV3xLW+ZNozkE46WHMW77GuPBdzDWju60XjhhyJB6rDedgpwxCTljMvKuw5HxWwOWT6FnGcSTZYI3YaavE8IkOYqhIh8NSQoJCARxRO9Wmz3L16+bESqC2eBJDqApyRhRQBFtnlzpIgmXchJCEAKBExfNtODEhbWXaG5li3R0DApEfxSKAfRjIStwYbDO40nUOvjQkKw2NjJBukVkQ0UIExlBqHCLq36vfqNBNdKsnIyRBdSoej4y/F30+5FOJGaGxPZsYTvbKGYHpSQJ0+i2M4bJAQQTTAjB2LAzRY4mqY8ZKseKoRSpUsqp4kPjGzKaf8eOlcliFKVU0KIc7KDU68XrxIUFjXBCvatndmwe8WS3U3XLbjlXm5iYmJiY9CwGiBz6iywaSaLSJ0ojkKcbQCzRNFIEgFEXRfHs47E2R3LpkufI/GIQ3xzYSaKA0Couzh681/u/L4kTMSQS6x47eMYMaSSRIGJJEW2hnqEEU2KUM7zlaEDQqJppohmB4DP1I7onlM2KhRQSWK7WeusWiP4MFv3ZrLbTQBMRhDHD+a8OfRFiNxIwmJj0YrJFGkWqlG0U04IDY3sOzDsSXEGQPxs5ZDaIjgqMStfgvg/B6ZljV4XBK09gnH8NMn9uh/L9RBoAy9U6NGSnGvYA4YQyRY7ZOye4nwgXoRwvD6FYlft5DaaJRCIII51kdAwSiWWMGMz7zNllm73D8tNFjBFD2SqKqVG1LGQlKChQbbHNuTKTJazxfrdh835OIG6/9nVfkSISWKnW00wLVdRylDaN2foiwD0pHyYGsF2VYKDQ0Fijb/JedXOMRdRQRw4ZPG+9m9dbPsJAxyosLDXWYMXq1nfwoZQKNGFmJfJFKUUQdsaL4YQRYiZR2AUhIpgwEUwmKRgoilQZ8SKmq7u1XzlTO5ovjB9x4cJAUUoFYYRQqWrIEqlsUIXsUKWkk0wl1WSLdFapjdTRgECQRJzfAgO4syKZmJiYmJh0F1yr/gvOJlRjKVrGgaDZkIkjdlmvPSPkQIpcZZRSwQrWEk0Ewdh5wPkC8/Rl1NFAukjmZqtbg3isGMZWVYSxYiK8+RAGghbgnLf+RZD+EzcoA/w8wxVMewkx/U0OsPQcPTeAXJHJfJb7bYsnhlO1I4kT0UwSI1moVtBIMwrFarUJwOMpkuhJRufybNMwMNjCDgqNIpzKiVVYsQkrz1pv55OW73DgpAUHC/GPhNHM4C0TE/JFFp+qmdiw4njnBlh0eNvO+cdhRBYjbjgZIdsZySrS2gxuXgTMOQHaGd1ao1+2ehYWdkUdDdTTuAdn07XoSseJkzBC2GYUkSaTGSEGsUXtIJoICtnBIJFHitw9Lz5zdv4nuNhyCq/pH7COzQCkEO+nUxYk7EQRTh2NgCKMEGpwoVB+WTF6MkIIMkQKtaoODckA0c9r8W7BwWa1jTBCaaYFCxoLlPvFXGc0kCzisSkraSSRKhK50XoJ5ztvJEKFY8NCOUUdXqKmZlRHtqgdNNDEBlXIeDPJxG7xke3/uroLXcpQOYAdlLbLNyZYyXpWqvUcoI+hlnoqqaaBJpartYR6wjYUqoPBDSCql+hUmpiYmJj0Dlxf/xWUe3Kpz7kXwlIIunjNLmp1pJ9MZ4DIYb1yR3C04KAGQTMOnjLeAGAgOV6jm0s43SGkn12JbxjpsrgBHLfxW7575yTOP+wxisOTsQWX0vDX25Bp6wAYIwv2/IS7gFSRiBULEun1dCtkB/+0nAtAsoinSbmzkZZR4TYG4CScMBbbPiZUhvAPx928aLxLDFFY0WigiWDsHN5yEUNEHi2iBU1pWLGio1NHA5vZ7teP9iLwJiZ9kdGygJVswGLY0Bcd2rFATRLq4ytQc0/E+2zKXALnXQfouJXHfDxGM5Z1aKIZB9so7rBd6Rrq0TehsqPO4xvA7LhaltwUjlXrGR6pA2QOX+m/kEcmi9Qq0kgmUcZRR4PX4LhBFRKq7LtoyY25LPAnmSrHeoxqsIMylhir/fZnilR0dHQMqqhBx8BAESN7T5a/MWIIxZSzVm0mRkX6TeNLqaQQtwChC53fWUqxUc4OSlitNlJGJcme0L5j5cGEEUItdZTj1o9q764abWZH7MA8YylL1RrqaGCyGNXV3THpAdiElWlyvN+9Wu/jPv2m/hHP6f+hkWbvNt/PraT5aDREEbFP+mpiYmJiYtLVvGi7h7vlP4nBPc41UFTSttC+xccI9Lz1burti0mwh7Q1kA5/m/Eg87IHU1C1lgXvHM1LzYfTdM9pXoObhsQq2/RmewIRhHGxdopfNvgKqlnpXEe1qiVVJHm3b6HIK0lRTS0P6y/xpOt1skknmCDKqGAHpdRRTzHl/MoCXlD/5TXjQ15W77ujXdBweQxvvrQmiDIx6cvkiSziicEpHNBZyOfcE2kzrgnYMhw2jIbzrgHZDJ4nHIN/QBz474BN+C/ae7b9fDpUZuKXHMbnb3254tGZLX/uBPcjE+RwDBQrWM9zrrbfIdlHkqiEcn4x5u1We6bR7U+SJ7LIFmlYsRBNBKvY4Ce45zsR9b1AY+g9xqMRchD5IhsXOmVU0o80Pw81FzqjGYINKy04ONVxhVcgFSBNul/IISKYD6zP8LrlQQaTF/BYO8uS1Fe5X3+eGCKZLEZxknb4riuYmAA3aX/tYChLIg4LFtaymXBCySaNNNz3p0TQj3RiPYKhYYSQ6dF0AEgQsfuv8yYmJiYmJvuRaBHJ9baLmWG5lgH067Df6dEkay1rERbevEBDCBdEKjhU4ci1cuQHb5O4bgY/1L/Elc/4e0j0xEQAQgiGigF+SeMARurHc7HzVsbIArJJC1j3If0lbnM9wVXW83jX+iRXiHMAt0EzEEHYsWP1et4DKD0CVXMStrpjcKnA9UxM+gpCCF61zuA32ztcfWoJbZmSPX9hRQQ0/zREIQfMQ94/3Z0UYcYByLNvRcjA91QCMYQRgh0bdmxkkUpsQ+Yu+1dW33Pu0QlyBMfKg4kgjB/V79Qrt5NVjvS3RezuGZnhpX+STJHKJuVOgR2EnXFiGBuNQlI1tweIXVgD/mv0pgycg0Ue8cQQIoJZwXqySaOEShppJJ4YwkQo6SSzQd+B8/epLFoziVcGNzFgZB4pWixZpHG64ypCCOYAOZrzLCeQKVK51jWDNWqT32qWNEVS/ahRdbQoB3kikxSR2OFBYGLSGRO0EZylH8Onxvdsoxgdg2LKEQhEUwSOmRfg2DGBYsowUpdjHPQmG4O3MphcBohsnLhoUW0rVgNFbheejYmJiYmJyb5nmpzAa+JDQlQQLTgRuBeXnThxKZefru60hHR+e3Ql51R+zpqSSzxbBVrLQG5x3cJQkc8var63vKWHTsvGy2EczERmMZ8mH694p3KRTSpxIpoyVQngp+1kYODAoJZ6DtEmkUkKi5wrWcAKGmnyO4YAmmkhCDtJxNJMES6lobb9C1yp7EByuaOJf6WaHm8mfZvp2kQARkyA+8brnOj4BzPVbFoeexlKA4zVLQ1QlI3xwmPuGy2qBKa9iYzf0ekxSqn0+76Z7dw5zcLts5xAYG9di4TrDrYF3NcdiRIRJBFPFOFEEcEGo5Bh2gBOkIfSZDQziwW04KCZ3fPeMz3d/iSZpDBJjCSbdIooY65awnpV6N0fotpWY4KwE0YI6ST7uSb2dEbIQZSrSkIJZocqZZDMw+kZiFRSQzzRoGtU3Pcq+kfX0rxqAu+9P4oNDz1KiVFFGMF8aHzLv41PmKPcSRjGa8OZZf8v0+R4v2P1NcH7XfFf/XP6yXRAkC1Su7o7Jj2MR2w38qp1htvQ5tFw0MtS0O/6jKZZJ1O4MQ3HxhHwy9lw11eo8jTiRSzHaAdzonaYn/duuk8IiYmJiYmJSW8kTSTixEkzLejouHw83BraGYrAPUb+Ieoa4n10jFT4V2xmm5/BDdwJCHoiA2QOH9if7jD5/EXNp0AOoE41Uk9jp2LqFaoagP5aNs9a7yCDZEIIIpIwwgihv8j2GiSdOIkknFBCwJEFrnRap7P/qzWzqJuY+KIJjTMsR+HEBaUdPXRJXgGuYPjtFNg0DjaOg4XHwKPvYiyaHrDNFBIYJ4aRTRoRtCVfOCd6KrF3n4z9L/+HdcgPZBasYPCQQk4ZLnn4WBsVM8JJiuxZ2ovxMppCiihkB5txO1mdYTmaz+z/IoUEwgklfDcTyfXMJZVuRKZMYZFaSSghWLGQSap/eKmIAAUS6X0ZNdPil0a7pxMlIjBQbFCFGCgOlZNw4MTAAAx2qFLs20ZBg3/G1pbqWNbu0EjLSqZ1zOLrMr7QWEGJUeFXJ6kXGSv/LOuMzSw2VrLUWEMZlbxtebyru2TSA5mojcTmtLZptn13PgQUJJaEfHc5G097mh9cv3GR5RS20LYKNkjk7Jf+mpiYmJiYdBVCCFJFojcxmC8NNAVM+BVnkczLCeNv1d/zhfY2KnguBhBLFBVUe8sl9OCFZZuwkkYiW30E1kMIokU5iBJhSNXq56H8wkf7k02lqqYf6QDkySxKKCeGKKIIZ6IYSYNoJJcMVqoN2LDwkvU+LnLezGLLNhD1oIKRSEYEmdNaE5P2pJBINBFUBNVCcxTuEDzPIoDSCOyDJeDzv2N8eC04/LOabvP8tScLAXzk/b7F8/8VGLy72MF1Hzv8ymsCZl8dyoj07nvfppJIPDHEEEmlT7JMIQQpJLCJbdh2M4mL6en2J7EICxPlSMqoxImL9Wxhndri3d/qZm34iBlmkIJV9Cyh1F1xgBxDEWUsUavIEqmEbzgA4+bvMG6cxaYb/8vi+dkBainSg8Pd1ncPvnoWr+ofMJfFfjUiRft0xn2XD41vecP4mFIqOE5MJ0nE7bqSiUkAJoiRAAgEIyOSOy03MDKSQor4il84yfUPqqn17tvdlNkmJiYmJiY9mQlyBAYKKxbGMdS7/SHHi17dn/akWCVvxx3AOaFJtCqlVFCNzScU6yJ58j7t975mjf0bThZt2sJlVLLKWM8kOQrD+5+/5s5aNlFMufe7EIID5Gi2Ucxy1vEv9Q7/Nj5FVzqb2cY6tnCv/hyV1CK0BkTq3yHsG86MdvJ2uhlaamLSnjSRRBW1cOV5EO7ReRMumPwfSFvbeUWnHRzhdJYYoePfH0NXcPIrgZ+X3YVUkUQZlaxhExt8IhkBDhbuMF7fJDI7wzS67QUOEKNJxz1RDSGYmcZslEfMM5Ar9eBeqH00QQ4nR2TQSDPzXKupevFeMIJx34Qalb9Pg4E/4ifmOOkdcuIsNPj8RqGi7YU505iDtZ0zZthuunD2BX425mFBI5E48mUgo6aJye5xkBxPOskoFHceFURWdMcy2TGCl/6SxWWcTiJxBGHzC6uJ7kXJYUxMTExMTDpjjCwgbe2xtNzzAb/d8iTGC09jNAfzvHqbj4xvAXjS9TpPul73qxck7JxtORYAY95hGHd+QfOtX2G8dQ8heihHigP385nsXaSQXGg5CZvP2P1V43/ki34dEshdr13i/ewbIQRwgXaSd/wfhI0QgvmGWWSSShghfGH8RA11AAj7OmTivTybFEGcxZzWmpi0pzW6TkaVEX/LBdhnTEM+MBV51LOIY56EsFI6JFywNEHa6n3etxZX906skOoTmbhNFfvtm2AZgWU3vdzADC/dKwySuWQaKdSpBkJxuzhvVFvJERnUqnpvuSTikEjGyWFd2Nt9w1CRTwoJhIoQ5jVsIpA915q3BM69Dd3j9WdBI4bDuNx5p7dMqEcD7339K6zKQjwx7KDUuz/C9HQDwFAGm4ytDBX5xBHNHZZ/dHWXTHowGTKFTCOFMEJYJpex9o5xHNlyEevVFhpp5lnrHRyrTQcieJxb0Jwan+rfe8NL7Vix9TLvXRMTExMTk0CI7f0pfOU6QLj9tjaNhEf/i7jlOO53Ps+/XO+wVm3ChU6yiOcU7Uhv3UlyFGnLTqXwg3/g9Q5ZfhD6c9lEXNfzx7iT5WgGkMNS1gDwpvERC9RyKnGHZqWSSL7IZrIcyQd6OpvZzm2uJ1iiVvGc9S4ApsqxXChPJkQEYVM2ZhqzWVPmYssXZ2JUpIBUtGQthcNeQga7k60FSXvgDpmY9HFswspBYjx1NNCCg0mMYoPawmo2otuaUSffD68+jp+3WkwRHPcIPPo2gSVn9g5PnBi0z9reG6SSyCQxkmYcOPHXjBwhBpJDBk00so5dGyhNo9teYJgYQDlVRBNBE81kizQWqZXkkOH1dBMIr/v0cDmoK7u7Txgkc6mnkQhCaQjdQWokbK/xKSAMnEO+Q2IgcNvRHU0WdhjNlIRUIARkk0aBzANglbGeeBFLpUdctZXdFSvs7awxNpEo4lEo4kQMwszqavInGCkG0YIDl3Lxb+MTrlbnM1ctpYFGgrDzmf6Dx+jm5nA5hfnGckpUBQYGB4gxXdh7ExMTExOT/ccXizXw8fQGoC4OuzMUYYXf1VLArVP8hf4TK40NrFDrsGPjBu1ihi+5isJ29Zt3ZO6n3u9bLMLCREZ4jW4udBpUI5MZjSF0WnBymHYAsSKKDWwFoJZ65hnLvG0EiyCesN3i/b58RSRzXzwGP6NA8QCYewLGzcdiC6/bL+dmYtJT2U4Ja9Qmwgnl96APeNL1Ov91fc4iVsLiw+gQHlqahYzfjnHPwbB4GpRnYMVCOim0KHc45WnaXxCAFO7aSrnDwxUKw+PA1rrfd58CkiIsnDHaRmxY906sECZDWa7WUUMdVdT47YuSEQyR/QnXgljH97tsyzS67QXSRTKb1DZacCCAROKYqc/GrqwYGCQTjwOnVyy1N3prWYSFUBVMIUWkiAR+uMXBee+WMXtVMMRthdPuwh5RSxgRVDQacP8H4ArjJwDuJua0x7ht9BimaRMA2KS2U0EV5T4Cs3ZsptHNwzK1BgcONqltHKlN7erumPRwcmQG6SSzmo1EqDAW6CsYKHJYolYBsMBYzsvO95BCMl2byHRtIpPlKKJaRgFQT0NXdt/ExMTExKQDtotWgzJQzkZkaCLspQXK6QMsPDizVcfHI0pub6DZWk+xj4azExeFRhEzmUMZlQAcKidx2MAsPlnub3SLj/HP/NmTOdw6leed//V+L2QHG9lKnspigMjhZO0I78S9FYsKPCX9Vv+VX78cQ0DNKGWBucfD9Df2ZvdNTHodMUQBUEcDDuXkn5Zzma8vY53aTG3+b7DoCNoSLCiIcDsKSasTxnwDQK7IZqsqppEmBolcHrCf1iXnsr/JI4saakkgFqWUn6PLv22PUmut5QXu32U7ptFtL9CayWij2ooClqjV1Kg6XjX+5y3jayyK6KWGownaCGbpC6hVdSyyLOL7M6eT2DKBOhowvryElp/OogUJGPi7qgoq3v8bCWM2AFBqVDBPLWWd2oINKw6PO2cLDsKEKZJapxpYqtawSK1CR2esGLrrSiYmu2CCNoL/ub6hBQez1QLmK/eqsxMXq9nE33R32MdT+m0cZB2PFQsWNFzopIqkruy6iYmJiYlJB2RY54mB/gxT86w8cqyNmz914DQEqVEC7a/XsxX8dIodOJnNQr8kYXU08LdJdtaU6jz1cxMoAQmb+eKK3pOMaIIYjob0ysk4PV59a9nMZrWdmfo0jtEO9quznMCC7i/o/6Ui6mDYlhL4YNFF2LHtvc6bmPRCYkQkKJBI1qstDBK5DJZ5vKd/hRz+HcbaEbDwmLYKCRs83mltmxpVM400AX1LxzlUBjPfWMY6tYUGmghjz2wRpuLkXuJQOZkI3B5sQdjZzHakz6qM7uNGHt4LPd0AztNOpED0p54mHnK+iBSSo+RBqG158NO5uA1tgoCx4UoQQyRKKV423med2oIVi9fg1koQpmbDZ/oPPKK/TDB2poqxjJWm0c3kzzNWDqWfSMeBk9f1D73b7dj8si9foe5hhONYdqhSXOiEE0oqvWeyYGJiYmJisiuumBZM/WORtDwRycY7Izg6bhBaJ9pHrRNVcBvdAB481k70A0cRPGM6U695ioLQToxKPZBIGc7V2gUBjWEOnNzvep5wFeo3eXXi4qGWfwGglMIwDBzKyTfGLIJPehTCyugg9p4zDzHyK0L3cBJsYtJX+Jt2Fv1EOgYGVzvvRylFhvR55iw7FLdZyJOJdP0E1Nzj/NrYSpH3c6zoO0a3WI+XIODVptwTTE+3vUQ2qQwSuaxQ64gknG0UY6BIJI6/W87iK9fP1ItGgrETocL2JLNutydHppMvsrFiZZsqokk1c5J2GF+WWT1O9Z2h4MhnaOI4flULedn1HpmkUkYFKSSyhe3ekiEieCft9A0WGCvIIwsnTvJEJsGie4tQmvQMhop8RonB1KtGVrHRu93uyVLaunAgkUQQxlq1GXBPICJk71xIMDExMTEx2R2OkgcRqUfwKC93WDD25Rd9Pjda/sp6tmDHSp7IpED273XavKPlEKTedk4S6V3AC8LG8c7LySSF9RRioGOguF09xR3NT6NQTGcij1lvIpdMgoJtJN32OBEqjHf50m8hUDnSSXAeTI1VEan1rt/QxGRvUSD7M11O5Bt9FovUSr4xZjFZjuYpy21UU8utzgDz63UjMRYfCK4gOOQlovJXkUgc4SKUHJGx38+hq4j2MTBWqmoyxJ55UJtGt71EtkinhRbSSaacKsIJI4JQbrBcwiWWU3lf/4olajVWLL06RDJFJFKkysgRmSw2VvEX7UAmDvyCz4QDVCfu37IJbdKHvKbraEgSRRw7VAmRRHRw4Qw2Pd3YQQmJIo5GmrjHemVXd8eklxAsgpgoR/KrsdC7LY8sbFhpoJFtlODChYFBBdVsVFu95XxXgUxMTExMTLoDjo9PRbXUQlM5sv/xCFs4llH7Jtv7Qdp4DtLG83Hzd5RRQTV1OHF59+eRRbgIIVHEAbBRuTPQ11BPEvH7pE9dyXA5iDSSKWQHOjpWLLjQ3YkVaGKxWk2JJ8FcJOE00ewxvbkV2GupZws7WMl6UHCddhHnyRNY49rEJrWVaupQDZNRxfezFI0R5XX8nhNGnMUM4jIxaU+8iGGMKOAzfiSROMqpIkMkc4nlVAC+y63jx/WGTw0FKw7C6yX06hNUH/oCtQe9CQomMnK/n0NX0V9kMUWMxolOhara43bMJ9NeYoDsxyK1ipWsp5paLEiqqSVZuF+kFZ4snLFE9brVLF/yyGK9KkRHZ4VaB8ATkVcx6tabIGp74EqZbmPkPGMpi9QqlqrVHC6nUEQpK1jnVzSYvu3VtcrYQD2NVFGDA4ef9d3E5M9ymeUMYokmglBiiOQ6y0UsCPqQM7VjCCEIOzYkkhwyqFRVjBCD6C+yTaObiYmJiUm3w9j0FWr7LFTlavTfHsC18Jl9fsyFQR+xNegXDhOTEZ7/oghnWdBnzLa/yyu2BwBYqTbwnZrDPLWMfjJ9n/drf5MpUvjK/jIGBnFEE0wQTlxY0NhGMfU0kkAsMUSio3fwDvydpVznfIhg7MQTQ57IIkfLYI79Xb6xvoYVK6rmeFqNAttcis/rXAF6YmJiApAt09lBCWvZzFJjjd++r/8Wxj1H2kmKcaBlLYW4zfiH5Qn45XTvt3D6ToSLHRs/q/nMUYvYrkr3uB3T020vkSLcmkYaGpMZxRdBL6GU8q7YtIZm9XYjyXg5jBK93G0JdsGF2snMM5ayJnQJ4vpTUe/ejFh8uPtXEQbkLkCcez0OXG4Xc6WIIAwLGhGEUUu9t22BwIa1y86tO/CNPovfjaVUU8srlge6ujsmvZC5dneWUl8iRBg3aZeSJhM523kdGygki1QWqZXe/SYmJiYmJiZuLtRO5jPXj9iwUkB+h/2Vqho7NlpwkCISuqCH+55UkUgowZRQQT7ZVFLj9f5roJEmmjEwOIIpfMnPHeqvxp1gLZQQDpOTmanPpkU5WWAsx4kTrMXQpLzlM6ymL4mJSWfsTJusBQd/O8RAm/oJ36hf+PGN46E827+B8ArvxwjRO5NCBqL1+RyEnTJVsYvSnWMa3fYSYSKEKWIMv6qFLGQFhmEgpUQgaFEOiihDIHq94Pggmcu58nj+bXzK7yxlnbGZR10v00gTQoI47T4eOKuZBpq41/UcAJmksIUdOOYeBp9cRaUexAsIsF2IdvIDqIIfAbCg9WovwV1hKIOf1TyqqSWKcDOBgsk+ob3BDeCflnMBmO0TelputLlY99bkMCYmJiYmJnvCGFlANmlsYhuF7Oiwf4MqpAUHUYST0ovnBh9an+MC182sVhv9MpoCGBhMFCO4yXIpXzo7Gt1aqaOeTMeBHbaLmOfR9EjyXAdzXpSNaWHmtNbEpDN8HX8qDP8wyY+NmZzrvN773X7qWloey4WaVM8WB5SlY9z8Ewz6mdBz+o5XaRpJRBJODXVsYtset9OjlwR+/vlnjj76aFJSUhBC8NFHH/ntV0px++23k5ycTHBwMNOnT2fdunWBG9sLDJZ5DBX5GCjWsdm7vdWarFC9XvReExrDxACSiSOMEH5nKTvauWJ+rv9IjE+q4WzSMDYOgw9vBj0Eb/YURxj6v+/FKMkEYDgD9+OZdD8e119jibGGTE/Sjr4kYmnSPehHOgeJ8eSIDErxWfGi76x4mZiYmJiY7Io4GcMwOYAhoj+11ONQ/uGTrWPjGup7racbwHg5nKliDCkkoFBYPf4eAkEOGVxuOZNhcgDXigsZQn9C6SjoHkKwN9LFgkR6wt6EVkd80uMsyQ3nqjhT89nEZGfEEcVRchr5IpuNbPXbV6X8Pd+c9lrkTaeSNeMURoxbC9hBWcGwwPKD+PI/B+3HnnctKTKRGuoAOtg0/gg92ujW0NDAsGHDePbZZwPuf+ihh3jqqad4/vnnmTt3LqGhoRx22GE0Nzfvk/5kizRCCWaQyGWhscK7vdKj5wYQLSL2ybG7EwNlLqkk02/7Qbw9r4XwmmzGi+FkkUoWqWxS2xjOQI4WBzFJjMSBk5DVBxM4pauA9WMACO3jmUs3GIVkiRRAMU4M79NefyZdQ6KIw0CRQgItOLzb+5K2g4mJiYmJye6QKhKJIpxckckyHw0lpRQ6BpPFKI6Xh2ATvVc6RQjBgXIcwQQRRQQuj9yOQiERnCgPwy5s3Gu/irMtx9KPjvp2VdTiwIkFC1mkY/EJ1BovRuy3czEx6clYhIUKo4qtqpitqph7nc9591VQ3aH8ZDGKQ7SJVK8f0GHf/A19x6s0gRimiDFMFqM6aMvf4XyKu527pxXao3+xI444giOOOCLgPqUUTzzxBLfeeivHHnssAG+88QaJiYl89NFHnHbaaXu9PwXk84R6nXSRyDpV6N1ereoYI4bSQgtpJO3143Y3CoxBzL7nTmiI82w5lPBhc0g+/RnqaSCMUCpENevYTBih5Mssjhw2iJsDepYrQvovQSOYY7Xp++8kuiEllNNAEzoG91mv6urumPRBhBCEEcx6VUgwdoaIPEAQTu/NyGxiYmJiYrIn5JDJF+onQPCM6y3GqmEkiTiGinyCsVNJDdH0/sX4U7QjuNX1BJGEU00trSpsW9jBUS2XECUiOMVyBP+0nMss13yWsdavvoZkADkg4BztOO51PedNvDBGK9jPZ2Ni0nOJEVE0qiYAPjW+51YuB8CldEaJwaxXW4gmks1sZ5ZaQJKK46hBFp7+xd9T95ABvXehoD1SSDar7RSygzgV7bfvNf0DivXd837r0Z5uO2PTpk0UFxczfXqboSYyMpJx48YxZ86cTuu1tLRQW1vr97e7jJKD3Rk31XpWqLYXRjmVzFNLWarWECR6v/vzN0vsPgY3AEHdkgkc33w8xZSzjWIedr3IAuuHbFSF/Nv4lJfS7uQ/5wYRbmutAeEhTrjgSprj19FAE1F9wEswEHWqgS9cP7JJbWOpWkOuyAyou2Visj8YIHNYzUa2U8pytY7laq2p6WZiYmJiYtKOMbKATWxjM1t5W33GVa77uNv5DG+4PmKz2sZKtZ5hovdLp0ghyRdZFFLEIHJJIBYAB05mMof/qW+43vkQlzvupFLUdKivY7CCdQwR/fmHPBvhExmTKnqvHp6Jyd7mP9bHALCiUa8aaVYtAKxRG1mgVlBDPZvZ7i0fIoJ55IRgLjvAgt0Cdg3OHWvhpdP7VvRZikjAgoYFC/VGAwAOw4EN624neezRnm47o7i4GIDERP+HcWJiondfIB544AHuuuuuPTpmhAzjIDGe79VvfGH8RIPRSKgMocI3vJTenb0UwKYF3n6MdRolcjNvGh/zu1rGWrWZVJFIpaphuyrm6GGCk0a4fx+ncvKa/iH/cM331g+k89DbOddxA+8aXwB4M+EOErld2SWTPk6a8PfWDcLeq0NjTExMTExM9oThcgBjRAHz1DLArWO2ig2sMtxZOW1YuVg7pSu7uN94znoXJzgvZ7laRygh3qQKoYQQrIew6fUreGntRPeqe+7viPNuQGi6XxtpIpFaUU8t9QBYsDA0QGZYExOTwNiljZu0v/KQ/iIbKGS+sZzJ2ii2qqKA5UMJQQjBkyeG8uSJ+7mz3YgpcgwL9OUUU8YKtZ5xDGMHZWylGIW+6wboxZ5ue8pNN91ETU2N92/r1q27ruTDGFlAgeiPFQuLWAW4tQhaiRVRe7O73ZLjh1nJj/fdosia9CujQrI5TjuETFIJws75rhu5VDudcWIYoYTwmvE/b4239c+51fU44T4C7SF90OjWX2QxVOT7WdGzZOpOapiY7FuGyP5MECO8K81mEgUTExMTE5OOWIWVey1Xcao4kulM9Lw73WSQzF3aFSTKuJ220VvIlCmMFgUMEjk4cXKkmEYowTTSROh798PaAwANlIR1E0j471N+9QWCkWIQlT6C79FEkCsz9/OZmJj0bPqLbJJJwIqFx/RXMJTBOrWZXDKYLEb7le2LDi+BaJ2PRxPJ72opANsp+UNt9FpPt6QktzdGSUkJycnJ3u0lJSUMHz6803p2ux27fc9DQPNEFhEsYIjozyJjJZPlKFy4mChGIhHEEb3rRno4mhQsuyWSZodOU7POq/a30TS3e/khciL5IhuhoFRVkC6SQbldzG92Pcb/Nm9hyvp/8HnaGkbkDmKxx3AJfTORwgDRjx/4jViiAMEgmcNAkdPV3TLpw+SLbMJECEKBAsKEaXQzMTExMemGBMeBswEMJyJhGCJ4/xu4pmpjmaqNBeBH11yucT2IRUgmy1FcZT1/v/enKxkvh1OhV5MuU9hkbCWDVHR0tmxO8SnlNktqW0YwTYzjZzUPHQOFIk0ksVm1hb5FEIZd2PbzWZiY9GzGyAKmyDEsMlayxtjENY77GSeHU68aiBfReEUXcYeXmrh/s3eMSCKJ4CP9W/6unUWpUcEEMQKEzo+s3mUbvdbolp2dTVJSEjNnzvQa2Wpra5k7dy6XXXbZPjvucDmQ7S635fMt18f8TTuTzWo7s9VCAKJE+D47dncjyKYRZNO4mnO926zCylg5lMX6SkIIZqY+mw0U0qCaUM89zw9bC/gBJ3ApQVFVJFx3CdWa21MwrA+KtQ8XA9msttNMC05cLDRW0M/SMbOTicn+Il7EkC+ymcMigrAxUYzs6i6ZmJiYmJh0IOivG7q6C34caBnHAsv/dl2wl3K+5UQ+0L+hRtUSKcJYp7YAIIf8CLOO9yt73FAr65CEEEQDzYQTiiYsfO76gQjCcOIiRSR0wVmYmPRscmUmN2gXc4BxBjFEspIN/GTMA+BReSPzWU4l1YQTRg4ZXdzb7kG+7EeoCmUTW4kgjA2qkC1sZ45ahFK7F17ao41u9fX1rF+/3vt906ZNLF68mJiYGDIyMrjyyiu59957ycvLIzs7m9tuu42UlBSOO+64fdanwTKPAtmfz4wfiSeaOcZiKn003WL6QHjprhgjC7hHf5Z0knnT+IRKqqEyFbb6ZyBqro4md9PxVOW+ghNXnwwv7SfTqaeRWuoxMBhMLjnSfACadC2PWG/kEeuNXd0NExMTExMTkx7E3y1ncpzzcqKJpAp3qKj6yyOg1cDsk0EIwsZ/yYSjkvmH5Tbur/iANx88hSpXKBMBuMz9lz+HKRduYp3h1oc2PXJMTHafXJlJA03UUk+javZuzxApbMWt79ZAEwdp47uqi92OoVo+H7u+I5cMlqjVNKlmkkmghN3LXtqjjW7z589n2rRp3u9XX301AOeeey6vvfYa119/PQ0NDVxyySVUV1czefJkvvrqK4KCgvZpv67WLuAr4xdKqOBV/QM//YGYPpBIYVeMFkMIXnQ0W967Egw72BoJPfFxGgKU/dH6E9BEKol90tgkhCBfZDNXLQEgTSTvooaJiYmJiYmJiYlJ92O0KCCKCK/BDUAIEEe8CEe8CEAjcK4BOIDXXwJXgAzpayaycE0p9+UdBcDzlrs5z3LCvj8BE5NegCY0kohjOyXUUOfdnilSEAgUCgF9QhZrdxkvhhGMnXVsYa6+hEpqKKJ0txMp9Gij24EHHohSqtP9Qgjuvvtu7r777v3YKxglBzNODGOD2sqvxgISiCWdZGKINFdigLrqCBreuQG3boMCRwiNb99C7MhZVCyc1FYw73dUxnIEENmHwnLb85D1espVFU7lZKQ2pKu7Y2JiYmJiYmJiYvKHiZPR3GT5K3e4nqQZR+tMICDRRFLR2Pn4v7a2zYkiSfSNhBQmJnuLqyzn86b+EUvUasIJZbgYSKZI5VPr87jQ0dAQQuy6oT7CSDGYISKfLR7ZsAyRsutKPvRoo1t3xSqspItkFIpyqtistlNCOfpuWkJ7O8t2uMCbv8n9fwV8OX06J59yFKVUYMeKBQvhpJAt0jlcO6CrutvljJPDuroLJiYmJiYmJiY9iuYXcjokUrAd+25Xd6vPc6r2F/7r+pwSynHiRKJRThUSgQ0rTlw4cdFMM/KI5zD+fR9t8wYPtkb6D9uILoZjxUKqSOqSczEx6amMk8N4x/UFoQRjwUKqSCRShjOdSbuu3AeJkhGMFkNIENHUqHqWqjV/qL5pdNtHpIkkVqn1xBPDRrYCECPM0FKAidmWDitbwVYYlGBjneVbznJcy1xjKXXUUUoFzcrB+eLEruquiYmJiYmJiYlJT6OpHJQBgCqahwr7Y54JJvuGJBHHnKB3edL1OgCz9AV8qr5HB5KIR6EoohQHLmTBzxjXnwwzz4KqRJAK8uYRO/F7Cq15/KYWA5AqErvuhExMeiBjZAGhIpgUlYgLF4fKyV3dpW7PTda/cnDLOejoFFH2h+qaRrd9xHA5kEf0l8klg2CCiCWKFPOFAEBMqGTVLWGc+FI9myqhIEXyv4tCsVncq1hv2R7hEefL3Ko/DkAyCZyqHdmVXTYxMTExMTExMTEx2Uv803IuANtVCUIHDY1pchz/st3LhJZTWKbWEE8sjTF11J78sF/dE+TJFFNGqkqkjgaiieiKUzAx6dF8ZX+5q7vQo4gXMUzRxvCa/j+Ex/tWInerrml020ccKacyUgxmvloGQA11nCpMw1Er/eI1Ft3Uueff5ZYzAJhtLDTDK01MTExMTExMTEx6IXdY/s49liuxC5tXqztPZLFYraSYcgDCCaXOJ+VaFql8YsykjEoySDG1p0xMTPYL91mu5lv9V7awA4AQgmneRR1gN01zJn+YIGHnfO1EknALe4YSTIHI7+Je9RxCRDDXWi/kf/ZnucF6SVd3x8TExMTExMTExMRkLxMqQrALG4DXeHaL5VIGk+ctM1TkM5LB3u8XW06h0pMBNVZE7b/OmpiY9GkiRTjXahd6v2eSvFv1TE+3fcgh2iTWGBtZpFbgwMV4Obyru2RiYmJiYmJiYmJiYtJtyRNZBGH3JlY7WE5AQyPMCGGrKmKesdyboM7UzDYxMdmfHKpN5jx1AjaspFjiWMRnu6xjGt32IRkimYds13uFQnNkRhf3yMTExMTExMTExMTEpPsihSRLptGsHBjoJIl4dAzqaSBVJLHAWM4EMQKJYIjI23WDJiYmJnuJTJnK87a7Aai11HITl++yjml02w+0CoWamJiYmJiYmJiYmJiY7Jy3bI/4fV9gLOcq1xpiiaZCVbKKjQCMYkhXdM/ExMRktzE13UxMTExMTExMTExMTEy6LcPFQI6QUymhnNUegxtAqkjswl6ZmJiY7BrT6GZiYmJiYmJiYmJiYmLSbdGExu2WvzFFjEF4prDRRDBcDOzinpmYmJjsHDO81MTExMTExMTExMSkVyGzD0e11EJTObL/8QhbeFd3yeRPUiDzudpyPhGuUNarQhJELANlTld3y8TExGSnmEY3ExMTExMTExMTE5Nehe3Yd7q6Cyb7gMO1KRz+/+3deXhMZ/8/8Pdk31fZkEUtESpCUUmQ2Brqq7aultBSSyUprfVRYqmi9oeipVU8lJY8ravULkqqtkQiaEQIrcZDSTAJ2ebz+8MvpyaZycJkUe/XdeW6zDn3uc8993zOOTMf59y3cQdlojpXlXM1t4iIqHRMuhEREREREdFTgxPVEdHTgmO6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBMelGRERERERERERkYEy6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBMelGRERERERERERkYEy6ERERERERERERGRiTbkRERERERERERAbGpBsREREREREREZGBmVR3A2o6EQEA3L17t5pbQkRERERERERE1a0oR1SUM9KHSbcy3Lp1CwDg6elZzS0hIiIiIiIiIqKa4t69e7C3t9e7nkm3Mjg5OQEArl69WmpHEj2pu3fvwtPTE7///jvs7Oyquzn0D8ZYo6rCWKOqwlijqsJYo6rCWKOqwlh7PCKCe/fuoXbt2qWWY9KtDEZGD4e9s7e3ZwBSlbCzs2OsUZVgrFFVYaxRVWGsUVVhrFFVYaxRVWGsVVx5bsziRApEREREREREREQGxqQbERERERERERGRgTHpVgZzc3NER0fD3Ny8uptC/3CMNaoqjDWqKow1qiqMNaoqjDWqKow1qiqMtcqlkrLmNyUiIiIiIiIiIqIK4Z1uREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZWI1Jus2ZMwetW7eGra0tXF1d0bt3b6SkpGiVefDgAUaPHg1nZ2fY2NigX79++N///qesT0xMxFtvvQVPT09YWlrCz88PS5cu1aojJiYGXbt2hYuLC+zs7BAYGIjdu3eX2T4RwbRp0+Dh4QFLS0t06dIFqampWmXi4+PRtWtXODg4wNnZGcOHD4darS6z7qSkJLRv3x4WFhbw9PTEp59+qrX+7Nmz6NevH3x8fKBSqbBkyZIy6yT9GGv6Yy0mJgatWrWCg4MDrK2tERAQgA0bNpRZL+nGWNMfa19//TVUKpXWn4WFRZn1km6MNf2xFhoaWiLWVCoVevToUWbdVBJjTX+s5efnY+bMmahfvz4sLCzQvHlz7Nq1q8x6SbdnNdYePHiAIUOGoFmzZjAxMUHv3r1LlMnIyED//v3RqFEjGBkZYcyYMWW2l/RjrOmPtSNHjiA4OBjOzs6wtLRE48aNsXjx4jLbTLox1vTHWmxsrM7va9evXy+z3TWe1BBhYWGydu1aSU5OltOnT8vLL78sXl5eolarlTIjR44UT09P2b9/v5w8eVLatm0rQUFByvovv/xSoqKiJDY2VtLS0mTDhg1iaWkpy5YtU8q8//77Mm/ePDl+/LhcuHBBJk+eLKamphIfH19q++bOnSv29vby/fffS2JiorzyyitSr149uX//voiIXLt2TRwdHWXkyJHy22+/yfHjxyUoKEj69etXar137twRNzc3GTBggCQnJ8s333wjlpaW8vnnnytljh8/LuPGjZNvvvlG3N3dZfHixRXpWiqGsaY/1g4ePCgxMTFy7tw5uXjxoixZskSMjY1l165dFepjeoixpj/W1q5dK3Z2dpKRkaH8Xb9+vUL9S39jrOmPtVu3bmnFWXJyshgbG8vatWsr0sX0/zHW9MfahAkTpHbt2rJjxw5JS0uTFStWiIWFRZltJt2e1VhTq9UycuRI+eKLLyQsLEx69epVoszly5clKipK1q1bJwEBAfL++++Xo0dJH8aa/liLj4+XTZs2SXJysly+fFk2bNggVlZWWuc+Kj/Gmv5YO3jwoACQlJQUre9thYWF5enaGq3GJN2Ku3HjhgCQQ4cOiYhIVlaWmJqaynfffaeUOX/+vACQo0eP6q3nvffek44dO5a6ryZNmsiMGTP0rtdoNOLu7i7z589XlmVlZYm5ubl88803IiLy+eefi6urq1ZQJCUlCQBJTU3VW/eKFSvE0dFRcnNzlWUTJ04UX19fneW9vb2ZdDMwxpruWCvSokUL+eijj0otQ+XDWPs71tauXSv29valvgd6fIw1/ee1xYsXi62trdYXXHp8jLW/Y83Dw0OWL1+utV3fvn1lwIABpb4vKp9nJdYeNXjwYJ0/Th8VEhLCpJuBMdZK16dPHxk4cGC5ylLpGGt/K0q6ZWZmlquep0mNeby0uDt37gAAnJycAACnTp1Cfn4+unTpopRp3LgxvLy8cPTo0VLrKapDF41Gg3v37pVa5vLly7h+/brWvu3t7fHiiy8q+87NzYWZmRmMjP7uUktLSwAPb8vV5+jRo+jQoQPMzMyUZWFhYUhJSUFmZqbe7chwGGu6Y01EsH//fqSkpKBDhw5666XyY6xpx5parYa3tzc8PT3Rq1cvnD17Vm+dVDGMNf3X0C+//BJvvvkmrK2t9dZL5cdY+zvWcnNzSzwmb2lpWWq9VH7PSqxR9WOs6ZeQkIBffvkFISEhBq33WcVYKykgIAAeHh7o2rUr4uLiDFJndauRSTeNRoMxY8YgODgYzz//PADg+vXrMDMzg4ODg1ZZNzc3vc/5/vLLL9iyZQuGDx+ud18LFiyAWq3G66+/rrdMUf1ubm56992pUydcv34d8+fPR15eHjIzMzFp0iQAD8ddKK1uXfU+ul+qPIy1krF2584d2NjYwMzMDD169MCyZcvQtWtXvfVS+TDWtGPN19cXX331FX744Qf85z//gUajQVBQEP744w+99VL5MNb0X0OPHz+O5ORkDBs2TG+dVH6MNe1YCwsLw6JFi5CamgqNRoO9e/ciJiam1HqpfJ6lWKPqxVjTrW7dujA3N0erVq0wevRoXkcNgLGmzcPDA6tWrcK2bduwbds2eHp6IjQ0FPHx8U9Ub01QI5Nuo0ePRnJyMjZv3vzYdSQnJ6NXr16Ijo7GSy+9pLPMpk2bMGPGDHz77bdwdXUFAGzcuBE2NjbK3+HDh8u1v6ZNm2LdunVYuHAhrKys4O7ujnr16sHNzU3JBDdt2lSpt3v37o/93shwGGsl2dra4vTp0zhx4gRmz56NDz74ALGxsRWqg0pirGkLDAxEeHg4AgICEBISgpiYGLi4uODzzz8vdx2kG2NNvy+//BLNmjVDmzZtHmt70sZY07Z06VI0bNgQjRs3hpmZGSIiIvD2229r3RFAj4exRlWFsabb4cOHcfLkSaxatQpLlizBN998U+E6SBtjTZuvry9GjBiBF154AUFBQfjqq68QFBT0z5i4o7qfby1u9OjRUrduXbl06ZLW8v379+t8xtfLy0sWLVqktezs2bPi6uoq//rXv/Tup2gA3B9//FFr+d27dyU1NVX5y8nJkbS0NAEgCQkJWmU7dOggUVFRJeq+fv263Lt3T9RqtRgZGcm3334rIiLp6elKvX/88YeIiAwaNKjEM80HDhwQAHL79u0SdXNMN8NhrJUea0WGDh0qL730kt71VDbGWvli7dVXX5U333xT73oqG2NNf6yp1Wqxs7OTJUuW6H1fVH6MNf2xdv/+ffnjjz9Eo9HIhAkTpEmTJnrfH5XtWYu1R3FMt6rFWOult82PmjVrljRq1KhcZUk3xlovvW1+1Lhx46Rt27blKluT1Zikm0ajkdGjR0vt2rXlwoULJdYXDSq4detWZdlvv/1WYlDB5ORkcXV1lfHjx+vd16ZNm8TCwkK+//77crfN3d1dFixYoCy7c+eO1qCCunz55ZdiZWVV6mCARQPz5uXlKcsmT57MiRQqEWOtfLFW5O2335aQkJBytZ+0MdbKH2sFBQXi6+srY8eOLVf7SRtjrexYW7t2rZibm8tff/1VrnaTboy18p/X8vLypH79+jJ58uRytZ+0Paux9igm3aoGY61iiZAZM2aIt7d3ucqSNsZaxWKtS5cu0qdPn3KVrclqTNJt1KhRYm9vL7GxsVpTxObk5ChlRo4cKV5eXnLgwAE5efKkBAYGSmBgoLL+zJkz4uLiIgMHDtSq48aNG0qZjRs3iomJiXz22WdaZbKyskpt39y5c8XBwUF++OEHSUpKkl69emlNnysismzZMjl16pSkpKTI8uXLxdLSUpYuXVpqvVlZWeLm5iaDBg2S5ORk2bx5c4lpmHNzcyUhIUESEhLEw8NDxo0bJwkJCeWeIYS0Mdb0x9onn3wie/bskbS0NDl37pwsWLBATExMZPXq1eXuX/obY01/rM2YMUN2794taWlpcurUKXnzzTfFwsJCzp49W+7+pb8x1vTHWpF27drJG2+8UWZfUukYa/pj7ddff5Vt27ZJWlqa/Pzzz9KpUyepV6/eP3ImtqrwrMaayMM7WBISEqRnz54SGhqq/A54VNGyF154Qfr37y8JCQm8hj4mxpr+WFu+fLls375dLly4IBcuXJA1a9aIra2tTJkypTxdS8Uw1vTH2uLFi+X777+X1NRUOXPmjLz//vtiZGQk+/btK0/X1mg1JukGQOff2rVrlTL379+X9957TxwdHcXKykr69OkjGRkZyvro6GiddTyaiQ8JCdFZZvDgwaW2T6PRyNSpU8XNzU3Mzc2lc+fOkpKSolVm0KBB4uTkJGZmZuLv7y/r168v13tPTEyUdu3aibm5udSpU0fmzp2rtf7y5cs628y7jx4PY01/rE2ZMkUaNGggFhYW4ujoKIGBgbJ58+Zy1U0lMdb0x9qYMWPEy8tLzMzMxM3NTV5++WWJj48vV91UEmNNf6yJ/P2/xHv27ClXnaQfY01/rMXGxoqfn5+Ym5uLs7OzDBo0SK5du1auuqmkZznWvL29dbaprP7h3UePh7GmP9b+/e9/S9OmTcXKykrs7OykRYsWsmLFCiksLCxX/aSNsaY/1ubNmyf169cXCwsLcXJyktDQUDlw4EC56q7pVCIiICIiIiIiIiIiIoPhdEpEREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhERERERERERERkYk25ERERE/xChoaEYM2bMM7dvIiIiopqISTciIiKiZ1BsbCxUKhWysrIMsl1MTAxmzZpluAYSERERPeVMqrsBRERERPT0c3Jyqu4mEBEREdUovNONiIiI6CmUnZ2N8PBw2NjYwMPDAwsXLtRav2HDBrRq1Qq2trZwd3dH//79cePGDQBAeno6OnbsCABwdHSESqXCkCFDAAAajQZz5sxBvXr1YGlpiebNm2Pr1q1lblf88VIfHx98/PHHShu9vb2xfft23Lx5E7169YKNjQ38/f1x8uRJrXYfOXIE7du3h6WlJTw9PREVFYXs7GxDdx8RERFRpWPSjYiIiOgpNH78eBw6dAg//PAD9uzZg9jYWMTHxyvr8/PzMWvWLCQmJuL7779Henq6kiDz9PTEtm3bAAApKSnIyMjA0qVLAQBz5szB+vXrsWrVKpw9exZjx47FwIEDcejQoVK302Xx4sUIDg5GQkICevTogUGDBiE8PBwDBw5EfHw86tevj/DwcIgIACAtLQ3dunVDv379kJSUhC1btuDIkSOIiIiojC4kIiIiqlQqKfqWQ0RERERPBbVaDWdnZ/znP//Ba6+9BgC4ffs26tati+HDh2PJkiUltjl58iRat26Ne/fuwcbGBrGxsejYsSMyMzPh4OAAAMjNzYWTkxP27duHwMBAZdthw4YhJycHmzZt0rkd8PBOt4CAAGXfPj4+aN++PTZs2AAAuH79Ojw8PDB16lTMnDkTAPDrr78iMDAQGRkZcHd3x7Bhw2BsbIzPP/9cqffIkSMICQlBdnY2LCwsDNiLRERERJWLY7oRERERPWXS0tKQl5eHF198UVnm5OQEX19f5fWpU6cwffp0JCYmIjMzExqNBgBw9epVNGnSRGe9Fy9eRE5ODrp27aq1PC8vDy1atKhwO/39/ZV/u7m5AQCaNWtWYtmNGzfg7u6OxMREJCUlYePGjUoZEYFGo8Hly5fh5+dX4TYQERERVRcm3YiIiIj+YbKzsxEWFoawsDBs3LgRLi4uuHr1KsLCwpCXl6d3O7VaDQDYsWMH6tSpo7XO3Ny8wu0wNTVV/q1SqfQuK0oIqtVqjBgxAlFRUSXq8vLyqvD+iYiIiKoTk25ERERET5n69evD1NQUx44dU5JRmZmZuHDhAkJCQvDbb7/h1q1bmDt3Ljw9PQGgxIQFZmZmAIDCwkJlWZMmTWBubo6rV68iJCRE5751bWcoLVu2xLlz59CgQQOD101ERERU1TiRAhEREdFTxsbGBkOHDsX48eNx4MABJCcnY8iQITAyevjVzsvLC2ZmZli2bBkuXbqE7du3Y9asWVp1eHt7Q6VS4ccff8TNmzehVqtha2uLcePGYezYsVi3bh3S0tIQHx+PZcuWYd26dXq3M5SJEyfil19+QUREBE6fPo3U1FT88MMPnEiBiIiInkpMuhERERE9hebPn4/27dujZ8+e6NKlC9q1a4cXXngBAODi4oKvv/4a3333HZo0aYK5c+diwYIFWtvXqVMHM2bMwKRJk+Dm5qYktmbNmoWpU6dizpw58PPzQ7du3bBjxw7Uq1ev1O0Mwd/fH4cOHcKFCxfQvn17tGjRAtOmTUPt2rUNtg8iIiKiqsLZS4mIiIiIiIiIiAyMd7oREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBsakGxERERERERERkYEx6UZERERERERERGRgTLoREREREREREREZGJNuREREREREREREBmZS3Q0gKo+CggLk5eVVdzOIiIiIiIiIqpWZmRlMTJjOeRrwU6IaTURw9epV/PXXX9XdFCIiIiIiIqIaoVatWvDy8oJKparuplApmHSjGq0o4VanTh3Y2NjAyIhPRBMREREREdGzSaPRQK1W49q1awAAb2/vam4RlYZJN6qxCgoKlISbu7t7dTeHiIiIiIiIqNrZ2NgAAK5du4azZ8+iXbt2sLOzq+ZWkS68bYhqrKIx3IpOKERERERERET09+/kixcv4scff8Tdu3eruUWkC5NuVOPxkVIiIiIiIiKivxX9TnZ3d0d6ejpSUlKquUWkC7MZRERERERERERPIWNjY6hUKqjV6upuCunApBtRNYiNjYVKpUJWVlZ1N4Xomefj44MlS5aUWmb69OkICAiokvZUtfT0dKhUKpw+fRoAz0//JP/kuK0sX3/9NRwcHJTX7EPDCw0NxZgxY6q7GTXekCFD0Lt3b+U1+42eJcXPxU+b6vhupVKpoNFoKq1+enxMuhER0TNB3xe4EydOYPjw4cprlUqF77//XqvMuHHjsH///kpuYeUr/iNOl6CgIGRkZMDe3r5qGkWVpiJx+ywml8qTcP+nHPs1SUxMDGbNmlVp9ZfnPFeTFP9xrk9l9xsRPR5+t6KycPZSIqJnWH6hwNRYpfd1ZcvLy4OZmVmV7U8XFxeXMsvY2Ng8M5O6mJmZPfGM0TXhcy2N5BdAZWqi9/XToLCwECqVqtRxT5+luK0shujD/Px8mJqaGqhFhpcvAlOVSu9rQ3Nycqq0uv/JnrTfynPOqI66nnaCAqge+Uld/HVNUNOvyc+CZ+G7FenHMyU9NUblRyMkd0C1/o3Kjy53e3NzcxEVFQVXV1dYWFigXbt2OHHihM6yOTk56N69O4KDg/lIF1UZEcHu8wVot1gNxwl30G6xGnvOF0BEKm2foaGhiIiIwJgxY1CrVi2EhYUBAJKTk9G9e3fY2NjAzc0NgwYNwl9//VViu4iICNjb26NWrVqYOnWqVltzc3Mxbtw41KlTB9bW1njxxRcRGxsL4OFt/W+//Tbu3LkDlUoFlUqF6dOnA9C+28XHxwcA0KdPH6hUKuV18buANBoNZs6cibp168Lc3BwBAQHYtWuXsr7ozoWYmBh07NgRVlZWaN68OY4ePaqUuXLlCnr27AlHR0dYW1ujadOm2Llzp96+y8zMRHh4OBwdHWFlZYXu3bsjNTVVWa/rTqUlS5ZovYd169bhhx9+UPqgqH8epesRiCNHjqB9+/awtLSEp6cnoqKikJ2draz38fHBrFmzEB4eDjs7O607B2saEUHB7oNQt3sFdxx9oW73Cgr2xFZJ3D9u/AJ/36m5fft2NGnSBObm5rh69SpiY2PRpk0bWFtbw8HBAcHBwbhy5QqAkjGhr+zXX3+NGTNmIDExUYmNr7/+GgCwaNEiNGvWDNbW1vD09MR7772nNWZMUbt2794NPz8/2NjYoFu3bsjIyNDqg6+++gpNmzaFubk5PDw8EBERoazLysrCsGHD4OLiAjs7O3Tq1AmJiYml9umZM2fQqVMnWFpawtnZGcOHD9dql65H8Xr37o0hQ4Yo669cuYKxY8cq71kXXcfVmjVr4OfnBwsLCzRu3BgrVqxQ1hUd+1u2bEFISAgsLCywcePGUt9LdRIR7L5XgHaX1HA8fwftLqmx517lXwce/Wx8fHzwySef4J133oGtrS28vLzwxRdflFrH1q1b0axZM+Xz79KlC7Kzs0s9z/3+++94/fXX4eDgACcnJ/Tq1Qvp6elKnUV3q8yYMUOJxZEjRyIvL6/Utmzbtk2JbR8fHyxcuFBrva67px0cHJRjrF69egCAFi1aQKVSITQ0tFz99rjnDF22b9+Ohg0bwsLCAh07dsS6deu0rgP66nrS6xLw+P1eEwgEBTiCbPTHXbRGNvqjAEcgqLzj5969exgwYACsra3h4eGBxYsX6zymdF2Ty4rVFStWKHHg5uaGV199VVmn75grTqPRoG7duli5cqXW8oSEBBgZGSnXp7KuLcXpuptszJgxWseLRqPBnDlzUK9ePVhaWqJ58+bYunVrqf3J71ZUFZh0o6fGOc1FHJPEav07p7lY7vZOmDAB27Ztw7p16xAfH48GDRogLCwMt2/f1iqXlZWFrl27QqPRYO/evU/1+AX09MgvFOw4W4B+X+bg+JVCZOcBx68Uou+XOdh5tgD5hZX3hXHdunUwMzNDXFwcVq1ahaysLHTq1AktWrTAyZMnsWvXLvzvf//D66+/XmI7ExMTHD9+HEuXLsWiRYuwZs0aZX1ERASOHj2KzZs3IykpCa+99hq6deuG1NRUBAUFYcmSJbCzs0NGRgYyMjIwbty4Em0rSoyvXbsWGRkZehPlS5cuxcKFC7FgwQIkJSUhLCwMr7zyitYXNQCYMmUKxo0bh9OnT6NRo0Z46623UFBQAAAYPXo0cnNz8fPPP+PMmTOYN29eqXfUDBkyBCdPnsT27dtx9OhRiAhefvll5Ofnl6vfx40bh9dff11JiGRkZCAoKKjM7dLS0tCtWzf069cPSUlJ2LJlC44cOaKVNAGABQsWoHnz5khISMDUqVPL1aaqJvkFKNixDzn9hqLweAKQnYPC4wnI6fsOCnbuh+QXVNq+nyR+i+Tk5GDevHlYs2YNzp49CycnJ/Tu3RshISFISkrC0aNHMXz4cJ0JpIKCAr1l33jjDXz44Ydo2rSpEhtvvPEGgIczo/373//G2bNnsW7dOhw4cAATJkzQqjsnJwcLFizAhg0b8PPPP+Pq1atax9fKlSsxevRoDB8+HGfOnMH27dvRoEEDZf1rr72GGzdu4KeffsKpU6fQsmVLdO7cucT1skh2djbCwsLg6OiIEydO4LvvvsO+fftKxGRpYmJiULduXcycOVN5z+WxceNGTJs2DbNnz8b58+fxySefYOrUqVi3bp1WuUmTJuH999/H+fPnlf9cqGnyRbDjXgH6/Z6D4/cLka0Bjt8vRN/fc7DzXgHyKzHxVtzChQvRqlUrJCQk4L333sOoUaP0zsKXkZGBt956C++88w7Onz+P2NhY9O3bFyKi9zyXn5+PsLAw2Nra4vDhw4iLi1MSxI8md/bv36/U+c033yAmJgYzZszQ2+5Tp07h9ddfx5tvvokzZ85g+vTpmDp1qpJQK4/jx48DAPbt24eMjAzExMSUa7vHOWe4urqWqOfy5ct49dVX0bt3byQmJmLEiBGYMmVKiXK66nrS61KRivZ7TSAoQAEO4T4iUYgkAPdRiCTcRyQKcAiCyrmefPDBB4iLi8P27duxd+9eHD58GPHx8SXKFb8mlxWrJ0+eRFRUFGbOnImUlBTs2rULHTp0AFD6MVeckZER3nrrLWzatElr+caNGxEcHAxvb2+lXFnXloqaM2cO1q9fj1WrVuHs2bMYO3YsBg4ciEOHDundht+tqEoIUQ2VnZ0tJ0+elOzsbBER6fCgv5jfb1qtfx0e9C9X29VqtZiamsrGjRuVZXl5eVK7dm359NNP5eDBgwJAzp8/L/7+/tKvXz/Jzc2tlH4k0id40T0xfT+rxF+7xfcqbZ8hISHSokULrWWzZs2Sl156SWvZ77//LgAkJSVF2c7Pz080Go1SZuLEieLn5yciIleuXBFjY2O5du2aVj2dO3eWyZMni4jI2rVrxd7evkSbvL29ZfHixcprAPLf//5Xq0x0dLQ0b95ceV27dm2ZPXu2VpnWrVvLe++9JyIily9fFgCyZs0aZf3Zs2eV415EpFmzZjJ9+vQS7dHlwoULAkDi4uKUZX/99ZdYWlrKt99+q7ONIiKLFy8Wb29v5fXgwYOlV69eWmWK2pqQkCAiopyfMjMzRURk6NChMnz4cK1tDh8+LEZGRnL//n0RediHvXv3Ltd7qW73gntKlmndEn/32r1Safs0VPwCkNOnTyvrb926JQAkNjZW534fjYmKlC3Nd999J87OzsrronZdvHhRWfbZZ5+Jm5ub8rp27doyZcoUnfUdPnxY7Ozs5MGDB1rL69evL59//rnObb744gtxdHQUtVqtLNuxY4cYGRnJ9evXReRhn7///vta2/Xq1UsGDx6svC5+7Be9n0fPE8X7pX79+rJp0yatbWbNmiWBgYEi8vfxtGTJEp1tr2mC0+6JaXJWib92aZV7HXj0s/H29paBAwcqrzUajbi6usrKlSt1bn/q1CkBIOnp6TrX6zrPbdiwQXx9fbWOwdzcXLG0tJTdu3cr2zk5OSnfO0VEVq5cKTY2NlJYWKhzX/3795euXbtqLRs/frw0adJEea3rmmJvby9r164VkZLnYH3v49F+e9xzhi4TJ06U559/XmvZlClTtK4Duuoy5HWpov1eU6jlLbkjTUv8qaV8vxcq6u7du2JqairfffedsiwrK0usrKxKHFPFr8llxeq2bdvEzs5O7t69W2K/ZR1zxSUkJIhKpZIrV66IiEhhYaHUqVNH7zEtovva8ui5WNdx/f7770tISIiIiDx48ECsrKzkl19+0SozdOhQeeutt3Tu85/w3aro9/LWrVtlzpw5sm/fvlLLU/XgnW5ElSAtLQ35+fkIDg5WlpmamqJNmzY4f/68sqxr165o0KABtmzZwmf0qcqdzSis0HJDeeGFF7ReJyYm4uDBg8rYSTY2NmjcuDGAh8dSkbZt22rdwRMYGIjU1FQUFhbizJkzKCwsRKNGjbTqOXTokFYdhnD37l38+eefWsc3AAQHB2sd3wDg7++v/NvDwwMAcOPGDQBAVFQUPv74YwQHByM6OhpJSUl693n+/HmYmJjgxRdfVJY5OzvD19e3xD4NLTExEV9//bVWv4aFhUGj0eDy5ctKuVatWlVqOwyl8Kzuu2f0LTcUQ8SvmZmZVkw5OTlhyJAhCAsLQ8+ePbF06VK9d2xVpOyj9u3bh86dO6NOnTqwtbXFoEGDcOvWLeTk5ChlrKysUL9+feW1h4eHEuc3btzAn3/+ic6dO+usPzExEWq1Gs7Ozlrv/fLly3qP3fPnz6N58+awtrZWlgUHB0Oj0ei9O8oQsrOzkZaWhqFDh2q19eOPPy7R1qfleDibq+c6oGd5ZXk0rlUqFdzd3ZUYKq558+bo3LkzmjVrhtdeew2rV69GZmZmqfUnJibi4sWLsLW1VT43JycnPHjwQOuza968OaysrJTXgYGBUKvV+P3333XWe/78eZ3XgqJju7I87jlDl5SUFLRu3VprWZs2bUqUK16XIa9LFe33mqIQqRVa/qQuXbqE/Px8rc/H3t4evr6+JcoWPweVFatdu3aFt7c3nnvuOQwaNAgbN25UzvMVPeYCAgLg5+en3O126NAh3LhxA6+99ppSpjzXloq4ePEicnJy0LVrV61jYv369aVeS/jdiqpCzRrlkegZ06NHD2zbtg3nzp1Ds2bNqrs59Ixp6mGM41dK/iho6mFcqft99IcyAKjVavTs2RPz5s0rUbYoUVUWtVoNY2NjnDp1CsbG2u2vzoHkHx08vSjhUjSd+7BhwxAWFoYdO3Zgz549mDNnDhYuXIjIyMjH2peRkVGJRz0q+oiPLmq1GiNGjEBUVFSJdV5eXsq/i3+uNZVxU9+Hj5bqWF5dyhu/lpaWJR4dXbt2LaKiorBr1y5s2bIFH330Efbu3Yu2bduW2E9FygIPxyf7v//7P4waNQqzZ8+Gk5MTjhw5gqFDhyIvL0/5kVx8kgCVSqXEoqWlZZnv3cPDQ+cYOE8y3EJlHA9F4w2tXr1a60cagBKf29NyPDQ1N8bx+zquA+aVex0oTlcMFZ0rizM2NsbevXvxyy+/YM+ePVi2bBmmTJmCY8eOKeOjFadWq/HCCy/oHF+vPJPpPIlHj4cihojFxz1nPK7Hqauyrks1hTEa/v9HS0sur24VPQfZ2toiPj4esbGx2LNnD6ZNm4bp06fjxIkTcHBwqPAxN2DAAGzatAmTJk3Cpk2b0K1bNzg7OwMo/7XlUWXFUtH5eceOHahTp45WOXNz8wr1RUX2+7j+ad+tqHRMutFTo4lRA0D396+qbUM51K9fXxmzqmjsgvz8fJw4cUJroNO5c+fCxsYGnTt3RmxsLJo0aVIZzSYqIb9QMLmrOfp+mYNHv0uoVMCkLuZVOotpy5YtsW3bNvj4+MDERP9l6dixY1qvf/31VzRs2BDGxsZo0aIFCgsLcePGDbRv317n9mZmZuW688DU1LTUcnZ2dqhduzbi4uIQEhKiLI+Li9N5d0BpPD09MXLkSIwcORKTJ0/G6tWrdSbd/Pz8UFBQgGPHjiljhdy6dQspKSnKecPFxQXXr1+HiCg/jE6fPq1VT3n74FEtW7bEuXPntMbgelpJfgHMJ0chp+87KB745pMiK3UW0yeN39K0aNECLVq0wOTJkxEYGIhNmzbpTaTpK6srNk6dOgWNRoOFCxcqsxR+++23FWqbra0tfHx8sH//fnTs2LHE+pYtW+L69eswMTHRGly9NH5+fvj666+RnZ2t/CCJi4uDkZGRcseHi4uL1p18hYWFSE5O1mpDRY8HNzc31K5dG5cuXcKAAQPKvV1NlS+CybXM0ff3HK1h31UAJtUyr/RZTJ+ESqVCcHAwgoODMW3aNHh7e+O///0vPvjgA52fa8uWLbFlyxa4urrCzs5Ob72JiYm4f/++kiz+9ddfYWNjA09PT53l/fz8EBcXp7UsLi4OjRo1UpJhxWMxNTVV626eoicdKhKLT3rOeJSvr2+JSXz0jWf6KENdl4CK93tNICiAGYbjPiKBYkeQGd6tlFlMn3vuOZiamuLEiRNKYubOnTu4cOGCMv6aPuWJVRMTE3Tp0gVdunRBdHQ0HBwccODAAfTt27fUY06X/v3746OPPsKpU6ewdetWrFq1Sln3ONcWFxcXJCcnay07ffq0krB/dIKPR7+bldUn/G5FVYFJN3pqrDSt2QOqPsra2hqjRo3C+PHj4eTkBC8vL3z66afIycnB0KFDtWZlW7BgAQoLC9GpUyfExsYqj9URVSZTYxVebmqCmKFWmLsvF2czCtHUwxiTupjj5aYmBvuf8fIYPXo0Vq9ejbfeegsTJkyAk5MTLl68iM2bN2PNmjXKl8GrV6/igw8+wIgRIxAfH49ly5YpM281atQIAwYMQHh4OBYuXIgWLVrg5s2b2L9/P/z9/dGjRw/4+PhArVZj//79yqMsuv43tShBEBwcDHNzczg6OpYoM378eERHR6N+/foICAjA2rVrcfr06QrNUjhmzBh0794djRo1QmZmJg4ePAg/Pz+dZRs2bIhevXrh3Xffxeeffw5bW1tMmjQJderUQa9evQA8nNnu5s2b+PTTT/Hqq69i165d+Omnn7R+YPr4+GD37t1ISUmBs7Mz7O3ty2znxIkT0bZtW0RERGDYsGGwtrbGuXPnsHfvXixfvrzc77cmUJmawOTlzrCK+Qq5c5eh8GwKjJv6wnxSJExe7lypcf+k8avL5cuX8cUXX+CVV15B7dq1kZKSgtTUVISHh1e4rI+PDy5fvozTp0+jbt26sLW1RYMGDZCfn49ly5ahZ8+eyuQnFTV9+nSMHDkSrq6u6N69O+7du4e4uDhERkaiS5cuCAwMRO/evfHpp5+iUaNG+PPPP7Fjxw706dNH56M1AwYMQHR0NAYPHozp06fj5s2biIyMxKBBg+Dm5gYA6NSpEz744APs2LED9evXx6JFi0rMDu7j44Off/4Zb775JszNzVGrVq0y38uMGTMQFRUFe3t7dOvWDbm5uTh58iQyMzP1/visqUxVKrxsa4IYTyvM/SsXZ3ML0dTcGJNqmeNl26q9DlTEsWPHsH//frz00ktwdXXFsWPHcPPmTeX8qes8N2DAAMyfPx+9evVSZp6+cuUKYmJiMGHCBNStWxcAkJeXh6FDh+Kjjz5Ceno6oqOjERERoSQGivvwww/RunVrzJo1C2+88QaOHj2K5cuXa81o26lTJyxfvhyBgYEoLCzExIkTte7sc3V1haWlJXbt2oW6devCwsKizHPz454zdBkxYgQWLVqEiRMnYujQoTh9+rQyuH5pMWCo6xJQ8X6vCVQwgQlCYIllyMNqFCIVxmgIM7wLE4RABcMfP7a2thg8eLDy+8LV1RXR0dEwMjIq83gtK1Z//PFHXLp0CR06dICjoyN27twJjUYDX1/fMo85XXx8fBAUFIShQ4eisLAQr7zyirLuca4tnTp1wvz587F+/XoEBgbiP//5D5KTk9GiRQulb8aNG4exY8dCo9GgXbt2uHPnDuLi4mBnZ4fBgweXqJPfrajKVNdgckRlKT6RwtPm/v37EhkZKbVq1RJzc3MJDg6W48ePi0jJwTRFRCIjI8XDw0MZOJ6oKuQVaEp9bWi6BjcXeTiYbZ8+fcTBwUEsLS2lcePGMmbMGGXQ65CQEHnvvfdk5MiRYmdnJ46OjvKvf/1La1DsvLw8mTZtmvj4+Iipqal4eHhInz59JCkpSSkzcuRIcXZ2FgASHR0tIiUHU9++fbs0aNBATExMlIFyiw+kW1hYKNOnT5c6deqIqampNG/eXH766Sdlva6BsTMzMwWAHDx4UEREIiIipH79+mJubi4uLi4yaNAg+euvv/T23e3bt2XQoEFib28vlpaWEhYWJhcuXNAqs3LlSvH09BRra2sJDw+X2bNnaw32e+PGDenatavY2NgobSlrsF8RkePHjyvbWVtbi7+/v9ZEEroGpK/JNHn5pb42NEPEr66JQK5fvy69e/cWDw8PMTMzE29vb5k2bZoy+PijcVtW2QcPHki/fv3EwcFBACiDvC9atEg8PDyUmFu/fn2JAdaLt+u///2vFP+KuWrVKvH19VXeW2RkpLLu7t27EhkZKbVr1xZTU1Px9PSUAQMGyNWrV/X2aVJSknTs2FEsLCzEyclJ3n33Xbl37+/B//Py8mTUqFHi5OQkrq6uMmfOnBITKRw9elT8/f3F3NxcaW9ZEymIiGzcuFECAgLEzMxMHB0dpUOHDhITEyMi+gfFr8nyNJpSXxuarokUip8/mjdvrpyjizt37pyEhYWJi4uLmJubS6NGjWTZsmXKel3nORGRjIwMCQ8PV76XPffcc/Luu+/KnTt3ROTvwdCnTZsmzs7OYmNjI++++26JST6K27p1qzRp0kRMTU3Fy8tL5s+fr7X+2rVr8tJLL4m1tbU0bNhQdu7cqTWRgojI6tWrxdPTU4yMjJSB4UubSEHk8c4Z+vzwww/SoEEDMTc3l9DQUFm5cqUAUAZ011eXIa5Lj9vvNYVG8kt9bWh3796V/v37i5WVlbi7u8uiRYukTZs2MmnSJKWMvmtyabF6+PBhCQkJEUdHR7G0tBR/f3/ZsmWLiJR9zOmzYsUKASDh4eEl1j3OtWXatGni5uYm9vb2MnbsWImIiFCOF5GHk7AsWbJEuda4uLhIWFiYHDp0SG8bn/bvVpxI4emgEqnC+cCJKiAnJwfnz5+Hn5+fzrtRiOjZERoaioCAACxZsqS6m0JUYYxfoppvyJAhyMrKwvfff1/dTal2s2fPxqpVq6pkIgP2+5PJzs5GnTp1sHDhQgwdOrS6m0NVrOj3cnp6OlJTU9G6dWu9ExdR9eHjpURERERERM+oFStWoHXr1nB2dkZcXBzmz5+PiIiI6m4W6ZCQkIDffvsNbdq0wZ07dzBz5kwAUB6HJKKah0k3IiIiIiKiZ1Rqaio+/vhj3L59G15eXvjwww8xefLk6m4W6bFgwQKkpKTAzMwML7zwAg4fPlyuMSmJqHrw8VKqsfh4KREREREREVFJfLz06VBzp4QhIiIiIiIiIiJ6SjHpRkREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGBMuhHVELGxsVCpVMjKynqietLT06FSqXD69GmDtKuiQkNDMWbMmGrZNxEREREREVFNYVLdDSCih4KCgpCRkQF7e/snqsfT0xMZGRmoVauWgVqmW2xsLDp27IjMzEw4ODgoy2NiYmBqalqp+y5LaGgoAgICsGTJkmptBxERERERET27mHQjqiHMzMzg7u7+xPUYGxsbpJ7H5eTkVG37JiIiIiIiIqop+HgpUSUIDQ1FZGQkxowZA0dHR7i5uWH16tXIzs7G22+/DVtbWzRo0AA//fSTsk3xx0uvXLmCnj17wtHREdbW1mjatCl27twJAMjMzMSAAQPg4uICS0tLNGzYEGvXrgVQ8vHSonr379+PVq1awcrKCkFBQUhJSdFq88cffwxXV1fY2tpi2LBhmDRpEgICAnS+v/T0dHTs2BEA4OjoCJVKhSFDhijv/dHHS318fPDxxx8jPDwcNjY28Pb2xvbt23Hz5k306tULNjY28Pf3x8mTJ7X2ceTIEbRv3x6Wlpbw9PREVFQUsrOzlfUrVqxAw4YNYWFhATc3N7z66qsAgCFDhuDQoUNYunQpVCoVVCoV0tPTUVhYiKFDh6JevXqwtLSEr68vli5dqrXPIUOGoHfv3vjkk0/g5uYGBwcHzJw5EwUFBRg/fjycnJxQt25dpa8f7e/NmzcjKCgIFhYWeP7553Ho0CF94UFERERERETPACbdiCrJunXrUKtWLRw/fhyRkZEYNWoUXnvtNQQFBSE+Ph4vvfQSBg0ahJycHJ3bjx49Grm5ufj5559x5swZzJs3DzY2NgCAqVOn4ty5c/jpp59w/vx5rFy5sszHSadMmYKFCxfi5MmTMDExwTvvvKOs27hxI2bPno158+bh1KlT8PLywsqVK/XW5enpiW3btgEAUlJSkJGRUSKB9ajFixcjODgYCQkJ6NGjBwYNGoTw8HAMHDgQ8fHxqF+/PsLDwyEiAIC0tDR069YN/fr1Q1JSErZs2YIjR44gIiICAHDy5ElERUVh5syZSElJwa5du9ChQwcAwNKlSxEYGIh3330XGRkZyMjIgKenJzQaDerWrYvvvvsO586dw7Rp0/Cvf/0L3377rVZbDxw4gD///BM///wzFi1ahOjoaPzf//0fHB0dcezYMYwcORIjRozAH3/8obXd+PHj8eGHHyIhIQGBgYHo2bMnbt26VepnQkRERERERP9cKin6lUtUw+Tk5OD8+fPw8/ODlZWV1jpRX4dkX9fewMIBRvY+kIIHkFu/lajPyC0AAKC5fQHI1050qey9oLJwguTchNy7pr2hmQ2MHBtUqO2hoaEoLCzE4cOHAQCFhYWwt7dH3759sX79egDA9evX4eHhgaNHj6Jt27Ylxkjz9/dHv379EB0dXaL+V155BbVq1cJXX31VYl16ejrq1auHhIQEBAQEKPXu27cPnTt3BgDs3LkTPXr0wP3792FhYYG2bduiVatWWL58uVJPu3btoFar9U7IoG9Mt+Ljqfn4+KB9+/bYsGGD1vueOnUqZs6cCQD49ddfERgYiIyMDLi7u2PYsGEwNjbG559/rtR75MgRhISEIDs7Gzt37sTbb7+NP/74A7a2tjr7vzxjukVEROD69evYunUrgId3usXGxuLSpUswMnr4fxKNGzeGq6srfv75ZwB/f5Zr1qzBm2++qfT33LlzMXHiRABAQUEB6tWrh8jISEyYMKHUNhAREREREVVU0e/l9PR0pKamonXr1srvPao5OKYbPZUKznyFwl/naC0zavwGzLqvgaivIW9T+xLbWIy9BwDI3zMSknFCa51pt9Uw9nsThRf+i4KDH2rX690ZZn2/r3Ab/f39lX8bGxvD2dkZzZo1U5a5ubkBAG7cuKFz+6ioKIwaNQp79uxBly5d0K9fP6XOUaNGoV+/fsodc71790ZQUFC52+Ph4aHs28vLCykpKXjvvfe0yrdp0wYHDhyowDsu376L3re+vnB3d0diYiKSkpKwceNGpYyIQKPR4PLly+jatSu8vb3x3HPPoVu3bujWrRv69OlTIjlb3GeffYavvvoKV69exf3795GXl1fiEdqmTZsqCbeitj3//PPK66LPsvjnFhgYqPzbxMQErVq1wvnz58vqGiIiIiIiIvqHYtKNnkomzd6B8XMvay+0cAAAqGzqwKz/Yb3bmr60SuedbgBg3KgPjDzaaG9gZvNYbSw+g6dKpdJaplKpAAAajUbn9sOGDUNYWBh27NiBPXv2YM6cOVi4cCEiIyPRvXt3XLlyBTt37sTevXvRuXNnjB49GgsWLChXe8rat6Hp2ndp7VGr1RgxYgSioqJK1OXl5QUzMzPEx8cjNjYWe/bswbRp0zB9+nScOHFC6667R23evBnjxo3DwoULERgYCFtbW8yfPx/Hjh3T29aitulaVlV9R0RERERERE8nJt3oqaSycYfKRvcMnSoTC6j+/6Okuhg5NdJfr5ULVFYuT9o8g/H09MTIkSMxcuRITJ48GatXr0ZkZCQAwMXFBYMHD8bgwYPRvn17jB8/vtSkW2l8fX1x4sQJhIeHK8tOnDhRyhYPZ1sFHj5uaWgtW7bEuXPn0KCB/sd6TUxM0KVLF3Tp0gXR0dFwcHDAgQMH0LdvX5iZmZVoV1xcHIKCgrTu6EtLSzNYm3/99VdlXLmCggKcOnVKGYOOiIiIiIiInj1MuhHVUGPGjEH37t3RqFEjZGZm4uDBg/Dz8wMATJs2DS+88AKaNm2K3Nxc/Pjjj8q6xxEZGYl3330XrVq1QlBQELZs2YKkpCQ899xzerfx9vaGSqXCjz/+iJdffhmWlpbKRA9PauLEiWjbti0iIiIwbNgwWFtb49y5c9i7dy+WL1+OH3/8EZcuXUKHDh3g6OiInTt3QqPRwNfXF8DDceSOHTuG9PR02NjYwMnJCQ0bNsT69euxe/du1KtXDxs2bMCJEydQr149g7T5s88+Q8OGDeHn54fFixcjMzNTa7IKIiIiIiIierZw9lKiGqqwsBCjR4+Gn58funXrhkaNGmHFihUAHt5lNnnyZPj7+6NDhw4wNjbG5s2bH3tfAwYMwOTJkzFu3Di0bNkSly9fxpAhQ2BhYaF3mzp16mDGjBmYNGkS3NzcDHpXl7+/Pw4dOoQLFy6gffv2aNGiBaZNm4batWsDABwcHBATE4NOnTrBz88Pq1atwjfffIOmTZsCAMaNGwdjY2M0adIELi4uuHr1KkaMGIG+ffvijTfewIsvvohbt26VGMfuScydOxdz585F8+bNceTIEWzfvr3MGWWJiIiIiIjon4uzl1KNVdrspVT5unbtCnd3d2XWUdKt+GyxRERERERElY2zlz4d+HgpESEnJwerVq1CWFgYjI2N8c0332Dfvn3Yu3dvdTeNiIiIiIiI6KnEpBsRQaVSYefOnZg9ezYePHgAX19fbNu2DV26dKnuphERERERERE9lZh0IyJYWlpi37591d2Mp5KPjw/4lD4REREREREVx4kUiIiIiIiIiIiIDIxJN6rxNBpNdTeBiIiIiIiIqMbg7+SnA5NuVGOZmZkBANRqdTW3hIiIiIiIiKjmKPqdnJ+fX80todJwTDeqsUxMTFCrVi1cu3YNAGBjYwMjI+aJiYiIiIiI6Nmk0WigVqtx7do1ZGVl8Y63Go5JN6rRvLy8AEBJvBERERERERE967KysvC///0PACAiMDc3r+YWkS5MulGNplKp4O3tDWtra/z0009Qq9VwcXGBSqWq7qYRERERERERVbn8/HxoNBqICG7fvg1zc3O4uLhUd7NIB5WISHU3gqg8/vjjD+zcuRO3b9+u7qYQERERERERVTtLS0u0b98eLVq04M0pNRCTbvRUuX37Nm7duoW8vLzqbgoRERERERFRtTE2NoadnR08PDyYcKuhmHQjIiIiIiIiIiIyME4FSUREREREREREZGBMuhERERERERERERkYk25EREREREREREQGxqQbERERERERERGRgTHpRkREREREREREZGD/D3rykYqFLQpGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "your_dataset.make_plot(obstype='temp', colorby='label')" + ] + }, + { + "cell_type": "markdown", + "id": "a00c0384-0115-4c7d-ab9f-a0bb963922db", + "metadata": {}, + "source": [ + "If you are interested in the performance of the applied QC, you can use the [get_qc_stats()](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check) method to get an overview of the frequency statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "a9707e22-b29a-4e79-9e8d-e321d4dba651", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBwAAANoCAYAAABjj/lcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVwU+f8H8NfsEkuHoCAqGIDdZwcmdpytZ3frmXd2n54YZydYZ+eZWJzY2N2gZ4uCCkjtzu8Pv8yPpSQWhng9ffCQnf3MzHtmh5nZ93xCEEVRBBERERERERGRDinkDoCIiIiIiIiIsh8mHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIgoUQEBARAEAfPnz9fZMn18fCAIAnx8fH5Y1s/PD9WqVYOJiQkEQcCNGzd0FgfJz8nJCT169NDZ8gRBwNSpU3W2vKwkob+rHj16wMnJSbaYkkvXx4Gubdq0CUWLFoW+vj4sLS3lDoeIiChLYcKBKJvx8vKCIAi4cuWK3KGkSVRUFNq1a4dPnz5h4cKF2LRpExwdHeUOK0cJCwvD1KlTk5UcSsz58+cxdepUBAcH6ySmw4cP59ikglwy43GQUR48eIAePXqgcOHCWLNmDVavXp0u64lJ7ibnJyAgIF1iyApmz56Nffv2yR0GERGlgJ7cARARJeTp06d4/vw51qxZgz59+sgdTo4UFhaGadOmAQDc3NxStYzz589j2rRp6NGjR7ynww8fPoRCkbK89+HDh7Fs2bIEkw7fvn2Dnh4va7qWGY+DjOLj4wONRoPFixejSJEi6bYeW1tbbNq0SWuah4cHXr58iYULF8Yrm1PNnj0bbdu2RatWreQOhYiIkol3ZkSUKb1//x4AklWFOTQ0FCYmJukcEemaoaGhTpenUql0ujzKGLo+DnQpJeeh5AoLC4OxsbHWNBMTE/zyyy9a07Zt24agoKB407MLjUaDyMjILPV3y2sNEVHKZc5HCkSUriIjIzF58mRUqFABFhYWMDExQc2aNXH69OlE51m4cCEcHR1hZGSE2rVr486dO/HKPHjwAG3btoW1tTVUKhUqVqyIAwcOpDi+Hj16oHbt2gCAdu3aQRAE6clqjx49YGpqiqdPn6JJkyYwMzNDly5dAHy/gV20aBFKlCgBlUqFPHnyoH///ggKCtJaviiKmDlzJvLlywdjY2PUqVMHd+/ejdeWfOrUqRAEIV58Mc1W4lZtPnLkCGrWrAkTExOYmZmhadOmuHv3brxtMzU1xatXr9CqVSuYmprC1tYWo0ePhlqt1iob82S1VKlSUKlUsLW1RaNGjaTmMrVr10aZMmUS3Ieurq5wd3dPcj9fuXIF7u7usLGxgZGREQoWLIhevXoB+F7FO+ZJ6rRp06Tq3DE1C27duoUePXqgUKFCUKlUsLOzQ69evfDx40et/TdmzBgAQMGCBeNVCY+7v6OiojBt2jQ4OztDpVIhV65cqFGjBo4fPy7tu2XLlgGAVhXzGAn14fDq1Sv07t0befPmhaGhIQoWLIiBAwciMjIyWetMyrNnz9CuXTtYW1vD2NgYVapUwaFDh7TKxPStsGPHDsyaNQv58uWDSqVCvXr18OTJkx+u4/nz5xg0aBBcXV1hZGSEXLlyoV27djqtVp/ZjgNA9/v28ePHaNOmDezs7KBSqZAvXz507NgRnz9/TnS/ODk5YcqUKQC+1yqIe3wtX74cJUqUgKGhIfLmzYvBgwfHazLi5uaGkiVL4urVq6hVqxaMjY3x+++/J/5h/EBERASmTJmCIkWKwNDQEPnz58fYsWMRERGhVU4QBAwZMgQ7d+5E8eLFYWRkhKpVq+L27dsAgFWrVqFIkSJQqVRwc3OLdzzFjrtatWrScbFy5co0x7RlyxZpvx09ehQAMH/+fFSrVg25cuWCkZERKlSogF27dsWbPzQ0FBs2bJCOoZjjJrH+SuKew2Oarnh5ecUrG/fzjZn33r176Ny5M6ysrFCjRo148xERUdJYw4EoB/ry5QvWrl2LTp06oW/fvvj69SvWrVsHd3d3XL58GWXLltUqv3HjRnz9+hWDBw9GeHg4Fi9ejLp16+L27dvIkycPAODu3buoXr06HBwcMH78eJiYmGDHjh1o1aoVdu/ejdatWyc7vv79+8PBwQGzZ8/GsGHD8NNPP0nrAYDo6Gi4u7ujRo0amD9/vvS0sH///vDy8kLPnj0xbNgw+Pv7Y+nSpbh+/TrOnTsHfX19AMDkyZMxc+ZMNGnSBE2aNMG1a9fQsGFD6UtoamzatAndu3eHu7s75s6di7CwMKxYsQI1atTA9evXtW6G1Wo13N3dUblyZcyfPx8nTpyAh4cHChcujIEDB0rlevfuDS8vLzRu3Bh9+vRBdHQ0fH19cfHiRVSsWBFdu3ZF3759cefOHZQsWVKaz8/PD48ePcLEiRMTjff9+/do2LAhbG1tMX78eFhaWiIgIAB79uwB8P0L1ooVKzBw4EC0bt0aP//8MwCgdOnSAIDjx4/j2bNn6NmzJ+zs7HD37l2sXr0ad+/excWLFyEIAn7++Wc8evQIW7duxcKFC2FjYyMtOyFTp07FnDlz0KdPH1SqVAlfvnzBlStXcO3aNTRo0AD9+/fH69evcfz48XjVzxPy+vVrVKpUCcHBwejXrx+KFi2KV69eYdeuXQgLC4OBgcEP15mYd+/eoVq1aggLC8OwYcOQK1cubNiwAS1atMCuXbviHe9//PEHFAoFRo8ejc+fP2PevHno0qULLl26lOQ2+Pn54fz58+jYsSPy5cuHgIAArFixAm5ubrh37168J+UplRmPA13v28jISLi7uyMiIgJDhw6FnZ0dXr16hYMHDyI4OBgWFhYJxrFo0SJs3LgRe/fuxYoVK2Bqaipt99SpUzFt2jTUr18fAwcOxMOHD7FixQr4+flpnWsA4OPHj2jcuDE6duyIX375RetclhIajQYtWrTA2bNn0a9fPxQrVgy3b9/GwoUL8ejRo3h9G/j6+uLAgQMYPHgwAGDOnDlo1qwZxo4di+XLl2PQoEEICgrCvHnz0KtXL5w6dUpr/qCgIDRp0gTt27dHp06dsGPHDgwcOBAGBgZSQiqlMZ06dQo7duzAkCFDYGNjI50XFy9ejBYtWqBLly6IjIzEtm3b0K5dOxw8eBBNmzYF8P0cG/N32q9fPwBA4cKFU7UvU6Jdu3ZwdnbG7NmzIYpiuq+PiCjbEYkoW/H09BQBiH5+fomWiY6OFiMiIrSmBQUFiXny5BF79eolTfP39xcBiEZGRuLLly+l6ZcuXRIBiCNHjpSm1atXTyxVqpQYHh4uTdNoNGK1atVEZ2dnadrp06dFAOLp06eT3I6Ycjt37tSa3r17dxGAOH78eK3pvr6+IgBxy5YtWtOPHj2qNf39+/eigYGB2LRpU1Gj0Ujlfv/9dxGA2L17d2nalClTxIROkzH72N/fXxRFUfz69atoaWkp9u3bV6vc27dvRQsLC63pMfFPnz5dq2y5cuXEChUqSK9PnTolAhCHDRsWb/0xcQcHB4sqlUocN26c1vvDhg0TTUxMxJCQkHjzxti7d+8Pj5MPHz6IAMQpU6bEey8sLCzetK1bt4oAxDNnzkjT/vzzT619FZujo6PW/i5TpozYtGnTROMRRVEcPHhwgp+JKIrxYu3WrZuoUCgS3MaYfZicdSZkxIgRIgDR19dXmvb161exYMGCopOTk6hWq0VR/P/juFixYlp/c4sXLxYBiLdv305yPQnt5wsXLogAxI0bN0rTEvq76t69u+jo6Jjk8jPjcaDrfXv9+vUEzyXJEXMO+PDhgzQt5hzSsGFDKRZRFMWlS5eKAMT169dL02rXri0CEFeuXJnidTdt2lTr89u0aZOoUCi09osoiuLKlStFAOK5c+ekaQBEQ0NDrf29atUqEYBoZ2cnfvnyRZr+22+/xftsYuL28PCQpkVERIhly5YVc+fOLUZGRqYqJoVCId69ezfetsY9jiIjI8WSJUuKdevW1ZpuYmKidazESOxYj3sOj7mmeXp6xisb9xiPmbdTp07xyhIRUfKxSQVRDqRUKmFgYADg+xOqT58+ITo6GhUrVsS1a9filW/VqhUcHByk15UqVULlypVx+PBhAMCnT59w6tQptG/fHl+/fkVgYCACAwPx8eNHuLu74/Hjx3j16pVOtyF2TQAA2LlzJywsLNCgQQNp/YGBgahQoQJMTU2l5iInTpxAZGQkhg4dqlXVdsSIEamO5fjx4wgODkanTp201q1UKlG5cuUEm6oMGDBA63XNmjXx7Nkz6fXu3bshCIJUpTu2mLgtLCzQsmVLbN26VXryplarsX37drRq1SrJtsYxbdIPHjyIqKioFG+zkZGR9Ht4eDgCAwNRpUoVAEjwGEoOS0tL3L17F48fP07V/LFpNBrs27cPzZs3R8WKFeO9H7MPU7vOw4cPo1KlSlpVrE1NTdGvXz8EBATg3r17WuV79uwp/c0B3z9vAFqfeUJi7+eoqCh8/PgRRYoUgaWlZar3c2yZ8TjQ9b6NqcFw7NgxhIWFpSqm2GLOISNGjNDq7LJv374wNzeP1/TD0NAQPXv2TPN6d+7ciWLFiqFo0aJa55m6desCQLzzTL169bRqVlWuXBkA0KZNG5iZmcWbHvdY1NPTQ//+/aXXBgYG6N+/P96/f4+rV6+mKqbatWujePHi8bYt9nEUFBSEz58/o2bNmjo5xtMq7rmaiIhShgkHohxqw4YNKF26tNRu3dbWFocOHUqwTbOzs3O8aS4uLlK73ydPnkAURUyaNAm2trZaPzFfmGM6X9MFPT095MuXT2va48eP8fnzZ+TOnTteDCEhIdL6nz9/nuA22drawsrKKlXxxHxZrVu3brx1e3t7x9v2mP4YYrOystLqa+Lp06fImzcvrK2tk1x3t27d8OLFC/j6+gL4/mXo3bt36Nq1a5Lz1a5dG23atMG0adNgY2ODli1bwtPTM16768R8+vQJw4cPR548eWBkZARbW1sULFgQAJJsF5+U6dOnIzg4GC4uLihVqhTGjBmDW7dupWpZHz58wJcvX7Samuhync+fP4erq2u86cWKFZPej61AgQJar2OOtbj9i8T17ds3TJ48Gfnz54ehoSFsbGxga2uL4ODgVO/n2DLjcaDrfVuwYEH8+uuvWLt2LWxsbODu7o5ly5alKT4A8WI0MDBAoUKF4sXn4OCglRBJrcePH+Pu3bvxzjEuLi4A4p9j4+6XmMRL/vz5E5we91jMmzdvvKRlzLpizv0pjSnm2Ijr4MGDqFKlClQqFaytraWmPLo4xtMqsZiJiCh52IcDUQ60efNm9OjRA61atcKYMWOQO3duKJVKzJkzB0+fPk3x8jQaDQBg9OjRiXZUqMsh5QwNDeMNo6fRaJA7d25s2bIlwXlSM5RcQh1GAkiwc0fgextjOzu7eOXjDtWoVCpTHEti3N3dkSdPHmzevBm1atXC5s2bYWdnh/r16yc5nyAI2LVrFy5evIh//vkHx44dQ69eveDh4YGLFy/C1NQ0yfnbt2+P8+fPY8yYMShbtixMTU2h0WjQqFEjaX+kVK1atfD06VPs378f3t7eWLt2LRYuXIiVK1em29CoGbXOxD5z8QdtwocOHQpPT0+MGDECVatWhYWFBQRBQMeOHVO9n2PLjMdBSiVn33p4eKBHjx7S5zxs2DDMmTMHFy9ejJe81LXYT+/TQqPRoFSpUliwYEGC78dNJCS2X1J7LOoipoT2ha+vL1q0aIFatWph+fLlsLe3h76+Pjw9PfH3338nK47knquTW+5HMRMRUfIx4UCUA+3atQuFChXCnj17tG7AEqq+DyDB6uaPHj2SqusWKlQIAKCvr//DL7rppXDhwjhx4gSqV6+e5A2io6MjgO/bFBM38P2JeNwnfDFPSoODg7WGxYv7BDOm47LcuXPrbPsLFy6MY8eO4dOnT0nWclAqlejcuTO8vLwwd+5c7Nu3D3379k12UqNKlSqoUqUKZs2ahb///htdunTBtm3b0KdPn0RvzoOCgnDy5ElMmzYNkydPlqYndJwktozEWFtbo2fPnujZsydCQkJQq1YtTJ06Vfryn9zl2drawtzcPMHRVFK6zoQ4Ojri4cOH8aY/ePBAel8Xdu3ahe7du8PDw0OaFh4eHm80hLTKTMdBeu3bUqVKoVSpUpg4cSLOnz+P6tWrY+XKlZg5c2aKlhOz/ocPH2qdQyIjI+Hv759u58DChQvj5s2bqFevXor/rlLj9evX8YaBfPToEQBI535dxLR7926oVCocO3ZMa4hUT0/PeGUTW4eVlVWCfxNxz9Wxz+lJlSMiIt1hkwqiHCjmy2jsJ1qXLl3ChQsXEiy/b98+rT4YLl++jEuXLqFx48YAvn/RdnNzw6pVq/DmzZt483/48EGX4Seoffv2UKvVmDFjRrz3oqOjpRvM+vXrQ19fH0uWLNHa/kWLFsWbLyaRcObMGWlazLBssbm7u8Pc3ByzZ89OsB18ara/TZs2EEUR06ZNi/de3CeRXbt2RVBQEPr374+QkBD88ssvP1x+UFBQvOXEjE4SU50+ZgSEuDfnCR0/QML7MObLSnK+IMceShH43m6/SJEiWtX7k7s8hUKBVq1a4Z9//pGGEY0tJvbkrDMhTZo0weXLl7X+ZkJDQ7F69Wo4OTkl2E49NZRKZbz9vGTJkiSfyKZEZjwOdL1vv3z5gujoaK1ppUqVgkKhSHbTkdjq168PAwMD/PXXX1rbvm7dOnz+/FkaVUHX2rdvj1evXmHNmjXx3vv27RtCQ0N1ur7o6GisWrVKeh0ZGYlVq1bB1tYWFSpU0FlMSqUSgiBoHdMBAQHxRrgAvh9HCR1DhQsXxufPn7WaQ7158wZ79+7VKmdubg4bGxutczrwfYjT5Hr69GmqagISEeVUrOFAlE2tX79eGuM8tuHDh6NZs2bYs2cPWrdujaZNm8Lf3x8rV65E8eLFERISEm+eIkWKoEaNGhg4cCAiIiKwaNEi5MqVC2PHjpXKLFu2DDVq1ECpUqXQt29fFCpUCO/evcOFCxfw8uVL3Lx5M123t3bt2ujfvz/mzJmDGzduoGHDhtDX18fjx4+xc+dOLF68GG3btoWtrS1Gjx4tDRHXpEkTXL9+HUeOHJGG64vRsGFDFChQAL1798aYMWOgVCqxfv162Nra4sWLF1I5c3NzrFixAl27dkX58uXRsWNHqcyhQ4dQvXp1LF26NEXbU6dOHXTt2hV//fUXHj9+LFVR9/X1RZ06dTBkyBCpbLly5VCyZEmpA7fy5cv/cPkbNmzA8uXL0bp1axQuXBhfv37FmjVrYG5ujiZNmgD4XpW4ePHi2L59O1xcXGBtbY2SJUuiZMmSqFWrFubNm4eoqCg4ODjA29sb/v7+8dYT88VkwoQJ6NixI/T19dG8efMEO7QsXrw43NzcUKFCBVhbW+PKlSvYtWuX1rbGLG/YsGFwd3eHUqlEx44dE9zG2bNnw9vbG7Vr15aG7Hvz5g127tyJs2fPwtLSMlnrTMj48eOxdetWNG7cGMOGDYO1tTU2bNgAf39/7N69O16Tn9Rq1qwZNm3aBAsLCxQvXhwXLlzAiRMnkCtXLp0sPzMeB7ret6dOncKQIUPQrl07uLi4IDo6Gps2bYJSqUSbNm1SvM9sbW3x22+/Ydq0aWjUqBFatGiBhw8fYvny5fjpp5+SlfBLja5du2LHjh0YMGAATp8+jerVq0OtVuPBgwfYsWMHjh07lmAHqamVN29ezJ07FwEBAXBxccH27dtx48YNrF69Whr2UxcxNW3aFAsWLECjRo3QuXNnvH//HsuWLUORIkXi9adSoUIFnDhxAgsWLEDevHlRsGBBVK5cGR07dsS4cePQunVrDBs2TBqW2MXFJV7Hk3369MEff/yBPn36oGLFijhz5oxUcyM56tWrB+D/+7EgIqIfyPiBMYgoPcUM2ZjYz3///SdqNBpx9uzZoqOjo2hoaCiWK1dOPHjwYLyhxWKGEPvzzz9FDw8PMX/+/KKhoaFYs2ZN8ebNm/HW/fTpU7Fbt26inZ2dqK+vLzo4OIjNmjUTd+3aJZXRxbCYJiYmic63evVqsUKFCqKRkZFoZmYmlipVShw7dqz4+vVrqYxarRanTZsm2tvbi0ZGRqKbm5t4586deMPziaIoXr16VaxcubJoYGAgFihQQFywYEG8YTFjx+zu7i5aWFiIKpVKLFy4sNijRw/xypUrP4w/oSE4o6OjxT///FMsWrSoaGBgINra2oqNGzcWr169Gm/+efPmiQDE2bNnJ7pvYrt27ZrYqVMnsUCBAqKhoaGYO3dusVmzZlqxiqIonj9/XqxQoYJoYGCgNWzcy5cvxdatW4uWlpaihYWF2K5dO/H169cJDp84Y8YM0cHBQVQoFFr7Le7+njlzplipUiXR0tJSNDIyEosWLSrOmjVLGoIvZp8MHTpUtLW1FQVB0NpnCa37+fPnYrdu3URbW1vR0NBQLFSokDh48GBpGMXkrDMxT58+Fdu2bStaWlqKKpVKrFSpknjw4EGtMokdx0kNzxdbUFCQ2LNnT9HGxkY0NTUV3d3dxQcPHsTbd6kdFjMzHgeiqNt9++zZM7FXr15i4cKFRZVKJVpbW4t16tQRT5w4keS+EcWEh8WMsXTpUrFo0aKivr6+mCdPHnHgwIFiUFCQVpnatWuLJUqU+OF6EhJ3WExR/D5c5Ny5c8USJUqIhoaGopWVlVihQgVx2rRp4ufPn6VyAMTBgwdrzRv7fB5bQvsxJu4rV66IVatWFVUqlejo6CguXbo0XpxpiSnGunXrRGdnZ9HQ0FAsWrSo6OnpmeA58cGDB2KtWrVEIyOjeMMYe3t7iyVLlhQNDAxEV1dXcfPmzQkuIywsTOzdu7doYWEhmpmZie3btxffv3+f6LCYcT97R0fHH/5dERHR/xNEMRW9BBERZUNOTk5wc3ODl5eX3KGk2OLFizFy5EgEBATE652eiCgl3NzcEBgYmKw+UIiIiJLCPhyIiLI4URSxbt061K5dm8kGIiIiIso02IcDEVEWFRoaigMHDuD06dO4ffs29u/fL3dIREREREQSJhyIiLKoDx8+oHPnzrC0tMTvv/+OFi1ayB0SEREREZGEfTgQERERERERkc6xDwciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQciIiIiIiIi0jkmHIiIiIiIiIhI55hwICIiIiIiIiKdY8KBiIiIiIiIiHSOCQdKNz4+PhAEAYIgoEePHhmyTjc3N2mdAQEBSZb18vKSyk6dOjVV6+vRo4e0DB8fn1QtQ5fxeXt7o3LlyjAzM5PmDQ4O1mlcOcHUqVOl/efl5SV3OERE9D+JXXdjpjk5OckWm1y+fPmCIUOGwNHREUqlEoIgYMSIEXKHRUQEgAkHSqHYX8QS+rG0tJQ7xBwrICAALVu2xOXLlxESEiJ3OERElA29e/cOv/32G8qUKQMzMzMYGRmhUKFC6NmzJ27evJnm5QcEBGDq1KmYOnUq9u3bl/aAc4CxY8di2bJlePHiBTQajdzhEBFp0ZM7AMq+ypUrB19fXwBAnjx5ZI4m+ztx4gTCw8MBAK1atcKIESOgVCphZmYmc2RZT69evVC/fn0AgIuLi8zREBFlDmfOnEHr1q3x6dMnren+/v7w9/fHxo0bsXDhQgwbNizV6wgICMC0adMAAN27d0erVq2SNV/M/YZKpUr1urOqgwcPAgD09fWxefNm5M2bFw4ODjJHRUT0HRMOlGqNGzfG77//rjVNT+//DykLCwvUqFEjo8PKsV6/fi393qJFC9SuXfuH84SGhsLExCQ9w8qSChQogAIFCsgdBhFRpvHy5Uu0atUKQUFBAICaNWti+PDhMDU1xY4dO7B+/XpoNBqMGDECRYoUQZMmTTI0vvS838iM18rYMcVc/+3t7dG+fft0XRcRUUqxSQWlWu7cuVGjRg2tnypVqkjvJ9aHQ+z2l97e3pg8eTLy5csHlUqF6tWrx6uSuW7dOri7u6NAgQIwMTGBSqWCs7Mzhg4disDAQJ1v1759+9CiRQsULFgQZmZmMDAwgKOjI3r27JlkvxDR0dGYNm0a8ufPDyMjI9SqVQvXrl2LV87f3x99+/aFo6MjDA0NkTt3bnTo0AH3799PdcyCIGDKlCnS6169emm1ZY3dt8W1a9fQq1cv2NjYwNTUVJonJCQEU6dORcmSJWFkZARzc3O4ubnhyJEj8dYXGhqKoUOHwtbWFqampmjRogUCAgLg5OQkrSdGYn1RBAQESNPd3Ny0lp/cWOIuw8/PD3Xq1IGxsTHs7OwwceLEeNVL1Wo1li9fjqpVq8LCwgJGRkZwdnZG//79pTJJ9eFw69YtdOrUCfb29jAwMICDgwP69OmDly9fapX79u0bxowZA2dnZxgaGsLExAQFCxbEzz//jL1798b/EImIMrF58+ZJyQZXV1ccP34cbdq0gbu7O9atWydd50VRxPjx46X5EjufJnSP4Obmhjp16khlNmzYkOy+oBLrwyEqKgoLFixAhQoVYGJiAhMTE1SuXBmbN29Ochm3b99GgwYNYGpqiqZNmyZ73Y8fP0azZs1gamoKGxsbDB48GKGhofHm2b9/P+rXrw8rKysYGhrC1dUV06ZNw7dv37TKJXX9jtm3oigCAF68eBFvX4uiiNWrV6NKlSowMzODSqVC0aJF8fvvv+Pz58/JXheg/VmuW7cO06ZNg729PczNzdGpUycEBwfj06dP6Nq1KywsLGBtbY0BAwZItS9jjBo1CtWqVYO9vT0MDQ1hamqK8uXLY/78+YiOjk5y37Zo0QKmpqaJLhsAtm7dijp16kj71snJCV27dtXa3pQcF0SURiJRCkyZMkUEIAIQu3fvnmTZ06dPJ1i2e/fu0vRChQpJv8f8ODk5iVFRUVJ5d3f3eGVifooVKyZ++/ZNKlu7dm3pPX9//yTj8/T0lMpOmTJFmt6/f/9E15cnTx7x3bt3CW5L6dKl45U3NzcXHz58KJW/evWqaGlpmeCyTU1NxUuXLv0wvoQkFq+jo2O8/RJ3n4uiKAYHB4ulSpVKdDnLli3TWl/jxo3jlcmfP79obW2ttdyktsPf31+aXrt2bWl6SmKJvQx7e3vRyMgoXvk1a9ZI5SMjI5M8nmLEPs49PT2l6YcPHxYNDQ0TnNfOzk589uyZVLZXr16JrqdLly5Jfp5ERJlNvnz5pHPY0qVL471/+/ZtrfPc06dPRVFM/Hya0D1C7GtV3J+YMrGvu6dPn5aWF/e6J4rfz/n16tVLdJljx47V2oaY6RYWFmKuXLkSvEYlJKacpaWlmCdPnnjradSokVb5SZMmJRpTzZo1xYiICKlsUtfv2Ps27o+np6eo0WjEjh07JlqmaNGi4qdPn5K1rrifZeHChRPczkqVKsWbPmHCBK3tT+w6CkDs2bNngvvW3Nxc6zNJbNlJXXtj7gtTelwQUdqwhgOlWuwnD6kdjeK///7D3LlzsWfPHuTPnx/A96fWx44dk8p06NAB69evx6FDh+Dj44NDhw6hW7duAID79+9jz549OtsmAGjYsCFWrVqFf/75Bz4+Pjh69ChGjRoF4HtnWWvXrk1wvidPnmDx4sXYt28fKlasCOB7z9G//fYbAEAURXTv3l0aNWLUqFHw9vbG3LlzoVQqERISgp49e0pPKlLC19cXPXv2lF7//vvv8PX1xa5du+KVffHiBaZMmYJjx45h4cKFAIAJEybg9u3bAIAmTZrg0KFD2LhxI+zs7AAAI0eOxH///QcAOHr0qFTTwMjICIsWLcK+ffuQJ0+eeO16UyMlscT25s0blC9fHvv379dqP7xq1Srp97/++ks6toyNjTFjxgwcPXoUa9aswU8//ZRkXGFhYejevTsiIiKgp6eHWbNmwdvbG2PHjgUAvH37FoMGDZLK79+/HwDg6OiIXbt2wdvbG+vWrUO3bt1gZWWVml1DRCSLr1+/atXiKlu2bLwyJUqUgL6+vvT63r17KV7PkiVL8Ndff0mvGzduDF9fX/j6+mLChAkpXt7ixYtx8uRJAECVKlWwd+9e7Nq1C66urgC+19q4dOlSvPk+f/4MpVKJ1atX49ixY+jTp0+y1hccHIx8+fJh3759WLJkCYyNjQF8v27+888/AAA/Pz/MmDEDwPcmEOvWrcPRo0elWhS+vr7StTmuuNfvXr16SX1XAICdnZ20v5o0aYIdO3Zg27ZtAAArKyusXr0ae/fuRenSpQEADx48iNc0NrF1xRUQEIB58+Zh+/btUl9RR48exb1797B27VqsWLFCKhv7Ogx8v85v3boVR48ehY+PD/bs2YPKlSsD+F4rMm6NQeD7/ZStrS12794t7b+4y969ezfWr18PAFAqlRg9ejQOHz6MjRs3okGDBlLty9QeF0SUSnJnPChrSSqbDmjXZEhODYfhw4dL0//44w9p+qJFi6TpL168EPv27SsWLFgwwaz4yJEjpbK6qOHw8eNH8ddffxVdXV0TfGLeunXrBLcldpb90aNH0nSVSiVGRkaK169fl6aVLVtW9PX1lX6qVq0qvXflypUk40vOZxP7KVLc/fL7779rvadWq0UrKysRgGhgYCCeOHFCimvQoEHSfPPnzxdFURQHDhwoTRszZkyC2xz71JKSGg4pjSX2MgwMDMS3b99KyzE2NpaeOMUoU6aMVH7VqlUp2pd79+6VpjVu3Fjr83NychIBiIIgiB8+fBBFURTt7OxEAGKZMmXE69evi+Hh4T/8DImIMqOXL19qnd9j19yLLea8B0DcvHmzKIopq+GQ1PQYKanhEPucv2PHDumcPX36dGn6kCFD4i0DgOjt7Z3s/RN7vsePH0vTJ0yYIE3v1auXKIqiOHz4cK3rcUxM//zzjzS9ZMmS0jKSun4nte2iKIotWrSQ3luyZIk0PXZtFCsrK1Gj0SRrXbE/y86dO0vTmzZtKk2fNGmSNL1EiRLS9ODgYGn62bNnxZYtW4p2dnainp5evPus/fv3J7hvr1+/Lk0vWrRovGW3bNlSmvbbb78luK9EMeXHBRGlDTuNpFRLqNPIlI5GEbtjw1y5ckm/x9QC+Pr1K6pVq5ZgtjtuWV1Qq9WoX78+rl+/nuL1xWTnAcDZ2RlWVlYICgpCeHg4Xr9+jUePHknv37hxAzVr1kxwOffv30eFChVStwHJ0Lx5c63XgYGBUrvcyMhIaXSGhOICgGfPnknTYtcKiL3NqZXSWGIrWrSodPwpFApYWVkhLCxM6/OK/Rk0a9YsRbHFnvfIkSMJ9m0hiiIePHiAGjVqoHfv3pg1axZu3ryJcuXKQalUwsXFBY0aNcKYMWNgb2+fovUTEcnF3Nxc6/WHDx/ijeAjiiI+fvwovbawsMiQ2JIS+7ydWGeKCV1PVCoVGjRokOL1WVtbo0iRItLrSpUqSb/HXDtjxzR79mzMnj073nIePHiQ4PLjXr9/JPa6Yt+jlCxZEsbGxggLC0NQUBA+fPiA3Llzp2hdsbfN2tpa+j2mhicA2NjYSL8HBwfDwsICly9fRp06dRAVFZXoshO6zzI3N9eqWRP3ntHCwiLZ1/jUHhdElDpsUkGpllCnkc7OzilaRuyq5bFHuBD/16xg7969UrKhaNGi2L59e7zqhrocc/rcuXNSssHe3h4bNmzAmTNnsHXr1hSvL3bHiSmRUOdSupTaIUqTE1dC2xx7mlqtln5PS4efCcUSt5lC7OMpI8XENmPGDGzduhXt2rWDq6srBEHA/fv3sXDhQjRs2DBex1hERJmVmZkZ8uXLJ72+ceNGvDL37t3T+hJZvHhxAOlzDdClhK4ncb98p1Zq7wOio6MRERERb3pGDjH+o3XFTigpFP//dSJucipGzH3dypUrpeOkWbNmOHz4MHx9faWmskDC91lJXeNjlq1L6X0vRpSTMOFAmdqrV6+k3wcPHoz27dujRo0aCfZKrOv1de7cGd26dUu0JkJcly9fln5/8uSJ1J+BSqVC3rx5tZ4G1a5dG6IoxvsJDQ3VGi0hPcS9AbKxsZEu5Kampvj69Wu8uNRqNTw9PQEAhQoVkua9cuWK9HvsbY4t9k3J27dvpd+PHj0ar2xKY0mp2J/BoUOHUj1v9+7dE/383N3dpXIdO3bEjh078ODBA3z9+hVt27YFANy5c0frCQsRUWbXqlUr6fdly5YhMjJS6/0FCxZIv5cqVUq6VqTkGgBof3lN6wOF2OftZ8+eJXjejmnLH1tqEwWfPn3CkydPpNex+wGI2R+xY/L09Ez0WmJoaJjmuGKvK/Y9yp07dxAWFgbg+xd5W1vbNK8ruWLfZ82ZMweNGzdGjRo18O7duzQvO7nX+NQeF0SUOmxSQZmao6Oj9Pv69etRqFAhPHnyBDNnzkz39e3evRs1atRAUFCQ1hBfiVm4cCHy5MmDAgUKYNasWdL0xo0bQ19fH2XKlEHJkiVx584d/Pvvv+jWrRvatWsHfX19BAQE4PLly9i7d2+amiSkhkKhQKdOnbB8+XKEhISgYcOGGDZsGGxsbPDy5UvcuXMHe/bswfr16+Hm5oYWLVpInUEtXboU+fLlg6Ojo9Y2xxa7eunmzZtRuHBhhISEYN68eWmOJaV++eUXadjVkSNH4v379/jpp5/w6tUrrF69GhcuXEh03gYNGsDW1hYfPnzAxo0bYW1tjQYNGkCtViMgIADnzp3DzZs3pY7SqlevjnLlyqFSpUpwcHDA169ftTpRS+jpFRFRZjV27Fhs3rwZwcHBuH//Pho0aIDhw4fDxMQEu3btkjrrA6DVTCD2NWDBggUwNTXFkydPtMrHFvtJ9tmzZ3HkyBGYmZnBxcUlxTUPunTpIp3zmzVrhrFjxyJfvnx48+YNHjx4gP3792PUqFEp7vA6KZ07d8bEiRPx8uVLLFq0SJresmVL6f3FixcD+H4d+vTpE0qXLo3g4GA8ffoU3t7ecHR0THT/pDSWAwcOAAAmT54MQ0ND2NjYYNq0aVKZDh06pFtyISGx77PmzJmD7t2748iRI1qdhafWL7/8InXYPG/ePERHR6NOnTr4+PEjNm/ejJUrV8LR0VGW44IoR0vPDiIo+9H1sJixO3xKqHPBL1++iPb29vE6FKpevXqCy05rp5HR0dEJDm8Ze32xh8eKvS3Ozs7x5jM1NRXv378vlU9qWMyYn6TiS0pyO41MaL8EBQUlORRl3M8qoWExHRwcEhwWUxRFrU4xY36KFSuW4D5NSSyJDa0piqLo6OgYL5bIyEixfv36P9z3ie3LQ4cOJTmcV+wOuxIaMizmp3jx4mJ0dHSSnycRUWZz6tSpJK9hCoVCXLBggdY8kZGRYoECBZK8BsS+jkdFRWl1Phn3XJySTiMjIiKSHP4w7jk+oWUkR8x81tbWWsOHxvw0aNBA6phRFJMeFjM19zWJxa3RaMQOHTokup6khsVMaF2JXRsT+0wSWt6lS5dEQRC04hAEQes+ITmfSWKxxo4l7k9MuZQeF0SUNmxSQZmamZkZjh8/jrp168LU1BQODg6YPn06pk+fni7rUyqVOHToEFq2bAkLCwvY2tpi+PDhiQ6FGdvSpUsxbtw42Nvbw9DQEDVq1MDp06dRtGhRqUz58uVx48YNDBgwAIUKFYKBgQEsLS1RsmRJDBgwQLYqfJaWlrhw4QJmzJiBMmXKwMjICMbGxnB2dkbbtm2xdetWVKlSRSq/c+dODB48GLly5YKxsTGaNm2KM2fOSENjxbVlyxa4u7tDpVJJ+3Tnzp06iSUl9PX1ceTIEfz111+oVKkSTE1NoVKpUKRIEfTt2/eH8zdp0gRXrlxB165dkS9fPujr68PGxgZly5bFr7/+qrVNv/32G1q2bAlHR0cYGxtDX18fTk5OGDBgAE6dOgWlUpmqbSAikkudOnVw//59jBs3DiVLloSJiQkMDQ3h5OSE7t2748qVKxg5cqTWPPr6+ti3bx+qVq0KAwMD5MuXD9OmTdMa/jI2PT09HDhwADVq1Ej0mpJcBgYGOHr0qHTONzMzg0qlQsGCBdG0aVOsW7cOrVu3TtM6YjMzM4Ovry+aN28OExMTWFtbY8CAAdizZ49WLYLp06fj4MGDaNSoEXLlygV9fX04ODigRo0a+OOPP7RqIKSFIAj4+++/sXLlSlSqVEn6vFxcXDB+/HhcvHgxw4dprlSpEvbu3YtSpUpBpVKhRIkS2LlzJxo2bKiT5Xt5eWHTpk2oXbs2LCwsYGBggAIFCqBLly7Stmb0cUGU0wmimA49rRBRjuTk5ITnz58DQLp04kRERJTZxCQTHB0dERAQIG8wRESZDGs4EBEREREREZHOMeFARERERERERDrHhAMRERERERER6Rz7cCAiIiIiIiIinWMNByIiIiIiIiLSOSYciIiIiIiIiEjnmHAgIiIiIiIiIp1jwoGIiIiIiIiIdI4JByIiIiIiIiLSOSYciIiIiIiIiEjnmHAgIiIiIiIiIp1jwoGIiIiIiIiIdI4JByIiIiIiIiLSOSYciIiIiIiIiEjnmHCgH/Lx8YEgCAgODpY7FCIiIiIiIsoimHCgDCOKIubPnw8XFxcYGhrCwcEBs2bNSrDsuXPnoKenh7Jlyya5zIcPH6JOnTrIkycPVCoVChUqhIkTJyIqKkoqc/z4cbi4uMDc3Bxdu3ZFZGSk9N7nz5/h4uKC58+f62QbiYiIiIiI6Ds9uQOgnGP48OHw9vbG/PnzUapUKXz69AmfPn2KVy44OBjdunVDvXr18O7duySXqa+vj27duqF8+fKwtLTEzZs30bdvX2g0GsyePRsajQadO3fGb7/9Bnd3d7Rt2xarV6/GkCFDAADjx4/HgAED4OjomC7bTERERERElFMx4UCIiIjAmDFjsG3bNnz58gUVK1bEwoUL8dNPPyVYPiwsDG3atMGXL19w6NAhWFpa/nAd9+/fx4oVK3Dnzh24uroCAAoWLJhg2QEDBqBz585QKpXYt29fksstVKgQChUqJL12dHSEj48PfH19AQCBgYEIDAzEoEGDoFKp0KJFC9y/fx8AcP78efj5+WHp0qU/jJ+IiIiIiIhShk0qCGPHjsXu3buxYcMGXLt2DUWKFIG7u3uitQ8aNGgAjUaD48ePJyvZAAD//PMPChUqhIMHD6JgwYJwcnJCnz594q3D09MTz549w5QpU1K1LU+ePMHRo0dRu3ZtAICtrS3s7e3h7e2NsLAw+Pr6onTp0oiKisLAgQOxatUqKJXKVK2LiIiIiIiIEscaDjlcaGgoVqxYAS8vLzRu3BgAsGbNGhw/fhzr1q3DmDFjpLJv375Fhw4d4OzsjL///hsGBgbJXs+zZ8/w/Plz7Ny5Exs3boRarcbIkSPRtm1bnDp1CgDw+PFjjB8/Hr6+vtDTS9mhWa1aNVy7dg0RERHo168fpk+fDgAQBAE7duzAyJEjMXz4cDRp0gS9evXCH3/8gTp16kClUqF69eoIDAzE0KFDpaYWmVmEGImPCEaQ+Bmf8BnfxHCooYYGIjTSPxECAGMYwVgwghlMYA5TWAnmsIAZBEGQezOIiIhyvCi1iI+hIoLCRIREiAiJAEIiRXyLFKFQCNBXAAZ6gL4SMFAK//sf0NcTYGMiII+ZAKWC13QiyryYcMjhnj59iqioKFSvXl2apq+vj0qVKklND2I0aNAAlSpVwvbt21NcK0Cj0SAiIgIbN26Ei4sLAGDdunWoUKECHj58iCJFiqBz586YNm2a9H5KbN++HV+/fsXNmzcxZswYzJ8/H2PHjgUA1KhRA35+flLZR48eYePGjbh+/Tpq1aqF4cOHo3HjxihZsiRq1aqF0qVLp3j9uhItRuOF+Ab+4ks8E/9DgPgS/uJLBIgv8U78+D3BgPA0rUMBBfIgFwoIeVFAsEcBIS/yC/YoINijiOCIIoIjFAIrPxEREaXVt0gRTz9q8OSDBk8DNXj6QYMngWo8/6RBYIiIrxFpW75SAeQxE5DXQgF7cwEOlv/730IB59wKlMqrhKkhExJEJB8mHCjZmjZtit27d+PevXsoVapUiua1t7eHnp6eVjKhWLFiAIAXL14gT548uHLlCq5fvy7VMtBoNBBFEXp6evD29kbdunUTXX7+/PkBAMWLF4darUa/fv0watSoBBMj/fv3h4eHBzQaDa5fv4527drB2NgYtWvXxr///pthCYcIMRK3xYe4rrmHa+I9XNfcw13xMaIQna7r1UCDN/iAN+IHXBJvxnvfGEYoIRRBKYUrSguu0v9mgkm6xkVERJSVvf2iwQV/NS4GROP6SzWefNDg1WcRoph+61RrgNefRbz+rE7wfYUAFLJRoHReBco4KKUfB0s+WCCijMGEQw5XuHBhGBgY4Ny5c9JIDVFRUfDz88OIESO0yv7xxx8wNTVFvXr14OPjg+LFiyd7PdWrV0d0dDSePn2KwoULA/he0wD43tGjubk5bt++rTXP8uXLcerUKezatSvRDiYTotFoEBUVBY1GEy/hsG7dOlhbW6NFixYICgqStjfmf7U64Qu2LnwVQ3FG44dTmgs4p7mWIcmF1AjDN/iJt+Gn/v/PQwklygiuqKX4CbUVlVBdUQHmgqmMURIREclHoxFx67UGFwOipSSD/8d0zCykkkYEnnz4XsNiz83/v+ewMRFQyUkJtyJ6cHPWQxkHBZtbElG6EEQxPfOulBWMGDECO3fuxLp161CgQAHMmzcPBw4cwNOnT2FlZQUfHx/UqVMHQUFBsLS0xMiRI7F161b4+PigaNGiyVqHRqPBTz/9BFNTUyxatAgajQaDBw+Gubk5vL29E5xn6tSp2LdvH27cuCFNW7p0Kfbu3YuTJ08CALZs2QJ9fX2UKlUKhoaGuHLlCkaOHIk6depg8+bNWst7//49KleujHPnziFv3rwAvteI6NChAxo2bIiGDRvi1KlTiY7OkVJqUY2L4k2cVJ/HKc1FXBHvIDoTJhhSQwklygpF4aaojCZKN1QVyrIZBhERZWtBYSIO3Y3CgdtROPkwOs3NITKTXCYC6rrowb2YHhoV00NuM17TiUg3WMOB8Mcff0Cj0aBr1674+vUrKlasiGPHjsHKyirB8gsXLoRarUbdunXh4+MDFxcXuLm5wcnJCV5eXgnOo1Ao8M8//2Do0KGoVasWTExM0LhxY3h4eKQo1sDAQDx9+lR6raenh7lz5+LRo0cQRRGOjo4YMmQIRo4cGW/e4cOHY9SoUVKyAQC8vLzQvXt3/PXXXxgzZkyakw1qUQ0fzWXs0XjjgPokPiD+SB/ZgRpqXBXv4qr6LjzU62EHGzRT1kFLRX24KSpBX9CXO0QiIqI0exWswYHbUdh/OwpnnqgRrZE7ovTxMVTEzutR2Hk9CoIAlM+nROsyeuhUwQD5rZh8IKLUYw0H0glHR0dMmzYNPXr0kDuUDKcRNfDRXMZuzbFsnWRILkuYo7GiFn5RtkRdRRVW0SQioizlZbAGf1+JxL5b0bj6nzpd+2DI7AQBqF1Eic4VDPBzWX2Yq3hNJ6KUYcKB0uzu3bvo1KkTbty4AYUi52TBX4vv4aXeA8/o3fgPb+QOJ1NyEvKhu7I1uilbwUHII3c4RERECYpWizh4NxrrL0TC+0E0NLw7jsdIH2hWUh9dKuqjYVE96CmZfCCiH2PCgSgFRFHECc15rFXvwCHNv9mmT4b0poQSDRTV0FvZDk0VbuzvgYiIMoU3nzVYfT4S6y5E4u0X3hInV25TAf2qG2BQTQPYmPKaTkSJY8KBKBm+ieHwUu/BUvVmPBVfyB1OluYsOGGEsgd+UbaAoWAgdzhERJQDXQqIxmKfSOy/HYWo9BugKtsz0ge6VzbAcDcDFLaJPxQ5ERETDkRJ+Cx+xQr131gWvSXH982ga3awwWC9X9BP2QEWgpnc4RARUQ5wOSAa049GwPsBayjqkkIAWpXWw6i6hvjJkX3SE9H/Y8KBKAFB4mcsid6EZeot+IyvcoeTrZnDFP2VHTFKrxcsBXO5wyEiomzoyotoTD8SgaP3mWhIbzULKzHBXYW6Lkw8EBETDkRaIsRILFVvxrzoNUw0ZDBrWGCcXj8MUHZiUwsiItKJ6/+pMe1oOA7fZaIhozUuroc/WqhQzI5NLYhyMiYciP5nt/oYJkQvRID4Uu5QcrQCyIup+kPRSdGMQ2oSEVGqPAvUYOz+bzhwm4kGOekpgN5VDTC5sSFs2bkkUY7EhAPleH6a2xgbNQ8XxOtyh0KxlBGKYr7+eNRUVJQ7FCIiyiIio0XMPxWBuccj8C1K7mgohrkKGFdfhWFuBjDU48MEopyECQfKsYLEzxgX/Sc2qfdDBP8MMqtfFC0xR38UbAVruUMhIqJM7NSjaAzd+Q2PP2jkDoUS4Wgl4I+WRmhTVl/uUIgogzDhQDnSXvVxjIyahbcIlDsUSgZrWOAPvTHoptdK7lCIiCiTeftFgzH7wrH9Gqs0ZBUtSulhaTsj2JmzmQVRdseEA+Uob8VAjIiaiX2aE3KHQqlQV1EFy/SmoqAin9yhEBGRzERRxMqzkZh8KByfw+WOhlLKyljAny1V6FaZHUUTZWdMOFCOsUm9H2Oj5iIIX+QOhdLADCZYpD8BXZQt5A6FiIhk8v6rBr23fMOxB+wUMqtrVlIPKzsYIbcZazsQZUdMOFC291UMxZCo6diuOSR3KKRDHRVN8Zf+JJgLpnKHQkREGejkw2j03BKGt194C5td2JoKWN7eCC1Ls28HouyGCQfK1m5o7uOXqNF4Ij6XOxRKBwWFfNigPw+VFKXlDoWIiNJZtFrElMMRmH8qArx7zZ76VTPAgp9VMOBIFkTZBhMOlG2tiP4b46PnIwKRcodC6UgPepisNxhjlH0gCLxBISLKjgI+atB1YxguPVfLHQqls6oFldje05gdShJlE0w4ULYTKoahT9QE7NUclzsUykBtFO5Yoz8TxoKR3KEQEZEO7b0ZhX5bw9gxZA6S10LAth7GqFJQT+5QiCiNmHCgbOWl+BZtIofgpvhA7lBIBmWEothpsAQFBHu5QyEiIh2Y7R2OaUfYhCInMlACi9oYoU81jmJBlJUx4UDZxlXNHbSNHIo3+CB3KCSj3LDGNoNFqKYoL3coRESUShHRIvpt/YatV6PkDoVk1ruqPha3MWK/DkRZFBMOlC3sVR9Hr6jf8A2sb0mAAfSxRG8yuuu1ljsUIiJKoU+hGvy8Ngzn/dlfA31XtaAS+/qawMqYSQeirIYJB8ryPKLXY2L0QojgoUzaZuv9il/1eskdBhERJVPARw2arwrFw/cauUOhTKZUXgUODzRBHjN2JkmUlTDhQFna5KjFmKdeI3cYlImNVvbGTP2RcodBREQ/cP2lGi1Xh+LtF96aUsKK2CpwdJAJClgx6UCUVTDhQFnW6Kg/sFS9We4wKAvoq2yPxXoToRB4g0JElBldfRGNRstDORIF/VB+SwFHBpnAJbdS7lCIKBmYcKAsRyNqMCR6Otard8kdCmUh7RVNsE5/FvQFfblDISKiWK6/VKPR8lAEhfGWlJInt6mAQwNNUMaBSQeizI4JB8pS1KIafaImYKvmoNyhUBbURuGOjfrzoBR4g0JElBncfKWG+7JQfGKygVLI0gg40M8EVQrqyR0KESWB9YspyxBFEf2jJjPZQKm2W3MMA6OngHlWIiL53XmjRuPlTDZQ6gR/A5qtCsWNlxzNhCgzY8KBsozx0fOxWbNf7jAoi9uo3ofR0X/IHQYRUY52/60ajZaFIjCUyQZKvS/hQIvVofD/yFFNiDIrJhwoS/gzei0WqzfIHQZlE8vUWzAl6i+5wyAiypEevVfDfXko3ocw2UBp9/aLiKYrQ/EhhEkHosyICQfK9NZH78Kk6EVyh0HZzFz1aiyK9pI7DCKiHOVjqAYtVoVx6EvSqScfvh9XoRE8rogyGyYcKFM7oD6JodEz5A6Dsqnfoj3wj/qU3GEQEeUIUWoRHdaH4Rmrv1M6uPqfGh08wxClZtKBKDNhwoEyrduah+gZNR5qsDMgSh8iRPSMGo9bmgdyh0JElO0N2fkNZ57ymk7px/tBNPpu/cbOoYkyESYcKFP6KAajXdRwhOKb3KFQNheCMLSJHIp3YqDcoRARZVuLfSLgeTFK7jAoB/j7ShRmHouQOwwi+h8mHCjTiRaj0SVqFALEl3KHQjnEf3iDDpHDESFGyh0KEVG2c+ReFMYfCJc7DMpBZh6LwOG7THARZQZMOFCmMz56Pnw0l+QOg3KYi+JNDImeLncYRBnKyckJixYtSrLM1KlTUbZs2QyJJ6MFBARAEATcuHEDAODj4wNBEBAcHCxrXNnJ3TdqdN0YBjW7baAMJIpAj81heBrIJjxEcmPCgTKVzer9WKreLHcYlENtUu/DFvUBucMg0jkvLy9YWlrGm+7n54d+/fpJrwVBwL59+7TKjB49GidPnkznCNNfjx490KpVqyTLVKtWDW/evIGFhUW6x+Pj44OWLVvC3t4eJiYmKFu2LLZs2aJVJioqCtOnT0fhwoWhUqlQpkwZHD16NMnlTp06FYIgxPsxMTGRyhw/fhwuLi4wNzdH165dERn5/7W7Pn/+DBcXFzx//jzN2xgaIaLd+jB8YeUGkkHwN6D9+jCER7E/ByI5MeFAmcYjjT+GR82UOwzK4YZHzcQTTdpvtIl+JPaXPLnY2trC2Ng4yTKmpqbIlStXBkUkLwMDA9jZ2UEQhFQvI7mf6/nz51G6dGns3r0bt27dQs+ePdGtWzccPHhQKjNx4kSsWrUKS5Yswb179zBgwAC0bt0a169fT3S5o0ePxps3b7R+ihcvjnbt2gEANBoNOnfujAEDBuDChQu4cuUKVq9eLc0/fvx4DBgwAI6OjqncA/9v1N5vePKBVRtIPrdfazBqLzNeRHJiwoEyhUgxCt2ixrKTSJJdCMLQNWoMIkW2/STdcnNzw5AhQzBixAjY2NjA3d0dAHDnzh00btwYpqamyJMnD7p27YrAwMB48w0ZMgQWFhawsbHBpEmTtHphj4iIwOjRo+Hg4AATExNUrlwZPj4+AL4/Se/Zsyc+f/4sPe2eOnUqAO0mFU5OTgCA1q1bQxAE6XXcJhUajQbTp09Hvnz5YGhoiLJly2o9dY9pprBnzx7UqVMHxsbGKFOmDC5cuCCVef78OZo3bw4rKyuYmJigRIkSOHz4cKL7LigoCN26dYOVlRWMjY3RuHFjPH78WHo/oWYfixYt0tqGDRs2YP/+/dI+iNk/sSXUpOLs2bOoWbMmjIyMkD9/fgwbNgyhoaHS+05OTpgxYwa6desGc3NzrRojSfn9998xY8YMVKtWDYULF8bw4cPRqFEj7NmzRyqzadMm/P7772jSpAkKFSqEgQMHokmTJvDw8Eh0uaamprCzs5N+3r17h3v37qF3794AgMDAQAQGBmLQoEEoUaIEWrRogfv37wP4ngTx8/PD8OHDk7UNSdl/Kwrr2UkkZQJrzkdi53X5E7xEORUTDpQpTIlejBvifbnDIAIAXBfvYUL0ArnDoGxow4YNMDAwwLlz57By5UoEBwejbt26KFeuHK5cuYKjR4/i3bt3aN++fbz59PT0cPnyZSxevBgLFizA2rVrpfeHDBmCCxcuYNu2bbh16xbatWuHRo0a4fHjx6hWrRoWLVoEc3Nz6Yn36NGj48Xm5+cHAPD09MSbN2+k13EtXrwYHh4emD9/Pm7dugV3d3e0aNFCKwEAABMmTMDo0aNx48YNuLi4oFOnToiOjgYADB48GBEREThz5gxu376NuXPnwtTUNNH91qNHD1y5cgUHDhzAhQsXIIoimjRpgqio5H2hHT16NNq3b49GjRpJ+6BatWo/nO/p06do1KgR2rRpg1u3bmH79u04e/YshgwZolVu/vz5KFOmDK5fv45JkyYlK6aEfP78GdbW1tLriIgIqFQqrTJGRkY4e/Zsspe5du1auLi4oGbNmgC+12qxt7eHt7c3wsLC4Ovri9KlSyMqKgoDBw7EqlWroFQqU70NAPD2iwYDt/MBAmUeA7d/g/9H1rYhkoOe3AEQ/au+jMXqjXKHQaRliXoT6imqopGyltyhUDbi7OyMefPmSa9nzpyJcuXKYfbs2dK09evXI3/+/Hj06BFcXFwAAPnz58fChQshCAJcXV1x+/ZtLFy4EH379sWLFy/g6emJFy9eIG/evAC+f8E+evQoPD09MXv2bFhYWEAQBNjZ2SUam62tLQDA0tIyyXLz58/HuHHj0LFjRwDA3Llzcfr0aSxatAjLli2Tyo0ePRpNmzYFAEybNg0lSpTAkydPULRoUbx48QJt2rRBqVKlAACFChVKdH2PHz/GgQMHcO7cOSlJsGXLFuTPnx/79u2TmgokxdTUFEZGRoiIiEhy2+KaM2cOunTpghEjRgD4/vn99ddfqF27NlasWCElA+rWrYtRo0Yle7kJ2bFjB/z8/LBq1Sppmru7OxYsWIBatWqhcOHCOHnyJPbs2QO1Onkd4YWHh2PLli0YP368NE0QBOzYsQMjR47E8OHD0aRJE/Tq1Qt//PEH6tSpA5VKherVqyMwMBBDhw6Nl1xJjr5/f0NgKNvNU+bxJRwYuD0MRwclntgkovTBhAPJ6osYgj5RE6ABs86U+QyOmoYbigMwE0x+XJgoGSpUqKD1+ubNmzh9+nSCT/efPn0qJRyqVKmi1a9A1apV4eHhAbVajdu3b0OtVktlY0REROi874UvX77g9evXqF69utb06tWr4+bNm1rTSpcuLf1ub28PAHj//j2KFi2KYcOGYeDAgfD29kb9+vXRpk0brfKx3b9/H3p6eqhcubI0LVeuXHB1dZWaAqSXmzdv4tatW1qdOYqiCI1GA39/fxQrVgwAULFixTSt5/Tp0+jZsyfWrFmDEiVKSNMXL16Mvn37omjRohAEAYULF0bPnj2xfv36ZC137969+Pr1K7p37641vUaNGlo1WB49eoSNGzfi+vXrqFWrFoYPH47GjRujZMmSqFWrVqKfTUKW+0bg2IPoZJcnyiinHqmx4VIkulc2kDsUohyFCQeS1aToRfgPb+QOgyhBr/AOk6IXYZH+BLlDoWwi9kgBABASEoLmzZtj7ty58crGfEn/kZCQECiVSly9ejVeVfikmimkN319fen3mGSJRvM9udynTx+4u7vj0KFD8Pb2xpw5c+Dh4YGhQ4emal0KhUKrTwsAyW5ukZSQkBD0798fw4YNi/degQIFpN/jfq4p8e+//6J58+ZYuHAhunXrpvWera0t9u3bh/DwcHz8+BF58+bF+PHjk6wREtvatWvRrFkz5MmTJ8ly/fv3h4eHBzQaDa5fv4527drB2NgYtWvXxr///pvshMP9t2r8doAd9FHmNW5/OBoV10MeM7YqJ8oo/Gsj2VzR3MYa9Q65wyBK0mr1dlzU3JA7DMqmypcvj7t378LJyQlFihTR+on9JfbSpUta8128eBHOzs5QKpUoV64c1Go13r9/H28ZMc0HDAwMklUNX19fP8ly5ubmyJs3L86dO6c1/dy5cyhevHhKNh358+fHgAEDsGfPHowaNQpr1qxJsFyxYsUQHR2ttQ8+fvyIhw8fSuu0tbXF27dvtZION27c0FpOcvdBbOXLl8e9e/fi7dciRYrAwCDtT0l9fHzQtGlTzJ07N8nOJlUqFRwcHBAdHY3du3ejZcuWP1y2v78/Tp8+LXUWmZh169bB2toaLVq0kPZPTLImKioq2ftMFEUM3P4N39hPJGVin8JEjNzNpBhRRmLCgWShFtUYGjWDTSko09NAg0FRUzlqBaWLwYMH49OnT+jUqRP8/Pzw9OlTHDt2DD179tT6ovfixQv8+uuvePjwIbZu3YolS5ZIIwm4uLigS5cu6NatG/bs2QN/f39cvnwZc+bMwaFDhwB8H0khJCQEJ0+eRGBgIMLCwhKMx8nJCSdPnsTbt28RFBSUYJkxY8Zg7ty52L59Ox4+fIjx48fjxo0bKRrZYMSIETh27Bj8/f1x7do1nD59WmqeEJezszNatmyJvn374uzZs7h58yZ++eUXODg4SF+83dzc8OHDB8ybNw9Pnz7FsmXLcOTIkXjbduvWLTx8+BCBgYHJqgExbtw4nD9/HkOGDMGNGzfw+PFj7N+/P1X9GsR1+vRpNG3aFMOGDUObNm3w9u1bvH37Fp8+fZLKXLp0CXv27MGzZ8/g6+uLRo0aQaPRYOzYsVKZpUuXol69evGWv379etjb26Nx48aJxvD+/XvMnDkTS5YsAQBYWVmhWLFiWLRoES5cuICTJ0/Gaz6TmI2Xo3DeP2UJHSI57LoRhX/u8JpOlFGYcCBZrFD/jeviPbnDIEqWe+IT/Kle++OCRCkUU1tArVajYcOGKFWqFEaMGAFLS0soFP9/ie7WrRu+ffuGSpUqYfDgwRg+fLjWE3FPT09069YNo0aNgqurK1q1agU/Pz+p2n+1atUwYMAAdOjQAba2tlodV8bm4eGB48ePI3/+/ChXrlyCZYYNG4Zff/0Vo0aNQqlSpXD06FEcOHAAzs7Oyd5utVqNwYMHo1ixYmjUqBFcXFywfPnyRMt7enqiQoUKaNasGapWrQpRFHH48GGp2UaxYsWwfPlyLFu2DGXKlMHly5fjjcTRt29fuLq6omLFirC1tY1XSyMhpUuXxr///otHjx6hZs2aKFeuHCZPnix1zpkUNzc39OjRI9H3N2zYgLCwMMyZMwf29vbSz88//yyVCQ8Px8SJE1G8eHG0bt0aDg4OOHv2LCwtLaUygYGBePr0qdayNRoNvLy80KNHjyRHnBg+fDhGjRqltT1eXl7Ytm0bmjVrhjFjxuCnn3764bZ+CtWwKQVlKcN2fsOXcHZsSpQRBDFuo0eidPZKfIeyES3wFaE/LkyUSRjCADcN/oGTwkHuUCiHcXNzQ9myZbFo0SK5Q6EUcHR0xLRp05JMOmQXQ3d+w6pzkXKHQZQiA2sYYHFbI7nDIMr2WMOBMtxvUR5MNlCWE4FITIxeIHcYRJQF3L17FxYWFvE6gcyO7rxRY+0FJhso61lzPhKPP7AZEFF6Y8KBMtQNzX3s1Bz5cUGiTGiX5hjOa67JHQYRZXIlSpTArVu3tJrFZFdj9oZDze6YKAuK1gBTDkXIHQZRtscmFZShmkf2x3HNj9vNEmVWVYQy8DHcIncYRESyO3Q3Cq3XJNwBKVFWIAjAxV9NUS5/4n2dEFHaZP/UO2UaPurLTDZQlndRvIkD6pNyh0FEJCtRFDHpIDuKpKxNFIEJPI6J0hUTDpRhJkUvlDsEIp2YHL0YGpF1iIko5zpwOxp33vA8SFnfiYfROP0oWu4wiLItJhwoQ+xTH4efeFvuMIh04oH4DHs1x+UOg4hINn8cZ9t3yj4mspYDUbphwoEyxJzoVXKHQKRTf0avlTsEIiJZeN+PwtX/2Ls/ZR9+L9TYezNK7jCIsiUmHCjdnVRfwE3xgdxhEOnUDfE+jqvZJwkR5TxzWLuBsqH5J3lcE6UHJhwo3S1Ue8odAlG6mBe9Ru4QiIgy1Jkn0Tj3jLUbKPvxe6HGpQD25UCka0w4ULq6rXmIE5rzcodBlC58xSu4qLkhdxhERBlmjjefAlP2teTfSLlDIMp2mHCgdLUw2kvuEIjS1YLo9XKHQESUIa7/p8ZJ9uZP2djeW1F4/ZmjrxDpEhMOlG5ei++xU3NE7jCI0tVhzRm8Ft/LHQYRUbpbd4FPfyl7i1IDK8/yOCfSJSYcKN1sUO9FFPgkhLK3aERjg3qv3GEQEaWrb5Eitl/jFzHK/taej0R4lCh3GETZBhMOlC5EUcQm9T65wyDKEF7qPRBF3pwQUfa1+2YUPofLHQVR+gsMFbH9GofIJNIVJhwoXfiKV/BM/E/uMIgyxHPxFTtHJaJszesiazdQzrGCzSqIdIYJB0oXG6P3yR0CUYZap94pdwhEROniyQc1zjzlUJiUc1z7T40H73jME+kCEw6kc1/FUOzVeMsdBlGGOqjxwUcxWO4wiIh0zusSq5dTzrP1Ko97Il1gwoF0brf6GELxTe4wiDJUNKLxj/qU3GEQEemUWiNisx+rl1POs4P9OBDpBBMOpHN7NcflDoFIFjz2iSi7OfNEjdef2Sku5TxPAzXwe87R1ojSigkH0qkQMQw+mktyh0Eki9Oai/gsfpU7DCIinTl8l095Kefac5PHP1FaMeFAOnVM44sIsOol5UyRiMJBzWm5wyAi0plD9/iEl3Ku/bd4/BOlFRMOpFNsw0453T71CblDICLSiUfv1XjyQSN3GESyeRKowa3XHK2CKC2YcCCdiRajcVTjK3cYRLI6rjmHb2K43GEQEaXZ4bt8ukt06A6bVRClBRMOpDO+mqsIxhe5wyCSVTgicF5zXe4wiIjS7Mg9ftEi+vcJE29EacGEA+nMac1FuUMgyhTYcSoRZXVfwkWcfcaq5EQXA9SIjOZILUSpxYQD6Yyv5orcIRBlCv9qLssdAhFRmhx/EI0o5huIEBYJ+L3gHwNRajHhQDoRLkbgqnhH7jCIMoWr4l18EUPkDoOIKNV8HrMaOVEMNqsgSj0mHEgnLmluIhJs60kEAGqocZY1fogoC7sYwC9YRDF8n7CGA1FqMeFAOuEr8ssVUWxnNH5yh0BElCohESLuvOFwmEQxLgREI0rNfhyIUoMJB9KJc5prcodAlKlcE+/JHQIRUapceaGGmvkGIklYJOD3nLUciFKDCQfSiWuau3KHQJSp3NI8lDsEIqJU4RcrovguBvDvgig1mHCgNHshvsFnfJU7DKJMJRhf4K95KXcYREQpdv0lv1gRxXX/Lf8uiFKDCQdKs7uaR3KHQJQp3RTvyx0CEVGK3WDCgSiee2/ZzogoNZhwoDS7LTLhQJSQ6xomHIgoa/kSLuLpR36xIorrwTsm4ohSgwkHSrM7msdyh0CUKbGGAxFlNQ/fqSGyM36ieL5GAP8FMRlHlFJMOFCa3WENB6IEPRFfyB0CEVGKBHziFyqixLAfB6KUY8KB0kQjavBEfC53GESZ0n/iG4h8VEhEWcjzTzxnESXm/jsm5IhSigkHSpPXeI9IRMkdBlGmFIFIvMZ7ucMgIkq256zhQJQo1nAgSjkmHChNXoiv5Q6BKFN7Lr6SOwQiomRjwoEocU8+8O+DKKWYcKA0+U98K3cIRJnacybliCgLYR8ORIl7H8ImR0QpxYQDpclr8Z3cIRBlagGs4UBEWcgL9sJPlKhAJhyIUowJB0qTN+IHuUMgytTe8m+EiLKI9181CIuUOwqizOtTmAiNhkkHopRgwoHS5K0YKHcIRJlakPhF7hCIiJLlzRd+kSJKikYEPobx74QoJZhwoDT5gq9yh0CUqX3m3wgRZRFhkfwiRfQjH9isgihFmHCgNPkqhskdAlGm9jkDajj4+PhAEAQEBwenaTkBAQEQBAE3btzQSVw/MmnSJPTr10967ebmhhEjRqRpmXG3IaX7Jjn7QFf7Oy5BELBv3z4AQGBgIHLnzo2XL1/qdB1ESQmJ4Bcpoh9hPw5EKcOEA6VJKJhwIEpKENI/4VCtWjW8efMGFhYWaVpO/vz58ebNG5QsWVJHkSXu7du3WLx4MSZMmCBN27NnD2bMmKHT9aR032TkPkiKjY0NunXrhilTpqR43vDwcAwePBi5cuWCqakp2rRpg3fvku7gVxRFTJ48Gfb29jAyMkL9+vXx+PFj6f2IiAh07doV5ubmcHFxwYkTJ7Tm//PPPzF06NAUx0qZSyj7byD6IdZwIEoZJhwoTb4iVO4QiDK1z2L6N6kwMDCAnZ0dBEFI03KUSiXs7Oygp6eno8gSt3btWlSrVg2Ojo7SNGtra5iZmel0PSndNxm5D36kZ8+e2LJlCz59+pSi+UaOHIl//vkHO3fuxL///ovXr1/j559/TnKeefPm4a+//sLKlStx6dIlmJiYwN3dHeHh4QCA1atX4+rVq7hw4QL69euHzp07QxS/33T7+/tjzZo1mDVrVuo2lDKNUDapIPqhT6EpG8lFF7X3coIePXqgVatW0mvut+yDCQdKk1A2qSBK0pcUJuXc3NwwdOhQjBgxAlZWVsiTJw/WrFmD0NBQ9OzZE2ZmZihSpAiOHDkizRO3iv/z58/RvHlzWFlZwcTEBCVKlMDhw4cBAEFBQejSpQtsbW1hZGQEZ2dneHp6Aki8OcLJkydRsWJFGBsbo1q1anj48KFWzDNnzkTu3LlhZmaGPn36YPz48ShbtmyS27lt2zY0b9483rbHvrlwcnLC7Nmz0atXL5iZmaFAgQJYvXq11jyXL19GuXLloFKpULFiRVy/fl3r/dj75suXLzAyMtLadwCwd+9emJmZISwsLMEmFYcPH4aLiwuMjIxQp04dBAQEaM0/derUeNu7aNEiODk5Sa/9/PzQoEED2NjYwMLCArVr18a1a9eS3EclSpRA3rx5sXfv3iTLxfb582esW7cOCxYsQN26dVGhQgV4enri/PnzuHjxYoLziKKIRYsWYeLEiWjZsiVKly6NjRs34vXr11ITj/v376NFixYoUaIEBg8ejA8fPiAw8HunwQMHDsTcuXNhbm6e7DgpcwpjkwqiH4pUp6x8etTeiy3uF/XMLrnNN9N7v2V1Ka3NGBUVhXHjxqFUqVIwMTFB3rx50a1bN7x+/Voqk161GZlwoDQJYZMKoiRFIzrF82zYsAE2Nja4fPkyhg4dioEDB6Jdu3aoVq0arl27hoYNG6Jr164IC0v472/w4MGIiIjAmTNncPv2bcydOxempqYAvvebcO/ePRw5cgT379/HihUrYGNjk2Q8EyZMgIeHB65cuQI9PT306tVLem/Lli2YNWsW5s6di6tXr6JAgQJYsWJFksv79OkT7t27h4oVK/5wX3h4eEiJhEGDBmHgwIFSwiMkJATNmjVD8eLFcfXqVUydOhWjR49OdFnm5uZo1qwZ/v77b63pW7ZsQatWrWBsbBxvnv/++w8///wzmjdvjhs3bkgJlZT6+vUrunfvjrNnz+LixYtwdnZGkyZN8PVr0jVgKlWqBF9f32Sv5+rVq4iKikL9+vWlaUWLFkWBAgVw4cKFBOfx9/fH27dvteaxsLBA5cqVpXnKlCmDs2fP4tu3bzh27Bjs7e1hY2ODLVu2QKVSoXXr1smOkTIvNqkg+jF1yio4pEvtvZwgrftNrVZDo0nhh5UBy9KVlNZmDAsLw7Vr1zBp0iRcu3YNe/bswcOHD9GiRQupTHrVZmTCgdIkGilM8xLlMGqk/AJVpkwZTJw4Ec7Ozvjtt9+gUqlgY2ODvn37wtnZGZMnT8bHjx9x69atBOd/8eIFqlevjlKlSqFQoUJo1qwZatWqJb1Xrlw5VKxYEU5OTqhfv368mgZxzZo1C7Vr10bx4sUxfvx4nD9/Xqpqv2TJEvTu3Rs9e/aEi4sLJk+ejFKlSiW5vBcvXkAUReTNm/eH+6JJkyYYNGgQihQpgnHjxsHGxganT58GAPz999/QaDRYt24dSpQogWbNmmHMmDFJLq9Lly7Yt2+flKz58uULDh06hC5duiRYfsWKFShcuDA8PDzg6uqKLl26oEePHj+MO666devil19+QdGiRVGsWDGsXr0aYWFh+Pfff5OcL2/evHj+/Hmy1/P27VsYGBjA0tJSa3qePHnw9u3bROeJKZPYPL169UKZMmVQvHhxzJo1Czt27EBQUBAmT56MJUuWYOLEiShSpAjc3d3x6tWrZMdLmQubVBD9mDqFfyapqb0X165du1CqVCkYGRkhV65cqF+/PkJDQzF16lRs2LAB+/fvhyAIEAQBPj4+AL4nzNu3bw9LS0tYW1ujZcuWWjX0YmpGTJs2Dba2tjA3N8eAAQMQGZl05nH37t0oUaIEDA0N4eTkBA8PD633Y3eAHMPS0hJeXl4AgIIFCwIAypUrB0EQ4Obmlqz9FhERgdGjR8PBwQEmJiaoXLmytK0A4OXlBUtLSxw4cADFixeHoaEhXrx4keCyDxw4AGdnZ6hUKtSpUwcbNmzQqima2LKCgoLQrVs3WFlZwdjYGI0bN9bq7yg5NR5Tu99jS01tRgsLCxw/fhzt27eHq6srqlSpgqVLl+Lq1avSfkqv2ozyN1KlLE0PSrlDoFhyhxhi7CF7IL3vGQUAYvquRExjfwTJInzflPRdhwB0TdkspUuXln5XKpXIlSuX1pf4mC+G79+/T3D+YcOGYeDAgfD29kb9+vXRpk0baZkDBw5EmzZtpJoSrVq1QrVq1ZIdj729vbTuAgUK4OHDhxg0aJBW+UqVKuHUqVOJLu/bt28AAJVKleR6465bEATY2dlJ233//n2ULl1aazlVq1ZNcnlNmjSBvr4+Dhw4gI4dO2L37t0wNzfXerof2/3791G5cmWtaT9aR0LevXuHiRMnwsfHB+/fv4darUZYWFiiN0MxjIyMEq3JkpH09fWxbNkyrWk9e/bEsGHDcP36dezbtw83b97EvHnzMGzYMOzevVumSCktIlJeIYvSWR3Hl3BTBCDyrRIRhoYIN1QhwsAQEYYGCDcwQKSBISL19RFhoI8ofX1E6elBzIDLZ05mlDvty/Dw8MCMGTPw+++/Y9euXRg4cCBq164NV1fXeGXfvHmDTp06Yd68eWjdujW+fv0KX19fiKKI0aNH4/79+/jy5YvUPNLa2hpRUVFwd3dH1apV4evrCz09PcycORONGjXCrVu3YGBgAAA4efIkVCoVfHx8EBAQgJ49eyJXrlyJPsW+evUq2rdvj6lTp6JDhw44f/48Bg0ahFy5ciU7GX/58mVUqlQJJ06cQIkSJaRYfmTIkCG4d+8etm3bJjU3bNSoEW7fvg1nZ2cA35/iz507F2vXrkWuXLmQO3f8D8vf3x9t27bF8OHD0adPH1y/fj3B2pEJLatTp054/PgxDhw4AHNzc4wbNw5NmjTBvXv3oK+vn6ztAFK+3+P6UW3GKlWqJGs5nz9/hiAI0kOKMmXKYNOmTTqvzciEA6WJkgmHTOXUABPk2X1I7jAoNqUyxQmHuBctQRC0psV0gJhY9b4+ffrA3d0dhw4dgre3N+bMmQMPDw8MHToUjRs3xvPnz3H48GEcP34c9erVw+DBgzF//vxkxfOjdSdHTBOOoKAg2NraJlk2oX2RlnUbGBigbdu2+Pvvv9GxY0f8/fff6NChQ5o6iVQoFFKVwxhRUVFar7t3746PHz9i8eLFcHR0hKGhIapWrfrDJxqfPn364T6Kzc7ODpGRkQgODtaq5fDu3TvY2dklOk9MmZiEUszrxPriOH36NO7evYu1a9dizJgxaNKkCUxMTNC+fXssXbo02fFS5mLIu8JM512ECQaPmw4xWIDiij0EPxVwNhSaKy8gvvsYr7woCIgwNUWEuRkiTU0RYWqCCBNTRJoaI8LYGBEmJogwMUaEyggRRt9/IlUqRKgMEW5oiAhDw+8JDQMDROgbIEJfHxF6egjX+/5/hFKJCKUS4QolIhUKhAvffyIgIAICwgFEiOn/3ENOzXMn/4tlYmJq7wHAuHHjsHDhQpw+fTrRhEN0dDR+/vlnqaPl2A8hjIyMEBERoXWO37x5MzQaDdauXStdtz09PWFpaQkfHx80bNgQwPdr4vr162FsbIwSJUpg+vTpGDNmDGbMmAGFIn5F+AULFqBevXqYNGkSAMDFxQX37t3Dn3/+meyEQ8w1LVeuXIlel+J68eIFPD098eLFC6l25OjRo3H06FF4enpi9uzZAL5fe5cvX44yZcokuqxVq1bB1dUVf/75JwDA1dUVd+7cifdlP+6yYhIN586dkx7UbNmyBfnz58e+ffvQrl27ZG0LkPL9HldqajPGFR4ejnHjxqFTp05SrYVevXrh1q1bKF68OGxsbLRqM/r4+GDixInYtm0bChcujPXr18PBwSFZ6+KlhdKENRwyj50eTkw2ZEZKef5G8ufPjwEDBmDAgAH47bffsGbNGqmjH1tbW3Tv3h3du3dHzZo1MWbMmCQTDklxdXWFn58funXrJk3z8/NLcp7ChQvD3Nwc9+7dg4uLS6rWCwDFihXDpk2bEB4eLtVySKwqYWxdunRBgwYNcPfuXZw6dQozZ85Mch0HDhzQmhZ3Hba2tnj79i1EUZRu7OJ2hnXu3DksX74cTZo0AfC9qmtMNcWk3LlzJ9HqpgmpUKEC9PX1cfLkSbRp0wYA8PDhQ7x48SLRmhkFCxaEnZ0dTp48KSUYvnz5gkuXLmHgwIHxysd0VLVlyxYolUqo1Wop4RIVFQW1mk3tsipjAz4az2zuvbXC2UddUcN1JcQGjyE2+P/3hBeFoPDLDfgpIV4JhuaaP4SQMKi+foXqB/3DpLcIExNEmpkiwswUEaamiDQx+Z7sMP2e8Ig0NkF4TMLDSIVwlQqRKhXCDQ0RaWiI8P8lPSL1DRCur48IfX2E6+khUk8P4UolIpR6iFAoESEoEP6/xEfk/xIe4RAQISIVDRqTR08HfyZJ1d6Lq0yZMqhXrx5KlSoFd3d3NGzYEG3btoWVlVWiy7958yaePHkSrw+E8PBwPH36VGvZsfsvqlq1KkJCQvDff/9pjSIV4/79+2jZsqXWtOrVq2PRokVQq9VQptM9z+3bt6FWq+PdM0RERCBXrlzSawMDA619m5CHDx/ip59+0ppWqVKleOXiLuv+/fvQ09PTqvWYK1cuuLq64v79+ynanpTud12LiopC+/btIYqiVr9b6VWbkQkHShMmHDKHUScKwG3ykR8XpIwnQ8JhxIgRaNy4MVxcXBAUFITTp0+jWLFiAIDJkyejQoUKKFGiBCIiInDw4EHpvdQYOnQo+vbti4oVK6JatWrYvn07bt26hUKFCiU6j0KhQP369XH27Nk09azduXNnTJgwAX379sVvv/2GgICAZCVOatWqBTs7O3Tp0gUFCxaM12QitgEDBsDDwwNjxoxBnz59cPXqVakdagw3Nzd8+PAB8+bNQ9u2bXH06FEcOXJEq52js7MzNm3ahIoVK+LLly8YM2YMjIyMkowzLCwMV69elZ7cJIeFhQV69+6NX3/9FdbW1jA3N8fQoUNRtWpVrSqWRYsWxZw5c9C6dWsIgoARI0Zg5syZcHZ2RsGCBTFp0iTkzZs3wc9nxowZaNKkCcqVKwfg+83mmDFj0LNnTyxduhTVq1dPdryUuRin/cEtpYNeG9vhwYw9UCjifCEt8BGaAh+BNv97rTGA4r4ThCuWgJ8Gol8gNHeeA3FqXGUEw9BQGIaGwuxt4r3mp7coQxUizM0QYW6qXdvDxBjhMbU9jI0QqTJChJEK4f/7P/J/tTzCDQ0RafC9lke4gQEi/lfLw9XABLBJ3pPdxKSk9p5SqcTx48dx/vx5eHt7Y8mSJZgwYQIuXbok9YcQV0hICCpUqIAtW7bEey8lteZSQxCEH9b6S6mQkBAolUpcvXo1XlIjplNs4Httj7QOEZ6WZSWnxqMupKY2Y+x42rdvj+fPn+PUqVNJ9smgq9qMTDhQmujxEJJddX9rjOt2AchkvefS/xgaZvgq1Wo1Bg8ejJcvX8Lc3ByNGjXCwoULAXzP2Md8OTcyMkLNmjWxbdu2VK+rS5cuePbsGUaPHo3w8HC0b98ePXr0wOXLl5Ocr0+fPujbty/mzZuXrOqDCTE1NcU///yDAQMGoFy5cihevDjmzp0rPdlPjCAIUnvYyZMnJ1m2QIEC2L17N0aOHIklS5agUqVKUmdfMYoVK4bly5dj9uzZmDFjBtq0aYPRo0drdQK2bt069OvXD+XLl0f+/Pkxe/bsJEfUAID9+/ejQIECqFmzpjTNy8sLPXv2jHdDE9vChQuhUCjQpk0bREREwN3dHcuXL9cq8/DhQ3z+/Fl6PXbsWISGhqJfv34IDg5GjRo1cPTo0Xj9bNy5cwc7duzQqsHRtm1b+Pj4oGbNmnB1dY03CghlHUas4ZApfQpVYfvl/uhUJekhAgWFCLHEK4glXgHd/zcx3BLKGw6AnwngFwnNlTcQn7xM/6AzAf2IcOh/CIfphw86Xa7R6j8B5446XeaPCIKA6tWro3r16pg8eTIcHR2xd+9e/PrrrzAwMIhXs6x8+fLYvn07cufOneQXyps3b+Lbt29SAvzixYswNTVF/vz5EyxfrFgxnDt3TmvauXPn4OLiIiUCbG1t8ebNG+n9x48fa/VFFNNnQ0pqw5UrVw5qtRrv37/XuiamhqurqzRUeIwf1cwEvm97dHQ0Ll26JDWp+PjxIx4+fIjixYsDSF6NRyDl+z2u1NRmBP4/2fD48WOcPn1aq3ZIXLqszSiISd21EP1A8YjGeCb+J3cYOZZ1mAFu1wmDwa2HcodCiRAKFYJprOqLOUGDBg1gZ2eHTZs2JVpGFEVUrlwZI0eORKdOnTIwuqyjSpUqGDZsGDp37ixNmzJlCv7991+tnrmJdGXXjSh09pK/k1KKT6nQ4MUffWBooIPr/SdTCDH9QVxJvD8ISpjRluUwaJf06E6xubm5oWzZsli0aBGA76NUjBgxQmsEhrJly6JVq1aYOnVqvPkvXbqEkydPomHDhsidOzcuXbqEX375Bfv27UPjxo0xe/ZsrFq1Ct7e3siVKxcsLCwQFRWFsmXLwsHBAdOnT0e+fPnw/Plz7NmzB2PHjkW+fPnQo0cP7N69G82bN8fEiRMREBCAXr16oWfPnpgzZ06C23Lt2jX89NNPUqeRFy5cwMCBA7F8+XKpD4dOnTrh5s2b2LJlC9RqNcaNGwdfX1+sXr0aPXr0QHR0NMzNzTFhwgT06dMHKpUKFhYW6NGjB4KDg6URLuLut19++QXnzp2Dh4cHypUrhw8fPuDkyZMoXbo0mjZtCi8vL4wYMUIaaSIx/v7+cHV1xciRI9G7d2/cuHEDo0aNwsuXLxEcHAwLC4tEl9WqVSs8fvwYq1atgpmZGcaPH48nT55InUbev38fJUqUwJw5c6Qaj5MmTYK5ubk0Qkhq9ntCBg4ciMOHD8PLy0uqzQgA58+fl8rErs0YFRWFtm3b4tq1azh48KDWyFTW1tbxOu+cMGECIiIipJqjO3bswJgxY/DPP//gr7/+wps3b3DoUPKacnNYTEqTXLCUO4Qc7fQgMyYbMjnB2lruENJVWFgYFixYgLt37+LBgweYMmUKTpw4ge7duyc5nyAIWL16NaKj2S1+QgIDA/Hzzz/HS8YcOXIE8+bNkykqyu7YpCLzUmsU+PPoEN0szDoEYsPH0Ey4Dc3eZ8B/0RCeFIJyaxUof60ORa0SgKnxj5eTQwkmGbtvzM3NcebMGTRp0gQuLi6YOHEiPDw80LhxYwBA37594erqiooVK8LW1hbnzp2DsbExzpw5gwIFCuDnn39GsWLF0Lt3b4SHh2vVeKhXrx6cnZ1Rq1YtdOjQAS1atEgw6RGjfPny2LFjB7Zt24aSJUti8uTJmD59ulaHkR4eHsifPz9q1qyJzp07Y/To0Vr9Fejp6eGvv/7CqlWrkDdv3nh9QiTG09MT3bp1w6hRo+Dq6opWrVrBz88PBQoUSNH+LFiwIHbt2oU9e/agdOnSWLFiBSZMmAAAMPxBrVRPT09UqFABzZo1Q9WqVSGKIg4fPiw1kYmp8bhs2TKUKVMGly9fTrA244/2u5eX1w+bcyxcuBDNmjVDmzZtpKaie/bs0SoTuzbjq1evcODAAbx8+RJly5aFvb299BM7SQH8f23GadOmSdPatm2Lpk2bombNmrh16xYWL16cZHyxsYYDpUmryIE4qvGVO4wcaetiJ9Qfz04iMztlw4YwPnZM7jDSzbdv39C8eXNcv34d4eHhcHV1xcSJE/Hzzz/LHRoRpZDP42g0XBYqdxiUhMczx8DK9PyPC6aRqBGguJc3Tn8QAQCTxDA5vgN6tVM+PHJGmjp1Kvbt25dgdf4YcWsU5GSzZs2Ch4cHNBqNVKshOfswNZKz37NbbUbWcKA0sWYNB1kM9SmA+hOOyh0GJUN2r+FgZGSEEydO4OPHjwgNDcW1a9eYbCDKokwzvssZSqHh2wYDYvp3RiwoRIglX0HT4y40y+5DvPwB+GQF5ZmyUHpUh7LjTxCK5Ev3ODIjwdJC7hB+aPTo0Th58mSyyk6dOjXRIZCzq1y5cuHXX3/Fs2fPsGnTJvz555/xOjxOyT5Mq7t376JNmzZwcnKCIAjw8vJKVm3GW7duoWbNmlCpVMifP3+8eY4fPw4XFxeYm5uja9euWkNxf/78GS4uLnj+/LnOtycuJhwoTWyExIfkofRR5bk1Jv1yCeDQc1lCdk84EFH2kduMt4WZ3eE7Tnj2voUs6xZUkdBU8Ydm6B1oNj4C7n2F8NYBioMVoZxSA4omZSHkSbwTuuxCcEh6FID0plarEx3RIoapqWmSHQLmdFFRUVi3bh2KFy+OGTNmYNSoUfFGZdLFPkzuCBVhYWEoVKgQ/vjjD9jZ2WHkyJEJDtUZ25cvX9CwYUM4Ojri6tWr+PPPPzF16lSpw2qNRoPOnTtjwIABuHDhAq5cuaLVmfX48eMxYMCADBmGk1cWSpNcgqXcIeQolt8MsKtTIISPn+QOhZKJCQciyirymgtQcKCKTK/nhl6AmPSwuhkmVn8Q4j7/7/1BPC4M5d9VoPy1WvbrD8LAAAqb5F/X3dzcMGTIEAwZMgQWFhawsbHBpEmTtEYaioiIwOjRo+Hg4AATExNUrlxZqyq9l5cXLC0tceDAARQvXhyGhoZ48eIFfHx8UKlSJZiYmMDS0hLVq1eXnlbHrbWQUNlp06ahVatWmDZtGm7evAlBEKSn6wCwYMEClCpVCiYmJsifPz8GDRqEkJCQeHEdO3YMxYoVg6mpKRo1aqQ1QgUArF+/HiVKlIChoSHs7e0xZMj/90USHByMPn36wNbWFubm5qhbty5u3ryZ5D69ffs26tatCyMjI+TKlQv9+vXTisvNzU2rQ07ge2ePMf1MuLm54evXr/jy5QsiIiLw+PFjTJo0Kd5wmwnV/Fi7di2KFSsGlUqFokWLao0AFRAQAEEQsH37dtSuXRsqlSrBYUm9vLziNaf46aef8Oeff6Jjx44/7EcixpYtWxAZGSnt344dO2LYsGFYsGABgO99QQUGBmLQoEEoUaIEWrRogfv37wP43rGkn58fhg8fnqx1pRUTDpQmtuCXqYx0eqgFDK/flzsMSgEhVi/ARESZmZ5SQG4zZhwyu7uvrXHhSVe5w0icYyA0be9D88ddiCdeAoEGUFwrDuXqalD2rQJF2SKAXtYcVl3Im/Jr+oYNG6Cnp4fLly9j8eLFWLBgAdauXSu9P2TIEFy4cAHbtm3DrVu30K5dOzRq1AiPHz+WyoSFhWHu3LlYu3Yt7t69C2tra7Rq1Qq1a9fGrVu3cOHCBfTr1y/Bjgajo6MTLduhQweMGjUKJUqUwJs3b/DmzRt06NABAKBQKPDXX3/h7t272LBhA06dOoWxY8dqLTssLAzz58/Hpk2bcObMGbx48UKrk8QVK1Zg8ODB6NevH27fvo0DBw6gSJEi0vvt2rXD+/fvceTIEVy9ehXly5dHvXr18OlTwg/WQkND4e7uDisrK/j5+WHnzp04ceKEVhLjR/bs2YN8+fJh+vTp0jYnx5YtWzB58mTMmjUL9+/fx+zZszFp0iRs2LBBq9z48eMxfPhw3L9/H+7u7smOK6UuXLiAWrVqaY0u4e7ujocPHyIoKAi2trawt7eHt7c3wsLC4Ovri9KlSyMqKgoDBw7EqlWr4iVZ0kvW/GunTMNRcJA7hBxj0zIn5NvCTiKzGkXhwnKHQESUbA4WCrz9wiZ7mV13rw54MGMfFIr3cofyQzH9QYglXwE9/jfxmzWUN+wBPzPALwKaK68hPn0lZ5jJosib8uYU+fPnx8KFCyEIAlxdXXH79m0sXLgQffv2xYsXL+Dp6YkXL14gb968AL73HXD06FF4enpi9uzZAL5XzV++fDnKlCkDAPj06RM+f/6MZs2aofD/7jOKFSuW4Pq/fPmSZFlTU1Po6enBzk5722LXEnBycsLMmTMxYMAAraf6UVFRWLlypbTcIUOGYPr06dL7M2fOxKhRo7SepP/0008AgLNnz+Ly5ct4//699FR//vz52LdvH3bt2oV+/frF25a///4b4eHh2LhxI0xMTAAAS5cuRfPmzTF37lytoR4TY21tDaVSCTMzs3jbnJQpU6bAw8ND6qeqYMGCuHfvHlatWqU1MteIESMypC+rt2/fomDBglrTYrb/7du3sLKywo4dOzBy5EgMHz4cTZo0Qa9evfDHH3+gTp06UKlUqF69OgIDAzF06NAUJW1SigkHSpPCQsqGoqHUGeibD43GZ9+RDrIzhbOz3CEQESWbo7WAq//JHQX9yKdQFXb59UX7yrPkDiVVBKMIaKoGALEGexA+OUDwywvhiiFEvxCIV15AfJ+5mpAqnPKneJ4qVapo1TyoWrUqPDw8oFarcfv2bajVari4uGjNExERodV/gIGBAUqXLi29tra2Ro8ePeDu7o4GDRqgfv36aN++Pezt7eOtPyVlYztx4gTmzJmDBw8e4MuXL4iOjkZ4eDjCwsKkYS6NjY2lZAMA2Nvb4/3770mw9+/f4/Xr16hXr16Cy7958yZCQkLi9ZPw7ds3PH36NMF57t+/jzJlykjJBgCoXr06NBoNHj58mKyEQ2qEhobi6dOn6N27N/r27StNj46OhoWFdieiFStWTJcYUqNGjRrw8/OTXj969AgbN27E9evXUatWLQwfPhyNGzdGyZIlUatWLa1jTJeYcKA0KSDYwxAGiEDkjwtTqlT4zxLTulzlUFRZkZ4eBCcnuaMgIkq2grnY2jarGLq9EVqV3wED/cc/LpwVWIdAdH8EMVYtdOF5YSj8bIErCoh+wdBcCwBCw2QLUVFItx3shYSEQKlU4urVq/Gqt5uamkq/GxkZxWsu4enpiWHDhuHo0aPYvn07Jk6ciOPHj6NKlSrx1pOSssD3/giaNWuGgQMHYtasWbC2tsbZs2fRu3dvREZGSgkHfX19rfkEQZD6pzAySrqfkZCQENjb2yc49KOlpWWS8yZFoVBo9ZEBJL/zxsTE9BGxZs0aVK5cWeu9uJ9b7GRIerKzs8O7d++0psW8TqzmRv/+/aXhP69fv4527drB2NgYtWvXxr///ptuCQdeVShNFIICTmxWkW4swvWxr3MwhA+BcodCqSA4OkLIou1UiShnKmyTMW16Ke3UGgU8jqVfNehMIXZ/ECdfAYGGUFwtDuWqalD2qQJFmcIZ2h+EomDKa/ZeunRJ6/XFixfh7OwMpVKJcuXKQa1W4/379yhSpIjWT3Kq+5crVw6//fYbzp8/j5IlS+Lvv/9OcVkDAwOo44x8dvXqVWg0Gnh4eKBKlSpwcXHB69evU7TdZmZmcHJySnRoyfLly+Pt27fQ09OLt+02NjYJzlOsWDHcvHkToaGh0rRz585BoVDA1dUVAGBra6vVL4NarcadO3e0lpPQNiclT548yJs3L549exYv1rjNGjJK1apVcebMGa1kyvHjx+Hq6gorq/ijCK5btw7W1tZo0aKFtO0x80ZFRaVof6QUEw6UZmxWkX5ODbeC6spducOgVFLE6hiJiCgrKGTDW8OsxONERQSHVP1xwWxCUGoglnoFTc+70Cy/D9EvEPhoDeW/ZaGcXwPKDj9BKJx+D8IUhVNew+HFixf49ddf8fDhQ2zduhVLliyR+jRwcXFBly5d0K1bN+zZswf+/v64fPky5syZg0OHEu+3y9/fH7/99hsuXLiA58+fw9vbG48fP06wH4cflXVycoK/vz9u3LiBwMBAREREoEiRIoiKisKSJUvw7NkzbNq0CStXrkzxtk+dOhUeHh7466+/8PjxY1y7dg1LliwBANSvXx9Vq1ZFq1at4O3tjYCAAJw/fx4TJkzAlStXElxely5doFKp0L17d9y5cwenT5/G0KFD0bVrV6k5Rd26dXHo0CEcOnQIDx48wMCBAxEcHKy1HCcnJ5w5cwavXr1CYGDyHupNmzYNc+bMwV9//YVHjx7h9u3b8PT0lEaFSIvIyEjcuHEDN27cQGRkJF69eoUbN27gyZMnUpmlS5dqNU/p3LkzDAwM0Lt3b9y9exfbt2/H4sWL8euvv8Zb/vv37zFz5kxp31tZWaFYsWJYtGgRLly4gJMnT6J69epp3o7E8KpCaVZESP/xW3Mir5UFUWDjabnDoDRg/w1ElNWUystbw6xm5PZBgJhzP7fv/UH4QzPsNjSbHgH3QyC8dYDin5+gnFwDiiZlIeTWzahqiqIpf5DQrVs3fPv2DZUqVcLgwYMxfPhwrQ4RPT090a1bN4waNQqurq5o1aoV/Pz8UKBA4g/0jI2N8eDBA7Rp0wYuLi7o168fBg8ejP79+6e4bJs2bdCoUSPUqVMHtra22Lp1K8qUKYMFCxZg7ty5KFmyJLZs2YI5c+akeNu7d++ORYsWYfny5ShRogSaNWsmjb4hCAIOHz6MWrVqoWfPnnBxcUHHjh3x/PnzRPtiMDY2xrFjx/Dp0yf89NNPaNu2LerVq4elS5dKZXr16oXu3bujW7duqF27NgoVKoQ6depoLWf69OkICAhA4cKFYWtrm6xt6dOnD9auXQtPT0+UKlUKtWvXhpeXV7JqOMQebjQhr1+/Rrly5VCuXDm8efMG8+fPR7ly5dCnTx+pTGBgoFbfFhYWFvD29oa/vz8qVKiAUaNGYfLkyQl2tjl8+HCMGjVK6pgU+D4857Zt29CsWTOMGTNG6swzPQhi3EYuRCm0IXov+kdPkjuMbKXf2XyY1fgk+23I4gyXLYPBoEFyh0FElCJFpn3BiyDeHmYlfr/PQ8Hc++UOI3MLsIHCLzdwVQHRLyjF/UEIjvlg/vhCilbp5uaGsmXLYtGiRSmLlbINf39/uLi44N69e3DOoQ+i2LiY0qyioqTcIWQr5V5aYGaXa0w2ZAPKSpXkDoGIKMXK51fiRRCvQVlJn429cHKUNyB8kzuUzMspEBqnQKDd/16rDaG45wThiiXgp4Ho9wGau88Tvf9SluX9LqXc4cOH0a9fvxybbACYcCAdKCoUggmMEApe5NLKLEIP+7t8gfD+g9yhUFqpVFD8b7xsIqKspGIBJfbdYsIhK7n50gaXnv6CykXWyB1KlhHTH4RY6hXQ838Tv1lDeT0v4GcK+EVAc+UVxGffO0tUlmPCgVJu8ODBcocgOyYcKM2UghJlheI4J16VO5Qs7+SIXDC6fEruMEgHFOXKQYgzXBQRUVZQIb8egAi5w6AU6u7ZAfdn7IWg4MhWqSUYRUBTzR+oFmvax3wQrthDr1DFFC8voSEfiXKanNvDDOkUm1Wk3dq1TijoxWRDdqGMM04zEVFWUSE/h8bMigJDjbD7SvwO4yiNcn2F6P4YSudSckdClCUx4UA6UV5RQu4QsrReFxzQ8ldvucMgHWL/DUSUVVkaCyjM4TGzpKHbGyEyikMy65oChSHAXO4wiLIkXk1IJ6opyskdQpZV5rUF5nS+AURFyR0K6RBrOBBRVsZaDllTlFqJRd5sM65rSpSVOwSiLIsJB9KJ/II9XIQfj0NL2kwilTjwSwgUb9/LHQrpkJA3LxSFCskdBhFRqtVxYTdfWdW845XwObSK3GFkK0rwwRpRajHhQDpTX1FV7hCynBOjbGF84ZbcYZCO6TVuLHcIRERp0qgYEw5Z2agdgwCRt/m6oseEA1Gq8UxEOlNPUe3HhUiy0qsgiqw9KXcYlA6UTZrIHQIRUZo4WCpQKi9vE7OqfTcL43lgU7nDyBYUKAgFCsgdBlGWxSsJ6UxtRSXoc6TVZOl22QFthrOTyGxJXx96DRrIHQURUZo1Ls6hfbOyPhv6AKKR3GFkeXrgNZ0oLZhwIJ0xFYxRWSgrdxiZXom35viz0y0gMlLuUCgdKKtXh2BmJncYRERp1rg4HyJkZddf2uDys85yh5Hl6aOh3CEQZWlMOJBONVbWkjuETM0oSolDXb9B8fqt3KFQOtFjcwoiyiaqOClhbSzIHQalQQ+vjhA1ueQOI8sSkB9KFJU7DKIsjQkH0qk2Cne5Q8jUTozNA5OzN+QOg9IR+28gouxCqRBQ35W1HLKy91+NsfdaP7nDyLL02ZyCKM2YcCCdclI4oJJQWu4wMqUlmwvCZeVxucOgdKQoWhTKEiXkDoOISGealGDCIasbvLUxoqI4VHNqMOFAlHZMOJDOtVU2kjuETKfzVXt0HMJkQ3an17Wr3CEQEelU85L6MDGQOwpKiyi1EotPDJY7jCxHgD2UKCV3GERZHhMOpHNtlO4QwDafMYq+N8XCjveAiAi5Q6H0JAjQZ8KBiLIZM5WAn8twtIqs7o9jVfAltLLcYWQp+qgvdwhE2QITDqRzDkIeVBPKyx1GpmAYrcThblFQvHwtdyiUzpRublDkzy93GEREOtejCqs4ZAejdw0CRN76JxeHwyTSDZ51KF10UjaTO4RMwfs3O5j9e03uMCgDsHYDEWVXNQvroYgtbxmzuj3Xi+DFR3ZsnBwCbKFEWbnDIMoWePWgdNFB2QSmMJY7DFkt2FoQxZd6yx0GZQRjY+i1bSt3FERE6aZbJTaryA76bOwDiCq5w8j09NESAr8mEekE/5IoXZgJJuigbCp3GLJpd8MeXQeflDsMyiB6rVtDMDOTOwwionTT9ScDKNg9U5Z37YUtrvh3kjuMTE4fBugidxBE2QYTDpRu+irbyx2CLIoEmmJJxwfAt29yh0IZxGD4cLlDICJKVw6WCjRw5RCZ2UEPz04QNdZyh5Fp6aMJFLCVOwyibIMJB0o3ZRXFUFUoJ3cYGUpfrcCxbmoon7+UOxTKIMoaNaD86Se5wyAiSne9qrLzyOzg7VcTHLjeV+4wMi0DdJM7BKJshQkHSleD9XJWlTTvCXlhfvqK3GFQBtL/9Ve5QyAiyhAtS+mhiA1vHbODQVubICq6kNxhZDpKVIUSrnKHQZSt8KpB6aqVoj4cBQe5w8gQf+4oiJKLj8kdBmUgoUgR6LVsKXcYREQZQqEQMKIOazlkBxHRelhycpDcYWQ6hughdwhE2Q4TDpSu9AQ9jFb2ljuMdPfzLTv0GMBOInMag+HDISh4GiWinKNbJQPkNmXvkdnB7CNV8TWMTQJjKOAMPVSXOwyibId3ypTuuitbwwF55A4j3RT+aILlHR6xk8icxsoK+j17yh0FEVGGUukLGObGWg7ZxdhdgwGRCSSAfTcQpRcmHCjdGQj6GK2XPWs56KsVONZdhDLgP7lDoQxmMHIkBBMTucMgIspwA2sYwtqYX1Kzg53XnPHfx8ZyhyE7ATbQRzO5wyDKlphwoAzRU9kG9tlwiKEjUxxgcdJP7jAogwm5c8OAnUUSUQ5lpmIth+yk78a+gGgodxiyMkAnCNCXOwyibIkJB8oQKsEQI/WyV/Xz2XucUMbjqNxhkAwMJk1i7QYiytGG1DKEFWs5ZAtXXuTGtYBOcochGwG2MEBXucMgyraYcKAM00/ZAQWQV+4wdKL53dzo289H7jBIBkKhQtDv31/uMIiIZGWuEvB7w5z9VDw76eHVGaLGSu4wZGGIkRBgLHcYRNkWEw6UYVSCIWbrZ/1q6I5Bxljd4RkQGip3KCQDwxkzIOiz2iUR0aCaBnDNzVvJ7OD1ZxMcvNlH7jAynBJloI/mcodBlK3xKkEZqq2yEaoJ5eUOI9WUGgHHeyqg9/S53KGQDBRly0KvU86tdkpEFJu+UoBHa5XcYZCODNjSDNHRTnKHkYEEqPAbBLBpEFF6YsKBMtx8/XFZ9uR+aHo+WB27JHcYJBPDP/+EIGTNY5eIKD00LKaPpiX05A6DdCAiWg/LTg2SO4wMo49WUKKk3GEQZXtMOFCGK68ogV+ULeUOI8Vm7HdChbnsJDKn0mvfHnr168sdBhFRpjO/tQqGzDlkCzMOV0fItwpyh5EBzGCIEXIHQZQjMOFAspiuNxwWMJM7jGRr9CA3BvT5V+4wSC5mZjBcuFDuKIiIMqXCNkoMq80OJLOL8buHAGL2rs1niIFQIJfcYRDlCEw4kCzsBVvM0RsldxjJ4vDZCJ7tA4CQELlDIZkYzpwJRd7sMcIKEVF6+K2hIfJaZO8vqTnFtisuePWpkdxhpBsFCsEA7I+JKKMw4UCy6aXXFnUVVeQOI0mCCJzqpQe9x/5yh0IyUVSpAv0hQ+QOg4goUzM1FPBXWyO5wyAd6bepDyBmz1orKoyDAI42RZRRmHAgWa3Qnw7TTDz28T+zCsD68EW5wyC5GBhAtW4dBAVPlUREP9KilD56VuEXuezgUoAdbjzvKHcYOqeHJtBDdbnDIMpReBdNsnIU8mKm3ki5w0jQpINOqDybnUTmZAZTpkBZvLjcYRARZRkerY1Q2Ia3l9lBd8/OEEUrucPQGQF5YYRJcodBlOPwikCy66/siJpCRbnD0NLgkS2G9vYFRFHuUEgmyjp1YDB+vNxhEBFlKaaGAtZ3MYKSd5hZ3qvPpjh8s7fcYeiIAkaYAyELdVhOlF3wckCyEwQBngZ/IBcs5Q4FAJD3iwob2r+A8OWL3KGQTAQbG6g2b2ZTCiKiVKhaUA9j6mXP9v85zYAtzREd7Sh3GGlmgN7QQ04Y7pMo8+HdNGUK+QQ7rNefAwHy9nAtiMDJvobQf/hM1jhIRoIAlZcXR6UgIkqDSY0MUT6/Uu4wKI2+Relhpc8gucNIEwVKwRCD5Q4j0/Dy8oKlpaXcYaRaQEAABEHAjRs3AAA+Pj4QBAHBwcGyxkWJY8KBMg13ZU2MUvaSNYZ9fzjC5sB5WWMgeekPHw69pk3lDoOIKEvTVwrw+sUIxgZyR0JpNfVgDYR8Ky93GKkiwALG8IAAPblDoVTo0aMHWrVqlWSZatWq4c2bN7CwsMiYoP7nyZMnMDMzS1by5uTJk6hWrRrMzMxgZ2eHcePGITo6Wno/ICAAtWrVgomJCWrVqoWAgACt+Zs1a4bdu3freAsyDhMOlKlM0xuG6oI8Vd7GH3VEtRlHZFk3ZQ6K8uVhOHeu3GEQEWULRfMosa6zMQR5Ky+SDkzYOxgQs9oHKUCFOVAg/WosRkZGptuyKXkMDAxgZ2cHIQ0nmpR+jlFRUejUqRNq1qz5w7I3b95EkyZN0KhRI1y/fh3bt2/HgQMHMD5WP2GjRo2Cg4MDbty4AXt7e4wePVp6b/v27VAoFGjTpk2KYsxMmHCgTEUpKLHJ4E/YwjpD11v3iQ1+7XHu/9i77/AoqreN49/ZlkYn9JLQe28iRUREQUCUIogUFRQ79leKgtjAgj9AxYKCCIgUka60IIIiCAEpSgelSW+BJLs77x+RNSE9bDJJuD/XxcVm9syZZ3Z3ZneeOUWDRF7HjNBQgmbNwnDpdpyIiL90qetkSFuN55DTTf21KodPt7U6jHRx0R8nLdNc/vz58/Tq1YuQkBBKlCjBmDFjaNWqFYMGDfKVCQ8PZ+TIkfTp04d8+fLx0EMPATB79mxq1KhBQEAA4eHhvPvuuwnq/vDDD6lUqRKBgYEUK1aMrl27+p6bNWsWtWrVIigoiMKFC9OmTRsuXryYKD6v10vp0qX56KOPEizftGkTNpuNAwcOAPDee+9Rq1YtQkJCKFOmDI8++igXLlxIdr+TakUwaNAgWrVqlWDbb775JuXKlSMoKIg6deowa9asFF/P06dP06dPHwoWLEhwcDDt2rVj165dvueHDx9O3bp1E6zz/vvvEx4e7nt+8uTJfPfddxiGgWEYREREJNpOUl0qfvrpJ1q0aEFQUBBlypThySefTPCaJvc+ptXQoUOpWrUq3bt3T7XsjBkzqF27Ni+//DIVK1bkpptuYvTo0XzwwQecP38egB07dtC3b18qVapEv3792LFjBwBnzpxh6NChfPDBB+mKL7tRwkGynZJGUb52vU8AWXPhV/x8IF91/xvj7Nks2Z5kQwEBBM6di61cOasjERHJdYbdHsDdddSkPad7eMpDYOaMpLydJgTweLrWeeaZZ1izZg3z5s1j6dKlrF69mo0bNyYq984771CnTh02bdrEsGHD+O233+jevTs9evTg999/Z/jw4QwbNoxJkyYBsGHDBp588kleffVV/vzzT5YsWULLlnGJkCNHjtCzZ08eeOABduzYQUREBHfffTdmEjfAbDYbPXv2ZNq0aQmWT506lWbNmhEWFuYrN3bsWLZt28bkyZNZsWIFL7zwQrpei6u9+eabfPnll0yYMIFt27bx9NNPc99997Fq1apk1+nXrx8bNmxg3rx5/Pzzz5imSfv27YmNjU3TNp977jm6d+/O7bffzpEjRzhy5Ag33nhjquvt2bOH22+/nS5durBlyxZmzJjBTz/9xOOPJ/w8XP0+ptWKFSuYOXNmmpMA0dHRBAYGJlgWFBTE5cuX+e233wCoU6cOy5Ytw+v18sMPP1C7dm0Ann/+eR577DHKlCmT5viyI539JVtqZqvPBOer3B+budMSGiYsfygQ5449mbodyd4CP/sMR7NmVochIpIrGYbB572C2XvyApF/e60ORzLo533F2XzwHuqETbE6lBTZqEgw72GQ9kFLz58/z+TJk5k2bRq33HILAF988QUlkxhAunXr1jz77LO+v3v16sUtt9ziu2itXLky27dv5+2336Zfv34cPHiQkJAQOnToQN68eQkLC6NevXpAXMLB7XZz9913+xIGtWrVSjbOXr168e6773Lw4EHKli2L1+vl66+/ZujQob4yV7fIeO211xg4cCAffvhhml+P+KKjo3njjTdYtmwZTZs2BaB8+fL89NNPfPzxx9x0002J1tm1axfz5s1jzZo1viTB1KlTKVOmDHPnzqVbt26pbjdPnjwEBQURHR1N8eLF0xzvm2++Sa9evXyvQ6VKlRg7diw33XQTH330ke/i/+r3MS1OnjxJv379+Oqrr8iXL1+a1rntttt4//33mT59Ot27d+fo0aO8+uqrQNz7D3HJj4cffpjw8HBq167Nxx9/zI8//khkZCSjRo2ie/fubNiwgbZt2zJ27FhcOaw1rlo4SLbV096BoY7MHRl59tthFJ27JlO3Idmba8gQnPfdZ3UYIiK5WrDLYPaDIRTLm9PGAZD4+k3qhWlm7eB86WFQimA+wSB9Me7du5fY2FgaN27sW5Y/f36qVKmSqGzDhg0T/L1jxw6aXXXTolmzZuzatQuPx8Ott95KWFgY5cuXp3fv3kydOpWoqCgg7s72LbfcQq1atejWrRuffvopp0+fTjbOunXrUq1aNV8rh1WrVvHPP/8kuIBftmwZt9xyC6VKlSJv3rz07t2bkydP+raZXrt37yYqKopbb72VPHny+P59+eWX7NmT9A27HTt24HA4aNKkiW9Z4cKFqVKliq+7QGbZvHkzkyZNShDrbbfdhtfrZd++fb5yV7+PaTFgwADuvfdeXwuVtGjbti1vv/02AwcOJCAggMqVK9O+fXsgrjUKQKlSpViwYAEHDx5kwYIFhIaG8uijjzJhwgRee+018ubNy59//smuXbv4+OOP0x231ZRwkGxtqONR7rV1zJS6n/8hjBYjlmRK3ZIzOLp1wzVypNVhiIhcF8oUtDHzgWAC1L42x/rrdF6+32LtjGLJMShEMJ9go2imbickJCRd5fPmzcvGjRuZPn06JUqU4OWXX6ZOnTqcOXMGu93O0qVLWbx4MdWrV2fcuHFUqVIlwYXx1Xr16uVLOEybNo3bb7+dwoULA3GzHXTo0IHatWsze/ZsfvvtN1/T/+QGRrTZbIm6cMTv9nBl/IeFCxcSGRnp+7d9+/ZUx3FISWrbzagLFy7w8MMPJ4h18+bN7Nq1iwoVKvjKpfd9hLjuFO+88w4OhwOHw8GDDz7I2bNncTgcfP7558mu98wzz3DmzBkOHjzIiRMnuPPOO4G4liJJeeONN2jbti0NGjQgIiKCLl264HQ6ufvuu5McxyK7U8JBsr0JzldpYaQ/C5mSFnsL83zfNeBV087rla1pUwInT76mUY1FRCR9bijnYNJ9wdj1CzTHGvBVZ9zuslaHcZU8BDMBO2EZWrt8+fI4nU7Wr1/vW3b27Fl27tyZ6rrVqlVjzZqErWXXrFlD5cqVsdvjunU4HA7atGnD6NGj2bJlC/v372fFihVAXJejZs2aMWLECDZt2oTL5eLbb79Ndnv33nsvW7du5bfffmPWrFn06tXL99xvv/2G1+vl3Xff5YYbbqBy5cocPnw4xfiLFCnia9p/RWRkpO9x9erVCQgI4ODBg1SsWDHBv+TGFqhWrRput5t169b5lp08eZI///yT6tWr+7Z79OjRBEmH+NuFuBkoPB5PivFfrX79+mzfvj1RrBUrVrzmrgg///xzgkTGq6++St68eYmMjOSuu+5KcV3DMChZsiRBQUFMnz6dMmXKUL9+4ulmd+zYwbRp0xj57w0xj8fjS8TExsam+/XIDnS6l2zPZTiZ4/qAxkZtv9QXetHF1/ccxTijQSKvV7aGDQlevBgjKMjqUERErjtd6jqZcE+QpsvMoS7FOvj0x4FWhxGPi2DGYqd6hmvImzcvffv25fnnn2flypVs27aNBx98EJvNluqNiWeffZbly5czcuRIdu7cyeTJkxk/frxvasMFCxYwduxYIiMjOXDgAF9++SVer5cqVaqwbt063njjDTZs2MDBgweZM2cOx48fp1q1asluLzw8nBtvvJEHH3wQj8dDp06dfM9VrFiR2NhYxo0bx969e5kyZQoTJkxIMf7WrVuzYcMGvvzyS3bt2sUrr7zC1q1bE7w2zz33HE8//TSTJ09mz549bNy4kXHjxjF58uQk66xUqRJ33nknAwYM4KeffmLz5s3cd999lCpVynd3v1WrVhw/fpzRo0ezZ88ePvjgAxYvTjg9fXh4OFu2bOHPP//kxIkTaWoB8eKLL7J27Voef/xxIiMj2bVrF999912iQSMzolq1atSsWdP3r1SpUthsNmrWrEnBggUB+Pbbb6latWqC9d5++21+//13tm3bxsiRI3nrrbcYO3asLyF1hWmaPPTQQ4wZM8bXAqNZs2Z8+umn7Nixgy+//DJR952cQAkHyRHyGiHMc02gnpHxL5MrVg7Mg2tr6hlryZ1sdesS/MMPGPmzbx9UEZHcrm8TF+/dFZh6QcmWhs27iajLdawOA7ATxNs4aJx60VS89957NG3alA4dOtCmTRuaNWtGtWrVEs0wcLX69evzzTff8PXXX1OzZk1efvllXn31Vfr16wdAgQIFmDNnDq1bt6ZatWpMmDCB6dOnU6NGDfLly8ePP/5I+/btqVy5MkOHDuXdd9+lXbt2KW6zV69ebN68mbvuuougeDdP6tSpw3vvvceoUaOoWbMmU6dO5c0330yxrttuu41hw4bxwgsv0KhRI86fP0+fPn0SlBk5ciTDhg3jzTffpFq1atx+++0sXLiQcinM7vXFF1/QoEEDOnToQNOmTTFNk0WLFuF0OoG4i/cPP/yQDz74gDp16vDrr7/6kjRXDBgwgCpVqtCwYUOKFCmSqCVJUmrXrs2qVavYuXMnLVq0oF69erz88stJDgB6tVatWvnet4w6e/Ysf/75Z4JlixcvpkWLFjRs2JCFCxfy3XffJZqKFOCTTz6hWLFidOjQwbds+PDhXL58mSZNmlCxYkUee+yxa4rPCoaZ1LwrItnUKfMst8Xcz+9mxhIG37wXzs1DFvo5KskpbDVrErRyJbbQUKtDERER4N0V0bw077LVYUgG9Gmyg/d69rc0hkBexcXdmVL3xYsXKVWqFO+++y4PPvhgpmxDspewsDBGjBhxzUkHSUgtHCRHKWTkZ5HrM6oZFVIvfJWnl5fl5mGLUy8ouZKtShWCli1TskFEJBt5tnUAb3ZSS4ec6Mt11Th6+lbLth/AM35NNmzatInp06f7ugxcGRvhShcAyd22bdtG/vz5E7XukGunhIPkOEWMQix2TaSWUTnN69y4vxAv9flFg0Rep2xVqhC0YgW2YsWsDkVERK6ipEPONfCrh8F0ZvFWbQQylAD8P1vGO++8Q506dWjTpg0XL15k9erVhOpGxXWhRo0abNmyxTdVpfiPulRIjnXWPE+XmCf4ydyQYrlCUS62tL5EwOY/sigyyU5sTZsSPH8+xr9TRomISPb02doYnph1CY/uDeQoEc9+SM0yU7Noa0EEMRonN2fR9kTkWimFIzlWfiMvC1wfc6ftlhTLrXwsn5IN1ylHp04EL1+uZIOISA7Q/0YX3/YPJk+A1ZFIevT9ojemmS/Tt2NQiBA+V7JBJIdRwkFytEAjgGnO9+hv75bk89PGhlPy61VZHJVkB86HHiJwzhxNfSkikoPcXt3J8ifyUDK/5szMKQ6cysvSrf7v3hCfjTBC+Ao7tTJ1OyLif0o4SI5nN+yMd77CUMejGPz3A+WJiLLcOniJhZGJVVyvvkrgxx9jXDW/sYiIZH/1SttZPSgPNUroZ2pOMWBKZzye0plSt506BPMVNspmSv0ikrl0JpdcY6jjUaY63yWEIBofKMiw3r+Cx2N1WJKVgoIInDKFgGHDrI5ERESuQZmCNlY9lYdbKjusDkXS4GKMk4mrH/F7vQ7aEMxEbBT0e90ikjU0aKTkOlu8f1C0yxOEzF1mdSiShYyKFQmaPRt77dpWhyIiIn4S6zF5evZlPlkbY3UokgYH33qE4MAtfqnLxX0E8AKG7o+K5Gg6giXXqW2rSrHPv8Herp3VoUgWcXTqRMiGDUo2iIjkMk67wfjuQUztG0R+zZyZ7b0y73E/1JKXQN4kkP9TskEkF9BRLLmSUbAgQQsX4ho+HDSfbu5lt+N6800C587FyJ/f6mhERCSTdKvn4tfn89KorMbmyc6+WFuDY2dSnj0sJXYakofZuOjox6hExErqUiG5nnvNGi737Yu5Z4/VoYgfGSVLEjhlCo7Wra0ORUREskisx2TYgsuMiYhBv2Czp5aVDjPn0Z5guNOxloMAHsPFg2rVIJLL6IiWXM/RrBkhmzfjfPhhq0MRP3H06UPItm1KNoiIXGecdoO37gxi7oBgQkM0dWZ29OOukmw/lPR05UmxUY4QphLAACUbRHIhtXCQ64p78WIuP/gg5pEjVociGWCUKEHgJ5/g6NDB6lBERMRih896eWLmJeZvTc+ddMkK5Qqf59eh3TCM8ymWc3IPgTyHQVAWRSYiWU1pRLmuONq1I2TrVhw9elgdiqSTo3fvuFYNSjaIiAhQMr+N2f1DmPVgMGULqrVDdrLvZF6Wb7s/2ecNChHEBwQxTMkGkVxOLRzkuuVeupTop57Cu2OH1aFICozwcAL/9z8cnTpZHYqIiGRTF6NNRi65zNhVMbi9VkcjAHkDYtj9xn3Y7YfiLTVwcicBPIONQpbFJiJZRy0c5LrluPVWgjdvJuDddyFfPqvDkavlyYPr9dcJ2bFDyQYREUlRSEDc2A6/PJeHG8I1k0V2cD7axaSfHvH9bacuIUwniNeUbBC5jqiFgwjgPXqU6P/7P9xffomGvbaYYeDo25eAN97AVqKE1dGIiEgOY5omE3+O5ZVFlzl+Qd/pVtv3+isUDbkVJ3dYHYqIWEAJB5F4PL/8QvTgwXhWrrQ6lOuSvXlzAt5/H3uDBlaHIiIiOdyFaJP/RUQzZmU05y5bHc31p0AQPH9LII+3dBHk0hgbItcrJRxEkuD+8UdiRozAs2KF1aFcF2yNGhHwyis47tDdDxER8a+TF728vTyaCT/FEBVjdTS5X6ATHm3h4sU2gRQMVqJB5HqnhINICtyrVxMzfLgSD5nE1rQpAUOH4mjf3upQREQklzt+wcuYlTFM+CmaC9FWR5P7hIYYDGzu4pEWLork0TBxIhJHCQeRNHD/9BMxb72FZ/Fi8Gr462tlb98e14sv4mjZ0upQRETkOnPyopcPV8cw8ecYDp/Vz+BrVamIjadauejdSF0nRCQxJRxE0sG7fz+xEyYQO3Ei5okTVoeTsxQsiLN3b5wPPYS9Rg2roxERkeuc22Myb6ubT9ZEs3KXR2NGp9ON5ew8fXMAHWs6sNmUaBCRpCnhIJIBZnQ07pkzifnwQ7w//2x1ONmavXlznA89hKNbN4zAQKvDyRKGYfDtt9/SuXNn9u/fT7ly5di0aRN169a1OjQREUnCzn88fLImhinrYzkdpZ/GySkUbNC1rpO+TZw0CnNYHY6I5ADqYCWSAUZAAM777iNk7VqCIyNxvfACRrlyVoeVbRjFi+N8+mmCt28nePVqnL17pzvZ8Ndff/HAAw9QsmRJXC4XYWFhPPXUU5w8eTJR2d27d3P//fdTunRpAgICKFeuHD179mTDhg3+2qUkDR8+PNUkQpkyZThy5Ag1a9bM1FjSolOnTpQtW5bAwEBKlChB7969OXz4sO/5/fv3YxhGon+//PJLsnVOmjQpyXUMw+Cff/4BYNOmTdSrV488efLQsWNHTp065Vvf7XbToEEDfv3118zbcRGRVFQuauedu4LYPzwvn/YMonVlOw79SgYgyAld6zqZ3T+Yv0bmZXz3ICUbRCTN1MJBxI88GzYQ+803uGfOxNy/3+pwspRRvjyOu+7Ccddd2Js2xbBl/Jfa3r17adq0KZUrV+a1116jXLlybNu2jeeff56YmBh++eUXChUqBMCGDRu45ZZbqFmzJoMHD6Zq1aqcP3+e7777jhUrVrBq1Sp/7WIiw4cPZ+7cuURGRiZYHr+Fgz/ExMTgcrmuuZ4xY8bQtGlTSpQowaFDh3juuecAWLt2LYCvNcayZcuoEa/bS+HChXE6nUnWeenSJc6ePZtgWb9+/bh8+TIREREANGjQgFatWvHwww/Tv39/GjduzDvvvAPAqFGjOHToEGPHjr3m/RMR8adTF70s2Opm7u+xLPvTzeVYqyPKOjYDbq7koGcDJ53rOMkXqC4TIpIxSjiIZBLP+vW4v/0W97JleDduBI/H6pD8zlar1n9JBj92F2jXrh1bt25l586dBAUF+ZYfPXqUChUq0KdPHz766CNM06RWrVoEBgby66+/YrsqyXHmzBkKFCiQ5Daio6N5/vnn+frrrzl37hwNGzZkzJgxNGrUCIi7cz9o0CDOnDnjW2fu3LncddddmKbJpEmTuP/++xPU+cUXX9CvX79Uu1Rs3bqV559/ntWrVxMSEkLbtm0ZM2YMoaGhALRq1YqaNWvicDj46quvqFWrFitWrGDEiBF8/vnnHDt2jMKFC9O1a9drulCfN28enTt3Jjo6GqfT6ZfuH8ePH6dUqVJMnDiR3r17AxAcHMzGjRupWrUqH330EQsWLGDhwoXs3buX22+/nd9++428efNmeD9ERDLbhWiTJTvczN0cy+LtsZzPhbNclC5gcEtlB62rOLilsoOiedXEQ0SundpDiWQSe6NG2Bs1IuCNNzDPnsWzahXuFSvwrFiBd+tWctzoVDYbtlq1sLdsif2mm7C3aIGtaFG/b+bUqVN8//33vP766wmSDQDFixenV69ezJgxgw8//JDIyEi2bdvGtGnTEiUbgGSTDQAvvPACs2fPZvLkyYSFhTF69Ghuu+02du/e7Ws9kZJ77rmHrVu3smTJEpYtWwZA/vz5U13vzJkztG7dmv79+zNmzBguXbrEiy++SPfu3VkRb/rVyZMn88gjj7BmzRoAZs+ezZgxY/j666+pUaMGR48eZfPmzaluLzmnTp1i6tSp3HjjjYlaL3Tq1InLly9TuXJlXnjhBTp16pTmer/88kuCg4Pp2rWrb1mdOnVYunQpFStWZPny5dSuXRuAgQMHMnr0aCUbRCTbyxMQN3ZB17pOYtwmm/72sHafhzV73fy8z8PxCznsOx3IFwgtKzpoU8VB68oOqhazWx2SiORCSjiIZAEjf34cnTrh+PfCzXv8OJ41a/BGRuLdvBnP5s2Y+/ZZHGVCRunS2GrWxF6nDvbmzbE3b46RwgW8v+zatQvTNKlWrVqSz1erVo3Tp09z/Phxdu3aBUDVqlXTtY2LFy/y0UcfMWnSJNq1awfAp59+ytKlS5k4cSLPP/98qnUEBQWRJ08eHA4HxYsXT/O2x48fT7169XjjjTd8yz7//HPKlCnDzp07qVy5MgCVKlVi9OjRvjILFy6kePHitGnTBqfTSdmyZWncuHGat3vFiy++yPjx44mKiuKGG25gwYIFvufy5MnDu+++S7NmzbDZbMyePZvOnTszd+7cNCcdJk6cyL333psgWfTZZ5/x6KOP8s4779CsWTNeeuklpkyZQnBwMI0aNeK2225jz5499OjRg9deey3d+yQikpVcDoMm4Q6ahDt4+uYAAHYd9/DzXg9r97lZu8/DruNePNloFm2nHaoXt1G/jJ16pe3UL22nfhk7Dru6SohI5lLCQcQCtiJFsHXuDPH6+JvnzuHZsgXv5s14t23Du38/5v79eA8cgKiozAkkf35sJUvGJReqVYtLMNSoga1GDYw03K3PTKn19nK5XKmWSc6ePXuIjY2lWbNmvmVOp5PGjRuzY8eODNWZVps3b2blypXkyZMnybiuJBwaNGiQ4Llu3brx/vvvU758eW6//Xbat29Px44dcTjSdxp//vnnefDBBzlw4AAjRoygT58+LFiwAMMwCA0N5ZlnnvGVbdSoEYcPH+btt99OU8Lh559/ZseOHUyZMiXB8ho1aiQYS+PkyZO88sor/PjjjzzxxBPceOONzJkzh0aNGtGkSRM6duyYrn0SEbFapSJ2KhWx06dJ3Hg70W6Tnf942XHUwx/HvOw54WXfybh/x85nTmuIQCeUyGdQPJ+NkvltVC1mo3pxG9WL26lc1IZTyQURsYASDiLZhJEvH47mzaF580TPmadP4z18GPPwYczjxzEvXoSLF//7Pyoq7v/oaAyXCwIDISAAIyDgv8fBwRjFi2OUKBGXZChRAuOqLgvZQcWKFTEMgx07dnDXXXclen7Hjh0UKVKEAgUK+C7O//jjD+rVq+fXOGw2W6KERmzstY8YduHCBTp27MioUaMSPVeiRAnf45CQkATPlSlThj///JNly5axdOlSHn30Ud5++21WrVqV7ICOSQkNDSU0NJTKlStTrVo1ypQpwy+//ELTpk2TLN+kSROWLl2apro/++wz6tatmyhZcrVnnnmGQYMGUbp0aSIiInjttdcICQnhjjvuICIiQgkHEcnxAhwGtUraqVUycTeFi9Em/1wwORNlcuaSyelLCR+fvWRyKcbEaTdw2MFpA4cd7DYDpx0cNghyGhTPZ1Ain43i+QxK5rdRMFgJBRHJfpRwEMkBjIIFsRcsCPFmDsitChcuzK233sqHH37I008/nWjQyKlTp/LYY48BULduXapXr867777LPffck+ZBIytUqIDL5WLNmjWEhYUBccmE9evXM2jQIACKFCnC+fPnuXjxou/i/+rZKFwuF550DgZav359Zs+eTXh4eLpbJwQFBdGxY0c6duzIY489RtWqVfn999+pX79+uuq5wuuNa+8bHZ386GeRkZEJEiHJuXDhAt988w1vvvlmiuWWL1/Ojh07+OKLLwDweDy+RI4/EjoiItldSIBBuQADClsdiYhI5tPwsyKS7YwfP57o6Ghuu+02fvzxR/766y+WLFnCrbfeSuXKlXn55ZeBuOknv/jiC3bu3EmLFi1YtGgRe/fuZcuWLbz++uvceeedSdYfEhLCI488wvPPP8+SJUvYvn07AwYMICoqigcffBCIu7MfHBzM4MGD2bNnD9OmTWPSpEkJ6gkPD2ffvn1ERkZy4sSJFC/cr3jsscc4deoUPXv2ZP369ezZs4fvv/+e+++/P8XkxaRJk5g4cSJbt25l7969fPXVVwQFBfkSJqlZt24d48ePJzIykgMHDrBixQp69uxJhQoVfK0bJk+ezPTp0/njjz/4448/eOONN/j888954oknfPV8++23SY6ZMWPGDNxuN/fdd1+yMVy+fJnHH3+cTz75xJccatasGR988AGbN29m9uzZCbq5iIiIiEjOpoSDiGQ7lSpVYv369ZQvX57u3bsTFhZGu3btqFy5MmvWrEkw/kHjxo3ZsGEDFStWZMCAAVSrVo1OnTqxbds23n///WS38dZbb9GlSxd69+5N/fr12b17N99//z0FCxYEoFChQnz11VcsWrSIWrVqMX36dIYPH56gji5dunD77bdz8803U6RIEaZPn57qvpUsWZI1a9bg8Xho27YttWrVYtCgQRQoUCDJmTauKFCgAJ9++inNmjWjdu3aLFu2jPnz51O4cNwtsuHDhxMeHp7s+sHBwcyZM4dbbrmFKlWq8OCDD1K7dm1WrVpFQECAr9zIkSNp0KABTZo04bvvvmPGjBkJpv88e/Ysf/75Z6L6J06cyN13353izCAjRozgjjvuSDDl5tixY4mMjKRly5Z07NiRLl26JLu+iIiIiOQshpnRUddERLLQK6+8wnvvvcfSpUu54YYbrA4n2+nbty+GYSRqhSEiIiIiYhUlHEQkx/jiiy84e/YsTz75ZIqtAa43pmkSHh7OTz/9RJkyZawOR0REREQEUMJBRERERERERDKBbhGKiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3SjiIiIiIiIiIiN8p4SAiIiIiIiIifqeEg4iIiIiIiIj4nRIOIiIiIiIiIuJ3mZ5wmDRpEoZhYBgGw4cPz+zNAbB//37fNlu1auVbPnz4cN/ySZMmZUksmSkiIsK3P/369bvm+sLDw331ieQW/fr1832uIyIirA4ngeSO4fTG3KpVK1/5/fv3p1jWinOyiPhHeo71K5L7TSQiktuujSR7clgdQG4VERHhu1Do3LkzdevWtTQeyJ4xXYv9+/f7To5169alc+fOlsYjIv5zJRlSoEABBg0aZGksIlklMjKSuXPnAnHJhbQmCCZNmuRLQAwaNIgCBQpkSnwiIiLpdV0lHB544AHatGkDQOXKlTN1WxEREYwYMQKIazmQHS7uU4tp1qxZXL582YLIMmb//v2+/enbt68SDpKkIUOG0L9/fwBq1aplcTRpk5kxt2/fntWrVwNQtmxZv9btT1eO7bCwMCUc5LoRGRnp++wDiRIO48aN4+zZswCUKFHCt3zSpEmsWrUKiGshFT/hUKJECd8xnz9//kyKXEREJGnXVcKhbNmy2foHttUaNmxodQgiflepUiUqVapkdRjpkpkxFy1alKJFi2ZK3SI5TUxMDDabDYcjZ/wcykgCMiAggObNm2dCNCK5y8WLFwkJCbE6DJFcx69jOKxYsYJGjRoRGBhIhQoV+OCDD5Itm9x4Acn1Xb6yLDw8nF27dtGhQwfy5MlDaGgojz32GBcvXkw1vpT6Ke3YsYN+/foRFhZGQEAARYoUoXXr1ixfvtxX5q233qJVq1aULl2aoKAggoODqV69OkOHDiUqKipBrPHvUNx///1JbnfLli307NmTEiVK4HK5KFWqFP379+fvv/9OFHtkZCStWrUiKCiI0qVLM2LECNxud6r7nJ6YknpPru5jPnPmTKpVq0ZwcDAtWrTg999/x+v18uqrr1KqVCmCg4Np164dBw4cSBRDWvf30qVLPP/881SqVImAgABCQkIoV64cd999N99++y0Qd9fn5ptv9q0zefLkRH3hf/zxR7p160alSpUoUKAALpeLkiVL0r17d7Zs2ZJgm/E/GxMnTmTEiBGUKFGCfPny0bNnT86cOcOpU6fo3bs3+fPnp1ChQgwcODBBi5Cr+8muX7+em266ieDgYEqWLMmwYcPS9Z6Jf6T1nNKpUyfy5MmT6L3duHGjr+ydd96ZoO5Dhw5hs9kwDIPGjRv7lj3wwAPUqVOH0NBQnE4nhQoVonXr1r6m0hmN2ePxMHz4cN+xdvPNN7N58+Z0vR7JjeEQv2/4li1beOKJJyhatChBQUFJHtPpOSenNN5M/Hrgv2PxigMHDiQqI5Je8Y+pxYsX8+yzz1KiRAkCAwP5+++/iY2N5b333qNBgwaEhIQQEhJCkyZN+OqrrxLVlZHfI9999x1t2rShYMGCBAQEUKVKFUaMGMGlS5d8ZcLDw7n//vt9f48YMSLRsXr1GA5Xjq0rrRsAypUrl6BMSmM4nDt3jiFDhlCtWjWCgoLImzcvTZo04eOPP8Y0zRT3O7lz5hUff/wxDRs2JE+ePAQEBFCqVCnatGnD6NGj0/y+iaTVqlWrElyDjB8/Pk3fdxs3buSBBx4gNDSUPHny+Mqk59iIiIigTZs2FCpUCKfTSZEiRWjcuDFPPfWUr0USwOzZs2nevDn58+fH5XJRvHhxmjdvzosvvpiozvjee+89X7xjxoxJ8Ny0adN8z73wwgtA+n7/Jie5792UxpFJy3lOrlOmn6xZs8Z0uVwmkOBf7dq1fY9feeUVX/mwsDDf8vj69u3rW75y5Urf8ivLChQoYBYrVizRdm6//XZf2X379vmW33TTTb7lr7zyim/5F1984Vu+ZMkSMygoKFGdV8dcpUqVJMsA5s0335wo1qT+XdnuokWLzICAgCTLFC9e3Ny7d6+vvl27dpn58+dP8bXt27dviu9PWmJK6j1ZuXKlb1m5cuVMwzASxTpgwIBEdTZr1izB9tOzvw888ECysfbq1cs0TdO86aabki1z5bV48803ky0THBxsbt++PcnPRoUKFZL8fDVu3DjR8iFDhiT5uStdurQZEhKSqPzDDz+c4vsk/pfaOSVfvnxm4cKFU3xvq1WrZgJmYGCgee7cOd/y//3vf77y//vf/0zTNM2ff/45xeNt8uTJvvXjH1/xj+HkYn7ssccS1ZcvXz4zPDzc9/e+fftSfD2++OKLJM9v8Y+p8uXLp3pMX1melnNycvsZv56wsDDTNBMei1f/u1JGJL3iH1NXf7537txp3nLLLcl+7l544YUEdaXns2+apjls2LBk627RooUZHR1tmmbC7+Cr/105VuMfp/v27UtwbCX1b9++fcn+Jjp16pRZtWrVZNft0aNHkvudlnPml19+mWy9pUqV8uM7KxL3vZvUb8w6deqk+/vONNN3bPzxxx/JXkMA5q5du0zTNM2IiAjTZrMlWy42NjbZ/Tt8+LBv3RtvvDHBc3fddZevjs2bN5ummfHfv/GvjZL73r36HHRFWs9zcn3yWwuHZ599lpiYGADatGnD/PnzGTlyJNu2bfPXJgA4c+YMpUuXZu7cuYwbN47g4GAAlixZwvz589NdX1RUFH369PFl31q0aMGMGTOYN28ezzzzTIKmVQMHDmTKlCksWrSIiIgI5s2bR/v27QFYuXIla9euBWD16tUJ7lIMHjyY1atXs3r1atq3b09UVBR9+/YlOjoah8PB66+/zg8//ODLTB49epRHH33Ut/6wYcN8GdJ69er59n337t1p3s/UYkqLffv20a9fPxYuXOhr1nn06FE+/fRTXnrpJb799luKFSsGwJo1a3zvfXr397vvvgPi+m7PmjWLH374gYkTJ9KnTx8KFiwIxPVjHTt2rG+ddu3a+fZnyJAhADRu3Jhx48Yxb948Vq5cydKlSxk1apQvpquzxFfs37+f0aNHM2PGDPLmzQvEfb62b9/OZ599xkcffeQr+/HHHydZx99//02zZs18x4HdbveVT2t2WbLGuXPnKFKkCLNnz2bkyJG+5fHf2169egFw+fJlFixY4Fs+a9YsAOx2Oz169ACgePHivPXWW8yePZtly5axcuVKJk+eTJEiRQB47bXXMhTnH3/8wYcffgiAzWZj+PDhLFiwgKZNm6Z5tPq0On78OBMmTOCrr77y9QWPf0zH5+9z8gMPPODrbw5xr+eVY/vK6y1yLfbu3cuTTz7JkiVL+Pjjj5kzZ46vNeMNN9zAt99+y6xZs6hSpQoAo0ePZt26dYnqSctnf/369b7zSokSJZg4cSJLlizhjjvuAOK+m698F82aNYvBgwf76r///vt9n/0HHnggyX2pV68eq1evTjAm08yZM33rxR/n4WqDBw/mjz/+AOK6asyZM4fPPvvM9z379ddfM2PGjETrpeWceeV73OFwMGHCBJYvX87UqVN59tlnKVeuXLIxiWTEM888Q3R0NAA333wz8+fPZ8SIEfz++++prnvw4EFeeeUVvv/+e9+xmJ5jY+nSpb5riKeeeorly5cza9YsXnvtNRo2bOhrsTd//ny8Xi8Ab7zxBsuXL+frr79m6NChVK9ePcUZ4kqUKEHr1q0B+Pnnnzl8+DAQ1wVkyZIlvjhr164NZPz3b0al5zwn1yl/ZC2OHTvmy2IFBASYJ0+e9D3Xq1evJLOLGW3hQLxsoWma5pAhQ3zLH3jgAdM009fC4dtvv/UtK1eunHn58uVk93Pr1q1mjx49zNKlS5tOpzNRBu/KHc7ktnVF/G22a9fOXL16te/flTuVhmGYx48fNz0ej5knTx5f+W3btiW576m1cEgtJtNMvYVDmTJlTI/HY5qmab799tsJMpdXxL8DO3fu3HTvr2maZvHixX2Z6U2bNiX7nqR019Q0TfPixYvm8OHDzVq1apnBwcGJ3q969eol+drce++9vuV33HGHb/mwYcN8y2vUqOFbfubMGdM0E37ugoODfctNM+Fx8Oqrryb7Hon/peWcsmnTJt/y+Hc1rryHe/fu9bXuufvuu03TNM0jR4747jhcfUdz0qRJZosWLcwCBQokahUEmGfPnjVNM30tHEaNGuVb1q1bN1/ZM2fOJPh8+6OFw5gxY3zLBw4cmOiYvvr1S+2cnJ4WDqktF8mI+MdU/HO8aZoJ7oJ+8803vu+nV1991bf88ccf95VPz2f/qaee8i0bPHiwr+758+f7ltesWdNXR3LH5xXJ3V1MbrlpJv2byOPxmAULFvQt//33333lx40b51t+5513JrnfqZ0ze/To4fsuXLZsme+cJ+JvV1+DnDhxwvfclc9hSt93gwcPTlBfeo+NCRMm+Ja9//775pEjR5KM8//+7/985WbOnJkgzrSIf24YO3asaZqmOWPGDN+yt956y1c2o79/M9rCIb3nObn++KWFw969e32PK1SoQKFChXx/X+nX7C+FChWiYsWKSdYfP4602rlzp+9xmzZtCAgISLLcgQMHuPHGG/n66699/T2vdubMmXRvc/HixbRo0cL378qdStM0+eOPP/jnn3+4cOECACEhIVSvXt23rr9f29Q0aNAAmy3uIxP/PY4/2GRoaKjv8ZXXIz37C/Dggw8CsHnzZurVq+fb72eeeYYjR46kOd6ePXsyfPhwfv/99wRjbFwd39Xiv67p2c/4qlatmmA08Gv9nErmyZcvX4K7g4ULF/Y9vvLelitXjhtvvBGIu3t58eJF5syZ47tbcd999/nWGTNmDP369WP16tWcOXMmyX6ZaT1XxBf/c9OoUSPf4/z58/vuxPrLTTfd5Huc1OsRn7/PySKZrWPHjgn+jv8d1b17d9/308svv+xbvmPHjkT1pOWzH7/uN954w1d3/BiufPdlpePHj3P69GkAgoODqVmzpu+5+PsRP/4r0nLOvDJOVFRUFG3atCF//vyUKVOG++67jw0bNvh5b+R6dvU1SPzPY9OmTVNd/+rzQXqPjTvvvNO3zUGDBlGiRAkKFSpEu3btmDlzpq98r169fNcY3bp1IzQ0lGLFinH33XezbNmyVOPs0qULQUFBwH+tK6/8bxgG9957r69sRn//ZlR2Pc9J9uHXQSOTklwTofjLPR6P7/GJEyf8Ur+/TZ48mXPnzgFxJ7C5c+eyevVqX7cAwHfx4S+pDYSZVft+RfwL6CuJB4j78ZGUpC60UnJlf0eOHMn06dPp1q0bVapUwTAMduzYwZgxY2jbtm2aBl48ePAg8+bNAyBPnjx8+OGHREREJBiAL7n3KzP2M6vfK0m7K00kr4g/Wn389/ZKUiEqKopFixb5vuhDQkISTMk6btw43+MXXniB5cuXs3r16gSjy/v7XOHvz1f81yS51yM9sfjrfC/iD1e6/qVHWgamzuhx6Ha7fc3BrXB13KntR1rOmW3btmXNmjUMGDCAevXqERwczN9//83UqVO56aablIyUTJGRYzCl80Fajo3ixYvz22+/8eKLL9K8eXMKFy7M6dOnWbJkCd27d+frr78GoGbNmvz22288+eSTNGnShPz58/PPP//w7bffctttt/m6ZScnb968dOrUCYCffvqJffv2sWjRIgBatmxJmTJlgGv7/ZuU+N/ZkPHvbavPc2ItvyQc4vfH27t3ry8zCCTZ7xESXtQdPXoUgPPnz7NmzZoUt3Xq1KkEYxfEr798+fLpCxyoXLmy7/GyZct841Bc7dChQ77HgwcP5s4776R58+YJRp+NL/6F6tUHdvxt9u3bF9M0E/27ePEit912G0WLFvWNI3Hx4sUEd1mSe22Tk1JMmSk9+3tFjx49+Oabb/jjjz84f/48Xbt2BWDr1q2+TGpK+xP//brtttt45JFHuOmmm5JtweJvf/75py9BBdf+ORXrdevWDafTCcBHH33Ejz/+CEDnzp0TjPVy5bNXuHBhRo0aRevWralXr16Cz2RGxP/cxL9DePbsWf78889rqvtapOWcnNT5HvD1PU3KlR92WXmukuvD1RcN8b+j9u7dm+R3VPwZq65Iy2c/ft1ffPFFst9/V76bMvo9nd71ihQp4huf5eLFiwnGZ4m/H/HjTw/TNGnatCmffPIJGzdu5Pz587z77rtAXNI2pWNfJD0qVKjge7xnz54E1yA///xzqutffT5I77FhmiZhYWG89dZbrF69mhMnTrB+/XpfuTlz5vjK1ahRg//973/88ssvnDlzxnfjwuv1pmkWqyvjSXm9Xh5++GFfIjR+K0t//f698r198uRJX6vu/fv3J9lSIb3nObn++GXi6WLFitGkSRPWrVvH5cuX6dGjB08++SSbN2/2ZfauVrFiRd90bn369KFLly5MmTIlTc187r33XoYOHcrff//N+++/71t+9ZR1adG2bVuKFi3KP//8w759+2jbti2PP/44gYGB/PTTTxQuXJjnn3+esLAw3zpjx47F5XKxbt06Jk6cmGS98e8AzJ49m3LlyuF0OmnUqBG33norRYoU4fjx43z55ZcUKlSIW2+9FY/Hw/79+1mzZg2bN29m+/bt2Gw2OnTo4Bucpnfv3gwbNoxDhw4l2Pe0SCmmzDwJpGd/AZo1a0a9evVo3LgxpUqV4vz5877nAF+GNP7+/PTTTyxevJi8efNSuXLlBO/XihUrmD59Ona7PcGAXJnp4sWL3HPPPTz++OOJjoOMfE7FeoULF6Zdu3a+QZiuiP9FD3GDne7atYuTJ0/y1ltvUbt2bf73v/9x6tSpa9p+x44defHFFwF8g7U1aNCA8ePHp+nua2ZK7Zxcrlw5bDYbXq+XFStWMHjwYPLmzctbb72VbJ0FCxbk1KlTHD58mKlTpxIWFkaxYsWoVKlSZu+OXGd69erl+z3SoUMHXnjhBUqXLs2RI0f4448/+O6773j22WcTTekKqX/27733Xv73v/8B8PTTT3Pq1Clq167NmTNn2LNnDz/88ANhYWF8/vnnQMLvtSVLltCyZUsCAwOpVatWgsTd1eKv9+mnn9K+fXuCgoISdAWMz2az0aNHDyZMmOB7DV555RVOnz7NK6+84ivXs2fPlF66ZD355JMcOXKEW2+9lTJlyuBwOBIMBqs7neIvRYoU4cYbb2Tt2rUJrkE2btzIN998k+760ntsTJ8+nQkTJtC5c2fKlStH/vz5WbFiha/clc/66NGjiYiI4I477qBs2bKEhITw/fffJyqXkttvv53ChQtz8uRJli5dCkBAQIDvphzgt9+/FStW5LfffuPSpUvce++9tGzZkg8//DBRiwdI/3lOrkP+Ggzixx9/THIgxUqVKiU5YMv333+fqKzD4TArVqyYaLA00/xv8JJChQqZpUuXTrTurbfeanq9XtM00z8tZkpTNl6J+cCBA0kOvNKsWbMk92/Lli1JDhZ3ZYCVhQsXJrtNrhqkZefOnWa+fPlSfG3TMmhkajGlNmhk/G0kN7BVcq9xevY3qWkpr/yrXr266Xa7TdM0zdjYWN8Ak/H/Xdlu/AEfk3q/4m8zubiTG3AwqUFz4n/uwsLCknzP+vfvn+r7JP6V2qCRaZ3yyTQTDtAEmEWLFk00lVX8AVWv/AsNDU0wre6VetM7LWb8ARyv/AsKCjJLlSqVbMxXS8ugkfHrSG1AqbSck03TNHv27JmozJXpRpN6H7p06ZKofFrOcyJJSe6YMk3TjI6OTnFazGv97Kc0XdzVn+vjx48n+V15JebkjtP4g9ldfUwl95vo5MmTqU79F38/0nPOfPDBB5OtNygoyNyzZ09630KRZP3888+my+VK9FmLP318Wr7vrkjPsTFlypQUj+/p06ebpmmaI0eOTLaMzWYzf/rppzTt6yOPPJJg3SsDWcfnj9+/H3/8caI68uTJk+Ccl9ZpMfX9LX4bw6FFixYsWrSI+vXr43K5CAsLY9SoUbz00ktJlm/bti3vv/8+pUuXJiAggMaNG/P999/TrFmzFLeTN29eVq9eTceOHQkJCaFQoUIMHDiQOXPmZLj/ZLt27fjtt9/o3bs3pUuXxul0UrhwYVq1akWLFi0AKFu2LD/88AONGzcmKCiIChUq8OGHH9K/f/8k66xVqxZffvkl1apVS7L1QPv27dmwYUOCbYaGhlK3bl2eeeaZBAPNVKpUiZUrV9KyZUsCAgIoXrw4L774YoK+4mmRWkyZKT37+9JLL3HnnXcSFhZGcHAwTqeT8PBwBg4cyIoVK3xTTDocDubNm0fz5s1901fGN2XKFPr27UtoaCgFChSgd+/eGZqmLyPCw8NZtWoVrVq1IigoiOLFizN48OAEU2pKztOpU6cEY3n06NEjQf9liMvuv/baa77Pb6tWrVixYgXFixe/5u2PGzeOYcOGUaJECQIDA2nWrBnLly9PMHBdVkvrOXncuHF069aNkJAQ8ufPT58+fXzdUpIyfvx4unfv7ptOVCSzuFwulixZwtixY2ncuDF58+YlMDCQcuXKcccddzBx4kTuuuuuROul9bP/6quvsmDBAt/dSafTSalSpWjevDlvvfUWI0aM8JUNDQ1l7ty51KtXzzdAXFo8/PDDvPjii5QtWzZB94qUFCpUiF9++YWXXnqJKlWqEBAQQEhICI0aNeKjjz5i2rRpGf5d1atXL/r27UuVKlXInz8/drudokWL0rlzZ1avXq2uheJXN9xwA99//z0NGzbE5XIRHh7O+++/n2A62SvT1qZFeo6Npk2b8tRTT1G/fn1CQ0Ox2+3kz5+fFi1aMGPGDN+U2e3bt+fhhx+mZs2aFCxYELvdTqFChWjbtm2arn+uuLpV5dV/g39+//bv35+XXnqJokWLEhQUROvWrVm9enWCLizxpec8J9cfwzTTObKfRa4c2GFhYX6fc17EH/bv3+8bz+Smm25KMECPSG6jc7Jcr/TZF8leTNNMMjnWo0cPX5fkOXPmJJk4FJHM55cxHERERERERLLagQMHeOSRRxg4cCC1atXi8uXLzJw50zeGQ6FChWjTpo3FUYpcv5RwEBERERGRHGvJkiVJzn7icrmYOHFikl1vRSRr+G0MBxERERERkaxUqFAh+vfvT9WqVcmTJ49vLLk+ffqwfv16OnfubHWIIte1HDOGg4iIiIiIiIjkHGrhICIiIiIiIiJ+p4SDiIiIiIiIiPidBo3MJS6ZlzliHucoxzlhniaaGDx4sWHgxEl+8lLCKEIJowgFjHxWhysiGXTGPMdR8zhHzBOc4RyxxOLFxI4NF05CjUIUJ5QSRhGCjSCrwxWRDPCYHg7zD8fME5w2z3GW81wimhCCyEsIeY0Q8pGHPEYIBchLPiOP1SGLSAaYnvOY7hPgOQfes5ies3GPDSfY82PY8sb9b88LjmIYtgCrQxZJNyUccphYM5at5i42erezydzGJu92dpsHOcv5NNcRSABljZLUMapS31adekYN6tmqkd/QCL4i2cV58yKbzO1s8m5no3c7keZ2DppHuMTlNNeRjzxUNMpSz1aDekZ16tuqU9OojMtwZmLkIrlHREQE48ePZ9asWZm2jQtmFL96t/CLGcnP3k1s9+7mKCfw4ElzHaUoRl1bNeoYVeP+t1UjzCiZaTGLSPqYpol5eTvmpc14L2/DvPQ73svbIPZQOmqxYbjCMAKrYgTWxBZcD1twEwxXqUyLOy1Gjx7NCy+8kOby/fr1o2vXrnTo0OGathsaGsqJEyfSvV5WnNclISUccoB/zJMs8qxikTeC5d6fucila6rvMtHsNPex09zHTO9iAGzYaGzUor29FR1sN1PdVtEfoYtIOvzh3cNC7yoWeFayztyMF+811XeOC2w0t7PRs923LJggbrY14Q5bK+6wt6KYEXqtYYtIOnhNL8u8a1ni/ZGfvZFsMf9MV3IhKYc4xiHvMRYSwZWqClOA22wt6Ga/nTa2G3Eq0SiSpc6ZF9gc8xNNjk7He34FuI9fY41ezJh9mDH74Nxi31nDCKyNLX877PnaYwQ3wjCytsd8ehMOcv3RGA7Z1HnzIp+5Z9Iq+j7Co29moPtl5nlXXHOyITlevPxibuZl9/+oH9OZatG380rsWPZ705N5FZH0Omge4dXY8dSMvoO6MXcyxP0eP5ubrjnZkJwoLrHQG8Gj7uGER99My+h7+cT9NefMC5myPZGcZNSoUdSsWZNatWoxderUBM+tXLmSpk2bcvx4xi4adnsPMCz2fSpF30qn2IF86JnGJnP7NScbknOSM0zzzueu2McoG30TD8cOY6lnDW7TnSnbE5G47lBzPD9wV8yjlI5uwd3my1w+860fkg3JMy9vwXNsFDG7biJ6Wzixfz2G99LWDNW1f/9+6tSpQ9++falWrRr33HMPVyY0/OGHH6hbty41a9bkmWeewTRNhgwZwpkzZ6hbty4DBw5MVN/ChQupV68ederU4d577/UtX7p0KTfccAOVKlVi1apVAHg8Hp599lkaNWpEnTp1fOdgt9vNU089Ra1atahduzbffPNNgm0cOnSIxo0b8+uvv7Jnzx5uu+02GjZsSOvWrdm/fz8Av/76KzVr1qRu3brMnDkzQ6+NZJymxcxmdnr38YFnKlM987hAlNXhYGDQ1tacx+33cau9mdXhiOQaKzy/8IHnKxZ7f8y05EJ6BBPEvfYOPGa/j2q2ClaHI5Ll1q9fz8CBA1mzZg1RUVE0atSIkSNHMmfOHB555BGGDh3K/PnzCQ1Ne6ugy2Y0X3sWMtnzLT+bmzIx+rQrQiEedvTgMXsvChr5rQ5HJFe4YEYxyTOb8Z6p7Df/TvDctyeKcfOJNVkeky1PS+yhj2HL3wHDsKdpnf3791O5cmUiIyOpVq0aN998MyNHjqRhw4ZUrVqVVatWUbZsWTp27MiDDz7I3XffnWzXhn/++YcbbriB1atXU6pUKU6dOkWhQoXo168fHo+HKVOmsGLFCl5//XWWL1/OJ598wrlz53juuee4dOkSN9xwAytWrGDGjBn8/PPPTJ48GZvNxunTpylYsCChoaFs2rSJu+66i48++ohGjRpx22238fHHHxMeHs6KFSv46KOPmDlzJrVq1eKLL76gYcOG3HPPPXg8HnWpyELqUpFN7PEeZIR7PDO9izHJPjkgE5Pvvav53ruaeu7qvOp4SokHkWsQ4fmVYe4xrDd/tzqUBKK4xGeemUz0zOJuW1tGOJ6koi3M6rBEssyaNWvo0qULgYGBBAYGcssttxASEsLmzZt59tlnWb58OYULF05TXV7Ty1TvfEbEjuNvjmZy5OlznFO85v6Q992TeMh+D886HqSwUcDqsERypEPmMT5wf8Xnntmc4VySZZbkK8rN6R9q4Jp5L/yI98KPGK4w7EWexh7aH8NI/dKvSpUqVK9eHYB69eqxf/9+8ubNS5UqVQgPDwegV69erF69mrvvvjvZen755Rdat25NqVJxY0wUKlTI91znzp0BaNCgga8Vwg8//MDWrVv56quvADh79ix79+5l2bJlPPPMM9hscQ3zCxYsCMDly5e5/fbbmTRpEo0aNeLChQusXr3aV7dpmoSEhHDmzBmio6Np2LChL/Yvv/wyDa+g+Iu6VFjsmHmCQbGvUzemE994F2WrZMPVNpnb6Rj7MO1i+vObN2NNtUSuV5HeHXSIeYjbYx/IdsmG+ExMZnu/p27MnTweO4IjZuY1AxXJCUqVKoVhGGzbti1N5Zd61nBDTDcGxA7JdsmG+C4QxXueL6gWfTtvuCdw0bS+VaVIThFrxvK2+zNqRXfgPc8XySYbABa7jmVhZImZMQdwHxpEzJ+N8Jxbmmr5gID/ZsKw2+14PP7v9nVlG/Hr93q9fPzxx0RGRhIZGcn+/ftp1KhRsnW4XC5q1qzJypUrfesXK1bMt/7mzZtZu3YtAIZh+H0fJO2UcLCIaZpMcE+nRnR7JnimE0vO6VO50vsLzWJ68HDsMM6aaZ8dQ+R6dN68yOOxI2ga051l3rVWh5Nmbtx85plJjej2jHNPwWta3+1DJDM1b96cOXPmEB0dzenTp1mxYgVRUVGEhoYyb948HnvsMTZtSr5bxO/eP7kjZgAdYx9mi/lnFkZ+bc5xgVfd46kbfScRnl+tDkck2/vRu57GMV0Z5n6fqDSMrXaQf9iet3oWRJYy8/IOYvd2JGZvF7zRu9O1bpUqVdi5cycHDhzA6/Uyffp0WrZsCSSflLjSJeLQobjx4E6dOpXiNtq2bcuHH37oq2vr1q14PB7atGnDJ598gtcb9zvk9OnTANhsNl+3jM8++4x8+fJRrFgx5s+fD8SNCbF161YKFChAQEAAGzduBGD69Onp2ne5dko4WGCf929uj32QQe7Xs8U4DRk12fMt9aM7s9ST9f3SRHKCFZ5faBB9F595Zmbr1kspieISz7tHcWvM/ezxHrQ6HJFM07BhQ7p160aDBg1o2bIlI0aMoESJEgCUKVOGWbNm0bt3b3bu3JlgPa/pZZT7E26MuYfl3p+tCN0v/uII7WIf5IXY0Vw2o60ORyTbOW6e4sGYwbSNuZ8d5p50rbukUPaZ/c17biExf9THfexd0jqUX1BQEJ988gl33nkntWvXplKlSr6uC3379qVWrVqJBo0sWrQoY8eO5Y477qBOnTo8+eSTKW5jwIABhIeHU69ePWrWrMnTTz+NaZo89NBDFChQgFq1alGnTh2WLVvmW8flcjF79mwmTZrE7NmzmTZtGuPGjaNOnTrUqlWL5cuXA/Dpp5/Sp08f6tWrl+auceI/GjQyi33mnsmL7tGZNtuEVe63d+E9x0sEGYFWhyJiuWgzhufdo/jU802OTTQkJZgg3nA8w0BHT6tDEckW/jaP0i/m//jJ3GB1KH5V3ajI5843qWurZnUoItnCOu9mesQM4ggZ62bYyCzP0j9/8HNU186WpxXOsC8wnCWsDkVyMSUcskisGcsg9xtM9OTeqVjqG9X5xjWW0kZxq0MRscwR8zj3xDzFr+YWq0PJNH3snRnveAWX4bQ6FBHLrPSso0/s8xwn5WbCOZUTB8MdT/Ks4wGrQxGx1Bfu2Tzlfo0YYjNch4HBn/vOUzQ6G47r4iiOK3wKtjwtrI5Ecil1qcgCJ8zTtIsZkKuTDQAbze00j+7BOu9mq0MRscQG7+80i74nVycbAL70zKVtzP0cMy0YdlskG/ifezIdYh/KtckGgFjcDHG/x6DY1zWGi1yXYs1YnowdySPuV64p2QBxAzIvLVzXP4H5m/soMbtvx33iM6sjkVxKCYdMttO7j2YxPXJdc8vkHOUEbWPu5xvPIqtDEclS33qW0iamH4f5x+pQssQvZiTNonuww5u+fqwiOd1r7g950f02Hvw/cnt2NMEznb6xLxJrXtsFl0hOcso8S7uYAXzimeG3OpeEuPxWl/95cP/9OO5/3rM6EMmF1KUiE2337qZdzIMc46TVoWQ5GzY+coygr+Muq0MRyXTTPQvoHzvkurkAia8IhVjo+oTatqpWhyKS6UbEjudNzwSrw7BEG9uNzHC+T4gRbHUoIpnqlHmW9jH9iTR3+LXeEILYu3MnAd7sPSirvdiLOEuMsDoMyUXUwiGT/OHdw20xD1yXyQYAL14Gul/mS/dcq0MRyVQzPIt4MHbwdZlsADjOKdrF9Gerd2fqhUVysGGx71+3yQaAZd61tIvpz2nzrNWhiGSa05mUbAC4yCVWF2rk93r9zXNsFLF/P5vmGSxEUqOEQybY6/2LdjH9c3XfzrQwMRnofpnZnu+tDkUkU8zzLOfB2MF4ub77N5/kDO1j+rPLu9/qUEQyxeDYd3nbo/7Nv5pbuCd2kLpXSK50ybzMXTGPZUqy4YrF+YtkWt3+5DnxAe6jI60OQ3IJJRz87Lx5ka6xT2R42pzcxouXB2MH85t3q9WhiPjVZu8f9Iv9P9y4rQ4lW/iHU9wd+zhnzHNWhyLiV+PcU3jP84XVYWQbP3rX87T7DavDEPErt+nm3thn+MWMzNTtLHEeydT6/clz7A08p/03hoVcv5Rw8COv6aVf7ItsN3dbHUq2cplousc8xRFTSRjJHf4xT9I15gmiuGR1KNnKLnM/fWJfwGNen91LJPf52buJwe53rQ4j2/nMM5MJ7ulWhyHiN8Pd41js/THTt3OIE2zJVyvTt+MvsQcfxntxndVhSA6nhIMfveIey0JvhNVhZEuHOMY9MU9x2czeA+WIpCbGjOWemEH8Rc65S5GVfvD+xGC3RrmWnO+4eYr7Yp4jVq2YkvScexQrPL9YHYbINVvmWcu7ns+zbHvfFyyfZdu6ZuZlYvZ1x4w5YHUkkoMp4eAnP3h+Uv/OVPxqbmGILkQkhxvuHsvP5iarw8jW/ueZzEJPhNVhiGSY1/TSJ/YFDnHM6lCyLTduesU+w17vX1aHIpJhx8wTPBj7EiZZN0Di4sCoLNuWX7iPEXPgfkzz+h6vSjJOCQc/OGue55HYV6wOI0f40DON1d4NVochkiG/eCN53zPZ6jByhMdjR3BKo9lLDjXCPZ6V3qTv3nt3RhPTZI/vX3TB7XjmncPcG0NMsz1E19hF7BOHkxzh3f3iUWIa7Sam0W5i7/0LMyruB7x77AliGuwmtu/fvrKeyafxfHk6c3bQT05zjoHulzWaveRIpmnyQOxLWT6j3CZjP0cDSqap7F9HTdr2j6He3TE06h7D7KVxXRaX/+KlyT0x1O8Sw/PvJN0K674XY2lyTwxN7omhfNtouj0dN9jrrB881O8SQ8dHY4iOiTt2I3718tqE5FtzmRfX4jnxUXp2U8RHCQc/eME9WndB0sjE5OHYYUSZ6vsuOctlM5qHYodd9zNSpNURjvNMrAaWk5xns/ePFFss2ioH4FpXAde6CjiXh0OIDdsteXAPOYZ9SFECtlWCEx68iy8kWtc+pAiu9RVxra+IUcaJ57O42ay8U8/i3FABHOD9/TJmlBfvt+ew3Vcgk/bSf370rmeiZ5bVYYik2/ueSSz3/pzl2zUx+SG0TprKOuzw9vMONs1xMf9DJ8+/7ebiJZNHRsTyzRgnG2e7uBhlsuznxL9NvhrlZN0MF+tmuLipkY1ON8dd9o2f6mH1V04a1bSxdK0X0zT53xQPg/rYU4zFfeRlvNF707/Dct1TwuEaLfWsYbLnW6vDyFH2mn8xzP2+1WGIpMsI9zh2mvusDiNH+dq7kPmeFVaHIZIuz7tHpTmx6F1wHlurEAg28P4Sha1dHgBsPfPjXXQ+UXkjX9wPetM0MaO9YBhxTwQY4AZMwAGesSexP14Yw2b4Y5cy3RD3exwzT1gdhkiaHTNP8Lrbujv2i4MdaSpXoohBnSpxl2vFQw1CCxicOA15gg3CSsadH25qZOO75ckP1hwdY7JsrZeO/yYcAlzgdoNpxiU0vl7kpUMrG3mCUznfeC/i/utRtWiSdFPC4Rp4TA/Pud+yOowcaYLna/70KksqOcMe70HGe76yOowc6UX328SasVaHIZImcz1L+dG7Ps3lvbPPYeuaH056MArZMf5NIBglnXA46c+9+5kjxJTfibk9Gnv/ggDYBxQktvleyGfHKOzA3HIZW5s8175DWeQs53UjQXKUV90fcAHrxlKIsO/lki0oXets3O7F44WyJeDiJZOtu7x4PCYLV3k5nMJEcN+v8dKkto0CeePOT8/2c3D7Q7HsOmjSrL6NGYu99OuctktC74UIPKe+TFfcIko4XIMvPXP5U3c8M8SDh1fcY60OQyRNhrvHaaT6DNpr/sXnntlWhyGSqhgzNl0zrJjnPHjXRWG7PX2JAcd7JXDtqYytTiDemXHjnNh7F4zrovF+CdxvHsc+uAieT04R2/MvPJ+eSlf9Vpni+Y4N3t+tDkMkVdu9u5nkmWNpDJeI5sfCjdNc/tRZk/7D3Iwf6sAwDD5/3ckTr7tp1S+WkkUNbClc0c3+wUuX2/4r0LaZjZ+nu/hqlJNPZnp4+B4b8yO89Hwultc/Tv23jvvoq5jey2mOXUQJhwy6bEbzmvtDq8PI0eZ6l/Grd4vVYYikaJN3O7O8S6wOI0d7w/0RF80cNiq3XHfGe6aw10z7jAveBeex3ZIHI9AGhe2Ypzy+psbm4Vgo4Ux2XcNmYOueH+/ccwnr3BkNsSZGOReeBedxTi+DZ/55zIvZf+wYE5MR7vFWhyGSqpfc7+Ih+S4IWWVxvoJpKhcdY9L96Vieu99O07pxl27N6tlYOcnF6iku6lQxqFg26e4Qly6brPjFS4ebEl/ynTxjsv53k3Yt7HwwzcPU0Q7+OmKy60Aq55vYQ3hOfJym2EVACYcM+8gzTQNF+oGaYEp297L7f1k6XVZudIyTjPNMsToMkWSdMc8xyv1putbxzj4b150CMAwDW+Mg30CR3q/PYmufN/E6u6P/e7zwPEblgATPe944jmNwEYgx4d8ZLLjojfs7B1jqXcMO7x6rwxBJ1krPOr73rrY6DACWOA9jkvK4CaZpMuBlN60a27i3w3+DOv5zKu6ccCHK5MOvPcl2iVjyk5dm9W3kDUm8nVGfefi/AXF1njkfN6RMjBui0tB4wf3PGLVykDRTwiEDYs1Yxrn149kfVnl/5TfvVqvDEEnSFu8fLPWusTqMXOFD91SizRirwxBJ0peeuZwl8SCPyTHPevBuuITt1hDfMvvrxfC89g/R1XdCQbtvAEn3q//gWRDXksH97FFiGsZNi2nui8U+uIhvfe9PFzHKuzBKOjEK2rHVCSSmwW5s9QIxCqY8enx2ovFuJDsbn42S30c5RWT+2imWWRtpMusHL/NXen1TXG7d5eXtzz3UvTuG5vfF8sg9dqqUi7uke/VDNwsi/mu9MXuply5tE1/u7f3L5PxFk7pV4567t4ONBl1juRwNtSunYbBa91E8JyelfWflumaYGmo03WZ4FtE39gWrw8g1eto68IVLg29K9jMw9mXL+3nmJp84XqOPo7PVYYgk4DW91Iy5I13dKSR5QQSyO2AZhY0CVociksAh8xiVo9tmi+4UV/zf5Zr83/65VoeRIUZARQKq6aahpE4tHDLgU/c3VoeQq8zx/sBJ84zVYYgkcNY8zzeexVaHkatM9My0OgSRRJZ51yrZ4EeXuMxnHv1OkuxnsufbbJVsAFgckPaWVdmNGb0b78V1VochOYASDum007uPn8wNVoeRq0QTwzTPfKvDEElghmchUVyyOoxcZZ25mW3eXVaHIZLAFM9cq0PIdT52f43b1Mw+kn14TS+T3NmvxeJm4wCHAktZHUaGeU5PszoEyQGUcEinWd7vrQ4hV5rl0SwAkr3M1GcyU+h1lezkjHmO+d6VVoeR6xzmH9aam6wOQ8RnqXcNBzlsdRhJ+qFwHatDyDDP6VmYZqzVYUg2p4RDOi306IdJZlhv/s4x84TVYYgAcMo8y89mpNVh5EoLdXEn2ch870ouE516QUm3Hzw/WR2CiM/XnoVWh5CsxSE5+HLMcxLvOd1IkJTl4E941jtiHmejud3qMHIlL14We360OgwRAJZ4f8SNmgNnht/NnRw0j1gdhggAqzy/Wh1CrpVdph4UMU2T5d61VoeRrFW2vVy057E6jAzznJlrdQiSzSnhkA4LPRGYaFKPzLLQG2F1CCJA3LEumUctxSS7WK0xmTLN7+ZODpv/WB2GCJvNP/iHU1aHkaxoYlhVuKHVYWSYeVHTh0vKlHBIhwjvL1aHkKtFeNehWVolO1ipYz1TrdDrK9nAQfMIB8xDVoeRq6lbhWQHq7zZvyXTkrwFrA4hw8yY/Zix2XN8DMkelHBIh9/MbVaHkKud5yK7zP1WhyHXuX3evznFWavDyNU2enUuFeut9q63OoRcb6lXdz7Femu9G60OIVXfOw9hYlgdRoZ5L+hYl+Qp4ZBGZ8xz7DP/tjqMXE9jZIjVNukzmOkOcYx/zJNWhyHXudVedafIbJHmDqtDEOEXb6TVIaTqGKf5rUA9q8PIMK+6VUgKlHBIo01efWlmhUivLvbEWpv0GcwSep3Fauu8m60OIdc7aB7GbWoAXrHOKfMsx8gZCe4lBcpaHUKGeaN+szoEycaUcEijLeYfVodwXYjU6ywW22L+aXUI1wXd+RSr/aXZUjJdLG7NSiOWOmjmnLEFlgScszqEDDNjDlgdgmRjSjikkX6YZI2/zaNWhyDXOX0Gs8Yh85jVIch17Lx5kQtEWR3GdWGPedDqEOQ6lpMSDluNgxwMyqGtHNzHMb2XrY5CsiklHNLoqHnc6hCuC3qdxWr6DGYNvc5ipcNKeGWZfeZfVocg17GcdsPwh8K1rA4hg0zMWI11J0m77hMOERERdO3aNdVyR8wTxHY/SHSJHcT2/O/L07s+ipj6u4musQv3G//NN23ujSGm2R6ia+wi9onDSU73aJ5wE3PbPmJq7iL2noOYl70AuMeeIKbBbmL7/nfgeiafxvPl6WvZ1QyJffUfovNtIzrfNmL7Jz6RuCefJjr/dqLzbiPm9n0AeL1eoiv9SXSB7cT0+O/ORnStXXiWnk9xexeI4oKpu07iX2k9zmPMWE5yRsd6FhzrR5RwEAsdvo4/f55F54mpvYuYmrvwfJH4XJPUuc40TWJ7/0VMg924P/ivP3zswEN4d0WnuL09SjiIhXJal57FwVZHkHFmjFozSdKu+4RDWh3lOPbHC+P4rHSC5e5BR3BMLo1rS0W8Sy7g3RrXnMg95Bj2IUUJ2FYJTnjwLr6QqE7POyewd86Ha2sljHIuvP9+8XunnsW5oQI4wPv7ZcwoL95vz2G7r0Cm72d83stevO8cx7myHM6dlfF+cxbv7oQ/LDzPHMHxRSmcJ6thbriEZ+5ZzDnnwWHgPFUV8/u4/fbMOIMRZGC/NW+q2z1i/pNqGZHMcIS4ixAd65l/rCvhIFY6wvX5PWO6TTwvHsW5OBznL+XxjDmBeTLhoI5JnevM36PBZeDcUAHvlDMAeCMvYYTYsFUKSHGbx8wTmbU7IqnKad0kV9v2ct6ez+owMib2kNURSDZ13SUcRo0aRc2aNalVqxZTp05N8NzKlStp2rQpx48n/iF81jyPrWUIRt7/XjLzcCx4wFYrEMNuYOuWH+/i85imifeXKGzt8gBg65kf76LEd/u8C89ju7eAr4znSpkAA9yACTjAM/Yk9scLY9iydn5e75QzUNiBrUEwtuJOjGoBeD449d/zmy6BF+x358fmsmG0zoNn4mkI+jfOy4A97qH7pWM4viqdaBtJOUvKd0ZFUpPR4/ycGffZ07Ge+cf6ORInZkSyyvV6EWyuv4RRLQCjlBMjjx1b2zx4l1387/lkznU4iTtPuQFX3HHvees49peKpLrNWDRLhVgnhlirQ0iXGGJZGdrQ6jAyRGM4SHKuq4TD+vXr+eabb9iwYQOrVq3i5Zdf5vDhuMFkli9fzuDBg5k/fz5FiiT+AnXjSbTMPOLGKOnw/W2UdGAecsNJD0YhO4Zh/LvcCYcTn/DMcx6M/PZ4ZeK+lO0DChLbfC/ks2MUdmBuuYytTZ5rfwHSydwdDYXt/y0o6cQ8EOP707s9GuJdlBnhTswjbux35IMQG7Gl/sDWLT+xb/yDUSMAW+XANG03qddaJK38fZyDjvXMONZ1nItkPfNILJR0/regpDMuyeB7Pulzna1aIOSzE9t8L/YBBfF8fx6jQRBGqIPU5LQLPsldbGRtAt8fluTNoS0cNAWuJCP1b4pcZM2aNXTp0oXAwEACAwO55ZZbCAkJYfPmzTz77LMsX76cwoULWx0m9t4FsfcuCEDs00ewDy6C55NTeFdexNY6BPuAQhZHmLqADRUB8Lq9xJbfiXNDRWIa78Y84cH+QiiOgcm/ziaJ+8CLpNW1HOdZ/dm7no91HedipSDSlgDPToJi7Wzr6MAWm/Fk3YITdtaeM3jj97iffx8eirsce2RB3N+RF+y8+5fBlFvi/p5/ws7PvvJlIA94vzDps2Mfn1QJ440Pj3IkJpaHSobSJF/SyVJvs2gYneGQRa6JLQfeW/3OsYfqF+6k07woSq79C8PtzVA9UR4vDbbs5K5C+XkjrESC52acOM07h4/jNaF3kYIMKlkE0zTpt/svtl+6zP1FC/Fo8VAAHt37N0+XKEKloJS7T9kHOaBHhkKVXO66Sjgkp1SpUpw9e5Zt27bRsmXLJMvYkzhhGSUcmIf/y+aZh/+9M1DYjnnKg2maGIYRd/eghDPx+vnsmGfj7nzGlUn4dnh3RkOsiVHOhXvwMVzzwojpdADbvQUwQjL/BGpUDIBv4s0JfDgW44b/RrOxVQ/Ac/6/k6C5PxajeMJ98DxyGFunfHgnnYbCdpyLwomtszvFhINDH0vJBGk7zu1JLtex7v9j3ZHMay2SFQJJ+YdzdvTQTyXJu2rJNdURDnwHhByNG/jxBNAACDkQN7BeeeAfIGTtZgBOAmXilQf4EugObFm3leLA68C9p84yN5ltOopXuKaYRa5FTkw4XOQSQxtuY2hDqHgiD08tKcKt352i8LKNcDnt3RZGA40A8+gJvEf/60Z2EhgJrALyAd3+Okq7v45ymbjeU78ALQ4cYeCBI2wGgoEKx0+TWtrDPKOWi5K0nHcUXoPmzZszZ84coqOjOX36NCtWrCAqKorQ0FDmzZvHY489xqZNm5JcNwBXomVGSSfY/x3szWPinXkWW/u8GIaBrXGQb/A479dxy69ma5cX77QzcWWmn8V+VRnPG8dxDC4CMSZE/XuYX/TG/Z0FbL0LwEk33t+i8B6NxdwRjf2J/y4ebPWCwAaeOWfxxngxV1zA3r+g73nvCTfeHy5gH1sc87wnLm4vEJ3yKSuAxBdsIml1Lcd5YBLHOehYz4xjPalzqkhWCTJyXguHLosydpczvgbAduAwcAFYCtwS7/kSxA3HshXwALOBdvGejwIWEHcT8xIQQ9zQDvHSlYk59Z0u1smJXSri2x16gSfu20fVmWep8Vd1Pp5+B4d63oSZP3/K6wE7gVuTeG4fUBkoSNzx3gyYz1VDtfxb9m3gxTTGagTkvESuZI3rKuHQsGFDunXrRoMGDWjZsiUjRoygRIm4JkZlypRh1qxZ9O7dm507dyZat6hRmJj2+4nt9Rfe788TXeFPvL9E4XivBO6+fxNTaxe2tnmw1Yz7EWN/vRie1/4huvpOKGj3DSrnfvUfPAvivprtz4fimXOO6Bq7MPfEYLs/3g/4ny5ilHdhlHRiFLRjqxNITIPd2OoFYhTMmjuDtkAbtqdDib15H7GVdmLrkh9bxQCiy/wRN4gcYH+7OO77DxFbeAdG/SDsnf87Abp7/4X96cLYbDbsT4dibo+Oq6dPweQ2CUBRIzRT90tyt2s9zgEd61lwrF95rUWsEJQDWzhUXvjHNdfhAN4A7iDuIuMJoDDQBbgyeeDbwANAPaANUCPe+uOAxwCDuETFr0Ar4NEUtmmE6jtdrOPKRcntf/JEM7Tzfup+foKwv8J4Y0E7dj3UBm+JYonKDgVeSaae8sAO4hKPl4lLPB4GqhLX4qEV8CDwA1CfuHNEmvgh4TB69H/9r/bv30/DhnEDaM6bN48xY8Zcc/1iDcNMatJ4SaRzzCMs8a62Ooxcz46d8wGbsBnXVS5MspEClxtwmZTnlZdr19p2A4tcn1kdhlynlnrW0DH2YavDSLP2O4oyuf5Kq8PIENeoUQS88ILVYch1anjsON7yfGx1GJnKMKHPryXpPd9Oje/+4Pvd+/kZeA2YSlyrptevWmcBccnFAKAmca0bRsV73ktc16nJwHDiEpKPAU1TiCNo5UocrVpd076EhoZy4kRc94/9+/fTtWtXNmzYkO56PB4Pdru6bmYXuqpLoxJGUatDuC4Uo7CSDWKpYmphkyWKk/p0eiKZpXgOO84fWBhkdQgZZitb1uoQ5DpW3ihjdQiZzjRgcpPDtHntL0r8HsIr/coyLV8gNVxOhhCXNHjrqnU6EDeGww9AceDqkVa+Iq7l0y9AKPAJCRMSSbGVK5fk8qunKo+IiKBr166+57t27UpERARDhgzhzJkz1K1bl4EDByaoY9KkSTz33HMAHD9+nLvvvpuGDRvStGlTXzfZfv368cgjj9C4cWPeeuvqPRYraXS+NCqhH8dZIqf9CJTcpwRFOMAhq8PI9UoYOqeKdSoaYRgYOWa2lEaL/rY6hAxTwkGsVN6W+xMOVzvwUV74KC/ngbAxMVT+3sNjFICfNoMnbmDH40AR4BgwB1gUb/0rY7XMABaSxrFaHA6M0qUTLY4/VXlUVBSNGjVi5MiRSVbx+uuv8/HHHxMZGQnEtXBIyqBBg3jppZdo1KgRu3bt4r777mPdunUAnDx5knXr1vmmK5fsQQmHNKpsK4emjc98lY2ks6MiWaWyLZxfPJFWh5Hr6VgXKwUZgZSmOH/5Ri7Iviofz0PwuvVWh5FhhhIOYqHroYVDSvaGXmRP3WjKvxWEs30eXmnXkK4/XuLZRb+ww+vFTlzXi/iTcF89VsvHxI3rkNLgkUb58hhJdGFIbqrya7Fs2TK2bdvm+/v06dO+x127dlWyIRtSwiGN6hvVrQ7hulDfViP1QiKZqL5Rgy+TneBN/KW+TedUsVYNW0X+8mb/hMPjPxQB77XPUGGJfPkwSpa0Ogq5jpWgCEEEcom0TyeZm9h7/zd4c+yi0gzlKEOfgKIX6vLkshJ0mHeBkosi4exZX7n4iYUg4mawSHU7tWunOabIyEi88c5p0dHpHzdrw4YNOByJL2ODg4OTKC1WU2f5NKpkhJOXa8vISerq6SJELKbPYOYLIpDqRkWrw5DrXD0jZyS4b1l4xuoQMsx+440YNv3UFOsYhkFVo7zVYWQ7V8948db8duwe0AZv8YyNWWdLJuGQ1FTl/fr1Y/v27bjdbo4dO8batWt95e12Ox5Pyk3Kb775Zj766CPf35s3b85QzJJ19C2QRoZhUMeoZnUYuZqBQV29xmKx2kYV7Ghk48xU26iC3dBrLNbKCa1s8kY7KLo00uowMszeooXVIYjQ3NbA6hCytUtOD++2OUjTsUcovrcIz0XcyuZnb8ddMTzNddjr1UtyeVJTlYeFhdG+fXuqV69O//79qRdv3b59+1KrVq1Eg0bGN27cOCIiIqhTpw7VqlVj2rRpaY5TrKFpMdNhaOwY3vFMtDqMXKumUYkNAd9aHYYIN0Z3Z6O53eowcq0n7X0Y7dQ0eWKt4+YpwqJb4SX7dld4dllZ/q/jYqvDyLCgVatwtGxpdRhynZvnWU732KesDiNH6rC9GP3nBdJg/n4CNybzu8jpJM/Jkxh582ZtcJJjqIVDOrSz32R1CLlaO5teX8ke9FnMXHp9JTsoYhSimVHf6jBSdPdCt9UhZJzLhb1xY6ujEKGlrREODVuXIQuqH6Pz/x2gzBqDO/5ozpJ3O3D+pvoQb4BIe/PmSjZIipRwSIemRl1CKZh6QcmQDvabrQ5BBNBnMTMVIB8t1LxVsonO9jZWh5CiCotybksre/PmGIGBVochQgEjHzcYda0OI8f7New0vR/dR/kl0TTd35AZn9zByQ43QueOVocm2ZwSDulgM2zcZlN/xMxQjMI0MmpZHYYIEDdwZCmKWR1GrnSrrRkOQ3eaJHu4094Gg+w5hVrn34thP3jI6jAyzHnffVaHIOLTzq6uPf60O/QCj/feT9WZZznyeBerw5FsTgmHdOpkb211CLlSe3srbIY+jpJ9dNSxnil0DpXspLRRnIZGTavDSFLfRUFWh5BxQUE4una1OgoRn272dmkeENrcH0PMbfuIqbebmIa7MS96iWm7j5g6u4hpsoeYJnswLyUe+8X92j9EV/jTV8b700UAPLPOElN/NzEd92NGx63njbiA+7V//LeDFqlnVKeCrazVYUg2pyu8dGpnu4kiFLI6jFynj72z1SGIJKDPpP8VJB8dbUo4SPbS2X6r1SEkqcGiA1aHkGGOO+9Un27JVsoaJWifxvGDYgccwjGsKK5NFXH+EA4Bca2gHNPK4FpXAde6ChhBSV9COZ4L9ZWxNQ8BwDP+JM7V5bE1Csa79AKmaeL530nsgwr7Zd+s1M1+u9UhSA6ghEM6uQwnve13Wh1GrlLdqEhTW9LT6YhYpb6tBvWM7D9tXk5yr70jgUaA1WGIJNDDfgcunFaHkUCNo/kIWr/N6jAyzNmnj9UhiCTykP2eVMt4t18Gp+FLFhiFHBiOa+x2FWCA2wTTBIeB9+uz2DrkxciTs6eHDiGIfnZ1p5DUKeGQAQ/Ze6S5WZak7hH7vVaHIJKkgfaeVoeQaxgYej0lWyplFKOXvZPVYSTw6A+F4y5OkvE30B5oBDQFrkwovQJoBjQG/i+Zdfv9W6YZUAW4clTO+Xe9zkD0v8tWAW+kM3ajbFnst2bPViNyfWtju5GKRliKZczdMRghNmK7HCCm6R7co4/7nnP3+5uYG/bg/t+JZNd3jz1JTKPdxD55GPOCBwDHs6HE3r4fc1cMtmbBeGecxdYv5w9Cf7+9C4WM/FaHITmAEg4ZEG4rRUebRrH3h0Lkp5ddo9tK9tTDfgdF1YXKL263taCSLdzqMESS9Jz9wWx1I6H1glMpPu8A3gLWA3OJSy5cBJ4ApgG//vv38iTWnQSs+fdfC6DDv8s/BFYCDf9dzwTGAU+mM3bXc89hODQwrGQ/hmGk3srBbeJdG4Xj/ZI4I8rhXX4B7/ILOL8ojWt9RZzfh+NdcB7P4vOJVrUPKIRrayWcv8R1ufC8HpessLXNi+vnCji/KoPnk9PYHi6Ed/55Ynv+hfv1nDmOgwMHTzr6Wh2G5BBKOGTQUMej2PTyXbPnHA8SbOTggbEkVwswXLzgGGB1GDmegcEwx2NWhyGSrAq2snSzZY++yPkvOwldHplimeJA7X8fFwMKAyeBEODK/duWwPwU6ogmLrFwx79/BwBu4hINdmDGv8/lSUfsRrFiOPv3T8caIlmrj70zBcmX7PNGSSdG/UCMMk6MABu22/Li3XwZo1Rctysjvx17l3yYv11KvG4xB4bdwLAb2PoWwHtVGfOkG3N9FPZ2efF8cBLH1NKYf8Xi3RWdqK7srrutHWWNElaHITmErpgzqKatMj1sd6ReUJJVimI8au9ldRgiKXrI3oMwo5TVYeRoXWxtqW+rYXUYIil60fFQtpgi85GIkhAVlebymwAPUAaIArb9+/ci4HAK6y0lrgtFgX//HkRca4c9wI3ATCC9IzG4hgzBCNJNBMm+Chj5GOJ4JNnnjYZBcNyDedqD6TUx11zEqBqAecINgBnjxfvDBYxqiccjMo/E+h57F5zHqJ6wjGfUCez/VyTujzMeMIAYE6ISz3iRnRkYPOt4wOowJAdRwuEavOx4PNsNNJWTDHE8ogHkJNtzGU6GOR61Oowcy4GD4Y70NsoWyXrVbBXobGtjdRjcuSgmzWVPAQ8DY4m7dvmUuMRBG6AkpNhJZA5wd7y/bwVWE9flYiIwAFgI9AbeTEMsRng4zocfTnPsIlYZaO9JVaN8ks8ZDgP7iKLE3rqP2EZ7MCoEYLsphNhOB+LGZrhhL0b1QGx3x7WScL/6D54F5+IeDzlGTMPdxDTajbnpMo6Xi/rqNffGYJ73YKsbl5Cz3VuA2AZ74LKJUTswk/fYv+61daSGrZLVYUgOYphmCqMSSaqejx3FOM8Uq8PIcaoZFdjgmoPdyD59ZkWS4zW93BDTjS3mn1aHkuM8ZL+Hsc5hVochkiYHzMM0iO7MBdLewsDfjlU8he3QkVTLRQN3An35b+DH+L4GtgKvJfHcJaA6sAW4evLKk8BTwFdAO+KSDk8Ql8hI6RIjcM4cnHfdlWrcItnBD56f6BQ70OowcpxQChIZMI9QI+cPeilZRy0crtErjifU3DqdbNj4yDlCyQbJMWxG3GfWgQZCS49SFGOkY5DVYYikWZhRkjcdz1q2/W6RJdKUbDCBgcSN0xA/2XBlPP0LwMck3yXiB+Jmqbg62QDwDvD8v4/P8G+rb+KSFMlx3HOPkg2So7S1N+d2Wwurw8hx3nI+p2SDpJsSDtcojxHMBMer2aLfZ07xlL0PN9jqWh2GSLo0sNXkWbv6LKbHR84R5DeSuqQRyb7627tzs+0GS7bde5ErTeV+Ia5LxEL+m+JyG/AucbNMtAIeAir/W/414sZ0uOJbIKn0wF7gPFDn3797Ak2Ia01RK5lYjCJFCBg/Pk1xi2QnbzteJBiNOZJWN9tu4D77nVaHITmQulT4yZOxI/nEM8PqMLK9KkY51rlmaewGyZFizFhujOnOVnOX1aFke/3sdzPB+arVYYhkyH7vIRrG3JXlXSv+am4S+Nv2LN3mtQqcMQNn9+5WhyGSIVM983gwdrDVYWR7QQSywTWHCrayVociOZBaOPjJG45nqWKUszqMbC0AFxOdbyjZIDmWy3Ay0fkmQeSsAZ6yWgWjLKMdL1gdhkiGhdtK8YbjmSzdZr1DBQjcuCNLt3mtHPfco2SD5Gi97J24397F6jCyvfcdQ5RskAxTwsFP8hjBzHaOp0AKc/te7z5wvkJDW3KNMkVyhjq2qnysO/fJykceZjvHkc/IY3UoItdkgP0eutpuy7LtPfJ9QchBjU5tDRoQ+PnnVochcs3GOAZTx6hqdRjZ1lP2vvR1aIwWyTglHPyooi2MKc63sac4EdX16Sl7X/X7klyju709z9kftDqMbMeGjUnOt6hqq2B1KCLXzDAMPnW+TiMjaxLlNy08kSXb8QejZEmC5s3DCA62OhSRaxZoBDDN+R75UKL8arfZWlg6kK7kDko4+Nmt9ma85XjO6jCylba25lneNFUks73qeIo7bK2sDiNbedXxFO3trawOQ8RvgoxAZrnGEW6UztTtFIpyUWhFZKZuw2+CgwmaNw9byZJWRyLiNxVsZZnqfBcXTqtDyTaqGuWZ4nwbm6HLRbk2+gRlgiccvXne3t/qMLKFpkY9pjvf0xSYkuvYDBtTnG/TwmhodSjZwlP2vjznUKsPyX2KGaEsdH5CcUIzbRuPriwJly9nWv1+43AQ+NVX2Bs0sDoSkQyJiIiga9euST53q70ZXzpHq6UyUJxQZjvHq3uk+IUSDplkpHMQg+x9rQ7DUo2N2nzn+ogQQ00uJXcKNoL41vUhNxr1rQ7FUo/a72WU83mrwxDJNBVsZVng+oRC5M+U+jsuygHJhsBAgr79Fudd6sstuVdn+61MdL5xXScdSlGMpa5JGiRS/EYJh0z0lvN5XrAPsDoMSzQzGrDQ9akyo5Lr5TGCme+awE22xlaHYolB9r6859SUYpL71bRVJsL1FeWNMn6t1zAhfNHvfq3T7/LkIWjRIhwdOlgdiUi6jBo1ipo1a1KrVi2mTp2a4LmVK1fStGlTjh8/nmB5D/sdTHG+jRNHVoaaLYQbpfnB9QWVbOFWhyK5iBIOmexV51O87xiC4zo6aXWztWOB62PyGiFWhyKSJUKMYOY5J3CvraPVoWQZO3ZGO17gLbVskOtIZVs5Vrum+7VVU8/fSmA7+o/f6vO7ggUJXrYMx803Wx2JSLqsX7+eb775hg0bNrBq1SpefvllDh8+DMDy5csZPHgw8+fPp0iRIonWvdveltnO8RS8jmafq2tUI8L1lVo2iN8p4ZAFBjp6ssD5CYUpYHUomcrAYITjSaa43ibICLQ6HJEsFWC4+Nz1Jm86nsWWy0+tBcnHXOeHPOnoY3UoIlmusFGAxa7P6GG7wy/13bfY5Zd6MoOtShWCf/oJe5MmVocikm5r1qyhS5cuBAYGUqhQIW655RZCQkLYvHkzzz77LAsWLCA0NPmxWdram7PGNeO6mDKzve0mlromUdzIvLFq5PqVu38VZyOt7I1Z7ZpODaOS1aFkiryEMNM5lhcdD1kdioilnnbcz7fODyiQS++KVDXKs9o1nVvtzawORcQyAYaLSa5RDHU8ioFxTXXVXrjXT1H5l6NrV4LXr8devXqG1h89erTv8f79+2nYMG6A3Xnz5jFmzBi/xCiSEaVKlcIwDLZt25Zq2fK2MkS4vqKXrVMWRJb1AglgjGMwc1wfqGWyZBolHLJQeVsZ1ri+5ml7v1x1B7S17QY2BHxLB7uaW4oA3GZvwYaAObS1Nbc6FL+xYeMJe29+dn1DRVuY1eGIZAtDHY+y1DWJyka5DK3f6GBBAjb/4eeorlFwMAGffELQzJkYefNmuJr4CYf4OnXqxNNPP53mejweT4ZjkOtb8+bNmTNnDtHR0Zw+fZoVK1YQFRVFaGgo8+bN47HHHmPTpk2p1hNkBDLR9QZjHUNz1bSZNYxKrHF9zSOOe60ORXK53HPVm0MEGgG86XyOFa4vM/wDJbvIQzDjHMNY5PqMMEPzcYvEV9oozjzXBD5yjCAfOXvw1ApGWZa6JvG280V1lxK5SnNbA9a7ZvOi/aF0DzI38PsCmRNUBtlvuYWQjRtxDUh6wOurB+C7eorBrl27EhERwZAhQzhz5gx169Zl4MCBCeqYNGkSzz33HADHjx/n7rvvpmHDhjRt2tR38devXz8eeeQRGjduzFtvvZVJeyu5XcOGDenWrRsNGjSgZcuWjBgxghIlSgBQpkwZZs2aRe/evdm5c2ea6nvI0YPfXN/mGaLYSQAAuR9JREFUipsJj9jvZY3ra2rYcmfLa8leDNM0TauDuF5dNqMZ7f6UsZ4vuUCU1eGkmYHB3ba2vO54hnBbKavDEcn2/jKPMCR2DDO9izHJOafcYIJ43H4f/+d4iGAjyOpwRLK9rd6dPBo7nF/NLWkqv7NzHgp+vy6To0qdUaECAe+8g7Nz52TLrF+/noEDB7JmzRqioqJo1KgRI0eOZM6cOcyaNQuISzg8/vjjtGrVitDQUE6cOAHEdano2rUrGzZsYNKkSWzdupV33nmHXr16MWjQIBo1asSuXbu47777WLduHf369SMqKooZM2ZgGNfWZUUkM8z3rOB592j2m39bHUq63GRrzOuOp2loq2V1KHIdUQsHCwUaAbzsfJztAYt5xH5vjph+p7XtBn5yTWeq610lG0TSqIxRgi9do/nFNTNH3Blx4GCAvTvbAhbxqvMpJRtE0ujK1JkfO0ZSJZVWjEUvBFAwIjJrAktO3ry4Ro0iZPv2FJMNkPwAfNdi2bJlDBgwgLp169KtWzeOHj3qe65r165KNki21dHemkjXdwxzPEYw2f87srZRhXnOCXzv+lzJBslySjhkA0WNwoxxDmazaz7327sQSIDVISVys+0GFjo/ZZHrMxrYalodjkiOVMdWlXmuCSxxfk4b241Wh5NIAC562zsT6fqOcc6XKWEknipMRFJmM2z0ddxFpGses5zjaGrUS7LcYyuKQ3R0FkcXxyhbFtdbb5Fn/34CXngBw5WxmTIiIyPxer2+v6MzsD8bNmwgMjKSyMhIDhw44FseHBycoZhEskqgEcAQxyPsDljG645nKEMJq0NKpIpRjs+db7LONYu29ux/w0NyJyUcspHytjJ85BzBnoDlvO54hgqGtfPg5icvD9vj+qstdn3GLfamlsYjklu0sjdmgesTIl3f8aj9Xsvn+Q43SjPC8SS7A5bxqfM1DQop4geGYdDBfjMrA6aw0jWFTrbW2LH7nr9j4eUsj8l+000Ezp5NyN69BLz4IkahQmleN6kB+Pr168f27dtxu90cO3aMtWvX/rctuz3VAR9vvvlmPvroI9/fmzdvTv9OiViskJGfZx0P8EfAEqY7x9DcaGhpPHkJ4X57FyJcX7E5YD732juqtZBYKvu34b8OFTYK8KzjAZ6x389acxMLPStZ4I1gp7kv07cdSkFus7XgDnsrbre1UFNqkUxU1VaB92yDecPxLN97V7PAG8ESz48c51Smb7uiEcYdtlZ0sN9Mc6OBfoyIZKKmtno0ddXjH/Mk8zwrmOtdStnlCzJ/w3Y79mbNcHTogKNTJ2xVqmS4qvgD8BmGwYgRIwgLC6N9+/ZUr16dKlWqUK/ef605+vbtS61atWjZsiX/93//l2Sd48aNY+DAgXz22WfExMTQqVMn6tSpk+EYRaxkN+zcZb+Vu+y3ss27i2+9S1ngWUmkuSPTt+3AQTNbfXrb7+RuW1v9fpdsRYNG5iC7vQdY7P2RX71b2GRuZ4958JoHoCtKIerZalDPqM6t9mbcYNTBbthTX1FEMoXX9LLO3MxSzxo2mtvY5N3OMU5ec73ljTLUN6rTyFab220tqGIr74doRSSjzPPnca9YgWfZMjwbN+LduhXOnbu2Sm02bFWqYGvYEMftt+No1w6jYEH/BCwiGXLIPMZK7y+s9KzjFzOS/eYhPFzbdK8BuKhnVKOJrS6tbI1pYWtEHkPdkCR7UsIhBztrnifSu4Pd5kGOcpyj5nGOmic4bp4khljceLBjx4GdAkY+ihtFKEERShhFKGOUoK6tGqWN4lbvhoik4pB5jEjvDg6ahzliHv/3eD/BafMsbjx48ODAjgsnoUYhihuhFDeKUJwiVDDKUs9WjQKGtd02RCR13v378f7+O57ff8c8ehTz7Fk4exbzzJm4x14vRv78kC8fRr58GPnzY4SGYqtcGVvVqtiqV8e4xoEcRSRzxZix7DUPsss8wE5zP7vM/Rw3TxGLm1jcxJixuHETSyz5jXyUohgljaKUNopRyihOaaM41YwKuAyn1bsikiZKOIiIiIiIiIiI32nQSBERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JBxERERERERHxOyUcRERERERERMTvlHAQEREREREREb9TwkFERERERERE/E4JhxwkIiICwzAwDIN+/fpZHY6IiEiWyuzvwX79+vnqj4iI8Hv9Oc3+/ft9r0erVq0yZRuTJk3ybWP48OGZsg3JPaw6Rlu1auXb7v79+1MtHx4e7itvhfTGm1tjkOzBYXUAknUiIyOZO3cuEHcSyKwfDyLiPzpuRSSnu5JIKFCgAIMGDbI0FhERyVpKOOQg9erVY/Xq1QAUK1Ys3etHRkYyYsQI39+6cBHJ/nTcivznWr8HJX1KlCjhe73z58+f4XqunMPCwsISJRzat2/v20bZsmUzvA0REcmelHCwWFRUFMHBwWkqmz9/fpo3b57JEYmIiGRP+h7MOld+n2T26120aFGKFi2aqdsQERHraAyHeOL3C1u6dCnDhg2jVKlSBAUF0bJlSzZu3Jig/L59+xgwYABhYWEEBARQtGhR7rnnHnbs2JGg3NX9EydMmECVKlVwOp188803AMyePZvmzZuTP39+XC4XxYsXp3nz5rz44ouYpgkk33f15MmTDBw4kLCwMFwuF3nz5qVy5cr07NmTVatWAXF9ye6//37fOiNGjEjUZ3Lu3Ll06tSJcuXKkTdvXlwuF2FhYdx///2J+l7Ff61++OEHXn75ZUqXLk1gYCDNmjVj8+bNiV7fHTt20K9fP9/rVaRIEVq3bs3y5csTlFu9ejWdOnWiSJEiuFwuypUrxzPPPMPp06fT/maK5ACpHbtpOW4h4+eir776iho1ahAYGEj16tWZNm1aVu26XKfmz5/v+wwOHTrUt/y+++7DMAwCAgKIjo4G4r4zrpS95557gOS/BzPynTR+/HgqVKhAUFAQjRs3ZsWKFSnGvmLFCu644w5CQ0NxuVyUKVOGfv36sWvXLl+Z33//3RfHfffd51s+dOjQRH2ZL1y4gMPhwDAMmjRpkux258yZ41v3qaeeSvDc2rVrfc91794dgK1bt9KrVy+qV69OoUKFcDqdFC1alDvuuIMff/wxwfqp/T5JbgyHtG5j+PDhCfqwHzhwwFdfeHh4kjHEt3v3bu6//37KlCmDy+WicOHCtG/fPtHvhqs/F99//z2NGjUiMDCQsmXLMnbs2GRfX8m53G43I0aMoEyZMsn+Vk9uLIXkxoLweDwMHz6cUqVKERwczM0335zk+eOKqKgonnzySYoUKUKePHno1KlTkuMVLF++3Le9vn37Jnhu8+bNvuc6duyY6n6fOnWKl156ierVqxMcHEy+fPmoX78+48ePT7L8xYsXefrppylWrBhBQUG0a9eOAwcOJCqXnt/f6Y3hikOHDhEWFoZhGNjtdr788stU91dyAVN8+vbtawImYFapUsX3+Mq/fPnymX/++adpmqb522+/mQUKFEhUBjDz5Mljrlu3zlfvF1984XuufPnyCcp+8cUXZkREhGmz2ZKsCzBjY2NN0zTNlStX+pb17dvXV3/r1q2TXXfIkCGmaZpmWFhYsmVeeeUV0zRN8+GHH062TLFixcxjx44l+VpdvU+AGR4e7ovbNE1zyZIlZlBQUIrbN03T/PTTT5N9LapUqWKeOnXK32+7iGVSO3bTctxm9FyU1DkOMKdNm2bRqyHXg1OnTpmGYZiAecstt/iWx/8eWbt2rWmapjlx4kTfsvHjx/8/e/cdHkXVtgH8ntnd9JCEBEIIvUgLBKQI0otUBT6p0hURrDQBFRQFC2BBijQLKCBIEaRIL4IoTYp0BEKvgSQEUnZn5nx/5M2wIT3ZZJLN/buuXITZMzPPbObMnn3mzDlCiNQ/BzP7mfT5558nK2OxWESVKlX0/+/YsUMv/8033+hxP/7j7e0t9u/fL4QQQtM04efnJwCI8uXL6+vb1/XEOrZt2zZ92dtvv53qexYXF6fX8RIlSghN0/TXhg8frm/jt99+E0IIsWTJklSvG7Isi+3bt+vrp9c+CQsL0//ftGlTfb2M7mP8+PGplitdunSyGOzbA/v27RPe3t4pritJkpg1a5Ze1v68KF26dIrtiC1btqT6HlP+YV/Xa9SokezvbN9WFyJp+ze17djX9ddffz3FbZYpU0b/f1hYmF6+Q4cOycqXKFFCFC5cOMl+NU0TZcuW1a8ZMTEx+jYmTJiQ4c/gy5cvi1KlSqVYL+zraNOmTfXl9te1xJ+GDRsm2W5m2t9ZiSEsLEzcu3dPVKtWTa/D8+bNS/NYyXmwh0Mqrly5gmnTpmH16tWoU6cOAOD+/ft49913IYRA//79ERkZCQAYOXIkNm/ejMmTJ8NkMuHBgwd48cUX9Z4J9i5cuIA2bdpg9erVWLZsGapVq4a1a9dC0zQAwKeffopt27Zh6dKlGDduHKpWrZrmCLfR0dHYsWMHgIRnW9esWYMNGzZgzpw56NKlCzw9PQEAK1aswHvvvaev9+KLL2L37t3YvXs3XnrpJQBA69atMXfuXKxduxY7d+7Exo0bMXLkSADArVu38N1336X6Xk2ePBm//vorSpYsCSBhZOtNmzYBSMj+9uvXD7GxsQCAxo0b45dffsGaNWswYsQIPcZr167hjTfegKZp8Pb2xowZM7Bp0yb9Du+ZM2eSHANRfpaRuptevc3OtejMmTMYOnQo1q9fn+RO7IgRI2Cz2XL24KnA8vPzQ0hICABg//790DQNt2/fxoULF/Qyf/31V5J/gYTPjYxK7zMpIiICH3zwgV7+zTffxPr161PsFZS4veHDh0MIAVmWMW7cOKxfvx7dunUDkFCXBwwYACEEJEnSH0E4f/487ty5A1VVsX///iwfn6urK7p27QoAuHr1Kvbu3au/tnLlSgCAv78/2rVrBwCoVKkSvvzyS6xevRrbt2/Htm3bMHv2bLi6ukLTNHz22Wcp7iel9klqMrqPl156SR+fAQCKFSumX8NWrFiR6vaFEHjxxRcRHR0NAOjatSvWr1+P999/H7IsQwiBYcOG4cqVK8nWvXTpEp577jmsXbsWPXv21JfPnTs31f1R/nTu3LlU2+pZcfr0acyaNQsAIMsyPvzwQ6xbtw4NGjRIsdfCpk2bsH79egCAu7s7vv76a6xevRrFihXDvXv3kpSVJElvz0ZHR2PNmjX6a4m/e3h4oGPHjmnG+Nprr+Hy5csAEsY8mTdvHjZu3IgpU6bo17vHXb16FXPmzMGiRYvg6+sLANizZw9OnDgBIPPt76zEEBsbi2effVbf59dff41BgwaleazkRIzLdeQ99tnOxJ4BQghx9uxZfbmbm5vYv3+//v+aNWuK3bt36z8NGjTQXzt48KAQImn2vnTp0knusgghxDvvvKO/vnz5chEeHp5ifCnd2YmJidEzks8884w4efJksu0nSu0uQqK7d++KESNGiEqVKqXYG+H//u//Unyvhg4dqi+fNGmSvvzrr78WQgixatUqfVnZsmVFXFxcivFNnTpVL/fiiy/q7+muXbuEh4eHACB8fHyEqqoprk+Un2S07qZVbw8fPpzla5H93Q1FUZLcrdi1a1eOHjsVbK+99pp+rh09elSsXr1aANDvfHXp0kUIIUTVqlUFAOHr66tf9zPSwyG9z6RffvlFX1a3bl297OP1IPGu51dffaUvS4xNCCGsVqsoVqyY/trhw4eFEEJMmTJFX/bbb7+JI0eOJDm+2rVrCyGEaN++vX6n7+7du2m+Z/bHPWLECCFEQg+AxGVDhgxJchxff/21qFu3rvD29k7WM8PPz08vm177JLUeDpnZhxAiyT4el9I17tChQ/qyYsWKCavVqpfv0qWL/trUqVOTvT9FixbV2xk3b95Mco2k/C+jbfXEcyYzPRwmT56sL+vWrZteNjIyUm+HAo96OLz66qv6slGjRqUYi/1+L1++rH/uP/fcc0IIIa5fv67Xn549e6Z57Hfv3tXXN5lM4uTJk6mWte9dkFhPhBBiyJAh+vLVq1cLITLX/s5qDHXq1NF/nzx5cprHSc6HPRxSYf88ZcWKFeHn5wcAiIuLw8mTJ/XXjhw5gsaNG+s/f//9t/5aSndK2rZtC7M56VidvXv3hqurKwCgW7duCAgIQGBgIJ5//nls3bo1zTjd3d3xwgsvAAC2bNmiP0tVq1YtfPDBB4iKisrQ8aqqilatWuGrr77CmTNn9N4I9hLvoj6uadOm+u/+/v7Jyp89e1Zf1qpVK/1YH2dfbv78+fp72qRJE8TExAAAoqKicP369QwdE1Fe5oi6a19nMnstsr/GmUwm1K5dW/+//d1mIkdr0qSJ/vvff/+tn6uvv/46LBYL/v77b0RGRurnbcOGDSHLGW+upPeZZH9+161bV//98XqQyL6e2dcbi8WCWrVqJSuX2vF16dIFJUuWxNGjR/Hw4UO9p0LiOAjpHVPincPEXg32PQQe76U0bNgwHDhwANHR0cl6OKX2WZ5S+yQ1Wd1HRtm/508++SQsFov+/3r16qVYLlH9+vX1dkZKf39yHmm11bPSVkzt2uDj44NKlSpluLx9LPZKliyJ1q1bAwA2btyIu3fvYu3atXr9SWwTpObcuXN6j+hy5cqhSpUqGTmsTLXT02t/ZzWGgwcPAkg4xtGjR2doHXIeTDhkUFqPNaTm4cOHyZalNI1XSEgI/vnnH7z11lt46qmn4OPjg9u3b2PVqlVo06ZNkm6XKZk/fz7mzp2Ljh07onz58lBVFUeOHMHEiRP1gbbSs2fPHhw+fBhAwjRYP/74I3bt2oUlS5boZRIvMI+zv6jaN1Yeb4A4SkrvK1F+5Ii6mxEZqTNZucYRZUVqX8ibN2+OWrVq4fr161i6dKn+GZKZxymA7H0mZbYepFS+du3a+qOC9sfXoEEDNGjQAIqiYOHChXqX64wcnyRJ6NWrF4CERwYOHDigJx7Kli2Lp59+GgBgtVoxb948AAnHPmnSJOzYsQO7d+9GQEAAgNTfh4xOM5qdfThCen+j3G6TUN6R0rlhv0xVVf338PDwbG87K+UHDhwIALDZbFi2bJn+OIWfnx/atm2bqX1klKPqRHba3yaTCUDCILj2j1lRwcCEQyrsn7c8d+6c3jBIHM09UdOmTSGESPbz8OFDDB48ONl2U7oACSFQrVo1TJs2DXv37kVkZKR+50LTNKxevTrNWM1mM1555RX89ttvOHfuHCIiIvTGx+bNm/ULhP0doseTB9euXdN/79WrF/r165fpRl5qnnjiCf33rVu3wmq1pltu/Pjxqb6vKWWZifKjjNTdtOqtfZ3J7LXI/hqnqqp+9wFIuGtBlFOCgoJQvnx5AAmjoh88eBB+fn6oVKkSGjRoACDh+d5E9gkKR7A/v+3P+8frQSL7emZfb2w2m56oty9nNptRv359AMCBAwfw559/6jNRZOf4evfurf8+duxY/e5qr1699LbF3bt3ERcXBwAIDQ3FmDFj0KxZM5QrVy7ZM+WPy+gXqqzsI3Hbqd24eJz9e3748GEoiqL/f9++fSmWo4InrbZ68eLFAST0Tkh08+ZNAAljKOzZsyfZ9lK7NkRFReHMmTMZLm8fy+M6duyoJ+a+//57fcaVLl26wMXFJbVDBQBUqFBBbxNcuHABp0+fTrN8RmWm/Z3VGL744gvIsoz4+Hh06tQpxZ6X5Lwy1neuAJo6dSoCAwNRqlQpfPLJJ/rydu3aoU6dOggJCcHx48fxxx9/oF+/fujWrRssFgsuXryI/fv3Y9WqVRmexnHKlCnYuXMnOnTogFKlSsHT01Mf3AqAPkVYasqXL48uXbogNDQUxYsXx+3btxEWFgYgIZkRHx8PT0/PJBnOjRs3okmTJnBzc0P16tVRunRp/bXEKTojIiLwzjvvZOgY0tK6dWsULVpUj6t169Z444034Obmhj///BP+/v4YNWoUunbtinfeeQfx8fGYNGkSJElCgwYNEBMTg7CwMOzYsQOxsbHYsmVLtmMiygsyUnfTqrehoaFZvhb9+eefGDFiBJ555hksXbpUHwAqMDBQ/7JElFOaNGmC8+fP61+amzZtql/zp02bpjfu3d3dU3zMITueeeYZuLm5IS4uDvv378ewYcPQpk2bJPXAXteuXTFmzBjYbDb8+uuvGD9+POrXr48ff/wRN27cAJDwWERoaGiS49u2bRtiYmJw4cIFVKlSBX5+fnrCwf7LS0aT+9WrV0eNGjXw77//JvkctH+cIjAwUD+2Y8eOYd68eQgMDMTEiRMz/GU/PVnZh5+fH+7du4fr169j8eLFKF26NAIDA1GxYsUUy9esWRNVqlTBqVOncOPGDfTu3RsDBgzAvn37sGrVKgCAi4sLunTp4pBjovwprbZ64mM4FSpU0Ke17NevH7p06YKFCxem+IjNc889hzFjxgBIaAtPnDgRtWvXxsyZM1O8u9+xY0fMnj0bQMI0uyVKlEDp0qWTxPI4FxcX9O3bF1OnTsU///yjL0/vcQoAKFy4MNq1a4f169dDVVW0a9cO48aNQ8mSJXHixAkcOnQICxcuTHc7j8tM+zurMXTu3BmKomDUqFGIiIhA27ZtsXfvXgQFBWU6XsqHcnyUiHwkval2vLy8xKlTp4QQaU9Fl/iTKL3BGidOnJjqNmRZFn/++acQIvXBskwmU6rrt2nTRi93584d4erqmqzMjh07hKIoKR5zw4YNUxwwKrXphFI71t9//z3FfT9eLq1peR6PgSi/y0jdTaveCpH1a1H16tVTLLtw4UIj3goqYH744Yck592ECROEEEJcunQpyfJmzZolWS8jg0Zm5DPJfjBJ+89b+6khszItZqLt27cnKfPSSy8JIYSIj49PUp/LlCmTqffNflA7AOLJJ59MVialaf0qVqwoihYtmun2SWqDRmZmH0IkHejx8b+fo6fFtD8vhEh7wErKf+zresWKFZOdG/ZtdSGE2LRpU7IyZrNZVKhQIcW6bj+oYuKPu7u7CA4O1v9vPy1mu3btkpUvUqSI8PHxSbEuCCHE8ePHk5QPCgrK8IDoly5dEiVKlEi3jfz4lJSJ7KeqnT9/vr48M+3v7MTw8ssv68tCQ0NFVFRUho6b8jc+UpGKL7/8Eh9++CGCg4Ph6uqKRo0aYceOHahcuTKAhEGMjhw5giFDhqBcuXJwcXGBr68vQkJCMGTIEL2LVEa0b98egwcPRkhICPz8/GAymVC4cGG0bt0amzZtQsOGDdNc/9NPP0WbNm1QokQJuLq6wtXVFZUqVcKoUaOwfPlyvVxAQABWr16NWrVqwd3dPck2TCYT1q9fj06dOsHHxwdFihTB0KFDU50KM7PatWuHf/75B3379kWJEiVgsVjg7++PZs2aJbm78/LLL2PXrl14/vnnERgYCLPZjMDAQNSrVw/vv/++Pl0RkTPISN1Nq94CWb8WPf/88/jll19QrVo1uLi4oFKlSli4cGGSu6VEOeXxxwgS7/yXKlUKwcHB+nJHPdr3uDFjxmDatGkoU6YMXF1dUbNmTfz222+p7u+1117Dli1b0K5dOxQuXBhmsxnFixdHv3798M8//yQZMA5IGLjQvnt04vG5uLgk6bGR2ePr1atXksesUqqvX3zxBYYNG4agoCB4eXmhY8eO2LZtW4rXj6zK7D5mzpyJ7t27o0iRIhneR7169fDPP/+gf//+CA4Ohtls1p9z37x5M1599VVHHQ7lUzNnzsSYMWMQFBSUYlsdSOhl+/XXX+ufs/Xq1UuzbT1jxgy8//77CAoKgpubGxo2bIht27ahQoUKKZZfvnw5Xn/9dfj7+8PDwwNt2rTBrl279OknU1KtWrUkA1527949wwPjlipVCocPH8bo0aNRuXJluLm5wcvLCzVr1tSnz82KzLS/sxPD7Nmz0bJlSwDA0aNH0aVLF07FXQBIQnAUnUQDBgzAjz/+CADYsWMHmjVrZmxAREQOtGDBAn1e7fHjx+PDDz80NiAiIqICaMKECRg/fjyAhHFJ7GdfIXI2HMOBiIiIiIgohz148AA3b97E0qVLAQCVK1dmsoGcHhMOREREREREOczb2zvJ/99//32DIiHKPRzDgYiIiIiIKBdIkoTSpUtj2rRp6NWrl9HhEOU4JhzsLFiwQJ9vluM3EJGzGTBggH6Ny6nxG6ZMmZLpmNatW5ft/SbOa55ZO3fuzNZAW0QFFes6UeYJIaBpGi5evIi33nrL6HCIcgUTDpSr2EAhcm6ZreNElD+xrhMRUUYw4UC5ig0Uovzj4sWLCA0NRf/+/VGlShX06NEDiRMbbd68GTVr1kRISAhGjBgBIQTGjh2LyMhI1KxZE0OGDEm2vfXr16NWrVoIDQ1N0o10y5YtqF+/PipWrIg//vgDAKCqKkaOHIm6desiNDQUixcvBgAoioKhQ4eievXqqFGjBpYtW5ZkH9euXUO9evWwf/9+nD9/Hm3atEGdOnXQokULXLx4EQCwf/9+hISEoGbNmkmmDiYqqFjXiYgoxwiiLAoLCxM1atQQ/fr1E5UrVxbdu3cXmqYJIYTYtGmTCA0NFdWqVRPDhw8XmqaJ9957T5hMJhEaGioGDx6cbHvr1q0TNWvWFDVq1BAvvPCCEEKI/v37i7feeks89dRTokKFCmLnzp1CCCEURREjRowQderUETVq1BCLFi0SQghhs9nEW2+9JUJCQkT16tXFL7/8IoQQwt/fXwghxNWrV0XdunXFvn37xLlz50Tr1q1F7dq1RfPmzUVYWJgQQoh9+/aJatWqidDQUPHaa6+JLl265Oj7SJRXhYWFCYvFIk6cOCE0TRNNmzYVu3btEjExMaJUqVIiLCxMqKoq2rdvL1auXCmEeFTXHnfr1i1RtmxZcfXqVSGEEHfv3hVCJNTxPn36CCGE2LZtm2jRooUQQoi5c+eKzz//XAghRExMjKhRo4YIDw8X33zzjejTp49QVVUIIcS9e/f0/V6+fFnUrl1b7N+/XwghROvWrfV6vW3bNtG1a1chhBAhISHiwIEDQgghunfvzjpOBR7rOhER5RTOUpGPCaFBxJ+FiD0CEX8eQrkLoYQD2n1Ai4XQ4gBJgmTyh2QOAMwBkMz+gCkAkkswZPfakMy+2Yrh1KlTWLJkCapUqYLmzZvjzz//RJ06dTBo0CD88ccfKFWqFJ577jmsWrUKn3zyCebOnYsjR44k287t27fx5ptvYvfu3QgODsa9e/f01+7du4e9e/di+/btmDBhArZt24bvv/8eQUFBOHDgAGJjY1G/fn20bdsWv/zyC+7du4ejR49ClmVERETo27ly5Qr+7//+D7Nnz0bdunXRpk0bzJ07F2XKlMH27dsxatQoLF++HAMHDsSCBQtQp04d9OjRI1vvD5EjCNt1iPhz0OIvArbLELZbEMpdQA2HEBok2R2QPQDZDZLkDsjukMxFILlVg+QeAsmlHCRJytK+K1WqhKpVqwIAatWqhYsXL8Lb2xuVKlVCmTJlAAC9e/fG7t278fzzz6e6nb1796JFixYIDg4GABQuXFh/rXPnzgCA2rVr63cmN2/ejOPHj2PRokUAgKioKFy4cAFbt27FiBEjIMsJHfT8/PwAAHFxcWjbti0WLFiAunXr4sGDB9i9e7e+bSEEPD09ERkZifj4eNSpU0eP/aeffsrSe0PkSEKoENaLEPEXIKxhENYrgHIbQrkNoUZDklwA2Q2QXAHZBZLkBsgekFzLQ3KrCtmtGiRLYJb3z7pOlDv09nvcaQjbDQjbdUC5CWG7DYhYCKECACTJDMjekCzFIFmCAEsxSJaSkN2rJ/yfKJ9gwiEf0eIvQnuwEyL2CLSYIxBxxwDtYbrriVRfkSC5PgHZsx4kj3qQPZ9K+IIimTIcExsoRI6XUNd36T+wXU6zfOp1/H9kz0dfSDxqw+TTAZKleIZicXV11X83mUxQVTVD62VG4j7st69pGubOnYumTZtmaBsuLi4ICQnBjh07ULduXWiahsDAwGQJzsjIyCwnX4gcSQgBEfsvtAc7//ezJ+GGQWrlM7JRUwAktyqQ3atB9moGuVBrSLJHhuJhXSfKGUK9Dy16C7QHf0OLPQQR+y+gPUh/vbReNBeD7FELknstmLybQfJsmKn2O1Fu4hgOeZywXoVyexrizzaG9VRlKFeGQA2fAxGzN0PJhnS2DhF/Buq9hVCuvgnrmXqIP14atqvDoD08kKEtGN1AOXLkCI4cOYKLFy+ibt26qW7DvoGSuH5iA+XIkSM4evQo/vrrLwBgA4UMoUbvhO3yK4g78cT/6vor0CIWpZtsyBDtIUTMAaj3FkC5+ibiT5RH/NlmUG5Pg7BeyvTmKlWqhLNnz+LSpUvQNA1LlixBkyZNAKR+Hahfvz62b9+Oa9euAUCSXkwpad26NWbNmqVv6/jx41BVFa1atcK8efOgaRoA6L2YZFnGwoULsX37dnz33XcoVKgQAgMDsXbtWgAJz4kfP34cvr6+cHV1xaFDhwAAS5YsyfTxE2WV0GKg3P0R1rAXEH+8BKxnn4JyfQy0+xvSTDZkmBoO8XA31PA5sF3sifhjwbCGdYd6bzGEEpnpzbGuE2WNsF6GcucbWM+1R/zxYNgu9oYaPhPi4V8ZSjakS7kJ7f4GqLc+hfVca8QfLwnrpQFQI1ZAqNHZ3z6RAzHhkAcJNQrKndmI/6854k9WhHJ9DERMxhIA2aaGQw2fA+t/jRF/qgaUm5My/YWEDRSijBHKXSi3v0b8qeqwnW8L9d5PjkkwpL9niJi9UK6PQfzJSog/8zSU21Mz/IXE3d0d8+bNQ6dOnVCjRg1UrFhR7y3Uv39/VK9ePdlAckWLFsX06dPRoUMHhIaGpjsd2KBBg1CmTBnUqlULISEhGD58OIQQeOWVV+Dr64vq1asjNDQUW7du1ddxcXHBypUrsWDBAqxcuRI///wzZsyYgdDQUFSvXh3btm0DAHz77bfo168fatWqBX9//4y/bURZpMX9B9vVtxF/ohyUK4OhRa0C1Ls5v2MRCy1qDWyXByL+RElYz3eAGrFc77KdHtZ1oowTQoEa+WtCkuFkJSjXRkJ7sB0QtpzfuXoPWsRS2C71QfyJMrBdHgwt5p+c3y9RBkhCiAz10qOcJ9QoqHdmQLkzE1AjjQ7HjgS5UBuYA8dC9nzUi+DixYvo2rUrDh48CAB4++23ERISggEDBmDz5s0YPXo0FEVB69at8eWXX0KSJIwePRrr1q1DkyZNMGfOnCR7WbduHcaNGwchBKpXr45FixZhwIAB6Nq1K5599lk8ePAAISEhuHjxIlRVxXvvvYcNGzZA0zQEBQVhw4YNAIARI0Zg27ZtMJvNGDduHLp164aAgACEh4fj4cOHaNOmDYYPH45atWphyJAhuHXrFmw2GwYPHoyhQ4di3759GDhwICwWCxo2bIibN29ixYoVufd2k9PTHu6FEj4HWuQqQMQbHc4jsjdM/i/BXORNSC4ljI6GKF8TQoUWtRZq+FxoD3Yigw9F5ArJpTRMRd6Cyf+lhDFgiCjLhPoQavgcKOGzANs1o8NJQvKoD3PR4TD5djI6FCrAmHDIA4QSCeXODKjh3+SxRENysncbmIMmQPYINToUonxHiw+Dcv1daFGrjQ4lbZIrTP4vwxw4OluD0BEVVGr0NihXR0LEnzY6lLSZi8EcOAom/5chya7plycinRA2qHd/gHLzM0C5aXQ4aZI86sIcNBEm72ZGh0IFEBMOBhLCBvX2V1BufQVoUUaHkwkyTIX7wBz0YYYHniMqyIT6AMqtyVDvTM9bPRrSI3vAXHQUTIGjEkbLJqI0Cesl2K6NyftJxcdZSsBSYgZMPu2MjoQoX1AjV0K5/j6E9YLRoWSK7N0K5uKTILuHGB0KFSBMOBhEi/kHtsuDIeKOGx1K1snesJSYClPhPkZHQpQnCSESBmW9MR5QbhgdTpZJ7rVhKf0dZLcqRodClCcJLRbKrS+g3v4KELFGh5Nlsl8fWIK/yPaU2UTOSthuwnblDWj31xkdStZJFpgD34EpcAxvJlCuYMIhlylCwcfKbLS5tgS1Ig8ZHY5DyL7dYSk5A5LJx+hQiPIMYbsN2+WB0KK3GB2KY0iuMBf7AKaiwyFJHG+YKJH2cD9sl/pBWC8aHYpjWIJhKTkLpkJtjI6EKE9R7y2B7dpIQE17YPP8QnKvCUupbyG7Vzc6FHJyTDjkogvaFQywjcF+8S8qowR2nt0LNy3O6LAcQnIpDUup+ZC9njY6FCLDWR/shnaxX77u1ZAayaN+Qm8H1wpGh0JkOOX2DCg33sudUehzmalwP5iDv4Jk8jI6FCJDCS02YdaHyGVGh+J4kgXm4p/DXGRI+mWJsoi3qXLJPu0oGltfwH7xLwDgNK7ik9JtDY7KcYT1EqznnoFy81OjQyEy1HTlJzQxTUasFml0KDlCxOyF9WwjaA/+NDoUIsPEijgMj38fN8M/d8pkAwCo936C9dwzELZbRodCZBhhvQrrfy2cM9kAAMIG5dow2K68AeGk1zIyHns45IK16nb0s41GLJL2ZpAhY91tXzx9b79BkeUMk/8gmEtMY7drKlAUoeBV5UMsVFcDAF5QQjD73GpDY8pRkhsspX/kVFtU4FwXt9Hd+hYOiuNoolXEr2e3wAzF6LByjORSBpby69iriQoc7eFeWMN65vkZKBxF8mwMl7JLIJkDjA6FnAy/Eeawb5Vf0NM2PFmyAQA0aHitqAUPTN4GRJZz1Lvfwnb5JQjhvA0wInuKUNDH9raebACAJebjmB/c3rigcpqIg+3iC1DCvzU6EqJcc0XcQAtrPxwUCQM+75L/wwdlnzU4qpwlrBdhPdsM2kPnujlClBY1agOs59oWmGQDAIiHu2H9rxmE9arRoZCTYcIhB31km4k3lYlQoaZa5iJu4f0yLXMxqtyhRSyFLewFCC0fTQFIlAWKUNDPNhqrta3JXhvjHYZ/fJ80IKrcokG5+iZsNyYYHQhRjrsubqOtdSAuiqSN8Vmux7Es6BmDosolajis59tCjdpgdCREOU6NXAPbxR6AcI5x1jJDxJ+D9VxLCOslo0MhJ8JHKnLIdOUnjFamZLj8yvBiaBnufM9Ey14tYCm3ApLsYXQoRA6nCAX9bWOwUtuUaplgBOCPCxcQYL2di5HlPlPgO7AEfWh0GEQ54pYIR2vrizgjwlJ83R2u2HRdRo37x3I5slwmWWAptwYm7+ZGR0KUI9T7G2EL6w4Iq9GhGEpyKQuXClshuQQbHQo5AfZwyAGr1C14R/kiU+u8EWBDpKVwDkVkHO3BdtguvWx0GEQOpwkNL9reSTPZAADXEI6BZepAhSmXIjOGemsS1IilRodB5HDhIgLtrYNSTTYAQCzi0ae4N+5ZnPzZZ2GD7WIvaHH/GR0JkcNpD/fBFtazwCcbAEBYw2C98CyEet/oUMgJMOHgYH9rh/Gi7R1o0DK13g3cxejSjXMoKmNpUb9CuTXZ6DCIHOpjZRaWaxszVPYP+Sw+LfNcDkdkPNvlIdAe7jM6DCKHsQkbulrfwAmR/hfsy7iNl8rWc/rkItQI2C50hlDuGR0JkcMI6zVYwwrmYxSpEXGnYLvUH0Jk7jsN0eOYcHCgc9oldLW+iThkbdyCZeYTWBvYwiGxREYLNOxlxVM9rKjd1Yoffn00joSmCTTua8ULb6c8/c2gD2yo8mw8nuqRsP6FKwlP3UxfpKB2Vyv6v/tovR9Xq/jpt9THqEik3PgI6v2MfTkjyus2q3/iM3Vuptb5yu0Efi/azKFxpFbPW79sRej/WfU6HBuX/Mm5j+coKN/mUT3/81BCg2LFZhVPdrHiudesiLcmrLdzv4aP52RgEFgRB2tYdwjrZccdJJGBxilfY684muHyO+Wz+KisY5OL2annfcbY9NfLtY5Ht+EJn9/ZqucAhPU8rGE9OI0eOQWhxcIa1r1ADRCZUdr9DVBuvG90GJTPcQwHB7EKG562dsfxDNwFSUsAfPBX2DUUjc/eRU9VBeKtgIe7hIexArW7WrFnsQv8fSX88KuK7fs0qCqw5AtLsnUHfWDD/7WS0b5J0rs0T/WwYu9SC15+X8GwfiaULymh1ygFv043Q5al9IOSfeDyxJ+Q3Spm69iIjHRZ3ECD+G64i8hMr1sInth55SHKPTznkFhSq+cvvG3D1HfMqFYh9Zzyx3MU+PtKeLVn0nrerL8V6+dY8OV8FU9WldChqYzn31KwcLIZXh4ZqOcAJLcQuFTcCcnkla3jIzLSOnUHutrezNK6P0SWwfM3kw8kmxXZqef2XhxrQ4unZPTtaHJIPQcAU+H+sJTKXPKVKK+xXhoAjY8EpslSegFMfj2NDoPyKfZwcJCPlVnZTjYAQDiiMKJUvWxvx2SS4OGe0GiItwJCJPzcixJYvknFwOcz3+XT1RVQFEAAMJuA6YtUvNHblLFkAwBoUbCFdYVQH2Z630R5gVXY0Ns6IkvJBgC4j4foW6IkYkyeDokntXqeHa4u/6vnIqGeL/1dw7PN5Ex9CRFxx6FcG5G9QIgMdFG7hkG2sVle/w3fmzjhXc0hsTiinsdbBbb+peG55gnNPkfUcwBQ7/0INeKXzAVDlIeoEcuYbMgA25WhnC6TsowJBwf4RzuOL9UfHLa9daaTWBLUJtvbiYwWqNfdigptrRje34wAPwkfzlTw7iAzTOnkG96dqqJedyven65AVRNaNoO6mtCojw2FvAB/Pwn/nhVo1SBzp5CIPwPl5kdZPSQiQ32kzMABkb1R6E9IVzCsbCsHRZRyPQeAAe8pqN/TimkLU+8iPX2RgrrdrXjrExsexCTU85EDzGj7ig3/XRZo+KSMXzZoGNA58x8V6r2foN7fkrWDIjKQIhT0tb2NCGR9sLQYxKFPsB8iLP4OiSk79RwANu3R8FQNGb7eCes5qp4DgO3qCAibc8/CQ85J2G7BdnW40WHkD1oUbFdeMzoKyqf4SEU2xQsr6lu74ZQ479Dt+sALey6Go0Rc9rOJt+4K9Bxpw+SRZsxYpGLhZAt2HdQwe6ma4iMVN+4IFAtIuJPy8gcKGj0pY0iPpBmK4ZNsGNjFhL8OC+zYr6HFUzIGdctorwkTXJ7YBdmjdraPjSi3nNXCUNv6f7AhY884p+fzB5Uw6Op6h2wLeFTPl35pgaICwUUlREULdB1mw4gBJrRrbEpWPsA34ff3vlYhy8Bnw81Jyny5QEHV8hLircAvGzSEVJQwdnDSMmmylIRr5cN8tILyldnKzxiufOqQbbXUKmH52Q2QMzmQdGoyW88T9X/XhraNZbzQPvnr2a7nAGSf5+FS9ucsHRORUaxhPaBF/WZ0GPmKueQcmP0HGB0G5TPs4ZBNE5VvHJ5sAIAoPMAbpWpAIHPdG1MS6C+hxhMStv2tYc9hDZXax6PfOzZs3qPh9YnJB3wKKiJBkiS4uUro/ayMf04kbSidvajBpgBlS0hY90dC0mLtThUPYzOau1Jhu/IGR72lfGWkMslhyQYAeM/rPPb7OS7plljP9xzSEFw04brh4y2hS2sT/jmRvG4G+kswmRJ++ndOXs/vRgocOCbQrrEJ3/ysYvEUM67cEPjvUibqre0KlFufZeu4iHJThIjCROUbh21vm3wGH5fp6LDtZbaeA0BsnMD2vRqebZq8yeeQeo6E2ajYo4nyEzVyNZMNWaBcG8MeTZRpTDhkQ5h2FdPUH3Ns+zvls/ihRPssrXvrrkD0w4TGR1S0wJ+HBJ5rLuPCZlec+d0VP02yoHVDGd+8n3IPByBhNov1f2ioUj5p0uPTeSree8UMqw2IiU1Y9jAWsGZisGoRexjqvZ+ydGxEuW2tuh1btD0O3aYNCgYEWnDbtViWt5FSPX+ijITwiIRlVpvA5j3J6zDwqJ4DwLqdGqo+VmbydyreGZRwNzQyGpAkwKoAMZmcMUy9MwNa3NnMrURkkI+VWbiHKIdu8yu34/gtsGWW189OPQeAjX9qaPikDG/P5K87qp4DgHJtJGetoHxBCIUzL2SVFgXl1iSjo6B8JnN95iiJCcpMh97xTMn7XpfQ3KM8ysVkrhfF5RsCb0xUEgaXAvBqTxNCKqaeX3r1Ixte7mpC7WoyXhxrw91IQNOAetUlvP7Coy6Yfx7SUK6EhOL/u7MSWllG7a5WNH9Khl+hzPXGUG58CJNvF0gm70ytR5Sb4oUVo5UpObLt6wjHwDK1sOrMFpizcC1JqZ6XLSHhmYE22BRAVYH2TWQ83yqh7k+YpeDJqhKebWbC2GkK/j0jIElAhVISvnn/0cfBhSsJX3BqVk5Yr9ezMmp3taFyuYS7q5kirFCuvwuXciszfXxEuemMdgFz1ZwZAPE1v9t4IqYKqkSfyvS62annALByi4YurZN//ju0ngMQ8Wehhn8LcxE+5015m3p3AUR89gd6L6jUu9/BVORNyK5ljQ6F8gmO4ZBFp7XzeNL6f9Ac9FxmWuqL8vj9zBaHPQOal5iLfwZzUQ7YQ3nXdOWnHEs4JBoaXx0fha3K0X0YS4JL5cOQ3SobHQhRqv7P+ho2aLtybPvlEYRt54/D1xaRY/swmuRSGi5VTkKSMj8TFlFuEFos4k9VA2zXjQ4lX5P9XoBL6flGh0H5BB+pyKIpyne5kmwAgL3Secwo9Wyu7Cu3qeFzOJYD5VmKUDBdyflHf6a5HsPawBY5vh/jCKh3ZhgdBFGqjmlncjTZAADncQODyzaE5sRNL2G9BC1qtdFhEKVKDZ/HZIMDaBG/QIs7bXQYlE8476deDrqoXcMybUOu7vMTj/9wyrtKru4zNyQ0TtYZHQZRilZom3AVN3NlX6/5heM/rydyZV9GUO/9DKGEGx0GUYpmqAtzZT+b5NP4rMxzubIvoyi3pxsdAlGKhFCh3HHcoLAFmwaV7yVlEBMOWfCDugJKDo/d8DgrbBhcvDhsUvJBHvM7NXym0SEQpWi2knvTvEUjBv1KFMcDZx3TRMQm3FkiymPuikj8ov6ea/v7wu0k1hdtnmv7y20iZh+0h38bHQZRMlrUesB22egwnIYasRhCdewgu+ScmHDIgtzu3ZDoX+kSPi/dwZB95yTtwS5osceNDoMoiWPaGewTR3N1n6dwFUPLOu+jFUr4XAgt3ugwiJL4WV2LeFhzbX8CAkMK38VZr0q5ts/cxl4OlBepd783OgTnosVAjVhqdBSUDzDhkEl/a4dxUVw1bP9fup3CId9ahu0/p6jhc4wOgSiJ+aoxsyqsNJ/A7JLOOWYLlFvQ7vMRKspbFqi/5vo+oxGD3iUCcd/sk+v7zg1a1Bo+QkV5irBdhxa9xegwnI5690ejQ6B8gAmHTMrNbpcpUaHi1WKFECe7GRqHo6lR68AJUygvWafuNGzf73uew99+dQ3bf07S7m80OgQi3SntPE4IY6bH+w/XMaRsEwhkfgrKvE+Fdp9f7ijvUKPWA04425vRROwhCKtxN2Ipf2DCIRMUoWClusnoMHAG1zCxdDujw3As5SZE3DGjoyACkDDt7WUYN4q1AgUvBkq46RpkWAw5Rb2/hclFyjO2aHsM3f/vplOYUrqjoTHkFDXa+PYSUSLt/nqjQ3Ba6n1jb8ZS3seEQybs1v7BHdwzOgwAwCzX49jj/5TRYTgU74ZQXrFJ+9PoEHAT9/BSmVAoMBsdimMpNyFijxgdBREAYKv2l9EhYJL7SWwq0tToMBxOu7+V015TniDUh9CidxodhtPibHOUHiYcMmGvOGJ0CDoBgdeKmBFtKmR0KA6jRW82OgQiAMAmbbfRIQAA/pLOYXxZ5xvPQbvPO59kvHhhxZ/aP0aHAQGBQf6ROOdV0ehQHEsNh4g5YHQURNAebAdEnNFhOC3twR8Q6kOjw6A8jAmHTDig/Wt0CElcwi28X8Z5RrTXHv7NCxYZ7qGIyRNfQhJ943ocq4q1MjoMh2JXa8oL/tIOIwaxRocBALiPh+hTItipbiIAgMrkIuUBnKY1h4l4iNhDRkdBeRgTDplwQMt7YwwssBzHliKNjQ7DMYQV2kPju7JTwfaPOAErbEaHkcSbvrdxxruy0WE4jHi4H0LLG1/0qODaoe01OoQkTuMqXi/XzKkGkdQe7DI6BCKImMNGh+D0tJgjRodAeRgTDhl0QbuSZ8ZveNyb/vGIsPgbHYZDiLhTRodABdwZLczoEJJ5gBj0DQ50orufKkT8BaODoALulDhvdAjJrDGdxFelnzM6DIcR8eeMDoEIGscNynEaezhQGphwyKADIu/1bkh0E/cwqnQjo8NwCH4JIaP9Jy4aHUKKzuIa3izXzOgwHEbE570ve1SwnBeXjQ4hRZ+4n3aenovKTQj1gdFRUAGmxV8A1Aijw3B67EVCaWHCIYPO5sG7nvZWmE/gt8CWRoeRbcKat99ncn5nRd49B1ebTmJmSeeYQk9YmXAg4wghECby5tzxGjQM8o/GBY/yRofiEEwukpFE3BmjQygQRPx/EEI1OgzKo5hwyKDbuGt0COka4ReJW65BRoeRLezhQEY7m0d7OCQa73nGKabE5ZcQMtJV3EQs8u6o9ZF4gD4lS+GBydvoULKNyUUyklCuGx1CAaECym2jg6A8igmHDLot8n7C4S6iMLxUHaPDyBZhu8wMKRnGKmy4JPJ240SFipeKaLjhFuzQ7f6+S0WNzlaEdLRi/q9J62BMrECn160I/T8rnuxixawlj14f/YWCOt2seHeqoi+bMEvBHwe0NPfHhAMZ6bx2xegQ0nVSuoI3yzl+Jqq06joAHDiu4ckuVlTrGI9P5ybUayEE+o6xoXZXK775+VFdH/KhDf9dYl13NlOmTMlU+QEDBmDdunXZ3m9AQECW1tu5cye6du2a8ou2m+g+woagJvF44e1HA0KndJ4DwIUrAg17JSx/82MbhBDJNhkeIdBmUEId6jHShrj4hDLTFymo3dWK/u8+2s+Pq1X89Jsx7doJs2woVDceherG4+X3kw+G/eNvCnzqxcO7bjzaDrICADRNQ8V28fCtF4+eI6162eqd4rHlr7SPQ9huOvYAyGkw4ZBBt0XeHDDycb+bTuHn4m0ctr2ULtL2HN0wgbBBWPN+Q5Cc0308gIq8n/C6hQi8WDoENsnikO0pisCYL1VsmGfB3qUWTP1Jxd3IpI2st1804+gqF+xaaMHcZSrOXxaIjBY4fErDweUuOHhcQ1S0wPXbAv9dEmhaN+2PF0c9PmXfML548SLq1ElIuq5ZswZTp051yD7I+VzHLaNDyJBVphP4upTjHqPKSF0f9pmCHz8z499VLti4R8Px/zQcOyvgYgEOLrdg4ZqEz/EjpzV4ekioWDp36jrlnswmHPIyYbuBN3qZ8N1Ec5LlKZ3nADB2moKxQ0w4scYV4ZHAht3J261fzFfRuaUJx9e4oGywhPmrEsosXqvh4HILzCbg2FkNMbECq7Zq6PNc7n/diovT8MV8DTt+tODsBguWbdRw7rE2+IhJKuZ/YsbdPRYcPCGwepuKX7cKmE3Avb0WbNqTcG34ZYMKdzcJzzxtSnOfwnYjx46H8jcmHDIor85QkZJ3Ct3EZfdSDtlWShdpe45umAAAtOhsx80vIZQVeW06zLTslc7j/bLPOmRbB44LVCkvIbioBC8PCa0bytj696OGiYe7hMZ1Euqul4eEJ0pLuBEuYJIBWQY0TUD+3++fzVMwdnDajRIAENpDh8SeWsO4Y8eOGD58eIa3o6p5P9FEjmMV+aeuT/A4je0BDR2yrfTq+vXbAqoKVH9ChskkoVsbGRt2abCYAQFAUQAXl4Syk75V8e6gDNR1DhppqIsXLyI0NBT9+/dHlSpV0KNHD/2u/ebNm1GzZk2EhIRgxIgREEJg7NixiIyMRM2aNTFkyJBk21u/fj1q1aqF0NBQ9OrVS1++ZcsW1K9fHxUrVsQff/wBIOG6OnLkSNStWxehoaFYvHgxAEBRFAwdOhTVq1dHjRo1sGzZsiT7uHbtGurVq4f9+/fj/PnzaNOmDerUqYMWLVrg4sWLAID9+/cjJCQENWvWxPLly1M9fqHcRpM6Mrw9H003m9p5LoTA3qMa2jVO+Lx7oYOM33clTzis/0NDrw72ZRI+P1xdE+qIAGA2AdMXqXijtwmynPtT3S5cq8HfF6hdVUaxABlVykv4xq534uFTGjQBPP+MCS4uMlrUl/D9ChXu/6vfcfGA6X9N9nenKlg0OfXvAomEkj8SuZT7mHDIoHCRf0a4vY+HeLNkiEPm8n78Im0vJxomAABhTb9MOvglhLIi3gHnXm6a43IMK4KeyfZ2btwRKF700f+LFwWu30nejRQArtwUOPafhlpVJHh7SmhZX0b9nja0rC/j8g0BkwmoXC4jicXU3+vJkycjJCQE1atXx+LFi5N1l+3atSt27tyZZsN4wYIFePvttwEAd+7cwfPPP486deqgQYMGOHw4YTTtAQMG4NVXX0W9evUwadKk9GMmp6Hkg55MiTRoGBgQg4seZbO9rfTqesLrkt3rEq7dEahSXkYhL6BRHxsGdTVh058qaleTEOCXgXZGPkruOKtTp05hzJgxOHnyJG7duoU///wTsbGxGDRoEFavXo1///0XZ86cwapVq/DJJ5/A19cXR44cwZw5c5Js5/bt23jzzTexbt06HD16FDNnztRfu3fvHvbu3Yu5c+diwoQJAIDvv/8eQUFBOHDgAPbu3YspU6bg7t27mDdvHu7du4ejR4/i33//xTPPPPocu3LlCjp16oRvvvkG9erVw2uvvYa5c+fi4MGDGDduHEaNGgUAGDhwIBYsWIAjR44gPDw89YPXko/Vktp5fjcSKOwjQZIkffn1FIYluP9AwMf7f2WKPCozqKsJjfrYUMgL8PeT8O9ZgVYNjPmqde6ygL/vo/8XLwJcuv6orp88p8Hb89HrZYITbiR0aGaCpzsQ3NyGbm1kfDrXhmoVJDxRJiOf6/GOOwByKumnqwgA8kU3a3t/yGcxtXRHdL10Gr5RGryj1IQsQBaImw+BmAiISyWSLL9+LhZB3uEQl0oCAIpL97H7QgwqtyqGQuImGnaPwRvPFcPGX82oHRwH//sBEPczsL+SCuCRfPnkyZOxcOFCSJKEd955B8HBwZg5cyZWrFgBIOFLyBtvvIEtW7boX0Lq16+Pd955R9/GggULcPz4cXzxxRe4c+cOBg8ejMuXL8NisWDWrFmoVasWBgwYAHd3d/zzzz/o1KkTxo4dm7U3jvIdWz7q4ZDoLZ8bCLA1RLHYezCpgKwKmDTApAqYVCQs08SjfxVA0v5XRhGQNQERfh+IjoG4VCxhoxF3AQkQl/yT7CvepqHvuMv4tE8wPG4XggAwqlXCDwD0/fwqvhhUDB9PjsCJS/Ho0bQQOtUvlHLgJjegRvLFBw4cwLJly3Dw4EHExMSgbt26mDhxYoqb+OSTTzB37lwcOXIEAPQ7X48bNmwY3n33XdStWxf//fcf+vTpg3379gEA7t69i3379ukNTCoY8ttnegSi0bdkWcy64QlZpPNoYhquuEfgnuUBTngnfG7fcr0FSQJOeAcCAC54xiDafAMnvBNmyLjq9qj8oE+AQUjo0TT8lQuYNL0MBnxxA7dvWdH7xaKoWccrxX36uPqiQpYjJkeoVKkSqlatCgCoVasWLl68CG9vb1SqVAllypQBAPTu3Ru7d+/G888/n+p29u7dixYtWiA4OGEMocKFC+uvde7cGQBQu3Zt/Vq8efNmHD9+HIsWLQIAREVF4cKFC9i6dStGjBgBWU74Euvn5wcAiIuLQ9u2bbFgwQLUrVsXDx48wO7du/VtCyHg6emJyMhIxMfH671Xe/fujZ9++imVqHOvrvftaELfjgk314ZPsuG9V0yYt0zFjv0aWjwlY1C3DN54M9jB5a4AAEXRUK61DQdXWFCvuxXhkQKjB5owpEdqXx+VVJZTQceEQwZZ8uFbNcH9BCZUTvjdpJkQdN8NwVFuCI5yRbFIM4pEmeAfJcM/EvCJVFEoUoFXlA0ekVa4RsbAJTIG5shoqOEREHFxUDqfSrJ9Ff/ryfC/5SoADYDyewQ+/18ZbcYNdAfwI4DhC+/gBoDXATRII26XPSrwdNJl/BJCuSEe+auHAwDEIA6dA7I62r4EQILm4QL11H0sbmWGiyohboMG11qe+LaBByyqDIsqw6wIXH7jPDzbBWDOS6XxvSbBLKSE11QJ9/6+h4iQAAx1D8Cp6Ido8mlNjBj6D/a0CoFZA8yqDLMqYNIkmFUJbjYXvJNCRHv27EGXLl3g5uYGNzc3tGzZEp6enimUzLitW7fixIkT+v8jIh71WOvatSvreQGk5MOG8THpMhoXz942tGoS1M3xWBOccK1THsRBquOOOf/7v5AEbPesaJj4elwcUFHWywOAuiAC6OuNFpeioJUBTFOLY2ePy3DpVCbFfT4rm7Eie2FTNrm6uuq/m0ymHOm9mbgP++1rmoa5c+eiadOmGdqGi4sLQkJCsGPHDtStWxeapiEwMFBvzyWKjIzM1nU7qIiE67cf3YW7flugeBEJ/r7AvSgBIQQkKaFMUJHk6xfykhAVndDL4fqd5GXOXtRgU4CyJSS897WCNd+4oOPrVvR6Voane+583lQoJWHZxkf/v34HqB/6aN9VK8iIfvjoPLh4TaBYQNLYXp2gomMLGQtWJTye8ftcC0L/z5ZGwoGfpZSy/Pct2iAucMzgbEZRZYGrvrG46hubibUsAApD2+UKMSsC9WdWQvB9VxSPdEVgpBkuF2049dkBbH+9MXwiVRzddQGeD6yICA6Ea2QMLJExWHz9NrrExmGvzYYAAB8B6AVgdVq7tftgTMQvIZQbVGT9zmF+JtV1hzgZD+vNeFh9ZNi234fyvj9iCj1KZCjjbkEUVhHzWSHcQdJHzIQQUMZehnlhSZz57xbUQg9x6anrsGkx+Lbh1RT3WRg+KSYcUnLkyBFo2qO/TXx85rttHjx4EGZz8o88D48UulOR0yvodV1cswE+MrTND2B599G3Jam4BTAB2rE4SFVdoS2PgnnWoyyHiNGgrb0P84pS0NZGA1aRcOchKvX3M7+3n5xVpUqVcPbsWVy6dAklS5bEkiVL8NJLLwF4lDQwmZLeka9fvz6GDRuGa9euITg4GPfu3UvSy+FxrVu3xqxZs9CoUSOYTCYcP34cVapUQatWrTBv3jw8/fTTkGUZERER8PPzgyzLWLhwITp27IjChQvj5ZdfRmBgINauXYvnnnsOqqri1KlTCAkJgaurKw4dOoQnn3wSS5YsSeNIk1/3ixeVYJITBnasWl7C8k0aZr1vhiRJqFdDxobdGto3MWHp7xp6P5v8UYJ2jWX8vF7Dqz1NWLI+oay9T+ep+HSYGVYbEPO/ZvfDWMBqAzzd0wjVgfo+J2PkFBX/nNQQXBQ4dV5gsd04DLWqyJAl4NctKp5tKmH7XpFkzLbwCA2b92gI22LB+JkqrDZAE0B8WvdlJH6tpJTxzMggL8kTEGk8I+bkNEngfMBDnA9IOtCb9XsrurU8DamqK2zNr8D8Q3HMDkkYIErEuEDpK2BeURFuv8bAfa8NB3uXw7GB/2LypKdRJFKGfxTgGyngE6XBO8IGzygrihcphIykEvglhBzNB/l/zvuskMwSTJMCYWt7EUIDzCP8IfmbYet8KeHLhgaoX4ZDquIK61MJU9yZPw6E/ExCF2ptSRTkjoUgechADTcgTsBW+zzkvr6p7tMNyROLANCoUSMMGTIEI0eORExMDLZv345t27ahTZs2UBQFd+/exV9//YWRI0cCSL1hbK958+aYPXs23nzzTQDA0aNHERoampW3ipyEeyrnn7NLr65LxS0wfxUEpf9ViDgNpl6+kEPc9PXVaeEwvekPSZIgP+MF2+x70BpdgOndFG4D/w8TDnmTu7s75s2bh06dOkFRFLRu3Vp/dKF///6oXr06mjRpkmQch6JFi2L69Ono0KEDhBCoXr26/rhESgYNGoSwsDDUqlULmqYhKCgIGzZswCuvvILTp0+jevXqMJvNGDduHLp16wYgoZfDypUr0aZNG/j5+eHnn3/GkCFDMG7cONhsNgwePBghISH49ttv0a9fP1gsFjRs2BA3b6YyJaOpENoPtuLYWYGHcUD5NvFYPMWCr94xo/+7CuKsAr06mBBSMSGx8MlbJvR7V8HbnytoXk/WB5CcMEvBk1UlPNvMhFEvmdBrlA0zf1ZQtbyM8a89+vz585CGciUkfYyI0Moyane1ovlTMvwK5d6NLDc3GcP7y2je3wYBoGtrGRVKyyjZIh5rvrGgVhUZn48y4cWxCjQNaFBTQueWj46j7xgFw/ubIMsyhvcDvltpQ8W2NgzskvpYDpJcMNtQlD5JpDTBLCXTML4H/hEn0i/oZKztL0IciwMeaoCfCZbFJaFOuqM3TLR9MVBeva43TMzjHo1GpXx2G3IDD8jNvCBiNdievwzcVGB6twhM3X1S3ec11z/hL/kmWXbw4EEMGTIEe/bs0R+pSPwScvz4cdy9exdVq1bFypUr0axZMwQGBuL69eswmUy4ePEiunbtioMHDyYZw6Fnz55o2LBhsi8hAwYMQNeuXfHss46ZAYDyjwciBgHx9YwOo0CoKlXAIdfVKb72+HgtvXv3xogRI7Bu3TpUqlQJsbGxGDduHJo1a4bRo0dj3bp1aNKkCd55550U6/qdO3cwZMgQnDt3DlarFR07dsTkyZNZ1wuw39St6GEbZnQYBcII04v41DLS6DCogLJdGwX1zgyjwygQLOV/h8m7hdFhUB7EHg4ZVFjyzfKgi/mZy+9lki2TV5d+9PtTHnA5lPJwUOZ3HyUfJHcZLhuSbyvZOjCjMJInI+rUqYNu3bqhdu3akCQJH330EUqXLo327dujatWqqFSpEmrVqqWXt8/O2w8aaW/GjBkYMmQIvvvuO/1LCO96Fmxekgc84I4YZObRI8qKclLJVF8bM2YMxowZk2TZV199ha+++ipZ2SlTpiSZlebgwYMAEmagSFSkSBGsXLky2boLFizIZNTkLIpJqd+RJ8cqLQUbHQIVYJIlyOgQCgzJks1BZshpsYdDBo20fYZv1MVGh+H0iqMoLrhtNzoMKsBC45/DGRFmdBhO7y1TP0yxjDY6DCqgrolbKB/f0ugwCoTfLLPRxtTY6DCogFLv/Qzb5ZeMDqNAcA25Ccnsa3QYlAcZMzlsPlRF4qROuaGaXNHoEKiAKyUxQ58b0urhQJTTiqNoquOIkGOV5jWVDCS5lEi/EGWf7MVkA6WKCYcMqiqXNzqEAiFUqmx0CFTAPSGVMTqEAqG8VMroEKgAkyQJZdjVP1fwkQoykuRW3egQCgTJne8zpY4Jhwyqyh4OuaKmXMXoEKiAe0rmOB65gT0cyGi1pRCjQ3B6JVAM7pJb+gWJcohk9oPkUtboMJye7P6k0SFQHsaEQwb5SoUQjECjw3B6NSUmHMhYT8v80MxpRVCYCQcyXGO5jtEhOD2+x5QXSB78XM9psket9AtRgcWEQybUlqsZHYJTKwQvdrMmw5WQiqEkOKp1TmomPwVJyr35yIlSwi/DOa+Z/JTRIRBBdueX4ZwmsYcDpYEJh0xoJzc1OgSnVk+uwS8hlCc0kNk4yUkt5QZGh0CE8nIpFEfR9AtSljUzMeFAxpO9mxkdgnMzF4Pkxh7KlDomHDKhvakpJPALcU7pLD9jdAhEAICGfKwiR7U0MeFAeQPres4pK5XgDBWUJ0jutQEzey7mFFOhdrxhSGliwiETAqUA1JU4CmtOMMGETibOiU55QwdTM8i8POaIJ6SyKCmx4Ud5Q0v5aaNDcFp8nILyCkmSYPJpZ3QYTkv26WB0CJTHsUWdSR1MzYwOwSk1kmujiFTY6DCIACSM49BUrmd0GE6pndzE6BCIdF1MbeABd6PDcErPy62NDoFIJxd61ugQnJPkDtmbNwwpbUw4ZNJzcgujQ3BKbJhQXtPH1NHoEJzSi6bnjQ6BSOcteaKz3MroMJxOGakEWrH3COUhsndLwORndBhORy7UDpLMpC2ljQmHTKoqV0ADiQPKOVLC4xRs8FHe0lluBS94GB2GU2ki10VlubzRYRAl0d/0f0aH4HReND3PZ7opT5FkV5j8XjA6DKdj8n/R6BAoH2DCIQuGmvsZHYJT6Sq3RTEpwOgwiJLwlDw4kKmDvWLqYXQIRMk0keuinFTS6DCchhlm9GdPJsqDTAGDjA7BqUgu5SB784YhpY8JhyzoKLdEWamE0WE4BQkSRpkHGh0GUYpeMfMLsqMUQwA6yXzOk/IeSZLYy8GB2stNeBOB8iTZrQpkLz4a7SimIq+xJxNlCBMOWSBLMt409c3SuuKiFdY2YbDWOgdrnXMQD7WE5ZqAtfEF2F64kuJ6tkHXEF/lLKxPnYf1qfMQF6wAAGV6OKy1z8HW/6peVv0xAupPEVmKL7e1k5sgRH7C6DCIUlRPrsFBDh2kv+l5WCSL0WEQpWiI6QUUho/RYTiF10x9jA6BKFWmwBFGh+AcTP4wFe5vdBSUTzDhkEX9Tf8HXxTK9Hq2Qddgfr8oXA5XgGVzGcA1ITOoLYiAVDrtxrj5yyC47CsPl33lIZVzSVhvcRQsB8sDZkA7FgcRo0FbdR9yH99Mx2aE0WZ2b6O87SPzW5CQ9Qx+lpOM/a7AWu9cQkLxresQmgAAKKNvwlrnHJR3b+pllQm3of3xMMsx5jQfeOMtPopGeZiP5I1R5peztQ3WdaC5XB/NTJzhh/Iuk3cryF5NjQ4j3zMHjoZk8jY6DMonmHDIIk/JAyPNL2VqHe1kHGCRIDfyBABIhc2QzBLEPQXq8vswDczC6LmuEqAAEADMgDr9Lkxv+EOS834Xp8ZSHdSXaxodBlGaasiV0SUbs6hkNclonlkcLvsrJCQUw1Voa6MhIlVoh2PhcrACtIOxEFEqxHUbxH/xkJt6ZjnGnDbC/CL8JV+jwyBK06umXiiBYllen3UdmGAeanQIROkyB31sdAj5m6UkTAFDjI6C8hEmHLLhLVO/TA00Jc5ZIXnKsHW5BGuD81Cm3AEAKB/ehvndIoAp7SSB+u5NWOudg/L+LQg14Q6IaZAfbI0uAIVMkPzNEP/GQW7llfWDyiUyZHxmGWl0GEQZ8oH5DZhgyvR62UkySoX+tz8VgFUAEgATADnhjinkhN+Vz+7ANLZopmPLLSVQLMuPoBHlJjfJFWPNr2ZpXdZ1oJvcDnXl6kaHQZQu2bMuZB+O25JV5mLvQ5JdjQ6D8hEmHLLBVXLBFPPojK+gCGh/xcD8dXFYdpaFtu0BlK/CgQgVcpO071iYJxSF5UgFWHaVgwizQvv2HgDA1NcPLvvKw/J1UEJj5L0iUOfdg+2FK1D/VyYvGmjqijpsmFA+8YRcFi+ZumR6vewmGW0vXIG19BnAU4b8rDckbxPkll6w1T8PuaUXxGUbYALkynn3g/9zyxh4SJyjm/KHfqbOqCyVy/R6Bb2ue8CdNxEoXzEX/xjgZ1OmSe5PwlSY47RQ5jDhkE3Pmpqjs5yxKWGk4hZIT7pBKmmB5CpDbuMNxGvQ9sQgvtJZ2PpdhbY5GrbXrydfN8gCSZIgucmQe/tC+ycuyeva2XjAJiCVdYG6LhqWJSWhro3WnyHNS4JQhN0uKd/5xDwi892ts5FkBADLkpJwCXsCEAJiR8Jz2+bRReCyvwLMo4tA/ewOzO8WhfLJ7YQk42/3s3JoOaaV/DT+z8SpRSn/MEkmzLZ8BDmzzaMCXtfHml9FCSnrj6MQ5TbZtTzMQR8ZHUb+IrnAUupbSBK/PlLm8IxxgKmWsRkaQFKq4w7cUSEiVAhNQOx5CCnUHa4XKsH1zBOw/FQCcmtvWL4pnmxdccOW8K8moK2PhlQl6V0O9dM7ML9XJKE7Zsz/kgwPtYT/5zEzLePhJ3E0cMpfCklemGX5MFPrZCfJqG/DRYbcsRDUtdFJlms7HkCq5gpxX4W4YoN5cQmoM+9m5dByRAD8MNcy0egwiDKtgVwLw0yZG329INf1FnJ9jDC9aHQYRJlmKvIGJM+njQ4j3zAXGwvZvZrRYVA+xISDAwRJRTDXMiHdkewlswTTR0VheyYMtrrnIZV3hal96iO82l69Bu2f2ITfX7wGa91zsNU9D6gCptcL6+W0Px9CKueS0ODxM0EOdYO19jnItdwg+WX+ufOc1FvuiA6mZkaHQZQlrU2N8KqpV4bLZzXJKGwC4lLC1LdCFdA2REOu5PLodSGgzrwL09CAhARj4nPfkapDjjO7JEj4wfIZgqVAo0MhypLx5jcRKlXOcPmCWteLojB+sEyCJOX9gaqJHidJMiyl5vHRigyQ3GvDVPRto8OgfEoSQuS9W+D51HjbdExW5xkdRp5VU6qC7S4/8XluytfihRWNrD1xTJzNUHl1UzTUsbcAAcgtvWCe8qjbsbbrIdTZ92BZkjD4rO3VazC9XBhSFVfY2l1M6KUkAKmxJ8xfFINkTmjUqz9HAjYBU38/CCGg9L4KcToecl9fmIcHOPqQM+1t00B8bBludBhE2fKfdhENrN3xADEZKl/Q6roECb9ZZqO1qZGhcRBll3pvMWyXBxodRt5lKgyXJ3ZDdi1vdCSUTzHh4ECa0PC87XVs1HYbHUqeE4Qi2O26hM94klM4r11GM2sf3EHeHZjVKA2kWtjiMh9myWx0KETZtlzdgH620RBgU+lxw0z9MckyyugwiBzCdv09qLe/MjqMPMgMS/m1MHk3NzoQysf4SIUDyZKMHy1TUEEqbXQoeYo73LDcZTqTDeQ0ysulsNplFjzB3jr2SqAYFrp8zmQDOY1upnaZm42qgHhWbo6PzezFRM7DHPQx5EJtjQ4jzzEHf85kA2UbEw4O5iN5Y7llOvzha3QoecY8y0ROgUlOp7YcgqWWr2EBv1wDCb2YNrp8z8QiOZ03zX0x2jTI6DDyjOZyfSy2fMnEIjkVSZJhKf0TJDe2VxOZAobAXORVo8MgJ8CEQw6oIpfHZpf5KIrC6Rd2YhIkfGEeg26mdkaHQpQjnjE1xFzLxHQHjHV2RVAYG1y+QwWZvbvIOU2wDMVAUzejwzBcfSkUKyzT4Sq5pF+YKJ+RTIXgUuF3SK4ZHzDWWZkK94M5eKrRYZCT4BgOOeiMdgHtrC/jOm4bHUquM8GEOZYJ6GvqZHQoRDlutvIzRiqToEEzOpRcVxg+2OTyA6rLlYwOhShHaUJDX9sorNQ2GR2KIUKlytjk8gN8pfSnASfKz4TtJqzn20PEnTQ6FEOYCveDueQcSBLvS5Nj8EzKQZXkctjisgAlULC6GLvCBUstU5lsoALjVXMvLLVMhUcBG9OhKApjrctcJhuoQJAlGQstn+MtUz+jQ8l1DaXaWO/yLZMNVCBIlmJwqbAZkvuTRoeS60wBr8Jcci6TDeRQ7OGQCy5q1/C87XWcFOeMDiXHecMTyy0z0MxUz+hQiHLdQe0YuljfwC3cNTqUHFdbqoZfXKZxzAYqkL5VlmG48ikUKEaHkuNeMnXFNPNYWCSL0aEQ5SqhxcJ2+RVokcuNDiUXmGEu8SXMAYONDoScEBMOuSRGxGKo8gkWqquNDiXHVJHK4yfLFN7tpALtonYN/2d7DafEeaNDyTG95Y74xjIebpKr0aEQGWa7uhe9bCMQiftGh5IjzDDjc/NovGruZXQoRIZSbk6CcvMjwFmnxzX5w1JmMUzezYyOhJwUEw65bKH6G4baPkYMYo0OxaFeMfXAZPMouEtuRodCZLgoEY23lclOl2A0w4xJ5pF4w9zX6FCI8oSzWhj62UbjiDhldCgO5Q9fLLJ8ieamp4wOhShPUKPWw3ZlCKDcMToUh5I86sJS+kfIruWMDoWcGBMOBjilnUcv2winuAMaAD/MsUzAsybO0Uv0uE3qbrxm+xDXcMvoULKtilQecywT8JQcanQoRHmKIhR8pc7Hp8ocxCHe6HCyrbPcCtMs4xAoBRgdClGeIpQ7sF0dBi1ypdGhZJ/kCnOx92EqOhySZDI6GnJyTDgYJF5Y8ZU6H1OUbxGLOKPDyZLn5BaYbnkfQVIRo0MhyrOiRDRGK1Pwo7rK6FCyxA2ueNs8EKNNg+DCZ7iJUnVWC8MQ23j8JQ4ZHUqWBCMQUyyj0cXUxuhQiPI0NXIlbFeH5dveDpJHXVhKzYPsVsXoUKiAYMIhF+zcuRMzZ87EihUrkr12SVzHONtXWKFtgsgnz4bVkCphinkMB4YkyoSt6l8Yp0zNV12vO8otMNk8GmXlEkaHQpQvCCHwrfoLJiqzcAf3jA4nQyww4w1TH4w1vwYvycPocIjyBaFGQbn1BdTwbwAtxuhwMkRyKQ1zsQ8g+73AWSgoV/FsM1hpqTgWunyBP12WoLlc3+hw0vSEVBY/WaZgr8tyJhuI0rBz50507do1ybJWpqfxt8syLLZ8iSpSeYMiS58MGc/JLbDN5Scsc5nOZANRGh6v65Ik4RVzT5x23YiJ5mHwh69xwaXDG54YauqPU64b8ZnlbSYbiDJBMvnAUnwiXKucgMl/EACz0SGlzlwE5uAv4VL5GEyFezPZQLmOZ1wOmDx5MkJCQlC9enUsXrw4yWs7duxAgwYNcOdO0m5YteUQbHD5Dv+4rMJgU094wzM3Q06VBAkt5QZYZPkCh11Wo7upPWReqIiyRJIkdDG1wSGX1VhhmYH6Uk2jQ9K5ww2DTN1x1GUNlrtMR0O54M0/TuQonpIHRplfxn+uWzDV/B7KSHkncVcUhfGR+S3857oFky2jOLUtUTZIliBYSs6Aa9UTMBUZDph8jQ5JJ7k+AXOJaXCtchrmIq9Dkl2MDokKKH5zdLADBw5g2bJlOHjwIP744w988MEHuH79OgBg27ZteO+997B27VoUKZLyuAfV5IqYZhmHMNcdmGF+H9WlJ3IzfF0pFMdY06s47boJ612+RVdTW5g4qAxRijKbZJQkCc+ammOn6yL867IWY02voqJUJpejTlBLqqp/+Zhh+QAVZWPiIMoPMlvXPSR3vGruhRMu67HOMg8vmboiAH65HTZc4YL2clN8a/kEZ123YIz5FfhKhXI9DiJnJbmUhiX4M7hWuwBLqW8heTaCIV+zZC/Ivt1hKb8RLpWPwhwwGJIpb9zEpIKLYzg42Ndff42YmBi89957AIBXXnkFHTp0wNtvvw1PT09s27YN/v7+mdrmWS0MW7W/sE37G7u0A4jGQ4fHbYYZtaQqaCzXQSu5IZrJ9diTgSgDDhw4gCFDhmDPnj2IiYlB3bp1MXHiRPz666949dVXMW7cOKxduxYBAemP+H5EO4Vl6u9Yr+3EWXExR8Z1cYEFTeS6eE5ugQ6mZry7SZRBjqrrilCwU9uPldomrFN35NhYD97wRFu5MTqaWqKt3ATeEr90EOUmoYRDu78BatR6aNFbAe1BzuzIUgImnw6QC3WA7NUUkuyaM/shyqI8/MCRcwkODkZUVBROnDiBJk2aZGrdJ+SyeEIui9fQGzZhwz7xL/7Q9uOMFoYL4jLOi8uIwP0Mb88VLighFUNJKQh1pBA0leuhgVyLz28SZcGePXvQpUsXuLm5wc3NDS1btoSnpyeOHj2KkSNHZirJWFOugppyFXyKkYgS0TioHcdBcQz/aMfxj3Yi09NresAdVaXyqCpXQDWpIqpJFVFProFCkldWDpWoQHNUXTdLZrQyPY1Wpqcx2/IRLmrXcFicxCHtBA6LkzisncRdRGYqNh94o7pUCTXkJ1BDqowaciWESE9wZhkiA0nmAJgK94WpcF8IzQoRdwxazCGI2MPQYg5DxJ0GRGzmNmoqDNm9OiT3JyF71ILk8SRk1wo5cwBEDsKEg4M1atQIQ4YMwciRIxETE4Pt27ejefPmCAgIwMKFC9G+fXv89NNPqFWrVpa2b5EsaCTVRiO5dpLl90QULojLuCZuIRbxiBPxUKBChgQZMnwlb5SUglBCKoai8IckSY44XCJKRXaSjADgI3mjpakBWqKBvswmbAhHJMLFPdwREQjHPdwTUTBBhgUWuEmu8IU3fKVCKAp/lJGC2VOJKIdlt66XkYNRBsH4P9Mz+rIIEYV7IgoRiEKEuI97iEKkuA8JgBvc4C65wheFECD5oajkj2Ap0IFHRESOJskukDxqQ/ZI2n4XSiSEchPCdgNQbkFocYCwAZIMwAzJ5A3JXAywFINkCYIkuxtzAETZwISDg9WpUwfdunVD7dq1IUkSPvroIwQFBQEASpYsiRUrVqBLly749ddf8cQTjhufobDkg8JSddRBdYdtk4jSl9NJRnsWyYIgFEGQlPIYMESUc3KzrvtJPvCTfBwQNRHlZZLZF5LZF3CrbHQoRDmGYzgQEWXT5MmTsXDhQkiShHfeeQfBwcGYOXMmVqxYgTNnzuRIkpGIch/rOhERUeYw4UBEREREREREDseHe4mIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHY8KBiIiIiIiIiByOCQciIiIiIiIicjgmHIiIiIiIiIjI4ZhwICIiIiIiIiKHy5cJhwEDBkCSJEiShJ07dxodTqoWLFigx/nhhx/m2n4//PBDfb8LFixIt7zR72dm43XWGPIyo88RSp9R15u8Li+8L3khBso5vD6Ss8jL53JiXGXKlMmxfeTl439cfoqVyGx0ACm5ePGi/qWvZs2a6Ny5c4bWW716NY4cOQIgoSLm5EWJyJmwzqUsq+9LfrRz50690dK5c2fUrFkz1/bt7OcRERFRZjhj+yMx4e7r64thw4YZGgvlrjybcPjoo48AAP37909WycaOHYuXX34ZAFC9enV9+erVq/Hjjz8CAJo1a8ZGK1EGsc6lLL33JS9p3749du/eDQAoVapUptffuXOnfqxlypTJ9YSDM59H5NxSuz4S5Td5+VxO/Hxzc3PLsX3kpePParssL0s8ntKlSzPhUMDkyYRDeipWrIiKFSsaHQZRgcE65xgPHz6Ep6dnjmy7aNGiKFq0aI5sm4hSx+sjOYu8fC43atQox/eRl4//cfkpVqI8N4ZDs2bN0Lx5c/3/P/74o/6M0oABAwAkf27p4sWLkCRJv0MGAM2bN0/2bNOkSZPQrFkzlChRAu7u7vDw8EDVqlUxbtw4xMTEJImjTJky+vo3b95E37594efnB29vb/To0QP37t3L9LEtW7YM1atXh5ubG6pWrYqff/45yeupPY+V1vO/y5YtQ7Vq1eDm5oaQkBAsW7YszRhmzpyJ8uXLw93dHfXq1cP27duTlYmOjoanp6f+rJwQQn9NVVUUKVIEkiTB398fNpstzf2pqopZs2ahQYMG8PHxgbu7OypWrIjBgwenus6sWbNQsWJFuLq6IjQ0NMUYw8LCMGjQIJQuXRqurq4oWrQoevTogVOnTjkkBgCw2Wxo166d/t6/8sorSd4LZ+FMdU7TNHzyyScICQmBu7s73NzcUKpUKXTo0AHff/99krKxsbH49NNP8eSTT8LLywuenp6oVq0aPvjggwy/L6mxP5bLly+jS5cu8PHxQUhIiF7mzp07GDFihH6u+/n5oUOHDti7d2+y7c2dOxd16tSBl5cXXF1dERwcjFatWmHKlCl6mdSuExcvXkSvXr1QvHhxWCwW+Pr6omrVqnjxxRfx77//Akh4NjbxzgMAvPjii8nGNPn+++/Rpk0blCpVCp6ennBzc0PFihXx5ptvIjw8PEm8zZo109f/999/8eabb6Jo0aJwd3dHu3btcOnSJT22jJxHaVmyZAmaN28OPz8/uLq6okyZMujbty+ioqJSLL98+XLUqFEDrq6ueOKJJ1K8Zmbmb5OVGBK9/PLL+rF26NABVqs13eOlvCe1z+6dO3eiVatWKFy4MCwWC4oUKYJ69eph6NCh6Z4bAHDp0iV07twZXl5eKFq0KIYOHYqTJ0/q+2rWrJle9vjx4+jduzeqVq2q769o0aLo0KEDdu3alWS7j18rFi1apLcjUmqbUMGRE+fy4+fbN998gzJlysDT0xPt27fHlStXEBcXh6FDhyIgICDVz/yUxnDI6Gd+bGwsRo0apV/TPT09UbZsWTz//PNYtWpVusdvv+///vsPHTt2hJeXFwoXLowhQ4YgLi4uSax3795F//794ePjA19fX/Tr1w/h4eEZHociK+2ylGL9999/0aRJE3h4eKBy5cpYsWIFAGDFihWoVq1amu1sR7ZREsdJS3Tp0qVk78W1a9fw0ksvITQ0FAEBAbBYLChcuDBatGiB1atXJ9nfzp07k7wfy5cvR5UqVeDh4YHGjRvj2LFj0DQNEyZMQHBwMDw8PJK0PRLZt9Vu3bqF3r17w9fXFz4+Pujduzdu376d5t+JMkHkMU2bNhUAUvzp37+/EEKI/v3768t27NghwsLCUl0nsYwQQlSqVCnVMs2bN08SR+nSpfXXypUrl6x879690z2W+fPn6+WrV6+e4n5//vlnvfzjx5XSdsaPH68vX7ZsmZAkKdk2a9Soof8+f/58vfznn3+erKzFYhFVqlRJtl/7WHbv3q1vY9euXfryV155Jc3jt1qtok2bNqm+54nGjx+vL7OPJfHH29tb3Lt3Ty//zz//CF9f3xS36eXlJfbt25etGObPny80TRO9e/fWl/Xt21eoqpru3zw/cqY6N2HChFT317BhQ71cVFSUqFmzZorlSpcuneH3JTWpHUviti9duiRKlCiR4rYtFov47bff9G399NNPqcYRHBysl0vpOmGz2cQTTzyR6vrffvutEEKk+bdMvIakVY+qVKkiYmNjUzynUvpbJv4tMnoepeall15Kdd2wsLBk70vlypWTlZNlWZw+fVrfZmb+NlmJIfFv8+677+rLWrZsmeT9o/wlpc/u06dPC3d391TPjf/++y/NbUZERCS5jiT+hIaG6r83bdpUL79kyZJU9yXLsti+fbte1v58TO0abd82oYIjJ85l+/OtfPnyydavUaOG6Ny5c7Llj3/mP/45KkTGP/PTuk7b7ye1dnjiskKFCgl/f/9k2xg7dqxe1mq1ijp16qRZd+2PISVZaZc9Hquvr2+yWCVJEuPGjUu2zcfb2Y5uo9i3sR//SXwv/v7771TLABA//vijvs8dO3boy8uWLZvsu1CxYsXEoEGD0jwnhEjaVkvpWlijRg0RFxeX5t+KMibP9XCYMWMGpk+frv+/Xbt22L17N3bv3o2xY8emuE5QUBB2796Ndu3a6cumT5+ur1erVi0AwJAhQ7Bw4UL8/vvv2LlzJ9asWYP27dsDAHbs2IG//vorxe3HxsZi0aJFmDVrFlxcXAAAS5cuzdAdikTHjh3D0KFDsX79evTp00dfPmLEiHR7CaREVVUMHz5cv+Pes2dPrF+/HsOHD9fvWtqLiIjQ79wCwJtvvon169en2itg4MCB+u+LFy/Wf1+zZo3++wsvvJBmjNOnT8emTZsAAB4eHpg4cSI2btyIb7/9FnXr1k1xnVOnTmHMmDFYs2YNQkNDAST0uEi84yKEQP/+/REZGQkAGDlyJDZv3ozJkyfDZDLhwYMHePHFF/X3JSsxAAl/l8Tj7tatG+bPnw9ZznPVxSGcqc799ttvABIGJFq0aBG2bt2Kn376CUOGDEFQUJBebuzYsfoghYULF8bUqVOxceNGzJgxA5UrV87y+5KSW7du4auvvsLmzZvx3nvvAQBee+01XL16FQDQr18/bNy4EbNnz4aXlxdsNhteeuklPHz4MMkxmc1mzJkzB9u2bcPixYsxcuRIlC1bNs19nz59GmfPngUAtGrVChs3bsS6deswY8YMtGvXDq6urgASno198cUX9fXee+89/VgT/149evTADz/8gPXr12Pnzp1Yv349+vXrByCh3v76668pxnDnzh3MmTMHixYtgq+vLwBgz549OHHiRIbPo5SsXLkSP/zwAwDAZDLh7bffxu+//46ffvoJzzzzTJK7Kfbvx8CBA7Fu3Tq0bNkSQMIdsu+++04vk5m/TVZiAIBp06bhs88+AwA0btwYa9asydHnkin3bdmyBbGxsQCAoUOHYtu2bVixYgU+/vhj1KlTJ9VzI9GUKVP0u3GlSpXC0qVLMX/+fP3cfFylSpXw5ZdfYvXq1di+fTu2bduG2bNnw9XVFZqm6efb486cOePQtgk5n+yey/bOnz+P0aNH47fffkNwcDAA4N9//8W6devwxRdf4Oeff4a7uzsAx37mJ5YrXbo0VqxYgc2bN+P7779Hv3794Ofnl+H479+/jyJFimDlypWYOHGivnzu3Ln67/Pnz8fBgwcBAH5+fvjuu++wbNmyTH1ncET7IzIyEhUrVsSaNWvQs2dPAAlt6I8//hidOnXCunXr9MdU7NvZgOPbKC+99JI+BgcAFCtWTD+exF4XxYoVw6RJk7By5Ups3boVO3bswI8//ogiRYoAAD7++OMUjzMsLAwDBgzA+vXr9bEsbt68iW+//RbvvvsuVq1ahcDAQACP2h4psdls+OWXX7BgwQIEBAQASDg3582bl6H3m9JhbL4jZfaZq5TuJKaW1UtteaLjx4+Lnj17ihIlSgiLxZIskzVt2jS9rH3Wa9WqVfrytm3b6suPHDmS5nHYZ3Xts2qKoohSpUrpr+3atSvN+FO6O7Zv3z59WfHixYXNZtPLN2zYUH8t8e7kL7/8oi+rW7duqrHY7zfxzqi/v7+wWq1CiEd3rIsXL57uHX/7bO7cuXNTLWef+ezUqZO+fOnSpfryYcOGCSGEOHz4sL6sZs2aYvfu3fpPgwYN9NcOHjyY5RjsM9MdO3bUj92ZOUudq1+/vp5V//vvv8XDhw+TlVFVVRQuXFjf5qZNm7L8vqTG/ljmzZuX5LW7d+/q2fhixYolOYf/7//+T19vxYoVQgghevbsKQAIDw8PsXXrVhEVFZXiPlO6Tpw+fVpf1rdvX3H+/PlU6+3jvXwed/nyZTFo0CBRtmxZ4erqmuxvOXz4cL2s/d2ZqVOn6suHDBmiL1+9erW+PL3zKCWdOnXS13n33XdTLWf/voSGhurL9+7dqy/v3LmzECLzf5usxPDkk0/q+3jqqafE/fv3M3S8lHeldP7OmTNHX/b111+LGzduZGqb9r391q5dqy+33659DwdFUcTXX38t6tatK7y9vZPd8fPz89PLZrZtQgVHTpzL9ufb008/rS9//fXXk3w+JerQoUOKn/mJy+x7B2TkM18IIYoVK6Z/Bhw+fDjVu9bp9RoAIA4fPqwvt+81FxkZKYQQol27dvqyGTNm6GU3btyY4jGkJqvtMvtYz549K4QQ4sCBA/oyDw8P/XNn+fLlydrZOdVGsY8tteNfsGCBaNy4sfD19U2xB3fitu3fm5IlS+rtGvue3I0bN9a3a3+u2bc97NtqW7Zs0Zd/++23+vIWLVqkejyUcc55yzYFly5dwtNPP42lS5fi6tWrKWbuE++aP65p06b67/7+/umWT8lTTz2l/24ymVC7dm39/xcuXMjwdlJap2bNmjCbH43/Wa9evTTL29/ZfzwWey+99BKAhGfRNm7ciP/++w9nzpwBkHC3M707/ol3VgHg2WefTbNsovTea/ttHjlyBI0bN9Z//v77b/21xF4bWYkhMTNdpkwZLF++HBaLJUPrUVJG1LnEnjnXrl1DgwYN4OXlhQoVKmDw4MH6uRAeHq4/G+rq6opWrVpl5rAy7bnnnkvy/3Pnzuk9cG7evJnkHLZ/ljTxHE4cTyEmJgatWrWCj48PSpYsiT59+ujnamoqVqyIxo0bAwAWLlyI8uXLw8vLCw0aNMDnn3+O+Pj4DB1DdHQ0nn76aXz77bcICwtLcb2cvH6mJCeuL5n922QlhkOHDkEIAW9vb6xfvx7e3t4ZWo/yl06dOunn2LBhwxAUFITChQujXbt2WL58ebrr239m27cfGjRokGL5ESNGYNiwYThw4ACio6OTjTeUWn1zdNuEnE92z2V79u3TwoUL67/XqVNH/z3x7jLgmM98+3JHjx5FrVq14OnpiapVq2LEiBG4ceNGhuMvVKhQkhmcUvocyWzdzSm+vr76oJL273WlSpX0z52U3uvcbKPYmzp1KgYMGIDdu3cjMjIyxTHTUjofateurX8fyc45Zf+3sj9PeR10jAKTcPjxxx9x//59AAmVfvXq1di9ezdGjx6tl9E0LcV17btb2X+xT6kyZFRKXdDsl6mqqv/++IBsWdl2Vsr3799fP95Fixbp3aYAoFevXpnaR0Y56r1O7OqVFSaTCUDCgHbTpk3L8nYKOiPq3Msvv4wNGzagb9++CAkJgYuLC86fP4958+ahadOmyT5oEgcLykmJXfkyK/Ecbt26Nfbs2YNBgwahVq1a8PDwwNWrV7F48WI0bdo0zQ9DWZbx+++/48svv0Tbtm1RqlQpxMbGYu/evRg9ejSGDh2aoVhWrVqld6+sXLkyfvnlF+zevRtTp07Vy+Tm9TOr8tL1JTo6OsljbuRcihUrhn/++QdjxoxBo0aN4O/vj4iICGzcuBHdu3fH0qVLM7yt9K5RVqtV7/ZrNpsxadIk7NixA7t379Yb2hk9x3P6ekj5jyPPZR8fH/13+5tWhQoVSrG8oz7zJ06ciCVLlqBbt26oVKkSJEnCqVOnMHXqVLRu3RqKomQo/scfv0jvc8TI+uTo9/pxjmij2JsxY4b+++jRo7Ft2zbs3r07yZSfKbUzcuI4eR10vDyZcLA/YVJrxGZ2vWvXrum/v/fee+jUqRMaNWqUqWeqsmP//v3676qqJsn6lStXDkDSSnPz5k39940bNybbXuI6QMKdfvsExb59+9Isb7/vx2OxV6xYMf357bVr12LJkiUAgAoVKiTJHKbmiSee0H9fv359uuUzwn6bTZs2hRAi2c/Dhw/1GSiyEsN7772nN9LGjBmjH7czc5Y6J4RA27Zt8dNPP+HYsWN48OCBPtfzzZs38ddffyEgIEBvNMTFxWHr1q2pbi+r74u9xz+4KlSooC8rX748FEVJdg5brVZMmDBBP6YGDRpg3rx5OHToEKKjo/Hll18CAGJiYlK8PiQSQsDLywsjRozAhg0bcOnSJdy+fVt/rtJ+3IWM/i1ff/11dO/eHY0aNUo2MndWZeV9zonrS2b/NlmJ4dVXX0WFChUAJMzIM2nSJIfETnmLEAKlS5fGpEmTsHv3boSHh+PAgQP666mNeZKofPny+u/269n35Et09+5dvS6GhoZizJgxaNasGcqVK5fu7D4ZaZtQwZbdczmnY0vvMz9Rz549sWzZMpw+fRrR0dHo2rUrgIQZXux7Q2RXZupuWhzR/siKnGyjJG43peNJbGf4+/tj8uTJaNGiBWrVqpWk/ZGT7K+F9t+jeB10DHP6RXKffQbxzz//xIYNG+Dt7Y0nnngizXnm7ddbtGgRTCYTTCYTGjVqhNKlS+uvTZ8+HS4uLti3b1+yqfJyyp9//okRI0bgmWeewdKlS3H58mUACXc/69evDwB6IxQAxo0bh8jISPz111/Ytm1bsu3Vrl0bwcHBuHbtGq5fv45+/fqhT58+2LZtG/bs2ZOs/DPPPAM3NzfExcVh//79GDZsGNq0aZMklpQMHDgQa9asQWxsLA4dOgQg/cEiE/Xp0wdHjx4FAAwfPhy3b99G3bp1ce3aNcybNy/TF18goTEVEhKC48eP448//kC/fv3QrVs3WCwWXLx4Efv378eqVasQERGR5RjKlSuH1atXo2XLloiPj8eAAQNQrFixJFMUORtnqXNdu3aFt7c3GjdujBIlSkBRlCQN6Pj4eMiyjF69euGbb74BkNBb5/3330flypVx4cIFrFmzBr///nuy48vM+5KWxK6ov//+O86fP4+OHTti4MCB8Pb2xqVLl3D48GH8+uuv+Pvvv1GmTBm89dZbuHHjBp555hmULFkSZrM5yeBLaT0Wce3aNbRq1Qrdu3dH1apVERgYiLCwMNy5cyfZuvbHunLlSpQtWxYWiwV169ZN8rf84YcfUK5cOZw7dy7VQZwyK63zKDV9+vTRe11NmTIFiqKgefPmuHv3LhYtWoQ5c+YkiTsjMvu3yUoM/v7+WL9+PerXr4+IiAi89957KFGiRJIB+yj/W7JkCebMmYPOnTujbNmy8PHxSTL1XHqPM3Xu3BknT54EALzxxhuYNGkSYmJiUhwwLjAwUP98P3bsGObNm4fAwEBMnDgx3S8qGWmbUMGW3XM5J2XkMx8AGjZsiFq1aqFevXoIDg5GdHS0Xr/syzlC586d9TbEBx98AHd3d3h6emLMmDGZ2k5OtD8yIifbKH5+frh37x6uX7+OxYsXo3Tp0ggMDETFihVRunRp/Pfff7h79y4mTZqEGjVqYNq0aRmaEt0RBg8ejM8++wxxcXFJrrOdOnXKlf07vZwbHiLrbDabPsCL/U/iQGapDZSydu3aZOskHuKlS5eEh4dHstfsB1i0n3LSfiARe5kZ3Mx+oJwKFSqkGNvChQv18uHh4cLLyytZGfvBo+xjTG0aLPt92Q/+NmnSpGRlZVlOMm3d48eU0t/i5MmT6f4NhUiYGqhVq1Ypxmj/vqY2WF1qA+akNS3m49vOTgyLFi3Sl/n4+Ih///03Q8edHzlLnWvZsmWqf+vAwEB9UKfIyMgk08fa/9gPZpTe+5Ka1I4lUVpTTiX+JE6pOHDgwFTLuLu7i/PnzwshUh408sqVK2nuY/DgwXpM//77b4qDNIWFhYn79++LoKCgNP+W9nXUftDIxOMQIvW6ntZ5lBb7cyO19y+1aYXtp+S0H3wvM3+b7MSwY8cOfSBVi8WSZMAqyl9SukYtXLgwzXNoyZIlaW4ztWkx7a9b9uet/aBoiT8VK1YURYsWTVafMjJlt33bhAqOnDiXU7sGp/Z5kN5giPaf0Rn9zE9pOs7En6pVqwpFUTK9byFS/qxLbVpM+7qbkUEjs9ouS2kfqX3epdbOzok2ihBCdOnSJVmZxP3aD/iY+BMQEJBkusrEfaYWd2bPNftrbEptwpCQEE5Z7SB58pEKs9mMNWvWoFGjRpkaUOvZZ5/FF198gfLlyyd5rgpImFZq8+bNqFevHtzd3VG+fHnMmjULL7/8sqPDT1Hv3r0xf/58VK5cGS4uLqhUqRIWLlyY5K6Wv78/Vq9ejRo1asDFxQXly5fHN998k+SZd3s9e/bEkiVLUKVKFX2bP/zwA3r37p1i+TFjxmDatGkoU6YMXF1dUbNmTfz222/6oHIpMZvN6N+/v/7/0NBQVKlSJUPHbLFYsGHDBkyfPh316tWDl5cX3NzcUKFCBQwaNChD20jJk08+iSNHjmDIkCEoV64cXFxc4Ovri5CQEAwZMiRJj5DsxNC7d2/9GeuoqCi0a9cOV65cyXLceZmz1LnXXnsNPXr00AdHNJvNCA4ORu/evfHnn3/qjy35+Pjg77//xsSJExEaGgp3d3d4eHigSpUq+lSPQNbfl/SUKlUKhw8fxqhRo1C5cmW4ubnB29sblStXRr9+/bBmzRqULFkSQMJ52L9/f1SqVAk+Pj4wmUwoWrQoOnfujN27d6fZ3a9w4cIYP348mjZtiqCgIFgsFri7u6NGjRr4+OOPkzwzWb16dfz000+oUqWKPl1mIm9vb2zZsgUtWrSAl5cXgoODMWHCBL1LZXaldR6lZcGCBVi4cCGaNm0KHx8fuLi4oFSpUujdu3empjqzl5m/TXZiaNasmT6Vms1mQ5cuXfTeWJT/NWjQAEOHDsWTTz6JgIAAmEwm+Pj4oHHjxvjll1/0aepS4+vriz/++AMdO3aEh4cH/P398dprr2H27Nl6GQ8PD/33L774Qh/Qz8vLCx07dsS2bdv0KQZT8/zzz+OXX35BtWrVUm2bUMGW3XM5J2X0M//dd99Fp06dULp0aXh4eMBisaBMmTIYMmQItm/fro+t4wgWiwUbN25E3759UahQIRQqVAgvvPACVq5cqZexr7upyan2R0bkVBtl5syZ6N69uz7Vpb3hw4fj448/1v9GzZo1w/bt21GsWLFcOeZt27ahb9++8PHxgbe3N3r27ImtW7dyymoHkYQwYOQuyld27dqlj+4+efLkVBMgRERE5BhCiGRjwMyZMwevvvoqAOCtt97K0sDGCxYswIsvvggAGD9+PD788MNsx0pEj6RUdzdu3Ih27doBADp27JhkIHYyRpkyZXDp0iUAMGQg64IkT47hQHlDbGws7t+/r99RMZlMOTY7BRERET3SoUMHdO3aFU899RTc3d3x559/Yty4cfrrPXr0MDA6IkpN//79UbduXTRu3Bh+fn44dOgQhg8frr/OuksFDRMOlKp27drhjz/+0P//0ksvoUSJEgZGREREVDCcPHkSAwcOTPG1UaNG4emnn87liIgoIy5fvoyFCxem+FqPHj0yPPg6kbNgwoHSFRAQgC5duuCrr74yOhQiIqIC4eWXX8Zvv/2G8+fPIzo6Gn5+fqhTpw6GDBmCjh07Gh0eEaXihRdegKIoOHPmDCIjI+Ht7Y3Q0FAMGDAA/fr1S/a4BZGz4xgORERERERERORweXKWCiIiIiIiIiLK35hwICIiIiIiIiKH4xgOTkao0RDKHUBYAaECkgxIFkgmH8AUwOfGiJyAEAJQ70KokYCwAUIDJFNCXTcXgWQqZHSIROQAqlBxC3fxQDyEAhUAYIIMN8kNxRAAV8nF4AiJyBHiRDxu4S7iRBxUaAAAM0zwkjwRCH+YJJPBERJlHRMO+ZDQ4iBij0GLPQwRcwha/DlAuQlhuwloD1JfUbIA5kBIliBILqUhu4dC8qgF2f1JSObCuXcARJQhQomAFnsIIuYwtNijENZLELYbgHIrIamYGtkTkrkYYCkG2bUCJPdakD1qQXKvAUl2z70DIKIMuSxu4LB2Aoe0kzguzuKquImb4g7uIALa/758pMQPhRAkFUWQVARVpPKoJVfFk1I1VJLKQpbYiZUoL1GFitPiAg6JkziincQpcR43xB3cEHcQifupridDRlEURjGpCEpIxRAiPYEn5aqoJVdFSSkoF4+AKGs4aGQ+IISAiD0ENWo9tPsbIWL/BaA4dB+SSxnI3q0gF+oA2bs5JNnNodsnovQJLR7agz+gRa2DFr0Fwhrm4D2YIbmHQC7UBqZCz0LyqMNeT0QGuCeisEH7A7+rf+APbT/CEeHQ7XvCHfXkUHSQm6KD3BxlZU5pTWSE89plrNd2Yr22Ewe0Y4hBrEO3XxSF0VSuh/amZmgrN4af5OPQ7RM5AhMOeZj2cB/Ue4ug3l8P2K7n3o5lT8jeLWHy7Q7ZpyMkmV02iXKKEDZoUeugRvwCLXpr2r2UHM0cBJNPO5j8+kD2ejr39ktUAEWIKCxR12Gluhl7xRGo/3tEIjdUlSqgo9wS/UydUU4umWv7JSqIzmuX8aO6Cmu0bTgtLuTafs0wo4FUE11NbdHT1AE+kneu7ZsoLUw45DFCi4F6bzHU8LkQcceNDgcwF4GpcH+YAwZDcmEjhchRhO06lPC5UO/OB5TbRocDya0KTAFDYPLrA8nkaXQ4RE7jkHYC3yiLsVLbhDjEGxqLBAkt5Pp4zdQb7eWm7OFE5CCa0LBW247Z6hL8oe2HgLFfr9zhhm6mtnjd1AehcmVDYyFiwiGPEFos1DszodyeCqj3jA4nBWbIfj1hCfoAkkspo4MhyreE9SqUmx9DjVicMOBjXmPyhbnIUJiKvMXEA1E27NOO4n3la+zSDhgdSooqSmXwvvk1dJPbMfFAlEWa0LBEW4ePlVkIE1eNDidFLeT6mGAeijpydaNDoQKKCQeDCaFAvbsAyq1Pc/exiaySXGEKeAXmwHcgmf2NjoYo3xDKPSi3PocaPhsQcUaHkz5zMZiLvQuT/0uQJIvR0RDlG6e18/hAmYY12najQ8mQWlJVTDAPxTOmhkaHQpSvbFD/wAfKNBwTZ40OJUOel1vjI/NbqCiXMToUKmCYcDCQ9mA3bFdeh4jPHxeqJORCMAd9AFPA67wzQpQGIQTUu/Og3BgPqJFGh5Npkkt5mEvOgMm7hdGhEOVpD0QMxipf4Tt1ea6Oz+AoreSnMdM8HmXkYKNDIcrTzmuX8aoyPs/2XkqLGWYMNvXARPMweEictYpyBxMOBhBaDJTr4xLudBr8jFd2SZ4NYSk1D7JreaNDIcpztPiLUK4MhvbgD6NDySYJJv9BMBf/FJLJy+hgiPKc7epeDLF9gMvIBz0V0+AFD3xqHoFBph68mUD0GCEEvlEX4QNlusNnm8ht5aSSmGuZiMZyHaNDoQKACYdcpj3YA9vlQRDW3Bu1NsfJHjAHfQxzkdeMjoQoz1DCv4Vy/d3cnXUih0kupWEuOQ8m76ZGh0KUJ8SIWIxRPsd36nLDB4lzpGbyU5hn+RilpCCjQyHKE8K0qxhkG4c/xUGjQ3EYCRJeNb2AT80j4Sa5Gh0OOTEmHHKRcmc2lGujAChGh5IjZN9usJSaB0lmFy0quIQWD9uVV6FF/Gx0KDnEBHPxz2Au+pbRgRAZ6rK4gW7WN3FUnDY6lBxRBIXxs8tXvANKBd52dS/62EbiHqKMDiVH1JaqYZnLdARLgUaHQk6KCYdcIIQNytVhUO9+b3QoOU5yfxIuZZdBcilhdChEuU7YbsAa1gMiZr/RoeQ4U+F+MJeYCUl2MToUoly3RzuEF6zDcBt5cVYpx7HAjKnmsXjZ3M3oUIgM8Y2yCGOUL6A46c3CREEogl9cpqGeXMPoUMgJMeGQw4QSAWtYd4iHu40OJfeYi8Gl3ArIHrwrQgWHFnME1rDn88dsMw4iedaHS9kVkMwBRodClGt+UlbjDeUjWJEHp7XNIa+aeuFL8zuQJdnoUIhyhSpUvKlMxA/qCqNDyTVucMVcy0T0MLU3OhRyMkw45CChhMN6vgNE7FGjQ8l9sjdcyq2G7MVptsj5aQ/3wXq+I6A5Z3fLtEhu1eBS/ndIFnbFJOc3S1mMkcokpxqvIaNekJ/Fd5ZPYJJMRodClKNswob+tjH4VdtsdCi5ToKEmebxGGjuanQo5ESYcMghQrkL67nWEHEnjA7FOLInXMqtYdKBnFpCsuFZQIs2OhTDSK6V4FJhCyRLUaNDIcox3yiLMFKZZHQYhuomt8OPlsns6UBOSxEKettG4jdtm9GhGEaChOnm9zHI3N3oUMhJ8BMjBwg1KqFnQ0FONgCA9hDWC52hPcx/8xQTZYQWc+R/PRsKbrIBAET8GVjPt4dQnPt5diq4vlOWF/hkAwAs1zbgFdv74L0qckaa0PCi7d0CnWwAAAGBt5SJWKj+ZnQo5CSYcHAwIVTYLvaGiD1idCh5gxYNa1hXCOsVoyMhcihhu54wZkMBfIwiJSLuOGwXX4AQzj2wFhU8W9Q9GKp8bHQYecYi7Td8os42Ogwih/tAmYbl2gajw8gTBARes43HH6rzD4JNOY8JBwdTrr8LLXqr0WHkLcotWMO6QWgxRkdC5BBCi4M1rEeBGiAyI7QHf0C5NtLoMIgc5j/tIvraRkGFanQoeconymysVrcYHQaRw/yi/o4vVOefTS4zbEh4vCRMu2p0KJTPMeHgQMrdH6HemW50GHmSiD0C2+VXjA6DyCFsV16FiOGjQilRw+dCCf/W6DCIsi1KRKOL7U1E4r7RoeQ5AgIDbe/hmHbG6FCIsu0f7TiG2D4wOow8KRwR6GZ7Ew8EbxpS1jHh4CBa7DEoV98yOow8TYtcAeU2EzKUvynhc6FFLDE6jDxNuTYCWswho8MgypZXbONwVoQZHUae9RCx6G4byi8ilK9FiWj0sA5DLOKMDiXPOi7+w2u2D40Og/IxJhwcQAgFtsuDABFvdCh5nnJjPLS4/4wOgyhLtPgLUK6/Z3QYeZ+wwXZ5EIRmNToSoixZoq4r8APHZUSYuIr3lC+NDoMoy0Ypk3EVN40OI89bpv3Ox6goy5hwcAD11mQOEplRIha2K4MghGZ0JESZIoSA7fJgQHtodCj5gog7AeUWB9qj/OemCMdI22dGh5FvfKsuww51n9FhEGXaRnUXflJXGx1GvvGWbSLCRYTRYVA+xIRDNmmxx6Dc4lRZmSEe7uVYF5TvqOGzIR7uNjqMfEW99SW0mH+MDoMoU96wfYR74OwzGSUgMNj2Ph+toHwlSkTjddtHRoeRr9zGPQy3fWJ0GJQPMeGQTbarwwBhMzqMfEe5ORHCxi5slD8IJRzKjfFGh5EPqbBdHW50EEQZtlHdhXXaDqPDyHcu4zqmKBwslvKPT5U5uIZbRoeR7yzXNmInp8qkTGLCIRvUqA0QD/cYHUb+pD2EcotdVil/UG5NBrRoo8PIl0TMfqiRq40OgyhdmtDwvvK10WHkWzPVRbgh7hgdBlG6LosbmKNy8Oesel+ZanQIlM8w4ZBFQmhQbrxvdBj5mnr3B2jx540OgyhNwnoJavg8o8PI15Qb4yGEanQYRGlaqq3HMXHW6DDyrRjE4lNlttFhEKVrovIN4sFBjbPqgDiGVRxAkjKBCYcs0iKWQsQdNzqM/E3YoNzg83OUt9luTOQMNNkk4s9AvfeT0WEQpcoqbJigfGN0GPnefPVXnNcuGx0GUapOaefxs7rW6DDyvfHKdKi8kUAZxIRDFim3Pzc6BKegRa6AFn/B6DCIUiSsl6FFsNulI6i3vuDsNJRnLdN+x0Vx1egw8j0FCr5S5xsdBlGqvlC+hwp+Uc6usyIMq7WtRodB+QQTDlmgRm+FiDtldBhOQoMazi6YlDcp4fMANkwcQljPQ7u/0egwiFI0S1lsdAhO42d1Le4JzvJBec8tEY7l2gajw3AaM5VFRodA+QQTDlnA57kdS723EEKLNToMoiSEZoV6d4HRYTgV9S6vnZT3HNCO4ZA4aXQYTiMWcVik/mZ0GETJLFB/hRWcWc5R/haHcUw7Y3QYlA8w4ZBJwnYTWtTvRofhXNRIaJErjY6CKAkt6jdADTc6DKei3d8MYb1idBhESfygrjA6BKfD95TyGiEEFqi/Gh2G0/lBZfud0seEQyapkSsBKEaH4XTUiKVGh0CUhBrxi9EhOCENauRyo4Mg0tmEDb+qm40Ow+mcFhdwROOjp5R37BNHEcZxWhxuuboBGsdnonQw4ZBJWhRHts0J2oNdEGq00WEQAQCEFgstepvRYTglNWqd0SEQ6XZpBxEFfvbkhP9v786jo6jSPo5/763qTkJIk5CwJAEBAREkxrANrqO4oKDiAuMoIrjguCuoM6+izisuo86MjuKooB5xgxHXV0FHZR2XwygjyyAoioMw7DuBQKe76r5/BBMwCSQk3bfTeT7neI7pVFf/ulJPUfVU1a2p/izbEYQoN9WT9TEWNrGVuWaB7RgiwUnDoRaMtx1/12e2YyQnU4pfLM/0FYnBL54BRsYViQWz65+Y6GbbMYQA4H1/tu0ISWuaN9t2BCHKTZNajxmpdXEw0nCoBX/Hh2BksJlYkTOfIlH4si7GkIe/Q0YJF4lhmj/HdoSkNd8sYbVZbzuGECz3V7LULLcdI2lJM0ccjDQcakHOwMeWXyzP8xWJwZNajylvh9wzL+z7zl/BCrmnO6Y+9uSqUGHfdP9z2xGS2jfmB1aatbZjiAQmDYda8Eu+sh0huUU3yAj2wjoTWQ+R1bZjJDWzW7alwr55ZrHtCEnvK/O17QhC8C+p9Zj7ypdlLKonDYcaMn4JZs83tmMkPb9kvu0IopHzd8s6GGsmvBzj7bAdQzRy8/0ltiMkPVnGIhHIehh7X8kyFgcgDYcaMrsXAZ7tGEnPlzOfwjIjVzLFgZHmorBOdpBj799mGVEjjxIX9uwxYZaaH2zHSHrzjWxPRfWk4VBDfskC2xEaBbN7ge0IopHzZR2MC6l1YdtCs9R2hKS3h7AM1ies+rdZRhRpesXaAl+2p6J60nCoIVP6o+0IjYIsZ2GbrIPxIctZ2LTZbKOYXbZjNAo/mjW2I4hG7EcjYzLFw0a2UCKPExfVkIZDDZmojL4aDyayznYE0cjJOhgfspyFTevMRtsRGo21sqyFRbL+xY8sa1GdmDYcHnnkkVpNP2LECKZOnVrnz83JyTmk982ePZvBgwdX/cvIWn41OkLuSWEuvi1S/vKXi316XFjKUeeGeXB8xSVbP6wyHH9J2es33h/BGFNplpu2GvqPLKX7uaVcdGuEPeGyaZ54JUrPwaUMv6Pic158x+Ol/4v/GBJjn4oQ6h0m1DvMVXdHKv3+xf+L0qxPmIzeYc4cWQqA7/t0PitMZp8wv761tHzagkFhPv78IN/B24rx99TrdxCxlyy1bowH0Y1S63GodWniilg44L/j+1hrNhL51UrCuUuJXFzxdCT/yxJKe3xP+KjviD64ofx180MppccvJ3zUd0RuXFNlnZtNUUr7/4fS7t8RuWglZo8PQPSJTZT2/J7I8IpHcHovbsV7aWtdvuohi4zdQDj0NeHQ10SuqvxY0OiLWwk3W0I442tKz/wPUFbr4c7fEs5cQumvV5ZPGy74Du/j4gN+njR3RCzUtNbXSa3HrdbXUvda33d/csWKFfTq1QuAd999l8cee6zO8xd2JFTDIZGZyDpuuMThufvc/V6/5Q9RXvyDy6K3g/z9M5/F35VtdMY8HmXMNQ5fv5vCpm3wwSd+pXn+6QWP8051WPxukA75ihfeLpvm1fd85r0ewHXg38t8SnYb3p7uc+k58b0gZc8enz+94DPrxQDLPggw5e8+3/+4//cY/ZDHCw+4bP4swLyvDe/M8HhrusF1YMvcAB9+Vrahfu0Dj7RUxenHOQf9XBORA5GGJmlqPboe8KXW41HrcoWDsGgdG3FuyMZ9rs1+r0dvWYv7YhuCizrh/30n/uKyBnh0zHqcMS1J+bozbPLwP9hZaZ7enzbhnBciuLgzqkMQ/4Wygwz/1e0E5nUEF/x/78GU+Phv70Bfmhnz7/lz/h4f/08bCczqQGDZEfhTtuN/H97/e4xei/tCPoHNXTHzduO9sx3zVjG4isCWIzEfln1377VtqDSFc3rGAT9zHZti9n2EOJi1Rmo9brVeD83F6vYnzz33XEaNGlXj+XieDPSfSGq8V7tixQoKCwsZPnw4Xbt25aKLLirv+n300Uccc8wxdO/endGjR2OMYcyYMWzbto1jjjmGa665ptL8pk2bRlFREYWFhVxyySXlr3/88cf07duXzp07M2fOHKBspbn11lvp3bs3hYWFvPrqqwBEo1FuvvlmCgoKOProo5kyZcp+n7F69Wr69OnDF198wfLly+nfvz+9evWiX79+rFixAoAvvviC7t27c8wxx/D6669X+/2Nt5WTemky0lX5a2s2GDwPCo7QOI5iSH/NB//wMcYwd6HPWSeWLd6LB2re/0flg5Bpc3wuGbjvNGXFkZIC0SgYwHXgiVc8bhjqoLWqNI9Yevk9n+xM6NlN0zpH07Wj4q+TKwp4/lIf38AFpzsEg5p+fRXPv+GRFiz7/Z4wOHvXsDsei/LKw27lD6mKZ6cTLMo05lo30bJ1T2o99rVupM5FPXj44Yfp3r07BQUF5duLn8yaNYtjjz2WjRsr7wRvNTvQJ6WjMip2g8yaCHigC1JRjkIPaYb/QTHGGPy5JeizmgKgL26G/37lM33+tGL0JZnl03g/TZOiIMreQgfvic04N2Sj4lznAP7L2yDbRfdsgm4dQHVNwfvrlorfz98NPjgXNEMHNapfU7znt0La3qx7gL29xOgd63FfaVPpM35uq9le/19ENDqHXOtsl1q3XOs//9v9/OqUwYMHM3v27APuT06cOJHbbrsNgI0bN3LBBRfQq1cvjj32WObPL3vq1YgRI7j22mvp06cPDz30UA2XlIiHWp1GW7p0Kb/73e9YsmQJ69ev59NPP2X37t2MHDmSd955h0WLFvHtt9/y9ttv88ADD5CZmcmCBQt45pln9pvPhg0buPHGG5k6dSoLFy7kySefLP/dli1bmDt3LuPHj2fs2LEAPP/88+Tm5vLll18yd+5cHnnkETZv3syECRPYsmULCxcuZNGiRZx++unl81m1ahWDBg3ir3/9K3369OG6665j/PjxzJs3j7vuuovbb78dgCuvvJKJEyeyYMECNm06QBfeVL7EeO1GQ17Lio1IXkvF6o2GzdugeTOFUqr89TUbKr2dHTsNzTL2TtOiYpqRgx1OuDRCqClkZykWLTOcdmz8h9v4fqUhO7Pi57wW8OOaikvLlnzvk5Fe8fv2+Yq1mwwDT3ZIT4P8UyIM6a95cHyEozopjmhfw+9QxbIW8dVoa72adU9qPQa1LnUu6ujLL79kypQpzJs3jzlz5nDPPfewZk3ZAIUzZszgzjvv5L333qNFixaV3huh8vpn1kZReRXNMpXnYlZHYbOHau6U17nKC8CaKt6/w0M1c/aZpuzWK2dkFpETfoCQg8p2MYv2oE9rWvcFcAjM92HI3ufqo7wA5seK26H8JWHY58BMtQ9g1kZxBoYgXRPJ/wY9pBmRBzegjkpBH5F60M+MyBMCRB3VrdYrr39S6/Gr9QP97X7uQPuT+7rlllu44447mDdvHi+99NJ+zYnNmzfzz3/+kzFjxhw0r4ifGp5yLtOlSxe6desGQFFREStWrCAjI4MuXbrQvn17AIYOHconn3zCBRdcUO185s6dS79+/cjPzwegefPm5b8777zzAOjZs2f5mcmPPvqIxYsX88orrwCwfft2fvjhB6ZPn87o0aPRuqxgsrKyANizZw9nnnkmEydOpHfv3uzcuZNPPvmkfN7GGNLT09m2bRvhcLj8/qChQ4fy0ksvVR3aVD5rGSvDznUYdm7ZRmLUQxHuvNphwhSPWV/49PuFZuSQg9+WYNu811MAiEZ9Dj8jwrw3AvT5VSmbthl+e6XDNRcdaNWL37IWVWu8tR7fS/Aada3HcZsqktNnn33GhRdeSGpqKqmpqZx66qmkp6ezcOFCbr31VmbMmEF2dnaV7/WpfF92rDjDsnCGlW2zIqPW4tzZAm/CFvxZu9D90nFGNj/IHBJDyrxOAPhRn8jhywjM60Rpn+8xmzyc3+bgXlP1svbivF0VyadutR6/f2saTK0bU/bfT///s9+lfNkR+KnWvyMwr+P+tf6bqr9HVcu6ur9dXUyfPp2vv/66/OetWyuumBw8eHB5w0gkjlqdSktJSSn/f8dxYnJ/zE+fse/8fd9n/PjxLFiwgAULFrBixQp69+5d7TyCwSDdu3dn1qxZ5e9v1apV+fsXLlzI559/DlDzlVJV3vHPbaFYs6GiUNdsMOS1UGRnwpbtpvwy9DUbDLmVm66Emiq2F++dZmPlaZat8IlEoUMbxdQ5HpP/FOC92R67dsdnR6nTYYrN2yp+XrMR2uZWLK9unTTF+zxVbMVqQ+uc/ZfntWM9zu2nmfh22SXbX7wW4L6nD7beJP5BVrJrvLVe9cGx1HoMar2KbaoQ9SE/Px+l1H47pD/nVLH7o3JdzJqKM3Rmzd6zoNkOZotXXudmTQRyA5XfH3Iw2719ptl/e+IvC0PEoDoE8aYWE5jcFu+9Ysyu+B0QqU4psHmfulwTQbWt+C66WwoUV+QxKyKo1vt/D+/aNehzQ/gTt0K2Q+CLjnj3VX/vtiv/posYqVmtV17/Gn2tK4U+KrWs1pUCpSpqfe/PKIV33Vr0oBD+i9v2r/V9ptn3P7eG57EXLFiA71csi3A4fICpqzZv3rzyfb0ff6x4zHaTJk1qPS8Re3W+drdLly4sW7aMH3/8Ed/3mTx5MieddBJQ/YFK3759mTlzJqtXlz0bd8uWLZWm2dcZZ5zBU089VT6vxYsX43kep512GhMmTChfaX/qcGmtefnll5k5cybPPfccoVCIVq1a8d577wFl94kvXryYzMxMUlJS+OqrrwCYPHly9SFUsNJLeS0Vji4b7M3zDK9/6DPgJI1Sij5H6/LB4/72ftnrP3fWiZpJ08qmmTzNZ8BJ+28UH5zgcefVLqURKNn7aNtdu6E0TlciDztHs3kb/GuJz7pNPkuXG268pCJjUVeNVvDWxx6lpT4z5xquGlzx+01bfT76zOeJOx2KdxlKI+AbCJdW8WH7UpU37sK+RlHrunKdg9R6TGpd6lzU0QknnMBbb71FOBxm69atzJw5k5KSEnJycnj33Xe5/vrry+/t/bkgVRxE5AXA2TvYm2fwX9+OHpCBUgrdJ6188Dj/b2Wv/5w+KwN/0rayaSZvx/nZNN6DG3HvbAGlBkr27mzv8st+jhM9LBM2R/H/VYK/LoJZGsa5seLMsC5KAw3eW9vxS33MzJ04V2WV/97fFMX/aCfOE60xxV5Zdh8IV38gFahiWQtRG1LrtWej1qtqOFT1txsxYgRLliwhGo2yfv368hNDULOTXKeccgpPP/10+c8LFy6swRIRNtW54ZCWlsaECRMYNGgQRx99NJ07dy6/nHn48OEUFBRUGvijZcuWPPHEEwwcOJDCwkJuuummA37GyJEjad++PUVFRXTv3p1Ro0ZhjOHqq68mMzOTgoICCgsLmT59evl7gsEgb775JhMnTuTNN99k0qRJjBs3jsLCQgoKCpgxYwYAzz77LJdddhlFRUXVXo4FoNxsBvymlKG3R/jwM5+O/cPMXejz6P+4DL8jSsF5pZxxnKZ757JF+sBNDvc/49HtnDBZIcoHlRv7VJSps8sK6fYrHN762OOoc8MsX2W4/PyKP8enX/kc3kaR11KRFVIUHqnpObiUoq6arFB8LhVKTdWMGq45ZXiEzmdFuPAMTad2mrb9wsxfWrbB+ePtDpePiZJ9XIQe3RTnnVpxEDLsd1FGDXfQWjPqMoclPxg6nxnhskEHXu2Ue2iPOhSx1RhqXTllr0utx77Wpc5FXfXq1YshQ4bQs2dPTjrpJO69915yc3MBaNu2LW+88QbDhg1j2bJlld6brbIoHbCCyNBV+B8WE+74Lf7cEtxHc4kO/y+lBd+hz2iK7l5237LzQCu8+zcQ7rYMspzyQeWiYzfgTd1RNs3tOXhv7SB81HeY5aXoy/fZef90F+rwICovgMpy0IWplPb8Hl2UisqK3xUAOlWjR+UQOeU/RDovQ1/YDN0phXDbb8oGkQOcP7YmevlqItlLUT3ScM5rVv7+6LBVOKOy0VrjjMrBLAmXzeeyrOo+khxV/e+EqIm61Xqm1Hqcar1FFbVe1d+uXbt2DBgwgG7dunHVVVdRVFRUPn11+5P7GjduHLNnz6awsJCuXbsyadKkQ1lEIo6UqeoBs6KS0uVn4xdPP/iEoo4UKYU7UHL2U1hgjCG8MANkkLOYU+knktL5Y9sxRCM12/uCMyNX2I7RKPzevZE73N/YjiEaqXsij/OI96ztGI3CnOCr/EIX2o4hElD8h0NvqNzWthM0Dm6ONBuENUopCLSyHaNRUAHZpgp7cpVcYRMvrZFlLezJUy1tR2g0WqsqBrESAmk41JjsHMeHksaOsEwFcm1HaBRUIM92BNGI5cpBSNzIAZ+wqbU0F+MmF2k4iKpJw6GGVEpH2xEaBVnOwjYV7GA7QqOgUg63HUE0YiHVlBYkyCPqktzhqq3tCKIR66gOsx2hUWhDa4JyhbKohjQcakin9bAdoVHQTYoOPpEQMaSbSK3Hg06TWhd2HaO72o6Q9EI0pZNqZzuGaMS6qo6kknLwCUWdFOlutiOIBCYNhxpSad1AyQYr1pQ0doRlSg6E48BFpR1tO4Ro5IqU7CDHWqE6smxsHCEscZXL0aqL7RhJTxoO4kCk4VBDSgVQaQW2YyQ9ucJB2Fa2DsoOciyp1K4onWo7hmjkesgOcsz10EfZjiCEHAzHQQ9p4IoDkIZDLegmvWxHSGoq2B7lyuA+wi7lNEOldLYdI6np9N62IwhBby1X2cRaL93ddgQh6KXlhGEsKRQ9pdbFAUjDoRZ06EzbEZKaLF+RKGRdjC2dIctX2JevWlGgjrAdI2m5uJymj7MdQwj66xPQcsgTM71Ud1ooGYRXVE+qrxZ001NAp9uOkbR0aKDtCEIAsi7GlEpFh06znUIIAAbqU2xHSFrH6SKyVDPbMYSgpcqmt5KrHGJlgHOy7QgiwUnDoRaUTkFnnGo7RnLSGeimv7SdQggAdNPjwZFufSzojJNRuontGEIAMFB2lGPmbGnmiAQitR47Z+uTbUcQCU4aDrWkQ2fbjpCUdOgMlA7ajiEEAEq56FB/2zGSkmxDRSLppbqTR0vbMZLSQDkIEQlEGmCx0U7lU6DlKSDiwKThUEtO5vlyW0UMOFlDbUcQYj9Oc1kn651Kxcm80HYKIcoppbjYkSZYfTtWFdFRH2Y7hhDluulO8ijcGBiqz7EdQTQA0nCoJeVk4GQOth0juQTy5WyySDi66amoYHvbMZKKzjwf5WbZjiHEfi53LkTJo3Dr1RWu7CeJxHOFIw3v+qTRjHBlmYqDk4bDIXByrrEdIam42VehlGM7hhD7UUrh5FxtO0ZScWXbKRJQJ92OU/WxtmMkjRyyGKLlSTQi8VzsnEMzMmzHSBoD9ckcpnJtxxANgDQcDoFuUoRKP952jOSgUnFyRtpOIUSVnOaXyy1U9UQ16Y1O/4XtGEJU6QbnUtsRksYVzmBSVYrtGEJU0lQ1Ybhzvu0YSeN62W6KGpKGwyFyW99pO0JScHKuRrk5tmMIUSXlZuHkXGs7RlJwW8k2UySu/vpEeqqjbMdo8DJI50Z3mO0YQlTrFncEaaTajtHgHad6cLLTx3YM0UBIw+EQORmnopv2sx2jYdMh3Fa/s51CiANyW94Gjow7UBcq/XicZmfZjiFEtZRS3OeOsh2jwbvFHUELJY8UFokrT7XkekcGha6rBwKyvRQ1Jw2HOnDz7gcZaOqQuS1Hodxs2zGEOCDlZpY1HcQhC+Q9YDuCEAfVz+krYznUQUuac7Mz3HYMIQ7qNvdKsgjZjtFgna1P4VhdZDuGaECk4VAHukkPtDzi7dC4rXFa3GQ7hRA14rS4DgL5tmM0SDp0Djq9r+0YQtTI/e4oeWLFIbrDvYamqontGEIcVKYKcbt7le0YDZKDw1j3ZtsxRAMjDYc6CuQ9DE6m7RgNTqDNn1GODMYnGgal0wi0edx2jIZHZxBo82fbKYSosSLdjWudi23HaHB6qwKudi6yHUOIGrvRGcbRqovtGA3Ozc5ldNOdbMcQDYw0HOpIBfNx8x6xHaNB0ZkX4siVIaKBcZqdjc6SA5HacPP+gAoeZjuGELVyvzuKw1Vb2zEajBSCPBu4H0ceby0akIAK8GzgAQK4tqM0GF1UB+5xb7AdQzRA0nCoB272ZeiQPHO6RtwWBNr8xXYKIQ5JIP9RcOWZ0zWhM07FzZFLVkXD00SlMT5wn9xaUUN3u9dzpO5oO4YQtVaoj+S3jjyavSYcHJ4NPCCPvBWHRBoO9STQ9ilwZADEgwm0GYdyW9iOIcQhUW5WWa3LgciBOVkE2j5tO4UQh+xE3YsbHXm848H0VYWMckbYjiHEIfsf92p6qG62YyS80c7l9NFH244hGihpONQTFcgj0H4SqIDtKAnLafVbnMzzbMcQok6cZmfhth5jO0YCcwi0f1lupRAN3oPuaH6p5Tnz1cmnFZODf5FbKUSDFlABXgs+TivkpGF1ztAn8L/ujbZjiAZMGg71yMn4JW6+DJBWFR06G7f1vbZjCFEvnFZj0M0usB0jIbl5D+FknGY7hhB15iqXSYFH6aDa2I6ScFJJYUrwcXKVXLEoGr62Kpe/Bf9CEDlp+HNHqA68HPijNBZFnUjDoZ65OVfjZMv9YPtSqUcRaPcCSsll6CI5KKUItHsOlVZoO0pCcZoPx20pZ0FE8shWmbwZeJIM5KlK+3omMJaeurvtGELUm2N1EePce2zHSCiZhHgzMI5mKsN2FNHAScMhBtw2j6GbDbIdIyGoYDuCh7+DcmRjJZKL0k0IHv42Kni47SgJQYfOwm37pO0YQtS7broTrwUeJxUZLA3gAXc0v3YG2o4hRL0b7p7P3e71tmMkhCak8UZwHJ11e9tRRBKQhkMMKOUSaPcyOnSW7Sh2BfIJdPwAFZTHi4nkpAJ5BDv9HRVsZzuKVTrjNALt/4aSMWxEkurn9OW1wF9IIWg7ilX3uDdwq3uF7RhCxMwY99pG/+SKNFJ5IzCOE3RP21FEkpCGQ4woHSTQ/jV0s3NtR7FCBdsT7DQDnSJnf0VyU8HDCHaajgo2zsfC6dBZBDq8idJy9lckt/7OibwRGEcaqbajWHGfewt3utfYjiFEzI0N3MwY51rbMaxoShPeCTxFP6ev7SgiiShjjLEdIpkZEyX635vxNj9vO0rcqLQeBDu8jgrm244iRNyYyDpK//MrTMkXtqPEjdP8Mtw2T6J04z7rKxqXz/2v+HXpLWxgi+0ocRHA5TF3DFe5Q2xHESKuno5O4vboI0SJ2o4SF7m0YErwCXrrAttRRJKRhkOcRDc+Q3T1bZDkGy2dOYTAYRNQOs12FCHizvh7iKy6Dn/rJNtRYszBzfsDbsubbAcRwoqVZi2DS29gkfnWdpSYyiGLycHHOFH3sh1FCCtmenMZGhnNVnbYjhJTvVR3pgSfIE+1tB1FJCFpOMSRVzyLyIqh4CXjWRGF2/r3uK3/x3YQIayLbniU6Jq7AN92lPrnZBJo9zJO6HTbSYSwapcpYWTkLt7yP7IdJSYK1BG8HhhHey1XK4rGbbm/kgsjN/CN+cF2lJj4tR7IM4GxpCq5NVLEhjQc4syUriKy6lr84um2o9QbFWyH2/YZnIxTbEcRImH4Oz8lsvJqTGny7KDopifjtn0GndLedhQhEoIxhme917gz+ig7KbEdp14oFNc5l3CfewtNlFytKATATlPCndE/86w3BUNyHDqFaMpD7m1c4Q62HUUkOWk4WBLd/DzR1XeA35Av0VI42SNx8x5EOU1thxEi4Ri/hOiau/E2PQUNeQdFN8XNexAneyRKKdtphEg4K/zV/CZ6N3P8hj2Gy+GqLRMC98vo9EJUY5b3T34TuZuVrLEdpU5O08fxdOBe2qpc21FEIyANB4tM6Soiq2/F3/6u7Si1plK74ub/GSejn+0oQiQ8f+cnRP47CrNnse0otaZDA3DzH5WrGoQ4CGMMz3lTuDf6JJvYajtOraQQ5FrnYu5xb5CrGoQ4iJ2mhN9HH2eC9xqRBjY2Wyuy+V/3Ji53L7QdRTQi0nBIAP6uuUTW3IXZ9antKAcXaIvb+m6c5peilDxVVYiaMsbH3zqZ6LqxmNIfbcc5KJXel0DuA+imx9uOIkSDUmx28Vj0BZ7wXkr42yw0mkv0OdwduJ52Ks92HCEalOX+Su6NPsnr/gcJf5tFiKbc4o7gZucy0lUT23FEIyMNhwTi7fg70XX3Y0rm2Y5SWSAPt8XNODnXoLQMKiPEoTJ+Kd7mZ4lueBQiq23HqUSlFeG2HoPT7GzbUYRo0DaYzTwcncBE7y12sdt2nP1oNOfoU7jHvYGjdGfbcYRo0Bb63zA2+iTv+3MSrvHQlCZc6QzhdvcqclSW7TiikZKGQwLyd80luulp/G3vgAlbzaLSj8PNuRqdeSFKBaxmESKZGBPF3/YO0U3jMbs+sRtGBdHNBuHmXCNXNAhRz7aZHbzgvcnz3ht8b+xe3ZRNJpc6g7jGuZgOuo3VLEIkm+X+Sp7xJvOq9y5b2G41SxfVgaucXzHcOZ+QknHWhF3ScEhgJroFb9vr+Nun4u+cA6Y0Lp+r0grRoQE4WRehU4+My2cK0Zj5e77D3/Ya3vZpmN3z4/OhKoBOPxHd7BycrCEoNyc+nytEI2WM4R/+l7ztf8w0bzarWBuXz80kxBn6BAY5p3KO7kdQTh4IEVN7TJj3/Jm8683gI/8ztlMcl89tr9owUP+SC5z+HK97xOUzhagJaTg0EMYrxi+ejr/jA/ySLzF7vgX8+pl5IB+dVoQOnY4TGoAKtq2f+Qohas2Ursbb8T5+8cf4Jf+qx9suNCqlM6pJb5zQmejQGSgnVE/zFkLU1iL/G6b5c5jjf8ECfynbqJ+nVqWSQoE6gmN1EQP0yZyge+Aqt17mLYSonYiJ8A9/Hu/7s5nrL+DfZhmlROpl3lmEOEZ342Tdh7P1KXJ7lEhY0nBooIy3C7N7If7u+Zjw95jIOkxkLUTXYqIbwS8FPECDcsHJQgVyUYHWKLc1KngYqkkROq0IFWhl++sIIaphIhvK6rxkPiaysrzWTWQdeFvARClrPjqgg+Dk7K31vfUe7IhuUoRKO0YeXytEgjLG8INZxXyzhEX+t6w261nHRtaZTawzGylmF1E8DAYXhzRSaaVyaE0OuaoluaoFXVVHeuhudFOdpMEgRIKKmAhfm+/5yv+ab8wPrDUbWWc2so5NrDeb2EOYCFEUCheHDNLJVS1orVrQmhbkq1YU6iMpUt3ktijRYEjDQQghhBBCCCGEEPVOnmsohBBCCCGEEEKIeicNByGEEEIIIYQQQtQ7aTgIIYQQQgghhBCi3knDQQghhBBCCCGEEPVOGg5CCCGEEEIIIYSod9JwEEIIIYQQQgghRL2ThoMQQgghhBBCCCHqnTQchBBCCCGEEEIIUe+k4SCEEEIIIYQQQoh69//GMbbWVyMu8wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "({'ok': 64.28984788359789,\n", + " 'QC outliers': 35.707671957671955,\n", + " 'missing (gaps)': 0.0,\n", + " 'missing (individual)': 0.00248015873015873},\n", + " {'repetitions outlier': 29.658564814814813,\n", + " 'gross value outlier': 4.869378306878307,\n", + " 'persistance outlier': 1.0085978835978835,\n", + " 'in step outlier group': 0.17113095238095238,\n", + " 'duplicated timestamp outlier': 0.0,\n", + " 'invalid input': 0.0,\n", + " 'in window variation outlier group': 0.0,\n", + " 'buddy check outlier': 0.0,\n", + " 'titan buddy check outlier': 0.0,\n", + " 'sct resistant check outlier': 0.0},\n", + " {'duplicated_timestamp': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'invalid_input': {'not checked': 0.0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'repetitions': {'not checked': 0.0,\n", + " 'ok': 70.34143518518519,\n", + " 'outlier': 29.658564814814813},\n", + " 'gross_value': {'not checked': 29.658564814814813,\n", + " 'ok': 65.47205687830689,\n", + " 'outlier': 4.869378306878307},\n", + " 'persistance': {'not checked': 34.52794312169312,\n", + " 'ok': 64.46345899470899,\n", + " 'outlier': 1.0085978835978835},\n", + " 'step': {'not checked': 35.53654100529101,\n", + " 'ok': 64.29232804232805,\n", + " 'outlier': 0.17113095238095238},\n", + " 'window_variation': {'not checked': 35.707671957671955,\n", + " 'ok': 64.29232804232805,\n", + " 'outlier': 0.0},\n", + " 'buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},\n", + " 'titan_buddy_check': {'not checked': 100.0, 'ok': 0.0, 'outlier': 0.0},\n", + " 'titan_sct_resistant_check': {'not checked': 100.0,\n", + " 'ok': 0.0,\n", + " 'outlier': 0.0},\n", + " 'is_gap': {'not checked': 0, 'ok': 100.0, 'outlier': 0.0},\n", + " 'is_missing_timestamp': {'not checked': 0,\n", + " 'ok': 99.99751984126983,\n", + " 'outlier': 0.00248015873015873}})" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "your_dataset.get_qc_stats(obstype='temp', make_plot=True)" + ] + }, + { + "cell_type": "markdown", + "id": "db416ba5-b549-469c-bb45-f5a344f19d52", + "metadata": {}, + "source": [ + "## Quality control exercise\n", + "For a more detailed reference you can use this [Quality control exercise](https://github.com/vergauwenthomas/MetObs_toolkit/blob/master/examples/Quality_control_excercise_02.ipynb), which was created in the context of the [COST FAIRNESS](https://www.cost.eu/actions/CA20108/) summer school 2023 in Ghent." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/examples/using_obstypes.html b/docs/_build/examples/using_obstypes.html new file mode 100644 index 00000000..7b33b65e --- /dev/null +++ b/docs/_build/examples/using_obstypes.html @@ -0,0 +1,708 @@ + + + + + + + Working with specific observation types — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Working with specific observation types

+

In this demo, you can find a demonstration on how to use Observation types.

+
+
[1]:
+
+
+
import metobs_toolkit
+
+#Initialize an empty Dataset
+your_dataset = metobs_toolkit.Dataset()
+
+
+
+
+

Default observation types

+

An observation record must always be linked to an observation type which is specified by the Obstype class. An Obstype represents one observation type (i.g. temperature), and it handles unit conversions and string representations of an observation type.

+

By default a set of standard observationtypes are stored in a Dataset:

+
+
[2]:
+
+
+
your_dataset.show()
+
+
+
+
+
+
+
+
+
+ --------  General ---------
+
+Empty instance of a Dataset.
+
+ --------  Observation types ---------
+
+temp observation with:
+     * standard unit: Celsius
+     * data column as None in None
+     * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']}
+     * description: 2m - temperature
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']}
+
+     * originates from data column: None with None as native unit.
+humidity observation with:
+     * standard unit: %
+     * data column as None in None
+     * known units and aliases: {'%': ['percent', 'percentage']}
+     * description: 2m - relative humidity
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+radiation_temp observation with:
+     * standard unit: Celsius
+     * data column as None in None
+     * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']}
+     * description: 2m - Black globe
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']}
+
+     * originates from data column: None with None as native unit.
+pressure observation with:
+     * standard unit: pa
+     * data column as None in None
+     * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']}
+     * description: atmospheric pressure (at station)
+     * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']}
+
+     * originates from data column: None with None as native unit.
+pressure_at_sea_level observation with:
+     * standard unit: pa
+     * data column as None in None
+     * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']}
+     * description: atmospheric pressure (at sea level)
+     * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']}
+
+     * originates from data column: None with None as native unit.
+precip observation with:
+     * standard unit: mm/m²
+     * data column as None in None
+     * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']}
+     * description: precipitation intensity
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+precip_sum observation with:
+     * standard unit: mm/m²
+     * data column as None in None
+     * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']}
+     * description: Cummulated precipitation
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+wind observation with:
+     * standard unit: m/s
+     * data column as None in None
+     * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']}
+     * description: wind speed
+     * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']}
+
+     * originates from data column: None with None as native unit.
+wind_gust observation with:
+     * standard unit: m/s
+     * data column as None in None
+     * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']}
+     * description: wind gust
+     * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']}
+
+     * originates from data column: None with None as native unit.
+wind_direction observation with:
+     * standard unit: ° from north (CW)
+     * data column as None in None
+     * known units and aliases: {'° from north (CW)': ['°', 'degrees']}
+     * description: wind direction
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+
+ --------  Settings ---------
+
+(to show all settings use the .show_settings() method, or set show_all_settings = True)
+
+ --------  Outliers ---------
+
+No outliers.
+
+ --------  Meta data ---------
+
+No metadata is found.
+
+
+

From the output it is clear that an Obstype holds a standard unit. This standard unit is the preferred unit to store and visualize the data in. The toolkit will convert all observations to their standard unit, on all import methods. (This is also true for the Modeldata, which is converted to the standard units upon import).

+

A description (optional) holds a more detailed description of the observation type.

+

Multiple known units can be defined, as long as the conversion to the standard unit is defined.

+

Aliases are equivalent names for the same unit.

+

At last, each Obstype has a unique name for convenions. You can use this name to refer to the Obstype in the Dataset methods.

+

As an example take a look at the temperature observation and see what the standard unit, other units and aliases looks like:

+
+
[3]:
+
+
+
temperature_obstype = your_dataset.obstypes['temp'] #temp is the name of the observationtype
+print(temperature_obstype)
+
+temperature_obstype.get_info()
+
+
+
+
+
+
+
+
+Obstype instance of temp
+temp observation with:
+     * standard unit: Celsius
+     * data column as None in None
+     * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']}
+     * description: 2m - temperature
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']}
+
+     * originates from data column: None with None as native unit.
+
+
+
+
+

Creating and Updating observations

+

If you want to create a new observationtype you can do this by creating an Obstype and adding it to your (empty) Dataset:

+
+
[4]:
+
+
+
co2_concentration = metobs_toolkit.Obstype(obsname='co2',
+                                           std_unit='ppm')
+
+#add other units to it (if needed)
+co2_concentration.add_unit(unit_name='ppb',
+                           conversion=['x / 1000'], #1 ppb = 0.001 ppm
+                          )
+
+#Set a description
+co2_concentration.set_description(desc='The CO2 concentration measured at 2m above surface')
+
+#add it to your dataset
+your_dataset.add_new_observationtype(co2_concentration)
+
+#You can see the CO2 concentration is now added to the dataset
+your_dataset.show()
+
+
+
+
+
+
+
+
+
+ --------  General ---------
+
+Empty instance of a Dataset.
+
+ --------  Observation types ---------
+
+temp observation with:
+     * standard unit: Celsius
+     * data column as None in None
+     * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']}
+     * description: 2m - temperature
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']}
+
+     * originates from data column: None with None as native unit.
+humidity observation with:
+     * standard unit: %
+     * data column as None in None
+     * known units and aliases: {'%': ['percent', 'percentage']}
+     * description: 2m - relative humidity
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+radiation_temp observation with:
+     * standard unit: Celsius
+     * data column as None in None
+     * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']}
+     * description: 2m - Black globe
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']}
+
+     * originates from data column: None with None as native unit.
+pressure observation with:
+     * standard unit: pa
+     * data column as None in None
+     * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']}
+     * description: atmospheric pressure (at station)
+     * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']}
+
+     * originates from data column: None with None as native unit.
+pressure_at_sea_level observation with:
+     * standard unit: pa
+     * data column as None in None
+     * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']}
+     * description: atmospheric pressure (at sea level)
+     * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']}
+
+     * originates from data column: None with None as native unit.
+precip observation with:
+     * standard unit: mm/m²
+     * data column as None in None
+     * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']}
+     * description: precipitation intensity
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+precip_sum observation with:
+     * standard unit: mm/m²
+     * data column as None in None
+     * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']}
+     * description: Cummulated precipitation
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+wind observation with:
+     * standard unit: m/s
+     * data column as None in None
+     * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']}
+     * description: wind speed
+     * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']}
+
+     * originates from data column: None with None as native unit.
+wind_gust observation with:
+     * standard unit: m/s
+     * data column as None in None
+     * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']}
+     * description: wind gust
+     * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']}
+
+     * originates from data column: None with None as native unit.
+wind_direction observation with:
+     * standard unit: ° from north (CW)
+     * data column as None in None
+     * known units and aliases: {'° from north (CW)': ['°', 'degrees']}
+     * description: wind direction
+     * conversions to known units: {}
+
+     * originates from data column: None with None as native unit.
+co2 observation with:
+     * standard unit: ppm
+     * data column as None in None
+     * known units and aliases: {'ppm': [], 'ppb': []}
+     * description: The CO2 concentration measured at 2m above surface
+     * conversions to known units: {'ppb': ['x / 1000']}
+
+     * originates from data column: None with None as native unit.
+
+ --------  Settings ---------
+
+(to show all settings use the .show_settings() method, or set show_all_settings = True)
+
+ --------  Outliers ---------
+
+No outliers.
+
+ --------  Meta data ---------
+
+No metadata is found.
+
+
+

You can also update (the units) of the know observationtypes :

+
+
[5]:
+
+
+
your_dataset.add_new_unit(obstype = 'temp',
+                          new_unit= 'your_new_unit',
+                          conversion_expression = ['x+3', 'x * 2'])
+# The conversion means: 1 [your_new_unit] = (1 + 3) * 2 [°C]
+your_dataset.obstypes['temp'].get_info()
+
+
+
+
+
+
+
+
+temp observation with:
+     * standard unit: Celsius
+     * data column as None in None
+     * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit'], 'your_new_unit': []}
+     * description: 2m - temperature
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']}
+
+     * originates from data column: None with None as native unit.
+
+
+
+
+

Obstypes for Modeldata

+

Obstypes are also used in Modeldata to interpret and convert the modeldata-data. Similar as with a Dataset, a set of default obstypes is stored in each Modeldata. To add a new band, and thus a new obstype, to your modeldata you can you this method:

+
+
[6]:
+
+
+
import pandas as pd
+from datetime import datetime
+era = metobs_toolkit.Modeldata(modelname='ERA5_hourly')
+era.obstypes
+#Create a new observation type
+precipitation = metobs_toolkit.Obstype(obsname='cumulated_precip',
+                                      std_unit='m',
+                                      description='Cumulated total precipitation since midnight per squared meter')
+
+#Add it to the Modeldata, and specify the corresponding band.
+era.add_obstype(Obstype=precipitation,
+                bandname='total_precipitation', #look this up: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands
+                band_units='m',
+                band_description="Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). ...",
+               )
+
+
+# Define locations
+lat = [50.849]
+lon = [4.357]
+name = ['Brussels']
+metadf = pd.DataFrame(data={'lat': lat,
+                            'lon': lon,
+                            'name': name})
+# Define a time period
+tstart = datetime(2023,1,12)
+tend = datetime(2023,1,15)
+
+
+#Extract the data
+era.get_gee_dataset_data(mapname='ERA5_hourly',
+                         metadf=metadf,
+                         startdt_utc=tstart,
+                         enddt_utc=tend,
+                         obstypes=[precipitation.name]
+                        )
+era.get_info()
+
+
+
+
+
+
+
+
+Modeldata instance containing:
+     * Modelname: ERA5_hourly
+     * 1 timeseries
+     * The following obstypes are available: ['cumulated_precip']
+     * Data has these units: ['m']
+     * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC)
+
+ (Data is stored in the .df attribute)
+
+ ------ Known gee datasets -----------
+The following datasets are found:
+
+ --------------------------------
+global_lcz_map :
+
+ No mapped observation types for global_lcz_map.
+
+ INFO:
+
+{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'}
+
+ --------------------------------
+DEM :
+
+ No mapped observation types for DEM.
+
+ INFO:
+
+{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'}
+
+ --------------------------------
+ERA5_hourly :
+
+temp observation with:
+     * Known datasetsbands: {'ERA5_hourly': 'temperature_2m'}
+     * standard unit: Celsius
+     * description: 2m - temperature
+     * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']}
+
+pressure observation with:
+     * Known datasetsbands: {'ERA5_hourly': 'surface_pressure'}
+     * standard unit: pa
+     * description: atmospheric pressure (at station)
+     * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']}
+
+wind observation with:
+     * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'}
+     * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'}
+     * standard unit: m/s
+     * description: wind speed
+     * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']}
+
+cumulated_precip observation with:
+     * Known datasetsbands: {'ERA5_hourly': 'total_precipitation'}
+     * standard unit: m
+     * description: Cumulated total precipitation since midnight per squared meter
+     * conversions to known units: {'ppb': ['x / 1000']}
+
+
+ INFO:
+
+{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''}
+
+ --------------------------------
+worldcover :
+
+ No mapped observation types for worldcover.
+
+ INFO:
+
+{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'}
+
+
+
+
+

Special observation types

+
+

2D-Vector fields

+

At a specific height, the wind can be seen (by approximation) as a 2D vector field. The vector components are often stored in different bands/variables in a model.

+

A common problem is that observation measures the amplitude and direction of a vectorfield, while the models store the vector components. So we need to transform the vector components to an amplitude and direction.

+

This can be done in the MetObs toolkit by using the ModelObstype_Vectorfield. This class is similar to the ModelObstype class but has the functionality to convert components to amplitude and direction.

+

By default, the wind obstype is stored in each Modeldata.

+
+
[7]:
+
+
+
era = metobs_toolkit.Modeldata(modelname='ERA5_HOURLY')
+era.obstypes['wind'].get_info()
+
+
+
+
+
+
+
+
+wind observation with:
+     * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'}
+     * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'}
+     * standard unit: m/s
+     * description: wind speed
+     * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']}
+
+
+
+

When extracting the wind data from era5 it will 1. Download the u and v wind components for your period and locations. 2. Convert each component to its standard units (m/s for the wind components) 3. Compute the amplitude and the direction (in degrees from North, clockwise).

+
+
[8]:
+
+
+
import pandas as pd
+from datetime import datetime
+
+lat = [50.849]
+lon = [4.357]
+name = ['Brussels']
+metadf = pd.DataFrame(data={'lat': lat,
+                            'lon': lon,
+                            'name': name})
+
+tstart = datetime(2023,1,12)
+tend = datetime(2023,1,15)
+
+
+era.get_gee_dataset_data(mapname='ERA5_hourly',
+                         metadf=metadf,
+                         startdt_utc=tstart,
+                         enddt_utc=tend,
+                         obstypes=['wind']
+                        )
+era
+
+
+
+
+
[8]:
+
+
+
+
+Modeldata instance containing:
+     * Modelname: ERA5_hourly
+     * 1 timeseries
+     * The following obstypes are available: ['wind_amplitude', 'wind_direction']
+     * Data has these units: ['m/s', '° from north (CW)']
+     * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC)
+
+ (Data is stored in the .df attribute)
+
+
+
+
[9]:
+
+
+
era.make_plot(obstype_model='wind_amplitude')
+
+
+
+
+
[9]:
+
+
+
+
+<Axes: title={'center': 'ERA5_hourly'}, ylabel='wind_amplitude (m/s) \n ERA5_hourly: u_component_of_wind_10m and v_component_of_wind_10m'>
+
+
+
+
+
+
+../_images/examples_using_obstypes_16_1.png +
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/examples/using_obstypes.ipynb b/docs/_build/examples/using_obstypes.ipynb new file mode 100644 index 00000000..bdbccb5e --- /dev/null +++ b/docs/_build/examples/using_obstypes.ipynb @@ -0,0 +1,674 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e4b8a66f-c3df-400b-a1d1-c031ff7d5f1c", + "metadata": {}, + "source": [ + "# Working with specific observation types\n", + "In this demo, you can find a demonstration on how to use Observation types." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "80d48024-5cda-43de-8f32-9b231f1243c7", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "#Initialize an empty Dataset\n", + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "24e53b6d-f2e9-4ac0-b175-b765c16988a6", + "metadata": {}, + "source": [ + "## Default observation types\n", + "\n", + "An observation record must always be linked to an *observation type* which is specified by the [Obstype class](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.obstypes.Obstype.html). \n", + "An Obstype represents one observation type (i.g. temperature), and it handles unit conversions and string representations of an observation type. \n", + "\n", + "By default a set of standard observationtypes are stored in a Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "361a4341-e217-411d-a3b8-9c0829b0de92", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "03a66ed6-de2a-44d6-8f4e-5fb577f0d0d5", + "metadata": {}, + "source": [ + "From the output it is clear that an Obstype holds a **standard unit**. This standard unit is the preferred unit to store and visualize the data in. The toolkit will convert all observations to their standard unit, on all import methods. *(This is also true for the Modeldata, which is converted to the standard units upon import)*.\n", + "\n", + "A **description** (optional) holds a more detailed description of the observation type. \n", + "\n", + "Multiple **known units** can be defined, as long as the conversion to the standard unit is defined. \n", + "\n", + "**Aliases** are equivalent names for the same unit. \n", + "\n", + "At last, each Obstype has a unique **name** for convenions. You can use this name to refer to the Obstype in the Dataset methods.\n", + "\n", + "As an example take a look at the temperature observation and see what the standard unit, other units and aliases looks like:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "14e49af0-77cc-4539-8a59-8374d06c9d18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obstype instance of temp\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "temperature_obstype = your_dataset.obstypes['temp'] #temp is the name of the observationtype\n", + "print(temperature_obstype)\n", + "\n", + "temperature_obstype.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "f6cdac58-d288-4af0-990e-e1e5403fea0c", + "metadata": {}, + "source": [ + "## Creating and Updating observations\n", + "If you want to create a new observationtype you can do this by creating an Obstype and adding it to your (empty) Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b80f7106-f6ec-45f2-a5a5-ef175480fcda", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "co2 observation with: \n", + " * standard unit: ppm \n", + " * data column as None in None \n", + " * known units and aliases: {'ppm': [], 'ppb': []} \n", + " * description: The CO2 concentration measured at 2m above surface \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "co2_concentration = metobs_toolkit.Obstype(obsname='co2',\n", + " std_unit='ppm')\n", + "\n", + "#add other units to it (if needed)\n", + "co2_concentration.add_unit(unit_name='ppb',\n", + " conversion=['x / 1000'], #1 ppb = 0.001 ppm\n", + " )\n", + "\n", + "#Set a description\n", + "co2_concentration.set_description(desc='The CO2 concentration measured at 2m above surface')\n", + "\n", + "#add it to your dataset\n", + "your_dataset.add_new_observationtype(co2_concentration)\n", + "\n", + "#You can see the CO2 concentration is now added to the dataset\n", + "your_dataset.show()\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "caa6522b-f0d7-49ac-96a8-7ace2d564d88", + "metadata": {}, + "source": [ + "You can also update (the units) of the know observationtypes :" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5a9e5569-d917-48a6-8c9c-5b44a70f4a63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit'], 'your_new_unit': []} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "your_dataset.add_new_unit(obstype = 'temp', \n", + " new_unit= 'your_new_unit',\n", + " conversion_expression = ['x+3', 'x * 2'])\n", + "# The conversion means: 1 [your_new_unit] = (1 + 3) * 2 [°C]\n", + "your_dataset.obstypes['temp'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "38f08e3c-88d7-484d-823e-38b324d6a940", + "metadata": {}, + "source": [ + "## Obstypes for Modeldata\n", + "\n", + "Obstypes are also used in Modeldata to interpret and convert the modeldata-data. Similar as with a Dataset, a set of default obstypes is stored in each Modeldata. To add a new band, and thus a new obstype, to your modeldata you can you this method:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ee043b1b-f195-484b-a752-90bb5e501ada", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['cumulated_precip'] \n", + " * Data has these units: ['m'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n", + "\n", + " ------ Known gee datasets -----------\n", + "The following datasets are found: \n", + "\n", + " --------------------------------\n", + "global_lcz_map : \n", + "\n", + " No mapped observation types for global_lcz_map.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'}\n", + "\n", + " --------------------------------\n", + "DEM : \n", + "\n", + " No mapped observation types for DEM.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'}\n", + "\n", + " --------------------------------\n", + "ERA5_hourly : \n", + "\n", + "temp observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'temperature_2m'} \n", + " * standard unit: Celsius \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + "pressure observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'surface_pressure'} \n", + " * standard unit: pa \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + "cumulated_precip observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'total_precipitation'} \n", + " * standard unit: m \n", + " * description: Cumulated total precipitation since midnight per squared meter \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''}\n", + "\n", + " --------------------------------\n", + "worldcover : \n", + "\n", + " No mapped observation types for worldcover.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'}\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "era = metobs_toolkit.Modeldata(modelname='ERA5_hourly')\n", + "era.obstypes\n", + "#Create a new observation type\n", + "precipitation = metobs_toolkit.Obstype(obsname='cumulated_precip',\n", + " std_unit='m',\n", + " description='Cumulated total precipitation since midnight per squared meter')\n", + "\n", + "#Add it to the Modeldata, and specify the corresponding band.\n", + "era.add_obstype(Obstype=precipitation,\n", + " bandname='total_precipitation', #look this up: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands \n", + " band_units='m',\n", + " band_description=\"Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). ...\",\n", + " )\n", + "\n", + "\n", + "# Define locations\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "# Define a time period\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "#Extract the data\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=[precipitation.name]\n", + " )\n", + "era.get_info()\n" + ] + }, + { + "cell_type": "markdown", + "id": "4d97ff9f-940f-4d4d-8052-9e8ad249850e", + "metadata": {}, + "source": [ + "## Special observation types\n", + "### 2D-Vector fields\n", + "At a specific height, the wind can be seen (by approximation) as a 2D vector field. The vector components are often stored in different bands/variables in a model. \n", + "\n", + "A common problem is that observation measures the amplitude and direction of a vectorfield, while the models store the vector components. So we need to transform the vector components to an amplitude and direction. \n", + "\n", + "This can be done in the MetObs toolkit by using the **ModelObstype_Vectorfield**. This class is similar to the ModelObstype class but has the functionality to convert components to amplitude and direction. \n", + "\n", + "By default, the *wind* obstype is stored in each Modeldata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "53e08158-082f-4bb0-957c-ed97f07d8b84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n" + ] + } + ], + "source": [ + "era = metobs_toolkit.Modeldata(modelname='ERA5_HOURLY')\n", + "era.obstypes['wind'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "633d3eb8-78d2-4b68-a198-a0a58d312f4c", + "metadata": {}, + "source": [ + "When extracting the wind data from era5 it will\n", + " 1. Download the u and v wind components for your period and locations.\n", + " 2. Convert each component to its standard units (m/s for the wind components)\n", + " 3. Compute the amplitude and the direction (in degrees from North, clockwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a1c15608-02da-453f-a58c-51695230fdc1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['wind_amplitude', 'wind_direction'] \n", + " * Data has these units: ['m/s', '° from north (CW)'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=['wind']\n", + " )\n", + "era" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e7750ef4-4ff7-4fa5-8458-697eb51981cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8DklEQVR4nOzdd3iT5f7H8Xe696K00FIKLXtTKrKXiDLEBYqiDCduxe1xHReOg6L+FMWFA1BBFBVcIFM2Ze/ZFuigLd07ye+PQqCy2tLm6fi8riuXyZNnfHJOaZNv7vv+mqxWq5Uq5uDgQGJiIkFBQTg4OJxzP5PJhNlsruo4IiIiIiIiIiIiVcpkj6KbiIiIiIiIiIhIXXLuYWdVJD8/396XFBERERERERERsSu7j3Rzc3Oja9eu9O3bl379+tGjRw/c3d3tGUFERERERERERKRK2b3otmLFCpYtW8aSJUtYuXIlxcXFREdH24pwl19+uT3jiIiIiIiIiIiIVDpD13QrLi5m3bp1fPzxx8yYMQOLxaJGCiIiIiIiIiIiUuM5GXHRPXv2sGTJEtutoKCAYcOG0a9fPyPiiIiIiIiIiIiIVCq7j3QLDQ0lLy+Pfv360a9fP/r27UuHDh0wmUz2jCEiIiIiIiIiIlJl7N69tH79+uTm5pKYmEhiYiJJSUnk5eXZO4aIiIiIiIiIiEiVMWRNt/T0dJYtW8bSpUtZunQpO3bsoFOnTvTv359XX33V3nFEREREREREREQqlaGNFFJTU1myZAnz5s1j1qxZaqQgIiIiUs01adKEdu3a8euvvxodpZSTawMvWbLE0BwiIiIiJ9l9euncuXN58MEH6dChA8HBwdxzzz1kZ2czefJkYmJi7B1HREREpMpNnz4dk8l0ztvq1asBztju4+ND3759mT9//jnPnZ6ejpubGyaTiZ07d551nxdffPGs13Vzc6uS1ysiIiIiBnQvnTBhAn369OGuu+6ib9++tG/f3t4RRERERAzx0ksv0bRp0zO2N2vWzHb/8ssvZ8yYMVitVmJjY5k6dSpXXXUVv/32G1dcccUZx86ePRuTyUSDBg2YMWMGr7zyyjmvP3XqVLy8vGyPHR0dL/IViYiIiMi52L3olpycXKb9Xn/9dSZMmICfn1/VBhIRERGxk8GDBxMdHX3efVq0aMEtt9xie3z99dfTpk0b3n333bMW3b755huGDBlCeHg4M2fOPG/RbcSIEQQGBlb8BVRDubm5eHh4GB1DRERE5Ax2n15aVq+99hppaWlGxxARERExVOvWrQkMDGT//v1nPBcXF8fy5csZNWoUo0aN4uDBg6xcufKc57JarWRmZlIZS/quWLGCrl274ubmRkREBF999dUZ+xw4cICRI0cSEBCAh4cH3bp1O2Oq7Mmpt4cOHSq1fcmSJZhMplJrtPXr14927dqxYcMG+vTpg4eHB88888wZ183OzsbT05OHHnrojOcOHz6Mo6MjkyZNqtgLFxERESmjalt0M7C/g4iIiEiVyMjIICUlpdQtNTX1gsccP34cf3//M56bNWsWnp6eDBs2jK5duxIZGcmMGTPOea6IiAh8fX3x9vbmlltuISkpqUKvY9++fYwYMYLLL7+cyZMn4+/vz7hx49i+fbttn6SkJHr06MEff/zBvffey6uvvkp+fj7Dhw/nxx9/rNB1oaQR1+DBg+nUqRNTpkyhf//+Z+zj5eXFtddey3fffXdGk65Zs2ZhtVoZPXp0hTOIiIiIlIXdp5eKiIiI1FUDBw48Y5urqyv5+fm2x/n5+aSkpGC1WomLi+PZZ5/FbDYzYsSIM46dMWMGV199Ne7u7gDceOONTJs2jXfffRcnp1Nv8/z9/bn//vvp3r07rq6uLF++nA8++IC1a9eyfv16fHx8yvU6du/ezbJly+jduzcAN9xwA2FhYXzxxRf873//A0qWCklKSmL58uX06tULgDvvvJMOHTowceJErr76ahwcyv/9b2JiIh999BF33333efcbM2YMM2bM4K+//uLKK6+0bf/mm2/o06cPjRs3Lve1RURERMpDRTcRERERO/nggw9o0aJFqW3/bmbw2Wef8dlnn9keOzs788QTTzBx4sRS+23ZsoWtW7eWmiZ500038dprr/HHH38wdOhQ2/Z/T7O8/vrr6dq1K6NHj+bDDz/kqaeeKtfraNOmja3gBlC/fn1atmzJgQMHbNsWLFhA165dbQU3KBmBdtddd/H000+zY8cO2rVrV67rQkmRcvz48Rfcb+DAgYSEhDBjxgxb0W3btm1s2bKFTz75pNzXFRERESmvaju9VERERKS26dq1KwMHDix1+/f0yKuvvpq//vqL+fPn8+KLL2IymcjNzT1jVNg333yDp6cnERER7Nu3j3379uHm5kaTJk3OO8X0pJtvvpkGDRqwcOHCcr+Os40S8/f35/jx47bHsbGxtGzZ8oz9WrdubXu+IkJDQ3Fxcbngfg4ODowePZqffvqJ3NxcoGRkoJubGyNHjqzQtUVERETKQyPdRERERKqRRo0a2aahDhkyhMDAQO6//3769+/PddddB5SsfTtr1ixycnJo06bNGedITk4mOzsbLy+v814rLCysQo2r/j0676SKrMlrMpnOuv3fa7GddHIqbVmMGTOGt956i59++ombbrqJmTNnMmzYMHx9fcudU0RERKS87DLSbeLEieTk5ACwbNkyiouLL3hM7969y/WmSkRERKQ2uvvuu4mMjOTZZ5+1FbWWLl3K4cOHeemll5g9e3ap27Rp08jNzeWnn34673mtViuHDh2ifv36VZI7PDyc3bt3n7F9165dtucBW4OI9PT0UvtVdCTc6dq1a0fnzp2ZMWMGy5cvJy4ujltvvfWizysiIiJSFnYpur3//vtkZ2cD0L9//zJ9o7pgwQIaNmxY1dFEREREqjUnJyceffRRdu7cybx584BTU0sff/xxRowYUep255130rx581JTTI8dO3bGeadOncqxY8dKNRmoTEOGDGHt2rWsWrXKti0nJ4dp06bRpEkT2wi9yMhIoOSL2ZPMZjPTpk2rlBy33norf/75J1OmTKFevXoMHjy4Us4rIiIiciF2mV7apEkT3nvvPQYNGoTVamXVqlVnbXsP0KdPH3tEEhEREbG73377zTbS63Q9evQgIiLinMeNGzeO559/njfeeIPBgwfzww8/cPnll+Pm5nbW/YcPH867775LcnIyQUFBhIeHc+ONN9K+fXvc3NxYsWIF3377LZ06dbpgF9CKeuqpp5g1axaDBw/mwQcfJCAggC+//JKDBw/yww8/2Naoa9u2Ld26dePpp58mLS2NgIAAvv322zLNjCiLm2++mSeeeIIff/yRe+65B2dn50o5r4iIiMiF2KXo9tZbbzFhwgQmTZqEyWTi2muvPet+JpPpnOt3iIiIiNR0zz///Fm3f/HFF+cturm7u3P//ffz4osvMn/+fNLT07nqqqvOuf9VV13F5MmT+fbbb3nwwQcZPXo0K1eu5IcffiA/P5/w8HCeeOIJ/vOf/+Dh4XHRr+tsgoODWblyJU8++STvv/8++fn5dOjQgV9++aVUZ1UoaXBw99138/rrr+Pn58ftt99O//79ufzyyyslx6BBg1iwYIGmloqIiIhdmawVWfG2grKzs/Hx8WH37t0EBQWddR8tbCsiIiIilenaa69l69at7Nu3z+goIiIiUofYtXupl5cXixcvpmnTpjg5qXGqiIiIiFSthIQE5s+fz3/+8x+jo4iIiEgdY9eRbieZzWZ++ukndu7cCUCbNm24+uqrz9l+XkRERESq1rFjx867zIeLiwsBAQF2THRxDh48yD///MOnn37KunXr2L9/Pw0aNDA6loiIiNQhdh9utm/fPoYOHcrhw4dp2bIlAJMmTSIsLIz58+fbOliJiIiIiP1ccsklxMbGnvP5vn37smTJEvsFukhLly5l/PjxNG7cmC+//FIFNxEREbE7u490GzJkCFarlRkzZti+LU1NTeWWW27BwcGB+fPn2zOOiIiIiAD//PMPeXl553ze39+fLl262DGRiIiISM1m96Kbp6cnq1evpn379qW2b968mZ49e5KdnW3POCIiIiIiIiIiIpXO7tNLXV1dycrKOmN7dnY2Li4u9o5zQRaLhaNHj+Lt7Y3JZDI6joiIiIiIiIiIGMhqtZKVlUVISAgODg7n3M/uRbdhw4Zx11138dlnn9G1a1cA1qxZw4QJExg+fLi941zQ0aNHCQsLMzqGiIiIiIiIiIhUI/Hx8TRq1Oicz9t9eml6ejpjx47ll19+wdnZGYDi4mKGDx/O9OnT8fX1tWecC8rIyMDPz4/4+Hh8fHyMjiMiIiIiIiIiIgbKzMwkLCyM9PT089ax7F50O2nfvn3s3LkTgNatW9OsWTMjYlxQZmYmvr6+ZGRkqOgmIiIiIiIiIlLHlbVWZPfppSc1a9bsvIU2Hx8fNm3aREREhB1TiYiIiIiIiIiIXLxzr/ZmMIMG4ImIiIiIiIiIiFy0alt0ExERERERERERqalUdBMREREREREREalkKrqJiIiIiIiIiIhUsmpbdDOZTEZHEBERERERERERqZBqW3RTIwUREREREREREamp7F50e+mll8jNzT1je15eHi+99JLt8W+//UZoaKg9o4mIiIiIiIiIiFQKk9XOQ8ocHR1JSEggKCio1PbU1FSCgoIwm832jHNBmZmZ+Pr6kpGRgY+Pj9FxRERERERERETEQGWtFdl9pJvVaj3rem2bN28mICDA3nFEREREREREREQqnZO9LuTv74/JZMJkMtGiRYtShTez2Ux2djYTJkywVxwREREREREREZEqY7ei25QpU7Bardx2223897//xdfX1/aci4sLTZo0oXv37vaKI1LliswWnB2rba8SEREREREREalCdiu6jR07FoCmTZvSo0cPnJ2dK+W8y5Yt46233mLDhg0kJCTw448/cs0119iet1qtvPDCC3zyySekp6fTs2dPpk6dSvPmzSvl+iJn88OGw3yy/ABf3taVYB83o+OIiIiIiIiIiJ3ZfRhO3759cXR0ZM+ePaxYsYJly5aVupVXTk4OHTt25IMPPjjr82+++SbvvfceH330EWvWrMHT05MrrriC/Pz8i30pIme1aGcST/ywhV2JWYz8aBVxqWd26xURERERERGR2s3u3UtXr17NzTffTGxsLP++tMlkuqjupSaTqdRIN6vVSkhICI8++iiPPfYYABkZGQQHBzN9+nRGjRp1xjkKCgooKCiwPc7MzCQsLEzdS6VMHvluE4383fkh5jBH00sKu0Hernxzx6W0CPY2OJ2IiIiIiIiIXKxq2710woQJREdHs23bNtLS0jh+/LjtlpaWVqnXOnjwIImJiQwcONC2zdfXl0svvZRVq1ad9ZhJkybh6+tru4WFhVVqJqm9dhzN5MeNR3j/733U83SlWZAXAMlZBdzw8So2x6cbG1BERERERERE7MbuRbe9e/fy2muv0bp1a/z8/EoVuE5vrlAZEhMTAQgODi61PTg42Pbcvz399NNkZGTYbvHx8ZWaSWqvORsO2+7fcEkY39/dnQ6NSn6m03OLuPmT1azcn2JUPBERERERqcGyC4rPmC0mItWb3Ytul156Kfv27bP3ZcvM1dUVHx+fUjeRCykstvDTpiMAuDg5MLxDCAGeLsy441K6RQQAkFNoZtwX6/hrR5KRUUVEREREpAb5fVsif+1IZPQnq3nw201k5RcZHUlEyshu3UtPeuCBB3j00UdJTEykffv2Z3Qx7dChQ6Vdq0GDBgAkJSXRsGFD2/akpCQ6depUadcR+XtXMmk5hQAMahOMr0fJz7W3mzPTx3fl/pkxLNyZTGGxhQnfbODtGzpydadQIyOLiIiIiEg1V2y28PKvOziSngfA5sMZbDmczvs3daZDIz9jw4nIBdm96Hb99dcDcNttt9m2mUwmrFbrRTdS+LemTZvSoEEDFi1aZCuyZWZmsmbNGu65555Ku47I6VNLR0aXXgfQzdmRqbd04bHZm5m36SiuTg6EBXjYO6KIiIiIiNQwC7Yl2gpuTg4mii1WYlNzuX7qSp4a3JrbejbBZDIZnFJEzsXuRbeDBw9W6vmys7NLTVc9ePAgmzZtIiAggMaNG/Pwww/zyiuv0Lx5c5o2bcpzzz1HSEiIrcOpyMU6llXA4t3JADTwcaNXs8Az9nF2dOCdGzoR4OnCZa2CiWrsb++YIiIiIiJSg1itVj5ZdsD2+H8jOzB9ZSyb4tMpMlt5+dcdrNqfwlsjOuLv6WJgUhE5F7sX3cLDwyv1fOvXr6d///62xxMnTgRg7NixTJ8+nSeeeIKcnBzuuusu0tPT6dWrF7///jtubm6VmkPqrnmbjmC2lCxoel1UKI4OZ/+mycHBxAtXtT1j+8nFUPUNlYiIiIiInLTmYBpbj2QA0C7Uh6s7hTK0Qwj/+2M3H58oxi3cmcyQ95bz7qjOdG0aYGRcETkLuzdSAPj666/p2bMnISEhxMbGAjBlyhTmzZtX7nP169cPq9V6xm369OlASSHjpZdeIjExkfz8fBYuXEiLFi0q8+VIHWa1Wpm9/tTU0hFdGpX7+Ffn7+SpH7baCnciIiIiIiKnj3K7s3cEJpMJZ0cHnh7Smi/GX0LAidFtCRn5jJq2iv/7e69RUUXkHOxedJs6dSoTJ05kyJAhpKen29Zw8/PzY8qUKfaOI3JR4tPyOJCSDUCXcH8i6nuV6/gPFu/j0xUH+W59PA/MiqGguPLWNBQRERERkZrr8StbMqJLI5rU82BI+4alnuvfMojfHupNt4iS0W0WK2TkqaupSHVjsp6c22Ynbdq04bXXXuOaa67B29ubzZs3ExERwbZt2+jXrx8pKSn2jHNBmZmZ+Pr6kpGRgY+Pj9FxpBo6nlPIvE1HCPFzZ1DbBuU6dv6WBB7+biNF5pJ/hr2bB/LxrV3wcLH7zG8REREREamGCostuDidfbyM2WLl//7ex9I9yXx7V/dz7icilaustSK7/4s8ePAgnTt3PmO7q6srOTk59o4jctH8PV0Y17NpuQtuAEM7NOSTMdG4OZf8U1y+N4WbP1nD+kNplR1TRERERERqoPMV0hwdTDw0sDnf331mwS0m7jhFZktVxxOR87B70a1p06Zs2rTpjO2///47rVu3tnccEcP1axnE17dfirebE/4ezuxNzmLER6sYMXUlf+1IwqK13kRERERE5DycHEt/tN9xNJNR01Zz48erOHw816BUImL3OWwTJ07kvvvuIz8/H6vVytq1a5k1axaTJk3i008/tXcckQorNlvO+ONWUZc0CeDbu7rx86ajtk5E62OPs/6r9TQL8uKuPhFc0ylUw8VFRERERGqxvEIzoz9dzbVRjRgR1Qh3F8dyn8NisTLx+00UFluIiUtn0DvLGNAqiKaBnvh5uBDg6Yy/hwv+Hi4EeLrg7+mCp4sjJpOpCl6RSN1m9zXdAGbMmMGLL77I/v37AQgJCeG///0vt99+u72jXJDWdJOzScrMZ/C7yxnaviGjuobRNsS3Us5bWGxh3qYjTFt2gL3J2aWea+Djxm29mnBT18Z4uzlXyvVERERERKT6+Hp1LM/9tA2Am7qGMem6DhU6z6b4dB6YFUN8Wh5NAz04mHL+0W7OjiYi63vx+8N9Sm3PzC8iv8hMkLdbhXKI1FZlrRUZUnQ7KTc3l+zsbIKCgoyKcEEqusnZTF2ynzd+3wXAgwOaMXFQy0o9v8ViZfHuZD5aup91h46Xes7bzYn7+jdjQt/ISr2miIiIiIgYx2yxMvDtpRxMKVnr/NcHetEutOJf7mfmFzFpwU783F2YunT/BfdvHuTFXxP7lto2acFOvlkdy4S+kdzRO6JCI+9EaqOy1ooMbZHo4eGBh4eHkRFEys1qtTJnQ7zt8YguYZV+DQcHE5e1Duay1sFsiE3j46UH+HNHEgBZ+cUUFmtBVBERERGR2mThziRbwa1HZL2LKrgB+Lg5M+m6DhzPKWRI+4Yczy3keG4haTmFHM8t4nhO4WnbimgaWPqzeXxaLl/8c4hCs4XJf+1hxpo4HruiJdd1DsXBQVNRRcrC7kW3pKQkHnvsMRYtWkRycjL/HmhnNpvtHUmkXDbGp7P/WMkfw0ubBtC4XtUWjruEBzBtTAD7krP5ZNkBft+eyK3dwkvtk5yVz+HjeUQ19q/SLCIiIiIiUjU+ObG2M8CdfSIq7bz+J9ZtKy9PVyduvCSMmWvjMFusJGbm89jszXy+4iDPDm1Nj2aBlZZRpLaye9Ft3LhxxMXF8dxzz9GwYUMt1ig1zuz1h233R3RpZLfrNgvy4o0RHXhxeNszhnV/tvwgX6w8xPwHetEsyEv/rkREREREapCYuOOsjy1ZVqZ5kBf9WtQ3OBEEeLrw8jXtGNsjnNd/28XCnckA7EjI5OZP13BZqyCeHtKKZkHeBicVqb7sXnRbsWIFy5cvp1OnTva+tMhFyy8y8+vmowB4uDgypH1Du2f4d8EtI6+Ib1bHElnfk6Hvr2Dq6Cguax1s91wiIiIiIlIxny4/bZRb74hq9SV6syBvPh17CSv3pfDqgp1sP5oJwKJdySzZc4y7+0TwxJWtDE4pUj052PuCYWFhZ0wpFakp/tieSFZBMQBD2jfE09XQZREBcHN24LqoUHYmZFFYbOG1BTspNmvNNxERERGRmiA2NYfftyUCEOjlytWdQwxOdHY9mgXyy/29mDyyIw18SrqZmi1WAiowdVWkrrB70W3KlCk89dRTHDp0yN6XFrloczacmlo60o5TS8/H1cmRl65uR5fwkvXc9h/L4bv18Rc4SkREREREqoPPVxzEcmJcyvieTXB1qr4dQh0cTFzfpRGLH+vHY4Na0KahD7d2L73edF6hGYtFA21EwICi24033siSJUuIjIzE29ubgICAUjeR6upIeh4r9qUA0DjAg65Nq8/Pq8lk4pkhrW2P3/lrD9knRuSJiIiIiEj1ZTKZcHF0wN3ZkdGXNjY6Tpm4uzhy/4Dm/PpArzOKhK8u2MHVH/zDpvh0Y8KJVCN2nxs3ZcoUe19SpFLEpebSwMeNhIx8RnRpVK3WWQDoEu7PkPYNWLA1kZTsQj5eup9HB7U0OpaIiIiIiJzHi8Pbcm//SLYezsDPo2ZN1XRwKP2ZaF9yFrPWxmO2WFmw5SjHcwvp3zLIoHQixjNZtcDaeWVmZuLr60tGRgY+Pj5GxxGDmS1W/tmXQssG3gSfWMegOjmUksPl7yylyGzFzdmBJY/1p4Fv9cspIiIiIiK1z5bD6Tw2ezNZ+cUkZOTj5+HMggd7E+LnbnQ0kUpV1lqR3aeXApjNZn744QdeeeUVXnnlFX788UfMZrMRUUTKxdHBRJ8W9atlwQ2gSaAnt3ZrAkB+kYXJf+42NpCIiIiIiNQZHRr5seDB3rRq4A1Aem4R982MobBYjd6kbrJ70W3fvn20bt2aMWPGMHfuXObOncstt9xC27Zt2b9/v73jiNQ6DwxohrdbyczxOTGH2XGipbeIiIiIiFQPVquVuTGHySusfYNPnBwdmHJjZxr5l4xu2xiXzpu/7zI4lYgx7F50e/DBB4mMjCQ+Pp6YmBhiYmKIi4ujadOmPPjgg/aOI3JBeYVmjqTnGR2jzPw9XXhgQDMArFb4bMVBgxOJiIiIiMjplu45xsTvN9Pj9UV8vz7e6DiVztfDmQ9HR+HiWFJy+HTFQX7flmhwKhH7s3vRbenSpbz55pulOpXWq1eP119/naVLl9o7jsgFzd+aQK83/uaWT9cQE3fc6DhlMqZ7E9qG+PDs0Na8dl07o+OIiIiIiMhpPll+AIDjuUX4uDkbnKZqdGjkx7PDWtsePz5nM3GpuQYmErE/uxfdXF1dycrKOmN7dnY2Li41q1OL1A1zNsRjtcKKfSnUlL4jbs6O/PpAL+7oHXFGC28RERERETHO9qMZ/LMvFYAm9Ty4vE2wwYmqzq3dwhnWoSEAWfnF3DtzA/lFtW9Krci52L3oNmzYMO666y7WrFmD1WrFarWyevVqJkyYwPDhw+0dR+S84lJzWX0gDYCIQE+iGvsbnKjsTCbThXcSERERERG7+nT5qeVfbu/VFEeH2vu+3WQy8fr1HYgI9ARg25FMXp2/0+BUIvZj96Lbe++9R2RkJN27d8fNzQ03Nzd69uxJs2bNePfdd+0dR+S8fog5bLt/fZdGNbqQtf9YNrmFxUbHEBERERGpsxIy8vhl81EA/D2cGdElzOBEVc/L1YkPRkfh6lRSfli0M4n03EKDU4nYh5O9L+jn58e8efPYu3cvO3fuxGQy0bp1a5o1a2bvKCLnZbFYmbOhpOjmYILroxoZnKhiUrMLmLJwLzPXxvHQZc158LLmRkcSEREREamTpv9ziGJLyZI1t3YLx92lbiwF07qhDy9f3Y4F2xJ4+4ZO+HloaSmpG+xedDupefPmtkJbTR49JLXX6oOptq6lvZvXp4Gvm8GJKiY9r4iZa+MwW6x8tHQ/o7qGEeRdM1+LiIiIiEhNlZVfxMw1cQC4ODlwa/cmxgays5HRjRjRpREOtXg6rci/2X16KcBnn31Gu3btbNNL27Vrx6effmpEFJFzmrP+1NTSEV1q5ig3gMj6XtzctTEAuYVmpizca3AiEREREZG657t18WQVlCz3cl3nUOp7uxqcyL5MJtMZBTeLpWY0qhOpKLsX3Z5//nkeeughrrrqKmbPns3s2bO56qqreOSRR3j++eftHUfkrLLyi1iwLQEAHzenGt9R6KGBzfFyLRnY+u3aOPYmndlBWEREREREqkZRsZkZJ0a5AdzRu6mBaaqHlOwCxny+lu/XxxsdRaTK2H166dSpU/nkk0+46aabbNuGDx9Ohw4deOCBB3jppZfsHUnkDAu2JpBfZAFgeKcQ3Jxr9loLgV6u3NMvkrf+2I3FCq//tovPxl1idCwRERERkTrhr53JZOYV0bVJAPW9XWkW5G10JEOl5RQy9L3lJGUWsO5QGu1DfWnd0MfoWCKVzu4j3YqKioiOjj5je5cuXSguVmdFqR4a+LrTPaIeACNrSUeh23o2pYFPyVpui3Yls3JfisGJRERERETqhukrD5GaU8jaQ2ncdGLpl7oswNOFy1qXzCYqKLZw34wYsgtUD5Dax+5Ft1tvvZWpU6eesX3atGmMHj3a3nFEzrAvOZtpy0oaDvz9aF86NPI1OlKlcHdx5LErWtoev7pgp9ZQEBERERGpYjsTMll7MA2AyPqe9GxWz+BE1cPzw9rQNqRkdNuBlByenrsVq1WfT6R2MbSRwh133MEdd9xB+/bt+eSTT3BwcGDixIm2m4gRvl8fzz/7Unno200s3XOsVnXXvbZzqG3Y9vajmczbfMTgRCIiIiIitdtXqw7Z7o/t0aRWfb64GG7Ojnw4OgrvE2tP/7L5KN+ctu6dSG1g96Lbtm3biIqKon79+uzfv5/9+/cTGBhIVFQU27ZtY+PGjWzcuJFNmzbZO5oIhcUW5saUdC11djRxdadQgxNVLkcHE/8Z0tr2+MeNRw1MIyIiIiJSu2XkFvHjxpIvur1cnbguqpHBiaqX8HqevDWyg+3xy7/sYOvhDAMTiVQuuzdSWLx4sb0vKVJmf+9KIiW7EIBBbRoQ4OlicKLK16t5INdHNaJLuD83ROuPvoiIiIhIVZm9Id7WoO36qFC8XO3+Ebzau7JdQ27r2ZTP/zlIodnCvTM38Ov9vfH1cDY6mshFM2R6qUh19d26U+2qb7ykdjRQOJvJN3Tk5ksb4+SoXwEiIiIiIlXBbLHy1apY2+NbuzcxLkw199TgVnQK8wMgPi2PD5fsNTaQSCWxe5k9Pz+f999/n8WLF5OcnIzFYin1fExMjL0jiQCQkJHH0j3HAAj1c6dXs0CDE4mIiIiISE11PLeQUD934tJy6d08kGZBXkZHqrZcnBz4YHQUV72/nIj6Xnz+zyG6RwbSr2WQ0dFELordi2633347f/75JyNGjKBr165aRFKqjTnrD3OymeeILo1wcKg7P5vbjmTg5epEk0BPo6OIiIiIiNQKgV6uzLqrG7sTsygyWy58QB0X6ufO04Nb8/icLQC8Mn8nPZsF4qzZOVKD2b3o9uuvv7JgwQJ69uxp70uLnJPFYuX7DSVTS00mGFlH1jpLyynklfk7WHswDXdnR2bd1Y1AL1ejY4mIiIiI1BotG3gbHaHGGNGlETPXxrExLp19ydnMXBPH2B5NjI4lUmF2LxmHhobi7a1fOlK9rDqQSnxaHgC9mgXSyN/D4ET24erkQJC3G8lZBexNzubGj1eRmJFvdCwREREREamDTCYTzw9rY3v8zsI9pOcWGphI5OLYveg2efJknnzySWJjYy+8s4idbIw7brs/6pLGBiaxL09XJ0ZGN6LeiS6t+4/lMPLjlcSn5RqcTERERESkZsopKGbJ7mQsJ9eukXLp3NifazuHApCeW8SUhWqqIDWX3Ytu0dHR5OfnExERgbe3NwEBAaVuIka4f0Bzlj7ej4cHNmdgm7q1WGdkfS++v7s7jQNKRvfFp+Ux8qNV7EvONjiZiIiIiEjN8+PGI4z7Yh2Xvb2UFXtTjI5TIz1xZUvcnR0B+Hp1LPuSswxOJFIxJqvVatfy+8CBA4mLi+P2228nODj4jEYKY8eOtWecC8rMzMTX15eMjAx8fHyMjiNSZZIy8xn96Rpbsa2epwtf334pbUL0cy8iIiIiUhZWq5UrpixjT1LJe+pfH+hFu1Bfg1PVTO8u3Ms7C/cA0L9lfb4Y39XgRCKnlLVWZPeim4eHB6tWraJjx472vGyFqegmdUlqdgFjPl/L9qOZAPi4OfHlbV3p3Njf4GQiIiIiItXfyv0p3PzJGgCiw/2Zc08PgxPVXHmFZgZMXkLCiTWnp4+/hH4t69asJKm+ylorsvv00latWpGXl2fvy4qcVXZBsdZaOE09L1dm3tmNqMZ+AGTmF3PLp2tYtT/V2GAiIiIiIjXAVytPrV2urpsXx93FkacGt7I9nrEmzsA0IhVj96Lb66+/zqOPPsqSJUtITU0lMzOz1E3Enl7/bSe931zMlIV7yMgrMjpOteDr7szXt19Kj8h6ABSaLeQXmQ1OJSIiIiJSvR1Jz+PPHYkABHm7ckXbBgYnqvmGdwyhX8v6PD+sDR+OjjI6jki52X16qYNDSZ3v32u5Wa1WTCYTZnP1+nCv6aW1V16hma6vLSQrvxh3Z0fW/ucyvN2cjY5VbeQXmXlg1kau6xzK4PYNjY4jIiIiIlKtvfXHLj5YvB+Ahwc25+GBLQxOVDucrBWIVCdlrRU52TETAIsXL7b3JUXO6rdtCWTlFwMwtENDFdz+xc3ZkWm3dtEfOBERERGRC8gvMjNrbTwATg4mbu7a2OBEtYc+j0hNZveiW9++fe19SbKysnjuuef48ccfSU5OpnPnzrz77rtccsklds8i1cd36+Jt90ddEmZgkurrbH/gPlq6H09XJ27tFm5AIhERERGR6mf+lgTScgoBGNK+IUE+bgYnqr12JWbi7uxIeD1Po6OIXJDdi24A6enpfPbZZ+zcuROAtm3bctttt+HrWzWtlO+44w62bdvG119/TUhICN988w0DBw5kx44dhIaGVsk1pXo7mJLDmoNpAETU96RLuLpzlsVXqw7x+m+7AMgtKObuvpEGJxIRERERMd5Xqw7Z7o/toS+nq0JGXhFv/r6LWWvj6NcyiM/HaRCNVH92b6Swfv16IiMjeeedd0hLSyMtLY23336byMhIYmJiKv16eXl5/PDDD7z55pv06dOHZs2a8eKLL9KsWTOmTp1a6deTmuH79adGud0YHaYhy2WUlJlvuz/pt128/dce7LwspIiIiIhItfPqte25IboRXcL9iWqsL/SrgrOjiUU7k7FY4e9dySzdc8zoSCIXZPei2yOPPMLw4cM5dOgQc+fOZe7cuRw8eJBhw4bx8MMPV/r1iouLMZvNuLmVHt7r7u7OihUrzti/oKBAHVVruWKzhR82HAZK1lu4LqqRwYlqjsevaMXjV7S0PX5v0V4m/bZLhTcRERERqdPahfry5oiOzL67u77QryIeLk48NbiV7fErv+6g2GwxMJHIhRky0u3JJ5/EyenUzFYnJyeeeOIJ1q9fX+nX8/b2pnv37rz88sscPXoUs9nMN998w6pVq0hISDhj/0mTJuHr62u7hYVpra/aZsnuYyRnFQBwWesg6nu7GpyoZrmvfzNeuKqN7fHOhEwm/7nHwEQiIiIiItWDg4MKblVpeMcQOoX5AbA3OZtZa+OMDSRyAXYvuvn4+BAXd+Y/jPj4eLy9vavkml9//TVWq5XQ0FBcXV157733uOmmm3BwOPPlP/3002RkZNhu8fHxZzmj1GTfntZA4UY1UKiQ8T2b8sZ17Wkf6svyvSn83+J9fH3aOhYiIiIiIiKVzcHBxPOnDQB4+689ZOQWGZhI5PzsXnS78cYbuf322/nuu++Ij48nPj6eb7/9ljvuuIObbrqpSq4ZGRnJ0qVLyc7OJj4+nrVr11JUVERERMQZ+7q6uuLj41PqJrWH1Wol1M8Nb1cnGvi40ad5faMj1Vg3dm3MiC6npuY+//N2ft925uhREREREZHaqMhs4dbP1vD16lhyCoqNjlNnRDX25+pOIQAczy3ivb/3GpxI5NxMVjsvxlRYWMjjjz/ORx99RHFxyS8mZ2dn7rnnHl5//XVcXat+qt/x48dp2rQpb775Jnfdddd5983MzMTX15eMjAwV4GqRvEIzB1KyaRtSNR1z65I3ft/F1CX7AXBxcuCb2y+la9MAg1OJiIiIiFStBVsTuHdGSTPAYR0a8n83RxmcqO44mp7HgMlLyC+y4ORg4s9H+hBR38voWFKHlLVWZPei20m5ubns31/yQT0yMhIPD48qu9Yff/yB1WqlZcuW7Nu3j8cffxw3NzeWL1+Os7PzeY9V0U3k/KxWK4/O3szcmCMA+Lg5MeeeHrQIrprp4iIiIiIi1cGNH69izcE0AL65/VJ6NQ80OFHd8s5fe3h3Uckot8taBfHZuEsMTiR1SVlrRXafXpqRkUFaWhoeHh60b9+e9u3b4+HhQVpaWpV1Cs3IyOC+++6jVatWjBkzhl69evHHH39csOAmIhdmMpl44/oO9GlRMlU3M7+YsZ+v5Wh6nsHJRERERESqxq7ETFvBLbK+Jz2b1TM4Ud1zd98IGvi4AXA0I5/MfK3tJtWP3Ytuo0aN4ttvvz1j+/fff8+oUaOq5Jo33HAD+/fvp6CggISEBP7v//4PX19NK6xrlu89pkU2q4izowNTR0fRoVHJv6uEjHzGfr5W/3uLiIiISK305cpY2/2xPZpgMqlrqb15uDjx4vA2vH5de359oBc+bhpUI9WP3Ytua9asoX///mds79evH2vWrLF3HKkjMvKKuPOr9XR9bSHPz9tmdJxaydPVic/HXUJ4vZKp4nuTs3n+Z/1vLSIiIiK1S0ZuET9tLFlaxcvVieuiGl3gCKkqV7ZryKiujXF0UNFTqie7F90KCgpsDRROV1RURF6epqNJ1fh581HyiywUFFvQr+OqE+jlyle3daWepwutGnjzzJDWRkcSEREREalUszfEk1dkBuD6qFC8XJ0MTiQi1ZXdi25du3Zl2rRpZ2z/6KOP6NKli73jSB3x/bp42/0bLgkzMEntF17Pk5l3duP7Cd0JPrHGgoiIiIhIbWCxWPl69amppbd2b2JcGDnDtsMZ/HiiwZtIdWD3kvwrr7zCwIED2bx5M5dddhkAixYtYt26dfz555/2jiN1wPajGWw9kgFA+1Bf2oZoPb+q1rLBmZ1LLRYrDhr2LSIiIiI12NI9x4hNzQWgd/NAmgV5GZxITnr51x18ty6eQrOFbpEBNPR1NzqSiP1HuvXs2ZNVq1YRFhbG999/zy+//EKzZs3YsmULvXv3tnccqQM0ys142QXFjP1iLbPXx194ZxERERGRamr53mM4O5Z8kTxGo9yqFScHE9kFxRQWW3j/731GxxEBDBjpBtCpUydmzJhx3n1ef/11JkyYgJ+fn31CSa2UX2TmxxOLnLo5OzC8Y4jBieqenIJiRk1bxbYjmazcn0qgtyv9WwYZHUtEREREpFzScgr5clUsXq6OdGjkx4BWek9bnUzoG8mMNXFkFxTz/bp47u4TQXg9T6NjSR1n95FuZfXaa6+RlpZmdAyp4f7YnkhmfknjjiHtGuLrrjbS9ubh4kh0eAAAZouVe7+JYVN8urGhRERERETKyd/DmdkTunN9VBi9mgWqY2Y14+/pwh29mwJQbLEyZeFegxOJVOOim9VqNTqC1ALfaWqp4UwmE88Na8PQ9g0ByCsyc9v0dRxMyTE4mYiIiIhI2ZlMJqIa+/P8VW24u2+k0XHkLG7v1RR/j5KBFj9tOsLuxCyDE0ldV22LbiIXKy41l5X7UwFoUs+DS5sGGJyo7nJ0MDH5ho62/w/ScgoZ8/kakrPyDU4mIiIiIiK1hbebM/f2awaA1QqT/9xtcCKp61R0k1rL18OZZ4e2pkWwFzdcEobJpOHfRnJzdmTamGhanehsGp+Wx/D3/2Hasv1k5BYZnE5ERERERGqDW7uHE+zjCsCfO5LYrKVtxEAmazWdx+nt7c3mzZuJiIgwNEdmZia+vr5kZGTg4+NjaBapGKvVSrHFirOjaszVQWJGPtdPXUn7UB9+354EgLuzI9dFhTK+ZxOaBXkbnFBEREREpLTn522jaaAnQ9s3JMjHzeg4cgHfrI7l2Z+2AdC7eSBf336pwYmktilrrUhVCKn1TCaTCm7VSANfN/6a2KfUm5W8IjMz1sQx8O1l3PrZGv7elYTFUi2/DxARERGROuZoeh5frYrlv7/s4JbP1hgdR8rghugwGgd4ALD1SAZJmVrWRozhZHSAc+nduzfu7u5GxxCRKuDh4sRLV7djbI8mfLnyEHM2HCa30AzA8r0pLN+bQpN6Hozt0YQRXRrh7aausyIiIiJijAVbE2z3h5xoDibVm4uTA09e2Yq9yVnc3qupPk+IYew+vXTgwIHccsstXHfddTViuqaml9Y8xWYL986IoV/LIIa0b4Cfh4vRkeQCMvOL+H5dPF+uOkR8Wl6p5x4b1IL7BzQ3KJmIiIiI1HVXf/CPbV2whRP70izIy9hAImK4staK7D7SrW3btjz99NPce++9DB06lFtuuYUhQ4bg7KzKs1SOVQdS+XNHEn/uSGL53mNMvaWL0ZHkAnzcnLmjdwTjezbl713JTF95kH/2peLi6MCoro1L7ZtfZMbVycHWGMNqtZJdUExGXpHtlnniv00Dvej6r66198+MwWK14uPmjI+7Mz5uTif+64yPu5Nte6ifO56u1XYwsIiIiIjYQXxarq3g1qqBtwpuIlIudv9E+e677/LOO++wcOFCZs6cyZgxY3B0dGTEiBGMHj2avn372juS1DI/bTxquz+8Y4iBSaS8HB1MXN4mmMvbBLM7MYsth9MJ9HIttc87C/fw29ZEHB1MtiKb+Rzrv93SrfEZRbe/dyXbprKez3s3dS7182O1WvlwyX6u6hBC43oeFXh1IiIiIlLT/Lrl1NTSq/TZokZLzswnMTOfDo38jI4idUi5i24HDx5k+fLlxMbGkpubS/369encuTPdu3fHza1sXVwcHBwYNGgQgwYN4qOPPuKXX37h1Vdf5bPPPsNsvvCHYZFzyS8y88f2RAC83Zzo3yrI4ERSUS0beNOyQelOprmFxXy7Np7GAe5sPZJ5wXOk5xaVelxktpSp4Abg41b61+PK/am89cdu3v5rD9d1DuX+Ac0Ir+dZpnOJiIiISM3065ZTX+hf1UFFt5qoyGzhf3/u5suVhwjxdefPR/rgpEZ7YidlLrrNmDGDd999l/Xr1xMcHExISAju7u6kpaWxf/9+3NzcGD16NE8++STh4eFlOmdiYiLffvst33zzDVu2bKFr164VfiEiAIt2JpNdUAzA4HYNcHN2NDiRVKaUrEI6N/ajoa8bh1Jz8XV3xs/DGV/3028utvv/Hv7v5GBi23+vIDOviMz8IjLzik+7X0Rm/qnHYQGlR7N9uvwAAGaLldkbDjN34xGu6RTKAwOa0SRQxTcRERGR2uZgSg7bj5Z80duhka9mO9RQTg4mNsalk19k4UBKDnNjjnDDJWFGx5I6okxFt86dO+Pi4sK4ceP44YcfCAsr/QNaUFDAqlWr+Pbbb4mOjubDDz9k5MiRZz1XZmYmP/zwAzNnzmTJkiVEREQwevRovvvuOyIjIy/+FUmd9tOmI7b7V3cKNTCJVIXG9TyYPr4rVquVSdd1KPfxJpMJL1cnvFydCKF83ZGnjOrMF/8c5PMVB8nML8ZssfJDzGF+3HiYazqH8sCA5jRV8U1ERESk1vh186lRbsM6qGtpTWUymXj8ipaM/GgVAO8u2svVnUNwddIADal6Zepe+scff3DFFVeU6YSpqakcOnSILl3Ovni9u7s7/v7+3HjjjYwePZro6OjyJbYzdS+tOTJyi4h+9S+KzFaCvF1Z9fRlODqYjI4ltUxmfhHT/znEZysOkpF3avqqg6mk0PvIwBb6FlRERESkFhj87nJ2JpSMdPvnqQGE+pXvS1upXsZ9sZYlu48B8OJVbRjXs6nBiaQmK2utqExFt8r0119/cdlll+HgUDPmUKvoVnPMWhvH03O3AnB7r6Y8N6yNwYmkNsvKL+LLlYf4dMXBUmvHzZ7QnUuaBJznSBERERGpCVKyC/htWyL7krL479XtjI4jF2nbkQyGvb8CgEAvF5Y90R8PF7v3lpRaoqy1onJXvmJiYti6davt8bx587jmmmt45plnKCwsvODxl19+eY0puEnN8tPGU1NLr9HUUqli3m7O3D+gOSueHMDjV7TE38OZns3qnVFwKyhWcxgRERGRmijQy5Vbu4Wr4FZLtAv1ZWj7kmnCKdmFfPHPIWMDSZ1Q7urX3XffzZ49ewA4cOAAo0aNwsPDg9mzZ/PEE09UekCRskjLKWR97HEAIup70i5UoxLFPrxcnbivfzOWPzmA1/+1zpzVauWGj1Zx+5fr+GHDYXYlZlJkthiUVERERESkbnvk8hacXIHo46X7Sy0XI1IVyj2Wcs+ePXTq1AmA2bNn06dPH2bOnMk///zDqFGjmDJlSiVHFLmwAE8XVj41gF82H8XHzRmTSWu5iX2dbNBwur93JbP5cAbtQnx4dPZmAFwcHWjRwIs2DX1KbiG+tG7ojbebsxGxRURERETqjGZBXlwX1Yg5Gw6TmV/MJ8sO8NgVLY2OJbVYuYtuVqsVi6VkpMbChQsZNmwYAGFhYaSkpFRuOpFyCPZx447eEUbHELHJLigmxNcNj9OKcYVmC9uOZLLtSGapfRsHeHB9VCMeGtjc3jFFRERE5DTTlu3n8PE8hnUIITrcHwc1Z6tVHrqsOfM2HaHIbGX+1gQeHtgcJ0ctgSVVo9xFt+joaF555RUGDhzI0qVLmTp1KgAHDx4kODi40gOKiNRUV3cKZViHENYdSmNjXDo7EjLZcTSDAyk5/LuFTVxaLjmFxaW2Wa1Wvl4dS0SgFz2b1dMIThEREZEqZrVa+WZ1HHFpuXyzOpY1zwykvrer0bGkEoUFeHBP30i83JwY072JCm5SpcpddJsyZQqjR4/mp59+4j//+Q/NmjUDYM6cOfTo0eOsx7z33ntlPv+DDz5Y3kgiItWWo4OJbhH16BZRz7Ytt7CY3YlZJ4pwmexIyGRXQhZtGpZei/BQag4fLT3A0fQ8OjTy5d5+kQxq00DftoqIiIhUka1HMohLywWge2Q9FdxqqYmDNKVU7MNktf57vMXZHThwgIiIc0/dy8/Px9HREWfnM9clatq0aanHx44dIzc3Fz8/PwDS09Px8PAgKCiIAwcOlCN+1StrG1gxhtVqZeRHq+gU5sc1nUNpF+prdCSRCjFbrJgtVlycTn3TNnXJPt74fXep/SLrezKhbyRXdwotta+IiIiIXLzXFuxk2rKSz6STrmvPTV0bG5xIRKqjstaKyvyJrUOHDrRr145nnnmGtWvXnvG8m5vbWQtuUDL19OTt1VdfpVOnTuzcuZO0tDTS0tLYuXMnUVFRvPzyy2WNIwJATNxx1sce59MVB3nzj90XPkCkmnJ0MJ1RRLurTyT/d3PnUiPg9h/L4fE5W+j31mI+X3GQ3H9NSRURERGRirFYrPy6+SgATg4mrmzbwOBEYi/xabkcSc8zOobUQmUuuqWkpDBp0iSSk5MZPnw4DRs25M477+SXX34hPz+/zBd87rnneP/992nZ8tRwzpYtW/LOO+/w7LPPli+91Hk/bTxqu391xxADk4hUPkcHE8M6hDD/wV5MH38JXZsG2J47mpHPS7/uoNcbi/lo6X4DU4qIiIjUDhvjj3M0o+Szbc9mgfh7uhicSKpaRm4Rz/20jQGTl/DGb7uMjiO1UJmLbm5ublx11VV8+umnJCQk8MMPP1CvXj2efPJJAgMDueaaa/j88885duzYec+TkJBAcfGZIzPMZjNJSUnlfwVSZxWZLczfmgCAm7MDV7TTN1FSO5lMJvq1DOL7u7szZ0J3LmsVZHsuLaeQ2NRcA9OJiIiI1A6/bE6w3R/WoaGBScReHB1NzN+aQJHZysr9KWw7km50JKllKrQgkMlkokePHrz++uvs2LGDjRs30rt3b6ZPn06jRo344IMPznnsZZddxt13301MTIxt24YNG7jnnnsYOHBgReJIHbV87zHScgoBGNg6GC/XcvcFEalxopsE8Nm4S/jtod5c3SkEF0cHJvQtvd5mbmExsak5BiUUERERqXnMFisLTnyh7+LowCBNLa0TvFydeOiy5vSIrEdGXhGvzt9FGZe9FymTMjdSKKvU1FTS0tJo3rz5WZ8/duwYY8eO5ffff7etAVdcXMwVV1zB9OnTCQoKOutxRlEjherroW83Mm9TyfTST8ZEc3mbYIMTidhfanYB9bxKd9X6fMVBXv51By2CvWlcz4Mgb1eCfdwI9nElyMfN9jjAw0WdUEVERESA1QdSGTVtNVDyhf6nY6MNTiT2UlBs5vK3l9m61n58axeuUNFVLqCstaIKDQ06evQoK1asIDk5GYvFYttuMpl44IEHqFev3jmPrV+/PgsWLGDPnj3s2lUyZ7pVq1a0aNGiIlGkjsopKObP7SXTkf08nOnbor7BiUSM8e+CW2GxhU+WH6BFsBe7k7LYnZR1zmOdHEzU93bl94f74Ot+qhGO2WKloNiMh4tGj4qIiEjdsHDHqaWOruqoqaV1iauTI88Mac2EbzYAJR1s+7Wsj6uTo8HJpDYo9yeq6dOnc/fdd+Pi4kK9evUwmU6NkjhZdCuLFi1aqNAmFfbXjiTyiswADGnf8IyujyJ1ldliZfSljSkyW9mbvBfLecYyF1usHMsqwPtfU7OX7E7miTlbePLKVozo0kij4URERKTWe2pwK/q3CmL+1gQua60ZNHXNFW2D6R5Rj1UHUolNzWX6P4e4u2+k0bGkFij39NKwsDAmTJjA008/jYND+QsdZrOZ6dOns2jRojNGygH8/fff5T5nVdL00upp3BdrWbK7pGnHd3d149KIc4+uFKmris0WUnMKScrMJymzgOSsE//NzCc5q4CkzHxMJvj1gd62YwqLLVwxZRkHU0rWhOsY5sdLw9vSMczPoFchIiIiIlL1dhzNZNj7y7FYS9Z6W/xYP+p7u174QKmTqmx6aW5uLqNGjapQwQ3goYceYvr06QwdOpR27dqVGiknUhb5RWa2H80EIMTXjUuaBBicSKR6cnJ0OLGWm1uZj8ktLKZ1A29b0W1zfDrXfPgPN0aH8fgVLc+YzioiIiIiUhu0CfHhxksaM2ttHNkFxbz9124mXdfB6FhSw5V7pNsTTzxBQEAATz31VIUuGBgYyFdffcWQIUMqdLy9aaRb9VRktrB87zGyC8wM7xhidByRWmflvhRe+Hk7e5Ozbdt83Jx47IqW3Ny1MU6OmtItIiIiIrVLSnYB/d9aQlZB8YkZIb1oG+JrdCyphspaKyp30c1sNjNs2DDy8vJo3769rQPpSW+//fZ5jw8JCWHJkiU1Zj03Fd1EpK4qMlv4cuUhpizcS3ZBsW17qwbevHR1O7o21ShTERERqdmW7TnGtGUHGNahIYPbNcTXw/nCB0mtNm3Zfl5bUNL08dKmAXx7VzfN0JMzlLVWVO6hCpMmTeKPP/4gKSmJrVu3snHjRttt06ZNFzz+0Ucf5d1336WctT4REbEzZ0cH7ugdwd+P9eX6qEa27bsSs/hwyT4Dk4mIiIhUjnmbjrJiXwpPzd3KmoOpRseRamBsjyaE1/MAIDEzn2PZBQYnkpqs3CPd/P39eeeddxg3blyFLnjttdeyePFiAgICaNu27Rkj5ebOnVuh81YVjXSrXorNFk1rEzHIhtg0np+3nT1JWfzxcB8i6nsZHUlERESkwgqKzUS/vJCsgmK8XZ1Y/9xAXJ0cjY4l1cDiXcnsScpiXM8m+pmQs6qyRgqurq707NmzwsH8/Py49tprK3y81F1Wq5Wr/u8fGvq6cU3nUK3lJmJnXcID+Pn+Xmw5nH5Gwe2ffSmYLVb6tKhvUDoRERGR8lm6+xhZJ5bQuLxtsIorYtO/VRD9WwUZHUNqgXIX3R566CHef/993nvvvQpd8IsvvqjQcSI7EjLZeeKWlV+kopuIARwdTHRu7F9qW36RmSd/2MLh43nc3qsp9/VvRoCni0EJRURERMrm1y0JtvtXddBnCxGpfOUuuq1du5a///6bX3/9tUZMD5Xa4+dNR233h3cKNTCJiJzux41HOHw8D4CNcce5fupKvhh3CU0CPQ1OJiIiInJ2eYVmFu5MAsDX3ZmezQINTiTV2b7kLFbsTWFcz6ZGR5EaptxFNz8/P6677rqLuuicOXP4/vvviYuLo7CwsNRzMTExF3VuqZ0sFis/by4pujk5mBjavqHBiUTkpFGXhOHq5MCXKw8RE5cOwHVTV/LJmGi6hPuf/2ARERERAyzenUxuoRmAK9s2wMVJ60bL2U3+czcfLtmPxWolukkA7UJ9jY4kNUi5i24XOz30vffe4z//+Q/jxo1j3rx5jB8/nv3797Nu3Truu+++izq31F5rDqaRkJEPQN8W9TV1TaQaMZlMXBfViEsj6jH+i7XsScomLaeQmz9ZzZQbOzFYRXIRERGpZn7dcmoWzbCOeq8i5+br7ozZUtJ/8qVfdvDd3d0wmUwGp5Kawu7l/A8//JBp06bx/vvv4+LiwhNPPMFff/3Fgw8+SEZGhr3jSA0xb9MR2/2rO2tqqUh1FOrnzuwJPegRWQ+AgmIL986M4dPlByhno2wRERGRKpNTUMzfu5IBqOfpQveIegYnkupsTPcmRJxYNmXtoTQWbE00OJHUJGUqul155ZWsXr36gvtlZWXxxhtv8MEHH5xzn7i4OHr06AGAu7s7WVlZANx6663MmjWrLHHKxWw289xzz9G0aVPc3d2JjIzk5Zdf1gfAGqSg2MyCrSWLnHq4ODKwtbrIiFRXvu7OTB/fleuiSorjViu8Mn8nL/683fYNoYiIiIiR1h5MI7/IAsCV7Rrg5KippXJuLk4O/Gdoa9vj1xbsJL/IbGAiqUnKNL105MiRXH/99fj6+nLVVVcRHR1NSEgIbm5uHD9+nB07drBixQoWLFjA0KFDeeutt855rgYNGpCWlkZ4eDiNGzdm9erVdOzYkYMHD1ZJIeyNN95g6tSpfPnll7Rt25b169czfvx4fH19efDBByv9elL5luw+RmZ+SSvvK9o2wMOl3LOiRcSOXJwcmDyyI2H+Hry7aC8AX66K5Uh6Pu/d1En/hkVERMRQv21LIMzfHT8PZwa1aWB0HKkBBrQKonfzQJbvTeFIeh6frTjIff2bGR1LaoAyffK5/fbbueWWW5g9ezbfffcd06ZNs00FNZlMtGnThiuuuIJ169bRunXr855rwIAB/Pzzz3Tu3Jnx48fzyCOPMGfOHNavX3/RDRrOZuXKlVx99dUMHToUgCZNmjBr1izWrl1b6deSqlFqamkntfIWqQlMJhOPXN6CRv7uPD13K8UWKwt3JvF/f+/jiStbGR1PRERE6rANsceJP55HQkY+l0YEGB1HagCTycRzw9pw5ZRlWKzwweJ9jOzSiCAfN6OjSTVX5uEGrq6u3HLLLdxyyy0AZGRkkJeXR7169XB2di7zBadNm4bFUjKU97777qNevXqsXLmS4cOHc/fdd5cz/oX16NGDadOmsWfPHlq0aMHmzZtZsWIFb7/99ln3LygooKCgwPY4MzOz0jNJ2R3Lymd3YskU5HqeLvRSK2+RGmVkdBgNfd2555sNNAv24sHLmhsdSUREROqw9NxC9h/LAaBtqC9uzo4GJ5KaokWwN6MvDefr1bHkFpp584/d/G9kR6NjSTVX4Tk+vr6++PqWv1Wug4MDDg6n5syPGjWKUaNGVTTGBT311FNkZmbSqlUrHB0dMZvNvPrqq4wePfqs+0+aNIn//ve/VZZHyic2NZfM/GKaBXkytnsTrbcgUgP1ah7InHt6UM/LRW9sRURExFAb49Jt96Ma+xmWQ2qmRy5vwbxNR8jML2bOhsOM6R5Oh0Z+RseSaqzWVzC+//57ZsyYwcyZM4mJieHLL7/kf//7H19++eVZ93/66afJyMiw3eLj4+2c2D6sVit5hdV/8cfoJgEsfbwfV3cM5Yq2Wm9BpKZq2cCbQC/XUtvi03L5ZfNRgxKJiIhIXRQTd9x2v0u4v4FJpCYK8HThoYEtAGgR7EWxGoXJBdT61awff/xxnnrqKdtouvbt2xMbG8ukSZMYO3bsGfu7urri6up6xvba5sMl+/l501Gm33YJDX3djY5zXh4uTjygKWkitUpGbhHjvljL/mM5xKbmcF//ZphMJqNjiYiISC23IfZU0S2qsYpuUn5juofj4+bEtZ1DNRNLLqjWF91yc3NLTWcFcHR0tK0rVxfN23SEt/7YDcB1H65k+viutGzgbXAqEalLfog5bFtP5X9/7iE+LY9Xrm2HCcjKLyYrv5jM/CIy84tsj7Pyi8gpKOb+AaWL8Et2J/PzpqM0C/aiRZA3LYK9aeTvjoODingiIiJySrHZwub4dAAa+roR4le9Bx9I9eTs6MDI6DCjY0gNUeuLbldddRWvvvoqjRs3pm3btmzcuJG3336b2267zehohunQyI/weh7EpuaSkJHPiI9W8vGtXegRWT2aFFitVv7v731cGxVKI38Po+OISBUY37MJBcUW3vh9FwDfrY9n7sbDFJkvPET/rj6RuDid+jJl7cE05m48UmofN2cHmgWVFOGaB3vTPMiLVg299TtFRESkDjt8PM82HVCj3ETEHkxWq7Xck5DT09OZM2cO+/fv5/HHHycgIICYmBiCg4MJDQ2tipwVlpWVxXPPPcePP/5IcnIyISEh3HTTTTz//PO4uLhc8PjMzEx8fX3JyMjAx8fHDontIyW7gNumr2PL4QwAXBwd+N8NHRneMcTgZPDXjiTu/Go9Lo4OPDm4Fbf3amp0JBGpIj9vPspj32+mebAX24+WrVv0hmcHUu+09eHu/Go9f+1IuuBxvZoF8s0dl5balpVfhLdb2Ttwi4iISM1WZLawMyETRwcTbUPK3xhQ5HRWq5VtRzLYGJ/ODdFhahpWh5S1VlTuotuWLVsYOHAgvr6+HDp0iN27dxMREcGzzz5LXFwcX3311XmPT01N5fnnn2fx4sUkJyefMc0zLS2tPHGqXG0tugHkFhZz34wYFu8+Ztv2nyGtuaN3U8PWVio2W7hiyjLbtLOPb+2iBgoitdyG2OO4ODow8ftNeLs54ePujLebMz5uTni7Odu2+bg54ePmTPfIeqXe0OQXmTlwLIe9yVnsTcpmT1IWe5OziU3N4fS1bcf1aMKLw9vaHlutVn7YcJisgmLG91RxX0RERETK55m5W5m5Ng6AORO6E90kwOBEYi9lrRWVe3rpxIkTGTduHG+++Sbe3qfWARsyZAg333zzBY+/9dZb2bdvH7fffjvBwcFaONtAHi5OfDImmmd/2sa360q6tL66YCdHM/J4bmgbQ9ZD+n79qXWeosP9GdQm2O4ZRMS+TnYO+2ti3wod7+bsSJsQH9qElP5jd3oxbk9SFpc2rVfq+fcX7eXdRfuwYKVJoCf9WwZV7AWIiIiISJ3UoZEvM9eW3F8fe1xFNzlDuYtu69at4+OPPz5je2hoKImJiRc8fvny5axYsYKOHTuW99JSBZwcHZh0XXsa+rrzzsI9AHzxzyEcTCaeG9bGrllyCoptGQCeHtJaRVkRqbBzFeNOKii2Yj4x2PuhWRv55YFehNfztGdEEREREanBopucWhtw/aHjULHvkKUWK3d/W1dXVzIzz1x3Z8+ePdSvX/+Cx7dq1Yq8vLzyXlaqkMlk4qGBzXnz+g44OpgI8HTh1m7hds/x6fKDHMsqAGBwuwa20S8iIlXh0UEtbKNpM/OLufvrDeQWFhucSkRERKrCsj3HuOPL9Uxdsp9DKTlGx5FaIiLQCz+PkvWBN8SmUYEl86WWK3fRbfjw4bz00ksUFRUBJQWbuLg4nnzySa6//voLHv/hhx/yn//8h6VLl5KamkpmZmapmxjnhkvC+HRsNJ+NjaZJoH1HexzLKuDjZfsBcHIw8fgVLe16fRGpexwcTEy+oSOR9Ut+3+1KzOKJOVv0ZklERKQW+md/Cgt3JvHG77vYlZhldBypJRwcTHQ50Qn3eG6RbakkkZPKXXSbPHky2dnZBAUFkZeXR9++fWnWrBne3t68+uqrFzzez8+PzMxMBgwYQFBQEP7+/vj7++Pn54e/v0Y2Ga1/yyA6/6t9dkGxmX3J2VV63XcX7SG30AzAzZc2JqK+V5VeT0QEwNvNmY9vjcbLtWS1hV+3JPDJ8gMGpxIREZHKtjE23XY/KtzPsBxS+3Q5bYrphtjq1RhSjFfuNd18fX3566+/WLFiBVu2bCE7O5uoqCgGDhxYpuNHjx6Ns7MzM2fOVCOFGsBisTLx+80s3X2Mj2/tQs9mgZV+jf3Hspm1tqSRg6eLIw9e1rzSryEici7Ngrx4+4aO3PX1BgBe/20XbRr60qt55f++ExEREfsrLLaw+XA6AGEB7gR5uxkbSGqVS05rnrD+0HFuvKSxgWmkuil30e2kXr160atXr3Ift23bNjZu3EjLlpo+WBN8ueoQ87ckADDui7W8NaIj13QOrdRrpGQV0NDXjcPH85jQN5JAL9dKPb+IyIUMatuABwc0472/92GxwgOzYvj5/l6EBXgYHU2kUu1MyCQlu4DezS+8Dq+ISG2xMyGTgmILgG0qoEhlaR/qi4ujA4VmCxtijxsdR6qZMhXd3nvvvTKf8MEHHzzv89HR0cTHx6voVkOMuqQx/+xLZeHOJIrMVh7+bhNH0vO4t19kpY1SvDSiHose7cu3a+MZGd2oUs4pIlJeDw9swdYjGSzefYyCYgv7j2Wr6Ca1zg8bDvPr1qPc1TuSTo39iNKHTxGpA04vhESpWZtUMjdnR9qF+hATl86BlBxSswuop4EkckKZim7vvPNOqcfHjh0jNzcXPz8/ANLT0/Hw8CAoKOiCRbcHHniAhx56iMcff5z27dvj7Oxc6vkOHTqUI75UNXcXRz66JYrnf97OzDVxODuYmL0hnm1HMnhjRAd83JwvfJIycHVyZGyPJpVyLhGRinBwMDFlVGcenLWRZ4a0pmUDb6MjiVyUrPySplfep/2tbtnAm09XFPDSrzu4vVdTFd1EpE6IiTut6Kbfe1IFopsEsCsxi86N/UjPK1LRTWxM1nK2aZs5cyYffvghn332mW202u7du7nzzju5++67GT169HmPd3A4s3eDyWTCarViMpkwm83liVPlMjMz8fX1JSMjAx8fH6PjGMZqtfLhkv2sOZDKsr0pADQO8OCDm6No38jX4HQiIiJy0qGUHKavPMScDYeZ0DeC+wecWiv1eE4hnV/+C4DOjf348d6eRsUUEbGbHpMWcTQjHw8XR7a8MAgnx3L3ExQ5r6z8ItydHfWzVYeUtVZU7jXdnnvuOebMmVNqemjLli155513GDFixAWLbgcPHizvJaUaMJlM3Ne/GS2Dvdl8OIOMvCLi0nK5fupK/jO0NWO6h5drummR2cLLv+5gbI8mRKpTqYhUcynZBVpvUqo1q9XKqv2pfP7PIRbtSuLkV6pfr47lrj6RuDiVfAjw93QhItCTAyk5bD+SSUGxGVcnRwOTi4hUrYSMPI5m5APQsZGfiiJSJbwraQaY1D7lLrolJCRQXFx8xnaz2UxSUtIFjw8PDy/vJaUaGdgmmPkP9uL+mRvZFJ9OodnCCz9vZ83BVF6/vuzTTb9dG8dXq2KZsSaO54a2ZlzPplWcXESk/AqLLbz063Z+35bILw/0oqGvu9GRRErJLzLz86ajfP7PQXYlZpV6zs3ZgQGtgskrNNuKbgCdG/tzICWHQrOF7UczNdVKRGq1mNh02/2ocD/DcohI3VTuottll13G3XffzaeffkpUVBQAGzZs4J577mHgwIHnPbawsJCffvqJVatWkZiYCECDBg3o0aMHV199NS4uLhV4CWJvjfw9+P7u7rz5+y4+XVEycnHB1kS2Hcnkw9FRtAs9/3TT7IJipizcC4DZYqWT3uyLSDU1+c/dfLM6DoAJ38Tw3V3dcHPWqCAxXmZ+EZ8uO8CMNXGk5hSWeq6BjxtjeoRz0yWN8fc8871V58Z+/BBzGICY2OMquolIrRYV7sek69qzIfa4OjeLXVgsVgrNFr1nFADKPbb2888/p0GDBkRHR+Pq6oqrqytdu3YlODiYTz/99JzH7du3j9atWzN27Fg2btyIxWLBYrGwceNGxowZQ9u2bdm3b99FvRixHxcnB54d1oZpt3bBx62kdhuXlst1H67k69Wx5z122tL9tg8Iwzo0pFOYX1XHFRGpkHv6RRIWUDK6bXN8Oi/M2045l0IVqXQ7jmby35+38/k/h0oV3Do39uP9mzqz/Mn+3Nuv2VkLblB6EfGNcelVHVdExFANfd25qWtj/jeyI90i6hkdR2qxHUczGf/FWjq99Cef/6NltaREuUe61a9fnwULFrBnzx527doFQKtWrWjRosV5j7vnnnto3749GzduPGORuczMTMaMGcN9993HH3/8Ud5IYqBBbRswv6EP98/ayOYT000TM/LOuX9SZj6fLC/5BeTsaOLxK1qec18REaP5ebjw8S3RXDf1H/KLLHy3Pp4OYb6MvlRLJYgxNsenM+bztWTkFRER6El+kZkh7RsyvmcTOpdxxFrLBt54uDiSW2gu1dFPREREKs7FyYHFu48BsOGQ/r5KiXIX3U5q0aLFBQttp/vnn39Yu3btWbs6+Pj48PLLL3PppZdWNI4YKCzAg9l3d+f133ax7WgGjww898/FlIV7yCsq6VB7S7dwwut52iumiEiFtAnx4Y3rO/DQt5sAePHn7bRq4E2X8ABjg0mds+5QGuO/WEd2Qcnaup6ujvz+cB+aBZWvIZGjg4mOjfxYdSCVhIx8EjLytF6hiIjIRYqs74m/hzPHc4vYEHcci8WKg0PZmw1K7VTuotttt9123uc///zzs2738/Pj0KFDtGvX7qzPHzp0CD8/v/LGkWrCxcmB569qQ2Gx5YyOQLsSM2kZ7M2+5Gy+WxcPgLerEw8MaG5EVBGRcru6UyhbDmfw2YqDFJmtTPgmhvkP9CLIx83oaFJHrNyXwu1frrd9cdUtIoDPxl6Cp2vFvj+NCi8pukHJFNOG7VV0E5HaZ0NsGtkFZjqF+eHrru6SUrVMJhNdwgNYuDOJ9NwiDqRk0yzI2+hYYrByv1M7frz0MMmioiK2bdtGeno6AwYMOOdxd9xxB2PGjOG5557jsssuIzg4GICkpCQWLVrEK6+8wgMPPFDeOFLNnN4dDWDL4XSun7qSQW0bkJNfjOXEUkj39I8k4BxrzYiIVEdPD27F9qMZrD6QxrGsAl6Yt533b+58xhcNUvOs3J/CVytjGdsjnG1HMrmzT4TRkc6QmV9ModkCQJ8W9fn4li64u1R8geaoxv6E+LrRubG//h6LSK01bdkB/tiehMkEiyb2JaJ++UYGi5RXdBN/Fu5MAmD9oeMqugkmayWsCG2xWLjnnnuIjIzkiSeeOOd+b7zxBu+++y6JiYmYTCXDLK1WKw0aNODhhx8+77FGyczMxNfXl4yMjLNOjZVzKyg2c/nby4hLyy21vaGvG4sf66duLiJS46RmFzDsveV4uTmTX2Tm7r6R3NJN67vVZDuOZnLjx6vIOjFl0wT88kCvC3biNsK8TUf4bWsi797UCVeni/sbarVabe/FRERqI6vVStfXFnEsqwBvVyc2vzBIU/2kyq0/lMaIj1YBcH1UIybf0NHgRFJVylorqpSiG8Du3bvp168fCQkJF9z34MGDJCYmAtCgQQOaNm1aGRGqhIpuF+f3bYk8PmczWfnFuDg6UGi28NaIDoyMDjM6mohIhSzelcz46esACPRyYfFj/fB205SVmig+LZfrp64kOaug1Paoxn7MmdCjWn44U7FMRKRs4tNy6f3mYgB6Nw/k69u1frhUvfwiMx1e/JNCs4Um9TxY8nh/oyNJFSlrrajS5sTs37+f4uLiMu3btGlTunfvTvfu3at1wU0u3pXtGrDgwd5c2jSAn+/vyXs3dea6qEZGxxIRqbD+rYIY2r4hACnZhXy0dL/BiaQi0nIKGfv5WlvBrVOYL5H1S5r7xMSlM3fjESPj8f26eKb/c/CM7Sq4iYiUzendmbuEl627s8jFcnN2pEOjktHyh1JzOfavL/ak7in3mm4TJ04s9dhqtZKQkMD8+fMZO3ZshYPEx8fzwgsvnLMRg9RcYQEefHd3dwBaNdRoQRGp+Z68shV/7Uii0Gzh0+UHGX1pOCF+Woi+psgtLOa26es4kJIDQER9Tz4f15UdRzO55bM1ALz+204GtQ3Gx4BRjF+tOsTz87YD4OrsyE1dG1fp9fKLzGTmFxHkrcYgIlJ7bIg9VXSLaqyim9hPlyb+rD/x87ch9jhXtmtgcCIxUrlHum3cuLHUbcuWLQBMnjyZKVOmVDhIWloaX375ZYWPFxERsZfG9TwY26NkLbeCYgtv/bHb4ERSHn/tSGJTfDoAQd6ufHVbVwI8XejVPJDBJ94Yp2QXMuWvvXbPNm3ZflvBDeDAsewqu1ZyZj5X/98K2r/4By/9sqPKriMiYoSTI91MJujU2M/YMFKnRIcH2O5vPZJuXBCpFso90m3x4sUVutDPP/983ucPHDhQofOKiIgY4f7+zZm94TDpuUX8uPEI43s2oUMjP6NjSRlc3SmUrPxi/vfnbr68rSuN/D1sz/1naGsW704mv8jCl6sOceMlYbRsUPWdx6xWK+8t2sc7C/fYtt3fvxmPDmpRZdcM8HRhb3I2RWYrG+PSq+w6IiL2lltYzM6ELABaBHkbMmpZ6q6uTQJ48/oORDfxp2mgp9FxxGDlLroNGDCAuXPn4ufnV2p7ZmYm11xzDX///fdZj7vmmmswmUycr2+D1ikREZGawtfDmYcua85/T4wQemX+Tr67q5v+ltUQt3QL56oOIfh6lP4g1sjfg/v6NWPyX3swW6y88PM2Zt1Ztf+/Wq1W3vxjN1OXnFof8LFBLbh/QPMquyaAk6MDHRr5svpAGkfS80jKzCfYR1NMRaTm2xyfgdlS8rkzSuu5iZ35ejhzwyVqHCglyj29dMmSJRQWFp6xPT8/n+XLl5/zuIYNGzJ37lwsFstZbzExMeWNIiIiYqjRl4bbvsFcezCNP3ckGZxIziU5K/+Mbf8uuJ10Z58IGgeUjH5bfSCNX7dcuDN7RVmtVv77y45SBbdnh7au8oLbSZ1PW+do42mLjouI1GSnN1GI0tRSETFQmYtuW7Zssa3ftmPHDtvjLVu2sHHjRj777DNCQ0PPeXyXLl3YsGHDOZ+/0Cg4ERGR6sbFyYGnBreyPZ785279LauGFmxNoM+bi1mwtWzFMzdnR164qg0AnRv7VdnUEIvFyjM/bmX6ykO2ba9c0447ekdUyfXO5vTFxWM0xVREaglfd2faNPTBwaTOpSJirDJPL+3UqRMmkwmTycSAAQPOeN7d3Z3333//nMc//vjj5OTknPP5Zs2aVXi9OBEREaMMahPMpU0DCPRy5ckrW2l6aTWzan8qD3+7iUKzhftmxjBnQo8yfQC7rHUwX97Wld7NAnFwqPz/T80WK6/8uoP5J0bROZjgzREdGdGlUaVf63w6nzYCJCZWI91EpHa4pVs4t3QLJ7ugGE8XR6PjSB1ktlhZtucY6w6lYaWk873UTWUuuh08eBCr1UpERARr166lfv36tudcXFwICgrC0fHcv9B69+593vN7enrSt29f2+PDhw8TEhKCg0O5Z8CKiIjYjclk4svbuuLmrDf11c3OhEzu+mo9hWYLANdHNSrXNKO+LepfeKcKKDZbeHT2ZuZtOkpkfU8cTCZevqYdV3UMqZLrnU+glyuNAzyIS8tl65EMCostuDjpvZeI1A5eruVewlykUjiY4LHZm0nNKcTHzYnHB7Wski/xpPor82+h8PBwACwWS5WFOV2bNm3YtGkTERH2m2IhIiJSESq4VT+Hj+cy9vO1ZBUUA9C/ZX0mXdf+okYimi1WHEwX1/ipyGzh4e822Ua4xaXl8sHNUQxq26DC57xYUY39iEvLpaDYws6ETDqG+RmWRUREpDYwmUxEhfvz144kMvOL2XcsmxbBVd8NXaqfMhXdfv75ZwYPHoyzszM///zzefcdPnx4pQTTmjgiIlJT5RWayS0spp6Xq9FR6qS0nELGfL6W5KwCADqF+fHB6CicHSs+gmv1gVRe/Hk7Ey9vUeECWZHZwoOzNvLbtkQAXBwd+HB0FAPbBFc4V2WICvfnp01HgZLFx1V0E5GaLK/QjLumlEo1EH2i6Aaw/tBxFd3qqDIV3a655hoSExMJCgrimmuuOed+JpMJs9lcWdlERERqFIvFyk+bjvDWH7uJCvfng5ujjI5U5+QWFnPb9HUcOFayjmxEoCefj7sED5eKTzHaEHucUdNWA/DSrzvo06J+hUY3Lt197FTBzcmBj2/pQv9WQRXOVVlOb6YQm5prYBIRkYt3zQf/kFdkpmvTAN4a0UFrrYphopsE2O6vj03j5ksbG5hGjFKmr3wtFgtBQUG2++e6qeAmIiJ1WW6RmdcW7CQhI5/5WxLYoIXp7aqo2Mz9M2LYFJ8OQH1vV768rSsBni4Xdd6oxn70iKwHwOHjeXy0dH+FzjOwTTDPDm2Nq5MDn4yJrhYFN4CWDbz5dEw0G54dyIvD2xodR0SkwjLzi9iTnEVcWi67EjNVcBNDtQv1sa2Tuv6Q3hPWVVopV0REpJJ4uTrxyOUtbI9fmb9DyyXY0T0zYli2NwUAb1cnvhzflbAAj4s+r8lk4r/D2+J0YgHkqUv2E59WsRFhd/SOYNGjfausSUNFODs6MLBNsKZDi0iNtykunZN/dk8fxStiBFcnRzo28gVK1nBNzso3OJEYoUxzLd57770yn/DBBx+scJjT6VsJERGpiW6MDmP6P4fYm5zNxrh05m9NYFgH+3elrO2KzBYcTaZSncAGtW1ATqGZvUlZvHdTZ9qE+FTa9ZoHezOuRxM+XXGQgmILL/+6g2ljos97TH6RmS2HM+jaNKDU9kb+F18IFBGRM8XEnRpN1CVcRTcxXpfwANadGOW24dBxBrdvaHAisbcyFd3eeeedMp3MZDJVWtFNIwNERKQmcnJ04JkhrRk/fR0Ab/y+i8vbBOPqpEWdK8POhExmrz/MvE1H+L+bo+h+YtonwND2DVmwNYElj/XDy8250q/90MDm/LTpKCnZBfy5I4mle46dc8RaXqGZO79az5qDqUwd3cXwZgkiInXB6cs6aKSbVAfRpxV/18eq6FYXlanodvDgwarOcYYdO3YQEqKRASIiUvP0a1mfXs0CWbEvhfi0PL5ceYi7+kQaHavGSssp5OdNR5i94TDbj2bats/eEF+q6Obp6sT08V2rLIe3mzPPDGnFxO83A/Dfn7fz+8N9bOu1nJRbWMzt09ez6kAqAE/8sIVlkf3xcq14M4eqZrVambPhMBvj0zGbrbwxooPRkUREysVisbIpLh0oWdOzkb+7sYFEKD3icv2hNAOTiFEu6t3fydFoF5oKet1115X5nHPnzgUgLCys4sFEREQMZDKZeGZIa4a+vxyrFd7/ex8juoRd9IL+dUmx2cLSPceYvf4wi3YlUWQuPQLexdEBRwOWori2cygz18SxPvY4B1Jy+Pyfg0zoe6qgmlNQzPjp61h7sOSNtberE5+Mia7WBTco+Zl97++9xKfl4ebswCvXtsPZUUv/ikjNsTc5m6yCYqCkAY6WK5LqwN/ThSHtGxDk7Ua3iIALHyC1ToXeTX322We0a9cONzc33NzcaNeuHZ9++uk59/f19bXdfHx8WLRoEevXr7c9v2HDBhYtWoSvr29F4oiIiFQ7bUJ8GNmlEQBZ+cW8t2ivwYlqBqvVyoKtCXSb9De3f7me37cnliq4dWjky8tXt2Xtfy7jrZEd7Z7PZDLx36vbcnIpuQ8W7yPnxIe87IJixn6+9lTBzc2Jr++4tMasK3RyKlZ+kYVdCVkGp6kcVquVjXHHKTJbjI4iIlVM67lJdfXh6C68OLwtV7bT1NK6qNxfuz7//PO8/fbbPPDAA3Tv3h2AVatW8cgjjxAXF8dLL710xjFffPGF7f6TTz7JDTfcwEcffYSjY8n6NmazmXvvvRcfn8pb8FhERMRojw5qyS+bE8grMvNDzGEmDmqBTxWsNVZbWK1WHp+zBQcTpGQX2LYHerlyXVQo10c1omUDbwMTlmgb4svoS8PZl5zNi8Pb4unqRGZ+EeM+X0vMialNvu7OfHP7pbRvVHO+UOwc5se8TUeBkg+vNSn72SzZnczrv+1iV2IWH93ShSvbNTA6kohUodPXc1PRTUSqi3IX3aZOnconn3zCTTfdZNs2fPhwOnTowAMPPHDWotvpPv/8c1asWGEruAE4OjoyceJEevTowVtvvVXeSCIiItVSsI8bE/pGEn88l8cGtVTB7QJmrz/MnA2HAfBydaJ380BGdGlEnxb1q91Ux2eHtcbF0QGTyURGXhFjPl/L5vh0APw8Sgpu7UJrVtEq6rQPqTFxxxnbo4lxYSqByWRiV2LJiL1Za+NUdBOp5bYezgDA2dFE25Ca9ftXRGqvchfdioqKiI6OPmN7ly5dKC4uvuDxxcXF7Nq1i5YtW5bavmvXLiwWDf0XEZHa5cHLmmldmTLYmZDJc/O22R6/fE07ru0camCi8zvZjdZqtXLHl+tsBbcATxe+uf1S2oTUvNH7rRv64OrkQEGxhY0nRuzVVHuSstiblEWQtyvJWQUs23uM+LRcwgI8jI4mIlXk5wd6su1IJnFpObg5q2O4VD+JGflsiD3O4HYNcHDQe8O6otxfG996661MnTr1jO3Tpk1j9OjRFzx+/Pjx3H777bz99tusWLGCFStWMHnyZO644w7Gjx9f3jgiIiLVmgpuF5ZdUMx9M2IoKC758u2Wbo2rdcHtdCaTiXv7NcPF0YF6ni7MurNbjSy4ATg7OtDhxJTSuLTcUlN8a5q/dyXzyvydJGeVvAarFb5bF29wKhGpSq5OjnQJ9+fazo2MjiJyhqfnbqHbpEXcNzOGvcnZRscRO6pQK63PPvuMP//8k27dugGwZs0a4uLiGDNmDBMnTrTt9/bbb59x7P/+9z8aNGjA5MmTSUhIAKBhw4Y8/vjjPProoxWJIyIiUmNk5RcRm5pb46YeVhWr1crTc7dyICUHgLYhPjw7tI3Bqcqnf6sgPr61C4383WkebPyacxcjqrE/6w6VrIsUE3ucQW1r5pTMLYfTbfcdHUyYLVa+Wx/PQwObV7upyiIiUvtFBHrZ7q87lFYt1qgV+yh30W3btm1ERUUBsH//fgACAwMJDAxk27ZT00LO9c2+g4MDTzzxBE888QSZmZkAaqAgIiK1ntVq5evVsczbdITwAE/+N7KjphYAM9bE8cvmksX7vV2d+HB0VI2cFtS/VZDRESpF58an1nXbGJ9eY4tum+NL1nbycHGkd/NA/tiexLGsAhbtTFL3OBERsbsuTU79fd0Qe5xbuoUbmEbsqdxFt8WLF1faxVVsExGRusJkMrFk9zE2xKazITadkdFhdI+sZ3QsQ207ksFLv+ywPX5zRAfC63kamEiiGvvZ7sec1gmwJjmWVcCR9DwA2oWWdJr9Y3sSADPXxqvoJlLLFJstPPL9ZjqE+tI9sp5Gkku11C7E17Zu6vrYNKPjiB3ZfXx9UlISt956KyEhITg5OeHo6FjqJiIiUltdc9o6ZbPX1+31paxWK//5aRuF5pJ13Mb1aMLg9iqGGC3Ix43rokJ5ZGALHh7Ywug4FXL61NJOYX70ahZIWIA7AMtPNFQQkdpjV2IWv2w+yqsLdvLxsgNGxxE5KxcnBzqG+QEQn5ZHUma+sYHEbso90i0/P5/333+fxYsXk5ycfEbH0ZiYmPMeP27cOOLi4njuuedo2LBhlS8w3aRJE2JjY8/Yfu+99/LBBx9U6bVFRERON6hNML7uzmTkFbFgWwIvXt0WHzdno2MZwmQy8eHoKO6fGYPFCs8MaW10JDnh7Rs6GR3homw+nGG736GRLw4OJkZd0pi3/tiN1Qrfrovj8StaGZhQRCpTTNypUbmnj9YVqW6iw/1Ze7BklNv6Q8cZ2kFfNtYF5S663X777fz555+MGDGCrl27lrtotmLFCpYvX06nTp3Ke+kKWbduHWaz2fZ427ZtXH755YwcOdIu1xcRETnJzdmRazqF8OWqWPKLLPy6OYGbL21sdCzDhPq5891d3cnML8LFSYvbS+XYHJ9uu9+xkR8AI6Mb8X9/72Ngm2AG1JL190SkxOlT4buE+59nTxFjRZ+2rtv62DQV3eqIchfdfv31VxYsWEDPnj0rdMGwsDCsVmuFjq2I+vXrl3r8+uuvExkZSd++fe2WQURE5KSR0WF8uapkBPb36+PrdNENSqZbBHq5Gh1Dagmr1WqbXhrg6UIj/5JppUHebqx/diCeruV+6ysi1dyGEyPd3JwdaN1Qa4ZL9RXVuHQzBakbyv21cmhoKN7eFW9vO2XKFJ566ikOHTpU4XNUVGFhId988w233XbbOUfoFRQUkJmZWeomIiJSWdqF+tLmxIeCTfHp7EnKMjiR/WTkFvHiz9vJLig2OopcgNliZcfRTH7ceNjoKOUSn5bH8dwiADo28i31fk8FN5HaJzkrn/i0ksYpHUL9cHbUqGmpvvw8XGge5AXA9qOZ5Bbq/VBdUO7fSpMnT+bJJ5886zppZXHjjTeyZMkSIiMj8fb2JiAgoNStKv3000+kp6czbty4c+4zadIkfH19bbewsLAqzSQiInXPDdGNbPfrSkMFq9XKo7M3M33lIYa/v4K9dajYWBON+XwNQ95bziPfbSY1u8DoOGVWbLFwdacQmtTzsC1YLSK1V0xsuu1+lKaWSg0Q3SQAVycHuoT7k5pdaHQcsYNyf+UXHR1Nfn4+EREReHh44OxcegHotLTzt7+dMmVKeS9ZaT777DMGDx5MSEjIOfd5+umnmThxou1xZmamCm8iIlKpru4UymsLdlFotjA35ghPXNmq1n87/+nygyzcmQTA8dxCjTqq5to09OGffakAbIxLZ2CbYIMTlU1EfS/eHdUZ4JzLmeQXmVmwNYEis4UbL6nb07tFarqNaqIgNcyTV7bkv8Pbai3bOqTc73hvuukmjhw5wmuvvUZwcHC5GymMHTu2vJesFLGxsSxcuJC5c+eedz9XV1dcXbW2jIiIVB1/TxcubxvM/C0JpOYUsnT3sRpT1KiIDbFpvP77Ltvjt2/sRIifu4GJ5EJK1p05CJR0BqyJP59ne4+aX2Sm1xt/k5JdSKCXK9dFNar1BW+R2uz0dbE00k1qAj8PF6MjiJ2Vu+i2cuVKVq1aRceOHct8TGZmJj4+Prb753Nyv8r2xRdfEBQUxNChQ6vk/CIiIuVx0yWNcTCZuCG6ET0iA42OU2XScgq5f+ZGzJaSUUf39oukf0t1j6zuTv/wGhNXexZ7dnN25JImAfy2LZGU7AIW7khicHt1jxOpiQqLLWw5kgFAeD0PNeURkWqp3EW3Vq1akZeXV65j/P39SUhIICgoCD8/v7N+82i1WjGZTJjN5vJGuiCLxcIXX3zB2LFjcXLSdBYRETFer+aB9Gpee4ttABaLlYnfbyIhIx+Ark0DmHh5C4NTSVkE+7gR4uvG0Yx8thzOoNhswamajwjLLSzGhAl3F8fz7nfzpY35bVsiADPXxqnoJlJDmS1Wnh3ampjY4wT7uhkdR6TcrFYrxRarRlzXcuWuQL3++us8+uijvPrqq7Rv3/6MNd3ONlLt77//tjVJ+Pvvv8s9JfViLVy4kLi4OG677Ta7XldERKQum7p0P0t2HwOgnqcL79/UudoXbuSUzuH+HN2SQG6hmd1JWbQN8TU60nn9ujmBp3/cSvMgL54a3Ip+5xhR2TMykMYBHsSl5bJ8bwpxqbk0rudh57QicrHcXRwZ070JY7o3MTqKSLlsOZzO+3/vIyb2OA9f3oJbu4UbHUmqULmLbldeeSUAl112Want5xup1rdvX9v9fv36lfeSF23QoEHnXExXREREKt+aA6lM/nM3ACYTvDuqM8E+GolQk0Q19mf+lgQAYuLSq33RbfPhdMwWK7sSs3BzPvdoNwcHE6O6hvHm7yU/n7PWxfHkla3sFVNEROo4s8XKXztKmkttOJSmolstV+6i2+LFiy/qgn369KFfv3707duXnj174uamN+AiIlJ35ReZ+WN7It+vj2fi5S3pUgsWgj6ansc7C/dwYhk3HhzQvNZPpa2NTu8EuDHueLX/ULD5cDpQUuRtF3r+AuHILmG8/eceii1WZq+P55GBLdRJTkRE7KJtiC9uzg7kF1lYH1t71k2Vsyt30e30UWsVMWjQIJYtW8bbb79NcXEx0dHRpYpwHh4a3i8iInXHgq0JTPx+MwBh/vE1vuiWkVfEuC/Wsicpm57N6uHk4MCDlzU3OpZUQJsQH1wcHSg0W9gYl250nPPKLzKzKyELgGb1vfByPf9b3PrergxqG8yCrYmkZBeycGcSQ7S2m0iNsvpAKk0DPQnydrX78kUiF8PFyYGOjfxYczCNw8fzSMzIp4HWJay1KvyVXm5uLrt27WLLli2lbhfy7LPP8ueff5Kens7ixYsZNmwY69evZ+jQobZ130REROqKK9s1sBUIftl8lNzCYoMTVVxBsZm7vlrPnqRsAA4fz2PKqE44OujDUE3k6uRIu1AfAr1caRHsRZHZYnSkc9qRkEnxiaGVHcP8ynTMzV1PjdybuSauKmKJSBXJLihm1LTVXPraIsZ8vtboOCLlFt3k1Jes62PTDEwiVa3cI92OHTvG+PHj+e233876fFm7jx44cICtW7eyefNmtmzZgre3N3369ClvHBERkRrNw8WJqzo2ZNbaeHIKzSzYmsiILo2MjlVuFouVx2ZvYc3BkjeOAZ4ufDm+K/4eLgYnk4sx/baueLs6VftRJFvi0233OzYq29pzPSLrEV7Pg9jUXFYdSCU5K58gb400EKkJ9iZl2e438nc3MIlIxUSHBwD7AVh3MI1hHUKMDSRVptwj3R5++GHS09NZs2YN7u7u/P7773z55Zc0b96cn3/++YLH33zzzYSGhtKjRw9+//13unXrxm+//UZKSgo//vhjhV6EiIhITTYyOsx2//v18QYmqbg3ft/FL5uPAuDm7MBnY6NpEuhpcCq5WD5uztW+4Aaw+XCG7X5ZR7o5OJiY0DeSBwc0Y+nj/VRwE6lB9p4YUQ3QPMjbwCQiFdO5sR+9mtWjbYgPG+K0rlttVu6Rbn///Tfz5s0jOjoaBwcHwsPDufzyy/Hx8WHSpEkMHTr0vMd/++23BAYGcscddzBgwAB69eqlddxERKRO6xzmR7MgL/YlZ7P2YBoHU3JoWoMKVl+vjuXjZQcAcDDBBzdH0blxzV6bTmqWk00UXBwdaNXAp8zH3dS1cRUlEpGqtPu0kW4tglV0k5rHz8OFrPxith/NBNBo61qs3CPdcnJyCAoKAsDf359jx44B0L59e2JiYi54fGpqKp9++imFhYU8/fTTBAYG0qNHD5555hn+/PPP8sYRERGp8UwmEzdEn5pSOmdDzRrt1q1pAKF+JdN7Xr6mHZe1DjY4kVSFwmILlpMtacshNjWHt/7YhdVa/mPLIiOviAPHcgBoHeKjLqQidcCeUkU3LwOTiFTc6Z3d/9mXYmASqUrlflfSsmVLdu/eDUDHjh35+OOPOXLkCB999BENG16465O/vz/Dhw/n7bffZsOGDWzZsoUWLVrw1ltvMXjw4PK/AhERkVrgms6htoYDczYcxlyB4oZRmgd7M/feHrx8TTtGXxp+4QOkRvlx42FGTF1J+xf/KDW6pCzi03IZOHkpHyzez03TVnPrZ2sqPd/pH77Lup7buVSkqCgi9ndyeqmvuzP1vV0NTiNSMb2b17fdX75HRbfaqtzTSx966CESEhIAeOGFF7jyyiuZMWMGLi4uTJ8+/YLHp6amsnTpUpYsWcKSJUvYsWMHfn5+XHXVVfTt27fcL0BERKQ2CPJ2o3/LIBbuTCIps4Ble4/Rv2WQ0bHKLNjHjVu7qeBWG6VmF7I+tmS9mZi447RuWPbpm2EBHgxoHcQf25NYfaLJRnxaLmEBlbe0yCVNAtj8/CC2HsmgnlfFGnccSc/ju7VxzN5wmFl3dtN6hCLVWEZeEYmZ+QC0DPauEetOipxNVGN/PFwcyS00s3xfClarVT/PtVC5R7rdcsstjBs3DoAuXboQGxvLunXriI+P58Ybb7zg8UFBQdxzzz0cPXqUO++8k40bN5KSksLcuXN56KGHyv0CREREaovTp5huPq0bY3WTnJXPpAU7KTJbjI4idnD6+nwb49LPu+/OhMwzppE+O7QN3SICbI/nb02o1HwAvh7O9GoeWK6C4Ol+2XyU9/7eR0JGPt+uq1nTu0XqmtM7lzbX1FKpwVycHOgWUQ+AY1kF5R5NLjXDRS964eHhQVRUFIGBgaW2+/j4cODAgTP237JlC0lJScyZM4cHHniA9u3bn/W8//zzDwUFBRcbT0REpMbo3yqIxwa1YPkT/Xl4YAuj45xVdkEx479Yx8fLDnDb9HVkFxQbHUmqWNsQH5wdS755jzlHh7XkzHwmfr+Jwe8u5+cTXWxPCgvw4I3rO9geL6iCotvFGtGlke01ztkQT2GxCsoi1dWe0zqXqomC1HS9mp2qo6zYqymmtVGVrTR7rsVy27ZtW6bjBw8ezJEjRyozkoiISLXm7OjA/QOaV+rUu8pUZLZw74wYW6etA8dyyFXRrdZzc3akbUjJWmkHjuWQnltoe66g2MyHS/bR/39LmBtT8r7t9d92kVtY+ucivJ4n7UJLRqFtOZxBXGqundKXTaCXK4PaNgAgJbuQv3YkGZxIRM4lPa8QF8eSj7Ea6SY1XZ8Wp4puy1R0q5WqbXunqupwJSIiIuVntVp5eu5Wlu0p6Vru6+7Ml7ddQpCP2tvXBVH/mmJqtVr5c3sig95Zxpu/7yan0AyAj5sTd/eJwNnxzLeYQ9qfarhVWVNMV+1P5ck5W5ixJpaj6XkXda7RXRvb7s9cG3ux0USkitzbrxk7XrqCRY/2pXOY/4UPEKnGIut70eDEe6m1B1PJLzIbnEgqW7UtuomIiNR1Fou12kzffOevPczZcBgoWYPk07HRNAvStJ66onNjP9v9hTuTGPP5Wu76egOxJ0asOZjglm6NWfJ4f8b1bHrWotvQ04pulTXF9J99KXy3Pp7//LjtotdB7BZRjyb1PE6cN5VDKTmVkFBEqoKTowOR9b1wd3E0OorIRTGZTPRuXjLaLb/IwtYjGQYnksqmopuIiEg1k5FbxNt/7aH3m4t547ddRsdh1to43vt7HwAmE7x7YycuaRJwgaOkNokKPzWaZMaaOJafNgWmW0QA8x/szSvXtCfA89zdQ0+fYrr1SOVMMd18ON12v2OY30Wdy8HBxE2njXabtS7uos4nIiJSFqO6hvHmiA6senqA3l/VQlVWdFOrWxERkYpxcIBpy/ZzJD2PeZuOGDrV4O9dSTz70zbb4+eGtmHwaSOWpG4I8XUj2McVh9Pe3oX6uTN1dBSz7uxW5q6hQ9uH2O5f7BRTq9VqG90W6OVKQ9+Ln+p8/ekNFdYfVkMFERGpcl3CA7ghOoyGvu5GR5EqYPdGCmWlop2IiNRV3m7OtvWvMvOL+WN7oiE5ftuawH0zNmK2lPxNv7N3U27r1dSQLGIsk8nEt3d1Z8nj/Qj0cuHRy1uw6NG+DG7fsFzv2U6fYrruUNpFZTqUmktmfsn0605hvpXy3jHQy5UrTjRUSM0p5Pft1a/Tqkhd9uuWo9z99Xom/7lbU8BFpEaosqLbb7/9RmhoKAA///wzRUVF5TpejRRERKQuuyE6zHb/5Fpq9pJdUMzz87Zxz4wYQvxKRg8N69CQpwe3tmsOqV6aBnrSOMCTFU8O4IHLmuPmXP61lBrX8+CZIa2Ye28PPh0TfVF5tpw2tbRDI7+LOtfpbu7aGJMJ2jT04b1F+87oxCoixll7MI0/tifx/t/7SMrMNzqOiMgFOZVlp4kTJ5b5hG+//TYAvXr1sm279tprSUxMpH79+jg6OpKQkEBQUNB5z5OVlVXma4qIiNQ2lzYNILyeB7GpuazYl8Lh47k08vewy7VNwMIdSQBk5hVxX/9IHrysOQ4OGoUuVKjYdrq7+kRWSo5NpzVOuNj13E7XPbIed/WO4ONlBwB4Yd523hrZsdLOLyIVtyfp1GfEFsFq5iO1R5HZwoq9KSzfm4K3mxOPXN7C6EhSScpUdNu4cWOpxzExMRQXF9OyZUsA9uzZg6OjI126dDnr8fXr12f16tVcddVVWK1WTR0VERG5AJPJxMgujfjfn3uwWuGHDUd4aGBzu1zb09WJ569qwyPfbeaO3hHc1uvs3ShFjLTl8KkObx1CfSvtvCaTiRsvCePr1bHkFpqZveEw3SPrcV1Uo0q7hohUzN6kbKBkKrj/eRq3iNQ0ZouVe2ZsIL/IQgMfNx4e2Fx1k1qiTO+gFy9ebLtdddVV9O3bl8OHDxMTE0NMTAzx8fH079+foUOHnvX4CRMmcPXVV+Po6IjJZKJBgwY4Ojqe9SYiIiIlru/SiJPvt2ZviMdiqfylF3IKipn0207i00p3kryibQOWPdGfu/tGquAmVaoiS4oUmS1sO1JSdAuv51HpH74j6nvx2rXtbY+f/Wkb+49lV+o1RKR8UrILSM0pBKBFsJfBaUQql5uzI12b1gMgMTNff3NqkTKNdDvd5MmT+fPPP/H3P9U63t/fn1deeYVBgwbx6KOPnnHMiy++yKhRo9i3bx/Dhw/niy++wM/P76KCi4iI1HYNfd3p07w+S/cc4/DxPFYfSKVHs8BKObfVauX3bYm89OsOEjLy2Z+czadjL7E9bzKZqO/tWinXEvm39NxC5sYcYcHWBAa2CWZC3/JNOd2TlEXBic6ilbme2+mu6RzKyv0pfL/+MLmFZu6fuZEf7+1x0dNrRaRiNLVUarvezQJZtucYAMv3ptAsSD/ntUG5i26ZmZkcO3bsjO3Hjh077zpsrVq1olWrVrzwwguMHDkSDw/7rEsjIiJSk90QHcbSE2/Avl8fXylFt0MpOTz/83bbGzuAZXtTOJiSQ9NAz4s+v8iFZOYV89KvOwDILzaXu+gW4OnC41e0ZHN8Or0rqRB9Ni8Ob0tMXDr7krPZmZDJq/N38vI17arseiJybienloKKblI79W4RCAtK7i/fm8L4nuoYXxuUu+h27bXXMn78eCZPnkzXrl0BWLNmDY8//jjXXXfdBY9/4YUXgJIi3e7duwFo2bIl9evXL28UERGRWm9gmyD8PJwxW6y4ODmQnJVPoKdrhZoa5BeZmbpkP1OX7qfwxCghgL4t6vPf4W1pooKb2Enjeh60D/Vl65EMth3JJDY1h/B6Zf/5a+jrzn39m1VhwhIeLk58cHMUw/9vBQXFFr5eHUv3yHoMad+wyq8tIqWVHumm6aVS+7QM9qa+tyvHsgpYfSCVwmILLk5a4qOmK3fR7aOPPuKxxx7j5ptvpqioqOQkTk7cfvvtvPXWWxc8Pjc3l/vvv5+vv/4as9kMgKOjI2PGjOH999/XCDgREZHTuDo58vVtl9I82Isxn62l66uLcHIwEezjRrCPKw193Qn2caOhrxvBviX/jQj0pJ5X6amhi3cn88K87cSdtnZbQ183XriqDVe0baDFesXuhnZoyNYT67LN35rAvf2qvohWES0bePPf4W15au5WAJ6cs4X2ob6EBeg9q4g9nT7SrblGukktZDKZ6N0skLkbj5BbaCYm7jjdIuoZHUsuUrnLph4eHnz44YekpqayceNGNm7cSFpaGh9++CGenhf+hvKRRx5h6dKl/Pzzz6Snp5Oens68efNYunTpWdeDExERqevaN/LFzdmRxMx8AIotVo6k5xETl878rQl8/s9BXl2wkwdnbWTkR6v4dl18qeOfn7eN8V+ssxXcnBxM3N0ngoUT+3Jlu4YquIkhhp42Wmz+lgQDk1zYjZeEMbxjCACuzo4kZ+UbnEikbrFarew+MdIt2McVX3dngxOJVI1ezU8tmbBib4qBSaSylHuk20menp506NCh3Mf98MMPzJkzh379+tm2DRkyBHd3d2644QamTp1a0UgiIiK12oBWQcSn5ZKQkU9SZr6ti9u/NfBxK/W4W0QAX62KBaBr0wBeuaad1sMRw4UFeNChkS9bDmew/WjZp5gmZeaTnFlAywbedpt2YzKZePXadrg7O/LYFS3VZETEzswWK49d0ZK9SVm4q5mJ1GK9TlundPneYzx2RUsD00hlKHfRLScnh9dff51FixaRnJyMxWIp9fyBAwfOe3xubi7BwcFnbA8KCiI3N/csR4iIiAiULOp+uoJiM8mZBSRk5JOYmU9iRh6JGQW0Df3/9u48Luo6/wP4awYYhmtmQG4BQRE5VMD7Fo80r7JLszWPymxXwzyy9GeRbZu2raWl6266oVZ2mO7mZlYeiHceHN4KKCrKrTDcx8z39wcyC4FyOHy/M/B6Ph7zcOY73/l+XtTHL/Lmc6hqnRfRxRVT+nijj58TJoa158g2Mhlju3ngTFrTppj+N/E23tt1EQpLOT55NgyPdhVnfTUHpRU+eLrpv3AmoodnaSHH8/06SB2DqMW5qpQIdHfApYwCnLmVj7zicmhsFVLHoofQ5KLbSy+9hNjYWDz//PPw8Gj6lJT+/fsjKioKW7ZsgVJZ9Zv4kpISLF++HP37929qHCIiojbL2tIC3k62Da4tpbS0wIonWSwg0zOumwdW7r4EoGqKaWOKbtVFuvJKPbwcpV1XTRAEFJRVQqXkVDciIjKOZ3p5Iz2vBIM6O8NGwZGd5q7JRbfdu3dj165dGDhwYLMaXLNmDUaPHg0vLy+EhoYCABITE6FUKvHLL78065pERER0f83Z6ZRIDN5Otgj1UiPx3hTT1JyiBnfRPZOWBwCwtpSji7t006TvFpXj9e8TkV9Sga9n9YOlBXeYIyKih/fiID+pI5ARNflfB46OjnBycmp2g127dkVSUhJWrFiBsLAwhIWFYeXKlUhKSkJISEjDFyAiIiKiVmPsvQ0V5DIg/ubdB56bV1yO1Nyq5UhCPFWwkqjQJQgCXv7iFPZezMLJ1LtYvTdJkhxEbcXZtHzkFJZJHYOIqMmaPNLtz3/+M95++21s3rwZtrbNG9Jva2uLWbNmPfCccePGYePGjfDwEGedDiIiIiIS34RQT9hZW+LRru5wtn/wBgXVU0sBoLuXpoWT3Z9MJsObY4Iw6Z/HoNMLWHcgGf06tqu16xwRGYcgCHhu43EUlFYixFOFXZGDpY5ERNRoTS66rVq1CikpKXBzc4Ovry+srGqvYREXF2eUYAcPHkRJSYlRrkVEREREpslTY4OpjVwgPfFmnuF5mLemZQI1Us8Ojnh9dBes3H0JggC89m0Cfpo3CK4OyoY/TESNlqEtRUFpJQBw52BqU9LuFuNwUg48NTYYEuAidRxqpiYX3SZOnNgCMYiIiIiIHiyx1kg3tYRJqrw8uCOOpeQi9ko2cgrLMP/bBGx5oS8suI4ikdFcySw0PA9wk24dRyIxXc4owOjVBwEAjwS7sehmxppcdIuKimqJHERERERE0OuFejf/EAQBifc2UVApLeHb7sEbLohBLpfho0mhGPvJIWRqy3AkORfrDyRj7vDOUkcjajWSMgsMzzu72kuYhEg8nV3t0c5OgdyichxPyUWFTi/ZOqb0cPh/jYiIiIgkdzYtH2//cA59V+zDtZyiOu9naEuRXVC1kHp3L43J7Mrbzt4aa54NR3Wcj/ZcwYlrd6QNRdSKXKlRdONIN2or5HIZBvpXrRNaUFZZa3kFMi+NKro5OTkhJycHwP92L73fg4iIiIioqY5dzcGWY9eRXVCGn86m13k/Pb8UHuqq9dJCvaWfWlpTv47tEDmianSbXgBe2nwS/4xNwfXcusVDImqamtNL/TnSjdqQmpvzHErKkTAJPYxGTS/9+OOP4eDgYHguk5nGbxaJiIiIqHUY09UD7/90CQDw45l0zBnmX+v9Hj6OOLZkBLIKSqWI16BXh3fG8au5uJ5ThPzSSqzYfQkrdl9CZ1d7jAx2w8ggN4R5a7jeG1ETCIKA5KyqopuXow3srJu8OhKR2Rpcq+iWjfmPBEiYhpqrUXet6dOnG57PmDHjoRo8ePAgBgwYAEvL2k1XVlbi6NGjGDJkCABg6dKlHDlHRERE1EZ4O9ki1FuDxJt5uJiuxdXsQnR0qTuqxVR3B7WQy/DplB44k5aHFzefMhxPyipEUlYh1h9IQTs7BYYHumJksBsGd3aGrYIFBKIHuZ1fisKyqp1Lu3BqKbUxHmob+LvaIzmrEIlp+cgvqYDaxkrqWNRETV7Tbdq0aYiOjkZKSkqzGhw2bBju3Km7zkV+fj6GDRtmeL1kyRJoNJpmtUFERERE5mdcN3fD8/qmmJo6FwdrDA90xd4FQ/DGo4Ho2cERNSeI5BaVY9vpNMz+4jTC3t2DtLvF0oUlMgM113PrzKIbtUHVo910egHHUnIlTkPN0eSim0KhwIoVK9C5c2d4e3tj6tSp2LhxI5KSkhr1eUEQ6p2empubCzs76XehIiIiIiJpjO3mYXi+62yGhEmaTyaTwd/VAX+M6ITtfxyAk/83Eh8+3R2jQ9xgY2VhOM/VwRrtNTa1PnssJRcnruWirFIndmwik5SlLYXlvSnZAW5cz43anppTTA8nZ0uYhJqryWPaN27cCAC4desWDh48iNjYWKxatQqzZ8+Gh4cH0tLS6v3ck08+CaDqHyIzZsyAtbW14T2dToczZ85gwIABzfkaiIiIiKgV8HKsf4rpzsTb+NfhawjzUmNKXx8EuqukjtpozvbWeKaXN57p5Y3SCh2OpeRiz8VMuKuUdX4R/Y/YFMReyYbCQo5gTxXCfTTo4eOIcB8N2mtsuK4ytTmTe/vgiXAvXMspgpvKuuEPELUyff3awcpChgqdwM0UzFSzF5JwdHREu3bt4OjoCI1GA0tLS7i4uNz3fLW6apcpQRDg4OAAG5v//WZPoVCgX79+mDVrVnPjEBEREVErML6bBxJv5gGommI6d3hnnE69g8SbeUi8mYdHgt0B9wdfw1QprSwwLNAVwwJd67yXpS1FpU4PACjX6ZFwMw8JN/MQfSQVQNXU1R4+GoT7OCLcW4M+fk4swlGboLCUo4s7p5ZS22RnbYmB/s7QC8Bgf2fo9AI35DEzMkEQhKZ8YOnSpThw4ADi4+MRFBSEoUOHIiIiAkOGDIGjo2ODn1++fDkWLVpkNlNJtVot1Go18vPzoVKZz29ViYiIiMxR2t1iDPogBgAQ5KHC7nmDMXHdESTcK8QlRo1qlQtJ55dU4OCVbBy4nI34m3dxNbvovue6OFjjxNIRtYpuWdpSqGysoKwxhZWIiMzf/ZboImk1tlbU5JFuK1euhIuLC6KiovDkk08iIKBp29ZGRUU1tUkiIiIiaiO8HG0R5q1Bws08ZGlLkaUtxYXbWgBAR2e7VllwAwC1jRUmhHpiQqgnACCvuBwJN/MQdyMP8TfuIuFmHgpKq3Zx7OGjqfMD2NJ/n8Pei5lQKS3hplLCVWUNNwclXFVKuDpYG455OdrAQ21Tp30iIjJNLLiZtyYX3eLj4xEbG4sDBw5g1apVUCgUhtFuERERDRbhMjMzsWjRIuzbtw9ZWVn4/UA7nY4LxxIRERG1ZYtGdYFcBvTxc8LF9AKU35t22d1LLXEy8WhsFYjo4oqILlVTUfV6AVdzChF3PQ9uamWtc8sr9SgsqwAAaEsroS0tRFJWYb3XHRXshs+m9ap17G5xOaws5LC3bvbKM0RG99vVXGw5dh2d3ewxpqsHp5gSkVlq8nfW0NBQhIaGIjIyEgCQmJiIjz/+GHPmzIFer2+waDZjxgzcuHEDb731Fjw8PFi1JSIiIqJaBtXYrS0hLc/wvLuXRvwwJkIur9oV1d+1buEhr6Qc3b000OkFZGrLkFVQitIKfb3XcVPVLdi9ujUOeSUViJ7RBy4OXKyeTEPcjTzsOpsOnAX8nO1YdKM2r1KnR2JaPtzVyjq7X5PpanLRTRAExMfH48CBAzhw4AAOHz4MrVaL7t27Y+jQoQ1+/vDhwzh06BDCwsKak7dZbt26hTfeeAO7d+9GcXEx/P39ER0djV69ejX8YSIiIiKSzJl7a7kBQKi3RrIcpszVQYmlY4MMrwVBgLa0EtkFpcjUliFTW4qsgqo/+/o51frsO/89j8PJuQCAp9YfxZYX+sDX2TzWXqbW7UpmgeF553qKzURtyaGkbPzpqzgUlFZiwSMBiBzRWepI1EhNLro5OTmhsLAQoaGhGDp0KGbNmoXBgwdDo9E06vPe3t51ppS2pLt372LgwIEYNmwYdu/eDRcXFyQlJTVq0wciIiIiklbivZFulnIZQjy5qVVjyGQyqG2soLaxqndkXE3T+3dAzKUspOeX4sadYjy1/iiiZ/Zu06MKyTRUF93kMqCjCwvB1Lb5OdsZ1vU8nJTDopsZaXLR7csvv8TgwYObvZPn6tWr8eabb+Kf//wnfH19m3WNpvjggw/g7e2N6OhowzE/P78Wb5eIiIiImk8QBGw5moormVVrkwW4OXBnzhbQxV2FHX8agOmfn8CVzELkFpXj2c+O4x9Te2JIgIvU8aiN0ukFJN9bl9C3nR3/7lOb5+VoCz9nO1zLKULcjbsoLKvkOpxmQt7UD4wbN67ZBTcAmDx5Mg4cOIBOnTrBwcEBTk5OtR7GtnPnTvTq1QvPPPMMXF1dER4ejg0bNtz3/LKyMmi12loPIiIiIhKXTCbDF7/dMLz240iXFuOhtsG22QPQx7fq3+LF5Tq8sOkk/h2fJnEyaqtu3ilGWWXVuoQBbpxaSgQAg++td1qpF3A8JVfiNNRYopdGV69eLWp7V69exfr167FgwQIsXboUJ0+eRGRkJBQKBaZPn17n/BUrVmD58uWiZiQiIiKiup7v3wEHL2fD0c4K47t5Sh2nVVPbWmHLi30w75t4/HI+E5V6AfO/TUR2QRleHtJJ6njUxlyusZ5bgJu9hEmITMcgf2dsOXYdAHA4OQcjg90kTkSNIRPEXGBNAgqFAr169cLRo0cNxyIjI3Hy5EkcO3aszvllZWUoKyszvNZqtfD29kZ+fv5DjfAjIiIiIjJ1Or2AqJ3n8OXx/40yXPVMKJ7q6SVhKmpr1u5Pwt9+vQIA+HRKOCaEsuhOVFBagbB390CnF9DRxQ77F0ZIHalN02q1UKvVDdaKmjy91BhSUlKwbNkyTJkyBVlZWQCA3bt34/z580Zvy8PDA8HBwbWOBQUF4caNG/Web21tDZVKVetBRERERNQWWMhl+PPjXbHwkQAAQB8/J4zr7iFxKmprqtdyBDi9lKiag9IK4fd28b6aXYRbeSXSBqJGEb3oFhsbi27duuG3337Djh07UFhYdUNNTExEVFSU0dsbOHAgLl++XOvYlStX0KFDB6O3RURERERk7mQyGV4d0RlrnwvHhud7cRF7El31zqWWchn8nLmeI1G1wZ3/t8HN4aRsCZNQY4ledHvzzTfx3nvvYc+ePVAoFIbjw4cPx/Hjx43e3vz583H8+HG8//77SE5OxtatW/HZZ59hzpw5Rm+LiIiIiKi1GN/dE2pbq1rHbt4pRlZBqUSJqK14vn8HPNfXB+O7e0BhKcnkLCKTNOjeZgoAcCgpR8Ik1Fiib6Rw9uxZbN26tc5xV1dX5OQYv9P07t0b//73v7FkyRK8++678PPzw+rVq/GHP/zB6G0REREREbVWOYVleP5fv0EnCNjyQl+OQKIW84e+nJVEVJ9QLzUclJawt7aEh1opdRxqBNGLbhqNBunp6fDz86t1PD4+Hu3bt2+RNsePH4/x48e3yLWJiIiIiNqCt/5zDqm5xQCAp9cfxeczeiP03vpCRETU8iwt5Ni7YChcHaxx9lY+LqZrEeTBdehNmehjdZ999lm88cYbyMjIgEwmg16vx5EjR7Bo0SJMmzZN7DhERERERNQIURNCEOhetah9blE5pmw4jsOc3kREJCo3lRIp2UWY/vkJTP7nMZxMvSN1JHoA0Ytu77//PgIDA+Ht7Y3CwkIEBwdjyJAhGDBgAJYtWyZ2HCIiIiIiagR3tRLfzu6PPn5OAAC5DNh9Lh1pd4slTkatSXJWIfKKy6WOQWTSVv16GXeLK6AtrcTUjb9h/6VMqSPRfcgEQRCkaPjGjRs4d+4cCgsLER4ejs6dO0sRo0FarRZqtRr5+flQqThsk4iIiIjattIKHV7ecgpn0vKRV1KBx8M8sebZcKljUSsx6uNYXMksRHuNDQ4tHga5XCZ1JCKTU1RWiVe+PG3YTMFCLsOHT3fHkz28JE7WdjS2ViTZVjA+Pj4YO3YsJk2aZLIFNyIiIiIiqk1pZYFPn+sB2b1ayA8Jt5FwM0/STNQ6lFfqcTW7CABgb23JghvRfdhZW2Lj9F4Y390DAKDTC1jwXSI2HroqcTL6PdE3UtDpdNi0aRP27duHrKws6PX6Wu/v379f7EhERERERNQEahsrvDYyAFE7zwMA3t91Ed/O7geZjEUSar7U3CJU6qsmYnV2s5c4DZFps7a0wJpnw+Foq8AXx68DAN7bdRF3isrx+uguvB+bCNFHus2bNw/z5s2DTqdD165dERoaWutBRERERESm77m+PujobAcAOJF6B7+c55pC9HCuZBYYnndxc5AwCZF5sJDL8O7jIXht5P9mD/79QAqW7DiLSp3+AZ8ksYg+0u2bb77Bd999h7Fjx4rdNBERERERGYmVhRxvjgnEy1+cBgCs3H0RwwNdobCUbAUbMnNXMgsNzzuz6EbUKDKZDK+NDEA7OwXe3nkeggB8c/Imxnf3xKDOzlLHa/NE/46oUCjg7+8vdrNERERERGRkjwS7oe+93UxTc4vx1W/XJU5E5iypxki3AE4vJWqS5/v74pNnw2FlIcPSsYEsuJkI0YtuCxcuxJo1ayDRpqlERERERGQkMpkM/zcuyPB6zb4k5BdXSJiIzFn19FKFpRwd2tlJnIbI/EwI9cSv84fi5SGdpI5C94g+vfTw4cOIiYnB7t27ERISAisrq1rv79ixQ+xIRERERETUTN29NHgivD3+HX8LecUVWHcgGUvHBjX8QaIayip1SM0tBgB0crGHBXcuJWoWP+e6Beufz6UjxFMNbyfbZl+3vFIPnV4PSws5rCy4jEBjiV5002g0eOKJJ8RuloiIiIiIWsii0V3w09l0WMplcLZXSB2HzNDV7CLo7u1cyqmlRMYTcykLc7fGw8lOgS0v9kGgu+qB55eU63ApQwu5TIZQb43huIVchk1Hr+ObEzfx5phAPBLsxh1SG0H0olt0dLTYTRIRERERUQtqr7HBp1PCEe7jCBcHa6njkBlKu1sCuQzQC0AAN1EgMgq9XsBHe66gUi8gq6AMk/5xDJ/P6I1evlVrceYUluHCbS0upGtx4bYW52/n41pOEfQCMCLQFf+a0ft/1xIEbD56HbfySvDyF6fRx9cJS8cFIaxGYY7qkgkSLa6WnZ2Ny5cvAwC6dOkCFxcXKWI0SKvVQq1WIz8/HyrVgyvCRERERERE1DylFTqkZBfCyU4BD7WN1HGIWoW7ReWYsekkEm/mAQAs5TKEeKqQoS1Fprbsvp/zUCtxbMkIw+ssbSle/uI0Eu5dp9pjoZ54fXSXh5q6ao4aWysSvehWVFSEV199FVu2bIFerwcAWFhYYNq0afj0009ha2ta/6NYdCMiIiIiIiIic1VUVolXvjyNQ0k5UCktoS2trPc8hYUcAe72CPZQIdhDhWn9fSGvsb6iIAj49UImVu6+hGs5RbU+N2OgL+ZE+ENta1XfpVsdky26zZ49G3v37sXatWsxcOBAAFWbK0RGRuKRRx7B+vXrxYzTIBbdiIiIiIiaJq+4HGv3J6OXryMe7eohdRwiojavvFKPqJ3nMdC/HeZujYdKaYkQTzWCPasKbMGeKvi72jdqk4QKnR5bf7uBNfuScKeo3HBcY2uFyOGdMXOgb6tf781ki27Ozs74/vvvERERUet4TEwMJk2ahOzsbDHjNIhFNyIiIiKixruVV4Kxaw4hv6QCPk622LNgCKwtLaSORUREqCqYZWpL0V5j89CFMW1pBdYfSMG/Dl9DeWXVTMZHQ9zxj+d7GiOqSWtsrUj0fV6Li4vh5uZW57irqyuKi4vFjkNEREREREbkqVYixLPqB5Abd4rxxbHrEiciU5ecVYh538RjXUwyzt3KlzoOUatmZSGHl6OtUUaiqZRWeOPRQMQsisCT4e2hsJDjjTGBRkjZeohedOvfvz+ioqJQWlpqOFZSUoLly5ejf//+YschIiIiIiIjkslk+L9xQaj+ee6TfUnIKy5/8IeoTTt7Kw8/JNzGh79cxuHkHKnjEFETtdfY4KPJYTj0xjD4OdvVeu+HhFv401encT236D6fbt1EL7qtWbMGR44cgZeXF0aMGIERI0bA29sbR48exZo1a8SOQ0RERERERhbiqcaT4V4AAG1pJT7ZlyxxIjJlVzILDc8D3OwlTEJED8NNpaz1urRCh7/+fBk/nc3AnguZEqWSluhFt65duyIpKQkrVqxAWFgYwsLCsHLlSiQlJSEkJETsOERERERE1AIWjQ6A0qrqx40vjqciNadtjnKghiVlFhied3Z1kDAJERlTSnYhyip18HGyxfP9O0gdRxKWUjRqa2uLWbNmSdE0ERERERGJwENtg1mDO+LT/cmo0An44OdLWD+19S+uTU1XPdLNVmGB9hobidMQkbGEeKpx4PVhuHmnuM1uqCP6SDcAuHz5MubOnWuYXjp37lxcunRJiihERERERNRCZg/tBGd7awDA7nMZOJV6R+JEZGpKynW4ebdqQ73Obg6Qyx9+cXciMh321pYI8rj/7p6tnehFt+3bt6Nr1644ffo0QkNDERoairi4OHTr1g3bt28XOw4REREREbUQe2tLLBwVYHj93q6LEARBwkRkapKzClHdJQJcuZ4bEbUuok8vXbx4MZYsWYJ333231vGoqCgsXrwYTz31lNiRiIiIiIiohTzT0wvRR64hq6AMj4d5Qi8AFhzMRPdcrrGeW4Ab13MjotZF9KJbeno6pk2bVuf41KlT8eGHH4odh4iIiIiIWpClhRxrn+sBNwcl1LZWUschE1NrEwXuXEpErYzo00sjIiJw6NChOscPHz6MwYMHix2HiIiIiIhaWICbAwtuVK8zt/INzznSjYhaG9FHuj322GN44403cPr0afTr1w8AcPz4cWzbtg3Lly/Hzp07a51LREREREStjyAIkMk4z7Qt23cxEyeu3kHPDo6wtpTDQ62UOhIRkVHJBJFXMpXLGze4TiaTQafTtXCahmm1WqjVauTn50Olars7bhARERERGUNWQSk+3pME33a2mD20k9RxSCK/Xc3FtM9PoKxSDwDYNLM3Irq4SpyKiKhxGlsrEn2km16vF7tJIiIiIiIyAWWVOsz+4jRKynXYEZeGp3p6wdneWupYJLJzt/Lx0uZThoLbhFBPDO7sInEqIiLjE31NNyIiIiIiapusLS3Q08cRlzIKUFapx6YjqVJHIpGlZBdi+ucnUFBWCQCI6OKCVc+EwkLOqcZE1PqIPtINAE6ePImYmBhkZWXVGfn20UcfSRGJiIiIiIhE8OJgP2w+looKnYAtx1LxSkQn2FtL8mMJiaysUocZ0SeQW1QOAOjVwRHr/9ATCkuOBSGi1kn0727vv/8+li1bhi5dusDNza3W4qlcSJWIiIiIqHXzUNtgYlh7bDudBm1pJb7+7QZmDekodSwSgbWlBZaNC8arW+PRydUe/5rRGzYKC6ljERG1GNE3UnBzc8MHH3yAGTNmiNlss3EjBSIiIiIi40rOKsDIjw4CANxVShxcPIyjndqQ367moqOLPVwcuJ4fEZmnxtaKRP/OJpfLMXDgQLGbJSIiIiIiE+Hv6oBHgt0AABnaUvwn4ZbEiail1DfGo2/Hdiy4EVGbIHrRbf78+Vi3bp3YzRIRERERkQl5ZWgnw/N/xKZArxd1Ag6JoFKnx+wvTmPTkWtSRyEikoToa7otWrQI48aNQ6dOnRAcHAwrK6ta7+/YsUPsSEREREREJLKeHRzRx88JJ67dwdXsIuy5mInRIe5SxyIj0esFLN5+Br9eyMSvFzJRXKHDnyL8pY5FRCQq0Ue6RUZGIiYmBgEBAWjXrh3UanWtBxERERERtQ1/rDHabf2BlHqnIpL5EQQB7/54ATviqqYNKyzkCPXSSBuKiEgCoo9027x5M7Zv345x48aJ3TQREREREZmQiC4uCHR3gLtaWasAR+btk33J2HQ0FQAglwGfTAnHQH9naUMREUlA9KKbk5MTOnXiN1QiIiIiorZOJpNhx58GwFYh+o8l1EI2HbmGj/deMbxe+VR3PNqV04aJqG0SfXrpO++8g6ioKBQXF4vdNBERERERmRgW3FqP/8Tfwjv/vWB4vWxcECb18pYwERGRtET/DvfJJ58gJSUFbm5u8PX1rbORQlxcnNiRiIiIiIiI6CHsvZCJhdsSDa/nDvPHS4M7SpiIiEh6ohfdJk6cKHaTRERERERk4nR6AXsuZGDDoWtYPTkM3k62UkeiRjp/Kx9L/30WOn3VRhhT+/lg4agAiVMREUlPJnCLoAfSarVQq9XIz8+HSqWSOg4RERERUav0r8PX8Ocfq6YmTu/fAcsf7ypxImqMnMIyjPvkEOwUlsgrqcAgf2esnhwGuVwmdTQiohbT2FqR6Gu6VTt9+jS+/PJLfPnll4iPj5cqBhERERERmYAnw9vDxsoCAPDtqZvILSyTOJG0qkeNmTKdXsBr3yQgU1uGqzlFCPFUYdWkUBbciIjuEb3olpWVheHDh6N3796IjIxEZGQkevbsiREjRiA7O1vsOEREREREZAIc7RSY0scHAFBaocfmo6nSBmpBer2ATG0pTqXewb/j0/DJviRkaktrnZNXXI7Ir+OxM/E2THVy0pp9STicnAMAcHGwxqpJobCykGxcBxGRyRF9TbdXX30VBQUFOH/+PIKCggAAFy5cwPTp0xEZGYmvv/5a7EhERERERGQCXhrshy3HUlGpF7D52HXMHtoJdtbmu7upTi/g1/MZuHm3GDfvlNz7sxhpd0tQVqmvdW6otwZuKqXh9Y9n0rEz8TZ2Jt7G9tNpeG9iV5Na5y72SjY+3Z8EAJDLgE+nhMPVQdnAp4iI2hbRv4P9/PPP2Lt3r6HgBgDBwcFYt24dRo0aJXYcIiIiIiIyEZ4aGzwW5okdcbeQX1KBb07exIuD/KSO1SyXMrS4klGAN7afRUmFrsHzb94prvX6TFqe4XnslWyM+vggFjwSgJkDfWEp8Wiy23kleO2beFQPwFs0ugv6dWwnaSYiIlMk+t1ar9fDysqqznErKyvo9fp6PvFw3nnnHchkslqPwMBAo7dDREREREQP75WhnQzPNx66ivJK4/+M0NKKyiox56s4RH6TAIVl7R+5lFZydHa1x/BAV0zv3wHLxgXhH1N7YkSQa63zVk0Kwz+f7wn3e6PfSip0+MtPF/H4uiM4m5Yv2tfye+WVeszdGoe7xRUAgBGBrnhlSKcGPkVE1DaJPtJt+PDhmDdvHr7++mt4enoCAG7duoX58+djxIgRLdJmSEgI9u7da3htaWm+Q9SJiIiIiFqzADcHjAxyxd6LWUjPL8XOxNt4uqeX1LGa5O0fziMluwgAYG9tibfGB6Gjiz28HW3hbK+ATNa4jQZGh7hjQKd2+Nsvl7Hl+HUIAnD+thaPrzuMmQP9sOCRANGn367cfQlxN/IAAO01Ntw4gYjoAUQf6bZ27VpotVr4+vqiU6dO6NSpE/z8/KDVavHpp5+2SJuWlpZwd3c3PJydnVukHSIiIiIieng1R7v9IzYFejPYybPa96fTsD0uDQBgp7DAFy/2wdM9vdHDxxEuDtaNLrhVc1BaYfnjXbHjjwMQ6O4AANALwL8OX8Oojw8iv6TC6F/D/QiCACc7K8hlgMJCjvVTe0BjqxCtfSIicyP6kC9vb2/ExcVh7969uHTpEgAgKCgII0eObLE2k5KS4OnpCaVSif79+2PFihXw8fGp99yysjKUlf1ve3KtVttiuYiIiIiIqK5evk7o1cERp67fhZ+zHQpKK6G2rbtEjalJzirEW/85Z3j9/pPd0NHF3ijXDvdxxH9fHYQNh65izd4klFXq0bejE9Q24v13kclkmDu8M8J9HHE7rwTdvTSitU1EZI5kgqnuP20ku3fvRmFhIbp06YL09HQsX74ct27dwrlz5+Dg4FDn/HfeeQfLly+vczw/Px8qlUqMyEREREREbd65W/mwtpSjs1vdf7ObotIKHSauO4JLGQUAgGd7e2PlU91bpK3ruUX468+X8eeJXeFk97+RZoIgQBDA6Z5ERC1Mq9VCrVY3WCsSvegWGRkJf39/REZG1jq+du1aJCcnY/Xq1S3afl5eHjp06ICPPvoIL774Yp336xvp5u3tzaIbERERERHd15IdZ/H1iRsAgAA3e/wwZxBsFBaiZvju1E1sO3UTK57sBn9X4xUrr2YXGm3EHhFRa9DYopvoa7pt374dAwcOrHN8wIAB+P7771u8fY1Gg4CAACQnJ9f7vrW1NVQqVa0HERERERHR/exMvG0ouNlYWWDdcz1EL7jlFJbh/Z8u4mTqXTy+9gje2XkOWdrSh77ud6du4pGPD+KfsSlo5ZOkiIiMTvSiW25uLtRqdZ3jKpUKOTk5Ld5+YWEhUlJS4OHh0eJtERERERHRw6vU6fHfxNtIziqQOkq9bt4pRvX+CO8+HiLJlNgsbRk099Z369pejU1Hr2PQX2Pw9g/ncCuvpFnXvHBbi7f+cw46vYAVuy/haEquMSMTEbV6ohfd/P398fPPP9c5vnv3bnTs2NHo7S1atAixsbFITU3F0aNH8cQTT8DCwgJTpkwxeltERERERGRclzK0GL4qFq9+HY91MSlSx6nXnGH+2DyzD14Y6Iene3pJkiHYU4WfXxuCJWMCkZJdCAAor9Rjy7HriPgwBm9uP4PruUWNvl5BaQXmbI1DWaUeADCljw8G+ju3SHYiotZK9N1LFyxYgLlz5yI7OxvDhw8HAOzbtw+rVq1qkfXc0tLSMGXKFOTm5sLFxQWDBg3C8ePH4eLiYvS2iIiIiIjIuHycbKEtrQBQNY1z4agAeDnaSpyqriEBLhgSIO3PGEorC8we2glP9vDCxkNX8cXx6ygu16FCJ+Cbkzex7XQaHg/1xJ+G+cPf9f5rtAmCgDe2n8G1nKoiXYinClETgsX6MoiIWg1Jdi9dv349/vKXv+D27dsAAF9fX7zzzjuYNm2a2FEa1NjF8YiIiIiIqGV8tOcKPtmXBACYMcAX7zwWInEioLi8ErYK0ccwNMndonJEH7mG6KOpKCitNByXyYCx3TwQNT4Yriplnc9FH7mG5f+9AABwUFpi16uD4dPO9AqdRERSMdmNFADgj3/8I9LS0pCZmQmtVourV6/WKbgdOXKk1i6iRERERETUNs0Y4AulVdWPLlt/u4GYS1nQ66Vb1P/mnWIM+WsMoo9cM+nNBRztFFgwqgsOvzEci0YFQGNbteabIABHk3NgZ123aBh34y7+suui4fWqZ0JZcCMiaiZJim7VXFxcYG9f/7DmMWPG4NatWyInIiIiIiIiU+Nkp8CzvX1gbSmHnbUFZm46iYEf7Meff7yAuBt3RS18lVfqMffreOQUlmP5fy/gX4evidZ2c6ltrDB3eGcceWM4lowJhLO9Ai8N7lin6HY2LQ9zv4pD5b2C5uwhHTEqxF2KyERErYIk00sbw8HBAYmJiS2yuUJTcHopEREREZH0cgrLkJpThKf/cazOe+01NhjbzR3junsi1EsNWfVWoi3g/Z8u4rODVwFUrTf3Y+QgqJRWLdZeSyit0EEvCLWmx2ZqS9FvxT5U/3TY29cRW2f1g5WFpOM0iIhMUmNrRaa9CAEREREREREAZ3trKK0ssOqZUOw6m45DSdmo0FVViG7llWDDoWvYcOga2mtsML67B2YP7QQnO4VRM+y/lGkouFlZyLD2uXCzK7gBVRsu/N5nB69CEABPtRLlOj3WPteDBTcioofEohsREREREZkFe2tLPNXTC0/19EJ+cQV+vZCBXWfTcTgpxzAl8lZeCaKPpuLVEZ2N2nZ6fgkWfJdoeL1kTBC6e2mM2oaUunupMbmXN96aEIzUnCK41bPBAhERNQ2LbkREREREZHbUtlZ4ppc3nunljbzicvx6PhM/nk3HkeQcDOviAvvfrVf25x8v4E5ROQLdHdDRxR5+znbwcbKFwrLh0VyVOj0iv45HXnEFAOCRYDfMHOjbEl+WZB4Pa4/Hw9oDALq2V0uchoiodTDZoltLrsNARERERESth8ZWgUm9vTGptzfuFJWjoLSi1vulFTocTsrG5czCWsflMsDbyRZ+znbwc7ZDR2c7+Dnbo4+fU61i3Md7r+Bk6l0AVevHffh0d/68QkREDTLZopuJ7u9AREREREQmzMlOUWctt3O38tHJxb5O0U0vANdzi3E9txgHLmcbjp9fPtpQdDt4JRt/j0kBAFjKZfhkSjg0tsZdK46IiFonky26FRQUSB2BiIiIiIhagV6+TgjycMArEZ1wLacIV7OLqv7MKcS17CIUlesM57qrlLCrMTXV0VYBD40St/NK8froLujZwVGKL4GIiMyQ6EU3Pz+/Bw7Fvnr1qohpiIiIiIioLbCztkJ3L02dzQ8EQUB2QRmu5lQV4qo3ZKjWzUuN6Bl9EHM5C7MGdxQxMRERmTvRi26vvfZardcVFRWIj4/Hzz//jNdff13sOERERERE1IbJZDK4qpRwVSnRr2O7es/p0M4WrwztJHIyIiIyd6IX3ebNm1fv8XXr1uHUqVMipyEiIiIiInowpZWF1BGIiMgMNbw/tkjGjBmD7du3Sx2DiIiIiIiIiIjooZlM0e3777+Hk5OT1DGIiIiIiIiIiIgemujTS8PDw2ttpCAIAjIyMpCdnY2///3vYschIiIiIiIiIiIyOtGLbhMnTqz1Wi6Xw8XFBREREQgMDBQ7DhERERERERERkdHJBEEQGj6t7dJqtVCr1cjPz4dKpZI6DhERERERERERSaixtSKTWdONiIiIiIiIiIiotWDRjYiIiIiIiIiIyMhYdCMiIiIiIiIiIjIyFt2IiIiIiIiIiIiMjEU3IiIiIiIiIiIiI5Ok6LZlyxb88MMPtY798MMP2LJlixRxiIiIiIiIiIiIjEomCIIgdqNyuRyBgYG4cOGC4VhgYCCSkpKg0+nEjvNA+fn50Gg0uHnz5gO3gSUiIiIiIiIiotZPq9XC29sbeXl5UKvV9z3PUsRMBnq9vs6xS5cuSZCkYQUFBQAAb29viZMQEREREREREZGpKCgoeGDRTfSRbkOHDsWLL76ISZMmQalUitl0s+j1ety+fRsODg6QyWRSx5FcdTWXI//IHLH/kjlj/yVzxv5L5oz9l8wd+zCZM1Ptv4IgoKCgAJ6enpDL779ym+gj3cLDw7Fo0SK8+uqrmDRpEl588UX069dP7BiNJpfL4eXlJXUMk6NSqUyqwxM1BfsvmTP2XzJn7L9kzth/ydyxD5M5M8X++6ARbtVE30hh9erVuH37NqKjo5GVlYUhQ4YgODgYf/vb35CZmSl2HCIiIiIiIiIiIqOTZPdSS0tLPPnkk/jhhx+QlpaG5557Dm+99Ra8vb0xceJE7N+/X4pYRERERERERERERiFJ0a3aiRMnEBUVhVWrVsHV1RVLliyBs7Mzxo8fj0WLFkkZje7D2toaUVFRsLa2ljoKUZOx/5I5Y/8lc8b+S+aM/ZfMHfswmTNz77+ib6SQlZWFL774AtHR0UhKSsKECRPw0ksvYfTo0YaNCg4fPoxHH30UhYWFYkYjIiIiIiIiIiIyCtE3UvDy8kKnTp3wwgsvYMaMGXBxcalzTvfu3dG7d2+xoxERERERERERERmF6CPdDh06hMGDB4vZJBERERERERERkahEL7oRERERERERERG1dqJMLw0PDzes19aQuLi4Fk5DRERERERERETUskQpuk2cOFGMZoiIiIiIiIiIiEyCXIxGoqKiEBUVhWXLlmHYsGGYN2+e4djvH9Q069atg6+vL5RKJfr27YsTJ07Uev+zzz5DREQEVCoVZDIZ8vLyGnXdyMhI9OzZE9bW1ggLC6vz/oEDB/D444/Dw8MDdnZ2CAsLw1dffdXgdW/cuIFx48bB1tYWrq6ueP3111FZWVnn2j169IC1tTX8/f2xadOmRmUm82Nu/belrkvmSar+e/nyZQwbNgxubm5QKpXo2LEjli1bhoqKigdel/dfqsnc+i/vv1STVP23puTkZDg4OECj0TR4Xd5/6ffMrQ/zHkw1SdV/U1NTIZPJ6jyOHz/+wOtKfQ8WpehWzcLCAqNGjcLdu3fFbLbV+vbbb7FgwQJERUUhLi4OoaGhGD16NLKysgznFBcX49FHH8XSpUubfP0XXngBkydPrve9o0ePonv37ti+fTvOnDmDmTNnYtq0afjxxx/vez2dTodx48ahvLwcR48exebNm7Fp0ya8/fbbhnOuXbuGcePGYdiwYUhISMBrr72Gl156Cb/88kuT85NpM7f+29LXJfMiZf+1srLCtGnT8Ouvv+Ly5ctYvXo1NmzY8MBfXPH+SzWZW/9tzHV5/207pOy/1SoqKjBlypRGbQ7H+y/9nrn14cZcl/fgtsMU+u/evXuRnp5uePTs2fO+55rEPVgQWc+ePYW9e/eK3Wyr1KdPH2HOnDmG1zqdTvD09BRWrFhR59yYmBgBgHD37t0mtREVFSWEhoY26tyxY8cKM2fOvO/7P/30kyCXy4WMjAzDsfXr1wsqlUooKysTBEEQFi9eLISEhNT63OTJk4XRo0c3KTeZPnPrv2Jcl8yHqfXf+fPnC4MGDbrv+7z/Uk3m1n+be13ef1snU+i/ixcvFqZOnSpER0cLarX6gdfi/Zd+z9z6cFOuWxPvwa2TlP332rVrAgAhPj6+0dcyhXuwqCPdAOC9997DokWL8OOPPyI9PR1arbbWgxqnvLwcp0+fxsiRIw3H5HI5Ro4ciWPHjkmSKT8/H05OTvd9/9ixY+jWrRvc3NwMx0aPHg2tVovz588bzqn5NVWfI9XXRC3DHPuvqV2XpGNq/Tc5ORk///wzhg4det9zeP+laubYf5uL99/WxxT67/79+7Ft2zasW7euUefz/ks1mWMfbi7eg1sfU+i/APDYY4/B1dUVgwYNws6dOx94rincg0Uvuo0dOxaJiYl47LHH4OXlBUdHRzg6OkKj0cDR0VHsOGYrJycHOp2uVucBADc3N2RkZIie57vvvsPJkycxc+bM+56TkZFRb97q9x50jlarRUlJiZFTk1TMsf+a0nVJWqbSfwcMGAClUonOnTtj8ODBePfdd+97Lu+/VM0c+29z8P7bOkndf3NzczFjxgxs2rQJKpWqUZ/h/ZdqMsc+3By8B7dOUvdfe3t7rFq1Ctu2bcOuXbswaNAgTJw48YGFN1O4B4tedIuJiTE89u/fb3hUvyZxjRkzBvb29rC3t0dISEizrhETE4OZM2diw4YNzb4GUXOYcv/l3wtqyMP232+//RZxcXHYunUrdu3ahb/97W8tkJKofqbcf3n/pYY0t//OmjULzz33HIYMGdKC6YgaZsp9mPdgakhz+6+zszMWLFiAvn37onfv3li5ciWmTp2KDz/8sAXTPjxLsRtsiekDbZGzszMsLCyQmZlZ63hmZibc3d0bfZ2NGzcaqrdWVlZNzhEbG4sJEybg448/xrRp0x54rru7e52dTarzV2d2d3ev92tSqVSwsbFpcj4yTebYf03humQaTKX/ent7AwCCg4Oh0+nw8ssvY+HChbCwsKhzLu+/VM0c+29T8P7bukndf/fv34+dO3caisSCIECv18PS0hKfffYZXnjhhTqf4f2XajLHPtwUvAe3blL33/r07dsXe/bsue/7pnAPFn2k28GDBx/4oMZRKBTo2bMn9u3bZzim1+uxb98+9O/fv9HXad++Pfz9/eHv748OHTo0KcOBAwcwbtw4fPDBB3j55ZcbPL9///44e/ZsrZ1N9uzZA5VKheDgYMM5Nb+m6nOa8jWR6TPH/iv1dcl0mEL//T29Xo+Kigro9fp63+f9l6qZY/9tLN5/Wz+p+++xY8eQkJBgeLz77rtwcHBAQkICnnjiiXo/w/sv1WSOfbixeA9u/aTuv/VJSEiAh4fHfd83hXuw6CPdIiIi6hyTyWSG5zqdTsQ05m3BggWYPn06evXqhT59+mD16tUoKiqqNXc+IyMDGRkZSE5OBgCcPXsWDg4O8PHxeeDClsnJySgsLERGRgZKSkqQkJAAoOo30gqFAjExMRg/fjzmzZuHp556yjAfWqFQ3Pe6o0aNQnBwMJ5//nn89a9/RUZGBpYtW4Y5c+bA2toaAPDKK69g7dq1WLx4MV544QXs378f3333HXbt2mWM/2RkQsyt/7bkdcn8SNl/v/rqK1hZWaFbt26wtrbGqVOnsGTJEkyePPm+vy3k/ZdqMrf+25jr8v7bdkjZf4OCgmqdf+rUKcjlcnTt2vW+1+T9l37P3PpwY67Le3DbIWX/3bx5MxQKBcLDwwEAO3bswOeff46NGzfe95omcQ82yh6oTZCXl1frkZ2dLfz6669C3759hb1794odx+x9+umngo+Pj6BQKIQ+ffoIx48fr/V+VFSUAKDOIzo6+oHXHTp0aL2fu3btmiAIgjB9+vR63x86dOgDr5uamiqMGTNGsLGxEZydnYWFCxcKFRUVtc6JiYkRwsLCBIVCIXTs2LHBrGS+zK3/ttR1yTxJ1X+/+eYboUePHoK9vb1gZ2cnBAcHC++//75QUlLywOvy/ks1mVv/5f2XapKq//5edHS0oFarG8zL+y/9nrn1Yd6DqSap+u+mTZuEoKAgwdbWVlCpVEKfPn2Ebdu2NZhX6nuwTBAEob5inNhiY2OxYMECnD59WuooRERERERERERED0X0Nd3ux83NDZcvX5Y6BhERERERERER0UMTfU23M2fO1HotCALS09OxcuVKhIWFiR2HiIiIiIiIiIjI6ESfXiqXyyGTyfD7Zvv164fPP/8cgYGBYsYhIiIiIiIiIiIyOtGLbtevX6/1Wi6Xw8XFBUqlUswYRERERERERERELcZkNlIgIiIiIiIiIiJqLSTZSCE2NhYTJkyAv78//P398dhjj+HQoUNSRCEiIiIiIiIiIjI60YtuX375JUaOHAlbW1tERkYiMjISNjY2GDFiBLZu3Sp2HCIiIiIiIiIiIqMTfXppUFAQXn75ZcyfP7/W8Y8++ggbNmzAxYsXxYxDRERERERERERkdKIX3aytrXH+/Hn4+/vXOp6cnIyuXbuitLRUzDhERERERERERERGJ/r0Um9vb+zbt6/O8b1798Lb21vsOEREREREREREREZnKXaDCxcuRGRkJBISEjBgwAAAwJEjR7Bp0yasWbNG7DhERERERERERERG9/+5C7/VEageQgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "era.make_plot(obstype_model='wind_amplitude')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/gee_authentication.html b/docs/_build/gee_authentication.html new file mode 100644 index 00000000..32617258 --- /dev/null +++ b/docs/_build/gee_authentication.html @@ -0,0 +1,246 @@ + + + + + + + Using Google Earth Engine — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Using Google Earth Engine

+

The Google Earth Engine is used to download geospatial information, and model data +to use for your dataset. This is done to avoid downloading/reprojecting/preprocessing large +geospatial datasets and to make it possible to switch easily between different datasets.

+

There are two methods that are used to download the GEE data:

+
    +
  • Directly to your computer –> Only for small data transfers

  • +
  • To your Google drive –> Only when the direct download is not possible.

  • +
+

This page will help you how to set up your personal Google earth engine authentication. +This is needed because the GEE (Google earth engine) can only be used if you

+
    +
  • have a Google developers account (free of charge)

  • +
  • Create a cloud project on your developers account (sufficient free credits for these applications)

  • +
  • enable the GEE API on your project

  • +
+

Here is a step-by-step guide on how to do this.

+
+

Note

+

This guide is to obtain a basic working setup. There are a lot of ways on how to +set up a googel cloud project, but we only cover the minimum required steps.

+
+
+

Setup of a Google account

+

If you do not have a Google account, start by creating one.

+
+
+

Setup of a Google developers account

+

A Google developers account is linked to your (regular) Google account.

+
    +
  1. open a browser, and login to Google with your account.

  2. +
  3. Go to this website, to create a developers account: https://developers.Google.com/

    +
      +
    1. Click on the three vertical dots –> hit start

    2. +
    3. Fill in your name and (optional) affiliations –> hit next

    4. +
    5. (optional) Select your interests –> hit next

    6. +
    7. (optional) Confirm newsletter subscription –> hit next

    8. +
    +
  4. +
+

Done, you have set up a Google developer account

+
+
+

Setup a cloud project on your developer account

+

You need a cloud project to make use of the Google API’s. The API’s that are used by +the toolkit has quite a lot of free credentials, so you do not need to worry about +paying for these services.

+
    +
  1. Create a cloud project: https://console.cloud.Google.com/projectcreate?pli=1

    +
      +
    1. Choose a project name and select No organization. –> hit create

    2. +
    3. (It can take a few seconds to create your project, in the “Cloud overview” you should see your project appear.)

    4. +
    +
  2. +
+
+
+

Enable API’s on your project

+

In the last step, you need to enable the use of some API’s on your project.

+
    +
  1. Go to your project platform page: https://console.cloud.Google.com/

  2. +
  3. Click on “APIs & Services”

  4. +
  5. Click at the top on “+ ENABLE APIS AND SERVICES”

    +
      +
    1. Search for the ‘Google Earth Engine API’, click on it –> hit ENABLE

    2. +
    3. Register your GEE project: https://code.earthengine.Google.com/register

      +
        +
      1. Hit “Use with a cloud project” –> hit “Unpaid usage” and select ‘Academia & Research’

      2. +
      3. Select “Choose an existing Google Cloud Project” –> select your project –> hit “CONTINUE TO SUMMARY”

      4. +
      5. Hit “CONFIRM AND CONTINUE”

      6. +
      +
    4. +
    +
  6. +
+
+
+

Test your GEE access

+
import metobs_toolkit
+
+# Use the demo files, and extract LCZ from GEE
+
+dataset = metobs_toolkit.Dataset()
+dataset.update_settings(input_data_file=metobs_toolkit.demo_datafile,
+                        input_metadata_file=metobs_toolkit.demo_metadatafile,
+                        template_file=metobs_toolkit.demo_template)
+
+dataset.import_data_from_file()
+
+# Extract LCZ using GEE:
+dataset.get_lcz()
+
+# Selecting your cloud project:
+    # 1. A link will appear, click on it
+    # 2. (first time only) hit 'CHOOSE PROJECT' and select your existing cloud project
+    # 3. do NOT click the read_only scopes!
+    # 4. hit 'GENERATE TOKEN' --> select your Google account --> hit 'CONTINUE'
+    # 5. Select both boxes and hit 'Continue'
+    # 6. An authorization code is generated, copy it.
+    # 7. In your notebook, paste the code in propted-box and hit Enter
+
+
+# The LCZ are stored in the metadf attribute of your dataset.
+print(dataset.metadf)
+
+
+
+

Note

+

If you click on select ‘read-only’ scopes in the authentication, you can only +extract small data quantities from GEE. For larger data transfers, GEE will write +the data to file on your Google Drive, which will raise an error when you select +‘read-only’ scopes.

+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/genindex.html b/docs/_build/genindex.html new file mode 100644 index 00000000..eae42c82 --- /dev/null +++ b/docs/_build/genindex.html @@ -0,0 +1,1222 @@ + + + + + + Index — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ _ + | A + | B + | C + | D + | E + | F + | G + | H + | I + | L + | M + | O + | P + | Q + | R + | S + | T + | U + | V + | W + | X + +
+

_

+ + +
+ +

A

+ + + +
+ +

B

+ + +
+ +

C

+ + + +
+ +

D

+ + + +
+ +

E

+ + + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

H

+ + + +
+ +

I

+ + + +
+ +

L

+ + + +
+ +

M

+ + + +
+ +

O

+ + +
+ +

P

+ + + +
+ +

Q

+ + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

U

+ + + +
+ +

V

+ + +
+ +

W

+ + + +
+ +

X

+ + +
+ + + +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/gui.html b/docs/_build/gui.html new file mode 100644 index 00000000..8ddb19a9 --- /dev/null +++ b/docs/_build/gui.html @@ -0,0 +1,159 @@ + + + + + + + Using the GUI — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Using the GUI

+

A GUI (Graphical User Interface) is under construction that helps to build +a data template and explore your dataset. This GUI is made in a seperate package: MetObs-GUI

+

The GUI can only be launched as a local application, or on a remote that has a graphical backend. This means that the GUI can not be used in Google Colab notebooks!

+
+

Warning

+

The GUI is currently under development and performance can not yet be guaranteed on all OS platforms.

+
+
+

Why a GUI

+

Building a data/metadata template can sometimes be tricky. The GUI is intended to streamline this process with a visual application. +In addition to building a template, some basic functions are implemented as well.

+
+
+

How to launch the GUI

+

As explained above, the GUI can best be launched as a local python script or as a local JupyterNotebook. +To do that, make sure you have installed the Metobs-toolkit and the Metobs-GUI on your machine.

+
#install the metobs-toolkit
+pip3 install metobs-toolkit
+#install the metobs-gui (currently only on github)
+pip3 install git+https://github.com/vergauwenthomas/MetObs_GUI
+
+
+

Launch the GUI by running this code in a Python3 console or in a Jupyter notebook

+
import metobs_gui
+
+metobs_gui.launch_gui() #the GUI will launch
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/index.html b/docs/_build/index.html new file mode 100644 index 00000000..6cb31efd --- /dev/null +++ b/docs/_build/index.html @@ -0,0 +1,216 @@ + + + + + + + Welcome to MetObs-Toolkit’s documentation! — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+ + +
+
+
+
+ + + + diff --git a/docs/_build/intro.html b/docs/_build/intro.html new file mode 100644 index 00000000..42bf6618 --- /dev/null +++ b/docs/_build/intro.html @@ -0,0 +1,264 @@ + + + + + + + Introduction — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Introduction

+

This package is designed for handling meteorological observations for urban or non-traditional networks. It includes tools to clean up and analyze your data.

+
+

How to install

+

To use the package python 3.9 or higher is required. +To install the package one can use pip:

+
pip3 install metobs-toolkit
+
+
+

To install the PyPi version of the toolkit. To install the github versions one can use these commands:

+
#main versions
+pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit.git
+
+#development version
+pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit.git@dev
+
+#specific release from github
+pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit.git@v0.1.1
+
+
+

For some advanced quality control methods, the Titanlib package is used. +Since the instalation of titanlib requires a c++ compiler, it is categorized as a extra-dependency. This means that +the user must install titanlib manually if this functionallity is required or use the following command:

+
pip3 install metobs-toolkit[titanlib]
+
+
+
+

Note

+

To install the package in a notebook, one has to add ! in front of the pip install command.

+
+

and import it in Python

+
import metobs_toolkit
+
+#Check your version
+metobs_toolkit.__version__
+
+
+
+
+

How to use this toolkit

+

This toolkit is a Python package based on object-oriented programming (OOP). Here you can find a short description of the classes that are directly used by the users:

+
+

Dataset()

+

The Dataset class is at the heart of the toolkit and it holds all observations and metadata.

+
your_dataset = metobs_toolkit.Dataset()
+
+
+

The dataset class has attributes that serve as ‘containers’ to hold data:

+
+
Dataset.df

All(*) records will start in the df-container. This container contains the observations that we assume to be correct.

+

(*): One exception is the observations with a duplicated timestamp, these will be passed to the outliersdf-container directly.

+
+
Dataset.outliersdf

When applying quality control, some observations may be labeled as outliers. When an observation is labeled as an outlier, it is added to the outliersdf-container. +The records labeled as outliers are still kept inside the df-container but the observation value is removed (set to Nan).

+
+
Dataset.missing_obs

When importing a datafile, an observation frequency is estimated for each station. A missing observation is a record that is not in the observations but is assumed by the station frequency. +A missing observation is thus a record, without an observation value. These records are stored in the missing_obs-container.

+
+
Dataset.gaps

When a sequence of (repeating) missing observations is found, a test is performed to check if the length(*) of the series is larger than a threshold (i.e. the gap definition). +If the series is larger than the threshold, we interpret it as a gap and it is removed from the missing_obs-container.

+

(*): Note that the definition of a gap is based on a number of consecutive repeating missing records! The minimal gap size is therefore dependent on the observational frequency of each station.

+
+
Dataset.metadf

When metadata is provided, it will be stored in the Dataset.metadf. The metadf is stored as tabular data where each row represents a station. When variables are computed that depend only +on a station (No time evolution and independent of the observation type), it is stored here. All land cover information and observation frequency estimations are stored here.

+
+
+
+

Note

+

A record refers to a unique combination of timestamp, corresponding station, and observation type.

+
+
+
+

Station()

+

A Station is a class that has the same attributes and methods as a Dataset, but all the observations are limited to a specific station.

+
your_station = your_dataset.get_station(stationname = 'station_A')
+
+
+
+
+

Analysis()

+

The Analysis class is created from a Dataset and holds the observations that are assumed to be correct (the df-container of the Dataset). In contrast to the Dataset, the Analysis methods do not change the observations. +The Analysis methods are based on aggregating the observations to get insight into diurnal/seasonal patterns and landcover effects.

+
your_dataset_analysis = your_dataset.analysis()
+
+
+
+

Note

+

Creating an Analysis of a Station is not recommended, since there is not much scientific value in it.

+
+
+
+

Modeldata()

+

The Modeldata holds time-series of data from a source other than observations (i.g. a model). The time-series are taken at the same coordinates as the stations and the +names of the stations are used as well.

+

This class is used for comparing other sources to observations and for filling in missing observations and gaps in the observations.

+
ERA5_timeseries = your_dataset.get_modeldata(modelname='ERA5_hourly',
+                                             obstype='temp')
+
+
+

The toolkit makes use of the Google Earth Engine (GEE), to extract these time-series. To use the GEE API, follow these steps on Using Google Earth Engine.

+
+
+

Settings()

+

Each Dataset holds its own set of Settings. When creating a Dataset instance, the default settings are attached to it. When another class is created (i.g. Station, Modeldata, …) from a Dataset, the corresponding settings are inherited. +There are methods to change some of the default settings (like quality control settings, timezone settings, gap fill settings, …). To list all the settings of a class one can use the show method on it:

+
#Create a Dataset, the default settings are attached to it
+your_dataset = metobs_toolkit.Dataset()
+
+#Update the timezone from 'UTC' (default) to Brussels local time
+your_dataset.update_timezone(timezonestr='Europe/Brussels')
+
+#create a Station instance from your dataset
+your_station = your_dataset.get_station(stationname = 'station_A')
+
+#Since the settings are inherited, your_stations has also the timezone set to Brussels local time.
+
+# print out all settings
+your_dataset.settings.show()
+your_station.settings.show()
+
+
+
+
+
+

Schematic overview

+Alternative text +
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/objects.inv b/docs/_build/objects.inv new file mode 100644 index 00000000..2ca0bd60 Binary files /dev/null and b/docs/_build/objects.inv differ diff --git a/docs/_build/paper/index.html b/docs/_build/paper/index.html new file mode 100644 index 00000000..10671e9a --- /dev/null +++ b/docs/_build/paper/index.html @@ -0,0 +1,147 @@ + + + + + + + JOSS publication — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

JOSS publication

+
+

About JOSS

+

The Journal of Open Source Software is a developer friendly, open access journal for research software packages.

+
+
+

JOSS paper

+

A MetObs-toolkit publication has been submitted and is currently under review. A draft version of the paper can be found in docs/paper/paper.pdf.

+

Additionally, we add the script for creating the figures that are used in the publication.

+ +
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/paper/paper.html b/docs/_build/paper/paper.html new file mode 100644 index 00000000..5695ea25 --- /dev/null +++ b/docs/_build/paper/paper.html @@ -0,0 +1,155 @@ + + + + + + + Summary — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Summary

+

In-situ meteorological observations are highly important for weather and climate research. The evolution towards more affordable sensor technology and data communication has resulted in the emergence of novel meteorological networks alongside the traditional high-quality measurement networks of meteorological institutions. Examples include urban measurement networks intended to study the impact of cities [@mocca] and networks consisting of devices of weather enthusiasts [@crowdsourcing_status]. However, exploiting the data of such non-traditional networks comes with significant challenges [@crowdsourcing]. Firstly, sensors and data communication protocols are usually low-cost, and this in general results in an increase of measurement errors, biases and data gaps. Secondly, data storage formats and temporal measurement frequencies are often not consistent or compatible. Finally, metadata, such as land use around a station and elevation, are not easily accessible or documented.

+

The MetObs-toolkit is a Python package developed to address these issues and facilitate the use of non-traditional observations. The package provides automated quality control (QC) techniques to identify and flag erroneous observations, and includes methods to fill data gaps. Additionally, the package offers tools for analyzing the data, e.g. linkage with popular land-use datasets [@worldcover; @lcz_map] is included such that microclimate effects can be investigated with the MetObs-toolkit.

+
+
+

Statement of need

+

The primary objective of the MetObs-toolkit is to enable scientists to process meteorological observations into datasets ready for analysis. The data cleaning process involves three steps:

+
    +
  1. resampling the time resolution if necessary,

  2. +
  3. identifying erroneous and missing records, and

  4. +
  5. filling the missing records.

  6. +
+

Sophisticated software such as TITAN [@titan2020] and CrowdQC+ [@CrowdQC] exists for identifying erroneous observations (QC), which is one aspect of cleaning a dataset. These packages offer a wide range of functionalities for this specific task, while MetObs aims to provide a framework for the entire flow from raw data to analysis. Moreover, researchers often face the challenge of coding scripts that can generate analyses, particularly when using geographical datasets such as landcover datasets. Traditionally, this requires the installation of numerous packages, storage of geographical datasets, and GIS manipulations (often manually done with specific GIS software). The toolkit implements one user-friendly framework for creating various plots, generating analysis statistics, and incorporating GIS data through the use of the Google Earth engine. +By using the toolkit, scientists can set up a pipeline to process raw data into analysis in an easy-to-use (and install) manner. Additionally, the developed pipeline can be directly applied to other datasets without any formatting issues.

+

A schematic overview of the main MetObs-toolkit functionalities.abel{fig:overview_fig}

+
+
+

Technical implementation

+

The MetObs-toolkit provides a comprehensive framework for scientists to process raw meteorological data for analysis by making intensive use of the pandas [@pandas] and geopandas [@geopandas] functionalities. The process consists of the following steps, visualized in the \autoref{fig:overview_fig}.

+

Firstly, the raw data is mapped to the toolkit standards by use of a template. Once the raw data is imported into the Toolkit Dataset, missing observations are identified and methods to resample and synchronize observations can be used.

+

Quality control is performed in the form of a series of checks. These checks are designed to examine data types, irregular timestamps, max-min thresholds, repetitions criteria, spike tests, allowed variation in time windows and spatial tests. Advanced quality control methods are available through the implementation of TITAN into the toolkit. The user can choose to keep the outliers or convert them to missing records (which can be filled).

+

Gap filling is applied by using interpolation methods and/or importing ERA5 reanalysis [@era5] time series to fill the gaps. The latter is stored as a Toolkit Modeldata, which has a set of methods to directly import the required time series through the use of the Google Earth engine API. +The user obtains a cleaned-up dataset ready for analysis. A set of typical analysis techniques such as filters, aggregation schemes, and landcover correlation estimates are implemented in the Toolkit-Analysis class.

+

\autoref{fig:overview_fig} gives an overview of the main framework of the MetObs-toolkit, but it is an evolving project that responds to the community’s needs and input. As an example, the development of a graphical user interface (GUI) for the toolkit is planned. A GUI would increase the ease of use by enabling to create templates, adjust QC settings and plot data interactively.

+
+
+

Acknowledgments

+

The authors would like to thank all participants of the COST FAIRNESS (CA20108) summer school 2023 in Ghent for their role as beta testers. The input, ideas and feedback from these scientists, dealing with microclimate datasets in many European countries, were instrumental in improving the MetObs-toolkit.

+

No specific funding has been obtained to build the MetObs-toolkit, but the authors have been supported by different Belgian and Flemish scientific grants.

+

FWO: Sara (fellowship 1270723N) and Wout (fellowship 1157523N)

+

BELSPO: Kobe (B2/223/P1/CORDEX.be II), Thomas (B2/202/P1/CS-MASK), Michiel (B2/212/P2/CLIMPACTH) and Steven (FED-tWIN Prf-2020-018_AURA)

+

Andrei (VUB, SRP74/LSDS, OZR3893, Innoviris-Brussels ILSF-2023-12) and Ian (VITO, UG_PhD_2202)

+
+
+

References

+
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/paper/paper_figures.html b/docs/_build/paper/paper_figures.html new file mode 100644 index 00000000..92220552 --- /dev/null +++ b/docs/_build/paper/paper_figures.html @@ -0,0 +1,853 @@ + + + + + + + JOSS publication figures creator — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

JOSS publication figures creator

+

This script will create the figures that are used in the JOSS publication of the Metob-toolkit.

+
+
[11]:
+
+
+
import logging
+import math
+import os
+import sys
+import time
+from pathlib import Path
+import matplotlib.pyplot as plt
+import pandas as pd
+import metobs_toolkit
+
+
+
+
+

Creation of the Dataset

+
+
[12]:
+
+
+
datadf = pd.read_csv(metobs_toolkit.demo_datafile, sep=';')
+metadf = pd.read_csv(metobs_toolkit.demo_metadatafile, sep=',')
+
+# Subset to regio ghent
+ghent_stations = [ 'vlinder24', 'vlinder25', 'vlinder05', 'vlinder27',
+                  'vlinder02', 'vlinder01', 'vlinder28']
+
+
+datadf = datadf[datadf['Vlinder'].isin(ghent_stations)]
+metadf = metadf[metadf['Vlinder'].isin(ghent_stations)]
+
+# subset period
+datadf['dummy_dt'] = datadf['Datum'] + datadf['Tijd (UTC)']
+datadf['dummy_dt'] = pd.to_datetime(datadf['dummy_dt'], format='%Y-%m-%d%H:%M:%S')
+
+#Subset to period
+from datetime import datetime
+startdt = datetime(2022, 9, 1)
+enddt = datetime(2022, 9, 10)
+datadf = datadf[(datadf['dummy_dt'] >= startdt) & (datadf['dummy_dt'] <= enddt)]
+datadf = datadf.drop(columns=['dummy_dt'])
+
+# Inducing outliers as demo
+datadf = datadf.drop(index=datadf.iloc[180:200, :].index.tolist())
+
+# save in paper folder
+folder = os.path.abspath('')
+datadf.to_csv(os.path.join(folder, 'datafile.csv'))
+metadf.to_csv(os.path.join(folder, 'metadatafile.csv'))
+
+#Importing raw data
+use_dataset = 'paper_dataset'
+dataset = metobs_toolkit.Dataset()
+dataset.update_settings(output_folder=folder,
+                        input_data_file=os.path.join(folder, 'datafile.csv'),
+                        input_metadata_file=os.path.join(folder, 'metadatafile.csv'),
+                        template_file=metobs_toolkit.demo_template,
+                        )
+
+dataset.import_data_from_file()
+
+
+
+
+
+

Styling settings

+
+
[13]:
+
+
+
# change color for printing (avoid yellow!)
+dataset.settings.app['plot_settings']['color_mapper']['gross_value'] = "#fc0303"
+
+
+
+
+
+

Timeseries for each station

+
+
[14]:
+
+
+
#1. Coarsen resolution and apply quality control with non-defaults as demonstration
+dataset.coarsen_time_resolution(freq='20T')
+
+ax1 = dataset.make_plot()
+
+#translate axes
+ax1.set_title('Temperature for all stations')
+ax1.set_ylabel('T2m in °C')
+plt.show()
+
+
+
+
+
+
+
+../_images/paper_paper_figures_7_0.png +
+
+
+
+

Timeseries with quality control labels

+
+
[15]:
+
+
+
#update QC settings
+dataset.update_qc_settings(obstype='temp', gapsize_in_records=None,
+                           dupl_timestamp_keep=None,
+                           persis_time_win_to_check=None,
+                           persis_min_num_obs=None,
+                           rep_max_valid_repetitions=None,
+                           gross_value_min_value=10.7,
+                           gross_value_max_value=None,
+                           win_var_max_increase_per_sec=None,
+                           win_var_max_decrease_per_sec=None,
+                           win_var_time_win_to_check=None,
+                           win_var_min_num_obs=None,
+                           step_max_increase_per_sec=5./3600.,
+                           step_max_decrease_per_sec=None)
+
+dataset.update_titan_qc_settings(obstype='temp', buddy_radius=10000,
+                                   buddy_num_min=3, buddy_threshold=2.2,
+                                   buddy_max_elev_diff=None,
+                                   buddy_elev_gradient=None,
+                                   buddy_min_std=1.0,
+                                   buddy_num_iterations=None,
+                                   buddy_debug=None)
+
+dataset.apply_quality_control()
+dataset.apply_titan_buddy_check(use_constant_altitude=True)
+
+# Create the plot
+ax2 = dataset.make_plot(colorby='label')
+#translate axes
+ax2.set_title('Temperature for all stations')
+ax2.set_ylabel('T2m in °C')
+
+plt.show()
+
+
+
+
+
+
+
+
+buddy radius for the TITAN buddy check updated:  50000--> 10000.0
+buddy num min for the TITAN buddy check updated:  2--> 3
+buddy threshold for the TITAN buddy check updated:  1.5--> 2.2
+buddy min std for the TITAN buddy check updated:  1.0--> 1.0
+
+
+
+
+
+
+../_images/paper_paper_figures_9_1.png +
+
+
+
+

Fill gaps and plot timeseries of Vlinder28

+
+
[16]:
+
+
+
# 1. Update gaps and missing from outliers
+dataset.update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=6)
+
+# 2. update settings
+dataset.update_gap_and_missing_fill_settings(gap_interpolation_method=None,
+                                             gap_interpolation_max_consec_fill=None,
+                                             gap_debias_prefered_leading_period_hours=24,
+                                             gap_debias_prefered_trailing_period_hours=4,
+                                             gap_debias_minimum_leading_period_hours=24,
+                                             gap_debias_minimum_trailing_period_hours=4,
+                                             automatic_max_interpolation_duration_str=None,
+                                             missing_obs_interpolation_method=None)
+
+# 3. Get modeldata
+
+era5 = dataset.get_modeldata(modelname='ERA5_hourly',
+                      modeldata=None, obstype='temp',
+                      stations=None, startdt=None, enddt=None)
+
+if not os.path.exists(os.path.join(folder, 'era.pkl')):
+    era5.save_modeldata(outputfolder=folder, filename='era.pkl')
+
+
+dummy_mod = metobs_toolkit.Modeldata('ERA5_hourly')
+era5 = dummy_mod.import_modeldata(folder_path=folder,
+                                  filename='era.pkl')
+
+# 4. convert units of model
+era5.convert_units_to_tlk('temp')
+
+# 5. fill missing obs
+dataset.fill_missing_obs_linear()
+
+# 6. fill gaps
+dataset.fill_gaps_era5(era5)
+
+# 7. Make plot (of single station for clearity)
+ax3 = dataset.get_station('vlinder28').make_plot(colorby='label')
+
+#translate axes
+ax3.set_title('Temperature for vlinder28')
+ax3.set_ylabel('T2m in °C')
+
+plt.show()
+
+
+
+
+
+
+
+
+(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)
+
+
+
+
+
+
+../_images/paper_paper_figures_11_1.png +
+
+
+
+

Diurnal Analysis

+
+
[17]:
+
+
+

# Get Meta data +dataset.get_landcover(buffers=[50, 150, 500], aggregate=True) +# Create analysis from the dataset +ana = dataset.get_analysis(add_gapfilled_values=True) + +# Make diurnal cycle analysis with plot +ax4 = ana.get_diurnal_statistics(colorby='name', + obstype='temp', + stations=None, startdt=None, enddt=None, + plot=True, + title='Hourly average temperature diurnal cycle', + y_label=None, legend=True, + errorbands=True, _return_all_stats=False) + +fig = plt.gcf() +fig.set_dpi(200) +fig.tight_layout() + +plt.show() +
+
+
+
+
+
+
+../_images/paper_paper_figures_13_0.png +
+
+
+
+

Interactive spatial

+
+
[18]:
+
+
+
dataset.make_gee_plot(gee_map='worldcover')
+
+
+
+
+
[18]:
+
+
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/paper/paper_figures.ipynb b/docs/_build/paper/paper_figures.ipynb new file mode 100644 index 00000000..d8c6fcd7 --- /dev/null +++ b/docs/_build/paper/paper_figures.ipynb @@ -0,0 +1,813 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "4e711329-5eb3-44e9-a2c8-8a0ff4d7cf12", + "metadata": {}, + "source": [ + "# JOSS publication figures creator\n", + "This script will create the figures that are used in the JOSS publication of the Metob-toolkit." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "312b112e-0589-4c66-9f7a-65f17191af49", + "metadata": {}, + "outputs": [], + "source": [ + "import logging\n", + "import math\n", + "import os\n", + "import sys\n", + "import time\n", + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import metobs_toolkit\n" + ] + }, + { + "cell_type": "markdown", + "id": "98236314-525a-41c3-81f9-3ce8ce0ec574", + "metadata": {}, + "source": [ + "## Creation of the Dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "0f4b7767-ecfa-47d8-abc6-05c726e450e3", + "metadata": {}, + "outputs": [], + "source": [ + "datadf = pd.read_csv(metobs_toolkit.demo_datafile, sep=';')\n", + "metadf = pd.read_csv(metobs_toolkit.demo_metadatafile, sep=',')\n", + "\n", + "# Subset to regio ghent\n", + "ghent_stations = [ 'vlinder24', 'vlinder25', 'vlinder05', 'vlinder27',\n", + " 'vlinder02', 'vlinder01', 'vlinder28']\n", + "\n", + "\n", + "datadf = datadf[datadf['Vlinder'].isin(ghent_stations)]\n", + "metadf = metadf[metadf['Vlinder'].isin(ghent_stations)]\n", + "\n", + "# subset period\n", + "datadf['dummy_dt'] = datadf['Datum'] + datadf['Tijd (UTC)']\n", + "datadf['dummy_dt'] = pd.to_datetime(datadf['dummy_dt'], format='%Y-%m-%d%H:%M:%S')\n", + "\n", + "#Subset to period\n", + "from datetime import datetime\n", + "startdt = datetime(2022, 9, 1)\n", + "enddt = datetime(2022, 9, 10)\n", + "datadf = datadf[(datadf['dummy_dt'] >= startdt) & (datadf['dummy_dt'] <= enddt)]\n", + "datadf = datadf.drop(columns=['dummy_dt'])\n", + "\n", + "# Inducing outliers as demo\n", + "datadf = datadf.drop(index=datadf.iloc[180:200, :].index.tolist())\n", + "\n", + "# save in paper folder\n", + "folder = os.path.abspath('')\n", + "datadf.to_csv(os.path.join(folder, 'datafile.csv'))\n", + "metadf.to_csv(os.path.join(folder, 'metadatafile.csv'))\n", + "\n", + "#Importing raw data\n", + "use_dataset = 'paper_dataset'\n", + "dataset = metobs_toolkit.Dataset()\n", + "dataset.update_settings(output_folder=folder,\n", + " input_data_file=os.path.join(folder, 'datafile.csv'),\n", + " input_metadata_file=os.path.join(folder, 'metadatafile.csv'),\n", + " template_file=metobs_toolkit.demo_template,\n", + " )\n", + "\n", + "dataset.import_data_from_file()" + ] + }, + { + "cell_type": "markdown", + "id": "00d37a3e-804d-47bf-9f24-a1f6f7ad6ef0", + "metadata": {}, + "source": [ + "## Styling settings" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "65472b11-7c51-4fe2-9352-e82b613d44cf", + "metadata": {}, + "outputs": [], + "source": [ + "# change color for printing (avoid yellow!)\n", + "dataset.settings.app['plot_settings']['color_mapper']['gross_value'] = \"#fc0303\"" + ] + }, + { + "cell_type": "markdown", + "id": "591b6a9e-c62f-49cb-be4e-1dd8ced9b54a", + "metadata": {}, + "source": [ + "## Timeseries for each station" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ff3aa9ac-4e8a-452a-a673-35ee0dee7a93", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAGUCAYAAABuqV+MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU9dX48c+9s2/ZFxISAoR9E0REUHHf6l6trT591D62tVXbWtvaandta9XW2uVXtdaidWktVq1WBTfEHZRFWZMAIWTfk8nsc5ffHzfMZEhAUCAI5/16QWbuNt9ZMpk593zPUUzTNBFCCCGEEEIIIYQQQhzS1OEegBBCCCGEEEIIIYQQYv+TQKAQQgghhBBCCCGEEIcBCQQKIYQQQgghhBBCCHEYkECgEEIIIYQQQgghhBCHAQkECiGEEEIIIYQQQghxGJBAoBBCCCGEEEIIIYQQhwEJBAohhBBCCCGEEEIIcRiQQKAQQgghhBBCCCGEEIcBCQQKIYQQQgghhBBCCHEYkECgEEIIIYQY0p133snYsWOx2WzMnDlzuIcDwM9+9jMURclYNnr0aK688srhGdAe2rZtG4qi8OCDDw73UIQQQghxGJNAoBBCCCH2C0VR9ujfa6+9NtxDHTZ//vOfD9rA0IsvvsiNN97Isccey8KFC/nVr3413EPa7zZs2MDPfvYztm3b9rGP8dhjj3H33XfvszEJIYQQQuxL9uEegBBCCCEOTQ8//HDG9b///e+89NJLg5ZPnjz5QA7roPLnP/+ZgoKCgzKb7dVXX0VVVR544AGcTudwD+eA2LBhAz//+c858cQTGT169Mc6xmOPPca6deu4/vrrM5ZXVFQQjUZxOByffKBCCCGEEB+TBAKFEEIIsV988YtfzLj+7rvv8tJLLw1afqgwTZNYLIbH4zkkxtHW1obH49lnQcCD5fEZLoqi4Ha7h3sYQgghhDjMydRgIYQQQgwbwzC4++67mTp1Km63m+LiYq6++mq6u7szths9ejTnnHMOr732GkcddRQej4fp06enphU/+eSTTJ8+HbfbzezZs1m9enXG/ldeeSV+v5+tW7dyxhln4PP5KC0t5ZZbbsE0zU80piVLlqTGdN999wGwcOFCTj75ZIqKinC5XEyZMoV77rln0P7r169n2bJlqWnSJ554IjB0HTyABx98EEVRMqau7m4cPT09XH/99ZSXl+NyuRg3bhy33347hmHs9nlRFIWFCxcSDodTY9sxhVnTNG699VYqKytxuVyMHj2am2++mXg8vsePz1DeeOMNPve5zzFq1ChcLhfl5eV8+9vfJhqN7nase+Of//wns2fPJhAIkJWVxfTp0/n9738PWI/t5z73OQBOOumkQVPX//Of/3D22WdTWlqKy+WisrKSW2+9FV3XU8c/8cQTee6556irq0vtvyOzcFc1Al999VWOP/54fD4fOTk5nH/++WzcuDFjmx2vh82bN3PllVeSk5NDdnY2X/rSl4hEIhnbvvTSSxx33HHk5OTg9/uZOHEiN9988z57DIUQQgjx6SYZgUIIIYQYNldffTUPPvggX/rSl/jmN79JbW0tf/rTn1i9ejVvvfVWxjTKzZs3c9lll3H11VfzxS9+kd/85jece+653Hvvvdx8881cc801ANx2221ccsklVFVVoarpc566rnPmmWdyzDHHcMcdd7B48WJ++tOfomkat9xyy8caU1VVFZdeeilXX301X/nKV5g4cSIA99xzD1OnTuW8887Dbrfz7LPPcs0112AYBtdeey0Ad999N9/4xjfw+/388Ic/BKC4uPhjPY5DjSMSiXDCCSfQ2NjI1VdfzahRo3j77be56aabaG5u3m0du4cffpi//OUvrFixgr/+9a8AzJ8/H4Avf/nLPPTQQ1x88cV85zvfYfny5dx2221s3LiRp5566iPHtSuLFi0iEonw9a9/nfz8fFasWMEf//hHGhoaWLRo0cd6XAZ66aWXuPTSSznllFO4/fbbAdi4cSNvvfUW3/rWt1iwYAHf/OY3+cMf/sDNN9+cmrK+4+eDDz6I3+/nhhtuwO/38+qrr/KTn/yEYDDInXfeCcAPf/hDent7aWho4He/+x0Afr9/l2N6+eWXOeussxg7diw/+9nPiEaj/PGPf+TYY49l1apVg6YnX3LJJYwZM4bbbruNVatW8de//pWioqLU/Vm/fj3nnHMOM2bM4JZbbsHlcrF582beeuutT/z4CSGEEOIQYQohhBBCHADXXnutOfCjxxtvvGEC5qOPPpqx3eLFiwctr6ioMAHz7bffTi1bsmSJCZgej8esq6tLLb/vvvtMwFy6dGlq2RVXXGEC5je+8Y3UMsMwzLPPPtt0Op1me3v7xx7T4sWLB93XSCQyaNkZZ5xhjh07NmPZ1KlTzRNOOGHQtj/96U/NoT6mLVy40ATM2trajxzHrbfeavp8PrO6ujpj+Q9+8APTZrOZ27dvH3T8ga644grT5/NlLFuzZo0JmF/+8pczln/3u981AfPVV1/9yHHtylCP2W233WYqipLx/A712FRUVJhXXHHFbo//rW99y8zKyjI1TdvlNosWLRr02tnd+K6++mrT6/WasVgstezss882KyoqBm1bW1trAubChQtTy2bOnGkWFRWZnZ2dqWUffPCBqaqqefnll6eW7bjP//d//5dxzAsvvNDMz89PXf/d735nAqnXsxBCCCHEzmRqsBBCCCGGxaJFi8jOzua0006jo6Mj9W/27Nn4/X6WLl2asf2UKVOYN29e6vrcuXMBOPnkkxk1atSg5Vu3bh10m9ddd13qsqIoXHfddSQSCV5++eWPNaYxY8ZwxhlnDLqdgXXwent76ejo4IQTTmDr1q309vbu8WO0p4Yax6JFizj++OPJzc3NuC+nnnoquq7z+uuv7/XtPP/88wDccMMNGcu/853vAPDcc8995Lh2ZeBjFg6H6ejoYP78+ZimOWiq98eRk5NDOBzmpZde+lj7DxxfX18fHR0dHH/88UQiETZt2rTXx2tubmbNmjVceeWV5OXlpZbPmDGD0047LfVYD/S1r30t4/rxxx9PZ2cnwWAQsO4jWNOYP2r6txBCCCEOTzI1WAghhBDDoqamht7eXoqKioZc39bWlnF9YLAPIDs7G4Dy8vIhl+9c009VVcaOHZuxbMKECQCpmnt7O6YxY8YMud1bb73FT3/6U955551BNdx6e3tTY9xXhhpHTU0NH374IYWFhUPus/N92RN1dXWoqsq4ceMylo8YMYKcnBzq6uo+cly7sn37dn7yk5/wzDPPDHru9kXw9JprruFf//oXZ511FiNHjuT000/nkksu4cwzz9yj/devX8+PfvQjXn311VTg7ZOMb8djNdR06cmTJ7NkyRLC4TA+ny+1fOffgdzcXMB6rWdlZfH5z3+ev/71r3z5y1/mBz/4Aaeccgqf/exnufjiizOmyQshhBDi8CWBQCGEEEIMC8MwKCoq4tFHHx1y/c4BLJvNNuR2u1pu7tQEZH+MaagOuFu2bOGUU05h0qRJ3HXXXZSXl+N0Onn++ef53e9+t0eZWkM1CgEyGlN81DgMw+C0007jxhtvHHKfHUHQj2NX49uTcQ1F13VOO+00urq6+P73v8+kSZPw+Xw0NjZy5ZVX7pPstqKiItasWcOSJUt44YUXeOGFF1i4cCGXX345Dz300G737enp4YQTTiArK4tbbrmFyspK3G43q1at4vvf//4By777qNe6x+Ph9ddfZ+nSpTz33HMsXryYxx9/nJNPPpkXX3xxl/sLIYQQ4vAhgUAhhBBCDIvKykpefvlljj322D0OGH0ShmGwdevWjABYdXU1QKopw74Y07PPPks8HueZZ57JyODaeVox7DqgtiPTq6enJzXdExiUcbc7lZWVhEIhTj311D3e56NUVFRgGAY1NTWpJhoAra2t9PT0UFFR8bGOu3btWqqrq3nooYe4/PLLU8s/7jTeXXE6nZx77rmce+65GIbBNddcw3333cePf/xjxo0bt8vn47XXXqOzs5Mnn3ySBQsWpJbX1tYO2nZPg6Q7HquqqqpB6zZt2kRBQUFGNuCeUlWVU045hVNOOYW77rqLX/3qV/zwhz9k6dKl+/S1IIQQQohPJ5kjIIQQQohhcckll6DrOrfeeuugdZqm0dPTs89v809/+lPqsmma/OlPf8LhcHDKKafsszHtyLoamJHY29vLwoULB23r8/mGPGZlZSVARh2/cDj8kZlrA11yySW88847LFmyZNC6np4eNE3b42Pt8JnPfAZgUMfhu+66C4Czzz57r48JQz9mpmny+9///mMdbyidnZ0Z11VVZcaMGQDE43GAVOBt5+dkqPElEgn+/Oc/D7odn8+3R1OFS0pKmDlzJg899FDG7a1bt44XX3wx9Vjvja6urkHLZs6cCaTvoxBCCCEOb5IRKIQQQohhccIJJ3D11Vdz2223sWbNGk4//XQcDgc1NTUsWrSI3//+91x88cX77PbcbjeLFy/miiuuYO7cubzwwgs899xz3Hzzzakpv/tiTKeffnoq8+zqq68mFApx//33U1RURHNzc8a2s2fP5p577uEXv/gF48aNo6ioiJNPPpnTTz+dUaNGcdVVV/G9730Pm83G3/72NwoLC9m+ffse3d/vfe97PPPMM5xzzjlceeWVzJ49m3A4zNq1a3niiSfYtm0bBQUFe/UYHnHEEVxxxRX85S9/SU2XXbFiBQ899BAXXHABJ5100l4db4dJkyZRWVnJd7/7XRobG8nKyuLf//73oFqBn8SXv/xlurq6OPnkkykrK6Ouro4//vGPzJw5M5XdOHPmTGw2G7fffju9vb24XC5OPvlk5s+fT25uLldccQXf/OY3URSFhx9+eMjp57Nnz+bxxx/nhhtuYM6cOfj9fs4999whx3TnnXdy1llnMW/ePK666iqi0Sh//OMfyc7O5mc/+9le38dbbrmF119/nbPPPpuKigra2tr485//TFlZGccdd9xeH08IIYQQh6Bh61cshBBCiMPKtddeaw710eMvf/mLOXv2bNPj8ZiBQMCcPn26eeONN5pNTU2pbSoqKsyzzz570L6Aee2112Ysq62tNQHzzjvvTC274oorTJ/PZ27ZssU8/fTTTa/XaxYXF5s//elPTV3X9+mYTNM0n3nmGXPGjBmm2+02R48ebd5+++3m3/72NxMwa2trU9u1tLSYZ599thkIBEzAPOGEE1LrVq5cac6dO9d0Op3mqFGjzLvuustcuHDhoGPsbhx9fX3mTTfdZI4bN850Op1mQUGBOX/+fPM3v/mNmUgkhtxn58dsZ8lk0vz5z39ujhkzxnQ4HGZ5ebl50003mbFYLGO73Y1rKBs2bDBPPfVU0+/3mwUFBeZXvvIV84MPPjABc+HChantfvrTnw56HVVUVJhXXHHFbo//xBNPmKeffrpZVFSUekyvvvpqs7m5OWO7+++/3xw7dqxps9lMwFy6dKlpmqb51ltvmcccc4zp8XjM0tJS88YbbzSXLFmSsY1pmmYoFDIvu+wyMycnxwTMiooK0zTTr8uB98U0TfPll182jz32WNPj8ZhZWVnmueeea27YsCFjmx33ub29PWP5zq+HV155xTz//PPN0tJS0+l0mqWlpeall15qVldX7/axEUIIIcThQzHNj1FJWwghhBDiU+TKK6/kiSeeIBQKDfdQhBBCCCGEGDZSI1AIIYQQQgghhBBCiMOABAKFEEIIIYQQQgghhDgMSCBQCCGEEEIIIYQQQojDgNQIFEIIIYQQQgghhBDiMCAZgUIIIYQQQgghhBBCHAbswz2Ag5FhGDQ1NREIBFAUZbiHI4QQQgghhBBCCCGGkWma9PX1UVpaiqp+evPqJBA4hKamJsrLy4d7GEIIIYQQQgghhBDiIFJfX09ZWdlwD+Njk0DgEAKBAGA9uVlZWcM8GiGEEEIIIYQQQggxnILBIOXl5amY0aeVBAKHsGM6cFZWlgQChRBCCCGEEEIIIQTAp76E3LBOar7nnnuYMWNGKuA2b948XnjhhdT6WCzGtddeS35+Pn6/n4suuojW1tbdHtM0TX7yk59QUlKCx+Ph1FNPpaamZn/fFSGEEEIIIYQQQgghDmrDGggsKyvj17/+NStXruT999/n5JNP5vzzz2f9+vUAfPvb3+bZZ59l0aJFLFu2jKamJj772c/u9ph33HEHf/jDH7j33ntZvnw5Pp+PM844g1gsdiDukhBCCCGEEEIIIYQQByXFNE1zuAcxUF5eHnfeeScXX3wxhYWFPPbYY1x88cUAbNq0icmTJ/POO+9wzDHHDNrXNE1KS0v5zne+w3e/+10Aent7KS4u5sEHH+QLX/jCHo0hGAySnZ1Nb2+vTA0WQgghhBBCCCGEOMwdKrGig6bfsa7r/POf/yQcDjNv3jxWrlxJMpnk1FNPTW0zadIkRo0axTvvvDPkMWpra2lpacnYJzs7m7lz5+5yH4B4PE4wGMz4J4QQQgghhBBCCCHEoWTYA4Fr167F7/fjcrn42te+xlNPPcWUKVNoaWnB6XSSk5OTsX1xcTEtLS1DHmvH8uLi4j3eB+C2224jOzs79a+8vPyT3SkhhBBCCCGEEEIIIQ4ywx4InDhxImvWrGH58uV8/etf54orrmDDhg0HdAw33XQTvb29qX/19fUH9PaFEEIIIYQQQgghhNjf7MM9AKfTybhx4wCYPXs27733Hr///e/5/Oc/TyKRoKenJyMrsLW1lREjRgx5rB3LW1tbKSkpydhn5syZuxyDy+XC5XJ98jsjhBBCCCGEEEIIIcRBatgzAndmGAbxeJzZs2fjcDh45ZVXUuuqqqrYvn078+bNG3LfMWPGMGLEiIx9gsEgy5cv3+U+QgghhBBCCCGEEEIcDoY1I/Cmm27irLPOYtSoUfT19fHYY4/x2muvsWTJErKzs7nqqqu44YYbyMvLIysri2984xvMmzcvo2PwpEmTuO2227jwwgtRFIXrr7+eX/ziF4wfP54xY8bw4x//mNLSUi644ILhu6NCCCGEEEIIIYQQQgyzYQ0EtrW1cfnll9Pc3Ex2djYzZsxgyZIlnHbaaQD87ne/Q1VVLrroIuLxOGeccQZ//vOfM45RVVVFb29v6vqNN95IOBzmq1/9Kj09PRx33HEsXrwYt9t9QO+bEEIIIYQQQgghhBAHE8U0TXO4B3GwCQaDZGdn09vbS1ZW1nAPRwghhBBCCCGEEEIMo0MlVnTQ1QgUQgghhBBCCCGEEELse8PeNVgIIYQQQnw6GTGNeH0fik1Bsau4Rn16z44LIYQQQhwOJBAohBBCCCE+lnhtL50PbQBAzXJSevPcYR6REEIIIYTYHZkaLIQQQgghPhatM5a6nAjGOe03y/jz0s3DOCIhhBBCCLE7EggUQgghhBAfi9YWAaDB2com91ZiPY28sXXb8A5KCCGEEELskkwNFkIIIYQQH0uy1QoE/rXwSZZnrbWWxY8FTh3GUQkhhBBCiF2RjEAhhBBCCLHXTNMk2RrGxGSzZ3tqeV88jmGYwzgyIYQQQgixK5IRKIQQQgghPlK8LojqtZPY3oejxIfN58CM6dQ7W+h09Ka2M9Q+GrqjjMr3DuNohRBCCCHEUCQQKIQQQgghdss0TboWVaF3WM1BnKMCBE4ZBcB7/vUZ2yr2Xqpb+yQQKIQQQghxEJKpwUKIT6TrqRraF66j7d4PMGUqmBBCHJKSDaFUEBAgsb2P6Jo2bEorqwPPZWxrtwepbus70EMUQgghhBB7QDIChRCfSOS9FjCsy1pXDEeBZ3gHJIQQYp8Lv9cyaFlkfSeoG+i0hwAHTsMgoaqY9gh9dSsglAX+ogM/WCGEEEIIsUuSESiE+NhMzUgFAQGSjaHhG4wQQoj9Qo9qRNa0A6A4bfgWjMRekQUJgxrPJrY5HRRoGiWaltrnsvrr4P2/DdeQhRBCCCHELkggUAjxsRnhZMb1RJMEAoUQu9f99GY6H6+i7Z416L3x4R6O2AOhtxqx5ThxlPjwziwk+5RRRDUdgPX93YI77HZK+5cBtNrtmKsfAcMY8phCCCGEEGJ4SCBQCPGx6TsFAiUjUAixO3ooQfjdZqKr20jU9RFe2TrcQxIfQeuNE1rWgNYWpbWrBfdJI1BddlbNLeC3RFnv6kltOz6Z/pvQZrOh9NZD7WsHftBCCCGEEGKXJBAohPjYds4ITDaFME1pGCKEGFqsqjvjevj9VmkydJDrfb4WM2ll9f18/H3MfeZYZv19Fi82LOFZojS4rOnADhMmTrwstV+bzWZdWPX3Az5mIYQQQgixaxIIFELslciH7XQ/vZmeF2pJbA9mrDMimkz1E0LsUqyqK+O63hUjvrV3mEYjPooRSWILOLHlu0l6TbYa2zEx0UyNxmAX5Wo9dQ6r79x4m5eymZ9L7dts99JAJWYsCHHpICyEEEIIcbCQQKAQYrdM00xl+ZlJg9DbTYTfbSa0rIHY5p5B28v0YCHEUEzdIFbdnxHoSH/8GKobrTg4JDuihN5sRO+MsWlcE5qZbgbSEm6j1LMRU1EAmOwtpcib7hDcrBZSxhaULa/AlqUHfOxCCCGEEGJo9uEegBDi4GaEkjT/egWKqqA4VBS3LbXOTOiDtk80hvBMLTiQQxRCfAok6oKYMes9wz0xF0VVSTb2Ef2gnfj8UlwVWcM8QrEzvSed4b3CvRYGVIMIaZ143e2p61Pyp2QEAtvs7vTGNUtgynn7daxCCCGEEGLPSEag2C9M06Tz8U30vrpdisF/yiVbw6CbmEnDmvrblf5iaITT2SGK145jpB+jLzEcwxRCHOSS7RGcY7JQPHY8k/JxjclC64wB0PPMFqkVeBDaEQg0MXkn/l7GOsUeJDkgEDh55HycNie5rlwA2uxJdNNpHWfdYkxj8Ikj8elm6gZt939I70t1BJdux9SkQ7QQQgjxaSCBQLFfJLYFia5up+/FOroXVWMMkTkmPh2SrZFdrjNiAwKBikKyMURkbad8oRdCDBLb1E2iNogZ1XBWBPAdXYJjhBeAZEuYZJOUFTjY7AgEPlTwJI2JZmth/9u74uil02X9fbCZJuNHLQCg2FcMQKcjSJ8xw1qf7EBbu/wAjlwcCKG3m0ls6aXvle0El9SRkNIgQgghxKeCBALFPmNqBkZCx4hphFZk1nySBhKfXtpuAoFmIn3231kRsJbFNLS2Xe8jhDg87TipoDhV7PkeFJtC4LQK1CwnjmIv4fcle/xg09DdwHVjbuPN7DcBWBCOUqBbJ/Zs9h4iqs54TeVkdylul/U3YMf0YAOdZ5Qp9KrWR83ovx/NOHkkPt30UILgy3UZyxLbgrvYWgghhBAHEwkEio8luqmL8OpWOhauQw8l0MNJ2v+6ls5HNtL+wDqia9oyth9YZ0h8uuwuI5D+zD/Fbcc1Jju1OC5fBoQQAxgJHb3bmgZsL/KiqFaDCc/EPIy+BMmmMIkG6Sx7sGkPtbLFXU+jM47HMDg6FqM82Z/hb0vQ5rBTYzewOdL1AEdnjaYyu5KKQAW/G7OcU8pLeTBQjot3iKxpGqZ7Iva14KvbcZT4MpbFt0kHcCGEEOLTQAKB4mPpfHQj3Y9XE6vqpuc/W+h5sobEtiDx6m6S9X2pqUM7SCDw08k0TZI7svv6v7gPxeZ34BqdDgQm5MuAEGIArT2a+rvgKE4HDxS7ii2rv45cf6BQHDy6Ip2py1f1Bjm+x0vhEHXgKstPSF3+3pzv8fQFT3PyqJPR1ChxVeWePJMmZx3mG/cekHGL/StR30f4nWYS24LYS70oHqv3YKIuKKVBhBBCiE8BCQSKvaaHk5BMfxGIru0gur4TR7kfxWMDp4prUi6ucenAkCaBwE8VI6FjmiZGXxIzak3lUvyO1HrFZcvYXvU5cJT6UBzWW4pkBAohBkq2hlOXHUXejHW2XCubzAhrGHGZOnqwMBI63Xr6pE6ervML7YvY9MCgbccVHzFoWZ47D6/dCyaMSST5YmkxSngh8aqt+3XcYv8yDZOeZ7ekAvu+I0fgGm11/DYiGlpHdBhHJ4QQQog9IYFAsde0zp0+5Nn6M8UMKPrGkYz41pEUfHEKOedUpjaRjMBPD607Rtv/W0Pw5Tq6/7M5tdxR4LEuqFYG4ECqz4FiU3GWW18Q9Z64BH+FECkDa43aizMDgfa89LRSrUveNw4Wek+cXltX6rrd8LLCNpuOnFMGbdv2Guh6ZqbgldOuZPn/LKfYPof1bhdBm40l/gLs/zgZ/YlroXHl/r4LYj/QOqLYclygKtiLPPjnlWTMCJDpwUIIIcTBzz7cAxCfPlp7OhDomVVE4MQy+l6tJ/fCcaju9EvKluNKXdZ7ZMrXp0Xv87VorRH6dqoN6J1RQMGVU1EcKtF1HXQ9uim1bkdg0Dk6i/hW60tAoq4Xe07RgRu4EOKgNbDWqGM3gUC9KwY71R0Tw0PvidNnT9f02xYfDaqNWROP4b2qxanlqmGjc7nJC70v0LjxXxSNqaStdkvq53nzpnI/7wHwlN/LRaHtsO4RTGIoFz9woO+W+ISiazuIftgBgHd2sXUSsD8jECD8Xiu+OSNQlF2XExFCCCHE8JKMQLHXBmYEemcU4Cz2kX/ppIwgIIDqtqemkEpG4KdDeGUrRlwHt21QTUBHqR/VaUNRFOwFmV/kVZ8VCHRVZuOszMFR6iO+uedADVsIcZDbUWtUcdoyThJBemowWBnJ4uCg98QJ2jtS1+u0sbgdduaPrszYLidahIqNuo12Qt0REpEIoa5O+jo7CHV1ory2EkfSOin0gSdCtd36e6GtfxEM/cDdIbFPpOoGA55JeQA4R/rxzinGMdJPsr6Prn9WYepSK1AIIYQ4WA1rIPC2225jzpw5BAIBioqKuOCCC6iqqkqt37ZtG4qiDPlv0aJFuzzulVdeOWj7M88880DcpcPCwPov9h3TRXdhxxc+rTcuBaQ/BeK1vcSruyGmk3XqKGthfzxwYF0v+05f5FOBwFFZJOqCJJvCRKu6MU15zoU43BkJ3cr0A+xFnkGZQvb8nTICxUFB64kRtKWneTYkK7h4dhkjAyMytsuLlgBgaBFc2VcQjU7Gl1uBFrdOACbCYeaYUwFQkgG+V1ROp6riMIOYdcsP0L0R+4q2o96nqmDPtz4DKnYV35HFJJtCqe1im7qG2l0IIYQQB4FhDQQuW7aMa6+9lnfffZeXXnqJZDLJ6aefTjhsfcgoLy+nubk549/Pf/5z/H4/Z5111m6PfeaZZ2bs949//ONA3KXDQioQqGZO6RpKKmCkmRjh5H4emfikBtbx8h87kpzPjqP0p/Mo+fExGRmfituWrg1Jemqw4rDhrrRqBRnBBMmmdIMAIcThSWsbOC148LRf+8CMQAkEHjT0njg9Nuvvvd002ayP4fNzysn35GdslxsZgRZdjpGsQ1G8hHvLmXrSt/jMdd9JbXNsZ4D/GfcNcITZ6tK4tSCPPkUh+c5/Duh9Ep+MqZsk+8vD2As8KPb01wjXmGzyLpuM4rET/aCd7qdqMPXBHaaFEEIIMfyGtUbg4sWLM64/+OCDFBUVsXLlShYsWIDNZmPEiMwzz0899RSXXHIJfr9/t8d2uVyD9hWfzI7srh2BQHuuG8W2+1hyZp3AOLaAc/8NUHwipmmmpvzYclyoLhv+o0uG3FZRFBSXDTPS31HYm24e4p6UR6yqG7AyApwjd/+7KoQ4tCWaQjhG+lHcNlwVgzvOqgEn2BXQTJkafBDRe+J025OASrZuMnnaRMYUWIFcj91DVLM+C+RGR6DF38bmnJ7at72+j+M+Nwtvdg6R3h66N2zinCs/z0uNjxMMh6l1JPhFQR63bn15OO6a+Ji0zij0T/ndudYngHd6AdEP2oiu68QIJYlt6sIzteBAD1MIIYQQH+GgqhHY22tNQcnLyxty/cqVK1mzZg1XXXXVRx7rtddeo6ioiIkTJ/L1r3+dzs7OXW4bj8cJBoMZ/0SaaZj0PLuFnme2EHm/FTNhneH9qGnBALacAZkeUifwoKb3JjDjVr2moT7g70ztr/8IoNrT2YHuSenf31iVTA06XGk9cRJNIbSgdJA+3CXq+kg2hkhs6cVeNPi9RVGVVFag3hWTkgIHCS3WQXd/5rdHt3P5vNGpdV67F/qfprx4HphR9PgKfNnW+eX2+hCgMGbmUdax4nH8LUkeOOMBTBtsdTp53u9jlV1Da248kHdLfAK7a/qzg29O+iR8+L3W/T4mIYQQQuy9gyYQaBgG119/PcceeyzTpk0bcpsHHniAyZMnM3/+/N0e68wzz+Tvf/87r7zyCrfffjvLli3jrLPOQteHLkp92223kZ2dnfpXXl7+ie/PoST0RiOht5oIv9NM979rUsv3JBA4sJZcvLZ3N1uK4Zaq+wPYh5i+t7Oi62ZReut8Sn82D2dFNtGE9ftlz3Vj7/+CkNjeR6JVpgcfjoJLt9P2h9W0/GoFPf/ZPNzDEcMosa3/vd+u4CwbnBEI6YYhZtLACEkZieFmmiaR9g9I9tdz9Co+5lWmpwT/87R/8eXlv+GyVT8mL5n+LFA4ynp+tbhOT1uEMbNmo9pHA7D5/XcZnT2az4/7Wmr7P+ZGSSyXrMBPi4HT/IcK6gO4xudiy7Y++8WqutB65USQEEIIcbAZ1qnBA1177bWsW7eON998c8j10WiUxx57jB//+McfeawvfOELqcvTp09nxowZVFZW8tprr3HKKacM2v6mm27ihhtuSF0PBoOHfTDQ1A16nt6CFoyTqA+iZjkwgplfzvYsIzAdCAy/22RND852knv+uH0+ZvHJ7MmZ/oFs/Q1CcMAb1e1c89gqjh6dx/hiP9fMLCRe10diay+dC9dT8KWpQ9YGE4euxPa+1GW9W74IHq70vgRapzXd11kWyKgpNpA9z82OV4nWHZMyEsPMjOlEbFtT18tzijPWG51O7KaDrHgBqNUAuH1+isfksG2tVRqipbaXbR8EcAY+i8PZRtUKk2Mu6uHaoy7jyfX3UUg34xMJmra/xTiuOHB3TnxsyQEn9nb1OUFRFTwzCohVdWPLdZFs6MOe7RpyWyGEEEIMj4MiI/C6667jv//9L0uXLqWsrGzIbZ544gkikQiXX375Xh9/7NixFBQUsHnz0FkpLpeLrKysjH+HO607Tvi9FuJV3ZgRHc+MInIuGp/qIAt7HwjEgNiGTiLvt2LEtP0wavFJDBkI1OJgmtC36+k9Sd3glv9uoC+m8cqmNh56u45AWTX2yAZI9GL0ddH1RA2xmu79fRfEQUIPJtCa018Yk+0RTE2Kxh/K9N44Rlyn740Gmn+1nI6H1hN8dTu9S7altnGN3vXf1lTjKSUz60gMj3hPjJB9e+p6Se6ojPVdA36/E+EmAAIFhRSUpzM+N73bSk+bFd5NJopALealvz6F1+kkhyOodTr4d1aA7ZGNmEl5f/g0SH1OsCm7/QzonpSH1hYhXtVNbHPPgRmcEEIIIfbYsGYEmqbJN77xDZ566ilee+01xowZs8ttH3jgAc477zwKCwv3+nYaGhro7OykpGToxgdisFRnYEBx2bBnO/HPGYEZ13GUeLEFXKmpH7tjy3ZR/J3ZJFvC9Dy1GSOiYSYNIh+0458rz8fBwjRMEvXpDK7UlJ87xkIiZF3+wXZwZw/a9x8rtlPTFkpdV5MhjCe+Q068h1w39Pm/QW/9GXQsXEfxN4/EMUIyAw91g2pD6lYjGmepNI45VPU8t5Xoug5UnwOjL4nijhLf3JMR4HFW7DoQ6CjzYy/0oHVESbZIIHC4dbeFCdpbUtdzc8dmrB8YCDS0NsAKBO6YGgzQVNWNw23D6VZJxKzXQf3GJG3btlJeOJGG3rcACNqaiW/twT1x6PrQ4uBg6ka6WVyBZ7fN4gb+nZfAvhBCCHHwGdZA4LXXXstjjz3Gf/7zHwKBAC0t1ofO7OxsPJ70mcbNmzfz+uuv8/zzzw95nEmTJnHbbbdx4YUXEgqF+PnPf85FF13EiBEj2LJlCzfeeCPjxo3jjDPOOCD361AwMBCYc24lvqOsaUGB40bu1XEUVcFR6MVR6MWW46b9/60BIPxeiwQCDwKmZtD7Qi2J1nDqw7ot14Xq7G8Eog3o4NleDeVzMvc3TZZv7WLumDxW1HZhAt+wP40t3pPaxoE1vcx3dAnR6m56l2wj2Wh1Ed35J7DLdQfTNmrAgdYZwz0+h/z/mbJPn5NDQXTT4CYxycaQBAIPUaZpEt8WBAOMiIaa5URx2gZlebl2Fwgs9qG1W3934nXSsGu49bZH6LKlG0LlBTL/9pu6Qen4HMI9IVp7rGZsWQWF+LJdeLIcRPtLiSRjOsd/fjzvPl1FMq5ic1by5K9vJzA6Dv0fAXptMaoe+xeb3U0011RTNnkq008+g8rZRx+YOyv2SLItgqPUj2JTcJT6YeVDsP0d6NoKx90AE89MbWvzOVD9DoxQMmO2gRBCCCEODsM6Nfiee+6ht7eXE088kZKSktS/xx9/PGO7v/3tb5SVlXH66acPeZyqqqpUx2GbzcaHH37Ieeedx4QJE7jqqquYPXs2b7zxBi6X1CjZUwMDgfbCj54CvCdc5YFUcEXvjZPsin3EHmJ/0zqjhN5qIrE53cglNS04HgIjPYXbaNuAaZr8ZPFz/HbpMmra21i8YQvPrW1meW0X44v8ZNPHEUrmFHyXr46cC8eRc24lZlzHiGnowcSQP3e37mDaJtkWxYzpRDdKV+SdGZqB1v/FT3Gn/8QkmkK72kV8CplJnURTCDOpE6vqwggmAHCNzab05rkUXTsT5/ic1Pa2PDeq17HL49l8DuxF1t+aZGMIIzF0cy9xYMQ6OgjZ61PXc925Geu3b+iiqaaHUI8GpvV5IZBvzdjIHZANllfqY9oJZUw7oQIARTFJJI4mW0sHGbtsKkXJXpSgSTwcYsv7y9n01rL9dt/Ex5PY3keyvo/EtqDVCO6d/wcf/APql8PKBwdt7+ifWWCEkuhhaQAkhBBCHEyGfWrwnvjVr37Fr371qz06jsfjYcmSJZ94bIe7jEBgvnufHdc7q4hwXEfrihFb34Hj+KFrQooDY+CZesVnp+CKqSgO6wua3teGbcC2Gz5czsL6QhZ33IZi72VhHeQmzwBOAuDsGSX0LF3EXHUjzbaRlDijEO1Cad+E/8hcsCmobhuq244tyznkT2CX6w6mbYy4jgmwZ29hh5VkUwitI4otz41rXDaRFVZ9yWSjBAIPJZG1HXT/q9qqGzugAciOrD9FUcg9t5LQu014ZxSC8dG/LK7R2WhtUegvVeCuzNlPoxcfxda1ha4BUz/z3Olpu4ZuEOqyav+5PBo7JglnFViBwOMuHo+u6Wz7sJOKafmoqsK0BWXYHDZWLanF5hyDOxoGVgDQZbPhVeo40riYPlcbHfFGon2SFXqwSWxLPyfOUT54PR0oZvNLEGoHf7p8j73YS3yrdZJRa41gGzu4tIgQQgghhsdB0zVYHFx2BAIVtx3Vt+ssjr3lHpdD73+tqaLxbUECx++zQ4uPYWAgMPe8Slyj0lP36uu3MRqIKAr/LzebdZF3WKW8iepIf6HvMtayIxB4/sxSmt/8EBUo0Rsxy89CqX7Byips2wAjjyRwfBmBQyD42/r7VSSbwxnNcw5HoXebSDSEUFw2vLOKcJUFUl8W9a4YzpFlxPN60btiJJvDmIaJoh7mD9ohIvJ+fwMhExhYB3B0+su+o8hL7nl73iHeWZFFeIVVIiSxLSiBwGHk7quj2z9gavCAQGCoO47RH9i12dKZ/YGCIoBUncARY3NS67IKPBSWB8BUUR0K046YB9H7Aei22XCqW/CW53OSeSnvdywhHJRA4MEmvs0K6ikOFae7FbQBU34NzcoOPPabqUUDuwon28K4JBAohBBCHDQOiq7B4uBiJg30Xutsv73AjaLsuy/u9iIvSn+mVWJbcI+zQsX+obWmC747dqrftq2uFoAPXU7+np3FKr8GSv/z1f9DdTeh2IOMLfQxOgBHsQGABrOAYMn89MGaP9h/d2I47Ahm7UGW06Gs741GIu+3En6rieiadsAK8O/gGp2Fs78cgJk0aP7VcoKvbcc8zB+3TzutI5rK9MmggnNAs4i9NbCr8I6ggxge3vj2jIzAgVODg53p4J9ppH/fd2QE7srYmYUcd8l4jKTBlld7Usu7VRWbcyuJbb2oio3R/um4I/umJInYN7TeOHq39bnQWR5Aaftw8Ea1b2RcdRSlp4hLnUAhhBDi4CKBQDGI1hVNBXocBfv2w7iiKqkve0Y4mTEFWRx4yR3d/OwK9rzM57q12Zr2s9qdrq1ZqGnc1NHNkbH0F0G7fxMnTyyC2mU4sOoALdVnUq1Wpg92iAUCU1ltxp6XODjU6KEE+oCAgNYVwzRNEv0BHNVrx17oxX/8SAq+PA3XxFyMUJLgkjrpIvkpF96RDQjgSn+MsBf50o2G9kSP9R7T2BMFXcPm6EYNWBnoie19EjAeRl69gW7Vei7tio2AIx3gDQ74u63FOwBQVBVfbmYdwaFMPHoEACo23LoVKGqxOXHqbQSmdxI3o+Q4CznSfRJGROrKHSwypgWPzsr8m152NBRMhK2vpn6nwZoavIMmgUAhhBDioCJTg8UgGfUB93EgEKwPkbH+rqKJbUEchd6P2EPsD6ZmoHVYgRxHgRfFlpn52dfRBMCqAYHAe1vamJDUmKqbfNFj1Y70BdZz4sRC2Hgv9XY7r3vc/Ntrp37lUt5DQcU85AKBDJzeanJYThGOVXVnXE82htDaoxgRq8GMsyLLCvz3TzcPvWW9njCtbC/HgIYC4tPDNE20zgiOUh/J1gjeI4qIrGpFddpw7Wk2oGnS9+pvcb9xG2sLz6G0bRmd+RXkx5vwlvyamKcC1W0n0dCXUa5AHDhes5EcXWdKLIGrbA7tdbW0bKmms6Geje+EgRkAaMkucktGEsjPR1U/Ogjs9NjJLvLQ2xbFnfAT84QJ2ayAb3ZgKdtsx5GvWO2Ee16sJe+CCfvtPoo9NzBD1zU6G94e8De9fC6880fr8vZ3IacckM7BQgghxMFMAoFikP0dCMyc/hXEN2fEPr8N8dG0jmhqauvAM/dgZei44p1odvigv9t2kaYxPqlB4WSmuwPk6Y1WkffAVmaXAM++zBseF78uyAM2YLq28Hy0hNOTTfwjvIW/P34CUwqsL48bujYwJW/KoJ+7W3cwbVPpKqN63FY+23UK3zCOzQwMHiZiVZkdk/XeeCrAD5m/5wBZJ48i1t9lOb4tiP+Y0v0/SLHPJZvDRNd2AuCakEvO2WPIPa8Sxa7ueXZsexX6O/fgQGNq239xKRp0WYFlX84zhNq+BNiIV3dLIHAYGHENU23iXW8+ADMw2fzeO7zzxD8AcHjPwtZ/fijHrTFOd5L18tvUN11DbMMGcq+4grzLLkV1D91orHBUgN62KJ6knx5PKxFVJaYouNf9m7acErI7CrCrDqLrOzE+o+9dlqnYLxK1/RmBCjjLfamTe2aglH90jeeyHRtufwdmfC61n6PISzzUa80A6Y1hz953zeeEEEII8fHJ1GAxyI4sMdhPGYEjA9CffZaok4Lgw2XgGXrHToHA97d1UaD0UuV0EFWtt4kjY3Er8e34G1DPvJ3PxA2m6iqKFmPTU1dAsJGWvIrUMRRbnJtLnZw2ciwbnHbaYl2Ewm2EkiHaIkP/3N26g2mbjepmOh09PJfz+mE5fdHUDWLV/RmBAzJJU8vIbBoB4Cj1oTis19LAaWbi02VgsNczOQ/VZUfp7xq8R/VkkzG0B86gI+Egbtp515xKGzk0k0enGSDctpws+z8BiO6UdSoODK21mRZHPHV9pH8krbVbUtdtTqtxiCfSxvTnnsK9YiVaaytaVxdaayudf/4zbXfdtcvjF5ZbmaOeZLoubbeqQiLESFc1W/vWEEx0YqomkZWtuzqMOECS7RGSLWEcpT58x5SgRhsgbr2Hr06O4pcf+NBM6z1Ar3snY1/31HycFQEUp43E9r4DPnYhhBBCDE0CgSKl59kthJY3owXjYFNQnOrHDgTG9TjXvHINj296nCdrnszIFFEcKo5SP7ZcF7ZcF7rUARoWyYGNQnYKBP5nTSPlzhCrB2R0zEoaYPfA5HNh5JGMm/l/rLcZBG02VnVYhcProm0ZxzFVgy6nRqPdRr6u4ouH8Ldtokg3h/y5u3UH0zZx0/oS1OHoOCwbhmjtUZyjslD9DhwlAwrCN4eshkBOW6pJyA6KTcXZHwDQe+JoPTHEp8/AKeHuiXm72XKwxetaWPPyI9jjPYxTm3nFmEXdWX/n+dNe4wuxH5Gv9JGTbMbm2AhAsqEPPZTYp+MXuxbd1EVoRTPBl9+m0Z6eMFIWKKOtPxDo8vrwZltTP0d1r0AB1K5uVL8fW8D6/TZCIULLlu3ydnZ0FXYPCAR22VSa3OMp0LezPbyJLGc+9OpWd3YxrHbUBE02hbHnuWHr61A8jWdzSliak0+icBkLRpXx4/w8aN8I0fR7hD3fQ6KuDzOhDyonIYQQQojhI1ODBQDxumCqhpct1wW6if/EclT3x3uJPLT+Id5oeIM3GqwucseWHkuxrzi13lniI7yiD707jt4Zw+Z1fPI7IfZKdENn6rK9KB0IfHtzB69uauV7ri5WDKgPeOT/vgCqFxxWcHjmqM9A9cMopslqlxvoY6snD8gM8CiGmxMax3Kv/r98vuJtijrfY2K8nirXjEE/gV2uO5i2OX9kCVudDuzomPrhFwhMNIWI92f/eY4oJNkQAsAIaxhhjeyzx6CoJpgmDMgSc47OSnWbTWwLYp8p08QOdqZhpprj6OEkie1WENxe5LWCAnvh7per+VHn36B/pmftmP/ha3MrsKkKeb4zaX76l5TQidPYCGhg2olVdeObXbzb44q9Z8R1FIeabnwE9C6uRWuJ4FU30pCf/ttfaMulqcv6e1FYMY6OlgSKoVPU8La1gd1O5ZLF2PPzqfvfy4m89x7Juu3Ea2txjRkz6LZTGYFaOhD4hjKWr8WqIAY20lOBpbbc8DJ1I52VaVPwziqCJ56A1nXcP7KEWudaXG7oU+DpLD/Xd/eQX/8eTDgdAHdlNopDxUwaxKq6MU1zzzKHhRBCCLFfSUagwDRMep5JT/txlPqxZTlR3R+vLk9LuIW/rv1rxrKNXRszrtty018gtZ444sDpfamO9gfWpqa0OsflYM+3gnsPfPg3vv76Z/FP+Bl/KzB4z+1msg6nV5zO+NwJkGtN/TVNE/NL3+Gvv9f52+90Ih1eWowxNGA1ivAmszghcTYnlZ/ESUWX82vtan588TwMZ4AgHprNvCF/7m7dwbSNalpfZAyUwzIjUB/wO+uqyAL7gC92NgXPlHx44zdwWzn8dhIsvtnadkx6unBcpgcftBJtYRp/9jZNv3iXlrveTy2PV3enOsq7J+1dNmBTT5RQ6xaOs60HoJ4SXOMWYOsPRJ03cyRtObMAcChxHMpWYHAtSvHJdDy4nqZfLafp5+9kTPPWw0m0FivoZlcbMzICvQN+VbNHWM078rvW44haQf3AySdjz7fqCfpPPCG17a6yAt1+B4E8d8bU4OVKuqzE5OwGIpp1o8nWyGHbmf1gENvYhRGyZm14puRjSzTAtjdosNuodVoncFXSJww77DaoTT/visOGqzIHAKMvQbJJMjyFEEKIg4FkBArCq1pRnCrYFOwFHvIvmzyog+zeeLPxTSblTWJ12+rUso2dGzmx/MTUdXtO+oOjLoHAAypR30e8pgcANeDEMzE3lRXyZv0aDFs3CvCa30VMVdkITHEGsA3oCBlbt47k9u3sKOM/cYvG3SOuRVPvBaCor4IpNWdwxSXz8WY5+fbcCKMLfPw1dAXvKuewrjHItNKsQT+BXa47mLYp5XoADLCy3g4zA39n7XluHIVeku0R0Ez8x420Asu1b0Ciz/rXbL0XOEcFQAFbjgsjLCUBDlbJuj7MmI6JDqEkWk8ce46LWG0v9kIPWnsUz6TcvTrm0qo2jlc/ZLVRyUx1K+WnfIUvH1+Zsc34o06Dl18GQLVvwHROQQ8mMJM6ikMaRuwLibogRtQ6YRNe1WoF7YF4zYDpnEo99fZ0kM7Wls7K8/V3hPWGW9CLK7C11pFz8UWp9f4TTqDtzt9Yx3/9dfKvvHLIcRSOChBoT58YWKmOJIEDJ0mmZLeyIdiM156FGdMw+pLYspyf8J6LjyNe34e9yIvWFrEau622ugO/7kmXjRkTmMjWkFUeZLM9n4krF1olREYdA4B7Um4q6Bzb1DWobIQQQgghDjwJBB7mjKhG8IVtGOEkthwXOedX7nUQcOBUj4SW4L4P76Ml3ILf4SeUtKYMDsoIzAgESq2wA0nv7Q/i2BVKbj46Y5pOVee21OVYf5MQTJOLs07ov2g91z2Lnsg45pGbTRZO2pC6nh0txDRMNr3TzOwzRzO6wKoj9+Xjx/Ll48fuh3t1YF30F+unoXDYNAsxdQMUBUVVMrJ4bTkuiq45AuwqsY1dVvZHIgL1K9I7B62yA6rLjrMii8S2INGeOEZUQ/XIn6GDzc7ZmrGqLjzTCqwpgrqJY5QfZ0X2LvYe2tJN7XzTtpQZai263Ydt6kWDtvGOOw6sOCAdrMUfvoBEOEh0fSfemUUf+/4IixHTUkFAgNiGLvRQApvfmQrUqPTgUd+jyVEAOFFR0eo6UvvYXYVAO2VNr2OLd6NmZeGdPz+13llZiWPkSJKNjYRXvEeyvQNHYcGgscw+q4LlfwukrvuzVV7om8P5trfx2jUc6rvARMCqZyuBwAPPTOqE327CTBrYCz24Rrvh2ccAeN2bLidyYsVRbF1vBQLDahQSYXjqajjpxzDj4v7sYWvWSXR9B1mnjDrg90UIIYQQmWRq8GEu+Mr2VGaOszyAe2zOXh/jpbqXOHXRqZy26DQuf+FyWsItAMwomIHfYZ353X0gUDICDyS91yq+b8tyZQQBE5pGn94waPvzN7uxXXIdW848i20Xfw4jHCb43/8CYPZnEpZ1QtKsSe2THSsEYMNbzYdkoEylv2YawCFeI7DzH5to+e37NP383dQ0zdTvrF1F9TlQHDYUxZoSrLpssO0N0Af8XnfXWcFBwFnanw1iQny7TA8+GCW29WZcj23qIrK6LfVad43O3qsTRrGkTvXmGmaotQCoBWMhb/TgDYsmY7qsTNwSdRNK/zzk8IqWj3EvxM4G1dszTCKr2jANM9Xx2+d6DUXRaOifGpznKqJjm/W82V0uYmE7xYUG7ri1vXviRNQB04gVRSH3f7+I/8QTUV0uuh95ZMixFJT5yXWnp5cX2qIs0k5gvT6K5qifXMcHux63OCBiW3sxkwYAzooslPcfgGgPm7KPZrnbygj02fKZVjAttc8HaiGmw2+VEHjyKnjjt9hz3HjnFOMcm02yOUxsQPapEEIIIYaHBAIPY0YkiRHXrILhDpXszwwu6r0r7za/S1VXFY9ufJTXty6mNdJKS6SF9Z3rUtssKF/ApLxJgFU3sCuWrkdky3LSH0tB65VA4IFiJHTMmJURsnOGxYvVm0C1gsI2U0UxTRxJk4tf0cAwSGzbRmz9eroXLcJRYdVzck+ektq/sqGdwh6TGVt05iQU8rrWY3eobFnTfoDu3YGj9sf+TEXB0PThHcx+FqvqRmuPYiZ0K2hgmqlAoD3HNXTh9+olOy0woaMKsBqG7JCQOoEHjURzmERzmK6na9A6+7O0+wP9sZrujGCc76gRe3XsN2vaOd+/PnVdGX/G0BuqNpTyuSRw0GF66VA2AxDf2ovWEd2r2xSDaTsF1NSAg/i2XjoWrsOI66CYeB0vEVQV+mzWx8NiZwF6MonD5aKoYiwtW4Mkq6pSx3BPmcLOAiedROittzDCYboWLiRRXz9oG9WmcvI5M9IL9CDvG1MpUbso8YQY4amF/pqzWpsEAofDwBqSntEGLLsdtCjt8Q9RErmYpsoJ5cdT6C1MbfekciRNE/4HerZZC0wTurfhGptDYmsvmNDz7BYrw1wIIYQQw0YCgYexWE0PkfdaMTUDz8xC7Ll71gEyqSf52ktf4+JnL+bXK37N0sbX0ysHBAUWjFzA5PzJqeubOjelN7OpqUCUZAQeOHowkbpsy3ZlrFtcvSZ1eZ5jLG/UNfDIUyFc3ZnPT/cjjxDfuBF7cTF5V1yRWj69NsZJHxj86F8mc59+hEmbHqGrMcTb/65GTx5aH/p3ZAQCGHpiN1t+uunBRCpwDFanaa3DCgpCZmZvimlCzUvWZWVAXbc26/ffVZEOBErDkINH1z820fb7VUTeTQf87EX9dcA0MxWMcY7OwjGgy/ie+PeqRqaE3k0vmJAOBPbGe3ll+yuYpkk0lICZ/4PqcFOpNtNtW5raLryjc6n42JKt6UYN2WePoeQHc3GU+DE1A3QTo7IGh1aX0SjE3RYh1NWJ3eXmyHMuoaspTKAvHdhzTx0cCHRWVJB/xeUAmIkEbX/4w5DjmTx1NEr/e2ko2ctxCTfL9COsY6hJXOqG/nFLIPBAM00zHQi0Kbg//A7Erffr+z3jSLq7sClOzq48jXBN+u+haQ+xtOwamP0l6/3/1Vvh/YV4jyi0asQCWluU8Jq2A36fhBBCCJEmgcDDWHzH9C8TvNMG1/AZyDRNDNMK5mzo2oBuprOggkZ8x0apZaNNO+VZ5UzOSwcCN3Sla8gB2HKswKMRSqamn4j9Sx+QfWnLzswIXNWcDtSe5skn/G4WyhYP7okVqDnpemDJhkYAwkknr24cQUv+GDaUK4xpgyO3pF8D7kSQ7N4t9HUmeHPRqv11l4aFMiAQqCcP3UBgoimUuUA3Ca9oTl0dMhDYsx0CI2DUPCibk17ebr2+bNkubHnW736ivs8KQohhZZom2hC1Wj3TCvAeWYRrqjWF017owTe3ZK+O3RGK89qGRo5TrWxx05sPI2cD0NDXwBeevpTrX72ec+79HFc98E1+1P4Wlxb6OK28lK7st2m1a9grAsRre6V77CeUHJBZ551ZhGJTUN02VLedhFtF2/5XtlHKUnt6doCx3QoGKYqCaisFwB/anlrvnpz+Gz9Q/te+jr20FM+cOYReepnQm28N2sau2slyWCcGoo4+ZsZsrNBmpdcr1j7SOfjAS7ZE0Lvj5DnuJD/nLyjuLBi9gG5bPqutkr8oik7sjWzefyR98sBj66OmLQQn3Ag7Pic2f4CiKuScW4niteMck01oWeMhWTZECCGE+LSQKu2HsURdfzaOYtV/2RXN0Lh9xe0YpsE5Y8/hxboXh9yuVFdo6n9FzQkFQYunAoFeu5dNXZsytrfluKDOuqz3xrEXeBD7V0ZGYJaLSDLCwvULmZW7gJhzZWrd5LXvYOjWkxmrqqP8wQdpvvkmtKZ0EKguby7NtX14vZVMqbdqSOWkE04AKG1+i57sMWz7sIV1rz+Ly2MFG+JRNy5PbNDP3a07mLZRBsxoW/bIX6lvqKFoTCVttVuG/Ans8brC0WNpq93CrDPPZc55n0VVh69barJxp0CgQyXRmH6S7UMFApvXQEN/o5C5X4P6/kyw9vTvv6sii0hXDDSDRFMI16hdv/+I/U/vTUBicEA2ML8U1eug740GtPoQvqNH4Ju1h007Nr8MuWOoe/Y+TkclaHoJKFGUcaeCaiOmxXh046OE4mFQYLu3CptrK9XbbcRd1kmKF/1J/q/7XbS64wDQ2qN7nY0o0nZk1qleO6rfAUDg+DKiMwuoe/FBTlprnawz3GXsOE+cZ1g1PRf8z5foqLfeE3dkBCpuN84xQ5cUsfl9FH7rmzR//wcAtN52G76nn0JxODK2y/PmEewNois6uFWi0SMxXNasdLf6PiEdbF4bRkTD5nMMdVNiHzMSOt1P1aC6k3jMN1DCBjQWETv6Or6m/Q84fgnAFPd09G4Vu+nApXmJ2yO4bH00dEYgMBV8hRBuh+YPwDRxlgdwlQeIVVk1AmM13Xgm5u1uKEIIIYTYTyQj8DBlxDSSzdYXekexD9U9dExYN3QWrlvIP6v+yb+q/8Xliy9n8bbFQ247t7WcbzeW8Xx9E1/p7oamNYzJHsOpo04lpsd4dfur9MR6UtsPzCbSZHrwAZGREZjl5P6193PvB/dy9WuXkbRbjUJUE9yvROnb7kJx2Cn5xa34j5mL77jjUvuaqo2WYivbq7EoHRXbkSenOK0v8kUdqzjhfBv+XB3woWsKuqakLu/8c3frDqZtBk4NTsSjhLo6SUQiu/y5N+s66moJd3fx5j8eomFDuq7acEgOyAh0jcsGw7TqPPUbMiOwOV3kn9HHg7O/OUjjKkhadd6kTuDBRRswZdQ5NpuSHx5N8fVHonrTwaKSm+cSOL5szw7YuQUeuQjzj0cye9t9/NDxGCPVTmLFM2Hu13i/5X3u+/A+Htn4CDEjikOzMkR1W5I46czEdzxuEq4XUtcH1iwTe8eIahj9J4LsRd6M2p7PrKqn8oPfpK53j093AXZ1a/jyZjH5uBNp3tKDPRnBG7O6CLsnTkSx7/p8cva55+I5wprqm9iyha5/Pj5om/ml87GrdiKuXkJqK+PjuTRp1uvMY2vFrrSgd8Uz/naJ/av3ua0kt/fhSKxHUfpPEEw6m3dHXMrq7vQJw+xNY9i6uh1frhO/bs0aiDn76F3bQTihQ4n13BPtgl7r84Xv6HRGcUSaAAkhhBDDRgKBh6nE9j76GzJmfCkfyDRN/l3zb56ofoJRgVGp5R1R60uA3+GnWHEyOxrj+EiU2tDxVIWnUq5plOg6bH8Hm2qjxF+CYRokjSTP1T6XOo5dOgcfcMaAjMAmRzsPrX9o0Dalmk6ixwrkqQEfORdfDEDg9NNxH3EErmnT6Ciehebwo9qgR19Cly+zvqR3/jxckyeTNe8YxmQ5cXrsQBib3cRmN1OXd/65u3UH0zYDpwY7nC78efk4vd5d/tybdTZHesq2aQzvtNkdU4MVpw3X2JxBHZI/MhBYOhMKJliXw21w/8nw0Hm4CoI4x2TjHBVIdSIWw2dgDTbf7GJsAReOEb492/m9B+C+E+GB02HJDwGIrreCdzt+S4oUK3h8vzvBt6sf5qsvfpUH1j4AQJw4R9UP3TzEVBReCoRQsMYngcCPb0d9wHzHj8ntux7+dDQ0WEEd+7rHaTNzqDLKCJctoNPl44j8GYzsLiePC9HNk1j6WDWt24L4Q+nO8kPVBxxIUVWKf/QjFJ8P75yj6Pzzn9E6OzO2KfAUkDSsJlWN3i0ANMSPoSXqpzM+FodiZZtLCYEDI1bdjZkwUL12XI4BszhGzWN9UxCbP72svNN6/sfNLmZU8UgAdDXJMbEI/7jjLlatSU8hf+3Ob/HHKz/Hf/55O2rAOsEQ3diF3nfoltYQQgghDmYyNfgwlaoPCLh2CgS2RdpQUfnW0m+xtXcroaQVDDi25Hjean4jtd3srEr+sO5NiPYQxcksYzLlyoAC0NutKYGfHfdZHt7wMABPVD/BZZMuQ1GUjGYV+hD1qcS+NzCrokrfjN/hpzvejU0PoNv6AJjakcBIWB/UPTPS9ZoCxx2Hb/6xLH14I7Vr2iGqU1iuUtcRoz4vi7yw9RwqHg85F11E4ze+SRyrhtS537nhwN3JA2DF//tZ6vKMz5zL2UfO2vXGe+ntRY/yzhP/AMAwhq8jsRFJovc3inGU+nBPzif4Yl3GNrrfQVc4QZ6vP3hpmtC0xrroySfoKMKZMwFPU3+NyDZr6qF98usYoVlo7VaGYLI9gqNQpnwOl4GBQEfxXj4P7/8NWvu7xbdtgJN/TPcHzzKw0IMJmCg85bbTvv1lIF1nc1rL8Uxqn8fy0f/FUPTUDmr/BcXRRcRejUebSXxbECOm7TKDXeya1h3Dbm/AY1sNYax/q/6OOfJIjmz/DzNsNQDET/h/vL3iRqJaFL83B78yCYDGTV0Yukl27xZMuwNFSw7ZMXhnnunTyD7/fHoeewyAtrvuovSXv0ytn1WUfu8MljdAO3SZ4zjGEwJCBLUqYsY8qSN8gMRquomstj7HeUduhR1x21HH8NoHz2NzWeVB8rQRZMcL8GQ5OfrsMTz3/ghW9/Qfw50gvNVJg83Gkf0J4d7INhLRUhqrN+C87P+IvdOO4rYRercZe74bR1mA5LYg7om5gxqZCSGEEGLfk4zAw9TA6XjO0dkZ67743Bc5edHJfNjxYSoIWGKbz5I3jsnYbtaWt1Bj3awyxvP15PVgd7HFLKXbtDrDsf0d0HXG5Y7jiEJrisjmns2s67C+NMrU4AMvVSNQgT9s+n+EEiEKPEWc0TCK73Z280R9H9d2pGv27PxFb+UL29j0TgvxqM7ssyooLO8BoDnHB1ddSeWLSyi/5x48M9LThWMbMpvEHAoGTg3WtH2b0aCo6bfl4cwIHNgoxFnqxzHCO6jBzKy7l3HNo+mpYvTUQ8TKGG5wj+eIW17ilFXz+WreQiifm9pMqXkR35wRqeuR96Uj7HAa2ETCvjc1+Jo/SAcBAeJ9mGsXUdj5vrXazOX/KV/g2dkPUn3Ct2lP9ABWzdi7T7qbC3Mv5aj6M3HpHsY4xqUOUxArZXQoH6dp8mRWgAa1P5BsmMSquz/2/Tycaa1RfOxU1mPdEzSse5MZVAOw3VFJTU4+Uc0K0I/oGwuA3Zlk3FHFYJhURNehaEk8s4/EO38+e6Lw2mtQA9bngt5/P0n0ww9T66YVTMOhWieeWrNr8eW66IynZyDYlSaAVKdysX+l68Lq2IL92d2BUlYlOthk3INii5PVM53jN34eT8DBjBNH4vTYKfQUpo4RcQSxOacTdKXf84vd6fID+lgV95Q8zJhG3+v1dD9RTdtdK+l+ciO9z289EHdTCCGEOOxJIPAwZCZ1jISOc0wWzjFZGVN0I8kIzZFmzP55w5MDFXhR+X7TZn5lPokWqcBjFjFBg9k54wFIYGe1MZ4TJxRy9Jh8usacjT56AdicsOFpAC4YdwEj/SOZO2Iubza9Cew0NVjq/xwQOx5nzQfN4WaSZhKPksN12vtcEexjgtaDL++s1PYDp3411fTQ3RzGl+NCUSEr34OetAI4hqqSde65OEeNwnfMXOxFRdjy8wErEHiodXxUzQFdgxP79rU7sDmIoQ/fl9/49j6cowI4K7JwVmShKAruSekgcQiTBNAWjMPS2+DfX4H7jk+t39Yf2HFEwvRWbWBR41GENOt33qx9He90v9URAAivbMXUJeNnOJimidafEWjLc6M696I5zaqHBy2KvfFHHGgArPbM59qf3sd5517I6/np2mDfPPKbnDzqZE7ouRCXbgUeTyg9kdFZoyn3VFDRMR13vIRYf1A8bt+InuPEVZmN1h4ZdJvio22vbcdrexUAY8eJjEQIx7J0dl5dxWdZ1bY6dX1E0AoEjpsVxhtwUqi0YG/dBoCZ1HCWlu7Rbdvz8ym87lrUQADP7Nm0/uq21EkOl83F1PypADTGGggrvfRpReimlfW5IxC4+E+/58HvXsvTd97Kprdf/5iPgtgd0zRTJ4Bc/gaUpBW821Y2kxuWfhctWg5ArmGjKFxBtC/Je8/cxVN33ELNc+kmciFHB92qTpDziRtWiYECRxzVaTWPi+p9VtafASRNfMrz5NrvZoTrKsy1T2TMWBFCCCHE/iGBwMNQbEsvyYYQidog9vzMTr1berakLs8ums3j/iN5rm47p0Te53O2ZbjqLuWHTSP4d/12ZtYu5z31CK5I/oCE3c9dl8zkX1fPo/Lk/8O27XWrJtjLP4NklFNGnUJLuIXlLct5dsuzmKaJ4rGjOK2XoNYlU4P3N9Mw0UNW9lpbbm8q2JsVs1GutgPQUTSf2Nam1D4DMwK3rG6j5v02wj1xjjy9ginHldLX0Z5aHyhIZwQoipLaV+/uRmtOdxs+FAysEajpyX177IMkIzC+qYvE9j4SdUGco6xsHtf43NT6SP/rpy0YwXz7D7D2XzCgGdBqzcrqqQzXcnTHuzRUx9gaKgBA0WLo9W/hmWIFFk3dJLIm/VoSB47eG09lW+1VR14tAa1WMxvT5qbbZQWF1J5t7Ij7+6Z9JrX56w3p4M2J5SdiGCYtW3qsfewK3zju6zx74bM8d/GzLOg9H2e8OLW9y9mA2hMlvqWX6EapE/hxJNvSmZvLdSvwZqIQ6LKWx00HvjmXsXpgILBvLKaZpGCUn5mnjuL4ETWpdTkXXbRXt5972WU4x4whunIl0TVr6H3mmdS6WcXp6cGRsa2Y2Ajq1vPvUJoAAz0Wp7O+ji3vL2fVC8/sfHixD+hdMcyY9V7gym4G1QrG3mHrozPegd27nWTvTE6v+Tw204ZpJol0byMRiaB2Dyg74g2SZ9oxdWhPWsFkj9LLpFwn4CDU0032aRUoHuukg9/2H3z2l7ErnWQ7HiTyQf0hd/JQCCGEONhIIPAwNLA4v2dAhg9YU3d3OHnUyShbXqGgPxhhVwxutC3i7PjzAERx8cesb3PpvEp+/4VZ+HfUbSo/GsaeZF3u3Q5v/YFcd26qFlB9Xz11wToURcEzvRA14EDvimHEtP11lwVghBLWGXigyd+RWj66Nx2kc8y5IjWV15abi31Eevpm3VqrWJCiKsw63QryBPsDgYqq4s/NfC0NDCIeatODBwYCk/t4arBqG5AROEw1AvVQgkS9VTPSXuzFnms1g3FPyCX3cxO4u8zGd/obOJQmt6MkB2dpLQ1agSGvHkFRC3D4PkO9cUlqfc1jD+OdX4prYi5mXCP4ch1mUqb/HWgfuz5g40rY/jZmdjlrck/jO32X8b/aj1mW/wUUBZ4MHM2RJ5wLQHesmw/bremgY7PG4g3lsG5ZAz2tUbIK3Rxz/ljsDut1r6gKFVPz8SdyUjcVtBvE3Nus8baEJXv0YxihvY5CnIRRxIvu0/h58n/5w7Qn+KfyGR7RTuYn+peZPGZUKhDo1NzkRUowtGYCubno4TDB/1rNvhSPh6yzP7O7mxtEcTgo/NY3U9fbfvtbtKD1HnNk0ZGp5e25VnOQHs16/1CUBDY6cXrStYzNYcyUPpQNLAfhtq0Hm5tlRaN5I2zVhjWS2ZiNn8VmWO8Tpt6OPzcXp9dLvjN9kig5QqPapVPvg+1l11OjnYqqGJyR+2emF3gId3eheh3knFtJzgVjsdvSn0fsSge29/40YIqyEEIIIfYHCQQeZkzTTHdetCm4xudkrN/am67PMs6ZnVn/Cfi8fSk15kjCpos/Js+n1cxjVJ6XM6elA0YoCpx1Oyg2GDnbKiCvJ1lQtiC1yY7sEMWhYvQlwezvZCz2G713QMdgdzr7amRco9o+kW41F1/pPPQu6/XhnjIFRbECXj2tEXr7GzuUVGbj8lo1nXZkBPrz8jMCWDv23+FQCwQOnBqsJfZtRqA6ICPQGKaMwFh1d6qr+MDpwKrThm92MSsicWoxsPk24ir+Dz8ozOddtwsT0LNGoRVNY00oBwCfHsbuPQlFUWlMziGk59CUmISfVqJum9WJ2AC9O07f640H/s4eppLtEfqWNRB+txkcKvYCN87ywJ4fYPs7ACi99axIjmOVay5vG1MIKh5+nTuCnxa0cNe6u7n1nVt5p/kdpmUdQX6slJKWSfz7zpW8ucg66RRsjzFiTGad2orpBfgS6WWtNhuKs79bqWaSbIt+sjt/mOkJJ8iiCVWJ41TbeD02hoX6Wfzu/TgtcTt6biVdEy6mPdZEZ8w64VPcNwYVFVNrwpudQ/fDD+MoKcFZWUnWWWdh8/v3ehz+Y48lcNqp2AoKcI4so/PeewGYWTiTMn8ZMwtnEnRbt9+jp6cd29VGik/4LDa7dbJRl0DgfpFsTNfxsxmNJJIh/mCPMbvwCBRslG2Yy49X/JMJ1f9g/ts/ZFbVPzl543Zmb2ni0tfq+e39GoGISULp5T/uBIvsUZRTj6NiglVbtj1RxmkFzzNi89/B0PEdWYx/QhzFtLIJTSBujMdGG+EV8rdACCGE2J8kEHiY0doiqU6grjHZqK7M7osDMwIrO9IdQhsNq96bTYHJaj33aufygP4ZPndUOV+aPxrDMFnz8nYe/MFbPPfnD3jwtx305h5vZY1seBpqXmJBbjow9HqjFQgc2LFY6sLsX9qAzswNtnRzhpPim5mgVbE9/3ii6zamlg8M5G1bmz5jXzHdei0k4zGifVbTmawB04JT+w+oLxhbf2gFAgdmBOr6Pm4WMiCgOlyZL6mTBYBnYmamp6YbNPVYgRhn3ttsy23gOb+PF3xevha/nudPWcLqzzxLtm6jSFMosE1GtY/kvfLnqQmspTOeQ6lzExXuVQQ3ribn3LGpv0Sxqi708L59PMXQ4rW99L5QS2xjFyQNPEcU4ZlWsOcH6O8KD/B420giRhu3f24iXcdX8s9cq+TEE9VP8K/qf/HY8kWsDa6h091EXu1Y4mEN07AizROOLqZkXE7Gocun5OFPpjOM2uw2oolNqeuSLbR3NtZ141KaSAK35uczf24+rhFPorqauF87mz9Gz+Tuz89k8bZ0M5EdjUIMrRG3ptP5l/uJ19SQbGyk4LprP/ZYim68ETOZJLpmDV0PP0y8tpYcdw4BZ4A17Wt4q+N14r4QvVq6pqRdaSIZ11Bt9v4xyeyB/WFgRqAa2cbD2QGqXU5Wtn+ALTqV0zZ0Mbv5Q8qa3sSd6MFj09BaW4nX1EAwRHkHLFhnErKvxpH/Goazg0VrWnB+8VE2B64kz9GKopjkh9ZZnw0B2tK/1+SMxqXW4LO/QvKD9zCkQYwQQgix30gg8DAT25TuuOje6Qs+pGsEBhwBira+lVp+n3YONyS+xuv6dF7Sj+QB/TPEcXLU6Dzq1nZy/7df54NX6gn3xOluCRPuifN+XbruD2/cxdj7z2Bk/wf4la0rCSfDGR2LB3YyFvue1hlD8diwl/hoVFpSy0dpVkZb4VEXElm5EsXjwXPkLLzHpDv+1a3rTF0e3R8s6OtMBwcD+YMDgY6RI1GzrEBvdO3aQ6rmjzLgrVPf11ODhzkj0NRNYtU9AChuO86KrIz1zb0xtP4gzo46kwCNdievmkeysq6bqpYgp0Yd/G/IxaoJm1g45yZWli1h8ZRHedYxIOus+kUcxT58c0twlPhINPQRXiEdhA8ErSN9YkD12lHde9EkxDCg3goEdpoBtpollI5/lt9u/CKvbn8V3dSxq+mTTOujVvdRl+Fhes4MPAEHx148jvFzipn/2XGDDu/y2Jk0bnTqep3NS66Zrk+XbJJA4N7YtrUDu9LM94oK+FeWjyU9t+DMXUFO5V/IyurklxdOQ7UleaL6CVyqi4ndRzG2axJaohpDayL8wN8wItYU8uwLzt/jJiFDcZaXk3vZpdaVZJLWX/8agOPL0o2Geiq3ZmYEKo1ocR3Vbr1Gh7OJ0qHKNM1UgN3mTdAe7+S+HOvzmYJKrP5YTm5cA4Cu2Ig7s3EV5GAvLsZZXp46zoUb/ehGAnfhK3jKHua5tU30xnUCn/0Zb/b9Hwmjv0nI38+HWBDa0ycflVHHpC47tLVEP0x/xhBCCCHEviWBwMOMEddwVgRQnCquibkZ68LJMM1hq15cpb8MpX0jlMyk017Ew8ZpPGks4Orkt7k6eQMR3LgdKlNLs2jf3ocW1wl1x3H57Cj9nUBrIzMxd7zEmlajYHJ8JEpFIsGUrLEsrV+KPceFrb97cKK+T2o/7UdaexQzqqM1h9mesKbdZOsGWYZJAgels84gtGwZZjRKdM2HbGrN4sW/rqNhUxeJmEZBuZ/sIg+5JVZ9oOCARiFDZQQqioJv7lzc06dj9PXR/KMfYyb37TTa4ZIxNVjb181ChrdrcGxzN/ZCD/YiD+6JuSg2JWN9fXe6ppzTlp7OX2Nz8Y2VTxB+bSnu+x/gnA8eZPyW/9Dj7SXhsIJOvqidVQ6TYP97hL9jGQCB48tINofBgPD7LalsMbH/aB3p6bVF180icHzZHu1nmib3P/k8xKwM7rXqZAL+Hjr1DYSSIZpCTRR5i/jCxC+kb0u1fkeO8M7mkhvn8sVb5jHz1FGcftVUfAO6xw9UHChCMa2/H0G7xgiaoL8bcUIyAvdKaPtWqlxQmUigmBDTrd/HKQUTmTz9BeZWunlw3YM0h5uJG3HCSh850XIUTAIOFcXhwFFWhpqVReG3vvWJx1Pwla9gKy7GVlyMPS+PeF1dRumQbVnr0bJGp67blSb0hJ7OCNQlI3Bf07vj2AvcOEp8uEuDfOh0MC8aw4GCGjqGY2vb8CSt101r8VzenHcLY/56L+OXvUbFQw/iPeooALKagkxptoGaxOZuZfrYXlbUdlI8Jpf14SPYHDsOv60bkhFY/yS0V6UHMf7U1EWPv4ZEg5SLEUIIIfYX+0dvIg4l0Q87rC+AThXnTh0iB3YMHtvbCj110FPH3XwdExWHqpAw3ez4jj6rPBeHTaW9Pv1h7ZKb5tBaG+TFB9YTN7MIB2bg71sDpvXB/by+EP/MCkBPNd7N/+GcsefgHJ1FdE07ZtIg2RTeuzpVYo8l26wATlSN0ZGwzrSP6Q/MdRbOJa+xjWTddgCCeeN4/0Ur0BfsjNG2zXqO55wzOlU3MLNjcNGQt1l65x1s/czZmMkkwRdewJabS2LLFmIbNuCeMmXQT2CX6w6mbT7j6ePSTo3/Hq2iH79vv5Sqw9w1OLKqjWT/73T22WMHrW/oilJEN34lSszRwY7f/jHbDU6rfx/q30dTHdiNJCYKaqL/fcaAsFfjvTFB3mwcwWcSzeRp6zAj3djzcnGNyyG+uQe9M0a8thd3Zc6BucOHqVQg0KakTsbsifVNQbatfgUc/QtGzeOCykaetno88H/T/o8rp12JaZo8v/5FutS21L7nH3UWNruKzf7R5yALSrPwVgcIu3pptdmxKwaOrG6SwUKSzSFMw0yddBK75+zcwvNZPhbmWNm9N875Hq83vM67zVZW54/f+jHrO60O0Kpp49htn0VBQY+vpVg36f33kwBkf+5i7Lm5Q9/IXlC9XnLOO5fO+/9K71NP454+nWlf+Dy5rly6491sMj/kqM6LSBa6cKhx7EozesJI1aGVGoH7XqI+SKLOejcPzGjliWSAt7wewCTafjSzW19ObdtUMg+bLYgvJye1LPvii4i8/z4A1/XN5RqsGqJr+17kpQ1TOG3KCFzuetZFzmKK9xUAzJV/RzGszyAR1cbv+zZytctPbjyEI7aGjhXNZJ85GtUtX1WEEEKIfW1YMwJvu+025syZQyAQoKioiAsuuICqqqqMbU488UQURcn497WvfW23xzVNk5/85CeUlJTg8Xg49dRTqamp2e0+hwPTNFN14nZ0AR1oYCBwXLt1uZMcnorNBmBskZ+CQPoL45GjcgBo72/y4fLaCeS7CRSkj93mnJdxG9OSBqP6g0/vNr9LQ18DroqBdQJlevD+YJomWn930JaCdC3Giv7nIm/mOYSWLUstb8uZnL484DkZf1Rx6vJHZQQCqG43hTfcgOJ2M/K3v0F1udBDIbTW1iF/7m7dwbTNiJYk+X1wxkoDXd/HzUKGsWuwHk4SXWcFiVWffchg3PauCDc7HuU55/cJ2dLjO/mDdBZf2Gu9ThRM5tRYASdHPH3i4U27Nb1cVQyiKxYB4JuTbjgUeS89dV3se6ZhonVZz4s937NXAbWlm9qYr6abSHXkz+D1ZquTvF2xc26l1SnYNKG8I10nVEHhuJHH7fHt5JX68PV3Du6yqSQBJct6zzETRkZGo9i1cFwjP7adLlv64968knn88rhf4rVbv5OvNbxGe7Sd00aewczGU8iNjsDUezG07eRF0lPIs04/fZ+NK3D6GanL0ZWrsKm21OsjakRoDtTSq1t1Au1KMyQSqfdG6Rq87w387GV3trDRZTX4cBkuxnvLObqtipCvhO7scSRGuJhybGaDn6wzzsBz5JE4KyspWroWv2q9thxZH7KizpppkpXfR3Ooj/aENZVYaVqJ2b6JJHDVyDIeq1nE2aX5HDdqJAm1G5vZSqymGyGEEELse8MaCFy2bBnXXnst7777Li+99BLJZJLTTz+dcDicsd1XvvIVmpubU//uuOOO3R73jjvu4A9/+AP33nsvy5cvx+fzccYZZxCLxXa736HOCCdBs76s24fIAFnbvhaXUYYn6cKMW4Gd27XPE8JLcZaLaaXZjCv043PZcNgUpo7MJtwbJ9LfjbagPICiKGTle1LHrE8eZXUPdvjAFUCZdDYXxtIBg6c2PW7VCXSo2Et9JNsjiH1P74lj9hfebsnvSS13JwLo2HBNOSsjENiROy11eUdpP6erl3/9/BqeuuMW7vv6FWx+/11sdjueQBZZhUNnBAJkn3M2415+icBJJ6H6/dj8fuzFxUP+3N26g2kbu249KHl97PNAoDKMGYGR1W1WF1/Ae2QxyhCZW47Gd7nA9ja9dtgxQzq3z+TIzdZ+QVc266d8GbO/ocpJHxoopoktms4k+tBtkDSddGsluN76JTStwTM1H9Vrx5bvJtEcRuuUQM/+ovfE038LCjyZK9/8Hay4Hx6+EKI9g/dd8w/mbN5AVXUp9WsKedm5BIBcVy4nlp9IvsdqJtTVFGJkx0QUQ8VpuhiTPYY89+C6tLtiBQKtYIOpKHTYbBiOJtRsJ85RAflbsYfWNPQwztlO94ATDHmePIq8RVx9xNUAqYBgW1MPn1E/j82hoCWsDEF/V/+JI0XBM3PmPhuXe/IkFK91u5FVqwBYULYAj83DBN9kWgPb6NZLCGslxI3JOBMd2GzSNXh/SdVoVqBLr6Vrx+slWoRZsxlvMoo/3EzUU0gkZGfaCVMz9lc9HuxFRSS2bMHo7uEy4ygU040WHkt9aDMdoTiBvGz0xCY2RE9DM+1EbCNQ9ASr3S7GO3MACGEStNmodjpwKRsy6loLIYQQYt8Z1nz7xYsXZ1x/8MEHKSoqYuXKlSxYkK4X4/V6GTFixM67D8k0Te6++25+9KMfcf755wPw97//neLiYp5++mm+8IUvDNonHo8Tj8dT14PBQzMrTe9J38edp4LFtBjP1y4mrvZRYOhcGm/E9BZy+WU3UbKxneum+FB9PtRAACMaI4EDp9fB+mUNqWMUjrKm9HoCDuwuG1pcp76nFH64HdPhRelrIqnbOOvZb/IncyO6ovDfmqf4yvSvY/M50JrC6B1RzPMqhwxAiI8v2Zr+0tzs64T+WPvRWhtxVx5Kc4TIiveshQUjiHgH/745XfV0tHSSU1xCqMv6qWsaM884m4Lyit3evr3AygDL/9KV5H/pyn1yn4bTm/Onk9+lYaig7eN6VRkZgQf4C290QHfogRl6KYbO/JZHAKuT69xNBiEPnLHSxNYfMK4vOYaYt5CuvMnkd22gqBf+8gedLXm9jO7RefZoWDy7j5drv8pZ2X+CJPD6nSife4isz4yh58kaMKDnuVoKLp8yeAziExsYZM0IBHZugZd/lr6+7HY48zaCixdjy8sjkZ3goqYH6VxtZXGHcBB89226xqicXH4yPzzmh6ldmzf3UtY7kaveu50TL5rKuAV7HgQE8PidZJPep9VuY4TRgNGbINGbINkQgql70eX4MPVGdQeXaw2pjEAFhWynFWD94uQvMqtoFnnuPB5d/U+yHp9NhxEiK99GuH0Ndt3A1WkFYlwTJ2IL7LuyHYrdjueIGUTeeRetuZlkYyPzSudhYlId3kh2YSexvgJ89magGZfRnXpvlK7B+5YR1Ui2WB8KHCU+NvZtSU39j0QrmNm1PbVt0FfAjBOS5JcNbhjjX7CAvv7P9bO3wF8qYzgCmzDipTy1qpHxObmYehMfthXgtF/GPN/fAbgnJ5v3jcyA30ank0p1HcGqLikDIIQQQuwHB1W0pbfXOvOcl5f5heHRRx+loKCAadOmcdNNNxGJ7DoToLa2lpaWFk49NV10ODs7m7lz5/LOO+8Muc9tt91GdnZ26l/5gA5oh5LdBQJf2f4KYc2a4js/GsUBKKPmMq0sl+tPHU/j939AzQknUn3MPFru+h0P//BtHvr+m7zxeHrKdeEoP0B/VqA1PbivK47p8FGzso2Fv9zG335WzbrqU7g0FGOuptCa6OGf79+Ja2x/5kfCIF7bi9i3tAGBwKA7glsr4YhYjPKkRtKsZPuVXwJdJ/uzn6Vv3kXQXwdQT2xF4QM8vjb8eUH8efk4vd7Mnx7vrm72kLUjE041wDD27ZfS4coI1INxtGAcR5kf14QcHEVDPK+rHmJ2YgUr9InUV43kO08ZfOdJg97+WFJdsYPe4vkANE4+jXVzy3lhtkJ2BAqDGnkhk0veNCnqNakuzqLdmEDUCGC0VcGLP8Q7vQDVZ30DjW3oJFYt2SD7w8BptfYBpRyoeTFzw+X30XXPXTRe/222X/Vl2r9wFQ1VmX87Prspm4AzwGWTL6PAkw7MNW3uQcWG3XBSMi4bn8O31+MsdKczjVttNmyJ+tT1gSc3xK4t3dRGjtJMd38TohxXDrb+y06bk1lFsyj3lzN55WkohvXeU1ihgBkjJxJDMXdkCB+5z8fmPXJ26nJk1SqyXdlMybeC/72eNhoGnKq261FU+45mIZIRuC/FtwfZ0QDeNTqbjbF0XU8jUsqC9nQpgGSRi3kXf27I4/gXpDs/562qTV1WHR388vmN/OU9a2p/QuugK+84OpLldCQrqPVan/kDznSgeb2nEKe6FSOUlC7hQgghxH5w0FTgNQyD66+/nmOPPZZp09LTEi+77DIqKiooLS3lww8/5Pvf/z5VVVU8+eSTQx6npcWqLVVcXJyxvLi4OLVuZzfddBM33HBD6nowGDwkg4FaRiAws0bgv2v+nbp88cYEfQkXwc1dFJ/WSWTlSqL9RaDNeJyeJ/+DdvQcknFHxjFifXVsfKuKvo52upvCQDmGZvLEbb8mEZ9AJGhNDdzcOYG548/jUV7EVBTu3fo0p0z9Asqq/uNs6sI9/pMXJBdpOxqFANRodcTszXxgd1Oa1NCTOdhywAgGidfUUD/7AuizgsI25Q2uufeh4Rn0Qczsz06wGaDv40CgOkxdgxONIYzuOEZ3HP8JQ3SQjXRhvHIrKjAzsplH4kcy0t6IPwZlnQ66/BprpuTgUDy4DRhz4Rnc27CYorUKnQETxbTulycBkxpMqke08Gz7TVxZ9GXUrhqo1lDP/DXZZ46he1E19iIP0Q0duCfIe8G+NjAQ6BiYEVi9JGO7hGsSxsYlYLdDMomeVDHbTCCdnTN5XZB//WYRZSXpuqKmaRIPaxQ7Osjb8CI8s4GaJ57IaLoTXbsW18SJlP3+99j8QwcJS7NGQP+vQJvdjjtSR8KhYiYNtNbwkPuItMaeKFtau/G4WumyWRlcO0/P1pMGrz6ykd72KHaniifgpGhUL+uB3HC6nIpn9n4IBA44ZmTlSrLPPZcFZQtY1WZ9GFjlj3CWVXnECgTuyAiUrsH7VGJAfUBnic6GhvTfndxeJ7lh6/OAicLMqy7D6fYMOgZYmf/u6dOJrV2LubmWwj4n7QED1WVlmrcb6c+dnhIPTy7/NboaptP8BQAFyQBhQhiYVNmjONUWHIUaoRUt5JVJEzkhhBBiXzpoAoHXXnst69at480338xY/tWvfjV1efr06ZSUlHDKKaewZcsWKisr98ltu1wuXK4975r4aTUwI9Ce7aIt0sabjW/SFGrivRZrWmhO3InnNT8Nugpsw/zlL4mtXZdxHDUWorDjQ9qK0mfzbQ6VD178J221NdgcDhT7sdjdVjC1dWsrpjIadcCrrbXqFC4qfZInsgKETY1nzZc5T50BhhUI5Nx989wKS3LHl2YF6iJWQNxnGDi7bWxb8iEA9rJyAr/+E22/s2pDGXoP/uzDL9tvT5j9GZM2Ewzj0KgRmGxMZ104S/2DN3j7T6jRLuIKbN5SwbxNjdbiSQpPHz+FbQXrgG7OXd/EyOB4Rk/Pp62+i/eOVnnuaJWKNz/LnW8sBKxA4H9LlzOVz9CUmEyZax1010LnZryzxhFZ2Up8ay9aWxTfnBKcI4cYj/jYMjMC+7/Ux0NQ95Z1OWsk9UXj8fznfdrXWtOAFZuJqStkB63X/o5woKrphC+8gqZzzyNw8okk67YTm3os5ov/ZmTHanJ6t9D5lxVWIHHUKLTWVuJOJ3pHB5GODoIvPE/u54bOMBpVMBJarcttNhv+eCuRQhvJJgOtK4aZ1FEctiH3FfDqpjaOVTcQU02i/e8rue5cdN1g7dIGpp9QxtJHNlK93HqQK6bnM/vMCratfgGAvFD6deKdPXvwDXxC7hlHgM0Guk50ZbpO4N2r7gbgg6xe6K9W4DAHBgJ1TNNMdbAXn0x8W3oWhsvflmoU4jZUTm9cSVakE4CIbwSz5k7c7bH8J5xAbO1aAO78q8ai+SZLZrYTwSRiS3+eUNR2vAVT2BLuSi1T63vJyrbTE0hS43SQAGydq4l02gkcW4qjeO+zioUQQggxtINiavB1113Hf//7X5YuXUpZ2RCZKAPMnTsXgM2bNw+5fkctwdbW1ozlra2te1xn8FCl96TP7tfZmrj0uUv56ds/ZXOP9VhqkVFcVA+mnn5Z9D3/Asn6etrzZ9AbGJ1aXtr8NlmFHgL5bqafVMbU47Jpq7WmCXt9fpxuDaU/QOLwlKDYrOYjqk0nt8SHLbeYr+ql5Gk6R8TirGlbgaO/e7DWGSMpHSH3GdMw0fozAtU8F91Ja9pPiaYRbXemttvkP4an/rQJo7+JgKm34cvOOeDj/TQwB9Qr2tfZKZldgw9cIDDRlM6wcuwUeDNb1nHR1kc5payC+aPK6exId4n+1wKVqYXpLO4OXwMF5X4KywN02q3gojNhoypnAlp/sf9p9SoYGk73ZrZFB3yxrF6Coip4jkgfPywdhPe5HYFAxamiBvrfA7a+hqkn+EJJMWcU+PiMtpXWrnQGj1pqvc53/HVIlhTTUTyLjrK5GH19dD++iPovf4XWW2+l46v/y4QtT5DTa3WfV30+7EVF6WY7Rekpv71PpLPRdzamNP15oNVuQ8HEndMfODAh2SZ/J3anbs1r/MHxR7oGZBnnOnP57x8/4K0nNvPao5vw57spqghgc6hMOqaEksocwj3dOJMaWZE4tsmTyDrnHBz74fOTze/Df9JJeGbNAkXBiEYZlzOOEp/VLbjG10OkP9jnNGOotvTZxAPdSOlQZZommCbOUQFcldn0tL5Ja/8UbE8sh7JwFNW0MgSTJZXYHLv/2hA47TRyv/hFAmeegTdmcMG7Jpe+GWPcCAPTk5XaLtTTxcxTy/FOT6SW5USLyO+13o80RWGz04FTXW/VjH12qzVWIYQQQuwTwxoINE2T6667jqeeeopXX32VMWPGfOQ+a9asAaCkpGTI9WPGjGHEiBG88sorqWXBYJDly5czb968fTLuT6sdU4N1Ree17tdx2awsyFWtq3AruWh90/h8Y0fmTg5r+q8n1sHKmd8i4ilAVxwoepIZ01T+99Z5LPj8BJKRFQC4ExrHbm7ilFI3c97/NeX1r1I+5RQUxXqpGXoT3c1hWrcGiduPZXwyyQduF++0r0Ibb30AtBV5iW/pOQCPyOFB741jy3WjuGxEinQMrABtsaYT7Uhnwnb5xpKIWl/2TdPA0NvwSiBwSOaATBRDS+xmy72XmRF44KYG76jDpLhs2PMGlA4wTVoXf5dql5M2h0lSAX/QCs4FPdCUB2fOSk/x68ltYuLcEUT1KCGn9VrzRVwkbQ62F1pNZQq7dULeKL7sRuqS81P7GlVWoXnvEYUo/V84I2vaMBJSE2xfMTQdHCqq144935POqmpaTUveaNa7XTSZMRRM4h3978kunbemZgZeooUz+XDyl+l2jURTXah6ItUp2hG0aoEZihWAKv3Vrxj/+jLK7/kz45e9RsUjD+OaNMk6zgcfEKuuHnKs40ZVgKmQlXCk2pc7vemTfANLHohMWiJOrtmNgYNuW/o9xWsEcHqsQE/1+63oSYPS8S7mX+ilq+F17vv6FWz7cDVlPWEcpom+cROOkv13EtUWCBBdvZp4dTXxrVtRFIUFZQtQDIWchJf/9E8bdxDLOEmiy/TgfcKIaCS29ZHY3geqwqa6pYxJJHGaJmq4kOx4+m+Ba+Lk3RzJ4p44gRE/+iGu8RMwgewILFhncttnCzlm2mh0VMKqm/otW5m6YCRtRnNq3+zYCApC6WDhRqcTt3MTKNZJi2SzlAMQQggh9pVhDQRee+21PPLIIzz22GMEAgFaWlpoaWkhGrXO8m/ZsoVbb72VlStXsm3bNp555hkuv/xyFixYwIwZM1LHmTRpEk899RRgNaq4/vrr+cUvfsEzzzzD2rVrufzyyyktLeWCCy4Yjrt50NgxNXh1QQ1//OBPNPY1MiZrDE+e/yS5nbdS1DUZW/eA2jBf/B9GP/EEXcUzWH3Et1CdLrwXXYrdbSc3uIWCbW+w8vmnefLXP2P1kv+SFYkzs74dtbEJ/bH78EdaGL/l3xhr16SOmQhtTF1esSmfsgHd/zrKI6heO3pbJKN7qfhktPYoWmsEM67Tmp2uBVSS1Ih0WNMCNZuLsG8kpeOymXJcgHjPH9Bjq/Hm5AzTqA9uAzMCzf1ZI/AAZb3o4WTq/cFR6svo0Fj38DVsal2Tuj6yAzwJK8BXVabg0FQCzRoO1TppEB/VwcxTR1HduiG1jyduZRhWFYxNLRvfZHDG92+gOxEjqFkZYkrd2xDpRnXb8cywsgLNmE5E3g/2Ga0titYSwYhoOMr7626ZJqx5lI2xdJCtrB08/dUkmkYUce9kLwNfjfWaVXOuvvwUXj/+N2wvO5lNE79IQ+kCqsZdTEfeVDac/WtKbrsN/0knZoxBURRyLr44db37kUeHHGtuTjYO00HQmaSmf7qiXU0HDjRpGLJLnQ1VXNv6U3KVHtrVdF3AniqdravbQYFzv3EEx140HiO5mpfuu4U3H3+YUFcngdw8yjrT00VzLrpov43TNW5c6nKif6bH/0z+H/ISJXS4w9yfk0VYUXARw1TSH1kNTU4O7At6V3qmiD3bZHVvNbVOBwZgdJeQHUs/ztlHzxjiCEMrvPYaeo61Gr9kR6D71Zc4cVo5bxdOw2PEibbUU/X26zjGp28/zzieSv9JqesbXU4cZhWKXSO2oYvIytZBtyOEEEKIj2dYA4H33HMPvb29nHjiiZSUlKT+Pf744wA4nU5efvllTj/9dCZNmsR3vvMdLrroIp599tmM41RVVaU6DgPceOONfOMb3+CrX/0qc+bMIRQKsXjxYtzuzAYZhxMzaWCErC/vi3OsOlAGBjccdQN2M4vq1hDT1a3EutMNQPKvuooeezHNn/keeRNLGTurkMqrLsSIWR/cuv71D+K9QZKxGEW9IeZtbSZbN7EVFqAErC+YPVljGfPa7wkEtwEwdtYIDN16rtqSM/CF01N9WtRmFJcVBInX9mLE5Yz/vjCwHlgN6YDK6B4Drf97dKx4PN5cD2dfewRlE5KAASTxZUujhqEMzAg09/XU4AEZgQeqWcjAroyp+oDL7mDbH85mS80GNrrS7wuTGtLTszaVK3hjdlqqqhifOx6A2t5aIskIy2qX4o/YKGv1kNtnZRStzRudPk69SUesg9yiPjZFT6I+Pp0whbDpvwB45xRjH+nHUR4gKl8A95mBtSBTjUJaPoS+ZjY606UCJtaln/PFld2YShbLJ/upKRtBe/50erKsOq6Kav23edxFtJQcQ/WEz9NYdhIfzriG0nmTyLnwgiFruWWfew7u6dPxzJpF7zPPkGxsHHK8btOqK9ajuFhnm4rqTv++JaVhyC6FmqpSl1uUKanLaq/1Ocif46JsohUgrF1l1Qg2dR1fTi7ZfRH8cevzgnfOHJyjR++3cbrGpesBx/sDgWOyx5CrWScC2u127s/JwqHsFAiUjMB9QutOB+JcrGGN0/pMpikKExM+PPEk3YEyQsUTGHHC3jWMsZ93Zuqy+/k38GRvYcvs53ju2CaWHdHOskf+xoa6ValtsmMF5PTNYlQ4l4khg3q7HcVM4jCssjPRTV0yPVgIIYTYR4Z9avBQ/6688koAysvLWbZsGZ2dncRiMWpqarjjjjvIysoadJwd+4CVbXDLLbfQ0tJCLBbj5ZdfZsKECQfwnh189F4rtaPL1ss79tUAFHoKOW7kcbxR08GEbINv2Z4g2t0/FSzLh33ECBqrummtDdJaG6Riaj5Rm0qkwmoCYg9HyPr9/6Nk0xZmNLSjGga2aBTPrFmMW7KYpjGnkBPcimpqTNi8iECuk5ETK7DZegBQFDfZsfTU1Kb6t3FP6s9c0E3iNT0H5sE5xA0MBG5KpuutjRrwvbvNWcH4o4txeuxEentSy2Vq8NAypgbv62YhA6a/Hag6WImBwaH++oDBlYsY3fUmJ6prWO1MF2mfVD8gEFim4IvZqH73TUZq1u+uiclf/vR9/rPpSUJenYbiKD7dKuWwKmsUAFEHTGww6ehro3RCIXXR0ZS71uKnBe29hwFwVWRBQidZ30d8ay/Jdsn+2hcSTYOfa6pfBEg1CQCYsLUgdXlTuULU1cfqC09h9E8fYu30r5FwWycJRk9Pb1dQ7ke1p383Rk/L3+U4bNnZ+OYeTXT1asxYjNY77hxyO59qjTFs05mmr0ftWZ+aNi5Tg3ct2VaTutylpps02ENW8De7yPoZ7Ginffs2AEaMm8DX7nuYGU4ftgLrec35XDpzc38YmBEYr0nXfj49+AVshorNNOlUbcTUUGqqORzYjuqHMm1ARiChN/iw/z3AmfRS1GajoGcLuX0N2BMRfCPydnGUoZWedCZt2Vbj73gsxANv/RpUg87sBNtKIxg2aIxZGb6+uB+H4cLocRJzqlT5Vd71uAl6C/EUWB9W9M5YxucZIYQQQnx8B0WzELH/7agP+ELumxj9E7wuGHcBdtXOfz9o5GuRexkXb8aIWy8J97TpKIpC84BafSMqs3n1wfvYSLommj3Yx4jGVpxJncBJJ5F1zjmMvPNO7Hl5zP/HHTgrramA2cFtnDqlmaPOuZCjz0tP/dCCo1KXG1rXpAOBWGd/xSc3sPFKdSwdCMxvTn+p6s2uZEz/VMxwT09quQQCh5YxNVjbjxmBB6hG4M4ZgcGWWrKCVt22jep4PgxYGX0OzcXMWit4n7DD1hHgidswNI3wu+kMpHVqHe1O65hjlZFEy88DoNfuof7SE1GA8c2QeOYFRoytpDGUoDNpNYawNy+H9moURcE3J12bLPy+ZAXuC0N2h65ZAsBGpwN33EQxPMyutzqFJhwqJdELmNw6j28dcT3Tji3n2IvH8aXbj+Xsa2dw7MXjuOTmOXzx1nmc/L+TOee6I/i/O4/jczcdxYhx2bsdS/7VV2PLt4KFfUuWEO3vNjqQ32lll0dVlSSghFqxF1uBLb0rJvUjd0Ht3pq63DmgyYZbs57znCLrMaxd/X5q3dhZc4i89x69T/8HvauLrHPPJXD66ft1nPbSUlSvNZb4li2p5cWOEqZ2TsZmmjyd5We1twvNHNikSZ73fSE9NdhgS/ebqe7SsUgl40OgYJ348Ry5d9mAACX+Ut6ZakOzQ1l1Dzkf1qXWmQpEZ44h5rSex2J7+oTCyKiVXW4oCuuNIJ7+k9cAMflcKIQQQuwTEgg8TOg9cUJqhGdzlzHdPYUx2WO4cNyFtPXFqKx+gGK66OhOZ1q6p07HMExatlo15TxZTrILPXQ3N9Ge5aXX68Y33yryb8/NxV5UhHfOHErvvAPVZQUKPDleim++GdPrxxg7lfD9f0IPhSgoT3ckDfXN/v/svXeYZGd5p32fWLm6OucwOQfNjDISIkoGTDbGrI3lBeNlBV6vvYvB5lvvetfmsz+vvd61AQdswDYGYyQMWhAWEhIKKEzQaHLsns65K8cTvj/e03WqJml6pvOc+7r66lN1Tp16q+qE9/29v+d5ysuDyX78a6Jlt0f+1IwXBjIPuBVCFYYqhEC/1ky6rotkuIN883pa1orfv9IR6FUNvjxVocHznSNwCRyByBL6mhq09jBqY5Af/183Z9uR+lvJWEIUuvdojEDB4EiXxFM7Ze4O38rttXtQfT7aTdf9dTY8UV6+L3grwWCg/NjYvgW/Y6Ks+8r3aWhoxjIGOZF7i9ueQ8IVGNzTBIr4rrMHxrBNr1LojWBbdjnhvlLnRw6okJmEwf1MKjJ2WuELf27ygSdUDjWs53zTWqY638C28Tfwhv6fo3tzI7IssfvNXQRrfPTsaKCmMUhjV4SaxgCNXRE6N9cRiOg0dUdRlKt3MZRIhMZf/SRyLEbonntI/fCJS7ap8VVUGpVl7NQovrUx9LVR9I6IFx58BfwJVwicUdzrVaAkhNUaRwg8f+jl8rqenbcw+j9+TzywLIL79iEvcEoVSZLQHVdgaXAQy8kRrflUNkxvoegIU68G0oAraHqhwfPDbGiwLp3gkN9NByCne2hMu47b5jffPed9K7LCxOYWfM5PdfdkHYrkuo6P2P3l5Vs27SXa6Kd1fQ1dJbeS/Ct+H0r6MDgT2J4Q6OHh4eHhMT94QuBNgpnI8w+N3yOhpjmSP86uxl10Rjt5+MAAH5Cf5G7lOOq0gaSLjmCuvpvnvnWmXEW2bV0NtmWRGBvFliROv+luuv7mS3R8/vOs+fYjbPjx09T/0oOX5IIK3303Nffdg3z+GMb4OJNf+AKNXZHy+oK0G78pxL5hDIifxbcuBoCkSl4y+BvENixMp6Ov1PvRLTE4lE0L82SC8HQ/ilmiY2crsjNorwoN9oqFXBa7srKvPb/OFGkJcgTmT0xT7E1gF0ymsgU6J58pr4veKsR61bB5/3MzaKbBjn6b3fd8kD//wN/ymX//eX7ms7/HQ5/+PyiSgizJFBzdL6gG+ZV3fYawzx3As2Mfz20R14mSJmM9/kMUNcHJ7N2YtoplS9D3LBRSKGGdwBbhEpY0mfzpmUX5PlYrxkQWuyQG1PpsWPCZf4VgPSd0nQ8/aREqwPv2zxAyCsQ793F2488gIdGxqRbNp1xl79dHzXveg10okHnmGRLf/vYlkz81oWohkMwESkSleD5JcSDlVRK9AjVZIbKYdpS46oZ/Bkridz/57Hf44r/7MMOnRAGvYE0M/+EjZYezb+sWYu9fuCIhlZTDg22bwjlxj9L9Ck0pN2z4sD+LTUXVYK9YyLww6wgM6T/kkO2eSx3xJmoSbqh2+La9l7z2WrC3bcByuoUNZyd5b/dHyuvO+eP4FDFx3FPTQ2NnlJGzCcJ9PeVtDvp9SIU4vhrhCDfTJcycJwJ7eHh4eHjcKJ4QeJPQO36e79Q+BYBP9vHvd/17bMvEeP4L9Miig5WaacQqlkiF2vnXH0u8+sRg+fWt62MkJ8bLs/CxVlExMvLGN1QJF5ej8dd/HclJQj/91b9DnR4mWCMeh6QYMScceUhTmXzqS/g31yFHdMyZAvmz8Xn7Dm5GjOk8TmQPuaCBpMYB2DplicQ9QCbUSndFnq9MVY5Ar1jIZak85uc5fLcyNHgxHIFW3sAuiM+gRHW+e+A8G7MigXtaq+egJXI4PXDAoj4phPnpkJ+tb/+F8j7aNm6mvr6Ff3z7P/KTn/sJv7D1F/j5LT/PH9z7BwS1IGG/KwT6pBh//0aZV3skfMks03/xl3TF6siWsryU+iBpqwGGD8KPRc644O2tqM1BzJkCmRddR6vH3CkNuwN9bTYs+JWvQXaSo5ON3H5KXCxm/H6+ueuXiEdeTylvsu3eNu58z7rL7fKGkXWd4C27ATDGxjCGh6vW10di5eWkLCFZBnqdm56iMtTZw6GYocYQrlzDbiOhpACQbAmfIZyAljlNZmaahs5u9r7j3bzjlz/BxB/9T4rnzhHYs4eW3/7tqnylC4lvXWXBEJHbUPMrKEYt64vitz7jMyjY7vXQcwTeOLZlY8QLSGQJSM9w0C9EOdv0syfVQk3SEZMjNahtbdf1Hp+673fQNolQ3+4JiV/e9K7yuoQ5SMEssK1uG69rfx2NXeKaFC7WEsoLJ+phnw8DCHUMIIc0jLEsBa9f6OHh4eHhccN4QuBNwvGZE9yZ2knIDPChDR9g5i/+Lcf/8C18ovglAIyCTGGkgARItklRj1W9vnV9DTMjbnWJ2tb2a35vvaOD+o9+BKWhgcC2bYz9/ufYsLeJzu11aEgESj0AlCSJwbNPoXdHsVKi81/sS1xlzx6vRWVi7WnzGDOqOOXXT7tFWozGTrq2ubkZswnhuvKFQqiaGyrk4WLJC1c1WJIrE+IvvBBoJl1RRYnqpF59lHN2Ky+bG3l07W3885lv0T1Zz7t+IjNR14kpSRxrb7hs2PiW+i0EtSAhLURLqIX7Ou8DIFThCFTtGFNRieNdEophg2my/vwgDW0aZwt3E5TjAFjP/R/+7mM/zfe/+acUE0LAyp+axnAKH3nMncqiMHp7GKbOQZ9wfwZGTA50B8hpEo9seSO3G2GUOjFh4w9q1LeHL7vP+SBwi5t/LHvwYNW6moCbZzDliORaOFV+rjjsOQIvYdoNCxZCoPjdfaUAMjJgEYhIhOvq0YNBwrX1aN9/HDMh7rdaezvBvdfnALsefBtc51/RqRys+1QMW2dPXpzvpgQjuusI9nIE3jhmsgCmTVD5MeNKkc2FIuuMEEZmA+2JSVRL3Bu07dsuW/n7WmgJtRDddzsAkm0TOXMexWgS74/on0wXpllTs4amLuH+lZBozzmFpWSZU7qGbh7ByoicEvlTXniwh4eHh4fHjeIJgTcBtmXzlP0Tnou+QkbJcWcxxtbU82zLHyhvk56qKzvHpuq3s/lON0m/oso0dISZGXWdGrUtc5sdrvvlX0YJh8m98gqZZ55he+0AUwNpZMCX7ShvZ0gD7P/RQSyfODQLfUkvT+ANYEy5QuBY9tnyck/SDbfL17QTCLt5e2ZDgz034FWQFi40WFYqHYELP9g1K4Q1M6Sxc/L/sl2+QL3/PCdiEUzb5B0/GacmZ9I4PcCF+iipoB9/JHLFff7itl/kF7f9YvlxpEIILBkKES3Cd2+XmKoVzwclhbvu20bSbOGVjHCMmLZEszRM7+H9DJlOEQEbsl7RkOvGjLsholpbCA79PQBZJLYeg70XchiyTbDmzdQgY04X2fPWLu5497rrFgKuheDeCiHwwIGqdRHdPc5mhUC5OInaIOLPSyNpL3fkxUy5RTcMq524KoTTgCG+y2hDkPf+5v/Dr3zhK7znU/+F7eu3kDt8GAApGKTpP/3Goja3snJwcVg4kDW/AsjszLm/7aBvvLxszXORppuR2bBgTTrPOV3n+WCAc2oGq1hHc2q0XKW59p655wes5OLzu14XReRmLyn+/B08e3aax4amytu1Z0WeQMW2OatpKPGDFfmjp7Etr1/o4eHh4eFxI3hC4E2AMZ1nVJ0EQEGh4bybHHzIbuTRHZ8nmd5Rfi7duZvXfWAjO+7r4P2f3sfbH9qJrMhVjsDZ0OBrRQkEaPwPv1p+PPGHf8BbP7wBJaxy3o6Vnx/RZJIvPcUpR2ix0iXMqfzFu/O4RiodgUMl9/frnHGdfnpFWFapWKDoJGv3CoVcmcocgcx7jsAKR+AihAZXOgKHUoPcKwlB4HP1LXx7/CV2jYR4/VEx6CqpOueaawmEI8jytYcNVuYITBcMGoINlFSJ796hoLa0UOztRf/J9wCbA5n3MWV0YEsq9zX1ImHTlz4CzqAxs3/UGwReJ4ULKaSggtYRRvEDr4iiMC/nQ0ScS8X55lqaEI7hus4wd7x7YUKCK/Hv3AVOGGruQLUjMKxVFJeaPe/So0LIBDBsjIkcHi7WpJvbbVxqpCgLJ9VsoZDZisEAtm0z9nu/T/7YMfw7d9L4yU+gNTcvanvV1lZ8Gzci19RQOHkSmBUCYXvOFaCH/e4kwGJVVF/NGNMFJPKElMfo87mCu16I0RA/j21DKtRE9K4bEwIrKw7nDhxkXXSju9KGIyc38dA/HOSl4TgJSdzzovEewlkFzYJDfj9S/AKBbnEcW6lSVaV7Dw8PDw8Pj7njCYE3AaXRNKOaEAKblUYah38MQCatMWb+PNu+8R0yB0+JbZUA2rad+AIq935wI809UTqdZP0zI64jsG4OocGzRB54gOCtt6K1taFGo/ie+w7v/eytJCzXeTaoqnTrB8lWuE8Kfcm5f2gPoFoIHFUm2VYosDeXp37M6VBLMpEtrhsjG4+Xl4OeEHhFqoqFzHOIWqUjcHGEQNcRaIw8jCzZjCoKLwVkLCxed7BAqnUrlqJztr2LkqrM+dioDA1OFQwaA40APLvBwBgdBcOgdPokXdsaaFrfwrTRg04BXTFp9GeYnBnAtz6G2hJErQ9QHEhd6a08roBtWFipInbWFFacg18BX5Sz8loOzzSWtxuuXY8hCYP4Gz60CUleOCfgLEo4hH/zZgAKZ86UQ1QBorrrXk7OnnepUbfYCdUhzx5QGD9TXs7IsfKy3ykUUtPsCoGpxx4j+7KYHDTjcWo/9KHFaWQFkiRhGwZWIkFpZATbttGdvKL1JR9riiV25AzCJVessrxiITeMMZ1Dky4gSRYDsuuwbE36qEmcQ8EkWEhUhW5fD1pzM/7t2/Hv3o2k67yufSe61YxqxaDQjWrXYtk2lg3jqpjkqc22kg6a5BWJPi0A3XcTaLhQ3qdXPdjDw8PDw+PG8ITAm4DpkXGyinDVtesxYkWRcP/I1BoC//wN8q++6m5bt4W6jprL7mdWCNQDQQLRy29zNSRJovn/+SzG1BT5Y8eY/OIXqS0k2VjXXd5mUFXo9h1gpEJ0LHh5Aq8bw3FTGrpMbzDHMZ+PQz4f/jGRaykXaKKuK1bevqpisCcEXpkFdQQunMh4OczErCOwRGNa5It7JBzGAuqSNvccyRMZOY4RiNAXFe0JRKOX39kViFQUC8kUDBoCojhNMiQhNYnl/PHjvPnBzUwNpRkpbilv3x7MUszl0DdHMUZFovj8iSk85kZlCLgWKcCPfh+mztBt9uGfdB2W7fX3oNqw6w0dtKyZ+3X+eglUhg++cri8fLnQYNJjbrETvIIhF2NNuqHBw6p77s2GBseaRFi1bRikn3FTRjR/+tPIPjd/7GKitbaKNuVymPF4uUK1Yfvx2zZHAiqnoqfL25tesZAbpjSSQZPFsdKnucfJ7vEivqKYgC12rJuXojF6Vyf5V14h89xzfCC6hgO/9EM+3PElUn2/zNt3tPJPv3InX3rwVurahdPXZwTRDRG5MKZacOE5fLjXhfx5r1/o4eHh4eFxI3hC4E1A/3hfebnTdjvPE2k3D6DVvoZXt32MgY43UjcbclWBUSqRnBT5eWpb2687X5R/40Zi73svAHY2y/gf/U/etH4zZq6NWEliRFUJKgnq1GEMS7S1eMFzBF4Ptm1jmxZKrY9+v8ERMfZj4zTITn6lTKi16veurBjshQZfmSpHoD2/rj15sUODHYEorHyHbvscp6Qevh4Tydzve9VGdjQi35sfKH/uYGRuAlHY54aip/OuIxCgtKETACudRpkZ475/s5lJZXt5fWckDMiUmuxyeLDnBpk7lUJgKP03kBPf4V+ou1k/LMRgQ5ZoufMOQjEfkXr/orYveMcd+LduRQ6FyO3fX37+ckKgnRqtEgKLXphgFUpykCmrkby5k17fFLIFjclGOhLraV1fQ8tacf7mDh0i8fDDaD09hO65h/Ab7luyNmttreVlY3QU3QkNLtl+NCdPsCVZ2E4yY69YyI1hGxaFvgS6LgrL9DtCoG3qbJtwJ1p8u/Zc9vVzxb91a3k5f/w4ICaIWiJhtrfXsL1dHJPvuK8HEAVD/EURjTKqqhiANPoywX3NKHV+iucTlMaz89I2Dw8PDw+PmxFPCLwJGIwPlJcbZB8vmZtI2X7UQqD8/PTbPslk4y6SNWuobb1UCEyMjYDTGa+dY37Ai2n45CeRo1G0ri7MRIL7IxKKniSu2VzQdEaKm1jjP8RIfpi0lEAOqF6l0OvALppYqRLmTIGj0n7yziD6TVPuAD8TauH8/sd55A9/l7/4+C/y8ne+harrxFraqOvoXKqmL38qwneZZ7GuyhG4GMVCkkVkpomqXwdgUh8l6mujTWvj/ledwSES0Xe+ofyawJxDg11xM13hCARIrWkqL+ePH2f93ibu+nfvpGiL61OrfhrVfzuZXBytQ4hCpdEsRtzLHToXjLi4hkqkkaUkNGzknB7i4XCeVqcY63RrI6//hR08+P/eze43dy1q+wLbt5M/fhwrk6mqHBzWK3MECiW4NDmMEtLQ2sNoHWGQJWzTyxsJQDGLPzdCvTyBJJXYHz6OJcNEdIJIvoGJgTT1joiafvppAEp9fdS84+0LWhDmtVBbXSGwNDKC5riIjQohEMBymmh5jsAbInd8CjtnoplnKAFDjnPUKjbQnnCLstS9/nXz8n6XEwI/es9aXvitN/HRe9aW123aUk9ahRHFJJwX9wZDkhhTFRg9itZgl4ucZPaPzkvbPDw8PDw8bkY8IXCVY5s2Q3k3zLZj9Di3KaeQsWhIxgGQNI1Jyx2Ya3oO27bZ/+gjZYHo+5//k/L6GxUC1dpa6j78C5T6+8n8+Mc0PvsDZFPM/E4qEvX6KbYGnmC8MEHYrqHYn6JweuaG3vNmxMq5ItKr/kPl5V0z7sA65Y9w5uVnKWazpKenkGUZo1hky+tez8bbbyxB+GrGriyUMe9Vgxe7WEgBv3wQCTG4+l+RtfSVegn2DhJNicG2svs28n63snTwBkKDZ4uFzDLR4Tq+8sfEALFlXR1S120AhNUUtaEuZkanCGxy84nmT3nXhLlgOkKgXz6INvY9ClOn+ZvIRronXcd11+vuX6rmoTU1oXUJ8TH/6qtYBdHeyhyBcVkcg+aMuKep9X5Kg2nhDhrNLHKLlynx/vJimkZeDYpw2lChhvpsO52ba1Gc6quzQiCSROieexa9qZVoFf2K0vBItSOQCiHQsSh7OQJvjMzLo0AJTbrAoKZiOSKwlo9QmxICmyXJ1L9u77y8n2+Lm+5hVgi8HKEaH6UGnVZToSFfX35+SFWRsAg2XABFtDV7YBzb8CqGe3h4eHh4XA+eELjKMaZzjCqT5cddGREONmLWE5pwcv6tWcP0qBABglGNf/x/fpWv/udPMHDs1bJApGpiALb57nvZdOe9N9yu2p/7OdBEuGDi2/9Cq0+EKduSxLCqElJmCCivlLf3QgHnjp0XIo6NzcmwyAOk2jb1I5Dz1TFds4FkIEjHlu3owSDhunr3fyB4tV17VDoC5z00uKJYyAKHv9mmhZUuEVH/ibTdzlEaORkWBWbedFTDUAIkIt00/Nz7ySbdnEzBaGxO73O10ODBNldgrBwgautdJ0qbfpr+4xn8m+vcbb1rwpwoC4GKKAzxaCjEo6EEO3p1psIy6aYuGt5w11I2kaBTXdQulcgfOwZUhwbHJXEcaaVJirkSvm5XJCx6uWQFcbegwksBf7licFd8KxIS3duFuFIaGqJwRlQXDuzciVpXd+m+FhGtyhE4XM4RWLJ9aBVmT3NWCPSqBl83xnSewpk4mtSPJBlcUN3rc/uERCgnQoMzNV3o0fCVdjMn1NpatDYh9haOn8C+yiRXeEsMG5tooVoIBJDHXiKwTTxvZUrkTnj3AQ8PDw8Pj+tBfe1NPFYyZrzARDRefrymKFwT2VQMzRQDpwlTJ58RgwU9UKCUzzE5cAHV7ycYrSFcV48vFCJcV0/z2g3Uz0PIqFpfT+SNbyT1gx9gTk5y/9g2/saJEBzSVHoMg/WhwxTMLD4lSP5sHNuwkFRPu75WLEcInFITNBd9+KU4zYaBeSFOoFBANfNENnXz+p//4BK3dAUiu5fOqw1orofKxOzzve+LMVNFJDuNJg+jAY9E1oFUAttm32kJXymDZhaoffMbOPfD75dfN9diQReHBreEWlgTXYOmaIwFiyj19ZhTU+SPH8e2bRGi2Hk7hhphMttCRBmj94KG2hpCimjIfhW7ZGGXLCTNuyZcCyI02MQvHwDgqWAYSzFonzapT9uQ7q8K31sKAnv3kPj2twHIHjhAcM8efIoPXdYpWkXijhNXlYoMnhmiqcd1lhYuJAnfPfdq9quOmb7y4rNBN6VG18w2ALq3i+8sNesGBML3vX5x2nYVqnIEjowQdlzEpYtDg8uOQC80+Hop9CbwratBHRD5AS84+QEDeZtfe2qYohrEUIPk2zbO6/v6tm6hNDyMlc1SvHAB35o1l91uw5Z6vvPcMJG8K04POkJg8fSThN78ELkjk2gdEYoDSYI7Gi67Hw8PDw8PD48r4wmBqxxjPMuwMQYKBCQftY6woE0FAUcINDrK2+eSrpvgjQ9+jNb1mxasbbH3v5/UD34AwK2np8pC4Fm5hrvJ0xkYYP/MMTpDt2IXTL71a7+F0hVkvPcce9/+bva94z0L1rbVgJUTA6U+3xDHw1OAyrsHs5ATp32iZi1r9yzc77uqqXDtSSvYEWgmimiSG0r4fEgBSnROQk1GuITz7U4Bh5QbQjrX0OCQXh0a3BZuYyQzQt7Mky1l+ejWrWSeeQZzZoZiby++tWuh7RYUI02LfgZJstk/9bNM9KcIbq0n8+Io5kSOwvk4/k1L62RaKZjxArp0BkVKUgSeD/jBtljrpNlSGhrQmpquuo+FJrjXDUPMHTgIvyyWI3qEqfwUKcXNYTf26mnaf64byadgF0wKfUlXRL6ZmXHv4S8HhbNLthQ6EhupaVQJ14qqwJnnni9vF3790guBaotbvKw0PIJWDg0OXDZHoOkVC7lusocnKJxLEFSPgSwKhciWzR0nLTqnhMNupnYT9rs/Oq/v69+6lfQPnwCE+/tKQuDG5jAv+kq8t8IR2KsI57g6/ipSdxClxkdpIIUxmqHmLT3ehJCHh4eHh8cc8e6cq5xSIs+YJjp2bWrNbNFNSgn3p0/5hBtQop/k2E8AaOjqoWXd/M4GX0zorjsJ3n4b/m3bqDtwlkBBdPaP0c1YcT15qZa1O+Ll7WvNRtJTU6Snp3jlB49y/MdPLmj7VjpWXgyURjW3AuD6IXf9TLielnX1F7/M41pQK1x7C1g1eMEdgckCmiyEwGlZJqMrbK7dwtsH3Xxd9g6Rqy9XGRo8x2IhsiwR9gkxMF0w0GSNbQ3CoTSYHoQ33UXwrruQQyHSzz4rXuSPQv16ABrUXhQpw/HnRvBvcPME5rzw4GvCtm3MeKEcFrzf76co2zQmIJwX113/tqV1A4JIU6HEYgBkDx0qH/+z4cEZ2RWEcsP9SIqE3iXWWcki5oxXVGo2NHhMUbCRact0smZqB3J+kI23xQBxPBT7+vBt3Upg376q/G1LhazrKA3C2VUaGUHTxXXQsH1oFduVHYFesZDrwrZsiheSgIlfPYjdsJG+WBu3nLP5t4/bpIJNlBQ/o90tbHnd/BYMulzBkMvR0xAirUnkSu61vlcOMJILkzX9yDNn8a2Pic9Tsiicj89rOz08PDw8PG4GPCFwlTOWGMWQRYe5SXLzvpkpdzY95dOwrRS+QApZngJJYscb37rgzgpJUfCt30D+2DGkbJ6dvaKD36cFaNbPEpHGaaqfxMYmJ2eIBhqQnRCWxPgYMyNDV9v9TY/tOALHdDdHZMOIKzIlandS1z43Z5eHQ0VosLSAVYMXOg+WmSiiSkI4uKCpzCgZTs6cYMuJbHmb0D0iJ2g2ES8/N9fQYHDDg9NOyPqepj3ldf+iHSf7/PNYmQzD//hVbMcBJLXtBkCRTGLKBGdeHkPujJSTxedPzZS39bgyds7ALppIJCnKXfw4KCoyrxlzv7ulDgsGkCSJwN69KA0N6F2dFE6LQhezQmBRtoib9UyWusiNj2FbNr4e91gseHkCMad7ATij+RjV4wyHBgiX6pC1Djq3CGHFGJ+geO4chePHkf3+ZeOinM0TaIyPg2mg+RRKlh+94hw3vWIhN0RpNINdMPHLh1CYxpo8TbJU5P6DGj4DItlxjrc3EL29jZa1c7/OXw3/1q2gquhr1lA8e+6K22mKzJqGEBcUhWBR9FEm/AqtgTQROcW//t5DnOz/SXl7b0LIw8PDw8Nj7nhC4CpnMD1YXq4z3Z9bTomCAJYkk5bP8LOf3cWWu+owSyX2vO2dbHv9mxelfZW5ifY4/cIRvYhpO0LL0Iv4N9URsEK06mt5/TsfLG9fKnjuj6sxGxo8UuEI9I87VTcllXhAwecIAh5zpDKP3wIIUbOVgxfFEeiEBl9wivfUJyya+51k8YEmXj3yDH/x8V9k+PRJ8SJJwh+eewL5WUdgpiCOy1uabimv+0ruSU456d3U3iHSh18RD1p3lbdp1M5TKpicOzqFr0cMDs3pPMZEbs5tudkQ+QFLhJXH0a1+ngyI32/NqLvNchACQdwTzMlJ8keOknHcoeWCIRLI2jQNWj8Ba4LkVA69omBIofcmFwJtuxwafEZz3VS12RaM3E+INojfvXD2THmdb/36xW3jVSgXDLFtSmPjaH7lMjkCnf+eI/C6EG5ACCr/CogUAWPZPDt7RX8qp/kYiuk0rVk37++tNTURvuceir29pJ9+mkJv7xW33dgc4bxmEnEqBydUk5wjWEetSV5+6V+8CSEPDw8PD48bwBMCVzljuXHW5zrZlltPW16ICrblCEHRNYzFmoi1ddDY1YMeEBVjI3UN+IKLUzU2eNttSH4/AHvPg2TbpH3TjJdEJ1SaPou/3e3wy6OuMGIUi4vSxpWK5QguY9oEALUpCzspOs6paDemNV6uBu0xN6SK0OD5dgSC6wpc6ByBVqqErAwAcEoV5/zbXrYwZJWJ+u0Mtr8eyxDh+NFGkT9u7S37qsKXr5VyaHDRwLZtdjXtQnKSFRTMAk/ucm9H+//6/xULlUKgKhLbn3huuLp6sFc18jUx44VyhdAZWQZLpz7VzdZBV9ANLBMhMHTrreXl9FOioEVl5eCUc24E5CQT/Wn0rgi+DTG0jjDFC6mbWxDIzaCU0gCc0dxJnljKj1l4Bc0n8gMWz7luLN+GZSgEAsbIMLpfvVQIlGZDgz1H4PVQ6EsiM0NAfhGAb9XWc9+rNrNR94N1QZAkmhdACAQI7ttXXk48/PAVt9vQHGZUsQkW3Gv9sHPfrdezGHYRuVUcz96EkIeHh4eHx9zxhMBVjG3bDJhDnA0McCxwllhODBBKGYVAeopYshfsEg0dIg/Mvne8h1/5wlcWtQiH7PMRuuMOAKJpizWjYKg5ThtufsJA5Kz7gsFSedEoeo7Aq2HnxEBpNjT4lhELpc6HJSnEa9YhyxPLJiRsxaFUVA1mARyB8uI4AkuDw+gIIe2kFqJtyuanDoBuGtTNnGKqYR3+sE9MEDQ0Eq6rp3Pbzut6r/qwj8awj45YgHTBIKpH2VC7obz++S0SOR3SARgYPsl3Tj4MLe57NainkBXwhTSsdiFgyUGVxJMXiD96zgsLvQpmooAmC/HngqYy4i8xFblAx4QoCKPU1KC2tV1tF4uG3tOD3t0NiDyBZiJBWHMFy3RZCEww0Z9C1hUwbUqDaYzx7M0tCMy4DqvTFcUTovFBwEJ1hMDCGfeeuqwcgRWVg0sjIyI02PajVVxiZ3MEesVC5o5t2xR7E2jyGUqsZ1KWecqnEs7ZzIQkbGCwTojujT1rF6QNNe9+FzgVgOOPfBu7VLrsdhubIyIVr12HZvioLzUz6ojb9T6RuqLUII4BpSFA+qWRBWmvh4eHh4fHasUTAlcxds5gVHbzw3Vm4wDkU27q7YyuUN85vwmh50pVePBZ0ck/LbuDUiVxEKVGDGCsoTyqJNrvhQZfnUKmSFrOklLEYH93v4U5XUCyTRKRLlTNE06uF0mtKLg+z8VCYHEcgbZhIU2fLj8e1lXe87yF6nyc/s630LR3N+/51H/hV77wlfL/650o8GsyE+kCAzM54lkx+NtS5xYp8IdjFO/cRTgHtx4v8nff/l2GzSx5vRGARq0f2zS5cGSKyUSRlv+0j+CtLVCwSD87TOJ7Vw4zu9kx4gV0SQiBfU4IeCxtE8kJV7V/29ZlNSlQvieYJpnnniOqu+G/yUohcCAFUO0QvZnzhTlhwTbQ7xQBi+RrkXPnUTW9PMFQOOsKgfq6hXF+XQ9qhSOwNDyC7oQGq1wmR6AXGjxnzHgBM1kkqDyLLp3i/4ZDyIbF21+2qc3YJP0hcrpGrLkVf2ju6R+uBbW+nsgb3iDaMzlJ4v9+77LbbWmJIkkS04UIJbXAlDbGeb9wpcf0HIpkEQ9Po6+JYk7myLwwijGdX5A2e3h4eHh4rEY8IXAVYyaLjFYUilifF3m/Ukl3UJXxSdR3LK0QGLr3Xvzbt5PY1EbXuOjkn5fdJNXSwAv4Nzv5jkybpoBwi3iOwKuTSxWrKgZ3O4UBJCAZDKD7tSu80uO1kJTKYiELmCNwAUTGWYypHBqucOCPF9l53uZMq0rWX0/gg7/Apjua5+396kJuGPp0RghQb1v7Nn567U9zd9vd/NyWn2PDfe8sb/OGmWY+9+LnsFt2AKDJJWLKMABDp4ZQGwIoYa18FysOpbFLnkvoshg2vkAfAP1OwaXuUYvJmkbYvIvAbbctYeMuJfx6d3Io/fTTlw0N9stJJvpFKLAnBDpUVAzOKeJcaMjXAiVUJwWHbdtlIVBtbUW5jnyfC4Xa0kLgllsI7N2LbRpoflVUDb5sjkDvXJ8rxmQOfW0Nuk8UWjvs09k53FEeCKT9Ml07drP7/ncsaDtiP/uzBG+/DX3tWqb/5kvYxqWibnd9EF2RiVtuX7BfEn1XWYI6PUs8Pore4VwbDIvE984vaLs9PDw8PDxWE54QuIoxk64QFJOidNrCAZZPurmDsj6lHBq8VOhtbZjJJDWnhtlzzkbNhZjWC0wbHZgIscq/XuQvkyIadbpTWdATAq9KKVtyhWDbpn5cOH6KWpicnELz+ZewdSsctVJEnX8hcDEcgaWxLArjmHYN44rCPa+a1GZhw4jBQPt9TI6W2LBv/oTA+pCvvDwrBN7Vdhe/f8/v88W3fJGHdj9EeJ+bHy50YoCnBp+iuFY8l6aGGkWEf00NxQGI3NNBcI/TRtOmOJCet/auJkrDcZSiEH+Oq0L4WT8q0ZCYgJOH0Ts7l7J5lxDctw85GIRAACOVJlIRGjwmiftXUEmgqBJ/+5vP8sS3zyHXOmGvfUms/E3qFstMMkOEc7p7farLiOv+bH5AY3wCKyWclMspLBhAjcXIHTpE7sABiud7UXUZUw5UhQa7VYNv0t/4BjAmchTPz6CU+ihI8FQohJwbKK9P+zXW7N7L3re/a0HbEbr7Lqx8nuL58xROn2Hm69+4ZBtZltjWVkPWdCeuB0z3uK73ZUmOjxF9Uxdy2HlelTGzlw819vDw8PDw8KjGEwJXMdmZFNOqEP+aZNcxUUq5if6zfh+x1vZFb9vFBPfsAUA3Ye1UmsngCGPFjci2AUMH8MUmUZuD2KkSayLCIeSFBl8dO2cwqgkhsC4Fel6c7qlwB5Y5hub3hMDrRa4UAhcgj9+sI9BawByBpbEsunwcRUpwQopy7xExwDZkidTGW3nHJ3bNa7hofdh1BE6mL3/u6uvWIdcIB8jmARtsmxP+AMgaYRI06sLxkZpyB3u+HtcxUrjghbtfDilxHlkS3/l5TQhCa0ZddWW5VAyeRdJ1gnfcAbkcmSefpCblCuLjshACo8EMdW0hcskS5w5OMFPvTHBZNvkzM0vR7CXHGDpMLSlOqe5kXyQhwiV1v3huuVYMBpAjrvPTTCbxBVUKhg/9MsVCvByBc8dMFFCkcWSpwDHdR0mC1opTxWzrXJQc0ZIk0fKZz5QfT/75n2PlLw3r3dYexSq51/dxxb0f1fuyxMdHkf0qge2isnDulQkKp2/Oc9/Dw8PDw2OueELgKmZoegDb6TTX2aHy81ZaiAuG6qN55y2o2tKHiAb27ikvbx60mQ6NkjBbkJz2y6k+1JgYwAbVCDG90asa/BrIRYtxTYRSrhlzB1KpSBe2Oek5Am+A6hyBC7B/xxFoL+Bg1xhNoUhCWEsP+Yg447CzHZ1sfUuYQGR+K0pfzhF4MZIsE7zlFgCiOWidhhMUwBLCX1QWIW25lPsaX4/rGCn2Jee1zasFOXMCEIfqhCau/+tGxTEmB4Pl4hzLCb2np7wcG3J/8ElZHEdSIUW4xhUG+uJF9I4weneEwrmbUxC2pkQeyHO6e+6GZ8TvXa4YfHZ5FgoBUKLuuWwmE5evGuw4Ahfy2rhaMZNFNKkfgIN+cTy0Trvfrd7atGhtCezeTfRtb0Pv6cG3aSPJRx+9ZJvtbTVgBZAscb+dVt0JoFlHIICv2xULzbTnCPTw8PDw8LgWPCFwFTOUGiwv1zghFZYJOAniM74IpcLySK4c3Lu3vLx5wGbGP0rcdBOHM3W2Kg9Ua2CdFxp8FWzbRjNsxnRxDKytcP+kwu3YVtwTAm8AqdIRaC9AjkB54R2B6YHTaLKosJpJBMg62sH55jpqmuY/b9jlcgRejosnBU7kxsuPo06OQKOkUsyJ0ECl3l8ODStcSGIvQM7GlYxVNFHMQSzbx7iiYMgWkaxNveOy823dUhaelxOVIlVoUKS4sG2YwT33Xv/OeoJRcVz1n0+SGslQvJAid3Ty5jsOiln0jDg/JqQAki1+05q0EFFmr/e54yeQHKHQt375FAoBkBQF2clZaCVTTrGQABqVQqD47zkC546ZKJSFwEOXEQKV1vlLBXEt1D74ixT7+si+8CLJx35wyfrt7TWAhO24AlN6GhMfFhBV8+QzKfKZNHLIvSZYGU8I9PDw8PDwuBaWX+/fY94Yyg6Xl4M50WkupVVmPRQZf2jZhIfqa9agxGIAbBq0sZQc/bLrDmDqPP5NrhDYFlznhQZfDcNCBUZ1kTh/XYUQmAxGAavsEPGYO3KFi1ZaECHQyRG4QEKgbVgkZo6JZRs2HCuil6C/AdJSAl8wOO/v2VAVGnxlIfDiSYET8TMQbAAgorjFjxITQsSUJKnsCrTzJqWx7Ly2e6VjpYr45aNIFDipiArMPWPLNyx4lkqRSr8whib7kSSYqSjUo+Sn2XynmDCyLJszinPepEuUhm+yfJEzomq2DRwOArZNd2ENmim+E83vx8rnSf/oR9iGQei++9A3b1669l4BOSrCg81k0ikWol8+R6BXNXjOmMkiqnwBCzjk3P/bpkWPsKAqaDU1V3n1/BPYsQO1pQWA7EsvYWWrr93rGkP4VBnDENf3oprn5eLbMCUfzYEMLf40ifExN0cgnhDo4eHh4eFxrSypEPi5z32OW2+9lUgkQlNTE+9+97s5depUef309DSf/OQn2bRpE4FAgK6uLn71V3+VROLqYT8PPvggkiRV/T3wwAML/XGWHcOF0fJyKJVmv7WB03F3cJX1+ZaNEChJEgFHAIjkoW0KLugVvf+ps6h1ftQmIVDU+dqQSvOXv2y1YWQMLCwaDZO9uTwbR8R3WVICZJ3QwOXy269EZK0ibHYBnEfSbNVga2FcL8WxLCDCCI28TKBgo9qQ8SmEChK+YOjqO7gOqh2BVxbx/du3o2/YQO+6EJJt05fsI10rChpF1CQKQkSMVwh+vk116GuiaG0hcscmL7vfmxUzmUeTziFJ0O8oKmvdW8PyFQLXufcq+cIwJUu411Oym+OWzARb7molXOujsTvCufE8p/Mmtm3ffNWDp0TI74wsk1UsbNkmKLu5AlWfn9TjP8RKJsGyUGtqUJbhZJASFWKUmUyi+2RsFGTL/c1ncwRahucInAu2bZcdgec0jZQi4y/YxDLi+8z4NPTA/E8AXQ1JksoVwu1ikcwLL1atVxWZza1RbMMVKAeUWjRb3D+2x0ZJjo+hVDgCvdBgDw8PDw+Pa2NJhcCnn36ahx56iBdeeIHHH3+cUqnEW9/6VjKZDADDw8MMDw/zR3/0Rxw9epQvf/nLPPbYY3zkIx95zX0/8MADjIyMlP/+8R//caE/zrJj2HJHe/vyfeyTz9CaHSo/l/Epyyo8dLZgSFGB9cMWE4Fp0qbjApwWosVseLBhFWmQlr7IyXJlajrLtJrkQLDIWVNHc/rG6UgHliUGyMvpt19pKIvlCDQXxhE48eok9arIDziRcgW6kToJCQl/aP5Dg2NBndnaI1NXCQ2WdR0sizXnMtx1ErBtTkUbyusjygQA8XFXCPSvi1HsTVIazpA9NI69AL/JSsUaOYssCffkaaUWqM4ZulyFQDkUQmtrA8DqvVAOwc/IFRNAmSlizUFe/6FNTFwQeQRHSxavZE0yx6cWvc1LipMfsF9zHZNtmpteQ/P5iP/zP5cfx37m/YvXtjlQzhNYKqHJQuyT7QrHl9Nr9RyBc8POm9glA1Ua5ISu4bOrC4VkdA09ELjyDhaIWSEQIP3005es394WxTbc6JBXiz0UbdF32RKdIDXS54UGe3h4eHh4XAdLKgQ+9thjPPjgg2zbto1du3bx5S9/mf7+fg4cOADA9u3b+da3vsVP//RPs27dOt74xjfye7/3e3z3u9/FMK7eCfT5fLS0tJT/amtrF+MjLRtsw2JUEgNm2Za42xR5YZIp93vIaG4lweVA4NZ92Gs6kW3YfgFmgiMkZvMEZiYgnyCws4EEU6iyTldwM/YC5lBbyYyNZxjTBgDYMAy+okROr2Wydiu2KQbInhB4/ch6ZSGNhRMCF+r47j04Rr0mhIPTaXeQlXEcQr7Q/DsCFVmiLii+t6mrhAYDaB1C5NcNiGXgZIVzKaqIBPFTQ64zXK3z41sfA8CcylM4f3MWi7gsI4fLi32q+B57nFQBks+Hb+3aJWnWtaBvEHkC7XSGeqdeSK6y15IR97ju7fXc/s611LWFSFjQX7I5cDaBkbh50kdYk8IR2FcxSdEZakG2LML5Iv5snuyLwnGl9/SUHfjLjdnQYADNcML/rYqJF8ct7eUInBtm0q0YvD/gxwDWjrrfdcan4VtkRyBA6I7byzkr008/fckkzn0bG2nwN5YfJ7U8Z3L3AKArJjXnvoWkykh+J6+uJwR6eHh4eHhcE8sqR+BsyG9dXd1Vt4lGo6iVVTsvw1NPPUVTUxObNm3i4x//OFNTV3YHFAoFkslk1d9Kx0gVGfML51e9FcbvhNPkihHSjeuJh1tJ6waaf/mEBgU2b0YeHke1RJGAqcAocaPN3WDqHHp7GF3yI0syLYEe8mMr/7daCCans0zqYmC4eVD89oHiDLlQM7YpQie9HIHXj1IVGsy8FyaQZouFLMBg10wVKU1ewC+LHGrTKVcQNiQ/SNKCTRDMhgdfrVgIgN7RWV5+vbKFlO46FGeFwJnR6hxwoVtbysvZl0fxEMiTR8rLGfx0TnaTioXw795F8LbbqitgLzMqC4asnXaq3soV4nhWXMskSWLf23rY97YebECRIBDSGPxe72I2d0kpjJ8Bqh2BPVKYO84Oc/u5IcJHjiOHwyj19cR+5v1I0vJMrTEbGgyglkR0SNZwz21bWfiK6qsRM1FEo5+CtY3j/iimBLG023/K+jS0JXAEysEgwbvuEikherop9lafs7s6Y4zNuPeojC/OSPQdZK0wM3Y9a1JPwuGvl8ODzdeYZPLw8PDw8PAQLBsh0LIsfu3Xfo27776b7du3X3abyclJ/vt//+987GMfu+q+HnjgAb761a/yxBNP8Ad/8Ac8/fTT/NRP/dQVZ5A/97nPUVNTU/7r7Oy87HYriemZCVKS6EQ3l2bDDEEaShKeOItu5DEUC20ZOQIlXSewcycAzXHAHCZeMQBg6hySJDHpdwf5mZfHFreRK4TETJ4xXTgCNw9UFAqJrcW2hODu5Qi8fhS94ruz7XmvHCwtoCMwc2AMn3Sh/NgXd9uuGiF8geCCVZGtdwqG5Eom2eKVXd1aR0d5eerccfYXJ8qPI4o4rpNTxSr3SGBbPXJQiCD5vuRN5Qa7GnLyOACTssyZmhGw+9jUmyH/ymHUq0y6LQd86yqEwCnx25bkiuMmU50PcsO+Zm55UyemDSdnigzsH8OYzi9KW5ca2UmfcU4Vri7JtmmbKRLNF/AZFoHjJ7HSaWI/+7PUffjDS9nUq1IODQaUknAERki5GzjXJtMLDZ4TZrKAJp9Fko9xThV94e4JdzJwqRyBAKFbbyV/9CjZF14k+/L+qnVNUT9rat0Qd6mtyKnBTp5JfIxaaQoZC44+jE8T1zk7b2IbXqSIh4eHh4fHa7FshMCHHnqIo0eP8vWvf/2y65PJJG9/+9vZunUr//W//ter7uuDH/wg73znO9mxYwfvfve7efTRR3n55Zd56qmnLrv9Zz7zGRKJRPlvYGDgBj/N0nNm8hSSDR2FZm7NigFxflpHskUHaSYsHDbLLTw0sHdPeXn9SIFjSkXlYGegEw9NYTmfo/DqNLbp5QO7mFSiwJg+jlayy4UBMsFm1LoQ4BQLWWa//UpCqQgNlmx79iudN+RZ14ttzWu+O9u2yb48Slg5T94KMVBqp2laDAqnwxKKpS1IWPAs9SF34Hm18ODZ0GAQkwIjhisERKReLDOOUYDUlCvySKpM9E1d6N1RrHiB5OMXuOmxbZTcSQBe8gnRr6lC+K0UXJcjvg2uENjp1P6w5IrQv8ylhWGa18XKyyXTJv7ouYVq3vIhn8RXEFEPs+HfbdMyNf/zrymoCkVFxrhlF2pzM0okglQRPrzcqAwNVgrC9SvZlaHB4v9CuKVXM2aiiC6f44yuYThu0K5xKGgRZkIhJ0fg0giBwYp+X+7ggUvW37PGvQ5MBeKAxLnCXRxJ302qpGP3PkU09d+REMKxFx7s4eHh4eHx2iwLIfATn/gEjz76KD/60Y/ouMzAJJVK8cADDxCJRHjkkUfQ5tiJXbt2LQ0NDZw9e/ay630+H9FotOpvpXNo+jC2BIO+MXoMoQTNjLv5Aaf8oqO03FxhswVDALb2RplUKtrnJEOXgjLD2bMkS9NIUYX86ZmLd3PTIxdMRrQk60dAdUSqYvtmInVuB9kLDb5+lIpwSsleuNBgmF9XoDGZQ20NE1BG8MsZRpQpwo5xbioiPtNCVAyeZdYRCFcvGKJX3AeaEjajuSksSdyuatRpZCUGwMi56lyAgV2NlEadcMIDYxQHUtzUJAaQLRH+94I+KwS6q5e9ELh2LVpXF4Hdu9Al55xTipQloOylQqAedM9N069iTOfJn13l9whnkswGhnRxLdo+FEaybQIlk776Gnj/e9nw9FPU/9KDS9fOa6AyNFgqiIJAklUx8TIrBL5GnmiPaoQj8BwnfOK7VA2b5pk8vlIK1SxhKfKSFAsBUbBIcvoj2QMHL1n/U1s2YttCvBwuTVDbEsRG4cfp32CyUINkFFDMCSLqNwEwPSHQw8PDw8PjNVlSIdC2bT7xiU/wyCOP8OSTT7JmzZpLtkkmk7z1rW9F13W+853v4L8O4WpwcJCpqSlaW1tfe+NVwivJV8vLtxbEwDg57s60zzj5VJabKyyweze2M1u9YSzOgL9Y7gAyJYRcVdc5nzpMVKvDGi6Q8fKBVVEwTEbHM4xoxXJ+QIARuZNgxHVQLaew8JVGpRCIZYu/eWTWEQjz63wp9qfIHpkgKovq4Rcy7vmf9olrwkI6AmdzBAJMZ64culspUDXGoWgVmY6J56KqK+qMnI1XvU4J60Tf0i0e2JA5NH7jjV7JjLr5AV9xkulXOgL1zuUtBMqhEHapRO6Vw2w65uYzG5Ode1lm4pLX+ALuuVnMGhijWeLfPY+9QBW4lwWTIj/guKJQkMXvu2nMnTBNhHzoy2zS70ooFY5AKesI+VbFpJXz+TxH4NywpkdRpUlOOG72zglQHLd5IiCeWypHYGVamNLgIKWx6pQve7sakCwRxZIxptl892xfXuKpqbdiy+JY98svA6bnCPTw8PDw8LgGllQIfOihh/j7v/97vva1rxGJRBgdHWV0dJRcTtj7Z0XATCbDl770JZLJZHmbynx/mzdv5pFHHgEgnU7zn//zf+aFF16gr6+PJ554gne9612sX7+e+++/f0k+52JjWAZH8icAqDd8hEshRlmPNS06R2YgRMYZ9C+3wYESjWKvFTkae8ZgWh+nr7CXaaMdKzkKto2q+xjN9ZJzwgXzJ6cwU16C6FmODiUJkWBMkdhUkR8w07iRYNQdTC83EXgloaoVoWoL4AiUK3L0zacjsDSepWBDjToCwFTSHfgVZXE8LKwj8NpCg5VIBKVGOIOaHeFqtEbkC/UrJXTEcXyxIxAgfGcrencUtTlI5vlhikPpS7a5WfjJ/oOUrGamrS4uBIS7qivunvfL3REIoHcLYTeQNQhnxbEwLDuu/cylRcD0CiHQdJaNsSzpF0YWuKVLhzl2nDE7xn65p/xcz4R73UgEfKjL7F5/JeSKiAwrlULzKUiVQqAijgEvR+DckGeOAXDSEQLXjFXkDg6I73ephECoTguTO1jtCpRliajWIB4oSaQeP6EaG8ucIa3czVTt7ZiBLmQpRUB+BivtCYEeHsuJ7JEJhn7neQY/+xwTXzry2i/w8PBYFJZUCPzCF75AIpHgvvvuo7W1tfz3jW98A4CDBw/y4osvcuTIEdavX1+1TWUev1OnTpUrDiuKwquvvso73/lONm7cyEc+8hH27t3LM888g+8mCYU8M3OGnC3E1N05jVopSW2iD7kkOkdGVzs4rrvlKAYFdt/CaAyOd4KeGkCRStSpQ8jpYchOofl82Nj0pp2biSUKIHgI9vdNE9JEXjBLgvF6mZyvls57t2E6ydeBZVUxeqWhXCQEzrcjsDI02LLmz/lijGUpWkkCshDR0yWZM60wFZUoLYYQGHrt0OB8yeQ/ffMw8VijeE0KFNNmJNaO3bSN8UKYWvkwANPDGfIXuT8kRSa4pwljTAhfN7NjWJvqRZPHOBscw3Iqx7clhTgmaRpqU9NSNu+a0Hu6y8utjhl0WHKqSBdTUKouBuKrCA2264XrWW0OYkzl5zXf5nIiP/AKzVKc7GwhLdumadyZKFMVipq6LO/1l6MyNNhKJdH8Clhu223HEehVDZ4bSuYkBnBKF/euTUPud5ooC4FLFyVQmRbmcuHBTb41GPkWjFwbp9OjSIqKrNQiKY0M2mtQcv2o0iSaPOSFBnt4LDOsooVdMMGwMGe8Qm4eHsuFJQ8Nvtzfgw8+CMB99913xW16enqq9jP7mkAgwA9+8APGx8cpFov09fXxl3/5lzQ3Ny/+B1wiDo0fKi/f4oQFp8dd0afY4YZIL7ccgQC1u/fSEoft/dA+M0ncaHNXTp1D1cVnOZ9yZ5Wyh8a9oiEOL/fNgO88TTOw75xN05RFOtTOlnvaKRUqQoNXyMBwOaJoFaHBtr2gjkBrPh2BYxmQhgGYUGTWDVhsGIH6pE3GEYYXLzT48kLgD46N8s8HBjlUEu4U2YaGJIyEYkjjx2jypWnX3MqSo5dxBQZ3NSJp4jvMvjKOVbw5RYNAVkyQHJoV/W2bWEJcA7T29gWrDj2f6N095eXWaXGejVAhWFyUJ1D3uyJ6ybbRu6MYY1kyzw9jTOZYddg26phIBXJOFeduYwL0nBhszbq9Vsr1vjI02Ewk0f1qVWiwVXYE3pzn9PVgGxaqcYpeTaPgnPPrRqXy+tQyEAIDu3eXJ6izlykY0hiMofpHUYNDHJ84R1O3EIwlSWVw0j22VWnYcwR6eCwzZF9Fnzbvubk9PJYLy38U4DFnKoXAfXkxEExM1JDxN5Jr3Uy2ubG8fjkODvwbN5aX22cynMZ1rViTZ8pCYMaIU+yx0Xucgd7Lqzf061qxLJsDF6ZJaoOsrQj9kdZsorknSqngzsQtx99+paBqlVWDgXkWoSWloljIPA14rYKJOVNAkUR+wBOaTqejoWRqA5hOXkJfMDwv73c5GiqKhUymLz8r/I2Xhdt7LFRXfq4pbjMScAWC9VG38NPAyelL9iH7VQI7xXXOzptkDt6cjuFIUeRIHFBUGnJtbMp0oxScQlErICwYLnIEOkLgaeqx2m6B+vWQrv5tZUVG84nzp5gz8G9xj6NiX5JVR2q0XDH4mBqiLtvEHb3u5FkiOCsErgwHeGVosJlMovsV7EohcDZHoFcs5JoxkkV09TxndI2OooE/1UGbU3E9F4xiKDKqz4dc4URfbJRolPCb3oh/61bMmTh2sXqiaHP9hvLyucQ5Wta65/XwRATbKSalSkNejkAPj+VGxXy2lTNWrTvfw2Ol4QmBqxAJidZSM0FTZ5MTNlWY1AjlJ/BPnCdb4w6ol2PBCH3d+vJy56TNKdUVJnJ9J6oGNPmmYnlwl/zXCzd9SMj5yTQz2RIJLcua0YqiAJs2I0kSRqUjcBm6QVcKakXlcskC5rlTsxCOQGNchMpqjiPwnOEj5GhxxZb68na+4MLliaoLuefu5RyBF6YyPH9OiBqjwUohEEZLaWjeDkCDPIxfmsYXsjj+zPBlxcDQbSKnoNLgJ/n9PgrnL3UOrnaillB6j/oCTAaGsROD5XVaR/tSNWtOVDoCW5zQ4LxsIw8fEgWkUpeGfs+GBxdyBr4eV1gqrEYhcESEyRvAiYDNdHCc2Izrkiw7AlfI9X42NyiAlUyi+VUky70mWbK4HnrFQq4da3ISw6jnlBZjUFdpzA+gOt9fKizOD98S5gecRfYHyB8/jjEyQqGvr2rd7pZN5eXhbB+NnRX9wlwYOyJyS6vSMOZV8s96eHgsPlURW6btuXY9PJYJnhC4ysgbeb7f931GtDG6i0FUoJSVISsuutK6LZRK7gV4uRULAVDCIfL1opPXOQmHfW4IS2n4NKruuooKoTzB3cL5Y2UNMvtv3nxg4IQFYzOtj7Gm4quou/MWAEr5ytDgleEQWY6oarUjcP5DgytyBM7TgLfkCIE+WQiBUyn3M8jNroNoIUODYwEN2TmdT44kKRrVIud3Dg+Xl0eDrjjZlLAZyYzAhrcCIoKs3f4LChkwShaPf+k4X/70s7zyw/7ya/SuCHUf2ow5U8AumMQfPYdlrOLKsReRzOaIEscCBjRxPG3MxMrr9ZXiCOxoB8chO+sInFIqrl3J4Utf4xQJKWYN9PYIKOKgK/atQjHYEQJP6RoFRRzfW0bd72e2IuxKcYDLPh+Sc4+fdQRaFTkCTWlWCPQcgdeKNXIGv3KM87oQyConCZNOKP1SFgqZxbfenQQunj1bte7Wti3l5XhpgIZOd0JbVpsohcXEhixlsVM3pwPcw2PZYlb3vYyZ/BU29PDwWEw8IXCVMZxxB0WdJXHhzU26A/7Anj3VeeKWoRAIYPaITl2wADNmEtMWnVU5fh61QsAyCgVqfmoNSq0PrTNM6smBmzr/xPmJNG9uLnBKg/Vj4vcvaGFab10H4P72klQOsfaYO5q20MVC5r9qcMkpnhFUxDWimHA/g9bgCoH+BQwNlmWJ33vPdm7pjDGaLPDg375EvuQKnY8eHmZnRw3b26PYTc0cr+3mTIuKXqJKCARYE+zDMvrwBVU6t9SSiRc5/MQAR58WrjdJkvBvrEVfU4OkyyBLzPzTqQX7bMuNieEBZMliTFEoOofThmKFG7yjc4laNjckXUdrF/eD1hnAtpmR3Hva5YTAWUegUbKwJNA7xOc2pvKrrsK8NfwKAIcq7uVROYR/1y4yjfXknXymK0UIBJBrhEtNCIEqWG7kwqwj0MsROAcmewE45xQKaZuUSYY6SNauZ0oV/aWlzA84i2/9uvJy4SIhMOILI5u1ABTlEfSAgh4QbZeUJrKqO3Ekp/sWvrEeHh7XzMU53M1pTwj08FgOeELgKmMw5YZ+dZqiUEh2wh00xe65/SJX2PIcHAQ2uPlg6rLDJExR7CVQGkCtqNhaKhRQanz4N9VRGkhjF0yyhycWvb3LhYP9cbTET8gUNEI54YLJ1/cQjonfeTZHoKb7kCTpivvxuDpKhRCIZc97oRpZmf+qwcZYBrCJyMPEZZnojPv7FyvSBSykIxBgV0ctx0ZEiGbEr/JdxwXYO5nh1FiaVwcTBHWVDVvXsHXmAhtGDbomYDo/Tb5lB/hjFKQQISWPlX6YW9+uEYiIa1x6psBIRfEQ2a/S8IvbQJEpDabJn5rBvklcgTNjFwDoqyhs055yl1dKjkBw8wQGihDLQEKuKNaTujQ37KwjEESewNUcHmw6QuB+n3B0SbZNY/8o+cOHkYvFcgGGlVQlfrZysOU4Ak07gOykXzAcR6BXNXgOzFwgJ0kMquK82DysEc0MEp05S9ovnltujsDCmbOXrA/L4polKXlOTQ1R0+hUQJc0RpNuX1bOXVjglnp4eMyJi/pdhicEengsCzwhcJUxlB4qL3cZItdWakI4fGwkIrfuoZQXlRMVTasSHJYTdVt2l5e7khOM26LSsSYVMOPx8jqjJNwds/nAADIv35zhwbZtc2YshRo+VhX6I69xi6/MOgKXqxN0paBUiNHyCnIESvYMmpzne6EgHZNum7MhdxDoCy6sELi1LcrXPno7dUGNHxwb43e+c4x0weDJk+Plbd64uYmdG9soOoJPTUa0dawwBbf9MrqdoyOUZH1kkvFzB7jzPeuQnfDPif5U1fvJmkxgk3CS2AVz1QlBVyIzKYqu9FeI1nUzFWkhVkiOQLi4cjBkKqsdJ4cu2d5XIQQWsgZ6pRB4Pr4QTVwaMpNo6WFsXEdgfdKH5IhkBZ8QyBVNW9JCEHNFiYiJCSubRdPBsHU0RwicDQ32HIHXjpTqp09TsR1RuH1KfHd2IERBXT6hwVpnJ5IT8VE4d+6S9Y2+rvLyy0PH6drmTmac73Pbr5iDN82Ej4fHSuDiyXJPCPTwWB54QuAqYyjlDoqai40M5jdTiovHxYYulEjEdYUtw0Ihs8S27Cgvd8WTnDNdoa80PFBeNpzPoreF0dqF4FkaTFMcTi9SS5cP46kCybzBaGisSggM73a/y1k3qJcf8MZQlApH4ELkCFTmN0eglS2BLKE1jfAvegd/VFtLp2OctZrryRuuQLTQQiDAvp46fmqHEPezRZNHDw/zo4uEwFu6a8mEhIATE+ZmRjOjsO6NSE4Jun1tKTKJGRRVpt45/2fGspQK1d+Zf7NbeCR/mcIiq5HSjHCHVzoC/UWJwJ5bCL/hDcgVRRmWOxdXDi7JBobiDPyTlzoCq4TAnIGvO4p/Uy1aR1i4Quf5fF0yRl5lLLSJ70ubmFbFZ9oy6Qq8KzEsGNzQYADdzlOy/cxecWcdgV7V4GtHyg1x1pkQCORtapxCTVJnV9kxuhxCgyVFQV+7FoDihQtYF1UO7o6sLS8fmzjD2t0tBIL92FaWqeJt5XV6cHzVpQDw8FjJXHzPNb0cgR4eywJPCFxlDKbd0OAeq4+61DnsaBAbCdaLiptFxxG4nMUg3zo3V0znpMUR3PwvSsIVAmdFTYDQrU6V0Dof+bPxhW/kMuP0WArkPGcCRaJZSDv9+sZ795S3KQuBy1gEXglUhgbLFjDPusJ8OwILF5KY03lm4i9R0GeoT9kEnXFSZNNWChlXOF/o0OBZPnir6+74hxf7ebFXOJjbYwE2NIVZ1xhmXBFtCeegRW9kKjcFXXdCvQgha5aGmT76Y0yj5FaRtGFysHoiwL+xFpxI6Pypm0MIlJzceRecYzWStVFPnCN38BBWKrWiUgPoPT0ATIegNmWjayVy/iax8nKhwcGK0OCsgRzUsC2b0mAaczq/elyBI6/QnDlF1HeB5rw4/renG8ur84q4jqw0B/hsaDCAbuYwbH/ZEWhI4r9XNfjaUUrD5fyAHW5BafQ17jV4OTgCoSI82DQp9vZVrdva4KaMOZ84R1N3lKY13UhykJTZiOXkklbyFzwh0MNjOXFxaPBM4Qobenh4LCZzEgKTySTWZQalpmmSTN4c4VbLndnQYMWWaDZM8tM6ctIpErBzG+CKZ/oyFoPkUIhUvWhf53SJQ6rrELAm3fwvRtG9mQR2NqDU+TGnC2ReGMG2V4nr4xo5PZamLvQKpiSxq9cmnIOSP0rdTiGqWpZZDqVeziLwSkBWXKFBspn3MKT5rhpcdMJh90eO8t8b62mZcted7D3D8Bm3iMZiOAIBtrdH2doqzusjQwlKTujIGzc3iUIfmkIuLAQBGchPjzOQGhAOlj0fLu9nW2SEmeEhGrvcPIeXhAcHNfRu8V7GRA5jKreQH21ZEMiIypn9jits04QrXvu3bV2SNl0vvrVrkQIB6jKwfhRKdpaUzxECi2nIV/c/fAH3sxZywjk2O1EEkHl5lVQVdSoGH/HrjPmF+N1Rcu/rWSdcfqU5AmdDgwE0M0vJ9lUIgRYSslc1+BqxLRPFGuGcMyHQWZESgrbW8qJvGTgCoXoSuHD2TNW6PS2by8ujTh7At/7yXWANgaQRdyJHVGmEx/6/P+KRP/xd9j/6yCK02sPD42pcUiwknp/33NoeHh5z55qFwEceeYR9+/aRz19q583n89x6661897vfndfGecwN27bLxUJaSioqUHSSw0vY1O3dgm3bbp64ZS4GTe7q4lgnjNTCdMGm39zHSHEjwUIvIISSSiFQCWqoteIzmdN5jInVP9iv5MxYigb9HLenczQmxA3WjtShOGGmRoV7cqUNDJcbslpRrMAGc56FwHl3BPYlAYMTAeGG65ywmayrIdPazIRsE4qJHHodW7YvWt5QSZL4N3d0cf+2Zh7YJooBbWwOc/82V7AxamrLyzUZmMw5dpZdP0dOb2IgE6U9mGBqsJ+GSiFwoFoIBPBvqUPviqB3Ryn0JS5Zv9qoKY5TgnKBgN0z7mSKf+vKEgLVlpZyCGPHpI2kFIgrDe4GF1UO1gPuMVx0hMDA1nrkkPguckcnMTMlVjq2IwROyK7w2Yz72TOOe26lXe8rQ4PVUg7D9qE5Y8aiZKHJOpZp3nSTfdeDNTaIJBmcdRyBXePuvcVsdt2jy8YRuKGiYMhFlYM3NNVTSm3CyKyhaIg+r+730blF9PtGi5uIl7ZSsDbjK2aYuNDL6Ree4/Dj31/Uz+Dh4VHNJaKfBWbCcwV6eCw11ywEfuELX+BTn/oUweClnYVQKMRv/uZv8md/9mfz2jiPuZEsJkmXhCugzREmiil3UBDbuUkIZ07nebmHh6o1MbYNwLpRaE7GialDtOqn6dBfxaeJgUJlaDDcnLnAZjkznqYUHqC/4Eexnbw/nW7oT+V3tdJCxZYdFWKZbIFdmmdHYFXV4Bvbt12yKA6m0KTzHHYqRG7rh4bpBKGRMYymBmItrYTr6lm37/Ybeq+58m9u7+YvfmEf+3rqaIn6+cC+Tl63wRV4lHo3JUAsY7tCYLgJO9JGZyhJRzBJ5txLNLSHkeTLFwwB8K2podifonghSeHs6hYCTcumzpxiWFUxHQFt/Zh7u19pQqAkSeWQweY4+Mwsk5J7rSdVLQT6ghWOwKwQAiVVJniLEJyViE7u2CQrmlwcaaYXgBHZFcGzx4+VlwuOC2wlVQwGUCKOEOjzIeeSFzkCbTRZfJ75KqS0mrFGzpGRwJAkJBt6KpzBRr17Di2HHIFQERqs6xiTU1XragIamiKhhnrJymcYywpn7y33v9nZQiamHcevvEpDKEBqcoKRMyc589Lzi/gJPDw8LsGsvlZLAcUrGOLhsQy4ZiHw6NGj3HfffVdcf++993LkyJH5aJPHdVKZH7DTEBfYfEpUDbR8IZRYrJwjDpa/I1De5IaIrIuP0uu/AwBFMukJC1HLuCiZ9M0qBNq2zemxFDk9Seu0O/NWs8PNqVP923tC4I0gVQh1kg3mPCeur3QEWtaNhQYXh1Jg2iTVQ/TpGpJts8mpKVTSND781W/ynk/9F37lC19h3zvec0Pvdb189J61vPBbb+Kj96ytet7X5DpWajIwkZtwV258q7vd4DOoukJti5iomhnOYF4kzuptYVDF97raHYHjyRx10jQXKgqFtAyJFBGS34++Zs1SNe26KQsEQMdMlhEqhMCLCoZUFwtxnX+hW5vRWoKY8QLp54ZXtqNs1O1vTcjuvVxLuWHStVu3ccf7Psj7PvO7i9q0G0Xv6UaORKBQQElPixyBTiLWkmSjyaJfY3rhwa+JPXqO4z4fo6qKbsnlavFyNEqx4vqwXByBans7Wns7lErkXzlUtU6SJJr8buGgk1MidNgfEeJmznIF8Q3b3DDi0mUimTw8PBaPSkegpMvYOfOmSNHi4bHcuWYhcGZmBuMqg91SqcTMzMy8NMrj+pgNCwboNDJYJphZ8RNLrZ1IklQOC4bl7wj0b9tWXl43PcnR8B3lx2vDYia4MjQYQG0IoNQLkavQl8TK3xwDhbFkgXQpTka1aK04DYOb3cFz1W+/zEXgZU+lEGiBbcxvmGGlI/BGXS8FJz/gsaAQDtqmIJR3Eu6v7VnWRSPCLU3l5arQYMC/5/3l5brMcQDaN8ZoXVdDy7oapkczVfuSVBm9UwwUzZkCxioOS5mamsAnFYjLMjszKlsyawiOiePAv2kTUmVo+wqhUgjsnCkwZLhh45eEBl9ULGQWrTmE5BPrjLEspYuKyqwonLBggGmnKIhu+PE71yJTllBiNfiCIVRdX5ImXi9qYyNWSrh67ZFBTLRyaHBJAlUS9y/L8AqGvBb2dB8HHUeoUjKJZkU/wLdhA4W8OxBfLo5AWVWRAn6wbYoX+i+5/9VqneXlAyMnAQiExfGdt9yQclJT5aJelX0fDw+PJaBCCLSL4pw2Jj0h0MNjqbnm0UBPTw/79+9n8+bNl12/f/9+uru7L7tupfI3//FX6N60hfHeczStEe602eUr/Z+Pbfa+/d3X5cyZLRQC0G4YlNLuz+tf1wNAsWJmVF/m4aG1azaS9kM4D+um4vyjfwcfsHxocoHuwHlg5yWhwZIkEdhUR/r5YSRNJnNwjMhd7UvzARaR3sk0/qBwS1U6An1resrL1ULg8v7tlzsXOwKt0vwKznKlI/AGi4UY41mQipwIjAMqmwfc4yN6xx1XfuEyoK7TzRcYy9hMZCewbRtJkpAbN5G0IkTlFM3KOGZ6ikhdgCNPievg9FCaxs5I1f58PVGKvcINWOxLou5qZDWSGh/AtBX6dI1XQwZbL5wrr1tphUJmqcwd1jVVorc17K68ODS40hFYMRk0PZJhsjGAvzdO0ZYIvTxaFodXHBVCYFIV4l/IiBCWk9iAv6OT9/zm7yxR424MvaIvaY0MQFRCddJdmBKoTk5Er2DIayMl+jnkTPx1TNoYsoZqlfCtX0+pSghcHo5AAL27h+LZc9jFIsbIiHAIOmyIreeUEzF8YvI0AAHHEZi3K4TA7CSaz49ZKnlCoIfHEmObl05oe0Kgh8fSc82OwPe+97389m//NmNjl1bbGx0d5bOf/Szve9/75rVxS01mZppiNkt6eopiNlu1fKX/N7LNwLEjpKen+Mk/f+262juUcoXAjpJRLhQCENkiBlErKTy0PtBAb7Po/NdlSySm4oxKtwAQUpI0+7OXOAIBgrc249tUi10wSf94CKu4+l0DZycy+NQ+AFoqHIFaxYCqlPdyBM4bF+cInPfQ4PlxBNqWTe74NBHt2xwJiPNg86ArBDbf/8D1N3IRaOluKy/XZKBoFUkW3dDHqcAWAGQJcj/+c+ra3IrH0yPVjkAQQuAsqzk8uBgfQsZkTBLn+ZqK2/ZKyw84S2U10Y4JOFusuIZdFBqsBy51BNq2zdNfO8mPfjjI95Mmh3Mm2VcmsAor9P7gCIFJVAqqSJFRlwlip8VxrzU1XfGlyx0lGkWpE6HfxsAAQFkIBJAVJ+XJPFRUX+1YmX4OO47ADcN+VKuE0tJKYNdOCtlsebvl4ggEERo+S6Gvr2rdzuaN5eULqfMAKKqMHlCrQoPJTZf7uF5osIfH0lJVLEQV13JPCPTwWHquWQj89Kc/TSQSYcOGDfz7f//v+dM//VP+9E//lI9//ONs3LiRcDjMpz/96YVs66ITqq1DDwYJ19WjB4NVy1f6fyPbzGJep7soa2TZ07SHTfkoHUa1EKj39AAXCYHLPDS43l9Pr2sIYnt2lETt65ksdTNU2EpXqHBJjkAArSWEk04IM14g9fTgJdusNkbiOcK+CwC0OY5AyR9GrXXD54oF96a73EXg5Y4kSczKc8IReOlxeCPI85Qj0BjPIudHKKrfJCNL7MkV2H5BiIyWohDcvv2G27qQNF8kBEJ1eHC+/W7GciFmCn6C+/+MxoKbFH56+FIhUO+OgqMnFPuSl6xfLZjJUSQJEpo4SgMFG23fLfg2bMC3adMSt+76UFtbKTrFbjonbXoLMrbkCOZXcQT2xP8WvvVRin9yBxNnR8vPT5s2UnOA3JEJVhzFDIQaOCRt5hlcYbct4X5utbl5KVo2b8z2WcyJcVQzj2K518TZqu3znZt1NXJWkkk795ONQ8L1Z46OoPesoZirFAKXkyPQFQKLFy5UrdvU3IBVjAEwWRgo5/kMRLSq0GDZThDwCWHQcwR6eCwxFY5AtVaMP4zpPLa1gvP0enisAq45NDgSifDcc8/xmc98hm984xvlfICxWIyf//mf5/d+7/eIRFZoiM0V+Ld/8hdEo9HX3nCe+Opv/ioTfecpq1hzwLZtnh16lnghTq2qELMsRisqBpeFwBWUJ05TNEbbg4AY0OeOHcf+hQ/QEP8DAJRoI6+MXBr2K0kSsXesZex/HQTLJn9qmuDeJrS65S183gjD8RyabxytZNPg6BtKfSv7H32EgeNHGO89RyBaU95+uf/2KwFLFm5A2Zr/XFXzlSOw0JfEJx/mkbCf87pO04xFNCv2J61bi7TMc4dpsRpKsopmGdRkxXVxIjfBuphwh6lb7ufET77Nfc29YMHA9/4XqvSrGHaEviN97H/0fFWaBdmvorWEKI1kKE3nsbIl5IoKs6sFKS0Eryknd9y2fij1i8T7K7FQCIjrerItSsP5aZoSIBkp7LpmpNQwJKonexRNRtVkjJLJluJX4IiFD1jvf5YTubcAYNkwfD6JKkmE9rVc5h2XMaNH4cJz3AK8Kt8FxAFoTrrXDbVlhQuB3d3kDh4EIGLNoNiuECgpoutq32AhpVVPLs4R+TQ4hXXWjjnuWOAfvvg/MSryw/qWkxDo9FcBihc5Atc2hLCKzch6HIMco5lRWsOtBMI6uSm3v65IScK+tYwjoiFmU0p4eHgsPpWOQLXejzGRA9PGnMmj1q/esZmHx3Lnmh2BADU1NXz+859ncnKSsbExRkdHmZqa4vOf/zy1Fc4jj+tDqZjlnms1w9HMKPFCHIAtRRsJLnIEihnWypwwy90RCJBY01Be7pwaoG7zRmYQlUVb/BPoRuqy35XWFCRyXztaZ4TSYJrk93oXrc1LwXA8T1ZPVoUFZ1B58dvfpJDNkJ6eQndcgLvvfztb7nnDErV09TBrUJFsCXuec1VJ85QjsNgbJ6r9DQ9HxCDv9lOgmRZxv07Dz/7sDbdzoZEkiVxIDO5ijsFvIus6uDq2bGf9x7/EjH8DOUNlnXmIXf5/AsC2wzz7j1+75PsL7GpEbQxAwaRwfnWGB6uZcQCmHEG5KSUGwHI0ihIOX/F1y51sh+uc70qNkFnzANR0QnYKUtVpS/SAik9KIUuukL636Wm6d7j7GCvZFPtTlMYudY8uayryAw7h3iMbM+69UFsljkCASHECtUIIlJXZvpInBF4Ne+wEzwTFfV8xbRriYpawEA2TTMSJNQkBfNdb3kawJrZUzbwEvbunvHyxIzAW1NHM1vLjcwmR/zQQ0chVOgJJEtTF5KdtW5il+S3o5eHhce1UC4Hu2NOY8ty6Hh5LyZyEwFkkSaKxsZGmpiZvhm0eUSoqOc518H98+nh5eWPeR7y0kVzKCf+sqS0P/iqLa2j+5e8Ks9tbGKyDU22AZRBtC3E+c0t5fU9o6ooJwyP3dmLOiJtM7ugU+bPxRWjx0jCQnCCrGrTOuDfbnOajmM3gC4YI19XjC4cJ19VT09RCILJ4TtfViuVc+kRo8DxXDa4QAm/EEWj0HuOVQIF+XQHb5v5D4hoTyxeJve51N9zOxaAUjQEQzYJk2VWhwYFwhI6dexlc90sEVAMVkyZfH+CEb9sR8ulU1f601pCYjQZyJ6cX5TMsNsH8BDYwJStItk1tUhxDWmvr1V+4zCmsaaG3CY51QnN2iix+SIgccgy8ULWtL6gSUSarnqspHOP+n5aQnRxFYyUL27bJvHxp7uNlTYUQOCW5kRj12Yrwq6YVLgRWhIfWqXFkuyIvq+JUPfeKhVwR27b50itf5plAgB35AruG/Ci2OD4KjfWE6+rxRyKE6+qJtbRWudCXGrWpESkoJq8udgQCNPrdY+Pk5BkAAhGdoh3EcgRjWUoSVNxzwwsP9vBYQoyKe1NjhRA4kb3c1h4eHovENYcGT05O8tu//dskEgk++9nPsn2Z55ZaiVQJgYZR9fi1ODF1ory8s9RPxMozkheDPq2rIt9KZZW4FeAIrA81kArClkGAE2RnZkjE7oHStwC4vWEAY+gwyqt/B3f9KtS7CeVlv0rNAz3M/LPoKOaOTeBbV7PqxGvTspks9OIHWit0jazPhy8o8Z5P/Zcla9tqZtYRKFssgCPQHZRdryPQiBdQM6+wv1EI/psHoSkuchkaa3uqBtrLmto6GDqPbEMkJ0KDL2bH+z4OZ34fimnaa6ZnIyWRlHpyqWSV28W/tgZJk7FLFvlT09iWjSSvrmtCtDhJWpIoyhKxtI3qHEIrXQi021tYI8yOHI2NMxa7l7Lc1f8CbH1XeVvNrxBSLj1WtOHnad94BwPHp8nZcKFosf7MDFbJRNaWjxhyVRwh0LBl4rI7oRfLu9cKtXnlFgsB0Csq3suTQyiWAogJF1kRg0qvWMiVSZfSPBp/BSSJEz6d/3p0C7AfgA3v/yB3/NKDS9m8qyJJEnp3N4UTJygNDmGXSkiam8KhJ7KWcSct76Fx0fcNhDVAIm9FCSpxZCmJX3aLR5UKeW8C1MNjiajMBag2umkIPEegh8fScs2OwAcffJDm5mbe85738La3vW3Ooaser42iuh2duSbBPjHtCoFbikXycQ1bgmSoneh995TXVecIXP4FI0TBEHeQnjp6DH39neQt0cGr1XPof/9OOPBl+Os3wXR1CHBwTzN6dwS1KUDmhVGMsdU3+zSeyqNrI0RNi7Vxg0IY5Gg7aU3xqgMvIJVCIPM8IJWVG3cEFi8k8MnH+UEoSFexyNsOuBMLNe9//w23cbEItriCRk0GJrOTl24ky9CyEwBfYRifJELgZKWNXLK6KIikKfjWxQCwUiVKw+mFafgSEjOmy2HBDRXRz1rbyhYCA2vciZ62VJwLwYoJyf6fVG9sQ7jSERhuhto1cOwRbnlrF7ve1AnA4ZxF/2Ca/IkV4g4t5WFC3O/P2u3kVPeeHjJB6+jAt3nziq4aDKB3dZWX/elxlApHoKI6QqBXLOSKfOKJT5A18/gsi4/FE0Sn3O9qJVQOL09UmSbFweocoFsbNmCk12MVY5x2+r6BiMh3O1s5WCbJeEWERClfwMPDY2kohwZL1Y7Aklc52MNjSblmIfDgwYP87M/+LB/4wAcYHR1lYmIFVtpb5shVQuDcQg1nHYEhS6PdMMlN6kg2RDND6C1uIvTqqsHLXySqD9TT2+wKgYXjx2ndUEd/YS8pw8n1VHLEvZpO+Nu3wdc+CH+0Cf727UhPf47AzkaM8RzYqzMUcDieo9Z3gaQio6cUfGmwkkNkVGtFiL0rldnQYNme/xC1KkfgdQqBpYkcsn6SXk1jWNbQSjLpYAslVaH9Q/9mvpq64ETb3BDHWMa+rCMQgNZd5cVGTUwIKL4dHH9umuPPVVeV9W+uKy/nV+E1IWrPMKk6QmCyYiZ+hTsC1fY2TOe8a08mGSsFoMkRNUZehYIr6jZ0hKkNVP62Nsz0wvgJOjfVUsiJczYkQ8qw+Ye/OMrf/fbz5NPLPJfY+HGwRNuP2T3kNDf0PZLJURocpHDyJGpj41K1cF6QAwFUp++ix0eQ7YqICVnYwUzPEXhZTMvkxPQJRlSLOtPil6Ytgin3uunfsnkJW3dtzOa1hkvzBG5sqkdScsh6nNH8BRKFBIGI6D/nbeH6k6UCwYohjhca7OGxBBhFeOmvCKX+lrDyCMgSSkRH8on+ieEJgR4eS8o1C4Hvfve7+cxnPsN/+A//gZ07d9K0wmeblyOVocBzcQRO5ibLg+MNRR0JyE661UCDe/eUl1eaI7Ah0MD5CkegceokLetqeCLxCb46+dc8NfMzxH/qr+Du/wAb3gqpYcjHIT0KF56FZ/+EQItriVmNg/6heB4pIGbM61Ozs24yKbnkVQdeQMrFQiyw571qcEWxkOusjFk8cppReQxTklgzCnvP5ghnR4m96U0oK2ASYJbadncioyZDVY7AKiqEwCZdJJCXJJkzBwye/aczVaEp/s1ucavssclV5XA3sgl8Up4pJ89kQ4UhUmttW6JWzQ81oTrGYmK5NZlmJlOAztvFE7YJQ/vL277hF7awY3fF71orikxRSEBmkjf+wmZuf+ca7m4PMW3YFE2b5FSeF797fnE+zPVSkR/wqNlDRnPFTy0jBlVKLLbsK4JfC7OuMDmXwp9zr4khXxgJGdsTAi/LhdQFcoY4FrYVi0wWOginRR5MrasLJbr8Q2QrC4YUzlefk2saQpi52fU2hycOEwjPOgKjWIjKyLWKe3xUFsrz8PBYJPJJ+N5/Ipz/MlH175EUGUmSUBuEK9CcyWMb158H28PD48a4ZiHwz/7sz/jgBz/Ipk2beOKJJxayTTctF+cIvFYq8wNuyRexLcg5QqAZrEGryAW24hyB/nqGGqDofDXS2dOEanwoPjHAO5r/AJnoDnjL70KgFiJt4I+B7lTGNIuoL/63shW92J/Eyi5zx8ccuTAdJ+GPA9DgmEMkfw05K70ixN6Viu3kmlQssOfo4H0tKqsG2+bcO0lW3kCe3E+/c03ZPOgKIpG7777xBi4ielcnA63rGI4p1KZtxrNXcgTuLC+ub71AKfsUtpMcv1QwSUy4A0E15if0una0jjDGSJb88dUzQZCaHALcisGVjsCVHhoc88UYrRPnXcCwyI2OQ9ed7gb91QVDSFSEFDZXhENOn0OSJPa9bQ3Nd7USq0jHe+zHQ0wOVheYWVaMvlpeNGu3lR2BuqEjJYTqu9LdgLME99yCf/s2rLpmYhVhniglYnoTplcs5LJU9QkLReKjtUiWSWDPHmIrJC2Ef/MmgnfcgdbZSeH4iap1axtD7Gt2J7gPjB4kENX4ztb/w89vHGFfTydHfBpROYeEuF5UFsrz8PBYJEz3vJMokCjm+d3vHkNrDYm/lhBmuriEDfTwuLm55moUsizzoQ99aCHbctMjVzkCr11YGMuMsb1+O4PpQbYVBikkVaySEBKstduqimNUCoErolhIoB5LlrjQCBtGQBsewEynqWmEycEcspThX/74Mdo2xAAY772NJnMd04MKH2p+CswCM2fPMpp4mCbtp8CCRz/9+5gdEuO952has+6S/2I/l1+30NvUtnUw2d/Hpjtfx30f/mhV3sgrcXriJLYEqmETntU6/FFM21gRYu9KpapqsDW/A1L5BkODixeSqAxyTm0FzCohMLh373w0cdFQ6+vpHBEOv+a4RNbIkC1lCWrB6g0bNoHqByNPLb2YBRukEFrgVgAmBlLEmt3X+LqjZJ4Voln8/57Hv7EWSbvmubFlS2ZqgFoqhUB33UovFlLjq2HENXMiDfbDu+4FWYeGDZCsDgEvC4HhZmjY6D4/dRa67gAgtLeZLf96AS0ic2yyQFN3lNMvj9HQEWHZYRThwk+YCa1FTw/x4lgTuTohBDalg2CINBmrRQiUI1HyR48hAzWJhvLzplSg0d/hFQu5AvtHjpSXtxSLGH05fLZN7uBB6j/6kSVs2bWjr1tH7tAh7MsIeEFdRSutLT9+qv8lPrb+48wExsgpFiBxVPfxFiVPWKslVZr2QoM9PJYCwz3vJAmQxjg7HoKaWkojGQDsgncd9/BYKlb+qGcVcb2hwa9MvMLRqaPEC3E2GimyE25I0Jii8Bcf/0Ue+cPf5S8+/osMnDhaXrcS3GL1fpEHsLJgSOHkSfY+cAsQwKYBo9hEMZulmM2Snp6imM0Sn0pw3N6NTyrRZp0lwmPl1zfZHVXbXvz/ausWepuJC73kkgle+cH/vaTIwZUYnToFQG1FzQPTJ4qpqCvgN16pzIYGKxZY8+wIlCscgdcz2C30JQkoLzCkx5Fsm02zQmA4ir527dVfvMzQOjrKy01x8f+y4cGKCs3bAFBTA/jlIrbpOsImB6pdXoHt9fjW1gBgTueZebg6fHilkhocAC7jCFSUFS8Q1fhqGKlz7wX66BDEuiDaAuPH4Mg/w6xLzChCatR5YQfUuYVGmDpXXlSiPqJv7mZNySQiw1hfklceHyCTWIYOohe/CBMnqM2c56+Mt1Nn+yioYvanJe7e91f67zyL3tNTXq5JuBMihpSnwd8x77lZVwsvD7tC4Ka4gT4uXNRqYyPhe+9dqmbNCVnXCezYAUBpYIDS2HjV+g/fvgOr6PQPUyeQ/BZFxXV9H/L7kElSq4scs5WT4B4eHouEUX0f1aQhErkSsu5OdttFLzTYw2Op8ITAZYRyncVChtJD5eXOkkGuQghM1dZUCU2ROjGrvv7WO9ADy98RWBcQSf0rhcD88eO0bazFifhADaxHDwbRg0HCdfXl/0OBPRhOgvGeUB/TWh8ZJUVbcD1RX0PVtpX/L/fcYm1zPWJwoiQKI9RV6BwlXQiAXo7AhcOucAReb2XfKyEpFZ2k63EEnh9Fk85zQdNom4KoMz7Sd+yucgivBJTaWnCuVU0zKn6aGUgNXH7jHT8Da+/D1iOsCc9gGe7gcaK/WgiUJInYO9ehtodQm4NkD40z/fWTKz5fYLFfJNafcvJMzlYNVpubkNRrDgJYlmiyxkyjO7kRGh8WNoP2feKJUgbGHBEkNYzIFIYQAusrhcCzVfsN3tKEoim0Oo5Q27I5+ZORhfoYc8MyoZQToubTfyCesiUet/bR4XfFjcaEe16rTatFCHTTmkQT7v3QkAo0+NqxSp4QeDG2bTOUOQ1Ag2EzfnIXknNNq3nPe1bUNSBQ4V7PHTpYte7eDY3ojivQxuBf+57DVNzj4aDfhyQlqPWJHLOeI9DDYwkwqs87TRoWec19FVEvniPQw2PJWNIewec+9zkefvhhTp48SSAQ4K677uIP/uAP2LRpU3mbfD7Pb/zGb/D1r3+dQqHA/fffz+c//3mam5uvuF/btvmd3/kd/uqv/op4PM7dd9/NF77wBTZs2LAYH+u6ka/TETgrBIZtnbBtk5DA9AegaGJ11BKWXKEpXF9PNhmnffM25AqxYbniU3zEtAbO1ecxpDj5hjbqhoapi+o0dUcZ70sCdbz5o58iUncZ99t3U3Dgb9Fkkw3rJ5g62gMS7Gu8nwc+/RvLThT5/p//Mcd//CRw7WJwVu0HoD7lCkZ5TRxLK8H1uVKxZAmwRdXgOZyv10KVI3COxUJsw4Lh/UiKxQVNZVtFWHD4tpUVFgxCsNM7OiieOUNjqkTBGuV7Jw9z/FwL46kCm1uivG+v4xps3QWPfRoJ2B6TOZFsRpLy2Lafif40tm1XnfNaS4iat/Yw9eVjs29G6ulBovd1Lv4HnSfkaSFgTSsKeskui8ArvVDILLnWWkCEwMamHcdf151w7GGx3P8CtN1SnR+wphNi3SCrouLudHXxAbXOT+Tedroe7+d0QVxHjz83wp77u5f2HlFIw7c+ItrduKVcLfjr5hs4ZvdwlxanNttCQc3SnKkQAleLI7CjA2QZLItI0r0flqQ8ATVMJukNIC/mXLwfQxKD723FPEoxR1b3ESwWiL3/fUvcurkR3LuHKWc5e+Ag0QceKK9TFZnb2vbw3MxBfHYr3z35YtVrx1WVCW2CWl0UkfJyBHp4LD5GIVclNBjmEIVkEVNx71d20buOr1Zyp6bBsgEJ37oaZF2hNJWjNJRGDmqotT7U+uVvSlrNLKkj8Omnn+ahhx7ihRde4PHHH6dUKvHWt76VTCZT3uY//sf/yHe/+12++c1v8vTTTzM8PMx73/veq+73D//wD/nf//t/88UvfpEXX3yRUCjE/fffT36ZhwaomusIvFZhoWSWGMuKanBNhoJtQbI/gJLPkQk28d7f+gy/8oWv8J5P/Zeq//ve8Z4F+QwLgV8N0N+aJOuH8MQwqR/9CICeHfXlbS4cnbr8i/d82N1P/jGUmHDIFc7GKfZfW+jtYqJUHANm6bWFwKl0hlRADPzXx10hMKeKU1v3cgQuGLM5AhUL7HnOEXgjjsDiUBqffZS8JDGqqmweqCgUcvut89bGxUTvFMKcZkJdGh45dpC/eqaXv3qml09961USswWAuu6E+vViMZQgpuWQnKFkPlMiPXPpYDCwqY66D29FifnIHZ4g+a8XKI1nF+eDLQA+p4L8lKJQv4ryA85iN9VRdE6PxsSYcHA6+f4A6P+J+F8lBHaI0PHaHvF4+jxcdF5F7uukfmsdjao4sZMTOQ4/cQXn6WJgGvDyX8Hpx+Dko9D3YzDyHKh5C39kfEBsYqeZCY6S1ZPEcu5garUIgZKuo7W3AxBNFsBxthmSSC4vT3ghZRfz/VfdYn6bMhb2uQTBYgE62tG7upawZXMnsHu3k1gMcgcOXLL+pzbuQ5JNisoghycvXX8kMOaGBnuOQA+PRScZr47E8Ekj7CuopCruv54QuHqZ/tpJpr5ynKmvHKM4LPJXpZ8ZYvprJ5n864OMf+eUuK+bq6uI50piSYXAxx57jAcffJBt27axa9cuvvzlL9Pf388B54afSCT40pe+xB//8R/zxje+kb179/K3f/u3PP/887zwwguX3adt2/yv//W/+OxnP8u73vUudu7cyVe/+lWGh4f59re/vYifbu7IytwdgSOZESynMmZLSSGT2VSOWSyFgsjy8nK8XQ91/josVWbQyRVe6u+nND5O93ZXCOx79QqVRNtugTX3QucdSKlhYm/wodT60DrCJB7rW/jGz5G5hgbvP3WG9mwju/J5NsTd7TOqGDB5jsCFYzZHoLwAQuCN5AjMn53B5ztFv6qiGja7ztv0N4bJrd2Mf/u2eW3nYqF1tJeXm+IQDk/SUStmEU3L5ukzzvkvSVXi//bYGGZptPz44vDgWYJb6gnudVzmls3Md8+tyBBho2gSlGewEaHBVRWDV4kQWBOoZdQpGNKamSKRKYjckLpT3KP/BdGxTFSIeDWOY3Q2T2ApC6nq0F9ZVwjubaZHl2nVQJclnn/4LCeev6gAyWJx/Nvw0l+LNvsi4jNG2jirrGNtdzfbWyOkTXfStKbgDqxWixAIbp5AzbCocT5uxpohXpxAXSbR28uJmd7vsbEgsyNnUTu4BckJj1fXrXuNVy4/lGgU30ZR5Cd/8iRmOlO1/oGNu8v93TzjF7+cVwNxdMVPSK3xcgR6eCwBU+kp3tXewts6Wvnl5kZq1GF8NsQNt1/rhQavToxEoaoQjDkuwlOei7/IQ2t+n5/f8B/574UPwR9tgJf+aqmaedNzXULgE088wW/91m/x0Y9+lH/7b/9t1d+NkEiIZEZ1dSIv3IEDByiVSrz5zW8ub7N582a6urr4yU9+ctl99Pb2Mjo6WvWampoabr/99iu+plAokEwmq/6WguvJDzeYdl0Pa4ozKEU35KkUWIZVD6+D+oAQ/E51uKJm7uAhGjsjBKI6qk9m+GyC0y+PXvpiSYKee2DgBUgM4JNeQlJlSoNpir1JShPLy/lTlSfyGhyB5wYHGQiPcdjvJ5J2v5+kLF7rVQ1eOGzHqSBbYJrFed13ZdXguToCCycn0Izj9Gsqt56xiWWhayKNHgsg6/pr72AZolcVDLFRA+P8xze7VWCfOlkxCNz1cyCrFGydGi1HKe+kTqjzMTNaPZCsJPL6DpQa4Rg2J3PE/+UctrmyxMB0vEDQniYrSeRlmVgakrU6qCpa2yoRAvUaRusk8ipMhaJMnjoHsgKdt4kN0mMw0wvJUVEtWJJdIdBxiwIwfe6SfQd2NNCzqZaQLFO0bOGwn8wxNZS+ZNsF5+BXITko2vm2P+Il82563/p1vnGyhh3P/Ck7TnyXrOwWR4jk3WN1VQmB3W6ewNYZ8V9SZWJ6I+qUjJn0Qj4rGcmd47TP4khARh51r5H62jVL2KrrJ7DnFlAUtK4ushf14f2qH7/kTOCo7iSPZNvUmCZ5WRwbtXqL5wj08FgC0tkk53WdAU3jVb+PiDxJ2C4xWXTHuJ4jcHVS7KvWUkpjov99NnOW8/5BplSLF/0yqewkvPL3Zcc/iJDi1PNDFC4kKQ5efgLfY36YsxD43/7bf+Otb30rTzzxBJOTk8zMzFT9XS+WZfFrv/Zr3H333Wzfvh2A0dFRdF0nFotVbdvc3Mzo6GVEH+c1s9tc62s+97nPUVNTU/7r7Fya/FCVQuC1ViGtLBSyppSmlK3I+xdbHYUimoLCCniyQgjMHjyAJEv89Cd2UtscopQ3efxvjnPo8f5LnTwb3lpelM/+kNBtLeXHmZfHFrbxc6QqNPgajoGxadcJGa7IERV3OsCeI3DhsBy3rQxY82xrl64zR6CZKWEPvYos5enTNN74insuKG98/by2cTHROtxrclPcJlVMsbbVIuRUnnvq9ATmbMXfcBNsew+6VGJzzSSN6kn0gEJ6usDgySvfo2RdofZnNhLY3Yg5UyDzwgjpnwyvqErCmXiBoDJTrhjcMmMTnSmCYaC2rBIh0FfDsS5QLWhJzZA64uR37LrT3aj/BRh8UYiCwUZocPIO11dUzJ48fcm+JUmi5oEedjT76dAkVBn2f+8Cryx2iPB0L/Q+LZbr1jIevZVn//GrPPw/fpsNyVOEzQw1BCgqFcVCtHB5edUKgdPiXMxYcQAkWyJz4FIn2M2KXcwyqYjJTdm2qZlxJ5H8yzxH9pWIvv3tKLW1lPr6SH7/e5esbwuK40OS3M/aXTJIKAo/DJewsKj1NXmOQA+PJaBQcM0WRUlCkmxa5TEm8xVCoOcIXJUU+hJVj0vjWayCwVRx2n1Okvh+OARjx2DkFQDsksXMw2dIfOc8E184TOLxC4vZ7JuOOQuBX/ziF/nyl7/Miy++yLe//W0eeeSRqr/r5aGHHuLo0aN8/etfv+59XC+f+cxnSCQS5b+BgaXJCyRXVQ2+RkdgynUEdpoljJwrBCoNq0MIbA6JQc3pdonZrl7ugKggV9ceprFLOB9b19Xw/LfO8sMvH8c0KlxUrbsg7Ih/558muCMKTqLa7MExUVxhmTBXV+hM2r2g+mcdgVqIHKLT61UNXjjsiqj7eXcEXmeOwMLpGTR6yZtbGEvVsatPDJxTfgXfLbfMaxsXk6rQYKdv0Z86zz0bxLVhOlPk8GDcfUH3XeWQuLWhIWYvraO9SUzzyt+nf30M/4ZakEFtCZF8op/soZUjNGTGp0kYTZw017El62dzyU2foLWtjmIhMX+MoXoJ1fkZi6841US7Xyf+2vfB+adExxIg0gR6UCy374XNbxdhtud+dNn9+7qjqLUBdgUVZm84Z/ePUcwtYoXag39XXrRv+TBPfvkvsZ0UIBk1TFoJEfW1UlRcR6A+I1yLciiEHAwuXlsXmNnQYHCFwKztOjQz+0fLYn0uU+Ibv/cS//T7L/HYXx1d1HYuB6ZO/4QBp1BYY0knknEnOgNbtixVs26I4M6d5Xyeqcd/iHGR4WBbw8ZLXlNXEH3CkgRnzJOE1TrPEejhsQTkiu612pAk8pJEmzzCaM7tM1vF5TMG85g/LnUEZimNZJhQp6ue/+dISCwc/CoAqWcGsRLu8VHsTS6rcfpqY85CYLFY5K677prXRnziE5/g0Ucf5Uc/+hEdFSFgLS0tFItF4vF41fZjY2O0tLRwOWafHxurdnpd7TU+n49oNFr1txRUiUDXEBYK1Y7A9pKBkXV/UqkuNm9tW0oagmIwmwlIDNXHAMifOIGZzqAoMvf9m03c+3MbGTkrFIJcssSxZ9zvBUmCDW8Ry0YOZeJFAtvEPqWgSv709TtZ55u5hganC3FAhMJoWaFMScGa8nrVCw1eMOyK/JsL6gicQ47A3MlpfPJx/MoJzKk8486lbLA2ij+yNNe1+UBvr8wRKAb95+LneOPmJgAawjov91V0LjbcX15cG56mtlkIq0bBZGrw6mGeob3N1Pz0OozRDHbOIPH9Xqz8IopAN4A5fpZm/TxWcIATwTyMuUWUVlNo8Jl2qVysRz12RCx07IHhQzC0H059HxzhrMop2LQVLvxEiIRnHodsdYd0ltCtzaiSRIcuzkOjaHFm/yK5x3t/DAe/gq34sCWFA8MhRs8J96Ica+R7zffzt10fprZjL0XVFTfkadHpXk1uQAC9p9IRKP6bsslorg8A2aeWi/tkZvJMDqSZ6E/Tf+wKBcRWMb0nHifj3Dtq87WEMiKJoilJBFdgjkAQBWNq3v1uAOxSicS//EvV+ts7t1Y9DhQjdFTkHzPCJq3BtZTy8ztZ5+Hh8drki9XplwalEI3yKMNZN6WDFxq8+rDyBiUnFY/k9KOsZJFCX5IJzZlcd6L3RlSNL8RqsVPjZA8OknlxpGzWAXF8FHqr3YUe88echcCPfvSjfO1rX5uXN7dtm0984hM88sgjPPnkk6xZU53DZO/evWiaxhNPuFXQTp06RX9/P3feeefFuwNgzZo1tLS0VL0mmUzy4osvXvE1y4XryRE4lBKClwS0GgalCkegVF83r+1bKur9rqvlVGtMLFgW+VcPAyKca8frO3jgV7YTrvMxeHKaZ//pDJOVA/6NrjDA6R8Qur0FtcGPOZ4TF51lwlxDgwtmHIBIFqTZkXHIFQK90OCFw6pyBM6vEFiZI9C6RkegbdrkT8+gyefISRLbjss0JWEmJDFWE8EfDr/2TpYpciiE4uSObY6L587Gz3LfpkbWNoSYTBf5zisVRR1q2skGRDhxSyBNXc1kedXshMHViNzZht+ZLLDSJWYeObsiiodYo2cBGHMcpbPFQuRwGCWyOnLG1vhqyPkk+oQGTGCwFzOVAtUH694gnixUzERXVhRWfSKHJIBZgKc+B4UUFDNV+WkCOxqRfArduttFOvbjoYU/BlJj8A8fgOwkOV8z3+nfyLOPPoZZKrH57teT3PNuLEn8tkrGLDsCfUUbKSdEwdUmBGptbeDcF1tnxPdvyzCYOYWlWJSG0+RPCoUwE3fFHqNorohzdj4ZG3upvBxNthNwKoinAzqqvnKjA2Lvf195eeaf/qnqnri5rjrkOVysJZaPlR+P6+fRZB1ffmXmx/XwWMkUjGohMKUVaVN7GUhXCIFeaPCqo9ifwgnKQal1x6GF3gQTmuiP15kWP5VoJq7IfL42wg8GnyT1zccxE0X07ijBW90Ub/lTy8ews9qYsxCYz+f54z/+Y17/+tfzyU9+kl//9V+v+psLDz30EH//93/P1772NSKRCKOjo4yOjpLLic5tTU0NH/nIR/j1X/91fvSjH3HgwAF+6Zd+iTvvvJM77nA795s3by6HJUuSxK/92q/xP/7H/+A73/kOR44c4cMf/jBtbW2825lVXK5clxDoOALrbB86YFTkCJTq6q/wqpXFbLEQgCOtfgK7dxPYt5fcseNV2627pYnt97Zj22JM98w3TrsDgbX3QctO6LoL+p7B1x3GNsS6/OkZu3DAZgABAABJREFUjPjySDg+l2OgmDOwFOeCWpFL1Qq5A35PCFw4qh2B8+s2qHQE2tfoCCwMJFHrJDS5nzOKxnpH37aRyPo0fMHQvLZxsdE6hVu8Lg2aYXMufo6mqJ+QT5wzx4aTjCVdh1S68dbycqvlJpkfORu/pveLvX0tkk9BXxsld3iCmW+exiot7w6rNCMKYIypCpJtU+/oYaulYjBAzBcD3OJRkm2Te+UVsbIiH2yZzjuqH+/5BXf5pb+Ev/kp+D974cR3yk/LPoXgniaaNtRQ75NpbvCTnM5z4cgCu8y+9xvQLSIuknmZC9kYZrFIMFpD89r1nFXdqIZi2ijnCIxVzHmtNiFQUhRq3vUuJjq7CeYhkrWxFZ1hNnIhK+7hJaeYS6biPm5bkEvN7wTNssYySRd6yw/bxmvL6RFyoZUdKu5bu5bgPa8jePttWDNxUo89Vl63pmYNYipcECnUEiq4A8hxXaTPCRVXriPew2OlkjeqQ/InFIUW7TwXKvpqlucIXHUYMzn09TVo7WG0NnfskRmJM6OK8VKnYdBaFBP264pFng/4KTWJe5ha56fm/p6ySjU72ecx/8xZCHz11VfZvXs3sixz9OhRDh06VP57ZbYzfo184QtfIJFIcN9999Ha2lr++8Y3vlHe5k/+5E94xzvewfve9z7uvfdeWlpaePjhh6v2c+rUqXLFYYBPfepTfPKTn+RjH/sYt956K+l0msceewz/HMMkS+NXrjC5EFTmCLyWYiGZUoaZglDJmw3REZp1BJZkGTWych1AlVQ6Ak+0KOReeYXc/gNknn/ukm13v6mLaGMAgFy6yLlDTjENXwRiXdD/PEycRDr7OKF9TmfRhuyB5VE0pMoR+BqhwfHxLIYWByCas0UINGBW5IfycgQuHFaFEGjb8+wIVObuCCycnIbh40iYXEgG0B0deaRWHFMr2REIoLcLIbCoQNeYzUx+Btu2ecMmV/j4UUX14GLnvQAYFkSzh9EDQjAcPpe4JqeQWuen8WM7KPYKNa04nGbqK8exsstXXPDlRFLlcUUhmgXd6V+rqyQsGFwh8GRnRfGoAwfEwsVCYKwLatqrn2vaAh23uY/HjkBqBH7w21ARxhS5r4Nif4r1CoxN5ilkDJ795hnM0gLlqpk+Dye+C+eewKrfwD+dWUvJUgnV1vHv/vLv2feO93B+QvRJorpKPm9QVMWkaW1FV2W1CYEASk2UxoELNKTg3qM2uhonoAcZcHJLFYeFEJi+aEIvPXMT5YWbOsv5ionEjgn3GpePrXwRrOGjv0z2xZcwZ2YY///+CCsrzlVd0WkJusJfqBDDl3NTDI1qog8YtWsXt8EeHh4YFwuBqkKtMoxpuDctLzR49VHsT1M8m6A0lMbX40apjefdsXabYfDBqbdzt7aRc7rOI5EwA5nDBPc0Ufu+DShhHb1L3Lssw8KYzl3yPh43zpyFwB/96EdX/HvyySfntC/bti/79+CDD5a38fv9/Pmf/znT09NkMhkefvjhS3L9XfwaSZL43d/9XUZHR8nn8/zwhz9k48ZLEwq/Fskf9s/5NTdCdVjoazsCKwuFtBeK2DblYiF5TVk1IlClI3AyVkBxKkLnDr+KfZFYpmgyr/uZ9bSsjTIzkuW5b56hNGs73/OL7oYHv0pwX0t5Ijnz8uiyqA46lxyBifEceU1YAWtTCBukFiDvd0UkzcsRuGDYUoUQaM5vDrkqR+A1Vg3On5xGl4UjLD3phkElAgFUn6/q2FqJRN/+dvQ1a9BNuLVf40LqAtP5ad7g5AkE+NEpVwiUO2/jdLIeC5nG+Et09TjumGSRxMS1dSj09gh1H9os0ggkihTOxpn86nEsY3l2XEO2cIiPqwoNFRHQq8kRWOMTncrKKvKzxaOItkLdenfj1t2X38lbfhc+8kPY/A6IOTnoEgPwwp+XN1Fr/ITvaqNZk6l38tUkJnK88uQCFRM7/a/lxXjTvZSK4vq/Zvc+JEkiXzIZTojj9jZ/gIJhU3IcgfVp97tQm1afEBh73/vLy288bFFCott3AEsW57Q5lcfKG1WOQIDU9M0jBCbPv8SE5orUzRXfRbFu5YtgwdtuJXTvPQAYIyNM/vVfl9fVBdw0OKrpQ8m64cIjurgQxqSmmy5U3MNjqSma1dfgSUVBkmw2Su591AsNXn0YFfde37oKIVB1Q3xbDAvTbuAWY0/5uWH/ILF3r0dyxleBrfXIUR0rXqBwzssTuBDMWQi8mcifmcFMLl7I6FxDg0czo+xt2sstjbewNZ/GKknYpjh58pq6onPCVBJQA8gIQUvSMii7dgNgZ7PkT566ZPueHQ3oASF6pGcKHPyBU3p8/Zsg4lTOPPMDVHkK38ZatPYwclgjf40hgwvJXI6BmbEMOSdZfG3eGQCUcpQ0d1Co+wPz30gPoNoRaNrzKwTO1RFoxPOURrNoksgR5xtzj6O8GsK/wsOC4f9n77zD27jOrP+bhg4C7J2iSIrqXbbc5N57ix3bSeyUTd9sirMpu1/6pjjZVMdZ23GLHce9xHEvsiUXyeq9UBR7J0H0PjPfHwMCoERSlCzZEsXzPHgwwFQAg5l7zz3vOWCZNZN4czMAp22IIeg6Lf4W5le4ybcbxOfbDf3EUiSd1Z2LL2HBJGqIqMzJfYfSWheFVU72buwb935tcwvJvX4GgiSABIIiMviP/a87HzU0TSdHNIjAbslEfiDT6VVKJ0ZiMGSIwEGnwPZSK7uLa41BxHiqPH/GRZBfB4UzoeaskTcy5WSoPAGu+xvc9DiIJiNUZPcrw1SBOedUIToUFk5xIAAlU5xseaNtP8LpsKDh5czkYEa9W7NoCQCtnnDaxrA+VQocTXkEupMmrEuWYF24EHmCpENnw1wzFX+NQfBW9kNOj0i1eR2RLNuERGeQ4OA+ikDP0WH58WEg0LqF5lRisKyJ5EVVPA43XquZZP6xbxMjCALF3/0eKArWxYvxPf4E8XZjMPzk0pOpcdVQ66yjMFRONF5Fburc6JKNc8Ai2lCPI2J4EpM4GhDXh9vm9KXatue5u9BSA2yTisCJh0CP0UgJS/DuQADLzDzkElvaHxCgKOEEJEq8GXFXh2kQUdJ5u/1tvvnmN/me/394TnwNgNg+KcSTODyQD7wIXH311dx///3k5ORw9dVXj7nsvmW7xzJM+i5C62aTc1blh7K/bBJIG4fCaK9vL+t6jZKo67UwiSx/wJgio5gmjjmyWXAR0aOIcgB19jx4xeg0Rdavwzp3zrBlBUHgtI/V8chOD5qqs3NVNwWVDmoXFsHCT8CK20Ayw9r7sJ/wBTwP7QAgvLYba/1HO3J+MGEh/d1hgimvhdyYzpC8MSJmbrwTRRV6NCJbESjE4mixJKJ5XJfUA0I8yNTg6E5jlE0SGonrUNFpHFvQAlHFTL792C4LBkPVZl92GqEVKynywZxmwydwRt4MTq/P5+lNewEHO7r8LKjMxerMYau3hBPyDXLMsfdeurqXAgJ9ra00b3iAvuZGiqYaaZq9Tcb0aM8m0cz0xAJoMI7n9f/5E3va1457/SO9TEl5NVdIfjSgTxZZ6MsQyJvWr2LPl945rMfzUX3mnqY9CEtBF8Cbo3LKrkYiPfDS92+lNeRLrTfHeL73LYqWtx9wXxeV1VDVavhIrv3Np1nXZknPm19yNhWeGmrMIo0thgL70Z89TSL04mH7zKXVlVwSfhNJgKBqZd1a4yQTJZkpcxcA0NRvlFLZNbD7jPZBIjUQVOmViaxdC0Dhf/zHQf2vjhV4zziTnL17SAqw6C2FstM2k1SNQBBBEIh3hI5rRWCydzttNuP+kxPLxTmwDUvMS0IUEYsKPuKjOzww10yl4N8+R/8dfwGg91e/ouJPf+Lri7/O1xd/nVg4wV9fWYkKlCQFBiXok3XiQhxZk4g2eXHkTw6OTmISHxYS2nAisD9FBOYGdpKQLses6mjxI2S3MYmPBHpSQwmrRIUY/1P8ELbNl/GnT16BoAsEnnsGUsK+ooSh5C7pc0NKNNgiAQMNvNryKq+2vApAV+4ULvGeTrxlkgg8EhiXItDlcqVlmi6Xa8zHRIJb+QuhNW0fWsmoeJCKwBZ/S3q6OpFMlwWDURosTyASyCq6ARCkKMFpM9Lvh4dKwvZBbomdk6+qpW5JEUFPlJfu2srWt9rRF30SZl1h+Om9dzvWsgiiwyDfItsGUEMfrf/XwXgE9nX7CEnGuZkTy5yjITI33ol0DhxtGBYWkkzQd89WEofJk0rISg3Wx6EIjO4cAJKYxGYaoxacqcrX1gIZBOGY9wccgvvaTIngOZt0VnasZOnDS3k9egvumntIajrv7DECHcw2O5f+7B68FiON3kUf1fILqbVzCftkgp4B4uEw8XA4PT3qc3yQTQPL0/uvDNYS8niIh8a3/pFexhY2SKpBUSQpZBKDAcKSdNiP56P6zCGPB4tmXCd3ZazAMLV3HvK+dqsz09upim8aNq9D24OqJ6k3iyhCqrw8WETIZ0ovE/FD0OMl7BPT78VCEUJebVzHkRtpQBKM/3mj34W1qJwFF17KJf/xbUxWw/N1iAicE5fTaXxDYSEF2aXBxZlS+YmE5LLTePQ0AZ8D8vpFulbaqbW8Szz1XQQaugl5h19/g8cRERgJNhJLDSCVegqwxLwA+K0mTBNAET6EvM98BqnAIDYDr76G94kn0vMUS6YNXRg3qkh0QaBR34COPpk8OYlJfMhIjKIInCE2EU3dTydLgycWVG8MEfhZxd2sd63j7dCPWfLQEloCLQxYutPLFaiGZU1xIh9JN9owrYoCXZtoD2aszzrMvWhoJPsjqIHDG8w4iXEqAu+7774Rpyc6FLETs+UFEn0LMBUf+dS14WWhByaksonAqkSCZDgz0hlVZJQJUhoM4JDdeFL3is4CJ9McDrRgkPD69WlFwL6Yf04lr91nJAvnlztY8ehu+tvLOMNdhJAwyr+E5T/Gtui/CK5oB1UnvL4X57Ly/bb1YUGSxu8TGbNn1A/OWIbTj+vGFyUrJsQsQmkShxfZpcGgQkKj745NFNw8C1OFc9T1xoODUQQm+yOGWX5+B37/VHb7Y4gVGqaIQJ/TUAUf64nBQ3CeeSbk57JHGcQW1enqMxLGdHSS4gCxpEZDj0GICYJA4ZSpNJWcg9L4IJps5Zy8h3h+sIbuxEwSiWocebswpcJ1HHn5mGy2UZ8Bek2NBCUfQhxC1hBXTPl3hLhIo2Mb3ryuA64/nn0c6jJu0bhn9MrGf74ge/C0IA+HHj+sx3OkP89Yy9j0ASIk2F6VITudHi+O2vJD2lfAOhVPwEmeHKCILsoLZ6XniXaFnkALZaZaZlokNkeSmCw+4AoCvgiW3NMY7DdhyV2Ad8CB1dGDJfdU/IMaZpcZjd049jk39j2OcqmR7kgeDrNKY7yCtb4ozXaV59rCLG1Yx6XzyvCG4yypcjOzMYbbqTAYDKOKxj3CHcgMFijFmeCEiQRnQR4b6kQuWquiAZJLZlHgQbzmCmAW/VtbiYaHD0YfN4rAeIig1s+SiJsAVmZ0ZNqrfqt5QlmESA4HRd/6Fl0/+AHm+nq6f/ozRIeTnAsvQBQFTBaJeFQlN+ECDAuIsK0XKSwTa/Ciq7ph8zCJSUziiENPxPj0KyqiBv05Am+daLRJq8V2NmgxXJgmS4MnGGIDETbadlEVK2GdfTsIOqqu0h5spyvYkV6uUKoBQEaiNOGk3eSnRZHROjaw07czvVxIiNBm6mZKvIx4ix/rnImhcD9acHjq2CYw5L7lxHd/ElPx9CO+r4MJigBo9RthJjm6Caeu0xfJkAcTySMQwKnkQor36o56mLdwIaGVK1E9HuKtrZinTNlvHUEQOPfTs8gttbPh5RZ0DRo39qHWXc3Z1icRIh5oW439Yj/BFcY6scbBj5YIVMZHBmuqxmBbI6Q8su0xCTBupjHN6BzKk0EhRxTZpcGqopHoMhQ7vpeacZxchnX2ofsyZXsEHkgR6H1+L5o/QZJ3yLXsJjlYxKx24zzaUWZ0jC0ToDQYQDCZyDnnXOoeexyAlds62VmbmidFEKQAu1PeJEOY+slfwjul8MZPQYRZjuXE/A6iQi1m1+cxORyUTXNzwRdLseUc2E4h6Y0hORQ8T+wmsrEPdJjnXMa5f/4agvjRdTD3/vJrEIUeyfjt04pAUeTS//czBOXYDovJxsoXPsFA3yZaizUCihVnIoLbH+Lzd9w/4qDQuPBeAbz8fQA+vjgKn/wOyMY9NNowSP89W5liEqmaUURPWQ1rnm8mr7yErj1DjKvxH4uGDCIukRq4li0nY3YtxuRwYHYFKa4r5uQrazPnStQHv5kOpgiaJY/fVXybtoCKHISkHufFrd14wwliSZW+Rj9nhcx4SWA3ZwJvXKlSYTEnB9F25ActPwo4bBb2lgr8+lqRnz6kEdorQkTAUrYakrXIopu0VFJQQZfobx/gzi/dPK7y7LzyOQy0byO/chaSHE3bBhxNpfGLL7mSJZdetf+X07eLFkVhrdUC6FzUmxkk9NnMlE2wc8J1xeVokQg9P/kJAAP33Uu8pZn8z38ek00mHlVxxgoZIgLbpJ0s5jL0qEq8zT8sxXISk5jEkYMeS3DxOuO6HDTrPHuKSAJQBBVVawGmoSc0dE3/SNtPkzg0aOEE3uf24jynksDrbbgunkpvu5+3ctbyUu47w5btCHbQFfUAYNU0bPZ6Iqky4bJEGe0mPxFRZOvup/HnDucvttkamRIvI9Y8SQQebkyGhYyBuDYFs7gdcfsjH8r+DiYoIpwI0xsxEjLL4wIxzYYvmEkLjCryhCoLdZkzqXB94QEcZ5yOeeZMBJMpkxg5AgRBYMlF1Zx+w3RMVgmLTWHnhijro9ejF8+DYB/K1juwzC1ALrQS3TlIoi886vaONMZLBkdDSQRzRjptjWWFQ6TOnUl/wCMLXcpcPpM2EdOUHExVTmJ7vAw8tJ3Ae52HnFKYnRqsjZEaHN3lIbrDuLG6FMMjTPBmSERBN5SA5glSGgzgOuec9PTsXcPTf0VLJ419QdRsOwdJgRM+B1NOg9waZliWc/WMB5h9aikhb4y+1gBrX2jhsZ+vGdfvJbvNCLKIUmaHVMM10RnC/+YRSpMdJ5SIoRDfVxEoFxVNKBIQwG12AwYZvz3f8PBVvV7iTU2HvtF5H4eTvwbOUmh5Bx79BEPpHOZaN9bFxZgKrUhNPoRAHLvbjNmmYHEoKBaJpVfUYHUqVM8rwOYykV9up7zeTeXMPELeGP7+CCFvjA2vtNLZ4M3sd8sTkDTO46cTJ6FLJkySyIVzSodOL3b3+GnoCTIvnvlv51lTTKOu40h54ykTtCwYwJYiZXdVCERMxvUx6jNRIr+AwMPEs5qzgmDcOzXVRNDjHUd59iC9HfNI6jfS27aE4KA9Xd4dHIx+5KXxoUEPQc8Aq59+jHce+/t+302yZwftWYOIpQOZNsxEUwSCcX/MvfYaXFddhammhtiuXfT97vf0/fGPmFNBceZQJjSny5QpR4vu9HzoxzuJSRyv0PVM+zUV8s4evQqfloOsZ+7Xk6rAYw+J/gi9f9lEeEMvvX/aaDz/eSO+Nj/95k37Ld/mb6NbNe5NpUkVLBkBT6WlOj39rh7Zd1V22Q1bnljzZHLw4cYkETgGTGILgqBh6n0q3SE4ksj2CNQOQAS2BlrT03VxH2YxjFkIoLkrCJgVwyNwAoWF5GURgZ7oAOb6emI7dqBHo4TXrzvg+tOXlnDpV+YTDRodhP7ia0n2NhkdsO3PYC7WifeG2RlRWf7ADu799kpevnsr29/pPGKfaSSMNywkGkyAqSf92hLPUoOmicBJReCRRLYiUEel8HNzkQuMDpeUa8H/UjPeZ/agqwdvhDweRaCe1PC/3oppihNBH8QtNtAniRR6jOMKm0WSonFNmSiKQADb0qUkFON8X9CoD7s2S5ZOYkmNNs8+ZL7VDTc9BoKAoCexDKyjOPQKdrcZTdWJR5KEvDH624erCcdCzumVFP7bXACUUjuB11oIrvpwrxfZSCRFeuJ1tAo5KEkdtyFQRSkpGXvFYxBVzipKLLUkw5VsK8yUwobXHfheMCrs+VB3NkS8gADuKthmhJ8JooB1mptkfyqcozPIzT87mUu+PJ/P/mYZt/ziVJZcVM0nfnIyF39pHp/+1Wlc/18ncvGX52GxK9jdZkQ5c40edl9Z/7f05F9Dy2j3RphTnsPtNy1i6VRDVTwQSpCIJKlPGNcFRQCb2SD/HBGQksY1Qi6amGXBAFaTmWRoKmq0nK58496mhkXERJQ8UwfRrMukJGfaT/bcyhHLxLOnbbnzQVcQBON6mYhXYc8tI+A7EYv740Rj07HlLh11/dGeD9cySorIiwYDBPr3TzwPtm2lI6v9WOg1fFJVQSBoVtI+kxMJgslE6c//B9fVV6NHYwhWK5LDiT1hfHY5WMfUuM7UqMYmRwg1RUhMEoGTmMSHh2xrGyl1jVbN3bhEPxYxUyY6SQQeW4g1+ei7YyOi3eizDv1+SpkDc2uQLsUg86xZ/ZcmXxN1SZ1ZsRizEypSeRWi04SgiFTnT00vt9mS4S6UVPt+i82PuTiM5DKjJyfDZQ4nJkuDx0BcnAnsRFab0VvfR5iy9Iju72AUgc3+5vR0TcLonAR77YihdqyiQFyWJpQiLN+aKbP0RD1Y584FRYFEYkxFYDZK69xc853F/Ov2TezZ6KfEeTrz7c9DMopNWE6TOoddMQ32GCMOe9b10tPsZ+YppYdebnaQGK4IHP0ciIbiqEqmQ2DKUopEk4ZSZJIIPLLQhvn4JREUkdyP1SPlWwi/340eUwmt70GLqeReWYdokQmu7kLOtZDoCWOqcGCeOnKJkjAOj8Dgu53EWw0/PEv5TgSPzkbBQkVKCTaQ7zBCcQCzbeIQgaLFgmd2OcUb28gLwtQeaCoZmmc0LHf3BKgu2McX0WSHi26Dv18DQHX0n9zy40+y5T0vKx7ZDUDLlgEKK8fv72ie6iLvphl4Ht0FGgTebCfpieK6cOqHWuaiqxrl0hrMYoB+pYy8LH9Apaz0QzuODwuyKNMdbUS2wY6SebDFeD+8Zi25H/vYoW+49iy4/m/w94/Bmr9C5waYY5wv1vmFmFZ1EW/2k/REGHyygdyP1SOIAiarce8eegaDPDRZZBacW8WCc6tIJlTu/+47xEJJGtf3sez6BJa+1dBr+NgG8uayo9MYIZ9X4QagvtjBe3sHQIdzIwpyKhm+0iQSTQWF5GVx13LJxCUCHSYLomkQUfHSXKhT02W8H/PLmIt3Es3qcBQXFNPRaTDhSy7/FosurEZLasimkT1zn/vTRlq3ZQiiaCSfqllfpnW78V5w0EVO4QyuvPWkj6R8LeDp564v3QJALBzab36ye3uaCLRFdBxhIxTDbzWBIGCyTSxF4BAEQaDgc58l3tyE74kn6f31r3Gd80VgLkJkBlPiSd5MhcH9y/YSV0QuIdETRg3GkRwTZ6B8EpM4WqGPQAT2yRLEwSZ0pedpMZVJR/NjA6ENvYRWdaGFk8Sb/VjmFuBYVkbfQ9uJbh/Aikq3bPzulYkke00KSUGgxd9MmwzIZhZLJtyX1OK+pBZd15neIcLrxvabcoogaTRsZop2NuthuuQwHs972HtsqMEEsnvi8BsfNSYVgWMgXnBZelp798iHpAwjgQ6kCPRnFIFViQS6BnrYWCdsUkAQJpRHYLEt4wngiw8gWq1YZ80CIN7URNIzvlFed5GNpZcbBqU7Iuem3xcbHsGb1UkQUv+MwECUwa4Pr1R4vIExkWCCpCmTgKckjM6JkFUCpFgmzu9/NCI7NXiosSMIAq5zpuC6cCrIAkqRncjGPnr/sgnfqy14n95D/9+24Xt+L31/3UJ098gphuIBUoNVfxz/a6lrgAAKawBoygoMihdkrAImSmrwEJJL56WnF+3RUUTj2ilZDKVVQ+8oyr5p58Kca6HqJGh9D1b+L1PmZAYZWrb2H/SxWGcX4DilHMFq/GbBFR0MPLwD7UNMwku09WAWDVK4WzJT5NPodYEycwbmmTMPsPaxhwJr5n6wp8hKx/SFmKZOJbxq1SGX46cx7Xwomm1Md6yHoDHgIggC7stqMU9zIzlNhDf04nls17g3KysS05cajLWa1Ni9uhve/CUIEmrNebxXdGN62TnlxgDBtGKDlD43ojAzIRNEp7jQzBSTSEgyRtzzs9KhJ2pQCIAii6jhagDaCjOfOeaTEZNeZFdmYMziy3jkvf9cE/d8ayVbV2TUJ9kIeKJpws+U+g+jQ+t2D2XT3IipYAl/X4SOVEl35ENOLswOe4pH9icCzYO706XBszozy/qsRhvAZJl4isBsOM88Mz1tig+VjgksSWRUJv8oe4VgbgzJZSbW5GcSk5jEh4CsihhZA1HT6U1VqjiFjDJej0+qvI4FBN/tZPDRXcQ7AsiFVszT3ORdM412Zx+Xl3+Ja+q/yb/V/Bg11T2qSCYpSfEZPeGMRcPMgvnpaUEQmOLOlAn3asb91WV2sThvFtNicWrjcbpTFg9acDI5+HDikIjANWvWcNttt3HrrbfyzW9+c9hjIsFbdC6abiGhlaIFQqCOTc59UGQTgdoBUoOzE4OnJJLEggpCqgMUMhvbmVBEoKMANZ5LMlJCUjU+p3XRovT8yPrxqQIB6hYXUTbNjZepDEozSJgKEHLKiCmZUts58zMkSvMhkAOHioMpDY4pgcx6CeM7EbJMwScVgUcWepZqD234tcG2sIjCz81FHTRUO6JdIbSq07jiJo3fSnKaiGwfQB2hUzncI3D/BpL/9RbDo04A+5ICklE/nkQ5nkDmN7cWVaSnzROoNBgg58yzSArQVAQ13Ro1LoPcF00eEMPs7gmMvvJZ3zcIHnR473ZyhE5yS43Oc3eTn8hBNjIEUcB98VTcl9ai+g0CQvXF6LtzE2oWIXEkEdy2LT3dI0sUeQWKfJDYsRPJ+cESrI9GFNoy12fVHCaR1IwBod5eYjt3jrHmOFF/fmpChz2vpt82lTtwnFSa/s+KZonwxt5xb3bWqYZvWX6FndB7j0HzSkhGiDRtY+v6aVhTf/W5KSKwvthJXVxER0dDxw6U6JBXZiecKg0epgicwKXBJkmkSDFC29qyvMJjfuOe6XbvSb/n1DSsqY6IrkM8kqRl68CI292zroeSGheySWTmKYZ6dogQjIbinPaxuvSy29/uZNvKDv72X++y8bVW/vXnTSQ/hJI2xWxJ3xNi4X0GJuNh2uRCPCk7iaoeC1L9LDSHw1AEAmbrxFQEDkEuzFwPTLGMh9T0oss4OxRG0nWmRTQ2JrahemMkuvcnUycxiUkcfuxrjVPiLWKbbNzfXEIXQwFP+oc4cDqJQ4Pqj4GuI5glSOpYpudScMtsRIvMhr4NJFEJS1F6TJl7bVlSpTBp3LviWf2kmc6KYdsusZdQYi+hzF6GpmsUWguZUzCHfHsxDWYTjSYT/YoxYKcGDxymOonx46CJwJ///OcsXbqU++67j7Vr17Jhw4b0Y+PGjUfgED86rG2LEdPmoYhdKJ3/hP7dR3R/h1oaXJVM0uOtSr/OEIETp/Sh1FGIZBpEtnYzmDRM+W2LM0RgeJzlwWCMPpx4mTFSvNu7ACXeD7tfwhY1VFWKAFWmjNqrZcvIHYgjgWFE4BhhIZFggoic6RBIqTJiIasEaJIIPMIYRgTu34gxV7so+vICHKeVY67OQQslsc4pwHVFLeY6N6o3RmhVF+EN+xMJYta29X22HWv1E1rdTbzZj1xqJ2dmN/nhVZhNncjezHk74MkQ2BbbPmWyxziq6hezsQam9sIJDXBGJHP9kyyd+yUHD0N+LZz8VWNajcPae6keUgXqsHNV1+jrjgH74mIKPj0H8zQ3ibagESCyog01dOQbLb49GfJrQFYp8mWpxMorRlrlmEa2IlCU/WytmpN+HXzrrQ++g2kXZKZ3vzxslnV2AXk3zABJILS6G/9rreNWIeaXO5h3dgWD7V6qgk+m33/Lcwtmv8QFYYUv+S00PLmXDa+2UJAUOCmmsCiuoAE+q0Z1UiPZEyZRY9wr8gKZfcsTOCzELIt4B41gmLbCzHUu5jPaTXZ/pg1QYRI536Vw+nQXZrsxv7PBSzw6vF2laTqbl7fT3ehDEAXmn1PFad+Yx00/PZk5Z5RzzbeXMOvUciwpH6Q963t48+FdJOMa7zyxh5YtA2x8rZUjDUEQMKd8/vYrDfa2oMS2p1/O7NBQd29HDAbTikBlAnoEZiObCJTD3vR0bt353DwYQAfWulT+mWdcG5K9H10g3CQmcVxBHX5vTIi9rHDIJAGTEEPE6F9pkx6BRz1ie314n9uLHlOxzMjDdUkNgiRC91Y29GTuv7qQ+c3zdRs1yeHhHxZNo7pq2bD3REHk1Wtf5Yq6K0jqSa6tv5Y7zrmDXHtmcNMvGUpu7UNW5E90HDQR+Ic//IF7772XHTt28Oabb7J8+fL044033jgSx/iRYU3TIHFtVuaNrv1TcA4nxIMgAodKgwuSEIhNxePNGMKHzAqiJA8jFo91lDhzQDdGvOO60ck/VEUgQHl9LnllDlrjC9PvFWCoavLtMkprAFehQap1NfqIhT+cEYjxksHRQBTfUPWoriOkfAEFa4b8UyyTROCRhH4AIhBALrDivrQG0Soj5ZgwVTpxnlxG7pUZlUloTfd+RIKQFRaiZY2o6pqO95+N6deOxcVEtz0PwGaziereLP+qYqNzNO3Ek8mrqDz4D3gUo8hWhOOMM9Ovl6zxMa9gHlKyDNHUv39y8L5Y9i0onAHli+H9u5hWH6FuSRE2l4ntKzpRD9GM2DIt1/i93SbkAivhNT34X24+pG0dDBIDRvqeRxSRUaiPuNPzTJUTjwgstGY6/oIcYFVRpvw5+OZhIAIrTgCL25hufAPU4dd/29xCzFNyAEj2R4g3j7/UcMbJpdRaVlGg7KU7Xk9LbCFt2olsV5L0SjoOTSDsi7FleTsv/W4DpapxnfFLOtcN+f4KEE99BXlZ4teJXBosCAL1ebXoqoVBB4RTg3Uxn0HS5SY2U1Dp4MTLpmJyG/e+3J4wdXMN0lhTddp2DLcQad/pIegxlJXtkso5f3mbK+9bzVNbOznjhumYrDKSIrL4oimcem0d88+uNAQsQuoBrHuphYAnesQ/vyk1mLOfInCwZVhQSNWA8Xl0SSSYsgeZ8IrAgszAgBTK2G2IohNHoozyVFtqm20PQTFMomdSETiJSXwo2IcItMVgQNF4N9VXUUSjPHgyLOToR3Iwc5+zLS42vPM71sH/ncr6hn+OuE6+pZSKffzu6+MJ5NJFIy5vV+wU2YqwK3ZEQcTtyKS/+2Xjuj2pCDy8OGimSBRFTj311CNxLEcdcjSBHmoYsvPXOzciLLjhiO0vOyl0rLLQQDxAhbMCs5qgKjJAkamX5mAFQ7RPyGyaUGpAgFybGS1pQ1QCRFSj0yXn5WGaOhUtFEIXBNRgEOkgvNBmnVrKyn/UkNBNKEKcUtMOY19JDT2SpLwyh6AvRk6+he1vd7Lw/CkH2OIHx3CfyNHPAXWwjaCcAMyYE4BuEBe62QwYF+tJReCRhS5lEYH62I0Y57IKnMsyhIxcYMVc4yK210eyL0K8xY+5OhMcIo5SGpzoChphI10h5AIr9pPKCP3CUCxtMFuY5zGWjSoiSkkJjmiYsumzsOWMHEpyrEIURC7/0m00PHw6ejSK682N7JgRQ1UEHM5+chUrWzu8zK/MHXkDZgfMux5e/zEABb3PEBq8mLAvThjY/EY7C8+vGnndA0AptlNwyxz6/rIJPa4RWtON/cQSTBVHpkRX13SkeBdYYKfZRECKYh5SRAoCclnZ2Bs4BpFdGmyxhEgWFmOqqyW+p5HIpk0kBweRc0f57ccDSYa6c2H3K1BQD23vQ/Xwdo/9xBJie40yxNCa7lGDf/Y79konJ5SuwByJUGLazTO+n/LOFJl3+8IsjMmoZpF4VCXgGV5WPt8k4VcErAmwLy1NlwbnZhGB8gRMiM5GfbGLbZ1TkB27aCvUmd4BybBEKOHGLnmZ6rkbWf5vbEuKCbzRiuQy427PkLQtWwaoXZhRTW5/O6P+fU+P0RvQuFJ8m8RLj6KtXI048xIons2Ccz8LwMbXWrG7zUw/qYRkTGXz8nbyyuysfbGZs26acUQ/+xCZF99HERjs2Jn2BzTHddyDxgkRstsQFBmTxZImEScqBJMJye1G9XoRAhkiMB5J4s07kdNCr/APt4Im6Gyw7+TUngU886ufogs6vU2NFE2tHfUZOCqW6dm7h/yKSgqn1DD3rPPJn2CDe5OYoNinaWxL3daedDo4PRJFFjqJMW+yNPgYQHIgQwTKeRbQNHjxO/RIEh3SyLqyyuJ5WBq2D3tvJiaw54+4/M2zb+bm2TenX+e6Mu1wn2goCyc9Ag8vDloR+I1vfIM///nPR+JYjjq4NJHXkpmbrd58cKqzg4UgCGlF2FhqsL5wH1v7t9KTDKVNOMVg5g8aMisTKjEYQJZEJN0g+VQhmFZQOc87l2RvL9GNGwmvXn1Q25x2QjGiYqInXg9AjtSHQ+wnXzaG+qs1DYfLzGBXmPUvtxL9EEr8hikCxygNxrcXbypQoiiSxedn/e6TisAjC32M8t3xwH5Clop3Xc+wedkegdmpa+GNfUS29IOq4zi5FG2wBUfSUAdvwE1+ihSwzpzJVd/5IV/4ywMsufSqgz62YwGS00nOhRcCIATD3PimQYLGhB729oV4YUv3WKvDghtBMP5DwsaHWfaxmrTKZ+PrrYS8h+7vZyqxk3NuqgGjw+DTe9AiR8ZjNtkfwSQYn3V7agCoyGvMk4uLESfYoBAYo8ZWOUWM4GNTuw/llFSpia4TXL78g+9kxqWQCEHHWtj94n6zrbMLEFIpweFNfcS7xihHz4ZnL7mRtQB0S2X8VqxjZb8fVYC1liRFN9Vw/X+diM01/Hebq0gUJ8B5ViU5500hmDD2l58qDRYUBemDkJ/HAOqLHOnAkPaCjPrZO5CHIsZY4niC+er/4ZSfxnWaiOqNkRuII6WCnfas6+W+77zN83dspnPPIHs3poJgLBKNikYJA/zedAef5lnEUDesvQde/i+IeAFYcG4Vt/zyVE6+spYTLp1Keb2b3uYA21d20tkwcvDT4cIQmacmkyTjmY5Qx9ZVdMjGdWxKb/oSRqwgH01VWXTR5eRkBUdNVAyVBws+j2EMCcTCScou/gaLIplz5X3HFkRBRAwJxMNhgp6BMZ+PlmVCgx5at2xi3b+e5vV77vhIvuNJTOJgIeyjCMwPGzYFK2xWfKKILBghTpOlwUc/1CxFoJxrhtZ3oX0NG8YIppxZvRQh4R723izH+Acx3Flegj4p5cE9qQg8rDhoIvDWW29l165d1NbWctlll3H11VcPe0wkiDps0+0kdaOBofdtMRjwI7nPlCJMG4MIHIhmPOvyU2WDSthgABKyREISkScYEQigCClFjZAgnDDKY6wLM6W9B1sSZrYpzDu7EmHqKen36suaKSg2blRKR5CCEmM6Gkrw/r+aPsjhjwuCKKaVoWpi9HPAHG6hLJlkQSTKvECm86dndfonGhl8tCFbEThSsu+BYJ2Tj1LuwDTFSWyPd5ipsiAICKno6mxFYHYJonVuIZ63ngIgCXhDGnuLYXelQu7SzDk9keG+7jqc55+PXFLCJWt1rnpXQzAZ3ohPrm8nPlaJr7ME6g0ikUAnhZF3mHVaGSW1OWiqzqpnG0dfdxxwnFyGUuHAPCOXREeQ3js2khiIHHjFg0Rwrw+7ZBDJ201mzHGdnNRulIryw76/owVD5cGibPwn/EtOxnbKKZimTcP/4ksffAc1ZzBkZM7uV/abLSgiztPKsS4oBB36795CrHUcJcIbHkpP3h89nVZFRwDmV7r497PrOHFqHopZ4rRrp5FfaGGKWWSqRSRsEYm7TNiXFCPZFYJxgwgcKg2Wi4qMUp0JjPpiJ8ngdOK++XQUO9hbaSZaUkuntw5dF/Au/H+IWgxx0704Nn0c2RFCcZmpzzNxwonFTD+pmLAvTvPmfp757UZAp/7EYtqLJDQBlogZH+h4yoqEZAS2PrHfsVjsCtNOyJRir3ikYZiNw+GGOSsIbJhPYO8e2lMDiFO7M53uREkhjrx8TBPcH3AIaZ/ARBw55UkVjySprp1BfqwYa+o+utaxGQ2NHCUfk81mfEdjPB8ty9hz8xiieWORSY/DSRwD0DSEffi9+kANxcESZsfirLOYkYXJ0uBjBclBg4gTLBKiTYG3fw8VJ7LRmZdeJier21qQVLHn1xKWh6vlZxbOZ7zItWT6tz7J2PikR+DhxUGXBn/ta19j+fLlnHXWWeTn50/4hufCeWXEd9UiS31IeoR4XwOm4ulHbH+SLJNg7LLQwWhm5DlPU9FUUKJGByRsNhnlYMrEU4FYJSdDf/+OQD/1+XbsJ52EYDajx2IEV6xA1/WDOidPvqoW9lwID90FQF1hI5aZN+J7oQm52MbC6W5adg2i6zohb4yAJ4oz78gq7SRZQVPVMc8BW6KVtRYzuiDgylKMaSYFUm3EydLgIwwxU8rPGKTtaBAUCbnQSiSlSok1+7HUurM2L6ImNbSU2lCLq8Q7jM6/XGRFsivobe8TUPNotQYo9OjU9AAkPlhZ5DEE26KFRLdtI/CKQdQUenVO3ePhFSFJfxDe2NnDhXNKR9/Aok/BrufBUQrPf5OTr32ah/4YJhZOsvO9bmafXk7JOEs+94UgixR8Zg49v11nvCEK9N+1mbwbZ6b95Q4Herb3UysZgTPbTJa0GhDANIHLxwqsBbQGWhGkGAhx2opqqGtuItnZRbyxkURXF0rp8N8+FEvSF4iyrsWLNxLns6fVjL4DW57hFdi2Gvp3wWAz5FYPW8R5diV9d24GTUcXjPAQOdeC5Bzl/qtpxnaseWgRH0+qpwPwuWU1fOO8adhMRpNM13WKfFHOcClo6OgJDUt9PnlX1xkNcCCQCKAkdJypQXp5AvsDDmFasRMtVopk8tDjCFHTpgGNtOVeya4Fn2PGlRfA3WeDtwUBKKh9hu5tN1EPWETYbc40eUUR1CQEfTGeihhs6umWPZDi8n6S/BQ/U+4zXqz/G5zwuf2OZ+apZWxb2UlfawCrU6F1u4fquQX7LXc4YM4q742Fw9jduWiaRp7moSMVMlbbnWn7nPT1b3PWvHlH5FiORgxLDo77SCo2YpEkgiDQWnkNJ0f+jxU2K+UJjTZTDwtPuhjXeUfe7uVw4s+fvYFoMEB8X5/ISUziaIQaA3V4f6wilk+PYxs9mNkaNbEsaCgC9diRFdlM4oNBV3VUr9HYkPMshkq+8Q3QVXYXV2AXXYRVH/NjYVbKxuBTgaqCqwIt/0RkvQENY2i1bp+gkLFgV+zIOiQF8ErGFiYVgYcXB60IfOCBB3jyySd58cUXuf/++7nvvvuGPSYallbk0ivWpl9vfPP1I7q/8ZQGe6IZw+tcVSPoz0FIKReCqY7ERFSDOeRMh7x50CBPRKsV29ITAUj29BDbtevgN1xxAqTUV4XqVqzzCxAdCsmeMGwdYP45lQiCwN4NfWx/u/ODf5ADYCg5eCwi0EQHeorwzIllfmtNyXR0JonAIww5QwTqSZXmLf1jLDwyrDMyI2nRncON7IUU0TikNoy3BSAVgGGudpHoa6Fw8CWckofXxKmUDmbUIKbq6oM+lmMVuZ+4iYJvfIOQy8y5m3Q+/aqKHeN/+uiatrFXrjsXLv8TRL0Q7MHy0pc4+YLMdWbVM43oY4WOHACSTaHoS/MxTc1BC8RRfXE8f99x2Mpg9KSGZ+deFCGOXxToNAkUe7MSgysmXlDIELJ9AgU5QKsvhvvqa4w3NA3v00/vt86qvQOc+Zu3+Nbjm/j5Cztp8xygQz3t/Mx0w6v7zRYEgYJbZmOqzoGkRnhdD76XmkffXvcm2PokesTDa8JJ9OFGEgX+7fSpGRIwqeF7qZnAa62o/VHkYhu2E4rJv2F6mgQECMaD5GVVIyslE58ILHCYyLWZiHZfRn9OpoM5e47EjKtSSc83PAJmg2iX9j6KYjeuy7FGLydfNpVr/nMxNQsKufRr86ldVIS4rIhowrjGnmraA4CGwLPqqWzUUkRx1yZoWrnf8YiiwNLLp2J1KrTvHGT9yy1H6qMP8/kb8glc9f5mcuRAWhFY15Nq0ksS5vr6I3YsRyPkosz1wBw3vDtjYaMdXXDidcyIaCQFgW3WGDutu0geg4EhQ6rQSUXgJI4JJKMI+xCB+clMcNEeRUEWugF1UhF4lEP1xdKDZHKuJU0CbjcprLGJhFQfpw0WUpUlirDoOjiKMdecxurmNjY1t/FWawdK+eJx71cQBHJTFj6DkohAaNIj8DDjoInAvLw8amtrD7zgBIG3N4y57oT0a7Fh7X4Jn4cTQyTQWKXBwxSBqkrYn+m4hlKdiYlYGuwyZ1RO7b4M6eI444z09CElRlpyYN4NUL0Mgl3IWjeS2/j+Et0hZi4sRE11FHa+14X2AYiB8eBAZLCa1JDljMm5I4sIVKUsInDSI/CIQs9SBAq6xsrHdpM8SMNjS31u2tRpXyJQTJUeaynFZ3ZZsGlKDsE37kUQjHNxvUWiNGt1U/WxpXT4IBAEgcIvfJ7QdIP0cofgCy0rOKE6l/5gnFBsDLWmJEPtOZBfByY7oDGr5Rvkl1sprXPR1xJg56qu0dcfB+R8KwWfnIVcYgMR5EIr/fdt+0DbHEJkhwctaZCeu/bxB4TjozQYQJQDtA2GcV99FaQGSHxPPrVfyX4w61xQNZ2fPT/cxHo/1F+Qmd41crmxaJHJ/8TM9H7D63qINvtG3l6qxFgANktzWDo1j8vmlVLkNK7VaihB3z1bCL7VjmmqQWZZ5xSQe/U0hH3MuIOJIDWdGt15AvZTT8V24oljf5YJAEEQDFVgtIpuYVb6/Y7GzZmFHEWw7FZwVyOUL8btfAwAPaER3eujpMbFRV+cS0V9Hhf822z+9n4rU/JtXFpvoyxm2AGEXNOxOnN5x30FW5R5kDsV3v5d2nsuG1Wz87E4jP9e1x4fg91HhmAaXhpsEEFbVrxMSE4wIxZnvl+irN84v821tYjH2f1/mCIwZtwr4ylf1hOmleOPT0vPb7PsJNFz7JFpQ2Xe8UkicBLHApIxxH2aX05VQlaN6+UOxU5cq0dkAG0yLOSoRtKT8QeU8izQYLRlnnKmAjoFyPHP5oxIhNPCYc4NhrhKNYMoUl03l5XJBbyoLqHZcYZhy3MQcItGH9crSoiCFy2cHGalNIkPhoMmAn/0ox/xwx/+kPBxIk339UYoOMUgmlTdQnmsiYaewAHWOnSMRxGY7RGYp2oEg1YwGX/GkNkgEmXTxCMC87K8ArqC2UTgmQAIdjuxxkP09SqoheaVEB6ADQ8NU2pJXSGmzDESjoKDMdq2e0bbymFBWhE4SlhI1B9GVDLngCOWlTYtZ/7SE1EVelRhWMdcAw1evGsLiYMY2RRtCqYqo8Of7IuQzPKQGwoMGSIzYi0ZItBcZcfa8AgAqi7Sg5ghAkUR0wRWgo2GyBevIy4ZJQTl4QEadzSzpcPHxjbv2Cu6yuHTL4CjGLq3IHSu4/wlW+ja4yMeVXnv6UZiHzDoQ7QpFHx6DlKuhVijj3iTj8RhUKQE3+8iqe8TFOLLUoZWTuzS4CEIsp82TwSlrAz7aacBIDochFe/P2yd4D6ksCgIeEJjhMIUz4GcchBkaH8ftj0z4mKSw0TOeUY4jGCXGXxkF4l9CKHb32ggvO2F9OungrNZ3eThsvlGqnOiP0LfXZvSoTLxtgD5n5xJzpmVI9pdBOIB5rZCiUcn9M47x0VpMMC0IqOt0x86i3hq3Cve2cH/vrKLHV1+fv3yTuKLPg0xH7SvweR/DQFDOrnvYMtzm7tY1zpIy0AYW+8GBN241pps87knZMbaexJ18U4YbILG12H3y/sdjyAIzDo1U4K+450PNnAwGoaVBkeMc8vkbadfktlgteCJJgi5rSAIWGbNGm0zExbZRGBGEZhg9T/38tZ9O8jTMgP6O5U2tvZFSR6hAKcjhSEiUE0kSI4VJjeJSRwF0BOR/YhAJRklN2Lcq3oVDV3egSwMTCoCj3IMDwoxQcOrRASB5+3GfUlWTRT3XsDCqJW/9PTzu74BrrYY/ZD6Uidf0L7D1/VvcVfR/zvofedKqWA4USAuGNWA2mR58GHDQROBf/zjH3nxxRcpLi5m7ty5LFq0aNhjQkHX8faGkWum0mM9H5EEJeIGOp5fRbzryIz6itKBicBsRWCupqJ6JYgHwWYnaDFIJGUCEoGFtgwR2BvKNOhNFeXYzzwTPRrF//zzJAcPIb1vfiZBlA1/x1Kf8fCK7vQw89Sy9OttKzsOfvsHAUkeuzQ43tVIRMx09u3xTCexvSlDhE6WBh9hSFkegSYB/0CU1m0e3n1iD8mDaNRYskjnyNYMwS2mFIeapqKpGvEUESg6TYh9y7EkDQLofW0OHW4/JanSYKW8HGECJsUeCOXTFvKvEwTCFpi1s40LWgwSaE3zOIh7Sw5c+rv0y7ztv6VuvqG0jgQSLH9wxwdWgouKhPOUzHUktKZnjKUPjKQ3infXIBbR8AfcYTZ+82JvZpnjqTR4qMw398YbUMrKiO3ahffxx4atE4xm7quCAC9u7ea17b2j70QQ4Lq/QdWJEPPD4zfD6rvB3wVta+Dd2+F/Z8Lbv8exJA/nWZUIopFW23fvFqK7jXPvjZ093PfKGiy9mwDYqVXSSQHFOWbOqC8kutdL/31bSfZEUH0xlDI7hZ+fh3X26H5zwViAhY2pxGCzGftJJx3cF3iMor7YCA3T4pUM5BjXSJsnzJ/e2MZFf1jJn5c3ct+aPph/AwCCFsemvAlAZKcnHb4UjCa47aWd6e1+pTpzXw+2TSFXg7OxEU58NrPzF26FUGYQbgjTTypBlIz78La3Owj7Dz1xfDTsGxaiqSoFnlb6UxYVVX3g9IRBkjBNqzvs+z/akU0EWlRjsH6gM8TaF5rZu7EPR7ienJS6vsviZ5c3jrdxFOXuUYrsc2BSFTiJox2JWARxn9JgixgjP2YMnGiCQLMiIwkDaNEk8VCC8A4PG19r5f7vvsP6V1pIJiYJwqMB2YpAObkZwv28arcSTAkiagcWYlJtdEYzGQq6ZPRlzbJEVZ6NWFLnnT0Hb6HkNjnT0wHZIAInfQIPHw6aCLzyyiv51re+xa233sq1117LFVdcMewxkVDd+gr+/iiapmOqmIEgqAiCzsK9T9N35yb6H9hGcPXhHf2V0qnBo5/k+3oEEkhJZCNhQqnO4EQsDS5xZjpFA5HhnXtzTQ2oKmgaobffPviN55RmysACnSjh1YgO47eI7fFSNSOX3DIbZdPcDHQECfuPnEfBAUuDexoIi5m/ri2WudEKqXKgsukzcZeU7bfuJA4jxEwZtiCBYpGwu8207x5kzfPN496MdWYepqk5KOUOgqu60FNJt9mKwNheH6JdwVzrwjY/H3X5bfTFp9KTqOUlqRJXCGypU/J48gfMRlVOFa8uFnGkRJUXtLyPoGusbR7nwEDNmTD9EiiYDq5KTp/+HmabTHm9m8b1fbx233aScRVd1w+ZFLQtLAI5VUK6vif9Wx8KIjs8+NwWZCFGR2w2bYKTMrGaqqBxDRBMpmGd44mG4YrAAO2DETRNx3HqqWhRo9EaePW1YQND2YrAoZ+wy5dp4I6IknngTpXaTzkVXrwV/rQI/n4tDLZAoBPe+QPC6ttxnFyG5DKBYKgE++/fhuftNn76rx2cKW5CTJXyL9cWAPCxxZXENvXRf89WBFkEWUDKMZP3iZmYq0YPlIkn45wdryE/VZxgW3oiotU66vITCYuqcrl6YTklORZ6bYY60BqHHGVHepk/vt7AQP116ddO66uYpuYgCAKJVODS/721F0GAWaU5XDDNQVXrc8T0eiLqYuLJWWCRiAI92ikEtDnE9FnowT6451z0vt3DjsliV6g/sZiqOXkkExpP/3YDvr7DmxA+3CMwTFNzO3lm6EsNSKUtAZLJCR0SNBqyr3XF7gQnXFJN2TQXriIrCKDm1FEbN/7/HkUlJoXxN3k/oqM9NGQnQE8GhkziaEcg4sO0TzdGSkZxBTOloXsUBUkYILbHy8qfv8/jf9pI59oeQt4YG15uZd1LR853dRLjRzYRaNp7P2puLf+wFjM1mI87XMySxJkANEZPIuasp0dawurG+bx45xY6dg+SYzX60/5oEvUg7bVyzRn7s6Bs9P3VSZ/Aw4aDTg3+4Q9/eCSO46hESfcqPLOvxtMVouDSL6D/9nYEQcMhv0owej3RHR70uIpj6RiplAeJbBJotARcT4oEs2oaVk1HCxgNArG4BC1FHsgTUBFUmZPp+Hlj3mHzHGecgefeewHDJ9B12WUHv4NFn4JdL4BiR2h8Dcv0zxNe14NgkUm2B6ieW8CGl1sB2Lmqi0XnHxkftgOVBuv9jYSEDBFozVIEmvLzcSQjTDvxFNzFB+fDMImDRJYiUBB1Lv7SXJ774yZCXp2N/a3MPLUUd5FtjA0YUErsiCaJaJOh+Au83UHOmZWIqe1rqkp4XQ+qJ4rqiZJT/C5K32YKTdCXqGGryUdpFtdlmnL8+ANmw2V2oRXmsbGmn0V7dYojgyzsa2C9WSGpasjSOMa9Tr8V7j4LAGs8yBVf/xSP/2ItAAMdQZ7700ac+VbyyxwIImx8rY3CKoOM6GsNMntZGaW1LiqyVJ7ZEG0K1jkFRDb2IcgiofU9OE48tPtHdEs/vd1h5tr3YLXuYLO9AtQmTFHjvFHKytJk8kTEcI9AP1FVozcQo8RlwXXllXjuvRc9kcD/z3+Sd/PNAASi+w+udPsPQATKJrjyL1A6H176rvFeMgqJMOxO+QZGPLDyt0jzb6Tw8/PwvdRM6F3Du3Hb6y1cp4IkthLFhIU4b6gLAbg+KhF6vxtUnWRPGNsJxbgvqUG0jN008yf8WN/PEF/ZPrkTHXMrXFTm2ejeEKPHXAQYqq5SfSvuvFNo9YSxmWTu3Gnm+xUnQPsaRH0Ac+udBNSPE17bQ49N5q6Ve4knNWQxwt+r3kNo60EWerjHPY9lVcW8P6uBhvWzmbHNjyv+/yg0/ReCGkX39pC88yZiM75DYHcl5mlutFCSM66bxhP/uwEtqRP2xWjdNsDsZWVpr9cPin0Vgbt2NlClhNkxRARmWQJMZG/Q0ZBNBLpMEeZdVsPG11oprdUoqspBKbex8QEZUnz5oLULX/uxRZgOOwcmFYGTOMoRDAZGIAIj5McyfZNGk8IZQj+hpM7uQAwNCDYbI1zRUIINr7Qy8+RScgqOj4GuoxVDpcFmcTNi88s0yzJbK8uAAXLDxSybfiIbW9vZo55Ne+/5hH0poq63j/wyO7lZQWe+SII8+/g5CnfWoK9fMvgPLTCpCDxcmLi9hMMAc9xPTucWevb6EVwVNDuN0htZ6MMkGyU+sSY/2gidi0OFKGc6AJo68nb7U6UpuapGIiQZSjhArMqUgU3E0uAp7qL0dCAxvKTDtmghotOQDwfffht9jNLqUVF3XiolUoO192Kt0ZDyLWiBONHtHmZllfXteKfriIXGDKlCdU1D0/aXxYveRkJihvyzxDPHcdrNn+MLf3mAJZdedUSObRJZyCICdU2nYnoeC1I+YVpS590n94x7UzkXVKdDQwJvtJH0x9Ikjqwr6ZJh0aph2vXb9HrveK+gx9VDqef4TAzeF1NypvDGgsx/48Km9wjHVXZ0jdPXtXwRVKRCF3q3Uyg2cOEX5uIusRHwxOhs8LFrVTfvPr2HniY/IW+MeCRJLJwg5I2x5l9NvHTX1jFLw52nlWOuc6H64/hfaz0kk2wtmiTW7GcgqeGU+tlgMa73zgi4vHGwWjHPmnnQ2z2WkE0ECrLx+7YNGp1j97XXpOd5HnwQLWaUao5EBPYciAgEo0T4pC/BNfdA2UK44s9G2vy/vQ4nfsFYJhGGN36KaJJwX1qD4/QKuuwSUyM6l8VFPqW8h0nQ6TdP51dfuYUnp1civNdFvNmPqToH+9IScq+cdkASEMAX87GwMaMmHfLJPV7wlbPquHZxBaU1c9PvVeh7uf2G+Zw+rYBgLMldK5rYNf87sORziAkvLuXv2MTlhDf28d+PbyKeUuPeVj+Ae9P/AfCEM4c/FXi5PvxFfrP2NxTVN/B4scwKTKwXv09cqyGRLEZJ7sa+9QuYgq8R3tBHdKcH7xN7uOiL83DkmhEEgRWP7KZ12+HzEzZbszwCw2Ha9zTjUqL076sIZGJ7g44G0WZDTPlVJfuM8rEF51ax+MJqKmflUZxjxp50p5ePOHYT7D22yLThisBjL/V4EscXAuH9FYF6KMhUZ0369ZAicHtUHQqlpc4sUms22r9qQmP5gzuOeEjjJMaGoQjUcZv/CmSFhADzOIuF51Vz1idnIMtChgRMYbAnjNuWIf4Gwwen5su1Zfr+ftkQTEwqAg8fDooIvOOOOzj33HO57rrreP3114fN6+/vp6amZpQ1j12Udb1LyxajEx5b9Am6xGK2yHMIyG8aC2g60QbvYduflEUEjlQaqmoq/qTxR8jTVGL+rPLE8gxRNRFLg6vzMh2/iOofNk9QFOynngqA5vMR2bTp4HcgyVAyFxIR0FXMgedRvUYHMrLTg6vISnm9GwBvT5iuPUfGX+ZA50A8AR1aZsTfHM90CIcawpP4EJCV0DwU6LH4winYXCaKqp30tQZo2bq/n9RIMJU5sC8tRXSZkIus+F5sSisCy+QaSBqNIHflKnz2qfiSRTRGl7Jbm4rPERtOBB6nikCAMyvPxLLsNHpzRTprypg30ES1r2t8PoFDWPSpzPT6B6hZUMi5t8xCVkQkWcDuNiNKAqJkTJusMmabgqyI6DrEwkkaN/SNunlThRMh5eul+eME3mw76M8Z3T1IPKkR0HQcUl+aCCwYuixGIkh2x+gbmABwmV0oojFoMkQEtg4YHXtzTQ22pUuxLV1KoruH1s/9G6rXSzCWGUWWUoMp3QcqDc7G3Gvhc6/DghvhMy8bCbVnfQ+seVC2CPp2wfZnEe49n2T7N8mTf4OKTrfQgUUfRNQTOMIOLPfuprjRj1xolC1aZuXjvrIOQdq/AmAk+AP9+G2wsxwGawowHWcKMJMs8utr53HeGRlf6uKQSo+6jnNmFhNJ+Up9e7UV3WYEfSXN1dikV5DjDTiaAyyZkssXLXu4svm7qEIBA0IBf8o1lAc6xvX0mZa78Wphvk+Et6Mu+uI/RzcZy8SFmeSbbiNHfhBMgADCtn5O/3g9sbBx397+Tudh+8z7KgL9bT50BFoFwzu52Gscs5iTg5Qzeln5RMaQKnCICMyGIAjYxAxBGrQ3EfLG0dVjh2DIJgJjkcNbej6JSRxuhMJ+lH26MFooSF1ZNbJq3Lv3mhRidDPP9nvOz/0Jl+b+iFqLyMwCM2ZJoLDAQkeDlxf+spn4YRTdTGL8SHgiCIqIraofzT2DeO5UnnYY9xhRkzi/8AJsOSYKK53IJglREsgtyVyrPJ0h3FmKQO8+ROD3ntzMF/62jkv+uJLG3v0H7d2OTNWMXzKsPSbDQg4fxk0E/vGPf+Tb3/42M2bMwGw2c/HFF/OLX/wiPV9VVVpaJl4tvz3YTv+6XSTjKjNO/xgWPcbc5Fam6G8h4gX2T6L7IDgQCdTc2gkpn6FcVSPuyyIjSjNy64lYGpxjtoOW8u3T9r9YpMujZJnQ2rWHtpOFn0hPipv/jnmKoTJUPVGSfZF0aIggQdeeQwglGQeGSoNh5PJgu3ctJqU7/do0SQR+JBCyiEAhRQSaLDLLrptGb3OA4GCMtx9vQB2nD1zOuVWg6STag0Q29JErFeOQc6m1zk8toWMNPoW7dxUuuZf1wavothvneWnWJcg0tfpwfLxjEqeUncKK3nd5eqlO2d5OXPEQX9jyDMt3HEQwx+yr0ins7PwXNK2guDqHa7+7hIu+NI8rvr6AK/5jIed9Zja3/PJULvnyfC758nwu+9qC9CZ2vDs2AeC+tAZSpE94Qy/hzaMThyMhutPDYFLHJgRQhDgbzENEYFZ5YNnhs6w4GiEIQtoncF9FIEDlnf9HvK0Vkkliu3bR9tV/R+nOBEIUOY3v7IClwfsiFeKTfrbmwon/Bp3rjcdbt0H7+xR0vsHU6Ov8glb0uZnzL6bNMpKBkzpaQiPvEzPJOb1iRBuQ0RBsbeLEBpjRAYnS/IM7/gkCQRAwZQ1+5njD/O+6/+WaxUVUVe7CXPI0fcEw/8i5GhbdghxrxiJtxSq9ws2YOadzN1+xbkIkhKx3sTpvPliMzkuxzUi1VDWVE2f2owO3E+PtWaUo3/oX8fqvYNa3AGAv2YNFXUl02wCh97qompWH3W2cW81bBgj5Dk9wyL4egZZAlCrzJkKmIKKmk58aBDgey4KHMEQEaqEQamD/NmKeM6Mg9Vh7iCQ1kv3HjipwMixkEscSwtEQpuRwol0NBimucpEbMfqrfZJEiF5KbW9RbtmI37mDhy2NEEqwzCbiHYiia9DfFsDbM3nOfxQIr+tFHYwhdKzGNPgCtwleIqlwzQrvXC6+3LA6Kaxycu13lnDxl+dxww+W4i42rlfenjC5lmwiMNOv9YUTPLK2jZe3d7Ot08/j6/YP48zNyVQ7+iTjHJhUBB4+jJsIvPPOO7n77ru5/fbbefDBB1m+fDm/+93v+MEPfnAkj+8jRby0FlvMQ1XD03Ts9oJsIjjDMKCWBRWT9AYAke0DaIcp2UiUM38WbQQicN3qjEl1nqoS9WWUf1pxRj47EUuDAUTd6KCrQnC/efZlp2GZPw9BUQi88OKh7SCvBqaebkx7GrGXNKVnRXd6qF1YSGGVA8Uks+XNjiNSHnwgItCU9BDK8v4yZZ17k0TghwddHl4aTNgD3jZqFxVRWmuY23p7wrz3dONomxgGyWEi5+yq9OuZylLOLfsENikHucyOvGAQwWOkXHbFZ9CbnE6XswGA0lRisKAoKKUTmwAaCzPzZ3J25dmsmCvS7TbeW9DfSMFLT7J2vKpAswMu/b0RHBIegAevhi1P4syzMGV2PrkldsqmufdbrbTOlW74dOzy0rnHO+ou5AIrrounYp1fiOqN4Xl4J+Gd41OPagmVyA4PA6qOTeojIghsT4VETY9nSCH5ODgPZufPxmXKRZAiICRp82RUMqLFQsXvfodUWoJSXExk7Vpufvh/cMRCCAKUuoxQFU8oTix56PdvTdNhyWczqfM92zLHIMBM+Q0W2jI2AXFlDrkfq0dymyn4xExsYyQDj4ZoW2t6Wi8rGmPJiY3sa12BDzqCHfx09Y8ZdNyHKXc1gZJv86vVt7G67j+IYvxHbNJyyonzGeFunJEnSUrlxC1L+L+yGEldpcJRwa+W/YrqnGqiapTt0cfS6tHftPaRlGVMN/wPXPALcBQhDW4n3/Q7JKEH1RcjsdfHjJONTq6u6exa1b3/gR8CzFlEYDQUpEwymL8+SSLfD1KqKXI8BoUMwTJ3LnJREQgCye79v/f80sW4UlY6PZYAUQ3iHfu3JY9WTIaFTOJYQiSW8Qgc6inp4TAF5TZKfXUUJiAiimx1xFlaXclJUyr4TGkR55Wt4p8ksEsiJ9gkJAGSCY0nf71uMkX4Q4au6YTXGgOZstDKXe4cHnU5iYkqZV1nU225DNmU6QsNtZMFUaCgwuiva6pOThadMZhFBK5o6CO7G/3EunYS6nDxhNuRGfDzScbA7aQi8PBh3ERgU1MTp5xySvr1KaecwhtvvMFdd93F9773vSNycB81Yv69AJT0bWTvsy8AUHnOF9LzraZXiRVb0BMaAw9sPyxegcNIoBGSg4NkSmLzVI2oP0X4CQLJvNz0PNls+cDHcjTCJKSUOlKIYHT496MUFIAOeiRCbNcuEp2HWJaz6GawF8OUUzHHlqffju70IJskLHaFeCRJyBcnMHCQapJxQJLGUIVqKibdN8wjUBEzV9FJIvBDhJxR3VpjHrj7bLj7bITO9Sy7vh5BFCiuyWHT6228/6+mcZHG9hNLUUrsyMU2/PQjIJHQdd5pCTK48cH0ctsj56LpUfqc/dTECtAsFpT5c7GfcgpClnfh8YhbT7gVXVFYflU1miiwM7eSz2x/ged/+X/jTyubeRmoqRHHskXw5GfgjZ+BNrq6UxAEZp5aSk6BBUeumZfv3kpf2+jehI5TyoykWEAuteN/vumAnVItkqT//m3oCZVBWcQp9bPVbCKZUpPVxzMhJUrpxE8NFwQBX3wQQdCYP0VA3EdUZ50/n+qHHkq/bs6v4hfv3oVbhhJX5h7Z6x+faqvNE+a7T27m1sc3seRnr3L57W/z/ae3gLMYpl+UWso4x4ZOtRtMK5DbVxkvRIWC73wC+6JiSm5dgqnCeUifW+3IjJqLE1z5ORbkkkwVREEALpp6EWX2MsrthipOEDQSchs3PrST1ZZlxjpCCJd8P2Zxq7GMCMEvPkBTsJVQMkSeJY/FJYvJteQSToZpDTRx6nSBmaVOnBaFR9e2G56RJ38Z5lwDiTCCHscl3wNAaE03M08pQ7FIlNa5aNvhOSwDhiaLxdgvEPL5KDYH0IF+SUqXBQMoFRWjbGHiQ7TZSPb2gq4Ta27eb35RzVxOCUeZH4mSp6r0SYPpFOljAaZ9ysMnMYmjGdF4OF0anH0FzM0FW9JJX6q7u85qtKV1QSAqivSGXuNROYwfnZBFoEQWiIWSaEmd3pZx+j1P4rAg1jCImlK1b3G00CnJ5KsqIGA15XHmCSePum5uaaY/aolk2s7ZpcHLd/YOW6c/GOONfd7LtWTatT45ianKiT5JCB82jJsILCgooK1tuJfRnDlzeOONN7jvvvv4z//8z8N+cB81Hjs106tIvvkU619oZG+7i4GCJQBoWh+S711IasSafQz8Y+ewiO1DwVilwbqus23r3vTrXFUl4TOOUS4qI5l1qZ2IpcEAVsnwJRAEjVbv/gofxxmnp6eDK1Yc2k5mXAp6ElreQdz1CHKu8TvEu0KooTglte70ol2Nh98ncEwyONSPiEY4SxEoxVPniSQhTEBvyKMVgpIhEgQtCYNNEOqFTf+g0N7LZV+dR18q/WzPul72bkqVfyai8OxXDeXQu7cbD3+XsR1JIP+W2RR/bREJIY4imtgS7ENIbqba9B4Acc1KY/QUeixr6cmPIfX3Ud0WJbFpC6Lr+PSGykals5JFxYt4uriN2y8RmDHYhqxrLNm0nK0//J+0n+OYUCxwwyOw7Faj3BNg+3PQtXHM1eafXUn13AKCgzHCvjjvPrmH5s39Iy4rCAK5107DdkIxya4Qyb4I3ucaRyUNdE0ntKabRGsANaHhCSdxSn1sybrWl4cy0xO9NBgyJZwAW3vaeHvP/t+1qbycKQ//Hcvcucxp30adr4Or975NcU7m/zve8uA3dvbyyJo2nljXTn8wzuZ2H4+ubWNTm3e4tySwTqsHIFfzQr+h3KVsAYLVGMwaIoEPCZ2ZhrL5OAyGGIJosSDlGyrYGfECbjv9NhRJ4fzq88m3GGWiormXBd1buKd3EZ2rXfhaLPg3rGFgh52GZ4vp3DWLzks/xqdeUyka1FlYZJQ5nV6RaUssmdXN7p4ge/tD/O613fiGFA1nfh/shiLTJDUi00ysJYBdgtIaF117fLTvHKTzMPhIC6KIOaUICwckCk2thASBiCgOCwo5nkuDs4OyEiNYFdWVFmBPWthktbDHAntc2wms6qT/gW10/Xw1vpebiI8xePNRw2ydLA2exLGDWDycUQRmjdJJsQhV1ur0653m4f3V5+wyK6/28ug0Ky5VpzDrXtm5fXyVE5M4PIikvu+EpvOmtY+nchwMSBKu3mVs7lvCWTNGr0jIyyIC5WCGzxgqDVY1nTd3G/0ic9ZvvLJhuFWO2+JOT/vEJPFWH/GWAIn+SZ/Uw4Fxt0RPO+00nnrqqf3enzVrFq+//jovvnjwpZgrVqzgsssuo6ysDEEQeOaZZ4bNFwRhxMevf/3rUbf5ox/9aL/lZ8yYcdDHBrBlYS5rpol0FMlUtO2k5Z57ePH/thCa9nneUOdjIYEiP4hgFVBK7MR2DdJ7x8Z07fqhjAJnE4H7lgbHwknCYmb00ul1o6dIcVNtLcl4hmVXJigh5JBd6ekWb+/+87PSE4NvvnVoO1EsMPdjAAjJKO7KtSjlDvRIksiWAUrrMsdwxInAfUqDVZ9R7hLK8pOSVGMZ0W4/KJ+pSXwwZHsEJgUzuKsgrw7e/yu8cCsVM3I56apazDaZSCDOK3/dhr+lBR7+GGx4EB6+3vCgW/kb+P1ciBkdENltRpAEVEGlMRpGkndxuftHWMUgO8JLWOm9nICwkR2Fxvk9oz1znbEtWvzhfglHKWrdtSAIvDNLoPPCs+jNKaA00Ifp8b/T87P/Gd+1WZLh7P+G839qeAZGBuChayA5unpMkkUWX1RN8dQcSutctO8c5IW/bB6bDLyiDrnACkC82U/w7f09UsBQGvleaELKMeGTRTQdHFI/71stuFWVQq0ElzcxtGHk4uIRtzORUJSVJifIPrr90RHLfCWnk9Kf/Bg1Fc196eYXmaJl7qXjDQzJHqm2pcphdB2+//QWYlPOhDO+Cx9/hLcqvsCvk9dxZ/ISJLKOp+qkg/l4o0LuznSG7FVTD8s2j1UMlQfrff3oiQR2xU6+NZ9Tyw2lQpFP5Yer/satrzyGr8lO53t5+BslfH1lJCMSyYSC1O/l0jU6t7ymsbDYIAKXlS9L72O7bzUXzTHUh55QnN+9lrJoseTAmd+DknlIog+3+ym0QBz/q63MODlDxB+u0JAhRVgy7qZQ2Utfyp6iyJcVFnUcKwKzg7JGUgQW55gRI5n+QFfeOuIJHTWSQPXHCbzVjuexXejj9PX9sJFdHj4ZFjKJox0xNZJRBGZ1TdRgkIvPPzX9uj2r3wuw2mJi2zu38ZWr6vi1EMMkZ65vLW92oCeOzv/nRIMajBNa04PoNtFiDfGezbjfiDq0e8/kzOlFFDhG5xryyjLXK82b6csOpQZvavfiCRnTZ9QXcGpdPuVuK4+taScUy/AfVtmKJWW9MihJyILRRj6c+QzHM8ZNBH73u99l3rx5I86bPXs2b7zxxkH7BYZCIebPn8+f//znEed3dXUNe9x7770IgsA111wz5nZnz549bL233377oI5rCC9e9zL+68+hvNc4IafufgElHmT12imUi14UQaU82UDxmTvQo0ZjXy6y0vOH9fTds4XBx3aPtfkRMZYiMOyPE1Eyo5Xlg4Mo+YWIOeVY588mEct0UOUJ6hHoMmfKn9t8+3euLbNmIhUYnkuhVavQooeo0Fz4yfSkaeCZdPlIaE03xdU5CKnRra4xfMAOFWOdA6HOduM5SxEoJowL6WRZ8IcLIes3aM5ZCl9YCWoM0KHxDYTdL7LwvCpmnFxKNJjApbciP3ABRP1GPVrYAxEvRAZBS8DeN4dtv0Nsxiw9wUXu2/AkDe9ARWpn1UCQ0ilRmsqM8392e+Y4bIsXMQmocBidYV0UCP/7Rbw4+zxMyTgRyUS0swvPvfeOb0OCACd9CerOgVAfRDyw8/kxV7HlmLji6wvSgQEFlU56W/y8/sB23n1yz34kpCCLuC6tAUCpcOB7sZnQuuHhJlo4gf/lZgCSA1EiMw0VlE3sZaPFjFeSCElhxB6DIJILChAnqCo8G8OIQMWPrkOnd+RrvlQ/nZeqTyIqynQVTWHGi4+k542HCAzHk7y31/h+S10WNv7gPOqKHJTkWOjyRvnsgxvxn3wrzLiIP8Sv4H19Fn7djogGihVyq6Fq9DKag4Gl1xiAUgVwVtQclm0eq7AuWoh14ULkggKC777HzbNv5ubZNzMrfxYAn3pdQ9E0lJS6fqicWI0KyEVFSA4nWqqTumSPzqzdxrlQn1ufVpyu6VrDN8+vxiwL1BbZ8YTiGVXgwk+AvxNBi2KOrkDER3hDL2W5Jsx2417euL6PaOiDexoNEUGKYMUtddKfsoEYrgg8fhWipuoMEZho3l8RKAgCdfZ63CmfwGZXEyEbiBbZCG/SINkXIXiAsKePCiarNT09qQicxNGOeDKaVgRqWe1lLRBg4bwZWEVD9OBNXcckIBeRskSSb1mThNb9GsvMPL4nRpBT1+iBmErXbe+nVbzZz333b6XzJ+8x8OhOoruPTJjj8YTw+l7QdLwDMTrVDTSbjN+rLGIDzcb1J4x9r3EVWRFToXjR/kwba0gRuKXdx9KpeRTnmDlrejFTC+x0eCPEVY139qnucEtGBYdXFDGJO4xtThKBhwXjJgKfeeYZrr/++lHnz5kzhx/+8IcHtfOLLrqIn/3sZ1x11VUjzi8pKRn2ePbZZznrrLOoqRm74SvL8rD1CgrGNuOOxWL4/f5hjyEUnXAab841TmQlGaegfwsDPVGetn4xs4Fdj1D0mSnknFuFaUoOWiBBrMFLeEMv0YMkisRsEmgfNVjEHyeiZFQMOQMSiYE+NH8H5pqpJOPZRODE7ATmWd3p6Q7//kmbgijiON0o6dGjUcKHmh5cMgfKDXWV6G3AVmiUdiU6guCJUlhplHd5OkOHpYGfDUkeXREYTaVeZnsEEjMusKLdxiQ+PAjZo5iqClY3XPA/mffeug3+dyYnx/6bywp/ybX538GmdRnlpXXnwWdehPN+kll+98vDtl+U9DHHthxR0HFLrdyfOI+L9NsQb/p/5Fy7FFUGdJ1ZnalRupwcTLW1R+zzHksod2bK49qD7UiXX8UvTjASwSNvLqf/z3eQ6NlfUTwqlnw2M73hwdGXS0Exy5z/mdmcfFUtl3x5HrtWdbPzvW42vNqKr3d/JYd1Rh65108n0RkETSewvBXfK83omo6e0PA8sstImgWsCwrp9xnkf5+tLz0oUKXMJNlnXBPl46AsGIYTgaJskGOtnpE7yKFYkgdmXkCvLY+pHbtxvfkSMzzNwPhKg9/dM0A8pRQ6c3oRJlnirk8upiLXiicc593Gfpbv7MUXjrO1w2hDvJh7E1xxB3z6JfiPTTD94g/ycdNw9Bv+YP0ucNvzDrD0xEbOhRcS2bSJZF8ffb/9LXoySXjtWua+tIdrVqqc0GAQ72JBPnn/9jmmPvsMBV/+MrWvr2Dairco+ssfuePyzD03etcDtH3py+w58yw+tymf6e06cS1Oe2Qrl84ro7E3xD83dbJyT6r9IZtgwQ0ACCSxSW8CEHy+iWkLjPJkNaHx0A/e45V7trJrdTcrHt1N0BulfafHCJoaJ4zUWIFiuxlB0LOIwCyPwKwk5eMNktOZLhWPtTSPuEyibCmnRoz/e1RS+cvCJ/BcrvDE+avRBOP/HVrfQ3KcvqEfJrLDQiY9AidxtCOuxTJEoJShG9RAAFEQqbUagzJDcodaycmVUy+jU5HpVGSea3ia/+m6gZ+ZfsSgyej7JFQdrzeOFk2i+oc/a2HjEdnQR2Bl+4f5USccdN2wotF1na0Rld22Del5jlAZBQ4zZ49RFgwgSWI6QC80EEVMCTmHFIGvbO9mdZOHHn+Mk2vzh21v+a59fQKN67pXEjFbDCIw1uRDiw0Xy0zi4DFuIvDHP/4xweBHZ6rb09PD888/z2c/+9kDLtvQ0EBZWRk1NTXcdNNNtLa2jrn8L37xC1wuV/pRmeW5U+uu5e9ninTkgb/QwbTmZ7DZZRT/XB5NnsH72nSkznWIq/+XnHOnINkUBEvGrH/w2T1osfGbWg4jgfbxhwsH4qimDEuuDLrT0+a6umFE4EQtDa50Faan2/0jl9s5zjkH66JFSHl5BN9YPuIy48IpX4Np54Mg4JIfYsjuNrSmm9Isn8DuvYe3PHgsj8D4gOElFxaMv66iiehRg1iYVAR+uBCzUoPTIRIzL4d5H4dr7oH6CyDQiZQIUFCgYRIjDKqVePQ61It+C6XzYeoykFOj/A2vMhSfpfc3cLb1CTRdJ6GZeSu6lB+pt5BA5mNLKnh016PkmnM5T5iNJWj8720LFw5TKR7PGFIEAnQEOjh7RhHvlM/n9SqD3NfCYXp+Ps4SYYDqZeBOqU0al8Pg/mqTfSGIAosumILdbSY3q0SiecvI1y3bvELsS0sRHQpaVCXwRhuDTzfQd+9WorsHkQusmOtzybmgOm1JsMeeGbRaIGRI4OMhKASgxJYJixBk47toG4UIDESTBMwOnqvJlCR9afMzCLo2LiLwjayG6VCDtabQwX9eOAOnWaKm0MHXH93I3Sv3omoai6rcfPyESlh4E5QtSB3k2NYNyf6Rz41sqD4f5ojRpuh1CTgUxwHXmciwzp+PJWX/Etu1i55f/pKWT38G5c5HmNqTKmOqslHyn/9J8be+hexyUfi1f0dMqau29m9lxUyNt2cJvPOlk7EvW4YaDJLs6WHuiw3892M61QkXb7a/yZULMwMMwwzNF2b8IR221zDXukh0hSje62XxuZXMO6uCWChJw5peXrtvO1uWt/OPH63m2d9vZPf7408VNtvsCHIZRSajk9u3jyJQLipCnKBtv/FiyCdQ7etHDe5PltUvOIWTQpnO49ve5dzy0i3c03w/f5z3BKbqHJK9YfwvH/ga/2EjOyxkUhE4iaMdiSxFoJ6tCExxCTWuauON1H2xzlHBjYu/ylTZSbns4EGHmSfNUU6SdvIV9/dxSUb/p1cUEC0yUo5p2LNoyxLS+DJWWZM4eMRb/CT7InQndPqSOrtdmYyIAuVEPn5CJYp04P5G5cw8CiocmKwyBal+qzecIKFqbGj1AkaFxZR8GyfXFKS9At/Y3ktnV4BgLEk4nmR+6VLq4wlcqkZI2WlsXNWJHQb/3eMd4+41Ho7Usw+CBx54AKfTydVXXz3mckuXLuX+++/npZde4i9/+QtNTU0sW7aMQGB0A+Dvfe97+Hy+9CM7FKXOXYfPIdBaJODuDSDHg4jNO7B4E9yevJa5QhMCOrx/F/TuwLmsgrIfnIxS4QCTCAmNgQe2oYXHpxo7UGmwasoqGfOmzM4FEdPUqcdFaXBtbhlqtAg1UkpXYGRZsH3piUS2bEH1eAi+9dahn7vTL4KBPZCMIg2uw2Z6G6nIRmyvj+JyOxaHTGGVk/adh1eCPtY5oHmN3z+YUgS6oxnDe2mSCPxQke0RKAwRgYIAV98Jc68Fcw44y8Ccg7WwgLBQwI7QGTzR+xM2r0str1iJlaTS2IPdbH/qJQASz/4nkqDiUgbYEjyJn8UuBwQq86yg9LCxbyMD0QHys0x1rYsn/QGHUO7IdNg7gh2cUms0MP4280KCJhtSURGh91bR/ZOfoO+bzD0SRBEWfRJkG1QthW1PH9TxnHJVXXq6ZevIZteCZPgF5pxbhRZKgGiUsiW6jEaz6o2Rc04V/Z4YznwLuUUS262ZQaaFZEixId+0iY5CW2ZgSFAMcrRtcOQOcjA1cvxC9UkMllQhOJzERIXzWtbQM47S4HhCZUaJE4sicmpdfvr9E6fm8V+XzGJPbxBdh0fWtKHqsL7Vy7xK97g/S/Ctt2g8/wK8Tz5J/z330vnf/4/e3/xm/+NoyygdBvMUJPH4TgkXJIni//4vwCAFtaSKlGOEJlX5ZAac8FZ9AtulF424/qrOVcwqmM3fry+i4JLLkRxOJIcDwWpFDEUwxzQuecnDivYVnFCdm/aGfGtXH9qQmq+w3ij7dpYhuW1IfW8AkF9qpzYQw+E2I6fWU1IDxfGUncy7TzUSj45P1WCy2pCUqdhEDz2JWnpEK6aYRncuqNXlmGdMP4RvcGIh2ycwPoIqcPHUQgrCFSiajjNVIhxMBBEQKKgq5V3fatAgvK6HWKt/v/U/SsiKCTHV7oiHJz0CJ3F0I6nGEVOXSE3K3KfUVH+8LmXfMIS6/JmU2Ev4/SUP0ZkMEdVVnnY60IC9WgnV1hU4Cyw0xHXUMyop/f5SCm6enX4uvGUOcr7RJ1KPQkXvsYTAinbkcjvPu94jUNmMJEQpTiYpTyR5u2sqZ80oPPBGALNNpr89SDSYoColdPKG4+zo8hOOq6DD5UGFdS81s/XVVs4qdXNiVGZ+r8Y/fraGW+98n+vvXEUwqbHbpDAgS3TrPYiKD6XCcdBVl5PYHwclH/kogwjuvfdebrrpJiwWy5jLXXTRRXzsYx9j3rx5XHDBBbzwwgt4vV4ee+yxUdcxm83k5OQMewzBZXZRYC1gfW3ms+cPbAMNLPFC7khebrypq/DPf4fIIIIokHfddKzT81C9MWJ7fQw+1UBy4MA3bjGLXNg3LCTijxNPdXZsqoqaUjHIxaWIFgvJ44AInFZQimTpRbJ20RMZWfotORzYUqRIoqOD+N69Iy53QMhmuPCX6Zcu+z8Q+hpI9oTJafMjINDXGmDX6m7Uw2heO1ZpMCFDhTCUGpybzPzOk4rADxfZ/1W0EVS/p3wVvrUDbnwE4cZHCH16Ixsi15DQrWx4pZXuJh/bOnxs7Z6dXqV202dQ770Upc3oSAbVfHbP/DYtFoPYOnt6EU/vyZBQZ/ZkygIn/QEzcJgcuM1uwCACrSaJk2vzCZjs/L+lnyZmdaD5/Xgfe5yuH/wQdTxq9/k3gSRB6ypj4Gek33wU5JbacKYaqJ0N3jE7/o6Tysj/1Cxyr5qG6DShR1VMNS4KvzAP85Qcdr/fTX9bkORAO+ssxv/fpAnUJzL+UccLEWiRLbjMRniTmFIEtntGvs8GUt+5JkpsuvpzCJLIXE8Tn97+At7esb1mAtEET6zvYGd3gOnFTmym4ebmVy0qJ89u2HH0p8LCqvNtLJ06dtmunkig6zr999xL21e+ihYO0/XDHzH44IP4nniCgb/eQ3TXrmHrJNoz971AwaQdBIBt0SKmPPQgU/7xMEp+PjkXX0z+5z7LSz8+ny99VebZE3R2e/b3bFY1lWf3Psv2ge1Ek1HOrjyb/E/fQuVf7qDujdcRU23Bpbt0Zr7XRUugkdPqDKuZgVCcTe3ezMbO/gFEfQh928i1P4BSZia210ds1yB1FpHP/+F0Tr6qliu+vpATL5tK+XQ3YAzw7lnbw3hgttkRlRqmmNdTrDTikVWK/QIzOkBq7kDOzT3wRiY4sonA7OTg2N4mtFAI/9/+huu5MM+/PMgLbZ2cHZnBfy/9b3R0/r7nHzw39Z30Ot5n9qTD/6J7vIQ3GSWHXT9fTf/ftpHo+XDLcwVBSKsCJxWBkzjaoWcFq+lSpl+jBYz2Vm3h8NyB2rITAKhx13BquaHc75RlXnWUMF/azWmORxAH9xKPJFn7QjOqun+/S8wx2kR6VD2oarxJZBDdPUh0u4eOVg9PVz3C3yt+R7MlwdWBEP/XHka25bGgcnz3muzAkBJSgR/hBGubDQHN7IREzkCS1c828f5zTSyKyJwRVZgfl7GoYG4IsaXDR58n09bpkGWs1t0k2oOE1/WgjXMgbRIj46CIwPr6evLy8sZ8HAmsXLmSXbt28bnPfe6g13W73dTX17Nnz55D3n+tu5aNw4jArQDUJCXuUi9lp2k21JwJ7WvgnvPB04RSZMNxWjmiXcFUnUNk6wC9d2wk0T12w2EsNZipZzUWYtRH4LROB6TSYs21htrkeEgNrs6pTk+H9R7C8ZEvAI4zzkhPH3J6MBjlnXOugZmXI0VaKTLfiiLsJbGxj7IpTgCiwQRNo6SCHgrGKg0WY4aaaCg12J20YK6vxzJnDkrVFCbx4SHbzzOtCBwDhVVO5p5ZQc2iQsKBGI/etpZf3raKrZ1zWRu8lu3hczCLYSLeCAIwkKjk3cDNrJOs6dKJ0+rdPNf4HAB2TSFvUyum+mk4Lzgfy5w5R+RzHqsYUgV2h7pJqAluOLGSC2YX015WxytzzgVZxjpvHr6nnqLlhhuJd4yc1puGqwympMpK/R3Q+Ma4j0UQBKrnGCoyTdVp2zE28WSdmY/9hBJEi4SUY8I6Mw9ThZNEXGX3+wZpoDta6E2dg8VROw5/ZpvKceIRCBmfQKM0WB/VIzAYy1xLE7MXYD/ZCO5wx0Ocs+a5jLprBOzpzRDFM0tz9ptvliWuziobBbj+hKoDDp7233kXjedfQOCllyCZRLDZcJ5zDpZZGaWE94knh60Ta8tYnUSKnGNu/3iCbckSBFFEdDhQysoouvVWTq08nRNLTqTAWsC6nnX7rfNe13t0h4zS3CUlS8gxZ35bOTeXwv/4Gt4T69GBL7+g0XDf7cN9jLLLg6ecDKVGx1YY3Ev+tLdIhVTje62VZH+ERRdMobg6hxMumcpZn5iJq8hKQYWDd59qJBk/cKc1EZNRJCd5slG10ivZ9/EHPH4Tg4cwVBoMEE8RgXoiQfu//zuNF1+C/9VXkUMxfJudWDwSn+lUuG76dZTYDUX1htgWtDoL5vpcEp0hev+8keDqLvrv3YrnsV0kukOo/jjR7R5679hEpOHDDSUwp0raJz0CJ3G0Q0tk+qSqYkIum4mpro7kgNFfqsutG7Z8XRYxeM20TCjowwXVmWUKNmO2ywx2h3jnsYb99im5Mv74k6rAg4cWS+L9ZyMAa8RONNG4L5UlE7Sp5fwufiNn1BciieMThuWVZojAfNWgnCIJldVNAyg6nB5Rhi0v9WZ+s7igk6eLXICVDXszdFW7LGN1bgdAT2iEN+6fFzCJ8UM+8CIZ/PjHP8blch2pYxkV99xzD4sXL2b+/PkHvW4wGKSxsZFPfvKTB154FNS6alltX82eUqjrAmeoA3N0kFrRzcu6iW/zDZ7r/o6xsMUNfz0XPv4w5ilLKfzKfAYeME5Y0WEitL4X1wVTEEaprR9OAmWRXGqS0r5fs7vSuMjN8WZmtQb6efFLNyPJCqIkYbbZUcxjKyePVbgtbhQcJAgimvrY0xtkXoV7v+UcZ5xB769+BRglV/mf/cyh7/Squ+DuMwHQbYU41X8QzPsuleg0phbZ/k4ndYvHNk4dL0Yjg+PRJBbNQ1KC2JAiUDMT220oHawLFhyW/U9ifMhWBAojjEyOhGXXTeNvv1qDgEBQ0LBpAr3kEwzexHzbswTVfAZ9Mmj57IicQ5P5bP65t4+KXCv9wRjd2gqK7cVEkhFu7qsH/3ri/gCW6TOOe2+ofVHuKGfbwDZ0dLpCXZxWV8YPn91OMKbyJ6WepT/5HUW/+m8ARIeD5uuvp/KOO7DOmzf6Rhd9CnYb5dusfwCmnTfu45kyt4AtKzooKHfg7RmfmsO5rALnskznfu/6XuKp0BC9up9pUegw6bhjRegDGa8x+ThRBIJBBDYMNiCIKoIUom1w5KCsQNaoscMsU/yf38bz2huEZRNTtSB9TW0U11aNuG5Dl59Pbn+JlpwSLml/Fu2SPyLuU51w/QmV/PXtJkySSFLTuGZx+YjbykbwrbdItLWRaGtDKijA/bGPUfjvX0ULBmlYdjp6LIbvn/+k6NZvpf/fkdbm9PqJouM7KGQk5H/6lvT0jPwZ/Nc7RtnwO53v8KnZnxq27FMNT6Wnr562v+1M3k03Udi8i8T7u4koEFm/gVPnGIPKUwvsbOvyo+u6QfgKAlx0G9x1BjhKkLtex7HoNILrksi5Fvrv30bhZ+Yg5xtEjqvQSslUF7tWG//bvRv7qD+xZL9jyEbAV0SeuBkxFWph1uxU+ATAC4CS5W99vCI7OTje3AzA4MMPE280Wmta1Kik0TWB3vZCcuytfP6+9+mP1ICjm4SWoOEML7MeN75jQRHxvdqCIAvocY14V8hIGFZ1RLuC5+GduC6sxrH0w7nmmlLJ0fFIGE3TePXna6heWISnPUB3sx+PP0FejjLqMzChljlajuNo+sxup4wr10KJQ2H2F+YhyB+Nd3R2VZuumEl2GiEPQwOVpfZSTJIJdNDRh1m6nFFxBnmWPERE/DjwiCJ5mkZF7kY29F9ELJSkWR1g2dD1NwXJlWkHq744SuGkan680CJJ+h/cjq7pJATYbs7YpF0SDHOeP8GF2gJ+coCQkGy4Cq2IsoCW1MmJ6ZD6edY2D1KSFOhXdBxxAUEU0DWdqN8gj812GUJJCpLgC6oMWpzYU44sHXY35p7nMIvziWkLCK3pxnHS8dPmPdw4qKvDxz/+cW6++eYxHweDYDDIxo0b2bhxIwBNTU1s3LhxWLiH3+/n8ccfH1UNeM4553D77benX99666289dZbNDc38+6773LVVVchSRI33HDDQR1bNmrdhgn7+trM11XSsxq7JvBlv4W6TjePDfyKHtNJ6F0bIdwP//wKbHkSJc9K0RfnIxfbSPaECa5oJzqGp1w2CaRlq8Ga3iIsZL6X6j53ejpksxD0DODML0BTVRZccAkWx8Q1EM8zG0b4ouJje9fIflumqdUoVUanLrxuHYnu8Rty7wdJhlueh6pTEKOt2KT3sA3cRU57AKfTuCm3bffQ3zG6D+VB7U4ZuTTY1xvBKvqGJQa79UynV3RO3N/8aMS+isC/rtzLST9/nT+93sBgaGSjYkEQWF0mstGU5Cl7nICos0FO8qI7yWb7dTzQ91f+2fMdHuj7K5vCV7A+GSOW1IgmNB783Dz+uvVOdnp2kmvJ5ayNGQWJ+9prj/jnPdZQ4cwQaO3Bduxmme9dPCP93g+bZBz3PID99NMNT9H+Adq//nUazjiTti99mYYzzqT3939Azy7Pn3Y+OIqN6V0vQuvqcR9PSW0OoijQ3x5kz7qDSCxOIR5NsvbFTKlbj6uJBguERQG7MIVEV1d6nlJ2fISFwP6BId5wAn90f0/eYUSgRUYpK2PHyRfiiIaYv3c9nqdG9330vvMuN+5+je+tfYiCtSsZuOee/ZaZVuzktW+ezq6fXcgr3ziDIufYg3HJ/n6iW7YAYJ4+nfq3V1L0H19DEEWknBxyLrwAAM3no+GMM+i/9z60WIxolu+ZXnZ4Bp8mKqa5p6WVXmu61xBOZAj4Tb2beKPVUPUWWAtYVrFsxG3Ufv/HrDzNhSbCnHUDhH/7S66YXUhTf4jXd/SypSMrLKx0Hiy71WgDtr5HDvfhPKuSZG8YdSCK58kGYs2Z5Wedlum8bH+nc8zPEhyMMtjtpsicafNstsYxDWa2Z6o4MPk80WGqypD5offXEN60mf477zLeEARK/+d/0vO1ngRTTVs4sfVtkoMZEvWVzpUUfWUBtoVFWGblowcTOOp6cc/ZS/Elfspu0bEuKERPauiRJN5/NeJ7tZlok88oq9s9SKxlbH/BjQ/vZLDRy+q7tnDPV5bzzI/eY+NrrQdUhppTycFqMsnO5xrZ0x7iteea2LvdQzyuEVX1MZ8n2jJHy3EcTZ+515dgV1OAt7d4CLz9EabnqlliFtkGisECDSl1BUHg/RvfZ90n17HmpjXD/G4VSeHGGTcyEB1gT3Q3f3cY97pS3zqq6ox+T2AgymD38EFVKSdLEeibVASOF7quE3q/i/heH6oniqfMgceeqaQsi5u5MvYTgqKTM+rH5w8IIEoiuankYHNUS3tGDoTiLIwrVMcNXqWkZnilRfW8AoMMBEo0ES2eGfRs1+MIahSH8mfeCzazcpeX+25dyYZXWkYsF5/E2Bg3EXgk/AHXrl3LwoULWbhwIQDf/OY3WbhwIT/4wQ/SyzzyyCPouj4qkdfY2Eh/VtJee3s7N9xwA9OnT+e6664jPz+fVatWUVg4/hN3X9S5Dfny6ukCbUsqoaiMqd73katN2HUBmyDS58vnn21fpVebjW7JRY+H4MnPwIrfIFokXBdPTW8vtGZ0Ump4anDWRXTNPewQM9so6c/MU4sLceTlY7LZjGfrxB4BqXJmRnw3dI9c8i0IArmf/ASOM89EMJvx/O3BD7ZTiwuuvRdBMm5kdulFTGIz1YJO5YxcLHaF9Vmd9A+CbIIpmwj09gSxir50YjBAjp45XyTHZJnYhwlRyfxOgXCMf27soNsf5c9v7uEXL+7Yb/loQqXbF+GVnb28akugORWcThM15U62kuAtLcp2u8bUE4wGT4ek4itQUCSB82YV8Vr3Q3iiRvnnKUId+tpNAChTqrCdeMKH8ImPLWSPLrcHjMbw5fPLWDatgPNmFtHYF+Lqf7YT+/b/w7ZgAVJhAc5zzyPZ00PS5yPZ08PA3Xcz+I9HMhuVFCNNfN7HjdcPXQNNK8d1PGargjvVIPJ0hg7KVzTojfL0/67H2xOmanYe05YU0ZLMkIl263xijY1Y5s4l55JLkNzucW/7WMdQaTBkBYaMUB48FBYC4DQb/93eMy8Zqt5E/dez6KOU+Oe/9dKw1wN3/5VE5/7ETV2RE0EQqCs68KBMcOXb6elsK4shuK+/HteVV5Jz2aVoXh+eu+6i7/e/J7ljFw2l8Po8AVN+wQH3czxDEAROLz8dgISWYHWXQdy/1/keX3ztiwBcWnMpt8y+BUVURt2G85tfw1duVMNoLW1cvjfz2z2ypm34Cku/CIrxPxe3PYq9oh250IKUK5JoD9L31y2ENxn/3dI6N64iQyHYscuLry+MmtBGDDgzyoc1ChXD8zgB+KQERVk8pFIxWRosWq0U3nor1sWLSXZ10XLDDah+P46zzsJ97bXknHsOplpjcD8yoJCMCXwseSevJu/AnLIHWLn3ZcQcE7ar65DsCjbHBpzNX8TU/J8Ij96I+I+ryJu9Hds8o1+hFNkJvN5G/12b6X9wOwMPbqfv7s1Etu1vGaNrOsv/dx3vrOjkuT9sJDQYJarq+HsjbHmtjYd/vHpMmwJTqjRYFEy8/2qG5HHnmjGZRCySMObzRFvmaDmOo+kzK5JxV1OB3lfbUP0fTYJudhCbIFmQ3MbAR6K9Iz3AOkT+ZZOAeiKBrqqcV30eOsZ/4UmHAx2Q9CSzSjN+ry1bhotBpJwsReBH9LmPRUS3DxB8vxspz4JglemIqgTcGX/97dFTmDK1jmsXV+C2jVx1MRqGyoMFHXI149wsyjFTJRrtMFkRmb6Pom/q3AIKK40+rV0TsCet6Krx2zZLVuKamYRo4qLcH5IUIoSDCdY830zDmvH57U4ig3GXBh+J1OAzzzzzgNv9/Oc/z+c///lR5zenpP9DeOSRR0Ze8ANgSBEYm1KMvjIAvV5EYGbrct4VTiGmaehIxHU7b+g/Y07wPubKT6AD2rZ/IfU3YLn0D0guE6ovTnSXB9UXGyZhHoI4UlloIoq+51UiNgUwtLH53tRIhyBy4U9+eVyVBc4oqGFNqn21a6Bp1OWcZ51F369/gx6P43nwQdwfuxbz1KmjLn9A5JTC6bfC6z9GVSqxJt9minsGuxq8xFWdhrW9zDnDS9k096HvA5BHIYMjvd2IgkYoq8PiTGRunpOKwA8XUlZpsJ5U2dxhKACiCY3H17Vz09Ip5DtM/HVlE1ML7Nz7dhM2s0SR00ynL8r1J1TynQunc8/bTZhf9rE6GQUFwg3dzFVEdksa6/xBfnL5bC6a7+B36/3YZBuarnFzbz16fQex3btxX3PtRxrkdLSiwpHpFHcEDf8/QRC45+YlXPh7g7yzKCJ3bhzgR3+5E6W/h+CbbyEXF2e+T1Wl7/bbybn0EuQhD9xTvgoPXg1aEmQTNL8NxbPBduAyzcJKJ57OEJqq4+kKUVh1YPK+ry3A83dswuY0rvHde/3c+KOl/PapAIhg0zSqIjkku7pIdnUhFxQcV+dDNhEoyn5UoM0TYXbZcBuTYJYi0GkxrqH2KZVsKJrG4t7dSD1dhN9/H/tJJw1bLzk4yLSG9QDEJAWzmsBUW0NozRrcV1xxyMcdfCvjXes4c38i0LZoEbZFi+i7/c8AqF4vg48/gRAMMS0A7YXgsrgPef/HC06vOJ3HdhthcSs6VtAX6ePuzXejiApBPchAZICbZ49dzXLWlLP56tm/4cd7IWSBkl2rKCuvoFOy89zGTv77kpmZABl7Ppz1X/Dit8FehPz8zRSVLkZrb6E3/j10pRD/qy0k+6M4z65k1qllvPd0I858C0/8ai22HDMFlQ7O/sRMJMUY9OtoGCTkjSHJAvkpInAg1Yka8ggUFAW5aFIhCuA88wz6//hHAARZRo/H0ZNJSn7yY8Ag3j2NjaALhLosuKuNzuMJURvvWyy4VZ33fl5LLDGVGcUO8k3b+C9HDkE0Tg9HsFjsXLb3DdyLp6CU1jP4ZIqYEAVIaOiAYJaINfvxPtuIUm60zSJtAdaFVMKpAJJAXCMwEMUiQEyHeKpd37bdw5Q5+YyEoYH+Uuc5CCaBUFIn3y7TcWYB77d42doRY065edRnYEItc7Qcx9H0mS9ImCjqMoi2sEmk54/rMVU6SXQEUcod6Wdgv/cO5zJiMqNuFWQrcqEDta8ZVJV4e/uI/THV76f9P/4DU00NOcUlXBWu5encRgbMcTabTeTFCyhx9QCGIKRlaz8Lz8+ogCc9Ag8N0Z2DqAOGbYL98lriv/0b5gUDXNKpceUqDZ+5lb+c0smVCw5edJAdGHJmWGaVJYmjP4E1ZtzfCiodVM81rndDTdfKmXn0NPtpT1VQFqsSg/F8ktZOemWd7kQtVeJ2kGCO5UneStxEIqay/e1OZkyWCR8Uxq0I1DSNouO0keEyu7i05lJ6I7384fQApPz9itY8x6qiQZ5wxrnfGaVkZi7V80tY0X8j7wY+RWdsNlLPBtj8CMIL38Q+P1UqpENw3cis9XB/uJQarGsjghqnKzVP0HXsXoN0UCoqjisSEGBuYW16uj04ugrPVFFB3mc+bbxIJOj70+2jLjtunPwVKF+CnGzBqTyOabCdmabM3+itf+wiGtq/LO1gMFpYiL/ZKA3PLg12xLO8MZyTisAPE9m/k5ga0Pja2YZ6WNfh+09v4cfPbef+d5v54T+30eIJs6MrQKcvyjfOq+czp1YjCAKfW1bDa988A3PKx2U5Mf5oj6DMcvGXmxbxyZOreav9Lf7Z+E9iyRhX11xB8pFniO3ejVJVieuKyz/8D38MILs0eIgIBDDJEo9+4WTmlrvo8kV5Yl07d7zTinnqVPI/fQvT3nqT6r8/hOvKKwHQ/H4G7rpr+MavfxAqToSYH976JWwePZU+G9nEX1/rga0Emjb38fLdWwkNxvF0hyird3PNtxcj2lQ6Uz5hFXGob8koUEdSl01kDFMEyoY8qn1wbEWgw2LcSwucZl6asjT9vufvD++3Xs9DD6NoxrrrZp2G6HQS27adgb/83yEfs55IEHrbUJVJLhfWMfyPC7/6FZznn2+sl5Vu/fp8kRzT/sElkxiOE0tPxJxS8r+w9wV+uuqndIe7yTXncv6U8/n9Wb8/4DZK7CWcc+6/8dSpApIG4votfLfdKCsOxJK8sLlr+ApLPgNX/gUW3wLhfsTGl5FjOynI/xPWvE6S/VH8r7YQ3dbPrFPLuOGHS5lxUgnRYBJPZ4jdq3t48+FdRIJxNE3n7cca6GzwYrFBvmy0eXrFEtB1ir3GLpWyMgRJYhJgrqtjyt8ewHnhhVTd81dyLrmEij/+IT1AMixMrjPTfj5ZK0aXZNqUCNtsCaxakG09XfzUpvIvu4U37TZ+UpjPr9wOfJv+jvqvb2NfWEjBLXOwLS4m/xMzsS0pxrakmLwbZxDVdFR/nJ2tAVZu8/BCe5iOwRiDCZ1Ch8xJJ5Vw+S9P49LZuSywZX67scrEzTY7FslJXJlBf1hDEuBxwty5splANEG3P0ogmhz1eax5x+IyR8txHE2fuSEcTZ8vgQIrWjCBFk2i+uPDnkd673AuQ1aZplSYi+P0uenX8Zb9+24D991Pw5lnEX5vFd6/P0zfb3/LNf/yIKlG+/pxh4tKvRNLy/O4Cg1lbNceH7FI5t6+r0fgJA4MXdeJ7EqFzckiAySZtvNRfvyQytXv6rjCAlWDvdzUuJzL5h88yZabFRhSo8rcGLJwYThD2BZWOrG7zNz0k5P44p/P5MYfn4TJKg9rL09JiJSFjQoIXdC4K3EjiZSWbZbtOUpko9Kya4+PwQOEsk5iOD4aB9FjENNzpwPQVijQcu4szLNnIzmdfL3xVQD6JZ2WmTasThOSRWZV+EpWRS8mqZvoitehb3wY5+5bMBf6ME1xEtnQiz6C/H/EoIjW9wDoTimQigZ11JxC5NIZOE4/7Uh+7KMSU1yZ0uCA2k0oq4O3Lwo+/3mUykqsJ5xA8PXXCbz55gfbuWw2fMIAAQ27bTlT803kWiTKSmx4OkM8eds6vL3jCwMYCaI8skdgpNsoAwlllQbbsga8xMnS4A8V2YpAUddw2xS+enYdM0tzOHN6Ids6/by63SD8JVEgz6ZQX+wg327itLoCinIyHmKVeTa+eEYtJ1TnUp1vo9Bp5rsXzeDCOcZNd0X7CgBUVC7tqyDZY2zXPK0epbj4w/rIxxRK7aWcXXU28wvn0+xrHjav0GnmTzcsZEiQ/teVTTT3D288FH7zG0jFxVj/P3tnHR9Xlf7h595xzWTiLk2aNE3dvRRaoLQU2kJxl2WBxZZFV5CF3+LL4ru4S5HiUqAu1N3SuHsybvf3x01mkjZJleo8/fRz79x7zplzMzP3nvOe9/2+Q4fS8M67ODdvDp1UG+Ds/wQzt7PmTdgPr/mY1JDX7r4MgRt/LePbFzciBUClURCdZOT0a/KxJhrYXbkaqW1SGxfQk7JjbbCeccL4ffbjRCJOH/r+J0V7yE80s6Gsea9yHXUDjW2hwdFGNSvi+7LJmk5tZh72X3/FtWVLsJy/tZXmd95hZ0QSWyLTqDl1Opos2djvKSrCV9+1Ru2+cBcWounTB+3AgRhOOWWfBhzLeZ01QMuiYEeSvEgZpmd0Sh0X5V7EzYNuZmrG1ODxccnjeGz8Y+hV+yelcmX+lWyckIrY9lllr13AVEUdA1IsfLx6Dx0uhRIGXiRLiuhj5CRy5iRU/l1YbX9CI/6GOtVE/fvbodqONcGAWqdEo1ciKgRi0kxsW17JJ/9azepvi6grlQ3AkbpyVII83qlWJGJygrbtax0OC+6MbuBAkp95Gv2wYSQ9+QRiW0gtgH7wIHRDhqDrl4Oj1cxux2BqvJk4m+/CK8leTD/pTexWaPi/FA+fGw2kOUwIbWFtzQqRZyMjUFStxrbwDbS9I7Ge1xtdnyiss3tjmZmNN1rHF9+VsNYj4QxIeCXwAQaNiFKA/sPiGHJFHoIoYJnei4QoDVql3P7utbW0Nrq6nCOo9XqyI0+nta0vXlFitcpPtFGDSasi3qzFpFV2u+3p3PFY5ljpx7F0zb42o7KAn/JGFwqzGlGr3Gvb1bHDWabj91el03fO6N0hms9TUkLRBRfS+sMPSA4HiuhoaLvPqstquXRzFAYpmzUaLT6Amq30GhhBQlYEUclGKnc1BdtSGNXBbO1hj8D9w1thJ9CepCPTRM0XX6P2ycbkBiO0f4rn7FyAurykm1a6p2Pm4HbUhJxYotsMfpZYPaIoYomVn8ntocEAQ7wqTIQk3j61wDztDLYLmQSUViZEvxU8t3XJHgtzYXrkgLIGn8xM7zWdf6/5Nz7Jx78HV/PMSh+BxkbiKiror89nd0Jv1pQ0skXVwhqrB5/dwxT7CAL1DzHF8gQCEh6fB416Gy3FZkDAvbsJbVZkp/fpaAQKZlwqWQ5ApVK+MSbXg6qxEh+ViKaTy/sDIM0cMgTq9A3srrXRr4vMwQCiXk/MrbdQccefAah+9FEMo0cjqg9M46ATgy6GXx8FJEz6n2mpm81oNfxS5wTA5/Hz1X/WM+nyPiRmdd2vnlB2YQx22b1IrbVgkZMDtKN1dVhxC4cGH1E6hvGLkkR+YoTsbXbdSE57Sg77U4gC/oDE36bnMSLDSqRejdsbIDVq78nnzZOyuPW0bCqbXQQkieRIuYzH72FZpbwYYNVasfywina/IMvsWb/vRR7HqBQqWtwtrK+VtRSLW4o73TvSow1cMy6DF34tID5Cw1cbKrmpzaMTQBUbS9Tll1Hz2OMAVP/zEdLefScUdhubCykjoHQF1GyB8jWQPKTHPkUnd/AILO3eEFi0sY76chuSBC11TvpNTGb0zF4o1fIzoKBiZbCsvtaAetc2QE46oTqJMgZDyBBoUBqpbWqmsKKF8iYn/oCEosO9snNosPzbjTFq8CqULE3sx3WbvkQCqv75CGnvvI0gCNQ9/wJCcxPZNLEgaSBx+bnobYNxrpUNr441azBP3v/M0e24d+7E+dtvcl8mTdpnecPo0SisVvwN8qr9z/3lLLVmTdgjcH+4fejtALy5+U1i9bFMSpnEn4f9+YDa0Cq1XDvhDt777Vau+hGaTSKj1v3A33xWJEFkV41tb23I0TfJ/2018OWfELZ/C6Iaq+U9Wsqr8Pin0zSvgLg/DWbgaakMPC2V6qJmfvjfZnn2JUnUFLWgUAr4fRLRWU3UFkQTQx21YhSxTR0SBKWEDYH7i6BSoYyJofW71QBsc19NWUssRsFIXCCJarGcrVol2rSB2KUNINTTIKo5Y9u1/JjzBn7RwwK9jiSvyPT131C5cjWOFh9lCTdQU2LDaNHgsnvx+SVKHD4Sk4wYYvQ4Smzkj08kY2AMUYmh74omzYx1RhYpr2xip09CoxT46u/LGZtmxNTHSsQZGXJWTUkiui6W7UJo7LHLX8SVJT8QLWaS6NUxrLSAWGWvbrfACVXmWOnHsXTNquhs0nUO8vXfsb0xH5P+e1qLEzF5Kzptgb2OHc4yos9Cu79RdUMhmz/ayqC27+32z+eyccUvxGb0Qli6nJxtssyTT6GgNjme6ngLfTftIiAIpOyy48+pp1QjsE6rYajLTdOGt6mslp+93zz/HgmZTQDUFBYw2XIpajTYy+t5+YbLic3oRU1hAbEZvYJlOh7bc3uslDlS/RgQP4lkMvHi5BnH7Zzxm4t2y8SrZyi4dIWS7J1ufGoVm2fPomLaFMrrqvf7vap37wYuQZKELmVrNv38Pove2bBX/erdBQjCxUiSUtYXbI5sV0djVOtXLKlJY0pSOUqlm2gqSVWvo9TTny2L11G1631qi3b9rn+74u17a8Efj4QNgftJlC6KU1JP4cfiHymjke3nTST7lZ8AeGTbXNTbJIrT83l11EU0ODxM6RuHG9i5Lofmxoe4wHofOlsFZh7CIbyIT0rB/lv1XobAvUKDA4GgIbCizUiYWa0C5JUOTa8sTjYMKgMGRSR2fyNesYbt1d0bAgHMU6fS+P77OFetxltcQvXD/yShTSvmoIhIhqzTYNePCLYyjEmbsJX3Z4xOYJ1RjcsdoLnWyVfPreeUi3PIHha/7zY70FVocF2ZDb3YBIBdDHkEdjQEiuHQ4COKssPnpJQk+ibJk3KzTsWH14/iL5+s5+EZ+SwpqOfSEWmI4t4PwE7ttUkOJFp0nY6vql6F0ycbmae7+2D75Re5fGwsxnFdZ7oMIzM+eTyrqlcBslflpXmXdjp/4ylZLNlVx4byZv49fwcXDk8hyhgKLbFecglNH32Mp6gI55o11P7nOWL/dHOogcGXyYZAgN9egeSXe+yPWqckIlZHc42TujIbAX+A4s0NpPSJZNOCcqSAhDFSy7LPCmhtcGGwaMgeFsvoc7MQOnx/CupDXmvpJaHvy8kWFgyyV1yqKZWS1hK0xkpsQKPDy7rSJoakhZ6vnZKFtIcGt33WX2WMYVb5SqIaq3GuXk3t88+jGzCAhnfeAcAtKnktbypPxZnQDR4CyFmDnasPzhDYMSxKnZ7WQ0kZQaEg+bnnUKWm8Pb3/+LXlm8BwqHBB8jlfS/fpx5gT5yWehofnTmSJWXLGLYzwNCCNZye6OXHlDF8tCqTe6f2CZb122w0ffwJDW+8geW889APvhGDQgPNZSjKVxGp2olIK63Vc2j6ejeRZ8uTjrj0CM65fTA/vb6FCRflsGtVNZZYHZZ4A62bPiSGOgKShlrRQFxDyONGHfYIPCCMEybQ+p2cBCg/opSIPsPYuKCceEMO1YnlSEisEX5B5dcQ6Yqn965rcHus+KrPo3/eLjY0reDpKCUNjkr+1DgftTKAuzWboubBODqEJGqNKqbe0A+Nvm28ULsDAsVQ7gJ9NETKv39932gGzuyFbnkVGwpbcSOxsrCVflV2inY2EdPqpgoBfZOeKl/buE/yMiTwMU0SjFCuJd5RSYS1gmZHYrdb4IQqc6z041i6ZocYRVyEvEigEloxKlw4As69tkC35w5HGa9fhZyyBCQpQJ3HGfxdKBubsGkkLHEJRNaEkur8lh6HIbcXZVs3Ed8rDUthCf222xmdKfLzQIGFOh1DXW6ipG3sRn72+n1WPA45nN7WUI/b4kSNBpWkxt7QiCfOga2hHktcQrCMJS6h2+2xUuZI9cNsicRPM1/EPs46r4OrK+T7S4UVktRQaIhBmakitaQUhc9H0g+/Uh1twrOf72VvrCOx90IqdmzEbphAlLp/8POWJB8BX12X9e2N9RhibPh9FgBMrtB4x6W2ERGQWFSdxtQkWaN1vPlNPqx7DLfTiq3R8Lv/7eyNDZwIhEODD4CZ2TMZGDOQFFMKf7cuxNUrEfPUqUSfeTr+mhqSV/7MJV8/R5oWhmdYefbSIVx+2xDc/jjW2c9Ggfzj0mnlVUjnpjr8e+jJ7RUaXLcdXE1y9qc2j8D02tDHpsk++QyBAAn6FABEpY0tlT1nCRIEgfj77kMwm9ENGkTTRx9R9dDDSH5/j/V6ZMjlkDQE4vIxBT4EAugVAmMzTFjiZU8ua4KBH17dwsqvCg8o2U5XocG1Ja1ohVYq3TnUSaEBv7qDl0s4NPjI0vG3KgYC5HdITpARbeCj60eRk2DmqrEZ+zQCtn8/uvqeLCqTE1tklQc44/lViHo9hvHjsZx/PoIyvJbTE+OTQ2Gy7eHVHTFolIzsFYUkgdcv8dna8k7nBbWauPvuRbRa0fTpQ/0LL1D7wgsE2rPL5p0DMXmQNga2fgn1BfsMEW7XPfF7Ayx4fwffvLCBn9/cisvuZdfqGn54dTOtDXJYRmS8jtEzOxsBAbY1FQX3k206dMOGos3LwzD+5DMMC4KApS1phps6EORFsl+2hbIq2zw2doj/Qpf2AtrED9Cp5GdphE6FUhTwKpR8Ouo8xKgo+XN+7nnKbvgjyqgommOTWDZ8KvE5GWTE6NENGhhs17FmzUH1uWNYlDotfb/q6AcPQhUdTVG6Dpte/j6EQ4OPLIIg8JdRd7NsmBF126P38tWbiIr9Hx9t/xBPm4HGuWEDuyZMxLZgAb7qapo++YSS6/5II1MhQ74nBeKGE6F6jxjzoziW7qLpm0ICbZpaJquWc24fFAwZNkRq6TsuCX3zTgBEwU2DQkVsU6hv4dDgA8PY4V4prVtOch8rSrVIHoM7lfOLXqaVX0NWSgY7szQovYNYUyB786l9vXhT38Kf4qJoFQT6eV7GoPeCAJEJekxWLSNnZKLRtT2nCxfCq6fJyabemQX/OxXKVrV1QiJ2QgoZM3qhVovoRKjzSfxs87NkaxMLK10sL3Pwq03+jmgD9QzQvMRlScs4M3kXRrWERvBhUnl63J5oZY6VfhxL1yyKCio82QA4/FHY/Fr8om6vbVfHDmcZwR8atyh1OjSxsfjborG0NgdGaxRqvZ6oNtkOSRTxJyWi1usxWqNo7ZuLsi28eNJ6+Xu/SC9L6kSr6wFZAkRUxqHSGoP1fEq5PQGBqKjk4HG1Xt9pv7vtsVLmSLyHxRqPRqxlfuxf+Npcw9nrAhTEQ1WsyPJ+oPQYsauicQ/Iw2fQ4xcFBAlGFlYSVVmz3++lNSnRR5rAWIqHkHSLILSg0Wu7rW+MqAOKEBVuItwhw5vLoiA2ysJaVyaF7mjqPYnoxBby9PIiqced+rv/7QyR+04QeDwQnkUeAGOTxrKrcRdPrn4SBPj6ztGclnMWmR//FizTR2rljS1vkfwHWZg4KcWMOlFHUfUQxvI6AHrjOlqd5yAaVLi21GPo4DGm2DNjbMkK0EVS72nB155Np33xRBRRH0oW3OOYrMh0drVuQPJp2VC7A+g5JE/bpw8p/36GkiuvAsBdXEzT558TOesgQytzp8Gv/4LqTSgAg24hdudExHoXp1/Wh7VLqlj9TREAzbVOqgtbiM/cv0mbUrXHdwDZEJij3k2CZjuS0gxYAFA5QobkcGjwkUVUhcLLRUkiP6nz57u/mVtbf/qJhrfeJvLCC2n6+COSnn4aRYTcliRJ7GzcyZitMG15AIXDQ8DrRVAqibnpxsN3MScomRGZJBoSqbBXsKp6FXavHYOqs17J+UNTeHmBnInzg99KuXpsRqfPzjhuHHF/uZPKu+8BwL50Gd7iEuIfehBRY4R+M+Hnh+XC718AiYNg3J/B0yovFuxBTIqJXatqEFUC25fLAsc7V9WQ1i+KmuJQuLAoCoybk9Pl92i3pyGYMTi9uBpnYwOCVou+h6QTJzK9InqxoXYDAKKmhoArhZ+31fDn02Vt31ZPK27lLpRKIFAd/JuKokC0UUNVi4uF1t7cdMPNuB/+h9yoz4evupoN/SfxVMxo/OXNxJt1KEQ96qxeeHYV4NqyhYDDgajfP525djp5BKal9lByb1o8LcH9CHXYEHikyY7M5j93/sraHRdhXb4dt0rizNV+vh5cx9xNK7ig/wiqHv4nAbsdx/LlCBoNvir5d+7ZXYRrwIVoZ+YhzrsJANFVTrT6flp3/5OG95xY5+QgqhXB7+jA00Lfj3iXHD4XkIw0KN30bu6gwZWccqT+BCcEyqgotP364dq4EfeOHWTFejnn9kH8+JYKpU+NT+EBAU5Rn8VfHp6Dy+un5tONbKlsRXBMRnTGIiV+ggAUqU1cmyDylF3BFWnPUz3yJSKSYlCqRcTy5fC/y2Rt6RUvgauFdgMGCjWs/wDev0jWlbzgPZJzBzL73mH88s42Knc1B5W0GtoSJkht/42K7ZiELZQqFSQb6/ioVw6rvGa2+FLIU5q63QInVJljpR/H2jU32nUUKnOJtGVQYlYSocyg2W8gQhHaAnsdO5xlzmwIjWcGTZ/BqTPPoXDOHFzrN6CyO7j26ZcJOBzsfO19APT9+3PtK28H60iSROGOmbi3baN3BaTUSuyKUVOhVJAZp6RPWm6bHpyCkbNuJDFbjgBo/GIX9mWyR+QFd/8fmtSw53x3uLY3UPz2y/w3UsQBDN3kJ9IOfgE+Hvx3ZvTL57a/9EGnVuBvaaH60f+j+bPPAMhqdTNw3Fii/vCH/Z7vAPz63jY2L5Q9ODN7xZK3/guibvgDmvR0lHFxXTo4+H0B3P6JfPDB5/LrXlZuuflR7v98EzevXcg81d8QBYnhxg/Z4RqP02Xlsn++jMmq3autw0VLSwu3vfbB79b+kSLsEXiAXJp3KefnnE+iMZEPiz/ngaUPEHHjdaS+/hrqzEz89fW4Nmyg5OprguLyE87IoNmfSLNPNvgpbetQx0sEWjy0Li7v5AXU0cso4PPBrh/B2chOlewOLgQkohtljwd1aupJlzG4nbHJw8FnQlC6KG7dsV91DKNGkfDIIyjj43AsW0b1Px7o5JlxQAgCTHkw+DJC9TpKawBftQP7jyWMmJ7BiBmZaA1Kdqyo4td3t++3V2Anr9A2j8C60lasylIAbELIAKV0tInhKhQIus4hpWF+X1QdjPYKSSLNKhsDXFu24Gts3K82HBs2UHbzn3CsXEn5HXdgX7qM0htvwlMiC/KurV6D5aul3PK5j15VoMvLQz98OImP/PPwX9AJiCAIjEuWPT98AR/LK5bvVaZXjJHh6fLK3q4aG2tK9v7sImbMIOaO29H2749z9Wqav/iC6scfR/J4YMQNYJLvz9TtgA0fwvPD4Pv7uuxT7qgELv3nKAZPScPvCxARo2Ps+dlMu3EAp17eh4SsCGb9ZQjjLujdpciyw+ugSpQXCAbU+9C0hSfoBgxA6LCIcDLRyxLKJJ8aL08+tlS2UNUse1bavR0SwQidk0tFm+T7ab3Nw6SNBl7PO5PVqf2JvvlmzGedxTv9p+NVKLEaNEHNQf3gNgOvz4dzw8YD7q+nSDYEKhMSELUHNlBtdodW08MagUcHvUrPsIefRz9qJNGtArOXSEQ5f+Xljc/RPO9LXBtko7Q6qxe9VyzHMnsWCquVhjfeoPY/z0L/8+DijyE6B4XGjkbcQUTNn3FtrqXh/W1yxs09aG6sIxb5t+6VUmnW2jt5BKqTk47EpZ9QdJRSaP35Z+LSI5hx0xAubrydV/Pf5xz9Rdx/lqwlqVUpePCcfE7JieFvZ+cxKGoCzpIr8btiqBLUbNZouN4EzsIFxG38K1qjCqWrBvHdmXjKV8kJpZwNONNOwZEygZ2pQ6mb+hgVTiXYq6GlHN6YDju+IzLewJnX9yMhK4JTL+9DXIaZgZNTiEk1ceqVOcSmGRmZ+CkDIqu4JTaOkekpvCbYaI3JoUYhYIvN7Xbb07njscyx0o9j7Zrthhha1A48CieSshl3wI6k6Lzt6tjhLBPhCi1UKfTy/ESdFpLC8JSU4OzgVa8b0tkbVxAELLNDibJOWytHcS3U6ZCqNpGQERofVexqRpIk/N4AAb2KhjbvbF+DizDd49m+lY/jXsYmCgwqkIhsGyptSRvAnCkD+Pv0vujatKkVZjMJD/yDiFkz0Q8bJsvl/PtZmj755IDec8gZ6Zx/3zAue3QUvVe+gGPVKkqvvoZdp57W7ZxcoRTRa3TcOfROjCojBc0FLKyYzwMz8jFlDOdr5akAqEUHw40fgARbFneffT1MiLAh8ABRiAruH3E/iQZ54ldmK+OtzW9hGDWKpGf/jWg0glKJoFBQfMmltP78C5mDYvBpFWzyyDc5QfKhkeTwYF+1A2+ZLdh+xwQEAa8TCmQ9sHqFrK0Q2wTKtvCRkzUsGCDTkglKecLXyq4eMwd3xDLzXCLOngF+P5LXS/Wj/3fwneg1SfYMjMpCMMdicMgrWY51tXiKWxh6ZjoRMbJxqL7cts8soe10Cg32edm6dCm26jpMiloAmoWQ55/okB9yCqPxgFZkwhw6GoOer4cJbE6BPtUtlN94IzvGjKXokkspvuDCfRqZPSUllN3wx+DgR1AqEQwGfNXVFM25APvKlZTfdx9X/yixtS3qS52ZScp/X0Fhsfy+F3cCMTJhJBnmDEYljKLS3nU2sZmDk0iz6hmbHc2qor0NgYIgEH3ttURdfRWCWo0iJgbnb6uo+9//QGOEKQ+BxgzWkEGKkmWyHtQe6M1qzFE6NDolBouGvuMTGTBJ9ubJHZXAubcPJj4zgvzxXU/sq1orGe1wMcDlZmBxKNusfo9B9MlEliX0LEyKaWFAcgRD0yJZtFO+Z9q8oWcsgh+XLzQ5aNcJlAAEgY96n8qjIy4n+o83kPD4Y1Q5pbZyoQUY/ZjR6IYOQZufT+v8nw6or77GRgLNsjFvf/QBOyJJEk6fk8Gxgzkt7TS0it9vtTtMz6iTk9APHoIiIKEMwBU/BnDY11P59JPohg5F0OmIv/deRK2W+H/8I+jlYPvlV3y1tXKI8Jx3EI1mJEGJT0gkUvcSnrJWap5fh7eqcxbzyp2hzODeQCpNGhs+UWJrioh+xAjEiLB36IFinDgRbX4+2n75NL77HpLPh8mq5Y7bL2L40HweOu8eoi2h8C+jRsmrlw/jytEZfHTdaCamjcRZdhlenx4RgQS/xLXJSQQsafBkH/jqNjZqdZyeksSfTUpOTU1hlquRkUIdc5Q2Tln3Oi9uKcbbHpwVnwfvXQDLnkdnVHHu7YPJGZnArDuHMGZWNufdPZScEUnMvtJImr8AD7BbLYsOCYKASW0iVh+LUWXsdtvTueOxzLHSj2PtmiN0ZgzuCNR+HSpvBBrRgODvvO3q2OEso/OExicKnfys0o8ciX7MaNRZWdiXLMWxOmQI1A/ZO4IiYvo0FAnxMDCPsVtEBlQr2ahRI/jdJEXVBstV7mpm1+oa3n1gOT8urmCJ3U+5SoFzQ91ebYYJYS9cQY1CpL/LzeS1IWcVcfoM7pnaZy9ZI0GtJuHhh4MyNOqMDJq/mIezbfFrfzBZtcSkmHD89znUsaEM0QDuXbt6rJtqTg2O555Y9QQKhZf/XTaUlxQX0SrpsftziVftJEldz5ZF5bj2kF8Lszfh0OCDQBAE7hlxD+d9eR4BKcDcnXPJjsxmYtZE0j/6kOr/+xct8+YB4Fi9Ck12FoYUA/XFw0D/DX5EdNZCWquHAmD/rQp1W5rsjqHBEY4CaPNk2Eoy0EBKXQdx6KyT1xCYG5WLiJoAHhT6InbV2BiQYtmvutHXX0fzF1/gq67GU1qKbfFijGPHHlxHpvwTXhiJ4HNiFHZhF07DJyTh2FSHOs1M3thEqovkUK4tiyuITdu3B8eeocEbftpEpCJ0M3OIRkBuU7DLBuJwopAjj95s5M3TFJy3yE/fUh9+mw1/fT0A3ooKGt56m9b589Hm5aFMTMRfU03Co/+HwiivYlb/37/w19fjrK+nZcIAcu9+iKpHHsG7SPZaq3nnLdKXyZ5D2eVgvetOYq+4MmzwPUD6RfejsKWQwpZC1Ao1l+RdsleZKXlx3P3pRoobHLQ4vVw/oVcXLYH59NMRtFrKbrwJf20tnqIiLOecgyp/lrwwIIiyJ+A6OckEa9+C0x6E1a9D3gxZR3DIFSAIwSyhe7KnHuCeFJWsZGmbTs7MKhGQvYd0g3uWRziR6egRKGiqWF8mG9qsBjXnDU2hwdncqXyts5YUk2x8jTbu7VVv90q4vAE8vgCetoW3GFOonHHECCr/fCeS14u3vJy4O+9E2M9M9N5OYcEHZggsbClkc70caTA8fnj4XnCUibrmapo++xRfRSUptRL3f+iH6lqc1bWYz56OYfRoQF7kiZh5LvUvvQx+P02ff070tddCTG+48nuE54eicy9DklQ0t16CXzDT+PkuTKekoMuRDVEtJaGJlldKw+5bwuDdAAECkc7wd+Eg0OX3RWGxYF+8GIDG9z/AeuklPd6D2yfGoigwZ1gK87fV4Cn5I6qMl1imlXVJv3KWcnZrBQFrOo+a1NQpFXyPBAj4JDNKRSFeCSSFkw8N/fnB+TzPxixgRMl78pts+RzqCxDOfAxQBvvTvnWsfAMDsFOtwt/2uY9OHM0j4x457H+jMMcnFTsb+exJefFApVGQlGOhtsRGTKoxuAX2OnY4yyTUfQLICXmEtug1bU4OVffK0RLN33yD0K63DOgGDWJPFBERWM45l/oXX8QEjF/u5pXpeu6pb8FU/SM681icLR4qdjZSW9KCszU0V6pqcqPZUIu5tDU4xw4TQvIF2GpfTo1PR2ZFgAGFsn1BGR/PrD/M7rZe+8K4r6aWxrffhsJCmj6Zi65//27r7EnA4aDpo48I2GzQwQHKvXMXnNF9vQnJExiTNIYl5Utw+Vzc/uvtPD3xaW6YNop3P5rEH5RfYVBAvOoXyltns+LTXUy4tE/3DYYJewQeLL0je3Pb4Ns4NfVUym3l3PLLLaypXoPSaiXhoQcxTpyIIiaGhldfo+6FF8keGEu5py/l7r740KCq/hpB0/ZQX1dLwC27PHcMC412bgvuFyIPBpM7LG5oTmJDoEpUkaiV9Z9EVRO/lRbsd13RYCDurr+gGzwYz+7dVD/0sBzidzBY02G0rPUjSF6sphcQdSL2xRV4y21kDY1FqZFXO3b8Vo3Xve8EJR2zBnvdHmrLTESpQkkMmoS2Cakkgc0hX1PYEHjEEQX59unQCDgidSiMRhTR0ShiYkj458MoIiPxVVfjraujee5cWn/8ifK2jLO2JUuw/fwzAE6LjpuGbGLcwlncNaEcw+hRRN94I5uNTSgD0KqF1TeMI+7Kq8KTvYMgRh+DWpSNNGWtZV2WsRo19I6TB7SbK1p69DA2TZhA5EUXAiC5XFQ//oQsFaC3gs4Ckx+UtZ8A1rwNK1+Br2+HJ3rDV7fKxsBDoHJnKOlJbHXb80IU0Q08OfUBAeL0cRhVbRMSV0nQe2/xrjrcPj9FDZ29AuqcodddGQIBShsd1NrcXZZTWCyYJp8GgL+xkdaff9nvvro7JgpJT9/vehBKHASdE+GEOTqIOh3x9/+VivGTiLJBdpvDsaBWE/OnP3Uqa+mgR9z0ySchqRBzPAyWMxkLeDFal6BOM+MpaqH+jc3YVlUheQPE7QyFoNf2zsdUGzJun8xjwUMl5uabgvs1//43rh37JzUDcEpuLH85I4cYo5XWiunB4481rqXclMCzONmole8bSswEvGZ0CgNiwIxOtCD4rGiiFzBk2Foe81/Cc/5ZbJNSkcrXwqpX4bu7IbDHmNHnRrXpQwA2qkNyMHlReQdz+WFOUGJSzZx/3zAGn56K1+3H4/Rhb3J32nZ17HCWMehDjitBQ2BeHpo+smHGvXEjrs2bUcTGEv2nm1FGRnZ5LVGXXxaMghm3RSKtQmCVVo2w5m3OuDyd5NxIfJ5A0AhosKgxGJSUeSXWOvzUf76rS2kmKbD/SRxPRDwVNirqCvj7ewFmLgNFAAr6TiD+b39D6OCl1x2xt94S1Edu+eorAnb7PmqEaPn+B9kICBgnnRI8vi+PQEEQuGvYXczKnoXH72Fx+WLuXXwvZ/SNZXfaBQTaVFX76H4CAmxaUkl1YXOPbZ7shA2Bh8AleZegEmWjTR9rH15a/xLN7mZEjYbEp55EcsnhRy3ffcfgvia8KHFLBjQ4ERx1GLNqUcbqUSUYcG6UXZw7hgbHeOUMcZKgwOaPJb4lk+yq0INfk5V9pC71mCQ/amBwf2XVgWVvNJ15pjx5RxZub3j77X3U6IGxt4E5CeL7ofJtI9LzVwQc2FdVo9YqyRocgyVeT1y6mdKt9ftsruN3oLlWjyDGBfUBAby+SJJ0eQy29IO2ZCIKYzhRyJFGIcgPyq+Hi3z2+FRSXnyB3osXkf3zfCLOPhvRaEQZFxf8PAW1GnVmJjsnTKThzbcQDAZQiLw63oNLIyAhUeCvhCf+yuLTE1navI7mCCXfjdUz6pI7jualHteIgkiiUZZyqLBXdBoQ2j12bv/1du5ffD/m+AUA+AMS60qbemwz5qabUERGoumTi2vTJuwrV4ZOGqJkyYDEwfIk7oc2rUCpbUL3/X3gdR7cxUgSQuUSAHQuCWutvBCgyc05qe8BgiDIchHIn/GYbNnz2uHxs7KwgYL6zvfdzobArj35Shsc1HUyBHYu11G76EA0cjyH4BHYMfN1u/ZlmKOLadIp9Bo6hADQrBOwaxRIF5+Deo8svuqUFPSjRqLJy0NpicTxWyjJHIMvC7Vn+BmFQX5mqJJNNH2yk8rHVhLtLAqW8cckkVwbuo+FDYEHj27AACLOPRdFdDTKCDOl112Pa9u2fVcEVAqRyX3ikCQIOLKJUwwFn4Vmr5ozIi38T6jHRC8kSaSl+Dzsu+5FrL2KX+f8wpczP8GklxegF1V9g1Ms5AnvLF70TiMgSaCLhJrNsPjpzm+67RsqVSlsDaTwgzokH9EnKuz1EiaESqMgJsWEzqTGYNHI2cf32HZ17HCWUYkhI3a7nr2s+9c5SaO/pgZd377dXovCYiHm1lsJqFWsTxeYtD7AYr0GWsqIK3+dQFsinch4PaJSYPqfBhCRKEfeOAJQ4A1Q9ehK6t7cTN2bm6n453JqXl5P3Wub9lu7/UTEVdCEYadsvDO4wa3SETkkD1MHw1xPiAYD5rPOAmQPv5bvvt/v9+44ZrJedllQ33pfhkCAjIgMpqRNAUCr0GLz2Hh81eNMGjWUxf58ACKU1aSoNxFjUrHwhQ0EOniehulMODT4EFCKSv41/l80uZtYXimH831T+A0X5l7IVsdu1FPGw9yvkZxOvnv7bupMMyl2DyFTK08aDeZ1tG6ODrZnGBof9Ag0K52ofS0gQqUrgcqocmpMxUS2tHmqKBSoM9KP6PUea4xPG8Z35bIBb1fLgQm2C4JA/H33UjhrNkgSLT/+hHnadFRxsQfeEbUBrvgK3jwbIeBGI27FoPge+9qZREzNIGtILNuWVdFU5UAfoSZzYM/voQyGh4s4bfKENrKDIXCnxk6Tsxxbh4lA2CPwyNPRO0+iw8pn2wMt6soriLryCgDcuwvxFBXi2rwFX3U1qtRUJLudbZOzWNy3GDrUf2fH+5S0lrBkuMCXw+Hpif8ix5pzRK7pRCXJlERRSxFOn5N6Vz3ROvm+W9BUwI/FPwKgEfW0Zx//raiBMVnRfLWhgsl94thZY+uUFVphNhN7911U3nU3ANX/fISMuZ+Esp2d8xK8NV3OHNyOIQbsteBsgLnXwOzXQbl/4aRBSpYT8DUAkeSUSfJihiSFklecxGRZsoKZg/ukOvmiTVLt5201FLs6GwJrHSFtoY4hvx0pbXAQ3eHcnp6D+pEjUSUl4S0vx7V1K66dO9Fm73txznOQHoGtnlbWVMsLXsnGZDLMGftdN8zvS/p1V3HTjuXsSFyKTQcX9UumK7OMZfZ5VNwhL+qUvfsB/9ml5IGz+/JbdQRnpIyA0hUIrRVYp1TRmphFyy/ycz/Q6kWrkQ3INsmIMDyR5A87GAJPYr3ow0HcXX8BUaR57lwAqv/1GBHTp2FbuIjoG2+k7oXnif/b31CYzdQ8/gT6USOxL1yEcdIpZI8Zw+c3jmFZQT1bqmN5a+fTqMzyeFQAWinAVXYRfod8b7jnzD5E6tVAHDcMvIHHfnsMAYGhfarZUhTJF4GxxBqjuM/xLyheChXrYMCFENFm9Fv7Fmn2jSDCJvUgQJ7I51pzj+wfLcxxQXcSJEeCiru/orltaiZ0SIoVMW2arM/e5shgGD++U+KeroiYPYva//6XAUXlBIAHRuiQaESx7VPOkd6hsf9wLNe8gt0mYLJqGX9BDh8+vBJJgsIKB9vtXqxNsuG9odVLWo0Tq1LEsKEO/YCY3+X6j3Vatq0jq0Cex7To4YbT/s6iO846oDYss2fR9PHHchvffE3EzHMBqH/5FVQJ8agzMxH0Bjw7tmOcMAHbggUok5Lx7N4NyAm19EOGoM7MxL19O57iYiSPZ59SK6OTRvPfKf/l+h+vZ1nlMlZWreTsM2fytmoy4wMbCUgwzvw6n9T3wiMZ2Pr5bvrODD8nuyLsEXiIiILIX4b9Jfh67o65ePwe7lt8H3+J+DF4XPvNIsrTN1HsDk3YFFW/ooqX3Wo9xS14q+3oTGauePIFxo5IRcRPE5FUuYbhUDcjBCSSa+VMg8YJExD3U5PoRGVi6lCQ5JtYvW87ALtrbT1V6YQ2Lw/rFVegHTAA17p11D711MF3xpoJ57wIWguSOhKL6lV03vnYllaQnGtF1RYeXLK5gcA+3NHbQ4NFZQoSvQj4G4hWypOAgGTAqZLrW3yhz19hOnm9gY4W7R6BAH6p55BvTWYGpkmTgl6CCqMRX1QEKwK7STIlMyg2pI3yyc5PWF29mhhdDBflXsTElIm/1yWcNCQbQ945HcODd7fsDu77JDftBtlVRY38vK2am95bS/4/vmfafxazq6Zzsp+IadPQtq1iu7dvp/aFF0InVRqY9jREpMDpj8KgS2Dm/6DfbFBqYNtXMPdqObz/QFjzFq1tOlEDiiRQKND2y8cw7iA1Tk8gekWEdAIjIuqDGX5/2VZDeUvnBDD7Expc0uCkrrXr0GAAQRSJ+uMf0Q8fjr++ntpn/r1f/XTvkD39USj28hrrsrzfTaWtkq93f41PkidO45LHhWUCjjH6zJxDZZRAq15gXuG6TmMRt89PWaMD02mnBpN6uH76iV9XFTDm/37mD++sZnfva6DXqeBuRfjlYcynpBB5dhaiSY32FBMKQc4YXKJOp8HdSEpYJuawobBYiL31FrT9+6MbOhTHsmVU3nsfrd99R/GcObR++x3Fl15K1QMP0PDGG5TfdDON775L6XXX0/T5F8SZtZwzKIlYQxRG27nE1MXQTz0dhS+ORKYRwWD+c+FALhyeyrmDQl58c3Lm0C+6H4nGRD4reoPeifI44r+1fWjoc7FcyOuAH/8q7+9eiNSWQLAgEItTK4e8pZvTMaj2zjAfJszRJOAOJeUS1B2kNSIiiP/rX0l+8QUs559H3D1377MtUanEep7shS8C+VsF/qy/El/6RARbFdaaeYjLn8cklYPfS5S+juHTM5hyTV/S0024JPC2/XdJsNMt8ZvdT/WXuwh49i3ZdCKy+Ze3UbY5ym3J1fPXC4Zg0ByYf5i2f38sc+agSkvDvmQpzV/Mo/rR/6P2mWeouPseis47n/LbbqP8ttvZPmIk5bfdTtX99+NvbEQ/ciTRf/gDgiCEnmE+Xyf5lJ7oH9Ofq/KvAuQ52JNr/oVl0Az+451BsRRHpLKIc633I+Bj+U8lNJe1ULu1nkAgQO1+ROedLIQNgYeB7Mhs+kfLIpnbG7fz7zX/ZnfzbgriApTEKyiNApsWXIFfqQtYqfCmAyBUrsPQP2RMsP9WjahQEJWcSoxQhVIEC43YGIJD1UpcE2h94Kus3K/4/RMdk8aESchAJ6WiFyO57q0lTH56IW8vL9535TairrsWT2EhAM1ffIFz3bqD71DGODjnBRReWc8vQvMGrT9txbO9gZQ+ssajy+alpi15SHcIogiCgKiSPT40Si0GhTwJcEgpOCX54Wr1hh6sojHsEXikadcIBPbb7TzqyivIXvArUc8+wa23Gvh6uEhpaylX519NnD4OAG/Ai8vvIj8qn3tG3INSDDtuHyodDYHltpDeZkFTSFvUL/mJs8iGltXFDTzw5RYAvG1hJx/+FvLKBRAUCuLul8N+tfn51L/0MvVvvBEKNYnrCzeugFF/hBnPQ6+J0G8OeOwgqkAKwA/377vzkgTzboZ17yNJAUpF2Ut40C4JwevDtWUr+i5Etk82ell6kWHOYFDsINyBVkZkRNInwYRJq6TW3tSpbK0z5BHYk0ZgnS2kHRvdheeg+fTTcRfKxmTb/PnYFi/ptn+SJFH77LN4du9GO2AAhjGjg97DXbG+dj0PLH2Am+ffzKwvZ/HU6qdIM6cRq48N6wMeg8zKDy1Mljl2ctpTC7h77gZG/PMnZr24lLOfW8LaKju1I+WwK7Xfy8Sytbh88rPjz+vjkFoq5PtCxRpY/x6G4fHE39wb9e47caFlszKPxugh1LvqSW5LHOfXqVHGxx+diz6BUMbEkPrmGyijouTXbX/TQJvEjyY7m9af5oNKheT1Bo9V3n8/1Y89jhQIcM24TBaensULHzt5fI2Peb7ZPPfaMuaWfc7Al/7JVf++mfIbb2TH2HHsnjWbllffZGzS2OAzqV92BZF6FaN7RTEv8nLQWSFhAOij4P/S4a3pCG2LVXNNY0CQn1d9rOGw4DDHHpI79PwUtZ2fn5Fzzsd0yikkPPggmoz9826POPdcpLYFvonrRb5RNbKhuoO++y+PwMvj5UXWlycwtE8Z2UPjMOVaMVg0GDLMGDLMKNUiAcAHbHVLODfUdvl+JzKBQIAWZSVbk8GrgI25WUzIOfCIOEEQME06JZgEreqvf6Xlm28QLZbgQrenXXe17b7pbnvtLSnBdJqstdzRq92zH+HB7VzW9zKSjckkGBLQKXXk93bwkzAKq0KW33ESz5mWJxEE+OTRVXz87/X88MhvfPzv9Sx4eg0BXzhkODzDPEzMzJ7Jhjo5LOndre8GjyfNmIPi5fdIqYcNWwup1VdQ4R5KoqoIAL12FU3KXPBJONZUox8ahzreQLRfHhj4BTWFUhIB0R8c+EE4FKSdSb368UXBF6CAn3dvwR9I5L0VJZwzMBGTtvtJVjvKyEhi/vQnqh9+GIDKBx4k5aUXUcXFHVyHcs9CypmKsP0bxEAzVuEJWpc8SlKShd3r5CLFm+qJz4zotglBEFAolIgqWfMqWhHyWqoIpIAoezRZ/CGPQPEk1gc7WnT0CAxwYA+T+SXzaXTJXkrjksYxIWUCv5T+wtydcmiSSlRx14i7Dl9nT3KSTCEvjN1Nu5EkCafPyc7GnZ3K5Sb7qW5S4fQGKK6X9fcEZD/BuWvKufP0XNTKkAFYP2gQyc89R/ltt0EgQOMHH6LplYWx3UNPvYeXRu8pcOln8MHFslegoIBBl0JsD2FdletgzVuw5i385lS2qWKIb6gjsTHUB4V539nIT3RSzakUthRCC0Trojl30Knc+Yn8TNYmOun4NOhsCOzsWa8QBfwBidIGB1EGdbflABRGA3F//jMVbSHije+9i2HE8L0MfAG3m6oHH8K+aCFIEp6dO8n8+qser+fj7R/Lz7YOFLcUc+/wexmdOLrHumGOPPHmCKI1KdR5ShA11QTwMXdNGV6/RHWbZ+lDX23B7u/Fs211zrEXsC16MrvqHOyocbJ03J8ZU3u1fHLtu5BzJuKm9zDWrEbEj8fjobD/7QQafiCrTf/cl5oQ9g49TCh0OpKefoqG117DfO65NH8yF+P4cTh+W4W/uZnWb7/DPG0aEefMwLFqNY3vvgs+H40ffkjLl1+izc/Hvnw5ktNJy5dfYhg3LigF4gd81dX4EhPx19Xhr6ujrrCQ8eOe4sW2928VN9LsTGFpQT21rUauuOp7iOoF394NrpBXs18S+MArGypjmiT6ROZS//obOFauxLVlC9q8vG63wAlV5ljpx7F2zbqhQ9Hm5mAcM+Zw/TwOmHadfOgcGnywqOLi0I8bh3PBQix2P72dq7hKO5TXe89mQ9X3OASBWqWCO7bOwyBJ8Ms/ofkyBp52UafwaEeLh3f/ugyP209ZrYsNXxUyckjcSXUfddW7SN7dSGQT2NVw6ZwrsRoOLsrQOGFCMOxX8nrx19Whyc1Ff84MGt94M1hOjIgg0BxK3BF7912Ibd8Lda9QRMf+6AS2o1FouCr/Kh5c/iCV9koi1BHccfltTH9Nw1uq/yNdtRxU4JWeZIPjLOI12xnonkeyaQjLd/4B9/PrmXRDf5Tqk9e5KuwReJg4I+MMruh7BXNy5uCX/IxPHs/leZeTPePiYJnBBRI7U39jl3MUJe6BBDSRiDs+J+L0DHT9ogk4fNS+uB5vQQE0ydb1pkA2VQp5QhoOBdmb9Ij04H5WkhOtSsTu9nHtW6v2u43IC+ZgnDwZ/YgRuLdupei883Ft3XrQfRJOfwQpawoBdRw6xQrMFX/BuK4meL6gw363bSgiERUWABI1O/BjpDmQw9JALoIor4BFeEJ2/HBo8JGn46AhIO2/IdAb8PLkqieJ1kWTbckOSgvM7j2bv4/6O9f1u44bB95IkjFpHy2F2V86/i3f3/Y+w94dxqj3R7GlfkuncqNyFLx86RCuGyevUPeONTIuW9YTbLB7+Glr9V5tGyedQtS11yAajUgOB2U334y3srL7zqSNhpE3yPuSX84kvGdmyI6seSu42xDRF4cIg3eFFoWME3vW1jlZiDfEB43zZa1lTMmLR9NmtBVEV6eydY7Qw1TW6+rQjlkemJY1OjtlDY7pxnPQPH06xkmT0Pbrh+3nX2h4991O5yVJovS662meOxdBq0M0GuUMiT14cbV6Wvmh+AdAXnAYHj+cIXFDGJUwimm9pnXyRg5z7DAyWY4MEYQAJlMdE3NiiTVpSI/SMyozirFZMew0JrAodTCNCWkkFWzgob4qhqZFolSK3LLCgif/AkgZASVL4aMr4If7qVan0iQZeMR7EfnJlqC+EoDY68ASzoTpGUEUibrmGlRRUURffx3aPn2wXnZpUNZD27cvxrFjib31FmJvv00WzJ86FV9tLX6bDcnpRJWUhH7USPSDBwelQBRt9ZUWC4JOTvonORxYXvuKKK3shbiu7jf6p8iLRztrbJQqkkFUgCUV1CZQ6vgk6S887puDTe0kTpXAo+8KDLvlDWwLF+C32fBVV/e4PdHKHCv9OJau2VNZScPrr1N69TU4Vu3/XOhwE/CEnp+HS8oqcsY5tKbH0KqXMwj79Wu4zFZAiSWdT2OT+Nhs4orUdLyxfaB8NXx+A6z8b6c29GY1o2b2ItWiwgesqXKy8cvCw9K/44XWMhsqjzxv8Wigf69TD6m9uHvuxjR5MlE33IAiKoqEB/5B3F13EXHOOcT99X5Mp08h8dFHME6ZQtzf/krEOedgmjw5WL+jTcO5afMBvffZWWdjVsuL4T8U/0C/ZBUTRgznNc0lwTK9dYuZZn2UOFUhRkUD+YYfydEtZOfWRr54YjWOFnd3zZ/whD0CDxMGlYE7ht7Bm5vfJFYfy/D44Vze93IkSUKRnIS/rJw+pRJeqYk6fzomRS2iuxGKFmE800nNOnmioozR4fjqK9r9xURfHo1KOZS0Y5Y4ddgQCECqKbTKM3OEljfq1ZQ0OKhpdeHxBTp573SHoFSS8I+/UzTnAgBUKckUXXwxSU88ud/ZkzphzUAYfRNi0fkA+HyRRHrnERU5jYBGQUuti4Uf7GDs+dmIYtcrUObYoTjaJIYyTUUosBEhbmeFdBmCKLtXm72hn284NPjI00kjsCdDzh4sLFtIfVvygslpk4PG7PzofPKj8w9rH8PIJJtCocGt3pDWX6O7s3acwdDK6XnxlDY4iDdrOX9YCrnxZpbsqqNfsoVfttcwtV9CpzqCKBLzpz/hq6uj6SNZNLnm8cdJ6klzdPTNsPZt8Lqgbid8cqWcYESt71zOY4eNbdnVVAa+ybiP4m33c2VBaDFhXyLbJwsqUUW8IZ5yWzlltjIi9Cqm9kvgs7XloOhsCOzoESiKAsmROlqcXgKSREa0gfImJza3j+pmuZ4g0O1quSCKRN/wB4rOnwNA3XPPEzFtGspo2YBc/dDDKKyRAPhqa0l6+ilMEyf2eC3fFn6L0yeHtszMnskdQ+8gIAXQKrWoxH17uoc5OuRF5fHVbtnT887pBi7rNxQArz+Ay+vnw99KiTdriRo7isj3ngcgfcVPRPeazqpi+V70ing+N1VeJDdYJGeJTnAXcpnnLtYIfciNN7GlLKRvpM3qfaQu76SmY/KvdiIvvBDTGWfQ/PkXQYOfMi6OiPPOI/rqqxBUKqJv+MNebfmbmig4/QxEkwlRqeLJZ1rYHOXDqbGRLj3DDdlXExBEft1ew6Wj0mHMzfJ/RwPvv7mN1f5GtJp3SdpSjrklAC21+IwW1MnJnfrR1RY4ococK/04lq5ZCATw18mLXVUP/1NOZHYU5KQkV5txRRShBxmMA8E4ZjSmO+pAgj5lbfMndQvf+fvjCmwCIC5lDFMqVpApWhjhF7mutRKe7APx/cEQDa0V5F/wPnUb65CaGlADBSuriMyykJJnPSz9PNZpqbShaouqdmhAoTy0z0ednk7yf55FkiSsl12KMlIe8yT+36MAWC+WnaJMkybJFS7ao35qKqrERASDAfuSJTR/+SUR06fv13trFBqm95rOu1vfxe13833xdzw4Yw5Np2VT/t9fiGzahAYfalpJy/BAlVxvsP4ttjpG4K1XMvdfqznrxgFYE08+rdWwIfAwc3nfy7m87+XB14IgYJ54Co3vvIMiAHE1q2nSnskWx2mMMcsus8LGd4m5/n7q3tiMZ3czeuVvwU+m1Z+HQy0bAlPaQ4MVigPKNngik2YOrYYXtxQzImM4n60tx+UNsLmimUGpkfvVjjIqivSPPqTq4X/S+v334PdT+5//oO3fD1V09L4b2JPMCQiXzEV6exZGfsQv/cYo5VkscgXwewNsXlyO1+Nn3PnZqLV7/wwjk0bh2N4ISEQiey0FJB3zhVja/VKMntCDXQx7BB5xOmkEdvAIlCSpxxCDT3d+GtyflT3r9+lcmE6Y1WZMahOtntYey1XaZU++a8Zlcs04OTQ/EJDITTCzrrSJ9WVN3HJqNsmR+r3qxt5xB60//oS/sZHWBQtxrF6Nfkg32XxVOpjzHnxzB5SugC3zIH0cDL1aHjS3U/ALuNs0RfNnsrk+gM5vJ7dMfhYoExPDi0IdSDImUW4rp9XTSrO7mTnDUvhsbXnQI1BAQEKi0dWIL+AL6m8uvmtSsI17Pg1loK9pC+mM1KtRKrpfVNL160fErJk0fzKXgM1GxV13k/z8c7i2bqXxvfcAOclX8n+eRZe/b2P/z6U/B/fPzzk/nAjgOKGjVluxLSQ7oFKIqBRi8L7it41k5+evIzkctHz1NffOu5lfttfg9gV4e6vEFUNvwrj8iWD9uf7xLJQGkBtnRKtS4CkIaZtG9ul/ZC4uTJcoIyO7NBL2hMJiIeXVV9FkZ1H/yn/RNzrp5QGrXQK2c7p6Jd+mj+TnbW2GwDYkXSQ7quVnmEbbxKQNIeeA2Ntvw3TKQSxchznhkPx+Cmefh3vrVtw7drBz3Hh0AwYc8TDmgK3Nm0GhOGxht4qICDTZ2bh37CCzBnI9s1lbEUerM4VROTMZN6iMwroW6qSF1Om0rBWUTA24SW6tAEGElrZkccufZ9w1t+C6ZwmFTj8VdS4WfbidOX8bgaKHZ/2JQlN5C0ZZYhT3Ycw7KghC0Ah4QPUUCpJfepGi886X599PP4OntJToG27Yr+/OuVnnBmXZvi/8ngtyLyDSqCHy8lf5548lVK//ATtaTh96Jefvuhu2fYVB0chUy7N82XgHAbuSRR/toP+EJIrnlzLkohxWvbedkVf1RWc99LD2Y5kT/9t+DNDRY2NwgUSZuYDtron4pTZDzrp3ERUSUXNyENQiGlE2/EiSQJ03B4dKzhic2LYIrE5LO+kzBreTag55BBa3FDM0PXQDWlXU2FWVblFarSQ++gimyZMRjUYCNhvlN9188J1LH4vQW3Z9VghNGD3L6W3VICggJsXEtqWVfPbkGjwuH35vAG9b5ipbo4uKHY1EpxrJ7+tFhfzB1wZ64xVDnmdGT+jmqDCFPQKPNN1pBJ4771zGvD+Gke+NZHvD9k51quxVLC5fDMihjCMTRh6ZzobplDCkO6rsVXsdE0WB0/vKYZySBJ+sLturDMgD1Ohbb0E3eDCiWk3Vgw8h+Xzdv1lCPxj3Z1DpIb4ffPNnWNc5rJR174I1C5KGwICL2FFjY0CpDbcSCpKVRJwz46TStdkXHT0/y23ljMiwMntwEhEG+b7ZbviTkKh3dp01LtUaMvI2OuQl8670Afck9rbb0A4eLOuELVlC8WWXU/XQw8HzUVdfvV9GwGZ3M9vrt5MXlceIhBHkWnvQjwxzTNHxs9rWsK3bcgqjAfMZZwAQsNkwr1zEVWPS6ZcUgTcg8R/3WfLCwKS/Yosbzv95ZW/TvolyrIimponiaNiRoiAiN+xFfjyiy++LqNEgGo0oYmPxxoc8ka7c+g1Gj4OlBfU4O2Q0rW5x0+qSnykWdx1DdrYtCMXEYBw37sheQJhjFkGhIP7++zCMH4flggvwNzQclTBmVao8PzOffvphvT7dkMHyTiDASzmTiFFnA7BsuwJb1STmrWlCatNQ90o+nmjeAKZEiExDVn0GFj6Bwl3NqKnpRBrkcUFjtZONv3Q9vjvRsFeFxroe9bExhtRkZBAxYwaiyYQE1D37H6r+9rf9qptjzWFK2hT6RfdjXe26kOyPNZOzRg9kXmAM8wNDeHdFMUx5GF/ScALmbJI1yznb+ihmMUD5tka+eXkTm3c18+HDK9myq5mP/7EcZ50j+D4Blw8pIBFw9jC2P84IGwKPAPrhw5B0GiojZWHfMnMBzoCFIvcwAkojGONh3TsoIjSYxxgBCbcUh0dKo9qnx6OTMwar28YDYX3AEDqlLphttbilmGHpVhT6naisv/Bd4Y97GWL2hajRkPjkEyhjY/GWluJct+6AhEv3YnDIO1TPdyTWOjhzdjZN1fKNRalW8O7flzP38dV8/uQa7M1uti2rRJKgrsRGfJurO8CWQC6IIR0DfQdJg3Bo8JFHKSrpHdmbWF0sKytX8tclf2V+8XwKmwtp8bRg99rZ0bijU503N79JTmQOKlHFuVnnohBPXoHaI02iMTG4rxY7G3aEtsFhpa1rbb/ZQ5Jpj+L/eFUZ/oDUZbnI2bORXC78jY24t2+n6eOPe+5U7ykw4zmokpNa8NM/wNkk73tdsPtXaNgFzWXURQ2ivtXN0CIHJhf0KvOhHzCg5/ZPMjpqQZbbyhEEgSfOH4jQFhqsUYR0/uqcdXvVB0iL0hNv1pBu1QczRneXWbgjyqgoEv56P+42/TZBp5Mz6SmVaLKzibxgzn5dw7aGbdS56thSv4XMiMz9qhPm2MCoNpIRkUGKMQW3383W+q38d8N/eXfruzz222OdylpmzwZA3bs3rs1buH5CL7ZXt9Jg9/DR+jrcl3wB4//MvMGvUou8wJmfZMYf8JNU6iStDlJrJVThjMHHNVFXXkHvhQtY/cBMFucJBIDqWAWX7f6FrFgjY//1M5e9toKKJmfQGxDRxZkrbRTFgk8hEDFzJoIyHOAVJoR+yBBSX3kFdUpKt2HEPYUmH44yqvj4oK7mYb22waFIi8D69dw7VfbETrJoeW9FCQrbBGy77iXgMyL5tZQrEtl2xWdw5Tcw7Bq5YuIg2PQJhiFx9FXKgzu9ALtWVuFo8ez1nica/sby4L5XfWyYggSVivgH/kHMrbfia9PZDrg91L/2OiBLKpTdfDPVjz3OjvETqLjvfhrffz9Yf2TiSDbWbcQn+TpFXg1IjiA33oTVoGZ3rZ0LPqni2vKzkFqLAIgQDYwwvYcEtM/I3G2+HUpR4L2/r+Czexbz6o2/8Nk9S3j9ll/57O7FvHPf0t/7T3JECD85jgCiRoNl9myEt98loRHS6mXj1MrW80kw7ERftV5Oe54/C6NhEYIoTyQavNexyyvRLDaHwoIJGwL3JM2cRrWjmiZ3EzFmP/q4H0Bbyg6+57VNu/nX+H8dUHuiQkHkBRdQ/cgjADR9Mpe4uw8yg2uvSWBOgpZytOJqROrQrdNzzo392bSiGp1RyaqCZhzN8oPn57e3Ul/W5k4vQFIHQ+ACKTuYKAQ6GwLDyUKOPEa1kblnz+XJVU/yxuY3+HzX52ys3dgpTHhL/Ram95J1LnY37+aDbR/gk3z0sfbhgpwLjlbXT0rUipDxr3dkbzbVh35bUboo6px1VDn29ggESLTomNA7hl+211Le5GR1cSPDM/bWkhEUCuLuv4/ii2Q9lNoXXkQ3ZAja3iEdr0BAorjBQUZ0W7hn/izY8oX831EHX/wRznsLihaDt20lMmsyj3+/k7JGOwN3yxqhXqWAfvjwQ/qbnGh0MgS2ygNdSZKwe+2AvHBk88r31446gR0Zlx2N2xegqoN49P4YAgG0ffqQ/u47NH36GaLJhHPFCiIvuwzLuefs90R9a30oUVXHUNMwxwczes3gmTXPAPDM6mdYWhmaLExOm8yg2EEA6AYNRJOTg3v7djy7d9P7TzdzRt945q2voNHh5cct1Uzrn8imilCWxfykCOoaSolpO9SYYAp7BJ8gXN//ei4+4zOS6uvJKm2ll7iAprGT2WxXs3BHHZ+sLkPfltkyyVXA1NUSKj80JJnoc+kl+2g9zMnKgYatHw/oBw8K7jvXrmHaTTdi0ChYV9LEsz/vYs6wFFqdXn4on4g27hu2tSzl1fWxPD7pIZhwF2z7GoqXQNUmlMOuJfXUFLK/LmKXO4CjxMbyLwqYdOmJ/ez1OiqC+x7tseOQIAgC1osvQhllperhf9Iybx6tP/yA+YzTqX/1NVp//ClYtnnuXFq+/Rbz9LNRGA2cmX4mj//2OE6fk693f80dQ+9Ap9QhCAJ/OzeWx7+uYZPtGzaKi/BHJ3GaYxqPuBczikVkKQTeioxgYvMYvjFtYGHsfBKdyZxZcQ0Bl4JmmweXH7weP04/6BUSDqf3KP6lDh/Hhhn4JMA8fmJwf9SGJkqtrZSIGZR5ZZdmbNXw8yMI698OltvhHYAYAIe6heQOcxZNdtgQ2JGOOoFra9eApjT4urRl7yyf+0PE2dMR2sKvm7/4goDnIFeIRAUMvRopbQwBhZWIhKX4qh14P97B2CmpaPQqdCYVap2SqGQDpZsbsDfJ75Xax4qmdR0AkiTyZSATQQhNTrWuUMiIGA4NPmpE66KDYcIFzQWdzm1tkCf1kiTx2MrH8EmyO/mElAlYdSeHKPGxwoW5F3J1/tVMy5zG5fmXM6PXDC7KvYhr8q8JGpDqnHV4/F3/1s8dlES/JDP5ieYuswe3ox88mIhzzsF42qn4GxoovuhiHKtXs7O6ldOe/JUhD//IjOcW0+LqMIiY8jDE9JFDgLd9De+dD1u/DJ4uso7ho9Wl9Gopwtq2TlDa24LYln0yjExHQ2CZTQ7xcfgcQeO8URVaMOnOEGjSqshPiuh0bH8NgSAbA+PvuxeFySR7RSQkoO2z/5OKLQ2hTNZ5UXn7XS/MscGIhBHB/RVVKzqde3TFo/gDflw+F4LQwZDv82FfsoQLhqUEy374mzyO2VwuW/0EAfokmKnevDpYxpVyEPrFYY5JjGojV076M7sHyR6eQiDAmQveA0lC7ffy4W+l7Ky2gSRx/fofULUN/2zDegcTE4UJczKgTExE2eYJ7Vi3Hvx+JuXGYdapiDdryY418sIlQzg1aRoKQU6C8V3xtyzaVQbGGNlBA8DdDFvnYZqYQu9EPYq2sI+tSyupLmo5Ktd2pPB7QxERfs2xl4DMfMYZRJw1FQDJ5aLib38Lef+pVAhaWbdPcjho/e5bQL6Hnp4uh6HbvDZ+LP4RAKfPyT9++xMt1sdRaisRVS2Iihbqo4q4IdlAqVLBU1YzXyT8xGMZL1FjseFWtVBo3sLHac8gKR1IooRW8KIQBAQBlAoB3THiSXmonBhXcRxgGD0KZ5Q8CRm0W8LvWo/RC8vqL0NSaEBjlvWgamVdmRWBXN5yxQKyIdDskKi1iHKikF69jtp1HIt0NATOK5gXlIAAKGzefVBtKiwWObW5QoEqJQX7ggUH38F+sxGKl6II1KFpmgcEEDQKWn4uYcCEJK56fBwX/n04Gr0KSQJRIV9A33wJBIEAJpxiFvVooYNHoMbZwRAYDg0+alze93Iuy7usy3PbGrYRkAJsrNuIUlQGM5telX/VEe5lmEGxg7h1yK08Ou5Rzkg/g4fHPsw9I+7hliG3kGAIZQKutndt5DslN5bNFS1sqmhh0c6uw0rbiX/knwRaWsHvR9BqafzwI3Zu3s2uWjuNDi8tLh//mR9KJoAlVQ4RrmwLEfY6QnqBooq16kFkxRoZXrM5WKWif+fsxWE6awS2GwI7JogxqU0YVUaSjEk0uZq6bWdOB4MMQLTpwDV5o668guwFvx6wN0a7R6BKVJFpCYcGH2/0jepL70jZA9gvyc9ok8qEKIhoFBpO+/g0zph7Bs+vex7jhPHBerZfFzAyM4pUqx6jWoEkQUmdnYAka1RmRBkwapQ0bw/dA8jo/D0Nc3xzdubZLJ8YS5UFfCJo1K18/OPDvPX9Qwxf9R1rC2v54/pPSW+sx6OABiN4L5lxtLsdJswRRRAE9IMHI+j1KKOiaP1ZTq51zbhMlt97ajDR2wsXjsLgaQsjFt386cu3+GxtGQzuMF5f/SaiWkHU6ERy27TyzHola38oRupGAuZ4R/IFkHwhDX2/7tjMORB9440orFYEjQbJZoe2zNcxN95I2ttvBcs1ffxJcL89AWOSMYkvC74kIAV4Y9MbVNorqXEXkZpYS6w+lsQoCUlZj18McGliEmvbDIuVmmpQLESQ5M9eq6zgk0F38VvunVRm382bxhpeT/BTNyGGN2JCc/DjmbAh8AghKBQEzpoIgChBZtUyAGz+BH6L+ztYe8mrE2185p1IjleBhIRD1cKAQomYpgCCXo86I+NoXMIxS6oplDBkSfkSQBb1B7D5Gnuc8PWEZc4cFCYTrg0baPzgw4PvYGQa9JKzuSmlKvQxO/DVOnGsqaF1gTxZNVq0TLtpAL1HxDHrL0M4/95hJNV8hcq/G0FysMNwFkCn0GB1m2g0ooho2DuLaZgjx7jkzkLdKlFeYbN77ZS2lvLu1ndZULYAtajm+v7Xo1OGPbmOJToaAtszB++JSasiN94MwLaqls4efXsgiiIpL76AfuRIAg4HLfPmoXn1+U5l3lxaxK/ba0IHkofCpZ9B+ngoWQaBtvbTRvHYLxXsrLYxsjpkPGwYHH4O7EmUNir422oPDbZ5bJ3O27w2ym3lFDYXdtvO5Lw4dKrQ8MioOXAVlV2Nu1hacWAaMnavneKWYkAOX2+/j4Q5fhAEgZnZMzsdu2XILXw07SNGJIygzlVHvauel9a/xNZUEUEvP7ttixYhIDFzcBIOr5/Fu+p4bWkhG8ubqbN5mNJX1kL27Ap5neuyexPmxEEURe4acz/PT1dwxzUKFkfVYXQ0E+FxcM2mr7jo6xeYXrSMGIeL9Rnw7HSRpNiwY0CYk4+oa65BYTbjLS2l7j/PdZmYTaEQeeLM64Kv3YbvuW/pHYxfeg9vJmTiAyhZCnU70A+OI0OvIFEl0GL3UbCmlu0ru5aKOd7x1DshEFoglY7RyBKF2UzSk0/Q65uvMYwZA14vpsmTsV55Bdr8fDQ5OQA416/HsXYtAANiBnBBzgVU2CpYXrmcZ1c/y+ubZY1BpaDkxdOeY/558/nsnE+wauWorHoFbNBqGK6J5e919byjjuWT8iomSzpOV2qpV4os0nuZa/VyT/TTLNHexITKB3Hauk44d7wRNgQeQTIuuobydBMVyXqGbylB6ZFdj1dsy0PKlrPLtvaaxmqxH2rlqaAUiM3To/C7gxmDNampiKrw5KAjaREhj0CX38WklNOQPLHBY7uaDi7Zh37oEESj7MVpX7oUT1n5Pmr0QIcVKEvsQkC2VLYuKMPXJAvZq9QKJl/Zl9g0MzEpRpQFHwEgCH5WGwbKlTskC1G2ZbQUjcawTtBRZmDsQPTKkDG2Y4ba1VWr+alY1rVQKpSc3evsI96/MD0TbwgJ7ndnCAQY1paVXJJgTXHPWclFg4Hkfz8TzPCeuHoRfetkD+X+CQb0GiXXvb2abzd2eL+McTDtaYjMAGMcDL0aT7+LqGx2ofe6MAXcbEmGNZmgSAgnCdgTQRBINMhJYcpt5QSkQFATECDOEBfcL24t7rYdjVLBnGGpjMuO5uqxGYzuFXVA/VhZuZJLvrmEm+bfxMVfX8yL617cr3rbG7YjtT0b+kSd2BpFJzLTMqcxKHYQUzOmMiZxDOf1Po8caw5GlTEYnt7H2oe3dr2PfqQcSuyvr8e1aROTcmNpd0SZvzW0UNA/2QKAWBQah1j69D8yFxTmiNEvph9Z46YRkd0Hv0GLTyuP90svuBYhuzeVcWn4FAIrc0S2pIud5BDChDlZ0OTmBEPi3Tt3duusMSppMKeknEKe5iL8tr7odR4a3bW8b9Tzh/RsiMmBNW+jMKgw5EeT1iHcc+ncXbjsJ4YOXEdaym2IgdC4CKPh6HVmHxhGjUKVlITYloBGN3gwokaDIAhEXnIx+jGjUSYkUP/KfwF5DDglfUpwHPXq5lcRBZFhccO4qM9FwSgLk9rErYNvJc+aR350PiaViWuihzGbCNCY6a2N4Sl1JhaFAX3bA9knCLybZETtqKJP3fd8oH306PxRDjNhQ+ARJCo9h5pYNYllDvSuAFGlnyAh4XVLLKiaTeCqn/gg9UGubb2X6FoFSh8UlJSQVhP6oLR5Yc2gPUkxpiC0/QPY3riVOOGU4Pn11QeWObgdQRSxzJbdjJEkmj/9tOcKPZEzFfRRoNAgViwiMnsVAAqzOugV2BGpaCkKbwkAbvrzqzKurU8hj0BBqUQ0GFCYzQffrzCHBZWoom9UKDNarjU3uP9N0Td4AvLnNj1zeqekFWGODdo9AiM1kZ0yje9o3EFRcxEf7/iYgsYCdJYtCMpGBIWNVUU9GwIBFBERxNx2GwAOtY6/rnyTu1e9w51fPoHQUE8gEGBnjY2iOnuoUnQWXPszXPktTHuKggTZGzi3oZiEhnryyqA6UsCkDssBdEV7eLA34KXWUdspNNiitXTKMt8T/zi7L29fPYK/TssjK3bff2tJkphfPJ+X17/MnQvvxOP34A142VC3gfkl8/er7+2aohBOFHI8E6GJ4K0z3+Jf4//FS5NfQhTkEdwV+Vew7KJlDIkbwtaGrfxa+ivSqMGArHtlW7yE/MSIoCZlWaNTPicKjM2WJ72GMnlV2KGB+LTwePBE5PoB17OtYRtvDWzmnr+nkvbB+5z+91uJiY/GNfZUXrwhhQX95VDzaF1YHzDMyYcgisTff5+8bzDg3LCBgNO5dzlB4NlJz/LBnLvpG5uMzaFEkkTKfS2sENyUNBbA+vfB78UwNJ5YlUiCVr5fK5UiXz23/oQzBrZWOhD9ob+VwnjszyG7klqJmD4dz85d+Corsf3yC7ZFiwAYFj8sqBUoIGD32onRx3DbkNs6tTkjawbvT3ufVya/wjtT32HUaf8Hd2yFiz4Ibi+/9Cd+uWQlsVr5PlsQsPOo1YofSLWeGEk6w1mDjzDOq8/Fse5/6D3Qp3Q1y9OmkkE8mxeWI4hJLKiv5gyHCkWbUStpjI76n0M6Bdq+4YHfnqgUKhZdsIgmVxMPLn+Qh8c8zGPzl/FTk3x+ZflWrh5wcG1HnHsutc/+BwIBGufOJeqPNyDuZ/bHTig1cibQXx6GkmUYiv+BFP9HmqrPwLfMhS4/Gm0vS7B4YMFLwTTmnriZ1NjkB5FSKW/VXgl1aQ0BQDtoEGGOPg+OeRCjyoiERIOrgW+LZAHbNdVrgmX2DBkLc2wwNG4oOZE5bG/czoKyBdw57E4kJOZ8NQdfQA45GRQziLW1azFmg7d5AL8VpXbZVrPTS4Qu5LVtmT0Lr9vNh58sZ86OnxlXvh5RkviP47/gdLB8TR8+uPw67r5wVKgRvVX+D0EjYd/6UCjrtmSBiWFDYJd0yhxsK+/kEWhUGUk3p1PtqKbZ3UyTqwmL1nJY3rewpZBbf701+PqsjLNYVL6IFk8L2xu3U2Wv6uR52hUdMwaHE4WcuGRZslhdLSf9aB6Rg7Ete3DTxx8Tff11nJITw8ery2gf+Q1Lt2LWqvDb7Jga5AiCsmiBAfqYo3QFYX5PMiIyGBE/ghVVKyhuKWZLvI+hgsDUh+5AkiT+9u6H4IdEY2LQyBwmzMmGbuBAImaeS8u339Eybx6G0aOwnHNOl2UFQeCN2Xcy6YlfaXH8iCZOHp9/ZjJwS2Mt7PgOTc40LLOyyP+iAH3AR0Gjm9ZGNz+8tpnxc3pjiQ1F/ThbPdSV2jCKYGv2YPH4sC0qR5VkxFtuQ5UkG4na97vb9lTmUOt3V6bBHUDwhaLLVJEHFvFwrCBqtcTe+Wcq7vwLANVPPol++HBEjYY7htzBKSmnoBJV/FTyEw+OeRCl2Hnu3n7vNKlNPS6s61V6Hhr3T74s+JKvdn/FexFG6swxrJJODKeOo/oEWbhwIdOnTycxMRFBEPj88887nb/iiisQBKHT/zPOOGOf7T7//POkp6ej1WoZMWIEK1eu/J2u4MAZlX8mn44SqDdBQaaZwY2/EQCwqtn0azlDNjpJ8iuo0oE5WktkX5HM6g6GwLBHYJdEaCJIi0jj1dNfJcGYwMSM/OC5nY0HFxoMoIqLwzRlMrohQ1DodDiWHpjmUydSR0J8P3k/bQzGphewKh8H3DTN20XAJ2e2pGYbYvEPuPz98AQyEQfPpM4m37T1WtkoEd/BGUkVFc4+eyyQbErGorUQqY2kl6UX52adyy2Db2Fs0lgGxAxgYvJEsiOzj3Y3w3SBSWPCorEAUNJawqrqVdQ4aoJGQID1tes71JBYV9qEp+03W1Rn5/yXl3H60ws57akFOD0hEWFBoaB+8gya1QYa1Ua8Gh2KqChSTp9ElLOZ04tXMvKJO2nZ1rXn8u52Q2BDyBC4PTnsEdgdA2MHMiZxDL0je7OxbuNeyUJSzSEDbk/hwQfKorJFwX2jykifqD5c3Ofi0PnyRV1V68Tu5t0Mjh3MiIQR4XvFCUy7VypAjcaNKkH2SPZVVmJfupRTcmM7lT8lVzb4eXaH9AHr4vV7TWzCnDh0XDT8dGcoGqXOWYfbL48Hw2HBYU52LLPPQ2rzBGz65JMey5q1Ku6YkoPJOxwk2dXic4NB1gpc8xaCKKDtbSUiRk+iTkSjENAKULOrmbn/Wk35Tnni1VBp45N/reKr59bxxX/W89XrW9i1pQF/i4eAyxfcdtzvbnuw5w6ljBMJ0R+KLtNZj98FJfO0aWgHDUI7YACB+gYa330PgARjAmdlnsWU9Ck8Nv4xNArNIb3P6MTRDI0bilJQMiF5AhkDLqPW3XA4LuGoc1RHEXa7nQEDBnDVVVcxc2bXnjJnnHEGr7/+evC1RtPzh/nhhx9y++2389JLLzFixAieeeYZTj/9dLZv305sbGyPdY8Efax9WDMmlvOXVBO1u4Va3TJeTJvMOc2ghaAXWKxPYNZfhvBW4etkVguAhCSKaHqHxaH3hwlZ6QR+MyIqbdR7Sg6prYjp0ym78SZAzk5kHD9+HzW6QaGEqY9DXD58dSsASnU1McL9NLkeoPHD7VjP7430xZ8RJRdaxUaavFeiy42j4fNNAGjVPjxAQkPIOKxOTz+Eqwvze/HgmAcBeHPzm4CcXTjMscvM7JmsqFoByBOvc7PO7XQ+QCC4LyicGDRK5m+t5sx+CawsamBlYWhQ8OKCAm6fHLpX76hu5bOsCXyWNYH7RsZyaW8DtuUraBUVKAN+9G4Hu2++jewH/4ph1KhO71tUZ0cZ8JHTKN/HaiKgwRw2BHZHRkQGSyrkpFErKlcwNH5o8JxRZeyUZb6kpYQBMQfpLr4HC8sWBvffPetdMiMy2VS3iRfXvxg8f17v87qtX9RcxMa6jYDsoXqoA9cwxy4dtSqrHdWMOG82tl9/BeQxxtjHnkAe9clMajMMNq9aiUMNeg84Uo5PL44w+8epaadiXmGm1dNKaWspze5mIjQR/Fb1G3qlHofP0UmLOEyYkxHdoIGoe/XCU1CAc9Vq3LsL0WR2n0htSulqFD+8zZrMSKZtqqLFDJsjIukfVYxQsx1lbA4xf+iP+utCNMsqWe/0U+v2I3j8LP5oJ6l5Voo21uNq8RAIgL3tLl1S0MIauw9rUSsNrfIWCO53t+2pzKHW766MyhUgyRta5DbGJB7+D+YIIQgC8X+9n6JZs0GSqHv+eSKmT0MZc/iNm7N6zyI9Ip0+1j58vONjYnQxbGXrvise4xxVj8AzzzyThx9+mHPPPbfbMhqNhvj4+OD/yMjIHtt86qmnuPbaa7nyyivJy8vjpZdeQq/X89prrx3u7h8UgiAwPGsCm1Ll0N8YZzNKZznv6V20aAU+NXioVgTIntMLvVnD9qqNJNXKE1AxMxWxLcV1mJ6x6NVoJfnmFhBbKW+pPei2jOPHo4iR9QFaf/kFX13doXVuyOVwwXsQ1xeVWI5G3IrFeR/eTatxvvZ3xDbPEZ8Qj2bOnTSLoSzIapV8807osBChTkvb8x3CHENc3vfysBHwOODUtFMxq2WtlB+Lf2Rb47Zuy+p1TurtHp7/dRf+gMSqos4rgy8tKKCm1RV8vbM6FJ6a3jsVbV4e0VddSevrH7HdkkKtPgJNaSEl115H8xfzOrVVVG+nV1M5Wr8sC7AtWX52hA2BXZMTmUOsXjacrKxaSaMr5D5tVHc2BO5LJ3B/afW0BiUAko3JZJjliUheVB5RWtlgs6JyRdCTpys6GhLHJx/kYlOY44L27yfIhsBOY4yff0Zvb+GTUVpW/3ks710zgl4xcnhX8/wf0Xtgdyy0DA5niz2R0Sg0XJp3KVatlXW16/i28FsCUoB3tr6Dw+egX1Q/5uTMOdrdDBPmqCIIApbZs4OvGz/8YK8y9mXLkLxeHKtWUXPfvfSr3sH4rW6iWiGjHNRbdDQsLoMf/0rA5ULUKLHMyCJuXBKjcy1EK8AiCtSV2ljzfQkNFXY0vgARIqRGqumTbCB+dAIuvwTRuuC2435324M9dyhlTClGRF9oYdsQefx6BALo8vKC34GA3U7Nv//9u73XkLgh6FV6Lu97OV+e++Xv9j5HkmNeXOLXX38lNjaWnJwcbrjhBurru0/X7PF4WL16NaeddlrwmCiKnHbaaSxbtqzbem63m5aWlk7/f09OST6F6gEhl/7hVVupV0i8rHEQnR3B+j5aJo5IwuP3UL5hOcq236sp//B4LpwsZJn7ovVnofNnM3/XpoNuR1CpsJzTZqz2+Wj+4otD71zOmXDOSwjaCCSFHlGwE6u5DV3lf/DQi4BkxG66EXVmDHWtIRfudo3AhMawR2CYMIcTjULD6emnkxOZw+DYwayqWhU8F6mJJD8qH6UgO9H7Bdmwt6m8hY9WlQYThwhAtFHNKTkxLN4ZWjDYUR0KT+0dFxIYHjm8D6+e+2c8UbKHkLLfACruuouaJ59ECsg3/sI6e2d9wJSwIbAnBEFgXNI4ANx+N7ubdwfPmVR7hAYfJkPgsopl+CR5kWZ88vhgFndREBmZMJI8ax6jE0ZT1rp3Yqh2FpaHDYEnCx0NgTWOGnmMMXMWhrFjMZ91FrvPmob+3ltoufE6hlvk77SnpITA6g0AaL1gyAyHjp/onJJyCvUuec7z6c5PmVcwL+g17PQ7SYsILwKHCRMx42yUiYnohgyh5Yt5eGvkbOuSJFH30kuUXHkVVQ8+hGPDBrT95UzrDtGETQMBAYrjIRAQ2P5/69kxcgTOTZsRFAKWs3sRMTiWkUYFkRGyHlxkW1Zho17JGKOCceMSmXDPUDRGFQaLBrVOGdx23O9ue7DnDrWMwhsyBGotx7+8VMxttyKazeiGDMH203yc69fvu1IY4BhPFnLGGWcwc+ZMMjIyKCgo4N577+XMM89k2bJlKBSKvcrX1dXh9/uJi4vrdDwuLo5t27r37nj00Ud54IEHDnv/u2Nk4kieTGnhzPbXNVv4MOdUEGBVUSNf/2ksWpWCpeUrSC514VWAyg+6vL49thumM72sSWxxfgbAkpJNXDb4lH3U6B7LrJnU//e/IAg4Vq/BetVVwcneQZPQH66dj/Dd3ai2hIyLagpoibsH8zV/RFArKSsOeRspFB7wdw4NVqWGB4NhwhwOJqdO5uMdHwOQaAiFS3xw1gckmhKZNW8WOxp3ICjsyIF7AvPWVQR1/HLjjGyttvH95moCEswcLIduVTTLGjZalYjF4MfutePxe3D6nIwbkModDRczRxPPZWu/B8C+dBme0lKMf38QX109Z+9eTEAQECUp6BHY7r0YZm/GJ49n7s65QGdjn1FtJNmYjCiIBKTAYTMEfl/0PSpRhTfg3cuIlxGRwdeFX7OlYQszsmbQy7K3J5fdaw8mj0gyJpEZkXlY+hXm2KSTRqBDnrTG3HoLgiBQ88y/8Tc1AeApKqb0pptIfOghmr/6Oljn54Ei/Y3HbzhXmP0jx5pDflQ+m+o3sbVhK8+tfS5477pr+F2oRNW+GwkT5gRHabVinjqVhv/9D4Dap54m4cEHqPjb3/EWFQHQ9PHHmKdNwzB6NNqLL+Uvy0CT8gYD6rZSHi3wymca8Irg9VD98EOkvf8+giBgGp2EKlpPUoKeLZ/sImJrHXWJRjIGRKNLMaPLlz25B56WysDTuk4gd8wRCLDk/bZdAfSm498QqLRaib3tVqoekCWZqv75COkfvI8gHrq/mxQIUPv00ygsFhAVNLzxBtq8POo2bDjkto8FjmmPwAsuuICzzz6bfv36cc455/DVV1/x22+/8Wublsrh4p577qG5uTn4v7S09LC2vydapZYRg6dTKt8/6N1QwmeX9CU33sRjs/rTNzECkD0E+hVLKPzgzkxCN2xoD62G2ZOxaaGEITsadx5SW+r0dCJmzUIRFYXt559xrlmz70r7gzkRZrwAOVNhzC34osZiEy9AyL8IQS3b6YvqZSNDepQejbotWUibbVAZE4PCaDg8fQkT5iRnQOwAFIK8yFTrlOUENAoN8UY522ukVpam8EleLhoZS2a0gWW7Q17q43rHYNTIv9vN5c0ANDk8bCpvwaxTcmZ+Am9ueYOR741k/IfjeWDpA0zKjSUgiLyfO5kFZ1yOOjMT9+7dtH73PeV/uZt/Ln2FOGcTTqOFry/vTXnbc8OoCnkWhunMyISRwUlypa0yeNykNqFSqIJG3uKWYiRJ6rKN/WVj7UZ+KP4BtajmvN7nddIkBIJJaACa3E1dtrGsYlkwMc24pHGHvsgU5pjGoDIEf7/thsD2z1wREYHCakW0WFDGxOBat57Ciy6maa5s2PaJ0DixP8MThh+dzoc5oszsHdJPr3ZUMyR2CH/o/wdGJow8ir0KE+bYIurqqxDN8uJo8+efU3bbbbR8/jnOTZvQ5PQm5o7b0fbNQxERQcKMaQxJt+Kz5bI5XaTJKLA7N14O6QCc69bT8vU3wba1vSNRmjRkZEWgtmhJSzCgMqqDRsDjDbe9EYUcXIZDIz+PTgQss2ejyc4CwLVhA7XPP79f9bw1NXgrKvY67tywgYDTSdWDD1H/3/9R88STONevx1ddjd9mw9fmeXq8c0wbAvckMzOT6Ohodu3qOgtsdHQ0CoWC6urqTserq6uJj4/vtl2NRoPZbO70//dmVvYs1mRCYSwU9TKQVVXAVzeP5fxhKYDs0rykaAH9CyVEQFffijacKOSAGJUcyrBc6y7B5w/0UHrfGEYMx9+mD9j0cc/ZqQ4IjRHmvAOn/gPlH7/A+LeXMY0PrSz91hZ2WFTvANGDziVhccjnwvqAYcIcPvQqPbnWXAC8AXmklGJKQRTkR6VVG1o5PXeoJejp186wjCjyEuXnR0Wzi3qbm9XF8u+3xekjUq+m1BZaaNpUv4kBKRFY9LLR6vmIQUT95S8IgoBoNNIUEUOUs5kAoFSIFEeDJAiIgohepf99/ggnAHqVnokpExkePzz4OULIeNoeUufwOYKhdwdDQArwfyv/DwC7z05mROZeST4itBHB/RZP17IjFfYKRiaMJMWUEp7gnyS0hwdX26s7GaOjrryC3kuXkPnF54htyfH0gwfj97ipjITV2QK7lY2dtC7DnLicmX4mUdqooCexSqHiyvwrj3KvwoQ5tlBGRhJz882IBgPGU07BuW49gk6HoFAQ/cc/En3ttURdeSVRV14BwOS8OHqbQot2758WT8r4BhAk9HE+mj/7ZK9FQtO4ZBLuHUH05X0xjTt+E/XYGmtQeWSrp0PDCTOWFFQq4u69F1QqtAMHUv/Ci9S//kaPi72u7TsomnMBpddfT91LL7FzwkRKb/gj24ePoOj8Oew6bTIt33yDMiEBBAECAZRxcSiMRpTHQALaw8FxZQgsKyujvr6ehISELs+r1WqGDBnC/Pnzg8cCgQDz589n1B6ZGI82faL60Nw/nYwayNxlo2j+PJSK0MdR3FJM9M5a9G3ycMZx4xG6CIcO0z2RukhUyJMwSVXFtqrWfdToGdOUKcEVp5bvvsPfemjtdUJUgCjKmYU7IEmhRAQWvQo/LhJC2veoM9IPXx/ChAnDoNhBnV53nHB3NASq1A5unJjVqeyQtEjyE0OGn80VLUFDPsCw9Eh2NOwIvm7xtLC1YTMTestiza1uH1tT8kl7/z2S//MsjQGRCK+DxQn9qP3Xi+yOkr3GjCpj0DgZpmv+Ne5flLWWIbVl9VMKyqCRLs0U+kx3NXa9sLg/FDYXBj1He0X0Yk7u3uL9EerQ96E7j8DFZYtZXrmc0tZSBsUN6rJMmBOLdkOgy+/q0kCsiosj7e23iH/wAbT5faGllcV9BZ6ZIXJu1rnh3/9JglFt5MfzfmTu9LncP+J+njv1uRNm4h4mzOEk8sIL6PX9d2jz8vDX12OeOpW0t97EfPrpe5W9ZGQaZbV6/G75PrzTXknT1HPQRXlwVCuxL1mOc+3aI30JRwRHcy2qNtuCUw165YlzPzGMGkXSk0/gWrcOJImmDz9k18RTKPnDDTS89x4A7t27KfvTLdS98grFl16Kr7IS985dtHz3Pb7qarz19QTackX4GxoItLQgGo0kv/Qiyc/+m+wFv5Ly4gv0+vabHnpy/HBURxI2m41169axbt06AAoLC1m3bh0lJSXYbDbuvPNOli9fTlFREfPnz2fGjBlkZWVxeocf9amnnspzzz0XfH377bfz3//+lzfffJOtW7dyww03YLfbufLKY28F7dSpNyC1uSLXrVzcyWq9oGwBedtD3ibGCROOdPdOCBJ08oRPVNpZUFC4j9I9I2q1REyfDoDkctH81VeH3L99UVBrp9Ehe7QMTYvE6XV20gcMJwoJE+bwMjhucKfX3RkCG1wNXDs+k/OGJPH21cN58eLBWA1q8pNCHuWbKpo7ZRTOS9ZS2Nz5PrSwbCGTckMri79sr0Gbk4Nh1CiqfQrqdRHUp+eQlptOq0defAgnCtk3KoWKR8Y9glVr5dGxj/Lh9A+D4ZeD4waTE5mDSlSxo3HHPlrqnjc2v0Gru5VEQyLX9b+uS82u/QkNbtcqNKlNRGoiD7o/YY4f9kwY0hWiXk/k+ecjGgw0mRU4NAKSUsGMrBlHqpthjgFUogqFqGBO7pywLmCYMN0gKJUoo6MRjUaUcXFosrLQDeg6yaZereTqsRl46ibic6Th8Nl4McJE5KhQNFbTGy8eqa4fUVwN1ah88ljIqQGdUneUe3R4MU2eTPSNN6LJzsI4+TR81dXYf/2V6gcfovbllym64EJaf/iBpk8/I9DSgm7oULT9+mE69VSUcXGooqIQzWZEk4m4e+9FmZhA0hNPYBp/YiZxO6rJQlatWsUpp4QSONx+++0AXH755bz44ots2LCBN998k6amJhITE5kyZQoPPfQQGk0o9KagoIC6ulB2xjlz5lBbW8vf/vY3qqqqGDhwIN99991eCUSOBSbknMnC+L+SWOkhtsLBd5s/48x8WQ9kUdki5hS0hbKKIsZxY49iT49f8qJ7U1IqC3ouLd7MjQw8pPYs582m8dNP0eb0pum997HMmoWoVh+GnnZNRyPC0HQrm8sdJIQOhUODw4Q5zPTkEdiuEQjQ6GpEq1Lw+HkDO5XPTwp5gG0obWZDmawVmB6lp9FbHPRQa2dh2UJennQdFp2KXrEGmhyhLOHzek9kvX4QggC3RerIsmTh9ruJ1h2f2jRHmiFxQ/hu1nd7DXTTzelsb9wOwNqatVzW97KDan9r/VZsPhtOv5NJqZO6LNPRENjsbt7rvNvvptIu6ximmdLC+oAnCXsmDMmO7D4LsH32qXzWaxub6jcxzJBIvKF7qZswYcKEOZmJuvKKYAhwT1w3PpMPVg/Apv0SCZhX/D3nTzkX7XcfEvCKtPy8mLjmZhQREfts63jCW1fZLoeIWy2ecGMOQRCIufkmoq65msYPPkQwGJDsdlSpqeD3I/nkyJqAw4EyJgbjpElYL7oQUasl5uabgu0EnE5EnQ7L7FmIuhPLWNqRo+oROHHiRCRJ2uv/G2+8gU6n4/vvv6empgaPx0NRURGvvPLKXga9oqIi/vGPf3Q6dtNNN1FcXIzb7WbFihWMGDHiCF7V/qNSqIgcPhoAUYLV89/D4XVg89go2f4bcU1yOd2ggXK2mjAHzJDE3OD+upptlDY4Dqk9bW4uEWeeiWvdetw7d9LwxpuH2sUe6RhWODTNgsPnIKEx7BEYJszvRbQuulMijiRjUnB/T4/ArsiMNqBVyY/WtaWNeNq0SYemW9lSvyVYLl4vT+Z3Nu5k1tdnYIhdwuriJuauKcfl9SNJEoVt2YgTI3QIoo/fqn9jQ92GbrXmwuxNV6vdWZYsTCrZq3JNzZqDShji9rspaCoA5MzAWqW2y3IRmtAkoitDYGlLadA43K5dGObEp6vMwd2xtWEr3xZ9S2lrKcPih/3eXQsTJkyYEx6tSsGD00bgqpkcPPamwo65j/wsl3wSTQ9fAYeYUOxYw98QyqPg1p64EhOiTkfUlVeQu3oVCY88QspLL4E/gORwoB85kqxvvyF70UKir7oSUbv3+K3d+HciGwHhONMIPBHpNX5acF/asIX/bfwfyyuXM2CnD78ADRlRmM+cehR7eHyTHRnS8PKJVZzz/BIqmpw91Ng31ssulfX8gLqXXsK7R3Kaw8mqYtnYoFaKZMdrCUgB4hskGqM06AYPRpmS8ru9d5gwJysPjHqAh8Y8xOPjH6dvVN/g8f0xBCoVIn0S5PDg6hZ38Piw9Ei2NmwNvr64z8U8N+k5+sX0o9ZZi13/DYgO/AGJ7VWtNDq8tLjklcuMaAM2ry1YN5wx+NBQiAoGxMohQw2uBkpaSw64jV2Nu/BJ8ueTF5XXbTmdUhcM5+sqNLi4tTi431G7MMyJTcfQ4CpHVY9la+whQ2GSKamHkmHChAkTZn85tU8sQ6Om4m3tjd+VwI+lP7Bm9hmY+kQiqqH+h834P/wDeF1dN+BuBWfTEe3zoSI11Qb3PZqjGhh6xLDMPBdNZkYwbNw4YQKi4cTIlnyonBzfgGMY/ZAhwf3cMnh08xucknIKQ3dJaH2gLaxHPyy8AnywZFlChkBRU02iUsc5zy1hVFYUozKjuGB4ag+1u0abm0vkBXNo/Ohj9IMG0TzvS6KvveZwdhuAwlo7BrWS3HgTVoMaP24ESSK1FjQ+N35jPQqNZt8NhQkT5oCYkjGly+MdDYGN7sYuywBEx24jWbEdr1dLY10OCn8UQ9OtfLxMNgQqBAUX5F6AVqnlhfUvAODHhahsJeDRs6miGV8glOU8I9qA3WsPvjaqw4bAQ2Vw7GAWly8GYE31mgPOwrqlIeTd2cfap9tygiBg0VioddZ2bQhs6WAIDGeCPWmINexbI7Cr8x09CcOECRMmzMEjCAL/mN6fs16ZiCr1FQD+4V7MR+YYAp5GQEHd58uIs02HC98HQwdZluYyeG8O6KMg61RY/hIkDIDK9fIWQvvdbXsqc6j1uyljrdTRnurSpzu55pD7GzZ+MhH2CDzKqOLjUSUmApBVLoHbzfLdv5JXIrsiK+Lj0PTuXjsmTM9EaCKCeloGYx1js6Kpsbn5Yl0FT/+046BCwgCi/vAHRL0e+5IlNPzvfwTc7n1XOkDmriljS2UL26pamdY/AYfXQUwTaGQnFNTZWT3WDxMmzOGlo0Zgg7Nrj0CAWtWXNGu/xWH6DEm3kWvHZZAcqeoylHRkwshgPUEph/xuKm+hsC4kY5C+h0egQRVeyTxUOmpBrq058OyAW+tD3p19oro3BEIoPLjFvXdId0lLyBsxbAg8eeho0JtXMI83N3cvM1LtCEUdhA2BYcKECXP46B1n4r/nzQF7fwCc/lau7dUPv1L2lWra7KZl2QZWPXcpxdvWyJUq1sLXd0D1JihcQM2Kj6C1gu3F5cFtx/3utgd77lDKVNtDph9f2CvupCdsCDwGsJx/PupBA1FJAi+ZbuCPvnGo/fI504SJJ5yQ55FmfPJ48qLyMGk1aLV2NEr5a1/d4mZzxcFpbaliYzFOlDM5+5ubaf3pp8PWXwCfP8DHq0sBUIgCp/WJw+FzkFIXMlxqssKGwDBhjiQmlQmlKA8Oe/IIrHOGEliZdArMOhU1jhoyIjLIicyhf3T/4PkYXUxwX1TJ67SbK5oprAsZ/jKjDdg84dDgw0l+dH7wszxUQ2CuNbeHkqGEIS6/C5evc4hRUUtRcD/VfOAe6mGOT6xaK4+Oe5QpaVPw+D28teUtnlr1VJdlO3oEdgwpDhMmTJgwh86EnBguztwnOqwAADs9SURBVL6RgCcas5hMZeIv/DzibNYmZRHwCZQtsdJr41oiPziL8p9fgdenwo7vWOXPpliKY4tmAJWSlRZ0wW3H/e62B3vuUMq4pFDmcaU5bAg82QmHBh8DaPv2pfaZZ1AACT9vwqkOCYobJ0w4eh07QdAqtEGR/lG5fqzaPvz1i80A/LKtplOWzwPBMns2LfO+BKDpk0+IOOusw9NhYMGO2qC+2KTcWGLNWipqHCSH7AtoeoUNgWHCHEkEQcCqsVLjrOnWI7DB1dApKcRFoyK5Zlgm62vXs7NpJwBD44cGz0frQ6EmURFuqpphW2UrSZaQQHF6tIHdjg6GwHBo8CGjVWrJs+ZR56wjUhtJnbNuv7MxewNedjTuAOQMxPvy0OyYMKTJ3US8MpT1td0j0Kq1YlKbDvQywhyniILItMxplLWW8UPxD9Q4atjWsK3Lsu0egWa1udukNGHChAkT5uAQBIG7J49m9/d9WFa1CFEFy8YPZGJ1JUi7QAN1m8z4bFpak3dgDGiIwIFPUHKO+wFyVekUamaRn2hmU3kL+YmyTnT7fnfbnsocav3uypyv+5kz+RQAhTFsCDzZCRsCjwEMo0ehTEzAV1GJbcEC4o1GAoCgVmMYeWxmPD6e6GXpFdzf1bSLU3Lzoc0Q+PP2Gm4+9eBCr/XDhqFKS8VbXIJj+QrcxcVo0g5PaNe89RXB/TlD5YQgDp+DlNoOHoHh0OAwYY44kdpI2RDobkCSpL08trfVd57M17lk631H46BZbQ7ud/QIjDS5qAI8/gDbq2TvQKUokBypY2NzB43AsEfgYWFY/DBe3fQqFfYK1tes59S0U/er3u6m3XgCHqBnfcB22j0CQf4exBtkQ6Dda6fWKQt3h8OCT06u7389r216DafP2WXSEEmSgh6BcYZwWHCYMGHC/F6clj6RZVWLABg/sI7rLv0fNU8/TctPP+ErLILtPtTqDSwZMIYat4dNfe/k2gQrN0zoddxE723790raZ5JC2BB40hMODT4GEBQKLOfODL4O2GyYpkwh+o83IOr1R7FnJwYdE4bsbt5NcqSe3nHyRHpdaRMNds9BtSsIApEXXoh+2DCUMTE0f/bZYemv3e1j4Y5aBiZbGJoWycQc2VDg9DpJrpdv35IooM7IOCzvFyZMmP2nPWGIL+DrpNvXTsckEgB1DtkQ2OIJyRB09BDraAjU6ULGvtJGWSMwxapHpRBp9bQGz4U1Ag8PA2IGBPfX1KzZ73oFTQVkW7IZFDOIgbED91m+4+fd0SAc1gcMIwgCCYYEAKrsVXvpFje6G/EGvEA4LDhMmDBhfk/GJY0L7i8qW4QgisTdcQfRV10FCgW6wYPRbCgl/tsC3lJcRm5yNH+cmHXcGAEBvLbQGERhCi8qn+yEPQKPESwzz6Xu+ecRNBoktxvnhg0kPPLI0e7WCcGeHoEAp+TGUlhnJz8xgs0VzYzLjumueo+Yp06l5vEnwO+n+dPPiLnpJgTlof2sluyqo9HhpdHRxMUjUlEqZHu9w2MjpS002B1vRQxnDA4T5ojTKWGIq2GvcM6O2nFA0OOrO4/ATuGoihZUCgGzVkV92wJFRrRs9OuUNTjsEXhY6GjEOxCdwO2N24Nh3tf2v3af5fcMDW7nl9JfSDAkYPfaw4bAk5gEQwK7m3fj9Dlpdjdj0VqC58IZg8OECRPmyJBgTCA7MpudjTvZVLeJemc9UbooIs87D3VqKmU33QyAJTqel399Em1NHjvv34I2Lw/Xls5bYK9jB1LmUOt3VwaNiE8EjwoU5oOTxgpz4hD2CDxGUCUlkfHpXLJ++RnT6aeT/uEH4dj9w0SEJiLodVPQVIAkSfRLjMDrl1hb2sSK3d1n/9wXctKQiQD4amqwLVp0yP39ZXto4D8pN+QB4CurCGYM9qXF71ktTJgwR4B2j0CARtfeCUO2NsiGQAF5hbjdENgxY2xHw5BepQ96+LmlJp46f0DQCAiQHiWf6+h9GNYIPDxEaiPJjMgEZAOuw+vYRw2Z9uzP0HmhqTs6hga3GwJbPC18uP1DKu2VROmiOC/7vP3veJgTivZQcYBKe2Wnc2FDYJgwYcIcOcYnjQdAQuLsz8/mwWUPsq1hG4YRI0j/4H3MU6dinDARX3U1fput221P5/anzKHW766ML0KPMgBfDxMI9E4/un/sMEedsCHwGEKbl4fSaiX538+gigsP+A4n7ZO1JncT9a568hJDHjmFdbKnTZ2zjjHvj2H6Z9P5409/3O+2LbNnBfcbP/r4kPopSRK/bJMNBxqlyOheIW+h/2/vzsObrNL+gX+fJM3WNOma7gste0F2EARklRcUUXFDX0Bn5uegOC4Mg6KjuIvbDI6i4zCKjIOio4i+iqgDMsgIIpQim1C60IXupUnTpmvO74+Ypw1t2pQWS5rv57pykT7Lec4T7qbN3fucI+Xkyc8dSXFdug4RnZ+U4BSMiRyDQaGDUFTtPqeXtd6KvCrn96lO5Vzso6q+CrWNtW5Dg1tWBALNw4PL7GUYGhuMxFA9IoLUuG96P8wc7PxZUF3PisALYYR5BACgUTTiSNkRr85xJQL1Kr08rLM9LRO/rjj466G/oqLW+UeofsH9YNLyL/P+qmUMnZsIbPkew6HBREQX1szEmbix/42YnTQb1nortpzagkVfLMKuvF3QpKQg9k8vQRkcDFVkJJQGg8d/29vnzTFdPd/TMQ26AJQHATUaCXoVpx/zdxwaTH6hb3Bf7C3cC8A50fsI82goFRKaHEJOBO4u2A1rvRXWeisKbAVtLgTQFsOkSVCZzWi0WGBPS0PFxncReust59XPY4VWFFlrAQDjU8KgUyvlfYrSsyg3KhBidUCRzGFkRD3BoDbgh+IfAEBO+rmctpxGsikZuVW5CNOFoabKWWFWZi9zHxqscU8EhuvCkWPNQU1jDcwmCZ/cfRks9gYkhjVXhVc1NM8RyERg9xkZORIfZXwEwDk8eGz02HaPtzfaUWArAOBMCnvzM8KtIrC2EpY6C2z1NmiUGkiQ8PvRvz//GyCf521FIBOBREQXVmp4KlLDU7Hh6AbsyNuBuqY6qCQVXtj/AvJsebh10K0Iu/02hN1+W0939bxsPL4Rq/etBgBcFsBEoL9jRSD5hXPnCQxQKhAf4qzYySmvhhACu/J3ycc0OBrcPri3R1KpELvmz9APHw6HxYLiJ5+E7bs9nepfWu5ZZJba8MK2E/K2lsOCAUBzMg9hVgccEqDpk9yp9omoeyQZk+Tnp62n3fadqjyFLEsWGh2NMOuav3/L7GWw1De/n5jU7tVfLRcMKbWXIlivdksCAu5zBAaqOW1Ed3FVBALezROYZcmC+HnNPW+GBQPu/9+VdZXYc2YPPj71MRqbGnFlnysRY4jpZK+pN2lZEXhulTGHBhMR/fIWpy7G7pt3Y1bSLPQJ7oMcaw5W71uNg8Xezyd8MWo5BYqeiUC/x0Qg+YWWKwe7hnW5JuGvqW/CGUs19pxxT965qj68oRs+HLqhQ5zPR45E/l13OSdl9cJnh85gwd/24ldv/4DYn5OTyeGBmDrAPRGoLXTOR6YSgLHvAK/7RkTdJyEoQX5+biKwZTVPrCFWfl5qL3WbI7BVRaC+eQqAMntZm9e11beYI5AVgd0mzhCHUeZRGBU5Cg2Ohlartp6r5fyALX+utKfl4g+WOou8QnETmjAzaWbnO029SntDg5kIJCLqGVqVFs9Pfh6XxVwGABgWPgwrvl3h8fc0X1DT2JwIdM1PTf6LQ4PJLyQHOyvo1Aq1/It1UnggcMI5H99XmXvdJuMHgDxbHlLDU71qX1IoYF6+HA67HWc3vgsAKHrqaSRu/KfHoWNCCLy2MxNfHytGXaMDp8trEGW0IcqoxS3jEhAf6v6XGkOxc2hghQEYEtLxvFRE1P30AXqYdWaU2EuQW5Xrtq/lh/gEY3PCsLSmVK4I1Kv0CFAEuJ13bkVgW1wVgWqFGmqlums3QTJJkqBVafHfM/8F4Hz9zXozcq25CFAEwN5kh1FtlFd3dq08D0BeaKQjLSsCLfUWFJU4q74UkgLDIoZ1162Qj4oMbE7wnZsILK4pBuD8vm851yQREV14CkmBe0begwJbAbZmbwUA/P3HvyMlJAXV9dV45/g7GBw6GMcqjrn9C6DVts4c09XzPR2jUWrke+McgcSKQPILRrURl0ZfiibRhO+LvkeDo0GuCASA/57Z1eqcgirvKwJdIh94AOqkJACAPS0Nlq1bPR776aEzeOHLE0jPq8TYPqG4flQc3vn1OOx9aDp+M8n9A2aTxQK9rQEAUBgqsSKIqAe5knwVtRVui4C0HNbn+uMD4Kzyc1UEtvVh3pVkAoCyGg8VgT//oYIrBne/lkN8XRV/q75bhSs+ugLztszDu8fflfdnVWbJz72tCAxQBsi/cFfUVuDk2ZMAgP4h/fn/SVAr1fJ7QJHNfWiwKxFo1pu9mo+SiIi6393D75aff5jxIZ7Y8wQ2HN2AkpoS2Bpsrf5ta1tnjunq+Z6OcVWW3zH0DqSGeVfsQr0XE4HkN0K1oWgSTbA32nGi4oRbIjDHegqjzKMQb4iXt3VmaLCLpFYj8qGVkIKCoBs9GqUvvgRHdXWr4wotdnxxuBD9zM4PgZP7heP5+UOhVrX9LVl/unkIYnm4GkqFss3jiOjCSzQ2L9aTa22uCnQlAgMDAt2GEJfUlMgVgW0lAiP0HVcEuhKBHMrR/dqaOiLbmi1va1kF6HoeGBDotshDR1wLhpTby+EQDgDu8xOSf3MNDy61l6KhyflHv6q6KiQaEzE6cjTGRY/rye4REfm1eGM8xkU534frmuoAAI2iEWa9GYYAQ6t/29rWmWO6en5Hxxg1Rn6WJA4NJv8x0jxSLutOK07D1OjrAQBSQDmKGw+juAQYGj4UeTbnSqDnkwgEAMPkyTBMmICqL78EAJS98TeYl93vdsy+7ApsO+r8S//Vl0Tj7mn92m2zZSLQGslEAFFPapkIzLHmYEj4EAgh5GF90YHRbit8FtcUo9HRCMBZnXyulkOD25p7RgiB6nrnHxRYDdz9WlZvnqo8hUJbIcrt5fK2Q6WHIISAtc4qV3ammLxbMdjFpDHhTPUZtykoRppHdkPvqTeICozC4bLDEBAorilGXFAcsqxZOFJ2BID7ew4REf3yrut3Hb4v+l7++umJT2Ny3OQe7BFR17AikPzGiEj31SFjgnVQqxRQGX6St0+NnyoP4cqvyj/va5mX3Q8pwDkPWMX69W6JPADYn3NWfn796Hh0pDareThaTVTwefeLiLqu5fx/rorAs3Vn5b8SRwVGIVgTDJXC+be2lhP+dzQ0uLSmdUVgXVMdGoUzkcihpN0vxeQ+NNi1mIdLRW0FTltPY3vedlQ1VCEmMAbX9L2mU9f4y7S/YHTkaLdtw83Dz7fL1Mu0tWBIy4VpvF2hmoiILozpidPxxIQnsOnKTbhr2F1MApLPYyKQ/Ebf4L4ICggCAKSVpEEhAYmheqgMJ+RjJsdNRmyQc7XPM9Vn0ORoOq9rqRMTEXrbbVCEhkA7ZAiKn3vebf8PORUAAIUEjEgI7rC9muzmDwT1MeHtHElEF1qSMUl+7lo5uOUk/9GB0ZAkSU7wtazya6si0Kg2YlzUOIw0j4RCav1juWUVGYcGdz+D2iAP882szERacVqrYw6WHMRHGR8BcP5sGBQ2qFPXCAwIlCsIB4UOwqXRl3ZqaDH1bqlhqRgbNRapYak4UeH8nYSJQCKii4dGqcG1/a5Fangq7hx+Z093h6jLmAgkv6GQFHIFhqvCIyFMBaXeWW0XrjWjf0h/xBniAACNjkaP83V5I+y3d0BlNMF+8CBsO3bA9u1uAIDF3oATP68APDjGiCBtQHvNAADqTucAABwApFh+eCTqSXFBcZDgTOq4EoEtJ/l3Vfe4hvy2XFDEqGmdCJQkCdZ6K9JK0vDdme9Q01Djtt9W35wI5NDgC8OVaKlqqMIPxT8AgPx/DAA783bix9IfATgX+ejsJNtB6iC8MeMNrBq/Cu9f9T7WXbGuezpOvUKiMRH7ivbhaPlReehZy0SgtwvTEBEREXmDiUDyKyMjm+dkSitOg9mcC0nhHHLXL2gsJElCrCFWPiavKu+8r6U0GBC+9C756+JnnoGjvh5puWchhHPb6MTQDtsRQsCR6xymXGYCggwdn0NEF45GqUGMIQYAkG3JhsPhcKsIdFV6jYkaIx/nYlK3HhoMAIPDBgMABIS8qqxLdUPzgkNMBF4YfU3NiZYcSw4AYEDoAAQonH+ocSUHAec8QeezgmuAMgDX97+eq79SK4PCBiFMGwYA+L7we9Q11ckL0wSpg9zmESUiIiLqKiYCya+MNI9E3+C+GBw6GB9lfIRj1Z+j0R4LR30YDE1DADirfVzOd8EQF+NVV0E3YgRUkZFQBBlwduNG7P95WDAAjEnqOKnXVFEBqdoOADgTKrU5xxgR/bImxEzA6MjRqGuqw4PfPoh8W/Ocoq5EoCHAgDO2M27nefr+HRTaPNT0eMVxt30thwZzjsALo+XQywBFAEaYR2Bi7ERcFnsZpsRPQbIpGQNCB8AQYMBVyVf1YE+pN1JICkyMnQgAsDfa8W3+tyiucS4o1je4L5PHRERE1K24ajD5lZGRIxGiDcEPRc3VHSod0GSPR2WFc+Ve19BgoGsLhgDOIX+Rj/wRp2+5FY3FxajPzEL24uaKw9FJIR22UXu8eTGTohAgWhPcpT4RUdctH70cV318FZpEE3YX7EZ8UPOiP66hwW3NI9fWHIHnHnu8/JxEYD3nCLzQWiYC6x31UClUuGfEPXIC5rX01wAAvxryK2hV2h7pI/Vuk+Mm45PMTwAAX2R/IW/n/IBERETU3VgRSH5n0eBFrbbVl0/C8TPOefsSghIwOGwwIvWRXU4EAoBu8GCYrr4aAOCorsboT99CUogOE/uFI9LY8QdK+9GjaFKr8FMs8GMfCcFMBBL1OH2AHg9f+jD0Kj2CtcE4VnEMgHNeuUh9JABgYOjAVud5qgjsH9IfSkkJoP2KQNeCR9S9+oX0w5opa7DkkiUw681YMWaFWxVWYEAgAgMCmQSkC2Z8zHioJOff5/cW7pW3t1zVmoiIiKg7MBFIfufyuMsxIXoCNAoNtEot9I5+aKwaikJLLcpsdYgJisHx8uMorilGjjWnW64Zcd+9UAQFQYqLx/DC47jqm3eghcOrc6t37YKyvhEDC4DcCKnNxQaI6Jc3PWE6Hhz7oNtcouG6cAQoA+TnZr3Z7RxPiUCtSos+pj4AgFNnT6G+qV7e57ZqsJoVgReCTqXD9MTpWDpiKbbM29Iqibs4dTEWpy7uod6RPwhSB2FU1Cj0C+7nNi8oKwKJiIiouzERSH5HkiQ8NuExfHXDV/j3Df/GlNB7gJ9Xhzx6xuq2EECuNRfCtbJHF6hCQxH/93VoaGiErqke03P344YdG9BUVdXueU2VlbAfPAgAyA8DSkJYEUh0Mbmm7zUYYR4hfx2kdq/YGxw62O1rT0ODgeZ5AhtFIzIqM+TtXDX4l3Xu/yHRL+UvU/8Ch3CgSTTJ27hiMBEREXU3JgLJL0UbohGqDYVJY8KlCc2/ZB8psABwDg8GgKqGKlTUVrTZRmfphw3DqatuQa1ChdPGaCQc+A9yFixAfb7nBUlsu/8LOJyVgwdTnMlKJgKJLh6SJGHl2JUYEzkGT0x4Ag+Ne8htv2s1YJf2FvvxNE9gy+ogzhFI1HvpA/S4e8Td0Cq1WHLJEjw2/jGE68J7ultERETUy/RoInDXrl2YO3cuYmJiIEkStmzZIu9raGjAAw88gKFDhyIwMBAxMTFYtGgRzpw547lBAI899hgkSXJ7DBzYep4mIpchMc0fzI+dsQIAEowJ8rbcqtxuu9Z3SWPw0GW/RVRNOQBAGRyCnJtugv3QoTaPt/3nP/LzNCYCiS5Kg8IG4a3/eQvX9rsW46LHtdrnIkGCXqX33E7oIASrgzEwdCAyKzPl7W5zBLJajahXm5E4A1/M/wJLRyzF/P7zuWIwERERdbseTQRWV1dj2LBhWLt2bat9NTU1SEtLwyOPPIK0tDRs3rwZJ06cwNU/L7rQntTUVBQWFsqP3bt3X4juUy+RHGGANsD5rXDkjLMiMMmYJO8/bT3dbdc6WWLD8bA+uH/yPdBNmQL7gQNoKi9H0ZNPwvLFF27HOurq5ERgrUaBn+IlqBQq6FS6busPEV1YruG+AKBUKNv9UD80YiiaRBN+qvgJX5/+Wp6WwG2OQFYEEvV6rAIkIiKiC0nVkxefPXs2Zs+e3eY+k8mEr7/+2m3bq6++irFjxyI3NxcJCQltngcAKpUKUVFR3dpX6r2UCglXDo1GVmk1iqy1sNgb3CoCuysRKITAqWLnnICqhHjE3zEP+ffci/rcXNTn5ePM/cvQUHAGYb/+FSRJwtn33oPDZoN+wgT8n+4wmpR2hGuCWR1A5EPMejNu6H8DTGqTPPeoJxqlBpeYL8F/C/6L4ppinDx7EgNCB3COQCIiIiIi6jY+NUegxWKBJEkIDg5u97iMjAzExMQgOTkZt956K3Jz2x/aWVdXB6vV6vYg/xKoUeFgXiUKLbU4dsZ6QSoCCyrtqK53TgDezxwEZXAwEv6+DkEzZ8BhsQABAbBs2YLCh/+IhsJClL26FnA4ULNnD/YnNgLgsGAiXyNJEh4d/yjuHXUvbhhwQ4fHT46dLD/flb8LAGCpsyDWEAuzzsxEIBERERERdYnPJAJra2vxwAMPYMGCBTAaPa+6OG7cOLz99tvYtm0bXn/9dWRnZ2PSpEmoamd11meffRYmk0l+xMfHX4hboItYy3kCj56xIMYQA5XkLJjtrkRgRnFzVU+/SOeHeUmtRuRDDyH83nuhS01F/alTsGzejLw774TD5jzecN01OB7ZAKD9FUeJyPdNipskP9+Vvwu51lz8WPYjCmwFGGYehgBlQA/2joiIiIiIfJ1PJAIbGhpw4403QgiB119/vd1jZ8+ejRtuuAGXXHIJZs2aha1bt6KyshIffPCBx3NWrlwJi8UiP/Ly8rr7FugilxrbnGA7UmCBSqFCXFAcACCvKg8O4ejyNTJKmpPR/c3NE/5LkoSIO5cgdPEiSGo1ghfcjMBp02CYOhXqpCQolyyUj2VFIFHvFh8Ujz6mPgCAQ6WH8O7xd+V9Q8OH9lS3iIiIiIiol7joE4GuJODp06fx9ddft1sN2Jbg4GD0798fp06d8niMRqOB0Wh0e5B/6WcOglrpWjDEfeVge6MdJTUlXb6G1d6IaJMWANA/svXKn8bZs5H0r38h6uGHoQoyQj92LJK3fo6qwOZv02BtcJf7QUQXt8mxkyFBQrAmGB+cdP4RSyWpMDdlbg/3jIiIiIiIfN1FnQh0JQEzMjLw73//G2FhYZ1uw2azITMzE9HR0Regh9RbqFUKDIhyJucyS22oqW9EojFR3p9rbX+eSW8czDuLQkstACA2RNvmMdoB/SGpVAi7/TaE3X4bJIUCljqLvN+kMbV5HhH1HrcNuQ2/GfobnK07iwaHc1qAKfFTuJIoERERERF1WY+uGmyz2dwq9bKzs5Geno7Q0FBER0fj+uuvR1paGj777DM0NTWhqKgIABAaGgq1Wg0AmD59Oq699lrcfffdAIDly5dj7ty5SExMxJkzZ7Bq1SoolUosWLDgl79B8ilDYo04XGCBEMDxQisGhAzA6MjRqHfUI8+Wh7EY26X2S6x1AACNSoEQvdrr8ypqKzA0fCh0Kh0SgxI7PoGIfFq4LhyXRFwCrVKLuKA4RAVGYX7/+T3dLSIiIiIi6gV6NBG4f/9+TJ06Vf562bJlAIDFixfjsccew6effgoAGD58uNt533zzDaZMmQIAyMzMRFlZmbwvPz8fCxYsQHl5OSIiIjBx4kTs3bsXERERF/ZmyOelxpgAOOeHPFJgxeDkGOwv3u/cF5ba5fZLqpyJQLNRA0mSvD4v35aPw2WHAcCrVUeJyPdNiZ+Cf875J6ICo1gJTERERERE3aZHE4FTpkyBEMLj/vb2ueTk5Lh9vWnTpq52i/zUkNjmD9tHCiy4emRf+evMyswutV3b0ASL3TnEzxzU9rBgTwpsBfLzOENcl/pBRL5jQOiAnu4CERERERH1Mj2aCCS6mAyMCsKoxBAoJQklVXUI0YYgVBuKitoKnKr0vNiMN0p/rgYEAHOQplPn5lfly89jDbFd6gcRERERERER+S8mAol+pg1Qor7RgcMFzsU5LDUNSAlOQUVRBSpqK3C29ixCtCHn1XZJFxKBrorAwIBABGuCz+v6REREREREREQX9arBRL+00UnNib4DuRVIMaXIX3dleHBpVa383Gz0fmhwk6MJhbZCAM5qwM7MLUhERERERERE1BITgUQtjEkKlZ//kHMWfYO7Z57AlhWBEZ2oCCyuKUajaATAYcFERERERERE1DVMBBK1MDqxuSJwf04FUoKbKwK7Mk9gifX8hga7LRQSxIVCiIiIiIiIiOj8MRFI1ILZqEVimB4AcCjPgjhDH3lfpqUrFYEthgZ3YtVgLhRCRERERERERN2FiUCic4xOdA4Prm9yIL9MQpg2DED3DQ02G8+zItDAikAiIiIiIiIiOn9MBBKdY0yLBUO+zSiV5wmsqK1ASU3JebXpGhqsUkgI1au9Pi/f1lwRyKHBRERERERERNQVTAQSnWNS/3BMGRABo1aFL48WY2r8VAwMHQilpER6Sfp5temqCAw3aKBQeL/yb0FVc0VgjCHmvK5NRERERERERAQwEUjUSmywHhZ7A6y1jfipqAqiIRw/VfyEJtGEXfm7Ot1eY5MD5dXORGBnhgUDzUODw7Rh0Kl0nb42EREREREREZELE4FEbbh5TLz8/HBmuJyE+7bgWziEo1NtlVfXQwjn886sGFzbWItSeykADgsmIiIiIiIioq5jIpCoDVddEoNAtRIA8Fl6KUaZxwJwzhN4rPxYp9pyzQ8IABGdWDG4uKYYsYZY9A/pj8Fhgzt1TSIiIiIiIiKiczERSNSGQI0Kc4fFwKRTIVCjwsmc5oq8zg4PLqmqlZ93piKwtKYUBbYCnDx7EiqFqlPXJCIiIiIiIiI6FxOBRB6s+J+BmDk4CiVVdcg63TxU+N+n/w3hGuvrhWJri0RgJ+YILLOXyc8jdBFen0dERERERERE1BYmAok8CA1U49ZxCQg3qDEqtg/qyicAtYnIqMzAf/L/43U7PxVWISlMj8n9wjEgMsjr81zzAwJAuC68U30nIiIiIiIiIjoXE4FE7RiREIKPl05AdX0jHPY+gPY0AGD1vudQ11TXwdlOhwosyCmvwa6MMiRHGLy+dstEYISeFYFERERERERE1DVMBBJ1ID4kEO//djz6GsajsToZAFBgy8eO3B0dnmuvb8LRAgsAoK/ZgNBAtdfXLavh0GAiIiIiIiIi6j5MBBJ5wagNwB/npKKu+Go4GgwIFH3x0cmPOjwvPa8SjQ7nfIKjE0M6dU0ODSYiIiIiIiKi7sSlSIm8NCElDDH6PqhoDEZ1wCl8X3QKljoLTBqT23El1lq8+s0pTB9oxl92ZMjbRyeFdup6rsVC1Ao1jGpj12+AiIiIiIiIiPwaE4FEXlIoJNw0Oh6vHkqCUpcPAPjVpg9QUJCMGYPMuO2yPuhrNmD1tp+wOa0A/9hz2u38MUnnVxEYoY+AJEndcxNERERERERE5Lc4NJioE64fHYc+hiHy1+WNJ1FkrcUH+/Nx3Wv/xTt7crA5raDVeREGDRJC9V5fp76pHpY659yCHBZMRERERERERN2BiUCiTog26fDPhTfJX9erMqFRKVDf5ECjQ2D3qTIofi7eiwvRyscNjTN1qqrPNSwYAMx6c9c7TkRERERERER+j0ODiTopXBeOhKAE5FblolaRg+8emowH/nUcN4+Jx+ECC748WoxJ/cKxcvZA5JTXYGLfMFTVNXXqGlwohIiIiIiIiIi6GxOBROdhhHkEcqty0eBoQK7tJNYtGgVJkpBTXo0ooxaX94/A4BgTBsc4FxIx6jrXfllNc0VghC6iO7tORERERERERH6KQ4OJzsPIyJEAgEBVIPYW7pWH/f5mUjL2PjQdv5mU3KX2WRFIRERERERERN2NiUCi8zAxZiKGRwxHTWMNvsj+AkKIbm2/ZSIwQs+KQCIiIiIiIiLqOiYCic6DOdAMlUIFAYFsSzbSS9O7tf1ye7n8nEODiYiIiIiIiKg7MBFIdJ6u63ed/Pyjkx91a9scGkxERERERERE3a1HE4G7du3C3LlzERMTA0mSsGXLFrf9Qgg8+uijiI6Ohk6nw4wZM5CRkdFhu2vXrkVSUhK0Wi3GjRuHffv2XaA7IH82I3EGggKCAABfnf4KljpLt7VdWuNMBKokFUK0Id3WLhERERERERH5rx5NBFZXV2PYsGFYu3Ztm/uff/55/OUvf8Ff//pXfP/99wgMDMSsWbNQW1vrsc33338fy5Ytw6pVq5CWloZhw4Zh1qxZKCkpuVC3QX5Kp9JhTvIcpASnIM4Qhw1HN3Rb2yGaEIyIGIGx0WOhkFi4S0RERERERERdJ4nuXuXgPEmShI8//hjXXHMNAGc1YExMDH7/+99j+fLlAACLxYLIyEi8/fbbuPnmm9tsZ9y4cRgzZgxeffVVAIDD4UB8fDx+97vf4cEHH2zznLq6OtTV1clfW61WxMfHw2KxwGg0duNdUm9TVlOGOR/Pgb3RDo1Sg0+v+RQxhpgutVndUI1L370UADDSPBIbZndfgpGIiIiIiIiIOs9qtcJkMvl8ruiiLTXKzs5GUVERZsyYIW8zmUwYN24c9uzZ0+Y59fX1OHDggNs5CoUCM2bM8HgOADz77LMwmUzyIz4+vvtuhHq1cH04ru9/PQCgrqkOL+5/scttnraelp8nGhO73B4REREREREREXARJwKLiooAAJGRkW7bIyMj5X3nKisrQ1NTU6fOAYCVK1fCYrHIj7y8vC72nvzJncPuRIgmBHFBcahtrMWps6e61F6uNVd+zkQgEREREREREXWXizYR+EvSaDQwGo1uDyJvBamDsGjwIuRX5ePbgm/xUUbXVhDOsebIz5kIJCIiIiIiIqLuctEmAqOiogAAxcXFbtuLi4vlfecKDw+HUqns1DlE3eGGATdArVADAP4v6/9Q31Tf6pgyexkcwtFhWy0rAhOMCd3XSSIiIiIiIiLyaxdtIrBPnz6IiorC9u3b5W1WqxXff/89xo8f3+Y5arUao0aNcjvH4XBg+/btHs8h6g4mjQkzk2YCACx1FuzI3eG2/1DpIcz/dD6e3vs0lm5fiqPlRz221XKOwIQgJgKJiIiIiIiIqHv0aCLQZrMhPT0d6enpAJwLhKSnpyM3NxeSJOG+++7DU089hU8//RSHDx/GokWLEBMTI68sDADTp0+XVwgGgGXLlmHdunXYsGEDjh8/jjvvvBPV1dW4/fbbf+G7I38zv998+XnL4cHbcrbh+X3Po6K2Ah+c/AC78ndh9fer4WnBbtfQ4KjAKGhV2gvaZyIiIiIiIiLyH6qevPj+/fsxdepU+etly5YBABYvXoy3334bK1asQHV1Ne644w5UVlZi4sSJ2LZtG7Ta5uRIZmYmysrK5K9vuukmlJaW4tFHH0VRURGGDx+Obdu2tVpAhKi7jY4cjdlJs5Fny8Pewr3YlbcLWZYsvHTgJehVesQZ4lBmL0NtUy3SS9PxYcaHuKH/DW5tVNZWwlpvBcD5AYmIiIiIiIioe0nCU1mSH7NarTCZTLBYLFw4hDrl86zP8eC3DwIADAEGhGpCUVpbCnujHQsGLMCE2An43Y7fId4Qj/Lacjx52ZO4IukK+fz0knQs/GIhAODG/jfikfGP9Mh9EBEREREREVGz3pIrumjnCCTyRXP6zMEI8wgAgK3BhlxbLpJNybhnxD1YOW4lpsRPwWPjH4Ol3oKaxho8+t9HMe2DaVj9/Wp8k/sNcquaFwphRSARERERERERdScmAom6kSRJWDl2JQaEDMDspNnQKDW4fcjt+H+X/D9IkgQAmJsyF1Pip0Cj1GBW0iyU2kux+dRm3PvNvfgi+wu5LSYCiYiIiIiIiKg79egcgUS90aCwQfjX3H9BQCDHkoPk4GS3/WqlGk9d9hR+NeRX2F2wG3qVHjWNNVApVLDWWaGUlBAQTAQSERERERERUbdiIpDoApAkCRKkVknAlvtTglOQEpyChYMXYm36WiQaE5FflY8fy37Eby/5LRKMCb9wr4mIiIiIiIioN+PQYKIeppAU+N2I3+HqlKsRGBAIs96MIHUQFBK/PYmIiIiIiIio+3DV4Db0lpVgiIiIiIiIiIio63pLroglR0RERERERERERH6AiUAiIiIiIiIiIiI/wEQgERERERERERGRH2AikIiIiIiIiIiIyA8wEUhEREREREREROQHmAgkIiIiIiIiIiLyA0wEEhERERERERER+QEmAomIiIiIiIiIiPwAE4FERERERERERER+gIlAIiIiIiIiIiIiP8BEIBERERERERERkR9Q9XQHLkZCCACA1Wrt4Z4QEREREREREVFPc+WIXDkjX8VEYBvKy8sBAPHx8T3cEyIiIiIiIiIiuliUl5fDZDL1dDfOGxOBbQgNDQUA5Obm+vR/Lp0/q9WK+Ph45OXlwWg09nR3qAcwBghgHBBjgBgDxBggxgAxBsjJYrEgISFBzhn5KiYC26BQOKdONJlM/Cb3c0ajkTHg5xgDBDAOiDFAjAFiDBBjgBgD5OTKGfkq3+49EREREREREREReYWJQCIiIiIiIiIiIj/ARGAbNBoNVq1aBY1G09NdoR7CGCDGAAGMA2IMEGOAGAPEGCDGADn1ljiQhK+ve0xEREREREREREQdYkUgERERERERERGRH2AikIiIiIiIiIiIyA8wEUhEREREREREROQHmAgkIiIiIiIiIiLyA0wEEhERERERERER+YEeTQQ+++yzGDNmDIKCgmA2m3HNNdfgxIkTbsfU1tZi6dKlCAsLg8FgwPz581FcXCzvP3ToEBYsWID4+HjodDoMGjQIL7/8slsbmzdvxsyZMxEREQGj0Yjx48fjyy+/7LB/Qgg8+uijiI6Ohk6nw4wZM5CRkeF2TFpaGmbOnIng4GCEhYXhjjvugM1m67DtH3/8EZMmTYJWq0V8fDyef/55t/1Hjx7F/PnzkZSUBEmSsGbNmg7b9EWMAc8xsG7dOkyaNAkhISEICQnBjBkzsG/fvg7b9TWMAc8xsHnzZowePRrBwcEIDAzE8OHD8c4773TYri9iHHiOg5Y2bdoESZJwzTXXdNiur2EMeI6Bt99+G5IkuT20Wm2H7foaxkD77wOVlZVYunQpoqOjodFo0L9/f2zdurXDtn0JY8BzDEyZMqXV+4AkSbjyyis7bNuXMAbafx9Ys2YNBgwYAJ1Oh/j4eNx///2ora3tsG1fwhjwHAMNDQ144oknkJKSAq1Wi2HDhmHbtm0dtuuL/DUOamtrcdttt2Ho0KFQqVQef+ffuXMnRo4cCY1Gg759++Ltt9/usM/n3kCPmTVrlli/fr04cuSISE9PF3PmzBEJCQnCZrPJxyxZskTEx8eL7du3i/3794tLL71UTJgwQd7/5ptvinvuuUfs3LlTZGZminfeeUfodDrxyiuvyMfce++94rnnnhP79u0TJ0+eFCtXrhQBAQEiLS2t3f6tXr1amEwmsWXLFnHo0CFx9dVXiz59+gi73S6EEKKgoECEhISIJUuWiJ9++kns27dPTJgwQcyfP7/ddi0Wi4iMjBS33nqrOHLkiHjvvfeETqcTb7zxhnzMvn37xPLly8V7770noqKixJ///OfOvLQ+gzHgOQZuueUWsXbtWnHw4EFx/PhxcdtttwmTySTy8/M79Rpf7BgDnmPgm2++EZs3bxbHjh0Tp06dEmvWrBFKpVJs27atU6+xL2AceI4Dl+zsbBEbGysmTZok5s2b583L6lMYA55jYP369cJoNIrCwkL5UVRU1KnX1xcwBjzHQF1dnRg9erSYM2eO2L17t8jOzhY7d+4U6enpnXqNL3aMAc8xUF5e7vYecOTIEaFUKsX69es78xJf9BgDnmNg48aNQqPRiI0bN4rs7Gzx5ZdfiujoaHH//fd36jW+2DEGPMfAihUrRExMjPj8889FZmameO2114RWq+2wz77IX+PAZrOJJUuWiL/97W9i1qxZbf7On5WVJfR6vVi2bJk4duyYeOWVVzr9GbFHE4HnKikpEQDEf/7zHyGEEJWVlSIgIED861//ko85fvy4ACD27NnjsZ277rpLTJ06td1rDR48WDz++OMe9zscDhEVFSVeeOEFeVtlZaXQaDTivffeE0II8cYbbwiz2SyamprkY3788UcBQGRkZHhs+7XXXhMhISGirq5O3vbAAw+IAQMGtHl8YmJir00Enosx0HYMCCFEY2OjCAoKEhs2bGj3vnwdY8BzDAghxIgRI8Qf//jHdo/pDRgH7nHQ2NgoJkyYIP7+97+LxYsX98pE4LkYA80xsH79emEymdq9h96IMdAcA6+//rpITk4W9fX17d5Hb8MY8Pw7wZ///GcRFBTk9qG4N2IMNMfA0qVLxbRp09zOW7ZsmbjsssvavS9fxxhojoHo6Gjx6quvup133XXXiVtvvbXd++oN/CUOWvL0O/+KFStEamqq27abbrpJzJo1y6t2hRDiopoj0GKxAABCQ0MBAAcOHEBDQwNmzJghHzNw4EAkJCRgz5497bbjaqMtDocDVVVV7R6TnZ2NoqIit2ubTCaMGzdOvnZdXR3UajUUiuaXUafTAQB2797tse09e/Zg8uTJUKvV8rZZs2bhxIkTOHv2rMfz/AFjwHMM1NTUoKGhod0+9waMgbZjQAiB7du348SJE5g8ebLHdnsLxoF7HDzxxBMwm8349a9/7bGt3oYx4B4DNpsNiYmJiI+Px7x583D06FGPbfYWjIHmGPj0008xfvx4LF26FJGRkRgyZAieeeYZNDU1eWy3N2AMeP698M0338TNN9+MwMBAj+32BoyB5hiYMGECDhw4IE8VlJWVha1bt2LOnDke2+0NGAPNMVBXV9dqahCdTtduu72Fv8SBN/bs2eN2bcAZK+3d97kumkSgw+HAfffdh8suuwxDhgwBABQVFUGtViM4ONjt2MjISBQVFbXZznfffYf3338fd9xxh8drvfjii7DZbLjxxhs9HuNqPzIy0uO1p02bhqKiIrzwwguor6/H2bNn8eCDDwIACgsL2227rXZbXtcfMQbaj4EHHngAMTExrb7pexPGQOsYsFgsMBgMUKvVuPLKK/HKK69g5syZHtvtDRgH7nGwe/duvPnmm1i3bp3HdnobxoB7DAwYMABvvfUWPvnkE/zzn/+Ew+HAhAkTkJ+f77FdX8cYcI+BrKwsfPjhh2hqasLWrVvxyCOP4KWXXsJTTz3lsV1fxxjw/Hvhvn37cOTIEfzmN7/x2GZvwBhwj4FbbrkFTzzxBCZOnIiAgACkpKRgypQpeOihhzy26+sYA+4xMGvWLPzpT39CRkYGHA4Hvv76a2zevLnddnsDf4oDb3iKFavVCrvd7lUbF00icOnSpThy5Ag2bdp03m0cOXIE8+bNw6pVq3DFFVe0ecy7776Lxx9/HB988AHMZjMAYOPGjTAYDPLj22+/9ep6qamp2LBhA1566SXo9XpERUWhT58+iIyMlDO/qampcruzZ88+73vzB4wBz1avXo1Nmzbh448/7pUTxLswBloLCgpCeno6fvjhBzz99NNYtmwZdu7c2ak2fA3joFlVVRUWLlyIdevWITw83KtzegPGgLvx48dj0aJFGD58OC6//HJs3rwZEREReOONN7xuw9cwBtw5HA6YzWb87W9/w6hRo3DTTTfh4Ycfxl//+lev2/A1jAHP3nzzTQwdOhRjx449r/N9BWPA3c6dO/HMM8/gtddeQ1paGjZv3ozPP/8cTz75pNdt+BrGgLuXX34Z/fr1w8CBA6FWq3H33Xfj9ttvd6s6640YBxeA14OIL6ClS5eKuLg4kZWV5bZ9+/btAoA4e/as2/aEhATxpz/9yW3b0aNHhdlsFg899JDH67gm3Pzss8/ctlutVpGRkSE/ampqRGZmpgAgDh486Hbs5MmTxT333NOq7aKiIlFVVSVsNptQKBTigw8+EEIIkZOTI7frWuRh4cKFrcZ679ixQwAQFRUVrdr2hzkCGQOeY+CFF14QJpNJ/PDDDx7vqzdgDLT/PuDy61//WlxxxRUe9/s6xoF7HBw8eFAAEEqlUn5IkiQkSRJKpVKcOnXK4z36KsaAd+8F119/vbj55ps97vdljIHWMTB58mQxffp0t2O2bt0qALjNJ9VbMAY8vw/YbDZhNBrFmjVrPN5Xb8AYaB0DEydOFMuXL3c7xrX4Qct5yHoLxoDn9wG73S7y8/OFw+EQK1asEIMHD/Z4f77O3+KgJU9zBE6aNEnce++9btveeustYTQaPd7fuXo0EehwOMTSpUtFTEyMOHnyZKv9rgkgP/zwQ3nbTz/91GoCyCNHjgiz2Sz+8Ic/eLzWu+++K7RardiyZYvXfYuKihIvvviivM1isbhNANmWN998U+j1+lYB2ZJrItCWEz6vXLnSLxcLYQy0HwPPPfecMBqN7U546usYA969D7jcfvvt4vLLL/eq/76EcdB2HNjtdnH48GG3x7x588S0adPE4cOHe1UCgDHg/XtBY2OjGDBgQK9bKZIx4DkGVq5cKRITE90+7K9Zs0ZER0d71X9fwRjo+H1g/fr1QqPRiLKyMq/67WsYA55jYOTIkWLFihWt7kGn04nGxkav7sEXMAa8/32gvr5epKSkiJUrV3rVf1/ir3HQUnuLhQwZMsRt24IFCzq1WEiPJgLvvPNOYTKZxM6dO0VhYaH8qKmpkY9ZsmSJSEhIEDt27BD79+8X48ePF+PHj5f3Hz58WERERIj//d//dWujpKREPmbjxo1CpVKJtWvXuh1TWVnZbv9Wr14tgoODxSeffCJ+/PFHMW/ePLcloYUQ4pVXXhEHDhwQJ06cEK+++qrQ6XTi5ZdfbrfdyspKERkZKRYuXCiOHDkiNm3aJPR6vdvS4HV1deLgwYPi4MGDIjo6WixfvlwcPHjQ6xVmfAVjwHMMrF69WqjVavHhhx+69bmqqsrr19cXMAY8x8AzzzwjvvrqK5GZmSmOHTsmXnzxRaFSqcS6deu8fn19BePAcxycq7euGswY8BwDjz/+uPjyyy9FZmamOHDggLj55puFVqsVR48e9fr19QWMAc8xkJubK4KCgsTdd98tTpw4IT777DNhNpvFU0895fXr6wsYAx3/LJg4caK46aabOnwtfRVjwHMMrFq1SgQFBYn33ntPZGVlia+++kqkpKSIG2+80evX1xcwBjzHwN69e8VHH30kMjMzxa5du8S0adNEnz59vE4s+RJ/jQMhnBWMBw8eFHPnzhVTpkyR80IuWVlZQq/Xiz/84Q/i+PHjYu3atUKpVIpt27Z589IKIXo4EQigzcf69evlY+x2u7jrrrtESEiI0Ov14tprrxWFhYXy/lWrVrXZRmJionzM5Zdf3uYxixcvbrd/DodDPPLIIyIyMlJoNBoxffp0ceLECbdjFi5cKEJDQ4VarRaXXHKJ+Mc//uHVvR86dEhMnDhRaDQaERsbK1avXu22Pzs7u80+97ZKIMaA5xhITExss8+rVq3yqn1fwRjwHAMPP/yw6Nu3r9BqtSIkJESMHz9ebNq0yau2fQ3jwHMcnKu3JgIZA55j4L777hMJCQlCrVaLyMhIMWfOHJGWluZV276EMdD++8B3330nxo0bJzQajUhOThZPP/10r6oCEoIx0FEMuKpdvvrqK6/a9EWMAc8x0NDQIB577DGRkpIitFqtiI+PF3fddVevSwIxBjzHwM6dO8WgQYOERqMRYWFhYuHChaKgoMCrtn2NP8eBpzxAS998840YPny4UKvVIjk52e118YYkhBAgIiIiIiIiIiKiXq13Ly9DREREREREREREAJgIJCIiIiIiIiIi8gtMBBIREREREREREfkBJgKJiIiIiIiIiIj8ABOBREREREREREREfoCJQCIiIiIiIiIiIj/ARCAREREREREREZEfYCKQiIiIiIiIiIjIDzARSERERERERERE5AeYCCQiIiIiIiIiIvIDTAQSERERERERERH5gf8PpTr2+lF/OzYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#1. Coarsen resolution and apply quality control with non-defaults as demonstration\n", + "dataset.coarsen_time_resolution(freq='20T')\n", + "\n", + "ax1 = dataset.make_plot()\n", + "\n", + "#translate axes\n", + "ax1.set_title('Temperature for all stations')\n", + "ax1.set_ylabel('T2m in °C')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "2f6438a0-aaad-462d-ada1-f9d3f5d38927", + "metadata": {}, + "source": [ + "## Timeseries with quality control labels" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "cf5ac722-8f34-4d71-ae59-38b3520c8764", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "buddy radius for the TITAN buddy check updated: 50000--> 10000.0\n", + "buddy num min for the TITAN buddy check updated: 2--> 3\n", + "buddy threshold for the TITAN buddy check updated: 1.5--> 2.2\n", + "buddy min std for the TITAN buddy check updated: 1.0--> 1.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAH4CAYAAAARn5CtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUZdbA8d9z70wKCQk1CSX03otKL1JF7AW7oKKsvbvqWnbVlbW89hU7VqwrFkCQDtKU3nvvNQmpM3Pv8/4xmZuZzCQEDATJ+e6HdebeZ+48kzKZe+55zlFaa40QQgghhBBCCCGEEOKMZpT1BIQQQgghhBBCCCGEECefBAKFEEIIIYQQQgghhCgHJBAohBBCCCGEEEIIIUQ5IIFAIYQQQgghhBBCCCHKAQkECiGEEEIIIYQQQghRDkggUAghhBBCCCGEEEKIckACgUIIIYQQQgghhBBClAMSCBRCCCGEEEIIIYQQohyQQKAQQgghhBBCCCGEEOWABAKFEEIIIUREL730Eg0aNMA0Tdq1a1fW0wHgn//8J0qpkG316tVj2LBhZTOhEtq6dStKKT7++OOynooQQgghyjEJBAohhBDipFBKlejfjBkzynqqZebtt98+bQNDv/76K4888gjdunVj9OjRPP/882U9pZNu9erV/POf/2Tr1q0nfIwxY8bw2muvldqchBBCCCFKk6usJyCEEEKIM9Nnn30Wcv/TTz9l8uTJYdubN29+Kqd1Wnn77bepVq3aaZnNNm3aNAzD4MMPPyQqKqqsp3NKrF69mn/961/07t2bevXqndAxxowZw8qVK7nvvvtCttetW5ecnBzcbvefn6gQQgghxAmSQKAQQgghTorrr78+5P78+fOZPHly2PYzhdaa3NxcYmNjz4h57N+/n9jY2FILAp4uX5+yopQiJiamrKchhBBCiHJOlgYLIYQQoszYts1rr71Gy5YtiYmJITk5mREjRnDkyJGQcfXq1eOCCy5gxowZnHXWWcTGxtK6dWtnWfH3339P69atiYmJoWPHjixZsiTk8cOGDSM+Pp7NmzczcOBA4uLiqFmzJs888wxa6z81p0mTJjlzevfddwEYPXo0ffr0ISkpiejoaFq0aMGoUaPCHr9q1SpmzpzpLJPu3bs3ELkOHsDHH3+MUipk6Wpx80hLS+O+++4jNTWV6OhoGjVqxAsvvIBt28V+X5RSjB49mqysLGdugSXMPp+PZ599loYNGxIdHU29evV4/PHHycvLK/HXJ5LZs2dz5ZVXUqdOHaKjo0lNTeX+++8nJyen2Lkej6+++oqOHTtSsWJFEhISaN26Na+//jrg/9peeeWVAJx77rlhS9d//PFHBg8eTM2aNYmOjqZhw4Y8++yzWJblHL93796MHz+ebdu2OY8PZBYWVSNw2rRp9OjRg7i4OCpVqsTFF1/MmjVrQsYEfh42btzIsGHDqFSpEomJidx0001kZ2eHjJ08eTLdu3enUqVKxMfH07RpUx5//PFS+xoKIYQQ4q9NMgKFEEIIUWZGjBjBxx9/zE033cQ999zDli1beOutt1iyZAlz5swJWUa5ceNGrr32WkaMGMH111/Pyy+/zIUXXsg777zD448/zh133AHAyJEjGTJkCOvWrcMwCq55WpbFeeedR+fOnXnxxReZOHEiTz/9ND6fj2eeeeaE5rRu3TquueYaRowYwa233krTpk0BGDVqFC1btuSiiy7C5XLx888/c8cdd2DbNnfeeScAr732GnfffTfx8fH84x//ACA5OfmEvo6R5pGdnU2vXr3YtWsXI0aMoE6dOsydO5fHHnuMPXv2FFvH7rPPPuO9997j999/54MPPgCga9euAAwfPpxPPvmEK664ggcffJAFCxYwcuRI1qxZw9ixY485r6J8++23ZGdnc/vtt1O1alV+//133nzzTXbu3Mm33357Ql+XYJMnT+aaa66hb9++vPDCCwCsWbOGOXPmcO+999KzZ0/uuece3njjDR5//HFnyXrgvx9//DHx8fE88MADxMfHM23aNJ566ikyMjJ46aWXAPjHP/5Beno6O3fu5NVXXwUgPj6+yDlNmTKFQYMG0aBBA/75z3+Sk5PDm2++Sbdu3Vi8eHHY8uQhQ4ZQv359Ro4cyeLFi/nggw9ISkpyXs+qVau44IILaNOmDc888wzR0dFs3LiROXPm/OmvnxBCCCHOEFoIIYQQ4hS48847dfBHj9mzZ2tAf/HFFyHjJk6cGLa9bt26GtBz5851tk2aNEkDOjY2Vm/bts3Z/u6772pAT58+3dk2dOhQDei7777b2Wbbth48eLCOiorSBw4cOOE5TZw4Mey1Zmdnh20bOHCgbtCgQci2li1b6l69eoWNffrpp3Wkj2mjR4/WgN6yZcsx5/Hss8/quLg4vX79+pDtjz76qDZNU2/fvj3s+MGGDh2q4+LiQrYtXbpUA3r48OEh2x966CEN6GnTph1zXkWJ9DUbOXKkVkqFfH8jfW3q1q2rhw4dWuzx7733Xp2QkKB9Pl+RY7799tuwn53i5jdixAhdoUIFnZub62wbPHiwrlu3btjYLVu2aECPHj3a2dauXTudlJSkDx065GxbtmyZNgxD33jjjc62wGu++eabQ4556aWX6qpVqzr3X331VQ04P89CCCGEEIXJ0mAhhBBClIlvv/2WxMRE+vfvz8GDB51/HTt2JD4+nunTp4eMb9GiBV26dHHud+rUCYA+ffpQp06dsO2bN28Oe8677rrLua2U4q677sLj8TBlypQTmlP9+vUZOHBg2PME18FLT0/n4MGD9OrVi82bN5Oenl7ir1FJRZrHt99+S48ePahcuXLIa+nXrx+WZTFr1qzjfp4JEyYA8MADD4Rsf/DBBwEYP378MedVlOCvWVZWFgcPHqRr165orcOWep+ISpUqkZWVxeTJk0/o8cHzO3r0KAcPHqRHjx5kZ2ezdu3a4z7enj17WLp0KcOGDaNKlSrO9jZt2tC/f3/nax3sb3/7W8j9Hj16cOjQITIyMgD/awT/MuZjLf8WQgghRPkkS4OFEEIIUSY2bNhAeno6SUlJEffv378/5H5wsA8gMTERgNTU1IjbC9f0MwyDBg0ahGxr0qQJgFNz73jnVL9+/Yjj5syZw9NPP828efPCarilp6c7cywtkeaxYcMGli9fTvXq1SM+pvBrKYlt27ZhGAaNGjUK2Z6SkkKlSpXYtm3bMedVlO3bt/PUU0/x008/hX3vSiN4escdd/DNN98waNAgatWqxYABAxgyZAjnnXdeiR6/atUqnnjiCaZNm+YE3v7M/AJfq0jLpZs3b86kSZPIysoiLi7O2V74d6By5cqA/2c9ISGBq666ig8++IDhw4fz6KOP0rdvXy677DKuuOKKkGXyQgghhCi/JBAohBBCiDJh2zZJSUl88cUXEfcXDmCZphlxXFHbdaEmICdjTpE64G7atIm+ffvSrFkzXnnlFVJTU4mKimLChAm8+uqrJcrUitQoBAhpTHGsedi2Tf/+/XnkkUciPiYQBD0RRc2vJPOKxLIs+vfvz+HDh/n73/9Os2bNiIuLY9euXQwbNqxUstuSkpJYunQpkyZN4pdffuGXX35h9OjR3HjjjXzyySfFPjYtLY1evXqRkJDAM888Q8OGDYmJiWHx4sX8/e9/P2XZd8f6WY+NjWXWrFlMnz6d8ePHM3HiRL7++mv69OnDr7/+WuTjhRBCCFF+SCBQCCGEEGWiYcOGTJkyhW7dupU4YPRn2LbN5s2bQwJg69evB3CaMpTGnH7++Wfy8vL46aefQjK4Ci8rhqIDaoFMr7S0NGe5JxCWcVechg0bkpmZSb9+/Ur8mGOpW7cutm2zYcMGp4kGwL59+0hLS6Nu3bondNwVK1awfv16PvnkE2688UZn+4ku4y1KVFQUF154IRdeeCG2bXPHHXfw7rvv8uSTT9KoUaMivx8zZszg0KFDfP/99/Ts2dPZvmXLlrCxJQ2SBr5W69atC9u3du1aqlWrFpINWFKGYdC3b1/69u3LK6+8wvPPP88//vEPpk+fXqo/C0IIIYT4a5I1AkIIIYQoE0OGDMGyLJ599tmwfT6fj7S0tFJ/zrfeesu5rbXmrbfewu1207dv31KbUyDrKjgjMT09ndGjR4eNjYuLi3jMhg0bAoTU8cvKyjpm5lqwIUOGMG/ePCZNmhS2Ly0tDZ/PV+JjBZx//vkAYR2HX3nlFQAGDx583MeEyF8zrTWvv/76CR0vkkOHDoXcNwyDNm3aAJCXlwfgBN4Kf08izc/j8fD222+HPU9cXFyJlgrXqFGDdu3a8cknn4Q838qVK/n111+dr/XxOHz4cNi2du3aAQWvUQghhBDlm2QECiGEEKJM9OrVixEjRjBy5EiWLl3KgAEDcLvdbNiwgW+//ZbXX3+dK664otSeLyYmhokTJzJ06FA6derEL7/8wvjx43n88cedJb+lMacBAwY4mWcjRowgMzOT999/n6SkJPbs2RMytmPHjowaNYrnnnuORo0akZSURJ8+fRgwYAB16tThlltu4eGHH8Y0TT766COqV6/O9u3bS/R6H374YX766ScuuOAChg0bRseOHcnKymLFihV89913bN26lWrVqh3X17Bt27YMHTqU9957z1ku+/vvv/PJJ59wySWXcO655x7X8QKaNWtGw4YNeeihh9i1axcJCQn873//C6sV+GcMHz6cw4cP06dPH2rXrs22bdt48803adeunZPd2K5dO0zT5IUXXiA9PZ3o6Gj69OlD165dqVy5MkOHDuWee+5BKcVnn30Wcfl5x44d+frrr3nggQc4++yziY+P58ILL4w4p5deeolBgwbRpUsXbrnlFnJycnjzzTdJTEzkn//853G/xmeeeYZZs2YxePBg6taty/79+3n77bepXbs23bt3P+7jCSGEEOIMVGb9ioUQQghRrtx555060keP9957T3fs2FHHxsbqihUr6tatW+tHHnlE79692xlTt25dPXjw4LDHAvrOO+8M2bZlyxYN6JdeesnZNnToUB0XF6c3bdqkBwwYoCtUqKCTk5P1008/rS3LKtU5aa31Tz/9pNu0aaNjYmJ0vXr19AsvvKA/+ugjDegtW7Y44/bu3asHDx6sK1asqAHdq1cvZ9+iRYt0p06ddFRUlK5Tp45+5ZVX9OjRo8OOUdw8jh49qh977DHdqFEjHRUVpatVq6a7du2qX375Ze3xeCI+pvDXrDCv16v/9a9/6fr162u3261TU1P1Y489pnNzc0PGFTevSFavXq379eun4+PjdbVq1fStt96qly1bpgE9evRoZ9zTTz8d9nNUt25dPXTo0GKP/9133+kBAwbopKQk52s6YsQIvWfPnpBx77//vm7QoIE2TVMDevr06VprrefMmaM7d+6sY2Njdc2aNfUjjzyiJ02aFDJGa60zMzP1tddeqytVqqQBXbduXa11wc9l8GvRWuspU6bobt266djYWJ2QkKAvvPBCvXr16pAxgdd84MCBkO2Ffx6mTp2qL774Yl2zZk0dFRWla9asqa+55hq9fv36Yr82QgghhCg/lNYnUElbCCGEEOIvZNiwYXz33XdkZmaW9VSEEEIIIYQoM1IjUAghhBBCCCGEEEKIckACgUIIIYQQQgghhBBClAMSCBRCCCGEEEIIIYQQohyQGoFCCCGEEEIIIYQQQpQDkhEohBBCCCGEEEIIIUQ5IIFAIYQQQgghhBBCCCHKAVdZT+B0ZNs2u3fvpmLFiiilyno6QgghhBBCCCGEEKIMaa05evQoNWvWxDD+unl1EgiMYPfu3aSmppb1NIQQQgghhBBCCCHEaWTHjh3Url27rKdxwiQQGEHFihUB/zc3ISGhjGcjhBBCCCGEEEIIIcpSRkYGqampTszor6pMA4GjRo1i1KhRbN26FYCWLVvy1FNPMWjQIAByc3N58MEH+eqrr8jLy2PgwIG8/fbbJCcnF3lMrTVPP/0077//PmlpaXTr1o1Ro0bRuHHjEs8rsBw4ISFBAoFCCCGEEEIIIYQQAuAvX0KuTBc1165dm//85z8sWrSIhQsX0qdPHy6++GJWrVoFwP3338/PP//Mt99+y8yZM9m9ezeXXXZZscd88cUXeeONN3jnnXdYsGABcXFxDBw4kNzc3FPxkoQQQgghhBBCCCGEOC0prbUu60kEq1KlCi+99BJXXHEF1atXZ8yYMVxxxRUArF27lubNmzNv3jw6d+4c9litNTVr1uTBBx/koYceAiA9PZ3k5GQ+/vhjrr766hLNISMjg8TERNLT0yUjUAghhBBCCCGEEKKcO1NiRadNmxPLsvjqq6/IysqiS5cuLFq0CK/XS79+/ZwxzZo1o06dOsybNy/iMbZs2cLevXtDHpOYmEinTp2KfAxAXl4eGRkZIf+EEEIIIYQQQgghhDiTlHkgcMWKFcTHxxMdHc3f/vY3xo4dS4sWLdi7dy9RUVFUqlQpZHxycjJ79+6NeKzA9sI1BIt7DMDIkSNJTEx0/knHYCGEEEIIIYQQQghxpinzQGDTpk1ZunQpCxYs4Pbbb2fo0KGsXr36lM7hscceIz093fm3Y8eOU/r8QgghhBBCCCGEEEKcbGXaNRggKiqKRo0aAdCxY0f++OMPXn/9da666io8Hg9paWkhWYH79u0jJSUl4rEC2/ft20eNGjVCHtOuXbsi5xAdHU10dPSffzFCCCGEEEIIIYQQQpymyjwjsDDbtsnLy6Njx4643W6mTp3q7Fu3bh3bt2+nS5cuER9bv359UlJSQh6TkZHBggULinyMEEIIIYQQQgghhBDlQZlmBD722GMMGjSIOnXqcPToUcaMGcOMGTOYNGkSiYmJ3HLLLTzwwANUqVKFhIQE7r77brp06RLSMbhZs2aMHDmSSy+9FKUU9913H8899xyNGzemfv36PPnkk9SsWZNLLrmk7F6oEEIIIYQQQgghhBBlrEwDgfv37+fGG29kz549JCYm0qZNGyZNmkT//v0BePXVVzEMg8svv5y8vDwGDhzI22+/HXKMdevWkZ6e7tx/5JFHyMrK4rbbbiMtLY3u3bszceJEYmJiTulrE0IIIYQQQgghhBDidKK01rqsJ3G6ycjIIDExkfT0dBISEsp6OkIIIYQQQgghhBCiDJ0psaLTrkagEEIIIYQQQgghhBCi9JV512AhhBBCCPHXdESnM9GaBSiqqcr0N7uV9ZSEEEIIIUQxJBAoTgrfojfRnqPo/cvQVh5ojXLFoJLaovcvQyW1RUVVxNXx7rKeqhBCCCFO0GxrITf5HgMgmapsM2eW8YyEEEIIIURxJBAoTgrf4rcgczcoA7QNgFYGbJ7g37Z5AsTXlECgEEII8Re2kW3O7X0comZuN240L+U/7ofKcFZCCCGEEKIoUiNQCCGEEEKckFX2xpD7h0lnnr2kjGYjhBBCCCGORQKBQgghhBDihKzSG8K2rdGbymAmQgghhBCiJCQQKIQQQgghjpulrYhBv6Nkkac9ZTAjIYQQQghxLFIjUAhxwmyfZvIDW9gw/jB1eyYyaFRDXDFyfUEIIc5Eb/u+4KjOYrFezaVmfzqqluQRHvDTaNbrLbRWTctglkIIIYQQojgSCBRCnLClH+3jjzf3AJC+dT+VG8XQ/R+pZTwrIYQQpS1Pe3jW9zZHSAdgvr2Eka6iG4Ks0htpjQQChRBCCCFON5K6I4Q4YUd3e1Bm/h3lvy+EEOLM84M9xQkCgr9D8KvWx0WOX2mtPwWzEkIIIYQQx0sCgUKIE9b6hupEJ/gjga5og/bDk8t4RkIIIU6G933fOLejiaIZDVmh1xU5/it7HL/Zi07F1IQQQgghxHGQQKAQ4oRVaRjLHes7cu2vLbljY0dS2seX9ZSEEKe5PfoAWmtW2RuwtV3W0xEl8Ie1nFXan+HXVNVngut9DnGk2MfsZB+jfGNOxfSEEEIIIcRxkBqB4qRwdbgL7TmK3r8MbeWB1ihXDCqpLXr/MlRSW1RUxbKepigFFaq5adC/UllPQwjxF2Brm/Z5F5FDHnl4GO9+n75ml7KeliiG1prHfK+QxlH6q25cZ15EN1dHrtcX86o1utjH/mRPZZ8+SLKqdopmK4QQQgghjkUCgeKkcHW8u6ynIIQQ4jTzh15BGked+x9Y30gg8DT3pT2O3/RCABbqlVSzK7HWuwm3NsPGRhMV0kXYi49PrR942DX8lM1XCCGEEEIUT5YGCyGOS5bOxtIWgCzrE0Icl/HWjJD7P9vT2asPls1kxDFprVlgLXPuW1h8aY/nP9Z7zNR/hIyNws0XrpfDjjHPWozW+qTPVQghhBBClIwEAoUQx2W49x9UzGtHXG5bnve9U9bTEUL8hYy3Z4Tc9+HjI993ZTMZcUyr9UY+tX+gFsl0oCUZZDr7duq9IWNrkkw9o3bYMSboWSwvpqmIEEIIIYQ4tWRpsDgpPOnp/HDDNjZNOkqts2O4/MskYiu7UO44tDcL5Y4DpaRO4F9Ats7hXu9zWFjEUYENehs2GrA4THpZT08I8Rexxd7JKr0BgHY0Zws7aaEa8ZH1HX9zXUMVlVjGMxSFbde7ySGXXeTSRNWHoMS+fYRmcrY0GlFLRe4cP86eTluj2cmcqhBCCCGEKCEJBIqTYuGIx1n/8zWAYsfcLOYMe4meF34C2gZl+P8bX5OYWyVL4HS3Vm/mM/tHABRQgQrOvsM6LWSspS12s59UVeMUzlAI8Vew0F5BBWLIJpdLXf05ojN4zfoYgKd8r/GW++mynaAIs13vcW7vCLoN4MMKud/TOJtKJBBHLFnkhOz7xprAP1y3n7yJijLziW8sF5l9yCCLOtRAKVXWUxJCCCHEMcjSYHHCbCu85o+2NVprvJ4olMrfr8DriTnFsxOlZaW9wbmtgSyynfuBk0StNVd77qNGXjcGem4+1VMUQvwFTLBnYqNpSCq9jU7c7bqB+PwLCx9a37HMXlvGMxSFbde7ndub2V7s2MFGb5RS1FIpABgUBITW6S0ssVefnEmKMjPdWsAI35PUyutB07wBbNLF/4wIIYQQ4vQggUBx3Lw5Fl+ev4rn3XN5v/1SMvf6OwQu+WAvL8TP56WE+cTGHyWxir9+UGxcOh16/FCGMxZ/xmq9och9gZNEpRQH9BEyyGSz3sEuve9UTU8I8RexWm8klzy2spt2qjm1VDKPmrcRRywXGOey1F5T1lMUhWywtzq3FZEzvWKJpgqJNDLqAjjLg21CLxbe6H3EaTQl/vo82st9vucAsPE3DpttLyzLKQkhhBCihCQQKI7b8o/3s2liGmjYvyKLWc/sYN7Luxh/2yZ8OTaeTJvJX9xAx97fMezvI7j1H8OoXH3PMY8rTk+r9MYi9+1mP17tBaCHcZazfY696KTPSwjx1+HTPtbqzQA0VnWJVlEA3GReThY5/GxP43Prx7Kcoohgs97h3LaI3CU+hzwSiHfu18IfCDQKfcTcoLcyyZp9EmYpysL71jd48v/+B/wmf/uFEEKIvwQJBIrj5ssruMqvNWyZksbUh7eGFBHXtsnU/93Dyt/7447ynPpJilKzKn9pcKRsEBubXXo/AN2Njs52yQoQQgTbpLeTh/9vQUvV2Nle1ahMNSoDoUEncXrYRcmyu3sbnZzbz7jvZVv0DB4xhoeNe856u9TmJsrOdr2HJ32vsZ09dKcjUbgB+dsvhBBC/FVIIFAct7bDkkhq7a/rpBQc2ZAbYZQ/aLRl9dmncGaitGjtj+oe1unsxh/oq0olZ38FCmo+bse/PLiz0Q4TE5CsACFEqODM4hZGo5B9DVQq4M8wztV5p3Reomh52sMRMko0tpd5jnO7pkoiWVUjVsU4AaKAxXo1a6xNpTpPceo97P0P2eRgYdHabEoXoz3g/zywLaiupBBCCCFOTxIIFMctppKLW5e0o9kVVUO2KwPc8QozWqEMC7BJbbS8bCYpTtgRnc6F3hF85vuB532jnO0NSHVuBzJ4oKBOYLyqQAfVAoA1ehMH9OFTNGMhxOlupb3eud0qKCMQoJ6qDYBGs03vOqXzEkXbqfdG3F6XmmHbfreXOxeQAv7uvo1D0b+TGLRsGOBs7+U84nmRTbY0lvgr2m3vJxv/BeBkqvK06y66q4IVAVIaRAghhDj9SSBQnBBlKNyxoT8+dc9N5OYF7Rg2pw1te86g5wUfce4l75fRDMWJusf7LFPsudzme5K3rM+d7ZeY/VgUNZatUdN5yHWLsz3QORhClwfPtRefmgkLIU57q4MyAlsWCgQGMgIBtuidp2xOoniRMruaUI/LjYFh20dZYxjqfYSGuX253HOX899meefRSbULGevDxxv2p7zk++BkTV2cRGPsn5lsz6ESFRluDqGSSqB7UI1gqfUphBBCnP4kEChOWPcnUomv4S/4Xrd3Alf93JzqLSpQo2M8/a79gnP6fIfp8pXxLMXx+MGajIlJPBXC9nUy29HSaEyKUZ2zjTbO9u1BJ4u9VWe6qY50Um2ZJbWChBD5AkuDY4mhfn4GYEDwfakTePrYHiEQuJ/D9De7RRw/1p7MLvaRoTPZxT722gfZxT5W6fVO2YhgX9rjsHXkBiTi9BWoG5zGUS42+wLQyWjDQNWds1Qrptnzudv7jHSIFkIIIU5jZRoIHDlyJGeffTYVK1YkKSmJSy65hHXr1jn7t27dilIq4r9vv/22yOMOGzYsbPx55513Kl5SuVK1SSx3bz2LBw934vpprXDHhn/QF38tv9pz+MoeTybZ3G3eELKvhWro3K6jCpaGBZ8sdjXb84dezgK9jB+tKWFLxYQQ5U+OzmWT9i8Dba4aYKrQvxUNDMkIPB1FCgReZ15IA6NOxPFe/Bf+9uj9JFONtPz6grvYTxNVL2x8Hh7m20tLbb7i1Ahk95qYNFUNAKigYnnUPYKFeiXgry882ZpTZnMUQgghRPFcZfnkM2fO5M477+Tss8/G5/Px+OOPM2DAAFavXk1cXBypqans2bMn5DHvvfceL730EoMGDSr22Oeddx6jR4927kdHR5+U11DeGaYitnL4j1HURV+B5cFO3wKW17/RdGMk1sdO34KRWB/MqFM8W3Esq/Ov9AM8Yd5BsqrGdcaF5JBHZZXo7KtCInHEkkVOyNLgiiqOXsY5TLbnsJO9LNfraKuandLXIIQ4vazVm7HxZ361KLQsGCQj8HQV/N4eMNwcQk2qF/u4jWznLvN6rjQH0ctzHQBJVKWb0ZGP7O+cnwWAN3yf0tXsULoTFyeNT/tYqzcD0FjVJVoVfI7rYrTnXdezPOb7P/5nT2KOvYgN5mTcyl3U4YQQQghRRso0EDhx4sSQ+x9//DFJSUksWrSInj17YpomKSkpIWPGjh3LkCFDiI8PLT5dWHR0dNhjxYnTWuPDV+IPdEayv4OcUbNT+L4I20TZ01o7y/fqqlokGPE8aNwccaxSijqqJmv0JnboPdjaxlD+BOMLjHOZbPszAcbZ02lrSCBQiPJssb2KDqoFiVSkqxEe9KlJEtFEkYdHMgJPI4GO8AEXG31pbvgzw+OpQCbZRT52kb2KF12PkEQV9nOY3/VynnDdwTh7Ggc4goV/2eiv+reT9wJEqdukt5OHBwiv9Qkw1HUpE+yZ/GhPYS8HGW/P4BKz/6mephBCCCGO4bSqEZieng5AlSpVIu5ftGgRS5cu5ZZbbom4P9iMGTNISkqiadOm3H777Rw6dKjIsXl5eWRkZIT8K++0rVnw6i7GXreOZd/s4WbvY9zmeZJPfN/zgzW5rKcnToLt7OEoWQC0VI2OOb6OqkksMdRTtcgg09l+vtnLuT3BmlHq8xR/DZvs7cywFrDG2sQGe2tZT0eUod/sRSzWq5muF9DcaBC231AG9VQtwL80WEoKnB6y7JyQ+/e4hjq3KxLn3HYHXVOuRTIAy/RaNJrzzd4A5JBLJllMifqEKAouKHrxsdi38mRMX5wEq4Ka/rQwIn9OGG5e6dx+3/rmpM9JCCGEEMfvtAkE2rbNfffdR7du3WjVqlXEMR9++CHNmzena9euxR7rvPPO49NPP2Xq1Km88MILzJw5k0GDBmFZkQsXjxw5ksTEROdfampqxHHlye+v72byA1tZ/dVBfr5qM/OmbeBLPY4Rvqe4z/tv0vXR4zreVnuXE0D0au/JmLL4k4KXBUe60l/YGPf/cTj6D5ZF/0wiFdml9wGQqmo4y4EX6VXMtqRpSHn0ku8DzvPeQnvvxTzk+09ZT0eUod/sRQDEEE1HFfnve2B5cA657OXgKZubiExrzWIKAnSxxNAtKJtzZtSYkH0BHY2WAGSTwzq9hf6qoLHIT9Y0Ghl1ud8c5mzz4uMd+6uT8RLESbDSXu/cblXE54S+Rhfn93mqPS9i92khhBBClK3TJhB45513snLlSr76KvIHwpycHMaMGVOibMCrr76aiy66iNatW3PJJZcwbtw4/vjjD2bMmBFx/GOPPUZ6errzb8cOqVG06/dMlAHaBhT0XNwLM//HZS8Hecb3VrGPtzb/grV+LN65z7F91u2MndmT5XNu5rFVPRj7W1+s9WOxNv9yCl6JKKmVOigQaBw7EBinKqCUAuAbawJN8wbSKe8KbvI8yi3mFVxnXEg0UVzhvYvZ0kG43JlrL3Zub5UTwXJrm97NDvy15joZbYkqorxEA1VwAU7qBJa9w6QTnJfZVNUP2R/8PQrU/KtGZc4x2jrbZ9sLec36GIDapDDRnkWuzuNR87aQYwVKSYjT3+qgjMCiLhgayuAa4wLaqKb0Uucwx1p0qqYnhBBCiBIq0xqBAXfddRfjxo1j1qxZ1K5dO+KY7777juzsbG688cbjPn6DBg2oVq0aGzdupG/fvmH7o6OjpZlIIU0vrsLqrw6CAsOleOT8q7jC3Z6rvPejUKSqGsU+3jv1PsjcDcogSdvcDlgKTL0US4FX3wjxNTEbFN/0RZw6q0IyAv1LflZbG8lRuRzSaQwwu0d8XIbO5FHfy/jwsUyvZa3eTCejLUvtNeThIVbHMmN2HV5Zn0mOF6JM8FpgKAXKn3niMsBj+fd5LHAZYGvwD1HYNpiGxmNBtAu8lsI0NHb+maqhFJbWuA3I8wXGgGmArRWgMRRYNrhM8Pgg2p0/Rins/KWIhlJYtsadP8btAp8FpqHQaLQNhgE+G2Ldip6NXNzbKwrDUCf1e/NXs8neznq2Ovc36K1k6xwqqNiym5Q4qRbZK1EoZlq/85b1Oe2M5jRTDfjDLsgq62GcVeTj66tUYogmhWqst7eEZJ+JU2+bvSvkfpNCgcDVQReOsvAvIa6jatBBtXS2v+/7mkr5TaZ25B5FTx5O14O7SCGZKPu/5KpcsA12GV76kU6saeKzoVKswZ09ouje8LT4iCqCBJYGxxIT0uSnsAFmd5633gGgka7LtVx4SuYnhBBCiJIp009ZWmvuvvtuxo4dy4wZM6hfv36RYz/88EMuuugiqlcvvltdJDt37uTQoUPUqFF88EoUaHl1dWKrutmzKJOG51UipV08jUjmE16gvdHimIFA8deSoTOZaf8OgAsXTZW/jldX71XkkgfAdmMmSapq2GO/sH5iDwec+3l4eNj3Al58ALRZdjfPjo0GIi/N/ysbv8pHXBTc1k0uJAQbb88IuW9js0yvpYtqXzYTEifdc763+cWeRRRuPHiJtWP4hVkhHWK7q6IDgZ1UGxSKrexikV7JTVx+KqYtirBabwq5XzgjMLhWnM7PHayjatLeaO5sX8kG0P5swO3/uwNW9GYlBivxAYHMQf+FmlloAn8jlLIYv9LLuicrUiPxtFm4Uu7l6Fw26e0ANFcNMJUJ+DsJa3RIM7kWQXWGVwUtJxZCCCHE6aFMP2HdeeedfP7554wZM4aKFSuyd+9e9u7dS05OaIHqjRs3MmvWLIYPHx7xOM2aNWPs2LEAZGZm8vDDDzN//ny2bt3K1KlTufjii2nUqBEDBw486a/pTNKgfyW6PVqblHYFHZovMvuecBDQOH1Woot8mTqbHrnX0D7vYieY11jVJUq50Vrjye8OCLDK9p/4+bSPHJ0L+Os9vu77hM6qHfFUcMYGgoAAu3cnYp6h33rTgOW77GMPLGfG2dPDti22V5XBTMSpYGmLufYSwN84oiZJJKuq6KAgoBsX5xitizxGS6Ox874RqCkoys56e3PI/doqJeR+hs6kk2pLCwoCPnVUTSqrROpSK2Tsf11PE7W7JWDiD/yR/9/g2wW0hlwfbDwo762nk8X2KhpQm57qbAYZPbnP829a511AzbzujLb+FzI2QcVTh5qAP2gsDYCEEEKI00uZnp6PGjWK9PR0evfuTY0aNZx/X3/9dci4jz76iNq1azNgwICIx1m3bp3Tcdg0TZYvX85FF11EkyZNuOWWW+jYsSOzZ8+W5b9lrPDiSWkaUvbW6E38wQp24W/0EUcFZ1nwETKwg6pE/WEv57BOp4PnEnrkXcP9nn/zlO8NtrKL+XopHShYEhYc9M1sORHO0HMAW8MlbWX5WrB0+ygmBlWpTG0KggeLJBB4RtmnD/KS9wPGWdN5xvcW6fgbSA0wurM5ZhpToz/lZuMKAKJw01o1KXZpeJyqQMf8ZaVr9Wb260Mn/0WIIq3RoYHA5ELZ4HPsRSzQy9jJXmdbnfyLhG1VU6cz8CCjJwNdPTi3Q0b+qOA/BjrovypkX2plRfvaZim8ElFa5uolbGQ7s/Qf1FQp/GrPZoPeSgaZfGb9GDa+ZX5X4aNksSPo50QIIYQQZa/MlwaXxPPPP8/zzz9fouPExsYyadKkPz03cfLlkEfFsp5EORdcF7Czasf0qM/w4A/QbrV3hoz9wPqGT60f2Mg2AFbaG0KyAK92XcAs3x+AfyloHWqwnT3srTuVSQ88w/LNMZgG+CyNUir/91aB0igUptL4bH89PsvOHwOgwVD+eoAuU+GztH9M4PH5v/5KAVo7Y5ShsAOFBp1agv5lbC5DOfMI1AdU+GsWGgpsrTGVwmdr/8Odtxh/ONswwLY1Xeq7OLtu+Q0EWtpylocFzNWLmW4vAOAO41ret7/Bi48lenVZTFGcJJ9YY3nKeh2s0MB/d6Ojc/s59/2cZ/dksOpNmjp2p/nuRkcWWMsAf7OZS8z+pT5vUTJbCjVsqa6qOLdzdC672Q9AAvFkkAn4MwIBRkf9hwrEMt1eQGOjLgCfD2rGo7V+58ODvwHQksasYgMo7X9/Nm1irAp0N9sz2NWTIe2jiY+W2qunk+BM3bNUS7ZQUEfyD72C5fZa2hjNnG0tVWN+YRYAq+0N1DGlpIwQQghxuii/Z7CizAUvOxVlY1VQwfcnXXeilCKaKABm2n+EjN2e3/kzWCbZAJiYXGr24z7fc04g8VyjM5/Y/iX73pqruDu160l5DaLs3Oh9hFn277iJ4inXHQxzXR5ystjDPJt5eilL9GrW6s1k6mziVYVijij+Cmxt86H1XcH94DqAQQ1BKqtELjT7AFCFxGMet7vRkf+zPgL8QQcJBJad/YRmZFYPygjcqgsCQFHK7VxoCQQC4/J/x/uYnZ1xiUZFHmrTmJmel0njKLGsxiA0S7i5asY0/TnRRk9ud79Vqq9H/Dn+5f/+TvBJVCGbXKc2ZMAH1re8YTzp3G9pNHZKA6/UGziPnqdsvkIIIYQo3hlauUv8FXjwkqvzynoa5VpwILCV0Thk3wJ7aYmP093oSJo+6gQBgZCOgou1LAs902itmWEv4ABH2M0+Fudn/AUHArsZHehgtKQWyTSjAU3zBnKd50EydXZZTVuUgin2XLbpXWHbK1GRVqpxhEeUTBejvT8zF6kTWNYyyAq5X53Kzu3NQdmCti4IAgcCgUVpaNRhtPs/HCaNxawKKRdSlUqszP97FEcFHvf935+YvShty/U6jub/THQ3zgrJ8HbjojYppOujISVfWoY0DCn4rCGEEEKIsicZgeKUU/m1gDT+5SQ9iukkKU6u1fkNQKpRmSRCa0CtoOSd/s5XvZhQqFPsy9aHaE8MbG3D5OgM2tpeKkYrMvM0sVEKr8+fTeAyIdcLFaMhI4/8MTYxbgOf5f85iXIpcjyaitGKjDxNxWjI8miiTIWtwbIhxq3I8mgSSjImRpGRq4mLUuR4NS7Tv+jXa0Fs0JijuZpYtyLP0hj4m4Pk+aBCFGR5oHVNk5rltKvlUr2GQ6Q595fb68jS2SzKD/o2VfVJUlV51fU4/3U/Te+861ijN/E/exI32ZfTz5QM0b+q76yJzu1G1HXKBbRUTcKWihflsJ3Gw74Xqa9q85r1McOMy0k1UmhNE5azzv/zZR+hqlH52AcTpS44Yz+OWGJVDACv+z7hed87zr7AEuF4KlCZhGMet6PRklhiyCEXheE0lDlEGg+Zt/CdNZHvbP/P10VmX7oaHUrtNYkTF5LpbZzFQnulc7+76sh0vYCv7QncpW/gbOVvCtRUNcDExMJidVCXaSGEEEKUPQkEijI1215ID0MCgWXhoD7CXg4C/iU8ShXkZ3i0N2T5VzADg4aksiH/5D+BeC4y+3Kn75/OGBOTo7mg3xwNh+owE81MzrwssFg3zLgnnvap5a+o/fhCgd/leh1z7SX48ju/BpaIRil/04D6KpX52l//7Td7kQQC/6KO6izG2pPpqPwBnXuMG5moZ1FX1aKN0bRExzii0+nguZS9HHACBaPsL7Bsm86qHd3pyBq9iRn271xuDDzJr0gUZms7pFHUINWTT30/8Lr1CSaG0xgGoB61aGs053yzV8jfkKK4lIu2qhnz9dKQJeXg/zxwn2sY9/n+DcC93ueYF/UNLiUfVcvab/ZC53Z3oyPvW98A/mzA3kYnplv+urCz7T84O787eLSKorGqy1q9mbV6Mz7tk++lEEIIcZoon6ksIqI13x3kg45L+eqC1aRv/3NLdpU7DqIqgjLx/5gZ/ttRFVHKRYZbkeVWIR8uxakVvFQneAkPwCK9EitQ3KeQYcZlTkFwA4ULk6nWXLbZu506YBYWbDgHDtU5SbM/PeR44YN55XN5+3hrRsj9bHL4yZrq3A9uGgH+xhEBsuzzr2uKPZejZLFIr6KV0YSL3H15O+pf/N19G4PMXiU6xove90kjHcB5n7Hyg0IVqcBvehGHSGOCPfPkvAhRrD36QMj9NHWUP/RyVukNLNfrcOd3BAbIJpfdeh//8L7C5Z67qJd7Ljd6HmayNafI43c0WkbcvkAvo5NqSzuaE0M0rVVTWVJ6GsjTHvboAzRXDalOFepSi7X5XaVTqcEL1nvO2NmFPtO1U81pTF2aqQas0OtO6byFEEIIUTS5NCcASNuay/dXrUPboMwsfrxhPTfObH3Cx4setpjZ9kK6qQ4oVEimgNaaVnn92MU+4u3lcpW4jAQv1WmpmoTs+9b6pcjH3em6jmaqAWvzNrOKDRwmnYesF8glz6nvBUDigSKPcSbZdtg+9qAzzEF9hOX5J3U1SXKWB06yf3PGFA4E1lLJNFCpbNY7+EMvJ1fnEaOiT92kRakYZ013bg82eh/XY7N0NtvtPbxqf+xsa0szaqokftH+7qKT9VwnS3CiPUv+PpxCWTqbCsQyzZoXsr2BSmVR/lJQhaKeqskGvQ03Lnayl516LwA17CT2coBv7F9IJ5P+ZreIz9PBaEkR15n41v6Foa5Lud/3PGPsn0lVNWhrNi+9FymO21h7Mr/r5QA8YNzEHL3YyebMIptscp2xv9mLQrrJn2t04it7PGiYas+nfRFBYCGEEEKcWpIRKAA4ustDoOa3tiBtS27xDziGufZi+nuGkZLXlRp53cjRBcdTStHf7EZb1YwUVZ0teuefei5xYoIbhbQ0CjICD+ojfGmNw0XoctfrjQu53byWlkZjTGXyH/eDzr5c/FlxUUGZIqrOKtwXvkF0lBc49pKxv6rochijWGSvpBF1aaOahizt385u2qim3G/eRKqqEfa4QHAwDw8L9cqw/eL0Zml/cA6gInH0NM4+rsff5H2U3t7rnfuVSeCLqP9jVNQznEUrZ3tw3bjAcnJx8t3ieZykvM6MsJ4M2V6HmqzQ/pqxjanLdu3vIO8OupZcjcokq6oY+R8rp9vzi2wK1EFFDgbFEMX71jd0D6obHPx3SpSND3zfOrcHuXox2fqNBOJwYXKAIyFjj5IV8j0L7iIefBFBCCGEEGVLAoGCHXMzmHjXJlyxBcGac+4rvvtfcXzax73e5wDIIJM0MpzsoYBqVGaZXstGva3IWnTi5JhjL2a8NYON9jaiiSKBeFrkLw1eZK/kiry7OUIGvvyUDTcuEqnIS+5HedX9uHOc36yC5Z2BTECdX1fKQJFIPI/2rMLl7aJO1UsrEy7jzA1yFmWD3so6NrNcrwsr5r9cr6OF0Yg51mIe9/4fb3k/Z469GCDkBF/KApy+0nQGz3nf5gXfe7zq/djZPl8vcxrE9De6Ea1K/rudq/OYbM8NqS93j3kjjYy6pKhqTIj6gFj8GaLB9ekmFFqCLv6cn6ypvOX7nJs8j7LZ3u5s92kf0/UCjpIV8vUHMJXpdIRvphqQl99IJJAJ1ljVY0f0LL6P/i/DzSsB8OBlqj034hyaqHrEERu2PRcPR8ligV7q7JdAYNlaa2/iN+1/r26mGtCBFnxh/0wGWfiwwuo8Qmjph4ZGHZqrhoB/6fcBffjUTFwIIYQQxZJAYDmnbc03F61h3/JsfDkaV4xi6JzWdH6g1gkfc469mM16R8i2xfaqkPt1VUGgcZvefcLPJY7fm75Pudx7FzP07+Th4W7zBhJUPACveEczn6Uh47346KM6U1klOtv260O8ZH/o3A8EAAMnizYaN27+7rqNrnXP3OWfCjin3pmdEphz2MvKMQfYMTfD2RbICAL/yWFNkpz7XVR7rjcu4i3rM16xRvOQ9R/+7X0bCF0uPM9aevInL07Ib9YinrPe5mnfGzxpvUq2zgFgnDXNGTPY7H1cx5xhLyAnaAnhdcZFPOb+m3M/wYjnUmNA2OOmWHPRWodtFyfmPu+/ecj3H760x/GBVZDpNV8vCwnSBkvXBdtrGSlh+4ebVzrlP4KXi48r1FAowFQm7VSLIuf4kfWdc3Fqi95JVhGZheLk+zkoi2+4eSX/s38N+zmpTpWQ+2/5Pg/JBg38TGg0v1izTt5khRBCCFFiZ/YZrDgmy6vJOewjkADgy9VUa17hTx3zSd9rPDc3nYQ8H/UOpRNjaSrxOHnudzGqt8I+sJJ+VavxjPsIT3WtzHYJBJ5SgXpO4K/vFggCAizQSyM+5kKzT8j9T60fImYCBDvIEX60p3BLl/PYdlgzfrUH28b/s6aU/z/k38//AdTK+b/wDpTBwQCl0Dp/TODxyv+4ggM7g4Mer0BFCioEP1aFPVfwZHX+U5lK0aeJi7t7nrkZj7lpPt5vt5SMHf4MoEGjGtDxbzVCfmfrqJq84X6SozqLb+wJPOu6D4D59lJnzMH85WP1VW0GG73ZqLcxTy/Bq724VcFycnF6mKMLMnp8WEy3FzDA6MaX1jhqkUxboxnnGT2P65jj7IKAQkNVh2HmZWFjrjMvYoz9s3O/JsksZx0L9DI6q3bH/0JECI/2so9Dzv3PrR/5p+seopSb8cUs29wV9DcjnoLPB9WpQrKqxnXGRc62XsY5xBFLFjn8Ys3EZ/pwGeEfNe8yryfbl8MSVgNQm2QOcIQ8PCzWq/3Bo/y34TV6E2epE69ZLE6M1pp3rC9pQCrVVGWuMy/iIs/tYeP6GV340h4PgInJZnYwIG8YY6JeoZ5Rm8Fmb162/BcOx1vTudF1yal8GUIIIYSIQAKB5Zwr2uCsO1NY+Jb/g36boUnEVj6+H4tl9lrG+H7GVjbROorf9XJGb9xPrSwLS4GpAQ6h1RGsfYtBGdTYZ3N5nCmBwDKwS+8DoAbV2RxTkOGjtWYP4Q0+3Lh51fcxm/R2lFI8bv4tJJOkOB9Y33Jl1CD+fWEM/74wpnRegDhlts1Id4KAAIvf2xcSCDQwqK2SqW/UBuAaLvCPs1eF/Cyt01ucAvJxVGCd3gLAUr2Ws+UE/7RTuKvzOHs6Xrzs5SAAZ9OaqqpSiY+ntWZc0BLfTJ1Ft0JLygE6G21xYTplCXbjf6/6wPctnaPaHd+LEGE26K0h3eD3c5if7Wlcbg5kfBEdmhOIZ2X+8lwDA1tr2tOCJazmAIdJoRrVjMrO+BgVzQCjO+vtLeQpD1/Z47neuDjsuJ3NdqzzbXbuW2hnyXE71RxLF1xoWmlv4CxD3idOtaV6Dbvyfwcbq3r8Ya3giE4nhWrOe4GJSZ+gQGDg5ytKRdHdcw1fRr1KV9WeWiSTrKqxWK9mi73T+ZshhBBCiLIhS4PLMY/2kqNzGfhGA26a34ahc1pz4ehGx34gcFRnAbDK3sBn3rG8bn/Cm9ZnvBy0XLSwohZ3BS8zFCeXVxeczNdSySH75tlLsCJk+cUQxQrW8W9rFP/2jeIne5pT56cWyWHjAVKoDsBqeyNHdHppvgRxClVuFOMkVCoTqudnCwd+Z2tQPWJGX+Gi8Hl4nHIBPYKWB0udwNOHpf0n8D/4JrNY+7O0ArU/f7Fm8r7vG2fsLfl14Epqvl7mZIUCDDbPxVDhHz/iVIWIjSS+syfK+0gpiFRv77++zxmcdysb8oPziVQM2Z9KivO4pqo+8/QSJ4sP8jsAF/KUeScb2c5GvZ2nfK87nxeC1VDVud+8ybmfG7RsfKlew6KgZkLBHe7FqTM+aGn3ANWNB6yRbGSb8xkCoKtqTx0VWlP6XNWZ+XopBznCz75p+LD4p+tuFutV7GAPD/pGnqqXIIQQQogiSCCwHJthLyA5rwt9PUNZetYiUrsmhC/HjMDWNvXzziUxtwMdPZfylZ5Q5FhVTLdYM//HTzICT509HHTq+RUOBH5u/eTcTqKqc/soBSdxGs2LvvewsemqOnCzeUXE59nPIepSk43RU0JqC4q/lqRWcVz6ZRPq9EygzY1JDHyrAVk62wnqFD4BDJgQIbsokFUU3EWycOaZKDv9PMOonHsWV/vud7J6UvF3ft7LQabqeYB/eXdfo8txHfsra1xIJlpwHTlLW6y2/YEeW9sMNS+jIXVCHp9LHl8EvT+JE7PKLgioXW4M5I+o/3Gu0RkPXjRwLp3C6r95lQ8PXrqpDtxnDmOhXhGyv2OEwG1zs5HzM7Kb/Tzn/W/E+dxvDnNuHyEj5PPCAQqaSkjDkLIxPiiLdxf72ai3heyvQAw3m1eQRWgNx0vN/pyj2lCFSnxu/8gr1mguMfs7tWQn2DNDji2EEEKIU0+WBpdjs+2FePAyVy/mDq4t8ePW6E1kBn3wC870CIgU/tPokO2BQOBu9kutsFMkuNZTbRVa9H2aPc+53YomTMN/vyF12ERBd8kleg0azVK9mnZ2s4jPY2Ozxd5Ns9e3sGtreHH5M4XLgCgXRJlg5SdTGgb4LHCb4LX8+7wWuEywtb/8oKHAZ/v3eayC/7pM/36toUaiwSfXx9KxTtm+Tbe8qjotr6ru3F9rF5wM1o0QCNxvHyKJqrRTzTmqM9mEPxNwld7ApfSnmWpANSpzkCPMsRdjaztidpg4tdbpzSHNPAD6ml2Yay+mqk5kGetw4eIW88rj+n5l6my+sH5yLkDEEs25RifA34TiCs/dzNdLaUgdPPi4TPV33m9cmFjYdFbtWGyvLvI5RMkEZ9Y957qf+kZtptnzSVDxVNdVmM1CYokmhzxn3Ib84M8ivYrbuMppCBUQKSMQ4P9cjzHNM5+mqj4/6+ncYF9CK6NJyJh4I444KjiBJAMjJGAcSww55LLKlkDgqbZT72VJfmZwKjXI1Fm0UI1Yozc5v8s55LJHH2C47x8hj92qd/Ku61nae/1LwpfYq6joiuMF98Pc4H2YnupsvrB+4nyjV4kuPgshhBCi9MnZVzkWnI3TLWi5XmFaa970fcYrvo/Yqw/yoz014rhIH+eKzwg0AX/QaJfeX7JJiz8luFFILZWMV3sZY/3MFt8OpxYQwEa2Ore3sINPXC9QlUpAQYfgbHJ5W48p+snmDDmjg4DgD+ZleyAtB47m+f+l50BW/rYsDxzJgcz8+xm5+WNyC/YF/zc9aMzGAzbDPs8p65cYQmvN73ZBRlCkjMCFegW/6t9YqtfQQxVk/wVO5pVSTvfgNDIk2+c0sF8f4jDhS28fN//GsuifOdfsQhY53GFcy53mdSU65hZ7Jzl2Lg95/xNy4aiv0ZUKKhZLW3xgfcPvejlefKxlM5vZzqig9xQfFhrNPL2EMfbPIe9f4vit1OsBiCPWCeLf6xrKJ+4XucwcgA+LHPJwU3BRLvA3/GHXcCeoH+DCRSsVGtwLqG/U5lnXvSzTa9msd3CP97mI3Z9rqIKLDIU/LQSCggc4QprOQJwalrZ4wPs8Rv4pwg728JU9notUHxqQ6oxrRF2m6LkhwVuAZdYamhr1qUgcAIvsVQBcYZxHJ9WWWfoPvrd/ZYFedopekRBCCCEKk0BgOZWjc50lPo1U3ZAP48G01rxtfcHDvhd43PcKDfP68LHv+8hjgaj8E4jAx30Vsj/0JCAQCATYjiwPPhUCjUIAaqkU3rI+52bvY7TyXYAXn7NvO/4acFG4ud24jivNQfRX3SMeM5rwTE4FkFk5bLsoOVvDkZyiKmueem/5PqOVZzC3+Z5wtkUKBAbqywGca3YmGn9X5UX2Krzan03UPejCw2ypE1jmgpeMNqE+P7vf5TP3S6Qa/qXBCSqeWiRTyUggVh276c9OvZfmnvOo7unMx3bB34suqj13mNex3F7L29YY/uF7NeTvAEAWRQe/J8hywhOWpbPZoncC0FI1Dsnq/NQ3lnetr5z7Z6lWzu3KJJBCdR40bw6r6dlKNSZGRRf5nLeaV9FQ+Zd5z9WL+cz6IWzMRUYf6uQvQU8gPuS/HrzEEEMSVdijwxtZiZPjUd/L/GRPwxX0u9lI1eUQ6WwOCgZvZw/z7SUkUdUJGgLMZiFefLQ3WgCwi33s0wdRSjHcNcQZ94GvZE3HhBBCCFH6JBBYTv1uL3cCP92LyQb80h7HJ76xTq0oC9sJ2sUSE3YSV3jZUHGCP2RKncBTIzgQGIWb53xvA4Rc0Q/O4owmipfdf8dQBoPNXqSSQm1SnICvgcEC9/9oo5qGPE8PzqJhr1mY7jzEiVHAM+efPp2WD+l0NuntIdsiLQ1enJ/9AXCW0ZrmqiHgD/Zf7LmdmzyP0kw1pBWN6azaMjVoSbooG6vyM8UA7nMNpb/ZjSvNQc62e11D2RQzlXtdQ8Me+7U1gSGee7nB8zAvet8HYKw1GQBf0MUFgM16B+OsafTx3MijvpcAyC4m8FfYuKDmBeL4rNGbnNuH9BHO9wx3snS/sQvq/DajAakqhXNUG/9Y0tjLAZ7x/pf59tKQYxa1LDggRkXzmusfKBTdVUee970T1vQllhjnwlMgKzX45yaXXPZwIKRWrTh5frMXobUmgfiQ78Ot5hDqG7VCLujm4SGbXM5VnWmpChrNefAxJO+ekL8FA/NuJiW3K1/7xlMpvyGNNAESQgghyo7UCCynftMFy4ILBwLTdAZaa67y3sdKvd75cN5NdWCOXuyMa6Oask5vIY0TW7ITkhEonYNPieBA4H77kPM9MFDY+R/wgz/odzHaOzV8rjDP43JzIPd5n2eM/RMevJxv9KKZ2YBb9RDu9j0LQAzR3Oy6kmEV/o795HlctPZp7qsyiB1pUKeyYle6plo8HM3114xMiFHsz4QaCbAzDVIrKXZnaKpUgDyfxmf7x+w7CrUqKXYe0aRWVuzJ0FSOhVyfxuuDKhUUe45CncoG24/Y1EyAA1mQEA0WmmyPomoF2JMBdSoZbE/zjzmYDbEuMJQm06NIiodd6VC7ksHONJuUBDicZRPrNnAZkJYLKQmw8wi0qWXisaBSDGR5NIYBUaYiMw8qxcKRbKhcwb8sOCHaP1eAaLfiaG7+mByoHOsfEx8FXltj25AQa5Ba+fS5VjPY7MVI652QbbVI5qjOoqKKc7YFTv4SqUgtkmms6rJUrwFgmp4P2v+ek6s8rNQbUFqx2d5BAyMVUTZWBdWOK1zH7Vje8H7KIvwdXqcwh/tcw/jYKipr3OZtu5hyAkUwMbCwmWEvCPt5EyWz2d6BQqHRbGIHm+wdvO/7hlfdj7NIFwRsnjLvZIT1VFjg7Wt7vFM7MHCc9qrFMZ+3v9mNm6zL+Mj+HwBP+97gDfeTzv7uxlkErkMFaodWIJbsoHqVNRbWZd30LKp1TqNB/0on+iUQJTDBmsFb9ucANKYuG/DXiOxhnMUIT8H3zY0bL14qkcBLUY/wsPdFVgRdUJjEbyHH3coucsljip7LLeaVfGh9ixs371pf0VjV42zVmrl6CecanUhW1U7BKxVCCCHKNwkEllPB9QG7B9XxAjgn7wr2sD9kqWgdaoYEAcFfPDz4inEU7hJlBGr82U6mkozAUy04EPiqNRoTg5oksRt/jUYTg2pUZh+HAEJO9JRSvOz7kPds/xKyR8xbucA8F4CrzQvIw0Nn1Y69HKSN0Qx8YER5yGs3ge5RF5+qlwhA11Ia82fVq1qCMSd9FqWjg2pJDaqzh4Ileh28l3Cu0Ylfoj4EYJu9i70cBPwn9ZU8/osMbWmOjcUK/CeK4+0Z3GBezNO+N9BoPrK+4znj/lP8ikTA6qClwYEMzpJYbq91goDg7/z6tTUhpClFDNFcYwzGxOQD+1tn21uup/jM+pGZ+ncAapLM7vw6pSZmSJayhb8TjwcvU+25XGL2P4FXWb6t0hsxMfAFfV3H2D/TyzrH+VsfRyx1jVoctUKDgDFEM8Q8n1et0VSlEukcpac6h/5Gyd5FH3ffztd5E8gih/etbxhmXEoH07/8uJPRBhcufPiIJYY61GRf/nsI+IOAN/X+O9u0xTZ7FZd/25TmV0ig6GQJLu0QeK9PoRoH7SPMoeAzoA8ftUnhevNiklRVakYoL1OReI6SmX+v4ALj+aonB43DTLRn85LvAzx4sbCxsblGXcDo6P+cnBcnhBBCCMfpk24iTplsnUOGPkp31ZFuqgP1jFrOvqM6i+3sdk4Mmqh6mBhBH+b8S3lcuGhDaOZIP6MrXVUHehudWFG3Dr80qERGpRRIqMfRhGpsS4xhbsPaHK5UFaPxJVCv4GROAoGnRqDYfhJV2MZujpBBLAXLTy1sLjDOde53DFr6NdteyAprPTVJwsCgpkriHMO/fKyiiuMu1w2cZbbmAvNcUkmhOlUAf4ZYpCLx4vT2vu8bHvL+h+nWArzai6EMBpm9wsbt1Pt4xvsWN3sepZPnCmd7oM4XwGo2UIVKzrLzafY8hhjn48q/FvWpNRaPLnlZAVF6bG07DVvqqlrHlW33gRVe4+t53ygnq7galUmLWcSoqGeoZRQ0DnrGvJfrXRdTxyhYWn6e0YPGqh51qBHWfAAglRR6G51YbW8K2yeObbb1R0gQECCDTP7le9O539M4O+yCH8C1xoWkqGpUpwqHSMOHRRrp1DNql+i5a6sU/uG6nUTi6arac6/v31jaP5cKKpazlP/vzA72kEMOeXicxzac3BK0AluhTNgw7shxv3ZRMra2WZLfnbsalZ0mP21UU6703eOMMzHRaHaylw+sb7jccxcfWd+FHS87qElQbtD3NEpFUU1VIQ8PWeTgxYedH+z/Uo+TurFCCCHEKSCBwHJour2ARXoVv+lFNDHqh+wLzuToqtpzPr2wsDkStPw3mih8+FjMaioQC/iDg5+4XmBa9Kc867qPq3vZXDMwkc5X18J783yMmxZzzjW1OH+ASZ9rGuMe/Cnx/UYRTwUA9thSCPxk82mfc4W/KpWck/Xgk652qhlb2eXcD64B9b31K9/oCexmPw+bt/A31zVFPpdSynnsIdLYJoHev5xPrO95y/qcQd5b2JOfoTNI9Qwbt0vv5XXrE8bY40jjqLM9TxX8XHnxMZPfnZ+5XDzMsBdwsdEX8Nea/Nz68WS+HFGE7XqPc8LfSjUu8ePytIfNtr9xQAVinA6hOyko8zDEKKgzGNzo42JXPzzayx/2csD/N+VV9+OsiB7H2uhJJBOeSruDvcywF/CzPa3kL044VrExbJsbV8j7/d/Ma8IagoC/eci9rqFOBjjAcHNI2Lji3G3eQHPViDl6MX/oFXxk/c/Z190oWJUQaC4SsPusrRi2gTY12oKa58QjTo7Negfp+e/htUgiLv/z3RZ2coDDzrjgJnAHOUKGziQ96GJxQCCTt7Ddej/PuO6lMokR93/tnSAXD4UQQoiTTAKB5dD4oILrg43eIfsCxcMBLjcH8guzwh4fXBMwlRrcY9zI1+7XqGj4P6CfpVoxyPAHDHazn1d8o6lqVKZH/of9bXoXq/VGlFJcZgwgkYqsZbMUjT7J9nLQueoepyo42w9SkGFxh3G9kxGQTFVqkQz4u0ePs6YD/pPHB123HPP5OqiCIOKSoOVG4vS3W+9nofYv+WyjmlJH+ZsF9TO78q3rDTrR1hmbTW7ETq/7jtHl8y7fv7jbuIH+qht7Ocizvv+SocNPJsXJtVoXvOe3CCr4fyzz7aVM0XOpTmXqUZujZGFg0BT/0uJKJPCoOQKAPfoAf+R3qW+uGrJT7+VF3/us1ZupTQrPux4kWvm7SxvK4Hyzd9jzBS4ardTrydOesP2ieBlBgZoqVALgYtXP6fbqxkUvdQ5z7PCMwFpGMvvsg3xtjQegInEMMc8/rud3KzfPuO917j/le40Dtj+4FFynOCq/y3jA5v6r+f7T9/FcvZ/z3mpAx9tTECfH4qBakShFLh6qUIkNelvIuODM0pokkaDiqUZlZ1stklEoYonhfNXLCSgG7Nb7qaoq8Yb7CUabI53M8IAP9DcRM1OFEEIIUXokEFjO2Np2MjNiiKaP0Tlkf3BGYCUSWKe3FHu8GOWmlpHMALO7s00pxf+5HiOWaLqq9sy1F5Ojc7kgKOg4zvYHlRJVRdI5ikYzz17yJ1+dKE5wfUAj6Fffi48E4qlALF3N9k5zmA5GS6dRyEq9nh35mT69jHNIUMfOyuhgFNQXXGSvLGakON38YhVcABgctFQ8VsVwoauPU1MyktY0pY/qzCGKD+xb2MSqaCcAtIcDPOv775+cuSipZfZaHvSO5G3fGOKoQAfVwrlYUxKBhlMHOEI6GaRQnSjcTjf4NDK4zXqCSz13MMk3i8bUQ6E4qI9wgedW/m2NAvwXi7oa7UOOXfgCFUA00YD//WplUFMCcWz77IMhTaA8+Vng3+mJZJNDM9WA682L2cwODpEW9vhkVY3XfB+TQnU6qbZcZ15EfNDFpJLqaZzNNcYFNCCVWiqFJ6xXAX9TqvY0p7vqSE5Qk5CA1VcuZO9HizjrzhrO3yRR+oK7/ObhwcLiMGl0Ue1CmrsFRBOFQuHVvpCVBRYWGk0OuQwzLmOQEVpS4iPrOzJ1Nleag+hotnJqTaugXMN3vV+V9ssTQgghRBAJBJYzi/Uqp5h/X6MLFVToldqVQdkhW/XOYx7vZvNKbjIvZ5vezWvej2mY25fLPXfRzzOUhtRhrl7CTP0731gTqKaqOI+bYM0EQjMBghuYiNK33d5NTNDJdICFRQaZtKQRi+yVVCYBCG0UMq6YLNKiBC8rDsk0EKe98fmBevB3Cw7m0V52srfIx97rupGHXbeW6HnG2pN52fWoU6dyvd7KVnvXMR4lSsMCeyn/tb5gip5LFtkMMnqFXNA5luD3613s5wCHed31BEPMQUThBmCiPZtf7Fn8x3qPDWxFoznAYaf7LMAI82raG6HdZ/sYnZ1jBAR3sQ0OWIhjK1xz7RLlr88bCLsc1mn8n+tRvrLGk0jF/H0FQZkMncmb9udsZgfL9ToeN/92wnMZ6XqQNI6yUq/nE2ss8+wlJKqKRKtoftOL+EOvCKkvGhBp6akoXYuCfq/26YKGLfP0UuezQ7A4YtnFPtbpzSG/n8HB5E/1D3zmfonOtHO27ecQk605QGjH8qYUlKr5QU/moJZ6kEIIIcTJIl2Dy5lxQXWaIgV0VucvDU6iClPtecc8XnejI7/YsxjqfYRYYsghF5dt8sV3y0jKtqicZ+OyNYpheA1YFW1QOc/mSPROMuO60PXa8c6xJBB4cm1iO7nkkUQVsnR22P573UP51f6NI2TQiDr0y+8IGbwsGIi4bC+SmiSRQjX2cpDFvjXsz7NIjFFkeiDGBT7bf6LpNjQ5PoiPgow8qBgFWV6IdSt8Ntg2RJmabC9UjC4Yk+2FaJfC1mDZEO3SZHmCxkRDjlfhzk9k8FoQ69YczYOEaDiaB3FRkOtTuAxQCjw+TYUowsbk+RSmAYaCPJ+mghuOeqBKBYVpnFkZKll2NtPs+QDUoHrIEm/wL+0Pzi4qbLZeyCErrUTPNcn+jX+67+F+cxifWT8yyZ7NO9YY/mM8fMLzFyWzXm91blejcomyfAM82htWS64yCYzwPUk9auHBS0XinOBAoA6dGxfnq95sZgf/Mu9hoV7BPa4bw45fQcXSR3Vmop7tbPMGZRwtllIDx2WGvSDk/pd6XP4tRV1q8HnU/3GULN61viKdo5gYIfXd3rA+cbK27jeHkWSUoB16EVKM6jzhup0HfCMBeMz7f8yI/pwLzHOZ71sK+JuLBK9OAMjUWYUPJUqRrW2W6jUApFCdvUHd4d24yCL8M0NtlUKsjqGRquvUAY6nglNzFPylaHayl/ejnqO15wLAn214ve8hNppTnEZFAD3Ms1hrbQb8Fys/t37kPtewUn+tQgghhJBAYLlzlCx6qXPYpfdxnhFa+H+/PsT+/ILQtVQKS/UaeqtOrNLrOUD4ldkqJNJcNeRT6wcAcsilKpWooGJJyraolWVhKTA1gMbQONtqZVlkspPqqgrNVUPW6E0s1qvJ1NkntORIHFug/uN+Dod08ANw4eIC1Zv7recB2MZunva+yXbvLh52DWefPkhPdTZxqgJ1Vc3Ch45IKcWN5qVkZLr46Z3LqL0vE0OBrf1Bt0AtcAVowFRgaQrG5G8PHhPYF/hvsMC2wsc50TGRnqvwPBpWM5hyVxy1Kp05ydVj7cnUpSbJqipnGa0xVOhr23KMTOGfrKmoIpLNFSokiLhW+0/67nBdx8vWhwB8Zv3IP133EKPCM1BE6QkOBP4R/T01VPUSPc6jvXTLu9rJKq5EAjFEO4EDjaYWydxoXMpI+52Qx7ZTLfgq6lU02l8LkPAu1AHNVIOQQKCm4OdHMgKPz3x7Wch9NyYWFt1UB5bptcRTgUe9LzuNIoKDgFVIJFd7aK9acEAf5mHX8D89n9vMq3jP9zUuZZKg4vnDXsFgozdP4F8qnE0urWjCSgqWgGdGqEMqSs8aexONVV3iqUBlEvlRTwX8y38jdfEGmOr+xKkNPcRzDz/Z08gkGzcu5/2hJY2ZYS3gBtclROHGg787vIXFJ9b3IXWpz1e9eZ9vAP/P3Sz7D+5j2El6xUIIIUT5VqZnryNHjuTss8+mYsWKJCUlcckll7Bu3bqQMb1790YpFfLvb38rflmK1pqnnnqKGjVqEBsbS79+/diwYUOxjykvfrSmMFP/ThoZ1DSSQvattjc5t7fonWSTywy9wKkZF08FooMKeXczOmIoI+SkbEn0j/zLdU+J5pJNDlprZ3mwDx8LCp2wiNITWILjwgwpHA/QVbVjKWsLOgPuasbMH3qy5etbeOTLKLZ/dRszvunL7q9GcPPn2dz0eTbDPs/iljHZvDgllzxf5AyxZ9z3UmX+LezZ7w/uBgJqwQ0BAzet/BvOGMLH2IXGBAtsK3ycEx0T6bkKz2PrYZs3ZhYsczwTfGyNZR1bmKUXMsgMD9Rs1juKffwRMjgcoc4YEJZJmEMuG+xtVFOVudQYAPiXlY21J5/Y5EWJBQKBFYkjhWolftxseyErKPg73cfoTE/jbOf+k+472RQzlaej7gprEvCo6zaUUmHB5Uhamk3CttXB37Rmld5Irj6zfu9Opi1sD7n/ietFrjMu4je9iKNkcZHnb06Gp1noY2EM0UzRc1miVzPMvIxYFfOn5+NSLv7muoaVegO/2r8xzZ5HM9WABioVgO16d0gQECA7QkaaKD1z9WIW69XM0gtxqYIcgTw8zvtDcG3hisQ5QUAo6CJdhcSQ1SYrWc8E218Kpiahnznf833tZARG4eZR38tUyl+afph0Jtgz2aH3IIQQQojSV6aBwJkzZ3LnnXcyf/58Jk+ejNfrZcCAAWRlhS4BufXWW9mzZ4/z78UXXyz2uC+++CJvvPEG77zzDgsWLCAuLo6BAweSmxtehLo88WqvU+Q/0AU02Eq74OQu0BlYoZzsgJaqMUkULAk6R7XG1rbTEbY2KSSpqtRXtUs2H3zM0YvpHlSgvnAtI1E6PNrrnPinEv69v8W80ln+qzOqkffO6zD/YlhyHpmLesHSgbDoApYsrsPnC718sdDLmIU+Pvvdy5Pj8njkh6KzNUyDYhaS/sXlZzeeKdbYm/hN+38Hm6kGdFcdw8ZssreHbfsz/uF7BYBbXUOcbe94vyzV5xChcnUe27R/uW4TVS9iA4ai6nONDyoTAHCNcQFj7V8B//Lgy42BAGTpbLKDGj+4cXGu0anEc2wZoYNxNeXvTOrDxwppGFIie/QBsgo14GhpNOYt91PUy/9bvYM97GAvvVWnkGxAwOk0D9Df7FZq8+pvFBzrN3sRSikuyG9MZBeaA0CWlozAk2l2UGmWKF1wwdfAYCf+RmOB70sFYnnZ/HvI4/sZXemuOpJOJhPsmdSmoLvzTPt3tNY0UfVDHrOb/SEdidexmbT8rNSAX/LrSQshhBCidJVpIHDixIkMGzaMli1b0rZtWz7++GO2b9/OokWhteIqVKhASkqK8y8hIaHIY2qtee2113jiiSe4+OKLadOmDZ9++im7d+/mhx9+OMmv6PS2S+93PsjVibC8c5w9HVfQanEXJpVJwI2LYcZlXG9exC3mFZyvetFDnUVvozMb9FanHkzH/OYQ9fOv6pfESN87dFMd6KY60FW15w97+Z95iaII6/UWp8ZT1fyT6YDKJHKe2ZPx+Q1B1J5G4I0Bp0ugQWBhHoQHDDQwa1PkpUMAd/SIpmOq/1ju/Hcc0ygIoJn5/w3sc8aogmcrbkzgTcwV2GeG3g+etavQ44PHBEr9RRqjihjToobBA+eeOUtYP7S+dW4PN6+MGCCapueX6nP+ZE/l+fz3gV7qHHqrTqxgndPdXJS+TXq7k53ZWNVztvu0jy65V9It7yoa5PVhmb0WAEtbWNoix87lI/t/zng3Lm7zPYkLkwuMc7nFvNLJGFtgL3eeozYp3GBeEtacqjjNVIOwbW7czt+KNUEZ7KJos6zfcRdqvFJdVSFWxfCq6zFq5HcCNjDYqnfRhPp0CGoUFcger0BsSAOpP6uBSqUG/uXo8+wl+LSPwUZvOqm2NI8QBJaMwJNHa82c/EBgHLHsyQ/8QeSgrEJxidk/ZJuhDFoZTbCw8OClg9GCeOIAf3bfer2FWkZyyGPcuJz3iCSqRvh0EdqoTAghhBCl57SqEZie7l+CWqVKlZDtX3zxBZ9//jkpKSlceOGFPPnkk1SoELmO3JYtW9i7dy/9+vVztiUmJtKpUyfmzZvH1VdfHfaYvLw88vIKlhllZGSUxss57Wxnt3O7cCBwu97DLP0HdlDuVlPqMzN6DEv0ag7ow2TpbM4yWnGu2Zk19iailIuHvP9xxge6xMarChzEgEJ1ZfzLSkI/VK61N3NYp5PGUVbpDSgU+/RBklXJl6qJYwvuzFeJisQQTW5+5854YnnD9ym79D7cuEiqlcaO2AzIicMfDLQJDQaGG9zSHXE7QOUKijkPxJPj0cS4Ic/nD9ZZ+T8KpuFv5BHtglwvzhiXUbAENzAmytTk+VTIGI1/nNsAT9CYaBd4bX+wMHhMns/fWMRjKaJM/xgjP+holWCMzw6da6Rg2V+RT/s4oA8TRwUsLK4zLwobs0cfKFE38eOVqbNYptdyp+s6hnjvBeB+30h6G52OK3gkSia4PmBjo55ze65ewhLWOCm893qf5Qf3KG7yPUoT6rHJ3u68b4A/qzuTLLz48ODlOff9zr7gZiLPuu/jGvOC45pjBRVLJRKc7HSALLKdTMA2uhk3cslxHbM8mmjPxptflw38wdRAV95BZi9WG7+g0Yz0vctL1gcA1NYF2VyBrM5ORluiVNHv88dLKUV34yy+tX8hk2yW6bV0NdqzTm8J+Z4H5BSqaytKzxa9k135wb8uRvuQun2RvOd+lkSjYtj2wUZv3rH82dzZ5JIZ1En4Ae/IkPrC0USRF/Q9LaoT/Qx7gdSOFkIIIU6C0yYQaNs29913H926daNVq1bO9muvvZa6detSs2ZNli9fzt///nfWrVvH999/H/E4e/f6P0wkJ4deeUxOTnb2FTZy5Ej+9a9/ldIrOX1t18GBwNDloaN9/wsJAgI0NxoRryrQisa08AziSP6H846qFYv0yrDjB7qLvu77hAsjXEW2sZ0cs4Bd7GOE70kGG71ZZW1Ao/nFmsUw12Un8hJFEYI/2GeRHXIyX1/V5t/WKAAuUf3Iic9l553D0UsG0t8+l1ZGA7bb+2ho1MbWoUEvpaBJkskNZx/7BDE2yv/YmPyhZlA+cuB2bP6KpJgIh/OPUcWOiSk0JjpCzrN/n8ofGzrGVZIxZuhczxRr9Wa+ticAcKnRn8oqMWzMo96XyMov2m+gwt4zgrd1pT0HOMIGtkZ8vjrUYDv++k+vWKPZqLfxtft1ehnnMNP+nW16F5/6fuBv7mtK6yWKfBuCAoFNgjICxxfKwpyvl3Gz9zF+0bP4hVkRjxVHLJ1UWz52vxCy/TddkNm/3t5CQ29f2hnNWWqvcf57p3k9D7hvKnKeqSqFNF0QFDoSdHvlMYIVwh/cn2iHft+SqRpy8SJWxbDe2sJn+U2/AK42BzvNewICtXxLUw+jI9/avwD+5cEdXa0YYHTnm/z3oWCB5hOi9P0WtCy4q2rPNIrO+u6vunJZfj3XwnoaZztdgxfZoZ8Rp+p5ITVC+qouTND+Zb9u3HjxUptkZxlygAcv31oTuMl1xfG+LCGEEEIU47QJBN55552sXLmS3377LWT7bbfd5txu3bo1NWrUoG/fvmzatImGDRuWynM/9thjPPDAA879jIwMUlNLvrz1r2J7UNHlQEZgjs7Fhclo67uw8d/bk5hoXcTP1nQnCAhEDAICtDf8y4YydOZx1YRbolczRA1y7o+3ZzAMCQSWpkBBbsDpDB2wQW+ng2rBYr2adkZzPrHGoqrtIrb/F/wQfTdu5QbCg0LizLIoqOnP2UbrsP0zrN+dQCEQFgQE8rsF+zOBh7ku50nfa0U+X1ahLqBT7Lnk4eF11z/o5xlGU9WAF633udF1fEtKxbGtt7c6twN1u7TWjLP99f8MDJKpSgVimaRnU43KHIzQOR4gjaM85vob8VTAp3148WFhs8XeRQNS2c5uFtor2cU+GuhUdrGPmnYSu9jHv623Oc/sQQsjfCloYG7BtQAPcJgaVGcPB1itN6C1PmMyck+GeXppyN9ugCTlX3GRo3OJVTHMs5dwmfdOssmlr9GFisRFzMiPVC/0zwquD/ybvYh7GcoFZu+IgUCfBAJPmkBdWIBGRl1sK/xCbsC/XQ8W+TsXraIYYHTne/tXjpBBLDHkELk2dxOjPhOt2djYTsbqfg5jYIQsR06lBv+1vuAG85KQJiZCCCGE+HPKtEZgwF133cW4ceOYPn06tWsX32iiUyd/sfGNGzdG3J+S4l/Ssm9f6FXFffv2OfsKi46OJiEhIeTfmSg4IzCVGoz0vUsXzxD+5X3L6QwczEYzzPt3franRjyemZ/fZ2JSgySnkHuCiscoYglpMBU0xtQGSfhPUKbYc8nR5buxS2kLLA2OpwL79aGQfXvYz2K9mqbUI10fZQv+pZ9tVbP8IKAoDxbrgkBgB9UqZJ9He3na9zoxRE6DDHQTt7BQ+b/Z55k9SC9U+D1YGhkkUtB1MptcZtgLaGY0ZKDRgzl6EbvZz3fWpD/xqkQkwRmBjVQdwF9HdJP2N4JpRWNAsYntWNgRg4CB9/8qVGKw91Y65l1Kx7zLaJTXj1s8j7GD3WxmBz4sJus5VKcKCSqeWiSTpfxB4Cxy+MD6psh5tlPNQ+7n4aGRqgv4647t5eAJfw3Kg5994X+7q6uqTLXm0TzvPBbYy/jV+g0vPvLwoNF86n6Jfbrg65pIRaJwc47RptTn10w1oAqJVCERDx601gwwuuMKWzvgf28RJ0euzqM6VYgmCsu2nE9mqtDnuCjctDbCu3kHOz+/03xNkvAUs5w7i2zON3qFPIcHb1hNwh3sYaXewLvWV8fxioQQQghxLGUaCNRac9dddzF27FimTZtG/fr1j/mYpUuXAlCjRnjnU4D69euTkpLC1KkFH4AzMjJYsGABXbp0KZV5/1UFBwL36oM843uLtXoz39u/4gmqIRQsjaNhGWQBF9OXUa5/kRa1kBn7v2bf8iy0ralMIhWDTvCLEvxh/1Hr/zjP6AlADrlMt0q3IUF5lqmznbpuzWjAUbIijlvHVl61P3buB2o+ivJhib3aud3eCA3AvOIbzQK9jNwiTuzuMm5wbms0txlXU43KIUvQwV8cPsDCphqh9WADDWtGuApquRYXKBLHT2vNer0F8DfxiMuvvfVzUDfg5axjT36H+aLUw59Vfpg0sshhPVtZx2YOkcaPOjQAdYN5CTtiZvG/qLfYFDOVaVGfEou/qcgX1s9kF9ERtovRLmxbsiroXL/Sls7BxfnWnhi2rQqJjPA+yV4OMsRzD5lkc7kxkEuMfvRS59A87zy+ssY54zPI5DbjKqcJTGkylEEXoz2HSWeS/Rs72UsllUB3dVbY2EgZyOLP82gv39mTOMBhWtCIX/Qs5yutC33N61P7mBm4Fxv9WB89mcuMASEdqF90PUILClbxrLDWM9L1YIkzTV/1fYzHljqRQgghRGkp00DgnXfeyeeff86YMWOoWLEie/fuZe/eveTk+E8KNm3axLPPPsuiRYvYunUrP/30EzfeeCM9e/akTZuCq9PNmjVj7NixgL8A9X333cdzzz3HTz/9xIoVK7jxxhupWbMml1xySVm8zNNGYGlwBWIY6nuEjvlZP42Nek5GT7BqVOYKY2DItsokUo3KROGmlasJN7kuZ/Wnh/ms/nreb7uUf144jts8T/JU50Tu7lWFD1vEM6FZKp80i+fDFvHOtrt7VeGDLgUdCG1sOqm2dFcdaauaMdGefRK/EuVLFG4muT/iVdfjXGqG1vYpnLnpwiSVGjxmjuAio++pnKYoQ17tZZn2d4htpOqSqAoKwa+ztzDSerfYxzcP6vAahZsGRipb9a6wcYXfZ+pTK+T+D9YUtNacrVrTRjUF4He93OleK/68PfoA1ahMd9WRC4xzne1T7Dk0I7xTb1FKko1nYlKf2vzbdX/I9koqgSvN8wBI5yjfWuEBK4BzVBun82hAIIAIsFpHXhkgYIO9lWxyiSrUMXit3kRjVRcTk/ZGC6pRmUyy2aJ3Mtmewy72UT0oQK/RdDbbnbR5BneHXm37v5/DzMsiZgXmaQkElbbtereThddA1WayPbfIsV2M9sc8XkUVRx1Vg9oqJSTbz4XJ5fm/8wALWYEbNxVV6O93YqGLyLFE05LGVFYJfGB/ixBCCCFKR5kW3Bg1yt+goHfv3iHbR48ezbBhw4iKimLKlCm89tprZGVlkZqayuWXX84TTzwRMn7dunVOx2GARx55hKysLG677TbS0tLo3r07EydOJCam9K9o/1XY2maHEwiM5SBHWKhXcKs5hFddj5OS1zWkgxvA9+7/kkw1dun9rNTrqamSeNl8lAt9IwAYa/1KHLFkPlUXbP/JhntCFVKWpvJRh+2AP5jg71DrjzmnksLn7M3vPxu63CxJVWGhXkkueRzQh3lN/wNDnRar1//SopSbXuY59OIcPvP9ELIvkGXhwsSHxVfu12ilmlDPqBXhSOJMtVpvcn7/A01/5tiLWWtv4nHfq8Uu8QJYzUZqkcwu9hFNFHebN/COr2ApV+Dnq/BSszejnuZczw3s5QDgzxKcZy+lq9me4eaV3ON7jtY0Yaz1K22NZqX5ksutJXo1G9jGBr2NTkZbAA7ow8zSC8OW5RWncI3HSC40zuUL9/9hqvCgznBzCJ9aP1Cf2nxu/ci15gVhpQiijChygp4nhijiKegeGlz7VIRaYC+LuDR/m97NEtYQQzTfud7EZbi4wnO3cyGgOlWooio5jR2SqHJSLwq1MBoFyoqySm9gID0YbPbG9oVnAKZzlCSqhm0XJ26z3uHcjldxHNEFn6UTiCeDTOf+ZWbkJiGR3OcexjK9li9tf3bpd9ZEnnLd5XyvfVg87HuBozp0hUJVKpMe9Jw55LGKDaBhnD2dO7juuF6fEEIIISIr86XBkf4NGzYMgNTUVGbOnMmhQ4fIzc1lw4YNvPjii2E1/IIfA/6swGeeeYa9e/eSm5vLlClTaNKk+LomZ7r9HHZO9AMf7Fy4eNx1O/PspWSSHTLexKCt0Yypei7z9BKOksXlxgB6G+c4GQYr9Ho+9/1IZqUMbKPgBLJt5cb8x3zIOekPLA+MJZrrjIuKXHayRK+hj9EZgN3sZ4lejShd8/XSiNt9WFygenOBea4EAcuh4A6PHfKb/jzr+y93+v5FOhlhv6uFfWdNdBo+HCWLQZ7hPGe97ewPZHEVLkGwh/30CFoGeJg0p3HR1cYFtFANWcF6/mt9QaYOfY8SJyb0e+0P+k60Z5coCFiTJM6jZ8i2xtR1bidSMWTf+UbviEFAgLNVa+42b2Aru5itF/K2NSbiuBiindu5eNjLQedvSyCDTIRbqiNn0QaahzRTDXAZLnJ0LlPteQCkUI1t0TPoaBTUCL3RvJSok1grtqVq7NwOdIKuqOJIIbxhSYbODNsm/pwt+WVDAA7p0IuzwUHAaKLoq46vvM4ws6Dp2xK9mo99Y0P2j7OnMzuoUQnAZnaEZP2Cf3UKwCx7Iem66LqzQgghhCg5SbcqJ4LrAwZOxi80zqWGqs7P1rSQLAuApqo+0SqK3+xFzrZ+Zjfchpu7zYJ6YCtYz4wP/sfBpnvIrZ7F7Fd/4KGmN3Cfexj/NO8KWZY03BxCZSORuELPFTDT/oPzjd7O/fHWjD/zkkUExdXUutJ1/imciTidhDQKMVpy1M5kpv07EF4wPpLt7GG5vc65v1Pv4QhpgP8Esg7+mq55eOhIQe3J36xFdDbbhhzrG/sX0vVREox4OucvRTtKFl9b4Z1ExfELvsASyP6cUOi9tqjv+DXmBYyK/hfNaMBd5vVcbPTjadfd3GBczK3GEJ5w3cENxiX8zbiGm4zLOc/sUeQ8lFJcZRa85zzr+y+79L6wcYWXBu/Xh2mgUgF/JqutS57FWJ6st7dE3B4I6jdW9QCYbs93OrsOMnuxj0OMssbQnAb0UZ252bzipM6zmWqAkf9RNHipdy2Sw8ZKEKj0BWcEripmqX09amEakYP6RTkrKKDsw+IrPS5kf/BFheCl4MHB/xokOVmgPnz8av92XHMQQgghRGQSCCwnggOByfkfqoabQ8jVeYy2/xeWEdjF6ADgBAJjiHZqCt7vugkXJnHEArChzWp+XjyKhF3bePee++hhnIV9eD0Pp/fk3Z29GbA1m6u3uqm4dT53pp3FN7suotlhD42OhGYHrdIbnI5zUNA4QJSe4LptLkyn86eBwQCjW1lNS5QxC5smqj5RuGmnmvOk73UnYBBHrHOiXlgM0bjzg/37gmrGHSbdySHsqjpQ2yho7lTHqOncfs/6mrYROsN+md+sYLh5pbNdmob8eVprFtv+oG9lEqinapGnPUy254SOy/+vgQqp63i761pqqOosif6Rl92P8nXUa1zhOo/3o/7Nm1FPcbfrBt6Peo7Xov7BqKh/kaSKX8Z5ltGaW/IDTR1VK2ZbC8PGVFGJIff3sp9WNKYWKTRTDZxOxyLUNsJrdAZrkh8IHBf0d/YC41we877MUbJYw2bqGDVpYKSexFlCjIp2OkGv0ZuwtH/taIIR3nDsUNCyVVE6tgQFAr34ihw3xDz+C4VxqgKVSXCOXZVKIfuD/2YMMLpjYlKPWlSh4Hd+D/tJy89iBblALIQQQpQWCQSWE8GBwH0c4ibjcs41OvGDPSViF9kmqh7jrRlsx/+4TkZbopX/hLCaqszCqO/ZGjWDq4zBLIr+kS0x03nEfauzrNTzvwvxfHYOl477iG9+OcA7v2zkwfFT8H3Wma4/v8T8r/fw48+h2R9pZODCpGN+lsoyvZbddvGdK0XJ2drmQKG6jFZ+wZ4exllULnTCLcqP8dZ01ustVKcKMTqKb+1fnH1XG4MjLhvtTkd2Rc8mI3oxT7ru5H3Xc86+zPy6bgrFKPe/SAjK6jpf9XZu72Qv6/TmsKzDj33fY2ubDkZL5/1giV7NYmsV4sTtYh/7OAT4Mz+VUvxq/xZ2ISggiapOSYl2qjm1VQrAMTuHHo/HzNuJJoqZ+ndetj4In0OhYOJufYB2qjm72MtivcqpbSdC7dXFN3MZb8+gQW4fxlg/A/6gfoyO4mfb3z26Cok8V6jJy8nSUvnLCuThcQK7FQtlggIc4vApmU95EsgINFDsZG+R44Iv0h6PpkENiA6TTl/V2bl/hILAbgejJd1UB7ayi02EBvd3s99ZtTLZniPdg4UQQohSIIHAcmKttRkz6Nt9tTkYQxm87P3Q2RZNlFOb5T++d7nce5ezr7vqGHK8ZkZDKhpxfBL1AnVVTUrLe96vudQcQGfVjnqqVlimijhxa+3NIQEdX6BqN4R0DxXlS572sD//BDtV1eAre7xzgmZiUFMlRXzcM+57iVMVUErxD9ft3OC6hJGuB/ne/Ra3GkO4QJ3LfeZQ6hm1qKgKsnsSgzJ94qnAE75XaUK9kGMvZQ2jre8BGGFeQw91FilU5z3769J86eXOEjt8WfA3vl9IjlCPDXCChrcZV3Gva+hJmVMtI4lW+XXiVuoNHC6U9VV4iWgOuTQyCuoSBjIcRQGv9obUd4tI+wMs7WjOxaovj5t/40HrP8QTyzmqDc+67qOaqnxK5tvSKKgTGFieGvyeEbDXPnRK5lNeaK2dGoEq6POhInRJvgvT6eJ+vB5zj6BKfiagQvGgOdzZt5O9VKMyFxl96KO60NloV+RxuqoOdFbt/A2liqh1LIQQQoiSk0BgOfGHXo6VHwS6VPXjDetTeuZex0oKasb5sJxaQUeClmIAdDfOorTooE61EFqDbKw9mS5Ge+brpWzVu/hNL4p4DHH8JlgzndtGyId+xfnGiV3tF399wXXZaqtkPvX96HSTbklj3rA+i1gnsJ5RO2zb/a6bON/sTV2jJj3MsxjpfgggJCMwKmipaSbZHCEDn7LCGk3c53uO1NwezLMWs1ivYi8H+Mb6ReqE/QmL7NBakAf0YX7UU0KW6AULLOvbyV6uMS84afMK/vsy114csi9FhQcpU1R15/YiLYHAwrbqXREb/JhBddiSVVVqkUxVoxJdzQ6YymSt3uwEf4cZl4U9/mQJbhgS6ARdMUIt4bVsOmVzKg/2c8jp/h1YHeDCRAOZQStFmqmGRTb9OZaBZg/n84WNTbQR5Xz+8OLjIEeYYf9OW6MpHY2C+rFuXCHH8Sof8/VS0shggj0TIYQQQvw5EggsB7TWbGCbc7+Vasp4ewa/s8zZ5sLlfBAEOEe1cW6bGHQyCu7/6fnkn6AEggvBJyyr2MA43zSnLtVvdnjNKHFivrbHO7cTKci2SCCehkadspiSOA3soiAQmKKqM58lzv14VYG0IroGBzo5RnKva2hIBllwdo+tLSrk1xcNnBBm6KO8aD4ccgwvPg5whNH6eyejJJscp36gOH6Fm8J8Zv0Q1sk5WDqZXGL05yv3ayd1Xt2Ngozzwu/5lVRC2HgvPidTcIm9WhqGFLJeb3Vuaw3ktEFndcHW/uBKTZL4MfodNsVM5X9Rb3Gp0Z9PLH9HVwOD191PHHdjiD8jsDQYYFWgczDhGYHrdOQGKOLEBHcMDgheKRAwSPUM23Y8Cv9+V6dKyP6mqj4b9XaW2GucbcG1SQF2631OIHucPR2ti+9kL4QQQojiSSCwHNjB3pAPd3/oFSH7B9GTFqqhcz+OWD5zv0xn2vOy6++84nqcCir2T8+jcFZRHBVCMhQCRtlfOkvVtuid7NRF160RJbeFgqLgsRR8P5sHfe9F+ROcEXjEznDeKwwUG/Q2J2gXrDIJRCl32PaiBAeej6psauRndLlw0UjVpbJKZEVQdrJChdQIiw7qPv6B9Y2cBJ6gNPsorWlKN9WR2jqZD63vih1fkyRGu0ce1/f6RHTNb04FhHSqB6hUKFMU/A0EOuRnD2WQGdL5VMA6e7NzWx0Zjr17FHrvy1i7X0Nrg8ZGvZDxf/e9xFa9k+6qI3eY19LeaHFK59tQ1aGzakdr1YQj2r8aoaIKrxEYXOtY/HnBvzcJEQKv4H8vvsD8c6VDegRl/P5mL6Kpqh+y/w+9gis8d7MnqCZ0LnkhY9bpLZyNv2HdJr2d9RIUFkIIIf4UCQSWA6vsghPsisSxQBdkAg5Rg4hWUazQBWPa0Jy6Rk1mxHzGXa4bGOG6ulTmYYQtL9RMj/o0bFwuecQEXQ2eU2ipmCiZbFtz885smq3P4N69Rziqc519nqAP2Wer1mUxPXGaCA60/85y57YGDnCYbHKcYGBgOX/1Y3SDLSw4uydDZ1IDf91BDx426m2s11tZozfRUjWmFf5lgsFNjA6SRifaUItkaqgkVtrrju9FCnzaxyJWsoJ1ZJHNV/Z4YokOW4IX7HXXE8SqmJM+t6qqkrM8dIlew1Fd8L1PjJARuEcfCAlWyfLgUCvzl9cC2OmXF+zIbQOe+jRWBTUWJ1tzGGtPxoOX9XoLT7juOJVTBcBUJvs5xAq9nkV6JVrriM1CIgUHxYkLzggsrqbknw0MN1CppFKDVjTBwKAL7VD5/zNQGBjsYl9Ik5Dgi9cGiq6qA02NgsYjwd2uhRBCCHH8JBBYDgTXhaquqoR0avtG/8IPekrI0r82ZpNTMq8MMqmnatOE+mH7gpcyy/LgE/PCgTzGpHvZ7NWMOmRA5gBnXxoFddZarG7Fis/3s/rbA6z4Yj8rv9rP+p8PY1uSdVUeBGcEbtO7nNvB7wnZ5BBLtHNyVnhp17EkBC0NPkqmkxEIUDV/ifFiexW/uj7iSISlyGlkcKk5gF3sY7I9h7H2lON6fgG72O+Uf6hJEk/4XmWl3oAXX8i4Gvi/NzcYF3O+69TVDg0sH7SwmG8tdbYH6hQG26sPON2kQRqGFLZGB9XSc+0BLMAGvGAeokl+RpalLb6xCjqEP+9+MOJS7FOhTn7TsaNkkUZGxKBfceUIxPFbUYILKlWp9KczgpVSdDRaspL1TLJnc5VrMDkxK3jMGIGN5nzVi+/dbzE56mMaklrwuPyLxzaauXpxyN+FX63Zf2pOQgghRHkngcBy4A+7IMsnVkc7t6OClttVy6/BBaH1ek6G4A93j3tf4ULVO2xM8Ae+wkvFRMns9tlODqbCBl/1/NsFV9sbTmzFro6V+PGGDXw/ZD0/Xr+BH67ZwDcXreGH6yTrqjzYFZQR6MFLDFERs8R6qU7O7SR1fIHA4OyeDJ0VEghspPz1KY+QQYbK4hHXrWH1oQDOMlo5t8dLNshxC15WuZv97OFAxHH9VVdqkUwr49RcEAroY3Smk2pLElVDmkQlqvClwbv1/tCMQAkEhjigDzu3VcqTqNiFuKM3EJvyNH2jmjndWRfoZXxp/0wr1Zge6iyuMy4qoxlDHVXDub1d74mYEZihj9EJWZSYR3v5zV5EXISmLMGCA+5/RoegRiBL8HcvTzQqUotkephncZ7ZE6UU95nDnHGFy8ms0Ou43riYlqoRM/UfbLS3IYQQQogTI4HAcmCNLqgXFFzrL7gmTDdVUMy5pdGE3HQf31yyhleSFvBqyu/Of0c1W8yWqWl/aj6BD3cuTA5ymLNdbSL0JPWLJ5ZE4tkdVDtGlMytlaNw539hlXEU4icDkBBUc6vNF52L/Nqv/voQ3uzwwuHizBKcEQiQi4fqVCWZqiHdpW92FSwxrH6cgcDiMgKDby/WqxjhupofXP8NO4YHn3NSukyvZYfec1xzKO+CA4FK+wv0G4U+AlQghvei/82mmKkhzV5OhbONNizQy9jPoZCLP5EyAjfobSSpqrSlKR1US0wMfNoXNq48ytY57KQguK/cu1A1H8CqfTN5cTOZby+jjWoK+DvJ+7BYqTdwo+tSlCrqr8HJF8gIBP/PaqRmIZlkn8opndF+sqdykCNkHeNreonRv1Ser0OEDN57XUPD3mvOd/V2SlDYhDYBWqbX0lClskpvBOBD69tSmZsQQghRHkkg8Azn0z52BZ0UBHcTDIjCzX59xLlvaoPZz2xnw7jDZB/wkbXP6/z30PocvrtsLbbvxJeNBk41fFhMtGczz1qCm8hLTzLJYb5exkR71gk/X3l1TgUXaxpX5OtUUHWuQbn9AZ8EqwY6YzA6qwt5jSJnWCgD4mu4ccXKW8SZLlIznt3sYx+HnBOx9qpFSJZg0nHWCEwIzggkixoqyblfKSjQEzhBPNfVhW6qoIEE+Jc7Dg4qWj/BmnlccyjvtgcFTpewhnV6C7FEh4y5whh0qqflqKmSaJifHfqHXk6u9tcxjZQRuCW/yUEToz6L9Spm6t9ZpteeusmexrYGLe+PpJ/RhRjl/76Ps6cD/k7B5xk9TvrcilOHQoFAFZ6pJoHA0vO+9U2Jxl1s9i2V5wvOCFxsry5yXC2VTGrQz0IwG00jo56zmuVT6wfnfUIIIYQQx0fO8s9wG/U2rKCrqsEfpA/n1wpsphqwFv8V1pokMcg7nC/3Tgqr0wWAhryjFpbHDt8XJPqamUQPX0vUtbOJunYWUdfMIura2c62rFsWMPByfy2Yz+wfqUVysceTpYAnppbbIKbCUrTp/15rO4ZdO0eiDzyO3vsy625rxjn31qTmOXGkdMj/1zGOhudV5tpJLcs0Q0ScfB7tZR+HIu4LXpZ1t3kD+4OWGyYdZ43Aiiq4WchRpw4dEBJgXKwLThAHmN1DjvGLPZPBRm/nvrwnHJ9IHVezyHFux1OBy0op++dEBeoEevA63e0rRcgIzCSbI3Y63Qt1IxWhDSAiOT//d2ijvY21+asFOqm2x53lW9pCMwL3ROxim01u2DZx/NbbW5hp/37McS5MqhiVSuU5q6hE6qnagD+zr7gM3n5m1yL3LbNXc6nhr3d8iDTG2pNLZX5CCCFEeSOBwDPcdr0nZGlVoFi8ielk++zR+zlCBuBfwpdDLjP+Nh4dFTnYd869NXBXMIt9XhWfgqpYCyOpDUZye4yU9hhJbZxtVRNa0L3i+YA/IHmsk5Bp9nyydU6xY0RkE6wZBXfymuHzpTh393m60v+V+ty8oB3DF+X/W9iOq8e3IKm1dGg80+3WRS+5D1wIUCguNftzgIJA4PF2DQ4+qc8gi1RqcI5qyzmqDbnkOYHBxfYqtPY/b1fVIaQpye/2MlrRmEbU5SzVimydE9JdVhQvUiAwWCbZdDBLpx7YiYoU2ItWUcQS3rl4qj3fCRwGjy/vNudnS0aiUAwyewKhgfQLgjJty0pojcDdxEdoFtKA2qdySmesWfYf9FfdjlkfMJlqpfq8gdIO2eSwTm8pclw/o0uR+36xZzPcdSVxxNJDncU8a0mpzlEIIYQoLyQQeIZbqzc7Qb6YoAL8gYAgwAEKlgUHiozvPnsrgzcnM/S31ty6rC1D57bmloVtuXVpO/q/Et7l90QMdw1xbhu6+B/FHHJplNefyz130TC3L6/7PimVOZQHs3RQ12X3LsCLv4OkRaNoTxnNSpwOdrHvmGOSqEKsiglpQHC82UPxVHAyDI/qTOoYNVitN/C7Xs4Ue66zbCyTbGeJ51lGq5AO59nkMlsvpJ/RlYV6Jb/pRUy15x7XPMqz7ceoqViblONe8l3auqvgwF7B+1YlwpcH/2xPpblqSBUSAZhjL8LWxWeqlwdbigkEnqPakKz8wZ1ldsFS6sHGqesOXZTaKsV5j9iud4eUEwhoZzQ/1dM6I31tTWCynnPM+oClHSAOWR6si14e3FI1LnLfJr2NjnYLqlGZ2Xoho+3/SRMZIYQQ4gRIIPAMt90uOPmLtMQqmBsXh0gDoItqT4eUpqR2SyC5TTypXRKo0TGe5LZxpbZctJvqwECjB3WowQKWRRxzidHPuX2YNDJ0JrvYJx/8Sihb57CBgs56ynUAVeMhqDCP+IrT+W/NyLUZRfkQqT5gHWqQEpQJ0l75u7Pu0wedbce7NFgp5WQFZpCFS7noYrQHYA8H6KM6c45qg4XFz9Y0+H/2zjO8jSptw/eZkdxbnOL03nsvJEBoIRBKCH3pEJZl6fCxCwtLL8uyS+8dduklLAQIJaT3OL336tiJE/cmac75fkgaj5pjJ7EtO3Nfly6P5pwZnbGk0cx73vd5gHgRRy+Lg7kHgzeNz5igjzXXTbVmu9pERCl1WHOVIVr9ZgMCdBRtTJmIhXIFbuUGwusErpQb0ITGaF9W4CEKWK+21t1go5TgjED/r/UpYiR3Oa4DQCrJd3I6bWjJiWIoPUTnOh5lKDHCSWu82qG71D4SiA8xszlc4Mrm8FQoF4vVKgA0BOmk0ZS0kH7tac2t+pXH9LX9vyVQqQcbjk6ibdgsYPCaWa3Ttpq/A248/CrnHdNx2tjY2NjYHA/YgcBGzhaLOUikC6vudERDoyedSSaRVJKZ7Lj4qF7Xs+o9PJkv4/ppMq6pV3kfP00213kyX8ZY/T4DRE92sS9AjzA4zJhKMk1IIQYnySTShowAF1KbyCyUK0Oc90TCUrRWfyG+xfMMdoYX5bY5PthrCQQqTzPk7nfZse1j9u//E8qXpXuW74YrsDS45npiyb4MnyJfEN9a1vm98TtLfDenrxr/NfWjgoNT38nf6S46kuQraZsmZ2Mo29n6cORwkHK8ovqRygEHR0EgUAjBeO1Ehop+9BHdWCS9E0ThJrG2sAuP8tjlwUFsUbsCnvt/WTep7ZyuebXXdqi9FFPKXrJJEylRowXbzlcefIBDlFFunjP8FGPLgxwtS9UaKvBWAkgUh8gP0Ar1c5o+im5ax2P62oO13vSnByPFwAAZiGB0odMrKDht1aw9w3WdeW4A+MGeELKxsbGxsakxdiCwkWN1EAyeXQeIJYZfYz4gJ3YB5+mnUUQJf9b+wCVH6R7pWfQMntl/Q278Ern5W+9j45fmOs/sv+FZ9ExAdo//Qs96abhALme0GEwehbhw8zfnn9gaN507HNcc1fiOF6zldRB4MT1WDI+aG0Cb+mGnRTdOHfojuLqBisVTdBaUeMsFvzJ+okv5aSyR3kCdjnbY7OJw+IP3hfgDgZV6cHNYan7v8ynic+NHoFJTyo+BwadyKmdoowE4aOTz7UeZzH9mDwW7bffISFj1ASNlVQ0W9R8IBBipD2KpWs1itYppcg4AaWEyAj14WK+2BgQCM+WaOhtnNCKVDPhOW3nW+VeSfE68a9Vmc31vS9ZtfWM1DNmt9pkBfz8lys4IPFqCrwkAc5LASm2cD9JECs20JixUK1ikVjJPLYvYt3dQebB1sriMcjLV2oAJoarMR2xsbGxsbGxCsQOBjZwcvOV8GsKcBbYySPQiQ2tGskgkRSTRhgzStBScom5KRoeJflWWGeZwkGFaf/O5XQpYM+aqwAwZ68X0ifqwuh6OTZSx1bBkD8n4wEbpvcmSSrKXHPrRA4AbtIuPKIDs1/wqoQxDGQwVfYkjFiDA2RzgPs+/kEoySOsdsp93PV8xXvMaHpz6wCTWX+tmxt928t7QlZTl2TeD4TicUQgQ9n9dH4zXTjQnLKbKGQCkRgg8Z8q1DBA9OVMbQxrJfCd/N8uJj0ey2I+b0OM/RYzgAosjtDUQ2FeLrMdW1wQahuwLyfy3XYOPnuCsWf85WKnAc3ptSQVcpU80l9/xfBGxX3U+lyO0AYBXFmCOnQ1sY2NjY2NTI+xAYCPGUAb5FAHeEpBiQh0200WauXyH45o6z7bThMZZujfzSBG+TCRexJrLP1qcDm2qRilFsko0b6pjcBBP5f/Smkljc3yymk3mspb2MQhfiVjMJkia4c3+01LMCYI2ZNBFa39Er9VX68FoMZgTxCDyVRGxIoZhol9IvyQSOMAhLnDdQkfaBmQyd6ItQ7W+dBMd6C46MeJbb0BQSSjZ7yZ7ma0dGo7DBQI7iDY0E03qaDRV01ykM1IMBLxmV1vlLpqI8IHAZWotDuEghSTyKSKfQubL49dFdLvaE3b9Hfo1AcH7tXKLuVyVMUNd08GSEbhTZYWUBpfbgcCjwqM8LPB9P2JwkkEzyowY5J43UNtmI/e+hJIJOHHU2ufiAu0MU5NwivyVXJUXtl9/0ZNhoh8pJOHAQSrJZtDSTx/RlcH0oZ/ozr+Nd2tlvDY2NjY2No0VOxDYiMnhYEBwLdxsej/RvS6HFJZzNK8zXbjSZYDVcpMZMFilNkYsfbIJZB8H+EHNND8DLjyU+UqAkkiIqpIwm7onXxWaGcMAetxmRMeJiHaXI9regNBKmaSN4+uYV9gaN938e6QTBcWqhHlqGfPVcg76nMqtpb89RGcu186h2Fe6ukptJIdcWtHc7LOdPUyRv7JJbWdV7Pf0O6EtQgOhgyNeo1mvoKxGGwBy1MEq2weL6MgG9GN1K/1BziQ1jGswwHLpdR492yIx8aOcVatji2a2yVDHYAc64/QxAev8GYFOHHQTHepkbNXBWhp8QB0kWQQFApXtcn80bFW7zWCaC7f3/J9/OVT0BjQoHwQFF9BPdCdWxNTKGOJELFfp5wOQRDxvej4L26+P1pUlajWFFOPBQwFFOHEE9MmgOUWihNVqE7/J+bZWoI2NjY2NTQ2wA4GNmL0qx1wWCFyWkiGlQMlYBohe9TG0AE4RIxggeqKF2IR4masyA270fjKO3xu9mhApOwRgjBiCJuyv//HMWrUl4LmBgdDKEDG7EELyJ3E5jzhuP2av10I0NZf3+4xHbnZewXzn5/zqfJ+XnX9nol7pEn6AQ4x1XcnJYnjIvn6XiwCY8FZXTrivLf2uasFVM/qS3Do2pK8NbFehASI/zUiLuuzgCdrJ5vIPcmZYjUDwBotdys2Z2ono6IC3nDiSCUFjJ9w5v5NoF3Cudyk3m3wmYj1EpzqTAakOGTSjOenEEctOwmUE2oHAo2GZWksueeakq0CgVOD7f6d+I286H6/VcfxRu4zztNMooIR/G++xK4yjeYZoRltaBqxzBZW972Qvf3f82Xx+r+cZ2zzKxsbGxsammtiRgEbMHll5cWW9oFaeZqjd/0Vt/51/7hpEsVG/N01JWiIJxOPBewHn8N3QgXfcXUR7RqoB9KYrJ4qhLJAr6mmkDYttEW7+44jlZH1EHY/GJtpYJyt1wqzfOT+6ptFZtDtmr2cNBB5Q3kBgB9GawXofTtSHcZI2jBO0wWYfDx6KKKGr1oGhoh9NSDXb/G7oMUk6pzzZgfPe70abEeGDRTawW2ZHbMsln56iSx2O5vD0EJ0ZLPpwghhEjHKSqEKdjhOI4wwxmrYVJzK04gKG0heArWoXm9T2uh5yVFBIUch02jgtMBtws9qBB6+WZrAhQ33TVEvjAIcop4J8VUgX0YFBVGaruuxA4FGxx+cSL32arAqFSPsSHPsBSHAe5J70dPppPWp1HJ31drQRGXjwUEoZf3E/E7bf4CDd0mCd621qNxdrZzFM9KM9rTlJDAvQv7SxsbGxsbGJjB0IbMT4Z/0BEi3ueyr/CnB7db6Wl8Xwfn79X1xbM1L8AUGAIkr4XS5A1zSKKWWOWso38mcKla0FdjjClYmB1yFwYBRkgtrUL9aMQOt3DuB27Sr+7bz/mLpKN7eYAh2IUKraXKTTKygo5cLFUrWaPArMdf4bWpvqsZvQjBsrwTfc9Y0Qgh6iE/PVcn5V8yj1a1dacOEhV+VRSDFZ7Cdd8waKm5LGTLm4roccFcyQi0KUdscGZdSusQRK+mjRJQ+Rbgn2H6KACipYzjpzXXBGmE3NsFaJ+BGO/Yj2lyI6XMCTnZbQwlE3twUPO24lA+/kUJ4qYKMMDd4PPoxhyXa1ByEEF+nj2UUWH8hvWHqcO4fb2NjY2NhUFzsQ2IjZoLaZyzFWbRVV+bYLoJ4TAgE4URtaZfsmtZMJvvJgNx5+k/PrYFQNm6rKAaPJKdKmflhmrA27Pp00/uG895i/XgtRGQj0lwaHI7hMNYfQoOFB8u0SsGoileSQJYgaTCfRliYiNWJ7fdFXq9SvPahCx+/Bw3Ct0mxmtdxELzpzkHw+N36skzFGE0qpsKXBwdlday2ZwH2jQCPYSgLxpg5cviokmUDX4OAJC5uaES4QCCCEgXDs5yx9dJ2NJU2kcK9jMm3IYJZawltGqFbgENG3yn3sVFl4lIeOoo257kAVvy02NjY2NjY2ldiBwEZMYGloZWaPSPsEHN6MmoFxOtc1qR1R6JowUhsY0SwEvOVME7Sx5vOpxow6GFXDJpJGYBrJNLcEZWyOP5RSrGRD2LZH9NtqRT/S+pnzlwaHY0zQpMBmuYNYAs9RBpLddlZgtcglzywF1MOcY62GLdFEH4uZUbY6QDc6hvSZ7LiE07RRAOwhm0K8meIL1YqIbqSNlb3kUO4zg/ITg5P2olXAuhlyIcNFf87STqJ/LZeA1hQhBE3wOkTnqUJSgsxC/CXNNkfG3irOmRoaHSwBtbrgKn0i+30TPVPlzBBtz0FhMpVTSTZdhz142KNyqv3bYmNjY2NjY1NJvQYCn376aYYNG0ZycjItWrRg4sSJbNy40Ww/dOgQt912Gz169CA+Pp727dtz++23U1AQObsB4Nprr0UIEfAYP358bR9O1JGl9pvLBRSZy8KZg2h/GaM7/Y0FnRNJ1Y9d+Z8frUlXRHpPiEkGR4L3EZNsrhPpPdGaVN7opYgkBoqeEfe3We3gJG2YqXX4s5yDR9k3BVURKSOwr4iumz+buieb3BC9JT9/cJxbK6/Z3GoWUoWLbXBG4Aq1ng60Dum32SJ9AN7g5gK5nEy7NCyAfeqAuWz4AoJWDld+V1/0tmQt71J72cyOkD77OcSN+iUANCGFQkoArwbaNDm7TsYZLWyWO0PWOXEEBPVXyg0sUatZrFaxV+WEmDFEA2m+7NR8QjMCo6B4oUETKSMQoA0Z6CJUK7Y2SRXJZjXITrWXdUEGVs1Ek5DgpAs3B8k3n29Tu8mgmfl8vx0ItLGxsbGxqRb1GgicNWsWt9xyCwsXLuTXX3/F7XYzbtw4Skq8F/NZWVlkZWXxr3/9izVr1vDBBx8wbdo0brjhhsPue/z48ezbt898fPrpp7V9OFGHtRzMGggEEELS29H8mGqAWYm56Adir1lC3J/3EHdbjvfx5z3muthrlhBz0Q8B2wRnAlnZpHYQI5ym8PlB8pkvl9fK2BsDRaokYvnlQC1ywNXm+OBnY07Y9a1pQZIINWY4FrSwaARWdbPWRmTQU3Q2nxdTGmA04sdqCLFb7WOYaxKnuK7iMc+rx2jEjYPNckeV7YMPU35XX7SjJSm+QNDWCJMaB9QhJmhjecHxACAo8gUCAX4wZtbBKKOHzWEMUloQ+L15x/jCXJ6sX1xrv/9HQ7ovI7CIEhKIC2jz4DluHaGPFpdyh5VZ8DOgionY2uQc7RRzeaoMrfQYLAKzAssoD3i+Te4OzAi0S4NtbGxsbGyqRb0GAqdNm8a1115Lnz59GDBgAB988AG7du0iMzMTgL59+/L1119z7rnn0qVLF0499VSefPJJvv/+ezyeqrPBYmNjadmypflo0qRJXRxS1CCVpJRS87nyzaVbL/v7R1lA6CQxjN6EFy/frvbgUm4maWdwkhjGANGTT42pdTzChsOOoLJga9l1bxFdAvE2dc83np/Drm8lmtfaa8aLODOj93A3a00JPF8HlwYDrJWV2SOtaUGBz0DoFzmXHXLv0Q630bBYrqyyfZAWncZBQgjzXLWH8CWNB9RBnMLJGdpoMkRTEogzz3U/yplUqPo3wqorNgZlyAJ0Ex0BcCs3RarE/M1MJJ7L9HPqcHTVJ02kmMvhStmLLdc1NtUnOBsw+JzaU+tMfXC2RfLlR2NWSPvp2gl0pm3E7WfJRSSTaB5PJCMqGxsbGxsbm0CiSiPQX/Kbnh5Zv6ygoICUlBQcDkfEPgAzZ86kRYsW9OjRg5tvvpmDByNfHFRUVFBYWBjwaOjkqnzzhsgaBNLQzWDgCG1APYwsMiP1gaxjS9g2A4Ptajdn6GPIVGtYqTbwpfyJIlUStv/xzragDBppKQnsYxuFHNdUKBezWBK2bbQYEnb9scKfuXG4m7XOWjtzuRlNwgcCLe6nutC53nER4J30eN/4+lgMt1Gwhs1h18cRS1fRgVSRXMcjqj7Wc5WD0LLFHN/nqIvWntkxn3C5fq55rksikfc8X9XNQKOANXJTyLqRYhAPuV9kgvuPPO1+w3TdvVSfQIpICukfDaRRGQhUYRIW/TqQNjVjL4GBwGBpiO6iU10Ox6Sj1oa+ohtOHCgUB2TgJNFgrQ/bCJzYTCQeAIHgRzWLbWq36UpvawTa2NjY2NhUj6gJBEopufPOOxk9ejR9+4YvVcrNzeXxxx/nj3/8Y5X7Gj9+PB999BHTp0/nmWeeYdasWZx11lkYRnjHuaeffprU1FTz0a5du7D9GhI71R5TD0qz5AEaGCi8ekr9iS6tuGaiSZXZapvUDlJEkpnJUEwpnxk/ROx/PBPJKATsjMDjnSny14j6gBP102v1tf3lwXkU4lLuiP06icoMkFzyyCE3pE9wsPtafRK6L1j0vvE1ZbI8ZJvjke0y/LmgnIoqdVmjgb6iMhAYLhhszSxNEUm85HiQkWIg4JWPeMx4hRJ1fGSQbVDbQtYlEsc/jbeZLZcwQy3ChZsbtUv4P/3w8ir1RbrVwTpMGXCBLApZZ3N4qtIHBOimdaijkYRynnYaAsFitYrZKnCSaqDoRTNLhnhH2pgBbYWihDL+6Pq7aTJzgDzbUd7GxsbGxqYaRE0g8JZbbmHNmjV89tlnYdsLCwuZMGECvXv35pFHHqlyX5dddhnnnXce/fr1Y+LEiUydOpUlS5Ywc+bMsP3vv/9+CgoKzMfu3eH1iBoSS+Vac1mFkdhuRjqaVntvv+unG3B9M5Hyd/tQ/mZXyt/qSvm7fcx1rm8m4vop9GYk2CjAit8cwC8OD/Cu8aWtGRSG4CCJn/a0JjnIidHm+OIdz5dh1wuEGUSpLayGIblEdnXtLAInY4I1TsE73oMq33zeSjTnGu0CThOjKKeCV+XHRz/gRkB2mCCqn7p2Ca0p1kkLPUxGYHD2jy50btGvMJ/nUcjTnjdrb4BRQoVysT/M+/yt/I2+ojsagjYig9a0oKvWISDjNtqwZgS6RWhAp6rzhk1kqnIMHi760536yQgEb3WKP7g3V2YGtAkhOFUbaT6PEU7cQe7Rh0Q+u9gHeKsfrPrYNjY2NjY2NuGJikDgrbfeytSpU5kxYwZt24ZqgRQVFTF+/HiSk5OZMmUKTqezRvvv3LkzzZo1Y8uW8GWnsbGxpKSkBDwaOkvVanM5nFPkJH1crb6+3DMXuXM6FO2B0hwoyYGiPeY6uXM6cs/ckO2qCgRu8gUCB2q9GCr64sRBLDG2S2gYclUegsC6Kh2dvnZZ8HFNjjwY0QykKWm1OjkABJh+VFXCZc0IBMgOU0q8n4PMl8sC1t3quJIZahGFFPOU5w12qX1HOeKGzUGVHyKub6WjiKy9FQ301ryBwJY0D1saHM50poklo8yJg8VyFRvk1tobZBSwVe0Kme4TwAKWs0Zt4hLtbL6KeZltcb9zh+Oa+hhitbG+f64wGo926eeRUVVGYJbaT1Mtre4GE8RIbaApYTNXLg1pv1A701zOU4VmGbCf9WprwGSR/RmxsbGxsbE5PPUaCFRKceuttzJlyhR+//13OnUKnZEsLCxk3LhxxMTE8N133xEXFxdmT1WzZ88eDh48SKtWrY7FsBsEq9TGKtvP1U+psr2+qNI52OJ+eat+FYkksEit5G35RcRtjkcMZTBdLgjJBNXRuFqbWD+DsokK5qglTJOzw7ZZnXpri+YBzsGRdQKDMwKLKSGDUOfg4OyR3lpXbtIvA6CUMl50f3g0w23wLLNkhocj+P8cbTQX6bSjFdkcCDCJ8E9yhDOdSbNoHjrQma2WcIfnyUadOb4pjGOwg0od5XP1U+tyOEeF1SyknIqQdjsj8MiIJBEAMFSrX+fwVJFsuhavUZs5pAIz+s7UTzSXD5LPVfr5Ve6vKld6GxsbGxsbGy/1Ggi85ZZb+O9//8snn3xCcnIy2dnZZGdnU1ZWBlQGAUtKSnj33XcpLCw0+1j1/nr27MmUKVMAKC4u5t5772XhwoXs2LGD6dOnc/7559O1a1fOPPPMsONobCil2KJ2BqxLJN7UCowjloEiOp0iW4sWtKaF+dzqGmi9KThXP8UUhf/SmEaBsnWD/KxRm8OWUhpIRuqD6mFENtGC1Wk3mKqC8MeKFsISCCRyILAZTUgiMHOxJaGOxuGyRx523Ep7WjNKDOI/8lu2yl1HMeKGzVeen0LWWc+pwZmX0Ug74Z3A85cOQqUBVjjTGWtpqb/fLLmYL2To/6KxsN7YGpIBbs2gHCR61/WQjph0KjMCCykhwWcM4SdX2YHAIyH4mtDKYK1PHY4kPP5qEIVigVwe0BYnYkkl2Ww/lZG0sEwM9aJzwCTTgSp+W2xsbOqeLLWfB9zPcbnrLl72/Ke+h2NjY+OjXgOBr7/+OgUFBYwdO5ZWrVqZj88//xyAZcuWsWjRIlavXk3Xrl0D+lh1/DZu3Gg6Duu6zqpVqzjvvPPo3r07N9xwA0OGDGHOnDnExsbWy3HWNRvVtpBysBLKkL4MsZFiIA5RtetyfXKCNthctpY1L1NryfPNFCeKBP6gnwt4M38+NabW7SCjmHDBEYDzxKm0FM3qeDQ20cQ6Fd5BFgjQYaotmlsCgZHKt9zKzVOeN0LKv9JESsi65Wp9iHN4mkjhRv0SFqjlFFLMe8bx4xwbzGKLRIQfJ15pDR2ddqJlXQ+pxnTXOkZsC2c6Y80o6+HLcm1HK9bIzY02K3C2WhqSAe7/7WxCSoMI+Pqxvn/5qpAUAjVt82z9tyNiHwcitg0W0RMIhPDXMH7DEIViH7kBJnhtaBmQHWyXBtvYRBcu5ebfxntMkb8yRy45/AY2NjZ1Qr2XBod7XHvttQCMHTs2Yp+OHTsG7Me/TXx8PD///DP79+/H5XKxY8cO3nrrLTIyMur+AOuJOUHlcsGcoo+oo5EcGWNEVYYhlbPak/WLzeX3PF8hVagW4vFIcLmknxsdl9bxSGyijTVVBAL71IGbdHMOrxH4o5zF48arbCewlK2daBUiAi+RLJQrQvZxrWMSTl9p5IfGFCrCaI0dD4TLuvRnUrcXrXCKmunt1gfdRceQddIyQRRcHpxKkrkcg5MRYgC72cezxttVuqk3ZFaq9SHr/BmUg7U+CCFC2qOVJpaMzkMUkCySAtqDy0ZtDo9buSmiJGL7IK3+M0atE8DhrmGsMgbL1dqALMbg85xdGmxjE120Ey1NuYrG+jtsY9MQiQqzEJtjS6RAEHgvsk8Uw+pwNDVngN4zYptV9L2v1p0rtPMYK4azhs18aEypi+FFNUqpsO9/GzIYqw2vhxHZRAulqiyim3Qi8TTVmtT6GDIsZiH7w+i7AbxjhHc11tEx8EpCxFGZ3f2rMS+kb3ORzkTtDMCrKfaJ8d0Rj7khY73519FIJckMEDWULLFuYQKBCsVIMZD+ogfZMjDTySmcJPrKSfMpZLx+ktlW1W9jQ2WfOhASILeG/RpSWTAcPiOwMIzshU3VZKkDxBA+6J9OKk1FWt0OKAzNRTpni5MZIQZQRElIpq/fOAhgjdrEKFEpc7Kb7IDS+KpkJ2xsbOoeXeh0EK0B2KZ2N9rsfBubhoYdCGyUKPQwDosAhRQzJAr0YKqij4jsbDs3yCX0Kn0iM9ViJJIHPc9zUOXX8uiim01qe1gB/X5aDzRhf92PZzaobSHlg3461ZFpRGBpcOjN2ja5m19laGAPvAGA3r6sRb9eaFPSeEd+ETYY6M8Y7kJ7/uJ5lpnG4qMef0PDbdHVM5AUUGw+j3ajED/hMgIBFqoVrFIbyWJ/SJtfJ7BAFQWWHKrwsgkNmeVhDGGs3/Ih9WwEUVOsGYF5qjAkI7BARc5sswnPJrk9QGPTSncRatJXXyQKrwHcBrWNzWpHQNtoS8bgDrU34HOdR0GAtvR+aQcCbWyiDf81RwllYe9TbGxs6h47MtDIKFPlfC5/NDNngukiOhArYup4VDUjRSSRQlLYtuVqXcDzsfpwLtbOArxucv/x/K/WxxfNRCoLn6CNrduB2EQda2TksuAhdaQRlU6qaeCwXK6jTAVqmX5lTIu47S6VxdnayQHr8iiklHJucv+dzuWn8qKn0iX4JG0Y/3X8iz1kU0QJD3lewCWPnxLhgzIvJOzrF9yHugv+Hi2dRLuIE1sAe1VOyDp/Vlk+RQwT/cxsqMaYEZgZJhBo/X9FgxFETYgXcWbGbz4FIRmBRZZgtk31WM66iG3WQHl901ernAReGyRjcaKoNLM6QB6DtEDDu7YWvdOsMOcEGxub+sVahRCpOsXGxqZusQOBjYwdam+V7aPF4Crbo4WOEcrWdoTRlnjGeS+dacdg0ZtHjZeP66zA9XILXekQsv4c7ZR6GI1NNFGVUYhVn6k20YTGO44nGS76k8NBznBda5aAKaX4yPiW/qInQ0SfEJfgXWof5+iBn2OFoilpjBUjyGI/z3neNx3phBCcoY/mRDGUJBIooYyrPPfWyXFGA8vD6MZZS7MbSkZgjHBWWca8R2WHrPMHPMsoRyAYJvoD3puPcIHDhkymWhOyLoFYhog+jBFDaE+rehjV0eHPCsxThaRYgtcAxZTWx5AaNBvktrDrnTg4VYyq49FExloNEuxw30RLNTXGyignVSXTxOIwbZ08rsoYxcbGpn6wXnPYOoE2NtGBHQhsZBxuluU8/dQ6GYej77Xog29BazMa0WoYouVwtDajzXX64Ftw9L024vb9Rfew64sowSM9AetaixZM0MeyTK2jjHL+axy/WYFL1Gq2sDNgXSLxtNKaR9jC5nhhrdoSsa2fFv77VhsM1HqZ2R4dRVteNryBu/VqK1vYySq1gRSRHKJpeYBD9KErLUg3Az0KxYOOP9NC85Yc55DLIot5SKpIZorzVWKJZa3azK9yfkgWYmNltdwYss6qE9ZQNAIBuonQyQ0/4QJ7Taw6cxQGZD3Na0RZgUoplshQZ+gSyslUaymipEEZhfjxZ3TmUUiKCMwILFVl9TGkBk24CVQANx766pGlWOqa3hbDqnVhfq+sZePLWEdPnys4BLpJB2tm2tjY1D/Waw47EGhjEx3YgcBGxvbDBAJP0urGKMQx6n6cJ/+DmIt/JPay34m9fDoxF/9ornOe/A8co+6PuP0obVDAc6sQ9Ey1KKS/1UH4XeOr41KIVioZUk4D4cX2bY4/1lZRGmy9oaptemtdmen8L81owldyGo94XuKAOsRUOcPsc442lrEi1N08i/38Ub+MAothwBq1mSccd5nlhJkqsFTSqTk515dJWEoZM2Xo+aMxskGFZgFVWAT4G1IgsCods6oyAiFUJzCcnmRDZa/K4SD5Iev9rsptREYdj+jY4M/0KqWMBBUf0FbG8RHIP5ZkqVAdTYAkEmhhyRKubzqKNqbRzxq1KaTdWv47Wy5mvHai+XyVqpz4qMB13Ez42Ng0FKwZgdukXRpsYxMN1CgQWFhYiJQyZL1hGBQWFh6zQdkcOVVlBDYhhUSRUIejOXKGav0CnltNDn4wZob076F1NoOcm9R2ZssltTq+aGSnyqKE0GyJugr+2kQve1Q2BRTRjpYhbW1pSYKID7NV7dFP78FV+vmANyvlP8a3Ad/rs7WxDNf7hzhd7lRZnGvJao4jlkxjDQ7hYKDwuo1vV3vIU4EZIVaNzKlyJscD4bKACiiiL905XzudVJEcZqvoJNxkRgJxAOwlnEZg5bHlU8RIbSAXaOPoKjrwk5wd4kjaUFku15FE4G+6Zrmsa7CBQEtGp1M4AtrKOX50Po8VkTLkeooudTySqtGEZmYFbld7KFGBZeA9LBMCmXItE/XT6YF3ndUMJYE4spVdHmxjE010tDMCbWyijmoHAqdMmcLQoUMpLw+dZSsvL2fYsGF8//33x3RwNjUn3Mk1BicOdPOCqSHQQ3QiUkHTRrU97PrJ+sU4cXCCGMQsefw5hIYrpQFMMxWb45d5chkllLGb0OypIaovv/3fdl7tlsl3127GXRreaOhYc4Mli/cNz2csVqsAr05UJ60t3USHgJu7IfThIPkM0HoyTHgnCsqpYAXrKVGlAaYIy2SgOP6p2kgzY/AnYxZShU5oNTbClczu5yBr2ERpmAmDaKaH6ERbSxA7lSQza2yvygnJAE+zlBDmq0KSRSI6gi1qJ7nk8T/5W90MvJZZptaFaOZZzTWsGVQNCev7pwVdplbYgcAaUxJBV3F40IRrNNBbqywPXq+2BrRZJ4g3qm300DqHVI8AlFLO3jBu4jY2NvVHskikBV4Zl8NVr9nY2NQN1Q4Evv766/zlL38hISE0oywxMZG//vWvvPLKK8d0cDY1J1xGoAs3HoywF0zRSpyIJTmCc/DSMOLoAOeKU0kikflqOW8an+FRnrD9GivhSmkEMEyPvot9m7plrlwasW3ffz0s/HcWeVvKWf2f/Sx4tmrDoWNFV60Dp2ojAdhDtpn163cGdgonCVRmKmayli3Sq385Wb8kYF/r1VYGWQOBQeXBiSKBUzRvqfE+DrBWhn5XGhsHyAt4nmj5Xw6uI5foY0VPrTN7LEHsAorN7PYKXCHlsWlBGoEAk/VLzXVvG1/U4mjrjuDPOUBni1lUs+WtWfPJAYpzGlbwLF2kRmyTSMpVRR2OpmFTJsswCD/x0SeCFnN9YjUMCXa6t5rd7fZJArzqfDjg3ObnItetXOi6NcBJ3sbGpn7p5CsPzmK/Xb5vYxMFVDsQuGbNGsaOHRux/aSTTmL16lDRapu6QypZpWvwWfrJdTaW8rd7UP58MuUvpHr/Wpf9f9/uUeU+ggXi/Rd7hRSTr0JL0eO1OPNm/yD5LFQrj9HRNAyCXfYA0kmr+4HYRB1zIxgkJBCHMysepfkyqgQU7qm7oMHd+vU847iXO/VrADhTnMjl+jlmu1UcHirdIC/Wx9ORNub6lcYGhliCW8uDMgIBztVOZYjoS1PS+Fk1Hp24SBRTEvDcqps3RGtYgcDmIt3MJPATaykbD9YJDNYIBDhZG2aWGM+WS9gYwUm1oaCUYpkMnRRL9gVIe301hH0jmvDtFZt4s+9yirIaTvDMGsi1yoL4KaS4LofToMkk9Fzop68WPUYhfqyBwOAqh+5aR3O5hFLcyo0udK7SJ4bsJ58iClUxhcr+rNjYRAvW8uCq7ldtbGzqhmoHAvPy8vB4ImdYud1u8vLyIrbb1D5Z7K+ybKah3fwFi1hbS4SmGXPCbjNBH2su/xhGS7Axsy6MUUivKNMAsql7DqhDISVWfkopJ/vSzYg0b8aIHqMx6Ma60xU7XT+BOxzXkCGa0YYMTtVHBpSGZYhmAf33+UTvE0Q87UVrc/10tYAeopOZQRhsGAJwojaUTLWGXPKqzJBsDJSripAsIGtAZZDWu66HdNT0Dgpa6OjmcnAZtFVjLs+XESiE4Ab9ItJIZowYwqfGD7U42tpnD9khWZ8AC9RyAAZ+NNosmS7L9bDlx4ZzfdaB1gwWfRgi+uAm9LrTDu5UnxVhJkX8ROP1QW/Rlfa0ZpjoF2IMkygSzMkhDwZb1S4AJunjQvYTRywpIokUEb6yxMbGpu7pLbrSl+6MFAPZpbLqezg2Nsc9jsN38dKxY0eWLl1Kz549w7YvXbqUDh06hG1riIg+V/PRUkVifAWGghgdKjzgdIDHA0Jg3lY5NHAbEOsUuDwKXRMYUnmdboVCKXDo4DEETh3chkLTBNJQoHkdcZVSODWBW8Lwjjr9W+tVji8cVYmvJpLQYIxC/PQTPfiJ2ebzVjSnyJfl8pWcxmVMCNlmvHYSGhoSyVQ5k6e4p87GW5+4lTusS6htFGIzXy6L2BZPHGt7fkvpJjf7Motp3ieBlDaxdTg6L3c4ruEOxzUh69uJlgHlj/ssAvAX6mcy2+M1BVoiV6MLnYGiF/PVMnaqvRyUeTTVmpj9u4oOZNCUHA4yXy7HUAa6qPl5tiGwQ4b+FuT7nJZbkB6gt9dQ6CO6MpNKx2drYHNvNTICAa7UzuMp3mCuymSdsYW/Om4kXsTV4qhrj2UyNNgNlaYJB7tl03l6b/zx4PTudWsIdDSkiRTzez9A9Qppt7qG21RNuEoBgPa0jsogWUvRjEKK2aWyyDZyCfKLIpkkM7i/VK6hp9YlJFsYYKDoxdcxtlyRjU000VbLYI2xCZRX0uVMTjz8RjY2NrVGtQOBkyZN4oEHHuCMM84gIyMwYyQ7O5sHH3yQK6+88pgPsL5wnP4Sd38HUPcaBrqAX25N5MQu1X57gKrt2DuKNhHbopWhIlDbrpVowSa1A4DFclXYbZqKNEaJQcxTmWxS29lkbKe73nBMUo6UzWonHkJNHgaI8IF7m+OHSGXBAP2Ftzw/oamTLuOaROxXX3QNkgewOkFerI3nDp4AIAuvYcRYbTgFspBdah+r1CZOYYTZXwjBGG0oX8ufKaSY1WoTA0VokKExsD5oUiCJeIp9BiGDtT4IEcmKKXqxlgwCVKjK7Pc9QRmBgRqBlUGjpqIJZ4uT+Uz9wCEK+Eb+whX6ebU04tol2BDHj38ibOaj33GCMZSWa9rS/5oWdDgpsu5etNHd4hKdFcb0ocDOCKw2/qy5YPpYMq+jCSEE3UVHFqtV7GYfpaoswNW+q9aeXdKbSTRPZnIl59M8qHoEIMd2DbaxiTq6W5y//fdzNjY29Ue1S4Pvu+8+kpOT6datG3/+85958cUXefHFF7n55pvp3r07SUlJ3HfffbU51uMHAV8tdx++XxBVZQQOEg2vFKybFhgEEErzZlnidb+MVB50jj6WHnSir+jOs8Y7tT7OaGCn2ktvQi/su2uNPwhqUzU5Kpf+hNfjvEA7o45HUzN6icDPdA4HTROgdC3NzPwykCyUK2grWrJWbaGIEtaGMc8Zow0xlxtzefCWoAvsYotL8KAGZhTip09QaXCJ5Ziq0gi06sm+Z3zNasvn4h3Pl8d6mHVGOKMQAIevZLpHcnvue+Nsrp3bn8E3NqwM0E6irVn6vVvtC2kvsjUCq0049/CuokPIRGs00c0SCA4OZFqvZVeqjYBXS9YRlNeQG2QgZGNjU/9Ytd83yx31NxAbGxugBoHA5ORk5s2bx5VXXsnnn3/OXXfdxV133cXnn3/OlVdeydy5c0lOTj78jhoIfm2d+sCQ0Ltltd8aky1qZ8S2gVrDywwL1gfbQxYZVM78fm/8Hna7m7U/UEwpa9QmPpbfhzUOaGysU1tZR2UJkHK1Q+VfzJ7S1iil2DDlIAuf38ui5/ey/N0c3KWh2YM2jY8CVcSXchqr2Bi2/QJHqLZSNDFIC8zYUyhyOGg+72MJFN7teZqeorP5fK0KLYkLDARGzpRs6OyoQnunoWnF+ukdFBQuoDLAt5cqNAJVAUopfjPm84Dn36ylUkt1m9oVsXQymlFKsSGC2Ym/NLiNqDutz2ONUzjp5BOV365CKx3sjMDqs68iHZV/CaqicjJod95+WrzdjUUvZLHwub1s/SW69COtk8DBWUPDxQBz2T/5rQmN5gRmtBdRglvVfELdxsam9kgTKWYp/2Y7I9DGpt6pUe1pamoqr732Gq+++iq5ubkopWjevHmDLDM6HGrvfEaNHo2m6eiawiMFTt9fTfj0iZS3jEEp0DWF29fHkAJf4hrCp2MklcBh6eORAl345XsUGmAoQawDTunu4MYTYmo85vVyCy1oyn7LjbIfazp2Q6EJKWaZE3gzQEaIAfxPTQfgv8b/uMIRWtYVp8Vys+MPPOh5HonkDtcTzIj5D7rWOPXAgADRXeVqi9rzAahYJhx08dxH2eT/MzAwsPo/+7lqRt9G+d21qWShXBHWdRMgjWQ6WAw3opHg0mDwGob4gxzjtZOYb3jNEZardbxtfGH2WxcmwNNHdCONFPIpZK7MRCnVKL8DwYExgOY0JZ2UgOBpQyJZJJJIvJkJWEgJySRSRElI1lMyiV7tXRSz1BJSKgaFNZ3YzyHeMb7gee1vdXIMx4pd7GM3oZlyOpppEtNWNKwswGC6i45sUTsppZxYYgKM0AptjcBqMavYRfGel/DO+UtofTu6YxXXnvIXcjbE8yvbzb5nvdGFITdFx2emqvLBXlrlZE8eBZSpcuJFHM1FeoCGLMA+cmlPq1odq42NTc3oJjqxXx0im1wKVXFUapXa2Bwv1EyEzocQgubNmx/rsUQVxtcTmPpeASkpDeMEVarKWM82M2gWjLXUoqEghCCdVHJ9zogHOMT52ml8b8xAIlmoVuJRHhwi9GN8u341/zX+h0d5KBalfCCncIN2UV0fQp0R4L5VNgKUVwBfANmf5xIsh79rViHl+QbxTY7oFGDTQJhTRfnrWG1kHY7kyIgVMejoGBb9S+vN3qn6SD6XP5jZfwvkcjQEEsVitYoX3B9wp/Nas78mNMaLE9nGLkCwSm5kgN7wsqUPx34VOBkkEBzgIHkUBLgtNzSa0iSgJPgkMYxDFFCBC5dyEyO8zgKa0EglmXwKMSyfnlSSKafCDCopFJ8Y3/Ok464AHbJoJ5JRiBMHhu/Y2jSCQOCPzAIgntiAQGCBXRpcLT4uygd0vFcCClVyEun7c2i+IfQcsO7z3CgKBHY0lzfJ7QFtnURbM8gPXsOBwaIPzUU6wXNee9Q+2gs7EGhjE0101zoyz/BWZGxS26NapsDGprFT7frT3NxcbrrpJi677DLWrFlTm2OyOQJWqg0Rg4BOHA32YsjqbunBYKjezzzOMspZoFaE3S5GOHnF+TDb2cs6tYW/e54nV0VX+cuxZIfcW/kkxp8J5f0/xQ5MDPimCx2S28YQm9J4MyRtvMw0FkVsu1JrGCYJCUFh7H2q0jxgqNaPzNhvGS9OAmAHe5G+u0GFCqsvNlzvz2K1msVqFT+pWbU48vrjkMoPeO7PeWwjMhq0U3IrETgBqYRigVrOMrWW5SpQAsJqGOKnjHL+6/h3wLoCivjSmHbsB1uLZMrw12BxVDp+t6HhlgaDN2vET7D+W74sqOvhNEhKYlbhne+XgAMRs5nCtnm4UsorTwqA0KDV4MR6GmUoXUR7Uw86uHzQKZw0Jc18vkZ6NT+bh3EODqePaGNjU78EBPrt8mAbm3ql2oHAa6+9loyMDC644ALOPvvsetXQswmlKh28tqJlg735a6MF3sykqmTSqLzBe8vzGS7lZq7MxFCBundjtCFcpI0H4BAFPOZ5pfYHXA8opdhJZUagiF+JaPEQrRM38Pfmsdz1YTdG3NGaLmel0fnMNPpe0Zyrfu+Lpje+kkibSkpVGcvxnheUCnyv44nlTH1MfQyrxjQhMKCTFcYN8gRtkLmsWX7WrNljfs7WxprLPxgzj36AUUieRT8PMIOjDb1MroNoE/DcmukerPmYRqhmsQs32RwIKTl/x1JS3hCIZBQSaw0ENmCNQAjUiUsiAaclGHgQOxB4OMpVBT8m3Ido9hwkzkY0ex6Sf8KVUs7an6fR57JmdB6XStcJTTjh/raMfSJUhqG+iBdxtPOdqzarnSH3G379SIBFahUQqikNdiDQxiYasf5ub5aRte1tbGxqn2rXBS5btoxnnnmG3r17c9VVV3HgwAFatGhRm2OzqQGZEUqFAE4Vo+pwJF6c498BowJ5cCNIn2Cz5kRr2gN5cCNa0x6gx1a9E0Iv7paznpPFMFMn8Es5jQJ3Mb/J+YzXTuQD5zMBehP/cP4fP1TMoKfozA61l4Mqn6Yi7ZgdZzSQTyGlQQEPkTyd69O68aDT+96f8VzD04i0OToWy9V4pAOV8xiUjkbFbEa0uhfhOMhZ2sk4fWWU0U5rkcEuS2bfPvaH9PmL80Y+lt+xUW03M0kAOot2IX07am3oJ7qzWm1iiVpNtsqlZZibyIZM8PnAT0MuC4ZQiQurDt5cuZR7uN58Hkugzm48sYwUg8hS+5mkjWORXMEclYkTB4WqmBXGegbqgeY00YhSKuLEXxrJdBMdcOGmbQMPBFp14oooCdB4zFOF4TaxsfCq8TG60BCpXyNSvw5ou2LYGVzwSXgn+Wihu9aRXTKLAorYz0EyqDxHD6AHS1gNVDqPNhehGYHfGr9xp+PauhiujY1NNbFmBG5W2yN3tLGxqXWqHQicOHEi999/Px07dqR///52EDDK8GcIeJVgAukYlEVRF+jtTvT+7Xh6aFuYdZFoYXEJBlgqV3GaPor/eaab636RcwFYJFcyoOJcBmt9WCHXc75+GmdpJ3O5fo7XREDBNDmbK/SGURJZXXaFKX8EGKkNrNuB2EQVy9RaKD4TSscAAlxdUXnXIJo/x0OOW+p7eNWmg2jNQosEQLAgvJ/Bog8b1fYAPcGXjf9wnX4hFcIVEDQ6WxvLasNbUvajMZPrHY1LPzScMQY0/EBgsLmNUzloQTr7OcR8uRxDGWb2uzUgDKCjM0MtZJOxna1x05nouhmpJBW42Mh2TnVfxanGKD53vhDVGfTb1Z6QjE8/5VQwV3kzI1s38EBgBk1JIYlCiimnIqAtO8I5wKaSVz3/pZhS83kcseb/cbCIfufw7qIjvzEf8JYPWieFB2p9wPgKgAVqOS7lDlsavDCCdIyNjU3dIpUknyLSRSqdRFscOPDgsUuDbWzqmWqXBr/yyitcdtll9OjRg+nTpx9+A5s6o1iVskFtA0Aj9AbmRH1oXQ/pmBGcqbNSbWCM5j0e5XGSLtO5yDiXdrI1FxgTyJK5HKooZY+Ry6uuz/lj2aNM4DSUOwYp4bvyuUipKHcr3Ib3UeFRSKkocymklL6/3vX+PuXu0D6GpY/nMH1cHmsfafYpd3v7uHx9DN/YalJ6H2AU4qMdLWmNHaw/nvnJmAUqloCpARXDKDGQnlqXehtXTekV5HIbKQgwRKu8ufUHgQ5wiA6usZxccUVA33P0U8zl743fj9VQo4JyWRGxraFqxfoJdsLNFXnm70EBRaxRm822L2NeYpI2znzuLyfcSw4lqpQXnX+nj+hmZg6WUs5UOYN3jS9r+zCOikhlwQAVeLPvE4knWUSP5tuRIIQwM0eCS/x3kWXL01RBltpPVlDmtO673E8nNerd4iHIOdiX9eenh17Z5sbDcrWOFmEyAsErkWFjY1M/SCUZVXEJTSuGc7ZrMuDV+fT/Hm9WO5EqvL69jY1N7VPtjEBN0/jDH/5Qm2OxOUJWqg2mg1qwYYiO1iBmfyMRXBq8Xm2jp+hM3G83U/rb5eQKxRfKgUODtySg/ZF50gHCACXYi+B8oVBqBmhupkgnSVohHlmpla0AhwYeCU4N3LLyucD7kBH6GL5/txAgVWgfXQMpva+hVaOPLsBQ0CZVMPVPifRpdfjMlB1yT8i63WTTVosOB0Cbusel3CxSKyFpPRROAFd30PMRaZ8wQb+wvodXI7qJDiSRYGa3ZKnQ0mCAwZZAYFfRgQyaMldlIpHsJYcclWueT4aIPoxgALEihnlqGWvkJvpq3Wv/YOqALUTW3GnoGYHNgmQdsuR+xmhD+Eb+AnjLgwdoXhfo5iLddJwH6C26slp5s0C3qF0M0HqyMOYL7vQ8FRD8e8jzEhP1M2ghArPRowWrY3BPOrOBbebzQooAaCUaxyTQSG0QsTKGPSo7QAf3IPlsU7vpItrX4+iil3Cl48kkMVT0o6fWGSGiXx+4r+jOiWIobjwhhiE9RWd60YX1bAVgjrGUsfrwsPvJVXm0b0CO4DY2jQlNaBRSTBnlrFQb+EPF3Vygn8EQ0YdmNCGFRHJVfsRAvo2NTe1S7UCgTfSyRe4kmUSKKEGhUMUno8r7I+KX0NGdw8K39lGc40YIUFKhOzVaDkqk/zUtau2C0Ng9p1oagf4S4khkBN2MbVd72HzQRelvV3pX+JICPP74p/R9pFVlAM00SvC1eaQCREAJtX97twx8ripfImIf72uE72NY+shq9DF8fbILFQ9OLWfKjYfP6lgW5qI/haSwrpk2xwfL1FpcuBG6G9reAJ7m4DiEEG7GaEPqe3g1ormWHlDilkseLuUmJkjjcIDoiYaGRJJIPL/GfMD57ptN6YDlch3jda+7sCY0rnCcy+2eJwC4w/0kv8V80CBukA9HcPaMlYaQCVQV6UGBwJ1qD3/SLgO8moDr5baAdr9sQhop9NG6+Y3U2aS2M4CeOIWTyfrFvGt8aX52kojnK2Maf3YEZpFGA0opZsul5litQUDwZjUCtKJ5uM0bHOkilXlqWdi2OXIpXTQ7EBiOBXJ5yLpsDpCtDnCROLMeRlRz+mrdmKsyUaiQLOfmIt3McAT4Qc7kEsfZYfezQW2jPQ37vGdj05DpLjqyVe1CofhG/UK+LKIVzVmgvOepfApoEaa038bGpvaxA4GNgCVqFUWUkE4qB4uHoHIeBzyogssYf8MCZi/eHSgc6BMSLM/zMOKu2tEPdE+bDMVZIDTwp30LDUPJyr9JrdFv3FjlfqwC0QAGBhvlDmjg7peHQxEYIKyKzDClYg29BNDm6LA6qAohwel1T4zB2eAyhK0OkX6yyQ1xwE0UCfQUnVmntrBGbaZcVXClfp4ZCMxUaxnPSWb/q/ULeNH4iK1qF/NUJg97XuQx5521eix1wfIqSkeDS2sbGk1JC3i+l/30Fd0ZKQaQqdbyP/kbL6u/I4TAUAZ7VDbgPR9aBcqtukSDtN7cqV/DR8a3HKKAfRzg754XuFI/P8B4Khr4Uv7EUrUaHetElxNkDEIvMdc1lozA7kHmMFbmykyuZVLdDaYB8ZucH/BcIFAoEonnUn1CPY2qZqSJFPqLHqxUG1ipNpCvCgMmN/+sX8GfjUcAWKrWkK7CT3wulqsYp4+piyHb2NiEIfh3u0yVk6xVJjkUUYKNjU39UG2NQJvoZbvyloYeogBVNgQwAAfC8NBkUXKoe4jv+Y4ZBXU5zCMiuDQYYH/6am44xT9D7I2W6b5EHi0gocd/4D7zACED/1rwbxd+P4fvI46gj/+vCNOnSYLg0QlxoYMIw16yQ9Y19BJAm6NjtrE47Pq+oltIJl2004YMYqgcczqp7JR7w/adpI3jNDGKdqIlP8u5DBF9zbZlQc7qcSKWFxwPkEoyQ0Qf/mm8w4Pu5xu89tgiuSrs+pY0I04c3qk9mokXcQFuwAdVPprQSBdpuPFwgENs8rkQ7uMAHp9pSnvRukrNsYn6GRzC+3toICmhjM+MqbV8NNVDKYWhDApVMX91PwtgGuI4Sk5EbZ+G2vEL8sCdZmZ6a9E4MgKrDASqzIhtxzNKKdarrYHrfNdCl+oToi64XRX+7HWFCslyvNRxNg5fQNyNmzlG+M/DKrWhdgdpY2NTJbtV4D3KLpVFEgnm82JVGryJjY1NHVGvGYFPP/0033zzDRs2bCA+Pp4TTjiBZ555hh49eph9ysvLueeee/jss8+oqKjgzDPP5LXXXiMjI7IjnlKKhx9+mLfffpv8/HxGjx7N66+/Trdu3erisOqcbWo34HVFVPHLUIUTAQ9Kd+AcGYN7kStsRmCHsan1MNqakSQSiCeWMp/bXQxONqntvH7+xcw7+TI2aJvQ3PFsTv6OOFcTkmKg1A2xDoFUMLniQaaInxDuOM6KHcpPFZmomBImGhN4P/4JFOAxIM6pKK6AlDgoqoDEGCh3Cxy699/lMiDBqSiqgORYKHZBghMqPAJd8wb1KjyKxBhC+rgMgRBebcByd2ifeAd4fOXLDqEo80BKnMCpV69MsZRQMWw7EHj8YiiDuRHK6U7RRtXxaI4eTWh0FG3NAM8hCvhe/s4ytZZSVc5IbSCn6CMAb3bXE8ZrAPxHfstX+sukkkwBRSGBQIAz9NG8ph7hCs89AOxUe/nI+JZrHBfU0dEde4L1tPw0lnNCGinkkAtUZhKM0Ybwo5wFwGy5lB5a5wATpfaiFZ1FOzMzarPvs+RnpDaQ6/QLed/42lz3jvElN+qX1mu5uEu5ucvzFDoaaSQHaB4CGLl3gvIFRgsvhpT/Qez2RpMRWJUG4A61h91qH+3s7PcAdqssKnAFrEsgjlLKmaxfXE+jOjLGaEN51fgY8GaAnqWfbLYligRGiIHMU5noaLxrfBF2H7YrqY1N/ZIiEgPuQbPYTwKViQ5W6RebxsVKuYEMmlJAER1FW2JFDAfUIQqk10FaCWgaJPliU7fUa0bgrFmzuOWWW1i4cCG//vorbrebcePGUVJSmSZ811138f333/Pll18ya9YssrKymDSp6nKQf/7zn7z00ku88cYbLFq0iMTERM4880zKy8tr+5DqHI/ymDpIGhoiaToi4wFI/RrR8h5u+bEfJz3SjsE3t2TIn1sy+E8ZDL21Jee815URdzWMG8M2lnI2F26z1O+8xBFoMS5ILGC6NptmSRpxMRrpiRqJsYLkOMHNSeejxbgQiYUUOfNpnqihOT18F/c/NjjWkhQrSEsQxDk1miVpxDg0miZqxDk10hIESbGCxFhBkwRBrK9PrNPbJz7G2yc5ztsnPVEL2yc1XpASJ0iICd8nIVYjJc7XJ9a7rrpBwDwjPyThExq+FpjNkbNabQobHAY4Qxtdx6M5NnQOKg9+0/iMdz1f8pjxCue7/0SR8v5mnKmNoQ3eSaKf5Gz2kG2aiOzjQFijkUn6OP6t30c7WvKlnMadnifZESHjsCEQHCzy01jkAlpa5CLKqUApZToHQ2VZvP93EbxB0DgRSwfhlcLYpHaEZH4+7riTM7UxZlb2KrWRD4xvaukoDo9Uklc9H/Ou8SVvGZ+zSm7EjYd2VP4eKn+2ux/hPaZWjSQjMFEk0JbI5exzjKV1OJqGwdthXK/LqGCw6B1gqNQQGK0NNpetchd+LtfOQSAwkMxmSdh97FK2w7SNTX3ykvOhgOcKhdvy22UHAhsvZ7luoKPrFAa4zmOl9GZn/9PzFn3dE2jtGsNNrr8D2M7R9cgRBQKnT5/O3/72NyZPnsz1118f8KgJ06ZN49prr6VPnz4MGDCADz74gF27dpGZ6f3BLygo4N133+W5557j1FNPZciQIbz//vvMnz+fhQsXht2nUooXXniBBx98kPPPP5/+/fvz0UcfkZWVxbfffnskhxvV7FbZZpmQ/80USTPRmr1Eu8QdJDWJ46SH2nP2a10469UunP16V8a/1IWB12U0GGH8ZAINMzaobexXB5mgjzXXTTV+D7vtydowhoi+jBaDyaOQ/9NuIINmjBFDeMx4tTaHXScslKsCyib9NJbsH5uaM92YH/KdAegvejBc61cPIzp6Oot2Ac81NBJFAgqFC7epieUQDq5zeF2RJZL3PV8zWPQ2twvnpimE4BbnlZynnw5AGeXc7X6qtg6lVilXFWYZYDCN5ZzQVEsLeJ6vChkkepGA1xl0rlyKUoqdqjKY6z92f6lpMaVk+7IK/TQTTThPO9387+no3OF5gs+MH2rlOA7H/+R0/mN8S2faEUsMqSKZNmSQLtI4UQyll+iC1vxfIEoBSWraN4iYHUDj0QgE6K51DFnXSbRlkOhtukXbVPKDMQONwGs7haKL6FBPIzpyWoim9PCV9GeqtZQElRBeoo83z3eRdMZKKWcX+8K22djY1C6GMvjE8z1aULihnMrEHLs0uHGSrXJNyRXAlKzINCqrc35Ss+lbcTbvhpnAsqkbahwIfPTRRxk3bhzTp08nNzeXvLy8gMfRUFDg/cCkp3vdgzIzM3G73Zx++ulmn549e9K+fXsWLFgQdh/bt28nOzs7YJvU1FRGjBgRcZuKigoKCwsDHg0Ff1kwQAXugLYkcXjH2YZAiyDnYID5chnDRX+ak048ccxUi8PesAkhGK+dyDy1jHVqC4kiniSRwFyVyc9yDlvkzro4hFpjhViPK+h9h8Zz029Tc6YaM8PeFHUVHUgQ8fUwoqOnU1AgMI4YHtFvM5//YMw0l6/TL0RHJ4UkNqsdDBS9AGhFC9aqzRFf42HHrabb6hq1iTtcj+NRnmN4FLXPXpWDJyhLLAYnGlqjOSdYhcc1BJlyDU7hZKQ2AIC95LBD7SVL5Zh9/dmQAYYhMrA8GOA6fRLDRX/Aq8Pnws0WuZO1MvLnprZ4x/iCdWxhG7t5Sr+HgVov3nf+g9VqE3PUUnapfciExYhOZyE6n0qzppWlka1pRIFAi7ajnxx1kOVqHdPkHLJVbpitjl82sxMZZjKgr9YwpXFO9GX7tqcVvxuBCQApWrJZYlhVzt/yMLIQNjY2tY+GxpPG60gCM75KrIFA2yykUTIvKIvbf/29icprLwODLWoX7wQFAn8x5vK2+wsyjTWskOtrf7DHMTUOBL7xxht88MEHLFq0iG+//ZYpU6YEPI4UKSV33nkno0ePpm9fr8B7dnY2MTExpKWlBfTNyMggOzvUIMG/jb9Pdbd5+umnSU1NNR/t2rUL2y8a8RuFhGOIJROmIeMv9bMyRy5FFzrfOl+jr+hOESVMdv+NZzxvhaQYWzMHf1SzAnRyGvosxHq5Nez6xlIGaFMzclUeC1kRtu2GBqYPZSU4IzCPQnpqnU3B6WlyNobyBsDaiAwu1sZTShlfymkkEk8GzdjHfn6X4TPJAVJEEm85n+BK7Tx2sY835ee8YXxm7rchsJeckHX+iYIO1I5DfF3TVDQxlyWKBWoFQGB5sMpkgVzBQfJpR2t60QWAbpZA4Hq5LWTfmtD4h+Ne05FaQ+MJ4zVeMD6shSOJzFa5i+nSO3HZSbRlhNafBzzPM859nXlD5c/6EkKSIDTaWLIAW4Yx2WqohDMM8a/z4OHDeizfjjZKZRluwk9e9BENMxB4mTaBtrRkG7v5TIZO9vrL/asi0w4E2tjUC0KIsL9HharIXLZLgxsnwXIOa9VmilQJueSH9F2pNpAp1wBQqsq42f0wtxmPMdp9GY96Xq6L4R631DgQ6HK5OOGEE475QG655RbWrFnDZ599dsz3fTjuv/9+CgoKzMfu3bsPv1GUsF1FHqv1xqgh01aEagT5TzD9tB7mTPdw0Z+HPS9xqftO3KoyS26Q6G1mSMyQi7hQO9Msp/3I+JZyVUFDJdz7H0csLQjNorRp/EyTs8OWhrajFadoI+phRMeGTkEageDVeTtd8/4W5ZLHIrXSbDtRG2Zmxi1Wq83v+yK5EpcKzaD1c4Y+mhO1YTjQ6S968KjnZd4zvjqWh1KrbDZ2BDxvgTe7XiJpp0XWWmtIpBNocuV/38eK4ZwshjNE9OEXzxxWq00ANBWpJGregPFw0Z+J2un0El2YpmaH3f8J+iDa+iZS/EG3L42fyFMFYfvXBm8Zn5vLN2gXcZfnqZCMCofF660JqWapcyrJJIoEGgvdwgQC29IS4QuEvuv5ygzW58pDDK44n8EVE7nYdXtdDjMqmCpnRmzrLbrW3UCOIcO1Abh9kxn/k9NDMkCHiarlLuKJY4MKP2FqY2NT+7QKk6GeT2XlXbGyMwIbI3NloIbvOrmFFSpydt/bPsOnpzxvBExqz5JLGvR9erRT40Dg5MmT+eSTT47pIG699VamTp3KjBkzaNu28oavZcuWuFwu8vPzA/rn5OTQsmX4mxr/+pycwMyIqraJjY0lJSUl4NFQqCojMLicrqFinU1yoANeIfd8VUiMcPKa4xFedzzKQt8NoULylOdNcxshBGf73ObKqWCl2sAF2jjAa6rhd5tsiOxVoRlA7USrBqP/aHNssZbIWrlRvwRN1Ks31FHRMUzWxzq1hQn6KQB0owPzjEqn5LMt7pI/ypmM0YYAXv2/TLWmyte6xnEBrzgeZpXaSBElPOR5kQPq0LE4jFrHH/zys5/KcTeW0uBmloxAgDXSe8xDtX4sV+vIVGv5Uc0yA+L+9x6gj9aN+XIZ69VWfpPzI5aVTnYEZs+WU8EnxvfH8jAi8qXxE+8bX9OEFJw4KFIlZkmNdYLHGhwfLYawz2eE05iyASF8INCFm3HaGDQ0OorWrPH9f7LYzzq1lXVqCzPlojoeaf3zRQQ9y0Tiw55DGwIxwsnVutfF3YOHj4zAyqNTtJFVbl9GOb/K+VVOANnY2NQercOYV+WqfHPZzghsfBxSBebvsr9yZx8HIhp8OXFQJIv5l/tdPjSmkESCOdlXShmz5OK6GfhxSI3vDMvLy3nuuec4+eSTue2227j77rsDHjVBKcWtt97KlClT+P333+nUKVALZsiQITidTqZPn26u27hxI7t27WLUqFFh99mpUydatmwZsE1hYSGLFi2KuE1Dxq8RKAgN/LQVoSW1DRHrjY3/OBWKBXK5d50QXOe4kO+cb9CJtkyVM3naeIPZstJF7hztFHP5f8Zv3KRfSiuas0yt4zXPsQ1s1yVWh1Dlbo1ytacddlnw8Ui5rOBXOS9s22X6hDoezbElQcSb+n1+1qrNjBcn0paWbGYnH8vvzLZWormZKbJKbaSXJRsmnPtkMNc6JvEH7VzAW4Z8vft+KpTrWBxKrbJKbQi7Po0UUkRSHY+mdkgXaQHPs8nlgDpEjHBypjYGgBKLa7Y1EBgjnFyjTwK8QYU73U+QpfazS+0LKAGfpI0LyTx8x/NFrTvb7ZcHudn9MIUU05ymfON8BYdwUEo512gXMMKngwgEZCj21bqZx9yYjELAK3MRR2zAunxVyLnaKWgIZqul/ODLhLNOjJVQdtw5ES5Rq8Ou7y26NuiJoOv1i8xrv/c8X+OWlUG9gVqvw25fTsVhJ4BsbGxqh3C/STmWSTjbLKTxsUAuNydjrdI+c1R4d3c3Hr5Wv/B34wUOcIi+oju3alea7VPljNod8HFMja8MVq1axcCBA9E0jTVr1rB8+XLzsWLFihrt65ZbbuG///0vn3zyCcnJyWRnZ5OdnU1ZmfeCNjU1lRtuuIG7776bGTNmkJmZyXXXXceoUaMYObJyFrBnz56mPqEQgjvvvJMnnniC7777jtWrV3P11VfTunVrJk6cWNPDjWqUUmYgMJxzbJt6DATG3biRuLuKiLuzwPvXuuz/e+PGau0rwxIINJCMEUMYJHqzUK4M6He6fgJ3O64zn9/hfsIsER6rjeBUMZIRYgDT5BwGiJ6kimQA5qqlEbX2opmDKt/U/1J516B2fYna/SlZuX+o55HZ1Aez5ZIAIwU/icTTXmv42WDBGc5r5Waaa+m085VxblDb2Cp3me1nW7RBrQ511QkEAjztvIdOoi0niWH8Kudxput6cmR0GxNsi5Ah3pg0Q8N9xudLbzao9T33M9oSCITAoMK38jfGVFxG/4pzAspx40Qst+hXMk6MxomD1rRgG3v4oBb16JRSnO2eTH/RE4FgpD6Ak7ThpIgk2pBBb60r+aqynOqQRWfHeqEdHDBv6GhC4yb90oAJrqWs5jnP+2b5v98NfI+q1IGWSPZxoG4HW4+4lDsgA9hKnwZqFOKnk9aWq7WJnKqNIpsDvCkrJYS6ivYhLsnhqO5538bG5tjSKkxG4D72m8t2RmDjY7vcw0gxkGGiH0NEX3P9Khl63289e7fxlZGfqo3k745bzNjGj8YslKrKEsrmSKlxIHDGjBkRH7///nuN9vX6669TUFDA2LFjadWqlfn4/PPKC/Lnn3+ec845hwsvvJCTTjqJli1b8s03gRfjGzduNB2HAf7yl79w22238cc//pFhw4ZRXFzMtGnTiIuLq9H4gh3Koo1DFFBIMUCILlhT0ogXNTveaMUaCJRI5qpMlqt1YUt/rtcvYojoA3i1pF43PgW8N3ZttZYsUivJJY+v5M8BpiHvGF+E7Cva2aS8zktKaahD15vr1+UPJtdzfGVC2MAPaiY7yQpZ73fNbeh0Fu1oQToOdJqRborEn6NXZvv+YNHIOkcbC0An2rFF7STDV1Y5Xy6rlgFIhmjG9843WaxWAd5s5NGuy6LawexQGBFmaDxlwQBNgzICofIm/0ztRDTLZU0v0YXmIj2gbyetLWdoo02ZiSz2U04Fj3heDshSmOy4mPlqOW48ZLGfClz83fMCBy0lTceSlWoDa9Rm5qtlDBf9edPxOLEihjsc17A1bjp3OK5hs9oBeH/fKyxu8VY38NaNLCMQoIlIZTf7AFCeJnj238eWfbcgygYDsMxnBrEnSCpjlwo9HzZW1sktEdsaqlGIlRsdl/C7XEA5FTzqeYV9yhvkdQon7Tn8+c0OBNrY1A/hMgL9kzhgBwIbI0vVahaqFSxRqzlJG2auzyNUa7krHczlPeRwj349DzlvJUVL4hRtJEkk0F60Zp2K/Btnc+Q4Dt+l9qhOdDcuLo5XX32VV199tdr7EULw2GOP8dhjjx3V+P7peZuJjDuqfdQmVqMI60kV6jcb8FgTbHzRTXRgs9pJplpLiSoNEEbXhc7Ljr9zg+cB5qllrPCsZ5I+jraiJZP1S/jI+BbwBv6+i3mDBz0vUE4FXxg/8rh+JwlaPA2FTXKHb0mCVgrSW/rnEBCv2RqBxxNKqYj6gON85ZINncv1CUyRv+DB4CL9TF5wPgB4A34P8BzgLR+4nasB6Cu6c1rJBH47sIutsRsZ6R7HPrGMAk3yHhsYFd+TgnJFWjwUlEFyLJS5FZomcGhQ7oakuLY8V/IZ7zrfZ3HZLtwxifzR+JQHnDfRwZFBmRtS4gT5ZYrUOEFRhSIhBtwGSAmxDihxQWq8t09avKCoXBHnBI8BUkFcDBSXQ2oc5Jfj3U+5JC5GYEgwpCIhRlBUDqnxkF/m7VNcIYlxeL/nLo8iMVajorAXKq4IUZ6Eii0BVxxokjhnPxYqD0lxgoKyymNOioVyyzGXuSHZ3ycOCsohMQZchgIETp0aH7N3rL5jlt4+/mNO8b1GuGOOjxHe/0vQMedq6Uh3dzCcEFOKqEjm5/i9XGB4SI5NokPJOLZq20EYtJRjWZNoUFCuSI2DwnLv+3yd6+/cqSXxmfqWZRXbWBWbSX55Ck8kTuMPnstIjIEKTyrXeB7gZfEewh2Pii0htzyZ+xO/4TrP1SQ4weX72Y11QHFF6DHHOsBQvmN2+vt4jyclTlDiew+lgnfcq5FaZ0RFEmOTLmO+y2BAG52kWO97XKiKTUOQNFI46Av6JpFgTghC+OyLhs41+iQe97yKgUTlPArlAwGBUTYc0X4Sex05ZKvcEM3cXWofoxhUL2Oua36Wc8MaRUHDNQqxMlTrx7X6JD4wvqGIEp71vMNzzvsBaC7S2aH2Vrm9fwJIF3pdDNfGxsZHpCx1gUChbLOQRsgOS3WKVcdVhvmNiqcyacmBg8ccd5jPz9TG8IucywK1nBlyYYPPbo9GqhUInDRpEh988AEpKSlMmjSpyr7B2XoNmUy1hpVyAwO0nvU9lLBsl3voS3dSRRLz1LKAtsYUCIwRTmJwmmWwQ0RfNqudePCwSK7iVD1QLHqw3pcT5VDWG1spoYw7XU/yZcxLDBP9GCB6slJtYIlazS61j+u0SaxWm1ivtvKV/JmrtYn1cIRHhj87RAgg40HUgftBOXiopSRRa1LltjbHljxVQBOReviOtcQqtZE9ZIdtu0Q/q45HUzsM1fqZlxCfGN/zpOMuEkUC3UUnuoj2bFW7mCeXme/Fwh0GM179K8qjA4qFlgKEWwAswZOqaQH8BX8BwwrAm0scjRevr+PNDw+cCPgC+CIqx3skJADv+5a9x7oBxVjz+P5u9pwODA77Pvv1EicG7OdNFG8G/J/GAmN9nztvnw9QfFAr/8szgXEoBE+jeJoS2qYJFtyTREayZp7vwVsN4OcMbTQHVT6DRR/iiaMjoQ7bDZ1WojkjxSDmqUxwdQZfNicqFjytwJHPcrk2wGkQjq+MwIVyRci6rnSgrcigbyPICAR4wnEXc41Mmok0XjM+5jztNMbqw7lNv4p5MhMXHt6XX4fdtogSVqmNDBK963jUNjbHN+Emp9JJpZQyynHZGYGNkJXKWwIsEEwxfuEJx13sUlkBEix+tlEZNDTwUIGLDzzf8C/Pu7hwmxNcc2Umt3JV3RzAcUS1SoNTU1NNF9LU1NQqH42NaC4Z3aC2sYZNIUFAgLYivENyXeFZ8DTuWffh+vJsKj47lYpPT8P15dnmOves+/AseLra+7POGPQV3c3lYHtyP486bqc56SSTyGK1ij+5H8KF2ywH7i968G/Pu1zqmMBclclB8nnX+PIIj7Z+WGNxCBUJmWgdLkLrOJHrUtOr2MrmWPOW5zMGVpzHoiDNyrokkpCujkYnrXG4h6eKZDOoWUgxXxg/AV5TgIH0IpYYRomBLPPphb0y24U0/D9xR5sh2xAybG39lMaD9/O2N1/xeaZ3AmyTJRBoLa9pL1qzTe1imVrLPJVJs0Y6CXS53/Ao5cfKlc4dEOstF8pUa8NkBB4/gcD1YcqmtrCTzWonGVrjcJJuJppwl+NaFirvb+2dnidwKTeXOM7mxZi/86zzr2Zf6xnbiYMBoqdpMGdjY1N3hCsNPkQBui8XqcjOCGxUFCtviBe806fvGF/SV3Tjacc9nK+dFtrfMrGq8CY2LJVryGI/ueSZci9zZaatE1gLVCsj8P333w+7fDzwjfELzznuxylCzTjqG+uNQTD1nRHoWfMBFGeB0MDn3KeEBnvmeNftmQNJrXGMur9a+0smkQKKAGhnCXLOVeF1X5qIVD52/punjTeZIRfyoZyCy+3mIcctnKWdxE9yNqvURq5Vk+gnurNabWKRWskquYH+UZoBGky49z+R+JBSapvaY45cyt2ef/gcSJ/kFv0KrnScX6djUErxjfFL2LYMGscNoJ/J+sWmYcMXxo9M1E+ndcWYyhlDlclMuYjT9FG0SBJBbur+C4ijDeoF70cdg30eC8KN4Vgdc7RS38cV6bNwpJ+JwP0oYFnCXOA0ixREIIO1PnxtTDOf1/dvf21xlnYyACL9NYhbCUYqJM5CCG+g9LOCueza2wYZG49wJaKc5Swz4pkV40bXoMIjSIxVFJV7y9+LKxTxToHbUKDAqQvKPIqkWLx9Yv0l7QKP4T3DxDgEZW5FUqy3xD8pFkpdEKN7y/wNCXExgpIKRXJcYB+nNzEZj4J4p3ffKXGCwnJFUoyg1K28ffCW2SfE+PrECopcigSnwG3ACZ11nHrgZ0spxV6L+L6VwVqf2npL6oXr9Av50JjCYrWKDWobf3Y/zFvOJ9CERiLx6OgYGGhoGHivPSWSlWoD38rf+DNX1PMR2NgcXySLRJJICMn885/FSuyMwEaFVbYMYC2bmej+M/NjPueAqjS0slb6WVkm17JRbTOf+6/vc8ljo9pGT9GllkZ+fFKvGoENgQpczJSLOUMfXd9DCWGL2glU3nZYaVPPGYHHmlSRxB7fQZZTQUfRlh1qD4vlKiqUi1gRE7LNSfow9nGABXI5w0Q/PpVTmevK5Br9An5iNgB3ep7iJu1S7jH+AcA7xpe8pP09ZF/RiK5CE3o7ibZm9q5N7dNLdOEEbRCb5Q52qr1M9jzAVrWbBx0315kW0RT5K2vVZtqQEVIad6IYWidjqCuGiL6cqZ3IIVXAUrWGfFVEO1qxy2KSslZtBuChs+LYcUgyd0c5FaKcCuVB+W4MUQKnppOiUnBoXu06hyYwpELzfX8MqXDoXi0/hy7wSIWuCQplCSgNoSnKZAVoBgkyiWQ93ru9JkCBVApd829f+Rr+/SjlvYHXNK+GnO5rc2jegIImvIEgpRSa8GrNRRqrVIp8UYBHStAkSM37V3nbm4kmoAS68AYiqnvM/uORyhss0TSBYSh0HQxrH8s4NK2yzXs8vmO2HI+uBf4/rMfsH4euRT7mQ+RZjlUHzcAhY2mqp2AoZbqIyjD/O10TSKkQwhsm9h6z4JBRjFsrB6mToiUSq2JQeI+50CilXCsFqaFp4JSxVGhlOFWM15leU+b/XJdODM2NkBpKk8SpeJJI8P5ffMfhlgqn5ZgPqQIMVfm/UpobB048A6Yxr+9X3OVeRIEqpjdd2cBWEog3b6qGiD68pD4EQEOjZSML/vvJEE15Wr+H540P2J84z1yvo+HJbcWmV/8JZclYS+OXAGc0spvMk7ro/HxLIrpFBziHg7jD3FABDNIaVymsJjRedD7Ira7HKBLF/Fd+R4mrlLdiniRZJJJGMgfJDwgEOnFg4AqQjrCxsal9XMrNZPcDYbXhPHgA2yykobNfHaSFaGr+XSe3hu23Te1mt6qUMGpOesg9C8BMz2JWUekubNW+nSOX0lOzA4HHEjsQeBiKKeV74/eoCwQqpUzNoBicAQ6CAG1oXFkBTai8cNujchjNYFy46SBasVyuY6Q+MOx2l+pn040OXOS+DYDWojnPGe/RXXRkp8qii2hHskgigTha0pxsdSBiYDGaKFVlbGZnyPrOonGUgTYUmokm/OB8i0c8L/Nv4z3iiOUr+RPL3Wv5yPksKSLp8Ds5CopUCfe6nwEI+4M6UT+jVl+/rhFCMFobzEOeFwH4Uc5kiNaHXdIaCPSWyDVJEEy5MRFI5A3Pp9zpeRInOnHE4sTBMK0/a+QmBoietBEZ9NN6cJPjssOOQalkhBD8n/sfvGL8FwAHCSyM/b5es7Halp9DLnkh6+OJY2/skkY1QTDOdQez5ZKAdRoONsYuCHDQrQlTjWVc7L6d7qIj2SqXz2NeYYw2BICtMp8+rvPoTRecOLlQP5M3jc8YIHoyXS2gAhdppJBPoe/zFUMhRWgIrtAm8Yucy0CtF0vkarqJjnwd8zJpIgWANXITQ12TEEArWtJDdGK6WkA88ZRQxm68RgflVLARr1O8/8YplWQ6i3ZmSWxLmkVl9cKxoFzqrNt/KU3LLiAn6RVI/QwhII44ipePh/KEw++kWkRLhm94Zm81WLVXMqhd5UTTWrk5Yv8honFlBII3uPmQ8xYmuW8FIIsDnOy6gq+c3u+V19m78uYxhhjKcWFg8LOcy2X+MnMbG5taxYmDr+XPGEGGlgDluABw42kQ9102oXxu/MjN7of5P/0GnjXe4VnHX1mnwv8ebVd7Aq5RW1uSF+KJpYwKAKbye9jAMcAcmcmNXHqMj+L4ploagcc70+Sc+h5CCFnsN28G3GFOsO0aWUZgM1Gpe7dPHeBkfRhZ5LBArWC2WlLFljBY78Pc2M84TzuNlWojpZTjVt6ZqJ/kbF4zPmaiOINt7OY7+Tt3u5+iS/lpvOj5kFJVVqvHdaQcCHPDD9DJDgTWOU7h5Enn3bzoeJBBoheb1U6myTn80f0gW+WuWn3t141PyPKVhIkwN69naCfU6uvXBxO0sebyVDkzJONlp9obojnzJ8flvKg/SApJFFOKRNGLLmSxn1lqCe/IL7nX80y1tGr8AbV/Oe8zNUeLKeVa118pVNU1IDn25PukE4JpJ1o1qiAgQFPSQtb5zaOOlPHaibzrfIpNagcFFPEv9zvm+b+L1p6/6Tezjq2sZAOHyGdr3HS+iX2V/bELuVn/AzOd/+VG/RKWxkxhf9wCPne+wLOOv9BatGAvOayTW9jPQeapTD41ppqv+45Fm3Y/B5muFpBEIitiv6OH6ATAerWVzSp04meg1gsPBjkcBBpvWTDAI/vL+U++m7UVAnXwNigbAXjLyrSUQ6DCZWArqqedeaz61D6agObJgd/npXJ1xP6NLSPQz5n6iXznfIMztNEsUitZp7bwH+N/pJEMBF4XV/gCDgA/GDPreqg2NsctQghSOfyEuJ0V2LCQSvKo+2Uecb9EKWU8ZrxCGeU843mLJUb436NNxg5TOxAgSVRO3nWi8t41XBDQf38zX4Z6ItgcHXYgsBrsZh8FKvxNVn1h1QuS/nI3II5YThLDGl1GYIYlEHiAg4z2ZWqAV0D0cLQWLfjQ+Qzna6eTShIu3Hh8F4or1Hp6ap3Nvl/In9hLDs963uEy913H8CiOHQdV+ECgnRFYf9zkuIy/O26lCSmcKIbyrfyNMa7LmGNUBqrzVAHFqpQstR+PLxh9pKyTW3jM8yrd6Uhn2gWkzwM40EnSEo/qNaKR3qIrHYXXGXWOXEoPOoX0WRdGOP8m52Wco58CQAFFzFZLaEMGzfGaK7hwM13Or9FYHnPcySgGMUIMYI5ayskVV9R68DcS/jKbYNqLVnU8ktqnj+hGpzDuuJHMo6qDQzg4SzuJMWIIaaSwQW3jNvfjZvuV+nnEEQvAS8Z/mGEsBCBWxPC882/01DvzsvMhumjtAThfP51bHVeRIpJoQ0aAgdc7xpcopShRpXxifA94f7v9ejlnaCfQTrQyjbFcuAN+5/0MEX3YxwHzu1/fJmG1yQ530O2Bu/JzHTN0Goz+HNL2Qlo2MamHIG0fpGbTIs1D+yaCtql4/6b5/wraN/E+UtJKzP6kZaOn5pLepNT3fB9aWg7xqQW0byJokxa4n3aW/bRLC36NoD5p4cZR2aedbz9t06B9GrQL6tszQ+Ojq+JpmxZ46b5IhTeqaktLWojGqxl8mj6K5xz3+87j6UyTs3FbzoOJPpO5ClxmMOIXOddbzm9jY1MnpIrkw/axDUMaDsWqlOvc9/G08SZuPKSSRC/RhRicxIlYMlkbdjvrdXkyCTzhvJOXHQ9xu341F1iql3RLaMofAFQoOtOOZJFIviqspSM7PrFLg6ugJc3IIQ+F4i3jc+51TK7vIZlsiWAUUk4FW9UuErQjK4+KVlpR6TqVq/LoLNrRiuamBqBHeXCIqj/O8SKOD5z/4CL3bfwgZwa0bVDbcKDjwaCIEgSCXPKYKRdRpEpIFtEVUMmNEAjsJEJvjm3qjlP1kcwVn5ml6J1FO85238i/1H2coo1gkvtWutKeLeyik2jLf5zPmiWCNUEpxe3uJ/DgYSPb6Se6hySsNKdxukcLIZigncyrxsd48HDI4qDqZ63czAhtQMj6Jx13873xOwkkoCF4P+YfVCgX57pvAmCqMbNG5dTpIpW3Yh7nJNcfAG+p+Imuy/nE+Txj9eFHeIQ1Z58MbxTQlQ70FJ3DtjVkNKGxnT3mcycO+orupm7ukdJEpPKt8zXau05mB3spkiUYykAXOp21dtzrmMzjnlfpK7rxB/c9fMbznHyY9/kOxzXc4bgGgLEVV7JQrWCt2sxCtYIZxiI6i3bsVvvoJbqY5ld+g4feWle+lj8HHjvCnDEfrPVhj0VzpzFnBF6a6uT7Im+QxyHceBLmmjnQbr0c7dyX4NyXAGhLW3b4Ph/N6Mx1+oWM0AcwUhsYsl+3ctO94nyKOWCuU4CLeNqTyh68/1+Jg3mxv5Ehok+Dcb0Kr8k0pJEZhYSjm9aR+x03cavnMQ6oQwwQlWZv5RbJnBictCGD3qIra9RmBonGmSlpYxNtpHL4QKBtGNIw2C73cLH7NnR0NDSy2M9Ljge5SBvPKNclpmRZOLZROUneTrRmiNaXIVpfwGsQ8qTxOgDJJJFPIRoa3enABp8kyjZ2g4IclXtE90024TmijMAlS5bwz3/+k//7v//j7rvvDng0Jk7ShpnL//P8Vo8jCaUqx+DuWmiGTEPHeoOTRyFCCFO/qYgSVqmNkTYNQAjBy86HSMYb2PPPNsyWSwLcdkeLwcCRZQnVBQc4FHa9nRFY/3TR2jMr5mOu1M5jg9qOGw9PeF5jtOsytqidTFNz2KJ28pucz0/GbAwVWtp/OL6Rv7BKbQC87/khFRoMGyh6HfWxRCsTtFNotq4VfT8dztxdK80MQT9rI2iUNBfpPOv4K7kcIlOt5U73k4wSA0nCW6IwTdb8/eimdWRuzGdM1E5njlrKIQp4xPMib3k+O7KDOwKmGeHlK7awMyoDF0dLK5oHPE8kgeVqHV/Jn8N+F2pCopbAmdqJABwkn4WWbKt79Ot50nE3q9RG8ijgTc9nZKnwQdhw3Oi4xFx+zv0B/zTeZoVajweP15DFhz9I0Ud0DdlHM18GK8Bg0Ye9x0kgcH6pYQb+PMqJcHU32ySKIaKv+XyHJUi8gW381XiWj4xvw+73FznPlNoYLvqb60spw4HOSOGdUHDj4SPjW3JULje7H6ZQFvGbUf/XBlJJdqt9Ydsam2NwJLqIDuayNW+0Pz3M5UMUsJccflXzWChX1OXwbGyOa6qTEWiXBjcMfpKzWKM2s1Jt4FQxkv85X2ey4xIWyOUBk7PhyKMyk6+76BjQ1s3yPN/Xr6foTC8t9BooW+Ue+QHYhFDjQOBTTz3FiBEjeP/991m6dCnLly83HytWrKiFIdYf1lr2VWwkJ4o+fFUFArtZLooaC+2oLHkqV15B0TFapSNqdcqD/bQWLfirfiODRG8c6DQhlSKKTaFSgFai8kZzahRqynjFsAPR0GgvWtf9YGxCSBFJvOl8nD/pl9GEFC7SxlNECT3pTCfakkQC3UVHrvfcz69y3uF3aCFfFXK3+ymcOBglBvJX7Y9hjUKsWnqNjbbTu3LT8IeYeP0NtB54MkO2Dg5oXxumNNjP5fo53gxKvKUKb8svOEPzmkHlkndEN4ldtPa86Xyc8dqJdKMDq9RGbvc8wb8876JU7WuLfSsjT1Q1xixh6/kZIMU3seM1Azh6Td+z9ZPN5R+MGeZynIhlsn4xp4qRNCedmWoRd7qfqPZ+J2njmKSNo5voyPdqOuW+35wCiplPpfaNmRFI6EXwfg7RjQ7co19PJ9HWNAqBxh0I3BNcGuxpEdAeTi6jPa3Nyb6fjFlIFVpe/brxCakkMUYM4QH9T/xZv4KnHfcQTxwPO2/jPec/zL5ve75gTMXlvG98TXfXOM5x/5E5R1GOfizIYj9a0KV8a1owXPRnmOhXT6OqW1pZJjusEgkTLN9ja2l9pIkiGxubY091NALt0uDo5xdjLi96PqIlzWlFC553/o0z9NEopZinwmv3OXCE/D4B5jW3n2SRyEfOf3KtNgmAy7VzeMJxJ20IlTvJIXpiMY2BGpcGv/jii7z33ntce+21tTCc6GKGXGQuu3CzXK5jvH5SPY6okk1qe8S24Eh7Y6CdaGMu+2eOxgToBC7ldq6u9v5ucVzJvyrew42HvKDSwgTiOCQLSCKBYkrNLCFdhBMjrx8OqNCMwLa0JKaROkY2RHSh86Tzbm53XM1nxg+0kRlcoZ/LzY4r+Nb4lcmeBwB42/iiRueVxzyvmOYAGaJZxOzQL+RPPF3+Jrc7rjZLExsL6z46BMp7g+8siSHl2zZ0u7sD29mLB0+VLpq60HnR+SCjXZfRX/RgjlzK2dpYFsgVtBTNeMn4iNH6kIjbRyJVJPO18xWe9LzOU8YbNCGVWcZimpPONY4LjvhYq8MKtc5cduAglSQOkg80zizhViIwCOSwXMr8YMzgcv2co9r/eO0kNDQkkh/kTJ7iHrMtVSQzxfkq3V1ncoBD/CBnsVflVCsIFy/iOFEbyjeeX0LaBN6SVB2dya6/kSwS2SLDlzpvZidtRUuEEEGBwMarEfin9Fh+KPKGeVo5IDtxZkB7FvsZLHqjgDVqE248lFDKaWIUv6n57OMAy9RahlqCY1vlLn7zZfyvVZvJVGtZJFdwlfNh/hB7rplNe7p2AjtVFt1FR2bJxUClOc8d7idYFPNlvbk1b1O7TW1J8FY5ZLGfLLWfAVrjzQq3Yj0fWI1B+tIdsbs3xjd/gcJ0QICQvCdj+M5RiMdQODSBRyp0TaCUV3ZD08CQWNpAKtCEAAUyoA94JDh0gWEoNM37uyR923mC+0jl3Q9g+PoYEstfgVQKIbwhbEOqyu01gRAw+YQYHjwzttGZQNk0TlKrUcZplwZHP1vUTnayF4Dn9b/RTetIvirkHNcf2acOhN3Gei1q5URLIo+fS/Sz2acO0EZmMFDrxdn6WLaoXQTLI+eog0d9LDaV1DgjUNM0Ro8effiOjYBiStEsTpyZck09jqYSl3KzU2VFbO8u6r80WGs7Bq3DaZDcFhIyIDEDktua67QOp6G1HVPt/bXSKmd8C/E6c/YSXUgnFYAlcg2GrH5JX7yI40r9vLBtpZQznQUMEd6sjHwKmWrJCokGdsksVEVXVOG5KJdXnL6T1vgyfxoDGaIZdziuYWvcdO513kiSSOAyfYJp6POTnB2xtCuYPFnATN+NaALxPOv8K+9aXEetGMpgLzn16mRbW6R3j0P4AoGa1NjUZQOb2WlmgxzgENtl5DKFIVpfLtMmsEpt5Ec5C10JWovmrFDr+Z+czkxj8RGNSxc6Dzlv5Z+Ov1BKGb+qeTzgee6oy1UPR67FRdyDJ+DC63jICCyimCZ4bzZ+kfNwHaUZQDPRhJFiIAA71F42BwXkYrVYbtAvArxZiB8Y31R733/ULw1xPR4i+pjZbgYGK9UGPpc/hohu+2fWB4pe/FG/FCAgENiYzUJOS3KwrlsyUzsksKprCskOV0C7CzfL1DrO10/jAm0c4L1WsFZ2/GDMCtjmfeNrc7mAYh4zXiVTreVi1+2MqriE59zvs0lu5yPns6yK+Z6BohfFlHICg00tuj0qmw+MKbV12IdlsxE4Kew3joknjuEVF/Ki58P6GFadkkISCXh1sUt8Tt8AhaIE7eOnYV9nKEmHkiZQ3AxPaQrZhYrcEsgu8v7NKVLsL1YcKIGcIoLa4ECxt09OSB/f30L/ekVOkXc5O1yf4so+uZb9VP719tlv6ZNtGc++QsXj0yqYvunozMZsbOqKamUEYmcERjvb1G5zuY/eDYBHPC+zVK0JW5UE0JNQjWoHOl0jVC7675X8yQvhrl+jqTqzMVDjQOBdd93Fq6++WhtjiToc6AF6I/VdAuJnr8ohg6akEX6WpVsUZATGnPUuMZO+Je6GtcTdtIW4P24h7oa15rqYSd8Sc9a71d5fgog3S3xcvhlfTWhcrV9AX9GNbA6wjHVV7SKEyfrFVbY7ieE87TQEgmeMt45Iy622WF4aj9rzHurAfag9H9KxYuxxUwbUGHAIB9c5LgS8JUvve74+zBZe3pZfsFvto7voyM365aSopLC6HBoaaVoKbcggRRz+IqyhccJf2zLiztbkj8zm16e/ZN55lYH6JqSioR22RPRmxx/M5fflN0zWK/Xb7vA8jku6wm1WLW53XM25mtehOJc8bnM/VmslwvvUAYwwjrIATUihiUitldetT5rRxMwCjCWGclxmqUkhxcfkt/oy/WyGiL4IBD8GmUsBXOe40AzMveX5jBJZvYyGEsooxRus0NAQCDJVZcAvhSS6iPbm750VHY0LtDN40fmgmaHuNwsRiBDtxMZGxxiNcUlOUnUR0Q13sOjLbY6ruFO7BgeOgJKlH6T3PLFWbqZAFvGe8RXg/b9aS0f3kE0W+3nKeIOzXJNJIREhhOkAfb7jNF53PsooMQgnDu7zPBtg2lKXfC/DT1ImEt9oJ4KCEUKYkwPWgEIBRVDcBNDx5txav1O1L9lQm+QUNezx2xw/VMssxBLAt4lOtqvKe43Ooh0r5HreMj6vcpuztJND1rWjFZqoXvipE2ECgdgZgceSGgcC/+///o+NGzfSpUsXzj33XCZNmhTwaEx4CAz8LFGr62kkgeznIPs4YApqWoklhvaiVT2MqvaJJQbwikFXKO9NenfRkTVqMwpV46y9nloXxoihAe6qCcST4pu9mqOWsMln9rBMrYuYeVUf7CmuFEZH6Wwr6dooAz6Nmev0C4kjlhFiAOvUlmoFiubKTIooYZPawfX6RbwhPw3b7yrtfL6OeSVgZq0x4YjVOOO5TgyeG8PmO5fQTetotuVRgETytvFFlf/T4aI//YVXTH6xWsUg0ZsRYgAZNCOFJF40PjqqMT7j/AtJJNCX7nwnp3OD+2+mvumxZLGxImJbY8wGBO8kUEu8WeIVuCiihCGiD21pxUgxkKny97DbZZZ56L+5iHYbCnkvr+pA78nacDLVGsqpCPvb0k604iztJHrRhTIqONt9Y7Vmqj8zppp6tAJhZnAlkUA/0Z2vYl7ml9j3fYEsPSAgKJFcop8d4IjtzwjMoOlxIw1RpEpAeSdr/UY/AL1FV1YbG/iH502+lb9RRjkpJNKSZgwSvekk2tKy/ASGuC5ggOtcJIruohNtI1wzFVPCXnKY5ptUsGYrDNb60E/rzkHyKaGMv7qfrZNjD2aRWhV2fVOR1mgngsLRCm95sD/IDpCnCvjrGTH1NaRao3sLjXP6HB/fdZuGj9UsJNGXuRuMbRYS/fgDgbHE0JoW/GDM5HQxKqByMpjBWh/iiQ1ZV11aaqGTm3ZG4LGlxhqBt99+OzNmzOCUU06hadOmjV6jYiQDWIjXNbCEMrLkflprLQ6zVe2yv4r6+C6ifVRp2R1LEogzxdX3qGy6iPacrY/Frw39g5zBo9xeo31OiXmVaXI2V7nvBbwlV4O0XrxqfIxAcIE2jqeNNwCvM+dl+jlRcWHtdm4GzvA90xHO7XQWZ9XnkI5bClQRM+RCJupnHL6zhTYigxPEYH5XC0B5da36iR4R+3uUhwVyOeB1Te0s2vGNEao1BtBBaxN2fWPjIm08Bx353Ot5JqRtrdrMQrWCUWJQ2G2FEEzWL+Z2zxNoaNzieYRnHfdxvvtmlqjVrDW2cKljwhFPrLQRGfzsfI9J7ltx42G6nM8l7jt40/l4SGnr0fCtnB6xrTHqA/ppLVoEZGF1oA2llLJQrWCNsYnHHHeSLBIDtrlmTxlbXN7cr5uzyjgjyUE7Z/j50O6iE11FB7aoncxXyzmkCkgPyq583/EPLnTfynq1lWVqLe96vuIux7XEi7iI455tyVY0fJONY8UI/u28jz5aN7NtlDaI+XIFi1gBwKnaSP7muDlAG9et3OzDq83TmI1CrCilONN1Hdvwlin5byCHi378z/kmZ7qvY5XaCMBpYhTT1QIKKeF0MZpkEswJ1Gyf4PhQ1ZflrAe8WpNWswk/7xhfcI5+Ssj6Rx23M8X4lQMcYoVczyq5kf5a5HN4bRCsceznOcffOE0fVadjqU9aieYhSX4FFPHvM5P4vOctbK7Y79WVdbgQ7gRuT5jE+e6JpMYJiioUcU6vRp8hFbEOQYkLUuOhoAxS4gRF5ZI4p0Aq8EhFfIyguDywT3GFxKl7Q/cuQ5EUKygsh7R4yC+D5DgorVA4dIGmQYUbXx9l7ic5FsrdCqEJHBqUB/UpLIfBbXXiYxr3vZdN48GaEZhKCiWEZv/ZZiHRjVLKDAR2FG3wYPCC8QFFlIStXvDTQWtNdzqxkg3mumCjkKrwy39ZsQOBx5YaBwI//PBDvv76ayZMmFAb44k6rnCcx2LPKrNE+BnPW7wY82C9jml/GKMIP43RKMRPCkkc8l30bpY76KK1p6VoxnDRn8VqFWvUZnbIvXSsQRAkWSQy2nJjlaVyeEH7Gwvkcraq3cyVS7lSO5/lai0/qll8bHwXUFJYXxipXyBkLKq8PyJhISRNp5O4sb6HddzxlTGNe9xPc4A8FogvGKD1rNH25+qn8LtnAQBT5Uz6VXETuUptNMuexmhDOKjyWKk2hO3bmM8DVmKEk2v0C/jNmM8ctYRSix4YeF0+R8WEDwQCXKafw26VzafGVJapdTzoeZ4/iHN4S31OKWX81fVPPo19/ojHN0Tvy/P8jVvdj5ImUvhFzuU019WsiPnumGRvSSX5Rc6N2N6xkWYEQuiNf5bYzyR9HO8YX1JMKZ8ZU7nRcWnANocMZRaAKqDQUBDhbRBCcI42lheMD0034mATkhQtiWec9zLR9WdSRTKPGa/gwcNDzlvD7nOr3MVXchodactB8szv87+cfzWDgEop3jO+4jbP40gkY8RQCijkNcejIb9t2eSaGYXHSyBQCMGtjqu43n2/uS6ReC7Ux9NES2GsNoLVxiYUigVqOQnEUUo50+Rs7tauMzP+73VM5m3PF1zqOJvfPF7DkEjC5j/LuWw1dtFFbx+wvolI5SHHrbxjfMF6tZWnPK/zWcwLtXbswcwK0jK1ZpgO1nrX2TiigdYidII+X3kNXW5tM5q7PE8FtB3UOjAm5qIavEJ1Jtgb5yS8jc3RkGpJnrBmcFuxzUKim2xyTb3dTqIts+US8/pFVSGz0E604mR9OCuNynsV62Tm4dCEhhMHbssEnR0IPLbUuDQ4PT2dLl261MZYopIdai9DRGUZZjitoLrmQBX18dGgDwjg+moCFR8Oo/y1tpS/nOF9vNbWXFfx4TBcX9UsmGzNxthKpWjp2XqlBsGRvD+tRQtGM5hRYhDxIo5WWguKKKWAIuar5VynX8hatQXgsOWGdYFHeZDCg0h/H631XYi0zxGicWf/RCvb1G5yOIhEcof7caQKr9UWibP1sebyj8bMKvvOlZnm8hhtKE8bb0bse7wEAgFSRBJfOl8kicrsr1hiGC76U0ixKSMQadtz9VMpoRQNjVSRzC6RRQZN6UM3VrKBn42qtQYPxyR9HD863zE1cAaKXiE3pUfKTLk4bODCT2M+J7QMyqrcpnYH6DyGO1c/2iLWnLuelOygd2zVl0DW7+cPEaQnBmt9+Mb5ijlb/m/jPbbKXWH7/ii9ZhU72EMqyQwQvRglBtFX6w5AhXJxk+fv3OJ5lEHCG8hpSiq/Oz8KO8G1Sm6gv+jBGDEkYuZrY+Ry7RyGUamJ20t0MSUQ/un8C3/SLyeVZEaLIbTDm9GbSx4jHQPZH7eQrbHTudcxmczYKXxj/EJ/0YNedKHAZ0TWlDRiiaGzaEci8QwQPXnCeC3sWK7VL2C/OogLN9/LGWSp/bV89JVEMgLpJNo2Sm3QqmgpmoWs82d/XqKfHdK2zndNZ2NjU7ukWvTsEwifLW+bhUQ3VqOQzqIdP1TjXjuRBGKEk7MtOoEpJNX4ujQuqLR4P4eiSrO/oVPjQOAjjzzCww8/TGnp8RG936R2cKfjWvP5brKrdKOsCw5UlRGo1b9jMIDM24I6tAFcReAp9T5cReY6dWgDMq9mF2LNRKWW306111w+R6ss2Vksw+vlHI6T9OEsUMtZr7byH+NbztHGAt7SrZ3sNW+y1qktLFDLj+g1jhXhSsPTfKYAxdkuFvxrLys/yEF6bDHp2uZO/VrTpXub2sPNnofxqOq7+XUQreknvEGAJWo1+9SBiH2tBgijxWA+NaZG7BvJkauxEqPFmC6u4A0ELlarmCpnsMxixBCO4Vp/5jg/pQ0tmCZnM03O4Q/aeaxlM9vUbu7yPHXU2n4D9V7MjfmU5qTzjfyF94yv2CH3Hn7Dw3A43dJOjTgQGFxevV3tYaDWyzRNylV5LFVrAvrcmB7L5m7JZHZJ4tN23syEqi4oTxCDAtyI5xqZYfsN1ftxh3414M3Kusx9V4gT+H+N/zHFUsq/h2xWqvWmaVWOyuUC1y3MMbzf841qG4/ot/FpzPMka6FyFD8VuXk2183KcjdzVSatteMjIxC8WYF3Oa4zn29SO3jP8xWHZD7veL7kHu163Hj4Vc1j7GdcugABAABJREFUF1lmvx99rsH+kvGFcgU/qdlmtrW/LLg9rfFgsE3tpoQyVqj1fCqnMl8uIxincHKN7tXHNjD4sA4dhNeoTQHP/UHuIaL6GkyNhVYRMgLf9XzFU57XSQsyLNigtuIyjtwQysbGpnpYMwIjyYmVqOMjptBQ2W4JBHakLT9ESFzQLWGlvqIrAEO0vmb58HCtf7WNQvwkEyjxIpHkklejfdhEpsaBwJdeeomffvqJjIwM+vXrx+DBgwMejY1Najvni9NoRhNz3YOu59gkt9fbmCKVBrchg15hrLobC62pvNDLUpVW5X1EN87RTqEZTfha/nxELnlX6ueZy+8YXzJeO8l8/qMxk8mOSofhtz1f1Hj/x5I1anPIus6iLa4Sg3eHreT3v+7g++u2MO3WrfUwuuOLGOHkRceDXK9fSB4FfGhM4QH3c7iVu9r7mGAJZH/nCa/3JpVkni8jMJ1UDqhDZpl8MO1oRYIIL8jcmBmnjzGXC6k8B1gzKSPRVe/Ak867zeffyF84Ae/vmTcY+ORRj6+l1pxbHFcA3lIKv2PpkZKtcvlW/lZln85aIw4EEnjj75+x/rN+BYNFb/ZxIKyjXfsYjW3OGfRznUN6xTA+kZED6g7h4G3Hk5yjjaWQYsa7r+dzzw8cUgWslhvNfoYyuFefzFXa+bQXrVitNnJ6xTUs8hm5zJWZTHY/wPygSaQmpDBJH8dKYz1nuSbzu1qABw8tacZrzke4z3lT2IvmD/JcnL+rlPm5w1B730V3dWFcDXR3GgOjtIGmSHkhxfzZ8wjtXSdzq+dRflKzuUg/E4AyKsybkKkWh91yWc49nqfN5wNFL3N5A9tM/UYrN7keolCGXl9c57jQfI3XPZ9QFKbPsUZKyS4Cg80KbxCzJmLsjQWrY7buK9HdpfZyi+cRXjU+DilJLMfFHA7/22BjY3N0WDUC44kLCewAFKpiimQxCy3mZ1LJGk2s29Qe22RlIFCiAibYrEhLmXC87z4kWSQyRPSlBU1ZK0PvXw+H1WzGj10efOyocSBw4sSJ3HPPPfzf//0fF110Eeeff37Ao7GxTe0GAT1FZYDta35hnOs6/ux+pMqsnNriAOEDgXvJoYfWeAOB7URLcznbkhUnhKC9aEUued4sADmvxvvuorXnVG0k4H3PXbhMkdKf5VzOEafQihacIAaxRm3moMo/uoM5ClbJUF24feoAJy29nqI9LvzVqRu+sS3W64JT9BGM0YYC0IJ05qpM/mm8U+3tz9HH0psuDBX9eFV+HDaIOE8uI0M0Y4wYwnniNP7meS7i/rppx1c2oB9/ZmYw1QkEAlysncXJYjgdaE1n0Y7T9VE4cXCCGMz7xjfc5n4Ml/RmkBypPMA1+iQcPmnej4wpNQoYBzPNmE0PAo+5GU3MMgoHDtrSeLPEgjXBtqs9KKU4Tz+VrWo3CsVXxjTyVWHItgLBFrWTMsrZazEcCcdp+ihTe3KkGMg1nr/Sq2I857hu4lH3K7QrP4keFWfyoZzCfY6bcPmyylqIppzhvo73XV9zh/uJsPu+Uj+facYcTnFfjRMHGhoGkq+dr4QtZ/TzXZEbb9hHAxVDp/KJx1UpqEu5udJ9b4gykccXvHvI8wIXaePN9ckkMEoMQkNjlU+r6AX5IU7loKvowHD6s0KtMwNIZZSH3KzqaOwhm1PdV7Hd2B3Q1p5WnK2dzAliMEUUc7r72pCM0GONVXzdj/LdoLUXrWv1taMR6/mgk2jLTfpl9BHd6IRXJzWZ0Kza2XJJnY3PxuZ4xRrIkciwZcAz1CKGuy5irPtKxldcb/6uPm98UIcjtYmEX/oE4Dc5LyAmAtASrzSDQtGUNFJIYovcyV3up3yVeor9HCSb3BqX9TYlLWRdThWmqTY1o8ZmIQ8//HBtjCNq0dDYoLbxpuNx+rgrL8yzyeU94yt2qr0hAuK1TaRIeFtahrgkNiaswvcHg9KCJ2in8JrxCQBTjRlc6MsGqAmT9Uv4XS4kjlimGXM4UzuRT+VU4ohhuVrLJfpZvGh4NXk+Nr7jdsfVR3E0R84GFZqNqqOzsesGJiQZaGXem5k2I0JnUWxqhz/o55JMEle472a/OsRazxYu186pVkbWUK0fnbRKzY1XjY8D5AgAPjC+Yb3yZnj21rux3FgXcX+RAmKNnaYijaakhWjmzZfLMJRxWDd1IQQPOP7EOPf17FRZHJL5/Ox8j3Hu6737MZZzrvEnOmpt6a15dXJf8nzEQM2bSbRCrudG/RJG60M40RcYDqaVaM652ilMkb+i8J5HrnVceETH+7n8kXUEyivkkofT97PeQbRutA7yEFoaXE4F+zhAa9GCK/Rzec34hDLK+cT4nj/7MjH9WI019lqyy8MRL+L4zvkGT3ne4B/GWwAUUUwBRXxsfGdOzD3ueZWLYsczN+ZTHvQ8zwfGNwA8KJ833e6DMTB4zfiYUspYqTbwB+1cnnDeFdb4wMqweJ2pRW7AAHTOjD92LtQNgeeM95inQgP8rWjBPvajozPLWMwA0ZOVagNuDFPS4135FXeJ63jG8zZllONUDkZpgwJkRc7lVE52DONnzxx+xWskYiApo5yNajtD3RcyyTiD3+VCTtdOII8C3tKfYILnRsqoYLvaw6/GPK7WJ+IQNb7MrhbT5YKIbZ0asUlQJKyaoW1EBi86H+Rx96v0VF3or/dgjDaU7hVnBGyTKauWjbCxsTl6Ui1BeIlEQ0MSqKftws12vMGmmarSBOlpz5tcqk+gvWhVN4O1CYu1NPg3NT+k/SIxnlfUf3HiII5YDpJPIcW8bnxCC9JpKpqA8gYK8ykKG9yLRIZoFuIIn4OdEXisqHFG4PFGBS4WyOV00dubEW/wBgjBO6N4JKWoR0Okmeb+VTiONga6aR3N5eAsjxO1oaYb4M9yzhGlk5+rncJZ2kk4cfCm/JxTtJH0FJ05QB7fyd+5Xq+8YX/H+LLeTEN2qFCNyiYihfSmSSROz6L/1S0YeXcbzv9v93oY3fHLufop3Kx7HaXLqeA+97PV/oz8zfEns7Tscc+r7JGVwYlDqoCv5DQA0kjmO6PqctDjySgkmHBmSUWUsEptDO0chpP04Qz1mUOtVBtwCidvOB+lI23Yx35msZgP5Tfc7/k3y+U69pJDoSqmUBWzlxyeMF7nYtftlKnyiK9xl34dZ4jR5JDLY55XKVI1F8nOV4UBmpFW3HhII7nR64SF0wTzz1pbTUNe8HxImQx8P9pYssv3HCYjELwlwv/P3nnHR1G0cfw7s3uXBELovffeFZFelSaggIqKKM3yqtgVGzbE3sWGCnZRERVQUZAmoIAUpffeW/rd7c68f+zd5i6NUEQk9+XDJ8nubJkru7PPPM/v94jnFl41H6auqM7L5kM0FLW4yuhFAZzyl2RSedR6jRKiKK+aDzPMGEBJinGIo6SQhgeTGLwUIYGfjPfoJFoyzv6UeXoJF4omXCl78oZn9HGDgAD3loihcvFvIP5nRJn7uLlgo+Nucy5xqzGIy+RFNCbDpd3A4BPjeTqLC0nHxwvqfa41+nKTcZXrdgjwqf09Q/2j3GVtOY+P1bcR+5/GbO62nqGxUZfGOOOqUGlpAIsUUvlIfcsu9vGZmsp3aha32I/xvmcsZShBDF5uth7lp1wcvU+V38NK6DJzLpsE5UQhUdDN4gxp7SaIeMrKklxlXEJFyril5CHWZzOpGiVKlNOLR3gi7pO1qJLnbVNJY7j/oVOqnohy6oTGVmY2+WNVqcAdnut53XyEBOLZReTk6mq9ya2wAzikT0zfL7sxUTQj8PRxQoHAcePG0aVLFy6//HJmzozUsjp48CDVqp2bZamhTJ3hxhXE4KUgcW4JycmWop4strZJzsFmvb6oecbO49+gdtjNI/Nr4BUeVyPpMMdYqJef8P49wkNDUdsVDd+qd7JJO+6PU+3Z1BJVaSfPB5wB5L9VVpKaTZDhGfNeNsXO5M4WV3LJ+zXp/GwVYgv/M5kIUXLmIfNmylKSFqIRv+uVfK9m5Wm75rIBw4wBVKQMtURV7rOeddd9bH2LD6cktZGoTdHjzKSdLc7h/wZ9jM5cLNogEBG6rnktD4bIINI71udcY/ThQ8+zeDCJI5YKlMHEQKMpT2kSRDwJIp44YrGwOEoiX6ufctz/+bIhZjBTbzf7eSLwxgn3c4aa7xobZMdRkigoCuS4/lygGIXx4olYFtIJrCdr0FG2pJO4kN3so2vgenarDDfXUhRzB7THywgMZ5g5gD+8XzHCvIIF3i941HMbG2J+pjhFOF80ZIVawyRrOu18V7FE/R3xHgWw8OHnKIkMsEcyTy+hrqiOQHCJ7MQHnqeJE9k7KmbGj4/Gxf6kdZmptIg/RnVZKc99OBcoKArwsed5bjSvdJcZSLaL3fQ0Orjjgwn2ZDcbJaRTlUQKv/EnrUUzChLHLBZFCJwDbrbKh/Y3JAX3FdpnKCAY+uzZ2BQkDh9+pqhfeNV82M0SHW//c3rCK3KY3AgZh+VHQlmBe4LOzSPNwa6btBCCYpnunbvYFw0wRIlyBgiZ9RzTSVwgGx+3fRlKYGBQkbLM1X/QMzDiX5Vkys9ssrfjwUNzGlCNClQjcqKpq2xDeVmaZrK+O+FZn5pucsMqvYHioojbPnPVzlD/A/T13UxTXx/W2Fm17SuSNRs0qhF4+shzIPDVV1/lnnvuoU6dOsTExNCjRw/Gjs0QWrZtm23btv0jJ/lvM1MtJEWncq8xDIUmhTQCZAweptq/5rL16eVX9XuO6+rLczsQWFhmWNBnV2rVw+gAQAKFXGOFE2WI0d+9eH2ivqetcEr8trObVXqD6/BYmEIsOolg4+lgE9uzLMuPGQBnI4VEQV7yPMAfeiX7OMhdgafz7Ib2mDEShWaZXs3X6id+tn9jsfqLF+z38QQfOrfq3awhd7ft/BwI7CJb8ZOej0a7rmICwTRrdp73McDo5mYXT1dzmGzNoIXRmN9ivmCS5xWmed/hR+97TPQ+y6bYmXztfZ2vva8z3fuuu4/xuRgKCSF4wRzlavl9o2bwlvXZCfVzWtD9NDcqn+M6YUIIypDJOThM0HqK+Qab2I6FzQ69h96BG1mqHBdhKaRrPnUigUBwJozCfxYXRbjZuJrF+i9W6nU8Zb3JctawXK/hCE7mel/RJWIfqaQRwCJNp/OV+Rp3eobk6KaYHVv1LqaqX1mol1Fd5K8gYAgpJFXC7nt+AoyyXuAK0YNyQW3MNO2jIAUYYVzBMZIitl+i/6YATuDVwqY0xd3PU6Xgg0cccbQIe2jtLtqx0fsLl8qu+INjwKbUJ5V0pqs5vGN9zkWyNRVwMk5/VPPYprMXVT9V9pK9w3y1fFgWHCIkF6DRHFNJWdbXzmSmZ2O7khtRokT550gIOgcfI4nzZINc2xYhwdGSw2YHe9Bodql9rFG5j32j/DN8oL5mJ3tZyt+sZyubyRhnCQTPeu4BoJmsz/yYz/nS8yqLY76mdlCmaL3eShEynt8P6wyjwwP6MJ+q7/lRz2WN3sR76sssx68qs97T9kYDgaeNPAcC3377bd59911ef/11PvroI3799VdeeuklHnnkkX/y/P5VigY/uAEsfrEX4JEeLpfds7SbqmZxWB09I+f0np31SxKiftCq+1wmpH8VwMpSdnmxaEMTUZcUUvnE/v6k9l9Fluci6biPbtO7qE7GQ9ZU9St9ZBcailqkksYb1sf/SnlwKmkRf5sYVBDnrinAf4Utaid/qlX0kV1c45kd7OHmwKN5+pwUk4UZbd7q/n1v4Bku8Y9gHwepQSX6ii45OnWFiCUmX2upNJS1uVxGmixoNLP5nR/yEDwDJ9vofXMs3WU7DnGUq6w7edX6kPKUpqvRmtqyGq1ksyzbtRRNaBDMyl6kV/C19WOOx6gmK/KS+QADZDd2sJfbrTFMsX7O0/kdVEci3E/DCZevyA+GAQ1lrYiswHBB6xgZw5eeV6hFFRJEPH/r9fTyj2BXsOw+pBN4iKO5lnLnhtaaJJ3CDeaV7nmsJbLc0EASK2Lcv4uQwKeeF6krqjPZ+wY9zQ4nfNxwvZ6q+XgSKPO1bg8HGGk/ye5gadJGtvGY/RoNqe1O8IXw4ecAR4jBSzlKEUssBzhMJcrymfkS1UUldrKXBWqp+94u0ssRCD7zvsSb5mOUpzTLydBr3ctBftDzGGL2B4Lu4IFTcwfPDktbbiAyM/n589BE1CWegiSTmu29srWR9br9p8pZbzdKlCinh1BGYDKpNBJ1cm1bKVMGmESwk710CwwjOY8T61FOD34dYKL9DUCWeyhAS9E4YnxTQZThIqMNUkgaC0c/2wr+C3EwrDT4RzUPHSYA+LH9XZbxWLYZgVGNwNNGngOBW7ZsoVWrVu7frVq1YtasWbzzzjuMGjXqHzm5f5ujYTPIzwVdQEd7Mh7UDQzOowFp+OgUuJZNdtZMrdONT/uzXS4R+cIkIJRFA1l1AovLohSiIDY2G/RW1quT038ZKvtTl+pcKJqyQ2ToMU6zZxMjvFQQZQhgsZ/DZ1xjJqADBDKVBPaQHf4xQfIox+cVayJV0zvS0X8NnfzX8rX6iVfMhyhEQdqK8/hCTWdw4L6I767SKtt9XWP05kLRlC6yFb2MTu6Ndxu7maKz1wYsSVEKEkcr0ZS+sgtS5G/p12c89xBPHHWpHqEJdW3gXpLtvOnxXWy0ccvI2orzuNd6lmsCd+caMBJCMNy4gtaiOWUowQjrYb6zZubY/jrjMjdY10zU50brEWbaORsAAGxWO+jkH4QPn1vqGE5JUcz9PT8EAgsQ6wZEziNrlkEjWYefvRMoifO6NJF1aeO/kqM6kQphOoG79f4s22bHarWR7v5hDPDfSvn0NtTzdWdw4F5KiKJcJi/KYSvBAuUYVcQSw2bvTHobnVninUw9eXKTd5vDAoF5MSQ6V6koyrrXSInkbmMoDalNfTKqIyxsbrUfz1GcvDDxzDI/ZBu7sLGpJMrT3GxAZVEOG5vt7KGbbEdbcT5xxDLO/gSA681+XG9choUd8SAz3p7EdcZlVKYcbcV5fK9nnfby07/snDVP86NRSIhiojDJQUfS9XprlvXtxflZlv2po4YhUaL80ySEOQdXEuVcnf3sWMVGCgY1BQsQh0Ljw4+Fxe9qxT9+rlEy+Fb94kpdeDLpA5alFLcZg3Pctn7Y+CbcKfpwWGnwdHt2xDZHSeSrTNI6JWXGuFYiaC2ac1gf/dd0+s818vzEWKJECXbs2BGxrEGDBsyaNYsPPviAe++994QPPnfuXC655BLKlSuHEIIpU6ZErBdCZPv/ueeey3Gfjz76aJb2derkPvuQE+GDu9V6I/f7nudD+xvOFw0Bp6xgFRuxsDmiE+lr3cRs+4+cdnfK2NrmBz0323XlKEWM8P5jxz5RzAvuw2z3FLL2AGTNvs7/2gPcZWa7pzAvuO+E9xvS5wHYqLOWovcMlgdDhrbjidJdtiORZBbqZcxQv1EHJ8CapFPYrnbTJswRdN5JliCfLPuDF+RwMrtvRTmzJOpk9nCAvRwkHR/z1VL2cYgZng/4Tf8JOHoW4yznAXKH3kNb/0Cm27N5xZrIM4F33ACQFJIp3nF873kbLx6OkEgpimNj53j8AxwhhTQW6GUUEHH/fIfPcsqKkrSV57OGTaiwa7iNoqt1Pcd01pKxzHiEh/GeMbxkPsiCoNvoQX2En+x5uW43wriC5rI+ezlICmk8Y7/D09bb2Q5YhBCM8dzJ3cZQ/tSrOEoSt1tjcpzsSdGpvGF9QiLJWNhZSh0BvGTcA/JDIDDc/XcJfzMrGyfV0rIEP3jH00G04Ff1O3s4wOPW6xFZ1DvyYBgCTlb4r2oR36tfOcRRtrCT6WoOU+1fGWZenu02Hkw3O6mFbEQB6XxHT8XROTzzMT8HfrzCQ9lgOW9xivCk5w78IkAP2Z6qRL4uIakAEwMPphtArCEq09LKeO/ayOYA9JQd3GXVRUUW6D/ZzX6esd9li3Je/7vNYW5pdkzwu7db72efOkBjWZd5egmr9Uamq7xlI+eVz/S0HNfl54zA8Mnw7AKBjY26WZZ9ZE+hn/8Wqqd35ib/aCbbM/7JU4wSJV8SPnGZRnqW63M4BpJR8gau4RK3AkrbBnruldz3mYchn6Qy7JNUhn2aypBPUhn+aQrXfZzKDZ+lMOTjVG77Ko2l20/cMDJKVmbaC91szsxZ6Ic5Sjsj6+RKiHDfgoNh+o4hrUef9rseCyE5ngTiWWr/FbGfcL1vjeY3vZS/9HpW6LUn3qEoWchzILBNmzZMnjw5y/J69eoxc+ZMfvjhhxM+eEpKCo0bN+aNN7IXS9+zZ0/E//fffx8hBP369cu2fYj69etHbDd//sk5t5WiuCsinUo6r+iJPGmNo724wG1jYdGQ2hQW8WzQ2+gduIGq6R15OTDhtAubHuJoRHAynPry7HKINRsNwWx+K97u4/H2+sj53328u8xsfitmoyEnvN8iYbNK69maZX0v2dH9fWqmmYa84pEerjMuA5wgWzVZiTKUZC2b+Vh95z4oAMzPwbnznyJcAytEvXxQEn42kyDiKUcpGlOXipTlLfszbgk8Rn1Zk0meV6hIGX7TSxllv8Db1udc6b+dpXoVgwP3MdH6hsfs1+kVGOFqXhQWhRBCkCDiiSWG/RxyzUJClCf7UvDwz2Z+pnbYA+EVogceTFJJY5lezd2BZ/Lk9C6E4CZzIF95XqUERZmvl3KddT9HwvRNstvmMfM2rpA9aSOas1Sv4lHrNW4IPMwr1sRst3ncHElL0QSADXortwYezzZwONZ6mzfUxwQIuBpo4cQSQ3rQCdXAoFwm/bxzkXD3X4B9HMq2dChGeHnHO8Z1LnzL/pzwl3gXeQsETgu7p4RMKABuD4yhii7PJ54X2OadTdegcRVE6tm2Eafn+xmREZiPAz+QUR58gMOkqjQSRDwlZFG6GK2ybW9hE8ByHWZtrThKRnXBhcHvYo+wQOBCtYz/GVcDzvs5xnoTgFgRwxjjDqpSAR9+ChDLGr2JO62nXT1hgHdPs2nI7Fy0ovPz56FWmD5udhUhJURR4sKqSgDS8HFUJbKLfXygvubWwONRU4IoUU4zhUXG/TKRZN73jM2xrZ8AT6o3uc97g1sFpn+8ET39f6xcUoOPFwf4cHGAD/8I8PHiABP/sPh0SYAPfrf4eEmAd37z0/HVFLYfiSZJnArr1RYmqMmkkk4pimdZ309eHGECkpnwQODuMC3mkFnIXLXYNeHqJTrSVbYmjXTeVl+wP8wVOEZ4XXmO8JFxThI5UU6MPAcC77//fho1apTtuvr16zNr1qwT1gvs3r07Tz75JJdeemm268uUKRPx/9tvv6Vjx47HdSc2TTNiuxIlSuTaPidWxU7nOnmZ+3coCPexmuJ+KANYtJXnubPC3WV79nCAt+zP6OEfhqVP36xETi45AkFH0eK0HedspljYzEBoVj6cGrKyOyu8UC876QHd9WY/N3V9qVrl6hG8b31FY2q7D5Tz1JIzmp68TK/JsqzBOW4Sc7Yz0hzM5thZLPB+7roWrtWbec3+iF5GR+4xh2MFM/put55kvz5MAvGUEEUpJAqiUGh0Fg27jqJlFlMcLx4kgtpUjVgWIjxbNT8TnhXT3mhBhbDA2Ty1hHusZ/K8r+5Gey43emBjk46PT4+jPxonYvnAHMtF0nEvvlL2RCCYbM+gve9qbB2Z3SmF5FXPQxQlgQtFUz5UUxgSGEWaytAC/ctey8u2E0hMJo2esn2W48bgZY92DATKUzpfyAWUz0YbdavOel8AJ2A0yryBqlSgnqjBNJ0xiMyLYcg+fZA/9ErAGeDujVlIJ9mStuI8DnCYdoGrqCEqU1qWcPcnkcTipSoVGCh70dVondsh8kwoIzCWmAhdyPzIQNmbnrID8RTgI/Wt6xTbiNrZtu8inQBhAs4ETuYHmb/1BsARKA89yPyuV3KDcSWlKcEFojF/6/WuCUgfo4v7XUsNBuIX6mVst/e42Zq/qAVsVjsI6ABa61MuFd6oc5ahyc8ZotVFJTfTc0M2GYEALYh0LC1GYYrIBDfgcIijPGy9/E+eZpQo+Y5ws4ijOokWslFEhRc498uQYVM6PkYEHuYq4xJn5eZmOCGL45tqKQ3pFqzYlXMlTZTj857t6Nv6CXAwm2q0YeaALMvCqSTKuu/xVr3LXX44+Fy+SC2nlWjGeaIhPY0ONBX1HP1/ND/YkdWPoYm7cKadZLJPlEjyHAicMmUKV1xxRY7rGzRowOjRo0/LSWXHvn37mDZtGkOHDj1u2w0bNlCuXDmqVavG1VdfzfbtuWv3+Xw+EhMTI/6HaBUmLmzilPKUpRRVKO8uX6ZX87gxkm89b3KhaIIHk63sYoVeyzv2Fyfa1RzJySVHo6km84dzYBmR8dCzPQc3vl7BmfzqVOJXe9FJHaeCKEN32Q6AoiKB+jhZdzvZyyy9iJZBJ8Fd7PvHXAGzY7XO6poVPusS5d/DkAaveh5CIilAHIvUMqqnd+ZHe66bPaRxDEQukZ2Y7/2c5zwZ5fHh5WNaa+4KPJ3lGH4CvGI8RHejHTVFZSCjNLwS5fK1UUg44Vkxm/UOLjd6un9vZScT7W9YoP7M8/6GGxmlg+/ak44b/JdScq9nONM87/Km5zGW6r/5Xa9w/2emkazDV57XWBgsQ96md9M1MIQ9+gCr1AYuDdxCqaDO3V3GEFZlcx2oSWUO42Qr5oeyYCBC5y9EeLZcZkbKaykg4vhbr2dDmLREXgKBP9hz3cnAHrI9Qgi+NF/FwsaHHz8Bfla/sc7ejIWFFw/NRX1meT9iVsxHfOB9mgtl05PoZSRKKzcQWFVUyPeaoE2NukxTs0kmlcet1zmgDvNI4BUmqG8i2jWhLl+br/Od+RZTPOPYEPMzm2Nn8Y73SbeNRLJYr3RLRWO1U+5bg0osVn8xxOjH73oFy/Uad+JGCMFQo3/EsRKI5zH1mpvpW5ritPUPpL3/avr7b6WxvzffWTO5N/BsnrKTw9ml9mUxDAthYlIxm+9EfiFOxLrC8uv11myv002NehF/CwQXyTbUEJUoSBwSyQa1ld/tqBZZlCini4SIjMAkhBBZspfLUYq+Rhf37516D1/bjl6crB16ltOQQ2VcCCmgUAycV/Hk5TfyO+nax0f2FPdvlek1rydqcKHIfTwjhaSeqIEXT4S+f6hM+Ac1hwX6T5bov+hotMwk7RWZ7RdyhIeMoOAyvZqdeZR1iZIzeR5BPvbYYyQnn9iA5XQyceJEChUqxGWXXZZruwsuuIAJEybw448/8uabb7Jlyxbatm1LUlLOulBjx46lcOHC7v+KFTMuTg1ERsltKKtnGas5REZ52EK9jDssJwPkds91zPB+4K573HqDZfbpcSXLzSXnbAsG6eS96KRdqP0rUfuWofYuQ+1f6S7TSbvQySf+Ba4RDH5ApE5SOJcYnShDSTawlcnq5PVeRhk30EzUZ63ezC4yHhTftD6LyLyak0uZzulmc6bSYAODkqoyG312VDj1LKCprMc481GWx3xHI1GHXewjiRSqknFN8WDykHkzxUURzhMN3JT7X9QCkpRzjZ1sz2Aei91tQjc+gaCn0YGX7Yls0NuoSnn3uhQtC84gPCtmq95JL6Njlja3BB6PcC/LjbqyOq2DZZ1r9WZ+y6M2aCejJXEilpHmde6ynGYxWxvN+czzEueLhvyhV7JE/8Ulvhto6R/ATvaSShr3GcO5SQ5kif4ry/Y1ZRX39/wSEM4uIzCn+wKAV3p53rw/y/K8BAKnh2nOhj5PBWUBvvC+TF1RnVTSeMh6iUfsV1ivt1KQOIYZA2gm60cMYnNCa8371lek6jResSbyijUx24qCPRxwpQLycxloiBaykesUfoij9PQP51n7XZbqv902BSnAG97R9DQ7IKWkm9EOIZzMknl2xnV2qOxHfVGTRJ3MLvaxFMdIYgPbmKx+4lKjq9s2vCzpGqOPqxEYRyzlKM0BDjNZzeBt8wmGGZdziKP8qVczTc9ms97BFdbtvGp/yJPWuBPq7yt29hIDAJVFuVPSnjwXqBW8DiaSzD4OZVk/WPaN+PsQR7ndGsPfegNVRUWqiPLM00u43RqTJXs7SpQoJ0eRMI3Ao0Gd5szPrbVkFZ4176WlaEw8BdjBXlcLWXcZj+g/Btp9Qq12i7ijo5c7g//v7uzljo5e7u7s4Y6OXu7rGsOCO+MpWzh/T5KdChPsye7EcmbiiOV62c+9h+bG+bIhFjYb2EpMMBh4mKMk6mSWBzX+alOVYqIw54uG7oT3T2o+DwSeZ7H6i0VqOY3DnKb9YYaZU61oefCpkudvyb8dZHj//fe5+uqriY2NzbVd9+7dGTBgAI0aNeLiiy9m+vTpHD16lEmTctZoGTVqFMeOHXP/h5ui1BZVMcg6sDpE5APkfL2ED4MW2xfKpgw2LqWNaI6FRdfAdUy3Tl0sep/OOqgBJ7BQRZTPdt2/he+z9vjG18H/aVv8n7bD/1k7/J+2dZf5xtfB91nW8rbj0VzUd3/PKRPvfNGQQFDUdIaan6P4/vE4z2joPsAdIZGylKSdOJ/Z+neKqcJcLNvQSNTm61MINp4omR9Yy6T2pPr6NOptTKbnthQC0WDgv8515mVUEmVJEPGUp7TzU5Z2XdACWIwKPA84M2ahh/k00mnlv4IUncrt1hh3fwWJcx23LhCNWKbXuIFpb5hBUDQQmEG4K91mvYPmor5bQikQdBGtWK030tp/JavsDXna53BjAC1EIxqLuoy3vzyh8+km27rnk5uJ0aVGV14zH6EMJahIWboYrQgEs8uqiooMN69glv6d4hTJ4oAZHhTKLxmBZSiR5f6cW0YgQEfjAvqLbpwnMlyGjzerrLXmqE6itWjG+aKhaxgGUEoU523zCbcs9AfllLQcJYl2Mm+SHUorrg/cz83WowwPPMQatYlP7O+o7++JP1MZaXj/8nMZaDjPeO6hHKV4xryHHrI9TURdJNJ9+EwhNWISMZxJ9g/UEzW4SLbhMuNiEkQ8CSI+iyv3DPUbNaniZpzNUX+42XwlRFGGyH50Ea2IwetqSzcT9bndGoOFRTEK48GkhWhEbJipzxv2J/ylcnYBzsx39qxslzcWtekQpl+dXwnXCcyuPLiOrO4GbUPEU4AE4ilOYZK1c69dplczzvrUbaO1jhhLputI2Y4oUaLkTLhrcGIwuHe+bBjRpoVohFd4mOp5J4ursJAacd50qvb4jo097sbT4y2e7hPH033ieOqSOJ7pE8dTlxTgmT5xPNYjltql8/eEyKmQqtN40fqAulRDIChG4Yj1aaRHZO/lRlVRwa1aKoATvzmsj7JILXeXb2EHDdJ70sTfm7qiOgA+/LxoT+Ai/3Vc5L+eI2E6vj58NKM+zUR9vlDTT7W7+Z4TEhHKS/T3n2DevHmsW7eOL7448TLbIkWKUKtWLTZuzFpKFSImJoaYmJhs18WKGGqISqzTWYWHwylBEe63XiBBFHIf5q4L3EeyTiWBeO6yxrKajdxlDDnp13GXyj5rocnyZnz32kbSD1tIj6B0k4K0ebAiZsy5NxsSnvWyh/1orbO8nqYwuVi25VP1PcmkMlctPmltpufN+5npX4hAkEIac7WTPfCm+pQkUtjNfv7WG9ih91DxDGThZNZpSD48CH8w9vdLis3sFIuu8Z5stoxypglpVYU4rI/RyNeLIyQyW//Blb7bSSCelTrjIXAD2+juG8bhoJguwKWiKx/r7wDoaXTk3TC5gWIUphyl2M1+2kb1AV28wkMFyrCd3WzRO5FC0t1oz0T7G6pQ3nUbk1rQMzCC13kk26zBcPoaXbnLeppDHGWN3sjz+n5KiKK5bhOipChGS9GEBfpP1urNbFLbqZ6DnEMToy6/yc85rI8xQ82nPKXpa3ThCfN2Cog4JqjJ7OGAqwcYIk5k3MPyS0agIQzKUCIiYzu3jMAQz3nupZH/EvfvcP2a7NjFPvfa3022zVKOe75sSBNRl+V6jeus10W2oqrMPVD3l1rHIX2MP9XfbobZ1+onqlGRzTgBv+/VLPoZF2f0L0wbN5oR6FBWlGRtzE94hYdXrIkM0N150RjFF/Z0PrC/pgrl+V2t4CKjTcR2B/URpunZ+AmwVx/gQk9TOoqWjGQwtrZp57+KpdrJCkzHxw9qDr2Mjrxpf0oAi1/UAi4zLgLgFnMQjf29sbBII53uoh0/aCco/LfewO7Y31ih1lJJlGW93soMex5j7LeoRgW+tH+gocxe0zCcdJXONrL/fK/Q67hANjmFV/HcIMI5WG1174vjrE8oLUqwQ+3BJsNEoBTF+Nk7gSb+PszRi6ksyoN2NM2ett+miExggOzGjYFHSCGN1qIZr9gfIoBBRl9Gm7f8q+X5j05P54OFPnw2mBJs5ZRGhgoohRBopRGAwmljhbURwTZKaaQAW4MhQSkQAjQCoTVCCmylMcLb6JBim0CjkSK8jcCQOqyNczxDCKzw/Qjcd0MAOtg+/FwNETyWyDiW0Nm0ydQfEdwuc5/RwefZ4MFUpj6DQGuNzK7PbpvgOefU5+CLq8E915z6HKq6zK3PCo3Mpc+hcw71OcYUdK5l8v41kTp8/xZFSaAQBSlIATcjsKmMLNNvL53JzXhZkKuMS3jL/gxwHIdDmYHbcO7VNjZ/qJW0kNl7F0Q5eZ61xrOdjESbzJmB9UQNqsm8jT3qhWV9huTVDnGMeWFGm34sNrINNFkmadLw4cHEkylctYt9rm/CarWRejJqmnmynFAgsFatWscNYh0+nFVQ8lR57733aN68OY0bNz5+40wkJyezadMmBg0adNLHry9q5hoIrEgZvMLLJr2dEYGH2KS3c5cxhPGeMUi/wSa2sUyv5mHrZdqK87jAOPF+gDMDnZmYY7F0uugaVqUcdO8sG6YewfZpOj9T5aSOczYT/uATwGIPByhHqSztehkd+VQ5ov7T1OyTDgRWlRV4z3yKd9WkCKe+dWzhYtGG3Xo/CsUEazIPe/53UsfIK1prEokszy8iDRKBUAFLvPx3gvVRjk8xUZj3PWN50/qMH/Qcpuhfsm23jV3ug4oHk990hpZdHaoyWr0KONlQi/QKNJpLRdccM17yK1VlBbar3RwhkSP6GCONwSxWf/G3Xk9JitKKpuxgD3s5wLDAA9yvb2CkMTjHe1ysiGGQ0YeX7Yn4CfCRPYU7zOvzfD49jQ4ssJz3cqr6lZFycI5tS4sSlBYlqCurRwSTN6pt/KocrZxiFI4YoB0OczPOLxmB4OgEhmdKHy8jEKCsLMXD5v+413oWgKMkkqrSKCDjsm2/WmVMJFYgqwabEIJhxuXcYj3mLgvXlcyJ1+yP+NCeQgxefPipL2rwiHkL8RSkZ2A4AOPtLyMCgdGMwOzxCmcCLPz7ckwn8an9PevZyky1MEsg8GP7WzdwO8joS2xYMN0QBm94HuWxwGtuQO9p6x0eNG/mTZxMsW+tX9xAYHVZiduMQbxofxB0EI6jDCXYy0Gmqdk8FxjPPZ5hAFwgGtNE1GWmWsQivZxn7fFcZ/Q77sPVS/bEXNWxooHhSPmYDcFx+ya1nVHWC/jwU5wiWGGlZfs5zAPWi3gw8RNgm97FaONWvlI/skpv4KbAI9zJWJKCY6+DHGEP+wF4xn6HozqRMZ47iRdnPuDy9XI/T804XmZiXqpEcmujT7JNTu1PtWrlVPuTlzZ56XN2+/mnKnJOpj+aj5cEKFUojaf7ZH9fO5NUEuVIJZ0kUtyJt8ylwY1kXff3YcYANxAYPiKrRkV2s5+X7Ams01uY7H3jHz/3/MTP9m+8Zn+Ya5ueQR3+vFA/LEAXkjGysLKNZwBsIqung43iWzUzYll4Jch4exIvygfyfE5RIjmhaazHHnuMl156Kdf/J0JycjLLly9n+fLlAGzZsoXly5dHmHskJiby5ZdfMmzYsGz30blzZ15//XX377vvvps5c+awdetWFixYwKWXXophGAwcOPCEzi2c40WaD3KUC4QzK1FTVOYh6yUG+e9Ga81H3me5xOgEwHmiIb0DN7JD7znhc9iktrOKrCVsCTuK4UmKIWyCEzTsWfrv6Tn+k8QIb0TJzt/2+mzbdZGt3BmEafbsUyptv8y4iE6yJQD1hfNZqEll5uglbvr6B/bXp9UhOjt2sS+LYOvIMgep7pXECbinRAwt46Lp8GczFxltiBHeLMtLUtx1/z0QlvUZRyxb2ElncSHXGn35TE2jOEW4SLahrqjhmhc0Mer+axnbZyvhD8Vb9E7qyGquhMIBjlBHVKOlbIJAUEVU4H7reYYGHsj1WjHUyHBJe9eahK3yriHVTbSlmahPS9EkIrB0IrwZHBgDXEgTZHCInEB8xH2lcj4KBGbWCdymd+VJ2+tm4yqKU5hCFMDEYLL6Oce2i9Ry9/f31FcsU1l1f68wetBWnM8g2YfOohU9snF2DsfWtuuMp1GUoxTXGpfSx+hCR3kB1YWTMfqrWsRGlWFsEp7xGA385E5L2cQt2Z6qfo34biulIszcMht+ADSRdRlhZpjk/cV6ZqtFdBIXcoFozM/6N5KCpaQAD5g3UZPKtBHN+VbPZIDRnYbUojLleNh+mdGBV9zPZozwRpRXvR90aMwJrTU/279FuMQDEc6b0cAw1JIZGYGr1SaUUtwWeMLV1SxLhl5n6I65U+1xA8IAsXhpLR2jwF6yI0kkU5uqxBFLZcqRQEEEgjaiOW+rz+nov4ataie2tknVaaTqNJQOH5RnZb86hFK5tzkeczb+s2POKP99ft92duhcVhJlsYOBoFDJfoKIZ6jszyDZh+vkZREO7g1kLXqJjrQVzQmEBe4Pc5SiQQfiWWoRqTp746QoJ85X9o9cFvgfBgbNqJ9ju7yWBYMzqV0yqPsXbnL1p3bGUHHEUImyFKdIsI1zv25OfdcBXhF5nSxKYXazz33+/sT+Pvo5OAVOKCPwyiuvpFSprNlXJ8uSJUvo2DGjHOvOO+8EYPDgwUyYMAGAzz//HK11joG8TZs2cfBghonGzp07GThwIIcOHaJkyZK0adOGRYsWUbLk8cW6c6JBplmLIhQikWQKEEcKaQgcx08PHpbpNQDs5SCdA4P50vsqD5g3slPvdQd6H1hf84jnlhM6h9/Un3jxRAxWAA7V2odVKwVzfaS1dt0BJThXqSjKciyYWr5IL+ci2mRpkyDiaS9bsEgtJ44YflRz6W6cuCYhONke95rD8ekAY2xH2HsDzoNZGUpyiCOUEEX50P6WIWa/k+zV8dkQ9jAYoltsRW6uWSib1lHOFDv0HjaobfyuVvCu/QX1ZU1GGFe4EwDhKK1YEbxGhIinAAqbalRiHZupRHl2sgcLm6IUJpFkFurlvC4fYUhgFABL1d/uTdLEZLCRu4lSfiT8oXiz3kEz6rul/iYm3+lZDBOX85xxL3fbzwBwjCRq+LrQRNZlqVpFZVGOtz2PU0c6uiU1ZRU6yAtYqJaRRApDrFG843ky2+BuZurJGmzWOzhKIlvzUL6amY/sb5lgT6YUxTlKIoVlAko5gY3KlOcwx6hIWQ5w+IzIFJwtZHYODmCxk31UJvdgqClMmosGzNC/AfCh/Q3XmL2zbRvh6I1mZOBJZns/jigJLCQK8nPMB9ltni2L9V9u0L+7bM8X3lfcdVJIhhr9ecB6keqiEh3819BVtmawcRk79R4qUpZ9HHTKGKPkSFFRmNayGXPVYjbp7azXW6gtquHTfm6wHiZJJxNLDBfIxhEBpHC6G+1pEWjEH6xEo3lbfUFv2YlZaiEAX9jTGWY6EwTxogCPmyMZaDlj2W/sn7nVGMR99nMAzFQL+SuwngmeZ0gQ8Vxr9OVx63UCWHxof8Mj5i1uZmNmPlNTWUBWp/NkUt3fo4FhqEBp4ilAIQoyW/9ON/9QNrMDLx5KUowfvO9Ry38RaaS706pr2Byxj/fV1/wVM5VrjD4sVMv4Xa3EQNKEOqRLHy1pylDZnxushwHw4KGNfyA1RGVKUBQlFBLJB56nKSQKkpmZ9gL6Bv5HJ9kSE4Mf1FziKcBA2Yvasio3m1fnqa+DW3h5a37g+A2j5FsOJCk6v5bs1oE7ZdAayxZ4DU1ACaTQoAXgSC3ZGkypCdgCj6GxlAgrQ9agQWlnnT/YxlYioyQ9VKKsMtoUioGiTfpzpMlXrNdbXFmnN7yP5njul5pdGRqIzPQ6ShKd5IVMVjNIx8cstei4si5Rjs82vZttehdevCSSjImkYDDGAY5WeQHiEBChkZwX6skazFF/uJMxAFVFeTbpHaThYzt7uEFeydvqc3f9JWYnUuw01urNjmRA2P6OBCth4ilAIskoFJV9HegsL+RR81Z3vB4lb+Q5EPhPZJt06NDhuJlaI0aMYMSIETmu37p1a8Tfn3/+efYNT4Hw9OVQqQc4wqaz9CJSSXej2F5MQDBfO66SNwVG85B5Mw+aNzHR/gYbmwn2ZB4wb8QUeXv5tdY8Zr2WJQgIoLw21y1oxMEvNFa6DQhKNihA9Yvypl31X6S+qMHf2skEXJyNe2aIh8ybudp/F+vZygPWi06WYA6D7LzwoHkjs9RCFupl7rJ9HKQ4RVip1/GY9SqXGV0pIhJO+hi5sUpFZj/G4KUK0QfBf5vv7VncaY11/96t9rNGbaKjbEkcMWzWO4gTsUyxfyZFp7kZPZ1ES642e7NRbWOs/TaHgrqAZSnJ1qAO1G720V604GnzbkZbGYGCfrIb7wRvmr1lJ8qIczfwf7JkzggEqCLLM9F8hhftD1ikl/OcGs/Hnuf4Qr7Mr8ox4ZjGbEqqYuzlAHv1AUZaY/jR8557D3zNfJinrLf4TE3lCzWdbnY7rjB6HFcnSghBM1mPWWoReznIbr2fcuL4E2u2tnnSepNx9iekkEopijHR8wyPWq+5bSpQhp/UPBSKrqJ1RInjuU62zsFqJ5WN42dFtpRNmGE7gcDf9FL26ANZHH6VVqzWkRmcf+iV/Kb/pK04eV3OqXaG211PmfVB5nqjH71kR962PucN/Qmfqams11tdN9zB8rJ89T6fLL1kR+YqR99xqppNEZHAg4EX+VxNA+AK2YOHzJtz3ccL3vvp6R/hPnQcVhll+OPtSQw1+rvXh75GV7qoVvyiFrCTvYy136aTaMkOvZcl+m/QcHNgNI+bt1NNVqSP7MxX6if2c5iqvo70kO0ZYvbnQtnUPcZRlcgL1vvH7WuVaEYgUkgWe7+mvf9q/ASYi/PeXyYv4kZzICVlMbrIVnyvMkxXMo+tN+itxKY3oCTFaCrqkUa6Ww4cSk5pJurzg2c8o6wXWaz/IoXUDBf64GPN8MCDLFZ/0SRY8rhcraGCKM1i/RcKzU9qHsUpgkKRSDJvq8+RStLL6HRcnde/7Q34jzPZESXK+gOa9QfOjqxA1t6BKLqGI5VXcYijlCD759Rv7V8oJYrTRjSnCIU4GtQHDBEy3gMn0zsaCDx1vrR/4CHrJSSSrkEzvZSwDL4U0kjHzyPGzSfsTF9f1GAOkaXAG3RGYkslynG52YO3/Rnxm16yI+vVVtbqzTkWxoekskJmilPUL5SxS/KyfPCEzi+/859xDf43qSYqMlD2opmo7wqWAlkeDiSC/rI7fgJuts6v6ncu8l/PPHsxPYOlQrvZH5FhcDy26d0RYujhFKIglYuV5ryby9Lyzgq0vLP8OR0EBCLEYdeqzTm3E43cB+01ehOv2R+d0nGlkLzqeYgKlKEK5fFgUopiHAw6SO/jEA8EXjylY+TGchWZSVaaEkh57hnC/Nf4M6xM0BMs29rJXkYHXuEd+wua+PvQ2ncFd1vPMNp+lWIUZqDsxS3mNVxt9KaISHBLHQAWsgwZnI07TzTkI+9zHCGRVXojzUR9zhMNWKc2UYeqXCiaMiysXDVKBuEZgeHllJcYnehrdEEgaCbqMTBwJwWI42XPg67TcxmR4UY7R/3BJPWDu31NWYVeRkdi8NJA1GSk9SS/humH5kazMNfzP9Wq47Y/ppIYELiNsfZbVBUVkEi6GK1oI5uzSWdIaGih3PKJhrJWns7lXCHbQGAedAIByoVta6OYaE/O0uZn9ZsbKPBiUpaStBRNeNXKXUfneITGAAJBN6NtlvVFRWFqyapUFGXdz2IoCAjQPJPQepTsCdcz+tr6ida+K/lYfUdr0Yw4YrnE6BRhQpYdzUUD6pCRMTiPJW7G6XK9JuJ9EULwsvkgtUVVLpfdOUoiy/UaNrAVLx7OpyFfqZ9o47+S5WoNN5gDudboy3XyMg5xlM/UNC72D+FT6zt3n4/br7NV76QVGcHBzJSiWLbZZ/mRUqI4beX5xBLDZfIi4oiln3Ex7YJmBLmV7cfgjZDpmKP/4GiYYyU47pcv2xOYpH7kM++LXCAbUZhCXCRaU5ACFCSO/vJi6oua7GIfiTqZRJ3MLvbxu17pGD8giMFLpUzBPIXiA+vrXPtna5sugcF03j36ZF6eKFH+PfZVA2B9Drr746xPuCJwO739N3Ke/7KIezQ4utmppBEXdKD9wZ5z3DL8KMcnNDGpUNxoXMWu0MRHGDY2F2UzVjke9UXuY9Lmsj4tRWOulr252bia62U/6ouaNJc5lyfnxKf296To1OM3jOKS54zAU9Wy+C9jCAMDgz+D7nEVKMNeDlBDVKacLs2fOMsfNW8jBi/fq1luhNoO/rvXes7VHGlALX6059Hb6Jyn48/XS7JdLhA0EflPGyzchWg3+7G1ne0MhRSSVzwP0dp/JWUpxVT7VwYY3U+pbK6hrE0L2YjJagbgBP9k8F8cMXyjfqZoIIHHzZEnPGtyPMIfNiBDrzDKv0voumBissgziQsDl1OEQnyovsGvLGxs9nHIbXOYY1SXlegR1NkYaQ7mNuNauvivc7NNFYphxuU8bo4kRniZpt5hF/vYpffxjHGPW2pWnUp0kBec+U7/B6gmKhJPAcpQ0nUXA+dB/XbzOnzax2jbyaq73RrDUvlNhNPzdHs2lwVuoTqVGG9NortsR4KIB6CfcTG79D7XbOI9+0s6Gxce95yayfqus89StSrXmexNajv9Are4+ip/6fW8ZT7GtealpOhUdwLCi8fNUgfHWTo/ER4IjCWGSpRjfVCD6HiEZ9IWoRDf27P4n3GNG1DRWkdkYjUR9divD7FILydWx+DT/jyVhWdmrzpIeUqzn0PUEJUpJYrn2PZ2z3Ug4H7reXdZQeK40uh1wsfNj1SXlagjqpGkU/DiYX/wWrxd72GmZyLNjOM/bEghed07mhZ+R0dQo93vX1NRjyn2L5wnM8qlasjKLPN+y2v2R8xQ8znMMQSCGlRiDZsAKEFRnrTGMc7zKO94nuQVayJxKpY00ilGYR6yXmaFXsflsjtv2Z+jUCzl76wnF6RqtCzYpaAowMee51mlN1BbVGWj3k7dsHKxHkZ7sKA0xd17M0BLmrCI5RH7yqxPBRk6Vi/bExgoe/Kd5y026G1UEmXZG7zXlKAoXQPXU4KiHOQIh/RRRPCfQlGX6nznfZvysjTPWO8w2nrV3f879hc8mEvV0AvW+xzZWgW9qBcIC/QJqTxFifKvIIRC/9YPvagP14oSlBCJaARaKA6rRPzCxwFVGyXe4xhOufIxoUBLx3pZC3xCMxmTeIYiSCWJWJqKQ8ToWLc0WQYNoUM4y5zy5ZDbtSTMEkY79sxCaLR2SpzD3a6dfTi11QKN0s5+dLDcOuR27bQSSDQ2IodMq2Cb4DHCz1W4x83UhjB36JDZdfBcXfPrcGvu4LLMfQ5t71R3O6+nkJqAVvyl/wdaEiu8DKcgivHBF0hA2Htwg6iAFEkZx8p0rplOA4AU2qLUe2H7UYS/ugspTWuRgmYUEmeIfCHJJNMVpUPPuUEv8dD2WmAIGTRWDHVKcFQoGnGIUtLOvs+I7F8X97UNe58Rmdy7M/X5HzMHOrNE7x55ZJg5gI/93wKOMLuBwXy9NCJF+TN7KtVExYiLR4j9HOJ7NYvG1GEFa1mlNnCPGkZVefxSjvlqabbLNTpfBoNqhc3e29hs0TtzdExtJuvzoHEjz9vvs1vv477Ac3zqPbWsvWHG5W4gsDLl2MdB0vEDMRzhGK/YEzmkj/Ks5143cHCqBHSADZnclNrKky9Li3J6SNGprNVOVmp9UYP6Rk0+1S/yqP2aW74O0EG2oJVoRi1ZlZ16L3cZQyL2I4TgTc+jpONjmVrDMZK41RiEEAKtNdOC2UMmJtvY5W431Oh/3JLU/EpRUZj6oia/6xVsVbs4ppMoLDL0NO81RzBDLeA3vZRNejtT7F+40uzpru9hdOAmNZB37Els0tt5wnqD5zz3uetvNAbygvUe+zjEd2oWe/XB45ZoR2QE6pwzAnfoPTxtvc1avZm1bKaLbMVdxlA6Gk7Qd2NYNqCfgOtqX5witBQn50r/X6V8mEaghcV6tuBVJmO5K6LdVr9io9/mgjiTQoZzly4d9n4dI4mlehVPWuN4xnMPAF+pH5mrF7ttOssL2aH3slXtIh0fS/XftBLNTvicl+vV/BzUJrxC9Dhu+2uMPjxkveS67l0ue5y2e0t+4Cfv+5SiOE9a41hkL6eeqME077tZysBzo5Gsw2jjFp60x2GjSCGNYhRhmV7NOnsL95jDIq4vUkh3YmGCNZnP7KnM0U55VHGKsJkdrFdbKRJIYLx3DCPNwdxsXMW9gWeZq5ewSm/gDfsTZqmFbjDqfNHIlZ3JTNQoJBIhBA2CmSh1RaRmVGlRgq6yNT8r5zsYi5d0/KxkLQWIJZV0ClGQipR1A7fZodH0DtxEEQpxiKO0kI1YrtbQQV5ADF5W6rWAM/lfQhRlvz7EFbIHFUQZHjNvcyeLbzeuw9CSh+1X0GgOcYTSvgvpKTtwozmQVjLjGrPYXsmzKZ+i3/8U/LGcoOdjlCj/GlpL2Oc8s25HsN1RFAyuLRT8XzJsmcj0O4DGBkLiDMkInFqpvCQr/RPu2KfSJjfOpDs2gFNhkI4OTnOEZGsiQ3vLI96zvJ5HLFAnU/uM93Y3gt3Z7jd8u6whRjtLe2f5DjQ7cvw8nMn38L9B9A6SRy4QjWkYHFSsZiN1hZPenEIa1UQFPvI8RxfR2ikBIIW6orrr5hYq6ylIHGuDosQafVyXuBA5BQIB6suaOa47VylHKbd0w4PJquM4cP7PvIZCOBkek9UMvrR+yLX98eggW7iBx23spkQwYyeJFCSC80UjJqjJtPNdxWaVtxK147Fab8Ii0iGuvRHNBPu3WaHXug9pzYJp7D2NDlxj9EYiGWkMpqmox0ee53nEcwtXGj252xyabRZvLVmVRrIOg81Luc281m2zWm90zSUupAmf2Y62lRcPg4y+Z6CX/13OD2bpWFjMUPMj1gkheMXzINWoSCNRm/usZ/HrSK2okcZ17rXmDfsT5tgZOide4eFa41J3/9mVlWamsijnuqP9qVahtWa/PhTRZp86yE2B0XynZlGZctQR1XjFfMgNAkJkWY1AkBYcunWT7U57JvLZTjlK0lW0pqmoRyyOZt7fegNbVUbAfEZygHobkuixLZUmm5I4ZDnf2fBAYGj+/jX7I+baf7BH7eeewDMRx2ok69BGNnf/zu3enBvhGYtNjOOX+JYQRbnHGM49xjCulX25wbzypI6bXyktSiCEcEv/BxuXnlAQMMTN5tUUo7D79+GgrmsqaXxmT81xu2uM3ow0B1OSYrQUTTjEUTeo+7H6lu+DZVke4eEl74PcaAzExOQl8wEuEZ3oIdrTSjTD1CYm2X+/oxmBJ0b497irbEN30Q6JdLP9kkhhNRsxMj0mmWS8ByYGBYhlCzs5wGH2qAPsYh+fq6m8r5zxvUDQUNZyP3sNRC3uNYdzjGQCwftNjPAyxBxAY1GHOGKJJYYU0pikfuAi//V8an0PwGRrBp0Dg0lKjgF/AaKPcFH+ewjINl2GsOUi0+/ZbZ/bfqKcPP/U6xseXMvufT7e+eS2LvpZOBWid5E8IoRgmHE5JibVqcRyvZYE4ilNcVqIxtwZGMs49TGHOEo5SnGVvIQVMd9zjxzmWqYfIxkfftfy+kP7G3cgkBN79AE2holqZqbeWRoI9Pb7Hu+gP/D0+RJP7y8xe0/C0+dLd5l30B94+31/UvsWQlAOpxwsgOXOuuZEUVGYpzxOdkhdUZ0brEf41v7lpI4NGY6OHkyainoRZV39RTfWamcGubgoShv/lcy2/8hpV3lmqcpaEtSUuqe83yinRrjOWyjbK1R6utL7Pc947mGB9wtKimInfYxparb7+072EoOHwsTTV3Y9pf3mB3qE6YNNs2dnWd9A1qKxrMNKvY59waztcKrI8txnDgegnqjOlYE7mKcypBqGGP0RCOpQjcn2DBJ1cq7n4xiGOJ+TAxzmczWNRr5LeNf6glesiQzxj6KW/yJ+UQs4RhJ+AvzgGU91WSliP8vCdCmLUZjzRUNi8eZL0WxTmOxkL8v0ajcgCjA97Hsz7pA/VJHNjoDm+yRnUqUkRV0937I4gaG6ojoDAiPp6B9EAvFIBAkUpDCFqEu1iEzskw8EZgRya4kqedpmtOcWnvDczjveJ13zgSgnxkhzMJtiZ7rl/ydKYVGI5zz3Z7vuNetDV0t7rz5Ib/+N3Bd4jurpnenmH8rtgTGMN8cQCOpNlsIZN5SmONcF7uUne567r+Hm5Sz3fstw83IKy0K0N1ow0zuR9WxxA4iZqSajgcATIVw7MkWnUl/WJJlU4og04LGwiSOGSpTFg0l5SmEGi6kSKMRmdrhumFvZSRyx2Ch3UmKYMYDnPPfxtfd15sd8zndqJgP9d3Cp/yZ6B27isHZym4qJwszzfsqtxiDS8UWcwwjrYUqmX8DV1l3O+19sF6JyzkZ5UaL898gtkBMN8vz3ySmwG+XfJloafAJcbfQmgMXd1tMAdBWteMK8g8/tqRzgMAAH9CH6Gd24zbyWGOHlcc9IxvsmcSRMbLgsJdnFPvZxiOlqLn1y0QqcY+cuQn+2lgbLYkFx0BLZPLBkt+wEqSOrslU5WVJ/2CvgOGbA18jepJpp3Gc9Rzo+xgTepBylON9olPuGOTBE9ud7MYsFQU03AwMbm0V6BTM8H/Co/Ro/qLkoFM9Yb1NXVKO0PHln18xlhBIRNQo5C1gaFgjMLGxbQzpZo8fT8NyotvGhPYWBshdfqR950Lwpotz3B3uu+/uWoJvwINmHxz23n+rpn/O0lc0pTCGOkcRPah6WtrLoLg03ruAb9TMA4+0v6WdcHLH+DuN6PNrDw/bLKBT3B55niNGfoWZ/qsoKPGDcyBj7TdBwY+AR2ssWDDX6c4TEbAO1zUR9fsYpSRseeBALmzussXQXbflBz4vI/H3Z8yBlZVZn4V9SD6OtVhC3FCU1i/VfmBi0F+ef8mv2X6S+qMEavSmoF+MwVf3KzVwNQHmPdLVnAMp5nO+kR3goThEOcgSJ5EnjDh62X0ajXWOwMpRwNRiriArECC9lKckeDrBA/ZntZ+p4hDvm1cxjIDBE8j4/uxYmUapRQYpWiz2hbaOcOlfIHhQyC3Kj9TAHgjqBAJvYwTx7Me3MFtwfeI4Zaj4/8xsazS7tmL1NVj/zuedlRluv8UswQzmkUXd/4HnWqE2MNAcjhHDvH+FBy/DjZSZaGnxi1Bc1qSzKs03vYq5ewqfGiyQQz1f2j6xknduuKIXZ5Z3HRrbxkjWBD1SGkUcoIzREMqncIK+kAHF0M9siEBSmEPcFnqMMJXjafifCcBANdwaeYq5aTFVRkUneV3jcM5JKohyf2N+xUC9zA79JwfuCRiMktB/2MSWnPcGkRSeuURolypmmYVnBfRfFcn/6i+xkL4YQvCOfwvDYDE17HNtMpYxdnudj7iKYsI8WNrf7xnLMcwgRiEWbPrC8IG3qi5rE6TiWiBVgmzwTdyslrfLEesAX0BhSoLWTf2ZKCNiaWFOQbkOMGdmGYBu/gjgTUgOaGFPgtx1Tn5B2n9cAnw2xJqQFNF5DYNkaKZ3xhFIQ44G0ABTwOPvxmoJAcD9SgmVDnAdSA87P9IDGYwjsYJ8NCZZyzjHdCv4MaDxSYAf17AwDApYmziNJszQxBvgspz/gnKtHgt/WxHqEu5+I10WD14TVge08KV6CQAyYAbDNYKxOg5I09dSgj+5OHW95/vRt5kcxi5XWRpCKhqImF4sONPfWJN3KeF08hsBSTp8NCYHga5Ye/Pli2icslstBCWpTlVpGZdrRkoreYqRZOO+TpTCFIKAUUkh2iZ1ge3lQjEVYMVQ2S3GDGsRPYk4w2UaAtMD2gMdHrJXAGzEPIG2v02dAK/CY4A+9B35NjCHwq4z32VYQ63Fe+9BnwWsE30MR/CwE2xxOTGP4K2fqG/TPEQ0EngDxogB9jS58Yn3LIY6xSK/gTmssvURHClGQVNIpLorylv0Zq9VGPvY8TylZnNuN6xltZ3xaDnGU1jRjCzt5y/4s10DgTLWQCpQhmZQsFurlKU0RkZDDluc2PUUHfmI+Gs3fbDhueyEE1xp9WaCW8YOawyGO0jdwMyvlVIqLIid8/MKyEP2NbiywnEBgMQpTV1Rnnl7Cl+pH3veM5Wr/3SzRf7Feb2WINYpp3ndP+DghMjuMxoVpU0b59wgFaL14qB80sdmrD1KcwnjEcaLTwFq1iQ7+QRwlkfH2JA5zjPVqK+O8j1JIFGS92sJC7bgIKxRtRHPW6y0MMfufVGlbfsMjPFwkW/Ol+pEjJLJAL6NdpmBZB9mC6qISm/R2flWL2Ki2uQ/hECrb6sevehHr1BY26m38z3qUgxzmPnME1xh9eMF+n3R8TFYzmKxm8Lj1Om1kc77wZh0lXGZcRHVRiSXqL95RX5BAPG3leTSmLjvZx3a9mxuMgWzQW+kts94bXj/kY/nee50/vBs4Uv4GkNBQ1KaYLHJaX7//CvVkTVA/Abji/PPUElcX8olSMRywFCvTFYOLeuhaMGPoU1qU4KA+wl4OMMZ+EwOJgaS9bMFmvZM07WQZFiWBWOlk+bSRzflS/UgyqazQa2kuGpzQ+W5QW91zLSYK5944jCOb0xnffDm+ozbSI7hmVgMqtcmfY4B/CyEEPc0OXKYv5j37S2xUUDpccJv9JK+Ih/hcOfINscQQTwE8mCgU09SvmLbBeM+TPGGN4wX7PWLwkkQKG9nG/fbzbNW7eMZzTxYTmsPqqJtNCM49xx/2d7VoafAJIYSgp2zPOPtTLCx+0Qu41zOcerIGVwXu5HzRkJV6PRM8TyOlpBZVGWFewQz/fC4QjZmr/+BgMBDowSSAhUbzmvqIW4xruFA2ZZ8+SCvfFexiH+eJBhwjifqiBnv1ISwsBsqemJjsZj+79X7a+K5ksvcNhpkDqCkqc1XgTnrLTnympmIFFbFaiEas1htZ61nD3KpPwaJH/82XMUqUPGEpweVNvXzj38du9QsaaOW9g216NzowHQn0MvpzuSfyurc2UIzngrIr4VPqe1jMg8aN/Gk7VRwxZnOuMZ2JP0tbHOBIdIycBx4L/Ii052RZbmLQXDTgC+8Drvb1ZdRhiCrIgMBtmBj8rX9lLe/wied5rja65vmY5ewmTFfHKEVxvlEzmKbfZQ4FKEICP3sn5OCd4Mix+QMN+Fr9xBr9M2283elEEy71v8MxkiMqQvxAutmE4eYVJ/R6nAiJiekM/8f2fuaIphSdIBVEGaZ530UKQRIpLNB/UtIoxoHY3/nY4wziAAIEaO2/kpVqLUPN/m75EUA6Pjazg93sdx88s8PWNj+qeexkb+QsYpD8qA8YooasEnQAgr0cxKf9x90mTsQywfM0beV57GIfhzjKI9bJh/NHGFfQWNQhgXgqijLM10vQaF6yP2CfPsg3ntdJoCC72MdMtZBNavvxd5oNc+w/WK7XRCwrTc4uk1HODFprushWVKIcAFcF7qRqekcu8PXnksCNbslPThzUR/if/3FqCKfsM+QsuZFtdPBfw2Z7BzcHHgUynAtTdCrzvZ9xoWz6z3XsHONi2Y5CFKSNaJ7td1AKyTBjAHHE0kFcwNyw0t8QRUVhpnjGcZVxCcdIoiAF+FOtYqL1DVVlBe4zRwC4urCHOMpUNZvden+WfTWWdbjW7Et1WYnylOZ/xjVM8rzCQ96bWeD9goUxX/KI53985H0u22zS1w6FlY35a6J9ToZ1uOZVfqNBmJN8FVGeMpSkhWjEbOXIMhQzJZMqFWRtrUKMKhkb8bqWDko7BLBIIx0LGw8ePvG8yDzvp242f7ieYBt5HmUpSTNRjx/DSjrzQpJOYTfO5+JEswFXf3EQf6KTIaSVZvl7+05o+yinj1c8DzFAdnfHIRrNWr2ZRwKvcL5wKg2eM+9jR+xcFnm/JIkUDnKEL+xppJDGaM8tfOR53s34CmBhIJmtf+di//Wu+2yIn9WCiL9jyHhgrkZFynDyFQf5lZ6yIwWJo4moyzv2F2it6WV05O+Y6fzinciB2EVcbLR12zeV9VgQ8wXve8eyMOZLdwIgEMzWC2AhEdgoqqd35ib/aA4FszhX6nVIBBv1dhJJQqF4T33FW+pTd/8VRBna+a/iB3sO7Y0W/B7zFa97RrMyZhpJMctZE/Mjs7wf8r33bfZxCFVzERTeewZfsShRTo7/tXUmxhvJOtSjOvVEDearJcwPG29lN4YZYvRHIqlO5ETHURKpGiaHMF8tZb5ayqX+m7k58CgX+Ppxvf9+xlhv/kM9Ojf4KaziKJzuoj0/ed/PYoBXTVZktvdjaokq2NiUpgQz1G85xjGy40KjKU94bidWxFA76LeQTCo72ctqnbvmf4KIZ7XeiEYzMvAkjURtvvVmfY8lgnfsL0jXvmz2EiWcaEbgSVBMFuE18xEuCdwAwNjAW9QV1bjU6EpFUYanrLeYHnT5nGh9w/2eG2gsarM8TMuuGhXYwwEA3rO/ZKy8O8txFuu/3JLjSPckh/CHn7MNe+0kdCAVfWAl2vY7YVDDiyjZCH1gJaJkI4SnAEady09q/xfIRkGDb+ffer2FhqL2cbcTQvCa5xHm+haTRArT7TkskX9xntHwhM/BFCavmQ/TL3ALf+rV7gx9AIuP7Ck84bmDEeaVPGS9BMD79leMkXee8HGesd5Fhb332ipKifQrWKZtmsblL2OAswkhBC94RlGEBMbYb5Kok93v9D51kAcCL/Cz+o0msi61RVUsbMaYd7iZgg9bL/MbS0FDE1GXB8wbGWd9ymztyAGMDDzJfDI0yK6QPRnnGU1BUeDMd/Y/zAWyMUmkMF8vpYQqyvX0y9LmEtmZUbzAbP07AdtiiJm1jSlMHvPcRnGK8Lj9Ot+qmcxXS+lldORO43o6yZYUJYEbAo+wUC/DxmaCPZlRxg38ohbQUVzAr/p3uhqtAVxH0XCEEFSibK79KeFJZ0vAxJ0fN53PXH4OBNYPuxd68bCXA+zVB6hkl6OP0RmtnftEdg7bpbMJoKSQRgxeBIJU0px2YQPifvJiHuAF9ugDHFLHGKVvyLN794Ywo5Baskoee+hQuEoMOlT9rKFIlZhc20f5ZxnruZtpvtkkkqEN+jsrQEN/2Y0hhnMdKSWLM9DoxXj7S5JJ5XN7KsPNK+hjdOYn3qNnYARJpADCdaG/KfAIj5i30FQ6ZjLh7tWQMTkETrVK1D3+xGkvz6erbMMU9TNo+FL9wOVGDyqJnK/BoetARcoyzBjAUsvRbw6N/xSaw/oou9hHVV2B9KB+YCh7M6QnGAiTgPDipTLlgpPJ8IQ1jtVqE3ea10fcE0I/v7UcjWtRIIkyt9/FKzu+CZa6QcEYSPE5pY2WcsaNHkOQHtAU9AqS/RDvdcriTEOgtXbKHk1BegAKeiHFHyxbtDSmFCjlhLtjTUFqeBsvpPmdUkDQblldql9EtPEFMsrqLFtTIOw8UvwQ69H47WDZo3DK8OI8gpQAFPRklGo65XlgGgJfIPN+IvtsSoHPyr7PSmu0hhhTkBaA+BhI9jnlnGnBPodelxhDkGZF9jk94LRx+2xCaiCjz7Ee8FthfVaaONPpT7wXkn2aOK9ToigBGeqzV5CSqT8BWyNw+uy3su+zHXx/Qn0u4BU8Oj2dpTvy4qR7Zjjs3EbpIdvzJOOwtc0k9UPEhHmbMP3dEFVlBe43RvCU/VaWdWvVZhKIJ5FkflRz+SuwLkJ24zM1FVOZXC67U/ME77X5AVvbETIIIQoTz0TvM8SK7McXhURBJnqexef3852exfv2VxQmPts4Rk4EdIAx1jj2ctDNqAZYpTfQkw45bneTMZAP7W/4S69nrd7MzYFHGed5lNHmLdxvPe+2U2j+0ut52nqbRz235fm88iPRQOBJ0tVozVA1gCP6GJPVDLr4r+MX7wTOkw153TOaS303c5AjfKimoCxNT9mR5bYTCPTiYQu73A//h/YURpu3ZvnSTQ06yQHurHM49eTZqQ8IEJj3MCTvBiFxn1xCv4d+xpc76UBgARFHBcqwgz0ALFDLaCiPHwgEKCdKMdq4hSnqF/7Uq7jVeoL58rOTcttsYTSml+rEB/bX+Ak42YGU5Tn7Pa42enOt0ZfHrNfc9/kR85YsJT+5YSubeWEPANoqjt4xkUWqKC1J5pMKBehf+PglqFH+OUJugAkinhK6KOn4uMsciqUtdrGPiqosH/A1R0hkq97JJO+r/K5W8IHtaA158bBcr2Fo4AFKU4Kaogrni4bsVQfcYzSgJh94xkYf9k6CqqI8JiYWFpt19i7eNWQlqomKbNY7WKxXkq59OQ6CbvNcy2K9ki/VjxziKA8HXmac91EuEI0BmOB9hjq+i9Fo3rG+oDoVGGzdTzwFSCaV6Yynk9HypPtTv9TnLN5fHWmVJq7IV6R5nCz0VrLZSe/zv04VUZ44Ykkjnb0cjHg4sLTFdr2Hlv4BNJF1uVr2ZrB5qbtt5hlvcO632/Qu19gLIgOGJWRRWsvmzFDz2aZ38YtawEVGmzyda/iDSi1R9YT6Wf/KEhxal8a6yYeo0KoQre6L6sL9m5QRJXjSvJ03rE9Zx2Z3uUBwp3l9xPV6mHE54+0vAXjXnsQw43KEELQwGtNPXcwEezI2NkVIoIGoyQ9qLrP9fzDR8yw9ZDumh5kddeQC5pBhQlb/LJ4UPpsxhckgo48TCATuCTzDhaIpFWXukzEhLje686daxW96KauDJnEAP6q5lKKEq/8IuPegeOJIJT2oK61QKDrLCwkoi23sIoDFBr2VB+0XOUoij5sjIzKYLW25YweAngXPo2+j6BgwSiQPTU0/fqMzhCFh11HnGbahqEUlUZYteicz1UIA6lGDHkb7HAPw1xqX8pI9IaL0UyL4SE3hOfNepqrZfK9muffWgsQhkSSRgoXFbYEnme59N0uFhdb6uBre5zJ/6w1ZzKeKkMCj5q0UELnLT0khecP7KD/65uEnwEf2tzxq3pbn59upararvdxWnMcsvQiAVSr3jEBTmLzieYjnAuNZqv9movoGbWleNx7hU75jJesj2j9jv8tA0YvaZrU8nVd+JPpUeQq8aj7EAe1k7NUWVXnV+pBEnUw5UYpvvW9ymKMkkcIn9ndcKXu42/kJsJv9dBAtKUcp6orqfGfPzLL/UFahIPsLVX4f/J0nM3SZZmYqmzkeN5oDOUoiqaSzTK92B+gnwxPm7RSjMNWoQDo+VgU1C9+zv6KUKE4f0ZmylKKxrMNcdWIOwi+oDyJmjkltBaoo4OSHTjh6/JLoKP8sISfKr72vszN2HqtipnO/McINECqhSCQFiaQkxaie3pknA+MoENR5zBADd3SiPve8xEWyDXNZjImJRPCK9+FoEPAkMYVJZeGUb2/RO11nT4BUlca9gWd5PPC6W27vJ8Binbsj49Oee4inADWoxO96BYtVRvvKohzdZFsqU5400hluPQw4pQ8Ad1hj8B/HLT4ntNb8YkxBlr0PKl5HeiFHi6yuqJ6vHaQNYVBPVAec97izuBDA1YX8U68ikWTmqsVs17sjti2dTSAwtJ/QQBWyBgyHGQPc38fbk/J8rutVhmNwTVE5l5ZZEULQ/tFKjFjZlB5v1cCMjV4T/m1GmFfSXkbqjg6Q3Vx38BBNZF3OFw2pTiUKUZDFaqW7LvyzVEmUde8JdUQ1rgzcTiPfJRGfxdKiRESVQH6WiTlVehod6Ck7EE8BChBHj8BwV8PzeBQUBbje7MfOoBlMCZyxWTKpHOQwG9hKSZzrcsgESmKwzPsts70f4w263M1Q89nJHvwE0GiSSKEgcazSG3jD/jjimD/a8yKcjbsb7U6p/1HOTUZ2iDlr/Fm9Bgxp6QSIpJAMDbveAaxmI3Vl9Ry3ryLLc58Zqcam0KzTW9ih97JeO/fUMpREIPjWfIuKYUHFZFKo4etCP/8t9PPfQrX0TvT138RVgTsjxoP5jbl21ufRrrI1N5oD87R9SVGMvtLRBjzIEaaoX/J87HftL9zfbzWudZ3YV+n1OW3i0ko24xqzD4c4hgeTYzqJJ+03uc0zOEvbYhSmmzUUpc6e7NizjWhG4ClgCIOp3ne42D+ERXo5K/Ra2trnMdy8gr0cpJtsxzfqZxJJ5l7rOQoQS2rYjEZ5UYpf9G/s1vvRNlxuZgQLH/W/xppgrXzWomCQSOqI/B3h7i7bu26fK1XW9ObccGYVHqaz/1oAPrO/51KjK6XEiWvvlRBFmep5m+usUREP+B/aU3jcHMkAsztfBX5ij9pPOVGKrnnMHAnoAJ9bUyMXejIymiRQyxt9EDzbCAUWwks/F6nlrFIb2a33sYt9VKMiqaRRi6qsZ0vE9h9a37CKje7D4GfmS7QSUU3AU6GqqMAmvd3V6Qo9nK3Vm3nV/hBwhP1DzFdLaSvP43t7Ft1EWzayPWKgWl6U5hnzHm61nkBpxW2BJ5jvzcgqHm8+xaDA3e4sJ+C6F+/Qe7g+cD8TPE/nyVAmnD/0SldfDjIyxdtmU1KT36gna7LUXoVG08iozTeWc2+Ybs/GICPbO7O7d06BwM16B6XCtFgzt+sh21OOUuxmPwvUMtarrXkq9V0fXhqci0ag1prNPx0lea+fWn2Ko5Vm/XeHSagQQ9UuhfN1JsPZxqveh/k0/Xs32B/Sjc3MTcZVDLFGsUlv50X7A+LsWF40R7FPHaSJqMtyvYbNegefmi8yTc3mU/U9CsVmIjOZ7zSu53Nrmvt3fXH2Vof8F3jV8zBjrbecCWENdwSe4irjEmao+Txg3shY621e9IyiMIUYbb1KW3EeM/VCusv2dDBaMNf7CdPVHHapfbyhPolwL8+Q93F43BxJbemM3e81h/O49To2Ni1kY9YqJ6u0OhXZy0GmqznMU0u4zLiYcsJxj39XTWJX2D0gP2eCR8mZa8730ryiwc6jNjGG4zjrlG4LUv2a+BhBkk9TKMYpMfYaAqUdx9o4jyDFr0mIFSSlawp6HZdb03CeRwN2RptCMYJkn1OOnG5pJE4GYMiZNcUPDcoalC+S8axyrdGX0dar2MExbhvRnKvkJbn253Z5HR8wmW3silj+qfqeVJ1GA2oyy/MRG8RWmssGvCkfo73fMQ/ZpHdwmKOkKef5+zDH2K2c79C36hf6noDRxblEdvrGr3oeOqF9DDMHMMk/HYCP7ClcLrsD8LI9gbLCSXQqqONYzUYuFm34Sc+nEuVYplYDztj8YqMNtewqrNYbWae3ENCB446N+xkXU0DHMdQaxbdqJiZzmC8/i4izCASHgoZOj9iv8KS844T6ll+IBgJPkRjh5WXPg7T0OzMc79qTGCwv5frA/WwMKwH6Qc+lMuXYRkY2wkq9jtqiKmv1Zn7TS1mjNrkPmyv1WjROinNKUKMoRHUqUU/WIE7E/vMdPIvpLTsxIvh7aGC0Wm3Mc8l0a9mMG+QVrNTrWKiX80DgRcZ7x5zUuTQzGjCGO7gucJ+bkn6MJF6zP+I241r3ffzBnott2nkqQ56jFrOayDRpEbecUiXeo2Ty1bSMK8TjpfL3Z+C/QkvZhJayCa9YE90y4qK6MOvZQh2qUoAC/InjQPym+owYvJSmBF1kK7ob7aIP/adIuKPmFr3TzZ5bFfb9ssIyb+erJfxo12VA4DZiiSEdHyu837kPcACDjUt50/6Uv/UGlunVPGmNY7TnVgCKyyI84rmFVf4N3GAM5G+9nqvkJUy0p/C7Xs7X6idkQPChJ3tDkJzInLlckDgaiTpcLNrmsEX+ITwYUpTCwdI7m6lqNhVEGXdd08yBwBxMFrbonRGSHJkniUxhMsq8kW/Uz/yqFvGQ9SKTvK8e9zz/0s6klYFBtaBRUHbMfWwH8x5zAkBFqu5A2ZrE7U4GeMexlWl9f7Qs+GziNmMQT9lvA/C1msFV6hJ3LJKm09mt99PX6MId1lMcI8nNnvjeP4sU0njMuI0yqiQz9QKetMfxq+cjqqjyPGu9yzWiD6/pjwAoREH2i8jgUn1Z6wz29NyjvCjNXcZQFqrlFKYQv+gF/GI5VSY/+OdyjCRW+tfRWjTjHfUFr/ER6fh4w/6EN/VjDDL7UEdW5xVrIsVUYY6QSF2qs44tlKIYKaTyjHkvs9RChhsZcjh3yOv4TswkhTQ+UlOoSRU2sJVN7OBS2ZVv1M8kkcKowAtM9D7DL/ZvzFDz3e3rUYPiosiZfrmi/EeoW8agbpmzT0e8lCjOWPMuSlGcaepX7jdvOO44KFbGcI3RmzF2hjFEYQrRmQt5l0ns5SDj1Kf0MTrj036KU4S7jCHUEJX5yv6RmXphtvu9I/AUXWXrfKm9bQjDzTKSSF41H6KoKHxC+2grzmOwvJTf9Qp+UQv42P6OlXotr9kfYWCgUdQXNflLryeOGNLw0UjU5ihJdBGtuNzogRSS+qImq/VGAlhs1NupK3LOEA3R3WzHDXogY+23sLC4336ea0Vf3tKfA5GSai/a73O56M42dtNTdmCams0lZqcT6uu5SjQQeBoIlXws1n+xUq/jPvs51gT1QgykOzuYOaD3p17Fw8bNPGGPA5zyohfkKADXdCDzNgCb2E5DogO/IjKBYhTGRmFg0C/9f0xnLk+Zd3K7cV2eHrAf9NxMI58zE/Wx+pbrVT9an+QM6yVGJ97WT3CN5Qimmhg8Yb1BRVGWLrIV36qZHOAwf+iVXJiHDK+3rc+zXX6g8PvMLtmf6rL0SZ1nlH+PUJZgkk6hse8SjgBr2cKX5qvcbo1hF/vwE8BPgFaiGeM9Y6JBwNNAVZERNNmsd9ACx9VztdrgLrewKUMJ9nKQhWoZm5UThEnHcR0bb3/Jc/I+t314VvF5ogFP2+/gFV7uN0YghKClbMKymO8oFjawMoRkRmAeHkxSSecuaywveh7I9dy11gwJjKK9bAFauSZJJgYppPGHXkkrI5oxWpca1KEaxUVRUkmnnTiPIyQitGBJsNS7HKUoK0pGbJedRiA4n5PwLNHsXFkvN7ozxhqHRvOdmsWP9ly65VCqZ2ubB60XWas3c4FoTFGRgDeXWe8V72c4Ah/d4suyLhoIPLu43ujvBgK3sIPm/ksZLC9lhppPSVGM7Xo3H3teoLGoE2H8Ecoi/NqegU/4CGDxh17JBPUNd5jX00t24gr/bQgEBYijjqjGvrAy4Ri8VKQMUU6NqrICv3o+Yrj1IGjHDGQHe4ImLlBP1GCK+gUvHveeUF/U4EbrEZbov3jevI+R5mAaiFpcFbiDurI6PenAp+p7WoqmTFW/slyt4fLASJaqvx3ZGKMLPWUHN7jRWNbhsDpKI1GbeqIGc1lMZVGOkqIoZdNbuQ7mAKUoTmvZnIenpfPOfB9COJlaHsP5aRqglPOcb0iwMq2zbWe51qAAQzjZYKE2HsPZRgYTuZQK7idzGwUyOESxg+v8tlMOGmpjKwgNY5Ryju+eqwJTOsvBMc6wlI44RsB2jDBUsIxTZupPRhunv0pH9id0PlZ4n3UO/TmJPof648302gvhZNDZmfsc1sbpc9ZjZOlzjm2c909nOldbQ6/6Ht6+Mg6vefaNIW8znWqsK+mZ522uN/vxlP2WG+A5RhJ/hZldPG6/zrP2u3SWFzJH/cFHnue42GhLIsmstTbTRNYFYJZa5OoNCgST7B+4PhuDuHOdYyS5vxcglkuNi054H0IIehudmRj4BoCbrdEUJYHiFHGz8f4KlvumBa+bK4OToev0FvoFj1lf1uDL4Pfhb72euhw/EAhwrzmMT+3v0WhitJfzjUa8b32NjcLGRiJdY60LrAFoNDWozEa20cSuw2zPx8TK/J1QE60rPE2Eax68G8zaEAhGyCvc5Qc5ErGNgUFBCrgPG1/Y01lgL3Pa6iNum+yoFy0FAaCX0ZFjJHGYo0xnrvNAZs1ivz50/I1xZqYeMzMchW4NPMY6tTmXLXKnv9mN3rIz4AQWAlh8EviO6mGZH9PCRL9zwqf8/Kizt3WHnMvZovw3mGz/5D4A9pDtucTsRHeZEUCIwcur3oejQcDTRHhG4Aq1Fktb7NMHs0gK1BfOBEsaPrYGS1BCGq0f29+SpiMFuFvLZnzteZ2Veh0azRRrBpPtGe76YplmV7sb7ZnuGU8C8UxTs3nL/pw/1apcz32RXs5naio3Wo/wq/rDHQSHSsdby2YnPIt7LlJbVmUtTnb972o51xh9WK7XsIzV7ncts24bZL2WhrRqNusdEQGX0tnIRhQWhRjryXDKG299meUzAnBMJ3GV/06m2E4W2Cq9gXGex3LtT8kGBbIdoQkDSjbMf9kLZzsVZVnKUcr9W6P5VH3PbvazQq/lCIk8E3iHhXqZ26Y8pamDk2W8h330EB3cdZPs6exS+/ja/pH1bEWjSSGVQbIv21RGeVwlUTZ6nzhNJMh4PvO8xJPmHfzm/ZzHzNtY4P2C5837qCWqsJ9DXCq78q35FvcZI9iqd2FjM8n+gVq+i+jnv4UrAiM5RjJfq5/4S69jF/tII51Encwu9nFYHWMvB1mp1/GcNd4NTgAc0kc4QiK/6t+ZpH5gpnci87yfobSOCAIC7OcQ8Zva8czPPo6kweFUSPJl/DySCsfSITHd+T3zukQfHEmDo6E2aZFtDgfbHE1z/ofaZ2mTntEmtCw5U5tj6ZH7iTjX9IxzPZYOR9J0lmMk+ZzlbpvUrOeRFOpPWtb+JIf1x+1zTv05iT4fydTnI2F9PpJdn32Z+5xTf3Qe2sCxbM71WBp8uiTAewvPHR3xCqIM3TJVPyzTa2iNk7yhUKSSxvdqFokk87z1Hi9ZH3Cbca2r4/2193XWx8ygEAUB2M1+HrZezpcacvvCnpPfNh8/6ezikM4qOG7o+zlMJVGO2+V1Ee2KEbn/Fzz3u5mY4Z4HxzMMCSdOxHKvOYzt7OYnPY8f1BymeN50y85DQUCFdsfOG3GqNf/S6+kQGMRRnZj9zvMJ0UDgaWKA0Y2Hzf9xqzEIC4u+ogujjBu4xRwU0a4AGZFnLyaT1QyeM+/jMnkRBzlCt8AQfrLmuW64iuwvTg2ipSBApOtiXaoTRyzr2cIVgdvzvI9hxgCukX1oI85jtd5EW/9V/GKfmPlIOM977qev6OKaQcxiIRPtyW5A4Sv7J2xt57YLHrFfcU1CMgeDCxJHfD5MYz9XSNPp3G89jweTRqIOL5hOFvAI8wo+N1/iWfNenjLvdA0uopw64RmB79qTKOxrTmVfB/7UqyPadTBa8JPnfe41hqHRNBF16SHbA47xxGQ1g8z0kO152PwfRUlgB3u5zrov18mE1kYz7jSHAM71fYT/YVe7JjvGWxnlwFWy+Uz0kh1z3DY/UUGUdoN4W/ROLjE6UZBI57umsl6W7YqSEGHIFSoj3qJ3sk9HGjRkx5WyJ/1lNxqKWkzVv/KcNT5ivaUsevtv5Fs9Exub4hRhrHmXq/mVE70n1qLh1VmP2WhwKXq9G50IPBvpJC90fy9CAj1lR8pSkrqiOt1kW9oYzQlg4cVDERLYxT5uMAbSVpxHCum8p77kGtmb5qIBc/Qf9A/cyqP2axGZqecZDVirM64vNXPRmYxy4kghudscSilZnPvMETSRdbnFHOSafzWT9bnYbMNjntt4zryP4hRhgOzGHg6QqJNJJpUaVKaHbM+FsqkrBRLavpgsTDzO+C0dHxPsyW4AeYFexvk0BGCD3opEYgiDSqIsCcQTTwE6iBbuub6dNP3Mv0BR/jMIAYdTzy0zjGvMPhFyHj78/MaflKUUCcQDEEcMjajNb/pPRlkv8Io9MWIfxSjMC+Yo1yDuIEe4yxqb74xD1sT8wEzPh9xsXO2afpwsz5v3c43sw9Pm3ZSnNOM8jzLWcxc3GgP50HyOa42+fOR5NvjzOW40BnKJzCjNDQ8ELlBLT+jYg4y+ru73t2omdUQ17jCuoyy5j7EUmuV6DW18V7HB3npCxzyXiJYGnyYKigI8aN7kaoBdaDR1jQJqi6qsC7oaybDYaxo+/tAreUGM4it+BKC5aMBQK6NULLzGPZyoOLRDuNj6pUZXPlfT2KS3k6j/JlWnHdcCHRydhGc899DN7zycNxK16R24kbH6Lm4zrj3h2fZKoiy3e65jtv93UnEuNoc4RnlKU0WU53e9kn6BW/nQ8ywJIj7bfXjCvpoxeEkNKxGPZgP+t/la/eTO7l8s2lJVOkGqRrIOjWSdf/PUzlmqhmUEJgdLvQCOcCyinYlBe6MFy/UaylOagUYvWshG/OZfSkNRm2/tX7ja6B2xjRCCe8xhHNbHeMn+AICR1hh+8IzP8dpxqzGIj+wpKK3Yzm4uClzPJO+rWcpWD+tjfKWce0MREugkWzHf/jOiTWgmNr8TcofepLezWe+gEAW5wujJ+/ZXbpvmImtGoBSS80RDDukj2NjUFlXYqneSSho79V6nDdJ1BM2MEIIHzZs43++UFr1gv8/VRm+qy0porbncGklxUQSpJSmk8bnnJdoZLbLdF0DKfj9fXraWvUtTqNOvOC1uL8sfLzsTg60fqEDHMSfmNBzlzHGebMDH6lsA7jdHcLt5HeCUhafjY7z9JeUpTUvRhK/1TwD8rpdTWZRnnl4CQKpOZ0PQUGZZcKIilNHqxUN9UZMDOkMjsLGI3jPOBOHmXyGuNftyqdGV9+2vKK+cgF95XZrBRl/uNIdgCIP7PCOy7CskDVJBlKG6qMRsfgecoMY6MoK809Rsasmq3O65jts915GkU+juH+quT6kzE8r1g921/6FeR/kvIwWMneHj+Zk+VLAc2pROSXGMCemW8zMQLJlGR5Z3h7cJlUwLgmXZJvgt8Ib9tGxnvQwewxvcd6uqBpOGFKRw3KlnLl8k27gGPCGZFIkkkWS3TR/Zme/VrygUhShIqk6nenpnGonaeISHNXoT87yf8qOa607ufqamcYFqwpVG3kuV/+sIIWhtNKO1ceqGQ1VlBVdjf6gxgELCybh82fMgAJfjmIh0NloBMMDoHrF9FVGeC0VTAljM1Ut4PPA6D5k3I8Xx89W8wsNg41Ket99zqvDUd4z13M0o40ba+geyLsyQsRXNWIAzhg7FV3ayhzaBK/mYF+hqtD6Vl+E/STQQeJrJbrBwiezEOvs9IGNAF86H6humet5mYOBOpqpfj3uMGLwRpab5mfBA4Hq9lXbyfDbZ2x2dHfUXHXJ54AqnuCjCr96Pech6ibfszwD41V5EO3E+TY2sWSTHo6Vsws+eCbQJDMSHk5qfQEE26m1YWCxRf3GZ/3+843mSarJilu1X6LXu72mZdCJzEreP8u9gBxR/fXSA9KMWDQeVomDJ3N2uwjO8hpuX59IyyumikChISYplcXDMzHbtBFzCr+Naa6qKis6DuoZVagP1Zc0s2z5s3sxkNYNtehfb1C6+UT9zWQ6aK17hYYrnTa4J3M16vZW/9QbGW5O42xwaYQL1sz2fGLz48DPI6ONOKIWoI6pRXUbvBSFC7tDJpHKQIwwzBkQEArPLCASYF/Op+/vtgQzDqD3a0eotRbFcDZ7qyuqMNK7lBft9AAYG7mCy9w2Wqr+ZruYAUJly/OAdT7XjvF/zHt/BrkVJaBv+/uQAl3xQg5vWNgUhKF7r+BNbUf49wj9fq3RGeZMhHBmY0HUlXfv41beIwxzjG/Uzf3i/Yqr/V46SyGa9gxuNK3nWHp9l/w1FLWKEN+I60FI2+Uf7FCV3ComC2Y77j7fNL96JVBHlGWO9GaEFfjRMt2uaPYc7zOvdvwsSx+qg/rgXD35vOub/bmL2oQUUL2ByNA0KxzqlqwVjwG9ptIZYryApHYrEwZFUTdECgmPpUNADAaWxFcSFtQntJ8kHcR6NrSFgC+K9Tplq5jaxpvNI7bMECbHOuqJxgiNpmoTYoCutdAJEqQFBQgwcTXPOI7SfFL/GlGAYkOoTFA4/1zSIj8F1pfWYghQfWdpk1+eicU5WXKjPBTxgBftcwCtIzKHPSoM/rM9FCwiOpGoKx0KyH2KMjD4Xiol8XUJ99gT7nJZNnxNiIDXg9Nk0su9PoVhIC2gEEGMKkrNpEx8DflujVOT7fPXEVJbtUFg4Qb0QIbXZ0LJANsVJPvvE2/izaRNaNmejzQuzfDze89S12AqJgjQVdVmqV6HRtKYZv/EnKaTSgJqMMK7gO3um+51KJpUdeg+72IfQsFM72ruPWa/zgedpfvTNI5U0jpLIPYFn6C7bUVgUOuXzzM+EgoAnghSS1zwP08LfH4Dv1a+sD2zhbc8TeTJyGWL05/lgnGWOvZi7jCEkyHh+ivmAZwLv8KZyxni9zU7U1JWZaH/jBpLT8ZGOj2etd/nZ/o1P1Hc8bdzNffbzvO95Kkfd53OFaCDwDNDT6OB+QLPjU/t7HjNGMt4zhsa+S9hH7vp2dUQ1THF2v3WiQGkn1p5+BFTQjVOaEFvUWRZbFFHg1M0uqoqKrhjoRr2NW4xr+MD+GoD5egkdyFsgECBeFOBFcxSFdSHeVp8zR//Btda9rJTfn5QGT0OjNgNVLybYkwFYw2ZqUxUQFBOFma+X0tl/LatipnOERNK1j+qyEn+r9fysfqMspahHdWYS6XaVk7h9lH+HacM2svLDAyBgyRt7uHF1M8yY7Gex/lbrWaSXA04qfEvR5MydaD6nmqgYkUmTHdv17izLhBBca/RlmeVk54y3v+QlmdXgo4CI40VjFC/ZH7BIr+CuwFi6yFY5Zv1WkeV5wzOaPv6biCOGMfabKDSjPbe4bd61v8RPgMaiDtfKvlxv3e+uq0FlrpG9s9t1viVcC3Kz3sEFsjHPm/dxvmhEIsl5yqYOLyMPZe7mZbtR5o3s14f4Xa9gpV5HV991EU7UYz13HzcICOBLCnuiEuBPsileOyoF8V+gkajtulVn1v7064BrDhMrYhhk9OUVeyI+/Pyo5vGAeQMT7Sms0Gupo6ox3LicS2VXXrc/doPJIY3LkN60gUGzbLJco5z9hCaAE0Q85SiFRrsmgSEW6D85pI+62l1bgpnKkKERW8UszfmVYjgbqXr8JmeE03UeVbPKxJ7VnC2qd0JAsu/0ld22keex1Haur7eagzhmJ/G33sDfbOB3vZJfwp6ZNJpf1G+UoxS1RFX26cMECPC2/TlDjf48bd7NI9YrHCWRAxxmTGAcz3rvy+nQUf5B6ouaPGXeyTjrE3boPfyl1+ELBPjE84J77wy/j4ZTTVZkmBzAz2oBv+jfmKkW0tVoTRlRgpvMgbzpdwKBr1sf86v5EbvFPlbodRE6iXP1EuayBCFgmPUQQkBf//9Y751BRelIxqxSGyknS7FKb6CRzpoQ8F8kqhF4BmghGlGdjAcUM0zzrSoVKC9K87I9gSIigVuNaxEIjLC3xkPkh/6/YBQSc/VcYoevI/bW/cSOPOz8v3V/xrLh64i5OmczjDwfR3ipIsoDjqZKa9HcXTfe+pJp1uwT2p8Ukse8t9FQ1CINHxv0VuaoxcffMAeGG5EZX+vYwghxhZuS3Fo2o76vJ+19V9PGfyWzrEWMD5rN7GE/h8WxLPuMlgafXaz9Jngj0XB0s49D67I6fYeoKMrygnk/dUV1hhuXR0XezyAVwpw1Q0LRIULX5OwCgQBXGZe4mp+f2N+RorNmdgP0NDtQWBTCwmIPB3gi8Eau59RY1mGKZxw7cUpQX7Dfc7VKDumjLNTLSMdHKuloodmp97olqhvZRqvTUNJxLhEexNuidwJwizmIC4zGeS75aCrr0VlcSANquoLTpbIxCslMvCjA/eYN+IPBv1ayGWn4KEkxushWXJpHDZ6Wd5UnJsH5PBavHUeDa3LXuYly9hAnYukjOtFGNCdd+5hsz6Cnbzi9/Tdwkf96lM54NB9q9KcohWknzud3tYLhxhXs1vvQaL7RP/OoeRudjAsdt/AgTUU9/NpxlQenNK6kLHbG+xnl9DHSHMzm2FncFdSNBcewqDhF6El76vt60NDXk2VqNavDskxD+uFlKZlln1GiPNojlphc8kXyMvI8XW2KFxDc3Nabh5Z5o43MeM5boJfxiudhTEzaiPOYqRZQnsxJJoJxnkeZHjOe0eYtFCKejuICxlmfMMDohgzrxUfqO1aqtUQ58wghuN28jtc9o1Eo4oghUSdxU2A0AOvUZur4LuYa/11USm9Pd99Qbgw84m7f1WjNtqDJ33h7kru8lqxKJ9mS1qIZ+zlEC6s/P+sFpG6rgX7qW/QDc9APzEY/+Ct61FzUQzPRo+ahHpqJGjWXGvcZxNx5mJi7DtHswTjKLbuPrv7rqO7rfGZfoH+Iszut7BzBEAbdjfa8bn8MOJpxIbazG1srXrYncK3Rl/0cQqOxg20EgkBw0Bciu7K0/EwtUYXNegfJpGJiuDPyeznABHsyPc0OJ7zPEeYVzAs4mj3j7S/yXGKcmeayAU1FPVfrB+AjPYWx5t0cI4kdeg9f8ZO77nHrNZbj3IQKEMf+MLH6ENFA4NlFuRaF2DbbCdh6CxkUqZJ1dj6QZrPsnX34U2wGD72cm0td7QYZopwZComChC6954tGzNIZs8blKc02drulwZkpLAoxwOjGRPsbChDLb+pPLjLaZNv2efN+ZvoXko6PKepnallVGW5ejl8HSCaVJFKYr5a4WoNNjLqMVIN53n4PLx6usG7nGzmO39RS9zPSU7bntsCTEWVjJSjKBaLx6XhpzhkyZwSeDM1EfRboZaSRYeCSVzmG6rIS872f8ZOax2a1g4Mc4X45gps9V+c56F+6UUFu234+iTt8FK0Ri+GJztf+l6hv1GKy5UwAPGmNc4I3wevOBHsyQ0yn9KmWrEo1UYG5ejFoGMvdXGP04TX7I3z4+cT+jtvMa1kallnYXDZgRdhDalESzlzHovyj3GgM5APra1axEQuLQxxlF/s5SiJHdSLj7S9dI6NwVui12NrOVbogSv7j4roetj1WiAPJmgIesDVYCgp6g6XbwVLnInGhcmiC5dAQn02bZD94DUd3MC0AhWKytknxOxqEhoDUgFMifSQNqhSTFPCevknvVjJjAnS+WsKznntZF/MT71tfMd9ewq1yEBVkGUZZL6BQ7GAPo61X6Wa043/yal7jI2bqhRja4CH+xzOeexkecLTsjnCM2wJPMsv7YZ706aKcfi4y2jCTiXQLDGVO8P442L6Up+y32M1+vlLOM/N+fQhpSx40b6KiKEsP2Z6ylGQPB5iqZrNb73dN2a4WlzBGvYWfAP6gNnji17dCUjHcnLhQaMaSgAArJuxncH26iZr0EGJ0N5LC9Mb/y0Q/5WeI641+7u8K5brAhcxD/AQY6n+Aj+xvI7bLziwkahQSSbhz8Hf2zIgAywa2ntQ++8guES5E+7IJyOWVW4xBriNSBcqwlV1cbd1FY1GHBBFPWUpSR1SjrTiPRawgPaji0V9czB6yCQTyH6tPOMfpN6k2LW4rR6NrSzF4bkNiErLOr3xz5Xpm3LGFOQ9vZ0KrlaiAPuvL+881RntuZZVnOr94JvCi536+8rzGSu9U5no/pUrQsOUYSRzTSdluP1D2ooaozAGO8LH9XY7HqSor8Jx5H1fJXuxgL7daj/OV9SNL9d+U87Wmju8ihgceYrXKyO4YZd7AMDmAEqIoq/VGuvmGMtH6xl1fgDi3pDxEN9ku+vCXiewyAk+UeFGA/ka3iGUnIsdQQhTlaqM3CSKeClZZitiF85RRGI433qBE3QLRIOB/kEFGX3dcF57BBfCw9TLJOpX5aikpOpVeRoZr4g/2HIYZA9y/x9tforXmT+0EAmPwUk9UZ36Yo2J5ceryKlHODkxh8rpnNHWp7i7byDb398/tqaxQa7Jsd7FsG70PRMmWYgUltUsbVCxmUKW4QY2SBmULG9QtY1AmQVK3jPN3rVIGFYsaVC5mUDOHNjVLOusrFnXaZ9emRknnOBWLGdQu7SyrV8Y4rUFAcDTdQ89Uy/QaDqmjlBelXWfuCrIMI83BPGPcTRyOLuEKvZYH/S/iFR73edzGZqL9DdfI3lxEG4xgZcgivZxP7O9P6zlHOTEaGrV51LzV/XtE4CFmK8dUqSgJxAerehSKDyxHDswjPAw2LgOc9zakx75Z7eB/9uPsYA8xOJmpJgbCOpksVQGWl3gKUJjsZX/+a0RHmWeI+rImlSnn/u0PGkgEsChJMVqJpixmZRYXy3A8mLQQjSJstqNATZHhovi5mhqxbpPeEVGOk1e8wsO1si+NRG2ainp8YuX84H88ehud3JLDkAZMK9GUSwI30Et2ZEvsryz1fkML2QiAGqIyVShPVcrjwSCB+IiZ/2hG4NlFXDEPXV+syiXv16RUw+xFcjf9dAQ0aOWUDx/dkp5tuyj/HGVFSaoblWhjnEcdWZ1eRkdqySq0kI2oJDKuzTmVB7eWzdij92Nj85taitY5a94MMwa4wZ/Gog53WU/zleXMYmqcwcut/ifcfRQUBbjDvB4DA4EggXjm6D8AKEZhLG3TWV4Y4Trfy+hwKi/HOUm4O/RmdXIZgZBV0uFkrrldvurBsFKPk1q4JkveyD7TNMq5RyVRlm6ybcSyOqIadUQ1LpMXU9fXjW7+oXT0D4rQ95uqfqW2rEY7cT7niwaUpBg/W/OJxUs7cT59ZGc8wsPysOqCmmFmaVH++1xoNOV82dD9uwwliA0+uKaQxly1JMs2/eXFZ+z8okQ5W7jMuIguohVlKck79heAU2a/KXama9xzizmIeiIjsP6Cep/+gVsZYHRDBMuB37O+RKG43tPPTSIpThFGW69wWOf8PB7ln2eI0Z/moj6tRXMukZ1IIB4vHsZ7nmJFzHdu4HaCPRlLO5IsQ8z+lKUUrUQz3rW/YL86xF3WWNLxEcDifNGQ8pSmHjWg52tgWGFH1Mf5CUJoXr+0MA8YN1CQc0O7OZqScga5xujLGHsc4MzupgUzv6pQnm16NwrHHSr0kQuZYIQIYLFRb6OiKHuGz/zECfxyGzr9CPrQarTlBD2F6UUUr4c+tBpRvB4itiieLq+e8rFqhmUErtTrI8+DAFv0zpNyWR5q9ucFv+MCuV8d5nZ93UmlihcSBbnS6Mm79iRsbJqKeszXzqz+7dYYvvO8hSEMxnjupLlsQCfZkgTiaeu/Ch8BfASoRsUw4fpoRuDZSOIuH0vf3IungOT8W8sSUyjj8lr+wkLsmOe8fwVKeEg4S8W98yuVyLimbtd7aEjtLG08wkNL2YSZaiG72McWvTOiFDUcIQRPe+7BwHCdZD9Wkdne29nNTYHRvOZ5GI/wuGWlDwZe4n2V4XR7sWzLW+ozEkkmBi8BLEwMusi8ad7lJ8LdobeeZEYgEBwslmIX+wHyPPO7dvIhts87huVTLB+/HxVw7uY/3baZBleXJLZIdMiVHxhuXO4afAB8YD5NfVmTpwNvu87le/QBaouqVKQsO9jDHPUHiTqZy43u3GI9DsCbKp6/9QYA7pXDASIcg5uKumeqS1HOEGM8d/KtbybHSCINH+nBpAGAY8ExYDgh05EoUfIT1xh9GGO9iULxvD2ea8zeWZ6NhRBM8rxKTX8XV5JrnlpCB/81VKMim9iOFw8z1SJ6yQ6UoQR7OcghjgIw2nqF1zyPZD50lDOEIQy+9b5FcYrwpDWORJK5XV5Hz+AkeE/Znu/ULAwkn9jfM9i8lEqiLP2Mi1wptov9Q0jG0fQuRym+8Y6jkCiI0orODQaz4OGe4CsAhkUVyrHVOkirmFosSN9AzdhipKSb7IrZgrBiQdg0N+swNm4TaSqdI0HTrv860YzAM8hIY5CrNZTmmrjDUv7mGfMeaomqjDXuBjKCgI2oE7GPZrL+f8JgwN7yE2rDFPSRjZC4FRK3oo9sdJepDVOwt/x03P3khVqyivt7Oj56ig54wwxW/lbrs26UB6rJSnSRrQDYqncyUy08zhY5Mywsw+SQPuIKPP+sfuM7e6a77jLjIoqIBJJIidAVrBSWTRrNCDz7sP2Kia3/YsHTO5nz8Pb/s3ff4VEUbxzAv7PX0itJSCAh9N6b9E5AQEAUBaQooigoiIBiARQRVED8YUcFRBAREVEQUJAq0mvooUPoJT25u53fH5dsckkuBRLSvp/nycPd7uzs3DF3t/fezLxY9ugxSCkRf8sMa5KKR+ZVRrPxZdHoxUAM3lobBmdO5SlM0o4IPKdeyrBfSgkpJVoqjbRtaafoOTJFPxrNRH0AtmnHKTqJFriASMxXl+Mj67fayEBv4Yn/Gd7Ci7r+6Ce6Y7dhOZ7RPYYoxAAAEpEEVzjjUaUz3ETx+DUyr6UEZy/hKhJkYjalMyeEwHzjh9huWIoLps3oo8t+1E34T9exrM8x7Jwdib1fXNWCgAAgpe0vOynvGao17zIs0oPXWWmJr/Xv4YjxTywwfIj6uhowCgM8FXf4wxf+8MVPxtkIVcqgu64dANsPvX9Zt6Fb8n0A2CZT32NSvvxclFe0bc2U+g/mAdED4yd88Jb+BVRAMC4gEk4wwh2u+MswH81FA1RFebgkT3cE7EdBE5UU5USQNnI/FvF4x/xppuXKKAH43vARftDPgBtcEIt4RCMWETgPPfQ4jQv4yvojDMKAQbredsfOtS7Fj5Y/Mq03rdhEifgkiTtxEkkWFbdiVZgtKm7HSSSYVUQnSMQkSiSYbWXMyWWSzCruxNm2xyRKRCfYbt+Ok0gyp9ZzJ85Wf2oZW91aPRYVd+NtZWITJaISJBIdlIlLsv3djZdIshT+64xSwhtCCG3ad6CSmhzpVd1QtFWa4gKu4B3LHERL25p9Y/XPwiP5x9ujiMAFROJZ5XF8aphoWysctsSg/zO8hZluL+FDnyHo5FEDQzw7oKyXgI+rHmW9gaquAfDyiYPOJRbC4waE+20cc96HyOS1W4sL/jz9AHko7igrAjKsN6dC4lXLdCzRf4yf5OrkbbaRgDHpFqNMO5WEbALhhwHKIzglz2GHPAAfxQt1rFWxG4cBABvkf+iJjvdU97O6x/G3+i8AWxainGaeTK+uUg3tlYdggB7r1G0IFWXgIV1RS1TBWMsH6KBrbvfFfq51qdYHvOCBBJGoDRX1hy+klHjO8jZCRRk0ErUQpmuV2WnpAbl7IRF3z6UGHc7+cxdf19mP64fjIHSAtAJVevrgsWXVoOgLfyC/pKknquERpQPOyUvYKHfiRQwAADyb9CbOy8s4Jc/hOd0TmJs8BQUAtsrdGIReWdabcrHRLmkgEpAECyzQQcHf8l8oUFAGAVhr2YxKIgR9dQ8DsK0VNcvwhrYA/JZ008GiEYtqSoW8fQKKkVBRFjvkAQC2H3CqpZkalBut0gR9c+Lshrvaa92OANpPKwdn76wvt5JirfixSzgubI2GR4gJT22oCZ+KzrlsNRUGOqHDIH0vAEAFpAZqRukHY5R+sF1yhx6iPfYI27XKz+qf6KMPQyNRC7vlYe0HAH/4oLGoDVWqdsvHVFfurW9T4TZU9zimWr5Mvidw1PgnSik+8LC6wUO4IVqNRRwS4Acf7YstUUkzWf8SllvXooIohx3yAI6rp1E1k2ujlDV/16pbsDDNzAwLbNNC/1Q344KMxDO6x/CLdS0SkYSLuAJPuOM5y1uIlwl4xvBYhnpVqWLWBjPe/N221I+ELZmKKm0JU6wy9T4AbcZfyr7clBEi9cfE9OdI+TctrYwCWFX7c6RwMwG/DHVFuyqFPxSU8tmZVhOlDpytttlVl3ENUy2fY7phHEqLUpisfwkzLN/CRTjjjLyIuko1PJxuOZ3aSlXUVqpCSomRGAid0GGC4flMz/9Y0khcVK/iKCK0bS/rBmEG3sjbB1oACnRE4ObNm9GjRw8EBQVBCIEVK1bY7R8yZAiEEHZ/Xbp0ybyyND777DOEhobCyckJTZs2xc6dO/PpEeTei7oB2m0jUheqvIMovGidnCFZSEqGuRQNlBr528AiSAiBb43vY4Pxeyw2zMLX+ilor3tI279DPXDPdXdT2iIQfhAQuCKv45J69Z7rWq7/DIfVk7as0FKFFRL/yn24gEhM0y76ALM0Y6FlhXb/EaU9riYnDfGBJ0zCiMu4hoXWFZhi+QxfWBffc5sob3gGm+ARYoTQAUIBPEJMuHHUNhw9JTBw4rdbOLnqVgG2khypqlTANnUPDshjWKtuwQ15G3EyHj+ov2Gz3IXLuIYvrT/icvJUUcB+RGC8TMBu9RAOWY9jtmW+Xd21larYblyqXXRaoUJCorqogAuIxA4cxCTL/zKsOZgSKDihns3Q3lZK4zx65MVPyohAb3jgkLy30eD3olxbT7sgoFAAnbPA84fro/lrZR0fmOzQD9dxYZtt1Gj0pURse//epzZT4ZY2uUMrXUOcl5exUx7E7+o/uCyvZfjC0lXXBopQcF5Gwpr8A6EeOngJZg0ujlyEM55KziqfgEQsUVcBAH4xfopFhpna55CjpSmISgJv4YmRuoHYIffjpDyLb63Lsiz/teG9DOu3AqkJJ0KVMvjcMBkXYRt1fRfRMMOCeeovGGuerq1DJ6XEx5Z56HJ3NN74PQESqUt6pQTbUgJzaYNvKTet91Am7eVh+nNkNoFAK6NmPEeKmETgleXxGXcUEUIIzNRPgBNMEBDYqx7BYavtmu953ZM4aPoDfxsXYLVhLobpn8iynuwSLn1nmI7Sip82K+dhpQ1+tv6Zp4+noBRoIDA2NhZ169bFZ5995rBMly5dEBkZqf39+OOPWdb5008/YcyYMZg0aRL27t2LunXrIiwsDNeuXcvyuAelq66NtkhpEpK0DDaucMZRGYHY5LnsnnDHB7px8IGn3fENlFoPtsFFiE7o8KiuM4QQ6KWkjgCMkOfvuU6DMGCUbgj84Ysd8iAWqL9mf5ADTooJvxm/QE1UhoDQ/q8B4BPrAqy22tYUmmNZiONIXQdosO5RXJU3AaROCz6ppmaT44LhBU9nVDBkWx00G1cGrSYFo+aTmU/fLgKz+kskJ2HCU7qeAGzTb3+w/pbhfeNKugzep+UFnEwO0v2r7kPLpH5obO6D1y0z8K+6167seZmaLCIYgRigPIKeIvU96oy8iBfNkzKdynoyzZpggG192UaCnwOOtFeaIhiBuI0o/Kfuf2DnrdXPD48urYrGL5VGg+cD0GR0EJ7ZXhd+NVwQczUJidGWLI8XaRcIBiAUvlmUBOkzHS6w/oruSlu7Mt0V23ThQ+pxbZsXGAQsztJmkJ5rWQpVtX2jP6qmjkgJFdn/wEBUnA3TP6F9j15oXYF46TgRnxACE5ThKAWvDPu+sy5DgpqANrommKOfiPqorn1X3yUP4VPrDxhtnopI9RresszGBMtMbLTsgd2HdhF0+W7uk2kWJhWUYEzSv4RKohw2y10YbXkfUkrohA5uwgWlRSm00TW57/N4CDd8Y5iK1kpjfGeYhvqihpb8s6gr0EBg165d8d5776F3794Oy5hMJpQuXVr78/b2zrLOWbNmYdiwYXj66adRo0YNfPnll3BxccF3332X182/Jz7CEy3QQLufmLwQcPr55pVFOQzX98Nea7iWGccLHghG6QfX2CKsrlJdy7AZjVgkqknZHOHYo/rO2gLf31mWwZph7lfO1VKqYI3xW21R29LJawWaYMST5tH4OGke3rZ+opVvKuqipqiEONh+tdECgWmCA1UYCCwUPMqa0H5aKFpPDEGzsWUQUDd5LYrkqcDV+/qiUjefgmwiZWGoLnX09bfWZTiunnFY1hse8IcvPrcuApBxvcBR5ve0X48B4Ig8pd1+U/8CvjFMhYdwgynNWqbz1OUIS3oGkar9xcUJedbufhNRByZhBGWujlJNu0BbpW7KMrtzXqvxeCmE/a8iHv6yEjrNLA//Oi7447lTmF16F2aV2oljv950eGztgX4I7WD74c8r1Akt3+KX/JLiGf1jdlksa6AS2qAJOist0UTUQXvFNsPhZzV1BEJ5sH8UZ9WUiggTrdBSNEQikrANth+XFlpXwBdeeFTpjEd07Qu4lUQFy0d4ok9y5uzbiMJydV2GMmZpBgBEqOfxjHUCbiQnA0lhG5gRjy/VJQCAYfq++NAwHj7whCfcAdjW7f9W/RnVk7pipvVbGGGAsBoBFO0f7EyFf1Zwtl7Q9dMyPm+Vu7FY/T1fzlNKeGOt4Tv01HWEh3BDEPzz5TwPWqFPFrJx40b4+/ujatWqeOGFF3DzpuML6aSkJOzZswcdO6aOtFAUBR07dsT27Y4TPSQmJiIqKsruLz/10Gf88FYhYYQebsnpqBcbZsEIA9bKrVoHry9qFIlEIYWBTui0xCx66PGXuu2e6woRgQhTWgIALuIK1qlb76ttfooPVhvn4nXdc7iS/IU1FvFIghnvq19o/98CAt8ZpuFGmsxE/rBlDE4bHEibNZkKB2cfA4burovxMQ/h9YSH8FrsQ+jzUzUoOr5+C6sqSnm0UWy/HPrAE1ukfXBPpLngu4NoXMNNfG1disPqCWxNt46fL7xwUKaO3jmcZopqTaUyhBAYbRiCM6aN0CN1SsJdGY32SQOxT01NFHRSpo7+BWCXsIQy8hTuaJ38HJ2VF+2CsPklYs1trBxyEv9+eBFqmgW4rx2Kw/65tuUkrEkSf73iOLhscNbhqb9rYXzMQ3jxZAN4lXNyWJaKl3IiSLvGMAkTKiR1wCmcQ5jSEpuMi+AqXBAn47EqTSbiWkqVgmouPSD99N2xVe7BWVzCN5afcVSNwNfqUtzEHfyh/oOHlHoF3USiAves3jZ6thS88KPlD7vBGsfUCDRMehR/WbfhJ+sq3JJ3MxwvIRGNWLxumYHWif0RJWPQStcYW4w/oolSRysjYZuqDwBJMAPuN+HkF1mkQ4G96hiyL1TIOQkTZuvfBAB4wB0/WVfjjsyfOE5KDGaUfjAOOOVPwPFBK9Sx4C5duuDRRx9F+fLlERERgTfeeANdu3bF9u3bodNlnM9948YNWK1WBAQE2G0PCAjAsWPHHJ5n2rRpeOedd/K8/Y70UcLwJX7EGdivAZQEC0rBB4sNsxCiBOGoast2k6KpUveBtbE4aCxqY6VcDwss+F39B93RLvuDHBim64s/1c0AgG8sP6Orrs19tc0oDJikfwl+wgc/W9fgP7kfABCdPF3YA274Wj8FFZUQu9FGpZNHBKYNBKbNmkyFhxACRlfb+5TCBK9FQl+lK/aoh7FDHkCsmrp2yhz92+ijhKFxUh9cwlUYYUAikmCFFW8mfYydOAgAKAUfxCMeG+VOfG39CV8q7wIAjqipwagaaZJX+AhPDFR64Qf1N5hhwWVcQxRi8GTSaLyvfxWP6NrjtLxg18aWSsP8fAqKhW5KW2xQ/wMArFI3oqZSOd/OFbk3Bj8+fARCAaQKJMVY0fbdcgAAvSnNVwQB6EyZf2WQUuLOmUQ4eeng7FP0L8wp96bqx2AGXsdiy+94X9rWDH7VMh2R8jom6kdimXWt3XIilZVyBdVUekB6K50wFtNxA7exXF2LE+Yz2lqzr+qGoowIyKYGouKvmaiPEboB+M76C/6W/+Jb6894Tv8k1lg24w3rTJyQZzDQPA79lG54TAnDTnkQB2TmMYGd8iDes3yODw3jUUEJxmLDLDxjnoCOSnN8ZPkGF3EF7nBFW9EEd3TR+PhlX6zcbsKdOKkl5NArElYpoKQk+kiuWyYn71BVQKdIWFUBodiOESlrASI1wYdBJ2FRbT9BqzLN0kIS0OkAqxXQ6SSs1uR6kmf5KgJQAegVwGJNbY9WD2x1lfdVMLRZ8Zhd0lnXEi9aB2CJ+gfWqVsx2TIHsw1v5ln9O9QD0EHBNnUv/mf5HvWU6tibcCjP6i9IhToQ+OSTT2q3a9eujTp16qBixYrYuHEjOnTokGfnmTBhAsaMGaPdj4qKQnBw/i3CW1YpjXKiDM5IWyBQBx0eE12wXK5FRRGCBootM/AqdaN2TGWE8gtgLjXX1cdKy3oAwM77SBgCAGFKKzQWdWCCATvkAZyXkQhJnt57r4QQGKF/ClVFeTxlHosg+OMsLiMJSRim9EUvfScAwFH1FGqKyggS/lrfOJkcCHSDCwLh5+gURJQLnXUtMcJi+1HonLwEwDYS8CldTzgLJ5QTZXBJXkUiklAZ5RAgSmGj3KEt8dBRNMPPcg0AYK8aDgBIkmbEyDi0FA0RIHxhhYqvLUuwSt2ExkpttNc9hHnqLwAAZzghEUlwEiYMsLyKEeoAbYSwF9zRRWnNH4Ry4GGlLV7FdADA75YNGK8flm/nitwTA8jUpECXdkRr+3yruqD1O8HY+t5FOHnp0G1upQzHS1Xil77HceyXm1AMAo8uqYpqj/rmW3upcEoJVrsLN7jBBTGwvWfMsH6L7ep+JCB17atWojEeEvUKqKX0oJiEEQN1PfGxdT7MsGCfPIJOogXO4hLG658t6OYRFQpCCPTWdcZnyUu1TLT8D7cRhcmWOSiHILjBBSEiEJ7CHd7CE58ob6G6uat2jQfYkncmJV/HfWr9AYN0vVBLqQJ34Yqlhk8ghEC8TMAc60LUFdXQUtcIL+sGQZgEanUukIdN6bxiGIL5icsBAF9bf0I/pTua6rK/XlalCgusMAr7H2ETZRJMwojFlt8x3DIRvvDC47quuISrqCCD7ZIHFmWFfmpwWhUqVECpUqVw6lTmU31KlSoFnU6Hq1ftM7tevXoVpUs7XlvPZDLBw8PD7i+/PZcmg407XPC84UmsMX6HVca5KCVs6yD+btmglTmDi2is1M73dhUn3dIsuH0GF+9rrSid0KGLrhW2yj24gduYZ/klD1po01HXAluNS/Cb6UusNy7ARdMWTDWmBqZ3yUMIlyfxl7oNZUQAEmUSziZ/gFUWoZwuTpRHgkUgyokyAGxriwJAiAiCs7BN0/QXqWs8vqF/AVvlHi0ICABtdU1RXVQAAITLU4iXCdgrw3EUEdgq98AEExKQiFGWqVirbsFy6zp0VlpCn/ybnAkmjNANwPHkNUDT/mp9B9F4Rv8Y3ASHl2anvFIWtURluMAJR3EaM83f2r3/Xw+Pw2+DTmDVc6cQdSljgpacitwTgxO/39KyhQNAlR72QbzWE0MwIaEZXrnaBOVae2ao4/KuGBz7xbbkiWqW2PD62XtuDxV9rxiG4IbTTizSz8RueRgAcFPeQXiaKe675aF8HeVKhcfQ5KQhhuTPiIPyGDYZftA+k4jINlNigGLLtO0ND8yyzAMgcRaXMED3CDYYF2Ky4WWM0g+GoigZEjKlnamhg4LFltRpnynfsUYbhiDCaT2Wmz7DKP1gfvcqZIJFIN7QDwcAlEEA+ppHYbea9ai9GBmHfuZXMNw8EbPN81ExoQP6JI1ESEIblE1shSeSRmOG5VsAQCSuY7d6CGUQwDUCC8rFixdx8+ZNBAZmPhLLaDSiYcOGWL9+vbZNVVWsX78ezZo1e1DNzJEeSjt4wg2A7QveT5ZVaKE00CLS19Sb2IHUUWytlUbwFO4F0tZ7oav6GHS1BkH414MoVQPCtwaEfz1tm67WIOiqPpZ9RfehogiBLrmLJyBRG4F5r4boHtUStyywLrdLBnC/KinlECwCUV+pAS9hH4hOmRpshAGNRW2clhegwjYGnBmDifJWS2E/8jptMh6/NIHAqkp5PKrY/xTcSmmkjdq1woqD8rjd1P6WSkP4C180FbZfKY/IU7ghb6NV8pp253EJA5RHMF0/FuN0z8KYJpnICN0A1JWNsC/eigS1aGeqexB+0M9EU1EXMYjFW9bZWlDVkqBiYdtDOLz4OvZ/dxU/dT96T/Un3LFgYbvDiFh9G1ICHuVMePzXamg0IuOPjkIRDr80GFyVNOUAg1vGZU+o5OmjD8NfxvnopLRAD107bW0qAHhS161IXQ/SvauklMM64zwcMa5GO+Uh/G1cAB/Fq6CbRVToTDO8inmG6eiv64G7iEZb0RRv6l7Ax/o3MvyA+qJuAOqhunb/mDyNBqgBADDDglnqPESo5x9o++n+vawbhLd1IxCNGFzFDfRJGokKCe0xIukd7EoOCsbIOHxm+QGzzfNRIbE9flPXY7H6O9apW3EJV3FTvYNruIloxOI39W8cwSk0EDUxTOmLtcbvEOG0Hr8YPy02awQWaCAwJiYG+/fvx/79+wEAZ86cwf79+3H+/HnExMRg3Lhx+O+//3D27FmsX78ePXv2RKVKlRAWFqbV0aFDB3z66afa/TFjxmDu3LlYsGABjh49ihdeeAGxsbF4+umnH/TDy5JBGDBMSZ36/Kv6l93+NeoWlEJqhuTuyr2vb1cQDK2nwtDpM5j6b4Jp4A6YBu2Aqf8mbZuh02cwtJ6ar21QhKJl5QWAv63/3ld9ZUQAuim2tQEv4xpWp1m4O79ckle1NcIaizpwEiacSJsxmOsDEuWp9EswVBapa3H5ITUQeF3ewoeG8QhCAAYqPfGc8gQqiGA0FLW0MnvVcLtEIikBv266ttq21eomu1+nV8mNGK0fgimG0TDDAgMMKI+yaGzug4onotD0dAzqnorGdYuaVw+5WKqihKKFzvZ/+b5+DOoptov+mCtJiLthgbTapvNeOxR7T6PF755LRFK01TYlWAUSblpQtZdvrkcJ+NdyRdv3QmBwUeBZzoTumUwfppKpsVIbvxu/QinhrY0IA4Bnk0eJUcnQWmmMYCUIfxq/QWVe8xFlyl/4op+uOzyEG8ogAF10rfG2YQQUkTHUUVEJsXstWWBFQ6UWPJIH6ADAbMv8B9BqyktGYcBz+idQU1SBO1zRU+mIy7iGH9Tf0DFpMH6w/IZ2SU/hVct0rFE3IwoxqIBgeMANoaIsyiAAXsIdzjBBQOARpQN00KGfrjvmGCfCIIrfGs4FGgjcvXs36tevj/r16wOwBfHq16+PiRMnQqfT4eDBg3jkkUdQpUoVDB06FA0bNsSWLVtgMpm0OiIiInDjxg3t/hNPPIEZM2Zg4sSJqFevHvbv3481a9ZkSCBSGIwxPA0leRnRa7iJDdbUzMar1Y122WIfTjeMmXKmtlJVu71Gbr7v+obpbFO6KyIE31iXQpX5+2V8W7rRRIB9FlGOCCTKW63SZeWtkiYrd0Bysh4AuCpvoqwojROmtZhrnIr/Gd+GEEIbEQgAu6yH8a+6z3YsfFEpOaiY9oedVepG7f29HMrgspq67ogKCTPMOIOLWH2rNGKT327OmiV+vGvOmwdcTClCwVv6F7HZuBijdUO07R7BJpSu76rdr9Y798E7APCt5gyfKk7aSuDV+5bK+oAstHwzGK/FNsPI040Q2NAt+wOoRBmu64endD3hCmc0EDXQUKmV/UFERCXQKP1gRDitxyj94CzLfWAYBxc4AwAssGCB+ivCRGtt/wL1VyRJXmcVNX7CB38av8FfxvmoqITAJXntbROMCFdPask2d8gDKA0/DNL1wlbjj/jcOBkRTuuxwvQFbpl2Y7NxMRYbZmKzcRGe1z+Z9UmLsAJNFtK2bdssf4lfu3ZttnWcPXs2w7aRI0di5MiR99O0B8JHeKKRqI2d0pZx8i3zx9ikNIIVKtaqW7RyNUVlhCplCqqZRVob0RhrYAsAblJ34ra8C2+RcZ2mnOqgNMMzusfwnXUZItTzWGj9DYP1vfOquRmkn1YIwH5EIAOBRHmqogiBC5wRh3jtfoq0U4Ov4xYAQC/sP0ZriyrQQw8LLPhP7kMUYgAALZVGWsCpmqiA8qIszsiL2KTuRPukgfCHL87hEuapv+AjOR4GYcDJ5Nd6aZSCv84AJK9HKAF46bg+TU40UerY3Vd0AgM31sLhxdehd1JQq/+9JVvSmxQ8vb0Own+8AZOXDjWfZNImyh8mYcQXhnfwgX4cLsmr2R9ARERZChL++Eg/HuMsHyAOCUiCGQISJhiRiCQkwYyBSa/iJ9P/HNYhpcSBSyqEkEgwA24mgbvxEt7OwJ0EwN0EJJglhBAw6IC4JMDDSeBOvISXs0BUgoSrCUiy2LIKG/VAbBLg5SxwOy61jIsRSLLayjgZgJjE1DKezgIxiRJOBlu2YYsVcDbayng6A3fibGWjE1SYDAIqALNFwt9dh/K+RWqFuBwzCgPqieqop1THC7r+eNUyDd2VdtipHkQiklAFoVhmnIMqSvlMjxdCoLGw5WVIO8unOCrUWYNLgqd1fbDTYgsEHsAxfG5djOqiIuKT14Pxhy+eVLoVZBOLtLpKdSQn3UQs4tEqqT/+Ni5AaXFvozcUoaCPEobvrMsAAG9aZqGHrj187iO4mJWUQKAOOjRTbCNnr6k30UjUghtcUBnlsjqciHJJCIExuqdxRd6Aq3BGXVFN22cXCJQ3Mz3eSZhQU1TCAXkMZ5C6LmnaKcdCCIzWDUEc4vGndTM2y13aL9OJSMJRGYEQBOFacrCxsgjFG34mHE60Yk+8Fb08DOjvWfymKDwoJg89Gg6/v6zvAODsY0CjEfdfD1FOeAg3eAiOGCUiyguDdb3xmWURjsCWjOln+Sd6K2FYr25DDOLwm9yA15NmYKrhFehExvV7hy+Jx7wdRXPUoBDAN/2cMbCJsaCbkq+MwoA5hokAbGtBlkEAhuofdxgELGkYCCxgrZXG2m0rVEyxfIaeSkdt2zXcRBtdk4Jo2n1JnN8AMvYKYEkA1ORInKID9E62bXonCNfSMA3Zm6/tqJUus54RejRLfBzdlXZor2uG3rpOua6zg64ZHrOGYZm6FjVFZfxkXY0X9P3yqsma8+pl6KFDIPxRVgTATbhASomtcg9iEIdyogzcFNfsKyKiXHnL8GKm2/3TrBF4Td5yeHwQ/HEGF6GDgijEQkJFHdkIwy7F4UySiud9jHje0zbVYKn1TwDQRiACwB41HIlK6sVlFaU8fPQK1oQyCEBUHFgSVPzzxjlc3h2DGn1LofFIBpSJiB4kvdDjU+NEtE8aBMA222KD+i984Y27ybM5flR/x1FzBL43fGiXpOlqtFpkg4CAbXThlDUJxT4QmNYo/eBsp4yXNMVzTGgRUkEE26WgjkEcflHXaPf94YNGRXBYqjTHAknR0FZSh2q7nbItKdpWJp/5C19tgX8nmNBFtEYkrmOuuhTjzR/e0yLxADBF/wpKoxQ2yZ2YZvkiX9aRWKj+hoPyOK7hJp7R2TIsn5OXEYM4AEBNwUXliR4kP+Gr3U6ZGpyZc7iMKMTgNqJghRWvKkPx5ZUy+OGOGZvjrHjqYjwOJ9h+IGmnNM1w/F4ZbrcEQNqEJZR3zHFWnFl/B7dOxWdfmCgPbZ16ATs/uYwLW6Kw9qXTOLXa8fsJERHlj+ZKA3yrex8m2AJidxCNq7iZsvwvruIm1qpbUCexB9YnJ508qB7DQuvyAmpx3rkTf2/fgan4YCCwgAkhMFT3OJqLBlAgMFY31G6x0od1bTPNeEQ5111phyaiDkqjFFzhrL3ZX0AkDsnj91RneaWsNtXvGm5hpbo+z9oLABZpwXcW2/RjCYmOuuYAgCPypFamBgOBRA+UNzygTx5Ifz2LEYFXZGoCKw+4oZTijeNJasoqBZAAIpJsmT8ChX+G4/epR3BCPavd51qgeS8pxopvGh7Aoo7h+LzqXhz5+Ub2BxHlkVsn4qF9BRPAzeMMRhMRFYQn9d3wpPIwAMAHXohFHMqgtF2Zq7iB7ubnMM38JdolDcSbSZ8WRFPzlGvJGQxIDjDCVAg0UmrhX7kXKiQOyROIRGrWyLTZJeneuAgn7JQHcRaX0FLXCNP1Y7V9q9RN91zvUF1f7fZc69L7amN6a9WtuATbouBdldYIFrZpQ+HylFamllIlT89JRFkTQmjTgx0FAq/LW7iFO9r9obrHMEo/GEO9U6+4yuoF2rjaAoqBIjXJRCl4AwAOyuM4Lk9r29NmLqa8cXrdHdw8lhx8UYEdMy/l+NjrR+KwqNNhzG95EGc33s2nFlJxVnugP1IigSZ3Har08s36ACIiyhc6ocNXxvfQWjTSrt9CEAgXONmXgx6brTthgQVwvwHnSgcLoLV554VWpoJuAhUwrhFYCHRUmiMEQTiPy1irboE7bOu+OcGE9spDBdy6oq+GSF0nMFyeRDddO7xieR8AsMr6Dybon7+netsqTVBZhOKkPIvt6j6cUM/k2eKjK6x/abef1T2u3Q5XU0cEcmow0YPnJ3xwWV7DNdyElFLLBJxin3rE7v5leR0A8LyPCXWcdDiTpCLMTa9l/U07ItAHXriB20iCGYeTR//qoUeoYNb4vOYWlBqYFTrAvWzOL4iX9jyKO2cSIFXgp25HMPpKY5jcc385JVWJc5vuQqpAaDtPCIWZoEuKyt19MGxfPVw7FItybT3hkYv+R0REea+vrhs2W3YDANrqmuIv/Xy8bZ6NleoGnMI5CABXrrvC5XonxOuvo+tD11A51AizVcJiBdycBKITADcnICZBwskgkGRRoQgBRQBmqy2zcHSiLaNwVIIKZ6MCs0UFkjMLJ5oBVycgJkHAzQTEJKow6hRYpIQAYNQBCRbbaL6YRAFXExCXpMKgKLBKCSkBk0EgPknCPbk9riYgPlGFTicgJaBKoIq/DsNa8HOnpGMgsBDQCR2e0ffBZMscAEA0YtFb6YRmSn24COcCbl3RV1NJDZiFy1N4UQxAbVEFh+QJ7JaHESmv243KySkhBF7U9ccv1rU4LE/iW+syfKCMu+/23pFRWKauRV1RDZ5wR2elZZr224IDOug4SoioAPgJH0ACZlhwB1Hwhn3G8D0y3O5+2hHezVz0aOZiX18gUt97nIVJGyV0TtpGqFUQwdALflTntbIPuaPz7PLY9WkkfCo5IWxOhRwfe/dcom35WwDmOBXxNy33FAj8Y9gpHPjO1j9q9iuF3our5roOKroC6roioC4TfhERFQYP69oAFtvtVepGTBQj8b7xVdSwVsKL5sl4/uQn+N93tSGlbUKlbZXApIJq7n0yI8kKjGjNYGBJxqnBhcRg3aPQQQcfeAEADskTGJqcIILuT9q19FJG1IWJ1igFb7RTHsIB9dg91/24rit2yUO4gygstK5Agky87/auU7ciHgk4II+hjlJVS1lvlmYcT04gUEWEwiS4uAPRg+aXJnNwZtOD96rpAoHJIwIdSfsjhAoVQfBHWZSGOflqlOsD5p8mo4Iw4mRD9PuzJtwDc/5+2vCF1LWDKnT2gme53F9Im+OtWhAQAMJ/vIGEO5Zc10NERET3L0j4o6GoCQA4II/hvIwEADyl64lDplU4vaMhIItP6OR/m4pqEJPySvHpzUVcoPDDCdM6nDCtw3BdP2w2LoarcMn+QMqWh3BDCIIAAEfkKUgp0VRXBzdwG/+o/2GLuksre1dG56ruUsIbvZVOAIBbuItf1b+yOSJ7q6yp6xY+rLTVbp+IO4cKv9ZC6D/VUBOcFkxUEALSZA6+lknm4JRAoJKccy5SXstQJi1n4QQveAAAYmU83jO8gou4ou1nILDw6Ty7PJ7aUBNPrqqOJ/6onmF6eE5E7omB0V0HoQBCAUxeOhhceUlGRERUULrpUtfmb5rYB/2SXsGv1r9QTgQh1EfBPXzcF0o6AYT6FJMHQ/eM840KkTIiAAAw2/BmAbek+KmpVMJ59TKiEIMLuILaInUK1gl5FgAQoZ5HraRucIMLAoUfDpr+yFHdw/RPYEnSKgDAHPNCPKl0u6cvhoBt1N9adQsAwBPuaJWcmVi1SPzZ9jIe2z3cVvC1a8D0ezoFEd2HGqISGopauCKv46x6UcseDtiyBack+fGAG+4gGjGIQ7SMhbtwPAUwUPjhjoxCJK6jo2iOFmiIGMRigv55VFLK5ftjotwRQiC0ndc9H79j9mX89YptdLfeScC/ris6f1weOgMDgURERAXlcaULPPSuOK1exOfqIqxQ/8av6l+YLsdiUtdBuB0vsfOsBbYV+yRE8r+qBIQAZMq/sI22sq32YisDmXoTacoCKd8ZZfrmJBcV6bapdtukBBQhIAFt7WqZ5swZCVT2U/BpXy4/VtIxEEglQk1RGX9iMwAgXD2BMKUVTDAiEUk4kTzddpW6ERIS0YhFvEyAKlUoIvsvZs1FfVQXFSGlxFFEYLB5PL4yTIGzcMr22PT+VffhDqIAAJ2VljAIAwDgengcEnbrtHLKV34MBBIVAG/hiT3yMADgtLxgt88CC4bp+mKvGo54JOJO8gjjK/J6toHAozIC8UiAURjwp+kbRCMWvsIr3x4HFZw9X0Rqty0JEm3eDUHZZh4F2CIiIiKqrISishKKTywL4Ko6IxbxKIPSmG75Grt0hzC3/3twEfy8puKBgUDKF4YOswFLAtQb4YA1eQ0CnRFKqZpQb4RDKVUT0Oc+UHavaiqVgeTF3cPlKXQVbVBJlEO4PInT8gIs0oJV6katvAVWROI6yiAg27qFEPjT8C26mJ9BvEzAanUT5luXY7iuX45GBkopMcs6D+VEEH6w/qZt755meLpbkBGqyQokCUCR8K784J47IkqVdqruyeTRxCnKitKYY5gIAJhgnoEj1lMAgMvyGiojFI4EIjVzcKS8jupKRfgmrxdLxY9vFWfcjkiAtNqmBXuX5/s5ERFRYTFKPxgv6wZhlmUe5qm/4JK8gjXqZmxQ/0M3pS3+PGLBlSgVQggIAaiqhEEnYLYCRj2QaJHQKwIWVUIRtvF7qpQw6gWSLIBBB5itEoqwZfEFAEUAVtWW9ddWRsJsARQFUAFAAjoluYweSLQIWxmr7VjbiEBArwCW5DIJZsCgs7VDpBmYWNZLQadq+nuewUbFAwOBlC90Fbra/q3SO+O+TLblt5qZJAypIkIRLk/CDAsOqMewVd1jd8xpeUGbrp2d0kopTNGPxhDzawgU/njF8j48hTv663pkeVyCTMQb5pn4XF0MZzihv9IdANBJtEBnpYVWztXPgP+W/4qg6bWR6B2PF2YPzlG7iChvlRfB0EEHK6zasgKZCRRpgnvIecKQy/IaqqPifbeTCq/u31bCulfOIOp8IpqMDoJPZU7PISIiKkyEEHjV8AyqWyvgKfM4lBZ+eMz8EgasXYOF/7gXdPPu26SuJrwZxh8iSzIuSEMlQlVRAVURiqaiDqIRCwConGZkzzJ1DawpQwaTnVEv5uocPXTt8ZV+ijZKaIJ5Bu7IKIflI+V1dE56Gr+qf8EHnohHAq7jNsogAB11zeEtPLWyqlTxX/ut+GHdLOxbuhp+5d1y1TYiyhtGYUB5URYAcFKegyrVTMulDe5llzAkyC5omHVZKvpc/Y3ovagqBm+pg+p9ShV0c6iQir2WhIXtD2FmqR1YO+o0pJpx/SgiIspfD+vaYpJ+JCLkeQDAzzt12RxRNMzfwazBJR0DgVQimIQRrsIFO+RBrFI34pa8iypKqLb/X3VfhmPSr/+VE4/pu6Cn0gEAEIM4fGZZlGk5q7Riv3oEe+URROI6yotgLDF8jKXGTxDhtB6j9PYj/i7hKuIQD4BZRIkKWsprMA7xWnKQ9OxGBMrsRgTmvCwVrIg1t7Hr00jcvZCYq+NunYrHrjmXcW7T3XxqGRU3/7x5Huc3RyH+pgW7/heJ4ysyZiknIqL894zuMbjBBQBgDjhR5AMoOgHUCiweAU26d5waTPlCvboPsCZBvXsGsJptG3UGKJ7lod49A8WzvG3NwID6D6xNLZVG2Gs9AgmJ7eo+VBHltX375BGUhh9CEYT/cAAAcEbmbkRgio8Mr+Nm0h2ckGcx1foFuunaop5S3a7MPnkEj5pHogz8EYdEfG6YjLpKNYd1nlDParcZCCQqWFVEKFZjEwDbazNYF5ihTCByPiKwtEgdFZZdWSo4abP9bp50Hs8fqQ+3AGO2x906FY+5dffDHGcbPdrzh8qoPcA/m6OopIu/ZbZLIhl301xwjSEiKsHchSue1HXDN9afoT45EY3XfgH9rRAAKZl6AVUV0CkSFlVAr9gyCSenBYaUKesBCuiEhFUKKEJCJpdJSSasQMKqCuh1tnpsZWx1pGQlVoSEVVsvMLlMmizGUgKKImGx2tYitKoiOZOxbYFAIQSqBiiY2p3Tgks6BgIpXyStfBKIuWxbCT1l6lzK7ZR/3YLgNOz4A2tTS6Uh/mf9HgCwVd2N8fphqe2FGVdwHc1FA0CmBAJzPyIQAEJEIMJ0rbDVYltzcJT5PfxjXGiXgXirugcSEhdxFR/qxmUZBATskxJUThPAJKIHr1K6hCEd0CxDGfupwTeyrC99shAqnA4vTv2/ib9lwflNUajRN/upvRFr7mhBQABYOegkTv5+Cz2/rwKdsaiPK6C8cOTnG1jzYgSETqD7N5VQubsPHnq1DCLW3IElToVPFSfUeJzTyImICsqzur742boGA7zDMHyAM6ooXKaJijZegVKJ0VxpoN3equ6Bt/CEH3zsyvTSd9AyBd/riEAAGKUbjKrJAbvL8iqWqKvs9qdNTNJR1wLZOSHPaLcrK+XuuV1EdP/SLiuQPnNwChfhDC94AMh+3b+0QcPzauR9t4/yR2ADVwgFgLD9nuVX0yVHxwXUtS8nVeDITzexfx5HfxJgjrfit6dOIO6GBbHXzFj+5HGoVong5h54+VwjPLOrDp47WB9OXvztnoiooNRTquOs6R/MMryBKgoHZVDRx0AglRilhDdqJGcP3iuPIEbGoRJSg2p66NBZaYnQ5EQA13EL0TL2ns5lFAbM1r2FlqIRruImxpk/wE15B4At8ce25ECgL7xQTVTItr602UmrcEQgUYFK+xrMOnOwLcAXKa9DSscL/ZuEEd2UtigFb0TgXJZlKf9JKe3+D1Jud5wZiodeLYOqvXzQ97fqOQ4EhrTyRK/FVeAZagJsM3wgFCAp2pr1gVQiWJMkrEnJ/U0ClgQV0mq771LKgKBG7tCbeLlORFTQnAWn01LxwSsLKlFaKg0BAFZY8Z+6H1XT/KJTR1SFl/BABSVY23av04MBoJ2+KYKEP5Jgxk3cwduW2QCAI/IUbsOWTbiF0sBuyrAjKWsEesANAfC95zYR0f0LgC88YJsSclw947DcI0oHPK3rg9G6wRmykqenQsUN3MYdRN9ToiLKG6f/uoNZfjvxgct27Pj4Ev4YdgpT9f9iusu/+MhjByL3xOCR+ZVRubtP9pWlUaufH/qtrgFnH9uoLq/yTqgzmOsEEuDkqUeLN8pq99u8G8Ip40RERJSvOM+ASpSWSkN8bf0JBuixzLrGbvpvueSRgOVF6gX5aXkBdZD1+n1Z+cAwDn8mbkI0YrFfPYqd1gPYK4+kaU+jbOuIlwm4ANt0wSoiFCJ54VkiKhhCCFQRodgtD+MyrmKNdQu66FplKPeO4eUc19lA1MSf2AwA2CvDUREhedZeyp6UEuE/3sDq508hKVYFJPDXmLPafku8bYTWuY13sevTSLR8I9hBTY6Vqu6Cl841wt1zifCp5MRgD2naTS2H+s8FQCgCnsGmgm4OERERFXO8CqUSpaPSAk/r+kCBgkXqSmyX+7R9uuSXQwWRdkTgva8TCNimBk7RjUZjURt7ZThetryHLdZd2v6UEYpZiZDnbZmeAFQSXB+QqDD4Rj8VPZT2sMCKPuaROJHFyMCcaKjU1G7vU49kUZLyw/aPLmHFgBNIilHtMrVmIGxTN++V0VUHvxouDAJSBl7lnOAZbII1SeXyAERERJSvOCKQShQf4QkfeCIRSRn2HZenAQCVEIJmoh500OG2jLrvcz6rfxzfJv0MANgvj8ICC1qJhriDGNQRVbM9fqd6EPVEdXjBI0eBQyLKf6FKWahWW0BolG7QfS8cXT9NIHCPDL+vuij3Tv5xO8O2hi+Wxo0jcTi3Mcq2tp8EPMuZ0PCFwAffQCr2pJRYM/I09nxxBS6l9Hjijxoo08S9oJtFRERExRADgVTiTNAPx4/WP3A5OZOnDjpYYcURGYE4GY8KSgi2y/22fVJ33+fTCz0+MbyF9kmDoEDBYZwEJNBCNIReZP8S/Fv9F/vlUQDA28qI+24PEd0/J2HCUsMnWGT9Hf3QHXu/voLbpxJQs18plK7vluv6AoUfguCPy7iGfeoRqFLN0fqhlDdCWnngwtYopDzlA9bXQmgbT0gpEXUhCSZPBQm3rXAvY4TOwP8XynsXt0djz+dXAABxNyxY2vMousypgOqPlSrglhEREVFxw0AglThuwgWfGybjroyGEUZ8rS7BP+oOWGHFQXkcDyn1UAreuIHbOJmcpON+NVcaYKruFSxX/8IeeRgAoMIKKWWWa/4lyiSsU7cCsGUYfkjUzZP2ENH90wkdBul7YdOk89jy7gUIHbBzzmUMD28A7wq5zyzXQKmJy+o1RCEGp+UFLgXwALV5JwTOvnrcPBaPWgP8UK6NJwDbepCeIbY125w8DQXZRCrmVEua6cASiL1ixi+PH8cj36uoM5CJZYiIiCjv8GdtKpG66FrjCX039NZ3Qi+lk7Y9ZW2ulC/gl3EN0TI2T875kn4Q0ob8tsv9GGQehzg13uExm9VdiEGcrc1Ka+jE/Y9QJKK8dXqtbVqptALWBIlLO6LvqZ4GnB5cYBS9wENjyqDb15W0ICDRgxTS0gO1+vvZbRM64OyGuwXUIiIiIiquCjQQuHnzZvTo0QNBQUEQQmDFihXaPrPZjNdeew21a9eGq6srgoKCMGjQIFy+fDnLOidPngwhhN1ftWr3nvWV7o1p8G6YXrwE47PHYHz2OIzDjsP47DFtm+nFSzAN3l3QzQSQ7su3avvyXUUJ1badlGfz5DxGYUBDUctuW4S8gM7mp3FJXs30mFXqRu12N13bPGkHEeWt0I5eAGxf2nVGgaAmqVODpZQ4vPg6Vr8QgWO/3syynobC9l7kATccUI/mW3uJqPARikCvRVXw+ArbNavQ2X5cKNfGo4BbRkRERMVNgQYCY2NjUbduXXz22WcZ9sXFxWHv3r14++23sXfvXixfvhzHjx/HI488km29NWvWRGRkpPa3devW/Gg+ZUEY3SFMHlDcAqG4B0FxC4LiFqhtEyYPCGPhWAS7tqgCffIs+b3Jo3CqiNSF/0/Kc3l2riPylHa7OirguDyD3fIwnkgajZ3qQbuyqqpipXUDAMAIAzopLfKsHUSUd9q8E4Iun1VA45cCMXhbbfhUdNb2hf94AysGnMC+uVew7NFjOLX6lsN6moq6qCOqIgoxdj8CSFUi6lIirEn3nq2WiIqGqj190W9NDTQeGYhei6ugzmBOCyYiIqK8VaBrBHbt2hVdu3bNdJ+npyf++usvu22ffvopmjRpgvPnzyMkJMRhvXq9HqVLl87TtlLx5SRM6KG0w3V5G/GIR6yMQxURqu0/oZ4B8mBGrpQS4fIkAKAMArDQMAN9LC9BJ3W4Km+gU9IQfKl/B/30PQAAi9XfEY1odBTNESrKwF243n8jiCjPKTqBRi9mnkn2/JYobWSP0AHnt0aj0sM+mZb1UjzgChcAwHF5BqfUcwiJK4sf2h/G5V0xcA0wYODGWihVzSXfHgsRFbyKYd6oGOZd0M0gIiKiYqpIrRF49+5dCCHg5eWVZbmTJ08iKCgIFSpUwIABA3D+/PksyycmJiIqKsruj0oWL+GBrXI39shwHJDHUDltIDCPpgZfwQ3cgm2tnxpKJdTSVcFW44/oprTBBUQiCWb8z7oQb5k/xi31Dt6wzEQ04vC3/BdP6LvlSRuI6MGq0NlLCwJKFSjfMev157rr2mm3V6kbcWjRdVzeFQMAiLthxrZpF/O1vUREREREVLwVmazBCQkJeO2119CvXz94eDheL6Vp06aYP38+qlatisjISLzzzjto1aoVDh8+DHf3zKeiTps2De+8805+Nb1EsuyZA5kUDXntAKQ1EZASQu8E4V8X8toBCP+6EEZ36Bu+VNBNBQA0EDUxD78AAPaq4RimewIKFKhQ82yNwHD1pHa7pqgEAPATPvjKMAUuFmccV09jq9yDfdYjWKduwzXYphD2UjqildIoT9pARA9Wtd6+eOKP6riwLRrlO3qifHuvLMt3U9rgTcwCYAsEtjF2sduvMxap3++IiIiIiKiQKRKBQLPZjL59+0JKiS+++CLLsmmnGtepUwdNmzZFuXLlsHTpUgwdOjTTYyZMmIAxY8Zo96OiohAcHJw3jS+hLHs/BWIuA0KxDYMBIIUCnF5t23Z6NeAWVGgCgQ3TJAzZqx6BSW9EqCiD0/ICTsqzkFJCCJFFDdlLmRYMADVEZe22URjwqX4ivrAuxnbLfjyhPIxyCEIAfHBYnsRHhtfu67xEVLAqd/NB5W6ZTwdOr6qogIoiBBHyPLape1G2nxFVfvPBiZW3UKqaM1pN5GcTERERERHdu0I/tCAlCHju3Dn89ddfWY4GzIyXlxeqVKmCU6dOOSxjMpng4eFh90clS01RGYYMCUNCAQCxiMclZJ7VNzduy7soC9valbWUynb7hBB4UT8Afxvn43PDZHgpHuioa4FjprXwivTB6uGn8NugE7geHnff7SCiwksIgW5KWyhQ0HFHJ6x6+jS8ypsw5noTPH+4ATyDTQXdRCIiIiIiKsIKdSAwJQh48uRJ/P333/D19c11HTExMYiIiEBgYOYLuRMBgEkYUVtUAWBbpD9axtplDj6hnr3vc+yQB3ERVwAAoSiTaZlmSn04CRNG6QdjlH4wTMKIJd2PYt83V3F48XV83+YQLAnMHEpUnL2ifxpH7/yNZl374OLSBOyaE4nfnz6Z/YFERERERETZKNBAYExMDPbv34/9+/cDAM6cOYP9+/fj/PnzMJvNeOyxx7B7924sWrQIVqsVV65cwZUrV5CUlKTV0aFDB3z66afa/bFjx2LTpk04e/Ys/v33X/Tu3Rs6nQ79+vV70A+PipgGydODJST2y6OoJ6qjtWiMBqIGImTWCWdyIlJeAwC4wBneIuuEASmklLh2MBbSass6Gn/TgujIpOwPJKIiK1D4QZxygiVehVRtr/3IPbEF3SwiIiIiIioGCnSNwN27d6Ndu9QMiSnr9A0ePBiTJ0/GypUrAQD16tWzO+6ff/5B27ZtAQARERG4ceOGtu/ixYvo168fbt68CT8/P7Rs2RL//fcf/Pz88vfBUJFXX9QE8DMAYJ96BI2UWths2QUAaCiP3Xf9kfI6gOQv+Tlcb1AIgWqP+uLozzcBAAF1XeAZwqmBRMVd6Xqu8Ag2IupiEiCBmk/kfkQ8ERERERFRegUaCGzbti2klA73Z7UvxdmzZ+3uL1my5H6bRSVU2oQhe9RwDNL10u6Hq47XmMyJWBmHu4gGAATCP1fH9lpUBZUevg5LvIpaA/yg6O4vaQkRFX5GNx2G7q6LIz/dgIu/ATUeL1XQTSIiIiIiomKgSGQNJnoQaopK6Cia4y6icUxGwEt4oCxK4yKu4Ig8dV+Zg6/I1FGrgSJ3o1N1BgV1hwTc03mJqOhy9Tei8UtBBd0MIiIiIiIqRgp1shCiB8kgDEhEEnbJQzggj+GivIKaydl97yDqvjIHX8Y17XaQyN2IQCIiIiIiIiKivMBAIFEaLZVG2u1t6l7UFJW0+0fuY3pwSqIQIPcjAomIiIiIiIiI8gKnBlO+UPzrQrqXgbx7DrAmZ7nVGSE8y0HePQfhWQ7CufCtedVSaQhYbbe3qrvxkFJPu39YnkBntLynetNODS7NQCARERERERERFQAGAilfGHsuLegm3JOHlLrQQw8LLNiq7sFQ3ePavvtJGGI3IhAMBBIRERERERHRg8epwURpuAoXNBA1AABHZQR84AUl+WVyRN57IPCyvK7d5hqBRERERERERFQQGAgkSqel0lC7vU+Go6IIAWALDFql9Z7qjEyTLIRTg4mIiIiIiIioIDAQSJROS6UhSsEbDUQNbFD/Q0PURHVUQDVRAYfliXuqMzJ5RKA7XOEuXPOyuUREREREREREOcI1AilfJP3WFzL+RrbJQgrjWoIdRDOYYMReeQQnrGcxWf8SllhWARL4W92Oukr1XNeZskZgYC6nBV/eFY3bpxNQoZMXnH0MuT4vEREREREREVEKBgIpX6jXDgAxlwGhAFK1bRQKZNw17V/pFlSwjXTApJgQpmuF76zLEIM4RMlYbd8f1n/wqv6ZXNUXLWMRgzgAQGAupgXvn3cVfzxjW5fQvawRzx2sD2dvvmSJiIiIiIiI6N5wajBRJp5Nky14pboeVUV5AMAOeQDX5a1c1XUlTaKQ3GQM3vvlFe129MUknF1/J1fnJSIiIiIiIiJKi4FAokw0UGqioagJwJYkJCWAp0LFGnVLruq6LFMTheQmY7BvVWcIXep9rwpOuTovEREREREREVFaDAQSOfCG/gWMUJ6CGRZslDu17ass/+SqnkikGRGYi0Bg508qoPZTfijTzB2PfF8ZgQ3ccnVeIiIiIiIiIqK0uOAYkQPddG2xTd0DFSrKojQu4Src4Yod8gBOqxdQQQnOUT1lRWk8pfREJK6hmqiQ4/M7e+vxyPwq99p8IiIiIiIiIiI7DAQSZeF9w6sohyD8T10IKSWiEIMoxOBVyzQsN3wGIUS2dbRUGqKlseEDaC0RERERERERkWOcGkyUjecN/TBHPxE+8IIPPAEAf6qbsVrdVMAtIyIiIiIiIiLKOQYCiXKgve4hHDOtwf8Mb0MHHUbpBqO10rigm0VERERERERElGOcGkyUQx7CDX2UMDT/5zoCDlyCwBxYpbRND/bxgRg4EMLZuaCbSURERERERESUKQYCKV/oG4yETIqGvHYA0poISAmhd4Lwrwt57QCEf10Io3tBNzPX5PffI2DoUNvtlG0p/65YAd3q1ZApwUEAUtr25mQtQSIiIiIiIiKi/MRAIOULfcOXCroJ+UL+9pvjnevWwermBiQlAU2bQowbB/n880BUFMS770J59dUH11AiIiIiIiIionS4RiBRLohGjYCsRvclJACqCuzcCTlkCHDjBpCYCPnaa5Bnzz6oZhIRERERERERZcARgUS5IMaPBwwGyN27bSP/FAW4dg3Yvj1jYYsFkDL1fmLig2soEREREREREVE6HBFIlAtCr4cybhyU4cOBLVuA338HWrcGunVLLpA8WrB0aYj33gP0ybH2Z58FqlQpmEYTEREREREREQEQUqYdskQAEBUVBU9PT9y9exceHh4F3RwqhKzVqwOnTmkj/sTBgxBubpAeHhC3bwNlykAYjZB37gBxcRBBQQXbYCIiIiIiIiK6Z8UlVsSpwUT3wmKxuyusVoiQEAgA8PJK3e7lZXefiIiIiIiIiKigcGow0T1QPv4YcHKy3XnhBaBWrYJtEBERERERERFRNgo0ELh582b06NEDQUFBEEJgxYoVdvullJg4cSICAwPh7OyMjh074uTJk9nW+9lnnyE0NBROTk5o2rQpdu7cmU+PgEoq0b07lGvXIA4cgHB2hnzrLcgbN/KsfnXpUqgjR0IuX55ndRIRERERERFRyVaggcDY2FjUrVsXn332Wab7P/zwQ/zvf//Dl19+iR07dsDV1RVhYWFISEhwWOdPP/2EMWPGYNKkSdi7dy/q1q2LsLAwXLt2Lb8eBpVUBgNk796Qn3wCOWMG1O7d86Ra9eefIfv3h5w7F2rfvpC//54n9RIRERERERFRyVaggcCuXbvivffeQ+/evTPsk1Ji9uzZeOutt9CzZ0/UqVMH33//PS5fvpxh5GBas2bNwrBhw/D000+jRo0a+PLLL+Hi4oLvvvsuHx8JlUjXrwOnTwNWq+1v927IdGsH3pNt2wCdzlanTge5dev910lEREREREREJV6hXSPwzJkzuHLlCjp27Kht8/T0RNOmTbF9+/ZMj0lKSsKePXvsjlEUBR07dnR4DAAkJiYiKirK7o8oW/7+QI0agKIAQgABAZDTpkFmMWI1J0SHDloQEFYrRPv2edRgIiIiIiIiIirJCm0g8MqVKwCAgIAAu+0BAQHavvRu3LgBq9Waq2MAYNq0afD09NT+goOD77P1VBIInQ7Khg3ASy/ZgoE3bkBOmQL1lVfur94ePaD8/jvEmDFQVq+GCAvLoxYTERERERERUUlWaAOBD9KECRNw9+5d7e/ChQsF3SQqIkSpUlDatk2dHqyqwL//3n+9XbtCmTYNonPn+28kEREREREREREKcSCwdOnSAICrV6/abb969aq2L71SpUpBp9Pl6hgAMJlM8PDwsPsjyrEmTQAvL9uoQACiZ89Mi8l166D27w/1rbcg4+MfYAOJiIiIiIiIiApxILB8+fIoXbo01q9fr22LiorCjh070KxZs0yPMRqNaNiwod0xqqpi/fr1Do8hul8iIADKjh0Q77wDfPMN0Ls3ZHS0tl9KCfXPP6F27w65bBnkhx9CHTeuAFtMRERERERERCWRviBPHhMTg1OnTmn3z5w5g/3798PHxwchISEYPXo03nvvPVSuXBnly5fH22+/jaCgIPTq1Us7pkOHDujduzdGjhwJABgzZgwGDx6MRo0aoUmTJpg9ezZiY2Px9NNPP+iHRyWIqFgRGDwYskULyAsXIH18oGzeDFGtGtQRI4Cvv7Y/YNeugmkoEREREREREZVYBRoI3L17N9q1a6fdHzNmDABg8ODBmD9/PsaPH4/Y2Fg899xzuHPnDlq2bIk1a9bAyclJOyYiIgI3btzQ7j/xxBO4fv06Jk6ciCtXrqBevXpYs2ZNhgQiRHlNzpsHXLpku3P3LtQZM4C4OGDp0oyFY2KgfvQRxKuvQiiFdmAuERERERERERUjQkopC7oRhU1UVBQ8PT1x9+5drhdIOaZ+9hnk6NGAlIAQgJ8fcOOGLYFICqMRSEpKvT9+PET//hBJSUC9egwKEhERERERERVCxSVWxKgDUR4Rzz4L9O0LODvbAoHXrtkHAUuXBnr1AnS61G0ffghZrx7UJk2gDhgAxuWJiIiIiIiIKL8wEEiUR4TJBN2iRUC7drZRgWnVqAHl9Gkoo0bZgoSZ+flnqA0awNq8OawvvmiXcISIiIiIiIiI6H4xEEiUx4S/P5Bmiq946SUoW7ZAGI0QTZtC2b0baNjQrozm0CFg507gm2+gvvbaA2w1ERERERERERV3DAQS5THx/vu2UYEBARDjx0PMmgXh6Zm6v1YtKL/+CrRuDfj6At7eGStRVeDo0QfYaiIiIiIiIiIq7go0azBRcST8/aFbsybrMkFB0P39NwBAWq1QW7cGduywL/PMM/nWRiIiIiIiIiIqeRgIJCpgQqeD8vffkL//DpjNgKpCVKkC0bRpQTeNiIiIiIiIiIoRBgKJCgHh7AzRt29BN4OIiIiIiIiIijGuEUhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQCMBBIRERERERERERUAjAQSEREREREREREVAIwEEhERERERERERFQC6Au6AYWRlBIAEBUVVcAtISIiIiIiIiKigpYSI0qJGRVVDARm4ubNmwCA4ODgAm4JEREREREREREVFjdv3oSnp2dBN+OeMRCYCR8fHwDA+fPni/R/Lt27qKgoBAcH48KFC/Dw8Cjo5lABYB8ggP2A2AeIfYDYB4h9gNgHyObu3bsICQnRYkZFFQOBmVAU29KJnp6efJGXcB4eHuwDJRz7AAHsB8Q+QOwDxD5A7APEPkA2KTGjoqpot56IiIiIiIiIiIhyhIFAIiIiIiIiIiKiEoCBwEyYTCZMmjQJJpOpoJtCBYR9gNgHCGA/IPYBYh8g9gFiHyD2AbIpLv1AyKKe95iIiIiIiIiIiIiyxRGBREREREREREREJQADgURERERERERERCUAA4FEREREREREREQlAAOBREREREREREREJUCBBgKnTZuGxo0bw93dHf7+/ujVqxeOHz9uVyYhIQEjRoyAr68v3Nzc0KdPH1y9elXbf+DAAfTr1w/BwcFwdnZG9erV8cknn9jVsXz5cnTq1Al+fn7w8PBAs2bNsHbt2mzbJ6XExIkTERgYCGdnZ3Ts2BEnT560K7N371506tQJXl5e8PX1xXPPPYeYmJhs6z548CBatWoFJycnBAcH48MPP7TbHx4ejj59+iA0NBRCCMyePTvbOosi9gHHfWDu3Llo1aoVvL294e3tjY4dO2Lnzp3Z1lvUsA847gPLly9Ho0aN4OXlBVdXV9SrVw8LFy7Mtt6iiP3AcT9Ia8mSJRBCoFevXtnWW9SwDzjuA/Pnz4cQwu7Pyckp23qLGvaBrN8H7ty5gxEjRiAwMBAmkwlVqlTB6tWrs627KGEfcNwH2rZtm+F9QAiBbt26ZVt3UcI+kPX7wOzZs1G1alU4OzsjODgYr7zyChISErKtuyhhH3DcB8xmM959911UrFgRTk5OqFu3LtasWZNtvUVRSe0HCQkJGDJkCGrXrg29Xu/wmn/jxo1o0KABTCYTKlWqhPnz52fb5vQPoMCEhYXJefPmycOHD8v9+/fLhx9+WIaEhMiYmBitzPDhw2VwcLBcv3693L17t3zooYdk8+bNtf3ffvutfPnll+XGjRtlRESEXLhwoXR2dpZz5szRyowaNUp+8MEHcufOnfLEiRNywoQJ0mAwyL1792bZvunTp0tPT0+5YsUKeeDAAfnII4/I8uXLy/j4eCmllJcuXZLe3t5y+PDh8tixY3Lnzp2yefPmsk+fPlnWe/fuXRkQECAHDBggDx8+LH/88Ufp7Owsv/rqK63Mzp075dixY+WPP/4oS5cuLT/++OPcPLVFBvuA4z7Qv39/+dlnn8l9+/bJo0ePyiFDhkhPT0958eLFXD3HhR37gOM+8M8//8jly5fLI0eOyFOnTsnZs2dLnU4n16xZk6vnuChgP3DcD1KcOXNGlilTRrZq1Ur27NkzJ09rkcI+4LgPzJs3T3p4eMjIyEjt78qVK7l6fosC9gHHfSAxMVE2atRIPvzww3Lr1q3yzJkzcuPGjXL//v25eo4LO/YBx33g5s2bdu8Bhw8fljqdTs6bNy83T3Ghxz7guA8sWrRImkwmuWjRInnmzBm5du1aGRgYKF955ZVcPceFHfuA4z4wfvx4GRQUJFetWiUjIiLk559/Lp2cnLJtc1FUUvtBTEyMHD58uPz6669lWFhYptf8p0+fli4uLnLMmDHyyJEjcs6cObn+jliggcD0rl27JgHITZs2SSmlvHPnjjQYDPLnn3/Wyhw9elQCkNu3b3dYz4svvijbtWuX5blq1Kgh33nnHYf7VVWVpUuXlh999JG27c6dO9JkMskff/xRSinlV199Jf39/aXVatXKHDx4UAKQJ0+edFj3559/Lr29vWViYqK27bXXXpNVq1bNtHy5cuWKbSAwPfaBzPuAlFJaLBbp7u4uFyxYkOXjKurYBxz3ASmlrF+/vnzrrbeyLFMcsB/Y9wOLxSKbN28uv/nmGzl48OBiGQhMj30gtQ/MmzdPenp6ZvkYiiP2gdQ+8MUXX8gKFSrIpKSkLB9HccM+4Pia4OOPP5bu7u52X4qLI/aB1D4wYsQI2b59e7vjxowZI1u0aJHl4yrq2AdS+0BgYKD89NNP7Y579NFH5YABA7J8XMVBSekHaTm65h8/frysWbOm3bYnnnhChoWF5aheKaUsVGsE3r17FwDg4+MDANizZw/MZjM6duyolalWrRpCQkKwffv2LOtJqSMzqqoiOjo6yzJnzpzBlStX7M7t6emJpk2baudOTEyE0WiEoqQ+jc7OzgCArVu3Oqx7+/btaN26NYxGo7YtLCwMx48fx+3btx0eVxKwDzjuA3FxcTCbzVm2uThgH8i8D0gpsX79ehw/fhytW7d2WG9xwX5g3w/effdd+Pv7Y+jQoQ7rKm7YB+z7QExMDMqVK4fg4GD07NkT4eHhDussLtgHUvvAypUr0axZM4wYMQIBAQGoVasW3n//fVitVof1FgfsA46vC7/99ls8+eSTcHV1dVhvccA+kNoHmjdvjj179mhLBZ0+fRqrV6/Gww8/7LDe4oB9ILUPJCYmZlgaxNnZOct6i4uS0g9yYvv27XbnBmx9JavHnV6hCQSqqorRo0ejRYsWqFWrFgDgypUrMBqN8PLysisbEBCAK1euZFrPv//+i59++gnPPfecw3PNmDEDMTEx6Nu3r8MyKfUHBAQ4PHf79u1x5coVfPTRR0hKSsLt27fx+uuvAwAiIyOzrDuzetOetyRiH8i6D7z22msICgrK8KIvTtgHMvaBu3fvws3NDUajEd26dcOcOXPQqVMnh/UWB+wH9v1g69at+PbbbzF37lyH9RQ37AP2faBq1ar47rvv8Ntvv+GHH36Aqqpo3rw5Ll686LDeoo59wL4PnD59GsuWLYPVasXq1avx9ttvY+bMmXjvvfcc1lvUsQ84vi7cuXMnDh8+jGeffdZhncUB+4B9H+jfvz/effddtGzZEgaDARUrVkTbtm3xxhtvOKy3qGMfsO8DYWFhmDVrFk6ePAlVVfHXX39h+fLlWdZbHJSkfpATjvpKVFQU4uPjc1RHoQkEjhgxAocPH8aSJUvuuY7Dhw+jZ8+emDRpEjp37pxpmcWLF+Odd97B0qVL4e/vDwBYtGgR3NzctL8tW7bk6Hw1a9bEggULMHPmTLi4uKB06dIoX748AgICtMhvzZo1tXq7du16z4+tJGAfcGz69OlYsmQJfv3112K5QHwK9oGM3N3dsX//fuzatQtTp07FmDFjsHHjxlzVUdSwH6SKjo7GwIEDMXfuXJQqVSpHxxQH7AP2mjVrhkGDBqFevXpo06YNli9fDj8/P3z11Vc5rqOoYR+wp6oq/P398fXXX6Nhw4Z44okn8Oabb+LLL7/McR1FDfuAY99++y1q166NJk2a3NPxRQX7gL2NGzfi/fffx+eff469e/di+fLlWLVqFaZMmZLjOooa9gF7n3zyCSpXroxq1arBaDRi5MiRePrpp+1GnRVH7Af5IMeTiPPRiBEjZNmyZeXp06fttq9fv14CkLdv37bbHhISImfNmmW3LTw8XPr7+8s33njD4XlSFtz8448/7LZHRUXJkydPan9xcXEyIiJCApD79u2zK9u6dWv58ssvZ6j7ypUrMjo6WsbExEhFUeTSpUullFKePXtWqzclycPAgQMzzPXesGGDBCBv3bqVoe6SsEYg+4DjPvDRRx9JT09PuWvXLoePqzhgH8j6fSDF0KFDZefOnR3uL+rYD+z7wb59+yQAqdPptD8hhBRCSJ1OJ0+dOuXwMRZV7AM5ey947LHH5JNPPulwf1HGPpCxD7Ru3Vp26NDBrszq1aslALv1pIoL9gHH7wMxMTHSw8NDzp492+HjKg7YBzL2gZYtW8qxY8falUlJfpB2HbLign3A8ftAfHy8vHjxolRVVY4fP17WqFHD4eMr6kpaP0jL0RqBrVq1kqNGjbLb9t1330kPDw+Hjy+9Ag0EqqoqR4wYIYOCguSJEycy7E9ZAHLZsmXatmPHjmVYAPLw4cPS399fjhs3zuG5Fi9eLJ2cnOSKFSty3LbSpUvLGTNmaNvu3r1rtwBkZr799lvp4uKSoUOmlbIQaNoFnydMmFAik4WwD2TdBz744APp4eGR5YKnRR37QM7eB1I8/fTTsk2bNjlqf1HCfpB5P4iPj5eHDh2y++vZs6ds3769PHToULEKALAP5Py9wGKxyKpVqxa7TJHsA477wIQJE2S5cuXsvuzPnj1bBgYG5qj9RQX7QPbvA/PmzZMmk0neuHEjR+0uatgHHPeBBg0ayPHjx2d4DM7OztJiseToMRQF7AM5vx5ISkqSFStWlBMmTMhR+4uSktoP0soqWUitWrXstvXr1y9XyUIKNBD4wgsvSE9PT7lx40YZGRmp/cXFxWllhg8fLkNCQuSGDRvk7t27ZbNmzWSzZs20/YcOHZJ+fn7yqaeesqvj2rVrWplFixZJvV4vP/vsM7syd+7cybJ906dPl15eXvK3336TBw8elD179rRLCS2llHPmzJF79uyRx48fl59++ql0dnaWn3zySZb13rlzRwYEBMiBAwfKw4cPyyVLlkgXFxe71OCJiYly3759ct++fTIwMFCOHTtW7tu3L8cZZooK9gHHfWD69OnSaDTKZcuW2bU5Ojo6x89vUcA+4LgPvP/++3LdunUyIiJCHjlyRM6YMUPq9Xo5d+7cHD+/RQX7geN+kF5xzRrMPuC4D7zzzjty7dq1MiIiQu7Zs0c++eST0snJSYaHh+f4+S0K2Acc94Hz589Ld3d3OXLkSHn8+HH5xx9/SH9/f/nee+/l+PktCtgHsv8saNmypXziiSeyfS6LKvYBx31g0qRJ0t3dXf7444/y9OnTct26dbJixYqyb9++OX5+iwL2Acd94L///pO//PKLjIiIkJs3b5bt27eX5cuXz3FgqSgpqf1AStsIxn379skePXrItm3banGhFKdPn5YuLi5y3Lhx8ujRo/Kzzz6TOp1OrlmzJidPrZSygAOBADL9mzdvnlYmPj5evvjii9Lb21u6uLjI3r17y8jISG3/pEmTMq2jXLlyWpk2bdpkWmbw4MFZtk9VVfn222/LgIAAaTKZZIcOHeTx48ftygwcOFD6+PhIo9Eo69SpI7///vscPfYDBw7Ili1bSpPJJMuUKSOnT59ut//MmTOZtrm4jQRiH3DcB8qVK5dpmydNmpSj+osK9gHHfeDNN9+UlSpVkk5OTtLb21s2a9ZMLlmyJEd1FzXsB477QXrFNRDIPuC4D4wePVqGhIRIo9EoAwIC5MMPPyz37t2bo7qLEvaBrN8H/v33X9m0aVNpMplkhQoV5NSpU4vVKCAp2Qey6wMpo13WrVuXozqLIvYBx33AbDbLyZMny4oVK0onJycZHBwsX3zxxWIXBGIfcNwHNm7cKKtXry5NJpP09fWVAwcOlJcuXcpR3UVNSe4HjuIAaf3zzz+yXr160mg0ygoVKtg9LzkhpJQSREREREREREREVKwV7/QyREREREREREREBICBQCIiIiIiIiIiohKBgUAiIiIiIiIiIqISgIFAIiIiIiIiIiKiEoCBQCIiIiIiIiIiohKAgUAiIiIiIiIiIqISgIFAIiIiIiIiIiKiEoCBQCIiIiIiIiIiohKAgUAiIiKiIqxt27YYPXp0iTs3EREREeUeA4FEREREJcTGjRshhMCdO3fy5Ljly5djypQpeddAIiIiIspX+oJuABEREREVTT4+PgXdBCIiIiLKBY4IJCIiIioiYmNjMWjQILi5uSEwMBAzZ860279w4UI0atQI7u7uKF26NPr3749r164BAM6ePYt27doBALy9vSGEwJAhQwAAqqpi2rRpKF++PJydnVG3bl0sW7Ys2+PSTw0ODQ3Fe++9p7WxXLlyWLlyJa5fv46ePXvCzc0NderUwe7du+3avXXrVrRq1QrOzs4IDg7Gyy+/jNjY2Lx++oiIiIhKPAYCiYiIiIqIcePGYdOmTfjtt9+wbt06bNy4EXv37tX2m81mTJkyBQcOHMCKFStw9uxZLWgXHByMX375BQBw/PhxREZG4pNPPgEATJs2Dd9//z2+/PJLhIeH45VXXsFTTz2FTZs2ZXlcZj7++GO0aNEC+/btQ7du3TBw4EAMGjQITz31FPbu3YuKFSti0KBBkFICACIiItClSxf06dMHBw8exE8//YStW7di5MiR+fEUEhEREZVoQqZchRERERFRoRUTEwNfX1/88MMPePzxxwEAt27dQtmyZfHcc89h9uzZGY7ZvXs3GjdujOjoaLi5uWHjxo1o164dbt++DS8vLwBAYmIifHx88Pfff6NZs2basc8++yzi4uKwePHiTI8DbCMC69Wrp507NDQUrVq1wsKFCwEAV65cQWBgIN5++228++67AID//vsPzZo1Q2RkJEqXLo1nn30WOp0OX331lVbv1q1b0aZNG8TGxsLJySkPn0UiIiKiko1rBBIREREVAREREUhKSkLTpk21bT4+Pqhatap2f8+ePZg8eTIOHDiA27dvQ1VVAMD58+dRo0aNTOs9deoU4uLi0KlTJ7vtSUlJqF+/fq7bWadOHe12QEAAAKB27doZtl27dg2lS5fGgQMHcPDgQSxatEgrI6WEqqo4c+YMqlevnus2EBEREVHmGAgkIiIiKgZiY2MRFhaGsLAwLFq0CH5+fjh//jzCwsKQlJTk8LiYmBgAwKpVq1CmTBm7fSaTKdftMBgM2m0hhMNtKUHKmJgYPP/883j55Zcz1BUSEpLr8xMRERGRYwwEEhERERUBFStWhMFgwI4dO7QA2e3bt3HixAm0adMGx44dw82bNzF9+nQEBwcDQIakHEajEQBgtVq1bTVq1IDJZML58+fRpk2bTM+d2XF5pUGDBjhy5AgqVaqU53UTERERkT0mCyEiIiIqAtzc3DB06FCMGzcOGzZswOHDhzFkyBAoiu1yLiQkBEajEXPmzMHp06excuVKTJkyxa6OcuXKQQiBP/74A9evX0dMTAzc3d0xduxYvPLKK1iwYAEiIiKwd+9ezJkzBwsWLHB4XF557bXX8O+//2LkyJHYv38/Tp48id9++43JQoiIiIjyAQOBREREREXERx99hFatWqFHjx7o2LEjWrZsiYYNGwIA/Pz8MH/+fPz888+oUaMGpk+fjhkzZtgdX6ZMGbzzzjt4/fXXERAQoAXbpkyZgrfffhvTpk1D9erV0aVLF6xatQrly5fP8ri8UKdOHWzatAknTpxAq1atUL9+fUycOBFBQUF5dg4iIiIismHWYCIiIiIiIiIiohKAIwKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAAYCiYiIiIiIiIiISgAGAomIiIiIiIiIiEoABgKJiIiIiIiIiIhKAH1BN4CKPovFgqSkpIJuBhERERERERHlktFohF7P8FBJwf9pumdSSpw/fx43btwo6KYQERERERER0T0qVaoUQkJCIIQo6KZQPmMgkO5ZShCwTJkycHNzg6JwpjkRERERERFRUaGqKmJiYnDp0iUAQLly5Qq4RZTfGAike2KxWLQgYOnSpQu6OURERERERER0D9zc3AAAly5dQkxMDGrWrFnALaL8xCFcdE9S1gRMecMgIiIiIiIioqIp5bv9v//+i/Dw8AJuDeUnBgLpvnA6MBEREREREVHRlvLdXlVVbNu2DVartYBbRPmFURwiIiIiIiIiIoKLiwsSEhIQHx9f0E2hfMJAIFEaGzduhBACd+7cKeimEJV4oaGhmD17dpZlJk+ejHr16j2Q9jxoZ8+ehRAC+/fvB8D3pwepIJ/r9P/veSknr5chQ4agV69eeX7u3LThfuX3Y8iN+fPnw8vLS7tfnN+zCkrbtm0xevTogm5GoZf+dcHnjUqK9O/DRU1BXA+mZA1WVTXfzkEFi4FAIiIqUI4u0Hbt2oXnnntOuy+EwIoVK+zKjB07FuvXr8/nFua/nAQumjdvjsjISHh6ej6YRpUQmX0ZTv9cF/UvEfRg5OTHi+LynlWYLF++HFOmTMm3+gtTYDkncvpjQn4/b0SUe7wepAeFgUAiokLIbJVZ3s9vKQmBCpKfnx9cXFyyLOPm5gZfX98H1KKCZTQaUbp0ae1X2ntRGP5fs2M1q1nefxDy4rkmykxevGeZzeY8ak3+MEuZ5f285uPjA3d393w9R3F0v8+b1WrNs9FCeVlXUSbTvbbT3y8MisJ1RHFXUq4HKX8xEEj37QXzJLRJHFCgfy+YJ+W4vYmJiXj55Zfh7+8PJycntGzZErt27cq0bFxcHLp27YoWLVpwOh49MFJKrD1qQcuPY+A9/i5afhyDdUctkPn4Zapt27YYOXIkRo8ejVKlSiEsLAwAcPjwYXTt2hVubm4ICAjAwIEDcePGjQzHjRw5Ep6enihVqhTefvttu7YmJiZi7NixKFOmDFxdXdG0aVNs3LgRgG16w9NPP427d+9CCAEhBCZPngzAfnRNaGgoAKB3794QQmj300+zU1UV7777LsqWLQuTyYR69ephzZo12v6UkRLLly9Hu3bt4OLigrp162L79u1amXPnzqFHjx7w9vaGq6sratasidWrVzt87m7fvo1BgwbB29sbLi4u6Nq1K06ePKntz2wq4OzZs+0ew4IFC/Dbb79pz0HK85NWZlNBtm7dilatWsHZ2RnBwcF4+eWXERsbq+0PDQ3FlClTMGjQIHh4eNiNsCyMpJSIWHMH8x46gA/ctmPeQwcQseZOvvX9IUOGYNOmTfjkk0+05/7s2bN2z3VWfXThwoVo1KgR3N3dUbp0afTv3x/Xrl3T6k+pZ/369WjUqBFcXFzQvHlzHD9+PNu2HTt2DM2bN4eTkxNq1aqFTZs2afsyG6G4YsWKDF8Kpk+fjoCAALi7u2Po0KFISEiw22+1WjFmzBh4eXnB19cX48ePt3uuv//+e/j6+iIxMdHuuF69emHgwIEO237x4kX069cPPj4+cHV1RaNGjbBjxw67MgsXLkRoaCg8PT3x5JNPIjo6WtunqiqmTZuG8uXLw9nZGXXr1sWyZcvsjg8PD0f37t3h4eEBd3d3tGrVChEREZm2Z9euXfDz88MHH3zgsM2HDh1C+/bt4ezsDF9fXzz33HOIiYnR9mc2crRXr14YMmSItv/cuXN45ZVXtH6SmczeD7755htUr14dTk5OqFatGj7//HNtX8p71k8//YQ2bdrAyckJixYtcvg4CpqUEmujLWh5OgbeR++i5ekYrIvO/8+vtP83oaGheP/99/HMM8/A3d0dISEh+Prrr7OsY9myZahdu7b2/9+xY0fExsZm+f584cIF9O3bF15eXvDx8UHPnj1x9uxZrc6UkT3vvPMO/Pz84OHhgeHDh2f7BfyXX35BzZo1YTKZEBoaipkzZ9rtz2x0vJeXF+bPnw8AKF++PACgfv36EEKgbdu2OXresvqsBlLfd1auXIkaNWrAZDLh/Pnzmda9cuVKVK5cGU5OTmjXrh0WLFhg9/nlqK77/TwF7v15L2hSSmDtWlhbtIDV0xPWFi2AtWvz9bUTHR2NAQMGwNXVFYGBgfj4448zfT1ldh2RXT/9/PPPtT4QEBCAxx57TNvn6PWWnqqqKFu2LL744gu77fv27YOiKDh37hwAYNasWahduzZcXV0RHByMF1980e79O73MRt2NHj3a7rWSk8+h9Hg9SEUJA4F0346op7BDHijQvyPqqRy3d/z48fjll1+wYMEC7N27F5UqVUJYWBhu3bplV+7OnTvo1KkTVFXFX3/9xWlh9ECYrRKrwi3o820cdp6zIjYJ2HnOike/jcPqcEu+jgxcsGABjEYjtm3bhi+//BJ37txB+/btUb9+fezevRtr1qzB1atX0bdv3wzH6fV67Ny5E5988glmzZqFb775Rts/cuRIbN++HUuWLMHBgwfx+OOPo0uXLjh58iSaN2+O2bNnw8PDA5GRkYiMjMTYsWMztC0lWD9v3jxERkY6DN5/8sknmDlzJmbMmIGDBw8iLCwMjzzyiN2FGAC8+eabGDt2LPbv348qVaqgX79+sFgsAIARI0YgMTERmzdvxqFDh/DBBx/Azc3N4fM2ZMgQ7N69GytXrsT27dshpcTDDz+c41E7Y8eORd++fdGlSxftOWjevHm2x0VERKBLly7o06cPDh48iJ9++glbt27FyJEj7crNmDEDdevWxb59+/D222/nqE0FwWpWcfKP21ja8ygu7YiBOVbFpR0xWNrzKE7+cTtfRgZ+8sknaNasGYYNG6Y998HBwXZlsuqjZrMZU6ZMwYEDB7BixQqcPXtWCwyl9eabb2LmzJnYvXs39Ho9nnnmmWzbNm7cOLz66qvYt28fmjVrhh49euDmzZs5fmxLly7F5MmT8f7772P37t0IDAy0CzABwMyZMzF//nx899132Lp1K27duoVff/1V2//444/DarVi5cqV2rZr165h1apVDh9DTEwM2rRpg0uXLmHlypU4cOAAxo8fbzfaJyIiAitWrMAff/yBP/74A5s2bcL06dO1/dOmTcP333+PL7/8EuHh4XjllVfw1FNPacHQS5cuoXXr1jCZTNiwYQP27NmDZ555RnsNp7VhwwZ06tQJU6dOxWuvvZZpm2NjYxEWFgZvb2/s2rULP//8M/7+++8Mr6WsLF++HGXLlsW7776r9ZOcWLRoESZOnIipU6fi6NGjeP/99/H2229jwYIFduVef/11jBo1CkePHtV+qClszFJiVbQFfS7EYWe8FbEqsDPeikcvxGF1tCXfRwamNXPmTDRq1Aj79u3Diy++iBdeeMFhAD4yMhL9+vXDM888g6NHj2Ljxo149NFHIaV0+P5sNpsRFhYGd3d3bNmyBdu2bYObmxu6dOliF3Bav369VuePP/6I5cuX45133nHY7j179qBv37548skncejQIUyePBlvv/22FuTLiZ07dwIA/v77b0RGRmL58uU5Oi6rz+oUcXFx+OCDD/DNN98gPDwc/v7+Geo5c+YMHnvsMfTq1QsHDhzA888/jzfffDNDuczqut/P0xS5fd4LmjSbgVWroPbuDezYAcTGAjt22O6vWpVvIwPHjBmDbdu2YeXKlfjrr7+wZcsW7N27N0O59NcR2fXT3bt34+WXX8a7776L48ePY82aNWjdujWArF9v6SmKgn79+mHx4sV22xctWoQWLVqgXLlyWrn//e9/CA8Px4IFC7BhwwaMHz/+vp6b7D6HMsPrQSpSJNE9iI2Nlbt375axsbGydUJ/aYqvWaB/rRP656jdMTEx0mAwyEWLFmnbkpKSZFBQkPzwww/lP//8IwHIo0ePyjp16sg+ffrIxMTE/HoaiTLVYla0NIy6k+Gv5cfR+XbONm3ayPr169ttmzJliuzcubPdtgsXLkgA8vjx49px1atXl6qqamVee+01Wb16dSmllOfOnZM6nU5eunTJrp4OHTrICRMmSCmlnDdvnvT09MzQpnLlysmPP/5Yuw9A/vrrr3ZlJk2aJOvWravdDwoKklOnTrUr07hxY/niiy9KKaU8c+aMBCC/+eYbbX94eLj2updSytq1a8vJkydnaE9mTpw4IQHIbdu2adtu3LghnZ2d5dKlSzNto5RSfvzxx7JcuXLa/cGDB8uePXvalUlp6759+6SUUnt/un37tpRSyqFDh8rnnnvO7pgtW7ZIRVFkfHy8lNL2HPbq1StHj6Uw+K7pfjkFWzP8fffQgXw7Z5s2beSoUaPstqV/rh310fR27dolAcjo6Gi7ev7++2+tzKpVqyQA7f8ovZT/9+nTp2vbzGazLFu2rPzggw8ctufXX3+VaS/rmjVrpvX7FE2bNrXri4GBgfLDDz/McJ60ffGFF16QXbt21e7PnDlTVqhQwe41n9ZXX30l3d3d5c2bNzPdP2nSJOni4iKjoqK0bePGjZNNmzaVUkqZkJAgXVxc5L///mt33NChQ2W/fv2klFJOmDBBli9fXiYlJWV6jpTX0/Lly6Wbm5tcsmRJpuVSfP3119Lb21vGxMRo21atWiUVRZFXrlyRUmbeT3r27CkHDx6s3U//niVlxv+r9O8HFStWlIsXL7Y7ZsqUKbJZs2ZSytT+MHv27CwfQ2HRIiJaGg7fyfDXMiJ/P7/S/t+UK1dOPvXUU9p9VVWlv7+//OKLLzI9fs+ePRKAPHv2bKb7M3t/Xrhwoaxatard6yAxMVE6OzvLtWvXasf5+PjI2NhYrcwXX3wh3dzcpNVqzfRc/fv3l506dbLbNm7cOFmjRg3tfmafhZ6ennLevHlSyoyfHY4eR9rnLaef1QDk/v37M217itdee03WqlXLbtubb76Z4T01fV15+Xma2+e9MLA0by4tOl3GvxYt8uV8UVFR0mAwyJ9//lnbdufOHeni4pLh9ZT+OiK7fvrLL79IDw8Pu/f5FNm93tLbt2+fFELIc+fOSSmltFqtskyZMg5fz1JK+fPPP0tfX1/tfvr34cxe06NGjZJt2rSRUubscyi94nI9mPIdf+HChfKTTz6Rd+/ezfYYKpo4IpBKlIiICJjNZrRo0ULbZjAY0KRJExw9elTb1qlTJ1SqVAk//fQTjEZjQTSVSrDwSGuutueVhg0b2t0/cOAA/vnnH7i5uWl/1apVAwC7KXgPPfSQ3TS4Zs2a4eTJk7BarTh06BCsViuqVKliV8+mTZscTuO7V1FRUbh8+bLd6xsAWrRoYff6BoA6depotwMDAwFAm9L58ssv47333kOLFi0wadIkHDx40OE5jx49Cr1ej6ZNm2rbfH19UbVq1QznzGsHDhzA/Pnz7Z7XsLAwqKqKM2fOaOUaNWqUr+3IS9cOx2W6/bqD7QVtz5496NGjB0JCQuDu7o42bdoAQIbpcln1N0eaNWum3dbr9WjUqFGu+tTRo0ft+mX6Ou/evYvIyEi7MinnSWvYsGFYt24dLl26BMA2pW/IkCEOp77u378f9evXh4+Pj8O2hYaG2q1NFhgYqD0fp06dQlxcHDp16mTXt7///nvtPWP//v1o1aoVDAaDw3Ps2LEDjz/+OBYuXIgnnnjCYTnA9lzVrVsXrq6u2rYWLVpAVdUcTeO+V7GxsYiIiMDQoUPtHut7772X4f2xqLyOwxMdfH452J5f0r7mhBAoXbq0w9dc3bp10aFDB9SuXRuPP/445s6di9u3b2dZ/4EDB3Dq1Cm4u7tr/28+Pj5ISEiw+7+rW7eu3Vq3zZo1Q0xMDC5cuJBpvUePHs30MyzlMzW/5PSz2mg02j23mTl+/DgaN25st61JkyYZyqWvKy8/T3P7vBcKhw/nbvt9On36NMxms93/jaenJ6pWrZqhbPr3n+z6aadOnVCuXDlUqFABAwcOxKJFixAXZ/scz+3rrV69eqhevbo2KnDTpk24du0aHn/8ca3M33//jQ4dOqBMmTJwd3fHwIEDcfPmTe2cuZWTz6H0eD1IRY2+oBtAVBh169YNv/zyC44cOYLatWsXdHOohKkZqMPOcxkv+GsG6vL1vGm/BAO2KX49evTIdF2tlGBGdmJiYqDT6bBnzx7odPbtz2q6bX5LG0BICWikTF189tlnERYWhlWrVmHdunWYNm0aZs6ciZdeeumezqUoSoYpL3mx2H9MTAyef/55vPzyyxn2hYSEaLfT/78WZv61XHBpR8Z1ffxqZZ00piCkTCcNCwvDokWL4Ofnh/PnzyMsLCzDWlRZ9bd7kV99KjP169dH3bp18f3336Nz584IDw/HqlWrHJZ3dnbOts70ATwhhPZ8pKzrtGrVKpQpU8aunMlkyvE5KlasCF9fX3z33Xfo1q1blkHDnMiP5zzlsc6dOzdD0Db9+2VReR3XNOmwMz6Tzy9T/n5+pZdVH0tPp9Phr7/+wr///ot169Zhzpw5ePPNN7Fjxw5tvb30YmJi0LBhw0zXa/Tz87v/B5AFIUS+9MWcfFY7OzvnWRKle6nrQb73PXC1atmmBWe2vYDl9v3H3d0de/fuxcaNG7Fu3TpMnDgRkydPxq5du+Dl5ZXr19uAAQOwePFivP7661i8eDG6dOmiJV06e/YsunfvjhdeeAFTp06Fj48Ptm7diqFDhyIpKSnTpHPZ9aOcfA7dC14PUmHCQCDdtxpKJaCAE33VUCrlqFzFihW1NdBS1pUwm83YtWuX3cK406dPh5ubGzp06ICNGzeiRo0a+dFsogzMVokJnUx49Ns4pL1WEAJ4vaMJZquEQfdgMpk2aNAAv/zyC0JDQ6HXO/64SJ8E4L///kPlypWh0+lQv359WK1WXLt2Da1atcr0eKPRmKORDgaDIctyHh4eCAoKwrZt27SRWQCwbdu2TEcjZCU4OBjDhw/H8OHDMWHCBMydOzfTQGD16tVhsViwY8cObR2Xmzdv4vjx49r7hp+fH65cuQIppfalZ//+/Xb15PQ5SKtBgwY4cuQIKlXK2ftfYWc1q2jxZjCW9jwKpL1OFkCLN8rCalahM+T9RIacPPeZlTl27Bhu3ryJ6dOna+sK7t69O8/a9d9//2lrKlksFuzZs0db78fPzw/R0dGIjY3VLuzT96nq1atjx44dGDRokF2dKTw9PREYGIgdO3ZkOE+DBg3s6nr22Wcxe/ZsXLp0CR07dsywjmJaderUwTfffINbt25lOSrQkbSJA9K+jtOfY8GCBTCbzQ4DfKVKlcLy5cvRtm1b9O3bF0uXLnVYtnr16pg/f77d87lt2zYoiqKNjvHz87Nb989qteLw4cNo166dti23r+OAgAAEBQXh9OnTGDBgQI6PK6zMUmJCKRMevRCX/iWM10uZYJYShkKaiVsIgRYtWqBFixaYOHEiypUrh19//RVjxozJ9P+1QYMG+Omnn+Dv7w8PDw+H9R44cADx8fFa8Pq///6Dm5ubw9dQ9erVsW3bNrtt27ZtQ5UqVbQAXfq+ePLkSbuRTykzWXLTF3PyWZ1TVatWzZBgy9G6vmnl1ecpkPvnvaBJsxnKhAm2NQHTXfwpr78OaTZD3OePGelVqFABBoMBu3bt0oJFd+/exYkTJ7TPBEdy0k/1ej06duyIjh07YtKkSfDy8gZ0KNgAABY/SURBVMKGDRvw6KOPZvl6y0z//v3x1ltvYc+ePVi2bBm+/PJLbd+ePXugqipmzpwJRbFdIyxdujTL9vv5+eFwupGW+/fv1z4jcvI5lNlzwutBKkoYCKT79oWh8C6+m56rqyteeOEFjBs3Dj4+PggJCcGHH36IuLg4DB06FAcOHNDKzpgxA1arFe3bt8fGjRu1KZFE+cmgE3i4ph7Lh7pg+t+JCI+0omagDq93NOHhmvo8+yU+J0aMGIG5c+eiX79+GD9+PHx8fHDq1CksWbIE33zzjXaxd/78eYwZMwbPP/889u7dizlz5mjZ46pUqYIBAwZg0KBBmDlzJurXr4/r169j/fr1qFOnDrp164bQ0FDExMRg/fr12nSezH7BDQ0Nxfr169GiRQuYTCZ4e3tnKDNu3DhMmjQJFStWRL169TBv3jzs378/V1k2R48eja5du6JKlSq4ffs2/vnnH1SvXj3TspUrV0bPnj0xbNgwfPXVV3B3d8frr7+OMmXKoGfPngBsmRmvX7+ODz/8EI899hjWrFmDP//80+7LY2hoKNauXYvjx4/D19cXnp6e2bbztddew0MPPYSRI0fi2WefhaurK44cOYK//voLn376aY4fb2GhMyio3N0bfX+rjm3vX8T1w3Hwq+WCFm+UReXu3vnW90NDQ7Fjxw6cPXtWm96XWZn0fTQkJARGoxFz5szB8OHDcfjwYUyZMiXP2vXZZ5+hcuXKqF69Oj7++GPcvn1bS9DRtGlTuLi44I033sDLL7+MHTt2ZEgmMGrUKAwZMgSNGjVCixYtsGjRIoSHh6NChQp2ZaZPn47KlSujWrVqmDVrll0WwhT9+/fH2LFjMXfuXHz//fdZtrtfv354//330atXL0ybNg2BgYHYt28fgoKC7KYmO+Lu7o6xY8filVdegaqqaNmyJe7evYtt27bBw8MDgwcPxsiRIzFnzhw8+eSTmDBhAjw9PfHff/+hSZMmdtPa/P39sWHDBrRr1w79+vXDkiVLMv1RY8CAAZg0aRIGDx6MyZMn4/r163jppZcwcOBABAQEAADat2+PMWPGYNWqVahYsWKmz1VoaCg2b96MJ598EiaTCaVKlcr28b7zzjt4+eWX4enpiS5duiAxMRG7d+/G7du3HX4pLqwMQuBhdz2WB7tg+o1EhCdaUdOkw+ulTHjY/cF+fuXGjh07sH79enTu3Bn+/v7YsWMHrl+/rr3vZ/b+PGDAAHz00Ufo2bOnlqn+3LlzWL58OcaPH4+yZcsCAJKSkjB06FC89dZbOHv2LCZNmoSRI0dqAYv0Xn31VTRu3BhTpkzBE088ge3bt+PTTz+1S/TTvn17fPrpp2jWrBmsVitee+01uyC3v78/nJ2dsWbNGpQtWxZOTk7Zfqbk5LM6p55//nnMmjULr732GoYOHYr9+/dr709Z9YG8+jwFcv+8FzRhMEB26wbl11+hTp9umw5cqxaU118HunXLl9eOu7s7Bg8erH0n8vf3x6RJk6AoSrbny66f/vHHHzh9+jRat24Nb29vrF69GqqqomrVqtm+3jITGhqK5s2bY+jQobBarXjkkUe0fZUqVYLZbMacOXPQo0cPLeFdVtq3b4+PPvoI33//PZo1a4YffvgBhw8fRv369bXnJrvPofR4PUhFTkEtTkhFW9pkIUVNfHy8fOmll2SpUqWkyWSSLVq0kDt37pRSZlx8VUopX3rpJRkYGKglRyB6EJIsapb381pmC+FLaVv8uHfv3tLLy0s6OzvLatWqydGjR2sLpLdp00a++OKLcvjw4dLDw0N6e3vLN954w24B9aSkJDlx4kQZGhoqDQaDDAwMlL1795YHDx7UygwfPlz6+vpKAHLSpElSyowL769cuVJWqlRJ6vV6bWHl9AsvW61WOXnyZFmmTBlpMBhk3bp15Z9//qntz2wR9du3b0sA8p9//pFSSjly5EhZsWJFaTKZpJ+fnxw4cKC8ceOGw+fu1q1bcuDAgdLT01M6OzvLsLAweeLECbsyX3zxhQwODpaurq5y0KBBcurUqXaLQ1+7dk126tRJurm5aW3JbnFoKaXcuXOndpyrq6usU6eOXbKUzJIXFHaWJGuW9/Pa8ePH5UMPPSSdnZ0lAHnmzJlMn+vM+ujixYtlaGioNJlMslmzZnLlypXZ/p/t27dPO09mUv7fFy9eLJs0aSKNRqOsUaOG3LBhg125X3/9VVaqVEk6OzvL7t27y6+//lqmv6ybOnWqLFWqlHRzc5ODBw+W48ePt3u9mM1mOWrUKOnh4SG9vLzkmDFj5KBBgzIsVC6llAMHDpQ+Pj4yISEh2+f07Nmzsk+fPtLDw0O6uLjIRo0ayR07dkgpc7ZYuqqqcvbs2bJq1arSYDBIPz8/GRYWJjdt2qSVOXDggOzcubN0cXGR7u7uslWrVjIiIkJKmXGx9cuXL8sqVarIvn37SovFkmmbDx48KNu1ayednJykj4+PHDZsmJb0RUrb+9gLL7wgfXx8pL+/v5w2bVqGZCHbt2+XderUkSaTSfu/yC5ZiJRSLlq0SNarV08ajUbp7e0tW7duLZcvXy6ldJz4oTBLSpdIJv39vJZZspD073t169bVXrfpHTlyRIaFhUk/Pz9pMplklSpV5Jw5c7T9mb0/SyllZGSkHDRokHY9WaFCBTls2DBtcf2Ufjhx4kTp6+sr3dzc5LBhw7J9DS1btkzWqFFDGgwGGRISIj/66CO7/ZcuXZKdO3eWrq6usnLlynL16tV2yUKklHLu3LkyODhYKoqiJUDIKlmIlNl/Vuc0aZKUUv7222+yUqVK0mQyybZt28ovvvjCLkmSo7ry4vP0Xp/3wkBNlwAp/f28FhUVJfv37y9dXFxk6dKl5axZs2STJk3k66+/rpVxdB2RVT/dsmWLbNOmjfT29pbOzs6yTp068qeffpJSZv96c+Tzzz+XAOSgQYMy7Js1a5YMDAzU+sz333+fbcKviRMnyoCAAOnp6SlfeeUVOXLkSO21ImXOPofSKw7Xg0wWUnIIKTPJ1U2Ujbi4OBw9ehTVq1fPdOQOEZUMbdu2Rb169TB79uyCbgoR5aMOHTqgZs2a+N///lfQTSEqEoYMGYI7d+5gxYoVBd2UAjd16lR8+eWXDyRZB5/3excbG4syZcpg5syZGDp0aEE3hwpAynf8o0eP4tatWxgyZEiWyx9Q0cWpwURERESUqdu3b2Pjxo3YuHGj3fREIiJHPv/8czRu3Bi+vr7Ytm0bPvroI22NUyo89u3bh2PHjqFJkya4e/cu3n33XQDQprISUfHFQCARERERZap+/fq4ffs2PvjgA7v194iIHDl58iTee+893Lp1CyEhIXj11VcxYcKEgm4WZWLGjBk4fvw4jEYjGjZsiC1btuRofVMiKto4NZjuCacGExERERERERUPnBpcchTO1ElERERERERERESUpxgIJCIiIiIiIiIiKgEYCCQiIqL/t3f/QVHV/x7Hn4dFYnVJQBAs+WUiEkZkTMEWhImJmWVQU3NNxMIBUhjvJKk1QjlaOmXmjL8aG5t0vGql945jWGiGRpOGP8pmIGxUdLS1GoOZL2Agu3v/8LrfVsAfgJd0X4+/4Jz9fD6vc5Z/zpvz+XxERERERMQDqBAoIiIiIiIiIiLiAVQIFBERERERERER8QAqBIqIiIiIiIiIiHgAFQJFrqKiogLDMGhoaOhWP3V1dRiGwQ8//NAjua5XWloaM2fO7JWxRURERERERKT3efd2AJF/OqvVis1mo3///t3qJywsDJvNRlBQUA8l61hFRQWjRo2ivr4ef39/1/GtW7fSp0+fGzr21aSlpZGQkMD777/fqzlEREREREREPJEKgSJX4ePjQ2hoaLf7MZlMPdJPVwUGBvba2CIiIiIiIiLS+zQ1WDxKWloahYWFzJw5k4CAAEJCQlizZg1NTU1MnToVPz8/hg4dyo4dO1xtLp8afPLkSSZMmEBAQAD9+vUjLi6OsrIyAOrr65k0aRLBwcGYzWaio6P56KOPgPZTgy/1+9VXX5GYmEjfvn2xWq3U1ta6ZV6wYAEDBw7Ez8+P3Nxc5syZQ0JCQofXV1dXx6hRowAICAjAMAxycnJc1/73qcGRkZEsWLCA7OxsLBYLERERbNu2jT/++IOnnnoKi8VCfHw8Bw4ccBujsrKSlJQUzGYzYWFhFBUV0dTU5Dq/cuVKoqOj8fX1JSQkhGeeeQaAnJwc9uzZw7JlyzAMA8MwqKurw26389JLLxEVFYXZbCYmJoZly5a5jZmTk8PEiRN56623CAkJwd/fn/nz59PW1kZxcTGBgYEMHjzYda//fr83bdqE1WrF19eXESNGsGfPns7+PERERERERERuaSoEisf5+OOPCQoK4vvvv6ewsJCCggKeffZZrFYrhw4d4rHHHmPy5Mk0Nzd32H769Om0tLSwd+9efvrpJxYvXozFYgFg3rx5VFdXs2PHDmpqali1atVVpwK//vrrLFmyhAMHDuDt7c2LL77oOrdhwwYWLlzI4sWLOXjwIOHh4axatarTvsLCwtiyZQsAtbW12Gy2dkW1v1u6dCkPPfQQhw8fZvz48UyePJns7GxeeOEFDh06xF133UV2djZOpxOAY8eOkZGRQVZWFkeOHGHz5s1UVlYyY8YMAA4cOEBRURHz58+ntraWL774gtTUVACWLVtGcnIy06ZNw2azYbPZCAsLw+FwMHjwYD799FOqq6spKSnhtdde45NPPnHLunv3bn799Vf27t3Le++9R2lpKU888QQBAQHs37+f/Px88vLyOH36tFu74uJiXnnlFQ4fPkxycjITJkzg3LlzV/xORERERERERG5FhvPSE77IdWhubqampobY2Fj69u3rOu5sPIuz6az7h3398eofibPtL5znfm7Xl1dIAgCOP4/CBffim9E/HMM3EGfzHzj/dca9oY8Fr4Ch15U7LS0Nu93ON998A4Ddbqd///5kZmaybt06AM6ePcugQYP47rvvSEpKarfmXnx8PFlZWZSWlrbr/8knnyQoKIi1a9e2O1dXV0dUVBSHDx8mISHB1e+uXbsYPXo0AGVlZYwfP57z58/j6+tLUlISiYmJLF++3NXPww8/TGNjY6ebjnS2RuDl6/NFRkaSkpLC+vXr3a573rx5zJ8/H4B9+/aRnJyMzWYjNDSU3NxcTCYTH3zwgavfyspKHnnkEZqamigrK2Pq1KmcPn0aPz+/Du//tawROGPGDM6ePctnn30GXHwjsKKiguPHj+PldfH/F8OHD2fgwIHs3bsX+Pd3+eGHH/L888+77veiRYuYPXs2AG1tbURFRVFYWMirr756xQwiIiIiIiKe4tIzfk1NDX/++Sc5OTncfvvtvR1LbgCtESg9qu2ntdj3ve12zGv4c/iM+xBn4xla/yulXRvf//wXABfK83HaqtzO9clYgyn2eexH/5u2r19x7zdiND6Z/3PdGePj410/m0wmBgwYwD333OM6FhISAsDvv//eYfuioiIKCgooLy8nPT2drKwsV58FBQVkZWW53iycOHEiVqv1mvMMGjTINXZ4eDi1tbW8/PLLbp9/4IEH2L1793Vc8bWNfem6O7sXoaGh/Pjjjxw5coQNGza4PuN0OnE4HJw4cYIxY8YQERHBkCFDyMjIICMjg6efftqtWNyRFStWsHbtWk6dOsX58+dpbW1tN/05Li7OVQS8lG3EiBGu3y99l5d/b8nJya6fvb29SUxMpKam5mq3RkREREREROSWo0Kg9Cjve17ENORx94O+/gAYljvx+Y9vOm3b57HVHb4RCGAa9jRegx5wb+Bj6VLGy3fONQzD7ZhhGAA4HI4O2+fm5jJ27Fg+//xzysvLefvtt1myZAmFhYWMGzeOkydPUlZWxs6dOxk9ejTTp0/n3XffvaY8Vxu7p3U09pXyNDY2kpeXR1FRUbu+wsPD8fHx4dChQ1RUVFBeXk5JSQlvvPEGVVVVbm8n/t2mTZuYNWsWS5YsITk5GT8/P9555x3279/fadZL2To69v9170RERERERERuNioESo8yLKEYlo53xjW8fTH+bxpwR7wCh3Xeb99gjL7B3Y3XY8LCwsjPzyc/P5+5c+eyZs0aCgsLAQgODmbKlClMmTKFlJQUiouLr1gIvJKYmBiqqqrIzs52HauqqrpCi4u7HMPFqbI9beTIkVRXVzN0aOdTsr29vUlPTyc9PZ3S0lL8/f3ZvXs3mZmZ+Pj4tMv17bffYrVa3d58PHbsWI9l3rdvn2udwra2Ng4ePOha01BERERERETEk6gQKHKdZs6cybhx4xg2bBj19fV8/fXXxMbGAlBSUsL9999PXFwcLS0tbN++3XWuKwoLC5k2bRqJiYlYrVY2b97MkSNHGDJkSKdtIiIiMAyD7du38/jjj2M2m12bmXTX7NmzSUpKYsaMGeTm5tKvXz+qq6vZuXMny5cvZ/v27Rw/fpzU1FQCAgIoKyvD4XAQExMDXFyXcP/+/dTV1WGxWAgMDCQ6Opp169bx5ZdfEhUVxfr166mqqiIqKqpHMq9YsYLo6GhiY2NZunQp9fX1bhuyiIiIiIiIiHgK7Roscp3sdjvTp08nNjaWjIwMhg0bxsqVK4GLb+PNnTuX+Ph4UlNTMZlMbNq0qctjTZo0iblz5zJr1ixGjhzJiRMnyMnJwdfXt9M2d955J2+++SZz5swhJCSkR99+i4+PZ8+ePRw9epSUlBTuu+8+SkpKuOOOOwDw9/dn69atPProo8TGxrJ69Wo2btxIXFwcALNmzcJkMnH33XcTHBzMqVOnyMvLIzMzk+eee44HH3yQc+fOtVsXsTsWLVrEokWLuPfee6msrGTbtm1X3clZRERERERE5FakXYOlSzrbNVhuvDFjxhAaGura7Vc6dvkuzSIiIiIiItIx7RrsOTQ1WOQfrLm5mdWrVzN27FhMJhMbN25k165d7Ny5s7ejiYiIiIiIiMhNRoVAkX8wwzAoKytj4cKF/PXXX8TExLBlyxbS09N7O5qIiIiIiIiI3GRUCBT5BzObzezatau3Y9yUIiMj0coHIiIiIiIiIv+mzUJEREREREREREQ8gAqB0i0Oh6O3I4iIiIiIiIhIN+jZ3nOoEChd4uPjA0BjY2MvJxERERERERGR7rj0bN/a2trLSeRG0xqB0iXe3t4EBQVx5swZACwWC15eqiuLiIiIiIiI3CwcDgeNjY2cOXOGhoYG2traejuS3GAqBEqXhYeH43Q6XcVAEREREREREbn5NDQ08Ntvv2G32zGZTK5ZgHLrUSFQuswwDCIjI/nll1/4+eefGTBgALfddltvxxIRERERERGRa3ThwgUcDgetra3U19czfPhwPdvfwlQIlG5LTU2lpaWF6upq7HY7hmH0diQRERERERERuUZOpxMvLy+io6MZO3asnutvYYbT6XT2dgi5+bW2tmKz2WhqakJ/UiIiIiIiIiI3D8MwMJvNhIaGYjabezuO3EAqBIqIiIiIiIiIiHgAbfMqIiIiIiIiIiLiAVQIFBERERERERER8QAqBIqIiIiIiIiIiHgAFQJFREREREREREQ8gAqBIiIiIiIiIiIiHuB/AUAqEb/ntHEPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#update QC settings\n", + "dataset.update_qc_settings(obstype='temp', gapsize_in_records=None,\n", + " dupl_timestamp_keep=None,\n", + " persis_time_win_to_check=None,\n", + " persis_min_num_obs=None,\n", + " rep_max_valid_repetitions=None,\n", + " gross_value_min_value=10.7,\n", + " gross_value_max_value=None,\n", + " win_var_max_increase_per_sec=None,\n", + " win_var_max_decrease_per_sec=None,\n", + " win_var_time_win_to_check=None,\n", + " win_var_min_num_obs=None,\n", + " step_max_increase_per_sec=5./3600.,\n", + " step_max_decrease_per_sec=None)\n", + "\n", + "dataset.update_titan_qc_settings(obstype='temp', buddy_radius=10000,\n", + " buddy_num_min=3, buddy_threshold=2.2,\n", + " buddy_max_elev_diff=None,\n", + " buddy_elev_gradient=None,\n", + " buddy_min_std=1.0,\n", + " buddy_num_iterations=None,\n", + " buddy_debug=None)\n", + "\n", + "dataset.apply_quality_control()\n", + "dataset.apply_titan_buddy_check(use_constant_altitude=True)\n", + "\n", + "# Create the plot\n", + "ax2 = dataset.make_plot(colorby='label')\n", + "#translate axes\n", + "ax2.set_title('Temperature for all stations')\n", + "ax2.set_ylabel('T2m in °C')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "09b5489a-4207-41e1-94b8-cfe8e7564b7e", + "metadata": {}, + "source": [ + "## Fill gaps and plot timeseries of Vlinder28" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "552e81e9-0e6f-4917-9b43-634a31b079e9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is ERA5_hourly)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQIAAAHjCAYAAAB4jmL1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU5fXA8e97J/sKITs7AcIOCggIihviLtW61Fq1ta1VbKtWrdhWq7VSbbXa1q2t4r4ULf5wwwoCIrLLvoR9z0YgCdkzc9/fH5NM7pCQjZncmcn5PM88z83MnXtP9plzz3uO0lprhBBCCCGEEEIIIYQQIc2wOwAhhBBCCCGEEEIIIYT/SSJQCCGEEEIIIYQQQohOQBKBQgghhBBCCCGEEEJ0ApIIFEIIIYQQQgghhBCiE5BEoBBCCCGEEEIIIYQQnYAkAoUQQgghhBBCCCGE6AQkESiEEEIIIYQQQgghRCcgiUAhhBBCCCGEEEIIIToBSQQKIYQQQgghhBBCCNEJSCJQCCGEEEK0yZ///Gf69euHw+Fg1KhRdocDwDnnnMM555zj+Xjv3r0opXj11Vd9dg5/HFMIIYQQoiNJIlAIIYQQHUop1arbokWL7A7VNs8//3zAJpv+97//cf/99zNx4kRmzZrF448/bndIQW/VqlXceeedDB06lNjYWHr16sW1117L9u3bm9z/P//5D+PHj6dLly5069aNyZMn88knn3Rw1EIIIYQIRmF2ByCEEEKIzuWNN97w+vj111/niy++aHT/4MGDOzKsgPL888+TnJzMLbfcYncojXz55ZcYhsHLL79MRESE3eGcVO/evamsrCQ8PNzuUFr0xBNPsHTpUq655hpGjBhBXl4e//jHPzj99NNZvnw5w4YN8+z797//nV/84hdceuml/OlPf6KqqopXX32Vyy67jA8++ICrrrrKxs9ECCGEEIFOEoFCCCGE6FA33nij18fLly/niy++aHR/qNBaU1VVRXR0dEjEUVBQQHR0tM+SgP76+iiliIqK8ukxfa28vJzY2Fjuuece3n77ba+v6XXXXcfw4cP505/+xJtvvum5/+9//ztjx47lo48+QikFwI9+9CO6d+/Oa6+9JolAIYQQQjRLlgYLIYQQIuCYpskzzzzD0KFDiYqKIi0tjdtuu41jx4557denTx8uu+wyFi1axJgxY4iOjmb48OGeZcX//e9/GT58OFFRUYwePZq1a9d6Pf+WW24hLi6O3bt3M3XqVGJjY8nMzOTRRx9Fa31KMX3++eeemF566SUAZs2axXnnnUdqaiqRkZEMGTKEF154odHzN2/ezOLFiz3LpOt73/3+97/3JH+sXn31VZRS7N27t1VxFBcXc9ddd9GzZ08iIyPp378/TzzxBKZpNvt9UUoxa9YsysvLPbHVL2F2Op384Q9/ICsri8jISPr06cODDz5IdXV1q78+J7rzzjuJi4ujoqKi0WPf+973SE9Px+VyNfncpvr51X+/Dx06xLRp04iLiyMlJYV777230XGKi4u55ZZbSExMpEuXLtx8880UFxc3ea5t27bx3e9+l6SkJKKiohgzZgxz58712qf+e7R48WLuuOMOUlNT6dGjBwBnnnlmo8TqgAEDGDp0KFu3bvW6v7S0lNTUVK+fg4SEBOLi4mxPNgshhBAi8EkiUAghhBAB57bbbuO+++5j4sSJPPvss/zwhz/krbfeYurUqdTW1nrtu3PnTm644QYuv/xyZs6cybFjx7j88st56623uPvuu7nxxht55JFH2LVrF9dee22jZJfL5eKiiy4iLS2NJ598ktGjR/Pwww/z8MMPtzumnJwcvve97zFlyhSeffZZz0CNF154gd69e/Pggw/y1FNP0bNnT+644w6ee+45z3OfeeYZevTowaBBg3jjjTd44403+M1vftOur2NTcVRUVDB58mTefPNNbrrpJv72t78xceJEZsyYwT333NPs8d544w3OOussIiMjPbGdffbZAPz4xz/moYce4vTTT+evf/0rkydPZubMmVx//fWtiqsp1113HeXl5Y3631VUVPDRRx/x3e9+F4fD0aavicvlYurUqXTr1o2//OUvTJ48maeeeop//vOfnn201lx55ZW88cYb3HjjjTz22GMcPHiQm2++udHxNm/ezPjx49m6dSsPPPAATz31FLGxsUybNo05c+Y02v+OO+5gy5YtPPTQQzzwwAMnjVNrTX5+PsnJyV73n3POOcybN4+///3v7N27l23btjF9+nRKSkr45S9/2aavhRBCCCE6IS2EEEIIYaPp06dr60uSJUuWaEC/9dZbXvvNmzev0f29e/fWgP7mm288933++eca0NHR0Xrfvn2e+1966SUN6IULF3ruu/nmmzWgf/7zn3vuM01TX3rppToiIkIXFha2O6Z58+Y1+lwrKioa3Td16lTdr18/r/uGDh2qJ0+e3Gjfhx9+WDf18m3WrFka0Hv27Gkxjj/84Q86NjZWb9++3ev+Bx54QDscDr1///5Gx7e6+eabdWxsrNd969at04D+8Y9/7HX/vffeqwH95ZdfthhXU0zT1N27d9dXX3211/3/+c9/NKC/+uorz32TJ0/2+prt2bNHA3rWrFlesQP60Ucf9TreaaedpkePHu35+MMPP9SAfvLJJz33OZ1OfdZZZzU65vnnn6+HDx+uq6qqvOI+88wz9YABAzz31X+PJk2apJ1OZ4uf+xtvvKEB/fLLL3vdn5+fr88//3wNeG7JyclevwNCCCGEECcjFYFCCCGECCizZ88mMTGRKVOmcOTIEc9t9OjRxMXFsXDhQq/9hwwZwoQJEzwfjxs3DoDzzjuPXr16Nbp/9+7djc555513eraVUtx5553U1NQwf/78dsXUt29fpk6d2ug81qWbJSUlHDlyhMmTJ7N7925KSkpa/TVqrabimD17NmeddRZdu3b1+lwuuOACXC4XX331VZvP8+mnnwI0qij81a9+BdCoou9kX58TKaW45ppr+PTTTykrK/Pc/95779G9e3cmTZrU5lgBfvazn3l9fNZZZ3n9XHz66aeEhYVx++23e+5zOBz8/Oc/93re0aNH+fLLL7n22ms5fvy452tZVFTE1KlT2bFjB4cOHfJ6zk9+8pMWqxjrq/wmTJjQqAoxJiaG7Oxsbr75ZmbPns0rr7xCRkYGV111FTt37mzT10EIIYQQnY8MCxFCCCFEQNmxYwclJSWkpqY2+XhBQYHXx9ZkH0BiYiIAPXv2bPL+E3v6GYZBv379vO4bOHAggKfnXltj6tu3b5P7LV26lIcffphly5Y16ntXUlLiidFXmopjx44dbNiwgZSUlCafc+Ln0hr79u3DMAz69+/vdX96ejpdunRh3759LcZ1Mtdddx3PPPMMc+fO5YYbbqCsrIxPP/2U2267rcl+iS2Jiopq9Ll37drV6+di3759ZGRkEBcX57Vfdna218c7d+5Ea83vfvc7fve73zV5voKCArp37+75uKXPPS8vj0svvZTExETef//9RknDa665hrCwMD766CPPfVdeeSUDBgzgN7/5De+9916zxxdCCCFE5yaJQCGEEEIEFNM0SU1N5a233mry8ROTOCerrjrZ/fqEISD+iKmpoQ27du3i/PPPZ9CgQTz99NP07NmTiIgIPv30U/7617+2OKgDOGni62QDM5qKwzRNpkyZwv3339/kc+qToO3R2sRcW4ZajB8/nj59+vCf//yHG264gY8++ojKykquu+66dsXY1p6Czan/nt17770nrXA8MTna3OdeUlLCxRdfTHFxMUuWLCEzM9Pr8d27dzNv3jyvfoYASUlJTJo0iaVLl7bn0xBCCCFEJyKJQCGEEEIElKysLObPn8/EiRM7ZAqqaZrs3r3bKwG2fft2wD3h1lcxffTRR1RXVzN37lyvKsYTlxXDyRNqXbt2BdwTbbt06eK5/8SKu+ZkZWVRVlbGBRdc0OrntKR3796YpsmOHTsYPHiw5/78/HyKi4vp3bv3KR3/2muv5dlnn6W0tJT33nuPPn36MH78+FMN+6R69+7NggULKCsr86oKzMnJ8dqvvpI0PDz8lL+eVVVVXH755Wzfvp358+czZMiQRvvk5+cDTSd+a2trcTqdpxSDEEIIIUKf9AgUQgghREC59tprcblc/OEPf2j0mNPppLi42Ofn/Mc//uHZ1lrzj3/8g/DwcM4//3yfxVRfiWatSCwpKWHWrFmN9o2NjW3ymFlZWQBeffzKy8t57bXXWjx/vWuvvZZly5bx+eefN3qsuLi4XcmkSy65BHBPPLZ6+umnAbj00kvbfEyr6667jurqal577TXmzZvHtddee0rHa8kll1yC0+nkhRde8Nzncrn4+9//7rVfamoq55xzDi+99BK5ubmNjlNYWNiq87lcLq677jqWLVvG7NmzvXpeWvXv3x/DMHjvvfe8fo4OHjzIkiVLOO2001p1PiGEEEJ0XlIRKIQQQoiAMnnyZG677TZmzpzJunXruPDCCwkPD2fHjh3Mnj2bZ599lu9+97s+O19UVBTz5s3j5ptvZty4cXz22Wd88sknPPjgg54lv76I6cILLyQiIoLLL7+c2267jbKyMv71r3+RmpraKIk0evRoXnjhBR577DH69+9Pamoq5513HhdeeCG9evXi1ltv5b777sPhcPDKK6+QkpLC/v37W/X53nfffcydO5fLLruMW265hdGjR1NeXs7GjRt5//332bt3L8nJyW36Go4cOZKbb76Zf/7znxQXFzN58mRWrlzJa6+9xrRp0zj33HPbdLwTnX766fTv35/f/OY3VFdXt3tZcGtdfvnlTJw4kQceeIC9e/cyZMgQ/vvf/zY50OW5555j0qRJDB8+nJ/85Cf069eP/Px8li1bxsGDB1m/fn2L5/vVr37F3Llzufzyyzl69Chvvvmm1+M33ngj4F6C/qMf/Yh///vfnH/++Vx11VUcP36c559/nsrKSmbMmOGbL4AQQgghQpYkAoUQQggRcF588UVGjx7NSy+9xIMPPkhYWBh9+vThxhtvZOLEiT49l8PhYN68edx+++3cd999xMfH8/DDD/PQQw/5NKbs7Gzef/99fvvb33LvvfeSnp7O7bff7knuWD300EPs27ePJ598kuPHjzN58mTOO+88wsPDmTNnDnfccQe/+93vSE9P56677qJr16788Ic/bNXnGxMTw+LFi3n88ceZPXs2r7/+OgkJCQwcOJBHHnmk3QNL/v3vf9OvXz9effVV5syZQ3p6OjNmzODhhx9u1/FOdN111/HHP/6R/v37c/rpp/vkmCdjGAZz587lrrvu4s0330QpxRVXXMFTTz3VqOpuyJAhrF69mkceeYRXX32VoqIiUlNTOe200xr9DJ3MunXrAPfycesQkHr1iUCAF154gZEjR/Lyyy97En9jx47l9ddf5+yzz27nZyyEEEKIzkLp9nTMFkIIIYQIAbfccgvvv/8+ZWVldocihBBCCCGE30mPQCGEEEIIIYQQQgghOgFJBAohhBBCCCGEEEII0QlIIlAIIYQQQgghhBBCiE5AegQKIYQQQgghhBBCCNEJSEWgEEIIIYQQQgghhBCdgK2JwBdeeIERI0aQkJBAQkICEyZM4LPPPvM8XlVVxfTp0+nWrRtxcXFcffXV5OfnN3tMrTUPPfQQGRkZREdHc8EFF7Bjxw5/fypCCCGEEEIIIYQQQgQ0W5cGf/TRRzgcDgYMGIDWmtdee40///nPrF27lqFDh3L77bfzySef8Oqrr5KYmMidd96JYRgsXbr0pMd84oknmDlzJq+99hp9+/bld7/7HRs3bmTLli1ERUW1Ki7TNDl8+DDx8fEopXz16QohhBBCCCGEEEKIIKS15vjx42RmZmIYQbzAVgeYrl276n//+9+6uLhYh4eH69mzZ3se27p1qwb0smXLmnyuaZo6PT1d//nPf/bcV1xcrCMjI/U777zT6hgOHDigAbnJTW5yk5vc5CY3uclNbnKTm9zkJje5yc1zO3DgQPuTXgEgjADhcrmYPXs25eXlTJgwgTVr1lBbW8sFF1zg2WfQoEH06tWLZcuWMX78+EbH2LNnD3l5eV7PSUxMZNy4cSxbtozrr7++yXNXV1dTXV3t+VjXFUkeOHCAhIQEX32KQgghhBBCCCGEECIIlZaW0rNnT+Lj4+0O5ZTYngjcuHEjEyZMoKqqiri4OObMmcOQIUNYt24dERERdOnSxWv/tLQ08vLymjxW/f1paWmtfg7AzJkzeeSRRxrdX9+7UAghhBBCCCGEEEKIYG8hZ/ui5uzsbNatW8eKFSu4/fbbufnmm9myZUuHxjBjxgxKSko8twMHDnTo+YUQQgghhBBCCCGE8DfbKwIjIiLo378/AKNHj2bVqlU8++yzXHfdddTU1FBcXOxVFZifn096enqTx6q/Pz8/n4yMDK/njBo16qQxREZGEhkZeeqfjBBCCCGEEEIIIYQQAcr2isATmaZJdXU1o0ePJjw8nAULFngey8nJYf/+/UyYMKHJ5/bt25f09HSv55SWlrJixYqTPkcIIYQQQgghhBBCiM7A1orAGTNmcPHFF9OrVy+OHz/O22+/zaJFi/j8889JTEzk1ltv5Z577iEpKYmEhAR+/vOfM2HCBK9BIYMGDWLmzJl85zvfQSnFXXfdxWOPPcaAAQPo27cvv/vd78jMzGTatGn2faJCCCGEEEIIIYQQQtjM1kRgQUEBN910E7m5uSQmJjJixAg+//xzpkyZAsBf//pXDMPg6quvprq6mqlTp/L88897HSMnJ4eSkhLPx/fffz/l5eX89Kc/pbi4mEmTJjFv3jyioqI69HMTQgghhBBCCCGEECKQKK21tjuIQFNaWkpiYiIlJSUyNVgIIYQQQgghhBCikwuVXFHA9QgUQgghhBBCCCGEEEL4niQChRBCCCGEEEIIIYToBCQRKIQQQgghhBBCCCFEJyCJQCGEEEIIIYQQQgghOgFJBAohhBBCCCGEEEII0QmE2R2AEEIIIYQIbu84P+ID83MySee7jqmc7Rhrd0hCCCGEEKIJkggUQgghhBCn5FXXHBbrlQAcp1wSgUIIIYQQAUqWBgshhBBCiHYztcl6vc3zsbIxFiGEEEII0TxJBAohhBBCiHZbr7dRTKnn4wKKbIxGCCGEEEI0RxKBQgghhBCi3b4wl3p9nKsLbYpECCGEEEK0RBKBQgghhBCi3b5wnZgILLApEiGEEEII0RJJBAohhBBCiHapMCvYpQ8AEEkEAEcpoUpX2xmWEEIIIYQ4CUkECiGEEEKIdvmWreRSQB+605N0z/15+oiNUQkhhBBCiJORRKAQQgghhGiXjWYOGs1eDtFdNSQCc5HlwUIIIYQQgUgSgUIIIYQQol026BzPdrbR17MtA0OEEEIIIQKTJAKFEEIIIUSLvlvzc/pVnceo6itY6FoOuCsCARSKkWqQZ988SQQKIYQQQgQkSQQKIYQQQohmaa1ZYq7mMAVs07vZow/i1E426R0A9FM96aN6ePY/LJODhRBCCCECkiQChRBCCCFEs7bp3ZRw3PPxEY6xU++jCvd04BEqm0yV6nlclgYLIYQQQgQmSQQKIYQQQohmfWEu9fo4Vxd69QccbmSTrpIbHpdhIUIIIYQQAUkSgUIIIYQQolnzzW+8Ps7ThWwwGxKBI9UgupBAFJF1jx/p0PiEEEIIIUTrhNkdgBBCCCGECFxVupol5mqv+3J1ARVUeT4ebmSjlCJDpbBHHyRXegQKIYQQQgQkqQgUQgghhBCNVOsa1plb+U3t05iYhBNGJBEAHNaFaK3JIIWuJNCTdADSSQHgGKVU6qqTHlsIIYQQQthDEoFCCCGEEKKR3foA42uu4TnzLaqp4R7jh/RTPQF3D8D/6a/JpZBhyl0NCHgNDBlUPZU7an6PS7tsiV8IIYQQQjQmiUAhhBBCCNFIIUc923HEkGR0oYdyV/7V4vQ8NsDo7dm+zHEu9zpu5UI1kXyKeMV8n+/X/ooqXd1xgQshhBBCiJOSRKAQQgghhGikSBd7th8Iu41fht1MhkpptN8g1c+z/T3HZTwWfjdnGCM8960yN/K1ucavsQohhBBCiNaRRKAQQgghhGjkiD7m2U6mKwAZpDbaL1v1bXTfb8OnMzf8RRKJp4ZarqqdzlFd4r9ghRBCCCFEq0giUAghhBBCNFKEJRGo6hKBTVQEDmwiEQhwoWMSP3BcSSFHqaGWD1zz/BOoEEIIIYRoNUkECiGEEEKIRqwVgd1UF6BxIjCKSHqrzJMe4ybHNM/2W665Po1PCCGEEEK0nSQChRBCCCFEI00uDVbeS4MHqj4Y6uQvJ0cYgxiuBgKwXK9nh2uv7wMVQgghhBCtZmsicObMmYwdO5b4+HhSU1OZNm0aOTk5nsf37t2LUqrJ2+zZs0963FtuuaXR/hdddFFHfEpCCCGEECGhiGLPdre6pcHpJ1QENtUf8ETfd1wBQFcS+YnzN1ToSt8FKYQQQggh2sTWRODixYuZPn06y5cv54svvqC2tpYLL7yQ8vJyAHr27Elubq7X7ZFHHiEuLo6LL7642WNfdNFFXs975513OuJTEkIIIYQICUV1FYEOHHQhHoB0kr32yTb6NXreiW5wXM4fHfdQRjnL9Xp+VDsDrbXvAxZCCCGEEC0Ks/Pk8+Z5N41+9dVXSU1NZc2aNZx99tk4HA7S09O99pkzZw7XXnstcXFxzR47MjKy0XOFEEIIIUTrHNHFAHQj0bP8N0KFE0s05bir+lpTEZiqujHaGEaUK5JIIqigioecz/KH8Lv8FboQQgghhDiJgOoRWFJSAkBSUlKTj69Zs4Z169Zx6623tnisRYsWkZqaSnZ2NrfffjtFRUUn3be6uprS0lKvmxBCCCFEZ3akbmpw/bLgeuGEe7YH0KdVxzrHcQYfhr+AieZ/5tf83fUG+3Wuz2IVQgghhBCtEzCJQNM0ueuuu5g4cSLDhg1rcp+XX36ZwYMHc+aZZzZ7rIsuuojXX3+dBQsW8MQTT7B48WIuvvhiXC5Xk/vPnDmTxMREz61nz56n/PkIIYQQQgSrCl1JRV3VXze8E4Evhj3Knx2/5iHHnQxUfVp9zImO07nNcR0AVVTz+9q/+SxeIYQQQgjROkoHSJOW22+/nc8++4yvv/6aHj16NHq8srKSjIwMfve73/GrX/2qTcfevXs3WVlZzJ8/n/PPP7/R49XV1VRXV3s+Li0tpWfPnpSUlJCQkND2T0YIIYQQIogd0LkMqJ4CwDTjAt6NeMYnxz2mSxhcfRHV1HKTYxqPOe4m3oj1ybGFEEIIIfyptLSUxMTEoM8VBURF4J133snHH3/MwoULm0wCArz//vtUVFRw0003tfn4/fr1Izk5mZ07dzb5eGRkJAkJCV43IYQQQojOqqiuPyBA8glLg09FV5XI+caZVFLFS653WcsWnx1bCCGEEEK0zNZEoNaaO++8kzlz5vDll1/St+/JG06//PLLXHHFFaSkpLT5PAcPHqSoqIiMjIxTCVcIIYQQolM4UjcxGBovDT5VpxtDPdvWhKMQQgghhPA/WxOB06dP58033+Ttt98mPj6evLw88vLyqKys9Npv586dfPXVV/z4xz9u8jiDBg1izpw5AJSVlXHfffexfPly9u7dy4IFC7jyyivp378/U6dO9fvnJIQQQggR7OoHhYBvKwIButGl4Tz6qE+PLYQQQgghmmdrIvCFF16gpKSEc845h4yMDM/tvffe89rvlVdeoUePHlx44YVNHicnJ8czcdjhcLBhwwauuOIKBg4cyK233sro0aNZsmQJkZGRfv+chBBCCCGCXZG1IlB18emxrYnFIxT79NhCCCGEEKJ5YXaevLVzSh5//HEef/zxVh0nOjqazz///JRjE0I07a/OWRzSBfRVPRhtDGW8McrukIQQQvjYEWuPQB8vDbYmFq0JRyGEEEII4X+2JgKFEMHjuC5nlvMDHnH9nSpqALjZ+A7jI0bZG5gQQgifK/Lj0uAUkjzbRyQRKIQQQgjRoSQRKIRoVr4+wqXVP+UYJRwi3+uxheYKtNYopWyKTgghhD9Yh3h083WPQGtFoCwNFkIIIYToULb2CBRCBL6V5gY2sd0rCejAAcB+DrND77UpMiGEEP5SSMMQj2TLcA9fSCTe839ElgYLIYQQQnQsSQQKIZq1wlzv2R6rhvNV+Ft812iYwD3f/MaOsIQQQvhRfUVgFJHEEO3TYxvKoBuJABRKIlAIIYQQokPJ0mAhRLOsicB3w5+hu5FGtIrivZpPAfjCXModfB+AHHM3r7nmsE8fIkv14tHwu+wIWQghxClKV8kkEEu8ivNL+4duqisF+qgsDRZCCCGE6GCSCBRCnJRTO1mjNwPQkwy6G2kADFMDSSeZPI7wtbmGWrOWcCOc+a5lPO2aBUA8sfwubDrhKty2+IUQQrRdla5mgbkMgHGM9Ms5utVNIq6gkgpdSYzybdWhEEIIIYRomiwNFkKc1Ca9gwoqARhnjPDcr5Tiu8ZFjFbDiCKSNbiThbkUePY5TrksGxZCiCB0QOd6tnupDL+cI8UygESqAoUQQgghOo4kAoVfuLSLe2oeZ7FrBV+4ltodjminlZZlweOMUV6PZRt9WaM3UchRz/LhXXq/1z5vueb6PUYhhBC+tU8f9mz3Vt39cg6vycGWCcUiOHxlrmK1uZG/1PybPlXncF/tE2it7Q5LCCGEEK0gS4OFX7zpmsvz5ts8b74NwEFjCcmWq/8iOCy3JALPsFQEAowzGpaLrTQ3ALBbH/Da5yNzIcd0CV1Voh+jFEII4Uv7LYlAf1UE1i8NBijUR5vZUwSi39Q+zSq9EQOFiebvrjeYEfYzkpD/90IIIUSgk0Sg8LkKXckjzr973bfBzOE8x3ibIhKtNcf5Ba+Z/+WwLuAydS7rzK1MVKNxoBilBnvtO0T1J5ZoyqlkubkOrbUnERhHLP1UD3qqDDabO5jkGGPHpyOEEKIdOqIiMFmWBgetIl3Mar0JgAgiqKIagHx9hCS58CeEEEIEPFkaLHxukbmSSqq87tuoc2yKRrTF/5nzmWcuYYPO4d/mbLawk6V6DV1UApEqwmvfMBXGGGM4AIfIZ4PexnHKAeijMtmgc/jEXOR5syCEECI4eFcEZvrlHN5Lg4/55RzCP740l6FxLwMepgZ47s/XRXaFJIQQQog2kESg8LnHnS9goulJw3KiDaYkAoNBHkc82wU0vKD/vuOKJvc/QzUsF/7MtcSznaV6e7atlSVCCCEC374OWBqcbFkafER6BAYV6yCwkZbVAvmW1xBCCCGECFyyNFicsu3mHj52LUSjCSOMNXozGk13UnHgwIVLKgKDxHZzT6P7kkjkIuPsJvcfb4wCl3t7mfmt5/5hagD/x3wA9ulDPo9TCCGE/9RXBCbTlVgV45dzeC8NlorAYKG1Zr7LnQiMIpLxxkheNmcDUCAVgUIIIURQkESgOCVO7WS26zP+4HoegGgiPctFLnRMQpuwVe9iq95Fja4lQoXbGa5oRok+zmEKGt3/XeOiRsuC642tWxoMsN6S7B2hsokkgmpq2CuJQCGECBq1utbzv8Bf1YAA3ayJQKkIDBrb9G4OkQ/AWcYYuqt0z2P5WioChRBCiGAgiUDRLhOrr6dEHyeXQoaoLM/9lXUNowEuMCZyWBeyVe+iFic5ejfDVbYd4YpW2K73eraH0p8RxmBKOM4Pwqad9Dmpqhu3GdexWe9kqW6oCBxg9KG36s52vYd9+hBaa5RSfoxeCBGs5O9DYDmo8zExAf/1BwRIpotnuxCZGhws5ruWMpQBdFWJXGacS7pK9jyWj1QECiGEEMFAegSKNsvXR1ijN7GTfZRTwRq9udE+UUQyyRjNCKMh8bdBlgcHtG16t2f7prDvMCtiJv+N+IdX1V9TBhp9+Vqv8VSCAvRVPehd9waynEqOyLIvIUQT5roWcFXtdHLNAjaZ29li7iTfPMISczV5Ul1ki/0dMDEYIIZooogEpCIwmPxPL2UzO/har+ZsYyypqpvnMakIFEIIIYKDVASKVjmmS6imlnSVzEpzg9dj9ZUDEYRTQy0AE9QoolQkIywVgBvNHHB0XMyideqrcXLMhkTgINWv1c//ieM6nnO9xW59AHD3FIxWUZ5EILj7BKaoJN8FLYQIektcq7iu9i40mr415zFKDaZWO9nMDgB+67iD34bfYXOUnc9+cj3b/lwarJSiG104RL5MDQ4SlbqKJeZqALqTxiDVz9Mf2olTegQKIYQQQUISgaJFh3Q+V9T8jBpdw/mOM086/GGiOp0teicRRHCBMRGAEcYgRpJNlIpio7mjI8MWrbDL3M+1Nb9gnDGKD8zPPfcPVH1bfYwIFc6jjl9yk/N+slQvzyThPqqHZ5+9+hBjaL6yUAjReRzQudxV+0dGq6Gs1psAWKe3YlgWKsw2P+M3+nZZNtzBrP/j/VkRCDDZOIM9+iBVVFGta07aj1YEhqXmt1TVtYC5wHEmSikUijS6cYh8qQgUQgghgoQkAkWzSnUZLznfYbN2J/F2uPYRR+MJggYGb4Y/RTejC+CuMgNIV8k4lIMVej0AO8199Dd6d0zwokW/cz7DZnay2dzpuS+KyDZXgVztmMo4x0h6Wp7nXRF4uKmnCSE6kfqBUS863+ELcymb2QkaBtKH7ewFGirMAXL0HlbrTYxVchGhI+03G/5e+7MiEECjWabXAu72IfK9DmzzzaWe7QuMMz3bqaobh3Q+BRzF1CaGks5DQgghRCCT/9TipGp0LX9xvsxTrlkMUf0Jr8sbl1EBQA/SudX4Ln8Ku5c/Oe71JAEBrwqOax2XeLbfcn3UMcGLFi031/Ff83+N7u+neuJQbVvDrZTySgLCiRWBB9sXpBAiZPyw9gH6VJ3LXc4/8om5CICuJPB4+D0nfc5brrkdFJ2ot8XcxWCymKIm0pceLT/hFIw3Rnm2V5jr/Houcer+V5cIVCjOMyZ47k+r6xPowkURxXaEJoQQQog2kESgaGSluYFFrhUMqb6IZ1yv4sLFDr2XO4zve+03wRjFcxG/566wW/hF+E0nPd51jks9y73eNj/C1OZJ9xUdJ8fczQDVB4DTGQpAGA76+GgpmFQECiHqubSLBeY35FEI4Lmw9GDY7UwxJhFNlGffcMKIJIIkulBDrafCXPhfpa5iHVvZyi72c5h4I86v5zvDGOHZXnFC/2ERWP5R+yYHdR5xxDBGDaOb6uJ5TAaGCCGEEMFFEoGikWtqfsFFtbdykHzP8I87HN/nV+E/QtFQ6VffC64lGSrFs4Rknz7EUv2t74MWbfao8zl26L10IZ73Iv7Kx+H/5HjkOt4Kf8onx08hiRiiAdhfdYhdy3cw7+lPcFbLG3shOps1ejPFHAegJ+msCJ/NG+F/5qeO64hUEV5LQkeqwYxUgzhKMa+43qeYUrvC7nTW6i04cQIwzhjp9/MNVwM9SeAV5nq/n0+0zwLXMu51/YlSyhhGNq+GP+H1eBrJnu18GRgihBBCBDzpESi8lOoy8mm4mnu2Gss2vYtfh/2UJJXIVHUWBRQRQxQTjdGtPu61xsUcMHNJUUl86VrOWcYYf4QvWqlSV3GIfMA9GKSnkUlP3BV81sqcU6GUorfKxJhVyfgnMvi/IXPY9+0eqsqqOLz5ED97+04Mh1yLEKIz+MLSW2xG2M8Y4hjAEAZ47rvKmEqlWQUornZcyEZzOyu1u0IsVxfSVSV2dMid0kpLVd4Zyv+JwDAVxmg1jK/1avZzmFxdSIZK8ft5RevlmLu5qfY+JqhRLNPrOMsxmn6qp9c+adaKQKQiUAghhAh0kggUXnL0Hs/2BcaZfBzxT8p1BbHKPSDkw8jn23XcKxzn8zPnw2zVuzhsFvAwd/okXtE+ey1TIU98Qe9L5xsTKEg/RFiVE1X312bhC/MB+OrlhZzz0/P9dm4hROD4wmUZMuCY2Ojxn4Vfz8+43vPxb2v/6tnO1YUMob9/AxSAd1Xe+A6oCKw/z9eu1QCsNNdzpeOCDjmvaJ3fOP9KEcUs0+u4xbiKP4Tf1WifNNVQEVggFYFCCCFEwJNyHOElR+/2bE8x3G/W6pOApyJBxTGurrpgp97HHlOGR9hptz7g2fZnIvAv4Q/wwtkz6do9iZ5DezHlFxd5Hvv4T3MpOiCVA0KEoqO6xLNdrEtZpTcCkK36tmoSrbUqLJcC3wcomlRfERhPLINVVoec07oEeaX0CQwoS8zVfGwuBCCDFJ4Kf6DJ/VKRHoFCCCFEMJGKQOElx2yoCMxWfX167CmOM1nqXAPAfPMbfmJc69Pji9bzSgQa/ksEAsQmxfH71X/0fFxRUsHGz9aTmNGF2Q+8y21vTveaMi2CxwbXNlbrTRzTpUwxzmSEY5DdIYkAMNv1GbfXPszDjp9jKpP+qjdnqBHs1gc8/WJbkqFSPdu5utBfoQqLAzrX0zJijDG8zdPj2+sMYwQxRNFf9eagzuuQc4qWmdrk6dpZjFXDWaU38nDYz096YThdSY9AIYQQIphIRaDwYq0IHOjjRKD1DeB8S78o0fF26f2ebX9WBDblsgevJDIukgPr97H1y818++HqDj2/8J0HnU9zh/P3/Mb1NP8yZze77zzXV+w1DzW7jwheLu0CYGbti9xUez9lVHCf6wl+7fwzs12fsUyvJZ8jTFGTWnU8a0VgniQCfeZ91zyKdDHvuj6hRB/3esy6fLu1w8B8IU0lk6V6s0Hn8IH5P0p1WYedW5zc++Y8PtOLWaU3colxDj9wXHnSfa1Tgz8wP+dZ52uevwlCCCGECDySCBRe6nsERhFJb5Xp02OfpobQjS4ALDRXUKtrfXp80XrWisAs1atDzx2TEMMVv/2O5+PPnvqYsqPyxi84NUx/Pqzzm9zjBefbXFj9Q66uvZPJNTewydzeUcGJDvSj2ge5sOaHrDE3o/GeCv6/ugs/EYRzlqN1Q6bSsSwNlkTgKdNa86TzX9xYey+Tqq/nltpfM6XmFs/XVmvN684P6U0m1xgXcbHj7A6Nb1Ld8DEnThaZKzr03KKxal3D75zPej7+meP6ZitEu5DAo2G/5BImU00NLznf5Tu10zsiVCGEEEK0gyQChUetrmVXXYJogOrt82VBDuXgPGMC4O4/9LX5rU+PL1qvPhEYS7RXb5+OMuLiUYy4ZBR9x/ajrPA4c//w3w6PQZy6cl3l2bZWmVotcq3gK70KFyallLPN3C0XAUJMqS7j/8z5fGWuYoFeRiapXGtc7Hn8KMUAnGmc3uqes9aKwMNaegSeqiqqKdRHAdiDu0dvkS7m387/YGqTT8xFLGcd+zjMWr2VMWpYh8Y3xWvFwDcdem7R2Dq9lTjcv6vnGeM9PaNPRinF/WE/4WzHWBw42M0BvjCXcugkF4iEEEIIYS9JBAqP3foATpwADFL9/HKO641LGaB6c4h8/mt+7pdziOY5tZN9dVOD+6metvXnu/qx68jLyaWytJIV7y5j+9fbbIlDtF++amgKv0Pvo0pXN9qnPukAoIAbnfeyXsv3OpT81/U/qnB/7292fIfdUV/ySvhMEon32q+lZIJVlIokiUQA8pDhA6fqSee/+bvrDcIJ42pjKn3pQTkV/NH1Aq84Z3O/80nPvo+F3UWY6tgW0mcbZxBe17b6C2kdYrvnnG+xWe8gma780nFLq18n3BV+CzPCbgNAo3nX9Umrz7nd0qNaCCGEEP5layJw5syZjB07lvj4eFJTU5k2bRo5OTle+5xzzjkopbxuP/vZz5o9rtaahx56iIyMDKKjo7ngggvYsWOHPz+VkFC/LBh83x+w3tmOsRyqq+6Y7ZpHta7xy3nEyR3QedTWJXw7elmwVZeMLlz+m4Ylwus/WYdpmrbFI9pGa+21ZNOFiy16Z6N96qtPu9GFCtwVhDIZNLS85Zrr2f6+4woAwlQY5xrjvPZr7aCQeul1VYG5ugCtdQt7i+YUcQyAWpz8KuxHPB/+e4px9wi82zWTEl1GX9WDCeo0rjQu6PD44lQME4zTANijD7LLbLrCWHSMjdr9WryE441+j1tyg3G5Z/tN1/+16nf3deeHjKq5kh/VzOCh2mfl910IIYTwM1sTgYsXL2b69OksX76cL774gtraWi688ELKy8u99vvJT35Cbm6u5/bkk0+e5IhuTz75JH/729948cUXWbFiBbGxsUydOpWqqqpmn9fZrTW3erazDf8kAuNVLFca5wNQTCmfmov9ch5xcl4Tgzt4UMiJJtw4kb5j+pE+MINlb33NwQ0HWn6SCAillFGJ99/UDab3hZwCiiijAoD+qrfn/uXmev8HKDrE566vWabXAu5J89YlpeeqCZ7tOGIYrga26dj1y4OrqeEYpT6ItvMq0sWe7W6qK+c6xnORcRbgTg4WcYwU3Y03w/9iW5W4tWL0C5csD7ZLla5mu94LwGCVRYQKb9Pz+xk9OVOdDrgvMJ+sbYT1fH92/RsTk7fNj3jS9S/2ahksJYQQQvhTx679OMG8efO8Pn711VdJTU1lzZo1nH12Q6PqmJgY0tPTW3VMrTXPPPMMv/3tb7nySveEs9dff520tDQ+/PBDrr/+et99AiFmkWsFPUhntDGMsX6cGPh9xxW8Y34MuK8Wf8cxxW/nEo1ZE4F9bU4EGobBmO+OY/YD7wCQs2QbvUb1buFZIhDkNtG3rb6KpJ71Z224ymaDzqGSKlZqqQgMBfNd33B97V24MLnV+C5nOk73SiJdGjaZQ+QRRwzdVBcM1bZrjxmkerbzdCFJKtFnsXc2R+oqAgGS64Z2PR72K3BCH9WD913zeDriAbobaTZFCFPURD5XS8ijkPn6a36GvF6zwxa9Exfuib/DVXa7jnG541yOu8rQaBaZK+lvnPz/+q+cfyJWR+PA4TnvRp1DX3q069xCCCGEaFlA9QgsKSkBICkpyev+t956i+TkZIYNG8aMGTOoqKg46TH27NlDXl4eF1zQsLQlMTGRcePGsWzZsiafU11dTWlpqdets9ljHmQZazlIHlv1Lvqo7n4717nGODJJJY4YDuo89poHW36S8JmjupjeZBKGw/aKQIDsswd5trcv2drMniKQHG5ikuuJFYHWROBAow+nq6EA7NUHydfS9y0Y1ehaflU7k4dqn+VHtTNQKDSaXAq9lgQC9FDpPBr+S+4P/wm3hl3T5nOlq2TPtgwMOTVF2p0IjCbKM7BliNGfDyNe4K9hD7Imcg5jjOF2hsgII5scvYedej+LzJXUyFAhW1j/jo8w2pcIPMMYyUa9nU16B5t18615VpsbWcdWr2njG064qCSEEEII3wqYRKBpmtx1111MnDiRYcMalhbdcMMNvPnmmyxcuJAZM2bwxhtvcOONN570OHl5eQCkpXlf1U5LS/M8dqKZM2eSmJjoufXsaX9ypKPVV+gBfN9xuV+XBjmUg0fCfkEE4azX23jY+Xe/nUs0tlHnsI/DOHHRkwy7wyG5Twpdu7uT/7tX7qKmUvpGBoM8GhKBCcQBsFFv9+rttNv0XoY+3hjp+Vj6BAanf7ne4znXW/zF9W8KKOJa42J+4JjGO+F/9fn/jUzVUBGYS+PEs2i9I3WJwG511YBWSinSLElXuxjK4HzDvZy8jApWaGkhYAdrZXd7KwKtFxmtF4ROZO0j291SAbzRlESgEEII4U8BkwicPn06mzZt4t133/W6/6c//SlTp05l+PDhfP/73+f1119nzpw57Nq1y2fnnjFjBiUlJZ7bgQOdq0+Z1tqr2fv3HJc3s7dvXOE4H6Pux+898xPWmJv8fk7hdlDne7Z7GfYnApVSDKyrCnRWO9mzerfNEYnWsA4KOU0NYZIazWDVjwP6sOd+a2+ofqonZxgNLQdWSJ/AoFOsS3nc+SIAJpoUkhhsZPGv8MeIVBE+P1+G8l4aLNpHa80RigFIVl3tDaYFFzgaBsp84ZLpwXZY74OKwHSSiSEaoNkegYUc5TjuvuADVV9i654jFYFCCCGEfwVEIvDOO+/k448/ZuHChfTo0XxPkHHj3NPLdu7c2eTj9b0E8/Pzve7Pz88/aZ/ByMhIEhISvG6dwSpzI/fUPs7DtX/zXJGdbJxBL+X/5FCiiufBMPf0ZwODpa5v/X5O4XaoLhGYQhJRKtLmaNyyz7IsD/5qm42RiJOp0tVordlsupd5WXsEZqpUvtZrWKbXsdGyDGyPblj231f14AxLReCJE4ZFYKjS1Ti1k7muBY0md/7bOZsq3BW71xuXciDqK34ZdrPfYrEuDW6qJ6VonVLKcNZNiu+mutgbTAsusAwMmW9KIrCjaa09FYGZpLY7cayUop9yv57fpw/h0q4m97NWC/Y3ejOsbqDQHn2QUl3WrnMLIYQQomW2JgK11tx5553MmTOHL7/8kr59W55Uu27dOgAyMppOVvXt25f09HQWLFjgua+0tJQVK1YwYcKEJp/TGa0yNzK15kc873qbxXolGs3VxlQecNzWYTH82HEtA1UfupPGTNeLjd50Ct9zaReHcb+h7q7sawp/ogGT3FUHETERHNkvveMCjalNMqonklB9GqNrvsNOc59Xhdbout5/4F3J0bDkK41oFUWGSmGMGk5PMjxTKUXgqP8+d60ew7W1v/Sa6r5PH+YPrueIIoKz1VgeCf+l3+OxDgvJlYrAdqtfFgzQjcCuCExXyYyoW466Vm+lUB+1OaLOZT+5lHAcgOHtrAasV788uBYnB3TTrXmsicB+qifDjYbJ4pv09lM6vxBCCCFOztZE4PTp03nzzTd5++23iY+PJy8vj7y8PCorKwHYtWsXf/jDH1izZg179+5l7ty53HTTTZx99tmMGNGwxGzQoEHMmTMHcF+FvOuuu3jssceYO3cuGzdu5KabbiIzM5Np06bZ8WkGnBpdy7vOj+lbd7W2kKNkksoZxgjOdYzrsDgiVDi9VXcOkMsxSilEXvD7Wz5Fnql8gZQITEhJYOiU4Tirnaz/6FsqisvtDklY7NWHqKSK2rqqordcH3kNC5lkjPFs1/d2KtVlnt9p63RqFy4OkMsefRBTmx0Rvmil3fqA1/f5QedTOLV7+/e1f6OaGoooZowxjN4q0+/xZKgUepDGMAYSR4zfzxeqiuqWBQMkB3hFIMAUYyKpJDGE/rzmmmN3OJ3KJjOHMWo4venOSDWo5Sc0I0v18myfrE/giYnAEZaehBtNSQQKIYQQ/hJm58lfeOEFAM455xyv+2fNmsUtt9xCREQE8+fP55lnnqG8vJyePXty9dVX89vf/tZr/5ycHM/EYYD777+f8vJyfvrTn1JcXMykSZOYN28eUVFRfv+cgsFn5mKeM98C4HQ1hC8j3rBtiaj1zeR+fZhU1c2WODqLQ5b+gIGUCARI6ZfK5i82ArBj6XZGXnqazRGJehtP6Nf0tvkRhnYPhuhCAsOMAUQRSRXVnorAHeZez/5ZRkMiME11A+1OCBZRTAreU+KFfU7sy5Wj9zDD+RTjjdP4j/kpAEkkcn/YTzoknkgVQTHHOUi+JyEp2u6IpaouWQX+79udjht5w/Uhm9nBM85X+YnjWhJVvN1hdQrLzfWs1u7/w9ZK7/awDgzZpfdzHuPJ10e8BtPsMhv6B2apXl5LkaVPoBBCCOE/tiYCW1oK2rNnTxYvXtzsPk0dRynFo48+yqOPPnpK8YUq62CQR8J+aWufuF6WROA+fZgxDLctls7gkGV5Tg/VdM9Muww8axCLXnIv6c9Zsk0SgQFkwwkTHPfpQ0TiHg6RoVIIU2EMVf1ZozezS++nXFew0FxOLzIYagxgiqXvlzXZn6+PkBIEiYnOwvp97k4qXVQif3e9wfOut0miCwNUH65yTKGL6rg+uonEU0aF9As7BUd0sWc7uYmpwYEmw0hlsnEGs815HOEYf3G+zB/C77I7rE5hpW6Y5j7WMaKZPVvWz1IRuEcf4EvXcq6ovY2Bqi8DVG/ei3iWPZaKwL6qB07t4hw1jiqq2WsebOqwQgghhPCBgBgWIjrOEX2Mz8yvAMgghXONjlsK3JTeqrtne79l2qjwj4OWRGCgVQT2H98fI8z9J2n7EhkYEkhOrAiMJZrquqERGSoFgBGGexmZRrNJ7+C/5v/YTy6fmV8xRPX3PDeNhmqQfF3k79BFG1i/zz933MTmusEvLlwUcpQRKps7HN/v0JjiVSyAp2+ZaLsiLD0CA3xqcL1Hwn5JeN216v36MGW6wuaIQp9TO1ltuqsBe5BOpmVqd3t4VQSa+5nh/AtOXGzRO/nYXESNrvUsDc4klWgVRbwRSwFFLNfrWKxXUaErTykGIYQQQjRNEoGdzH9cn3r6P13vuJQwZWtRqNeE4v0618ZIOgevpcEEVkVgZGwUfUf3A6BwdwFHD0rPyECxoa5pewxRzHT8CoXyPJZOXSLQ0tvpc9cSvtVbAHf7gSGGJRForQhEBsMEkvqKwHhi+UXYTfw57Nd815jKY467ucG4nD+H34+hOvZlQyLuJaHlVMry4HYqslQEBvqwkHr9jJ5cZ1xCFxJ4z/yUReYKu0MKeVv0TspxJ97GWya8t1dPlU5YXTJ3hV7Pet1wgc+FizXmJgqa6CN7huGuRHTi9PwfEUIIIYRvSSKwE6nVtcxyfsAENYpE4vi+4wq7Q/KqCNynD9kYSedw0JII7BFgFYEAA89uaE6+/WupCgwEJfo4e7V7idZwlc1kxxlEEI5CMU6N9Lxps06Y/MRc5Nk+8e+MtT9UgVQEBoxjuoQDuC/GDFMDMZTBz8N+wBvhf+FXYT/i5fDHCVfhHR5XgorzbB9Hhgi1h3UQVzAMC6l3qeNciikFYIW53uZoQp/1a3yGDxKBYSqMPnWv8fI4wlg1wusi0kK93LNt7SM7TjWcW77vQgghhH9IIrATedn1PhvZzjK9jqnqLIYZA+0OiXSSicD95lKWBvtfIA8LARg4aRCRcZH0GtWHvBypEA0EG3XD5MbhxkBON4byVcTbvBP+NIsj3+JnYd9zP6Ya/p5s1jsBCCOMax2XeB0vFe8egSIwWL/PIyxJXaWU52aHRBoSgSXSJ7BdvCoCg2RpMDRUhoG7okz41wqzoT/gOB8kAgH60HCxd5XewN3GLZ6Pl7savqfWZcTjjVGe7ZWSCBRCCCH8QhKBnUSpLuOPzhc8H/88/CYbo2lgKIOedcuD9+nDLQ6QEaemvkdgN7oQrQJvinavUb0xHAb71+1l9Qcr5echAKwzG5Zm1S//7W/0Zppjitd+iSqeZ8N+y0fhL3GbcR3T1AXMCLut0TCQdCU9AgPRRsugkOGWZd52S7BMiy2VPoHtckQ39AgMhmEh9bqrNHrUtbBYY26SpeF+Vp9sjSCcUWqwT455T9iPeC7sYVLpxs3Gd5ge1tBjdIPeRgpJXKImc7Ya67k/W/X1tARYYa6X1wFCCCGEH0gisJPYZG5nkHL3X7vGuJixRuBM562fHHyccs8yIOF7pjY5TAEQmNWAAGERYfQ7w91P7nhhKbk5UiVqp3x9hGedr5GKO5lnXf7blNvCrmeKYyK9jEwmOE7jN2G3N9onVXoEBqSd5n561iVdRrTwfe5IXhWBSEVgexRRDLj7LdqxvPtU1PeqK6eSLXWVxsL3SszjdCGeOGI4TQ0hUkX45LjnOcZza9g1rIz8gBfDH6W7ke75f5JPEYUcZZFe6Rk2Be4LxPWvUfM4wn5kdYAQQgjha5II7CRedr3PEr0agFsc37E5Gm/WgSH7ZHmw3xRwFGfdoJhATQQCDDzL0ifwK+kTaKeba3/NAfIoooS3wv7CGDWsVc/7ZdjN/DLs5iYf60KCpx2A9AgMDFprPjYXcoA8+tKDkQROItCrIlCWBrdLUV1FYLcg6g9Yz9qrTvrF+c82drNKb6SMCoapAT4/frpK9rQXqL+gpHFX+k0zLiBOxXjtf4ayLAs31/k8HiGEEKKzk0RgJ2Htv+eLJtC+ZB0YIn0C/edQ3bJgCPREYEMSImeJJALt8rjzRWJ0FPHEkkEKQ40BPqkmUkp5+gRKj8DAsF3v8QwK6Wf0JNKItDmiBgnEerZLZGlwmzm1k6OUAJAcJBODrcZ5JQI3NLOnOBW79QHP9gCjj1/PNVIN8vq4qcF1o41hnKaGcK4aT65Z6Nd4hBBCiM4ozO4ARMeor7TrSgLxKraFvTuWtSJQEoH+k2Pu8Wz3UOk2RtK8jOxM4lMSOF5Yyq5lO3DVunCEO+wOq1NxaRcvO2dziHwcOJgf8SqDjCyfHT9dJXNQ53GEYlzahUPJ99dO881vPNtTjIk2RtKYVASemvokIARnReAoNZgIwqmhli16h93hhCxrItA6uMMfBqmG/yWJxHOOcUYT+/RjrXb3p+2qE/wajxBCCNEZSSKwE3BqJ4dwT4u1Vt8FCmtMsjTYfzabO4gkgpFqEOPVKLvDOSmlFAPPGsSa/66kuryafWv30u8M3yWhRMsWmSs9fzMuMs5ipOGbxvH1UlU30GBiUsgx0klu+UnCb74wl3q2LzDOtDGSxqw9AkulR2CbeU0MDsKKwEgVwVg1nIM6j6O6pOUniHbZZe73bPs7ETjVMYkPeYHjqhwFTV4I6qkyUCg0Wi4QCyGEEH4gicBO4DCFuHAB3tV3gaIXmWSSShJdZCqgH32pl1NNDSv1BoYY/e0Op1kDJg4kf0cuMYkx5G4/LInADvaWa65nu6llW6cqzTI5uEAf8ZokLDpWta7hK9PdPzaDFIb6oT/YqUhAKgJPxW59gEGqHwYGA4zedofTLiaafbiTQU7tJEzJS1dfs1YE9lU9/HquNJXMRWFnNbtPhAonk1QOkS+JQCGEEMIP5NVUJ7BPH/JsB2JFYHeVSj5FHKaAMC1LBP2hQBd5ltmMUoO9JrcGol6jenNwo/uNSXxqIhNvbP5Ng/Cd42YZH5rzAfdgj0uMyT4/R5qlAjBfBobY6hXXB1RQCcD5xpmehv6BIlFZpwZLj8C2WmVuZJveDUCW6mVzNO0To6KomytBBVUkWKpEhW/s1u6KwAxSiD1hcIddeqlMDul8CjhKha4kRkXbHZIQQggRMmRYSCdgvZraS2XaGEnTwlQY3XEPr5Arv/7xpbncsx1oS/+akpaVhuFw/3nK2y4/Ex3p//QCUklikhrNTY5pRCnfD45IsySi85CBIXb53LWEB51P0ZUEbja+wzWOi+wOqRFr0qdEKgLbbL5l2feZxuk2RtJ+sTQkgCqosjGS0HRcl1PAUQD6+nlZcFtYX68e0Lk2RiKEEEKEHkkEdgL7vBKBgbc0GBpe8B2lhOO63OZoQs8XLmsPsMAaBtCUsMhwUvqmApC/Iw/TZdocUefxlusj9nKIr/UarnJc6JdzeC8NlopAOxTqo2wzd1NJFccoxVAGUx2BV3mbaB0WIhWBbVKki1mjNwMwTA0gU6XaHFH7RFsSgeW6wsZIQtMey7LgLCNwqkatr1elf7QQQgjhW5II7ASsVXaBuDQYoLflyq9UBfqW1poFdVNBY4lmgjHK3oBaKT3b/SbAWe3kyN5Cm6PpHA7oXBaZKwD3MsJxaqRfzmNdmp6vpSLQDu+5PuHXrj/ThQQmqtE8E/Ybu0NqklQEtt+X5jJ03ZraYKgEP5lYy5LQSqkI9LldHTgxuC1kkJwQQgjhP5II7AQCfWkweMcliUDf2qsPMdoYxnA1kIlqNJEqwu6QWiVjUMPPRG6OLAvqCO+6PvEkDr7vuMJv/eK6k8Y4NZIz1AhKtFR52eGLuosDxZTyTNiDAft3IUKFE4V7ebpMDW6b+XXfYwiOSvCTiSHKs11e189S+M7ugE0EyutCIYQQwl9kWEgnUH8lNY4YupJgczRNkyUg/pOjd/OJuQiAi/0w+MFf6isCAfK2HWbkJaPsC6aT+Ni10LP9PeMyv52np0pno95OBZXkSUVgh3NPCl4FuIcDDDMG2hxR8xKJo4pqmRrcRgtd7ureaKKYZIy2OZr2i7H2CNRSEehrgZoIlNeFQgghhP9IRWCIM7XpabLcW3UPuImQ9axLQOTKr29Zv559jMBcGt6UjIGWikAZGOJ3R/QxinQxo9Rgpqgz6Wv08Nu5wlQYo9VQAPZzmFwtS7870lLzW88Sy0CcFHyihLo+gVIR2HqHdD4GBqepIVxunOeXoT8dJUY1VARWSEWgz+2qmxgMgTVZWlaKCCGEEP4jicAQl08RNdQCgTsoBGQJiD/tt0zbC9Sl4U1J6ZeKI9wBQJ4sDfa7XXo/O9nHOr2Vvob/q0LGGQ39B19yvsNi1wqerp3FSnOD38/d2S2wLBmd4gj8JaOJdX0CSynD1DI4qDW2mbvZy0HW6i1kqBS7wzklXhWBkgj0Ka01xbqUbnSlCwkkqUS7Q/KIVlGkkgTI1GAhhBDC1yQRGOL26UOe7UAdFALQQ6WjcFelyBIQ37L+DPQJ4J+BEznCHaRmpQFQsCsfV63L5ohCW0cvD7MmAp93vcXU2lt50PUU99b+Ca2138/fmX1huqeIKxTnGeNtjqZlCcqdCNRoypCpsa2xXe/xbA9UfW2M5NTFeE0NlkSgLy3X61int3KMEm4xrrI7nEbqL14epoAaXWtzNEIIIUTokB6BIS5PFzJJjUajGaT62R3OSUWqCDJI4TAFUhHoY9aKwB4q3cZI2m7AxGy6ZHYlfWAGVccriU2Ka/lJol06OhE41hjh2S6l3LO9Um/g/8z5THNM8XsMndFxXU6mSiWWGMIJI0Ul2R1SixKJ92yXcNxrkrBoWo4lETjICNz//a1hXRosU4N96y3XXABMTIY5BtgcTWO9VXdW601oNAd0bkAtXRZCCCGCmVQEhrgdeh9f6zUs1d+SrLraHU6z6pcu51NEpTQE95n6isB0koOuT9SAiQMpLSjh61cXs/3rHLvDCWm7zY5NBKar5JNWKT/qfI5d5v4mHxOnZpfezzxzCcv0Wr/2gfSleBXr2ZaBIa2zTe/2bGcHeUVgrNfSYHlt4CtVupr3XZ8D7q/xNCPwLr7IwBAhhBDCPyQRGOKs1XWBvDQYoJclPukH4xtVupo83FNZA/373xRtag5tOkhtVS25OfImwJ+sDeP7qo5JEI1hmGc7gnBuNa5hsnEGW/ROzqv5AXvMgx0SR2cSqBNCm3NiRaBo2XbTXRGYTNeAvwjYEu+lwbI03Fc+NRdTTCkA04wpxKkYmyNqrL/qzUDVlxSSyNUFdocjhBBChAxJBIY470ERgTssBOTKrz8c1Hme7UD//jclY1DDcBMZGOJfe+oSRBmkENtBbwhHGYOIJooIwjnXGMcj4b+gQBcB7jeAK8z1HRJHZxKMiUDrUuDjuryZPQW4qyYP406aBHt/QIAY1ZAIlKXBvrPF3MkYNQwDg+87rrA7nCYlqS5s13so5CiHyLc7HCGEECJkSI/AEFe/LDSKSFLpZnM0zbNODpZEoG/stQwKCaaJwfWS+6QQFhmGs9opiUA/KtMV5ONOwPXtwOTQ3WE/5N6wH1OLk2JKSVZdWRDxOkOrL2ap/pZVzo1c7biQcBXeYTGFOmvlZ7AkAhOVVAS2hbU/YLYRAolAGnoElsvUYJ/QWvNv13/I4whdiOdsNcbukJpknXidpwttjEQIIYQILVIRGMK01p6KwF4qE6WUzRE1b4Dqw2R1BmeoEfKCz0e8l4YHXyLQcBik9XcPOCncU4CzWqYG+sNuS3Ioy+i4ZuxhKgylFBEqnFTlvlCRpBI535gAQA21bNd7OyyeziDYKwJLpEdgi3Is/QEDeUhYa3n1CJT+wT6xTx/2tA0ZYwwnzAjMuoAMlerZzpXXhUHBVetiw2fr7A5DCCFECyQRGMKOcIyKuqvnwZAE6qN6sFivZKXewAa9ze5wQoL30vDA/xloSnq2O27TZZK/S5YG+UOgJYeGG9me7Q1ahsT4Uv0QliQS6aoSbY6mdawVgaVIIrAlOaalIjAElgZHW6YGV0hFoE+s1A1tF8apkTZG0rx0kj3b0iMwOMz94xxe/tFLPHTaA/ztO0/ZHY4QQoiTkERgCLNWgwVDEqiXyiAK91TbbZalTaL99lmWBgfjsBCAjOyG3oayPNg/Ai0ROEI1JAI3mpII9JVqXePpsxUI3+fW8q4IlKXBLcnxmhgcChWBDT1LJRHoGyvNDZ7tcUbgJgIjVQTd6AJAbl0Fowhc6z9Zy6KXFgBQklfC7pW7qK2SlRxCCBGIJBEYwvZ5JQIDf1CEoQwGqj6AOzFRq+XFw6kKpmExJ5PulQiU3pH+EHCJQGOQZ1sqAn1nrz6IRgPQT3XcEvBT1YU4RquhjFcjiUD6RbYkggjGqZEMVllB+3ffyqtHoJZEoC9YBzGNNYbbGEnL6vsE5uoCtNY2RyNOJjfnMG/+8jWyxg/w3KdNTd52uYArhBCBSBKBIcy7P1xwVIPVVy84cXolJ0T71P8MdKNLh02C9TXr5ODcbfKC0h/ql4sCZAVAgiiTVE8ViFQE+k4wDgoBiFdxrNGbWa7Xs0cftDucgObSLuaaC1ih16NQOJTD7pBOWSQRKNw9jmVq8Kmr0tWs01sB99LxQG8RUN8nsIZajlJiczSiKZWllbxy60vUlFeza/kOsiY0JAMPbZa/2UIIEYhsTQTOnDmTsWPHEh8fT2pqKtOmTSMnp+FN39GjR/n5z39OdnY20dHR9OrVi1/84heUlDT/QuCWW25BKeV1u+iii/z96QScYKsIBO8Jh9ssy5tE29XqWiIJ53Q1lAuMM+0Op92SenYjIjoCgNztUhHoa1prduuDjFSDuNK4gKQAeFOolPL0CcyniHwtS8J8IdAqP1srTsV6to9Lj8BmHaKAGtzV9MH0PW6OUsozMESmBp+6tXoLtTiBwF4WXC9dJgcHNNM0efe+t4jp4v473X1YD86/Y4rncUkECiFEYLJ1TNjixYuZPn06Y8eOxel08uCDD3LhhReyZcsWYmNjOXz4MIcPH+Yvf/kLQ4YMYd++ffzsZz/j8OHDvP/++80e+6KLLmLWrFmejyMjI/396QSc4KwIbEgE5kifwFNySBewk/2ggycR3BTDMLjyoaupqazG5XRRU1njSQyKU7dXH2Ifh9inIU0lt/yEDjJCZbOIFQBsMHOY4gic2IKVNRHYkdOhT5W1R+BxKmyMJPDtNi3f4wCo7vWVGKIoo4IKqQg8ZdvM3fRXvdml93NGAA8KqZdBQyLwsC5gKAOa2Vt0tAXPfcG6uWsAGHTOYK750/eIimuY9C2JQCGECEy2JgLnzZvn9fGrr75Kamoqa9as4eyzz2bYsGF88MEHnsezsrL44x//yI033ojT6SQs7OThR0ZGkp6e7rfYg0F9IjCcMK8XUoFskKWxuXXyoWg766CQYBgW05x9a/ew8j/LARg0eQg9R4TOG1y7rbBMjzzDGGFjJN6GG9ngcm9v1DlMYaK9AYWAXUFaERhLNAqFRnNcS0Vgc3YH6fLvlsSoGNBHqZQegafsK3MVO/U+IongdDXY7nBalFm3NBggVyoCA0rh3kI2/889eEYpxeQfn0dyb/f7jS6ZXSk+fIzDWw6itUYpZWeoQgghThBQPQLrl/wmJSU1u09CQkKzSUCARYsWkZqaSnZ2NrfffjtFRUUn3be6uprS0lKvWyioXxrcU2VgqID6Vp9Uf9Xb0wsoR5YGn5L9NPTT6x3kicB0mRzsNystTePHBVB1yDD6c5oawmTjDMq0VIH5QjU1TFKjOdcYTzrBU2GplCKubnLsccptjiawBevy75bUDwyRpcGnrn4AkwuTocZAm6NpWYZ1aTCSCAwkH//xQ/Zv2EfawHTOu2MKQ84f5nksc4h7JVJlaSVHDx61K0QhhBAnETDZIdM0ueuuu5g4cSLDhg1rcp8jR47whz/8gZ/+9KfNHuuiiy7i9ddfZ8GCBTzxxBMsXryYiy++GJfL1eT+M2fOJDEx0XPr2TP4XzwfMY9SWtdLKZiqwaJVlGcZc47eIxPiTsF+rx6RwfMz0JT0bMvAEOkT6FOBOj2yn9GLtXoLi82VfKPX2h1O0MvXR1hkruBrvYZqXRN01Rn1y4MlKdy8UE0E1vcIrKBKXhecgmpd42m7kq36EqkCv82GtUegVAQGjqMHilj/6VpcNS4qiyu4+L7LvB7vMbSHZ/uwLA8WQoiAY+vSYKvp06ezadMmvv766yYfLy0t5dJLL2XIkCH8/ve/b/ZY119/vWd7+PDhjBgxgqysLBYtWsT555/faP8ZM2Zwzz33eJ0r2JOBW/QuwnAwkL6cZ4yzO5w2GaT6slcf5Djl5FJIJqktP0k0EkpLgzOsicBtkgj0lUpdxfq66pDBKosuKsHmiBokqnjiieU45RzS+XaHE/RWmRs92+MCaAl4a8WpGNB4LnCJptUnAh04gro37ImiVRRo0GiqqCa6rkJQtM1WvQtn3aCQ4SrwqwGhYWowQK4usDESYbXk1cVo052Un3jz2YRHhns9nlmXCIxLjpOKQCGECEABURF455138vHHH7Nw4UJ69OjR6PHjx49z0UUXER8fz5w5cwgPD2/iKCfXr18/kpOT2blzZ5OPR0ZGkpCQ4HULdqv0Rpy42MJOUuhmdzhtkk0/epPJWDWcXeY+u8MJWvt16CwN7tq9K5Fx7jd+sjTYd77VWzxvCgOpP2C97ioNgIM6T6qATtFyc51nOxgmhZ7IUxFIBaY2bY4mMLkngLsTgb1UBuGqba+VAll9RSAgA0NOwQYzx7M90hhkYyStZ21jIFODA0NVeRXffrgaAEdEGGf+4KxG+6T1TyciOoKyI2XsX7e3gyMUQgjRElsTgVpr7rzzTubMmcOXX35J3759G+1TWlrKhRdeSEREBHPnziUqqu1XgQ8ePEhRUREZGaFzdbwlKyxv+sYbo2yLoz36G73Yx2FW6Y1sk8nB7Va/NDiBuICq9GoPpRTpA93Df44eKKK6XN4I+kKg9gesV58IrKSKY4RG71a7rNQbPNtnBGEiME7FAu6KMOkT17QjHPNUTIbSsmCAGEsiUL7/7bdRNyQCh6tsGyNpvQgVTjJdATgsicCAsPr9lZQfK6ffuP5M/MFZJKQ0fo2Z3DuFmsoawP26TQghRGCxNRE4ffp03nzzTd5++23i4+PJy8sjLy+Pykr3i7z6JGB5eTkvv/wypaWlnn2s/f4GDRrEnDlzACgrK+O+++5j+fLl7N27lwULFnDllVfSv39/pk6dasvn2dG01qw03W/6EoknWzVOsAayfqphIuweS78j0XqmNjlQVxEY7NWA9ax9AvO259kYSejYYx5kghrFeDWKsSpw+gPWq08EAhzS8j1vL6d2strcBEBPMrymcAaLBGI92zIwpGnW/oBZKrQmq8eohkSgTA5uvw2WROAIIzgSgdAwMCSPQqkOt5nWmq9eXkhtZQ27V+xk3HUTmtwvIiaCuOR4AIokESiEEAHH1kTgCy+8QElJCeeccw4ZGRme23vvvQfAt99+y4oVK9i4cSP9+/f32ufAgYYXvDk5OZ6Jww6Hgw0bNnDFFVcwcOBAbr31VkaPHs2SJUuIjIy05fPsaPv0YfI4Arib/wfLxOB61kqG3ZIIbJdcCqmtW/IZ7P0B62UMbKjozc2RPoG+sFCvYJlex1q9hcFGlt3hNNKddM+29Alsv816JxV1VVTB2B8QIM6aCNTSJ7ApoTooBBqmBoNUBLaX1pqNdUuD00kmVQVP25j6PoEKRYGWpJKdchZvJX+H+8Jc1vgB9Bh+8r813Xq5f8ZK80pwVte2eOyDmw7gqnVRU1mD6ZIWEEII4U9tGhZSWlpKXFwchuGdWHK5XJSXl7e5t15LV/XOOeecVl35s+4THR3N559/3qY4Qs1K3bDc7wwVfG/6eqp0wgjDiZNder/d4QSlUBoUUi9jkKUiUPoEnrJyXcFO7e7BOVT1J0wFzOwojx6qIRF4QCoC222FV3/AUbbFcSoSVJxnWyoCm9ZZEoHSI7B9DpHPUdwXzYcHUTUgwGlqCKvYwDFK2cdh0ix9A0XH+mrWIs/25B+f2+y+ST27se/bvWitOXroGKn9Tl6NXlZUxrPT/oJSBqbTxU9ev4Pss4Kjj6UQQgSjVpeKzZkzhzFjxlBV1fgFWFVVFWPHjuWjjz7yaXCifeqXBUPw9QcECFNh9FHdAfcbG1kG0nahNCikXnp2JspQpPRLBVN+Jk7VZr0TjfvrGKhvCnt4LQ2WisD2OqKPMUmNpo/qzmg11O5w2iWOGM92qZZEYFPyzSOcoUYwUg1iAH3sDsenrD0CK2RpcLtsN/dwthrLCJXNaWqI3eG0SZJK9PSJzZHe0bbJ35nH7hW7yBrfn16n9WHY1OaLDbr1bEjYHt1/pNl9P/vLR9SU11BdVkVtVS3rP1nrk5iFEEI0rdWJwBdeeIH777+fmJiYRo/Fxsby61//mn/84x8+DU60zwrLAICxRuD1/WqN+mqGcirJR5aBtFX9oBAInYrAxPRE7v3fDDKyM/lq1iIK9xTYHVJQ85oeqQLzqrtXj0AkEdhe881lfK3XsFcfCtikb0usFYFlUhHYpPn6G1bqDeToPWQZodsjsEKWBrfLBp3DV3oVG3QOA40+dofTJoNUP892jrnbxkg6tyWvLKKypIJdy3dy2uWn4whzNLt/Us+G5efNDQwpLSxl2dvfeN238bN1sjxYCCH8qNWJwE2bNnHOOeec9PGzzz6bjRs3+iImcQq01lTqak5XQ5hiTKSrSrQ7pHbx7hMoy4Pbap9XIjA0pmUrpdjwyTo2fLYOV62LT/401+6QgprX9MgATQ7JsBDfqB+6lEoS8Sq2hb0DU7ylR2D9ZFzRoFAf9SwNPk0NIUKF2xyRb8XK1OBTZq2ksybWgsFAy9A7qQi0R0VJBSveWw5ARHQE4793ZovPqe8RCFC0/+SJwA2frqX/hAF0651Mcl/3YJjSglL2rNp1ilELIYQ4mVYnAo8dO4bT6Tzp47W1tRw7dswnQYn2K+Qom9jOt3oLCmV3OO1mnXgoA0ParlAXkUISAL3rllmHgvPumEJcN3dl0Nq5a9j7rbwhaC9rReBwNdDGSE6uCwmeBIAsDW6fcl1BLoWA90T2YGNNYJbpChsjCUzWliDBOhCmOdHWHoFaegS2xzZLJZ01sRYMeqkMonAP/JNEoD2Wv/MNNRXVAJxx3XhiurR8USmpl2Vp8MGTJwJzvtpGzuKtFO07woQbJnrul+XBQgjhP61OBPbp04fVq1ef9PHVq1fTu3dvnwQl2m9/iFSCWSsCd5mSCGyLGl3Ll+ZyCjnKBE4jma52h+QzUXFRXHTvZYRHR5A1YQCfPvmR9JBsB1ObbNLbAehFJl1U2wY9dRSlFN3rBoYc1HnyvW6HPfqgZzuYB0hIRWDzrC1BgnUgTHNiLUuDK2VYSLtsr0ugZZLqtdQ+GDiUg4GqDwC79H5qdMsTaIXvaK3Z8uUm+k8YSGxSHGff2vyQkHpJ3builLsooaiZHoG529zvXcKjwplww0SMcAfp2ekcO3xM/u8LIYSftDoReNVVV/Gb3/yG/PzGVRl5eXn89re/5eqrr/ZpcKLtrEtCg7kSzHtpsCQC22KZuZYy3BUzfYzunhdhoeLM708ic1Amu5btIGfxVjbP32R3SEFnrz7kmbw6IkCXBderXx5cTiUlHLc5muDjNUnWCOZEoGVqsAwLaWSFbkgEnhGCFYHWqcGyNLjtjuhjFFEMQLYRXMuC62XXVTG6cEnLmA52YP1+dizJYeey7aRnZ5DWP71VzwuLDOeO//yCB5c8zJ3v393kPtUV1RzZ465aT8/OJDYpjiHnDSUvJ48Nn67j8NZDPvs8hBBCNGh1IvCBBx4gPj6eAQMGcMcdd/Dss8/y7LPPcvvttzNw4EDi4uJ44IEH/BmraIVQGRLRx5LE3COJwDaZbzY0XJ7imNjMnsHJEe7g/OkXej7+6LE5uJwuGyMKPs853/JsD1cBnghEJgefCmsiMCuolwY3DCo7LsNCvLi0i9Wmu0dzD9K9emuGihjL1GiZGtx223TDsuDsIFsWXE/6BNpn9QcrPNtjrz6jTc8dOGkQaf3TiYiOaPLxvO25nqq/zMHu9y3ZZzUMMNsiF3uFEMIvWp0IjI+PZ+nSpdx4442899573H333dx9992899573HjjjXz99dfEx8f7M1bRCqEyJCJaRXkSALvkym+bWBOB5xsTbIzEf0ZcMoo+Y9xVDVFxUaz570qbIwoeLznf5TnzTQwMfu/4OTc4LrM7pGb1UA2VB5IIbDvr389gXhqcIBWBJ7VF7/RUyY0zRtocjX/EKEuPQKkIbLMcsyFxFqyJwEGWSkZrYlP4l8vp4tv/WwOAIyKMkZed3uZjlOQV879nPmPV+yv4eOb/kbNkm+ex3K0N71syBrmLAIZcMMxzn6z6EEII/whry86JiYk8//zzPPfccxw5cgStNSkpKSG39DCY7Q+RpcEA2aoPUTqCFJVEqVlGghFcPW3sUKiPslZvAWCkGkSaSm7hGcFJKcW0h67m3XvfZO+3ezh2+CgjLzudyJhIu0MLaPt1LqWUkUAcpZRxnHIGGH3sDqtZ3UmjF5l0VYkU6WK7wwk6oVIRGGcZFnJcegR6Kf2mmKmZZ7ImY2vIJgKtU4MrpEdgm23X1kRgcC8NBu/EpvCv7UtyOF5YCsDQC4YRkxjTwjMaqyqr4pMn5tJndF/2rtnDntW7GTBxIIZhcHhLQx/bzCHu9y3JvVNIzUqjYFc+e9fspvxoGbFJ8h5ACCF8qdUVgVZKKVJSUkhNTZUkYICpTwRGEE46wZ0ESlXJ7OIAy/V68uqmXormLTCXebanGKG3LNiq79h+pPRLBaAkr4TF//zS5ogC3/9cX/M75zOUUsZlxrk8FtZ0z55Akmmksp/DrNdb2cPBlp8gvNQnAhOIoxtd7A3mFHhVBCJTg60yH43j8cE/5PPUJ7n14FV2h+MX1qnB5bI0uM28lgYbwVkROED1QeF+z7FdlgZ3mE3/20DWhAEk901hzFVtWxZcL6VfKlHxURza7P4fXrg7n18PuIfaqloOb2soYKhfGgwNVYHa1GxbvPUUPgMhhBBNaXUi8MiRI9x2221cf/31bNokZdqBSGvtWRrcQ6VjqHbleQNGqurm2S7kmI2RBI9d5j4mqdGMVkM522jfC7ZgcvmD0zAc7p/z1XNWUpwrPyfNsQ4UuDfs1qC4kGP9O5CvTz51UDRWq2vZr3MB97LgYPh+n0ws0Z4kwHEtFYH1avNqqPjKXa0T0TuKmN6xLTwjOMnU4FNT31MvnlgySbU5mvaJVlFcqs5hkhqNA4dMk+0A1RXVrJq9nF3LdlBeVMaQ84e26ziGYfDDf/2Un//3HrLG96ckr4SaimrytudyeIt7GEhccjzxyQme5wytSwR27ZHEkX1SDBBMaipqeO/+tyktLJXfUyECWKszRbfccgtpaWl85zvf4ZJLLpFf7ABUTKmniXqwLwsGSFFJnu1CXWRjJMHjK72ar/Ua1ujNjDba94ItmKQNSOfc2y9gwKRs8rfn8Z9fvyN/m5qx0nQnAsMJY5QabHM0rWNd3l4gfwfaZL/OxYV7kE4wLwsG90qEuLqBETIspEHpnKNQ9ycv4bvdgjrZ25wYy9Lgci0VoW1RblZ4kufZqm9Q/4zUKidf6zWs0Os5TIHd4YS8TZ9voLq8GoBRl51OeFTTAz9aY9DkwfQ+rQ/DLmyYar575S7Kj7p/Nq3VgAB9x2QRFR/FsYNHWffRt+0+r+hYrloXs376L755YwkPnTaD+7LuktflQgSoVicCv/32W6677jquvfZa8vLyKCyUqzOBpr7yA4J7UEi9ZLp6tgv1URsjCR7b6/rmpJBEN9XF3mA6yPm3TyEvx/2zv/mLjayavdzmiALTUV3iqQo5TQ0hSgVHP8VUGi4I5ElFYJtY+wP2VT1sjMQ36pcHl0kiyKP0g4bficSruzWzZ3CLNaP5tt8rfJv2b/5x4S/tDieobCCHIopJpgsXGGfaHc4pGWTpbyh9Av1vtWUQ2+g2Tgs+mfqBIAA7lm6j18je9J8wgAETs732C48Kp0uG+31Awa58XE6XT84v/Mc0Td779dscO+h+z6ZdJrWVNVQdlypuIQJRqxOB06ZNY8aMGfzyl79kxIgRpKYG59KCULZPH/Jsh0JFoCwNbpsSfZzcul6KA4N0KmB7xCbFcd2TNwDupSXL3/mG4sPy83Ki1eZGz/YZxohm9gwsUSqSLriXCxUgFYFtcVSXcJYaw3A1MOgrAgHilLsisFSGhQBQe7ia6m3ufnkRA6OIHNb2Jv7BwnAYUGaiqzS6wrQ7nKCyoq4S/AjF9Ajyi8TW1zY5MjnYr8qKyti2yD18rktmV7LG9/fJca2Vfwc3HWT/+n3sXLaDtP7pjfZNH+j+eXVWOynaL///A5nWmv/+bjYr3vmGwr0FXsNdjh85bmNkQoiTaXUi8B//+AfXX3892dnZLFiwwJ8xiXayTgwOhYpA76XBUhHYkhzrVMAgbQbeXsMvGsl5t0/BWV3LruU7effeN2UpwgmWm+s828E2WTSt7qKA9Ahsm+16D0v0ajbq7WSq4L9456kIpAJTSzKodM5RXEecRI6IoeuPQn94mxHjfslqSiKwTVaaGzzb44LoIlBTrK9tcmRgiF+t/2QtfUb3Iz07g9OnjcEwfNN3PCEtkZiu7l6mJXnFgLv1w4CJAxvtmzawITmYl3O40eMicMx7+hMO1w2DMZ0mfcc0/K7WT50WQgSWVv9VNwyDG264genTp5OYmOjPmEQ7eS8Nzmxmz+DgvTRYrgS2xPqi2Lp8prOY8oupRMa6l7tuXbiFlf+RJcJWK3XDm8EzgiwRmIo7EVhGhfQHa4NCGi6gWC+sBKs45X7zqNGUI5NjSz8oAg3VGyqIu7Bry08IcirWAYBZIUsE26K+IjCOGIYo31R12cVrabAkAv1q5ezl7F6xk7ycXEZfNdZnx1VKkTnI/R7FdLqT+j1G9CKmS+NBR/UVgQB523MbPS7sV1ZUxuwZ7zDvL5+wa8VOsiYM4HtP30if0Q2/q2VSEShEQArusbLCyzFdQkpdP61QWxpcgFQEtiTHbFgmk92JlgbXi+kSy3V/uREjzCBrwgA+/P37HD0oPzcANbqWIl1MPLGkk0wvgqtiON0yMCRfLgq0mrWSOjkEEoEJNLxR7OwDQ2oPVVOx1P3mKnJQNJFDolt4RvAzoqUisK0O6jwOkQ/AGGM4DuWwOaJTk6y60o0ugPdrHuFbR/YVsne1++ubMSiTHkN7+vT4GYO936MMPCu7yf28E4F5Po1BtE9tVS05S7bx+V8/5c8XPs6TU/7I0teX4Ah3/20ZPnUkZ1w7gfiUhgnQx49IRaAQgUgSgSFkmV5HIUfJJJXuOviXgcUSTTRRABzR0vOtJV5LgzthRSDA0POHcdYPz2HXsh1UFFfwzq/ekCXCwOfmEtbqLVRRza2Oa4JuCaH1okA+sjy4tQotfzdTCP6KsThrIlB37j6BpXMakryhPC3YyqirCNTlkghsrfpqQIBxKrgqwU+m/vXNYQoo7eR/B/xlzX9XebZHX+WbISFW9RWB9bLPGtTkfqn9UlGG+29bvlQE2s5V6+KrVxby/LXPkvPVVg5uPEBSz25oUzPlFxdxyX2Xc+5t5wPunt31pEegEIFJEoEholxXsEvvByBDpRBmhNkc0alTSnkqHKVHYMvqE4HRRIVEj8j2uvjey+iS6U56HFi/jy0LNtsckf3ecs0FoBZnUA0KqZdmqQgskIrAViusG64STyzRKsrmaE5dgrI0H+/kFYGlHzT8HiSE8LRgq/oegbpWo2slGdga1v6A44OsJcTJWPsEbpflwT6ntWb1B5Zpwd/x3bLgeplDGioClaHoOzaryf3CIsNJ6ZsCQP7OPEyX/N7b6YUb/s66T9YCUFk3CTghNYHz7pjCaZePZuo9l3j2jU+xJAILJREoRCAK/myRAGCT3oHGXfk03Gi6xD4Ypaiu7NeHOcIxXNoV9Mta/KVG13oSwQNVHwzVeXP80QnRXPfn7/N/j35A+dFyZj/wDtnfPEJYROf8c3dUl/CJuQiAdJI535hgb0DtUN8jEGRgSFvUX0BJVsFfDQjuHmf1SnXnTQTWVtWyoedWUs/uRkJFHFFDQndasJWKbvi/ZlaYOBI77/+51jimS/iP61PPx2OD8CJQU6x9Arfp3YxhuI3RhJ4dS7cTFhFGzxG9iIqPIqmH79tKZAzK5Pw7L6S2spawyDAioiNOum/6wEwKdhVQW1XL0QNFJPdJ8Xk8omVHDxSx4+scwP06+/zpUxg4aRAJliXAVvHdGhKB0iNQiMDUOd8Zh6ANZo5ne4QKpURgEmh3c/ijNPRAFN526/24cDdQH9gJ+wOeaMh5Q1nyyiLyctxLSVa9v4IJN0y0OSp7vO/6jFqcAFzvuJQwFXx/9qVHYNs5tZOjlADeidRgZq0ILOvEFYElecV8+cWXAJx2xWiG4vule4HIiD0xEWhjMAHuuC7ngppbyKWQkQxietiNIXNBwNoDOcfcA3J92Ke+fOELDm89BMCPX/2ZX84RGRvFFb/5Tqv2TR+YzobPIDwqnGOHj0ki0CbWKtHzbp/CmO80/3/Ha2mwTA0WIiC16x3hggULWLBgAQUFBZimd5n2K6+84pPARNts1A2JwNCqCGx4A1uoj4bE5Et/2Gnu4zQ1hAJdxOBO2h/wRFPvvpgtCzYB8MWzn3HGNeM9zYw7k0J9lOFqIBv1dr7vuMLucNpFegS23RGKPduh8ncziUSy6EUk4VToKrvDsdWIS0ZRkldMxgm9tkKZEdPw99ssl8nBzfnG9S0DVR826x0cpoBxIVINCO6LnV2IJ5M06R/tYwc3HWDrl+52Kkk9uzHk/GE2RwRn3nQWg88fRm1VLTGJnaP6OdBorVn1/grPx2OubvniU0R0BNc+cQOxSbF09UNVqRDi1LU5EfjII4/w6KOPMmbMGDIyMjpFg+pgYK0IHK4G2hiJb1kb3BfoowyxMZZAtlZvZa3eAsBg1XSvlc6mz+h+DJo8mJwl20hIS2Tt3NWMuXqc3WF1uJdc71LAUVJICtqLBNIjsO0KLV+nUEkExqhoduFugVBE500AJPdJ4daXb7M7jA6XdHs6CdOSUNEGYeknX0oo4NeuP7NN78bA4IuIWWQboXOBsA/dceBgCzs5ahajtZb3Ij6y8IX5nu3z7piCI8z+i6dlhcd59oq/ADDhholc/9SNNkfU+exfv5+CXe7p4/0nDCCpZ+tWGUy86Sx/hiWEOEVtTgS++OKLvPrqq/zgBz/wRzyiHUxtsklvB6C36k4X1XS/hmBkfQNb3/heNBaqFaGnauqvLiVvRx57Vu2mrKiM064cExAvbDvKcV1OAe4+cQNUH3uDOQWplpYAsjS4dQosA5aSQ2BiMLgrAusdQ5YadTYx4+Nb3klQqavYrvcCMEwNYJARWhcHDcNglDGYBeYy8jjCfnLpTeepjPWXwj0FbFmwiazxAzh+pJRx1wVGP+FulqXAhXsLbYyk81o1ezkJqQmk9Etj/PfOtDscIYSPtLnTck1NDWeeKX8EAskefZAyKoDQ6g8I3olAWQJychvqEsGxRNNP9bQ5msDRb2wWKf1SASjcXcDa/1tjc0Qda7c+4NnOMnrZGMmpCVfhdKMLAPlyQaBVjlgq5qxLq4OZ9SLXMV1iYyRCBK4teicm7rY9I9Qgm6Pxj3GqYQLySnM9AGW6AtM02WMepEbX2hVa0PryhflUlFSwa/kOxn53XLMDPDpSTGIMsUnu/rBHJBHY4Zw1Tr79cDWlBaXsX7eXYVNDY/q4EKIdicAf//jHvP322/6IRbSTVzVYCC0LBu8m99YKF9GgRB9nrz4IwDA1sFNPDG7KRXdf4tn+/JlPcbk6T28payIw2BPE9cmsfH0ErbXN0QS+UFwabK0IPCqJQCGa5DU8LkRXCIwzGpIRK+oSgeNqvktMzQgG11zEN+a3doUWlEryS1jx3jIAIuOimHTLZJsj8pbS110VWHz4GC/f+k/+ctFM/nTeHyjaLz2D/W3rws2UHy0DYNjUEUQnRLf6uWVHjrNv7V42/W+DTA4WIgC1eWlwVVUV//znP5k/fz4jRowgPDzc6/Gnn37aZ8GJ1sk3jzBJjaaAowxVA+wOx6esU+5kaXDTNtZVAwIMN0IrEewL/c8cSNb4/rhqXJQfK2f9x2s5/coxdofVIUIpEZimktmqd1FJFWVUEE+s3SEFtFBcGtxVNSQCizvx0uB/XPMMxw4dpUtGV6bP/iWG0Tku/jgLaqnZVYVZ7iJycDTh3SPtDikgeV8cDs1E4FjL8JOV5gYASnWZ5751eivn0Pl6ArfX8reX4qpxAjDp5rMDbihHt94p7F2zB4DN8zd6Yj2wYT/deiU391Rxila/3zAteOw149v03K9mLeLzpz8F4LY3pwfE8BkhRIM2JwI3bNjAqFGjANi0aZPXY9Ks1x6r9Ca+1u4lj9lGX5uj8S1ZGtyyjdar/yH6ov9UTb3nUp6/9lkAPv/rp4y6/PRO8eZ5l97v2c4K8kSgtTo4Xx8hXkkisDmFNCQCU0OkIrALDT3iOvPS4MLdBRQfPkZVaWWn+DtWr3TuUXKn7wYg86Usut6SanNEgWmD2XBxMFQrApNUIgNVX7brPazVW6g0qyihoeKoPjkoWlZRUsGC578gNSuN2KRYJv/kPLtDaqS+IhDwJAEBDqzfz6jLTrcjpE6hvLicXSt2AhCXHM+gyYPb9Pz4lIZ2HmVFUhEoRKBpcyJw4cKF/ohDnIL9HPZs91Kh1TA5xTIkQJYGN22Dti4DCs1+QKdq4KRs+ozpx97Vu8nLyWXjZ+sZeelpdofld94VgcHbIxBgtDGMAzqXAorYqw/Sn952hxTQrBdOUkKkR2CYCiOBOEop42gnrQg0XSalBe4kaGJGF3uD6WBGbEPS0yzvPC0e2kJr7akI7E4a3VQXewPyo3HGSLa79lCLk6/0Kmpo6AtYv1xYtOzrVxdTXVZFQVkVZ06YRGJaYstP6mDJloEhVvs37OvgSDqX9R99S/mxMnqN6sOQ84e2edhefHLDxbvjhZIIFCLQ2HopeebMmYwdO5b4+HhSU1OZNm0aOTk5XvtUVVUxffp0unXrRlxcHFdffTX5+fnNHldrzUMPPURGRgbR0dFccMEF7Nixw5+fiq32aXcisCsJJKg4m6PxrSgVSTyxdCEeA6k4bUp9RaBCMSzEekT6ilLKq1fghs/Wdoo+c7tNdyKwCwkkqcB7cd8WccSwTK9ll97PTkulo2iatUdgct2glVBQvzy4oysCayprOvR8J3P8yHFMp3sQRGJ6F3uD6WBGjCURWGnaGEng2k+upzIu1FuFnKHcy4P70IPVpvcKpUPkc1Dn2RFWUKmprGHxv74EQBmK8+6YYnNETbNWBFodWL+vU7yWs8vK2SswnaZ7SMiFI1p+wgniulkSgdIjUIiA06pE4FVXXUVpaalnu7lbWyxevJjp06ezfPlyvvjiC2pra7nwwgspLy/37HP33Xfz0UcfMXv2bBYvXszhw4dbPM+TTz7J3/72N1588UVWrFhBbGwsU6dOpaqqqk3xBQOndnJIuxOjoVYNWC9dJVPMcTbp0E3mtpdLu9is3WX7/VRP4lRg9XUJJIPOHcLQKcNJ7Z/G6g9WsX99aF9JrtY1HCAXgH6qh83RnDpr24McvcfGSIJDQd3S4K4kEK7CW9g7eHTFvdToGKUd8gbQ1CblR8t47MyH+OSJuVRXVPv9nM0pyS32bHfJCI3ej61lxDRUo2ipCGySd6uQ0F4hMFINIpII9nKQpXXtcaxkeXDLFv1zgWd71OWnk9I3MJfbJ/duOhFYWVJJ0T4ZGOIPR/YWsmfVLgDSszPoMbzt7WXiU6wVgZ2zil+IQNaqpcGJiYme/n+Jib6rKpk3b57Xx6+++iqpqamsWbOGs88+m5KSEl5++WXefvttzjvP3bNi1qxZDB48mOXLlzN+fOOmpVprnnnmGX77299y5ZVXAvD666+TlpbGhx9+yPXXX++z+APBYQpx4u6X0TtEE4Hd6MIO9lFMKTW6logQelN7qsq2H+fXy25i55hDpGekgfROPymlFCMuHsU797wBwIp3vqH3qD72BuVH+/QhNO5ESVaQLwsGGKT6ebZz9G4bIwkO9UuDQ2VZcL2uKhE0OHF2yNCYq2qnU/FoHoPz0ln53+Ws/WgN33nkGoba1PS8JK/Ys92lk1UEKmtFYIVUBDblkM5nsjqDcipDtj9gvSFGf6pxV+ruMQ82enyFuZ6rHBd2dFhBI297Lp//9VNMl8mIS0Zx4S8vtjukk4rtFkdkXCTVZe4LMeFR4dRWuZeC71+/76RLh0X7rfpghWd77HfHtWsOQFxaHDVPxFGd5mRHqgx8FLDWtYV/uN5kjz7IKGMQT4c/aHdInVqrEoGzZs1qctvXSkrcS32Sktx94dasWUNtbS0XXHCBZ59BgwbRq1cvli1b1mQicM+ePeTl5Xk9JzExkXHjxrFs2bImE4HV1dVUVzdc5a+vfgwG+3Xo9gesl6K6UZfP4AjHyCQwr1jawbWoist/MRYYS9rM3nCP3REFtlGXn84Hv3mPmsoavv1wNdN+/10ioiPsDssvrP0B+wb5oBBwTxDvRheKKCbHlIrA5lTpakpxT9C09lkNBfUVgQBHKfF7ItCpXVR2q8EVZhIVF0Xellw+fWIuy99eytV/uJYumR1blVdsSQR2vh6BDRWBZrkkApuyWm9isXZP+Ryg+tgbjJ/FqRi6k8Yh8smloNHj6/U2G6IKDs5aJ2/+4lWc1e5Cgq7dk8gc3N3mqE5OKcXPP7iHv0ydCUBK/zQOb3Infw+s38fpV46xM7yQo7Vm72r36yylFGOuOqNdx4mJi+Wta+dTQy3D1UAe9WWQIigtNFfwljkXgE2u7TwZdj9hqs0jK4SPBMy4OdM0ueuuu5g4cSLDhrmvtOfl5REREUGXLl289k1LSyMvr+neH/X3p6Wltfo5M2fOJDEx0XPr2TN43jTv04c826GbCGx4I1soA0O8VCxtSFrHnBXfzJ4CICouilFXjAagsrSSjfNCt6G4dWJwvxBIBAIMVO7lwYfI57gub2Hvzss6MThFhdby0a6WXpfF2v8X7WqVk1X37WP2Z98S0yUGR4SDsqIyNny6jk+e+MgzUbGjWJcGd7oegdHSI7Al9X1hIXT+7jdnkOGuFK+ioYfnWDWcLNWLnWZot/84FfP//jnKMIjpEkNqVhqXzbjS7pBaVJLf0Be239gsz/b+9dIz2NcObznEtkVb6NojibHXjGv3BS+lFKm4VyXka1nCLeAYDb/HpZSxwFxmYzQiYBKB06dPZ9OmTbz77rsdfu4ZM2ZQUlLiuR04cKDlJwWI/TrXsx2qS4OTafgHVKCltLye1pryr93Nd41Yg+hR/q2MCRXjrpsAQLde3dixNKeFvYNXgT7KUDWAVLqRZQT/0mBoeNMHsF36BJ7UEX2MESqbfqonPVWG3eH4lFdFYAcMDHFqdy+6kv6V/Gz2L/jBcz/EWeMkpmsMm/63gX/d9DyHtx1q4Si+U5zbMA06MSO4BwC1lXVYiPQIbNruugtAKSQRr0L/NUG26tvovggi2KX3c5C8DrlYEGwOrN/H53/9lP1r9+IId3DjP24JipURST2SOO/2CxgwKZtBZw9m2IUj6DG8J0X7CjFNuTDgS+s/XQvAsYNH6X16n1M6VrpKBuAIxbi0/N3u7OrnGtR70zXXpkgEBEgi8M477+Tjjz9m4cKF9OjR0NQ+PT2dmpoaiouLvfbPz88nPT29yWPV33/iZOHmnhMZGUlCQoLXLVh0horAVEtF4BGONbNn51K7txrnIfdV8Ohx8ajwgPh1DnhZ4/uTPXkwRfuLWP72Nxw9EJrJ5WV6LZv1DgooYrDKavkJQcD6pm+b9Ak8qVxdwAadw259gEQVWpXC1opA65Vlf3HV9eAFCFdhnHbZaH7z9e/pPqQHFcXlVJZWMueh9yk+3DH/mzp1j8BY6RHYnApdSS6FAGR1gmpAgGxL71hwT5e3fu7W9jkCaqtq+fTPH3kmj59541lB0ys5c3B3rnzoau6cfRfDLxqJ4TA4uPEAxw4do3B346Xhov3Wf+JOBCqlGH7RqFM6Vmpdn2ITk0J5D9fpHcR7deaH5nxyTHk9bxdbMwdaa+68807mzJnDl19+Sd++3lf2Ro8eTXh4OAsWNEy1ysnJYf/+/UyYMKHJY/bt25f09HSv55SWlrJixYqTPieYWV/k9FaB29/jVFib3cvS4AYVS497tmPOCp7ktd2UUvQfPwBw/w1aOXu5zRH5ntbaMz0ygxSSQ2R5qDURKH0CT+6wLvRspxNaTdStFYHHOqDax4m7gsHAwFDul0wxiTH85LXb6TmyN31G92XX8h28eONzVJZW+j2eS+67nBueuYlLH7iC6MTONSXea2pwtSQCT7RHNwzMCIW+sK1xYiKwu0qjl9FwUdy6akbAp0/OZevCLWSNH0CvUb258K7AHRDSkp4jG1Y6HJDlwT6TvzOPvBz3702fMX1JTDu1yvO0uopAgAJZHtzp1VcERhDOVcYUDBSX1/yM7fKa3ha2JgKnT5/Om2++ydtvv018fDx5eXnk5eVRWel+MZ2YmMitt97KPffcw8KFC1mzZg0//OEPmTBhgtegkEGDBjFnzhzA/Sb/rrvu4rHHHmPu3Lls3LiRm266iczMTKZNm2bHp+lX9S9y4ojxeoMUSqzN7mVpcIPyrxveBMdODK2qH38be03DBLQV7y4LuWUlB8njGO6fj+EhNDnS+qZPlgafXB4NicBMFVqJwKQOrgisrasIDMPhdX9kbBQ/feMOyorKcNW6yN16iA9//z7O6lq/xWK6TDIGZTLuuglc+MuL2zXFMZipSMWggrEMKRtHn8+H2h1OwLEOiOoM/QEBsg3vAoIeKp1eNCQCratmOrtdy3ew8MUFaFOz99s9fO+pHxAWEbxN+nuN7O3Z3r9e+kH6yobPGnpnj7h41Ckfr75HIEC+vIfr1LTWnkRgP3qyX+dSTQ2FHGWfPixLx23Qrv8Aq1atYuHChRQUFDR6A/3000+3+jgvvPACAOecc47X/bNmzeKWW24B4K9//SuGYXD11VdTXV3N1KlTef755732z8nJ8UwcBrj//vspLy/npz/9KcXFxUyaNIl58+YRFRXVhs8y8Jna9FQE9lbdQ/ZNgbXZvSwNblC7rxoMUA5F9BlxdocTVLp2TyJ78mC2LdrC0QNF7Fq2gwETQydhVl8NCDBChc7n1VtlEkkE1dSwwQzd/o6nKtdSEZihQmvKehcsicCO6BFYVxEY3sTLpYSUBG57607+etmTZGRnsPydb6ipquEH//ghhuH766yFewp4/KxHSEhLZOJNZ3HRPZf6/ByBTCmFIzF4Exf+Zh0QFSp9YVuSTjKxRFOOu4Cgu0rz6pctFYEN9qzeTVxyHMcLj3Ppry8nc0hwryLqOcJaESiJQF85vPUgvUb15vCWQz5JBKZbKgLzkYrAzqyIYqqoBqCnkcG/wv/I+OrvUk4ll9fexuaIT8lSneN/V6Bo8yuqxx9/nN/+9rdkZ2eTlpbmlXxqayJKa93iPlFRUTz33HM899xzrT6OUopHH32URx8N7UHl+RRRg7v6oFeINYS3kqXBjTnzayj/sgQVq4i/NAkj2tHyk4SXcddPIH9nHkk9klg7d01IJQI36IYkWShVBDqUg/ONCRTpYlbrTTzufJEZjttC9iJIe+Xqhn5JoZYITFKWpcF0xNLg+orApl8upfZL5Wdv3cnfr3JfBP12zmqcVU6u+/P3ievm2ws0BbvcV9JL80s8Pb6EqNcZKwKVUnQnje3sBdzVR728EoHSIxDg6MGjfPTHD1GGoueIXpx72wV2h3TKYpPi6NarG0X7izi48QAupwtHmLwWPhXHDh3l2zmrAeg1qjfJfU59RUGqkopA4WYdFNJdpZGukrnRcSV/cb0MuP+HZSGJwI7U5kvWzz77LK+88gpbt25l0aJFLFy40HP78ssv/RGjOAnrkodQ7Q8IkEwXz7YkAt3K6/oD6nJNRK9Im6MJTsOnjqS6vJpdy3ey8j/LO6S/V0fZaG73bIdSRSDAP8IfZqvehQsXLx59i51/yUG7Wr6o1Jnk1VUEGhikEBr9Iet5DQvpgIrAky0Ntup9Wh9ufvFWwqPCyZowgA2freOF7/2N5e9+06oLnq1VnwgESM1K89lxRWjojIlA8P6bEIaDHioNo+7tjSwNdtv5jfvioDY1Qy8cjuEIjeFyPeuWB9dU1pC/M6+FvUVLNs5rWBY8dMpwnxzTu0egJAI7s0O64Xe0O+7XMNb/VdaqdtEx2vyfwDAMJk6c6I9YRBvtN3MZQhbj1SiGqv52h+M3YSqMbnXJwAIkEQhQYekPGDMpNHtD+lt4VDijp40B3JP01v7fapsj8p36isBIIhigerewd3DJVKnMCLuNuOoY/u/GJ6n57TEO3rgdXSsVUvXqlwank4xDhVaFRFfL0uCjHdAj0KlPvjTYavjUkdzz2QMc3uwe2GA6Td65+w3e/Pmr5G33zfJESQTC0X/lk/fgPvLu22t3KAGn/k1UHDFevZVD3T2OH3KP40c86PgZ1xgXE67CycRdCS1Lg922f92wSmBgCK1+sPYJlIEhp279p+s82yMuGeWTY6ZZegTmybCQTuXEnn8nVgQC9LMsBa6/mPV35+v0qDqL7lWTuKPm9/4PtBNrcyLw7rvvbnaZrug4O9nHFnaxXK8jRYX2i776qadHpCIQsCQCFcRMkEEh7TXuuoZJ4iveW2ZjJL5TrivYqd39coaq/oSp0OupdXfYD1m57j0ilio0mtyso2wzZHgIuF945eO+6p4RYoNCAGKJ9iTlijtgarCrrkego5mKwHqZgzKZ8dXDTP7JeRzeeghHhIOdy3bw5AV/ZOPn60+5OrBwV8OS79Ss0Fry3VrFrxVQ9NRhiv6W69Nqy2BXq2s9Sa8s1atTtUu4MuwCHg+/h4fC72SoYwCAZ3nwEY5RrivsDM92Wmt2LHWvEgiPCqf36X1beEbwsE4O3v71NhsjCX5lR46za/kOAFL6pZKRndnCM1rHqyIQqQjsLAp0EZNrvs/bzo/YYu6kRtdywFIR2LOupVmW0VARWJ8I3Ghu5wjHKMLdBkj4T5vfId57771ceumlZGVlMWTIEMLDw70e/+9//+uz4ETzdpudZxlICt3IYQ9lVFChK4lR0XaHZBtXiZOqDe4XtlEjYnB0Cb1ET0fpMaIXmUO6c3jLIfau2cOhLYfoHuQNtDfpHWjcb5BDqT/gifpN7su+uYoxp13L8ZgKprgm8pHjJbvDsl0BRzFxV0emh2AiUClFEonkU8TRDlka7O7D29qEemJaIlc9eg2Dzx3KN28sYcNn64jpGsuSWYuprarl9CvHtDuW/LqKwITUBKLiO+f/QCO24fq1rjRRMaFV8dpe+3WuJ2kd6q8HW6O3yuQb/S3g/toMVlk2R2Sfwt0FFB92D9rLGtc/qCcFn6j3aX0Ye+04Nnyyjo2fraeiuJyYLrF2hxWUNs3fiDbdrx1HXDLKZxcT4oklikiqqCZfKgI7Ba0119XcxWq9iR85ZwCwOuK/TVYEdifNMwSwvqp9l6XNxU69D6d2hmRRQyBoc0XgL37xCxYuXMjAgQPp1q0biYmJXjfRcaz9YPqG+Au/VEvFY2Ennxxcsew4dXkeYibKsuBToZRi0i2TGTApm7hucSx7c4ndIZ2yzeZ2zlSnMUGdxjg10u5w/KrXeb2JiIkAYIMp1QBw4qCQ0EsEAnSpGxhyrCOWBjczNbg5g88dwg+e+yGTfjiZ6rIqchZvZc5Ds6koaV91UkVJBWVH3L1hO+uyYAAV3fCy1ayQdgD1DuhczlZjmaBGMTzE+sK2hwwMaeC1LPisQTZG4nuRsVFEREVQXV5NdXk1S2YttjukoLXh07VkDMoka3x/Rlzku9eOSilPVaD0COwcPjMXM8TIwmFJM+3XhzlE40SgoQz61M052KMP4jJdbLQMPKygks16ZwdF3vm0ORH42muv8cEHH/DZZ5/x6quvMmvWLK+b6Di76zLnaXQjXoX2FTDr0ufOvjxY+gP61mmXn86+b/dSVlTGineXUVFcbndIp2SpuZZv9FqW6bUMNQbYHY5fKaU8VY/5FMnVZhr6A0LoTQyuV98nsIwKanWtX89VnwhsbljIyURER3DN49cz5LxhAJQWlPLJE3PbFYf0B3QzYhu+D2a5JALr7dT7+UqvYpleR4oKrQFB7WFNBHb2gSEFu/Lp1sudiBkQQv0B6513xxTP8JPF//qS6opqmyMKPlXHK9m2eBu52w5TtL+IXqf18enx6/sEHuGY3/9nC/t9ZC7kZdf7uGj4H71PH+Zg3dLgeGJJVA1trbLq+gRWUc0qNlJKmdfxVprrEf7R5kRgUlISWVmdt8Q+UJTrCvJwv+kN9WpA8E4EdvbJwdV7qog5K56o02OJOTPO7nCCXkyXWMZdNx5wT55b9vZSmyM6NSv1BgAiCGeUGmxzNP5nnYq8wcxpZs/OwSsRSGhWBCZZJwfj3z6BrZka3JKrHruWiJhIeo3qzcZ569m3dm+bj1GwUxKBAEaMZWlwhauZPTsXa9VbbxXc7S18obdXRWDnHRhimiarP1hJ0f4jJPdNofuwHnaH5HPJvVM4ra7lQnLfFFbNXmFzRMFny4JNuGrc/+tGXDwSw/DtVGlrn8DOvqqrM2iqCnufecizNLi+GrCetZ3FQrPx7+9ySQT6TZt/03//+9/z8MMPU1HRuZvv2m2PPujZ7gz9YKwT8Ao6cSLQrHRRNvcYFUuOY5a6CM+ItDukkHD2j8/zbC99fQnOWqeN0bRfkS5mh94LwGlqCJEqwt6AOoC1D6J1OUFn1RmWBncnjX70ZCgDKNL+fVPh9CQC29+fJqlHElc+9B32r9tHSW4x793/Fi5n25JYhbsbEoEpkggEZGmwlfWNV6+6JuydWR/VnVSS6E9vlplr7Q7HNrlbD1N+1F1dkzEwE0dYaPbUnPKLqXTrlcy+b/fyv2c/w1kTnK/h7OI1LfjiUT4/fppqmBwsKzdCX/3Fl2ga3qNuN/fSX/UiS/UiW3kPLMqyTA5eYzYMB6m/AFtf4CB8r82JwL/97W989tlnpKWlMXz4cE4//XSvm+gY1v6AWUavZvYMDV4VgXTeRGDlqjJ0jbtBYMxZsizYV1L7pXL6tDFkTRhA1fEqNlheFAWTVWbDP8txRmj3B6wnFYHecgn9pcExKprdHGAzOzhCsV/P1d4egSeacMMkMusGER3adJClr7etH+kFP5/KvZ/P4Kbnf0QfHy/bCibW4SCSCGywzysR6Jtpn8Gsv9Gb84wJ7GQfS/W3fOlabndItrD2BxwwaaCNkfhXRnYmmYPdf19LcotZ9b5UBbZWbVUtWxZsBiC2ayz9xvX3+TlSaUgESp/A0GZq03Nhqg89ULiHzuxiPxv1dnbp/WQ2UxGYY+7xbA9R7p/FHXovRbrYz5F3Tm1+ZTtt2jQ/hCHaqn6yDnSSikDpEQhA+dfHPduxE+Ob2VO01YTvT+S5a54F3H1mTmW6p12s5fNnGCNsjKTjDFL9CCMMJ0426u12h2O7PK8egaFZEWitLvDnmwqXdnkmcDtOYWkwgCPcwbVP3MBz1z5Lr5G9+PSJuYy4aCRdMlvXz61wdyFduyfRc0ToX/hrjldFYLksDa5X/8YrhSRiVOecKH2iKY6JvGt+AsCDzqf4xngPQ/l2yWOg2/51wxCtUBsUcqILfjGVjZ+7XwPN/8fnjLtugqd3oDi53at2kdQzibycXIZdNNIvVaPplqXBeVIRGHL2mYe4pOYnxKpoMkihmhoAehuZlJplHCKfg5ZBIUOVd/9yax7jcN1+MUQzWY0lmijiiGGveZBuji7+/2Q6mTYnAh9++GF/xCHayKsiUIX+G4NUrInAYvsCsZnXoBCZGPz/7N13fFP1+sDxz/cknXTRli5oy957yhJkiKi4cC/0ureX697rivenXvW6994bt8hQkSV7r1IoGwq00J3kfH9/pE0T6ISmaZLn7auv12lyzsm39Ut68pzn+zwNqsPQTqR1bcmO1dvZvCibzYs20bpfW18Pq14W6MpAYLBkBIapUDqrNqzUG1irN1GiSwlXwbtkvqJGoAWLR0mFQOJeb8iby4wqsgHh2JYGV2jTvy1DLhrK72/MBODL+z/jijevqfU40zR59rQnsZXYyOzbmsk/3HnMY/FXHjUCiyUjEKBM29iBsySALAuudIFxKs+r91mq11CsS1mkVzJABccNMgCHzUHW3A0ARCVGk9IxsOdG675t6DCsE3k79tOseRRLv1/slzd0G9vKX5aza91OImIj6T7WO/8+ktxu3q2WDrAB52+9gixyQMMaslyPZ6g08lUB2/VuCqksKdfT8GxalKlaYmBgYlJIMQDdVQeSjRbMtzs/11zJufSjeyP8NMFFbpX4KfdAYDBkBMYTRyotiCScvQRnWrm2a4rnOTMCrS1DCWkTvMEOb1BKMeKqylqBs96Y4cPR1J9DO/jbXAFAGkm0IsXHI2o8PcqXBztwsEZn1bJ3YKuoEZhCYsBmv7gvM/JmdkFFfUCAEHXsgUCAk/51ClGJzmzu5T8uZWP5B/Wa5G0/gK3E2WkxukVw3wAKaR1O5PBoosbFYUlomP8n/m6b3uXKXJVGIZUMZXCH9Spa04oNbOZ5+we+HlKj2rp8C6WFzg66HYd1Qinl4xF537hbT2bvpr1sXpTNtP/9jNba10Nq8iqyRksOFdN+SIda9j46g1RvRhgDsWBhvjR+CDgL3MoS2dyumzJVyyNKVSgU3ZTn8vNQFcKC0C+4zXIFADcZl/ByyMPEU9kYTpYGe0e9PiW89NJLjBkzhnPPPZfp06d7PJebm0vbtv6VPePPssoDgTFEkUCcbwfTCJqrGHaylyJK2K/zfT0cnyhZWohZ6MyAiBwaHRQXdY2t3xkDSOqQQrvBHdj413r2b/OfZehrzWx6qc70VJ0YZvQLqvnRS3WmC+0Yrvqz2dxW+wEBqtQsI12lMkD1COiMUPdlRnu8eGPI/YL2WLoGu4uMa8aZD51NfEYCrXqk8/ndH2M6as5s25MlHYMrxE5MoM1v3cmc2oVmx8fWfkAQcO+KKxmBniYYJ7CfPExMZphzMXXwZJFuWbqF9J4ZhESE0mFop9oPCADth3Qgs7yG6o7V21k9fWXNBwS5g3vy2bXO+f6R0SuTyNhIr7xOikokVx/AgYN5eilZZk7tBwm/UV1wN0OlenRwB2ivMmmmjpxn3Y2OtFDxtCSZVkYK3YwOJKg41/P7vVwPOljVORD4v//9j9tvv53OnTsTFhbGySefzJQpU1zPOxwOtmzZ4pVBCk82bWNr+YVfO5URFB/4rcpKHM5MiH1B+mZQvKgAS1IIAM1kWbBXhISH0Pe0fmTN3cChvYeY/c7vvh5Snc3TS5mtF7Fcr6OP0dXXw2lUnYw2rCGLP/VClgVx5+C1bOJvvYK/9QpCCfH1cLwmqZE6EHouDW64ukl9z+xPdGI021ZsZde6nSz+ZmGN++/ZVNkJOqltYDaAEUdvi97u2pZGIZ5CVAgjjYEA5HKAJXq1j0fUeFb8vIyty3Owl9noOCw4AoFKKcbefJLr+5mvTa9hb+HZTMZ7c0QpxUWWCa7vP3RM9dpricZVqsuqfV/NUGlH/E3qpaqfZ7dYJ5EVPp1brJMAiHcLBB4I0iQgb6tzIPDVV1/l9ddf54UXXuD9999n5syZPPPMMzzwwAPeHJ+owi6dS3c6MkD1oJ8KnvXy8cp5939/kKYHF0zLw7HHhrVVqHQM9qKhk47HEupccjbngz8pLSzx8YjqJhjrA1ZwL4/g3kgp2Cx3C4L2MgK3MHwizTHKL1+82SzEPRB4rF2D3RmGwSl3ne76/qenvsdhq77xhWQEiprkuHUMlqXBRxprDHVt/2bO8eFIGo+txEb2384yGc1Tm5OQmVjLEYGj24k9yOjdmraD2rNz9Q62LpMkleq4BwK93UzmfMuprr/bH5rfBVV2biBbqtdQhq3K5zJVyyMyAnsYdQ84eywNDtIkIG+rcyAwOzubIUOGuL4fMmQIM2bM4LXXXuPuu+/2yuBE1fayn2Ws4W+9giBIBnSpWAKdxyEcOri6BWpTU/SXsz6gLnQQ1kW6AnpLTIsY+p05AIDi/GLmfewfHxwqUvOtWOmjgisjsLVqhcL5ZpjtVj812KwwKy/qe9Rw19XfWZSFFji77XqzRqDN7eK2IZqFuOs0vDMdhnZEGYqYpBj+/nJ+tfvu2egWCGwvgUCAWY4FvGP/ytfDaBJykKXBNRltVH52mebwj7/nx2rzok3YS52lDToESX3ACoZhcNyFQ9g0fyMF+w4x58O/fD2kJklrzYY/nfUBrWFW2vT3bnmvNJXEaGMwAKm0YKOWAG0gcK8P6H7DNIxQkog/IhDYsx7Xpu4ZgcFaFszb6hwITExMZOtWzw9Y3bt3Z8aMGbz99tvccccdDT44UTX3gpkJ5R+GgkHFG4JGk8ch3w6mkZWuLcax33lRFzkkBmUEz0WdL4y8ahTRidG0Hdie31+fQVlRma+HVKMDOp+1ehMAvVVnIlS4j0fUuMJUqKs5yqYgDgS6ZwQe3pUt0FR0Dt7DPq8VhLe73XCyNODS4Aqn3n0GcWnN2bQgi5+e/N7VEORwFRmBEbERRCVEN/g4/ImpTc4ru4WTbP9gsn0KO/Se2g8KcLI0uGZtjXTaqQzAWULjoC7w8Yi8z2PJZ5DUB3TX78wBhEY6G+ot+mqB36zsaEz7tuQSmxJHdGI0bQa0IzQi1OuvOUoNxoqFeXopM8x5Xn894X3zzaWu7fZkurZbqmQMZZB+2M2p+mQEuvdAkGYh3lHnQOCwYcP46qsj77527dqV6dOn89NPPzXowET1cjng2m6hgigQ6JYiHGzLg4tmH3RtRw6TZcHe1rJbKzoM78ymBRvZl7OPWa837TozC83KgtgDjZ4+HInvtDWcy4P3kx+UtUS01q6MwBQSPeroBaKKn8+GnQMcrGXvo+Pw0tLgCq37tSG1szNwk7fjAHM++POIfcqKyziw3dm0KKldclBl9lTFUAYtlTMrsohiHrW/6OMR+V5Fs5A4YohVwR0ors4YNYS+qhsnqEGsMNf7ejhe57HkM0jqA7oLjwp3rewoLSyttQ5rMFo/ex3ZCzdxKPcQXU5onFUkAyw9XCU31unsRnlN4T02bWOd3sww1Y/jVG+P+n8Vn9kjVDjDVD96qc70UB1pSd1XNYSqEKJwNhaRZiHeUedA4F133UXPnlV/wOzWrRszZsyQeoGNZJ+uDAQmBFMgUAVvrQDPQKBc6DeGcbeOx7A43yJ/e/4XDu71TrChIcxzuyM3yOjts3H4UkXGBwRnVuAO9rjeF+tzx9VfJePWOdhLy4M9ugarhs8IBDjlztNc27Pf/YPSwlKP5/dmuzcKkWXBAPdYryOGKAD+cPzNXtN/urs3NId2sE3vAmRZcE36Gt1YrFcxTf/FEr3K18PxqpKCEnKWbAYguX0KsSlxPh2Prwy9ZBgAMUmxbJy7wcejaXrWz17r2m53XIdGec1Oqo1ru2IVi/Bfv5lzWKHXMVsvoqVKJs2ovEZxb1j3W9i7zA/7gr/Dvqr3zcz48qxAWRrsHXUOBH7zzTecd9551T7fvXt3HnzwwQYZlKjZXvdAoFvabKDzrBWQ57NxNDatNYXl9QFVpEFEn2Y+HlFwSOmYyuCLhqIMRavu6fz2/C++HlK1FujKGh0DVZBmBLo1DAnGQKB7fcD61GDxV8luGY+7vNQwxO4eCPRCRiBAq+7pDDj7ONoN7kDejgP8+fYs13NbFmfz0S3vub6XRiFOiao511suoqtqzx728Zb5ha+H5DN79H4SaU4n2tDXCJ7mcfXV2aisfxbomUibF2XTun9bmreKp8PQjr4ejs+k98qk94S+HNp7kIVfLmDbiuC7LqiOaZpsKM8aDY8OJ71nRi1HNIxEmrsyxdabgf3vMBi4d3++yDKBKy3n8or1ET4M+S//s97fIK+RUP7Zfz/5XisDE8zqHAh8+OGHKSgI/Loa/mCf29LgxCDKCPSoFUDw3BmwbSnFvs1Zoy5yUDQqpM7/bMUxOulfp5DSMZWs+Rv5482Z7Fq3s/aDGpmpTUxt0lalk0ILWgdp18hgDwS61wcMioxA5ZYRiHcyAr3VNfhwY246kU3zN1JWVMb0F39l3Z9refmC53n10pfYtcGZ7XXZq1cy8LzBXhuDv5lkOZPVeiOHKAyaBhBV2U0uu9jLOrIxCO5l4zXpqFq7tteagZ2JtP7PtWyav5ED2/bTPogDgQAdh3V2BQ/mfDjbx6NpOnau3UHBPudn+vaDO2Cxeifj/XBKKTopZ1B+O7s5pAsb5XVFwzug8/nOnAlAC+IZawylrZHOZdazmGg5ke6Whnnvaa6c5bAcOMgPsv4AjaHOEQWJwjYdHs1CgigQ6L40OJgyAovmHSJ8QBSRw6KJGhtb+wGiwcQkxdL3jP6As3Pzt482vS6V63U20/VcNumtDFG9g7aGmHsgMEvn+HAkvhFsGYHuNRB3eykj0GNpsBeahVRI6ZhK/4kDASjKK+Klc5/jwPb9FO4rILNPJvHpCUTERhKXGue1MfibNkYrjwYQwfqBco/b3HdfLi88NVexJON8z1gf4BmBG+dU1kBsP7hxlnw2Vf3O7O9qGrLwywWUFpXWckRw2ODeTGZY50Z97U5G5fLgdbI82G996fiFUpxJKudZTiZEhdRyxNFxTwKS5cENr16pRcH6AbOpyXVbGpwYTEuDg7R7UOHvByn5u4Ci2YeI6Bfl6+EEnZFXjyYuzRlwL9hfwPo/19ZyROOaZy5zbfe1BO/SMI+MQHObD0fiG7t1LkNVX05QgzyyXwKVe9Bjt5dqBDbG0uAKJ/3rFAyrQbPmztIPoZGhxKcnMOj8wdz318N0HtHFq6/vj8YaQwHn/6ffzQU+Ho1v7HKb+8kB3iDoWHUqXx68m30B21CqpKCErcudN8JSOqYSnRjczeXCoyPoV34zt7SghCXfStMQOKyZzPDGvXHoXicw0JfpB7LPHT8xSPWij+rKhcYEr72OR1mwIOsP0BjqFQjs2LEj8fHxNX4J76soCB9JBJEqwreDaUQJbm8GB4JoaXDRn84mFSpEETFQAoGNLTQilNPuP5O0Li3JWbKZrx/6AtNh+npYLh71AYO0YzBAjIqiBc6/QdlBtjQ4Vx/gD72Qv/RiiinBqrwbtGoK3IMeu/FWjcDGWRoMkJjZglun3s6dM+8npVMqQy4Zzr2zH2LQeUOwhDTOsi1/M8YY4tqeZv51zOcztcmb9i/YY+7jLfsXfrESZo/b3HdfLi+OFAwBiOy/N7muT9oFeTZgheMuHkp6zwwy+rRm3kfBW0aggsPuwF5mo1WPDOLT40ntlNaor99ZudXrlDqBfinLzOF3/Tfz9TJKKaOP4b2u0/GSEehV9bqyffjhh4mNlaWJvparnR3ygqlRCBzeLCQ43gzsu8so21ACQHi/ZhiR8oHQF/qc1o+ZL/8GwI7V21nw+TyOO39ILUc1jvnlGYEWLPRT3Xw8Gt9qq9LZq/eznd0U6xIiVLivh9QoFrhlhQZL12iPGoHeahaiKwOBFi8uDa6Q2ac1AHfNvF9WYNTBCGMgVqzYsTdIIPAz8ydusD/ETTyCiUmSSuBUywkNMFLvcc+GTZKMwBp5BALNbI4LwPfKjXNlWfDhMnu3xjRNtpdnSm5ftY2W3Vr5eFS+k7N0C+t+d65s6XNGv0b/W9NRydJgf/eR4zvX9kWW07w6hxLcyoLtk4zABlevQOD5559PUlKSt8Yi6sDUpqtRRjA1CoHDm4Xk+WwcjaloTmVh1Mihwb3Ew5cMw+D0ByfywsRnAJj9zh/0GNfLtYzPVw7qAlbrjQD0UB1ppiJ9Oh5fG2z0RpuanXovP5l/cJblRF8PqVHMN4MvKzSeWCxYcOBopKXBjXcTRoKAdROtmjHc6M9+M48CipjtWMgwS/+jOleJLuUB23MAmDgzqu61/5eTjOFNOsPWvT5mitQIrFEn90ykAA1AbJy7wbUtgUAnpRRDLh7G53d9AsCcD/7knCkX+HhUvuNe3qZTI9cHBGitWhJGKKWUBWxmbiDTWvOh6QwEGhhcYDnVq6/nmQSU59XXCkZ1XhosF6ZNQz6HcJQvV3JfKhsMmhHhWp4VLG8GheXLggGaDZNAoC91GNKRwRcPpf3QjmxdtoUPb3kX0/TtEuG/zRVonMvXgiUAVJOJlpNYqFeylZ1Msb+Cwy2jK5DN1+4Zgb18OJLGYyjDVfzfaxmBboHAkCYcDApmd1quYjnryNI53Gd/Bq01a80sPnH8UK/zTDP/IocdAMQSDTiXj850zG/wMTek3UhGYF1V1AiEwFwaXFJYQsmhYpRSJLVLJiZJVnBV6HfmQEIjQgFpGrLhL/f6gI0fCLQoCx1UJuBs7GbTNtdzhbqo0ccj6ucVx8ds1s463KOM40hT3k0Qi8ctIzBIPvs3JukaXAtTN51aYOD5jyCR4MoIVEq5sgKD5c2g6K/yjEAFkUOifTsYwUmTT2XnGueHxVXTVvi83ox7fcBgCQDVpJ/qRh/lbKqwQq/nA8dUH4/I+xzawUJzBQAtSaaVSvHxiBrP8cYABqqeNFexXgn6utcI9HazEHF0hhn9XDWn5ullPGl/g5FlF3OZ7U76lp7hyvKrzWuOT+mvupNOKk8ad9JGtaKv6spT5pveHP4xqwiCRxJBFMGdEV6bViQTibOudiAGArcsymbXup2ERYXR8+Tevh5OkxIRE0Gf8qYhzdPimfPenz4ekW+UFZeRvdCZDZuQkUBChm+yiEcZx3Gc6k1r1Yo/HQtpXzKGViXD6VZ6StDGG/zBZ44fud3+f0QRyeXGRK61eD+z1rNZSHCUBWtMdQ4EmqYZdMuCe5acSo+yU3nN/omvh+Kyl/2u7WBbGgyVbwjB8GZgL7FjhpmoMEVYj0gscfJB1NfiUuO45PnLAGjTvy3F+b69e7nSXE/z8rtlg5QEAg1lMCXkNgDiiGaH3u3jEXnfar2RApzzMNiCwfkcYoFeziq9gb0caPDz23y0NFjUnVVZedw6GYAWxDPfXEYpzgyT1Xojf5mLaj1HqS7jd3MBC/VKwlUYl4aeQQghLNarmW0uIl8fqvUcvlKxLD5JJcjKnVoYyqCTakMYoWhtUmgGVvZRxbLgkkMlpHZu3AYQ/mD09WNJ75nBznU7+PW5nyjcX+DrITW67L+zsJc6/651GNa43YLdNaMZ8/RSNujN/KkXso1d5HKAXez1uMEtmo4deg/b9R4ACijCqiyNUkM3QZqFeFW9ugYHm53sJUvncLP9MX5y/O7r4QCemXAJwRgILH9DKKaEYl3i28F42b6tubyw4VXeiHyfpT1W+Xo4olyXUd1o0TaJ7IWb+OE/vss426P38a05nQPkM0GNop3K8NlYmpLjjQH0VJ3I4xAPO17goA7si333+oDBFghMdVuSskvvbfDzN2bXYHH0TjKO50XrQ6wK+5HeRhfOM04mnDAAVuoNtWaYLNGrKSsPHlbcUBljDAbAgYNZZtNcHlymba6boinIsuC6ONUYiUaTxVbm6qW+Hk6D2jjHvVFIRx+OpGlKbp9CcgdnxnxRXhE/PfW9j0fU+Nb/6bYs2Af1ASt0dlumv1Sv8XjuwyBYyeGPPnf8xN32p7Bi4URjGM9a722U1413axayP0j6AzQmnwYC//jjDyZMmEBaWhpKKb755huP55VSVX49+eST1Z7zoYceOmL/zp2P7s2uWfkyi16qM7+asynVZUd1noaUqyuzHhKDrGswBFf3oMIDhQA4lInRKsTHoxHuYlo46zU6bA7spbZa9vaOzxw/umqYdTLaSDaIm15GF9d2jt7hw5F430a9heGqP71Vl6DLCk2lhWt7Z/md6obk2SxEAoFNlVKKK6xnE6OiiFFRdDHacYIxCHBmjW6p5T1ggUcw3Vlrdawx1PXYb6ZvS0BUZw+VtTGlPmDddDTauIK+vzVAp+mmoqy4jC1LtwCQ2KYFcalxvh1QEzXh3jMJjXTeJNixejvbV2/z8Yga1871O2h3XAdSOqb6NCPQvYP3BnOLx3OfO35qEp+3hadp5e+XJZTyf9bbsajGWSURSzRGebgqWPoDNCafBgILCwvp1asXL774YpXP79y50+PrrbfeQinFxIkTazxvt27dPI6bPXv2UY1vc/hMBqs+LNNrednxMVk656jO05Dcg1+JKt53A/ER91oBBwI8RbjwQGUmk6+70wpPYVHhru2SAt8Unf7Q8Z1r+yLLaT4ZQ1OVQaprO9ADgT+Zv/OnXsgqvYHebgHQYJCiKgOBO7yQEWjTlYFAiywN9gu3WCdxi3USPVTlh9wVel0NR8B888hmO8ONAa4s0GnmnCZZt8q9SU6yko7BdTHKGIzCedOsqQZ4j8aWxdk4ypzvV9ItuHpxqXGcctdpJLVPJmv+Rr5+4PMm+W/bG/J25rHq1xVkzduANczquqHtCx1Va9f2Ljz/dh+kgIfs/2vkEYmaFOsSZpeX2WhFikcHdm8zlEFznHN1XxCUBWtsPg0Ejh8/nscee4wzzzyzyudTUlI8vr799ltOOOEE2rateQJarVaP4xITj/4Caayl8q5wUyguvM8tIzDYugaDZ62AfQEfCCx0bTeLl0BgUxIWFebaLikobvTXX2VuYIleDTgbZHQx2jX6GJqyDFVZH6m2bCB/tl/nu/4u9VZdCFdhtRwRWNy71R3+YaIhyNJg/9XTqAwELq9jILAZEXRTziBKlIpkiNEXgM16W5O4EXy4ivqAAEmyNLhOElQc/VV3wLlsfGN5NpK/dyutqA8I0P44WRZck6GXDMdhc763b/hrPct+WOLjETWO1b+tcG13G9vDhyOBSBVBBs7rtEKc19AtiOeflssIIYRnHO/wtP0tXw5RuJltLqIEZ9LDGMuQRl+B5OoPIBmBDc5vagTu3r2bH374gSuuuKLWfTds2EBaWhpt27bloosuIien5gu40tJSDh486PFVwT19ea3edPQ/QANxL4gebF2DAZoHUa2AIvdAYPMoH45EHC48KsK1XeqDjMDvzZn0U92xYJFswCpkqpau7UDOCKzoFgzBVx8QIFV5d2mww71rcCMtgxENo6d7RqBZfSBwu97NNnYB0N/o4bHcaYwxhAjC6au61anpSGPb7ZYRmCIZgXU22hji2h5ZdjGP2F5gUNk5ZJv+u0w0a15lILCdZATWKCQ8hDMeLF9ZpmDhFwsoKw78pair3AKB3cf29OFInDoZzs/XGmdGZnejI7EqmhJKCSeMXH2AReZKXw5RlJvulj3tXjajsbQlnbakk04aJWZg9wdobH4TCHz33XeJjo7mrLPOqnG/QYMG8c477/Dzzz/z8ssvk52dzfDhwzl0qPqub1OmTCE2Ntb1lZ6e7nrOPRC4zvR9IDDYMwLjcasRGOB3Bgr3VwYCI+MifTgScTjPjMDG/aPk0A5esX/MIr2SRJpzjjG+UV/fH2SoyqXBgZwROM9c6toeaPj+wr6xuTcL2emNpcFU1v+UGoH+pZ3KIAJnCYeaMgLnO9yWBR9WY3OsGoodO4v1KqaaM7wz0GOwm8qMQFkaXHfuK31yOcDjjlfYqLdwrf0BH47q6NlKbGxbuZWW3VvRY3wv4lsFX9mg+upxUi8GnHsciZktWPHLMma+/Juvh+RVZcVlrPtjLQAxSTG06pleyxHe1/mw5aWdVBvusl7DDZaLsOPgGcfbvOL4xEejE+4+cfwAgIHBCcZxjf76kSqcTWxlNRvY6fZ3Txw7vwkEvvXWW1x00UWEh4fXuN/48eM555xz6NmzJ+PGjePHH38kLy+Pzz77rNpj7r77bvLz811fW7dudT3XXmW6ilSubxJLg/Nc2+5BsWCRoVI5wTiOQaoXefpg7Qf4saI8yQhsqsKjK9+HShs5EDjDnMfO8mWQA4wetDDkov9wrVSK6307kDMCF2j3Jge9fTcQH0ki3vX/2dtdg61SI9CvWJSF7uXLfDfprdV2D//enEkv1ZkxxhBGHfYBp6fRyVWb6HdzAWXaN42hquNeI1CahdTdQNWD043RjDOGAxBPHLFEE0YoT9nf9PHo6m/Lks0U5xezfeU2ImLkpnFdKKUYc/2J7N/q/Dc07fmfObB9v49H5T0b/lqHrcT5/tVtTA8Mw/cf/zu6JdpAZWDwMes/iSy/ifO141e/X7bvzy4pu51/2abQUbVhhBrIPywTPbr4NpZgKffjC75/J6iDP//8k3Xr1nHllVfW+9i4uDg6duzIxo0bq90nLCyMmJgYj68K4SqM1uXLzNbpbExt1v8HaEAVzUKaE0OICr5OskkqgZnmPObrZU2iZqM3udcIjJRmIU1KeDP3ZiGNGwj80DHVtS3LgqsWqkJcHWUD9aLB1CZ/ly8NTiHRo0FKsLAoC8nltdG8kREoNQL9W4/yOoERhLPEXHXE80W6mO/MGSzTa5lvLjsiq9ZQBqOMwQAUUMQ8vdTrY64P9xqByUhGYF2FqBA+DX2Ob0JeYkboe0wLfYd8DvGrOZtvHNN8Pbx62zh3vWu7wxBZFlxXKZ1SGXbZCAAcdgczX53u4xF5z8Y562l3XAdSO6fR1cf1ASt0NjwzAisCgxEqnImWcYDzffdbM3D/vzRlB3UBn5s/8aLjQ7L1Nk62jOCFkAd9MpZMt0BgIN/c9wW/CAS++eab9OvXj1696l8DqaCggKysLFJTj/5DUsVdikKK2c7uoz7PsdJas0PvJo5o+qhuPhuHL7VRlensm/TWGvb0f9IspOly7xrcmBmBh3Sh66KoOTGcbIxotNf2NxV3EPeynyLd+A1dvG2dziYfZ8mLQUavRi/e3FRU1AncRS4O7ahl7/qxUdk1WDIC/c8YNYSOqjXFlDC3iiDed+ZMDuH8O3uW5UQiVcQR+7gvI53m+MtrYz0auzy6BktGYH0ppRhi9KWb0d6VPbpIryLXrQSPP3BvFNJusDQKqY/xt51Ch6GdiEuJ4/fXZ7B+9lpfD6nBaa1Z9M1CsuZtYG/2Hjod39nXQwI8S29BZc1A8LzJ7X7zWzSelbryBsOJlmHcYp3ks7F4ZgRu99k4ApFPA4EFBQUsXbqUpUuXApCdnc3SpUs9mnscPHiQzz//vNpswNGjR/PCCy+4vr/tttv4/fff2bx5M3PmzOHMM8/EYrFwwQUXHPU4PesE+i4LLZ9DFFFCHofQKjja3R8uSkW6MkA2NcEufg2p88iu9D2zP11Hdyc0ItTXwxFuohKiiG8VT2rnNMKaNV6n1lfsH9NZtSWdVM6xjCdMybyoTqDfQdTrbEzadBo9CjswqDT4GoVUSCkPBJqYHs20GoJduwcCJSPQ3/QxurJebwZgmmPOEc/XJbt6jFtjCfeC6U1BC9Wc/qoHfVSXKoOYou4qCuBrNDPNeT4eTd3ZS21sXuisX968ZTwJ6RIQro/IuGb0O2sA+7c5lwV/cfen2MvstRzlX7av3Eb+zjwAOgztRFhk412z1qQF8bQkmSQSSKEFaVTW/B2q+tKalnSjAyW6lG16lw9HGpxWmJWBQPfmW77gcT3PTh+OJPD49Mp24cKFnHDCCa7vJ0+eDMCkSZN45513APjkk0/QWlcbyMvKyiI3t3J5xLZt27jgggvYt28fLVq0YNiwYcybN48WLVpUeXxddHIraLpOb2IMQ2rY23u268psxFYqxSdjaAraqgx2633sIpdCXUQzFZg1UcbeNM7XQxDV6Dm+Nz3H927U19yv8/mv4y0OcJAoIrnNUnsH9WCW4REI3Eln2vlwNA0veUYst9x7Orp4AhlfdoJTfT0i3/BsGLKnQbunetYIlECgv2ljtKKdyiBL5zBfL+OgLiBGOevtznEsdgX2MkhjmOpX5TmSVSK9VGeW6bUs1qvJMnNoZ2Q02s9Qk1nmfA5wkLbK94X//d1oYwjPON4BYJr5F+dY/KMJ15alW1y139pLt+CjMuj8wcz76C82L8rm0P5DzP1wNsMvH+nrYTWYldMqawl3P7FpLAsGZ0ZuVnjVy36VUlxmOYuHHM+Dhk8dP/Iv6z8aeYTBbZmuzI7tYfg20zgjwG/s+5JPMwJHjhyJ1vqIr4ogIMDVV19NUVERsbFVF6fcvHkzDz30kOv7Tz75hB07dlBaWsq2bdv45JNPaNfu2D4Auqcr+7IunfsdkZYk+2wcvuZ+0Zutt/lwJEI0nv/YX+MAzgY5ZxhjyTDSajkiuAV6ceGEG1LpcmAgnXb0p9no4GscVaFiaTA4A4ENye6+NFjJ0mB/VJHpZcfO7+YCAP5yLOIs242A4hLjDP5l/QeGqv5y+GrLeZxsjKAZEbzm+LQxhl0rm7a5/h4kIQ2jjtUwox/hODOlpjvmovWRq258XSO8Klluy4LbD5FlwUfDMAzOmXIB7Qa3x1HmYOqjXwdU45BV01a4truNaTqBwNq4B+M/cHxb5b9J4T0rzHWu7R4+zgiMVdHEEg0E5vW8L/lFjUBfq8gIjKYZm0zf1aXb5pYR2FIFcSDQqAwEZgX48mAhAA7ofHbrXEIJIZwwHgq5yddDavIyg6CmiFIKa0IIRkTwBqlScc8IzK1hz/qTrsH+ryIQCPCbOYfvHDO4yfYIJiYOHOSwg6st59V8DsswpptzKaSYlx0fkW36/gZkbnnjOIAWUh/wmIWrMIYb/VEo4ohmjc5yPWdqk7tsT3KN7X6+sf/G946ZPhypp1VjthJ5ZxJRI+PJHNym9gNElVr1SCetc0tKC0ooKy7j6we/8PWQGkT+7nxylm4BoGW3VjRv6T83DdoZGQxWfQBYo7NYqtf4eETBw6EdrNTOmwxtVTrRyvd16iuu6bfpXQ1eDzqYSSCwDuJVLBcYp1JIMTP0PI8luo1pu1tGYKtgDgQ2oYYhWmuPph4NeV65+yUq/Gz+ySfmD1gwuNQ4I6hLA9RV5mFLg0VgSnVbCrwT72UEhhDSoOcWjeN4Y4BrWff3jpmcZ7uV1WSRTiqnGCP5MuSFWhvtZKhUbrJcAkAZNh6yPe/1cddmr1ujkETV3IcjCRynGaOJIpJVbGSa6WwMY9M27rI/xbOOd3nf/Jbz7bdyq+3fFOvGaxJWk087TOOZa7/k2be/JykzqfYDRLVOvvM0ohKcpQN2rt3B2t9X+3hEx27trNW0HdiO9F6Z9DjJ/2oJX2w53bUtTUMaT5bOoRjne5yv6wNWqFjlY8fOTvb6eDSBQwKBddRGtcIs/+8Txw8+GYN7x+JgDgS0U5X1eXwVCMzRO3l02/Pcecld/Ofcx3HYGvbuxPZV2/hX65u5v/dd/PTU9w16bnHsSgtLePMfr/Liec/xzcNfev31fisvdF9MKWdZpHZkXaSrVEaogQxRfdjXwE0kRNPhWSOwYS8OpWuw/4tWzTjDGM2FxgSGqr5ElC//7GF05OOQZ4iqY43h261XkkhzBqmezNGLWGSu9Oawa7VHVy5dbCFLgxvEMKOfq4v0b+YcCnURZ9tu5nXHZ3R2qxW+jV284PjAV8P0sKM8MSGVFlikfMExiYyN5IyHJtJ2UDv2btrDF/d8ir3U5uthHZMVPy1j04Isti7bQpdR3Xw9nHqbaDmRZBIZpvqxQW+WBIlGsly7LQs2mkYgMDPAy/34igQC68i9o5yvahV41AgM4kCge0agr5YGb9bbWHH9XEqnHyR/5X5+/d9PDXr+orxCHGV2Du7Ox14aWB3MAoFhsbD8p6Ws/2Ota9mFt2itXUXtmxHBEKOPV18vUESocPI4yBy9hOnmXPa4ZdD4O8dBOznnrGXnP7PJ/6Jhl8P6G49AoNnQGYGyNDgQfBD6NG+FTqGD0ZpCijlNjeatkCmEqrpnecaqaB603sR8vZyt7OIu21M+/VCa63ZzI0lJILAhdFZtXfW3/zD/5m37V/xuLqCYEvL0IZ623IVR/rHpNfunLHT4NhhcqsvYgzMgHMzlghpS/4mDQDuvu/Zu2sNvL/zq6yEdNVuJjXV/OJfTRiVGk9E708cjqr84FUNvowuz9SJ+MWezSm+o/SBRo28e/oLvp3zL31/O51DuQY/nPnX8yKeOH3nLXpng0NQyAkEahjQkCQTW0eG1CuaaSxp9DBVLkiMIpzkxjf76TUUCccTgTN/f5KNmIXbtYM59mzAtzg8Ccz+YzZ/v/N5gHwzclxs3i/d9bQbhyRpmxRLiDAyUFnh3idBKvZ5dOIM9I4yB9frwGuzc64NNN+f6cCQNy7a1jENTD7D/pV0U/Jzn6+H4VAuaM0INpL3K8MiabwieS4Ola7C/i1FRtCSZoZa+NTYHqc4ky5m0V84P03/qhfxoOv/mF+qihh5qrfa6ZwRKjcAGoZRijGUIAKWUcZvjCTJJI4Yo3g99khtCLuYOy1VMNMaxlZ2Ms13OdIfv/q64Z0BLILBhKKU454kLMCzO94c/357FL//9EXuZ/92Q3/DXOsqKywDoNqY7huGfH/lPdLuOq1iyL47OvpxcZr46nWn/+5kPbnyHLYs3u5570/4Fk2x3cKXtHleW+ZlqLIObSPKBBAK9wz/fFXzkIstpGBi0JZ2r7fc1+DKk2lQEAluq5Fpr2gQypZRreXCO3kGZbvzUfTt2cnsWsOjmHMLOiCV/Vz5f3P0J3z78JSWHio/5/IX7KwOBkXESCGxqlFKERYUDUOLlQKD7hc8YY4hXXyvQjHFvFFC+vDoQ2LaWuratrUJ9OBLfsygLe9jHRp3DGp2FXTfcBzabdl8aLIFAf3eLdRJZ4dO5xTrpqI4PVSE8Zr0VgFYkc63tfs6y3cCQsvMavQ6pe4ZzIlIjsKG43zwCWEc2z1vvZ7jRH4D7rNe5fvdJJHCZ7U4+dfzY6OMEz3JBaUrqAzaUtC4tOe2+MznugiEU7Ctg2vM/8+rFL7Jl6WZfD61eVrp3Cx7b04cjOTaHN3wSR2/6i7+CW77KvhxnksEcczF/mYuIphk27GxnNy1J5jhL7yZTg1aWBnuHBALr4XzLKfzbOplNbGWjzuGWskc5pBu+UURVDuoCV+0SufNXuTzYxPTJnYGK2lGLb84hJMMZEErr0pJZr8/g/8Y+ztYVx7Zkucg9I7C5BAKbovBmzlpTXg8EOioDgYd/SBE1G2z0JpIIAKabcwKmvoxtW5lrO6RlmA9H0jR0Us5umWXYGvQC0X1psEWWBgvgdGMM34a8zKWWM9nLAX4y/2CdzuYG20ON+v6yl8qMQFka3HBGGYM9vh+q+nGu5WTX91Zl5bvQV7nImEAxpexlP1fY7uZ1+2eNPVRXfUCQzwUN7YRrxxDXsjmGxSCjVybr/1zLa5e8xHf//tqVZdeUmabJqvJAoCXUSucRnX08oqPXQbUmnVQAZpuLKNLHnmwRjPJ2HmDeJ54ZzLmbc9Fac7ftaT4yv0OjucZyPtNC3z6mm2be4J4RuMn0TVmwQCSBwHqIUpGcaowkgzSSSWQ9m7nd/p9GeW33+oCtCN76gBUGG70ZqQbRW3VhpV7f6K/vvmSs+e3pXP761dhKbWhTExJm5X9nPM2s12cc9QcD96XBkRIIbJLCop0BJm8uDc7VB1insxmu+nOSMdy1LE3UTZgKZYQxAIBd5LLCrQCyP7Nvr8wIDAnyjECATm6F/NfpTQ12XodbIDBESUagcGaDj7MMJ1ZFk0wi8cQSTywlupQH7f9rtHHI0mDviFexXG6czWnGaFoQzxMhtx2xAidchfFayGOcYhkJQH/Vg5vsj3Cf7ZlGDQZv1+4ZgRIIbGjj/3Uqk3+6k9Ii59/bxMxEfnvhV978xyvkbmnaXUvX/r4Gw2LQ7rgO9Dq5N2HNwn09pKOmlGKsxXkTvJQyZpuLfDwi/zTzlem0aNOC1K6VAbV9Obl8Zf7KfL0McDbZe9p6V5NcdZhAHFcZ5zJY9eZvvaLRV2UGKgkE1lMHozVTQ1+hiGLW6k286/ialab3A1Hb5c6fh1YqhVl6Pkv1Ghb6oHuf7bDaUb1P7cN1H99Eh6GdKD5UQllRGbPfnsVrl7xI3s68ep+/8ECBa1syApum8ChnJpatxIbD3rBdoyt87viJHezhT72Qrqp9k/zj3NRVLKcOJ4xV5kYfj6ZheGQEpksgsJPRxrW9tgEDgZ5dgyUQKCrdYp3ElvBZTA99j4MU8KdeyIeOqTi0d/4WHC5XVzYLSSC2UV4zWLwc+hCfhT7HprDpDDB6VLmPRVl4wfoA/7Hezjy9FIAF5nK+d8z02K9Ul/Gu/Wuesb1Nu5LRTCy7kXYlozml9Cpet396TOPcoSubI8nnAu9I75HB5B/u5KxHz2Hriq0AFB8s4dkJT7Enq2Fr0jYUrTW/PvMT+7fuI2veBvqdOcDXQzpmFddxIViZby7z8Wj8T0HuIf567w92rdvJ3qw9WEOd1zO5W/ay0FzhWvHwuHUy1iZ601MpRaSKYK5eSiHFPGJ/wddDCggSCDwKnY223Gm9GgCNZrJtitfvAnpkBMoffAYavVzbC/TyRn/9wwOBAAkZiVz70Y30O6M/oc3CcNhNVk9fxbvXvsHCLxfUa44U5VUWH5dmIU1TeFTlHVZvZQV+6Jjq2nbvXC7qboDRk1akoAichiG2rW6BwFayNLhiaTDAOp3dYOe1ewQCZWmwOFIXox0nGccDzppts8wFjfK6e3DWqYsnlhBpIOUVtf1elVLcYp3Ec5Z7aUky8/UyrrDf45Gt+arjE66x389TjjfZzm4O6gK2s5vpei432R/lDfvnRz0+j4xApEagt1hCLIy4chR3/nYv7Y5rz5bF2Rzae5APbn6HfVv31X6CRrZxznqy/84CILlDCl1Hd/fxiI7dCWoQA1QPrFj4yvTfTs6+MvO16dhKnPX0h14ynISMRACyzW0843iH5sRwvBrg+lvWVN1uvdLVLPQdx1fMcsz38Yj8nwQCj9INlotIJ5XWtGS5Xsc1tvsbtEj54dyLArdUsjQ4TSW5akYsNFd69XdfFfci8u7dJK2hVk5/YCJXvXsd9jI7oc3CyN2Sy/s3vs2X9356RKv26ngsDZZmIU1SmFsgsKSgtIY9a/a3uYKxpZfxhO1VXrF/7Hp8rZnFQu3Mdu2tutDN6HD0gw1inVVbtrGLYkrZorf7ejgNwrbNOd+MKAMjVgJUHkuDzYYMBLotDZaMQFEN95s07jdvvKki2NRC6gP63DUhF3CiMYxSyjhIAY/bXwHggM5nSvn2PvJoQTwxKooonNd0rUjhS/OXo17q6Lk0WAKB3pbcIYUr3rqWtK4tSchMZN+WXF48+5mjWvXjTfM+rmyoceKt410dkP1ZcyMWA4NiSlmjs9jayM2Z/FlhXiGrZ6wCnEHtUdeNJaG1MxC4vavz70guBxhhGdjkVx0lqubcYb0KKxa6q45Mst3BCjMwSv74iv+/O/hIhArn25CXCFWh5HGQ98xvmO6Y57XX88wIlEAgwCDD2QWriGJW6cZd8ueeKVJVEfmOQztx18z7GXrxMA7uzicyLpLF3yzkiZGPsvaPNTWfu8xObrZzyUd4dDgWq3zQb4o8A4FHV7xYa82dZU/yp17IQ47necD+HA7tcD5uf8q1n2QDHr0YFUVzYgDIwf8vHrXWrqXB1pZhTf7CrTFEqUha4syUX6c3NViGvnsgUDICRXVONkYQV/4e8705k1Lt3WYCxbqEApyrBlog9QGbggdCbqRZeWOqdx1fM83+F9fbHuIAzpu/FxmnsTX8D74MfYHc8PncYrmUHexhpjmPu21PHdV7VkUgMJHmhCvJDG8MzZo347pPbiIqIZqCfQXsy9nHV/d9xsG9dbvJ720b525g4ZcLSOmURtfR3el7en9fD6nBVCwPBpjuCIzVHY1h9lu/s2PVNjL7tGbEVaOIS2tOYqYzELinzyHXfgOVf3SWvsFyEXdZrmGFXsdu9vGA7TmPMgmifiQQeAy6WjrwkPUmrFjoq7pxof2fbDK3euW1TG3SX/VgsOpDColeeQ1/4748eL65tFFf2z0QWN3ykWbNm3HGQ2dz+etX0apHOoUHCjGsFj648R1+/L/vME3ziGNKCkt4fdLLFOwroN2g9kz893le+xnEsek0vDPHX3ECJ946nmZHmbX5vTmTOSx2fX+QAhaZK7nR/gi/mH/SmbacY5zEuZbxDTXsoFTRbWy73u2RPbzH3EfLkmG0LRnF2NLLfDS6+nHst6OLne8d0iikUkWdwAMc9OioeizcM7+lRqCoTpgK5WzLOPqr7mSqNOaYS7z6enuprA/YQjX36muJuklVLbjNeiUTjFFoTM6wX8fX5jR6qy70Vd14KOQmj/0ft/6LLqodAH/rFXxh/lyv1zO1yU6cxfKlPmDjimkRyz/euJqEzETaDmrPsh+X8NJ5/6Ngf0HtB3vZL8/+CMCudTvoc1q/gMgGrFDRMATgN/MvH47Ef5QWljDrjRkAbF2ew9BLhwO4lgbv7uMMYCsUAw3/CARGqHCus17IAHrQkmSW6NVcb3vQ18PyW4HzDuEjZ1lO5GbLpSzWqyikmI/M7wD43jGT7x0zedb2Dm1LRnFV2b3s0UdfS2K5XsdCvYIFerksBSk3yCMQ2Lh1AquqEVid3qf25dKX/kH3E3sSFhnGob0H+e3FX/js9o8ocastV7CvgJfPe56Cfc6LiZxlW2jVPd07P4A4Zv3OHMDEx87llDtPIzYlrt7H27SND+1TiT+s0Pt/7W9zQOcDsJZNnGs5mWQlwf9jkVkeCLRjZweVncbWkc0+8tjBHpbqmjN1mwr79jIih0UTMTCKsO6Rvh5Ok9HZbXlwQzUMsdfjfV4Et0FGbxbqlazQ61miV3n1tfa6XUvK9WDTcbf1GsIJo5hSKvL7Vuj1TLH+i3SV6rGvRVl43DoZgObEsMhcWa+swD3sd70/ybLgxheXGseNn9/C/vIagbs37OS5055i9fTGb15YIfvvLNb/sRaAxNYt6HeW/zcJcddfdSeWaMBZ77mxGjP5s7/e+5Oi8lJT/c4cQGJmCwASMhOxhznY1835XGfVllgV7bNx1leCiuPr0BfRaHaRy8/mn8zw4qrMQCaBwAZwvfUiFM7lWR86plJoFnGL7THOtt3EU4432cEe3je/5RPHD0f9Grt1LgBJxGMo+d8GzrppoTiz8SpanzeW+i4Zi06M4cp3rnXejVGQ3iOTuR/9xTOn/h+5W3LZt3Ufr1z0ApsXbWLX+h1k9m3NdR/fRFqXlt78MYQPve34km/0b5RSxllqrOvx7/QMvjJ/JZ1U3rZOYYJllA9HGRgqMgIBcvQO17Z7PblCijH1kVm6TY1ZaGLbVkbJkkIs0bJctYI36gQ6yt/nFUr+7ooa9VSdXNvLvVyzyL0ZRQskENiUvBHyb843TuED61NMNMbxechzjLAMrHLfE41hnKAGcYhCnnW8S5bOqfPr7NDudcMlI9AX4tMTueHzW0nISKDD0E7sydrNVw9+zhv/eMUnTUTmfjyH1E7Oa52xt5wUcGWFrMrKKOM4wJn5v8Bc4eMRNW17s/cw54PZNIuPQinFmJvGuZ7rMrIr5665AtPqvPngnljjLxKNeB4L+afr+3vsT3u9cWsgklvcDaCVSuEEYxAzzHlk623c4fg/V3OPaJqRW76M40PHVG62Xlrv85vaZE/5UifJDKoUpkIZoQZxiENE0Yx88xCxRuPc0ahPRmAFpRQnXDuGtK6tePuq1wBoFh/Fkyc+jsVqISYpBmtYCJFxkZz/1MUSBAxgB3UBj9pfApwBqFtDLmeFbQMb9GYcOINR4yzDuMA6wZfDDBjugcAtejvD6AfAercOsyYmu9lHKi0afXz1ETk4mo7r+qJNjbbJRU+Fjqo1/VQ3Iolw1eU6VhXv81IfUNSms2qLFSt27KzQ6736WnvcA4GSEdikhKlQ3gn9DwBncWKN+yqlGG0Zwky7s/PlNPMv2huZdXodz0YhEgj0laS2Sdwx/T5ev9R5PWexWljx0zIK9xfS+fgujLp+LCHh3u/qvWXJZuaXNwnpPLIrAyYO8vpr+sJ4YwQ79V4KKeJlx0cMtvT29ZCapKL8Il6/9GX2btpDs/hmnPXYuaR0rMxKtoaFsNi+moqPsv5SH/Bw5xun8BzvUUoZsUQz05zPKMtxvh6WX5Fb3A3EvZj/246vADAw+Cr0RQaoHgAs02uPqrvNPvJcmQkSCPSUZrRgnl7Gb3oOm/BOfcaqHE0gsEKn4zsz+cc76T6uJ5vmbaTkYDGF+wvYuXYHnUd05tbvbpcgoJ/QWlNWVEZZcf2Kw3/rmE5eebDiHOMkBho9GakqL9wiCOM+6w0NOtZglukWCNxgbkFrTbEuYY3p2WRou1tTpqZOGQojTP6EV2hrZLBIr+JPvZBFDZQpULH0LgTvf5AT/i1MhdJZOetUrtPZlOij7yRfm1wkEBgoxhrudc/m1LCnJ/fi+BWNkoRvhEeFc+OX/+Ty166k6EAhIeEh7M3ew49PfscLZz/Dj09+x97Ne2s/0TH45ZkfXdu9TumDJSQwb16dZzmZTTqHFXo9n5s/cWXZPWw2t/Oc/V0et73CP22PU6SPrnlfoHDYHXx5zyeUFjn/BkUnxjDg7CMDw4vN1a7t44zejTW8BmUog5usF7OWLH7XC3jP8bWvh+R35FNEAzndGMPtliu5xjgfE5NT1Ehut1xJF6OdR5DwI8d39T63e23BJCUd4ty1VZU19DbpRgwEaptr+2g+JCa1S+ai5ybReWQXkton0+uUPqT3yuSCpy8hIV3+H/uD1dNXMjn9Rm5vdwszX/mtzsc5tIMH7M+SQgt6qI48bL0FgH9YJ/Kq9VHutVzHI9ZbSZGgf4Nxzwh8xfERzUv7k1g6kGV6rcd+7lkWwr+0JMnVwT1HN0x36IoSEJIRKOqiR/nyYDt21ugsr73OXskIDBg9VEeSyzs//24uoMzt2rIm28xdZJBGH9WV1kpuHPuaUoreE/px7+yHOPHWkyjcV0Dzls3JWbqF31+fwRMjH+XFc59j7kd/edQGbwjbV29j1TTnza+4tOYMPDdwM6LCVCi3WC8DQKP5wJzKBNs1bDV38objM152fMTJZVdSrBv2d+xPvnnoSxZ+9TelhaW0HdiOq967joiYiCP2eztkCgtCv+AF64N0Kr+J5Y/OsYynOTEAfGtO55Au9PGI/IsEAhtIlIrk0ZBbaWuk05JkjrcM4OGQmwHnJLViIYM09ur99V7Dvqu8PiDgumAQTu1Uhmu7PvVVjpV7jUDLUX5IjIyN5Or3b+CmryZz6Uv/4MYvbiUq0X+KtQa7kIhQTIdzGW9pYd2zP2aY89jJXrayk9aqFW0NZzC7j9GVSdYzuT/kBm6yXuKVMQcr90BgHocooRQHlSUXKmzzo4xA4cmqrKThLJq/RW9vkHPK0mBRH72Mzq5tb9YJtGGng2pNMokkaQkE+jNDGYwyBgNQQBFz69hxejPbyGEHS/RqaRbShIRHR3DiLSdz+2/3cNwFQ9Fak9a1JfZSG2XFZXzyrw94/8a3+f2NGZhmw9QkXvbDEjoM60R8RgKjrhuDNTSwq37dYLmIdFJdNeK36O1s1TvZRx4AoYTQrfRkzi27hbfsX/hwpI1v3kezWfGzs2Z+WVEpp9x1uqtByOGsykpPozNXWs/Bovz3GidMhXKu5WQAiinhK8evPh6Rf5FAYAO7xTqJrPDp3GKd5HosQcVxvBpADjv4wJzKFrdi9XWxh8qMQFka7MlXGYEe3STV0f/RNSwGMS1isIZaCY8Kb4ihiUbi/v+rpKAEx0E7B7/bz7YrNrLxkw0MLT2PV7I/IP/zXMq2VQYKP3RMdW1fZJEagI0hnliiqL3Drj9kBG69YB1bL1zPnkca7/3OX2SWZ8bsJ58CXXTM56u44SMdg0Vd9HBrGLJCey8QuEpvZIPezG5ySTGadk1TUbuxlsrlwT84ZtXpGPes58M7EgvfS+vckpP+dQoPL3qc3hP6kdwhBVuJs4TMgW37+er+z3n76tcpyD10TK+jtebvz+ezYfY68nYcoH8VS0ADTbgK48PQp9kQNo37rNczNeRVPg17jj9CP+ImyyUMUr3YwR6mmtO51/5fDuh8Xw+5UayfvZZP7/yYkkPFtOzWinOeuID2gzv4eliNwn3l5QeOb304Ev8jV7eN5Dijt6u19QK9jNbUPZV/t3tGoCwN9uCzpcHHUCNQBIawqHBMQ7P64p3kdvuT7mltCO0UTunKYua33MCiM1ZxyY8nsW3yBiKHR2PbXArnhfPN3b+B1RmcGm+M8PWPERSUUmSoNFbrjTXut62JBwK1qTn0/QF0mSasWwRJD6TXflAQyVCpUJ5wn6N30FW1P6bz2XVFRqC8x4va9TTcOgd7MRBYccOiGRHEIqsI/N0YYwij1HEcopCPze+5X99AtGpW4zE55QkFKSQSrsIaY5jiKMSmxDHiihM4/h8jyVm6mRkv/8ay751Zn3nb8/i/sf/mkhcup8PQTrWcqWq7N+xif3mH4vaDO9AsruZ5EygGGs7mFvdZr3c91svoTC+jM8/Z3yXCDKeYEg5wkP/YX+OJkNt9NVSvKDlUzPbV29m9YRdblmxmz8ZdbF2eg2k3KT5YTIehnRh84dDaTxQgBqgeDFPOJoCb9Ta26B0etcFF9SQjsJG4F+Kcby6r17HuNQKTkYxAd3EqhgTiANhkOgOBW/QONpvbsWt7g2SFVMV9abAsGwtO4VFhGKZi5aQdfHn2H5BkULqyGEtzKxv1FgC6L2gNgCPPgW1rGctWryQs37mc4RzLeMJUqK+GH3TcLwqMav70NfWMQEeuHV3mjHSFtJIPf4fLdKuV1RDLgysyv4+2/IMILi1UvKvreJaZwz4zjxXmOrbqnfxYx0yv2mitXU2NWqoUlFINcl7hO0kqgRYqgb/1Cvayn6ftb9W4f4kuZSfO5hOZUh/QLyilyOzThstfu4prP76JLqO7kbN0M/m78vnhP1P56envXaVm6mP1jFWu7a6jujfkkP3WLdZJLA/7jnCc10hLzbXsMffVcpR/cNgc/PCfqfz45Hf874ynmf/JHOZ99BeFBwqxldhoP6QjXUd35/QHzvL1UBuVUooxliHM1ovYyi4+Pop+DMFKAoGNZIDRw7W9wFxer2N3SUZgjSqyArezmxJdyl22J+lcNo7o0j7cY3vaK69p49iahQj/F5UQzQMLHuPi9DNBwdbLDhB/XQqtPurAY/fdy86wv+h8RTcS7kwjJC2UkIxQuv6YwawLXuLzkP9xneUCX/8IQcU9c6Y9GVU+t42mXSPQ5rbEPKSlBJEPl+G2RK4hGoa4lgYfQ/kHEVyutpxHOqlsZzeP2l5kQNlEOpaeyMW22zxu6h6tfA5RiLMrZisl3WIDxQPWG1yrS55zvFvjTSn3WrYZsizY73Qe0YUL/3sJHYd3ou3AdmT/vYmfn/qBhV8uqHcwcPX0la7trqMlEFghXaVyg+Ui2qtMZun5vGd+4+shHbN9W/fx2qUv8euzP7F2prPjryXE+Z7RLL4ZCZmJnPXIOVz26hUYluAL71zotjz4Q8d39e7HsFPvxaErk3yaemJAQ5Gr20bSXMXSSbVhnc5mqV5DiS6tczr/btwDgZIReLi2KoO/9Qo0mvVmNtPNuYCzo9R2vPMPWZYGC8NikJCewI3mpVzGRLrf39EjO6M5sXA8zi/AtJuUrizGLHDQxRLjm0EHsc6qHckkUkgRo43B7DL3EkooBgZJKp58fYgdejemNjFU07yIsm0tc21b0yUj8HDuTWEaJiNQugaL+ulgtGarwxmE/lz/BDivRYoo4XH7Kzwbcu8xnd89CNRSpRzTuUTT0c7I4BrL+bzh+Jx+qjtP2F/l+ZAHqtx3s9t7W4Ysf/NLMUmxXPfxzUx/6Vc2/Z1FWpeWfH73J5imyXHnD6nTOUoOFbNpvrPcSUJGAknt5caAuyss5/C0w5ld+6FjKv+y/MNvM6iX/7SUj/75HgnpzhjA3s176XFSL7qP68mEe04npXMqEdG118EOZBkqlRHGQH43F7BBb+ZvvYKByrmE/Brb/XRSbTC15mXHR/RSnYlWzdhPPl+HvMgancVpZddyhmUsmaTxpOMN8jnEM9Z7uMp6no9/Mu+SCEYjGmj0Yp0jGxt2FutVDFF963RcxV3kUEKIQwIIh3OvE/i5+RMHKXB9761OwjYtgUDh1MZoVaf9DKtBRO/gqN/SFN0VcjV3hVwNOGu/PcmdWMszvc4su56VegM27Oxlf5MtweCREdhKMgIP19ptmVxOFU25tNb1+iBQ2TVY3uNF3ZxijCSWaPI55OpiaaAw0bzt+JJvHb8xzOjPv0MmH1U2l3uWQkvkg38guctyDT+bfzBbL+QvxyKusZxPd6PjEfu5v7dJHSz/ZVgMxt50EuFR4Xxxz6cA/DDlW3qf2rdOzQM3zFlP6/5tyd+ZR+eRXf02yOUtbY10hqp+/KUXsUZnsUSvpq/q5uth1Yu91Ma3j37N5sXZFOcXsy1/Kz3G92LszSeR2bu1r4fX5FxknMbv5gIA3rB/zsDQnvxlLuZdx9eA82/mdnbj0A7Xast77c+wwFzGTvbysuMjhtPf9bf7dvv/8W/7K9xsuYSzreMDMgO7aaY9BKhBqpdruz7LgyuahSSRIG/0VWhrVAYCf3D87vFcls7Bpm2HH3LM3GsESv0oIfyLVVldQUCAlm5L7Nwzbpoa2/bKjECpEXikVm4ZUlUtDd741QaufvN2Rq28kHt3PVXr+eyuQKC8x4u6iVDhTLSM83jsRGMYkyxnco3lfHayl8/Nnzih9GLWmFn1Pr97Q6OWsjQ4oCQazfmH5WzAmUV6j/2/Ve7n/t4mGYH+b/jlI+k5vjcAB/ccZPqLv9TpuFW/riBr7gZyN++VZcHVuMgywbX9oWOqD0dSf2tnreblC57njzdnkrNkM20Htaf3qX256NlJEgSsxpmWsZyohtFHdeVT8weyHdu4y/ak6/njjF60JNkjgeg5x7us0OtprzIYqHoy0hhIFJFYsXK2Oold7OUpx5tMLLvBY+lwoJBAYCMaVN7lKI5o1unsOh3j0A5yyyPTUh+wau3cOwezlRCsriKxNuxk620N/pp296XBUj9KCL/mvsSuKdcFsUuNwBqFqVBXs4aqlgaXzSzivYt+Yk775cw2Ftd6PleNQMkIFPVwcXmtIoUzG/BV66O8GvIoKSS6gsommg16c73rGG13u1GRLkuDA871lovIwBncK9M2ljhWH7HPFlkaHHBOf+AsQiNDaXdcB+a8P5t9W2uuJ6q1ZvUMZ33AkPAQOgw5MnNUwETLOMIIJZIIlpprmFh2I+1KRnOf7RmmOf7y9fCqtH31Nl6b9BLvXvcmG+duoN3gDljDrPQ7oz+XvXYlETERvh5ikxWtmtHD6MgSvZpSyjjVdg179X4Auqr2vBfyJFnh05kR9j5nGScCoFAUUERv1ZWfQt/g3tDryQ1fwPLQ7+hmdCAEK/vJZ4Vez4cB2IREAoGNqKtqzyDVkzwO8Y1jWp0iy3s5gImzeKzUB6xaW1VZ+L+EUgarPkw0Ku/I1zXoWh+eNQKlWYgQ/sx9iV1TDgTatrllBKZLILAqFUvldrOPEl0ZONVaY/3OTvLWeABWx2Rh6uoLs5vadP3tlYxAUR+DVR+mhrzCztA5/BDyBsmG89ptcsg/2BQ2g5Yks5tczrXdQg71a2rj3tBIMgIDT7gK407rVaSQyCw9n1fMj4/YRzICA09i6xaMvHo0WfM2ULCvgO8e+7rG/Xes3k7+rnwA2g/pSGikXA9UJVZF823IK2wJm8VIYxD55iG2s5unHG9yre2BGq8BGlvezjw++ud7fHDjO6z6dQWpnZ3/tiNiIpj8450Mu2yErAqsg9utV5JAHABZbGEz25lkOZPnQx7Aoiqv5R613sqHIU/zjvU/XGycztshU2imKusstjXS+WfIZXwf8prrsfvtz7DbrOzbEAgkENiILMriyjw5wEEW6VW1HAF7tDQKqU0yCZysRtBJtQGc/3hHG8e5nvdGINA9I1A+JArh37oZ7RmrhtJXdWWhWdmF7z7bM1xcdhuDS8/lLdsXHF96ETeUPeSzO8kVgUBLvBUjUt53qpLu9sF4q9sH5tKVRdh32ei0wplBfohCj6L7h/Ms/yAZgaLulFKcaBlGnBHDCZZBHs8lqQQutpzuCjIvMWu/DnTnUSNQMgID0gWWU12dob9y/EqRLvZ4vqJGYAJxRKngbhAQSEZdN5aohCgAlkxdRFZ5I5CqrJ5R+b4hy4JrNtIykGjVjBgVRawRTRjOoOl2djOrvJ6cr2ityVmymQ9veZc3r3iV+Z/MxXQ4rz3yd+cz6eV/cMVb19Cya91qkQuIUzHcbb2GeGJJpQUGBoNVH4Yann0Z2hkZTLSM4zzrybwR+m9CVNVJPSMsAznZGEEn2uDA5FTb1ezQexrjR2kUEghsZKONym5Qv5lzat1/t65MD09ClgZXRSnFV2Evsij0a94I+TcvWx+mq9HB9fxac1ODv6Z0DRYicHRR7fhLL2axXs0P5ixKdCk2beNpx1t8Yf7MEr2aZxxvs0Av403zC15zfNroY9SmJqR1GJFDo4k8XppGVce9eP5as/ImUMGveQB0WFl5Qb1Cr6v2PFL+QXhLX6Ora3uxeeTSz5pUBAIjCKe5NI8LSJEqwlVn8hCFTDVnuJ6zaRvbcc4BaRQSWCJiIjjlztNQhqLdoPb8+H/fYZpVZ6ytmV55w7LraP9qgOErt1gn8WXoC7wVMsX1mK/qBpYWlbLg83k8NW4Kb175Ggs+m8ferN2ER0eQvzufs6ecz10z7qfvGQMwDAnV1NfVlvNZE/Yzf4V9ytchL3KZ9axjOt8bIY+TrBLJ5QAr9HrusT1Nr5IJtR/oB3w6u/744w8mTJhAWloaSim++eYbj+cvu+wylFIeXyeddFKt533xxRdp3bo14eHhDBo0iAULfBvxdzfWMtS1XZeskt1UZgSmSEZgjazKysWW01FK0UFluh5f7/WlwfIhUQh/FqkiOMMYA0AeB/nR/J0cvRNNZf2uDWxxbVfcUW5M5kEHusSkbHMpOOpXVyyYDDX6Mkz1I4Yoluu1rscLfnMuo+q4srKm7HKz+kCgTbK+hZf0NSo/uC+uw8oQdxWBwJYqWZaJBbCLyutMgmewYrve48omlWXBgee4C4fSaUQXsuZvZOOc9Sz8Yv4R+xTmFeKwOwiNDCWpXTKJmS18MFL/VdHZHeAbcxoFuqhRXtdhc7D2jzV8PPl9/jPqMT68+V1KC0rJ23GAVj3SQcGp95zO/XMeYfhlIwgJl7JTRytUhRCroklTSYyzDD/m88WrWF4MeZAM0njEegvtVAY7CIysQJ8GAgsLC+nVqxcvvvhitfucdNJJ7Ny50/X18cdH1stw9+mnnzJ58mQefPBBFi9eTK9evRg3bhx79jSN/2EZKtW1hHWBXk6+PlTj/pv1dtqRQRpJpKmkxhhiQGimIknH2eZ7nc6ud0Hu2ti0BAKFCCQXW053bX/omMomvbXafXM50BhD8mCJs9L2jx502tSP9M87Nfrr+4vOqh2z9SIOUsAMcx4ARbqYjR23o1pZ6Lq/rWvfmjMCK5cGSyBQNKRWpNACZ63KJebqOl+f5OtDHKLQeQ5ZFhzQhqq+ZKqWJBBHqS5jh+n8DDPDnEcrUmhJMm2ULBcMNIbFYMwNJ7q+n/rvbyjYd9Bjn/V/rGXzomzsZXb6nNG/sYfo98JVGGdbTiKUEHqrLvxxDMuD83fnU5B7CFtJmet9XGuNw+agrKiUgv0FrJm1ih+emMr9ve7k12d/Yt7Hc4hLjQMgukU06b0yOeGa0Tyy+AmGXzaCZvFRDfFjigbWwWjNgrAvuN1yJTEqijQCIybj0wjG+PHjGT9+fI37hIWFkZJS9wue//73v1x11VVcfvnlALzyyiv88MMPvPXWW9x1111VHlNaWkppaWVR8YMHD1a5X0MZYwxhnSMbBw5mOuZxhnVstfvON5eRRQ5hhNLHkPTv+uhstGWruZN8DrGLXFc3yYbg8PiQKIFAIfzdCGMALUlmO7v5xZzNcUbvavfdpxs/EOhOMoGq18ZoRXuVyUa9hfl6GQd1AXPNJZz+n3/CE3Df/mtpRgSFFLNcr6/2PHZpCCW8RClFH6Mrv5qz2UceOewkk9qzuzzqAyKNQgKZoQyuMc7nPscz/KH/5lPzB25Sl/C84z22sYtkErjaON/XwxRe0GFoJ3qc1IsVPy8jLDKMF8/9H1e9cx3x6c7yUKvLlwWbdpN2A9v5cqh+60xjLO85vuYvvZhMR0tOtow8qvO8evELbF+1DTQkd0hhb/Ye2g5ox8a5G8jo3ZqcpZsBiE9PoPBAIXnbndeORfnFDDp/MMMuPZ6MPq0b5ocSXhennOU4brFO4vLwM4kl1scjOnZNfuH5rFmzSEpKolOnTlx33XXs21d9S/WysjIWLVrEmDFjXI8ZhsGYMWOYO3dutcdNmTKF2NhY11d6enq1+zaEk9VIhqv+9FPd+NacXu1+xbqEP82FACTSnHTkDnB9DFK9GK76c5zqxQZzc4Oe24YNAAsW+VAuRACwKAvnWMbTT3VnsOrNXMcS13PtyOBENcy1JHifzvPRKEVdjCmvxWvHzu/mgsp6vAq6pXSiu+oIwGa9jYO6oMpzyNJg4U19ldvy4Do2DPFsFCKBwEB3umW0axnwB46pvOv4mjU6C4DWqhWtjZa+HJ7wojMfPpvRN4wld/Nedqzezmd3fcyGv9ZhmqarUUhoZBjtBrX38Uj90/HGAELLb/BNN+fUe9XYPHMpx5WeQ/ahrRjNnNcH1jArpt10nUsZzs+Gye2T2b91H2ldWpLRO5N/vHE1k7+/gwufuVSCgMLnmnQq00knncRZZ51FmzZtyMrK4p577mH8+PHMnTsXi+XIC/Pc3FwcDgfJyZ4XSMnJyaxdu/aI/SvcfffdTJ482fX9wYMHvRoMHGbpxwr7evI4yBq9iUO6kGjV7Ij9/jIXU4IzU3GMZYgEnOopWSXwp3YGUtfqLI5nQIOdu+JDoiwLFiJwjDOG86zjHQCPDJ2fw94kXaUyoPQsVuj15HIArfVRvSc7DjlQVjgUXkQhxVLywQvGGkN5xeEsIzLN/Is/zL8B542bE4xBTDfmMN+xjOjiZmyy5dA7uusR57BrWRosvKev0ZWKhQWLzVWcaal+ZUiF5WbldWwrCQQGvHZGBsep3szTS1mlN/CE/TXXc1NC/iWfCQJYQkYi/ScOYtkPS4mIjWTNjFWs+30No64fS0Gus6RUp+GdsYZJtvrRCFUhjDAG8qP5O7vZxwq9jp6qc52P36n3slSvIWpYewYc7Erq3kTi0uJQStG8VTxtB7YjsU0SEdHh9J7Qj4jYCLqM6kZYZJgXfyoh6q9JRzHOP78y7b1Hjx707NmTdu3aMWvWLEaPHt1grxMWFkZYWOP94wxToZxjOYnXHZ9RRDHfmL9xiVt9qgq/mZXNRMYaQ494XtSsk1FZC2qtbtjOwRX1o+QDohCBo7/RHQMDE5Nd5Y2awgh1LcNLVPGgoQwbBRQRzZE3cGqz7POlXN/mUVYM2MQF+0/mjYwn6nTczsnZlCwvJKRVGKnPtMHSvEn/+fap440BWLFix873jlnsKO+yOUD1IE7FcPPvF3Ddv8bDegcp/42H6448h5R/EN7Ux+gKGvrldKHlrgQYUfsx8/QyDAyGqj4cbzTcjU3RdF1kOY159qUAbGUnx6v+jDAGMsTo69uBCa9L69KSf/10Jx//6wO2LttCQutEZrw0zfW8dAs+NmONofxo/g7Ab+Ycehp1DwTu187mY7Mf28iF1ov5h/Vsr4xRCG9r8kuD3bVt25bExEQ2btxY5fOJiYlYLBZ2797t8fju3bvrVWewMVTXEczdtPLlTArFCcZxjTKuQFLRlAWcDUMakmQEChF4olUzuinnUptSygBoo1phKOefykTiXPvmHmWdwJh5YazpvQWH1WRm87/rvCSleFEBRX8eIv/jXFSkX/3pbnTRqhlDjb70oCO5VJYTGWNxLhluFZUKax1gQunywirPUVH+AZwd6YVoSK1IYengd3mt52RGnt+51veBXH2An8w/MDHZqHPooFo3zkCFT51tGUc4YSTjrA9nw8FN1kt9PCrRWCLjmnH5a1dx4q3jKSsqw3SYrue6jJJA4LGoKCEClZ+36yqPyl4C8cr/68SJ4OVXnya2bdvGvn37SE1NrfL50NBQ+vXrx/TplXX3TNNk+vTpDB48uLGGWSeDVC/aqQwAfjcXsNbM8nh+u7mbVXoDAP1VdxJUXGMP0e8lkUBznIU915kSCBRC1G6Q0cvj+7aqskxEgmru2j7qzsEL7PSZ0wGA7SG7WVfHbGXbNmdg0pIUghHmV3+6feIL6/8oUEWUudX6q8isD+seCeWr6kpWFFV5vHQNFt6klCIiIxIAx347ti2lNe7/ueMnVwObCyynYlEyJ4NBcxXL5rCZrA+bxn3W6/kx9HVilHQVDSaGxeCUO0/jrEfOoVnzZlz+xlVc/PxlNG8Z7+uh+bX2KpNM5ayzOdtcSK5Z92u6A+UZgQBxAdAwQgQvn36aKCgoYOnSpSxduhSA7Oxsli5dSk5ODgUFBdx+++3MmzePzZs3M336dE4//XTat2/PuHHjXOcYPXo0L7zwguv7yZMn8/rrr/Puu++yZs0arrvuOgoLC11dhJsKpRQ3GZdwohpGHNE863jX4/np5lzaks4w1Y8zjdprx4gjKaVcWYHb2EWBrvoD39Gw64pAoNTnECKQDFQ1BALdMgKPpnOwWeigdF0xx82ovJNflzvR2q6x73AGAkNahdb7dYNRtBHFvdbrsGDhH8ZErrGcT7/yBg2WKAuhbcMBKFlZhHYcmY3lHgiUGz7CG8L7VpYWKFlSdWZqhQ9Kv3Vtu68oEYEvTsUQpkK5z3o9ESrc18MRPtL71L48+Pdj9D6lLwPOHuTr4fg9pRQ3GBcxzhiGFStvOj6v87EHPDICY7wxPCEahU8DgQsXLqRPnz706dMHcAbx+vTpwwMPPIDFYmH58uWcdtppdOzYkSuuuIJ+/frx559/etTzy8rKIjc31/X9eeedx1NPPcUDDzxA7969Wbp0KT///PMRDUSagnOs45mvl3GAg7zr+JqV5nrXc9PMv9jEVmbrRQyy9PbdIP2ce53A9Q24PLjizrxFMkWECCjHHZYRWJG5DZB4jBmBJSuKwITB0ysDgb/VIRBo31lGefNIQlpKILCuLraczvLQ73gp9GGeC7nPY4lveE9nNpYuNinbWHLEsXbpGiy8LKJvZWZX8aKqu1cXryhk7VlLCJ2vUCh6qy50Mzo01hCFEE1IWDMJBDekEy1DmWbOoZgSnnK8yR69r/aDOCwjUJYGCz/m09vcI0eOrLEuyi+//FLrOTZv3nzEYzfeeCM33njjsQytUSSoOO6wXsW99v+i0dxj+y9Tw17B1CYzzLkAxBDFQNXDxyP1X4fXCexLw9TUcC0NltpRQgSUDqo14YRSUlEjkFau59wDgft0Xr3PXbLUmfXTbk0aqYWJ7GyWyx/m35ToUsJV9Q2rKpYFA4S0kq5z9dHOyKjy8bCezeDr/QCUrCgkrFOEx/M2j0CgvM+LhhfhlhFYvNgzI7BsSwl7Ht5K/me5WFNCeWH8LZgvNKPsCikLIIQQDaGz0Y5/WCbyhuNzDlHI47ZXeDb03lqP88gIlKXBwo/JFYWP3WC5iFak0Ed1JYscfnPMYYlezT7yABhpDCREyfLTo9VJuXUONhuuc7DUCBQiMCmlON4YSEfa0E118AgkJeCWEXgUS4OLywOBCsWEolFMMEbRX3Uns3QkE8quoVSXVXmcbXtl/TBZGtwwwntEurZLlh9ZNkKWBgtvs7YMxZLkvL4rWVKI1hr7fhu7H8hhY/ellG0oARuEpIYSkhlGZmJL+hndfTxqIYQIHPdZbyCKSAapXvxozmJ9HWrKV2QEWrHSjIha9hai6ZKrWx8LV2E8EXIbF9tuA+Ae+9MeNQEripuLo9NZeWtpsPNDoiwZEyLwTA19pcrHE92aNlXcrKmK1hql1BGPu+qAGfBswr0YoRZ6l5xGPoeYZv7FLnLJJO2I42xb3TIC0yUjsCGE93Srz1ZF52C7rgwESgkI4Q1KKSL6NqPg5zyKCotZ/8oazIcKCO8eiS7T2HaUYUkKIXpiPPHXpmAJl3kohBANKUUlco/1Ou6xPw3AffZn+Cz0fzUeU5ERGE9Mldd6QvgLyQhsAs4yTqSP6grAcr2Oj83vXc+NdmtvLuovU6URWt7QY10DBgIrMwIlW1OIYOHRNVjvr3a/02zXElfSj8SSgXzk+A4As9SkdJUz8yysUwRGpPNDfXO3+jK7de6RJwNs2yozAq2SEdggQjJCMeKc/w+qzgiUGoHC+yL6NmNV32zOXHQfj6W/ipnnoGj+IULahhF3fiIdlveixa0tJQgohBBeco3lPFJpAcBUcwazzUU17l+RESj1AYW/k0BgE2AogylWZ0ZgB1pjaIMYominMmhrpNdytKiJVVnpSGtakUI0zbCZtmM+p9ba9SFRlowJETzcuwbn1lAjcKO5hRJKKaCIA9p557hkVRHW1BAiBkURNb4yoHiiZZhru7pC1VIjsOEppQjrHoE1NQRrcgi2XM9l2e6BQCnPIbwlvE8U6TuSKI4r5fMx0zl0hp24C1vQ+tduJP87E0tzmXtCCOFNzVQkD1idvQW60YHZjoXV7mvXdg7ibO4Uj3QMFv5NAoFNxEjLQL4MeYHFYV8z0TKOG42LmRn6vq+HFRA6G23Zxi7m62VsYccxn88uReSFCErhKowonLXl9lXTNdjUJjvY4/q+4oKxdGkhtpwyiucXYE2p/HCfRIJre1c1GYEqXBE5PIbIYdGEpElgoKFE9I3GvtNGyeJCSlcUezznXiNQMgKFt0SPj+O4jaO4s/k1nGQMJ/qDFFq+1p5QKQEghBCN5lLLGXRQmaxiA487XqFQH7lSACCPQ67tOCWBQOHfJBDYhJxiGUmICiFGRRFrRJOkEmo/SNSqvWrt2m6I5cEeHxCVfEAUIpgkqnig+q7B2XobpVRml1Vk+VU0CgGI6FNZny5FJVbuS9UZgUa4gVnowJHvQIXIn+2GEt61ssj34XUCbbI0WDQCFWKgQgz+abmMb0JfpltIB18PSQghgo5FWTjeGAhAGTb+NKvOCszTlR2Dm0vHYOHn5BNFE3SLdRK3WCf5ehgBo7Ph1jlYH3vnYPcPiLI0WIjgkli+PHg/+TjcGkpUWK7XeXxfUfevxC0QGN6rMhDofsOnuhqBLV9tT7u5PWm/sNdRj1scyb1hSOkKz7v/dnmfF43IUHI5LoQQvjTWrS7/b+acKvfZT75ru7lkBAo/J1ceIuB1Um1c2+skECiEOAYVDUNMTI8lIhWWm4cHAveh7drVkCK0bRiW2Mr3jWT3jMBqagQK7wjrGuG6Cjo8I9BzabC8zwshhBCBbKQxCEv5CoBp5l9V7iMZgSKQSCBQBLyObkuD15sNsTRYagQKEaw8G4Yc2Tl4uV7r8f1ucildX4wuNgFncwB3ScS7tqurESi8w4iwENbRuTy4dE0x2ma6nrPpyvd5iywNFkIIIQJanIphgOoBOEtJ5eidR+wjGYEikEggUAS8ZiqSdFIBWKuz0VpXu29Nz1WQjEAhgleiquz4m0veEc9XZAQqFODM8itZ4rYs2K0+IDgbkMSVd56rrkag8J6wns7mL7pMU7qusmGIe0agvM8LIYQQgW+sZahre2DpWdxQ9hCLzJWuxzwyApVkBAr/JoFAERQ6Gc7lwXkcrPbD9m6dS4vSQXQsGcu40n9Uey73TBHJCBQiuHRWbRmu+tNDdWSHudvjuQM6n6047yBXdBc+SAGHllTeQY7o7RkIhMo6gVXVCNz3/E42dF/C5pNWU7ywoMF+DuHkXiewYvk2gMM981uaQgkhhBAB7zRjFP+y/IOLjNPI4xDvmd9wYtnlTLM7lwp7ZAQiGYHCv0kgUASFzqqyYUh1nYOnm3MpoIgcdjJPL632XFJEXojgFaOi+FMvZIVez2a2ezy3dccOWpe1BKCFqlzyW7C08g5yeBWBwGScgcACiijUnk0ryjYWU7ahhMKZ+Wh77RnLon7CyzMCwbNOoE1KQAghhBBBpYfRiX+HTKan0YlwwrBhx46D+x3P8qnjR8kIFAFFAoEiKHg0DDGrbhgyzVFZGLaUMo83e3ceReQlU0SIoNJWpbu2s3SOx3Mpb0bxZYuHmN37JQbvruzw+/rN37H+jt2UXKCwtgg54pzJHp2DPTOWbdvKXNshrUKPefzCU0VG4Na2e3iw30v8nb8cbTMPaxYi7/NCCCFEsLjFOomdYX9xhhpDd9WRpXoNk2x3sEZnufaRjEDh7yQQKIJCR4/OwUdmBJraZIY51+OxHL2jynPZsLm2QzjyQ70QInC5BwI36a0ezxVMywMgIjuEds0yXI+/dOLnXHDvfTzx2kdVntOjc/BhpQts28sDgRawpkogsKFZU0KIGhvL/Ic28O6EH9n87AbWtlzI/h/3uvaRzG8hhBAiuESocD4MfZreRhcABqgeLDFXu56XjEDh7yQQKIJCZ6NyafCaKjICV+j17D7sA/iWagOBsjRYiGAVp2JcnYM3mZWBQPt+m6uGX1jXCFJik444tpfRucpzugcCD68TaNtWCjiDgMqijmns4khKKTK/78pfZ64CoPNPrTDzHRSuq6zHKEuDhRBCiOBjURZesD7ACcYg/tYryOWA67nmSCBQ+De5uhVBIYkETjVOYIPezCq9Hq01SlV+qJ5m/nXEMdVlBMqSMSGCW1uVzj6dx3Z2U6JLCVdhFM48CKbz+aixcaS4Bfcq9FFdqzxfEpVLg/e4LQ02S0wce503HmRZsHd9FvIc08vmEtepOaW2Ik59YRBDVvQg5Z02dHKrMSuEEEKI4KGU4iHrzcwsu8j1WDMiCFWyKkz4NwkEiqCglKIMm2tZcLbedkStr/Yqg41uNb8kI1AIUZW2KoO/9Qo0ms16G51VOwp+y3M9HzUmztUJ2F3F8pLDuQcNd7llBFZkAwKEtAprgJGL6sSpGCaGjYN3wSxzkDq3DWaxSbTR3NdDE0IIIYQPDVQ96aBas0FvBiCaIxu/CeFvZGmwCBqDjMri/fP1Mtd2oS7iQ8dUNuocutHe9Xi1NQK1dJMUIpgdXidQa01heX1AFa6IHB7tsdwXIIl40jhyuTDgETTcTWUg0C6NQnzCCLXQbEQs0SdJEFAIIYQIdkopLrJMcH2v0T4cjRANQwKBImgMVD1d2wvM5a7tP8y/KStvAHKc0RtL+XLf6pcGS0agEMGsreEZCFxnbuLZV75k4+S9qMsiMCIsHst9AXobXT3KEbjzaBbitjTYs2OwZAQKIYQQQvjC+capZJLGeON4brJe6uvhCHHMJIohgsZAoycKhUYz31zqety9PuCJlmH8av7FVnZWuzTYPRBoVfJPSIhg41lWYCswh7eGTeWtYVP5j/V2utCLMBVKMyIopBiA3qrqZcHgzBassMPc7dr2WBqcLhmBQgghhBC+0NpoybrwX309DCEajEQxRNCIVdF0Vm1Zo7NYrtdTpIuJVBH8Zs4FwIKFkcYgMlQaW/VO9pFHgS4iSkV6nEdqBAoR3NqpDNf2Jr2VTbqye/AYY4hrO5wwVyCwj1F1oxCAEBXCOGM4C80VbGKbq5nRDyfP4WDCAdK2tSChR1tivPCzCCGEEEIIIYKLRDFEUBlk9GKNIws7dhbr1aSTyvryBiKDVC9iVTSZKo2/9CLAuTy4q2rvcQ4JBAoR3JJJcGX7bTRz2IEziy+NJI/3i66qPav1Roooodth7yOHc+BgH3kAbGc3rUjh286z+KnjHwBsDpvllZ9FCCGEEEIIEVykRqAIKu51An9x/Mnnjp9c34+xODN5MlSa67Gq6gTacbi2reX1BIUQwUMpRRvVCoBsciimBIDRliEedQCnhb3D9vDZHAhfSEejTY3n7Kk6ubZXmOsA2KZ3Ac4bDu7Lh4UQQgghhBDiaEkgUASVkcYgLjBOpS3pfOz4nrftX9KGVpxlnMgE4wQAMt0CgVXVCbSVNxYBCCHE+4MWQjQ5/7JewTnGeEy3znFj3ZYF11dPo7Nre7n2DASmqWQMJX+uhRBCCCGEEMdO1jWKoNLWSGc3uWxiq8fjKboF3VVHoDIjMIYojw6eFWzarVmI/BMSIiidYozkbttTACicWYCjjMFHfb7DMwILdREHOAhAK1KOYaRCCCGEEEIIUUlSDETQmWK97YjH/hNyu2tJX1uVThzRHKSANTrriH3tUiNQiKAXo6KYHvoeQ1RfloVM5Y/Qj0hUzY/6fB1Va8JwdgZerte7sgEBWikJBAohhBBCCCEahkQxRNDpZXTmQjWB3/QcDBRDjX4MNCprB7ZSyRyiCMCjG2gFjxqBSmoEChGs2hkZTA9916Mu4NGyKitdVXuW6NVs1FvI0jmu59IlECiEEEIIIYRoIBIIFEHp6dC7iCQCA+UK+lUIUSFkqFSy9TaydA5aa48P+tI1WAhRoSGCgBV6GB1Z4liNickCc4Xr8ZYqucFeQwghhBBCCBHcZGmwCErNVSxhKpQQFUK8ij3i+XYqA4BDFJLLAY/nJBAohPAGjzqB5Q1DQJYGCyGEEEIIIRqOTwOBf/zxBxMmTCAtLQ2lFN98843rOZvNxp133kmPHj1o1qwZaWlpXHrppezYcWQXV3cPPfQQSimPr86dO9d4jBCHa6vSXduHLw92rxEozUKEEA2lp9GZEKx0IJMtervrcQkECiGEEEIIIRqKTwOBhYWF9OrVixdffPGI54qKili8eDH3338/ixcv5quvvmLdunWcdtpptZ63W7du7Ny50/U1e/ZsbwxfBLCaAoGSESiE8Ib+dCeWaDawxeN9RwKBQgghhBBCiIbi0yjG+PHjGT9+fJXPxcbGMm3aNI/HXnjhBQYOHEhOTg4ZGRnVntdqtZKSIh+cxNGrWBoMeBTtB7BpyQgUQjS8SCOCTqotuXoRRZQAEEYoiRx9N2IhhBBCCCGEcOdXNQLz8/NRShEXF1fjfhs2bCAtLY22bdty0UUXkZOTU+P+paWlHDx40ONLBDePjECz+qXBIUoCgUKIhjPWMsTj+5YquUEbkgghhBBCCCGCm98EAktKSrjzzju54IILiImJqXa/QYMG8c477/Dzzz/z8ssvk52dzfDhwzl06FC1x0yZMoXY2FjXV3p6erX7iuDQRrVybR9ZI9Dh2rZiabQxCSEC31hjqMf3sixYCCGEEEII0ZD8IhBos9k499xz0Vrz8ssv17jv+PHjOeecc+jZsyfjxo3jxx9/JC8vj88++6zaY+6++27y8/NdX1u3bq12XxEcIlUEaSQBsOnwpcHYXNshhDTquIQQga236kIs0a7vW5Lsw9EIIYQQQgghAk2TDwRWBAG3bNnCtGnTaswGrEpcXBwdO3Zk48aN1e4TFhZGTEyMx5cQbcqXB+9hP4d0oetxaRYihPAWi7LQU3VyfW8gy4KFEEIIIYQQDadJBwIrgoAbNmzgt99+IyEhod7nKCgoICsri9TUVC+MUASytkblEvFst+XBsjRYCOFNV1nO5VxjPLdaJnGl5VxfD0cIIYQQQggRQHyazlRQUOCRqZednc3SpUuJj48nNTWVs88+m8WLF/P999/jcDjYtWsXAPHx8YSGhgIwevRozjzzTG688UYAbrvtNiZMmEBmZiY7duzgwQcfxGKxcMEFFzT+Dyj8WkXDkATi2GRuo6fRGfDsGiwZgUKIhnau9WTO5WRfD0MIIYQQQggRgHwaxVi4cCEnnHCC6/vJkycDMGnSJB566CGmTp0KQO/evT2OmzlzJiNHjgQgKyuL3Nxc13Pbtm3jggsuYN++fbRo0YJhw4Yxb948WrRo4d0fRgScbqo90TRjH3msJ9v1uPvSYKsEAoUQQgghhBBCCOEnfBrFGDlyJFrrap+v6bkKmzdv9vj+k08+OdZhCQE4OwcfwlkbcK25yfW43b1GoJJmIUIIIYQQQgghhPAPTbpGoBC+1F5losoL9a/XlRmBdo+MQKkRKIQQQgghhBBCCP8ggUAhqhGhwslULQFYp7NdGarSNVgIIYQQQgghhBD+SAKBQtSgs2oDwCEK2cEeQAKBQgghhBBCCCGE8E8SCBSiBp1UW9d2RZ1AOw7XY9IsRAghhBBCCCGEEP5CAoFC1KBjeUYgVNYJtGnJCBRCCCGEEEIIIYT/kUCgEDXobFRmBK4rDwTasbkek0CgEEIIIYQQQggh/IUEAoWoQSe3jMC12rk0uKJGoIGBoeSfkBBCCCGEEEIIIfyDRDGEqEGiak4izQFYb1ZkBDprBFqx+GxcQgghhBBCCCGEEPUlgUAhalFRJ3AHe8gzD7oyAmVZsBBCCCGEEEIIIfyJRDKEqMXJluMJdVjJ0ltZoJe7BQJDfDwyIYQQQgghhBBCiLqTQKAQtchQaczSCwD43VyAvTwQKEuDhRBCCCGEEEII4U9kabAQtRhlDEahAJhm/oVNy9JgIYQQQgghhBBC+B8JBApRi0TVnL6qKwDL9TpKKQPAKoFAIYQQQgghhBBC+BEJBApRB6ONIa7tYkoACFESCBRCCCGEEEIIIYT/kECgEHUw1jLUtS0ZgUIIIYQQQgghhPBHEggUog4GqV5EEUkyidhxAFIjUAghhBBCCCGEEP5FAoFC1EGoCuFh6y0cIB+NBiQQKIQQQgghhBBCCP8igUAh6ugkY7grCAhgYvpwNEIIIYQQQgghhBD1I4FAIeqonZHB1cZ5ru9LsflwNEIIIYQQQgghhBD1I2sbhaiHu63XUmAv4mrr+aSqFr4ejhBCCCGEEEIIIUSdSSBQiHpINJrzauijvh6GEEIIIYQQQgghRL3J0mAhhBBCCCGEEEIIIYKABAKFEEIIIYQQQgghhAgCEggUQgghhBBCCCGEECIISCBQCCGEEEIIIYQQQoggIIFAIYQQQgghhBBCCCGCgAQChRBCCCGEEEIIIYQIAhIIFEIIIYQQQgghhBAiCEggUAghhBBCCCGEEEKIICCBQCGEEEIIIYQQQgghgoBPA4F//PEHEyZMIC0tDaUU33zzjcfzWmseeOABUlNTiYiIYMyYMWzYsKHW87744ou0bt2a8PBwBg0axIIFC7z0EwghhBBCCCGEEEII4R98GggsLCykV69evPjii1U+/3//93/873//45VXXmH+/Pk0a9aMcePGUVJSUu05P/30UyZPnsyDDz7I4sWL6dWrF+PGjWPPnj3e+jGEEEIIIYQQQgghhGjylNZa+3oQAEopvv76a8444wzAmQ2YlpbGv/71L2677TYA8vPzSU5O5p133uH888+v8jyDBg1iwIABvPDCCwCYpkl6ejo33XQTd911V53GcvDgQWJjY8nPzycmJubYfzghhBBCCCGEEEII4bcCJVZk9fUAqpOdnc2uXbsYM2aM67HY2FgGDRrE3LlzqwwElpWVMvTQRQAAODFJREFUsWjRIu6++27XY4ZhMGbMGObOnVvta5WWllJaWur6Pj8/H3D+TxZCCCGEEEIIIYQQwa0iRtRE8umOWpMNBO7atQuA5ORkj8eTk5Ndzx0uNzcXh8NR5TFr166t9rWmTJnCww8/fMTj6enp9R22EEIIIYQQQgghhAhQ+/btIzY21tfDOGpNNhDYmO6++24mT57s+j4vL4/MzExycnL8+n+uOHoHDx4kPT2drVu3+nXKrzh6MgcEyDwQMgeEzAEhc0DIHBAyB4RTfn4+GRkZxMfH+3oox6TJBgJTUlIA2L17N6mpqa7Hd+/eTe/evas8JjExEYvFwu7duz0e3717t+t8VQkLCyMsLOyIx2NjY+UfeZCLiYmRORDkZA4IkHkgZA4ImQNC5oCQOSBkDggnw/Bp391j1mRH36ZNG1JSUpg+fbrrsYMHDzJ//nwGDx5c5TGhoaH069fP4xjTNJk+fXq1xwghhBBCCCGEEEIIEQx8mhFYUFDAxo0bXd9nZ2ezdOlS4uPjycjI4NZbb+Wxxx6jQ4cOtGnThvvvv5+0tDRXZ2GA0aNHc+aZZ3LjjTcCMHnyZCZNmkT//v0ZOHAgzz77LIWFhVx++eWN/eMJIYQQQgghhBBCCNFk+DQQuHDhQk444QTX9xV1+iZNmsQ777zDHXfcQWFhIVdffTV5eXkMGzaMn3/+mfDwcNcxWVlZ5Obmur4/77zz2Lt3Lw888AC7du2id+/e/Pzzz0c0EKlJWFgYDz74YJXLhUVwkDkgZA4IkHkgZA4ImQNC5oCQOSBkDginQJkHSvt732MhhBBCCCGEEEIIIUStmmyNQCGEEEIIIYQQQgghRMORQKAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEfBoInDJlCgMGDCA6OpqkpCTOOOMM1q1b57FPSUkJN9xwAwkJCURFRTFx4kR2797ten7ZsmVccMEFpKenExERQZcuXXjuuec8zvHVV18xduxYWrRoQUxMDIMHD+aXX36pdXxaax544AFSU1OJiIhgzJgxbNiwwWOfxYsXM3bsWOLi4khISODqq6+moKCg1nMvX76c4cOHEx4eTnp6Ov/3f//n8fyqVauYOHEirVu3RinFs88+W+s5/ZHMgernwOuvv87w4cNp3rw5zZs3Z8yYMSxYsKDW8/obmQPVz4GvvvqK/v37ExcXR7Nmzejduzfvv/9+ref1RzIPqp8H7j755BOUUpxxxhm1ntffyByofg688847KKU8vsLDw2s9r7+ROVDz+0BeXh433HADqamphIWF0bFjR3788cdaz+1PZA5UPwdGjhx5xPuAUopTTjml1nP7E5kDNb8PPPvss3Tq1ImIiAjS09P55z//SUlJSa3n9icyB6qfAzabjUceeYR27doRHh5Or169+Pnnn2s9rz8K1nlQUlLCZZddRo8ePbBardVe88+aNYu+ffsSFhZG+/bteeedd2od8+E/gM+MGzdOv/3223rlypV66dKl+uSTT9YZGRm6oKDAtc+1116r09PT9fTp0/XChQv1cccdp4cMGeJ6/s0339Q333yznjVrls7KytLvv/++joiI0M8//7xrn1tuuUX/5z//0QsWLNDr16/Xd999tw4JCdGLFy+ucXxPPPGEjo2N1d98841etmyZPu2003SbNm10cXGx1lrr7du36+bNm+trr71Wr127Vi9YsEAPGTJET5w4scbz5ufn6+TkZH3RRRfplStX6o8//lhHREToV1991bXPggUL9G233aY//vhjnZKSop955pn6/Gr9hsyB6ufAhRdeqF988UW9ZMkSvWbNGn3ZZZfp2NhYvW3btnr9jps6mQPVz4GZM2fqr776Sq9evVpv3LhRP/vss9piseiff/65Xr9jfyDzoPp5UCE7O1u3bNlSDx8+XJ9++ul1+bX6FZkD1c+Bt99+W8fExOidO3e6vnbt2lWv368/kDlQ/RwoLS3V/fv31yeffLKePXu2zs7O1rNmzdJLly6t1++4qZM5UP0c2Ldvn8d7wMqVK7XFYtFvv/12fX7FTZ7MgernwIcffqjDwsL0hx9+qLOzs/Uvv/yiU1NT9T//+c96/Y6bOpkD1c+BO+64Q6elpekffvhBZ2Vl6ZdeekmHh4fXOmZ/FKzzoKCgQF977bX6tdde0+PGjavymn/Tpk06MjJST548Wa9evVo///zz9f6M6NNA4OH27NmjAf37779rrbXOy8vTISEh+vPPP3fts2bNGg3ouXPnVnue66+/Xp9wwgk1vlbXrl31ww8/XO3zpmnqlJQU/eSTT7oey8vL02FhYfrjjz/WWmv96quv6qSkJO1wOFz7LF++XAN6w4YN1Z77pZde0s2bN9elpaWux+68807dqVOnKvfPzMwM2EDg4WQOVD0HtNbabrfr6Oho/e6779b4c/k7mQPVzwGtte7Tp4++7777atwnEMg88JwHdrtdDxkyRL/xxht60qRJARkIPJzMgco58Pbbb+vY2Ngaf4ZAJHOgcg68/PLLum3btrqsrKzGnyPQyByo/prgmWee0dHR0R4figORzIHKOXDDDTfoUaNGeRw3efJkPXTo0Bp/Ln8nc6ByDqSmpuoXXnjB47izzjpLX3TRRTX+XIEgWOaBu+qu+e+44w7drVs3j8fOO+88PW7cuDqdV2utm1SNwPz8fADi4+MBWLRoETabjTFjxrj26dy5MxkZGcydO7fG81ScoyqmaXLo0KEa98nOzmbXrl0erx0bG8ugQYNcr11aWkpoaCiGUflrjIiIAGD27NnVnnvu3Lkcf/zxhIaGuh4bN24c69at48CBA9UeFwxkDlQ/B4qKirDZbDWOORDIHKh6DmitmT59OuvWreP444+v9ryBQuaB5zx45JFHSEpK4oorrqj2XIFG5oDnHCgoKCAzM5P09HROP/10Vq1aVe05A4XMgco5MHXqVAYPHswNN9xAcnIy3bt35/HHH8fhcFR73kAgc6D668I333yT888/n2bNmlV73kAgc6ByDgwZMoRFixa5SgVt2rSJH3/8kZNPPrna8wYCmQOVc6C0tPSI0iARERE1njdQBMs8qIu5c+d6vDY450pNP/fhmkwg0DRNbr31VoYOHUr37t0B2LVrF6GhocTFxXnsm5yczK5du6o8z5w5c/j000+5+uqrq32tp556ioKCAs4999xq96k4f3JycrWvPWrUKHbt2sWTTz5JWVkZBw4c4K677gJg586dNZ67qvO6v24wkjlQ8xy48847SUtLO+IffSCROXDkHMjPzycqKorQ0FBOOeUUnn/+ecaOHVvteQOBzAPPeTB79mzefPNNXn/99WrPE2hkDnjOgU6dOvHWW2/x7bff8sEHH2CaJkOGDGHbtm3VntffyRzwnAObNm3iiy++wOFw8OOPP3L//ffz9NNP89hjj1V7Xn8nc6D668IFCxawcuVKrrzyymrPGQhkDnjOgQsvvJBHHnmEYcOGERISQrt27Rg5ciT33HNPtef1dzIHPOfAuHHj+O9//8uGDRswTZNp06bx1Vdf1XjeQBBM86AuqpsrBw8epLi4uE7naDKBwBtuuIGVK1fyySefHPU5Vq5cyemnn86DDz7IiSeeWOU+H330EQ8//DCfffYZSUlJAHz44YdERUW5vv788886vV63bt149913efrpp4mMjCQlJYU2bdqQnJzsivx269bNdd7x48cf9c8WDGQOVO+JJ57gk08+4euvvw7IAvEVZA4cKTo6mqVLl/L333/z73//m8mTJzNr1qx6ncPfyDyodOjQIS655BJef/11EhMT63RMIJA54Gnw4MFceuml9O7dmxEjRvDVV1/RokULXn311Tqfw9/IHPBkmiZJSUm89tpr9OvXj/POO497772XV155pc7n8DcyB6r35ptv0qNHDwYOHHhUx/sLmQOeZs2axeOPP85LL73E4sWL+eqrr/jhhx949NFH63wOfyNzwNNzzz1Hhw4d6Ny5M6Ghodx4441cfvnlHllngUjmgRfUeRGxF91www26VatWetOmTR6PT58+XQP6wIEDHo9nZGTo//73vx6PrVq1SiclJel77rmn2tepKLj5/fffezx+8OBBvWHDBtdXUVGRzsrK0oBesmSJx77HH3+8vvnmm484965du/ShQ4d0QUGBNgxDf/bZZ1prrTdv3uw6b0WTh0suueSItd4zZszQgN6/f/8R5w6GGoEyB6qfA08++aSOjY3Vf//9d7U/VyCQOVDz+0CFK664Qp944onVPu/vZB54zoMlS5ZoQFssFteXUkorpbTFYtEbN26s9mf0VzIH6vZecPbZZ+vzzz+/2uf9mcyBI+fA8ccfr0ePHu2xz48//qgBj3pSgULmQPXvAwUFBTomJkY/++yz1f5cgUDmwJFzYNiwYfq2227z2Kei+YF7HbJAIXOg+veB4uJivW3bNm2apr7jjjt0165dq/35/F2wzQN31dUIHD58uL7llls8Hnvrrbd0TExMtT/f4XwaCDRNU99www06LS1Nr1+//ojnKwpAfvHFF67H1q5de0QByJUrV+qkpCR9++23V/taH330kQ4PD9fffPNNnceWkpKin3rqKddj+fn5HgUgq/Lmm2/qyMjIIyaku4pCoO4Fn+++++6gbBYic6DmOfCf//xHx8TE1Fjw1N/JHKjb+0CFyy+/XI8YMaJO4/cnMg+qngfFxcV6xYoVHl+nn366HjVqlF6xYkVABQBkDtT9vcBut+tOnToFXKdImQPVz4G7775bZ2ZmenzYf/bZZ3Vqamqdxu8vZA7U/j7w9ttv67CwMJ2bm1uncfsbmQPVz4G+ffvqO+6444ifISIiQtvt9jr9DP5A5kDdrwfKysp0u3bt9N13312n8fuTYJ0H7mpqFtK9e3ePxy644IJ6NQvxaSDwuuuu07GxsXrWrFl6586drq+ioiLXPtdee63OyMjQM2bM0AsXLtSDBw/WgwcPdj2/YsUK3aJFC33xxRd7nGPPnj2ufT788ENttVr1iy++6LFPXl5ejeN74okndFxcnP7222/18uXL9emnn+7RElprrZ9//nm9aNEivW7dOv3CCy/oiIgI/dxzz9V43ry8PJ2cnKwvueQSvXLlSv3JJ5/oyMhIj9bgpaWlesmSJXrJkiU6NTVV33bbbXrJkiV17jDjL2QOVD8HnnjiCR0aGqq/+OILjzEfOnSozr9ffyBzoPo58Pjjj+tff/1VZ2Vl6dWrV+unnnpKW61W/frrr9f59+svZB5UPw8OF6hdg2UOVD8HHn74Yf3LL7/orKwsvWjRIn3++efr8PBwvWrVqjr/fv2BzIHq50BOTo6Ojo7WN954o163bp3+/vvvdVJSkn7sscfq/Pv1BzIHav9bMGzYMH3eeefV+rv0VzIHqp8DDz74oI6OjtYff/yx3rRpk/711191u3bt9Lnnnlvn368/kDlQ/RyYN2+e/vLLL3VWVpb+448/9KhRo3SbNm3qHFjyJ8E6D7R2ZjAuWbJET5gwQY8cOdIVF6qwadMmHRkZqW+//Xa9Zs0a/eKLL2qLxaJ//vnnuvxqtdY+DgQCVX69/fbbrn2Ki4v19ddfr5s3b64jIyP1mWeeqXfu3Ol6/sEHH6zyHJmZma59RowYUeU+kyZNqnF8pmnq+++/XycnJ+uwsDA9evRovW7dOo99LrnkEh0fH69DQ0N1z5499XvvvVenn33ZsmV62LBhOiwsTLds2VI/8cQTHs9nZ2dXOeZAywSSOVD9HMjMzKxyzA8++GCdzu8vZA5UPwfuvfde3b59ex0eHq6bN2+uBw8erD/55JM6ndvfyDyofh4cLlADgTIHqp8Dt956q87IyNChoaE6OTlZn3zyyXrx4sV1Orc/kTlQ8/vAnDlz9KBBg3RYWJhu27at/ve//x1QWUBayxyobQ5UZLv8+uuvdTqnP5I5UP0csNls+qGHHtLt2rXT4eHhOj09XV9//fUBFwSSOVD9HJg1a5bu0qWLDgsL0wkJCfqSSy7R27dvr9O5/U0wz4Pq4gDuZs6cqXv37q1DQ0N127ZtPX4vdaG01hohhBBCCCGEEEIIIURAC+z2MkIIIYQQQgghhBBCCEACgUIIIYQQQgghhBBCBAUJBAohhBBCCCGEEEIIEQQkECiEEEIIIYQQQgghRBCQQKAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEJBAohBBCCCGEEEIIIUQQkECgEEIIIYQfGzlyJLfeemvQvbYQQgghhKg/CQQKIYQQQgSJWbNmoZQiLy+vQY776quvePTRRxtugEIIIYQQwqusvh6AEEIIIYTwT/Hx8b4eghBCCCGEqAfJCBRCCCGE8BOFhYVceumlREVFkZqaytNPP+3x/Pvvv0///v2Jjo4mJSWFCy+8kD179gCwefNmTjjhBACaN2+OUorLLrsMANM0mTJlCm3atCEiIoJevXrxxRdf1Hrc4UuDW7duzWOPPeYaY2ZmJlOnTmXv3r2cfvrpREVF0bNnTxYuXOgx7tmzZzN8+HAiIiJIT0/n5ptvprCwsKF/fUIIIYQQQU8CgUIIIYQQfuL222/n999/59tvv+XXX39l1qxZLF682PW8zWbj0UcfZdmyZXzzzTds3rzZFbRLT0/nyy+/BGDdunXs3LmT5557DoApU6bw3nvv8corr7Bq1Sr++c9/cvHFF/P777/XeFxVnnnmGYYOHcqSJUs45ZRTuOSSS7j00ku5+OKLWbx4Me3atePSSy9Faw1AVlYWJ510EhMnTmT58uV8+umnzJ49mxtvvNEbv0IhhBBCiKCmdMVVmBBCCCGEaLIKCgpISEjggw8+4JxzzgFg//79tGrViquvvppnn332iGMWLlzIgAEDOHToEFFRUcyaNYsTTjiBAwcOEBcXB0BpaSnx8fH89ttvDB482HXslVdeSVFRER999FGVx4EzI7B3796u127dujXDhw/n/fffB2DXrl2kpqZy//3388gjjwAwb948Bg8ezM6dO0lJSeHKK6/EYrHw6quvus47e/ZsRowYQWFhIeHh4Q34WxRCCCGECG5SI1AIIYQQwg9kZWVRVlbGoEGDXI/Fx8fTqVMn1/eLFi3ioYceYtmyZRw4cADTNAHIycmha9euVZ5348aNFBUVMXbsWI/Hy8rK6NOnT73H2bNnT9d2cnIyAD169DjisT179pCSksKyZctYvnw5H374oWsfrTWmaZKdnU2XLl3qPQYhhBBCCFE1CQQKIYQQQgSAwsJCxo0bx7hx4/jwww9p0aIFOTk5jBs3jrKysmqPKygoAOCHH36gZcuWHs+FhYXVexwhISGubaVUtY9VBCkLCgq45ppruPnmm484V0ZGRr1fXwghhBBCVE8CgUIIIYQQfqBdu3aEhIQwf/58V4DswIEDrF+/nhEjRrB27Vr27dvHE088QXp6OsARTTlCQ0MBcDgcrse6du1KWFgYOTk5jBgxosrXruq4htK3b19Wr15N+/btG/zcQgghhBDCkzQLEUIIIYTwA1FRUVxxxRXcfvvtzJgxg5UrV3LZZZdhGM7LuYyMDEJDQ3n++efZtGkTU6dO5dFHH/U4R2ZmJkopvv/+e/bu3UtBQQHR0dHcdttt/POf/+Tdd98lKyuLxYsX8/zzz/Puu+9We1xDufPOO5kzZw433ngjS5cuZcOGDXz77bfSLEQIIYQQwgskECiEEEII4SeefPJJhg8fzoQJExgzZgzDhg2jX79+ALRo0YJ33nmHzz//nK5du/LEE0/w1FNPeRzfsmVLHn74Ye666y6Sk5NdwbZHH32U+++/nylTptClSxdOOukkfvjhB9q0aVPjcQ2hZ8+e/P7776xfv57hw4fTp08fHnjgAdLS0hrsNYQQQgghhJN0DRZCCCGEEEIIIYQQIghIRqAQQgghhBBCCCGEEEFAAoFCCCGEEEIIIYQQQgQBCQQKIYQQQgghhBBCCBEEJBAohBBCCCGEEEIIIUQQkECgEEIIIYQQQgghhBBBQAKBQgghhBBCCCGEEEIEAQkECiGEEEIIIYQQQggRBCQQKIQQQgghhBBCCCFEEJBAoBBCCCGEEEIIIYQQQUACgUIIIYQQQgghhBBCBAEJBAohhBBCCCGEEEIIEQQkECiEEEKI/2/v7uNqPv8/gL9O6f6UJClRadIyd7mdtbGZlMYwFtZXtZ8ZQka511fullhZ9jU8NqYZwhrLF9nMMtqQm4VuaYjWl6/lLpXqdP3+8Ojz9emc7iyOnNfz8TiPR5/P9TnXeV+fz+nqnHfXdX2IiIiIiEgHMBFIRERERERERESkA5gIJCIiIiIiIiIi0gFMBBIREREREREREekAJgKJiIiIiIiIiIh0ABOBREREREREREREOoCJQCIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIBTAQSERERERERERHpACYCiYiIiIiIiIiIdAATgURERERERERERDqAiUAiIiIiIiIiIiIdwEQgERERERERERGRDmAikIiIiIiIiIiISAcwEUhERERERERERKQDmAgkIiIiIiIiIiLSAUwEEhERERERERER6QAmAomIiIiIiIiIiHQAE4FEREREREREREQ6gIlAIiIiIiIiIiIiHcBEIBERERERERERkQ5gIpCIiIiIiIiIiEgHMBFIRERERERERESkA5gIJCIiIiIiIiIi0gFMBBIREREREREREekAJgKJiIiIiIiIiIh0ABOBREREREREREREOoCJQCIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIBTbQdABHR4yovL0dpaam2wyAiIiIi+tsMDQ3RpAm/ohPRk8VehogaHSEEcnNzcfPmTW2HQkRERETUYKytreHg4ACFQqHtUIjoOcVEIBE1OpVJQHt7eyiVSujpcZUDIiIiImq8KioqUFhYiLy8PKhUKjg7O2s7JCJ6TimEEELbQRAR1VV5eTlSU1Nhb28PW1tbbYdDRERERNRg/vOf/yAvLw937txB3759OVWYiBoch9EQUaNSuSagUqnUciRERERERA2r8jNueno6kpKSwHE7RNTQmAgkokaJ04GJiIiI6HlT+RlXqVQiMzMT9+/f13JERPS84TdpIiIiIiIiomeIkZERSktLUVxcrO1QiOg5w0QgEdEzICkpCQqFArdv39Z2KI2CEAIffvghrKysoFAo8Pvvv+P111/HRx99JB3j5OSETz/9VNpWKBTYvXv333rdwMBADBs27G/VUZvw8HB07dr1ib5GpZ9++glubm5QqVRP5fUe1+XLl6XrXFdV3w+aVH2PaENd4nwWpKeno3Xr1hyZUg32SQ2jofqkhji3wLPRR1T1JGN6FttbX4/z9+JJ1vOo0tJSODk54eTJkw1WJxHR4+DKo0RE1OgkJiZi06ZNSEpKgrOzM6ytrfHdd9/BwMBA26E1KrNmzcKCBQugr6+v7VC0IiUlBWZmZtoO45nw+uuv4/Dhw7J9EyZMwLp16wAAHTp0wMsvv4zo6GiEhYVpI8RnGvukhtFQfVJ+fj6aNWv2t+PRtT6ivu1NSkrCG2+8gVu3bsHS0vLJBfaEBQYG4vbt27LkcZs2bZCfnw9ra+sGex1DQ0OEhoZi9uzZ+OmnnxqsXiKi+mIikIgarUllC5FecVGrMXTQa4e1Bou0GoMuysnJgZ2dHV555RVpn5WVlRYjanyOHj2KnJwcjBgxQtuhaE2LFi20HcITpVKpoFAo6rym6vjx47F48WJp29TUVFb+/vvvY/z48Zg7dy7vYlkF+6S/ryH7JFtb2waI6PnvI6rSVnuFEFCpVM9Uv6Kvr99g76NH+fn5ISQkBGlpaXjppZcavH4iorrg1GAiarTSKy7iuEjV6qM+icgHDx4gODgYNjY2MDY2xquvvoqUlBSNxxYVFWHQoEHw8PDgdOEqAgMDMXXqVOTm5kKhUMDJyQlA/adYXr16Fb6+vrC0tISVlRWGDh2Ky5cvS+UqlQozZsyApaUlmjdvjlmzZtV45767d+/CxMQE+/fvl+3ftWsXzM3NUVRUBACYPXs22rdvD1NTUzg7OyMsLAxlZWXV1qupXcOGDUNgYKC0/eDBA4SGhsLe3h5mZmbo3bs3kpKSamx/XFwcPD09YWxsLNu/dOlS2NjYwNzcHB988AHmzJkjmxaYkpICT09PWFtbo2nTpujXrx9Onz4tq0OhUGDt2rUYNGgQTExM4OzsjG+//bbGeB514sQJuLu7w9jYGD169MCZM2fUjjl//jwGDRoEpVKJli1bYuzYsbh586bsmPLyckyZMgVNmzaFtbU1wsLCZNew6jS46OhodOrUCWZmZmjTpg2CgoJQWFgolV+5cgVDhgxBs2bNYGZmhpdeegn79u2rc0z379+Hv78/lEol7OzsEBUVVedzAtR+nTdt2gRLS0skJCSgQ4cOMDIyQm5ubp2uGfAw8Wdrays9LCwsZOWenp4oKChQGzmo69gnPbk+qXJa8saNG+Hg4AClUomgoCCoVCqsWLECtra2sLGxwbJly2R1PTo1uLS0FFOmTIGdnR2MjY3h6OiIiIgIAA8TUOHh4XBwcICRkRFatWqF4OBgqR5N07m//PJLDB8+HKampnBxcUFCQoLstRMSEuDi4gJjY2O88cYbiI2NrdfSH/Hx8XjppZdgZGQEJycnjf3EvXv3MGbMGJiZmcHe3h5r1qyRymprU03q097Lly/jjTfeAAA0a9YMCoVCeg9UVFQgIiICbdu2hYmJCbp06SL7G1C5HMr+/fvRvXt3GBkZ4ejRo9L1Xr9+Pdq0aQNTU1P4+vrizp070nMrKiqwePFitG7dGkZGRujatSsSExOrbZNKpcK4ceOkWFxdXRETEyOVh4eHIzY2Ft9//z0UCgUUCgWSkpI0Tg0+fPgwevXqBSMjI9jZ2WHOnDkoLy+Xyl9//XUEBwdj1qxZsLKygq2tLcLDw2XxNGvWDB4eHoiLi6vTNSEiehKYCCQiekpmzZqF+Ph4xMbG4vTp02jXrh28vLxQUFAgO+727dvw9PRERUUFfvzxR61Mt7lz/Q6uns2VPf7KfZjQKCspUyu7ejZXeu71i/9RK7t/6+G6YoU376mV3bl+R2MM1YmJiZG+BOTn51ebTK1JWVkZvLy8YG5ujiNHjiA5ORlKpRLe3t4oLS0FAERFRWHTpk3YuHEjjh49ioKCAuzatavaOi0sLDB48GBs3bpVtn/Lli0YNmyYNLrK3NwcmzZtQnp6OmJiYvDFF19g1apV9W7Do6ZMmYLffvsNcXFxOHv2LN599114e3vjwoUL1T7nyJEj6NGjh1qsy5YtQ2RkJE6dOgUHBwesXbtWdsy9e/cQEBCAo0eP4tixY3BxcYGPjw/u3bsnOy4sLAwjRoxAamoq/Pz8MHr0aGRkZNTalsLCQgwePBgdOnTAqVOnEB4ejtDQUNkxt2/fRv/+/eHu7o6TJ08iMTER169fh6+vr+y42NhYNGnSBCdOnEBMTAyio6Px5ZdfVvvaenp6WL16NdLS0hAbG4tDhw5h1qxZUvnkyZPx4MED/PLLLzh37hwiIyOhVCrrHNPMmTNx+PBhfP/99/jhhx+QlJSkMSFXnbpc56KiIkRGRuLLL79EWloabGxs6nzNtmzZAmtra3Ts2BFz586VEkWVDA0N0bVrVxw5cqTOMTeUsvxSFJ8plD1KL5UAACpKKtTKis/8L4H7IKtYray84GGiq/y/ZWplDy7Ub2F+9knqGqpPAh6Otty/fz8SExOxbds2bNiwAW+99RauXbuGw4cPIzIyEgsWLMDx48c11rt69WokJCRgx44dyMrKwpYtW6RkbXx8PFatWoX169fjwoUL2L17Nzp16lRj2xYtWgRfX1+cPXsWPj4+8PPzk/6OX7p0CSNHjsSwYcOQmpqKCRMmYP78+XU8a8CpU6fg6+uL0aNH49y5cwgPD0dYWBg2bdokO27lypXo0qULzpw5gzlz5mDatGn48ccfH7tNj9PeNm3aID4+HgCQlZWF/Px8KcEWERGBr7/+GuvWrUNaWhqmT5+Of/zjH2r/RJgzZw6WL1+OjIwMdO7cGQBw8eJF7NixA3v27EFiYiLOnDmDoKAg6TkxMTGIiorCJ598grNnz8LLywtvv/12te+tiooKtG7dGjt37kR6ejr++c9/Yt68edixYwcAIDQ0FL6+vvD29kZ+fj7y8/NlI3sr5eXlwcfHBz179kRqairWrl2LDRs2YOnSpbLjYmNjYWZmhuPHj2PFihVYvHixdG0q9erVSyv9KBGRRBARNSL3798XJ0+eFPfv3xd9S94TRsUvafXRt+S9OsVdWFgoDAwMxJYtW6R9paWlolWrVmLFihXi559/FgBERkaG6Ny5sxgxYoR48ODBkzqNtdq3co8Itp0oe8QGbRRCCHHjj+tqZcG2E6XnRr8VqVZ2YucxIYQQv2z8Wa1s38o99Y5v1apVwtHRUbavX79+Ytq0adK2o6OjWLVqlbQNQOzatUsIIcTmzZuFq6urqKiokMofPHggTExMxIEDB4QQQtjZ2YkVK1ZI5WVlZaJ169Zi6NCh1ca1a9cuoVQqxf3794UQQty5c0cYGxuL/fv3V/uclStXiu7du0vbCxcuFF26dKm2XUIIMXToUBEQECCEEOLKlStCX19f5OXlyY558803xdy5c6t93aZNm4qvv/5atq93795i8uTJsn0eHh6yeKpSqVTC3Nxc7Nnzv+sIQEycOFF2XO/evcWkSZOqrafS+vXrRfPmzUVxcbG0b+3atQKAOHPmjBBCiCVLloiBAwfKnnf16lUBQGRlZQkhHp43Nzc32TWePXu2cHNzk7arvkeq2rlzp2jevLm03alTJxEeHq7x2NpiunfvnjA0NBQ7duyQyv/66y9hYmKidn01qct1/uqrrwQA8fvvv9dYl6Zrtn79epGYmCjOnj0rvvnmG2Fvby+GDx+u9tzhw4eLwMDAWuNtaNcX54rzhr/KHlcDsoUQQpRcKFIrO2/4q/TcnNfOqpXd2nJDCCHEzc/z1cou+aTVOz72SU+mT1q4cKEwNTUVd+/elfZ5eXkJJycnoVKppH2urq4iIiJC2n703E6dOlX0799fdm4rRUVFifbt24vS0lKNMWm6ZgsWLJC2CwsLBQDpfM6ePVt07NhRVsf8+fMFAHHr1q1q217pvffeE56enrJ9M2fOFB06dJDF5O3tLTtm1KhRYtCgQXVqU03q297Kzy6Ptq2kpESYmpqKX3/93++gEEKMGzdOjBkzRva83bt3y45ZuHCh0NfXF9euXZP27d+/X+jp6Yn8/HwhhBCtWrUSy5Ytkz2vZ8+eIigoSAghxKVLl2R/LzSZPHmyGDFihLQdEBCg9ntUtZ558+ap/Y6uWbNGKJVK6b3Yr18/8eqrr6rFNnv2bNm+mJgY4eTkVG18lZ91t27dKqKiosSNGzeqPZaI6HE8OwsxEBE9x3JyclBWVgYPDw9pn4GBAXr16oWMjAz07NkTwMOpd7169cL27du1egOHV8a+ho4DO8v2mVo+HD1iadcMoQfmVvvc9z71R2lRqWyfVZvmAAD3Id3h1N1ZVmbRsmlDhFwvqampuHjxIszNzWX7S0pKkJOTgzt37iA/Px+9e/eWypo0aYIePXrUOBXPx8cHBgYGSEhIwOjRoxEfHw8LCwsMGDBAOmb79u1YvXo1cnJyUFhYiPLycrUpmPVx7tw5qFQqtG/fXrb/wYMHaN68ebXPKy4uVpsWnJWVJRt5ATwcuXDo0CFp+/r161iwYAGSkpJw48YNqFQqFBUVITc3V/a8Pn36qG3X5e6LlSNDHo2tal2pqan4+eefpdF4j8rJyZHOxcsvvwyFQiGrJyoqCiqVSuPv18GDBxEREYHMzEzcvXsX5eXlKCkpQVFREUxNTREcHIxJkybhhx9+wIABAzBixAhpFEttMRUXF6O0tFT2nrKysoKrq2ut5wSo+3U2NDSUYqpUl2v24YcfSj936tQJdnZ2ePPNN5GTk4MXXnhBKjMxMVEbKfg0NPugJcwHy2/+oG/58GOsQWsjOB+rfsST/RftUFEkvwutgaMRAKDpyOYwfVl+zfSUT7/vZZ+kuU8CHk5XffS8tGzZEvr6+rK1L1u2bIkbN25orDcwMBCenp5wdXWFt7c3Bg8ejIEDBwIA3n33XXz66adwdnaGt7c3fHx8MGTIkBrXqnv098vMzAwWFhbSa2dlZUl/zyv16tWr2rqqysjIwNChQ2X7PDw88Omnn8r6LU39a+WU3sdpU01qaq8mFy9eRFFRETw9PWX7S0tL4e7uLtunaQSog4MD7O3tpe0+ffqgoqICWVlZMDU1xZ9//in7LAU8PEepqanVxrRmzRps3LgRubm5Ul9c3zthZ2RkoE+fPrK/KR4eHigsLMS1a9fg4OAAAGr9r52dndr50lY/SkRUiYlAImq0Oui1AyqegRga0FtvvYX4+Hikp6f/rak8f1fTlk3RtJoEnYGxAdp0dqj2uS3bVb+4ttLaHEpr82rLn5bCwkJ0794dW7ZsUSv7O4ulGxoaYuTIkdi6dStGjx6NrVu3YtSoUdIXsN9++w1+fn5YtGgRvLy80LRpU8TFxdW4Vpyenp7aF/1H1+8qLCyEvr4+Tp06pZbc0pSUqmRtbY1bt27Vu40BAQH466+/EBMTA0dHRxgZGaFPnz7S9MWnobCwEEOGDEFkZKRamZ2d3WPVefnyZQwePBiTJk3CsmXLYGVlhaNHj2LcuHEoLS2FqakpPvjgA3h5eWHv3r344YcfEBERgaioKEydOrXWmC5e/Hs3NqrrdTYxMZF9UQUe75pVJpwuXrwoSwQWFBTItp8WAztDGNgZaizTM9aDiXv173UjV5Nqy5q0MECTFtq/sy/7pOr7pKp3XlYoFBr3VVRo/kDQrVs3XLp0Cfv378fBgwfh6+uLAQMG4Ntvv0WbNm2QlZWFgwcP4scff0RQUBBWrlyJw4cPV3vH5/q8tjY8TptqUt/2Vq6runfvXllCDwCMjIxk20/jjsxxcXEIDQ1FVFQU+vTpA3Nzc6xcubLaqeR/V13OV0FBgc7diIaIni1MBBJRo9WY7tb7wgsvwNDQEMnJyXB0dATw8ItTSkqKbNH15cuXQ6lU4s0330RSUhI6dOigpYifb926dcP27dthY2NT7cgXOzs7HD9+HH379gXw8MYTp06dQrdu3Wqs28/PD56enkhLS8OhQ4dk6wf9+uuvcHR0lK0ZdeXKlRrra9GiBfLz86VtlUqF8+fPS4u0u7u7Q6VS4caNG3jttddqbvgj3N3dkZ6eLtvn6uqKlJQU+Pv7S/uqrneWnJyMzz//HD4+PgAe3uCg6k06AODYsWOyeo4dO6Y2GkQTNzc3bN68GSUlJdLooGPHjsmO6datG+Lj4+Hk5FTjKJeqX/Qq18fTNBrw1KlTqKioQFRUlDTSqHINqUe1adMGEydOxMSJEzF37lx88cUXmDp1aq0xvfDCCzAwMMDx48elkSO3bt1CdnY2+vXrV8tZefzrDNT9mj2qcvRm1cTq+fPnMXLkyHq9PtWOfZLmPqmhWFhYYNSoURg1ahRGjhwJb29vFBQUwMrKCiYmJhgyZAiGDBmCyZMn48UXX8S5c+dqPa+auLq6ym4gBKj3oTVxc3NDcnKybF9ycjLat28v67eq9onHjh2Dm5ubtN2QbaqJoeHD5LxK9b8Rt4/eqKgufVtVubm5+PPPP9GqVSsAD9ump6cHV1dXWFhYoFWrVkhOTpbVnZycXO3Iy+TkZLzyyiuy0e45OTlq7Xi0DZq4ubkhPj4eQgjpny3JyckwNzdH69at69XG8+fP1+nvIRHRk8KbhRARPQVmZmaYNGkSZs6cicTERKSnp2P8+PEoKirCuHHjZMd+8skn8PPzQ//+/ZGZmamliJ9vfn5+sLa2xtChQ3HkyBFcunQJSUlJCA4OxrVr1wAA06ZNw/Lly7F7925kZmYiKCioTnd97Nu3L2xtbeHn54e2bdvKpvK5uLggNzcXcXFxyMnJwerVq2tc7B8A+vfvj71792Lv3r3IzMzEpEmTZHG0b98efn5+8Pf3x3fffYdLly7hxIkTiIiIwN69e6ut18vLC0ePHpXtmzp1KjZs2IDY2FhcuHABS5cuxdmzZ2UjzFxcXLB582ZkZGTg+PHj8PPzg4mJ+oirnTt3YuPGjcjOzsbChQtx4sQJTJkypbbTh/feew8KhQLjx49Heno69u3bh08++UR2zOTJk1FQUIAxY8YgJSUFOTk5OHDgAN5//33Zl7nc3FzMmDEDWVlZ2LZtGz777DNMmzZN4+u2a9cOZWVl+Oyzz/DHH39g8+bNWLduneyYjz76CAcOHMClS5dw+vRp/Pzzz9KX79piUiqVGDduHGbOnIlDhw7h/PnzCAwMlE1vrMnjXmeg9muWk5ODJUuW4NSpU7h8+TISEhLg7++Pvn37yqa5Xb58GXl5ebJppdQw2Cdp7pMaQnR0NLZt24bMzExkZ2dj586dsLW1haWlJTZt2oQNGzbg/Pnz+OOPP/DNN9/AxMRE+oddfU2YMAGZmZmYPXs2srOzsWPHDulGH1VH6moSEhKCn376CUuWLEF2djZiY2Pxr3/9S+2GScnJyVixYgWys7OxZs0a7Ny5U+rbGrpNNXF0dIRCocC///1v/Pe//0VhYSHMzc0RGhqK6dOnIzY2Fjk5OTh9+jQ+++wzxMbG1lqnsbExAgICkJqaiiNHjiA4OBi+vr6wtX0422DmzJmIjIzE9u3bkZWVhTlz5uD333+vtm93cXHByZMnceDAAWRnZyMsLEwtOevk5ISzZ88iKysLN2/e1HjX7KCgIFy9ehVTp05FZmYmvv/+eyxcuBAzZsyocz9e6ciRI9L0dCIibWAikIjoKVm+fDlGjBiBsWPHolu3brh48SIOHDiAZs2aqR27atUq+Pr6on///sjOztZCtM83U1NT/PLLL3BwcMA777wDNzc3jBs3DiUlJdJonJCQEIwdOxYBAQHSdKLhw4fXWrdCocCYMWOku+U+6u2338b06dMxZcoUdO3aFb/++ivCwsJqrO///u//EBAQAH9/f/Tr1w/Ozs7SyJtKX331Ffz9/RESEgJXV1cMGzYMKSkp0sgzTfz8/JCWloasrCzZvrlz5yI0NFSaThcYGChbt2vDhg24desWunXrhrFjxyI4OBg2NjZq9S9atAhxcXHo3Lkzvv76a2zbtq1OI1yVSiX27NmDc+fOwd3dHfPnz1ebbls5IkSlUmHgwIHo1KkTPvroI1haWsq+kPn7+6O4uBi9evXC5MmTMW3aNNlaeI/q0qULoqOjERkZiY4dO2LLli2IiIiQHaNSqTB58mS4ubnB29sb7du3x+eff17nmFauXInXXnsNQ4YMwYABA/Dqq6+ie/futZ6TSo9znYHar5mhoSEOHjyIgQMH4sUXX0RISAhGjBiBPXv2yOrZtm0bBg4c+EQSCrqOfZLmPqkhmJubY8WKFejRowd69uyJy5cvY9++fdDT04OlpSW++OILeHh4oHPnzjh48CD27NlT41qGNWnbti2+/fZbfPfdd+jcuTPWrl0rjbasOi1Wk27dumHHjh2Ii4tDx44d8c9//hOLFy9GYGCg7LiQkBCcPHkS7u7uWLp0KaKjo+Hl5QUADd6mmtjb22PRokWYM2cOWrZsKf2zZ8mSJQgLC0NERITUX+7duxdt27attc527drhnXfegY+PDwYOHIjOnTtL/SwABAcHY8aMGQgJCUGnTp2QmJiIhIQEuLi4aKxvwoQJeOeddzBq1Cj07t0bf/31l9pauOPHj4erqyt69OiBFi1aqI3KrGzrvn37cOLECXTp0gUTJ07EuHHjsGDBgvqcMvz222+4c+cOR1YTkVYpRE0rDBMRPWOKioqQkZEBNzc3mJqaajscokZt5syZuHv3LtavX1/tMZ6enrC1tcXmzZvrXK9CocCuXbswbNiwBoiSngWlpaVwcXHB1q1b1RbqJ2oodemTGptly5Zh3bp1uHr1qrZDeeaFh4dj9+7ddbqxVGM1atQodOnSBfPmzav2mMrPutnZ2cjPz8fYsWO5piARNSiOCCQiItJR8+fPh6Ojo7SQeVFREaKjo5GWlobMzEwsXLgQBw8eREBAgJYjJW3Lzc3FvHnzmASkJ6pqn9QYff7550hJSZGWGFi5ciX7UALw8B8qnTp1wvTp07UdChHpOCYCiYiIdJSlpSXmzZsnTV1VKBTYt28f+vbti+7du2PPnj2Ij49v0DXhPv74YyiVSo2PQYMGNdjrNDZHjhyp9rzUdKfVp6Vdu3aYMGGCtsOg51zVPqkxunDhAoYOHYoOHTpgyZIlCAkJQXh4OABg0KBB1f6Of/zxx080rme9j9EFhoaGWLBggcZ1dYmIniZODSaiRoVTg4kat4KCAhQUFGgsMzExgb29/VOO6NlQXFyMvLy8asvbtWv3FKMhoichLy8PxcXFGsusrKxgZWX1xF6bfUzjwanBRPSkNdF2AERERKQ7nvSX3cbKxMSEX8SJnnPa/EcH+xgiIqrUeMfdE5FOa8zrBxERERERaVL5GZcT94joSWEikIgaFUNDQwBAYWGhliMhIiIiImpYlZ9xS0tLtRwJET2vODWYiBqVJk2awNraWlrnRqlUNupFxYmIiIiIKioqUFhYiLy8PNy+fZuzX4joiWEikIgaHQcHB6hUqhoXvSYiIiIiamxu376N69evo7y8HPr6+jAwMNB2SET0nGEikIgaHYVCAWdnZyQkJODKlSto0aIFPyQRERERUaNWVlaGiooKlJWV4ebNm2jbti3Mzc21HRYRPWcUgquQElEjVVRUhMTERFy4cAEVFRVQKBTaDomIiIiI6LEJIaBQKODg4IDBgwfDwsJC2yER0XOGiUAiatRKSkqQn5+P4uJi3l2NiIiIiBo9ExMT2NjYQKlUajsUInoOMRFIRERERERERESkA3irTSIiIiIiIiIiIh3ARCAREREREREREZEOYCKQiIiIiIiIiIhIBzARSEREREREREREpAOYCCQiIiIiIiIiItIB/w/V0Y5TgQ+80gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 1. Update gaps and missing from outliers\n", + "dataset.update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize=6)\n", + "\n", + "# 2. update settings\n", + "dataset.update_gap_and_missing_fill_settings(gap_interpolation_method=None,\n", + " gap_interpolation_max_consec_fill=None,\n", + " gap_debias_prefered_leading_period_hours=24,\n", + " gap_debias_prefered_trailing_period_hours=4,\n", + " gap_debias_minimum_leading_period_hours=24,\n", + " gap_debias_minimum_trailing_period_hours=4,\n", + " automatic_max_interpolation_duration_str=None,\n", + " missing_obs_interpolation_method=None)\n", + "\n", + "# 3. Get modeldata\n", + "\n", + "era5 = dataset.get_modeldata(modelname='ERA5_hourly',\n", + " modeldata=None, obstype='temp',\n", + " stations=None, startdt=None, enddt=None)\n", + "\n", + "if not os.path.exists(os.path.join(folder, 'era.pkl')):\n", + " era5.save_modeldata(outputfolder=folder, filename='era.pkl')\n", + "\n", + "\n", + "dummy_mod = metobs_toolkit.Modeldata('ERA5_hourly')\n", + "era5 = dummy_mod.import_modeldata(folder_path=folder,\n", + " filename='era.pkl')\n", + "\n", + "# 4. convert units of model\n", + "era5.convert_units_to_tlk('temp')\n", + "\n", + "# 5. fill missing obs\n", + "dataset.fill_missing_obs_linear()\n", + "\n", + "# 6. fill gaps\n", + "dataset.fill_gaps_era5(era5)\n", + "\n", + "# 7. Make plot (of single station for clearity)\n", + "ax3 = dataset.get_station('vlinder28').make_plot(colorby='label')\n", + "\n", + "#translate axes\n", + "ax3.set_title('Temperature for vlinder28')\n", + "ax3.set_ylabel('T2m in °C')\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "8d33fc6f-c278-4cd6-ab09-eb958eb00e6f", + "metadata": {}, + "source": [ + "## Diurnal Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6d2ff2be-c838-44de-a0dc-6ec3fc27440d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB7sAAAi6CAYAAADsGGcrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeZwcdZ3/8XddXX1M5so5SYBw34pccsl9eSKIKJegKCDqyiorrOxPcXXVXRfFXZBdlXvlUEQWYfHkFiJXkDMhkINM7mQyRx9VXdfvj540EzJnMklPZ17Px2Me9Mx8u/rTVdU9od/1/XyNJEkSAQAAAAAAAAAAAABQR8xaFwAAAAAAAAAAAAAAwEgRdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAAAAAAAAAAACg7hB2AwAAAAAAAAAAAADqDmE3AAAAAAAAAAAAAKDuEHYDAAAAAAAAAAAAAOoOYTcAAAAAAAAAAAAAoO4QdgMAAADj0FVXXSXDMGQYhq666qpalwMAGIduvvnm6t+i888/v98xjzzySHXM0UcfvVXr21axT0du1qxZ1X22aNGiWpcDAACAPgi7AQAAUJeOPvroTQ5r+wa9fMgLAAAAAAAA1CfCbgAAAADANqvvhTGPPPJIrctBneC8AQAAAID6QNgNAAAAAAAAAAAAAKg7dq0LAAAAAAAAAPpz9NFHK0mSWpcBAAAAYIxiZjcAAAAAAAAAAAAAoO4QdgMAAAAAAAAAAAAA6g5hNwAAADAMs2fP1he/+EXtvffeamlpUTqd1syZM3XyySfr2muvVaFQGHIb559/vgzDkGEYuvnmm4ccf/PNN1fHn3/++cMeE0WR7rzzTp1yyinaaaedlMlkZBiG7r333mE91zlz5lS32dLSIs/zhnW/np4eNTQ0VO/74osvDut+A1m8eLGuv/56nXnmmdpnn33U1NQkx3E0ceJE7bvvvvr85z+v2bNnD7qNH/7wh9V6TjrppGE/9pNPPlm9X2trq3zfH3BsoVDQ9ddfrw9/+MPaYYcdlM1mNWHCBO266676zGc+o4ceemjIx9uc41gqlXTvvffq7/7u73TEEUdo6tSpSqVSamho0KxZs3TqqafqhhtuULlcHvbzl6R169bpO9/5jg488EC1tLSooaFBu+++uz772c/qmWeeqY5bX7dhGMPa7tq1a3X11VfrhBNO0Hbbbad0Oq3m5mbttdde+sIXvqBnn312RHUOZH1Njz76aPVnxxxzzAb1Duf1uKWObxzHuv322/X+979f2223nVzX1dSpU/Wxj31MTz311EbbKJfLuu2223TcccdV99v222+v8847T6+99tqQNRx99NHVGh555BFJ0pIlS/RP//RPeve7363W1lblcjntscce+vu//3u98cYbQ27znf785z/r4osv1t57763W1la5rqvp06frpJNO0rXXXqtSqTTkNvo7n/72t7/py1/+svbZZx+1trbKMAx99KMf3ei+zz33nL73ve/pQx/6kHbaaSc1NDQolUpp6tSpOuyww3TllVfqrbfeGtbjb8p5M9LXQn/HZDhjli9fru9+97s6+OCDNW3aNFmWpebm5n7vHwSBbrvtNp1xxhnaaaedNGHCBOVyOe24444688wz9Zvf/GaLtQh//vnn9bnPfa76/jV58mQdfPDB+rd/+zd1dHQMezuPPPJIdR8cffTRmzzmnYZzvDblfJw1a1b1PosWLZIktbe36//9v/+nd7/73Wpubq6+1r70pS9p8eLFw6q3q6tLd9xxhy666CK9973v1aRJk5RKpdTY2Kidd95ZZ555pn75y18qjuNhbW9LeuKJJ/TlL39Z73nPezRlyhQ5jqPGxkbtu+++Ou+883THHXds8H5QLpc1efLk6n7r7z1wIEcddVT1fv/xH/8x6NgXX3xRV1xxhd773vdq2rRp1b+Vu+++uz7xiU/ohhtuUFdX1yY/775q+doDAAAYdxIAAACgDh111FGJpERS8s1vfnNE9/3mN79Zve9RRx016Nh8Pp984hOfqI4f6KutrS35v//7v0G3dd5551XH33TTTUPWedNNN1XHn3feecMas3Tp0uSII47ot8bf/OY3/e6D/vbfAQccUP39//zP/wxZa5Ikyc9+9rPqfQ466KBh3Wcgl112WWIYxpD7XVLyyU9+MikUCv1uZ9myZYllWYmkxLKsZPny5cN6/M9//vPV7V944YUDjvvlL3+ZTJs2bcgaP/ShDyWdnZ0DbmdTj+Ps2bOThoaGYe2nWbNmJc8///ywnv9DDz2UTJ06dcBtmaaZXHXVVUmSJBv8fCjXXntt0tTUNGidhmEkn/nMZxLf94dV60CGs0+Gej1uqeO7evXq5Nhjjx10H9x4443V+8+fPz/Zc889BxyfSqU2OC/60/c98+GHH07+93//d9Bjkclkkv/+7/8e1r5+6623kqOPPnrI/TR9+vTkscceG3Rb7zyfvvnNb1Zfw32/TjnllA3ud9BBBw3rWDuOk/zrv/7rsB5/pOfNSF4LSbLxMRnOmHvvvTdpaWnZqJampqaN7vvwww8nO++885DP45BDDkna29uHVfNwXXnllf0et/VfM2fOTJ566qlh/Z17+OGHq2MG+ps9nDHvNJzjtSnn4w477FD9+cKFC5Pf/OY3Q77W7r///kFr/fWvf524rjus8/Ld7353smDBgkG3tyn7aziWLFmSnHDCCcOq873vfe8G9/3qV79a/d1nP/vZYT3e66+/Xr2P67rJ2rVr+x23bt265BOf+MSw/l0xderUfrfxzuM6mFq+9gAAAMYjWwAAAAD6VSwWdeyxx+rpp5+u/mz69Ol63/vep4aGBr3xxht64oknFEWRli9fro985CO64447dPrpp9ekXt/39ZGPfETPPfecbNvWYYcdpp133lm+7+v5558f0bYuvPBCXXTRRZKkG264QWefffaQ97nhhhuqtz/72c+OrPh3WLJkiZIkkWEY2n333bX77rtr4sSJchxHa9eu1Zw5c/Tmm29Kku688051d3fr/vvv32iGXltbm4499lj98Y9/rM6UvvTSSwd97CAI9Mtf/rL6/bnnntvvuB/96Ef66le/Wp2Z1djYqEMPPVQzZ85UFEV65ZVX9OyzzypJEt1///06+uij9Ze//EXZbHbQxx/JcVy3bp3y+bwkacqUKdp77701c+ZM5XI5FYtFvfHGG3r66acVhqEWLVqko446Ss8//7x22WWXAR9/9uzZ+tCHPqRisSipMrPxoIMO0t57761yuaynn35a8+fP11VXXaVJkyYN+lz6uvTSS/XjH/+4+v2kSZN06KGHatq0afI8T3PmzNHLL7+sJEl04403atmyZXrggQdkmpvWkOwLX/iCJOk3v/mNli1bJkn66Ec/qhkzZmw0ds8999zoZ1vq+IZhqNNOO02PP/640um0jjrqKG2//fbq6OjQn//8Z3V2dipJEn32s5/Vrrvuqt12203HHnuslixZosbGRh155JFqa2vTypUr9ac//UnFYlHlcllnnXWWXnnlFe24445D7ptnn31WV155pcrlsiZOnKijjz5aLS0tWrRokR599FEFQaBSqaSLLrpIlmXpggsuGHBbr732mo477jgtX75cUuV82X///bXXXnspk8lo6dKleuyxx9TT06Nly5bphBNO0IMPPqhjjjlmyDp/8IMf6Fvf+pYkaeedd9bBBx+sbDarRYsWyXGcDcaun7Htuq723ntv7bLLLmpqalKSJFq+fLn++te/as2aNQqCQJdffrkk6Wtf+9pGj7m5582W9OSTT+qqq65SEASaOHGijjzySE2aNEmrVq3SnDlzNhj7q1/9SmeffbaCIJAkZTIZHXLIIZo1a5ZM09Trr7+up556SmEYavbs2Tr00EP1zDPPaOrUqZtd59e//nV973vfq36fzWZ17LHHqq2tTStWrNBDDz2k9vZ2feADHxjy/XgsGcn5uN6f/vQnXXzxxYqiSNtvv70OPfRQNTY2auHChXrkkUcUhqFKpZLOOOMMvfzyywO+fletWlXtMDJz5kzttddemjZtmrLZrPL5vF577TU9//zzSpJEf/vb33TkkUfqhRde0MSJE7fMzujHK6+8ohNOOKH6XiBV/i4ddthhmjx5sjzP05tvvqk5c+aoVCpt1DXmwgsv1NVXXy1Juuuuu3TNNdcol8sN+pg33nhj9fZpp52m1tbWjcYsW7ZMxx57rObNm1f9WXNzsw4//HC1tbUpCAK99dZbeu6559Td3T3sbjYDqeVrDwAAYNyqWcwOAAAAbIatMbO77+xey7KSa665JomiaIMxr7/++gazoBsbGwec8bOlZ3bbtl19Tv3V4Hle9fZQM7t7enqqM4YNw0jefPPNQWt95ZVXqtvL5XJJd3f3kM9vMP/2b/+W3HTTTcnq1asHHPPYY48lu+yyS/Vxb7vttn7H3XLLLdUxBxxwwJCPfd9991XH77jjjkkcxxuN+dOf/pSYpplIlVm13//+9/udXT5nzpxkr732qm7v85//fL+PuanHcfbs2cnXv/715KWXXhrw+axcuTI599xzq9s/7rjjBhxbKpWSXXfddYPn//TTT2807q677kqy2exGMw0HcsMNN2zwGvnZz36WlMvljcY99NBDyYwZM6pjB5uBO1zDmT37Tlvy+K7fZ6ecckqycuXKDcZ1dHQk73vf+6pjjznmmOSjH/1oIim5+OKLN3pdLVmyZIMZ35/+9KeHtR9SqVQiKbnssss2OJ/Wb7NvDdlsNnnjjTf63WY+n9/g8d///vf3O7arq2uD99O2trYBZ8L3PZ9s206ampr6nbX+zro///nPJw888EBSLBb73W4YhslNN92U5HK5RKrM8B5s9uumnDfDeS2M9DH6jrFtOzEMI/n2t7+90eun7/54+eWXk0wmU33/vuyyy5J169ZttO0333xzgw4S73//+4dV92AeffTRDWbPnn766UlHR8cGYzo7O5NPfvKTG5yLg/2dGyszu4d7PvadAey6bpLL5ZLbbrtto78lL7/88gbvd4O9fu+7777ke9/7XjJ//vwBxyxYsCA56aSTqtu74IILBhw72jO7u7q6NvjbMWnSpOT222/v9+9nPp9PfvGLX/T7fPue7327W/QnDMOkra2tOv7Pf/7zRmOCIEgOP/zw6phMJpNce+21/f798X0/ue+++5KPfvSj/T7ecGZ21/K1BwAAMJ4RdgMAAKAu9f1A9KCDDkq+8IUvDPurb7vbgT7kfeONN6phl6Tk2muvHbCWjo6OZNasWUN+YL2lw25Jyb777jtg2NPXUGF3kiTJ5z73ueqYK6+8ctDtfeUrXxnWB/ajbeHChUk6nU4kJQcffHC/Y3p6epJsNlutb+7cuYNus2/b+n/6p3/a6PdRFG3wof4999wz6PaWL19ebQnuOE6yZMmSjcZs6nEcife///3V7b/66qv9jrn++uuHFXImSZLcc889G9Q8UGDU3d2dNDc3V4Ot2bNnD1rnq6++Wj2mEydOHLBF/XCNNLTcGsf36KOPTsIw7Hd7ixYt2qhN8kCv/yRJkieeeKI6bsKECUkQBP2O67sf1ofnA+np6Un22GOP6thzzz2333H//M//XB1z6qmnbnQx0Dv1fQ/8/ve/3++YvjWappk8+uijg25zpO68887q9r/2ta8NOG4sht2Sku985ztDbrdvi/wf/vCHg47N5/MbXLAx1OtzKIcddlh1W8cdd9yA53kURcmJJ544rPN8rITdwz0f+4aihmEkDz744IBj77///urYhoaGAV+/w1Uul5N3vetdiaQknU5vdKHBeqMddl955ZXV7TU1NQ35d3Ygv/jFL6rbOfzwwwcd2/fCtJ133rnfYL3v8iqO4wy5jMJghhN21/K1BwAAMJ4RdgMAAKAuvTMA2NSvgT7kvfzyy6tj9ttvv34/RO3rrrvuqo53XbffWYtbI+weat3w9YYTdj/99NPVMTNmzBgwtCiXy8nkyZOrY//yl78Mq4bRsj7ENQwj6erq6nfMWWedVa2vvwB7ve7u7uqsLKn/YPzee++t/n6gGWDv9L3vfa96n6uvvnqj32/qcRyJvufof/zHf/Q75sADD6yO+frXvz7kNo855pghA6Nrrrmm+vtLL710WLVedNFF1fv8+te/HtZ9BjLS0HJrHN85c+YMur2+M6td191oBvg7bbfddtXxA83y77sfJkyYMOga40myYZCUTqc3Gl8ul5MpU6YMu8YkSZKlS5dWZ/3uu+++/Y7pu5/OOOOMIbc5UmEYVrtW7L///gOOG4th9/Tp04cMQ1944YXq+Pe85z1D/u1KkiS54447qvf50pe+NKza+/Pqq69usA9eeeWVQcfPmzdvg1ngYz3sHu752DcU/fCHPzzo2DiOk2nTplXHv/jii8N6jMH867/+a3V79913X79jRjPs9jyvekGTpOT666/frG21trYO+jd4vVNOOaU67l/+5V/6HdP3op3LL798k+tKkqHD7lq+9gAAAMY71uwGAAAA+vHQQw9Vb59//vkbrQX9TqeeeqpaW1vV0dEh3/f11FNP6eSTT97SZW6gpaVFJ5544qht76CDDtJ+++2nF154QUuXLtXvf/97feADH9ho3H333afVq1dLkvbaay8ddthho1aDVFmL9+mnn9brr7+uzs5OlUql6jrKkrRw4UJJqq5V+r73vW+jbZxzzjm6/fbbJUm33367vv3tb/f7WPfcc49KpZIk6cADD9Tuu+++0Zj/+7//q94+66yzhvUcjj322OrtJ554Ql/5ylcGHLupx7FYLGr27Nl66aWXtHr1avX09CiKourvly5dWr39wgsvbHT/np6eDdYEP+ecc4Z8zHPOOUcPP/zwoGM2dX/993//t6TK/jrttNOGdb/RsKWP784776z99ttv0O3tu+++evzxxyVJ73vf+zRlypRBx++zzz5asmSJpMrrYZ999hl0/Ec+8hE1NTUNOuYDH/iAJk+erNWrV8vzvI3e05599lmtWrVKknTccccNWaMkTZ8+XXvssYdee+01vfzyy+rq6hq0jk9+8pNDbrM/L774oubMmaNFixapu7u7utbxeuvfz1966SXFcbzJ68Jvbaeffrpse/CPcfqev2eeeeaQf7ukjc/fTdX3veCAAw7QXnvtNej43XbbTYcccoieeuqpTX7MrWlTzsePf/zjg/7eMAy9+93v1ooVKyRJixYt0r777jvofTo7OzV79my98sorWrt2rfL5vOI4rv5+7ty51dsvvPCCPvzhD4+47pGYPXu2Ojs7JUkTJkzQeeedt8nbcl1Xn/rUp3TNNddIkm644Qb927/920bjVq5cqQceeECSZFmWzj///I3GLF68eIN98cUvfnGT6xqOWr72AAAAxjvCbgAAANS9b37zm7rqqquGPf6qq67St771rQF/nyTJBmHgcMJbx3F08MEH63e/+50k6fnnn9/qYfd+++0ny7JGdZsXXnihLrnkEkmVD537C7tvuOGG6u0LLrhg1B77qaee0hVXXKHHH398g3B7MGvWrOn35yeccIKmTJmiVatWacGCBXryySf7Pa7/8z//U7197rnnDljXer/+9a/16KOPDllXV1dX9fb6UHIgIz2OHR0d+sY3vqFbb71VPT09w7pPf/vpxRdfrAYmjY2N2mOPPYbcznvf+94hx/TdXz/96U91yy23DHmf9vb26u2h9tdo29LHd6ggWqpc8LDe3nvvPeT41tbW6u3u7u4hxx966KFDjrEsSwcddFA1wJkzZ84G72l991N7e/uwg6T1oViSJGpvbx807D7ggAOGtc31brnlFn33u9/V66+/PqzxQRCoq6trg/09lg1nf/Q9Lg8//LAWL1485H36vr9uzuttzpw51dvDOcfWj6uXsHuk56OkIYNrSZo4cWL19mCv3/b2dl1xxRW6++67N7qAYyAD/U0cTbNnz67ePuSQQ5TJZDZrexdeeGE17L711lv13e9+d6OLPG655RaFYSipcmHO9OnTB61r11131cyZMzerrqHU8rUHAAAw3hF2AwAAAO/Q1dWlIAiq3++www7Dut+sWbOqt7fGB8zvNHny5FHf5tlnn61/+Id/UKFQ0G9/+1utXr16g8dpb2/X73//e0lSKpXSpz71qVF53BtvvFGf/exnhx1yrzdQ2Gvbtj75yU/qP/7jPyRJv/jFLzYKu5cvX16d0b9+fH+WLVtWvX3XXXeNqD5JWrdu3aC/H8lxXLx4sY488ki99dZbI6qhv/20fna+JM2cOXNYs9KGCg/y+fwGj/Xzn/98BFVWDLW/RtuWPr5DzaiWtEGwM9Lxfd+7BrL99tsPOead4/qeH9KG++nFF1/Uiy++OKxt9jVar4UkSXTBBRfopptuGnENPT09dRN2D2d/9D0uDz744IgfY3Neb33PkU05x8a6TfkbO5zXr+M41dsDvX7nzJmj4447bsTHZ7gXQG2OlStXVm/vtNNOm729PffcU0cccYSeeOIJrVy5Uvfff78++tGPbjDmxhtvrN7+7Gc/u1XqGkotX3sAAADjXX306gIAAAC2onw+v8H3uVxuWPfrO25rfMD8Tps7m6o/jY2N+sQnPiGp8iH8rbfeusHvb7755ups4FNOOUWTJk3a7Md89dVXddFFF1WD7r333ls//vGP9fTTT2vlypXVNubrv/q2TO3byvWd+s7U/uUvf7lRqHDHHXdU73/iiScO2Ja57yzeTbF+NtpARnIczzrrrGrQPWHCBP393/+9fve732nBggXK5/OKoqi6n/q2GO5vP/U977PZ7LAev6GhYdDfb+6+kobeX6NtSx/f4VxEsDnjh2O4x3ew97StcWyH+1r42c9+tkHQffLJJ+uWW27RSy+9pHXr1sn3/Q3eM/pewDTYe8ZYM5z9sbnHpe/SByO1Ke8hw/37OhZsyt/Y0Xj9+r6vj33sY9UwdPLkyfqnf/onPfzww1qyZIkKhYLiOK6e331fC1vj/O773jDU34ThuvDCC6u3+3aPkSrtvufNmydJamtr0wc/+MGtVtdgavnaAwAAGO+Y2Q0AAAC8wzs/FC0UCsP6QL5QKFRvT5gwYbPrGCshzOc+97nqLKobbrhBX/3qVyVpow/VB5pdNVLXXHNNNQQ76aSTdN999ymVSg04frgXFhx44IHaY489NHfuXK1Zs0a///3v9aEPfaj6+1/84hfV24OtV53L5aofaj///PN6z3veM6zHH21PPvmknnzySUmVc3b27NmDrpE71H7qe94Xi8Vh1dD3nO/PO183HR0dY34W7Vg5vlvSphzfd76n9T22f/d3f6cf//jHo1PcJvj3f//36u1vfetb+sY3vjHo+FpcjNSfLfEe3/e43HPPPTr11FNH/TEGsiXeQ7aUsfL3dTh+/etfa+HChZKkGTNm6JlnnlFbW9uA47f2+d33veGdFwtuqtNPP11f/vKXtW7dOj344INatmxZtVV53/D7/PPPH3DZjy1R12Bq+doDAAAY75jZDQAAALxDU1PTBm1Fh9sietGiRdXb/c1w7rvN4cxWHY2Zk6PhkEMO0bve9S5J0muvvVZdl/Lhhx/WggULJFVavR9//PGj8nh//vOfq7e/853vDBp0SxrWupjrnX322dXbfdfnfu211/T8889LqnxA/s6WqX1NnTq1envFihXDfuzR1nc/nXfeeYMG3dLQ+6nvObt06dJh1dB3be3+NDc3y3Xd6ve13F/DNVaO75Y03Pe0vmvIvvM9bazspyVLlmj+/PmSKufbP/7jPw46vru7e4u1C+7bTr5W7/G1PC5923xvyjm2Oer17+tw9H2vv/TSSwcNuqWR/U0cDX3PufWh/ObKZDLVi86iKNItt9wiqRLk/+pXv5JUmTV/wQUXbNW6BjNW3hMBAADGI8JuAAAA4B0Mw9B+++1X/X797NnBhGGoZ555pvr9/vvvv9GYxsbG6u21a9cOuc2XXnppyDFby+c+97nq7fWzqvrOrvr0pz8t0xyd/73ou+7lvvvuO+jYrq6uEa0VfPbZZ1fbyt53333VGXB9Z3Wfdtppg7arfe9731u9/Ze//GXYjz3aRrKfJOmxxx4b9Pfvete7qsewq6tLc+fOHXKbTz/99JBjDj744OrtWuyvkbYRHivHd0uaPXv2kGOiKBr0Pa3vfnryySeryw5sbX1fB3vssccGoWd/nnjiiWHVuintp0fyHl8ul/X666+P+DGGUsvzt28XhOGcY5KqF09trnr++zqU0X6vH22HHHJI9fZTTz2lUqk0Ktvt28p8fXeZO++8s9oN4KijjtLOO+88rLpef/31IS/O2lzj4W8HAADAWEXYDQAAAPTj2GOPrd6+5ZZbhgxH7r333uoH7Ol0WoceeuhGY2bNmlW9/cILLwy6Pc/z9Nvf/nb4BW9h55xzTjUAvuuuu9Te3q577rlHkmSapj7zmc+M2mP1Dc2HaoX785//fKO1twez44476rDDDpMklUol3XPPPUqSRLfffnt1zGAtzCVt0Pr8xhtvlOd5w3780TSS/bRs2TL97//+76BjGhsbNwir+l4AMJC+s+MH0nd/XX/99Vs9FE2n09XbwzlXxsrx3ZLuu+8+dXd3Dzrmd7/7nVatWiWp//e0ww8/XM3NzZIqM/xr9X41kteBVDkHh2Ok5400svf4++67b4ucW33P33vuuUcrV64c9ccYyDHHHFO9/eyzzw55wcwbb7wxamH3DjvsUL1A4Y033hiybfUvf/nLUXncrWEk5/hzzz23wUUqW8MhhxxSXZ6ip6dHt95666hsd5999qm+77zxxht69NFHN7jIbqilU3bYYQftueee1e+vu+66UalrILV87QEAAIx3hN0AAABAPz73uc9VP2B+/vnn9dOf/nTAsZ2dnfra175W/f7MM89UU1PTRuP6zvq5//77tWbNmgG3+Y1vfGPQ329tzc3NOuOMMyRV1r48/fTTq0HNiSeeqO22227UHmunnXaq3r7vvvsGHDd//nx961vfGvH2zz333OrtX/ziF3ryySc3WA+174UO/fnYxz6mXXbZRZK0fPlyXXLJJcMOcPP5/KitUTvc/RRFkS688EKVy+Uht9n3ooVrrrlm0Nav99133wbtdQdy0UUXVUPR559/fkTHbM2aNYqiaNjj+zNx4sTq7eG0Zx8rx3dL6u7u1te//vUBf18oFDZ4Tzv99NM3ek9zXVeXXnpp9ftLLrlk2O3vJY1aELTjjjtWQ86XX365urRCf+666y7df//9w9ruSM8bacP3+JtvvnnAcd3d3briiiuGtc2ROvjgg3X00UdLqlzQc+655w7rtS9VZptvTov3Pffcs3oxkSR9+ctfHnBt7DiO9Xd/93ejdvFLY2Oj9thjD0mVTiuDXawzZ84c/exnPxuVx90ahvteXywWN5gNvbW4rqtLLrmk+v3ll1+uefPmjcq2+z6fyy+/XH/9618lSS0tLfrYxz425P2/8pWvVG9fffXVevzxx0elrv7U8rUHAAAw3hF2AwAAAP3YeeedddFFF1W//+IXv6jrrrtuow/u33jjDZ144onVULCxsVHf+MY3+t3mQQcdVG25mc/ndeaZZ2704WaxWNQ//MM/6Ac/+MEGax2PBX1bma//wFkaenbVSH34wx+u3v7KV76i3//+9xuN+fOf/6yjjz5aPT09yuVyI9r+GWecUV0H/KGHHtK///u/V3935plnDtmO3bIsXX/99bIsS5J000036YMf/KBee+21Ae/zwgsv6PLLL9d22203amuHfvCDH6yGfI888oguu+yyjdrHrlixQh/72Mf0wAMPDGs/ffrTn64Gvfl8Xscff7yee+65jcbdfffdOuuss4Z1jjY1NelHP/pR9ftvfetbOu+88wZc0zdJEv3lL3/RJZdcou23336zW+Lus88+G9Q9VLg2Vo7vlpRKpXTdddfpiiuu2CiMWbp0qT74wQ/q1VdflVRZO/eb3/xmv9v56le/qr333rt6vwMPPFC/+tWvBgw416xZo5/+9Kfaf//99YMf/GBUnsukSZOq7YrjONbpp5++UdAWx7Guu+46nXvuubIsa4NZ2wMZ6XkjSWeddVb19p133qlrr712ozFz587VscceqzfffHOLvcf/53/+pxoaGiRJf/zjH3XkkUdu8J79Tq+//rq+/e1va9asWZvdfvlf/uVfqu9Lf/jDH3TWWWeps7NzgzHd3d0699xz9eCDD1bfi0dD3/1/xRVX6IknnthozIMPPqgTTzxxk9rU10rfv4m33HKLrr766o0uAlr/b5Hnn39+xH8TR8PXvva16r9vurq6dMQRR+jOO+/s93VTLBZ1xx13DKsjzBlnnFG90KbvOXz22WcP63V8/vnnVy/ACIJAJ598sn7yk5/0262hXC7rt7/9rU499dQhtzuQWr72AAAAxjO71gUAAAAAY9W///u/69lnn9UzzzyjMAz1xS9+Ud///vd1xBFHqKGhQW+++aYee+yx6ofOtm3rhhtu2KCVbV+GYeh73/tedYb0n/70J+2444467rjjNGnSJK1YsUKPPfaYOjs7NX36dH3hC1/QlVdeubWe7pAOP/xw7b333nrllVeqP5syZYo+8pGPjOrjXHrppfr5z3+u1atXq6OjQyeffLL2339/7bXXXjIMQ88//3y1hpNOOklTpkzRbbfdNuztt7S06AMf+IDuvfdeRVGke++9t/q7vrO+B3P88cfr+uuv1+c//3lFUaQHH3xQv/vd77TXXnvpXe96lxobG1UsFrV8+XL97W9/0+rVq0e0D4Zjjz320LnnnlttGXv11Vfr9ttv10EHHaQpU6Zo0aJFeuyxx1QulzVhwgT94Ac/0MUXXzzoNjOZjG6++WadcMIJKpVKWrBggQ466CC9973v1V577aVyuaynn366utbwtddeqy9+8YuSBl/j+Pzzz9eCBQv07W9/W5J066236he/+IX2228/7bHHHmpoaFA+n1d7e7teeOEFdXV1jcYuklRZg/3rX/+6kiTRAw88oHe961067LDDNGHChOqYT37ykzrwwAOr34+F47slfec739GVV16pf/3Xf9UNN9ygo48+Wi0tLVq8eLEeeeSRDQLwa665pnoBxDs1NDTovvvu0/HHH6+FCxdqxYoVOuOMM6oB9LRp05QkiTo6OvTqq69q/vz51SB8qA4KI/Htb39bJ554ouI41pw5c7Tvvvvq8MMP10477aR8Pq/HH39cy5cvl1QJY3/6059q8eLFg25zU86bI444Qh/84Af1wAMPSJK+9KUv6brrrtMhhxwiwzA0b948zZ49W3Ec6/zzz9fChQv16KOPjtp+WG+fffbRHXfcoU984hMqFov661//qkMOOUQ777yz9t9/f7W2tsrzPK1atUovvvjiiGbkD+Xoo4/WZZddVr2YYf1s+mOPPVbTpk3TypUr9dBDDymfz6ulpUVf/vKXddVVV43KY3/pS1/S9ddfr2XLlqmzs1NHHnmkDj/8cO2xxx7yPG+D1uo333yzzj///FF53C3txBNP1JFHHqnHHntMSZLosssu03XXXaf9999fTU1Nmj9/vp588klFUaQZM2boy1/+8gadGbaGxsZG3XPPPTrhhBO0atUqrVmzRmeeeaYuvfRSHXbYYZo8ebI8z9Obb76p559/XqVSSe9+97uH3G42m9XZZ5+tn/zkJxv8fLgX2dm2rbvuukvHHnus5s+fr2KxWP231eGHH662tjaFYajFixfrueeeU3d3d7+deYarlq89AACAcS0BAAAA6tBRRx2VSEokJd/85jdHdN9vfvOb1fseddRRg47t6elJzjjjjOr4gb7a2tqS//u//xvW43/rW98adFu777578vLLLyc33XRT9WfnnXdev9sazpih9sFI9t8111yzQa2XXXbZsO87Ek8++WQyadKkQffTRz/60aSzszM577zzqj+76aabhrX9u+++e6Pt7bvvviOu86GHHkp23XXXIc+P9V977713snTp0o22s6nHsVAoJCeeeOKgjzlz5szkiSeeSB5++OFhn/d//OMfk8mTJw+4TdM0k6uuuiopl8vVnzU1NQ1Z71133ZVMnz592Pvr4IMPTjzPG/b+GMg//uM/Dvo4A503tTq+I319Duc10Pc98+GHH07uvffepLGxccDnkk6nk5/85CdDPnaSJMnatWuTj3/844lhGMPaT83NzcnNN9/c77b6jhuJ66+/PrFte9Bz9hvf+EYSx3Gyww47VH++cOHCAbe5KefN2rVrkwMPPHDQ+11wwQWJ53kbHZP+DGfMQF544YXkgAMOGPb5O2vWrGTOnDkjeoyBXHHFFYlpmgM+1vTp05Mnn3xyWK+Nkbx3Pffcc4P+7UilUsl1112XJMnwzrVNOR+He36tN5zX74oVK5L9999/0OO31157Ja+88sqo79ORWLRoUXLkkUcO63w7/PDDh7XNF154YYP7HXjggSOua+3atcmpp546rLpmzJjR7zZGclxr+doDAAAYj5jZDQAAAAyioaFBd911ly699FLddttteuSRR7Rs2TKVSiVNmjRJ++yzjz70oQ/pM5/5zLBbh37jG9/QCSecoP/8z//U448/rlWrVqmxsVG77LKLPvnJT+qCCy5QQ0ODnnnmmS387EbutNNO22Cd3tFuYb7eoYceqldeeUXXXHONfvvb31bX4W1ra9MBBxygc845Z4PWriP1oQ99SM3NzRu01z3nnHNGvJ1jjjlGr732mu6991498MADmj17tlasWKHu7m5ls1lNnTpVe+yxhw477DC9//3v13777bfJNfcnm83qwQcf1O23365bbrlFc+bMUXd3tyZNmqSddtpJH/vYx3T++eerpaVFjzzyyLC3e/zxx2vu3Lm69tprde+992rBggUKgkAzZszQkUceqYsuukgHHXTQBusur1+XezBnnHGGTjnlFN155536/e9/r2eeeUarV69WPp9XLpfTjBkztOeee+p973ufPvCBD2i33XbbhL2yse9+97s64ogjdNNNN+m5557TypUrVSwWh7xfrY/vlnTKKafoxRdf1H/913/pgQce0FtvvaVyuazttttOJ598sr74xS9q1113Hda2Wltb9ctf/lIvv/yy7rjjDj3yyCNauHCh1q5dK9M01dzcrF122UX777+/jj/+eJ1wwgnDakE8EhdffLEOP/xw/ehHP9LDDz+sZcuWKZPJaMaMGTr22GP1mc98Ru95z3tGtM1NOW9aW1v15JNP6uc//7nuuOMOvfLKK8rn82pra9NBBx2kCy+8UCeccMLmPNVhe/e7361nn31Wf/jDH3TvvffqL3/5S3XWs+u6mjx5snbffXe9973v1UknnaRDDz101Np7f+9739Ppp5+un/zkJ3rooYe0fPlyNTQ0aNasWTrttNN04YUXatKkSaO2tvN6+++/v+bOnasf/vCH+u1vf6uFCxcqjmPNnDlTJ5xwgi655BLttddeo/qYW8PUqVOr59Wdd96pl19+WcViUVOmTNHuu++uT3ziEzr77LOVzWb19NNP16zOHXbYQY8++qj+/Oc/61e/+lW1q0J3d7dyuZx22GEHHXDAAfrgBz847K4w7373u7XTTjtV/x2wKf/uaG1t1T333KNnnnlGt99+ux555BG1t7dr3bp1ymQymjlzpvbbbz+dfPLJOv3000e8/f5qrtVrDwAAYDwykmQYC08BAAAAgCrrha5v/XrEEUfo8ccfr21BqKk//vGPOvHEEyVJJ598sh588MEaV4SBHH300dWW2Q8//LCOPvro2hYEAMOwaNEi7bTTTkqSRLlcTsuWLVNjY2OtywIAAMAYYta6AAAAAAD144Ybbqje/tznPlfDSjAW3HXXXdXbBx10UA0rAQBsi2688Uatn6dzxhlnEHQDAABgI4TdAAAAAIZlzpw51Zncra2tOuOMM2pcEWrpr3/9q2699dbq92eddVYNqwEAbGs8z9PPfvaz6vcXX3xxDasBAADAWEXYDQAAAGBInufpS1/6UvX7iy++eNTX3MXY8NZbb+njH/+4nnjiCfW36lUURfqf//kfnXTSSQqCQJL0kY98RHvsscfWLhUAsA37p3/6J61YsUKSdNhhh+nggw+ucUUAAAAYi+xaFwAAAABgbLr22mv1xhtvqLOzU3/+85/V3t4uSZo0aZK++tWv1rg6bClxHOvuu+/W3XffrSlTpuiAAw5QW1ubLMvSypUr9dRTT2n16tXV8W1tbfqv//qvGlYMANgW/O53v9Pvfvc7lUolPf3003rhhRckSYZh6Hvf+15tiwMAAMCYRdgNAAAAoF933323Hn300Q1+ZlmWbrjhBrW2ttaoKmxNq1at0oMPPjjg7w888EDdfffdamtr24pVAQC2RbNnz9aPf/zjjX5+2WWX6cgjj6xBRQAAAKgHhN0AAAAAhtTS0qLDDjtM//iP/6jDDz+81uVgC5o1a5b++te/6re//a1mz56t9vZ2rVmzRp2dnWpoaNDUqVN16KGH6rTTTtOHP/zhWpcLANgGZbNZ7bvvvrrkkkv0qU99qtblAAAAYAwzkv4WYQMAAAAAAAAAAAAAYAwza10AAAAAAAAAAAAAAAAjRdgNAAAAAAAAAAAAAKg7hN0AAAAAAAAAAAAAgLpD2A0AAAAAAAAAAAAAqDuE3QAAAAAAAAAAAACAukPYDQAAAAAAAAAAAACoO3atC8Dm8TxPL730kiRp8uTJsm0OKQAAAAAAAAAAAICxJQxDrV69WpK07777Kp1Ob/Y2SUbr3EsvvaSDDz641mUAAAAAAAAAAAAAwLA8/fTTOuiggzZ7O7QxBwAAAAAAAAAAAADUHWZ217nJkydXbz/99NNqa2urYTUAAAAAAAAAAAAAsLHly5dXO1b3zTg3B2F3neu7RndbW5tmzpxZw2oAAAAAAAAAAAAAYHB9M87NQRtzAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdIewGAAAAAAAAAAAAANQdwm4AAAAAAAAAAAAAQN0h7AYAAAAAAAAAAAAA1B3CbgAAAAAAAAAAAABA3SHsBgAAAAAAAAAAAADUHcJuAAAAAAAAAAAAAEDdsWtdAAAAAAAAADZfksTy/RWSJMeZKMtya1wRAAAAAGxZhN0AAAAAAAB1Lgi6lM+/pjDMV35gGLKtCUqlJiqVmijbbpJhGLUtEgAAAABGGWE3AAAAAABAnYrjUMXimyp57YrCokreEiVxINuZINuaoCBYp2JpkUzDlpOaqJRTCb9NM1Xr0gEAAABgsxF2AwAAAAAA1CG/vEaF/DxFUVGet1zlYK1MMy0nNVFh2KMg6JRkyDQzcpxGBUG3fHulJMmxm5RKTZTjTJRtT2DWNwAAAIC6RNgNAAAAAABQR+LYV74wX76/UmHQLc9bqjgJ5brTlEpN7g2u2xTHgcKwR2HYo3J5tfxkhQzZsp0JCuxGlctrZZi2TCNVbXfuOK0yTafWTxEAAAAAhoWwGwAAAAAAoE543jIVCvMVRZ48f6mCoFOWNUENmZ1kmu4GY03TUSrVqlSqVUkSK4qKveF3t4JgnSRDlpmthN9hlzx/uQwZsu1GpVKTetf6nlCbJwoAAAAAw0DYDQAAAAAAMMZFUUn5/FyVgw4F5Q553nLJSJROb69UqmXI+xuGKdtukG03qDLru1yd9e37q+T7K2QYjmx7gmy7UeVyhwzTkmm6vet8T5LjtMg0+SgJAAAAwNjB/6EAAAAAAACMUUmSqFR6S8Xigspsbq9dYdQj225WOj19k1uOm+bbrcsrs74LfWZ9d0gyZFs52XajgqBLnr9Mhkw5TlNv8D1Rtp0b3ScLAAAAACNE2A0AAAAAADAGhWGPenpeUxh2q1xeU2kzbtjKZHaU4zSO2uNUZn1P6G1ZPl1x7FeDb89fLvnLZBqp3uC7U+XyWskwZZnpartzx2mRYVijVhMAAAAADAdhNwAAAAAAwBiSJJGKxYUqld5SGBVVKrUrjotKpSbJdadt8VDZNF2lUq5SqUm9s77zCoJuBWG3ysEaVWZ9N/SG390qee29s75bemeLT5JlZbZojQAAAAAgEXYDAAAAAACMGeVyh/L5uYqignx/pfzyapmmq2x2l5q0Da/M+m6UbVdmkkeRpzDsVhj2yPOXSf5SmaYr25qgIOhSuby6MuvbyvZZ67tZhmFu9doBAAAAbPsIuwEAAAAAAGosjgMVCm/I85cpCvMqee2K47Jcd6pSqcljJiy2rLQsKy3XnaIkiRSG+co632FX76xvU449QZY1QYHdpZK3RIZhKeW0Vtf6tiy31k8DAAAAwDaCsBsAAAAAAKCGfH+V8vl5iqKiPH+FgmCtLCunXG6WLCtd6/IGZBiWHKdJjtMkSYqiUnXWd+Avlfx2mWZajt2oMOiS76+SjEoL9PXtzm27SYZh1PiZAAAAAKhXhN0AAAAAAAA1EEW+CoV58surFQRd8rylSpJI6fQMOc7EuguBLSsjy8rIdacqScLqrO9y0CG/vEqGLNn2+rW+16lYWizTsOU4rb3h90SZJrO+AQAAAAwfYTcAAAAAAMBWlCSJPG+ZCsX5ikJPvr9UQdgl225UOj1DppmqdYmbzTBsOU6zHKdZSZIojksKwx6FYbdK3hJJkmlm5diVtb59f2Vl1rfd2LvW90TZdmPdBf4AAAAAti7CbgAAAAAAgK0kDAvK519TEHYpKHfI85ZJhqFMZgc5TnOty9siDMOQZWVlWVm57lTFcdBn1vca+eWVMmTLdibIticoKHeoWFoo03CUSk2Uk5qolDNRpunU+qkAAAAAGGMIuwEAAAAAALawJIlVKi1WsbhIUVRSyVuiKCrIcVqVTrfJMMbPRzSm6SiValEq1aIkSRRFxd61vrsVBOskGbLMrGxngoKwW5a/QoZ6Z31X1/qeUOunAQAAAGAMGD//JwUAAAAAAFADQdClfP41hWFefnmVfH+lDMNRNrvTuA9tDcOQbedk2zlJbb2zvrsVhj3y/VXy/RUyDEe2XZn1XS53yDAXyDTdartzx2lh1jcAAAAwThF2AwAAAAAAbAFxHKpYXFCZxR0WVfKWKI59pVKT5LrTZBhmrUsccyqzvishdpLEiqJCda3vIOiQVGmJbtuNCoJOef6yyqxvp0kpZ1LvWt8NtX4aAAAAALYSwm4AAAAAAIBRVi6vUT4/T1FUlOctVzlYK9NMK5fbRZaVrXV5dcEwzOqMbmm64tjvDb575Psr5fvLZRop2XajrKBLgd2hQtGUZaaVSk3qXeu7RYZh1fqpAAAAANhCCLsBAAAAAABGSRyXlS+8Lt9fqTDokee1K04Cue40pVKTZRhGrUusW6bpKpVylUpN6p31nVcY9igIulUO1qgkQ7bV0Dvru0um1y5DphynWalUZdY3FxoAAAAA2xbCbgAAAAAAgFHgectVKMxXFJXk+csUBOtkWQ1qyOwk03RrXd42pTLru1G23ah0eobi2FcQVNb69vxlkp9UZ30HQZfK5TWSYcoyM73B9yQ5TgsXHwAAAAB1jrAbAAAAAABgM0RRSfn8XJWDDgXBOnmlZZKRKJ2eqVRqYq3LGxdM05XrTpbrTlaSRArD3lnfYZfKwRpJRqUlulUJv0veEllmWq47Tel0GzO+AQAAgDpF2A0AAAAAALAJkiSR5y1RofCmosiT57UrjHpk281Kp6fLNJ1alzguGYYlx2mS4zRJqlyMsH6tb89fKvmJLDMnx2lRGOZVLC2SYzcpnZ6uVGoyxw0AAACoI4TdAAAAAAAAIxSGPerJz1UYdKlcXivPXy7DsJTJzKqGrBgbLCsjy8rIdacoScLedb7XyfOXyvOXynGaFNotCoJOGYallDtZabdNjtNKm3MAAABgjCPsBgAAAAAAGKYkiVUsLlSptFhhVJRXWqooLshxJiqdbpNhWLUuEYMwDFuO0yLHaVEcBwqCdb1fC2UYjlJOi8KoKN9fKdN0lXanyXXbZNu5WpcOAAAAoB+E3QAAAAAAAMMQBOvU0/Oaoqgg318lv7xKpplSNrsLYWgdMk1HrjtFrjtFUVRUEKxTOVjbe1yzSjktisKCiqXFcuwmuW6bXHcKbc4BAACAMYSwGwAAAAAAYBBxHKhQfFOet1RRWFDJW6I4LiuVqgSlhmHWukRsJsvKyrKyct02hWF3b5vzZfL8ZXLsRgVOq4KgU4XC60qlJimdbpPjTKTNOQAAAFBjhN0AAAAAAAAD8P3VyhfmKQqL8v0VKgdrZFlZ5XK7ybLStS4Po8wwTDlOsxynubfNeaeCoENBaaE82XKcZoVRoTL720jJTU9T2m2TbTfUunQAAABgXCLsBgAAAAAAeIco8lUozJNfXq0g6JbntStJIqXTM5jRO05U2pxPlutOVhSVqut7l4M1Ms2MUk6roqioUukt2dYEpdNtct2pMs1UrUsHAAAAxg3CbgAAAAAAgF5Jksj3l6tQmK8oKsnzlioIu2TbE5ROzyTIHKcsKyPLysh1pykMezZqc247LQrDLhUKbyiVmijXbVMqNZEW9wAAAMAWRtgNAAAAAAAgKYqK6sm/VmldXe6Q5y2TDEOZzPZynJZal4cxoNLmvEmO06Q4DhWGnSqXOxSUFr2jzflqmYYj152mdLpNtj2h1qUDAAAA2yTCbgAAAAAAMK4lSaxSabGKxUW9s7nbFUZ5OU6LXHe6TJOPT7Ax07SVSk1SKjWpnzbn6bfbnHtLZFsNfdqcu7UuHQAAANhm8H9rAAAAAABg3AqCbuXzrykMe+SXV8n3V8owHGWzOzEbF8P2dpvztj5tzpfL85fLtifIcVoUht29bc4n0eYcAAAAGCWE3QAAAAAAYNxJkkiFwpu9s7iLKpWWKI693iByGiEkNolhGHKcRjlOo5IkrLTED9apVFosT1Zv6N23zflUpdPTubACAAAA2ESE3QAAAAAAYFwpl9cqn5+rKCrK81eoXF4j03SVy+0iy8rWujxsIwyjb5tzb6M2547TrDAsquS1y7Zyct02ue40WRZtzgEAAIDhIuwGAAAAAADjQhyXVSjMl+evUBj0yPPaFSeBXHeaUqlJzObGFmNZaVlWJcyOorzK5Q75/kr5/krZVoOcVKvCsEfF4ptynFal021KpSZzTgIAAABDIOwGAAAAAADbPM9foUL+dUVRSZ6/XEHQIctqUENmJ5kmM2mxdRiGIdueINue0NvmvGuDNue206xUmFc5WCvTsOW60+S60+Q4TbUuHQAAABiTCLsBAAAAAMA2K4o85fNzVQ7WKgg65ZWWSkaidHqmHKdVhmHUukSMU5U25xOVSk1UHPsqlzt6W52vlWmkemd7l1Ty2mVZWaXdNrluG23OAQAAgD4IuwEAAAAAwDYnSRJ5XrsKhTcURb58f6mCsEu23aR0eoZM06l1iUCVabpKp99ucx4E6+T7q/q0OW9RFOZVLC6Q47TITbfJTU2WYVi1Lh0AAACoKcJuAAAAAACwTQnDvPL5uQrCLpX9NfL85TIMS5nMLNpBY0zr2+Y8nY4UBJ0Kgk6VSm+pJFNOtc15h/KGJTc1Vel0mxynudalAwAAADVB2A0AAAAAALYJSRKrWFykUmmxwqgor9SuKC7IcSYqnZ4mw+BjENQPw7De0eZ8XW+b845qm/MoLMnzl8kyM70zw9tkWelalw4AAABsNfxfHgAAAAAAqHtB0Kme/GuKwrz88mr5/kqZZkrZ7M6y7YZalwdslkqb82ly3amKokKfNucrZFk5pZxWRVFBheICpZwWuW6bXHcKbc4BAACwzSPsBgAAAAAAdSuOQxWLb6rktSsKCyp57YpjX6nUZLnuVBmGWesSgVFTaXPeINtuUDo9XUHQrSDoUMlbopK3VI7TrCjMqxysU74wT25qitLpNtl2swzDqHX5AAAAwKgj7AYAAAAAAHXJ91crX5inKCzK91eoHKyVZWWUy+0qy8rUujxgi6q0OW9RKtWiOC73tjhfp8L6NudOS2+b8+WyzLTS6ely3Wm8NgAAALBNIewGAAAAAAB1JY595fOvyy+vUhh0y/OWKk5CuW6bUqlJzGDFuGOaKbnuVLnuVIVhQUHQUWnnX14py8wplWpVGFbanDtOs9Jum1KpKTJNPhoEAABAfeNftAAAAAAAoG543jIVCvMVRZ48f6mCoFOWNUENmZ1kmm6tywNqzrZzsu2c0ukZCsMulcvrVPKWSGqX4zQpDHoUlNfJMObJdafIddvkOC1cJAIAAIC6RNgNAAAAAADGvDgO1NPzksrBOgXlDnnecsmQMpnt5TgttS4PGHMMw5TjtMhxWhTHgYKgo7fV+YLeNufNiqKSPH+FLDMt152mdLpNlpWtdekAAADAsBF2AwAAAACAMS1JEvXkX5Xvr1ap9JbCqEeO0yLXnU4bZmAYTNN5R5vzdSoHa+WXV8kyc3KcFoVhXsXSIjl2k9Lp6bQ5BwAAQF3gX6wAAAAAAGBMK5UWq1xeo1LpLUVxSdnsjrLtxlqXBdSl9W3Ok2S6wrBbQdAhz18qz18qx25U6LQqCDplmvOVy+0q122jxTkAAADGLMJuAAAAAAAwZgXBOhWLC+T7KxVGPcpmd5JtT6h1WUDdq7Q5b5bjNPe2OV9X+SotlGE4SrvTFCehPG+ZGhr2kG031LpkAAAAYCOE3QAAAAAAYEyKIl/d3S8rCLrl+yvlutMIuoEtoNLmfIpcd4qiqFhZMsBbonLQoXR6psKwR5nM9spmZ8kwrFqXCwAAAFQRdgMAAAAAgDGnsk73ywrDgkqlt2RZDUqlptS6LGCbZ1lZZbM7KAxb5XlLVSi8Ljc1RUkSyvdXqKFhD6VSE2tdJgAAACCJsBsAAAAAAIxBxeKbCsrrVCotlgxDmcz2rBsMbEW2PUG53G7y/VXyy6sUBOuUTs9UFHty3alqyO0q03RrXSYAAADGOcJuAAAAAAAwpvj+ahVLi+X5yxXFRWWzO8s0+QgD2NoMw1Q6PU2O0yzPW6piaYGcsFlJHCgor1U2u7PS6RlciAIAAICa4f8UAQAAAADAmBFFJeXzryoIulQur5brTpdt52pdFjCuWVZaudzOKpc75PvLlQ/myXXbFFdbm+8u255Q6zIBAAAwDhF2AwAAAACAMSFJYnV3v6QwLMgrLZFtN8l1J9e6LAC9UqlW2XajfH+5PL+90to8M0Nh2K10ZjvlsjvJMKxalwkAAIBxhLAbAAAAAACMCfnC6wrDLhVLi2SYtjKZ7WpdEoB3MHtfm47TIs9rV6EwX25qspIkUtlfpVzD7nJTk2pdJgAAAMYJwm4AAAAAAFBznrdcnrdUJW+p4risXG4XZogCY5htNyiX203l8mr5/koFQafS6RmKYk9uarJyud1lWW6tywQAAMA2jrAbAAAAAADUVBjmlc/PVVDuUBB0KJ3eTpaVqXVZAIZgGKZcd6ocp1ml0lIVSwvlBE2Ko0DloEO57E5Kp7eTYRi1LhUAAADbKMJuAAAAAABQM3EcqrvnJYVRQSWvXY7TqlSqtdZlARgB03SVy+2kIFgnz1umoDBXabdNSRzK81aooWEPOU5jrcsEAADANoiwGwAAAAAA1Ey+MFdh0KNScZFM01U6PaPWJQHYRI7TItueIM9bIc9fqnKwTpnMTEVdeaXTM5TN7izT5ONIAAAAjB7+dQkAAAAAAGqiVGqX76+U5y1RnIRqyO0mwzBrXRaAzWAYtjKZmXKcFnleuwqF+Uo5ExXHofzyajXkdpPrTql1mQAAANhGEHYDAAAAAICtLgi6VSjMV9lfrSDsUiYzS6bp1rosAKPEtnPK5XZVubxGvr9SYdgtNz1dcewr5U9SQ243WVam1mUCAACgzhF2AwAAAACArSqOy+rpeUlh2CPPX65UarIcp6nWZQEYZYZhynWnyHGa5HnLVCotUhg0KY7KCsodymZ3VCazPR0dAAAAsMkIuwEAAAAAwFaTJIl6el5VGOZVLC2WZWXlutNqXRaALcg0XWWzOyoIOuV5yxQU5intTlOSRPL9lWpo2IMLXgAAALBJCLsBAAAAAMBWUyotUrm8RqXSW5ISZTI7MKsTGCccp1m2PUG+v0Kev0zloEOZ9HYKo7zS6RnKZXeWaTq1LhMAAAB1hLAbAAAAAABsFeVyh4rFhfLLqxRGPcpmdyLYAsYZw7CUTs+Q47SoVGpXofiGUs5EJXGksr9auYZdlabbAwAAAIaJsBsAAAAAAGxxUeSrp+cVBUG3fH+lXHeabHtCrcsCUCOWlVUut6vK5TXy/RUKwi6l09MV95Tle8vV0LC7LCtb6zIBAAAwxhF2AwAAAACALSpJYvX0vKQwLKhUeku23aBUakqtywJQY4ZhyHUny3Ga5XlLVSotVlDuUJwuKwg6lc3OYqkDAAAADIqwGwAAAAAAbFGF4psKgnUqlRZLhqF0ensZhlHrsgCMEabpKJudpSDolue1K1+YK9edqiQJ5fkrNKFhDzlOS63LBAAAwBhE2A0AAAAAALYY31+tUukted5yRXFR2ezOMk0+jgCwMcdplG3vLt9fKd9fqSDoVCY9U51RUWm3TbncLjLNVK3LBAAAwBgybnsAPfvss/rnf/5nnXjiiZo5c6Zc11VDQ4N22203ffrTn9YTTzwx7G0tWrRIl19+uQ444AA1NzfLcRy1trbqsMMO0z//8z9r1apVW/CZAAAAAAAwNkVRUT35VxQEnSoHa5ROT5dt52pdFoAxzDAspdPTlcvtKsMwVSi+oVJpiUqlJVq3brY8b1mtSwQAAMAYYiRJktS6iK3tyCOP1OOPPz7kuE996lP62c9+plRq4CtGb7vtNl100UUqlUoDjmltbdWdd96pE044YZPqHUx7e7u22247SdKSJUs0c+bMUX8MAAAAAABGKkkidXY+q3J5rfKF12Xbjcpmd6h1WQDqSJIkCoK18v0VUmIonW6Tk2qV4zSrIbcHF88AAADUmS2Ra47LvmHLllWuAJ0+fbo+/vGP633ve5+23357RVGkp556SldffbWWLl2qW2+9VUEQ6Pbbb+93O3/5y190/vnnK45jmaap8847T6eccoqmT5+ut956S7fccot++9vfqqOjQ6eccopefvll7bTTTlvzqQIAAAAAUBP5/OsKw24VS4tkmo4yGS7OBjAyhmEolZok226S5y1TyVuiIFindHqmwqBbmcwOymZnyTDGbfNKAACAcW9czuz+0Ic+pE996lP62Mc+JsuyNvr9mjVrdPjhh+v111+XJD366KM68sgj+93OAw88IEm67rrrdMkll2w05qtf/ap++MMfSpK+8IUv6Nprrx3Np8LMbgAAAADAmON5y9STf02l0hIFQadyuV1lWelalwWgzoVhj0qldiVJINedKjc1WZaVU0PD7kqlJta6PAAAAAxhS+Sa4/Kyx/vvv19nnHFGv0G3JE2aNElXX3119fu7776733FPPvmkJGnixIn9Bt2S9I1vfKN6+6mnntrUkgEAAAAAqAth2KN8fp6CcoeCoEPp9EyCbgCjwrYn9Abbk+X7K5UvvK5yebW6ul9Qd8/LimO/1iUCAABgKxuXYfdwHHPMMdXbb775Zr9jyuWyJGnHHXcccDtNTU2aNGnSBuMBAAAAANgWxXGo7u6XFEYFlbx2Oc5EpVIttS4LwDbEMEyl023K5XaTYdgqFN9UqfSWvNJSrVs3W6XSUo3DRpYAAADjFmH3AHz/7StBB5oBvvvuu0uSFi5cOOB2uru7tWbNmg3GAwAAAACwLcrnX1MY5lUqLpJpppVOT691SQC2UZaVVja7c2X97rBb+fw8+f4q5Qtz1dX1nMKwp9YlAgAAYCuwa13AWPXoo49Wb++55579jrn44ot14YUXau3atfqv//ovXXzxxRuN+fa3v73B+JFqb28f9PfLly8f8TYBAAAAABhtpdIS+eVV8rwlShQpl91JhsE19gC2HMMwlEpNlG03yfeXqeQtUbncoXSmEoBnMtsrm91RhtH/RBYAAADUP8LufsRxrO9///vV788444x+x33mM5/RE088oVtvvVVf+MIX9Nxzz+kjH/mI2tra9NZbb+m2227TvffeK0m68sordfzxx4+4lvWLtAMAAAAAMFYFQZcKhfkq+6sVhF3KZGbJNN1alwVgnDBNW5nM9nKcFnneUhUKr8tNTVaSRPL9lb3rfE+qdZkAAADYAgi7+/GjH/1ITz/9tCTptNNO0wEHHNDvOMuydMstt+jDH/6wvvvd7+rnP/+5fv7zn28w5phjjtHXv/71TQq6AQAAAAAY6+K4rO6elxSGeXn+cqVSU+Q4TbUuC8A4ZNsTlMvtpnJ5tXx/pYKgU+n0TEWxJzc1Wbnc7rIsLsQBAADYlhB2v8Ojjz6qK664QpI0ZcoUXX/99YOOf+2113TrrbfqpZde6vf3Tz31lG644QbtueeemjFjxojrWbJkyaC/X758uQ4++OARbxcAAAAAgM2VJIl6el5RFBZULC2WZeXkutNqXRaAccwwTLnuVDlOs0qldhVLC+SEzUriQOWgQ7nedb4Nw6h1qQAAABgFhN19vPLKKzr11FMVhqHS6bR+9atfacqUKQOOf/zxx/XhD39YXV1d2mGHHfSd73xHJ5xwglpbW7Vy5Urdd999+n//7//pzjvv1GOPPaY//OEP2nvvvUdU08yZMzf3aQEAAAAAsEWUSotULq9VqfSWpESZzPYESADGBNN0lcvtrHJ5nXx/mfLBPLlum5Ikkuev0ISGPWTbE2pdJgAAADaTkSRJUusixoKFCxfqiCOO0LJly2RZln7961/rlFNOGXC87/vaeeedtXTpUk2bNk1z5szRtGkbX73+yiuv6MADD5TneTrggAP07LPPjmrd7e3t1XW9lyxZQjgOAAAAANgqyuW16up+Qb63Qn55lbLZHQmOAIxJSRLK85YrCDpkmTmlMzNkW1ml0zOVze4k02Q+EAAAwNawJXJNc7O3sA1YtmyZjj/+eC1btkyGYejGG28cNOiWpN/97ndaunSpJOlLX/pSv0G3JO29994655xzJEnPPfec/va3v41u8QAAAAAAbGVR5Kun5xWFQbf88kq57lSCbgBjlmHYymS2Uza7ixJFKhTmq+QtVam0WOs6Z8v3V9e6RAAAAGyicR92r1mzRieccIIWLFggSfrP//xPfepTnxryfq+99lr19v777z/o2AMOOKB6e+7cuZtYKQAAAAAAtZcksXp6XlIYFlQqLZFtT1AqNfASYAAwVth2TrncrnLdqSqX1yifnyffX63unhfV3f2iosirdYkAAAAYoXHdo6erq0snnXSSXn31VUnS97//fX3hC18Y1n1t++1dF4bhoGODIOj3fgAAAAAA1JtC4Q0FwbrKOt2GwTrdAOqKYZhy3alynGZ53lKVSgsVBk2Ko0Dl8lplszvxvgYAAFBHxu3M7mKxqA9+8IN6/vnnJUlXXnmlLr/88mHff8cdd6zefvzxxwcd++ijj/Z7PwAAAAAA6onvr1LJWyLPW64oLiqbnSXD4KJuAPXHNN3eYHsHhVFB+cJc+f5KFQrz1dn5tIKgq9YlAgAAYBjGZdhdLpd16qmn6i9/+Ysk6ctf/rK+853vjGgbxx13nLLZrCTp+uuv10svvdTvuAcffFC/+c1vJEkzZszQfvvtt+mFAwAAAABQI1FUVE/+VQVBp8rBGqXT02VZ2VqXBQCbxXGa1dCwuxynRZ6/TPnCfPnl1erselb5/DzFcTD0RgAAAFAz4/Ly6zPPPFN/+MMfJEnHHnusLrjgAr388ssDjk+lUtptt902+Flzc7OuuOIKfeMb31BPT48OO+wwfelLX9IJJ5yglpYWrVy5Uv/7v/+rn/3sZ4rjWFKlTbppjsvrCwAAAAAAdSxJInV3v6QoLPau092sVGpSrcsCgFFhGLYymZmVwNtrV6EwXylnopI4ku+vUkPDbnLdqbUuEwAAAP0wkiRJal3E1jbSNXd22GEHLVq0aKOfJ0mir3zlK/rxj3+swXaj4zj67ne/q8suu2ykpQ6pvb1d2223nSRpyZIlmjlz5qg/BgAAAABgfOvpeU2e1658Yb6kRLncrjIMq9ZlAcCoS5JE5fIa+f4KGYaldHq6HKdZKWeiGhp2l2Vlal0iAABA3doSuea4nNk9WgzD0I9+9COdc845+vnPf64nnnhCixcvVrFYVENDg3bZZRcdddRRuuiiizaaGQ4AAAAAQD3wvGXy/GUqee2K4zJBN4BtmmEYct3Jcpwmed4ylUqLFQTrFLtlBcE6ZbOzlMnsIMOgeyMAAMBYMC7D7tGezH7AAQfogAMOGNVtAgAAAABQa2HYo3x+noJyh4JgnTKZ7WVZ6VqXBQBbnGmmlM3OUhB0yfOWKl+YK9edpiSJ5Psr1dCwhxynudZlAgAAjHvjMuwGAAAAAACDi+NA3d0vKYwKKnntcpyJcpyWWpcFAFuV4zTJthvk+yvl+ysqF/6kZyqMCsqkZyqX223ESyYCAABg9BB2AwAAAACAjeTzrykMe1QqLpJpppVOT691SQBQE33X7va8pSoU31TKmShJsu0JvD8CAADUEIvLAAAAAACADZRKb8kvr5bntStRpGyW9WkBwLKyymZ3keu2qRysUVDuUKEwX3FcrnVpAAAA4xb/pwoAAAAAAKqCoFOFwhvy/VUKwi6l09vLNN1alwUAY4JhGHLdybLtZnneckWRp0LhjVqXBQAAMG4RdgMAAAAAAElSHJfV3fOywjAv31+hVGqKHKex1mUBwJiTTk+XjESev1yev1xBsK7WJQEAAIxLhN0AAAAAAEBJkqin5xVFYV7F0mJZVk6uO63WZQHAmGSajly3TUHQoSgsqCc/V0kS17osAACAcYewGwAAAAAAqFhcqHJ5rUqltyQlymS2l2EYtS4LAMYsx2mVZWVV8toVhXmVSotrXRIAAMC4Q9gNAAAAAMA4Vy6vVbG0UL6/QmFUUCazg0zTqXVZADCmGYahdHqm4tiXX16tYnGRoqhY67IAAADGFcJuAAAAAADGsSjy1NPzisKgW355lVx3mmy7odZlAUBdsKyMUqlJ8v2ViiJP+fy8WpcEAAAwrhB2AwAAAAAwTiVJrJ6elxWGBZVKb8m2G5VKTa51WQBQV1x3qgzDlucvVTnokO+vrHVJAAAA4wZhNwAAAAAA41Sh8IaCYJ2KpcWSYSmT2Y51ugFghAzDUjo9Q2HYrSDoVD7/uuI4qHVZAAAA4wJhNwAAAAAA45Dvr1TJWyLPW644Limb3UGGYde6LACoS47TJNtukuctUxSVVCwuqHVJAAAA4wJhNwAAAAAA40wYFtSTf01BsE7lYI3S6RmyrGytywKAupZOT1eSRPL9FSp57QqC7lqXBAAAsM0j7AYAAAAAYBxJkkg9PS/1rtPdLttuVio1sdZlAUDdM82UXHeqysFaRVFJ+fxcJUlS67IAAAC2aYTdAAAAAACMI/n8XIVhj0qlxTLNlDKZmbUuCQC2GanUJJmmq1KpXWHYLc9bUuuSAAAAtmmE3QAAAAAAjBOet0xeb3vdOC4rk9lBhmHVuiwA2GYYhql0eqbiuKhyea0KxQWKIr/WZQEAAGyzCLsBAAAAABgHwrBH+fw8lf21CoJ1ymRmyrLStS4LALY5tp2T40yU769QHHkqFObVuiQAAIBtFmE3AAAAAADbuDgO1N39ksKoIM9fKseZKMdpqXVZALDNSqenSYYhz18mv7xafnlNrUsCAADYJhF2AwAAAACwjcvnX6us011cJMvKKJ2eXuuSAGCbZhi2XHe6gqBTYdCjQn6ekiSqdVkAAADbHMJuAAAAAAC2YcXiYvnl1Sp5S5Qo6l2nm48DAGBLS6VaZFkN8rx2RVFRxeLCWpcEAACwzeH/bgEAAAAA2EYFQaeKxTfl+ysVht3KZLaXaaZqXRYAjBvp9AzFSSDfX6lS6S2FYb7WJQEAAGxTCLsBAAAAANgGxbGv7p6XFYY98v2VSqWmyLYba10WUFtRKAUlKSzXuhKME5aVVio1RX55tcKopHx+rpIkqXVZAAAA2wy71gUAAAAAAIDRlSSJenpeURTmVSwulmXl5LrTal0WsHUlcSXcjnwpKlcC7iR8+/emLaVykp2VLD4iw5bjulMUhp3yvHZZVlq+v1zp9PRalwUAALBN4F/yAAAAAABsY4rFBSqXO1QsLZYMQ5nM9jIMo9ZlAVtWFEpxb6gd+VIcSElS+YrD3q9AiiPJMCU7LUWBZHRVbqdylf+ypj1GmWGYSqdnqFhcoKDcoUJhvlKpSSwrAQAAMAoIuwEAAAAA2IaUy2tULC2S769QFBWVze4s03RqXRYwupK4ElRHvcF2WJaSqPd3UW/w3SfcThLJMCqzua1U5Xd+T+VntlvZVuhVgm4nWwm+LYJIjB7bniDbbpbnLZdtN6pQeEMTJuxV67IAAADqHmE3AAAAAADbiCjy1NPzioKgW355lVy3Tbadq3VZwOYbctZ20Gf2dly5j2n1tipPV/5r2FLfBgdJJAW+FHlS4FXG225lW+W8ZDmSk6uE36ZVk6eNbUs6PV2Fwjx5/nIZpq10uk2O01LrsgAAAOoaYTcAAAAAANuAJInV3fOSwrAor/SWbLtJrjul1mUBI9d31nbYu972RrO2e8PtqHcNbsOQTEey0pJjV9bgHqoduWFJqayUZCvbCz0pKEnlomSnJMuthOtep2Rnetucu7Q5xyYzTUeu2ybPa1fKaVVPfq5amt8rg3MKAABgkxF2AwAAAACwDSgU5isMOlUsLZIMS5nMzFqXBAxPFFZma0flt7+kfmZtB1KcVH5nWZVw2x5g1vZIGKrM4racymNGfiX47tvmPA6lsNTb5jzX2+ac5QEwco7TqiDoUMlrl2VlVCotVja7Y63LAgAAqFuE3QAAAAAA1DnPX6GS166St0xx7CmX20WGwf/yYwxK4sps6b4tyZPetuMbzNoOpKh3Nnd11nZm+LO2N5VhVAJ0O11Z6zv0KjUGXiVgt9KV4LvcU1nTu9rmnJm5GB7DMJROz1ShMF9+ebUMw5brTpVlZWtdGgAAQF3i/3wBAAAAAKhjYVhQvuc1BcE6BcFapdMzCU0wdmwwa9uvtCeXemdt911nu79Z25nKfw1r02dt9yNOJHM42zOtygzuJNdbvycFxcqX1dsyPSxLfmelVidbCcmNUSwW2yTLyiiVmiTfXynHblE+P09NTe+pdVkAAAB1ibAbAAAAAIA6lSSRenpeUhgVVCotkeO0KJWaWOuyMF7FcSUU7m/Wdhy9HWpHQeV76e1Z2+uDbdMelbA4TqQgihRGiYIoURDFCuJYYZgoShLZpqGWXEoN7jA+GjNUWcPbTvXOTPcrz83vrqTmVroS6gfFt9cBdxoqM9CBAbjuVAVBpzx/qUwrJd9fKdedWuuyAAAA6g7/6gYAAAAAoE7l83MVhj0qlRbLNF2l06zTja1k/Xra1Rnb5Y1nbUehlISVnyd9Zm1bTm/rb3uzZm3HiRT2hthBWAm0wzhWECWK1s8SlxTHicK4EnJHcawwTpSxLYVxoh4v1KRcSo49zDbkhik5mcpXHFaC79CTglIl3LZ725z7vW3OUw29QT5tzrEhw7CUTs9QqbRIQdCpfP51OU6rTJO14AEAAEaCsBsAAAAAgDpUKi3tXat7ieI4UC63q4wttY4xEMd9Qu3erySWElXW2h5o1rblVILhTZy1nVQD7URhFKscVcLsMKqE1m+XVwmzw/jtQDuOpTCOFcdvb88yK2smrysHcp1IE9KOvCBSU8ZRczY1vPbm65m2lLIr63ZHvbO9ywVJhUrQbbuVGe6m0dviPCs56RE9f2zbHKdJQdAkz1sm25qgYnGBGhp2r3VZAAAAdYWwGwAAAACAOhOGPSoUXlfZX6Mg6FQms4MsixANo+Sds7bDciXIrv6uN9ROordnbRtGZfZy31nbpjXshwvjuLfleNz7tX6mdtJnXGXGdtQ7UzuMY0WxFPX+dz3TkGzLlGUacm1blmnIMgxZpiGzN832g0g9Xqi1eV8511KSJCr4oVobUsqlRvhxmaFKsG27fdqce5LnV/aBlarsz3Khsl+cbCUgp805JKXT05XPz5Pvr5BhWnLdNjlOY63LAgAAqBv8qxoAAAAAgDoSx4G6u19UGObl+cuUSk2S4zTXuizUs0FnbYe9s7bDzZu1nag6O3uDMLt31nZ1WJIoSqSoN+heH2z3F2hblinLkFKpSqBtvyPQHozrWEpZpgrlSAU/lFeONSFtV1qcO6EmNqTkWJvQKaFvm/Mo6L1YoG+b896f+92VludOtjKWrgzjlmmm5LpT5fsr5KRalc/PVXPzQTJGYe16AACA8YCwGwAAAACAOpEkiXryryoM8yqVFsuyMnLdtlqXhXqyfmZ2WJbicmUWchz2/i6urLMdB28H3NVZ233W2rZ619reaNtSGPfOzo7XtxtPFESRgmjoQHv92trrbRBoO70ztE1D9jAD7aEYpqGGtK20Y6nHC7SuGCjtRIrSjkpBpOaMo6aRtjbvy3J691mucgFB6FfW8jaMyizwKKgE4d76gLxBslOb/bxQf1KpSQqCdSqV2mWZaXneEmUy29e6LAAAgLpA2A0AAAAAQJ0olRarXF6jkrdEiSJlMzuzTjcGF0cbtyN/56ztaH243Ttr2zTfbrdt2hvN2g6jRGEUVQPtoE/78fUSJZUW41GscH2r8SRRFFXW1k56M23DkGzTlGVKKceUZZqjGmgPh20Zasml5AWRerygt7W5rSRJlPdDTWpwlUkNryV7v9aH27Zbaf0e+pWvwKtcRGC7leOyvs15KldZ35s25+OGYZhKp2eqWHxD5fJaFYoLlEpNlWW5tS4NAABgzONfzQAAAAAA1IEgWKdicYF8f6XCsFvZ7I4yTWaB4h2ioHfN6N6Ae9iztlOSY1dnbUfrZ2gHsYIo2KDt+Pq514kSxbEURm+vnR0OEGivD7Bd2+wNtw3Z1tYLtIcjvb61uR8q74cqlaNqa/NsytbEXEq2tZn1GlblIgI727v2uV9pcV4uVmZ1W70zvo2uSsvzVLbS7pyLWrZ5tp2T40yU76+QbTepUJinxsZ31bosAACAMY+wGwAAAACAMS6OfXV3v6wg6Jbvr1QqNVW23VjrsjCWRKHkd1aC0yTpDbPD3oC7/1nbkWEpiK3KDO1gfcvxsoI4rgbVAwbave3HBwu0TVOyLVOmobpZf9g0DU3IOMqkbHX3bW0eJyqVQzVnU2rKOIMuTz4shvppc+710+a81LsOeLYy49viApdtWTo9TfmwS76/VKblyC+vkZuaVOuyAAAAxjTCbgAAAAAAxrAkSdTd87LCsKBS6S1ZVk6uO7XWZWGsiGPJ75aCfCXUDkqVmd29s7Yjw1QoS6HhqhybCkOj2nI8TmJJgSRVw+soTirBdpJU249vEGgbhizLkGuZspxK+/H162rXS6A9HLZlqDWXUimIlO/T2jxWorwfaGJuM1ub99W3zXnc2+Y88vq0OU9Xjm05/3Y47mQrv8M2xTBsue50ed5bcoIeFfLzlGppkWFwrAEAAAZC2A0AAAAAwBhWLC5QUF6nUmmxZBjKZLbfpkJFbKIkrqzx7HdXAtKgqDjwVAoieUqpnFgKIlPR23dQHIcKq6F2XLmdVNbVjt8ZaJuGXMuQ6TiyTfWupb1tBdrDkXEsuX1bmwexGtO2gshTLmWrdTRam/dlWpXW5Ulvm/PQk4Ji5Vivb3MeliW/qxKCO7neNufj67hsy1KpFgVBhzyvXbadU7G4ULncLrUuCwAAYMwi7AYAAAAAYIzyy2tULC2S5y9XFBeVze4s03RqXRZqLShJXmelRXnkS0FefhBrXdlUMc4oiNfP1A76DbQlyTYrgbZjGkrb4zvQHkq1tbljq9sP1FEoK50yFceJikGo1mxKE9Kj0Nq8r75tzpOkcpzXtzk3DclKV9qcB6XKOuCpbCX4tnh/2Bak0zNUKLwu318pw7DkutNk2w21LgsAAGBMIuwGAAAAAGAMiqKS8j2vKAi6VC6vlutOl23nal0Waiks94bcfmWN56CgOArVWTbVFaZVjqRuL1AYVVJty5Rs0+wNtO3egJtAe1PZtqEWy5EXxOrxAq0JfDW4juLEV7cXalJDSmlnC7SbNozK7G073dvm3Ou9yKEkWXZv+/OgEoRbqT5tzs3RrwVbhWWllUpNkV9eJdtpUT4/V01NB/C6BQAA6AdhNwAAAAAAY0ySxL3rdBfllZbItpvkupNrXRZqJQorbauDYm/L8oIUllWKTa3xK2tx5/1QxXKklG2qNefIMQ0ZJsHYaDMMQ5mUJdeu7PNuL1ApNDXBTRREsRrcSmtza0vte9OSUjkpyVUueIg8qVyUVOydCZ7ubXPeKdmZSuhNm/O65LpTFIad8rx2WVZavr9c6fT0WpcFAAAw5hB2AwAAAAAwxhQK8xUGnSqWFskwbWUyM2tdEmohjqVyt1TOV9flVuApkqm15ZQKkSUviNTj+UoSqSntKJ0ymf25FZimocaMo4xjqdsP1VEoK5uyKq3Ny6Fasik1pp1KO/ItwVBlDW87VVm/PfQrwbffXZnRbbmViySComTYfdqc81FgvTAMU+n0DBWLCxSUO1QozFcqNUmmmap1aQAAAGMK/8IFAAAAAGAM8fwVKnntKnnLFMeecrldZRj87/u4kiRSuVCZzR1HUliqtKyW1BO7WusbCmOp2yvLD2KlHVONaUcmM7m3Osc21Wo5KpVj5f1AXhCpIe0oSnz19LY2d7dEa/O+DFNyMpWvOKy0OQ+9Pm3O071tzrsrIXgqVxlr0OZ8rLPtCbLtZnnectl2owqFNzRhwl61LgsAAGBM4f+WAQAAAAAYI8Iwr3zPawrKHQqCtUqnZ8qyMrUuC1tTUJK8rko4GfqVluVJorKR0hrPkhfFKvmVYNUwpJass+XDVAzKMAxlXUtpx1SPH6q7FKgUmGpMJyp3bYXW5n2ZtpRqkJyGyrreoV+5cEKFynredlD5ubc+IM9V1vzGmJVOT1ehME+ev1yGaSudbpPjtNS6LAAAgDGDsBsAAAAAgDEgjkN197ykMCqo5LXLcVqVSk2sdVnYWqJyJeQOPSkKKiF3FCq2UuqKHHV6scI4VncpUDmMlU1ZanBtZnOPIaZpqKm3tXmPV2ltnnHebm3emktpgrsFW5v3ZagSYttub5tzrxJ8e12Vdb8tt3JBRbnQG5DnJDtLm/MxyDQduW6bPK9dKadVPfm5aml+rwxm5gMAAEgi7AYAAAAAYEzIF+YqDHpUKi2WabpKp2fUuiRsDVHYuy53oXdd7oIUliXLVsmaoLXFSOUoUsEPVShHskxDrbmUUjZB11iVsk215hwVy7EKfiA/jNTgOoqTsnr8UBNzKbn2VpyNb5iSk618Rb0zu8NSZT1vy6m0OY8Cyeiq3HaytDkfYxynVUHQoZLXLsvKqFRarGx2x1qXBQAAMCYQdgMAAAAAUGOev0K+v1Ket0RxHKihYTdm7W3rkljye6RyT2/IXZQCTzItRU6DOnxDeT9UOazM5o6SRDnXVi5lyTCYzT3WGYahnGsp45jq9gJ1lQKVgkiNaVt+EKsx7ag558ja2sfScipfTq7STSD0K+ehYVRmgUdBZRa4Z1bGuBMqM8FRU4ZhKJ2eqUJhvvzyahmGLdedKsvK1ro0AACAmiPsBgAAAACghuI4VKHwhoKgU0HYpUxmB5kma+hus5KkEmx7XVIcVoLFoFj5XSqnfGSroydQEMXK+6GK5Ugp21RzOiXbIuSuN6ZpqDmbkh9E6vFDrS2Ule1tbV7wQ7U2OGpwna1f2Ppw23alJKqE3qFfveBCtvt2p4FUg5SaIJlcgFNLlpVRKjVJvr9Sjt2ifH6empreU+uyAAAAao6wGwAAAACAGiqVFiuOSvK95bLtRjlOc61LwpYSeJLf2Tt71q+E3Eks2a5CM6M1hUCloCwviNTjBUoSqSntKJ0ymc1d51zHUso2VSxHyvuhvDBSQ9pR1JOo2ws1KefWrjW9YVVal9vZyjreoScFpcqXk62E3uW85DZJqSztzWvIdacqCDrl+UtlWin5/kq57tRalwUAAFBThN0AAAAAANRIFJVUKr0lv7xacRIom96p1iVhS4iCykzusFS5HRQqa3XbKcmeoO5yoo5uT2GcqNsL5Aex0o6pxrQj0yTk3lZUWpvbSjuWerxAXcVAJTtSY8aRH5TUlHHUnHVk1urCBkNvtzlP4t7W+sVK+O1kpTiutN1PN1W+x1ZnGJbS6RkqlRYpCDqVz78ux2mVadagOwAAAMAYQdgNAAAAAECNFArzFUWefH+lUqnJtC/f1sSR5HdXZsUmkVQuVmZ0W7aUbpKfmFrbU5YXRir5sfJ+IMOQWrKOXId1krdVVt/W5l6otXlfuZSlJEmU90O15lJqcGv8kZ1hVtqX25nKxRl+j2QWK+t4x6Fk9VRmejvp2tY5DjlOk4KgSZ63TLY1QcXiAjU07F7rsgAAAGqGsBsAAAAAgBool9fKL6+W7y+TYdhy3Sm1LgmjJYkrAbff07vuce/sWMOQ3AmKrZQ6i4G6Sr2zuUuBymGsbMpSg2szm3ucWN/avFCOVPBDeUGsCWlbUZwo74WamEvJqVVr8/VMS3IbJTuonMd+txQ6lZndUVmy05WZ3laqtnWOM+n0dOXz8+T7K2SYlly3TY7TWOuyAAAAaoKwGwAAAACArSxJ4sqs7jCvIOxSOr29DIOZvHUvSSqBoNddWfs48nrX5ZbkZCQ7o1IQa213SeUoVsEPVShHskxDrblU7dZsRs0YhqGGPq3N1xUDuU6kMO2oFES9rc1Tqvn1D5YjWU1SWJbCQqUtv52qXMwRepUZ325jpWsBtjjTTMl1p8r3V8hJtSqfn6vm5oNk1KoFPgAAQA3xL1AAAAAAALYyz1uqMMyr5C2VZWXlOM21LgmbK/Qlr7My2zUsV1o/J7Fku5KTVZQY6siXlfdDlcNY3aVAUZIo59rKpSxCqnHONg21vLO1uVtpbV7wQ7U2pJRLjYGP8exUZRZ35FfO8dK6SivzJJLCouQ0SO6EyoxwbFGp1CQFwTqVSu2yzLQ8b4kyme1rXRYAAMBWNwb+lQwAAAAAwPgRx2UViwtULncojj3lcrsSdNazKJT8TikoVdYyLhekKKgEgm6jZFrK+6E68mUFUay8H6pYjpSyTTWnU7Itjj3e5jqWUpapQjlUwY/klSutzcM4UcYJNbHBlVPrc8ZQ5SIOy5XCUm+bfr/S0jyOKyG4O6Gy5rdBt4ItxTBMpdMzVSy+oXJ5rQrFBUqlpsqy3FqXBgAAsFURdgMAAAAAsBUVigsURV6l/azTKsvK1rokbIo4rqxfHOR7Q+5SpZ2zZfWuYewojBKt6fJUCiJ5QaQeL1CSSE1pR+mUuUUuckh6/0uEXr8M01BD2lHasautzdNOpKi3tXlLxlFTNqWaXyNjqLc9f7pysUdYqrTut7OV9uZ+vvJacLKqfbHbJtvOyXEmyvOXy7abVCjMU2Pju2pdFgAAwFZF2A0AAAAAwFYShj3yvKXy/ZVKFMt1p9W6JIxUEldmb/vdlUAvKFZCbsOQ3AbJSkuSukuBOgplhXGibi+QH8RKO6Ya047MUVyAOZGhyHAUGSlFZkqR4UiSrLgsK1n/FRB+1yHbMtSSS1UvlKi0NreVJInyfmWWdyY1BtqFG4aUylbamQfFt18TTrbS3tzvltLNlWAcoy6dnqYw7JLvL5VpOfLLa+SmJtW6LAAAgK2GsBsAAAAAgK0kn5+nKCqpHKyV606TaTq1LgkjERQlr6vSujzyetfllmRnKkGeYcgPI63Nl+WFkUp+rLwfyDCklqwj19n8YDKW0SfYTinuDbdjGYoNR7FhyUikyErJTEIZSiQlspKgTwAe9P4c9SC9vrW5HyrvhyoFkSakHQXdnrIpWxNzY6QdvmFWWpfbmcprw+/pXcc7V+l+YKUqobdNm+3RZBi20unpKpXekhP0qJCfp1RLiwxjDFwIAQAAsBUQdgMAAAAAsBV4/goFYZd8b7lMM6UUM+/qR1iWvHVSVK58lQuVWd1OurdFs6k4kToLZXWVgsps7lKgchgrm7LU4NqbPJs7lvmOcNvu/fn6cNtWZNhKVAm2TEVKDEOJ0r3fhzKT3i/DldkbcptJUAm+ewNwk/B7TDNNQxMyjjIpW91eoHWFstKOqShOVCqHas6m1JRxxka3cNOqrFdvB70XiHRLllN5rUTlShje2+ofo8NxWlQud8jz2mXbORWLC5XL7VLrsgAAALYKwm4AAAAAALawJIlUKLyhIOhSGPUok9lRhmHWuiwMJQolv6sS2MVhb3vmciWky0yQzMrHKqVypLV5X+UoVsEPVShHskxDrbmUUvbIjnMsq9qOPDRSSnrD7UimYsPu/XKUqLJdU5GsJJSZlGRVZ3JXQvK+40MjXR1fDb+TlExzffgdviP8jkdlF2J02VblvCqVI+X99a3NHcXylfcDTcyNkdbmUuV1YjVVXjNhodIVwXYrrc3DkpTKSalGyeLjydGQycxUPj9Pvr9ShmHJdafJthtqXRYAAMAWx78mAQAAAADYworFxYqjknxvmWx7ghynsdYlYTBxLJW7pXK+N+QuSYEnWetnrKYkSVGcqKNQVt4PVQ5jdZcCRUminGsrl7JkDGOabVQNtytfSW/r4UhWn7DaViJTRmWF7t5W5GGfNuUbMxXLTMpSUpb09tre67cXGpVW0oZimUlQDb8tsxJyG0lUXfPbjssyFW32bsXoyaQsufb61uaBSoGpxrStIPLU4NpqyY6R1uZS5fVipaTIr7Q3L3X2ht5x5QISp6HyujK5AGhzmKarVGqK/PIq2U6L8vm5amo6YFjvQwAAAPWMsBsAAAAAgC0oikoqlRbLL69WnATKuDvWuiQMJEkqLcr9rkqb8qBUmYEqSW6DZKWl3two74fqyJcVRLHyfqhiOVLKNvX/2fuT5cbybM/v/f67vTcA0ruMzMiIk7ekUzo6ZXZlJpPsmq5MkxrWE2gsU72KXkIDTeoFalDzmpWGmt/KjHPyNJXReIQ3JIDd/Ps7+MPpTXi0ThIEfX3SmPQgSGCRAAgCv73WejT8cMhYgYJ9HW7rjnoYIF6UofBqLLmBQ7itydjqr7qxf21spajYd8LvV8F3VrZ1kaMO4feh85sOXTPKgKrlKvw2JaD59bWI6/FqtPngDDufeDEGhk5TSmUMiSfrjgeD405cUYoWcJuu3afiDMm3kealtBC8P287v2Xqxa/W978jpQuW5S8YM+D91wzD58cuSwghhBDiRknYLYQQQgghhBBC3KBx/IKcPd4/pes+wZjh2CWJ94kzLBdtdPmrDtRawb7ay90Sw5Qrz/aeOWaWmNktkVrh4eAYOv1WF2ULsds48hZuO7gKty2F12EzqBZu14Qrh3D7BgNlRcXUiKkRd1Wrvaor6RUVBRRMPYw+x6HrQGs+L5gSsYcAXNd4JzLVj5GzmsfGsYTCzkeeRc9Z7yjVs10Sn5x1DO6OjDZXqt2f7OqwFmCGPLePlQx+3/Z5v3GfEz+fUpph+Cum6c/E8IJx/IKu+wStu2OXJoQQQghxYyTsFkIIIYQQQgghbkgIL/DhO3z46rBD9XfHLkm8K4c2Vjl7yBHiHnJuXajdmkOyCxW2S+TFGEilsl0iPhYGp3kwOLRuA8VfB9tt7zaH4eOtc9tStCNjeDvcXjA1oshHC4wVYGrC1PTq270K44uyJD1QWQEVQ0aXSDaJVPtDzfWw7ztedYBLVHl7lFKsekPvNHuf2C6ROWnO+0rMhbPe8mTTYfQduVaUaju73dAONPEj6KWF3DWD3x1C79WxKz051p5j7SOW5WusfcA4/h3n5//vY5clhBBCCHFjJOwWQgghhBBCCCFuQK2VcfwTOY3EeMEw/AGl5Gn4nZHTYS/3eBhZPkIKYBwMZ+39gU+Z5/vAkjKzL+x9RCl4tO6w3UB8T7idX3Vu6/YeuBoR3tVwGEl+vHD7pyjAcAi/awu/62GPeFaWpPtD+A2ahC4JY7o39ogfOsdLxFR/CPPfv19cXB+tFQ/eGW2+7gylVKaQeHyXRptDO5ikOzt0eo8t5E4zuA2U2MaeD4/awSfiZxuGzxnHP7L4r1HaMgyf4dzjY5clhBBCCHEj5Fm2EEIIIYQQQghxA5blS1LaMy9fYswa554cuyQBbT9w2LW3ktso5biANm1n8BuhWqlwMQUu50gqlcs546ulX53R9yui6YhAQVGUO3RBm7fCbVMTto6HMeDlSN/0h1OAIqNr2yHe4mx9+J4dWXck2oh+TUK/Gn2uIppN+/irru9yGH0u4feN6azmiXHMoR2csaTMee8oNbBbEp+cd/T2jow2h8P97wHY2ELv5RJs1zq9c2hh+PDwrYNQxA/T2tH3n7Esf6FzT9jt/zOPH/3PKNmHLoQQQoh7SMJuIYQQQgghhBDimpUSmKa/J8aXlDKzXv/NW7ucxRHU2oLt5RJKat2jcW6ndZsWpr1xFc0h890+MlfLPq0Zi0UPjpWzGGOI6vW+7UoLDTUt4LXVn3y4/VNa+F3QNUANAJSr8Psw+lz1h8/NmJraz6T2aN1+Lrqmd8Lv+/vzOgalFOveMDjNbklczpE5Zs4HS7gonA+Wx5sOc5d+NxkH5lGbspDGtmLA9m20eZrbfbV7AEZe0vwpzj0hxhfMy18wZsU8/xPr9V8fuywhhBBCiGsnfxkKIYQQQgghhBDXbJr+gZwXluVrnHuMtZtjl/RxizP4y7aTO/kWetcCdmg7gQ/djrlq5up4NsMuagKGOSYyGjf0ONuRtCPSPl9fhbgz5mp898dLvxN+X41zP3R/vw6/C7rGQ/d3j9G5fbzmq33fpgQM+Wjfy32iteLh2rFK5mrv/NodRpv7zOON47y/Q6PNoXV1mw7y0u6vV6F3af/dnbXQW0un8g9RSjEMf2Acv8CH71DK0vefYsz62KUJIYQQQlwrCbuFEEIIIYQQQohrlNKOZfkS759SKfT9Z8cu6eOVIywXkJb27zi2Xd22A/eApDoCjlgdAccYYbckYlHMWeOLQXeOzlmMgkrGHvZtawm3f5KiYmuEGoGZirrq+s7KklRHRV3tMm/d8B26ZpQBVctb4bcm3ak89tR0VvObTccUCuNhtPnZ4Mi1svOJ32zu2GhzRTsgxfSvJzEk3w5QKQXC2Eafd5urA1bE24xZ0XWf4P1TnH3Mfv9HHj78H49dlhBCCCHEtZKwWwghhBBCCCGEuEb78U+kPBPic/r+92gtO2ZvXcmtkzuMbfxxGKkpkMyKMHxC1GsCjoqmVghVc7FUfDEEVvhSqVQGV+l1wtQFXSRo/VCKiqkRUyMOqNDCbw5jz/WKigLq67HndO3AAgNQMKXt/W4HHUS5Tn4hpRSb3rBymu0SuZwis808WDl8XHgwOB5t3N0aba5U291thxZ4x7mF327TQm+/h+FB+5y7VPcd0fefEuMFy/IXtOnw/il9/+mxyxJCCCGEuDYSdgshhBBCCCGEENfE+2+J8QK/fIXWHV33ybFL+rjUAmEPfkfNmZgiMVeCekDsH1J1RwVSNSQsGcOYFFMoVAoxBnKc6XRm42oL/KR5+8YowNSEIUE9hN+8sfNbD6/DbzK6RLJJ6DoQqO3jNV7t/DY1SPj9M2mteLTu8DGz84nne3812nz0iSdnjrP+jh2oo3Tr4nYDhKmF3HpuIXdNEHbQP2yd3+KKUoZh+Cvm+R+J8YL9/k8490QOxBJCCCHEvSFhtxBCCCGEEEIIcQ1qzYzjF8S4JeUdq9V/jZLRurejVmqYiMtMKBBzR8gFGCi2J5sVCXcVcAPkUljCQk0BFSM+eLSCB87irOZuLTD+OCjAkDD1dfhdMa/HnuueSgsyNen16HPVow9HJegasW+F33K0wo/pnaGzmilk9j6xpMz54Mi7yn7J/O7BgL5rdwVloD9voXaYwO9ed3rn2MaeD4/augIBgHMPifEhy/IV1pwzTX/m7OxfHbssIYQQQohrIWG3EEIIIYQQQghxDeb5n8l5wi9fYsw5zj08dkn3WqkQqyHERPQLsWjIPSV7UnUkM5DMmnJ46UNRsSQsEe9nYoioWpl9JuVC7zSDM2gZg3xnKECR0TVjqwegoK86v4vqSGoAQJOvwu+kurfC77bzu73XlGN9O3dWG21uGZxht0QupkjvMmVwfLfzfHre381jP7Rt48tzhDjCctkCbreGfNjt3T8CIy9/AgzD5+z3f8T7b1Da0Pef4dyDY5clhBBCCPHB5K89IYQQQgghhBDiA+W8ME3/iA/fUWpkM/z1sUu6l0LR+GoJxZAyEEdyiuSqSbmQakdRZ+A6FGBJ9Mytn1sVfCrs5kgqhSVmllQwWnE2OJy5i2meeJemoGuAGoB3w29LUj0AioKuEV0TpvZo3UJuVdPVvm9TIhrZxf6KeWO0+eUcuVwiSsOLSfFkc4e7pI0D8wiShzjBfNH2e9fc9nt3Z9A/AG2OXelRad3R95/i/Te47gn7/X/m0aP/CSUH+AghhBDixEnYLYQQQgghhBBCfKBx/IKcPd5/S9d9gjHDsUu6d+Zi2aaBXAopBnJKJCwlaygZrQrWaqwqWPZo9Xp8da6VyzmxxEzMlTkkcq0MzjBYLWHPCXs3/K6oq7HnRVmi6om8Cr8Pnd+1R5NRpn1FC8TjG+/jRx2A987wELiYI/s5oVA4ozgf7viOZ9u3EeZ5OYTe/hB619b53Z23N/3xrpfouk+I8SXz/BeMHliW/8Jq9S+OXZYQQgghxAeRsFsIIYQQQgghhPgAMb7Eh2/x4WuU0vT9745d0r2Tq2KXenyIzAmoGp0LtuyxZKzRaO1A5e997Rwz+yVddXP7WLBG86C3mDu3jFh8KEXF1IipEXgVfhuKcofO7xUVBdTD6POMqun1vw/n04LxiLl6Hz+q/d+9M5wV2C0RazTP9gFn2qj/O03RAm7Ttz3ecYa0tJHmpUDYty7vbgPq4wu9ldIMwx+Ypr8jhOeM05/puk8xpj92aUIIIYQQv5qE3UIIIYQQQgghxK9Ua2W//xM5jcT4kmH4A0rJU+3rVCtc5oEUZuZocWVilV+ia22BlungPZ3ZqVR2cyTkQkiFOSZqhXVn6aySbu6PRAu/E6YmACpQsBRlqIfu76q69wTgGU16KwBXNV91fr/qBL/PO8A3vSGXwnaJaK34duv57NGAMycQEivVdnfboXV5X4Xem7dDb7d+7++P+8zaDc79hsV/jbUPGcc/8uDBf3/ssoQQQgghfjV5Bi6EEEIIIYQQQvxKy/IVKe+Zl6/QeoVzT45d0r0zFUcMkSmCyp51eoGyrgXd7+vMrDDFxG5po8rnkImp4Kxm3Rn0RxZsibcpwHAIv6sHWgBeMYe93+YQhL8KwGkjz2tC1/JGAN66vFXNb40/N4cu8fvifLDkUrmcAuas5+l24bNHK8yp3I+Ubju77aqF3n4HejqE3umN0Ht17Epv1TD8npQu8f5LtHH48Iy+++TYZQkhhBBC/CoSdgshhBBCCCGEEL9CKZFp+ntieEEpE+v130i38DVLVbGPmiUs5GI5Sy9Rtm+7ed8j5sJ2jsRSCLEyx4RScNZbnD2BblRxFApQh47uV5PKXwfg5tD9bUhvBOCvd4Dn12H41Zjz0kLvEq9CcE0+yT3gSikerhwvpsDFGNCbju+2nt8/GDipb0gb6M9bqB0m8FtItoXeObQO8OFhmxTxEVDKMgyfM8//jIs7xv0f6R4/Rqk7PqZeCCGEEOI9JOwWQgghhBBCCCF+hWn6MzkvLMvXWPsIazfHLuleqRUuY0deRpbS0+dLrFXvDbpLhdFHppDJpTKFTMqF3rUdw9LNLX6ptwPwALwKwPVV+F0wJD28E4C3Tu+kMlrlN8ac13c6wNsY9FO4ZWqteLTqeDF6LuaIUvB89Pzm7AT3PGsLwwPIEeIIyyXYDko+jDlfQ/8QzP1/ydS5x4TwgmX5C9ZumKZ/YLP5m2OXJYQQQgjxi93/v9yEEEIIIYQQQohrltKeZfkSH55SKQzD58cu6d4ZsyXOI2N16Dwz4MF8/4ACnwq7OZJKYYmZJRWMVpwNDmdOIUoUtyolGMc23nq9gV/Q8d8C8IKu4aoDHKCgW/itDAVL0j0VfXWqoRzGoL/aBf6qy/vNAPx1EH4Xb7XWKB6tO15Ogd2SUErhjObByh27tF/HONCPIPs23nx+CW6Amtt/d2dtvLm+353Oq9Uf2O//iPdPUcrQ97/H2rNjlyWEEEII8YtI2C2EEEIIIYQQQvxC4/gncl4I4Rl9/ylan2jgc0fFqhmXyFI0JWXO6h7lVm+NTc61sl8SS8zEXJlD29E9OMNgtYyUF983zbDdQc7ttjROsF7B5uwXhd7v0hSoBVPj1ccq6ir8bqPQHUkNV6fqQ9e4Ouz4bnvAD+dX0+v934cucPVmun4kndU8GByXc8ToVq0zmlV3ooGwok2KMD2kuYXcybeR5rW+Dr27c9D3cw2C1j1d9zt8+BbrHrPf/2cePvz/yO9PIYQQQpwUCbuFEEIIIYQQQohfwPvvCPEly/IlSjm67rfHLuleqRUu50KKEZ8dfdlju7514h7MMbNf0lU3t48FazQPensVwglxpRS42IL34D1qngGofQ+1tBB8s4bNBsz1hJqKiqkJQ3pjD3gLwNsucHsYh/5qD3g97P7Ohz3g6a0AXNX8vRHor0ek355VZ0i5sPcJqxVPdwufP1zRfcDBAkenaLu87QBxbsH3q5HmJUPYt9Hm3fqt30P3Rd//jpQuWJa/YMyA91/LtBIhhBBCnBQJu4UQQgghhBBCiJ+p1sI4/okUt6S8Y7X6r1H3MPw4pn2oJO+Zco/JgcECqnWOplLZzZGQCyEV5pioFdadpbNKuhHF9y0etpeQMowTKkZq14HWqKWF31eh9zjDZnWtofebXgXgkKB64NUe8FfhdxuFnq4CcA4BeELX8kYA3tJzVcsb4fehE5x87XW/62yw5FqvOryfbhc+f7Q6/QNNlGqBthtaV3ec3gi9C4QdDA/bf98jSmmG4a+Ypj8TwwvG8Qu67hO07o5dmhBCCCHEzyJhtxBCCCGEEEII8TPN8z+R88SyfIkxZzj38Ngl3SshVaYlMFdLKZlzE1DGHU4rvJwDuVTmkImp4Kxm3Rm0hNziXbW2keXTDDHAOLf+6c0Guhbi1b4Hv6AWT/Ue+sPO5nGGs0PofcPjq9se8NbN/boD/FUA3t6qsm8F4G1veDp0gL8ahf5qzHlpoXd5HYK/3hF+TTUrxcPB8WKOXEyRJ5vW4f3ZgxX34q6odBtfblct8PY70BO4DZQEZtc6vd3w0+d1Iqw9x9pHLMvXWPuAcfyC8/P/7thlCSGEEEL8LBJ2CyGEEEIIIYQQP0POnmn6R3x4RqmRzfDXxy7pXim5sB0DsShCUgzKYw5Bdy6tizSmyugjSsFZb3GnPDpZ3JwQ4HILMcI0o0IA56jr9dvhtdawWlP7AZYFtcxUv7wdem/W7e0Wdzb/cACuD6PPDQVD0sM7AXhG10RSGa3yG2POK7qm741B/5BcWmnF45Xj+eh5Obf75LO957fn/Qec6x2jDfTnbcR5GMFvIbnW2Z1DG3s+PARzPzqgh+FzxvGPLP5rlLb0/Wd03ZNjlyWEEEII8ZMk7BZCCCGEEEIIIX6GcfqCUjzeP6XrfoMx96er7+hqZT8tpKKYo8GoTG8VqNagezEHYilMIWK0ZtNLN7d4j1phP7a3lGAcUaW2kLv/kRBWa1ivqcObobeHoW87m8fpKKH3m1oAXtA1XAXgAAV9FX4XZUm6p6KvTjWUwxj0wz7wqy7vNwPwdBWC/5J7ldaKR6uOF1Pgco4opXBG82jtruvbvhu0baF2CpBGWC7Bdu22kT2sf9f++8Rp7ej7z1iWv9C5J+zHP/LY/c+yqkMIIYQQd56E3UIIIYQQQgghxE+I8QLvn7L4b1BK0/efHruke8UvI3OyzAkKinObr/Zvb5dITIXRZxRKgm7xfinBxWXr6l48alnAWur5unXo/hxvht7zgppn6vJG6D1NsD5u6P0uTYFaMMQ3usBVG4HOqz3gjqReHZxT0YeucXXY8d32gB/O7yr4TpiyYH5iB7izmocrx8UU2fvYPmYUm/4evuRou9bFnT3EEZYL6B/A9B1sPgVz+t+zc0+I8QXz8heMWTHP/8R6LVNMhBBCCHG3nf5fYUIIIYQQQgghxA2qtbLf/4mcJmJ8wTD8AaXk6fR1KX5i6xUxJ0JdsbIZc0jeppBYYmaKmVwK572ToFu8rdYWQm/3bZ/yOKNSog6rFlL/mtuL1rBZU1fvCb3zq9B7A2frX3f+N0xRW1hNejsAx7QucGUO49Bf7QGvh93f+bAHPKFrQZlz+rylK9OPXt7gDOdDZbckjNZ8t/NYo+jtzzzI4JQowPZg+jbWPGxBP4LpGWx+d2cOgvi1lFIMwx8Yxy/w4TuUsvT9pxizPnZpQgghhBA/SJ6dCyGEEEIIIYQQP8L7r0l5x7J8hdYDzskO02uTArslkrJmKn0LyHTbMxxSYbckfCyEWFj3FmvuXrAojigV2F6CD+AX1LSAVtTzc7DX8JLXVejdvx16r16F3iNsNq3T+w6G3m9S1EP4nd7ZA96C73IIwdNVAA6uzGAgq44hX6LenJ/+jk1vSbmynSNGKZ5uPZ8/XN3f+6yi7fNeLmDZwqBhfg7rT+78beGnGLOi6z7B+6c4+5j9/o88fPg/HrssIYQQQogfJGG3EEIIIYQQQgjxA0qJjOPfEcMLchlZr/+bq/Ha4gPlxDJuWfLAnDVox1qHdlKpXM6RmCtTTPRO09vT7pgU12xZ4HILqYXOKiZq38NqgOveMawNbDavO72nmTr7dlk5wzjC2aaNOD+h3w9tD3jr5n43AM+6I+oVpZrDWHTLkF7+6FjzBytLniqXc8Donm+2C58/Gu7vNAal2hjz5QLCDlDt36vHRy7sw/X9p8R4wbL8BW06vH8q6zuEEEIIcWfJM0UhhBBCCCGEEOIHTNM/kPPC4r/B2kdYe3bsku6HWsjTC7ZlIKREVCtWpqBVpVa4mAOxFKYQcVqzcvdwHLL4dUppu7lfXsLiYbtFpUI9OzuEzT/+UpdGYbR9/aYM+tUbGo1Co67+9/YXH0Lvhw/AWdQ0weUO5kPw/t13LfiuP9wBfdcpQJNxZaYve4pyeHNOVD2T+4So+h/+WqV4tHIoFBdzxMfMd7vAjzSEnz5tWuCdI8Q9hD343bGr+mBKGYbhr0h5R4wX7Pd/opR47LKEEEIIId5LOruFEEIIIYQQQoj3SGlkWf5CCN9Sa2YYPjt2SffHfMEudaQYmHiAtYpOtSBlu0RiKow+o1CseyPd9KLxAS4vISWYZlQI1K6jrlY/uitZK4PWGoW5arxWh13VvySHrfXwFaaCW7Wu7uAhJGoK0HdQZ+roYbOiDgNo/f5LOYGbtKmRPm8J5gxvzunKxGIfk/NIX3bv/Ra0Vjxad7wYPZdLRGl4MSmebLpbr//WGAfdWQu51eHAHG3bbeSEOfeQGB+yLF9hzTnT9GfOzv7VscsSQgghhPgeCbuFEEIIIYQQQoj3GMc/kfOCD9/R95+i9T0Oa26T3zGHhE+OmRXK9ayZAJhCYomZKWZyKZz37v6OQBY/X62w28M4QYqwn1BU6mYD3ffvlxqF0hqlDPrQ6a1QoFrn9g8G4/Xwf290Zr8ZU1dV3/6osmA7WNUWxOdEXRI4B1Ogzqnt9+7674Xb7wvZayv0jct740T1+nN+MKK/gbuKptDnLVFvCHpzGGsORTuGdIGmfO9rrFE8XDku5sh+TigUzijOB3f9Bd4VtoeSIIwt8J5fgP5dC8JP2DB8zn7/R7z/BqUNff8Zzj04dllCCCGEEG+RsFsIIYQQQgghhHiH998R4gsW/xVKWbrut8cu6X6IM3nesktrfFYkd8YGj1aVkAq7JeFjIcTCurdYI0H3Ry/GNrY8RlgW1OLB2hZ0vxFaazTKGPRb3dsapdrboZGbWgu1pEOgffWJV/9+8/9fefUx9eaI9HdvmrZrI9ZjhpIh0l51WxL4Qu1dC8FRr6Nq9Z7Qur4Os98Nv3/4wq++9Psf+xnh+Q/G52/8eLoyolUi6hXVWGreU+xvWOULTP3+eOveGc5Lm9RgjObZPuC0Zuju8UoCt4Ga2/5urWF8Bme/a6POT5TWHX3/Kd5/g+uesN//Zx49+p9k2oYQQggh7hQJu4UQQgghhBBCiDfUWhjHL0hxR0pbVqv/6u2QS/w6OVKnF2zzQEqZ2X6C0wWnErlULudIzJUpJnqn6a38zD9qtcJ+gv3+MLZ8QuXcRpb3PUpptNIo/W73tkKjXwfhtVJrppZK/V4Xcn3r3Tv/fE9N7/vgm5u9FVgFVaNigiW3HeKda12/3rfaD6G3qj8UGL6ZUP90Ka/D8/d8waFb/aon/ReG58nUq5Nt9aicCWaDNw/oyp5JPaHPO7oyfe/r170hl8JuiRiteLpb+PzRCmfu6X1bAd05+EvwWxgUTM9g89uf3CV/l3XdJ8T4knn+C0YPLMt/YbX6F8cuSwghhBDiioTdQgghhBBCCCHEG+b5n8l5ZPFfYswZzj06dkmnrxSYnjEXS0iZ2T5CGceKHbXCxRyIpTCFiNWalTvdTkhxDVKCiy3EALNHLTNYi3r4CG3dYTz5Vb81Sh32uiv1Rvd2hlp+4VbuX+PNS3g13hxqZyFrVAgwearWbeR6ju3fwwr694+4Vm+cnfr+R19/pL55ijr89/uC658Oz989qQJVFWxWFA1FtWIMiSFvCXqD1w9wZQKjyMox5MvvXfrZYEmlcjkFzFnP0+3CZ49WmPvaGawU9A9guWg7vNEwv4T1b45d2a+mlGYY/sA0/R0hPGec/kzXfYox/bFLE0IIIYQAJOwWQgghhBBCCCGu5OyZpn8ghOeUEths/qtjl3T6aoX5OSkVdtHi1UAyZ2yY0IrW0Z0Ko88oFJveyIjcj9k0w+UOSkKNMxpQZw9RwxqlXk0c121E+VX39uuA+/vd20dkNHU1QCqoGGBZqFqjujbyvHoN/fdD7zc7td+/Pfz16e/5qvd61fT9vgHt734OtL3nVI2iokpFo666vBWVruxJekXU69d7vJVllS7Q5Nfnqdr+7hdT4GIM6E3Hd1vPpw8G7u3dXOlD4H3ZRporBYuF4eGxK/vVrN3g3G9Y/NdY+5Bx/CMPHvz3xy5LCCGEEAKQsFsIIYQQQgghhLgyTX9HKR7vn+LcE4xZHbuk07dcUsPCNjlyVczdYzoCTiWmkFhiZoqZXArnvbvq2BUfmVzg8hLtIyplVCyYbk3te5S1oHQLYLU+tB0Xyq11b38gq6l2gJRRh93jVRtU5yAfQu9h1cad35BXTd/1+x992xtt5boqdG3j1rM+dHmb1uWtAFdmlEpEvcEbS5f3jO43rNIltvqrs9Ra8Wjd8WLvuZgjSsHz0fPJ2T3uDNb2MNJ8C2p842Ob49b1AYbh96R0ifdfoo3Dh2f03SfHLksIIYQQQsJuIYQQQgghhBACIMZLFv8Ni/8GFPT9749d0ukLI4QdY6qEopncJ2hgxUJIhd2S8LEQYmHdW6yRoPujU0H7gNqN6AoqVlSu0K9Q/dD2cSve6N5O1HqHurd/CWuo1vxw6L3cfOj9SxRVqVRM1diiW8idK0opsm5d3rZGdN4SzBmLeUBXRmb7mC7v6cr+Kju3h8D75RTYLQmlFJ3RPFjdje/1RtgO6qb9HtQWlpftvT3NkF8pyzB8zjz/My7uGPd/pHv8GKVk7YQQQgghjkvCbiGEEEIIIYQQH71aK/vxT+Q8E+NLhuFztJanzB8kBVheElNmzCu8e0RWHWeMlFrb+PJcmWKid5re6mNXLG5LpXUNl4oaZ1QIqFQhZbRxsDoDo6FUas3UcgLd27/Em6F3eDP07g6ht4FhuBOhd1WQVMG80eWNLqisyAaqqmgK/WGPd9Bn1LJQDYc93hfow3XXWc2DwXE5R4xuMbgzmlV3j8NSt4KaIezbePPpGWw+BXOajy/OPSaEFyzLX7B2wzT9A5vN3xy7LCGEEEJ85E7zLyshhBBCCCGEEOIaef81KW1Z5i/Ruse53xy7pNOWE0zPqCmwjT3Jrlj0GT0eQ+bFHIilMIWI1ZqVu8dhlzjsilboAurV3uiU0dOMKhWVgKLAdlRrqKpQc+an9lCfvLdC7wDL/Ebone9U6J1VRVPR73R5l0OXt1LQl5GoEkmvKFgqiqI+YZUvMDUCsOoMuRT2PmG14ulu4bOHA729x78D3BmUAmEL+tEh8P5dG8l/glarP7Df/xHvn6KUoe9/j7Vnxy5LCCGEEB+x0/yrSgghhBBCCCGEuCalRMbx74nxJbmMDMPnKNkb/evVAvNzKIExVqIemMxjNIUBz85HYiqMPqNQbHojP+/76NC9bbLCZoXNoCuYAmaO2MmjMygfqSlQNGQLhXwYU37Pg+43WUNdr6jDCgWoZYZpRvmAGkfY7iDGY1dJUZB067JvnfkaXcHm18vAXfV0eU9B480Dku6Y7BOCXl2dz6a39Fa36Q6p8O3Wk8s9vr4V0J+3zu5lCzm035H1NL9nrXv6/lN8+I6UZ/b7/0w90e9FCCGEEPeDhN1CCCGEEEIIIT5q0/yPlLKwLF9j7UOsPT92SadtvoDkCX5hVA9Y3GMKhg0Tc0zMITPFTC6FdWfREnTfD7W96aKwSeGywmSwhaudzzaBnhbwnrLMlHFLSZ7SWaqMsX9/6D0vLfTej7Dd34nQO+tKURUN2DcCb11a6G1IDHmLouD1OVENePOQxTygAkopHg4OYzQvp4BPhae75VSz359HKegetIOB/BbiDMvFsav61brut2jdsSx/IaZLvP/62CUJIYQQ4iMmY8yFEEIIIYQQQny0UhpZ5v+C90+pNTEMnx27pNPmdxBHatiz5THRneMZGPDknNgtCR8LIRbWvcUaCbpPWgWNQr05nhyudjurNz6xxkCdZ2pOsHhUKdSuA+dAbgZvs4ZqV2+PNzcW5RzkRDUW1j3Y4403L6q2fd1FY6pGUVGlolEkU1Gq0ucdUa+Iek2phkrb471KF2idebxyPB89F3NEK3i29/z2vD/a93TjtIH+wSHsHlsArm3r+j4xSmmG4a+Ypj8TwwvG8Qu67hO07o5dmhBCCCE+QhJ2CyGEEEIIIYT4aI3jF+Ts8eE7uu53aH2Pg5ab9qpTMU7s8kDqzpjZYMjYuvByjsRcmWKid5peOnlPz6Hzto2wfp1Rq8NO7jcD7sohEK2ZOk6olCDEFt5qRV2twMht4Eddhd7pR0LvAexxXt6rQNal3R4OBzgUVbBZUXS7/rsyo1Um6jXeGLo8MrrfsEoXWB14tOp4MQUu54hSCqcVjzb3ODA1DrqzdmCQOuwp1xbc6se/7g6y9hxrHx2mojxgHL/g/Py/O3ZZQgghhPgISdgthBBCCCGEEOKj5MMzQnyO91+hlKXvf3fskk5XjjC/gBQIITN3v2fW5xQMZ+y5nAOxFKYQsVqzcubYFYuf6xBk6/d0b1PVW/vxKm28dXn1SSHCNKFKad3cOVGdg66Xbu5fwtoWbOd3Qu+ua6G3tbBagT3O/epVl7d5p8tbocimYgnonAlmw2LO6cvEbJ/Q5T2d3fNo5Xg5RfZLPHy7mrP+Hr9kaXsoGcLYAu/5Bejfgjm9kH8YPmcc/8jiv0ZpS99/Rtc9OXZZQgghhPjI3OO/HIUQQgghhBBCiPertTDu/0SKO2K6ZLX6FyglXaa/SikwPYMcKWHPpfucaNYEOlYsTN4TU2H0GYVi0xuU7Om+2+phFPmhe1vxE93bVOqbV2mtMM0tmE0JvEehqMPxAtmTp/h+6D1Pr0PvdNzQuwLpnS5vdEFlRTGAyvR5R9BrvD7DlZlqDmPNueB8qOyWhDGa73YeZxT9fb6tuDXUBGEHWsP4HM5+10adnxCtHX3/GcvyFzr3hP34Rx67/1keT4UQQghxqyTsFkIIIYQQQgjx0Znn/0LOE4v/CmM2OPf42CWdplphft46u/2WnXlMsudMrLAkUpyYQ2aKmVwK571DS9B999RXgfbb48l/uHu7hdzvlSLs59bN7T0qRap11F66ua/Fm6F3Sqh4CL2tQ7nSQm9n4UgHFrTbRUVXjS2aoioqV5RSZF3pykhSmaQHSrWAYlSfsOIlqcxs54hRiqeXns8frbDmnt5oFNCdg79sO7wH1Q4a2vwWTiwodu4JMb5gXv6CMSvm+Z9Yr//62GUJIYQQ4iNyWn89CSGEEEIIIYQQH6gUzzT/AyE8p5SFYfj82CWdruUS4gJ+y1I7FvcJCwMVjcsj+yXhYyHEwrqz9ze4OkWH7m2TFfbwZgqYqjClBZX6EHS30eSFpAtZ1/cH3ZXWzb0bUfEwvjwn6jDAIEH3tVOAs9TVmtoPqJJR89TGxS8BtdvBfg8p33ppRbUu70o97HfX6Ao2K3QFVxe6sqcow2IekHTH5H7Dan2OM5qLORBy4ZvtQqk/cFDFfaAU9A/av/0Okof5ZTuI6IQopRiGP1CKx4fvmKZ/JOfp2GUJIYQQ4iMiYbcQQgghhBBCiI/KOP49JXu8/wbnfoMx62OXdJrC2Ebwxj2lFHb950Q6Ah19ndjOgZgrU0z0TtNbeQniqFrDLboobFK4rDCZq4DbvhFwQwu4s24B91t7uN8nZdhtUYtv3dzLjNKaul6DlaGCN+rd0Du/EXr7N0LvfPuhdzswoqABWzTmEHibrDAl0ecdioLX50TV4+0jhrPfoFC8nCI+Zr7bhXbbva+UboF3yYffp1Pr9j4xxqzouk/w/ik5L+z3fzx2SUIIIYT4iMgzDiGEEEIIIYQQH40Ytyz+axb/DSjo+98fu6TTlAIsL1snYlzY9n9FUh0TKwyJaR6JpTCFiNWalTutPbT3RgXNYfd2/enx5PWnQu33mVu4TS7gF1Sp1K4H56Sb+za9Cr3tYbx5CDC1EfKqFIiJ6lzb6W1u78CTNvK+YIpCV92C68Mu72QKfd4R9ZqoN9RqcRb6h4758imXS0RpeDEpnmy6W6v51mnbRpqHXTuICEA76DbHresX6vtPifGCZfkL2nQs/hsGeYwVQgghxC2QsFsIIYQQQgghxEeh1so4/omcZ2J8wTB8jtbytPgXywmm71rgHfbM7hHePGCqq3ay3xJTYfQZhWLTG5Ts6b49FXThqkO77eIGhUJVdZU/V1r3dgu5f8XllAL7NqqcEFu4qjV1PYCWLv6jeSv0jqgQ3wm9I7Vzbaf3LYbeWVf0YXS+LpqsCjYrigZVJ7RORL2mGEPHHvfgM5bdt+znhELhjOJ8cLdW762zHdR1C7u1bQcTaQu2P3ZlP5tShmH4K+b5H4nxgnH/BZ37DVrf4+tNCCGEEHeCPKsXQgghhBBCCPFR8P5rYrpkmb9E6x7nnhy7pNNTC8zPoUQIW7Lu2dlP8dWRcKi4w4fEHDO5FM57h5ag+1bUWilLQIVEqWCNRWuDVgZlNEopKvXQafuBc6G9R01LG728eFQp1K6Tbu67RAHOUa2DGA971N8IvUNs19kw3FroXVSbHqCLxlSNoqJKRaOAgK6ZYDZ484BOjbiz37MdX2C85xmhTYno7vGUCLeCmiHs23jz6RlsPgVzOi/fOveQGB+yLF9hzTnT9GfOzv7VscsSQgghxD13On8tCSGEEEIIIYQQv1IpiXH8e2K8IJeR9fpfopR0n/5i82F0ud8Cmm33GQnDzIDKnmWZ8bHgY2HdW6yR5PM25BhJ04ytGlLFat0CaF2JRAqFokBrizYGZQ1K61+eS5cK04iKqQWoPoBW1GEAe49DyFOmgM61Eebvht61QAgt9F7dTkd+BbIurcO7tmkDWR+6vE1B5R1Bb/D6HNfN2Fp44Sd03PPtbuHzRyvcLXak3zp31qYm+C3oR22KxubTk5qWMAyfs9//Ee+/QWlD33+Gcw+OXZYQQggh7jEJu4UQQgghhBBC3Hvz/I+UsuCXr7H2IdaeH7uk0+O3EKe2V7YUpuH3BDUw1xW1VsK8I+bKFBO90/T2dMKZU1VKIc4T2QdcNZQUcdqSUiLlSOvfVmijQBuqzpSkIbSYW5sWerf3BqV/JP4OEaapdQUvHpVT6xrue+nmPgXvC73HRLUWVeuth96vRuibqrFFU1RF5YpSQN2T9EDUK8xgyAWeZcfvyp6nlwufPV5h7uvECAX05+AvYNnC8OjQ4f1J6/Y+AVp39P2neP8NrnvCfv//49Gj/6+ssxBCCCHEjZGwWwghhBBCCCHEvZbzxDz/F7z/llIj6+FfHruk0xNnWC4hTJACqX/MTj3EV0fEEueXpJKZQmyjhp10+d6kWivJB+I8UUrGZii50LsebS2FgqmGWkp7q4UaI+Xw9UorlNaUpFuH96tw833d35UWcocAKYEPKKAOK+nmPkXvDb2no4TeVUFSb3d5owsuKzQeTSLoM8z6CXm64LtkqGrk263n9w8G7m12qhT0D2C+OEzRAJYLWJ3O6o2u+4QYX7LMX2LMihif03WfHLssIYQQQtxTEnYLIYQQQgghhLjX9uMX5Lzgw7d03W/Ruj92SaclR5hfQAoQJ2q3Zmt+Q66amRUxTJQUGH1Godj0Rjr4blBOiThN5BQpKaFiQWnH0K/QxhJrAkAphTIGTAukKxVKfR2A50Kp+XCuP9D9nTM6BHQFFRM6Z7RzVOnmPn3fC71D6/R2b4TefQ+r1Y1f122HfEW/0+WtS0bpLcGeYdePCdOW51lT9IIdF357do9/lyvTAm+/hTi2AFy71vV9ApTS9P3vmed/JOeZZflKwm4hhBBC3BgJu4UQQgghhBBC3FshPCOEZ3j/FUpZ+v53xy7ptJTSRujm0MaX257J/oZQHRMrQooUv2eOmVwK571DS9B9I0qtLeT2vo0v9wumKIZ+jet6jLKkGn/w6xUKDh3dr9Raf7j7O2dUztRaKekQilvbmn1TRCuF1hql9P3tsP0YvC/0jonaWVSFmjKcbeDHRtxfg6KgqIIprcubQ5d3lyuKLdqsqauHBD9ykaGmDjdPPFrd4+kCxkF3Bn73eoS5tuBWx63rZ7L2AUpZYnhBMGtK8XKwmRBCCCFuhITdQgghhBBCCCHupVpL6+pOe2K6ZLX6Fyh1j4OR61YrzM9b0O13oDXJPWTPBk+Hz4Y0vyTFgo+FdW+xRlLPm5BCIEwjNRdyCKQQsMawXp9jjcUqS6r5Kqj+ud7b/Z0ydV6oOVFTIpUMKJS1KFrwrVShKAWoNvr8KvhWKG1uOhcVN+Hd0DsEaiqo1UDd7uB8c3U7uUlZV3RtXd66aLIqdFlh6ozWidqtmYNBp5n/wgOUmXnY/dJb/gmxPZTcVkgo034n69+B6Y5d2U9SSuHcE2J4zjB8xrJ8w3r9Xx27LCGEEELcQxJ2CyGEEEIIIYS4l5blL+Q0Mi9fYswG5x4fu6TTslxCXFrQXQu1f8SlekiuhrH2eD9Sc2SKid5penuz+30/RiVlwjyRY6CkTPILtVZs17EZztBKY5Wh1EL5xVH396kQIcQ2xjodzs/1VKNbF3itlJKptZ2ktQKlqCiK1rTENLXub6Wl+/sUvQq9jUEtC3WaUcMA2z11s4bO3XgJr7u8NaZqymEE/1Ai2mSqWzHmM0yZ+adlw/9Lex7bcON1HU23hpoh7EEbGJ/B5ndg7v7Lul33hBC+JaZLFv+VhN1CCCGEuBF3/68iIYQQQgghhBDiFyrFM05/JoTnlLKw2fy3xy7ptISxjS2PeygJ+geM6pxYLSMrZh9QaWQKEas1Kycd89ep1kpaFuI8U0oheU9JCW0tru/pTYdSGqssFUjknzzPH1UKeN8C7hwhJUBD14EyKHgjrK5X+78LLQBPpUDOKNW6OUvR0v196oymrleoeYF5pg49ahypeYDVcCslZF3QVV29tS7vwiM18oKBbd1wXjxfTop61vNI7dGq3kptt647A3/ZdngPD1uH9+a3r8eb31Fa9xhzRgwvcO4xMV7g3KNjlyWEEEKIe0bCbiGEEEIIIYQQ9844/pmSPd5/g3NPMGZ97JJOR/KwvIS0tM7u/oyoV4ysWejZR9Bhx+gzCsWmNyhp2702OUb8NFFzuhpZrpTCrVZoa7DKYpTBHkbyx5o+7AJjguBb4B1je28sWEtr832XOuz/hqtDHExtO7+l+/t+UYq6WoH3rcu761BALQXW6/ffPK5ZUZWqKvrQ5d1uSZXfsPCiWvZloGrLN9NCXj/iMVus+sCDP+4ipaB/AMtFC7zRML+A1W+463cc556wLP9MyZ5l+UrCbiGEEEJcOwm7hRBCCCGEEELcKyntWPxXeP+USqXvf3/skk5HTjA9gxRad7cbqGbgknNSNWyTpfiRGAO5FM57h77jQcupKKUQp4kUPDVnovfUUrCuQ3cOpRQGg1MWqzQaTarxAy6wHrq5c+vej4fQ3HVtVPIvolDKSPf3faSAoacGjQqeWiqqQs0Zzs64jSup8naXt6oKdOETEi/inkmdgdqgl4W6esyDumVQ93CsudLQP2yBd9jR7jSXMDw6cmE/zrmHeG+I8QXer9hs/hat5SVpIYQQQlwf+ctCCCGEEEIIIcS9st//kZxnQnxO33+G1je/Y/ZeqKWNxi0Rwha0A3fGng2pWrZ5YAkBwoSPhXVvsUbSyA9VayV5T5wmSi1k78kxoayhW69Ruo0pViictmgUGkOq+ddv6U6pBd2lHrq5cwu4neN62nV/rPsbai0/0v2tAI10f98xnaNqjfILdS6o1UDd7uBsA/Z21hgU1Q6iMFVji6aoymNd2S6X+P6cC7VpHejDQ2KdOGO8f7cXbaA7P6yZGNvdVTvoNseu7AcppbH2ESG+pO9/j/dPWa3+6thlCSGEEOIekbBbCCGEEEIIIcS9sfhviOmSZfkSrTu67jfHLul0zC/bCPNXI3L7MwKOiTVj7dmFigp7ppjonaa3d3tX7CnIKRHGkZITOSZy8ADY1YC29ip2VkCvOzQKqwylFsqvibprhRAgpBZwx0NnuHNw452Wb3Z/G364+xvp/r6rrKHqtse7TjOq72G3o2420N3OQUVVQVIFc+jydijObWVadiTWvOxWEBPVronK8rBuMfdtj7ftoK7b9A1t29oJZcDdzi71X6PrnhDjc+Jh8oqE3UIIIYS4ThJ2CyGEEEIIIYS4F0pJjOPfEeMFOY+s13+NUhLI/ix+C3Fq3YKlwPCIgmHLObEaXgaNSiNL8FitWbnb6eS8r0qtbWS5X6ilEv1CTRnjLKbvv7cD3SmHQmGVpQKJX7GTOGdYXu3mTm10udaHbu5j3E+k+/skaU1dr1HzDMtC7XvUOFLzAKvbC1uzqmgqump6DBiYlwkoXLAGZTk3kNVjHtYtnfrA3fZ3jVtBzeB3bbz5/Bz0p2Du5ku9xqzRekWKL0juASntsPb82GUJIYQQ4p64m38BCSGEEEIIIYQQv9A8/xMlz/jla6x9gLUPjl3SaYgzLJcQpraru38A2rCvG2I1PAsdJUXCMgGw6c33wljx88VwGFmeCyUEUggoo3HrFdp8/yACqyxGGaxqp8X6C0O7ehhVHg7jykMCKlh3B4Oxa+7+RqGMdH9fOwV1tQLv21jz2qGAWjKsN9czCf9nKAqKKpii6LWBCn5Z6Gphyxl1dcYZEy/VI87rnrVabqew2+LO2sErfgvqEUzfwebTdhDLHdR1T1iWrxhKZFm+4uzsXx27JCGEEELcE3ftWY0QQgghhBBCCPGL5Twxz/+MD99RamQ9/Mtjl3QacoT5RRtfHifo1mA7fO2YWXGRHD5VyrIll8J579ASdP8qOWXiPJJjpKRE8p5aK7bv0F333nzQYHDKYpVGo0k1/rILLaV1c+cMObVd3WjoutYNeuddQ/d3ku7vG6GAoacGjQqBmguqQs2HPd63GLhmXdEVeqOhQvCBdd0y1zPqZsO6elCKWB0P2N2f614B/Tn4i0Pg/RCmZ7D55E7ev517xLJ8RYgvMH7FZvPfyvQVIYQQQlwLCbuFEEIIIYQQQpy8cfw7cl7w/ild91u07o9d0t1XcgtGcoCwB9uDW1OqYssZU9JcBgthT4iJdW+x5r6kRLen1kqcZ9KyUEoheU9JCW0tru9RP9B2rFA4bdEoNIZU8y/b0h0j+NAC7xCB0jq5reXWWm9vxHV1f2uss3LwxofqHFXr1uE9z6hVT93u4OwM7O2tOyiqUhU4qyFCipmOHZnMvN6QMW0FwGGPt1W/YhXAXaRUm8axXLbAGwXLBayeHLuy71HK4twjYnhB33+KD98y9L8/dllCCCGEuAck7BZCCCGEEEIIcdJCeI4P3+H9Vyhl6fvfHbuku68WmJ63oNvvQBvozgDYcYYvhmfBUXMg+JHeaXorHXi/VA4BP03Uksk+kGJAKYVbrdA/EgQqoNcOjcIqQ6mF8nOj7lLAe0jljW5uBa5r1/O988u6v5VWbQy/1oRQsMZgjL0/3b7HYA1Vr1DLQp0WVN/Dbkddb6B3t1ZGBaquaKcgQo0Vw4SiEIZzstFs6swL9YiHdUevwq3VdqOUge68hd1hbAG4dq3r+45x7gkxviSnPX75SsJuIYQQQlwLCbuFEEIIIYQQQpysWgv78U/ktCemS4bhX6DUfQz0rtlyCWlpQTe1dQYqxVJ75jrwnbekAnG+wGrNysnP9JcopRDHkRQDJWfS4qm1YF2H7t8/svxNTjkUGqts60blZ3ahptSC7lJaZ3cpoC24U+/m/qV+ovu7FGIpGK1JtVJKxlqHvqO7jk+C1tTVGjUvsCzUvkdNI7UMsBputRSlQTnIsaKjAjyuZvLwgJ09Y10nLtRDNnVkw3Q/DnQwrh2w5HevR8hrC2513LreYe0ZWvdtlLk9I+cZY+5WjUIIIYQ4PRJ2CyGEEEIIIYQ4WcvyF3IamZcvMWaNc4+OXdLdF8Y2tjyOUNIh6Dbkw/jyFx58saRli6Ky6W3rhBU/qdZK8p44TZRSyMGTY0JZQ9dvfnBk+ZusshhlsIeDNmJNP+eCIQQIqY2nj4fd3ve2m/uXeqf7W7eAO5dCKRVjdDsuwOgWesvN/ddRUFcDeN/GmleHAmrOsNnc6vEWWiuyAZ8Lq6zJPjPoLaFsmOyapD0ViMrxsG7Rqt5ecTfF9lAzhKl1e8/PQf8OTHfsyt7i3BO8/4ah/5xl+YrN5r85dklCCCGEOHFyyKoQQgghhBBCiJNUSmCa/oEQXlDKwjD8lYSyPyV5WF62ru64QLdpHYHAlnP2AXa5J4aFkhY2nZOdxj9TTolluyVMIykEwjRScsauBrrV6mcF3QaNUxarNBpN/jlBdykwL20vd4oQQ+vs7HsJun+QQmuLtW18eUqZnCMlZ2LwpPR67Ln4hRQw9NSuR4UE84IKEXa7dlu9Rc4qlIEpZ2op+DmzSiN9nPGpZ2TNUjue85hY70k/kFu30DvsIQUYn7V1BneIc48BiPGCxX9NlTubEEIIIT6QhN1CCCGEEEIIIU7SOP2ZnBe8/wbnnmDM+tgl3W05wfSsBSB+38bb2jZeeK4DY3I8Dx0xV/KyY91ZrJGg+6eUWvHjyLK9JIdAmCaS9xhnces1xv68EE2hcIc93RpDqvmnt3THBPN8GF8e2nVsXevo/qjGlv86Co0xDmtM68pPkZwzKUVi9JRbDmfvlc5RhwFVMswTKkXY7iD9zJH811WG1Sij2OdMprDMGRc967QnBc2unOGr4wWPmOvtjlu/Md15G2EetlBC6/Cud+e2rLXD2geE+IJSPCE+P3ZJQgghhDhxEnYLIYQQQgghhDg5Ke1Yli/x/imVQt///tgl3W21wPwMSmwBiOnAbQDIVXNZN3y3KEK1xOWSwSl6Ky8Z/JToPcvFBXGZyd4TpgkAt15h++FnTxpQQH8Iuq0ylFooPxZ11wrLAotvQXcI7eNdB+aedKjeIqUN1jqU1uScyTmRSyGESEpRurx/LWuoq1U77GJaUDGhdjvw8dZKUEBvNEopxpQJFJaQsSmxyXtUKuzzGb52bDlnW89O//pWQH8OaPDbNtFjesFd+sace0IpMznP+OWrY5cjhBBCiBMnz4CEEEIIIYQQQpyc/f6P5DwT4nP6/vdo7Y5d0t02vzx0dG8B3YIQ1bKPi3rO8ymzcEYMIx2ZlZPx1z8mp0ScJnKKlJRI3lOp2KFHO/eLe6qdcig0VlkqkPiR7teSYfZtJHSM7b+1AeeQbu4PoTDaolWhlEyKCW00JEMpBaMtxsr94hfTmrpao5YFloXa96hppJYeVqtbKUEpGJxmjpklFaoDHRU9sK4jCwNjWZGspaq2x/tRvcSou9MN/YspDf0DWC4g7AAFyyWsHh25sMbac5RyxPCCYNaU4tG6P3ZZQgghhDhRcpi2EEIIIYQQQoiTsvhviOkSv3yN1h1d98mxS7rb/Bbi1AKPUloAcug4nlnxwivGusLHjE4Tm97I7vMfUGslTBN+uyWFQJxn4rygjKFbbTC/Iui2ymKUwaoWpMYf29MdI0wL5NzGlpfSQm4ZW35tlNIYYzHGUEu5Gm0eUyKESLlD3bEnQ0EdBqq1KL+A96jFw34Pt/TjVAp6a8i14nNhIRNqQZXKKsys8kRIll3e4KvjOY/x9cQPotKm/b7PEeLYHgPCeOyqAFBK4dxjYnxJrZll+frYJQkhhBDihEnYLYQQQgghhBDiZNSaGce/I8ZLUt7R95+jlDy1/UFxbt18YWqd3d15C0CAVA3fhoFttMxZU8OWs86iJeh+rxQC8+UlcZ5J3hOmkVoqbr3CDQNK//Kfm0HjlMUojUaTfyjoLhXmBZZwGFvu28e7ru3mFddMoV+NNleKlDI5R0rJhBBIKd2lidCnQQFDT+16VEwwL6iQYHc4COcWGA2906Rcibkwp0xS7YrsUmAT95QMu3hGqB0XPGJf16d9XRsH3aY9FqQF5hcQl2NXBUDXPaGSifGCRUaZCyGEEOIDyCsCQgghhBBCCCFOxjT9E+Ww49Pac5x7cOyS7q4cWrCRfOvs7tZgO6CNL3+WNlwshbkO5DBx5sAaCbrfVXJh2e3w+x05BMI0kmLAug63WaPNrxttrVC4w55ugyHV/P4t3TnDPLWQOwZIsQXcfddGFYsbpDDGYa2hVogpUnImpUSMnnJLIe290jnqMKBKu12rGGG7g/Qjo/uvkdWK3ih8quRSmUKiaECDKZmzsEeXxC6umVPPvm644AGlnvDvRjuAG8DvD48LzyH/yASJW6J1jzFnhPiCXGZivDh2SUIIIYQ4UfKsSAghhBBCCCHESch5Zp7/CR++o9RI339+7JLurpJhet6CjbAH24NbX528qyu+m2FWa3yMrNRCb+UlgjfVWonLzHJ5QfKeNC/EeQat6dYbTN/96sHhCugPQbdVhlIL5X1Rdwitozu9Oba8k/3ct0wpg7UWozW5tLA750IIkRjjaXf+HoM11NWq3YLnGRUTardrt/Fb4KzGGoWPhVxhDImqAQuKyjqO9GlhLh37tGapPS94TKwnvLPdnYHpwO/aWPPpu/Y4cWRd94ScR0r2LMuXxy5HCCGEECdKnskKIYQQQgghhDgJ4/gFOXu8f0rXfYIxw7FLuptqeR10+10bW96dXZ0ciuHLybHUjjlBVybW7oRDnBuQY2TZbgnTRDp0c5eScauBbrX6VSPL3+SUQ6GxylKBxDuhU6kwz+Bj6+SOhxCw667G0IvbptDaYq1FKQ6Bd9vnHYInpyyh9y+hNXW1RmmDWmaIETVN7XZ/C3qjUUqxxHzo8M5tsbdrAxOGvLD2E6lotnGDz44XPGau/a3Ud+0U0J+D1uC37fFhet4eL47I2ocoZYjxBd5/SynxqPUIIYQQ4jRJ2C2EEEIIIYQQ4s4L4QU+fIcPX6GUoe8/PXZJd9dy2Xaz+i1QoX/QQhza+PK/LCuWrNiXDp1nzruKkj3dAJRa8eOeZbclB38Iuz3WOdx6jbYfvh/bYjHKYJVBAfHdPd3p1djyDNG38eVGxpbfFQqNMRZrDLVWUmqBd0yJGAPlyOHhSVFQh4HqHMp7WDxq8bDfc9NHDigFg2v3pyWWtsPbJ0ChjAIDjshZ2KFKZZc3+NixrQ/Y1rPTPLBBqfZ4QG2PD2mB5eLIJWmsfUSIL6k14/23R61HCCGEEKdJniUJIYQQQgghhLjTaq2M45/IaSTGC/r+M5SS7tb38vs2tjyObURtd/5WQPrU9+yiYldWlJw4NwktQfdhZLlnubggLgtpWQjTDAq69RrT99dyQIBB47TFKI1Gk94Nut8aW+5bh7frwMrY8rtFobTBWofSmpxz6/IumeAjKaXTDEOPQQF9T+0HVEowL6iQYLdrY/tv8qIVDLYdtOBTIeSCj23KgtKty1uryibusSmyryv2cWAqK17yiFxP8GVVZVrgXXJ7rAjj4cCo4+m631BrJKatjDIXQgghxK/y4YckCyGEEEIIIYQQN2hZ/kJKe+blS4xZ49zjY5d0N8UFlpeQ5vbv/hyMuzp5HzXf+o6x9MSiOFMLzkiAmlMiThM5RUpKJO8BsEOPdu7aImaFwmmHBgyGVPPrLd2ltHA75dbJnVMbN+wc0qdwlymMtmhV2i7vmNBGQ6qUkjHGYowcmPOzOEtVCuU9dZ5Qw0Dd7uBsA9cwUeGHaA2908yxEA/3SKMVzmgUqr1ymivrPGFLZHZrStJs9Ewyj3nElk6d2OhtbdtqC79r4ferj7n1UcoxZoXWK1J8SXIPSWmHtedHqUUIIYQQp0meMQkhhBBCCCGEuLNKCUzTn4nxJaXM9P3nMnL7fXKC+TnkCH4EtwL7erdsKpV/ngd80cylY2BhZT/u1tM2snzEb7dtL/c8E+cFbQxutcZca9ANvXZoFFZZSi2UV1F3Sm1PcUptN3dOLdxzHfKyzWlQSmMPwXYt5bDPOxNjIoRI+bjvaj+fNdTV0O5384yKCbXbtwNBbpDRit5qfK7EUhl9IufXV5oyLfTuahtrnrNmmzf46HhZHxKq+5Fzv6NsD90a4gTJw/wCUjhaOV33hJi2lBxZlq+OVocQQgghTpM8axJCCCGEEEIIcWdN0z+Q88KyfI1zj7F2c+yS7p5SYH4GJbZxtKYD9/rnVCv80+jwRbMvA5bMxpxYJ+I1SyGwXF6QloXkPWEcoVTceoUdhjbC+Bo55VBorLJUIJHbFeM9zIeObh9ejy03Mrb89Ci0NlhrUQpSaqPNS8mE4GW0+c+lNXW1RmmDWmYIETXNMM03erHOKJxRhFjIBUafKG9cYUq1seZGF87TFpMy+7rBe8NFeUCqJ9jB79Yt9A77FnRPz9rBNscoxT0CFDG9wPtvqDUfpQ4hhBBCnCYJu4UQQgghhBBC3Ekp7ViWL/H+KZVC33927JLunlphOXTkLdu2n7s/fysnfTpW9nlgm3uq0pyb+aPd011SZtnt8PsdOUTCNJJiwHYdbrNG38DIaYvFKINVBgXEmg4HKCwQIqTYOrq1hr4HfYKhmXiDxhiHPeyCjilScialRIyecsN7qO8FBXUYqJ1DBQ+LRy0e9ntu8oiBzmqMVviUSbUy+kx9M/BGoYxCWViXEZsCk9oQguGiPiTXE/y92p23EeZhCyUcDpy6/duoUhbnHhLDC0pN+PDdrdcghBBCiNMlYbcQQgghhBBCiDtpP/6JlGdCfE7ff4rWJzgq9qb5LcQZwg5qgf4BvBFkXy6J79KGMWkSPWc6YNXH115aayXOM8v2kuQ9cV6I84zSmm69wfTdjfRRGzROW4zSaDSpprfHlvt3x5afYFgm3kspg7UOrXXb550SORdCiKQYpcv7pyig66n9gEoJlgUVEux2NxbGKqC37aXSJWZSLowh8+5VpZRCOViXCZUyI2tCtFzUh6d3vSraAVLodsBUCm2k+RG+EeeeUGogpz1eRpkLIYQQ4heQsFsIIYQQQgghxJ3j/VNivMAvX6F1R9d9cuyS7p44tbA7jC2g6M7f6gr2MfPlPDBnzcyKwRR6dbydrMeSY2TebgnzRAqeMI3UknGrAbdaXfvI8lcUCqcdGjAYUk2UZTmMLU8QDtdF92psubh/FEbbN0abJ3JJpNxGm+eUTy8cvW3OUocBVQrMEyom2O7aRIQboBQMzkAFnwsxF5b4/ZHaihZ4b8pILYp9XROi45IHp3edKt0OlKqlHTgVZ1gub70Ma8/QuifE54T4kpynW69BCCGEEKdJwm4hhBBCCCGEEHdKrZlx/Dti3JLyjr7/DKXk6etb8qH7LvkWTHQbsN3rk0vlL3uY68BYepw1bNT8UfUNl1Lw+z3LbksJnjBNpBCwrsOt12hrb+yyFdBrh0ZhlaXkSBlHiKmNLI/xMLa8AyVjy+87hcYYizWGWgrpMNo8pkSMgVJltPmPsoa6GlCAmmdUTKjd2Hbe3wCtoHeanCshFXzM+B8IvLWtbPKeXDRjXTGnnj2bG6nrRmnTAu8cIe5b6O33t16Gc0+I8ZJaEsvy9a1fvhBCCCFO0809sxNCCCGEEEIIIX6Fef5ncp7wy5cYc45zD49d0t1SMozPWygR9mB7cKurk2uFr3eBHY/ZRwXdwEbNaD6OQK3W2kaVTxOlFrL35JhQ1tCt1yh98wdOOOVQaKyy1JRI89hGL4cIVLAOjLwk83FRKG2wWpNz6+7WtVAxFF+x1mCMfXMLgXiT1tTVGuU9apmpXY8Cai6wWl37BgCjFZ3V+FTQqgIZrTXOvH1BSimMKazzyMSGmR6twJjMWi3XW9RNM64dOOX3LfxeaO/feHy5ac49xvtviPGCxX/Nev0vUXKnEEIIIcRPkGdWQgghhBBCCCHujJwXpukf8eE7So1shr8+dkl3Sy0wPYcSwO9aENGdvfUpL0bPZT5jHyHbDWcm4+rNjPy9a3JKhHGk5ESOiRxa56ddDWhrb6Wz3WIxymAxqBCJfmpjy1MCVBtbLpMKPmIKYxxaZ3IupJTQWkOqlJIxxmKMdPu/l4La96AVKnhqKagKNWc423DdRwo4o6hVEVJBK83sI2Zw6HdWHyitcDUx5JlZrdGpgDrD6BNcHWGHdkCVH9vUifkF6N/d2qoFrR3WPiDEF3T9J4T4nF7WmAghhBDiJ8izKyGEEEIIIYQQd8Y4fkHOHu+/pes+wZjh2CXdLcsFpKXt6qa2sbNvBDy7JfLcW3bZEvSawVn6ev/3npZa8ePIsr0kx0iYZ9KyoI3BrdeYWwq6DRqnLaaADoEUJmoIbb+wNoex5fJSjAClDNZajDaU0kLvnDMxJkKIlFPb+3xbFNB11H5ApQSHsebsdm16wjVzVmOMwsdCqrD3mfqepdzKKHoV6NPCzAofLJf1AbGe4IEL7rAWw+/aBJHpWQvAb+vi3RNKmcl5xi9f3drlCiGEEOJ0yTMsIYQQQgghhBB3Qowv8eFbfPgapTR9/7tjl3S3+D2EEeLYgofu/K3g1KfMt/vEZT1jLo6uH1gxobjfqVkMnuXygrgsZB8I4wi14tYr7DDc2ghchcJph44JEzM5BsrsWwDnXHv7qLami5+m0LqF3kpBSpmcI6VkQvCklHhPrioAnKUOA6pWmKe2x3u7g3i9UywU0BuNUoolZnIpjCG//7eqgaEu2BQY1ZoQDRf1Ibme2Muvivb4onU7sCqHFnjf0m55a89RyhHDC0J4Rik3s5tdCCGEEPfHif21JYQQQgghhBDiPqq1st//iZxGYnxJ3/8epWTz1pW4wPIS0tz+3Z29NVY2l8rTrWfHA6YEuj9jUAlzj8eX55RZdlvCfk8OgTiNpBiwfYdbr9G3PAq6x6HngM1QYiDPYzuh60DLbVn8MIXGGIe1pu2cT5GSMyklYvSUG+hYvhesoa5WKEDNM8SI2o/grzccVQoG115C9bEQc2EO6fufh0I5WJcJkzJjXROj5YKHlHpiB7oo1SaHUFvgnTzMF7d00QrnHhPjS2rNLMvXt3K5QgghhDhdEnYLIYQQQgghhDi6ZfmSlPfMy1dovcK5J8cu6e7ICebnrbvOj+BWYPurk2uFp7uFfRnYJQ3unMEoXLmf48trrYRpwm8vST4Q54U4Lyht6NYbTNfdev90VzRqnnFoaoykZQJjZWy5+EXaaHOH0pqcMyknci6EEEkxSpf3+2hFXa3BWNSyQIioaYZx4jqHWigFgzXkWvGpEFJhid8f7a1QKAvrMlIz7Fnjk+WS89O7/pRpgXfJEPZtqojf3spFd90TKpkYL1hklLkQQgghfoIcWiyEEEIIIYQQ4qhKiUzT3xPDC0qZWK//5tZGT995pcD8DEps+1NN1/apvuHF6JkCvCxriu7o+p6u7O/l+PIcAn6aqCWTfSDF0LoAVyu0Pc5uXOszJmecMpASKcxtZLk+wV294g5QGG3Rulx1d2ujAUOuBast5ki39TtLQe170AoVPLUUVIVaCpxtWlJ9DbRuHd5zLETVuu2NVjjz9gEtSim0qWzynr06Z6wrtIKdOeMB+2up5dZo2yaJ+F0Lv199zK1v9mJ1jzFnhPgC1z0hxpc49/hGL1MIIYQQp0sOLxZCCCGEEEIIcVTT9Gdy9izL11j7CGs3P/1FH4NaYX4BKcCybR3C/flba593S+RySbwoZ6SqcMMDXA2Y+v0Ru6cuhcCy35FjIIxTG1nuOtxmc5ygu1TMOONSxVZQpZJyoHYSdIsP10abW4wx1FLaaPOUiSkRQqCcXJvwDVNA11H7AZUSzDMqRtjuIF/fGHijFb1V+FTJpTL5RMzfvy6UVhhd2KQ9qVrG1DOXFWNdXVstt8b20K0hTodx5ofHpRvWdU/IeaRkL93dQgghhPhREnYLIYQQQgghhDialPYsy5f48JRKYRg+P3ZJd4ffQpwh7KCWNk72jQ5FnzLP9oFtHpiyxQ0Psbrey/HlpVbCNFJSIk4zaEW3XmP62x9ZDkBMqO1IVw06ZzSaXAvFGOSlFnF9FFofRpsrRcqZnCOlZEIIpJRObzT2TXOWOqxQtcI0o2JC7XYQ4/VdhNFYo1hiIZXK6CPxPYG6MgqrM6s04emZomNfz1hqd2213Bq3Bje0ceYpwPRdW7Fxg6x9iFKGGF/g/beUcn3XoRBCCCHuF3kGJoQQQgghhBDiaMbxT+S8EMIz+v53aO2OXdLdEKdD2D1CjtCdv9UtnEvl6dYzZ822rHH9Gm07XJ6OE/7esDiNbaSz92hr6VYrlD7CSxoV1LygdiO9tuiYsKajaEVWwL386YvjUxjjsNZQK8SUKDmRUiJGTynX17l8L1hNXa9QSqHmGWJE7Ufw/touorcacwi8Y6mMPhHS93d4Y6CrkSHOzKzw0XJZHxDrCW6WdGdthHnYttUa87O2auOGKKVx7jEhvKDWjPdPb+yyhBBCCHHaJOwWQgghhBBCCHEU3n9LiC9Zli9RytF1vz12SXdDDocxsb51drs12NedgLXC092CT4UXeYM2DtOf4eqC4f6NL88xkLwnH4Iq2/fHKaRU1H4P80yHQaWE7VZUa0nlPSGXENdMKYO1FqM1uRRSSuScCSESYqRIl/drSlFX7f6plgVCRE0zjBNcw89J0QJvaxQ+FmKuTCGzxPzO5ylwMFRPlwJjXRGj4YKH5HpiL8sq2ioNdFutkQ6PVTc4XsC5J1QSMW1llLkQQgghftCJ/VUlhBBCCCGEEOI+qDUzjl+Q4paUdwzD5yglT1EpGcbnrZs77NuuVPf2jtcXo2cJmRdxoGiHGx6gKdgyH6nom1NqxY8TJWdyTJi+R+kjdE+HiNpuIURsrGjADRuwjpRvfnetEK8ptLZYa1EKUjqMNs+ZGDwpZRlt/ooChp7a9ajgYfEoH2C35zqODHgVeHdG4VMh5sISfyDwtrAqEyZnRtbEZHjJQ0o9sWkQSreVGrW0FRtxhuXyxi7OmBXGrInxBSnvSGl3Y5clhBBCiNMlryQIIYQQQgghhLh18/zP5DyxLF9izBnOPTx2ScdXC0zPoIQ2wlybNr78Dbslsl0Sl17h9YZ+aOPNuzzeywHacZqoOZOWBWUNxt7y6N8KaprbCOQYMSFi3YBdbVC2I5UowaI4CoVuo82NodZKSpGcMylFGW3+rs5RhwGVEswzKkXY7uA9e7Z/1dlbTW8VPlV8aoH3FNJbDeRKKZSBdR4hV/ZlTcyWSx6c3u8QbVrgnSPEfQu9/f7GLs65J6S0o+Qo3d1CCCGEeC8Ju4UQQgghhBBC3KqcPdP0j/jwjFIjw/BXxy7pblgu2uhyv23/3T94awW0T5ln+8AYMjv1gL7rqXaNLQua+zdGO6dE8gs5BGqtuH645QIKareHZQEfUCHgVmfo1YA2HaVECRTF0SltsNahtCbnTM6JXAohRFKSgzGuWEtdrVC1wjSjUkJtdxDitZy9M5reamJugbdPhdm/E3hrhdaVdRrJRbPPK3zt2HF2LTXcKuOg20BcDt3dL9v7G9AOhlPE9ALvv6HW+/d4J4QQQogPI2G3EEIIIYQQQohbNU5fUIrH+6d03W8w5pZDzLsojO0tjm2Uef+gjYs9yKXydOsJqXCRV7iuQ/XnaBK2Lkcs/GbUWgnjSM2FFAK26253fLkPLQiLEeYZUqLbPEb3PdZ0lJpJWQIXcVcozGG0OUCKiVwSKWVi9OQkt1UAjKauV63Lep4hRdQ4wuyv5eydUQxOk14F3rkwvht4G4VRhU3ck6pljANzXTHW1Q+e751lh7ZmI4yv93fn6zl44E1KWZx7RAwvKDXhw3fXfhlCCCGEOG0SdgshhBBCCCGEuDUxXuD9Uxb/DUpp+v7TY5d0fKW87uqOC3RnoF+P664Vnu4WQiq89KC6B9j+jIq+t+PL07JQciL6BWU0uutu54JrRY0Tapxax+fUOhW7h49RrsPqnlohpesPdIT4UEppjLEYY6ilXI02jykRQqRImzcoRV2tqNailgVCRC0zjBNcw4/H6hZ451zxsRDTIfB+82dvwZJZxQlfO6bYs69nLLX/8AJum9uA7doo8xwOqziu/+AK555QaiDFHcvy5bWfvxBCCCFOm4TdQgghhBBCCCFuRa2V/f5P5DQR4wv6/vcodcs7mO8if9HCgbhvoYF9O/B4MXqWkLmYE6l7zND3ZL3ClRnN/RujnVMizjPZB2opuGG4nUA/5za23Pv2FjxYiz1/iDYdzjoAUr6eLlAhboZCvxptrhQpZXKOlJIJIZBSktHmChh6atejgofFo3yA3R7Kh/9wjFYMzlBKZTkE3nufrwJvhQIHXY0McWGmx0fHJeeEemKPiQroztseb/9G4F2v97HJ2g1a98T0ghgvyHm61vMXQgghxGmTsFsIIYQQQgghxK1Ylq9IeceyfIXWA849OXZJxxeX1+PLK62r+w27JbJdErslsehzVv1AsmeYGjH1/oWutVbiNFFKIcWAdR1K38JLF0tAbfetm3ueIWUYesxqjTUD1hiUMqQiO5DFqVAY47DWUCvEFCk5k1IiRi/75gE6Rx0GVEowz6gUYbuDa1hRYDQMzlBrZY6FlAu7JV911ysUWBjqQpcCEwMxGS54SK4n9nKtUm31BhX8tk0pmV9e+8U494QYL6klsSxfX/v5CyGEEOJ0ndhfT0IIIYQQQgghTlEpkWn6e2J4QS4jw/BXKHUfB3D/ArXA8rLtOI0LdJu39nT7lHm2D0whs0+OfvWA6jaAwpXpfo4v956cYhtfrjS6v+Hx5aWi9iNqmiCEFnSjYL1CuQ7nBrTWaO0oJUpAKE6OUgZrLUZrcmlhd86FECIxysEbWEtdrVC1wjSjUnp94MsH0hqGzgCVOWZSKeyXRD50jyulwMAqT+icGcualC0veUipJ/YbXukWeJcMYQ9xguXyWi/CucdAW4eyLF+9PRpeCCGEEB81CbuFEEIIIYQQQty4afoHcl5Y/DdY+whrz376i+47v2tBd9iDsWCGq5NyqTzdekIqbJeM3TzBdh1J9bgy3cvx5SUX4jSRY6SmjB36mw30U0Ztdy3k9kt77xysVqA0nRvQWmG1o9RMuoZuTyGOQ6G1xVqLUhwC77bPOwRPTvnjDr2Npq5XKKVQ8wwposYR5g+fnqEVrJwBYImZVCrjm4G3VigNm9RGqO/yilgtFzw4vetE2zbSPPk2scRv2/vrOnvtsPYBIT6n1EAIz67tvIUQQghx2iTsFkIIIYQQQghxo3KeWJa/EMK31JoZhs+OXdLx5QhhB2luHd7dGa+S3Vrh6W4hpMLlHFDDY/quI+gNpkZsDcet/YaEaWzjy73HdBZtzI1dlpoX1G4HKcI0Qy4wDNC1TvLO9SgMVvdUIKUP7/IU4tgUGmMs1rTx2im1wDumRIyBcs17lk+KUtTVimotamkHv6hlhnFqKyY+7KxZOYNCsYRMLJX9Ekn5EHgbhVKwiXtqVezjmlA7tpxfwzd2y2zXppTEuYXey0tI1/eY1XVPKGUh5xnvZZS5EEIIIRoJu4UQQgghhBBC3Kh5/gulBHz4jr7/HVrf8Gjqu67Wts+0pBYI2KF1xB28GANLyFzOkWxWDOszomnjy7tyfV1yd0n0nhwDyXuUUpiuv5kLKhW128N86OSelzZ+d7WCQ7hubYfWDmcdKEj5/u1GFx8zhdIGax1Ka3LOrcu7ZIKPpJROr6P4uihg6KldjwoBFo/yAXat6/qDzlrB4DRaKfyhw3vvIzEfDjCwoKmsw0iqhjGuWOrAvq4//Pu6bW4FbmhTS1KA6Tu4phUQxpyjlCOE54TwjCy/n4UQQgiBhN1CCCGEEEIIIW5QrRXvnxLjBQBd95vjFnQXxAmyB79vQat7HWbslsh2ieyWRCjQn31C0T1ZdYc93fcvhSq1EqeJkhIlJWw/3Mw+95QOY8sjLEt77xyshpZEAUZbrOmxxqCUIWXZaSzuK9Vu79a26QUxkUsipUSMnvwxj+3vHHUYUCnBPKNShO0O0of9TJSC3mm0USyxkEtl9ImYMwoFFiyZdZzwOKbUM7Jhrjd08M9NcmftIK6wb9NL0nwtZ6uUwrnHpHhBrRnvv7qW8xVCCCHEaZOwWwghhBBCCCHEjbnarRlfYu0DlLI//UX3WcmwXLTxrjkexpe3oNWnzLN9YA6ZKWT6zW/RxhL1ClvDvR1fHseRUjLJe7SzaHvN48vrYWz5dt/Gls9z6zJcvR5bDqC0xrkBrTVaW0qJlGvqRhTirlJKY43FGEMt5bDPOxNjIoSP+GAPa6mrFapWmGZUjG0qRPiwlQZKQW819hB4x1IZfcbH3A7yseBqZBVnltrjk2PLOaG6a/rGbomiHchVcnusi9cTdkMbZV7JxHjBssgocyGEEEJI2C2EEEIIIYQQ4gb55Wtynillxrknxy7n+JaLw/jyPdgeTAswcqk83XpCKmyXSLc6x/Yrot4A4Mp0xKJvTgqBFDzZt1G09rrHl5eK2r8zttxoWK9AvxmqKzo3oLXCakephfQxd7aKj4xCa4O1FqUgpTbavJRMjOHjDbyNpq5XKKXaHu8UUePYfo98AAV0h8Dbx0LMhTlmlleBt4G+eFwKTGUgZssFD0j1mg8EumnagdaQA+Tl2kaZa91jzBkhvCCXmRhfXsv5CiGEEOJ0SdgthBBCCCGEEOJGlBIJ4RkxvkQpi7Vnxy7puOLcRpiHCSrQba5OejEGYipczgFrHXb9mKg6snJ093h8eZhGSsrkmDB9j9LXOL48RNR22zox5xlibJ3c/UCLm15zrkdhMLpvI53Th3VvCnGaNMY4rDXUWsk5UUohRv/xBt5KUVcrqrUt8A6hvR9HPuTXsqJ1ePdG4VMlpsISM3PIoBVoWOUJkxNjXpOq5YKHlHoDKx5uigJM19Z21Hpto8yhdXfnMlKyZ1lklLkQQgjxsZOwWwghhBBCCCHEjfD+W2rNxPAS5x6j1Ef8FLSW1tWdI6SlBd2Hn4dPmb1P7H2i1LanuypL1Gts9Zh6P4PXOE2UXEh+QVmDsdc04r6CmmbUfoTYdu5SK6xWbUf3O6ztMNrhrGtdrdlfTx1CnCil2v2x1krKiVLqRx54A0NP7XpUCLB4lI+w20H5sB+Ks5reanyu+FRYUmYOCYxCKVinEUphF1eEarjg4WldD6ZvHd3XPMrc2ocoZYjxBd5/Syn383FSCCGEED/PR/xKgxBCCCGEEEKIm+T916S0o5Jw7tGxyzkuv20v9od9G11uh/bxCs/3gXQYY9uvH1FNTzQbNPXeji/PMZH8QgmeWiuuH67pjEvbq7ss4EN7b8xhbPn3XwLR2mJNhzUGpQwpf8Q7ioV4g0K3A1BqJaXXgfcHZrunrXPUYYXK7SAalRJsd5A/bDy3M4readIh8PapMPkEpuXsm7inVsUYN4TquOT8dH5PXY0y99c6ylwpjXOPCeEFtWa8f3ot5yuEEEKI0yRhtxBCCCGEEEKIa5fzREyXxPgCrQeMWR+7pOPJAfyujTCvBbrX49x3PuJTYbsklHHo4SFR9WQsLo+c0MDan63Wip9Gas6kELFddz3jy31AbXdtXPnc9uu2seU9744thxaWtD3dBq0tpUTKNQUxQtwHV4E3XAXe6WMPvK2hrlaoWmE6BN67HaT8QWfrtGJwmnwIvEMujCGDAU1lE0YSmjGvWOrAyIk8pipad3cO1z7K3LknVBIxbWWUuRBCCPGRk7BbCCGEEEIIIcS1W5avqaW9CO3c42OXczy1wvwSSm7jy90KtAEg18rLMTLHjE+FbvMJRRmiXmHrgiEdufibEeeZmhNx8Shr0F33YWdYK2qcUOPUgu5pBn54bPkrXTegtcJqR6mFlD8srBLiPlJo7FXg3Q4IaYH3R5x4a01dr1FKoZYZFVObKBE/bJS2eTPwDoWYCmPMVAOGzDpMhGKZc8/Ihrle00SMm2a6GxllbswKY9bE+IKUd6S0u7bzFkIIIcRp+WjD7v/n//l/+D/+j/+Df/Nv/g1/+MMf6Pues7Mz/vZv/5Z/+2//Lf/3//1//+Lz/I//8T/yv//v/zt/8zd/w2az4eHDh/zt3/4t/+v/+r/yf/6f/yf7/f4GvhMhhBBCCCGEuFtqrXj/DTFeAnzcYXcYW0db2LVRrvZ1N97FFIm5sF8ibvUA7V6NLy+4cn2BwF2SUyItC9kHai24vv+w7vWcW8jk/es3a1rQ/Z6x5a84N6AwGN1TaSGeEOKHqBZ4K0VKiVwKKQZK/YgnISioq3bwklraJAm1HyF8eOC9coZSK0tsgfc+ZKoGVyNDWlhKj8+OLWf4+sMH9NwZNzTKHFp3d0o7So7S3S2EEEJ8xOyxCziGf/2v/zX/6T/9p+99PITAF198wRdffMG/+3f/jv/tf/vf+L/+r/+L7ieOMn/58iX/9t/+W/7Df/gP3zttu93yxRdf8O///b/nf/lf/hf+h//hf7iub0MIIYQQQggh7qQYX5LLQowvsfYMrU/gxfibkBP4y9bRnRMMD6+maYdU2M6RKSQSlvXqMUkNVAx93t3b8eVhHA+doQHrOtSPBNI/yQfUNLd9uX6GQhtZbn/8pQ5rO4x2OOtQCmLyv74GIT4aCmssOSdySmAtNURc59DqI+2lUVCHAbxHLQu1H1DjSK2rw/qEX0drGDrDEjNzzKyAfYUzZ+iz//+z999Blp33fef/fp7nhBs6TU9ABkGAOQBgFgUSDGKyGEFKpKlASSZFey3Z1np3LalU9tbPpS1JVauld2WbZVmWKTGIoigKDJLMZAYRpBgFMIAgCYIgB5ie2PGGc86Tfn+cOz1zpyd093S8/X1VsdC8595zn+6eTvdzvp+HoDRdmmgdWVCTTMc5ErWDmymWq8xLCIMq86y9IadO0ymK4gjWzVKWTdrtR6GU2ZBzCyGEEGL32JNh95Ej9ZV+V199NT/90z/Nc5/7XK6//nq893zhC1/g93//93n44Yf50z/9U6y1vOc977nguRYWFnjxi1/MV7/6VQDuuOMOfuqnfoqbbroJYwyHDx/mM5/5DH/5l3+5Je+bEEIIIYQQQmy3sjxK8CU+dGnmj9ju5Wyfch6Cq6e70waYM6H/qW6FC5FO5UnHriTqBKsbpLFEs4NDi8vgypLgHbboo7RG5+usLw8R1evVE5TWQlXV6VCrAerilwlonZCYjMQYlDI4X7GX25iFWBuFOTvwNgm2sqRpir6cC1d2MwXkdUOEKgtirNsqYojQXH/NuFbQSM8E3o0UOlWknSY0XJ+gNB3bZDwNzA0Cb6N28Dczk9UV5sGC7W1Y2K2UIU2nsNUseX4FZXmcRuOqDTm3EEIIIXYPFePe+7PuFa94BW9605t43etehzErr/Y7efIkt912G9/97ncB+MxnPsPtt99+3nO96U1v4p3vfCd5nvO+972PV73qVee9X4wR7/3yPkcb5aGHHuK6664D4PDhw1x77bUben4hhBBCCCGEWIsYPadOfZaiOEJlTzI29gTUXpz6s33onYRyqX5xv7FvOYjtlo7jSyVzvYpStWmOT1MlE4Ai94sjOdUdnKdYXMBVFa4sSVtN9Hn+Hr8k5+uq4ODrynLn6325V7Hvt1KaPGuhtSExKSE42adbiHWJeO+IMWJMgtKabC8H3qdVFlWVxCyDLCPmObSal3XKGKGwgUgkTwyphvaglaKTjoNWjKddclUxzfylrvfZPhEoZuvQOxuD8WsuutXEWjjXpde7n1bzRpqt65iafNqGnFcIIYQQm2Mzcs09+VvoRz7yEV7/+tefN+gGOHDgAL//+7+//P/f//73n/d+n/vc53jnO98JwG//9m9fMOgGUEpteNAthBBCCCGEEDtNWR4nEgYV5pN7M+gOAfrz9V7droS0vRx0hwiz3YrSegqnyVpTeN0kYsh8dySDboCqP6gvr0qSLF1n0O1QS0vgLPT64AI0GqsKugGyrIHWikSnhBgk6BZi3eoJb6UUzjti8FTWEjZwL+ZdKUuJWY6qKihKVFlCt1cHveukFDRSjUJRWo8N0HGWEKBtu8QIXd+iiikLTOzcpoqzq8wjdZX5BkmSNlrnWDeLtfN439uwcwshhBBid9iDrzqszgte8ILlt7///e+f9z7/8T/+RwAmJyf51V/91S1ZlxBCCCGEEELsZGU5g3cdQqxI0+ntXs72KBfrae6qW0+xJWf2bl3oVVgfWCwcqjmNTlKsbpCMcH25LUu8tbiyRCmFXmU4PSRGVKcH3kO/AKXriclVhuZp2kBhMLquG3bOrn0NQoiz1IG3Vgrn/XLg7ff6RSRZWu/d7dwg8K6g29mQwFtrRWE9LkS63hKCp227+KDp+SZFzOmwMfXgm8Jk9RVfp6vMN1CaTmPtAjE4iuLIhp5bCCGEEDufhN0XUJbl8tvnmwCvqooPfvCDALz4xS+m0aj34fHec/jwYR588EGKotiaxQohhBBCCCHEDuB9QWXnqOwcWuckyQ5+0X2z+AqqpfqF/BggP/MxsD4y37f0Ko81bfJGE2vaaAJJ2Lgpt50khIDt9QjOEZwjaTRQ6+jZVf3iTHW5MfVeuKs8T5JkGJ2SDKp/vS8v/SAhxCqcFXi7OvC21uHdHg+804TYOB14F6jKwVKHyxm7VgryVGOMorCBKkT6zhGtpWl7VCGhHxr0aNGL698rfFOZtK4u9yW4om5B2SBpug8Aa+cpihli3OMtA0IIIcQeI73aF/CZz3xm+e3HP/7xK47fc889y2H2k5/8ZBYXF/l3/+7f8Sd/8ifMz88DkGUZt99+O7/1W7/F85///HWt46GHHrro8ZmZmXWdVwghhBBCCCE2WlnOQAxYO0+eH9ru5Wy9GKE/B8HVe3ZnLVBnLp6e7Vb4EOlUkLSniKZJICH3SyNbX267XYL3uLLEpMm668spSigtBKCVX/Ihp2mdkJiMRBu0MjhfEXZqza8Qu1IdeIPHOU9iwLr6iEnW8fU+KhJTB95lQez3Uc0mcakDY2Og1/cdXwF5oqkIlDZAooFAoyppakWfFloHUGOYGMhVtaHv0oYwOfgC4lhdZZ5tzEVxWqckyQSVPUWWH6CqTpHnBzfk3EIIIYTY+STsPo8QAr/7u7+7/P9f//rXr7jPvffeO3T/pz/96Xzve98buk9VVXziE5/gk5/8JL/zO7/Dr//6r695Lac3aRdCCCGEEEKIna4oj2LtPBBI06ltXs02qDrgqvq/xkDSWj7Urzy9yrFYWlw+TTtLKXWDJBYY3DYuevO4qsLZCl/Vk9QmX31IvSxGVLdXT3U7W+/PvcqJbqU0WdpAa4M2CSE42VNYiE2h6lZEBc57DBJ4A3XgrZqooiD2e3XgvbgEE2P1hPM6nA68FYHSBUgiKkJWFGRNQ8820GlgXk0wHedI1Q6bsk/y+mKw01XmGxR2A2TZNL3eD/CuR1EekbBbCCGE2EOkxvw83va2t/GlL30JgNe+9rU87WlPW3Gf2dnZ5bd/7/d+j+9973u87GUv40tf+hJFUXD8+HHe/va3Mzk5SYyR3/iN31iuPRdCCCGEEEKIUWPtAt73sHYeY8bQeh3B5m7mHZQL4Pv12+kYp8e1Y4RT3ZLKBXqhSZ63cMkYmkA6qvXlMVL1ugTn8daR5Pn668v9oL5cG0jTVT82yxpopUh0SowB50fzogIhdgaF0QnaaLz3hOCxzuHcHv+6M5rYbKAi0OujvIPFpfr72mXIEk2eKEoX6QVP5SOq1yUNFT3XwkXDPJP4uMNe+tXJOVXmGxfGGzOOUimVncVWp2TLCiGEEGIPkcnuc3zmM5/hN37jNwA4dOgQb3/72897v263u/x2URS8+MUv5iMf+cjy/t4HDx7kn/2zf8aTnvQknve85xFC4Dd/8zd51atetaY/8A8fPnzR4zMzMzzzmc9c9fmEEEIIIYQQYjOU5VGCtzjfodG4druXs/WK+bq+vOpB2qj3Jh1YKiyVDyxUEdWYQqcN7KjXl/d6g/ryAp0k6GQdLz84X9eXV2uvL0/TBgqDMTkRsM6u/fmFEGtmdILC4b0HIqez7mQ93wNGhdbEVhPV7xP7BarRgKUOcWwMLmPyPTUaiJQu0IuOFgbTW0K1JuioNuOmw7yaZF+cR6sdtH/DUJV5sWHT3Uop0nSaqjpBbFxNWR6h1XrkhpxbCCGEEDvbHv5Nc6Vvfetb3HHHHTjnaDQa/MVf/AWHDp1/n7lGozH0/3/v935vOeg+23Oe8xxe+9rX8v73v59vf/vbfOMb3+Dmm29e9ZquvXYPvkgkhBBCCCGE2FViDJTlUaybBRRpOrndS9patlfvPVp164rt9MwL9z5EZnsVvTJQ6EnaaYbVrZGuL/fW4soCX5ZEIum66stBdbv11J9dW325STKMTkmSFKXAOZnuE2IraV3v4e29J+JAAm9Qithsofp9KPrEvIFaWiK225CtvrHiXKlRaKUpbKCHp41B95Zw7Sm6tFCmy4KaYCourPZb6Obb1CrzfVTVMaydpyiO0GzesK5WESGEEELsLjusy2b7/OAHP+AlL3kJc3NzGGN473vfy+23337B+4+Pjy+/ffDgQZ7ylKdc8L4vfelLl9/+8pe/vDELFkIIIYQQQogdoqpOEqLD2jmSZAKl9tAerSFAf67eq9tVddB91gvrs90K7yOLPiPLG4RstOvLY4yU3S7RD+rLsxyl11Nf3l9XfbnWCanJSLRBK4PzlrCDBhqF2Cu0NhhjCD7gg8M5j3OOuJe/HhXEZhO0QRUFOFdf1FNeXvOE0YpGqnEh0nWe6CO6u4Dzil5oUcaMJcY26J3YADqpv69vQpW51jnGjFNVs/hQYO3chp1bCCGEEDuXhN3AkSNHeNGLXsSRI0dQSvHHf/zHvPrVr77oY6677rrlty81fX32fU+cOHF5ixVCCCGEEEKIHaYoZ/CuRwglWTa93cvZWuX8YPq4A0lWT6ydPmQ9ndKxWEVcOkGStfAkpL43svXlVb9HDB5blKjEoNewx/ayc+vLG6ubDFdKkaUNtDZokxCCI4Sw9ucXQmwIrQ3JUODt8M5K4N1oEJOkDrytRfW69YU9l6EOvA0+RnregQ+o3hKV0/Rp0KdJNzY36J3YACarw+5IHXhvoCybxocu3hcU5ZENPbcQQgghdqY93B9UO3nyJC9+8Yt54IEHAPiDP/gD3vSmN13ycU984hOX3673Ibqws4/v6comIYQQQgghxMgJocRWp7B2DqVSjNlB02ObzZV1dbntQozDVawRTnUrKh/oqAmyNMeZFkksR7e+3Dl8UeLLihgDWd5ee6gfQfV666ovz9ImWikSnRJjwPnR/DiLy6OXeiSzC/iJMfzU2Kr/fYn1UdqQAC54TqfcEZa3GdiTFJDnRAWqLImxvimGCM3GpR59QUZDIzUUzlN4RwOwvQ59NY5K6ycx0dNQ1Ua9J+u3XGVebXiV+emGGWtnqcoWoW3Rev1V8UIIIYTY+fZ08rqwsMBLX/pS7r33XgB+93d/l1/5lV9Z1WMf8YhHcP311/OjH/2IBx98kBjjBfeA+f73v7/89jXXXHP5CxdCCCGEEEKIHaIsjxGjx9o50mz/3tkbMw7qy70FW9Qv1J9V375UWkoXmLcZKs3R+RgQSENv+9a8iWKMVN0uIXhcVZFk2frqywfVvmutL0/TBkoZjMmJgHWXVwssRkyMZD94mLG77qH5rQdQg9DVjzWprr0Ce80hquuuoLr2EGF840I3UVPakChw3sPgIpQYIU0l8I5Ko6qSSBgE3gHarXWfVp8OvCsPzpETqXpduq02Jg0sqAlMnCdV23wx0HKVeXWmylxvzBYoSmnSdBpbzdHIr6Qsj9JsXnfpBwohhBBi19qzYXev1+PlL385X/va1wD4rd/6LX791399Ted43etex9ve9jYWFxf55Cc/yYte9KLz3u8DH/jA8tvPec5z1r9oIYQQQgghhNhhiuIo1i0S8aTpvu1eztapOoOguwMmgeRMPayPkbmupWuh0OM0shZBpeRhaWTry11RELzDFgXKaHSereMkHvrFoL48Qmt19eUmyTA6XZ4Ude7y6oDFCLGO1t3fZeyuu8lmTq44bDp9mvc9SPO+B5dvc5Nj2GsPUV1bh9/2mkOE9g6qf96llDIkZjjwtnaPB94AWUqEOvAOgwlvIrTarPcHhlbQzAyF9WjnyehT9BWLNJlMPfNqkuk4h1HbvM2DycAXEMfqKe9845ph0nSaqjqBdYsUxREJu4UQQogRtyfD7qqquOOOO7jrrrsA+Ff/6l/x27/922s+z6/92q/x9re/naIo+Nf/+l/zuc99jomJiaH7vOtd7+LTn/40AC9/+cuH9u8WQgghhBBCiN3MuSWcX8LZeYxpYcz661d3Fe+gXATXgxCgMTkUSsz3LJUPLIQx0jQlpu26vjyOZq22dx7b7+OrihgCWbO5ZfXlWiekJiPRBq0MzleEvbwfsABAL3YY+8I3aH/xG5ju2vYDThY6JAsdmt96YPk2Nz0xCL+vqIPwaw4SV7mXvDjjdODtvcdL4H1GlhK1QhUlsR9REWLowNjYugNvpeoJ79IGcIGUHiWaBZrsS/vMqUmm4zxabeM3zHOrzDcw7DamgTEtbDVLmk7h3BJJMr5h5xdCCCHEzrInw+43vvGNfOxjHwPghS98IW9+85v55je/ecH7Z1nGYx7zmBW3X3/99fz7f//v+Tf/5t/wjW98g2c+85n8+q//OjfffDOLi4t84AMf4O1vfzsAExMTvO1tb9ucd0gIIYQQQgghtkFRHiUGh3WLNBpXb/dytk5/FoKrX6RPGnUd60DlAot9y6LLcDqn0ZhAEUe6vtz2uoQQ6vryNEOZtVfRrqe+XClFljbQ2qBNQgiOELZ5UlFsq+yHM4x9/h6aX78ftYH/FpLZRZLZRVpf/x4AUYE7sK+e/L7uCqprrsBefYCYyb7Al1JvN6Dw3p0VeEfSNNvbgXeSEBsKVRTEfh9Fk7jUgfH2uveVVwryVFPZQOIiGV0KpZmjwfSg0nwqLmzfx/3sKnNfbmiVOdTT3UXxMMFb+sXDjI89bsPOLYQQQoidRcUY99w1z2vdQ+4Rj3gEDz744AWP/+Zv/ia/93u/x4U+lIcOHeLOO+/k2c9+9pqedzUeeuih5Wnxw4cPc+211274cwghhBBCCCHEuWKMzM5+jqJ4mKKcYWzsCWi9B66nrrp12F0u1oF3Y99QEDGzULBYBo75KZK8jc7GycPSyE5126Kg6nWp+n0IkbTdWvsgovOoxSWoqnrMs9VaVbiTZy2MNiQmJxJkn+69ynma37if8bvuJjt87OJ33T9J58dvofu0x6O7fbKHjpM9dIzsoWOkD59AV+v/NxS1wl6xf2j/b3vlAUg2LrwbJZGAdw6lFMYkaK1I03xvB95Qfz8sC6LS0GwQE1NPeGu97lPGCM4FdFDExFDl4zQbMJ0WtFSfCdXZwHdgjapuXWXe2A/NfRs63R2jZ2npXvL8EI3G1eyffi5KydejEEIIsd02I9fcA69EbL7f+Z3f4VWvehVvf/vb+bu/+ztmZmZoNBo85jGP4VWvehX/4l/8CyYnJ7d7mUIIIYQQQgixYaw9RYgVlZ0jSSb2RtAdPBTz4EpwFeQTQ6Fst3QU1jMXxlE6QWejXV8eQsD2enjriM6TtrauvjxNG4MJ0bpKWoLuvUd3erT//puM/f03MEvdi963eNR1dG67heJxNyyHhr6Z0z8wRf/WQZNfCCQn5pYD8PSh42RHTqCcX9V6VIhkMyfJZk7S/sq9AESjsVcdOLP/97VXYA9Ng1l/cDkqFBqTJHjncN6RkGBtKYF3Yoi6ieoPJrybDeJiBybWH3grBUmiCTaC8ySqQ49xIENloGNgTG1T+8gmVpkrZUjTKWw1S55fQVkep9G4asPOL4QQQoidYw+8GrHSZgyzP/vZz96UyW0hhBBCCCGE2ImKYgbv+4TQJ8+v2O7lbI1yYRDKduoX6JNs+VCIMNut6PiMMqRk7XEUkIb+9q13k1XdQX15WWDSBL1F9eUmSTE6JUnqfX6dq9azfLFLpQ8fZ+yue2jd/R2Uv3BVeUgTek95HJ3bbsFduf/SJ9Yad8V+3BX76T3t8fVt3pMemyV96BjZ4eNkDx8jnTm16op05cMgPD8+tC579cEz+39fewh3YB/ovZfwDgXezpEkdeCdpPle/HCcoTWx2UQVfWKvQDUaxMWlesJ7nU0BSoFOFdFBtA6tluiqcYgG8jYmepqq3OB3ZBW2oMrc2lmcXaIoHpawWwghhBhRezLsFkIIIYQQQgixfiFYquok1s6hVEKSjG/3kjafLeq6VduFCGTtocMLvYrSw0IYQ6dNlMnJwhKK0dw5zFYl3lb4sqxriPN87SdxHooCKltfLdC69Dm0TkhNTqINWhmcrwh7b3e2vccHmvc+wNhdd5P/4MhF7+omx+qq8mc+kdhqXN7zGoO9+iD26oP0njm4zTrSoyfrEPvwMbKHj5Mcm0Wt8t+hto78hzPkP5xZvi3kKdU1p/f/PkR17RX46Yl179W8m5wJvP1y4O0k8Aat6sC7XxCLPipvwFKHON6CZH17wysFKgVlFVSWGHt0aUEsIB/H4MnUNjSRmBxcH9Kxesp7A6e7k6SN1jnWniJJx3GuS5K0L/1AIYQQQuwqEnYLIYQQQgghhFiTsjxOjB5r50nTKZQa8UreGKCYA2/r0Dsfg7PeZ+sj833LfJzAK02Wj412fXmM2G6P4BzeOdJmA7XWUO50fbkPq64vV0qTpQ20NmiTEIIjrHLCVuxOqlfQ/tK3GPvC10nmly563/KRV9P58VvoP/Gmza0JTxPsdVdir7uS7qDgT1WW9OETg/2/j5M+dIz05PyqT6lLS+OBh2k88PDybb7VGN7/+5pD+MmxkQzAFZokUbjlCW8zCLwz9Ai+v6umzgTeFAWx0UAtdYntNmTrC7yhHqZOvSbYAq80HZVD7KEak0wzT6JWV92/YZKsrjDfhCpzgDTdT1nO0AiOspwhSR61oecXQgghxPaTsFsIIYQQQgghxJqU5QzOLRGjJU33bfdyNl+5VAfdVQdMCmZ4WnS2W1HQoOcTTD6O1pD60a0vt70uIXhcWaLTBJ2s/aWFM/XlRb0P7aXqy5UiyxporUh0SowB50fzYgIBybFTdVX51+5D2wt/nqPR9G59LJ3bbsFec2gLV3jOOrKU6pFXUz3y6uXbVL8ke/h4vff3IARP5hZXfU7TKzDf+xGN7/1o+TY/3qK69tCgAr0OwcNYa0Pfl+2j6qluXwfeJknAVhJ4K4jNBqos61rzRgPV7RJjE9bTqAFEVTeFN9CEqodVmqWsCf0eqjnJfubQagsbMza9ynwfZTmDtXMUxQyt1o2jf5GeEEIIscdI2C2EEEIIIYQQYtW872HdAtbNoXUDY0YlaLkAb6FaqqtVY4B8As7KXfqVp1MF5n2LaHJMlpOF7sjWl/uqwpUlvqz3dk2yjagvb178/kqRZ02MMiQ6JwLW2bU/r9jZQqTxnQcZ+9zdNO4/fNG7+vEWnR+7me6znkQY35nfg2Izp3zUdZSPum75Nt3pkT58fHn/7+zwccxSd9XnNEs9mt9+kOa3H1y+zU2N15Pfg/C7uvYKYnN9Iej2UyQmwfu6NYIkIdqKNE3RezmcVBAHwbYqCmKWo6h/JLHOz3VQoI2ijaZTdrFqnKW0Cb0OqjXBfha2tkRgucq8veFV5lonJMkElZ0lyw9SVafI84Mbdn4hhBBCbD8Ju4UQQgghhBBCrFpRHCUGh7UL5PmV272czRUj9GfBu/pF+KQ5NG0WI5zqlnSYoAyapDVOGitMHM0gNsRI2esRvMdbR9JsoNa6qe6a68vroFsrQ2LqUMf5cv3vhNhxVFHS/sq3Gfv8PSSnFi563+raK1h6zi30n/xoSDZu8nOrhLEW5WNvoHzsDcu36cXOmf2/BxXoples+pzJ/FJd8f7N7y/fZvdPDu3/ba85SMyzjXxXNpHCnB14mwQbbR14670deNPIiRWoqiQS68CbAM1LXDB0AUFFjFaMAUvFEhUTLCVt6HXQrTGmVWcj34OLW64yt5tSZZ5l++n1HsC7HkV5RMJuIYQQYsRI2C2EEEIIIYQQYlVijIMK87qKd+QrzG2vrlWtOvUe3elwoLBUWLohZ8mnqGyMVEMaRrm+vEf0HlcUqMTUNcNrdKa+vFxFffmZoDsdBN3Wl8TRHJrfc5KT87Q/fw/tr9yLLi98gUjUmv6TH0XntluoHnHVFq5wa4SJMYonjFE84cb6hhgxc0tD+39nDx1Hl9Wqz5meWiA9tUDr7u/Wp1TgDk4P7f9dXX0Q0p36suBZgbd3QEJlLdleD7wBspyIrgPvMAi8Q4RWa6h1ZLW8jhg04yqwWC5RMkEnaTLT7aNbTabMFv1MO7fK3NcXOmwUY8ZQKqWyp0iqNt6XGLNbGxCEEEIIca6d+lutEEIIIYQQQogdxrl5fCioqlmSZAytL7HP8m4WPBTz4Mq6yrwxOTSB7EPkZM+xGKexpORpgyyOcH25c7iywFcVMUayvHHpB604ydn15ZeeRjx3oluC7hEQI/n3DjN21900vvMgF9sW2LcbdJ/1ZDo/9mTC5MZOee5oSuGnJ+hPT9C/+dH1bSGSnJpfDr6zh46RPnziovuZD50yQnp8lvT4LO2vfhuoLyKwV04P7f9tr9wPZqdMzJ8JvJ13JBgqiwTeAFlKVApVlsSi/vzGGKA9ts7AO5AEzYSJLFQdijiGSgMPdUG3PRNm9RdaXJazq8xdH8z4hp1aKUWaTlNVJ4iNayjLI7Raj9yw8wshhBBie0nYLYQQQgghhBBiVYpihuBLfOjSzK/f7uVsrmIeggPbgSQHMxzsz3YremqCXgW6OUamLCaMZn15jJGq262nuquKJM/WV1/ePau+PE3rye4LyNImShmSJENRV5dL0L17qcrS+tp9jN11N+nxuYvet7rqAJ3bbqF362N38OTxFtMKd3Af7uA++k95XH2bDyQn5ur688H+3+nMCZQPqzqlCoHsyEmyIyfhS98CICYGe9UBqmuvoLruCvqPfySxtY4LWzZMHXjjHc57EuprZdIkweyYUH6bpAlR1dsAxBhRNIihA+PtS2wNcX5eBQyaSROIvkePJiSBH3Uij2g7xpPV/bu6LCuqzDcu7AbIsmmq6hjWzlMUR2g2b0Bt6cbkQgghhNgs8leDEEIIIYQQQohLitFTVsexdg7QJMnkdi9p89h+/UJ71YMIZO2hw6X1zFUJnZAQkjZNo0hDb3vWugVsvyB4hy1LVKLR2dr3/h2uL1f1Xt0XkKUNtE5IkxSFwoWKIEH3rmTmFhn7wtdpf+lb6P6F91qPSlE84UaWnnML1SOvWVdYt+cYjbtyP+7K/fSe8YT6NudJj56qJ79PT4AfO4Va5ReQcr4Ozw8fgy9AaOYsvPTZdJ/1pItenLK5Vgbe1gIRzC7ct31DJQmxoVBlQez3Uc0mcakDY2P199k1iAoCAR01U8oxFywdl4P2/LDb5IZWl7HNLnPRSd0s4KvB/za2ylzrDGPGqapZ0mwaa+fIsukNO78QQgghto+E3UIIIYQQQgghLqksjxOjx9o50nQKpUa0RjaGeqrbV+CKerLs7Pc1womuo6v20Q8JSaNBHnujXV9e9PFlRQyBrNVae0vuGurL07SB1mkddCuN8xVBku7dJUayHxxh7K67aX7rAdRFRvJDM6f7jCfSefbN+OmJLVzkiEoM9tpD2GsPnbnNOrIjJ5bD7+yhYyQn5i5aIX+a7pfsu/PTtL9yL3OveQH2uis2b+0XdTrw9jjnSQycbnCXwNsQVRNVFMR+rw68O0uDwHttP6eDAojoqJlQBTG06NBC0eHBbotHtrq0s02+EEVvXpU51NPd/f4P8b6gKI9I2C2EEEKMCAm7hRBCCCGEEEJcUlkexbsOIVY00hF+cbhcrPforrpgsrrC/CxLpWUxjtG1QNqmoSwmjm59ue31CCHgbEWSZqi1TndGUN0++HjJ+vI0bWCWg24jQfduYx2tu7/L2OfvrquxL3bXg/vqqvKnPZ6Ybfa46B6XJlSPuIrqEVfRHdykyor04eP1/t+Hj5E9fJzk1MIFT5E9dJxD/+nP6T7zSSy87Me3qdpc1dXlCpz3GCTwXmY0sdlA9QcT3o0GcbED42Ng1hp4x3qP96iZVD0ibRZDk0iXH/SaPCJ2GM838eXkJK+bVfzmVJknyQRKJVg7S1W2CO0KrdfeViKEEEKInUXCbiGEEEIIIYQQF+V9QWVnqewcSmUkSfvSD9qNfAXlUv0CewyQD0+a+hg53jN0Y0almzSMIYvdC5xs93NliXcWWxYopdH55dSXFxetL0/THKNTkqGgewv2iBWXTS92GPvCN2h/8ZuYbv+i9+0/7gY6t91C+ejrpap8G8U8o7rxWqobr12+TfWKOvx++Bj5A0dofPeHQ49REca++E2a37yfhX/0HHpPe/yaq7Ivn8LoBHB474E68I5EkmSPv8SpNbHVRPX7xH5RB95LgwnvNV4M4HXEBFUH3vRAt1kKLfBdDveaXBN7TDY26SIVbTa1ylwpTZruw1ZzNPIrKctjNJvXbdj5hRBCCLE99vhvgkIIIYQQQgghLqUsj0IMWDtPnh+69AN2oxihPwfB1/XlabN+0f0ss11PR03Qcwad5TRV76IVzbtZ8AHb6+ErS3SetNVcf325rS5aX14H3RlJkqAl6N41sh8dravKv34/6iKfr5CldJ/+BLq33YI7MLV1CxRrElsNysdcT/mY61l6AeT3H2bqzk+Tnpgbup/pFky//xO0v/wt5l/zfOzVB7d8rUYnqLMCbzeY8N7zgbdSxGYL1e9D0Ye8AUsd4lirbtVYA68DSdCkUTER+kTTYsk1iRFmep4YSqZamxV4D6rM4+ZUmafpNFV1AusWKYojEnYLIYQQI2CP/xYohBBCCCGEEOJSinIG6xaAQJpObfdyNkfVqafIqqW6ZjtpDR92gRO2Sd8pnGkxpt3I1pcDVL1uXV9elZgsRZs11gSfXV9eXbi+PE2yOug2CVolEnTvdM7T/Mb9jN91N9nhYxe/6/5JOj9+C92nPZ7YzC96X7HzlI+6jmO/9jOMf+4fGP/El9CnO8MH8h/OcOj/ey+dH7+FxRc/a8s/x1ongB8E3lEC79MUxGa9h7cqCmIjR3W6xHYb1rhlgFcBEzVpjEzEPgtJi471RAKqcIRY9pv3igABAABJREFUMd3ehArwTa4yN6aBMS1sNUuaTmHtImk6cekHCiGEEGLH2uO/AQohhBBCCCGEuBhrF/G+h63mMGYMrUcwtPKu3qvbFfXbjUnOHWOe6SlKldMnJ0s0jdjZnrVuAVuWeFvhyhKlFOYC1eMXs5r68iTJMCavg24tQfdOpjs92n//Tcb+/huYpYtX9xePuo7Oc26leOwjLrg/u9glEsPS859O75bHMvmRz9L65veHDqsYGb/rblpf/y7zL38u/Vsfs6X19HrQvuG9J+Lg9B7eJtnbLfkKYqMBZVkH3nkD1e0SYxPy1f8MjwoCAR01WfCMm5KlrE2vDBBBF4v4UHJwLF/xM/OybHKVOdTT3UXxMMFXFOURCbuFEEKIXU7CbiGEEEIIIYQQF1SWMwRvcb5Do3HNdi9ncxTzECxUXUgbYIan3xZLz2KcoGs1mJw2fRQjWl8e6vry4BzBOdJmE7XW1Mh7KEqw9oL15SZJSUxOYgxaJ3hvJejegdIjJxj73N207vkuyvkL3i+kCb2nPI7Obbfgrty/hSsUW8HvG2f2519O774HmfrQZ0hOLQwdN0s99r/3oxRf/hbzr34e7oqt+zegtUEBzns4HXjHiEnSPR94k+dEQJUFMeYoIIYIzcaqTxMUQERHRcNXRKPpNMbp9RcIcQzKBWIsOTieb+zH2+RgN7PKfIqiOIJ1c5Rlk7H2o1FqjQ0mQgghhNgxJOwWQgghhBBCCHFeMQbK8ijWzQJqNCvMbb9+Ib3q1ROJaXvocIgwUzQonaLULVrak+AucLLdz/Z6hOBxZYlOE3SyzvryEKCqzltfbkxKahok2qB1SggWHy4cpIot5gPNex9g7K67yX9w5KJ3dZNjdVX5M59IbK0+QBO7U/G4Gzh607WMf+arTHzqKysugGh8/yGu+A9/Rue5T2HxJ55BzDeh4vo8lDYkgAseogUSIpBI4A2NnFgpVFUSiXXgHSO0Vl6EdCFBRVQEHRW57xOVptecpOzPcTJOoMp5Qiw4NNFAb9TH2+T1z+VNqjJXytQV5tUseXaIsjxGo3H1hj6HEEIIIbaOhN1CCCGEEEIIIc6rqk4SosPaOZJkYvSmnkKA/hy4ClxZv5h+TjJyoqcoYk4nNjBa01KjW1/uqgpXlfiyBCBZQ93tacv15cX568uNSUiTBkYbtEkJwQ0mMsV2U72C9pe+xdgXvk4yv3TR+5aPvJrObbfSf8KNYKSqfE9JE5Ze9Cx6T3ksUx/6LM37Hhw6rEJg/DNfpXn3d1h45e30n3TTllSbK21I1GDC29cXJEUg3euBN0CWERkE3uHswLu16vpxryMmKJKoyX2XkIyjmpNU/TmO+wkoFwiLfa6YaGA24gO+XGVegs82rcrc2lmc61AURyTsFkIIIXYxCbuFEEIIIYQQQpxXWR7Fux4hlKNZYV4uQHBgu2AySIbD3dLDcdui5w1eZUzqYnTry2Ok6nUJzuOtI2k2Nry+3Og66NZaY5aD7tGdkt8tkmOnGLvrHlpfuw9tL/z5iEbTu/WxdG67BXvNoS1codiJ/P4pTv3iK2nc+wBTH/rsigskkoUO+9/1NxSPuZ75Vz8fd2Bq09eklCExw4G3jZCmEniTpUSlUGVJLEDFur2F9tgaAu9AEjRJ0DRdh5iOQ2sftjvLcT/GoXKJmfmCqyYbmI0Y8V6uMo+bUmWeJG20bmDtKZJ0HOe6JEn70g8UQgghxI4jYbcQQgghhBBCiBVCqKiqk1g7h1Ipxoxt95I2lqug6tT1qDFAY2LFXR7uN3Bo+jTJlCVTdhsWujVsr0fwAVcW6MRgkrW/XKB6F64vNzohTRtobUgk6N5+IdL4zoOMfe5uGvcfvuhd/XiLzo/dTPfHnkQYa23RAsWuoBTFE2/i2KOvZ/x/fpnxz34N5cPQXRrf/RFX/D/vYun5T2fxBU+HdHNfijwdeHvv8acDbyuBNwBpUgfeRUGMEUWDGDow3l719L1XARM1JiiatkPIxtGtKar+HCdsk4P0mZnvc8Vkk9Rc5gd8k6vMoZ7uLssZGsFRlEcYSx694c8hhBBCiM0nYbcQQgghhBBCiBXK8igxeqydJ82m1z7lu5PFCMXsYKq7D1kLzqlon68MHZ+y5HNQMKaLbVrs5vPW4sqCUJXEGEnzdey9XBRgz19frlcE3UGC7m2iipL2V77N2OfvITm1cNH7VtddwdJtt9J/8qNgrXu3iz0lZimLL/txek99HFMf/MyKCyiUD0x88ku0/uE+5l/1PIrHP3JT16OUwRiF9+6swDuSppkE3okhNhqosiD2+6hmk7jUgbExVrPhdlQQCOioSWKkabv0sjHy5iS2rzhZOvZjmVnoc+VEgyy5jG0OtqTKfB9lOYO1c5TFUdqtm1BKtmYQQgghdhsJu4UQQgghhBBCrFAUR7FuiYgjTfdt93I2VtUBZ+v/GgPJ8LSqD4ojZYMiGCwZbfpc7oDaThVjpOz1iN7jKkvSyFFrrZ/1HtU/u778TFiutSE7O+iOAedHd0J+p0pOztP+/D20v3Ivurzwxz9qTf/mR9H58VuoHnHVFq5QjAJ3aJqTb3kNza9/j6mP/B1msTt0PJld5MA7Pkz/CTcy/8rb8dMrGzU2ilIaY5KzAu8EaysJvKEOvFWznvDu9waB9xKMjw01clxIUAARHRVZ8MSqRy9r0WgGCuBU/xT7G74OvCcb5JdzscwmV5lrnZAkk1R2liw/SFWdJM9lmwYhhBBit5GwWwghhBBCCCHEEOc6OL+Es3MY08KYdUz67lTe1Xt1u379dnNqxX6lR6sGVdB0Y5MES8uM7hSy7feJ3mGLEpUYdJqu+Rwr68vrYENrTZY20VqfCbqdBN1bJkby7x1m7K67aXznQdRFtpv37QbdZz2Zzo89mTA5YlsWiK2lFP1bHkPxuBuY+PgXGbvrblQY/sfXvPcB8u/9iKUXPoOl258C69g2YXVL0Zgkwbt624SEBGtL0jSXwNtoYrOB6hfEXh/VbBAXB4G3uXQ4HVRERQaBd0WwmiJt0WwECgUne8eZbgZmFgquGG/QzNYZeG9BlXmWTdPrPYB3XYriiITdQgghxC4kYbcQQgghhBBCiCFFOUMMDusWaTSu3u7lbKxiblBf3oO0AXr4z+KuTzlVJfRCgxAiE6NcX+4crijwZUWMgSxvnZv7X1pRnlNfXoflddDdGgTdGVGC7i2jKkvra/cxdtc9pMdnL3rf6qoDdG67ld6tj9n0vZTF3hLzjIVXPJfu0x7Pvjs/Tf7gkaHj2jomP/oFWl/9NvOveT7lo6/flHUozgq8nSNJ6sA7SfPVtHaPNq2JrSaq3yf2C1SjAUsd4tjYqrYu8DpigsJETR4KotOUSZsmgSIeYK5/nKkYObZUcN2+FmY9H/AtqDI3ZgylUio7S5KM4X0xWhf5CSGEEHuA/CUjhBBCCCGEEGJZjJGyOIq18wAkydS2rmdD2R64AqouKAVpe+hwiIqZooENCf2Q0lBd0hHdqjjGSNXt1vtn24okzVCrqK8d4gOqX5xTX65QyxPdikRnxBixEnRvPu8Z/59fYfyuu9H98oJ3i0rRf+KNdG67heqR1yAjrmIzuasOcOKfvY7W1+5j8m8+h+n0h46nJ+c5+Ed30rv50cy/4rmb0ixwJvD2y4G3k8C7phSx2UL1+1D0iXkDtbREbLeXL166GK8DSdCYoMnpEdQYNhmrJ7w5wHz/OIdSTa9yjDfW3hwCbHqVuVKKLNtPWR4n5FdTljO0Wpu7r7wQQgghNpaE3UIIIYQQQgghlll7ihCrwYTTBFqPyJ+NIUB/DlwJroJ8YkXId8o16TpFlyYqVLRTz4qO8xHhyoLgHbboo7RG59maz6F6vRX15UqpM9XlOicSsa7ahPdADHGe/e/5W5rfeuCCdwnNnO4znkjn2Tdv6l7JQqygFL2nPZ7+E25k8qNfoP33X19Rq9/6+vdo3Pcgiy9+Fp3bbllVlfaaloAmScAtB95mEHhn6L1+wYeC2Kz38FZFQWzkqG6XGNuQryLwVgET68C76bp09Tg2GSfLAl03TeWW6FWB8fUOSy9XmVebVmWepvsoy6M4t0BRHKHZvAG11/9dCCGEELvIiLxqIYQQQgghhBBiIxTlUbzvE0KfPL9iu5ezccp5CB5sF5Ks/t/Zh0PGiSKhoIH1kTFVjmwAEpzH9vr4yhJ9IG01L6O+vDxTX64UWdbELAfdSNC9FZxj/7v+lua3f3Dew/bQvrqq/KmPI65iUlOIzRKbOfOveT7dpz+BfXd+iuzwsaHjurJM/fXnaH/lXuZe8wKqG6/Z4BVokkThfF1pbpIEBs0Wo/r9ftUUxEYDyrIOvPMc1esSaUKeX/ShUUEgoKOGCM2qQy8bx6fjRGPpEmlUPWJc517py1Xm1eB/G19lrnVGkoxTVbOk2TTWzpJl+zf0OYQQQgixeSTsFkIIIYQQQggBQAiWqjyBtXMolZAkGz89tS1cWVeX225dg5qtrC8/apuUUdMLKWno0kgjozrVXfUG9eVVSZKl6LVOUPp4Vn25r+vLlSbPmhhlloNu5y5cpS02iHXsf9ff0LzvwRWH+o+7gc5tt1I++jqpKhc7ir32EMf/+etpf/lbTPyPz2N6xdDx9Ngsh/7LX9J96uNY+MnnEMZbG/jsisQkeO/wzkGSEG1FmqZotcatHEaNAvKcqECVJTHWN8UQB9tUXFhQABEdFSmRpu3Qy8bQ2Th9p3FUFNbTzNY5sb/JVeYAaTpNv/9DvO9TFEck7BZCCCF2EQm7hRBCCCGEEEIAUFUniNFj7TxpOoUahRf+46C+3FuwRR10q+EX2xdim8Uy0o1Noitpazey9aW2LPHO4soCpRT6EhN756N63UF9uR3UlyfkWROtDImpz+d8SbzEecRlso4Df/rXNL77w6GbQ5Zy8pdeSXXjtdu0MCFWQSu6z3oS/SfdxOTf3kX7y/euuEv7a/fRvPcBFl76bLo/9mTQG/UzSWHODrxNgo22Drw37Dl2qeXAW6OqkkgYBN4B2he/6CCoiIrUgXfwNGyBSxvYskNlMnpVdXlh9yZXmSfJBEol2GqWyrQJoULrtW/xIYQQQoitt8d/gxNCCCGEEEIIcVpRHMG5DjFa0nTfdi9nY1SdQdDdqWtPk+bQ4TKmnCzr+vLKR/LYJ01GM+gOIWB7PYJzBOdJGo3LrC8HsmxF0G19PREoNpF1HPiTD68MuvOUk29+tQTdYtcI7SZzP/Uijv/zn6a6+sCK47qo2PfBz3DoD/6c7IczG/jMdeCtlMJ7V39/tJYQwgY+xy6WpcQsR1UWihJVVdDtcqmrmLyORMBETRIsGRpMSj9k9Cq//vVoU/8MP7vKfIMppUnTfVg7T4yOsjy64c8hhBBCiM0hYbcQQgghhBBCCLzvYd0C1s2idQNjNrI2dpt4B+UiuF49iZyNDTWTh6g45dt0rKIXUpTt0s5GM+gGsN0uwXtcWWLS5PLry/PGUNCtkKB7K6jKcuAdH6bxvcNDt9dB92uobrh6m1YmxPpVj7iK47/6j5l71fMI+cpp2uzICQ79579g6v2fRHf7G/SsZwJv5x0heCoJvM/IUmKjgXIO+gWqtNDprCLwrj9+aQAdA5lpUGKwAUp3GYG3yeqgO8b65/omSNNpIg7rFimKI5vyHEIIIYTYeBJ2CyGEEEIIIYSgKI4Sg8fahdGZ6u7PQnD1Pp9JA/TwTl4d2swXkUK18K6ibRx6ROvLXVXhbIUv6320zQbUl2d5e7C3e4YCnK8k6N5kqrLsf8eHadx/TtDdyDj5ljuoHnHVNq1MiA1gNN3bbuHo//HzdJ/y2PPeZezL3+KK//udtL/4TQgb8Q2nDry1UjjviYPA2/vLCGVHSZLUgbf30O+jrIOlDpf6Zu9VXX+eeo8xOcFDFTP61WVcSGDy+nl9Vf9c3wTGNDCmja1mcb6LtYub8jxCCCGE2FgSdgshhBBCCCHEHhdjpCxncG4BYDTC7qoLvqz/qxSkw5PqVUyZtRm92KB0kdR1yZPR/BM5xEjV6xJcvT9tkudr35O8qOr68rIEBVl7Aq0T0iStpyJDRZCke1OpsuLAH3+QxvcfGro9NHNO/PIdVNdfuU0rE2JjhfE2c//4pRz/p6/FHppecdz0CvZ94H9y8D+/j/Th4xvwjCsDb2udBN6nJaYOvGOoA29nYWmpvvjpAqKq9/BOg0VrjY4JJSk9exn148tV5uWmVZlD/TuQ8x2CryiKhzflOYQQQgixsUbzL3khhBBCCCGEEKvm3Dw+FFTVLMaMoXW63Uu6PMFDMQ+uBFdBOlYH3qcPR8V8HGehrPfsjlWHVqrWHgDvErZ3pr5cJwk6SS79oLP5iOr36/py70nHptA6HQTdGuctYUMmLMWF1EH3h8h/MFyrezrottdesU0rE2LzVDdey7FfeyPzP/kcQrby51J++BiH/uDPmfrgp1H98jKf7azA250VeF9O7fYoSQyx2UTFOAi8HSx2Lhp4BxUx0WEAk+T0Q0ppA/5yfl6YDLzd5CrzKUBh3RxldYwQNidUF0IIIcTGkbBbCCGEEEIIIfa4ojhK8BU+dMmyEZjqLhfqwNt2IMkhGd7/tUObhTLQp4mtKjIs6YhOdXtb4coSX5ZEIsll1penrXFMmg+CbjMIumV/282kipIDf3Qn+YPDQbdvNTjx1tdirzm0TSvbTQKoWUjuQ2V/h8o/BuaB7V6UWA1j6DzvqRz7336O3pMfteKwipGxz3+dK//vP6X11W9fsl774gaBt9E47wnBY50E3su0JjYbKIBeMQi8l+CiH59IEjzKZIRg8CT0qssIj5PNrzJXypCmU9hqlhgcVbUR7QFCCCGE2ExrvJxbCCGEEEIIIcQoidFTVsewdhbQJMnkdi/p8tiiri63XYhA1h46XMWUpZCz4AxViGCXaDXM9qx1k8UYKbs9gvd460gaOUqvcXq9PFNfnmZNTKNFshx0VxJ0bzLVLznw3+4kP3xs6HbfbnDyl1+LverANq1sJ6tAnwRzHKVPgDkO+gRKDQdsKvs60T6GWP4ExPYFziV2Cj81zuzP/STd7/6QqQ9+hvTk/NBx0+kz/b6P0/7yt5h7zQtwV+5f5zMpjK5/JpyuMbeu/nGSJKP5s2JNtK4nvPsFseij8gYsdYjjLUhWTt9HFUmCRZkGOmr6MaNXVYw31vn86uwq87yuMjcb//J2mk5j7SzOdSiKIzQaV2/4cwghhBBi40jYLYQQQgghhBB7WFmdIEaPtXOk6RRK7eIJ5xigmKsrTm0B+Ric9f7ECIuMs1BApXJCsUgjAbPWAHiXqHo9ove4okQlBp2usZ4+RFSvri9PdYpptUmSFC1B95ZQ/ZKDf3Qn2UPnBt1NTrz1tZcR5o2KCKoD+jiYE6jBf1FzrHZHApV+F8zhOvB2jwVG83vBKCkf8wiO/a8/w/hn/4GJT34Jdc5Ucf6DI1zx/76Hzm23svjiZxHz7AJnuhiF0QmKM/t2OwcQSda6DcQoUmo58KYo6v28l7rEdhvOqZsPCkxwaKOIJqUMCX3bI8Z81V+nK5gcbO9MlbmZuPz36RxJ0kbrBtaeIknHca5LkshFMUIIIcROJb+hCSGEEEIIIcQeVhYzeNchxIpGOr3dy7k85WIddFcdMCmY4dGxJcboOcVSbGCrCh0LGmsNgHcJ7xy+LPFVRYyBLG+vOcZT3bq+PIka02iTpDlaJRJ0bwHVK+qg++Hh+lw/1uLEW+/AXbHXgm4Pehb0cZQ5UQfc+gRKX36NsdJ9VPMjRPsdYvkimfLeDZKEpRc+g96tj2HqQ5+l+e0fDB1WITL+d/9A657vMv+K59K/+dGsJ1nVOgH8IPCOg8AbCbwBFHWleVmiioLYyFHdLjE24dztMpQniYGgc7yvCFFRWE8zW+ekfJLVDS6+qkPvfOPDbqinu8tyhkZwFOURxpJHb8rzCCGEEOLyyW9nQgghhBBCCLFHeV9S2VkqO4dS2e6eWjodctt+PeGdTwwNaVYxpRebnCo1LihiuUgrS9DrHi3buWKMVN0uwXtcVZHk2brryxMfSbIGSd5A6wQve3RvOt3tc+CP7iQ7cmLodj/eroPuQ7v8opRLKuoJ7aFg+xRKXf6+yTG0IRwEfWxFUK7S70FymFj8BLjHIVPeO5+fnuTUL76Sxr0PMPWhz5LMLQ4dN4td9r/nf1B86VvMv+b5uIP71vwc+qxK84gDCbzPUBAHwbYqCmKWo6h/BNM8E3gHFTHRoZIUZRUlGb3qMsLuLasy30dZzmDtHGUxQ7t10+5uvxFCCCFGmPxmJoQQQgghhBB7VFnOQAxYO0+WHdzu5axfjNCfrV/wdn1ImqDN0OFFxlmyUJLhyg6phjwZzRetXVEQvMOWBcpodLbGGt8QUf0+JiqSJCNptNAmxXuLD5cfOIoL090+B/7rX5HNnBy63U+06+rydYR1O1cEtXCmgnywv7bSi5d+6KXOHBWEaQiHiOEg+EN1yH16alt1If9EHXCfRakC1fxror2PWL4Y4thlr0VsvuIJN3LsUdcx/qmvMP6Zr6L88AU5jfsPc8Xb3s3S7U9l6YXPIGZra/TQQ3t4DwLvGDFJuv4q7lGhgEZOrEBVJZFYB94EaDaX76ZDhUrGUMpQuZRe1WU/66mYH9iCKnOtE5JkksrOkuUHqaqT5PmhDX8eIYQQQlw+CbuFEEIIIYQQYo8qyhmsWwACWbaLQ7TTdaZVp96jO20OHe7QpgyaOZvhnSXaHs3GqNaXe2y/jy8rYghkrda66ssNhlQpTJqjk4wQJOjebLrTq4Puo6eGbncTbU7+09fhDkxtz8I2hAN9cmWwrarLPnOMGfiD5wTb+4GLfI3HNrF4NdF9B5V/4jxT3t+H5CFi8UJwT0CmvHe+mKUsvvTZ9J72eKbu/DSN7/1o6LjygYlPfYXW3d9h/pW3UzzhxjVVm2ttUIALHrBAQgQSCbxrWU5E14F3GATeIUK7BYDGooFoUmxoYEOHygWy9V50tkVV5lk2Ta/3AN51KYojEnYLIYQQO5SE3UIIIYQQQgixB1m7iPc9bDWHMW20zi/9oJ0oeCgXwJV1lXljcijAqGJCjxazlcGjccUsjVSTmNFLJ2KM2F6XEALOViRphtJrDBLKCuMhRWOMweQNQnA4L0H3ZtJLPQ7+4QdIj88O3e4mxzjxT1+L3z+1PQtbD9Wtw+yhGvJZlIqXfeoYJlYG23GSdYfR7rFEfx3kn0Sl3xl+N1SJav4t0X2HWLwY4vhlr19sPndgipNvfjXNb9zP5Ic/S7LYHTqezC1x4E//mv7jbmD+Vc/D759c9bmVNiSK+vthdMu3p+loXjy1ZllKVApVlsQCVKx/LtFuExWY4AgmJ7oCHw29yq8/7F5RZW7BbPznwZgxlEqp7CwmaeN9gTGNDX8eIYQQQlweCbuFEEIIIYQQYg8qyxmCtzjfodG4ZruXs37FPARXT3Un+dCL3XV9+QQ9B12fEcolVAw0RjSYcGWJd7auL1cana+9vjwpK1KdokPENNqE4HHeXfqxYt30UncQdM8N3e72jXPira/FT68+jNtaAfQc6MG0tjk+eLt76YdeQowawgEIB4mnK8j9IWATQqbYIhavJLrHDqa8e0OHVfIAtN9BLJ4P7knIlPcuoBT9mx9N8dhHMPHJLzH2d3ejwnC1efO+B2ncf5jFFzydpec9DdLVvUSqlCExg8DbO0ChtceYde4/PWrShKhAFSUxDia8YwfGxtCqAtMiorC+Qc/2mbpYA8OlDFWZ9zcl7FZKkWX7KcvjNPKrKcsZWq1HbvjzCCGEEOLySNgthBBCCCGEEHtMjIGyPIp19RRpmu7UMO0SbL9+obsahGtZe+hwhzYuGmarnOgtturRThP0CHbOBh+wvR7eWqLzpK3mmiM50y9JTY62niRvEqIE3ZtNL3Y4+Id/RXrinKB7eoITv/xa/PTmVPOuXXXWntonBsH2SZS6/H8fMTTrMHs52D5U77fNFoeH7jFEfy3kn0Kl3x46VE95f3Qw5f0SiDvl8yIuJuYZCz/5HLpPfTz7Pvhp8gceHjqunGfy41+k9bX7mH/18ygfe8OqzrsceDuP1gHvJewekiTEhkKVBbHfR9Ek9nrotkLTBpNhQ0Zpu/gQMXqdP5O3qMo8TfdRlkdxboGiOEKzeQNqBH+PEEIIIXYzCbuFEEIIIYQQYo+pqlOE6LB2niSZRKld+KdhDNCfr1/kdiXk4/V+3QN1fXmTOZviosIXiyRakyWj+QJ1dbq+vCwxWYJeY/CiS0dGgvaeJM0JCgm6N5le6NQT3Sfnh2530xOceOvr8Pu2ozY7gurU1eNnB9tq/rL3JY4RiPvAHySGQ8t15MQxdsy0dGwRi5cPprw/vmJKXSUP1lPe5fPBPpkds25xUe7K/Zx462tp3v0dpj7yOUxneHo/PbXAwT/+EL0n3cTCK2/HT136a08pjdKBEDxKaUII6LVuGzHKEkOkiSr6xLKsv39og2p7tE5xISUGRd96xvJ1/g6yRVXmWmckyThVNUuaTWPtLFm2f8OfRwghhBDrtwtf0RBCCCGEEEIIcTnKcgbveoRQ0Ghcvd3LWZ9iEYKtp7pMVleYD9T15eNU0bDkEoLt4r1jLE9HchrLViXeVriyRCmFyda2/7oKkHvQARKTEbSSoHuTmfklDv7hB0hOLQzdbvdPcvKtr11V2Hb5POjZwd7ax89Mbqviss8cY7JcPb68t3Y4AKyxWn+7uEcR3TXQ+BQqvXfokFIVqvExYnJ6ynuXNmPsNUrRf8rjKB73SCY+/veMff7rqDi8j3zrm9+n8d0fsfgTz6TznFshudhFQwqjNM57tAk478kk7B6WaGIjRxUFsVIoQGc9fNIm2g7OZ/TKywi7YbjK3PbAbM7XY5pO0+//EO/7FMURCbuFEEKIHUbCbiGEEEIIIYTYQ0KoqKqTWDuHUinGjG33ktbOV1AtDV7gDiuqS+v68oTZKiMGiy07pIkmHcGp7hAjttsjOEdwjrTZXFOgr1DkVUBHRaI1kYg7Z29bsbHM3GIddM8uDt1uD0xx4q2vJUxuxtdkcWZP7dPBtj6JUpf/uY5hbGWwHaeA3R78NYnFTxLtY1GNj6N0Z+ioSn44mPJ+HthbkCnv3SE2cxZe9Tx6T3s8U3d+mvxHR4eO68oy9bd30f7qvcy/5vmUN113wXMprVHBE0JAEQhJHMltMi5LkhCzHFWVRK0xnQX8ZAutEiw5/WqRGPP1N0cMVZn3obE5YXeSTKBUgq1mqUybECq03iUX7wghhBB7gITdQgghhBBCCLGHlOUxYvRYO0+a7dt9k84xQn8Ogqtf2M5aoM9M39lBfXknpBQOfLFEjNDKRnM/VdvtEoLHlSU6TdAXnUQcplDkXmOiJ1GG6D1WRyS02zxmdqEOuueWhm63B/fVQfdE+wKPXK0IamFQQX4czIl6clsvXfqhlzpzVBD2n7W3dr3PNvFy17zD+ZuI3Wug8WlU+s2hQ0pZVOMTxOS7gynvqe1Zo1gze80hTvwvP03rK/cy+bd3YXrDjQbp8TkO/uFf0bv1scy//DkX+NpUaG3wwWN0JDiHTje+RnvXy1JiCKiiRKOgKtE6pfI5BEVhPc31/oxWpq4u9yWEzasyV0qTpvuw1RyNxlWU5VGazes3/HmEEEIIsT4SdgshhBBCCCHEHlIUM1i3RMSRptPbvZy1qzrgqvq/xkDSWj4UIywwjouGeZugQ4/CWZqpGclpO19VuKrElyUAyRrqyxWKnBRTlSQqITqLxQOjeVHATmBODYLu+XOC7kPTnHjrHYTxywmNIyTfRWV3oczs5S0UiDEbVI+fHWwfYO++jNQgFi8j2scMpryHP4cq+RG0/4RY3g72VuSCkV1CK3rPfCLFE29k4n98gfaXv4kabjandfd3aHz7Byy+5MfoPPtmMMONBVprQvD1RUdKYSKXvb/9SMpzCAFVlmjbIyZNAooQUnqXE3ZDvZXJFlWZV9UJrFukKI5I2C2EEELsIHv1rxQhhBBCCCGE2HOc6+D8Es7OoXUTYxrbvaS18Q7KRfBF/XZjcihT6tLCxYQ5nxO8wxZdjFLkyW6vU14pxEjZ6xG8x1tH0myg9OoSFoUi1xm6X5HolGhLrLcgE4mbxpycr4PuheEqbHvlfk788h2EsdYFHrmakx9G5Z9FmZl1PTyGiTPBdjgE/uBgH2pJ7FbwNxK7vwj5p1HZN4YO1VPenxzs5f0ymfLeRUK7yfzrXkj3mU9g3199iuzhE0PHdVkx9eHP0vrKvcy/5gVUN1x11lGF0poQAlpHvHckibzcuoKC2Gyiej10dxE32SLtV1TNlH7Zg/ZlVIIn+ZZUmRvTwJg2tpolTaewdoE03ZznEkIIIcTayG9fQgghhBBCCLFHFOUMMTisW6TRuHq7l7N2xTwEW7+onTaGqkptTOjSok9OrwJVdnAuMJYnu6+qfRXsIOh2RYFKDGaV4UoddKco60kx9UR3VUIue49uluTEHAf+8AMki92h26urDnDyLa9Zf9CtT6Gyz6LS76/q7jGaejrbD0LtcLAOttllF71su5xYvpToHotqfPQ8U94PDfbyfi7YpyIXDewe9rorOf6rb6D9xW8y+dEvoPvl0PFs5iSH3v4XdJ/+BBb+0Y8vf+0abbAhEELAe48xiUx3n4+C2GyQFH2sq1A6oSpKmgasD6RmnRemKb0lVeZQT3cXxUMEX1EURyTsFkIIIXYICbuFEEIIIYQQYg+IMVKWx7B2HoAkmdrW9ayZ7YPr10G3UpCeqXxeUV/uOxS2IjWadASnur11uLIgVCUxRrJ8dWHlctAdFGmAGDyu7A0muiWZ2QzJ8VkO/uFfYZbOCbqvPsDJt9xBaDfXflLVQWWfh/QbqHM7lwdiaEI4t4Z8Gqmp30D+hsGU92dR2T1Dh5RyqManBnt5vwzivu1Zo1g7rek++2b6T34Uk39zF+2vfnvFXdpfuZfmt77Pwst+nO4znwhao5UaTHdrgveYRL7WzktrVJahqoJoEqhAxZLeeMpk6zJ+Xm9ZlfkURfEw1s5Slg3a7Uejtby8LoQQQmw3+WkshBBCCCGEEHuAtbOEUFLZOZJkYne9OBsC9OfqvbpdBfn40Kaop+vLO7GBtZZQdfEx0s530fu4SjFGyl6X6D2usiR5tqr6cgVkOkWhSV1AhYjtd4lag5ZQZjMkx07VQXenN3R7dc1BTrzlDmJrrRPVJSr7MmRfQSl33nvEMFXvG+0ejVzAsBVyYvlionvMYMp7ceioSh4e7OX9nMGU9+hdfDOqwliLude/mO4znsDUnZ8mO3pq6Ljul+z7q0/R+ofvcOrnf5I41sBZRwwBHxw6GpnuvpDEYPB4MrIItmPpL3SZbE1dxjnPrjLvbVqVuVKaNN2HtXPk+RVU1fHd2ZQjhBBCjBj5LVsIIYQQQggh9oCinMH7PiH0SNNdNmVYLkBwYLv19FaSLx86XV9ekNOpFMZ1qGwgTzRmlXtY7ya23yd6hy1LVKLR2erqxzOdodGkAZQPddBNlH26N0ly9BQH//ADK4Puaw+tI+j2kP4Dqv1HqPzvzxt0x9AkFD9B7P4SuMcgQfcW848gdn+RWN264pBSDt34NKr1XtCnVj5W7GjVI6/h+L/8x8y/4rmEbOX3y/zBIxz6T+8jPbGA1ooQAyFACH4bVrt7GB0IRqOiooopfuYUrqrWf8KhKnNXV5lvkiybJsQK55YoiiOb9jxCCCGEWD0Ju4UQQgghhBBixIVgqcoTODuPUglJMr7dS1o9V0HVGdSTBsiH68sXB/XlHZ+C7VJWFUpBIx29aWXvHK4o8GVFDIE0b6wq0szUIOjGoKzDVj1icFJfvkmSmZMc/MO/xHT6Q7eX112xxqA7QvIdVPsd6MYnUbq/8h4xIZY/Ruy+BexTkJry7ZQRyxcReq8nhpVTpcocQbX+FNIvAWHrlyfWzxg6z30KR/+Pn6d3y2NWHE5mFzn0n95H88GjhBCJsd67W1yYDhaMxmcNIhk6QOcHD4O/jK8Nk9Uh9+kq801iTAutG1g7i3ULONfZtOcSQgghxOpI2C2EEEIIIYQQI66qThCjp7JzpOkUSu2SPwVjgGJ2MNXdh7QF6kyY16WFjQk9mhRlRXR9rAs00gQ9Yv2xMUaqbpcQAs5WJGmG0pf+PGYqxShNquqg21Ul0dq6ulzqyzdceuREPdHdLYZuL6+/kpNvfg2xmV/gkecwD6Fa70E3P4zScysOx6iI1c3E7luI1XOAVZ5XbD5/PbH7C8TqqcRztlRXyqMbn0W13gP65PasT6xbmBhj9mdexolfvgM3NXzRmO6XHPxvH2Ts698jBE8IkRDkooYLUYDxFS5vEpMM17NUnYrqyFGIl3z4+SV5HXSfrjLfRFm2H+sWicHJdLcQQgixA+ySVziEEEIIIYQQQqxXURzBuQ4x2t1VYV51wdl6stsYSJrLh2w0y/XlXQvGdyisJzGaPBm9P3VdWRK8w5YFSml0fun68jroNiTKoHzEVX2CHdTESn35hksfPs6B//pXmN45QfcNV3HyLasMuvUpVONOdOu9KDNz3rtEexOx9wvE8iUQxzZi6WLDZcTyhcT+PyaGqRVHlTmKar0Tsi8iU967T/mo6zj+K6+nuubQ0O3KBw6+75NMfPIrxOhxTqa7L8b4imASYp5j0zH8Uh+/2MEeX+eFICuqzC+jFv0S0nQKgMrOUpZHiVG+joUQQojtNHqvAAghhBBCCCGEWOZ9H+sWsG4WrXOMaW33klbHu3qvbteH4CEbX27cruvLJ/DR0IsZvupircOHQGsE68uDD9heD19ZovMkjfyS5eNnB906Kly/S3C2/lhKffmGSx86xsHzBd2PvJqT/+TVxEtdnKA6qPxjqNY7UOn9571L9FcSem8gFndAOLBRSxebyV87mPJ+2vmnvPO/Q7XeDfrE9qxPrFuYaHPin72O/uMfueLYvk9+mX1/8UmCtYRzP/FimQkVEPFJRjVxAO2hmFvCzc7h5xfXedKtqTKvt4SZxNpZQrRUlXwNCyGEENtJwm4hhBBCCCGEGGFFMUMMHmsXSNPp7V7O6hVzg/ryXl1NqpPlQ6fry7s0qaxF+z6FdeSJxpjRC3Gr3qC+vCpJshRtLh7oDwXdaFzZIwQH1kl9+SZIDx/l4H/9K3S/HLq9uPGaVQTdFSr7HKr9R6js6yi1MhiLYYrQfyWx97Pgr9vg1YvNlxLLFxB7bySGlc0ayhwbTHl/AZBJ4N0kZimn3vRylm67ZcWxsa/ex4E//iBxSfZzvhAdAzo4vEkJWQvXbuP6jtDpUc0cx3f7az/pUJX5Oh6/Blk2TQgl3nWlylwIIYTYZhJ2CyGEEEIIIcSIijFSljM4twCweyrMqy64ov6vUpC2lw+5s+rLK6+hXKK0dUDUGMGpbluWeFvhyhKlFDq7+IRwqpLhoNuWhMrWQTdIffkGy344w8H/eie6GK7LLW66llO/9CpidqGPt4f0H1Dt/4rK/x6l3Ip7xNAkFC8kdn8J3GORafxdLlxD7L6JWD2DGIc/l0oFdH7XYMr7+DYtUKyL1iy86nnMv/J2zvm00rj/Iab/4/vg1ML2rG0XML4iDC5ms61pYmsMN7tA6BfYh48QK7u2E25hlbkxYyiVUdlZKjuL98WlHySEEEKITSFhtxBCCCGEEEKMKOcW8KGgsrMYM4bWuyDoDAGKeXAluArSsTrwph7WWmAcHw0lOVXZwXtHaQPNNEGr0QoDQ6jry4NzBOdI8gbqIu9jopLB/wZBd7CEsl+/4B88pAkSmG6c7MEZDvy3O9HlOUH3o6/j1C++8gJBd4Tku6j2O9CNT6L0ysnDGBNi+WPE7lvAPhUYvYs49q6UWD6P2PsZol/ZtKHMcVTrXZB9Hpny3l06z7mVUz//ckKaDN2eHptl39veRfKjo9u0sp3N+Aq0xmmDS9uERguabfypOWJRUR0+An6NXwtJvkVV5oosm8baOWLwMt0thBBCbCMJu4UQQgghhBBiRBXFDMFXeN8ly3bJVHc5XweztgtJVv9voEcTG1O6NLGuri/vW48xmiwZvRDXdrsE73FliU4TdHLh0DMhIVUJidJ10B0doSggxLPqy5MLPl6sTfaDI4Oge3jqsHjM9Zz8hQsE3eYhVOs96OaHUHpuxeEYFbF6MrH7FmL1HCDfpNWLbReuIvbeRCyfdYEp78/Xobc+tk0LFOtRPPEmTvzT1+HHmkO3m6Uek3/wXrJv3r9NK9u5dKhDaa8TrGmC0oTJfWAM9uQcoSioHj4Ka9n63Ax+b9iCKvPT28M4t0BZzhBlj3YhhBBiW0jYLYQQQgghhBAjKEZPWR3DujlAkyST272kS3NlXV1uu/VEVjZ25lA0dGhTkuHQuGKRygW8DzRTc9GJ593IVRXOVviq3gc6yS8cfCYkpDrBKI3G4KInOAvOgx2EsakE3Rsle+AhDvzxB9Hn1Ov2H3cDJ9/0ipUfa30K1bgT3Xovysyc95zR3UTs/QKxfCnEsfPeR4yahFg9l9j7WaI/sOKoMidQrXehss8BK2vuxc5kr7uC47/yBuyh4QvMVGUZ/6M7aXz2a9u0sp1JMagyT1KCAm+auGhIDk5D8NiTc/ilLvbYiTWcVNcXd21BlbnWKUkyRlmdwocCa2c37bmEEEIIcWESdgshhBBCCCHECCqrE8TosdUsaTqFUjv8z78YoD9bV4/aAtJW/YI1w/XlBQ181YPgKKwjTTSpGa2gO8RI1esSnMdbR5LnFwzzTwfddcw9CLqDh7KsJ+SX68t3+Od/l8i/f5gDf/yhlUH342/g1M//5HDQrTqo/OOo1jtQ6fknOqO/ktB7A7F/B4SVgafYA8KVxN7P1dX1K6a8Y72ne+tdoKUGe7fw0xMc/+evp7jp2qHbVYyM/eUnaX/gf9ZbdghgUGVuUjyRKmnjQ0SZnOTANLGq8POLuLl53Owa9j5P8norlBg2tcocIE33E0IP7/sUxcOb+lxCCCGEOD/5a1cIIYQQQgghRlBZzOBdlxAr0nQXVJiXS3XQXXXAJJCcqYE9XV/eo0kIDl92KawnRGhlo7efse31CD7gygKdGHRy/qlsg1kOuhNl8NETCIOgO9ZT3VJfvmHy7/2I/f/9w2g7PGXbf8KNnPq5l8Py56lCZXeh2n+Eyu5BqZW1tjFMEfqvJPZ+Fvx1W7B6sbMlxOo5dejtD644qsxJVOvdqOzvkCnv3SE2c07+k1fTeepjVxxrfuarjP/xB6HcvInj3STxdYOJ1ylV0kArgw0alWeYfZP4The/1MEeO4HvrDK4NhkoNbiAbnOrzJNkHKUSbDVLVZ0iBPm8CiGEEFtNwm4hhBBCCCGEGDHel1g7R2VnUSrDmPZ2L+nivINqCVy/nsLKxupuU4bryz0GVywSYqR0dX25HrH6cm8trizwZUEkkuSN897PoMl0gkaRKEOIHk8A56S+fBPk3/0hB96xMujuPekmTv3sP4LEAB7Su+uQO/8CSq0MJWNoEooXEru/BO6xLP9DFwIgXDGY8n42MQ6/ZFdPeX8R1fpT0Oevwxc7TGKY++kXMfcTz1hxKP/G/Uz+wZ+jFjvbsLCdRRHRwRGTHKsMQWdYD6Ax7RZmYgw/t0ToF9gjM8TVXCSgNOh0S6rMldKk6T6snSdGR1lKC4MQQgix1STsFkIIIYQQQogRU5YzdYW5nSdN9+38/az7s/WL0bYPSWN5EjlGWDyrvjy6PtE7+pXHKEWejNaftDFGyl6P6Af15VmO0is/dwZNqtPlie4QA45QT3NLffmGy7/zIAf+5CMo54du7z35Ucz+zMsg0ZB8F9V+B7rxCZReOXkYY1LXVHffAvapwOg1EoiNYojVbYMp70Mrjiozi2q9B5V/BrArHy52FKUNiz/xdE7+9E8QzfD34/TwUabe9m7M0ZPbtLqdw/iKmKSEEKiSJi4A1L8LmMlxdDPHn5ojFBXV4Zn6oq5LSbItrDKfJuKwbpGiOLKpzyWEEEKIleSvXiGEEEIIIYQYMWV5FOsWgECW7fAK86pbT15V3XoSK20tH+rRpBrUl4PHFh2sC9jBVPeOD/HXyPbrMN8WJSox6DRdcR89CLrN8kR3xDF40V/qyzdc49s/OH/QffOjmX3jyyA7imr9Gbr5IZSeW/H4GBWxejKx+2Zi9Rwg36KVi10vHCL2fpZQ3nb+Ke/sy6jWO0FLsLbTaa1ZuuXRnPgnryI0h78HmNlFJv/De0i/+8NtWt3OYHwJShOMplQ5Shl8GFwUpBTJ/n2QGNyJWUJRUD48U18Rd9GTbl2VuTENjGljq1mc72LtGvYXF0IIIcRlk7BbCCGEEEIIIUaItYv1C63VHMa00XoHh2vBQzEPrqynr9J2/cI0K+vLKZcIIdC3njTRpCM21e2dwxUFvqyIMZDmjRUF1xpNthx0J8NBt9SXb7jGvQ+w/51/jfJh6PberY9l9meegWp/CN36M5Q5f9gY3Y3E3i8Qy5dCHN+KJYuRY6B6NrH380R/xYqjZ6a8P4VMee9cSmmUUvQfeRXH/5efxu+fHDqu+yUTb38/+Ze+uU0r3H46OIiRmDQodYJCY0Pg9HQ3WpEemIYYsCdnCZ0e9ujxi590C6vMoZ7udn6J4CuZ7hZCCCG22Gi9OiCEEEIIIYQQe1xZzhC8xfkOabrDp7qLhUF9eQeSvK4cZWV9uYkFZVVROI+PkWY6ehXQtt8jhICrKpI0W1Ffrs4Nujkr6Jb68g3X+Ob32f+uv1kRdC/ddhNzv6BQ43+CSu8/72Ojv5LQez2x/1oIB7ZiuWLUhYODKe/nEuPw9z+lQGVfRbX/BMxD27RAcXEKrTUhRNwV+zj5q2/APuKq4XuEwPi7/5bW33zu0hPLI0hxuso8x0WoTBPnFYqzLtxKDMmBaaK1+Ll53PwibnZlo8aQLa0ynwI01s5SlkcJwW3q8wkhhBDiDPnrVwghhBBCCCFGRIyBsjyGdfWLv2k6eYlHbCPbB9utX3yOQNZePtSniSWlRwNNwBVdfIyUNtBINOY8+1jvZr6q8NbiyhKlFTrPho4rFPm5QXc8q1Zb6ss3VPMb97P/3X87FHSHPHLqLftY/Jn7UfnXUWplGBXDJKH/CmLvZ8Ffv5VLFnuChupZgynvK1ccVXoe1XwvKv+fwOZOsIq101rXjdrBY1sN5n7lDZQ3P3rF/Vof/QJj7/6buq1jj0l8STQJKEWhE8AQ0Jz98rXKM5J9U/huH7/YwR47iV/qXviky1Xm1aZXmSulSdN9VHaWGD1VdYnJcyGEEEJsGAm7hRBCCCGEEGJEVNUpQrRYO0eSTKLUDg09Y6jry70FW9RBt6r/PHXRsESbMmZ4EozvUjlPv/IoBfmITXXHGKn6faL3BOdI8nyovrwOujP0hYJuqS/fUM17vsv0e/4WFeqgO+pI97meY/9XpHzqMZRaWRUdQ5NQvJDY/SfgHgcrCuiF2EDhALH3M4Ty9gtMeX9tMOV9eJsWKM5PobUhhABEglEs/dKr6b3g6Svu2fjyvUy+/f2oXrH1y9xGZlAzHtOcQmVorbHurCrzAd1uYibH8fOLhF6BPXKUUJTnP+npKnM3qDJ3m3shSJZNE6PFuSWpMhdCCCG2kITdQgghhBBCCDEiynIG7/uEUJBlO7jCvFysg+6qAyYF0wBO15eP4aOmT4OUin6/wPqIdYFGmqDVaAWJrqoI3mHLEpVodHLmRf1zg+4Iw0H3ufXlidSXX47m3d9h+s8+igqRSKR/S+D4v7UsvNETWyunLGNMiOWziN23gH0qMFoXYoidTEP1TGLvTUR/1YqjSi+gW3+Oyj+BTHnvHFprFBCCx3lPVIrea15A56deRDznZ1t6/2Em3/Zu9Mn5bVnrdlDEeu/uJMcqg4sKFzXqPN9bzcQYutXEz84RihL70BGi8+c5K3WVubdbUmVuTAutG1g7i3ULONfZ1OcTQgghRE3+ChZCCCGEEEKIERBCRVWdwlazKJVizPh2L+n8vIVyqa4TjQGyseVB2D4NLBl9mmgCoergYqBvPYnR5Mlo/QkbY6z36naO6ANJli8fOx10q0HQDWDjOYHrufXlRqa616v1tfuYfu/HUDFS3Rg4+b855v6pw1+x8r4xKmL1JGL3zcTquUC+8k5CbIWwn9h7I6F4PjGu/PpX2d2o9jvA/Gjr1ybOQ6G0rqe7Y8T7+nt68dynsPjLdxCzdOjeyfFZpt72bpIH986EsPEVIcmICvoqq7/f1jt6D99RKZLpKUhT3MlThH5J9dDM+fc738Iqc4As2491i8RgZbpbCCGE2CKj9UqBEEIIIYQQQuxRZXmMGB3WzpOmU6idOAEdI/Rn6ylk14ekWYe0gI+aJcYoY4ojIY89eqWjtBEfAq0Rqy8HcEVBDAFXlugkQZv6fTy9R7dCkV4o6Jb68g3T+uq32fe+j+EPBmbfajn5vzvsTecJTIDobqynacuXQdyhF5SIPUaDfTqx+yaiu2bFUaUX0a33ofKPI1Pe289oTQRCCITgl7NZ+8SbmP+Xb8RPtIfurzs9Jv/jn5Pd/Z2tX+w2ML4EpVAmpadTlNK4AIrz/IzTinT/PkBhT80Ruj3skWMr73d2lXnc/CrzNJ0CoLJzlOUMMYZNfT4hhBBCSNgthBBCCCGEECOhKI9i3RIRR5pOb/dyzq/q1pNVVad+8TltAafry8cH9eVNMiqKsiTESGEdeaIxZgeG95chhIDt9/GVJcZIktfTwQoGQbe+cNAt9eUbpvXlbzHx0Y+x8AbH8X9rKW69QMjtryD0Xk/svxbCwS1epRCrEKeJ/X9c7x9/3inve1Dt/w7mwa1fmziLRis1CLsjwZ+p3vbXXcHCv/453FUHhh6hrGP8HR+i8akvn39yeYTo4CBGYtKg0hk+BFxQoAzLNTBnSwzJgWmitbjZedziEu7k7Hnut3VV5kolJMkk1s4SoqOqTmzq8wkhhBBC/hoWQgghhBBCiF3PuQ7OLeLsHFo3MYM9sHcU76BcqCervF1RX14N6ssVEeN7FNbTt3UI0BjBqW7b7xNiwNsKkyYorVBAprOLB90A1dn15Vrqy9ep9ZW7SXsf48T/aendHs675XYMk4T+K4i9nwN//dYvUog1UWCfSuz+AtFdu/KoXkK33o/KPwqUW788AYA2hhgjMQZ8cEP5ddg3wcKv/QzV424YeoyKMHbnp2m//xPgR3dSWAGJL4lpXT1ekBCiHnyMzv+7gMpSkul9hF4fv7CEPXEKv3jOXtlbXmU+TQgl3nWlylwIIYTYAhJ2CyGEEEIIIcQuV5ZHicFh3SJZtkOnussFCK6e6k4bYOq9SX3UdM6qL2/RZ6mwWB+pbKCZJuidWMl+GYLz+LIkDKa6TVpPdWc6Q18q6HYO7Fn15Um68j7iEjz5Q39D9dRPsPQKTzzPtSExNAnFC4jdXwL3OM47USjEThX3EftvIBQ/QYwrv0eo7BuDvbx/sPVrEyg0Wp+e7oYQ/NDx2MhZfOtrKZ5984rHNj93NxN/9FdQjm4lvfEVUScobeiq078rKBQX/nmnWw3M1AR+YYnQ7WOPHCMUZ13QscVV5saMoVRGZWep7Czeb37ALoQQQuxlEnYLIYQQQgghxC4WY6wrzO08AEkyta3rOS/br2tDq279/wf15VDXl7vl+nKLtQU+RPrWY4wmS0YvZLT9HiEEnK1I0gylFZlKB0F3Pbnmzhd0n6++XMmf9asXIfkeRv0X7OPvJUye5x4xIZbPInbfAvZpcL59YoXYFRTYpwymvK9beVQvoVt/iWr8D6DY+uXtcVprQhhMd3u/8g7G0HnDS+i+4vYVh7J7H2Dq//sz9EJn5eNGgPGDIDrJsSYnBE+Iup7MvshL2WZiDN1u4mbnCUVJdfgI0Z71s3RLq8wVWTaNtXPE4CmKmU19PiGEEGKvk7+KhRBCCCGEEGIXs3aWEEoqO0eSTKD1DgznysX6BWZXDurL6z9F+3G4vjyjR6d0lC7gfaCZGtSITXV753C2wlclSil0lpKpFKMMiTIoNC46zrsrq9SXr59+GNX6M3Tzg8Sx84QcEWL1RGL3zcTquUC+5UsUYlPEKWL/9YTiReef8k6/OZjy/v7Wr20PU0qjtKqD3BAJ4TzV5ErRf/GzWPyFVxKT4Qrv5KHjTP4/78IcGb39oBUR7S0hzfEmpQwRHxSDkvOLPjbZN4XKMtzJU8SipHpoBk5/bE0+XGW+yfufp2ndtGPtPEV5hDji+60LIYQQ20nCbiGEEEIIIYTYxYpyBu8LQuiRplPbvZyVbH/wwnIPjKlfbKauL186p768Vzp8iBTWkSaa1IxW0A1gez1iCHjrMFlGelbQrdG4aM8fdEt9+fqoWVTjg+j2n6HM+fdNNUf3EXq/QCz/EcTxLV6gEFtBgb2V2P1FonvEyqO6g279FarxN4DULW8NhVGD6W4Czp1nunugeurjWPiV1xPazaHbzfwSk//hPaT3jV4dvQkVwWRopeipdDAFr1HqEhd5aUV6YAqUwp6YJfT6VDPHIVIH3WdXmXu7qe+D1ilJMk41uCjR2lOb+nxCCCHEXiZhtxBCCCGEEELsUiE4qvIEzs6hlCFJJrZ7ScNihGKhDru9haS9vPXxmfryBhkWQkW/8hTWEyO0MnPxc+9CrqrwzuLKEqU1Wdog1QlG6UHQ7TjPbF/9cZT68rVRXVT+cVT7v6PS7533LukPFY3PPRnbfjOEg1u8QCG2QZwk9n+KULyEGLMVh1V672DK+/6tX9sepLRGKQZ7dwfCRSZ/3Y3XMv9rP4s/MDV0uy4rJv7LX5J//p5NXu3WMq6qw2mTUZkmITp8OP1z7xKBtzEkB6aJ3uNOzeEXl7AnB0Fzkg+qzP2mV5lDPd0dQg/v+xTF+S+4EkIIIcTlk7+OhRBCCCGEEGKXqqrjxOgHFeZTqJ0WgNoeBDuY6k7q/TI5t74cGvRZLCw+RkoXaKQGPWL15TFGqn6f4DzBefJGk0wnaDQGg4uecP6ZbqgqqS9ftQqyz6Paf4TK7kGplR9TcxKm/tiQ3vNcere8dBvWKMR2UmBvHkx537DyqO6iW3eiGn+NTHlvNoXWZlBhHgnOXfTe4dA+5v/Xn8U+8urhs4TI+J9/jNaHP1v/rBgBOjpUDMQ0xyUNKu9wAUCjLhV2AypLSfbvIxQFfn4Rd3IWv7AEJjuryry36VXmSTKOUgm2mqWqThJCuanPJ4QQQuxVO+yVECGEEEIIIYQQq1WUMzjXIUZLlk1v93KGxVDv1e0q8A7SNnC6vrw9VF9eOo/zkV7pMUqRJ6P3p6orS6J3uKokSRPytIFGkyiDj55w/pnuur68cmAHIYjUl19AgPQeVPu/ofPPo9TKelrVgYm/MBz69ynVwdvpvOCZ27BOIXaIOEHsv47QfykxrtyjXqXfRrX/BPTRbVjc3qG1RgEheFwIl8xe41iLhV95A+VTHrfiWOsTX2T8Tz9y5ufFLqYA4ytikoNWFKS44InoQbPJpX9P0M0cMzmBX+wQuj2qI8cIRXlWlbmvQ+/NfD+UJk2nsXaOGD1FIV9PQgghxGYYvVcQhBBCCCGEEGIP8L6PtfNYN4vWOca0tntJw6peHXK7bj1JZeqQtq4vN8v15QZLp3BYF3A+0EwNasSmukOM2H6/ntoLkXZjHIMiUYYQA/5CQfdQfbmT+vLzipDcj2q9A934OEp3V96lgrGPaq74P1PGPmVYeOlz6Tz/aVu/VCF2HAXuyYMp7xtXHtUdVOu9kHxnG9a2VyiU1vV0d4x4v4qgOk1YetMr6L3oWSsO5f9wH5P/6X2ozuZXdG824yuCNmhlKJMmIXh8PP0zcHVbnZiJMfRYCze7QCxLqsMzxKjr30+iB7v57QVZNk3EY90CRSlV5kIIIcRmkL+ShRBCCCGEEGIXKsujxOCxdoE03aFT3b4E7yFtAtCP+aC+vLFcX94tHT4E+taTJpp0FKe6+31iCLiyotVoo7UhUQmBiMNf+IHL9eWuDrnN6O1jfln0EVTzvejmnSgzu/J4gOYXNFf8/1ImPpig+4r5V95O5/anbv1ahdjJ4jixfweh/49WTHkr5dDND0P293ChrRbEZTHaEKn37vber65ZWyt6r7ydpTe8hKiHLxBLf/AwU297N/r43Kasd6uYwdR1TBvYpIELFh8C1JeLrfo8ydQkKs9wJ2brwHvmVH0x2RZVmdcXJI5hq1m872Ht/KY+nxBCCLEXjd6rCEIIIYQQQgixBxTFEZxbACJpum+7lzOs6tbTyLZX79Nt0kF9+digvjylRZ8QA73KUziPj5FmOnphbggBVxT4ytIwOWmSkaiECLh4kaB7qL48QppSF7sK1Cyq8UF0+z2o5OHz3iX/puLg7yTse2eCmas/bnOvfh6d59y6hQsVYjdR4J5I7P4S0V234qjOP4dq/A2w+yuydx6FVvV0d4yR4C/ys+Ec5Y/fwuJbX0fIs6Hbzcl5pv7Du0keeGijF7tlFBHtLSHJiDqligbnPGDqfbdXOd2NVqT794HR2BOzhH5JdXwBXLElVeYAaTqN8x2CrygKme4WQgghNpqE3UIIIYQQQgixy1g7jw8FlZ3FmHG03kH7OIezprqDh7SuV19kDBc1fRqkWFLlWOo7fIwUNtBINEaPXphr+3Won0RNkmakpg4kbLxIYLSivtxIfTmA6qLyT6Da70Cl3zvvXfRsm/3/b8L+/5ySPnzmYzb3mufT/fFbtmqlQuxecYzY/yli9eQVh1T6bVTrfaDOs12AuCzaaGKMxBDwwa1p2Ng+/pEs/Ks34qfGh8/Z7TP5n95H9rX7Nni1W8f4imBylFKUpoHzjhAB1JqmuzGa5MA0eI87NYvvVthjJwdV5ptf+Z6mk4DG2lOU5TFCkItGhBBCiI0kfy0LIYQQQgghxC5TFDMEX+F9d+dNddvOWVPdOeiEImZU5PRpooAmfUoXqHygX3m0gsYITnV75/BlSeLBKE2eNoBLBN1wnvryNbygP6r0UVTrHajsbpRaucd5DBM0vvAorvi3Ffl3hl/qmHvtC+k+++atWqkQI8AQy5cQiuevCF2VOYJqvRv0ie1Z2ohSaLRWhBgIAUJY/XQ3gL/mEAv/+udw1xwaPq/zTPzJh2l+/IubXte9GRJfggKVZFjTIESPG1SZowxraTxRaYLZv49QlPilHm5uEX/qVL1v9yZ/bJTSpOk+KjtHjJ6qOr6pzyeEEELsNRJ2CyGEEEIIIcQuEqOnrI5h3RygB9NCO0QIUC4NqkHD8lR3lxY2GhwpTfooYKlvsS5gXaCRJig1mlPdJmqUhzxvopXGXSrodr6uL3dSX75MdVDNO1G6v+JQjA1C8XzG3/cYpt/5I1Q887GKCmZf9xN0n/WkrVytECNCgX06sX8HMQ63hyi9iGq9B8z3t2lto0lrTQiRGAPer33yN0yOsfAv30j1hBtXHGt/5LOM/fnHYA0V6TuBjh4VAzHNcUkDF8E6h1p+SXttF8rpZo6ZmsQvdQl9S3VkBt/pbEmVeZZNE6PFuiX6xfm34BBCCCHE+kjYLYQQQgghhBC7SFmdIEaPrWZJ0ynUTqq3rhbrqW53eqrbUA326C7J0QQy5ehWDhcCfedJjCZPdtD7sEG8tSgb0D6QmpTEJLjouOjsWIxQFvXH0Et9ec0Ogu7O0K0xGmL5DOLSm5n8yy4Tn/368HEFcz/1InrPfOJWLlaI0eNvIvZ+hhgmhm5Wqv7aJP0KXPw7m1glpUw93R38YLp7ZYvFpcRGxuJb7qB/260rjjW+8HUm/vADqKLcgNVuHeMrvMnRWlOqrK4yp96zW7H2bVzMeBszPoZb6BF6PexDDxN78xu+7hXPa1po3cDZWZxbxLmlTX9OIYQQYq/Y6381CyGEEEIIIcSuUhZH8a5LiNXOqjAPHqoOuH6de6RNoJ7qdlHjSGhQ4kOkWzpKF/Eh0hrB+vIYI75XkKDQUZEmGS56wqUCIakvP0dENT6KMkeHb3XXELtvJha3M/XBv2f8rnuGjyvF3OtfTO/pT9jKxQoxusJBYu9nif7qoZuViujGp1H5x4HdNTG8Uy1PdxNwbp0fU6Pp/vSL6L76+cRzikGy+x5k8j+8Bz23ePmL3SLGV0RtQBtK0yRQT74rNCjFel7eNlPjqGYLP7dI7HWpvv/9+mfvJsuy/Vi3SAyWopjZ9OcTQggh9goJu4UQQgghhBBil/C+xNpZKjuLUinGtLd7SWeUS3WNue3XU93KYGNCRUYxmOpOsXRKR4iRwjryRGPM6FV0h8qSRAUukpoMr7l00D1UXx6kvhwg+yIqvW/ophgmif3XgB9n6s5PMfaFbwwfV4rZN7yE3lMfv4ULFWIPiG1i7/VEu/JrS2VfRzXfD6zcakCsjVIapRT/f/b+M7qy/LzvfL///w4nIBZQoas6B3YzZ4pZogJJMYnBlGRKtCjbM54Zz3jG41njF/fFXXfdN3fdO8GTPOOxPfZQFqlASswKpCRSYk5i7CY7d4WujHzS3v/w3Bf7AIVTAKoAFDKez1pY3bX3CX8AJ+Ds336eJ4ZAjJG42VnSxtD9hVex8Nu/gmSDJ06lF64y9i8+QnLu0hasePsliy3Gsxo+axAjlKF/UhgG2MSJYcaQHT0CaYa7fIXY7VA+8+S2z+7OsnEASjdNUVxAZOPV+0oppZRaScNupZRSSimllNoniuIiIgHv5siyib0z5zp4cC1wnerfy2Z1B7F4MmoUuBDpuUDXVdVq9QNY1Y0IpuchComxRAuRmxzMjte3L0+1fXn6OLb2lYFNIjnSfS/EOuN//FcMf/PHg/utYfoDb6X7sod2cqVKHSIp0ns7sXjDij0mPYsZ+iiY6V1Y10FiqupuEUCI/taqjcuXPsTcf/HrxOHmwPZkrsX4//x7ZA8/dUu3vxMMgg2OkORIkuLE4rzv59IWYzbZBcVa0mPHIAbclWnC7BTu/PmtXPoKxqSk6RjOzRDFU5SXt/X+lFJKqcPikH96VkoppZRSSqn9oygu4PwcQiDP91AL86VZ3T1I62AsXhIKahTkGIQcx3zP4YJQukgjS7F7JazfKgKmG7AiJNGAEeJ6PnUXRb99udP25QD2Mqb+uYFNIiDdd4Kf4Mgf/SXD3354cL81TH/gl+m+5MGdXKlSh5CB8jXE7rsQGXytMnYGM/QRSE7v0toOBmstBggx4GMk3mKxsb/nFLP/9W/ij08MbDelY/Tf/DH1L3/v1u5gByShJCY1LIZu0kAAHzyGxZPmNve+afIaycQY0usSrl7GT00Rpqa2bN2ryfNJYiwIvk2hrcyVUkqpLaFht1JKKaWUUkrtA94v4EMbV86QJENYW9vtJVWCh7JdtS+HparuDg2CGEpyahR0nSdEoesCSWLJ04MXdKcexJXYaIkxEOw6vkfnqxbmzlX/zg95+3LTxjQ+gTGD1YxS/By4ezjysb9g6DuPDO6zlqnffBvdFz9nJ1eq1OHmH0I6fxeJg+M0jCmqlubZD3ZpYQdBVd0tMYIIMdz6LOl4dJy5f/obuAfuHLwnEYY//hc0P/lFbjlV30ZpKKq3xqyGT+tEEVxw/ZndBrPJsBtjsI0GyWiDsNAizExTPvssYWFhK5c/IE2HsbZG2R9LE4K2/1dKKaVulYbdSimllFJKKbUP9HrnicHhQ4ss20NV3cUcSL+qO2uAMQSxdKkvVXWnFLQKT+EjIUQaWbJ3WrBvBYE0GGJZkkhCDB5PxNibfOSOsarqDr6qjM8yDvfHdI9pfApjB0MGcS+E4uUc+cMvMPS3183wTixTH3wbvRc+sJMLVUoBxNuQzgeRcHxgszGCrX8BU/sruNkYB7UqaxMEiDESQtiSUdIy1GDuP3s/vVc+f8W+5he/w8i//xSU7tbvaBtYCRiJSJoTsgYuQhkCIMDi6I9Nvn/ajKSRkww3CVNXiJ0u7swZpNfbwu9gUJYdwbkZJAZ6Wt2tlFJK3bLD/ClaKaWUUkoppfYFkUhRXML5GQCybGyXV9QXympO92JVd9oAqqruKIaSGjklnWKxqtuTp5YsOVhBdxIMRMF4QaKn8AU2vUmVmQj0iirw9h5sUn0dWoKpfx6TDM5LFX870vslxj73VYa+9+jgvsQy9ffeQe8F9+/kQpVSy8lIVeHtVnZWMPnfYhqfAIqdX9e+15/dHQMiQtiC6m4A0pTWB99O562vXbGr9sPHGfvf/gCz0N6a+9piSSgJSQ1rDKWtIdJvZW4WD29v8j3UpmAgGW1gc0u4coXY7VE+c7p6f94GWVa1lHdull5xHtmKsxmUUkqpQ0zDbqWUUkoppZTa48pyiigO52ZI0zGM2SMznXvzVVW361Xty40hiqFDg4KqzXoiPbploHBVZVojP0CBrkASTfXBuvQg0Ct62DS9eVW3cxBCv4rO9Ku6D7Hs25jsuvbkcRTp/QrNbz/KyFe+P7gvTZj6rXfSe969O7hIpdTqcqT3K0jx6hV7TPo0pvlRMLM7v6x9zlqLCEiM/dB7i27YGDpvfwMLv/E25Lr3quz0Bcb/xUdILm3v3OrNSEKB2ASTpJRJHRHBLZ0EkNxSK3NsCsGTToyDBX/5MrHboTh9pjopbYtZm5GmI5RumhgLnNt7P2+llFJqP9GwWymllFJKKaX2uKK4QAhdYuyR53ukhbkvwXeh7IC1kNaBqqpbxFCQV1XdPU8Qoecj9TTBHqD25VYMVsB6gRApXQ9Bbl7V7QMUrl8xFiFLOdRzupMnMbW/GdgkkiHd95I/NceRT3xxcF9iufpb76D33Ht2cJFKqRszSPlGYvdtiAye1GSSKUzzI5A8u0tr258MFmsNIUZihBjClt5+8eoXMv+fvp/YqA1sT6bmGPufPkr6xNktvb9blQQHApLm+KxBEHAhIkQMSX9+92aru7Pq5D2EbHIMYsRdvkJsLeDOn7/p1TcjyyaIsUMIXXq97bkPpZRS6rDQsFsppZRSSiml9rAYS8pyCldOY0xKkozs9pIqxVw1Z9oXS1XdIlXYXZIDBhu6FD7QdQFroJ4dnI+gVgxJBCuW4DwuOLx3JFl243nkUaDoVT+74CFND3f7cnsF0/gsy39kIiC9d5BM1Zj8D5/DhMGqupn3/QLFQ/fs7DqVUuvjX4B0fxWJjYHNxnYxjT+E9OFdWtj+ZG2CiCASCHHrW2q7h+5m7p/+BmFidPB+Oz3G/vc/pPbtvfP7Mgg2OkJawyQZhVhCFCSGftBtqtB7M/qtzIkeCKQnjiNFQZiawk9P469c3cLvpJKmoxiT4sppyvIqIWi7f6WUUmqzDs6RBqWUUkoppZQ6gIriMiIe52bJsiM3DlJ3iuuB74FrV0Ftcq2qO4qlR06Go12UuCA4F6mn6d5Y+xawYkhC9V98wAeH9wXGGEx6kwPtRVEF3s6BsZDskZb0u8F0MI1PYIwb2CzlGzHtu5j88GdJ2t2BfQtvfBmdVz5/J1eplNqocAfS+U0kTA5sNiZgG3+Kyb8M6Izi9TCmqu6Oi9Xd29BSO9x2lNn/+jdxd942eN8hMvK7f0Ljz7/G1vVQvzVpKIg2xxgo0wbCYitzARIwm+yUstTK3AERk1rSo0cJCy3C3BzuwnnC/MKWfi/GGLJsot/K3NHtndnS21dKKaUOEw27lVJKKaWUUmoP6xUXcH4BwZNle6SFeTFXHRD2Zb+qm2VV3RmCRXwHH4SeCySJIU8PRtBtBGxYbGFucK4gREcMsZrVfaOD7M5XLcxdP9zNMg5v+/KAqX8aY+cHtop7HvRexZE//AL5hcFKut6DdzP39tfv5CKVUpsl40jnNxB/74pdpvZNTP3TQLnz69qHrLXEKIhEvN/aVuaLZHSYuX/y6xQvemDFvqE/+SrDH/2z6v1rlyWhrP7mSGv4tEGM/VbmEjBLh7lvsZV5jOAL7PAQyfg4YWaG2Ongzpwhdntb9r0A5PlRQCjdFL3es8TobnodpZRSSq2kYbdSSimllFJK7VHet/F+Hu9msLZBkjRufqXt5roQ+vO6kwSSatZnjxqRhIKcBE+3V+J8xIdII00ORlW3QBIMiVRht/cOHz3BOYy1N57VHWO/qttXLcyzrKrsPpQEU/sLTHpucGs4ifTeyuhffIvmj58c2OeOHWHqN365mg+vlNpiAhKr16bo+yczuWrUwi1VYNeQ7nuR8uUr9pjscUzzD8BsbbXsQWSMxRhDjKGq8Jatr+4GoJaz8A/eTffnXrFiV/1bP2b0X30c09nasHejrASMRCTLCWkdHwUfqhMBqlbmFkO2yRtfbGXuqr9zgGR8HNscIly5Sux1caefQdzWtZO3NiPLjlCWU0h09Ho6114ppZTaDP2UqJRSSimllFJ7VFFcQKLH+fm9UdUtMljVnV6r6m7TpJSUSEIs2wSJdF0gSyxZegA+egqkwWClmtMtCIXrEr1HopBkNwi6RaBXVIG381Xr98M8pzv7W0z+o4FNEkeQ7nto/PBpRv/yWwP7YqPG1G+/C2nUdnKVSu1zUn1JqELssCzEdiWURXUCTtGrvsqi2u5cVcEbYnXZoldtj4HNBd8WKX6B2HszIoMnPZnkEqb5EbAXt+IbPsAMSb+6G4SwnRXW1tJ+3y/Qet8vcN2vi/zxM4z9zx/FTs1t3/2vQxIKgq1hjaGwdQTwMSJINbO7H3pv2FIrcw/E6vliID16FLIMf/kysdulPHO6ej/fIrXacUQczs3S7Z6tgnullFJKbcgBOOKglFJKKaWUUgePiNArLuLcLABZNr6r6wGqau7gqlndSQppFT4W5ARSCmoYPL2yoHRCEKGRHYBQtx90GyARiwClK0AgOo9NLOZG4bVzEAKUDjD99uWHVPI0pvalgU0iKdJ9D9m5Nkf+8AuD+6xh6jfehj86vnNrVGpPE2CxCrsfYntXvc64cjDALnpQltV2vyzERqpgL7GQJtVrUpZDXoNavf9Vq77SFKJcu23vqirwjXIvQbrvR2TwpBVjW5jm70P66Jb8dA4qYy3GQIiBECJxm0do937uFSz8w/ci+eD7VXpxivF/8bukZ3bvBIUklIhNMGlKmdaJIvgQqxM7jKUqz77BCWg3cl0r82qbITt+HATc5cvEVgt3busqsK2tkaZjFMUlYiwoCj35QymllNooDbuVUkoppZRSag9ybpoYC0o3Q5qOYO0uB6Qi0JurWnsGD9nQ0q42TZwkBBJC0SZGoes9tdSSJPu8ffmyoDuN1UdoT8C7kuA9gmDTG/xufIDCge9XimUph3ZOt53CND6DMYMpjfTehp0bZvLDn8Ve1x527p1vpHjwrp1cpVK7ZI1W4q4Ed10VdrFYhd0PsUO4VmlqTTViIu0H2FneD66XhdhZrR9uL4bc/a9a/6teg0at2pZl/evk1RiBEPpV4P2xDBup9g53I+3fROL4wGZjPLbxGci/sbHbO1QM1ibEWJ2sEMPWtdJeS/miB5j7J3+XONIc2G4XOoz9r79P/qPHt30Nq0mCq54uSY2YNQlRcCECixXvtqrw3oxVWpkDkCakx48jpcNfvYqfncFfvnyL38k1tdpxopQ4P0en8wwi+jxQSimlNkLDbqWUUkoppZTag3rFBULoEWNnb7Qwd50q2HAdSLLqCyglw5NRUEPE48qCwgVEoL7fq7oFktiv6O4H3cFGgisREaJz2DTBrDVHOkoVTC1WX6bpIW5f3sU0PoEx5cDWWLwOevcz+TufI51rDexrveoFtF73kp1cpFLb4AYh9g1bifuqClsEMFXQnC4LsfPaKiF2fi3Ezpf9d7FKu1GDRh2GGjDchKEhGGpCo1Ftry0G3Gn1elWrQbPZD76X3dZidwrn+sG767c5X8+PY6IKvP2dK3bZ2lcw9T8Btj/I3Y+stVUOGwM+VO+z283fdRuz/+yD+NuODmw3pWPk//ok9S99d/sXcR2DkMSSkOaQpBQkRIEQBZGwrJX5Jqq7jamqu5damV97zzK1nPToUWKrTZiZxV28SJjbmpbuSdIkSYYpi6uE2KUsr27J7SqllFKHxSZ7uiillFJKKaWU2i4xesriCt7NYExCmo7u7oIkQm++aukZPNTHlna1aeLF4kkJvXmCCD0fqWcJ1uzvCuYkVjO6k1gFDMFGYowE54i+CmNscoOP1UXRb//rqtaqN7rsgRaqim47O7BV3ENQvIYjf/yX1K5riVvce4rZ97ypH1gotdf052Ev9pIW6X+xbPvi1/VM9WXpB2umv6m/3Zhr/7/K1TB22fVM/99U/14MxbeSMVXwnab91s4enK8qYIn91uj9IB8Lqa0qy29YX9NAuu+H2l9g8h8N3l32E7BzSPfdIENrXP+wMhhriTFirRCCJ023/30lTowx9199gJF//ynyx85cW43A8Cf+imRqlvZ7f37rH3s3kISSMh8mtRaXNBBp40IksQFMAmIwJMhmTpywKYRu//FeQpJf2zXUJDlyhDAzg8ky3NmzmDzHNhq3/D3VasfodJ4m+Bbd7mlqtWO3fJtKKaXUYXFYP2krpZRSSiml1J5VlpcRCf0W5uMYs8tNucrlVd35UlW3k5SSnB41Qgh436PrAtZAPd3fjcRsP+i2/aA7mogAviiRGIneY9Ns7apu56sQyLnq31nGYW1fbmpfxKRnBrZJOIH0fpnhL3+foe/+ZGCfPzLC1AffXlWxKrWj5FpwDdWJPkL/3wKxf5mbhdjWXAulF0/YsObaZZaz/esuhdWrhdi2/99dZu21luc+VBXq1kLsB+EhVGG491UXiyTpB6CrrT1BircgcRJT+9LAeS0mOQ/NjyDd90LUwG+5xFpcrE68ijEgku7IOUHSrDP/n7yf4T/8PPVv/nhgX+Nv/hY7Pc/Cb72jaoO/A5LFius0w2cNQtHGBaGeLT4/0yqNF8OGW+OvaGXe766weN/jY4grCVNTmCylfPoZas95AJPd2riZNB3F2jpFcZkkHca5mb3R2UcppZTaB/b30QellFJKKaWUOoB6xQW8byHidv9Ap0Qo5iAUVZva/NrszjZNglg8Gb5s4YPgXKSepph9XJFrxZDE6r+WKuiOBmKIxOD7Vd0Gu1ab9hirdsTRVz+zLKuCq8Mo+x4m//7AJolDSPc91H/6LGN/8tWBfTHPmPrQu4jDgzNildoa/Xbi62olXvZbiYd+pfZqrcRvMg97oJV4vrlW4jbZG0H39dIE6vWqzXm9fm3+d61e/XyiVD/Doqh+1hJXuRED7pVI972IDAaFxs5jmh+F5Mmd+X72DYs1ph92CzGss338VkgTWh/4ZdrveMOKXbUfP8HY//r7mPnWKlfcelYCJgYkrRHTOi5Iv405VSvzpffcrWhl7lZcJJ08ClmGv3wZ6fUonzldjR24RbXacXxYIIQunc7pW749pZRS6rA4pJ+2lVJKKaWUUmpvCqGLc7M4P4O1NdJ0l9u4lu0qHHIdSPN+61rwklBQoyDHhYD4gp4LJIklT/dgMLNORgw29INuMUQjxP63E8qiquoOgSRLMatVK4pAr6gOert+deNhndOdnMbU/mpgk0iKdN9DetEx8dE/w1w3dHb619+COzk4G1apjVsWajvXD7R7/fnSZb/1dgSkCraSfoidLZ+HXYdaY3Aedp5Vl8nzwVnY9X6I3bwuxG42roXYeX/udZpW92XtwWjTb0wVzDca1fde6wf1tVr1PSdJdcLA4kkFwbOi0jbcj3R+A4kj1920wzQ+Cdl3Vl7nELNJgoggEgnR78js7iXG0H3La1n4e+9AksH3tuzsJcb/x4+QXNiZedNJKPE2JzGGMq0B4GKk34IBSDCbbWpqU5BwrZX5iv2G7PhxMBZ3+TKx3aY8d25z97VMmo5hTEZZXqF0U3i/cMu3qZRSSh0GGnYrpZRSSiml1B5SFBeRGHBudverumOEYv5aVXd2LXivqrpNFXb32ngf8SHSSO3+reoWSAIkA0F3lSJE74khEJzDWINZq8W2c/1gxwGm3778EDIz1ZxuM5jCSO+tmNYRJj/8GWwxGCDMveU19F54/06uUu170g+1fVU9vCLU9tXrmDH9MHsxyK4NVmEvhtxL1dr9r8UQe6heVV8PDy0LsZdXYfdD7OQAhdibsdjmfGio+rll/ZMDFk8WsKb6PRW96vcTA0shdjyGdD6IhFMDN2mMYOtfwtS+AOxgFfMeZrBYu1jdDTHu/M+leOXzmfvHv0ps1ge2JzPzjP1PHyF7dPurkpNYIjaBNMUlTUIUnK9OYhEihqT/XNzECWcDrcwLVj3ZIk1Ijx1DnMNfvUKYm8VdvHRL35MxllrtOM7NEkNJt3vm5ldSSimllIbdSimllFJKKbWX9HoX8H4OkN0Pu8uFZVXdtaUK5SCWXr+qu3AeE7p0XSBLLNl+ndUtkIb+nG4x1aHyflC7OKs7hoDESJJmq1d1+wCFqwI2YlXdeCjndPcwjU9gTG9gqxSvgeIhJj/yp2RTcwP7Oi9+Dgu/8KqdXKTaV64Ltd2ytuOurLaF1ULtZVXZWVZVVtfyqu328lbiw/1W4itC7D3eSnwvS9PqZ9lsVicNLJ5QUKtV+1Zrcy5DSOfXEPe8FTdn8h9iGh8Hujv/vexB1lpi7Fd372Qr82X8A3cy909/kzA5Nri2Xsnov/o4tetme2+1JJTVS0NaI2QNQoz4ULUyR0I/6N5k2L3UytwBsmorcwBTy0mPHSO2O4SZWfzlS4TZ2c1/U0CWTWBMQlleoSguEULv5ldSSimlDrl9ehRCKaWUUkoppQ4e52YJsUvppkmSYazNd28xMUDZAt+rWnMvm9XdoUHsV3X7soPzQhChke/Tdt3Lgu5ELAIEe62KK5YOkUj0DpNYTLLK9xmlCt4WA7nFgOzQiZjGZzHJ9MBWcc9Bytcz9tkvU3/i7MC+8vbjzPzqLx3eali1jFQh1VKoXa4eamOqKuosu0movTgfu99WvNHoX+6AtRLfy2y/w0WzUVXIL1bCL1V7L2tzXhYQQXpvIxavX3FTJj2LGfoomOlV7uhwMSbBWEOMoZrdHW99XvRmhBMTzP6zD+LuOTm4vhgZ+eif0vzcV9iuPuuGqro7JDVMklKSVSenRaFqZS5AgjG30so8rt3KfPFizQbJxARhdpbYalOePUvsdDZ3n1TV3Vk2SemmiNFpdbdSSim1Dhp2K6WUUkoppdQe0etdIIaSENpk2cTuLqboV3X7flW3qYLbKIYODQpqdF3Ahh5d76mllmQ/Vj72g27D8qD7WmggAt4VRO+RKCTpGm3Ji6JfqejAWEg2eXB9nzO1L2HSZwa2STiG9N7G0DcfZuRrPxjYF0aaTP3WO5D8kLZ7P7T6oXZcHmr3q7XL5aE2y0LtfOX87Dy/Said9UPtffjadBDZpPq9NJtVm/O8/3tc/F0ZqtfQooT2K4jtdyAy+Fpq7Axm6COQbH+b7L0uMf3qbiLe716LdxluMvef/zrFSx5csa/5+a8z/NE/rd4ft0ESSmKSYRNLmdaJIvh+8C8SMEuHvjfxnryeVuaL6xgbxY6M4KeuIt0u5TOnkXLtgPxm8vwoYCjdFL3es8S4+dtSSimlDgMNu5VSSimllFJqDxAJFOUlnJ8BLFk2dtPrbJvgwbXAdatju9lgVbeIoRszQtmldB4RqGf7sIp5WdCdxurj8fKgGyCWVYgdnMcmCcau8jHa+aqFueu3Oc0yDmX78uyHmPxvBzZJbCLd95I/dYXxT35pcF+aMPX33kEYH9nBRaqdJf3KyDVC7cUZ9wgkdu1Qe/ks7Uataj+uofb+ZcyyNueN6veaZtUM9VqtOsEhRujeg8y9D4lD1129wDT+CLIfrHEHh4OxFmPoz+6OxG2qoF6XPGPht3+FzirjKOrfepj6V7+/LXebhH4InOSEbPncboD+aAMshk2cULXOVuaL0okJTF7DX76C9LqUzzzTf33bOGtT8nyCsriKiKfXe3ZTt6OUUkodFhp2K6WUUkoppdQeUJZXEQm4cposG8eYXfy4Vi7023Z2Ia1Xlcosr+rO6TjBhh49H6lnCXa/tQIWSGK/onuNoFui4J0j+CqMs+kqlWEx9lvv+qoSPkuXfl6HSnIWU/uLgU0iCdJ9N8kUTP7u5zDXtdmd+Tu/QHn3YOtbtV8thtqhCoQGQu1iZaidLs5vrldf2bKZztkqoXazUc3ZzvP+iIBD+Bw7qKytfq9DzSr8XmpDX68eC/E2ZPZXEX904GrGRGz9C5jaX1G1rD6MDNYm/RbmQvR+d5djDZ13v4nWr74Zue5vgqFP/zV2anbr71ICJgZCmiNZHRerIvIYBRAEwZAshd4bv4NsWSvz4iaXNWTHj4O1uEuXiZ0O5dmzm27jnudHEQJlOU23exaR3aveV0oppfY6/XSglFJKKaWUUntAr3eB4NtEKcmy8d1bSPDg2uD68yazxtKuLnWiWNohQ3yXnnNYA/V0/320tNKf0R0tBggmrmhQ6l2BRCF6h03TlVXdItArqnbLzlcteu0hbF9uZjH1T2PMdScL9N6M6R5j8sOfIWn3BvYt/NzL6bz8eTu5SrUlbhZql1WXA5EqxFwr1M5XqdQe7ofaDQ21D600qU5qaDar1vSLVf3ZJNL6daS4b8VVTP63mMYngJsEkQeUtdV7WIwBH+N2jcfekN4bXsrC3/+VgW2mdAx/9M+2pZ15EkqCzbHWUCZ1BMEtjkGQ0D8BzbC5Vub9oDw6CCU3amVeLcaSHj8O3uOvXCXMz+MuXtz4/QLW1kjTMcryCjGW9HoXNnU7Siml1GGgnxqUUkoppZRSapeFUODcNKWbwZiMJBnevcWU8/1Z3T1IG0tVyiJVC/OSjLaPiOviXKSepph9VtVtoyGJYPtBdzQRue5bkBiJzhP7bUtXreperFYtHWD67csPmwLT+ATGdge2SvkqKF/AxO9/nvzi1MC+7nPvYe6XX7eTi1SbslqoXQyG2lGq1uFp2g+1a1WonS8GlZmG2mrjjKm6ZDQa1WOmlkPWQMr3IsXPrLx4+jSm+VEwszu/1l1nsNZW1d0ihLDL1d195UsepPu6Fw9sy584uy3tzJNQIjaBJMFnDUKEMiyG0ovV0Laq8N4oY6qT2NbZyhzA5BnJsWPEbpcwPY2/coUwPb3x+wZqteNEKXF+lm73NLIXzmZQSiml9iD9NKGUUkoppZRSu6woLiIS8G6WLDuye+FxcFCuXtXdo04kYT6k4EtK50gSS57us6Bb+kG3GCwQjRBX+RZ8UVSBtw/YLFv5O/H9kNt7IFbBzKGb0x0xjc9hksEwW/x9SPFGRr/wDRqPPDWwzx0/wvQH3qrh5p5yXahd9iu1i9VC7WQw1K7VqsB6aaZ2rR9q16u21IutqTXUVpu11OZ8CBp1JP48sfc2RAaDS5NMYZofAXOGm1bfHjDWJgjV7O4Qwp6o7gbovPtNhCOjA9u2o515EksQiEmNmDUJIRKiLP0cRMKyVuabqe7eQCvzxas0GyQTE4S5eeLCAuWzzxJb7Q3fdZI0SJIRiuIKIfYoyksbvg2llFLqMNBPGUoppZRSSim1y4riAs7PIwTyfGIXFzJftfz0RRV09wNeEWjTpJCUTgm4Dj5EGqndV1XdRsCGxRbmph90r0wFYgjVl3dgDDa9rhosShUGhlC1fU/TqtXpIWNqX8akg2G2hEmk+w4a33+C0b/69sC+2Khx9UPvQuq1nVymWiL9UNtXXQlWhNq+emybNULtLF9WqV2r2kyvGWonS68fSm2ZNO0/zl6FhN9ApDGw29guZujjwA/AuyqgPBQM1lTV3SJCDHtjtrPUa7Q+8NaBbaZ0DP/en29pO3NDFXiHpIa1CYWpAm0XF3//of96ZDZX3b3RVuZ9yegIyegofnqa2OlSnj6NFOWG775WO0aMXbxboNs5s+HrK6WUUoeBht1KKaWUUkoptYu8X8CHNq6cJkmaWLtLQWAoq4pu1+2HXddChIKcQMKcSyGWFGVJlliy/TSrWyAJhuQmQbcAoSiQGIghkqQp5vqK7aKoDtQ7V7V5Tw7hnO70x5h8MMyW2EC67yU7N8vEx74wuM8apj74dsLR8R1c5GG1LNT2DtxiqN3rh9quqlBcHmrnq4Xa/WC7XoNmHYabS9W1VTW3htpql1gD6X2I+Y8ROTqwy5iIHfkLTO0rUPZnyUfPQa/2tolFRJAYCdHvmepu99A9K9uZP35my9uZJ6EkJhkmsfi0SRDB+cWwW/pfKZiEDXdhub6Vub95K/OldU1MYGp1wpXLSK9H+cwz1YlyG5CmIyRJk7K8jA8LlOXUza+klFJKHTL76MiEUkoppZRSSh08vd4FJDp8aJFlu1jV3ZurAjK3OKv72sHgNkMUYml7g5RdggiNfB9VMgukwWClquoWVg+6AaJ3VStY5zHWYK6v6na+auvs+ge7s4xD177cPoupXxdmi0V6v4Kdy5j88GcxfvBg/uy7fpbigTt3cpWHUwzLKrUdhAgYSJJ+gL1GqF3LoV6vguyhxVC70b9cWl1fQ2215xxBzD9EeGDFHtP8Lmbs82Bc9Xq9+LyIe6PqeasZLNYagkRihLiHvs+daGeehKq9uKQ5IWsQQsSH61qZm8XD4LfYyjysr5U5AAayY8fAJrhLl4idDuWZM2z0bIQ8P4YPLULo0u2e3uDilVJKqYNPw26llFJKKaWU2iUikaK4SOlmAMiysd1ZiC/A96rKbmsHq7olw5MyW2aY6Clcj1pqSew+Cb76QbcBErFV5bZd/SCzCISiJHqPxEiSZYNV3TFeqxKMoQoBzSH7WG3mMI1PYcxgkCLFL0HvJEd/57Ok84NzSVuvfiHt1w5W9qltILEK9axZGWovVmnX+pXaa4XaaVJdX6l9o47wAYRXr9hjsicwY5+Aelk9tqNUgXdR9Kt0D1abc2stEgWRQAh+t5ezROo1Wn93e9uZW4mYGAhJDcnq+MX3+6XbX/xdJ5hNhd2ba2Ve3aUlPXECQsBfuUJYWMBduLChu0/TMaytURaXKN0M3i9sbP1KKaXUAXfIPpUrpZRSSiml1N5RllNEcTg3Q5qOYcwutcPuzVUBri8gaw4UKndoUgRDx1t80UYE6tk+qepeFnSnsfr4G+za4UZ0rpp36j02sZjlc7hFoFdUlbLOVwe+7WFrX15iGp/E2M7AVilfAeWLOPJHf0l+9tLAvuK+25l9989pVfC2EygdVRlhf252rQaNGgw1rgu1Mw211QFjEX6ZyDuQ6zptmOQSZuj3oDZ17eQPa6oOHQPV3nuk7/ctMCbBWkOMi9XdeyfMd89do535176/ZfeRhJJgc5LEUiQ1osiyud2CEKuZ3caw4UPit9DKHMBkKcnx48RejzA1jb96lTC1/nbkxhjy/BjOzxNDQafzzMbWr5RSSh1wGnYrpZRSSiml1C4piguE0CXGHnl+ZHcW4bpVS07XqQLcpL60q5SUkpwZl4J4nOtRzxLsfgguBZLYr+juB93+BkG3CPiyqKq6RbBpNngB56o5m0uBYrbq7Rxcgqn/CSa5MrjV34MUP8fwX/8tQ997dGCfnxhl6oNvr1pgq+3l+gFMnlXdGer16v/TtPq3UofCKxE+iFAf2GpMC1P/fWg8VT0vsrwKvtNssNrbO5C90/57M6y1xFgFu97vre9l1Xbmn9q6duZpKBBrwSbErEGMLJvbTfW7NYbqjL4dbGW+ePVGnWRykjA/T5ifp3z2WUKrte7rZ9kRjEkoyiuU5RVC6Nz8SkoppdQhoZ94lFJKKaWUUmoXxOgoyylcOY0xKUkysjsLKearSiVfrlrV3fXQDSmu7JAYqKf742NkEqsZ3Um0GG5c0Q0QygIRITiHTRLM8oDQ90Nu74FYtXs+ZHO6Tf5VTPbEwDYJE0j3XdR/cpqxP/vqwL6YZ1z90LuIQw3UNguu31Y/g8RWLcq1alsdWvch/EOEiYGtxnhs+sfQ+DYM1auW/lm/A0Jeq07KCQHKxTbnnv1Y7W2MxRhDDKGq8Ja9U9293e3MbXQgQkhqxKxJGSNRIMryVuYCJJvrpHMrrcz7kpFhktFRwvQ0sdvFnT6NFOsLzo2x5PlRnJsmxpJu9+yG718ppZQ6qPbHUQqllFJKKaWUOmCK4hIiAedm+9U6uxBOuW51wNZ1qgP9SW1pl5eEQmrMlAkxBkLRpZ6mu7PODbL9oNv2g+5o4g0PSUuMBOeIvppxatNlB8GjQNGrQpDg+5Wyh6xSOf0JpvaNgU0idaT7XtKLLSZ+788wy37AYmD6A2/F3za5wws9hGKoTsJI+o/LWk0ruZXiaD/wvmfFHssXMfbTkNt+e/9+a/8su67Nuate+/ddm3OzVN0NQthj1d3b2c686uTiCEmOSVO8yRAE56/97kQiZulw+AYD71tsZb4omZjANpqEK1eQXo/y6Wf6J9PdXJ5PAoayvEqvd54YN15hrpRSSh1E+glIKaWUUkoppXZBr7iA8wsInizbhRbmItWs7uCqr3RooFi5TZO2jxSS4YsOaWLJ030QdIshiWDFYqmC7niTZfuyRGJ/VneaDVZ1F0W/za0DY6tQ8TCxFzD1PxvYJGKQ7q9gW3WOfvgz2GLwgP/8W19L7/n37eQqDyeJ1ePSJlU75lq/bflhJ0ImnmHpMSktTsks98pVnhsv8JJ4lp+JT/Mz8Wnuj5dJ93nLanUjzX5L85et2GP4IYbfAdrVc6ZRh2YT6ovB92Kb83SVNud7p1J6LdZajIEQAyHErSia3lLb2c48CSUxyTDG4NMGIYILy39nYWlmt9mFVuYAGEiPHoUkxV26TOx2KM+cWd9VTUqeT1KWU8To6HbPbW4NSiml1AGjn4KUUkoppZRSaod538b7ebybxto6SbILrZ5dp2rF6dpVgJvmS7uCWDpSY65MqgPlrsNQbe9XdRsxJKEKvK1ANHLToDvGSPSe2K/Qsumyqm3nqxbmrh/mZhmHqn25WcA0Pokxg4GgFL8I5e1MfORTpNPzA/s6L32IhTe9cidXeUjJ4Pz4NIE8v+m19jURUiI1PDVc/7+emvhr/9/fvp7KjjF63CGzPMkxnmUc2eOvb2ozEoR3IRzD8PmBV2/DWeDfIHwAOFFVc9t+hXcM/dd/DwnVrGcfr3X4MLbfDSVhb74nLFZ3R7BCDH6wY8kuW2xnPvZ/fGxp22I78/l//Gu3NIYhCQUwjKQ1Yt4ktOfx1iDSz7gRBMGQICaCWKr25us00Mo8oar438R6E0t6/Dj+wgX81auQJIRWi2R4+KZXzfNjlOVVnJum16vRaNyNtXvn96uUUkrtBn0nVEoppZRSSqkdVhQXkehxfp5a7eTOL0BiNavbl9WB+/rYwO42TdplpKCOL9vkiSXb67O6hWVBt+kH3TcvZwtFgcRIDIEky64F+jFCWUD01+Yhmz3+M9hSrgq6bXtgq5QvBfdSxj/zRepPDlaUlXecYPr9v7iYKKht0+80gFQBd5JUFan7lQjJUoi97Evcim3JFreSzgk8Ty5yJzM8xnGmzM2DJrXfGOC1CJPAH2Eol+2ZA/4dwt8BHrx2FZtArX8CSegH3zaApNX7QQhVlbf31fMvTdlrobe1CSFGYoyEEEiSdE+9NC+2M2987YdL2xbbmffesLIaf72sREwMhCTHpjUclhrgYiRP+u/hEsCk1cwNUlj2mLip5a3M01r1OEg3d6KRyVKSiQn8lSvgPHFmZl1ht7UZWXaEorxCnk9SFOdpNO7a1BqUUkqpg0LDbqWUUkoppZTaQSJStTB3swBk2fjOL8J1qxDXtyHJIcmWdkUxtKXGnLP4COK7NOp7/KOjQBoMiVRht7C+oDv6QAyB6B3GGMxiVbcI9Aqq/qe+Cj4OVdWUYOp/ikkuDW71dyHFzzP0jR8x/PUfDewLI0Nc/a13QHaYfk67xC+egJFDYqugey+lWMtYidSXVVznKyqxq33pLs9DHqbg5XKWqzLEY+YEbbOPTx5Qa3gQ4R8Av9cPuStV+P37CG8GXsNAaG1MFWSnaXUClPf994QUiFXnj+Cr94paxt6aFrlY3R2w1hKCJ91D1d1QtTPPf/IMycy1DiFDn/pryufdS5wc3/TtpqHAJXXqicUldYL0cH5Z2E2gOiRuqwrvjd6BzaqwO4aqlfkmw24A22yCtYRWC1PLyU6d6ncMuLE8P4Zz0zg3S6d7hnr9DsyhOiFPKaWUGrS3/spRSimllFJKqQPOuWliLHBuljQdwdrs5lfaShKrWd2+qKrT6oNVRB0atIqAo4Er2zRSQ3ILLUW3XT/otlLN6RaEYG9+6FoAXxRIDMQQSfIcsxhyOFf9bJa3iT5M8q9jsscGNkkcR7rvovbkBcY/9deD+9KEqx96B3FMq2K3XeyHa2laBSK1GtidDzisxCq4HqjEvq69OJ5sI+2Bt5gAJQkFGQXptS+TMiltTrCw4jpHaTMhT3FOjvCUOYozetjsYDmB8B8Bf4DhWmcKg2D4PMJVhLdT9S6/jrVVpXeeVyG3d/125rZ6ryjK6r3C3jyo3CnWWnyoqrtjDIjsreru7WpnnoQSlzXBJsSsQSi7+CDLWpmDSOi3Mg8gCVUAvk5Lrcw9hJJNtzIHsAY7NERst5Aj44T5eZIjR256tSSpk6ajFOUVsnyCorhEvb4LnYKUUkqpPUL/aldKKaWUUkqpHVQUFwmhR4htGrW7d34BZbs/j7RTVSNdV9U9H+rMO0sZBeN71Bt758D9Cv2g2wCJWATWFXQDROcQiQTnMNZiFyupfD/k9h6IVfXsHmtPu63SR7G1rw1sEqkh3feSTJVM/O6fYOJggDn9/l/C3XnbTq7ycJL+/HibVM/bPOu3T946RmTF/OvrK7FzPPlGgqFtUIXY6XUh9mCoXZKuOYf7WXOEI9LmQbnEKMXAPgvcxQwnZY6nOMpZJnSe94EyjPAh4NMYBjtUGP4WmEb4NaCx9k2kSfUVA3R7UDPV+4YrIc0g2RuHWw0Wa00/7E6qcR3p3npPd8+9h95rX0z961vXztxGByKEpIbJm/juFHkCIQppsvhcDmASEIMhRTbymraFrcwBkuFh3MICsdvDT8+sK+wGyPPjdDpP4Nw83e5parXbro1iUUoppQ6ZvfHXl1JKKaWUUkodAjF6iuIy3s1gTEKaju70AqpZ3aGoDtLXRgZ2d6kzX0ScaeJdh6HMYPfqgdNlQXcaq8rWYNdXRSoCviyI3iNRSGv9wD8KFL2qqnuxenYPVeltO3sJU//TgU0iBum+E9MZ5uiHP0bS6Q3sn3/TK+i+7KGdXOUhJVB6ljoNpP15wutkRFapxF45E3u3Q2yHXbUSu/r/xe0JsgXtemfMEN/kXk4xxwNymdp133tG5CG5zB3M8jjHucLwnm0XrzYqRXgvwlEsXxzYY3gG+LcIvwFM3vhmbAKNZvW+galanPsqaN0rc7ytTfDeIxIIEZLVqtZ3Wfs9byL7ydMks9e6LVTtzO8jTo5t+PYMkMSSkObkSYqzGSIBFyPpUotw6X+lYKQ/v3sDDc23sJW5qdcwWYa0W8RGHSlLzDpe39N0iCQZoiwuk2WjlG6KWn500+tQSiml9jMNu5VSSimllFJqh5Tl5eqAq5slTcd3fr6iay2r6q4NzKEWgVlfox0SelFIY5d6be8dFAdAIIn9iu4NBt0AsSxBIDqPTSxmMdAuiirwdovtaQ/RR2bTwjQ+iTF+YLMUbwJ3NxO//zmyS9MD+7rPu5f5t75uBxd5WElVMYpALa/al9dXzpRulfCT84HbbIe7h3rc2Sw5lpc0jSMn7GrsVoXY1yquV6vELkiJO/2aaAznGecSo9wjV7mb6RUTfIcoeamcY5omj3KClqnv7BrVNjHAzxKZxPBJDH7ZnmmqwPvXgHtvfDPWQL0OZVndZjD9wHtvdAYx5lp1tzEJMUbsLow+uBGp12h94K2M/R8fX9pWtTP/s023M09CSZmPYIwhZA2Cb+FCpJFd+7tGJGBMighUh8jd+u9gK1uZA3Z4mDg3RzIRCTMzpCdOrOt6eX6MbvcZgm/T7TyjYbdSSqlD6xB9cldKKaWUUkqp3dUrLuB9iygl9Wx9bSq3TIxQLEDo9Q/CNwfXJnVme5GCJrEsGErtnm2HmcRqRncSLYYq6F5vPZaI4F1J8B5BSBarsZyvWpi7/sHuLGO3Q4qd4zGNT2Hs4AxjKV8E7uWM/vnXaPzk6YF97sQE0x9466ZnqqoN8L56/mZ5NTe4XltRYTw9U/AAV3nvXfM7urSAua7qenkl9rXtYadD7A0KxvKkOc6zcoQH5DInWflznKDDa+RpzssYT5jjlDrP+4B4AcIR4PcwtJa2GnrA7/ZneL/ixjdhDNRqVQBa9P/tXHUCVZ5V7bJ3kbUW7wPWRrwP5Pneez665967RjvzH9B7w0s3fHtJKAGIaQ5ZE1/Ok8aEKLKsY83iSXIJBkE2EnavaGVeVv/dpGRoiDAzQ+x0CDOz6w6703QUa2uU5RWSdAjn5siyjVfDK6WUUvud/mWulFJKKaWUUjsghC7OzeL8DNbWSNOhnV1AOX9dVffy6ia46msUklAEQ0qPPNmbIabtB922H3RHs/6gG8CXJSJCdA6bJhhrqyCxLKoKrRiqoHuPh3NbRzD1P8ckFwa3+juQ4pdofO9RRr/03YF9oVnn6ofehdQ237ZVrVPw/Zb6WVXRXatXgXdfw3c50p3izWMLN7iRTdztUoi9+kzsxepsjz1Qrb17JuPH5nbOygQPyiXG6Q7sN8DtzHFCFniaSc4wsfPV6GobnEL4j6kC74tLWw0Rw2cRriC8hWqi+w1kafV8KHrViUCFq2Z5ZzLQSWWnGWMxJhJjwBhLlIjdg4/b1dqZNz/9Jcrn3bvhduZWIiYGQlIjyep46cfZXqhli69ZghAxJIgJIJZrAfg6JMtbmd9a2E2WYhoNwkKrqvJutbHDN/870RhDnh+n1ztLHnp0u6fJshdvfh1KKaXUPqVht1JKKaWUUkrtgKK4iMSqhXmttr6KnS0TA5Qt8N2q02bWGNjdlRpzPaEnNcSXDCWy8y3W18GKIYnVfy1V0B03kLNJjETniL5qV2vTrEr6ewWEWFV322RXQ4kdl38Lk/1kYJPEUaT3K2RnrzDx8b8c3Gct0x98O2ETc1TVBsVQtUO2SdVSv5ZXs7qBUelyW3mVu7MWbOC8GRcNl4qcy0XO5TJnzqeYNGWobhkfMpg0oSA7cCH2Rs2ZBt/mbm5jngfkMg0G2/unRJ4jV5bmeV9i5FD/vA6GUYS/D3wCw08H9hi+CUwj/B3gJoFmmoBtVO8rtX6Ft3OQ7OYcb0NiLT4EkiQSfMBme+89frV25rbYfDvzNBS4tE5mDS5tEGIPFyK15d+7BDBZf2Z3CpTrvwOz9a3Mw5Ur4DxhdmZdYTdAlo1TFBer6u6kjvftnT+hUimllNplh+gTvFJKKaWUUkrtnl7vAt7PAUK20y3Mi4Wqetl1q8qj61qqXilySrEUwZBLQZbuvYPgRgw29INuMUQjGwq6AXxRVIG399g0q9q0lyWEUFXfYfrtyw+J9Als7csDm0QypPte7Gzk6Ic/h/FhYP/su3+O4v47dnKVh1Tst9S31WMyTyHLGJEu98arnDAtWOOhernM+e78GI/ONzjfq4LtS0XOpaLGjEuRNcIYg3DvmOf5k44XTDruHfMke++lYOcYw0XGuMwIdzPNPXKV9Lo+Eg0cL5ZnmaXBo5xg3jTWuDG1P+T9Od1/heErA3sMjwP/DuEDwPiNb8ZaaNSrwBtTVf96X51ctUsjMoy1VaVzjEAkSffmFIqtbGeehBKXNRGbEvMmodvBW4PI8nNTIlVIbfvzuzcSdm9xK/Nmk2AtodXC1GpkJ0+xnhdhYyx5fpSiuEgtv41u9wwjI8/b9DqUUkqp/UjDbqWUUkoppZTaZs7NEmIX52ZIkmGs3cH2z8GDa1Xty2HFrO5OTJlzVXV3jJ6hLLLnZlULJAGSgaB7I83LIYZQfXkPGGyWVDO6y34IQX8m8l773reLvYKpf25gkwhI951QHOHo73ycZKE9sL/12hfRfs2LdnKVh5RU7Y8BalX78uEscl88xwkW1nyIXuzlfLt3nPr4EOlxy4NHIZ1NWZjKaF/NmXY3PgQkGJ6ay3hqLuOzT0EjjTx3wi2F38eaG2jve4BEY3maozzLGA/IFU4xt+JXME6XV8szXJBRHjfHKcwhOmnmwDEIv4hwFMNnMIRley4D/wbh14G7bnIzpgq8y7IqFja2P8e77M/x3ukzSQzWJoQYSKwQg8eme/Ow8Fa1M7fRgQghybFZA9ep6vJdjOTLQmSRfitzAtWhcr/WTa60la3MrcE2m8R2GzkyTliYJxkfX9dV83ySsrxM6a6QFDWazftIkltYi1JKKbXP7M2/apRSSimllFLqAOkVF4mhxIcW9fpNDpBvtcVZ3b4HaX3FAfbLvRwfE3oxoUGLZK+VegmkoT+nuz9zc6NBtwBhsao7BJIsw0Squaoh9GcipwNzzA8008Y0/hhj3MBmKX4W/H1MfPzPyc9dHtjXu/8OZt/1szu5ysPLOSBCnjOUBO6rz3Eba8/kvlJkfOzSKSZPNJmYuLY9s/DQhOehCc/7ntNloTQ8MpXx8FTGI1M5c8WNw7aut3zvco3vXa4Ck+PN0A++Sx6a8DTSjT0P97vSZDxiTnFWjvCgXGaCzorLnGSe47LAMzLJM2ZS53nvay9BOAL8AWbZ77r6/99BeBfwkpvfTJ5Xld5FUQXgpasC8Czb8fccay0xBmIM+GBIknRPdt+/YTvz//zX1j0ywFBVd4c0J0lTgs0J4nF+MOyGUHW8EYshRTYSdm9DK3PfaiG9HmF6et1htzEJWTZJWV6llh+n2zvD8NBzNr0OpZRSar/RsFsppZRSSimltpFIoCwu4fwMYMmy0Z278+ChbFfty2FlVbe3zLuETswgBhrpHqvqXhZ0J2Kr0NpuPGCL3hFjJDiHsdVcYroFRKmCRWOrmciHgsfUP42xg+GpuBeAexUjX/oOze8/NniNyTGmf/NtkBySkwF2U/AQA83ccF99htvSzprPyKky5d+cvoNWY4w33l3etCXxSC68+mTJq0+WiLQ530p4uB9+Pz6T4W4yF+ByJ+FyJ+FLZ+skRrhvzPP8o1XV992jfk+2RN4OC6bBd7mLYyzwoFymyeBJIwnC/VzldpnlCY5xgTGd571v3YXwHwG/h+HK0lZDwPBJhKsIv8BN3zfTtAq8e/3A2zlwZbU92ckuAAZjLTFGrBVC8KR7tLp7zXbmX91YO/MklJTpCMYYQtYg+Hl8kOtamQuCVNXdJoJYqvbm67DFrcxtvY7JMmKrTajXEecw6xyvkudHKcsrlG4K26vRbNyDtdplQiml1OGwN/+iUUoppZRSSqkDoiyvEsXjymmybAxjdjAwLOZA+lXdWWNF4HKhl+PFUEhGw3ZJ9lIg0w+6DcuD7o23Ua6qukuiD0iMpLUc40LVwtz1Q6pdmqG68wRT/wtM+uzg1nAK6b2Z+iNPM/rnXx/YF2sZVz/0TuKQziLedjHQiD3uHe5yMuuuGR7PupR/ffp2vjh7nA+8oMPJoQ3MmO0zBm4fCdw+EnjLPT3KAE/MZjx8tQq/n23d+HBREMPjsxmPz2Z86gkYyiLPW2x5ftQxUT/gLc+N4QqjXGWYu5jhXrlKdl04VsfzQrnAXczwKCeYNc01bkztbUcQ/gHwRxieGNhTzfWeQXgfcJMq/uvnePv+CI24s3O8E2txMRJjJMaAyN6s7oataWeexOr1MSY5Jm8SijkkgRCFNFn2jUsAk4IYqsPlG3hdHWhlXtxaK3MDdmiIOD9PMjFBmJ4mPXFiXVe1NiPLJiiLq9TyY/R6z9Js3rP5tSillFL7iIbdSimllFJKKbWNer0LBN8mSkk9u2Pn7ji4ak73YlV3OhhWtkpoh4xWzDFEmtaxZwJfgaQfdKexChA2E3QDxNIhIkTvMInFYKDsVS1HY6hChsPSajj7Dib78cAmiSNI992kF2aZ+L0/Z3mHeDEw/YFfxp+Y3OGFHj51Su7NZjk13Fsz5J53Cf/2zO18+OxJ3nSP4796ZYtkix66eQLPn6zC6l8FZnuGR6YzHr6a85OpjAV34ztqO8t3LtX4zqUq5Dk55JdmfT94xFE7oEefxFhOM8l5xrhfrnAHsyteRUfp8So5zSUZ4XFznK7Jd2Wt6lbUET4AfB7DNwf2GB6mCsR/8eY3s3yON1QB+I7P8bZYY/pht61Ge6R7s2vHVrQztxKx0ROSGmlWx2MQEVyMpAPdShbnddv+/O4NGGhlXs0Jv5UzCOzwMGF2ltjpEGZm1x12A9Rqx3BuCudm6XbP0mjchTksf+MopZQ61A7oxw2llFJKKaWU2n0xFjg3TelmMCYjSYZ37s57i1XdRdW+fPmBV4EL3ZwygJOcpu1h90ppl0ASDRZIbjHoFgHvCqL3iAhpmlVVdSGC89W8VHtIPhYnT2Fqfz2wSSRFuu/FtixHP/xZbDnYjnnul19P73n37uQqD52a8dybzXN72loz5G75hH935hT/9sztjNThv3xli7tGw7aua7wuvO5UyetOlUSBcwv9ludXc56YTQly49eLC+2UC+2UvzzTIDXCA0c8z58secGk446RcOBanjuT8lNzkrMywYNyiaO0V1zmBAsckxanZYKnzSRhJ7t8qC1gEX4Z4SiGP8Esi0MNX0G4E3hwfTe1y3O8bZLgnUckEqLHSrJnq7u3op15EkpcWic34LMGQXq4IDSu6/AtEvqtzANIQhWAr4MxYLNrrczDrbUyN1mKqdeJrRZxeIjYbmOHhtZ1XWtrpOkYRXGJLDtCUVykXj+16bUopZRS+8Uh+VSvlFJKKaWUUjuv17uISMC7WbJ8ErNTR5N9Cb4LZbc6CJvWB3bPlYEuNdqSYw00TMleqeq20p/RHS0GCCZurMJqmVAWSBSC89gkwfgAIVTBAqbfOvYQsFcxjc+uCDOk9w4oJ5n83U+SzswP7Gu//Lm0fu7lO7jIwyU3gXuyee5IF0jWeOp1guXDZ0/xr0/fzqxLees9PX7lgQ7ZDYr0ymwYl42Ql7Nkvrsla7UG7hoN3DUaeNu9PQoPj81kS/O+L7ZvfGjJi+Gn0xk/nc7448dhJI/9KvIq/B6rbfYZvve0TY3vmbuYlBYPyiWGr2uFbBHuZWppnvd5xpG9mjKqNbwS4QjwUcyy1vWGTyD8J8D4+m5mcY53twc1U83w3qE53gaLtVV1tzEJMQaSZO+efHGr7cyTUOKyJjFJMVkT3+2QWkMUrjvxJlRV2mIwpMh6w26AJK1C7q1oZU6/unvqKvhAmJldd9gNUKsdp91+HOfn6HSeoVY7uXN/fyqllFK7RMNupZRSSimllNomRXER5+cRAnk+sYN3PFcdcPU9qA0PVHVHgUvdnDIInpxhU+yZqm4bDUkEK1XQHU3kJgWka6pCbkf0ARCstVVVt/dAhCxnrwT828p0MI1PYMxg6BaLN4B7gPFPf5HaU4MzvIs7TzDzvl+4pTasanUZVch9Z9YiMauHvL1g+Q/nbuNfPXMHUy7neDPwz182zwPjftXLC1DUJlgYvYeifu11ptabYrh1jnr36kAV6q2qpfCiY44XHas6AUx1LY/0g++fTGV0/I1b5i6Ulm9eqPHNC1UYdMewX5r1/ZxxR7Z3M7d1mzLDfIMh7mCG++Qq+XWhWU7g+XKRO5nhMY4zbXaw64faAvcjvBnDny9tMfSAjyP8Nus+3GotNBpQ9IC8en/aoTne1lq8D1gbCWFvh91rtjP//T9j/h/fvJ25jVVr8ZDUSPImvi0IgvOR2sDZQ9L/SsBIf373Ol87t7iVedJsEqYtobWAqeVkp05Wj5f1XDdpkiTDFMUVsmycsrxCrXZ802tRSiml9gMNu5VSSimllFJqG3i/gA8tnJshSZpYe2tVPuvmelXI7dpVO9RksKp7thvoMkw7ZiSpoW7dGje0s6wsBt1VZXc0QryF4/zeVVXd0buqqrsoqqru4PsVdXv3wP7WCZj6pzF2bmCruOdC+WqGvv5Dhr85OMPbjw4x9VvvhEwPF2yllMDd2QJ3ZQuka4TcRTR89Nxt/B/P3MHlsnq9+Pk7e/yd57RXnXktQLdxnIXRe3D56Mrbq09S1CdJfI+h9rMMtZ4lieXKG7pFk43IG+8oeOMdBVHg9Hzab3me8dRcSrzJGSvnWinnWimfP90gs8KDR9xS+H1qKOzbcy7EGM4ywQXGuE+ucifTXB9VjVDwCjnLFRnmMXOcjtmh9wm1BV6NcAbDT5a2GJ4FPo/w9vXfjDVV4F0WgKn+7RwUArUMVjxqtoYxCcZGYgwYY4kxVieF7VGrtjN/bH3tzA1VdXdIMtIkISQ1QvS4cH3Y3W9lblJEPJAAq59ktPJOtraVOYnFNpvEVhsZHyfMz5OMj6/76rXaMTqdpwm+Rad7WsNupZRSB55+elVKKaWUUkqpbdDrXUCiw/sF6vXbd+6Oi7nqYKsvoTYyUBgWonClSOkF8LbOiHVbWvG5WUbAhsWg2/SD7s2vS2IkOk/0VZCfhFhVyjkHxlbtRg88wdT+EpOeG9wabkN6b6X2xDnGP/M3g/vShKkPvZM4uv52qerGUiJ3ZfPclS2QrfGYLqPhD8+f4F8+fScXiiocOVIL/PYL2zx/cuXJKIKlPXSShZG7CVnzpmsIaZ35sfuZH72XRvcKQ61z1IqZbakZtQbuHfPcO+Z5531dut7w6HTKw1dzHp7KuNK98UkmLhoensp5eCrnY4/BeC3y/Mmy3/bcMZLv/uvVRnmT8Jg5wTk5wnPkEsdprbjMMVpMSotzcoQnzTG8zvPeBwzCu4FLGKaXbf02wl3ACzd2c3mtOgmrx7U53sX2zvFOjMWHgE0i3gfyfO+G3XBr7cyTUFKmI2AtIW8Silm8NasUYC+2pk8wZMh6w27YllbmvtVCioIwM7OhsDtNR7G2TlFcJkmHcW6GLDtyS+tRSiml9rLD8AlfKaWUUkoppXaUSKxamLtZALLs5jMlt4TrVgdafReSBJLBA60zHUePI3QlJUsNNYqdWdeNCCTBkPSDbrnFoBvAF0UVeIeAxYAPVdAN294ads/IvofJfziwSeIw0n0PydU2k7/7J5g4+HOe/rU34+44sZOrPLASIndlC9ydza8ZcvsIH79wgv/t6Ts517vWgeG1p3r83Yc6NLPB60WT0B6+g4WRu4jJDUKUtdrnGku3eYJu8wSpazPUOsdQ+wJWNhDmbFAjFV563PHS49Xz73JnseV5zqPTKd2btDyfLSxfO1/na+frGIS7RsPSrO/7xz3p3s7mBnRMzg/MnRyRNg/JJUaue/21wF3McFLmeJJjnOOIzvPe82oIvwb8W8yyUNTwGYTbgKMbu7k0haa5Nse7dP053tm2nKRlrMXEUM3uJhJF9sxYk9VIvUbr776VsX+18XbmaSgoGSHaDJs18L1ZaoCLkTwZbGUuRAwJYgKIhWWz2W/IJNUJdVvUytzW65gsI7ZahFoNcQ6TrX+ee612nG73DCF06XROMzamYbdSSqmDS8NupZRSSimllNpipZsmiqN006TpGMbswEcvESjm16zqdj5ytczphkiwdZrWY2SXqyQF0lC1LbdiEIRwi0F39IEYwrKq7lAdeI6hCrrNPkrHNit5BlP74sAmkRTpvgfTyTj64U9gu4NB2/wvvIruSx7cyVUeSJbInVmLe7J5crN6QBIEPnnhOP/L03dyuttY2j6SR/7e81u87PhgNXewOa2RO2kN34HYtYOO1LUZWThNo3OJbuMY7eE7KGvjq17WZ0PMHXmI+bEHaHYuMtQ6R+4WVr3sVjrejBxvFrzpzgIf4Zm5fsvzqYxn5lLkBieiCIbT8ymn51P+9GmoJcJDRxzPP+p4wWTJiWbcFy3PZ8wQ3+BebmeW++UKtevmeWdEniuXluZ5X2X4lgIztd1OILwdw6eXthhK4A8R/iMg39jN2QQazf4cbwPOg+8Hp2nK1p6sZbA2IcRAYoXoPXYDYepucM9bo535135A7/UvXfN6BsFGj09qZHmdgCWI4ML1YTcgAUzWn9mdAusc/2AM2HTrWpkbsENDxIV5kokJwuws6bFj6756mo5jzAXK8gpJ0sD7BdJ0ZPPrUUoppfYwDbuVUkoppZRSaosVvfOE0CXGHrXayZ25U9+v6nbtqgLsugOsUx1HYY7QjSlZnpLL9gdbN9QPug2QiEWAYG8t6BYglAUSAzFE0hghxiossEl1EPqgM9OYxmcw1500IL1fBn+cid//LNnlmYF93Rfcx/ybX7OTqzxwLJE70hb35PPU1gi5o8BnLx3lf37qLp7sDLYff/nxgg8+vz3QptsnDRZG76I9dKqqGFxDVs4zMv8Mje7lpRhsqHORoc5FymyE9vDtdJonkVVaIYtNaA/fTnv4dvJijqHWOZqdS5j1VjLegtTCA0c8DxzxvPuBLm1n+Gk/+H54KmO6d+PWzUUw/PBqzg+v5sAQk/WwNOv7uROOoWwPtzw3hmc5wkVGuVemuItpkutGSgxR8jI5xxRNHuMELVNf48bU7ntZf37395e2GK4An0N4DxsOqK2Beh3KsrpuMFXgHSPk+cZv70Z3ZS0xBkIMYAzJrRUj74hV25l/6kuUz71xO/MklLi0QW4gZg1C7OC9INlqrcwFsP353esMu2FbWpmH2Vliu0OYntlQ2G2MoVY7Tq93nlp+G93uGUZGXnBL61FKKaX2qkPwSV8ppZRSSimldk6MjrKcwpXTGJOSpsPbf6ci0JurDrAGD7XRgd29MjDnM9peIG3QMA4r2x9mrWlZ0J3GqqIq2FtfT/SOGCPBOUwIGKFqA4vpty8/6HqY5icwZrBqW4rXgn8uY3/2FRo/fWZgX3nbJNO//pYqXFEbZhDuSFvcm81Ts2HNy/3l1SP8fx+/h8fag/PQm2nkA89r8+rbyqWwpcyGWRi5h27zxA1Tp1pvipH509SK6TWjr9wtkM/8lLHZx+kMnaI1fAc+W30me1kbo6yNMTf+HJrt8wy3niUN3Rt+/1tpKBNecVvJK24rEYFLHbs06/vR6Ywy3vgxOtVL+PKzCV9+tmp5fu+YXwq/7x31XF+8uRcEk/CEOc45Gec5coXbmF9xmUk6vEae5lkZ50lzjHInOoWoDRPeDlzAcGlpm+GH/fndr9j4DRoDtf4c76L/b+egKCDPbngCzAbvqB94R7BCCJ403duPsc22M09CicuaiE2RvEFot5EEQhTSZPA6Iv1W5gSqw+frHPewxa3MTZZi6nViu0UcHiJ2Othm8+ZX7MuyCYriUr+6u0azeT9JoifOKKWUOnj29l8vSimllFJKKbXPFMUlRALOzZLlRzA70TbbdaoDq64DSQbpsrapAlfbJR05QiEZWZaRSWv717QWgST2K7r7QbffgqBbpJrVHb1HfCAVqWZ1EyHb2kq4vSlUFd12sGpb3INI+Tqa3/0JI3/9t4PXGKoz9aF3IbUNttlVGIRTaYv7snnqNwi5vz8/yv/jkXt5pLWydewLJkt+6wVtJuoRAYraOAsj99Br3GDOrwiN7mVGFk6TlyuD0bVYCQy3zjLUOktRO0J7+A66jWOrtvWPSU5r9B5ao/dQ615luHWOeu/qjj6DjIHbhiK3DfX4xbt7uAhPzaY8PJXz8NWMMws3PpwlGJ6ay3hqLuOzT0EjjTx3wlXh96TjWHMXT/ZZRc/k/Mjczhk5wkNyiTF6A/sNcAez3CbzPM0kZ5ggHoaRDPtKhvCrwL/utzGvGP4U4RSwyS4vWVo9IYpedVJS4aqTuDLZsm4lVSvzWJ0sFgJJku756u7NtDO3sQqfQ1LD5E1CSxARXIykyfUnD4QquBaLIUXWHXZvcStz+tXdU1fBB8LMzIbCbmMsWTZJWV6mVjtBt3uG4WEdWaKUUurg0bBbKaWUUkoppbZQUVzE+QUET5Yd2f47lFjN6vZFVdVdH2zh2SodnZjT8QaTNsiNx8ra4dx2S2I1ozuJFsPWVHQDROdAqv9a7zGY6ueRplVl3AFnal/CpKcHtkk4gfTeRn76Ikf+6C8H91nL1AffQZgY7AKgbswgnEzb3JfN0bhByH22aPL//Ok9fPHKxIp9NRt5/0Mdfu6OAgx060dZGL1nzfnaAEhkqH2B4YXTZL5zC+uHejFDvZgh2LxqYT50OyFdvdKvaBylaBwl8V2GWs8y1D5PEjfQ0neLZBYemvA8NOF533NgoTQ80m93/shUzlxx4+C36y3fu1zje5er0Ol4M/Dmu7v83B3Fngr15kyTb3EPtzHPc+Qy9esCtpTIc+QKtzPL4xznMiN7v+f0oTKJ8G4MH1vaYgjAxxD+EbDJito0AduAXgG1foW3c5Bs1RxvgzVVdbe1lhgCSbr33zfb795YO3NDVd0dkpzMJoSkRhCPC0JjRfMXQRAgARNBLKx3vMMWtzJPmk3ClCG0W5jZnOzkSbDrP9klz49Sllco3RS2l9Ns3oO1epKbUkqpg0XDbqWUUkoppZTaIt63cX4O76axtk6SNLb/TstOFeq6DiR5VdndFwVm2o62jFNKQp5lZNLe/jWtwfaDbtsPuqOJbMVUXRHBl/2qbudIjKkq34ytDjofdNn3Mfn3BjZJHEK67yGZ7TH5O5/DhMGD9LPveRPlfbfv5Cr3OeG2pMP9+RxNu3aF31Vf58PnTvEvnzhJXCWAemC04O+/qM2xIeg0T7Iwejc+W3vUgYmeodY5RlpnSUKx5uU2I4klo/NPMzL/DL3GUVrDd1DUJ1e9bEgbzI8/wPzYfTQ6lxlunSMvZ3etX8JILrz6ZMmrT5aItDnfSpZmfT8+k+Fu0vL8cifhIz8Z5tlWygee295bXfyN4SJjXGaEe5jiHplaMc+7ieMl8iwzNHiME8ybHXivUev0fIRXY/jm0hbDDPAphF9j08G0tdCoV4E3pqoc9r5qa5Jlm7/dxZtPLN55JEZC9FhJ9vx5FNLYeDvzNBQU6ShiLZI38cUsqTVEWWWah4T+zG5DdQh9nSf6bHErcxKLHWoSW21kbIwwP08yPr7uq1ubkucTlMVVavkxer1naTbv3fx6lFJKqT3oEHzqV0oppZRSSqmdURQXkehxfp5abZMtSzdisao7FFUFUWOwVfJ819GNGW1vsVmTzEaSsM5WnFvMiiGJ1X8tVdB9kzxq3UJZIiKEosCKXAt2tyAA2POSM5jaXw1sEkmQ7nswRZ3J3/k4SWuwEnjhdS+h/eoX7uQq9zHhRNLhvnyO4RuE3NOhxrcWJvj//OQOTrdXVvGlRnjP3bP84gNCd/QOLo7cvWY1NYANJcMLZxhuncPK9j5nDUKje4VG9woubfarvU8hdpU598bSHbqN7tBtpK7FcOsczfaFXe0WYQzcPhK4fSTwlnt6lAGemM14+GoVfj/bWvvQ15fO1ikDfOgFeyzwBqKxPMUxnmWcB+QKp5hbcZkjdHm1PMN5GeMJc4zCrPI7UztOeDPwLIZzS9sMP0X4OvC6zd+wMVXgXboqdzW2P8e77M/x3nxre4PFWkOQiInJvqnuds+7l95rXkT9Gz9a2najduZJqALraHPIm4TuDILgfKSWXf/zW5zXbfvzu9dpO1qZDw3jW5eQoiDMzG4o7IbF6u4pynIaa8/SaNyF2bK570oppdTu07BbKaWUUkoppbaAiFQtzF0VSGTZ+Pbfadm+Nqs7zQfmd4YozHZL5uM43iTkeY0s7lJVt4AN/aBbDNHIlgXdEiPBOaIrMWVZVXXHUAXdB32mrZnBND6NMYNV29J7K4TbOPKxPyN/9srAvt4DdzL3zjfu5Cr3KeF40uW+fI4R69a81GzIebwc5w/OHeWTZ47gZeUD+65mwd9/3gKjd9/L5dG7iMna7WMT32Vk4TTN9nms7Pxc6cx3GJ99nNG5J+k2T9AavgOXr2wHDOCzYWaPPJe5sQdodi4y1DpH7lo7vOKV8gSeP1nN5/5VYLZneGQq5+GpjJ9MZSy4wdeFr52v46LhH7ywRboHXzIKk/GwOcVZOcKDcokjdFdc5hRznJB5nmGSZ5jUed67LkF4P/B/Ypb9vgx/gXAHcNet3Xye9ed3F1WwWjooy+p97xbGdlhr8T4gNhAiJOyPMLT9np8n++kzK9uZP+9e4sTg65dBsNHjk5w8qxFMQozgYqTGyueNEKug2wSQhCoAX4ck29JW5rbRwKQpsdUm1GqI85hs/Yf1ra2RpmOU5RXyfJJe7wKNxh23tCallFJqL9GwWymllFJKKaW2gHMzhNjDuRnSdAS7WlXkVorXVXXXBmcvz3ZKypjSCZak1iQ1ERvXDu220+Kc7mtB91Y0L6/4okRiJHa7VdDtQ3Ww3x70j7sFpvEJjOkNbJXi1eCfz8hffYvmDx8f2Ocmx5j6zbdBokHY2oSjSZf7szlGk7WfL3Mh50k3xk/bQ/z7J47y+MLKKm2L8J57O7z6xSfpTryS+Rs8JtOyxejCMzQ6lzBb0tz/1tj+jPCh9gXKfJTW0B10midWDdLEprSH76A9fAd5Mctw6yyNzuU98X0AjNeF191e8LrbC6LAty7m/N8/HiYsOzHh2xdruGD4Ry9ZYEVx5x4xbxp8h7s5zgLPkcs0GXx8Jgj3y1VuZ5YnOM4FRnWe964aQ3gf8JGl/iLVc+LjCP8JMHRrN5+mVWvzXj/wdg5cWW1PNvf3hzEJ1kZijBiTLM3w3uvWbGf+e3/O/D/+1RXPgySUuLSBMRDzBt61SaxZvdu4BDAZiMGQIusNu43d2lbmBuzQELG1QDJxhDA7S3rs6IZuolY7Trv9GM7P0u2epl6/HaOvEUoppQ6Ig/7pXymllFJKKaV2RFFcIIaCENs0andv/x2WC1XI7TpVxdCyEMr5yHzPMxdGEJOQ5XXS2Nmdht4CVsBIdcB8K4PuGCIxeGK3i4mCDQKYfvvygyxiGp/FJNMDW8U9gJRvoP7jJxn7/DcGr1HLmfrtdyHNtVtnH27CZNLj/myOsWTtuazzIeNJN8YV3+BvLo/wsWfGKeLKMOh5xw3v/5lJ7PE76NygyjYvZhmZf5p6b2rPNtzPy3kmykcYn3uMdvMU7eHb8dnqQV1ZG2e6No4dLxlqP8tQ61nS0Fv1srvBGnjNyZJGssC/+sHIQCX+96/k/MvvjfCfvXSB2l4taDWGy4xylWHuZIb75Copgx0A6nheKOe5k2ke5QRzprlLi1XwAPCzwN8sbTEsAH+E8EFYpZJ4Q66f4+37c7zj5ud4L1Z32yTifSDP937YDWu1Mz+9ajvzJBS4rEm0GTZr4ss2NcBHIUuu/5lFQIAEjICY/r9vYjtamQ8PE+bmiJ0OYWZ6w2F3kjRIkhGK4jJZdoSivES9dtstrUkppZTaKzTsVkoppZRSSqlbFKOnKC7j3DTGJKTp6M2vdEt3GKBsge9V1ULZYJgx3XGUktCRjLQ+RIKQyNoB3nZK+v3KqzndW1vpGcoCcZ5YlqQiQIQs56DP6Ta1v8akTw9sk3AM6b2d7MIUE3/w+cF9xjD9G7+MPz6xk8vcJ4QJW3B/Psv4DULuhZjxVDnG5dBgpkj58JMTPDzXWHG5O441eM+rJpk8eeyG91rvXmFk/hlq5co5zHuVjZ6R1hmGW2coahO0hu+g1zi2arViTHIWRu9lYeQe6r2rDLXO7alA/yXHHf/k5Qv8y++NUC6bqfDwVM7/8rej/JOXzVPfw0fMorGcZpLzjPGAXOF2Zlf8bMfo8TNymosywuPmOD2zdvt8tX2EnwPOYXhqaZvhaeCvEX7+1u9gaY53//XL3tocb2MsxkRiCBgsUSJ2n7TFX287cxs9iBCSHFNrEltCFKEMgSxZ+cQXCctmdieAX9+CtriVuckzTK1GbLWJQ0PEbhfbWPk+dCO12jE6nafwboFu57SG3UoppQ6M/fHXilJKKaWUUkrtYWV5GSHi3CxpOo7Z7gPDi1XdfmVVd7cMdErPrK9jrCVJ66Sxt2tV3UbAbkdVt/dE54mdNkYEE2K/reteLcncItmPMPl3BzZJbCDd92BbnskPfwZbDrY3nnv76+k9954dXOT+MG57vKJ+mVc0Lq8ZdLdiyg97k3yjexuXfJNvXBni//WDkyuC7vtvH+EfvuN+/uGvPHftoFsizfYFTlz8Okev/mBfBd3LGaBeTHN06ofcduErjMw9hQ3FGhc29BrHmDr2Mi6efB0LI3cTtnvEwzo9f9LxX718nloy+Lr02EzGv/juKB23V6L5tTmT8hN7km+Ye5laoy32bSzwOnmKB+JlEllnC2a1hSzC+xBGrtv+N8ATW3c3eQ6NGqRJ9f9QBeBxo79zg7WWGAUQgt8/j5nFdubLLbYzR649zw1VK/OQ5BhjiWkNHwUf1vobJfZP6kkwbOD1a6mVubvWyvwW2eFhYrcDIRBmZjZ8/TQdIUmalOVlfGhRllO3vCallFJqL9CwWymllFJKKaVuUVFcxLsFopRk2ZHtvbPgq6pu1606aS6v6haYbpf0vKEnNbLaMMYIiawRRG0zKwZD1cZ8K4NuoT+ru9cjhkASYlXNtkpF1oGSnMPUvjCwScQivfeAG2byd/+EdGZhYH/7Fc+j9caX7eAi974xW/Dy+mVe1bjMRLL6c6MTU37Um+Tr3ZNcCkMsuIR/9dhR/q8njtIJ1aEUY+AF947zj97zEB/85Qe447Y1OjrEwNDCWW678DUmph8mc+3t+tZ2XBoKxuaf4uT5rzBx9YfUetNrXjakTebGn8OFU29keuIFFPnYrk/1fnDC89+8cp5mOtgK/Km5jP/hO6MslHs/8AZomTp/a+7ke+YO2qys4E4Q7mWK18uT3C4zWxK6qY0YQng/suy0MwMY/hjYwpNe0hQaDUgSqOVV335XVkHrBlhrMQZCDIQQifvo4bLYzny5/LHT1L7+w4FtaSiINkWsJeZDhCiIsEbgLQgRg+2H3us8nG5Mv7rbA1JVd9+iZGgIMIR2mzAzCzHe7Cor5PkxfGgRQpdu9/Qtr0kppZTaCw74kQCllFJKKaWU2l4h9CjdDM7PYG2NNF29um7LlAvVwU3fhbQ+0KK0VTrKEJmLDZIkwaQ10ljs3qzuWAXesMVV3c4hZUkoC2yMGGM2PZ903zBzmPqnMGbwwLb03gL+FOOf/CtqT58f2FfcdRsz7/v5VdtMH0ajtuD+bI6j6dozpLsx4Sk3xgU/tBRMfX+6we88NcGCq7oGJInhpQ9M8LoXn2BidO22tCY6hhfOMtw6SxI3FjbtNwah2b1Ms3sZlw7RHr6d9tApxK5y2MlYOkMn6QydJCsXGGqdo9m5iN2lquN7x6rA+198d5SWu/Z6emYh5b//9ij/9SvnGa/tg7TPGK4ywhTD3MEM98sVsuvmedcIPF8uciczPMoJZsw2v1+pZe5C+CUM105YMnSBjyP8NlV77C1gbRV4Fz0gr2Z4b3iO92J1dwQrxOCx6f45hLxaO/OhT34R99x7ltqZJ6Hq5hFtTpI3iZ1pRAQfI2myyu9CApisP7M7BdY5Gsam4It+K/Oy+rvtViQWO9QktlrI6ChhYYFkbOzm11smTcewtkZZXCJJGni/QJpe33lAKaWU2l+0slsppZRSSimlbkFZXgWJODe3M1Xdrg2uU/07u9ZKOQpMtx09JxQ0SGtNDIZ016u6DbKVVd0CvttDuh3EB6wAWbrhuaT7S4lpfAJjuwNbpXwl+Bcy/LUfMPzthwf2+bFhpn7rHVWl3yE3bEteUrvCqxuX1gy6uzHhkWKCr3ZPcd4PIxg63vDvnpjgXz56jAWXUMssr3/xcf7pr72Ad77hrjWDbut7jM0+xsnzX2Fs/qkDH3RfL/Ntxmcf4+T5LzM+/QhZubDmZV0+wuzE87hw6o3MjD+E2+6ThdZw12jgn79qnrHaYDh8vp3y3317jOne/nl9EWM4ayb4inmAMxxhtbrPEQpeKWd4STxLc5feIw6n1yI8d2CL4dxAAL4lrKkC71oOaVaF3DFUc7xXfUSschO2mlEdYySEsK+aAaynnblBsMHhkxzSnGASgoC7USvz6pYwZgPvq9vRynxoGClKpCg31crcGEOeH8P5eWIo6HSeueU1KaWUUrtNP/UqpZRSSiml1C1wfpYQukDc/sqYcr4/q7sHaWMg4J3vOnyIzPo6aW4hrZNKgdmNRsHbWdVdFtDrEXyoqrrTtKqcOrAipvE5THJ1YKv4e5HiZ6k9doaxz3x58BpZytSH3kkcOdxVm0Om5P58jhNpd83LFDHhKTfKs/2Ae9FP5mr8309MMl2mDDVSXvOCY7zyeceo52tXX6bFAiMzT9J0U7vzvNtjrASG2+cZap+nzMdoD99Bp3li1RNTxKa0R+6kPXIneW+G4dZZGt0rO/pzPDkc+OevmuN/+M4o071rv+fLnYT/37dG+WevnOd4c+Mtg3eLNwmPmts4K0d4UC5zjNaKyxynxVFpcVYmeMocxZstqi5WazAI7wYuYZhZtvWbCHcBz9/au8vzqtK7R9Xho3RV4J1lYG/2u16s7g5YawnBk+6jk6cW25nXv/GjpW2L7cyL170EgCSWuLQJBiRv4l2L1BqiVOcLXE8kYEgQAtUhdX/zhSy1MneQxKqV+S1Wd9tGA5MkxFaLUK+B89VJfxuQZUcoiosU5RWSpE4IHZKkefMrKqWUUnvU/jk1VSmllFJKKaX2IO/m8KENWKy9xfaUNxIclKtXdYcozHZL2qXg0iZ5baiq6o5rt2veTpZlVd3IlsVVIoJvt4muRLwjsbbflvXgMvlXMOmTA9skTCLdd5JemWPyo3+Kua5SbObX3oy7/fhOLnNPaRrHi2pXeW3j4ppBdyGWR4txvtI9yTk/shR0F8Hw0aeO8D8+cgKpNXnH6+7gn/7aC3jDS25bM+jOOtNMnPkGJ57+K4aKnQ1o9wMD1Mo5JqYf5uT5LzM2+ziJ76x5+bJ+hOmjL+bCqTcwN3ofPlm7VfxWO96M/PNXzXOsMdhSfaqX8N99e4wL7f13GK1janzf3sl3zV0ssPJnaYG7meb18iR3yvSK1xO11eoIv4pc17bc8ClgauvvLk2hWb82x9sszvG+eVBrrUWkqu6OcX9Vd0PVzjyMD56EOPTJL2KnqznpSSjBGKLNkLxZze1G8GGtk1rC0sxus5H6MZuCxKoVelhn+/MbMWCHh4ntNsSIn5vd+E0YS54fxblpYizpdM/c+rqUUkqpXbT//kpXSimllFJKqT0ihB4h9oj9ihizna20i/nqQKkvqqB72Rzm2U5JCMJCyMnShJjWSaTcvarusD1V3b7TgaIkOoflEMzpTh/G1L41sEliA+m+F9OFyQ9/FtsdbEE8/4s/Q/fFz9nJVe4ZDeN4QT7F6xoXuC3trDqqvBTLY+U4X+mc4owfJS47LPLkQs7/+4e38Yg7zvvedA//xfufzyufd4w0Xf15XVu4xNHHv8jxp75Is30J06ivXg6oliTRMbJwmtsufI3JK9+j3r2yZlvfmNRYGLuPiyffwNXJF9OrTezIK9pkI/LPXzXHyaHBMHC2sPx33xrj7ML+rH6eNkN809zLI+Y2ylXmQ+cEniuXeI08xVFZ2JJ2y2otJxHePrDFUGL4GLANYw9sAo1mFXzneX+OtAPn4AbPKoPFWtMPuyGGsOZl96KbtTO30YMIIcmJeYMIxAhuzbBb+l9Jv0PFOv/mW2pl7quweytamQ8PIyEQu91NtTIHyPNJwFCWVyl6F4hRRxoopZTav/ZP/xmllFJKKaWU2mOcnwXA+zZZPrl9dxTKqqLbdauQO71W1e18ZL7naRWBkB6hmTdx2F2r6jb9qm4jVdQuW5T9iQ9Vy07vIAaSrLaONqz7mD2PqX9+YJOIRXrvgjDK5Ec/Q3Zl8AB354X3M/9Lr97JVe4JdeO5L5vjZNpeM2t2YjjtRjnjRgjXBRQuwmfOjvGTeIpf+tnbeM6do2vfmQiNhfOMXH6UfOEyJGk1E7d+wB+PW8wAjd4Ujd4UPqnTHr6d9tDtxCRf5cKGXvM4veZxUtdhqH2Oofb5KqjaJuN14b991Tz/4rujnF24duhswVn++2+P8k9fMc+9Y/sr+INqnvezHOESo9wjU9zNNPa6sHOYkpfJOa4yxGMcp222sWPJofYyhDMYfrC0xXAJ+JN+q/MtZg3U61CWgIFgqsC7jFUAvsaJY9YmeO8RCYQIySonSuxlN2tnnoaCkNTIbJuY1QmxwAeDCKueMCUSMCbt59UJ65qBvtTKvISktiWtzE2eYWo1YqtFbDaJ3R62sbHbNCYlzycpyyny/Djd7jmGhu6/pXUppZRSu0Uru5VSSimllFJqk7ybI4QegidNt3E+cq9f1e0WZ3VfOwI73XGEKLSkRp5n+KROKiV2PQdgt0ESwEh12FzM1q3Bzy9ACFVVt02qCrWDysxjGp/EmMEwTYpfhHAXY3/yVeqPnR7YV548ysyvv+VQVRbXjOe5+TSvb5zn9mz1oNuJ4clylK90budpN7Yi6D7TzvgP08/j5CtexYfe8eDaQbdEhmae4cSTf8nk2W+RL1ypZuGmKdSyg/143GZp6DE29yQnz3+ZiakfkRdrVyn6rMnc+IOcP/lGpieeT5nf4MSEWzSSC//NK+e5d2yw0rbjLf/jd0Z5fGb//s69SXjCHudr5j4uMbLqZY7S5rXyNM+NF8hk+04sOLwMwtsRjl+39fvA97bpLg3UatXJOWkKWV5VGRdF9TfGqle5rro77p+59Ytu1M48CSXRJoixkDVxsard9nGt6uvFn1OyiVbmsnWtzAE7PETsdiGEW6juPoYQcW6aXu8ccRtPIlJKKaW2k4bdSimllFJKKbVJzs0SQwcwJElze+7El+C7UHb64dq1qu5uGeiUnvmeQ7Jh0qyOkOxaVTf9kNtKVSsYtyh3jd0usSgIZVndfl7j4LYvL6ug2w7ONJby5eBeQvM7jzDy5cEgJAw1mPrQO5H8YM8vX5SbwEP5NG9onOfOrLVqyO3F8FQ5ylc6p3jKjeOvO/zhMXw1PsjUAz/PW372Qe48vvrJKiZ4hq8+zsnHv8CRCz8gK1tQOsBUQdFiW2B1ywxCs3OJ45e/y4mLX2eodRazVvBiEzpDp7h84me4dOJnaA+dIm7DGImhTPhnr5jnwSODgXcvWP6n747yyNT+fs51Tc4P7R1829zNPCurQg1wJ7O8Xp7kbpnCyP4LOve2vD+/e/A1xPAnwMXtu9ssraq80/4cb0z1urbG881aS4yCSMT7/ReG3qideeKr1t3B5sTaECJCFMHfoGW7EDEk/RMP11npbpPrWpnf+nMpGRoGgdBuE2ZnN9Ue3dqMLDtCUV4hxpKiOH/L61JKKaV2g4bdSimllFJKKbUJMTp8aOFDG2vrGLNNrT17s9XBUV9A1ryW8QpMt0tKH+nEGrW8RkjqJOKw7E573SSaLa/qlhgJ8y0kOGIMJFnen5V5EAmm/qeY5PLgVn83UryJ/JkLHPnjvxrcl1imfusdhCPbV+G6V2QEHsxneEPjPHetEXIHMTxTjvCVzimedOP464KIaBKeHXmAJ+9+K3e/8HkcO9JYeSOA9QWjl3/Cycc/z/jlR0h8D5BrM27zrDr5pF7b+m9Ukbk2R2Ye5eT5LzM+/RPSsrXmZV0+yszE87lw6o3Mjj+IS7f2xKN6Cv/ly+d5/uRgNWYZDf/r90b44ZX9HXgDzJom3zT38GNzkt4q1aoZkQflMq+Tpzgu8zrPe0sdRXjXwBaD78/v3sYT19IEGo1qFEMtr17PnKtam1/X2t4YizGGGAMxyr6s7nbPu5feq180sC1/7DT1r/8AGxwhySHJEJvio+DCDR7jEvpBt6lC7/VKMgiuev5sRXV3YrHNJrHVRrwjLKz9OnkjeX4MEYdzs3S6ZxA9qUUppdQ+dFCPECillFJKKaXUtvJ+DoDgW9vXwtx1q9mOrlNVBSXXKu9apaMMkVbhsbVRkjQnku5qVbcVMFJ9zNyqqm6ZmydGTyxLrE0wB7hdtMm/iskeH9gm8QjSfRfJTJvJ//BZTBg8CD3z3p+nvOfUTi5zV4zagtc1L3B3tkBiVoYQQeC0G+Er3VM87o7grgsgQpIxd/Qhzj7wVuTOFzA0tEZIXXQYv/BDbnv8C4xefQwbl1X0eg8xQJZBYqFRX32oq9oyVgLD7Wc5cekbHLv0HRrti2tWRIrNaI3cxaWTr+PKsZfRbRxDtqgDRC2B/+KlC7zk2GBA5aPhf//+CN+9eACq+43hghnnq+Z+nuQoYZWfXRPHS+RZXilnGJHuLizyoHohwqsGthimMXya64PnLWX7r2OLLc3TFIK/dlLPstUk/epuiIQbVD3vZe33rt7OPL98mZDUwEDMm4QoRAG/ZuAdqX4+CZiUdXea2Y5W5kNDSFEgZbnpVuZJUidNR/vV3QVFsY1dBZRSSqltomG3UkoppZRSSm2Cc3NIdEQpSZJtCruL+aoKyJcDVd1RYLrtKFygF/N+VXcDiydhd1qMJv102wJxlTByU7o9QlkgRUkEbN5vt3oQpT/F1L4xsEmkhnTeiykTJn/nMyStwXBp4Q0vpfOqF+zkKndF3XheWrtCvkq3gChwxg3z1e4pHiuPUMpgyO3TOrMnXsiFB97CwvHnkmSrV+F2FlqMnf0utz/5FwzPPI29fn5tDFUIlKbViSe1WhUUqR1hgFo5y+T0jzl5/iuMzj5B4tcOW4v6JFNHX8LFk69nfvRegr31MDpL4D99yQKvPFEMbA9i+D9/OMw3zh+AwBuIxvKUPcZXzf2cZ/WOEUfo8Gp5hhfE89TErXoZtTHCWxBuH9hm+Anwze29Y2OqwLuWQ5pVoXeMUAy22jbWYgyEGAkhsuZI6z1srXbm4x/5FCBEm0He7LdsF/wNKthFAmbpsPrutTK3jQYmSYitFmF+rjopaxPy/Dgx9nBunm73DKLdG5RSSu0z+slMKaWUUkoppTbBuRl8aANsT9jtutXBUNeBJIHkWiXqfNfhQ2Sh57GNUWyWEUjJdnNWt1SzumGLwm4fCK0WsXSEGLBptn2t4nebvYyp/9nAJhGDdH8FwhGO/OEXyM9fHdjfe/Au5t7+hp1c5a5IiLy0foWaHQwFosC5fsj9aDlBIYMV/y4fZvrUy7j4nDfTmry/atW7iguXF3CPfofnnP1LRhbOYVaropRYVTrapGpDW8uq0FvtiiSWjC48w20Xvsrkle9T615ds612SOvMj93PhVNvYGryRfRqR26pTja18B+/uMVrTw2+1gqGf/fjYf7m3MFpa1+YjIft7XzT3MMsK9v9G+AUc7xenuQ+uYLV1se3KEV4P3Ld7HTDF4Cz23/3eVaNZUgTyPsnbpRldaJPfyXWJv0W5kIM+292N6zezrz26DMM/803CElOzOtEqm4hN2xlTux39rAYNjDKYKtbmVuDHRoittoggp+d29TNpOkQSTJEWVzGhzalm7r1tSmllFI7SD+dKaWUUkoppdQGiUS8XyD4NsbkWLvFM1tFoJirDogGB7XRpYLmEIXZbkmnjDiT0ag18KaBJWB3qcLOisFQtTHfkqBbBGm1CK5EnEOsJckO6sfXiKl/HmMGgwMpfgHC3Yz85Tdp/uiJgX3u6DhTv/G2qpX2AWYQXly7yogdfFzPhBoPF5N0ZeVjomgcYWHyOfRGT97wth89M0dx7ml+ceQMteRGj1mB0gGmal++PAhSu8oAjd5VGr2r+KRBa/h2OkOniMkqvx9j6TZP0G2eIHVthlrnGGqfX1nBvw7WwG+/oE3NwpfOXQsmBcN/eGSYMhh+6e5dOvFoG8ybBt/mbk6wwHPkMg0Gn48Jwv1ylduZ5XGOc5FRbe+/aeMI78Pw0aUthgh8HOEfAdvURWZRmlYdK3pF9Tt0DlxZbU8yrLX9ud0BHwxJku7LX3X7vT9P9ugzJLMLS9uOfOxzXHj+czBDFrIGPvRIrUFkrYezIAiGBDERxFK1N78Jm4IvrrUyT+s3v87NbnJ4mDA/T+x0CTMzpEcnN3U7eX6MbvcZgm/T7TxDLT96y2tTSimldsrB/mSslFJKKaWUUtvA+3mEiA/t7ZnX7TpVyO3aVUVqei28me2UhCC0C0daHwObEkxGGnu70+BbwMYq8IYtCrs7XWJZIqUjADZNl7ULPWCyH2CSwfmYUr4E3Etp/OgJxv5isIVtrOdM/fa7kMbBqSBdnfBQPsPRdDA0bMWU7/eODQTdAvSGjnP57tdz5d6fXTPojlH4wRPTfPQzP+b2Z7/O28dP3zzoXpxdW8uqDgv1g/5z35/S0GV87glOnv8KR6Z+TF7MrnlZnw0xd+QhLpx6I3Oj9xE2cbKSNfAbz2vz5rtXtlL/g0eH+NxTKyuh9zVjuGRG+Zq5j8fNMfwqr8d1PC+S8/yMPMOYdHZhkQfFcxDeOLDFMI/hE6wrTL1Vq83x9r4KvanamccYQYSwT6u7pVGj9etvGdhmi5KJ3/0EEYPkDYJUYbYLN/iZi6/akmNYdz3ZYivz4Laslbmp5Zg8J7ZaxG4H6W3uZJs0HcXaOmV5BefncG72ltemlFJK7ZQDerRAKaWUUkoppbaPc7NIDMTY2/oW5hKrWd2+rGYEZ9du3/nIfM/TLjzRpOT1Jt7WsEQS2YJ2mJtwrarbbE3QXTqkKPG9HjEKpAnJGi2o9z3TxtS+PLBJwgRS/DzZ+asc+YPPD+4zhqnffBv+2JGdXOWuuDNtcWfWGthWiuX7veNLQZtg6IzezuX73sTVu19LObR6FZrzkW89fIX/5WOPcOWRh/kndz/Fc8eKVS87wPuqhW+WVQFQvaYVq3ucITLUucjxy9/h+MVvMtQ6h4mrV2+LTVkYu4+LJ1/P7NgDG57rbQz86oMd3nnfymD3k080+cTjjbW6q+9b0VieMUf5qrmfc4yv2hJ+jB4/I6d5UTxHfZfel/Y74U0I9wxsMzwJfHnVy2+5pTneWdV2e9kc76Q/7CHGSIhh3z7G3fPvW9HOvPHI4+TfeISYDyFSfcs3DLuXTj6wGLOBv1OSrJrbLVL9rbcF7MgwsduBEPEzM5u6DWMMeX4M5+cIoUe3e2ZL1qaUUkrthAN6xEAppZRSSimltk91ILADyNaH3a5bHQT17eqAaHKt6nC64whR6LhAPnQUTEIwNfLY2RNV3XKrYXeMmE4HX3T5/7P339FyZPd9L/rZu1L3yQcnIIcBMAiTAEzgDIOYxGCLskgFUpZ9JVvWk64t2ZeWfHXlZa/nde1lryVbV+nKz5atZ0lPtq8okQokRYkih5mTAzB5BhjkeHLqVFU7vD+qAZw6OfSJ2J+1sA7Orqrdu/tUdVfv7/5+f2iNlgLP82Btnt2KI6JvIER+otvGH0JOJHT9/heRad41N/ax9xAf2ruaQ1wTur0qh8P8ZL223HJ0WyEpd+xhousgOpz9+qvGiudeH+SZ1wfwdcxP7B/m2JbpTtwZMSpbbOL7maM7KmSCt2PDEKYThCNv0j76NpXm7ZRadqGC6eeLlT6ltn2UWnbTUr5Ky8RFfL2AxRBkmuDHD1YJPcufnsn3/Zfnm0iM4FOHKptujUQifN4Q27lsOzlk++hiuuC/jQl6bIlLdgvnRRdaeGsw0o2KxPLDwH9BcHvRj+CbWHYBB1ZnGGGYve/F9VjzJIU0rceZG6SRGK3x/I35ty1/4v0Eb57HG7v9Grf92VcZObQTK310Pa599ihzsFZnUeZosmn2BbjdJ0eZmwRYfpS519SMHh5Bl8uIkVGCbduWtDgrCDqI4xskyQCeV0CpFUowcjgcDoejwbhvag6Hw+FwOBwOh8OxCKy1qHQUrcsI4eN5y5+kvN25gdp4NgmqNQRNtzZVE00lUUzUUoT08MNmlCwgMHh2YcJMo5HcdnVngZ/LpFTBpAodJ2ghEJ5Eyo05iT4v3gVE8Gauyab3QLyDrv/+JfyxvKu5/PA9lN5zfBUHuDa0yIT7o8Fpc/Svx12M0Mx4191cv/vDjG4/NqvQPV5O+MozV/mNP3qNb7x4nXuax/jXx64vXOi2GlKVxc16QSb4bFAxxwHSKlpKl9l64ym6+1+gWOlnRjuq9Ci17uHG9ncz0nkEtYj39r95V42/fbg8rf3xi0X+5xvNmA3qfp2PkijwotjDSbGLMtOd8R6Wuxji3fYsO+3IzK+7YxZasPwIdtJiLwEI/hQYX71h+D4Ui/VFPyFIgdQaqxXWGrRRG/bPapsKlP72R3NtshbT+pkvY4Mi2mRlMtScF7Cui8oCsYZR5vgesljElEpYlaJLpfmPmQEhJGHYTZqOYHTq3N0Oh8Ph2DA4Z7fD4XA4HA6Hw+FwLAKtyxir0LrceFd3Us4cpWklq9N909VtYbickChDLTUUWruxUqJESLCWtbr1pFrdcpmz3dUaQivSaqXen8STm9XVrRCFx3Mt1hawtffR+WffJLp4Pbct3redkR98/6aP0I6E4kQ0gD8lIeDtpJ3L/jYG9rwTE8xeC3lwtMaTr/Tx8tsjaGNp9jV//+4RHuleTP1gm7kXEVl8ue9BuPiazo71hwAK8QiFeITUb2aibR+Vphncj0JSbtlFuXkHTZUbtI5fIFDzn0Pfu7dG6Fn+++vNOYHyW1cKJBr+3r1lvM1oORGCQVoZooVdjHDADhBMqS0dobnH3mA3I5xmK8PCOUUXxl4s34vg9ueFoAJ8DsvfA1ZpEY6UmeAd14AQIRQyTTBJgogKGKPrKSwbj5tx5oVnXrnVFr51kfCli6gjWzDWorQhmPX52fo/H4QFK1lQbXUvqAvd9SjzYPkLJ2VLC6q/H5uk6JERvNbWJfUThl0kST9JOoAXRzQ17cfzomWPz+FwOByOlWQz3mYviOeff55/82/+DR/5yEfYtWsXURTR0tLCoUOH+Mmf/Em++93vLrnvSqXC/v37EUIghGDfvn2NG7jD4XA4HA6Hw+FYU9J0DKxF6TKe1zT/AQvlZq1uHdfrBN/uu5SkJNpQihW+5yPDZrSIEIC/xq5u0QhXt9KIWg1dq2GMRkuJEAK5SWOjRfgMQo7m2mz8Xlq+c5rm51/PtauOVoZ+/GOZu24TIzEcjwYoyHx95WuqibdNN4O7H5tV6L42UOGPv3aO//Snb3Dy9DDaWO7vqPJ/Hru+BKG7HisfBZmTseAm+DcjgSqzZfg1tt14kqbS1ZmdlUJSad5B37Z3MrTlPtIZItCn8j27Yv7B/SXklAUbT10v8DuvtKAaYOBcr1ghuCy28F1xkEt0zij3tRLzkL3EcXOZpjX67Np4vAvLoVyL4DKCr63uMKTIBO8oBD9AhiHGaGwco9UCorvXMeVPvB/d3pJra/riE4ixKtrYeep216PMxc37lQWK/tLPhG6rs/u+BiCLRYTnYcol9NgYLPHvIoRHEHSRJEMYk1CtOXe3w+FwONY/m/vb8iy8973v5Tvf+c609iRJOHPmDGfOnOH3f//3+Ymf+Al+53d+hzCcHsU0F//qX/0rzp8/36jhOhwOh8PhcDgcjnWEUqNoXaXh9bqTUiZypxXwo2wiFDAWhsspcapJlKG5tQMrJKmMCGyMWH54+JLIXN2ZW9Isp1a3tVAuY5VGxzFWehjA9ySb0tUthiF8Ntdk9Q7CV9to/9IXc+0m8Bn6e9+PaWngoop1ieX+aIg2L821juiI15IehvY+ig6nvwZnr47zxEt9nL9+O641koYf3TfCe3rLizfCK5WJnkG9Tm0h2vRu+jsdX1XZMvIGbePnmGjdR7llB0ytLS0E1eZtVJu3Uaj00zZ+njCdmLXPx7YnBLLE77zcgra3z58X+iJSLfiHxyYINqYJdkEo4fGW2Fav591PD9PjlHso0WVLXLZbOCe6Ua6e9xwILJ8A/iuC0UmtT2HZDRxd3eHU63iLGghjMUohajWM9JDBxpxmvhln3v5f/uRWm4wTmv7yJLW/8y4CT6KNxZOzfR7cFMM9suV/6Sz7TWJylLn0s88escwFflIgm5sxpRJeZyd6bByva8uSugrDbpJkgCQdQtYimor7kNKlnDgcDodj/bI5l8nPw7Vr1wDYsWMHn/70p/nc5z7Hs88+y1NPPcWv/dqvsXPnTgD+4A/+gL//9//+ovo+efIkv/Ebv0GhUKB1iXExDofD4XA4HA6HY/2S1ut1g8DzZo9UXhTGQDwBulYX224Le+PVFKUNEzVFGHgQtaJElFWHNLXGPP4iEXWRW1iJBcxy9MBKFaENplbFCIERAikFYlOKHxZReBwhbruXrRWI64/S/f98GTGl8Onw3/4I6Y6e1R7kqnN3MEqvn6+nXTE+p2rdDG8/TtLUldt2baDMf/38m/yPL5/NCd2H2mr8n8eu8z1blyB0a5X98+uO7qiQCd6OOwJfx3SOvsX2a0/QMnERYfSM+9Waeunf9iiD3ceJw/ZZ+3toa8LPHZ/An1Le4eXBkN862Uq8sY2wC6IiIk7J3bwg9jDB9IQECexlmHfbs+y2w9Pe/xyTKWL5JHaKa1jweWB49Yfj+9BUQAY+xvewCHSlAunGPbGzOPP7cm3B2et4L5zH2vnc3RaLQeDVF0gt8P7FC7LSNTejzBuAbGnBKo2pVFGjI0vvRwYEwRaSeBBrUmq1qw0Zn8PhcDgcK8Ud+c3tyJEj/NEf/RGXLl3iN37jN/jhH/5hHnnkER577DF+/ud/nlOnTnHoUBYR9Id/+Id8+9vfXlC/Wmt++qd/Gq01/+Jf/Au2bFna6jmHw+FwOBwOh8OxPtE6RpvarXrdYrkunJsk41Nc3dlEqTaW0WpCJTFoayk0tWMRKBnh2WQNXd3iluBtxTJyeZMUkSRZDKrWWN/DWIuUm1HoBvw3EP6UONDkIbZ89mVkLT/RPfbhR6ndd3AVB7c27PRL7AvzLtnUSk7WehjZcohKx57cttFSwv/zlXNcH7wtjgcic3P/s3v66S7MLFLOidGg6u46z4coymp1O+44PJPQMXqGbde/S+v4eYSZWbyrFbsZ2PoIAz0PUos6Z3wnvr8n5X87MU44RfB+YzjkN19so6rujNSAYdHM0+IuXhfbiGcQAUM0R2wfj9lzdNuJTPhzzMAOLH8j1yKIEXwWFuIkbjTSQzQ3Z7HZvkRLianVoBazRrcmy6b8iQ9MizMvPv4yeqRMqud5UlbXhe5FiN0rEGUuohARhphyCVMuY+Ol9xtFPVgUaTpKtXoZO1O5B4fD4XA41gl3pNj9F3/xF3zqU5/C82a++eju7uZXf/VXb/3+uc99bkH9/uZv/iYvvPAChw8f5pd+6ZcaMlaHw+FwOBwOh8OxflBqtP6zgfW6jc4izFU1myCeVJd4pJKgtaUcpxQCHxO0oEQIa+jqxmZfJIXNvk4u2dVtDKLuBNNJjPF9tLF1V/dm/KpaQ0TfzLVY00p0chuFM5dz7ZX7DzLxve9YxbGtDVtklSNh3pVoLLxU62aoeSdjW+/NbUtSzWe+eo5y7bYAua855v997AYf2j7BrAmzc2IgTbP42MCH0M9+Ou5oPJPSPnaW7de/S9vYWYSZWUyMC1sY7H2Igd6HqBW2TNP4jnYpfv6hcYp+XiQ6Mxrw68+3Uk7vDMEbIbgqOnlCHOA8XZgZSlS0kHDCXuFBe5lmu0afb+ueh7Dcn2sR3EDwV2syGiEloqkZI7P3TxN4CKUQ1dqGXLRwM858MiJRBJ9/Dq3NPE/JkN3EeQjhs6AyLJOjzE2aJfs0ANnSgqlUQBvUyHLc3RG+304c92FMTBzfaMj4HA6Hw+FYCTbjDEJD+MAHPnDr/2fPnp13/4sXL/Kv/tW/AuC3f/u3F13n2+FwOBwOh8PhcKx/0nQUo2MsCt9vUL3ueCKLMU+rmau7Ht+dqCy6vFzPu42KrRgkShbxbIpkbRw2Xl3dliyzVnepAkZj4xqqHl9uschZFiVvdET0HYSs5BtL76Pj80/mmnRbMyOf/NCmrxXdLFIeKAxOE6jfSLbQ7/cwvPPhaa/Bn33rIn3DmaPbE5aP7x7ln9/fx/biUqNzLcR1ETMMMje3+y7vmIQ0irbx82y/9l3aRs8g9cxRw0nUyWDPg/T3PkK10J0TvQ92Kn7hoXGag/x79vnxgP/r+TbG4819rU9GC4+3ZS9PiP3cYObSf12Ueac9z1FzncBu3FjslUFg+X4s3VNaTwKn1mRE0vcgCNC+h5ISU4iw1iAqVZgz+nt9kt6zn8pjx3Nt3rl+xAvnSM3cz8dajbg11b52UeZeczNYMOUyZmRkWQsPoqgXYxNSNUalcgG7ARcxOBwOh+POwIndsxBPinmZzQE+mZ/92Z+lXC7z4z/+47z//e9fwZE5HA6Hw+FwOByOtSJNx+r1ummMs1srSEuZ0A25Wt0jlRRtLJVU0xT5KL8FLUIsck1d3cKCvOXqXuKkZ7WG0AqqMdrazBFmNFLKSRPFmwh5DYKXck02PUjrXw/jj5Vy7aMf+x5stLkF1wDNiUI/wZTz53zSxmW7hcE9j2K9ILfta89f482LYwB0RYp/cf8Nvn/XON5ydMI0BUwmdEuZ1ene5IsMHEtDWk3bxEW2Xf8u7SOnkbNEDqdRO0M9x+nf+iiVYu8t0Xtfu+Z/f3ic1jAvll2Z8PmV59sYrd1Z511NhLwid/Gc2MsYhWnbBbCLUd5tz7LXDiFcfPIkQiyfwpJ/jxR8Cehb9dEIIZC+n/maowgtBTQVsUIgqtUNWce7/In3ozrac23yy6dIBidmOeImpv4ZIhFT/j6zsgJR5vgeolBAl0uYNEWXy0vuyvOa8LwW4ngAbaokyUBjxuhwOBwOR4PZhLMIjeFb3/rWrf8fPXp0zn0/85nP8Jd/+Zd0dnbm4s8bwZUrV+b8d/369YY+nsPhcDgcDofD4ZgZYxRal1C6jJSFekzlMrlZq1tVwS9kcZZANdFUEsVELUUKCKMWrPDqtbpTJEuoS9wApBUIQNplCN1KI2o1SBKM1ijfQ9fdUt6mrNVtEIWv5jRUa33k9Ydp/faLuT1rB3ZRPXb3Ko9vdZEYjhcGKMr8OdynipxJOxja9Qg6zKcmvHJ2mO++lIk4kTT848MD7GleZo1anWbXXhBkUbLFAkvMQXfcQUhraC1dYvu1J+gYeRNPzbzwKA1bGe5+gL5t76TctA2LYFer5hcfGaMjygu3N8o+/+G5doaqd94U3aho4lmxj1fFDmpM/0wNMByy/bzLnqPXjm/IaOyVoQfL38q1CFS9fneDBNNFcDORxQIqDDG+D8Ui1vcRcfZ5v5EQxYDhH/+hfFussH/yLMbMdQ5aLBaBd0v0npepUebzuMcXitfSgq3FkCrM8NKjzKHu7jYVtCpRqV5syPgcDofD4Wg0rhDVDBhj+OVf/uVbv3/qU5+add+RkRH+6T/9pwD88i//Mj09PQ0dy+7duxvan8PhcDgcDofD4VgaSo1hsWhVwvNnjl9dFFpBUp7k6q7X6rYwXE5IlKGWGtqKAanfghYBBp/IzOcsWiEsSJMJ3rBEsdtaKJczwTtJUJ4EITE6rQvdm1BsDF5EeHknlI3fRcefvYCYFPFqpWT0B963yZ3FlnujYTq8vPAxpkNeibsY3X6MpDkfz3t1oMwXvnMJyAJ8/193D7FruUK30aAUeH7mqitEmeDgcCwQgaGldIXm0lUqzdsZb92HDqanfaigmZGu+xhv30/b+AW2cZ3/45ExfvX5NoZqt8+5garHf3iujX/28Di9TXeYi1kIrtNOH63sY4h9dghvSvXzJlKO2auMUOQ0WxkXxTUa7HrifiyXEDx/q0UwBHwRyw+zmp+nQkqk52FSlbm8oxCRKoQAm0hEEmOll5WK2CCk9+yj9K6HaHnyhVtt4mwfydNvU3jXHIvSrAbhgxVk0+4LEPq9AHSS3SPpGOTyz2/Z1ISQEl0qIaKQQO+AJZaJ8f1WpCwQx/14fgtpOkIQdC57jA6Hw+FwNJI7b9noAvj1X/91nn32WQB+6Id+iIceemjWfX/xF3+Rvr4+3vnOd/LTP/3TqzVEh8PhcDgcDofDscqk6SjWpBibNKZedzyeTYqqWiZ0113dpSQl0YZSrAh8SRAWMcJHyQIeCo+1iQS97eoWS3d1V6qZwJvEaCkxUqK1yvqVm/DrqRhHRE/kmqzuJnqpk+JbeXdU6d3HUNu6VnN0q86BYIxtfr5uedV4nIp7mOg8QLlzX27beDnhM4+fQ+nsfPvEnjGOb6kubxDWZPHlUoLvQ+RnPx2OJSCwNJevse3GU2wZehU/Lc24n/abGNlyDze2v5ti7w5+8dESW5vy6QbDNY//8Fw710obRxBsJEZIzokenhAHuEb7jPt0UuVRe4F7zTUiu8xFL5sAy0ex7Mi1CV4Dnl31sUjfx2IxSqHTFNvchC0WIQyw0kMkMWwgY76nE4Z/9AfQ7S25dvUXL2BG5ooFv3ldy8zhvRBWIspcCmRLC6ZcwhqDHhtbVndR1IvSE2hdpVJx7m6Hw+FwrD824WzC8vjWt77FP//n/xyA3t5e/vN//s+z7vvtb3+b3/3d38X3fX77t38bsQIr8C9fvjznv5uivMPhcDgcDofD4VhZUjWKulWvu2WevedBp5BOcnX7mYvHWBgup9RSTaIMLaFH4reihYfGX9Na3ZNd3XYpYneSIpIE4hhhLcrzsolxYzetq1tE30CIvCBjyx+k8wt5AVy3NjH+oXes5tBWne1+if3heK5NWcHJWg/jTdsY3XZfbluqDJ95/BylSra44x3dZf7mjvzxi8dCkgICgjBzGYbRMvt0ODLRu6lyg603nmbL4MsEycwJHNovMNp5hPiud/LpD7extz3v4h6LJb/yXBuXxu9MwRsgFgGvyR08I/YxwswO1x2M8W57lv12AHlH1/P2sfwIdkrdc8FXgCurOpLM3S0xWmGtxagUChHW8yGKsnhutXHqd3s6xRaLjP3dfFw8sSL+46exc0TqW6snRZkvYDFVLspcNSzKXLY0Y1OFqVZRI6PL6sv3OxAiIEn6SdIhlFqjlCGHw+FwOGbBid2TeO211/jBH/xBlFIUCgU++9nP0tvbO+O+cRzzMz/zM1hr+fSnP80DDzywImPatWvXnP+2b9++Io/rcDgcDofD4XA4bmOtQaXjaFVGiAApg+V1WBuru7pjCJpuRVePV1OUNpRqiiiQeGERIwKUKCLRyDVyskluu7qzipSLxBhEpQJKIVSKCnyMBaM1QgrEZnR1e2cRwZlck00eoO2r1/BH8qLt6Mfegy1sXtG1Q9a4JxzOtRkLL8fdjAZbGNr1yK1kg5v8+bcvcn0wWwyyrznm7+0fXn7Ce5oCFsIgc3ZHhXkPcTgWgwCaqv309j1D18ApgnhmN6XxIuLuQ/zkD97Pxx7pIQxun/+lVPKrz7dxbvTOThwYF0WeF3t5SeykwvTPXA/LATvIu+1ZttuxO7iedyeWT+RaBKZev7sy4xErhfR9rLFYozFJ/X6lqQiexPpBtuBtg/yZBBZpUsoP3Evt0fxiLH36OuqZt+c4Wtfv68TC3d1ekAndN6PMG4CIIkQQYEqlzOEdL712uhCCKOolTccwOnG1ux0Oh8Ox7tiEMwpL4/z583zkIx9hZGQEz/P4zGc+w3vf+95Z9/93/+7f8dZbb7F7927+9b/+16s4UofD4XA4HA6Hw7HaKDWBxaB0Bd9fpqtbJaCqkFSzyVA/E9y0sYxWEyqJQVtLaxSQyGY0HloE+Ka2Nt5nC1JPqtUtlzBTXalkgnccY/wATeZ8ylzdks3n6k4Qha/lWqwpIm48QOu3Xsi1x3ftoHr88GoOblVpEinHCoPIKX/it5JOBmwbQ7sfxXp5IetbL17n9fOjAHQEip87MkjoLVMh0WlWqzsIwJNQLDBtUA5HgxBAsTZIb/9zdPe/SBiPzLif9UIefmAXv/C37+V9J7ZRCDNhrKIkv/ZCG6eH72zBGyHoF208JfZzWvSiZpjGLKC4z17jHfYC7XZ1xd31w2Es7861CMYR/BmrqS4L6SGkwCiFMQajNfgeNgggCjIhN9048fO+jjEypPSJD2DamnLb4i+8OEecua3/80EsMLlG1l8f08Aoc0C2tGArVTAGNTLz+9BCCYItCOGRJAMkcT9ar1HakMPhcDgcM3CH3zVnXLt2jQ996ENcu3YNIQS/+7u/y8c//vE5j/n3//7fA/ChD32IL37xizPuUy6Xb/38zGc+A2TR6B/84AcbOHqHw+FwOBwOh8Ox0qTpKFiDMVXCcMvyOovHsslMVYOo5Zare6SSoLWlHKcUAw/hB2gZoWSEROPZpTtylsNNV7dYqqs7ThGpgloMCIzvZTU9tUFKgRCbL65XhE8jZN69beP3s+XzzyHU7Tq9VgpGP/5+lm9ZXp/4aI4XBghFPpL1YtrKZdXG0J6HUVF+8cjr50f45skbAATC8LNHBukI87WNF43RWXyu52dxsVGUObsdjhVGAIV4mEL/MHHUwXjbXcSFrmn7RaHP+x/czjvv6+W5NwZ46tUBKjXFb77Yxs8en+De7o0jEK4ERkgu0sU12jloB9jJ6DT5sJ0a77AXuWFbOSN6qYlwTca6Vlg+CFxBcNtxK3gby3eA2c08jUZ6PjpNkcagkwRZLGbu7jTFhj4iTbCBvyE+9zydQAiqtY3yJz9I63/7i9sb45T4j5+m8DMfnLGspbUaIfx64IAPzHMNS5klnJgUjJ9FmTfgc8praUGPjmLKZczoCGztXfJrL4QkDLuJ4z6iaCvV6kVaWjbvYj2Hw+FwbCzueLF7cHCQD3/4w5w7dw6A3/qt3+InfuIn5j0uSbKJpt/7vd/j937v9+Z9jB/7sR8D4H3ve58Tux0Oh8PhcDgcjg2GUmMoVQYsnte89I7SWiZyp+VMdPMyV3eiDBM1RTnO6lm2RD6xbMEg0SIiNJU18z5nru5MtDGLrdVtLFQrkCqEVpiogDIaYwzWWjx/E34llQMQPp9rsmo30StFim+cz7WX3vkA6fbu1RzdqiGwHCsM0izzNVoHVIHTSQdjW+8lbsmXDbs+WOHPv33p1u9/78Awd7Usc5GHNZmTUHrg192Fm/G8c6x7oniUnoGTxGE7E237qBV7pu8Terzn2DYevbeXF94c5IlX+viPJ1v5X49NcLz3zha8AVLh84bYzmXbySHbTxfTnbXbmKDHlrhkt3BedKE34YKqmZFYfhj4L4hJr4vgm1h2A3etyiiE74FSGKUQUmKNyX5GEcKCTRXECWyA0h3SaoQ1GC8kfuAI4bFXiV66cGv7zTjz4LG7Zzj65iIvj2yp4AKuXy8AndyOMpcz16xfFL6HKBTQpTKytRVdLuO1LD2hKAi6iOOsbreshTQ13YWUd9bCEofD4XCsT+7opcxjY2N89KMf5fXXXwfgl3/5l/m5n/u5NR6Vw+FwOBwOh8PhWG+k6SjaVBDCQ8plTNDGY1lNRpXUa3VnzSOVFG0slVTTHPkgfZQsoGQBgcGzjYu0XAyiLnILK7GAWaziXq0ijIUkwfoBWoA1FmN05uredF9JLSJ6HDHJyWytxJY+QOcXvp3bU7cUGf/wY6s9wFXCck84zBYvf96O64BX4m5KHfsodR3IbStVUj7z+DlSlb1237dzjEd7lhtJbCFJAZHFl/sehHfApPwGqYl7pxIlY3QPvkTvjWcoVvpn3CfwJY/d18unP3UvH3nnbv7w7S6eu3EHnLsLpCQKvCh2c1Lsosz018XDchdDvNueZacduYPqebdi+WHspOVxAovgT4CJVRmBQOD5PkZrrDGotL5gqVAvHRGECKUy5/IGwFMxSoaAoPZ9j2Ja8wL07HHmFovJanYLAQup3b1CUeZeSwu2VoNUYZYZZS6lTxhuIYkHsVZRq11t0CgdDofD4Vgem21mYcFUKhU+9rGP8eKLLwLwL//lv+SXfumXFny8tXbef3v37gVg7969t9q++c1vrsTTcTgcDofD4XA4HCuEUmWMTdGqjOc1zxhXuSDSaubYSSvgeeBlonk10VQSxUQtRQpoCjwSrxmDQIkQ38Rr6OoWtwRvKxY5MZ2kiCSBOBu/CQOU1hijsYDnbUK3XfAqwp8y8Zu8g9ZvXMAfzseaj33fe7DF9e9sWwr7gnF2BPnJ/5rxOBX3UG7qYXT7A7ltShk+8/g5xsuZ8+14Z4WP7x5b5ihu1oa1EAbZNbcBnITLoWgijiWH+J7kBI/F93M8OczR9C72q53sUD106XaaTRHfek4QXweE6QRdQy+z9cZTFMs3ZhRkfU/yyNEefvaT93Kj7R6eHWxfg5GuU4RgULTylNjPm2IryQxiYoTmHnuDx+x5ttjZ6itvNu7C8oFci6CM4HPcdhuvLMLP/hZGa0yqsMaCFNioAEGAlQIRr01plsXimQQrPYzwsJ2dVD52Ir9DPc7czrSgwuq60L1QsXtylHnjFgTIpiaQEl0qocfGQS+v3zDsxqJJkmGq1ctYu8xSIw6Hw+FwNIA7MrsrSRJ+8Ad/kCeeeAKAT3/60/zbf/tv13hUDofD4XA4HA6HYz2i1BhYi9Jlomjr0juKx0Gnmas7aq0ryDBUTkiUoZYa2osBVnqksogWBQTgr5GrG5utjhY2WyO9KFe3tVCpglIIlWKjAkZrsBZjDJ6UbLq116KCiL6Va7KmHdF3D23f+MNce7x3O5UTR1ZzdKvGVq/M3WFeqNZWZEK338bwrndkk/mT+OITl7g6kLm4dxYTfuruIeRyV3golbnjghA8mQndG6BG7FLp1h0cUnvw6oJKgE9gfVpt04z7KzSxSIhFQo36T3H7Z4pizVbZ3GEEaZmu4VdJx88x0baPStO2adeIJwUnDndjTBdvDA1wUJ0lUHeKeDs3Vggus4XrtLPfDrKb4WmfLq3EPGQvMWBbOC16qYjNvfAF3oPlMoIzt1oEl4CvYfnwij+6QCB9H6MU0vfRaYIfRVCIsHGMCEOo1UDpLHFjHePpBCxoL0QHRcTB7ajje/FP3a6NPnucuSFbWeQhhMXaBQj8KxFlLgWyuRlTLmM7O9DjY3idnUvvTkb4fjtJMkAYdlGrXadY3LX8cTocDofDsQzuSLH7x37sx/jKV74CwAc/+EF+6qd+ildffXXW/cMw5NChQ6s1PIfD4XA4HA6Hw7GOyCLMa4BZer3utFJ3dZfB82+5uktJSqoNpVgR+JJCIIllMxZJKiMCGyPWyILp1dVtyRJqdVeqCGOyupyej/E9VJygTeb+kXJ9T24vBRF9CyFquTZb+xBbvvgkQt12PVkhGP34+1i+mrv+aJcx90ZDuTZr4ZW4izGaGNz9KMbPRw5/96U+Xn47i1Vt8TU/d2SAgrfMc94o0Cqrze15EEWZY24TIqzgLr2Dnbp3/p0n4ePh2yLNdmYhxWDqQnhaF8BjYpHeFsVJnBjeYAJVYcvw67SNZaJ3uXnHNNFbSkFrTy83bA9N1X5ax88TpqU1GvH6QgmP02IrV2wHd9t+epn+uvRQosuWuGw7OSd6UJu2nrfA8oNk9bvHJrU+iWUPcHjFRyA9D6MURmm0SPHCKFtvVCyCNVjpIZIE6xXX9XuJIHN3Ky8ikFXwQ6ofPkbL2X7ERPXWfvEXXsQ7vAPZmb9PtFYj8Op3cj6g5n5AGYCK6yVvYggaIHaTRZmnExOYag01PLIssRsginopl0+TqlGq1YsUCjuXnnzkcDgcDkcDuCPF7j/90z+99f+vf/3rPPDAA3PsncWQX7hwYYVH5XA4HA6Hw+FwONYjaTqKVmVA4HlLmHS0FmpjmditFURtIMBYGC6n1FJNogydTQEISeo1oUSUubpNbd7uVwSb1euW5qarexHio1KT4sstNoowSgEWo009vnyTTYh6lxHBa7kmmx4mel1QfO1crr382H2kOxcnTG4ECkJxrDCAN+VPezrpoF83Mbz7IVShLbftrYtjfP2FawB4wvKPDg/SU1hmHKrVkCqQXuaQC4NM9N6EhDbgaLqPNtvS8L4lkqItUKQwY+S5xRLXhfCprvC47hRf9CIZBwC+rtE58iat4+eZaNnLRPNO5JSyD0IIqk1bqTZtpVAdoG38PGEyPkuPdxYVEfGS2M0WW+aQ7aOVfDqKBPYywg47xll6uEIndlOKdEUsnwR+FzEpvlzw51h+Blie2DkfQkqknwneXuBjVIoXBBAF2Niru7uzBBiC9f0e7emEJGzJaqFHzWiVoD7+MMH/+M7tneKU+LNPU/jpD04RfQ0IH6xE4GPnFbtvRpkrsPWEkgYsEBSFCBEE2HIJUyxgkyT7GywRzyviea3EcT9B0Emc9FGIti17nA6Hw+FwLJX1fTfhcDgcDofD4XA4HGuIMTHaVNG6hOc1IcQS3KFpJZu0TCuZ+FZ3to5XU5Q2lGqKKJBEgUcsm7AIlIzwbLKmrm7BElzdFqhUQOksvjyMsEKgjcEYjRAgN53DViOir+ZarA2x5e+h4wtfyO/ZXGDsI+9czcGtCj6GE4UBoil13a+kLVxSrYz13kOtNT8J3jdc5U+/deFWmeK/c9cwh9qWG9lvIVGAgCDI4nGXMZm/nukwLRxO9xESTNt2Qw4x4I1QsCGRDXM/QwJEAxabCAQFsj5ne5tKSGcUwm/+rsXq1A/eqPg6pnPsNK3jF3jJ7Kdz+3bCYLroVSv2UCv2EFWHaBs/T5SMrv5g1yHDopmnuYudjHLADhCRX0gTYDhi+9jNCKfpZZCWTVjqYCeWjyL4q1stghrwWSz/gJWeFpaej1Fx5vCWMhO7AZoKoDXWDzJ3t++v6zVwns7ix7UXYoIikhH0we34J/YhTl64tZ9+6zrq2bMEjx6cdLTFYjN3tzBgJfPWTveCLMLcFrKFko2IMgdkSwtmbAxvi0GPjOBvXUZpHiCKeqhUzqHSCaqVi07sdjgcDseackeK3dauzoSRc4M7HA6Hw+FwOBwbmzTN4j+VrhAES3BBWZPV6lZx5uoutAOgjWW0mlBJDNpaOqIQC6ReM0pEgFh7V7fNZp4XJXbXqghlIIkzJ1IQYLTGWosxFiEl63pGeymEzyG84VyTjd9D67fPEAyO5trH/sa7sU2FVRzcyiOw3B8N0iLTXPuQLvBm0km5fQ+l7nwd03I15TNfPUeSZhP+37ttgvduXW79YQtpkv2Mwiy+vLAJ6/Ja2KW3sk9vnyZaGwxv+5fpm3I+TkZYCAlnFMIjGxIRIKdVPF4aIQGhDWi1M5d/UChq9Wj0ySL4zZ+ubniGbxMeEm/y+PNX6Cvs5dF7eihE06fz4mIXA8UuwtpIJnrHw+7lE4KrdHKDNu6yQ+xh+Fag9E2aSThhrzBEM6fppSQ213s0PFKv3327fKPgOvBlLN+/oo8spERIiTUaYwxGG6QnwQ+wgZ+VO6koSNMshWOdIq1GGI32AnRQwBMSZQz+3zxBcLYPOz45zvwFvEPb83HmVtfd3YJsKn6e2t0rFWXe3IweGcFUKuiR0WWL3b7fiuc1kST9+EErSTJEGHY1ZKwOh8PhcCyWO1LsdjgcDofD4XA4HI6FkKajGJ1gbbq0et1JJRO50wp4YebWAUYqCVpbynFKMfDwPUEimzBIlCzg2RQ5n/NnhZC27uq2YpHx5RpRiyFNEMZmoq4AbTTWGqy1eJutVrcYRYRP55qs3orsP0Dr1/5nrj3evZXKw/es5uhWAcuRcIRuP78wo2QCXq51Uyt2MbL9WG6b1oY//vp5RkvZZP897VU+uW9k+UNRCoyBIMxiYAvRpnNp+tbjkNpLl2mftq1KzBvBecqyOsORt7GCWzHjM+8AIf50IZzb//dozHXs49NifVpmqRuu63XDZxLCayIhIb2jxPAP7SrxjUtv8xt/PMA7jnbz2H29NBWmT+slhU4GC52E8Sit4+cp1IbupJdpRrTweFv03qrnvY2Jaft0UeYxe56rtoOzoodEbJYpU1EXta8jGJrU+kK9fvfcpR2Xi/Q8dJoijUGrBOnVFxMUmyBVmeidJtggWNfXs6cTtJclhdioiK6VscUA+UPvQP/+t27vWJspzlyTTcHLSfW750BKEF7Do8wJfESxiJ4oZS7vUhnZsoR720mEYQ/V6kW0qlCtXnRit8PhcDjWjM1y5+ZwOBwOh8PhcDgcDSdNR9G6BIDvNy3u4Juubh1nE5XFVgASZZioKcpxVrexJfKxQCKb0SLEItfU1S3NElzdN+PLtckiScMIpMRYgzEWYwxSCkSDHKPrA4soPI4Qt+tvWiuwtQ/T+aUnkOmkdgGjn3g/yHU8k78E9vgT7ApKubbYSk7WeqgFzQztfse0CfovPXmZSzcyF3dvIeVnDg1Oq/O9aLTK/vlB5uiOCplYsIloNkWOpndRZLpbfUiOcdq/iBLLrHcOICBBkQjFBJXp2y34eHkxnLw7PGjQVJOHpMkWaJqlbrjBkswghN+OTE+xm6xu+Af2xATeGH/wkuLp1wZ4+Eg377q/l5am6a7YJOpgqOcEQTJO2/h5CtWB9awlrgo1EfKK2MUlW+Gw7aOd/GetAHYxyjY7znm6uMQWzFLKl6w7IiyfAn4HMalmtOAvsGwDelfskYXvQZpitEakChvW1yF5EhuGCEu2WCmJIVq/aRyeTlBBESM8TNSEqJXRBvTd2/Ef2Y967tytfWeKM7dW16PMNVgPmOf92vNXLMpcDwxAqtCjI8sWu32/HSkjkqQfz28iTccJgraGjNXhcDgcjsXgxG6Hw+FwOBwOh8PhmAFjFFqXULqMlAXEYl1eSfl2rW4/BJkdP1JJUcZSSTUtkY+UglQUsMKb5OpugGi1BCS3Xd12MfXCazFCa4jjTGSs1+U02gBZhLnnbTJXt38a4V/It6XHid5KaHrl7Vxz+ZH7SHctLy50vdHjVTgUjubatIWXaj1UiBja/SjGzwsXT73az8nTWcR20TP84yMDNPvLFCONBpVmorrnZ2KJv7nOta16CwfV7mnx4hbLRe86l72+1XNEClBolKhSZmYXuWdlFok+gxB+Myq9EUgEBSIKNppRDLdYElReABcJNRJqIqYq4nXtJJ2N9+yMCaTld19t4alX+3nujQEePNzFux/YSlvz9Br1adjGUPcx/LRE2/h5ipW+jfi0G8qYaOJZ9rGNce62/RQmCcAAPoa77QC7GOU0vfTTugmSInqxfD+CP7/VIkjJ6nf/NDD93GkEAoH0PYxSeEGASVO8m5HlxSIkKTYIs4VyQbBuFyp5JgGb1e32/CZ8IdDaoKSg6QceRr91fZ44c525ta1A4GPnu89bqSjzpia0lOhSCRFFBNt3gLf011wIQRj2UKtdJdIx1epFguD+hozV4XA4HI7F4MRuh8PhcDgcDofD4ZgBpcawWLQu43ktizvYTHF1R5mru5poKomiVEuRApqCLM4y8VrQIsDgEZkZ3JSrgQWpJ7m65QJFSGMQtSokKcIYbLEIAqwFrbM6nUKAXKcT2EsjRkTfyLVY04wtv5OOz/9Jrl03FRj/G+9czcGtOK0y4f5oaJr281rcxaiJGN71EGkhH7V95vI4X332KpCF6v7M3YNsL+YFpsVjslqvor7AIvQh2DzTHNIKDqhdbDPd07YlpLwVXGBUlmY4cm3RwlARNSrMnFAhrCAimF4vvP7/kBDZADlWkD1OZAOYoW54SVQ4619hXC63Xvzq8+j2hNCb4L++1IrS8Ozrg7zw5hDH7t7CB0/00tw8ve60CloY7rofv20/reMXaKrcQCxmUdNmQwhu0E4/rexjiH12aFrAdJGUY/YqIxQ5zVbGRWMEx7XjGJZLCF681SIYBL6I5YdYqdUf0vMxSmOUQgt5W+yWAluIENZi0xSRpNjC+nR3CzLBW3kRgawivAClUyJART7Rpx6j9v+ddF8wLc7c1v/5IGy9fvcc19+tKPMUbNC4KHMpkE1NmHIZ29mBnhjH6+hYVpdB0Ekc3yBOBvC8AlpX8LxFpiE5HA6Hw7FMNs+3QIfD4XA4HA6Hw+FoIGk6hjUKY2KiaJGu3GQim5hMK+BHmavbwlA5IVGGWmpoLwYIKUhFhBF+5upG4bFcAXBp3HR1i7qre8ESSKmSCd5Jgg2DWw4hozXWkondUrIhLZSzIKInEFNERht/kJYn3iAYyNefHv/oOzHNG10guU0kFMejAbwp8dBvJ+306WbGe45Qa9ue2zYwWuNPvnEeWz/kk3tHua9zuVH9FuI0+29Yjy8PV8aZuBYUbMjR9C5a7HTBYFyUeCO4QCLSNRjZ8rHC1t3Vc9UNny6GT64d7jWgJEKLbeJYeog+Ocx5/yqpWJv33qVyojfl505M8J9OtZIagTaWF98a4tTpIT5yrJ133b8VHU4X+VXQzEjXvYy3Z6J3c/naHS16GyE5Rw9X6eCgHWAHY9P26aTKo/YC12w7b4seYtGYdIK1wPI3gWsIbtxqE7xar9/9yIo8ppAS4UmM1kjfZD9vpr0UCtg4RoQhxDVQ/rpN5/B0QhK2YBHYQjO2NIK2llQZmo/unDfO3FqNEH79s9AH5nkP9wLQtfrqwcZGmatSCVuroYeHly12CyEJw27iuA8TbaVSvURry5GGjNXhcDgcjoXixG6Hw+FwOBwOh8PhmAGlRlE6c/x53iJqGhoDSQlUfYIyyMSqiTgl1YZSrAh8SSHIxJrM1e2j8YnM2rk0b7q6BYuo1R3HCK2gFmf1qIPbYqM2Gms11lo8sT4nrpeE7IPgZK7Jqn3IoR20Pf4/cu3Jzl7K77h3NUe3ongYjkcDFGQ+fvVa2sz5tI1K204meg7ntlVjxWe+eo44NQC8u6fEh7ZPLH8waQqYTOCWEgrRJogZztii2zik9s5Y+/qq189579qmq0WdQ2TO9UzMn8F1bSHAn1UIL9gAfxHTXVvNFrqSdi7617gmBzfUupz7ulM+/eA4v3WyjVjXUzksfPnUGG9fGORn3tNE3LkPFU5PJ9F+kdEtRxlvu4vWiYs0l68irVntp7BuiEXAa2IHl2wnh20fnTPE9O9gjK12nAu2iwuia4PW8/axfBL4rwjiW62Cv8ayA9i5Io8qpYdOU6wx6DS9LXYLoFgAa7Gply2c89fnAjFPZwt0tBdigiKSEbSxKG2xFqKPzxdnfvP68siWFc4jdksfFKAbG2UuCwVEEGBKZXShkLnqg+Ut4AjDLuK4nyQZRMqI5qa7kHJ9uvQdDofDsTnZiHdlDofD4XA4HA6Hw7GiWGtI0zG0LiNEgJSLcIwm4/U6wjdd3R7GZrW6a6kmUYaW0EMIgRIhRgQoUUCi8ezaODWFZZKrG8xCxB5jEJUapCnCaGwY3RKJjM3qdGeuboHYkILATBhE4SuISUKjtT629iE6vvQEMsn//UY/8f51W3908Vjuj4Zo8/LPcVhHvJ5sISl0MrzjRG6bMZY//tp5hsczQeVga42/u394+Zq0Vtk1FgRZrGuxsDleZwt71XbuVQemCd0azZv+ec75Vze30L0QBKRCUZIVBr1Rrvr9nA2u8HpwjpPhmzwVvcKT4Uu8ELzBa/5ZzvqXueL1MSBHmBBl0hnSM3w8DqjdnEgP02o2Vvzu4S2Kn39onKKfF6rfHg34/3y7SvPlZ+gafIkgGZ/xeOMXGOs8zI3t72aidS9mMy1OWgITosjzYi8viZ1UZqgv72E5wCDvtmfZbke5FVmxodiC5RO5FoFG8FmYQeRvBKLu1jZaYZTCTn7dogjryWzxktGg1mfKgrQaYTTaC9F+Ael5aJ0l4WhjEcWQ6JOP5g+qx5lnz9diMQi8+uKseT63bkaZ2xRs/XOvEQiQzc2YchmMRY+MzH/MfF0KnzDsIkmGMCalWr3SgIE6HA6Hw7FwNsG3QYfD4XA4HA6Hw+FoLEqVsBi0qizS1a3rru5qVoqx7sIZr6YobSjVFFEgiYJs0jeRzWg8tAjwzXJjnZeO1OKW4G3FAp19lQrYeny5H+RiR43WgMVYi9w0QjcQvITw+nJNNnmM6O0Jml46nWsvP3IPyZ5tqzm6FeVQOEqPnxdBysbn5Vo3qV9kcPej0+qJ/tVTV7hwPUsr2BIq/tHhQYLlng5Gg0rB8zPXWxQ1po7pGhNYn/vSg+zR08+ZiqhxKjjNgDe6+gPboGhhqMgaw94417xBzvvXeDO4wKnwNE+Hr3DWv4xiunDUYps4nh7m7nQPgd04YYgHOhT/7OFxWoL8+/fFcZ9ffb6NdHSQ3r5n6Ro4SRiPztiH8SLGOu7mxvZ3M952F0ZsnOffcISgX7TxpNjPadFLOsP0aQHFffY6D9lLeBvSEX8EyztzLYIxBH/OnLWkl4hAIP2sdjfWYtIpgnaxCL6H9XxEkqzEEBqCpxP0zQWQQRPaWqy1pCY7B/x7duE/vD93zM04cwCsrgvdggUFrnoBGFWPMo/n33+ByJYWrDGYSgU9vHyxGyAMe7AY0nSYWu0KxqzPRQsOh8Ph2JxsolkHh8PhcDgcDofD4WgMSo2CNWhTwfcXIXbH41mMeVoFvwDCQxvLaDWhkhi0tbRGmVNMCx8tI5S86eqepX7tSmOzL4bS1mttL8R1G6eItB5fjsgEx5vdWdBaY+oTv3IzOG4BRAkRfSfXZPUWqJ6g48+/lWs3xYixv/Gu1RzdirLLn2BvkI8eT6zkVK2HWIQM7X4UExRy2597fYDn3xwEIJSGnzsyQFuwTEHImiy+XErwfQh9CDa+INdqmjiRHKbTtk7bNiBHOBW8RUWu3WKYTYeAa94gz4ev0yeHZ9xlm+nioeQo23TXuhXdprK3TfO/PzxOW5i/zq6WfH7luXZGapJibYie/ufp7n+BqDbzczdeyHj7Aa7veE9d9N4k7+FLwArJRdHFE+IAl+mY8VTYQoUH7BXEBnR4W763Xqv7NoLTwBMr8ng3o8uN1ug0yb+eQYD1fYjC+n3U2iTdzIevY6yUGOFjomxBozaQ6tvPJvrEw4i2fOR4/IUXMCNlsihzC0jEQhaUSD/bXStQjbtPFIGPKBQwpRImiTOX9zKRMiAIOomTAYxJiONrDRipw+FwOBwL4869Y3U4HA6Hw+FwOByOWUjTUbSuAHbhzm6tIC1DWsl+r7u6RyoJWlvKcUox8PC9TE1OZAsGiRYhvqmtWZlYr65uL7hWt7FQrYBSCK2wUZSrcWu0xlowxtRd3RuoAO4ciOibCJGfaLbxh2h58nWC/rxoNPaRxzAtGysKeTa6vCqHw7zry1h4udZN2QaM7DhBWuzIbT93bYIvP307wvSnDg6xp3mZwoXVkCRAvTa87+UWWWxILOxQPTyQHiIiXyrBYDnrXeFN/wJ6oWkLjkWRCsXp4CIvBacpi+nRzQE+d6s9HE8P0WLWZw3hqexs1fziI2N0RnnX+o2Kx68818ZARSKAQjxCz8CL9PQ9R1QdnLEvK33G2w/Qt+1dVJq2bhTNf0VIhc+bcjtPibsYZPo9QTdljtrrGzDS3MPyw1jyn1eCrwMXGv5oQkqkJzE6izG3akq6QlMRpMT6ASJdn+5uaVKwFuUFqKCIJwTKmKx0S32888WZW1uPMgfmdXevVJQ5mbvb1KqgNHpktCF9hmEP1qak6SiV6iXshkw9cDgcDsdGxIndDofD4ZpjpkkAAQAASURBVHA4HA6HwzGFNB1D6TJCeEhZmP8AmFSruwZ+EYQkUYaJmqIcZ1GOLVE2qWnwULKAkgUEZk1d3cKCNDdd3QuYWa5WEcZCPD2+HEAbjbUGa+3mcXV7FxDBm7kmm96DHOmi7atP59qTHd2UH7t/NUe3YjSLhAeiQeSU9QqvJ1sYMQUmug9Rbd+Z2zY0VuOzXzt/a9L/47tHebBrmTVgjYYkJUsRCMHzIFrgdblOkVZyRO3jgN6FnLIgJCbh5eAM1/yBzbJWZF0zLsucDN7knHd1xmjzVtvM8fQwB9Nd+Hb9R+Zvazb8H+8Yp6eYfy6D1UzwvlG+/b4cJWP0DJ6it+9ZCpX+GfvTfoHhrvsZ6H2YJGxb0bGvd8qiwEmxm5NiNwn5c2EnYxywMy8cWN+01QXv2wgsgs8BE7MdtGSE52ONxRqDnure9jxsGGbv8wBp42K7G4UAPJOivQgrPAgitLFYLKm6LezOHWd+M8pcItYwytxragIh0aUJ9Nho5qhfbp9eAd9vr7u7Y+L4xvIH6nA4HA7HAtgkMw8Oh8PhcDgcDofD0Ri0rmBsglZlPK8JIRagNukUkumu7uFygjKWSqppjnxkXTVMvGYMAiVCfBOvqas7m25doNCdpFktzbg+5miKG9XazN1kNEIKxKaIv00RhcdzLdYWsPH7af/L7yLj/GT96Mc/kDmxNjih0JwoDOBPOS/OJW1cVy1UWrcz3ns0t60WK/7wq+eoJZnI9nBXmY/tHF/eQIyGNAE5SeguFJimwG8giibiRHqIHtM5bduomOBk+BYTcvmRso6FYwVc9ft5IXyDATm9fq1AsN308HBylK16y7p0nE6mu2j4xUfG2daUF7xHYo9fea6dqxN5oTZMxukeepneG09TrNyY0aGcRB30b30Hw1vuuV2z+E5ECAZFC6fEbvSUT+/9DLLTNqb+8eqyH8v7cy2CMoI/IYvdbhzCyxJfjFK3HN45igUQAhuEiEQ1RIBtNJ5OMF6ARWCiYpYybiDV+bFGH39oljjzEhabubuFZN7peRlMijJv4AIATyKbmjClMlZr9PgyP6/rhGEPxtRI03Gq1UvT/8YOh8PhcKwAG/8buMPhcDgcDofD4XA0kDQdBWvRurLwCPN4PItZVnEmdAtBNdFUU02pluIJQVNQr1WJJJVFlCggAN+ukXPppqvbZpP184rd1kKlmsWXqzRzX01ZCGC0BizG2nqE+cZHhM8g5GiuzcbvJTw3QvPJt3Lt5YeOkuzbvoqjWxkkhuPRAEU5JQpZNXE2bScptDOy88HcNmMsn/vGBYbGsvN5T3PC3z8wPPUUWRxa1YVurx5d7mdCyAYWurt1ByfSwzTZ6bHYl7wbvBK8TSrUGozMAZCIlDeDC7wSnKEiptdJDwg4pPbyQHo3zes82ryzYPjFR8bY2ZI/n8YTyf/1fBsXx6e71MO0RNfQq2zte5qoNjRjv5XmHdzY/i7GW/dh7+BpxTFR5BWxc9q6h6P2Bj228Y7olee9WA7kWgQXEXyjoY8iEEjfr5c8sZhkirtbSmyhkNXwFqKe6rG+8Oruau2FmCBbFKm1QRmbWycimqLZ48yNqgvdgvmjzEW9dnea3Ws2OMrcpik2jtEjjVmo4fvNeF4zSdyP0mWSdOb3EofD4XA4Gsmde1fqcDgcDofD4XA4HDOQpmNoU8OiFyZ26zRzdKf1qGa/CBaGygmJMtRSQ3PkI266umUzFomSEb6tIdbIIiht3dVtxQLjy2sIYyBOwPMhyE/OWptFmJu6C2tTRJjLIQifzTVZvQNq99Lx59/MtZtCyNjffPcqDm6lsNwbDdPu5aP1R3XIa/EWtFdgaPejWJn/+3/l2aucvZoJPO2B5ucODxB5yzi3dQoqzSb4gyATugvRtAUWGwVhBfvVTo6qu/CmxB8rFK/5Z7noX3ex5euEUVnixeBNznvX0DNEm7fbFk6kh9mvduLZ9fte1xZZfvGRcfa25QXvUir51efbODs6s8gWpGW6B07SNfAS3s3EkklY6TPecZAb2x+jWuxZ70b3FWNAtPKG2JZrE8D99irtdvrrtr4RWH4IS9uU1u8Cpxv6SNLLrhmrNUol08+fQoSVAsIQoVJQ68vdLa1BGI32QrQX4UmJqj+JdIoTffY485uvqZxUv3uuB/VXJMpcFgqIIMCUSuiJCezUaPklEoa9aFNGqzLVyoWG9OlwOBwOx1ys3ztyh8PhcDgcDofD4VgD0nQErcqAwPOa5j8gKYM1kNYgaAIhmIhTUm0oxYrAlxSC+sQugtRrQoko8/KYtXN1S7MIV7fSiDiux5dbbBRN28UYjTVgjEEKwcZX7Swiehwhbk9cWyuwtQ/T/PSrhDfyTqXxjzyGaV3A+bLOORCMsc3PizRV4/FSrQctfIZ2vwMd5B2tL741yDOvDQDgC8s/OjzAlmgZzjOVglL1RRUBhMGtaNuNSGgD7k8PslP3TttWEhVOhm8x7DUmPtbROKywXPH7eCF8g8Ep6Q6QOVR36l4eTu6hR3eu22jz5sDyCw+Nc7AjL2JVleTXX2jjzeGZBW8BFGsDbLvxFO2jZxBmeuKA9psY6j7GYM+DJEHLSgx/3XNVdHKO7lybh+W4vULTWiW3LJkmLJ+c5tgX/Bkw2rBHEVIiPYnRCixYNeXzQojsPT/wsdLLyqesMzydoOpx/jZqwlqLtnZalDnMHmeuh8frUeYC5hO8VyrKXIBsbsaUy1mq0ehoQ7r1/VakLJAkA6RqLEtNcjgcDodjBXFit8PhcDgcDofD4XDUMSZGmyralPG84vw1p63NHN06ySYr/QhjYaSSUks1iTK0hN6tut+Zq1ugZIRnk3Xh6rbzjcEClXImeKsUG4QzxkhrbbDWYK3dHK5u/w2Efznflj6MHGum/StP5ZqTbV2UHntgFQe3MuzwS+wP86JragUnaz3EeIxsP07StCW3/eKNEl968sqt33/iwBAHWpcqTNgstlyrzMntBxAFMMPiio1Cu2nhRHKYdjtdCLwhh3gpOE1NrD8hx3GbWKS8EZznVf8sVaaLTCEBR9Q+7k8P0mQKazDC+WkKLP/0wXGObsmfa7EW/N8vtvHqYDDrsQJL68RFtl1/kqbS1RnreceFLfRvfZSRziNoOXtfm5WzopurtOfaQjQn7GVCu9HKEuzC8uFci6CG4LNA456L9HyssVij0ekM74FhhPUkhGHmaFbr63X0dQxSYoSPCYsIQBuLUnbaJTJ7nPkT9TswgVh0lHkD/xYtLVhtMOUKergxUeZCCMKwh1SNoXWNavVSQ/p1OBwOh2M2NsEMhMPhcDgcDofD4XA0hjTNhD6lyguMME/AKlC1zHUjJOPVFKUNpZoiCiRRvVa3hVuubhD4Zno92FVhqqtbziN216oIZSCJ67WTpwsZxlqMMRijEUIgxAIiOdc1NUSUr1NqTSs2fiftf/UEsjYl4vvj7wdvY3+97pQ1jobDuTZj4eW4m7INmeg6SKVjd277yETMH3/tPMZk59BHd4zzzp6lRvdaSNOsFmkQZEJ3IcqEjo2IhV1qK/enBwnJXzMGw2n/ImeCSwsrIeBYF4x447wQvsEF7xqa6e7NDtvKifQId6kd6zLaPPLhn5yY4P7u/PtXagT/8WQrL/bNfa15JmHLyBv09j1LGM8giAlBuWUXN7a/i4mWPdgNn+6xCITgDbGdQfL3DU2knLCX8WzjaiyvDo9iuSfXIriG4CuNewhPghAYpbP63WaqQgwUiuB7WM/P3N3r6O1SmhSsRXkhyi8ipUDrbPmgnvpcmC3O/Fo9ztwH4TFvIo4MViTKXAQ+olDAlEuYuIapVhvSbxB0IERAkgwQJwMoVW5Ivw6Hw+FwzMT6u/t2OBwOh8PhcDgcjjUiTUcwOsHadGFid1rJHDZagR+hjWW0klBJNNpaWqPbIlcqmzBIlCzg2RQ5g1iyGkjyru45546VRtRiSBOEsdhCNONcrNEasJhN4uoW0XcQMj/Za2sfIrw4RPMLb+TayycOk+zfuZrDazhNIuVYYXCaYf/NpJNhXaTaso3x3rzwESeaz3z1HJVa5i67v6PKD+0ZXeIILCQJGANBmMWXF6JpdeE3Cr71uEft5y69o3613aZKzKngNH3e8CxHO9YzVlgu+328GL7BkBybtl0i2KW38lBylG7dsa7EOYDAg589PsGDvXmhTFvBf3m5hWeuz7+4JEwn6Ol/gS2Dr+Cp6aKYlQFjnYfo2/YY1UJXw8a+3rFC8LLYxTh5d38bNR6wVxEzOOLXLwLLD2DZMqX1OeCVBj2CQHp+JnRbi5nR3R1gPb/u7jbZgqh1giBbAKK9ECs8RFDAWIu1dlrd7pvMFGde+/wz2NFKvcd5UhFk/TNRK1CNTQSRLS2ZyK00ergxn09CSMKwu35vnVKtXmxIvw6Hw+FwzMTGn4VwOBwOh8PhcDgcjgaRxS2WAOYXu63NxG5VjzD3QkYqCdpYyrGiGHj4XiZ0WbIIcy1CLHLtXN2A1Aus1W2BSgW0QSQJNgxhBiHb2qxet6lP7m54sVteQ4Qv5ZpsehDSu+j482/m2k0UMPZ971nFwTWeAM2JwgCByE/OX0hbuapaSaNWhnc+lKuXba3lT791gf6R7DzeXkz46buni+ULw0CcZCdSEIDvZUK3vzGF7mZT5HhymC7TPm3bkBzjVPgWZdkY15xj7aiJhNeDc7zmn6U2Q7R5RMhRdRf3pQcomvUVw+9L+JkHSjy2PT9uYwX/7ZUWvnt1/vEKoKnax7YbT9E2dhZhpjuXVdDMUM8JBrqPk/pNjRr+ukYLyUmxm8oU0bKbMvfY6zNGwK9fIiyfwk6J1xZ8ERhoyCPIeiKK1Rql0pnXhjQVwZNYP0Ck6bpaQOLpBOMFGAQ2LGaubgupnnmQs8WZ1z77BNYKhPCZ090tBYiViTL3mpoAgS6Xsrrdswj2iyUMuxBCkqQDxHEfuoGOdIfD4XA4JrPBZyEcDofD4XA4HA6HozFYq9FqAqUrSBkh5Txim6qBNVmUpBeQaMtETVGOs8nHluj28UoWscKb5Opem0hTUa/VLWxWLdzOJU7WYoTWEGd1KWeKL4ebQjcYY5BCMG8M57pGIwpfzbVYG2DjD9L8zKuE1/IT/OMfehTTtoAEgHWKwHKsMEiTzE+Y96siZ5IOtBcyuPvRzFk3ia89f43Tl7LI/2Zf80+ODFD0l6BAWANxCtjMued7UCxsWKF7q97CsfQQRfJiocVywbvG6/45lNhoccaOuRiuR5tf8m5gZkjr6LRtPJgeYa/ajlxH0eaehJ+8r8T37MwvvLII/n+vtfD1SwurPS6soW38PFtvPElT+fqM+8TFbvq2PcZoxyGM2JjX9mJIhM9JsYeEfDmPHYxxwDZGJF49tmL5WK5FkNbrdy/fWSykRHoeRimwYGeqy+172WK7KKwvMmyso3k5eDobi/FCVFDEEwKlDcZYZkgyB2aJM3/zCvq58/Xf5nN3B5mzu8FR5ngS2dyEKZWxWqPHxxvSrRAeQdBFkgxhTEK15mp3OxwOh2NlWD932g6Hw+FwOBwOh8OxhqTpGBaL1mU8r2X+A1T1doS5FzFcTlDGUkk1zZGPlHlXtxIBBm9NXd2eBmEzOdqKOVw7xiBqVUhShDHYqDCrhq21wVqD3QwR5sGLCC8vRtj4XcgJn/a/firXnvZuofTuY6s5ugZjuSccotPLT5aP64BX4i4skqHd70CHeTH/pTPDPPFyPwCesPzDQ4P0FJYg4FqdRZdDJmJ4EorFrC78BkNawd3pbg6pvXhTpllSUl4NznLZ79vY60Acs2KE5aJ/nReDNxkR0wUiiWSP3sZDyVG6dPu6caZKAT9+T5nv3TM9aeAP32zmy+cXJngD+Dpmy/Br9PQ9RxBPj3dHSEqte7ix/V2UWnZt+nreFRFyUuxGT3me+xlil91oJQyOYzmeaxEMIPgSjTiZpe9hrcUajZ4tprxYACGwYYBI0nXjkJfWIIxGeyHaixCehzZZgZhUzX6PNXOc+dPYUroAd7efbV6JKPPmFmySYOM4c3c3iDDsBixJOkStdhVj1k8cvcPhcDg2Dxt8JsLhcDgcDofD4XA4GoNSY1ijMKa2gAhzA2kV0hiEoGok1VRTqqV4QtAU3BbslIgwwr/l6vZoXOzkoqiL3DfdhWYuraFUyQTvJMGGQSZEzoCxmaPbWI0QAiE28FdMMY6Insw1Wd0D6YO0ffkpZDUvCo9+4n3gbTxh9iZ3BePsCCq5tprxOBX3oJGMbD9G0pSvt3u5v8wXn7jtyvrb+0Y40r4EZ5nRkKSAyIRu6dWF7o13/hRsyLH0ENtM97Rt46LMi+FbjMqJNRiZY7WpyphXg7O87p8jnsH1WiDkHrWfe9V+Cnb+2tirgRDwo4crfN9dlWnb/uRMM194u7goXTFKxujtf47OodeQM7hOjRcy2nmEvq2PUos6lzP0dc+4KPKy2DnN73/E9tFjN9Z7guX7sGzNtQleBl5cdt9CegghMEpn9btnis+WEluIIAixQmSlL9YJvo5RMrueb0WZG0j17GL3bHHm6sULN3ud/QFXMMpcFosI38eUyujxcWzamL6lDAiCLSTxINak1GpXG9Kvw+FwOByT2XjfJB0Oh8PhcDgcDodjBUjTUZTOJvz9+eqLqnhShHnIUFmRKEMtNTRHPmJS8eLEa0ELH4OPb9fQ1W3ELcF7zlrdcYzQCmpxNqkazC7KGK0AizE3Xd0b160noq8jRN5tZGsfJrg8QPPzr+XaKw/cTXxg92oOr6Fs88ocDPPuS2UFp+IeYutT2rKfSufe3PaxUsIfPX4OXa9F+v6tE7x/W2nxD250FkMr60K3t3GF7i26jePJYVrs9PeLq14/LwdnSIRzsN1RCBjyxng+fIPLXh9mBufrFtPOQ8lR9qhtyDlrSawOQsAP3l3lEwenC95fPNfEl84XZzhqjv6A5sp1tl1/ktbx85kgNwUVtjDY+xCDXQ+gvMX1v5EYFK28Kbbl2gRwv71Ku53+eq9fAiyfxJK/HxD8FXBt2b0L38+Ebmtnd3cXClgpIAwQKs0U5XWApxOQEiN8TNiEEFnijTJ2zoUi/j278B7Yk2tLT50DPMRcYjesXJS5ANncjCmXwNqGurujqAeLIklGqFYvY+36+Ps5HA6HY/Ow8b5NOhwOh8PhcDgcDkeDsdaSqjGMLiNEgJTR3AeklcxNYzQV45FqQylWBL6kENz+mqVEiBEBShSQaDy7dq5uaSe7umeZgTUGUa1BmiKMxobRrPq1tTfrdWcTlhs6wtx7GxG8nWuyyQOgttH5599k8stlwoCxj71nlQfYONplzD3RUK7NWngl7mLChFRbehnbel9ue5JqPvP4OcrV7Pw93FbjR/eNLP7BjaoL3V62iOJmjW659oLforCwV23nXnWAYIooodG86Z/nnH8VO9eiEsemxgjDBf8aLwZvMCqmu3glkr16Ow8mR+nUbWswwul8bH+VTx0uT2v//NtNfOXCwiPNbyKtpn3sLNuuP0Wx0jfjPrWmXm5sfyej7QcxYuMmZczFVdHJWfLJDx6W4/YKTbaBQuWK04Xl47kWga7X754ehb8YZD0lxWiNVunMIrEQ2edFEGClRCTrw90tTRarrrwQ5dfrdtfHn87kUp9E8I4Dud/NxQHscCV7rnPV7l7JKPOWFqw2mEoFPdK4yH0pI3y/nSTpx5iYWu16w/p2OBwOhwOc2O1wOBwOh8PhcDgcaF3CWo1S5YVFmKtq5u4WgolEkmpDogwtYRbHeZNENqOFhxbB2tbqrmeWS+ZxdVcmxZf7QSZGzkImdIOxBikEG9fVnSAKX8u1WFPExu+l+bnXCa/057aNf+870B2tqznAhlEUiuOFAbwpf6q3kg4GdRNp2MLwzofrE+23+fNvX+TGUCZm9EQp//DQIP5iZxN0CmlaF7oD8H0oFKY91nonsD73pQfZo7dN21YRNU4FpxnwRld/YI51SVXGvBK8zZv+BWKmO1aLRNynDnA0vYtoHUSbf3hvjb97dHpiw2dPN/PNy/MsApsFX9foGnqF7v4XCJIZ4ruFpNS2jxvb30W5ecd6KWneUM6Jbq7SnmsL0TxoLxPajZT+cA+WfPy2YBTB51lO/W4hBNLzsEqBBaNneU3CCCslhGFd6J2eGrDaCMAzCdoPsUJCWMgc6tbOGWUO4N29DZry13360gXmdXffjDI39Shz3biFlCIMEFGEKZUxtRqmuryFDJOJol6MTUjVGNXqRew6qb3ucDgcjs2BE7sdDofD4XA4HA7HHU+ajoI1aFPB9+cRu1WtHh2ZoGVIJdXUEo0nIZykAGoRoGU0ydW9Ri4kC8JyKy53VrE7ThFpPb4cAdHcwobWBmsN9laE+cZERE8hptRUtvEHkGVL25fzNbzTnk5K7zm+iqNrHD6G44V+QpGffL+ctnBZtaK9gME9j2K9vJvsGy9c440LWeR5wTP84yMDtASLjB9VKSgFnp85usMgc+htMKG71TRxIjlMp52+2GFAjnAqeIuKXLtFLY51ioABb4QXwte54vVjZxAFu00HDyVH2a22ItY42vz9u2P+zpHpgvf/fKOFJ68uTfAGKMQj9PY9Q8fwG0g9/fPQeBEjW+6hf+s7iMP2GXrYwAjBG2I7A+TvL4qknLCX8WaIel+vWD6MZVeuTfAW8OTMBywQ6XtYa7FGY2arFS3Iyl74PtbzEUm8HI29YXgqwcgAg8AGxcx0bSxKzR1lLnwPf0qUuTp5FoFX/3ycS/AOsrSURkeZk7m7TbUCWqNHlpDiMgue14TntRDHA2hTJUkGGta3w+FwOBwbd0bC4XA4HA6Hw+FwOBpEmo6idRWweN489bqTSuZSNZqq8bBYakpT8Ke7ug0SLUJ8U1sz37O0AlH/OXt8uYVqBZRCaIWNZo8vv7m7MQZjDUIIhNigXy3lAATP55qs2g3qKG1feRqvkhcuR3/gfXO63dcrAssDhQFaZF5AGFQF3ko6sUiGdz2CDlty2189N8K3T/Xd6uNn7h5kR9NiHGQ2c3NrlTm5/QCiYN6FFOsOCzt0Nw+kh4im1Kw1WM56V3jTv4AWrgapY3a0MJz3r/Ji8CZjYrqY7CHZp3fwYHqEDrO26REf2BPzI4emR5r//mvNPHdj6Q50AbSUr7Lt+pO0TFzMklKmkIZtDGx9hKGu+1DeBnuvmAMrBC+LXYyRj4RvI+aYvYrYMC5XD8uPYMnfKwm+Blxccq9CeggpMEpl9btniwAPA6znZ+5uY7KFVGuMZ7LFG8YLUUETnhRoky1r0Wbuv6t/bG/ud3N1GDMwTubuXpsoc6+5GRDochk9Mpq9zg0iinoxpoJWJSrVpZ8vDofD4XBMZYPOSDgcDofD4XA4HA5H40jVGEqXAImUxdl3NAZ0DXQCUlJKBYmyaANRcFsE1XgoWUDJAgKzpq5uaRbg6q5WEcZCPH98OYDRCrBYY+qu7o3l0M2wiMJXEZNeE2s9bO3DBFcGaH7mldzelfsOEB/aM7WTDYDlSDhMl5d3fk2YgJfjbiyC0W33Ezf35LZfHSjz+W/fnoj+4T2j3N+5GNdyXeg2Kost9wIohJlAsYGQVnJY7eOA2o2ccp7HJLwcnOGaP7AxLwHHmlCRNV4OzvCWf5FkhmjzJlvg/vQgR9J9hHYOsWuF+ei+Gj9woJJrswj+2ystnOpf3rikVXSMnmHrjacpVGd2d1abtnFj27sYa9uP2agLqqZghOSk2E1liojZRZl77DXmtAGvK9qx/FDOVC2wCD4HTF/IsVCk52N0lhij0zni3ZuK4EmsH2S1u9f4ZZPWII1CexHaC5GehzEWay1qHqHYO7gV0ZpfAJGeWoC7e3KUOY2NMseTyOYmTKmE1Qo9MUP5gSXi+61IWSCO+1FqnDRtnHPc4XA4HHc2m+Nu0eFwOBwOh8PhcDiWiNZVjInRuoLnNefc2dNQ1czWrGO0CKmmhjjV+FLkIsxTrxmDQK0jV7edTehO0myyOI4RWIjmFiOtvVmv22Bh40aYB68gvGv5tuQR0J10/Pk3mPxymcBn7Pvfu7rjaxB7/Ql2BXmHZmwlp2o9aCSlzn2Ut9yV2z5RTvmjx8+jdPYivLOnxEd2LGay20KagNFZbLnnQyHKRO8NRNFEnEgP0Ws6p20bFROcDN9iQk53vzoc8yKg3xvm+fANrsmBGaPNe0wnDydH2al61yza/Pv3V/kb+/I1e7UV/JeXWnl1cPnXc6AqdA++RPfAi/jpDCKp9Jho30/ftndRadq61ppmQ0iFz4tiDwn5RWU7GOeg3UixzgeA9+VaBCUEfwoszQksvOw1MVqj03R27d/3sEGQ3a/Y+sKqNcbTCapeBsSGTZmr20Kq5z5rhZT4D+Td3enJc/VzXc7j7l7BKPPmFmycYOMkc3c3kCjqRekJtK5SqTh3t8PhcDgawwadlXA4HA6Hw+FwOByOxpCmowBoVZ6/XndayVw0xlDWWX3JWqopTHJ1GySpLKJEAQH4trETkAtmIa5ua6FSzeLLVYoNo3nrKBtjMAasNUgh2JCWVlFBRN/ONVnTgU0epemF14ku9+W2TXzwEXTn2sYKL4Uer8Ld4WiuTVvBqVoPNetTa+5mdNv9ue2pMnzm8XNMVDLxYH9LzI/vH15Eee0sIQBj60K3Vxe656g9ug7p1h2cSA/TZKcnPVzybvBK8DapWPv4XMfGRgvN2eAKJ4O3GBfTF054eOzXO3kwPUy7aZmhh5VFCPihuyt8cE9e8FZW8J9OtfLWcGOu60JtmK03nqFj5C2EmS5car/AcNf9DPQ+TBK2NeQx15KqCDkpdqOnfH7exRC77fAajWrxWN6LZX+uTXAewTeX1J8QAul52Ho0udHzuLuFwIZ+3d29tkshPJ2AkGjho4IinhAobdDGMk+SOf7xvNht+8bQ14cQ+HO7u72bUeYpqAaL3cUiwvMwpRJ6Yhxmq6O+BHy/AyFCkqSfJB1CqcY5xx0Oh8Nx5+LEbofD4XA4HA6Hw3FHc7Net0XPXa/baFC1zD0jJaUUEmUwlpzYnXjNWCRKRvh2DV3dTHJ1z+gbBKo1hDGZOOn5CxIktdZYDMbYDevqFtG3ECIfyW1rH0JUNO1/9USuPe3uYOK9J1ZzeA2hVSbcHw1NE6lfjbsYNxFp2MzQrkdgSjzwF75ziWuDWXRxZ6j42cMDBAv9M9v6uYTN4sp9DwqFrF73BkFYwX61k6PqLrwpzkuF4jX/LBf96xtyjYdj/VKWVV4KTnPav0TKdFGpyRZ5IL2bw+leAru615MQ8KOHK3zPzvx7ZmoEv3WyjbOjjRmPwNJSusy260/SPHF5RvEyiTro3/oOhrfcg5YbqyTCVMZFkZfFrmke6MO2j147viZjWjyyHmeeXwwm+A5wZmk9+j4Wi9Eak8whdkuJjSIIIqwQ9c+etUOaFKxF+xHKLyJv1e22pGpup7vc14Noz99/qlNn60L3HO5uMTnK3DQ2ylyAbGnBlMtgDGpstHFdC0EU9ZCmYxiduNrdDofD4WgIG3NmwuFwOBwOh8PhcDgaRKpG0aoCCDxvDmd3Ws3qQuoYJUJiZaimmsCX+F7dPY0glU0oEWWubrOGrm49j6tbaUQc34ovt1E0b7fG3nR2m2yOdSPWUfUuIYLXck02PQJ6H+1feRqvnBd0Rn/gvRtKrAWIhOJENIA35e9+JmmnXzdhpM/Q7kexXl4s+vapG7x6LqufGUrDzx0eoD1cYBytNZDUxYYwBE9CsTBv/ff1RGgD7k8PslP3TttWEhVOhm8x7G0UEcqx4RDQ5w3xfPg61+XgjEuUes0WHk7uYYfqWdU6xVLA/3JPmUe35z/TYi34zRdbuTjeuOvcMymdo2+xte9potrQjPtUmndwY/u7GG/dh93AU5uDooU3xPZcmwDus9fosJWZD1p3NGP5EeyUFUCCPwPGFt2bkBIhBVarW/cbs1IsZCdnECCUgnnqY68kgszdrb0AK2QmwpMNKZ1nXEKKae5udfICxppJ7u5ZrjEZZIsxjWl8lHlLC1ZrTLWKHmlsbe0g2IIQHkkyQBL3o3V1/oMcDofD4ZiDjXtH6HA4HA6Hw+FwOBzLxJgErStoU8LzinOLt2kFTBbPXFISYyyxMhQm1+qWzVgESkZ4tl4Dew0QdVe3sNkIppV7tUClnAneKsUGYTZhPA9GK8BijUFKj41nb1WI6PFci7UhNn4/wbUBmp9+Jbeteu9+4sP7VnF8y8fDcCIaIJI61341beZC2oZFMLTrYVSUd+K9cWGUb7xw/dbvP3lwiL0tC6yDanRd6BYQBVl0ebEIcuMI3e2mhRPJYdrt9KjoG3KIl4LT1MTaOgfnQ8UJw2+e4/rTLzFx6Tp2jWN9HUtDCc3bwWVOBaeZENMFTx+PA3oXJ9IjtJl5Sm80ECngJ+8t8WBvXlCrKslvvNDG1YnGXu9BWqZ74CRdA6fw0+mvg5U+4x0HubH9nVSKvRu2nvc10cHbojvX5mE5bi/TvFZlUBbNHiwfzrUIqgg+C+iZD5kD6fkYbbDGoOeqxy0ENipAEGClQKyxu9vTCUYGGCExYRNCgNYGpe28Kev+iX253+1QCXO5ry50i9nd3TejzI1qeJS5CANEFGFKJUy1iqnW5j9ooX0LSRh2k6RDGJNSrV5qWN8Oh8PhuDNxYrfD4XA4HA6Hw+G4Y0nTzHWkVWVuV7dWmWNGJeB5lBKIlcFaKNYjzC2CxMtc3SDWztUNeBqEzeY/rZjBUVSrIZSBJM4EyWCWSdRJWAvGaIzJnveGjDAPn0d4+XqoNv4eMM10fP6biEmz0db3GP3+9672CJeFwHJ/NEirlxcHhnXEG8kWQDC29V7ilq257TeGKvzZt27HiH7/rjEe7lqgy8poSNNsQj4Ks4n3YgE2yvlhYZfayv3pQcIpYoLBcNq/yJng0szpCOsAozSj5y5z4a+f4I0/+AJXvvU8Ay+9xfm/+g5v/+njjF246kTvDUpJVjgVvMXb/uUZo81bbJFj6SEOpXtWLdrck/DTD5S4vzsvKpZSya+90MaNcmOvewEUa4NsvfEU7aNnEGb666D9IsPdDzDY8yBJsPp1zRvBebq5QkeuLcBwwl4isgtcdLTmPIblSK5FcBXBVxbdk6gnghitMWk6t1BciLBSZokiWoFavLjeKDyTXRdGBii/iC8EaX3sap7C3XLXFkRX/vxVp85jsXV3t2RGd7cQIFcoyhyQLc2YahW0XgF3dxcgSNIharVrGLO+F5Q5HA6HY32zQb59OhwOh8PhcDgcDkfjSdUoRicYm8wtdqtqpvbqmMQGpMZSU5rIl8i6IzqVxXqt7gKeTZDTKnGuEnWRW9rs656Zar5WGlGrQZogjMUWogUZtK01GJP9zJ7zBnN1i1FE+HSuyeqtkB6j6cU3iS5cz20b/8DD6C1tqznCZXMoHKHHzzuvysbnpVo3FkG5Yw+lrgO57aVqymceP3erpuiDWyr8rV0LjJ41CtIkE7Zv1ujeQEK3Zz3uUXdxl95Rz0K4TZWYU8Fp+qYsjlgPWGOYuNLH5W8+y+v//Qtc+upTjF+4ip0SlVsdHOHiXz/BmT/5KmPnrzjReyMi4Lo3yAvhG9yQM0d6bzVdPJQcZbvuXpVoc1/CPzw2wZEteRF2PJH82vNtDFQaf/0LLK0TF9l2/UmaSldnrOcdF7bQv/VRRjqPoOX8C7jWFULwptjGAHmxs4jihL2Mb9dOwF04AsvHsXROaX0WeG3mQ2btSSB9D1MXrs2c7m6yJBHfx0oPkSSrGvE/GWkN0ii0F6G9EOH7WGsx1pLquf+GQgj84/tyberURaxO60L3HO5usXJR5l5zC1jQ5TJ6dHTGa2+pSOkThltI4kGsVdRqVxvWt8PhcDjuPDbGN1CHw+FwOBwOh8PhWAFUOoY2ZYB56nVXQCdgLSXlYYwlUYaCf9PVDYlsRosQi8Q3jYt6XCyeEbcE72luVAtUKqANIkmwYbhgYVJpjcVgjN2Arm6LKDyOELcdT9YKbO3DiGpK+18+kdtbbWlj4n0PrfYgl8Vuf4I9QSnXlljJyVoPCo+4qYuR7cdy25U2/NHj5xkrZULC7qaEf3BwaCGJ9pl7LE1vJwP4PhQK9cjV9U+zKXIiOUyX6Zi2bUiOcSp8i7JcPzVErbVUBka49tQp3vifX+L8l77FyFsXMMn8rs/a0CgXv/IkZz73FUbPXXai9wYkFYozwSVeCk5TEtPPywCfg2o3x9PDtJqmFR9P6MHPHR/nYEf+/BuJPX7thTaGayvzGeGZhC0jb9Db9yxhbQaXqRCUW3ZxY/u7mGjZM62O9HrGCsHLYiejFHLtrcQ8YK/kkkfWLwUsn8JOcSALvgBMLKon6fmAxSiFUfO8z0UB1vOyRVdGg2qsu3kxeDpBeWFWQiYoIshc3ame/+/nn8jX7bajFczFPsi5u2e4tlYwyhxPIpuaMKUyVqXoidL8xyyCMOzGokmSYarVy9gNsbDD4XA4HOuRjTZD4XA4HA6Hw+FwOBwNwVqNUhNoVUHKCClniYHVKhO6dQLSo5RaqmnmoIyC7CtVKotY4a0LV7e0k13dUyZXazFCa4jjTOReQHw51CPMtcEYgxDMXdt8PeKfRvgX8m3pCTDbaPvqM3ilfD3Y0R94HwSrEwvcCLq9KofDvPBjLLxU66ZqA1TQxNCuR+oT5bf5i+9e5kp/ttijNdD83JEBIm8BgopKs3+eD0GYvVbFjSN0b9VbOJYeokiUa7dYLnjXeN0/hxLrY8I9Hi/R98JrnP7jL/P2n36VwZdPoyqzi/BCSoLm4ozbasNjXPrqU5z+7F8z+valaU5wx/pnXJY5GbzJWe8KaoZayK22iWPpIQ6mu/FtY2toT6Xgwz85McHetrywOFj1+PXn2xiPV+79IEwn6Bl4gS2DL+Op6deDlQFjnYfo2/YY1ULXhqnnbYTklNhNmTDX3kWFe+21hrpqV45tWL4v1yJIEDyzqF6ElAgpsfXyKUbP837VVATfw/rBmrq7PZ2AEBjpo4ImpBRok9XsVvMI3nJbB3Jre65NnbyItWpud/e0KPPGRt/L5mZsHGOTpOFR5lJG+H47STKAMQm12rWG9u9wOByOO4cNNkPhcDgcDofD4XA4HI1BqXEsBqVL80SYV+oR5gk1G6CnRJhbIJXNKBFg8AjW2tVN9kVvmtBtDKJWhSRFGIONCgtOItdaARZrTN3VvTFEzYwYEX0912JNCzZ+N/71QVqeeim3rXp0H7Wjd63mAJdFi0i4PxqcpjO/FncxagoY6TO4+1GMnxd2n3i5j5feziK6fWH52cMDdEXzCbw2E7m1ypzcfgBR3dG9ARBWcDDdzSG1F2/KdEhKyqvBWS77fWt+eqtqjcFXz/D2n32Nt/7wL+l7/jXi0bldkc07etj53oc5+hM/wJG/8zF2f+BRoo7WGfeNR8a59LWnOf3ZrzBy5qITvTcaAq75Azwfvk6/nB6zLxBsN908nNzDNt21oqJfU2D5+YfG2dWSF7xvVDKHdylZuYtJAE3VfrbdeIq2sbMIM/39SwXNDPWcYLD7OKm/8o73RpAKn5NiN/EUd/R2xrnb9q/RqBbLCSz3TWl7EVicCCs9D6MN1hi0mqees+9jAx/CILtnmyv6fAWRJgVr0V6E8gv4UmCMxVqLmue9Nosyz7u71csXsSa7BwMfhMeM0/lycpR5Y2tfy2IR4XmYUgk9PtZw53wU9WJsQqpGqVYvufQRh8PhcCwJJ3Y7HA6Hw+FwOByOO5I0HcUahTHx3GJ3ko8wV8aSKkMhyCaitQgxwq+7ulPkDG67VcGCsCBtJi5ME7tLlUzwThJsGIC3sK+D1oIxGmsM1mZuq42EiJ5AyHKuzcYfABvS+flvIszt18n6HqN/672rPcQlEwrN8cIA/pS/9dmkjRu6GQsM73wIVcjXHj99aYyvPX/bPfW/7B/mYOt8k+N18UCrTOT2AogCCKN5jlsfRDbkWHqI7aZ72rZxUebF8C1G5eJidhuJTlNGzlzk/F9+m9f/+xe59sRJKv0z12i+SaGrg+2PPcCRv/v9HPhbH6Dr6H78KERISeehvRz65EfZ/b2PEXXMXHs+Hh3n8tef4a0//mtGTl9wovcGIxWKt4KLvBycoTxLtPndag/H0kM0m5nd/o2guS54b2vOC2BXSz6/8WIblXRlV48Ia2gbP8/WG0/SVL4+4z5xsZu+bY8x2nEII9Z/akdVhJwUu1FTVt7sY5jddvoCh/WHwPLeKS1V4JXF9VIvFWO0xqRqfmN7sQmkxAY+Il0bd7cgc3drL8QKiQ0KWEBbFhZlPkXsthM19Nl+rNX1VB2RRZpPRa5glLkUyOZmTKkM1qJGxxravecV8f1W4rgfbWrESV9D+3c4HA7HncHGmqVwOBwOh8PhcDgcjgaRpmNoXQEsvj+L2K3TLBZSx1jPp5waaqlCCoi82xHmGg+Dj28bPMG4CKQViPrPaUJ3HCO0gloMUmTR0wvEWoMxYKxBSoHYSF8j5Q0ITuaarLoL1CGKp04Tnc/HZU687yF0V8cqDnDpSAzHowGKMr+44rpq4lyaxaCO995DrXVbbnv/SJU/+eaFW6LBh7eP8+7e/GKA6dSFbqOzc8f3oRBl9VE3AJ26jRPJYVrtdGfnVa+fl4MzJGL1XYBWG8YvXuPS157m9T/4Ape//gwTl2/MGVUctDbTe+Iohz71UQ79yEfoOXaEsGVmx6qQks6Dezj0yY+w50PvJOqcWfROxia4/I1neeuPvszwW+ex88UFO9YVY7LEyeBNznlX0TMstmqzzZxID3Mg3bVi0eZtkeUXHpqgp5h//IvjPv/3yVZqq1BC2dcxW4Zfo6fvWYJ4BjFOSEqte7ix/V2UWnat+3reE6LIy2LXtKIoh20fvXZ8Tca0OHqwHMi1ZFHmC1egBQLpe5i6k9jM59b2JDYMIYyyR0nW5p7M0wlG+hgh0UERTwiUNmhjMfM8fdnbjtzZmWtTpy4Amtvubp9pU/o3o8z1CkWZt7RgtcZUqujRxkaZA4RhL8bUUOkE1crFhvfvcDgcjs3P+l/O6HA4HA6Hw+FwOBwNxlqLUmNoXUYIHylncaem5XqEeUqNCGOhlhqiwEPUI8yVjDAiQGCRdm1iM7EgzSyubmMQ1RqkKcJobKG4qJhmrTUWgzEW31/ZGrCNxSAKX0VMei2s9bG170XUEjq+9N3c3qqzlYn3P7Tag1wilvuiIdq9vBt7VIe8HncBgnL7bia6785tr9QUf/jVcyT1mvP3dVT5kb2j8z4WcZL9DELwvEzo9jfAdIKFvXo7e/S2aZs0mjP+ZQa8xk/azzkka6n0DTF65iKj566ga/OLMV4hpGP/bjru3kvT1i7EImujCynpOLCb9v27GD9/lb4XXqM2PF0MTMZLXPnmc/S/+Dq9J47Sefc+xAITIBxrixVw1e9nwBthv9pJj8mLZQLBDtNDd9LBef9aFn/eYK23s2D4hYfH+ZXn2hiu3f6sODsa8B9PtvG/PThOuAofIVEyTm//c1SatjHWcTfGy3++Gy9ktPMIpeZddIyephCvX6f0kGjhdbZzn73tWBfA/fYaL+AzKtZ3NLvlUQRnb/0u6MdyAVh4qRDp+RilMUqhhUSGwdynbrEISQpBmCXZBAGsciKNr2MSWjEyRPlNRHKY1FgsFqUNoT/3ePzj+0iu3v5sUi9fwv7QO8DTCOFjrSCb0p+SyCID0NUsylzFWQJLgxBRiAhDTKmEaSpiazVEA0uY+H4LntdEkvTjB60kyRBh2NWw/h0Oh8Ox+dkA304dDofD4XA4HA6Ho7FoXcJYhdLluSPM0+qt2ofjqSTVGqUtrVE2UalFCEi0DPBsumY+scmubjvV1V2ZFF/uB7AIwdpa0MZgjEEI6hGaG4TgFMLLR2Ha5DGwHbQ9/h28ibybefRvvTeLd98AHAzG2OrnY4srxuNUrQeDIC52MrL9WG67NpY//tp5Riey83lbMeWn7x5EznnSGohTwGZ1UD0PosKizqG1IrA+h9N9dNrpdasrosYb/nkqsrZq46mNjGcC99uXSCbmc9Jn8b3t+3bScXAPrbu2NUR0FkLQvn8XbXftZPzCNfpefI3a4Oi0/ZLxMle+9Tx9L9RF78P7kN76/5s7IBEpbwYXuGGGOKB20WTzYlRIwGG1l22ii7f9yw2/BrqLhl94aJxfea6dseT2OfvWSMB/PtXKz56YIFiFjxEBNFduUKwOMNG6j4m2PfVax7dRYQuDvQ9SqPTTMXYGX02Pgl8PXBcdRCjutgO32iSW4/Yyz7GPsljPpSQOYtmC4PaCAsEz2EWI3UJKhCcxWiN9g9UaMdf7kRTYQoSwFpumiCTFFlb3NRJYpFEoL8T3AoQXYHWCMZAuSOzeS/KlSak0lQR9+jr+0Z2AB3gIYbG2/vl8k1tR5mnD63YDyNYW9MgIaIMaGSHYvr2h/YdhD9XqRbSqUK1edGK3w+FwOBaFE7sdDofD4XA4HA7HHUeajoE1aF0himaZrFNJvfZhDS08Kqmllmg8ya2JSiULGCQGn8CWVvEZTGIuV3ecItJ6fDkCosVN+GqtwFqsMUiZ1YrcEIgSIso7t63eAskj+H1DtDzxUm5b7dBeavfsX80RLpkdfom7wnyEbWoFp2q9pHgov8jQ7neAzIsBf/nkZS7eyM7RJk/zjw8P0OTPkadqDST1yfIwzGq8FwvT+l2PtJomjqZ3ETE9Zn1AjnDGv4QWKx/VnZYrjL59iZEzl6gNjc5/gBC07tpKx8G9tN21Ay9YmcUXQgja79pJ274dTFy8Tt+Lr1EdmO5wT0sVrn7nBfpPvkHv8SN0HrnLid4bhFE5wYvBm+zSvezW2/CmRB632xYeTI9wzRvgone9odfD1ubbDu9SevtxXx0K+Z2XW/iZB0rMo/U1DGk17eNnaS5fZazjbqpNW6ftU2vq5Uaxm5aJS7SNn0fa6VHwa80FuiiQspvRW20BhgftJZ5lH7FYrwu1BJZ3IPjypLa3gBGgc5ZjpiOlh05TrDHoNJ3/fahQwMYJIgqhVgPlr/oiLU8npH4RC5iwiEgTtDEoLbA2Sx2fDbmlBbm3G3Nx8FabOnUR/+jOeu1uH2s1EJBzd9+KMlfgm0zw9hpXbsRrakYPj6DLZcTIKMG2bXM/kUXi++1IGZEk/Xh+E2k6ThDMXH7D4XA4HI6pOLHb4XA4HA6Hw+Fw3HGkahStq8xZrzutZIKfTqlSwGKpKU3B9xDiZoR5AS3CNY0wl0xydWNve3yMhWoFlEJotej4cgBjNNaYbGJ2lWNAl4OIvoEQeVeTjT8MVtLx+W8hzG1hx3qS0Y+/r6ETtivFFlnjaJiP3DUWXq71ULYBRngM7X4Hxs+7OZ95rZ8X3xoCMkfg/3pokK3FOYroWp3FwCIgqkfAFourHgW7aCzsMN3cpXYhp5zsBst57yrXvIEVXbOh44Sx81cYOXOJ8rX+BR3T1NtFx9176DiwG7/YuFjY+RBC0LZvB617tzNx+QZ9L7xGtX96pHNaqnD1uy/Sf/INeo4fYcuR/cgN4O6/07HCctnvo78ebd5tOnLbBYKdupce3ck5/yoDcqRh18aOFs3PPzTOrz7fRkXdft842R/xe6/CT91fmidVorH4ukbX0CvEpcuMdhwmDackPghJqW0flebttI+dpal8bX0t7RKCN9lGZBW93F5YV0Bxwl7mefaixHq9Jo9j+TqiLspmr+uzWD664B6E70GaYrRCKIm1du5yDoJscZY1WOnVk22Ky3kSi8bTMWnQhJE+yi/ii3GUgRBQxhJ4c59h/vF9JJPF7lcuY39Ek61ryGp2Z6L3VHf35Cjzxord+B6yWMSUSti2VnSphNc6PT1lqQghCMMearWrRDqmWr1IENzfsP4dDofDsblxYrfD4XA4HA6Hw+G440jTUZQuAxIpZ5gAtTYTu3UMQlBKJYnSaANRkE0oaxFi6xHmcq0izC1IPYuru1pFmKze8mLjywGMMRgDxhqkFAjWudB5E+88Ingr12TTe0HvpvjyaQpnr+S2Tbz3QVR3xyoOcGk0i5QHCgPTBKI3ky0MmwIWGNn5IGmxI7f97NVx/vqZq7d+/9F9I9zTMUedaKMhvSl0T6rRvc6Fbmkld6s99JrpbsGYhDeDC4zL+ePDl4JRmolL1xk5c5GJS9exZn6XbNTRSsfBPXQc3EvU3rIi41ooQgja9myndfc2Slf66HvhNSp9Q9P2S8tVrj1x8pbTe8vR/ciNULv9DicWCW8E5+nUbRxQuyiST/gICTii9rFNdHHWv9KwaPM9bZpPPzjBr73QRqxvv3E9eyMikJafuLe8qoI3QBSP0tv3DOXmHYy3H8RMEQKNFzGy5R5KLbvoGDlNlIyu7gDnQgheYScP2Ut0cDtyvZWYY/YKL7Ibuy5LjUTACeCZSW0ngQ/ADOkbMyEQSN/HKIXnW0yq8OYrOxKF2DhGhCHUqqAUrOL7lTRZMo72IpRfJPQkaaox1qK0JvDmHot/bA/JF56/rWPHKfrNa/j378ZaNbu7e1qUuaWRK7xkSwuqvx/SFD0y0lCxGyAIOonjG8TJAJ5XQOsKnre+a9M7HA6HY33gvpU4HA6Hw+FwOByOOwqtaxgTY+oTaDO6g1ScuVtVjBY+1dQSpxpfikkR5hEGgcEntCsjos2HqLu6hc2c5vbmU0lTRJJAHCOw2Gjxzh6tNWAwxuJvGBdniih8LddibQEbvw8RJ7T/xXdy21R7CxMffGQ1B7gkAjTHCwMEU+qxX0hauaoyoXS85wjVth257YOjNT739QvY+mHv7Z3gA9vmiNs3GtIkE7aDm0J3gVVXpBZJ0UTco+6iyU5fuDIqJngzuEAq5nCyLwFrDOXrA4ycucTY+SuYZP5kB7+pQMeBPXTcvYdid+fczsQ1QAhB6+5ttOzaSulqfyZ63xictp+q1Lj25Cn6T75Jz/HDdB09gAzc9NJ6Z8Qb50X5Brv0VnbrrcgpC5g6bCv/f/b+O0iSLL/vBD/vuYpIrSpLa9HVXaK7Wg9G9EhgFAjMAqSRgFEABI9Lcg4kYTy7g+3B+M8RRwNtl+QuyQFv13hLgiCOXCwwg9ECmBbTM9Pd092lu7t0lhYpIjNDufsT94dHZaZnZlVlVkVEZvW8j1lbW/w8XvjLyshwj/d93+/vULqXK95NLnrXMU2INt/Rp/jNQ1P867d6SMzs+/3VqwVCD/7a3krbQzUE0FW5Skf1BlM9Oyh3b4Z5InEa9nBr7dMUq9fpLZ3G13fZINRGjJAcZhPP2BE65wicA1TZb69xjA2rMqXE8izw2ozkKoixHAGWfv2VnodRCqM1Ok2QYXBvCbdYAK2xno+IE6znt60biyCLMtdeiBUC/AiRVtHGkmrLvXzmsrcDuWMYc3Y2IUQdvoB/YDOgyZb0PYQg7+4WouHuTsGPsv830d0ti0WE56HL5azFSZM3EQghCcMh4vgGJlpLtXaR7q69TXt9h8PhcLx/cd9GHA6Hw+FwOBwOx08VqSoBoFSFIBxc/EmqlondWlG1Bay11FNNR5h9hbKAErMR5p5NFn+dFuNpELZh4rktTFgLlczFJFSKjQrLXvy2FrQxaGMQIlt8fBgQ4WsIWcrVbPwC2A66/+JV/Kn8poTJz38Yey932AojsTxeGKVD5sXaG6rI6bQPgGrPBqbXPJI7XosVf/Tdc9STrP/snp46f237xJ3fClqBSrOe3EGQLV4XolUpnMxlSPexW23BZ+GGjIvedUa8a00TN6y11MdKTJweoXTmEqpau+cYGQb0bt9I366tdG1Y81C0AxCN3uFdG4epXL3FjbdOULl6a8HzVK3OtR8dyUTvxx9hcN/OlvUZdzQHIywX/evc9MbZqTYxYHpzxyWCzXotw41o81FZeuC/nz0Din9waJr/5a1ulJ19se9fKhBIyy/vqa7Ix4y0mr7J03RWLjPZt4d6cc2C59Q61lErrKF7eoTu6QtI27ze5vdLKnzeYjPP2gtEzPYXX8cUsfU5JRb2JV95BoA9wKmZiuB1LE+z1DeYkBLpSYxWSN/HKp3Fm9+NIMAGPsKEUK1mqSVtvOb7Oib2ezBCooIOZFzLIswtKG3x7xFlHjyxjXiu2H3yMjZWiMjP3N142Bnhe86GK+lnIncrosylQHZ2YsplvP5+9OQU3uBA814fCMNB4vgmSTKKlBGdHduRMrr3QIfD4XD8VOPEbofD4XA4HA6Hw/FTRZqW0LqORS3er9uaLMJcZRHm04kkUQpjodCIMDciwAoPI0OkVSsWYZ716paNOTXqtXrWkzpOwPPhPhyXWmuwFmtMQ5xb3YInAHIMwtdzJas2Qrof/9YE3a+8nTtW37WZ2oFd7ZzhfWB5LBqj38u7Cid1yPF4EBAkhT7GNzyZO26M5Y//4gLjU9m4oUjx3+8Zxb+TzqrTzJ0lG++Xh0DoFlawXW9gox5ecEyheM8fYdybasq54qkypTMXKZ2+SFy692sKKenesp6+3Vvo2bL+oY36FkLQtXGYro3DlK/e4uZbJyhfWdiHXNdjrr92lFtH3mPNwT0M7tt174hhx4pSFwkn/HMMml52qE0U5sVJR4Q8qrZTFlVuyRKj3gR1cf+buh4bTPnvH5/mS0e60XME7++MFIk8y1/ade+NI60iUDWGRo9QjwYo9e9BBfPaCkiP6d4dVDs30Dt5hmL1+opfEesi5G228LQdwWdWgN/KOHXrc1HcYSPfCmJ5DpETu0exnAWWfh0Wno9JEqwxmbt7KX24ix2QKqwfINIEGwRtu6XxdPY3Y2SI8otEUpAqg7UWZQy+d3ex3j+4hfhP3wDTcG0nGnXyMsGhbYAB4YOd6+5ukIsyj4FOmh1lrqemMNUaqjTRdLFbCJ8wHCRJxgjDYWq1y3R27mzqORwOh8Px/uPh/MblcDgcDofD4XA4HPeJSktoVQHE4n0AVZwJ3jpGCZ9YW2qpJvDljAsnFQUMAr2CEeaeEQtd3Uoj4nhOfPn9OWGMUVhrsBa8h8CJChYRfQ8xJ3bXWomNPwkW+r7yIkLPOeZJSr/wwqoWcwF2BJOs96u5Wt14HI7XYJBov8Do5mczN/YcvvXjy5y7Og1AJA1f3HuL7uAOjkSVZq5uzwc/gNCH+3zftIvQBuxNt9FrF/a6Losq7wTnH0iYg8y1XDp7idKZi4v2r16MzvVr6Nu9hd4dm/Hvo3XAaqZrwxq6NnyUyvVRbrx5gvLlGwueo+sx118/xq0j7zF0cA9D+3bhvc/+Hd5XCBjzJpmQ02zWa9mkhxdEm3fZDrp0B9v1BsqiyqgscUuWqMvlx3o/Ppzytw+U+V+PdmHnCG9fPddB6Fk+vb05vcLvl0I8ztrrr1Hp2sRkzw6sl9+wof0C44P7Cbs20Vc6RZg0ZzPN/TItChxhI4fspdxv7RF7k5iAG6Jnxea2ONuxrEEwmxKRubuXI3Znm++MUggpscYi7tVmw5PYMERYC1UFSdy2a5zAIo1CeSG+FyA9H6sStIVUWwr32BMkugp4u9ahT12bqanDIw2x22KtnuPuDphxd7c4ylxEISIMMZUypqOY9UZv8r9pGK4hSUZJ03Hq9YhicStSOhnD4XA4HHfGXSUcDofD4XA4HA7HTw3GpChdQZsKUhYQYhFXjaplvYu1pmICjLHEytAVzX59UrKAFkEjwvzevXqbjgVpQcx1dVugWskEb5Viw+i+ei0bYzAm+7+UAsFDIHb7JxH+pXwteQrMGgonzlA4nT9W/tAh1HBznUjNZp1XYWeYF1OUFbwdryGxHlZIRjc/iwnyzrafvDPKG+9kfZYFlt/YPcbGjsXeozaLdDU6c3J7AURB1oNzFdNrutibbiNkoUpwXY5x1r+EmdfbfKmYVDF54QqlMxeZvnx91k13FwqDffTt2kLfri2EXYtsnnmf0bluiB2fe4HK9VFuvnWS6UvXFzxHxwk33jjO6G3Re/9uJ3qvYowwjPjXuCmzaPN+u7hIelv43qY3UBY1RuUEo7JEbRnC9zPrElJT5v97vDtX/z9PdxJ68PEtKyt4Cyxd5UsUq9eZ6tlBpWvjgn7eSdTHzbXP0lG5Sm/pDJ5ZmTYmAOOii5NsYL+9mqvvt1dJ8JgQi6TXrBgCy7MIvj6nchrLGLA0J7pAIH0fo1KktZg0XdpnS7EISYINQkTScHe3aSOfp2NSvwML6KCITFKUNvhSYO2999z5h7blxG79zhVsLUEUQ0CD8DJ3NxabizIP5kSZx82NMqfh7i5NgDaoiQmCdeua+/oyIAj6iZNbjVjzqxSLW5p6DofD4XC8v3Bit8PhcDgcDofD4fipIVWTAGhVwQ96Fz7BGkhrsxHmqSRWCmuh2Igw18LPIszF7Qjz+xPWHgSvkVkuYVbYq9cRymSupdt9l+8DrTVgMcbeM2JzdVBDRC/mKtb0YJMPIJKUvq++kjumejqZ+sQzbZzf8umTdfZFeTextXAsHqJsQiwwvuEQabE/95zzV6f55o9mhf0vbJnkiYHF4oHnCN1BkLm6o+i+Iu/bhoVNei3b9HrEvDhWg+GMf4kb3vjyX1Ybpq/coHR6hMkLV7BK33NM0NVB364t9O/eSmFgkc+RnwI61w2x/bMfoXpzjBtvnmT64rUFz9FJyo2fnODW0VMM7d/N0IHd+IXVnRrw00xNxhwPzjJk+tiuNi6INp9Lly3SpYts0xuoiFrD8T2xJOH7ZzYkpLrMf34nn8zwR+92EkjLhzct3zXebDyT0l96j67yZUr9e4gLC8XYaucGasVheifP0FW+vAKzzLgmeolI2W1nHdMSy+P2Mj9hK2VRWLG5LeQglj9HMLupIXN3f2bJryA9iVFgtUapBBmF9w7olgJbKCAs2DSFJM1adbQBTyekQSdGBii/g0BOkRqbSdPaEN6xv0iGf2Az8R+/BrfTabRBHb9E8MxOcu5uocH6gMqeJ71MSTcpaI9sR2Tz0my8zk70xASmUsFMTMDatU1PywnDNaTpOGlaolq7SKGwCSEegg2YDofD4VgRVvE3WYfD4XA4HA6Hw+FoLiotYXSKsck9I8wTfFJjqStN6EtkwyWtbkeYi4DQrECEuQVh5/bqtqA1ol6HNEEYi+0o3NeaprWgjUEbjRA0+nWvbkT0CkLmBV1b/wQQ0v39H+GXpnPHJj//YewqdpkWRcrjhdEFpvz3kn5Gdebinh7aQ613U+74+FTM//EX52fMyM8NVfj0hsVidi0kSfbLDkLwvGzRfzX3lbawXW9k0yL9uevEnAzOU5FL7/lrraV6Yyzrw332Erp+b3HNK4T07dhM364tdKwbQqzyCPx20TE8yPbPfJjqrXFuvnWSqQtXFzzHJCk33zrJ6LGG6H1wjxO9VysCRr0So7JEn+1iSPczaHoXTVK4Tact0qmLbNXrZ4TvUVmiKu/s0n5hc0xqBP/1vbzz+A9OdhJ6lufWr5xbei6BqjB0623qhSEm+/aggvx9g5U+pf69CGvorCx877eLCwwSodjCxEwtwHDIXuJ1thGL+9v81nxC4Engh3Nqh4GPAUsT5YWUmeCtFdL3sUoj/CVszCsUsrjtMETEdazyYSnjHhBpFFiL9kKUXyCSEqs1xrAksVsUQ7xH1qNPXpmpqcMjDbEb8u7uAHtb7BYi6919O8pcpeA38d7H9xCFArpSRvZ0oysVvK6FrUUeBM8r4Pu9xMktgnCAOL5OobChqedwOBwOx/uHVfxt1uFwOBwOh8PhcDiaS5qW0A2B2vMWifdMq2AUmNkI80QZeqLZheLbEebAikSYS5v5WqVtCN0WqFRBmyyeM4zuO57TaA3WYo1pCN2rXNCTVxDh0VzJprtB78QfLdH90pu5Y/Wdm6gd3N3OGS4LH8Ohwi1Cke+vfTHt4pLKYn9r3euZGn40dzxONH/03XPU4syVvK0z5m/sGF/EZGUgTgGbObp9L3N0r3Khe5vesKjQPSYnOeWPoMS93dgA9YkpSmdGKJ25SDJ1740qwvfo2bqB/t1b6dq0FvlQJB2sDB1rBtj2cx+iNjrBjbdOMnX+yoLnmFRx8+13GD1+msF9u1hzcA9+cTW5Th0zCCiJMiVZ5oy9RK/tYkj3MWT6lix8V2cc3yWqor7gcvLJrXViLfjymVkB2SL4D8e7CGSZJ9euDsFbAMX6KIXrY5S7NzPVswM7r3fwRP9egrS8cn28heA91hJZxVpmN3gVUDxpL/EGW1GLtW1ZASzPAD+aScURJFgOA88v+TWk76PiBGs0Ok2QfvHegwRQLGT3OKmX3S8tZdwDIgBfx2gvwooKNigg0graGJReRpT5HLFbn7qGLdcRXQXAYjF3cHfPiTLXcXPFbsDr6kLdugWpwoxPNF3shszdXa2eIU2nqNZGiKL1brOZw+FwOBZlFX+jdTgcDofD4XA4HI7mYa1BqWm0qiBlhJTzFuyNyfp1344wTwT1NBPRoiATjzU+RvgYEeLZtP0R5hakyQRvaIjdtRihNcRxJnLfZ3w5gDYKaw3WgrfqXd0aUfhurmJtgI0/BtbS+2cvIfSsaGylpPSXXmh6zGazEFgeL9yiU6pc/ZYqcCrJ4sqTqIfxjU/mjltr+ePvX2C0lLko+wLFP9g7SujNe29ak0W3YrO+3J6EQiFzdq9WLGzV69ms184rW0a8a1zybtxzP0ZaqWUO7jMXqY1O3P3JAELQtXEt/bu30LNtI164WhyRDwfFoX62/ewHqY2VuPnWSSbPLYx3Nqni1uF3GTt+hsF9O1nz+CNO9F7NCJgUZSZlmbP28pKF7w5bZIsuskWvpyrqM47viqjN/N1+bkeNRMM3zs8K3sYK/j9Hu/gHT0xzYE37N5TdCYGle/oiHZXrTPXuzPp5zxyUjA0eZPjG6yvXw1sIjrOB0F6kn9mkiy5inrCXeYvNmFURAd0H7AXemalkUebPkjVnWQJSghAYpRFSY41FzI9DWYwwmnF3U6+BUm3Z7OXpBOUXMEKi/CKerKJNtldRGUvg3X3u/r5NxIEHjXtSjEUdu0TwgcbmPatAhGBl3t3d4ihz2dGBkBJdLiOikEBvaPo9he934nmdJPFNgqCHOL7m3N0Oh8PhWBQndjscDofD4XA4HI6fCpSawmJQurK4q1vVGjneCbEN0BZqShPNjTCXBSwCLXxCs/TY5GYx6+oWmdBtDKJegyRFGIMtFO97HdMYgzHZ/6UUiKUuOq8UwVsIbzRXsvEHwfZQOHmW4nsjuWPlDz6OWrew7+rqwPJoOM6Al4/TnjYBx+Kh7D3nRYxteW6Bo/C7r1/lzOXMTRgIwz/YO0pfOM/pbHVD6BYQhZlQUCzedwJAu9ii17FFr8vVLJb3/BFueXcWrnWcMHn+MqXTFylfvbmkc3UMD9C3eyu9OzYTdDjh9UEpDvax9VM/Q318khtvnWTy7KUFzzFKcevIe4yeOMPgY5noHXS03mnpeADmCd89tpMh08eQ7iO6S4/vDluY+XueL3z/4q4aiRF8b2T2d6+t4N8d6eY3D03x6KC64+uuBJ5J6J94B2EV5e6tM3XtFxgbOsCam2+1fyNcAyMkh9nMM/YCXcyK7v1U2WevcoyNq2LDl+U5RE7snsByGnhkSeMFAun7mDRFWotJE7xoCa0RBFAogjZYz8/c3Z7f8hAbT2e/Cy1D0qBIhyeppxpjLUobgnsIxCIK8B/biDpycaamDl+YFbtn3N0+VphZd3ero8ylQHR2YiplbH8fenISb2Cgea/fIIrWUa2eJU1LVKrnCMNhpHSShsPhcDjyuCuDw+FwOBwOh8Ph+KkgTUtYozGmThguInqmtUbco6asApSxpMrQ2TE3wjxqRJgLPNtm99Y8V7fFQrmaCd5Jgg19uEfvx7thtAYsxlj81ez2BRBTiOjVXMnqNZA+Cami76uv5I7p7g6mPvlsO2e4LDb5ZTYG+Vjt2EgO19egkVghGdv8LHpev9i3T43xo+OzYu7f3DXOtq5570ujIb0tdAeZ06tYWPVC92a1lq16fa5msZzyLy4qdButmb54jdLpi0xdvIrVZsFz5hP2dtO/ewt9u7YQ9XY3be6OWQoDvWz95AeoP7WPm2+dpHT2UrapaA5WaUaPnmLsxFkGH93Bmif2EnQ60XvVI2BKVJiSFc55V+5L+K4RM+qV+PVdE6S6zkuXZzeaKCP4N2/38I+fmmJX/+oSvAF6S2dIg27iwqy4l0T9lPr20F96b8XmpYTH22zhWXuBiNl/t3VME9sbnGLtKhC8t2BZi+DGTCVzdy9N7AaQUmIAqzVKpcgoWppmHQbY2M/c3bVqdn1scYKHwCJ1ivZCjA4Q0kOg0caSakORe99z+U9sy4nd+uwNzFQV2dO4L7iju7vFUebdXaTT05haDTVRaonY7ftdWe/u+jUCv4da7SKdnTuafh6Hw+FwPNw4sdvhcDgcDofD4XD8VJCqSbSuAnahs9sY0HXQMVYIyinUU4UUEHmZKGjwMCJAiwCJartzSzLr6rZYbBIjtII4ASkgWIKr6Q5YC8oYjNEIQaNf9+pFRH+BELOL+NaCrX8KkPS8+Dr+RL5vaulzH8IW7v/fp5V0iJQ9YSlX01ZwOF5D3fpYYGL94yQd+QXki9fLfP3VWbfsZzdO8txQNf/it4VuKSAIs3jRQiF7vIrZqIbZphfGlJ72L3LTG595bK2lcvUWE2dGmDx3GZPcO/LY7yjQt3Mzfbu3Uhzqd70/20Shv4ctn3ietU/t4+bbJ5k4fXGh6K01o8dPM/bOWQb2ZqJ32NVxh1d0rCrmCd/dtoMh08+Q7qNwF+G7SMRmvZbNrOVf7Yz5fn+F/3Ah4fh0tmknMYJ//VY3v/X0FNt79R1fZyUQWAbGjnFz7bPoOb2fK92bCZMpOqvXVmxudRHwFpt5xo7gM7vxZysTxASMsNIpJ6Lh7v6zOZVzWG4Cw0t7BSmRnodRKnN5qxTPX6JoXSyCUlg/QKQpNgha7+42CanfkUWXBx3INM0izC1oY/HucV32Ht0AkQ9x497HgjpykfDDe7ldsNg57m4P0C2PMhdRhAgCTLmMKRaxcYKImiuoAxQK6ymX3yNObiGET6GwAc9zKSwOh8PhmMWJ3Q6Hw+FwOBwOh+N9j7UWlZbQuoIQ/sIFMlUDY0HH1G2AQVBPDZHvzfSBTGUBC2gRELQ7wtyC1HN6daMRtTqkKUKrB4ovh4ar21qMMQ2hexULgP4ZRHAmX0sfB7MBb2yS7hffzB2Kt2+g9sTS3WLtRGDZF43hibzodzweZMpk4nx5cBfVvi2546Vywn/98/Nok417or/KL2yezL+4UQ2h28v6uPsNoXuVi7sb1Bp26I0L6qf9i9zwxrHWUh8rMXH6IpNnL5JW7v23KAOf3u2b6Nu9la4Na1b9Zo73M1FfN5s/9hzDTz7GzbffZeLUhUVEb8PYiTOMv3OO/r3bGX5iL2H3Iq0nHKsTAdOiyrSscn5G+O5rCN933nRUJOKzAxGfHYArdcW3b1X51q0qR6cT/tWbPfzfnpliU/fqErw9kzI4epSbw09nn7UNJgb2EqgKYTJ1l9GtpSwKHGETh+zFXFOSPfYmMT7XRe+KzS3jAJbvIZjdpJW5uz+/5FeQvoeKdZbak6qli92+hw1DhLVQqUKaQNh8gXYunkpIg06MDEiDIqGcIlUGS+bu9uQ9oswDH3//ZtSb52dq6vDIHLGbhrs7ACsa7m7d+ihzQHZ1YSYnwRhUaYJg7dqmvj6AlBFhOEQc3yQMBqhUz9DTvb/p53E4HA7Hw4sTux0Oh8PhcDgcDsf7Hq0rGKvQd+rXnVYz14uxlJUk1QalLd3R7BKxkoU5Eeb3dpA2E9FwdQub+clttYq4HV/uN4TMB0AbhbUGa8Fb1UJggoj+PFexpgMbfxiAvq++jFCzYoiVgtIvfHTVCrzbgin6vHzs+KW0i5s6c7PWutYyOfxY7niSav7oO2ep1jN318aOhL+9eyxv1tYpKDVH6PahEK3af4fbrNdD7NSbFtTP+Je4JkcZf+cco8dOE0/cW0ASUtK9ZR19u7bSs3U90nfLH6uJqLebzR99hrVPPsrNt99l/NT5bMPRHKwxjJ88y8S75+l/ZBvDhx51ovfDRk74vkrXHOG7eBfhe2PB59c39/Drm3u4Wld8Z7TKd9+N+PRjN1nfee8WBe0kTKfpn3iHicE5wpvwGBs8yPCN1/BMe+8X5jIuOjnBBg7Yq7n6PnuVGJ8JsZJ/Tz7wFDC37cgR4BPA0toYCOkhhMAojZAaO7NhbwkUC5Ak2DBAJGl2L9XC1BNpFcIatBeivAJFKUgAbSDVlsISdHr/ia05sdtcuIWZqCD7b/8ezRx3t53j7g5m2vS0JMq8qwtdKmEqFczEBAwPt+R+I4qGSdMJ6vF1hAxIC1sIgp6mn8fhcDgcDyfu257D4XA4HA6Hw+F435Omk2AtSleIonX5g0aDyiLMjRCUU0E9UXgSQv92hLnMRZhL2rvY7mmQNvNbmzRGpArqMVkf5geL5zbWYAwYY5BSIFi9YreIfoiQ07majT8KFCi8c57iO+dzx8ofOEi6fqh9E1wG3TJhR5B3Y1eMz6mkD4A06mZ849O5BWNrLX/y4gg3J+oAdPmaLz5yi4I3RyRUKWgFng9+AKH/wO+RdrBOD7JLbV5QP+td5qq8xdUfvMXYybP3fJ3O9Wvo27WF3h2b8FdpdL1jlrCni00vPM3wk49y8/C7TLx7Hmvyn6/WGMbfOcf4e+fp35OJ3lFP1wrN2HHfCCiLKmVZ5YJ3lS5bbAjf/XcVvjcUfP7Wph7+1qYebsRrmKpNUI0mmBKVVRNC0lm9Thr2UO6eTeHQfoGxwYOsufVW29uezOW66CVCscfenKlJ4HF7mZ+wlbJYuShoy9PAq4jGPZVAYXkL+OCSX0P4PiZNkcai0xR/qdc7KbGFCGHBpgqSJNsU1iIE4OkE7UUgKhi/iEwraG3QUmDtvfVhb896KIZQm90kpw6PEH5szqa4xdzdM1HmCnRCs6PM8T1EoYAuV5Dd3ehKBa+r+Z/RQvhE0Vrq9auE4RCVyin6+p5u+nkcDofD8XDixG6Hw+FwOBwOh8PxvidVE2hdY9F+3Wmt0bQ6pmoCLJa60hR8b6afr5qJMA8JTL29k2+I3MJKrDWYWhWhVCO+vPDA65VGacBijMX3Hswh3lLkLQjyEeVWbQH1KKSKvj97KXdMdxWZ+tTz7ZzhkpEY9kejOROZtXAiHsQg0V7I6ObnsF7+K/tf/OQa713MBHJPWP7eI6MMFW472S2kKlvM9n3wAoiClkezNoO1eoDdasuC+nnvCle8m1z94dt3FboLA7307d5K364trsfzQ0rY3cmmDz/F8KFHufX2O4wvInpjLBPvnmfivQv0797K8JOPEvV2r8yEHQ+GgLKoUZY1LnjX6LwtfJs+Ouydxde1kc9a1kC6hpiEUa/EqCytCuG7t3SaNOgiLgzM1JJCP5N9u+krnVrBmcEIAxRI2cLETC3AcMhe4g22URdLjP9uOj3AY8DxmYrgDSwfgCVuvJOeh0lTjNFoleKF0dJNxYVC1mM6DBBxjNUBeK3b8OfpBOUXMEKigiJ+vUJqLRGQGkN4j3ML38M/sBn1+uz1UB2+kBe7MZBzd0sQZl6UeZL9v5k/W1cX6tYtSBVmYqIlYjdAEAyQJKPE9at4XpE4vkEUNT823eFwOBwPH07sdjgcDofD4XA4HO97VDqJ1hVA4nnz4jHTSrYAaC0VJUmURRuIglnhV8kCZibCPB873Wo8IxC3Xd31GsJYiG/Hlz/YVzprQRuDMRohWMW9jC2i8F3EnN7W1nrY+icBQffLb+GP56OtJz/7IWxxdTp7d4WTdEmVq51Pe5g0ERbB2KZn0GF+U8bRM+P84OiNmce/un2cPT1x45HN+nMbncWWSx+iEMKVEjCWzvAdhO4L3lUueTe49qPDjB0/s+B40NVB364t9O/eSmFgpXvPOppF2NXBxg8/NeP0Hn/nHFbPE72tZeLUBSZOj9C3awvDTz5Koc9F2T60CKiIGhVZY8QuXfiOCNmoh9moh0lIGZUlRr0Sk6K8IsK3wDIwdoyba59D+7PzLndvIUim6axea/+kZiYneI+1RFaxltl0lAKKQ/Yib7ANJVZms5vlWURO7J7E8h7w6JLGCyGQnpe5s30fo9Ol9+4WIosztxabpllrmGLrnO6ezu4ftQxJ/QKhJ0lSjTaWVN1b7AbwD23Lid3m8jhmdBo5NLvxx1qFyLm742wD3EyUefPFbtnRAVKiy2VEFBFsMC3ZOCCEpFDYQLV6njSdpFI5QxiuQYjVev/qcDgcjnbhxG6Hw+FwOBwOh8PxvkbrOtrUG/26O/ILYroR6ahjNJKqEsSpwpciF2GuRYgSARLd3ghz24gvtxKUwiYxxDECi40e3LFrtMbazNWdCd2rJBN2PsExhJfvOUryLNgBvIkpur//k9yheOt6qof2tnGCS2dA1tka5KPYp3TIubQXC5TWHyTpzEevX75Z4as/uDjz+BPrpvjw2krjkYU0AWMgCMHzstjyYPV/3V+j+9mjtjQ60s8y4l3jonedaz8+yuix0/lBQrD5Y8/St2vLTPKC4/1H0NnBxg8+yfATj3LryLuMnTyH1Tr/JGspnR6hdOYifTs3M/zkYxT6nej9UDNP+O6wBXrTfoLaAFuLd77mhQRsMGvYYNasqPDtmZTB0SPcXPs0zBGPJ/r3EqRlwnT6LqNbjBAcZwOhvUg/tZlyFwlP2Eu8xRbMigiGm7BsQDB7jRe8hl2i2A0gfQ+lNdZoTKqWLnYDhBE2jhFhCPU6KA1+a4R/gUXqFO1FGF0Hz0ekGm0MSi8xynznWkRXhC3HMzV1+ALhJw/MeVbm7gYfZtzdLY4ylwLZ2YmpVLD9feipSbz+/ua9/hx8vwfP6yauXyXwu6nVRujo2N6SczkcDofj4cFte3I4HA6Hw+FwOBzva1JVAkCpTOzOoRoR5jqhZnystdRTTSGY/ao0G2Ee4Jn2u7oBpDWYehWURqgUG0b3XhFdAtporDVYa5Gr1dUtKojo5VzJmj5s8hwAfV99BZnOuqStEJR+8aPkMsJXCT6GfdFYrqat4Hg8iEVQHthBpX9b7vhUJeG/fu8cSmeu9sd6a/zlbaXG0czlj7GzQnfh4RC6h3Qfj6itC4Tui951RuQ1rr9+jNGj7+UHCcGWTzxP/+6tTuj+KSHoLLLhZw6x91c+y9DBRxCLiVDWUjpzkVP/7VuMfO9H1Mcn2z9RR/MRUJV1rkXXONFxkl87fol/c2GSU5W7X4dvC98H0908l+xnV7qZPtNFu9pmh+k0/ePv5ovSY2zoIFqubNqGEZLDYjNl8hsH+qmx317N7ofajsDy3LzKCHB96a8gPYQUGKWyTXzzWyDc/fRQKILvYz0fkcQtfa9kfbtDLKCCIp4UaJOdUpt7n1h4Ev/g1lxNvT2y4HnW6sbmzszdjRCzUebYLMq8yXhdXdg0xdTqqPGJew94AAqFDRibkiRjVGsjGBPfe5DD4XA43tes0tUMh8PhcDgcDofD4WgOWYR5HYvC9+f1EEyrmcPFWqZSSaIMxkJhjliYRZj7gMSzafsmbjNDjrQSkhSrFMQxeH5TxExjDcZYjDFIKRCr9OuhiF5CiHyf9Cy+3Cd6b4TiiXwv58rz+0k3rGnjDJfO3micgsy7U08nfVRsQL1zDZNr9+eOpcrw//vuOcq1TMxfW0j5v+wZxROANZnQjc36cvseFAoPHG3fDgZ1L4+obQuE7sveDUa8a9x48wS3Ds8Ti247undubuNMHauFoKPIhg88zqO/8jnWPLEXeYf3+eTZS5z6P77NyHd/SG2s1N5JOlpGd2j57/aP8d9ujfOXfnKdz75xlf/5Qon3yvcWvtebIQ6ku3l+RvjuRrRY0+2sXqNr+mKupv0i44MHsCucoKKEx9tiC/V5YZ9rmeYRe2OFBO99WPL3Z4LXlvUK0vMx2mCNRaXLvFcLA6znZ9dSY0C17l7P1zEI0DIg9Yv4UmKsxVqLWqJI7x/alntsrpfQ10vznqWZdXd7gMyizK1pRJk3XxwWhQgRBNhKGVMpY5PWbRD1vAJBMEAc38DomErlXMvO5XA4HI6Hg9W5muFwOBwOh8PhcDgcTSJNSxhdBUTe2T0nwlwhiY2glmoCX+J72WK0QaBFiBZhI8JcL36SFiBtJgXKVGHjehZfbi02ak6fRaOzhVBj7OrtdehdRAQncyWb7gW9DZSi789eyh3TnQUmf/YDbZzg0lnrVVjvV3O1MR1xSXWRhp2MbXpmgVv/yy+NcG0si5steoYv7r1Fp2+zxerbi8hhmPXFLBZaFr3aTAZ0D3vVNuQ8weeKd5Pz3lVuvHWCm2+dXDBu80efoX/31gV1x08XfrHA+ucOsvdXPsfwoUeRd9j4M3nuMqf/+Dtc+Par1EZb6zB0tIe+yPJbT00xWNCcqyr+3cgUv/DmdT7z+lX+8/UxpqnedXwwI3zv4rnkALtbLHz3lk4T1vPvvbgwwGTfrtaccBnURcDbYjPpvGXhLUywlfEVmJGH5el5tWNAZbEnL4rwsuuf0RqTpsvX7DuK4EmsHyCStGXubmk1whqMF6K8AkKKzNVtIdVLO6nctgbRm08qUofv7u6eEb1noszTlmxskF1dmEoVjEVPtPazN4rWYrHE8Q3i+BpKrWCbAIfD4XCsOKt0RcPhcDgcDofD4XA4HhxjUpQuo3QFKQuIOT00SSuNCPOUqvYxxhIrQ8G/Q4R5m13d0mT/kSSYNGnEl4dNiee2FrQ2GGOyZMtVGWGuENH3chVrI2z8MQC6X3mbYLSUOz756Q9iOwrtmuCSiYTi0Si/6JtawYl4EItkfONTWC8fb/viW9c4eaEEZCGvf3fPKOuKKnNkJQkgIAqy6PJiEeTqF7r7TTePqu3IeUsRV+UtznlXuPH2SW785MSCcZs++gz9e7a1aZaOhwG/GLHu2QOZ6P3kY8hw8XjoqQtXOP1/fpcL3/oB1VsrIeI5mslg0fBbT0/RF806YM/XFP+v9yr8zeNX+ZF3kvPeVcriXsK3z7qc8L2Fft2DsM1zXQssg2PH8FQ+maTcvZVqx7qmned+KYsCR8Qm5nuJ99ibrLMr0QrgKSyz1zGBBt5c8mghBNL3MCpLQjHLdWf7HjYMIAqzm6TlusOXgacTlJe1ozFBASEEWhu0sUvSn4UU+I9vydXU2xewCwbfdnd7CNEQu2UwG2WuWxBl3tmJNQZTraAnSk1//blIGRBFa0nSMZSuUamcbun5HA6Hw7G6WY0rGg6Hw+FwOBwOh8PRFJTKFmy1KuP7nfmDcyPMlSRWBmuhGMwutiqRRZhbZFv7dc+4uuMUq1JI4kzMDJrT79NojbVkYre87fpZZYRvILy8OGXjD4HtxCtN0/3nb+SOxZvXUn36sXbOcIlYHgvHCUReUng3HiC2PlNr9pAW+3PHTpyf4KW3Z/uV/pVtJfb11TOhO00zZ1YUZpH2xQKsys0KefpMN4+lOxYI3dfkKGf9y9w88g433ji+YNzGjzzNwCPb2zVNx0OGX4hY98x+9v7K51j71D68O4neI1c58yff4/w3X6F6c6zNs3Q0k+EOw289PUl3kP9MPTkW8q+OhVyQN3g7fI83whOc964wvSThe5D9aifPJfvZ00Th2zMJg2NHweZTYSb6HyUJuh/49R+UCdHJcbFhQX2fvcqAXbqrujl0AflWHoKfwDISdaTnAxajMnf3sikWQQhsGCCSpGWR7p5OsNLDCInyi/gCVONUagl9u2FhlLkdncZcWbihJ3N3e8y4uz2/pVHmBD6iWESXy5gkxpRb+z4KwyGECIjjayTpBHEy2tLzORwOh2P1svq/ETscDofD4XA4HA7HfZKmk1iTYmyC580Ru3XSiHGMSfFIjaCuNKEvkQ3ntEWgZYgWARLTvgjz265uZSBNsXEdYSy2EDVNk9ZGY63GWotcjRHmYgIR/jhXsnodpI8D0Pu1V5Cpmj0moPSLH22K673ZbPLLDPl5Z9911cF13UFc7Gd66JHcsdFSna+8PNvr9UPDZT6xbjp7v6ZJJmzf7tH9kAjdvaZrUaH7uhzjjH+JW0ff4/prxxaM2/jhpxh8dEe7pul4iPGjkLVP78tE72f240Xhos+bvniNM3/655z/xssu3vwhZn1n5vDu8POC95FbIf/bsS60gbpIuOzf5HBD+D7nXWFa3F14C/BZ2xC+n0/2syfdysADCt9hMkX/xLu5mpUeY0MH0bI5G9gehBuil1NiOFeTwOP2Ml22vvigFmF5NvdYMA28s+TxQsosFtwojMnSa5aFlFmrmCDECgFxazY5eg1HtZYRqV/E8yTWWswy+nbLzYOIgXyfc/X2wijzhe5uH4RseZS5rdVBKXSptZ+zQkgKhfUoNYVKp6mUT2HtMn/vDofD4XhfsPq/FTscDofD4XA4HA7HfZKqEkpni9s5sTutZs4WnVLRHsZYEmUo+nNd3RE0enZL20ZXNwJhQdYTrFKQxI348uZ8fTM269OdubrFKuzXbRGFP0eI2c0F1gps/VOAJDp9kY5jZ3IjKs/uJ920ts3zvDcdImVPWMrVYuPxTtyPkQHjG5/K9enWxvInL10gVdlC7a7uOr+6fRxhVObovu3u930oFBb0+F6N9JhO9qU78OYtP9yQ45z2LzJ6/BTXfnxkwbgNHzzE4GM72zVNx/sELwpZ++Rj7P2Vz7Hu2QN4hTuI3peuc+ZP/5ypkattnqGjWWzq1vzjp6YozhO837wR8R9PdDLXIFsXCVf8mxwOT/F6Q/ieuofw7eOz1gywT+3k+eQAj6RbGdC99yV8d1au0Tl9KVfTfpHxwf3YVZCsMsIAIwzkaj6GJ+1FCm28/4ENWDbnKoLXlvUK0vMx2mCNQaf3MfdiIds4FwQIlYJuvnAqsEidor0QIxtua8BYUEvs2y2EwD+0NVdTR0YWiTKf6+4GRAjSb22UeUcHSImeLqNLky35N5xLEPTheZ3U46toXaVev9zS8zkcDodjdbLaVjUcDofD4XA4HA6HoylYa1DpFFpVECJEznVQpbWZCPPpVFJPs4W4KMj369bCa0SYt6lftwWpQdZjMAZbr2Uid5PiyyGLMIfMQbQqXd3+ewj/Qr6WHgKzFpSm7ysv5Q7pjgJTP/eB9s1viQgs+6MxPJFfeD6RDKDwKK3djw7z0fovvX2Na6M1AAZCxd97ZBTfpKDSbDE8CCFoRJc/BEJ3t+lkX7oTj3w/8ZtyglP+CKMnTnP1h4cXjNvwM08wtH93m2bpeD/ihQHDhx7NRO/nDuIVogXPscYw8p0fMn3x2grM0NEMtvVqfvPQNKHMf87+6FqBP3ync1HTatwQvo+Ep3g9PM5Z7zJTonzX8/h4DJsB9qkdM8L3oO5FLkP47iudIoxL+bkUBpnsXQWbeoTglBjmOvlo9QjNk/YSgVV3GNh8LM/lp8Zl4MqSx4vGpkWjNSZVyzcuC4EtFCAIsFJmceYtwNMJ2guxgA468IRALaNvN4D/xLbcYztRwYwsFuN9e/Ngw93tBa2NMpcC2dGBqVSwRqOnp5p/jnkUChswpk6SjFOtnse0677d4XA4HKuGVbiy4XA4HA6Hw+FwOBwPjlLTWAxKV/P9ulUjwlzFxNZD2SzCPJoXYa5khCZEYJC0Z6FXIhDGIFOFTRLQChsWmhZfbi1orWeiPeWqi8COEdH3cxVrurJe3UDXq4cJbuUjMad+7gOYzmLbZrhUtgdT9Hr5RfJLaRdjukitez3V/rwj6+KNMj84cgOASBq+uPcmPSIGrTIntx9A1HB0PwR0mQ72pzvx5wndt+QE7/kXGHvnDFdffXvBuPUfeJyhA3vaNU3H+xwvCBh+Yi+P/srnWP/84/jFvOhtjeHCd15l+vL1FZqh40HZ1a/44qEp/HmC98uXC/y39zruKhzGIuWqf4sj4Wleawjfk0sUvh9rCN9b1LosJfoeCCyDo0eRKh8NXu7ZRrW4CpJJhOCE2MA4HblyJwlP2MvItkVD78XSk5/aMtzdAoH0PYzKBN776t0dRdjbLUO0AtX8Nja+jkGAliGpX0AKuG3qTpcaZb6+DzGc/7dShy8s+lxrFeL29VgW2hNlnqbYeh09vrCXeLPxvA6CoJ84vo7WMdXquZaf0+FwOByri9W2suFwOBwOh8PhcDgcTSFNS2ANxtQWiTDXoFPK2kM1IswLwSIR5jLEs2nbQkalBlmpgbHYuI4NffCb97XNaI21YIxpuLpXlztYRD9AyHy0rI0/DoTIyTI933s9dyzZOEzl2X1tnOHS6JEx24PJXK1ifE4lfWg/YmL947ljcaL505dGZtabf33XKJvDakPoDjIXVhRAuNCduhrpMkUOLCJ0j8pSJnS/e44rr7y1YNy65w6y5uAjC+oOx4MiA581jz/C3r/2Ofr3bMsds9pw4VuvUr5yY2Um53hgHh1U/P3HpxckaXzvYpEvn1naZqikIXwfvS18+5eYFGXsXZRsD4+tej171NYlCd6eSRgcO5q5aucwMfAYSdB1h1HtwwjJEbGJMvlrTR81DtgrLRFFF+JheXpe7QQwveRXkJ4PWIxSGHUfYrcAOorg+1jpIZJ4Sb/f5SCtRliD8UOUX0B63kzfbr3E2G8hBME8d7c6PIJdVCw3jUQYDyECkEFLo8xloYAIAky5gi6Xsfez6WCZRNF6LIYkuUm9fgWl7t6qwOFwOBzvL5zY7XA4HA6Hw+FwON6XKDXZWOiys2K3tZnYrRIsUE4l9VQhBUTeHSLM29SvUlgQcYzUFpIEMBA0V9zURmOtwVq7+lzd8joEeaevVdtBZXHWfd/4ATLJL5aWfvGjTetl3iwkhn3RGHLOPgJj4Xg8iEYyvuEQxs//Xr/148uUprP32UeGp3myZyqLFw3CRn/uKHOYPQR0miL70134+Ln6mJzkXf8CY++d58rLP1kwbt0z+xl+Ym+7pun4KUUGPpteeJq+3flkBas157/1A8pXb67QzBwPyoE1KX/nYBk5T/D+xvkOvn5ueekfiUi56o1yNDzN6+FxzviXKInpOwrfa80Ae9U2xBIE0SiZon/i3VzNSo+xoYNo2byWJfeLEh5vic3U532GD1Nmr73RJsH7Keyc8wsMgoXXjTshpERIiTVZko25n57RYYD1vOzaawyo5if8eDpByRAQ2KCAALSxpGbp/8b+E/M+y6br6HOLfY7ZrHf37U1oXrG1UeYCZGcnplIBY9ETE/ce84BIGRBFw8TJLbSOqVTPtPycDofD4Vg9rK5VAYfD4XA4HA6Hw+FoAtZa0rSENlWE8JCyIS6quOHqjqlbD4Ognhoi30PMRJiDkhGGIIswb1OvSqksshaDsZg0wYZRU43XxlqMsRijEVIgVlW/boMofDfXhtpaH1v/BCCIzl6m4/Cp3IjKM4+RbFnX3mkugd1hiS6Zf8+cT3uYMhGV/u3EXfm42pPnSxw+nUV8DkUpf3n9jWxhPQjB8zKhO8iLDquVDlPgQLqLYJ5IMi6meMc/z/jp81x+6Y0F49Y+vY/hJx9r1zQdP+UIKdn80Wfo27UlV7dKc+GbP6By7dYKzczxoDy1NuHX9pcR80TpL5/p4Hsj99cCIhGKa94ox8IzvHYX4XuN6Wev2o5YQh/vzspVOsuXczXtdzA+uL/ZBuL7IhYBb4nNpPOWjTczwTbG2jCDDuDAvNqbsIyWMtLzMNpgjUGn97lpsaMIvof1g6x3d5N/OZ6OsdLDCIkKikgh0MZiTLZJbinItb3IDf25mjo8codn61l3t4waUeZpa6PMjcFUq+jx1ovdAGG4BiF84vgqSTJKkrTj/epwOByO1cBqWt1wOBwOh8PhcDgcjqagdRVjU7Sq4HmdiNsqqrodYa4oK49UG5S2FII5ru5GhLlqZ4S5BVmpZovkaYKVAnzv3uOWgdEayCIy5aoSuoHgMMLLRwjb5ANg+0Br+r7yYu6YKUZMfvpn2je/JTIga2wJ8v1eJ3XI+bSXNOyitDYfuT5dTfnaqxeBrJ/rr229TsEzEAbZ779QyJzdDwFFEy0qdE+IKd4JzjF+5gKXXlwodA8/+Rhrn1p9UfSO9zdCSjZ/7Fl6d2zO1Y1SnP/mK1Suj67QzBwPyvPrE/76Ywvji//re528dOnB0lLSOcL3Cf8cmrxjeMj08Vi6A7kEwbtv4j3CuJSrxYVBJnt3PdAcm0VFFDgiNmHm3QXttrdYb0stP7/ludxjQYUsznxpiMY9lNEao9T9abm+jw38rI2ItdDkKG5Pp1mKuBeh/CKeBN2YqFpi325Y6O5WRy5iF3Wzz3F3CwFeR9YuBdsSd7cIfEShgCmXMUmcubxbjBCSKFpPqibRqkKlcgbbljQCh8PhcKw0q2yFw+FwOBwOh8PhcDgeHKUmwVqUrsyJMDeQ1kDFGKCsJPVE40kI/XkR5nhYvLZFmHu1BJlqhNJYoyBqbny5tVmEuWksnq6qCHNRRkQ/yJWsHoAk69nZ9cOjBDfGc8cnf/Z5TFdH26a4FHwM+6L8PLUVHI8HMUjGNz4FMr+B4Ssvj1CLNQCfWjfJnq5aFpnqeVAsNH3DQ6somoiD6W5C8hG8JTHNyeAc42dHuPT91xc4x9Y8sZe1Tzuh27EyCCnZ8vHn6Nm+MVc3qeL8N16metM5Ah9WPrwp5q/uXSis/eE7nfzwanNaQkx4U5wIzqLRufqA7WFfuhNp736dFVgGR48i54mM5Z5tVIvDTZnjgzIhOjkuNiyoP2avMWDLi4xoJmuxbMtVBK+xVHu1QCB9H9OIHzf3K1R3dICQ2NBHpElTHdACizQpygsx0gc/zO7XrCVdRvS6P69vN9UYffr6HZ49x93tFeZEmbfmfld2dWHqNVAaPVFqyTnmEwR9eF4HtfpVlC4Tx9facl6Hw+FwrCyraIXD4XA4HA6Hw+FwOJpDmk6gTR0ws2K3irNFPR1TMx4WqCtNwfdmnN8zEeYiyBYh2xFhrg2yWkcYC0ZjfK+p8eWQOZusAWMMUgiafoIHQETfR4j8IquNPwV4yKkKPd/9ce5YsmGIyvPz401Xnr3ROAWZFz1OJ31UbcDU8F7SYl/u2GsnbnL2yjQAG4oJv7juZiZuSwnF4gJhfLVSsCEH0l0LhO5JUeZEcI6J85e4+BevLRS6H3+Edc8emE1dcDhWAOFJtnzieXq25QU9kyrOff1lqrfG7zDSsdr5xJY6v7Q7L3hbBP/78S5+cr05gvekLHM8OIuaJ3j32W72pzvx7iF4eyZhcPRodm8yh4mBfaRBZ1Pm+KDcED28J/LtNyTwuL1Ct6219NwL3d3XgEtLHi+9hrtbKXSa3l8KuZTYKIIgysbHzRWFPZ1gZIgFzJy+3VovfbZysAu5ZTBXU4cv3OHZFotpuLt98KJGlHlzhfzbeI3NAro8jZ4sZW1aWowQgijagDFV0mScSuUsxrSnJZHD4XA4Vg4ndjscDofD4XA4HI73HWlaQqsyIPC8YqNYa7hXNBXlkSiLNhAFs6KiFiEg0TJoW4S5N11FGItQJusB2oLYam0M1hqstcjVJKJ65xHBe7mSTfeDzqKFe7/5KjLOu7FKv/CxTBBeRaz1Kqz3q7namC5wSXURdwwwPbg7d+zWRI3vvXEVAE9Yfn3bDQIJeH7Wn3uV/Xx3IrIhB5LdROSFoylR5kRwlokLlxj58x8tWEAfOrCHdc8ddEK3Y1UgPY8tn/wA3VvW5+omSTn/9Zepjban16yj+Xx6e52f35H/bLYI/rdjXRy5Gdxh1PKYkhWOBWdI5/WT7rVdHEh34du7X3OjZJK+iXnXQekxOvR45vZdBVwUA1xgIFfzMRyylyi0NAFnD5a+XCVzdy8NISXCk9mGP2uwWt970GIUCiAFBCFCqaYKtp5JQICRPtovImWjb7cFswzxeb67Wx27hFV3+HmtytzdwkPcjjK3rYkyx5PIjg5MuYLVGj011fxzLILvd+L7vdTj6xhTp1a70JbzOhwOh2PleDi+QTscDofD4XA4HA7HEtE6Rps6WlfwvA6EkJlrSmUR5hpBRUniVONLsSDC3CAx+O2JMK/HeKlGpNmCpAmav7BtrMUYgzEaIUT277EqSBGF7+Uq1haw8UcACM9fpfOtd3PHK089SrItL0itNJFQPBrlxbDUCk7EAxgZML7hqUZkaIbWhj95aQTVcG19bmOJrcVq5uoW2WL6w0BkAw4muyjME7qnRYXjwVkmRi5z8Xs/ApNfrB/cv4v1H3jcCd2OVYX0PLZ+6mfo3rwuV9dxwrmvvURtrLQyE3M8MD+/s8bPbcs7kLUV/P6Rbk6ONUfwLsvqooJ3t+3kQLqLwN792t5ZuUJn+Up+jn4HYwP778+N3AJOi2Gu05OrRWietJcIWpaCI7E8M6/2DjC59FeQHtYYrDHo5D6jzKXARgUIAqwUiPt9ncVe2mRCs5Yhyo/whMAYi8WSquWI3VvzoT31FP3u1Ts8e467WwaAB7a1UeY2TbFxjJ5o3+ahQmE91iri5Ba12iW0bm0SgcPhcDhWltWyyuFwOBwOh8PhcDgcTUGpUuP/c/p1q/pshLmWWYR5qikEs1+JsgjzAlqEjQjz5i1mLoq1yOkqKI0ErC9bki5utAYsxtpV1atbhK8hZH7B2tZfANsB2tD3lRdzx0whZPIzH2zjDJeC5bFwnEDkXV7vxgPE1qe07gA6zPcW//5b17g+li24bu2M+czwGCAyV3cYZO6xVU5oAw4kuymQ7y0/LaqZ0H3pCiPf/SF2nvtt8LGdbPiZQ07odqxKpO+x9Wd/hq5N+cjm24J3fXzpAptj9SAE/NLuKh/bXM/VlRX827e7OTXenE1mFVnjaHCahPy9Q5ft4OA9BG8B9E28Sxjn32NxcYip3p1Nmd8DIwTHxXrGyV/TOkl4wl5G2lbFUz+JndMmQ2ARvLHk0cJvRJlrhdEKe79R3YUIKyWEIagU7uSaXiYC8EyK9kKs8LK+3WTmcbUMB7ns7UBuz/d6V4dH7jxgxt3tZ727jWpEmTf/9ygLBUQQYMpl9PQ09n77py/3vDIiDNcQxzfQOqZSOdOW8zocDodjZVg9Kx0Oh8PhcDgcDofD0QTStITRMRaF7zfE7rSaLeQZTVl5JMpgLBTmOKm1CLHtjDCfmsazIovElB6mBSKntWCMxjQWTFeN2C3HIHw9V7JqI6j9AHT++BjhtdHc8amffR7TnV9kX2k2+WWG/LyAcl11cF13Uu3eQLVvS+7YyPUyPzx2EwBfWP72rlF8dKNXtwC/OS7DVhJanwPpLorzhO6yqHI8OMPE5SuMfOfVBUL3wKM72PChJ53Q7VjVSN9n289+kK4NedFI12POfe1F6hPtieB1NBch4K/urfDBjfnP68QI/ue3ezhXao7gXZV1jganick7ZDtskcfT3YT2zp/xAsvg2FHkvCjp6Z7tVIvDdxjVXqyQHBGbmJ73+d9HjQP2CqIFPZ+hADw+r/YWsDTBVCCQvo9RGqzFpPfpQhdAsQi+j5UeIklolu0+69sdZCJ32OjbbS1K22W10Q6e2Jp7rE5cwsZ3+nlvu7t9kGGWwmJta9zdAmRnJ6ZSyVzspVLzz3EHomgYITzi5DpxcpM0bd+5HQ6Hw9FeVslKh8PhcDgcDofD4XA0hzSdROsKAJ7X0bDH1EHFKKCmJbVUE3gS35sV3rIIc4HBR7Y6wjxJkLUEESdI6WN9j6atms4hE7rBGIMUgpZYx5eNRUTfRcxxQ1srsfEnAYGcrtL7nR/lRiTrBik/f7DN87w7HSJlT1jK1erG4524H+0XmNiQX5yvJ5o/fWlkZuH6v9tSYn1QY8bVHax+V3dgfQ6ku+mwhVy9ImqZo/vKVS58+1Wszgvd/Y9sZ+OHn3JCt+OhQAY+2z79ITrXr8nVVa0heJec4P0wIgX8jccqPLsuLybHWvCv3+rm4tTde2svlZqMORKepk7+PEVb4PFkN5G9c6sKT8cMjh5d4K6dGHiM9PbmvRVGCY+3xWZq5DcIDFNmr73OstTZJWJ5NvdYUAOOLXm89G67uzU6Te7/bisKsJ6XubuNBtWc+Hap00bf7gDtFfAafbstoM3SZ+sd3Jprm0KiUe9cufOA2+5uGSBE1Pooc20wlSp6vH1R5kJ4RNE60nQcrWuUK6fv393vcDgcjlWNE7sdDofD4XA4HA7H+wZjFFqXUbqClAWE8LNe3Q23SlV5GAuJMgsjzEU0E2HutTLC3FqYnEJagTA26wFJa+I/tTZYa7CrKcLcP4nwL+drydNgMmGp95uvIuv5xdbSL3wUvFUyfzIH3v5oDE/kF0xPJAOkeIxvOIT18oLGN354icly9nPt6anziXWT2WK572cqTLC6Xd1Bw9E9X+iuijrHgjNMXL3KhW//AKvz0a79e7ax6YWnndDteKiQgc+2z3yIjnVDubqq1jn31ZeIJ6dXaGaOB0EK+LX9ZQ4N54XoqpL8yzd7uFJujuAdi4Qj4WmqIu8kLxDxeLKboonuMBKiZJK+0qlczUqfsaHHMaI5DvQHJRYBb4stpPOWlTdRYjtjLTjjGiz5OHfBayx1k6CQEunJmRhz+yAR5B0F8D2sHzTN3S1to2+3F6L8AkLO9u1ejtgtuwt4u9flaurwhbuMyM4hRAjCz9zdLYoyF4GPKBQwlTImrmNq7eufHQQDSFmgXruCUlPE8fW2ndvhcDgc7WP1rBY4HA6Hw+FwOBwOxwOi1GS2OKjn9OtOa6BTMJpp7RE3IsyLweyithYBVngYGSJbHWFeLiOVQSYJMgixUmJb4eq2maPbWI0QAiFWw9e/GiJ6MVexpgebPA9AOHKNzjffyR2vHHqEZMfGdk1wSWwPpuj18oL8xbSLcV2kPLCDuCsfOXv83ATHzmZOpoJn+LWdY0ityFzdXiZ0r2Ix2Lce+9NddNpirl4VWWTvxLVrnP/WKwsEhL5dW5zQ7Xho8YKA7Z/5MB1rB3N1Va1x7qsvEk+VV2ZijgfCl/B3DpbZP5T/DC+nkn/5kx5uVJpzrUxEytHgNBWRF/UiQg6mu+kwhTuMhM7yZTrKeUeuCjoYH9zfgruF+6MiIg6Lzeh5d0y77C3W21LTz2d5LvdYcBO4sOTxwvOxxmKNQacP4F72A2zgQxhkonAT+k9nfbsTtAywQiIafbu1gVQvT3j250WZ63euYOt3+Xln3N0+ApltyFStc3ebWg2URo+Pt+QciyGEoFDYgDYV0rREpXoWa5vTc93hcDgcq4fVsNrhcDgcDofD4XA4HE0hTSexRmFMnPXrNiZzduuY1ECiJXWlCX2JlAsjzDV+a13daQrlKlJZBALCENsCBw2A0QqwGHPb1b3ygqOIXkHI/MK/rX8CCMEY+r7yYu6YiQImP/uh9k1wCfTImO3BZK5WMT6nkz7SqJvJ4cdyx6YqCV9/9dLM47+ydYKhKHloXN2+9TiQ7qJrntBdI+ZYcIbSjetc+OZCobt352Y2f+xZxGpJFHA47gMvzATv4vBArp5WMsE7ma6szMQcD0Qg4e89Ps0j/fnr/WQi+Z/e7GGs1pzPrVQojgVnKItqrh4ScDDdRacpLjpOAP0T7xHE+WtNvTjEVM+OpsytGZREB8fFhgUC/GP2GoO22ZtBdmHJ/x0KXl/yaOFl90FGKYzW2GU4phdQ7AApM3d32hx3t6dTjJf17bZBESGyDYvaLK9vt39gcz4JRxnU8ct3HoABLEJGgJf9LPP6xjcLr6MDEOhKGV2azO7R24Tvd+P7PcT1axhdo1a72LZzOxwOh6M9uG+dDofD4XA4HA6H432DUiXUTL/uzkaEOaBjqsafiTAv+vmoUiUKrY8wvx1fbiyeUsioSBaI3fzFPmtv9+vOXntVRJh7VxDh0VzJprtBZ9Gkna8dJ7xyK3d86pPPYXpWR59SAIlhfzSWa61tLByPB9HCZ3zjUyDz760vvzRCPcmE4AN9NT40XAGlAbnqXd2elexPd9JlO3L1OjHHwtNM3LjG+W+8jJnXt7R3xya2fPw5J3Q73hd4UciOz36E4lB/rp6Wq5z9qhO8H1ZCD754aIqdvflr/njd43/8SQ8T9eYK3tMi/z4JCLKNRKZj0XECw+DYUeQ84XG6dwe14ppFx6wEN0UP74m1uZoEDtrL9NhmRlWLBb274V1gaf2fBQLp+5nQbS3mQdzdnsSGIUSNOPrkwcVhr9ErW8uA1C/gCYE2LLtvt+iI8B5Zn6vdPcocrFUgfcBHWAEmbUmUOZ5EdnZgyhWsVujp9raDiKL1GJsSJ6NUqxfQLRL1HQ6Hw7EyuG+eDofD4XA4HA6H432BtYY0nUTrCkIESBlCUgGTgDFMp5J6mi3eRXP6decjzBWiVSGhlSqkKTLR4AUQhJgWxShmQjcYa5BCsPKubo2IvpurWBtg448DICs1er/9o9zxdO0A5Q8+3rYZLoXdYYlOmRd2z6c9TJmIyTV7SQu9uWM/On6T89cyd1unr/kbO8cQ6MzVHXir2tWdCd276Lb5zQZ1Eo6GZ5i4dZ3z33wFk+b/PXq2bWTLx593QrfjfYUXhWz/3EcoDPbl6ul0hXNfe4mkXF18oGNVU/DhN5+cZmtP/nPsVs3jf3qzm6m4OddOJTTHgjNMirzbOcDnQLqLHrP4pi5fxwyOHVsgPI4P7CP1V89GsEtigAvzXNc+lifsJYq2mZHYT2AJZx5ldzdvLHm0bDierdYolT7Y3V6xCEJggxCRqgd2KUurwVqMF6K9Ap4UGGux1qKW+dr+E9tyj/V717DVuwm7DXe3F4EVYGXrosw7u7BJgo1j9MTSNio0C88rEIaDJPFNjEmoVs+29fwOh8PhaC3u26fD4XA4HA6Hw+F4X6BUGYtBq2rm6tYqi2LUCbGRpHjUlSaaH2Eu5kaYt2ZxD6VguoyMUzwEolAEbEtc3QBaG6w12JkI8xUmeBPhjeZKNv4g2G4Aer75Q2QtvxBb+oUXMufzKmHAq7ElyAsVkzrkfNpLvWOI8uCu3LEb4zX+/CdXZx7/6vYJ+kIz6+qWHoThqnR1SyvZl+6kZ57QHZNkju7R65z7+suYJO+I7N66gS2ffL4RF+twvL/wCxE7Pv8ChYH8ppZkqsy5r71IWmmmi9XRLjoCyz96coqNXXnB+3rF51++2UMlbc5ntBaG48FZSiLvZvXx2J/upNd0LTouikv0lU7lalb6jA0dxIjVc408LYa5Rk+uFqE5ZC8RWHWHUcslAg7Nq70FLO3eTUiJ9GTW5sWCVQ8wLymwhQiCACsEInnwVCBPJ2gvez0bRJmr24LSy5Pl/X2bYG6CkbGoo3eP7bZWgwxoeOBbFmUui0WE72PKFfTUFDZt1ntjaYThWhAQxzeox9dQqr3ucofD4XC0DvcN1OFwOBwOh8PhcLwvUKoE1qBNNevXrWpZnreKqWiJNpZEGQpBfnE4lRFaBK2LMLcWSlNgNFJZCMNsoa9Vvbpt1ufRWIMQAiFW+GufmEJEP8yVrF4D6ZMABJeu0/mTE7nj1YO7iXdubtsU74WPZl84nqtpK7L4chkwsfFQTrRW2vAnL15ANxaonx2s8MxQNXN0z3V1+35bf46lkAndO+i1eeElJuVYcIaJsRucX0zo3rKerZ/6AHIVbVBwOJrNbcE76s+LeslkQ/CuOsH7YaQrtPzWU1Os7cinrVwuZ4J3tUmCtxGGE8FZxsVUru41BO9+3bPouM7yZToqV3M1FXQyPri/VVk0y0cITogNjJGPZe8k4Ql7GbGcxtN3wfJs7mcWxMCRJY+Xvo81Fms0On3Ae75CAStFtnFNpY3NbPePZxKMDLAIjF9ECIHWBrXMvt2iEOA9tjFXU4dH7jFKZ1Z5GWbZ6Ua3JspcgOzsxFTKYC26VGr+Oe6ClD5huJYkHUPrGuXKqXsPcjgcDsdDgRO7HQ6Hw+FwOBwOx/uCNC2hdRWwmbM7rYJOsdZQVh71VCMFRHNcpxofK3yMaGGEebUGaYqo1vGCABEVMkdRqyLMtQIsxpiGq3tlncMi/DFCzDp3rAVb/1lAgrH0f/lFxJx/dhMGTH7uQ+2f6F14NJqgIPO/r9NJH1UbMLH+IDrIL+7/xU+ucXOiDkBvoPiV7Y2oTq3IXN0+hNGqc3VLK9iX7qCv4bi/TULKseA04xM3OPe1l9Bx3kXXtWkdWz/1M07odvxU4BcL7Pj8R4n68n8ncWmac197CVWrr9DMHA9CT2T5raenGCrmP+tHpnz+l7e7iZtkQDXCcjI4x6gs5eoSyWNqO4O6d8EYAfRPvEuQ5EXyenENUz07mjOxJmCF4IjYxDRRrt5HjXVM3WHUchkA9uQqgtdhqfdvUiKEwCid9e9+kPhxARQLEPhY6SGSB0sH8nQmvmsvQPkFfJE5uwHUMvp2AwRPbM091mduYKbvvhnHWo2QQSOS3W9dlHlXF1YbTLWKnhi/94AmE4aDSBkS16+RpiXi+Gbb5+BwOByO5uPEbofD4XA4HA6Hw/G+IE1LKF1BCA9pfdAJ6Ji6kWg8aqkm8j3E3AhzWcAi0MJvjatbaZguQxzjISGMENJrWa9ua2/3684Wb1c8wlxUIMi7tkkfB7MegM43ThBezi8yTn3iWfQ8EWklWedVWOfn+/GOqgKXVBfVno3UevMO9PNXp/nR8dmf6W/uHKczMA1Xt4HAz76J+6tLGBZW8NgiQnd629Fdurm40L1xLdt+7meQq+zncThaSdCRCd5h7zzBe2KqIXi3JgLY0VoGCobfemqK/ih/jT5TCvg3h3tImnTptsLyrn+eWzLfs1gieVRtZ0j3LRgjrGFw9AhS5z+Dp3t3UCusac7EmoAWHm+LzdTIJ5dstKWmncPyXO6xYBRYWv9lgcjSdbTGWvvg7u4ownoyc3cbnbWtuU+k1QhrMDJAeVEWuX6ffbu9RzdCNOd3YC3qyN2jzKHRZkX4CER2H90CRBggoghTrmDqdUytvYkYQkiiaD1KT6PSKSqV09gWpS05HA6Ho304sdvhcDgcDofD4XA89GhdxdgUrSp4XgdCNyLMdUJVSVJtUNpSCPJfgZQsoEXWo7Al/bqnpkBrRK2OLHRAELbW1W0MxoC1BikEK+7qDt5CiNmf1VoPm3wgO1at0/OtfLx5uqaf8oeeaOcU70okFHujvOsotZKTyQDK72Bi/eO5Y7VY8eWXZ6NCPzI8zYH+hstT3XZ1e6vO1S2s4DG1nX6bj9BNURwLzjI+eYOzX30RXc8LeJ0bhtn2cx9ErsI4doej1QSdRXb+/AuEPfnI//r4JOe+/hKq7gTvh5E1HYbfenqKnjAvfr07HvD7R7pRTdLErIB3/QvckPlrjECwV21jWA8sGOPrmIGxYwvipccH95H6HQuev1LEIuCUWJur9VOlwzbrb2I7lrzAn7m7l8btFBKrNVqlD57pUyyC72E9P3N3P8ALSp2ivTC7R/Azh/z99O0WoY//2KZcTR2+cM9xVhiECBob9Gi4vJuP7OrC1KqgNXpi4t4DmkwQ9OJ5XdTjq2hdo1a71PY5OBwOh6O5OLHb4XA4HA6Hw+FwPPSkaSlzrejKnAjzBGMNZe1RT7II89CfG2HuYYSPFgEeLYgwr9UhTqBaRQYRRBFSeC11j2itsRiMsSvv6iaB8HC+lD4GjV7Qvd/+EV41H/db+oUXVpHj2bIvGicQ+ffFO3E/deszsfEQ1gtyx77+w0tMVTKX2FCk+MvbStmB270vAz/r1R2sHnFYWNirtjFg8tG5mdB9hrHJG5z76ksLhe71a9j+6Q8hV9HP4nC0m6Czgx0//1HC7s5cvT5WygTvuDXOSEdrWdeZOby7gvz1+thoyP96tAvdrMu4gFP+CNfk6Lyy4BG1lXV6cMGQQjxBb+l0rmalz9jQ4xixWq6fcIsuEvLz2WAnm/TqAsuz8yqngbGljRYC6XkYpcCCUQ/o7g4CrO9DFGbi8AO4xT2dYKSPQaD9ArLRt1svs283gH9oW+6xOX8LM1G5xygNQoKVCLyWubu9zk5AoCsV9ESpZaL63SgUNmBMTJKMUa2dxxj3ee1wOBwPMyu9+uFwOBwOh8PhcDgcD0yaltCmDhg8ItBpFmGuJRpJXWmKgYcQi0WYB3jNXuAyJnN1JwkiTZEdXYiG+NyqCHNjbzu7DUJkMY0rSnAMIfICqU2fzg5dvknna8dyx6oHdhHv3tK26d2LzX6ZQS8vxl9THdzQnZQHdxJ35l1lR8+Mc+JcCciW4X9t1xgFr7Eync5xdUdhG2a/NG4L3UOmL1dXaI4HZxmfvsm5r724oAdxx7ohtn3GCd0OB0DYlQneQVfeWVsfLXH+6wuj/x0PBxu7Nf/oqSmKfl6Ee+tmxH843sUyWyjfGQFn/Etc8Rb2Dd6ttrBBLYwo7ypfoqNyLVdTQSfjg/ubvW3vvrFCco38JqoNlBDLVWzvyEEshVxlWe5u38NaizUakzahIXtHEaTE+gEivX939+37UeOFKL+AJ0DdvpVYbpT5I+uhmL/nUEdH7vDsWaywCOE3EpJac8+KJ5GdHZhyGasVulxuzXnuNgWvSBAMEMc3MDqmWj3f9jk4HA6Ho3k4sdvhcDgcDofD4XA89KRpCa0qgMAztrFAl1JRHqmyaANRkHcYzY0wl83u1z01nS0QVmuIQici8Oe4uluzFG20AizWGKT0WNkIc40If5Kr2HQnmEEwlr4vf5+5hmkT+Ex+7sNtnuOd6RApu8NSrlY3Hu/GAyRRD5PDj+WOlcoJ3/jR5ZnHn1o/zZ6ehtBvNNBwdXsSVkvkt4VH1DaGTH+unAndZxibvsm5r76Imue+71g7yPbPfBgvyLvaHY6fZsLuzkUF79qtCc5/42V00uRrjKMtbO3R/MMnp4m8/HX79esR//lkZ1MF73PeFS55NxYc2qk3sUkNz386fRPvECRTuXq9uIbpnu1NmtSDc0X05R5HaIaYbtKrh8CT82qHgfrCpy6CkNkGSKN01r/7QZ3FnocNw2xDmwXS+4tsl9Zkfbu9AOVnfbuttRhr0cuNMvc9/P2bczX19r3FboQBBNiszUnzogzyyM4ubJxg4wQ93v4oc4AoWofFEMc3qNevoFT7RXeHw+FwNIe2fstOkoQjR45w7tw5rl+/TqVSIQgC+vr62LJlC/v27WPTpk33fiGHw+FwOBwOh8PhaGBMjDY1tC5n/bpVHXSCNoaKDqmnGl+KXIS5wcOIAC0CJApJExfy6nEWYV6tIbB4nV2Zy1oIrGmCe2gRrAVjNMYYrGXlI8z99xAyv6Bt0yxytOPNd4gu5Rf0pz/+DLq/u23TuxsCy/5oDG9efPmJeIBU+IxvfCqL+GxgreXLL40QJ5n7aUMx4Re3lG4fzVzd8nav7lUiEFt4RG1lzTyhW6M5EZxlrJw5utNKLXe8ODyQCd2r5edwOFYRUU8XOz7/Aue+mv/bqd4c5/w3Xmb7Zz/i/nYeQnb2Kf6vh6b412/1kJrZTWSvXCkQeJa/+kgV0Yy9ZQIueFcxGLbq9blD2/VGJJKL3vWZfWzSGgZHj3Jz7bMYb9a9O9W7kyCZpljPR6OvBBURUbJF+pj9e9hoS9wSPU15fcszwI9m2tAIEiyHgeeXNF76PjpNkcai0xQ/ih5sQsUCJAk2DBFJgvWD7Pq/TDydoGUIZH27RVrN0tGNpbjM1/IPbUW9cXbmsbk0hhmdRg7d/Z7LCoOwMotONzrbrNdkZLGI8DxMpYwuRNn9UpsTY6QMiKJh4vgGYThEpXKa3t5DbZ2Dw+FwOJpDy68g58+f54/+6I/45je/yeuvv45Sd1/cWb9+PZ/61Kf4whe+wGc/+1n81bLr3eFwOBwOh8PhcKxK0jTrAal0lcDrAqNAx9S0xCCop5qOcKGr2wJaBARmaS6gJWFtFl+epogkQXR3I6REIrHGYFvk6rbWYEz2fykFK+vqtojwjXxFbwC9EVGt0/vNV3PH0qE+pj+yehYWtweT9Hr52OGLaRfjpsjk2sdQhfwi/Q+P3WTkeuYE8oTl13eNEdxeEzYGMOCFq8fVbbNo3GEzkCtrDCeCc4xWbnL2qy+Slqu548WhfnZ89iN4qyiG3eFYbUS93ez4/Ec5+9Xv51IRqjfGuPDNV9j+2Y+4+P+HkEcGFH//iWn+7dvdKDt7ff2Li0V8Ab+8p3mC90X/OgbLdr0hd2irXo9EcsG7OnOJ93WdgbFjjK55krkTGB/cz/CN1wlU/nN8Jbgi+uizs2L3EBUimxKLZmz86AP2Au/MVASvN/p531ucFZ4HaYrRGq1SvDB6sN+jlNhCAWHBpikkKRSWL6B7OkH5haxvd1BE1msoY/CNwFqWNUdv1zrojKAy6zRXh0cIP7n/7gMFjSAigWhspGz6raUA2dWFKZfx+vtRkyX8oaEmn+TehOEakmSMOL6G9CKSZJQwbP88HA6Hw/FgtGy7/5e//GU+/vGPs2vXLn7nd36HV199lTRNs34od/nv6tWr/Kf/9J/4whe+wPr16/nt3/5tLl++fO8TOhwOh8PhcDgcjp9K0rSE0QnWpnhGgDWgEiraI1EGY6EwT1xI50SYe7aJ/VSnpkEpqFTB95FRBwKZLYDa1sRAAiilsRiMsSvv6vYuILxbuZJNngGg97s/xpvnFi79pY+sDhEY6JEx24N8LGzF+JxO+qh3rqE8uDN37NpYle+/Ods39XMbJ9nadTuueBW6ui3sUptZZwZzZY3hZHCWW9WGo3ue0F0Y6mP755zQ7XAshagvE7z9Yr6fcOX6KOe/9Upz+gM72s7+oZS/+/j0gtSP74wU+f0jXdSb+Gu97N/grLdwLXSzXssOvTHXDaUQT9BbOp17npU+Y0MHMcJjpblBD2rO8rMg693dLDJhexbBBHBmSWOFEEjPwyoFFoxuQruBQoSVAsIQoVJQy7/3kyabh/FCUr+AJ0E3ep0vt2+38CT+41tzNXX4whIGCiw6izE3mmYGIM1FdnVhtcbUauiJUmtOcg+EkBQK60nVJFqVqVTOYJvWW97hcDgc7aLpqyBf/vKXOXjwIL/0S7/Eiy++iLWWKIp4/vnn+c3f/E3+43/8j3zzm9/ktdde49SpUxw5coTvf//7/Mmf/An//J//c37pl36JTZs2Ya1lbGyM3/u932P37t188Ytf5ObNm82ersPhcDgcDofD4XjISdUkWmfOWl+LLMLcWqrap5ZqAk/ie7N2FIOcE2GumxdhniRQrUG1jrAW0dmNFBIpJBiDbdFKobFgjMEYgxDZot1KssDVbfpB7SK4eovOHx3LHavt20H8yLY2zu7OSAz7ozHkHOeSsXA8HkTJiPENefe5UoY/fXEE3WjaurUz5jMb5wjlt3t1+6ukV7eFnWoT603erWQwnAzOcauW9ehOpiq544WBXnZ87gX8+3CnORw/rRT6e9jx+Rfw5v3dVK7e4sK3f4C5R+qhY3XyxHDK3z5QnonNvs1bNyN+97VeblSad/296t/itH9xQX2jHmaX2pwTvLvKFylWruWep4Iuxgf2tShPZuloIblOPhFlo53MknCawlYsa3MVwWtLHi19D4vNBNdmbEQRIoszD3yslIhk+RsqpTUIozFegPZChPSwNhO80/vonx08kRe7zbUS5nppCSNt4/fkIYyhFW8mEQaIKMKUy5haFVNrYtrSMgiCfjyvg1r9KkqVqdevrMg8HA6Hw3H/NPXb9sc//nFeeuklrLUUCgU++9nP8qu/+qt87nOfIwyXtwP8zJkz/OEf/iF/9Ed/xKlTp/jSl77EH/7hH/IHf/AHfP7zn2/mtB0Oh8PhcDgcDsdDirUaraZRuoq0XrYArWKqWmIsJMrQGeW/9uQjzOPFX3j5E4HJKVApIomxHUW8IEQgQEqMbp2wkb22xRrTcHWvYIS5vI6Ytzhvk2fAQt9XXkTMWdy2vkfp8x9p9wzvyO6wRKfM/57Op71MmoiJjY9jgnynzO++cZVbpWxR1heWv71rjNm28BZSnTm6xSpwdVvYoTeywazJlQ2Gk/55btVucvarL5FMlXPHCwO97Pi8E7odjvvh9t/Pua+9iK7PCl7lKze58O0fsu3nPoj0V95561gez6xLSHWF//1EJ3bO9fZaxeefvdbLbxwoc3BNExzCwHVvDINlj9qS3U80WG+GkEpwyr8IIrvq90+8gwq6SMPZXsz1jmGmk230TF9oynzulyuij022NPO4SMoAFcbpasKrCyzPIfizOZVzWG4Ba+487PZzpYeQAqMVQntYYxAPmpATRtg4RoQR1GtZ4s8yN7x5JkXJkBCBDSJEqjDGovXyFWe5fQ2ip4idmk3WSQ+PEH267x4DPaxOEbaANSlQpBUWb9nViZ6YAK3RExPI4vp7D2oBUbSBavUMaTpBtXqOKFqLlKsglcfhcDgcS6KpW/5ffPFFBgYG+Gf/7J9x/fp1/viP/5gvfOELyxa6AXbt2sU//af/lHfffZeXX36ZT37yk0xOTvLWW281c8oOh8PhcDgcDofjISZNJ7FYtK7gWQlWg06ZVpJYZxHmxWBhv24jfEDi2eYsSFMuQ5rOiS8vIoVECA+sbZmr21owRmf9wC0rHmG+0NXdAeljdLz9LtGFvOts6mNPowfybq+VYtCrsSXIC72TOuR82kO1dxO13o25Y2cuT/H6ydmo9l/aWmJ9xxyhXM9xdfsr7Oq2sF1vYKMezpUNlnf8C9yMs+jyZHI6dzxqOFPnRzE7HI6lUxzsY8fnXljQAqB8+Toj3/0hRusVmpnjQfiZjTH/8MlpOvz8tb2mJP/m7W6+dq6IaZIL9qY3zrv+Bew8W+1aM8hetY3bqerSGgZHjyB13kk81buTWiHfuqLdTFFgmvymqY1zxO8H5wCWjlxlWe5uz8dogzUWlTbhvlAAhSL4HtbzM3f3Mt8Pnk6w0sMIifYLSCnQxmZpPst8LSEl/jx3tzo8cu+obiGy+2osGBDGtsTd7XV2gQVdqaBLpSa6/peH73fi+33U4+toXadau7Ai83A4HA7H/dHUlZDf+73f48KFC/z2b/82PT3NW7T40Ic+xLe//W1+/OMf88wzzzTtdR0Oh8PhcDgcDsfDjVKTWKMwupb161YJqbHEJqCeakJfImU+wlyLEC3CRoR5E4QGpaBchXqMMAbbUUR6PgKBkBJjWydmWGswBow1jZ9zBcVuUQL/VK5k06cQNU3v11/N1dVAD9MvPNXGyd0ZH82+cDxX01ZwPB4kDToorTuYO1atK77yysjM40d66nx83Vyh2IK67eqWEKxgn2sL2/R6Num188qWd/3z3ExucO5rLxKX5gndfd1O6HY4mkRxqJ/tn3sBb17Cw/TFa4x890dO8H5I2TeU8v98fpKNXflEEIvgK2c6mtrHe9Qr8Y5/HjNv49wa089etT3rqwz4us7A2PG8WCgE44P7Sf18OklbEYIroi9XGmaawDYr9cYH5t9THAFqizx3IcLLNkUarTFp2hytNQywng9hCMZkGyKXgdfYtGBkgPILeCITuy0WdR9R5v4T23KP7a0pzNWJew+UEmsSBF6jPUsL7jM9iSwWMeUKVqXo6fK9x7SIQmE91iqS5Cb12mW0rq7YXBwOh8OxPJp6hfon/+Sf0NnZ2cyXzPHss8/ymc98pmWv73A4HA6Hw+FwOB4u0rSE0lXQKb6IQMfU5kSYF/35ru5oJsK8aa7uWh2sQdTr2EIR4QVI4TVc3Zkg3Sq01lgMxthV4Op+EyHmxJTbAJLH6X7lbbxyfrGw9JdegGCFe1gDYHk0miCSebHpVNJHxQaMb3wK6+UFqq+9eolyNVugL3iGv7Uz3+d7oat75WKKt+p1bNbrcrVM6L7AjeQm5772EvHEVO542NvFjs9/lKBjBYURh+N9RseaTPCW8wXvkatc/N6PsfchXjlWnjUdht9+dpJn1i1sifJ2o4/39Sb18R7zJjm5iOA9ZPp4LN2BbAjehXic3skzuedYGTA29DhGrNz16Bq96DlR7BJYz2TTXt/yNHbOMrdAAUtLBxVCIH0Po7Jru1FNuj/sKIInsX6ASNNluaIFFmE02gvRXoSUEktDN7+Pzwu5ZRAxkF+zV2+P3OHZcwf6YNJsA4XWCCtb4u6WXV3YOMYmSRZpvkJIGRKGa4iTW2hdp1I5c+9BDofD4VgVrOxqiMPhcDgcDofD4XDcJ9Za0rSE0RWEMUghZyLM62m2EBgF+a88SmQR5haJZ5LFXnb51Ouzjp0oRHoeAtrg6gZtDMYYhAAhVtLVXYXgWL6WHkTEkq4fHsmVa49uo/7o9jZO7s6s86qs8/NC/KgqcFl1MT24m6QjH/16+NQY71wozTz+K1snGCrM/R3bzOl/29V9Hy29msVmtZYtOt/30mJ5zx/henqDc19/ifp4XmgIe7rY+fMfJeh0QrfD0Ww6hgfY/tmPIOdt9Jm6cIWLf/FjrHGC98NI5MPfOVDml3dXEPNUwGsVn999rZcjt5rT93fCm+JEcBY9L5VmwPawL92JtNl9QNf0CMXq9dxzVNDFxMBjrdApl4QSHjfpztU22lITI6t7gMdyFcEbLLXHtPR8wGJU5u5uCr6HDUOIwuznTJd33+npBN3oGW3CCAFoa1H30bdbCIH/+LZcTR25sLQoc8DaNEsQsIZWyAmyWER4HqZcRk9NZvdSK0QUDSOER5xcI05ukaYrJ747HA6HY+k4sdvhcDgcDofD4XA8lGhdxmJQqpz161YxsYbEBtSVJpoXYW4RaBk1P8JcaUhS8H2ElHjChxlXd+vEbq1V1g/cmIarW9xzTMsIDiPE7MKktRKbPEXnGyeRtbzjbfLTH2z37BYlEoq9UT6+PLWSk8kASaGPqeG9uWMT0zHf/PHlmccH+mp8aLiSf1GtANtwdXvgrYyLbpMaZpvesKB+yr/INXWD819/mfpYKXcs7O5kx89/lKCzY8E4h8PRHDrXDmaCt58XvCfPXebiX7zmBO+HFCHg57bX+UdPTdMZLOzj/W/f7uZrZ5vTx7skyxwPzqLm3cP02W72pzvxrEQA/eMnCZJ8i4pax1qmu7c9+CTuk/lR5l0k9C4xanwpWJ7NPRZMAu8taayQEiFl1hqnsZGwKRQLIAQ2DBBJuixx3zPpbN9urzjTt9sC+j7eTP6hfN9uO17BXBy790Dpga4DAkyL3N1SIDs7MeUKWIuebJ7rf7kI4RFF60jTElpVKJdP33tTgMPhcDhWnFUjdn/1q1/lr//1v85nPvMZ/v7f//u89dbSomYcDofD4XA4HA7HTydpOgHWoJNSFmGuYqpaohsR5oVgfoR51n9YiwDZtAjzOIswT1NsECBlJmBI4bVU6AYwRmONwdpskXblSBHB2/mS2guqk65X8vXao9tR6/Ju6ZXBsi8aIxD5xct34n5qRIxvfCpzZjcwxvKnL42QNBIDOn3N39g5dtvwNPOauV7dUXOcfMtlo1rDdr1xQf20f5Fr6jrnv/4StdG8Syno6mDHz3+UsMsJ3Q5Hq+lcN8S2z3wYMa/FweTZS1z6/utO8H6IeWww5X94bpJNi/XxPtvBl450U1MPvjFtSlY4HpwhJX+eXtvFgXQXvvWQ1jA4ehSh8/c7U707qRdW5jo8QQdV8tfGjbbUxDNswpLf6CV4bcmjpedhtMEag16mC/vOLyqxhQiCECsExEt/3dm+3WHWt1sKzEzf7uWLr3JDP2JN3l2vDl9YwkAfMJm721iwgpa4u7u6sFpjqjXUCkaZAwTBAFIWqNevofQ0cXxtRefjcDgcjnvTlhWR73//+wwPD7NlyxZKpdKC47/zO7/DL/7iL/Jf/st/4Tvf+Q7//t//e55//nn+4A/+oB3TczgcDofD4XA4HA8haVpC6xroGE9EWKOoaEk91UgBkZf/upOKAlp4jQjzJondcR3SxmJzGCKFn/XqBkwLe3VnrqPsHFIKxEruYw6OI2TemWWTZ+g4cgq/lHeVTb/wVDtndkc2+2UGvbzj/Jrq4IbuZHLtY6govxj86tEbXLox6+L+1e0T9IXzfr+3Xd1Bw9Ut2+/q3qDWsENvWlA/41/iir7O+W+8TO3WHYTu7s4F4xwOR2vo2rCG7Z9eKHiXzlzk8ks/cS7Ch5g1HYb/xx36eB++GfK7r/U0pY/3tKxybBHBu9t2ciDdRWB9fF1jcPxY3k0sBGOD+1HeCrSrEGKBu3sdU3hN2xwosDw3rzICXF/86fNHN/4ejdaYVDUvYb1QwEoBYYBQKSyx57bAIo1q9O0Os42UZMPVfWyKEULgP7EtV1OHR7D3comLhrhtkuy9ZE0Wad5kRBQiwhBTLmOqVWy93vRzLHkuQlAobECbCmk6QaVyFmNWLlrd4XA4HPemLSsi3/jGNxgdHeWZZ56hr68vd+zo0aP87u/+LtZarLX09fVhrUUpxd/9u3+XCxcutGOKDofD4XA4HA6H4yEjTSdRahq0QmpDrCG1AbVUE/keYkGEeYgWIQKDpAkLVkplQneagO/jeQFC3HZ1G5qf8TiL1hqLwRjbiDBfKQwi/EmuYtU20EN0v5RP64q3rifZvjBau910ipTdYSlXqxuPd+MBal3DVAZ25I5dvVXlxbdnF8qfHazwzFC+z/esq9sHVsbVvV4PsXMRofusd5nL+hrnv/Ey1Zv52Pags8iOz79A1NPVrmk6HI4GXRuH2fZzH0LMa3cwceoCl192gvfDzO0+3n95z8I+3tdv9/G++eDXiYqscTQ4TUJ+A1+X7ZgRvAv1cXomz+SOWxkwOvQ4RrR/U9ZVenNdtD0s65hq4hn2Yclf05bq7hYIpO9hVCa+N613txBZnHkQYKVEJEt3d0udohupQbf7dhtjUNrelxgfPDEvynyqhjl/cwkT8cAkWGsR1oCVDYd3c5HdXZhaFbRZcXe373fj+73E9esYU6dWu7ii83E4HA7H3WnLqsgPfvADhBB88pOfXHDsS1/6EtZa+vv7efPNNxkbG+P1119nYGCAOI75/d///XZM0eFwOBwOh8PhcDxEaF3F2ASdTODJCGFSKkqSmizasRDkv+ooEQECLUI8mzanu3V8O8JcYf0AKQOEkCBa26vbWtCNfpJCkJ1zpfBPI2S+r6JNnqXw3gjB9XwfyOmPrryrW2DZH43hzYsvPxEPEnsFJtYfytVTZfiTly5gGq6n3kDxK9sXWXydcXV7K+LqXqcH2aU2L6if865wyV7l/DdfoXoj//vwOwrs+PxHiXq7F4xzOBztoXvTWrb93AcXtKKYePc8V1550wneDzFCwM9uu3Mf739zuIevNqGPd1XWORqcJiYvoHbaIgfT3YQ2oHt6hGL1Ru64CruYGHi0hdvyFicRAaPzxOjmRpl7WObfbxwDKos9eQHS8wGLUQrdLLEbIIywUkIYZvcMamn3iZ5JZvt2+0U8KdCG++7bLdf1Idf35Wrp4ZElDMwEd0wMDVe5sM2///Q6OsGCrlTQE6Vl9ThvBYXCeoxNiZNb1GojaL1ybnOHw+Fw3J22rIpcu5b1tdi3b9+CY1/72tcQQvDFL36RQ4eyhYWnn36aL37xi1hr+d73vteOKTocDofD4XA4HI6HiDQtgbXoeALfBhijqGiPepJFmIf+PLFbzokwt03qw1iLM2e3tcioMOvqNgbbYlc31mKNaQgkzXfWLA2LCF/PV/Ra0JvpfunNXD0d7qe+d3s7J7coO4JJerz87/9i2sWYKTCx/glMUMgd+87rVxibnI2i/Zs7xxeIFjOubs9v9OoOWzX9RRnWA4sK3ee9q1yyV7nwzR9QvT6aO+YXG0J3nxO6HY6VpnvzOrYuIniPv3OOq6++7QTvh5yZPt7dCxNl/uxsB186/OB9vGsy5mh4mjr56PQOW+DxZDcFG9I/fhI/LefHdayj3J13+raD+VHmvdTpss0UEZ/GMrvpTKCBN+/89DkIKRGexGiNtQajm7R5UQDFIvg+1vMRSbykACCv0XNdyxDlFfClwDTSUe8nyhxYGGV+ZAR7r2j121HmNsVajbC0xt3te8hiEVMuY1WKLpfvPaaFSBkRhkPE8U2MialUz9x7kMPhcDhWhLaI3bdu3QJYEGF+9uxZrly5AsAXvvCF3LEPf/jDM89xOBwOh8PhcDgcjrmk6SRaVbG6hodHrEDhU1eaYuAhxNwIc1AywtCIMLdNiDDXBtI0+8/zkEGU9c0WoqWubgBjFNYarGVlI8y9Swgv7xSzyTOEF28QnbuSq09/5CmQKyXKZ/TImG1BPiq1bHxOJ31U+7ZQ71mfO3b60iQ/eWdWJP7I8DQH+hdZjFeN95PvgedBG38na3Q/e9QWxLwNDxe8q1y0V7jwrR9QuXYrd8wrROz4+Rco9Pe0bZ4Oh+Pu9GxZz5ZPfWDB5+TYiTNc++FhJ3g/5Nzu4/3sYn28b2V9vK89YB/vukg4Ep6mJvLXqQIRjye76dQ+Q6NHECbvVp7s3UU9Gnigcy+XMbqo4+dqzXV3dwH7cxXBT4Cl3Z9J2di4aEyT3d0B1vMzd7cxs/cPd+F2327jhWgvAK/Rt9uC0vf3ueDPizKnEqPPLKGvufTBqOw/2zp3t+zqwsYxpCl6haPMAaJoGCEk9fg6cXyDNG1m7L7D4XA4mkVbvoXfvimfnMzH273yyisA9Pb28sQTT+SODQ4OAlCtzu+F5nA4HA6Hw+FwOH7aSVUJHY+DFXgGKlqSaos2EAX5COnbEeZKBs2LMK/XAQtpiogKSCGQQkKLXd3GGIzJ/i+lyAT2FUKEb+QeW9MLag/dL+bdU7qnk+qhPe2c2gIkhv3RWE5HMjaLL0+CLkrrDuSeX6mlfOWV2d6MQ5HiL28rLfLKFrTORO42u7qHdB+PqK0LhO6L3jVGuMqF77xK+Wq+D6dXiNj58x+l0N/btnk6HI6l0bttI1s/+YGGg3KW0eOnufbjI07wfsiJPPiNu/Xx/nEvhx+wj3ciUo4Ep6mKWv7chBxMd9OTWAbGjuejoYVgbPAAyis+0LmXgxWCq+SvQ+uZRNr7cyoveg6ezT0WTAPvLGms8LP7SKM1Rqnm/u11FMGTWD/Iencvyd2doGT23jB+ESEEWhuUub++3XKoG7l5MFdTS4oyb9xfmwRMmt1/tMDdLYtFhJTochk9ObmkTQGtRAifKFpLmk6gdY1K5dSKzsfhcDgci9OWlZF169YB8M47+ZuKb3/72wB88IMfXDCmUsl6qfT397d4dg6Hw+FwOBwOh+NhwpgEravoZAwPD2MsVeVTTzW+FItHmONh8ZoXYR7HoBTCWmRUzBb8pMQ0caF2MbTWgMEYm4nrK4W8hfDP50o2eRr/1iSFk/l0rukPHQI/7+BqN3vCEp0yv1h6Lu1l0hQY3/gUVubn99UfXKJSy54vsPzarjEK3iIryjOubh8Cv22u7kHdy161bYHQfcm7wXmuMPKdVylfzrvuvShkx+dfoDDghG6HY7XSu30TWz7x/ELB++gprr9+zAneDzm3+3j/46em6JrXEqOuJf/2cA9/9oB9vFOhOBqcoTxP8A4JOJjuYqhapWcyf522XsDY0EFMG+8rrs6LMg8wDDPdxDNswJJv8SF4bUkjBQLp+5jGNd6kTRRbfQ8bBBAF2aaDJTjHpU6ze0zhofwITzDzHrmfvt0A/qG8u1sdu4S9Vx/x21HmGKxJZzZNNN3dLQWyqwtTLmctiyZX3kkdBANIGRLXr5KqSeL4xr0HORwOh6OttOUu5vnnn8day5e+9KUZp/a5c+f4yle+ghCCT33qUwvGnDqV7ZK6LZQ7HA6Hw+FwOBwOB2QR5hiNTqfwrEddgcKjnmoKQf4rThZhXsCIIIuCbEaEuTEQJxCnCD9A+gFCeFkfbVondlsL2hi0MQjBgv6u7WShq7sI6X66Xnor6+PYwBRCKs/ta/Ps8gx6NTYH+Z6PJR1yIe1hemg3SUc+vvWt90Z57+JsKtmn1k+zp2dh9CyYOa5uAcGDOfKWyoDuZa/avkDovuzd5ByXGPnuD5m+lI8j9cKAHZ9/geJgX1vm6HA47p++nZvZ/PHnFgjetw6/y403jjvB+33Ao4OK/+H5STYv0sf7q2c7+HeHu6mm9++WTYXiWHCaaVHJ1QMCDqS7WD95k2I1n/yRht1M9D/WwmyaPDURMkZHrrahqVHmYHku91hwGbiy+JPnIb2Gu1spdJo099+lowhCYkO/4e6++6t7Zk7fbr+ALyW60bc7vd++3QfnRZnXEvR71+498HaUudVgFbTK3d3VhVUaU62hSisfZS6EpFDYgNJl0nSSSuUMtsUbXB0Oh8OxPNqyOvIbv/EbABw9epT9+/fzy7/8yzz//PPU63WKxSK/8iu/smDMyy+/DMCePSsbd+dwOBwOh8PhcDhWF6kqYeJJjE7xrKSiJYk2GAuFIO/Q1Y0Icy1DPJs0KcK8IXymKTLqQCAQbXB1G60zQd2YhtC9Qj2wxRT47+ZKNj2EnErofCuf5lV+/gC2ELVzdjkCNPvC8VxNW8GJeJC40M/Umkdyx8an6nzrx7ML4RuKCb+4pbT4i992QLXR1d2ve3hUbUPO+91f8W5ylotc/PMfMX0xv1gtw4Dtn3+B4pBLTXM4Hhb6d21h80efXVC/+fY73Hzz5ArMyNFshoqG//sd+ngfuRXy/36t94H6eCuhORacYVLkN3sF+BxMd7Fl9Dx+mj9W61xHuXvLfZ9zuVyZ5+4epEqxWQk8AOzF0pOrCF5f0kghJcKTGK2x1mL10vp9LwkpsVEEQZRpxPHdf2aBReoU7QUYGSAaQvyD9O2W/Z3I7WtyNfX2hSUMvB1lrrA6RdwWuZvs7hZRiAhDTKWMqVSyHt4rjO/34HndxPWraF2lVltC9LvD4XA42kZbxO6Pf/zj/MN/+A+x1nLhwgX+9E//lNHRUQD+xb/4FwwNDf3/2fvzKDmy+74T/dx7IzKz9g17YQcavQC9N7rZ7I2kKFISZckWRT5JlrlYeqPxe/boaJ49Mz6eOZIl2daMz9h6so6s8TsaiTzDsSRStLWSTVJkd7NJ9t7oBehuoLEvhQJQe64Rce99f0TWElWFWjOr0Ojf5xwcIH8ZN+JWVqEy8v7u9/vNHF+tVqdU348//vhaTFEQBEEQBEEQhPcISTxWz+tOwIeUbUgltoRGE5hsEzDWBSwah8H4xa0il0S1BkmMBnQuX1d1g/cNXAidB+sSvHd4D3pdVd0vo9R0Y9/7AOJ7aP/eEZSdUTea4qP3rMMMp2bAbfkR8jr7fTkedVMktS9nhmWrc56vPnWWOEm/BqM8/3D/EOG8L7UDm0CwdqrubtfBHcke9KyP8Zf0VU5ynnPffo7xM5cyz+lcyN5PPE7rxqx6XRCEG5+eA7vYPk/De/Dlowy+Ig3vm4EFc7zLZtU53lY53gxPMqqy9uABhrujPey+8i7KZe+NxrpuoZpfm/eMq3QQYTK1xqq7DZ4HZtXehCXapWtt8M7hncNGDbqHnKRQAK0gzKGSJHUNWgDj0mY3gA0L6Hput11hbjdAcM/uzOPk2AV8tIgDklKgDODAR+nfqNTKvMG2ALq9HVcug3UkI+uv7gYoFLbhfEwUDVGunMW59W/CC4IgCClrtkLy7//9v+cv/uIv+Af/4B/w0Y9+lM985jN861vf4h/9o38059i/+Iu/oLOzk507d/J3/s7fWaspCoIgCIIgCIJwg+O9JYmGsfEY2itqicGiiRJ3HQvzPE7l6hbmDVio9D7N645jdJgHY1BaN73R7ZzDufRvrRVq7T7KzaIK4evZUnwIVTa0/+CNTLl0/+24jrY1nFuWLabMlqCcqV1LClxI2hnbfJAk35557pkjl7l4dfr4T/SPsav9Oj8zsQUUmLVRdXe7du6I985pdA/oa7yrz3HuO88xfjprzarDgD0/+hitm/qaOjdBEJpH76272f7E7GYdDL74JleOvDXPCOG9xpJyvN9deY63U46j4UmGVTb32GC4r9LPzmunsjbaSjHcd4jEFFZ2wWXNTTMwS3ndzxiqoVb99+OZdv1ROBQvL2mkCkw6wiY4mzQ2QkArfL4AYYjXCrWIutvYCJTGqYDEFDAKkvp0kpXmdt+9MxuXUEuwby3B5l2ZupU5eB/NUHebhcctE9PWBh5cqYQbGVnU7n0tMKZAGPZSqw3ibI1S6dR6T0kQBEGos6YrJD/+4z/OF77wBZ588kn+6I/+iI985CPzHvfpT3+aM2fOcPr0aXbt2jXvMYIgCIIgCIIgvP9IknF8XCZxZYzXFK2mNmVhnl1ksyoHaKwOMT5ujOn3pI1inKDyLSidqrpds5vd1gIe5zxarZ+qm9xrKDXdAPZe4aMHaHvhTfSMhVqvoPj4fesxQwDyKuG2fNa+PPKaY1EvlfYtlHr3ZJ67cKXEd49M51zvaqvxo/3ZxsAU3qWLvIGZUmU1ky7Xzh3xPsysj++X9RAn9FnOfed5xk5dyDyng7TR3bYl66ImCMJ7j97b9tL/2P1z6peff4Orr72zDjMSmsHtfQn/8wfG2Dlfjvep1eV4O+U5Fp5iSI9m6gbNB8Z72TyabXA6k2Now924NbjfuDTLyjxPQh/F+Q9eEa3AnbNqLwGLKJgBhUIHAS5JY2Rc3Gh1dx6vNeRyqVvMAupu7WLwYE1IEhQwRuO9x3lPssLcbt3Rgtm/OVOLjyzBmnuGlTl2Utms0qZ3I/vRgUEVCthSERfH2FJp8TFrQD6/GY+nVhukWrtEkizNKUAQBEFoLuu4SiIIgiAIgiAIgrA84ngUHxdxSRnvQqo+pBpbcoHG6OwicKILODSOAN2oDMhqDZIEowwqCNDK4Juc1e09JM7hnE3dI9fNwjxBha/MKh2AuJ2O7x7JlCsH95FsXK+MaM/B/BChyq64vlXrpazbGNl2b6YeJ5b/8vTZKdVcoDy/sH+I4Hovc5IwreoO04Z3k+h0bRyM985pdF/RwxzXZzj/9IuMnTyfeU4Fht0/+ihtW7NZnIIgvHfpu2Mf2x65d0594LnXuPbG8XWYkdAM+loc/8ODYzy0tfE53l553gpOc1Vn7aA1mieGCnSVsvU418Foz+2NdqaeQ1EVGCWrIu9vqJU5eB7KPFaUgKNLGqtN+no7a0niqLGvhwJa8un9hFKQXH/jpCJteFudw+kg3WxJ2h+PV5jbDRDckxWZ2WMX8dVFmvpTVuYWvMOT1NXdqvHq7vZ2fLUGcYIbvjGszLUOyec3E8VDWFulVDqx3lMSBEEQkGa3IAiCIAiCIAjvIeLaVWw0BjYmcgWsTy3MW4Ls4poHElXA1i3MG5LX7X3a7I5jTJBHBWG6rrcWqm7vcc7VG93Na64uSHgMpbOqGh8dpvWVdzAT2frEh+aqENeKHcEEfSbbKBhIWhm0rYxsuwcX5DPPff25iwyPTx//yV2jbG29juLLO3B2WtUdNC+ru8O1cjDeh5mVZ3pVj/C2OcOFZ15i9ERWgaWMYc+PPEr7tk1Nm5cgCOvDhkO3sO2D98ypX/r+Ea69Kc2Wm4W8gV84VOT/cWsJPWvT1mSO96srzPH2Ct4OzjCos84nBsVHLzvyUTVTL7dtpdi+c0XXWg6z1d0bKJJvxH3bFJvx7M5UFM+zFBmy0hptNM7WbbsXaEiviLB+L2mCNLt7ASZzuz1gwxaMUvXNkKvI7b5rZ3bTXmJJjl64/oBJlEnvhzzgm6fu1q2tKK2xxSJ2fAzixRX5a0EutwGlQmq1AaJ4hFp0bb2nJAiC8L4nWPyQ1XPu3LlVjd+5s/k3VoIgCIIgCIIg3Nh474nLl7G2jHKOsstTjVNVdX5WXrdVIV6lFua6YRbmEXiPdh7yIVobvHP4JuuerEvw3uE9mHVTdXtU+FK2kuyEZDMdz3wzU6/u7SfesWUtJzdFm4q5JTeWnY8zvF3rpdS9i2pHdl5vnx3llXeGph7f2lnlI1sWsKNcI1V3u2vlULyfYFaj+5oe4W1zmgvffYmR42cyzymj2f0jj9Den7UkFQTh5mHDnQfwzjPw3GuZ+qXvvYrSmr479q3TzIRGohR8dFeV7R0J/8drHRTj6ff+qtX83pFOfnxvmb+zr7L8tyEFx4OzuMSx1U1HXeQ8/NBAha/vCHF6+r1nrHs/YTxBodY8Ve1lOjnAIEH9fkoDWxnjDI2L4vA8hOLM1GPFAJ7zwOJrzsoEuCjCO4eNI3TQ0rB5oTXemDQfvBqD89e9tzA2Ig5b8SogCQoEapy43uWOnSNnln+PqFrzmFu3Yt+6NFVLjpwhvH/PAqNIrcwddStzjQ89CoWfVHerBm0K0Ard3o6bmMB3dhIPDhJu72/MuVeBUppCYSuVylmSeIJS8Ti5nl7UekYNCYIgvM9Zk2b3nj2LvEEugFKKZJGdbYIgCIIgCIIg3PxYW8THEyTxOM7nqPmQamLJBxo9r4W5whGQ8w3K+KtVwVmMCuqqboV3zf2s4pzDufRvrRVqvcy5gpMok1WC+egwhbdOEV7NLoCvl6pb4TmUv4aZpYQ7WuujkutgbMuhTL1UifnLZ6ctwAvG8bl9Q9dvHEypuutN7rA5qu4218KheN+cRveQHuUtc4YLz77MyNunM88prdn9sUfo2L4+mwwEQVg7Nt59K947Lj//RqZ+8bsvo7Si97a96zQzodHc1pvmeP/ekQ7OTWSXcP/qVCvnxgN+4c4ireEyN90peDc4j08829x05EVX7HjkconvbuuccaxmuO9ONg2+QGCr85xs9VhlGPSd9DO9Wa3fj3KGvrTz3xAO4OlGMTpVUbyAX1KzO3XVcUmC0hrvPKqRm93CsG5hrtJNdbn57y8yud2mQM5ofGyx3pPYlTW7AYJ7dmea3fadAXy5hmrNX3/QLCtzfAzkQIHyKlWaN+glMl1dqbJ7bAyMxvT1oVsKiw9sMmHYTRRdo1q7RBC0U61eoKVFBHuCIAjrxZqslHjvV/VHEARBEARBEAQhrlyBJMImReIZFuaFcG4+YLMszHXi0NqgwxysgarbWQt4nPPodVSLqNwLmcfeboRkFx1PvZypR1s3UDuQzX9cK/aGY3Sa7Pf6bNzBkGthuP9+vM42Cv78u+coV6c3K3x61wgbCgsokaZU3aZuO9p4VXerK3BnvJ9w1r70YT3GMXOai997meG3TmWeU1qz62MfpGPn1obPRxCEG5NN99zO5sOH5tQvPP0Sw++cWfsJCU2jr8XxPz44xgfmyfF+/VqOf/V8F5eKK8hJVnAyuMB5M5gpby/HHBouZ2rO5BjacBe+ifchF1VP5nErMT2Ur3P0StB4Ds+qHQPG5js4g0KhgwBnLd57XBw1cF5ALle3Mjcou3hud2JyqfreBCjAOU+ymtzuQ9shmPG9tY7kjfPXHzA1oZlW5jFe+fqmzAZndwcmbXhPjEOckFweaNy5V0mhsA3nqkTRMOXyaZxrpP2+IAiCsBzWRNn9h3/4h4seUyqVOH78OH/2Z3/GxYsXeeSRR/jFX/zFNZidIAiCIAiCIAjvBeLKJayt4G1M2bVQjS1aQd7MZ2FucDqH9gmqEQ3pOLWW1E5BEICu5zc2Ee/BOodzNhXQrJeFubmIMpcyJR8dJndmgPy5y5n6xBP3NaUJvBhdusaecDxTK7qAd6MuxjceIG7JLqK/+NZVTpyfPv7O7gqPblrAAcDbpqu6W12Bu+ZpdI+ocY6aU1z8wasMHTuZHaQVO3/4YTp3bWv4fARBuLHZfN8deOe48vKxTP3CUy+glKJnnTYeCY0nZ+AfHiqyqzPhy8dbcX76ffZK2fCvn+/iF+6c4N5Ny2y0KThjLuFw7LLTG6YODVcYyQdcbMtN1eJcJyM9t9MzfLRRgt0MYxQokqed6aZ+vx9lRLU18Cr34XkKRfo6pfeHL+H5oUVHaqNxCXhrSZIYnc837nUwGm80KgigVkubx9c5eWpl3pbmdgcFtIqwzuP8gg7oC6IKOczt/dgZDe7kyFnCh/YvPHCWlTnap8HwKt0g0FB1d2cnrlgkGRmGMMBOTGA6Ohpz8tXMy7QShj3UapcJw27K5VO0t9+63tMSBEF4X7Imze7PfvazSz723/7bf8uv/Mqv8B//43/kkUce4bd+67eaODNBEARBEARBEN4rxJUBkmScxHkS2qnECfnAzLGSTFRqYW4baWFeqaKdxwAqVwAPHteYc1+HKQWR8/VG99o3kQFU+GLmsXcdkNxKx1N/nakn3R1U7rplLacGgMZxKD+U6bE7D2/WNlBp6WNiQ3bRcXisyjeevzj1uC2wfGbf0MI9+sQCummq7oLP1RXd2Sb6qJrgaHCSS88dYejNE9lBSrHrow/TtXv9sysFQVgfNt9/EJznyqtvZernn3oBpRXd+8VS92ZhMsd7R0fC78/K8a5Zxe8d6eQTe8v8xHJzvBWcCy7j8Oyx2yZLfGCwyDe2dzGRm1boltu2EkbjdBSXoPpdLkpxkW5u9dNK801MEHhLohqlEi4AdwMvzai9DDwOLLyJTWmdNrxtgg4CfJKkzelGMWllXvOpk0w4/7mNi4hVG06nud2hniC2qdNQYh25YBVW5jOa3fbEZdxEFd2xgF34bCtzErwKUWi8d6A0NOpeWStMdzfJ1au4SpXk0gDmQPu6bLCcTT6/lTgeI4quoHVAobCdIGjkJg1BEARhKayfD951CMOQ3/3d3+VDH/oQ//bf/luefPLJ9Z6SIAiCIAiCIAjrjK2N4JIyNh4ndi1Yr0ispxDO/UgT6wJWhY2zMAeo1dAOUBplQpxfwO66QVhn8d7hvUevl6pbD6HCdzMlH91PcHmUlrfPZOrFx+9Nm8FrzIHcKK06q7I/FXcxRivD/fdnFkKdc3zlqTMZu8+f3ztMd26BxVhXV3WHpimq7sAbDsb7yM1aaB9TE7wZnOTSC69x7Y3j2UFKsfOHPkDXnu0NnYsgCO8tlFJsPnyIjXfPUhJ6z7lvP8/oqSY0JYV15dZ6jvfOjrnuMn99qpXffbWDcrz8BuCFYJCT5sLU45zzPDYwQeCy7jhj3bdQy3cv+/xLYYBO3IyNfQbP1iXYjC8Hz4OZx4oK8MaSxuogwDuPdxYbN9iuOsyBUnhtUMn1nYO0S8B7rM6RBAWMTvXpzkNsV95YDm7vh9yMBrv32DfOLT5wysrcg4up7wZNn/KaRqb96PY2VD6PHRnB1aokQ8ONO/kq0Dokn99ELbqKtTVK5XcXHyQIgiA0nBuu2T3JL/3SL+G95z/8h/+w3lMRBEEQBEEQBGGdiUsXwDvieIKqa6USpRbmsxUsliC1MFcNtDCPYpR1aAcqzKdRhE1udjvvcM7jnENrVc9AXHtU+FLmsfd5iO+i4+lsVrdtLVA6fHAtpwZAn6mwIyxmaqM2x5m4k9HNh7C5rLLmqVcuM3CtMvX4wb4SD/RVWBBbV3VrU8/VbJyKSHnFHfFeWn1WOTWmirwRnOTSi69x9bV3Zg1S7PzIQ3Tv29GweQiC8N5FKcWWh+5iw10Hsk94z7m/fY6x0xfmHyi8Z1kox/uNVeR4XwquciKYbnB2xZaHByeyBynNUN9dJCa/7PMvRqwCrpC1pu73o2kjtWFsxLMvU1E8z5K6slqjlMIlNnXfcQ10+AlMmokeBOl9x3WmowDjYqzJ4ZXBB2lut3WexK38dVL5gOBgdgNd/OqZxQfq+s+Zs1CP95nK7vaKRrcegr5efK2WWpoPDqYq+BuAXG4jSgXUapeIomtE0dB6T0kQBOF9xw3b7L7lltT+7qWXXlrkSEEQBEEQBEEQbmq8Jy5fwsZFImexuoNqYmkJDWpW4zHRBTwKq4IGqrqraAzKO1QYNr3RDamFOaQW5lqt08c2VYQwmwVLdA9mtEbrkazSuPTwXfhc43OsFyLEcjCXXUy0XvFmrY9yxzbKPdm82guDRZ59fdoetStM+Lk9IwtfZLaqu5GWpR4OJDvp8u2ZclGVORqeZODlN7h65O05w3Z8+EGxJhYEIYNSiq0fuJu+Q7OiJJzn3LeeY/zMpfWZmNA0JnO8f+bWElplm5yTOd6vDOauM/r6XDZDvBOcxde7rdtLMQeHy5ljnMkxtOGutDnbYC6q7szjDmp0Um3oNTwPZR4rrgBnFx2nUKggmIqZabi6Oxem9xv4qcbxfBgb4XRYz+1uQWuFdT4VV6+i4R3ck71vcqev4EYXiQOatDL3dStzn9BMdbfK59HtbdiREXwcE1+52riTrwKldGpnnoxhkxKl0rv4hm7SEARBEBbjhm12j42NZf4WBEEQBEEQBOF9SlIhiUex8Sg1q4ltDusgH85VLSV1C3NQGB815vrV1MJcqQC0wfnmZnV7D9Y6nHPpGuI6WZir8BWUmm7se2/w8X20f/dV1Aw1kwsDih+8a41n57k9P0xeZ78Xx6Nuiqadka13Z+pxbPmzp89mxGGf3TdMW7jI99ImpKruAHL5hqq6d9mtbHK9mVqNiKPhKS698gZXXjk2Z8z2Dz1Izy275tQFQRCUUmz74D303ZFVrXrnOPvN7zN+bmCdZiY0C6Xgh3ZV+e/vH6dj1vtZzSr+42sd/JcTLSy3/3nFDPNOcGaq4X3ncIVtpew9VZzrYqTntkb2MQEYppXKrFiPfj/a4Kvsx5N9/03V3Yuj63EtzlpsEjf2688FoDRemzS/+3pzcDEocDokMamVuXMejye2K5+RuW0bFGa89h6S15ZoZe5nWpk3Wd3d3YO3Djs2RjJ0DV+b63CwHoRhN8a0UqleIrFFajX5nSsIgrCW3LDN7i984QsAbN26dZ1nIgiCIAiCIAjCeuIqQyS2SBSXiFwLtcQTaDWPhbnBqQCrchgaZGEeJxgLylpUmK8v/DZXqTGpGHLO1RvdjWuwLp0Icq9lS/FBVMnQ9sLRTLn8wB249tY1nBtsMWU2B1n78WtJgfNJO8Pb7sUFWXvVv/7BBUYnphfqH980wZ09iyjFnAXnIAzqqu7G5ZFvtr3stFsytQTL0fAUF159jcGXjs4Zs/2JB+i9dXfD5iAIws2HUoptj95H7+17M3XvHGe/8T0mzl9ep5kJzeTW3oR/8YExdnXOVQP/zemV5XhfNaO8FZzG1VO0Hx4s0h5lG7Dltm2U2rfPf4KVotQcdfcWxjEN3Wio5mR3wzvAIm4vpP/HtDH4JAEPLmmgutuEeJW6yCibXPd2czq3OyQJCmhVz+12kKzCWl0FhuDObERKcmRxxft8VubNVHcTBpiuLtz4OMQx8cCN8XtNKUU+vw3nysTRMKXSSZy7MWzWBUEQ3g/ccM3uEydO8N/+t/8tX/jCF1BK8WM/9mPrPSVBEARBEARBENaLuoU5SUQ1qWBVG9XYUgjnfpTJWJi7Rqm6qyhtUF5BoNfEwtw6i/cO79fRwjx8HaWmlTLeg48eoP25N9DR9MKu14qJx+9d06kVVMJt+eFMLfKao1EfpZ691No3Z557+8wIr52YPn5DPuFTu0cXv1AyqepubFZ3t+tgf5K1Ifd43g5Pc/r1V7n84ptzxvQ/dj+9t+2dUxcEQZiNUor+x+6n59Y9mbq3jjNPfo+JC4PXGSm8l+lrcfwPh8d4eOvcjVyTOd4Xl5njPWTGOFZveOec5/HLEwSzZOKj3Qeo5bpXM/U5XKIr0xsNcGxmvKHXgHvwTNu8KzyKF5c0UgcG7z3eWVzcwGamAsIQjJm0+bnuYcZF9dxuDUFYz+12JNavKuI8uGd35rE7dw03VFxk3jOszJm0Mk9F3QrVFHW36ewEpUhGRrDjY9jiInNcI4KgjSDoolq7jHNVKpUz6z0lQRCE9w0NDBy7Pnv3Lv6h3DnH6OgoExMTU7VNmzbxL/7Fv2jm1ARBEARBEARBuJGJSyTxGC4uU0ksicvjPBTCuR9lZlqY6wbldetajLYuVfEohae5FubOO5xLVd1aK9S6NLstKvdytpTsh6iT9mePZMqVu27B9nat3dTwHMwPEc7KJ32r1ksp7GJ088FMvVyJ+Itnz089Vng+v3+IgllkJdjVsyfDXKrqnufnbSW0ugK3x3vQs9T67wbnOf7mS1x+/vU5Y/ofvW+OLbEgCMJCKKXY/sQD4D0jx89M1b21nHnyWfb86GO0b9u0fhMUmkLOwOcPldjVZfnTd1pxfvq95krZ8G+e7+Lzh4rcv3npGwJHzDhH1SnuiPfSFcEHBos8u7Vj+gClGdpwJ5sGXyCwjbGTrqmQa76djUw3MPv9KJdmKb5XRx64FzL25a8AHwIWzjpX2qC0wiUJShv8lBNPAwhDiCK81ummu+u4yhgbE+Xap3K7ja5hXSqgts4TmJVt0DO3bIHWPJSnv5fJkTPkfujQwgOVARdNW5mbgLTxrUF5lNfpPXSjzIqMRvf0YK9dw3d2kgwMYPbvb2jczEopFLZSLL5DLbqKUgGFQj/GtKz3tARBEG561mTl5MyZM4v+OXfuHOPj4+nOOO95+OGHeeqpp8TGXBAEQRAEQRDez9QmiJNRomScyBuqcUho9JxFPIfBqRCrQjQJuhFN6SRJs7qdBxNMZVc2E2cd4HHer1OjGwjeRumJTMlHD9L20jFMKWsdPvH4fWs5M3YGE/Sa7GL6pbiVQdvGcP/901aadb769DkqtWll1A9vneBA5xIW4+MEVF3VnV940XuphD7gYLyPgOwcz5tB3j5zhIEfvDZnzLZH7qXv4P6GXF8QhPcXkw3v7v2znCQSy+mvfZfSwNV1mpnQTJSCH9p5/Rzv319BjveonuDN8F0SLDtKEXcMlzPPO5NnqO8ufAOXmWdbmXdToc03NpvZ82Dmzk5RA+a+F8+HNgHOOrzz2LiBVuZhPTM7MChrr2v/bWy6YSGT2+3T3O5VWZkbTXB39nfG0qzM65sCp6zM04ln1d2NbUSb9nZULkcyPIKrVLAji9vQrwVa58nlNlKrDWJtjVLp3fWekiAIwvuCNVF2f/azn130GK01HR0d7NmzhyeeeIJ77rmn+RMTBEEQBEEQBOHGxTt8dYSkNkQpqmIpEFlFW/56FuZgVUjoFsliXiq1CI1GOwem+aru1LHS4uqLlLpRKqHlzQKVy9p4+qQfki10PPONTL16y07i/rVTBrapiP250Uyt4gzvRL2Mb7qNuKU789wLR69w8uJ0035bS8Tf3ZkdPy+ubsMZ5MBoCFb/sVl7zcF4L4VZarGreoQTtXe5+MxLc8ZsffhuNhy6ZdXXFgTh/YvSmh0ffhDvPWMnp10ufGI5/TffZc8nHqdty4Z1nKHQLG7tTfifHx7j9450cHY8+z72N6dbOTcR8It3FmkLl9b1Htcl3gzf5WC8jzuHK4zkAwbapt/T4nwXIz230jPyVkNamtdop4Yhz/SGtX4/ynG1eYFRy6UXOAAcn6ooXsDzAIs1ZpUxEMc4a7FJjMnlGyMqVuDDEJVY8HFqZT6Pult5m+Z2mxxJkCevVV3VDYn1EK58CsE9u0h+cGLqsbs0ghscQ29ewMlHMcvK3IKaR92tGhgHpMD09pJcvowrlogvD2K6utN7t3Umn99EHA9TiwbQJiSORwnD7vWeliAIwk3NmjS7//AP/3AtLiMIgiAIgiAIws1EVCJJivikSslGxK69bmE+d9EvnmFhbnxj8rqDWpKqarTG6bVQddvU/dG5elb3OlgxmtMocy1T8tFhWt54l2A4m5c58aH712xaCs+h/BCzXTmP1vootW5goi/bFB4Zq/DNFy9NPTbK8w/3DzFP1PssfKrq1pNZ3atYLZ5xyluTXXT4tkx5XBV5x5zh/HdexEZZVdiWh+5i4123rv7agiC871Fas/MjD3HOe8ZOXZiquyTh9N88w55PPEHb5r51nKHQLHoLjv/x8Bj/11ttfP9SIfPcm9dy/Kvnuvh/3zNBf8fSGpATuswb4bvcGe/ng4NFntzeRTE3fU9Wbu8nF43TXrq46rl7pbjku9nD0FRtK2Oc8BvTnOoG4XkIlWl2X8NzClg4PkQplUbcJAmEAc7GmKAB9wyQRqjEcfp1ugSYp9lNqu62JkyPMzmUquCsw2qF9yt39DZ7N6E6CviJ6c2jyZGz5D5+18ID57Uyn1Z3e6/TiBjVuHtq3VJAt7ZiR0fRba3EV68SbmnkhoiVoZQhn99CtXqBXG4jxdIJurseQN0ANuuCIAg3K+u/1UkQBEEQBEEQBGE+auPE0RBxXCN2jloSkgs0Rs+2MNczLMxtgyzMHdp6VLpCh1+DtSnrLN47vPfrpOpmrqrb9kKyl46nX8nUo/5N1PZtX7N57Q3H6DTZhvDZuIMh2hnedn9mRdc5x59+52yqbKrzif4xdrUvwWbUOcClC7QNUnXvtf1scN2ZWoUax8LTXD16nOLFwcxz3ft3sume21Z9XUEQhEnShvcH6Nzdn6m7OG14l68Mr9PMhGYTGvjcwRI/e1sJM6vJeLVi+DcvdPHy5aXHdZR0hdfDE+AiHrs8QTDLD32051ZquQUUwMtgdkZ3DpvJ8W4Me/BszFRUJsf7+ujA4PF4a3FRA63Mc/V7D2NQ8fU3IhgX43SIR5EEBYxSWD+d271SlNYE9+zK1OIjZ/B+kXNmrMxjpj3Y3dSNtPKNv781vb34JMGOj2OvXcU30lZ+FYRhL1oXqFYukiTj1GqX13tKgiAINzXS7BYEQRAEQRAE4cbDO4gmiKNrlOIqCZrI5miZx8px2sI8h3GNUXWbWozyqfikueblKc57nPM4Z1FarU9etx5ABeczJR8dJn/yIrmLVzL1iQ/dv3LJ0DLp0jX2hFlVedGFvBt1M7rlTmyuNfPct18e4PLQdLb4rrYaP9qfHT8/jVd1b7Ub6LdZq/eYhKPhSSZGhxh4/vXMc2FbC9seXdscdEEQ3h8oo9n50Q/QsWtbpu6imNN//TTlqzdG3q3QeJSCj0zmeOfmyfF+vYOvLiPHu6yrvB6eoCWq8NDgrOaz0gxvuBtr8qued1nlGCb7Ht/vR1d93iwKz4OzKidghqL8uiO1QWmFswnOOfwqsrKzJ1b4IEg33HmXepPPw2Rut9UhSVAg0DrN7fary+0GCO7ZnXnsr4zjBkYXmTdpw9vXM7u9nfW0Si3NG7yDVIUBpqMDNzqGj2OSgRujqayUolDYhnUl4niUUvkk3jfQxl0QBEHIIM1uQRAEQRAEQRBuPKIi3jni2jDFJCJONBCSn8eHOtEFXCMtzD3oKKmbiHuaIEKZg7MW8Djv6xbma88cVbdrg+R2Op7K5kknfV1UDi1s79koDI5D+aFMX915eLPWR7Gjn3L3zszxFwfH+f4b0435QHl+Yf8QwVJe0qms7saounttJ/uSrPrd4XgrPE3Jlzn3t8/jZy1gb//QgwT5pSvsBEEQloM2hl0//DAdO7dm6rbe8K4Mja7PxIQ14UBvwv/8gTF2dyZznvva6Vb+wysdlOKlNSIrusbruRNsKk1w+0gl85w1OYb77sY3II7l4ix1dx8lCg2Kq5nmLjxZm3fFC0saqU2As2mjO2mkojgXgjF4pdLc7vmu7S3KO5wJsaaA0nVVt4fYrs4qXO/agOrJxq8kR84sZWTaoJ+0Mq/jVZPV3d3dANjRUZLREVy53PBrrIQg6CAIOqlVB3C2QqVybr2nJAiCcNPS0MzuL37xi1P//sxnPjNvfSXMPJcgCIIgCIIgCO8DqmPYaJRaXKPmLJFLLcz1PBbmVuVIGmhhrq1HJQnKqlSl04jc5gXwPrUwd3UVzrpYmKtRCE5k5xXfR3hxmMKJrNp74vH7UvXzGnAgN0qrzi7Kn4y7GNWdjGy7O1NP4oQvP3WOmS6bn9w1ytbWuYv6c/EQ21TRrVav6m5zLdyW7E5VTDM4HpxjTBcZfP4o1VlNpQ13HqBj+/rnTAqCcHOTNrw/yJknn6V4YTpGwdYiTv3VU+z98Q/R0te9fhMUmkpvwfE/XC/He2h5Od5VFfF67gSHhvczkt/I5dbpzVq1fCcT3XfQOXp0VfO9QgcxmrB+f6eAbX6MU2rjwgOXRQ64D/j+jNoR4CPAwgp1ZQzEMc46VBzjc/nGGN+EOVAVMAEqifHXuS/RNq7ndit8kEfFFWwDcruVUgR37yJ+6thULXn1LLkfvWfh3GkdpLndk1bmpgCZe6FJdXdjs7sxGt3TjR0eRnd0EA8MkN+3NhszFyOf30qpdJxadA2lAvL5bZgGOB8IgiAIWRra7P7c5z6HUgqlVKZBPVlfCbPPJQiCIAiCIAjCTY6zEJeIo2uUY0fsY6Kkna7W+SzM83UL85DQ11Z/bQ+6lqQ24t7idAMX4q6Dsxbv0qxprRQ0QAm1XFTuJdSMRUfvcxDdTcfTT2WOs+0tlO6/fU3mtMFU2B5m7VFHbY4zcSfDO+/Fm6wC+i++d4Gx4rSK6NbOKh/ZMrG0i9lJVXcegtWpunM+5GC8D0P25/WsGeCqGaE0cJWrR97OPJfv6WTLg3eu+JqCIAjLQQeG3R9/hDNfe5bipWk3DFuNOPVXT7PvJz5EoacxucvCjcdkjvfuzoQ/eacNO8NWejLH+3MHizywZXEFdU3FvBGe4N5BxTPbN1MKp9/7xju2UoiK5MpnVzxXpzQDvoudTNvs9zPKKb+hoXEqnsPAD1D1nGlFhOdV4AMLjlNKoQODSxJMGOCSGBM2YJOkVngToIIEqjE4N+9GQ2MjoqAjze02BQJVIfFpiz5xntCs/DUK7s02u/1wEXd+CLNzw/UHZazM63+r9PXwyqG8xitf/7uxlt6mvQM3PoEdHkHlctjR0SnF93piTIFcro9abZBc2Eu5fJKOjjvWe1qCIAg3HQ3fju/r2SDXq6/kjyAIgiAIgiAI7yOiCXCOqHqNok2IrQVVIG/msTBXBZwKAI1xq7eP1ChUHKG9ApukSt8mY53Fe4f3Hr0G15uDKkP4ZrYW34UZrtHyelbtXXzkHggbumd6XkIsd+SyeZmJV7xZ62Oidx+19mwO9junh3nj5PRCeME4PrdvCL2kNV4PSf17rXSqplohxmsOxfvIk13oHtRDnDOXsVHMue9krVGV1uz8oQ+g58mjFwRBaBY6CNj9I4/Sti2rkLXVGqf+8mmqI+PrNDNhLVAKPryzxn//wPw53v/H6x189UTrknK8I5XwtjnOA5evYWYNuNq7Hx1sus7IpTHbyrxAQh+lVZ1zLt3AbZlKamW++AugTQB4XGJxjbQyD0MwAaAgmb8xPHnva02a222Mxvs0Fme1ud26vxe1oSNTS44sYeOCmmllPp+7zqS6e1XTm4tWmN5eXKWCK1dILl9ONwncAORym1FKUa1dplobIEmWuBlTEARBWDINXaU4ffr0suqCIAiCIAiCIAhzqI2DrVGsjRJ5S2Q9BdOCmmNhrrA6j1W5uoX5KhUiHnTi0YkD53HOgmmuhbnzHle/VuqStfYW5ip8FaWmFyO91/jofjqeeRk1Y/Oxy4UUP7AW6mPP7flh8jq7QHk86mE818vYpqwaplKp8V+fvZCpfXrXCBsKS/x5qOelEwR1VffKms7Kw+3xHtp8S6Y+qiY4EZwHBZe+9yrxRHaBfvPhQ2IZLAjCuqDDtOF9+m++S/nytal6Uqly6q+eYt9PfJh8V8cCZxDe6xzoSXO8/+ORDs6MZ5eJv3a6hXPjhv/nXUXawoU7k7FKOOuPcddVw6ubp5W/XimubDzI5oExLCtz4CmqAuO+QCfVqVq/H2VIta/ofNfD8yCKt6YeK0bwnAAOLDhOaY3SGu8SnDOpU08j4l7yIVQreGNQSTKvlflUbrcOSUx+apOf85BYD6u4jVVKEdy7m/ibb0zVkiNnyf34fXPuybMDA2B+K/OZ6m68gQaru3VrC6qlJbUzbymQXLtGsGl1my0aMi8dkMttplYbIJfro1g6TnfX/es9LUEQhJuKhja7d+3atay6IAiCIAiCIAhCBpdAVMLWRilHMZGLSGyetnkszK0uTFmYB35xq83FUChUHKPRkNTwWjXdUdzVG63Oe8x6qLqJIDySLSW3oycMrS8dy5RLDx7Et2bzPZvB1qDE5qCSqV1NClywHQzvvH+O2v7L3zlHNZpeLL2zu8Kjm5aq+Jql6s6tUNXtYV+ygx7fmSmXVZW3wtN45Rk7dYGR42cyz7dt2cDGuxZeRBcEQWgmJgzZ86OPcfpvnqE8OO2okZSrnPzzb7P98cN07t62jjMUms1kjveX3mrje7NyvI/Wc7z/X/dMsH2RHO9EWYZrr7Nn9H5Od0/b4FcDQ9ByC7by5gKjF+ai6qbTX556vJEJcj4hUo1c2t6FZzOK6Sx7xfP4RZrdANoYbByjncPGETrfgPslrfFGo4IAalWuF8JtbIQ1OVAKFxQwcZnEOoJV5nYDBPfsyjS7/VgZd+YqZu8CDeQFrMxnHqR8Or9G32sHPT3EAwPYiQmUCTA9vag1cCVajFyujzgeolYdwJgWarUr5PPr34gXBEG4WVh72YAgCIIgCIIgCML1qE2A99Sq1yg6QxSXUSpPLpj70SVWBZwyeDTGrb7ZbSzoOFU4uyRaVW7zUvA+tTB3dYvFhqiAlkv4JkpnG8s+eoD2778+9VoAeK0pPnZv06dTUAm35kYytchrjkV9jG28nbiQzZB98c1BTg9M53q3BZbP7Bta+sKuTZhWdRswK9twsN1uYqvLZlhGxLwZniRRlrhU4cJ3X8o8r8OAHR95CLUe33dBeB/jcXhVwauVqUxvRkwuZM+PPU7rpt5MPanUOPPks5z/zgvY2urfZ4Ubl9DAZw+W+Lnbihg1y4q8Yvg3z3fx4uXFN4RZ5UjGX6G3Us3Ux9r6yPmVy4wv04md0RXVwFbGVny++VF4HppVOQVcXXxk3RXGWYuLExqWyhnmpu9Hk/kswUHbGKcDHIokKKAV2Pr141XaeJst3egt3ZlacuTM4gMXsDJPM7sVqZ154zd6qnwO3d6OGx3FxzHJ4ODig9YApTT5/FYSO0ESj1MqncD7G8NmXRAE4WZAPlULgiAIgiAIgnDjUBsDW2WiOkoMRDYhH7ShZnUvPQqrc1iVQ6WG5qu7rk9tqJW16WKidytufC4V5yzekdpdqvqi35riULmXMxWf7EFVu2n7weuZevneW7Hdzbay9RzMDxHOWmR/q9bLeMtmin37M/WxsRJPvjSQqf383mG6c0tdOPRpBuakqju/skX4DbabPbY/U7M4joWnqKkI7z0Xnn4RW802irY9ch+5jrYVXVMQhJXhifF6FEcJp8bxqtG5v+9dJhveLRt75jw3cvwMx7/8JOPnBuYZKdwsTOZ4/38eGKdz1ntp5BT/6fUO/uz44jneXllyxXcztWstIZv89hXPLVGGQbLuKf1+lMZ1lSe5E09rpqJ4ftFRCoUODK7ekG5YdncY1nvCAeq6ud3p/YUzORKTze22dvXN1ODerGNr8to5/GLnnVTcT1qZZwK6J/+dqrsbnt0NBN3d6abSsVGS4SFcpbL4oDUgDLswpp1q7RLWVqhUzq/3lARBEG4a1qTZPTY2xq//+q/z67/+6wwMLH5jPDAwMHV8qSQfPARBEARBEAThfYGNIa5AVGE8KlOzEc5DPmydc2ii8oDCqhzGR6tuExunII5RaFxcw5ug6b1nax3eO7z366PqDo6jdFYV5aMHaXvxKKacVWRNPH5f06ezM5ig12SVlpfiNi77Tkb67834cHrn+L//9hzWTq+QPthX4oG+ZSxmTqq6w7qqewU28h2ujVuT7CKwx/NOcIYJXQZg+NhJJs5fzhzTtWc7PQck7ksQ1opUzV3E6VHwCu270b4Np8p4VVx0/PsFk8+x5xNP0LFz65zn4lKFM1/7LueffhEbNaiRJ9yQ3FLP8d7TNff7/PUzLfx/X+mgFC98k2SqgwQ225yttG2h4FcYF0JqZT6TNiK6aXQTMwBmZym/Bku4jjZpg9clCbZRze7A4JVON2BaO29jWHuHchZnQpIgh1YKBVjniRfbmbCUKdyzO/PYF6vYk4uopSetzF39XsuvrbqbwGC6urATExAnJEvoR6wVhcI2nKsRRUOUK6dxDXCnEgRBENao2f2lL32JX/u1X+NLX/oSW7fOvWGezZYtW/jSl77Ev/yX/5I//uM/XoMZCoIgCIIgCIKw7tQmwDui2jhFm1BLSmiVJz9Pzl6iC9gpC/NVLijWVd0mduAcJHHTLcydTxXdzlmUUii11s1uj8q9mK3YLRBtpf2ZVzP1yu27Sbb0NXU2bSpif240e11neCfqYWTrXdhZGx6+/dJFroxMN+S7woSf25O1P1+YSVV3AKxM1V3wOQ7Ge9KM9xmcNpcYMukmguroOJeeey3zfNBaoP/x++e4FQiC0Bw8UV3NXUX7dpTvRvkWlG9F+3acqqQq72bIC9+DBPkcu3/kUbY/cRidm/u7ceTt0xz/8pNMXLgxrIGF5tBTcPyzw+M82l+d89yxeo73hYnrNykVnkLlSqZ2rj3PzmTLiuc0Sgslss3yfj+64vNdD88D+Bnv7YoEeGXRcUprlNE4a/He4ewqXYcmyYXpxjz8da3MjYuxOgcobJBHK4V1HudYVIm/GHpDB3r7rIiDV88sPlBpoG5lbmfPe3pSzVJ3m85OlAlIRoaxxSJ2fKLxF1kBxrQQhr3UaoM4W6NcPr3eUxIEQbgpWJMVla997Wsopfj0pz+9pOOVUvzMz/wM3nv+8i//ssmzEwRBEARBEAThhqA2BkmV8coYMSFRXCYXtMw5zAOJzuNILcw18y/8LRXtVd3C3OHiKFUQN9vCvK4qdlOq7jVufJrzKJNtVPjoMK2vvUswml0MnHhitsKpsSg8d+aHMDNeAu/haK2P8c4dVLp2ZI6/PDjGs29cy9Q+u2+YtnAZVp1Tqm6zIlV34A0H432EZBtBl/RVLpp0cd9bx/lvP4+fZTu644nDBIX8sq4nCMLySdXcEzg9Bl6jfTfKtWBcD8ZuQdtelG9Buw68ivBqQhredZRS9N62hwOf+jjt2zfPeT4uljn9109z4bsvN07BKtxwhBo+c0eJv3/7ynK8C+VLmccjhYCC2UCLW+F7oFJz1N2bGSfwDWoqT9EJ3JG9NC8Ci99naG3wzuGda9z/jVwISuF1Xd09D8ZGOG1wSpMEBYxW2LrFe7LK3G6Yq+5O3jg/5/5mDlNW5gm42VbmdXU39XvgZqi7tcJ0d+NKZVylSnLpUrqp9QYgn9+Cx1GrDVKtXiRJxGFEEARhtaxJs/vIkSMAfPCDH1zymIcffjgzVhAEQRAEQRCEmxgbQVKFuMxYVKaaWDwJhXBupvGkhXmiQ4yPV9cm9qAd6NiC9/goarqFufdpXrerL7ith4W5yr2QnZPrhng/7U9nM7xrO7cQ7d7W1LnsC8foMNkF4XNJB1d1DyNb787UbRzzn7+TzTd8fNMEd/bMVZ5dn7qq2wT1rO7lWaoqr7gj3kurL2Tqw3qMk8GFqZ+dwVeOUbmaVZv3Hdw/rz2wIAiNZVrNXUP79tS23LVh7Fa060zzdX072vahKKQNbyK8KLwz5Npb2fNjj9P/2P3oeVxWho+d5PiXv0Hx0pV5Rgs3A0rBh3bU+KcL5Hh/5To53vnaCMZmLZrPtxfYaVf+PniJrkzL2eDZwviKz3c9PA9mHivGgHcWHaeCtGnrrMUlCb4RmeJBgFcKggBlk/mtzOsuR06HU81u78F6T9yI3O57ZkWvVCLs8UWswaeszC3zWZmntclDm6Pu1u1tqEIBOzKMi2okw8ONv8gK0Dokn99EFA9hbZVS6cR6T0kQBOE9z5qsqly5kt70LsXCfJItW1Jbm8FBsUUSBEEQBEEQhJue2njdwrzMRBJRjUsYrQjMXGV3ogtYDB6D8avLudM+zTXUicO7BOWSVOnbRNJGNzjv0KqeV7iW6Cuo4Eym5KMHKLxzntzloUx94kP3Z7KyG02XrrE7zC5SF13Iiaibkf578SarnP7zZy8wXppujG/IJ3xq9+jyLjppARpMqrqX8bHYw4FkJ12+PTtnVebt4MzUt7I0OMSVV9/KHJPv7mDrQ3ctb66CICyLuWruHpRrRbsetNuEmuXGoH0b2m5E+Tzad+CJ8WoMvwQF5/sFpRR9d+zjwKc+Ttu2TXOejydKnPrLp7j4vVdw8eqcVoQbl/0L5Hg/eZ0cbwW0lC9namc7cmx0PbS67IaxpRKrgKt0ZGrNsDKH7Xiym/0Uzy86SqHQQYBLEvC+cf8nwjC9Z/F+XnX3ZG63NSHW5FF6Orc7savvIuueNvTujZlacuTs4gMXtDKfoe72Cnxz2hRBbw++FuEmJkgGB69rBb/W5HIbUSqgVhsgioeJomuLDxIEQRCuy5o0uwuF9AamXC4veczksabJ9oGCIAiCIAiCINwAVMchrlCsRtSISWyFnMmhVFZJllqYF3AqROHRc1Qiy2BS1e2BJMHHNUClit8mYq3De4d3fp1U3S9lHnvXAvFBOmapuuONPVRv39u0eRgch/JDmV668/BmrY/xvv3U2rKLqifPXOONU6NTjxWez+8fomCWs4hbXyQ2Jl2AzS1P1b3LbmWTy+ZW1og4Gp7CqrQ5ZuOY899+Pl3YnUQrdnzkoXmVkYIgNAZPDa9HZqm5W1PLcteRKgfnQfsWtNuI8gW078ST1BXe0vCeSa6jjb0//gTbHr1vSr06k6E33+X4V75BaeDqOsxOWAsmc7wfu06O928+18X5WTneLeWsiGk8FzCaM+xahbp7tpV5J1U6fGXF55sfheehWZWzwOX5D5+BNtPqbhtHjREshyFojdd6gdzuqJ7bDTYooHWa2+09uAYozGeru5M3L+AXa+bPsTKf/Xt1prpbN0XdrfJ5dHsbdmQUH8fEV24MJwqlNIXCVuJkDJsUKZZONMYJQBAE4X3KmqysTCq6X3rppUWOnGby2EmFtyAIgiAIgiAINylJDWwNkgojtSpV63FUyYetcw61dQtzq3MYH61KE62Zqeq26YKdMU0VWjsPzjmcdyilUGqNm91qDIKs4tjH95E7N0T+1MVMfeKJ+0A378U4kBuhVWcXSU/GXQyFGxjblM3KrFWqfPm72ezPH946wYHO2vIuOqXqDiAMlqXq3mx72Wmzn08TLEfDU0RqWuk28IPXiMaz2Yub7z9I68Zsk1wQhMbgcTg1jtPj4M2iau75SBvem+oK7656w1sU3rNRSrHh4H4O/PTHaduyYc7z0XiRk3/xHS59/0iqbBVuOkINnzlY4ufnyfG+VjH81vNdvDAwvZEsF41hkmwj+mxHng2um3Y3171nKQzRRoXs5rF+P7aicy3MQTxZJ5clqbu1RhmNsxbvPf46OdvLIgyBSStzO29T2NgYP5nbbQoYpXDO4/HESQOa3Xfvyrr91GLsW5euPwDmsTKf+1pk1N1NalUE3T1477Fj4yRDQ/jaMu8fm0QY9mBMK5XqRWxSolq9uPggQRAEYV7WZGXlsccew3vP7/3e7xHHc+1uZhPHMb/3e7+HUopHH310DWYoCIIgCIIgCMK6URsD76hVS5RcTDWKCU2M0XMXQWNdwKJxGIxf/LPFdfGgbWpjTmLrFuYWHzRXeetsAnicc3VV99pamKvcK6gZi9PeBxDdMyer23a2Ub731qbNY4OpsD0sZWqjNsfppJvh/vvrtpeTc/T88bfPUYumF0i3tUT83Z2jy7yqm6HqVvWF46XR7drZn+zM1Dyet4MzlPT0Iv74mUsMv3Uqc1zr5j423XPbMucqCMJS8CpVc3sitJup5t66oJp7PrTPY+zmesO7O7VE16PS8J6HfFc7e3/iw2z74D3zqryvvXGc41/5JqXBoXlGCzcDT9RzvLvmyfH+/73RwZffacW6SSvzrLr7XHsODytXdyvFJbozpS2MoX2j/68aPPfPqr0BlOY7OIM2Ad45vHPYaBX3q5Mo8LkgdR/ybl4r88l89ExuN+AcJG71r43ubMHs25ypJUfOLGHuC1uZZ9TdvjnqbsIA09mJHR+DOCYeWCRvfA3J57fhXJU4HqFcPoVzDfh5EQRBeB+yJs3uz3/+8wCcOHGCn/u5n1vQzrxcLvOzP/uzHD9+PDNWEARBEARBEISblNqkhXlC1UdEtkJOa5TK5jmmFuZ5nMrVLcxXvhik6i0Q5RU+ifFJzKRipll4P5nXnS44rr2FeRXC17Ol+E6Cq1Vajp7MlCcevadpr0WI5Y58tgGSeMWbtT7GNh0kKXRmnnvtrQHOXJ5eWDbK8w/3DxEu9+VL6gvDy1R1t7oCt8d70LOaZu8G5xkx03njSaXKhWdezByjg4AdH34ItQ529YJwMzOl5lYz1Nw+VXMbtxnFyn5/KXIYO0Ph7X294d0AZeZNhlKKDXce4MAnP0br5r45z0djE5z8828z8NxruERev5uRNMd7lL3z5Hh/42ya412MFK2zcrtLoWGoENDruuhwbSu69iXVnemJhjg2M7Gicy3MA/gZy+cKC7yy6Chl0g2NLklwNmmMPXWYA6PxSs/bNFb4em53DmtyqcIcsM6RWE8jpjDHyvzYRXxtkftxFQBqASvztVF3m85OlDYkIyPY8XFssbj4oDUgCNoIgm6q1QGsrVKunFnvKQmCILwnWZNP3B/84Af5mZ/5Gbz3fPWrX+X222/nN3/zN3n66ac5fvw4x48f5+mnn+Y3fuM3uP322/kv/+W/oJTip3/6p3niiSfWYoqCIAiCIAiCIKwHcQVsjI9LjEaKclxCUSMMApTK5ilblQM0VocYH6/OwtyC8qCcwydJ2ghttoW5czgH3ju0Uqy1qpvcEdQMu23vFT56gPZnXmGmE6nL5yg9dKhJk/Dcnh8mr7ILncejHkZat1Hs25epF8cm+Kvns9mKn+gfY1f7cjc6uHRhOFieqjv0AQfjvQSzGmcXzCCXzXTD3nvPhadfIqlkbTG3fvAe8l1ZC1RBEFbH/Grutik192rJNry7ZzS8xZZ7PvLdHez7iQ+z9QN31Rt8M/Ceq6+9w4mvfpPyleH1maDQVLoLnn96nRzvt4bTHO/B4QpBnFVDn21P7/F2JytTd1dVyBDZRnm/H13RuRamHcjeEylehEU2wCgUOgimrMzdEpxOFyWs34sEBnWdDSTGRlid3uPYurrb1oXT1jXAyvzOHdmIm9iSHL2w8CAFaLOglfmaqLuNRnd344olfK1GcukSDdkB0AAKha14LFF0hWrlAtZeXygoCIIgzE9zPfpm8H/+n/8n165d41vf+hYXLlzgV3/1V+c9bnKn2w//8A/zhS98Ya2mJwiCIAiCIAjCelAbB2+pVsqUPVTjiJypzWthnugCDo0jIPSrUGP4dNev9hriGt47lLX4XG7RoavBWpuqEZ0nmMf2tbkkqHCWEim5FT0W0PZyNsO7+PCd+EK+KbPYGpTYHGSzO68mBc67boa33Zupe2f5wrcuZBZnd7XV+NH+cZZNbAGV2n/mlqbq1l5xMN5LgexrcU2PcNpkMyqH3z7N+NlsrXPXNnpv27P8uQqCMC8eh1dFvKqhfA7t21E+RLtutG/sphJFiLGbseYKmm4cY3g9hnZdK1aN38wordl492107NzG+e+8QOVqtrFdGxnn3f/6t2y65zY23X8H2qz1e6DQTCZzvHd3Jfzfb7Vh/XQzdKhq+PcvdfLPNw+S9O2dqp9rz3PvtTLdvoMu186YXv593UXVzQY/3UTvoUyrr1FWjb2H8TyEYtoZRzGB5y1mN8Fno43GJeCtJYkjdC63um2OSuHDIG10xzFYB7M2mBgXkYQtaW53UMDoEnHi8HiscwSr/L+n2guYA1uxb0/f8yRHzhLet8j9jjJAUrcyjyGYu+nQq3STgPdMW583GNPejpuYIBkeRuXz2OERTF9vw6+zXLTOkcttpBZdJQz7KJXepbPzrvWeliAIwnuKNfNSKxQKPPnkk/z2b/82/f396c7Yef7s2LGD3/md3+HrX/86hUJh8RMLgiAIgiAIgvDexPu6hXmZiZql6iKixBEG8fwW5qqAbYCFuXHpUqMCXFyDJM3RnlLMNAHnJ5XdDqVAqTW2tQ6PoXRWJeKjw7R/7wjKTi8meqMpPnJPU6ZQUAm35UYytchrjkZ9jGy9BxdmNzh89+ULXBudVooFyvML+4cIlvvSeZdaZwYmVSMFS9jU4OHWZDcdPqsaG1cl3gnOZkT5tbEJBr5/JHNc0JJn+xMPoNQaq/cF4SbFqxpuSs3dgfZdaNeOsVsa3uieRBHUM7wLaN+N8honCu8FKfR0sv/vfoQtD945N77Be668+hbvfvVbVK6NzH8C4T3N49tr/NPDc3O8J2LNKydGM7VqoLnSkt537Uq2rkjJe5UOIrLN221+bPknWpRteHZkKornFx2ltE4b3jZJhcuNsPMPQwgMXql5rcyNTe+Pnc6RmOncbusgto1RMc+2MrdvX8KXa9c5uo4yTFuZJ8zfyHZ1G/MmqrsVmJ4efLWGK5aIBwfnzT9fD/L5TShlqEUD1KKrxLH8nhQEQVgOa7odVSnFf/ff/Xf8k3/yTzhy5Aivvvoq165dA2DDhg3cd9993H333bIgIAiCIAiCIAjvB+IyuARXKzMea4rxBErVyGnmNLutyuFVamGuV2Nh7lP7cu01OIe3SbrIpev21k3C2bSh7p1D6/qC35rhULlslrRPdqHK3bQ/90amXrrvdlznyvIzF8ZzMD9EoLIrl2/Vehnt3EWlqz9TH7oywndezyoDP7lrlK2tK2gyJQlTqu4wzNpvXoc9tp8NrjtTq1DjWHgKN+Nr8M5x/jsv4JLsvLY/cZigRTZvC8Jqma3mVr4D5QO060H7ZvyuyqIwGLsJZ67WWzNjOD1aV3gvLQ7h/YbSmk333k7nrrrKe1Zjuzo8xon/8i0233sHm+69fa71ufCeZn93muP9e0c6OD0+/X/k2ycd99w3TpzrnKqda8+zpZLQ5dvp8R2MqOVlbnuluOS72M30/cI2RjnpN6bN4AaSqrvPTz1WXMBzEei//iBAm4AkivDOYeMIHcx1LloWYQ6ogAlQSTLHlUjh0S6p53aHKG1QyuKcw7pUNb3alyY4tIOaeT7toANYR/LmBcIH911/0Ewrc+PTv+dx2cmquxXN6HjrlgK6tRU7OoJubSW+epVwy5aGX2e5KGXI57dQrV4gF26gWDxBd/dh6ZMIgiAskXXxXlJKce+993LvvfcufrAgCIIgCIIgCDcntXFwCeVqmZoqUIkmKJi4rnrOWlAmOo9D4QjI+dL851sC2qt0vc2DS6K0+T3PYmEj8R6cSxcavQe9BAvthhKcROlss8FHh2l//ii6Gk3XFBSfuK8pU9gVTNBrsqqfS3Ebl3Qfo1uyNo0ujvijv83mP97aWeUjW5a3CA7UVd0WgqCu6l68ObXVbmC73ZSpxSQcDU8Sq2xT+8qRtykPDmVqvbfvpXPXtuXPVRCEDF7VcGoijZ5wHSgKKNeCdj1raiWuMGi7CfRVnAYYx+mx+pyaE/lwM1Do7WL/3/0hrhx5i8FXjqUWJ5M4z+DLRxk7e5EdH3qQlr7udZun0Hi6C56fv6PEbzzXPVUbrhrGrl6jtX+62X2+Pcf9V0sYUnX3SDix7L2Al1Q3u/10szuPZQMTXKVzgVEr4TY8nSimo1QUL+D5ewsPMxqUwiXII7CLAAEAAElEQVQJSmu886glbLq7LlrhTYAKEqjG4NycprG2Mdakv5sSk8eoGOumc7sDs7rmqWrJYW7vx7453fxPjpxZuNkNWStzF4Oe757MgdegPMprvGqO6tr09hJfvIgdHwOjCXp7UU2OM1oKYdhLFF2jWh3ABG3UagMUCnJPKQiCsBRk+6QgCIIgCIIgCGuPdxBNQFymVLMUE09iq+SCCKUKGRXDbAtz46Prn3fBa4J2acMbwEVR3QLSpxbXTcJ7h3Pp31or1lbV7VG5F7IVuxFq/XQ8+2qmXjm4j2RjT8Nn0KYi9udGs9dyhrejHob778eb7GLnX3/vHMXydFO5YByf2ze0FEH2XJap6u61nexLtmdqDsdb4WkqOtusL18dZvDlo5larrOdrQ/fvYKJCoIwicfh1DhOjdezuXtRvhVt+zBu47pkZis02m1Eu1aU70L5EKcn8GoR6973OcpoNt9/kFv+3kcp9HbNeb56bZR3v/otBl85hneNz+cV1o+dnZZdndkNYt97azTzODKay63pPUCHb6PXzf0ZWYySyjNCVi3d70fnP3hVGDwPzKq9CSy8EU+h0CbAWYv3Hhev8B52Jvkwva9BwTzW6MZFeK1xypAEBQKtcPX40KRB/8/mWJmfuIwvVq9zdJ0lWZlPq7vxesrWvNGoMMB0dODGxiFJiC9fbsp1lotSikJhG9aViOMRSqWTOCfRGYIgCEtBmt2CIAiCIAiCIKw9cRmcxdZKjCUBxdo4WkGoI5hlYe5UiFcGp3Non6y4VTyt6lZ471A2SRcJtZ7XSrFRJIlNmzfOr72q21xEmYFMyUcP0vrqccx4ViFffOL+JkzAc3t+JNNj9h6O1voY6buVqLUvc/T5s4O8cjK7cPzpXSNsKKxA2TNb1R0urOpucy3cluxOF1hncCI4z5guZmouTjj/7eezSkWl2PGRhzCLXEcQhOvjVRWnh/HEaNeJ9p31bO6ta2JbvhBpw3tDveHdifI5nBrHq0UaPAItG3rY/1MfZdN9d8zxUPbOMfjim7z7X/+W6kgz8paF9eLR/uz/jefPga6MZmpnO6bdEXbblWV3X1TdmccbKJH38fJPtCj342dstlE4FC8vOkrXrfq9tSRJvHpj7jAEBT5IrcxnM5nbbXVIEhTQk7ndHpJG5XbfsR1yMzaKOk/y+rmFB820MqduZT4vs7K7m4Tp7galsCOj2NFRXGnlzlGNJAg6CIIuatXLOFelUjm73lMSBEF4T9DQ7bBf/OIXG3m6KT7zmc805byCIAiCIAiCIKwTtXGwMeVqhUi1UomvUggdKDsnrztWBRwKuxoL89mq7qSWWpjbBB82z7bQeXDO4ZxDKeoW7WvHnKxu1wHRLXQ8/Z8z9drefqKdjc8r3BqU6ZllX3426WAwt5nxTbdl6kmlzP/1dFZZc2d3hUc3rfB7niSABmPqC8PX3yaR8yEH430Ysgr/s2aAK2Z4zvEDz79ObTTblN907+20be6bc6wgCIvjsfVs7gjl8yjfvqbZ3EtlsuENQ3VLc3BqAo1H+VVm8d7kaGPYcvgQnbvTLO/ayHjm+crVEU585ZtsPnyIjXcdQK315jCh4Ty0NeLL73gil77/Wq+4cHGIbfu7p4652JYjURB4aPMtbHDdXDOjy7rOIJ3cxiBBXSmsSLO7T7OxQV/JJK3AncBMZ5yXgEdZaIldaY02BmcTdBDgkwQVrGJJXmu8MajApFbms4K4Z+Z2OxuCNijlsNaR6Mbkdqt8QHDHdpIj043Y5MhZwg8eWGTgpJW5W8DKfPLrUHiv02NV47O7MRrd3Y0dHkJ3dhAPDJDfv7/x11kBhcJWisV3qEVXUSqgUOjHmMLiAwVBEN7HNLTZ/bnPfS5jN9gIlFLS7BYEQRAEQRCEmwnvoJZamBdrjmISYF2RfJAqUWZnoCa6gFVh3cJ8ZUodzQxVNx4fxShr0wXCJlqYu7pNuneurupeQwtzPYQKTmZKPnqAwltnCa9mM7wnmqDqDnDckstep+IMJ+JehvfeDzMb/97zp985RxRPW1q2BZbP7Bta2YKst3VVd7ioqtt4zaF4H3myxwzqYc6ZubaWE+cGGDr6bqbWsrGXzffdsYKJCoLgVQWnSuAV2nWiyKNcaz2bu3m/n1eKQqFdHwqN0wpPEaeK9YZ363pP74andWMvt3zyhxl86ShXX3snfR+u453j8vOvM376Its/fJhCd6Nzl4W1pCXwHN5S43uXppt0T74+wef3TXdbE6241JpjZym1995lt3JNjy7rdskpzWXfyXZGp2r9fozTbFh9V3cWnodQM5rdihKeo8DCESY6MCQ1i3cWG8fo1TS7Ib2vSSygIE4gl72HMTYiDtLXPTEFAhUzKepOnCdcZW43QHDP7kyz254axI2V0V0L/B6csjK3oCatzOdubPHKparuZmd3d3TgxsdJhodRuRx2dDRVfK8zWufJ5TZQq10hF/ZSKr9LZ8eh9Z6WIAjCDU3Dt0n6egZII/8IgiAIgiAIgnATEZXAO+JaifEkpFirEegagamByqHUdHPDqiC1MFeTFuYr+3yg7QxVNy61fUySplqYew/OWbxzeM+aW5ircJaq2xcgvpOOp1/J1KMtfVRvzWYvNoJ9uVHyKpvH+HbUw8jmQyT5jkz9rbcvcGKgkqn9/N5hunMrzJZMLEtRdSsPt8V7aJulyBxVE5wIzs1ZbE+qNc4/nX1dVWDY8ZEHUUZUiIKwHDwWp0ZxqljP5u6pZ3NvwLgNN2Sje5K04d2Ldh0o3472rThVwqsbwwb3Rkcbw9aH7mL/T36EfHfHnOfLV4Y48ZVvcvX1dyTL+z3OY9uz7i7nRjxJMbsR7mzHtMNOqy+wyfUu+zqzrcxbiOmlGf8fN+PZnakonmcx/3WlDUopXGLT/O7V/lzncqmVuTHp5s1ZGBuBms7tNkY3PLfb3LYNCjOa7B6S1xplZT5jQBOzu1FgenvxlSquXCYZGIAb5HdOPr8JpTTV2mVqtUHieHzxQYIgCO9jGqrsPn36dCNPJwiCIAiCIAjCzUhtHGxEuVIlUq2UolE6cgrvqiidbTomqoBHYVVIzq1s0VL5dG1N+bRV7uM47WFaiw8b+pEog/cO58B5h9aKJuw1vj6qCOGxbC26h9zpa+TPZjO8i0/c33DlU4eO2BFkc66vJi2cb9lNqXdvpl4dH+crP7iWqT3YV+KBvmzze8m4uqo7XETV7WFfsoNen1UOllWVt8LT+FmWmd57Lj7zMkk5m0G67QN3i/pQEJbJe03NfT206wEUTqe/4Z0qowF1A1mv38i0bu7jlk/+MJdfPMq119/JPOetZeAHrzF2+iI7PnSYfNfcprhw47O3K2FrW8JAafp+663TI9x513RD+1Jrjkgrci59392ZbOGqHl5Wf3OcAuPk6WS6ud7vRxlW7av/ImaRqrvPTD1WDOC5AOxYcJwKAlwco73HxjFBPr/g8QtiNF7r1Mq8FqW99hmvl3YxeLAmRxIUaKk/N5XbfX3DmyWjQkNwaAfJS6emasmRM+Qev22BUSzZynxS3e2brO7WrS2olhbs8Ai6pYXk6lWCzZubcq3loFRAPr+ZavUSudwGSqXjdHc/sN7TEgRBuGFp6MrOrl2NVwMIgiAIgiAIgnAT4SxEqYX5ROyYiA3elcgHCohR9GQOn7QwB1ZuYW7VVMPbKQdxBIlFeYfXzWt2J9bicTjnCZpolT4fKnwFNUNV7b3Bx/fS8fTfZufY3UH57lsafHXPbbnhTP/cesVRu5mRnfdmD3WWL37rHG5GX7krTPi5PVnV17Kw9axuberKp/lXy7fbTWx1GzK1iJij4UmSeRZUR46fZez0hUytY8cWeu/Yt/K5CsL7jDSbewKv4hnZ3GGqkn6PZl5r1w3oesNb1y3NHfj2eoCGsBA6CNj28N107enn/HdeIBrPbpQqX77G8a98g60P3UXfwf0Nj08UmotS8Pj2Gn/yzvT91jdeL3LnnW4qzsRpxcW2kD0TqZV5C3k2uz4um6FlXegi3XT6wanSJiYIfUKsGn2vdwBPN2qGbbriefwizW5tDC6OcdZikxiTy69ur2EuBGuhVkvdimZs4FSkDW+rQ5wO8DrA1HO7bYNyuwGCe3Zlmt3u7DXccBHdu8AmgyVamc8YUFd3Nym7Gwh6e4kvXcJOTKBMgOntQzVxQ+xSCcNeougateoljGmhVhskn1//RrwgCMKNiPisCYIgCIIgCIKwdkRF8J64WqKYhBQjSy4oY3SqxFFqutlhCXAqwKocxscrszD31FV29QVV71FxkjZElYagiRbm1uGcQylQai0/etUgdyRbig8RDFRpeetMplx87N7U6ruB9Acluk2UqZ2KOxnY8gAuLGTqL7x6loGR7CaGz+4bpi1coYWks6n9ZGhSVfd1MjE32G722P5MzeI4Fp6iqqI5x0fjRS59L2v/bgo5tj9xWBovgrAEPD5Vc+sRPBbtOtG+E+06MHbre7bRPYl2nakq3begXTtO1dKm/gqjN96PtG3ZwIGf/hgbDs3dgOUTy6Xvvcqpv3pqTjNcuPH5wNYawYwmZbHmmBjObmo72ZF9v96RbEEt07r6Ml3YGRtMNLCVseVPeFE0nsOzaseAhW2mlVJoY/BJUnfwXtkmzinCdEOf19exMncx1qQW8UlQQCtI6t+GuFFW5ge2QmsuU5uZ4z0vy7AyT9Xd9e+pb969tMqF6PZ23OgoPo5JBi837VrLQSlNobCNxBaJ4zFKpXfx/sawWRcEQbjRkGa3IAiCIAiCIAhrR20ckhrFao0aeSpxTEtYw1MBFaBmqG8SPWlhHqxY1W1cukCW2sv6VPkCkFh8E9XW1iaAxztXz+pew4Zo+DpqRsPWe/DRA3Q8k23W2tYCpQcPNvbSWPbnRjO1sgs41naIaufWTH3i2jW+diS7CP34pgnu7MnahC+LKVV3ALn8vLKlDtfKrclcV7LjwVkmdHlO3TvH+e+8gIuTTH37Yw8Qtr23G3SCsBakau6xVPHs8zOyuTdiXB/qJlma0q4DbftQpA1vryJpeC8THQZse+Re9v6dD5HrmGsFX7p0leNf/gZDx97Fe3ld3yu05zz3bc5uJHvxndHM46stBWp6+j27QI4trm9Z10mUYZCs3X2/H01vhBrOvfgZXuAKj+LFRUfpwOC9xzs7575i2QQGr+ob++oN9Jmkud0Kp4Kp3G7vPc57rG3Ma6KMJrhrZ6aWHDmz+EBtADdtZb74ldKmd7Oyu4GgpwfvwY6OkgwP4yorjNNpMEHQiTEd1KqXsLZMpbLIZgJBEIT3KWv+iWJsbIw/+IM/4Bd/8Rf58R//cT7ykY9w9mz2l/SlS5c4duwYp06dus5ZBEEQBEEQBEF4z+EsxCVIykzUHOOJwboKhVDhfRVFVvWb6Hzdwlxh/Fy17aL41O1QT6q6lU8tzK1DeQemefaEzlm8c6lNpF7Lj10WlXs5W0puwYwEtL6azUMtPXwXPteA0MYZ7M+NkVNZxclrfjsjW+7KHhjX+INvXsqUNuQTPrV7dOUXn1J1B/Ws7rnf34LPcTDei571UfiUucg1M/+1r77+DqXL2UzxngO76dq7feVzFYT3AXPV3F0o34FxnTeFmns+tG9D2w0oX0C7DjwRXo3jESXecmjftolbPvUx+uaJiXBJwsXvvsLpv36GaKK0DrMTVsKj/dmNbM+dKOJnKnqV4p2ObAN2Z7IFvczm5iXVnXncTkQXzWhatgB3z6q9DCzcuFXaoLTCJQnOpveKqyIMITCkAd3Z5vl0bndIYvIYVY/0cRC7xm0ACO7ZnXnsLo7gri6scocZVuZu0sp8fqbV3QrlzZymfsMwGtPdjZ0YhzgmvjTQpAstn0JhG87HRNEQ5cpZnKstPkgQBOF9xpo2u3/3d3+XnTt38t/8N/8Nf/iHf8jf/M3f8PTTT1MqZW9On3rqKQ4dOsShQ4cYHh5eyykKgiAIgiAIgtAsoglwjlqlSNnlKEUJLWEFrQAfZSzMHQanQqwK0SQrsjDXPk1L1b7e6PagohkW5g22757EOYdz4LxDa7W2qsXgLZTOWrz66EHanz2CmrGg6gND8YN3zR69Kjp1jf4ge+3BpIUzGx+Yk43+t8+dZaw8vcit8Hx+/xAFs4oVzGRWVvcsAm84GO8jJNvgH9DXuGiuzHvKyrURBl88mqmFHW1se+TeeY8XBCHFk8xQcxfqau4WtN2Idr03jZp7PrRvRbuNKJ9H+048sTS8V4AJQ/ofu589n3iCsL11zvPFi4Mc//KTDL99SlTe7wFu7U3Y2DL9vh8njsHLWSvz07OszHOEbLUbl3WdEVopz3qf7/ejy5vsEvE8mHmsqABvLDpOmwBnHd55bLxKK/NcCFrjtYYkawc+ndudw+kApwO0UiTO4ZynUf1us28TqmPWhtXF1N3LsDKHVNCt0Ok/fPOcmUxHByoISYZHcKUidnyxpv3aYEyBMOylVhvE2RqlkggEBUEQZrNmny5+9Vd/lV/+5V9mYmKCXC7H/ffff91jf+ZnfoYtW7ZQq9X4sz/7s7WaoiAIgiAIgiAIzaQ2DrZGsRJRJU8lcrSGVbyvAh6lphfKYl3AA1aFGLcyVbd2TCmCUlV3nD6RJHhjmuYsbq3Fky4k6jVVdXtULmuh6ZPtqGIPbc+/mamXDt+Bm6d5sJpr354bzriGJ17xangr1Y6sffnV85d49nh2w/MPb53gQOcqVCrOplaY11F1K6+4I95Dq88uxg6rcd4Nzs/7s+ASy7lvPz9HdbXzww9iGqyIF4SbhVTNXcbp0Rlq7vabWs09H9q3oN2mesO7a6r5Lw3v5dOxfTMHPvVxem/fO+c5FydcePolznztu0TFuTEUwo2DVvDY9qy6+9m3slEm5XwnA0H2/mCH3YRZTlazUlycpe7ewjjGL9xMXRkb8WTdBxTPs5j0WNU3WzprsXG8Opf1IEwjW4IAZeexMncR1oR40txuo8HWL5g0KLdbaU1wdzYeJn717OKbUJZlZe7qX5tCed08O3OtMD09uHIZV6mQXBpIpfA3APn8ZjyeWm2Qau0SSTKx3lMSBEG4oViTlZeXX36Z3/zN3wTg53/+57l8+TIvvPDC9SelNZ/61Kfw3vPNb35zLaYoCIIgCIIgCEIzcQlEJXxUZiLyjMfpR5F8WAGqpB9NphuIiS7MsDBfvupFM6nqVtN5qXEMzqUK56A5Fubeg3UO5xxKgVJr2Ow2p1FmKDuf6DDtz72BjqZfQ68UE4/d19BLbw+KdJrs9+lk3M3VTVmLTx/X+MPvZFXU21oi/u7O0dVNIK6r9bWB/CxVt4dbkp10+WyOZ1FVeDs8fd1ND5dfeJ3aSFbRs/Ge22jbujyVmSC8X5hWc5fqau7e942aez60L8xoeHfXs8tHpeG9AkwuZPvjD7Dnxx4nbJu7YWLi/OVU5f3OGVF538A8vK2GVtPfn7fPT2CTGdbbSnGsM9uUDgnZtkx19yW6M//LDJ4tNEeh63ko81hxBVg4U1kphTYGX//anV2FuluBD8M0msd7sNnXz9h4KrfbBgW01ulh3hPbxv0uCu7JNrv94Bju8ugio5ZuZQ4z7cxpqp25bmtFFQrYkRFcVCMZujFcZ7UOyec3E8VDWFulVDqx3lMSBEG4oViTTxq/+7u/i/eehx9+mC9+8Yt0dXUtOubhhx8G4I03Frd/EQRBEARBEAThBqc2Dt5RKRepkKdYS2gJI7RyOF9FqQKqLgt26BkW5ha93MaAB21nqLp1amFOHKcWj0o1zcLcWgve452rq7qbpDyZB5XLbij2tg+qO2n/3pFMvXLXLdi+xT+TLZUQy/7caKZWdAHH2u8kKXRm6s+8colKPL06aZTnH+4fIlzNJ1NngfoGBqPnbGTYabew2fVmajUijoYnsWr+n62JC4NceyO7iFjY0M3mBw6uYqKCcHOSVXM7tOuuq7k73ldq7vnQPo+xm1A+V294e3xd9S4sn44dWzjwqY/Tc+vuOc+5KObCUy9w5snvEZeakdEsrJbuvOeujdONXWs9p85nrcxH2noZ0qOZWr/dhFmGdXWkAq7Rnj1Hk6zMYT+e7D1Gqu5eGB0YPB5nLS5apZV5GIKZtDKfL7fbY01IbApTud3WeaxtXLdY79qI6s46BiVHFm76z7UyTxY+nrWzMw96e/C1CDc+QXJlcM7rul7kchtQKqRWGyCKR6hF19Z7SoIgCDcMa9LsfuaZZ1BK8Y//8T9e8pjdu3cDcPHixSbNShAEQRAEQRCENaM2DkmNUi2i4vNUY0dbLkoVWPVm9yTJlIV5bkUW5pOqblVXdXsAG6P8pIV50LQetHMJ3jm8T20d1ww9gAouZEo+eoC2l9/GFLOL/hNPNFbVfUtulFBlF0zfjLcwtun2TK04NsHTR0cztU/0j7GrfTWLvD5VdevJrO6svfgm28sum7VRT7AcDU8Rqfmvm9QiLjyV3TigjGbnRx5CN2mThCC8V0nV3KM4VZ6Vzb3pfanmng9FDmM3T1uae4/XY9LwXiEmn2PHhx5k9488StBamPP8xNlLHP/yk4ycWIKNsrDmPN6ftTJ//p2slXmc7+JEfjRTCwnYvkx192wr8y6qtPvq/AevCjUnuxveAUbmO3h6lDYorfA2wdUdgVZMWL/3CQzK2oziWQHGxViTw2uDMyFaK2w9s7tRud1Kqznq7uTVJTgtLMvKHNbKzlzl8+j2duzoKD6Oia9cWXzQGqCUplDYSpKMk8QTlIrH8V7cQgRBEGCNmt0DAwMA3HrrrUseUyikN6y12ipy2wRBEARBEARBWH9sDHEFF5eYiGA8TrMbC0EFTwS4Oc1uN2VhvoJmtwXt0wU+P9mEjRLwDuUsBM1pWKaLleC8Q2u1pk2eOVndrh2iW+l45pVMvXrLDuL+TQ27bpeu0R9m8zUHklbObbgbb7J24l/+7kAml3JXW40f7V+lreikqtvMVXV3uXZuSXZkDvd43g7OUNLXV/1d/O7Lc1SBWx+6i0JP49TwgvBeJ1Vzl+pqbj8rm3sL2s9tQr6fUYQzGt7deE9d4X1jqAXfi3Tu2saBT32c7lt2zXnO1iLOf/t5zn7j+ySVZjQ4hZVycENMT356o8epSxNEs5TNQ21dXNXZZvE2u4lgGUreIdqpknV6aZ66+x480/c8Co/ixQWOT9EmwFmHdw4br9bKPAAdpE3jWVbm2sY4nUtzu00BoxTOpdtBk4Zame/OPPZDRdyFxSzADaDrVub1e7pFWCs786CnB+89dmyM5No1fPXG+F0Sht0Y00a1dglry1SrFxYfJAiC8D5gTVZfcrn0DX90dHTJYwYHBwHo7u5uwowEQRAEQRAEQVgz6hbm5XKRqipQrFracgFQAl8lbUunjRGHxqocySoszFNVt8YDblLwEUUQ2/Rapjl53dami3TO+bqF+RqhRiA4nin56D5a3jxLMJRVTE08cX/jLovn9lx2ETPxijfVLko9uzP1E2eGOTc43RQPlOcX9g8RrOpl8un3dB5Vd4vLc0e8Bz3rI+/J4AIj5voN9pETZxk7eT5Ta+/fTN+hW1YzUUG4qZhWc1fQvmWGmnsz2vWImvs6KIJ6w7tQb3ir+mYBaXivlKCQZ+dHHmLXxx4haMnPeX78zEXe+dMnGZ31e11YP7SCR/qnhU3ew9FT2cZ2uXUL58zlSW8eAAIM2+3mJV/HK8UlspvUtjKGbooKNg/cO6v2CrDwhk1Vd4tx1uLimFUZEYQ5CAxe1RvHMzAuSqOxdUASFDBapffIjobmduvtvai+rH18cuTMwoMU6X3cMqzMYY3szAOD6ezEjo9DnBAPXG7OdVZAobAN56pE0TDl8mncklTxgiAINzdr8glk586dAJw4cWKRI6f59re/DSxPDS4IgiAIgiAIwg1IbRySKqVKTNmFRImjNWfx1PC+Cio/ldc9bWEersjC3DiFmlJ11xfwEjtlYU7QHAtz78E6h3UOpVKbwbVC5V5CzfiavM9BdBcdT72cOS7q30ht/w4axY5ggg6TXVx7N+ri6qa7YcbXb63lr5+/lDnuk7tG2dq6ygbPdbK6Qx9wKN5HMEvRdcEMMmCun20YFctcfDarhDf5HDs+fHjq51MQ3s/MVXN3o3zbDDX33GajkCVteG9C1xXeypv66ymNitXQtaefA5/6Ebr2zX2Ps9Ua5771A85+8wckFXGPvBF4tL+GmtHIPvLuaOb5JNfOWN5wZY66eyOhX/qGxdlW5iGOTUwse75LwfNgRmCsqAGvLThGKYUODC5Jm9NuNeruyQ1/xqDm5HYnaW63zpEEebSu53Z7T9LA3G6lFMG9uzO15MhZ/GJe6cu2Moe1sjM3XV0obUhGR7AT49hisSnXWS7GtBKGPdRql7G2Rrl8ar2nJAiCsO6syQrMD/3QD+G95/d///eXdPzFixf5T//pP6GU4mMf+1iTZycIgiAIgiAIQtOwESRVbK3ERKKZiNK+ZCFMF5z9PHndTgWAxvhlLvr5un25Tz/mTKm64wi8RzmLb1LmsrMWvMc7V8/qXqPmqCpBeDRbi+8mf/IquYvZfMGJJ+6HBjVt8yphX26WatyFnCjcQq09m6v57GtXGCtOfy9v7azykS2rXWyeVHUbUAbqbmLaK+6I91Ig23S7pkc5bS7Nd6L0bN5z/jsv4GZZqfY/eh9hW+sq5yoI731SNfeIqLkbgMLUX7cCynehfIDTY/VYD2GlBC15dn30YXb+8MOYwtyNF2OnznP8y19n7LRY/q43fS2Og33T77fnBkuUytmNCOWWLZwLBjLqboNmxzLU3VWVY4i2TK15Vua9wIFMRfECi3lsaxMAHpckJHFt5Y7cSuGDIN3451z6Z2oeM3K7lcHp3FRut4eGNrznWJmPlnFnry4yavlW5rBGduZaoXt6cMUSvloluXSJ1UnwG0c+vxWPI4quUK1eJElKiw8SBEG4iVmTTyP/+B//Y8Iw5LXXXuM3fuM3Fjz2nXfe4Ud+5EcYGxujtbWVX/qlX1qLKQqCIAiCIAiC0AyqY1MW5pEqUKxZ2vIBnhLex0Ay1ex2KKzKYVWubmFuFz73LEy9u60Bp2YsREVxqupGZTKdG4l1Cd47vGdNLcxV+CpKTSt4vNf46L45qu6kt5PKof0Nu+4tuVEClV3sOxb1MbLlUKZWKkd8743ppntOOz67bwi92p67naHqDnSaw+7h1mQ3nT67sD2uSrwTnFlw/8G1N45TupTdHNC9fyfd+3eucqKC8N5mWs09AqgZau4ujN0sau4VotBotwntWmY0vMfxSpTHq6V77w5u/fTH6dzTP+e5pFLj7De+z7m/fY6kKq/1evLo9uzr/9rJ0czjcttmKipiUA9l6lvtBnI+ZKnMVnf3UqbFN2djiefBzGPFNWBhxa3SGm00LknqLt6rVHcbk25sTGZZmdsIp8O0uV23Mp/M7baLKa+Xgdnajd6ctY9PXj278KAVWpkDeOWn7MxVk+zMTVsbKp8nGR7BVavY4ZHFB60BWofk85uoRVextkap/O56T0kQBGFdWZNVmH379vGv/tW/wnvPr/3ar/GBD3yA/+1/+9+mnv/yl7/Mv/7X/5pPfOITHDp0iGPHjqGU4rd/+7fZuHHjAmcWBEEQBEEQBOGGpjYOcYViLWHChsTW054P8L6YWpgDqp7XnbEwX4GqW/lU2Qszmt3WopxLF/2MaYrg2jlXF9E4tFZrqHCMIHckW0puJ7xYpXDiXKY88fh9qaS+AfToKluDcqZ2KW7jYvcd2Fw2q/Hrz18iTqYVOj+xY4yNheVtYphL3ZJem9QuPUxV3XvsNja47syRVWocC09lNz/Mojo8xuXn38jUwvZW+h+9b5XzFIT3NlNqbipo34ry3Sjfgkm2pE1vUXOvirThvRHtWusN7xCnJqTh3QCClgK7fviD7PyhD2DyuTnPj757juNffpLxs9d3/BCay90bIzpy0/cHb87K7bZBK3Guk3PBZdwMpa9GszNZurr7Cu1EZJugzVN378WzIVNRPL/oKB0EeO9xiZ3jMLMswhAUeBPMtTK3cT23OyQxBYxKjeStg9g1Nsc8uHdX5nHy+ln8YtfQAcu3Mgfw6WcAFHid/mk0CoLeXnythiuWiAcH65su159cbiNKBdRql4iia0TR0OKDBEEQblLW7JPJP/2n/5T/9X/9XwmCgBdeeIF//s//+VTu2a//+q/zv/wv/wtf//rXsdaitebf/bt/xy/8wi+s1fQEQRAEQRAEQWg0SRVsRFwrUow1E5EnNIp8AN5X8FRA5VAqXYRMVGph7tHLzuvWXqXCEK/mqro9KJvggyZamONxzqPXMKub8E2UqmZKPjpMx9NZVbdta6H0wB0NuaTCc1t+OFOLveKY3cz4hlsz9fODxczi9Y7WiI9ubUBWZv31nqnq3mo3sH2WtWlMwpvhSWJ1fYWQs5Zzf/vcnEXYHR96cN4GiSC8H5ij5vZZNbdC/m80irTh3Yd2bSjfifI5nBrHz/rdLiwfpRTd+3dy4NMfp3PXtjnPJ+UqZ77+LOe/8wK2Jhbya02g4YPbpjd2DFyrMDKe/bkvt26mpmIuz1J3b3YbyPul/R7ySjNAVmm8jVFUU6yoFZ6HZlVOAAs3IJU2KK1xNkk3UCYrbKRqncb1BKZuCT79NWpfz+02aW63qud2O+ew1jfUmXuOlflEFXvyyvwHT88w/eOSZVmZQ2pnzpSduW6Knbkq5NFtbdiRYXwUEV9dzJp9bVBKk89vJU7GsEmJUukE3t8YjXhBEIS1Zk234f6zf/bPOHLkCJ///OfZsGED3vvMn87OTn72Z3+WV199lV/+5V9ey6kJgiAIgiAIgtBoauPgLeVymUgVKNUS2vMG70uAx7valIW5R2F1DqtCNG55FuYetJtH1Q1pXvekuqUJFubeg3UO5yxKUc/rXgscKvdSdi7JXsy1kJbXTmTqxUfuhrAxX/vOcIJ2nW0evxt1M7TpEN5kr/G156ZzURWef7BvGLNqZf0sVXcuR4/tZF+yPXOUw/FWeJqKXlghOfjim1SHs9njG+46QHv/ptVOVBDek3hivM6qubWouZvKdMO7HeU70L5QV3hX1ntqNwVhawu7Pv4IOz78ICY31/565PgZjn/5SSbODazD7N7fPNafbW6/MdvKvGUzHjgfXMZm1N2KncmWJV/noso2u/NYNlBc9nyXxl34umPRJGl298LoIMA7h3cWG69i80WYAxMAavr+l8nc7girQ7zSeJ3DaIV11BXejesQ642d6O29mVpy5MzCgxTpvZ1z6c31stTda2Rn3tODtw47NkZy9Sr+BtkkE4bdGNNKpXqBJJmgWHxnvackCIKwLqz5p5Tbb7+dP/iDP2BwcJAzZ87wwgsv8IMf/IDjx48zNDTEl770JQ4dOrT4iQRBEARBEARBuLGZsjCPGU9CrIO2fFi3MLdANG1hrvJQz+zWy8xS1Eyruv1MOYdzKOtmNEcb72HurE3X5JyvN7qb4JM+H8E7KD2eKfnoMB3ffTWjVnK5kOLDdzXkknmVsC/MNobHbY5TwXbK3dls61ePDzFwbbpR85EtE+xpb8CioE2YVnUb2lQ7tye76z8B05wIzjOmF17ILl66wtXXsguChd4utjx45+rnKQjvMTwOr4o4PQq+ruZ2bRjXjRY1d9NRKLTrxbiOesO7BaeKeFVefLCwKEopeg7s5sCnP07HjrlN0rhU4fTXvsuFp1/ErsZGWlgWm9scB3qmX+83ZlmZu6BAlO8mUgkD5lp2rOulxeWXdJ2SKjBKS6bWPCvzHDA7BuUIsPDmO2U0SilckqT3liu1Fs9NWpkb1Jzc7hhnQjyKJCgQaIWrC9CSRluZ3z3byvwc3i5mZW5IFd12WbndKc23M1dhgOnsxI2PQ5wQX77c8GusBKUUhcJ2nIuoVM9TrQ1QqVxYfKAgCMJNxrpuyd25cycPPPAADz30EPv370evmQoCXnrpJX7913+dj33sY2zfvp18Pk97ezsHDhzg85//PM8+++yi5yiXy3z1q1/lH/2jf8Thw4fp6ekhDEP6+vp4+OGH+bVf+zUu3yBvfIIgCIIgCIKwpsQVsDFxpUTJBkzEjnygyQUa50vTed1qOq/bKlO3MF/GQrMHbWeouvWMZndt0sLc4pug6oZU1e29w/u1tDD3qNyL2Yrdih7rpfXFY5l66cGD+Naswmil3JobwcxQzXsPx6IeRrfcmdlIEMWWb780nYPak0v4uzuzTfKV4dPs9bqqO5dr5WC8FzMri/OsGeCKGb7OOVJsLeL8d7JKK6U1Oz7yENo0RxEkCDcqqZp7FEcV7dum1dx2C9p1iZp7jZhseGvXifLtaN+KUyW8Kq331G4awrZWdv/oY2x/4gH0PCrv4bdPpyrvC4PrMLv3J49tn1Z3XxutMjicdTQot6abEy6YQewM1x+FYqddjrq7O/N4A0XyvjkbGzyH8TM24Ski0ob39VEodBDgrMM7RxKtcIOg0Xij002BzmYsvY1Nz2l1QBwU0Lqe2+0hsY31/g7uyTa7KUfY44u5J0xamU82u5fXgM/Ymbvm2Jmbri5QCjs6gh0bxRVvjN/PxrTQ0rKdOB4lql2lVDpOHI+u97QEQRDWlPflJ5bHH3+cw4cP86u/+qt885vf5OLFi0RRRKlU4sSJE/zRH/0Rjz32GJ/97GeJrnNz8frrr7N582Y++clP8vu///u89NJLjI6OkiQJw8PDPPfcc/zLf/kvufXWW/mTP/mTNf4KBUEQBEEQBGGdqY2DSyhWStTIU4ksbXlTbwyX8FRBBShVV5joPJYcCodm6WoOVdf0Kp8u2GXWteJohhK48Q1M59OsQ+cdSilUE5Tj82LOoUw2+9BHh2n/wRvoePq181pTfOzehlyyz1TYHGQXoC8mbQy27yVq7cvUnzlymWJleh4/t2eEgmnAiuPk9zIMMEGOg/YA+Vlq00E9zDmz+Ibji997lbiYVUxuefAQLX3dq5+nILxHmF/N3VpXc28RNfc6oV13usnAt6F9G06V8apZlsvvP5RS9N62lwM//THat2+e83xcLHP6r5/m4ndfxsai8m4292+KaA2mm5pvnsyquystm/AoYpVw0WRzkje6Hlrd0jb0DdJJMmMZXAFbacRGvPnoBm7LVFIr84XvhVT9XtXZBJck+JVai4e5enSPz1iZa2/Be5zJYU1h6t7VWkfiGpvbrXvb0bs2ZGrJkbMLD5qyMq836ZdpZQ51O3OfOi0pbxrf8DYa3d2NnSjiaxHxwAANfeFWQRj2kMttpFobIEkmGB9/A2sXdhQQBEG4mWhKs/u5557jp37qp/ipn/opvvKVryxr7Je//OWpsS+//HIzpselS6nKYNu2bfzyL/8yX/nKV6bs1P/dv/t39Pf3A/DFL36Rz33uc/OeY3x8nGIx/bDxyCOP8G/+zb/hm9/8Jq+88gpPPvkkv/RLv4TWmvHxcf7+3//7fO1rX2vK1yIIgiAIgiAINxzeQ22sbmGeMFa3MG/PB3hfARzeV+damOscxsfLMgI3FpRP18e8mqEAcQ5l7bQSuAkuUq7efPXO1V2q1qbZrXJZRbJ33ajyLtq+/3qmXr7nALa7Y/XXw3NbLrv4HHnN8biPsc0HM/Xh8RrPvTm9GH1fb5l7ehuROzup6g5AaW4zt9Lus5akY2qCE8G5Rb8NoyfPM3oiu+Datm0jG+66tQHzFIT3Bp5oHjV36ww19xpt3hHmRbsutOtB+Va0b8epCl5NZKM6hFWR62hjz489Tv9j96PDue4vQ8dOcuLL36B46co8o4VGERp4eNt0Q+7N07OszE2OWiHNf75orpDMUnfvsluXdB2rNJfpzNT6/WjTGpWeBzOPFcPAiQXHpOruEJdYvPcrz+4OJ63MA1SS3UBqbIQ1IV4prMlhVLp5Exqb2w0Q3Ls78zh54zw+tvMfPIk21FPEV2BlDpPd7Sk78ya0PkxHByqXIxkexlXK2LFmbZpYPvn8Voxpo1w+S5KUmJh4A+8ba1EvCIJwo9KUZvcv//Iv8+d//uecP3+en/zJn1zW2J/8yZ/k/Pnz/Pmf/zm/8iu/0ozpcdttt/Enf/InnDt3jt/+7d/mk5/8JIcPH+YDH/gAv/Irv8KRI0c4cOAAAP/5P/9nnnnmmTnn0Frz6U9/mqNHj/Lss8/yP/1P/xMf/ehHuffee/nYxz7G7//+7/PVr361vkPO8k/+yT/B3yA7vQRBEARBEAShqcRlcJZapUjZhRQjSyHUBEanqm7vwdfmtzBfTl53vcmt67l8bmZvJp60ME+aZmHuXJqp6D0ovUaNIX0FFWQbtT46TNuLb2HK1Ux94on7G3LJ3eE4rTq74Phu1M3whluxYbbh/I0XLk4tlrYYx8/uyS5ar5hkUtVt2B/sp9d3ZZ4uqyrHwtN4tfBnrrhU4eJ3s5uqdS5kx4ceXDtlviCsI9Nq7jHweoaau0eyuW8wtOtA216Ub0G7DpyqScO7wSil6LtjHwc+9XHatm2a83w0UeLUXz7Fxe+9gotX0ngTlsKj/dPN7tGJiAtXstbQ5dZUgZ8oy8VZzjYbXDdtLnsvcj1mW5m3EtNDef6DV80uPFnnAMXzi47Sk+ruxGLjeGW9+MDglQZjwM6yMncRTtddlUyBwGhsPbc7bnRu9107sxsQazH27UvXPR4AtTorc1gDO3MFpqcHX63iSiWSgQFYLI98jVBK0dKyC5SiXDlDHI9QLB1f72kJgiCsCQ1vdj///PO8+GKaH/c7v/M7hOHcDJyFyOVy/M7v/A7ee773ve81Rd39V3/1V3z605/GXCeLbcOGDfzv//v/PvV4PnX6Bz/4Qf7kT/6EO+6447rX+cmf/El+6qd+CoCTJ0/y6quvrnLmgiAIgiAIgvAeYNLCvFyuW5g7OvJpw9n7Yj2v26NUAQ8kOo8jTC3M/dIXk029u60AN7vJWYtT22vfJAtz53AOnHdordYs03ZOVrdrhepttD+T/axRuW03yZasvfhKKKiEPeF4pjZqc5xlAxN9t2Tqpy5O8M7ZaXXL39s5SnduEQXPkvDpYq0J6Dc72KqyGZ0xMUfDkyRq4Wt57zn/1AvYWnZDRf8j95HraGvAPAXhxiar5m5H+S60a8PYrWlOtKi5bzi0b0fbPhQFtOtIv4dqXBreDSbX0cbeH3+CbY/cO2UlPZOhN9/l+Fe+QWng6jyjhdWyvcOyp2vasvrNU/NZmaf3WRfNFeJZcTdLVXePU2CCfKbW70dXMOOloPA8NKtyClj4Z0gphQ4MLklfD7dSK/1cCGHdytxOv17GpuezJiQJCpj6r/1m5HbrrlbM3mzDPzlyZgkDV2dlDs23M9etLaiWFuzIKC6KSK7dOL8btA5obd2NcxUq1YtUqxepVhfZZCAIgnAT0PAVmT/90z8F4NFHH+Xhhx9e0TkefvhhnnjiCQD++I//uGFzWw4f/vCHp/598uTJdT+PIAiCIAiCILwn8A5q4/ioRLFmGY3SJndrvq5U8SWgSvpRJLdyC3Of2pdrN6nqnrGK5TzKJnXba90cC3NnAY9zHq3WptGNGoPg7UzJx/fS8vppgtGJTL1Rqu7bciOYGa+t9/B21Jval+vphoBznq8/f2Hq8b72Gk9sblDGbN2Cc0O4mb1mT+Yph+NoeIqqWtwRYOjouxQvDGZqXXt30H3LzsbMUxBuUFI198Q8au5etNuEYnkiBWFt0b4NbTegfB7tO/DEeDWGX4HiUbg+Sik2HLqFAz/9cdq2bJjzfDRe5ORffIdLPziCS0Tl3Wgem6HuPnp6JOOO6XVAtSXdwGeV48IsdXef66LDtS5+EaXmqLs3M0G4jI2Wy+NOPNl5LUndbdJ7Z5ckJHFtZX3aXABK4bVJ74cnz+0tyjucDklMHpRC13O7bYNzuwGCe3dlHifHLuBri7zeq7Yyhzl25r7x9+pBby8+SbDjEyRXr+JXujGhCRjTSqGwgzgeJqoNUSy+QxzfOHbrgiAIzaDhv+l/8IMfoJRatn35bH7iJ34C7z3f//73GzSz5VGrTd9kXU8BvpbnEQRBEARBEIT3BHEZvKNSLlIlRymytOQ0Ruu6ojvG+SpKFVBKpRbmGBxmWRbm2qcaRM08qu7JjENrm2Jh7j1Y63DOoRSoJjTT50PlXkZlGs8B1O6m4+lXMsfVdm4h2rNt1dfbYMpsDLJ52+eTdq4VtlDp2p6pv/z2Na6OpDbqRnn+wb5hGuPsnqq6O8IeDgRzM7XfCc4yoRe3IK2OjDPwXDbTPGhtof+x+8S+XLip8dTwegRHLVUJ++66mnsL2nWImvs9gvataLcR5Qto34knqSu8peHdaPJd7ez9iQ+z9eF7UPOs4117/Tgn/uyblAaH1mF2Ny+Ht9TIm/Qep1hOODOQ3TBXbp12dblkrhKRbSzuSpam7r5MJ27G7z2NZwvjC4xYDQFw36za60BlnmOnUVqjjUk3VXimVN7Lop7LTRCkG0Bn3CprG2NNDpTCmjxGQVJ/Pml0bvedO8ncEEaW5NiF6w+AhliZwyw7c6+n/t0oVC7EdHTgxkbxcUwyOLj4oDUkl+shl9tAtXaRJJlgfOINnKstPlAQBOE9SsNXZSbVy3feeeeqznPo0KHM+daap59+eurft99++7qd58KFCwv+GRgYWPHcBEEQBEEQBKHhVMfBxpQqFSo+RyV2tOdT1aCbyuuuZi3MVYjCL93C3IN2acMb5mt2x5CkyhVM45vdzlm8p97sTi0Sm08Fwmyzlvgu8sevkBu4lilPfOh+WGUDV+O4LZe1Ea15zbtRN6Obs5/1KrWE77wy/bnkY9vG6W9tkLolSSioFu7I34lR2abDaXORa2Z00VM4azn/7efxNmtzvuPDhwkK+euMEoT3Nh6HU+M4PQ7eoH0PyrWiXY+oud+jaN+Sfu98Hu276g1vUXg3A6UUG+86wIGf/hitm+dGgtRGJzj5599m4PnXcUkj4jqEQgAPbpluxM22Mq8WNuDq9wFOOc6bbGOxx3fS5doXvU6sAq7Qkan1+1EaLmmu4zmMn3GfqIiBxWMudWDw3qfZ3bV4+epuBYRhGuXj63EwdYyNcDrAoUhMHmN0ei3vSRqc263aC5hbsvEzyZGziw9sgJU5zLYzb3x+t+nuTvdljo6RDA/jKgtvZFhr8vmtGNNKuXKWJC4yPv4G3st7hiAINycNb3aPjo4CsHHjxlWdZ3L85PnWEuccv/VbvzX1+NOf/vSKzvPaa6/x13/910Da/F9Js3vHjh0L/nnwwQdXNDdBEARBEARBaDjeQTSBi0oUI8dobNAK2sJ0cdL7Ip4IcChVwKocoLE6XJaF+ZSq26u5jW7vUXGSWl8rDabxqmtrHd47vPfoxsiXFyd3BKWmNwN4r/DR/XQ89XLmsP8/e/8dJFl2nfeiv7X3OenKd3dVezMG413PYDDwZkASvAIpXoJG5BVFI/KBCpERDEXohq4ML0ldUtK9oZAJUU+gKIkhKuJdvgeJj9ILkgBBgBgYAjOYGYzrcT3T077alk1/zt7r/XGyq+pUl6/Mqu7p/YvI6cmVZ5/c5TJP7m9/30pGR2jee/umn+62eIayyS/gH28PMzN8hKQ8nKt/9flxGq3s2NFiwg/s75ZDyhM54f7KIxSkkHtk3Fy5LsZ0OS499yqNK/lF850PvIeBA3uWGREI3NyoZG5upb3AzV3p9OYObu6bGaNFrNvdEbyHURxqpoLg3SOKwwPc8Vc/wd73P4Qsvp5Q5fILr3Pi//cX+CTEmneDjxxozv3/ayencH5hlLmlWZ5fax63V2iRTwQ6nO5dk5i5OMp8gBaDNJc+eNMMAvflKsIzrOZWFmMRa/Auza45N7KpIo7BGNSYuZYwANZn3zdvC3N9uwXwHpIu9+0GiB45krvvXjuHNlZJc8pFmW9mA6WisjDOvMupq9ZghodxszNoOyE5f2OZ0kQM5XIWJd9onCJJJqnVjm/zrAKBQKA3dH3lp1LJepHMzGxugWN2Nus5Vy6XNz2n9fIv/+W/5JlnngHgM5/5DI89tv5+d61Wi1/4hV/AdXbO/dZv/VZX5xgIBAKBQCAQCNxwtKugnnptlhZFqi1PpWCRjiCsvgraJFtSK5KaEh6DJ1p7hPkiV7cuFrvbncU859Co+22EfMfR7dUjIh1nd69JkHiRCyi9h/h0g9KJc7ny7EcfZbP54RVJOBLnP89NuiLn/BDTY/kNvJcmGzz72ryz/G/cMUHBdmehVFLPveWHqZi+XH1CZngrOrMmQ33twhUuvZDvc14cHmTvE5tLIgsEbjQURaWFl0m8LOfm7n7SRWDrEQpYNzYveKt2BO/gMO4FYgyjD9/De37keymP7rju8fqlCS4+d2wbZvbu48ig48BAdh3XaDnePpe/FqlXds/9v4pyJsq7u4e0n2HNu7aXYoIK9UXpFvt1aoOzXh3lidx9YRp4Y9Vxxkao96h3uGTtrX7miGPgWpS5m9sIYNRnfbttTBrN9+1Ovcf3om/3gwfzm0+dJ33lzMqDclHmjo1GmWdcizMXRKXrceZ2YACJYtzkBL5WxU3fWL2xjYkplw/jfJ1mc5xG8yzN5o0lygcCgUA36PrKzDVH9ltvvbWp81wbv1mH+Hp56qmn+N/+t/8NgLGxMf7dv/t3GzrPL//yL/Pss88C8DM/8zP84A/+4IbOc+bMmRVv10T5QCAQCAQCgUBg22nNgGtTazSp+5h26ukvZuKKapL1jtUmSBHEZP26pdCJMF+ba8Mw7+pW9HoDT9LubYS5SwFFve+4urfAIRm/iizqS63tx69zdbuBPuqPXt/Xen0odxcmc3q5V3i9NcLMrrvxUSl39BefPsc149X7d9W4d6hLvQDV8574LoajkVy5Jg1ej99Z07fdtRPO/MXT+WhSIxx88glMD3q5BwLbgeJRaWR9uWUGEIwfXNCbO7i5340sL3gHh3GvKI0Mcef//CR73vcgYvLLqZdffpPmZK/6Pt86iMBH9s9fRxy7Lsp8J97Mv39fMFdpkr/uOLIWd7cI5xe5u/cwg+1ZvPMBlH35KfD0qqPEGkQEn6Z45/DrjRgX0DjKXNLqr4syd6YAzPftdp3rpaTbUeblAvae/Ne/lVHmcC3O/JrgbbsbZ24EOzKCrzfwjQbp+IXMJn8DEUV9lEr7aSdXSNoTVKuvk6az2z2tQCAQ6CpdF7uPHj2KqvKnf/qnmzrPtfjvo0ePdmNaa+LYsWP88A//MGmaUiqV+PznP8/Y2Ni6z/NP/+k/5T/8h/8AwOOPP86//bf/dsNzOnDgwIq3vXv3bvjcgUAgEAgEAoFA1/AO2lVcq0YtUabbBmugXLgWYV7r/NucizDXToS5WWuEuYJxK/TqVrIIc38twrwHzm7vOhHmXLfY3Rs8UvhOrqLpYaJLBcrH3s7VZz/8CGxSxB2zDXZF+SjPM+kAk/EI1Z135OpvnJrmxLlsoaw/cvz4kfyi9GY4JAfZHecXRlu0eSV+GydrW0A8/60XaM/UcrU9732AyujIMiMCgZsHxaFSw5sJvNRAo8zBrcOI9mPcTmxwc7+rEeJ8pLkK3kwHwbuHiDGMHb2XO/7nJ/PXAF45/83n0R71fb6VeGJvi9hk38fXT02TpAve88XQKM+v06oop6MLufED2scOP7jq85xnKKd3Rnh206sNC7KEu/sUcGHpw+eOEUwU4Z1Hvce1N+LuLkBkUTHgFkSZuzbeWLwY0qiEsSZr7a1K4rov1EaPHM7dd2+Oo9VVouO7FmUO83HmJnN2dznO3PRVkFIJNzGJb7dIr0509fzdoFDYSRzvoNE8S5pWmZl5Ce838DsVCAQCNyhdX5351Kc+BcAf/dEfcezYxmJ8XnnlFf7oj/4IEZk7X6955513+L7v+z4mJyex1vIHf/AHfPSjH133eX7nd36Hf/AP/gEA99xzD3/yJ39CX1/fKqMCgUAgEAgEAoGbnHYVVKnVZmlLiWrb01eMEOkI01pFNQVShFInwlw6EeZrW8CSjjdRVFCWSCFMEkAhdai1XTdde/V4n8WYGyPZglmvid5CzFSupO330f/U8yzU+n2xQO2JBzb1VBbP3YVFLipvebs9xPTu+zuRkhnOef7smfkI9R87PMVA3J3F0THZxeHCbbmaw3EsPkFb1va7Mv3OOSZffydXq+zZxejDm3W+BwLbi5LiZQZvJvE0MFrqiNyDGN+PcaNEbi9GwzrErYAQdQTvUmejg8EHh3fPqYzuYNdDd+Vq1XOXmD5xdptm9O6hL1Ye250JcO3Ec/xMPhK6XtmTu3/RTNCQvGh62K3u7m5JzBX6c7VeRpnD/eii51uTu7vTksenKT5NUb/ODRWFzoYna5EFfb9NRzz2JibJ9e1WXC/6dt9/AOIFArNX0pe3MsqcbLxC5u42XY8zj3bsQNtt3Mws6aWLkNx4r8Ol0n6sLdNonCJNq8zOvhI26QQCgXcNXV+d+Ymf+AnGxsbw3vOjP/qjXL16dV3jr1y5wo/8yI/gvWd0dJSf+Imf6PYUr+P8+fN8z/d8D+fPn0dE+E//6T/xQz/0Q+s+z//9f//f/O2//bcBOHz4MF/60pfYtWtXt6cbCAQCgUAgEAjceLRmIG1Ra7aY9TGJ07kIcwDVKqqN7I6USKU4F2G+1n7dxoFothinS7l7kwScR7zftMN5KbzzgOK9YrakV7cihXzbInVjmKmd9D3/Wq5ee/+DaLm4qWe7LZ6mZPI9X99sD1Pr201zIJ8o9fSxy0zMZNGh9ww2+cBo3kG9UYZkiPdEeQFBUV6LTlIzjTWdI6k3OPu1Z3M1E0cc+sT7tsiNHwh0H6WFlym8mURJMFrB6A7E92P8ADbdg/VjGC1v91QDW4xgsW4MoyVEhxC1HcF7s07IwErsfvQ+4r7839v4t17AJeH7vlk+sn9evH5lUZR5qzjSid/uIHDK5h3S/Vphlx9e9XnOLYoyH6ZBn3apHct1WJTHFtVeBupLHTxH5u6O8c6hquvv3S2SRZlHUSfKPLt+NuoR73A2xtkCiMGI4LziFdarqa86jWJMdN+BXC194eTqA7sYZQ7Z5wfpiNzdjjOXYgHT34+fmkLbCcmli6sP2mJEDOXyERRPvXGSdnuCWn1zrWgDgUDgRqHrn/QrlQq/8Ru/gary5ptv8sgjj/Df//t/X9PYP/qjP+Lo0aMcP34cEeEf/+N/TKVS6fYUc1y5coXv/d7v5cSJEwD8m3/zb/jpn/7pdZ/nf/yP/8FP//RP471n7969fPnLX+bAgQOrDwwEAoFAIBAIBG52fArtKkmrSj2B6ZYQW6EUX4sw96g2UJogMd6UULF4U8BouvYIc8Bo9hHGLx6kIEmSRTSKdD3CXBXctX6JskUR5vYssmgBV9uP0//Nl3LuHLUmizDfBH2ScDjO9+676opccH1M7c47xquNhK+9kM0rEuWnbp9AumCOKVPm3uie6zYSvB2dZdKuLVpUVTn71LO4Zn6xet8Hj1IY7F9mVCBwY6IoKk28TODNDKAYPzAncls/jHX7sH4XQmHV8wXevQgW48YwvtwRvKNOpHmvhLuAiSP2fvCRXC2pNbj03KvbM6F3Ee8ZSdlTya5zjp+ZodVesBFPhHpld+74y2aSmuQ3xB12e1YVMq/QT4v89WJv3d3vRRcsxQsOeG7VUWbO3e1wScK6jbhxDNaiIvm+3X6+b3dqi1iTid2Kkm5FlPnbF/EzK4v93Y0yz+hlnHk0MpJtSpieJr16FW2uEtW+DRgTUy4fwbk6zeZ5Go3TtFo3njAfCAQC66UnzZt+8Rd/keeff57f/d3f5fz583zmM5/hyJEjfP/3fz+PPfYYY2Nj9PX1UavVuHjxIs8//zx/+qd/yqlTp+aiMz772c/y2c9+thfTm2N6eppPfepTvPpqdiH6z/7ZP+OXfumX1n2eL3/5y/z4j/84aZqyc+dOvvSlL3HHHXesPjAQCAQCgUAgEHg3kIswL1JLHIM5V3cNUNQ3ESmTdCLMHREFXZsj2HbUbWGJXt0AaZIp0mmK2qj7EebeodqJMBeh60+wBNf16vaDSPUI/d96KlevPXovfnAzkcXKPcUJzIIvySu83tpBbeQ20lK+9+VXnj1PK8kWQX/gwDS7y5uPaYyJuT++n1jiXP2svcS4vbLm80y8doLZ0+O52uCR/YzcfWTTcwwEtgrFgzRRaaB4RGOM788EbbUYHUR839a0UgjcNAgG40eBK3gjwDTezGIURDeX/BFYmqHbDtB/YDfVs/NC0eWX32Tk7tsojazeNzqwNCLw4QNN/uubfaROef3UNA+/Z8fc443KbgaqCyKwBU7Zce5Lb58rVbTMqB/hss07wxeiIpzXYW5jPpV0L9Mc19Gsx3XX6QceAF5aMPXvoHwQWF50FRFMZPFpgo0sPmljC+vY4BQXQBpgIyRN0EJ2rWVdQhqV5/p2F5IGbQfeQ+I8hai73wN77z4oxtDqiNYK6YunKXzknuUHLYwyFwekbF7O8KAGJIszV/Ww1GeLjRBZ7OAgbmYaOzBAMj5O4bbbVh+3xURRH6XSPprNc9iowuzsq1hbIYoGtntqgUAgsGF6InYDfO5zn2PPnj381m/9Ft57Tp48yec+97kVx6gqxhj+0T/6R/zar/1ar6YGQL1e59Of/jTPP/88AP/wH/5D/t7f+3vrPs9f/uVf8kM/9EO0Wi2Ghob44he/yP3339/t6QYCgUAgEAgEAjcuzWlwTWrNNjPpAM55+orzomUWYe6ANiLDpFJaEGG+BpeGZmtQ867uJRak2gn4LMJc17MAuEac8x2HumK77BpfEnMFiU7kStp+L/1Pv4ZpzkdYqkD1Y49u6qn22Do7bN79dyoZZNZUmB7LL0Cev1LnheMTAOwrt/nUvrU5rlfCYLgvupeylHL1KzLFO/bcMqOupzU1y/lvvZCrReUSBz762Fzv+EDgRkZxIA28NLM0Cy0iWkaIEC0gfgDRCrIFm20CNyeZ4L0LuIo3ALN4mcEwgGhpldGB9SIi7PvQUY5//s9Q33HCeuX8N57nth/4WHjv2QQf2Nvi/3u8glPhlROTObG7XRwmtSUiN++avWqmqUqdfp1PCD3s9nDFTK7Ymvm8DHObzovdBRxjVLlIbzYrKE8gObF7FuU1MhF8eYyN8KnDO0eatDGFwtrfCYygNkKiFJrZ9TLGYF12PelNTBoVKZlsK6dTJe1B326JI6IHDpA+985cLX3h1MpiN4CJwLfBxJA2Idp8Uk8WZ25QUUQtStq1fax2aAhfrZJOTkIc4WZnsQM3nohcKOzCuTqNxhmMKTEz8zLDw49jTLz64EAgELgB6dk2YBHhN37jN3jmmWf4zGc+gzEGVV32ZozhR37kR3jmmWf49V//9Z5eELbbbX74h3+Yb37zmwD8yq/8Cr/5m7+57vO88MILfPrTn6ZWq9HX18cf//Ef89hji/uvBAKBQCAQCAQC72JcAkmddqNGIxWmE6EYmZwbxGsN7fRA9GZgUYT56otpRjNpx+gyQjdk/bpTBwjY7u7pvebo9uoRyfrd9ZrrXN1agsZ9DHzju7l68747SEdHNvw8Fs9dhalcreEtJ5JBZkbvQW1+48AXv312Lj7zb9w+QTdMP3dHdzFo8ovKs1R5Iz655oVH9Z7Tf/E0muZ7jh/4+ONE5SDwBG5slAQvM3gzgaeJ0XIWVa4DWWy52411ezDaF4TuwKpkgvdOjO9DdADRIl5m0UUxz4HuUBoeZNdDd+Vq1fOXmD5xdptm9O5gsKg8MpaJsSfOzVBv5lNkFkeZX3N3L6SsJcb8DlaiLgUmyLfQ7G2U+T6Ug7mK8PSqo8QYjLX4NAUFv97e8IW4c30snetlELTTt7uAs0XAYOaizMF1u3E310eZ+5OX8ZOrpDyZiMzd3c4c3jd6nLkRzMgIvlbDN5qk58dZf/b81lAqHcCYEo36SdJ0ltnZY3Opu4FAIHCz0TNn9zUeffRR/ut//a9MT0/zjW98gxdffJGrV68yOzvLwMAAO3fu5OGHH+bDH/4wQ0NDvZ4OAD/5kz/Jn/3ZnwHw5JNP8vM///O88soryx5fKBS46678hevbb7/Npz71KaampgD4zd/8TYaGhlY8z9jYGGNjY5v/AgKBQCAQCAQCgRuF9iyop1ar0qJIo+0YKi90dSuqNZQGSIQzA+uLMFcwPhO8YbkIc4d0IsyJuh9h7pwji2H3GGPoeYS5zEL0Wr7WfoTKd09gZ/Lfs9lNurrvKExTNHmB+I32CK3iELWRfOziKycmOX0xe/6P7Z7lzsE2m+U2e4RdZleu1tQmxwonlt/YsASXnn+NxqWJXG3HfXcweGjvpucYCPQCRUHaKA1Ukk48eT9oCVHBaH/m5CY4rALr55rgLRi8EZQqXqoYFNHK6icIrIvdj97H1FunSarz/YfP/+ULDBzcgy2Ev+GN8pH9LZ67WMQrvHZyisfumb9eaFT2MDh7Knf8hJlhRmoM6nxrl0PpXi6ZSXSFa4pzMswOnf/Z7aRGSds0pftJQXDN3T0fwy6cRTkH7F9xnIki0lYLn6Y4MZg4XvsVaSGGRgONIiRNF0SZt3GdjY1pVMK6GknqO327FWu6e81r79oL5QI05q8h0xdOUfjEfcsPEsDG4FpZlHnahIJl8x6+3sWZ274+/MwMbnISUy7hJiawO3d25dzdRMRQqRyhVjtOo3EaEUu9foK+vtCeNRAI3Hz0XOy+xtDQEJ/+9Kf59Kc/vVVPuSx/+Id/OPf/X/nKV3jooYdWPP7w4cOcPHkyV/v617/OpUuX5u7/nb/zd1Z93l/7tV/j13/919c110AgEAgEAoFA4IamNQNpi2qrxbQbwnlH/8J+3TQAh2oToURiijiJ1xxhPu/qluUXKpM2aOZO0bj7i8rep50I88xZ02uk8Dwifu6+aoS2jjLwtT/MHde6bR/twxsXc/ulzcFoNle7kpa45MpMHXgwa5rZIUk9X3omixQfih2fOTS14ee9xh6zhwP2QK6WasoxeZNkkQC/EvWLV7n4/Ku5WmGon33vf3jTcwwEuk3Wj7vV6cftOv24B4ECohajA4jvR1bo3xoIrAVBEL8DELwBg+Cl1hG8+1YdH1g7Jo7Y94FHOPWlv5yrpfUGl55/lb3hvWjD3LszYWfJcbVpefntyZzYnRQGSKIKcTovUiNwKhrnweTOuVKJAnv8TsbtlWWf5xIDJBhi5q+99us0b8tod7+gOe5BGUCYvwYTnkH54RVHiTGINXjnMJFHU4dEa3yvMAa1FrEW0iRzGotgfUIad/p22yIFqdMmSzpPvafY5VBYiSzRQ4dIn35rrpa+cHJlsRvAWPA2S5QS24k133xyT8/izAWiHTtIxsfx1SrJhYvYoaFsU+4NhjEFyuVD1Ovv0GpdABGiaJBisVe//4FAINAber9SEwgEAoFAIBAIBN6duDYkDZqNWZrOMtNWSrEhsvMfM9RXszg8bXUizCO8rDHCfC2uboBWAklKtrLU3UUkrx7vsxhzYySLO+wpLYhfzJeS+ym9dpH40mSuPPvx927ieZR7ipMsNOw4hdfbIzQH9tLqyy9wffOli8zUss0JP3HbBJVoc86XERnhTpt3jXj1vOZfo15Ilxl1PT5JOf0XT+fjIUU49OQTmPjGW1AM3LooHpVaFlUuNdAI44cxOoxoP9btxLp9GD8UhO5AVzF+BOMHEe3DaAUvdVTWkKwSWBeDt+2n/0A+Wvvyy2/SnJzephnd/BiBDx/I2uCcvlhltpbfJFmv7LluzJTMMi35jXwH0z1z15JL4cUwTj5tdB9TPYyetiiPL6q9AsysPtJGqPeod7hknQk7cTx/nZxm11rzfbsLpFEJc61vt/ekTnvyLbguyvzsBP7K7DJHL8AWAJ/FmKft7P+7gIrOxZlLF+PMpVTE9PfhJifRJCG5fLlr5+42UTRAsbiHVvsSSTLFbPUYaRreJwKBwM3FLSl2r9Q7fKnbYlc3wM/+7M+u+zzB1R0IBAKBQCAQeFfRmskizKtVWhRotD0DxbzAqHP9uhVnhlEEJ9HaXN0scHVnob/XkzpEPTgH1nY9Ydw7Dyje65b06iZ+EZH5xUtV0PZ7Gfjqc7nDkj07ad59ePHoNbM3qjFiW7nayWSQOkWmdj+Qq09X23zzpYsAPDTS4LEdm+v72id93BPdjUj+h3XcHWcqbuQc5atx/tsv0p6u5mq7H72PytiNFxUZuDVRUlRmO/24GxgtdUTuQYzvx7jRTj/u/i3YTBO4VTF+GOOHO4J3f0fwri73zhrYACLCvg8dzSfAeOX8N74beuBugg/uayFkouuxd/Kb/hqV3df/BgucjPK9u4vE7HW7Fh+Z45wM5+6XSNlFL8W+x9AFgauCR/jKqqPEWsQIPk3xzuH9OgTfQgwCaiNkQd9u49NO3+4CisEawXl61rfb3rEb6c+7stMXTq4+UARMDD4F9VmceVdQ0CwNAzXZrUvY4RHUedz0NOmVK2hr8y2AekWxOEYUDdNonCFNq8zMvoT3a9+AGggEAttNVz9J/Yt/8S9oNDa38LESzz77LF/4whd6dv5AIBAIBAKBQCCwDlozaNKg2kqYSrJ+f5Vi3hHhtQo0AENqBnASA4LV1Rd7jFuDqztJsgUql6JddnWrgvOdhUSh06+7l6RI4flFpbsovNOgeCq/cDv7sUfXJQovJMJzV2EqV6t7y8lkkNkdt+MK+XjbP//OeVKnFI3nf7ltYqNPC0CBAvdH9xFJ/md1Oj3FJS6vy5k/c+o8E6++natVxnYw9ui9G59gINAllDZepvFmEk8bo2WM7kC0H+MHsekerN+N0XJnW08g0FuMH8T4EUTLGN+PlyYqs0Hw7iKl4UF2PXRXrlY9f4npt88sMyKwGjtKngd3ZRskXzmRF7vTuI8kHrhuzIypMSl5l/QBtxuzgohZlRLT5AXYfTq1wVmvhQqQj7gXXgTOrTrS2AjvPOo9bj3iqbWoGIhstkm086dvXIIzWRsgF5WwRvCabTNN1yOmrxGxhujhQ7la+t1Tyxy9iM488Ul20+6IsSoeOp85RA3delmUOMIODuJnZiBJScbHVx+0jZTLBzGmQKN+kjSZoVp9NWzWCQQCNw1dXa35u3/373L77bfzz//5P6dW697ut29961v8lb/yV3jiiSd45plnunbeQCAQCAQCgUAgsEHSFqQtGvUqbY2YbSvlgsEuEIQzR3eC1xYqfaiJcRJjWD3CXDQzaYtmRy6bPpm0O1GMki3edRHvHeqzeG0jQtdt44uJXkNM3qWs7cevc3WnQ/3UH84vpq+HOwtTFCS/ePlGewdJVGZ21925+ukL1bnF5R86OM3O4tp7aS/GYrk/uo+iFHP1S8kFTvkzUCiuWcBPG03OPvVsriaR5eCTT2xJX/VAYCkURaWFl0m8mUZxmXtbdyC+H+uHsOk+rN+FUNju6QZuQYwfwLidCJngrdIOgneX2f3ofcT9lVzt/LdexLVXT7QJLM1HDmQO3nOX60zO5FNp6pXdSw3h1CJ3d4GYfW7lHsSL3d2jzFLokpi6FMrH0UXvBcIXWE1pzfp0X3N3p+h6BOnitShznY8y923UmKxvd0fszlzdkLrevDZEjxzJ3fcXpnDjU6sPFJZwd3dnjr2KM7dDQyCCm5zAzUzjqzduPLiIoVI5guJoNM/Qal+m0Ti53dMKBAKBNdHVVYCPfOQjXLx4kb/39/4eu3fv5q//9b/OH//xH+Pc+hdETpw4wW/+5m9y33338eEPf5gvfOELDA4O8thjj3VzyoFAIBAIBAKBQGAjXIswr1VpUKCRePqLce6QzNUNaANnd2YLZxJj/Rpc3V7mBG+VZRbxnEeczxbrjN2w03k5nPNZn12vW+DqVqSQF281PUA0XqD82ju5evUjR7PI9g0wYNociPKC+qW0zBVXZnr0XtTmndVfePosAIf7Wjy5dw39FFfgnuhu+k1/rjadTvKmezNrzLnGHtuqytmvPUfayMdX7vvAIxSHrnd4BQK9JuvHXUfNBF5mAMnc2x0nt/UjWLc/c9USeskHthejfRi3C9ESxg+gtFGZQbvU//ZWx8QR+z7wSK6W1htcfO7V7ZnQu4AHdyUMFbPfz8Xu7kZlz5JS56ypc9Xk+6UfcGPYFdzdFxjELdjYaIC99LLnej/KR3MV4Szw8oqjBMHEEd451CsuWcdGirgAIqixSGe93rpsvDMFUlvCiCCStfJxvjd9u82RUWQovylkTVHmACYCDLg2qIM1fK5YGz2KM7cGMzyMq9bQVitzd9/AbmljipTLh0jTGVrNC9TqJ2i3r2z3tAKBQGBVuvop66mnnuLzn/88//v//r/zxhtv8Ad/8Af8wR/8AX19fTz66KM8/vjjHD16lLGxMUZGRhgZGaHRaDAxMcHk5CRvvvkm3/nOd3jmmWc4ffo0kC1kFItFfumXfol/+A//ISMjI92cciAQCAQCgUAgENgIrRl8u06tlTCVVDDi6YvzAqxqFdU24EntEE4KZBHmqyzKKRjtxAgCfjkNu93uRJg7tNBdl6Rq5uj23iNC7/t12xOIvZqfQ/t9DDyVjzX35SK1992/wSdR7i3kY8idCm+0R2iXhqmP5HuAf/fNq4xfaSAof+P2Cewm9hLcYe9gh9mRq9V9nVcbL6FFC+v4+U2+8Q4zJ/MxnwOH9rLj3ts3PsFAYAMoDqSBl2b2WqQFjFYQIkRjxA8iWg69uAM3HEYr4Efx5jIGyTZpyAzoYPh97QKDt+2n/8BuqmcvztWuvPImO+45QmlkaBtndnNiDXxoX5M/eafCKycm+cgje+Yec1GJdmGIYvt6UfqUHWenn/9+x0Tsd2Ocji4s+TxOLBd0kP0LBO79OsUpdnR9Q+U8T6A8hzAv4gt/jnIPrJAAYqzFJwnepbhEsIXi2qYYWVQEiaLOdXQRkYV9u2O8GKwITuf7dkebuQhcAjFC9Mhhkqdem6ulL5yi8P0PI6t9IQJEhczV7VKglfUj78Jrl4rPPn+IIt6gxncl2MkODOBnZ0knJpFiETc1hb2BNY4oGqRY3EOrdQFjK8zOHmN4+HGsraw+OBAIBLaJrm8p/rEf+zF+9Ed/lM9//vP863/9r/nWt75FtVrla1/7Gl//+tfXdI5rvSD27NnDz/3cz/G3/tbf4uDBg92eaiAQCAQCgUAgENgIaRNcm1ptljYFZlpQKVjE5FeD1NdQbeKJ8dI3F2FuVnGP2Y66bVihVzdk/bpdCui6ej2vBe8cqKLed1zdvY0wl8J3cvfV7cJc3UXlhT/J1asfeAgtbkzY3x/VGLJ598uJZJCGRkzteTBXb7UdX372PADfs3eWw/0bj18dNaPss3tztUTbHKs/TxqzLld3a6bK+b98IVezpSIHPvb46oujgUCXUNLMyS0tUMFoGbSEYBFfQnQgqwUCNzBGy+DHOoL3EF6mQaZBh4LgvUlEhP0fepQ3P//F+Yhpr5z7xne5/Qc+Ft6vNsCH97f4k3cqXJpscmmywdjI/GtsvbJnSbG7ZhpcMZPs8vOi4n43xnl7mVSWTiE9J8Ps1/lz9dFmmAZT9Erki1A+hfAHcxVhFvgmyieWHSUimMji0xQbRfikjV3rxsE4znp2tzW7jo4irGuT2KxneWpLRMbRTB2qWd/uaIOJQiuxWOzWK7P4cxPYAztXHywmc3j7NPvXtcB2531XRRE1HeHbdja2bfKkAnZkhPTiRXytRjJ+ATs4lO3kuEEpFMZwrkGjcQpriszMvMTQ0HsxJiTUBAKBG5OevKKKCD/+4z/ON7/5TV577TV+4zd+g49//OOUSiVUdcXbbbfdxs/8zM/wh3/4h5w5c4bf+q3fCkJ3IBAIBAKBQCBwI9GaAXXU6zXqGtNOPf3F/MKHaorSRLVBaoezXnUSY/3qrm5RMJ0m3cuK3d5n8YupyyLMTXcXjp1PUfWo0vse0OY8Ep3NlbT9Xga+8WIW036tFlmqH3p4Q08R47izMJWr1XzEqWSQxuB+2pW86/prL1yg1kjZWUz5qwc3HuFpMNxmj+RqXj3H6i/RpJX97NYo3qv3nPmLZ/BJvn/mgY+9l7hS2vAcA4G1kvXjnsKbSZQEo9f6cfd1+nHvwfqxIHQHbhqMljB+DNEiRodRHCpTIdK8CxSHBxh9+O5crXb+EtNvn9mmGd3cjFY89+7INuwduy7KfAxdRo08ZS/ketJHWA64sWWfZ5oy1UWO6v06tcFZr5W7UBan0/wlsPLzmk7rGe8cadJeezJ2IQZjUGOy62jAuASMwYsljYpzGqxTSHrUt9sc3InszLe3Sb97ah0niAEPPskizVl/G9Wlyb7euTjzLsknplLGVCq4ySk0aZNcudyV8/YKEaFcPogxMfXGSZJkhmr1tdUHBgKBwDbR8604d999N7/6q7/Kr/7qr5KmKd/97nc5e/Ysly9fZmJiglKpxOjoKKOjozz44IPs3bt39ZMGAoFAIBAIBAKB7UEVmjO4Vp16O2Wq3Yc1nnLh+gjz7N8mzu7DSUwWYb5yXz2jgnT+XdXVrSBp2vUI8yy+HLz3GCM9d7hd5+r2/cjMbfQ9nU/Gqr33Pnz/xpxFdxamKCzqff56awQnEdO787HoEzMtnj6WLcD99dsmKNmNL3IesAcoSjFXezN5g1k/mfWNtGbNrvzLL7xO/UK+Z+DIPbcxdGT/hucXCKyGoiBNVBooDtEI4weAIqIWo/2IH0DovustENgKjBYRN4azlzAMZw5vMwV+KPxeb5Kxo/cyefwUSbU+Vzv/rRcZOLQXW4i3cWY3Jx850OK1iQKvnJjiE4/tm6t7W6RVHKHUmrhuTN00uWwmGfPzm/r2uVHO2cskkl53PCKcZ5i79NJcaTczvKG7SaVXfw+C8ingc8ic0JoCf47yo8uPMqYTZ55iogifJth4Db9XUZzFskcRkiSoFuc2ozpTII1KiAgignMeZyTb/NnlQAKRTpT5l4/N1dIXT1H4gaNrSz8QyQRvn2Tu7rQJUV9X5tazOPOREZLz53EzM4i1RDt2IGv5mW0TIpZy+Qi12nGazTOIsdTrp6hUDq8+OBAIBLaYLc2diKKIxx9/nMcff3wrnzYQCAQCgUAgEAh0i7QBPqFWnSGRIrNtpa8YXbco5bWGaopH8WagE2HuVo4wVzB+Da5ugNbCCPPuLj565wHFq2JNjxf6ZQKi47mSth9j4OlXMe15F7yKMPvRRzf0FEOmxYG4lqtdSCtM+DKzo3fi4rwL9c+ePofzynt31nhwpLmh5wQoUuSAyQvRk36Sy63zYEzm6l7jYn/98iQXnjuWqxUG+9j3gUc2PL9AYCUUP9+PG9/px92PUACNMDqA+L4Q9xx4VyAUsG53R/AewjMNZjoI3pvExBH7PvAIp770l3O1tN7g4nOvsu8DG0tquZV5ZKxNf+yZmGlx/nKdfaPzGwDrld1Lit0Ap+0FRv1I5tQFLJYDbjfvROeWPP48Q9zJpblXd4uyh2nOsmPJ47vDGPBeYH4DpHAM5XFgeWHRRBGpa+HTFCcGE8era7ICGsdI6rK+3c4hkcW4JOvZ7WK8WCJxpApFIPVK3OW+3QDRI0dyYrdO1vCnrmCPjK7tBCYG7zLBW6QjfHdHPO5FnLkU4qx/99Q02t9PeuEC8Q2eaGttiXL5EI3GSUzrIoIQRf0UCmuImw8EAoEtJHwqCwQCgUAgEAgEAmunNQM+pdaoU3UxidPrIswhc3arNkhNPxB3IsxXcXUz7+peGDl5HV4Rl3YizE126xKq4L3Dd3psmh5HmEvhuZxTRrUA9fvo/8aLueMaD96J2zm0gWdQ7inkF39TFd5sD5PGZWZ3vif32NvnZnjj9DRl6/mJI/mY0PVyxB7GLnBBqSonkuOABxut2dXt05QzX3ka/ILfCREOfuKJ4IwLdJ2sH3cVbybwNDBawPgRjA5h/ADG7cK6vRg/EITuwLsKIca63fOR5gpqpjKBJ7BhBm/bT/+BPbnalVfepDmx8RYhtyqxgQ/sawHwyjqizBumxUWTvxba53ZR0KWvIRKJuMxArtb7KHNQPo6Sb8sifAFW2CgqxiDW4F2n/U66hFt9KeIYrEHFdDaPgvWZ2A1kUebWoJpt/kx9b1obmL3DyO789W36wsm1n0DIril9CurAZRvUusOiOHPtznu+HR4GwE1NkU5O4huNrpy3l8TxEIXCblqtiyTJDLOzx3Duxp93IBC4tQifzAKBQCAQCAQCgcDaUIXWDEmrRqPtmWxbYisUI7PoMI9qHaWFs0OoKQIGqyv061YwboGr26wUYd7O1p9cikbdFTu970SYq8eI0JXMwuWQGsSv5GvtR+h77gR2QeQpwOzHH9vQUxyMqgza/Pf9RHuIlkZMj92fuas7eK988enM5fSjhycZKmx8sXBABhiz+Z6Y436cent23a7u8adfojU1k6uNPXIPfXt2bXh+gcBilAQvM3gziaeJ0XLWj1sHMH4Q43Zj/W6MVubcgYHAuw0h6gjepY7gLaiZDoL3JhAR9n/oKLJw85xXzn3zeXTNTZYD1/jI/kzsPvZOXuxWE9MsLe80PR1dwC8QQQ2Gg+nuZY8/J8O5+4O0GNBei3sVlI/nKsIF4IUVR9koQr2i3uGSFa61F3ItOjuymcMbsK4NYvASkdoS14zcvod9u0WE+JG8cz194RS6HnHdRCAW0oTsIn6N34M1oOKh89lE1Mz9/6awBjMyjJudRdsJyfnzmz/nFlAs7iaK+mk0TpGmNWZmXkY1vDcEAoEbhyB2BwKBQCAQCAQCgbWR1ME7qtVZ2lKgmnj6i/a6CHPVGlkMeAtvBnFS6ESYL78gcs3VLR1X94pLakmSRS6qgu1uvKrzDsWjXnvv6o6/i8j890TVoq1H6P/a87njmnceJNk/tnj4qhRw3FGYytWqPuZ0OkCrsoPGUD5i/NnXr3B5ssmdA00+PJaPPV8vd9jbc/cTTTmVvAP4zM29Rlf37JkLXH3lrVytvGuE3Y/dv8yIQGDtKIpKCy9TeDOFkmK0H6M7Ed+P9YPYdC/W78JocfUTBgLvAjLBe6zj8B5CVTuCd2+cnbcCxeEBRh++O1ernb/M9NtntmlGNy97+x13DifM1BJOXajmHqtX9iwzClrS5oK5mqvt8TspamHJ46/SR2NR98+tcHfDe1HyEd7CV4DWsiPEWMQIPk3xznXa8ayCgMZR5opWD6nH+AQUnI3n+nZbEVLn8V7p1d6MaJHYrbNN3IlLyxy9DDYGfObwTlt0z909H2cO0hG8N39O2z+ARDFuYgJfq+GmpjZ/0h4jIpTLhxATUW+8Q5pOU62+vt3TCgQCgTmC2B0IBAKBQCAQCATWRifCvN6oM5vGOAd9xevduao1VB2pFFApZBHmK7m6uebqznzUulKvblUkSSFNQUwmmnaJLMLc471HBER6+XGpDYUX8qXkXsovXyS+mo82nf3Yxlzd7ylMES/6Xr7eGsEjTO1+MFdvtFK++vw4VpS/cfsEZhPGlTEzyoDJx3+edqdIk2bm6BYLhaUXlxeSNluc+ep3cjWxloNPPoF08eceuPVQPCoN1EziJUsNMH4Qqzs6Ivcw1u3H+B0IISo/cOshWKwb7fSq7wjeEgTvzTB29F7i/kqudv5bL+Da3XOh3ipcc3cvjjJvlkfxK1y7nYkuXufuPpQuI5CLcH6Ru3sPMxjt9d+ARflUfirUEL624ihjI7zzqPe49sptg+aICxDZLMrcp1krIZ/gTAFvIrxYrIDrqNxJr6LMx4Yw+0ZytfSFU+s7iZjM4e2Tjnjf7OIMF8eZd2GjrRHsyAi+0cDXG6QXLmSu9BsckYhy+Qjet2k0z9BsXaDRCJt2AoHAjUFYIQgEAoFAIBAIBAKrox5aM7SbVZqJMplYipGhEF3/kcJrFdUWqelDpYJiVu7X3RG5RQ0K+JWE1nanF6FzaNxdV7d3DlRR7ztxoz2MKo5fRiS/EKft9zLw1HO5WnvfKK33HFz36YdNk31x3p09nlaY9CXqw4dIysO5x/7iuXEaLcf/tG+GfZU19ntcAoPhiD2Sq9W1znh6ljlXd2QgWvlnp6qc+/pzpPV8ZOje9z9EaWRww/ML3NpkInct68ctNdCo0497GNF+jNvR6cc9FPpxB2555iPNOw5vHCozQfDeICaO2PfBR3K1tN7k4nPHtmdCNzGP7WlRjjyvvjOF9/Ob+tRYmqXRZce1JWHcXsnVdvsdlPzSyR3nGc6ZeGM8u5lZ8tjucgfKXYtq3wauLnUwABJZ4Jq7O11bDPi1KHNrkfRa3+42zsYokEYljDXZZlBV0rU4xjdIdPRI7n764ml0vc9nOl+PTzqi98avZxczH2cuiEpX4sxNXwUplzN3d7tNenX5n++NhLUlyuWDJMkU7dZlarXjJMnk6gMDgUCgx4RPb4FAIBAIBAKBQGB12jVQT3V2hkQKNBJPX/F6wVJVM2c3LZzpw5syBr9ihLn1gsy5uldZ2ErakDpEfebg6CLOu06/cXocYe6QwrO5iiZ3UHyrQeFsPrZx9uOPgaxvQU1Q7inmF50SFd5sj+BNxPTYvbnHLk02ePb1K+wuJfyVA3lX+Xo5YA9QlPyi8Yn0HdS5zHUjZn5xdQWmjp9m+sTZXK3/wG523n/npuYXuDVR0k4/7gk8DYyWOiL3IMb3Y9wokduL0f4gcgcCC8gE7wUOb9KO4B16TW+EwSP76T+QdxJfefk4zYnNvffeahQtPLGnTb2ZcuL8bO6xemX5PtwAZ+xF3IJrUkE47JZ2dzcl5ip9udrWRJmD8n3ogvcjwSN8adnjBcHEEd451CvpWnp3G0FtlG1A9B68x7oERLK+3VHWt1sA55W0R3274fooc+ot3PEL6zuJSCZ4+zTbpOuadCVzvEMWZ35N8LZdOXU0MoImCW5mhvTiJUi6J9D3kjgeplAYo9kaJ0lmmJl5BeeWj9oPBAKBrSB8igsEAoFAIBAIBAKr05oBl1BrNph2BZyH/uL1YrPSABxtEehEmBtd2dVtlE4vvFVc3QqSJNkilpiu9uv2qniveO8xRnoreEVvIia/OKvJ4wx8Ne/qTncM0nhg/eLuwWiWAZNf5Hy7PUxbLTO77sJHpdxjX/z2OVThb9w+QbyJL7tIkQMm3wd80k8yqVfBu+znZVi1V3d7tsa5b+b7lttigYMff991/eEDgZVQ2p1+3JMoCUYrGN2Rubj9ADbdg/VjGC1v91QDgRsWodDp4V3A6GBH8J4NgvcGEBH2f/hoJz2mgyrnvvk82quGyO9SPnIgS8e5Psp8F16Wv85IJOX8Inf3qB+h4ktLHn9uUZT5CA0quhWi3k7giVxFeAN4e9kRpnNd7F2KT5K1/U4V46xvtwikrtO3W/E2JrVZ324jgvOKV/A9+jU1O/oxh3blaukLJzdwoggw4JLs2tN3s02AokL2GUGlK3HmUixgBgbwU9NokpBcvNiFeW4NxeIerO2n0ThNmlaZmX0J7XnMfyAQCCxPELsDgUAgEAgEAoHAyqiH9izN+iztVJhsCaXYEC3RN1l9DVXt9Ou+FmG+/EKT7ajbBvAr9eoGuOZSSR1qbVdTxr1zgOJVe9yrW5HCM/mK20d0pkDpzdO5+uxHH113T/KipNxRyDvEZlzM2bSfpNBHdecducdePzXFifOzfGi0yt1Dm1u8PWIPY2V+4U9VOeHeAddxUFm7qqtbvefMXzyDX9TDdP9HHyPuC4JkYHUURaWJlwm8mQYU4wcykftaP+50H9bvQli9d3wgEMgEb+PHOpHmAyjtIHhvkOLQAKMP352r1c5fZurt0Pd2PRwadBweTHn91HQ+XlsMjcryUeYAZ+1F0kXu7kPLuLsvM0CbvKi5de7uj6Lk+7wLX4RlWgmICCaK8GmKql53LbUkcQwCaiMkzfp2W5+Q2gLeWJyJsEbm+nb3Nso87+5OXz6DpssnQy2JAFEM6rLNsWmT5b5fG8N3HN2SbdTtQpx5NDyMquKmp0gnruIb3ew33jtEhHL5EIih3jhJmkxRrb6x3dMKBAK3MEHsDgQCgUAgEAgEAivTroIq1doMLSnQSJSBJVzdAKpVvLZxpowzfQgewzKRfAqiYDoLRWsSu51HvF/VHbweVMF7h+/0N+xphLk9hdjL+edvP87gU9/N1Vxfmdp771v36e8qTBEt+j6+3t6BIkzvfiBzxF97Duf5s6fP0R85fvTw1LqfayEDMsCYHcvVxv04da1D6sFkvSRX+7ldeflNauP578/wew4zfPv6+5YHbi2yftx11EzgZRYwGD+E0RFE+7B+B9btw/hhhO62QAgEbgWMFjF+V0fw7kelDVLd7mndlIwdvZe4Py9ijn/rBdxaxMnAHB/Z36TVdhw/k++jXS8vLVxfIxXHOZtvGzPqR+jz12+qUxHOM5Sr7WUa2RInfgnlk7mKcBl4dunDmXd3q3OkaZtVp2lMtoE0sh0ntGJcgjeFrG+3LWKNoApOlaSXYvfDh/MbWZsJ7vXz6z+R2Mzh7dLORX53nfgqvhNnTnfizCOLHRrCzc5CkpKOb+Br3iaMiahUDuN9k0bzHM3WeRqNc9s9rUAgcIsSxO5AIBAIBAKBQCCwMs1pNG1Ra7SYSjJnbmWJft0AXqukJutn50wFq8myBmyjgnT+XVXovhZh7tIsarGLEeaqHu+zf41kc+8VUvhO/rn9CObSGOWX3szVqx98GOL1CXI7TJM9UT1XO5f0Me2LNPtGaQ7kF3+/fewyk7Nt/tqRSfrjzS1e3mFvz91PNOWUO52lAuCzn5c1sMJGgsbVKS4880quFvdX2P+ho5uaW+DdjeJQqXb6cddB404/7mGM9mPczo7IPRD6cQcCm8RoORO8KWF8H16aqNS2e1o3HSaO2PfBR3K1tN7k4nPHtmdCNynv29umYJRji6LMW6URnFk5SeacvUSyaDPmYbd36WMXRZkXcYwyu+Sx3ecRlPz1m/AXQH3Jo8UYjLX4JAUFn67R3W0jQCBNsb4NAt5kfbuNWdC3u1c55oAZqmBuy2+cTF84tcGTxYDPYszTBFinQ3wVuh1nbgcHERuRTk7gqlXczFb9fm0eayuUSgdJkgnarSvUam+SJNOrDwwEAoEuEz7pBQKBQCAQCAQCgeXxDpIa9dosqQrTLaFcMNglREvVNpCQiMWbCmCxy/XrVjB+Ha7uNOshSJqiNuqqHu2cQ/F4r711dZuLSJRftNP24wx8/QVkweKhjyOqH3xoXacWlLuLE7laoobj7WEUYWrPg7nHqo2Er71wgfuGGjyxa+kF07UyZkYZMAO52ml3mpS0E2EumcgdLb8Y6FPHma88jfq86H7wE+/DFkPUdOB6lBQvMx2Ru5mJcDqC0cEsttyNYd0ejPYhPdzAEgjcahitYNxOhDJG+/FSD4L3Bhg8sp+Bg3kR88rLx2lOBJForZQj5fE9Ld48M0M7WSBmiqFR2b3iWCees4vc3Tv9EAO+ct2xdSkySd71vVVR5mBQvj9XEZoIX11+RBShKD5Nce326sbjQqETZW4R5zA+c0Q7UyCNSgiCMVnf7iwNqXeCd3z0SO5+euwM2lomIWolRDLB2yfZxsu029HgXY4zN4IdHsbX6vhGk/T8eVa35d84FAojFAqjNFvnSdNZZmZfxrmt6G0fCAQC82y52D09Pc1//I//kV/4hV/gB37gB3jyySc5dSq/4HP+/HleffVVTpw4sdXTCwQCgUAgEAgEAgvpRJjXa7M0tEAjVfqLS7tlvFazyEOxeNOfRZjr0gtUhnlX95p6frYT8L2JMHfe471HhJ72677e1V3BTN1G33fyTq7a+x5AK6V1nftwPEO/yX+v32oPkWCp7riNtJgXo7/8nfNomvLXb59ENrE+ZzAcsUdytbrWGffjgGZit7HZouMKP7cL33n5ugX+0Yfvpn/f2DIjArcqSgsvU3gziZJk7m3difg+rB/CpnuxfhSj6/sbCgQCa8doH8aPIFrGaKUjeDe2e1o3FSLCvg8dRRZuslPl3DeeR28ikWu7+ciBFknqeeN0/hqivorYDXDeXqZN3vl8OF2bu3snNYq6VbHzh1EWt7Z5Fri01MGIMYg1eJf17tZ0FbHYGtR2NiU6h2jWt9vZAiqdvt0ieK8oSuJ69/tpHzwEZsGFaduRvrbBWGwTAyYTvH0KXf55dTvO3PT3IcUibnIC326RXp1YfdANRLG4B2v7qNdPkiZVZmdfRrV3sfeBQCCwmC0Vu3/7t3+bQ4cO8dnPfpbf+73f40/+5E946qmnqNXyO0C/+tWv8sADD/DAAw8wMXFzvbAHAoFAIBAIBALvKloz+KRJrdliKo0wAn3x0g5d1SopBlCc9C0fYa5g3AJXt1nD6lCSQNpxCXcxwtw7B6qo950F5x45QGUKojdyJU0epe8vX8Uk84uQagzVj6wvtrskKbfH+X6V067A2bQfZwvMjN6de+z85TovHJ/gBw9OM1bagFtmAQftAYpSzNVOpO9kGxi8BzSLL18hwrx67hJXFsW4l3YOs/vxBzY1t8C7D5U63swAivGDGN3REbmHsW4/xu9AWDm6NhAIdAfjBzB+GNE+jJbxUg2C9zopDg0w+kj+Pbo2fpmpt05v04xuPm4fStnbl/LK2/ko83ZxhNQWlxmV4cVz1l7M1UZ0kEHfd92xFxkkWbCMLsB+pjY87/WifC/K/KZBQRG+yHIKq40i1CvqHa69TMrSQuK4sykxS1Gyro03cbaJNSplfbvJLu1S3zsB0wyUsHfmEw/SF05u7GRC1rvbp6AO0hbQ3bl3O8482rkDbbXxs7OkFy/CahsVbiBEDOXyIRCh0ThFkkxSqx3f7mkFAoFbiC0Tu3/t136NX/mVX2F2dpZCocBjjz227LE/8RM/wZ49e2i1Wvy3//bftmqKgUAgEAgEAoFAYCGdCPNaLROxp5qGSsEiZmlBWH2Vthi8xCDFZSPMpePqFs0WzlaVutMUuRZhHnU5wtw7VD2q9DTCXArPIQui2lVjpHY//X/5Yu64+iN34UYGFg9fkbsKk9jcueH19gggzIzeg9p8DPgXnj7LgUqb7927uX6ARYrsN/tztQk/yaR2FpydA0zm7I6WFiBdq82Zrz6Tq4kxHHryCUwXNzUEbn5UmnipZRHKOoJoH9bv6PTjHkIIvy+BwFZj/CDGDyLaj9FSR/AO0bXrYeyRe4n789HZ499+EdfeKtfwzY0IfPRAi7fPzdJYFHe9WpQ5wLi9QmuRu/tIuu+6i1MvhgsM5mr7dGoLo6aHgQ/kKsIJ4M2lDkZMdr3u0xTvfba5cyXiAoigphNl7pJO3+6Y1C7s2+1Jnfb0y44eOZy77147hzbXINgvhYkAk7VD8i5zeXeV7saZS7GI6e/DTU2hSZvk0uWuzHKrMCamUjmC83UazfM0mmdpNs9v97QCgcAtwpaI3c899xy/+Zu/CcBP/dRPceHCBZ555plljzfG8GM/9mOoKl/60pe2YoqBQCAQCAQCgUBgMZ0I81pthoYv0HZKf3HpKGrVFE+T1FyLMGfZCHPrQDRbNFNZg8OinfXrFu9W7Pu8Xrwq3msWYW4kc2b0hAbEL+dLyUNUnjmBred7CM5+9NF1nXmnbbA7yjvpzqb9zPgiSXGA2siR3GMvvz3J2YtV/sbtE0Sb/HKP2MNYmf95qCrvuHeu3cvsP7azOrrMz+3cN54nqeZ7hu954kFKO4Y2N7nAuwqVFl5mMVrKXKR+EOv2YvxAD/9uA4HAWjB+GOP7QfsRLeJlFiUI3mvFxBH7PphPdEnrTS4+d2yZEYHFvH9vC1HPayencvV6Zc/SAxbgRTkTXcjVhrSfYb1+4+HiKPMyKTvYun71yodR8vMS/gxYpmWQjfDOo96v7u6OLHqt5UyazvfttlnfbhCsEZxm2q7rYd/u6MGD2fXjNVJP+srZjZ1MgKgA+Mzh3RN3d3fjzKPhEdR53PQM6dUraOvmej21tkKptJ8kuUrSnqBafYMkmVl9YCAQCGySLflU+Nu//duoKh/4wAf4/d//fYaGVl+4+MAHst1qL7/88ipHBgKBQCAQCAQCgZ7QmsG1mzRabaYSizVQLiwXYV7DSQHVBGf6sNpeNsI8E8KzjyJ+LQaIdgJJShZh3r1+3ZnLRfGqmB726qbwAiILospV0MZRBr7+fO6wxj1HSPfuWvNpDco9hUWxnWp4qz2EAlN7HmRhQ+4k9fz5d87x8T1Vbh/YoEOmw4AMMGbz/bTH/Th17QjXcxHmNrst0Rh86q3T10W19u8bY9eDd21qboF3F0qCl1lEC6D9GN+fRSf3quVAIBBYN+JHML4f0QFEY7yZRQnO5LUyeGQfAwfzwuyVl4/TnJheZkRgIf0F5dHdbV45MZWrJ4VBkqi86vgL5ipN8tdFh9O914mWs1Jmhnw0+n7NP2dvKaB8T64iTABLG8okskDH3e0culr8eKEAsQUUcSnWt3EmRsXgTYwx8327XQ+jzKVSxN6d752+4ShzADGdOPNs82wmeHcXFZ2LM5fNxpnHEXZoCD8zA0lCMj7enUluIYXCTuJ4J43mWdI069/t/eY+ewQCgcBqbInY/bWvfQ0R4Zd/+ZfXPObIkSMAnDt3rkezCgQCgUAgEAgEAssyF2E+i8Mw1Tb0FSNkCdESwGuVRGI8gkoJq0svctuOui1kbppVSR2iPutZZ23XIsxVwXuH7yzW9S7CPEHivKhNei/lFy8STeZjxGc/tj5X95F4horJu3mOt4dJsTQH9tDqG8099s2XLmKSBj98cGpdz7MUd9jbc/cTTTnlFgjX1yLMxUB8/QaFdrXOua8/l6uZQsyBT7xv2d+xwK2HkuLNNKIRooMY34f4ke2eViAQWIQgGL8j+xvVQUQjvJlGl3GcBvKICPs+dBRZeC2iyrlvPI9uWUz2zc2H9zc5OT5LtZ6//myswd2topxe5O4e1D52+MHrjl3s7h5jlniZJKPe8CDKgVxFeAqoXnekIJg46gjdSpqssgGlEIEY1FhIHdYleHt9327nIXG9/b2Mjh7J3XdvjKP1TYjUptNOxyfg2yznht842tnQK6Amu20COzgIIqSTk7iZGVz1+p/vjU6ptA9rK9QbJ0nTWWZmXw6vZ4FAoKdsidg93tmBdPfdd695TKlUAqB1k0V1BAKBQCAQCAQC7wo6Eeb1epW6j0kc9C3j6gbwWiMRgzclBItZSuzWLL7c+Guu7jUseCTzEeYadc/VrerxPvvXiNDVRuALiY8hJh8zrq33MvBUXuhtHdxN+7Z8/+uVKEvKkTgfCTjlCpxP+1AxTO1+IPfYdLXNN1+6yE8emaQcbW6hacyMMmDyMZqn3WnSuYVDzTZLRCb7xLno56aqnP3qM9f1I93/4UcpLOpbGrh1URxqpkFNR+guYfyO4OgOBG5Q5gXvckfwtngzFQTvNVIcGmD0kfy6aW388nUJKIGluXtHyq6S49V3pnL1emX3mlKlL5mrNBbF7x9217u7LzCEW/A+ZIC9bKUDX1C+f1GljfCVJY82Nrt29y7FJ8nKYqON56LMxaXYNHPiuk7fbiuCCHjvcb7HfbvvO5BvgeOV9KVN/C2ILHJ3N1cfs05U/FzP7qx/9yZOZg1mZARfraGtFun4+Bb2h+8OIoZy+TCg1BunSNqT1GrHt3tagUDgXcyWiN2FQgGAqampNY+5ePEiAMPDwz2YUSAQCAQCgUAgEFiR1gw+adFotZhOI6yBUrxchLknJcGLw5kKkbol5SijmUxlWKPQDZC0M1c3cp1ouhmccyge77WHrm6PFJ7NVTQ9QvH1BoXxK7n67Mffu2TU99IodxcmsAu+h6rwWnsHIMzuuANX6MuN+NJ3zvHAYI1HdzbYDAbDEXskV6trnXG/IGLRuexfa5f8mV195TjVc5dytaE7DjLynsObmlvg3YPiUTONKhgdwmgR40dDf+5A4AZHMBi/qyN4DyFqs79l3HZP7aZg7JF7iRdt+hr/9ovXbQ4LXI8R+MiBJi+fyLd3SeN+krh/1fEqcCrKx0X3a4WdPt+KMxXLRfKO7/06tcVC5H6UhxfVvgtcH3ctIpgowqcpqopfqXe3AHGcXb+pImkbVPG2QBoVUcCK4Hzv+3ZLKcbel98Emr5wanMnNTFgMme3d5nw3WW6GWdu+/uRQoF0YhLfaOAmJ1cfdINhTEy5fATn6jSb52k0z9BsXVh9YCAQCGyALfmkeOjQIQCOH1/77p2vfCXbkbYeN3ggEAgEAoFAIBDoAp0I83p9Fo9hpm2pxMtHmKvWSU0Rrw4vZYwusZCmYHwmeMMaxW7nEechdV2PMHfe471HJHMe9IToOGKm8s/dft91ru5k1zDN+25b82lHbYPRKO9IOZP2U/UFXFRkdle+5/XpC1XePjXBT962+UWyg/YARcn3qzyRvoMutK84B8YA10eYNyemGX/6pVwt7iuz/yOPbXpugXcHikdlJktd0CFECxgXhO5A4GYhE7xHMVpCdAhVCYL3GjFxxL4PHc3V0nqTi88e26YZ3Vx8YF+L85erTFXz16GNyu41jb9sJqlLflPgUu7uxVHm/bQZYnObCdeL8kmUeO5+llH0BZayE19zd6tzpGmysi4fx2ANagySpljXxtmsb7czMZERvCqqStrDvt0A8eIo87cu4s5c3fgJBbBxR+h2HXd3t7+GLsaZC9gdO9BmE1+tkVy4OL+h9CYiivoolfbRTq6QtCeozr5Gms6uPjAQCATWyZZ8WvzkJz+JqvK5z31uTcefO3eOf//v/z0iwvd93/f1eHaBQCAQCAQCgUAgR1IDVRr1Kk0t0EqVSnGlCPMqiRTwEiFil+zXPefqVlm7q7vdzhaMnEPt5twRufk6B6qo953+mL2IRVak8J18xe0mOlmg9PbZXH32Y492xOHVMXjuLuRF65Y3vN0eBmB67D7UzgvMqsoXvn2W//ngFDuKm1sgK1Jkv8m7bCb8JJO6YD7qs5u1mc3KzP/cvHOc/srTqMsvLB74+PuIioVNzS3w7kBRVGZR0jmh27oxhO6lOgQCgd4jmGyTihYxOoSqdgTv3opj7wYGD+9j4GC+z/SVV47TuDq1PRO6iRguKg+NJhxb5O6uV/asLVFa4JTNu077tMyoH8nVpihTI3/dsl+nNjDjzTCA8pFcRTgNvHrdkWIMxlp8kmadZlbq3R13BPTIIq7Tt9vEKEIalTDX+nYrpD3u223v3QfFBe//qjR+9yv4i5uIjTcWxIJLsutVv4LTfYPk4sz95uLMTbmEqVRwU5No0ia5fGX1QTcghcIu4ngHjeZZUldjZuYlfA+c9YFA4NZmS8TuX/7lXyaOY1588UX+j//j/1jx2DfeeIPv//7vZ3p6mkqlwi/+4i9uxRQDgUAgEAgEAoHANVozkLaoN1tMpzFGoLxMhDlAQguPw5ki1uv10vEiV7euOcI86USY63UO4c3gvEPVZxHJvYowt2eRRQum2n6cwaeez89loEL96D1rPu1t8Qxlkxet32yPkGJol4apDx/KPfbCmxOUWlN8Yk91nV/A9Ryxh7Ey/3ugqrzj3skf5BzQEbkX/cwuPnuM5qLF+l0PvoeBA2tzXAXe/ajMopJgdGCB0B2vPjAwh0dppZ5W6vOJC4HAFiNY7GLBW4LgvRoiwr4PHe1sxuugyvlvfnflfssBAD66v8kri8RuF5VpFwaXGZHnipmiusjdfcjtyQuWIte5u/cwg9Wtdt1+ACU/D+FLwBKbTqMIRfFpikvay787CGgcZ/2t1WPb2ffCmTgTu0UQEZzzpD3u2y1xRPz+9+SLtRaN3/kyfmIT17W2APgsxjxt0313dyfOXLMNtaJ2U4K33bEDTR1uehp35TK6UhT9DUyptB9ryzTqJ0nTKrOzr4TXtEAg0FW2ROy+4447+K3f+i1UlV//9V/n/e9/P//X//V/zT3++c9/nn/yT/4Jn/70p3nggQd49dVXERH+1b/6V4yOjm7FFAOBQCAQCAQCgQBkLod2lUajRuqF6bZQig3GLBdhriTiUFI8RaIlFowM865uXav84j3iXCcS266jn/Uqp1XFe80izI30LBpZCs/k7qsfwl4Yo/zKW7l69cOPrFnIr0jCkXgmV5twRS64CgpM7nkw91ir7fiL587x07dPsMyPb80MyABjdixXG/fj1LWeP9D5jks932O9Nn6Zyy+8nju0ODLInvc9tLmJBd41qNRQaWF8fyaO+V0IwfG/HlLvabQdzntS76l3/j8Q2C6EKNu0ck3wxmVtCoLgvSLFoQFGH8lvhKuNX2bqrdPbNKObh/t3JbSqVa5M5du9NCp7lhmxCIFT9nyuVNESu/2OXG2codxvsUXZQ/4arfdEKN+bqwjTwLeuOzJzdxu8y3p3a5ouf9q4AJFFxWBcC1GPtzHOllAgEkg7F/NpD/t2AxT+p0ew78n/7HS6TuNzf46fqS8zahVEsv7dPs0+96TN1cesm+z7MhdnvonPGxJH2IEB/PQMmiSkFy52aY5bi4ihXD6M4mk0TtFuX6VeP7Hd0woEAu8itqzp1d/9u3+X//P//D+JoohnnnmGv//3//5cz79//I//Mb/6q7/KF77wBZxzGGP4F//iX/DzP//zWzW9QCAQCAQCgUAgANCugir12gwtKdBMlb7CSmJsk1RiUszyEeZunb26AdpJFmGepmjUPVe3dw5QvCqmV726zWUkyjuetf1eBr72Agu/fF+MqT7xIGtDuac4mROtvcLrrRFAaAweIKnkF2K/9sIFPjgyyYG+zccE3mFvz91PNOWUW7To7h3QiTCPzFw0u2snnP6LvPgvxnDoyScwUffi6QM3LyoNvNQx2odQwvidGC1v97RuKlqpp5l4rAjlgqVcsFiBRpK5vAOB7WJe8C5gdBgl7QjewdG3EmOP3EM80JerjX/7RVzr5nR1bhVG4EP7W9e5u+vl3Wv+jZswM8xKLVc7lO5BdP4irC0RlxnIHbP1UeYA96IczlWEb8ASwruJItQr6h1uJXfwtet+a5HUYVzS6dstOFvAWoNqdi3d677dEltKP/cxzOFdubperdL8na+g9dbGTmw6qTE+yW5LfH7ZLN2MM7fDwwC4ySnSqUl8fYNC/zZjTIFy+TCpq9FsjVNvnKTVurTd0woEAu8StkzsBvhf/9f/lRdeeIGf+7mfY9euXdlOsgW3wcFBfvInf5Lvfve7/Mqv/MpWTi0QCAQCgUAgEAgAtGbBtWm02sy4Aqqs2K870SYegxOLQZFFKznS6dUtmj2ia3UYtxNwnQjzLgmiquC9w3cW5noVYS6FZ/PP68uYydvoe+61XL32/gfRcnFN5xyzDXbavPPkdDJATQt4sUyO3Zd7bGKmxVtvjfODBzbR1/Dac5tRBkx+Qfe0O03KIleQ92QR5gai+ejpS8+/SjKbXzTe/fj9lHfle2AGbk1UWnipYrSMaAXjRzDat/rAAJClVTSSlNR7irGhFFuKRigapRwL5Ri8T2m2E/y1DSnL3pRNrcYHAssgxAsE78EgeK8BE0fs++AjuVpab3LxuWPbM6GbiA/vb3HsxESu5qMireIarzsETkbjuVKJInv8zlzt/KIo8yGa9GsvXMIrISjfz8ImQkKC8OXrjzQWMYJPU7z3nQ2gS51Sso2mUQTeY5PmfN9uW8J2nspvQd9uACnGlH/hE5i9w7m6vzBF43e/gjY3IFQLi9zdLXrx/te1OHNrMCPDuOos2m6TjI+vPuYGJYr6KRb30m5fJkmmmK2+Sppuvt1SIBAIdM8isUbuvfde/uN//I8AnD59mkuXLuGcY+fOndx+++2965kXCAQCgUAgEAgEVkY9tGdpN6u0UphpCcVYsCtco7dp43F4iSku4e4wDkSzNSUva3R/eEVcCqnLhNMufUZQ9Xif/WtE4Pru4ptHZiHKi9okj9D/jVeRdH5RUa1h9sOPrOmUFs/dhbxDqektJ5IhAGZ3vQct5F2wX3z6LP/LkasU7eYW7gyGI/ZIrlbXOuN+8SKbZpHzthM5b7MNCu1qnSuvHM8d2bdnF6MP3b2peQXeHShtvMwiWkS0H+MHMX5g9YEBABLvaaceI1CODZF4ypFDrAVVCqmjrY5CBInzaAoYITKyrle/+VcRWfCyKYseX8sZF2+HYsnzLT+Phccsca4Vnnfp/w9sJUIB40fx5hKGAbzMZu+ZOsD6fiNvHQYP72Pg0F5mT8+/51555S1G7r6N8s7h7ZvYDc7OsmdPVGX8ap29Oytz9UZlN6XW5Aoj55mSWaalypD2z9UOpru5aK7OpRRdoY8mEaUFm//26xRvyBoj07vGHuAo8PxcRXgJ5XHgQO5IYyNckmC8x7XbmPIyKSqFGJIUFcG2m1AewtkCaVSi1J7BipA6T2QE1a51G1oWqRQpffaTNP7tn6FXZufq/vRVmr/3FKVf+AQSr3NzrIkysdu1QQz4Npi1bUJdO0oWZi6omuxD0QbbONj+AfzMLOnEBFIo4Kam5hzfNxvF4ijO1Wk0TmNMkZmZlxgefhxj4tUHBwKBwDJsibL85JNP8uSTT/J7v/d7ufqhQ4d473vfyxNPPMGdd94ZhO5AIBAIBAKBQGA7mYswr5JIgUbq6SusvHDUFo/vCMdWF0kPmn3gyBwN4Ne6EJa0s7Uhl6JR9xY9MgeLx3vtoav7OWSBqK8aQfV++r/9cu64+qP34Af7Fw9fktvjaUom7755oz2Cw5DGZWZ23Jl77O1zMwzXx7l/ePPuooP2AEXJL/ydSN+53o3nO65Qa7NbJ2/94rPHULdgUc8IBz7+OBI++93yKCnezCAaITqA+D6MH97uad0UKEozcbSSTGjoi6AkKZUI2qU+auVBapURkr4RCuUBiMqYuIy3Reo+ouoiEimQmuKCW6Fzi3GLbn7uFuElwovFY+ZuOpfrsdqL/LWjFLk2Wjs3n3ZuSe5mF9wi315waxGv+dZccGvM3ay22ajoENgYRosYv6vTw7sflTZIcPQth4iw74NHEbvgPVOV8994Hl18zRXI8ZEDLY4tijKvlXav4XWqg8CpRe7uIgX2uAVx2iKcZzh3zF6mMbr1ryvKkyj56zXhCyy2EktkgY672zl0uRjyuJDtDbIRNmlmfbtNRGqLKNll3jVTd9LjKPNrmMEy5V/8JDJUydXdWxdo/pev568314IAUSHb7OvSjru7+1/L9XHmG9wZYAS7YwfaaOLrDdILFzrX3zcn5fJBjCnSqJ8kTWeZrb4aXtcCgcCm2JIVhq9//es89dRTHDlyZCueLhAIBAKBQCAQCGyEToR5vdlixsc4D5UV+nWnmqKipGIy0WLR2o3tqNuGdfTqhk6EuUNU5xzCm0UVUu/x3iMC0pN+3U2IX8qXkgfo+/YJTGO+p6AKzH700TWdsU/aHIpnc7WrrsQllzlxJkfvz1ycHbxXnvrOaf7akbU5l1aiSJH9Zn+uNuEnmdQlzu0cYDJnTJz9zjQnp5l882TusJ333E5xKDh3b3UUhzfTiFpEBzG+gvE7Vh8YwHlPve1w6umLPX0moWQ9UblIvW8YF5WoOE8FcIUS9b4hosEhCsVM8I4KZdoaM5VYGj4ilZhUYpwUOrciqRRJKZJSmLs54vxNYvwSt/nzrHbrPM+1myl1buXcLcndSp1bcdXbWoR8QYl8C7O4JUOgpxgtZ4I3JYzvw0sTDYL3shSH+hl9+J5crXbhClPHT2/TjG4OHhptc/JMPsqcKKZZWvt7zbSpMin5a7CDbjdG568hz8lQTk6O8YyRH7M19KF8LFcRzgEvLaoJJo46QreSJsv07jaC2ihrJeQ9NmnhbAFEcLaY69vttiDKfG5aO/op/+InoS8v7LtjZ2n9v7+F+nXORcy8w1sV3AZ7gK9CPs584/27TaWMlMu4iQl8q0V65UpX57mViBgqlSMojkbjNO3WZRqNk9s9rUAgcBOzJTHmY2NjXLhwgeGbNFojEAgEAoFAIBB419OJME9bdZqJMtO2xNZTiJYXhVvSQhEcQqxtcntpNUvqM3Ou7jWu6qgiaQppmsWX2+6I0t450EwMzlzFPchbLLyIyPyioaqgjaP0f/2Pcoc177uddGwti63KPcXJ3CYCr/B6awQQWpWdtIbzYvSzr13hyeELDMabd3ocsYexMi+kqyrvuHeWnCfeZb0dDXMbFC4883K2cNjBRBFjj923xPjArYTiUTMNKogOYXwJ43eGGOM10HaexDkK4inZbINRXCiSlvpJbEQMlNVgozICxAotY2gVykihTLmdUK+1KBilmaZMJ0rkhUohum6z0obQpe9cf+qFj+l1teWPXfKJlq5r9p8lvyzNnOVeLIbMNY4oXkJ86lZhtAJuJ95exSh4qWIQRPu2e2o3JGNH72Hy+CmS2dpcbfzpFxk8vBdbLGzjzG5cIgMPDM1y5mKVg7vnk3Rq5T2Um1fXfJ5T0XlGkvnWKwVi9rldnI0uAdCUAhPax07mfzb7dYoLMtSFr2K9vA/lOYT5r0/4c5R7gfnfE2MtPknwLkUSQQuKLJVDHsfZ9TiCaTdIC2U8QhqVKKbNrEWRz5zdZbqzOXUtmN1DlD/7JI1/9+ewoF93+tw7SDGm8JnHl/56lj1hDL4BPgEH2AJ0/etZFGcOIMv0TF+FaGSEZHwcNzuL2Ag7sgOJt7xTbVcwpki5fJh6/R1arQsggo0GKBZ2rT44EAgEFrElzu6HH34YgDfffHMrni4QCAQCgUAgEAisl06EeaM+S9sUqSeOyioR5ok4UhHAEy3SKYxm0lW2iL1OVzeAc2jUvYUb5x2qHlXF9MTVnSLx84tKd1F5/iLRTC1Xnv3YY2s64x5bZ4fNO0xOJoPUNUaBS6MP5h6rN1POHD/Jh0bzz7cRBmSAMTuWq437cepav/5g11msszYTvEWoXbjCzMnzucN2PXQXcWWZ3pCBWwLFozKd/R3qUBZl7MeQrVmauGnxKM0kAdeizySUrcdEMXHfIK2+IdJCiYqJqZiYkgg7khYjSYuKc5S8pz9NsaokhZjSYB+lUkQ5jugrRjhVZpsJ7W4482ThTeZuet3NzN282M4tWua20DV+7ZZ3iadzt4VO8cwtnix1s2Xapi+LaJcCzsQYTbHamwjbwNIY7cP4EUTLGK3gpY5KY7undUNiooh9H3wkV0vrTS4+d2x7JnST8JH9TV5ZFGVeL4/i13EdOGvqTJjpXO2A243NubuHc4/voE5Zl3FM9xSL8n25ilBF+Hq+JoKJInyaZu7s9jJzLcYgoNYStbLrP28LpLaUnUOkk5qUbcbcSuyBnZR//hOwqE938pdv0v7TF9d3MpGO4J10oqA23wZoKebjzAVR2XCcuRQLmP5+/NQUmiSkFy92d6JbTBQNUCzuodW+RJJMMzv7Cs4t8XkjEAgEVmFLPlH+wi/8AqrK5z73ua14ukAgEAgEAoFAILBerkWYN5pUXUzqoG+FCHOH4GjjEIwmmIWhUQrGZ4I3rFPsTtqQOkR9FivYBXzH0e29Q0R6E2EevYaYvMisrfcy8FReAG/dto/24b2rnw7PXYX8Am3DW95JBgGoDh9G+vKuoa999zx/7eAl1mNmWY477O25+4mmnHLLRKZ6l7nwMWAjVJXxp/OxmbZUZPThu5ceH7glUBSVGRTXEboLWDcahO5VcD7FtZsUtE0pAhMVsMU+bN8gjfIgJirRr0IBGEwThtKEzl8j/S5lpN2m7B0Vl9LnHBhB+suUB8sUYsNgMSayQr2VUmun3DLtMgVSySLPPRGpKWbtW30LYWNuu8D6MX4A44cR7cNoGS/VIHgvw+DhfQwcyl8/XHnlLRpXp7ZnQjcBu/s8zYkr+AVKrLERzdL6XKOnbL53d0zEfje/IfAS/bQXOYH369T6J9wV3oNyx6Lat4D8NaXppPB450jTZOnXfmNQayCKMC5BvMPbmDQqoAjWgOsMTLehd7S9fYzSz37suhSo5Muv0P7KOjeCmBgwmeDt0+zfHpDFmV8TvO2G48yj4eEsdX16inTiKr5xc79uFotjRNEQjcZp0rTGzMxLeB9ajAQCgfWxJZ8qP/OZz/BTP/VTPPXUU/zNv/k3qdU27zQIBAKBQCAQCAQCXUI9tKv4dp1aqswmBmugGC//cSERUE1wYrGa5uIC513dgq5H6FaQJAWXZj30uhZhngJZX0FjevERSJHCd/KV9CClYw3iS/l+kWt1dd9RmKJo8guHb7RH8Bi8ibi6Kx8Hfmmywe7ZE+wpb35haMyMMmDyfbVPu9OkS/a19VmGpbFgBCLL7Klx6hfyPQR3P3ovthAigm9VMqF7FiXF6OACofvmjN3cCkRTfNJAkxZWwMRFsGUKlQpuYJh2aZAShj7vKXnPjnaL0hJiQ4QylCYMJQlF7+h3CSWXtR0oDvVjywUqhYhKMSJxmcs72cL+q9uNl4i2qaBYUimgYol8G6O9EToC12P8IMYPItqP0VJH8O5N39ybGRFh3wePIguvjVQ5943n0Vtml8r6eXx0lpPj+Z7wU8U96zpH1TS4YqZytf1ujEgzwVjFME5+A+I+ppBt+bkIyqdyTRyyhkNfyh9lTCfOPM260STLvObFhSy1B7DtBqkpAEJqCxhjMsFVlcRtTypGdM8+Sn/9Qyze6dn+4++SfOv42k8kgL3Wu9uBa9KbpA9FhWyjnwroBuPSI4sdGsLNzkKSko6Prz7mBqdcPogxBRqNkyTJDNXqq9s9pUAgcJOxJZ8sf//3f59PfvKTvPTSS/zn//yf+e///b/zgz/4gzz00EOMjIxg7cov7D/90z+9FdMMBAKBQCAQCARuTdo1UE+jXiWhSD1VKnG0Yr+7NglOYlRT7MLFoE25ujsLbalDI9uVttqq4L3De5/NrRdit30bsXlRW9vvY+CpZ3O1ZPcOmncfWfV0/abNwSi/MHs5LXHZZRHgl0buISrke3Q+8/wpfn5fPmZzIxgMR2x+jnWtM+6XWURzDpAswjyOUO8Zfybv6o4H+thx32KXUeCWQmqotDF+oBNdPooQ+swuhSEFn5KmDodB4iLGRNjIEvX304qzzqj9Posm70tTyt6t+nJZVE8hadMwFokiCs7TNBbpK5IUYrTWZNAI9XZKrZVSjA2lyHYlKeJGR0VomwoRLfCCSorxCYLiJGKLfCK3NMYPA4oziqB4mcUAosVtntmNRXGon9GH7+HS8/MiUP3CFaaOn2bkrsPbOLMbl8fG2vznU1e5ff/8Jr60sgs/bTG69hSHU3acnX4I6bzaRlj2uzFORdn10TkZ5rDOXwsWceyiymUGljxfbxkFHgeemasIr6GcBI7M1UwU4V0Ln6Y4EUwhvv69JI6h2URtRNRqkJb68WJIoxIll/Xtdl5x27hJKnr4MMVmQuv/8+1cvfXfnoZSTHz0yNpOZKIsrShNILKZu9v04jXIgxoQQdSg6mE9n5c62MFBfLVKOjEBcYSbmcEODvZgvluDiKVSOUKtdpxm8wxiLPX6SSqVI9s9tUAgcJOwJWL3z/7sz+YWyiYnJ/kv/+W/rGmsiASxOxAIBAKBQCAQ6CWtmSzCvNmkoX20Es/w4PIuXI/gSHBYjFZzEeaGBa5udH3pfEkCziPqUdudxSXVrJegqseYa81ku8t1rm63i/jtAsWTeYF49mOPZe7nFVHuLUzkBCan8EZ7ByC0437ao7flpJfXT03xZN9JVjDir5mD9gBFyX/vT6TvLP+TTH0nwlwgipg8forW5EzukD2PPzAXlxm49VCp46WB0X6EIsbvwgQBaxGKwWF8ivOelhc8BQqFCDGWuNQHlQqJEYreU/KOSJXBNCFah3NQgIp3lNqOqo0QoKCeZhRhhiq0Gm36jNBOHI3EkThPpRARrfq69S5AIKWIN4bYgzeGSBMi38aZGCW8hvUa8cNYFGcAZjLBWyVsjFnE2NF7mDx+imR2PjVz/NsvMnh4L7YYvleLiS0Mty7h3CFsxxVvrKFWGmOgsXY3bN00uWwmGfM75mr73Sjn7WUSSalJkSktM8x8nPR+neKybIfYDcrHgZeRBfMRvoDyWa5t4Mnc3Qbv0k4P7wQbLbr+jywqBrEW025kLnATk0YlpCUYIzivWcsgVcw27ZCKn7gTbSa0/8dz80WF1v/rm0gxIrrvwNpOZOOsZ7dPIW1BoRNv3mVUfCZ0iyJqUdL1f0Qxgh0eJr18Gd9okp4fx/b3d67Lb06MKVIqHaLReAfTynqRR9EAhcLObZ5ZIBC4GdiyVz9Vnbstvr/aLRAIBAKBQCAQCPSIToS5JnXqiWc6sRiBcrz8wn4iFk8DJ4LVJsL8wphxG3R1K0g7WRBh3h1hwTsHKN73KMLcnEeic7mSth9ncFGv7nSon/rDd616un1RjWHbztVOJkM0NNtQcGbHQ7mvI3WeybeOc9fg5iNfixTZb/bnahN+kkmdXHqAOsBnPytr8F65+Gy+R2Jp5zDDdx7a9NwCNycqDbzUMFpBtIxxOzBa3u5p3UB4jCZEvon4hKYTqi5GTZG4UIK4j+LgCK6/Dy9CxaWUvKPiHCNJe11C90IMMOhSRpI2Je/pcwn93lEpFzADFaJygYFShCBUWynNxG+4r+jNhpeYtikviDU3IdZ8ixAE8SMY34foIKIR3syghO/9QkwUsf+DR3O1tNG87v03MM/7d9d469xsrnY5Xl+UOcBpeyG3+c9iOeB2z90/J8O543dRpbhtrx1llE/kKsJF4Lu5moki1CvqHb69zFwLMcQRRh2StHG2gLPFrG+3CN5n21uTdHvfKAofu5f4ex/MF73S/M9fJ33rwtpOIqbj8E6yz0hps/sT7dCNOHPT34eUSrjJCXy7lbm8b3LieJBicQ+t1kXSZIbZ2Vdw7ubuSR4IBLaGLXF2v/POO1vxNIFAIBAIBAKBQGC9dCLMm40aTS1STxylgum4oJcZIkKqHi9KrClisgUa0cyUICoo2drNmkkSQCFNUdu9CHPnPd47RECk+2K3xK/kn9MPYM+NUX71y7l69SNHs0jEFYhwvKcwlavVfcTJJIsknCqNUdw5mnv8u69d5K+MdqdP3xF7GCvzc1RV3nErfJZzHpDMQRJHXD32Fkm1njtk7/seXDEOP/DuRaWFlypGS4j2YfwwRvu3e1o3CB6rKUYdCqRENFLBA1GhgNgiUTEmqpRIrKGwwM09kCYUumQKiFUZTtq0jKFqY2L1FK2l1l+i0bJUbEK7ldBMM5d3X9Fum2tvK1ExWay5NoEQa76VCILxOwCPNwDTeDON8cPI1ixh3hQMHtnHwKG9zJ6ef/+/cuwtRu65jfLO4e2b2A3KgQHH189f4e5D8321o4ERXDXG+rWL0Q3T4qKZYI+fd5nudbs4Zy/SlpSLDHI3F4k67X0E2Ms0J9nVta9lfTyG8izCpbmK8BWU+4FSdt9YxAg+za7nvXPXp/EUYmi1UGOxSQNXzt7L06iI9Q3aDryH1HuK2/z6WPjUQ9BMSL7++nwxdTT/01cp/63vwR5aw8/CxFmcuU+yXuCagvTi9ac7cebRjhGS8+P42VnSixexA4PITZ7yUCiM4VydRuM0xhSZmXmJ4eH3IhJSVgKBwPJsyZXi4cOhb0wgEAgEAoFAIHBD0poFl1BvNmlSoZl4dvUtv0DigZQUJxHG1zALol2NlznB24tf9hxLkiTgPeI9WuhOxLF3rtOzW5FrUdtdxUN0PFfR5BEGv/Zi/qhykdr77l/1bHcWpiks+r693h7BIyjCxdGH6VvwWLWecHD6NfpGNi98DcgAY3YsVxv349S1vswIzfp1GwsiuNRz6buv5Y7o2zdK/8H1O6cCNz9KgpfZrN+u9mP8AMbfvH0ku8cCkVsMTmKa3tB2Hi8xhWIZMYZKpYAvFXAKFeeI1VNyjn6Xdl1GEKDkPQXfot6JNo8RioWYqrXYOKLSaNNsJ8w0U8qxpRjdAmKvQColvCYh1nyLEQzG7wIu440yL3gPBcF7Afs+dJQ3z11EXee6QZVz33ieO/7qJ8ImsyU4yAWS9DbizuuXMYYr0W52t8+u6zynowuMtXdgOteUFsPBdA9vx2dxYriggxxgau74/TrFSXbCtvxMDMqnEOZbiQp14CmUT80fZSNckmC8x7XbmPKiBJYoQkWQKCJqN0grQ1nfbluiZBpZ325VUqeobtOX2kFEKPzVx9Bmm/Q7J+YfaKU0fvcrlH/p+7B7hlc7SUfwbmcub9eEqI9etELqRpy5FIuY/n7c5CSmVKZ96iTFO+4Ee/O+V4sI5fJBarW3qDdOYkzMbPU1Bgce2O6pBQKBG5ib91UvEAgEAoFAIBAIbA710J6FpE69rcykEapQKa4UYR6h2sRJjPE1RDoR5gpGQTT7iOHXs1CjZGJ36rIFpi5FmDvvUfWoKqYHrm7sGcTkY/XM1QNUvvt6rlb9wEPoKg6LQdPiQFTN1S6mZa66bMHxZOVO+gYqucdff/UUjw3nYzk3yh329tz9RFNOudPLD/Ae0GwhzVouvfQGrpWPX9/7xENhwf0WREnxZhrRCNGBLJLYD2/3tLYVQ4rVFrFvAUpqYhIpUEsNVWdxUR/FUoU4tlSGyrhSAavKgEsoes9QmjDYA6E7P0fodykj7TYl7+jTlJ0WBsox9Jco9ZeJI6HRdlRbKf5WjzUP0do9JRO8RzvJEEOggpppFLfdU7thKA72M/rIPbla/cIVpo6f2qYZ3di8d6zBW2emc7WJwt51n6clbS6aq7naHr+TombXw4ujzCskjLDcxsGt4HaUexbVngGuzN2TKNu46NM02yjql9iwGscQWWzaBO/n+3Yz37dbAXcDvDmIEYo/9n7sgwfzD9TbNH/ny/ira7h2Np0UD9eed3n3iG7EmUc7doCxJJcu4et12mfXt4njRkQkolw+gvdtGo3TtFoXaTRW+GwSCARueYLYHQgEAoFAIBAI3Kp0IsyTVo26j2m0HaXYYFfobZ2IxZGgeKxvIGQiru2o24Z19uoGcAmi1yLMo64YJ7yC9x6vDhHpTYR59GbuvrrdDHztHcTNLxJqZKl+6OFVzqTcU5jMOWGcCm+2RwBoSwG/L9/ve/xKjQ+Z17vinhkzowyYgVzttDtNSrr8IOcAky2stROuvJJ3uA/dfoDK2M6lxwbetSgONdOIWkQHMb6M8TuQHrihbgYMKZG2OjG5QmqKOCnS9hGTbUtVixQLZUqFiHIppjBYwVtL2Tn6XErRe3YkLYpLCQ89IkIZThOGkoSidwyrY7RgiEsF7EAfpb4iqVdmmwmJ235RYyvIYs3LeIlwUsCZGONTrLaBrfvZ3GoIBuNGES1idAhVOoJ3+J5fY+yReygM9OVq499+8brNZwEoRZBMXsrV+ocHScz604RORxfwC34PTcfdDTBDiVny59yvU+ufcBdRvjeXRiF4hD9bcF+wUTQndKfJEr8/cZy1rRHBJK1O3+4CHsGa+b7dN4LYDSDWUPqpD2Pvym9o0JkGjd/5Mn56lQ0IAkRxtjHYp53e3b167fHZxl+yOPP19YHqYA3R2BiapqRXruCmp0gvXVp93A2OtSXK5YMk6TSt1iVqtbdot2/+vuSBQKA3BLE7EAgEAoFAIBC4VWl3IswbTdpSpJE4KoXlHQUeSEVIRRFtYvCABc1azJnO4sy6xe52CuoR71bta71WvEsBRb1iVhDvN/EM10WY07iDvqdfzpVq770P3593ZC/mQFRlyOYXFk8kgzQ1i2t9tf8hioV8dGvzndcZLW3e4WYwHLFHcrW61hn3K/UB18zZHRkwcPGF19F0wVxE2PP4g5ueW+DmQvGZEKVkQrcWMX5X5la6pdBM5PZNrE9QhMQUM5GUiFkfM5HEqIkZKBWIY0Olv4z2lTAI/WlKUT0Dacpwmmzbd6+onh1Jm/40paye3dYzHBtMqUB5qA8TWWqtlFqS0qUW4jc2IiSmRGoKeCJSU0RQIt9GgvjaMwSLzQneispUELw7mChi3weP5mppo8WFZ49t04xubO4tXqDZnr9eERFO6vrd3W1JGLdXcrU9ficlLYDIde7u3cwS6wobCHvODuD9uYpwHHhr/n7n+ts7h09SdPELexwDAlGEbTdxJnOyu6iEFem4uiHZws1ZqyGRpfSzH8McGc3V9WqV5r//MlprrXIC24kxT8n6Iq1y/CbI4syzz1GitiN+rw8pxESjo/haHTc5RXLhAm6mOwlQ20kcD1MojNFqXSBJZpidfQXnmts9rUAgcAOyJc1ubr/99tUPWgYR4e233+7ibAKBQCAQCAQCgQDqs37dSZ1a2zGbWpx3VArLf0RIxaIkODEYVwWJEZGsVzeZ2L1uoRug3YbEAQK2Ox9RvM/cKar0Ruy2ZxGTd4VUnk4xrfmYQxVh9qNHF4/MEeO4s5CP1az5iFNJ1t/4AiPs2L8v9/jbp67w4Up34gkP2gMUJe9AOpG+g660yuYdWYS5pVmtM/HGydzDO+65jeLwwJJDA+9OFI/KNKoeo8OZMOXGbjGh22PUYTqChpcILxYweLG0NWI2Aa9KuZD1vY7jiLi/hBqh5B1F74m9MpAmRBtZ6e4yAlS8o9h21KIIMZZKDFfFoIMVbDulVWvi0oRKISKy734Hv5MYbyyxb5KKYEmIfAtnIjzxdk/vXYkQYd0Yzl7EMISXKZBp0KFb7DVmaQaP7GPg0F5mT89vUrt67C123HMb5Z3D2zexG5AjAwl/cW6Su27bNVdr9u2B6sl1n+uMvcgetwvb+R0UhEPpXt6MTzHOEO/hErbzOm5Q9jDDGXZ05evYCMpHgBcQanM14YsotwE2iyOPInyaYqII124TFRdcHwpoIUKcwyYNEu307Y5KlNMGIlmiknOy7X27FyLFiPIvfILG//NL+POTc3V/YZrG736Z8t/6HqS0QqshE4NvZDHmqUChAHRnY+5iVBTBoOoRLCrr39RqKmXsyAhuchIpFknOnMbceSdSXH+CwY1EsbgH5xo0GqcxpsjM7MsMDz3Wk+SuQCBw87IlYvfJkyfXfKyI5HaPhR5vgUAgEAgEAoFAD0jqoB7XrlN1BeqJJ7ZCIVotwryBIkSuiphi1qvbb8LVnbq5CHOiLkWYe4/34NVjjNCVky7iugjzdJTBL+ZrjQfvxK2y0PyewhSx5F0wr7d2oAhe4dzow+w28/NPUs/hyZexK7cAXxNFiuw3+3O1CT/JpE4uM6KD82QhYYYLL7zBQlunRJbdj92/+ckFbhoURWUWxc0J3daNIT1aDL7x8FhNMepQwJsYjwUEZyIcMU0HjcRhBAZKEZERipUiUiogChWXEqlScSkV52640HcLDKYpZXHMRjF7YmEmVaYKEaWoj6TRYraZUIoNpcjeMCJHr7gWax5rCxBUUqxPEFGcdPq8BrrKvOB9CcNwR/Ce6Qje7/JfuDWw70NHefPcRfRaGxVVzn3jee74q58I66oLEIFK/QIwL3aPjPQzNV1m2DbWda5EUs7byxx0u+dqY36Es/4iddPkkg6wl5m5x/brFGcY2UYVuIjySYT/MVcRrqB8h2uub2PtXN9ulyTYQjE/3bgA7QTTbIF3eFMgtSUArAiuk8btvN5Qm5+kXKD02U/S+LdfRC/PO539mQka/+mrlP8fTyLxMhKJSEfwTjKXd9qEqG/pYzeNgkpHGzHZ9bWs3ylvh4bQdht3+TImjmi/c5Lie+4Ee/Nel4kIlcohqtXj1BsnMSaiWn2dgYH7tntqgUDgBmJLxO6f+ZmfWfWYWq3Gm2++yUsvvYSIcPToUR58METfBQKBQCAQCAQCPaE1k0WYNxu0TYV6O6V/BVe3kjm7U3VAgqGNMIBh3tW9oht4OZI2qCLeoXF3XHHeZc5j75WoJws710eYxyeHsdVTudrsxx5b8SxDpsX+uJarXUgrTPhs4fBFPcLusaHc4+dPnOZDhRm6wRF7BCvz3x9V5R33ziqjfObsjmJqVyeZOXk+9+jog3cR95W7Mr/AzUEmdCcYHUQ0ziKHt2apYZtZIHKLweVE7hhHjEeoJylJqhRioRxFWCsUBsoQWWLvKXtHpJmbO77B88BjVUaSNk1jMTaiLMqEKtJXIi3GNGstklZKX8FizY0jdPQEERJKWEmIPHhjiHybiDapFAiCd/cRsteXTPAewst0R/AevOUF7+JgP2OP3MvF5+bjy+sXrjB1/BQjdx3ZvondgDxQvsT5ZkKlNH/N+Tb7eWxBpPdaOWsvstftIups7hKEQ24Pr5uTnJNh9ur89doALQZpMsN2XiM9gvIdhPkUAOEplIeACmJMJngnadbDO0mwhQXX5h1BWKzBtlu4YgFnY7wYIuNppR5VJfW+R9ffG8cMlCj/4vfQ+O0volPzyUz+7Us0f//rlH72Y4hd5nXbxNm1r08y8VsTkN4keWRx5gZEETVZy4b1vrwJRDt3kly4QHLxEvE+S/vMGQqHD984lvsNIBJRqRyhVnuLRvMsiCGKBimXD2z31AKBwA3ClnwC/b3f+701H3vs2DF+/ud/npdffpl/8A/+AZ/5zGd6OLNAIBAIBAKBQOAW5FqEedqg1laqaUTqHJXi8h8PErEdwdtjfY1s5SXGuAWubrORCPMkc3V3+gBuFlVw3uO9QwSkJxHm5xGTF6kH/vhq7n7zzoMkB8aWPYWg3FuYyNVSFd5sDwMwk0bEt92Te3y21uLR9rGuaCgDMsCYzfcwHPfj1LW+zIgOLotUVNNxdS/AFguMPnz35icXuGlQqaHSwvgBRAsYP4rQhdiBGxhDiqjDqM8iXE2MdkLHr4nciJA6pZ4keIVKMaJghbgUY8sljEDZOSL1lJ2j36U3jVQnQNk7it5RtxFxwTKbeKZFMINlWs2EmWabSmQoWtOLYI0bByHb1GAssW+QmiJWE2Lf6mx+uBU2fWwtQvY6480lDIN4mQGZBR245QXv0UfuZvLNk7Rn569Pxr/9Iv9/9v48yLLsru9FP7+19nDOyTmrMmvqrqlHdbekbklIIAkDkkA8G+MLhnffc2DwxRh4l2fCgYfAjnAQjrB9w3bE9Qv7+YLNIGPsZy7XvgKuzSwJoUZogJZ6VKunmueqrBzPsPda6/f+2Kcyc9fQVTkPtT4RFd3nd846Z+XJk/vsvb7r+/0NHzmIzXf3cXklDKaBq5eucfjI/sVaMjqJzr6xYh3Qiee8vcxhv9T3eyKMcSZc4roobVJaLLW3OaTTzMpWit2C8p0In1hW6QKfQfkLQNUHPvgewTmcgMnSpb8sETRNEOcxrovLq82ZzuYkoUo38QrOK9uxq4MZG6D5433Be36p/7Z/5Ry9//x58r/ywdtfNwiVqzsUYGzl7k6rNiUbwXrEmWMNyeQk7vx53JWrYAzl5cuk+/bdfew2xtomzeYDdDqnsabFAkKSDJKmo1s9tUgksg3YdltNn3zySf7gD/6AgwcP8oM/+IO8+uqrWz2lSCQSiUQikUhkd9GPMA/FAnPO0ik91kB+1whzj6IYPweSYjEIIH1X94qlbu+REMD5KlpvPSLMvUcVQtD+gtVGRJjXRV5ZGKb59fla7W6u7geSeYZsWau9WYzQ00oc+bPkCUaHbuqvd+ZVmsatctZ1HrLHa7dLdZzyp+8+0AUwlrnzV1m4VBf4J9/zjrigfh+h0iZIG6ODCA1M2IvRxlZPa8MwOBLtYUMJCM7keMkJpJQmozADeMkAoVsG5guHIAw3UrLEkA+1sAMNMlEGfUkeAqNlydAOErqXY4BB7xh3BXsS2JfBgHe08gQ71GRBDLM9R9jmbvX1oIo1bxEkwUuGNyk2lFgtgJVH0EbeHqM5JuytNtjoECoFyPzdB+5yTJJw8EPP1Gqu0+Pin758hxH3L5PuQu32ntEWb7SHV/VcZ+0VSurnZkf8fhDhnIzW6vuZxepWHxMOozx1U+3PgEsAfXe3IXgHCsHVz1VJU0gsJpRV6w6xuKSBkSp+2/uAC8p2PfSbiWEaP/pRaNTVePeVk/T+zy/XWqvWB/ZbVLiSqldSefvHrQsKWiUFoKb6twokTbATE4ROB399GnfpEn5mZp3nuvmk6RhZNkG3dx7n5pidfRHve3cfGIlEdj3bTuwGGBwc5Kd+6qdot9v8i3/xL7Z6OpFIJBKJRCKRyO6iNwfB0e316EmDhSLQypI79nW8EWHu8QgB0Q5I1nd1V3KyrrRXN1SubgXxDk3WJ+7Qh4BqFaNoZCMud/SWCPPmn9YfURycoPfIg3d8hkw8D2XTtdpcSDnjhgB4tT3MkUcO1+6/dnWGx8PJVc96OZNmgiEzVKud9qdx3EVI1wAEVAwXn69vSk4HW+x54uF1mV9k+6PSJcgCRluINjFhDKOtrZ7WBqCVyB262FCiCKXJK0GThNLkfZEzBYGgMF84us6TJ6bqz51b8tEBTGppeU/TO5ohMFb2yLZc9Fg7iSqjrmRv8OxvJIzhaWmg0cxwrZxpp/T8NlU91hMRSmng+o5uZ3JEA0kUvDcEo81+kkSOCQME6aJR8Gb4yEGGjhys1a69/Aada9NbM6FtyvH0GvPtolY7bw/e4dFvjxfPOXu5VtsTRhkMLS4wUtsImhDYx/q0olkLysfQZckTgiL8LvRna5IEDYp6TyhuFrurTY1WA3iPNykuqTa6Jf3vQaj6dm9X7KFxmj/ybZDVrz3cn7xO8d+/evtBAiQZVTsfB67HRh7bVQL0k7MkGFa+o7jCtJrY0VH89DRhYYHyzFm0213HmW4NeX4Aawdot0/h3AJzcy+iu+CcKhKJrI1tKXYDvO997wPgU5/61BbPJBKJRCKRSCQS2UVoqPp1l20WCk8npBQuMJDdWWwu+32dnThM6CB4jGZ9V7fpOztWMZfyRoQ56xJhHhRCCAQNSN9hsu7Y84ipL6gP/GGndnvuW977tj3xHsmuk960OeDV3hiKUHjh7NhTZGm9l/YD155fF/enwXDUHq3V2trmQrhw+wHL8R4Qps9cpDs9V7tr3/uewqzThoXI9kbpEWQe0RzRAUwYxoShuw/cUQSMlqShiwklQeyiyB0kpTQNStskSLIYHlF6Za5b4lUZyBIaqSVp5WSDLVJh0c097EqGXbl9F2NWSa6BPa5gfypMZpZBXzJoDaaVM2+qqPPt6vRbNwS8ZJSmQcDgTIZiSEMPc7fNRJEVY7SJ8XsQmhgdJEgHlYW7D9zlHPrg08jyfsmqnHv2uTs7Vu9DjEB36kqtNrZvL/Pl6s60ztsrlNRF4SPuAD1JucpgrX5Ip1f1GuvLCPChWkU4AVTJRWIsYgzeueq82i+L0TaC2gRJDLbs4SUhmKpvt7UGr4qqUobtLTzaY5M0/tq3wE19usvPvEzxqZduP0hMP868rPomuY11E2u/bzcIonbVgrcdHcEMDuCvXiN0uxQnTy1df+1QRIRms+pB3u6cpCyvM7/w2lZPKxKJbDHb9vrqxknYpUuXtngmkUgkEolEIpHILqIfYa5Fm5kyoV2Gqn9semehsnJ1Cx6P0Woh2YYMWXR1r2JBKwTE+0pANfZtxeF7fkrvAEVDwGxYhHl9IcVM5aSXll7HjQ/TeeedHc5jpsvBpN4X+3zZYjpUrpg/nD/E4w/Ve2nPXjjPHn99rVMH4EH7ALnU49HfcifuLYTeB4LCxRfq70FjfISxm5zokd2JUhLMHKIpokOYMIgJo1s9rXUkYLWoxEl1lWPNNAiS4k1GYZqVkCnLN6NAp/Qs9BzWCMN5SppZ8pEB0mZGI3gGvKPRd3M3trkAsBYEGPCe/VpyqJEwIoFh72imliLPmFah2MZuv/UiiF10/Fex5smyWPPd//NvJkYHMH68SpjQFkHaqLTvPnAXkw0PMvn047Va++JVpl8/tUUz2p4c0XO12+PDDZ6f27Oq5/ISOHOTu3tchxkOA7dEmY/SYUC3PnJZ+RBKPbpd+D3ob8wx1qIhoCHgi7oLnjwFm2B9ie87xF3SwPZPhxf7dm9zkscO0viBD99yDVL81lcpP38H4dT0489DUf3b0I1M1Xu4GGe+Bhkn2bMXkgR3+TKh06E4c4advgPNmIRW6yghdOh0z9HtnqPbPb/V04pEIlvIthW7f/d3fxeAkZGRLZ5JJBKJRCKRSCSyi+hHmPd6XbrktAtHIzOIuXOEeSkGJyBaINoG7ffr7veQW5Wru9ePMHcOXQdXN0AIvlqYUzB3+HnWhsJNYnfzS3Xhav6D777FJXIDQXk8r4vWpQqvF2MAnG2nDD/0WO3+onQ8OvviWicOQE7OIXOoVpsK17mu9yCkBw8Erp04R7lQd7Lvf/87+/3RI7sZxRHMDKIW0WFMaCFhbKuntU4sidyCLoncJH2Ru4WTHL2pNUJQZb7n6LlAM7MM5Am2kZEPD5Baw6B3NDQw6BwjruR+yT6wwGhwHEmUvZllMDiGUSS1zNmUOZaibncttVjztB9r7kl0Y6Nv70eMDmLCWJU0oS2CLKDSufvAXczE04+RDQ/Uahe+8Dy+V9xhxP3HKLMsLNTjnGcb+1et/12wVyhu4+6+qoP0qJ/nbg93d4rysVpFuA58ofr/xCIiBOcIvjq/Xhpate4weFCt+nbbBiKC6fft9tu4b/dykncdJv+/f+Mt9d7/+SXKPztx6wCRSvAOru/u3thI8PWKM8cIyeQkhIC7cgU/N0e5CwyG1rZoNB6gLKcoeteYn/86Zbn1rQIikcjWsC1XJH71V3+V/+V/+V8QET784Q9v9XQikUgkEolEIpHdgSoUc1WEeRnoaUq3DAykdxabnVhAcHisFkgosVT9+gwQVtOrG6oI874Tm3WIvw4hEAIEDX2hewMudcwFxNTju1tfXvr5VYT204/ecfjhZI5BU18IfbMYpcASFJ51j/DAZD3uMrv4OmlYHwfQUXsUK/V49BPurXsb7AO+9Fx+5c1aeWD/XoYOH1iX+UW2L4pHzSyoQXQEExqYsKdyG+1gDA6rvcW/MWdSnOR4EpzJ6JkWTjL0NskThVdmuw5FGWwkZJklHWqRD+Y0CAz6kiwExsqCVvA7/J1aHakqB8VzOBeGjDLiHU1RCpMwYyzFbn9XFmPN836seR5jzTcIE4YwYbgveDcJMo/K1rtntwqTJBz84DO1muv0uPind4hnvg8RwM7Vxb4jD4xzcnZ156RBlNPJxVptVIcYYYjz1I1cB5hBtkV/4adQHqxVhM8B8wiCSZJFodstd3cbg1qLwSOh3rfbCrj+qfF2jzK/Qfr+h8j+0vvqRYXer34e9/LZWweYBDB9d7evYs03kPWKM5c0wU5MELpd/NR13OXL+Onp9ZzqlpBl46TpHrq9czg3x+zcC4R1unaKRCI7i/WxUNyFH/7hH77rY0IIXL9+neeee47z58+jqiRJwk//9E9vwgwjkUgkEolEIpH7gHKhWpQpO8y6hHZZuS5a+Z0X9op+hLnisKELWmIYxPRdBqsSu0NAvAPXjzBfB1dwCB5QQlASuzH+SUm/XrttpjKSC0s/f+/hBwhDAzcPAyAXx/Fsplab9SlnXCVuf+7qCO9635Ha/d2FNg/Nvb4eU2dIhpi09Xj0C+ECbe7F/aYQPFdeP4Pv1Rf09n/gXRvTGz2ybVACKjOoKkZHMZpjwgSyPffO3xMGh1GPaKgcaX0RUpFFJ+6ddFhVaJeO0ilpKrSSBLKEbLBBKkLLOxJVWt7T8m63y7l3RYAhlIEULotw1QUyVeYxzBlLhtIKAbuL472DJJTG9l3dBqXEhhKRgJeUjWi5cT9StVRQggEhEGQWwzCi+d2G7kqGjxxk+MhBZk8txfpee/lNxh87RnPvbknlWBsP6nmusHTuNTyQ8dzCBMdGLr7NqDtz0VzjAfbR6G8Khcrd/VoyxTGuLdYyPJPMc+mmGPHNR1C+E+Hnl1UK4FMofwlJLJQlwTvEGTToUhJUmiLOY7zDiyWYhCAWa5Wy9ARVfFB2SqRJ9uceh25B8bsvLBWD0v0Pf0TjRz5C8sj+pboANgXfA/GVuzuzbJynUKnCzAVVA6KsNiHENBvY8TH8tSkkyyjPnkXyHNNsruuMN5tG4yAhdGl3TjFoMmbnXmJk+BlEdu65aiQSWTmbInb/+3//7+95AeRGr+7h4WF+4Rd+gfe97313GRGJRCKRSCQSiUTuiX6EeVl2WQj9CPPUYO8gNgcqZ7czBrSLaLtyemiGUVmbq1tBvEPT7O6Pvwuq4H0ghIAIGxSpfWuEeeuLHlm2itd+5vGbBy3yaDZNctP79WoxDgjTheXS6GM8NFB/L/ZdeRFZJwHoIXu8drtUxyl/+t4Gh0DZ6XLltXq/z+GjhxjYv3dd5hfZniiKyixKwOgoohnG71ShWzF4THAIuihygyFg8CYlkLyt7uiC0i4cQaGVJ6RWMK2crJGRa6DRF7qHXUm6E/JbNxED7E9gRALnSkg00PaBjrE4mzAggdTtXge8ilDSwEpBEkDFYENBguIkZZsGL+44TBgDFDXV31+QOYwKwtrPNXYiBz/4NHNnL6HeVwVVzv3xV3jou78tblQDcrdAZ36B5uCyjYoj++i6izRWsWKuopxJLvKIO7xYG9ZBGrqXKbnAOEv95A/pNJdkq8VugIMoTyN8dVntq8A3IBzEJCnBlZhE8WVBkvc3j2QZdLuY4HD9vy+XNEjDPAKEAKVXmunm/jRrIf32d6KdgvKPXl0qukD3l/6Q5o9/DHtk2TmvsRAs+BLEVi5v09iwuamEyt0tigRTHeNWeR1mh4fRXoG/dg3JUspTp8gffhjWqa3UViBiaDaPsLDwOu32KUQsCwtvMDh458StSCSy+9iUo9jhw4fvehJljGFoaIhjx47xLd/yLfzAD/wAe/fGhZNIJBKJRCKRSGRdWBZh3i4CJRndssPI26xClZKggBODdfOVq1sTbP8yYtVid9GPMNf1ijD3qNIXu6uYv3XHXLwlwrz53NLraGLpPHn85lEAjJsO+5N2rXa2HGAmVAuGv3FpP9/y0X21+930VQbbq3MW3cykmWTIDNVqp/1p3L3G6HrP5VdPLS2WA4iw//3vXJf5RbYnldA9h+IwOoJohvWTyOYsI6wjAaMeqw6lctkGqRxYQSxe0v7tt0Gh5wOd0mNFGG5YSBLSgQZpYmgGT6qBpvcMeBdly7ehaQ0PGbhSBK54SINjwQlzqSVLM1reY3Zr7LuAJ0ONIQk91ORYdaSht7TZIrJmJIxhCAQDMEMws5gwgrCDVLd1IhseZPKZx7n0py8v1toXr3L9tVOMP3Z06ya2jRjuXqQcfGjx9mNHRvny8w2++dDqejFf6ru7mywlChzxBziXnKmJ3XtYoKEFXdn6jRjKR4FX+q7uG2fRv4PyP2ESS3AlwXm8lNgsRwSwBjUG6x2lQsDikgZZuYARwYVAEgTVqs31TkBEyL77vWi3xH1pWduewtH5+U/T/InvwB4YXarbDFynijF3Um0A2MAzgBtx5jeEb8Wv+pIn2bOHsixxly8j1lKcPk127NjO+WXdBmNSms0jtNtv0u1eADEkyRCNRmy3FIncL2zKmfTJkyc342UikUgkEolEIpHInSjbSxHmpaVTBnyAVnbnS4LCWLwYVKu+toQCQ4pRQVfrOA6KuBsR5mZdIsy9D6gGVBVrN2aRSdK6q9tMJSTnlhaEOu84hjZujUoVlMfz67VaoYY3ilEAnp9qsv+Rh0iSpXmHoBy6+sK6iD0Gw1Fbj0dva5sL4cI9PoPSm5nj2olzter4Y0dpjG0HR1Jkw5B5VApMGKoc3WFyh4lFAatVXLlCX0y0gOBNgidF7yHeMii0C4fzSp4aGomFRkbeyslFafoSqzDkSvJt0YN1+yMCk7lh2HnOdQKpTWj3Sjom4POERmLJXIkJu9MdvxhrHnogMdZ8vREEE8a5EWleCd4zmDC6AzfrrJ2Jdz/O9ddOUswuLNYufOF5Ro4exOZbL7RuNXuKi1xkSeweaKa8WU7wzZxZ1fOpwOnkIo+5pXOvIW1xVh+klIuky+KnD+kMb8rE7Z5mkxlE+WaETy1WhDMoLyPyVF/wdtg0IZQlNuufC2QpxncRAh6Ls0t9u8t+ukkZAtkGnZtvBCJC/v0fgF6Je35ZAlKnoPtv/4Dm//vjmL1DNx4MJoXgqj7ergtJawNnd1OcOVQx6qvBCOnEBOWFC5RXroC1lBcukh7c2cJwkgzQaByi2z2LtU3m518lSQZJkqG7D45EIjuenfNtE4lEIpFIJBKJRFZPbxaCw5U9Zn1Gu/CkVsiS218SuH60rxODCR1EPUYdpt/7Mpg1RJgDeI+uQ1xe6Du6gwZEZIN6s90mwvxLAVkmSLSfeey2I4+kswyYuoP6jWKUEkvXC3+4cJgnj9d7ZzaunSAt6i7y1fKgfYBc6iL8W+7EvW9W8J6LL79VufD7iLXse9+T6zK/yPZEZYEgXUwYQMgxYS9Gd4ooErBakIYeguJNijNNAgneZBSmhZP8noTu0itz3RIflIE8Ic8TzHCT5kDOgFY9uRshMF72otC9ChqJ5dhAyn4tGZLAMAHaHdqFo51klGm6azt5qwilaVSbMCTFmQxRT6IFq+3FGllCMJiwBxMaiA4jaglmBr3XRJNdhEksBz/4TK3muz0ufvmlLZrR9iLxHcqF2Vpt7769nJ1bffLQZTNFW+rO8MP+IBd0pFY7yHTt/Gpr+UaU+vmo8PtAibEJoARXXUcszjjNqnPv4PFYgrF4sRhrqhZDqpR+5x3PxBjyv/Ih7OMHa3Wd69L5t39AmFmW1mT6wn8oq39abujcVEK1owJBVPr/v0rSBDsxgXZ7+Kkp3NUr+Onp9ZrqlpFle0jTcTrdszi/wOzsC4RQbPW0IpHIJrApYvfp06c5ffo03t/7bqMQwuK4SCQSiUQikUgksgYWI8w7tEtPISnt0jGQ3XkhrzSWgODFYHUe6S/eWM1QWL0AURbgPKKhckGskeAdoGgIGFMt/qw75hJiZmql5nPLnNjNnO5jR24eRUMcx9P6AuqMzzjnqt6Qv3FmhA+973Dtfl8W7L32KutBTs4hc6hWmwrXua7X7zDiVtpXppg5d7lW2/vOR0gHNtK5EtlKVDoEaWO0hdDE+D0YbW71tO6KoUqgSEMPAGdSnOR4EpxJ6ZkWTjL0HiI6VaFTehZ6DmuEwUaKaWZkwwMMpAlD3pFrYMg5RlwZXQRrwBiYGMg4lhvGXMGYNWRlQbHQpR2UXp7jErs7RW8BJxmlyVGqHvKKkIYe5j4UZdebSvCe6AveI6CCmpkq+vc+Y/jIQYaP1IW7a6+8SefqvZ8P7Gb29OppN48fHeXZC2vovyxwytafc0CbtPWhWq2BYy8LbA8SlO+oVYRZ4I8RYzDWEJwDheD6gm5iUREsniAW1apvtxX6fbsV73fm0VsSS+OH/hzmWN15r1MLdP7tp9D5/mYGYcndrQFcjzVcJd0TVZz5DcHbrunlTLOBHR/Hz8wS5hcozpwhdDrrNtetotE4hLVNOu2TODfP3NzL6LbZWBKJRDaKTbkmO3r0KMePH+frX//6PY85ceLE4rhIJBKJRCKRSCSyBhYjzNvMuZReP0W8ld9ebFagEIsTgyiYMI8JJaKCIalcBatBFSld1a9bDNzBVb4SQvBoCFVPwHWIRL8dktwcYW5Jzi5zdT/1MNzGpf5Ydh27rK+5KnytGAeEk/MZ14ePsn9PXTQev/I1TFgfV8hRexS7rBexqnLCvXXP4zV4Lr74Rq1ms5SJpx9fl/lFth8qPYLMY7SJ6AAmjGF0YKun9bYYHIn2sKEEBGdyvGQEUkqTUZgBvGT33IcyqDLfc/RcoJlZWo0UGWjQGmwwKIEBX5KHwFhR0Az3n2i2UTQzy+HhnAl1jAfPkCi60KHT7tEzliLP8Bt0jN9qgiQUplWlD0iGlwQbSqwWbLRostupBO9JjOYYHUGVvuC989yma+XgB59G7LJNjqqce/a5KAABA51LtfehkVmumkmKNRzir5ppFqQuGk6Gw8zctHnsoE6v/kXWncdQjtUqwh8DM5gkQVUJ3hOKZeepaYoVjyKEvtgtIhgRfNAqgWmHfsQkS2j+9W/DHKo73vXSDJ2f/zTa6buFTQIYcAWohw13ESsq1fENFdDVpxAA2OEhzNAQ7tpVtNulPHkSyp294UrE0GweRQl0Oqcoimu022/efWAkEtnRbNqVwmpPnuJJVyQSiUQikUgkskaKOQgO73vMlJZO4bAG8juIzaXc6GtrMNpD1IMWWHIQIazWPH1j4cR5NFnbwgz048sDBK1c3bIhlzcKN/Xrbn1ZaxHmndtEmO+1HSaT+iLnWTfIXMjwCr96eoJve2/dZUVnlsHpU+sy6yEZYtLW3SgXwgXa3LtbY/7CZeav1F1fE8+8gyT2+NyVKAVB5hDNER3EhCFM2K49DkMlcocuNpQoQtkXuT0Jpckr8VDSFYU9FF6Z7TqUKrY8aaTYoRaDjZShUEWWD3jHqCtIogi57lgj7BvKOdRMGOt1GTeQOkcx26ZXeooso8hSwj1uXNhJVLHmzRhrvgEIBuMnEc0xOoqqojJ93wne2fAgk8/UN6u1L13j+msnt2ZC2wgbCkxnulZ7+Mg4z11ew/nObdzdLW0wo/VzxgnmyHS7CIuC8nF02Ren4BD+ADEWMZW7O4RAcP2dAFmKwYOA12V9u00ldiuK24FR5jeQZkbjb3wUmRiu1cPZKTq/9Ido4arzjCQDQrWh1/XY+ON26O+FEkTN2uLMgWR8HEkz3OXLhG6X3unTEHbu7w3AmJRm8wjOL9DtnqfdOUWvd2mrpxWJRDaQbbst9obIbXbpzt1IJBKJRCKRSGRTUK36dZcdukWgkJz5wjOQJcgdBINSLB4hIFg/h/WgWmI0I8gaBJ7lEeZ2HSLMQwCUEBSzIb26AXMFMdO1UmNZhLkbHqB3rB4Vbgg8lk3VaoUa3ihGAfjUhSEeeuwwA8209pi9l19E1klAe8jWE7JKdZzy994iSlW58NW6yJ8ONNn71MPrMr/I9kJxBDOLaILoEBJaSBjd6mndFqNlFfMcSoLYRZE7SEppGpS2SZBkRSK3KiyUjnbPkSbCYJ4irZzGYJNhC0N9N/doWTDg/UY0S4gsYzBPeGCsyTieCV8yiBIWuhRzbRxCkeeUyS7cbnDbWHNirPk6IFisn0Q0qxzeBFTuP4f3xLsfJxserNUufOEFfC/2sx3pXqzdfuzwCH9yYW0tW66ZGeakXasN+4dwy5y4BjjADNuHfcB7axXhJeB05e4OAQ0BX/Y/M0mKiGAJBElQsXiTYE11RhsCO7Jv93LMUIPmj38UGasn3YS3LtP95T9Cna8Sq0zS79ut4HsbPi+V0I8zZ81x5hghnZwEhfLyFcL8HOWFC3cft81JkkEajYMU5VXK8jpzc6/g3PxWTysSiWwQ21ZJvtA/oA4Nbded5JFIJBKJRCKRyA7gRoS5azPnEsoApVNad+jXHRCcWJwxGFWMzgIFVWe4xurFbgUpXNXTTgzYtTm7VcF7XwnespER5vVWTGbKkJ5Z5up++jEwdenraDpLy9SzL18rRnEYrnYtn5uZ5P1P1l3X+ewFGgtX12XOk2aSIVO/jjrtT+NWIJZMnzhLd6a+GLTvfU9ibhPXHtnZKB41M4haRIcxoYkJ47X0gu2C1QKjDm9SnGkQJMWbjMK0KE2DICs/rrigzPXK6riYJzQaGQw1GWrlDBNoBE/Le8bKgjQmz20aqTUcGGky2UoZ9yV71WGdo5hZwHd7uCShaOR4u/v6eddjzfNlsebr0+LifkVI+oJ33+GNR2X2vhK8TWI5+MGnazXf7XHxyy9tzYS2Ec3OZXSZkzVNDGZ4LxcX1nB+KXAqOV8rNciZDk/Uaod0ujqx3SYo34ZS71ku/A5iBREhuJLgqzZCCGhaubu9TVHvcbaBMdWeM6+K26F9u5djRgdo/thHkaH6++JfPU/vP3++ei9MStXUvARfABvf6mQ948xJLMm+SbTXw09dx127hp+auvu4bU6W7SVNx+h0zuD8ArOzLxA2PGo+EolsBZsqdt/JObKcsix59dVX+Sf/5J8A8Nhjt0YCRiKRSCQSiUQikXukH2Gursd0mdAuHEagmd5+QaSQSjhwYrDaQ0KBagejCZg1LKKUJaBVhLm1K3Jd3o4QPKqVu9tIJcWvP7dGmDf/jJoI2H760fr9UnI0na3VrvucC24AVfhPJ8b5tm94ELtMINcQGLu0PgvNBsNRe6RWa2ubC+He3RnBBy69+Hqtlo8NM/bo0fWYYmQboYSqf60KoiOY0MCEvRvUEmBtGC0x6vEmr0TAvsjtJEdXGWvdc4H5nkMQhhoJ0sxJB5uMZnaZm7tk0LttKP3fHww3Uw6NNhg2wqSvfhdlp6CcmQfnKbOUMs92XbT5zbHm3qSIVv3pY6z56hFSrJ9Y5vB2qMyhu27LxJ0ZPnKQ4aP1NirXXnmTztXrdxhxf2BDSd6rC3tPPTTGs+cadxhxb1yXOWakvnkwC4+iuvQ9O0DB6ArazGw8LZRvqVWECwjPY5KE4Ct3tyv6gmGaYnFgDCFI1bcbwSxGmYPfqY27l2Emhmn86EehWY+3d189Re+/fqk6iph0yd3tupswq/WNM5c8x+7Zg5+dJczNUZw7R2i37z5wm9NoPIAxDTrtkzg3x+zci6jG79JIZLexIVew1traP6hi8J566qlb7rv5X6PR4Mknn+T3f//3ERG+7/u+byOmGIlEIpFIJBKJ7H5UoTcHZYeeU7pktHueZmYRc4cIc5PgxQCC8bOYAGgPuxZXN1Ritw9ICLAO7mDvA6oBVd241kfmKmLqi7/NZRHm5eQY5cHlDm3l8ew6dtlbGxRe7Y0Bwp9ea9Ed3Mejh0dqzzk89SZJuT4LSQ/aB8glr9XecidWtJA/9cYpioX6ouv+979zw9zzka1hMcZXFaMjldsxTGxPoRuH7Tu6FUNpcpxkqxa5VWG+5+gUnjwxtJoZOtBkcCBjVJSmdzRDYKzskcXF0C0nTSwHR5uMtzJGJbC37GGKks5cB13ooEDRyCnTdHdJlstizQPJYqx5EmPN14SQVcc6zTA6jFLed4L3wQ8+gyxP2FHl3LPPLbaUvF8ZaNf7+T58aIjnrrZwa/kaEDiV1DccZuS0Q71/+iHdbpsNvgFlb60ifApJqmNP8I7gHBoU0hQTHBghiMXZ6jzUGiEs9u3eHZ8te3CM5t/4Nsjq1zLuC29Q/LfnUEkAUwnewVX/3WDWNc4csEOD2OFh3NQU2u1SnDyFljv7O0fE0GodRQm02ycpiynm579+94GRSGRHsSFXsapa+3en+t3+ff/3fz9/62/9rY2YYiQSiUQikUgksvtxnWqhxbWZ8wleoesCrez2YrPDEBBKsVgNSJhD6VaLJtJc/TyUvtjtQGRdIsxDCAQNiFQLGBvBLRHm14X01HJX92PVz9NnwnbYm9RdHGfcEPOaseCEXzs1zsc/UO/vLWWXoat19/hqyck5ZOrPPxWuc30FC6i+dFx66Y1arbV/L8NHDt5hRGQnomg/vtf3he6scjuyxgjMDcDgsKGsHK4klfAnq98wU3pltlviQxVbnrRyzGCD0TxhODjyEBh2JcOu3Iay//2LCIwNZBwYaTKYWiYJDHa79NoFxWwbW5R4a+g1clyyu6LN67HmGaEfa25irPmqMTc292iG0SFUClTmtnpam0Y2NMDkM3WxtX3pGtdfO7k1E9omNDuXq9Y/faw1PHBwnOevZG8z6u7MmHmmb/58hXegy2Kn9zFHohsfe33vWJSP1yrCAoZnMUlKcB5VrXp3C5AmWPV4m6EBvEmxstS324Xds3HMHpmg8T99C9j6WUL5h1+j/PRLYJPq+ks9+C6bkcaxPM58XQTvsTEky3GXL1eC9+lT1S9yB2NMRrN5FB/adLrn6PbO0+mc3uppRSKRdWRDGq79zM/8TO32P/pH/wgR4cd//MeZnJy84zgRodFocODAAT74wQ/y0EMPbcT0IpFIJBKJRCKR+4PebF/sLpguM9pFtUjRym4v4RTGEhCCCFnoIFqi2sWQgFhWvXLiS0RvRJgna04c994DiobQd3VvUHxtcnOEudwUYb7UcskQeCyri8q9YHmzqFzc//XUGI89so+9o/U4zNHLr1RumHXgqD2KXdazWFU54d5a0XNc+dpb+F69j92B97/znlpSRXYGldA9h+IwOrxM6N6O/dhDJXRL0ne2ZqsWulWh6zy9MpBYoZGnaDOjmScMouTBkYXAkCu3oeQfuUEjtRwabXG93UM6JQ1XMF1A2wcaeYpppLg0xVtLUjrsDl+cv8GNWPOEHgQBEUwoMQScpGxyl8JdgdEGhAmCvYIJSjBzKPOIDm711DaFiXc/zvXXTlHMLkVsX/jCCwwfPUSSr03c3akY9TS71+i0ltaunzo+xue+fIH37ltbj99TyQVGy6HF25YcFx4ltV/r31Ye5DonbnJTby0PozyCsLy1zRcwyTME1yI4j5cSm+VImmELT2Ez1M3hkgZZKKq+3SHgvKBa2yO6o0kePUDjr34z3f/wR1WMU5/it5+HRkb2jUfBlZDYyt1t8js/2boQQA0ipnqfAcWv/hLJCOnEBOWFC5RXLpNaQ3n+AukDh+4+dhuTJAM0mw/S6ZzGmOo4Z2yLPNtOf3eRSGS1bJrYDfATP/ETPPHEExvxkpFIJBKJRCKRSGQ5NyLMXYcyKAs+pV0U5InB3iaOWoFSLE4MovQjzJWgPSxDa4swLxyEgASPZunqn6dPCK4fYc7GRWubq4it925sfmXptXqH9+P3LMWRH09naZq6I+e1YhSP4bXZnD+bHeVvfsf+2v1p5zqtmTPrMt0hGWLSTtRqF8IF2ivoAVl2elx9tS6ODx0+wMCBiTuMiOxIZAGVAhMGK1djmEDYjsJGIAk9gtjFnsVeVnf8CKos9DxelTyzpI0U8ozh1DCoAYsy4BzN4GNv7h2AMbBnMKeVWa7MF2QuMNPu0C4cifc085QyrXp5e+9JSofZDfHMAo6cYCxpgGAMiZbV30k/+SCyMow2we8h2GsYVYLMYxBEB7Z6ahuOSSwHP/QMJ3/7c4s13+1x6csvcejD79nCmW0tzfbFmth99MAgn2w3udZZYE9z9ZtnZs0CU2aG8bB07liGJ0nM64hUmx4P6xSnGe+3E9oeKN8BvIn03cmCx8gfYJLvITiHTRNCWWKzFNuZB5ujQXC2Qc4c1gi+31baByWxu+dbNnnng+T/4zfR+8+fr9WLT34ZyS3p0wf7m457kG38pqQqztwgIks94WUNaQGJJZmcoLxwEX9tqtpk1Wxg9+xZnwlvEWk6hvc9er2LGNNgbu4l7Mh7SZKhuw+ORCLbmk359vzEJz7BL/3SL/HAAw9sxstFIpFIJBKJRCKRGxHmZZs5Z1GEbukZyG/vWSzFAoI3ph9hvrAswrxx2zH3TFGA84BU0X5rIGgghCrG3BjZuP7CN7m6zXUhPbnM1f3Mkqu7JSVH0tna46d8zkXfogzwH98a59ves59GXv/ZRy++uG7C2kP2eO12qY5TfmXRfJdffp3gli2KCRz4wLvWY3qRbYJKmyAdjA4gNDBhL0Y32m20GgKJFqhYvKRVD9BVCvKFV+a6DkUZyFPsQIOk1WBPahhWT6aBsaKgFYXuHUczSzg02mSwkTLaSBhXj07PMz/bwXR6pEWBGqHIM8ok2TXR5jdizRXb711vY6z5GjA6gPHjiDYxOkCQNirtrZ7WpjB8+ADDR+tOzWuvvEnn6nbrH715NLtXkWWJO8YITxwb49lza/+uPGXrvbsNGX5Z7+4MzwNst/d+L/D+WkV4FWPPAEpwDlf2UBGwAsbgTIYzKQokRgj9dqW7Kcr8Bun7jpN9zzfcUu/92hdxr1yqXN0awHVvM3r9UQlVpjmCqIGwtuskyXPs3r34uTn87BzF+fOE+YX1mewWkuf7SJJROp1TODfP7OwLhNDb6mlFIpE1sili9w/90A/xQz/0QwwPD2/Gy0UikUgkEolEIpHe3GKE+YxL6RQeH6CV3l5sLiTBixAQrHaQcCPCPIW1OEyc70eYO0jWHmEefACUEBSzgc6Xm/t1N78iiFaTVyN03vlI/x7l8XwKs+znCgqv9sYB4XfODROaw7znsXo8XnPmDHlnfRY0J80kQ6buRjjtT+O493j03twC116vi+NjDx+hMT5yhxGRnYZKlyALGG1Voo4fx2hrq6d1G5RES0AqoZuEUhorPnaoQrt0tHuOxAqtVgMdbDDYTNlrAk31DHjHWFmwe2TQ+w9rhH3DOZNDDVqZZW8zpdHp0pmao2gXpJ0C6xw+TSgaOd6aXfHbVhEK0+onHmR4k2LUYbXHZvSH3W0YHcSEMURbGG0RZAGVe09G2ckc/ODTiF22EVKVc88+h+6GNIRVIBpodq7Uak8eH+OPz+XL06pXxbzpcNVM12pleAeqS6klR/QaRrfX37DyLSj18wVjfg9jITgHCsGVSJZicfg0Q71WxyVT9e32Cs7vzs9U9uHHyP5v764Xg9L9T3+Ce70veIcSdH3aFt2NyuF9Q/C2oGu7XrKDA9jhYfz1KbTToTh9Gi139uYqEaHZfBBrm3TaJ3FujtnZF9Ft9rcXiURWxvbJRYlEIpFIJBKJRCLrg2rVr9t1cKrMlAntwpMlQprcegkQELwYnBiMKibMIRpACyxNwloE6rIA1SrC3K6tE64q+OAJIYBsZIT5NcReq5Uazy2LMH/4QcJQteg3YTvssXUnwKlyiAVNudhJ+K1zI3z8A4cwy9RwCY6RS6+sz1QxHLVHarW2trkQLtxhxO259MJr1Rt8Y47GsO/971yXOUa2HpUeQeYw2kB0ABNGMNu0L63VElRxkqIYSpOvWOj2QZnrlRROaeQJ6WATM5AznhnG1JOFwGhZMOCjm3u3MNhIODTWZDC3jLVSRiz4qVk6MwtIUZJ1e0gIlFlGmWeE3dA4VsBJTmmyfk/7HAGS0ENYQ3TtfYoJQ5gwUh0jtUmQeVQ2x425lWRDA0y+5x21WvvSNa5//eTWTGgb0GxfrN0+vG+QkDZ4+eraW/GcshfQZVtuhBQXlt7/HM8hptf8OutLA+XbahXhMjZ5EVWtenf3SjRNsaEkJE1wHp80MCKIgPcBH5Tduoci/ehTpN9a/zvCB7q/8gX8iUvL3N2b8wYsCd4gwfTd3qvHjo0heQN3+Qra7VKcPAU73KkvYmg2j6IoC+2TlOV15ue/ttXTikQia2BLGvpcv36d559/nqtXr9LpdO66W/AHf/AHN2lmkUgkEolEIpHILsB1+xHmHRZ8gorQLh2D2Z1c3RYFnBiyECAsoNpDFJA1xjb2SigdIJWzew2E4NFQRZkbqRwLG8LNEebTkJ24fYT50Zviy7vBcqIcQRV+5a1xHj48yrGDddf10NXXSdYpzvBB+wD5Tb+jt9yJ2kLq3WhPzTB96nyttueJ42SD29H1G1kpSkmQOUQz0EFMGMSE7enYt1og6nEm7wvdTVihKNlzgU7pMSIMtFJCI6eRGkYNpBpo+srRHXf+7z5Sa9g/3GSuWzK10CNPDDOdgu6Vgmx4gKyhBOso05SikWOdIyndjt/wECSlMJY0dHEiWEqSUOAlIayyz/39SnVsDAQDQqg2CSHItmz3sH5MvOsxrn/9JMXs/GLtwhdfYPjYIZJ8dS0kdjKN7hTGFwS79LM/eWyMPzq3wDsn1uZobZsuV800E2FssebC4yTm64hUmyeP6jXOMopuo97d8B6UP0W4tFgR84eIeYzgDSaxaFAMHhKDN5ZS8qpvtwhBd2ff7huICNl3vQftlrgvvLF0R+HofOLzNH/8W7AP7odQgNmc44mKImr6wrdF8VQXd6vACOnEBOWFC5SXL5NaQ3n+POkOb1lrTEqrdZSFhTfpdM+AGKxt0Wod2+qpRSKRVbCpYvcf/uEf8jM/8zM8++yz9zxGRKLYHYlEIpFIJBKJrITeLKgH12OmbNArA85DK7/19F+B0iR4qXb9i7b7EeYdDNk6RJgH8B6sXbM27X1ACWhQbLI2l/jbITeJ3c2vmEV3REgTOk8+BMCI6TFqi9pjXy9G8Rj++MoAby40+YnvrPfCtEWbwWtvrss8c3IOmfrzT4XrXNeVxaNf/OqrtdsmTZh85ok1zy+y9SiOYGYQTRAdxoQBZNkC+3bCaIlRjzMZ9IVuXYHQrQoLhcN5JUsNabMBuWU0NQxpwAYYciV5jKjc1YjAcDOlkRouz/WwIswXjvb0PD5LaIwOkAXFJxaXJgRjSIsSs8PthiqGwrRItAcIKg4TSgTFS0IMdrx3TBgDFDXVZ6JKxRCE3Sv6msRy6EPPcOK3P7dY890el770Ioe++b1bOLOtQVCancssDC4JeU89NMYvvHSJ6Z4wmq/teHHKXmBvGEX6J8ZCggvvILVfBaCB4yAznGM7fV8blO9E+OXFitAhST9P2ftWNHh8WZAmFkHwNsdr6PftNnSdX+zbnawx6Wm7IiLkf/n90C1xXz21dEe3pPsLn6P5//oYZv84ZCmbc0xWVKgE76pRFYpb/fWYNSQTE5QXL+KvXgURpNEk2btnXWe92Vjbotl8kE7nFMY0+rUB8nxyi2cWiURWyqad7f7sz/4sH/vYx3j22WdR1RX9i0QikUgkEolEIiugNwdlBw9Ml7bfsxby20SYezEEhNJYLAEJ85VATYGhscYI8xIUxDt0ja5uVQghEEJApIqe2xBkCrH1Xo2Nryy9Vvcdx9C+y+lwOld7XCdYLvkWs6Xh/zg5yjc9NcnYUN29MXL5ZYyuT7zsUXsUK0sLhqrKCffWip5j7uJV5i9erdUmn3qYpNVYlzlGtg7Fo2YG1PSF7gYmjC8urm8nDA6rDm9SFEtp8hU52pxXZrslLijNZoodbJE2UyYSw7AGGiEwXvai0H0fkSWWgyMtRgcyhhoJY80UKR0Ll2fQ+Q6Jc2S9arNSkWf4jWqLsZkIOHNzrLmShCLGmq8QCWPV5iAdQjQhmFmUnd2j9m4MHT7A8NH6BrprX3uL9pWVbaDbLTTbl2q3D+xpMTbc4PPn1u7K7Zgel81UrebCY6g2F28f02vItlsTP4pSj+oW82XEXCM4R/CeYA0mlPisAU7xNsP2D69eodylfbtvIMaQ/z8/iH3HwVpd53t0fv4zhOvzEHp3GL0R9AVvbmxqtmtKUpc8I9mzBz+/gJ+dpTx/Dj8/f/eB25w0HSXP99PrXaQsp5mbexnn5u4+MBKJbCs25Wz+a1/7Gj/5kz+JqvLOd76TX//1X+e///f/DlS7nt58802+/OUv87M/+7O85z3vAeDDH/4wL7/8Mm+9tbLFmkgkEolEIpFI5L6m7EAooWzT9gkBw0LhaaUJchuXZCGWgBAQEg1IWEC1i6ggskbBsyzAuer/1+jEDt4DioaAMYYNizBPb4own4HszVsjzBvi2GfbtceeKYdQhF87OYbJc7753ftq92cLV2nO1uPCV8uQDDFpJ2q1C+ECbTr3/ByqeourO2nm7H3qkXWZY2TrUAJqZlAFoyMYzTFholrs3GYYHDaUeJMQSChNTpB73Byj0C0D84XDGKE12ISBBkO5ZcIoDQLDrmTEldvwJ98gFCRU/+53jIHxgYwDI01aecL4QE4zNbRnOxRX5zClJ+sVmBAo84wySTapm+rGUsWaN1EsTjJUDEkoMLq7xdr1RBBMGMeEFqIjfcF7pnJF7mIOfvBpZPn5mirnn33uvjQi5b3rGF8XJZ86Psaz5xqEdXg7TicXCbXe3ZbSL7nom5TsZ2btL7TOKN+OsvQZEZQk/QzBezQEfPAYHCFtoBqqTTciGJFd37f7BpJYGj/45zDH685gnW7T+bd/QLg+C5u6ASlU5wZIfwPk2gRvMziAHRnBT00ROl3KU6fRorj7wG1Onu8jTcfodE7j3Dwzs8/j/WZuTIhEImtlU673/vW//td479m7dy+f+9zn+O7v/m4OHz68eP+xY8d473vfy4/92I/x5S9/mb/7d/8uzz77LH/zb/5Njhw5shlTjEQikUgkEolEdgfLIsxnXUrhA6VXWtmtYrMCpVicMYiChHblwtYuhnxFEcK34APiQyV2m2TFfXdvfTqHakC1ck1sFDdHmDe+uizCvJnTfbS6PjmcztV+JKfCOTfIS9MNvnh1gI++7yBZWl8wHr300rpJ9A/Z47XbpTpO+dMreo6Z0xfoTNUXUve961FMI7q6dzJKQGUW1YDREUQzjJ/clkI3hEroloRAijPZPQvdQWGu5+g6T55asuEWppGyNxXGJJCHwHhR0Ai7XPXVqgWn8ULihNQZEt//5ySK3kAjtRwabTLcTBlupIy2UlzpWLg8jSlKsqIkKUt8mlBm2a4QvKtY8yZeErxkeJNi1GG1AOKH4l4QDCbswYQGosOI2l0veGdDA0w+U3futi9f4/rXT2zRjLYOAVo3ubufOj7GlY7l61Nr7wralYJLpp6sE/QwPiw5go/pNbafMjwGfFOtYsxbGPNW5e52DiMBrMXbFNfvoGoFXP9HceuxW2CbI1lC869/K+aB8Vpdr8zR/XefQuc2dyODSqic3X3BG13bJmQ7NoY0mvgrV9Bul+LUKfA7/7ul0XgAa5u0Oydx5Tyzcy+g65TIFYlENp5Nudr97Gc/i4jwkz/5kwwNDb3tY0WEf/bP/hkf+chH+MxnPsMv/dIvbcYUI5FIJBKJRCKR3UE/wlyB6cLSKRxGoJneuqhRikURnBgS9YjOIwSgxNBA16LMFjcizD26Vle3BkKoYsyNkY0T7WQasZdrpeayCPP2Ox+BpIp7P5TUI/vOuwEWvOU/vTXOoYkWTz9S7183MH2KrLs+C1uTZpIhU7+uOu1P41awAK8hcPH5r9dq+dAA448cAbP9Yq4j94aiqMyhuL7QnWP9JMJ27I8ZSEKPIJYgKd6keEnvaWTplbluSUBptnJkqEkzS9ifwADKoHOMugK7K2TL29B3b1svpE5InMGG6vfvbKBMAs5Wi86LovcufSvuFWOEiaGcfcMNBrKEvYM5VqB7fZ60W5A4T9broUYoGjlhjRu0tgUiONOIseZroBK8J/qC9wioVKkZu/j9m3j3Y2TDg7XahS++iOvtfOfmSmm2L9Zu7x1tsH9Pk8+dW59NgSeTC5Q3xeOX/n1oX4gcoGA/s+vyWuuJ8s0o9c9Ikn2G4It+S9IqM8pnTbxWiRnWGlSV0O/bfT8gjYzm3/gIsm+kVg/nr9P5d3+A9u49jWk9uCF4gyBqKtF7tQikExNgDOWVy4SFNuW5c+s2161CxNBsHgWg3TmBK6eZm3vlvky3iER2Ipsidp89exZgMaIcqEUoluWtUUo/+qM/iqryH//jf9z4CUYikUgkEolEIruBZRHmHU0pVVjoeZqZRW4jYBYmwYugSNVH2t+IMAdkjT0JywK8AxTW2K87+ABUC2Qb1qsbIK2Lv2YOstdvjTA/lMyTLFOOVOF0Ocx/OzvM1V7Cd37jA7XnEV8yfLkeF75aDIajtp5+1dY2F8KFFT3PtTdOU8zXY9j3P/0Y0u9HHtmZqMyhUmJ0CNEM6ycQ7k1A3lwCiRaoWLykBLE47v7ZU4VO6VjoOWxiaAwPIM2M8dQwYQK5BsbKglbw27Az+RpRMIGae1sUvLkhcCs+AW8Vl4T+f3VJ9HYG62VN0aW7gYE84dBYkywxDLdSXFB6820a7Q7WB9JeAUEp8gxnt+MmkZVzx1jzXd6Der2oBO/Jqh2EjqC7XPA21nLoQ8/Uar7b49KXXtyiGW0dWTGLdXVB8qnjY3zlUsZcsfZvGSeet5Kb29sM4sJTi7e2p7s7Q/lYrSIyhbXPEZzHa0BCiU+bEALeZNj+2xXC7u/bvRwZbND8sY8i4wO1ejh5he7P/w7qNvc4rBIWE6sk2LUJ3taQTEygpcNdu4qbvo67cvXu47Y5xqS0WscIoUenc5pecZl2+/5Lt4hEdiKbInZ3u10ADh5cimIZGFg6yF+/fv2WMQ8//DAAr7zyygbPLhKJRCKRSCQS2SUUc4sR5nMuxYdAzwVa2a1is0fwGLxYjCpGO5jglyLM1+LuDQHxHpwHY9fkFFaFEDyh7wIxWxRh7kYGKY4eRFAOp3O1x132TV6bb/J754d550NjPDBZX9Aavvp17Dr1fHvQPkB+00aEt9wJdAUKli8dl196o1ZrjY8wfHg/7BJx535EZQGVHiYMIppjwl7kHgTkzUdJtASkErpJKKXBvajTHefoOSVvZSRDLdLUsj8RhkRpec9YWZBsO1FglSxzb98QuK0XFPA33NuJLoraZRroZp4iq+pFWj0mWMVZxduAURaf534Wva0RJodzcmsYbCS0i0DZczTaHRLnyIoC6z0uSynTdFe8VTdizcOyWHMbYqz5vSKYqh2ENvqCt/YF79353g0dPsDw0UO12rVX3qR9ZWqLZrQ1VFHmdXf3k8fHcCp88cIaN4X2uWymmJb6eaUP7yBo5QYepMckc7cbusW8C6X+GbHp5wluBlQRdYS0SslwahERrAguBMJ90Ld7OWakRfPHPoYM1RMB/NfP0/3l30c32emuopWzG5BgWEuUl+QZyd69hPkF/MwM5YXz+Lnt+HldGdY2aTaPULoZet0LtDsn6PYu3n1gJBLZUjZF7B4fr/pTLCwsLNYmJiYW3d2vvfbaLWOuXq12Ak1PT2/8BCORSCQSiUQikd1Ab7Zyd4swVVjaRbV40spuPe0vTRXwW0WYB9AF6EeYizTXtrhf3ogwd+haXd2hH2GuASNV9N6GINOIrfdmbD639L51nn4MjDBhOzRN3c11shjmV94axyaWj33Dwdp9SW+ewWtvrcsUc3IOmfrC4lS4znW9dfPw23H11RO4bl183//MY4hde2/1yNag0iFIG6MDCI2qz6w2t3pat8VqCRpwkqIYSpPf0591twz0SiUbbGKaOcOJsD9RGgRGy4JB73a+m7vv3rbL3NtGIchy97YuureL1NPLAmVaOblrb4BULu9e2r/fKKVVvAmYUIne5j4WvfPEMj6Q00otjcww2y1RH2h0uqRlSVo60qLEJ5Yiz3ZNrHlpGrh+rHlpckQDSYiC970g2CotQ7O+4B1Q2b2C98EPPo3c1Ibm/LPP3Xdxvs2b+naPDmY8MDnAH53N10ewFXgjOUOofY4Mpf+Gxec/ple3obtbUD5er0iPJP0cwXtC6KEi+LSB6yfMWAHf/znK+yTK/AZm7xCNH/sYNOubEP1XT9D7z5/Z5L8rXSZ4C6J2TecCZqCFHR3FX79O6HQoT59Gd0HbgzQdJs8P0CsuUxZTzM99jbLc3F7rkUhkZWyK2P34448D8Prrry/WWq0WjzzyCAC/+Zu/ecuYT37yk0AlikcikUgkEolEIpG74LrgS3AdeprS87BQOBqJwd7khlagkAQvBhSsOvDzqHb6fV3X6FbplVWEuSqssV+3Dx4loEE31NVN8nrt5i0R5k8/CsCRtN47ccZn/Pr5cU7M53z43fsYHqgvYo1ceglZJzXpqD2KlaX3U1U54VYmpLtujytfq48Z2r+HwX0TkK5tY0Jka1DpEWQeo01EW5gwhtGBuw/cAqwWiHqcyftCd/OeNlgUXumUnmSoicks40YZs9AMlZs723YiwD2iIArmJve2AN4Eyr7AHWwlcpdJoNcXuF2ihGqd+u25IXpnYTHevEwq0dsGSJ1gqk4R9x3DzZTBRspwnmIFptsFKOS9grzbxfqqjzdAkWf4jfwO2kT88lhzk6NiSEMPg9vqqW17hATrJ6v0DB1F8ajM7krBOxsaYPKZd9Rq7ctTXP/6/RXnm5bzJOV8rfbO42NcWEh4c2Z9zps6psdZe7lWU53E63EAhumxl/nbDd1iHkR5Z61i7AuoP18JDsERsiZeElQVYw2qleDt/O77m7kb9sAozR/9COT1z437wqsUn/zjLRC8q9QKVBBN1nQeYEdHMc0W/soVtNujOHUSdsHvOM8nSdNxOt2zODfH7OwLeN/d6mlFIpE7sCln6h/+8IdRVT73uc/V6t/7vd+LqvKv/tW/4hOf+AQLCwtcvnyZf/7P/zm/8Au/gIjwkY98ZDOmGIlEIpFIJBKJ7Gx6s1WEedll1lWLSr3S08pvXYhzYlCE0lgsAbSDCWFZhPka5hEU8a4fYW6qf6ukijAPhBAQYUP7dctN/bobzxskVCpSuW+c8sBeRkyPUVt3KrzSGeGTZ8YYHcz44FOTtfvy+Us05uuOoNUyJENM2vpG4AvhAm06dxhxey6//AbB1QWN/e9+rLoyXKMLP7L5KAVB5hDNER3EhGFMGNrqad0WoyVGPd5k0Be69R6EbueVhdJhhhqkqWUMZdgKI65k2LnNWdRYT5bFk6dOql7aAZQl9/aNeHKfBIok0M0CRRrwia7++CzgkiXRO9wQvUWrqHR/f4reewdy8sQw2srwCrPdqn9q4jzNhTbWebJegQmBMs9wSbIr3qLbx5qXMdb8HhDSusMbt2sF74l3P0Y2PFirXfjii7ekw+xmqijz+rncE8dHEYFnz65PlDnAGXuRDvX31flnUK1eY3u6u0H5GNp3bgOIKDb5A4J3EApcVqXMeLVYqd7PEBR3H/XtXo49vJfGD38rJPUv8/Izz1P+zp9u8mwCynLBew0Ob4Fk714wlvLyZUK7TXH27HpOdstoNA5h7QDt9kmcm2d29nlCiJvDIpHtyKZcF37Xd30XAL/+67++2L8b4G//7b/N+Pg4ZVnyIz/yIwwPD3PgwAH+/t//+3jvaTQa/PRP//RmTDESiUQikUgkEtnZ9Oag7III087SKTw+QCu91VldSkJACAhJCBDmAQ/qEFlj9HHZF4PXI8Lce1BFQ0DMvVgYV4nMILbeh63xlaVLpfbTj4HILb26O8HyiycO0PWGj73/IMnyhSsNjF58ed1m/JA9XrtdquOUP72i5yjm21x7/VStNnp4P809o9HVvQNRHMHMIpogOoQJg5gwutXTui0Gh1WHNymKpey7Se9GUGW+9EizSSNJGAme0dQw6grynRSBqmA8i+7txBtE6UeL34gnZzGevLcYT165utf10LdM9PY2EBIoraKA9YbEC7KD3tq1YgxMDuek1jDcSOmWgU5RtaowqjQX+3iX2LLEpQlllu0KwRsRSlmKNXc3Ys2j4H1XhAwTJne94G2s5dCHnqnVfLfHpS+/tEUz2hqaN/XtHmymHD0wxJcv5nTc+hyggyhvpmduquY4/zQAo3QZZ+GWcVvPMMqHahVjz6D6CqjDG4s3FkeKiGBE8EEJCmFXHEhXTvLwfhp/9ZvB1D87xW99ieIPn9/k2YRqEx4CatYmeFtDMjmJOoe7eg0/M427fPnu47Y5IoZm8whiLO3OCcpyhvn5V+67lg6RyE5gU8TuD3zgA3ziE5/gn/2zf8b160v95Pbs2cPv/u7vcvToUVS19m9ycpJPfvKTvOMd73ibZ45EIpFIJBKJRCJVhHkBro2TlIWiijDPEiFNbo0wL8XiTCW2GByEdhVhDqw5wrwswXlEFezaBFQffNUTU9nUCHOZh/zr9Qjzhjj22XbtcW/0hvmjK4Mc2T/Ik8fGavcNTp0gLeri+GqZNJMMmbpb97Q/jVth5OzFF15Dl60sihH2P/UwlR0jit07iUronkHUIjqCCS0kjN194BZgcNhQ4k2y2Cc4yN0/b6owV3i0ldPIDIPBMZZbRsuCZLsvMC5zby/Gk4eqoYG3gTIJy9zbSpkGupmn6MeT6wbu7VmcokCZKr3UV33Ak0p4B0i8IXHSb2ux+8kSy97BnEZqaGaGuZ5bdB0K0Oj2yHoFqatizdUIRSPfJX28l2LNAwZnMpQYa34vGM0wYd+uF7yHDh9g+NihWu3aK2/SvjK1RTPafFLXIS3qbWyeOj5KEYQvXsjuMGrlXDdzXDHXazWvDxFClexzXK+t22utLx9EGalVEvsZjHYrYTtvVn27VbGmEruV+zPK/AbJUw+S/z8+eMt3ffFfn6X8wtc2dS4qoXJ29wVvdPUtqCRLSfbuJSws4KenKS9exM+uz/XQVmJMQrN5FNWSTvc0vd5l2u03t3pakUjkJjZtReOHfuiHblt/73vfy6uvvsqnP/1pXn75ZZxzPPLII3z84x+n1Wpt1vQikUgkEolEIpGdS28WNEDZZU4HUJR26Rm+TYR5KRalijJPgodQRZgH7WJprC3CXBUpHTgHYsCu/smCKiEoIQSMkSpib4OQ9LXa7eYLSxHmvSMH8OMjPJRer7UWdir8ypkDlGr4zm+sLwIb12P4Sj0WfbUYDEftkVqtrW0uhAsrep7O9VmmT56r1fYcf4BseKD6PZm19VaPbB5KQM1sP3JyBBMamLCnWqTcdoRK6JaEQIoz6T0J3SjMlx7XyGkllpZz7GkmjLuCbftJVTAKJgii/d+FVDHhaqremEjl3gum/69f20rUQGkCPkDiDM6ABMWGKmI9SCXKb/U8N5rBRkLXpaDgfMFMp2B8IF887qdliQmeXqMBvYIyTSnyjKR0JN5v7eTXgSrWvEWqPcCgUmJDiUjAS8ImeWV2HEYzCJMEcxnDCEFmQGZBhzf0vGWzOfhNTzN35iLqlj7r5599jof+h48iu2HTxz3Qal9kJhtevP2Oo6P81ufP8rmzDb71wfWLdX8rOctYMUyy7Nuu9N9AJr/DmLQZ1TbTst3Wy1OUb0f4L4sVMTOIexbMd1GmTdIkRXsBaw2Fr1zdpQ9kye75O1kp6XuPQadH75P1+PLe/+8zSCMjefqhTZuLSkDUgICoqVzLq4x5MQMt7OgofnoayXLKM6cxDz+M5OsX+78VWNug2TxCu32Cbvc8iGBti0bj4FZPLRKJ9NkW3yhpmvLxj3+cn/qpn+Lv/b2/x/d8z/dEoTsSiUQikUgkErlXenNQdkCE62VCrwx4D83sVlGpMAleBEVINIAuUEWYe0Qaa5tH0XeBeY8ma5OkgveAElQ3tFc3MovY87VS47llEebPPIYlcCiZrz3mTDHIb50f4V0PjbN/T/3aZfjKq5hQrsv0HrQPkEt9cegtdwJdYcbgxa++Wrtt0oTJx49WIvcaf1eRzUMJqMygqhgdQTTHhIltKqoEktAjiCVIijcpXu7NAbcQPEWe0UwMTVcy0bCM+3J7Cd39dWCz3L3tK9HHm7AUT77Mvd1b5t4Om+DeXgnBQJFWPcK9VZyteogbWPrZdrnTe7yVk6WGkWa/f3enfhy3PtBYjDUvsN7jspQyTXfHW7MYa572N6fkCNp3eZfs+g/AKjGa7/pI82xogH3P1JM325enuP71E1s0o82neVPf7mae8NChIU7PJZyaXb9vp0Icp5L6eakyig+PA3Bcr67ba60vT6AcrlWM/RMMU5Q2RcXi1GAqPRUfFHe/5pgvI/3w42Tf+c56UZXuv/893NdW1q5orVSCd3ViIsFWETCrxI6OYpot/NUraLdLcfIU7IKNYUkyRKNxkKK8SllMMT//dcpyequnFYlE+mzKFfFHPvIRPvKRj/CJT3xiM14uEolEIpFIJBK5f1gWYe5Nylwv0O45Egv5TW4Jj+AxeLEYhzpb7AABAABJREFUVQSP+CrC3CCsPcK86EeYhzVFmKtCCJ7Q78m7qRHm7aUIczVC550PcyiZJ1mW56sK/8eFfcw7yzc+NVl/uu4sA9frfbFXS07OIVN3jU+F61zX63cYcXvmL11l7sKVWm3i0SMkzQYxwnznoGhfQPF9oTvD+m0sdGuBisVLShCL496E7k6AbpKTW0PLlUzklr3BbQ+hW8H048lTJyTeYEP1u3F9cftGPLlLAkVS9d4u0kpAXsO68eYgEKxSpIEyDQSjlFbxNmDC7he9jYF9Qw1SK4w0U7ou0C7qi/NGlUanS1qWpKUjLUp8YinybBfFmmeUplHFmkuONykmOBLtIex8sWIjuB8E773vfoxsZLBWu/DFF3Dd9XM1b2cS3yPr1c+/nnqoah/y7Nk1bha9ifPmKnNSb53jwlMEHWAPCwxrZ11fb30QlO+sfT2IlKTht6trD5viSRAEcyPKXCFEwZvsY+8i/ZZH60Uf6P78b+PfWlmS01pR0crhzRoFb4Fk716wCeWly4ROm+LMmeoiaoeTZXtJ0z10umdxbpbZ2Rfwfjv+TUYi9x+bclX8uc99js9+9rMcPXp0M14uEolEIpFIJBK5f7gRYe56LIQUVVgoPK0suSVasjTLIszVo6GDaEC1i6w5whykLCHciDBfvTSlGgih+q+Rjc35laQeYd543iB9d2b30SPoYJPDab3X3CXf5H8/s5ejBwbZv6dZu2/k8ivIOilBR+1RrCy9j6rKCffWip5DVbnw1XqketLImXj4gep3lJhK4Ylsayqhew7FLRO6J5HN60y2ApRES0D68eWWUhr39GfcU6FtEzJRBlzJeGaZxG+pnC8KxrPMvW0QBW90yb2dsChw99JK4HapEizbyr19z0j18/Syqr+4N1r9nOaG6C2YKnxj15Emhr1DOXliaGWW+Z6jdHXBUoC8V5B3e1hf9fEGKPIMv0uOp0EshRnou7wTnMlRDEkosFrALhJx14vdLngbazn0offUar5bcPHLL23RjDaf1k3u7scOj5Amhi9ezOitZ4t7gTeS0zel+CQ4/w2obmd39wHgmVrFmucxnKVMU1ySg/NYEUK/b3fpd+EXyUoRIfvzT5N84Fi9Xjo6P/ff8Gev3H7chqDLBG9B1K7+u94akslJ8B535Sp+dpby8uX1nOyW0WgcwtpB2u2TODfP7OzzhHVK9YpEIqtnU87CJycrt8Po6OhmvFwkEolEIpFIJHL/cCPCXJXrZULhA6VXWmldbFagkAQnBpQqwjwsACWiHpG1urr7F/jOo9auSeDx3qMEQtCNdXXLHJLU+1g3v7IswvzpR5mwHZqm7mT73asTXOslfODJiVo96c3TmK8vhK6WIRli0taf/0K4QJuVOQdmz1ykc226Vtv3xHFMkvQjzNO1TjWyGcgCKgVGhyohJUwgbM/fndUSNOAkRbGU5t6E7kKEeWtJUQaDZzQ1HDRh84Xufjz5onvbGWyotrB4W4m/7qZ48u6yeHLdZvHka0LAJ5Xo7frx5pXoXfX0Tp1gArtO9B7ME0aaKUONhNQIM53ytma0xDma7TbWebJegQmBMs9wSbI73pK+y7swraoVgWT1aHON0eY3Uxe8h3ed4D304H6Gj92UOPPKm7SvTG3RjDaXZvtStcG0T5ZaHn1wmI4z/Oml9e1HPG86nLd1kTPoQYI+yATzDGl3XV9vvVA+gt6U5JLxSUqTUqYNtHRYU32nhgAu7I6/jbUiNiP/S8+QPF2PgqdT0P03/xfh8vQmzqZKohEMqCCarPpQL2mCnZggtNv469O4S5fwMzPrO90tQERotQ4jJqHdOUFZzjA393LV6zwSiWwZm3Ld+O53vxuA11577S6PjEQikUgkEolEIvfMsghztRlzXaVdOIxAM6uL3U4MiuCMxRKAgIQFNHT7McjrIHb7gISwplhsVfAhEEJAhI3t131zhHkH8lcrlSqkCd0njnMkna09ZsZn/MJb+xgbynjs8EjtvsGpt9ZN43rIHq/dLtVxyq+sd5+GwIXn667ubKjF+JH9latbiP26dwAqCwTpYHQAIceEvRhd30X19cJqgahfdIGWpgn3EO1cGsO8WKz3DAbPsIUHE908zbgfT37DvZ3ccG/LUjy5T/p9rJNA0Xdvl/148l0jbt8JAdcXvb0NhL7oHUSx3pB4QXaZXjHWymmkluFWhgIznfK2i/0mKM3FPt4ltixxaUKZ7ZI+3oCKUJoGpckJ2KVoc62izQ3raWnd+SwJ3vmuFLwPftPTyE3nDueefe6+EHlsKMm79SjzJ4/3o8zPrf/38il7gR51t2jp34tqwrFt6+4eRPmWWsVyGpJX8GLw2GV9uwPO625Itl47ApJk5N//Huw7Dtbu0vkOnf/vbxCm5u4weCMI1ea/RcF79Q5v02pix8bw09OEdpvyzFm0uz03a6wEkYRW6xiqjk7nNEVxlYWF1+8+MBKJbBibInb/yI/8CKrKz/3cz23Gy0UikUgkEolEIvcHvbnFCPO25rigtHueVmZvjTCXhIAQEJIQ0NBGVFG6CPn6RJh7Vwlba4gwD96DKhoCYjbWInlLhPkLBnH9CPMnjzPcVEZtUXvM52fGOdPOef8TE7X3WHxJa3plYvSdmDSTDJmhWu20P41boaAw9dZZirmFWm3/Ox9FTP93ZO09CZGRrUOlQ5A2RluINjF+D0abdx+4BRgtMerxJoO+0K338PlyxjIvFvGeYZRBCTyYyMbqx8vc20vx5NUrehsobVjWe7tyb/eWubfDbnJvrwSBMlV6fZHfJ1DagAKJNyRu94jexsDEUE5mDSPNlMIHForb96sWoNHtkfUKUlfFmgdjKPJ8d/Tx7hMkoTCtW6LNbShjtPlN7GbBOxsaYN97nqjVOpenmHr1xBbNaHNpdS7Wbj/y4DB5ZnljOuX8/PpuIPQSeCs5e/MMcOFd7GOOAd2u/dI/gDJeq6Tyu5TiKSVDfMAawWuln/rYt7vCJIhNaPyVD2Af2le7S6/P0/k3v0mYbd9h8PqjckPwFlCzJsHbjo5gBgfwV64Sul2Kk6fA7fyNUsbkNJtHcX6ebvc8ne4ZOp1zdx8YiUQ2hE0Ru7/3e7+XH/iBH+Czn/0sP/zDP8zCwsLdB0UikUgkEolEIpG3pze7GGE+4xJcCHTLQDOrO6sVKMVSmsqtaAlImKeKMA+INNY2D1dWlmznUJusLcI8eFQDqmxwhPkC2PoCYvO55RHmj93Sq7sTLP/mrYNkqeGZR/fU7huYPoXR2wshK8FgOGqP1GptbXMhXFjR8wTnuPRiXcxvjo8wcnAvYKq+6ul27PccuYFKjyDzGG0iOoAJoxgd2Opp3RaDw6rDmxvR5Tl6D6kMzlrmjUGLkmECLfUcyQ12I/70++7txXhybzCh6od+w729JHAHiqTu3tbdo1muGTVUGwBST7A3XO+ViLcoeu8C7SK1hsmhjKzfv3uhcBTuzmJlWpY0Oh2sD2S9AlQp8gy3hg1g245l0eZ+WbQ5Mdr8Fnaz4L33XY+SjQzWahe/9AKuu13F1/Wj2b5SizJPrOHxI1XSz+c2wN191UwzJfWUIR8eJejYNnZ3W5TvqFWMzEDzOXppA8oSa5b6dvsYZV4hQJIhqdD4oQ9jHqxfa+jlabr/22+i7c1zRVeCtywK3ujqv8+SPXshSXCXLxM6HYozZ9gNtv4kGaTROERRXqXoXWVh4esUxf3R2iES2W5syurGf/gP/4GPfvSjvPDCC/zyL/8yv/Ebv8Ff/It/kXe9612MjY1h73Li/4M/+IObMc1IJBKJRCKRSGTn4Hr9CPMOJDkzs4F24RGBVlZXigqxlXNCDEnwVBHmncUI85t7662YooRQRZhrtvrnCqqEoIQQMEb68eobRPJazdQsHci/1nd2thrw2EH22Xr/7RcWRnlpusUHntxDvjwmXpXBqfVxND1oHyC/qX/6W+4EukLx4OrXT+I69UXnA08/hmg/Zt6wprj5yMailASZQzQHHcCEIUwY3upp3RaDw4YSLwmBpIo6lrt/tlyS0BZD6BYMoTSd53DLkJj1U5VFQYJgFKSvVqtUPaeD6OL2/3CjZnRtKRf3GWqgyEI/At6gBiRU/bwTZwimel93sgu+mSWMtarvtdIrM52SPYM5d/qYWh9otDv0GjmiiksTXJaizpCU5U5+K2qoCE4aBHUkoUDFoOIwoUp4CKY6HtzvGM0hTBLMZQzDBJkFmQUd3thznA3GWMuhD72HE7/1R4s13y24+OWXeOCb37uFM9t4jDoanat0W5OLtaeOj/H861N84XzO9z7SJl3PX63Am+kZRop3YBc/M4bSv5999vd4S3u0ZTu2NnkU5TjCW4sVk3yBInuE0PaYXPqu7urYmqdbN9NthZjK4Z15mj/yETo/+/uEi9OLd4dz1+j83H+n+RPfjWzSm6YSEK2y50VN1bJgNTEuRkgmJ3Hnz+OuXAFrKC9dIt2/f/0nvclk2R5C6NHtnceYnLm5Fxkd/QasbW311CKR+4pNOfP8a3/tr9Ui/q5fv86v/Mqv3NNYEYlidyQSiUQikUgkcjO92X6EeZeuHaLnKrG7kRjsTY7o0iR4ERQh0YCGhcUIc0Nj7XlPZQnOAwJ29ZcYwXtACapYs7FOuFsizF9cijDvvOsRDjfaNTHcqfC/nTiICLz/iYna2ObcBZJy7bGCOTmHzKFabSpc57pev8OI2+N6BZdfebNWGzwwweDEWOXCtzYK3dsYxRHMDKIJokOYMICE0a2e1h0IfaHbEiSt4o3vQegu04SuGNxCjwFRBoLjcNOSr7WHvFYCt1HBBKhUViUIBBsIUpUU7QuxEHa4GLsdCAaKNGCCkHpBBYxWorfZBaL3aCuj6zxB4dpCj5l2yVgrvePPY1RpdLoUeYZQ9fUus5RghKwokV3gZLtBFW2eYClJAgRjMFptgBEJeEnYpFDJbcudBe8RNrhhw4Yy9OB+Ro49wMyJpZScqVfeZPzxY7Qmxt9m5M6n1b5UE7uPHxyi1UiY7zq+ejnjG/YXbzN65XSl4Iy9yFG/1MtZdQ8hPMxRucwrcvBtRm8VgvJx4OeQ/oZNEYe2nqWYfpqGKiIQQsAHQTV21lnEpBAc0jQ0fvQjdP7N76PXltKmwomLdH/ht2n86F9A0s1JDrkheKsoEixq+idcK0TSBDsxgbt8GX+9ur4xjQZ2dHSdZ7z55PkBQujR6ZxCTMrMzFcZHf0GjIk7OSKRzWLTzjhVdfHfzbfv9i8SiUQikUgkEoncRG9uMcJ8ukxQVbqlp5XXhSaP4DE4sRhVDIqEBdD1ijD31cK9c2iy+ghzVQjBE/pRhpsdYd74ytLrdZ9+hEPJfO3+N7tD/NHlYR59cITx4bqDZnDqLdaDo/YoVpYWrVSVE27lz3355TcIZb0P3oGnHwPvq0a0mCh2b1MUj5oZRC2iw5jQxITxbSqIBJLQI4glSIY3CV7ePtlBqYTunljcQo8mgSHvOJCZW9ov3DP9ePIbvbcTX7Vr8GYpnryK2e7Hk6c34smVYHeuALvtEAi26uddpgFvlNIq3lTO79QZjJcdmXAtApNDDbLEMNpIKUNgvnj7XqMC5L2CvNvD+qqPN0Avz/Ab+f22FQh4SfvR5hlBMkpTfU+moYfVkvu9n/ftI81nVpzast048E3vRm7apHTu2ed2/Vpuo3sFCUuta4wRnjg2CsDnzm6My/qsvUxb6vHVLryb/dqjoesrrq8fk8D7ahXJXqfdmq6izEXwIfbtvgWRvuBdYoabNH/8O5CRehsb/+oZur/8e6jfvGOrilYOb0CCZbX9XUyriR0fw0/PEOYXKM+eJXQ66znVLUFEaDYPIyal0z6Bc3PMzb2I6v39/ReJbCabssJx4sT6RPpFIpFIJBKJRCIR+hHmvcUI89mFQKfwhACtrL7oWJiEQBVhngWH4qsIc+1HmMsad5sXVV9SCR5NV/9cqoEQqv8a6dsvN4rkDWSZG0G60Hilej03NsTEQ0MkMrNsbvCLpw+iCB94su7qTjvTZO1ra57SsAwxaevPfSFcoM3KFn+KhTbXXjtVq40eOUhzdAiKHiQpGKnc3ZFthRJQM1P1q9cRjDYwYe82jboNJFpFF3tJCWJxvP0CvwIuTSmNoZzvkgbPiHr2psJwcwXHjmXubVmMJ7+Te7tybgcTe25vGgLeVk7uxAvWC8FU7mYbBBsEb3Xx97RTsEaYHMq5EAKDIWGu60itIU/e/u8zcQ7T9nQbDaTv8C7zDC0d1rmd9BbclSraPCdogg0FLIs2T9QRTHpfR5vf3uE9s6Md3tnQAPve8wQXv/TiYq1zeYqpV0+w5x3Ht3BmG4vRQKNzhc7AUvzyU8fH+NOvXeVrUxmX24bJ1voKXCrKG8kZ3lU+sqya4f17OCav8DU5sK6vt14o3wa8hCw7n3VjX8Gf/SaSgRF6zqOquBBI4rnpEiaF4CvBe7xJ83/+87T/1f8FC0sbHvzzb9H7z58h/ysfQdaxBcydqc6lKod3QNSiuFV9l9vhYbRX4K9dQ7KU8tQp8ocf3vGbcUUsrdZRFhbeoN05iYhhfuE1hgYf3+qpRSL3BZtyBDly5MhmvEwkEolEIpFIJHJ/sCzCvEiGaPc884UjTwypXVp4V6AUixeLKLdEmIs01y42FCWUDpA1LVB471ECISjJWqOM74IkX6/dzl8ySNmPMH/3ozyc113d58sWv35unH3jTY4dHKrdNzj11rosUR+39UXhUktO+dMrfp5LL7yOhqUFVjHCvnc/Vi2YIWAspDt7IWm3ojJfbfbQUUQzjJ/YpkK3kmgJSCV0Yyml8bbHEgXKLMUbSzHXxvrAuHpGExgfuHcXnGjl4O43jsSjqO0L2bKsH7fZeWLqrkPA9R31iReSG6K3B+sFI+y431MjtYy1clR7FC4w2ykZH8ixd/kzNUFp3ujjDZRJwKVVrHla7J4+3jcIYgmmiaEkDRCMXYw2N+JxknK/RpvvRsF777seZerrJylmlmKWL37pBUaOHSJpbMde0utDq32xJnYf2T/I8EDK7ELJH5/L+Z5H1t+pOmPmuWSusS/sWawFPcr+cIK3pKS31g2sG0IT5VsRfnuplF5lvnmSId5Zubq16tvd2I7T3yqEqjWUL8BYzEST5v/8F+j869+Ebrn4MPfFV5FGRvaXP1xrIbtxKCpSbZjWgJCsWvBO9uyhLEvc5SuItRSnT5MdO7bj8+yNyWk2j9Juv0mnew7EkNgBms0Ht3pqkciu5/48u4xEIpFIJBKJRHYyxVKE+axLUJRO6Wll9dN7JwZFcMZgCQj0I8x7VYT5XZyYd8V5REMVj23tmiLMfQiEEBABkY2MMG+DPVMrNZ9ber3Ge4/QNL52//9+YT9FMLe4uo3r0po9t+YpTZpJhkxdRD/tT+N4+5jcm+lMz3L9RD2effzhI+SDLXChH2G+tk0JkY1BpYdKD6MDiGZYP4mwPR1OVkvQgJMUxVKaexe6y7k24jx7gmNQlInBxj2vaVZCt0EFyn48eUgUb5UyCfT68eQuqRzdO1Q32n30Re9eFvA2EBIobRXebL0h8YLsoITP0VbKQJYw0kwxAjOdgntJbBag0e2R9gpS58l6BcEYijwn7PCF/dsiECSlZ1p4kxIkpTQ5ivSjzQvu12jz3RZpbqzl0IeeqdV8t6i5vXcjje41JJS12pPHxgD44/MNNipd+kRy/pbzQ+/fx9FwfWNecF14H0r9HLq39zWCayMieB/wQe/pWHpfYRIQC66EELAPjNH80b8AN/XpLj/7AsVvfWkTJ1ZlzwsGVBC1q2tRYoR0YgJCoLxyBT8/T3nh4rrPditIkgEajQcpyyl6vcssLLxOUVzd6mlFIrueKHZHIpFIJBKJRCI7Cdfr/+uAzZjpKb0y4D20bup5W0pCQAgINngUh4Quqr1KSDNrtFCUZRVh7vv9uldJ8B5U0RAQs8Eq1c0R5j3IX65er9i/h8OH6z/HdZ/xSycmaTUS3nl8rHbf4NTJSuxfAwbDUVtPwmprmwth5Ys9F79ad6ybxLLvqYdBPRCqDQnW9EXvyHZBCajMI5oiNDFhFNmmUb9WC0Q9zuQohtI039aBUwndGcEY/FyHUHrGQ0lLlMnh/J4/iktCd+UUDlYpkkA3CxRZwCeKxo/1tkYFylTppR7f76Ne2ur4mXhD4qpY+p3A3qGcLDEMN1NcUOZ7974xKStLGp0OxleCNyhFnuF3a3xvP9q8ME0CCV4yvEkRDSShh1nhpq7dwm4TvIce3M/I8QdqtamvvUX7ytQWzWjjEZRm+3Kt9lT/PHGmZ3jx6sbYlEtxvJWcr9WUIfaHg2S6Xf+eDMrH66Wkx0LrRRIB1//Yu9i3+1ZsCgQIDlwP+8gBGj/8nbecy5e/86cUn/7qpk1L5YbgLaAGVit4pwl2YgLt9vBTU7irV/DT0+s93S0hy8bIskl6vYsU5Qyzcy/h3PzdB0YikVWz6ZeDr7/+Ov/wH/5DPvaxj/HUU0/x0EMP8cYbb9Qe89JLL/Fbv/VbfPazn93s6UUikUgkEolEItubYm4xwtwnDeZ7joWeI7GQLesdGqgizEtjEAWLQlioRGXtgjTWPpeyANePx15LhHnwqIaqV/EGC7GSvFa7nb9kMP0Ic33Pw4zaonb/71yZYN4lvO/xPSTLe7MGz8D1k2uez4P2AXKpO+zfcidWvOC9cHmKufP1RdeJdzxURYj6QBVhbmKE+Takii9XRIeQ0MDo4FZP6bYYLTHq8SaDvtCtdxG6izwjGCEsdPFlyZgvaAH7hvNay4W342ah21ulSAPBanRv70DUQJkGitQTrPajzvuitzNYJ6tbMN9ErBEmh3PyxDCYJ7QLT7e8941P1gea7Q6Jc2S9Aut91cs7Tbb7j75qVKpjRmkyPAnO5ARJsKEk0R5yH7q8K8F7YtcI3ge+6WnkpjY05z73HLqL7bqt9qXa7YMTLcaHq3O6Pzq7DufZd+CSucaczNVqITzB8dC9w4jtwEMoj9UqvZG3UDuLqhL6fbsjNyGmcniHcvH6L3nqKPlf/egt50DFJ/+Y8k9e2bSpVYK3IAhyQ/BeBabZwI6P42dmCfMLlGfPEjrr3wZgK8jz/STJMJ3OKZybZ3b2eUIo7j4wEomsik0Tu0MI/J2/83d44okn+Kf/9J/y6U9/mldeeYWTJ09SFPU/8tOnT/Nd3/VdfPu3fzvnzq09FjASiUQikUgkEtk19GYXI8znXIoqtAtPK0tqvdpKqRbNvRgS9fUIcxRhjYtwPiA+gHNrijAPqoSgVYS5kQ3uUdwBe6pWaX5laeIT79tff3Sw/H/eOIQxwvveUY9fbM2ew/remmaTk3PIHKrVpsJ1ruvKoihVlQtf/VqtljQy9j5+DNBlMfNS9f+LbBuUfnw5A4gmmDC+1VO6LQaHVYc3N6LLc/Rt2g3cELoRgYUuRbdkuCgYMPRFwntbEJVwq9BdJiGK3LuAYKDIAkUS8Lb6/TobMEDqDNZvb9E7TyzjAzmtzNLIDLPdEr8CV6JRpdHpkpYlaelIihKfJBR59rabSHY0/WjzwrTwJqtFmyf3abS50cauEbyzwRb73vNErda5MsXUq29t0Yw2nrx3HXPTueCTx0cBeOlqylR3g85pBV5LzqK1vxfLpH+UNGxXdzco344ub9EiSnvgTwEICs7vvM/9pnAjiSuUfdHbkb7vUfL/8VtveWjvVz+Lv3Bt06Z2Q/BmUfBe3WfeDg9hhoZw164SOl3Kkyeh3L6f5XtFRGg2D2NMTqd9EufmmJ19AV1jMlgkErk9myZ2/9iP/Rj/8l/+S7z3HDx4kO/7vu+742P//J//8xw7dgzvPf/lv/yXzZpiJBKJRCKRSCSyvfHFLRHmhQ+UXmnd1L+tMBbf79mdaEDVge+i2u1HmK9R9CyKKr7Oe3QN8avBe6BydJiN7NUNt0SYU0D+cvWa5bEDHJyoCwx/PDPOpW7Gk8dGGWrV4ygHp9a+eHvUHsXK0nunqpxwK3/e2bOXaF+drtUmn3oEmyYQAqBVfLm1YHapiLIDUQJq+vHl2sTo9owvNzhsKPGSEEgo+47MO6EiFHkOIki7S69bMtDrMpgIewbyW9ot3AkJVbx1FLp3N6Hv1C/7bv3SKt4GTNj+ovdwM2WwkTKcp1iB6Xa5op6zAuS9grzbI/GerNcDgV6e4XdzuwkRnGT9aPMULxnOZAhKeh9Gm+8mwXvvux4lHx2q1S5+8UVcd22bA7crbxdlrgifP5ffbti60DZdLpl6yxvVfTwWNu41184evHyoVnGti4T8Ii727b4zIpXgHdyiuxuU9ENPkv2lb6o/NgSK//LspiYqqAREq5MzCaYvfq+cZHwcSTPclcuEbpfe6dP965idjYih1TqGorTbpyjL68zPv7rV04pEdiWbcvb8qU99il/8xV8E4B/8g3/AyZMn+bVf+7W3HfP93//9qCqf/vSnN2OKkUgkEolEIpHI9qc3u7jIoUmT2W5Ju3BYA81sSTT1CAGDE4NRxaCg/R5h2kPWJcK8BO8AXXU0tiqE4An9hYwNjzBP6xHmjZcF06sWZFrvPVxrPexU+F9ffxCAb3xqsjYuW7hK1p1Z01yGZYhJW3eLXwgXaLOy2D4NgYvP1xdMssEW4w8drm54DxgQGyPMtxuysCy+PEfCdowvD32h2xIkxZn0bYXuIFI5ulFsp0e3U9DodBjNLCPNlOHmvfUwjUL3fYaAt0ovDZRJwBulTBRvbojegqn2RW079g5kZIlhtJXhVZnrlSt+jsQ5mu0O1nmyboEJSplnuGT3xppDP9rcNqoNNFicZHhJMIvR5n6rp7hp3F7wnt1xgrexloMfeqZW872Ci196cYtmtPG02nXBeXKsyeRYdZ797LmcjWxD/WZyBU+7Vhvzj5JvY31Q+XMo9Q0RveE/w/WdruUuEDc3BJMAptr4rB76UdjZx95D+q3vrj3Uv3YW//zmJiqoaOXsRpBgVyd4GyGdnISglJevEObnKC9evPu4HYAxKa3WUXxo0+meodu7QLt9cqunFYnsOjZF7P53/+7fAZVj+x//43+MvQfnx/vf/34AXn755Q2dWyQSiUQikUgksmPozVW7+VVZCBk+wELP00xtLcK8MAmBpQhzAPFVhHmlFqxR7A4B8b7q12368dirQDUQQvVfI1UE3sbRvSXCvPGV6nJIjeHB9+6p3ffiwgivzLZ4cN8AB/e2avcNrYOr+7g9Xrtdaskpf3rFz3P9xFl6swu12v53PYaxBtDKEZGY6spvDQ78yPqiFATp1uLLZdspuYEk9AhiCZLhTYKX7M6PFqHMM1Al7ZV02j3S+Q5jeUIrSxgfuDe3WRS672MEfKL0soDrx5tXordig1Sidz+sYrtg+v27U2sYbqR0irCi/t2LzxOW9fEuCmxZ4tKEMku304+7IQRJKMzAYrS5W4w2L+6raPNbBe9yRwreQw/sZ+T4A7Xa1Nfeon1laotmtLFkxQzW1Xtl33B3X+tavnbt3jZ5rYYggRPJzeeODZ7wezfsNdeKUUuR/IVaTdNZyuZrBFW8vz/+3leMAElabXr2rkr66h8bs+/6ADJa3zDZ++Qfo8VmpmRoXfBWu7rv6sSSTE6ivR5+6jru6lX81O44dljbotk8TFlO0+tdYqH9Jr3ela2eViSyq9gUsftP/uRPEBH++l//6/c85oEHqhOji7tkB08kEolEIpFIJLImfFEJ3WW7ijAvFBcCvTLQypeclgqUYvFiEWUpwjz0+hHmydojzMuyijB3Dk1W/1zeeyAQgm64q7uKMF+2gFZC48XqNeXxg+RDSyKeKvyrt6rrkQ88WXdf22KBxtyFNU1l0kwyZOqultP+NG6F0a3BeS698Hqt1hwbZuTIgf4D+lZIayFJVr0pIbK+3D6+fOMWw1dHINECFYOXlCAWx53F6kVHtyppr6Dd7mLm2oy1UvLUMDmU39PHLwrdEQAE3A3R2/bjzRMliGK9IfGCbCM9JE8sewYzGqmh2e/fvZreswLk3R5pUZA6T9YrCMZQ5Dlhtx+/hX60eYsgt4s2L9lWuxw2iN0ieB/4pqeRpL7B7vwff2VTo5U3CwGaN7m7b4jdAJ/bwChzgAu2QyH189LB8CAjfh1SnDYAAYK8j8DBWr0cepFSu5QbaYXf6Ui/DVVw/Xisqj2A5CnZ//DB2kN1ao7yU1/Z5AkqKiBUUeaiyaoO29LIsXv24GdnCXNzFOfOEdrtuw/cAaTpKHm+n17vImU5zdzcSzg3t9XTikR2DZsidl++XPUvOXr06D2PSdPqYt+5+6tXTyQSiUQikUgkcluWRZiTNpnplLQLjwg006XTetfv0+2MwWqoNKJwI8K8uz4R5r1lEebJ6tzCquBDIISASNXPbCO5JcL8laUI873fUF9wO9kb4DOXRxkZTHnHkdHafYNTb61JdzMYjtojtVpb21wIK9/ke/W1k5Sdupto/9OPL7n8vQcxgAEbI8y3DdJGNSA6uE3jy5VES0AqoRtLKY07Cs6VGJchQcl6Bb12AbMLjDUS8sSwb7iBuYde8VHojtyCgEureHNvFZ9AaQNK9VlJ3PYRvYcaKUM3+ncbYaZTrKr3rABZUdLodDC+ErxBKfIMfx+kc6gIpbkRbZ7gJMebFBMcid4f/bx3g+CdDbbY954narX2pWtMv37qDiN2Nq32pdrtseGcQxNVKtBXL2fM9jb2i+y15DxQb6HwuH8A2aYfGaOeIv2+etGWtFsvEAIbGv2+4zEpECCU4Erot3tI3vMw5uH69Uzx+39GmJrd5AmGakP0ouC9Ooe3HRrEDA3hpqbQbpfi5Cm03B3H/zzfR5KM0umcxvkFZmdfIPQ3LkQikbWxKWL3wMAAAFeu3Hs0w9mzZwEYHx/fkDlFIpFIJBKJRCI7imUR5h1yChdoF45marDLXNGFJP2e3bIUYR4WQCtRVN7GnXlPBEW860eYm+rfap7Ge1AlBEVMFXm3cfRujTB/rh9hniXseVe9J/cvnq4Wi97/jomaSCfeMTC98qjx5TxoHyCX+u/gLXdixYvYrldw5eU3arXB/XsZOnDDiR6qCHNrq6u+VW5KiKwvSkmQDobWto0vt1qCBpykKJbS3Fno9sZQZCkmKFlRUHZK3PQ8I42UPLXs68c7340odEfeDjVQpoFe6glW8YnibKVyL4re20Ac2TOQk6WG0WaKV5jtrrx/9w2s78ea9wVv6z1lllKmu7uP9w2qaPMWzqSV6G1yFIMN5X0RbV4J3nt3tOC9912Pkg3XN3Nd+OIL+GL1fxfblbScIynrLWVuuLu9Cn9yfmPd3deNoWvqmzozHeLQNo0zt6HA20cI/h21etl6HWencbFv950RqQTvUC5tggZEhPwvf3M9xan0FL/++U2fosoNwVuqL3Bd3TVIMj6OZDnu8uVK8D59qrq22QU0mw9ibZN2+wRlOcfs7Ito/7o9Eomsnk0Ru48fr/rRvfLKK/c85rd/+7cBePLJJzdkTpFIJBKJRCKRyI5hMcK8U0WY95QQqr6gzWzJsRsAJxZnDKKKQVEtqpi7foS5rjnCvKh26HuHJquPXvbh/8/en8dYktz3vegnIjIyz1Jbdy29z3RPz8aZITlchhxRpqyVV5auLOnKFgwY9h96kJ4t4AkwKFrwHxZgQDLMJ1096T75PstXNIgHGL5PlrVZtmzoajPF4T4bhzOcnul9uqt6qb3Okhnb+yNPLdl7Vdc5VdUdH6DQfeLkEnUqTy7xjd/36wghEEJA9rmqm+Q0QmwYQNhgYV5//2HkBhv46ybj31+YRCeSDz1VzfFuLlxA+q1XFWRkHJFHKm1zfo75ML/pbV178zTuhgqHg88/vf7C9X5fpUDvNovsh5NAIMjlnq3j7rQvV6FABLcmLBlZv639vVMSk6ZI79FFge8a8vllhmsJtUQyMZyR3cMkiyh0R+6VIKFIPYV2OBWwG0VvK1FO7KjTtZRwYLic4DFa13SNp11sffBahkCt3UEbgzaWpDC4JKHIUsLD8P0Q4G6yNs/Wrc3Dg21tLkN9g+A9vOcEb6kUhz/xfKXNtrtcffnex4b3CqWVebW6+9kT+9Yun1+4VNuS08Nm+LZaQlC9n3zUHSILu+s+A0D40h3Kyh8ibBRCRWC58XUKF0W/OyI1IEvB21sI5QQSdXQC/TeqOop95TT21HsD72IpeAvK/G4JfguCtxToyUlAYK5dxa+sYC7fX5TUbkEISb1+HIB25yzGzLO88tbOdioSeQAYiNj9qU99ihAC//pf/2v8PczAefPNN/n85z+PEIIf+qEfGkAPI5FIJBKJRCKRXUy+3Ju93wFdZ6lj6BqP99BM1wcPjCgrvpyQJD0Lc+HbQCCEHLbDwrww4Bwi9LKgt4AP4H3Ae4cQov8W5snbldfZWwLZLUcgJz9WFZ//48wBApIPPrGf+gYRnBBozp+5r34cV8dRYv0zCyFw1p7d9HaKVofrb5+rtI0+cojG/tH1ButBKkCUed2RnWfNvnwYGTKEH777OgNEBoMMDidT6And4bZCt8LoFOUdujCQF3Tml6mnkmaq2N/MGMruftxFoTuyFbyEQnuKpMzzLo8djwygd1j01onqTfSQNFLFSm4xbuuVaALI8oKsm/eqvHMQkGcZbovOKnuNqrW5Wrc2D5bEP9jW5uuCd21PCt7Djxxi+NjBStv1b75DvvjgZdQ2bsjtHm5qHjlQVrZfaSveme/vvdiyrNFS32TjyU+ScNIcuf1KO4QApDf49CAUL1TeM+k0bXlxZzq2VxCU8UTeQnC96u7yOpP+8MehUXUSKH73C4T7uA5tlSA8YqPgHbZwzUoUydQkIS9ws3PYuVnc7Ny293UnkFLTaJzA+5xO5wJ5foV2e/PPhZFIZJ2B3Bn/3M/9HM1mk9OnT/OP/tE/umMO95/+6Z/yqU99im63y/79+/npn/7pQXQxEolEIpFIJBLZveRLaxbmhajRLhwrhSVLJMkGi+BCKlwvs3vVwhzXglDmgAnuU+wOAWEtWFuWsN2DPfGt8L28bx8Csu+D9Tkk5yot9VfKfYpmRvPpybX2tlf8v98tLcw//sxkZZ3ayhV0UbWo3AwjYpgpVd3mtJ+mTWfT27ryzVOEjZOIheDgB59afx080LMwV1u3mo9sHwGLF20k9dK+3O0u+3KJRQWLk6vW5RnhNpNQrFKYVKOcRRcGWRjacyukSjCalbnFY427V5KtCt0+Ct2RrSDAqzLP22iPkwGjAk56pC9Fb7lDovdQljBa1wxnCYkULLbNfVd1JtZSb3dQzpF2C6QPmCzFJg+HrTncxtpcPPjW5ntZ8BZCcOgTz/fiakqC91x+6dWd61Sf0LaNLqoi/vtP7lv7/xcubcOE07vwrlIoWY24GQ/72O9G+r7vzSK9wasM714EW6+8t9z4Bi48uJNYtgWZgFBlbrfvZXgDolkj+59frCzqp+cwf/3GTvRyg+ANwku2Yksisgw1Po5bXsYtLVNcvoRf2foz2W5CqTr1+iMYu0jenabVPkOeX7n7ipFI5JYMZNTjwIED/Jt/828A+NznPsfJkyf52Z/92bX3f+M3foOf+Zmf4dlnn+UHf/AHuXz5MlJKPv/5zzM0NHS7zUYikUgkEolEIg8+FQtzzVIRCAQ6haOxoaq7zOmWWCFRISChtDAPOSF0S7tkeZ+5zUVv4Mk5whYzoEMA713p+BTov9idnKlamFuovV7uc/TDhxEbBPv/fn2Stkt4/OgIE2PVQcmhudP31Y3H1GOV1yYYzrvN5393F5eZP1u1Ixx//BGy4eZ6g3OAKEXuWNW94wQCQSz17MsbyDCKIN3pbq0hsShvcCLBk5TVk+LWx41NFDbVKGPXbJXbc8soAWP1lHqmGG/ePZt0o9DtotAduR8EOBXIU49NfO9YKkVv5UFbgfQMXPTe18iopYrRRkoAFjvmvvsgvafe6pBYR1oUKGOwOsGkeg/IntvEBmtz17M2NzKDB9zafC9bmtfGRhh/7olK2/KFaZbOX96hHvWP+g3V3e87PobsXde+cSWlZfp7kVsUDZbkKaBbaT9pjyG3UlXbR5QzBAQhHUZ0quKsU8vMygfP7n7bURrwZYW3zVmd8JN85zPII9UopuK/fJWwsvkJtttBEKGs7EYgvNqS4K2Gh1AjI7j5OUKnQ3HhAsGY7e/sDqD1KFl2iLy4WtqZL7+JMUs73a1IZE8ysCvd3//7f5//8B/+AyMjI1y8eJHf+q3fQvQs0X77t3+bz33uc7z11luEEBgaGuI//sf/yA//8A8PqnuRSCQSiUQikcjuZM3CvAu6wWLPwtx5KmJ3IRM8qxbmpbgr/Eq57nZZmJscrEMEX1YUbIEQSvv1EDxSltZ2/UQkpyqvs28LZKfc5+gLR9fabRD8P08dA+Djz1YrsJPuElnr+pb7MCWnGJZVy+oL7gJ2C9arM6+9XRnHl4li6rnHNywRSrFbqjJreYuTEiLbiGgTWLUvT3eZfbnvCd0KL3RZMXkbodskCVZrlDFoa0nygvZCixBgrJGSJZKp4dpdjQSi0B3pCwJssi56+1XRWwSUE2g3WNFbSpgczkh7+d259bTuI797FQFk3S66KNDWofMCLyVFluFvEzvwIBKEwMoaRtYIKNxDYG1eCt6Te1LwPvCRZ0jq1fvQy196Ff+AZTM3bsjtbtQSHjtSVlUbL/jK9N0ng90vZ+UoWr1caauR8og7eJs1dgYRei5PWR0fPoDojFbeX8xew27B/eihQsjyecybcjax7Tl5SUn2d76rumwnJ//jr+xAJwFCVfAOakvXYrVvHyLNsFevEbpdivPny6r2B4Asm0Lr/XQ6F7F2maXl13Eu3+luRSJ7joFO6/rJn/xJ3n33Xf7Fv/gXfOQjH0EpRQhh7efZZ5/ln/2zf8a7777Lj//4jw+ya5FIJBKJRCKRyO6kWC4HL4LHqRoruaWdWxIFmS6FzAAYoXBCIQKo0Hvw32hhfr9idwBhbFk9IOTW87qdAwLeD8LCvICkmn1Wf7ncZ7K/Qf3E/rX2ryzuY7qbMTFW4/GjVbvH4bnTW9bhJJLj6tFKWzu0mfYzt1nj9rSuzbH0XnUgdeLpE+iNA8i+p+YoGS3MdwEV+3ISpBtHDPYx/A54Ep/jhcKLFCcTnLi54jwARic4nZAYsyawdZfbGOcZq2uyRHFgpIaSd/6mRKE70nc2iN5OeXwCRgU8oJwkcQIxoLFxrSRTwylpImlmilZhMfb+dy6AtDDUOt3S1jwvgECRpbgtXpv3Kl6onrV52rM2r+GF6lmbr1c6PijsVcFbpZqDH/9Apa1YXOH6N9/ZoR71h8R1SfOFSttzj22wMn8vu+9Ig7sxT4MlcQUpqveZR90UDd9/K/V7ZS23W2aEJCOdf77yfhCG6/obO9K3PYXsxcb4ovzpTfRRjx8m+XDVUcG+9C3cxWsD7uAqgSAo74GD6LkdbXITUqCnpkBKzNWr+FYLc/nBcYio1Y6gVIN2+xzWLLO09BohPFgTgiKRfjPwp+zx8XH++T//53z1q1+l2+1y9epVpqenyfOcb37zm/zyL/8yU1NTg+5WJBKJRCKRSCSy+3CmtC837Z6FeTlxv104Gul69aUVioDASokKHgGEkCOCIZAjRFoK1PfDqlWc6VmYb0GcCgGc93jvEALE/fbpbiRnEGJDdZfbYGH+0aNrTlMhwGffeQS4Oatb2pzGYtU2fDMcU0fJRLWS54w9u+mB6RAC069+u9KmspTJ91Xt0UsLc1lWdid3z02O9I/SvnwZgirty/3ILrIv9yShIAiJExovFJabK84CYLXGJQlJYUr75DzHrHTpFp6RmibTkqmRDJ3c+fsche7IIAkCjA7k2uGSgEsCRvUsXp0ksQIxAH2wniaMNVKGsgStBAsdg9+m/SrnqLc7JD3BWzmHSTVGPzw53kDP2lyTywZOarzQPWtzgfY5KhgeJNF7rwre+558lMbU/krb1ZffxLQerOrd+g3V3U8/OkqiygvdeysJ55b6HC8jBGflBIn6GrAulAkET9hju8rlXzmDV5qQKLw6jpyvVp8vqVN0xewO9W6PIEQpeHtbPtCYLqt/9/THvgM2PC8SIP/dLxD6PePitpQRVuuC9xYqvJUkmZwkGIObncXOzWGvPxjHiBCSev04CEm7cxZjFlhe/tYO/r0ikb3Hjk4pl1IyMTHBgQMH0DoOxEQikUgkEolEIhVusDBf6hgK6zAu0NxoYS5UL7NbrFuYuxZh1cKc7bAwN+B8aWGutjZQ553rZXYHhCyt7PrJLS3M2zdbmL/dHuL1xSHqmeKDT1QHYpvz58rfeQtkZByRRyptc36O+TC/6W0tX7pK+1p1vQPPPY6qPEeFsrJbyfJJL1qY7yyiQxAOGUYQIUX4kbuvMxACSTCAKIVuFEbUbvo6BsCkGpcodGFInCPr5rh2wUpuaWaKmpZMDNeo6Tsfa1HojuwUQYLRnkI7vArYJGBXRW8rB1Llva+RUk8Vo/Vysst25HevIkOg1u6gjUEbS1IYXJJgsnQrsah7GyGwIqOQdTylU4WTGvEAWpvvRcFbCMHh7/xwpc0by8xXX9+hHvWHRvsKG8u3s1TxxLH16/8X3uu/lfksTZaFQd2Qez0Shjjox2+z1uCRvujldtdwukE6+zS4DfcTAq7pL+/q43pXIBNAlk5g3kLRAt9F7muSfuojlUX9mWnsN3bOUSGIVcFblBfosPlnFZGlJOPjuOUV3NIS5vIl3MpKH3o7eKRMaDRO4H1Bp3uBPL9Ku31mp7sViewZdot/WiQSiUQikUgkErmRYmnNwtyrGktdQ6uwKMmauOQpK7utlIgQkL0BIeHXLcwR9zmwFkAUBtz9WZg77wnBE0JA9ruqmwKS6uBA7ZVyn9mREbJD6wOP/9vZMqv7w09NVKtTg2do/tyWe3BcHUeJ9c8qhMBZe/YOa9ya4APTr1WrunWzzv7HH6ku6EuLeJRaz+yO7Ahr9uWhZ1/ud499uQoGgscKTUBh5O2Fbq8UulcxmnW7hG7BUtdQSyVDWcL+ZsZQdufJL1HojuwGvIQi9RSJw6mAVQEvAomTfa/wFqKX351Ixuoa4zwrxfYJrwLI8oK0m/eqvHOCgCLLcA9hlEUQEiPrmIq1eYLyhuQBsja/teC9vKuFwcbUfvY9dbzSNn/qPK2Z6zvToT6gfEGWVycnbrQy/+pMRrff8y6E4KyYIJHfQrBceeu4PYwOfa4uv0dEcAgCLqnh0jpSDKOuH68s01FXWFGbv3d+qBBA0nMOsh1wBZgcTAv9Pc8iJqqTLYs/eImQF4PvZ49S8BaU+d2yvEBvEjnURI2O4ubm8J0u5vwFQrFzv9N2olSNRuNRrF2mm0/T7pyj253e6W5FInuCgd/1Ouf4vd/7PX72Z3+WT37ykzz77LM8++yzfPKTn+Qf/+N/zH/6T/8Jax+c2ZaRSCQSiUQikciWWLMw74DStKzEeWgXnrpWaxbcRpR2pU5Ikp6FOb4LwRDoIkR2/3bh1gABrCWorVmY+wDee3xwCCEGYGF+9mYL89d6FuYvHFtrniky/uvMfqSAF943UdlEfekSyna3tPsRMcyUqlqiT/tp2mzernP+3Hvki9WKhYMfeAp546QD5wFZTkjQu2Mg82Fk3b5c9uzLh5Fhd9iXq1AggsPKjEApCN04KaIUulO8UqU1svdknS6isCx0DFoKRjPNcE0z1rizQ1sUuiO7Da+g0H7teAwikFjRd2vfREqmhjNSLWlmCa3cUWxDfvdGtLXU250yx7tbIHzAZCk2UbtY/uwTAvwtrM3DmrV5wYMget8seBe7XvA++LEPINPqtePyS688UFa9jXY1L/uJY6OkurwHzZ3gazP9r+6+xhArQvfszNfRJJywh/u+/3thPbdbE3SKz+qkc49CUXWkupZ8Df8AOTP0BSEhqfUszU3pCuYNgoLsR1+oLBoWWxT/fWfz0IPwiDXBW5X3zJtE7duHqNVx164R8i7F+fO9Z6G9T5KMkGWHKIprmGKOlZVvY8zCTncrEtn1DFTs/qM/+iNOnDjB3/27f5ff+q3f4qWXXuKtt97irbfe4qWXXuLf/tt/y0/+5E9y/Phx/uAP/mCQXYtEIpFIJBKJRHYXaxbmndLCvGuw3pMbT2NDJWUhFU5IwgYLc/yqhXkBt8jh3TSFAe8R3kOyVQtzCwSCD8gBVJrdaGGenhKolgABIx9Ztxb//MXDgOB9x8cYHaoKksOzW7eNe0xVs7RNMJx3Fza9He8cV16v/i61sRHGjt84UBnKyu5k1cI8it07xpp9+TAiaIQf3ekeASCDQQaHkyn0hO5wK6E7S/FSkOY50jtqnQ7KOhbaBVLAWCOlninGm3c+t0ShO7JrEWASj5dlhTcCEtd/wbumFfsaGc1UkSWSxY7Z9nF56T31VofEOnRRoIzBao1J9S6WP/vIba3N/QNjbb7XBG/dqHHgI89U2jrX5pl/+8Gp3q13rpb38D10Inn60fV7gUFYmSMEZ8QESs4gxbnKWwf8OKN+qP99uAekM3iZEFSC002kzBAzT1SWsbLFfPLGDvVwDyEApSHpTWS0ObgC9fQB1FPV5wbzF6/iry3sSDdXWRe8QXjJprM3BOjJSZASc/UqvtXGXLrUh57uDFk2idbjdLrvYe0SS0uv49zmJ01HIg8TAxO7f+M3foMf//Ef59KlS2uz9Y4fP86LL77Iiy++yPHjx4HS2u/y5cv8xE/8BL/+678+qO5FIpFIJBKJRCK7iw0W5iR1FjuGdu4QAuq96hCLxCOxQqKCR1LeTwvXgtCrSN4GC3OMAevKgZMtWph77wjeEwIDELvNTRbm9ZfLfTZOjqP3NQBYcQn/x7ly8Ofjz01Vlk/bs6TdhS3tfUpOMSyHK20X3AXsFgbVZ0+dx7Sr1eWHnn9qrbJ/Ddeb6KCSKHTvIOv25TUEetfYl0ssKlicXLUuzwg3uCsEoMhSvBCkRYF0nlq7i7KehY7BhVLoThPJ1HCNO32No9Ad2fWIssI7yICRAREGI3iP1jWNNGG0rhECFjsF213QKoCs2yUtCrR16LzAS7n2/X4YWbc2z3AkWJnhRYLsWZsL3E538b7Ya4L3+LOPk41V75Omv/JN3A5aK28n0ltq3dlK27MbrMzPLmneW97a/fRmuMowK6Ro9TJQ/Wwft8fWhMadRPoCEPi0tDInUeilKUJrX2W5ueR1DK2d6eReQwhQGcgUvEO4nOxHnge54e9tPfnvfXHHurhKEKG0MkcgvNq84K0kyeQkwVjs7HXswjz22oMTi1CrHUapJu32eaxtsbT0Gt7v/UlakUi/GMhT91e+8hU+/elPE0JgeHiYz372s1y5coXTp0/z0ksv8dJLL3H69GmuXLnCZz/7WUZHRwkh8JnPfIavfOUrg+hiJBKJRCKRSCSye7jBwrztBIX1tI2lriWqpzIZqfCINQtzABG6gIXtsjA3BhFWLcyTrVmYe4/34INHytKyrq8kZxHCbOjAuoX5yEfXLcx/f2YKFwRHJhscm2pWNjE0t7WqbonkuHq00tYObab9zG3WuD2uMFz91ruVtuaBcYYOTd68sHVlTjciWpjvEKV9+Uo5UBeaSD+EDAOo3roLAofyBicSPEmZYyuqx0iZ75tCT+hWzlPvdFHes5QbjPOM1TVaSQ6OZCh5++9wFLojewYBRVIK3laVgrfy/T1QN+Z3j9Y11gdW8u0fuBZAWhhqnW5pa94TEYssxamdn4CzIwjwIqGQDZxM8UL3Ih0EiS/2vLX5XhK8pVIc/sSHKm2um3PlG2/uUI+2n0b7SuX1ySMj1LN1gfsLlwZT3X1WTCBEl0S+Vu1fqHHUTd1mxcFR5nZ7vNS4+hAhSUiERMw8XZl8FITluv76znV0ryHoTYCtgVTIiRr6Ox+vLOLeOIf91vmd6d8aoSp4B7XpSWciS0kmJvArLdziEmb6Mm5l5e4r7gGEkDQajyKkot05gzGLLK9864GKfYhEtpOB3OH+2q/9Gt57RkdHeemll/jMZz7DxMTETctNTEzwmc98hpdeeonR0VG89/zar/3aILoYiUQikUgkEonsHooNFuZJnaWOwXtP13jqaSlSBcAIhRWyHKBfFbt9mxA8IRju28I8AO0OWIvw7j4szB0Q8D4g+53VzW0szFcEKMHIh8pKbhMEv/JOKXx//NmqeKxMm/rS9Jb2fUwdJbuhmv6MPbulwearb57GFabSduiDT99c1R084EHJ8kf2v1oocgtElyBMz748Qfixne4R4El8gReqJ+yU2bWVJYSgSLNynkReCt21dgfpPe3C0Sk8wzVNTUsOjtbQye2Pryh0R/YaQYLpVXg7FZBeIPusdyopmBzOyBLJUJbQLhxd05+dKueotzskPcFbOY9JU4xOdqEEOiCEwIqUQjbwQuNEipUpgoD2ORJz923sUvaS4D187CAjj1atla9/6x2684s71KPtpda5Vt4791CyjMxZ5cuXM4oBGApcYYQ2GiXfRYhqtfkj7iC1kN5mzcEgWLUy14RE45MaQimS7hAsHqssu5ycZkXutDi7xxACVApJjfT7nkEMVZ9R8t/7AsHutLNFIAhKJ6SwNcFbNhuosTHc/By+08GcP094QJwihEhoNE4QgqXTuUCRX6PVemenuxWJ7EoGInZ/4QtfQAjBL/zCL/DMM8/cdfn3ve99/MIv/AIhBP7H//gfA+hhJBKJRCKRSCSyi8g3WJjrBosdS8eU1dHNtBSajFAEBE6WFuaC0sKcnoW5ABC1++tHt1PmdOdFrzpg8yJqCOC8x/vSgl0MxML8dKWl/kq5z6FnDqCa5aDeX8yOs2Q1ww3NMyeqVolDc2cRWxgYzsg4Io9U2ub8HPNhftPbMu0u12/Irxw9dpDGxNjNCzsHiFLk3sLfKHL/BBxetHr25SnS798F9uXrQneZU1vm1VaWEAKTpUBA5wblXCl0h0BuPctdSzNT1LVkfCijpqPQHXnw8BJMEvASnPQoJxF9FrxrWrG/mdFIFTUtWeoanO+PIClDoNbuoI1BG0NSGFySYLJ0046xDxJBCIysYWSGR2F750np7Z62Nt9Lgveh73i+el/oA5dfevWBqFqUwVHrVu2Un9tgZd62kpev9F9oDmvV3QGtvspG9wKJ5HFzrO/xDXdD+g253WkDEkUCcP0JcNWJtjPp/6AQD8aEiIEiJGJomPSHPlhpDlcXMX/xNdjx852HsCp4yy0J3mpsDFGr465dI3RzivPnwO1dt46NSJlRrz+KdSt0u5fpdC/S7V7e6W5FIruOgTx9z8+Xgzvf8z3fc8/rrC67sLDQjy5FIpFIJBKJRCK7k1ULc1tamBdB0TGOVmHJtCTp2Y8aoSiN/wRJKAcohF+1MO+AyG6uAN5UPxyim4PJESEQsq0NyHnnCAG8D70BzX5bmJ+/2cL81fIzG32hrBAJAT576hEAXnjfRMWSWXhLc35rVSMn1HGUWBcDQwictWfvsMbtufLNU4SNAzRCcPCDT916Yedh9bONed07QhDLN9iX13e4R54kFAQhcELjhcLe4PSwJnSH0Kv4dNQ7XWQIGOdZ7Bhquqw8HWukDNf0bfYVhe7I3sepgFUer8CLQOJK15R+MlLXDNU0IzWNErDQNtue372KALK8IO3mvSrvnCAERZbh+z4JbXdTWps3sTLF82BYm+8VwTsbHWLyhnublfeusHT+wRBxGu1qhM3xQ0MMNdbv075w6T4npd4j04zSIUGKeZSsuh/tCyNM7LATjfQGEHilcbUhSDQSEDZFXn+6sqwXhsvpn+OJucWbRkDywhPIY+OV5uK/v4a/fg18l5083wWxKniL0nYlbHICrwA9OQlSYa5exbc7FO+915/O7gBJMkytdoTCXKfIr7Oy8m2M2fyE6kjkQWYgd7SHDh3akXUjkUgkEolEIpE9x6qFuSktzBc7hkCgUzgavapuD1ihsFIiQ0D2Bi9FaBGCIwQL3OcAWqsDziMKQ0jTnpi6eZz3PVv1HbIwf1eglgUySxh67gAAr62McLrdIFGCjzxdjVdqLFzsDbptjhExzKSq2qFP+2nadDa9re7iCnNnqoMz+08eIxsZunlh7ygtzBUkcst/p8jWCaKzwb5c7wL78kASyoFjJzQehRG1ivDspSgzun1P6PaeeruDCAEfStEtkYKRWinG7W/efrJLFLojDwo2CTjpcarMEE2s6HvF40QzLfO7GxoXAst5fy20tbXU2p0yx7ubI3ygSFNsonaZDDpgBLibrM2zdWvzYNjx8tdNslcE78kPPY1uVieITb/0Kn7HrZXvn1pnFuHXRVkhBM9ucBM6Na+ZafX/vi0IwTlR3u8m8nWgXXn/pD2KCjt3/yiDQ4RebnetSZASoSQqBMLiMdTK0cryhZzniv7irjuW9wJCCrL/5YVqY24p/vgbYHIwLQg7F+VQCt6CMr9bltYrm0FJkqkpgrXY69dxiwvYq1f70tedIE3HSdMJuvlljFliael1nGvffcVI5CFhIFey7//+7wfgr/7qr+55nb/8y78E4Hu/93v70aVIJBKJRCKRSGR3ki+DW7Uwr7PUNXSNx3lo6rIapBBl1qYVGy3M/ZqFOQDiPvK68xzhLOR5KZ7q21d03gkfwHuPDx4hxP1Vmt8TFpJ3Ky31l8tHnuEPHkL28s7/115W9wce30+jVq2EHpo7s6U9P6Yeq7w2wXDeXdjStmZef5uN5X1CKQ68/4lbL+w8pYW5hGRrf6fI1lm1Lxch2zX25SoYCB4rNAGFkVWh20lJkaYIH0iLYs26vDyPwHyrQAgYa6TUU8VE8/bnkih0Rx40SjvzgFWhrIJz/RW8pRRMjWSkSjFc03QK37f87lWU99RbZY63LgqUNVitMal+6KWjm63NM5zUyFBam8s9Vk26FwRvpTUHP/6BSlux3OLa62/vUI+2D4Gn3qkKbR84OVZ5/dcDqu6+zCg5CUJYtPpG5b0UzXF7+DZrDobSyjzt5XZnkCRI75FCIq48gzIjleWXk9Msqr1/jOwE6pEJkhdOVtrsN87hzlwCb8C0wbbZqSrvIDxiTfBWZZX3JhCpJpmYwLdauIUFzMwMbmm5P53dAbLsMEkyRKdzHmNXWFx6Db+FidqRyIPIQJ7CP/3pT1Ov1/lX/+pfcerUqbsuf+rUKT772c/SbDb5zGc+M4AeRiKRSCQSiUQiuwBvywEGU1qYW5GwklvauUUrQap7FuYywYnStnrVwlz6LmXeWhdxPxbmPiA6XTAG4R0hzbYsXHlngUDwHjkIC3N1HiGKDR2A2mvlZzby0bIq5GK3xhfmxgD4+LPVSuxs5Qq6WNn0bqfkFMNyuNJ2wV3AbmFQvHV9nqWLVdvLyaePo+u3GgwNZWW3UiBEzOveAVbty0UYQvjmjtuXq1AgguvZ8EqMrJfHRg8nJSbVyJ7QnThHrdMtv5kBFjsGFwL7GilZIjkwUrutWUAUuiMPJAIK7fEyYGRAhP4L3lmiGG+m1LWklvY3v3sVAWSdLmlRoK1D5wVeSoosxfd9Ytrup7Q2b2ClxpOsnVOVN3vO2nwvCN5jjz9C42DVaefqK29RrOz9isVG+0rl9eHJIcaG191SXrqcYQdwOHkhOSdK+2opLiLFpcr7h/wEQ37n7mGkL/BSlfEr9WFQChko4yR8QmP2YwhfndR5TX+Zjri2Mx3e46Q//DzcEE+T/9GrhKILrih/ihXwOTvharEueIPwslftfe/IZgM1NoZbWMC3O5iLFwh53o+uDhwhBPX6Iwip6bTPYs0Sy8tvEPqVgxKJ7CEGInY/9dRT/O7v/i4AL774Ir/+67/O3NzcTcvNz8/zG7/xG3ziE58A4Hd+53d46qnb5NJFIpFIJBKJRCIPGvlyWVrZszBf7lpCgPYGC3OLxCPWqrrXbuj9Rgvz+xis6nTKkuyiICT6vgRU7x3Be0Ioq9f6jdDVCo/0jEAtCtRwRvOpUtj+388eBQQnDg8zta/6OQ3Pbr6qWyI5rh6ttLVDm2k/c5s1bk8IgZlXv11pU6lm8n0nb72C90Aoxe5VwTsyMILo9uzLhxBBI/2+u6/UR2QwyOBwMoWe0B02Ct1KYtIU6T26KEisJVsVuoHl3FI4z1hdo5XkwEhWybPfSBS6Iw80Aoz2hF6FtwigfH8P7uG6ZrimGck0SgoW2kXf8rtXEUBaGLJOt7Q1z8vJYkWW4lSMxHiQrM1vErzF7hK8hRAc+c4PVdqCdcx85fUd6tH2kXXnkK6otD23wcp8uZC8du32USHbyXuMUaB68yO/DhsmZQoEj9tHduyQXsvtlr3cbqWQSiC8R0qB7dQYWarabwfhmU7/HEd3Zzq9h5HDddJPvb/S5t+bx75yqZxIa7vgDJhuz9p88K4WQYTSynytwntz12E1NoasN3DXrxG6OcW58+D2fjwCgBAJjcZxAp525xxFcZ1W6+4FppHIg05y90Xun1Ur8snJSd555x0+/elP8/M///OcOHGCqakphBBcuXKFs2fPrs1Cefzxx/mVX/kVfuVXfuWW2xRC8Gd/9meD6H4kEolEIpFIJDIY8iVw3XUL8wVDYR3GhTWxu5AKj8AJSbaaAxg8+BaEDiC2bmFuDaIoShtzIGRbt0L33uM9+OB7Qne/B84dJKcrLbWehfnIh48glGTRJvzO5TK3+8UbqrqTfJmstflMt2PqKNkNn/cZe3ZLA8jLl6/RulqdFDz13OOo9Db25M4BEoQEPZBHu0iP0r58pWdfniH9vh21L5dYVLA4uWpdnhHEen+sUthUo6wlMRZtbZnX23u/XTjahWO4lpDpsqI7vc1Elyh0Rx4GQq/COzWlcXXiJAHwqn9K0HgzI7eOsbpmtlWw1DWM1vsfT5E4h2x3yOs1RB56luYpvne+eNi/2kEIjKiVVua+IAiJFBbpywlGXib4wQyv3hcy1MFP4uU1pAcvl4FlCMOIXfBXrk/sY//7HmPurfWJhwvvXmD8mZM0D03eYc3djSBQ71ylNbSeO/3hJ8f469fXK76/8F7GRw4Ut1p9W/FCcp79PBGuIUWLRL6B9c+vvT8cGhz2E1xW1/velxuRwfdyu1Ns1iQIgUgSRG4ga+C8QbUO0NBP0W6uT261ssV0+lccKX5gx2Nk9hr6O5/CfPldwtWltbbiT14j+cDx8lHSF6XrWJKCcSBTSDIGVDsJhPI4CJKAR6AI2Hu/3xSQTExgpqcxV66glaS4eJH00UcfiAnCUmbU68dpt0/T6V4CIVGqSb1+9O4rRyIPKAO5G/vLv/zLio1iCIEQAqdPn+b06dO3XOfdd9/l3XffvcmCQQhBCGEAeX+RSCQSiUQikcgA2WhhLhO81Cx127QKi5JQ04oAGKGwQpaVZqH0PRS+A3gIqxbmW9h/ANodsA5hDSGr3Zd45Z0DAt4HEjUAe211HiGq9nT1V8vBmNEXyof+f//eIVwQ7B/JePKR0cqyQ3NnNv3rZmQckUcqbXN+jvkwv8ktQfCBmdeqVd26UWf8iUdvt0ZZeZEk5ZjTID7jyBpBrGywL28gQ2PH+iJwKG9wohRcjEzxYv1R3yYKq0uhWxtLYgxpXqwd74X1rOSWRqpopIrxZkY9vVeh22OSEIXuyANJkGWGd2oFLniUlyACvk/j/FLCgeGMSwtdRuqaxbZBq3Vnl34iQ6DW7lBkKQIQwWO1xkuJsg7l3EP/NS+tzRMUhsRTfjbBorwBSRS8t4GDL7yfxdMXccV6/uylL77CE//L9yNul6mxB2i0Zypi977RBpNjNa4tlBXJb85qrnckE/X++5lfZB/HmUXjUfLbOH+cwNja+4/aw1yXixRi8BnApZW5BilxtSaJtYjc9OKQEnJjaCw9g03nKPS6fXlbXWI2eZUJ++GB93kvIxJF9mMfpftv/3ytLazkFH/6OtmPfhRkArYoq7xlUj4regNJrRS+B4InCIlAEsKq4O3u/b5TSZIDB7CXL2OvXwcpMTMz6IMHHwjBO0ma1GpH6XYvomSNFgKl6qTp+E53LRLZEQZyJ/Zd3/VdUZyORCKRSCQSiUTuxKqFue2AHmIltzgP7cJT1wohBIVQgMBJifJ+7Tlf+BbBOwIOIYbvtJfb0+0irIciB6lKEXWLhADOe7z3CMFABiiFrlq36dMCtSDQE01qj+6j8IJ/c64Upj/+TLVCSLiCxsLFTe/zuDqOEusiRAiBs/bsFnoPC+cv0V1YrrQd/MCTyNuJ2Ks2fKr3t4rPWwMjiJwgCqQfQYRkh+3LPYkv8ELhhS7zZcV6JahNEqxOUMaUubyFIS3Wq8esCyx0DKmSDNcSxhqakdtUkkahO/Iw4lXABI9GIoJHubLCLPTpsqYTxcRwxtWlLiZVrOQWrQR6ALbiAsjyAuk81DKk99hEY1ONDQnSe5R1yA33Hw8dAhwaL5NedrckYKLgvU0k9YwDLzzH5S++stbWnV1g7ttnGH/m8R3s2f2R5gso28UltbW25x8f40+/XkbeBARfvJTxo493+t4XJxQX2M/JcB0hPFp9jcL9wNr7CYrH7BG+rc/1vS83Ir3B6IwAuNowSWcFKcAah2pk4AOFcYwsvMj8+P+Fk+uf15x+lZqfZMgfG3i/9zLJU4dRzx7Ffeu9tTbz12+jP/448uBYKWx7W4rcvgNSAwFkAUkdGMRkWw9B9gogZek+tgnBW+gENTmJvXIFN19OSPYrK+ijR5H1ncup3y7SdD/e53TzaaTMWF5+g9HRj5IkzZ3uWiQycAZW2R2JRCKRSCQSiUTuwKqFue9ZmC9ZrPfkxjM2UtpkG6FwCDyCNGy0MG8T6JRWb1uxMPce0e2CMQgfCI37rOr2jhDoid1l1lp/cZC8W2mpv9Kr6v7oUYQQ/NcrkyzZhCxVPP/k/sqyzfnzyLC5DLdhMcyUqorm036aNpsfqPTOMfN6VayvjQ4zdvzIbdagFLulBOR9TUyIbI6Ax4vlG+zLd6qqfl3odiLFyQQn1ittjE5wyUahuyDdUC3nAyy0CxIpGK1rmlnCvsatzx9R6I48zLgkIIIHJREukDiBEf07/oeyhLyuIYBxnqWOYX9zi64tW0Bbi2x7ilqG9KWNrFMSpxQmSxEhIJ0rhe9+B4vvUoIQWJERgiDpFeMqbwhSEHbsmnDv7GbBe/yZk8y+eZp8ft1aeearbzD62DGS2tbjdXYSAdQ7V1gZXnfr2Sh2A3zxUsaPnOwgB/DxX2A/jzCHxiPlNZQ/jQsn196f9Pu44uaYV0t32Mr2o7zBIPAyLXO7EQidIIwlkKGSBG8tvkgYWXyR+bG/BLF+DppJ/4pH8x9Fhy1O/H1IyX70I7Tfvgy2dzLzgfwPvk7t//59ZfGiSsqJ0N6U1ubBgUrBr5QW57L/1uZBeESQCAFhdbaZuPdnN9moo8b342bn8N0uyfg4vtMhmZhAHziw5x2ysuwg3ue0O+cRUrO09BpjYx9FDqwCPxLZHexdD5hIJBKJRCKRSORB4QYLc1TKUsfQzh1SQF2XOd1WKKyUyBBQvUxo4TqEVQtzalsbomy3IXhEURBS3RNRt45znhA8IYReXnefURcQoltpqvXE7pGPHsUH+F9PPwLAh58cJ9UbBjSCZ2hu89XYJ9VjldcmGM67C5veDsDsOxcwrapIfvD5pxC3++yCL3+UAin2/ADNXqK0L2eDfflOVU14klCUIpTQeKGwlCJAYF3oTnpCd5pXhe7QE7qDgNFGSk0rJodqtxTTotAdiYBNyuPfqkAQkDgBfdR59zUyaqlitJHiAix2BmsprLyn3u5Qb3fQRYE2liwvSPMcaR1eKYpaRp6l2ET186PY1ZQTjUpHDS8UiS+A/ltRbwcy1JF+AhEypB8miIIglgk7/NcUUnLkOz9UaXN5wZWvf2uHerQ9NNpXqq+bdQ6Nr1eVzueKb12/tbPKdmOF4iLrrjSJehWoRgGdtEeRYbAXehE8Iji80jhdIyQJIkkghF48kkDrBGMMSb6fkdbzlfW9KLic/jkeO9B+73Xk+DD6u5+ptLl3ZnBvrFd7I0QpcKts3YnMGTAFmFYphPeZIDwEAZQ53pu1WFEjI+hDh8AHzOXLuPl57NVr5KdO4ZYGO7FjuxFCUK8fQ8qUTvsc1i6ztPxNQtgb16NIZLuIYnckEolEIpFIJLLTVCzM67QLS+E8bWOpaYmUpYV5AKyQJBseXKVvgbc9C/MtVLwUBmEsdItyIEPf3wxw36vo9sEjhOhVdvcXkdxgYX5WkMwLasdGyQ4O87XFUS52SiHvY89MVJatL02T2M1VY0/JKYZltWrkgruA3cLgmisMV7/1TqWtObWf4cNTt1/JlwN+SAU6VnUPitK+PEeGoR22Lw8kwQA9oRuFEaUbQwCs1rgkQReGxDrSbo42ZuPqLHUM1gfGGposkUyNZLec4xKF7kikhwCTeLwsBW8R+it4SwmTwxm657yQW0+72JwDybb0w3uyvKDeapN1uujCoK0tzyt5gQgBqzV5rUaRapySD53wbVl31igF75y9I3g3NgjeQ7tG8B46coDRx45W2mbfPE1ndmFnOrQN6GIJZdqVtk+8b6zy+qXLg6tcvyD243oXcyFyEvVK5f06GcfcwYH1ZxXpDU6mgCiru5MEAXjj8J7yuUJK8sJQa52kUTxaWT+Xs1zVXx54v/c66fc+hxhtVNryP/o6wdzwbCNVL7NblwK37fb+bYNt0e9zX1nh3Ttuvdq04C1qGfrQIdTYPtziEubyZeziEsW5cxTnzhPM4LPqtwshFI3GCQKedvscpphjZeXtne5WJDJQotgdiUQikUgkEonsNMUyuLxnYd5gqWNw3tM1nkaalJWaMsH1LMHVquW29/jQItAFIWGzYncIZVW3tQhnCVl23yKWdxYIBO97Vd07Z2E+8tFyoPRX3ymrup96ZJSx4epnNDR3elN7k0iOq+rAWju0mfYzt1njzlx76wwurw6sHHz+6dI28HZY36u+F9HCfECU9uUriJAiqO2ofbkKBoLHCk1AYeS60G1SjUsUuihQzpF1u2hbHahcyS2584zWNZlSHBjJbpkHHIXuSOQGBBTaE0TA9ARv5fv3hdCqnIiSJZJmVuZ3G7szIqoAEueodXMaKy2yvJxEkxaGrNMlsYaAwKQpeS3D6AQ/CGeX3YAAS9aLlNCEPVfhvSp413aV4H3oxQ8iNjrXhMDll14h7FHrfMHN1d1PHa9Omnv1WkrLDOZ7Y0RSqe5W4gxCXK0sc9RNUfeDtY5X3hCEKp1r6qWVuUoSgrE478ldQKsE7z3WOpqLH0L70co2lpJTLKpTt95B5JaILCH9kQ9X2sJcC/OXb91iYUDpMrNbCLA5uKKs9C5WoM8TfoIIZWU3ILzsVXtvAilQY6PoI0cgSbBXrmCvXcPNz5G/fQp7/Xr5jLwHkTKlXj+O82063ffo5pfpdLbmPBaJ7EUGPjLivefNN9/kzJkzLC8v49zdZ6b+w3/4DwfQs0gkEolEIpFIZAfwFopWaWPeszBf7CzTMR7voZkpHBKPwEiFCn5txqr0bQKBEDogss1rUJ0uwgfIC0g0JPcv3nnvCN4TQmlF2XfUewhZrcyuvSxBwMhHjnKm3eBriyMAvPhctVpad+ZJO/Ob2t0xdZTshkkFZ+zZLQ0Km06Xa9+uWqiPHD1Ac+IOFcPBAb5nJSjv23I+cm+U9uWhZ19e3zH7chUKRHBYmRGQGFkONK4K3V4pdF6gvC8FqBuetzuFo1U4hmsJNb0qpN38vY9CdyRyG3qCd2oklvJ7EgCv+jMw3kgTxhql44pxnoWOYXwoG0iu7+0QgDYWbSxeCKxOsEGTCIfv5Xv7pIxSEN6jnEM5tzFa98FDgKGGpoxUURiSUGBFyl6oM5KhAX4Cr673MrxX2OkM73S4yeTzT3H1G2+utbUuX2PxzHuMnTy2I326XxqdGZZHT6y91lnG8YMNzs2UFd/WC74+k/I3j+W328S2cl6McyzMowiluZP6Grn9W4jeMSuRPGGP8bp+d2DXf+kMaPBS49IGKIlIE1S7i3Wla5QRgiRJMMaiVMbY0ie4PvqnBLE+ue+q/hKZH6cWxgfT8QeA5PlHMS+dwp9Zn/RQ/NkbJB99DLnvFve9QkCSlc+yzoLvlhXfIYA0ZQW46If0VMaJiCB7ld6KgN30MSp0gj54AL/Sws3NYS5dQo3tI3iHm19AHz2CrNfvvqFdRpI0qdeP0elcQMrymVWqBlk6cZc1I5G9z8DE7na7zS/90i/x27/928zOzt7zekKIKHZHIpFIJBKJRB5cipUNFuZNCuvpGEc7t2RaoqSkLcvMbo8gCxvEK9/uZaR5hKhtbr/WIfIcihwRAiG9P/ty6NmXe/ChrOoWAxjgFUnVnk2fFyRzgsaTE+ixOv/bG0cBwcHxOo8eHKosOzx7ZlPjIhkZR+SRStucn2c+bE4wX+XqG+8QNoqRAg5+8Kk7r+R8uaCU0cJ8QKzZl/shRNA7Zl8uMcjgsLIUT4ysE9aE7hSvRJmn6wO1TgflqlU1hfUs55ZGKmmkivFmRiO9+RiKQnckcmeCLC3NU6twwaO8BBHwfbrk7Wuk5NbhQsrcSs5ix7CvrnfFd1KGQFoYdGHwSmK1xoYErMNLgUuSsk1rpCuFb+ncbuj69rMqeIdOabwSCpJgsEKzZwRvt7sE76kPPs382+cwK+v239Nffo2RRw4h9+A9kDYtkmIFm67fj37XM6NrYjfAly5nAxO7C5FwKYzxCOV9rBSLKPltvF/Pbx4Nw0z5/VxVcwPpk6CX2y1TnEoJaYZwDqUE3jmMBClUeR8sHHlRUJdDTHS+g2uNL6xtJwjHdPpnPJL/KIrBVqfvVYQQZD/2UTr/rz9Zr2w2juKPX6b2Dz55+xVlUoravuj9WEhSMA5kWgri234ODARRPmuG4BEkWxK8AeRQE1mvY+fnsbOziNYKyfgEvtMmmZhEHzhQTjDeQ2i9D+dy8nwGKWssL7+BGv0ISTJ895UjkT3MQL6pKysr/M2/+Tf57Gc/y/Xr1wkhbOonEolEIpFIJBJ5YMmXKhbmix1DCIGOcTTSMqfbCIWVsrRMXc3r9o5QsTDfpFjdboPzCGNKoXsbysS8d0DA+4AcQFY3eEiqede1l9ctzOeM5j9fmQTg489OVpaTpkt96dKm9nZcPYoS61WwIQTOurN3WOP25EsrzL57sdK2/7Fj1EbvNAgRwDlQqqymUHtvoHevEfAEsYIIGkEd6ccQgzdIQ2JR3uLkqnV5RhBlRWmRpXgpSPMC6Ty19s1Ct/OBxY5BK8lwTTNa14zU9U37iUJ3JHJveNXL8FbghEc5ieiTa6sQZX53piSjdY1xntYO5HffCQEo58l6NudpNycxFt2zOdeFWXOgKG3ONV4+gPneAoys4VE9kRuSUE5K3AvI0EC6iV5cx85bmkudcOg7PlhpMyttrr727R3pz3bQaFdjbx49up+NyTWnFzUzrcEJa+fEeOXo1PKbWKrZ4o/ZwyRhcNEtyhc4qSlzu5uAAKXQvWegwpXPGqJnZ26sQ64cYtS8r7IdI1eYSf/Hjlvy7yXUkf0k3/FEpc2+eh53+spt1ughKF2nkt7ka9vtWZsXG6zNt/vv4AlQTq4OAhHU1nehJMnEOPrQIfABM30ZNz+PvXqV/NTbuKWl7ez4QMiyAyTJGJ3OeaxdYWnpdbwfzESaSGSnGMjV85d+6Zf4xje+QQiBF198kX/37/4d3/jGNzh9+jRnz56948+ZM2cG0cVIJBKJRCKRSGTwrFqY286ahflS19A1DuehqROMUAQEVkhUWK+GUr5TTgwNXQSbtDDPc4RzkOe9CuGbRa/NEgI45/Heg9g5C/P6yxKRSEaeP8y/u3AYFwTNesL7H6tW4w7Nn0VsYkRkWAwzpao26NN+mnZo32aNOzPz+qlKHpxQkgPvf/LOK3kPhLK6QKltmaAQuQuiRQgBEYYRvoYMQ3dfZ7u7gEN5gxMJngQjU7xI1oRuhCAtekJ3p4vyVVElBFhoF0ghGKtrGmnC/ubNVU7rQrePQnckcg84FbCqFLy9CCRObP9Yfo9EylLw1pJmlrCSW4odyu++GwLQ1lLvdKm32qRFQWIMWVGQdnOUtXgpKLKUIsuwSYIXD9CJRgiMrBFWBe8QUMHQt4Njm9ltgvfoiaM0D1fvv669+jbFcmtH+nO/3JjbLXXKs8eqFtFfujy4SuRcaC4ztvZaCEemvlZZRqM5YQ8PrE/SreZ2S1zWLO93lQLvSLs55AXGOpwXCCkxhcF7T3Pp/dRc9VhpqYvMJa8NrO8PAtkPfhDq1UnU+e9/jeDu4ZojZCl4yxS8K59xnSnFb9sC7F03sTk8BEr3iSDvT/AGRC1DHzqEGh3DLS5hLl/GLi1RnDtHce48wZjt63qfEUJQrx9DqTrt9lmMWWZp6ZuEsDvvHSKR7WAgU9J/93d/FyEEP/RDP8Qf/uEfImOuXCQSiUQikUgksm5hbtqgm1jvWelaWoVDK0GqJSsiwQlBQJBsfDj1LUQweDxCbCJPzAdEpwvGILwj1OrbImZ57wihtDKXQjAIhewmC/MLgmRW0PzAAWytxv/34iEAPvr0BGqj/Zx3NOfPbWpfJ9VjldcmWM67C1vqd3t2gcUL05W2iadOoBt3saJ3DpAgVLQwHwCBAi+6yDCECAnS79+BXngSX+CFwguNlRovNEEIijQFwVpGd63dQd7gjBYCzLcLfID9QymZlkwNZ9yoK1WFbqLQHYncI1YFRO97J5wgcQKr+vPdqaeKfY2MEHKM9Szugvzuu7Fqc54WBidlme+dbLA5VwqblNc06T3S9vK9d7rj94sQGFlH+zZWpiQ+R2Fwm3Xh2SF2k6W5EILDn3ied/7Tn65NEgzOMf2l13j0U58YaF+2g8R10PkiJhtda/sbz4zxxoV18f7L0xk/+nhnYN/tc2Kcw2FhrSJOy0us+Bnq4eDaMgf9BFf8HEuy/5MMpC8FRS81TtUgy8AHkBJhLYmxuLbB984dSChMgZQZE+1PMj30X3Ciu7a92eRlan6Spj9yu11GNiCaGdnf+iD5761PevDTC9gvv4P+zrvELUGvyjsBqcq4LV9AcGXlt2+V/6rtszYvc7slQkAIvW2K+3A/kQI1NopsNrGzs9iZK8ihJjiHX1khOXiQZHw/N91M70KEkNTrx2m13qHdOYeUipWVtxgefnanuxaJ9IWBqM6XLpX2gD/3cz8Xhe5IJBKJRCKRSGSVjRbmSZ3lriUAnaK0MHcInJA4oZAhoHpT1YX3+NCGnoW5EJuozO50yv0VBSHRkGyPLaFznhA8IYQB3fPfwsL8lXK/oy8c5T9NT7FkE5QSfPR9E5XlGovvoVxxz3uakpMMy6q9+AV3AbuF6oQQAjOvVu03VaqZfObk3dbsHSeyfIpTg7OTfBgJeILs2ZeHOjLshH35utDtRIqTCU6keFFWRELoCd3ulkI3wFLXYH1grKHJEsmBkRryhtHzKHRHIveB6NmZy1AK39DXCu/RuqaRKkbrGiFK14a9kv6nvCfLCxqtNlm3izYWbSxZN0cXBQSwG2zO3R63OQ9CYGSDgMTKDBEcKtz7vcdOs5sqvOvjY4zfcJ+0ePY9Vi7dxVp5l3JjdffUwf2oDdfmua7i7bnB3XN0RMoMo5W2IfUVHFXB8HF7DDGAP78gIIPtid2aUK9DswG1GmS1UnjMMlwIkBfQyTHtLqabYzqKA/l3QxAbN8h0+pcYsdL/zj8gJC8+gTw0VmnL/+Q1QmsTNthC9KzNs3KiylqVd1E6m/ntq5IOwvf+5gIRJIT7fxYVOkEfPICanCR0uphLl3ALC5jLl8hPn8Z3OnffyC5ASk2jcRzvu3Q6F+jmM7TbW4vhikR2OwNRnqemSguRiYmJuywZiUQikUgkEok8JHi3wcJcQZKx2Dbk1mFcoJGqnoU5WFGt6ha+BSEQehbm94wxiKKAvCgrc7LtsUlcrej2wSNEOYu876hLCFm1EK+/LJG1hMYzB/n/nDsKwHOP7WPohmzi4bnT97wbieS4Ol5pa4c203761ivchZWZ66xcma20TT5zkiS9y4SFXh46Sq1ndkf6h2gTgu/Zl2cIP2j7ck8SCoIQOKHxQmHJ8EJgshR61ZLKOWrt7i2F7lbu6BrPaF2TJYoDIxlaVb+bUeiORLYBAYX2BBkwMiACqD4J3mV+dw2dSEZrGusDrXy7bWH7iwAS66h1uqXwnRdoY0mLgqybk/Rszk2WUtQyjN67NuehV+ENEhcF7/viwEefRdWqlfGXvvgKwe89S95G58oNUTYJLz5RtTJ/6fJd3H62mbNivPJX1aLFsqpOKm2GOkdusAnvF9KZ9dxuVYMsheEhGBuBRh3dqBFqdfKsrPwOPpC32tilZcL1OuP5hyrb8yJnOv1zPPdR8fsQIZQk+/EXqo2dgvy/bcESXqietbkuBW7b7f3b7lmbb8/fpKzwLq8VwqvqhIf7QA010UeOIBplpbeZnsEtLJK/8w5mehruxd59h1GqQb1+DGMXybsztNpnyPOrO92tSGTbGYjY/bGPfQyAt99++y5LRiKRSCQSiUQiDwnFcs/CvAO6gQ+BpdzQLixKQqYVhUxwQkIQqLA+ECDcCiIUBDzcq4V5ANodsA5hDaFngbwdOFcKscH7XlX3ICzMT1VeJxcFyTXB8AcP88WVCS52ykHCjz87WVkua11D58v3vJ+j6iiZqE4KOGPPbmmgN4TA9A1V3bpRY+LJ43df2fkyBw8Jyf1nrEduT8DgRQdJc82+fLC2rav5rj2hG4URtbWMW0IgzQuUc9RvU9HdNZ6V3DJUS8gSycRwRnaDi0MUuiORbURAkZSCt1UBGUD5/nyZlBRM9fK7h7KEVuHId2l+990QIaCNod7uUGt30EVBYixZXpDmOdI5nFIUtYw8S7FK7blq7yAkhawTkDiZIoPrneP3BrtF8E5qGQdfeH+lLZ9fYvbNe5/AuFtQLifNFyptLzw1Vnn98pWU7gDnsbRFxhVGKm37xWusiOrE0kfcIbLQfzt+6TfkdqsN9+FSlhXeoyMkYyP4WoZRGtkYwqcpRghMnlOfOUKjU80Z78rrXNNf6XvfHxTUyQMkzz9aabNfegd3aW7zGxOA0pDUy1lbLgdXlJXeRQt8Dtz/dSyIUFZ2s72CN0qSTIyTHDwIzmGmL+PmF7BXr5K/cwq3dO/PljuF1mNk2UHy4grGzLO8/C2s3f39jkQ2w0DE7n/yT/4JAL/5m79J2Cv+SpFIJBKJRCKRSD/Jl8qHfO8gqbOSW7yHduGpa4WXioDASIXCr924S+/wdAl0CZuxMO92Ec5DkYNMtjXz2XvbszAHMRAL8wA3iN31noX5yEeP8r+dOQbAoweHODTeqCw3NHvvg6IZGUdlNd9v3s8zH+a30mkWzl+mO79UaTvw/ieRd7WS9+VxolT5BLdN1vORmynty5cRQUOo9ezLBzu5QAWDCB4rNAGFkTW8khRZivDrQnet3bmlLm2sZ6lrqKWSZqoYb2YMZdXvexS6I5HtJ0gwvQpvpwLSC2SfNOiaVuxvZjRSRU1LljoG5/f2eFvF5rzTRRdm3eY8LxAh9GzOaxTp3rI5D0JiZEZA4aRGBouMgvem2f/0CWrjY5W2K197A9vp3nqFXUyjPVN5PTq+n0yvX4QLL/jGle1xYLpXzojxyutUOFrqm5W/s0Jy0h7tW1TDKhtzu21y689B6gQ9PEQxNIxpNqDWwEpJqNcwWcrU8sdITLVifjH5Nkvq3f52/gEi/Z8/DHrDc0cI5H/w9a3rO0KUtuYqLeOZVq3NTRdMC+77vBg2CN4CEdS2HquyXkMfPowaGcUtLmIuXcYuLlKcO0tx/gLB7O7zepYdQOt9dDoXsXaFxaXXcG4T1vSRyC5nIGL3Jz7xCT772c/y0ksv8ff+3t9jYWFhELuNRCKRSCQSiUR2J96BaZf2bVKBSlnqGKzz5MbTzBIKofAIPHeyML9Hi0PvEd0umALhA6G2fRUZPni8L23MpRSIQTxiqEsI2ao01V+WqOGM9448wjcWy3ztG6u6VbFCbeXe8x2Pq0dRYn2AJ4TAGbe1jDPvPFdeqzpdZaND7Dtx9O4ru15Vv1KgY1V3X1mzLx9C+trA7ctVKBDBYWVGQGJkvaxqTDXSB9KiJ3R3urfUpZ0PLHQMWklGM81wTTPaqB4zUeiORPqHl2CSgJfgpEc5ieiT4D1S1zQzzUhNIwUsdsyeye++E2XuuaPWzWmstMjyHG0taWHIOl0Sa0p78Czt5XvvDZtzLxKMzPAkOKlRwSLZOxb0u0HwFlJy5Dur9tSuMMx87Y2B9WG7qHeuwob7e6Tie5+p3nN86fJgxe6WqHGF4UrbIXGOGXmt0jbuRxn31Yzv7WZjbreXKeE2zxeJFOhEUghFGB7GDg1hlII0wyYNDtvvLwXPDVzRX6RrrzwQ58t+I/c1Sb/vuUqbP3MV++r5+9xwssHavOhZm9v15+P7qvIOBEH5TBoEIiTbOzlDCtS+MfSRI5Ak2Jkr2GvXcHOz5KdO4WZn2c0HV612FKUatNtnsWaFpeXXCSHa+0ceDLavnOMu/PzP/zwnT57kp3/6pzl27Bg/8AM/wJNPPkmj0bjrur/4i784gB5GIpFIJBKJRCIDolipWJgjBIsdQ7twSFFWbK0IhZWyzP7cOBjmWhByAgFxrxbmrXYpeBeGkOrSAnCb8M4DAe8DiRpMxfFNFuaXBMlVwch3H+GXzj8KCMaGU55+tDoQNzR39p71vGExzJSq5hJO+2naoX2bNe7M3LvnKVqdStvBDz6NkPfQI+vLSREISAb2CPfQsWZfHnbGvlxikcFhZQo9odsmCqNTpHfowpBYR9a9tdAdAiy0C6SAsbqmnpVV3RuJQnck0n+cCojgSYJEhEDiJFb4bXNT3cjkUEphHaMNzVzLsJwbRmoPzqQoAWhj0cbihcBqjQ2BxDq8EDil8InCJQnCe5RzKOt27SmtFLwD2gMSlDcgwQ9uePa+kKEBbhyvZpEevFwBliEMD+x62Tw0ydjjj7Dw7oW1trm3zjD+zEnqE/sG0oftQHlD1p0jr0+stX3g8X38yWvrtsJvz2uutSWTjcHFFJwV4xwI631IcRj1JoXfR7rB6eakPcqCXMb1azYPvdzuJEMbsEmGtp1bLpcmEh88XeOoZTW63Q46S1BZRj0d44D9LmbUX6wtH4RjuvaXHLn6PSRpE5FliG10vHrQ0N/9DOarpwlzK2ttxX9+meSZo4jsPj63VWtzqcD2BG+ZlDe03pYV4DJlazepHoJECFlOYkURcNt6vyt0gj54ALfSws/NYS5dQu3bR3AOOT+PPnIEWb/HZ/UBIoSkXn+UVusd2p0zSKlYXn6T4eHnEHtg4lgkcicGdia/evUqv//7v8/i4iLee/7wD//wnteNYnckEolEIpFI5IEiXwKbr1mYtwuLcYFWYalpiVMJAYEVksSvD9oqb/F0ehbmCinu4XY+NwhrIS9K6zi9fVXdIYDzDu89iB20MH+53K9//gR/cr4cNPzYM5OVB3bhDM2FC9wrj6nHKq9NsJx3977+RpyxXHmjapnYmNzHyJGp26yxgeABX9r9KbmtExUi6wRCz748gVDfAftyj/IGJ5OedXmGTTRGa5R3JIUhsaWd7+2FboMPsL+ZkiWSqeFa5XCJQnckMjisCoheZZdwkFjRl++blIKpkYzpBc9wTbPUMaTKU9MP3rVChtLdQhcFXimMTpAhEKwlSIlLVCmGa410DuUc0vldd4rzQmMlJB4QYQ8K3k1w7KjgffDjH2Dx3CWCXa9GvPTFVzj5t79nT4k1jfZMReyuje5jf/Mic631qtAvT2f8yMlbi7z9YFnUuRaGmGRd2HyUq3xbXeQpt35vnJHyiDvE2eRS3/oifYGlThAKp2q3FbsBskTRKRyF9aQ6pdXO0VrTDTA++R3kywvMm1fWlje6xbWJV5m6/gKik4NSyFpaCt/qwTt/3g9CK7K//RG6n/+rtbaw2Kb48zfI/tbz27ADWVZ5ewvelM/HUgMBpCnf28L5MQiPCBIhBCFIBGy74A2ghpqoeh07N4e9PotYaaEnxsnbbZLJSfTUgfIZbhchpabROEGr9S6dzgUQEtU+S7P52N1XjkR2MQP5ps3OzvJd3/Vd/Pt//+9xzhFC2NRPJBKJRCKRSCTywOBdmUlmO2sW5osdg/OervE004RCJjghCDdYmONaCE9pYS7uwcI8BOi0wVqEs4Qs29YHfO8dwZdW5lIIBqKaycsIuVJpqr0i0ZNNPu+ewwVBqiUferKaO9hcuID092YXOiknGZFVG8cL7gJ2i3aj1946g8uLStuhDz59bwOyzgGiFLljVnf/WLMvH0aGDOGH777OtuFJfIEXCo/GSk2RZJhUo5zt5daa2wrdAEu5wXjPWF2TJYoDIzXUBteAKHRHIgNGgEk8XgasKr9riRN9ybnNkjK/u64ltVSy1N37+d13QkAZ57Bqc97NSYxBr9qcF4aAwKSrNucav8vyvZ0oz/VeaJxIUN4g2Ds2sjI0kW58xyzN06EGBz70vkpbe+Z6pdp7L1DvXCufC1YRkv/p/dX7jy9dzgbuiHxWTFReZ1hSeZZ5sVRpP+Imafr+Va6u3rd7meDUnS3dhRBkWuEDWBROCJZX2jhn6ay0ODTyP1FPDlfWaWXvsTz5HmpsGKkTfKeLm1vALizju3nUJDagnjuKevJQpc38xZv468u3WWOTCECtWpurdWtzZ6FogeuwFWvzIHxpZY6AICH06VlKSZLJCZKDB8E5isuXcfML2KtXyd85hVveps9pG1GqTr3+KMYuknenaXfO0s1ndrpbkch9MRCx+1/+y3/JqVOnCCHwd/7O3+HP//zPmZ2dxbmyCuRuP5FIJBKJRCKRyAPDmoV5G5J6z8Lc0jGeEKCWJTgkTihkCFSGZ32LQF7mkN2L2N3uIHyAvCAketvFUuc8AU/wATmgimOhb7AwvyzQM4LmR47xf06XgzDPP7GfWrrhdw2Bobkz97R9ieSEOl5pa4c20356S/01nZzr367ue+TIAZpT++9h7VCK3VKVVfnRwrwvBCxetJHUS/tyN1j7chUsCIETGi8UeVLHphrVs+5NjCHLi9v2qJU7uoVnpKbJtGRqJEMn69/HKHRHIjuEgEJ7ggwYGRChf4L3SF0zXNOMZBolBAvtYjdHhm4bAtDWUu90qbfaZeW3NWRFQdrNUdbipaDIUooswya7J9/biRTXE7y9UCS+4P5yagfLTgveEx94inSkWWmb/vLrOGMGsv/tQAZHvXu90vb4o9XJmtc6incXBnv/tyjqzFL9bI8zy+nkIn7DMSoQPG6P9eWcVm4/IL3BybTM7hZ3ftZQUpAmCus9JCm5sXTaHfJOjisCx4Z/AnVDBNT19Ot0hxaRw03U/jHU8BBCgF9u4+YWcEsrhOLhOJ/eCSEE2Y99FDbGLzlP/kff2O4dlW5WSVYeV7YDzpQ258VKWfm9SVYFbxCIIHui9/Z2exVZr6EPH0aNjOIWFzGXLmMXlyjOnqW4cIFgtjZxul9oPUKWHSIvrmKKOVaW38KYxZ3uViSyZQYyIvVHf/RHCCH4B//gH/A7v/M7fPd3fzf79u3bU9YykUgkEolEIpHItrDRwlw3yG2ZMdfOLZmWuESXz/ZCkoT1ag/lLJ4ugS6QIO5m52YdoiggzxEEyLbPvhx6cWq9yalClPlf/edmC/PaK+UzxV8d+xBLtvxMPv5s1R68tjxDYu4ta/uoOkomqtUjZ+3ZLQ/eXv3WO3i7sWoHDn7wqXtb2Zd56CgZLcz7RCAQxFLPvryBDKMItve7cidkMIjgsEITkLR1syd0G7S16KIgu8EVYCNd41nJLc1MUdOSieEaNb0+0SMK3ZHIDiOgSErBu7Q2B+X78wUcb2ZkWjLW0LgAS929I/ptB6XNuaHR6lBrd3rCtyXLC9I8R3qH1YqillGkKU6pHa/2tqQ4meBE2hO8c/a64I1YGYjgLRPFoe94vtJm2x2uvvxW3/e9nTTa1UpK2Rzl5Hj1fu9Ll+9c1dwPzoqq6F7Hsl9c4aK6UmkfCU0O+uqy24n0Bq/KWBmn7j7RVytBIiXGg9AZK60u1hraK8toMcLR4R+7YY3AZfVncKBOMjZait6jw6j9Y8hGneAcbnEFN7eAX2ntOrFykMgDo+i/UX2Gcd96D/vty9u/M6F6Vd66FLhtt7Q5t22wLdikE0ZpaV5ee4VXiKB6AngfkAK1bwx9+DAohZ2ZwV27hpudJT/1Nm52jt00eyLLptB6P53ue1i7zNLS6zjX3eluRSJbYiCjJZculfkdP/VTPzWI3UUikUgkEolEIruTW1iYL3UMIQQ6xtFIFYVIsKKccV6xMPcbLczvMugVgHYbnEdYQ9BpOVN+W38VBwSC972q7kFYmM8gZNUGrv6ypPbIGP965VkAnjw2wv6R6uczNHf6njafknJUHqm0zft55sL8lrqbL7eYfadqqbnvxFFqY/doke0cIMtjJRlkfvRDhGj3BsCGkSEdqH25wKGCxUsNSDppE5fq0o7XOtK8IC1uL1YZ61nqGmqpZChL2N/MGMrWJ8HcKHTbKHRHIjtCkGB0aWnuVEB6geyDniklTA1naCUZqWm6xtMp9o419naivCfLCxorbbJuju45ZWSdHN07r5pUr9mcu52yORdgyfBC4YQm7PkK7yZe5AMTvEcePczQ0QOVtuuvnyJfXLnNGruPWuc6YmO1qhB87/tHKst8/UpKPuCv8rxoMk+1Cvp4mOU9OUNbVIWwE/YwOvSn+lx6Q0CW35G7WJmvkmmJFGAoJ4ouLrVw1tJptRlOTzLV+JuV5V1o8V77D5HDdfTBSfTUJMnYEKrZJNk3ito/iqyl+MLgFpawc4v4dofg9s73dLtIP/UBxFB10kH+B18n2D4coAJQunRCkxJcDq4oK72LFvgumzlXBhHKDO+epbnwCXjVP2eCVKMPHURNTODbHcyly7jFRYpL75GfOYPv7B5BuVY7glJN2u1zWLvC4tIrUfCO7EkGInZPTJRZH8PDg8w9i0QikUgkEolEdhlrFuadDRbmho5xOA9ZlhIQWKlQ+DVNSgTAr8Cahfld8vGKHOEc5HkplOrtF0qdt4RQWq+LgVmYv115ncxAMi2YefpJLnbKgZcbq7p1d5GsPXtP2z+hjqPEelVsCIEz7uyW+3vl9VOVmftCSg68/8l7XDuUld1KloM9Ma972yntyzvIUEeQ9AbrB1U971FrOd0JuaphdIqylsQ60jxH38GK1fnAQsegpWA0K+2Lxxrr3/NbCd02Ct2RyI7hJdgk4CU46VFOIvqgk6SJYmI4o6YljVSynFvMQyjIrCKAxFpqPZvzLC9IjCHt2ZwnPZtzk6UUtQyzEzbnAoyo4UXSE7wlSdirgnd9oIK3EILDn/hQxVo5eM/0l17t6363E0Gg3r5aaTtyZLx0ZerRsZJXrw7OdWaVMzdkdzcwHBCLnE4uVtoTEh6z1cmi24X0Bgh4qe+psnuVVZcbp1KscyyvdMjbHWxhmKz/DYb045Xl2/Y9Zlp/BoDINGpslOTwAZKJ/ajhIWSzido39tDne4t6SvpDz1fawrUlzBffvvUK27LTnrW5yspnI9spRW+Tl5PIw726mASC8IRVO/Pev/0WvdXwEProUUS9jr12HTM9g19YIH/nFGZmBnbBNVoISb3+KEIq2u3TmGKBhcWvY+3uyxqPRO7EQJ7kP/nJTwLwxhtvDGJ3kUgkEolEIpHI7mTNwtyCrmO9p5Vb2oVDKwE6xSPwCBK//uArvcGT4+lQWpjfQfj0HtHuQmEQ3hHSbNsFLh883pc25lKKAQmEt7Iwlwgh+Dej3wnA1L4ajx2pTrAdmj19T7/+sBhmSlWF8mk/TTvcm/35jbTnFlk4X7X1G3/qOGnzLhMVVlmzMFflT4yA2lZK+/LlXm5fA+lHBmhfHkiCASFxQmNlQp41ECGQGIsuDPoONpkhwEK7QAoYa6TUM8V4c73aKQrdDw/eOUyek7dbdJaXWJmfY+n6VRZmplmZnyP4nR9AjazjVMAqj1fghSdxspzMts0MZQmjdc1wpkmk6DnIbP9+9hoyBLQxNNrrNueJ2WBz7hwuKW3O8yzFDtLmfFXwpqzwBlFeJ6LgfVdq+0aYeO6JStvS+cssX5ju6363kxutzENthBceqd7rv7QDVuZzNFmkKjAfD9dZEMtclXOV9im/nzE/tO19EID0Fi9TvEwwSePe1hOCmi6nDnul6bS7dIuC9vIyBDg6/KNoOVpZZ7b7VRbzNzdso8xgTsb3oY8cQI+PIYeGHvp87+SFk8hj+yttxX//Jn6p098dy1tZmxsw7dLe/J7Pl37N1rwieoekfC7oB0qSTE6QHDwIzlFcvoybX8BeuUL+zju45Z0XlaVMaDROgBC0Wu9gzAKLiy9jzNYcziKRnWAgYvenP/1ptNb86q/+Kt1utECIRCKRSCQSiTyE3GRhnrHctaXjeGGppwojFEaWg99q4wO7ayE9hJAjxF2qGtodCB5hCkKiIdn+W37vSiHWhzCgrG5AXkHIpUpT/WVJeOwgf2UOA/DxZyerq9icxtKle9r8Y+pE5bUNlvPuwm2Wvjszr3672hedMPXMyXvfwKqFuZCg+2MN+VAjOgThkGEEEVKEH7n7OtuECgaCxwqNR9FJhwgCdGFQzqGL22d0E2ChY3ChFLrTRDI1XFuLc49C994nhIAzhqLbpbuyQntxgeXZ6yxevcL89CWuX7zA1XNnmDn9DlfOnub6xfPMXb7EwpUZWvPz5K023jlW5maZvXQRe6fjKTJwbBJwsvx+BhFIrOhLNdm+RkamFaP1FBdgsfNw5XffjTWb81abrNNdm2SUdXN0XiBCwKaavFajSAdkcy7AyFLwtqJ06oiC971x4MPPkNSrYvDlL73ai9zZ/WT5PNLllbbvfN9Y5fVbs5r57qDcZ3oIcVN19xAFB1jmTHIJQ3Vi3kl7bC0XeTtJXBenUpzKyLP9OHlv98VKCtJE4kSCF5Kl5RaFMXTbbRJZ55GRv3PTBOJLy/+Zrr1+07aElMhmAz01jj40RTI2ghxq9PK9R5H1G/O92w9svreQguzHX6g25obiv746gJ3TszavlbMR7Kq1eVE6qPmce72oBuE3WJtLCKLM8/b9y/OW9Rr68GHUyChucRFz6TJ2cZHi7FmKCxd2/JiRMqPROIlUKa3WuxTFPIuLr5LnV3a0X5HIvTKQq+SHP/xhfvu3f5tTp07xqU99ilOnTt19pUgkEolEIpFI5EHiVhbmbUPXOKyDrFYjAE5IkuCqFuZhhUC3fCC/k4V5YRDGQF4AArLtrwIJAbx3+F7FoByUhXlStcdTVyG5JPjzox8CBI1awgdOVqsMmvNnEeHug8STcpIRWRU7z7sLWLY24LA8c52VmepA2dQzJ0mye60cDuXkiESWT2xJFLu3k9K+vI0MtdK+3O8fmH25xCKDw8kUkHR1E58odGGQ3pN18zvq0ku5wTjPWF2jleTgSIbq2bfKKHTvarxz2KKg6LTpLC/RWphn6fo1Fq5MM3f5Pa5dOMeVs6eZOf0OV8+fZfa9C8zPXGbx2lXaS0uYbpcQIElT6sMjDI9Psu/gYcaPPMLkoyc4+NgTHHjsJJOPHmf/kaOMH32E4D2z712gu7J38msfBkwS8CpgVSAISNz2C97r+d2C0bomt572Q5rffScEkDhHrZvTWGmR5TnaWtLCkHW6JNYQxAabc91nm3MhMLJGWBW8QygnSO1MoviWuJ3g3U9UlnLwY++vtOULy8y+8W5f97tdCKDRropJ+w5MUFPr97ABwZenB29lfp0hlqg+T5wI1zEYziVVB6NGqHHMVTPUtwPlcpTrYvQQTiZ0a5OEe7y50UqSqLK62znP4nKHTquNs5Z6cohDQz9YWd5juLj8H3E+v80WQSQJamQYfWiql+89jBrq5XvvG+nlexcb8r27D1y+t3p0kuSjj1Xa7NdO4y7cPFGgLwhZ2prLtHxmst0yy9t2y8nl9/wMt2ptzuDyvKVA7RtDHz4MSmFnZnDXr+NmZ8lPvY2bnWMn7QGk1DQaj5EkTdqdsxTFdZaW36DT2fok8EhkUAxk1OSnfuqnAHjmmWf467/+a5555hk+8IEP8OSTT9Jo3Nl+RAjB5z73uUF0MxKJRCKRSCQS6R/FcsXC3IfAUm7oFBYlgVTjhCAgSDYItNIVeAoCXUDfXpQLlFXd1iGsIWS1vohc3vcszINHCsFglLQAujphtv6yRCSK3xr+DgA+8tQ4ycYq9uAZmjt31y1LJCfU8UpbO3SY9luzvwwh3FTVndQzJp46cZs1bsFqJZJSUejeZqr25U2kH0aGQVmDepQ3OJEQUGVOd6pR1pZVht0ceYfBrXbh6BSekbqmpiUHR2voXpa79KCi0D1wQgh45/DO4q3DOYu3Fu8crvevdxZn7U15nkIIVJIgVYJKEpJ6ilQKmWiUUsjee1Kpm1IMVKJRWpPoFKVX/69RvdeEwLXzZ1GJZvHqDPMzl2mO7WN4fAIRIxF2HgFF4kmDxAbQTpA4gVXb+53ViWRyOOPKUpdmqljJLVoKdB8cXx4EBKCNRZsyx9smGhsCiXV4KXBS4ROFSxKE9yjnUNZt/2lWCIyso30bK1MSn6MwODF4oXOryNAEB17NIgN4sYIMWV/jQvY9dYLZN0/TubZuuXvlG99i7IlH0I17jJDZQertGVaGH1l77XST735S89/eWp+k8qXLGT94vDvYZBshOMsEHwzrTknD5EyywowUHBDjjITm2nvH3AGuynm68vZi8VbQZoVCJhTpCCKfp1vbT707e0/rZomiGwLOKYpuzorWJEvLDI+Nsb/2IdrmPRby19aWz90sl1b+C8eGf/yu10yRaVQ2ihwZIeQ5vt3Bt7uIRgOMIeQFvtOBVhtSjcxSRJY+ENfi9Iefx37zIuTrziH573+N+v/jBxFyAL+fAFRSOqZ5A76AYMt878Kt53zf04RWTxDrgvdqxTdBEKQH/LbfU4tUow8exK2s4Ofm8O0Oav8+gnPIhXnSI0cQtXvPqd/WvglFvX6cbvcSne5FfC8X3fmcZuPxB+L4jTyYDGTk5POf//zal0AIgfee1157jddee+2O64UQotgdiUQikUgkEtn7eFdWdm+wMF/JLd5D23hqqcYLhRMKGQIbzTKFbyF9wIYcIe+QhdftIryHIi8f/Ptkfe28I+AJPqCSO2SHbyfyKkIuVppqr0guPfoYy0kDKQUvvK9qYd5YvIRydx9oOyqPkImq2HnWnt2y5ebihWk6c9W+Hnj/k8jNfFbOlWV5RAvzbWfVvtyPIoJG+NG7r7MtBJJQ4IXCC42Vmjyrr+V0J8aQ3MFuNbee5a6lmSnqWjI+lFHTtxG6E7/totnDRvAe51xPuLY3CNer4nbZduOZQkrVE7EVKtGktXpPxE56IrYuX6vq4KsQcoNwnW4QsDUq0SRpuiZy38sg49H3PcfVc2eQStKan2dp9hqm22Xs4CFUnESz8wgwuid4U1Z3Ky9wanuruZpZwlijtMQ2zrPQMUwMZYMVy/Yg0gfSokAXBV4pjE6QSSBYS5ASmyis1thEo5wjMWZbT7lBCIxs9ATvrCd4F3tP8PYeL0HQJYg2IvSv/0IIDn/nhzn9B3+21uaNZear3+TYd3+sb/vdLtJiCWXbuA2Z1B9+fB//7a31StnpVsK5JcWJ0cG6NFxlmBVShliPxXgsXOeaGOLd5CIfMk+VFbGUk0gft0d5Q5/e1vsQAehiiSLbh9EjCKDQBam5e9axEKXg3QkpLu/QabfROiHNOtSaDQ4P/SBde4WuW89OXyreZLZ7lIn6vR07QgpEvYas1wj7PKHTxa20CalGhAbkBp/n+OU2tNoIrZG1DLTes+djOdIg/YH3U/zxy2tt/sIs9utn0B/bRHTT/SJEKWzLBGxRVndLXU4Ed6aX831v554gygnnIkgQgoAvbc2FJOB6lmvb2XdQw0Ooeh07P4e9dh2xsoIenyjt9idL9wAG5KRW6ZqQ1OvHEEKT5zMEbyEEvM8ZHnpmcFFmkcgmGMgTziOPPBJnfEQikUgkEolEHl5M62YL847BOk9uPPWhBh6wQpL6dds16QU+rCDICQLk7SzMnUd0u2AKhA+ERn8GE0sLc4/3HiEY2EOuSKpV3eoa6IuC//M7XgTgmeNjDDd1ZZmhudN33W5KylF1tNI27+eZC3Nb6mfwnpnXqnbr2UiT/Y8dvc0at9xI+ZNokKKcHBHZFqr25RrpxwdmX17mdIOTCR5FN20SpCDtFijvSfPb5yob51nsGGpaMpQljDVShmvl8R6F7s2xXnHdE6+t7VVju7V/vbNrMQ2rCCGQMkFqhZIJOqshG8maqF0K2b0q7BuqmaRKbhatdYrSSVXE3mYBWirFwZNPsHBlBhDoWo35mWlmL55n9MAhsru47EX6TxBQaE9qVgXvcqqb32bBe18jI7ceF1LmVnIWOoZ9dR3PE/eAgLKC2zkCOTZJsDpBek/A4HqiNyGg7fZmrYZehXfqOziZofag4C38EIhlBA28XCIEg0DffcUt0jwwzr4njzN/6txa2/zb5xh/5iSNqfG+7Xc7EECjNcPy6Lo1dLZ/ksnGFa611+8FX7pc48Roa8CdK6u73x/WbctH6DJOi1kpuKSucdRNrb23L4ww6fdxTc3famtbRgaPLpYp0hGsb0AWkL4guYfJrVIKMq3o+AxTdGitdEikRGflNfiRkZ/g3YXP4UN3bZ2Z1v9FPTlEUx/bVD+FlIhmA9lsEKwtq71bHUQtJThfVnvnOW5xGaRcr/begxNc9SefwnzlHcK19UkHxX99heT9xxD1AZ+rhCyFbW/LKm/vygngNoDsid7c23NVKXqLnugNIXhESED48r3tFr0TRTI5iW8O4ebmKC5fQo2MlhOGFhZIjh5BDd1h0nsfqdUOIqWm271E6MVqBF8wPPx+pOzf+TwS2QoDOYueO3duELuJRCKRSCQSiUR2J/kSuGLNwjyEwFLH0CpcbzJ6ihEKEahYmAufE4LB0eGOFuatNniPKAwhTfs2+9s7ByEQvEdIyaAszIWuCsj1VyQuy/iriWcBePG5alV32rpO2q1WV9+KE+o4SqwPeoQQOOPObrmns+9eoFhpV9oOfvDp3md1jzgH9ETuPTjotVsp7ctXSnUpNJF+aGD25as53VZmBCRd3cAlCl0UyODJOt3bfpN8gIW2IZGCkZpmqKbZ3ywHD6PQXbJqJe6sXavE3mgjvlHcvtFKXErVq7IuhWud1m4QsFftxG8cHBVl5XWiUWm18npNvE7L9zf1/e8DYwcOUmsOMXPmHZROWbwyzfzl9xjaP05z3/5YmLDDBFlmeKdW4IJHeQki4LfxsBECJoYyjO0yWtcs9O4/mlmcTLUZBKCtRVuLFwKrE0zPlttqjfQe5bc3lzcISbEmeKckvgAMTuwNgUEgkH4ErywE1avu7q+jysGPvZ/Fs+/hzfrkg0tffIXHf+z7dv35rtG+UhG7fVLj+5/O+A8vr/8uX51O+cmnWugBX1pmGOExrtO8obp7libn1TSTboxsg039Y/YI83IJK7a3Cl35gsS2MbqOCIZubZxG+woy3H0/iRRkSULXaoo8Z6WTkC4uM7J/H6nax9HhH+XC0v9vwxqei8u/x+Nj/zeSO7lr3YHVfG81MkzIDb7dxrc7yEatdIrIC3xeQKcLiUJmWSl8q71RNSsSRfZjL9D9P/58rS0sdyn+9Jtkf/sjO9AhqtbmroDgejO2HSRpr8r7Xj7fQBABkD3ROxCCRITS5hzhtv2eWzbqyNph3OIibnER32qhxsfxRU4ytg996NCOPB+m6ThCJHQ6F/CtM4Tg8f5lRkaeR6lBxUFFIncnjp5EIpFIJBKJRCL9JPjSwty0yxnnKqNtHMYF2oUlzTQIiZUSFXzlmVn4lVJcDgVCjtx6+3mBcBbyoqwE1v0bAHXeEYInBFCDEnDkNZALlabaK5IvH3kOozRHp5ocmWxW3h+eO3PXzQ6LYabUVKVt2s/QDu3brHFnnLFcfePdSltjfIyRowc2uSHfm6wgYl73diK6BGF69uUJwo8NZrerOd1SE5AUqr6e0+3unNMdAsy3CoSAsUZKPVVMNMsBpVWh2wmPT3oZ3Q+B0G2LgvbSArYo1quxb2H/LtW6UF2Kz40y//oGAVvecB6TUt1gG56gbhCxk1QjVbLrRZON1IaGOPbMc1w5cxqpFCtzsyzPzWLyLqNTB28h5kcGiVcBEzwaiQge5WQZF7KNl1mtyvzumSVP0/Xyu5UgjfndW0KGQFqYXnFfipcKm2pkN9/203AQEiMztM9xUqO8KR0A9orgHRoQFpE08HKZECyij8PRulln6sPPMPOV19faOlfnmD91nv1PHe/bfrcDbVvoYhmTDq+1PX1iP7x8de1120pev5bykQO3d4TpC0JwjnGeDdNrTWN02EebedHkdPIez9h1oT5F86g9xGn93rZ3JbFtvEww6TAyd3Rr49Q7V+/pu5dqiQsppt1GdjssJoqs1qbWbDCSPsFk/W9wrfPXa8tbv8zF5d/n+Mjfv29Hq7V879EHK987efow6pkjuDfXc93NF76N/vjjyAODigu6gVVrc6FKK3Pf6VmbB5AWdIN7E7zh1nneAShtzrc9z1sK1L4xZLOJnZ3FzsyghofAedzyEvrQIdT+/du4w3tD61GEeIxO5xyt9mka9RMsLn6dkZEPkiQ7U3UeidxIHD2JRCKRSCQSiUT6SbGybmGuG2sW5s57usYzNNrEI/AI9AYLc+UFPrR6OYcgxS1mTYcAnQ4Yi3CWUKv3TezyIeB9wHuPlGJg9s83WZjPgj4v+OPvfAGAF5+tVnWrok1teZq78Zg6UXltg+WCO7/lfl7/9llst2qjePD5pzc3QOUd4MvBmUTuSD7bg0jA4UWrZ1+eIv3+AR2/HuV7Od0kGJmSZ7VqTre9TSVSoDxPhMB4MyVLJAdGakj5cArdJs9pzc/RXVlGKEVaq5PW06qFeJKUgrZSN+VfKnWzaL2WiZ2mZYW21g+06KsSzaEnnmJ++jJCQFqrsXBlhusXzzN28DBprbbTXXyocUlABA9KIlwgcQIjtvd7XU8V+xoZIUDhAosdw/hQhnyAzx39RhuDUxINFLUMk6bootj207EXCUaC9oAE5Q0Igd8Dw7oCiQwjOGEhtHvV3beZwLlNTLz/Cea+fZZicd1aeeYrrzN64ggq3d2TBOrtmYrYHYaneHr/Zb49t/63/tLlbPBiNzDNKI9xnTpmre2xcJ1viCazcpFZuci4Xxc3D/kJrvo5luXWJpLeDgGkxTJ5to9CD0Pw5NkYtXzhntavaYXPauR5B9XNmVtY5mCWIRPFVOO7aNtLtMy601PLnOdK+y842Py+7en/A5jvnf3oR2m/PV1O2gXwgfwPvk7tZ753Z8V6qUrB25vej4MkKyehb0rw3mhtLso87+ARoX953iLV6IMHcSsr+Lk5fLuD2r+f4BxyfoH0yGHEgO/dkqRJo3GSdvssrfa7NBonWFz8BiMjH0TrsYH2JRK5FTt2V+S9Z25ujna7zZEjR1AP8ENlJBKJRCKRSOQhJl+uWJgDLHUsbePxAZJMY6REBFCsPyQL391gYZ7eWpxrdxA+QFEQEg1J/+6py+rJgA8BNbAc6UCiv81GObD2imS5Psw3J04y0tS87/hYZY2huTN3HWSelJOM3FApf8FdwLC1vE3bzbn2VrWafPjwJEMHNpkP6ctBFKQsM7sj20IQyzfYl9cHsl8VLAiBExovFHnauOec7uXcUjjPWF2jleTASIaS4tZCd7LNuYG7CJN3WZmbo9taQSnN8MQUjZHRcqBYyIpduNpQeb0uZpfV2TttJb5bEEKw//ARakNDXD3zLipNWZi5zNyliwxPTNIcHdvpLj7U2CQgevcBiRMkTmz7RJbRuqZrLCHA9VbOYtuwrxHzu++HrJvjm2U0RZFluCQh2eb8blgVvENV8JbsDcHbNxFiCUkdL1f6Xt0tleLwJ57n3J98Ya3Ndrpc+cabHP6OD/Ztv9tBo32FpbEn1l4Hpfnu9zX49hfX7xneuK5ZygUj2WCv/6FX3f2+MLPWtp82o6HNomhwOrnIWDGE6uUiCwSP22O8ot/e9nOMIJAWS+TZKFYPle7VrkDbuwvrQghqmaZlDXmni0oS5uYXGZ/YjxCSY8M/zumF38b4pbV1rne+RCM5wkj29Pb+Hg9IvrecGEZ/9/swf/attTZ3ahr3rfdInttc5vm2IwClS+HbFmBzSATYNiSbE7zXrc3FBmtzNuR5b7O1uQA1PISq17Hzc9hr1xAry+jxCbrtFsnkFHpqcqATpJWq0Ww+XgrerXdp1I+zuPgKw8PPkmVTd99AJNJHBvrE55zjc5/7HJ/85CdpNBocOHCAxx57jLffrmbw/fEf/zH/9J/+U375l395kN2LRCKRSCQSiUS2l+ChWK5YmOfW0zWOTm5JaxlCSJyQJMFVno2DbyGCJwSDELeYtW0doiggz8vB8Sy9eZnt+jUCeO/wvSzKG61/+4a8jrvBwrz+suRPD38YLyQfe2YSuaEkTXhLc+HO1dkSyQl1vNLWCR0u+7tXg9+Oq996F3/DwPbBD252MCyUed1K9az34mTg7SCITmlfHoYRQQ/MvlwGgwgOK0r78m6ymtNt75rT3S4c7cIxVEvIdFnRnSbqoRK6i06HucuXuH7xArbIGZ06yOSjxxkZn2D86DEe/cCHeezDL/DoB57n6NPPcvDxJ5l85Dj7Dx9hZGKK5tg+as0hkjSNQvctaIyMcuSZ52iO7WP8yCM0RkZZunaVhZnptfN8ZAcQYBKPlwGrAiKUojfb+DUXAiaHa+hEMlbTGO9ZybdfmH2YEEDW6SJ9QBmD1QmuT+cdLzRWpngSnEhQ3iC3OFFvkKxWd0MNgiSI7a30vRUjjxxi+JFDlbbrb5yiO790mzV2B4nrkubzlbZjR8dJ5fqJwAXBV2d2Jif3EqN0b5io8Fi4DkAuDBfUTOW9odDgsKu6MG0XMli0aWFVDacy8mw/Tt6bCKykoF6rYQN02x2WW13arfK4TGSDY8M/cdNE4/dW/jO5m9v232OV1XxvfagUMJPRYdRQg2TfKGrfCLKW4osCt7CEnV/Et7sEt3uu2en3PYcYqU4ozf/oGwSzvbntW0bIsqqbALZbPnfZNrCVzzAQhCf0RG+BgCARPgGvtvW6DUCiSCYnSQ4cAOsoLl/Czc9jr8yQn3oHt7KyzTu8M1Jqms2TKNWk3TlLYWZZWv4mnc7FgfYjErmRgT31Xb16lU9+8pP8zM/8DF/84hcpioIQAuEW+WTHjx/nV3/1V/nFX/xFXn311UF1MRKJRCKRSCQS2V4qFuZ1EIKljiGEQMc4klqKE4KAIAnrD9rKQwgrhJ6FubjRwjwA7XYpeFtD0Cn99LULweN9+a8UgkGVgNX0m5XXag70OcFfHvswOpF8+Klq5XRj4QLS33nQ96g8QnbD53nGniVscVSiWGkz+05VYN934gj1fZu06PQeCKXIrRTRV/b+WbUvFyEbqH25xKKCxUsNSPJKTre7Y053YUvhqZEqGlox3syopw+P0J23W8xeusjspYt4axk7cIiJR04wPD7BxCPHeeT9z7Pv0BESHZ0P7hedZhx58n2MHTzEyOQUYwcOkrdazL53AVsM3h430kNAoT1BBExP8FZ+e68HSgqmhjNSLRnKElqFI7e7RzDZiyjv0XmBtg7pPDbV2651rOKExkqNF3pN8BbsEjHpDgjfRASFpEEQOWEAIv3hTzxfnfDkA9NfevWWY9G7iUb7SuW1aUzy0cPVz+ulyzsjdgchOSeq998TtBgJHQAuqau0RKfy/nF3iDT057qduC7KdTF6CCcTurUJwj0+p2itSGs1CmMxecH1uUVcb/JqQx/hYPNTleV9yLmw9Lv40P9rpMg0at8oyaEDJBP7USPDyGYTtW8MNTqMUAm+08HNLWAXl/HdYsePa5Fp0h/5cKUtzK5g/uqtHerRLRBiXfB29yt4Q5nn7SH0Kr2RpfgdEghy20Vv2aijDx9GDY/gFhYxl6dxS4sUZ85gLl4EM7jJT0IoGo3jaD1Gp3OBIr/GSusUrda7A+tDJHIjAxG7nXP8yI/8CF/+8pcRQvCTP/mT/OZv/uZtl3/uuef4+Mc/DsDv//7vD6KLkUgkEolEIpHI9lOxMG8AsNgp6BiHDZI01VihkCEgb7AwF8Hh6XJLC/M8RzgHRVFasvVZ+HHOEfB4HwZX1Q2I5J3K69orkveGpnh39AgfeHwf9axavTE0V7US//+z9+dBkmZ3eT/6Oee8S+6171W9T8+u0QjtAmEwSP4JgyTAXNnhC9iY8L0mMBABtiNwQIQDHBBeIEI4/I/AhnsdQtcCJLMZ+xqQrnbNaCQhjWbrtbqqu7q2rMrt3c459483a3mrq/fKrOqe9xORUZUn3+Xk9ub7nud8n2cvHh6zajbTtm7qrNl7r9JY/tZ5rNn13knJxBvO3v2GtAZkWnVwxKwJH1SsaHYHnyoIU+6TfblBmhjdzemOpE/k+3eU062Npd6J8ZSkWnAYLLnUiu6O0C0fTqHbWkvQbLIyf5m1xQWsMQxNTjN67DjVkVHGj5/k+FPPMDgx+VBnah8GQkpG544zcfIM5YEhRuaOISyszF+i0zja1Y8PNVuCd7fCWxqB1AcreBdcxXDJp+QpfEey2YnR5uE5rhwGbhyjtMaN0zzj2PN6KHh76K7gbYTCMRH3Ltb0h7S6uwq2f9Xd/kCV0T3nZI35azQu37ubTz8otpdSd6guVire9Wg1s8x8w2G+cTi/iQsMEpLd98ludbcV8JqTre5UKE4n2fPvg8SNmwiribwaWroEheE7XrdYSONOOp0OSaJZWqmzpRkPF76NAf+pzPKhvs5C88/6JiwLKZDFAs7IEO7MBO7IILJSRtXKqOFBVDW1cDeNFnqtjmkHfenXzXCePYE8ka3kj/7P32DqrUPq0T5sVXhbCzrsCt4d7ucYakU6SU1YkV63W4EwKs30tgc8gVkK1PAQ7tQUCEF89Rp6ZZVkZZXglVfQa71zH9iLEJJi8RieN04QLhJ0Fmh3LtFofBNrj/ZvUs7DSV9Gqn73d3+XL3/5y7iuy5/+6Z/y+7//+/yzf/bPbrnOD/zAD2Ct5TOf+Uw/upiTk5OTk5OTk5NzsOxjYZ4YQytMLYql7yLljoV5BtMCq1MLc7nHwtwYRCeAKEYYg/X9nhZaWwvaGIwxCJFe1PYDXy4R7rUwf0Hy17PPghC87clsJlihcQ03uvVAygl1AiV2BuestZzXtxbIb4WOYtYvXMm0jTxyDK9cusstWTAaHJleoeWC3n1jRYAVEdJWENZFmqF+7BXHxlgh04o76RB5RayUuFF8y5xua6HejlBSMFB0KfsOQyU/K3Srh0vottbSaWyyMn+J9WuLCCEZnp5ldO441ZExxk+c5tiTb6A2Np5bkfeYyvAIs48/RWlgkOG5YxTKVepL19hYXjr0SrHXK1amluZWgpYGZQTygMeNB0rpsWag6CIFbHRi8rf73tmxMze4UYRREu307vc8wUNLBy28ruAdcuQFb1PdU93d+4r08Wcfxyllz6UXP/dVjD661fDKxPhBVrAamhhl0M/2+bCqu42QXNpT3T1Ok4pNhdZN2eKqXMk8PmoGGdZ36Xp0hwjAjTZBSGK3RuKUiNzqbdfbolROJ0N2Wh3CIKK+mV5PCCGYqbwPX2XF243wG6wFXzmw/t8pQkpkuYQ7MYo7NY4zWENWSqiBKmp4AFnwMa02to/VvTf0UQj8D74le20aaaI/eeHQ+rQv24K36QreyX0L3jvW5rYv1ubC93CnplAjI5hWi3hhAb2xQXTlCuG589gwPNgd3oJCYYpCYYYoXqHTvkgQLLK5+TXMbRzXcnIOmr5cMX70ox9FCME//af/lPe+9713tM6zzz4LcEOed05OTk5OTk5OTs4DQdS60cI8iLFAK0rwfB8tVJrJudvCXIPZbWHOHrG73QZrEFGEdR1QvT2lN1qDtVhjuoJTf+y1q/43M/flOrgXBH81+yZOz1QZG8y+Lrer6q6KChMqK5BfM9do23uvLFo7N4/ZXaUrBKOPnbr7DW0NuCoFjtNTS/rXAxaDEc2ufbmPNEN9sS9XNgZr0MLFoAhVsZvTHSOtvWlOt7VQ78QYC4MlD9+VjFUKKPtwCt3WWtqbG6xcvkh96RrKcRmZmWNkdpbqyCgTpx5h7smnqY6M5iJ3H3ELBWYee4La6DiDk5MMjE3Q2dxk9co8ulupmtNfjOpmeKuu4K0l4oC1zNGKj+dIaiWXxFiaYf5e3w8C8INd+d2Oi+nVcUxAgo8RCi087ANQ4Z1Wd1e61d0C+lDdrTyXqbc9k2mLNpusfP2Vnu/7fii1s9nXYWGE7ziWFbu/eNXnsBIIrjBIdJPqboCLziIx2ePJ6WQWedBVrl2kNbhRA608ElUk9AdI1J1NBpBSUiyWSJKEIAip1zcJwlSkk8LjWO3vIfdEIF1r/QXteOHAn8edsjffW1XLiFIJlMJ0Dre6W80O47z9kUxb8sJF9Pnrh9Sjm7AteGswW4J3wP2r0tk8b7ZyvXshegvSz8HMDKJYIFleJrm2hKnXCV55hXhpqRuV1Xs8b5Ri8QRxskmrfZ4wvM7Gxlcwpn+ie05OX64cv/71rwNptfadMj6eDkStrq72pE85OTk5OTk5OTk5PSXc3LEwd9KKgY12QhBrYhSe55BIibImI4BJGyCswdAB/HRW+BZRjIgTCKNUEPV6X9GhrcFai7Ug+1TVrTCE6lymrfhVycuDx7haGb2hqtsJNvFby7fc5imVFaETm3BJX7rJ0rfHGsPKKxczbQNzk3jle7DKNhpkmvOGyi3M7xcrGrvsy0tIe7eV9nePJEFajZYeIIm2c7r1bXO6m2FCrA2DRRdfSSZqBRwePqHbGkOrvs7ypQtsXF/C8XxG544zPD1DbXScqTOPMvfE01SGhhH5hI9DQUrFxMnTjB0/SXlwiJHZYxitWZm/RNg6QhakryO0siTKYCQYYXG0ONCBciUF4zUfX0kqBYd2ZAjioyuWPggonVZ2O4lGGEPcw/xuBMSi0BW8XayQOPaIC96mirASSRHTp+ruwUeOUZrIViJf/8q3iFu9F9vvlWJnOT0/3EJI3vzIQGaZRiT55mpvo4xuhhaKyyJrFz5Bg7JNha1EaM47i5nHC/gc01M965MyEU7SJnZLaOkRFEYw4s7cFVzfxfNcwk5AHCcsr9XRXZHQV8PMVr4/s7zFMN/4AxJz+J+hNN97EKkUqlTARhH2kJ0L/L/zDBS9TFv4R1/G9kl4vWO2BG+jwUSg426F90EctdM8b2H3iN5bed4HiaNwxsZwJiawSUK0uIBeXye5do3wlVfRzebB7u8muO4ApdJpjAlotc8RRWvU68+RJPk5ZE5/6MtoVb1eB2BkZOTWC+5Cdw/KKrfwy8nJycnJycnJedCwBqJmWtUtJDgFjLU0gphOlCBcF6UkBpGxMBcWrGmC1RiSrIW5BdodSBJEEmN9r+dF1taCMQZrtyzM+yNAjbtXaImNTFvhK5K/nn0TowM+j8xlbRAra+dv+VKMyVFqMrvOZT1PzL1bq20uLBG3Opm20UdP3sOWTDrjXimQAnpoefp6wIqwa19eRlinT/blBmVitHCwqG5Ot9fN6Y67Od37f9Y6URprUCk4+K5MRSchHyqh2xhDc32N5UsX2FxZxiuUGDt2gqGpaWqjY0yffZyZx56gNDB42F3N6VIbHWfmsScoVmuMzh3DLRRZu7pAY3UltzU/BBJl0d2bFRy44O07iuGyT8lVFDzJZpDnd98vbrST322hP4I3qeANAsfGHFXBW6C62d3F9HMsOrdd5773KQTT73o202aShKtf/Jue7/tekVZTDLJW4M7QBCcHstXSnz8kK3OAeYaId0kLAjixq7r7ulyjLhqZdWb0OCWzx7XqAHGSNtLExF4VI12Cwsgdf/cKpSJSCjrtgCgIWam3tqMdav5jjBbfkVk+NpvMN/7oSGQTCymQ1RL4PgiJPeTqblEp4P2drKOCWVwn+cJrh9SjWyAUKD+doL4teB9EhXfKTp63zOZ5m4PP85alIu70NKpaQ9c3iBevojc3iM6fJ75yBW5yPXKQOE6ZUukM1mra7deI4nU2Np4njjduv3JOzn3SF7F7eDid6TU/P3/H67z66qsAjI2N3WbJnJycnJycnJycnCNG1EoF77i9bWHeDBOMhWZkcX2fRCqEtchdF9LS2K6FeTrwJ9g1gBV0EMakVd3KSe2ue4y1Jo2TNrZvFuYCi+++lGmTdVDnJZ+eeYa3PZm9PpBJRGkjm5udeRzJSZUVoTu2w6JZvMkad8bKSxcz94vDA5RGB+9+Q1oDAqQCN6/qvh9S+/JG17680LUv7/XkAYNjI4xQGOGSSJfIK6Q53XGMvEVOd5wYGmFCyZOU3K7YpNRDI3QbrWmsrrB88TzNtVX8coWx4ycZnJykNjbOzKNPMn32cYrV3mR45twffqnM7ONPUR0eZXh6hurIKM31NdYXF9B9GCzN2YXo2plLS6IsgoMXvGtFl0rBpea7KAH1dpTnd98HqZ15iDIGN4oxSvU0vxsBsUwF70Sklb5HWvDOVHcH2D70szQ2zPBj2fPB+quXaF1buckah89eK/PIH+Q7TmS/mF+77tGKD8cNJRGKebKTCqfYpGi75z0CXnPmMbveX4ngTDJ34PnFWwjAixpgIXKrJMon8gbvbF0hKJWKoBM6QUS70WSjvWPBPFH6LkrOscw6rfgC19ufPsBncO/IShkpBbJYwIQR9pAnLbnveAQ5OZhpC//8q9j2EbS1lnsF7wj0QU4Y6GOetxSo4SHcqSkQgvjqNfTKKsnyCsHLr6DX1w9wZ/ujVIFy+REQknbrHHFcZ2PjK4ThrZ3YcnLul76I3U8++SQAX/7yl+94nY997GMIIXjLW97Sq27l5OTk5OTk5OTk9Iawkc4K321h3omJtSFE4rsSLSTOXgtzEyCsxRCA2GVhrjUiCCEOEdamVd19wBgNWKy1yD5VdY+pDmvycqat8FXJ10fP0qkN8cwjWcvEcv0i0t7cqm9WzuDvydk7n1zA3seoQnttg9byWqZt9LGT91b5npiuhbnoywSGhxkrmmDZZV9e7vk+lU3AghYORigiVUA7Dk4UI42lcJOcbm3SnG5XCaq+y0DRZcB3HwqhWycJmyvLXL94nlZ9nWJ1gLFjJxkYn2BwfJLZx59m6syjFCqVw+5qzm1QjsPkmbOMzByjMjTCyPQscRSyeuUyUaf31Zg5uxAQuQYrLbG0CAvqgAXv0bKP70gGSx7awmae331fSGu3BW8VJ2l+dy/PpYQglgXsluBtLcrG9ExVvA/S6u5KX6u7ASbf+jTSy9p+L372haNnrdyl0FlBmF3fQyF44uQwjth5TxMr+NLV/lwX7MdlMUyy60xHkM3u7siQKyqb1TxgK0yY7Pn8QSKweNEmRjokbpnIqxI7dxYzpFwX33fRYUAQxmxuNmh387uFkMzVfhBHZs9fljufoRG9euDP424RUiIrJUQxve6xwSFXdyuJ98E3ZxvbEdH//NrhdOh2SAXK2yN4H/SxKRW92WttbrrW5gd4uBa+hzs1hRoZQbdaxAsL6I0Novl5wnPnsWFvJx1I6VIun0aqYmppHq/RaPwNnc7hZd3nPPz0Rez+wAc+gLWW3/qt32L9DmaPfPzjH+eP//iPAfihH/qhXncvJycnJycnJycn5+CwBqJGWtXdtTC31rLRjmlHGuu6OI6DReDssr0TFqxtgk0wxEixa1Cm1QFjEFGM9byuONp7jDEYY0CkAzz9YMK9QlPUM23FFyR/Nfcsb3p0BHd3ZZQ1lNcu3HRbHh6zajbTVjd11uzaTda4M1Zfzu7TKfoMzN1DBqHVQNfCXMm+va8PI6l9eYi0lb7Zl0tipNUk0sMiCWUhzenWGkdrvJvkdFsLG50IKWCw6FH0FSMlH0dLjHhwhW4dx2wsL7F86QKdzU3Kg0OMnzhFbWycwckpjj35DBOnzuCXep+hnnOwDE5OMf3o4xQHBhmdPY5yPNYW5mmt39+xNOcuERA5qeCdKIu0oMzBiadSwnjNx1WSWsEliAyd6HBzXx90lNbd/O6km9/t9VZ6FoJYFrFIEukhrOkK3kcPYWq7qrs7fanudooFJt/8ZKats7LO2ss3P5c8TASWYjsrFCfVCZ4ZzzrGHKaVeSwcrtxQ3b1BYdfnbl5do0NWWDuZzODY3rkdSJvgxi0SVUQrn9AfwYg7m1TqFQq4ShIFIUE7oN7oECfp59OVFeaqP8ReSWW+8Uki3fuK2dshK2WEkEjfw3SCQ48ecc5M4jyTrYaPP/cqevHwX6t9kQ7IruCtu4K3OfjJOKm1eTfPm67obVQ3z/sAJ0UJULUq3swMolggWV4mWVrC1OsEr7xCsrSUxmn1CCEcSqWTOM4Anc5lwnCZZuslWq3zPdtnzuubvoym/ORP/iTHjh1jc3OT97znPbz44ov7Lnf9+nV+8Rd/kX/wD/4BQgieeuopfuRHfqQfXczJycnJycnJyck5GLYtzDvgFEAI2pEmMZZmbHA9h0Qq1B4Lc6XB2BbQoWuAmT4QhgidQBCmI9Guu99eDxxjDcakVuZpVXfvK7sHZEigsgOOcgPseZfPTz/N254YzTxW3FzESW5etXBCnUCJnYE0ay3n9P1dXMedgPqlq5m2kUeOI9U9XFppQ2phLnML8/sgtS9vIqzXN/tygUaZBC1dQBLJIvFWTncU48QJ7k2snjeDmMRYBkouniMZrxRwtcAKi1ag5YMldCdRRH3pGsuXLhA0mlSGhhk7foLa6DiDk9Mce/oZxk+cwi30LqMzp/cUK1VmH3+KyvAwwzOzlAeH2VxdYf3qIkbngmi/sBLiboW3VhZpBPIAx6k9RzFa8Sm4kqInaYQJYXI0q14fFDL53SLN7+4lVghiWeoK3j7CapTdP07jMBE4h1LdPfLEGfyhbHzGtS99g+QmkSOHzV4r89ir8e0ns+ecFzZdrrYOb8LkJTGC3nWdIIETdnX7vhGWc2422tTF4WQy09N+OTpA6ZDYraClQ6c4ir2D6xkhJV6hgDIJQRjTaTapt0NM1xa87M4xWf7bmXWMDbi8+QeYQ55cIhwHVSoiikUwYIPDtwz3/u6bwN09WdkSfuLLhy7E3xS1W/COIYnA9KZKPmttvpXn7Rx8nrejcMbGcCYmsHFCvLiIrteJl5YIX3kV02wd3L72IISkWDyG540ShAsEwSLtzgUajRePRN59zsNFX34Jfd/nk5/8JLVajeeff56nn36aJ554Yvvxf/gP/yFnz55lenqaX/u1XyNJEoaHh/mDP/iDe7MCzMnJycnJycnJyTksti3MY3DTCsaNIEYbQ8cqPKXQQqL2WG8L20FYi7YBiEI6FGMsdAKIE4TRWM/vh+YMgNEGsBhr+1bVfcxtcF1k87cLX5N8aeJJjp+ZpFbJVq5U1m4uXFdEhQk1nmm7Zq7Rtu376uPqq5czdpdCSkbOHLvFGjfDpnndSoEQ6cBKzj2R2pfbrn15sQ/25QZl4jSnG4dEemm1Xiane//BxVaoCWLDQNHFU4rxqo9vJQhIlMVIS/yACN1xGFK/dpXlyxcJ222qI2OMnThJbXSc4elZjj39RsaOncD1Dq/iLOdgcVyXqUceY2hqmuroKEOT00SdDqtXLhP32A4zZwcjIXYsRqaTY5SWiAMcL64UHGrFNL/bdyQbnTiv8L4PtvK75a787kT1dkKW7VZ4g0QfZcHb1BBIJIW+VXcLJZl+57OZNh2EXH/umz3f973gh+tInT2+zs6MUvOyr9XnFw9vQlkkHBYYzLRNU8ffJfyuywbLMlvNO2lGGDC9jTRx4wbCaiKvhpYuQeHO7NOV6+L6LsQhnTCi3Wyx0YnZ0mdHCm+l5j2RWSfQ17ja/IuDfgp3jayWEUoitqu7D7k/wxW87846Kphz10m+dvkmaxwBtgXvuCt4h2B6dZ6zlefNnjxvdeB53rJUxJ2eRlar6PV6Kno3NgnPnyO+cgVuMlH3fhFCUChM4/vTRNEync5lgmCBzc2vY0xv9pnz+qRv076eeeYZvvzlL/OOd7wDay0vvfTS9mNf+9rXeO211zDGYK3lrW99K1/84hc5c+ZMv7qXk5OTk5OTk5OTc//sY2EOsNlJaEUGrRwcz0FYMhbm0giMbaQW5iJBiu6AVaeDMBaiEOu44PR2cHQ36bm5AQuyD/baBZFQU9dpiOxAWPErkr+efRPveGos0+611/A7N7fAO61OZe4nNuGSvr9BFaM1a69dyrQNnpzBKdyDmGfSyQRImQreMp/key/s2JeX+2ZfrmwMQqCFixaKyPHTnO64m9MdhPvOSQkTQzNMKPsK35GMVn1KMj0exNJipSVyTd8mtNwrUdBh/eoCK/OXiIKAgbEJxo+fpDo6xsjMHMeefiMjs8dw+uRCkdNfhBCMzMwxefospYFBRuaOIYRk9cpl2psbh9291w1aWRJlMDKtmnS0RBzggPhwyadSdBkouhRdxWaQ0ApzwfteyeR3JwmJ6/Q2vxuwInUdsUi09JBWHzlLc4GDMOVd1d39yRiuzk5QO5GtKl755msEa0fvGCaAUnsp0xaUJ3jbVFZ4+/yihzlEUfOiGMHsOoFRWI7viQ0671whIXscOZPMIg6ygnUPAnCjTayQxG6VxCkRuXcmsLt+AVcKTBTRarbpdEKa2/ndgpnK9+Grkcw66+FXWQteOOincVcIz0UWCsiSn7pIHQHXAve7nkAMZSejRn/8PDY8wkLnDYJ30EPBG8DsyfOWqfhtDzjPWwrU8BDu1BQgiBevoldXSZZXCF55FV2vH9CObsT3xygWjxPHddrti4ThdTY2X8D09HXNeT3RV4+TM2fO8NnPfpZPf/rT/PzP/zx/62/9LR5//HHOnj3LO9/5Tn7qp36Kv/iLv+ALX/gCp06duv0Gc3JycnJycnJyco4S+1iYh4kmiDXNxOI5CqMclDUZPUsaizVt7G4L8yRBRFFqYw7g96860lgwxmKMQcr+WJgfcxss76nqlg0IL5VYeOrbmJ3IDkzdqqp7TI5Sk1mLyst6npj7G+StX7pKEmQHjEYfPXFvG9MakCBVbmF+j1gMVjQR1kVQ7NqX9/a1lDZGWEMiXOyWfbnrIrXGSbo53ftk32lj2ejEFFxJxXcYLvvUHBdpBInqCt3O0Ra6w3abtYUrrF6ZR0cxg+OTjB0/SXVklJG5Yxx/+o0MT8+inPzz/HqgPDjE7ONPUh4YZGT2GMVqjY3rS9SXrmXcL3J6R6JSK3OtLFZYnEQc2GC4lDBW8RksuVQLDtWCQzNM2AziA60yez3haI3bjbkQ1vY+v5tU8I6lj0WhpYu0CfKICd7S1BAoJH7fqrsBpt/xDGJ3BI21LH7uhSNprVzcY2WeuGXeeSo7oaweKl5aO7xJZqFwWWAg0zbLOq7dETMjkXDJWcwsU7JFZnTWiemgkdbgRQ208klUkdAfREvvtusJKXELPo7V6ETT2GzQCmKCOBXslfSZq/49JNnX/Wrzf9JJru63yb4hqxWE4yA8F93pT0TArRCug/8D35Zps/U20V8dTUeFbZQD0u0K3kkfBO+tPG+7k+dte5PnLXwPd2oKNTKMbraIFxbQ9TrR5cuE5873zNrcdQcplU6hTZtW+zWicJV6/Xm0vj/3tZwcoMcjATfh27/92/n2b//2w9h1Tk5OTk5OTk5OTu+IdlmYF9IBn9TyztKxEs9VGASezc5iF7aFwKJtB2Qxrc5qtyHRiCTG+oW+imBWa8BirUXK3leTKwwzTpMX9lqYf1Xy2clnePPTk9nl4w7Fzexg2RYSyQl1ItPWsR0Wzf7L3ynWWlZezuaJVyZGKA7WbrLGLbeWVnY7Kp1+3GM704cW0Uo/o7aKMIU0+7OHSBKU3ZvT7SKsTTNZk/1zuq2FejtCSUGt4FL2XYYKLkoLtDRpBq+T/j2KBK0mrfU1oiDA9XwGJ6cpVioo12Nocorq6FhfjhM5Rw/XLzDz6BOsXLmMkAKvUGRjeYkkDBmcnMLxbi8m5NwHIj12CCtJAFcLHJ1OoDmIcwYhYLjs40jJSjNECsFmEGNMzEDRJU8dvHvcKEI7CjeKiXyPxHVx496Kz0Y4xBJcA0hQJnUnMYczJHwDAhdhSlipQYTpzRZ7vl+vVmHsmce4/pUXt9uaC9fZvLDAwKnZnu//bvCiTVTSRjul7bbK2Dhz1evMN3bex88t+jwxcniTGS6KEWZsfbuybqu6+zWxI2YvyhXGxQhVu/NcjulJVtQ6gehdBbIyEU7SJnZLCJvQKY5Sai8h7a0dK6TrouIEdEQUSdqtFlIKHClwlKTgjDJT/bvMN/5oex2L5vLmxzk9+E9wZO8/y/v2u+AhPA9ZKqDrDWwUI7zDddxRT8+hHplEv7ozeSP+q2/ivuU0cqS35/D3heq+bmbr8xmkiprs5UT0dBIbdKu8hcVaUsFbGKzQBzM2IEDVaqhSmWRtjWR5GdlsooYjTKuJqlZxJieRxYP9HDtOhVLpDO32edrt1yiWTlKvP0et9kZc916urXNyUo7o5XROTk5OTk5OTk7OA4Y1aV530slYmG90YlqRJpEOjpcKY3JXLY8yAmNbYGOM0EjhQxAgEgNRmFb+9rlSUnfjhawF0Qd77RmnSSyabIqs3WHhBcnnH3sHT54azLSX1y4gblIPNSNnKIhsbuGF5AL2PuunWstrBOubmbaRR0/e28ZMOpkApXYyu3PuCkuEEQGSLfvyO8tgvHfSnG4tHAwOsfSJPTeT0+0H+1R6WKh3YoyFwaKH70rGyz6OlhhhMApilf49Slhr6TQarFy+xPrVRUAwPDXD6LHj1EZGGTt+kuNPPcPA+GQudL/OEVIyduwE4ydPUxocZHT2GNZaVq9cJmg2Drt7Dz8CItdgpSWWNo1J0QdX4Q1QK7qM1wqUPMlg0SXShvV2dOg5sA8iAvA7QZrfHcdop/f53bAleHsYHLR0USYmnSJxNNiq7hbWw4r2fZ+z3Snjb3wMt5wVcRY//1VMj3Jr7xUBlFrZ6u52cYJ3TmfPO15Y8ugkh3dOGQiPq3uqu+dYx9ktKAt4zbmceY8VktPxXM9dI5ykjTQJsVfFSJegMHLbXQoEbqGAFCCThHazTRTF1NsJpusbP+A/yUjhrZn1YrPBlcYnD9UpQFXLCDeNwdKd/kQE3AohBN4H3pyNbkoM4R8/f3idulOU263wjnZVePfDHn4rz1vsyfN2DjbP21E442M44+PYJCFeWCRZXkavrRG++irRxUvY4GA/Q0oVKJfPgJC0W+eI4zobG88TRSsHup+c1xd9EbullDiOw4svvnj7hbucO3due72cnJycnJycnJycI0/c7lqYt7ctzGNtaIeappYoKUApnBsszA3WtLB0sEjQLiIIII4RxmJ9v79V3RaMNRhrECId5OklAssxt8F19liYN6FxeZDqu96cyQwXJqFcv7jvtjw85lS2Gqdu6qzuyQy8F1Zezu7Tq5SoTd+j7aI26YQIJDh5rvHdYjFY2bUvt0WkHeyxfbnFsTFGKIxw0dIlVt4d5XQ3woRYGwaKLp4jmagW8IzACotWoKVBO0dHMbLW0t7cYOXyJepLV5FKMTI9y8jsHNWRUcZPnmbuyTdQGx1HyHzufM4O1eFRZh97kmIttTX3S2XWr11lc+X6kbQFfqgQEDmp4J2oVPBW5mB/uyu+w0StSMFVDJVdtLGstUL0YYYEP6BIa/HDEKX7l98NYIRLsiV4C+dICd4CD2GKCFtKRdA+ZXdL12Hq7c9k2uJmm+WvvdyX/d8Ne3O7jVPgTSeLKLHzHYyM4Llrh+uocVGMZvQ3B8OxPefhTdnhqswKWsO2xqgZ7GnfBGmVPBYit0qifCJv4PbrSYnyfJRNwBo265vEWrMZJNuTfibLf5uSk70Gacavsdz5TA+eyZ0hikWE46BKRYhi7BGYxKEmB3Hf9WimTf/NPMnLh2v7fkcoF6SzS/DupG5ufaE/ed6yXMKdmUGNjmLDiGhhAb2ygl5dJXjlFeLL89gDzICX0qNcPo1UBVrtc0TxOpubXycI7s+RLef1S9+uTu/14qZXF0XPPfcc/+bf/Bve8573MDs7i+/7VCoVzp49yz/6R/+Iz3zm7n6M/vzP/5wPfvCD29uanZ3lgx/8IH/+53/ek/7n5OTk5OTk5OQcMcIGmCS1MXdTa77NIMZgaVmB67pYRLa6AcC2EVagbYAQBUQnFc1FFGE9B1R/BSVjNFiwxnbFrN4OwI6pDkWpuS7mM+2Fr0k+dfwtvPWJ0Ux7aeMKSu8/sHBCHUeJnQopay3n9M2zve+UqNlm80q2omb07Il7rHo3aWW36lqYO3lV7F0j2lhrELaCMD7C9Nb6UNkYrOlWdUtikVZ1b+d0h/vndAexoR1pKr5DwZVMVH2KKBBp1q6RlviICN3WWlobdVYuX2Tj+hKO6zEye4zhmVmqo2NMnj7L7BNPUx0eReROBDk3wSuWmH38SWqjYwxOTlEbHaO9scHawhX0ERhkf5ixEmLXYGSa4S2NQB5w9HHRU0wNFii6DsPl1L51rRUR6zyj/W5xEo0T787vdvtSy6yFSyLddOJWV/AW3NrGuV8IO4DA6VZ3d/pW3T1weo7y1Fim7fpXXyJq9Cav9l5xkxZulHXLEAMTPDWaPSf+/GIvrZVvT1t4XCNrQ3yMtRuufy46i4Rk+34qmUH1ONNFYPGiTYx0SJwykVcjdm5v0aw8F6EkThJjtKax2SRMNK0o/W0TQjFX/UGUKGfWu97+FI3oXE+ey+0QIq3uxvNAKUynt1nTd4r33jdAOfs5DT/5HPZB+C1R3h7Bu91HwftWed7q4PK8BahqBXd6GjU8jGl3iBYX0KtrJCsrBC+/RHxlAXtAERxCOJRKJ3GcATqdS4ThCo3mt2i3L9x+5ZycPRz5qdi9uJB+97vfzVve8hZ++Zd/mf/9v/83CwsLRFFEq9Xi1Vdf5b/+1//Kd3zHd/BjP/ZjRNGtZ6sYY/gn/+Sf8L73vY9PfOIT29taWFjgE5/4BO973/v4yZ/8Scw+gx85OTk5OTk5OTkPCdZAuJlWdQsJTnoBv9lJaCeQIHE8F2Vt5gRcGYExTSDECo2MFSJOIIjSEQq3/wNW1pi0ctZaZB9ErePuJgGtGy3MvyKZ/9vfh+9nK58rq/uL1xVRYUJNZNqumWu0bfu++7jyysXMjHnpOAydvsc8R90d7FMK3NzF6m6xxBjR6dqXu0gz3FP3AUmCtBotfSySWBbSnG525XTHN4p4cWLYDGKKnqTkKYbLPmXlICzE0mKlJXJNX10b9sMYQ2t9jeVLF9hcvo7rFxibO87Q9DS10XGmHnmM2cefojw4lIvcOXeEVIqJU2cYnTtBZWiE4ek5dJywMn+JsH20xKOHDSMhdixGpq4RSkvEAQ9F+Y5iaqBAwZUMl32UFKy3Y6IkH/O6W7wwQhmDG8VYKUjc/ji9aOGhu4K3EQrHRMDhv3/SeghT6FZ3675VdwshmH7Xs5lIGZtorn7h633Z/91QbO9jZT6THbd+te6y3D7c4f4LIjtR1cUwy3qmTQvDeSfr6uTjcVxP9bx/0ia4cYvEKaKVT+gPY8Stz8kFAqdQAAyOSYg6HdqdkFaYEHaPf66qMVf9IHtP7q40PkGkN3r0bG6NKBWRSiKLBWwYHglBWRQ9/Pe9MdNmlzaIP3v0HBX2Re4SvE23wtv2T/DesTa3vbU2lwJVq+HOzqIGBjHNJvHCAnptnWT5OsFLLxEvLsI+10F3ixCSYvEYnjdKEF4hDK7Sap+n0XwpdwfKuSuOrNi9spLamZTL5dssefcsLqZWCNPT0/zMz/wMH//4x/nSl77E5z//ef7jf/yPzMzMAPB7v/d7/PiP//gtt/WLv/iL/PZv/zYAzz77LB/96Ef50pe+xEc/+lGeffZZAD7ykY/wr//1vz7w55GTk5OTk5OTk3NEuMHCXKKtpRHENHWaey0ceUNVgzQabBtLAAhox5AkCJ1gfa/vQtiWhbk1NrUwF729XBiQIYMqusHCXLRgaXGCx972SKbdb16/oapli1PqVOZ+YhMu6cv33UcdJ6ydy1adD5+eRd3roHRi0hx2RN+z2B90UvvyBsK6YAtd+/JeigM7Od0WSdLN6TZS4kY3z+k23ZxuVwpqvkut6DLoeUgjSFRX6HYOV+g2WtNcW2X50gUaa6t4xRJjx06m1bhjE0w/+gQzjz5OqXZ7e8+cnP0YGJ9guvsZGj12DNfzWVtcoLm2mg9c9hCjLIkyGAVGGBwtEQf8crtKMj1YpOgphkoenpLUOzFBfPgiyoPEdn63NbhRgnYUug/53QAJHlo6aOF1Be+QoyB4H1Z1d3FkkJHHs+eRG+fnaS5e78v+75S9VuZWuZydq1J2s+/dYVd3t4TPEtVM23G7hrTZfq7IOmtiM9M2rccom9tXWt8vjg5QOiR2K2jp0imOYm9zYialQrk+JDGOsLQ2m+nkxna8HelQ8U4wUfquzHradphv/AHG9t/hREiJrJQRBQ+ExB6B7G4A562nkbPDmbboL76OaRyN/t0SwY7grbuCd9xvwRv25nmzlevdC9F7cAB3dhZZq6EbDeIrXdH7+vW00vvaNbhPBx8hBIXCNL4/RRhdp9OZJ+hcYbPxdexeZ7ycnJvQV7H7TmeCt1otPvzhDwNw+vTpA+/HY489xsc+9jEuX77Mb/7mb/JDP/RDvOUtb+Htb387P/dzP8dXv/pVzp49C8BHP/pRPv3pT++7nVdeeYV//+//PQBvfvOb+exnP8uHPvQh3vKWt/ChD32Iz3zmM7z5zW8G4N/9u3/Ha6+9duDPJScnJycnJycn5wiQsTBPB2iaQYK20DQS13URVqD2DPJg2mBB2wBCmVqOhlGa43wIQqi1BmPSv+m5e2/VuGNuKlzvFbsLX5N86Ts+yNBgKdNeWdvfBnBMjjIgs5aJl/U8Mfc/6LB+4Qpmz4z1kbMn7m1j1gAmrepWsit659wxu+zLZc/tyw2OjbZzupN9crr9fXK6rYV6O0IIGCx5FH3FaMFHGYGWJrUadtK/h4FOEhqryyxfukBzfY1ipcrosRMMTkwyMD7B7ONPMfXIoxQr1dtvLCfnNhTKFWafeJLK0AhD07NUhkZorK2yfnUBo/OBy16ROBYtDVqBFRYnEQc36N1FScFkrUjFdxgsufiuZKMT047y9/VukNbiBxFKa1SiifuU342ABB8tFFp42CNS4S2tn8aT2HK3uvvgsmFvx8RbnkL52bzrxc++gD1CTp2ODvDCbIV0WJ7krZPZ1+nzV33MIc8pOr+nuttDM7enuhsB59x5zK7PnUDwSDJ34Mes/XDjBlhD5NXQ0iUoDN92HeWnduYiiZBoGo0WiTHU2/F2fvdo8R1UvWwudSdZ5Frrf/fiadwWWSkjZVrdbcIQe9gfDlIR3v/AW7KNQUz0Zy8cTofulozgHYLdErwPI7IlzfMWdo/ovZXnfVAoiRoaxJudRVar6I0N4itXSNbXSa4tEbz8MsnS0o6L2T3i++MUi8eI43Xa7QuEwRIbGy9gTP9+D3IeXHoygnbq1Kl929/znvfg3qYCIgxDrl+/jjHpANv3f//3H3j//uRP/uSWj4+OjvIf/sN/2N73xz/+cd797nffsNxv/uZvknRnrXz4wx+mWMzOPCuVSnz4wx/mHe94B0mS8Bu/8Rv8p//0nw7oWeTk5OTk5OTk5BwJrIGo0bUwF2llN7DRiekYQWKg6LkoazLCmDICY5tAhLUxMvQgDhHWYj1v3131mjR6x2KMxelxdVFBJEyoNgFtNuRq5rHiCxL1/8hWRThhk0LzxgobieSEOpFp69gOi2bxvvtorWXl5YuZttrMBH71Ht2ntAYESJlndd8l2/bltoywDtKM9NS+XNkEEOiuzWsivBtyutU+A+CbQUxiLMNlF8+RTFQKuEZiRFppGXcrLvuNThJa62u0NzcQCEoDg5QGh1COQ2V4hKHJKbxi6fYbysm5S5TjMnnmLPVriwgh8IpF6teusjJ/icHJKbxC7yv4Xo/EjkVgSQBHCxydOksc5GFTShivFVhppg4XSiQ0ggRtLFXfOfSYhgcFJ0nQscQCRqa/NV4Y9f7lE5BQQBAALooYx0YkwuMwjUCFrSEIEdbFihZYr6e/91s4BZ+JtzzF4me+st0WrG2w+q3zjD55puf7v1NK7SUif2j7flAc4x2zr/BX84XttpWO4tV1h0eHD0N4S2mKAsu2whjN7bbjdpV5hjC7nKMCEXFZXeOEnt5uq9oyU2aUq2qlp30UgBdtEPpDxG4VAURuiBc3b7GOwPF94k4Hx2jisEOj41EreTSCmFrRRQjBbOX7OVe/TmR2BP614HmKzgxDhTf09Hnd0GclkeUSRhvodLBBgCgd/m+vOjmG820nSZ7fyWZOvnwO/Y5HUMdGb7HmEWFL8AZIwlRli9vgluA2tvi9wArDltCN6E5etwqESB87KJsXJVHDQ6haDb2xgV6vYzY2kYMD2CQhWV3DGRvDGRlOTxTuAdcdQgiHdvsirfZ5wFCvP8fAwLModfif3ZyjS0/OXi5evJi5QTpQtLCwcMNje29Xr15Fa421lre97W38i3/xL3rRxdvyXd+1M7h27tyNFSTWWj75yU8CaaX429/+9n238/a3v51HH01nc33yk5/M7bpycnJycnJych424jYYnc7mdoqpRZy1bHZiGhqQEkfdaGGujAbbwdgOhAkykYgoToVueTgjxMbo7QoWcY8Xp3fKMbeBELC818K8Da/ZtzJ1fCzTXlk7v+9Q54ycoSAKmbYLyYUDsb5sLC4TNbIZs6OPnrjHrVnQJr3oF7mF+d1gsV37cgdssef25dLGCKtJhItFEgmf2Pdum9PdCjVBbKgVXTylGK/6+EZihUWrNENXO/29HkyiiI3r11i+dIFOo0F5cJixEyepjY0zNDnFsafewMTJ07nQndNThBAMTc0w9cijqa353HGU47K2cIVWff32G8i5ewREjsFIS6Iswqai90FXSwoBY1WfoZJHxXeoFhw6sWYj2KlyzLk9XhghjcGNY6yUJG6fzhEExKKAwUELFxA4NuYwK7ylLSKMdyjV3SOPn6IwnI3vWPryN0j2iSw5LIrtpa5TUIqVivHxIabK2fOSw7Yyhxuru300M9RvWO6Kuk57T0b7iWQa1/b+eyCtwYsaaOWTqCKhP4iWt550LJWDdD1MHOFLQdxq0Y40nVjTidL3QckCx2o/jNhTZ7jY/DOCZGm/zfYUWS2nlua+h+mER0af8L7vWfB3vUYWwk88dySqz++ILcFbqFTwtjodG+CwJpr0Kc8bwFGokWHcmRlEsYheW08zvdfXiK8uErz0Mnp1Fe7RHcNxqpTLZ7A2ptV6jTiuU68/R5LsH2mWkwM9quz+sR/7scz93/3d30UIwQ/8wA8wODh40/VSb/4CU1NTvPOd7+S7v/u779j6/KAJw50TGbVPVcuFCxe2s7+/8zu/85bb+s7v/E5efvnlbbH/5MmTB9vZnJycnJycnJycw2PbwjwCP7X+bUeayFjaWuK4LhKQu64uhQVrWmDBJE1ErCAMUyH0XrOg7xNj02tRYw1S9tbCXGGYcdKqiSWbzcMufF1y6QN/n5Fd1wFCx5TqN+Zve3jMqdlMW93UWbVrB9LPlZcvZO4XBquUJ0bubWNmy8Lc61qYH17V1ANH175c2sGuxWnvLLYFGmUTtHQBSSwLJG6a0+2FIdLun9MdJYZmmFD2FQVHMlrxKXerOhJlMdIS91HojsOQ1voaQbOBUIrq8CjF2gDKdaiNjjM4MYVzSA4SOa9fSrUBZh9/iqXzryGVorG6wubKMnEQUBufQObHxYNFQOwavEiSqFTsVkag1cEfi4bKHkoKVlshSgo2OjH1Tsxg0eWQhvUeKARQCAI6pRJOFJN4LtIYlO6D6Cwglj6usSTCxbExjo1JRPo7eBik2d1RWt1NG0F/hFshJdPvepbzf/zX2206jFj68jeY+Y5v60sfbocyMX6wRljcEZI75UneOf0yf/DqzjD/c0s+f/+xVkZH7DebosiqLTPCzsTRE3aVKwxid1V3W2F5zZnnDfEj220OilPJLC+7F3veT2UinKRN7JaQJqZTHKXUvnZDxvhuHN8jThJ0FOL6BYJWgCNLbJLgKImrJAVngunK+1ho/o/t9SwJlzc/zunBn0DJwk23f9AIx0GWClitoRNhgxBR7N/+b4YcKOF9z9NEf7pjX24urZB85QLum/d3Dj5yCED5qZ15EoLjQ9QGrwwclpOXxYodwXvrf6zAyu416QH9NgvXwRkbxQ4MoDfqJCuriI1N1OAgNomRyys4E+OowUHu9oRAqSLl8hna7fO0Wq9RKp2kvvE8terTeN49XpPnPNT05Cfvv/yX/5K5/7u/+7sA/Oqv/ipPPPFEL3Z54HzqU5/a/v/xxx+/4fEXX3xx+//HHnvsltva/fi3vvWtXOzOycnJycnJyXlYsHZ/C/MgJkASaYtfdG60MLddC3MTYOMAGZcQJsEWiodm+2m1BizWWmSPs6RnnCaOsIR0brAwd16sMfiBpzJt5fWLSHtj/tcJdRwldvpqreW8vnDDcvdCsNGgeS1rnzj66Il7n4yrU2s5pEoz2XPuCEuCEW2kLaX25Xq4h3amBmW6Od04xNIjUQ7a3ZXT3bkxp1sbS70T4zuSiu8wVPIYcF2EgVhZrLRE7sENKt2KOAxorq0RtJoo5VIdHadUG0A5DrXxCQYnJlH55y/nEHE8j+mzj7G2eAUhBW6xyObSNVbnLzM4OYXrH3414sOEFRC5Bi+WXUvzrl12DwTvWtFFScFyI0QC652YtVbEUNk7LMOaBwppLF4QQsHHaEnsuggTIftRgSkEsSzgmQ6JAMdEKGK08DiME1Npi1jrIihh5AaWEGH7c2yoTI8zcHqOjXM7kzFXv3We4SdOUxwZ7EsfbkepfS0jdgeFEd42o/nDVy22+36FWvDCdY+3Tx9uzu15McqI3RG7CyRMs8ECQ5nlNmSTJbnKhNkRsMbNEEtmlbrsfSWnk7Qx0iXya/hhnaAwSrFz/aaffoHAKfjE7Q5KJygb0A4dlPTZaCcMl12kFAwV3kAnWWAteH573cisc6X5xxyr/nBfi/xUtYJpdxDd6m5RKByJyUjuux8j/uJr2JWd9zn6k6/gPDWLKDwgEzP3Fbxbhyx4b1mb07U2F1gMwqjUiQ59cNbmgPBcnLExbG0AXa+TLC8jNjdQg4OYKEReX94Rve8CKb2u4H2RVvs1isUTbG5+jUrlcQqFqQPrf87DQV+m6P3yL/8yv/RLv8T4+Hg/dnffGGP4tV/7te37P/IjP3LDMleu7Ngtzs7O3vD4bubm5rb/n5+fv8WSN3LlypVb3q5evXpX28vJycnJycnJyTlAMhbmBehWKWx0YhpaYaXCdW60MJdagw0wcQO0QIYa67iHmuOsjcFag7UgejgqLbAcc9PBjOtcyYyhig586/EfRe2277SWyvqNAnZFVJhQE5m2a2aJlm3dsOy9sDerW/keg8dn7nFrNv2cKJU+3zyv+46wWKzY7NqXl5B2AEHvBr0cG4OQaOGiRWrpmnguUptuTnd0Q063tVBvRyghGCi6lH2HYd9HmjQf10pL5PRe6I46HdYWr7Ayf5kkChkYn2Ts+AlqI6OMzM5x7Ok3MjIzlwvdOUcCISUjs8eYPH2Wcm2AkbnjCCFYvXKZTmPzsLv30GFlmuFtZRqnoIxA9qhguOw7TA4UKHgOI2UPi2WtGaIfFEvaQ8ZNEpwkwY1ihLXEnnvQzvM3RwhiWcSiSKSHsAZl437t/cbumPQ3X1gHS6ev+556+zOI3edq1rL42ReOjPVzsbOcnlduISTu0DhPjGTfr88dASvzuiixRjYq5YRdRezzWl5wFon32D+fieeQtveKbJrfvQkWIrdKonwib+CW60jlID2XJApxJNigQytMiLVmo7MT5TBZ/l6KznRm3Ub0Miudz/fo2eyP8FxkwUcWfdAaosOdCLGFcBT+B96cabONgOh/f+OQenSPbAneiK6luUkFb26csN1vstbmaYW3ME4qfB/w90v4Hs7EOO70FEhFsnSdePEqSX2d6PJlwldfRW/e3QQWIRxKpVM4To1O5yJRtEqj+SLt9sUD7XvOg09fzEx++Zd/uR+7OTB+4zd+gy996UsA/OAP/iDf9m03WtU0Gjtfykqlcsvtlcvl7f+bzeZd9WW3UJ6Tk5OTk5OTk3PECDd3WZinlQhhomnFEGiDdF0cbGaGqbBgbRMRJxjdQgQitRc7xGo2a1P7cmMtQoj0IrhHjKkORZle9C+Zy5npt/7fOMTvfU9m/nuxcRUnvnGQ85TKuiUlNuGSvnQgfUzCiPUL2SzxkTPHkPcqUhsD2FTsVuquLdxet4g2VhikGURar6f25cpGYA2J9LFIYuETd22+3Sjq5nTvGfS3UO/EaAsjZQ/flUyUfBwr0NJ0Bab0b68I2y2aa2tEQQfX8xmcmKJQqeJ4HoMTU9TGxnru1JCTc6+UB4eYffwprp1/FekoNpevU1+6RtTpUBsbP7RYu4cRoyyxNbjIVMTUEktvjk8FVzE14LO0GTJU9qm3ItZaEYNFF9fJrepvhxeE6JLEjWMi3ydxHdy4P/mvtit4u6ZNIn0cE6KIuhXe/UXYImxXd29ibdTTCW+78Solxt/4GEvPfXO7rXV1mY1z8wyeOdaXPtwKaTXFYIVOaWfSZ7s0yTuml/nm6s5r9NKay1ogGS4cXgY7wAUxyrDdiSMqETPJBlcZzCwXi4SLziKPJDuvcRGfOT3BJedaz/spsHjxJqE3SOKU0zhmE+EmN59s4Xg+UazRYYBfKBJFIW0pEBJaYUKl4CCFw1z1hzhX/wja7mxrqf1XFJ1pKt6Jnj+3LWS1iglC8Fx0u4PjH43KaefxGdTjM+hvLWy3xf+/l3Dfdho5futJB0cKQToBPgnSm1PYZWl+2L9/qbU5yG6lt8VaibCpzTlCH+jkXOH7uJMTmE6AXl8nubaEKBRwhgYxnQ6yXMaZmEDdRlfb3p6QFIvHCYIFOsE8pjsZy5iQcvlsfs6YAxzyt2xjY4Pf+73f4/d+7/cOsxsZPvWpT/Gv/tW/AmB8fJz//J//877LBUGw/b93m6wzf9fAZafT39mIOTk5OTk5OTk5PWLbwryTtTDvxERCEmqL6zo4e/LeHCMwpoGNGlgdI2OJ9bxDsy8HMEaDBWtsT6u6AY67adVeSMCGylqYt8PvQA1kBzQqq+du2MaoHGVAZpeb1/PEHEwF0tq5eezunEwhGHnk+L1vUGtAppX/7iGGJz5ApPblHaQtInCQeqRnkzAkCdLqXTndRbTrYJTEjVIL2f1yupthQqwNg0UXz5FMVgq4VmGEwSiIVfr3oLHWEjSbrMxfZm1xAYtlaHKa0WPHqY6MMn78JMefeobBiclc6M458riFAjOPPcHAWGqzPzA+QaexyeqVyyR7J5jk3BfasSTSoFWaketoQa/Khj1HMTlQoOhKhssejhKsd2LC5HBFtweBNL87RBqLE8dox0H3Mc9+S/AGiZY+wup0QlifEQikqSHw0+pu0e7r/seeeRS3Ws60Xf3C1zB9mnhwO0rtrPgb+YO8YUpQdHa+YxbB549AdfcaJeoUM20n7SrsU919Ta6yIbKFYrN6gqLpz/OQJsGNmyROEa08Qn8YI25+7i6EwC36mERjkgRXR8SJJogMrSghjNMJvp4aYLb6gT1rW+Ybf0Ss++doIgsewnVRxQIkGnuEfmf9938bqF3HOm0IP/n8kXFUuGMEqY35doW3hrgFHJXfP5Pam1uRit5d8Tt10pIHfl4giwXc6SmciQkwhvjqNZKlJfTaOtH580Tnz2Pad3Z8F0JQLM7i+5OE4TU6nXk6nXkajb/B7hN5lvP641DF7itXrvDjP/7j/ON//I8PsxvbfPOb3+SDH/wgSZJQKBT47//9v9/Uer1QKGz/H93G9iMMdwZGisXiLZa8kfn5+VvetirQc3JycnJycnJy+sy2hXk7Y2Fe78Q0tUQLhasEao/YLUwCwSbGdiBMkMI7dAHUGJNWeFmL7OGs6AEZMqjSc+flvRbmASy+9f+eWd7t1PE6a5k2ieSkOpFp69gOC2bxQPpojWH1lYuZtsFjU7ilwv4r3H6L6efEkenVl5OL3bcjtS9vdAdcSt3B7l5VnhiUidHCweIQS59EKRLXQW3ndAc3zEUJYkMr0lR8B9+VjFd8iiissGiVWgVr52BHi6y1dBqbrMxfYv3aIlJKhqdnGZ09RnVkjPETpzn25BvSitg+CiM5OfeLlIrxE6cYO36K8sAQI7PH0mPx/CWC1t254+XcmsSxaGXTmAVBTwVvV0mmB4qUfMVQ0cN3JBudmE6UD0jfDmkMXhjiJBqpdWpn3seqNSskkSxikWjpIa0+FEtzYUtgHYQtYUWMPaBJjXeCdBym3/FMpi1udbj+1W/1rQ+3otBZQZhdr4cQJNUJ3jyRHaP+/KK/n6bcX4TgghjJNJWJmGAfkVfAa848dteBSSI5k8z17Fi1F0cHKB0Su1WMdOkUR7ez0PdDKgfpuiRhgLAWJwkIYkOcGDY6Mbo7gbbqnWa89J2ZdbVtMd/4w74KdapWQXhpfJZuB7dfoU/IsRruux/PtOmXFjPV3g8MQnQFb1LB2xw1wbtrbS4Mwopd1uaqK3of/O+NLBVxp6fTXO84IV5cJLm+TLK2Tvjaa0QXL2I6d/Z59P0JCoU54nidduciYbjExsYLGHN0Jm/kHA5H4gr4KMzQuXDhAu95z3tYX19HKcXv//7v8+53v/umy1erOxZ6t7Mmb7V2cgNvZ3m+l9nZ2Vvepqam7mp7OTk5OTk5OTk5B0TU2LEwd9Msulgb6hGEiUE6Dh7Zgm1pBDbZQMQxRreR2sUWDtc+ztqu2G0sQqQWYb1iK6sb4Fqyx3L88lnMmUcyTZW1czcMLc3IaQoiKzxfSC5mBsXuh435a8R7Bn5GHz15k6XvAN0dvFIqF7rvFNHBCo20NYT1EKbWox1ZHBtjhMIIFy3TrO6tnG73JjndsTZsBjFFT1LyFCMln6py0gIOZTHSEh+g0G2tpb25wcrli9SXrqEcl5GZYwzPzFIdGWXi1CPMPfk01ZHRXOTOeaCpjY4x89iTlGoDjMwewyuUWL+6SGN1+UiMGz0UiDRewchU8Ba2t4K3lIKJapFK0WWg6FJ0FZtBQivMBe/b4cZJGqERxQj6nN9NKnjH0sei0NJF2gTZZ8F7d3U3VvW9urt2YobKTLYIavlrLxNtHv4kHIGl2L6eaWuXJnnndNaJZqmtOL9x+OefK1TYJHv+frPq7rYMuKKyz23QVhk3Qz3t427cuAnWEHo1tHQJCsO3XN7xfUCShAHKaBwT0440ibGsdxKsSZ/nWPHbqbhnMuu2kytca/2fXj2VGxDFIsJRqGIRohibHA23AgDve55C1LKFguEnnsMmD+Bvxr6Cd5ujJHjD3jxvsSfP+4B3JkBWyrgzM6jRUWwUES8uoJeX0atrhK++QnT5Mja80VFrL543TKl0kiRp0mqdJ4pWqW88h9ZHZwJHTv/Jr4SBxcVFvud7vofFxUWEEPzO7/wO73//+2+5zuzs7Pb/V65cucWSaXX2FnkGd05OTk5OTk7OQ4C1aV73HgvzzSAmEoqOsTiOwtkzS19ZMM1lsCE2DhGyBIcsTllrsDb9m2Zd9aZyqCASJlQ6SBkRsOFmLczrw/+3zH0ZB5Q2s9XaHh5zKns+XTd1Vm12W/fDyssXMvdLo4OURgfvfYNad9/j3ML8Tkjty9tIW0jty81wz+zLlY3BGrRwMChivD053Rpnj72jsVBvx7hSUPNdqgWXId9DWIilxUpL5JoD+RpZY2jV11m+dIGN60u4foHRueMMT89QGx1j6syjzD3xNJWh4TynLuehwS+VmHnsSaojYwxNT1MbGaO5vs7a4hX0ERqQf6ARELkGKyxxV/BWppeCN4xVfAaKLtWCQ7Xg0AwTNoO4b5WaDyp+ECKtwY1ijJQkfZ40Z0TqeGJw0NJF2QRJf7+HaXW3QtoSVkTYPu5fCMH0O59Nz/W7WG1Y/PzX+taHW7HXyjz2ahwb9RgvZa8/joKVOUJwfk91d5WQMRr7Ln5ZXSMgW6V+KpnBt/2ZJCyweNFmOunDrZI4JSL35gVsQgicgo9JEnQco+IQMDTDhCTRbATJ9nKz1ffj7oljWg2+xEb4zX22fPAIAbJSAd8DpTCd2wuL/UIUXLy/+2ymza42iT91NBwV7pobBO/kSAreaZ63wbJlbS7ASoRxoEeit6pWcKenUcMjmCAkWriCXl1Fr6wSvPwy8ZUr2Nu4KTtOlXL5NMaGtFqvEkd16hvPkST7H1dyHn5e92L3ysoK3/u938v58+cB+PCHP8yP/uiP3na9J554Yvv/l1566ZbL7n788ccfv8WSOTk5OTk5OTk5DwRbFuZJ1sJ8vZPQMQItFJ4SqD1XhqLVQJgArVtgFMK9u4ibXmCMASzGWGSPq7q3xgqXWciIgSYZYuPp784sX1m/gNhjAX9cHUeJnQxiay3ndVacvh/aK3XaK/VM231VdVuT3pQCKSDPT74lWfvyMtJUkbY3A7Q7Od0+Fkki/X1yurP25dZCvR0hBAyUPIq+YrxYQBqRWgJLS+Tcv9BtjKG5vsb1SxfYXFnGK5QYO3aCwckpaqPjTJ99nJnHnqA0MHh/O8rJOaIox2Hy9COMzB6nPDTMyMwcSRSzOn+JqNPfys6Hli3Bu1vhLY1Amt5NmhECRio+I2WfkqcYKLoEsaHeiQ/fYvkIIwC/syu/2+1vfjdsCd7ejuBt4r4K3gKJtDU4pOruwvAAo09mK3E3Ly7QuHLtJmv0Dz9cR+qsUNkpT/KOqWzbl695xEegMHaZKg2y53Wn7Mq+1d1GGM4585k2F5en4tM4tj/n09JqvKiBVj6JKhD6g2h5c7FdOVt25iHWGLwkAgvt2BAmmnaYfm8cWeRY7YcRZJ/HQuNPCJKVnj6nLWS5iFQSWfSxYYjVR0d8dd50Enl8NNMW/X+/gdl4QH//HxjBG7byvIXdEb138rx7cI4gBapWTSu9h4YxrXYqeq+tkSwvp6L3wgI2vvlvjlIlyuUzIEQqeMd16hvPE0VrN10n5+HldS12b2xs8N73vpcXX3wRgF/7tV/jp37qp+5o3ZMnTzI9PQ3Apz71qVsu++lPfxqAmZkZTpw4ce8dzsnJycnJycnJORpsWZgnOxbm2lrWQksQa4RyKIjsBaxKDLZ1HYzBmA7CLfeqiPquMEangregZxbICsOMs2P5eC26mHm8E3wga/FtNOX17DIVUWFSTWTarpklWrbFQbG3qtstFRiYm7z3DRpN6tem8qruO2HbvryKsC7CDNx+nXuim9Mt3a7QXbijnO7NICYxloGSi+dIJssFHCvQ0mBlag1s7+MrZK2lubbK8sXzNNdWKZQrjB0/yeDkJANjE8w8+iTTZx+jWO2VrXtOztFicGKS6Ucfp1gbYHTuOI7ns7Zwheb6Wm5rfgDsPm5paVBGIHs89j5QchmvFih5ksGiS6QN6+0oF7xvgcrkd5u+25kDGOGSbAnewum/4G3KCOsgbRErwr5WdwNMvPlJVCEr0i5+9quHLhAKoNReyrR1ShO8bY+VeTuRfG35cGOTgH2zu2uEjLL/ufya2mRF1jNtJVvgyfgUshfC2z4oE+EkHWK3jBFpfre5xeTg1M4ckijEJjG+0ESJIYg1jTAhStLPTNGZYqrydzLrGmLmG/8dbXpfaS2kRFbKiIIPQmKDo2P9LITA/+BbstfJUUL0J185tD7dN/tZmidHVfDeyvPesjbfyvPukbU5pKL3QC0VvWsD6EaT+MoCem2d5Poy4csvEV+9Cjdx+JHSp1Q6g1QerdZrxFGdzc2vEYSHPykpp7+8bsXudrvN933f9/GVr6QHyl/8xV/kX/7Lf3nH6wshtq3OX3rpJb7whS/su9wXvvCF7cru97///bm9XE5OTk5OTk7Og85NLMwbQUwoHDpG4CiJs6cqWdUbGFpYHWAlSHEEqrqtxZjUwlz20MJ8xmniiPTKOCKk7u3Yjltc6nMfyCxf2riC0nusC1W2wjqxCZf0ntzv+yBuB9QvX820jZw9cX8TABLTtTAXeV73bcjal7tIM9Ij+3KDY6I0pxuHRLpoobZzup1E4+6T092ONEFsqBVcfKWYrPp4VmGEwSiIVfr3XrHWsrF0jeb6GsXqAGPHTjIwPsHg+CSzjz/N5JmzFCo3t8/MyXlYKVaqzD3xFJWhYYamZykPDdNYXaF+bRGjj0Cp4gOOUd0Mb9UVvLVE9HjsvVJwmKgVKbiKoZKLNpa1Vog2ueJ9M3byuyMEEHte3wVvLVwS6WKEuy14C/rzHdyp7i6AlX2v7la+x+Rbn860hfVNVr75Wl/7sR/FPVbmiVtmoFbm0aFsDMvnjoKVObBEjRZZ4f3kTaq7AV51LtMSnUxbzVZ4LDnRtxgEJ2khTULk1zDSISiM3HTXQggc38fEMTpOMGEH34EgNsSJYaMdbx/rhgvPMuS/MbN+qFdZaP5pXyZ0yUoZKdPqbhOE27niRwE1N4LztqyjQvKVi+gL12+yxgPAtuBtIQnSqKsjLHjvWJuzK8+7h9bmAEqihgbxZmeR1Sp6c5N44QrJ2hrJ0hLBSy8TLy2lr90epHQolU7jOBXanQtE0QqNxjdptw9uvCDn6HOoYrfneRw7dozjx4/3db9RFPHBD36Qz372swD8zM/8DL/yK79y19v52Z/9WZRKRzR++qd/mk4n++Pb6XT46Z/+aQAcx+Fnf/Zn76/jOTk5OTk5OTk5h0/S2dfCfLWjiYwlEZKCstkT7U6A6DQRSYiWHZD+DdZ1h0EqFFiMtYgeWZgLLMfcndysZbuQuQppe9+Nrgxn1qmsnc/cH5WjDOzJtpvX88RkB/Luh9VXL2UG2oSSDJ+eu8Uat8FooGth7shDz2Y/yqT25c3UHs+WkabSM/tyZRMQAi1cjFAku3O64xhHa9w9Od1RkmYuln1FwZWMVnzKOFhh0V2BSDv3PuJjrWVzeYlOs8HAxBS1sXEGJ6c49uQzTJw6g18q3ddzzsl50FGOy9QjjzI8PUN1ZJThqRmiTsDqlcvE4dGpRntQ0cqSKIORYITF0bLnIlLRU0wNFih6DsPl9Bi81opI9NERW27F1vTAfv6yp/ndFjeKMEqiD2ESnRYeuit4G6FwTES/hJq0ulshKR1Kdffwoycojg5l2pae/yZJ53CPQV60iUqy4n+7PMk79lR3f3PVZSM8AgVY+1R3D9JhmP0nMCRC8w33HOGe/O4RM8iZZK4vgrcgfZ2xELk1ElUg8m7uPqRcF+k4qZ25Nqg4xJGCdqxJjGFjV3zDVOW9FFTWRWozepHV4Es9fEYpQklkqYQopBO3bXB0srsB/P/rjVBwM23hH30Za46qOHwH7Ba89Zbg3eHoCt6wZW3OtrW53GVt3qNfQSVRw0N4MzPIcgVd3yC+skBSXye5do3gpZdJlpdhj7uGEJJi8QSuO0QnmCcMl2i1X6PZfCV3BHqdcKgjLo888ggXL17czsvuF3//7/99/tf/+l8AfPd3fzc/8RM/wTe+8Y2b3l555ZV9t3P27Fl+4Rd+AYDnnnuOd73rXXzsYx/jueee42Mf+xjvete7eO655wD4hV/4BR555JH+PMGcnJycnJycnJzeEW7uWJg7aXW2tZbV0BIkBqSiIHZfTFnU2gbGNhHWYFSC5GhUVxhjsNaABSF7MwA2pjoU5c7s66vBzrm/BZr+j2SW91vLeOHm9n2J5KQ6kVmmYzssmMUD66NJNKuvXc60DZ2cxfHvw/LRGFILcwmOe9vFX9eIACvirn25gzCDPdmNtDHCahKR2pfHYk9OtzH4QZjxN9DGstGJ8ZSk4jsMFj0GHRcEJMpipCW+D6EboLGyTHtzk8HxSYqVKpOnH2H8xCnc7uBjTk5OWi03PD3L1JlHKdUGGJk7hpCS1SvztDfqh929B55EWXT3ZoXF1aLnIpLvKKZqhbTCu+yjpGCtHW3b/N4Ju0VniUAhcLo3N/UJweve/O6tgKQgFMXurSQUZaEoC4dK91bt3mrCpSZcBvbcttqr3b9OH3Jp0vzuAGksKo5JDiG/GyDBQ0sHLbyu4B3SD6Emre6ugj2c6m4hJdPvejbTZqKYa1/6m772Yy8CKLWyVubt4gRvmgjx5M6X2FjBF68ejeuPawzQIXtufNLePKs6EjHfcM8R75ngMGVGmdMTN1nrYBFYvHgTI10Sp0Tk1UjUzV26UjtzSxKG6CjC71pmtEJNlGiaQTqxUgqXY7UfQorsOd+11v+hFV/eu9kDR9bKqaW572E6wZESBEWlgPd3nsm0mYV1ki8evqPCfSFkKnhbCzoEnTwAgvdua3Oxy9pcda3Ne/Qb6CjUyDDezAyiVEKvrRNfuYJeXye+epXg5ZdJVla7190pQgiKxTl8f5IwvEbQWaDTuUyj8Y103CPnoeZ16aX3h3/4h9v//+Vf/iVveMMbbrn88ePHuXjx4r6P/eqv/irXr1/nd37nd3jhhRf40Ic+dMMyP/ETP3FPleM5OTk5OTk5OTlHDGshbOxYmLvpIEcz1HSspGMsriNwdl+s1jdwEoPWm1g/ASkQ+vAHm6wFY7aqukWPLKPhuLsjXMeEbBTXtu+H3hsIB89mlq+sZifCzshpCnsGgC4kF7EHOApfv7SADrMVI6OPnriPLdp0pr5S6edEHX4V/1HFojGi1bUv95BmuCefRUmCsglauoAklgWMUiTOrpzuIEDsGuSzFurtCClgoOhS9hxGCz7CQqwsVloi19yX+39jdZnWRp2BsQmKtQEmTp6mPDh0+xVzcl6nlAYGmXniKZbOv4ZSDpury2wsXycKOgyMTdxf9MTrGZHamQubJjG7WuBoQaLsrY9x+/wUi33aM5uwOy0FoZirllhrRZSFohUmJLHFExLPkdvrie5/9zucbvd0Lb2/SxDcc3ZhMTvr2F3d3/5r8btCeWgNQY9tvdP87gjwsLIbwbFnklbPEZBYH4QFPBQRjolIpEeva6qEqSJEAylKGNHEWt1Xp6Ty5CiDjxyn/uqOLe7aSxcYfuI0pbHhW6zZW0rtazQGduJ+jFNAlIf4tomQz1/dOYf+3KLP9x4POOyETSsEFxjhCbtjwT5Mm0Hbpi72d7Npy4AX3fM8HZ9B7vqcndDTRCJmSa3tu95BIk2CG7eI3TLSJgSFYUrtJaS90WVASInj+yRBgHEc4k6LcmWAZqTpRAYhNI4SFD0HTw0xV30/lzY/tmsLhvnGH3Jm8J/gyN7F2AjHQZYKWJ1AJ8KGUZrjfURw33mW5AuvYq5tbLeFf/Y1nGeOI0pHp593zZbgnQSwndEedOPRjvJ5TDohDrpV3sJirURYkbYL3ZtUNNfBGR3BDgyg6+skq6uIzU3U4CA2idEryzjj46ihIbYOcL4/gRAOQbCAtTGpm11ErfoGpMwnoj+sHOVvzwOBlJLf/u3f5k//9E95//vfz/T0NJ7nMT09zfvf/37+7M/+jI985CPI/IIrJycnJycnJ+fBJ+l0q7qzFubLgcZYS4SkIOzONV6SINc3IO4gpEG7CeD0TFi+G7ayTq0xyB5VdQ/IkEG1IyIvm6yFeaP89zLLq6hFobkz8OXiMqeyVuJ1s8GqXeWgsNay8vLFTFtlcpTCQPXeN2oMYEHJVOju0ev7MGBFY499eS+y7A3SxNs53bH0MEISey7CdHO6owi12wrPwkYnRlsYLHn4jmSyXEDZVPyx0hI59yd0N9dWaa6vUxsZozQwwNjxk1SGR26/Yk7O6xzX85k5+ziDk1MMjI0zODFJ0GyycuUySRTdfgM5+yMgcg1WWmJpERYcLXCSnZsbb91kektuvDmJxNHZm9q+CZQRKAvKpnqpIwSjZZ+S51AtOLhKsBEktOOEBEuCJUIToumg6dj01raa1vYtoWkTGtu3mE0bs7HntmljGrtuTRvTssn2rW2z229b0/27e3/pvpo2oWMNLZsQoPGFpCKcnp/hOXGM0unvFhxOfjcCElHACIUWLlZIHNt7S/O0urvSre4W0OfqboCpt70BucdCfvGzLxxqRaybtHCjRqatU5q4wcp8oekw3zgaEzAXGSDYU4N3q+pugE3Z4mXn0g0TXh9JjjGkawfex/1wdAelQ2K3ipEuneIo9iYng8p1EY4iCVI7cx12KHqKMDGEiWEzSIi7555V7xHGit+eWT8xTeYbf9TzalRVqSCUQvgeph3cLD79UBBK4r3/zdnGdkj0P79+OB06SLYEb6PBRKDjVPzu/xH9HrC3tjbv0VMQroMzNoY7PY1wXZLlZeKFRZL1daIrVwhffgVdr29Hk3neCMXiCeKkQat1nihcYWPjebQ+Wpb9OQdH3yu7jTG8+OKLnD9/nkajgd4nUH4vP/qjP3qgfejFCcj73vc+3ve+9x34dnNycnJycnJyco4QYWPHwry4U8GxElo6GhCCouzaVwOsrqKMwCQbUHQxsonUvRDz7h5jUwtza+lZXvfurG6AS80LMJj+n6hJOuXvyDxeWTufGS46oU6gxM6gnLWW8/pgI5BaS6sE9Ww/Rx89eZOl7xCtAQlCgfu6NNO6I6zopPblpoawbo/syy2OjbFCooXbtV51ib10Rr+3LRpkc7qbYUKkDYNFF1dJpioFHCvR0mBlWgF5PzF1rfo6jbVVqsMjlIeGGJ07QW107H6eaE7O6wohJaNzxymUKyxfuoDrF1i/usjqlcvUxiYoVu9jwtLrGQGRY/C6Fd7S7HEn3S613qprzpK5v1f/uc3koFrNJWoahBVoq7najil6iqqvsEJguxKX3a6wtrsqtXf/n33M2uzje5ffb/27oYQCHBIsJeFQFS5tmxD3aLR/y87clEu4UUTk+2jHwUn6m2GNgJgCrg1AgGMjHBuTiNRBpWe73a7uLmJEB2lLfa3udstFxr/tca59cce+vL20Sv3VywydPd63fuyl2L5G7O0c99rFCc4Ov8xwQbMW7Lw+n1v0OVbr/ySBvVghucgIj9kdC/ZRWtRsh01x82ulFVXnPFc4nexMhhUIHk9O8HXxGk3Z++fmxk1COUjo1fBDTVAYphjsPxHX9QtE7RZJFCKEwPc8fFfSiTRKCDbaCcNlFykF46V3004WaMUXttdvxZdYav8Vk+W/3bPnI3wX4fvIYoKuhxBFcD9RTgeMc3YK9YZj6K/v2LrHn3sF5x1nUFMPuBuSUN0K7z3iq1OkNyXSB4vt2vOnVd4Caw3Cps5mFrN9rnDQCN/DmRjHhiHJep3k+jLCTyu9TRQiCwWcyUlUrYbr1pDyNO32BVrt1ygVT1Hf+DIDtTfiOL1zTcg5HPo28tJut/mVX/kVPvKRj7C6eueVGEKIAxe7c3JycnJycnJycu4aa9O87mSPhXmk6WhB24AjwN3yBmy3EM0WMjDoYoz1BFiDsIc/eJBamKditxDpOfdBUxAJE2pnwCkmolVd275sb1R+ML3A7yJ0TLm+M4hREWUmVTaHb8ks0bKtA+3n3qpur1qmOn0/oqNNK7sdlY715hbm+7JlXy6sj8DvmX25sjFYg5Y+BkWCj3YURim8MM3pLuyxgA1iQyvSVAsOviuZrBYoCAcjDEZBrNK/90p7o87myjKVoWEqwyOMzB5nYLw/mZM5OQ8bleERvFKJpXOvIh2HzetL1JeuEgcdqqNjPfl9e9ixEmLX4MYSKwUZo++9Ud6Z+13ZeM9Lvsu1fFtYzt7f2VbVd2htJLSNpqFjLjValEPFaMU/su9l22oiaxiQLsbGFIVDSThEGDq2N7bmAvCDgKBYTPO7HRdpDNL0OY9UQCx9XGNJhItj454L3gKFtFW01UAHRAdsfwWL0afPsvatC0Sbze22q1/8GrUT0yjvcOxxS+0lNgcf2b5vlUtUHOHtUy3+7MKONfgXr/r88Nk2zuGbTLHAICdZwd9l/3/KrvBVMXeLtWBRreBZL5PXrVA8FZ/ia+6rdGRvqzYFFi/aJPQHid0qAojcEC9u3rjstp15iHEcolaLYm0ArS2tKEEK2OikLkJCSOaqH+Rc/SPEZicGaqXzeUrODDX/sZ49J1WtYMMQPBfdCXCOkNgN4H//m2i/uABJ97NiLdEfPUfh//k9R/a34Y4RCpSf5nfvNHYF7weDVPTea20u0/ZeWZsDwvdxJycwnQBdr5MsLSEKhVT0DgJkqZSK3pUK5fIZWq3zqeBdOsnGxvPUam/AdR/wCRM5Gfry09ZsNvnO7/xOfv3Xf52VlRWstXd1y8nJycnJycnJyTl0kiCt6o476QVptxp6qWMwWGIrKcjuIKM1sLyKjGOwIaLgokUAuEfCwnyrojvN65b04gr0mNvIZALOhwsIlZ7bG1GkWf67meXL9ctIs1OVdEqdyjye2ISL+hIHSdhosbmwlGkbffTE/Q2aaE1qYa7AcTj0YMQjihXNrvVdBWHKPbEvlyRIq9HdHNFEFjBKkDhuN6fb3JDTHWvDZhBT8CQlTzFS8qkqByssWoGWBu3c+zVqe3ODjeXrlAeGqI6MMjQ1y+DE5AE825yc1y9eocjM409SGx1ncHKK2ug47c0N1hbm0XF8+w3k3ICREHqGwNMEviHcunmGaPfNNcTbN0vsWhIne9OORav0ZpTFqHT7RnbdTrduAhAwOVhgbrjEQNFlvOrTijRLjRBzhMcHEyxrJqJjDW2b0LEaD0lVOMgejfIrbXCjCCfRCGOIPfdwzG+FIJYFLCoVua1NJ5r1sDfCVBFWIiliRJBWEPYRqRTT73xjpi1pB1x/4Vt97cduHB3ghfVMW7s0eYOVeTOWfGPlaOTVGiG5JLLxLWM0qdjgtuteVIssyWxOt4vLk/FpXNv72j5pNV7UQCufRBUI/cHu+eY+y7ouQm3ZmWviToeyr8BCO9aEWtMK02sgR5aYq/7QDdeLV5r/g1AfXIzTDX0s+gjXRRULECfYI/bbKYcruN/9RKZNn1vKVHs/0EgFykvHGkzUtTXvHHav7pLU2txuid7dv8L01tocQBYLuFOTOBMTYC3JtWsk15bQ6+tE588TnjsPnYRy+QxSurRarxFF62xsfJUwXLr9DnIeGPoy0vYrv/IrPP/881hrefvb387v/M7v8Pzzz3Pu3DkuXHR+Y7oAAQAASURBVLhwy9v58wdrU5iTk5OTk5OTk5NzT4SbYHVqM+amFRLWwmpk6ejUXrMku1dx63VEHCPbMcZPwFUYQqTxD/EJ7GC6mdLW2J7kdSsMM062uuHVzR2hulX+v7Bql8WstVTWds77R8UIA3Igs/68vkLMwQ68rL5yMXNfug5DJ2fvb6NGg0yzy1C5hfl+WBFgRYS0FYR1kaYXM+oNysRo4WBRxNLHCEHseTfN6TYW6u0YRwoGfJeq7zLspQOXibIYaYnvQ+juNBpsXl+iVBugNjbG4MQ0w9Mz9/1Mc3JyQErFxMnTjB0/SWVomOGZOXSsWZm/RNg6WEeQ1w1d8fkwGKl4nBgpUym4TNYKhLHhaj1Am6MreFtg08ZsmpgQQ8MmgKAqHLweDb+6UTeKoytMHa7gXUwFb+khrOkK3j3aHaqb3V1MX3jRf1GoemyK6lx2strK118h3GjcZI3eU2pfy9wPimOMVwSnB7LvxecWj8b1CMAVhoj22NCfuk12NwACXnUusS42M81FfJ6MT6PuJ2vmDlEmwkk6xG4ZI7byu2/cr0DgFgpYa4ijiCQMsEZT8hSJtoSRoRUlhEl6TlpyZ5gsvzezDWMjLm9+HGOj3j2fagXhueAodPv2Ew76jfddTyKGypm28H88j436HOHQK6SzI3jrqHt70ARvAIMVaSRJOmlDIIzq5nn39qRCloq401M44+PpxJLFqyTXr6PX1wjPnSO5tEBBTOE4ZdqdC0TxKpuNb9DpzPe0Xzn9oy9i98c//nGEEHzf930fn/nMZ/jxH/9xnn32WU6ePMnx48dve8vJycnJycnJyck5dMJGWtW928I8sXRiS8cKFBZXSogiRL0OzRZSKmxFYAix1h4JC3MAY3QqeIve5HXPOE2cXRldoY1QI8sAWASNyg9nli80r+HEqeW5QHDSyWZmd2zAglk40D7qOGbt3JVM2/DpOdR9ZWyb1MJcdi3MndzCfC8WgxHNXfblQz1wOzA4NsIIhREuiXTRwtkWAdx9crqthXo7ApFaSRY8xUSxgLAQS4uVlsg19yz8BK0mG0tXKVRq1MYmGBibYGT21jadOTk5d09tdJyZx56gVBtg9Ngx3EKRtasLNFZXcufAB4yBksvpsQpl32F6sIDGcnWjQ6z7bNV9lwQY1kxEZA0NGxNhKApFWagDnzsggEIQoozBjWKMUuhDOvew24K3JJE+wmpUD4U5YWq7qrs7fa/uFkIw9c43IuTOOYw1hsXPfbWv/dhNsb2Uuktt9UcqguIo75zJVnd/fdmjGR0N5yEtJJfEcKZtnAZle3srcivgW+4FGiKb0121JR6PTyJ6LKwBOEkLaRIiv4aRDp3iyL4TToSUKM/HRBFGa6JmC0cJCq6kExvixLDZjtDdKILhwpsY8J/KbCPUyyw0/6xnv2WiWEA4ClUsQhRjk6MlIgvPwf/+N2XabL1N9JffPKQe9QDpgNwjeJujN/HgTkirvG1a3Y1IHb2MgzCqp1XeALJcwp2eRo2NYaOYeHGRZHkZvbZG9Np51HWFY0p0OpcJw+s0W6/QbL2anyc+BPRF7F5YSAem/vk//+dIefi2jTk5OTk5OTk5OTl3RdwBE0PczliYL4cGDUQGiiKtlmZ5BeIEGYRQdhEStOggcNMLvUPGWIMxqZW5FAdftiWwHHOzVS1/vbyK6FbEBoW3k7hZka+yulPVPSNnKIhC5vELyYXdiaEHwvq5K5jdgzgCRs+euL+N6m6OnFLgHg2LyKNG1r68hLSl2690lyibgAUtHIxQaLydnO5oy748m9O9GcYkxjJYdPEcyVSlgEKQqK7Q7dy70B22W9SvXcUvVxiYmKQ2OsbIXD6pOyenV/ilMrOPP0V1eJTh6RmqwyM019dYv7qA0b3JUM7pDWVf8chEV/AeKAKCq/WAMD7a76PGsmYj2lbTsZq21SgkVeFy0JK3sBY/CJHGoOKExHExPXDtuRO2BG+Q6B4L3gLn0Ku7C4M1Rp56JNPWuHyVzctX+94XAGVi/CBr7d0uTfLmiQhH7pxHayv40rWjVd0d75IoBHDyTqq7AS0M33TP0SErjg/ZGo8kx3ouqgnAixpgIXJrJKpA5A3su6zyXISS25XdSadDwVV4jqQdaWJjqbcTrE0nU8xUvg9fjWe2sRF+g7XgK715LlIgKxXwPVAS0+lt9vm9oN5wDHVmItMW/9U3Mas35qU/sKjdgnecusqZo/de3Bk3WpuzZW1uemttjgBVKaei9/AINgiJFq6gV1Yxa6uIy23kmiFozhN0Fui0L9FofhNrj/aEupxb0xfleXw8PTCPjo72Y3c5OTk5OTk5OTk5B0vGwjyt6jYWVkNLYATWWApKQKOJCALYbKD8EqZkQIIhOjoW5joV5Xfyug+WMdWhKLOD0M3o1e3/G9W/l3nMDTbw2+mAlovLMZUVwjfMBqv2YDPqrLGs7LEwr81O4lXuU3hNulXdiDSvOyeDFSFWhEhbRlinJ/blkng7p9siiYWPkVs53QnSGApBiNw1c78daYLIUCu4+I5iquLjWYWWBishdtK/90LU6bB+dRGvWGJwYorq8Ahjx0/eXy58Tk7ObVGOw+SZswzPzFEZHmV4epY4DFmZv0TUeRBtQV+/FFzFmfEK1UJa4e06gqubAe3oaAveAE2bUO/amjdtjMFSEQ6FAx6OTd1KIpwkSfO7Xe9w7MwBKyRRt8JbSw9pNbJHlubC1BBIJIVDqe4GmPi2J3CK2Umai5974dAm1txgZV4Ywfcdnh3PTjo4SlbmiVBcJlvdPckmpTucKBGLhG+4526IO5oww5zQ0wfWz5shMHjxJka6JE6JyKuRqOI+ywmcQgFrDEkYEQcBJtGUXIkQ0Ao1caLZDNLnIYXLsdoPI0X2vbrW+gva8cE6Xm0hy0WkEshiARuG2CPmpCGEwPvAm2H3hJ7EEP7x84fXqV6wLXjHXcE7eIAFb8hYm2/neffH2hwpULUq7swMangY024TLSygV9dQ6yAWAtpXX6HdOE8YXGVz86sYc7RcDXLunL6I3W9961sBePnll/uxu5ycnJycnJycnJyDJWNhngqiDdMVyYxAWY2HgdU16HQQYYSoDWBViCE4YhbmJp2xbOlJXvdxN5ud98KGz8DUEgCRc4Kg8JbM45W189s1TifUCZTYsd+01nJOn+eg2Vy8TtTMWh6OPnri/jZqNWDSqm4lu7ndOVuk9uWNrn15oWtffrBWqwKNMglauqnQLYtpldl2TnfSzeneGYCOEkMzTCh7ioIrGav4lISLEQajIFbp33shCgLWry7gFYoMTU5TGRpm/MSpXOjOyekjQ5PTTJ99LLU1nz2OclzWFuZp1dcPu2s5d4HnSE6PVagVXaZqBYqu4nojoBH0Lhf6oIgwrJmQ0BqaNiFE4wtFRTgHWuO9O7/bijS/+7CwQhJLH4tCSzd1XOmBEC1wEKa8q7q7/3a/ynOZfNsbMm3RRpOVv3n1Jmv0lmJnGcwuoV1IOsVx3jGVFcoubTosNo9O3M5lMUyyp7r7xB1WdwMEMuQb7nk02UkGc3qCad374jtpEty4ReKU0MojKAxjxI0TX6VUSNdHxyHGGKJWEwSUfQdrLe3YEMSadpiKbb4aZrby/ZltWAyXGx8nMa0Dfx5CSmSlgij4IAQ2OHoW2mpqCPedZzNt+m/mSV45HEeFnvHQCd5da3OxZW0u+2ptnoretVT0HhjENJvEVxaQ6wnuhk/74jfZnP8yQesqGxvPo/WD/Vq/XunLCMzP/dzPAfBbv/Vbufd9Tk5OTk5OTk7Og8VNLMxXAkOCIDKWgrSItXVEHMNmE1Gpgm8RwqIJENY7Ehbm1oIxFmNMV+g+2MuBARkyqLJVGJ9euo5w02uAvVXdMgkpbaS52RVRZkJmrfqWzBIte/ADOasvX8jcLwzVKI8N32TpO0QbQKQid17VfQOpfTm77MvLB7wHgzJxmtONQyK9dLDdc7Fi/5xubSwbnRhPSSoFh6Gix6DjYoVFK9DSoJ17u36Nw5D1xSs4ns/g1DTlwSEmTp3JZHvm5OT0h2K1xuwTT1MeGmZ4Zo7y4BCbK8vUr13Nx6geIBwlODVaYbDsM1HzqRYcVpoR9fbRF7wNsG5jmjYhsIaWTRAIqsLloCRvAdt25lv53Yk6PDHTCIdYehgcjJBdwfvgkaaGQCHxD626e+jscUrj2fPI6195kbjVfxcJaTXFICsSt0uTPDESM+BlX5ujVt09T9bxZ4oNCndhg9+Ubb7lXLwh+uhUMsuoHjyIbt4SR3dQOiR2qxjpdvO7b/x+O76LkJIk6GC0JglClBSUPEWUGILY0AgT4iR9v2r+Y4wW35HZRmIazDc+0RPLZVkpI4REFnxMEB7J30nvvW+AUvbzG33iuSNXiX7fKAek2xW8k4dC8N6xNmdXnveWtXkfRG8lUYMDuLOzyFoNvdnALqzh1otEa0vUX/4U7fmXqa9+gSQ5+HGInN7Slyvtd77znfz6r/86n/vc5/jQhz5EvV7vx25zcnJycnJycnJy7p99LMxjC/XQEFqJMYZiFCI2G6mNORZVG8TIDkiLIUQelapurQGbVpr3oLp0b1b3lY7PuPt1ALQcoF16b+bx8vpFRHeQ5pTKVrwmNuGivnTgfeysb9Jcytqijz56v7bSNs3rliqt/s/F7gyWOLUvp4ywCmkGD3wfyiYgBFq4aKHQwiVRaU63u09Ot7VQb0dIAQNFl7LnMOqng2aJshhpie9R6E6iiLXFKyjXZWhqhlJtkInTudCdk3OYOK7L9NnHGJqapjo6xtDkNJ1mg+bawcZk5PQWKeH4SImxaoGRss9Q2WO9HbHSDNMD+xGnbTXrJtq2NddYysKhKA5GlJbd/G5lDCpJSFwHc4huIgYXi8AKhdxywDlgBC7ClMCWSGfV9b8SVQjB9LvelGkzccK1L329732BG63MI38Q6/q8bU919xeu+hwlbfCSGEbvEoclcOIuo4zW1SavOpczbQLBo8lxauagJ1reiBs3wRpCr4aWHqF/Y2SPQOD4fmpnHkXEnTYm0biOpOBKgliTaEu9HaNNelybKH0XZfd4Zjut+ALX258+8OcglESVS4hC6phgj2B2tyj5+O97Y6bNLG0Qf/aVw+lQL1FuV/COdgnedz4J5OiSWpuzbW0uU/HbOtxzftTdoCRqaBBvdhZZrkA9wFmw6MYmm9dfoPnil1l59c+Igvw88UGib6MwP//zP8/p06f5yZ/8Sebm5vje7/1ezp49S6l0+1y8X/qlX+pDD3NycnJycnJycnL2IdplYe6kYndTC1qRITQSmST462sQxYh2B1urIR2XRIVYgu6s5aMhdmtjsNZiLQee110QCRMqaw3+e/PDvPV0ainXLH8/Vu6agW8NlfWLAIyKEQbkQGbdeX3lhuy9g2BvVrdT8Bg8PnV/GzVpDjpKpjbmPbCHf1CxWKxodAcuCkg7iDjgy1BpY4TVJNLHIklEASMEieug4gTVFbq3c7otbHRitIWRsofvSKZKaYJqLC1WWiLXcC/FdttCt3IYnp6lWKsxdeYsUh4dq9CcnNcrQghGZuYolCtcO/cq1eERmmur+KUyXvHGfNWco4kQMDNUxFXpeYwjBSvNEG0s41X/yEdFxFjWTERNuFgSPCEponCEoGWT+5aDHa0xUYwFjJTEnocXhofjLyQgkS7CWKTQKJugxcGfE0tTw8o2wnpY0QFb7LujUml8mKFHT7D+8sXttvVXLjH8xBnKEyN97Uuhs4IwMVZ2reyFoFOa4J3TC/yvSzvHuo1Q8q01l6dGj4Y7QiwcrtghjrO23TbDBhfsKKG4c1v+JbWGZ91MXrdE8mR8iq+5r9KWvZsQIbB40SahP0jsVhGA0iHungpRqRyk66GjEOk4RO0WfrVKwZVoY2lFCdJ32OjEDJU8hJDMVT/Ia/WPkJjm9naWO5+h5M5Q9R450Ocha2VEq40seJhOgCgWOGqHVudtp4k//wpmYSeWJPqLr+E8ewJZLRxiz3qA6n7+t0XuDjgiFcEfcKxI3dGEFal1vjUIm04gt8KA6PFENiVRI8OogQGSeh1WN4jaqzQrbYyOWFq+ztCxb6d87Ol84vIDQN/E7uvXr/NHf/RHbGxsYIzhk5/85B2vm4vdOTk5OTk5OTk5h0ISpBlZWxbmUmEtrEUQW0GsLeXGRte+fBNcB1WpYmWEEBAfNQtzazDWIAQHPhh8zG1kBkGaiWKlfg7hgkXRrPxgZvnSxgIqCRAITjonM48FNmDBLBxo/wCSIKR+Ibvd4TPHkfdr86k1INPKbjev6s4gAqwwSDOItB7CVA5085IkHTyXLiCJZaGbVeohjO3mdMc4u3K6m1FCpA2DRRdXSaYrBRSSRJlU6HbuTejWccza4hWEkAxNz1Ks1Jg68+j9f75ycnIOlPLgEMPTM1hrCdttNq5fY2TuODIfxHygGK/5uEoyv95CScH1zZCrGwGTtUI3quXoYoENG1O0iqp00FhKwqEqXDpWE92n5O1GEVpJ3Cgm8j1iz8WLDkfQTKu7I4xQKBOjheGgjUYFHsIUETLBiDpCBGmOd5+ZfOsb2LiwgNn1Wi9+9iuc+eD39HUShsBSbF+nXZnZbmuXJpmpXuZ4LeHS5s656ucW/SMjdkNa3T1n15FdL2OJ5bhd5RUxeVfbmVdL+NZjyuzkdTs4PBWf5qveK0Sid89ZWo0XNYi8GomJCQpDyHaM2lON6/gecZKQBAFSSpIgxC0WKHmKRpjQCjVCQDNIqBYdHFlhrvpDXNj4f7HbJWG+8UnODP4EnrqxivxeEY6DLBWwOoFOhA3DNMf7CCGkxP/gW+j81v/aaQxioj//KoUfefvhdaxXKBewuwTvNjilh0LwTq3NLanoLUFYrJUIK9J2oe/p2uyucBTO6AhqYABZXyPYWKTZ/ibFwhxryV8SXrlI7dRbcKamjvykutczfTmTX11d5d3vfjf/7b/9N7TW3WqSO7/l5OTk5OTk5OTkHAr7WJiHVtCINCECHYQUmpvQaiHiBDtQQ0k3tTAXBkuEtEdjYMAYk1rRGdudlXxwF2kKw4zTzLT9fxYneNvQlwFol/4W2hnLPF5ZOw/AjJyhILKz7y8kF27I2zsIVl+7jDU7g0NCSkYeOXafW7VgNDgyvbrKhc1tLAYjWkjrI3AQZviAJ36Y7sC5g8Ehlv5Ncrp3BheD2NAKNRXfwXclU9UCvnDQ0mAlxI65J+c8nSSsLV4BRFrRXakwdfZRVG5pn5NzJBmcnKZYqTIwMYlJNJvLS4fdpZx7YKjscnKkTNl3mBzwSYxlcaNDoh+MscQOmtWurXnDxkQYikJREuq+fi0z+d3xIed3C9DSxeBgEV078x7sxg6k5xrd6u5enEfeDrdUYOLbnsi0dZbXWX/5Qt/7Umpnj2mxVyN2SrxjOmtJ/dXrHu346Ag3oXBZIOv2NEsd724z3wW85syzKuuZZh+Pp+LTOLa33wdlIpykQ+yWMcIlKIxg98gwAoFT8LFao6OIuNPBaIOUgornoK2lExvacUIQp9+bsjvHZPlvZ7ZjbMDlzT/A2IMV8FWlglAK4buYdnAkkyLUyXGcN53ItCVfeg09/5BaT0sPpJMK3iaBpAMH/L4fLvbW1uZ9+AwK18EdG6c88gSOrNFuXqR97RUaa3/D+kt/TfuLXyReWso1yyNKX8Tuf/tv/y2vvPIK1lp++Id/mL/8y79kdXUVrTXGmNvecnJycnJycnJycg6FcBPiIGthbgTNUBMa8NZW8IxGNFvYcglcDyElVoWYI2Zhbk2alWitRR7wbOQZp4mzy2JMW/h/Xxlm9EQ60Nao/L3M8l57FS+o4+Iyp2Yzj22YDVbuMp/vTjDasPpqNgN88PgUbvE+be50d/BNOWlWdz7TexsrmumghC0jTeWAJ35YHBtjhMQIFy0djHBumdMda8NmEFPwJCVPMVryqUgXIwxGQazSv3eL0Zq1xSsYYxmemaVQqTD1yGMo52GotMjJeTgRQvz/2fuz6LqSxDwT/SJiT2fCPHMmM8kcaq5SqQbJGmzJqrJkS3JbtiW53Uv3+q7u6762dPXg5Se/+Mn2stXt69XuvtK1ZlmSy2pLskpyaWhVVWZWlaoqMytnZpLJESQ4gADOtKeIuA/7gMQGyCQBHAAHYHxr5WIi9tkDgANg7/jj/3+mTpwkCCOGJqfoNpt0m829vizHFmhUfJ6YqlMPfWaHi7/p88td0nx/zCfqXqx512q6VtOxGh9JXXhsR/K+29+t976/W1P8PTTSQ9mcnejuLtJjIoStYtF70t0NMP7sE4QjjdLY9a+9gk52t2M3TBaRuixsd6ozfHwmQa25Z8+M4OsLg/GsssoFMVF6hygsR+3iA1//QAS86V1gRZQX5NZshWeyE0Vs8g7i5W2kyUnDIbRaFbzLSOUhA588TbBGk3aKuHOlBBVfkWSGJDesdDOyXsH6ePRxhoLyoopYX2e+9Yd9vX4R+oggQFaiIsUqG8ye6OAHPwLBmsWlFpLf+QusOYBipOCe4K17gnd20ATvItrcCoOwAoEsxG+jinjzHf65XUUGAbWx01TGjpOFbTpL52nOv8jyjW/Qfe1V4tdf35XrcGyOXRG7f/d3fxchBH/v7/09fuu3fovv/u7vZnR01Fn+HQ6Hw+FwOByDy2qEeX4vwtxYWM6gawV5u0PUaiKaTUBAvYaSHkYmCCHIRRdhwwEIMF8TYW4siP72dQssR/2yQPBHN8b5oP0KhJAEz5CGz5a212+fA+C4OoYn7k1OWGs5r8/37drWsnz5Gnm3POk3fubEA169CXJTxJcjwHfi5iqWFCsSpK0hrIcwww/faRMom4E1aOFjkOSE93q684093cbCUifDk4Lh0Gco9BkLAqywaAVaGrS3+Umxu0K31owfOkxUrTN7+im8YLAmjh0Ox0b8MGLi6HEqQ0NU6g1Wbi6g8026Bx0DQTVQPDlVpx56zI5U8KTg2nJMN9sZF/FO0LQ5y6ZwdzdtjkVQFx7hNqZuPa3xsgwvyxHWFsknfbzmR0YIculjUFhAcnDd3VIp5j714dJY3k1Y+ObuCiOCje7ubnWaemB5/2RZGHthfjBSqFaJhc+1de7uIyzib9bdDRhhec0/T2fd4odh2+Cp/NiOOkUFEKRNsJD6DTIvIg023g97QQhI8iTGZBlZXDyvhL4k9CRxqsmNZbmTY4xFCMGh+l8jVOUu+KXkZRbjF/v6OaihOsL3wPfRnb1ZQPIw5HCV4K+8rzRmLt4i/+buJyrsCiXBOwF7MAVv6Ine2MLdjQArEcYDo3bF5Q0QBtNUR0/BVEjiL9O+eZblxW+Q3bi+Oxfg2BS7InZfvVr04v3UT/3UbpzO4XA4HA6Hw+HYPqsR5ll8N8K8YwWtJC/0zZu3CXSGiBPsUAOkREkPq2KsyLE2Qw6Kq9sajCn+LVzd/ZPgJ1WXiixPWv78pUN8euJrADQbP1baptIOleZ1aqLGtJwubVswN2jZdt+ubRVrLbfeLE941CbHqI5tU4DtueVRCpQE1/cKgMViZQthfQQVpB1G0L+4SEmOtBotg+KjtT3d1uJleTG53+vpthaWOikIGK4GRIFiKircf7myGGnJtiJ0G8Oda1fRWc7Y3GHCWp2500/hB4M1aexwOB5MY3yC+ug4Q5NTICTLC9ddNOU+JfAlT043GIp8ZoYjQl+ysBLTTvbPAoYEw22TkFhDy2YkGCKhqAlvy3duQZKijMFPM6wU5Hu0MM/gAwIjPKTJ2QmlQtoQYUKErfXc3XvjRG0cmWHo2Fxp7NarbxPfWdnV66h0ymJM7tfI/AafmiuLlu8s+Sy0B+se9l0xUXqHeFt1dwO50Lzqv0NCWQycMKOcyg/vsOBt8LMmRgbkXrXo8VblVCkhBH4lxOQanWVknc7dpNuKL5GieP7MtGY5zrEWlAw50vhbSMo/z9dan2clfbtv1y8rEcL3UdUIshybDebvU/+7nkaM10tj6e9/ExsfPAEYKAve+VrBezC/P9vD9kTv1Wjz4l9hdi/a3GeIKDiEmKyQ1Ztkdok2F3b+xI5Nsyt/ySYmJgBoNBoPeaXD4XA4HA6HwzEgJM0NEeZtI2lmhmylhey0CVotCAOoRAgkQiiQgxdhXkyYWIyxyD66ugGO+eWJuxeXG7y55DF68ha5mqRT+a7S9vqddxFYTqmTpaSn3OZc0Bf6em2rdG4t0V1cLo1NPHV8+wfWGpCFs9u5uu8hulgMwtYRNkCY+sP3eWTu9XRbVK+nu5i8twL8NEMZQ7AmLrSZZOTGMhL5hJ5krhahBGTSYqUl9c2m139YY1i6Nk+epIzOHSKq1gqhO9pmLL7D4dh1Jo4ex48qjEzPkHQ7dJbu7PUlObaIpwSnJuuMVANmGiG1UHGjmbDS3T+ChwHu2JS21cRW07YahaAhfLYieQsg7MZIa/DTHO0p9B70d1shepUjxbl3zt091HN3+1jR3hN3N8DsJz+EWLsI0ljmn39xVxfTBOkKKu+Uxjq1Gd4/kVH3y1HyL1wbrIV6XRFwjaHS2BHuEG7RvZqIjNf8c+Tr3ndzZpLDemrL1/koKJPhZ21yr4qWAXE0jlmTbAW9OHPfJ08SrDGk7WLxr5CCali4WDuZJslz2mkhaEbeBIcaP1g6jsVweeU/0UzP9e/6GzVE4IOnMJ1u347bT4SnCH/4Y6Ux24xJ//iVPbqiXWBV8BZqjeDdOaCCN8C6aHNWo829XYk296gRMYOWOalsktN6+E6OXWdXxO7v/M7vBODVV1/djdM5HA6Hw+FwOBzbI4+LHqw1EeaZhXYOnW6OXV4hajWR1mCHiomYIsK8C1KQMzgR5gDGaGzPISD66D4elgkjquya+YVLc/yQ/6cQQqv+o7BmMkeYnNqdi4yLcYZl2VV9WV8hY2cmo2+9VXZ1+7UKQ4dmtnlUC8aAJ4unKm/3J44HEYvGiA7SRgg8pB4rYuf6gsGzKUYojPCLSNReT7f2FH7W6+nuxnfP2Ek13dQwFPmEvmSuHuGjyFVP6Pa2IHRby53r10jjbiF01+rMnn6aIKr06fN0OBy7ifI8po6fJKxWqY+M0ly8TZYkD9/RMZBICScmaozVQybrESNVn9vtlMV2WkR97BPaNufO3VjzDI2lJjyiLSSlFP3dKUprVJ6T7VF/t6ZIZDHCQ+6QICNtBWGCPXd3h8N1Jj94pjTWurLAysX5XbsGAVTb5SjzTmUaJeHbZ8u/416YDxm0iuML69zdPoYP2csou7XO97bs8rp/HrOuM/6EPsSUHt3GlT4cT3dROiELGhjp062MY9fdgHphseBgNc487/0dUlJQDRRZbkkyQzvJSfLicxgOn2U8+vbScSyaSyu/TSvtT4y3qFQQnkJVKtg0w+rBFFPV04dQT5UTFbIvvom5ubuJCruKoJirEArytJdK1wEG83vUDzZGmwuE8RC7EG2uiJDWPfMPMrsidv/sz/4svu/zr/7VvyKOB7PfweFwOBwOh8PhuEuyAtYUq6T9e67uVpKRN1vYVosg6WLr9bsip1yNMCcDcqQdDIeE6Wmyxhqk7G+E+fqu7ivdkM/fmOATU1/HiJBW7a+XtleXLqNMzkmv3JUd25ir5mrfrmstabvL8uVyjOPE6eMIuc2vg9aALSLMPa9IAHBgRbtYXW+rSFNH0L90A2VzsKBF4QzTBOWebl3u6U5zQyvJqQaKyJdM1SpUhIeWBish84p/N/X5WcvS9Wuk3Q6jsz2h+8kzhNVq3z5Ph8Ox+1SHhhmZnqU+NoHnBywtXLu7SMyx/xACjo5XmR6OGK0GjNcDVuKMm61kX8XUZ71Y89ga2janiyYUkrrwNj2h6+X5nvd3WyHQQmGEQliL3CFBpuju9gt3N52H77BDTH74KfxaeSHctedfwuS71yVfXRdlbryIJBzlk3NlsXsxVpy9U3Yb7zVtEXJ9nbt7iIT32atbXriyLFuc9S5uGH8yP8aI2dlEWj9rgTUkQQMtA5KwLLALIfCiCJPn6Cwj7XTu/h3yPUklkHRTQ5YbVjopurc6Yab2VxgJP1A6liXn4spv0s42fq6bRUiBrNeLNDMlMZ3BXAwmhCD8Gx8tqqVW0Ybkv3x97y5qN7greMuew1tD2oEdSs8YDDZGm9/r896daHPHYLIrYvdHPvIRfv7nf56zZ8/y/d///Zw9e3Y3TutwOBwOh8PhcGyNpNnrvbLgVbC2ELtXFluYJMW/dQvleVCrASCFLCK5ZYom7j14DUaste2JstZaRB8jzCORM63KE4i/eHmWWt5i+NQiner3Y1R5gqq+eJ5D8hCRKEc9v5u/u2Mxk7ffvliaEJOeYuzUke0fONdFfDkS/MGaHNwrLAlWJEhbK/q6zUjfji3JEFaTywCLJBNhr6fbv29PtzaW5W6GrySNyGOs4jPs+RhhMQoyZTCbXJhvrWV54TpJp83I9CxRvc7Mk2eIav2MaXc4HHvF2NxhwlqNkekZdJbRvH1rry/JsU1mhyMOj1UYrvhMNkLaqWahmWD2keBtgWWb0bQ5qTW0bI7oxZr7m5zWDZIUaQx+lmGlJN+D+xctVt3dCml3RoyRtlLch9gqVuRYsTfinPJ9Zj7xwdJY2mxz61tv7do1+HkbPy0vTu1Wpzna0ByqlxcbPD8/GAt11/KmmKG9buHkFC2esDe3fMybaonz6kppTCJ4JjtB3excSo/AEqQrWKHI/TqZXyPzaqXXKG9NnLk2pJ17z1qhJwk8SSfVZMay1MmwthB5D9V/kOHwfaVjWXIuLv9H2tmlbV+7rFWQSiCjCJumWD2Yi8Hk1DD+dz5VGtNvzJO/fuUBexwQVgVvxBrBu83BFryhFG1+t89796LNHYPHrtzV/NRP/RQAzzzzDF/+8pd55pln+MAHPsDp06epPmQFvBCCX/iFX9iNy3Q4HA6Hw+FwOMoR5l4RYR4bQZpmtJdasNJEZSlifOKuSVpK/26EuaaLtMHARJhrY7DWFpMh23Uzr+Go3yyZmVu54jevzvAj6vcwFVhp/Fjp9VFzgWqacMQ/XBpfNsvcsrf7dl1rMblm8Z3yBM/oicOoYJsLEawGDKjC4VCI3o83FouV7WJymQhpRnp9attHoFEmR0sfkGSyAqs93VIQxGmpp9taWOqkSAEjFZ9a4DERRlhh0cqipUF7mxM6rLWs3Fyg22oyMjNHpTHEzKnTVOo76wJyOBy7h5CS6ROnuPLGazTGJ1i5dZOwViOs1h6+s2NgmaiHeFJyabGNEoKFlYTryzHTQxGqj/dFO03XajJrGJY+xmZUhKIqFCmC7iOKxgKIujHdWhUvzcgDH2kMaheFKytkr7fbwzcJQmjsFqLZH4YwwwiVIayHpYtgb4TckVNHuP3aO3Su31s8s/DiG4ycPk5Q351UmErnOllw736lU5lmRLzFJ+cS/tPZe9LANxdCfvypNtEAreHMheIljvBx+y7+mvjxE9ymbQOuiZEtHfeqd5OAoNTXrVA8m53i5eAs8Q7F30urCbIWqd9AmJw4GkV2MpS5dz4vDEnznDxNEFKg0xQVBAghqPiSpjF0Eo0UsBJnDFd8hJAcrv91sIbl9PW7xzJkXFz5jxwf+nGq657BNoOQElmrY7SBbhcbx4jaYKYaBd/3PvJvnMc276ULJ//lG6jTs4iDXDslAC8q5jLypPj/tA1BDXbgd+wgYYWBVZe3AGtNIXgLgxW6n8F2jgFnV/58/eIv/mLhdKEQr40xvPzyy7z88svvuV/hPnFit8PhcDgcDodjF0ma9yLMw6JXum0Ey/M3MYC4dQtZqyDCe5NmSnpo1cKSYdFIOxgT49YW8eXGGoQQfRMfPQyHvFZp7Lfmp2lqj2+bfpE4/DZy/3hpe33xHMfVMbw1Hd7WWs7r8325pvtx590r6LTcAz5+5vj9X7wZ8uKBGulc3XcRHaw1SDuEMGEffwYMyvR6uvHIZIAVEr3a052mSLump9vCcjdDWxivBQSeZLYSIQRkymKkJduk0A3QvHWTzsoKI1MzVOoNpk8+QXVo+OE7OhyOfUVQqTJ++AjWGpJ2m+WF60wcPY5UB3ui+KAzUvXxVZ3zN9vMjsD1lYRry12mhyJ8tSuhl30hx7JoUhrCwwIBlopQeELQsRr9CCk50lqCOIEoxGpJ5vsIk96tANkNtPCRVvfc3Tla7IDYbStgfQRVjFzB2rSv1SqPfB1CcOjTH+btz33h7pjNNde/+i2O/uVP7Mo1VDsLrIw8ee/8yieOxvn22dt87mz1bnd0ogXfXAj51KHBiqnuiICXOcxH7KXSk8wz9hpdApbE1kTXd9VVAuszZe7FiQf4vC87xcv+22RiZ2L2lU7wpEfm15AmJ47GqXYWED0xXwiBF4bkcYxWHkmnTcXzizhxKaiHHs04p5MahND4UlANvULwbvwNbNOwkr5593zGplxY+Q1ODP0EFX/uQZf1UGSjhmi2kFGIiRNEtXJX7xkkRBQQ/OBHSH7j+btj9laT7ItvEnzvs3t4ZbuAoFisnyc9wTssOrz9GrsU8LyHWKywgOyJ3hZrJcKKYtyJ3o8Fu/IuP3r0aOm/Y8eObRi733+rr3M4HA6Hw+FwOHaNZOVehLlfxVhotWJWmjG21UYkMWroXjy3XJ2gkyk5MWKAIsyN0WDBGttXV/ec18IT9yZFtYX/cHmO8fQOtdNLNBt/q/R6L2ky1ukwLadL4wvmBi3b7tt1rcVay62zF0pjjblJoqHtRk5bMLro6hai6Ot+zLFojOgiqSDwkGsmDbeLshkIiRZ+r6vbxwhB9oCe7laak2rDSMXHV5LDtQglBJm0WGlJfbPpiY7m7Zu0l5cYnpymMjTM9IlT1Eb69zk6HI7BYnhqhurQCMPTs1gLyzcW9vqSHH2gFno8OV2nHvrMDRdRxdeWYpJd7E/uBxZYsTkrJiPB0LQ5IKgLj/ARp3n9PC/qP9JsT/q7iwVsEiM8pDVA/53lAoE0QwjCwt0t9q67uzIxytjTJ0tjS+9con1t61Hcm8HTMUGyVBrrVGcYCS3PTpQXhQ5ilDnAHVHjTTFTGpPAB+0VKnaLLmwBZ72LLIlyzHvFRjybnUTanZNNvKyNNDlpOISWxeKDtT+DyveRnncvzrx773lJSUE1UKS5IckMzSQny1eFcsXhxo/QCJ4snc/YhHdXfp1uXu5w3wxCSVStgoii4vmyO1iLItbifeQE8thEaSz9wiuY5b37PbBrCFGI3FAI3kZD1mYnfs8OJkW0OXejzQvxu4g2P+iCv2NXvsMXLlzg3Xff3fJ/DofD4XA4HA7HrpAnvQjz7t0I85aG5NoNuhrE8hK2XscL7gmcUnrYXoS5oYuw4cAsGrbGYClizGWfVt4LLEf98qTQH90Y53I34kfFF0gbR4grnyxtr98+xyl1srT6X1vNBX2hL9d0P1rXb5Esl93nE2dObP/AvQ50PFX8N4COht3GilbRi2arSNPom3NK2QxhDbnwsUhyEWK5T093T6iIM0M70dRDj9CXzNUjAumRq57Q7W1e6G4t3qZ15w5D45NUh4eZPHaC+th4Xz4/h8MxuEweP0kQhgxPTRO3W3RWlvf6khx9IPIVT0zVaUQecyMVfE9wbTmmm+4vwRsgxrBoUlJraNqMFEMkFDXhPdKfuiBJ9rS/W8vib7sRCmV3xkErbBWs1+vuzrBkD99ph5j5tvdvqNG5+tyLWLM7AlS1UxY548okRig+NVcWLN+643O7O5iC0FUxykXGSmMBmg/Zy3hb7H+3wvK6f56W6JbGG7bG0/lxdmoViACCtAkW0qBB5kWkwVDpNV4YAoY8SdBJWkqrCjxJ6Eu6mSbXlqVuhjHFxUqhONL4m9T9U6XjGRtzYfnXiPMbW75uOVRHKImMAkwcs4uBEJtCSEH4wx8r3/enOel/fXHPrmlXeewF7yLa3Apb9HkjC/HbKIRRrs/7ADOYf70cDofD4XA4HI69IFnpRZjH4BWun5Ubd2jFOaYbY5OsiDBfs4uSPkYlvQjzHGF3PyLxflgL2prC1S1AiP7c+k+qLhVZnlD6+UuHAPjo7Ms06/9daZvQKUdWOozIcuTzZX2ZbAcnHW+9VV40Gw7Vqc9MPODVmyDXRXw5ErzBcPDvJVYkWJEibR1hPYTpT7S3JEfaHFPq6eZuT7efZqWe7lxbVuKMKJBUA8VkJaKmfLQ0WAmZZza9mL+9dIfm4m0aY+PURkeZOHKcoYnJvnx+DodjsPF8n8njJ4nqdSqNIVZu3iBPd6bD1bG7BJ7k1GSdoYrPzFBExVcsNGNayc4IrjuJxrJoUzpW07WattUoBA3h8zDJWwBRnCCNxcsytOeh5e5NExs8LKIXZa7ZaXc3VmHFzqQJPQpeJWT6295XGotvL7H45u6YvCqdheIZp4eVirgywYcmU6pe+Wv/wrXBdHcDnBVT3KSc0lQn5f32KmKLyqsWhtf8d4gp/44fM8M8mR/dQcHb4GdNjAzIvSppMEyuonvbpcQLI0yWYXRO2mljzb2LqfgSTwjaaU6uDcvd7K74LIXH0aG/Rc0vL/TVtsu7y79KnG8tVUB4HrISISoRaINNBtfdrY5O4H1bWfDPv/Eu+t2ti/37ivsK3h0eJ8G7iDY3WGzh7kaAlYXgbdSO/Ww79g4ndjscDofD4XA4HKskzVKEedJJaN9aphXniCQmjyJ8716voBQeYHoR5l0ECjkgEebWGqwp/i0c1f1ZwXzMXyl9/OJyg28uNzjcXkA9Y2nXPlPaXr9zkVPqWGkstjFXzXxfrud+JCstmvPlSZyJM8e33yu3GrWpPJCicHY/xlgMVrQQ1kcQIs1In3rhDcpkRWw5HpkMsUKs6enOSz3dxsJSJ8WTgqHQZzj0GQ0CjLAYBbkymE1+qzrLS6zcukl9dIz62Djjh48xPDX98B0dDseBoTYySmN8kqHJKZTnsbRwHTuoNjbHpvCU4OREndFayPRQSD30uNlMWOrsnfN3O7RszpIp3N0tm6Gx1IRH9JC/ydIYgiTByzVS6yLOfLcSawTk0seisELusLtbIe+6u/duUcP4M6cIR8vu3et/8Qp5vPOCoTIZYbxYGutUZ/AVfGymLPK+MB8OrGMXIXhFzNGkLMhP0Oa03XrlRCpyXvXfIVv3/pgx4xzTMw/Ya/sok+HnbXKvipYBcTSOWdNhr3wf4SnyboLRmqx7z4EuhKAaFq/tJJpE69KiHSk8jg39GDW//BymbYcLy79Kkt/e2jU36gilEIFfLAYf1PcKEHz2wxCVn82T3/7q4xFnDvcRvPPHUPCGVdH7gdHmA/wedmwOJ3Y7HA6Hw+FwOBzQizBPShHmdy4vYPKcOCk6DfE8/DXd10p6GBWXIswHBWMMYDHGIvvk6h6WCSOqPCH2C5fmAMGPyi/QmvxBrKzc22gNTyx1qIiotM+7+gJmBx+yb711ofSxCnxGTxze/oG1BkTh7PYHY1HDniK6WGsRto4wEdLW+nBQi2ezos9T+GjpY4S3rqdbE8Yp0lpsT+i2wHA1oBoopqIIKyxaWbQ05N7mZjA6K8ss37xBbXiUxvgEo7OHGZneuYlOh8MxuEwcPUZYqTI8PUuWxLQWtyYOOAYPKeHYeJXJRsREPWS0FnCnk3K7lTDQ6s0DSDEsmoTYGto2J0YTCkX9IbHmfpaj8hw/zRDsbn+3oTjXzrq7JdIOwV13996JXEJKDn36w6UxHacsfP21XTn/hijzaBwt/Q1R5jc6inPLuxtrvxm0ULwkDpNQXsl4lDsctosP2OvhdGXCa/559Lr34VE9y4zeuQobL++iTEoWNDDSJ44msGt+av0wwmLI04Q8idHZvUU5UgpqgUduLd3U0ElzWvFawdvn2NDfpuodKZ0zt23eXflVEr35r5cIA0QQIKuVIvEqG9zUE9mICP7qB0pjZmGZ7r/+A/S5rS+O2FfcT/DOH0fB+z2iza2LNj8oOLHb4XA4HA6Hw+GADRHm6a1Fmt2MZjPGWkEuJZ4SJXewkh5WJRhSLHpgIswBjNF3ewBFn2Ip13d1X+mGfP7GBFjLhw6/RrP+N0vbayvXecKWRcJls8wtc6sv13M/dJpx590rpbGxJ44it+3CtoXYrXo93d7gTgLuBpYcI7pIKgjrIc1oX46rbAbW9FzdkpzgAT3dxUReM8nIjWWk4hN6ktlqBSkhVxYjLdkmhe5us8nKjQWqQ8MMTU4yMj3H2NyhvnxuDodj/yGlYurEKYKoQn10nPadRdJu9+E7OvYFQsCh0QpzIxVGKj4TjZBmkrPQTPali98ASzajZXMSa2jZHNGLNfffQ/IO415/d5phdrO/W4CWwd1Ic7XF3uWHnsbUinsVWynqV/bQ3V0/NM3wyfICzNuvn6N7e2nHz13p3iyijFcRkm5lipPDOVPV8tf+hfnBWcB7P2IR8LI4jF73vj5jFxizrS0ftynbvOldwK5b8vFEfoQx3Z+qnvvhp02whiRokKuAJBy5u62IMw8xaS/OvN0pxZl7SlDxFUlm6KSadprTLEWaBxwb+jtUvPL7LjdNLiz/Kqm+s+nrVUN1hO+B76E7gxtlDuB/+gxypvy9s62Y7r//Y9I/f31f/q7fNHcFb9tb4K8fW8H7wdHmnos2PwDsqNj95S9/mZ/+6Z/mh37oh/jhH/5h/uk//ae8+OKLj7Tv22+/zcmTJzl16tTDX+xwOBwOh8PhcGyXNRHmVoSsXLpGHqe0jUAGCm0snrp3+6yEj0GDTNF3I8wHQwA11mIMGGuQsj8R5pHImVZlN8wvXp5FW8GZlYu0P/YxtFcWtk8vxXii/DU5r3e2m3Dx3GVMvnYiTzD+5LEH7/CoGA3YQuxWqogxf4yxolWsgLdVpB1CsH2ne9HTrdEyxCLJZdTr6fawUuJn5Z7uTqrppoahyCf0JYdqEb4QZNJipSX1zabe+nG7xfLCNaL6EEOT0wxPTjN++MjDd3Q4HAeaqFZnbO4Q9bFx/KjC8o3rvfQUx0Fhaijk6HiVochjqhERZ4ZrKzFmn4ogHatZNGkp1rwqPCri/gv/BKuC9+73d+ve/YORHtLm7Ky7OwIr99TdDTD7iQ8i1JrvhbXMP//Sjotu0moqcXnBaac6gxBscHf/xfWAdGfWHvSNZVHldTFbGpPAB+xVqnbrAuyiWuYd73JpTCB4Kj9Ow/QjxWgjAkuQrmCFIvfrZH6dzLt3Lun7CKXI4wSr81KcOUDoS6pBT/BONO0sZyW+J3grGXJ86O9Q8eZK+2VmhXeXf5VUL2/ueqMI4fuoSgRZhs32bgHJwxBKEv0P34UYK3e9Yyzp736T5Fe+jE32Z4XFplgreOv4MRe8YWO0efGvMC7afD+zI3cuWZbxkz/5k3zXd30X//bf/lv+4A/+gN/7vd/jX/yLf8HHPvYxfuzHfoxbt97bzZGmKRcuXODChQs7cYkOh8PhcDgcDsc91kaYq4DkyjXaWpKstMjCqBDALRsizK1KQIAhRpjBcUAY3YswtxbRpwjzo36TtTWOrVzxm1cLcfu/j75Ac/JvlV4fdm9zOl3XS6gXaG3DbfEwrDHcOnuhNDZ8ZIagVrn/DptB6yLzVLgIcysSrMiQto6wHsIMPXynh9Lr6ZZ+T+he7emWaM/DSzOksXd7urPc0EpyqoEi8iXTtYhIeuSqJ3R7mxO6k06bpevXCGt1hqdnGJqYZPxIHxZJOByOA8HIzByVeoPh6RlMrlm5eWOvL8nRZ8ZqAScnatQjj5mhkFxb5pe65Hp/znjnWBZNSrcXa961mgBJQ3j3nQxW9+3v3oUL7XV3GxQWenHmO3AaU0NYhaS65+7uoFFj8kNnSmPt+Rssn7/ygD36x/oo8zQcIVchn5hNEGvUnW4ueenG4CRWPYjrYpjzlCPGfQwftpfxt9EDf13d5pIqf60Ukmezk1R26JlPWk2QtchVhFYhcTSKlsUzh0DgRRHWGrI0LeLM8/LnF/qSWqhItaGTGLppznJ3reAdcXzo7xKp8uLkzCzz7vKvkOmVR75WIUA1aogwAE9hOoOdeCInh6j+zGdQT89t2Ja/fJHu//KHmBubE/z3JUIWgrddK3h3eXwF79Voc3Mv2pzVaHPPRZvvQ3ZE7P4H/+Af8Ou//utYa+/73+c+9zk+8IEP8Nxzz+3E6R0Oh8PhcDgcjs3Ri44jj9EJJNdv0e4kxF6ICULyJMGTAnVX7BZIqdZFmA+Q2G0M1hqwIPrgQPYwHPLKIvVvzk/T1B7SGqZPW5Lwg6XtTy3lyDXquLaai/ritq/lvVi5ukDWLk+2TJw5vv0DWwPG3HN0bzsSff9iMVjRQtgAQYg0o72Jge1g8Exa9HTjFZPed3u6fZTWeFoXrjNr0cay1M3wlaQReYxFAUNegJYGKyHzin8flbTb5c61eYJKlZHpWRpj40weO1GqLHA4HI83QgimTpwkCCMak1N0myt0m82H7+jYVzQqPk9M1alHPrPDEQDzy13SfH8KARZYsRkrJifB0LQ59GLNg/v87S73d0PmB7tibivc3WKNu7v/Zy3c3Q2wg+HunvrgU/j1amns2gsvYXbYIRt1byHMGherEHSr04xXDE+Nld2tgx5lvso5MckCjdJYlYwP2quIbbjlL6prXJe3S2M+Hu/LniDYoTQvpRM83SX16xix2t9d/KxKKVFBiElTjNZk7faGNIDAk9QCRaYN7dQQZzlLnXSN4F3h+PCPE6mp0n6ZWeLd5V8lM4/+d01UKgilUJUIm2ZYPdhRAKIaEv3U9+B///s3bDMLy3R+7g/JX7m0B1e2y5QE7wR0/tgL3sB9os2Fizbfh/Rd7H7uuef45V/+ZYQQnD59mt/7vd+j1Wpx+/ZtPve5z/Hxj38cay3Xr1/n+7//+/n93//9fl+Cw+FwOBwOh8OxOZIVyLpYY0gu3aCtIW92SIaGUSZHa4u/NsJcer0I86wXYe4hGQwB1NpC7C5c3aIPQiTMeS08ce8pT1v4D5eKlfF/PX6NxY/9jdLrvWyFM+3yJNBlfZmUdNvX8l7ceutC6ePK2DDViT50SWsNCJAKdqvHclARHay1CFtHmArSVh++z0NQNgch0MLHCIVe39OdZkVXd55jLSx1MqSAkYpPPVBMhBFGWIyCXBnMJn4U0zjmzrWrBFGF0Zk56qNjTB0/6YRuh8OxAT+MmDh6nOrQEJV6g5WbCxucdY79TzVQPDFVox56zI5UUFJwfTkmzgZbyHkvYnqx5tbQtBkphopQVIXaEIKyurDMT1NML11lxxECLX0MxbkkO+Xubqxzd+/d91T6HrOfLC8Uzdpdbrz4xo6eV2CpdMrJFJ1q4fT95Loo89du+yzF++B+SAheFXMsE5WGR+nwtL0GWxW8BbzjXWJRlh2/EQHPZk+gNrOychN4WRtpctKggZY+cTR2V2tTgY9QkjyJMVqTdzc6qv2e4J1rQzvRJJnmTie92/PtySrHh3+CUE2W9kvNIheWf5XcPFoKl5ACWa9DGIKSmE68rc97NxBSEP7VDxL9374bKuuSC5KM+Be/SPJfX8Qe9KqSu4K3BrMqeMc4VXe1z/s+0ebGRZvvB/r+W/kXfuEXADh06BDPP/88f+2v/TWq1Sqjo6P8yI/8CC+88AL/8l/+SzzPo9vt8qM/+qP82q/9Wr8vw+FwOBwOh8PheDR0WsSY512y2y10J2alFZNXq6RBBEmMseCrcoQ5KgFhexHmgxPzZ3qr6q0xfXF1CyxH/fIq/z+6Mc6VuJhQ+kzjRdrDf7m0/eRKqyT9xzbmqpnf9rW8F93FZdo3FktjE2f64c61hditVK/r7PEVuy05RnSRVIrJYrP9hQTSZgiryUURX56JcENPt+xFq2JhuZuhrWWkGhB6kplKFaRFK4uWhtx79FmILEm4M38FLwgZmZ2jNjLK9MknELvUU+pwOPYfjfEJ6qPjDE1OgZAsL1zf8Z5dx+4T+oonpus0wsLhHfiS6ysx7WT/Lm7QWBZtStdqulbTsRofSUP4rJW8BRB2Y6SxqCwj93env/uuu1t4SLMzX+fC3V3vubsF7LG7e/jEYeqHyg7bmy+/RbK8s6kR1c5C6eMsGCLzqnxkKiVU936fWQRfvbY/3N1GSF4Wh4kp36cfYpljLD5gr4djBbzhXWBFtEvjdVvhmewkYgdijgUQZE0QgsxvkHkV0mCot60XZ24MeZKSxTEm37how/ck9dBDG0trVfDuZpi7gneNE8M/QajKEfCJvs27y79Gbh7tZ0PWK0glkFGETVOs3h8isffMYao//Rnk7MiGbdmfvkb8f/wptjX44v22WBW8jQaTgs56Dm93TwNros3vit69aHMxGAYHx/3ZEWe3EIKf/dmfZWxsbMP21W1f+MIXGB0dJc9z/v7f//v8+3//7/t9KQ6Hw+FwOBwOx8NJVsAaTKdJOr9IvNIm05CPj2PyDJ3mSMHdCHOBRAoPq2IMCRaDHKQIc2uKqGlLKUZ8q0yqLhVZnkT5+UuHADgVtUg++mEQ9zqshUl433LZWfGuvoDZ4Wi09a5urxIyfHR2+wc2Rf85SvVizB9fIdSKFlgFtoq0wwi2J/xLcpTNMdIHJJmMCnfXup7uKC56utupJtWG4YqPrySHahWUgFxZjLRkmxC68zRlcf4KyvcZnT1EdWiE6VNO6HY4HA9n4uhx/KjCyPQMSbdDZ3lpry/JsQP4SnJqssZI1WemEVILFTeaCSvd7OE7DzBNm7NsCnd302YYoC48wjVTxEV/d4qfa6Q25IG/4/KHFQItPYxQCCxyhzq1C3e3RFLB7LG7WwjB3Kc/XFTk9LDGMP/8Szt63jBZROqyi7tTnSH04KPT5fHn58MtG6N3m0T4vCQOo9flFTxpbzBpt76AwAjD6/55uqIsfo7YBqfzYzuiDQpr8NMmWgXkXpU0GCZXxfOVlArph+gswRhD2m7dd9GVpwT10MNYu8bhvVbwrnN86CcJZFm/SfRNLiz/Grl5eA+3kBJZqyMqxbOwjfePQCwnGlT+0Q/gffTEhm367et0fu7z6Eu39uDKdhGhQIVg8jWCt3N4r1L0ea9Gm8si2lwFSOW7L9GA0vcn+fn5wrHxyU9+8j1f913f9V188YtfZG5uDmMM//Af/kP+1b/6V/2+HIfD4XA4HA6H471JViCPSS5ew+SCZiuBeo2uH+GlCZk2GyPMRY5VOZoYgYcYsAhzawxCgBDbv90/5q+UPn5xucE3l4tevJ9Mv8Wdp36otH2qdZ7Q3Hv6WzYr3DI7O1GQdROWLpad4+NPHkOqPjzuaA3IYvX7YxxhbkWMFRnS1hHWR5jGw3d6TwzSZHd7ujMZYIW829Mtez3dQZwgjSXODK0kpxZ6hJ7kUL1CICWZslhpSX3DhizWB3BX6FYeY3OHqQwNMfvEaaQcjJ9jh8Mx2CjPY+r4ScJqldrwKM3bt8iS5OE7OvYdSgmOj9cZq4dM1iOGKz632ymL7Z2tZdlpEgy3TUJiLS2bkaCJhKImvLt/Sr0sQ2mNnxafaxbsfH934e6WGKGQdoeizFG97u5KIVaIhwt6O0k0OszE+54sjTUvXWPl4s4lIgk2uru71Wks8Kl1UebzbY+LK/vn/qgpKrwi5kpjAnifvUrdbl2IzUTOq/45UsqLXabMKCf0oS0f971QJsPL2+RetRdnPo7puUq90EdISR53izjz+P5/g5QS1CMPg6WZ5KS5ZrGdoXvPar5qcGL4J/HlSGm/WC9wYeXX0ebhXzNZryKEREYhJk72VdqJCDzCv/spgh/5ttKiEwB7p033//PfyL7y9h5d3S4h1wveqevwLrEabU6xUEqpYl7A7p/fi48TfRe7s6z4pa/Uw7/hzz77LF/60pc4ceIE1lr+yT/5J/yzf/bP+n1JDofD4XA4HA7H/ckTyBPymwvkd9pkNxfpVmro8XFyrRFJuiHCXEoPZLHi2dAdqAhzawtHt+31dT+y+vcAhmXCiCpP6P7CpTlAMBlmzB7xMF45yvrZpbIgfF6f39Y1PAqL71wsdasJKRl/4uj2D2xNEe3mqeLJ6TGNMLcYjGgjbIggQJrRbXbBWzybgZBo4fecXH6pp9tPM7w8x89zcm1ZiTMiv+ggnKpGVJVHvip0e48udOssY3H+CkJIRucOU6kPMfvEmWLiwuFwOB6R6tAwI9OzNMYn8PyApYVr+2qC3/HoSAlHx6tMD0WM1QLGawHL3Yybzf0l6qzHAHdsStvmxNbQtjkKQUP4eIh7cea72N9dLHpTaOEhrNlhd7fqubtj7B6LOtMffRavUk5Fmn/+pbvVRDtBpXO99HHu18j8Bk+O5oxH5fM+Pz84CVaPwk0xxNui3EftYfmQvUxgt/6eikXKa/458nVpAIf1FIfyyQfstT28vIsyKVkwhJEecTRRiG4IvDAs4szTlKzbuW+cORTpZPWw+NltJjmZ1txpZ+jes5OvhnqC93Bpvzi/xoWV30Cb917MJTyFqlUQUQQWbHd/Lf4SQhB8xxkq/8/vRwxVyhu1IfntrxL/1lew2d6lQOw4UoEKyg7vrAN7mHwxeBTR5qB6Ueb9rzBwbJ++i92Tk8Uv90uXLj3S60+cOMGXvvQlnn76aay1/PN//s/52Z/92X5flsPhcDgcDofDsZHubWyekpx7F50Y2nGOGBsl9UNskpBrjRTg9RzCQkikUL0I8xiLHawI817ktjEW2Yc45iPrurqvdEM+f2MCgM+O32Txo+Wu7lr3VabTe1F4C3qBlm1t+zreC6M1t9++WBobOT6HF/Xh+6I1IIr4ct9/6MsPLKIN1iJsDWGqSFt5+D7vgbIZWEMufAyKnOJ7taGnO06wFpa7KZ4UDEU+w2HAaBCgpcFKyLzi30dB5zmL81cAUTi663VmT59BPaaLGBwOx/YYmztMWKsxMj2DzjKat2/u9SU5dpDZkYjDoxWGKj6TjZB2mrPQTDD7WPAGaFvNHZOSYmnaDI2lJjwioe7b3212uO4jFwG74+6uD4y7WwU+s5/4QGksXWlx61tnd+ycQbqCysu9zJ3aDFLAJ9e5u//ieki+z0yeFxhnnrJ4WyHnQ/Yy0m79k2nJLm/472LW5Ryc1IeZ1CNbPu6DEICfNsEakmCIXAUkYbHQWCoP6QfoNMEaQ9ppP3ABjpKCxhrBO9WaxVZG1uvYDtQIJ4Z/Ek+Wk5u6+VUurvwG2r53moVs1BFKIsMAE8f7Jvp+LerEJJWf+Szy5NSGbflX36H77/4Ic6d9nz0PCNK7J3jncfFv2oaHLHZ4/NiHb+7HiL7foTzzzDMAfOlLX3rkfebm5vjiF7/Ihz/8Yay1/NzP/Rw//dM/3e9LczgcDofD4XA47qFTiJdJ3z2H7iZkt1ZIx8Yx9TqJlag0JdMWT4m763aV9DEiwypNTheBPzAR5gDG6ELw7kOEeSA006o8CfbLV2bRVtDwNJ8Qd0hGnyhtP7Z8b8GrtpoLuixC7wTLF6+Rx+UJmIkzG7vXNo8txG4pQYjH2NWdY0SMpIawHtKMbOt4khxpNVoWk9m5jECAlr2e7my1pzsBC0udDGNhuBpQ9RXTUYQRFqMgVwbziD9+RmsW569gjGXs0GGiep3ZJ59CeY/xIgaHw7EthJRMnziFH1VojE3QXloi6RzgiXAHE42Q4xM1hioe00MRSWa4thTfFYz2KxmW2ya56/DuogmR1IWHbwx+muLlGqEN2Q73d1shMdxzd4sdchbe6+6OMKK75+7ukSePUZ0eL40tfPN10lbnAXtsDwFU2+Uo806liDJfL3a3Msm3bg5OktUjIQSvixnuUF6gOUzMs/Ya21Fjl2STt72Nzzin82MMm/qWj/sgBJYgXcEKRe7Xyfw6mVcDwAsDhJBkcYzJ8wfGmQPInuAtEbSSnMwYltrpGsF7lBPDfw9Plj+HTn6Fi8v/EfMegrfwPWQlQlQj0Aab7M+qBzlUofI//hX8v/TUhm3m8iKdf/0H5Gev7cGV7RLSA6/3M5N373V45x1crLljP9B3sfs7vuM7sNby27/925uK8xkfH+fP/uzP+NSnPoW1lj/90z/t96U5HA6Hw+FwOBz36NxCr6yQXryEXilc3PnMDJkXkOca8ozc2A193agErMGQIAcowtxYizFFlLnsQ4T5Ia9Vqi6LteQ3r04D8L2zTdqnzpRe72WXebJ9+O7Hl/UVUnZ2osNay8233i2N1abHqYwObf/gPZc8niqc3TvsZBpELBYrmgjrgY2QdhjBdkR/gzIZWnhYFJkMsUIUPd1Br6c7X+3pNrSSjMwYRio+kSeZq1ZAWrSyaGnIvUd73rwrdGvN+KHDRNU6s6efwgsG5+fX4XDsT4JKlfHDR6iNjhJWqiwvXN/R6GHH3jNS9Tk1WaceesyOhFgsV5e6LHWybQloe40Flm1G0+ak1tCyOaIXa15NNZ7WBL3qyp0WvLX02Hl3t9dzd1cHwt0thGDu0x8pjdlcc+0rL+/YOavrosyNF5GEo0xVDU+MlLupX9hnUeZQLJx4WRymQ3lh4wwrnOTWto59Q93hXVXuVZdInslOUjPbS0C6H9Jq/KxFriK0ComjUbT0izjzKMRqje7FmWfd+IGajJSCWqgKwTvOSbXlTjsl61n3QzXGiaGfxBO10n6d/BIXV34LY7P7HRYA1agjlEIEPqbb3be/DoWShH/jY4Q/+R0QrFtV20mI/48/Jf2TV/d1jcV7IgR4USF8r3Z46wyyNmyjBsDh2A36PmPz2c9+FoD5+Xn+83/+z5vad2hoiC984Qt83/d938H9heFwOBwOh8Ph2Ht0ilm5RfeVb2G6MdlSh3x2DnyfxPMh7pJrW0TH9RRfKRQCiVUxWiSARQxShLnWgMVYu21Xt8By2CvHj/+f1ydZzn0CafjusTbNJz5a2j7e/FOq9hAAsY25aq5u6xoehc7NO8R3Vkpj/XF104swl0Unl/94uroRMVbkCFtH2ACxLbeKxbMpRiiM8NHSxwhvQ0+36vV0d1NNJzU0Ip/QlxyqVvCkIFcWIy3ZowrdxnDn2lV0lvcih+vMnX4KPxicn12Hw7G/GZqcptIYZnhqpqheuLHw8J0c+5pa6PHEdJ1G5HN4pMJwxWepmzK/vP9d3l2rWTQpKYamzcgw1IRiJCkqRvw0wyiF9nYu2cjgYRFrxO6d+ZoKM4RgcNzd1clRxp4+WRpbPneZ1tUbO3I+P28XEdlr6FaLha2fWufufuWWTzPdfx21mfB4SRwhWyeBnLK3mLbL2zr2FbXAvCzXV3gons1OEdr+L6j0dIKnu6R+HSP8Xn+3KOLMA588SciTQvBOWi2sebDgXQ8VSgjaSU6aGxY7Kcmq4O1NcHz4J1GiWtqvnV3g0spvYx4geIowQAQBslqBXEP2YGF8P+B/+DiVf/wZxEQ52h1rSf/gJeJf+iI23p8O9ociKCLNVQBG34s1z1ZjzZ1u5xhM+i52f/SjH+U7vuM7OHnyJL/0S7+06f0rlQq///u/z4/8yI/0+9IcDofD4XA4HA4AbOsG8etvYVaWSBdWkJWIdHqWTHnkBkSSkBlTRJiLntgtPazIsFKj70aYD47b1xiDtQYsCLm9yahJ1SWSZSfNr1yZBeA7p9qIYBzWCOrCtDixcu9h/4K+gNmFCcP1ru6gXmVobmPP2uYxxYO9p4onpscwwtxiMKKNsCECH2lGt/V+L3q6LVp4vZ7uYhJwfU93GCdkuaGZ5FQDRcWXzFYqhEqSKYuVltQ3jxRcYI1h6do8eZIyOneIqForhO4o2vLn4XA4HOsRQjB1/CRBFDE8NU3cbtFZ2Z6I4hh8Kr7izPQQU0MRY7WA2aEIYw+GyzvHctukdK2m0/svtJLxJMdb7e/2fMw27zcfiIBcBlgURkjUDrkJBR7C1NZ0d8c7cp7NMPPx96PCslA6//yL2B1aRFFZ5+4uoswFH51O8eW997C2gq9d258LBdsi5BVxaIM896y9xpDdhqNfwDnvCjflndJwiM/7slN4tv8LQrysjTSaNGigpU8cjWMBLwyRQYhOE7JuF52mxCvLmPz+yQii5/BWUtBONVluWOqkJFnx+sib5PjwT6BE2aXeys5zaeU/PVDwVkM1hO+B76G7e//ztF3UzAjVn/4M6tnDG7bpVy7T+bnPY64v7f6F7RbSK1zeQhSCt84gc7HmjsFlR2bnvvjFL/L222/zu7/7u1va3/d9Pve5z2GMQbv4J4fD4XA4HA5HP9Epyasvk9++QXr1Jngh4ugRcuWReAEmzRBGk2uLV4ow97GlCPPBmfCxFoyxGGsQUmxbhD/il10eX19q8FqzjsTylw91WD7zwdL2evv3mdYfB2DZrHDTbC8a8FFIWx1WrpQn6CZOH9+20A/0XN2iiC/3H89OZytaxcIJW0eYKtJuXSBe29NtkeQyfGBPtzGw1M3wlaQReUxEAfXAJ18Vur1HFLqt5c71a6RxtxC6a3VmTz9NEPU/WtLhcDi8IGDy+Emiep1KY4iVmzfI0wPq+HLcRUqYG63wxFSDoerBc3k3bc6yyXou7xylLSOZoZIbhDFkfrBj/r5Vd7fdYXe3NEMIFJIQIzp77u72opCZb3tfaSxeXOb26+/syPmqnXIShVWFgFr1LR+eKv8Oe34fRpmvclvUeUtMl8YUlg/Zy0TvEc39UAS85V1kWZQTsao24pnsJNL2d0GIAIJsBYQg8xtkXoU0GEIg8MMAv1LBaE3W7qCzjHhlmewBPd6rgrevJO1Uk+aGpW5GnBVCdsWb5vjwjyNF+Rmglb3D5eZ/xt6nYkBEFYTnoSoRpBk22/+x16ISEP0P30XwmQ9teAaxN5t0/pc/JHtpY4f7gUEIUCFIH0wGOilE77QF2/nZcTh2gMGxojgcA4JJErKFGxj3YOpwOBwOx4EkffNlsoUbZFeuYowgODJLt1IreoOlh41jcmOxFoK7EeYeAlFEmFOsUhc7EE+3VVYjzK2xvb7urVMXKWOqPCnyy5fnAPjYeIdafQwTrom1s5rJla9QtcWK9/P6/LbO/6jcOnuhlKAmPY/RUxtX3W8eC7npdXSLx9TVnWFFgqSGsAppRrdxtHJPd97r6bbre7qTBKELV4kUMFLxqQce42GElgYrIfMs9hGeYK21LF2/RtrtMDrbE7qfPENYrT58Z4fD4dgitZFRGuOTDE1OoTyP5RvXXUXfY0ItPLgu7wTDoklJrKFlM0SaUDXQyDWIoopkRxCQS78QvXfU3e0jTLXo7oaBcHePPX2SaHykNHb966+Rdfp/bZ6OCZKl0linOgNsjDK/1PS40ty5+Pqd5jKjXGakNBai+ZC9jLJbX+RgheV1/zztdb3vw7bOmfx43xOfhTX4aROtAnKvShoMk6tiIYL0PIJqFSRk3Q46S8k6bZL2/WPNhRBUA0mgJJ1Uk+SG5W5OJ1kVvGc5PvTjSFFe6NBMz3K5+TtFqljpeKCG6hAE4CnMAXB3Q7EwIPgr7yP6B98L1XWLPtKc5Fe+RPK739ixBIY9RwDKBy8s/p7lcdHfnXVAd3Eub8eg4MRuh2MN1lq63/wm8Wuv0X7uObovv0y2sIB1CQMOh8PhcBwI8oVrJG+/QbYwj252CA4fRUQRXT8i9fxiEiCJSbXBkwLZE7uV9DCyF2EuBi/CXBuDtYVAv92+7iN+2ZlwM/H5/I1xAL5ntklz4lRpe6X7ZWbTJwBY0Au0bHn/nUBnOYvnLpfGxk4dRvXDhW0MYApXtyd7ovfjg8ViRRNhPbAR0o4g2PrEpmczjJD37+lmTU93lrPSzdDWMlINiLwivtxIi1GQK4NRD58ttNayvHCdpNNmZHqWqF5n5skzRLXt9I07HA7HozFx5Bhhpcrw1CxpHNNavL3Xl+TYJQ6yy1tjuWNTOlYTW43tdvENNDKDVYpc7YwAavCxsOPd3avubmEDrOhi97iPVkjJoe/4SGnMpBnXv/atHTlfdV2UeVyZxAjF0+MZI2F5PvSFfezuRgjeEjPcplYabpDwPnt1W4tScqF51T9HQtk4NWFGeCI/0nfBW5kML2+Te9VenPkERhQ/h0JK/GoV6fvkcUIWx+g4IWmu3DfWXAhBJZAEnqSTaOKsqBNq9wTvqj/H8aG/ixTlhd4r6Ztcaf6fGwXvSgXpKVQlwibpgZpT987MUf2ZzyAPj23Ylv35G3T/9z/GNLcRjT/oCFUI3lJB3nN452khenNwvs+O/cvjNXPjcDwMrTHdmOzqFbLLV0gvXSJ+7XXazz1H/Oab5HfuuJXZDofD4XDsU3SrTfziV9DLy+TXb+DNTKOGG8RegEGQyACbFg6GXFv8UoS5ByrGWoMhHbwIc1v0dQvB3Y7xreBhmPXapbFfvzpDZiVzlZS5mVGykfHS9kbrt5kwn0ZbzQW9OxFud969glkXizd++nh/Dq41IIuH+McxwlzEWGEQtoG0AcJsXSSWNgNr0MLHIEs93UZK/DRD2qKnu51o4twwXPEJlORQrYKQoJVFS0PuPZrQvXJzgW6ryfD0LJXGEDOnTlOpN7b8OTgcDsdmkEoxdfwUQaVCfXSc9p1F0vgAT3w7NnCQXd4tm7NkMnKrMd02whhquQU/wGwzWei+CIqFcigs9ATvnThNgDAVhK0WQvcAuLtrMxOMPHmsNHbnrQt0Fvq/gKbSWYA1gqWVirgygRTwidmyePuVayH7eN0GVgi+JQ7RpizcTtHiSXtjW8dORcar/jkyys8os2aCI3r6AXttHS/vokxKFgxhpEccTdzV1ItY8wgvijB5RtrpkGcZ8coKOtmYZFo4vBUVX9JNNXGmaSU5rXhV8D7MsaG/g6D8bLScvs7V1u+VBG8hBbJegzAEKQ+Mu3sVOVan8j//VbyPn9qwzZy7Qfdf/wH64s09uLJdQghQAcigiDXPYzA5pG0wLiXXsbc4sdvhuA9WG/LFRZJz54nfeov06jzphQt0X3yJzle+QnL+XUyns9eX6XA4HA6H4xGxaUr88jfRS7fILl9GNWr4M0U0d8ePyKVCS1lEmGuDseCrnqtb9FwlMkH34ukGKcLcWgO9zm6xGr29RWa9Fkrcm4TNTSF2A/yl6RadxpHS6/30LCPd21TsES7rK6Ts/AOutZZbb10ojTUOTRE2avffYXNHB6N7jm4Kd/djhMVgRBtpQwQewowhtvh+EmiUzTHSByS5jO7b0x12E9Lc0Epy6qEi9CRztQq+lOTKYqQlewShG6B56yadlRVGpmao1BtMn3yC6tDwlq7f4XA4tkpUrzM6e4j62DheFLG8cB1j9rE65Ng0JZd3pXB5D0UHw+WdYlg0CXmeYZIY8pTAWkQYPXznLaDxAYGRfi/KfGe+dsIOF/c+A+LuBpj99g8g/XKdztXnvtl3E44yGWG8WBp7UJT5Sip5/fb+XgyaC8WL4gjpuuSi4ywyZ5e2deyOjHndP49Z9z49rueY1hvdwNtBAH7aBGtI/SFyFZCE5eoh5fv41VpROdBpo7OUpN0ibXfu+z6KAkUlkHRTQzfVtNOcZjfHWqj5Rzk29LcRlN+TS8krXG3919LxZL2KVAK56u4+YH8Dha+I/vYnCf/Wt4Mqy2t2pUv3332B7Lm3DrZhTnng9X7v53HP5d2FvIOLNXfsFU7sdjgegKzXCU6eRFar5LduEb/5Fsm5c2RXrpKce4f2V75K5xvfIL1yFZtle325DofD4XA4HoA1hu6rr6FvXiW9dAWhLP6RwyAEWkgSFZAoH2EMOk3JtEUKUGsizK3MQGoMqxHmO+Be2SLG9Pq67Xb7uu2GCPM/ujnOQhLiC8PHDivisUOl7Y3mbzNhPkViE66aq9s496PTvHaTtFl2n0+eOdGfg+ueE0N5RVf3TriUBhgrWkXMoq0hTR1pt5pgUPR0G6EweGQy6PV0s6Gnm1yz3M2IfEkt9JipVqh6ikxZrLSkvnmk9RvN2zdpLy8xPDlNZWiY6ROnqI1sp2vc4XA4ts7o7ByVeoOR6VlMrlm5uT3HoGN/UgsVZ2YOnsvbAEs2I0k6mDzHpAkIgQxCVL/vkYUou7t3KCq3SLOJeu5uPRDubr9WYfqjz5TGujfvsPjmu30/14Yo82gcLX1m65rjQ2Wn8vP7Ocq8R1cEfEsc2iDJPW2vMWrb993nUVmRbd7yLm5YMPFkfpRRPbStY69HYAnSFYxU5H6dzK+TedXSa+RqrLnnk8cxWRKTJzFJs4m5z8KbyFdUAkWcGTqppp1lNOMMa6EeHOfY0I9tqDhaSl5mvv35u+KukBJZqyEqxXvFdpMN5zkI+J94ksr//P2IkfLXHG1I/vNfkPzHF7Dr0sgOFEIWgrdUhatbp4XonbWBA/x5OwYWJ3Y7HA9CCFS9TnDkCNHTTxMcPQpSks7PE7/xBunFi6SXrxCffYvWc8/RfeVV8ps3D9xqNYfD4XA49jvJ2bPkt2+QXjgHeUJwaAoRFC7grhdigdTzEWmMsJBpsybCXCClApVgrcaQDVSEOYAxpnCMie31dY+pmJosP5T+8uXC/f7R8S566nhpm9SL1Dp/woT5FBf0hQ0Ohp3i1roJvmi4QW16/AGv3iS5KR7WEY9dhLklxYoEaWsI6yHM1h3RhfOKIr5cKEwvHSHzg54Lpejp9tKcpU6KkoKhyGc0DBgOfPJVodt7NKG7tXib1p07DI1PUh0eZvLYCepjfXpPOBwOxxYQQjB14iRBGNGYnKLbXCFuNff6shx7wKrL+8npg+fy7lpNp9PEGI1NYjKlkJ5PsI370ftx190tPGRvkedOMIju7vH3PUk4Uq5juf61V8jvE0W9HSrdm0W60SpC0q1MAfCpubLw/9KNgHa2/xeE3hE13hCzpTEJfMBepWK39/W9pZY4710pjQkET+fHqZvqA/baGtJq/KxFriK0CknCMbQsu68FAj+K8KIQk2WknTY6TYlXltHpRgNX5EuqoSLNDZ3E0MlyVrqrgvdJjt5H8L4Tf5Nr7T+6K3jLeg0hJDIKMXF8YF3O6ugE1Z/5LOqJmQ3b8q+fp/u//hHm9gH++y9YE2uu18Sad8AczEUOjsHFid0OxyMgpESNjBCeOEH01FP40zPYJCG9cIHk9TfIrhT93t1XXqX93PPEb51Fr6zs9WU7HA6Hw/HYk165QjZ/jfzds5hOl2B6GFFp3HXsdvyITPlYBLYbo40tR5hLrzC6qsGMMDfWYEwRZV64urc+8XTUK7u632xV+epS4T74zkMp3aHDpe2N1u9QMZPkepSb5taWz7sZ4uUmrevlc008dXxbPeV3MRowRXS5ksXs9GOCxWJlC2F9BBWkHd4wgfWoSHKk1WgZYBFkolgcknseRkn8NEVaQ9BNWOpmGAsj1YCar5iMIrQ0WAmZZ7GP8C1oL92huXibxtg4tdFRJo4cZ2hickvX7nA4HP3EDyPGjxyjOjREVKuzfGMBnTun0+PKQXV5a2vodFvkWmPylI4nkUJSEapvSUhWCLT0MEIBdgfd3SHChAhb67m7916okUox9+kPl8Z0nLDwF6/29zxWU4nL99irUebfNpPira05soK/uD44z0PbYV6McIFyvHiA5kP2Mt42O+Ln1S0uq4XSmELxvuwkUZ8XT3s6QemYzK+j7/Z3b/z5U36AX61iLaSdDjrLSFpNsk53gxgdepJaoMh0IXh3s5ylnuDdCE5xpPE3WS8tLcZf53r7j7HWIjyFqlUQUQT24Lq7AUQ9Ivp/fC/+9zy7YZuZv0Pn33ye/I3dSUHbM+4bax5D3sbFmjt2i8dnBsfh6BPC9/EmJwlPnyZ88knUyAh6aZnk7beJz54lm79KeuECna9/g/ZXvkp64QIm3vv4I4fD4XA4HjfyxUWSt98mX7hGfusGwdQQshKBVwEgk4pcKhLPR5mcPMvJtEEK8HrObiU9kBlWaDRxTwwcHCdDET1nMdZuy9UdiZwJ1S2N/crlWUAwU8mYPjqLVWscAjal3vovTJhPcV73P0rxQazv6lahz8ixQ/d/8WbRGpCFs/sxc3UjulgMwtYRNkCY+hYPVMSXa+Fh7/Z0i6Kn2y/3dLeT4udtpOJTUZLZagUrLUZBrgxGPXzSv728xMqtm9RHx6iPjTN++BjDU9NbvHaHw+HoP0MTk9RGxorfTUKyfOP6gXW3OR7OPZd3/UC5vEWeE6cd0jTGWMOKX0SOV4TE69N9syYAZOHutju3aETYoZ6728eKzkC4uxuHZxg6Ub7fvf36Obq3l/p6nvVR5mk4Qq5C6oHlA5Nlp/MLByDKfJW3xRQ3Kd/71kn5gL2K2Obv6wtqngVZ7kP38Xlfdgrfeg/Ya2v4Wavo7w6G0NLf0N+9ipSKoFpFKkXe7ZInCVncJWm1sKb8+fprBO92qkmyIpXJGstQeJojjR9l/WLr2/FXWej8aVGx1agjlESGQc/d3ddPeaAQShL+4IeJ/v5fgnDd97abEv/Cn5H+t29t+BofKIToxZr7vVjzpBC90xZYVwHr2Hmc2O1wbANZqeDPzRE+/TTBiRPIKCK7vkD85huk754nm79K/M452s+/QOfFF8muXcO6ldwOh8PhcOw4pt0mfu019MoK2eV38caGUVUP/ErJ1W2EIJMeIkkxFjJt8VQhZwskUnhYlWBtjiXdRofxzmCMxloDtuhj2yqHvWapnnolV/zO9SK68C9Nt2mPHi+9vtb5E5S5g8ieomXLjvCdIk9S7rxbjgMcf+IY0tuaA7mMBWPAk8UTUl+OuT+waIzoIG2EwEPqsS0u6LB4NrsbW57LIsLcAnngI7Xp9XSnpHFGJ9XUI4/IlxyqVVBKoJVFS0PuPXwSqLOyzMrNG9SGR2mMTzA6e5iR6Y3xgQ6Hw7HXTB47gR9VGJmeIel06Cwv7fUlOfaYWugdOJe3TBJynZPEHXIBTU+SYwmEJOxDrLkVAi0URiiEtcgd6oOVtoIwwRp3d3/jwrfK3Cc/hFBr7k+tZf7L3+zr4pmoewth1ghSQtCtFosIPzVXduWeX/a53j4gsoIQvCIO0aT8nDdOmzN24QE7Peqx4W3vIndEOf2zQsiz2SnUo8QYPfqpCNIVrJBkfoPMr5F5tfu/Vgi8SoQKQ3SWknU76CSlu7KEXtcx7XuSeuChtaUda5JMc6ebYYxlOHyKI40fYb3gfav7Ajc6f47wPWQUIaoRaIPtc/z+IOJ94CjVf/wZxPS6SigL6R99i/j/939hOwfX5V7EmvugwuL5Ok/A5pB1wHTZqRoKhwOc2O1w9AUhBKrRIDh6lOiZZ/APHcYaS3rpMsnrr5NdvkR6+TLdN96g/dxzdF97jXxx0a3odjgcDodjB7BZRveVV9DNFtmFd1EVhTdaAcRdV7el6OtOVc/BGycYa8mNJVjj6rZYrIrJ6QJiwCLMi+dHYwxSbj3CXGI45LdLY/9pfpqOVnjC8tEnhjF+pbS90fxtQjPDfL4zMZL3Y/HcZexax5MQjD95rD8H173+R6XA86Afsej7BCvaYAXYKtLUEWztPa5sDtaghYdBogmKnu6gOJ6fpqhcQzehmeRUA0nVV8xUKgRKkiuLkZbsEYTubrPJyo0FKo0hhiYnGZmeY2yuTw5/h8Ph6DPK85g6fpKwWqU2PErz9i2y5ABPdDseiYPm8haA6nYx1pCkXWIl6EpBYg0Kgd+HKWgtVt3dCrnNiOn3ouju9gt3N50dO89mCBo1pj78VGmsff0WS+cu9+0cAkulc6M0thpl/uxERsMvvycPkrtbC8lL4gjJuhqfI9zhiF18wF6PhhXwhv8uTVF+LzVslaezEwjbv+cOaTVB1kKrEK1C4mgULe+fWCUQeEGAX6lgtCHtdDBZRtJcIeuWE0o9T1ALPbS1tJKe4N1ZFbyf4XD9r284/s3ul7nR+RJqqI5QChH4mG53w+sOInJ6mOo/+gHUB45u2KbfuErn5z6Pnr+zB1e2i0hVuLyFKARvnUGWulhzx47ixG6Ho88IpfDGxghPnSJ86inU1BS60yU9/y7JG2+QXr1KevES3Zdepv388yTvvINu7Y4jyuFwOByOg461tnB0N5ukFy8iRIY/M4nQScnVnSgfIySJ8gl0RprnZLpoNvN6Dml5N8LcYERcxDsPUIS57Qm0dpsR5jNeh0CUHzh/5cosAB8Z75BNnSxtC+OXCLK3CfJnydidODJrDLfPXiiNjRydxa9G/TlBrosHciT4/Y0UHGQsCVYkSFsrIvrNyJaOU/R05xjpFx/JCAToUk+3xevGLHUzfCVohD5TUUg98MiUxUpL6puHrtmI2y2WF64R1YcYnppheHKa8cNHtnTdDofDsVtUh4YZnpqhMT6B5wcsLVxzi98dwD2X9+R9XN7L3f3l8hbWouIYoTVZntH0BJmADIMvBHKb99FWFEK3Fh7CGsSOdXdXivsiW8WKHDsA3d0Akx88g98oO3WvvfAyOuvf/Xi1U3YyZ8EQmVfFk/Dts+WvwwvzIQcpkTkWPi+LI+h179MzdoHxbSZZaWF4zT9Hl/LXcNQO8WR+tK9mV9Xr7079OkY8uL97Fak8gmoVoQRZp0ueFk7vpFmONfeUoB56GArBO801i50MbSwj0fs5VP+hDce+0flzbum/QAQBslqBXGPTxyPOWkQ+0X//nQQ/+JENC6nt7Rbd//UPyb6xe3Vge4IQhcNb+mAy0DHovIg1N4/H+8Cxuzix2+HYQWQQ4E9NEZ05Q/jEE6ihYfTtRZKzZ0nefpvs6lWS8+fpfO0vaH/ta6SXL2PSgx/p4nA4HA7HTpG8/TbZ4iLpxYuQJfgzYwibsNbVDdD1o6JHWCpkmqCNJTOmiDAXIIREClVEmJsMS4YcIFc3gDYGay3WgpBbnTy0HPGapZEv3h7h3U7xtfruUx5ZZaS0vdH6LQCa2e45aZcvXyfrlB0GE2dO9OfgVgOmcHWrXmf3Y4DFYmW710MfIc0IYkuPhwZpevHleGQyLKJGpST3PVSvpzvoxqx0UqSAkUrAcOgzGobkq0K393ChO+m0Wbp+jbBWZ3h6hqGJScaP9Mnd73A4HDvM+KEjhLUaI9Mz6CyjefvmXl+SY0CQEg7dx+V9p7P/XN4yz5FphszSwgXqK1Jr0UAktit3gxYeu+LuNsMIAoT1sAyGG1V6HnOf+lBpLO90ufHNN/p2jjBZROqyILvq7v7kuijzO4nizcX7u4b3K8uiwutitjQmgPfbq9Ts9hY9ZCLnVf/chsXC02aM43r2AXttDT9rIa3u9Xd7xNHYe75eSIlfqSCDAJ0kZN0ueZoQr6xg1iR5qZ7gbbE0k5ws19xpF4L3aPRB5up/bcOxFzp/xlLlDYTvge+h17nGDzJCCILveYbof/zLiPq6JIRMk/z6cyS/8xfYXUxL23VWY829qFjUkceF0J13IO/iXN6OfuLEbodjl5DVKv6hQ0W/97FjCN8nu3ad+I03SC9cILtylfjs2SLm/OWXyRYWeo4th8PhcDgcj0I2P0925Sr51auYdgd/ZhTpyeKBao2r2yCIvYBEBQhr0UmKtZZcW/y7Eeb+vQhzETNoEebWgrEGY00hzm9x6nBYpgyp8oTLL10uJlumo4zRo+XoNZXPU+k+h9QjGDO5tYvfArfeulD6uDoxQnVipD8Hzw0gipnmx8jVjehgrUHYOsKESHv/Tr+HoWwOQqKFj5YeRnilnm4/1/hJSqeTkBvLcNWn6immKhFaGayEzLM8rLIw7Xa5c22eoFJlZHqWxtg4k8dOIB6jyHmHw7G/EVIyfeIUflShMTZBe2mJpNN++I6Ox4aD4vKWSYzQBpUmZAK6nkdiNRaIxPYWFZpeXYoRXk/s3hmhRNgK3HV3Z1gGw5gydGyO+uGZ0titb50lXlp5wB6bQ7DR3d2tTmOBo0Oaw41yn/NBijJf5boY5hwTpTEfw4fsZXy7va74WCa86p9Hr0slOKJnmNUTD9hr8wjAX9PfnXvVB/Z339tH4IchXqWC0Zqs00HnGfHKMvma6g0lC8EboJnkpFqz2E7JtWEs+jCztc9sOPZC+ucsBW+iKhGkGTbb3tdxv+E9MUPlZz6LPLrxe5x9+S26/9sfY5YHozJhxxCyELylAp3e+y/rwA6ldDgeP5zY7XCso8s1muG7JN4dbD9zZHoIKVHDwwTHjxM9/TT+3CFsnpNeukTyxhtkV66QXrpE/NrrtJ97jvjNN8nv3HERZw6Hw+FwvAf5nTvEb71Ffvs2+e1F/NkpVEDv4ans6o79AIMgvRthbshM4ZAOVCGcSemByrAYjOgibDhQEebGaLBgjUVIyVb7uo/4ZVf3lW7In90qVv7/5eOauFF2GTSan0Ng0PrJLZ9zs3RuL9G5Ve4065urGwtGF65uIYq+7scAi8aILpIKAg9pRrd0HEmGtJpc+FgkOWG5pzvLUFqjOwnd1NCIfCKlmK1GIMEoyJXBqPe+z03jmDvXrhJEFUZn5qiPjjF1/KQTuh0Ox74jqFQZO3SE2ugoYaXK8o0FjFvk7ljDQXB5C0DFXTAWmWV0PcgExNYggHAb9TsAWhb3HUbIYtHdDiAQSDOEICzc3WIwhCghBHOf/lDv/r/AGsP8cy/1bd6w0rle+jj3a2R+A4BPrXN3f3MhID6AuuV5McF1GqWxKhkftFcQdns/gy3Z4Q3vwoY551P5YSb0yLaOvRZpDUHaRKuQXEXv2d+9FuUVseYIyDptdJaRttsk7fbdWHMlBY3QQwCtJCfThjvtjEwbxisfZbb2/RuOe0M9z1L1PCiFeYzc3avIkRqVf/h9eJ98csM2c+Em3X/zB+jzN/bgynYRAagAZAAmv+fyTttgBqMuwrG/cWK3w7EGaw0xN8hki9i/SYtzmB1cvSk8D298nPCJJwhPn0aNjaObLZJz54nfeov06jzphQt0X3yJzle+QnL+PKYzGDfYDofD4XAMCqbbJX71NXSzRTZ/FW9iAq/mFSLmuq5ugI4XkSsPIwRempBrQ6YNnhQIIZBCIZFYFWPIsOQDF2FujcFSxJjLLQp+AZppVb6v+JUrsxgESliePTNb+roJ06Te/r3i/NnprV/8Jrn1VrnLzK9GDB+ZecCrN0mv9xxPFf89JuKpFS2wAmwVaRoItvL+NiiT9ybNJNn9erqNwevEtOKMyJdUfclMpYLnSbSyaGnIHyJ0Z0nCnfkreEHIyOwctZFRpk8+UZrkdTgcjv3E8NQ0lUbR4W2NZfnGwsN3cjx27HeXtzAGlcQInYOxtDyJwZJYg0LgbWPRpMHDItZEme+Uu7sK1lvj7h6MjtloZIiJ95cFs9aV66xcnO/L8YN0BZWXnxE6teLe+9tnEqS4995LjeAbCwfP3Y0QvCbmWCYqDY/S5Rl7fds/f3fUCm97l8qnRHAmP8aQ2Vra0v1QJsXTXTK/hhH+Q/u7716LlPjVKtL3yeOYLI7RcUzSvBdrLnsOb4mgFeek2nCnnZLlhvHKx5mp/pUNx70ZPE9r5Ao2TR/LNFPhKaL/7tsJ//Yni2fPNdhmTPd/+wLpF984+IY35d0zI+Qx6Kz4N+/gYs0d28HNEDgca7AYwJKrFol/m4wlVniLlMUdP7eMIvyZGcIzZwhOnkRWq+S3bhG/+RbJuXNkV66SnDtH+ytfpfONb5BeuYrNBuNG2+FwOByOvcLmOd1vvYJptcguXUTWG3jTE4Wj+z6u7lxIUuWTKB9lDFmabYgwl9IDLFYlaLoMaoS5NfZuv/hWOOS3WFv1HWvJb85PA/CJmZRs7Ejp9fXW7yJtF6sbYPokNj+ErBOzdPFaaWz8yWP9EzpzXViokOAdrM7BB2FFghUp0tYR1kOY4a0cBc+md3u6cxlghcRISe7d6+kOez3dQsBQ5DMeRNQCRa4sRloyz75nQECepizOX0F5PqOzh6gOjTB9ygndDodjfyOEYOr4SYIoYmhqmrjdorOyvNeX5RhA1ru8D41UaOwjl7fIMoS1yDzHKEnb5mgsOZZASLbc4C0glz4WD7tL7m6sworBqR2Y+sgzeNWyEHvt+Zcw+fa/FgKotsuLcDqVIsp8KLS8b7w8F/n8AYwyBzBC8pI4TEw5+WmOZY5ze9vHX1CLXFDlBQoSyTPZSaomesBem8fL2kijSYPGI/V3r1LEmkd4UYTJM9JuB51lxCsr6LR4D0gpqIUKKQTtJCfTljudlCQ3TFQ/wXT1ezYc90b1qzRrl7GPobt7Ff/jp6j8v/4qYmzdwgZjSf/LN0h+7TlscgAjE9YiRC/W3AOzGmvec3nv0O90x8HHzRI4HA9Ay4QO82Qs0+YSbS5g2PlftkIIVL1OcOQI0dNPExw9ClKSzs8X/d6XLpFevkJ89i1azz1H95VXyW/exJrBfshxOBwOh6PfWGuJX38dvbJMcuECKI/g6FFE2nygq7vrR1gEmfLwdUI31aS6HGGupI9VGdYajIh7EeaDg7UGY4p/ixjnzV+dwHLYa5XGfm9hgqWsEHy/8/3jWLlmtbnNabT+U/H/+vSWzrkVbr99seScEEoy9sTR99hjE1gDmGJluRQbVtcfRCwGK1oI6yMIkWYEsYVHQmULR5kWHkYoNH4vvtxHGIOXa/w0Je5mRU935DPkeYxWfDJlsdKS+ubRhG7lMXboMJWhIWafOI2UB//75HA4Dj5eEDBx7ASVep1KY4jmrZvk6WB0AjsGj1WX99RQxPg+cnkLQKRZ4e62ltRTJNaQWoNhe3HmpnfvsTvuboW86+4eDBFGBT6zn/hgaSxttrn58lt9OX51XZS58SKSsKi9WR9lfvaOz83OwZQYUuHzojhCvu6m9Ql7k0nbfMBej85ltcA1eas05uPxvuwUge3PQlwB+NkKCEnmD5F7VVK//sj7K9/Hr1bBQtppo7OUpNUk7XSKlDEpqIcKJQvBO80NS52UJNdMVj/NVPUvbbigm6PfYEWee6znstXhMao//VnUmdkN2/IXL9D9X/8Qc3NlD65sF1mNNVdhMX+Tx4XQna3Gmg/m3zbH4HIw/xI5HH1AGh9FRMxNEm6QsEiTt8jY/s3MoyKkRI2MEJ44QfTUU/jTM9g4Jr1wgeT1e/3e3Vdepf3c88RvnUWvHPA/hA6Hw+Fw9EjPnye7dYvs8mXIc4LjxxHCPNDVDdD1Q1KviD4kSTDWkuQG3xNIKZDCQyCKCHOb9iLMB8utYEyRRGOMRW5xknBSdYlkOTruly7PATBby6nMlAXlWucLeLqYiLHZmS2dc7MYrbn9Tjneb/TEYbywTy57rQFR2Kb8x8PVjehirUXYOsJESLv5mERJjrQaLYOip1uEWFEI3XCvp5tOQjvNqYUeVV8xWYmwXk/o9t5b6NZZxuL8FYSQjM4dplIfYvaJM0jlhG6Hw3FwqI+O0RifZGhiCqkUyzeuH/zoUseW2a8ub5kViziE1ljPo4Mmt5bEFvehkdji33YBWgZ3I82l3ZlIZIFE2iG46+4enGrBkSeOUpuZKI3dePFN0ub2Heh+3sZPy/Of3WqRAPWBqZSqV36/feXaYD0v9ZOWiHhVHCrJbgJ4v71Kw27TnSzgHe8yt+VSaTgk4H3ZKTzbn3tfaQ1+2kSrgFxFJOEIWj76M5WUqog193qx5klCHsckzSbGGETP4e0pSTvVZLlhqZMRZ5rJyncyWfl0+YACbox9naZ5uy+f335F1EKi//v34H/f+zdsM9eX6Pzc58lfvbwHV7bLSFW4vIW4F2uexZC3cbHmjs3gxG6H44FIIqaImCSnS5crZKzQ4hwdrvYiz3cP4ft4k5OEp08TPvkkamQEvbRM8vbbxGfPks1fJb1wgc7Xv0H7K18lvXABEz++kTAOh8PhONhk16+TXrxEfu0autnCP3oUGYaQrKxxdVdLru5UeeRCkSgfX+fEcU5mLNpYwp6IpqQHwmJVjBYdQCL6tKq+Xxij766C32qc8xG/PHn1zaUGrzaLFf6f/UAD45cnrBrN3wTAmgaYjavPd4KlC/PopOxymzhzvE9Ht4XYrXo93Z738F32OZYcI7pIKgjrIc3oFo5ikCZDCw+LIpchVgi0pzBK4acZyhjCbsJyN8NXgkagmIoqKF9gJOSexb7H21bnOYvzVwDB2NxhKvU6s6fPoB6D75HD4Xj8mDhyjLBaZXhqljSOad/Z+Qo1x/5mv7m8hbXILENmOQiBVYoOORpIrEEC/hanpzXFPbqRXi/KfIfc3aZW3DvZSlEHMyDubiEEc9/xkdLzjtWaay+83JfjV9a5u4soc4Ev4eOz5Xv0F+bDQXvr9ZWbosHbYqo0prB8yF4mtNusmBTwpneBFVFO3arZCs9kJxC2P4layqR4+dr+7vFH6u++e5lC4EcRXhRispS000GnGfHKMjrLEEJQDSR+T/BOcsNytxC8p6rfzUTlk+sOCNfrz9OUF/ry+e1XhJSEP/BBop/6bojWzTvEGfF/+HOSz7908F3wQhQOb+mDyYr5HJ1D2io+djgeASd2OxwPwaNOhUMIArpcJ2GRhBs0OUvO3qzolJUK/twc4dNPE5w4gYwisusLxG++QfruebL5q8TvnKP9/At0XnyR7No1bB96exwOh8PhGAT08jLxm2+iF2+T37yFPzuLajSKh6CSq7vcddbxIowQ5NJDpgmZNqS5Rknw7kaYe70Ic4sRCdIGAxVhbiwYU3R2S7m1CPOaSBlT5fjBX75SCNhKWI4dLfdxR92vEWTnig/y3Ykwt9Zy6613S2P1mQmi4UZ/TmA0YAuxWylK5eUHFCtaYAXYKtIOIdj8Ig5lMxASIzy09DHCw0hB7vm9nm5DGBc93QBDlYDRIKAWKrSyaGnQ6sEzoUZrFuevYIxl7NBhonqd2SefQj0mfeoOh+PxQyrF1PFTBJUK9dFxWou3SePuXl+WY8B5T5f3yuC5vGWaAvauu9sAHZtjsKQYfCFQW7m/7HV3GxQWkOy0uzsCKwfK3V0ZH2H8mVOlseV3r9C8svCAPR6daqd8DKsKgRQ2Rpnf7CreXjrYCxMvMsZVhktjETkftFeQdns/c0ZYXvPP0xFl09KwbXAmP9a3NGcvbyNN3uvvXhW8N4fyA/xKBWssaaeNyTKSZpOs18FdDSSBJ+kkmiQzrMQ53VQzXf1exqOPlw8mLNeC/4uWvHSfMz1eeM8epvozn0XOjGzYlv3xq8T/3z/DtpONOx4kBKB88MJi4VYeg8kh74Du4lzejofhxG6H4xGQeERMEzJOzgod5klZpsnbxCxg96hDQgiBajQIjh4leuYZ/EOHi5uNS5dJ3nid7PIl0suX6b7xBu3nnqP72mvki4suGs3hcDgc+xYTx3RfeRXTbJLOz6PGxvAmevF97+HqtkDshySej7CWrBtjrCXLLVGvq1kJH+5GmCdYNGLAIsytLkRaay1iixHmR/yya+BW6vMHC8XX8DNnAnR9pLS90fyN4twWbPrhLZ1zs7Rv3CZeKrvPJ86c6N8Jcl3MFIvHI8LcigQrMqStI6yHMEObPoa0GcIacuEX8eUEvZ7uoNTTnXQzktwwVPEZUh6jUUDe6+nOvEcQurVm/NBhomqd2dNP4QV9iq13OByOASWq1xmdPUR9bBwvilheuN6rLHE43pv7urzN4Lm8hTEIrRF5DlJipSTH0rVFpLmm6O/eytLDwt0tMMJDmpyd6ngt3N0KSXWg3N0A0x97FhWVn1nmn/smRm9P/Pd0TJAslcY61WJR7PGhnJla+WvwwvxgPTf1HSF4Q8xyh3JN1jAxz9r5bf+85ULzqv8OCWUX66QZ5aQ+1Je3tgCCtAlCkPkNcq9C5m9+MbFUHkGtilCSrNMlT1Kyboek1QIL1UAR+ZJOqokzTTPJaSeamdr3MRZ9bN1FGa4Ff0pbXtn+J7jPkRMNKv/oB/A+fHzDNn32Gp1/8wfoK7d3/8J2G6EKwVuqnsM7hTztmRp2ZlGT42DgxG6H4xERCHyGqDCHAGKukXGHLtdo8Q6avV1dJZTCGxsjPHWK8KmnUJNT6E6X9Py7JG+8QXr1KtmlS3Rfepn288+TvPMOutV6+IEdDofD4RgQrNbEr7yCabdIL15CVqr4c0XP9MNc3bEXYBCkKsDTGUmuSXODEOCr4pb4boS5jNGiixjACHNtDNYarAWxBTeyh2HWK/f4/cbVGdJervQnjtZL2/z0HaLk68UH+ZNgR7Z03Zvl1psXSh8HjRqNucn+HNya4r9VR7d3sHugLQYrWggbIAiRZhSxycdAgUHZHCN9QJLJCHo93ZZ7Pd2im9JKcqqBouYpJish+Dy0p9sYw51rV9FZztjcYcJanbnTT+EHB3zS1OFwOHqMzs4R1euMTM1ick3z1o29viTHPmG/uLxlmiKKeCJsr5okwZD2+rstW+zvFgItPUxv3511dzfADp6724tCZj7+vtJYstTk9qvvbPvY1XVR5nFlEiMUQmx0d3/9ekBywHUoKwQvi8N01iUkzdDklL217eMnIuM1/1wv6P8eh/QUh/XUA/baHIK1/d1VknB4U/3dd48jBH6lggpCdJqQdbvoNC1izXNNJVBUAkk3NcSppp0Wgvds7a8yGpUXUFthmA/+hLa82pfPcT8jQo/wJz5N8MMf25A+Zu+06f7bPyL72rk9urpdRAhQAcig5+7uubzTNpgD7nB3bBkndjscm0QSEDGHzzBJT+wuXN5nSRiM1VUyCPCnpojOnCF84gnU0DD69iLxW2dJ3n6bbH6e5Px5Ol/7C9pf+xrp5cuYNH34gR0Oh8Ph2COstcSvv0G+vExy4QJISXDs2L3O6vdwdQN0/YhcKrSQ2G6MtZDkBl/J3ksFUiq4G2Ee98TBwcHaQhQ01iKE2LRgCTDrtfHEPVuAtvDrVwqHxvcMNcmOHC+9fqj5H+9+DWz6bVu99E2RNNusXC3HJk6cOY4QffpuaA2IYqW4f7DjFgEQnSIJwNYRpoK01U0ewKBMihEKg0cmA6yQ5OpeT7c0hqCbsNJNUVIwFHpMRiF+IB/a0217QneepIzOHSKq1gqhO4ruv4PD4XAcQIQQTB8/RRBFNCYn6aysELeaD9/R4ejxXi7vlQFweYs8RxiLzHOsUtjefV3R322JrUFQOLw3iyYA5Bp3984gTGOdu3twlN2xMyeoTI6Wxha+8RpZe3u1CJXOQrFItIeVirhSJEJ9+2yKWGM3jrXkpRsHP5EnEx4viSNk657FTnKLGbu87eO3ZZfX/fOYdZHNJ/QhpvToA/baHMpkeHmHzK+gZUC3MoHdwrOlQOCFAX61gtGarN1BZynJyjJZHBP5ikqg6GaGTk/wbsY5s9XPMuK9v3QsKzTzwR/Tkdf68jnuZ4QQBN/5FJX/6fsQjXXPRLkh+c0XiH/7K9h8cH4H7RjKu2dkyLugs0L4zju4WHPHepzY7XBsAYEgYJQKs1hyulwlZYkOl2nxLmZd5MxeIqtV/EOHin7vY8cQvk82f434zTdJL1wgu3KV+OzZIub85ZfJFhZ6EakOh8PhcAwO6YUL5Ddvkl2+jE0zguPHET1XSMnVLeQGV7cWglgFpMpHWEMSF33dxkLorXF1IzCqi7ExFjNwEebGFH+frbFbcnWD5Yhfnjj/bzfHuZaESKP5zPHy5JTKb1Dt/Emxp54DM7el694st89eLH0sfY/RE4f7dHRbiN1KFQsivIMtdltyjOgiqRSTs2bzE2TKFpPGWviF4C18jBDkvo/KcpQxhHFCO07RFkYqPiO+Tz30ez3d9oE93dZa7ly/RhbHhdBdqzN7+mmCqHLf1zscDsdBxo8ixo8cozo0TFSrs3xjAZ0PTlSyY/B5kMt7cQBc3gIQWYrQOdh77m6AttUYLIk1KAT+JpebWiHQonB3i17Zyk5QuLvrPXe3gAFydwspOfTpj5TGTJZz7avf2tZxlckI48XS2GqU+VhkeHq8PP/5/EGPMu/RFiHfEoc2SG3P2GsM2+2/L5Zli7PexQ3jT+bHGDGbjx2/H17eQZqcLGhgpLel/u5VpPIIqlWQ4q7DO+sUseahElQDRZIZOommk+U0k5y5oR9iyDxZOo4VmqvBF+jK6w840+OFOjlF5f/9WeSJjQln+Vfeofvv/hvmTvs+ex4wVud4pAcmLWLNdQZZG6y7T3Lcw4ndDsc2UERUOIRHjYRbxCyQcocmZ8nY/mq+fiKkRA0PExw/TvT00/izc9g8J710ieSNN8iuXCG9dIn4tddpP/cc8Ztvkt+54/q9HQ6Hw7HnZAs3SN+9QLZwHb28QnDkCHKt63Otq9urbHB1x16IhaKvO0kxxpJkBl8JVE80vhdhnpCLGIEauAhzY0wRSW0tcgsu5zGZUJPlh8FfvjwLwI8vvkj7ox8vbWu0PofoTRbadF232g6hs4zFc5dLY2OnjqD65cA2BrCF2K1UMSt8gLGiBVaBrSLtMILNfR0lOdJqtAywCDIRruvpzvHTjDzO6KaGRuTTUB5j1RDtrfZ0339i3VrL0vVrpN0Oo7M9ofvJM4TVzTrPHQ6H4+AwNDFJbWSM4alpEJLlG9fdM7lj0wyqy1tmGVgQWmOVd1dYM1g6tnB451h8Idlsg7cWRdWKEQppd87AUbi7JZIKZsDc3dXpcUbPHC+NLb19kfb17cVrb4gyj8bRsnhO+uS6KPM3bvssxgf7/nqVRVHnLTFdGlNYPmivENntm6BuqiXOq3KPtUTwdHaCmtn+wtC7/d0WMq9B5kVk/tDWjyclfrWC9H3yJCGLY/IkIV5ZwReWWqhItaGTGLppzkqsmav+II38ROk4VuRcCf4bXeHqPADkUJXK//R9+N95ZsM2c+k23Z/7A/K3H4PFAYIi1lwFxdzPaqx5thpr7u6VHE7sdji2jUASMkHEFJqYLlfIWKbFu3S4PFA3vqsIz8MbHyd84gnC06dRY+PoZovk3Hnit94ivTpPeuEC3RdfovOVr5CcP4/pDM6KVYfD4XA8Puhmk+TNN9BLS+QLN/BnZ1FDax7CH+LqBuj4EZnysAjybofcWHJj77q6BRIpPFApxmrsAEeYW1P0jIstRDyud3WfbVV54c4wR5oLfOLZyZLwK0yHeut3i3ObYcif2N4n8IjcOX8Fs9bFJmDi9PH+nUBrQBbvlQMeYW5FjBUZ0tYR1kds2gViUCZDC6/wSMkIhCh6usW9nm4ZpzTjjMiXNHzFeCVEPKSn21rL8sJ1kk6bkelZonqdmSfPENXqG1/scDgcjxmTx47jRxVGpmdIOh06y0t7fUmOfciqy/uJqcFxeQtrkXmGzHIQYNW9e7Gs5+xObRHevNk4cysKoVsLD2HNDrq7Va+7u1JoK2J7MeH9ZubjH0AG5QW7V7/8TazZ+ve70r1ZiEurCEm3UvRHf3gqJVJrYs4RfPXawY8yX+WKGOMS5eSkEM2H7GVUHxZdXPVuckWVRV8PxfuyU0R2+19ngcHPev3dXpUkHCJXW3fnCwR+GOFFESbPyDoddJ4Rr6wgdUYtUGTa0E4NcZbTFD4z9nupp0dLx7Ei52r4R8Ri+z3oBwGhJOEPfxvhT3wafFXaZlsJ8f/+J6R/9trjsThOro01j12suaOEE7sdjj7hUaPCYSQhXRZIuEXCLZqcJWdwI0VkFOHPzBCeOUNw8iSyWiW/dYv4zbdIzp0ju3KV5Nw52l/5Kp1vfIP0ylVsNjgx7Q6Hw+E4uJgkofutb6FbLdIrl1Gjo3iT6yK8HuLqzqQikx6pChB5jk5zklwjBXhqbYQ5GBVjbTqQEebWGqwtRMKiu3pzUnwkciZVeTLul6/MIq3lH5/9r9z+vh8obau3fw9pW8W504+yG48N1lhuvXWhNDZ0aJqg3ienrzXFe8VTxadzgCPMLQYj2ggbIgiQZnSTHe8Wz2Z3Y8tzWUSYr+/pDns93VLAcOQzHoZEoXrPnm5rLSs3F+i2mgxPz1JpDDFz6jSVen8iGR0Oh2O/ozyfqeMnCatVasOjNG/fIkuSh+/ocNyHejRYLm+ZpoBF5BrreSUvXhdNZi1JTySMhLrvMR7EWne32HF3t+q5u4v6o0HBr0ZMf/TZ0lh8e4nFN89v+ZjSaipxWXRcjTIPFXxsJi1te34+3OuK+F3lrJjmFrXSWIOE99v5vvx8vauuckPeKY0F+DybncK323+eWe3vzr2ivzuOxjFbWFhdOqbvE1RrICDrtNFZStpuY5OYWqDItaGdaJJM01YVZvLvptqdLR3DiIwr4R8Si9vbupaDhP+RE1T+0Q8gxtctELaW9PdfJP7lL2Hjx2DOXoherLlfmB90UojeaQv6kKrg2L84sdvh6CMSRcQ0IePktOhwlZQVmrxDl+sDdQO8HiEEql4nOHKE6OmnCY4eBSlJ5+eJ33iD9NIl0stXiM++Reu55+i+8ir5nTsPP7DD4XA4HFvAGkP86quYVpv0wgVkVME/dKj8okdwdXe9ECsEmVKYOMZaS6Ytoa/uysVSeoW7RCbkdHqOjcESQk0vftsYi9zC5MNhr1VaB9DMFb9zbfL/z96ff8mZ5ed94Ofe+24RkfueSKwFFICu7q6l9+qFaopbi2RrZImyZNkzmrF15OMZaWTJlvk30LKk4YxGPtKRfaxt3JRIiVaL7Ca7STbZ7EL1wqrqWrEU9lyRe0ZGxLvde+eHNwBk5ALkEpnIBO7nHBxkvHtsme+93+/zPPzZ639Mz2dfwoRrXjub01n9t8WPNoLsY3u8+u1RnbxHutrqJDNw8cwWW+8CrQFR2Jf7h8uivu2IGliLsBWEKSPtzqwOpc3BmiL/EokmaOZ0e6j8YU53I8nJjaUr8unxfDoj77E53dW5WeorK/QMjVDq6GT4uXOUu7rb8awdDofjqaHc1U330Aid/QN4ns/yjLMzd+yerVTe87WDV3kLYxC5RuocpNgQKdMgRwOJNUjA38HUtREKg8QID2kNYp/m4IqxQsehVXcPfPQcYW+rHfX0D94lj3ffNLPeyjwNex4ogNdbmU/XPG6tHK6x1H5iheAdMcYqrUrrQVY5b9tgxS3gqnebJdHq0lW2ES9kzyE36y7dIUV+d9bM7/b3lN99n8LWvIz0fPI4btqax+halYov0caymmiSIKCWSYbrP0Gp0WoLb0TKePhNErGwxVmePdSxXsp/++dRL4xtWKffvkP9V7+BmTlc0ar7ggCUD14IxhbqbpsXc0OmgVN5P5u4YrfDsQ/4dFFiDIGkwRQpi8RMs8qHaOInfXmPRUiJ6ukhPHOG6OJF/OERTByT3rpF8v4HZBMTpHfvFDbnP/wh2cw9N/B2OBwOR1tJLl8mX1wivX0LhCQ4dQqxPl85WW7mNW2u6rZAw49IlI+1kDcaJNqChVAV20ohkUKBl2CMxsgUYQ6Xqhsors0UltAbXofHILGM+asty35jaoiulSX+z9e+zfSf/Qst68r1P8DTM8WD9CXgYKwI567cbHkc9XZRGexr09FtUeyWqtkJ/vROwFlyjIiRVBDWQ5qeHe0v0CibY2ShjsplhBWQBT7CWrwsx8sybJKxmuRUQo8u36evFGI8HpnTXZ2fpba8RPfgMKWubobPnKXS07vptg6Hw/Gs0z92grBSoXtklDxLqc7PPulLchxx1qu8j3U/GZW3zFIwBozBrrsnM0DN5hgsKQZfCNQOHI209LEPsrv3x8oc1mZ3RxjROFTiFqEkY1/4RMsynaRM//DdXR8zaswhzBrFpBA0ykVh8vmenMFSq5L+tcnDN57aT3KheEucIKXVjeAUC4zZvQuFrLC8799gdV1jRZetcDE/vee44rX53anfSa4i0mD3+d0Pjyvwo4e25mm9hs4ystUVImEw1lJLDFkU0SBgcO6zlNL1Be+kWfB2gqv7iFJA9H/7MsFXXtpg+GbvrVD/1W+Qv33niVzbgSNUUfAWspgX0hlkaVH0PoTRso79xRW7HY59QuITMUpANymLNJhsqryvknB0MkeE7+MNDhKdP0/4/POonh704hLJ1WukN2+QTk0Rv/ce9ddfJx0fx+b7N5hwOBwOx7NBevs22fQM2fg4Jk6KQvd6Ja5JIWsUgxi5uao7VT5aSBLlY5IUayxJpgk82bQCB0+GIARGNtAkgEEcUHF3uxhrMaawMpe7sDAf9moEonUC7l/dGeZvvflvWf3il8h6W4uNXdWvAWCtwmav7Onat0tjaYXVmVaLuoELZx68T3umqYzHk4Wye4cNA0cFi8WKKsJ6YCOk7Uawk8J+kdNdKKM8Mlk4I+S+jxUCP81QxuDHKUuNjMCTdAce/VGIDB6d011bWmR1cZGu/kHK3d0MnjpDR19/2567w+FwPG0IKRk6fZYgKtHZN0BtaYmkfngj0hxHg8Og8hZ5jjAGmedYpbDr7vc0lobV5NaiKfK7t3tHaPCwiGaxW7Nf6j6B11R3lw+lurtjbIju5060LFt4/zr12d0VDAWWUr1VpXzfylwI+Nw6dfcPpgKyw1P/PxAaIuDH4viGT9xFO02v3fvvbi0M7/kfEtNqG99vunk+P9mGgrfFz6oY6ZN7ZdKge0/53WtRvo9fLr4rab2OzjJ0o0ZoM4y1rKiAHEhlyODMZyjpkZb9tYgZD79JKp4BxfI2EVIQ/MzHif7an4bSuvmLJCf+539E8vU3sAfo3PHEEAJUCDIo3P/yGEwOaa2YN3I8MzydszwOx14wCuGVkNJvw42CIKCXEsewGBqMk7JEnXFWuYHhaOVIyFIJ/9gxwosXCU6exGY56Y2bJNeukU1NE1+9Su3SJZIbNzCp+2PicDgcjp2Tz82RXL9BNjODXloiOHECWdrEgvl+VvcWqm6Auh+hpURLhY5jcm0wFkKvuAWWQiGlhxRFx7gWjebE1eFS/RqtAYuxFrELC/MTXquq+7vzPZx//21enLvO1F/4Sy3rwvhPCLKrxYP8I2DX5YHtE+uzur0ooOfU6OYb7watAVl0fvuH6/1tKyLGihxhOxA2QJidvX/K5iAEWviFhbnwyJVCewo/u5/THRfqL6C75NMbBESRwqitc7qTeo3q3CyV7l4qvb0MnDhN18BgO56xw+FwPNWE5TJ9Yyeo9PYSlsos35tp3hc4HHvjSaq8BSCzDKE1WLtB3Q2QYEitIbEayw7yuwXkMsCisEIW9zb7hDBdCA6nuhtg9NWXEF7r6zb5vTd27cxYrs+0PM6CLjKvDMCro63F7noueXv2cDUQHwRLosz7onUMI4GX7Dhlu/d50lTkvOt/SEbr53rE9HNqXYF4NyiT4ec1cq+MbtqZm+1+9x6DlKqwNVeKvNEgTxJMEuNndbCWuheQBwFJCsOLX6SkWxXeWjS4G36DVKy05XqeFryLxyj/7Z9Hjm10y8q+8z7xP/09TPXwu8zuGQEo76EIIo8LlXfeKP4dst/Pjv3BFbsdjjVYaxFWFhPmUjVVMXtXFClCShzDo4OEeWJmSFlkhSukLO39wg+YBzbn588TPPcceB7pnTskly+TTU2R3LhB7bXXiC9fxtRc57nD4XA4toderRG//z56eYl8ZgZveBjVvUmW7zZU3QZB7AWFqjs32CQhyQ2eFCjZVHWrQtVtvQRjM6xIEObwTcoYY7DWgC06uHdCl0zoVq0TK795ucx/9d5vsfTJz9A4cap1+6aqG8Cmn9z9Re+APE5YujnRsqzv3Cmkas/ECpiiMcJTxejnKbUwtxiMqCFsiMBHml7EDoZ7khxpNbko7D9zsS6nWxvCJCFOcpLc0FXy6VE+XSUf84ic7jxNWZqeIihX6BwYpGf4GN1Dw5tcgcPhcDg2o3tomFJnkeFtjWX53szjd3I4tsGTVHmLNC3ubfMcq7xNtSZ1NNpaYmsQFArv7VCouzkQdbcwlTXZ3YeroBR0lBl+5SMty+oz8yxdu72r44XJAlKvK2o31d2DZcP53lZBz2sTz5aV+X2mRA83aXUv8jG8bO/i2b03KzVkwnv+DfS6z/VJPcqoHtjz8VXeQJq0rfnd9xFC4JdKqDBEZylpvY7Ncvy0Th74NHKL9gMayynDjZ8m0kMt+2tRZzz4Btm6/PJnHdnfQelv/hzep5/bsE5/OEPjH/42+vbRcZndE6I5PyRVMW+km/+yGuDcaJ92XLHb4VhL86+3EBKpArACYTyEUW1QeUtCBogYRpNQZ4KMZWrcosYd7BHNkVAdHYRnzhA+/zyy0kE2NV0UvScnSW/fofb9H9B4+2300tKTvlSHw+FwHGJsmhK/8zZ6dZXs7jiqpwd/eIuC2DZU3bEXYBGkKiBPGhhjybQl9O+ruj2kUHjSR4ta08LcIuzhmpSxFoxpqrql2FHxEuCE1zoRcLce8MrvfZtynjD15//TlnV+dpMo/n5x3vw0mINR3s5/eAdrHk7WCCnof/5k+06gNSAK+/L1dvhPEVasFpPGtgNhyki7sQlkawr7ct3M6c5khBViQ043Sc5qklMOFN2eT18pwD4ip9tozeLUBEp59AyP0tHTS9/Y8bY9Z4fD4XgWEEIwdPo5/Ciia2iYuLZKfcVZuTrax3qV9+gBqLwLdXeKzIu5sM3U3QA1NAZLYg0Kgb8dQ3MBWgZF0VtIVBsKjFshTRcChSTEiPqhU3cPvHSBoKvV6Wfq9bfR6c6dJgUb1d2N8vCD6dLPr7Myf3feZyVpUyTREeNDMcg9Wl/3Cikv2nFEG75PVVnjsncLu26y+lx+grPZccQehFsb87tD0mCTBvQ94AUBfqmENZa0XsfkGZ5OyJWkoTyMNjRWMkYaP0NkWgv4uaxxN/gGmVjd4ujPJsL3CP/Sq4R/4TOgWucM7HKdxv/3d8kuXd21s8ORQgAqaNqa52tszetgksfu7ji6uGK3w7ElAmElAgFWIowHVu656O1RpswYipCYeyTMkjLHClfJObp/qGWpRHDiBNHFi6jePvL5BeIrl8nG75KOT1B/403qf/InZPfuPRt/WB0Oh8OxbawxNN59D12tkt66hQhD/ONbFMS2oeoGaPgRmfLILZh6TJIbpAC/OfDzvLDIg5aa3NYxIikszGmXmrg93LcqteZ+Xvf28dGMePWWZd/91iKfvHeV2tnnWXmxNY+7s/o1RPNGx6af3sNVbx+jDfPr1CU9p47hl3ZSqH0UFnLTzOgWT7Gqu3AmkFQQViHNRhu7R+3t2Yc53bn0sUIWOd2yNad7uZGipKA39OmLArxQwBY53dZalqanMNrQc2yMqKODoTNn25fD7nA4HM8QXhAweOoMpY4OSp1dVOdmybOjFYvmONysVXl3H5DKW2YZYBFaY73N1d0GS93maCw5Fl9ItpPgrSkaHAt1d87+qbt9hCkX2d1w6NTdUimOff7llmV5I2bmT97b1fFK9enWY/kVMr8TgE8OJwTy4btorOD704erkfjAEIJ3xRhVWp9/P3Uu2um2NJAsqGU+9O5uWH7MDPJi9jyh3X2Tr8ASpCtr8ru7yFW7xmcFUnkE5RJCCbJ6A51mKF+S5zmxlOhGTCMRDNd/ltC0KuVzuVoovHFuomsRQuB//jyl/8fPILrLrSu1Ifn1H5D82uvY7BlROCuvEEfAGlvzGPIaztb86cQVux2OrbAaK0yh7rbFBKkwCmHVnq3NBYqIYUIGyKlTZ5KMZap8SIPJQ9cJuhOE7+OPjhJdvIg/PIKurpJcvUp66ybpxCTxu+9R//73SccnsC5rzOFwOBxAcvUq+eIC6e07YCzB6dMIucVt6jZU3VpIEuWTKo88y5E6J9OG0FNFk6/0kUiU9EnFEoYcK9LDaWFuCwtza9lxXveYv8pa1/PaYsL573wXgMk/9xdbtpV6nkrtWwBYPQi6jcrqR7B8d4q80dpd3X/hTPtOYAxgClW3J5tF76cLi8WKajN+J0LaHsQOmjaUzcCaZka3QhOg7+d0pznSFjndq0mGttBb8un2fcqRh1GQbZHTvTJ7jzRu0DsySlgqM3LufBut6R0Oh+PZo6O3j87+QboGhhBSsTwz5RrJHW2nI/I4P9x5ICpvYQwiz5F59iBOcDMyCivz1Bo027QzF5BLH4PCQtPOfH+4r+4WNsCKxga17ZOm69QxOk+25kjPvXuNeHHn2cdBuoLKW5tp65XCyjzy4BPDrfFJr00+o8VuijHpm+IEybr78uMscYLFtpxjWs1zW01tWN5lK7ySXqTXdO762NLm+Nn9/O6grfnd9xFS4pdKyCBAJwl5XhS8UwlJkpLHKY1EMVz/OULT17JvJquMh98gp77F0Z9d1KlBSn/751FnNzrl5T+8TuMf/S5m4egK7naEEE1bc3+NrXkG6SpY1zT4tPH0zfY4HG3i/q2pFQYr7DqVt4I2WJv7dFLiGAJFg2lSFoiZoco1NIerG3SnCKXwBgcJL1zAP3ECm2akN26QfHiNbHKK+OoVaq9dIrlxE5umjz+gw+FwOJ5K0vFxsskp8okJTL1eFLq3sprepqq77odYIJU+utEg1RZrIfQeZnVLobAyJ2cZI4oBsrSl/XiKu6awMC+K3UKwI0WswHLceziAtdby7r98n0oWkwwOsfClL7ds31n9DQTFYM+mn2KDTHcfsNYyd/lmy7LKYB/lvjba5GkNyGLy9Gm1MBcxVhiE7UTaAGE6Hr9Pk/s53VoGxSMRYqQge5DTrQnjhDTVNFJDZ+TT7QV0lwOMt3VOd21pkfrKMl2DQ4SVDobPPo8fPLuTnQ6Hw9EuBk6cIiiV6BkeJY1jaosLT/qSHE8hSokDU3nLNL1/04vxt3bgidFk1pI2i9bRNopuhbpbYKTXVHfvTxFaECBMCWHLRaH7kKm7AY59/uXWZmJjmfzemztumBFAudZqZV4vPbQyf3Wdlfl41eNu9dltdkyEz1viBHrd2OqCnaHftqfYeMeb5op3e0OGt4/HR7OznMxHdv3R93QD9SC/22trfvd9BAI/DPFLJYzWZNagpCQV0KiukhtLnCiG6j9LYHpa9s3kSrPg3WjzVR19ZGdE9F//FP6XP7JhnRlfoP4Pf5v88uQTuLIngACUDyp8KJyweTGvZGL262+D4+BxxW6HY1vYdSpvWRS/rbdnlbfEJ2KEgB4yVpoq7xWqXCVm9tB1hO4UISVeby/h+fMEZ86AVKR37pBcuUI2PUVy4warr71GfOUKpu668RwOh+NZIl9YILl2jXx2lnxhkeDECWS5vPUO8fJjVd0ADS8iVT6Jscg0Jc41vicQQuDJAIFAKo9MLKDJMTJBmXLR1HaIuK/oNtY2Vd3bv74B1aAkHypYqm9M0HW1sAuf/uqfx65R2ArToKP2m8U5TQfkF9ty/Y+jPrdEY6E1c3Tgwuk2nsEWnxdPFqOep1BVbDEYUUPaEIGHMH07+BwbpMnQwsOiyGSI2SSnW6Q51Tgj8iW9vkdv5IO/dU53Uq9RnZul0t1Luau7abu7e1WJw+FwOB4ilWL4zDmCUomO3n5WF+ZJYzfJ79gf7qu8B7vCfVN5C60RxiDzHKTEPqK5s05hZ55YgwT8xym8hUBLH0NRRJfsn7pb2O7iXuyQqrvD7k4GX7rQsmx1YoaVmxM7PlZ5nZW58SKSsIjQudiX0Ru2vs7PsrobYEWUeE8ca1kmgBftBBXbnsaIe2qBt/wrNNY1WggEp/QoH8vO4tndjYX8tArWkPpdzfzunjZc8Uak5xGUy+B7pCZH+AqTZ6yuVMm0IUl8hus/R2BaG6NTuewK3lsglCT86ieJ/i9fgnBdM1E9Jf5nv0/67Xew5nD9vto3pCoEE0IUc0o6gyxxtuZPEa7Y7XDsgELlbRBWIJBF8dt4hdJ7D38XBIKAHiJGAUuDCVKWaDDBKjcwPB22Gqqzk/C55wiffx5ZKpNNTpFc/oBsaor09m1qr3+fxjvvopeXH38wh8PhcBxpTK1G/N576JUVsukpvKEhVE/PI3ZIi3ylx6i6U+mRS0Xq+eRxis5zjIHQU4BAqQApFVYk5KxiZB2BRBwyVTcUqm6wWGORcmeF+BN+9cHPeTVh/NfeKX6uVLj3Z77asm2l9lsoU2xvs1fggHLL5660qrr9Somu4xut1naNbmaRKa/I6n4Ks6KtWC3uQW0FaTqQdvuTicrmICRGeGjpYYTXzOmWD3K6gzhluZEhBfRFAT1hSBDJLXO68zRlaXqKoFyhc2CQnuFjdPYPtPdJOxwOxzNO1NFB7+gxOvr68aKI5Znp5j2Dw9F+lBIc7y1zdhOV99RKsmeVt6BQdwutwVist7W62wI1qzFYUgx+YR7+yOM/UHcLD2n2T91duOtETXW3PpTq7qFXPoJfaR3zTF56C7PD/F4/rxUF0DU0ysU9vBQb1d3fnwzJn/FfUTOii+ui9Z7Yw/CKHce37clPrsuYN/0rzMmlDet6bRevpBfpNI9oLN+CIr+7ipGK3K+QBp3kan/GzkJK/HIZWS6RW4uRINKY1VqdNMtJkoDB2s/hm66W/VK5xET4O2iSLY78bOO9dIry3/oziMHW1w0L6Td+TPy//SG28Yy4rgpRKLylDyYDHRfzBulq8dhxpHHFbodjF1hhsPAgy7uwNvfAyj3dNytCSozh0UnCPA2myVhihSukbcpzOQzIUong5EmiCxdQPb3ks3PEly+TjY+Tjd+l/idvUH/jDfLZWZdB5nA4HE8hNstovPMOurpKducOqrMLb/gxRc7tqrr9Qp0aoyCJSbXBk6L4p5qqbumRiHk0GVYkSFM+ZJruAmN0MXktdpbXXREZ/erhQH/m199G1IvH9372F9DRmkYBq+mq/pviR+tD+lJ7Lv4xpLUGy3dbVSED509tndW+G3LTzH4UT6WFuSUtPr+2grAewmzf/l2SIawmFz4WSU6IVhLtKbw0Q1pL2IippTm5sXRHPt2eTyVSRU632pjTbbRmcWoCpTx6hkfp6Omlb+x4m5+1w+FwOAB6R8eIOjroGRrF5Jrq3L0nfUmOp5zOTVTe2pi2qLxFliGsReoc63mPnFbTWBpWk1v7IL/7UffxVohmU58C7DOt7pa+x+irL7csy1br3Hvr8o6PVVqn7i6szIt3Yn2xu5pJ3pt7+u7Fd8oNBpiitdhYIuMlO46w7ekG0MLwgXeTG2piw+cvIuDF7HlG9cCO564f5HerEloFxFFf2/O77yMQ+B2d+GGIlRKjM4TJWK3XaSQpWRoyWPtZ/HV55IlcYDz8pit4b4Ec7qb8334F9fETG9bp98ap/7++gZ5aOvgLexLctzX3ouK7kMdFoTuvg27gVN5HF1fsdjh2zTqVNwJhFMKqPVmbCwQh/ZQYwZBSZ4KMZWrcpsZtDO3p+DsMiCDAP3aM6CMfwR8aRq+sEF+5Snr7FtnEBI133qX+/e+TTUxgXae6w+FwPBVYax8outPbtxF+gH/ixKPzqLep6rZAwwtJPZ8ky5FpQpZbQk8ikHjSR0oPIxpoGhhVa05IHT5rPWMNxhRW5lIIdmJhfnyNqrv640lW/qSwJzSex/R/8hdbti03/hBPTxUPso8Dm7+27Wb+2u2WSVHpKXrPnmzfCYwGTGFdrmTxuXmKsFisXEVYH0EJabsR21bkG5TJMdIHJJmMmjndPkprvGZOd55paommEnr0BAHdpQDrs2lOt7WWpekpjDb0HCsKMENnzu4oZ97hcDgc20cIwfDps/hRSOfgIPWVFeLV9uS/OhxbsV8qb0Gz4J3nYHmkuhsgwZBaQ2I1lsfnd2sCQGKEamZ37w/ShggTImylqe4+fEW37ueOUzk21LJs9seXSVZ29vujXG/N7bbKJ476ARipGJ7rblVIPutW5gAIwftilKV1461eGrxgp9sSC1CcBya8e7ztXyNd5xQqkZzLT3AhP41c37n6GDwdo3RC5ndipE8cDexrO4eslPFLRZO7TRKENdQbDWqNmCyJGKj9LJ7paNknkfNNhfczolLeISIKiP7qTxD8wisbxAN2rkrj//0NsjdubrH3U4hozi1JBTot/uVpMe+0j41Rjv3j6Zr1cTieAIXK2xYZ3g9U3gr2aG2uKFFmDEVEzD0SZkmYp8oVMqqPP8ARQiiFNzREePEi/vHjmDghuX6D5PqHZFNTNK5cofbaJdJbt7Cpu2FxOByOo0xy7RrZwgLpnTugNf7p04jHZSlvU9WdeAFGSBrSxyQJWW4QAnwl8VQACKSSpHIOIxIs2eFVdevCwvxhXvf2UBiOeTUAdD1l6td+/GDd/Je+TNrb17J9Z/XXALBWYNNP7P3Ct4HJNQsf3mlZ1nvmOF7QRsWH1oAsBq5Poaob0cBiELYDYQPEuomerTF4NsUIhcEjl8V35kFOd5rhZTkqy1luZASepD/w6Q4DRLgmp3vdl2Zl7h5p3KB3ZJQwKjFy7jzyKcxIdzgcjsOEH0UMnDhFuaubqNzB8uwMOn96muMdh5f9UHnL5lyP0Pqx6m6AOhptLbE1CAqF91ZYIYp7H+EVCvJ9FJEI29VspvWxon7o1N1CCMa+0FrostowdemtHR3H0zFBstSyrF4eefDzenX327MBtewwjroOFiMkPxYnaNDa0HGMZU4z39ZzrcgabwSXWRIb55CHTC+vZOcpmZ01IfjZajO/u5NcBQ+y2veFIEAoRRCVEMZgdY6whjhJWK3VyeISg6s/i2cqLbvFco6J4HefmkjQdiOEIPjTHyX6638aKuve/1ST/OvvEf/b17H1w9essy8IQAUgAzB5U+WdQ1oD84y8Bk8RrtjtcLQFixWmyPC2EpBF8dt6e1R5KyKGiBgkp06DcTJWWOU6dSawT5mthpASr6+P8Px5gtOnAUF6+w7JlatkU1PEH16ndukS8dWrmEbjSV+uw+FwOHZINjFBNj5BPjGBqdUJTp1CBsGjd9qmqhug7oVoKWloUGlKkht8JVFSoqSPkj6aVXKbNLO6A6R9zPmfEMYYrDVg2VFe96hXwxPFpNrMb7yLXikGaBaY+qW/0rJtGL9FmL5fPMjPg+1px6U/lsVbE+i0dfKh/8LpNp7BgjHgyWK04z1dRVeLxog60kYIPKTuKxout4GyhWJKi8LOUwuf3PeKnO4sQxpDkCQsN4r3p68U0BX4lB6R011bXqK+vEzX4BBhpYPhc+fxA6fecTgcjoOga2CISncv3cPDgGD53rSLAnMcCO1WeQtrkXmOzLNmpurj799qFPndiTUoBP4j7odysVbdvX+KPWlLCBOsUXcfPsFG1NfNwEfPtSxbuTVJ9c7Ujo5TXmdlHpcGH1hbf3okxZMPfxflVvCDqcM57jpoUuHxljhBvu7z+rydZciutPVcmch5x/+Qu2pmw7qyLfFKdoEB3bPt4xX53SvN/O4OMr+DzNuf/G6EgDAE38f3PDwLYMDkpHlOtVYjiUP6az+DMq3XEKt7ruD9GLzzo5T/9s8jT/RvWJe//iH1//HrZG/cfHbuKZRXCCsA8gborJiHyus4W/Ojgyt2OxxtxAqDFfahtbkVRZb3HlXeHh2UGEPg02CahAUS7lHlKpqnr+grhEB1dRGePUt47hyyVCKbnCS5fJl0cor01i1qr79O493CBtfhcDgch598cZH46lXy+Xny+QX8sTFkpfL4Hbep6jYIEi8gUT5ZptFJirEQehJPhiAEUkEqFrAiwZIjTbnNz7I9WAvGWIwxzUL3dm/ZLSeaFuar78+w/P2H6unllz9J/eSplq07q197uGf6qb1e9vau0FrmrrRao3WODhJ1bVeZvA20BmwxSep5W35mjipW1IpmSltGmg4E25s4lORIq9EywCLJxP2cbq/I6TaWKI5ppJokN3SXipzujpKP8TbP6U7qNaqz96h091Lu6mbg5GlKHZ2bX4DD4XA49oXB02fwoxI9wyMk9Tr15aUnfUmOZ4h2qrxFmhbba415jJU5gMFSszkaS47FF5KtErytkM1GPw9hDWLfs7v9Qt1Nfd/OsxeGP/VRvFJrc+LEa29i9PZfl1J9BtZkTVupiEsDAFR8y0uDrYX+S87K/AGrIuIdMbZhqvhjdpJO2+Z5XgG3vEne866Tr3M1UCg+kp/huXwMsU2xlrQaP1slVxFahSRhH0Y8/vu6K8JiHI/noYwh8Lwi4kvnZHnOaq1BshrSX/1ZlG0teDfUDBPBt5+qONB2I3srlP7Gz+J97tyGdbYaFyrvf/r7mLmny2F2S4Ro2pp7hehCp0XRO6vBPkZgONqHK3Y7HG3HNq3Naaq8C7W3MB5Yueuit8QjYoSQPnJWqDNJxgpVrhEzc+iskdqFLJcJTp4kvHAB1dNDPjtLcvkK2fg42d271H/0J9TfeJN8bu7Z6TZzOByOI4ZpNIjffQ9dXSWbnMAbGMDr69vGjttXdTf8EINgFYVME9Lc4CuBrzyk9FDCIxNVNFmh6rYh0u7ToHyPmGax1lq7o8zjXpnQIXN0I2Pqf3+rZd3EX/zPWx572R1K8WsA2HwMzOheL3tbrE7PkSy3ZgIOXDzT3pPkurAvR4J/ON/j3WJJsCJB2grCegjTs809DcpkaOFhkeQyxEhJ5vvIZk53ECeYzLCa5JQDRZ8f0FPyYYuc7jxNWZqeIihX6BwYpGd4lK6BwbY/Z4fD4XA8GuX5DJ1+jrBcptLdS3V+jixx1puOg2Otyrvrgcrb27HKW2qN0AaZa5ASKx8/bZ1TWJmn1qB5tJ25Fh4Hpu62PsKWsSLHHsLsbhUGjHzmxZZl6fIqc+9c3f4xTEYYL7QsW2tl/oV1VuY3V3ymVp8ux6W9MCc6uSZa89MVlpftOKFtvyJ5Qa3wZnCFVbGxAWNMD/Fi9jyB3V78k6eTZn53B0b6NEr92P0IB5MCwgCabnBCG4IgQCkJJifLMupxTLzq07vy0yjbOl/QUFNMBr/nCt6PQHiK6C9+jvA//RwEG7+f+uoU9b/3ddJvvYPNn4Ec6/u25ipoii6atubZfVtzV3s4zLhit8OxbxisMA9V3giEUQirdm1tLhD4dFPiGAANJklZoMEUq3yI5vDdQLcLGQT4x44RXbyIGhpCL68QX71Cevs22eQEjbffof6DH5JNTmKNsxdxOByOw4LNcxpvv4NZXSW7cxvZ0Yk3us3C6jZV3VAUu3PlEWsgSciNLVTdqugGF01Vt2lmHatDquoG0MZgrcVadpTXfV/Vfe8/vE+++FARUDv9HNUXX2rZtqv6NURzoGazT7fhqrfHelV32NVBx8hA+05gNWAKVbdqZnY/JVgsVtaKyVMipOlp3mM+Hs9mGCExwkdLHy28Bzndfprh5TlelrPcSFFSMBgFdIU+KhSb5nQbrVmcmkAqj57hESo9PfSNndinZ+5wOByOx1Hu6qZ7aITO/gE8z2d5xtmZOw6ezsjjwgOVd8hIU+U9tRSjzfY+jzJLEUaDsdhtqLsBYjSZtSTNAnYkNr//M8LDIDHCaxa792/uSJhuBAHCethD6sjYe+E05aHWBuR7f/IBWW37avQNVuZRP1oWBdMX+jO6g9bX+DWn7m7hNn1M0N2yLCLnZTuOtO3/fMYi5cf+VablxnzwLlvhE+kFesz2XJru53cnQRdaBiRhT5uvtkkUPVB3kxVNAL7vE/g+EkuaZTTSlLjq0738U0jb+hmrqwmmgt/H7KObw9OA/9lzlP/uV1EvjG1cmRvSb/6Y+t//LfT1jZb4TyXSK8QWQhQFb51BFoPOcQXvw4srdjsc+0yh8raFuhsBViKM2pO1uSSgxDF8ukhYpMEUKctUuUrCwuMPcIQRnoc/NER48SL+2HFMHJN8eJ3k+nWyqUniy1eoXbpEevs2NnPZLA6Hw/EksdYSv/8+emWZ5NYtUB7ByZPbUyvvQNWdC0kqferCw2QZWZoWTeCejxQKT/pkYgljc4xsIG2I4HAWQa0FYw3GGoRg28ruSOQMqQa1q7Msfbe1oPzBX/lrLY+lXqRc/53ifKYX8rPtufjHkKysUp2cbVk2cOH0jtTrjyU3gCg+M/72lAlHBlHHWoOwHQgTIu32rN+lzcAatPAxSHKCjTndcUI1ydAWBkoBHZ5PqaSwm+R0W2tZmpnCaEPv6BhRpYPhM+fa+z46HA6HY8f0j50gLJfpHhklz1Kq83NP+pIczyDrs7yP9ZRAwGJ9e9nVIsse5HdbpbatFq2TP8jvlkCwRcOolj4WiREStY+2tMKW4IG6O8Ny+LK7hRAc++InWpaZPGfq9be3fYxSY7ZoTn5wUEmjVKiVlYTPjraKcl6fCtlm38OzgRB8IEZZoLURu4uYj9nJHcUAbBcjLNf8O1z1bqPXNXz4+HwsO8uJfPixc9b387utkGvyu/ehofz+uM73i9cjywGBUh5h4KOALEmJk5xkJaBr8ctI2xrzVFPjTAV/gHUF70ci+zqI/ssvE/3Vn0B0b3wv7b0VGv/4W8Rfu4RdjZ/AFR4wQoAKQfpgMtAJYIrCt3FuAYcRV+x2OA6EwtocK5rW5rIofltvTyrvgD5KjGLJaTBByjJ17rDKrafeokVIidfXR3j+PMGpIoM0vXWb+MoV8qkp4g8/pHbpEsm1a5j4GfgD7HA4HIeQ9MYNsrk5srt3Ic8JTp9GqG0WmVtU3eVHqrrrfoRFsGolKk3ItCX0FZ4XFQU4qclYwog6YA9tVjeAMQYsWGMRsnCG2Q5j3io2zZn6/73ZsnxlaJTss59pWda5+u+Qtphws+knt32OvTJ39VbLYxX49J7ZpHN819jiM6NUs/v/cDY07AaLxogGkhICD2l6t7WfQKNsjpE+IMll9DCnO7uf052QZIZGauiKfLo8n66Kh1Wb53SvzN0jbTToHRklLJUYOXceud3vtcPhcDj2DSElQ2fOEUQlOvsGqC0tktQPZ16w4+mnM/J4frgDX0l6yj7VOCfZhgWuAESaIXQOdvvqbgvUrMZgSTF4CNQm97gGD4vAPrAy3x91t0AgTReCsFB3b2IdfRgoD/bRd/G5lmVLH95hdV2D6lZIqynFrY01a63MX11nZb6USD6Yf8oaUveIFYK3xRh1Wl+XYaqctdt7H3bDjFrgx/5VGutcQgWC0/oYH82fw7OPvsffLL9by32IkSqFRdFb3Vd3F5V4IRVRGOJ5ijxLidOMbLVMZf4nkOss2WvqDlPBH2L30dHhaUAIgffiScr/w1fxv3Rx03mY/IfXqf3K18l+cP3pd5ERgPLBC5vKhLyYc8gOp2PHs44rdjscB4gVBivsQ2tzK4os7z2ovBURJcbwKJMwS8w9UhaocoWMlfY+gUOIEALV3U149izhuXPIKCIdnyD54DLZ5CTJrVvULl2i8d576Gr1SV+uw+FwPDNk09Okt++QT02hq6v4J08iw23a1m1QdW+9nwUafkSiPFJt0I0YLJT9AIlESZ9ULKLJMTJGmtK2rZ+fBNYUk27WWuQ2lbICy3F/ldn/+AHZXOtE2nf+6t9ByIfHESahY/XfN89Vguyjbbv2R6HTjMUb4y3L+s6eQG5zAnN7JymyzvFU8e8pUhpbsVo0SNoy0nQiCB6/UzOn2wiFwSOTQZHTHTRzunNNkCTYXFONMyJf0h8EdEU++AKtNuZ015aXqC8v0zUwRFjpYPjcefxwa9cFh8PhcBwsYblM39gJKr29hKUyy/emMdop2RxPBl9JRroiuiKPwJPM17anbpZZsZ3QGuupbU+XaSx1q8mtRWMJhdxY7haQS78oeu+7ursM1luj7j6c7oMjn/kYKmgtDE5+741tRwSutzJPwx5yVYzfjndqTna2vsbOynwjmfB4U5wgWzdOfY55Ruzyvp23Jhu8GVxhXi5tWNdnunklvUjHYxrFi/zumMzvQEuPOBpof3638sD3IPDBmua4r4kQhEFA4HvoPKcRJ+haB9HsFwqR2RpW1S2mgu889QKxdiAin/DPfYrS3/oK8njfxg3qCcmvXaLxP38LM7N/n9FDg1Br5qUszsr8cHJ4Z/ocjqcW27Q2p6nyFmtU3nJXvysFkpBBIobQNGgwTsYKq9ygzvgz07Umy2WCU6cIL1xAdXeTzdwrit4TE2R371L/4Y+ov/km+cLTbfXucDgcTxq9vEx8+TJ6YZ58dg7/2DFU5/ayv4AdqbpT5aOFpIpCZDlppgk8ie9FSKGwMiNnBSPrgEDa0t6f4D7xwMLcWBDbz+seVnXym3MsfOd6y/J3j12k/9XWrO5K/bdRpjkYzV4CDkZZsXD9LiZvnZToP3+6vSfJddEcgQTv6VGMWJFgRYq0HQjrIUz343eCYvJWCLTw0UKhhV/kdFPkdKs8x0tzlhsZUsBQKaQz8AhKctOc7qRepzp7j0p3D+XubgZOnqbUsYPvtcPhcDgOhO6hYUqdXXQPjWCNZWX23pO+JMczTH9HSOgp+ioBSWZYTR5fZBLWIrMMmRX3MnYHDjIphtQaElvMu22W323wsYA5QHU3VmFFbV/Os1e8UsTwpz/WsixeWGb+/etb7NFK1JhDmDWFfCFolIcfPFyv7n7rXkAjf3qaUttFXYS8LY5v+DR+1E7RbffPGUALzfveTW6qCey6SemIgJey5xnVA4+cr/azVYTVpEEXWvok4fZcqHZEFIJUhYtXsr5xRuD7AVEYYIyhHifYejfR7Oc3LXiPB98kxylzt4M60U/pb32F4M99CsKNY2xz/R71v/9bJN94C5s95U0EQnBQrniO3eGK3Q7HE8NghVmn8lYIq3Ztbe5RocQYkoAG0yTMkzBLlSvkHE7LpP1AhiH+2BjRRz6CGhxELy0TX7lCeucO2eQkjbd+TO0HPyCbnt52p6rD4XA4toeJYxrvvIupVkknJ1F9fXj9/Ts4wPZV3QANL0QLQd0ISGKMhUoYFZNLyiOVC2hyrEhQpoQ4xIMTaw3GFP/LHQykjrPE1L9+o2UCIpUe3/4rfxPlr5ngs4bO6r9pnkths1faePVbY43dYGHefWKEoNLGxgNrAFN0/Sv51FiYWwxWrCKsjyBEmp5tORNIcqTV5KLIpcxFSO57GCnx0yKnO4wTamlObix9UUCH8imXvU0L3XmasjQ9SVAq0zkwRM/wKF0Dg/v4zB0Oh8OxW4QQDJ0+ix9FdA0N01it0qg+/a5vjsOJlDDWW6LkK8qBYrGWbsv2VqYpYJvq7p05AdXRaGuJrUEA4foGUlFkd9+3NC8K3vtDoe5WyAfq7sNZDOp/4SxRX2tD5cwP3yVvPD4WUGAp1VubatZamX92NEGJh+95agQ/mt6OS9Gzx4KocEWMtCyTWF6240R2H3PfBYx793jH/5B0nQOBRHIuP8H5/BRyfb7Rw93x0ypWSDK/k8yvkHmV9l6j7xdjPP++unvjd0kpj3IpLBou4gRT6yGae7WYa19DrO5xN/yPpOIZUCS3ASElwZcuUv7lr6JePLlxA23Ivv0u9f/pt8ivTh38BTocTVyx2+F4whQqb1uouxFgJcKoXVubSzwiRgjpJ6dKnUlSVqhyjQbTG7r0nmaE5+EPDxNevIh/bAzTaJBc+5Dk+nWyySni9z+gdukS6Z072Oxw2kk5HA7HUcJqTfzOO5jaKuntO8hSGf/YsZ0dZAeq7sLCPGQVD60teSPGl5LAC5FSYUWMtjWMrCGQiEOs6oZmXjcWYyxym6ruLpmQ/e47pDOrLcv/5Ue/wsufPtuyrNT4Ln7etBLPXgDb5gmILViZmCGrtXbOD1w43d6TaA2IZoPEPuTEPSlEA2stwnYgTITc1ntW2JcXeXmSTEZopVpyusM4IcsNtUTTEXr0BAGdZQ+aOd1mzcfPaM3i1CRSefSMjFLp6aFv7MR+PWOHw+FwtAEvCBg8dYZSRwelzi5WZu+RuzGv4wnRVfLpKnn0V0K0tSw3tqHuNgahNSLPQUqs3NkUdo0ivzu2BoXAX9dEqpvuRkZ6TSvz/VJ3S6Ttggfq7sMpRBFSMvbFT7Qs02nG9A/e2db+5fpMy+Ms6CLzCvvrzsDy8YHW3z/OynxrxkUvd2hVRgdoXrHjqH1szABYlqu8EVxmWaxuWDds+ng5O0/JbP7eSasJslW0CtEqJI560bLNblthWDQ3CwlbqIiFUJTDACkVSZKiV7oJZ18tYkTXkMkqd8KvU5fTmx7HsRHZXab0V3+C6L/6MqJ347jUzlWJ/8nvEf+rP8ZUnXLecfC4YrfDcSgorM2xomltLtdYm+9OgebTRYljCAQNpkhZJGaaVT5Ekzz+AE8RQkq8/n7C8+cJTp0Ca0lv3SK+epV8aor42jVqly6RfPghJnm2XhuHw+FoF9Za4vc/IF9eJrl1C6QkOHUKsZOJKZ3sSNUdeyEWQdUqZJqQa0ul1FR1S49EzKNJCwtoUz7Emu4CY/QDx5Htvm6jU7eZ//a1lmVXe45z5af+LFG5dXKhq/prD3622af2eLXbZ+7KzZbHpb5uygPttLazRbFbNXO6n5JityXHiAaSEsJ6SLOd18zi2fs53X6RSblJTrfUhuVGRuBJBsOQjtBDhhtzuq21LM1MYbSmd3SMqNLB8JlziKcoD93hcDieVjp6++jsH6RrYAghFcsz09tS1Doc+8GxnhK+J+gu+Sw1UnK9PXW3MAaM3bG622Cp2RyDJcPiC0lLgrcQTXV3kQku2Ud1t6kU93K2VMTTHFJ1d2V0kJ5zrarNhcs3qd97fBRgmCwgdet82lp193or8w+XfO7VXVliK66KYeZoLSZ2kPBxO1FkX+0jmch5x7/GuJrZsK5iS7ycXWBA92y6r9IJnm6Q+h0YsQ/53YEPUhT/67xokt8EISSlKEB5PkmWk690Ec18Calbm9+NSBkPvsmK+rB91/gM4L1wnPLf/Sr+T75QvB/ryN+8Rf1Xvk526SrWuPsOx8Hh/qo4HIcIKwxW2HXW5t4eVN4BEaMEdJOy2Cx6L1PlCgnz7X8ChxwhBKq7m/DcOcKzZ5FBQDo+QXL5MtnUFMnNm9Ree434/ffRqxu7GB0Oh8OxNemtW+Szs2R372LTjOD0acROi47JyrZV3QB1PyRBklrQjRhPCiIvREoPLWpoYoyqI/AQ9nCrB4yFYi7PIOX2LMz9PCX72mvFzvePIyX/8JW/xE99olVRHyTvEqSFMsPmz4HZgbX8HmgsLFNbN0E2cOFMe4ulRgO2KHYrtemA+yhixWrR9GjLSNuF2Ea+urIZWIMWHgZFTkDmB01rwSKn28+KnG6AoXJIxVeEZbWpfXl1bpakXqdnZJSwVGLk3HnkDnIzHQ6Hw/FkGThxiqBUomd4hDRuUFt8fNHK4dgPIl8x0BHSXfKRQrBYf7zQQOQ5wlhknmOVwu7w/jHHEltNZg2ajXbmhbpbYISHNDm7mnjbBg/V3RFYeWjV3QCjn3sRuW4MN/G9Nx7bKCPYqO5ulIcfvKIvDqZ0+K3q+UtO3b0lVgjeEWOs0mr3PkiN8/beFnu18/xw05vkfe8G+bpGEA/FR/IzPJePITb5WHhZDfkgv9sjjvrad2FCQBQVzc1CQPooxxJBFHj4fkCuLelqiWDyS6isZ91mhungj5jz3nim3FD3igg9wl/8BKW/8/PIUwMbN2ikJL/+Axr/6HfQU4sHf4GOZxJX7HY4Dh22aW1OU+Ut1qi85Y7vvQWCgF5KjGLRNBgnZZk6d1nlBoZn08pMVioEp08Tnj+P7Owim54pit6Tk6R371L/wQ9pvPUW+aL7g+xwOByPI5u5R3rzFtnMNHp5heDECWQU7ewgO1R1ayFJVMCKVQijydOUSlhuZnVLMrmAETGWDGkqh17VbXVRsLXWIrZpYT76R6+TTrZmcP67j/wk9sLzdPe2dq13Vb/24DWw6UGqum+1PPZKId0nR9t7klwXnxkhiwy3pwArEqzIkLYDYT2E6XrsPvdzugu7QEkumzndSuKnKdIWOd31VJPkhr5SkdNdKXuwSaG7vrxEbXmJ7sHhQtF97jx+uMPvtcPhcDieKFIphs6cJSiV6ejtZ3VhnjR+fAavw7EfDHdFBJ6irxKwmmji7NFqagGILEXoHOzO1d0AMYbMWpKm/XMkHjbtWSHQ0sM0l+2/ulshKR9qdbdfKTP0yRdaljXuLbC47p5+M0r1Vjvo3K+Q+Z0AeBI+PdLa4HBpMsSJPrcmF4o3xQlSWhtNT7HAmD2Yucp5tcyb/hVWxUZL6jE9xMez5wls6/iraLJdeZDfnXtlUr+jfRcVBsXYz7+v7n5UBIEg9BV+EKAtZA2FvPs5VH1kw5YL/ltM+3+E2cffA08jarSX0t/4OcJf+iyUgg3rze05Gv/gt0m+/gY2OZy/9xxPD67Y7XAcWgxWmHUqb4WwalfW5oqIEsfw6CBhjpgZUhZZ4Qopy/tw/UcDGUUEx48TXbyI6h9ALywSX75MeucO6eQkjTffov7DH5LNzDywlnU4HA7HQ3S1SnL5A/TSEvnMPfzRUVTX4wtzG9ihqrvhhVgsNRQ6TpBIoiBASZ+cVXKbYGQDQYC0h78Aqo3BWoO1ILahTPam5zDf/nHLsnioj39+9mf4mZeHW7fNJyg1vguA1cOgDyZvOWskLN2ebFnW//wppGrjEMSa4t99Rbd39FXHFoMVqwgbIAiRpre4F3wkBmkytFBYPDIZkiuF9tfkdDcStLasJjmVQNHrB3SWFMIT5OtyupN6nZXZe1S6eyh3dzNw8hSljs59fd4Oh8Ph2B9KHZ30jh6jo68fL4pYnpnCuLGt4wngKcFIVxGfEnqShVr6WEtmmWVgQWiNVd6udJd1CjvzxBokEKxpLNUEgCzU3Xb/CjGFursT7OFXdw98/HmC7tb7vqnvv41O0kfuF6QrqLz1edUrD4uKn19nZT4fK64tPh3xQ/tFLAJ+LI5j1rVuX7TT9NnawVyDTPixf4UZudEhtNt28Ep6gR7TWsyW1hCkVbQKyVVEEva0L79biCK72/eLn/PHibgEgZIEfoCViiwDM/4ycvnMhi2r3nXGg9955uI/94qQAv/V5yn/8lfxXjm9cQNjyb7zPvW/93Xy98cP/Poczw6u2O1wHHIKlbct1N0IsBJh1K6szQWSkAEihtEk1JkgY4UaN6lzF/sMd68J38cfGSH8yEfwR49h6nWSq9dIblwnnZoifu996q+/Tnr3LjZ3nWgOh8MBYJKExttvo1dXScfvonp78QYHd36gHaq6ARp+yIqRGEDXG1TCCCkkUkEm57EixpIjTXnn13PAWFvYlxtrEUI8vrCpDUO//i1Ym3UoBf/s03+enr4OxsZamw06q7+GoJjULlTdB6NzX/jwdkujmJCS/nU5gHtGa0CAVOA/JZNlol4o/G0HwpSQ9vGfYWVzEBIjfLT00MIjD3ykNs2c7rSZ053iScFwFFEJPbxIYpQlX5PTnacpS9OTBKUynQNDdA+N0DUwtJ/P2OFwOBz7TO/IMaJKhZ6hUXSeU53bfxtch2Mz+jtCSoGivxKQ5IbV9DHqbmuReYbMchDsSt1tgZrVGCypNXgIVPN+2AqBFgojVHGufVRcC9O5Tt19OOfgpFKMfeGVlmU6Tpj50XuP3E8A5VqrlXm99NDK/FSXZrTS+vo6K/PHsyTKvC9alcgSeNGOU7YHU5Q1wnLVu8M17w6G1mapAJ+PZec4kQ+3zFMrk+LlDTK/ghF+e/O7w6AodHseZPk2cswFvpKEvk8QBAgk+dQFuPfChrn1WE1zK/g61XyRTNv9jkh/qpCdJaL/4otEf/2nEAMbG6XtYo34f/kOjX/+R5jlw9vw4zi6uGK3w3EkKKzNsaJpbS7XWJvv/EbBo0yJMRQhMTMkzJEwywpXyXm2s6qFlHgDA4QXLhCcPAnGkt64SXztKtn0NPHVq9QuXSK5fh2TuE4/h8Px7GKNIX73XcxqjfTWLWRUwh8b293BdqjqzqQikx5V62GyDGkEURCihEcmqmibY2QdYUOkPfwFUGM0WLDGbkvV3fHHbyLvzrYs0196gd/yL/DTL7WquqVeplL7BgDWdEJ+vn0X/giM1sxfu9OyrOf0MbyonRNatih2K/VwsuOIY8kxooGkVEyGmt7H7iPJEFaTCx+LJCMkCwoLOT9NUbnGzzKqSYa2MFwOKXmKUllhhSVdY19utGZxahKpPHpGRql099B/vM0NCg6Hw+E4cISUDJ85hx+FdA0OUV9ZIV59tsf+jieDEHCsp0ToKzoixUItxTxO3Z2mgEXkGuvtTt2tsdStJseisYSiKSgBtLiv7lZIu49W5kik7WiquwUcYnV354kRuk4fa1k2996HxAuPdoYsr7MyN15EEhb3s0LAF9apu380E+KcjR/PlOjhJv0ty3wML9txvH38zLYgYFrN82P/KvE65bNAcFof44X8OTz70GnLy2tIo0mDzmZ+d//6o+4OKYuCt+8Ddhvq7uZuQuArj1IUUYkC1NJpmPhEIShbg1YrTFd+m0U9yXIjYzXOSTJNrl3lezt4F0Yp//e/iP8zH4dNXN3023eo/8rXSb972bmoOtqKK3Y7HEcIKwxW2HXW5t6uVN4SRcQwIQPkrFJnkoxlqlynwRSWZ/uPjRAC1dNDeO4cwXPPITyf9M7dZq73FMnNm9QuXSK+fBm9ejDWQQ6Hw3GYSC5fJl9cIr19C4QkOHUKIXdxa7kLVXfdj4iNJZUKE8eUwxJKSoSCVCxgRB2LRR0BVTeAMaawrrYW+ZhCvze7SPfvvt6yLBju4F+e/1kqJZ/zz7UWRztW/z3SFtmcNv0EcDA238u3p8jj1kmQgQsbreL2hDGALYrdShWfnyOOFatgFdgy0nYjeFwB36BMjmnmdGcyQrfkdFvCOCbODI3U0BsVOd0dFQ8UZP7DQre1lqWZKYzW9I6OFTndz51DPOYz6XA4HI6jgR9FDJw4Rbmrm6jcwfLsDNq5ljmeAJ2RR3fJp7ccYi0s1R9dqBLGIHKNzLOiYrrLe74UQ2KLfxaImnbmVhSFbi08hDWIfc3u7kJYiaSEOcTqboBjr76MWFuospaJ772BfURzgp/X8NNqy7JG+WEz7mePJYg1E5iJFrxxb2POr2MjH4pBZmhVy1ZIecmOIw5QfrwqG7wZXGFebmx86DfdvJJeoMOUgGKYEWQrICSZ30XuldqX3x1GzfkDH7KMnU6MS+kRRSFhNoYa/xzkrfMQViYsdX2LqrpBnBvqmWY1yVluZNTSnFQbp/p+BMJXhF95ifJ/9wvIs5u4hCUZ6W/+iMavfhN9d6NFvsOxG47+jJDD8cxhm9bmNFXeYo3Ke+dfaZ9OSowhUDSYJmWBmGmqfIgmbvvVH0VURwfhmTOE588jOzrJpqdJPviAbGKS9PYd6j/4AY233yZfXHzSl+pwOBwHQnr7Ntn0DNn4OCZOikK3v8sMrh2qui1FXnfVSKyxyEQT+R6e9MnkIsZmGNlA2ghxQIXdvXDfwtwaixAgxCP+lhtL769/G5GvmRQT0PmXP81vzo/wEx8balWG25TO1X/XPE8A2Yv79CxasdYye+Vmy7LKcD+l3l1kuT8KrQEJQj4VFuZWxFiRIW0HwvoI87iMbItnU4xQGDxyGZArj9z3UA9yumOMsazEGaVA0h8EVCKF9AW5Mi053dW5WZJ6nZ6RUcJSiZFz55Hq8H+HHA6Hw7F9ugaGqHT30j08DAiW7808dh+HYz8Y6ykReILuksdKnJHpRwsuZNbM9zYG6+0++7eBRltLbIsU5LB5761F0ThYqLsPIru7VAxsRGPfzrVXgq4OBl+62LKsNjnL8vW7j9yvtE7dXViZF2OUntDy0f7W5gZnZb5NhOBdcYwVWl+vPupctNPbsPJuH7nQvO/d4KaaxK4rMkeEvJSdZ0T3gwVhDX5aRauAXJWa+d1taHBQslB2+37x3LPdfG8FnvIJ7SD++BcgWTf+EoZGz/eohm9TS3IamSbJDXFmqCea5UZGNS6W587yfFPkcDel/+ZnCP/Sq1De+F034ws0fvWbJL/5I2y8PYW+w7EVrtjtcBxZDFaYdSpvVeR571jl7RMxQkAPKUvUmWqqvK+SMLvhxuVZRUYRwYkTRBcvovr60QsLxFcuk929Qzo+TuPNt6j/6EdkM/ce2enqcDgcR5l8bo7k+g2ymRn00hLBiRPIUml3B9uFqjtRPjmCmvDRSUrkh3hKgdRkdhnTnDCSZpfXdMBYa7Cm+L9Q0G5d7K9cepvw1lTLsr4vn+Xf+S9gpM+nPjLQun3td1Cm2YiVfRw4mImk+uwi8eJKy7KBC6fbexJriiYJTxUjmiNuYW4xGFFD2BBBgDS9j81uVzYDa9HCwwhFjt+S0+0/yOnOUAJGohJRoAjKakNOd315idryEl0DQ4Wi++zz+GG030/b4XA4HE+AwdNn8MOInuERknqN2pJr2nYcPIEvGewI6S75KClYqKWP3F7kOcIYZJ5jlcTuwXmmRpHfHVuDQuAjms2DEiM8pDWwj26HD7O7SxgRH2pnxaGXL+J3tLplTb3+Y3S2dVGqXG9torHKb7GvfnWdlfnlBZ+F2JUotoMRkrfECZJ17k/HWeIkCwd7MQLGvRne8T8kpfXzIJE8n5/kfH4SaUUzv7tO5peb+d397cnvjsJiHkF5u1J3P3gqQhLIbsKpLyFqgxvWZ11vk/f+EIshyw2NVFNLc+L7xe+0UH2vNDJqSU6SGYybFn6AEAL/M2ep/PJX8T59duMG1pJ99zL1//Hr5G/fcXPqjl3j/pI4HEecQuVtC3U3AqzclbW5QBDQQ4ljgKHBRLPwPUGNGxhcd9V9hO/jj44SXryIPzKKrtVJrl4jvXmDdHKK+L33qL/+Oun4OFYfXksqh8Ph2Cl6tUb8/vvo5SXymRm84WFUd/fuD7hDVTdAw4+o5qClRKY5oVJ40icVC2gyjIyRpvTYQuFhwTStuI2xyEeoutXCMt3f+F7LMn+gTP8vfIR/NT7KZy70I/1WFW5X9dcAsFZg00+2/dq3Ym6dqjvoKNN1bHiLrXeJ1oAo7Mt36ypwmBA1sBZhKwhTRtpHN2tIcqTVaBlgkaQiJAubOd1ZhqeLnO5ampMby1AppKQUlU1yupN6nZXZe5S7e6j09DBw8hSlzjar8B0Oh8NxaFCez9CZs4TlMpXuHqrzc2RJ8vgdHY42M9QZEXiK3nJAPdU0sq3nTwRFdrfQGozF7qHR0WCp2RyDJcPgC4lEoKWPbaq71b6qu1Uzu/vwq7ul73Hs1ZdblmW1Bvfe+GDLfTwdEyRLLcvq5ZEHP788lFLyHhb4LcKpu3dAInzeEsfR64rF5+09Bmx1i732j2W5ypvBFZbF6oZ1w6afl7ILRCbEy+tIk5OGXWh5v+C9RzwPfAWBXzRD72kOVuDJiGjuVeTyqQ1r09J1kr7vEEWayFf4QmAtxJkufn+lmiTXheo7KwrfK42MRqrJnOobANEREf3lVyn9338GMbxxHsku14n/+R8R/6/fwSxs/Dw5HI/jaMwCOhyOx1BYm2PFJtbmO+uUU4SUOIZHJwnzxEyTssQKV0hZ2perP6oIpfAGBgjPnyc4eRKb5aQ3bpBcu0Y2NU189Sq1S6+T3r3rit4Oh+PIY9OU+J230aurZHfHUT09+MN7KGDuQtVtEDRUwCoSnRtCJIHvYWVGThUj6wjEYwuFhwljdFHwFmydeW4tvb/+e8h11myjf+UV/qA6xEQS8adebH0vosb38PPbxYP8AtiDKV6mq3WWx1utC/vPn261V98ztpjIkKpokDjyqu4cI2IkFYT1kKbnMXsYlMnQwsOiyGWI9v2HOd3GEDZistxQSzTdoU+n71OueAhPtOR052nK0vQkQalM18AQ3UMjdA1skqnmcDgcjqeKclc33YPDdPYP4nk+yzPTTknlOHCUEox2R3SEHpEvmV9NHmnFLLLC1UboHKu8PRXKciyx1WS2SM0OhcTgYZsqb2k1+6/ulkgijGgcanV315kxOo63jjXm3r5Ksrx1YbW8zso8Lg1iRNGYGyj41HCrkv/SZOiKgTtgRZR4VxxrWSaAl+w4p+z8gVqaA6Qi4x3/GuPq3oZ1HbbEK9kFBnQ3QTPPPfM7yb0Smf+42KZtEEXFuFApSPYu1JLCI1p+BX/+oxtEZFkwzVLX7yC8VQJfUQoUlUARegohINOWRqapJ/qB6ruRaWrNrO/VuFCD5/rZ/rCrs8OU/87PE/yZlwqntnXo9yeo/72vk/7Be9jHRFw4HGtxxW6H4ynCCoMV91Xe963Nd6PyloT0EzGCJqXOBBnL1LhFjTsY9q/D9SgipET19BRF7zNnwPNI79whuXKFfHqK+No1V/R2OBxHGmsMjXffQ1erpLduIcIQ//jxvR10F6ru2A+ItSFVATLT+EriqYBUzqPJsCJBmnLhdHIEMNZimhbm8hEW5pUfvEd0fbxlWc8XT1M5P8i/uDvKR0/34Jdb1c1d1a89+Nmmn2r7tW/F3LXbLfcc0vPoO7vHz8p6mmp4PFlMamzVJHAEsFisqDYbFCOk7Ubw6OK9ZzOMkBjho6VPrgJyb01OdxyDheVGRuhJBsOQUuThB6053UZrFqcmkUrRMzJKpbuH/uMnD+BZOxwOh+Mw0Hf8BGG5TPfIKHmWUp2fe9KX5HgG6a0ElAOPvo6A3FhWkq3nmwQgswyZF/Mqe1F3A8QYMmtJbHG8SCpy6WNRWCH3Wd3tNdXd5UOv7hZCcOzzr8Ca5lVrDJOvvbXlPqX6TKG0vb+9VMSlh5FLnx9rdZOYqStuLB/tBtaD5p7o4kPRarktKRTer9i7BPv4+d0MK+CmN8EH3k1yWuc+PRQv5M/xXD5CkNzP7y6ThN17z+/2/aJg6vtgNei9P2+BJKhdIJz9LA8GT020t8xC1zdI1WyxrRB4ShD5inKoKPkKX0mshTQ31FNNLdUkmSZuFr9Xk5zlemF5nmrzTDZ6CE8R/PTHKf/dX0SdH924QapJ/+ObNP7hb6Nvzx78BTqOJEd3ZsjhcGyBbVqbs4nKe2dfeY8SZcZQRMTcI2GWhDmqXCXD2YlshursJDxzhvD555GlMun4xMOi932l9507rujtcDiOFMnVq+SLC6S374CF4PTprVXI22EXqm6AuhdRzSU5giCHyPOxIkbbelPV7SHs0ckZNrppYW4tYgsLc7VUpfu3vtuyzOstMfR/+ii36hF/vNDDV14ZaVkfpB8QJm8BYPMTYFrX7xc6y1n48E7Lst7njqPabTOuNSBBKPCP+KSYiLEiR9gOhA0QpuORm0ubgTVo4WOQZARkgY8wzZzuNEU1c7oBRsslQl8SlVpzuq21LM1MY7Smd/Q4YbmDoTNnm7nxDofD4XgWkFIxdOYcQVSis2+A2tIiSb3+pC/L8YwhBIz1RoRK0RF6LNUyzCMqPzJNAYvQGuvtTd0NUKewM0+sQQKeCLFwQOruLgRr1d2Hd54o6u1i4GPnW5ZV70yxcnty0+2VyQjj1gzptVbmZ7tzhsqtz/c1Z2W+Y27SzyQb7aAHqPE5e4M+e/Bzt3Nqibf8K9Q2aeA4rod5OTlNOU3I/BJaBjRKA9i9lqjCsMjtFhKy9hX5vXiM6N6fAt362bQqYan7d2l4rfFdAoGSgsCTlAJFOVBEvsITkN+3PE+KyIZEG+LcUE80y42MapzTaKq+n6XitxzoJPrrf5rwv/gionPjXI6ZWqLx//kd4l//PraRbnIEh+MhrtjtcDy1GKwwCCvWqLwVYscqb0XEECGD5NRpMEHGCqt8SJUPSZh1ed6bIEslgpMnW4veV68+VHq/dskVvR0Ox5EgHR8nm5win5jA1OsEp04h9lq83IWqOxeSuvBoSA+hwcPgeT6JnEeLFCvSpqr76GCMxloDls1tvq2l59//AXKdHdvof/YyquTzv909xonhDiq9rbbtnStfe/A6HKSqe/HmOGbd5MLAhdNtPospPjueKkYyR9jC3GIwooawIQIfaXofmTUv0CibY6QPSDIZkYXFd9HPMpTW+GlGPS0s84bLzZzuigLZmtNdnZ8lqdfoGRklKJUYPXcedYRfS4fD4XDsjrBcpu/YcSq9vYSlMsv3ikYoh+MgqYQevZWA3kqABRbrW88xCWsReY7Ms2IMoTZa4O4EC9SsxmBJrcETAiHDB5bmyu7f90HgIUylqe4WWFHF7j3FeN8Y/uQLeOXWYtTka29h8s1fow1W5lE/Whb3rkLAq8da1d0/mg54RGy7YzOE4H0xyg025l+HaD5p7/K8mUEccPW0IRPe8q8yIxc2rOu2HXymcYr+1CMLOjHS23t+d+AXzgOBXyi7TfuaVFTaS2n6JxHpOst1Yah2/TEr/tsYu/n5hBB4UhD6hd15OVD4XjHey3JDI9XU0vyB5XmcFqrvlUah+k4y88jmn6cFIQT+K6cp//Kfxfv8+Y2GdxbyS9eo/8p/IHvjpotdcWyJK3Y7HE85hcr7vrW5ACub1uZyR0Vvnw5KjCHwaDDdVHnfo844y7xHlWvE3EOTPP5gzxAPit7nz69Tek+7orfD4Tj05AsLJNeukc/Oki8sEpw4gSyX93bQFlW32raqu+FH1FJN5vl4uaHkBxhRR9sYI2tFsdDu0QLtALEWjLmv6habFjnLb16hdPlWy7Luz56k44VhGlryG5NDfPWTrZZfKp+i3PjD4hy6D/Rz+/Yc1mKtZe5K67V2jg0RdlbaeyKtgebEZrsV4weMFatFo4PtQJgy8pGuBEVOtxEKg0cmA3LfwyiFn2YoY4jihFwbVpOcrsCj0/MplyTSky053fWVZWpLS3QNDBGWK4ycfR4/OjqOCA6Hw+FoL93DI5Q6u+geGsEay8rsxsxVh2O/Ge2O8JWkp+xTjTOyR+S0yjQtbqa1wbShWU9jqducHEuOxZMhAoGRHtLm7Ke6W5oehPWRtgsrchCH111BBT6jn32xZVm6ssrs21c23b7UmC2aVO8jJI3S0IOHr462zh/Wc8lbs0dnPHdYsEJwXQ7xJ+Ik8SZxSKdZ4NP2FiV7sKpYIwxXvdtc8+5g1n2HAnw+0RjldNxF6nWSeRGZ37X7kwkBUVg0QgsBWXufq9RlSjNfRjaGWlcIiLt+zHL0Grl+vBBMCkGgJKWm5XnkK3whsE3Vdy3VNFJNkmvizFDPclYaRfG7kT79lueiFBD9hc9Q+ps/hxzt2bDeVmOSf/094n/6+5i56sFfoOPQ44rdDsczQWFtjhVrrM1V09p8+xo4iUfECCF9aBIazFDjLgmzxMzSYIIVPmCFq8TMuML3GmQUPSx6lyukE5sUvW/fxuYuD93hcBwOTK1G/N576JUVsukpvKEhVE/P3g/cououbUvVDVBTATUrAQ8vy/E9RSYXMCLGkiPNHovwB8x91ZQ1ZlNVt6zW6PkPf9iyTHWFDP+FjwHwG1NDBB0VBkZaba87q/8G0bRAtNmn2CoHvN1Up2ZJq7WWZQMXzrT5LBZy08zoFkdc1d3MmKeCsAppeh65/f3MSC18tFDNnG6/mdNtipxuY1lpZPhSMBxFRKEiiFRLTnfaqLNyb4Zydw+Vnh4GT52m1LmHiSWHw+FwHHmEEAydPosfRXQNDtFYrdKorjzpy3I8YwSeZKgzpDvy8KRgvrZ1sUpqjTAGqXOQEtuGGJa0aWWe2qIs56kSBoWFpp35/iBQSDPQbNwtY0QdKw7vXFrP86cojwy0LLv35gcbxgFQvG6leK5l2Vor8/6S4UJva4HwkrMy3zWLosLr4gyzbIxF6ibmc/YmI3b5YC9KwLSa58f+VeJ1c8QCwfNJLy/Gx0B1kIRd5GoP738YFuNE34c8b8mMbwfC+kSzn8dbPb1hXdZxk+XO3ydJV7etOhYUqu/AV5SCQvkdeaqo1WtLo2l5fl/13cgeWp6vxoUa/Gm1PFenBin97Z8n+MVPQLDRvUNfnaL+975O+u13sFs4SzieTVyx2+F4hrDCYMV9lfd9a3MPdmBtLhD4dFHmOGXG8OlEkxAzQ43bJM1s74eF78s0mEYT7++TOyI8suj94YdFprcrejscjieMzTIa77yDrq6S3bmD6uzCGx7e+4EfqLprO1J1p9JjVQsyP0JoS9kP0HKV3CYY2UAQIO3RUvkaa7AUndlykwm6nt/8DrLROiEw+pdfRpULtcO/uDvKL74y0tIsIEyVjtpvAWBNCbIX9vEZtLJe1R11d9Ix3N/ekxgDmELV7clm0fvoYbFYUW02HUZI24PYRIVxH0mOtBotAyyCTIRkQbAhp7uaZGhb5HT7nqRU8VpyuvM0ZXFqkqBUpmtgiO6hEboGhrY8r8PhcDieHbwgYPDkaUqdnZQ6uliZvUeeubgyx8Ey1BkR+Iq+SkAj1dTTrYsYMk0RWoOxWK8944AGmtxaYmswwiOQAUbcV3fvX0VJ2rCIs7FlhA0wonpo87uFEIx94ZWWZTbXTL3+4023X29lnoY9LQXNz6+zMn9v3mc5OUrBVIeLTHi8JY5zWQxj1jU9exg+bid5wUwi21wIfhyrssGbwRUW5MZi+1Be4lPxaUp0EUf9GLHLMZ4QRcHb95vq7vb/DRNIgoVX8Bc/tmGdLt1jpf/3qGfz5LuY0xVC4ClB1FR9l3yFryTWQpob6mmh/E4yTdy0QF9ref60qb6FkgQ/+QLlv/tV1AtjGzfIDek3fkz9H/w2+vrMwV+g41ByNGeIHA7HHrBNa3PWqLxlc8J1Z78SJAEBvc3C93F8ejBkxNyjxh1iZkiYo8EkK1xmhQ9oMEXO4bVlOii2KnpnrujtcDieMNbaB4ru9PZthB/gnziBaINi4qGqO92RqrvuhdQyjfZCvCwjUJJM3Fd1a6Rus1X2PlNYmJtC1S1ArBvQl96+Rvnd6y3Luj45RueLhWX5D5c6GdfdnD7T27JN5+r/gbSN4hzZK/CIAmo7iZerrE7Ntizrv3C6PZ+ZtWgNyKJR4ihbmIsYKwzCdiJtgDAb1RcPKezLtfCwSHIZkYVFnuXanO44MzRSw1CpmdPdoRBrcrqN1ixOTSKVomdklHJXN/3HTx7UM3Y4HA7HEaCjr5+OvgG6BocQUrE8M+1yMR0HipRwrKdEOfAoBYqFWrLlZ1BkGcJapM6xnmpbKbpOjqYoeCN8lCyiXuQ+F5+l6USYEsJ2NvO7Vw5tfndpoJf+F862LFu+Mc7qxMaCU9SYQ5g1RUchaJQfNlF/YjghVA+fp7GC7085dfeeEIK7oo8fiNPU2GgLP8Yyn7M36bAHK0rKheY97wa31OSGz3bZ+LySnGXIDBNHA7v/5IdBMcfgeZDl7Ef1VyAIqucJZz+zYR7dBivUBn+fupkmTmKM2d35BQIlBYEnKTWzviNf4QnIm5bn9VTTyDSJNsT5Q9X3SpzTeIpU37Kvg+i//DLR//UnEN0b3fzszDKNf/wt4q9dwq46od2zjit2OxzPLKY50SrWqLwVYgcq77VIfAJ6KDHWLHz3YtHEzFJvFr5j5mgwRZWrLPMBDSbJqR3aG/iDYH3RO5ucXFf0vkR665YrejscjgMjuXaNbH6e9PYd0Br/9GmE2mgdtWN2qeq2wLIISL0IrKBsJVqtoG2GlXWEDZG04foOEGuLrmvbzOteazUuaw16/o/vtGyvOgKGf+lhPt7/emeMr7w4DGvtz21GR/XXm8f3IHt5H59BK+tV3Sr06T29Sff1nrBFo4QnixFMOz6TTwCLwYga0oYIPITpQ2xpNW/xbDOnW/jk0if1ggc53YV9eYIxlpU4oyNQdPs+pbLC8x/mdFtrWZqZxmhN7+gYYbmD4efOtb8ZweFwOBxHnsGTpwlKJXqGR0jjBrXFhSd9SY5njJ6yTyX06K8E5MZSjTefCxE0C955DhZsm+JtDFC3OQZLgkQJDyECpNn/ORlp+pv53d2FsltstAY/LAx/+mOosLWQOvG9N7HrstYFllL9XsuytVbmkVcUvNfy2mT4VBTpnjRVEfF9cYYJujesq5DyWXuLE3ZhXwrCWyLgrjfDu/51MlqV1wrB+fwEz5nnyfzeLQ7wGKQsCt6+TxGBtX8OJV7jONHMl0Cvm9fwEuLhPyLx7xLHdfIs23PjmBCF5XnoF3bn5UAReBIBZE2Vdy0trM3T3BCvUX2vJjlJZjBH+EslhMD7+EnK/8NX8b90cVPRRP7D69R+5etkP7juGvWeYVyx2+F4xilU3vetzQVY2bQ2l7t2aSoK392UOEaZEwT0YTEkzFHjDg2mm1bnU1S5xgrvU2eCjNVntvD9oOj9/PMPi96XL5NNzxBfv+6K3g6H40DIJibIxifIJycx9TrBqVPIYGM3+K5IVsDkO1Z1x17Aaq7Jgwoiy/E9SMUiRjSwWJQptef6DhBjDGAxxiLXWXF3f/2PUKuNlmXDv/QiXmcxiJ5Lff5goZ+PX2y1CK/Uv4Vn5osH2UfBHkyGeZ6kLN4cb1nWf+4k0mtzMVo3//4pr+jUP6KFWitWi/srW0GaDqTduulD2SJrTgsPgySTIbnvo7Ic1Sx0C2NZbmR4AkaiEkEgidbldFfnZ0nqNXpGRglKZUbPnUcd4bxzh8PhcOwfUimGzpwlKJXp6O2jujDP7O1b1BYX0G4s6jggxnpL+ErSGXks1jP0FupImRa53kLnWM9r22xSjqVhNSmWHFAqQlBEy+wnAonSgwjrIakU451Dmt/tRSEjn/l4y7JkcYW59z7csG253qr4zoIuMu/hWGW9lfnEqsed6tFsbD1saCF5Xx7jHXGMfF0ZSGK5aGd4yY7j24P9/b4kq7wRXGFlk4aOEdPPC+KTKNWzu4OHEQjZVHdn7GcEgUr7KU1/GZF1tq6QmmTgdeLyVZI0JUni5hxAe5BC4CvZankuBbap+q6lmkaqSXJNnBnqWc5Koyh+19Oja3kuIp/wz32K0n/7FeSJvo0b1BOSX7tE43/+FmbmgPPpHYcCV+x2OBzctzbHijXW5qppbb63yWSJh08XJUYpc5KQ4o9Rwjw17tJgioR5YqZY5cNm4fsuGVUsB5shcxhoKXp3dK4pek+7orfD4dhX8sVF4qtXyefnyecX8MfGkJU22YM/UHXXd6TqBqjKkMT6GCEpG4HxlzA2w8gG0pYQR0zVDWCMLga76yzMo/dvUHnzSsu2lY+P0vXJhyrpf3F3lM9fHAK/9Xl3Vr8GFI35Nv3kPl59KwvX77YqOISg//nT7T9RborPDuLIWphbUqxIkLaCsB7CbFRZ3KfI6c4x0gckmYzW5HTn+GmGp4sO/tzYIqdbCSoVDyMf5nTXV5apLS3RNTBIWK4wcvZ5/Cg6oGfscDgcjqNIqaOT3tFjdPYP0HfsOH4YFkXvWzdYnJokrq061ZRjXykHRW53b7loul2sp5tuJ6xFZjkyz4tGyDY6/yQYMmupI7EIPFlC2v3P0RYESNuLsCWEDZv53Ydz/qfv4hlKA60K3Jk/eY+s3molHCYLSN1a0F6r7j7fm9Mftb62lyadlXk7mRbdvC7OsMzGccAQq3zO3qTXHqyTQCoy3vavMaHubVjXYct8RH6eTnls5wdWEgIf/KAYHGf7+/2RukJp+k8h48HWFQLy/ndpdL9Bnqc04gZplrb97+dDy3NFKSiU35GvithyYwvL86RpeZ6bovjdtDyvxoUa/KhZnqvj/ZT+n18h+HOfgnDj3IC5fo/63/8tkm+8hd3n999xuHDFbofD8QArDFbcV3nftzb3YJfW5uuRqGbhe4QKJwnpRyBJWWgWviebGd8zrHKdZd6nxh0ylp+5wreMIoITJwp7845OssmpzYve2f5Z8jgcjmcH02gQv/seurpKNjmBNzCA17dJp+xu2aWq2wjBklXYsIw1EIqM3K5gRB0AeRRV3dZiTGFlLtdYmItGQu+//4PWjUsBo3/pxQd207kV/O8TI3zx48Mtm0WN1wmym8WD/CzYNr53j8Aaw/zVWy3Lek6O4pfbXEw1GjDFBKaShT3dEcNisXIVYX0EJaTtfkSjhkGapn05HpkMScMAK9bmdKekuaGWaAaigJKnKHd4CAVp0748bdRZmb1HuaubSk8vgydPU+rsOtDn7XA4HI6jSd+x4wydOUv30Ag9I6MMnX6OzoEhdJaxODXJ7O2bVOdnydPNi5AOx14Z7YnwlKS34lONc9J88zkhmaVFQUtrTJuda+rkaCGK/G7p4wtv39XdcD+/u4ywHWBlM7/78M2JCSk59oVXWpaZNGP6+2+3bsdGdXejPPxgmlEK+Nw6dff3p0K2eMsdu6QhAn4oTnOLjWPFiJxP2jucNbOIA6x6WmG54U3wgXcTTWvDg4fHWfUpRuVHYMvYpy0Iw2LMqPZf3Q0gbEB07wt4qyc3rDPdt2gMXCLXMVmaEscNtN6/xpn7lueRr6gEXqH6VsX4Oc0N9bRQfifN4ndjjeV5LSl+1x6FwreQkuBLFyn/8ldRL2583dGG7NvvUv+ffov86tTBX6DjiXD0ZoocDsc+Y5vW5qxRecumyrt9vzIECp9OIoYpc4KIQQSKlEXq3KXOBClzxMywyk2WeY8at0mfscK3DMNHF71ff53k5k1X9HY4HLvG5jmNt9/BrK6S3bmN7OjEGx1t3wn2oOquqYAkFyQqINIW6y2iyTAyQZryI7KODy9Ga8BirG1Rdff81ndRK63d9P1//uP4PQ8L+r8728eJsSFEubV7uaup6gaw2af358I3YXl8ZoNyY+DCmfafSGtAFp+fI6rqRjSwGITtQNgAYTq23FTZHIRECx8tPVIv3JDTjYXlRkbZV/QGAVGkCIKHOd15lrE4PUUQlegaHKZ7cJiuwaEDfMIOh8PhOOp09g0wduEjnPzoS/SNnaBrcIiBk6cYOHGKqNJBfXmF2Tu3mB+/S31lGdtGi1aHw1eSka6IrsjDV5L52hbqbq0RWhfqbimxbWyKtEDNajLhk9ocKQIO6k5Umj6EDZG2C4sponAOIZWRAXrPn2pZtnj1FrXpuZZlpfp0y+Pcr5D5D62fXx1tLXavZpJ3547off8hxgrBNTnMG+IE6brGWwE8xxyftLeJ7MHOMc6pJd70r1AXjQ3rhtXznFOv4rEDtb/vFU5ovgfWNMeT+4tAEix8En/phQ3rbGWWZOSPSc0KWmviOCZN26/y3oxC9S0p+UXWd+QrPAF50/K8ft/yXBeq71qasxJn5PoIVLwB2V2m9Fd/guiv/SSib6MzoZ2rEv+T3yP+V3+MqW78fDmeLlyx2+FwbIHBCoOwYo3KWyHapPJei0Dh0dEsfJ8kYhCJT8oydcapM9G0Op+hxk2WeZcat0hZwrL/NyyHgS2L3lNTJDduuKK3w+HYFdZa4vffR68sk9y6BcojOHnygZK4LexS1Q2wiI/xyxgkgY3JqWFkHYFE2qOn6oYir9taAxaELF6L8OodKj98v2U7feE4g5873rLsn90e4yuvjLQs89OrhMmfAGD1COgxDoq5yzdbHpf7eygP9LT5LBaMAU8WI5d2Z4EfABaNEXWkjRB4CNO3ZaOGJENaTS58LJJUROS+h8of5nRLW+R0C2C0VMLzJaWS9yCn2xjD4tQEUkp6RkYpd3XTf+LUpudzOBwOh+Nx+FFE/9gJTn38ZUbOnqdneJSuwWGGTj9Hz/AIQgiW781w79YNlu9Nk8ZuMtnRHgY6QkJP0d8RFDm0yeaqapllCGPAWGyb1d0aSw1DZgWptXh4yAMQYBT53f0I6yNtBSsS7CaFwMPAyGdfRPqtr/vk995saYAJ0hVUXm/Zpl55OK4ZrhjO9rTOZ73mrMz3jXnRwSXxHPNsLA720uBz9gaDduVAr6khE970r3JPLmxY1yEHuOD9KSpiBw5mUVQou6WC9GDmSgWCYOUi4dynNwrGohWy498jYY5cZ2TZ/qu8N1xfU/Ud+oXdeTlQhJ4sLM9zQyPT1FNDri2rSZHtfVTwPjJG+e9+Ff8nP1rYRawjf/MW9V/5Otmlq1hzNAr5jp3jit0Oh+ORFCrv+9bmAqxsWpvLfXGBEchm4XuoqfgeQhKQsUydCeqMP7A6r3GLZd5jlZukLGAOaY5RO9lQ9J6aflj0vu6K3g6HY2ekN26Qzc2R3b0LeU5w+jSijVl3e1F1Z1KxakNSL8C3AuQc+n7msSkfQU134bBojMVYg5BFM5lIUnr/3e+1bGcCn8G//EpL08H1eomlaAS/t7XI31X92oPXwqafYscWb7ukPr9EfW6xZdnAxf1SddvCwtzzdtQscViwogZWgC0jTQfSBltsaVAmRzdzulMZkYU+wlq8LMfLipzuelpYzh2rFDndHR0Kq4qcbmstS9NTmFzTOzpGWO5g+Llz7W1gcTgcDscziRCCSk8vI2ef59SLrzBw4hRdA8P0jR1n8NQZyt29JLUG8+N3mb1zi9rSYtPRxuHYHVLCaE/pgSJxsb65ElJkWZHfnedYpbBtvu9JsTSEIMNggFAcTPOlICgU3pSQNsKI2qHM7/bLJYY/9dGWZY25RRbWNMYKoFxrtTKvl4ZbphU/v87K/O3ZgGrq7mH3i1R4vCFOcE0Mbmjf8DG8bCe4aKaQ9uAKnkYYrni3+dC7i1k36eyLiHPq8wzKs9s7mO8/zO82GvTBfXe8+gmie18EvW7c58XoE5fIwinSNCXPc+I4JkniA1F5r0cKgackka8oh4qSr5DwIMf7ftb3UbA1BxCBR/iLr1D6Oz+PPDWwcYNGSvLrP6Dxj34HPbW4cb3jyOOK3Q6HYxsU1uZYscbaXD20Nt+nP3pF4btCxGBT8T2MIiKjSoNJ6twlblqd17jDCu+zyg0S5p/6wndL0buza/Oi9w1X9HY4HFuTTU+T3r5DPjWFrq7inzyJDNvcPR8v71rVvUSAxSeTHp6pYUUDo2qFMtYezS7/+xbm1thmXjd0f/M1vMVqy3aNX3iV4cHWSbR/cmuM/+STx1qWqXyGcv33AbCmC/Lz+3fx65i70qrq9ksR3SdGtth6D+S6aJRAFjZ0RwxLUjRo2ArCegjTs+WWnk0f5HTnMiALQqwQ+GmGMoYgScm0YTXJ6QsDSkpRKiukEg9yuqvzsyT1Gj0jowSlMqPnzqParHByOBwOh8PzfXpGRjn5sRcZu/BRekeO0T04xODpM/QdO44fhFTn57h38zqLU5MktdoTmch3HH16yj6dJY++SkBuLMuNjXM9AhBpitA5WItV7b/3WUWQY0kwSGsPrOAtbQVpOsB2IKzCysOZ3z3w0ecJe7palk3/8B3y+GEBu7zOytx4EUnY++Dxp4ZTfPnw94S2gh9MH81x35FBCG6JAX4oTtPYxKT/BEt8xt6iYpNNdt6va4IpNcfb/lVi0TqnKYRkTH2U0+rTSLbxPb+v7hYSsoOdJ1bJAKWZLyOydep5qTGjP8J03ybLMvK8KHo34gb5E5zDFQiUFESBxJOCOC9yve+7ahylP+FqtJfS3/g5wl/6LJQ2Npqb23M0/sFvk3z9DewWjiGOo4krdjscjm1jhcGK+yrvNdbm1oN9sDdfi0DgUSZkgDInKTGCokTOKg2mqHOnWfi+R527LPMeVa6TMIfh6S34yjAkOH6c8MIFZNe6oveNG9QuXXJFb4fDsQG9vEx8+TJ6YZ58dg7/2DFUZ+fjd9zRSZLi3y5U3RZYFmVS30NIibQzaJFiyY6sqhtAG4O1FmuLgXpwc4KO195u2SZ+boyBL55sWVbTiu/Vj9Mx0prz3Ln6bxHNOA+bfpKDurXP6jHLd6ZalvWfP4VoY0YiUHTgYwpVt2pmdh8hLBYrawjrI4iQpqe4f9oEZTOwFi08jFAkKkJ7Cj9r5nQ3YrCw0siIlGQgCghCSRSpBznd9ZVlaktLdA0MEpYrDD93Dj+KDvhZOxwOh+NZI+roYOj0c5x66RWGTj9H9+AwPSOjDJ1+js6BQXSWsTA1weztm1Tn58jTzbOXHY6tONZTIvAkXZHPUiNFb2JBK7OsiAnSGut57Z+eEoIVBDmQ2gwP8A5K4W16kDZA2E6sPZz53UJJjn3hlZZlOk6Z+dF7Dx77eQ0/XdfkWx5+8HPZt7w81Pr74ZKzMj8QVkSJ18UZpunasK6ThM/am4zZRQ6y4lmVdd7wLzOnNtr398hRLng/QbTJ9bYQ+IWlte8Xym5zsI0iMu+gNPNlZNzfukKAHnwXhi6jjSZNE3SWkaQpcRxjnqDNtqCwOY88SW4scWbItKF6hHK8oYiM8199nvIvfxXvE6c3bmAs2Xfep/73vk7+/viBX59jf3DFbofDsUPsOmtz+UDxXdib72/RG5rdZpSahe8TlBhFUXlQ+K5xh4RZEu5RZ7xZ+L5GzCyGp3NgLYNgi6L3tCt6OxyOFkwc03jnXUy1Sjo5ierrw+vvf/yOO2UPqu6G8MnwyVSEtDWsiDGyhsB/hAX04cZaMNYUFuYCZJbT+2+/3bKN8T2Wf+lPMxbUWpb/xuQQf/YTx1teQ2FqdKz+x+axQ8g+vv9Posn8tdstOVdCSfrOnXzEHrtEG0AUHpb+RqXBoUfUsdYgbAfChEjbselmkhxpNVoGRU63jMiDZk63NoRJkdO9kmQYC6PlElIJKhX/QU532qizMnuPclc3lZ5eBk+eptzVfcBP2OFwOBzPMlIqugYGGbv4Aic/+hJ9x07QNTDEwMlTDJw4RVjpoL68zOydW8xP3KVRXWnJ9HU4tqLkKwY6QnrKPlIIFmob53UKG/MMmeUgwLYzmqlJJnwaNicXAm0SfCGRBzC1LpBIPYCwAdJ2Htr87s7jw3SfOd6ybP796zTmlx48Lq1TdxdW5g/HOOutzG+veEysHq2G16NKLhTviGO8J0bR69rLFZYX7DQftxN49uDiKbTIec+7xvVwGbtusjkUHZz3vkivOLH1AYSAKCwcwoSA7ODnhIUJie59EVXbeJ159w3ssbdAGrI8J8tSdJ7TiOtkWfZEHVHu25sba6lnhkxbakcsxxtAdpaI/vMvEv3XP4UY2CjwsIs14v/lOzT++R9hlutP4Aod7cQVux2O9eR1yJKmmsixNZsUvZHrit77r70rCt8RIf0PCt8eHWgaNJheU/iepcE4y7xPlavEzKA5QBueA2JD0Xt6s6L3DVf0djieUazWxO+8g6mtkt6+gyyV8Y8de/yOOyWPd63qBlikgpYS7XkIfQ9EgiVHmnL7r/WAsNaABWssQkq6vvUD/Pnllm1Wfu5VhoZ9fGHX7Af/YvoUIydbC5cdq/8BaZtF8fRF4GCaAIzWzH94p2VZ75njeGG7z2+LezGliokJ72hNclk0RjSQlBB4SNO7xZYGaTK08LAoMhmShkFrTneuiTNDnBpGyyU8KenoVNDM6c6zjMXpKYKoRNfgMN2Dw3QNDh3o83U4HA6HYy1+FNF//ASnXnyFkbPn6RkaoXtwmKHTz9EzPIJAsDQzzb1bN1i+N0Max0/6kh2HnOGuCF9JeisBq0lOkm2cs5NpCtimunsfGiWFIBY+sTXkaKzJCOTBxMUI/GZ+d4i0pWZ+9+Gb1xl99SXE2vt2a5n44zceFO3K9dbcbqt84uhh4/UL/RndYWsxzam7DxAhmBQ9fF+cocrG132EKp+zN+m2B1cUlGjuqEneKM+RrYuslMLjlPcKx9WLWzpoEYYPm6fzHA4wg/w+AkU4/yn85Ysb1unyFHrsdbxIY60hzRJ0npOmSVPl/eTqE0oKymtyvDNz9HK87+OdH6X83/8i/s98vHCNW4d++w71X/k66Xcvu0a8I4wrdjsca7EGTEYxG52DPnydkoePtUXv+5neD4ve4oCK3rC28N3XLHyP4dOJJqHRzPVOmCVmlgaTrPABK1xpFr6frsH1o4veNx8WvZ2FnMPxzGCtJX7/A/LlZZJbt0BKglP7YD0NkKzsWtWtrWRVRWReiKWGMjWMrCNsiLRHUN3b5EFet7UVTSOBAAEAAElEQVREd2fo+O6bLeuTkyOsfuFFTvit1n4/Wu7i1Y+cwqwdkNmcztVfL360Ept9Yr8v/wFLtybRSevfjoHzp9t/oubrhaeKfzv4DB0GrFgt7n9sGWk6EVs0IyibgZAY4aGlTxqUsLI1p1sby0qc0RP6VDxFqSzxPEnqF04Bi1MTSCnpGRml3NVN/4lTB/xsHQ6Hw+HYHCEElZ5eRs6d59SLrzBw4hRdA8P0jR1n8NQZyt29JLU68+N3mL1zi9rSYvOeyeFoxVOC0e6IzlAReJL5WrrBUlkYg9AakecgBXYfxjm5CEisJsWiTYzFEsqDGaPI5n0ltnJo87uDzgpDL7cW9OrTcyw1m2U9HRMkS63ryyMPfpYCPjfaKkx5fSrkiIlJjzw1EfIDcZo7bGzYLZHxKXub03buwGzNPR2zJJd5vXOGFbGx0D4gT/O890UCNmmOFwLCoOkUJuAJiX8EgmD5BYL5T26YJzfhEsnoH+FVEqRU5PdV3jqn0YhJ0/SJqbyFWJPjnR3dHG8A4SvCr7xE+b/7BdTZ4Y0bJBnpb/6Ixq9+E313/uAv0LFnXLHb4VjL/d/S1oCxoFPIG+y7L/dTgV2T6X2/6C3gCRS976MICOilzHHKjOHThSYl5h41bhNzj4Q5GkywwmVWuEyDaTRPT5PD/aJ3tKHoPVUUvV9/3RW9HY5nhPTmLfLZWbK7d7FpRnD6NMLbByXCHlXdy6KCQZJ5PsLMg0ywmCOt6oamhbkxoDV9v/4HiDUjQ6ski7/00/R4GZ2ydfD9j2+f5PnzrTbz5frv4+l7xYP8Itg2561vgbWWuSs3W5Z1jAwQ9ezD+XNddOBz9CzMC2vJFGk7ENZDmM3txKXNENaQCx+LJFGlIqc7zZH2YU73ciMjlILBKEQFknLJI/OLRsPlmSlMrukdHSMsdzD83DnEEWsMcDgcDsezgef79IyMcvJjL3Lswgv0jhyja3CQwdNn6Bsdww9CqvNz3Lt1g8WpSZJa7YlauDoOH/0dIZHv0V8JSHLDarq5uluYYk7P7sdYRwhyGVK3Go1B6wYCgS8OSOFtupEmRNgurLVYUd1g7/ykGXzpIkFXpWXZ1Os/RqfFOKe8zso8Lg1i1uSfv7rOynw5kXywcLTGA08DRkiuyBHeEsfJ1pWQJPC8neUT9g6hPZjisZ+tEouMH3TMMCFnN6wvix7Oez9Bl9ikiBmGRdHb94pit843bnNA+LVTRPe+CKb1M229Bo3hP0R0LBD4ARZIsxStM7IsJY4b6CfUDHY/xzs84jne95HD3UT/zU8T/mefh8rG+SozvkDjV79J8ps/wsaHz0HDsTWu2O1wbIXVRbHbFbx3yP2it3lQ9BYbit7ywF9O+aDwPUaZ4/j0YMmbhe87xMwQM9dUfF/5/7P3p0GSnIl5Jvh8n19xR95X3agC0A2g0ei7m002m6J4iBQlUkMdoxlpd3RwKI6t2dqare2flWz+jsZs98eaSdSs7a6NRsNbGlEcUS1e3c1u9gmgge7GjbpQd1VWHnG6+3ftD488orIKlVWVkRlZ+B4zGCrcwz08MjM83L/3e9+XFm/Q5yqax6OvQ+wQvW9sE73PedHb43nMUTdukl+4gLpxHbPeIj52DFkqjebFHsHVDQEtUcKECXnQIzBdnOwhXYLkcMVYb6cQuoso88mvvEx0c2VofeunPoOen+JY1BlafiuPaSw+hYmG33uj/Vub/3b5J0d34HfQvXmbdG3YeT7z9Mm9fyFnAQtBWESMjaBzcVQ4LE50EC4qYibtxF0j9QSGwGmsjABJFlRQmz3dhiQterq7mcZYV/R0S2hUw82e7vbtZdJul4mFReJyhcUzTxGMYlDX4/F4PJ49plyrM3fyCU4+/3HmTp6iObfAxMIicyefoD41g1GKlWtXuHXxPO3by2hfw+WhuK04MlGiFAXUkoCVbo69092tNcI6pNa4IMCNYBKgFgkOQd9pcAplFYEICMTor1kFEmlnEC4a9HfnMGb93TIMWPzcC0PLdC/l5suvA1Du3RiKknYyIC3PbD4+UjOcaAyLkd/wUeYHxi1R55viCVbv4pqepsdn3XlmXOcuW+4tAkect7Ay4K3KGm+GFzB39IeHIuaJ8DMsyDviwqUs3N1xXNxjpimYg/teCbJZyte/iNB3/EylJp39Brp+kTiKCYMQbQx5nmO0IU1T8iw7sIlg0UaPtx30eNvD2eMNhWM9+uQTVP9vf43w06d3PsE51NfepPfP/wD9/ff85LtDghe7PZ57ISgG621efAHqPoxZPNC4syF6s0P0DhAuPBDRG0ASETNBmSUqHCNmEocl4xY93iPl+kD4vk6bt1nndXpcQdMZuxmzD8p20TtoNgei91tbovc3v0l29qwXvT2exwjTbpO9+QZmbQ194ybR4iJBozGaF3tEV3dqS/SDiCwUWNcmoHAqHHpXt7GAI7xyi+ZXXx5alx+Zpf2Fj5MIzVwwPMHqX19a5BPPDncvJ+mLxOodAJw+Dnb/upmX37ow9DiuV6kvjeD1jQFEMShx2MRb0cc5h3A1hC0hXfUuT7IEVmFFgCUkl/Fde7pzbenmhvlyiUhKqrUQQtCBo9dap7u2SmN6lqRSZf6JM0SjmsDi8Xg8Hs+IkEFAY2aOIx96hmPPPs/U0lEas3PMHD/B9NHjJJUqvfV1bl08z8qVy/TbLd+l+QGnXo5olCMmqwnWOdb7w4KVAKTKEUaDG4272w3c3UoEZCbFkWMwRCIsxr1GjCBE2ulBf3dl0N89XmM4jRNL1I8tDC1b/sE7pKstAqtI0uHJv9ujzAF+5A539/duxvSUTy86KDIR8aI4zlkxs2NUNMbwMXeJp+wNxIj7sKUzRKqDDkpcj3u8Er9JehehfSF4itPB5wi3946Xy4XYXUoGgnd2YJHmAFLXKV//CWQ2NbxCOPLp75E3X0MGAXEUI0Th8tZaobQiTftofTDu9EAKyvGgxzs/3D3eAKKaUPrbn6P8az+FmN+ZyObWe6T/85+T/n+/gl0Z/aQOz6PhxW6P554ICGIveO8BG6K3Y7voLQ5c9AaQhEQ0KbM4EL6ncDgylunyHn2uk7FMynXavEuL1+lxGcX4RUU9CCKOiY4cubvoff68F709nscE0+nS//73MZ0O+eVLBJOThLOzo3vBR3J1h6zJGCFC+kFKZDpY2Ufa8l2dsYcJaw1OKWb+3ZcRdlt8uSziywkCjoQd5LYfl7KCN6PnMJXheLNG+ze3ts8/NfJj3yBrd2ldvjG0bOapkyOIzHaF2B0MeroPkdjt0FjRR1JGuBBpd3bcAQSuGJgwIsKKgDyu4KQc6um2g/jyRhxRj0LisiSOi57uPO3TunWTcr1BdXKSmWMnqDTuHpXu8Xg8Hs9hIS6VmT56nBMfeYGF008xMb9Ac26B2ZOnmJhbwDlYu3GdmxfOsX7rBipLD/qQPQfEkYkScSholiPW+wp1h6tQKAUOhDa4IBzJyM2GuzsXYE2KsgqHJd63/u4y0jbAVRAuwsn2WPV3CyFY+pGPIbb1pjtrufqN7+Gc2xllXprGbPvZfXohIxBbvzltBS/eiEd/4J57IwTnxCwvihOk7LxHO8EKn3YXqbjRjiOGJiMwGSqq0Q0Mr0RvsGqv7HheXc7yVPgFqmJq8/ipVbcE7zCCPAN1cOOewiaUbv4YQffIjnWq+TbZ9HdAOqIoJgxDrDXkeYbWiizLSNMUa/d/bFoKQSmSBIMe7/wQ93hvEJyep/J/+Tniv/IChDtTOszrV+j9j3+A+9pl3CF0sn9QODyjRx7PQSBDQBQutc3L434xgH/IB94PBjuo7ZYIJ4pKb2cRLgAhi0gQYdiHibB3RRIiaRDRwGIw9NB0ybhNxm0CSoRUMfTJWEYQEtMkYoKQ6qEUYzZE73BuDn3zJurGTfTybcKZaaxSqMuXiY4eJT52DBH7GwuP5zChl5dJX3+9ELrPX0CWykRHdt5E7d0LPpqr25HQlgl56NCiT+zWQAikK4/mePcJ68BaqH31ZZJrt4fWtX/ik6ilWQSOo+HwLOEv357m8x9ZGhqci/KzlNLvAODMNJiTIz76LW6/fXHosYxCJp84uvcvZA3gCrE7CBiaATDmONEBJ8BVkK6BYOdgp0QjnUHLYoA0DSuYMCDMFdI5kn6KGAjdoRDMlxNEBLVKhAoNWitWr18lSso0Z+dpzM7TnLtLL53H4/F4PIcUISXViUmqE5PoPKe9skx7+RblRgOdK/rtdXqtFr31daI4odxoUK43kIeo9sTzaCRRwEw1wRhHO9OsdnPmGlsJN8I5pFYgBCYMcWGI2GMXpBUSI2MElsz0iGVCZgWJjIllRG5H7xgVtokkw0qHZRVEC1xzX9zluyGZqDPz/FPceuXNzWWdyzdoXbhK/YmQVWuK+0YAIemX56h1C9GyFjuen8353s2te8pvXE34wtFhx7dn/1kTFb7FKZ5x15hj+B62Qcpn3HneZIFrYnSTcSPVJpOTZHED3CpvBec4qlc4Ip9FiK2x2ViUORP8CFft69yy54qFtSr0JFCMS5PnxZD/AY15CheQ3P40Sr+Gar49tM5Ur5CGfUq3PktAiUAGKK1QSiOlBReRWkMcxQRhOIKJ6O9z3EJQigJyY1HaYpSFENqpopaEyEN0H7+BCAPiv/wc4QsnyP7tdzBvXxt+Qm7gP1/AvrqM+Vu+WmEcOXzKjMczYiySPKzgNi4ONwbsrSkG8Y0G3cM7vB+FDae3Gzi95VbUuQ3BBgdekS4JiKhTZoEqx0mYQSDJWaHLJfpcJWeZPjfocJZ1XqfLeyjWx2o27W4RUVQ4vT/0IYKJCdSNm1ud3htO73ffxXqnt8dzKMjfe4/+93+AXlkhf/csIoqIT5wYmlm/5zySqzuibYvv227UJ7B9hOgR2PLYDNY8LM4Ywhu3mfizF4eWq4VpWn+pcGbPBT0SOfzd8e/bz+ImhmOp6+3f3vxpFF3d+/OzMUqxcvbS0LKp08cIohHMm9WmiC8XEqL9ccbsBU5kOKGQroZwIcLerSqgiC83IsQhyYMyKo4IjCHc1tPdU0WE+VKljJDQqEWY0KKFZfXaFaSUTC4uUmlOMHPsxL6/V4/H4/F49oswjplcWOL4cx9l6elnmFxcojE7x9zJJ5haPEIQRbRvL3PzwjnWrl8j63V9r+YHhLlGiTgMmKrEdPPCVbgdmeeAQxiDC0fj7lYDd7cVIUq3sFiUU0gE4b70d4s7+rs1iN79N9xH5j7+YaLq8OTlq998BVRGOV0eWn6/KPOzaxFv3Pa+vXFAiZBXxVHeEPOYO+5JQyzPuas8a68S3NGpvVcIIM5bOCHRUQ0V17gmb/CO+QtyN9xhL4TkSPAcJ4NPIjd8n5UylEsQJ4XIrfLC5X1ACATx+nPEtz/GwCW2iU1W6C98BRu2QAiiKCaKQpyz5CpDa02W52RZij2Amo84kCR39Hi308PZ472BnKlT+pW/RPJf/yiifpeqsOsd+v+v/8SN/+Gf7//Bed4X/w3h8dzBWnmeXlRC2JxAlCjpDkIEEJZAZ2BSoAT0IKzg54w8Cg4nHAzizREMBHAHThTrhAVxsDerYiB8R9Rx2E3Hd84ajlUk8abjO2dl8PwGEU0iGofK8S2iiGhpiXB2Fn3r1sDpvUw4M1M4va9cITpyhOj4caR3ens8Y4ezluztt1FXr6Fv3kBdv0EwMUF09Ohohe5HdHUjEloiJhc5mdQkZg2BRBxyVzeA0Zrp3/0TxLabPScEK7/8lzfjsY5FwzPiz/YqfPyZJ4aWBWaZau9Piu1tFfSHR3zkW6yeu4zd7oYRRYT5nuNs8V8YFY7uu8SHjSMOhxNdhIuK7kQ7eZfvfkfoBj3dIkLJiCwpFT3duSq6urVGGUsn08yVEuJAUqkGyFCQScP6jWtYbZg+emyzp3s/Z+97PB6Px3OQlGt1yrU6M8dO0Fm9TWv5Fkm1ijWGfqtFv7XOytUrBGFIud6g3GgSHqKJc54HIwwEC80SylhaqeJ2J+fIRGlzwq2wFqENUihMWComU+6xEGRFgBERQjgC10PZLlLWUIP+buscdsRmCEGAtNPY4CbSlbGih3QhgvFwHQZRxOJnP8p7f/qtzWWq3eXWK2/R+LFF+pWthKI8mUAHCaEpRMfnZhT1yNJWW9fV/9P36/zfP7vOdPnwCmmPDUJwmSnWqPARd4XaHb3xS6wz4Xp8nyO0xd7f12/0d6uojrSKLJmi3b/OW/qrnAw+QV0O17dNyCVKosFF/SJ9WoXYLYAegCjEbucgSTioyNGoewppKqQz3wa5df/twh79ha8WDu9sFilD4jhAaY3WGmsNuIi+tURRRBRG+3qfGEqBjAMyZUlzQxIFuMxgI0cSBg/mgxgThBBEHztJ+KElsj98Bf3Nt4eNeQ7CmekDOz7P3Tk8CozHsw9Y5zAyJIvqZFGDdjLJanmRNKzghCwG750bDOqbYlD/ELp4xw+3zek9EL6Rm05vYYMdM9sOCoEkpEaJeSocp8QckgjFOj0u0+PKoOP7Bl0u0OINUm5g2dvIrFGzIXoXTu/JTad3fvUa2YUL9LzT2+MZO1ye03/lVfIrV1CX3kNdv0E4P0907NhohW54RFd3TKYhTSp0wzagCdw60lYOuae7uGSofO1lkkvDXdedL3wcdawY2KnJnMlgeBb5b956knCuOrSs1v49BEUcolMfY7/mrDrnWH7rwtCyxpF54lpl71/MGEAUEyZG4RofFSLFYRGuhrAJ0u382UinwVmMCLFIsmjQ060U0lriLMM5aPUVtTCkmUSEiaCUBKjI0l5ZJu12mZhfIC5XWDzzNMEh6jP3eDwej2evkEFAY2aOox96lmPPfISppaM0ZmaZOXGS6SPHSSpVemtr3Lp4npUrl+m3W97t/ZgyVY0pxwHT1ZjcWNrZ8LiLzPPigtxabDiaiQ9KlnFCYAnBZGRWYZzBYInl/lyrSVdC2gmEqyJchJVtHKNx1D4MzdPHqC4OC483X3kTees9xPa4dyGGxO9Qws+cGnbpdpTkX7xSJx+ft/eBpyNKfFuc4go7Y8srKD7tLnDc3WYUZc5Ff3eKimoYGZKWZtAozppvct28teP5JVHjqfALLMlnC5d3qQTVSpEoliSgNaTbq0z3nyCdp3zjiwh9xwQBqUjnvo6qbtSLCaIwIo4inINM5RitUXlOmvYxZn8/JDt6vLWhrwy9/PD2eAOIckzpv/g05f/TzyKXJjeXy8VJpv7+3z/AI/PcDS92ezx3wYmQLJ6gE0+ShhXayTSr5QWysDpwqw0Eb6u94L2nDERvsV30FjCGojdsCN9VSswNhO95AmIULXpcGQjfK/S5SovX6XEFw+HqF7pT9NY3t4ne588Xovc773jR2+M5YEynS++ll9DLt8jPnUevrRMfP040Pz/6Gb2P6OoWIqFFgpJ9ehJC1pEECDceboRHQdxYpvmlbw4tUzMTrP/UZzYfHwvbQ+s7JmDy5PO4bb83YXvUO78PgHMh5B8d4VEP0756k7wzHIc48/SpEbySK8TuICgmS4xoQHKvcVis6CJdgiBEuMkdzxEYAqexMoKB0G2isOjpto5SmiKAVqYQFD3dLoB6NUaFlm57ne7aKo3pWZJqjfknzhCV7hKn5vF4PB7PB4y4XGH66HFOPP8xFk4/xcTCAs25BWZPPUFzbgHnYO3GdW6eP8v6rRuoLD3oQ/bsIULA0ckySRhQKwWsdhV2m6oijEZYi9QaAjl0fb1XbKT2aBkhsGiXotAoq3A4Erk/17TC1hG2jHCNQVJiC3fQ/YADhBAsff5jQxOinTFc+4uXKfduDj33zijznzqR8tHZ4fGm99oh/8vrtUMtoD1uWCF5XS7xfXEEdYfcJIGn3U1ecJeI3N4bgSLVQThDHjcwMiJLivux6/Ytzupvod3w348QkrngNB8O/xKT4igk8ZbgXSoV9aUHLHhL1aB0/SeQ2cTwCuHIp18ib76++fkWMiCOY8IgQBtNrnKMNqRpSp7n+zrZa6PHOw4kuXGkypJrSzsbPjcfRoITM5T/z38FfvYkJAHJ3/wswqfHjB1e7PZ47oF0GukMvbhBJ54gCyq0SjOslRfI48FsNZ0NBO8uXvDeSzZEb7speosdorc88F7v7QgEIRUSZjeFb0lIxjI9LpGxQsoNWrxJhwtoOvff6RhxV9H7rbc2nd7db3zDi94ezwGhb9+m//JL6NVVsnffxWUZyenTBBMT+3MA213dUeXBXN0iwTjoRwld1rAhBLaFtNVD7+rGOhq//UcIvTWj2glY/eW/vOlaDrEshsNC8h/ePkr96HDfc637vyPd4HtDPQfsX7z76rnLQ49Lkw2qc1N7/0LWAq4Qu4OgiDE/DIhecT3iqghbQbo7Kz6Knm4rAiwhWVAij2PkoKc7TjOkLQYCstyyWC6DFDTrITaypHmf1q2blOsNqpOTzBw7QaWx0zXh8Xg8Hs8HGSEl1YlJFs88zYmPvMDM0eM0Z+eYPnqU2eOnqDQnSDtdli+9x/J7F+murWL32fXmGQ3VJGSiEjNZSXDAam/LKSwo3N3CGLAON6JUHCUSnJBYAkKbk9kMiyW3xUTGSIze4V30d08P+rsbhbNbdEf+urulPD3B9LOnh5a1LlxBXHxjaJmKG6hwKyVJCvgHz3VYqAx/Xr91LeHP3vOTP8eNG6LBt8Up1tj5u5mly+fceSbd3v5dCiAa9HerqI6KqqiwSElru5u8rb9Kz67u2C4SJU6EH+dM8HlKyTTUqhAO3N7GQD/lQAVvW6J08wsEvaUd61TzTbLpF7clOAiCICKOYgSQqxxtFEodjMs7DiWl7T3extHua5QZo4H8h0AEEvGjR5H/1x8lODl7/w08+44Xuz2eeyCcoapaVPN1wNFNmnTjBv2wynplnvXaUbSMB4K3GQje/mZpr9kQvdkhegcIF46d6A1bwncRdX6UgAqKNXq8R8YtMm7R5l3avDPo/R6zN/A+3Ev0VteuD4ve2eFysHs8h5X80iX63/8+emWV/OxZRBCSPPkksjKCiOm7caerO7hT6Hs/BEIk9FRIL07pByBln9A6pDv8M2STv3iF+NyVoWWdz32U/NTWzepS2CEQW98B1sH1ic9itsfOO0O9/bvFPx24/BOjPfBt6FzRujLstph+8sRo0gKMBiQIeWgizB0GK1IkZYSTSDux4zmB0yAERkRoEZIlZYRzRLki1JpIa4x1tFLFTCmmFErKFUkQSVKbs3r9KlFSpjk7T2N2nubc/M4D8Xg8Ho/Hs0kYx0wuHuH4cx9l6akPM7GwSGN2jrmTTzC5sEQQRrRvL3PzwjnWrl8j63V9zPkhZ2miRBwKmpWIdqpQZsuMIpQC5xBG48JwJKMvRkZYQoyMEVhwlr7NsDhypwlEQCCCEbzyMAKJtLOF4E0VK/o4MT5jM/OffI6gNJzedfNLX0Ka4WO8091diRy/9rEWpWDYZPQ7b1d4a+Vw3Dd8kOiLmBfFSc6zs884QfMJ9x5n7E3EHp53pbPEeRsTJJggIS1NYgapCjl93jF/wXXzFtbtHLevyWmeDn+cpeQFZG2iuBctJeAs9PojiV/fLcKFJMufIWw9uWOdqV4infs6Tm59foSQRFFMGIZYY8jzHK01aZqSZem+fteFUlCOAwSQ5gZlHd1Mk6rDr52I8uEfr3pc8WK3x3MfQquo5etU8haOgG4yQS+q049qrNaP0yrNFDOkrIG8hxe8R8OG6O3YLnqLsRa9ASQRCTNUOEbEBJoePS6TcoOM5W293rfGqlPpfuwQvW/dGha9N+LNvejt8YwEZy3pm2+SvfMu+uZN8osXkLU68enT+xullK2DUQ/p6i7hHHTCkB4r6DAgtB0Cu09C/QiRt9ep/oevDi3Tkw1aP/u5bUscx6LhlI/vdSaZPjk8KFDpf4XQXB/s5Em4S0z2qFh/7xrObhsslJLm8cW9fyFnC2d3GBR3J4eki9qJbmHXdxWkayDu6FGXFClBWkQ4JGl8R093WvR0r/cV1SBgMokhFlTLIVmgWbt+FSEkk4uLVJpNZo4eP6B36vF4PB7P4aRcbzB/6jQnPvIx5k6cojk3z+TSErMnnqA+NYPKMlauXuHWxfN0Vm5jlLr/Tj1jRxxKZuslJkohoRSsdLcS5wQglUJqA46Rubu1TLBC4pCELsdiSV2OdRaDJhJhMY41YqSLkW4S4coIl2BFG8feR0c/DGESs/iZjwwty1ZbO9zd/cr8juG9xarlH35k+N7JOsG/erXO7b6XN8YNJwTvyjleEsfIGJ7oIYBT3OaT7iIlt3fpkIHNCU2fPKphRdHf7QafOYflun2LN/WXWbfXd2y7GW1e/mkmmx/eijTHQb9f3K8eEAJBsvYR4pUXdox729Jt+vNfwYadoS2CICSKYoQQKFU4vLXW9NM+eh+/56QQlO/o8U6VpZsd7h5vz/jivw08nl0S2Zxqvko5b2NkRCeZoB/X6ZemWKkeoR3UCqky9w7v0XKn6C2HRW8bjKXoLQiImaDCMRJmsWj6XN/W632Z9UGvt+XwRIFvit5PP00wOVWI3m++ibp2bVP0Tt9+24veHs8e4vKc/iuvkl+5grp8CXXtOuHsHNHx4wi5j5d2OgWTg+4/hKtbIkRErgM6SZ8+4EJNrDTSHQ6h8544R+23/zMyH76JXP3ln8QlWz+jmSClIocHnl4KP08eDQ8G1Fu/ubXr/JMjOOB7s3Z+2JlePzJHGI9gMoUxgCjiyw9J75VD4USGdBWECxC2ccczivhyM+jpTqMKJooI1UZPd4YAupkGB/PlElbCZC0iDyxrN69jlGJqcYmkUmX+iSf39/Pt8Xg8Hs9jRBCGNGbnOPrh5zj2zEeYWjpCY2aW2RMnmT5ynLhcobu6ys2L51m5epl+u+3d3oeM+XqJKAqYqsb0ckM/3xqXk3kOOIQxI3N3F5MbA7SMkM4gnEU7TY5CWYPDEu9Tf7e0dYStIFwNnMSJ9tgkCk4+fYry7HAl0tqf/dHQYx1VUVF9x7YvzCn+6hPDFVBtJfmXr9bJ/TDsWLIianxLPMEy1R3rJujzWXeeOdfas9cLVRe52d8dkpaG/9Zyepw33+Gc/jbZXeLUI1HiRPwpzkz/FUrJDJTKFIJ3OqjdOjiizhMkt34E7PB4iYu69Oe/gkmWh5ZvuLyjMMQ5S55nGKXI8pw0TbF2f84JQgiSSG7r8TaDHm996Hu8PeOHHzHxeB4AAcQ2o5atUFJdlIzplKZIkwn6cYPVZIZOVMfmfRiTmZOPLxuitxsWvQe93uMregsialQ4QpkFJAEZt+hxiZzbpNxgnTfocgFN7/47HBNEFBEtLhai99Q0+tbypuidX7zoRW+PZ4+w3S69l19GL98iP3cevbpGfPw40cLCaKKl349HcHULUQIEHaAj26gIQnIi8yCC+XiSfPuHxG9dHFrW+fSzZGeODS07FraHHt9UMfUTR4f3lX6PRL0FgDNLYI+M4IjvTt7p0b21MrRs8uQoXt8VYrcMir+hQ+TqFi4ESkjXLK5DttYSuq2e7jyIyeOk6OnWhjjLkNaSa0svNyyUS8hAUK+F2MjRWr9F2u0wsbBIXKmycOYpgkPyc/F4PB6PZ9yJyxVmjp3gxPMfY/6JJ5mYX2BifpHZU0/QnFvAWcfajWvcPH+W1q2bKH8PeyiQEpaaZSpxSCmW3O5mmxMWhHNIrZFaFdebwQgixYVAyQQrwoG7u5j4mtkcgyGzxeP9E7ynEC7e1t/duf9G+4AQgiM/+rGhZerCu7j2cKdyrzocZb7BL5zu8/zMsEHkYivk37xR9U7RMSUXId8Tx3hbzHGnXBxh+ai7woftNeQeuKc3+rsZ9HfrsEIe1XY8r+Vu8Kb+8vtEm8/w9OTPs9T8DLIymNSc9g9c8A7TBUo3voDQd3SiBznp3NfRlUs7tpFBSBwlCCFRWqNUjtGaftpDKbUvE7sEYrPH21hHX1m0sY9Fj7dnvPBit8fzEAggMSn1bJVE98nDMu3KPP2oRk+WWanM03XhXb8wPXuN2yl6I+8QvfdZANolAWVKLFDhCAEV8s1e72VSlmnz9qDXe31sZuHeDy96ezyjQ6+sFEL3yirZ2bO4LCM5fZpgYuIADmbD1f0wXd0BiBBtQ9ajdTKbY+OAWBsEo++yGyVyvUP13395aJluVFn/uR8dWlYWiukgHVr25/qzpHd0PzXav7X57/12da9eGHZ1B3FEfWlu71/IWsBBKIuBx0PgXnYiwwmFcFWEixB22KkQOAXOYkSIEQFZXEVQ9HQHWhMpjR3El08lMeUwIC5J4kTS7q3TWV2lMT1LUq0x/8QZ4lL5gN6px+PxeDyPL0JKapNTLD75NCc+8gIzR4/TmJll+ugxZo+fpNKYoN9ps3zpIsuXLtJdX8MaP8YzzkxWI6pJyHQ1RltHO90yoYg8L7p3jcWOKspcxDgkRoZIpxGDcZyiv9uinEIiCPepvzswM0V/t6tiRYoT6f033Acqc9NMPn1qaFn60jeGHvfKO6PMAaSAf/iRDnOV4c/iN6+W+PKl0l228IwFQnBRTPNdcZIeOyd8HGWNz7jz1Nyj/41KZ4kG/d06KJElE5v93dsZjja/cZdDlsxVPsyHZ/8Gk5PPAGIgeB/s90CgJijd+Alk3hxeISzZzHfJG2/sHEMWonB5RxHOWTKVYbQmzzPStI/dp/cUSkEpLs5//W093tlj0OPtGQ/GfzTJ4xljBI5E96hlK8QmJY8bdMozpCKmG9VYjZr0g/iQyJSHne2id+Hw3i56izEWvSUxCTOUOUZEE013W6/3bbqcp8WbZIeo1/t9Re+NePO3vOjt8eyW/PJl+q++il5ZIT/7LkJIkjNnkJUD6rfedHWrh3R1S/pa0YpS8rDocorUeJ6jd41zVH/nj5D94fPayi99EVdOhpYdizpDP7LcSszi00PPCdUFSuk3i13bJugzIznsu+GcY+0Osbt5fBEZjODWwRhAggggGn/3ssMNXN0RghhpJ4Zc3Rs93UbGgCSNq9hAEuVFT3eSZuCg1VeUZMBUKcZGUK+EdHWX9Vs3KNcbVCcnmTl2nEqjee+D8Xg8Ho/HsyeEcczk4hGOP/dRFp/8EBMLSzRm55g7eZrJhSWCIKJ16yY3L5xj7fo1sl7Px5yPKUsTZeIgoJaErPXUZlSvNAZhLdJokBInRnBdKwRaJhgR4RAEtnAgOxypzbDOopwhFCFyH4bki2vVSQQb/d2dsenvXvzMR5Db6pGyV78ztN6GJbJk8q7bViLHf/dCmyQY/gz+zlsV3l4Z//uJDzItUeZb4hTXuLMCCmrkfNpd4Khb5VFt+oHNCXUfFVWxIhrq776TItr82/eONpdlTkx8gTNHfpFSNFVEmpuD/RxJU6Z048cJ+jsTENTEG+RTL+F2+OhByoA4TghkgN5weRtDv5+S5/m+fK8Fgx5vKQWZMuTG0vc93p49wovdHs8eIHGUdJdatkroLFlUpxM1SIOEtiyxkkyRBmUveu8LA9FbbBe9BRwK0TsgZnLQ6z2NRdHnGj2ukrNCjyus8wZ9rmJR99/hGLApen/oQ1ui91tvoa5eJb9YiN7Z+fO4A44C8njGFWct6Vtvk739DvrWLfILF5DVGvHp04j4gCK/H8nVHYIIsC5iNbhF5iwmCYiMIzjkX5Lxy2+S/PDs0LL2C0+RPTPsWpBYlsLhGMFvq4/Qaw47ERrt3950g7j8E+znZXt/ZZ2sNXyjP3lqFBHmtpgZHwbF2zsMUd0ixWERroawCdJtn3BikVZhRIgjIA3L6G093cmgp7unDMY4FsolrIDJekQmclZvXCVKyjRn52nMzNGcu3t8o8fj8Xg8ntEghKDSaDJ/6jQnnv8Ys8dP0pybZ3JpibmTp6lNTaOyjJWrl1l+7wKdldsYPR7ioaegmhS93VPVwniy2tuKvJZ5jjAGrMONzN2dAAIjI4Jt7m6DJXMK4wwGSyz357pXuhrS1hCuXvR3y9ZdRbD9JiyXWPjks5uP7a1r6GvDEcz9yvw9t1+qGf7Bc8P3VMYJfv37dVZSL3eMM0YE/FAs8UOxiL5DgA5wfNhd53l3hfAR01JD3UVaTR7XB/3d0+/7/PtGm8cLPH3kb7I083lkZg9c8BYuJLn1OcL26R3rdO090rmv40R+ty0Jw4g4Ks6RucoxRqFUTpr2MfuQYCKEoBRJokCSa1v0eJuNHu+Rv7znMcaf/T2ePURiKesOVdUisIZ+UKETN8kIaEc1VkszZEFy/x159oAN0dtuit5ih+gtx7jXu06Fo5RYQCBJuUmP98i5TZ/rrPM6XS4eml5vEYbDovfybbK33kJfv052/jy9F1/EdMajQ8rjGRecUvRffZX88iXU5cuoq9cIZ2aJTpxAjKJnbrfsgau7Z3p0whQlU5wsEasxPBk/AKLdpfZv/3RomamVWf35z9/R5QyLYY9IDL/f61PDvXXSrFDt/hEAzpVAPTeCo743q+eHXd1xrUJl5u7OikfCGGDQmxjtT3/ho+CwWNFFugRBiHDDP5PAaRASK0JUEJEl5aGe7sBalClmrc+VkkFPd4ALHMs3roCQTC4uUmk2mTl24oDepcfj8Xg8HoAgDGnOzXP0w89x9MMfYWpxicbMHLMnTjJ95BhRqUxndYXl9y74Xu8xY6FZIgwkk5WIdqbJdSHuCqU2+7tdGNzT6fkoOCFQsoQVEY5Bvc2A3CkUGmUVDkeyT/3dwk4gN/q7ncWNSX/39LNnKE1tpRjl3x92dxdR5vf+HX18PufnTg2PibVzya+/UsOnIo85QnBNTPBtcYoWO8fJ52nzWXeOCffwY54CiFV70N/dQIflu/Z3b2dX0eaN5/nwsb/LZHjs4AVvBMnqR4lXnt8xvm1Ly/QXvoINdrrVoajyiKOYMAjRxpDnOVob0jQlz7KRu7zv7PFO840eb4X2Pd6eh8SL3R7PCAiwVEyfWr6O1Dm9qEonKJOJmFY8yVoyTS4PyJH3AWRD9GaH6B0gXDi2ojdASJkyC5Q5QkCZnFV6XCLjNim3Br3e76IOSa/3naK3unGT/J130cvL9L77Xe/y9ngG2F6P3ksvFW7uc+fRq6tEx44RLS4iHkBc3nN0/xFc3REICUS07BW6YYiOQwJiQnO3GceHh9q//VNktz+07PYv/BiudmfXsuNY2B5a8q4+QXd6+Ka73vm3CAY/k/yjwP5dMzhrWbt4dWjZxMkjI/i7c6DtoKNbHBJXd7+4XnAVhK0g3dbvRaIRzqBFhEWSxjUEDPV0u0F8+UQUUYtDwgTiRLJ8+ypGKaYWl0gqVeafeBJxCLrLPR6Px+P5oJBUKswcP8nJ5z/G/KkzNOcWmJhfYO7kEwRhxOq1K97hPUbEoWS+UaJRCgmlYGXg7hYMBG+jwTlcOJoJxEV3t8CKCGmHU/nSQX93blVhdBCjvwYWSORmf3cNJzKc6N9/w1Efl5QsfX5r0m/+g+8OrXdBdF837l8/0+e5meF7yfOtiP/1zaqPRD4E9ETCd8RJLrJzYnUZzSfdRU65Ww8day42+7tjdFAe9Hff/976vtHmYYUTcz/FmcmfocT7C+j7QdQ5Q7L8WbDD5zQXdegvfAUT377HloIgCImjGCFAqRytFUor+mkfrUafKrrR423Z6vHuZJpM+bFhz4PjR1E8nlEhIACquk21vwzW0A1LdMMy/bDMejLFejKJ3ocLW0/Bhujt2C56i0MhegfEJMwOer0baNqDXu+bZCzT4Txt3iTj9lhEUt2PDdE7OX0a5xzZu++irt/wLm+PB9Crq/Reegmzukp29hwuy0ieeIJwcgTO2gclaz2iqzug5zp0whwl+riwRqxH4anYP+JX3yb53ltDy3ofOU332SeQd/x8JmRGPRi+YXyj9nnctucJm1Lr/HsAnJM4Nez6HjXta8uYbHjAaPLkCCLMrQVs4eoO5UD0Hl8cBiv6SMoIFyDtxLa1lsAqrAgBST+uDXq6c6Qb9HQDrUwRiYCpUoIOoFmLWW3fIu12aM4vEFeqLJx5iuAwCP8ej8fj8XwAEVJSm5pm6akPcfwjL1CuN5hcPAJOsHr1CtZP3B4bZmsJSRQwXUvo54ZeXlh9ZT4Qvo3BheFIhoCckBgZYwbO7e3uboC+zbA4cqcJREAgRp/aJYiQdgpBCenKWNEdi/7u2tIczdPHALBrK6iL7w6t71Xev9ZHCvhHH+kwWx62cv/FlRJfveyTNQ8DTkjelgt8TxwlZ/izIIAzbplPuPdI3MMJr0V/dw8VVbAiol+eI4sbu0p2uG+0efkIT8/9IkuVjyPFwSaVhf0lSje+gNDD9WgEGen819CVy/fcVghJFMWEYYi1hjzPMEqR5Tlpmo78uy0QgsqOHm/je7w9D8x4jyp5PIcdAYiQEEstXaaSruKspRtW6IU1+kGZ1dIMrXgCvQ8Xt54N7hS95bDobYOxFb2He72nsOT0uUafa2Ss0OMS67xOn2uHotdbViokZ84Qzsyib3qXt8eTX75C/5VX0CsrZGfPghDEZ84gq9WDPrRHdHXHA2E8Yt1cohsF6EAgRY1Ip6M64pEjun1qv/vHQ8tspcTKL/wYQhQ3jds5Fg1P5Fkzk6zdEQ9e7f5HAtsqHugPg9vfmeKrF4YjzCvTEySNEfz9GQPI4m/pMESYiy44Aa6CdA0EW4J04DRuEF+ehQk6jrd6uvtFT3eqLEo55sslrHRM1UM6eYv22gqN6VlKtTrzT5whLt2ZBuDxeDwej2ccieKEhTNPk1SrTC0tYbRm7frVkUe/enaHlLA4UaYcBVTigJVuEcsrnEMqhVQahMCNqB5KidLA3R0S3OHutlhSl2OdxaCJRFiYMUaMdFWkrYGrIlwwNv3di5/9KGLgss9f/fbQurQ8i73PeGk1cvx3L7RJguHP3m+9WeWdVT+J9LCwLOp8S5xihcqOdVP0+Kw7z4xr32XL+xPqXtHfnTRRYYUsbtKtLpJHtfsO/+4q2rz+HB+e/utMlk491PHtFYGapHTji4i8MbxCWLKZ75A33nqfVNANl3eCEBKlNUrlGK3pp31ylY/0+22rx1sM9Xh3fI+35wHwYrfHM2oGgjcyINI9quky5XQVIxydqEk/rNIPK6yWZmlHTYzwH8v9Y0P0dsOi96DXe5xFb4EkokGZI5SYBxj0el8mZ4WUa7R4gy7vYTj4eKr3Q0hJtLBAcuYMeJe35wOKc4707bfJ3n67iC6/cAFZqZKcPo2Mx6T24pFc3QkQ0ner9G2XNDTYsEHogh3RfoeJ6v/2ZWR7uEds9a99AVMrD2K/t35GsTDMBcPPfbnyRXSw7XvfWert39l6mH9yJMd9L4xStC5fH1o2cWoErm4cWDNwdFO4u8cYh8KJDOkqCBcg7NbggUQjncGICCsCsriKNHbQ050TWIuxjlaqmCslhIGgWgnR5Kzcuka53qA6OcnMseNUGs33OQqPx+PxeDzjRhhFLD75NHGlysTCInm/T+vWTjHEczBMVCJqpZCpaoy2jvV+4WSWSgEOBu7uUWCFxIgYI2IEboe7WztNjkJZg8MS72t/d4LY7O9+OPFwL4lrFeY//gwA+Q9fwpktB62TAWl55r77OFI3/DfPDo8dGSf49VfrrKZ+nPWwkImIl8Rx3hWzO6ZhxBg+5i7ztL2OdA82SUMAcd4iMCkqqpKVptBhhTSZpFdZRIWV+w7/3jfaPKhwovljnJn8aUrBxAMd314iTYXyjR8n6M/tWKcmXiOf+t77T3IRgiiKiaKoSOJUGUZrVJ6Tpn2M2elw3yuKHu9gqMdb+R5vzwPgz/Yez34gAFkI3sJqYt2j1r9FSbfQMqQTNUnD8kD0nqMT1bGHOtT1sOF2it7IO0Tv8fx9CAQhFcosUmYJSULGbbpcImOZjJu0eIsOZ1G0Dvpw3xdZLhPfy+V9zru8PY8vTinSV18lv3wZdeUy6uo1wplZohMnEOMiAj6Kq1skA2E8YN1dphcJDAYhJwl1emi/7aLXzlH67mtDy9JnTtF/4Smsdcg7YrmPhh3ktjeb2xI3pxeHnlPu/zmRKfqynT4JdnYkx34v1i9dx5lt51ohmDi+tPcvZAaRiUFYdHUfZA/9LnCiWyS/UEK65uA6AcAhrcaKAIukV6qBgCjPCbQhUgrnYL2vmAhDanEIMZRix62bl4iSEs3ZeRozczTn3j+i0ePxeDwez3gSl8osnHmKUrVGc3aeXqtFZ+Ve/aie/ebIRJk4lNRLEet9hbEOYQzCGKTWICVuRHU6SpZwQmAJCezOyPDM5hgM2WDyb7IPgvdwf3cdJ3Kc6N1/wxEz8/xTxM0artdBnX1jaN39osw3+MRCzl85NWz2aOWSX3+1hq//PUQIwXkxw4viBH12TkY5ziqfcheouOzBdosjUl2SbAVpFHlUJ0smUVGFtDRNrzKPDkr33c99o83jBZ6e/qss1T55YNHmwkUkt36EsL3Taa5rF0hnv4ET7286kDIgjmPCIEAbTZ7nGG1I05Q8y0bq8g6loBQNeryVQfseb88u8WK3x7OfDARvrEZYTZK3qWXLJKZPLhPacZN+UKYX1lgpz9ENa1703le2i96Fw3u76C3GWPQGCEgoMUuFY0TUUbTpcpmMm6Qs0+EcrTHv9b63y/ucd3l7Hktsr0fvpZdRt26RnzuHXlklOnqUaHFx4AweEx7a1S0Gru6Ivlihr7p0E4GVdaSICA9phLnoZ9R+54+GltlSzNrf+Amsc3BHhLnAcTQcPn99P/kC/Wh4MkOj/Zub/95vVzfA2vnhCPP60ixhaQTJAtoW10OIsY8wdyLDCYVwFYSLEHYr0l06DTiMCMmiBBNEg55uR5IWf9vdTBMiip5uaZmshtxcvgxCMrm4RKXZZObYiQN6dx6Px+PxePaCcq3O3MknKDca1Kemaa/cpt8e78nmHxTKccBUNWayEiEErPSKzm6Z5whrwboRursDjIjQMkJgCdxOwbvo77bkNi9cjfsieIdIO40g2dbffbBpWzIIWPqRjwGQf/87Q+vS0vRm//n9+MUzPZ6ZzoeWnVuP+M03xqAWzPNArIsK3xJPcIP6jnUNMj7rzrPk1njQUmfpLLFqk2SrCGfIowZZ3ESFVfrlWXrlOYx8/3vgrWjzr9w72rz6DB+e/utMHFC0uUASr75AvPrcjtRSW75Jf/6r2OB+E10EQRARRzFCQK5ytFYoreinfbTaeU7bKwI56PEWYjPSvK8M3dz3eHvujRe7PZ79ZlPwNoXobRSJblHL14lNRh6U6MRN0qBEN6qxWpqlt4s4Fc9eMhC9xXbRW8AhEb0lITFTm73ehpw+V+/S6319bHu9N13es3PomzfJ3vUub8/jh15dpffSS5jVFbJ3z+LSjPjUKcKpqYM+tGEe1dWNwAlJ214mC3OUDCGYJrAKeZeZ0IeByn/4CsHacORf5xd/Al2v4ZxF3hFhPhf0SOTWe7Uu4OLUE0Pbx9kPSPLXAXBmFsz+CqB5r0/nxrALafLU0b1/IWsAW0SXh7IoVBxTHG7g6o6KwUA7sc3VXQxYWlnEl+dxlUDpQU93kVhQdI1Z5kolXOCYqMesrt9AqZypxSWSSpX5J84gxvhn4PF4PB6PZ3fUpqaZPnKc2tQ05XqD9RvXyXoH75j1wGKzTBRIJioRnVSTaYPQuujv1hoXBLgRTTTWsoQTEkuwo7sbiuvNQvB25E4hEURi9D3T0pWRtjHo747Gor+7cXyR+okl8te/h1PbBGsh6Zd3RjLfDSngV57vMFsevs/82pUSf3452cvD9ewDWgR8XxzhdbGAucMMFuB41l3jOXeV4CHGFaQzJHmLOF8HBHncJI8aqLBCrzJPvzSDvc9nMae7GW2e27tHm588wGhzgSBqP0Wy/JkitXQbLm6RLnwZE6/cfz9CEkUxYRhirSHPM4xWZHlGmqbYEY3RbvZ4y2093tr3eHvujR9Z8XgOAhkW/w0Eb4xG2oyS6VPL1whtThZUBqJ3mU7UYKU0SxqUvei9r2yI3nZT9BY7RG95SHq9ixuDlBs7er17XMIwfu5KISXR/DzJmTMIx06Xd/vgu6U8nodFXblC/5VX0KurZGfPghDEZ84Q1GoHfWg7eWhXt0SIGIhIuUlP9ejFgC1BWCE0DxY7Ni5Eb1+k/I3vDy3LnzpB75MfBhzWuSFXN8CxaNjVfTb6NK3SsDthp6t7fydVrV24OvRYRiGNpd0NKj0QxgCymDgRjrerG5HisAhXQ9gE6Sqbq0KnCrcOYRFf7hyh1kS5IrAWO4gvn0kSolBSKoXk6Tqd7jrN+QXicoWFM08RjPvPwOPxeDwez66ZWFikMTtPc26BuFJl7fpVVHY4r3kfJ8JAsNAo0SiFxKHkdjdHACLPEUaDG52724gQS4iRMQJ7165hi6XvUoyzKKcJREAgRl9nJWwTaUsIV8c5cKKFO+ABrqXPvYAwivzN4futXmV+1/uoRo5fe6FNLIffy2+8UeXs2ugnEnj2GCG4Iib5tjhJh50T7xdp8Vl3nobr32Xj+xNYRZKvEectrAzIkknyqI6KqnSrC6TJJPY+n8eWu8Eb5itcz9+4T7T5Jw4k2jzsH6F088fADE/4cEFGOvc1dPnKPbbcjiAIQuIoQQiJUhqlcozW9NM+ucpHEm0uEMSR7/H27A4vdns8d5Bri7EOa91oYzFksEPwxuRIHGXdo5qvE1hNP6zQiRtkQZl23GS1NEMW+NmI+82G6M0O0TsoejzHWvQWhFS39XrHQ73eKTdp8SYdzqEYPwH5ni7vF1/0Lm/PocM5R/bOO6RvvY1evk1+/jyiXCE5fRoZjyAu+lF5BFe32HR1OzruGrlokwU1kFNIOJwR5llO7bf+89AiF0d0/s7PYJ3DOQsOxLZy7prImQy2BjmdE7zdfHZoH6G6RLn/F8V6WwP9oRG+ibuzdmH4Brd5fBEZ7vUgmwNrB45uYM/3v3c4LFZ0kS5BECLc5OY6iUY4ixEheZhgZEykFNJaojwHB62+oh6E1JMQGzlimXF77QaN6VlKtTrzT5whLpUP8B16PB6Px+MZBTPHTlCdmGBifpEgjFi9dgWjRxf16tkd07WEJCoizTNVOAOlUsW1uzG4IBzZkI6WCVZILJLQ3n3yg3GW1OUYZ9FoIhEiRzxsLxBFnLmLB/3dGg64vztp1pj96NM7oszzZBL9AGOhR+uG/+NzwxOOjRP8y1frrGXjm9TouTddUeLb4hSXmdixroLiU+4CJ9ztB4413yCwOUm2SqQ6WBmRJpOoqEYe1elWF8niJu59JqQ7DNfFO7yZ/jGt7PKO9UW0+bMHFm0e5FOUr38Rkd8RCy8N2cy3UfV3djfZRQiiKCaKomJ8S2UYrVF5Tpr2MWY06X336vHOtR8T9mzhxW6PZxvOOpQp3DjOOVJliu7NUbFd8HZ6IHoXF74BloruUlMtpLX0wiqdqEEWlGjFk6wm0+T36RDx7D0bordju+gtDoXoDRu93nNUOEZIDUWbHpfIuEXGMh3O0uItMlYOPMJqO97l7XkccEqRfv/7ZJcuoa5cQV25Qjg9Q3zyJCIYU9HvoV3dAYgIiOnL6/RVnzQyWFeFuEZgMsQ4nyzvQfU/fp3g9vrQsu5f+wJmqom1A1e3FNuirne6um8Ez3KzNixy1tu/gxicc536GLC/fw/91RbpHbHskyeP7P0LGQO4QYR5+AB/TweA6Bff566CsBWk27jmsgRWFS4dEZAlFQI9iC9PMwTQUwZhYbqcoIWlmcCt21cp1xtUJyeZPnqcSnPi4N6bx+PxeDyekSGEYP6JM5TrdSYXj4ATrF69MrKYV8/ukBKOTJQpRwGVOGClm4O1SK2QShfNdcFoXL9aRDiCTXe3uIu7G0A7TeZytDUYDLGMijGnEVL0d08hiAf93T0cB5tGMPfCh+HqWWx/m/AuBL1k9oH286mFnJ85Oez2Xc8kv/5qHa+PHU6skLwhF3lVHEHdIWtJ4Cl3k4+5S8Tu4SYYCSA0KUm2Qqh7mKBEVppChVWyuEG3ukQe1d9X9M7DnHPmO5xb/zK53jlWORxt3nyo43xYpKlSvvHjyPSOz5KAfPIH5JOv7HosWMqAOI4JgwBtNLnKMdqQpil5lo3E5b3Z403R462MpZcb+r7H2zPAi90ezzY2hG3nHMaBto5+XvRBjOykKQMItgveZiB4Fy8YOENVd6iqNuDohnW6UZ00LLOeTLGeTKKkj8Dcf+4UveWw6G2DsRa9JSHJoNc7ZhJDSo8r9LlOzm16vEeLN0i5gWV8ZqF7l7fnsGJ7PXovvYy6eRN1/jx6ZYXo6FGipSXEuAp+j+TqLgESKxR9d4uMNbKgjnN1XBASmsPn6g7PXab05y8NLVOnj5J+/mPYwexlZzf6ugfbYFkMt7q7nIPXGp8c2oc0a1R7/2mwPoL8o6N6C/dk9fzwzPOoUqY6N4LueG2KvyUkROMbIegwWNFHUka4AGknNtcFTuOExIiQtFQFx1B8uTKWfmaYLSU46ahXJKurVwmSmObsPPXpWSbmFw7uzXk8Ho/H4xk5UgYsnHmapFplamkJozVr16+OZPDfs3sa5YhGOWS6mmCdY72vkXkOOIQ2uHBE7m4hULKEFQEOSeh2dndvkDuFQqOsxmGJ92G8r+jvbhaTPF2ElW0co3Fn7up4opDFTz+Hev3loeUtOXmPLe7NL53p8eGpfGjZ2bWI33qz+kjH6DlYbooG3xJPsMbOpKwZunzWnWPKde6y5e4QQKT7JOkKgU7RYXkgeldIkwm61UVUWL33+SIKaSWrvLH6B1xvv/I+0ea/sO/R5sLFlG5+nrBzYsc6XT9PNvtNnLj3OeqOvREEEXEUI4Bc5WitUFqRpn202vvxZCEEpVgSSkGmLZkypIMeb/8V6/Fit8fzPuS6iMXIjaWvDMaO6KwpAgiiOwTv4oJ7g9BpaqpNRXdwCLphnV5Yox9UWEumacUT6H3o9PHcyYbo7YZF70GvdyF6j6mQxUavd5MyRykxC1j63KDHFTJW6HOVFq/T4zLmgGf3brDD5f3OO97l7Rlr9OoqvZdexqyukr17FtvrE586RTg1AjFxL3loV3cIIkAQ0ZfX6OseKuihxCwiriKcIzD5/XczTuSK2m9+CbHtMsBFIe2/8zMgBcZZnCsmxm3v614KOwTbNmqLk1xuDPey1zr/G9INzq/qI0BplO9kB8461i4O93VPnBzBJAxrAFu4uoNBZ/eY4kS3+O52FaSrIyiEeYlGOoMRESpMUDIZii93g/jyqTgmiSRRIkjbyygsk4tLlBtNZo+fPNg35/F4PB6PZ18Io4jFJ58mrlSZWFgk7/dp3bpx0If1gWdpokwUCprliLV+jlEGYQzSaJCisICPgMLdLTEyQjr9vilXqc3QGDKrAEeyD4K3sA2kLSNcA5zAifaB9nc3Tx1FXnlneOHkPKutBzumQMKvPN9hujQsNn71comvXfYVkYeZVES8KE5wjukdf6kJhk+4S5yxNxGPoIAKHJHuUspWkSZHRTWyZBIdVkhLU/Qqi6jwHtVUQYirV7ie/oA3l/89rd57O/d/QNHmAkm88nGitWd3rDPlG/QX/xRdurb7/QlJFMWEYYi1hjzP0FqR5Rlpmu55solAkEQBpTBAb+vxbqW+x/uDjhe7PZ73IRQCbSxq0OOdqhG6vIXcJnirHQ7vDSKrqKoWZd3FyIBO1KAfVumHFVZLs7SjJkb4j/b+43aK3shN0VtsiN5j+p1b9HrXKLNEmUUkIRnLg17v26TcoMUbdDiP4uFnR+4lmy7vufktl/etDZf3Oe/y9owF6upV+q++il5dJTv7LgDxmTMEtdp9tjxg9sDVrUVK5lbou1Uy2QRbxkUJoU5HHMa391S+9A3Cm6tDy3o/93ns3BTOFY5u5yxCsE0kdjsizH9Y/xx2u4jsMuqdf1f80wlc/vFRvo270rmxjO4PT2aaPDWKCHMLDAYQo/FNpHEonMiQroJwAcI2N9dIp7EiwGzEl5vh+PJWqqjIkEYSoaUjyDt08w6Ti0vE5QoLp88gRjSA6vF4PB6PZ/yIS2UWzjxFqVqjOTtPr9Wis3L7oA/rA00pCpipJTTLEVIKVntZ4e62FqzFhSNKHxICLUsYERbubvv+k39Tm2KxA8FbjNzhvdXfHSFd48D7u4UQLJxsYNvDFVLto5+gs/xgBoda7Pi1F9rEcnhA7jfeqHJubXzTpjz3xwnBWTnHS+I4GTt/l6e4zafcBcru0SbbC2eJVYckW0U6Qx7VSZMJVFgmLc3QK8/fvVM+kNCok4s+51p/xrkbXyJXrR1PO4hoc4Egbj1NsvzpopJzGy7skc19k3TmW9hgt+cBQRCExFGCEBKlNErlGK3pp31yle95ukkYbPR4u6LH2/ge7w86frTF43kfwlASh4XzKNcGre3A5a1H4/LeFLwtWFX8/y6CtwBim1PL1ynrHlqGdKImaVgZiN5zdKI69tDJCY8D20XvwuFdlD8NRO9D0etdosQ8FY4SUkWxfkev97u0eJuc1QPv9d7Z5b3h8j5P77ve5e05OJxzZO++S/rmW5hby+TnzyHKFZIzZ5DJIZhBnj6sqzsCIRHE9OQVUtNDix45C4iwBDI4dBHm4cVrlP/su0PL1IlF+l8s4sg3HN3WuYGru/hZTQcpFbkV25W5Oc41h938te6XCOxa8UA/CW5iVG/jnqxduDL0uDzZoNSs7/GruGISXxAUjplw3F3dAVBCuuZm/7p0GpxDi5A0qeCcIFSaUBXx5amyYGC6lJALQ1WmrPdu05xfIClXWDzzFEE4viK/x+PxeDye0VCu1Zk7+QTlRoPa5DTtldv02zvFDs/+Md8oEYcBU5WYTmbI+hnCWqQ2uCDAjahmSosYkBgZ3tfd7YDeQPBWViERRGK0wqwgQNoZBBHSVYr+bnFwCX/lySbBuVeGlsnmFLfKp+jdXnugfR1vGP7+s8MTkbUT/MtXa6xnfuz0sLMqqnxTnOIWO00FTVI+484z79bvsuWDIZ0hzlsk+RrCOfK4SRY3UWGFfnmOfmkWc+fEFCmhXoMoosUN3rjyO1xffXFsos3D3lFKN34MzE6Dg6lcpb/4x+T1t3c//isEURQTRVExLqYyjNaoPCdN+xiztxUJRY93sNnjrY0b9HgbH2v+AcSL3R7PfZAColASSol2jkxbjIVUGVI9ghPnhuDtLNj8noI3bIjeGbV8ncT0yWVMO27SD8r0whor5Tm6Yc2L3gfCQPQWdlP0FoitXm97GHq9IxKmqXCMiEk0fXpcJh30ene5OOj1vnngvd53dXkve5e352BwWpP+4Adk772HunqF/MoVwukZ4pMnEcH4inyb6H7x/fPQru6AXLbRtOi6FYwrYWQTF1cQ1hDYgz1fPBDaDOLLt07WLpB0/suf3Yw4LCK5HM46pNz6vj0WDk+2eaP6eVQwfOldb//21n7zT43gDbw/VmvWL10fWjZx6ujev5AxFOXWQSF4j2lPvRMZTiikqyJchLAbXX6WwGmsjNBhgg7izfjyOMuxDnqpZjqJIXCUQ02rc5vq9BSlWp35J84QlysH+t48Ho/H4/EcHLWpaaaOHKM+PU253mD9xnWy3sG5Zj/ohIFgoZlQS0KSULLazZF5jjDF5MZRubudECiZYESEAwL7/r24DkffZhgsudMEIiAccX2hdAnSTiJcBeFirDjY/u7FiQx39fzQsuhDL3DluiVbf7DUwc8s5vzUif7QsrUs4NdfreONoIcfJUJeEUd5S8zvkGUjLM+7qzxjryLdo/+ypdUk+Tpx3gIhyJIJ8qiBiqr0Kgv0S9PY7ZNTpIRaDcIQV464vv4Sb176LVrppR37Ho42P/nIx7obgnya8vWfQKbTO1dKg5r8If2FP8Mky7vep5QBcRwTBAHaaHKVY7QhTVPyLNtTl/f2Hu9Um0GPt6Hre7w/cHix2+PZBYLiYjgOAySQaYPSFq0d/Vyj91pI2xS8XREje49I8+3Hl5iUer5ObDLyoEQnbpIGZbpRjdXSLL2wMs666mPNhujtEHeJOI8OQcR5QEyTCscoMYvD0Of6tl7vK4Ne7ysH2ut9d5f39S2Xd8vPnveMHtvv03vpZdSNG6jz59G3V4iOHCFaGkEH8qh4aFd3PHhuRE9cJTVdDCk5i0ghsWERYX6YqPzxtwivDd/Q9X7mRzCLM5uPrTWF4C22+rrLQjMTbL1X7Rq8PbE4tJ9y/2tEuri5dfoI2OH1+8H6pRtYvW3wSsDEiREchzaDyQHjG2HucDjRLURuEqSd2HR1h05hRYAWEWlSQRo7FF/e6SuaYUQpDnBCoXorhLUytckppo8ep9KcOND35vF4PB6P5+CZXFiiMTtPc26BuFxh7fpVVHZw988fdKarCeU4YLoak2lLp9MDB0JrXBCObHhGiwQQWBkhnbqvNcViSV2GdRblNKEIkSOuLpS2jrAVhKsP+rtbB9bfLaVkwVzE9btDy0s/+Utc+PbbqO6DTRr5L57s8aGp4UkG765F/M5b1Xts4TlUCMF7YorviJN02Tlp/wjrfGYPYs03CGxOnK0RqTZWhkW0eVRDRTW61QXSZBK78XmVYuDwDqFcIncdzl39A86t/Am52Tlxo4g2/8K+RZtLU6V08wvEtz8BZmcaoYtbpPN/Tjb1Ik7udlxHEAYRcRQjgFzlaKNQWpGmfbTaOyPEVo+3HOrxbvse7w8UXuz2eB6ADZd3HEiMc2TGoB1kypKqPXZ5C7nlpjMbHd4p76eIChwl06eWrxHanCwo04knSIMynajBSmmWNCiPq6b6AcAe6ojzrV7vI5RZ2Oz1LiLOVwa93m/S4QL6AHu9h13et7Zc3i+95F3enpFi1tbovfgSZmWF7N2z2F6f+NQpwum7zI4dVzZc3ephXN0JEJLLNSxdeqzibEweTENcAsGhijAPrtyk/EffGlqmj8zR/8uf3nxsncXaIspcCsFGhPnRsD00R+Bc6UfoRsMujHrrtzb/7dQn9/4N7II7I8zrC7NE5dLevogzgIUgLDrLxjXdQKQ4LMLVEDZBusKJLdEIZ4v48riMc3JHfHnkAmqlkNRqwryFjqA5O099epaJ+YUDfmMej8fj8XjGhZljJ6hOTDCxsEQQRqxeu4LRhyj16DFCCFiaKJNEAbVSwFpXgcqRg4mgo3R3axljRHGfFbj3d3cDaGfIXI5xBoMhFhFyxAmO0k4hXIx0zcLZLQ5ujCdCM73+5tAyEUUkf/W/4tyXvonu737SSCDhV55vM10adqt/+VKJv7hyCOrGPLuiLcp8W5zkKjtF4hoZn3HnmXJ78zctgNBkJNkKkephgpgsmUSFVfKoRq+yRBY3cMXs+MLhHcdQKkEQ0lp7mzdu/B7XO9/fRbT5qKsMBFH3BJVrP0XYPnXX8Wlde4/e4h+jaud2PQlGCEkUxYRhiDWGPM/QWpHlGWmaYvewKjYM5GaPd08ZlHF0M01u/FjwBwEvdns8D4ig6IMoXN6CXBtybdFm4PLey5OnEIXDGwaCt72v4A0gcZR1j2q+TmAV/bBCJ26QBWXacZPV0gxZsMeD2Z4H4PBHnAeUN3u9Ayoo1ujx3qDX+xZt3qXNO+SsHcgM4CGXN8K7vD0jR127Ru+VV9Crq2RnzwIQnzlDUNvZGTXWbLi6jYKountXt0gGzw3oi6vkroOyGVrP4IIQG5WRRu1JZNi+YCz13/gSYtvkGCcF7b/7s0NirTVFhPlWXzdILEeiLeeBdSXemDg5tPs4e50k/36xXzsJ+vTo3ss9UP2U9vVbQ8smTh7Z+xcyFhCFs3tEg4aPisNiRRfhYgQhYrM73RJYhRFhEV8eJjviy3VuacQhCkOsW2QuY2JhiXKjyezxkwf4rjwej8fj8YwbQgjmnzhDuVZncvEIOMHq1SuDWhzPflMvhUxUIiYrCc5Be60LOIQxuHCU7u4SDrAiQt4nynyD3ClyFMpqLJZYxiOVuwWSwMwgXIikihUpThzcxOWKWqWyNhxnHs4fIfiRn+X8H/45Jt/dzxGgHjv+yQttIjn8G/43b1Q5vz6mE3M9D4wRAa/JJX4gltB3SGARlo+7Sxx3t9kr51ohevdJ0lUC3UeHZbLSNCqskMVNutVF8qiGEwKqlYHgnRTR5mmP62vf5c3b/4FWdnnnvjejzX9xX6LNhY1JVj9G6cYXkfldXOWBIp96hXT+K5hodbd7JQhC4ihBCIlSGqVyjNb00x5K5XsWbX5nj7eyjl5m6O+1UdEzdnix2+N5SKSAOJTEYYB1jkwPXN7akuZ7ePK8m+CtU9jRQLKTAEtFd6mpFtJaemGVTtQgC0q04glWk2lyuXvXnmfvuXvEuTg0EedFr/fMoNd7Ak1v0Ot9g4xlulwY9HrfOpCeJ1kuE58+7V3enpHhnCM7e5b0jTcxy8vkF84jSiWSM2eQySGbGa7udHXvNm5aDFzdEam8jaFHx60ibIksmETKEBtEhyrCvPxn3yW8fGNoWf8vfwZzdH5ombUW5yy4ImIPYCHsEYmtc8vV+NOslIZ/lo32b24OTrn8ExzEJfnaxatD3y0yDGgem7/3Bg+FK/q6N3q6x1TsRvSL2EpXRdgK0hWf3cBpnJBoGZEl5R3x5f1UUw9CZATSpmjXo7m0SFKpsHD6DEL6Wy2Px+PxeDzDSBmw8OTTJNUqU0tLGK1Zu351T/tLPbtnqVkmDgXNckirl2FzhdSquHaVoxE+rZAYmWBkBLhdubsBMpuj0ORW4QaC9ygRxAOHdxnhEqzo4Di4JILJ9jnCdH1oWenTP46eO8WFL30d+wApCScahr/3zLCzV1vBv3ylTis7JPVjnl1xXTT5tjhFm+HxGQE87W7yrNubHu+t/Toi3aOUrhCYFBVVyUpT6LBCmkzSqyyioiquVi3E7qRUVH3lGXl6m3Nrf8b5tS+/b7T56X2KNg/yKUrX/xLxykfB7ryXt8kq6cKXySZfxYldTjgRgiiKiaII5yyZyjBak+c5adrHmL0ZOx7q8VaDHm/le7wfd/wIjMfziAQCkjBAii2Xt7KFy1tpuzcn0DsFb7d7wRsgcIaq7lBVbQSOblinG9VJwzLryRRryRRKjmeH5geH7RHn8hBGnAfETFDhGAmzWPRmr3fOCn0us87r9LmKZW+6cXZ9bN7l7RkRTmvSH/6Q7OJF1LWr5JevEE5OEZ88iRjXqOb3I3sEVzcCB6TiGooO2iicaqDjahFh7hyhORydhMGN21S+9BdDy/T8NL2f+dzQMuvAWoe1Fik3Iswdx8L25nOci3it+fTw/vVVyv2vFettGdSzI3kf92Pt/HCEefPYAnKvxWhrAFeI3UFQzBQcMxwGK/pIyggXIO0EUMSXS2fQIiSLy1gXDMWXZ8pSIiSKJUpYhGkT1atESYmF008RhP66yuPxeDwez90Jo4jFJ58mrlSZWFgk7/dp3bpx/w09e04cSWZrJZrliEAK1tY6hdPTWmw0uomaSiQ4BE6EBLt0dwOkNsNgyQbbJCMey5Outq2/W+JkC7fLsci9RuCYXn0N7LCoXf2lv0e/Z7j4x9/EPoBQ9rmlnJ883h9atpoF/Kvv19HeF/FY0RMx3xUnuUF9x7olWnzSXSTZ5aST3SJwRKpLkq0gjSKP6kW8eVQhLU3Tq8yj61NQTiBOBoJ3DnnGenaJN5Z//57R5vX9jjbvnKZ89acIusfu9gR0/Sz9pT9CVy7tOt1TyoA4TgiCAG00ucox2pCmKXmW7ckEsI0e72Sjx1v5Hu/HHS92ezx7gNju8gZyXURkZKbo8rZ7oXgPCd55cfGtU3gAt2zoNFXVpqI7OATdsE4vrJEGZdaSaVrxBFocQoHmseI+EeduvCPOBYKIGpXNXu+AlFv0uETObfpcZ5036HIBTW9fj23T5T2/ULi83/Eub8/DY9OU3ssvo27cQF24gF6+TXTkCNGRI4fTzXmnqzvcrUtAIkRM4eq+hSWl79YQtkJfNBAyQIdlQpMN5PAxx1pqv/ElhN76bnUCOn/3Z3e4kp0phFznHGIwMaApcxrB1k3ySvA8V6vDtSGN9u8gNr671UeB/RdF0/U2/dXhiT4jiTDXpogvF7K4eR9DnOgOElTKSFdHEAIO6TRWBKiwdNf4cqkhDgRaWsoiRbmM2uQ09ekZkkrloN+Wx+PxeDyeMSculVk4/SSlao3m7Dy9VovOyu2DPqwPJHP1hDgKmKrG9LoZea6RWoOUReTwCLAiwIgILWIEjsDt3pXctykWS25zBIJ41IL3Zn93A+cs7iD7u3WPybW3hpbJcpXq3/pHtC/f4NKXv/NAYzu//FSPpyeHRc63VyN+721/Pf+4YYTk++II74qZHeuapHzGnafp9n6cUjpLrNok2SrCGfKoQRY3UWGVfnmW3tQJTK1RCN5xDEpBnuHQXO++Mog2v7JjvxvR5h/ap2hzacuUbn+K0o0fRaiddX0uyMhmvks693XsNgPA+yMIg4g4KmoZcpWjjUJpRZr20Q+Q1vB+RBs93tbRU4VJ0fd4P54cwtFYj2d0rP8v/4bab36J+OK1h+rsCAQkgSQQAmUsSlu0dfTzwvH9yJr3puAtBoK3BZ3BXWZ5vR+RVVRVi4ruYmRAJ2rQC6v0wwqrpVnacRMj/OnhoLlrxLm7S8T5mFL0ei9Q4QgBFfLNXu9lUpZp8zZt3iHjNnaforCElERzc4XLW3iXt+fhMOvr9F58CbOyQvbuWWy3R3zyJOH09EEf2sOTtYrvlQ1X9y4RA1e3FZZU3ESJFrkxoBqoqIqIYpwMDk2EeenPv0d04erQsvTHP4k+ubTjucZanHM4x+YEh2PRdle35LXG80PbSNOi2v3DwfoApz62129hV6ze4eoOywm1+Z03/Y+Es8V/G47ucPwm0zk0TmRIKggXImwRBSedBudQMiKPSwjjhuLLTWaJhcRFEEeQ9m9TbU4SRhGTizv/Vjwej8fj8XjuRrneYPbkKcqNBrXJadort+m3/T3pfhMEgsVmiWocUooka6sdhNZgHW6ENTxKlnFCYHkwd7fD0bcZFkfuFBJBNEJ351Z/d4R0NZzIcKJ//w1HRKV7jXL3+tCy6MQZyl/8edbPXuLK11/etSs0lPArz7eZKg2Pq/7pe2W+cdXXPj52CMF5Mcsr4uiOHu8EwyfdRY643XZQPxjSGZK8RZyvA4I8bpJHDVRYoTd1gv7McUypWojeSkGaAY7ctDm39qf3jDaP9zvaPJujfO0nidaeAbtTO7ClW/QX/4S8+RpO7G6sVwhJFMWEYYg1hjzP0FqRZRlpmmLtoxsnAikoxwESSHPf4/24MqbFeR7P/uOMofVbv0Pp5k0WvvUDsqNzqM89T/bJZ3Cl3feuCgFRKAkcKGPJtSGUhZ9NW0cSSoJHifEUAoJ4S5QIIjAZBAk8gCtbAJHNCfMcJROysERHNolthkOSBWVKuktFdZCHwY33WGMHmrYYxJuDE66IOHcSROEGBwtjqH1LYhJmiJhE00LRQtEmpExEA00XuExEjYgJIprIEX89bbi89fIy+sYNzHqL+NhRei91iY8fJz516nC6cz0jR12/Tvrmm9h2m/ziexAExKdPI0ul+288rmy6uvsP6OoOQERATCqv4EjpuxZC18htgIsruKiEcBb5AIM3B4VcXqX6v//50DIzM0H35390x3OdA+ss1lmEKFItYgzzwdZM8I54mvP14YkDte6/R7rBwJB6BtzuJxbsFc451u4Q9CdOLCH2OmLcGGDQdTjCCMhHwYkOuABcCemaxaQyLIHTaBmRx2UsIZHKN+PLjXaESAhBBIKANkoIqpOT1GdmiZJDfC7weDwej8ez79SnZtB5UfVltGL95g1kEPqkmH1mshKz3M6ZqsVcW0vp5zVKkcZGEU6pkQy1WBFgidDSEtk+kc1QcnfjjxZL36VUKKEwRCLE4jAPaIbZLYIIaaewwW2kU1jRRbpokIq0vwhgcvUN8qSBCbc+J6Uv/jzq3FusvPE2QRyx+NmP7mp/jcTxTz7a5n/4bhNtt37T/+b1Gkdq65xojOZn6jk4bok63+EkL7hLVNgaq5DAM+46dZfxlpgfSbJDYBVBvoaRcdHnnUwSmAxXleioQtRaJu7cQva6kFL0eiNYzy7Ryq4yX/0Ic9VnkXdoABvR5rd6b3C9+yr2AdIiHhRBQNz6EGH3GPnUq5jy9Tue4FDNt9DVS8QrHyVMF3e31yAkkAFKK5TSSGnBRfStIY4iwjDaTNV7GKQQlCJJposk3lgKHA5jHNUk3HWTn2d88SP5Hs+Azte+hrl5c/Nxcvkmtd/9E6b+6b+k9ptfInxAt7ccRJuHUqCtQ2mLsY5U7YHLW1AI3kJudXibB3d4b+wqthm1fJ3E9MllTDtu0A/L9MIaK+U5umENO44q6geOwx1xLgmImaTCcRKmsSj6XKfLe2TcIuUmPS6xzmt0OEfGykgd3ztd3u8WLu8LF7zL27MD5xzZuXOkr7+BuX2b7Px5RKlEcubM4Ra64RFc3SVAYkROxjK5XEdbhzA1srCClAIdlAh1Ov7fINZR+60/Qqjhc077v/zZwrp759OtBQfOusHEGMGRqLNZSe2c4M36J7DbBWSXU2//u62H6pOjeCf3pXtzBdUbdmJMnjq6x6/iCrE7CIpJemPYX104UhTSVREuQtjibz90CisC8rBMHiaEShXRc1kODqQWIMGFUKk4+p01Ks0JgihicsG7uj0ej8fj8Tw4kwtLNGbmaM4tEJfKrF2/isqygz6sDxRCwJHJMkkQUEtCWus9nFLFNf8I3d15UMaJAC1LSKcJXb7rbY2z9F2OcQaNJhIhcoRD/dJVkbYGroZwwYH2d0tnmLr9w2I8dICQktrf/IeIcpVbr77Fze+9sev9nWwa/usPd4eWKSv4F6/UaedjfzfreQi6IuHb4hTL7BwDOcYqn3DvEY1QMA5sTpKtEqkOVkakySSqMkHenKc7/QTZ1JEikj9N2RjodZjdR5snJ0d27BtIUyW59TmSW59F6PKO9S7skc19k3Tmm9hglxHxQhBFMVEU4ZwlUxlGa/I8J037GPNok0+EEJSigDiUqDt6vM0eOMg9B4sXuz2eAWu/+3t3XS5yRelbP2Di//FvmPgf/zWlr38P0d/dTYcAwqDo8oZBl7e25MbSVxr9KCdRAchoTwTvjd0lJqWerxObjFyW6MRN0qBMN6qxWpqlF1bGVUf9wPH+EefhWEecF73edSocpcwSETUMffpc3xZzfpMe79HidTqcI2cF9wD99A/C3bu8bxVd3mfP+i5vD84Y0h/+kOzCBdS1a+SXLhNMTBKfPIkIxi+a+YEYcnWHD+DqDkEECCL68hqWlJwu5HWMAR3XIExAiEMRYV765qvE77w3tKz/oy+gzxy76/OdNUARYy6FQOA4Gm5FiuWc4O3mcIRYtftHBLboYXT6FNiDib1fvTB8U1yaqFOebOzti1gLuELs3ogxHyMcDie6hchNgrQTCCQSjXC2iC+PEqRmKL5c5INhhgjiRGLzNYSQVCcmac4uEMY+6tDj8Xg8Hs/DMXP8JNWJCSYWlgjCiNVrVzB71Ffq2R3VJGCyGjNZjTFpRjc1CGNwYTiysTArAnJZwYoALePC9el2n4qlnSZzOdoaDIZYRoUpYkQIO4F0McLVD7y/O8lbNNbPDi2TzUmqv/R/AOD6d37A7dfe3fX+Pn8k4yeODU8KXkkD/tWrdXy17+OJFgGviGNcYGrHukl6fMadp+5GN54hgNCkJNkKke5hghJZbRZVnyarTtNdeIo8aeL62ZABb1fR5hNf4PTkT4082lwgCPtLlK/9FFHrqbuORZvKNfqLf0xef3vXE2SkDIjjhEAGaK1RKsdoQ5qm5Hm266qCexEHkuSOHu9O6nu8Dzte7PZ4Biz8s3/GxD/5bzFT9x7wDa8M3N7/7MHc3nIQbR4GEuMcmbZoC5kypPoRuiE2BG8Z7IngXezSUTJ9avkaoc3JgjKdeII0KNOJGqyUZkmDshe9x4YN0dsVQreTFJaz7aK3HFu3d0BCzBQVjlFmiYAahh59rtHjPdKB8N3lvYHj+zw5q3sufG+6vJ98csvlfe1a4fL+zncx6+t7+nqew4NNU3ovvYS6cQN14SJ6eZloaYn46NHHI+p+yNW9+6jEDVe3En0Uq+RyHaNB2CoZAYQJOiwjrUaOKEpvr5ArLSq//9WhZWayQe8Xfvyuz9+MMLcORDF7ejboU5Jmc/071U+TB8N/H/X2b2/tI//UHr+L3WG1Yf29a0PLJk4e2fsXMhqQxYS8cYwwFykOi3A1hE2QrgIUcftahEV8uQgJtS7iy40lMALrwIQWEQiqNUe/1aI2OUUYRUwsLBz0u/J4PB6Px3OIEUIwf+oM5VqdycUj4ASr164UiUKefWOxWSIKJBOlgG6vj83zQZ3g6CY5axmTywpGRBgREdr8ge6hcqdQaJTVOCyxHF2qkkAizSzCxUhXP/D+7nr7Ikl6e2hZ/MwLJJ/5IgBXvv4yq+9c3PX+/tbTPZ6cGJ5s8NZqxO+942sFHlecELwj5/mBWMLcMVGkjOZT7gLzbrRjggIIdZ8kXSHQKTqpkU0eQVWapJOLdCePo1zhdN7OenaJN5Z/n+ud72Pvcs6ox4s8Pf0LLNU+gRSjvS8XLiRee47y9Z9EpjM7nyANavKH9Bf+FJMs73avhGFEPJhUnqscbRRKKdK0j37ECWHhPXq8U9/jfWh5DEZpPZ69IZqfY+If/Des/tN/zM1f+2W6H30Sdw8n0rDb+3/eldtbUJxE47A4iW64vLV29HONftgbGAGIcJvgbQaC96Od8CWOsu5RzdcJrKIfVujETbKgTDtuslqaQY3wAtrzoGxEnLs7Is7loYg4h0L4TpiizFHKLBJQRdO5i/B9cSB8XyBnbU9js2SpRHzmTOHyvrVcuLxvL9N7+WXv8v4AYtbX6b34EmZ1lezsWUy3S3zyJOHMXS7cDyMP7eoepIoQ0ZNXMfRR9HB5HWsEeVQjCAJMGI+/q9s5ar/zR8hsOC6w83d+Gle6+8/DOYu1xf+lEIDgWNTeXK/dAm80h/9GSv1vEusLxfZmDszdHeOjpnX1JvaOqPaJk3scve1s4ewOg+JOY4Sxjw+Dw2JFF+FiBCHCTQAQOA1CkkdldBgTKr0ZXx46iVWODEMYSqqNgGx9FRGEVJoTNOcXCcYwqt3j8Xg8Hs/hQgYBC08+TVKpMrW0hFGatevXHtnB5tk9cSiZqyc0SyEyy+n0czAWO+JrWi0TlCyjZYwlJLQpwu1+/CG1GRpDZhXgSEYqeIdIO1UkJLkyVnRx7N6NvrfHAlO3X0Oa4fu5ys/+TYL5YlLvpS9/h9aFq7vaXyjhVz/aZiIZFg7/5GKZb13zKU6PM9dFk++KE6R39NAHOJ53Vzljbz5QvenDIHBEukspW0WiUfUZstoCujZNWpujV5pHhcNx4WMXba4alG7+GPHtT4BJdqx3cZt0/s/Jpl7Eyd2NFwkhiaKYMAyxxpDnGVorsiwjTdPCiPCwxzvo8Q6kGFTPGvrK0Mu1F7wPIV7s9njuRErSZ05x61d+kdX//lfp/vyP3sftfWvL7f0bXyK8cPV9v/w2XN7xhsvbGLSDTNmHnzk0JHhrsKZw6j1A9NG9CLBUdJeaaiGtoRdW6UQNsqDEejJFLv3F3njh7htxzhhHnEMRgRNQImF64PjeLnxfpcelQdT5DbpcYJ0f0t1D4VsIseXyltK7vD+gqBs36H3ve5jVFbJ33gVjSU6fJqjXD/rQ9o5HcnUHKNnG0CKXazgTgq2QG4st1TFR0WM+7mJ36asvE79xfmhZ+pmPoD506p7b2EFEt7UOKSRVkTMVbE14e6/8aTrxsPOj0f7NzX8Xru6DOQevnr889Lg2P01c2dmt9UgYAwzcL9EYCsCiDw6EqyJsBekSBAbpDEpGqCgBLTbjy0MEKOhbS5wEiAQqkaXfaVOfmi5c3fPe1e3xeDwej2dvCKOIxaeeJq5UmVhYJO/3aN26cdCH9YFirl4ijgImE0maKnSag5S4ESd7KZFgRIIKEhwBkU0RD+BYSG2KxQ4EbzFSh7d0FaStg6seeH93YHMmV14bWiaiiNrf/scQxeAcF//kG3Su3NzV/hqJ49de6BCK4Z/9v36txnutQ15j5nlf2qLMt8UpVtl5j3yK23zMXSLch+Q64Syx6pDk68hYklcnSCeWUEmdNJ6kV1tEh6WhbR4k2jzZh2jzqHuCytWfImyfuqvxStfeo7f0x6jaOdyuznOCIAiJowQhJEptRJtr+mkPpfKHnhg21ONtih7vXFvamcJ6xftQ4cVuj+d9sM0a/Z/+HKv/9B+z/qu/TPb8fdze3/4BE//P/7Vwe3/t3m5vAQRSkIQBEkGuDbm2aDNweT9MP8R2wdtuCN5qTwRvgMAZqrpDVbUBRy+soWREK5n0gvfYcveIc3FIIs7hbsL3AgFlFO2B8H2ZjGX6m8L3a3S5SM76I99oyVJpq8v71jLZ2+9subzffde7vB9TnHNk586TvvY6ZmWF7Px5RJKQnDmDLJXuv4PDwkO7uuMixo+QnriKFj0MWeHqtpAHCTKM0GFCYPIHGpzZb8J3L1H9/S8PLTONKt1f/OL7bmet2fz8Cyk5Fm3dSFo3yevNYad0lL9Fkn0PAGfroJ/ag6N/cHSa0b56a2jZxKm9jjB3hdgtg+LvZOxc3QYr+kjKCBcg7QTgCJzCiIAsrgzFl4fGEhlJX2uIQUvH7FRCZ+U2YRRRbjSZWDyCHGGspcfj8Xg8ng8ecanMwuknKVVrNGbn6bVadFZu339Dz54gJSxNlKnEIbHRdHopWIsb9bWtEGSyjBUROigBgsiku54m64DeQPBWViERRCOMLha2ibQlhGvgnMOJ1i5Fq72nnN6m1h6OKw/mlqj83N8CwBnLhf/8dXo3d/c5OtXU/FfPdIeWKSv4F6/Uaefjax7xPDq5CHlJnOAyEzvWzdDl0+4CFff+6a57hXSGWHdIXA8hBXlzjqw6jRIx/doC/doCJhgey9lNtPmH9i3aPCZZ/RilG19E5hM7nyAV+dQrpPNfwUSru9ypIIpioijEOUuuMozW5HlOmvYx5uEnI+zo8TaOdl+jzPiOa3mG8WK3x7MbpER9+BTtf/iLrPz3v0r3538MM3XvWVDhlVvUfu/+bm8hioikOAywzpFpU3R5a0uamwefkSQoRIsRCd4AodNUVZvAanphHSVjWskUmdwZTeIZFw5/xDlsCN9lEmaocHwgfJd2CN+F4/v8QPh+D/UIwveQyzsItlzeFy96l/djiDOG9IevkV+4gLp+jfy9SwQTk8SnTiHGTLR7ZB7a1Z0AIZlcw9AlF2sIm+BMCWUsJqmBlFgZjbWrW662aPz//gPijrirzt/5GVzl3pMarCsSuq2zSCkIcSyGW4Mg18JPsVwedlA02r+5OUDl8o8DByOMrr13behaRASS5rE9diQPXO+EsnB2j1mvvRPdItnElZGuXkQwOg3OkUVldBARKLMZX14ipK8MqTAEgaDZjHAqI+12qE1NE8YxjdnZg35bHo/H4/F4HkPK9QazJ09RaTSoTU7TXrlNv9066MP6wDBRiagmIZMRGGPJ+jkuCHCjTmgSgkxWsQQoWQIckdl9J7bD0bcZBkvuNIEICMVo7j8EEmmnES5CugZOaBC9kbzWbmiuvUuUD39GSp/6AtGznwDAKs35P/wa6cruxnF+9EjGF48N39PeTgP+39+v8TAeJc/hwQnBG3KRN8TCjtHEKjmfdheYce27bjsKJJaEHnHWgjghq86SB1VUVKXXOEq/OoeVW2NW4xZtHuRTlK7/BPHKR8HuHFuzySrpwpfJJl/Bifwue9iJlCFxnCBlgNYDl7cxpGlKnmcP7fLe6PEWbPV4dzNNqkbv6Pc8OuM1AuXxHAJcs0b/pz/74G7vf35vt3cgKFzeQpCbwuWtrKOfF73eD3x+HhK89Z4L3gKo6A6hVfTCGrmMaCeTZMFj5Hp8LDn8Eecb3Cl8lzaF7xY9rtDjChm3SblBh/Os8/pA+H64aK0Nl3e03eW9fGvL5f0IMwc944HNMvovv4y6cYP84gX0zVtES0vER48ixkywe2Qe1tUtkoGrW9IXV9Gig0VBXszk1xZcUsOEZXCOwOzPbOcHRmnq/5/fR3aGB2J6P/M51LOn33fT4rPucM4hhGQx7G7G21lX4/WJk0PPD/R1Kr2vFNu6GNTze/UuHpi188M3uY2jCwR7HTNuDCBBBBCN1wQRh8aJDEkF4UKEbQKWwGl0EKOiEsJsxZeXkKjc0jKKcimEkmOyFtG5fZsoTijVGkwtHkFK7+r2eDwej8czGupTM0wdOUZ9eppyvcH6zRtkvYMTEz9oHJksEweSkjN0u0Uv7Mjd3RRCWxbUsGJD8LZEdvf3VhZL6jKssyinCUWIFKO5py36u6cRxIP+7h6O3YlVe38sjqnbP0RYPbS8+ot/DzkxDYDJcs79x6+Sre+Meb4bf/vpLmcmhsdT31iJ+Xfv7H7CuOfwcllM8pI4QX7HhPUIywvuMifd8sh7vDeRkiCWxNkakeliw5g0mUDFVVTSoNs8RlqZxm6b3DJ20ead05Sv/jRB99jdnoCun6O/9Mfoynu7jjYPw4g4Lsa08jxHG4VSijTto7W+z/Z3RwpB+Y4e71RZupk+sPQKz+54zEZvPZ59RIoHc3tfHbi9/+m/oPYb/2mH23vI5Q3kupg9lJmiy9vYBzyZbgreZpvgvXcXnAIo6w6hzemFNTIZ04onSL3gfUg4/BHnGwgE4ZDwPU9AjGKdHpcHwvcyKTfpcI51XqfHJRTtB7pIEUIQbnd5nz275fL+7ove5X2IMa0WvRdfRK+skJ19F9PpEp88STgzc9CHNhqy9YdwdYuBqzsilbex9MnFOoGtoHWIsg4dVwikRAclwgeI29tXnKP2u39MdOn60OL8mSfo/ezn77u5sRbnikloQsKxaGs295p8gcvV4YkD9fbvIhhMhlEfAQ4mBSVrdendXhtaNnlyryPMbXHNEQbFHcaYpSE40QEXgCshXROB3IwvT+PCPRNoQ6gUiXEEVrKmcpJE0peGpakyWa9H1u9Rm5omShLq04/pOcLj8Xg8Hs/YMLmwRGNmjubcAnGpzNr1q6hsTCeVPmZU4oCpasxE4MBB2s9wYbAvwyRWSLKghhMBWpaQThPa3Y/paWfIXI5xBoMhFhFyRHdo0pWRtgmugnARVrYPrL870j0mVt8aPr5yherf+kebqVO6l3L+P34V1b2/Yz6U8KsfbTORDL+fP7pY5tvXfKXjB4E1UeHb4hQthse7BfCku8VH3BWk26e/dykQ5RIhiiRfI8rbGEKy8hQqqZOXJuhNHCMrTw6lUIxTtLm0JUq3P0Xpxo8iVG3HehdkZDMvks59HRvuzj0vhCSKYsIwxBpDnmdorciyjDQtJio9KJs93oEkN24gelu0wddajjFe7PZ49oAht/c/2XB73/3jJZSm9O0fbnN7v4zobcXiBAKSQBIIgTIWpS3abp1UH2jCmAyL/zYFb124+faIQvDuEtuMflgllwnteII0KO/Za3hGzW4izg+H6A0bwneFhNlN4VsSDYTvS/S4Qj7o+O5wlnVee2Dh27u8Hy/UjZv0Xn4Zs7pK9s67YCzJ6dMEjcZBH9poUH2w6uFc3RSxeKm4jhJtHAZUHYtDGYtL6tggwklJqMdzAK70F69Q+vYPh5aZmQnaf+/n4R4pLRs4V8SXW+cQQjAtc6pSD9aVeL3x9MD5XiBsm1r3DwbrBS7/xB6/m92zemHY1R0kMfXFPRZqjQFEEV++147xR8SJDCcU0lURLkLYKhKNdLaIL5chgbZIZ0mynDIh62mOkQ4dOOYmSkSBpLOyTJQklGo1po48hqkPHo/H4/F4xpKZ4yepTkwwsbBEEEasXruCeUjHmufBWJwoEUlBLbD0uhnagQv2J9nHiqCINBcBWsYEThE8QGpj7hQ5CmU1Fksso5FNSBa2gbRlhGuA40D7uyu9a5S714aWRcdPU/6Jv7r5OG93Ofcfv4pO73/f2kwcv/rRNoEYfj//+rUal9o+5emDQCoivitOcI2d40QLtPm0u0BpDw1m74sQUCohwpDQKZLuMkFvDR2UyCozqLhGVpqkO3GcPGlufgofJNp8uvwkYsT1a0E2R/naTxKtPVOMO9+BLd2iv/gn5M3XioqE+yIIgpA4ShBCotQg2lxr+mkPpfKHijaPQ0kpCjDW0VfFeFBuHdp3GYwlfoTG49lLpEB9aMPt/d/S/as/hpm+n9v7Twfd3ltubyEgCiXJYMZorg3aWHJj6Sv9YC5vGQwL3lYXjr49QgAl3RsI3hXyIKEdN+mHPtLncPF+EefBoYo432BD+C4xR4VjlJhDEpGzNhC+rw4J3y1ep8dlFJ373pTd1eV91bu8DxvZ+fOkr72GWVklO3cOkSQkZ84gS49xQsVDubolQsRATCpvYUlRokXkaigjMRYMAS6poMMywhoCu3fVGXtFePYy1X/7Z0PLXBzR+ke/9L493RtYa4qBG+sQUnAs2ooB6/AM5xrDE71qnT9AuoFbQD8N7mAmUDjnWLtD7J44sbTHQq0DbQduCTFWrm6Hw4luIXKTIO0EApBWoWRUxJdbuRlfXhMh3VzTMoo4kcQlyWQ1Iu12yNOU+vQscalMbXL6oN+ax+PxeDyeDwhCCOZPnaFcqzO5eATnYPXaFax3l42cKJAsNErUsYQC+v1sX6LMNzAyIpdVjIgwIiK0OfIuzsx7kdkchSa3CocjlqNxIwvEtv7u+oH2dwtgcvVNAj38+qUv/hzhqac3H2erLc7/4Z9j8vvfu56e0PzdD3eHluVW8C9eqdPJD884mefhsULyQ7HE22Jux4hhnYzPuAtMuu5dt91zhIBSAmGIiEIi1aO0doUg66LiOll1Fh3VSCvT9JrHUXFt85h3E21+rPE5npn9G/9/9v47Sq7svu9FP3vvkyp2dQS6G3Fy5AwnUhRFiqRGskSKpERbtq5lkQrXkqmr+96TvZ5ky9ZbDtf2vcuXspZk2dcSJVJ0oCxTYiYlkmIYksOZ4ZATMQmDDDTQuSuetPd+f5xCdxe6ATSATgDOZ60Gqk+dOqG6wtn7+/t+f+wo3Y0SG5dOJ1B49dsoTDyC6uxcZQVL0vcyndEvkQYTK+9fdaMC1/VwXQdrDXESodOUOI4Jww76MgxKjhQEXib+G2MxBlpxbnTajuRid07OBmH7ynQeeQNz/7Tr9r7nlrW5vf/PDy+6vWU32tyRktRY4tSgDZfu8l5V8F4/113m8G7j65COKhIpn6Zbpe2U1m0fOZvJORHnXL0R52cRSBxKXeF7T1f4dhaF7w6nulHnp2lysCt8nyS9iPDd4/KeXubyfip3eW9nrNZ0nn+B+PARkjOniY8dQ/XV8PbvR2wjkW7dWXR1ty/D1S0wQhOKSWKxgMUi0yrGQKINxi8jhCBVPo4OL7rJzUbON6j+8ScR50wINv7uj6LX6HA2xmAxWGspSs2wyoRsax1errwOvdwZblMqzf+59Gv8wJWfxGXSnp4jPqc/ef/+dY4wNwYwmavbkYsRgdsCEWIxCFtGGA9piyibYoUk9EsY5GJ8edkIjLZMRRFBoAiVYXyggLWW5swMfqGIXywyML4bIfJJrZycnJycnJzNQyrFzptvxS+WGBgbR8cJ86cnLsuplnNpDJV9AgkVVxB3YhLDeef3NoJUeiSyQCo9DA6uCRGXEJscmgiNIeoWJPtyY1KYBApphrr9u4tZ/26xNYlf0moGZ56HZc+TEJLyT/0iorgUndyZmuPIF76BWUNSwpt3Rbx5V+9Yd7qj+IPnylxGSnLO1YgQHBWDfE/sJjlHVvPQ3GePsdvObk4fbyGgEIDrgOtlUd6tGfz6BFLHxEGVqDRI4pUISyO0q+OkywwPF4s2d2WB0fLruXP4vYxXHsJTKyPH1wupS/hT34c/9QZEujIt1jptopHHCIcew6i1FdFI6eB5PlIq0rTr8taaMAyJ40t3eatuH2/IEv82K7k+59LYRjNROTnXKGfd3j//bmb/+Rrc3hPTS27v//p53MMncSR4jkLQ7eWdLrm807VeUUkFqit42zT7X0esp2IZ6A6+DglVkUgFtNxKLnhf1dhlovd5Is6vMtEbVhO+hxEoYuZocZwOE0TMEHKaRo/wvXqF5oV7eT+Jnp/f3BPMuSAmiuh873skp08THz1KemYSd3QUb/fuazyS2C5zdaeX4OpWCOECHh15GktIIpp4tkqcgrYWbSy2UEErLzP1pttM7E5TKn/8SWSjd1DU/qGHie+99TwP6uVshLk1WfrKbre9mFge21t4pa/3u67Y/hKOnsoem+4Gs0qV8iYxd7jX1e1XSxQGzn8dclloDcjsWmMbRZhbDEa0EdZD4CBsPwKNtJrILaClg0ot0lpKUYqLZLIToRyIlGGsVsBVkrDZIIkjygND+MUSpVr/Vp9aTk5OTk5OznWI47qM3nwLfrFEbXSMuNOmPnVmqw/rmkdKGKsVKJgUT1jaUbJpUeZnSWSAlj6J8jGoTPC+hMmYjgkxGGITIxC4GyR4S9tNUrJFhPUwZ9tfbQFeXKdv4bXe46v0UflbP9+zrDUxxdEvPoZdQyzx37mtxY19vU7wAzMef/5qnm55PTEjyjwh9tGk10AggdvsGe6wE5dUkHJFBAF4TjYOVw4yifCa0/jtGYQxxEEt6+ntlemUd9KujKHV2TZ1WbT5y+eJNgeQwmG4eBu3D76HfX1vpuhsTMKZQOB0xihMPIK7cMuqyaK6OEFn9IvElZexrOX5FTiOi+dmf6c4jkl1QpJkLu/0EtuBCCF6WtflbD+u5VndnJxth60ud3v/rYu7vZ94ntq//2/U/s8PU3z0u3hxjKMk2lqi1JAaiBJNmOi1FY2J1QTvmPUWvAPdIVQFQqdAy63Qcjeu+itnM1iKOKdH9BaZ6H0VRpyfJRO+ywTsWCZ8S2JmaXHsHOH7VRY4QIdTpKysJFx0ee8cXebynqb93e8Rvfpq7vLeBuhGg/Z3vkM6M0v82mvoRgNv716c4eGtPrSNJwkvy9UthA9ItIiImSGSCwgEylRItCVNDcbxwPFInAJSJ8htVuJa+vhf4x7pjbyKb9tH+x1vWvM2bLdy11qDEjDutrrLJa+WXk/k9H6XVxsfW3rsFrq6jTYsHOs999q+8XV2JdvsesKR2chikyf+LojoZO1hbAlhikib9TpMpUPsFhBGII2lEEaUhGIujOkYDb6gXHToL7mZq3t2Br9YwisEDIzv3uqzysnJycnJybmO8QpFdt54M0GpTHV4B+16nebszFYf1jVPX9Gl6kLFU+gooWMldpNFj0gU0MIlVQEgcPXaBW+LpWMiDJbYJigErtiYVDNpqghTQNgKWLGl/bvLjaP4Ye/7w7n5Lgo/8EjPssaxCY5/9QnsRVoDuBJ++Z4GfV7ven95pMCTpzcmIj5ne9IWPk+IfUyxcs57nAUesMfw7Ca1d/N98F1w3KylmE6RcQe/M4vXmQMBcWGAuFAj8cq0q+N0yjvQKit6ibrR5gfnvkg9OrXqLoSQ1IJ93DL4Dm7q/2Gq3q4NORVhHbyFuyhMvB0ZrpLCJzVJ/wt0dn4Z7U+tbZtS4roejuNgtM5E7zQhiiLCMMTk0QzXDNdwVmdOzjZGCpLb9pHctg9RbxI8/gLBY8+gZlbv8+tMTFP++JcpfeprRK+/jfb3vY5w907iVKOEwFUSY1I8N4s8vyBCgRJZv1ZpyQqhYlAeWSD5lePrELCEqrj4KWMRlJPGumw/Z+uw4uwFfSZ6I+g6v23m8j4rimPX6+W0aZwVvh3KWDQpHTQtYmaJmEXh41BC0yFkEomPRx8uNRyyKl4hBM7wMLJSITlxgui113CGhrHWkM7MENx2G6pW29oTvU5JJieJXnwR3WwSHzkCQuLfeCOysDIi6drjHFe3v9be0Q4IB4FLRx7B0CGljW9rxKnFWpulixQqWCExysWLttfnvP+tZyh865meZXqwj8bPvvOSorazfogWYyy7/BCv+1mY2n28VOt1SQfhE3hJ5iCwegD0DVd2EldA49Tkih50/fvWOcJcd6uhlZMNrLdJpbNFY0QHaQsIq5CmhrQp1lo6QRmLQKUWJ0moGkGYamaiGCcQGAXj/dlnQ6dRJ00SajvHCMpVitV1dsXn5OTk5OTk5FwihUqV4X37sYdfQycJjdkZlOtSqKz1Oj/nchivFajPRhSEIoxTfFfh6EtzBl4RQhDLEkI3QQW4uoOrQ2K1tjGtwRDaiAI+CRpXOBgs+hJ6gK8VaQaxIkbShxHzCNECu/lGGAEMzLzAmZ0PY9RS7+HCIz9JcuRV0uNHFpfNHzyG9FzG33TfBYuDa4Hll+9t8O+erKKXmT4+/HyZ0dICuyq50eF6QQvF0+ziRjvFDfQWVdTo8LA9wjPsoi42Yd7J6xZbRAAC0gSsRQGqHaMdP+vnXRxEpSFWSlK3iBs38TqzSKNpxhM04wkCp5+R4h30B/sRYuW8SdnbSdnbSZjOM9k6wFx4aI1O67Uj0yrB5A+QFo8T9z8HqrclgvUahDsexWntwZu7C2GCi2xRoJSDkpIkTUmSFCkNWJeO0XhdMTxvV3Z1kzu7c3K2mMzt/fCS2/vei7u9B37nvzHyf/8Jfd96GtvuEGlNaiFKzNpc3kKCcrMemybZkEhzX0cU0jaRDAidIh2nRMOtXm2J1znnZWXEOYsR585VG3F+FoHCXXR878ZnEBBEzHSjzk8TMU2H0zR4hTov0mECTdbDd1WX99RU7vLeIuIjRwiff6Hr6D6EcL3rSOjmsnt1CxEAkkS0SZgnlgtIFMqUiRNDYrL6fBOUSZUPFhy9NT3ZVsM5cory//xyzzLrOtR/4T3Y0qX97Y3RmeAtLHu8s65uOObfT8PrdTJX6stc3ckDbGXlz9yR3iiy0vAAXnmdI/ZSk8WXI7ZXhLloZYkjtoC0FQQSZVNir4iRDioFaS21WIMVTLRDhAOpYxnvxpefdXUXyhVc32dgfGOq13NycnJycnJyLpXKwBAD47upDA5SqFRZmDxD1F5bL9Ocy6PgKkY8QclXkKR07OZPeVghiFUJgyKRAWBwzdrHYKnVdGyMthpNiisc5AbIAwKJ0sMI6yApYURny/p3KxMzMHugd6FU1H72f0OcMycwe+A1Tj/x3EW3eVMt5adv6211FxvB7z9doZXkYtl1hRC8Jkd4Royjzxn7B6Q8YI8yauc351g8DwI/K0J33Wy+P0kAi0oj/PY0blTHKI+wOEziV4n9Plp9e4gKA9iusB2mcxyrf5MD03/OZOsFtIlX3V3g1NjT90buGHovI8W7UGJ90w0EAre9h+KpR3Aa+1f9wE1Lx2iPfZGkfGhtCRIic3m7roO1hjiJ0GlKHEeEYQedz9de1eTO7pyc7UKP27tF8PjzF3V7V//8r6l8+ut07rmVxhvuJt43huMojElxlcRR8vwGq7OCt07AxIAHRKB81mti3jMRpJaOU8I63XAlISjHC1eb6TfnvFisyC4mFgVvYbEWhFWAzO4XmUh0NZIJ3xVcKl3Hd5uUFhHTRMzgEKAokdIh5AyKAJcanqj1urwPHcIZGsKa3OW9WVhjCF98kfTMJMmZM6RnzqD6+3HHx6/x/tzLsAai+mW4ut3sewKXtjyKpkNKh8AMkXZF7kRb8IogFdopoHR0SX3jNhJRb1L5o08izhmoNH76b6DHRy5pW8ZaTDfCvN9Jqaqku3wXL/b39qty49cIoicBsKYAyR1XcBZXRhonNE5O9iyr7V9nV7fRgMnSYRx5SW75jcSSYkWEtGWEdRCmrxtfrojcIsIIhLFUwhgPyekwJMEifKgVXfpLmWjfXphHpynlgSGKfTUK5coWn1lOTk5OTk5OzhL9O8dIowhrLCZNmT99ioHx3bi+f/EH51wWO6sBU7MxRSVpa0iExFtnR+PFMEISqTKBbpLKAo7p4BhI5dr+7qlNiYQA44GUeNIlMvG6R40LPKTtx1gQJBjRQFqF2AI5IghnKNeP0qzuXVxmClVGfvFXmfwP/64nvnzq6ZdQnsvI62+/4DbfvCviaN3h0ZNLjtKpjuIPny3zq/c1kPnE53XFpKjyBB732hMUWEpXU1jushNUbMSrYmTj2x+4TjatHwIISGJIANfN+mInHVTSQbslUq+UzeWkLSyCxK/ghQu44QICS2LanGo+xenWswwWbmG4eBueKq3cpSowVrmPHaW7mQ0PMtU6QGxaK9a7XIT18Odej9PaS9z/NMaf711BJsQDT5OWjuLN3otK+i+6TSkdPE+RpilpmmKMxnFcwjDEdV1c181d3lchudidk7MNsdUSnUcepvP2h3BfPUrwrWfwnj2IWKV3jEhSit95geJ3XiDZOUjzDa8jefAubDlAG4vvyvN/OC8XvPVGCd4xIqUreHfPzxNU4vlc8L7GWIo4lwgrrqmI87MsF74NGk1rUfiOmUFR6ArfbUJOZ8J3UMO9cRw13SQ5fRpdb+DtGqfd7uDt3oV3ww2I7dTj9hrBxDHhc8+Rzs2TnDiBnp/H3bkTZ+TShM6rmqQN4TyY9DJ7dStiWUfTIJZzSDwUBTqJzgRva7GFCkY4GKnw4+aGns6aSTXVP/4UaqH3eNpvfYD4/gtPWKyG0d0Ic2vZ62VuGWvhtHsfU4VeJ3Ol8d8XP95s8nq28lJ74dhEz6SNkJK+PaPruxOtAZk5u53t5OpuglVgA6TtQ2EQ1tAJsghykVi8NKVsBI0koR6naN8QOM5ifLkxhubcLIVKFcdzGRjLe3Xn5OTk5OTkbD+G9uwjjWOstcyePM7cxEkGd+1BOfmU70bgKMFYQXAsEUSppq0kLnbTRREjFJEq4esmWvo4JsJaiRZruyaPTYKUEgxI6S4K3uuNNBUsEUIaLPNYUQdbQ2xB2GzfwkGioJ/EWyoAT3bcxOjf+Tuc+u//neUxmaefeA7luwzecdN5tycE/PTtLU40FYcXlp7352c8PnGwwE/e3NmYE8nZtjRFwOPs43X2JAP0Jm3sZZayDXmOcRKxwZ/PjgMBEEaAl7m747gbdS4QgJO0UEmb1CuTemW0U8SJmxihSPwKfmsKJw0BMDZhqv0C0+0XqQX7GCneScFdKSgr6TJcvJ2hwq3MR0eZbL1AJ51dt9NS8QDBmbeSlg8R114A2dtGwvhzhDu/gtO8AW/+DoS92PyXwHFclFSkOiGOY5SjAIvW6WKf75yrh+1hv8jJyVkdKUhu3Ufj597N7D//ZVo//mb04Pl7RbqnZ+j/xFcY+v/9PsWPfg772gnaUUqcmvNHm58VvLGZ4L0BkeauiSmkTVLp0XHKhCqg7vVvE/9fzvpjrumI87NIFC5VCoxSZA8eA1gMEVO0OUbIGSKmCTlFQ7xMe3gWe0sfxtFEhw6RTJwiOnqM9pNPoufnt/p0ril0s0nnO98hnZ4hPvQaul7H27v3+hG6TQLtKejMZBHmZwVvb2UF7up4XVe3Q0ecIhUtNDG+qaE1aGNJtEFKhfaKpG6AsAa1AZMjl0PpE1/BPdQb3x3fvIf2j7/lsrZnjMZag4dmp5NNWFg7wkt9O3vWU+kUpfaXu/c7kNx7WftbL+YP9z4H1fERHG89BWmbtUNxZDaicLZH0Y4VEVYkSFvKYhNNEWkSIreAkS4yzarrB2JDYi1nOhGx1DiuXIwvB2jPz2GNoTwwSLl/EL+4zvHvOTk5OTk5OTnrgBCCHTfcRKFcoX90HGthbuJk1oInZ0MYKXkEQElaNILQbk01vxYOsSyihYOWHo6JUXbtPcRDE5GiiUwWc+zLjSlelWYAYX2krWIxWWHqFiCwDMw8hzC9z1F025sY++G3rlj/5KPfZe7gsQtu05XwD+5pUvV632+fP1zkqdPrG+mcc3WQCIfvij0cY6UYPEibh+wRyjbc+ANxHAiCbJzuulkxRxSzfDJWYHHjBkFrCplGJH6VqDRE4hbpVMaICoPYZW4li2EuPMTLs5/mtbkv0YgmVt21EJL+YD+3Dr6TG/sfoeKNrdtpCQRu80YKp34Y1VqlIF1AWjlEZ+yLpMVja0qsEFIuCttGa+I4Jk1ToigiDEOMuconsK8j8tKEnJyrBFst0fmhh+m87azb+1m8Z19d1e0tU73k9h4dInzjPUQP3olbLaJWy9ERMosg1Un2A0AIKmC9LLiuSSBt0nHKdJwyAHWvn2o8d7WafHMuylojzvVV6/Q+i0QhqeJSxZB2Hd9tQqYQCBQFHMpovwg3CFiIEWdew2vMEozvy13e60g6NUV44AC62SI+chgQ11F/bgNRM4stNykkLUjjzM3tVrt9lS9O5up2iOQsmg6RWEDZAEVAK027sd4WUSxlUVfKx0mjbfE29h9/nsKj3+tZpvurNN7/46AuvcbTWjCm6+r2w8Uounl5D8fLvZMXleb/RNCdOEnuBLt14mjcbNOa6q2gXvcIc60BC0plA+ltEPFlsVjRQlgXgY80NZTVWdSjV0QYizCC/ihFAKc7HUKjccqyJ77caE1rfo5itYbjegyM5b26c3JycnJycrYvUil23nQLJ186wMDYOLMnjjN/eoL+0bE8hnUDEALGi5LX2hYXS1sLAmG25LlOpYfAgAGEwTERRsrF3rsXIzQhRVkgMgm+9PCkS2ySiz/wEsj6dw+i1Zmsf7dsYukg7OaP0d20Q23uJeYG71pcZqWDeehvMNqcZ+Kb3+1Z//hXHke5DtW95xfr+gPDL93T4IPfqaKXFT788QtldpYXGC/nPYCvN6wQvCx20rABt9vTyGWCa5GEB+0RXmCMSbHWNnOXiaNABtAJsw+uOM4Eb99luQdWWIMX1TFJO+vjXRjASdpYIPWKBM1JlI56Nt2IT9GIT1FwBhgp3kkt2ItY5XOn4o1S8UbppHNMtQ4wFx7GrkPrB2kCgpkH0c19RANPY91Gz/1WRURD30GGR/Fn70GmF3uuBUo5KClJ0pQkSZBSg3XpGI2Xu7yvCnJnd07O1cai2/tdS27vodp5V3cnpql8/MvU/tnv4/zxp9GvHMOuVpEkRNfhTbePtwEdwjr2HnJNQjFpkEqHtlshUj4L/gBmW0gkORuJFWfd3pnTO4us6t6+RpzeZ5E4uPR1Hd+78ejHogmZpMVRQjFJWkvQ+z2a5ePMnn6U5uTzdI4ezF3eV0h89Cid554nnZ0lfu01hOvh33TT9SF0pyE0z2Qu7qQF4VwmePvV7GeNQjfCByGwSDpiglTUsSR4toa1WZ/uNM2+F7RfRqvMBe6mWx/R5hw7Tfl//FXPMus61H/hPdjy5QnP5mzPb6PZ42U9p4yt8WLf3p5eW8K0KTc/le3Tgo3vv6z9rRdzR3pd3cpzqYyuc7JBqruvK5n1BdsOiBCLRtgywngoGyCtphNUEIBMoJgYfG2ZS2Kascb4Ft9Ri/HlAK35Oay1lPoHqAwO4QbB+feZk5OTk5OTk7MNcDyP0ZtvwS+WqI2OEXfa1Kcmt/qwrln6fUnZlRQlCEfRSrbOSZ/IgFT6pNLHoHBNJxPA14AF2ibEYEhMgkTgbkDEssDLHN4UkDbAiBaWtbvQ15NS+zTFVq8jNfZreN//I+y4/87elY3l6Bcfo3nqwu+lW/pT/vatvT2KIy34/acrtJN8zvN65ZSo8R2xl+gcv6mD5R57khvMFOePYl0npIJCkBX/ex5gIUrArmKeMyleZxY3apC6RaLSIKlToF0dIyoMrDpt20lnOVp/lAPTf8Fk6wD6PMUyBaefPX3fz+1DP8lI8U7UGlsuXAwVDVOYeDvu/B1gVkqdJpiiM/pl4r7nsWINnzkic3m7roO1hjiJ0GlKHEeEYQe70X+vnCviuhW7Jycn+cxnPsNv/dZv8aM/+qMMDQ0hhEAIwfvf//5L2taRI0f49V//de6//35qtRqu6zIwMMAb3/hG/sW/+BdMTuYXlzkbw1m399xv/iILH/gpotffij2Pc00kKcGTL1D+4H/F+5d/iPzyk9A6R5xYTfBO11fwdmxKMWmihaLtVoilT93vzwXv64blEedd0dsKhFGZ23uL4r82iiXhe4wiu3Dpx5IQMknHm0CPKvSwpNk+yMypLzM38ziz3/0rOq+8gNV59e9ascYQHjhA9NohkjNniI8eQ1armVPe3T59hDcEq7O48vbUUmR50ganAEH/mnt0Z4hlru5pDCGxqOPYIgqPKNVYLImxKMdFOwGpCpAmRdqtfb2KZpvKhz6BSHuPo/m3fxi9e8dlb9dYg8Uw7EQUZPZd2LJ3c6jaK36WW59G2m4cX3oj2IHL3ueVYq1l/hyxu7Z3FHkZzvbzYjRgMle3kmsvpthALAYj2gjrI3AQtoayCZEboLvx5S7QF6e0jWamHdMUCQXP6Ykv12lKa36OUq0fx3XpH1tnR3xOTk5OTk5OzgbhFYrsvPFmglKZ6vAO2vUFmnPr1y81ZwkBjBUkrtV4ShAi0VsYdRuLAlq4pCoAJK4OEWt0FFgsoYnQGGKbooTCEet/fS9tCWnKYMsIq7Cyvi4Oz8uhNvcSTtLbU7lR2Uf1jW9i6O6be5ZbrTnyhW/Qnrzwe+kHd0d8/1hvPPVkW/GHz5XJU5CvXxZEgcfFPuZZWUB9I9PcY0+gNno+RSooFLKxu9+dI4rjVQXvrJ93G781jbCWqDhI4peJghrt6q7M8LAKiWlxqvkdDkx/nFON75Lo9qrrearIWOV+7hj6m4yV78eVa223d34EEq9+G4WJR1CdnausYEn6XqEz+iXSwurR6+cipYPn+UipSNOUJInRWpMYgzYGu8pzl7P1bBMbxuazY8flT3wu56Mf/Si/9Eu/RKfTKxrOzc3x2GOP8dhjj/E7v/M7fOxjH+ORRx5Zl33m5KxACpJb95LcuhfRaBE88TzBt55FTc+vurozMY3zZ1/CfuKr6PtuQ//A6zE3jmdi91nB+2ykuXIzwdvJLpjXg0zwbtB2K7TcCiSw4A/QF832RLvkXMucjTjv9vQWFmslwoprJtr8XCQuHn1AH4aElBapaJFWYygYmO+QTL9IXJqiY07gTX2H8k0PUBi6CaX8rT78Tcdau1Thep7bFiBNCV96iXRujuT4CfT8PM7OnbjXfH9uC3ErE7etzm6nEUgHglr2/6Ui/LNbJhRnSEQ2+XDW1R2nBq2z+02hgkGgHR8v3pqea4toQ+WPP4Wa742t6rz5PqIH7zzPgy5OFmFusMawt5AN1Iwt8WrlJtLlLUFsSqXxZ0u/Jg9c9j7Xg87sAlG911VQ27feEeYGECBl1v9rOyA6YC3ClhCmiGMUBk3oFZHGIIykFqWkWKbDiDkdU626PfHlAK25WYSQlGr9VIeGcb3r7/M3JycnJycn5+qlUKkyvG8/9vBr6CShMTONchwKlQ2Oy70OqShLLXDRsSX2XJrtNn3FLerTLASRLCF0E1SAq0NcHRKrtaWcaQyhjSgQkJDiCgeDxayzoCNMDSkiDBUM8yCaCLv5r01pNQMzzzG548GstSOAEMwN3cXI9zfQccLcy0cW1zdJyuHPfZ0b3/VWgoG+VbcpBPzd21ucaDocrS+Nx5+b9vjUawXec9PWp6HlbA2RcHmKvdxmTzPOQs99IzR5yB7haXbTERv4+SFlJnh3QvDJ3N1xDJ4LqxS3SKvx2rOkXonUK6OVjxfWaVfH8TpzeOH8qtO22sZMtp9nqn2A/uAGRkp3EDi1Fesp6TJSupPh4u3MhUeYar9AJ527slPUJfyp70MXJoj7n8E6ve8567SJhh8jbY/izd2D1BdLABQ4jouSikQnxHGM5xis1dgoushjc7aC61bsXs6ePXu47bbb+Ku/+quLr7yMb37zm7z//e/HGIOUkve97328+93vZmxsjGPHjvGRj3yET3/608zOzvLud7+b559/nhtuuGGDziInJ8NWSnTe/jCdtz6E++oxgseeyXp761WqtZIU5/HncR5/HjM2RPqme9EP3wWlwjLBO14mePvA+lR3OlZTShq0uoJ3KWmw4A92Be+8Our6IRO9M5e36N7ORHCLBnFtFj9kwncNj1omfLst0qEWaWeepH4INXUav2+M+IUZnIGn8INRCs44ShZYzHs/K/qeFX4XxeDuP6uJw8vXsbZ3W6utaznvOr37W2V7K7ZzsXXO2d4lYNOE+MgRTBjh7d2L6lt98HnNYGLozGWfz0kIaSt73rxy9jl9Wb3iJEJ4gEdHncbQIRF1XFtG4hAbg7GQaIOUYnGwA6zo3bTZlD71VbyDx3uWJTfuovWeH7yi7VprsBaKImbIiQGIzR28UusdEBXbX8HRZwAw6U7QW9vfee5wr6vbKxcpDvWv4x5s5uxWCqTI+oBtMRaNER2kLSCsQpkqyqa0ClUEApFARVuUNkzHMTNhjFeQK+LLdZLQri9Q7h9AuS610dzVnZOTk5OTk3P1URkYIu1OxOs0YWHyDMpx8AqX19onZ3UkMOJL6nFCwXVpSEWcGjxni4JUhSBSJQLdIJEBrmnj6pBEra0lT2o1ETE+HlIIPOES2xizjqYUgUTqIaw6jaSMkY0t69/tJQ36Fg6yULtlcZlRPvODdzL+5hgdJ9SXja10FHPos1/jxne/Db9aXnWbroIP3NvgX327j0a89Dr47KEieyqa+3bEG3dCOdsaIyQHGKVBwC32TI+drEzMw/YwzzHOjFj9tbUunBW8wxB8kfXvjpMsAm2VtDYBuHELlUYkQR9RcRAnbmIRaK+E35pE6dVjyy2G2fAgs+FBqt44I6U7KXsrXddCSAYKNzBQuIFGdIrJ9gs04rW5r1dDIHA6Y6hwhKT6Ekn11RVzy7o4QSeYxK3fhlu/udtq8wLblBJPemits6lMYxEiT+Pcjly3Yvdv/dZv8eCDD/Lggw+yY8cOjhw5wv79+y9pG//m3/wbjMlEud/93d/lAx/4wOJ9Dz74IO9973v5h//wH/LBD36QTqfDBz/4QX7v935vXc8jJ+e8rHB7v0DwrWfO6/aWp6bx/seXsH+xzO19wziY5Q7vCJS/asXX5aCsppTUabsVml6FctxkPsgc3iqPA7musCJzCQqbpQtYa7Je3sJgr0GX93IWhW9RwxSHSdw6Uf0UrYVXUEkJLx0h5hQtnsWzffh2GGXPOg3PisVLt1cVu5f+gxXi9TnLeq4BV3NWL1/lXJH6Svd57u1zt3P2l97tmE4HEPg33nht9+e2BqI6xI1MbIwboNNM4HZL2cDlchE+IDAiJWKKWNYB8LpV9nFi0MaircXxixjpkLoBSsfILfy89r9zgMJXn+pZpvvK1N//rkyMvQKyazzLHjdzdVvrc6h0O51zJq+qjY8t/ZI8wFZ+YFljmD96qmdZbd844rIKIM6D1oDNRG6lLrO4Yn2xopW1wbAFpK2gLESuTyo9VKIJhEMpimiYhJl2TEemDHtBT3w5QHNuBiElxVo/fSM7cbaLaz0nJycnJycn5xLpHx0njWOssZg0ZW7iFAPju3H9PLVmPSkJzUDBJYksUeDTaLYZLLlbdo1shSRSFXzdIJUFHNPBNRGJXNvfPbZJNnYwIKTAky6Ridc1g1HgIs0gRk0jbYoRLaR1EGz+tXe5cYzQHyAqDC0uCwvDtKp72fN2y5EvfIPmiTOL96XtkMOf/Ro3vuttuKXV5x4GAsMvv67BB5+qope16vuj58uMlhYYLeci2XWLEBxngCY+r7Mn8Vh6LbgYXm+P8yojHGVg4z5DpIAg6AreHiQxJOcXvKHby7s9Q+qVSb0yxvGx4QK6ugu/M4sbLlxwFqQen6Qen6TgDDJSupOavwchVs5fVfwxKv4YnWSWyfYB5sLDXJYjBhDWwVu4C6e1h2jgaUwwfc5JaZLaC6SlY/iz96Ki4YttEaWc3J63zRE276oO0CN2v+997+PDH/7wRR8zMDDA3Nwcg4ODTE9Pr7rOwsICtVoNgPvuu4+nnnpq1fUulxMnTrB7924Ajh8/zq5dW+smutrpNBb4zrc+TluBEVBOt/qI1hljcQ8eI/jW+d3ePauPdt3eD90GBS8TvIVcV8EbQCNpexUASkkD1yT0RTO54H3dIrOiO2GxmQUZKw3ZaGuLD22zsJA0ZogbE6SqjcXipEXctISwCjcp4Uf9SLsFQszyC+6zt4VY+tOc5/4V9632uNUeu9p90CPeCc/DGR6+tvtzJx0I58CkWU/utJN9DnslOE/PpLWjELIE+LTUMUJO05YTeLaKZ/vQxtIIU8JEoy1QHSLy++gUBvGjOs4WObvViTPU/v1/QyRLX9ZWKRb+Xz9Nunf0ircfxxE2TfjB8mkcYYn13Xxm/E0s+Eu1on74FDum/t8ApLqKbP8i69Xy43KonzzDka99p2fZre/8QfzqlffBWiSKslN0fSgGV1xUcKVYUoycQ9oywpRw9QjSGhrFfqS2uKlDf5SQpAmTnZCj7TY7agEDRY/9w0vPSxrHTB87QmVomMrgMHvuugflXLd1wTk5OTk5OTnXANZaTh98hebcLLMnj2OMZnDXnvwaZ51ZkB6H6wlN6bAw16DiSAre1l4jS6sJdANlExwToaVLegkRyYH0cXHwpQsIIrP+jmQj59CyjhXzICzC1C7qsNwItPQ4s/NhzPL2cdYwcuZJnPYchz77NdpnZnoe4/dXufFdb8UJzl9E8OVjAR97qXcctqOo+ScPL1B0cznmeqdgY+6xJ6iwcj7lFFVeFKOYVQThdcPaTPBOdSZ2Gw2ud17B+yxGOsRBDSsVbtxAxW2cNCRoTSLN2oQUT5UZLt7OQOEmlDj/PF6sW0y1X2Sm8yrGru4gXwsWS1o8Ttz/HKjV569Uazf+3N0Ic+EkDCPPgHFQYoiH3/d/XfYx5WyMrplf3VwBcZx90V/IEd7X18fQ0BDT09OL6+fkbBlSkNyyl+SWJbe3/61ncM7n9p6Yxjvb2/v1t6C//27MzXuBdXZ4YyjFDVreUqT5vD9ILZpF2bzi8frDYAXLos0NwmTuQYu5ZqPNexDgVgdxizV0HJKIBqlokIgEhwLGFAhJ8Snjm2GUWHYxtgbBWJxvvQs8dl2doTlrxyRZX+40hDSGpJX16HaL4BTWpdpXCB+QaBESM0cs5xFIXJsVIcWpxlqLNhbHUYRumdQpgLVbFmEuWh2qH/pkj9AN0PypR9ZF6DbWYgyMOy0cYbHW4URwd4/QDb2ubpncz1YK3QBzR3pd3cXB2voK3VYDJiuwUHLLhW4AK5pgFdggc3UbTTuoIBCoVFDWFqtTGknKiVaHvrKL7yh2DfQ6MZqzM0jlUqzWqO3YmU8C5+Tk5OTk5Fz1CCHYccNN6JdfpH90nOkTx5ibOMnA+G7klaRC5fRQsCnDJYewYykUfZqNDoErt3QMbYQilkU80wJpcUyMlQJ9AWFpOaGJkFISmQRfevjSJTKXLzathjB9SCKMrGKYA9EAm7Uh2kyUiRmYeYHpkfuWHZxkdvAuRtIn2P+jP8Brn/4q4cz84t3RXJ3Dn3uUG975FpS3+nP6tt0hRxcUj00szdecaSs+9FyZX3l9A5lPsVzXdITHk+zjTnuKHTR67hujTtnGPM0uojW+Zy8Zcdbh3Z3TSchc3o4L6vxjYWlS/PY0qVch8SpoFUA0T9vZhdeew40u7PIGiHWTk40nOd18lqHiLQwVbsNVK5MSPFVivPIAO0uvY7rzCtPtF0lMZ5UtXuRUEbjtPTidncS1F0jLh1eYqXTpOO3Cabz5O3CaN2z651DO+pBf2VwBt956KwCHDx8+7zr1en3R9X12/Zyc7UDW2/sh5n/zF5n/wE/RufdWrFr9I0EkKc4TB/B/+0/x/8WHUF9+AurzcAVVVeciMZTiOlhLy62SSpd5f5B0HR3kOVcXVpieft5YiTAOGHW5KTZXH45CFUsEhZ2Ughvx/B1oPyYsTJEUWsSFJs3ScTrFaWxRIYtFZKGw9BMESz++j/Q8pOchPA/huks/jpP9KLX0I+XSTy50bwHdyPLmGYhb2e2onqVrBP2Z2L0ufxcHRBYZ15ETaDqktPFsHwKJtRCnluRsEohXxApBqnwcHW3N5b82VD78adTsQs/izvffQ/SGu9dlF0Znou4er9Xd5Y28VKv0rOMmhwnCxwFItQ/J+uz7ctFJQv3E6Z5ltf3r3HNaZy0nkBLcrReDrYiwIkHaEsI6ODogcTxS5eEkmoJQeFFM22hONjsIF0qesyK+PIkiOs0G5cEBHM+jb2RlL7GcnJycnJycnKsRqRQ7b7oFv1hiYGwcHScsnJkgD/pcPzxrKDmSsrQEvgdS0oy23riRSo9EFtHCRQsXx1xaC6qOCTEYYhNnYpFcX9FNIJFmCGFdpK1gRQzi0oWs9SCIZinXj/QsS90S87VbUb7H/h97M15fby/lztQsR/7ym5h09b+1EPAzd7TYU+kt0H522uMzr13D7ddy1owWkmfFOAfFygjtKiEP28PUbHvjDkAIKATgOF1XtwNpt53phR4GuHEDvz2btU4oDpG4JaLiIJ3KKEauba5A24gzrec4MP1xjtUfI0wXVl1PSY8dpbu4Y+i97Kl+P4FTu8QT7R639fDnXk9w5geR0SrbkAnxwDOEO76C9uYuax85W0sudl8Bv/zLvwzAzMwM/+k//adV1/mX//Jfrlj/Ujhx4sQFfyYmJi7v4HNyziIF6a17af3cu5j65/+A+Xf+AMlQ7fyrn57B+7MvE/zG7+H86Rdgbpb1Uh4lllLSQFhDy62SSJcFf5BUbP2Ees5WYTPRG4GwErr/C+uAvb6+wgQSjxpFduNSI6VBm+NETBMxRZ2XaHEMvUoEUs5VRhpCczJzdCft7H+Tgl+BoO+isVKXghABIIlFi4QFYjmPxMWxmRs4Tg0GS2IsjhQkfhktXaxUOGm4bsdxKRQ/+yjeK0d7liX7x2j95NvXbR/GGPplh7LSWCuZdO7mTLE39q/S+Bji7Pdf+jrgSuPkr4yFY6exy9uTCEFtz9g67sFm/brP9um+QLX3ZmCxWNFCWBeBj6OrCCyhX0JpjWc9CmFMxyZMtUPmdMxg2aev4NJf6p2oa85O47guhUoftZ1jyG3gWM/JycnJycnJWS8cz2P05kzwro2OEbZa1Kcmt/qwrikCkzJUcFASiqWATpKizdYXFCTSJ5UBqfQwODimg1ij4G2xdEyEwRLbBIXAXWdDisBBmkEEPtIWMaKFZX0d5Gulb+E13KhXbGuXx2gXd+AWA254x1twy8We+1unJjn2pcd6x2HL8BR84N4GZbf3/k8fKvL05DXchi1n7QjBYTHE02IX6TlSnY/mfnuUcbvBwmshAM8Bt+vqTtPM5X2R+X5pEvz2NCrpkPhVokI/qVeiXd1F4lcu+NjlWAyznVd5aeaTHJr/a5rxmVXXE0IyULiR2wbfxQ21t1P2Lq9IXcUDBGfeijd7D5iV8xrGnyfc8RWi/qezIpycq4ZcQboCfv7nf55vfOMb/Mmf/Am/8iu/wlNPPcW73vUuRkdHOXbsGB/96Ef5xCc+AcBv/uZv8kM/9EOXvI+zufU5OZuBrBRJfugNTP/gg6iDxyh/+zkKz63e21skKe6XnsD5+vdI33o/6Y/8AFSrV34MWIpJg7Zboe1WKCYN5oNBauEMjr3WmqjnrJ2laHOEwFqDsN1oc6Gvn17eLIneLlUS6iQskNLAoYIlJWYOj34CdqA4f/+onG2I1UsCt04gbmbLnMI6OrmX42ZOcVw68ggpbTQhgRnKWghYiFKNNlk7J+k5pE6B1AkQ1iDXOcZuLXjfe4nil5/oWaarJeo/925w1mfixVowxrLba2bbt3t5qX+gZx2pZyi1vgiAsRKZ3LdiO5vN/JGTPb9Xx0ZwgnUU4I0GbCZ2K8WW5+6JEItG2irCeDjWpeOXAImvIUgNSZrQTDTHWh0Gq96q8eVxp0PYalHbMYrr+fQNj2zN+eTk5OTk5OTkbCBeociOG27i9MFX6BvZycLkaZTrUj7nOjfn8vCtxlMuVSWwgUvYkjTChFpxawtiAWIRIIQBBa42uCYkUQXsGiZSDIbQRhTwSdC4wsEAeh1bDkpbAFNFS4sgwco6mP5N798tsAzOPM+ZnQ9jlzlT5/pvx4vqeBXY/44389onv4IOl0wG9aOnOP7VJ9j9todXTcUbLBh+6Z4Gv/1UFWOX7v/Qc2X+yRsWGC2t3W2fc+0yJSo8wT7utccpLiv4kMAd9jQVG/Ky2IndqORF31+ac5Iy6+MdRZkAfgHDhQDcqIFMI5Kgj6gwhBs1sEKSuiX81hTyEj4v6tEJ6tEJiu4QI8U76fP3rPq+qvrjVP1x2skMk+0XmA+PcilmPIHAbd6Iao8T9z+HLh1fcWJp5RBp8ST+3N2o9u482vwq4Pqyxa0zSik+8pGP8Gd/9mfcc889/OEf/iHvete7ePDBB3nve9/LJz7xCd761rfyxS9+kX/1r/7VVh9uTs6aEAJcV2Fv28/s33snE//s71N/11tIh/tXXz9OcP/y2wT/+HdwPv4FaLau+BiWHN6allshkS7zwSDJOkcm5Vx9ZC7v6zzavMtKp3czd3pftVhImtCY6EaWNyBcAAQENfBKGyB0n+3VrYjlApomsZxH4eGQVaunxmIsJKlBCYHxyljIIszTcNMv89WpKSr/7Qs9y6ySNH7+3dhzIuWuBKM1gUgYcSKshbq4m2Plc13dH0d0B6Cd8Hawa69a3gjidofmmZmeZeseYZ7qbNArZDbg3UIsBiPaCOsjcHBMmUQ5JMrHizUuChF1iI3htXqTwJerxpcDNGancT2fQqVC/9gYIu9fmZOTk5OTk3ONUqz2MbxvP8VqlXL/II2ZaTqN+lYf1jWBAHybMuhLlJSUygFRaojTbSBkCkEkixhcUlUABK5ee0pXajWhjdFWo0lxhYNcZ0lBmD6kCRC2irVgRR27BZM8ju7QP/dizzIrHWYG78IiCGpVbnjHm5Hn9OmeP3iMU9/47nnbA9w2kPK3bumNow615PefrtBJcwEtJ6MlfB4X+5mmtOK+3cxzvz2Gu5FGMM+Dgp8ZCXwvK3BP4iza/CLvR6Vj/NY0Mg2JgypxoUbilWn37SLxLn2+pp1Mc2Tha7w48wmm2y9jznPeRXeQfX1v5o6hn2C4eDvyEtNhpQkIZh4kOPMDiGSVeR0VEQ19h3DkUYyTf19ud/LZnCvkxRdf5E/+5E947rnnVr3/scce40Mf+hAnT55c9f6Lcfz48Qv+PPHEExffSE7OZaAE+EoiKiXqb76fyV//OeZ+5W8Tvf427CoTwSKKcT//TYLf+G2cT34J2lfWZ0d0BW9lNW2n3I00HyCWW18Vm7PVZNHm2NWiza+/QcLaRe+tiZzOuQgmhtYkdOYg6UA4CzoGr9yNLN+oEB6v6+p26IhTpKKJIcYzS4VNcarR1qKtxXUksVtGq6zad7MjzEU7pPqhTyDiXjd56yffTrrOoq42hnGniRBg7Dgv9430VE8L06Hc+sTi7wVz/7ru/3KYP3Kq53fpOlTH19GhbDVYs+ToXicX/WUjOmAtwpaQxkdah8gv42iNj4cbRsTWcLzVIrLmvPHlUbtF3OlQHhjE9QMqgyt7peXk5OTk5OTkXEtUBoYYGNtFZXCQQqXKwuQZ4s4G9oS9jgiMRkmoeRLX9/CczN3NduiPLgSRKmFQJDIADJ5e+7xdYlMiYhKj0Rg86a6ry1EgzunfnYLYmtdlsX2GYqt3fJX4fdT7bgSgMNTP/r/xJsQ5Y6KZA69x5snnz7vdt+8JeXi014xwuuXwR8+V2QaJ9znbhFQovid2c4SVqRv9tHnYHqZiN7C3veNAodDt4+1n/+sUojibE7gAApulIHTmMNIlKg6SuiXC0gid8g7MZbRBiHWDE43HeWHq40w0nyY1q89FearMeOVB7hh6L6Pl1+PIwqrrnQ8VDVOYeDvu/J2ZoeocTDBNZ/TLJNUjWcJozrYkF7uvgEcffZTv+77v49Of/jTj4+N89KMf5fTp08RxzPHjx/kP/+E/UCwW+djHPsZDDz3ECy+8cMn72LVr1wV/RkdHN+DMcnIyhADXkXiOwgpBa/84c3/vHcz+5i8QPnzXqtEpIoxwP/01gt/4IM5nvgKdyxdEBFBMGiibLgredb8/F7xzgK7LW5x1ectM/L5OXd6wFtH75Vz03lYYiOaheaYrci9kseXSg6Af3GBD3NxnyVzdDpGcQdMhEgsoW1iMvjcWEm1JU5MdhuOilUviBEidXFIM1RVjDJU/+Qxqer5ncfiGuwm//5513ZW1gNXsclpYC23u4mBfbzuAUuuzKNMAYL69H8zWxl5ba5k/3FtU2bdndB37TluIU0Bm8WXuVvfq1hjRQVJAoHB0mdAvYpEEqUKlhiSNmY8TTnciBsurx5cDNGZmcIOAoFymf2x81Xi0nJycnJycnJxrjf7RcSqDw/QN78ALCsxNnCKN876kV4rC4hlNzQXXUZRLPtpaOvE2cHcDVggiVcYIRSILgME1a0+Ci01CQkpiEmxX8F5PBKrbv9tD2gJGtLFblFRXm3sZJ+lNrmxU9xH6mQBZGh1m3yNvXJEKNfm9F5l8+qVVtykE/L07muyu9DpUn57y+NyhSxPmcq5xhOBVuYPnxBj6nKKSAikP2qPstAvnefA6IGUmePsuOG7m+AaIYzAXd5Yvurx1TBz0dV3ela7Le6VrfS1oG3Gm9SwvTH2c4/VvE6Wru6wd6bOjdDd3DP0ku6vfh6/61rwPgcSr30ph4odQnVX6gQtLWj1JNPokaXBq5f05W04udl8mURTx0z/90ywsLLBz506+/e1v8zM/8zPs2LED13XZtWsXH/jAB/j6179OEAScOnWK973vfVt92Dk5l4UU4DkSR0pSY+nUqtR/+keZ+ye/QPTgHauL3u0Q9xN/nYnen/s6hJd3gZoJ3k2USWk7FWLpUfcHiGTeizgHzrq8Lazi8pa56J2L3tuTpAONMxDWs9jycC6rkA2q4FeygcVGIjJ3tkXSEadJRANLim9ri6tEqcZaS2osrpQkbhkjJEZ5OHpzJxyKn/8W3ouHe5Yle0dp/s0fWveCAGsNO1QLTxqsHeZgZZx0+d/DaqqN/7F0bGbre3WH83XChUbPsv596+h2T1PAgOdmr82tjjAXreyz3RZQpohRPokKKMYaJRQ2bBMbw6GFJiVfnTe+PGw2SaKQ6sAQXqFIuX9wa04oJycnJycnJ2cLGN67n1Ktn9rOMZTjMnvqBDrdwHjc64TAaiSWmq+QnkfgKJpxit0m1l0jJJEqY4UilQHSpjh27YUOoYnQaCKTJW756yx4SxsgTQ1hSwjrYmQDy+a7KKXVDMw8v8LJOjt4J7p7zpU9o+x+28MrxqSnH3+WmQOvrbpdX8EH7m1Qdnu3+6nXCjwzlbduzOnltOjjSbGXDr0F5wrL3fYUN5nJjU2O8DwoBqCcbqx5t5d3EnOxCVeBxQsX8Drzy1zeRcLSDjqlEay4vHkvi2am8wovznySw/NfpRVPrbqeFIrBws3cPvRu9tfeRsndseZ9SF0imHoj/tQbEOnKQhTrRITDj3HgwP/3ss4hZ+PIxe7L5Atf+MJiNPmv/uqvsnPnKtUewJ133snP/MzPAPDUU0/xzDPPbNox5uSsJwJwlMBzFJJMCIkG+qj/3Xew8Bs/R3L/7asmSItWB/fPv5iJ3n/5jSz25DL2XUybOCam45S7gnc/kQqu9LRyrhkMVhiEFctc3gph1XUZbQ5rFb2P5qL3ZmJSaE9BZxrSNoTzkHbALWa9udVmpFaIRVd3KKcwhCSijmNLSLLBtbUQJ4akOyHjKEHslbIIc8umRph7z7xC8a8e61lmykUaP//uDXEYG63Z7WTCcWTu5OVa7/dMsfM1HD0BwHw4gmP3rfsxXCpz57i63WKB0sjKyLPLwugsssxxutXd/oYmDlwMS4oVEZIS0kqkLhJ6JTxjcYSH6IRoLIeaTYzgvPHl1loas9P4hSJescjA2K7c1Z2Tk5OTk5NzXSGEYMcNN1EoV+gfHcdamJs4iTHbw4V8teJag7KWsrQUfJdyMRvjNaLtU0hghCKWRYxQpNJDmQRlk4s/sEvHRBgMkYkRiPV3eJsKwhQQtgpWYEVjS/p3e0mDvvmDPcuM8pkduHPxaGo37mbXm1e2tTr56FPMHzy26naHCoa//7oGYtk5WQQfeq7M6VYu1eT00hAFHhf7mWOl6LqfGV5vj+NsZPKeVFA8G2vuZcXvxmTz++bi+1U66rq8E+KgRhz0kfgVWn27SN3iFRyYZSE6xqtzn+fV2c+zEB7Dnkf47/N3cfPAj3DzwI9R8/fCGlswOJ0xChOP4C7csurccl/f1psfcnrJP0EvkxdffHHx9n33XfiFff/9S196L720epRJTs7Vgjwbba4k2loirYlGBln42XdS//WfI73v1lUfJ5pt3D/7S4J//NuoL34L4rVfSEP2NVRIWzgmpu2UMsHbqxGqPOonZ4nM5X022lyAlQijrttoc7iY6D2di96bgoGoDs3TmZM7qmeubiG7keXFzRMQRZaKYbGE4gyJqGcRdHYp2inRBoMl0RYlBdopZJX/ToAyUc+gfCNRp2co/9fP9SyzUlL/uXdhapUN2WeZDn0qwdg+jpT20TmnD1ul8aeLt3X0AGsdJG0U1ljmj/bGZ9X2ja2TcGuzqm0ps0puz80GuluIFU2wCmyAo0tZBJpQFFKBTVKMTjgThsyHKQMlD0/JVePLw2aDNI4pDw7hl8qUav2r7C0nJycnJycn59pGKsXOm27BL5YYGBtHxwkLZybOKxjkrI3ApDgYKr5CuB5lzyFMNanePs9rKj1iWUQLFy1cHBOvuVWVxdLuCt6xSZAIXLF+hchZ/+7Bbv/uKpYUROviD9wAys1jBJ3pnmVRYYhmec/i7wO33cDo961sr3XsK49TP7p61PHtgyl/85benuSdVPL7T1cIt09dRM42IREOT4m9HKe24r4hWjxkj1CyG5jAJwQUAgi6Pbz9rlEjiUEnrM3lPY8XLmCUT1QcInVLdMo7CUvDl+3yPksrmeLwwld5aeaTTLdfwZzns6zkDrGv9hZuH3wPQ4XbkFz8c0tYB2/hLgoTb0eGQ4vLZTTA2NhPXdFx56w/udh9mTjO0pshvUjMT5IsiXrLH5eTc7UiACUFvqOQCGKtiVNDtHOI+fe9i8Zv/BzpPbes/th6E+9PP5+J3n/97Wwi/RL2W0hbeCai45SIpU/D68sF75xzyKLNsaIbbS6XRZtfv869XPTeInQEzcnMxZ103dwmzeLKg75NFg8lQniAR0dNYruubtdWei7yo9SgTeZ+dZUk9koY4WCks2mubtGJqHzoL5BR73dE6yfeSnrT7g3Zp7GGcdUEINF38FJ/73eLHz6NHx8AoBmX6Zerf89tJs0z06Sd3kFt//51ijA/+/3suuCopT5dW4QVEVYkSFtCGYURVRLHp5QYDBIbdmjplBONDiVfUfYddvUXV8SXW2tpzs4QFMt4QcDA2K4tOqOcnJycnJycnK3H8TxGb84E79roGGGrRX16cqsP66rGtxphoYChWPQIfIUSgmZ0aaaPjSaVPokskEoPg4NrQoRdm7PfYrqR5obYpiihcMT6jW0FEmmGM8GbEkZ0sGLz+3cLoH/2BeQ5rbwWajcRu0sF2MOvu5WR++7ofbCxHP3iYzRPrR6z/MjekAd39m53ouXwR8+X2Sap9znbCCsEL8lRDoidnPsuLRHzkD3CkG2s+th1w3WyXt5nY82Vk7U9S2JYcVQrUWmI315yeSdBldiv0qruInWufG4/0nVONL7NgemPc7r5DKlZ/TPDdyrsqj7EHcPvZWfpXhx58eRYmVYJJn8Ad/ZmSD38udcjrlCkz1l/8r/IZbJ///7F248++ugF1/3a17626uNycq52RLeXt+coDBCnmlQbwtEhFn7h3bR+4/3ou29a/bELDbz/9ln8f/LvUV99otsTdA37BIK03RW8i8QqE7w7zpVEn+Rci1hhsMKeE23uZE7v63jgcH7Re6obb/5SLnqvB1ZDZxZak12ReyFzdSs/c3M7/uYfk/ABgRYJEVPEsg4IPFtdXCXVFm0siTYoIZBSkjhFUscHa1H60ltRXDLGUv4vn8WZnOtZHD54J+EPvH7Ddqt0wg6nhbVFJoKbmPd7CxSXu7qnGw/CGqqAN5pzI8wL/VWCvnVwvZs0iyRzu/Hl/ha8XpdhsVjRQlgXgYe0JWK/hG8k0jrYTkhqLYebLbhAfDlAp75AmiRUBgcpVPooVvtW2WNOTk5OTk5OzvWDVyiy44abCEpl+kZ20F5YoDk3u9WHddUigMCmuBjKnoPyXSqBS5QaomTz+09fiEQGaOmTKB+DygTvNU6YaAyhjTDWkNgURzjIdRR/pPWQth9hCwjrY0RjSwRvZRIGZl7o7Y0sJLODd2OWCfw7HriTwbtu7nms1ZojX3iU9tTK95MQ8L47muwq986Hfm/S5/OHc1NPzuqcFP08JfYS0Vtc4mC4155gn53e2D7eUmYub98Dx82izY1dc6y5sAYvnMcNF0idoOvyLtKpjBIWh7DrkJ6XmpDTrWc4MPVxTtQfJ0pXLwJwpM/O8uu4Y+i97Kq8AV9VV11v8dgROO0RglMPo5LaFR9nzvqTi92Xydvf/naKxUxc+4//8T/y3HPPrbre5z//ef7iL/4CgPHxce69997NOsScy2Bq5guk8q+B+lYfylWFEuA7EkdKUmOJUkNqoDM6TP3v/yThr/8s+s7VCz3kXB3vv3w6E72//h1I1/DFCBTSNr4O6agikQpoulXaTmmdzyzn6sd2o805J9rcAStz0btH9G7R5sSynt656H3ZJM1uZHkz+wkXsuWFGvjlLep5LBHCBTxCeTrr1U0T11azYpAuUaoxNhO8XSVJ3CJWCBIV4KThpoR2F/7qMfznX+tZlu7aQfOnHtnQ526nXEAJSM3tvFjrLaBykuMUwm8CEGuXHc6dG3Yca8WkKfUTp3uW1favh0vZQJJmqQPSAc/PBrRbiQixaIQto4xD6gwghIufWJI0BZ0yEXZoRfqC8eXWGJpzsxTKFRzfZ2A8d3Xn5OTk5OTk5AAUq30M791PsdpHuX+Qxsw0nUY+N3a5BCZFAC6aUqmA60h8R9KM0o0Voi6DSBQwwiVVASBw9doF79RqIhujrUaj8YSLXMdRozQVhCkibAVhPYyoY0Vr03t4B9EslcaRnmWpW2S+f6mVoxCCsTfeS/8t+3rWM0nK4c99nXBuYcV2fQc+cG+Dktvriv3kwQLPTa1vL/Sca4d5UeRxsZ86vY5kAdxsp7jbnkSuMaXhshAiS34r+FkKnN+dM0hiSC8eaw7gpCFBaxphUuJCP4mfubzbfbtInYs7rdeCIWW68zIvznyCw/Nfo5VMr7qeFIqh4i3cPvQe9ve9lZI7csHtilxS3bZsvSVli/jGN77BwYMHF3+fnl56sR88eJAPf/jDPeu///3v7/m9VqvxG7/xG/zWb/0WjUaDN77xjfzqr/4qjzzyCP39/Zw5c4ZPfvKT/MEf/AHGZB8u//bf/lvkVk8W5pwXay0nJ/4Iow6i7LcR3I4RDyLseCaQ5VwQAThKIKUi1YY41SghcJWkNbYD9x/8FN7Rk7iffhT10tEVj5ezC3h/8knM575O+uM/iH7DPaAuHIEU6A4AoSosVn5ZBKW0ue7nl3O1Y7BiSfC2wmQObyGwGBDba7C5mZwVvV2qJNRJWCCliUMZS0rMHB79BOxAsT4XnNcsJoHOXBZdnoSQtrJrfK8ETrBFIneGEAEgSUWHmDliuYBA4tolF7C1kGhLkppuuwoI3TJaeiAlTrzxhQ/u869R+vw3e5aZUoH6L7w76xm9QRhrGVdNrPWZdm7ldKk3srvS+NjihM+hufu4xd/698LC8TOY5QViQlDbO3aFW7Ur48vdrR0uWAxGtBHW77am6Ec7BUqJIUGiwhZzacxkM7pgfDlAe2EenaaUB4Yo9fUTlMqbf0I5OTk5OTk5OduUyuAQaZw5Z3WSsDB5BuU4eIU8Se9SkYBnNEYKAs8lCjwqxjLTimjFhpK/me2sLoIQRLJEoBskMsA1HVwdEq+xZWBsE4QQYEBIgSddIhOvmxwtzQAAVgos7WxsQAq2sqmiU3XhEKE/QOIvJUO1S2ME4SzFdlaELIRg11seQMcJ9SNLKVw6jDn0ma9z07vfilftHYMMFw1//3VN/v1TlZ65zT94rsw/fcMCI8UNFC1zrloi4fIke7nDTjB6jmlvJw1K9ghPs4tQbGA7MsfJiuSjCBCg00zs1iabv7lI0oOwBr8zR+oWSPwK2vFwwwVMZQwvXMDrzK658ObCWBaioyxERym5I4yU7qTPX709Xl+wm75gN614isn2CyxEx7munVJXGcLabVZOtkm8//3v5yMf+cia11/tabLW8mu/9mv8zu/8zqr3n8V1Xf71v/7X/KN/9I8u61gvxIkTJ9i9O3tzHj9+nF27cofK5TI7+02+9/TPrlguzBjSPIi0tyPYRhej2xxtINHZJLyjJEoKlBB4jsA9eAzn04+iXj1x3sebkQHSH38r+uHXXdRRFqmAUBXwTUiQdiimLUrJBvcpybmKEYhM+V6sBrbCgNDkdS2ZsHRW9AaLQxmPGgInF73Pi4GoDlEji22Km6CTLKrcLW29KxYHIYsIfOrqEBGTdORpfDuAa5cG2mGi6SSadqRxpcDxPOqVcSKvipYOxXBjowzl5Cy1//ujyHApKt0KQf0Df4vklr0buu+aqXO3e4ZE3803h97A4erSa1zqecYm3ou0McYKJqb/PqPBOkSFXyGHvvIEzYml/m+V0WH2v/WhK9uoTrK2Iq6XCd2FIsit/WC0ooWhg7T9KFMg8fbgWw+VGHQYEaURh+stwsQw3l9goOixf3hl0osxhqmjhxfjOXfdfjd+MZ+4zcnJycnJyck5l8kjh6hPTTI3cZIkChnctQfH20DB5BolRbDg+HSEQ2Qsc9N16mFKJ0kZKvnILb7OPhdpDb5uIG2KazpY4ZDItbczKkgfBwdfuoAgMuvbAsvIBkbOYYkwooEQEmGqiE308qWqwJmdD2Pl0j6FSdlx+nGcriEHwGjNkc9/g+bJMz2P96plbnzXW3FLKwsJvnA44OOv9o5jxkop//jhBYLr1q6Yc1GsZS+z3GwnV0xpxiieFePMiU1IQk2SbpS5gbjr7nacrK/3GjBCkQRVjPJwkjZO1ECZhKA5idLr377AV32MlO6gP7gBKc6v90Rpncn2AWY7r2HRGHkGjIMSQzz8vv9r3Y/remIjdM2tnn29qhFC8Nu//ds8+eST/PIv/zJ33XUXlUoFpRR9fX3cf//9/Nqv/RrPP//8hgjdOevL8ROrFz9YeQrtfJLE+T20/AaW9iYf2dWJkuA7CiUEiTYkqSE1ljAxhDfsJvr//C9E//vfQt84vurj5eQs3oc+jv9bv4t64tnsy/I8+Dok0G0iGRA6BdpOiaZ74T4bOdczZ6PNRdclmP0vbDfa/Donjze/RJIONM9AWIe4DeEcWANBFfzKNhC6xaKrO5ZNUurEcg6Ji2OXBjzWkrWg0FkBiONIYreERZAqHyfd2L+3CGOqf/iJHqEboPXut2y40A0wJhewVtEQt3G00juhU2l+HGmz43pl9s5tIXQnnZDm6ameZbX9q3+frhlrMqFbdauzfX/rhW40RnSQFFBWYNQwUni4SUKcakyaMBlGF40vB2jPz2GNodw/SLl/MBe6c3JycnJycnLOw/CefZRq/dR2jqKUw9zESXSaXvyBOT04WBxrcK1BOYpS0aPsKwQiizPfZhghiVQZKxSpLCBtinMJgnXHRGgMkcmSojLRe/2QpoLUwwhbQNoa1oKR81g2r4+3ozv0z73Ys8xKh5mhu3p6DUul2Psjb6Q4MtizblxvcvhzXycNVx7zj+wLeWBH7/JTLYcPv1Debsn3OdsJITgqBvme2E1yjtTnobnPHmO3nd349gmuC8UgS2n1vWxOIU2yaPM1OKOl1XidOdyoQeoWiUqDpE6BdnWMqDCw7t7qSC9wvP4YB6b/nDOt50jN6p8jvlNld/UN3Dn8XnaW7sERa0u8yNkarltn97VC7uxeP1qtQxw5/J85feYTIJLzr2gdpL0LqR9EcuEeDjkZxkKqDcZalBA4SiIFeI7EQSMPHMb93LeQhyfOv42xEZJ3vRVz3x3nFY9i6dNxingmopC2CdIO5WQhN+vmXBBhJYjM0ZwtMNjc5b1I7vQ+DyaFaD4Tu3UMcQusBqcIbmFLI8szBAgfsRhZ5bGgXiUWU4RiisAM47B0kR5rQzvSdGKNEBC4inp5jNgtE/kVCp2Zjev5ZC2VP/ok/rOv9iwO77ud5s++Y8Ofy8DGPOgcJdW38J3+N/Ni/9LzIkzE2MTfRJl5AL534ue5p29gQ49nLUy9dIiJ7y5NskhHccdPPoJ0LjeBxmZV2JANTD03E7u3GCPqWGKU7UfYPoy3m0JqiFKLaneYSSOOz3UIPMlIJWDvYIn+0spJNaM1U0cPU6j0UR0eYc+dr8MNrsPPrZycnJycnJycNWK05uTLB2jXF5g5cRzlKAbHdyO2vJj36iISkqbyaEkXayzT03VacUq9kzBQ8lZtvbPVKJPgmybKJjgmJpUeWqxNuBYIijJAIfGlh8aSmAvMsV4GlgStprEiwoo6ViRIW0LYzStmne2/g3a5t4VUuX6E2sLBnmVpFHPoU18hnO3t110YGeCGd7wFdU6rriiFf/NEHyebvW7Yn7y5xY/uzw0HORemaGPusccps7JI5SR9vCh2Yi8SLX7FWAtxDHGaJR8ub5Mm1zZfkbm8+zDKxUlaOFETpWOC1iRKr29ixFmkcBgIbmKkdAeeOn+7M2MTZjoHmO4c5vU/88825FiuF3Jnd07OBlIq3cANe/8xbvqraPN2rD2PM1ikGPk0qfsHJOq/YsQri1HIOasjBbiOxFESbS2R1qRdF2GoJfrOG4l+7e8Q/YOfwOzdufo2Tk3i/6c/xf8Xv4/83oFVK9IykbtFIn06TomOU6Dh9eV/nZwLkrm87WI/b6xEGAeMzNuycK7Tuz93emOzuPLmaYia2e2wnvUiCvrBK26x0N0VuWWlK3S7CArEcgFNi1gsoPB7hG6AODFoY9HW4ihJqjyMdEicAKmTjRO6gcKXHl8hdKfjwzR/+kc25bkcZQ5rBR17BwervQJvqf35RaH70Pxebi0PrrKFzWfu8Mme3/t277wCoZvM0U23r5aUsA1iKi0pVkRISkij0O4IrhVorVFRQt0kTLUiEDBY9ukruKsK3QDNuVmwUB4YoDo0nAvdOTk5OTk5OTkXQSrF6E23EhTLDIyNo+OE+TMTF2zjmLMSzxqktbhGY5Wkr+hRcLP5sUa4/dzdAFq6xLKEFi5auDgmRtm1HavF0jERBktsExQC9wIRwZeDwEXpHUhTQtg+pC1iRKtbKLs5r8/a/Es4SatnWbO6j9DvLYx2fI/973jzij7dnclZjv7lNzGp7lnuO/CBexsUnd7x91+8WuT56fV1yudce7SFxxNiH5OsFGvHWeABewzPrm/xyQqEyArnC37WGs33MmEgiTOn95pd3rO4UZPULREVB0jdIu3qOFGhf0Pe5camTHde4sD0X3Bk/uu0k5nVj024DBfv4baBd5O8dH7TXs7WkIvdOTnnYG2AsQ+T8Cs46XsRZvf515VHSJ0/I3H+I1o+uanROVcbAnCkwHMUEkGcauLUkBhLO7HEwkXfdSPRP/ppol/+CcyuHatuR544g/8f/jv+v/yPyGdeXiF6eybuCt4eHadEqAo0vFquWeZchCzaHLs82lx1o8232qG7PchE777rW/TWUTeyfA6SNoTzYJIsrjzoW3OV6oaxKHL7nBW5hXAxRLTFMVLRxBDjmVrPw1JtSY0l0QYpBI4UxG4JI2RWSbuBEebui4cpfvbRnmWmGFD/+fdkwusGI61hp2pg7F4OVQdIljsrrKHS+B+Lvx6dfyOB2vpvk3C+QThX71lW238FFbBGg06zflpSZoPSLU8mACuaYBXCeKTOCI4IUHFEmkI7iViIkjXFl+s0pb0wT7HWj3Jc+kevMO49JycnJycnJ+c6wfE8Rm++Bb9QpDY6RthqUZ+e3OrDuqoQQGA1LgYsBEUfV0kqvkOiDWGiL7qNrSCVHokskEoPIxwcEyHWWABtMIQ2wlhDYjVKOKh1F7wl0gyhTB/ClpCmgiXGinksG/+cSmsYmHk+awW1jNnBO9Gyt3DYLRa44Z1vWdGnu3lqkmNffgx7TtvGkaLhf31dE7FsJtMi+INny0y2cykn58JooXhG7OIQQyvuq9HhYXuEqu2s8sh1xnGgUMj+d73sf51mru81fJYIwEla+O0ZBIKoOEjilYmCfjrVcbTaqAJ9y3x0hFdmP8vB2b+iHp1Y/fiEQJS2Pg0vp5f8EzInZxkWS5rEaGuxVoC5DVf/LE7y80hz9/n7+Yo5tPorEud3SeUXscxt7oFfRZyNL/cclVV6pprUWGJt6WiBFg7mrv1Ev/53iX7pJzDjw6tv59gE/u/+F/z/4/9BPv9qj+jtmphC2iSVHh2nTKgC6t7GVH7lXFtYYbDirMtbZuK3ccCo3OXd5boUva2Bziy0JiHtQLiQxZYrP3NzO1t8gSt8hDgrcjuLIrdFY22HSJzBkBCLeRxbRNF7vLHWGGvRxuKobEiduCVSFYC1OHpjCrnk9ByVj3wasey9ZYWg8b53YoZqG7LPc9nJLApLrO/g5Vqv27fQ+QZuehyAyfYg+/w9m3JMF2PuSK+r2yn4lEcu13Fus1gxKbNe3d7ao8U2EkvUjSMsggyQziBOmhJbgQk7tE3KTDOm5CvKvsOu/uJ5IyCbczMIISnV+qkOj+BsA9d6Tk5OTk5OTs7VglcosuPGmwlKZfpGdtBeWKA1N7vVh3VV4ZsUAXhWk0rFQMnHcySB23V3b1O3fCIDtPRJpI9B4ZqwR4C9EKnVhDZGW40mxRUOcp1lCIFAmhpSDy718cZg5TyWDXavAl7SoG++N6HMKJ/ZgTtWPEtepcT+d7wFFfSOxetHTnH8q0+uSEy4ayjhPTe1e5a1U8nvP11hG7Z7z9luCMFrcphnxDjpOT0aA1IetEcZtfMbfxxSZoK374HjZqK3JRO8zdpeyNKkeO0ZnLhF6pWJiwMkXZd3HGxsmmszOc2h+b/mpelPMds5iLFLhTSJbqPGahu495zLIRe7c3KWYY0hK6izWGtJkwhjQTKKo9+Fm/5vSP0mOF8fGBFh1BMkzu+TqD/DiKN5xPl5UAJ8pVBCkGpDkhq0gVBDaBVWCMzd+4n+8fuIfvE9mNGVFWkA8shJ/H//J3j/9g+QB15bHCS4JqGQNEmlS8cpEymfup8L3jlrwXajzVnm8pZdl3cebX6WtYneR65+0TtpQXMC4mb205knK8nvA7+8xQ5Yb0nkFpmT2wqIxRwdjtGUr7GgXqEjJ0lEE4vGs309W7AWktSS6qyy1pWC1ClghSR1ApSO1zyhcUlEMdU//ASy0yukt9/5AyS37V///a2Ca1P2qnmMHeNYeYSW2yvyVhsfW7z91Ok3sbe89a4Lay3z54jdtX3jCHmZr8Pl/bMctU3iyy1WthDWRVoP64zhaNBpgo1SGjZleo3x5WmS0FlYoNTfj+O69I+OrbpeTk5OTk5OTk7O+SlW+xjeu59itY9y/wD1mWk6jcZWH9ZVgwR8o3GtBgFu4FL0HMq+i8XSijeuZdSVEokCWrhZITQCV69d8E5sSkRMYjQagyfdrHXcOiNtCaV3IKyPtP1gFUYuYMXGu1fLzeMEnameZVFhiGZlZaF00F9l/4+9GXlOgtn8q0c59c3vrRC8f3R/yH0jvePlk02Hjxwob9f6iJxtxqSo8qTYR5ve15zEcped4BZzGrEZLybPgyBYFmsus7mIJGYtk6wCcOMmfnsGiyAqDpF6JcLCIJ3KGEZubCpgqOc5Vv8WL07/Oafbj6NNxHTnZcR5Cu5ztg5nqw8gJ2c7IY7XuVXdwjE7xZxtYEwmeDuujxQgqOCYt2DN92PECxj1BFasEuEkwIpXSOUrCDuC1A8h7Z2I/C3Xg+j28lYWUm2IUo0jBFZJjJB4ChQac++NRK+/GfXdl3E+8w3kmZVVxOq146gPfhh9817Sd78dc9t+XJsgkgZtt0zbrUACC/4A1WgOmSuWORfFYEVX8BYCaw3Cquw2hh476nXMWdHbpUJCg4R5Upo4lLGkxMzjUSNgJ4qrqE+uSaAzl0WXp1EmelsLXgmcYMtFboSLFjFaNDEiRYuQlBaWbLBgMWhijEgwIkbTxrVl5DmDnDg1GCyJsThSIIQgdsto6WClwo03YBLLWir//S9xJqZ7Fkf33kLn7Q+t//7Ow14xhSMsob6Dl2q9kXJe9Dxe/BwAraRI2d4Bm+AOuBityVmSdm8BSf++y4zlNmkWYe52+3T72ySCS4RYNNKW0e4Ajigj4hapVrSSFq0opRVphiv+BePLAZqz0wjlUOyr0bdjJ8rJ+9zl5OTk5OTk5FwOlcEh0jgT3nSSsjB5GuU4eIXzX4vlLBGYlEgqHGOIhaK/5NKJU4qeQytOCFyJutwC1o1ECGJZQugmqABXd3B1SKzW9nePTYKUEgxI6eJJl8jE63+YeCi9EyOnMVIgaGJEE4kGW9oQkT3bL/TPHuDMzjdg1NJ4aqHvJvxoHi/ubT9VHO5n/994E4c++3WsXiqmnnnhIMp32fng3UvbFvBzdzU5/bjiVGtpPvnJ0z57Kyk/sv8qNxbkbApNEfAE+7jbnmSQ3rSAvcxRthHPMU4iNlizcBTIIkQRILL5iCSFKAbPgTW0OpAmxW/PkHplEq+CVgFE87ScXfjtWdxoYYPe6RmJ6XCq9XVON7+DEgNsjk0j51LIyw9ycrpYYxGnW4yoER4wd/JGcw9jjKGMs+jwPovAQdl7cNJfxEl/BmFuOW8hkhWTaOcz3Yjzr2HJq1/PRXZFb1dJtLVEWpNaiDRERmVPrdXo+28l+mf/K/HPvQsz3L/qttSrR/H/3R/h/bs/Qr56FMemFJMmWijaboVY+tT9AcyGfv3lXEtkLu+z0eYCrEQYlUebn8OFnd7TV5HT20A0n/XmTtoQLUDUAOlkkeVuYdOFbkNKIlqEokFb1Wm4J5h3XqWpTtBRZ2iLk3TESSJxhlBO0pInackThHKSWMxjSHBsGc/WerZrLUSpRpvstuNkhUaJG6CdAGEN0qy/wFv4ypP433upZ1m6c4jG//Kjm/bclm3IqGqizQiT/hizQe/Artr42OK3xKMn3sj9g9sjK27ucG+/qKBWodBfvYwtmWxgKVX22vb8TPDeYiwGK9oI6yNEEamGsz7dSMKwQ2LMmuPLkygibDQo9w/guB59Izs3+WxycnJycnJycq4t+kfHqQwO0zeyAy8oMDdxkjRef+HyWsTB4lqDazVWCJSjqBZcSp5CCEEz2vrC2vNhhSBWJQyKRAaAwTVrb3UVmgiNJuqOLf0NcmEKFNIMo0wFYStIW8aIECsWMsPCBqFM0u3fvXziWDIzcBdmFQGvNDrM3h9+YzYZuozJ777I1DO94+TAgQ/c26Dg9B7/x18tcmAmL+TNWRuJcPie2MNRBlbcN0ibh+wRynYT5uqkgEIAgd9to9ZNlotj0AmX5vKexQqZubzdElFxkE5lFCM33mhobIyx22OOKKeX3Gaak9PFTDUQydLFQ4kCN3o3st/uZ9bOciY9Q1O1e+aCBQJh9yL1XixzaPkdjHwGxCoXfaKNUd/AyG8h7Z1I/SCS0U04s6sDAThSoIQi0YY41SghcJREW4krLa7RCAz6odvRD9yOevJFnM98HTk9v2J76qXDqJf+EH3Hjch3vw1x035aboWWW4GkwYI/QF80mzu8c9aIXdbLW3RvW0Bg0bnLexkrnd4LV4/TO+1AOJ9dZCcdSNtZdalfBWfj450zP3aMFtHSDxFGgMDFCjBorNBoEWOIMHSw3defQCGti0MJaV0UHgLnvFXsqbEYC0lqUFKghCByi1gEiQpw0866lwW5Lx+h+Kmv9ywzBZ/6L7wni7PaFCw3yEmsVaT6YV4c6XUlOOlJCp1HAUiNYqH1AMHQ1g9kTKpZOH66Z1ntslzddmV8ubtNhgSig7UWx5Qx/jBOqjBphzgyxFavOb4coDk7g3RcitU+ajtHUc42OcecnJycnJycnKuY4T37SOMYaw2zJ44zN3GSgfHd+bXWGghMSqIk0hpiqagVPZpRSsV3WOgkFFyD52x9AepqGCGJVJlAN0llAcd0cAykcm3pUB0TUZQBkYkJpIcnXeINKKwWSIQZAFyMACkURtRBzoOpbljiZhDNUWkcoVFd8npqt8h8/20MzL6wYv3qnlH2vO0NHPvSYz3LJ779LNJzGbz9xsVlO0qGX7y7ye99r4LtjtAtgv/8bJnffHiB4eL2jcHP2T5YIXhF7KBhfe6wp3vmw4skPGiP8AJjTIrLKaa/RFwHlIQwygwPaZr9GNudm7j456A0CX57mtSvkPgVtOPjRZK24+O3Z3Cj3Gx4PZJfieTkdNEnVkZjA0ghGRJDDDFEZEOmzAwzYppY9FavCvpxzCNY82aMfBYtnwQxt3KDwmDEcxj5HMLsRpkHEfZWRB60AGTfcZ4j0ZZF0duRAoskReErjdIJSIV++E70Q3egvv1CJnrPLqzYnjrwGurAazh33Yx8zyM0brmdlluhlDRY8Ae7gnd+YZizNqwwZD28xbJocweEwYqs/1ZOxoVEb7PdRG+TZg7upA06hrgFVoNT3DAnt0GjRYQh6hG3bXfAYdEYDEaAkQmaFLBZmwws0kqkdXHpWyZsXzz2aTlRqtHWoq0lcLLHxm4ZrXwQAidd38peObNA5SOf6ekJZQU0/t47MCOrp3VsBEM06JMRib6XebfGqVKvyF5p/Cmi+73w7YkHeGBwe3w/10+ewSS9ontt32X0oNYpGAOul1VWb5P4covGiA7SBhivD2kriKhNbCSdNL6k+PI4DAlbTfpGduJ4Hn0jOzbxTHJycnJycnJyrl2ElOy88WZOvnyA2tg4MyeOMzdxisHxXYhtkBS0nXGtQVqLZwyhckAKBooe2ljCRFPvJAyWPcSWtsw6P0YoIlXC10209HFMBFaSios7jC2WtokoSp/YJHjSxRUOyQa5I6WpgPAwchqJwlLHyPlsjGE3ZvxTXThE5PcT+7XFZe3SKH44Q6l9esX6tRt3o+OEk1//Ts/yk19/CuW61G5a6vv9uuGEd93U4ZMHi4vLWonk95+p8BsPLeBf2lRAznXMhKjRwudeewKfpfefg+Uee5JDNuI1MbTxqXtSZi7vOAbEUh/vKO62Wrv4i1oAbtRApiFJ0EdUGMKNG9iiJHVL+O0ppNEX3U7OtUMudufkdHHv2kXn0EnCw6cpiuKq6/giYBfjjNsxFuwC02KaeeYXXXUAAh9lHkSaB7DiIFo+gZVHVt2elcdJ5XGwVZR5AGnuRZD3OwJQAqSSaGNJjSG1BldJrFa4wuCiEcKAdNFvvAv9hrtR33wO93NfQ8zVV27v+VcpPv8q3j23UX/vj9Pct4tS0mQ+yBzeyuaCd85asd33vERYmd22EmEFVhrA5KL3Mra36G0hbkK4kInbcSvrz63czM29hovri+/BYki7YnaI7orbRiSLa2hSDEm3v3aCQYOQZPkhCkUBlwrCOkgjkRdwa68VYy2ptiSpQQiBkqClg1YeqfKRJkXadRwUxAnVD30C2er0LG7/6JtI7rzxPA9afySGG+Q0xgyizW0cHOid6JB6gVLr84u/P3vmTXzfTdsjmnHu8Mme38s7BvGKl3jNYE1WMa2c7PXt+yvi87YKK1pgQYoaRvYjwgSNpBWGGGPXHF8OWa9ux/UoVKr0j44j1+G9nJOTk5OTk5OTkyGVYvSmWzn50gEGxsaZPXGc+TMT1HaObVuhdjsgyNzdWgmEtSRCUik4NKMUHbjMtmKaoaZS2L7T9Vo4xLKIZ1ogLY6JsVKg19Dv12IITURBBsQ2xRMuFku6nuPOZUjrI/QOjJrCIIEGRtSRFMEW172Pt8AyMPM8Z3a+AbssSnm+/za8eAE37ax4zODtN2DihIlvP9Oz/NhXHkd6LtU9S4mgP7a/w7G64nuTS2PYEw2HP3mhzC/e3dzsbms5VzF1UeBx9vE6e5Iava/LG5hmwLZ4lRHmz6OPrBuiW3yvVNbLW4pM8E7ibM7CcVjLBKvSCbI1Q+JXiP0qyvGxQqKdAL89jRs3N/Y8crYN2/fbMydnkxG+gx2r8NQrnyMIaozbHewwA6hV+qsIBDVq1GyNhIRpO82UmCJaFl+eRZzfjNQ3Y/QkRj2JEc+DWKVqUdTR6q/R8lGkeV3m9mZwI0/3qkAIcJRASkW6LNrcKklqLZ4wKBsjZDZpr9/8OvSb7kV9/buZ6L2w8svMeeYlBp55ifD+19H6iR+F0WrX4T2TC945l4jBChA2EyWtMFkvbyGyflB5tHkPy0XvlAbxVoveOoLOfPZ/GkHSypZ7ZXAvb/8Wg16MIQ+XubVN936NWSZsa5FgRNexTTYYV7aAIzyk8VEUkcLNHm+X1lsPotRgrUUbi6uyeP7YLWEQWfzTeg4GrKX8sb/EOTnZewx330TnkTes337WwC4xh4cl1g+jkRyp9Ird5dankd1eVc9N38ZtlQpCbP3AKA0jGhNTPctq+3dd4lYsxAkgs0Gjd3bwuPVYUqyIULaCdvtRqYvQCc0wxVp7SfHlcadN1G5T2zmG6/lUh4Y38UxycnJycnJycq4PHM9j9OZbOPnSAWo7R5mdOEl9epK+4TxR50IEVtPBxbOGSCg8qxkqe0Spoew51KOEwJW42zTOHCCVXpaEZUAIg2MijJRYcfFj1hhCG1PAJyXFEQ4Gi9mg+TiBg9Q7QM5ipcDSwog2Ag22vO4pm44O6Z99kdmhuxeXWekwO3g3I2eeRKwyph++51Z0HDP53ReXFhrL0b/6Fje8482URrPxjBTw83c1+dePKyZaS+O4J0777K2m/PC+Tei5nHPNEAmX77CH2+1pxulNSq3R4UF7lGlb4qAYpiE22JjnOJmzO4oAmbUWTFPQBjy3awa5MAKLF9XRZ13exUHcqIEtjZB6JfzW9PoaOnK2JdtjhisnZ5uxIJosiCZHooOMyGF2yp2UZXnVdV1cRhll1I5St3WmxBRzzPW4vSUjSP0OLG/FyO+h5XdgtclzkWDUUxj1FMLc2I04v2Hdqw2vNuTZaHMDidZEqcZREiMVjtb4NkFYAzKLk9Zvux/9A/ejvvok7ue/jmi0VmwzeOpZgqeeJXzoXtJ3vpn50UFq0Swq/+LLuUSWos0lCIu1Zx3fBvJo8xUIJC59OFsleluTRZbHzSy+PG5msc6OnwndayyHXs2trUVCJkjbZaJ22nVrJxiRfb4Imz0Lynq4tpSJ3JQQQpElBjiLRRPWxqynyA1gLcSJITHZdl2VDbkTt4x2sud8PSPMg699l+CpF3uWpSMDNH/mxzbVVeyTsEvMkpq7sdQ4WfKIz3EHl1qfWbz918feyi/sX/n9sRXMH53I/nBdhJL07d55aRtJU8CA52cDSW+zeqRfHCuaCKuw7gjCFhBxQifVpFpfUnw5QGNmBtfzKZTL9I+N53GaOTk5OTk5OTkbhFcosuPGm5l49WX6RnawMHkGx3Ep9Q9s9aFtWwTgG42WEElFIiS+A/1FF2MNnVRSDxMGS97GxwhfAYkMFls/CW1xTYdEFbBrEI9TmxIhgCyy3RMusY0x6zzuPYtAoswQhjpGgrQORjRAzIPtu+R2YBej2DlD2BygXR5fXJZ4VRb6bqK28Oqqj9nxwF3oKGHmhYOLy6zWHP7CN7jhnT9IcThr+xU48IF7G/zrx/vopEvP9f98pcjuSsrtgxsTC59zbWKF5ACjNAi4xZ5Z8e4dosWQbXHGVnhNDNMSG9gCTUooFLJY87j7e5xmvztO5vReA0rHyNY0SVAlDvpQOjjH5b095nhyNoZc7M7JuQAazYQ5zYQ5TUmUGJU7GZbDOOeJ56lSpWqrpKTM2BmmxBQdsRQHIiiizPcjzRsw4iWMfAIrT626LStfI5WvgR3qRpzfjWD7TExvBUqCFJnLO9EGYwRWKYw2uFbjWJO5vAGUQv/w96Hf8gDOV57A+cKjiGZ7xTaDJ57GPvkM6UN3s/CON1MdUDi54J1zySyPNhdYYZcc3xgQeWrAuaxF9HapUWAHar3aOyQtCOfB6Kw/d9LJopyDviy6fBWyGPLMrZ2edWsTZT3ayWRtQ8JSDHkmbttFt7ZC4uLYItK4SFwEqlvEpLLPdSEAiWBJ5MaeFc7Xn0QbDJZEW5QUCCFIlI+RitTxUTpeteL8cnAOHqf0ya/0LDO+R+MX34MNNrdX9H4xhaCGNncCcKjau38//B5umkWFH2+MURG7KDpzm3qM52P+SG+Eed+unSj3Ei7jje4WdXQrpgv+tpk8s0RYkaDECFoGqDakxtCJNfYS48ujVos47DAwOo7rF6gMDm3imeTk5OTk5OTkXH8Uq32M7LuBySOvoZOE+sw00nEpVCpbfWjblsCkhFLhGEMiFJ41VAsuzUjTV4CZVkQz1pT97T1tH4tC1l5Qgac7uDrsCt4XH2fENkEImbnDpcCTLpGJN2gEnCFNFay72MfbiDpWziFNdd3nW2vzLxP7NVK3tLisWd2LH81SCGdWrC+EYOz7X4+OE+ZfPbq43MQJhz/3dW5811sJ+qsA7CwZfuGuJr/3dHVxPYvgPz9b4Z++YYHBQj7/lHMJCMFxBmjic4edoEiyYpUdNBixDSZsH4fEEB2xgfqE54GjoBOB3+3jnSZgTNbLew2fLwKLFy6gVUgSVLsu7zq2tIPUbRK0pzPTXM41x/b+1szJ2Ua0bIuD+jUO6UMM2AFGnVFqqrbqug4OO9jBDruDpm0yJaaYZRbTFbwECmXvROk7MeYkRj6BES+uHnssptHqC2j5VaR5Pcrcj6BvA890eyMEuI5E2UywORttbnDQVuOaBOXY7Lm0Gjyf9G+8ifQHH8T562/jfOGbiHZvPxJhLe7jz2KfeI7Ww6+j8CP34g2t7uTPybkwy6LNhcBag7DdaPPc5b0qFxO9k/UQvU2SidxpuBRZbg14JXCCRdHPoBfF7LMx5EbEi8K1QXdF7XiZuL3cre0grYtjC0h7VtheTZhTCM5GMYnubZHtZwOc3OcSpgZtwFqL62RV7IlXxgiFkS5+VF+X/ci5OtU//hTC9J5P8+/9GHrH5rbq6KPNkGgTpz8CSNpKcrrYW+BQan128fZfHnkbb9mxPSp+o3qT9sx8z7LavvHVV14Vmw0QpcyqoT13XfrRrwcWixUtHBugvQFIHKQxNKIUYS1TlxBfbq2lMTuNFxTwSyUGxnflPSNzcnJycnJycjaByuAQSZS19dNJysLkaZTj4BU2OPr2KkVhcY1BS01buqRC4mIYrnicmteUPIdWnOI78oKFnluOEESyRKCbJCrA1SGuDonV2v7ukYmQEjDgSxdPekQm3tBDlraA0DvRagqJxFLHyAWkLSPs+r1epTUMzDzH5I4HYVl7zLmBO/FOfxu1ynkKIdj9gw9ikoT6kSVjlA4jDn/2a9z47rfhVTLx/J6RhB+/sc2nX1vqqdxMJL/z3Qq/+voGw8VcyMu5NOZEiW9xI+PMcYOdwac3JUAAYyyw0y5w0tY4LIaIxPnH51eEVFAsdGPNRZbKmKQQxeA6a57PUDpa5vKuodIQKwTaDQha0zjJSlNcztVNLnbn5FwiBsu0mOZ0dJqiKDLujbND7sA9zwd8mTJlW2YPe5i1s0yJKVq0FkUvaceR+iewvB0tn8LI74JYJT5WhBj1GEZ+G2lvQ5qHEHb8uo04X4w215bUGLQ2GKUw1uAkKa7SCOVk/XiFgsAj/bG3kL71YZwvPYbzV99CdHqfZ2Et6tvPED3xHOlDtxH8yH3Ioeu3sCDn8lk92lx0o81NLnqvwmqid0IT94pEbwNRI/sxKSRNSBOs42LcAvr/z95/R0mW5fd94Od37zNh0psyWba7urqrfU/3TE8PBuMwBjMABgAJikZLUhQgckXsSjqrc7Q6K0q7Wh1S1O6eI+2KuyS1IgSREElwSZEAxgEDjMf09EzPTLtqV23KdPn0Jswz9/72jxdpojKrKstkVmT1+/SpzswbLyLei8x48e79/r7fn81xMr0SRV70z4aiu3a+KmxL1uXWFjWdGPIqkYYYDRGCTZyPryVyZ8X+bjG5U7xXMuexIlgjKEIW1MiDCqhiXXLrT5Tl9P/W72OuSNRo/vxHSB89euuPf0Mo95pJnH8QpYhUPDkQo2uEUPENaq1vAzDbHuTcwiPce2hqm/dzY2avcHUHlYj+vTfgWM46ldlhWFRI91B8OdJGxOOCPXgvhKmlkaWo44bjy5PGElmSMLrvAHG1Tn1oeJsOoqSkpKSkpKSkZGRiH3maoF7xF3JmL5xjdP9Bgl669uwhKpqTYTDqycQQqicKDIPVCO+Vdu5ZaOWM1sOeSWTaEBES20fFLZKZCqFvdhzem2tJ1vIJdWNIfEZsImITkvj1ztLbusuEWLcHb6bwRhAaeFlCyBDtv23rrFG2xNDcW8wNH1sZ8zZiZvRhxiZf2PBZxBgOfvojnPra91g6f3llPGu0ePfL3+HIr3yKsFbMi37p3hZnFgJemlx9j11oBPzt5wb5648t8cjY1r6OJXcfKsJZRjjPEAeY5bBOE9GdfmqAA8wxofO8p8OcklGyqyTg3hIiUKlAkENCp6d3BtnaWPMbcHkHCVk8QFIbI0wWaPUFhOkicXO6dHnfRZRid0nJTSEEQUAzb/JW8hanglOM2zH22L0MXsV1bbGMM864jtOkySSTTDONW3YFMkDgP4X6n8XLK3j7PCobLLSL4uV1vHkd8Xsx/mmMPnjbe8zsBAQIrGBMEW2e5g4ngrcWl6+6vEUAbYGNoVoh/+KnyD/9DMEfP0vwxz9A2t3CjniPf+41mj96g+CZY0Q//xRmZGDDfSgpuTq6EmcuFEK3aNGTWXEbJzmU3D7RO29Bew51Cc7N4dw8zmS4eoALfBEVTiFre/IVt7ZbcWsrKCtu7VArK25tc8PnW9OJK18WuQMQs60i9zJJ7vCqOK9Ull3dYRUVIbcxgUtufWqvSt+//GPC9y52DacP3Uvz8x+91Ue/YfbIAjUqpP7RYveAd/u7I8zrzT/BaPFZ8I0zH+ej4+2eWFNSVeZOdovdQ4cmNt+H2udFhHkYFpPDeHuj46+F4lFpYWSY3FQIWgGpS0lTbji+XFVZnJ4mrtaIqtXS1V1SUlJSUlJScgcYP3iYPE1R9cycfY/ZC+cY2XcAG5TLz1cSqceqEntPywY4BIsyWA1pJDkDVWW2kdJIPfW4t9f7tCN4x26RzFQJfYvQJ2Rmc3OPpm9TMxVSnxKbiNCEZFsueBuMH0eYxxvBqMVLA2QedOAqCW03Tn3pLO3KKO3q+MpYUhllqf8Q/YunN7yPCSyHfv6jnPzKd2henlkZTxeWOPmV73LvL3+KII4wAr/+yBJ/94eDXGyu/o00c8N//9N+fvW+Jl+4pzfmtSU7Cy+G04xyjiEO6gyHmCG4Yt3Kohxmhv06x2lGOM0ITrbgXLXciq2dQCyQ58U/54vUuk2+V23exriULC5c3kHeKtbBgiqV5iRB1rr+g5T0PD2chVJS0usUgjdAlmdcdpc5nr/Ci7zMec6TcvXonRo1DukhntAnuNffS7/2r6TWCiFWnyTI/wZB/pcQf+Sqj6PmAi74fbLg/40zf4rSG5Gr282yyzsKLB4lyT2pWlJvSNMM75Iistgl4DoRwbUq+a98mvZ/8x+T/cLH0XiDamPvyZ99jeZ/9U9p/4vv4GeXtv3YSnY+Kn6N6G1ABfEBeLvVadU7mmXRu8Z+YobJadLkLAlTJEyxwJsscQrH6gWpIyHVGVrtN1hqv8S8vsacf5FFeZdmvEirktEOFmjLLC0zRcNcoGEv0rJTpLKEF4/VmNgPUnXj1P0ENb+bio4QaT8BlRsUug1CjEgFpHB1i0SdiPusE1m+fUK3V8ickuW+6BjeOZQ07MOZEDWWIN8gWeQGqXz/RSo/PN415saGWPwrv1icsLcRi+Mg02TuGej87iYrAUtR9++x3vgqAO084tlzH+GZ8d74PG1OzZI2uiddm48w90XUl7FgAojiYpLYK0gLK4Y8HMVkHnVCkhZ/m1M3EF8O0FpcIM9S+sfGqdT7qQ0ObcshlJSUlJSUlJSUrCLGsOfIUSp9/QxN7MN7ZfbCedSXrrmNqPgci0dUSTsikTEw1h8TGUMtDGikGc73/sKBF0Ni+1Cx5CbGaE6gm4skV5SWT/AoqWZFHtpWiGZXIAjGD2HcKKJVjA6hONTMohv0Lb6554DhmdcwV8yz5wePkEZXN9XYKOTwFz5GZaTbUNWemefUV7+H66R31ULlP3xygb317shpRfg3b9f5By/10e6+qaRk0+RiedeM86dyhFOM4DawRgR4jugUP6vvcEinMVvhkjamiDWPo6KQP4xAtYg19+769+8g6onac4TteZytkNTGyMMarb69tGtjaBnDuePpoRWvkpKdyKrgnec53nsa+QLvyTlekpc4ISeYZXYl+vZKDIZRRjmmx3hUH2WP7iHQoPPIgtF7Cd1fJMz+fYx7CvQqi72yhLPfIQv+Hrn9Mp7LG293l2MFYmuxIuTOkzhICUhyJUsT1OWFy821i37eAH018j/72UL0/vzPotEGr7Hz5H96nOZ/9Tsk/+q7+PneEEFKdhJaiN50+nl3Is5FA1BTit7X4Oqi9+SK6L3ACeZ4hYXsBRqtF2i507T9ORJ3gSRYoBk3acQzNIPLtO0sTtrF42qdihuh5nZT93up+jFiHSLUOpboFuLL1orcwTqRW7dZ5F4mzR2qSu6V0AqC4MWSBxXyoIJ4h73FCvrgnbPU/9dvdo1pFLLw7/0ZtLa5KLvbyUGZwepRVFdjv98d6HYYhNlJovQ1AL577md4aAhqQW+8KWevcHXHA3WqI5tpr6Hr48vD3nHUKA5jEnI7jnrFJBHtLMU7sxJfPlKPNhVfrqoszUxTqfcRxjEj+/Zv01GUlJSUlJSUlJRcibGWvfc9QFyrMzKxD5emzF26gGpvXF/3ErE6jELkHbmYlRliJTQMVkP64mJ9a76VFcJOj+PFkpoaXgJyE2F9htXNzS89nrYmePVk6rASYLdB8AYwWse6PYjGGB0CNXgzj27UYvImsD5jZObV7t+hGKZHH8Ff4xiDSsw9v/BxooG+rvHm5WlO/9H38Xmxrjle8/xnH57nyV3r25G9cDnm7/xwkAuNUgIquXkyCXjL7Ob7coSzDG24mhXhuF8v81F9h/06i2zFOSuKOtHmtkitM6aINc8ybmRhNcjbxM0pxOek1eHC7R0P0BzcX7T3K9mxlGe6kpJbpiN4i6wI3nmW4IF5medt8zYvyUuclbO0ufqFUoUKB/QAT+gT3OfvY1AH17i9Rwn85wnz/xDrPg16lYVucXjzEnn4P5LZf4qXEytRve8XRCDsuLwBktyTOEOmhiTLyLOkqPpyScdV2XmR++vkf+7naf/d/5jssz+DhhuI3rkn+84rNP+vv0Pyr/8Uv9Bcv01JyTXxnThzWePytkW8uZYVhNdivejdWhW9/QWS9kna7jRN3qOhJ2mZSdIoxQcBVipEfoCqG6Pu9hZubT9CpAMEVDG3ratLb4rc0Cl6zTx5xxUQdCKh07CGIuS2QnCLvbrN3CIDv/37yBXOjcX/zRdwN9Jj+jZRJWUvObl/bGUsE+FMX3eSR73xFQSYaQ/ypXc+z8d39UaKh3eO+TMXusaGDu/bXDy3y8H7Tny59FR8OYCRNs5UcVInyJTEOfLU4jvx5bVoc/HlAM2FeVye0z86RrV/kGp/2XakpKSkpKSkpOROEkRRIXhXawztnSBpNkuH9wYIRe/uEA8oyZq+t0O1iDAwDFRCMudppTvjtctNRGpqOAlxEhL4FKObc17m6mhrilOHIyeUALNN0oUQYd0ejK8hOoRohJdFVJauamC6ESrJLP0LJ7vGXFBjdvjYNR89rFe595c+QVjvLgBeOneZM994buU9VQng3398iT97tIFc8YgXGwH/9XODvHD52mlZJSXXI5GQ181enpUjnGdgw7/dCjkP6kV+Rt9hr87f/kKdwEK1VsSbhxEEYbHOn6RFqusmEfXErVnCZIE8rJDUx8jCGq3+Cdq10dLlvUMpxe6SktuCENgNBO/O+TyTjAtygVfkFd6UN5lmGn8VwUMQhhnmfr2fx/VxJvwEkUad2ypY/wxh/psE+a8h/sBV90jNKfLgX5IF/xBnfoRyayLGTsN0RO/QGpwqLQepWjKvpGmCrvT4SIA1F96DfeR/4Qu0/u7/gdZnP4Zu5ITLHNm3XqL5X/4Oye89iy6WfT1KbozC5b3azxs1iLdltPmVqBYXrT4vWhDkCZKlhFlELR0mTiLydJp2dopM5yBrEaSGih+hxiFqHKCquzpu7T4s8W3rvdVNt8hND4ncy2S+SBbInGKNYDqCaRr14WwEwq1FmOc5/b/9+5jF7iKg5mc+TPrEA7ew5zfPvUyS+w/DmmKG030hbm2Ut+bUG18H4H9+9d9mMAw40r+5uL2tZvH8JC7tdkIMbybCXH3x+WaDIsI8jrc9Pv5aCA5MhrOjGJeRpiEuVUBW4svH+jcXX67e05iZpto3QBBFjO6/+nVRSUlJSUlJSUnJ9hHXauw+cpRKvY/hvftIW4Xg7UvBu4uKzzEKsXfkxqzEBBsDY30xYWCohpbFHRJnDpCbmNxUyE2EJyDwbWSTIlSmOQkZmXc4PJEJbyFx7cYQLMaPY30/Rgcw2oeXNirzt8VINLBwkiiZ6xpr1ffSrO295v2i/jr3/OInsJXuou2FU+c4+53nV1ITROAL97T5j55cpB5272/bGf7+iwP8m7eq7JA/o5IepiURr5p9/EDu4TJ9G25TI+MRPc9H9F3GdeH2it5GoFqBSlSI3lHnvZEmReH/DRBkLeLGNOIdaXWELO4njQdpDu7HBb1lGii5PqXYXVJy27i24N3ZhAVZ4F3zLi/JS5yRM7S4ulAaEbGPfTymj3G/v59hHV5xhBo9Ruj+KkH26xj/KOhVom9kFmf/mCz478nN11Fmb+9h9zACBEaIA4tBSJ3SdoZcDUmekWUJ6nPIE7giWkmG+tG/8Dnm/m//GY1Pfwy1G7y+WU72jRdo/Jf/hOQPfoA2bk/EUcn7hSLaHJVOtLlZE23eO8LUbUG1cJmuEa3J2pC1IG1AsgjJArTnoDULzRloTkFrGtqzxXiyAOli598SkrYIM0s9GaKejFBv9VHJh4iC3QTBCGZbJsUGiNaJ3CKCat4TIvcyy65ur7ri6s5NiDchWVDBuGzTFfcbUf9fv0l4qtuFnB47TPMXf/aW9vtmGabBABOo7u4af2Og+1xebT2L9bN8+72P8ur0g3xqzxKbMU5vB7OnuiPM67tGiPpq17mXQpoBpjPpC4qvPYSYFmkwhPcW2orPPM4HNxxfDtCYn8N7T9/oKPWhEeJafRuOoKSkpKSkpKSkZDPUBgbZe/QBqn39jEzsJ2u3mT1/Fu9uft5xt2GAqs8I8RhVErM6X6lGloFKQH8lwIiw2L49faS3g1QqOInIbIxiCH17neP4qvf1KRk5mc/QjuC9XQgG40cwfrjo4+0HUHLUzKHcWvNrQRmZPo5c0TpsbvgBsuDa87zK8AD3/MLHMVcYcmZPnOb8sy90tQl4eCzjb314ngP96/f3qydr/L2f9tPIemTSW7KjaUiFl8wBfiiHmWbjuXgfKU/oOZ7WU4zo0u0VvcMQapVizSOOwASQZ0W0+Q04iYw6otYsYbJIHtZI6mPkQZVm/wRJdaT0JO0gSrG7pOS2sgnBu0MuOZfkEsflOK/L60wyiWPjC35BGGSQ+/Q+HtfH2e/3U9Gih4RhL4H7ZcL8f49xHwO9ykKvpHj7PFnw98nsv8TLqdsSxbMTEIGoE23ugVYOiTfk3pMkCS7Piw9D12atMCVAPBCS/JVfZfL/8X8h+cSH0Y3iVNOc7I9/WojeX/kh2ixF75LNo+JR0SuizYPC6d1rb9GbEq2nO6L1zIaiNWkDsiakTUhbxWPlLcg7j5s1IWlAstR5/M6/NfcVl0MQQ1QvnKxbzqrILRKyscjdOws4uVOcV3LnMSIEHZdvFvXhxeBtROBu/rwVP/sS1Wdf6hpzo4Ms/tVfKiwJ24yg3CsNcv+BrvHLYc5itXsRod74CpPNUf7liV+hP3R8dLyxnbt6VfI0Y/Hc5a6xoc24uvMc8BCFxWsfRde9y3YSiCe3gqMPm7XJXUyeBTcVX+6dozE7Q3VgkCAMGZnYxOtTUlJSUlJSUlKyrVT7B9h79BiVvn5G9h8gTzNmzpWC91oq6rCqxN7hxJCtKdoerscrceZJ7mlnO+R1EyExNbyE5LYKCKFrb7ocve0THI6kIwzH2yh4Axjfj3G7EK1gdKhYCjFzqNxaambg2gzPvN41piZgZvSR68Ym18ZHOPz5n0WuMONMH3+bSz9+tWtsvOb5T5+e55m96/f3+HTE33lukLOL29MTveTuZ0Gq/NQc5MdykDk2LlofpM1T+h5P6RkG9Ta2BTW2cHlHYSF+h1Gxbpl02phuEgGCrEncmEK8J6mNksX9JJUhmgP7i0TEkp6nt6weJSV3BYXgnbucPM8JgoA8SwjCaCU29orNWWKJJVniPX2PEUYY13HqV6mICgnZy1726l4WdZFJmWSGGZA+Av9x1P8MXl7D2x+hcmnD51M5QW5OILoL457G6MPI++B0YAWMNThfOBxzNcRGIc9wLicMoyJayYYgxYW0AJW8SXu4zuxv/BVqv/gpan/wdYJnX2BdFUM7I/vDH5N952WiTz1B+MnHkGoZeVKyGRQVZdndraJFtLkKajwrRRi3q/hWtVNN6Tvfd76y/L1f872u3raR+r5clbly/yu3X/Ozv3JsA0Q6ByrF9yKFaLfR+MrPy/fbaoRC2A4631tELKCo5vSSwL2WxDm8FoJ3FBQCogJpWCe3MSgE+c1N2oNT5+n7V9/oGtMoZOE3fhWtX9+ZuxXsZY7AP4mne0Hkxb5uQd+4aeLWj/h7r/5N2q7CL+ybJbK9UWEyf+ZCV09DMYahg9eOt8O7IrIrCIr3TDXepvfF5rAYnFkitcPYPCdPQ3yiKIapRvuG4ssBGnOzqCp9QyP0jYwRVa/nei8pKSkpKSkpKbkTVPr6mLj/QS6ceJ3RffuZPn+W6bPvMbJvP7bHUojuBALUfYa3glVPYgICX0je1sBoPSZ3baqhYbGdE1mD6aE2RVdFhMTU1qBcJwABAABJREFUqbhFMlMh9E1C1yK1m5sntnxCzVRIfErFREQmJPXb5243WkHcHrydBAzKIl4WMNQRvfm5R611mWTpLI2+/StjWTTA/NB9DM29dc379k3s4tBnP8Kpr3+/a03y8k9fw8Yh44+tthCLLfz6I0scHsz5l2/WcGsSBCdblr/7w0H+6sNLfHhvb7TxKtn5zEqd56kxxhL36ST9G7RUHaHJ03qaSa3zjuxiUSq3/sQiRfs2awuR2whkHYe3XU6729w5s3B5z+DCOlnch7MxUXue5sA+ovYcQXK57Obdw5RXFCUlW8JGgnd6dcG7gxPHJJNMyiQ1rTGmY4wySnCVt2o//fRrPwc5yLROMymTtKSF1ccw+aOovFf065YTIOsX8FUu44Iv4/SbGP8BrH8Kof+2vQq9iAgE1mAM5M7TdhCKEFmPTxOCIMQqiHFgY+gEIVddE0Fp7tmP/42/ROULH6fyB38MP3ptvWjXSkm/+iPSb79E9LmnCD/+KLJR7+/3EZ5OgYHTzldP7j0oxIGlGltCY7atF1Pv4lGhiDUXQfGFw5tCUEU6eQyyRphms6I1a7Z/v4vWN8rOFLkBUufJ8+I9B6y4uvOgiorBBVWsSzYdKbcWWVii/3/6feQKV8biX/p53L5dt77zN0FIzgEG8dotDJ9zF5gdPNQ11tf4Gt84/bOcmD1K1Xo+uXtpO3f1msyePNv188C+XdjoWgKwFpM5Y4rJXBRuU8rB5jAIYlKSoIL4CJ8sQjpM7iMaaRFfPt4fbzq+3DtHc36O+uAQQRSVru6SkpKSkpKSkh4nrtWYOPYQ50+8wei+g8ycO8vMufcYnthPEG6va7cXidQTqCf2jqYNycQQdfpc1+Mi/UhVSZZSFtsZg7Wd4TJUERLbR+wWyUyV0LcIfUJmrm8MUZSmT6iZmNRnhCYkNhGpz7YtqVIIMG43mBnUGJQGXhoIOaJ9RTrfTTA4d4IkHiIPV/sdL/UfIm7PUG1PX/O+A4cmOPipD3PmG891jV/4wUv43DH2yNGVuaMIfPpgmwN9Of/w5X4W09X9Tb3wj17p59RCiz93tMl1grVKSjaHCFP0M0Ufu1nkiE5SZ31BxTgNxvUkF7Wfd2ScptwGs9hy4X+SAFKYAfIcXCf9Tjb3R164vBsYl5BVBklqowTZEoqQxYeJFy9je6NjYckVvL/Vl5KSLaVb8LZBAJsQvJdpSpMzcoazepZhhhnXcfqvIkQHBOxmN7t1Nw1tMCmTTDON5yDGHUSZw5kf482LsFHkjjTx9vt48wOMPoTxH8LoxC0ef29jOtHmzkPmHHluiDou77zj8rZXuLwrrgUobVtFJ/ajf/0vUv38aYKvfIf8J2+t1w+bCenvPVs4vX/haYKnH0DuQKTvdqJ4cg+59x1hu/jqOxWnCjgtfnYdkTT3SjtzWGuohoZqZDHv8y4bRS9viqSBzj+lcHivjBVbgiqKg87tLPddvm2iNax0PRGzw0XrG2XnitxelWbiiuISr2ROCYwgnd9LGtbxEuCNJc5uQuTNHQO//QfY+e77Nj/1QdInH7wdh3BTHGYJ7z/RNZZqm9fqF/DBI13jzakf8q/f/ssA/NyeRapBb7i606UmzcnZrrGhe64j5mYdh0MYQmB7Kr5cACuGtklxMoxNFvGuD5dbvHLD8eUAS7PToFAfHqF/bJwwvg3V4CUlJSUlJSUlJVtKVKmy74EHOX/iDUb272f2fCF4j0zsJ+ih69c7Rd1l5IEh8J5ELKH6FTvAaF9MK3MMVAPmmhmVzBGHvVPcei28GBLbR8UtkpsKoW8TeCE31/+dK562T6iYGO+VuCN4Z5rjdHvm44LB+jE883gDRgO8LILMgw4g3PjvwahndPoVLu1+GmT1/rMjDxNdfA7rr+22HrrvIC7NOPe9n3SNX3r+OJMvvcnIA/cw9sh9RAOFmH7/SM5/8cw8/+ClPk7OdxeX/MnpKu8tBPyNxxYZiHtjTlxyFyDCJQa4TD97medenaS6Qd/7PSyyWxc5r4O8K+O05RaLn4yBahXSFFIp1jGzvPg5DIq+3pt9KJ8TNafJozp51Ie3MUGyhB+oIs3tS5ko2Tyl2F1SsqWsCt4u70SL3oDgDeDFM8000zJNRSuM6zijjBKy8cm/Tp261jnAAWZ0hkmZpAEE/jOo/xjevIwzPwaZ2WB3PV6O481xxO/H+qcRfeCmKxV3AtaAEUvuPImHXCE2SpYmOBsSKojxYCNAqHR6DLVttVjBP3CI6r/3a9Q+d5r0a8+Tv/D2uufQ2SWSf/pNsm++SPTFZ7CPHF4RnHYqSiGgubWitgfXcY8qoFoI2rnXos2zV7zqSld0I8WG7cwTGiEKDLkzLCU5cWCoRgGRfT+5vTtCtc+LOGJ1qK4KyMIaMRkDeNQr4NYI4Frc3nF5qzrAFbeJp1u0pnB+vi9E6xvlSpHbdL6n50VuVUhyRzvzeFWS3OO8YjvvMQCPkIVV8rCCqMe6G48tq//etwjfPdc1lh49SPOLn7jKPbaeuiaM8CCe7kWTE/mbLI0Mdo1F7Zf5Rz/5NJmPiIzn03sXt3NXr8nsqe7X1UYh/Xuv4ZRfPmeEnT7dcW+1zwgkwEmTNKhjMofPDbQDHOFNxZe7PKc5P099aAQbhAzvubuL80pKSkpKSkpK7ibCuMK+BwqHt+w7yOy591Yc3mGPXcduNwFF325vIDcRiVgqHUF3Oc7ceSUOHAvtnLHA7Ji1JS+WxNSJ/RK5iQh8iqrgNiFsOTxN36ZqYhIPobGEEmAQMl0vnm0Vxg+ChngzjcHiZR41sxg/iFxljfZahFmDobm3mBs+tjLmbcTM6MOMTb5w3ZWw0YeO4NKMiz98uWvcpxlTr5xg6vhbDByaYOzR+6nvHWO44vlPPrTA775R57tnu4uF35wN+dvPDfI3n1jknsHeXe8o2XmoCOcZ4gID7GeOe3SK+Io1NQH2Mc9eneesDnNSxkjlFmXLKCpizdvtYp0kyzppeL5YO9nkWrMAYdrA5glpZZCktpuwNUdS2xnFRu83SrG7pGTLuXXBe5m2tHlP3uOsnmWIIcZ1nAEGNhQDLZZxxhnXcZo0mer85/yHMP6DqLyNM8+j5uSGz6XmLLk5CzqA9R/E+CcQ7kz/1a1GBMLAYBUy52k5JRJPSEricoIwItBOrLlYYtemcHjXIOi89gcPU//1EcJzT5F+9Xncy++uex5/YYb2//ermHv3Ev/KR7D3Xqf/ag+gFH1+806fc+c8mQfXiSCHwk/sOsK384Wj1Ps1ojZgjRBYwRiDFcGYooRCKV7zNPc0UofBEQaG3CtJ5rFWqISWWmgxm4yb2Vksi9sdsWrZYe07Tu3lsZX/AxiQoCNCB4UIu+alWX3ldU00daeyAN+J+/Jr/pWsslbkhsLJvTNEboDMKa00x2nh5M5yDwKV0K7ElwNkYb2IX7IxQZ7ccDlJ/MPjVL/3QteYGxlg8a99kTuXfaYclRjv93eNTvmLTFe+R7v6t7rG3zl9ipMLRaz5x3Yt0R/2xntBVZk92S12Dx3ai7na66q+qFI2tqhQjuJiItcjBGIBTyswiAZotogkw6Q+vqn4coClmWlEDPWhYQZ37S5dQCUlJSUlJSUlO4wgiph44EEuvPUGsv9AV6R5VHl/J/ZUfU5iLJF3pGKJ1K1M9/sqlqUkwHllppGy2M4ZqO6cCHhnQlJqRL6JiBaCtzF4ub5oVESat4lNBB6cKJEEGAk7sebbg9Ea4gKcncJgUBbwZh6jdURvfM20vnSWdjxCu7Za3JxURlnsP8TA4unr3n/XE8fwec7ln7y2/kZVFk6dY+HUOSpjQ4w/ej+DRw7wVx5qcHgg55+9Xidf08d7NrH83380yL/9YIOP7d8gFbSk5BZQMbzHCOcY4iAzHNZpwivWJA1wkFn26RxndIRTMkq+ifPDVbEWajVod2LNfV6snyQpREFXqsL1MD4nbk6T9FVQG6Out9cH36+UYndJybZw+wRvABVllllmZZZII8Z1nDHGiNh4wbdGjYN6kP3sZ1ZnmZRJFvUoRo/i3WW8fR4vx0E2qIiUBZz9Js58D+MfxfoPIYzd8D7vBFaizZ2SesidEosnzxJyFxKHIMaCjYhdgii0ghoaSCcIWujbB9W//gXcqUukf/AD3Fvn1j2Pf/cCrf/uX2Mfu4f4i89g9oxs/8FegVK4sJ3r7q3tvF9Jt/YU7my3/G8DUdsYwYoQhQZrVkXtqyFAZA2RNYULtSN8J7knWHF7K412ThQaaqElCuwOdnt3BOxlgZvlogFHYX9fjiMHMIV4ZQyrarZcUXy4HGG+7PYWkLD79elElhe/qWUBfM1UcE1E+vtbAA+RlapyW0SRiewIkdsrtNKczBXvzXZe9G4PjRBuUO2fRnWcjUAMQd6+oecKzlyk7//39a4xDQMWfv1X0b7aLR/LzbJLE0L9UNeY04QT/lkaQ7uKApFlfJt//sMiFtyK8rmJ3nF1t2bmSRcbXWNDh/dfZeui9QawGl8e9s6lfdGQwtA0TZytYJpL4Kq4LMKp3FR8eZ6mtBbm6R8dJwhDhvb0ftFYSUlJSUlJSUnJeoIwZOL+B7nw9puMALMXzjN7/izDeyeIqnduXnGnsShVn6MGMjEkElBd414e64toZ46+SsBCK6MS2pUEr51AbuKVonxxSujbpKaKbtLckPgUJ44KMW31nVjzmFQzvG7PWoYQYd0evJnCG0Fo4GUJQw7ad0PrVQKMzL7GpWgAF6wWeiwMHiFOZonThes+xp4PPkL/vt1MvnyChVPr1yAB2lNzvPetH3HhuZcZffgIH3noCPufdvyDF/uYTVYFv1yFf/JaH6cWAv7isQbhzvnTKtkheDGcYoyzDHNIpznIDMEV5SoW5R6m2a+znGaUM4zgbtYAJQLVSifKnCLpMs2KWPMgALuc6LiJh4Krt4As6Ql6Z0WspOSupxC83W0SvJdJJeWcnOOcnmOQQcZ1nCGGNry4MhhGGWVUR2nT7ni9QzK3C+VTePMCzvwEZIOFf8nw9qd4+1PE34v1H0T03pvqTdPLCHQcyEW0ecsLoRYu73aSY4OQUB1iYyKfQK60gzraOZuqCP3pHPbwbir/wa/gXj9D+vs/wJ+fXvdc7uWTNF85RfDMMaIvPI0Z7tuWY/TqybySrxG2NxS1tRDOlr/vtN3uErXDULDLbu1b1J+NCNXAUglsx9ntaKWONo7QFm7vNPOIyamGlmpoCXrIwbgxWkST61r3Nmvc2251DNPphd2pLryh80IRZ77ylMBq5HnRo6Z4r8rq89NxgYsiLEegs3L7ah9wXfP1buQaIvc29QC7WVQhzT3tzK1EludeOwUnFrvBm9KZAGdjcltBvMPeQOybLDXp/63fQ/Lu12XpL3wOd2D3LR/PzWLwHOIQ0O0COZG/jqt9iUbf3+seP3WZVlacOz4y3mAk7p3f85Wu7qivRm1saOONXV4UyYRRUa3VQ7GPBrBiyUjJwhhJU/BgWjGpVJhauvH4cui4um1AbXCIwd17scHOcbKUlJSUlJSUlJR0Y4OAiaPHuPD2CRBh7sJ5Zs6fY3jvBHGtfqd3745R9TltCYi8I7EBzgm2Mx8PrDBSD/GqtDPHQitjtC/aMXHmAJmpYDpF9mFH8M5sFd2k4JSro6FtaiYm8RmhCYgkxOG2LdZcMBg/jjCHN4JRi5cGIq7Tx3vza1XG54zMHGdy/KnVdSAxzIw+yu6Lz2E2sS5R3ztOfe84ycIS08ffZuaNd/HZ+tcib7W59ONXufzT1xk6epD/4wP389tnD3Jitnte9d2zFc4uWv79x5cYrrxfDRElW0kulndkF+/pCId1igPMYa5Ydwzx3KeTHGSGk4xxliH8zYreYVAkEbaT4n2W58U/vxxr3uvryyWboRS7S0q2FcFugeDdeWjmmWde5gk1ZIwxxnSMChtHQFWosF/3s499zOkckzLJvKth/DN4eQNvnkfNxhWBat4lN++CVjB6FOMf6Ajfd8+i84rLWyFz4PLC5e1JabuQKFSsDYlQJFdaQR+t5TNqNER/OoeIEDx0CHvsIPlPTpB++YfozBWFBKrkP3id/McnCD/xGNFnn0Rqtye2y9Pt0i7Ebc9ysatCl0PbXSFqC2AFjDHEdlnUBpGt9VULFI7UOMADae4Kt3fiCaRwezuvNJOcMDDUIkvcU25vDz5bdXAvq8+aF5HDfo17WiyYqCNy3+4LqzUObnXdMejLfcBl+fvlu2gRcy6e1aD51duKGPS1DvCdLICHCMtx8GtFbtcRuXv72HKntDJXtBhwSpoXf1OVwGItV30/LEeYOxsTZUubf0Ln6f/tP8DOdZ/DWh9/kuRDD9/0cdwO7iUCPdg1tqgXmY6+RFbZRx4e6rrtT18r3OyC8vMT16+U3y7Ue+ZOn+8aGzq8b+OFK3XFxMwGRYR5HHPLFUe3ESsBHk8rFFQ9JkswaZXU1286vjxLElpLiwyO7y5c3bv3bPFRlJSUlJSUlJSUbDXGWvYevZ9L77yNIMxePM/shfMM7d5LpW97DAG9hgA1n+FtSKZK21jqflW4HKiGNBKHq4TMNFKW2o7+6s5a4k+kSiwesRC6FqFrk9nKpgVvxdPwLSomLpZgRAnFYiQk8dkW732BIIgf7vTxnsEQ4GUBzCz4wWK9YZPEyRz9CydZHLx3ZcwFVWZHHmRk+vimV7vigT4mfuYJdn/wYWbfPMnU8bdJF9bP+9V7Zt88xeybp/gze3fx5ugj/P7S0S6H/bvzRR/v/+3ji9w/vH290UveX6QScEL2cEZHuUenmGBunewc4XhAL3GIad5ljPMMoTejoxjTcXmngKz28k7SQvA2d5eh7/3IzvokLCm5K9hCwbtDJhkXOv/108+4jjPMMGaDKiVBGGaYYR0mJWVKp5iUKqk+jPfn8OZHeHkDZINKPmnj5RW8eQU0RPQIxj+A0fuQq4jsOw0rxeQrd56WCqFzBCYlSQ3GeuIwJ7TFa1MI3sXvUKNhBtLZQlI0QvihBwieuI/s+8dJ//DH0LgiOjhzZH/yAtn3XyP63JOEH38MiTZ3ilYKp7ZbEbYL8cv71V7PK4K2Ks4V7m63RsuzAlYMUVA4tq0RzBaL2pvBUIh3cWBxvnCutjNHO3ME1hD7oi+xmIxKGFC7I25vXwhPy85tdR2d1K/5eW00uQEJO+7tbd7V5f3tsJq+szYG3XRPytYI4Oti0Lsi0ndKDHpQFObsUJFbFVpZTpoX7+c087hOZHm0QWT5laRhndzGIGDd5vtw1f/g20Rvv9c1lh3ZT+NXP3kzh3HbqKoyrMe6xpSE4/47SOUnLNX/067bpufbvHepiAl/arTJnmrvTNoXL0zikrRrbPiefRtsqZDmgCmuIaKg+NojBJ3I+LY4nBVsawl8iG/XybFML7VuOL4cCld3EIZU+wcY2jOBseVEtKSkpKSkpKTkbsAYy54jR7l08h0QYf7SBeYunmdw9x6q/QN3evfuCLE62hoQe0fLBmRiCNfEdI/1RSS5py8KWEgyKqEh3EFx5oiQmjrilsBWVgTv1N5Y3+u2T3DiiInw6ohMRMVEpD7Hb9PahNG+Yr5j1vbxnsNoP6KbT98aWDhJUhkmjYdXxlq1PTTb09QbF25on2wUMvbo/Yw+fB8LZy4w9cpbNM5f3nDb5oXLHLjwTX6z9iN+UH2MV/oeJDNFm8yF1PDf/niAf+uBJj93oH1jAYQlJTdAW0Jel72c1hGO6BR7WG9MqJDzkF7kMNO8wzgXGbjBVEyK7aO4ELaTpCN4p8U/u7y2Uv6h71R6Z2WspOR9xdYL3p2nYZFFFmURq5YxxhjXcapsfPEYETHBBHt1Lwu6wKQMM+f342UeZ36CNy+AtK7yXBkqb+DMGzg1iN7TEb7vR9jZ8VMiEAYGq5A7wTlHKA5BafmAKPSE6kCVVthPKyyqjxfiYerpIlbzQvQOLdEnHyf88IOk33yB7JsvdgSLNbQS0t//Adl3XiH6xacJnn4A6Yi3ymof7awjajsPzvnO7eBV8Vps5z047/G6Kt8ZoYgft4ZKR9C25s6L2tdDgMAIQWTxWLLck+aOxcRjl134HlpJTmALt3clNDcUHXVjrOm77TsC6Uo0uV8dQ4oLKOm4L3t2ZrCZGPRuARwU3UgAhx7tA76zRW4oIstbaRFZnnYiy40I1atEll9JbmO8CciDCtalmE32NIt//BrVb/+ka8wN9rHw134Z7rDgeD974YrPtJPuVVzlK6hUadZ+ruu2F07MrHz/hX294+qG9RHmtdEh4v4NPj/zHPCdCZqBKNqeHdwEQaesLlVHGgdItgjOYJuGlvQxtZTcVHx52m7TbiwxtGsPQRwzsGvX1h5ISUlJSUlJSUnJtiLGsPve+5BT73YGhLlLF1HvqQ0O3dF9uxMsu7udFaz3JGIJ1K+s3YSBYagW4tXTyg0L7YzRetTDaw7rURFSWyd2i2SmQuhbhD4hMzfWninTHKeeqolJfEpoQiITkmtOvk2tyYzGiNuNt1N4DLCIlwUMNdDappIIBWVk+jiX9jyDmtV50tzQMaJknjBv3vB+iTEMHt7H4OF9tKbnmHrlBHNvnUH9+rUA01zio81neXr2eY73PcjLA4+yEA7gVPjdN+qcmg/4yw8tEZc1xyVbSFNiXpF9nNRR7tNJxlmfTFAj41E9vyJ6T9J34+e+IFgVvBFwWbHW4jxE4Rakb5ZsB6XYXVJyx9gmwbuDE8elzn916ozrOCOMYDfouS0IgwwyqINkZEzrNJO6i5b/Wbwcx5sXUXN+g2dZfgCPyjs48w5Ov4boAYweK+LO2blVuaYjejsvpM4TuJxAUlINyHMlCnNqOJrhIM2wHzIhrcQISuhTApcVX6tC/IsfJvzZR0j/8Mfkz77KSnZ4B51bIvmn3yT5kxdwn/8g2bGDuDXbeKXTU7sQvH3Hue3X7OuyqL3cX9uYrZN+txMDxIEhDjp9vHNPknnamSc0hihUMudZbEMlDKhGlvCW3d5+NZbcd4QmhUL09qsi9/Iems5FE2YHFwRuFIN+jT7g0HGB91of8J0vcjuvNFNXpDd4JcmL9IAwMIRWNh3hn4Z1vBi8DYmTzQm99uwl+n73j7rG1FoWf+NX0YE7W8i0RytEeqBrLNGLnA9+DzELNKpfQE1t5TbvlZfemgbg0aEWB+vbE2+3GVyWsXDuUtfY0Eaubu+KXt1B0IngintmQcsgGLHk6kiiEE+TME2R3JK5vTQyd1Px5QBLM1OEYUSlf4CRvfswZbxYSUlJSUlJScldh4iw6/C9GGOQTku1+cnLqCr1oeHrP8BdRqSeUD0VHA0TkokhWlOwPNiJMx+swnQjYSl19MU7a6nfiyGxfVTcIrmpEvoWgRdyc2MFvR5P07eIV2LNbSfW3JBuW6x5gHG7wMygRlCaeGki5KD9mzJjBC5hZOY1psceXxlTY5kZfZRdl57vrLPcHNXRIQ588mn2PP0YM6+/w/Sr75C32uu2C33GBxZe5omFl3m3dg8vDjzG+cpenrsQc27J8ptPLDJW7QVDQ8ndzJJUeFEOMKhN7tNJRlhf7NFPwhN6ljkqvM0uZuUG16iMFLHmaQYpxTpumkGaFmsudmedT0tKsbuk5A6zvYJ35ylp0KAhDc7oGUYZZVzHqV/FfR0Ssoc97NE9LOoik7KHWf8UTubw5gRe3kTlNMhVBCNRVM7gOIOzX0f83jXC9+jWHOMWsuwwtmLJnOC8I9RC/GynAYFbpOo9rXiYxWgIqzlWc1IfEZi844CFwOfYsX7MX/oc8vHH0K88By+9u/4JL81i//Ef4w/uovXpp0gOjHeL2lCI2UaIrCnix+8SUXszdLm9nSfNPUtJvtpz3UMrzbHWUA0t1chsGOe/Hu3Ej691b7PGve1Wx1aiyYNONHlvCE9bw9X6gK/GoN9aH/BlEfx2sPNFblVo546kE1We5h7nlcAIcXj9yPKux0LIwhp5UAXVTUWYS6PFwG/9PpJ1J1As/fnPkh/ae8PHczsxKuzXI1eMprzsv4FUXgagUf+FrlvfOrvAUqs4ll5zdc+fuYi6NX/7IgwdmrhiKy36SRlTTLqi3ukpJRTx5R5PagyZcQTJEqoR0qqQEt10fHnSbJI0mwzvmSCMY/pHx7b2YEpKSkpKSkpKSu4YIsL4oXtWWtaIMSxMTaLe0zey89aQbpWay8gCQ7DG3b18FS0C4/0R5+cc9SigkeZUAktgd9aahBdLYvqI/RK5iQh8iqrgZHMpUMsoRay5F09MiOIJJSQ2EZnP8NuwBiAYrB/Ds4g3YNTiZRHMHPiBTfXxrrYmqS+dpdG3f2Usi/qZH7qPobkTt7yPYa3C7qceZvyJY8y/8x6Tr5ygPTW3wbHAkeZJjjRPMhmN8eLAo5zQo/zt5wb5G48t8dBo7xSPl9y9zEuNn3CQEZrcp5cZZH2BxhBtPqhnmNYa78gu5uXG2iEQhRAYaCUQS7HukmeFuSkM2cEupvcdpdhdUnLHuQOCdwcvnkkmmZRJqlplXMcZZZTgKqeGfvrp135y8o7bezct+WCnWvEtvHkDlZMgV48JUnMBxwWc/Rai44h/oCN87960O7EXkGUxVQ2Zc9i8cHnnGoBfpJInaKUfJxGZiUhMXPTIdjniMvAGckF8CHuOwK8fJnznNP1f/jbxu+fWPV945jLDv/01kgcO0PrMk7BnpBC2t//QexIDxNYQ247b23nSrHB8B0aIQkPuPI0E4sBSjQu3d/ffnAefrTq4l/O8NS96bvs1cdxiwUQdkbv8LayNQd9sH/Cti0G/isiNB83YCSI3QOo87dThtOhLnzkFESqhJdhEZPmVZEEVFUNuYwKXXP9s6zz9//OXsDPzXcOtjz5B8syjN/z8t5v72YNQ6xq75F8gqXwNAbLgAEnlia7bXzxRuLqP9rc5OrD5fuXbweyp7vP+wMQugvgKN0PWWUwIQwhsb8WXS4CiZOpJohjjpiG3hK2EJoeYatxcfDl0XN1xTKWvj5GJ/SutPUpKSkpKSkpKSu5eRvcfRDqFnSLC4sw0qp7+0fE7vGfbS4ASe1csIZmIVCyVNdHcUWAYqEZ4r7Rzz0I7Y6QW7rgifGcCUmpEXhGjBD4FIzi5ceki1QynjoqJ8arEJiQyUSfufJtizX0/aIA30xgsngXUzGF8P8L1Y9qH5k6QxEPknTaJAEv9B4nbM1TbU7dnH61l+P7DDB09ROPCFFPHT7Bw6vzaRZ0VxtMpPjv1LT468xyvDDzM//Cjh/j8McvnD5d9vEu2ARFmqPMjDjPOEkd0kn7Wr+mM0mRUT3FZ+3hHxlmSyuafw1ioVQtXN1KsC2d5EXMe9o7RoOTalGJ3SUlPcOcE72Va0uKMnOE9fY8RRhjTMQauEjkeELCb3ezW3SzpEpMyyYz24fVxlAQv76DmDby8DXL1Sj+VSdRO4u2fgg51enwfQ3TfjhG+rRQXiM4JiToCl2PVk3sw2QzLkc8qFkyIMyG5ichNFQ2rRZ8clxUi+D1HmPubB6mfOMnIV79FfEWkLUD85ntEJ86SP3kf2c99AB3qW7fN+53ACIGxaFi4vZPc00gcRhxRRwxvZw5rhWqgVC2YZbevwkpkubpC5AZW3dthx719Bw9wx7CZPuBrYtCXBXA8iL1ODPpGAvhakbsjru9AkdsrNNOc3C1HlntQJbSdyPKb/ExIozrOhKixBOnidbevfeV7RCdOd41l90zQ+LM/d5V7bB+D2ke/7u8a81zkreD3EFP0c7rS1d1oZZx4r3Bz/0KPubrTRovGpemusXUR5ssJE2FYnIviG+tjt5UEWARINScJangWidIm4gLSdDdLnXPwzcSXtxtLpO02IxP7iSrV96Wbp6SkpKSkpKTk/crIxD5Mp9BRxLAwPYn3noGxXTc9L9qJ1HxGaiyxdyRiidR1GR+GqiHNJGegosw2Uxqpp74DGyvnJirWATwgSuATvDHoTRgMHJ6mb1PpxJqHxhJKgBFDtk2x5kariNuNs1MYDMoi3ixgtI5o7Zr3FfWMTr/CpV1Pd4lssyMPEV18DuvT27afIkLfxDh9E+OkC0tMvfo2M2+cxKfrX6eab/HhuR/zwbmf8ubMUX7n/DH+/IdjKqXCVLIdiDBJP5P0sYcFjugkNdb/ne5iiXFd4qIO8K6M05RNGgVEirUWayGhWHtJM8jSIl0vKP/Qe53yN1RS0jPcecEbQEWZZpppmaaiFcZ0jDHGCNnYhdVHH33ax0EOMq3TXJbLtHgI3EMoGSon8eZNvJwAWR81soLM4e0P8fwQtA/j7+8I3wc7gljvIgJBYPBqyJ1DXY6RBFWLR1C/HP7cQhRCIETwNsTbGIIIH1VAaghC+4MjXHziUfqef4HBP/gTgpm57udTJfzJWwQvvUv2kYfIPvFY0be1pAsBImuIrFmJgM5zh88TIuNXWrHkQGCU2ChWll3GUkwopNN7+300kd5abrUP+EYx6A6wO17kVoXkisjy3CvWCHFob+lzwIshD6rkQQVRj7nO5D564Q1q3/hR15gbqLPw7/5K4Si+gxg1HNFDV4zmvOq/gsSvA6BYGvXPd23x8tuzeK8crKc8PHSNz6I7wNzp810/mzBgYN+u1QH1RUWxsWACiOJi0tUDGAxGDLnm5CYksxlhNgOuimllNGXopuPLVZWl6WmiSo24VmNk34H31aJmSUlJSUlJSUkJDO3Zuxppbg3zly+hXhnctft9c21ogIrP8QZSMSQmoOpXW00ZUyQoZXOeWhjQSDMqYdHmbqeRmQqmU9guTgl9m8xW0ZtwHChKy7eJTAg+woknkhBjIlKfbstKgRBi3W68mcYbQWjipYGQI9p/TaNPmDUYmjvB3MiDK2PeRsyMPsLY5E+3xIMRDfQx8ZEn2P3Uw8yeOMXUK2+RLiyt287ieWjpTTj+Jn96ci9HP3iEg/fvKVO4SrYHES4yyCUGmGCOe3WKCt3t9wTYywK7dYHzOsS7Mkay2dYIQVCcWNsJRAJ5Di4vEj/rN+AWL9l2SrG7pKSnWC94a5YSbrPgvUxb2pyVs5zTcwwxxLiOM8DAhhdjFssudrFLd626vZnBcz/G3Y/iUDmDlzfx5k2Q9RdLK8gS3v4Uz09BKxi9v4g613sK52aPYgTCwOKdIfc54lwh4UkhcBffS7GhCJAWsdmp4LPC/e1siDcheRCy+NEPs/D0Bxn4zrMMfeVPsEvNrueT3BF97xWCH58g+eQTuA8fQ8LeLgzYfhSDJyCnah1Yj3OKcw6fORweMeCN0BILRgiDkCgIMDtwYrgzubU+4Cvb7FCRGyB3SjPLcV7JXBFbjnDTkeVXkoV1FMhtTJi3rjkptucn6f9nf9g1ptaw+Ou/gg7e+SSJQ7oXe0V8+QLPMR//ycpxtStP42x3X+cX3iqc01/YN99TtSuqyuzJs11jQwdXF/RAi15RsBpfHvbG5XvRp9vicTigFURYfxnJBZss0NZjtxRf3l5aIksTRvcdIK7VqQ8Nb9mxlJSUlJSUlJSU9C4D47sQY7h86l1EhLlLF0GVwd173jeCd9XntKVwd7dtQI4QrJnzVkLDQDVEVUlyx3xrZ8aZAyRSJRaPWAhdi9C1yWzlpgRvgNRnePFUiGlrSmxCYhOTaobXG2mZdnMIBuPHEObxRjp9vJdA5kAHrmnwqTfO0a6M0q6tFkMnlREW+w8zsHhqy/bZRiFjjxxl9KEjLJ65yNQrJ1g6f3nDbXc1LjD/nQu8/HwfE4/fx8ixe7BR767dltw9qAjnGOYCg+xnlnt0mojuVgUG2M8ce3WeszrMSRkl20x7BGNWY81Fip+zbCctNb4v6Y3VspKSkjWsF7yzOyh4Q+H2nmWWWZkl0ogxHWOccSI2jgG50u09KZM0pYnoPRi9B/U/j8o5vLzREb7nrv7k0sbLy3jzMmiI0fuKPt9636b63Gw3AlgrGBMu+4MRKdzYy6KerPhZVy+qjQKaEfp2ZwvBY/A2Ivn4k1x45nH6vvEDBv74u5ikO67ItBKqX/sh7tnXaHz+o2RPPoAlx7oEsw0X7r2G4DDqMZqvVgSrIjhEPaF4CAonbeYNbTW4XDBiCKyQq9LO85Ve36ExO3F+eBdwY33AFQVN2UlXntqJLM+c4jqR5apa/O0F5rYt3KRhHWdjECHIr+5qlmabgd/6PeSKuLLGr32a/MpY7TtAn/Yxyt4rRi/xqvnXiGmtjCxdEWF+9nKDydk2uysZT4606CXacwsk893FX10R5svVw2FUFEr1Uny5BCieXD3toIZIgyCdg7yKz4ZYTEMaSXJT8eWqytLMFHGtTlStMrLvwNYdSElJSUlJSUlJSc/TPzpWCN4n30HEMHfpAnrxPEO7974v3KQC1HyOWiFVJTEB1mdd8u9wLaKZ5gxUQmaaKa3MU412oCFChNTUEbcEtkLo2oSuTWo3P5+4klwdDW1RNRUSnxGagEhCHI5M8+s/wC0iCOKHQKNOH+8AL/OdPt4DVzX2CDAy+xqXogFcsOooXRi8lziZJU7nt3a/jWHg8AQDhydoTc8x9cpbzL51upijXrltc4kLP3iRSz8+zsgD9zD6yFHiHiiYL7n78WI4wyjnGOIgMxzSGcIrWh9alEPMsE9nOaMjnJZRctnE+TGKipS9pN1pb7lFB1FyWyjF7pKSnqT3BO9lUkk5L+c5r+dX3N6DDF7X7d3QBpflcuH2Fo/ofozuR/2nUS7hzZuoeROVyas/uWR4eR3M6zi1hXjuH8Do/QjX7nez3Yh0f/6pLEc1r5fiBF3pV7z8symk7kLocE0Q8J95hJln7qf6Rz+k9v0XkCsuLu38IgP/4g/Jv/08jS9+nNYjRxEU61KMy7EuRby76z6Xi9fLId5hyFdeZVG/Inwvoxi8BKgYFIOxEKM4D5nzpLknBawRwk5/b8ERhYbYmtLtfce5Wh/w5dt2BqqQ5p525vBaiNy5V6wUkeW3M26uELojclvB+LzoT78R3tP/T76MnZrrGm4/8yjtn3n8tu3PzSIqHNFDV3zW5Lwt/wofvrsy4swQrerPdt33xRPLru4Feu0tPHvyXNfPYa1KfXyk+EFdEZdlO+0U4pheOYCgMynM1JFKQGqVOJtEfZWwvcSCv4/ppfSm4ssBWosL5FnG0J4JKn0D1AYGt+pQSkpKSkpKSkpKdgh9wyMYY7j4zluIMcxeOMfshfMM7Z1Y6e19NxOro60BsXe0bEAuhnDNeocxMNYXc8G1qYaWpSQnCnZmnLmKkNg6FbdIZiqEvkno2uQ2vmmHt6I0fYu408e7iDUPMBKSbFsf7xriApydxDCMsoA3850+3huL+cbnjEwfZ3LXU6tOfTHMjD7C7os/xGyDWA9QHR3iwCc/xN4PP8qZl95l6tV3qOTri8l9ljN1/C2mjr/FwOEJxh69n/re8fdNCkPJncOJ5STjnGWYQzrDQWawV6wVBij3Ms0BneUUo5xhBC/X+fwILJgaJEmxJmMM8P4zl+0ESrG7pKRnuZrgHWKudxLent1jjjnmZG5Tbu86de7Re9a7vRGEPRi/B/wnUKY7Pb7fQM2Fazy/Q+VtnHkbp19F9CBGHyjizhnYooPeGhRhrXV4nRi+xhVu+mKSX/s4+ccfpfrVZ4leOLHu8YJL0wz+o39Dcu8BFn/l02T37sX4nJwaoopxaUcAz7AuQ4SitzhXREX3MIWI7Tru7Y5jfsW9rWtc84IXi2LQK6OwV7YQAgOBsah2YqS9kmcOI0JgpRAkxXf6J5du795i54jcUESWtzLXiSwvCiwAKoHBWrlmz64bJQ1rNKujZLaKCyKiZPGq29a+9n2i1092jWWH9rL05z7TE9F3+3SC6IqipkS+z6Xwu11jjeovwppIqiz3HH93lpEo58NjjW3Z182iXpk71d2ve/ieic4igEKaA6boFxUFxdcewGIwCLnmeKAdVgjdJMalmLYn8QeZarqbji8vXN3TVPv6CeOYkX37t+5gSkpKSkpKSkpKdhS1wSH2Hn2Ai2+fQCb2M3v+HLPnzzK8d9+aVkB3J4W7O8NZIfCeRCyB+q4ZZDWy9MdBEWfeSFlsZwzVNl6n63VUDInto+KWyEyV0LcJXRNnItxme+9uQOITnDgqRCTqiUxIxUSkPsdvg4AlRFi3B2+mOn28l/CyhMGB1jdcE4jTOQYW3mVh8MjKmAuqzI48yMj0K9u6khdUK9z7zEPsffIB/vB7k/SfeY1d6dSG2y6cOs/CqfNURocYe/QoQ0cOYoK7+31acufJJOBt2cUZHeYenWY/s1yppIR4juokB5nhJGOcZaizbnwVjEC1UkSzGoF4Z55X73Z6Y9WspKTkKmwkeGe9I3h3WOv2HmSQXbpr027vSZlkmmm8dOKmGcX6n8HyM6ibx5sThfAt74FcRdQSReU0jtM4+3XET2D0WEf4HtnKQ98WNnKF+13jZH/tVwh+7gL1P/gu4Vtn1t0vfvc94v/uf6b12IPM/ZnP4feMYnyGsSHGxxhVVATrMqxLCFyCcQnWO/wacbhwQS+L4XcGwWPUIeoKFzew7N426roi4VUMjvCq4vY1n0eEKBDCjts7d54s92QUbu/AGtyy2zsQQmsJ7J0XAkt6H1VoZzlJrjhV0szjOpHl8W2MLF8mDao0q2PktkIa9xFkRa+zjYheOkHt6891jfm+Gou//is90R+6pjX2sKd7UKZ42fwrkGRlSIGl+q91bfbayTmSzPNnDi8Q9M7HJgBLl6bI20nX2NDhToR5ngMeohisLaKzegCDYMWSq8OjNG0V0QSTT0EeQ+aYS0doJOlNxZcDNOfncHlO38gYtYEhqn39W3Q0JSUlJSUlJSUlO5Fq/wB7jx7jwttvMryvELxnzp1lZN/+u17wjtQTqsfjaJiQVAzxFe3rRvpiWrljsBIy20xpZ45KuDNfFy+Wtu0jdktktob1CYFPMeLIzc27vHPNaaqnauJOrHlIZEKc5mRXS0O7jQgW48cR5oo+3gR4GojknT7e6yev/QsnaccjpJXhlbFWbTfN9jT1xvl122811cjyqz+3h2+cPsS/fnmBx+Zf5t7mqY4hpZv29Bxnv/08F3/4MiMPHWH0oSOEtZuPpS8p2QyphLwpezitI9yrU0wwv+6MEeM4ppc4xDTvMs4FBjvr8FfBSGFEeB+kiexE7vwKZklJyXXYGYI3AALzzDMv84XbmzHG9dpu77rWOcCBVbc3zRV9UhjE+g9h+RBKAy8nirhzOQly9WpLNedxnMfZbyK6q+jx7R9A2HVbXZO9QH5wL/P/uz9P+OYp6l/6LsHZy+u2qb78OpVX3qD1zOPM/fJnSUeLAgDxOdZneGPx1pJrBUWKftcuIcgzrG8TuPaaoOiin/hyDDgiW+QK70S5a94Rs5fd2x7Bd77q6pZiUWxXYcCtsM7t7ZXcKe3MISKEVnAqJLlijRBZ0+mxfMtPXXIXkjpPKykiy9NOZLmIUL3NkeXLZEGVZm2M3MYkcT9B3iLOljbc1l6cpu+ffrVrTI1h4d/9ZfzQnRcZRYV79fAVk33HOfNPSIP3urZNzOfJ4/GusRdOTNMXOH52V2+5umF9hHl1ZJDKYD94V7SwWJ5AVaKecNdDEV/uO/+1sTgbEmdnER8QthdZ8A8x3chuOr7ce09jdoZq/wBBFJau7pKSkpKSkpKSkg2p9PUxcf+DXDjxOmbffqbPn2X67HuM7NuP7ZFEpK2i5jKywBB6TyoBoaZdsyVrYLQek7s21dCw2M6JdnBbtkLwHiDSFgp4DQl8cssub4+n4VtUOrHmXiyhWEQM6TbEmgsG8SOdPt4zGLF4WQAzB34AuUK2EWBk5jiXdj+D2tVjnht6gCiZI8ybW77PVyICnzmccGCgzv/w8uf408YSjy0c5+HF14k1Xbd93kq4/JPXmHzhDYbuO8jYo0epjg1v8MglJbePtkS8JhOc1lGO6CS7WZ96WCXnYb3AYaZ5h3Eu0d8z6zAlm+fu/vQvKblr2EGCd4dUUs53/htkkHEdZ4ih67u9aTBJt9sbQKhj9QNY9wGUNl7e7gjf74Bc/SJU5TJqL+Pt90CHOz2+jyE6cfcI3yJkx+5h7v7DRC+8Qf0r38NOz3dvokrtBy9Sff4Vmp94iqXPfQzX348zEWlQRAMb9VifFjHnNsQFGUIfaNH327qk8zXF+rwQlvXK+HW5aVf4cn/tIpq887vXTj/ujsi98lxicAQ35d6+UUSEyAqRZSV6+kq3d+497UwIAiEu3d4lHbxXmqkj90rulSR3oBAGhvA2R5Yvk9kKjVrh6E7iAYK8TZRuLHRLK6H/t/4NJuk+hzb+zKfI7ztw2/ftZtjLXqrUu8Yy86ecsj/oGlPfR6P+F7rGZhYSTl9c4lcPLBLb3oq7d1nO/HsXu8aGD+8DFLKsELltAFFY9OvuAUIJUCBXR66eJO4j9LMYbWLantSPMNmoAP6m4ssBmnOzeO/pGxmlb3iUuFa//p1KSkpKSkpKSkrel8S1GhPHHuL8iTcY3XeQmXNnmTn3HsMT+wnCm4+57nUClNg7vIFMIlKxVK5wI9fjovhUVUmWUhaTjMFqb6RF3QwqQiI1LCGRb6LWYH1auLxxt9TLu+0TnHgqhKh6QhMSm4jMZ/htaJtmtA98iDdTGGynj/ccRvsRjbu2DVzCyOxrTI89vjKmxjIz+ii7Lj3ftW62nTwwkvOfPzPPP3yxj++HP8OPhj/Ig0tv8vj8Kwzl8+u2V++ZPXGK2ROnqO8dZ+zRowwcmkBKt2zJFtKQmJdlP/3a4j6dZIz1pog6KY/pORaIeYddTFEvRe8dRCl2l5TsGHae4A10ub1DDRlnnDEdIybecPO1bu8ZnWFSJmnQ6NIzhQpWH8G6R1AyVN7t9Pk+0RVpu35fZvH2OTzPgfatEb4PbhgRtOMwQvrUg6SP30/l2Zeo/dEPMEvdlZ2SO+rf+BHVZ1+i9ZkP0/r4k2gU4U2AsyHehGRRtfggV8X4vIiJclnR55tiAmVcRuDaBHmbwCWId50Pf8EgoKbQwbvE8PWucADxDkPeFU2+LHyv3tfgJVi97x3CGsF23N55l9sbQiM4NWS5YowQl27v9y2q0M4dSeaLfu+5x/kisjwKDWaL/igyG9Ooj68I3TZPiNLFjaf8Xun7X75CcHm2a7j9oYdpf+wDW7J/N0pVq+zVvVeMTnPc/rN1RU4u+QWa+w91jb341jRV6/nUnqv3Kr9TLJy9iLo1C1IiDB6aKIRugDCEoHfiy4PizE6mOYqnFVQw6jD5RSQDkzmm0v00EnfT8eXeORpzs9QGBgnCiOGJfVtzMCUlJSUlJSUlJXcNUaXKvgce5PyJNxjZv5/Z84XgPTKxn6BHrqW3gprPSI0l9o7EWEJ1XFkiO9oX08oc/ZWA+VZGJfTEvdbb6QZxJqQta13ewW1xeWea4dVRMTHeK5EJiUxErjn5NsSaG40RtxtvJ/EYYBEvCxhqoLWuQvlqa5L64ns0+lcL1LOon7mhowzPvbnl+3o1Riqe/+TpBf7563W+d67CywOP8nL/IxxuneaJ+Zc50D634f0aFyZpXJgk6q8z+sh9jDxwD7bsh1yyhSxKlRfkIEPa5D69zDCtddsMkPABfY85qrzNOLNSFuLvBEqxu6RkR3GF4G0DMs0Iox4XvDtkkt2Q23ucccZ1fMXtPcMMTrovMoUQ0Qcw7gEUh8ppvLyBNydArhFbK0t4+xM8PwGtYvQoxh9D9J51UUE7jsDS/viTJE8/QvVbz1P95vNI2i0MmVZC/UvfpfLdn9L8wkdJnn4E24lpUkDFrojfua2ShX0AiPcYnxXVsy5duY9R1xG+WwR50f9bdDVmvNC8Ow5vlS5X+LK4LaprqlClE01utsW9faMsR5mHHbd37jyZU1LnsEYIrcF5TysrtouDIq66FL7vfjKntNIcp1okADgFESqhJdjC2LjcxjRqu8hNvCJ0x+nCVd851a//gPj4O92PsX83S3/+s71Rtapwjx7GdBW3eC4Gv0XTXOreNH2MVv1nuqLcVJWX3prhk7sXqQW95eoGmD3V3VOtf88YYWwLsTsMC2d3vHFR2HZjALOmT3cLwQcV4vRMce5vt2lwkKklQy0yNxVfDtCYm0VVqQ+P0j86RlQpe7iVlJSUlJSUlJRcnzCusO+BwuEtEwdWBO/hif2EPXJNfbsxQMXneAMphtQEVH3etc1ynLnzRZH+QitjrC9CemG+dwusurwjIt/AW0PQcXlbcjJbuSmXt8PT9G0qJgJftLULJMBsW6x5gHG7wcygRjrtHJsIDrSvy6QzNP8WaTxEFq22Hmv0H6DSnqbantryfb0aoYG/+nCDw4M5//z1OjnCqdphTtUOM5pO84GFlznWOIH49Q70dLHBhR+8xKUfv8rwA/cw9sh9xIN3vrVayd3LnNT4MYcYpcF9OskA7XXbDNHig3qGKa3zjozTplyn6GV2uKJTUvJ+ZI3g7XIgIEt3juANrHN7L/f2vhW3d/GwFtF7MXov6j+PyrmO8P0myPrYnNU7tvDyMt68DBph9L6O8H0EuUq/8Z2AViKaX/gorY8+Qe3rP6Dy/ZfWXVDa+SX6f/ePqH7reZq/9HHSR+9DRBB1mNxB54NekRXx25mQJOyHCFAwPsP6DBNmGJdhOu5s61IC1yLMCwe41Qw6zvCNkqCKaPKwJ8Xta7Hs9o5UcR4y51fd3tJxezvFCESBIQosO7RVVsk18AqtNCdzy5HlHlQ7RRFmSxcUchsVQreNSOJBrEuvKXSHx9+h/rXvd+9/vcrCb/xKEZvdA+xhD3X6usYS813eNT/sGlM/gCafpLnnYNf4O+cWaTUTPnOs91zdWavN0sXJrrGhwxOQ5UVkuQkgigvBuwewEqz06c68J6sMEuQLGJ3HtBJyalxaHAO46fhyl+c05mapDw4ThGHp6i4pKSkpKSkpKbkhgihi4oEHufDWG4g50BVpHlUqd3r3toSqz0mkcHe3bUCOEFyx2NJXsSwlAc4rM42UxXbOQLU35ny3ijMBrY7LG8BpQOgTItckv0mXt6K0fEIkHnyEF08kRax56jN0i2PNBYP1Y3gW8AaMBnhZBJkDHUQ6/n1Rz8j0cS7vfhpd0/ZqZvRhxi//hCjbuJXZdvHx/Qn7+hz/8KU+5pJi/6ajUf5k7FP86fAzfFFeYv/l18lb68VFn+VMH3+L6eNvMXBogrFH76c+Mb7jizRKehQRpuljmjq7WOSITtLH+n7zYzQY0wYXsn5OmFGyUvTuSUqxu6RkR3IXCN4dMsm40PnvRtzeTZpc5vKGbm/ohGnrAYweQP1nUC4WUefmTZBrVDlKipfX8OY10I547o9h9CiyQz/IdKBO4899htYnnqL+1T8l/ukb67YJLs0w8Fu/R3Z4gsYvf4L8yP6u2wUlcCm44gNfYUX49jYgC6ogRe9v8Q7rM6zLML6O6UQ+Ge+wrk3o2tisTeATBEWxhdN7BwncGyEiBBYCa3Gq5Lkn80qaOqx03N7qaGee0ApRUDh9y+v1nY0qJJ3IcqdKmntyr1gjRKHFbvEvODfhGqF7COtT4mT+qu8mc3mG/t/5cvcxiLD4176IHxnc0n3dLBWtsE+vFDtneMP+DnrF+V7bnycPh0jq413jL5yY5md3NxiI7kzPsmsxd+p8V8GPCSyDe0aKH5bjy8PeuEQPsJ34codTTxJWMaoE2QXEp9hcmcz2spQI4/3RTcWXAzRmZxAx1IeHGRgbJ4zuTgdOSUlJSUlJSUnJ1hGEIRP3P8iFt99kBJi9cJ7Z82cZ3jtBVK3d6d277QiF4O2tkKonMQHWZ+vmgmN9Ee3M0VcJWGhlVEJLtMPjzFcQIZUaucTErkG6zuUd31QrvFQzPJ6YCK9KvNzHW3PcdsSa+wHQEG+mMVi8LKBmFuMHVkw5Yd5gcO4EcyMPrtxPTcjU+JOMX/4xYd682sNvC0eGcv6LZ+b5H17u58TsauFB21b5lzzDfUef4C8PvEbzjRO0pmY3fIyF0+dZOH2eysggY4/ez9B9BzHBlYH9JSW3AREuM8Bl+tnLPEd0iirrEx326iJ73CIXGYDmNNRG78DOllwNUdXey3Ys2TRnz57lwIGiR8d7773H/v37r3OPkmvRmJ/h2W//C5Jqscgct/Lr3ONOoziXo6pYG2CM2ZGC95Vsxu29jMMxw9Xd3huhTHV6fL+Bmoub2ykVRA9j9AGMvx9h50bp2PcuUv/Sd4nePH3VbdKHj9D4pY/hJsavus2VeLEd8bsQwVeqS9VjXY7xRey58Z3+3KoELqGSzBVC+l2Isur2dr4I0gqMEAQGK4XQHQWGuHR770hypzQzh/NFXHmWexCIg62NLF/GmZCl+m5yG9GOhzE+o5LMXfU0KO2Uwf/2fyG4NN01vvSrn6T9qQ9t+f5uCoVjeoz+rnOsciH4b3jXXuHqTp9Ek59jfvwYi+MPrIw32zn/r999hf/q8XOMxlu/EHGjnPja92jPLqz8PHx4ggNPHYMwKoTuao1eOCEYhEACcs1xeFpAFg8SJxcxeomwsUjb7+Kd6SPEQcDugQqHRus37urOMibPnKJveIT+sXEOPvIEQXh3uE1KSkpKSkpKSkq2H+8cF94+QXNhjrkL50nbLYb3ThDX7r6eqwrM25hELC0bUPE5oa4v+F1oZUwtpcw2U7xXRuo7P858HapE2ibwbUQ9oU8QPM5E5DfZy1sQqibGYgmNxRLg1JHp9qwXKxnOTqKSorKASobRPkSrndthZvRRWrXdXfczeZtdl39C4Nb3It5ucg//6kSNb5xZXxQ9GHn+xmML7EsuMvXKW8yfOlc4Cq6CrcSMPnSE0YePENZ2piGpZGcgquxjlnt1mpirvN/HH4bH//L27thdxFbomr1hGykpKblJ7h6H91rWur0HGGCX7tq023uSSaaZ3tDtvYwwhvVjWD6KuvlV4Vveu7pYLorKSRwnceYPEd3fEb4fQBi+TUe+PbgDe1j4zT9P+MYp6l/6LsHZS+u2iV59h/C1d0g+9AjNL3wUPzJw3cc16jDOgVsTfb5G/M7COllnMmU6zm+Xh+RBhThdpNKeQ7Y4Emq7EYTAFL2evHZ6e3sl67i9Ayt4rySZJzBCFBpCY0q3d4+jCs0sJ8sV5ws3t1MlNEIUbG1k+TLOBIXQbSLa8dB1hW5U6funX10ndLeffJD2Jz+45fu7WXax6wqhG1rm25w0z3eNqR9Gk4+hQGPwQNdtr7wzw1MjSz0pdLfnFruEboCh/bvABkWEeRz3hNANYMV2wsuVzDuyyhBB3sT6aUy6gPcDXG7sRtXcdHw5wNLsNGIMtaFhBsf3lEJ3SUlJSUlJSUnJLWGsZe/R+7n0ztsIwuzF88xeOM/Q7r1U+vqu/wA7CAFqPsNZIfCeRCyB+nXzwv5KSCNxuErITCNlKXH0V+4yWUCEVKrkEq26vDXF+hRDTmbiTtu8zaMoTd8m7vTxdqJEEmAk7MSaby1CiHV78GYKbwShgZclhAzRfgRheOZVnIlIK6trkz6oMLmrcHgHLtnivbw2gYG/eKzJ4YGc33mtj9Sv/nXOp4b/9ieD/IUHAj752XGypQZTx99i5o2T+HS9q9a1Ey7/9DUmX3yDofsOMPrI/dTGd9aabMnOQEU4ywjnGeIAsxzWaSJW15gUkCOfuXM7WLIhd9mnWknJ+5G7U/AGQGCBBRZkYVNu7xo1Dukh9rP/mr29u59iEOufxvI0yhJeTuDNm6icArlK/K2AylkcZ3H2G4juLkRvfwxhbENRvhfJjh1m7v5DRC++Sf3L38VOd/c1F4XKj44T//R1Wh/7AK3PPoPWN185KSiBT8GvjT4PVuLP86BCFtYI8xaKkAVVqq1pwjt8Ib5VGCmiy8M1bu8096QUfb9Da8i9Ijii0BBbg+kR0aukQBXSvOjJ7juR5ZlXrAjV0GK36fflTMBSbTfORLQrQxifU7lGdDlA9U9+SPzyW11j+b5xlv7Sz9Mr1RWRRuzX7kpOZZYTwT9G15yPVQVtfQEISerj+Kg7kvDFE9P85oFuQblXmD11ruvnoBLTt2sUggCioPjaAwRSJHPk6nDqSMIKohCml0CXsKlh1g0w1+y7pfjyPE1pLSzQPzpOEEYM7dl7uw+lpKSkpKSkpKTkfYgxlj1HjnLp5DsAzF++yNzF8wzu3kO1//rF/DuJSD2hejyOhglJxRJfEbUtUsSZJ7mjLwpYSDIqgSG8W+LM1+DF0rL9hJoUArXp9PL2rWItSqIbfszEpzjxVIhI1BOZkNjERdz5Bk7624lgMH4cYR5vpNPHe2mlj7dRGJt6kanxJ0nj1dZkLqh2Is1/gvV3Pk3xmYmUib55/v6L/Uy3V6PInQr/7I0+Ti4E/OUHYeIjT7D7gw8z++Yppo6/RTq/vv+4es/sidPMnjhNfe84Y48eZeDQBGLuvr/nkjuLF8NpRjnHEAd1hkPMEOC5yAB7+/bc6d0ruYLeWFErKSm5Ra4ieIch5i75oL/S7T2u4wwzfNvc3gBCH1afxLonUVp4ebsjfL8DcvWIIpVLOHsJ7HdBRzo9vh9AdG/vC99GSJ88RvrYUSo/eInaH/4As9Td10dyR+1bP6by3Cu0Pv1hWp94EqIbd94JYH2O9TkhLRTIgypp2EdeiYjSRXx9N1G6RKU9i7nLXN7LrHV7q2oRf+2VPHOYZbe3Kol4rBHiwBBY0ytmz/ctuVNamcN5JXdK4hwond+PbNt73YkthG4b0aoMYtR1hO6rv1/C109S+8r3usZ8rcLCb/zqTb2XtwSFe/QeLN39t86F/x+WZK572/Rp8BMALA4e6rrp/FSTCWbYW+u9NiSqytwVYvfQgd1IHIG1EN34ostWYIrlFHLNUJQUxQc1onQWTIOguUibPVxcGKcWBfTFAfuHa4T2xq83lmamMTakNjjE0O492B4R+0tKSkpKSkpKSnY+Ygy7772vEMBEQIS5SxdRVWoDg9d/gB1EzWVkgSH0jlQsobp1narDwDBUi/Ca0MoNC+2M0XrUM8XPtxURMqngJCRyTdQarGZYnxLhbsrlnWtOQz01E5P4jNAERBLi2PpYc0EQP7Smj3eAl3kws+AHCsF78gUmdz1FFq0mpeVhvePw/gnWr3dKbzcHBxz/+TPz/I+v9PHadPf89wfnK5xbDPjNJxYZrYaMPXKU0YfvY/HMBaZeeYulc+tTKQEaFyZpXJgk7K8z9sh9jDxwDzbujbl1yd1DLpZ3ZZy37TBH8ykuMEJZqt97lCtKJSVrCKaO82A0zVsM02CnfTBuIHhnd5fgDWzo9h7TMSpUNtx8rdt7VmeZlEmWWLpub2+hitVHse7RYqlf3u3Enb8Fcg3nsczg7bN4ngUdwPiHMP5hhN29LXwHlvbHniT50CNUvvU81W89j0m6L4RNK6H+5e9S+d5PaX7+Z0g+/CjchLixjABh3sK6lCTqJ6kM4fI2vuPyrrVnCPM7319oKxERokBW3N6582S5J6NwewfW4LwCruj3baUYNwZr5K6ck/YaqtDOHUlWRJWnna+BEeJweyLLl/FiadQ7Qnc8hFF/3fh/MzVL/z/+ErJmExVh8d/5Jfzo0Nbv9CYZY4wBuh0WDfsNTstPusbUjaHpRwBwNqQ1sLdrEefFE9P8wr7ulIpeoXF5mqzZ7hobvncfGAOV3llkClbiyyHzGXnUj/E5Np/CujnUDTDVGiB3dfYM3nx8eZYktJYWGdy1myAMGdxVVkWXlJSUlJSUlJTcXkSEXYfvxXTahRljmL98CfWe+tDdE38coMTe4Q1kYknFUtH1ho/BahFnPliF6UbCUuroi+9eecCLpW37Oi5vwZuA0Ldv2uWteBq+RcXE4MGLEorFSEiyDWKy0TriQpydxDCEsoA38xjtw2iFscmfMrnrKfJwNa4/D/uYGv8A45d/itmmXuPXoi9S/qMnF/m9t6t87WR3StuZxYC//dwgf/2xJR4azRARBg5NMHBogtb0HNPH32L2rdOoW++mzxYbXPjBS1z68asMP3CYsUeOEg/2r9uupORWSCXgdbuL2N9FWstdxN37aVZScqOoJ7zwQ/aHDfbT4JLWeM/0MetjrquM9gzvE8G7w0Zu7yGGMOvqVwu397IwfiNubwAhQvQYxh1Dcaicwps38HICpHmNOy7g7XN4+xzoGHZF+B65lcPeUrQS0frCR2n/7BPUvv4cle+/iFxxEWnnl+j/F1+n+q0f0/ylj5E+dvSWRJrCmTpHHlRWXN5xtkTDWMKsSbU9g9niWKg7zTq3d8c93M5cMSGXQuTOvGAFpBPpbIxgDYQd8dtIKYDfTlLnaaUO77UoQvCKbHNk+TJebNGj2xY9ugW9vtA9Pc/A//h7mFZ3gU7zlz5Gduyerd7lTRNpxEE92DXmmOWE/cesVelVDdr+BZYvX5f693d9tuW5J5u8wKGjd75ifSNmT3a7uiuDfVRHRwp3vbFXudf2EogtUjc68eWZsXgbE7cugTQxaZsFP8JsY4zRvpuPLwdYmpkiCEOq/YMM7d2Hsb3xGpSUlJSUlJSUlNxdiAjjh+5Zud4UMSxMTaLe0zcyeof37vZR8xmpscQ+JzEBoXrsFfNFERjvjzg366hHAY00pxJYAnsXLySsc3nLLbu82z7BiScmxK/EmkdkPsNvcUqhEK3p422ARbwsYsgxvs745Z9yedcHceGqkJxFA0yNP8HY5AuYDYogthsj8GePtjg84PifjveRuNW/v6XM8P/8ST+/drTJ5w63V9a4qqND7P/Eh9jz9KNMv/4u06++TX5FMTmAz3Kmj7/N9PG36T80wfijR6lP7NpWo0JJScmdoRS7S0qWmT6Bac+s/LhbmuyuNllwIaezAS65GrojRO/3l+ANdLm9Aw1Wentfz+19gAMrvb034/YunsoiegTjjqB8AZWzeHkDb94EuUaPWJnC2e/i7HcRP4HRhzH+QYTerDLU/jqNX/s0rU88Re2rf0rlJ6+v2ya4PMPA//T7ZIf30vjiJ8jvO3DTz1e4vNtYl5JG/STxAHme4MWQBxWq7VmirHELR7RzEBEiK0QWnNfinxZiq1K8ViKF6G2NQQyk4lkO0i4c4YI1hqB0f98UXpVm4si9knslyYvI8tAawmD7IstX9kcMS/VdK0I3KJXk2kJ39MKb9P2LP1ondCdP3E/r009v7Q7fCAqH9NC6+PKz4X9P84pzqqYfAb9r5efp/nu6MlhePz3PZ3bN0Iv43DH/3sWusaF79kFgeii+3HTHl2uGi0YI8jaWGUw6S+5HmVwapBLWbym+PG23aDcaDO3eQxBFDI7vuv6dSkpKSkpKSkpKSm6B0f0HkU6RqRhhcWYaVU//6Pgd3rPbgwGqPsebgBQlMZaaX+/kjQLDYC1CVWnnnoV2xkgt7Jmkqa1iI5d3sNzLW0Jyc2PzskwznDqqJibxSmRCIhORa06+xYKyYDt9vOfwRjqtGBsIOcYPMN5xeLtgtTA5jYeYHnucsakXkR4xlDy5O2VPvejjfam5uiagCP/qrTonFwL+2sNLVNYoWEG1wu4nH2L88QeYf/csUy+foDU1u+HjL54+z+Lp81RGBhl79ChD9x3CBGWRdUnJ3UopdpeULHPm2Q2HB2zGo3aao36OM3k/57I+8g2cw73F+1Dw7pBLzsXOf9dzexvMitu7RYtJJplialNubwDBIHoQowdR/1lULuDlTbx5A+Tqgoua8zjO48wfI3oY4x8uenxzc+64rcSPDbH0V3+J1s99iPqXvkv0xql124SnLjD0936X9KF7aXzx47iJm58oGvVUknlyG5NE/bTsCHG6iFYNaVij1prpiSrU7cIaWXEQK4pXUA/Oe7xCnrsVAdyYQgA3xmDdGve30BV9XsafXx1VSHJHO/NF3/Tc47wWvdNDg7kDL5wXQ6O2m9zGHaEbKsnc1dMO0oy+f/1NKj94ed1N+Z4xFv/tL/TUIsYoowwx1DW2aL7OWXmha0zd7qJXd4ckHiTq7y4WunT2Ip8fu0abiTvIwrlL+Kx7oWn43v0Qx3doj9ZTxJe7lfhyZyuoBATZeVSbmNQymVRpp7vYN3Lz8eUAi9NThFFMtX+AkYl9RR/FkpKSkpKSkpKSki1mZGLfyrqYiGFhehLvPQNjd4fzs+Jz2mKJvaNtA3KEYIMi6aFqSDPJGagos82URuqpx+8DEfBaLm934y5vj6fpW8SdWPNALIFYjBjSLY41FwziR4AQb8CoxcsCmDms84xPFg5vb1fnnEllhKnRxxibeumaxfPbyUSf4z/78Dy/fbyPFye7Cw5+cinmwpLlN59YZHe9ew3EWMvw0UMM3XeQ5qVppl45wfzJc8XCzhW0Z+Y5+50fc+GHrzD++AOMPXK0FL1LSu5CRHWDM0DJjuHs2bMcOFC4Kd977z32799/h/doB5MskL79LeT8jwjl6hVuuQrn8zqnswHa2uv1IopzOaqKtQHGmPeF4H0lm3F7L+PxzHBjbu8rURTlMt68hjevgmyif6waRO/rCN9HEW5OQNhqwjdPUfvSdwnfu7Th7SqQfOhhml/4KH5k8JaeSxGSqB8XxBiXEqeLWO+oJLNE6dKOyFnYalQLAdx5xWvhAF/+VF91fxfx5saw4v42K+7vQgTf5kTuniRzSivNCxe9K5z0iBAHhUP+TuARGvXdZEGlELpFqLRnryp02/OT9P/jLxFcnF53mxsbYv5v/lv4saGt3ekbINCAR/VRgjW1l45ZXoz+A9qytDKmatHmXwE/tjJ2YugD1CZWo8/nllL8S9/iseH1MWa9wMlvP8/i+csrP/ftHuXeX/wEhL1xHRFKsR+Z5uSak6ojq4wSuiWC/Ay2PU2rPcTp+UMM18YZrIYc29t/U67upNlg5vw5hvdM0D86xoGHHi3F7pKSkpKSkpKSkm1lYfIyk2dO0lyYZ/7yJar9Awzu2n1XCN6JWJZsSMMEgFDz2YbrJ+3Mc36uxVI7p5nljNbjbW/XdUdRJdSU0LcQ9QQ+weBwEpCbGy9KjiQklhAjhlCKNb3UF6lZW42XNt5MoZKhsoCKw2id3I4xuespvO0WkSvNy4xOv9IzgjeAV/jqySp/8HZ1XbJqNfD8xqNLPD5+7QKCdLHB1PG3mXnjXXx69W3D/jp7n36UwSMH7or3fMn20Q7AeE/sDZ/5ub96p3dnR7MVumYpdu9wSrH79tKYn+G5b/9zdlVb3Cvz1GV93M8yqnDZVTmdDTDve8eZtZ5S8F5BoZ9+dumuq7q919KixaTcmNt7/VMqKufwchxvXr92j++VO0UYvb/o7633IPRYtaFXopfepP7l72Gn5jbcRK2l/bEP0PzcM2j91hzruY1Io34UQ5QuEboW1iXUWtPYDSK53u/4ZQHcFe5vr7rq/hYpnN62ELiXncoiEBghMEX8+fvJ/e0VWmlO5pYjy30x6TVCGJg7NvFRhKX6LrKgShIPoSJU2nMbJxuoUvn+i9R/79tItv490X7qQRp//rNopbc+q474I4ww0jV2Mvw/c950u9J9+xOQfWj1Zwwnj3yBOF4Vin/6ylm+aH7Sk3+3eTvhtX/zja4K8/0ffYKRR+6/g3u1isVgxZBrjsPT9ikuqKNBlaj9NsbPYxqeU0t78P4wuwcqHBqt37Sre+q9MyAwtv8gu+45Qv/I2PXvVFJSUlJSUlJSUnKbWZye4vKpd2ktzjN36SLVvn4Gd+/Z8eKXAvM2JhFDy4ZUfE54lYLp6aWU+WbKdCNFRN4XceZXYtQT+SZGsxWXNwi5qeBvsJe3FUNFYgyG2IQIhkxz3DYkFCo53k7hJQFZwksboxXSYA9Tuz6Imu75W7VxkZGZ4z1nJHllMuQfvdJHM1//2n/x3ia/dKR1XcOGyzJm3zzF1PG3SecXr7pdddcIE888Tn3v3dHKoGTrKcXu28dW6Jq9YScpKekhPIbTDHJaB9ifLHIoXGTYro9FFYHdQYvdQYs5F3E6G+Cyq3JTVuAt5f0bab4OgUUWWZTFTbm9q1Q5qAfZz35mdZbLcvmG3d6CILofo/tR/zlUTuLNq3h5EyS9yp3Sjjh+HLSK8Q9i9GFED2x7r+ANMUL6gWOkjx2l8uzL1P7oWcxit4gvzlH99o+Jn3uZ1mc+TOsTT0F0c8JI4FJsa4Y06iON+8hdTJwustgXUWnPE6cLvfCq9AzLgnbQ6UWmKN6DU8V7JVfIsmKiJQJWBGOEfMX9XUyC7bL4bYuvdyLCeytRhTT3tDOHUyXNPblXrAhRZLF38HhXhG5bIYkHryl0S6NF3+/+EfHLb61/nChk6d/6DMmHHu65BYthHV4ndM+br60TujXfB9lTXWNv24PU4u5L2H3Nk0h3qnnPMHf6QpfQLdYweN/hO7dDaxDAisXh8Cipz1ExuLBOmE4iJsE2M2ayIVrJxC3Hl7eXlsiSNiMT+4mqNfqGR2/vAZWUlJSUlJSUlJRskv7RMcQYLp98BxHD3KUL6MXzDO3eu6OThwSo+wxnIwLvScQSqN9w3WS4FtFMcwYqITPNlFbmqUY9ZrjYYrwY2qZOoCmRb+FtQOASQt/CS0B2Ay5vp56mtjt9vCE0llACDEKmW2vWEAKM24WYoo+30QAvDcL8LGOTwtT4B1GzOo9u1fcwq47h2dd7ak3t0fGMv/VM0cf73FL3vP9L79Y4vRDwG48uUQuv7t+0YcjYI0cZffg+Ft+7yNQrJ1g6uz6hsnV5hnf+4FsMHN7H3g8/RjzUo4sKJSUlm6IUu0tKroow6WpMuhoDJuFQuMgu29ywemzIpgzZKZo+4EzWz/m8juupvt6l4H0la3t799PPuI4zzPBVe3uPMsqojt5Ub+9lih7fRzDuCEqGyts48yoqb8PVHktaePtTPD8FHcD4hwrHN7vvvPDdcW+3n36Y6rd/TPUbP8Ik3TFBpp1S//L3qHz3pzS/8FGSDz8KNxF7KyhxukiQt4te3pURwmwJrQhZWOu4vLe2H9JORRCsAYuwHBKgqjgF7z1OIcs9Re3yGve3MaQGbN5xf8OK8G1NEe3dY/rppsmd0swczntyVwjdAJXAEtg7e1CK0KiNk9sKSWUQL5Zqe3ZDoTt45yz9/+TL2Ln1lcr5/l0s/DtfxO8aWXfbnSbQgEN6qGssZ5q3gt/pGlMN0PYX4Irz8vzgIWprfj57YZ6n+2a2aG9vndlTZ7t+Hjw0ga1EV9l6ewkkQFGcejJ1eDwuHMT4FOsvYdI2Lq9wubGXwVqV0Br2Dd9cWoeqsjgzRVytEddqjEzs3/GumZKSkpKSkpKSkp1N3/AIxhguvvMWYgyzF84xe+E8Q3sndvR6Waie0Hu8cTRMSCqWeIM5pTEw1hdzwbWphpalJCcKzPsrzhxAhFxivISEfrmXd471CZFz5CbGy+aKABSl6dvEJgIPTjyRhBgJO7HmW3gYy328NcKbGQwhXuYJ8tOMTinTY0+jZvU4mn37EPUMzb15p1cYu9hV8/yfnp7nH7/Wx/MXu4sNXp6K+Ds/HOQ3H19kX/+112VFhIGDexk4uJfm5RkuPPcSjQuT67ZbOHWOhTPnGX3oCLuffJig2lupeCUlJZujjDHf4ZQx5reXxvwMz377X5BUizqQuNVddVeRnIPhIvuCJQK5+lsnU+Fs1s97eR9JT/X1LiLNvSrB+z3SfANutLf3LLNMyiSLLN6SoV9p4+VNvHkVlVNwjb+t1TuNYv3DHeG7N8QsWWxQ+/pzVL7/IuI2jsjKd43Q/KWPkT529KadpgqkYR95WMX4nDhZxGhOnMxTSeZ76gJ9p7Ds/lZVnO8I4Z3Lg+Ue31bAGIMVVgQqYwohPexEnxvpbQFcFZpZTpYXx5nmHteJLI/uYGT5yv4BjVoRXd6uDOIloNKew15ZAe491T9+jtrXnkU2uIxrfeIpGr/8cQh66fNnlXv9vYzS7eh9O/xbXDKvdo359mcge6J7u2SA+IlPdv2uLr/6Ck/Ku1u2v7dCsrDIm1/+btfY4S98jIH/P3t/HiVXdt93gp9771tiz8h9xVbYCkBtFFkLi6RFSaRES5Q0smVbliXLnnPcdo/7j3a7+8yZmT5n+q+Z4/bS7dPdtsft9tK2bGuhF4mSqIWiREm1sKrI2oBCAVWFPRfkFhn7W+6980cEkAjkggSQCWQC95MnDxAR9728LzMiXrz7/X2/v/3jD2lGq9yIL09siunGlxvpk4b9hPFlpFnBr7WYbo5Sae9nXznLaDnLeN/m58eNaNWqVOZmGZzcT3FoiKknT23zETkcDofD4XA4HPdGq1Zl9qNztBt1lqev4YUB/eOTSLV3Xc4aQcULaQtFIhR5E29oy5mvRlTbCQuNGF8KyrndUZz7sPBMRGDaCDSejpGkmG4v77sRUjyhyIgQgbgZax7bBLNBrPx2YonRav6WPt4JcXCQxaEX4bZ49kL1In0rH+269TRr4fcuZ/jVczmM7Z1dqCy/cKrO82MbpGauuz9L9dI0M6+9u2G8uQx8Rj51gqGnjiK9vfv6d+wMLsZ8+3Ax5g7HQ6ZtPc7F/XwS9zHp1dnv18jItVVkvrAcCqoc8KvMpjkupSXqZjd8UOw4vNEpqU7xnMO7h/t1ey+ySLpJn/eNEGRQ9lmUfhZLHSM/wIjTWHltk40W0erbaPVthBlH2lNIcxLBw4vcscU8jT/7Q7S+/9PkfvOPybz1wZox3vUlSv/8P5McGKfxE99PemTfXf8cAYRJHU+3iYISrWw/ftLEQtflvYSn17YecGzMDfc3CLw17m+LtpZEW6y+EX/eEb+V7ESgx8J0Ivvp3NdxgO8e97e1kGhDK9aYWyLLpRBkfbUrqtY7QvdwR+gOu0J3tFbolpUahX/9GwQfXVmzD5PPUvvZP03y1OEHNOu7p8/2rRG6l+TX1wjdNj0AybNrtv8kPMzJW55UUZzyFBd3ZK7bwfInva5uLxtSnBp9SLNZRdKJL09tJ7486joMtF9E6TrSVJDtlLbJstgYZ6gY4PuK0eK9Cd3WWupLi2RyBYJshoEJV5zpcDgcDofD4dg9ZIslxo8+ycxHH9I/OcXy9DWWpq8yMDG1ZwVvhSVjNEZCIhSxUGQ26B09UAhppZpSxqfSjGknmoy/N497O+g4uW91eSuUifDv0uWdWk3DtsnJkMgk+NIjED4a/QBizQOUHsPIRYwUCBoE8UUGFmFpsFfwrpcOIq2mVL2wo3O6W4SALx9os6+Y8k/fKVJLVuccacE/fbfIpWqLnzrS3FKIpBCCvoOTlPaNs/jBx8y9dQbd7l0/NHHC7Ovvsnj6I8ZefIby4X0P3RjhcDi2hnN273Gcs3t7uZOz+3YEllHV5IBfo6Q2ryRb1CGXkxILOsPD7+vtHN5bxbMegwwybIfJsnl063a6vQEsyxh5puv4Xhuzs84GCHuwE3Vun0TcYb47jbo6R/7Xv01w9uKGY+ITh2j+6OdJ94/d08/oCNx5Ei+HsJowrqJMShjXyLQriB0NiHr8MLbb/9sYTNf9bbmD+1vc6P/dcX+rByyAp9rSSjTaWFJjiVINFnxP4qsbEv3DxQLN7BCxn6MdljHSIxOtrInmD97/iMK//Qay0Vqzj/jofuo//2OYvsIDmvXdo6ziKfsUAavFXwkLfC/4r0hE++Z91gbYxl8BW+rZ/mrDZ/nJH6K/uBoptnzlKk/X3trxud8LVqd8+Ot/SNxcPbahp44y8blPPcRZdfCFB1gSq0lMSkqKVhm0XyBMziPTFK/R4pOVI6S2zERflv0DOQYK91a411ypsDJ/naF9BygNDTNx7MT2HpDD4XA4HA6Hw7ENRM0mM+c+oN1ssDR9FSkVA5NTqF2amnUnDFDxMkRIIumRMwlqg3WSRqSZq7aptmKi1DKYD5C7oDD8YeOZTi/vtS7vAHsX6wkZGeLjoYTE77aTih5AOz6LxcoVjKxiiTCiRjt3gOX+l9YkLvZVzlGsXd7xOd0LS23JP3q7yKXq2tfiiYGYv/ZMnWJwd2uAOoq5/vZZFt47h90goTI7PMD4S89SmBi+p3k7Hi2cs3v72Ald04ndexwndm8vdyt2r2LplxH7/RrDqrWpkFM3HpeTEjNpHvNQRZZewVtISeAE742x3NHtfSstWiyIBSpUaNO+b+HbcB0jT2PkaRArW5hvtz+4eQppjyLw728C94F/7hK5X/s2/pXZDcfEJ5+g+ZWXSQ/cW7SvEYooLGGkh5+28OMGyqRkW4v4un3nHTjuCWstxoK29qYD/Manihvu744ILpCSm8KykgJPiZsi+E5cP1sL7VQTJZ2o8jg1aGPxpCDcBZHlN+gI3YPEfr7j6JZBx9F960VvkpL/tT8k++3vrt1eCpp/+nO0vvRip+HaLuagOcgwqxeIFss5///OgjzXM860vgLpU2u2/9rSE7z4+ad77uv76A8pxpUdme/9YWlcm+PjP+wV4o/8mS+RG364rSc8FFII4m58eWTiTuFQZgjfLOIlc6impt4qcXHlABN9Gcr5gGOjxXsqVLHGMH/5IkEmS3lsnMnjp8gUdm9RhsPhcDgcDofj8SZut5g+d5ao0WDp2lWEhP6JKTz/4a2r3A8t4dFQHg3pI7HkzMZrnXPViHo7YaEeE3iCvuxuSKl8+AhrCEwLZWOk1Xim4wbWMkCLrRdC+MIjFAESQSADBBCbznXZTmNEEyMXsSLBiCrN/H5W+l9aM668fJZC/eo6e3j4JBp+8WyeP7m2NnFsMKP5L5+rcaC0eR/v9YhrDWa/8x6VjzYW+ksHJxl/8RnC8sNL1HQ8fJzYvX24GHOHY9ciWDYZlqMMOZGw368x4TVQ6/ReLsiUk+ESR4IKV5IiV5ICCQ8jGmhtpHmcJE7w3ggBNWrURG1Lbu8sWfbZfexjH23arNgVKqJCjRp2Kz25b0MygjQjWPNFrLiGEacx8gyI5gbzNVhxHi3Po62PtMc7Mef2CcQDfr4lxw6w8rd/juDtc+S//m3UQmXNmODMJwRnPuk4vb/yMunBibv6GdJqMu1lUi9L7OdJMwFBXMfkRwiSBpnWEtK5vLedm3HmCLg9/lwbtIUkNcR03d9CdJzeSpLozm3QCAGeFHhSoLoO8PvRouNbIsuT1JBoC0KQ8RXeLqpMt0CrK3RHQWldoVvNLVH8V7+Od+36mu11f4naL3yV9NDkA5z1vVGypR6hG2BR/doaodsmhyFd28v5essjO9Z7nK1ancldKXQDScLy5d4Cn7BcJDvU/5Am1EEikEKSWo3FEnefa8bLI0hR6Twi9RCp5mptknyoCH3FRDl7z6/JZnUFnaYUBobI9/U7odvhcDgcDofDsasJMlkmj59g+txZBqamWJ6+ytK1KwxMTOEFe0/8zdiUtlVkjKalPFIE3gbrI4OFgHaiKWY8VloJGd8Qem6N0ApJpPJ4xsc3LaxSeDrCMxFS6C27vBOboq0hK0MiE+NLn0D6pDYl3SBifruQNofQPlotIJHkG9NY8QbV8vM94yr9TyKMJt+c2dH53Au+gl842eBQKeXfnc2jb+njvdhW/J3v9PFzJxq8PHl3rQ2DYp79P/QSQ88cY+bVd2jMrE3XrF68RvXyNIMnDjP66VN42XCdPTkcjoeJE7sdjm2maX3OxgN8HPcx5dfZ59cIxdoKvUAYDgcrHPSrzKR5LiVFmvZBV4k6wfteSEXKXPdrK27vTPdr1I6i0VRtlYqosMIKibi7yCKBQNgppJ3Cmi9jxcWO41ucBbFBlL5IMOJ9jHwfbBZpTiDtKYTd9+AinIUg/tRx4meOkHn1XXLfeAVZWyvUBx9cIPjgAvHxAx3R+4mtV3UJwE9bKB0TBUWiTB86bWMQJF6GbGuJIF0b/+zYXoQQeAKQHfXb0ok+N9Z2osQtJMmN3t8dwVtJQdIVzkX3/bLj+u4I454UXWF8c4y1NCNNejOy3IC1+Erie7sjsvxWWpkBoq7QrVVIGN8SXW4t4evvU/jaNxHx2veJ6Nlj1H/mR7C5e+uh/CCRVnLQHuy5L2KOj9Uv9txnTQYb/TDrRWH83vV+Pvtsuee+gdrFXfYX7WJSTJKwcm2u5+7+owceeqKAEgrT/UpNR/C2SLSXxdfXEEahoibz7QNo6zGQCyllfYqZe7tkMMZQX14iWyzhBT79rle3w+FwOBwOh2MP4IcZJo+fZPrcWcTEvpuCd//EFH64t0QuAeRMilECaQ2R9FAmWfdaypOCwXyINpZ2oqm2EoYKwUO/jtktpDJAC5/AtLAKpPXwTISvm12X953XdQ2GpmkRyhBMJ6nQFwop5M1i5J1C4KP0KEYuYaWkWJ/Biu9R6+tttbU8cBJhDbnW3AZ7engIAd+/L2KqqPkn7xSpRKtrsYkR/IvTBS5WPf788QZ3W6eRGx7giR//ItVL08y89i7xSq13gLEsnv6I5fOXGPnUCYaeOor0Ht/e9g7HbsOJ3Q7HDpGguJD0cSkpMeY1OODXKMi1H1qUsEz5dab8OvNphktJiWUT8uD6ejvB+565xe2trGKIoTv29lYo+umn33bcfQ3boEKFFbFCg8Zd/dkFEmGfQOonsHwFKz5Gy/ex4iMQG1SEihZGfRfDd8EWkeYU0pxCMPpghEClaH/+U7SfP0X2T94m+803kPV1RO8PLxF8eIn42H6aX/kc6eGtCyTSarJRhURliIMCaSYgTOrYnCJJmmTbS0i78xFRjg4CgZId97d/u/vbrLq/b/b+vuH+lpJYgkptdz+3xp93BPAb19vWQpRq2onB2I7IrY1FSUHoqy0J5Q+aVqafOCgQByW0FxJGVTzdKVgR7Yj8L/0ume9+sGY763s0fuoHaL/87Jr+WruVKTtFyOqCkMXyif8/kt5WoGOjL4PNr9l+OVLUS1P4t1ypGmMo167s3KTvFWsgSaldX0bHvfGA5aMHHtKkOnidDAYSq9FWk9KZn/YLSBp46Qoi9knTAnONMqWMj+8JJsr3XlDRrCxjjaE4MEShf5Awl9umo3E4HA6Hw+FwOHYWLwiYOH6CmfNnEXIfS9dWBe8gs/uLjm8lsBqv6+5uKp9ESIIN1kUKGUU9Umjjs9SIqbVTStm9GeG+E1ghiFQOz3g3Xd7KRHgm7rq8wzu6vC3QNhFGGEJ8rDX40ieUAYlJMDuYTCiQKDOEoYqRUKrOYPGo993SMkwIlgZPIRY02fbCjs3lfjhcTvnvX6rwT94p8lGl9/n5rSsZrtQUf/3ZGuXw7n6XQgj6Dk5S2jfO4gcfM/fWGXS71ylu4oTZ199l8fRHjL3wNOUj+11BiMOxC3A9u/c4rmf39nLvPbu3gmVQtTng1xhUm/cQrmqfS0mJOZ3bUgzOds1vtYe3QkjlBO97wUKBAoN2kDJlArYecZWQ3BS+V1jBrJMIsLUptDHiQ4w8gxUXYCux6XYQdVP4foD9ZKOY7J+8Q/ab31lX9L5BfHR/x+l9ZN9d7d4ISRwU0SpApRFBUu/08m4vEySN+529Y5uwdHp/W9Nxf9/oAw5dAVze6P8tu+7vzvuilB0BXOtOv/BEd2LLERB6uyuy/FZaYZkoLBEFRVIv0xW6OxdP3qUZiv/q11GLK2u2S8eGqP3CV9ETw2se260UbIET9kTPfXPqa3zk/eue+0xyHNo/vu4+fvlimQPPf4bJ4VUhXFWmGZ9+Y/snfF9YSGIwlouvv0/16moVfH58mMM/8QMPbWYSgSc8Upuib/bpthjhkWZKBOllZAJBvcrl6klqic9Uf5aRUshU/70J1EZr5i9dIFvsozQ8wv5Tz+DvsUVBh8PhcDgcDodDpykz58/SqlVZnpkmjSP6xycIsnurkDNBUvUCWsJDC0F+A3c3QKotV5dbNOKUaiuhPxcQuDjzNQhrCWwLZSKkNd1e3mbLLm8AhSQjQySSQPpIZDfufGdjzQGMaGHkIkYkVPsOUC892TvAGobm3yYTLe34XO6V1MAvf5jjW1fWGo/6QsPfeLbGkfK9r+/rKOb622dZeO8cVq+/Tpsd7mf8peco7KG1Gse94Xp2bx+uZ7fDsacRLOosizpLQcQc8GuMeQ3W02JKKuFptchRU+FyWuRaUiDdICJ7O+e36vDWeECc4ATvu0VAnTp1UeeSvUSWLGXKlG2ZPPlN3dM+PsMMM2yHMRhqtsaKWKFChUhsvd+MIIOyz6L0s1jqGPkBRpzGymubbLSIVt9Gq28jzDjSnur0+KZ4N0d/94QBrR98ntbnnyPzyjvkvvkdZHWtCB2cv0xw/jLJkX00v/IyyZF9W3K1SmvIRCukKiQKirTUAGFcx2YlsZ8n21pEPYALCMfmCDpiNkrgrXF/rwrZVt+IP+/2CpcCKUXX2d2NLJcC35O7tqq2FfYRhaVO6sCtQrexZL/1Brmv/xHCrL2Aar38LI2f+gEI9k5FvbSSQ/ZQz31tZrig/n3PfdbkoP2ldfdRTyRn4iFeHu51fJerl7Z3stuBTsEYUgO16d4eXw/d1X0zvtySmBTbdQrooICyK6gkRrahGU9RiTwGCz6+koyVNk4quRONylKnAGxggOLgkBO6HQ6Hw+FwOBx7EuV5TBw7wcxH50AIKjPTLE1fo398gjC3Nplqt+JjCIzBSE1D+sRCEW6wHuIpwUDex9hOnHmtnTCYD/ZMutiDwgpBJHIofALTxCq56vJGk6o7u7w1hqZpk+nGmntS4QsPKSTJDseaS5tF6DGEWqC0cgUrfBrFw6sDhGRx6FmGFr5HGFV2dC73iifhZ080OdiX8m/OFEjM6u97JZL8vTdK/MyTDb5/Krqnp68KA8ZffIbBk4eZfeN9KufXrkW05pf55Ne/RengBOMvPktY3uG1VIfDsS5O7HY4HgJ1G3A6HuSjpI8pr84+v46/jos3IzXHggpP+CtcSwtcToq07U6+bJ3gva0IaHW/ZsQMnvXoo4+yLVOihLfJW7BE0kcffbaP/eynZVussEJFVKhTx27FrQ0ICijzPIrnsbrS6e8tT2PF/IbbWDmDZgYtfw9hD3Sizu2TiE3i2e+bwKf9xc/QfvlZMq++S/b3XketI3r7H12h73/9JZLDUzR/5GWSY/u3dLHl6QjV6vbyDoskOiQUklSFZKMKQVzbnb1/H2NWe3+v/mWM7bq+tcFYiNPVcC8lBIGvULvUzQ3QDkpEYR+xnyfxsgRRDU9HiGqD4i/+JsHZi2u2MdmQ+s/8CPFzxx/8hO+TCTtBhlWB02L42P87aNF7wW7aP7zh+8s3Z4ucOnJbdXTcIlO/vu3zvS+shjQF5bFyeRp7S8GCUJLyEw8veccTCguk3fhyTWdBy6gQqzRetAQ6i4ybTDcH8RWUMh6jpQyeurfXk05TGpUK+XI/yvPpn5jcxiNyOBwOh8PhcDgeLFIpxo8eY+7jjxAIlmenWZ6Zpjw6TqZQeNjT2zI5kxBLSWA0sVD4Vm9orSlmfBqRRme6ceaRpphxUsJ6aOnTFiUC28ICxvp31cvbYmmZNoH0wQQYYQiEj5QBsYl3MNQcBB5SjyBkhXLlAlZ4NAurxdpWKhaGnmNo/ruEcXUHZ3J/vDwRM1lY4R+/XWSxvdpHW1vBL35Q4MKKx8+daNxsr3e3BMU8+3/wRYaePsrMq+/QmFm7rlq9OE318gyDJw4z+umTeFlX8O1wPEjcGcrheIhE1uPjpMyFpMREt693Tq6NVvGE5YBfY79X47rOcikpsWLCdfa4HTjBe6dIRcoiiyyKRYQVFChQtmX66Nu0zzdAtvs1ZsdISanaKhVRYYUVUrG1OB5BGWU+hzKfw3D9pvCNWBuX3N0AKy6h5SW0/QbCHu4K30cRdxHPflcEPu3v/3Sv6L1SXzPM//gqff/ol0kOTXac3scP3FH0FlgycZVUB8RBkVZmkCCpgxDEfo5caxFltrN1gWO7udHP25OdqxOL5YamKCUPpu/8PdIOirQz5Y7Q7ecI4jq+buOfvUDx3/wmsrY2xj85NEHtL38VM9D3EGZ8f+RtnjHGeu6bVb9KRV7suc9EJxH6yLr7aGvBH8yV+Bt/qr/n/uLKlV32l7YQp4AEz2P50nTPo6UDE6hwh94z74DsfqU2wWJJbOc9zgLaz+DpJWSqUFGDSvwEzcQyWgoJPcVQ4d4/Z9SXFxFCki/3UxoewQ926jOLw+FwOBwOh8PxYJBSMXb4KHMXPgZg5fosldlp+kbHyBZLD3l2W0NhyRiNlRALRSQU2Q3c3ULAUCEgSjX5wKMWJWQ8ie/izNdl1eUdEJgGRkk8E+OZGEVKojJ3dHnHJsEIQ4aQto0JpU8owx2PNRdIhBkAG9C/dB4rfFr5idVjkx4Lw59i+PpbnXW0XcqBkua/f2mFf/pugQ+Weq/BX5nOcK3u8VdP1Zks3vvvMjc8wBM//kVql2aYef0dokqtd4CxLJ7+iOXzlxj51JMMPXUM6d2jwu5wOO4KJ3Y7HLsAg+RqWuRqWmBYtTjg1+hXa2OrhYBRr8Wo16KiAy4lJa7rLGz7sr8TvHcaKyw1atREjStcIbQhZcr02T6KFJGbxNZ7eAwwwIAdwGJp2AYVUaFChRatLT0dJCNIM4I1X8SKaxhxGiM/ALFBH2thsOI8Wp5HWx9pj3X6e9snEOzAhzbfo/2nvo/2Z58h89p7HdH79g+QgH/hGn3/+FdIDk50RO8nD95R9PZ0jGotEQf5bpR0SBjVqBUCMu0Vwri6y4Q0x0YIBGoPvCVFQZF2pp/Yy60K3VGd3G/8MblvfmfNeCug9eWXaH7lc+yJA7wNYQWH7KGe4oOWuMJF9Us946wuYuMf2PD19oezBfZNlslne6vg85XL2z3l+yNNAQNBSNRs07ze28/sYUaYr8aXQ2KSm/HlxsuCjPDbdUTqY+N+ZpshmUCSCzzGy1nu9XSfJgmtapXCwCDK9ymPTdx5I4fD4XA4HA6HYw8gpGT0iSMIKTtrD0JQmZvFWkuutDeKlLMmIRKK0KREykNrg9rAO+x7knIuwNiIdiqpujjzO6KlR1uU8G2rc9t6+CYi0E3SLbi8U6tp2BZZGRIZ8KXXiTVH3Cxe3imkLSB0wMDiORaFop0bvfmYlT4Lw9/H8PW38NMN1g53AYXA8l9/usZ/PJ/jGxd7jUWXqh7/w6tlDpZSXp5o88J4TN6/e9+8EILSwQmK+8ZYPPsJc2+eRrd71/FNnDD7+nssnv6YsReepnxk/65tt+dwPCo4sdvh2FUI5nWOeZ2jJCMO+DVGVXPdz5BlFVNWCzSNx+WkyHSaZ+PwoXubixO8HxyRiJhjjjkxh7SrEeZlyvhs/EFY0HGIF2yBKaaIianYChVRoUYNs048/u3bCzuFtFNY82WsuNhxfIuzIOINNkq64vhpsFmkeRJpn0LYfdvvrPU92l/4FO3PPk3mtffJ/u5r64veF6fp+ye/SnJgvCN6nzi06cWXwBLGdbw06vTyzg7gxw1sRpD4ebKtBbwd7o3keDyI/AKtTD+xlyUJ8vhxg3B2huL/+XX8SzNrxutSnvrP/xjJsYfb4/l+GLfjPWkVFs1H3t/BiN7qad36EnKDVIvEwO/OlPjRHxjsuT9oLOAlu+jC2uhOr27PAympXJnteVhlAor7xjbYeGfxhIfF3hJf3jkfWCTG9/DSRUgzqKjF9fgAqbEMl3zyoUc5d++94etLiwgpyfWV6RsZw/P3Tp95h8PhcDgcDofjTgghGDn4BFLKjt4tJSvX57DGkC/333kHDxlJR/A2yiexlkgqcpuk3PVlfRpRSl8WFhsRjdiQD51TdTOsEMQiRypCQt0gvkuXt8XSNG1CGYABLQyB8JDCJ9rhtSpBgKdHGZr/iPkRRZQduvmYUQHzI9/HyPU38dLWjs7jfpAC/uyxJgdLKf/idIFI9/6uL1Y9LlYL/PKHlmdHYl6eiDg1mNy110AoydCpI/Qf2c/1t8+y8N55rO5d90jqTa78/ussvHeO8ZeepTAxcr+H53A4NsCJ3Q7HLqVqQt6LQs6LlP1+jUmvjrdOn+acTHkyXOZwUOFqUuRKWiDatr7eTvB+GBhhWGaZZbEMFvLkbwrfefKbbhsQMMIII3YEg+mJO483Eq+7CCTCPoHUT2D5ClZ8jJanseI8iA0ifkQLo76H4Xtgi52Yc3MSwdj2Ct+eR/vzz9F+6WnC77xP7ndfQy2t7RXkX5qh7//3NZL9Yx3R++QTm4reyiRk20skfp4kyKO7Lm9dGCeMqmSiFcSOdkdyPMrEfp5WdoDEy5IEBfykSeE7b1H4pd9Btte+HuOTT1D7S38aW8g9hNluD1mbZZzxnvum1b+nKq/23KfbzyDsoQ338yfXCxg/w5HJ3jjA3eXqtpAknQx95WN9j+WPrvSMKD+xD6ke/EKQ7OaDpDbFYont6oKIDkKEiPDbMaSCJJ5goQn5UBEqxUR587Yam5HGMe1aleLQMJ4fUB4dv/NGDofD4XA4HA7HHkMIwfCBQzc/60shqS7MY42hMDB4h60fPhmraVuP0GhayiNF4G2w9iEEDBdDri23yAUejTgh9CSeci7VO2GEoqWKBLYN9Lq8tQxI7+DyjkyMFoYMAZE1BNInI8NO3Dmbm1vuB4FCmSGG5y8wPyKJMgOrx6RC5rsOb0+3d2wO28Gnx2LGCiv8o7eLXG+uvS5PreCtuZC35kJKgeGl8YiXJ6K7jjlXYcD4i88wePIws2+8T+X8pTVjWvPLfPLrf0DpwARjLz1Dprw3Wh84HHsJJ3Y7HLuctvU4F/fzSdzHpFdnv18jI9eedH1hORRUOeBXmU1zXEpL1M129Ah1gvdDRUCDBg3RYJppfOvTRx9lW6ZECbVJhLhEUqZM2ZYBaNomK6xQERXq1DeNOxf4CPskUj+JpY0R5zDyNFZcgHWKLjob1TDqNYx6DewgypzqRJ0zsP74e8FTRC8/S/TCU4RvnCb3O6+hltb2HPcvz9L3T/8Dyb4xWl/5LPGpwxuK3gIIkgZKR51e3tl+/KSJBZJuL29Pr20r4HBsRuznaGYHSVSWOCgQ1Cv0//tfJ/P6e2vGWqVo/MT30/7+79vTcXA34stvbcPQEBe4pL7WM87qPkz0BdQG5xBt4RvTJZ49PoCUq78PoROy1el1t3koJF0B2ffBk7RW6sQrvckTDyPCXHAjvrzj5Y5vqfw3QmF9QRBVsWTwW5YrURGLoT8XUs4F9+XSqC0uIJVPrlSmPDaO8tylhsPhcDgcDofj0WVwaj9Cdj4/CymoLS1iraE4OPyQZ7Y5AsiZBKMEyhoi6aFMsuEyUeBJ+nIB1lqixFBtJwzk/D19/frAEIJYZElF0OPyViZGkpLIECs2Xl9NbUrTmm6seYIvfQLpo21KsqN9vAWe7mN47irXxyRxWL75mPayzA93HN7KbG6sedhMFjT/rxdX+MbFDK9cy7ASr/+7rsaS37mU5XcuZTlQSnl5IuKFsYhCsHUDTFDMs/8HX2To6aPMvPYOjen5tT/n0jTVyzMMnjzM6KdP4mUz93xsDoejF7cC5XDsEVIkl9ISl9Mio6rJAb9KSa2NrpECJvwmE36TRR1yOSmxoDPcX1/v9QVvX3koz0UXPUgSkbDAAgtiAWEFRYqUbZk++siw+QekXPdr3I6TkPS4vvVGzm1AkEHZZ1D6GSx1jPwAI05j5bWNf5hYRKtvo9W3EWYcaU8hzQkE21S56Cmizz5D9MIpwjfOkPudV1GL64jeV2bx//f/SDo1SvMrnyV+6siGF2PKpGTayyR+jsTLk6qQMK5Rz48SxDWy7YpzeTu2ROxlaWaHSFWGOCyQuXCBwf/jl/DmltaM1cP9VH/hx9H7RtfZ095ijLGe9AlDykf+/4i9pZ2CtYKk8cN4cuP3qzcWcixGHs8d6y2UyVWvIXfwYv6uMGknwtz3O87uMGT5rQ96hgSlArnRB+/qWI0vN6Q27an416GH1BEqBhGlNPQklUjTl/UJPMFE371faCdRm3aj3okuDwL6Rvb+c9rhcDgcDofD4bgTAxOTN80gQkiqi/MYYygNjezqHr2hNbStITSapvJJhCSwG7uFy1mfZpRSylqWmzHN2JBzceZb5obL27cdM8VNl7dpoaVPKjY2LBkMDdMiI0MwnX35QiGE7Clu3gk8k2F0dobZcUUSFG/er/0c8yMdh7fa5W0Ac77lzxxt8ZOHW5xZ9PmT6ZB3rgekdv3X56Wqx6Wqxy9/mOPZ4W7M+VCCt0XPV254gCe++kVql2aYef0dotvbMVrL4umPWD53kZFPnWDo6aNIVyjucNw37lXkcOwxLIJZnWdW5+iXEfv9GsOqta5+N6giBtU8deNxOSkxk+Yx9yx63yZ4W0gsaGPwfB+5ez+/P7JYYalSpSqqYCFDhjJl+mwfRYqbxoj7+AwyyKAdxGKp2RorYoUKFdq0N6yNEBRQ5nkUz2N1pdPfW57Biusbz1POoJlBy99D2AOdqHP7JGKDXr13hVJELz1N9PxJwjc/6IjeC5U1w7yrc5T+2X8inRym+SMvEz99lPWetB2Xd/NmL+92poyftrAIUi9Htr2In+7umCbHwyXxsjRzw6QqJAoK9P3eH9D3td9GpGtF2vYLp2j82S9hM9uRwvFwydgME3ai576r6l9TF719yU30fQg7uWHRibHwW9dK7B/NM3ib8JrbLRHm1kCSglQgPQhCrIXKx70R5v1HDzzwxS2FRACJTbEYErvae88ogZUCr9XCWg/ZyjHX8pDSUM76DBdCAv/eE1tqi4t4fkC2WKJ/fAIp3cKXw+FwOBwOh+PxoDw2jrgheKsbPbwtfSOju1rwzumU1JN4xhALhW83XjWUEoaKIXHFkPU96nFC6EuUWxDcOkKQiAxa+AS6iVUSzyZIExOg7+jybpsILQwhPtYafOkTyoDEJJgdNGcooxidmWV2XJEGq23XUr/AwvCnGL7+XaTduO/7bkFJeHo44enhhEYieGM24JVrIReq68fJayv47vWQ714PKd4Scz61hZhzIQSlgxMU942xdPYTZt88jW73pkaaJGX2O++xeOZjxp5/mvLR/bv6/cLh2O04sdvh2LMIlk2G5ShDTiTs92tMeA3UOhHTBZlyMlxa7eudFEg2ib/e7GfeKnhLawCPJDZ4zuX9cBHQps0ss8yKWZRV9NF3s9e3t8nbvUBQokTJltjHPtq0WbGduPMaNewGseWCMsp8DmU+h+F6V/g+DWKtw/rGHK24hJaX0PYbCHu4K3wfRXCfYp9SRC8+RfSZk4RvnenEm88vrxnmXZun9M//M+nEMM0f+SzxM8fWFb2l1WSiCqmXJfbzpJmAIK5jciMESYNMe7n7/Hc4VklUhkZuiFSFJIli5H//F2TfObtmnAl9Gn/uy0TPn3oIs9wBLGviy+viPFfVr/UO04Po1ot4m5wr3l3OMt0K+InP9DqivahG0Fr7mn7wWEhvjS9X4HvULk2vuXAtH93/QGcmACUU2mosluiW6nqLRYchno5QWiBbHjXbRz3WDBVDfE8xXLx3V3fcahE1G5RHx/GDkNLQyDYckcPhcDgcDofDsXfoGxlFKsX1i58ghKAyNwvW0jc6tmsFLB9DYDRGQkMGxEIRbpKmlfElfVkfrCVONdVWQr+LM79rjFC0VaHj8jYgpIdv2ltyeSc2wVhNRoYYYwmkTyADUpuS7mASmmcsY7MzzI5Pkvqr145JUGJ++DmG57+3e5LYtkDet3xxX8QX90VM1xWvTIe8NhOyEq1fbFCLJb97KcvvXsqyv9iNOR+PKN4h5lwoyeCpI5SPHmD+7bPMv3sOq3t/T0m9yZVvvc7Ce+cY/+yzFCbc9bTDcS84sdvheARoWp+z8QAfx31M+XX2+TVCsVaIC4XhcLDCQb/KTJrnUlKkadevXtsYgVI+Umq01qRpgpLKubx3GVpollhiSSyBhQKFm8J3jtym22a6X6N2FI3uiTtPxPrRRJIRpBnBmi9ixTWMOI2RH4BorP9DhMGK82h5Hm19pD2KNCcR9jDifk5NShK98BTRp08SfvcDsr/zGt71tdHR3vQ8pX/xa6TjQx3R+9nja0RvAfhpC6UjoqBElOlDpxEGQeJlyLaWCdLmvc/V8UiRqJBGfphUZeDSAuP/7N/iLVfXjts3Su0Xfhwz3P8QZrkzjDJKgcLN24aY8/7f7S2UsZKk8WWkDNgoOsJa+M1rJQJfcupQueexfOXSfTXj2DZ0CsaAH3TeM8IQgOXzl3qG5UYHCfuK6+1hx+jEl3c6dSemI3jfwPgAAr8dY1MPm5SYbQoCT1AMFWOlEE/d+2+4triAH4Rki0X6JyZvulocDofD4XA4HI7HieLgEEJKrl/4GCEklbkZ7Ow05dHxXfsZOWdSYqkIjO66uzWbzbQ/F9CMU4oZn+VmTCsxZANnfrlr1ri8BcomqC24vDWGpmmTkQEY8ITCEx5KSBKrMTtkzvC0ZmxmmpmJKbS3KsgnYZmF4WcYmn9nTxpDJgqanz7W5KeONPlgyeeV6ZDvXQ9IzfrXyJdrHpc/9PiVczme6cacP3WHmHMV+Iy98DQDJ55g9o33qdy2hgDQWljmk1//A0oHJhh78Rky/dvUCtLheExwYrfDsSmW++t1/WBJUFxI+riUlBjzGhzwaxTkWnFSCcuUX2fKrzOfZriUlFg2IXdzrEIoPE92BO9bXN7xDZe3Uq6wc7cgoE6duqhzjWsENqCPPsq2TIlSjxvzdhSKfvrptx1hrmEbVKiwIlZo0FjzlBEIhJ1C2ims+TJWXOw4vsWHIKJ1fgIgEow4g5FnwGaQ9nhX+D6I2PQSaxOUJHr+FNGnTxB+9yzZ33l13X7J3swCpX/566Rjr3RE7+eOd7K5bkFaQzaqkKgMcVAgzQ4QxnVsTpEkLbLtpT1VverYflIV0siNkFqfzG+/Rt/Xv4mwa6t7mz/wGZpf/VMdN/AjQmhDJu1kz32X1b+keVtrAx29AHoEucmxn62GXKiHfOpYP4F/yzhryFWubuu87wmrIU1BeZ0I8zAEKdBRTPXidM/Q8tEDD3RqHgoBxFZjMKSsRshZkWD8Al4Sg5V4zZAFnSVKNWN9GUJfMVgI7/lnR80GcbvFwPgkfpilODi0DUfkcDgcDofD4XDsTQr9A0gpmf34PEJKlmeusTwzTXl84mZv792EwpIxKVZCLCSR8MhuEkktJQwVQhLdJusr6lFK4Lk483ul1+UtMNLDu9HLW/ikcn2Xt8XSMhGBMECAweAJj0D4ICzaGlKbbnu4uadTxmauMTs+hfZWDVRxOMji0CkG599H7mCk+k6iJDw1lPDUUCfm/M3ZgFemQz5Z2Tjm/HvXQ753PaToG14cj3h5MmLfJjHnQTHP/h98kaGnjzHz2ts0pufXjKlemqZ6eYbBE08w+plTeNl7T2FzOB4nhLXrrMY69gxXr15l3759AFy5coWpqamHPKO9TaNW4ZXf/3dE2U4dSFipdxa0PQWb9EzZvVgGVZsDfo1BtXmf4ar2uZSUmNM57F0K/NZqtDaARUrV/RZdl7f7sLubkVZSpEjZlilTJriLOPGE5KbwvcIKZp00gRtYUqz4CC1PY8V5EFsQh20eaU4g7UmEndq0B/kdMYbg7Q/J/fareLOLGw5LRwdp/fBLRN/35BrRG8AISRwU0CpEpRFBUkeZlEx7mTDZwMXueKRJVUAjN4qutin9698gc/7CmjGmkKP2l/40ycknHsIMdxALx+1xSqxWG1fFGd7z/589hTBWjxBX/xxKBpv2cf4HZ0b4YCXD//WrR9k3uuoUz1RnGLr6nR05hK1jIYo7/w0DCPybru6ls59w9Q/fvDlSSMmJn/9xvMy9C8h3gwQ84ZNajUYTmfgWV7clDQGZJdOoQlzAtHJ8XPPxlWS0lOHQUJ6+3N2mvKyycOUSQkgGp/YxeugIhYHBO2/kcDgcDofD4XA84jSrK8x+fI6o0WB5+hpeGNA/PolUu6/42QAVlSESkkh55HSCuoNgOV+NqLYTFhoxvhSUc/fZns6BtJpAN5GkN13eIO/Yy9sTilAEN80snlQoFAKBxZBag95mk0bs+8yO78OoXi9l2JpmcOH9TY01e42ZhuTV6QyvTodUNog5v5WpYsrnJiJeGIsohRu/jqy11C7PMPPaO0SV2rpjpO8x8qkTDD19FOk53+rDpu2BNIbQSL70g3/5YU9nT7MTuqYTu/c4TuzeXpr1Kn/yR79E5AmQgrDSAK0B2xG9leoKYHtPwC2ImAN+jTGvsWnMeNsoLqdFriUF0rv6YGLRRmO0QUqBVAohJJ5SKOU5l/dewEKWLGXKlG2ZPPktC8wGQ40aK2KFChWijVzcgKWNEecw8jRWXIANeoL3blRCmpNIcwrB6L0L38YSvHOO3G+/gjezsOGwdGSgK3qf6JR23v64ComDAhZBGNfxdBsvbZNtLaKcy/uxIZU+jfwo6v2LFP/tb6KarTVj4mP7qf3cj2H7CuvsYW8zbIc5aA/evK1p83bwN2mLWwpKrCSp/yw2HcDzfDY6f35SC/j/vj/GUF/I3/zpkz2PDV5+nWx9dgeO4C5Ik06EeRCC50E2c7Mv3ce//gc0pled7KWDExz8kc8/sKn5wsNiSa0mMWmvq1tFpGGZoN1GJgK/muFaXGSppZksZ+nPBxwZuffnZrteY3l2hsGJKQqDQ0ydeGrX9iN0OBwOh8PhcDgeNO16nZmPPqTdqLM8fQ3lewxMTO1KwbslFA3l05Q+AkvObOzuBtAGrlWaNCJNpRnTl/XJ+LvvuPYc1uLbGN+0ENbgmQiJRguPVG5eUK2Q+NLvJn8JpBB4wkMiAIG2mtT2try6H2I/6ArevX/3TPMyA4vvI+/CULMXMBY+WFyNOU82iDm/gRKWp4cSXp5s8/QmMefWGJbOfsLsG6fR7fXXU/1CjrHnn6Z8dL+75n6IOLF7+3Bit2MNTuzeXpr1Kn/ynf9EWxiwhkw96jQRNRoSTafWUXac3kqxF0XvUKRMeXX2+XX8TZy4qRVcSwtcToq07dYrx6w1aN354KSkQkp5i8v70anqexzwrNcTd+7dReeLFi1WWKEiKtSp9/buvQVLAyPPYsRprLyytZ3bQaQ5iTKnENyjg9BYgnfPdZze60QG3UAP99P84ZeIPn1yjehtEZ1Ycy+D1AlhXEUaTTaqEMS1Pfju4LgbtPSpB4Nkf+2PyP3Rd9c8bqWg+aNfoPVDL6zpB/8oENiAp+xTKFYvaj/2/jdm1e/2jDPtL5A0P4VSalNX9/92doi3l3N86fkJPvfM6M37Zdpm/NzvIB5mDJrRkMQdkdvzIZfpFMABcb3J2V/8es/w/V/+LOUn9j2QqXkopBDENkVbQ2zj1QdFQpIJkCZD2FqB5iBJEvLJiiCfUQzmQ46PFe+5v561loXLl1Cex8DkFONHjpPrK2/PgTkcDofD4XA4HI8IUbPJzLkPaDcbLE1fRUrFwOQUape5NC1QUSGxULSUR0Yn+He4DmtEmrlqm2orJkotg/kA+Qhe/z4MpDUEpom0SY/LO5Uh5g7rq4JO+lcgvFW3t1Aosf1u7ygImR2fwt52vZ9tfEL/8vtIm7vvn7EbaSaCN+c6MecfV+6clFa4EXM+0Yk5X0+v1nHC/NtnmX/3HFav/7fJDvUz/tlnKUyM3O8hOO4BJ3ZvH07sdqzBid3by02xWxoQgkxCx82VJB2d2+iO09toQHQEb7U3I84lholuX++c3Lha01qY0zkuJ0VWzFYjWS3GaLQxSNF1eSPxPOfy3qsIKyhQoM/2UaZMluyWt01JqVKlIiqssEIq1n++WaoYeaYrfG/NxSnsKNKc6vT4pm/Lc7qJsQTvne+I3teubzhMD5Vp/vBniT6zVvROZUAcFrFIgqSOn7ZQOiLXWkKZ5O7n5Nj1aOnRqvnk/8/fwF+nWEIP9FH7ha+SHpx4CLN7AFg4Zo/Rd8trriLe4XTw/+4ZJvU4Ue2nsVbieR4bFYhda/r8D++MIwX8rZ95isItkdqFhfOUr5/ZkcPYGhaiqFOw4IcQ+hCsVqdff/sDZl9/7+ZtGfic/Pmf2LQ3+XYh6VTppzZFY9bElxu/ReoPk2k2IMnj1eByVKQeafYNZBkqhOwfvPeFh1atSmVulsGp/ZQGh5l88uSdN3I4HA6Hw+FwOB5D4naL6XNniRoNlq5dRUjon5jC8++9ndBOEAlJXQU0pYdBkDfJHQv556oR9XbCQj0m8AR92UfLzftQsRbPxgSmhcDg6Y7L2wiP5A4u7xtIJMFtbm8lOrduuL211Zj7KDBvhxnmxqawt7UDzNXP01d5D2kLiEco1vx2ZhuSV6dDXp0OWY7uvBYwVUj57ETES+Prx5zH9SZzb7zH8rlLG+6jeGCC8RefIdNf2nCMY/txYvf24cRuxxqc2L29rBG79S0f6dK0I3qnBjCQ6nUizvdiXI9lWLU44NfoVxtHTwNUdMClpMR1nWUrrnaLwWiNMRal5Govb89HrtMP2bF3CG140/VdpLjlXjwWS4MGFVGhQoUWrXWfSpYljDyNlmdAbBw3fivCTCHtSaQ5geAuY3mtJXj/I3LfeAXv6iai92BfR/R+/mQ33eHGfAWxnyf1s0iTEEY1pE3JtFcI46pzeT9CaKFI3psn/x++hUjWFm5EnzpO/c//MDaXeQizezAM2SEO2UM3b6c0eDv4m0SicvM+YT3Sxs+TxkU8pRCbnB//j/ODvLaQ59j+En/xy4d7Hhv96Jv4cX3bj2HLJDEY0+nT7XmQXS30sdZy7ld+m2i5evO+gScPMfX9zz+Qqd0aXx6bBM1q5beVDdJMGS/x8dstZLNALclxuarpzwX05wOeHCsSbJSjdgc6ru6LeH5I/8QEE8dOkC26i2yHw+FwOBwOh2MjkqjN9Lmz3Ujzq1hrGZiYwgt2lzi8ogIioWgqn9CkBHbjVEiA1FiuLrVoxikrrYRyLiC8x+sMx/pIa/BNs+PwvunyFl2X99bXon3h4QvvZkKbEgpPSATyvt3erUyWudHJbvvPVfK1s5Sq7yJNCXEXiZF7EWPh7FIn5vy7c3eOOZc3Ys4nIp4ZjtfEnDfnl5l57Z2etmk9CMHgiScY/cwpvOyjuwa1m3Bi9/axE7rmo/0O43BsJ57X+TYa4qTj5va8juCdaujGyey9iHPBvM4xr3OUZMQBv8aoaq7rvi6rmLJaoGk8LidFrqV5zCYip0CilEAI0+nnbSxKKYxJnMt7jxOJiOtc57q4jrSSEiXKtkwffQSb9OQRdBziBVtgiinatLnGNZZY6nnJCAZQ5gtI83ks1zuOb3kaxMqG+7byKpqraPm7CHuw0+PbHkdsxYUuBPHTR4mfOkJw+mOy33gF/8rcmmFqcYXiv/sGud9+leaXXyR64SnwFAJLmNTxdEQUFGllB/DjBjYjSPw82fYino7X+cGOvYSONPzG2xS+9+Gax6zvUf+zP0T00tM8ym9svvXZZ3sjui94/7RH6AYg+lOYtIQQIDYpbppvK76z0HEXf+pYb1uCoLn4cIVuk3bO+b7fuWAPeyvn24uVHqEboHz04AOZmtdd0Ei7Vfi3Ct2IBOMpsFm8uIJNBjGpZr4FnhT0ZTxGiuE9C90AzeoKaZLQPzZBttjnhG6Hw+FwOBwOh+MO+GGGyeMnmT53FjGxj6Xpqyxdu0L/xBR+uNUkxZ0nrxNST+IZQywUvjWbrnB6UjBYCDA1SzvRVFsJQ4XA9RXeRoyQRKqAZyIC08IoD0/H+KaN6fby3oqbMbEpiU2RSHzp4VuLtjfc3gpfKHzh3ZPbO9tuMXJ9huujEz1rIo3ikwirKdbeQ9oiwu6e5/p2IwWcHEw4OZjQfFLwVjfm/KMNYs6NFbwzH/DOfEDBNzw/FvG5yYj93Zjz3HA/T3z1+6ldnmHmtXeJKr3rD1jL4pmPWT5/iZHnnmTomWPIXdYeweF4kDhn9x7HObu3l02d3bdj7J0jzj0FezCmJSNS9vs1Jr063ga9lgEiK7mUlLiaFNB3OM5bXd5SyW4/b+fyfuSwkCNH2ZYpUyZPfkub1alzWVymIRqb7NpixTRGnMbIM7DJ2NWNFMI+0Yk6t0cRmwjxvdtZ/DOfkPvGK/iXN45U1wMlWl96kfaLT3df750+V4mfJ/FzSKMJoirKpoRRlUy08nB7DzvuGXt1Gfkrr6GWqmseS8eHqP2VH0ePDT2EmT1ALByxR+in/+ZdS/I7fOD/f3qGhXqSZuPPk6Yaz1OITSrN/80n/fzhXJF81uO/+Zmnevq79U9/j3zl8vYfx1awBuK4I3L7AWRC8HsvGqdffZuFd8/dvO0Xcjz5sz+244s6q/HlCRq7Jr7cqippOI4fGVQk8RqSxbTAdDVlpBRSzgWcGCvdXnC/ZawxzF++SJDJUR4bY/LJU2Tyd5mm4XA4HA6Hw+FwPKakScLM+bO06zWWrl1Fpwn9E1MEmd3jzKxJn7ZUNFRAYDThFty+syttau2UpUZM6ElK2d0V0f6o0OvyTlEm4l5c3jfwum5vb123t0VbTXoXbu9GrsD8yPgaE0Bx5X0K9fc6PbxtDrFnTGL3z1xD8upMJ+Z8qX3nv9FkIeXliYgXxyP6ujHn1hiWzl5g7s33SVvrJ7P6+SxjLzxN+egBV2yyQzhn9/bhYswda3Bi9/ZyV2L3DaztOLuTBLTpLJDrRyPi3MMw6dXZ79fIyI0/2MRWcjkpciUpkm4qeluMMZhuQYBSEiEUnpIoz3+UzZCPLb71b8adlyjdjEraiEUWuSquEovNXdAWgxWXMfI0RpwF0b7zZKyPtEeR5hTCPrG1+CRr8T+40BG9L81sOEyXi7S+/CLtl57uJD4AWnjEYREjPfykiZ80UCYl11rE05u3DHDsIoyFP/4Q9c33EGZtfFvr88/R+MkvQvDoX8gP2AEO29WY8YQq3wv+Jomo3bxPWh/d+CukacetrdTGvborseT/8d1JUit4+ekRvvzC5M3HhEkZP/fbSLM2Kn7nsd34cttxc3se3BYJZo3hg1/8Omlz9b1n5FMnGHvh6R2fXSB8DKYbXx6jueV5KRukfhYYINNcwUb92Ag+qXkICRN9WfYP5Bgo3HtUYmN5idrSIkP7D9I3NMLYkWP3f1AOh8PhcDgcDsdjhE5TZs6fpVWrsjRzDR3HDE7t3zWR5hpBxQuJhCIWiryJ72jlSbXl6nKLRpxSbSX054L7SpNybI5nbvTy1ng6RpLeVS/v2xFIAtkRvSUSiUBJhUICAk03tZPNY+0B6oUiC0NjawTvvuX3yDVPI6yHsKVHuo/3ehgLHy55vDKd4btzAfEWYs5PDSZ8biLimZEYX4KOE+bfPsv8u+ewev21+sxQmYmXnqMwObITh/FY48Tu7cPFmDscuxEhOm4vvxtpHicdJ5jngU47Pb5vRJz7N0TvvaHqpkgupSUup0VGVZMDfpWSStaMC4ThSLDCAb/KlaTI5aRIsq6oKW727dZak6YaqSygMNaglIdSe68owLExiUhYYIEFsYCwgiLFm3HnGdZWLQ8ySL/tZ87OMSNm0GL9D24C2Ykq1wexfAUrPulEnYsPQax9jnY2SjDiTMcVbjNIexxpTiLswY0/YAtBcvIJVk4cwj97sSN6X5xeM0xVahR+5ffI/u7rtL70Au2XnkH5kGkvk3g5Ej9PqkLCuEY9P0oQ18m2l53Le7dTayG/9jry47WR9iaXof4zP0L87OMh9HnWY7/d33Pfx94/7hG6ATLJF6iZAsZ0XN2bne9+b6ZEajuPP3dbhHm2Ov2QhG46525jOo5uKdbElwPUr13vEboBykcP7PjUPKFu9unuxJffstAgEqxMsbKfIGpgdD9+FDGb9hHrmIlChmyg6M/f+wKa0Zr68hLZYgnP9xmYdEWWDofD4XA4HA7H3aI8j4ljJ5j56BwgWLp2heWZawxO7UfugnUxhSVrUqyEREgi4ZG1m1+feUowkPcxthNnXmsnDOaDR7rN18MklQFGePimiVUCaVUn5lwbEpXB3uXas8UQmZiIG25vhWcsCatubyX9Lbm9C/UaVkgWh0Z77l/pfxphLdnmGZDLYPoe+T7etyIFnBhMOTFY52dPdGPOr4Wc3yTm/L2FgPcWAnKe4cXxmM9OtDn4/NMMnDzM3Bvvs3zu4prt2gsVPvn6H1DcP874S8+S6XdtxxyPB4/Pu4nD8SBQCrKqs0ieppAIUHQjztOO+5t0z0WcWwSzOs+sztEvIw76VYa8tU5aX1ieCKrs92tcTQpcSkrE64reEqUkUmi00aTGdHt5gzYG37m8H0mssFSpUhVVsFCmzD67b43oLZGMM86QHeIa15hnftP6EIFC2KNIfRRLghHnMfIMVnwEG4jliDZGvIOR74DNI80JpD2JsFPrRykJQXLiECtPHsT/8FJH9L5wbc0wValR+NVvdkXvF2l/9hkCmjd7ebczZby0hUWQeFly7UX8dAuudMcDR5yfQX7tdURjrQs/eWKS2s9/FTPw+Fww7Lf78Vm9AJuXf8yierVnTNFMsRJ9CmNSpBSbxpc3EskfzHair6dGcgyXe98H8pVL2zj7u8DqzvlbeZ3itDDsXJHexvL53vllh/t3/AJSdr9Sm2CxJPbWwh4LsoH2hpAGVKwgsbRFjqVmQiFUhL5ispy9r/Nro7KMtZZC/yCFgSGCbO6+j8vhcDgcDofD4XgckUoxfuQY1z48Q3l8gsWrl1memWZgcmpXRBBnTEpbeARGEykPrQXqDgX7xYxPI9LojM9SI6YWaYoZJz/sFKu9vGMC0ySREt+08XWrK3jf27pzalNSmyKIu729PbSVCMCTHp5QeMLrJI5t4PYu1lYwQrA82OsurvQ/jbCQbX2IkRWkzSNs9p7muZfJepbPT0Z8fjLielPy6nQn5nxxg5jzZir51pUM37qSYTyf8rmJDC++/CJDTx9l5tV3qE9fX7NN7fIMtSuzDJx4grHPnMLL7p5WCQ7HTuDONg7HTiAlBAH4/mrEuVSdiPO0G3Gu0859noJ76KnycBAsmwzLUYZSEnHIrzLitdaM8oTlYFBjn1/nalrgUlIksmvfboRUeFKiddpxeUsDeMTG4CkP5e2V34vjrhFQocIKK4wwwoSdwLvtlOTjc9AeZIQRrnClI5Lfcbc+yp5E6ZNY2hjxYVf4vgAb9Z8XDYx6E8ObYEud/t7mJILRtcK3ECRPHmTl+AH8c5fJ/fYr+B9fXbNLtVKn8LVvkv3d12j90Iu0X36GjNWkXpbYz6MzIUFSoyFH8JMG2fYy0t45CsrxAEg18vfeQ/7Jh2seskLQ+uGXaP7Iy6D2RrHSdlC2ZQZZdV7HLPOJ9497xng2IG7/aaw1GGPxvM0/Yv7+bIHIdH6Hn7rN1e1FdYLm0jbN/m6wEKdAN50l8G62JbgVnSSsXOh93ffvsKtb0HF1m66XOzZJ7zKTbGGkj6FENqpjdD8qarKQZDA2oT8X0pf1KdzHQpPRmuZKhXxfGeX7DExM3nkjh8PhcDgcDofDsSEdwfs4V8+epn9skqXpK6xcn6M8Ovawp4YEsibBKJ/EWiKpyN0hfUsIGCoERKkmH3jUooSMJ/FdnPmO0nF5K0JdJ1FZfN0RvFOZuac+3jewWGKTEJPcFLitsSQIlJB4QhFs4vbuq1awQlIZGFq9UwiWB55GLBqy7QsYUUeSgi08Vn28b2UkZ/jJIy1+/HCLc8ser1wLeWsu3DDmfKbh8avnPb52PsepoQIvf2aEw+1LzH/nXaLKbWun1rJ05mMq5y8x8tyTDD19DOk7SdDxaOKe2Q7HTnJrxPlN0VuCvRFxriHWIGRH9N5DEedVE/JONEwhiTnkVxlVzTVuMSUsB/wa+7wa19ICF5MS7TWit0ApHyl1N9o8QUlFYjsub8/31zPVOR4RrLDMMccCC0zYCUYYQd5WeZojx3F7nIqtcEVcob2V/tyAIIOyz6L0s1gaGHkWI05j5ZVNNqpi1KsY9SrYQaQ5iTKnEAzeNk6QHD/AyrH9+B9d6Ti9P1q7X1VtUPiPv0/um6/T/MEXaH/uWVQYEQdForAPnUYYBKmXJdtaIkibWzo2xw6xWEP9yquIa8trHtJ9RWp/+cdIj+x7CBN7eCirOGBXhVyL5bz3v5KKRs+4Qf0FZnQJrW+4ujdezGhrwTdniwD4nuTUof6ex3OVyw/nTJimgIEg7CSwbNAvr3phGpvechEvBH2H9687drvwhNeNLzekNr2tcj7BihZaHsDXCSLOIeM2TZmn0kooZXx8TzBevr8q7vryEljI9w9QGhrGD11VuMPhcDgcDofDcb94QcDY4aNMn/uAvpFRKnOzeEFAoX/gYU+NjNVE1iM0mpbySJD4d+jZ7HuSci7A2Ih2Kqm6OPMHghGKtioS6gZWCXwd4Zs2qQzQYv2Y7Lsh7YrZEQJfePh4aGu6bm/V6/a2GtM1dJRXlrBSsFK+ZV1NCJYGn2FwwZJpX8WIBkKkYEuIdRNCHw+kgCcHUp4cSPnZEw3emgt5ZTrk3PL6fz+L4P2FgPcXAnLeKV546jCfaZ9Bn36XtNWbUmiSlNk33mfxzMeMvfA05aMHdkWChMOxnTix2+F4UHhdF7cxkCbdiHOvc/vWiHNPde7fI6J33QS8Fw3xiUg4GKwwvo7oLQXs8+tMenVm0jwXkhIt23uiFkLheV2Xt9Zdl6tHEndc3lIp97n4EUYLzRVxhev2OvvsPvrpXzOmTJk+28e8neeauEYqtt7PV5BHmU+j+DRWV7v9vU9j5ewmGy1i1B9h1B8h7Ogtju++W8YIkqP7WTm6H68regfnL6/Zlaw2KPynb5H75uu0fvAF5OeeJcmViIMCaXaAMK5jc0MkSYtsewm5Se8jx84g3rmI/LW3EPHa51X01BHqP/sVbP7xi9bab/cTsCr6Xpe/T0W91TNmyOxnIXoWawzWWtQdXN1/NFegkXYuYE8eLBMGt1zMWkt+ZZOClJ3iRrsRz+sUpWU2XoxZPn+x53ZxahQ/t3PCr6ITF5fYFIsh6emVZ0E1MLIPQQa/3cTYLCKNmW+DFIJyzmeoEJLx733RQKdpx9VdHkB5Pv3jztXtcDgcDofD4XBsF5l8gZGDh5n75DxpnFBbXMDzfTKF4kOdlwByJkErgbKGSCo8Y+64YtmX9WlEKaWsZakR04gN+fDxFTEfFFZI2qpAaJqgwDMCz8QIYUhluD0/A0tsE2J7u9tbI2+4vYUPYtXtXV5exApJte+WtT4hWRp8lsF5QxjPY8QKVlaQpohg/cLzx4mMB5+bjPjcZMR8N+b8lTvEnP/BtRx/wGeYOniSH4q+S9+lM1jdu76YNFpc+dZ3mH/vHBMvPUthcnTd/TkcexEndjscDxopO64xP+i4yOJbI87T7rfujPO8jut7D9CwPqe7ovchv8q411jjyJYCJv0GE16DWZ3jQtxHo0f0XuvyllJhLUijuy5vp3g/ykQi4iPxEUVbZJ/dR558z+MCwQgjDNpBpplmjjnsRvHkGyAoocxLKF7C6iWMPI2WZ0AsbLiNFXNoNYdWv48wU0h7EmlOICjcHJMe2Uf1v/oLeB9fJfeNPyE4t47oXWuS/89/QPab36H1g5+h+YVPExUGiMISaRpjhCT1MmTaS4RJY832jh0gSpC/8V3k9y6uech6ivpP/gDRF557LKvQ+2wfQ6zGjUXM84n3z3rGBDaDSn6IxAi00R1X9yZ9wRIDvzO9umDz3LFet0KmPod64H3s7WryivIh8LtJK2tJGi3q13p7YZWPHdyxmQlACYVGY7FEt8cGyhYWi1Ej+EmEMQW8douKLVJvxwwWAnwlGS3dnxjfXFlGCEm+3E/fyCjeBq53h8PhcDgcDofDcW8U+gdIJqYA0ElMZW6WQd9/6IlKgTV41hAaTVP5JEIS3KENmxAwXAyJlw25wKMRJ4SexFOP33X1A0cIIpnDt51rWmslykT42pKo7X0uref2vuHo9qVCCkXYdXsPLi9ihKBeKt/c3krJ4vBzDF1/myCRWKoYudLt453b1rnuZYZzhp840uKrh1ucX/Z4ZboTcx7p9V9PV9s5/hWfpzDxLF9pvs7Y4vk1BSrthQqffP0PKe4fZ/ylZ8j09627L4djL+HEbofjYSFEp6e373cE7iTtCtv2lojzqLv43nWa7QG3d8v6nIkH+STp46BfZdKrrxG9hYBxr8mYanJdZ/kk6aNuglse77q8TUf0ttYAiji2eEqhlPc46k6PFTVR4wxnGGSQKTvV4ywFUCj22X2MMMJVrrLE0j29PAQDKPMFpPk8lusdx7c8DWJlw22svIrmKlr+LsIeRJqTSHscQcf1mx6eovo3/wLeJ1c7Tu8PL63Zh6w3yf/at8l+8w1aP/A89S++SFQapKUGCOI6NjtI4ufJtpdQd+iJ5bgPppdRv/wqYrG25qFkdJjqL/w4dnJwnQ0ffaSVt8WXG877/wtGtHrG7TcvcT4ZwGzR1f3qfJ5K0hkzUAo5ON7rVMhX1haJ7CxdoRs652NPbhhfDlD5+DLY1QIb6Xv0HZjYsdndiC/X1pAYjb0tvhzRwsgxpAWvLbGpJbUBiy2NrwSljMdoKXNfi0rGGJorK+RKfSjPo290/P4PzOFwOBwOh8PhcKyhf3ySuN3GGks6fYXlmWkGp/bf8Tprp8nrhNSTeMYQCYVv7+zuDjxJXy7AWkuUGKrthIGc/1gWkj9whCARGSySwDSxUuKZFoFukagMdpvXl291eyskvvSxxiLQSCHwhEcofCaXV5iWitotiQVWKhZGnmNk7l28VCBodmLNSRG2sGkx/eOGFHB8IOX4QMpffLLBd68HvHItw4cbxJzXvSK/WvoSQ+Gz/KnlV5hsTa8ZU7s8Q+3KLANPHmL0M0/taGqdw7HTOLHb4dgNeF7n25jOont6I+JcQ6LBxIDsLMLvkYjztvU4Gw9wISlxwK8x5dVRtzlwhYBRr8Wo12I+zfJJUqJqbsTqCJT0kEKjtSFJU5RUpNZibrq83QeeRxoBiyyyzDJjdowxxlC39e4JCTlsDzPKKJe5TEPcmxtaIBCMIs0o1nwRK6Yx4jRGnoGN9iksVlxAywto+w2EfaITdW6PIghIn5ii+n/783gXrnVE77MX1+xCNlrkv/5tst96g9YXP8PKD32BuFgm1RlCUSVVIZmoQpA0utH+jm3BWsRr55G//Q5Cr/291j/3GRo/9f0o//F9j9ln9xGyGnM2K7/Biny3Z8y4PchC8izWgjEaKeWmF6LawjeulW7efu5or6tbphGZ2iatBXYCnXbOtX7QKSoLN492Wz7XW7zSd2gK6e/Mx2nvlvhygyFlbXy5JYNRfQTtBGMzeFGD+bREK44ZLWUIPcVQ4f7i6lrVFay15Pr6KQwM4vn33+/N4XA4HA6Hw+FwrM/IgUOkUUT/2CSLVy6zPHONwcl9CPnwrk89LKHRGAmpDIiEIrOF9mvlrE8jSihlPJZbMc3YkHNx5g+MVAYYoQh1HStz+KaNr1skMoPdoTVVjUGbqNPLW/gEeJhuwbgnFeOLiyAktfxqkqOVivmRZxiZO4On55DWw4gayAqYEsJJWGvIePDyRMzLEzELrU7M+avTIfOtta+vhXCY/zD6ExxoXeZzS68ymCz3DrCWpQ8+ofLRZYafe5Lhp4/t2DqHw7GTuGetw7GbuLHQHgQdp3eSgPTA6o7T+0bEuVKd7z0g9kbW41zcz4W4I3rv82t468ROD3sthr0WC2mGC0mJiulUkq3n8rYoTJTgec7l/ThghGFaTDNv55myUz2xyjcoUOCkPcmiXeSquEos4nv+eQKBsJNIO4k1X8KKyxh5GiPOgtggXllorDiPlufR1kfao0hzCmGfID00SfW//HN4F6c7ovcHF9ZsLhst8r/xR2S/9QbNH3iB5S//IK3cIEFSxwpBO9OPNAleGuHpNl4aub7e90qjjfwP30Gem1nzkMmELP7cn8E8ewhlkocwud1B0RYZYeTm7RYzXPT+Zc+Y0GYp6y8wnfoYo7GAUpufk95azDEfdYRSIeDZ28Tu3MoVBHfXluC+MN3zqvI6seVh2E1RWZ/20grtxUrPfeWjB9YffJ9IQApFajUGS3z781G2AINWoyhtUZECnRCRY6mZkAkUuUAxXs5udkh3xFpLc6VCJl9A+R7l0bH7OSyHw+FwOBwOh8NxB4SUjB05ytUPTtM/McHS1StU5mYpj40jHuICWNakRFIRGk0kFIHVd/TcSgnDxQzTukXW96jHCaEvUbdHQDp2DCMUkSoS6jqJyuLpNoFpkcoQLXZOGrJAYhOSddzeQ/PTaDFJM7caVW6U4vrICUZnPZSZRqIwVDt9vG0RYben5/ijyFDW8OOHW3z1iRbnK52Y8zdnb4s5F4JLuQNczu7jZO0sL1a+Q173JveZJGXujfdZfP88w88+yeDJw070duwp3LPV4diNCNHpGRrciDhPQCjAdMRurTtuNNkVvTfoLbqbSFB8lJS5lBTZ3xW9/XVE7yGvzZDXZkmHXIj7WDIhqy5vgzaaNE1RUpKmXZe35yMfYoWr48GQiIQL4gJzdo59dh8lSmvGDDJIv+1n1s4yI2Yw4v7c0ALZiSrXB7F8BSs+6USdiw9BbCCGigQjznRc4TaDtMeR5iTJwYNU/8ZP412aIffbrxKc/njNprLZpvAb3yb3+69T/6GXqXz5i8SZQZRJUDohVTHSdvqES5PipW0nft8F4pM55K++hqitLVqIDkyy8Nd+Dq9PPdZCt7SSg/bgzdsWzXn/H2JuKyA5bl7gXDKC7aZt3MnVbS385i2u7sOTJUr53rjwBxthblb7dHsehH7n301YPt/r6vZyWQoTwzsyO9Xta2YwpKbTr3uVFEQbY/uwMovfNBgRoNpNlnSG1MSMlHzyoUc5d38u7Ha9TpoklMcmyBb7CLKub5rD4XA4HA6Hw7HTKM9n/Mgxrp09Q9/oGMuz09SXFigO7sz1x5bmhCVrUqyEWEgi4ZG1d267lvElfVkfrCVONdVWQr+LM3+gGCFpqyKBaWAVeCbCMxFCGlKxcRuv7eKG2xvAFz4+HkPXr3F9dIJ2dtXhbTyP62NHGZtRCDuDRGKpY0QVSQ5sDrEH0k4fFkLAsf6UY/0pf/F4J+b81emQs0v+zeh6KySnSyc5VzjC9628zadW3sG/7XWctiJmXnuH62+fZeS54wyePOJEb8eewD1LHY7dzs2Ic93t653ecvvWiPOu8L3LT/oJio+TMpeSEvv8Gvv9GsE6guSAihjIXqeiAy4kfSzoDEJIPCUwpiN6G2NRSmGMc3k/TjRFkw/5kDJl9tl9ZOjtJyORTDDBsB3mGteYZ35bXhYChbBHkfoolgQjzmPkGaz4CMQGQrNoY8Q7GPkO2DzSnMAcPEnyX/wU3pU5ct94lfD9j9ZsJlsRpa9/i8I3X6H16adIhgZJB/pJ+/tIykUo5pCBIFUZZPdD6ar4HeGlbSd+34o2yG+dRnz7DOvU2FD74c+z9H/5UTK6/lgL3QCTdrLnNTWtfp2aPHvbmMPUzUmaWmBMiqUTR7YZ71YyXGuuXkR/6livq9tvLeNHa3un7wwW4ht9uoPO+XOTPt3QcThXbhO7+4/u35EoQQ/VjS/XG8SX17HWw/hDeIlApBIZt2jKPJVqQj5UBEoxUc7e91yaK8uE2Rx+GFIec726HQ6Hw+FwOByOB0WQzTF6+Cgz5z+kNDhMdXEe5QfkSn0PbU5Zk9IWisBoIuWRaoG3hXSu/lxAM04pZnyWmzGtxJANdr9x51HCCkEk8wS24+a1VuKZGCEsiXxwrukbbm+JpDx3ieWxg0SZ1aJq7XlcHzvE1KyPMbNoKbE0MaKJIAFbcn28t0DowWcnYj47EbPYkrw6E/LKtdWY80QGvN7/Au8XT/LS8hucqJ9ds3Sq2xEzr73L9bc/ZPjZ4wydcqK3Y3fjnp0Ox15BKghVZ2E+TVYjzk3X6Z0m3TjWvRFxniK5kPRxOSky5dU54FcJ5VrRu6xiPqXmqWqfT5I+5nUWKRVCCozuuLylkuBc3o8XAipUWGGFEUaYsBN4t53SfHwO2oOMMMIVrlAV1W388T7KnkTpk1jaGPFhV/i+wLpqKoBoYNSbGN4EW0IfOEXy1z6Ld/Wz5L/xKuF764ve+T9+a93d6VwWXS6h+/swfQVMXx5bypP05YjKRSiWUBnhxO9KA/UrryIuL655yBRyLP7VP0fz6VOE8cpjL3QXbIFRRm/eborLXFL/pmdM1ubZZ76PN9M8WIsxpvueu3FFibXwm1dXF2RyGY/j+3sXaB6oqztNwZpun24BYeaOmzSm50kavRFfOxFhLhFIIUltit0kvtyIYQQBfqQxViFSwVK7ExXXnwvpzwfk77MXXtxqEbfb9I9NEGRzD3VRzeFwOBwOh8PheBzJlfoY2ncAsKRJTHX+Op7vP7TEJQHkTIpVgsRaIqnwzJ3d3VLCUD4k0W2yvqIepYSeRLo48weLEMQih0ERmCZWSjzTJtCGRGVuun8fBAaD0RG56fPoiaOktwjeie9zbWyS/bMegVkmkgtgPYyoglwG0+f6eN8Fg1nDV59o8WOHWnzcjTl/YzagrSUNr8A3h3+Ad0pP89nl1znYWrs2o9sRs6+/y/w7HdF78NRhlH9/KXIOx07g3hUcjr2GFB0HWhCsRpynezfiXCO5lJa4khaY9Boc9Ktk5FpRrqQSnlML1IzPhbjEnM51ndwdl7e91eWtJMrzncv7McAKyxxzLLDApJ1kmGHkbRWeOXIct8ep2ApXxBXaG/XdvkcEGZR9FqWfxdLAyLMYcRorr2yyURWjXsWoV0kPDhL/FyfxZ05S+PoHhO+e39LPVc0WqtmC6bkNx1hPdYTwchFdykMpiyiGiIKPKIZQykIxC3fotbxXEaevIP/TG4j2WhE7fvIgi3/1LxAPDBJGK3j63vu8PwoIKzhoD96MBDOknPP+IVbcsnBh4YR9gYtmnDgFbTrv1eoO55lz1ZBP6quV4k8f7u/t7200uZWr23cwm2G650jP65wjw0znvHoHls9f7LmdGegjO1je9ukpobrh5ZbUpOvGl1uTxQQlgkhircWLmlQpUW1HlLM+gScY77uzgH8nGpVlPD8gUyjQN+J6dTscDofD4XA4HA+DvpFRknYLa0EnCcsz0wxO7ce7QzrVThFaTdt6hEbTUh6JkPj2zi3ksqGiGHpYa4kaMdV2Qjn3cI7hcSeVnZaRgWmSyCy+aePrNokKsQ/YNS2toTjzEdWJo+hwNZ0s9gMuj44wNafJ2IBUzmMISGwFIytIm0fY+08ze5wQAo70pxzpT/kLTzb43vWAV651Ys4XwiF+fezHGI3meGH5TSd6O/YkTux2OPYyt0acR0nHze15Xaf33oo4N0iupEWupgUmvAaH/BWy64jeRZnwTGaRhlnhQlJiNs2vdXmjMNaglN8rqDgeWbTQXBaXuW6vM2Wn6Kd/zZgyZfpsH/N2nmviGqm4c/Xx3SLIo8ynUXwaq6vd/t6nsXJ2k40WMeqPiKYg/uujqOXnKPxWhdyfXLz/+aQatbiCWlzZcIwVQD4DfVlsMQelLLaU7Qjhpdzq/8M99AE2SZG/9TbyjbV90a2UNL/6BSo/8gOkQY4wqj72Qjd04suzrF4oXlVfoyF7f3/7OYaw+5lLQsBgjOkK3ZufW27t1Q3wmeO9Eea56jRyC26A+8be6NOtQPmdojHvzgVhJk1Z+aRXjO8/tv2ubk905pJajbaalFvPgZ34cqzCqCGkyeAlEToVpCbDYjNFSkFf1me4EBJ493fuS+OYdqNO38goyg8oDgze1/4cDofD4XA4HA7HvTO47wBJFGGNZvHqla7gvQ+pHrzBpePuTtBKoIwhEgrPmi2tOA4UQlqJppTxqDQT2okm4+9uk86jSioDjFCEuk6isvi6ja9bpDKDEQ/2byKNpjTzESsTRzHBauF2HIRcHRljbOYqnhlBeosEeBhbIxUNLBps3vXxvgdCBS+Nx7w0HrPUlrw6HfJbF7LMhaM3Re/nl9/iUOvSmm17Re9jDJ464kRvx67Aid0Ox6OAVJBVYOxqxLnaIOLcU7CLe5tYBNfSAtNpnjGvwSG/Sl6uFUHyMuWpcIkn/BUuJn1Mk0OLTpR5akzX5Q3GSDzn8n5saIs2H4mPKNoi++1+cvRGewkEI4wwYAeYYYY55rAbxY7fJ4ISyryE4iWsXsTIM2h5BsTChttYMUc6MEflL0H1p0cJzpfInM7gzUXISh25UkO2ou2dpwXqbai3ESxvPLeMD8WuEN6X6/m/LWahLwu5kIf+YptbQf3yK4jra2PrzUCR6l/5SZpHj5J62a7Qvb2/z71IzuYYY9W5Wxcfc0X98m1jShwyT/O2HkJrizYaAXdsG3GxHnBmZVVEHx/KMtTf+7rMPZAI8xt9ugX4frdP99YuxqoXpzFJ73mofGT/ts5OIpCsxpcn9rbzXje+3Jp+jF8kaBk0HipqsmxKNKI2w8UQ31OMFLfB1b2yjFSKbKFE3/DIjvQmdzgcDofD4XA4HFtDCMHIocOkcUT/+CSLVy9TmZ2hf2IS8RCuwQNr8K0hg6YhfRIhCbbg7lYSBgshadWS9TW1dkqoJMLFmT8UjFC0VZFQN7BK4OsI37RJZYAWD1a8lDqlNP0R1cmjGH81GS4OM8yMjTM6exWVDIBcQSiLb32MrIGtYU3hgTvSHyUGMoYfe6LF8YGEf/hWkbaWzIWjfH3sRxmJrvOD9e8wXF2bXtkRvd/riN7PHO+I3ltcZ3E4dgIndjscjxI3Is59v+PsvuFgs6Ybb753Is4tgpm0wEyaZ0w1ORRUKci1UcQ5qTkZLnHIX+FiUmI6zZNoTZpqpDSAh7EGT3qoLTj4HI8GNVHjNKcZYohJO0lAbzSWh8c+u49hhrnKVZZZ3tHgA8EgynwBaT6P5XrH8S1Pg9jYcW3COdpPzdE+JZH2KZT+IoJhiGLUDeF7pY6s3PLvjftrjQ1bh9/zMbQTaCeI+Y17n1slO7HofdmuAN51hhez2L6Oa5xCZktu2rvGWsSbHyN/821EujYVInnuMNW/+GNExQESL0sQ1ZzQTSe+/JA9dEt8ecI5738GoXvGnLIvMG8HWEkVoLfs6v6t21zdLzzZ6+pWcYOwuXEByLaRJIDtnCOlhEx4x01usHy+t5K5MDmKn9/eHnneLfHlyQbx5Zgs2i+jdIBKmqANiciy2IgJPUkh9BjrC1Hq/t7MjNa0qlXy5QGkpygNj955I4fD4XA4HA6Hw7GjKM9j7Mgxrn1wmv6xcZZmrlGdv07fyMP5vJ7TCYkn8W9xd29FbsyHivyNOPN6TC1KKGVdnPnDwgpJWxUITRMUeEbgmRghTDfu/MGhdLIqeHurz4kkk2duZIL+uYsEpoi0PkYuISmBrCFUFWVKWOuhuXPRhWN9jpRT/pvP1Pif3irSSjuv5uvhCP8+/CqfHp/my83v0Lgys2Y73Y6Z/c57zL/rRG/Hw8WJ3Q7Ho4gQ4Hud75ui942I8xRSsxpx7t8QvXdrFaVgVueZbeUYUS0O+SuU1FrROys1J8LlrtO7xNU4S2wsaZqglCIxoI3B8/2ttGd1PAoIWGCBJZYYs2OMMYaiV2TNkOGIPUKNGle4QkM0dnhKAsEo0oxizRexYhojTmPkGdjoZwuDEe9i5LsIcwSV+Sx2dB9idGD98QBaI6uNW4TwrgheqaNWajfvX08Uvq/j0wYqDag0NnxHuRmbfktcui3mOs7wUhZbyt19bHorRv7nN5Cn1/Z9tr4i+snPUf/8C8RBgcTPEcR1fL29vdv3KuOM9yQgXFb/jtZt/eYPcIKcHeJ93Y/RBq3TLbm6Z5oe311a3benBE8/0dtiIF+5vPNnH512kk58v3MuzG49gSBttald6W1DsN0R5p5QWFbjy/Wa+PJGJ76cIsgSfjNCCx8VN6mkWaI0YqwvQ8ZXDObvfzGiuVIBIF8uUxocRnnucsHhcDgcDofD4dgN+GGG0SPHmDl3ltLwKCvXZ/GCgHx5bSu3ncbDEhqNkZDIgFgoMnZrawyDhYBWrClmPFZaCaFvCO+zFZPjPhCCSObwbWfNzFqJMhG+sSTy/pPD7gaVxpSmO5Hm1ltdF0pyRZZH9lOcvYBE4ttBLBWwJRBVjFzCs0UCW+gUkttOMbnj7jjUl/K3P1PlH7xZopmuvibfiieoDP0Yf/1Tl6i8c5rapek1294UvW/29Hait+PB4lavHI5HHa8bXW5MJ8o8EaDoRpynXbfbXog4F1zXOa7rLEOqzSF/hbJa22c3lIbjYYVDQZVLSZGL7QzJLS7vJDZ4yrm8HyeMMEyLaRbsApN2kiGG1owpUuSkPcmiXeSquEosdr6Hs0Ag7CTSTmLNl7DiMkaexoizHRfnOlj5Ean8CGEmUeYlhD2GWO81qxSmv4TpL6197ObOLKLR6hHDxUoDsdJArXSEclVZQTVb23TEHXpi06c3iU0Pvd6e4bf833Zvkwvh6iLql19FrDTX7mOsTOsvfYnm/kPEfn5V6E6395j2KlmbZdyO37xdFWe5pv5jz5iCLXPInuCCHaCVgsVgjEWpLbi6p3uff88+0dfbx8lacpW1UVjbiu228pAKpAdheFepJpWPr4BdvUAWnqJ0cHLbpie7X6lNuvHltxVzyRagwfRhgjIqEaANXhzREnmWmzG5QJH1FRPlzH13EbDW0lypkC2WkMqjb3Tszhs5HA6Hw+FwOByOB0a2UGT44CHshY/RcUx1YR7l+2TyhQc+l5xJiKUi1JpIKgKrt7Sq6EnBYCHA1CztRFNtJQwVgocSye7oIgSJyGCRBKaJlRLPtAh0i0RlsA/QJKWSiNLMR1QnjmLVqnyV5Puojx6gMHeR2ACmhPJWUKKIpEUkqkhifPrwhIfFYq0hdW7vu+JASfO3P1Plf3qrRD1ZfUV/XPH5x+YA//UPDTBaWeT6W2eorid6R7eI3s8cY/Cpo070djwQnNjtcDwuSLlxxHl6W8S5p0DsVjFYsKCzLOgMA7LNE0GVfrU2ijgQhqPBCgf9KpeTAp+0sqSpRUqFtTdc3h7SfZB+bIhFzAVxgTk7x367nyLFNWMGGaTf9jNrZ5kRMxjxYD4QCyTCHkTqg1i+ghWf3CJ8r62MtvIaqfwa2AGUeRFpnkZwlx8chcAWcuhCDj05svZnAEZ6mARErQUrTbyVKmppBW95GW+5gre80nGMVxsIu70VsyJKYb5659h0Y9f92ealo7R+7GVapRFiL0vi5/DjhhO6b2DhkD2E7C5FaNqc9/4ht+bfCys5ZV+gbTNc0yWMSTFaI4S4o6t7oa14fT7fc9+fOlXuuR025vF29O9hIU7ppJj4EHQTT+6C2yPM+w5ObutF2mp8OSQmua3ufDW+3Kg8whbx4zrGKnSqWY4gNZbRUkAx61HK3v+8WrUqWmvy5X7y5X788MFW8TscDofD4XA4HI47UxwYIml3iuTTOGZlbhY1uQ8/fLCx0xLImBQjIUYSSY+sSbe0bTHj0YhStPFZasTU2um2XNM47o9UBhihCHUdK3P4po2vWyQygxUPziDlxe1OpPnEUaxaXaOOC/3UraVw/RICiU770bKKsClKCJAtYrGANH14wkcISYBybu+7ZH9X8P4Hb5ao3SJ4X6j6/IO3SvytT8PBr3ye5vzS5qL3G+8z/+45hp45xpATvR07jBO7HY7HjY0izu2NiHMNsQbRjT2Xkt0ZcS5YMlmW2lnKXdF7UK11w/rCcjioccCvcznO80k7R2o7Lu/4hstbqft2wzn2Dk3R5Cxn6aefKTtFhl4xRyKZYIJh2+nnvcDCA30JCBTCHkXqo1jqaPkmRr61vttbLKHVb6HlH6LM80jzaQTZbZoHKJOiFFD2seU+tBwkkT5aBWjpd95PLMikjV9ZJlhcQi0vo1bqqEoVtVxFVarIlTpUWzsTm34bNhtgfuoFomeO0coOknhZkqCAnzQJ0rXu78eVMcbIsypGX1L/mrbs7b30hD1FgTLvm2GSVN90dXtbcHX/znQJc8uY4ZJHafD2CPNLt2+2vdzo0x0GnfSS4O76wLUrVVrXl3ruKx/dvghzv1tpnlrdiTDvqTZfjS+3NouWQwRJ0omTi1rUKbLSiihmfAJPMtG3Pa/7RmWZMJfHCwLKo+N33sDhcDgcDofD4XA8FPrHJ0nabYwxLF29wvLMNQan9j/wNkRZk9IWitBo2sojReBtUVAcKoS0E0Mh41FtJWR8ReDizB86RigiVSTUdRKVxdNtAtMilSFaPLjnlxe3KM58THXicE9CW1wcoGEM+YUrnVUHU8LagFQtgc4iVAMlFrGUEDaDRCCFvOn21lY70XsLTBU1/+3zVf7+myWq8err8lLV4++/WeJvfbpKcXigK3ovc/27p6leXF/0nnvjfRac6O3YYZzY7XA8zvREnCfdiHOvc1unkMSA6IxRHrtT9IaKyfDddoY+GXHIX2HYWysKesLyRFjnQNDgcpzjkyhHKgJSazFGd3t5787jc+wAApZZpkKFEUaYsBN4t50SfXwO2UOMMsoVrlAVGzuMd26aBTzzRax5GSPfQcvXQaysM7CJVn+Ilq8gzXMo8wKC8jbPpSt+mxQ/bXWc38LDKB+tfKLhMaKRjjgmdYIyCUrHSJMgAGE0fnUFb3kJb6nSdYS3oNrsCOErLai1EK17j5C3B4fRP/0S8dAQzewgicoS3xC6k53tx76XyNgMk3Y1irsi3mXG+42eMSU7yH6Os2hzLJosxiQdV7cUiDu4uqux5I+v97q6v/psb5KC0DHZWm8v7G1FJ90+3UGnaCuz9T7dN6jc5ur2shmKU6PbMj2FRACpTbGYzePLVR/SBqikitGS1AQstzpuif6cT38uIBvcfxpL1GyQxjF9QyOE+QKZwoOPQXQ4HA6Hw+FwOBxbQwjB8MFDJFGb/vFJFq5eZnlmmsHJqTtes23rPICcSbFKEFtDJD1Udx3gTnhKMJD3MbYTZ15rJwzmg7u+dnNsP0ZI2qpIYBpYBZ6J8EyEkIZU3F0h+f3gRw1KM59QHT/cNWR1iPqGENaQW7zWea7ZDKQj4C1htSSVDbRYQpFHUURaC2g8ofCEh7GGlO01ZDyKTBQ0/+3zK/z9N/tYiVZ//1dqHcH7b3+mSjGw5Ib7Ofgjn6e1sMzcW2eoXry2Zl89ovfTRzuid/jgnkuORx8ndjscjm7EedgRBdIU4lsjztPut74l4nx3VlmumJC3oxGKScwhf4VRb208rhKWQ2GD/UGDK3GOi3GBmAATd9yKSnnuM/VjhBWWOeZYZJEJO8EII4jbLsly5Dhuj1OxFa6IK7Q36Ke9kwiCm85tIz7AqFexYm6dgQlGvYGRbyLtSaR+CcnO9NwVgLIpKl0Vv61QHde38juOaj8HrIrfyUAGVR5EHLIIa1A6wkvbeDpC6bjzm4/Tjuh9Qwhfad2MURe1FlRbUGv3RJdbKTBfPIX9/hPEQZ5mdohUZYjDAl7SckL3rVg4aA/ejC9PaXLe/196hkirOGVfACv5RA+TpgnWdl3d3p1d3b83UySxq+cJT1oOHBztqZvOrVxF2B1qE2B057ylvM55Kwx7Loq3grWW5fOXe+4rH9m3LYtGAlBC0fFyW+I1MX/d+HKbxRJg1CBh1MbgIdstqrZILWrTnwvwlGS8vD1R443KMn4QEuRyztXtcDgcDofD4XDsAaRUjB05zrUPTjMwMcni1cusXJ+jb3Tsgfa/Dq2mbT1CY2gpj1RI/C1e7xUzPvVIU8p04szrkaaQcZLFbsAKQSTzBLazvmqtxDMxQlgS+eAi8/12neLcBWpjh3rWpNvlkY7gvXQjpc6DdBjkMiCwok0qG6RECF3C74r0EoMSigCf1OpuYzHHRoznDf/dZ1b4e2+WqESrhfbX6h5/742O4F0KOys+2aF+Dv7I5+4ser95utfp7URvxzbgzhwOh2MVITp9TX2/IxQkafdDhL0l4jztiAZq90ac10zAu9Ew+TjmUFBlTDXXCNhKwMGwyf6gydUky8W4RGSDjsvb8+/Yj9bxaJGKlMviMtftdfbZfZTXcUWXKdNn+7hurzMtpknF1vpQbScCibKnkOlJrLiIlq9i5YV1BlqMOI2RpxHmEMq8hLCH1gj52zs3EFYj09Za8Vt2xG9uiN8mQekEqTMoL4eg03db6TZeEOFl26jB+OZs14RLaQONdkcIb0bYkRL0F0i8LM3cMKkKicIiXtoiTOo7dsx7kRFGevrVX/D+ObGY7xlzxD5NjiJXbZmGUZ1e3UYjpUDcodipmQq+Ndfr4v7RJ31s0BuznV/eqQhzs9qew/Mg9Dv/3iXN2QWSWm+RxHZFmK9GpxmSNRfWq/HlmCxaDeNpi0xirLYkIsdSI8GTgr6Mx2gpg6/u/3yVRBFRs0l5dAwvCMmX+++8kcPhcDgcDofD4XjoeL7P2JFjXPvwNH2j41Rmp1G+T3Fw6IHNoePuTtBK4BlDJBSeNVtagRAChgoBcarJBx71OCH05bZc5zi2ASGIRQ6DIjBNrJR4pk2gDYnKYB/QunDQrFKYu0h99FCP87/VPwbGkKvcMIQIMANAHaQA7YGqYdUysS6ibIgvPYy1XZe3wiK7qWuOjRjNG/67bqT5UntV8J5uePzdrsO7HK7+BrckeseJE70d24oTux0Ox/p4XufbdIWD9EbEuYZEg4kB2en9Le8/PnUnaNiA96MhPhEJB/0q414DedtnMClgf9Biym8xk2S5kJZoxeB5zuX9ONIWbc6L85RsiX12HzlyPY8LBKOMMmgHmWGGOeaw4sF/HBYIhD2E1IcwehajXsOIM7DOXKy8QCovIOxox+ltTyDY+ddsj/jNVsXvEOUlt4jfN5zf7VXnN4CSUMpBKXfzYiTxMjRyQ12hu4SXtgliJ3TfSmADpuzUzdtL8k2uq9/rGVO2w0xxlNgqLpkBtE6xVm/Z1f2t2SJtvbooIbB83/GBnotGv1UhiHaiLYDt9ummU7Tl3X2f7hss3xZhHpZLZIfuXwC+EV+edOPLU3tb0YxsczO+nAzIAl5URwsfGbWoGUUzThgphfi+YriwPdX0jcoySvlkCiXKD9gF4nA4HA6Hw+FwOO6PMJdj9NARZj8+hx4YpLa0iBcEZIulBzaHwBp8azBoGtInFpJwi+7uwJOUcwHGRrRTSbXl4sx3G6kMAUFgmiQyi2/a+LpNokIsD6YwIWyswPVL1EcO9AregxMIa8iu3FLIbwpgfVDLoCXIGqgq2uQwJrzF5a1RwsMXPsZqUufy3pCRXEfw/ntvlFi8RfCebXj83Tf6+NufqTKQ6f393RS9FyvMvXWa6oWNRe/5d88x/PQxhp52orfj3nAlUg6HY3Ok7ETA5nKdfz2/86/fPekkced7p+Jot4Gm9TkTD/InrQmuJgXMOtqkFDAZtPhcdo6ngv8/e/8ZZVmWnueBz977mOtNeJOmTJbp6qo2ZboLDTTQQDeaIETQE5qZpUWtkcjhUBBJUQR/zQ/9mjVrlkhRohMoiFwSNaORASgSJOHRRKOB7q6u6urq7vImqypdmAxz/b3H7L3nx7lhbriMyIyIjMzcT66oqHv8NXHuOfv9vvddJqd7JEmEMWf3eTlOjpZo8YZ4gw/FhyQku+Z7eJy353naPk3d1vdoPT49JDN4+k/jp7+A1C9kF/N7YMUS2vtXJN4/RsvvYLn9bOzbQQDSavy0Ty5uUeyvkO+vEcQdhDGkXo4oV6VXmKCfqxEFJQZhhX6uTqc4Q7N8nk5hikFQIVXhyEueqJBuYZJU5YjCCiqNCOL2GfSduItYeNg+jBoWOiS0eN/7RyOLKOvxlP0cAsHHdjyrazJgjBl2dR9cJBFpwe8ujHZ1vzgTY2ujVvrFxqg9+LGRptkB+/7Wd9dtYLSmefnayLT6YxfuWACWZPblqTUYLJHZeW7RIPpg84CHUTN4OgFt8KIBkSyy1onJ+ZJi4DFbzR3VnX1PdJoy6LQp1mooz6M8PnnnG3U4HA6Hw+FwOBynSrFWZ/zcRUpj4+TLFZrLS8T93fF+J0lBJ0gsvjHEwjuSbFjN+4SeopL30NbSjd143FkjlQEDVcYIj0Rl7m2+7iPt6WVfh511ijd3jyn0Js4xqIyPTrRhluNtc2Cq2WPZw6omMR0GJkJjSGxKajVSSHzhDUvUHXsxkc8E78n86Hu+3FOZCN7fe5AiP17joa/+KI/9+a9SffjcnsuYOGHpu2/w1v/8b1l85XV0dLrjlo57H9fZ7XA4DocQEPjZz/ZcbzO0O4+jrPPb8ziL1uYAA+vxVjzG5aTCQ36Lea+L2tEJKwTM+gNm/QFLaY4Pkxp9mUMp3xWUPmgIWGGFNdaYtbPMMLOZc7xBjhyX7CXatLnKVbri7mVDC6p45qtY80WM/C5avgJ7HY9oodXvoOU3kOY5lHkeQen0D5hM/N7o/AYwQqGVj5YBqZfDio3O7xSlY1KTQ3l5BBas3cz6joIyqQw3he4wbp3Rs9DdY4IJKmxV9V/2fplErI8s85j9DHmKdGzIgqmgTbytq/vWl4x/uFykk44K4l95ujzq/mE0heY1jh2js7gNzwOlIMwdOad7g/bHC7tuqo7DwlwJD4vBYEiNxo6UbFhQnU37ckMdIT28fgttJSaVtBJLrA1zpRz5QFEvHE+lc6/ZQCDIV6pUJqaQ6my6tTgcDofD4XA4HI6DqU3PEPd7WGPRScL64g3Gz13A8/cuij9uPCyh0RgJiQiIhSJ3SCFUCJgsh8TrhkLg0Y0Tcr5E7bRodNxVjFAMVJlQd7FK4OsI3wxIZYAWp/M5y7XXsELSmzw/Mr07cR5hDGFn+1iHBD0JsrGxNsg+yA6WAQOTx7MFPKkw1gytzb3svv0URfx7ifGh4P13Xqmw3NsaP7jZV/yXL1f4xRdaTOT3LlbJj9e4+NUv0F9tsPzqm7saDSATvZe/+yYrP3yPiWceY/KZx12nt+NQuM5uh8NxdDwPCnnIhcNM1OFvrSGKQCfc1VbXWxBZj3fiMf6wP8dHcRlt975wnvYGvJhf5Bm1SF63XJf3A4oRhuvyOj8UP2SV1T2XKVPmKfsUj5hHCOzdvQAT5FHmx/DT/xSV/nGwY/ssOMCoPyLx/iGp/HXsPs/tNMk6vwfk4haF/mrW+R21EUZnnd9hZdj5XScOSgzCKv2wSqoCorCK0k7o3ovABlywFzYfr8hvsqK+MbLMuJ1hjocB+MBMYrTBGIvW5lBZ3amB37oxapH3TK1PODU/Mi3fXkDu6mi+Q+xGTrcCNSzK8m5fsN1pYV6cnSQoF+/oED3U0L48y+hO2c++vITFR3vjeEmEsQJv0CcSBdZ7CaWcIvQV87X8sRRgWWPoNRvkK1WU51Gdmr7zjTocDofD4XA4HI67xuSFhyhUq9Rn55BSsr5w/VTHswomQQGhSUmE4ihyYeBJqoWAUqBQQtLsJ2DP7vjig4oVkoEqoUVAokK08PFMjGeiUzuGfGuFwuoOS2wh6ExdJCrWdq9gapnobQuZxbmughUg26Rqlcj00FaTWk1qUwSCQPi7ml4cGfWc4W+/0GSmODq2sTrIBO/l3sGvW368xsWf/kLW6f3I/p3ey999M+v0fvl1Utfp7bgF7q/V4dhG3O/x8W9/k7jRvtuHcm/ge0N782Bobx5kYkOaQhRnnXZnmNgq3kvqfKM3x+W4QrqP6D3hDXghXOJpeY2ibmHdhfYDSSxiLsvLvCnepM3e54hxxnnGPsO8mUfau/sVK/BQ9ln89K/gpX8OYeb3WVBj1PdIvF8iUb+CESfQdXubSKvx9W7xW5p0U/zuFyaIcjWUiQkjJ3TvwsJFe3HTvjymwQfeL40s4tmAT9gXEAhumhJNm0ebFGsM1tpDdfp+e6XIejza/f2zj1mSfG1k2vFbmNvMaQRxxzndAOkgon1lYWTanXZ1S0AKSWoNFkt8K/tyZlBoVBKBsSQ2pDnQGGupF0KqeZ9S7njMmXqtJsYYCrUaxfoY3h28dg6Hw+FwOBwOh+PuI6Rk+pHHCAtF6rPzmFTTWFw4tbEsCeRMio9BYInk0e5dankf35NUch6pMfSdnfnZRAgiWSCReVIZkMoAaVN8Mzi1Q8g3lsmvjd6/IwSd6YeIC3vk1dsA9ET2YwtgKqArYMGqBrFcIzL9TWtzg8YbWpu7sabd1ELL336+xdwOwXttKHgvdm89Lnpo0fvVN3nbid6OW+DEbodjiLWWP/if/hnND6/x8f/+u7Te/siJmodBiExYKOQzwdv3IQizs0sSZ/bmZ1z0TlB8kNT4Rm+eD+IqyT4i5biKeDZY4lPiKhXT5ix3rztOjq7o8rZ4m/fF+wzYfREvkcwxxzP2GSbsxF3/mAgk0j6Jp/9DvPQvIsxj+y2Ile+Qev8jifrnGPHuDpvlu8+G+B3G7aH4vUoQtQniNmHUdDcfezDOODVqAFgsH3j/LalojSzzhP0sIXm0FXxoJ9A6zbq6N7K6b3G5aCz8xvXRG8nHygMm5mdHpqmkR9i9eedPajtJChgIPJDitnO6N2hevobd1vUglKS2zw3XYVFDC7QD7cvJ7MutKWP9HF4SoVHIQczAhjT6MdW8j68Ec7XcHR3P5p6tzbq6S2U836c2PXvrlRwOh8PhcDgcDseZR3kes5eeIMgXqM3MEvW6tFeO+V7sAPImRdnM0lwLSXqEu3UpMztz35PkfY92nKDN2RqbcAwRgkTmiGURLQJSmUdYTaD7WfzcKZBfXyTXWNp1XO3ph4nz5b1XsmHW5a3HgHyW523KgMaoNSJWSWxEajPRG8AXPp6T0nZRCS2/+EKLc6VRwbsRKf7OK1UWDiF4w5bo/fhf+GNUHzm/5zKjovcPSQen5yTguDdwf6EOx5A3/+BrvPfSNwGwqWbxay9z9WsvoeNjtlu9X5ES8jko5rKObz8EP8iEviTOfuzZrsZMkVxOqnyjN8d7cY14H9G7piI+7S/yKXGFOh3uuprpOH0ErIt1Xhevc1Vc3W1JDAQEPGwf5pP2k5TtPhfYp4hAIO15fP3z+MlfQZpPZ/nAe2DlVVLvfyfx/glavIbd4/mdBaQ1+HqAnw6c0L2DvM1z0VzkIfvQ5rSb8vdZUy+NLDdpzzFNZnF+3dYZWB+tNcZkXciH6ep+dS3P8mA0m+tnz3Xo1kZF4kLj6vG+TybNfjw/cxXJ5zLB+w7YaWFeuTh3R9lQG/blqdWZJdp+9uW6BPgYbwJlNDJNkGlCLAqs9ROkEFTzPhOlkNA/nkztqNshTRIKtTr5cpWwUDiW7TocDofD4XA4HI67j5/LMfNo1uFdnZym22zQbTZOZd+CTPD2MUhriKR3pJGznK+o5n3KoUIJQavvxmbPMqkMGKgyWngkMruv9HUfcQrjwAIorN4gbO4o5pCS9szDJLkDIslsHtJpMPWs01vXsmgxkZLKVQasoUlJbEpqNXLY5S3dCNQI5cDyt55vcb48Ot7RjCR/5+Uq1zuHH8PIjVW5+NM/konejx4ker/lRG/HLpzY7XCQZVa+9lv/Ztf0xvtXeO9Xf5ve8t3Psr1nkAryechv5HkPLc6Nybq807Od5w2gkXyUVPhGb453ohqR2ftLuSpjnlYLfFZcYQLX6f0gYoVlUSzyQ/FDlljasxO6QIEn7ZM8Zh4jZ4+nI/NOEUzg6T+Bn/4CUv9IVtW654KraO/fknj/CC2/id2jk91xdhBWMGbHeNI8ydP2aaaY2syXiljhsvfLI8v7NuRJ+ywCQWQ9rto6WqdYazEmu5G7VVe3tfDr16oj0y4UYx4+X8OqUZH4WC3Mrcm6uqUC5WUd3fLOROCo1aG3uDIy7U4szCViaF+edXNvVIRvsWFfngM8rBkHpVBJD42CWNPTks4gpVbw8ZVkunJ855Buo0GQKxDkctRmXFe3w+FwOBwOh8Nxv5EvV5i8mGV4F6t12jeXiXrdU9l3aPWwu9tghCAVR5Mh6oUAz5OUcz6xNvTjs+0a+aBjhCJSZYzwSFQeiyQwfdSu++DjRwDFlWuErR3j91LRnn2UNLxFYbcpDEXvaiaA6xqYAlZERGKZhAaahNimWCye8PDE8RSh3y+UhoL3xcro+92KJX/35QrX2kd7vXJjVS5+5Raid5Juid7fcaK3w4ndDgeQ5dn8/H/x/+Kpn/ipXfPiVpf3/9XXWH7tbWdrfhQ8L7M2D8Os0zsMM0FCa4gi0ClnXRw2SK6kFf6wP8dbUZ3+PqJ3ScZ8Qi3yrLzCpGhx1p+X4/hJRcoVeYXXxes0aOy5TI0aT9unuWAu4Nnjydu9UwRlPPNT+OlfQ+mvwH4d6KKDVv+OxPsHpPJ3sbT2Xs5xVwhswLyZ59P20zxqH6XM6Ptosbzv/0O06I1M/4R9noBMPP3QjqOtJN3s6galbn2Z+Hojx9XeqKj9s/NNevULI9PC7k28ZHT/t88eOd3+nf9NNXZ0datcQPn8zG1vTwk1NC+3JCY9wL68AKaE9ksok4A2qDgiFkXWewm+yvLqZio5PHU8FeTxoE886FOs1QhyeQqV6q1XcjgcDofD4XA4HPcclYkpatNzlCcmCQpFGosLJNHJi0ICKJoED4NnDJFQRxotkxImiyGBJ8n7ik6UOjvzM44RkoEqkwqfROXQwsMzEZ49+YxlARRvXiFor49Mt1LRmn2UNDhE4bgpQTqTZXlvit55UtEnEsuktElsQmoTBIJA+JsNBg4o+pb//LkWD1dHnRjaieTvvlLhSuvoBQKbovfP30L0/p4TvR1O7HY4NvHDHD/xF/8SF376R5DBqB0rxrL40g/48Nf/gKTbvzsHeC8iBAQ+5AvZb9/POr2lzDq8o/jM53kDGATX0jJ/1J/jjWiMntlbVCmKmCflEs/Lj5kWzVPLp3GcHQZiwHvyPd4R79Bjt7AnEEwzzTP2GabtNMKeDesjQYgyn8dPfwGV/kmEndxnwRijXiLx/hGp+jUMy6d7oI4tLFRshUvmEp+yn2KOOXz8PRddlL9FQ742Mm3GXmSSeQCaNsdNW0brFDa6uqXkMJeJv74jq3s6l/CpKUtUnBqZXlw/xq7uZOgQEvigFOTuLKcbsvzqnRbmtUfOH8rGfS82qrw37Ms1O77rxHb7cg/DGEKAF/exVqETQSeBfqwZLwWEnmK8dOfPc4Pu+jqe75Mrlai6rG6Hw+FwOBwOh+O+Zmz+HKVandr0LMrzaSzewOiTH4/zrcG3htBqrBDER+yGzYeKcuhRznlIIWj0YteIdMaxQhDJIlqGpDIklQHKJPjmdAosSssf4Xcbo8ekPFpzl9D+Ye6pRZbfvSl6Z/bm1oYkok0sbpKIHrFNMGi8obX52Rjdu/sUfMvffK7No7VRwbszFLw/vg3BGyBX3xK9a5cu7LnMdtF74aUfkPad6P2g4cRuh2MHtUfOc/Hnv0JuZnzXvM61Jd79ld+mdWXhLhzZPYwUWWd3IZ9ZmvsBBEF2BkpiSCKwZ1/0tghupCW+2Z/lh4NxOvuI3nmR8Lhc5vPyMs/IazwibjItmpQYIDnbueWO46ElWrwh3uBD8SEJu7OlPDwu2As8bZ+mbutnxgxAoFD2Gbz0L+Ol/z7C7GPhLAxG/pDU/2US9b9gxEd7Wrg7jh9lFdN2mqft0zxhn6BOHbHPbVVMzEd8n8vePx2ZHto8j9vPbj6+bCYxVgy7urNzsTqEJfi7rZD326PV0X98vkW/fiErdhoidEK+fePQz/FAdJoVSfkeKJkJ3eLObyv7y2vEzc7ItNrjD93WtuTwnx5anO1pXy632ZfrOiYI8HSEMQIVDYhkkbVuRD5Q5H3FbC2PPKar9jRJiLodirUxlOdTHtt9veNwOBwOh8PhcDjuH4QQTD3yKPlSmdrsHMYY1hdunIpwXNAJEotvNLFQRx4VGy+F5HxFreBjLDT7SZan5Ti7CEEkCySygBY+icwhbEqg+yfeGCSA8tJH+L1RR0KrfJpzl9BesPeKu5CZ2J3OZB3fpgi6jrEeCQ1SsUJCl3h4v+8LHw9nbQ6Q9yz/2bMtHtshePfSTPC+3Lh9Z75cvcqFL7/I4z//MweK3jdfe5u3/39O9H7QOBs+qg7HGcMvFzn/p79E8ztvsfzqmyPz9CDio9/4BhPPPM7M55+57a6vBxIpIZ+DVEMcg1CZaJGk2WO5YUV7tutwLIJFXWSxX2BK9XnEb1JWuwVNXxhq9KmJLTcAa2GAT5eArg2zHwIG+ODqAO8vBKywwhprzNpZZpjZZW+UI8cle4k2ba5whZ44LpvnO0MgEPYSUl/CmBsY+W2MeBvE7psSKz8glR8gzAzS/AjSPnnLnGfH0cnbPFN2inHGUQfcQBlSboq3WZY/oCs+RMv3QYyenz5hX8Anu8FbNBU65DBpMuzqNsOu7lufj35jR1f3WJDyuYkuK7XRG45C8xrCHkOhj9GZK4jyQG7kdB/PZ21nV3dQKVGYGrutbXmb9uWQmGQf+3K5aV9uVBGJQSYR1ggSE9COUlJjmar4FEOPWmHvrv3boddYR0hFrlymOjWNOC4V3eFwOBwOh8PhcJxZpFTMXHqca2+/QX1mnrUbV2kuL1I7YacnD0toNEZCIhSxUOSO0PAiJUyXc1xv9qnmfRr9mE6kKeWcrHHWSWSIRRCYHonM45sBvh6QqBB7guNGwlrKi5cz+/L8Vsyb9QKa849TXryMHx12/E2CqWWCt2wDAkuOVPbRooEve1hbQtl81uWNh7Ya84A3hOQ8+BvPtvgH36vwzvrWeEY/lfy975b5G8+1uVS7/Tz3XL3ChS+/yNSzT7H86ps0Pri6qwhmQ/Reff19xp++xOSnnsDLH59jnuPs4b4VHI59EFIy88LTlOanuPq1l3bZl6/88F26Cze58OUXCWv75Nw69sZT4OWHIneUXbnqNBPBozibrzzOvvgrWNYFlnWeSdXnYb9JdQ/Re2QNAXkS8iRMiO7mdG0FvQ0BfPN3SOqqAu95jDBcF9e5aW9yzp5jnN1dlGXKfNJ+khW7wjVxjUQc/Dk6TaSdQ+o/i2UdLV/CyO+D2H1BauUiWv4faFtDmc8jzacR+9hqOw6HsII6dabs1K4cbgBDTFd8TFdcpi3fpyneJRLX93x/Npi3jzBOlkOdWsFHdhxjLak26GFXtzxEV/eVrs/rjfzItK/OtdClCXRQHJlebByHhbkd2pdL8DwIvOz3cWxZm+zGaBv1xy4ibqNj3BMKi91mX75D5BcRmX15BfCwpowNfbykh7EeKurTF2UavT6l0CNQirlafq9d3RZGa3qt5rCr26MyOXXrlRwOh8PhcDgcDsd9gRcEzDz6GDfefYvq1DSNpUU8P6B0wm5PBZMQS0VoUiLp4VvDURK8PU8wVQ5ZbA4oBz6tKMFTgpzvxszOOqkMMEIR6g6JyuPrAb7uk8oc5oi29kdBWEtl4TKtuUukua0xCuv5tOYfo3jzGrn26hG26IGpgy2BbIFRWDSx7KHEOkZ00baILwp4wsNgSO8BF9OTJPTgrz3b4h+/VubN1a2O+oGW/NffrfDXn23xeP32BW84pOid7hS9H8fLHyLD3XHP4cRuh+MWlOameOzPf5VrX3+Z1kejNqz9lXXe+9XfYe7HnqX++O0NjD/Q+F4mbCcJJCITuNN0+DO0qZWKe0H0vqkL3NR5xlWfh70WdS8+0haUsJSJKItRa5XIKro2zIRwQro2oEdwohWQjpMhFjGXxWWW7BLn7fk9xcsJJqjbOot2kUWxiBFnx/ZeUMczP4M1P46Rr6DlKyD6eyzYQKvfQss/QJrnUeY5BMXdyzn2JbABk3aSSSY3c7hT+vTEh3TkZbriAzriMj1xFY7wGcnZIpfspzcfX7VjJHjoNMvANsYM7ctvfc7dmdVd9jQ/NtWlW3t8ZLo3aOEPGoc+xr3ZELqBcJjTHRzWeuzWtK8togej597aY/tY+B/Ahn15arNu7tjuLFrRIHub9uXoOsbPoUyKTBJIDRF5Gr0EC9SLAfViQDE8vgGAXqsJQKFaozw+ifJcQYrD4XA4HA6Hw/EgkSuWmHroUZYuv0caJ7TXVvGCgFzp5Bp5JJA3KUZ6xFgiqSiYo4lc+UAxXgqwxCRG0xokKCnwlRsfO+sYoRioMqHuYpXA1xG+GZDKAC1O7p5UWEN54YMsrzssbJsh6U5dIA0LFFeuHc1a3fqgx0HEIJtgFJoUI3so0cDSR9kSnsgRCJ/U6qHv24NJqOA//Uybf/xamde3Cd6RFvw3363w155t8eTYnQnesE30fu4pll99i8b7Vw4WvT/5KJOffsKJ3vcZTux2OA6Blwu5+NUfZfXND1j41mtYvfUlZdKUa7//HTrXFpn/4nOowA0cHwkhMtHC8zIxQ4hMyEjTobixXfQ+6whWdYFVXSCMY8oipiQTyjKhJBOKUh85WjYUmlD0GGPLXsdY6Fufrh0K4IT0CIm4F7rhHV3R5W3epk6d8/Y8IaMWOgrFPPNM2kmuc50VVs7U2yoooMyPI82PYOT30fIlEI09Fuxj1Dcw8ltI82mU+TyC+qkf7z2DhQoVpuwUJTy64kOW5XfoiA/oisv0xY09beQPi7I+T9sX8Ybied/6XLc1jDXoYVe3gKGF+cEs9j1eXS2MTPvybBvfV/QqcyPTi42P7/zju5nTHWROIMeU073B+rujFuaF6XHCaulI2xBs2Jdnvdyx2Sl077QvL2PJgZKouIvBQ8YDIqtoDfrU8j6+EsxWj+/Gy1pLr9kgVyqjPEVtaubYtu1wOBwOh8PhcDjuHUr1MZK5cwDoJKaxtMiY5xPkTk74yZmUgVCERjNQHikC74hWz5W8T5QYsJa0l9DsJYwVA6Q8Q4Mmjj2xQjJQJULTAwWeEXgmRghDKk/OWloaTeXG+3SmHyIpjBbtR9UJdJijvPghUh9RcLUB6MnMvU02scYjJcaoAVauoW2ITxlPZA1LqU0fWGNzX8F/8tk2v/RamR+sbAnesRH8g1cr/MJn2zw1fjwOl7lahQs/9Xmmn32KpVff3F/0/v47rLzxPhOfvORE7/sIJ3Y7HIdECMHEJy9RnJngyu99m2i9NTK/8f4VekurXPjyixSmT9b+575Eyix/1fcgSkDIrTzvZJjn7XnZ9HuAyAZENmBlW/GeRFOUKSURU5IxZZlSkgmhPFqFnxRQFAlFEmDLCj21go4J6BLQMQE9Mkt0I/zj1IUcx4GAddZp0GCaaWbtLN6Or+SAgIftw8www7pdpymadOicGeFb4KPM80jzLFa8g5bfwsqFPRZMMeq7GPkq0j6JNC8i7dzu5R5QpO1TFF0CuU4srvCBvEwklu98w7aGsDNIO80URR4X4abQDXDZTGQ3XEkCGIw2KHW4ru7fvF7Bblsurww/OdOmV7kwWphkDYXmtTt7HkZnxU9qWPR0jDndADqKaX18fWRa/Ta6uj3hDe3LDalNd1du77Avx5TRQYCyKWiNijUDUWS9EyOloJr3mSzlCLzje66DThudppTqYxSrdfwTHMhyOBwOh8PhcDgcZ5v67DzxYIA1lvTGVRqLNxg/dwF1THFROxFAwaQYJYitIZIeyiRHHuIYL4UkxlK1sNaLafQTxgr+sRZEO04IIYhkAd9m4wbWCpSJ8Y0lkSd3fyqNprzwAb2xOQb16ZF5aa5E49yTlBc/xI+6+2zhAGwIegpkH2QLowMSEaNkjBWrSBviU8EXPsYaUh5Ma3Nfwl/9TJt/8oMyry3vELy/V+YXPtPm6Ynji3QMa+Vbit421U70vs9wYrfDcUTy4zUe+zNf4ca3XmPtrcsj8+J2l/d/7WvMvPA0k59+0tma3w5SQX7Y2R0n2WOTbuV7q42c1nvvtTUo2kbRJmT7tU2ApiQTSnJDBE8oygR1xKfoCUtNRdSI2B713TeKjvXpmoDO0Aa9ZwMQEiEEQkh3T3CXsMKyyCIrrDBv55lkErHjs50f/puzc6SktGyLhmjQpEl6QDbzaSGQCPsJhH4Sa64MRe8P9ljQYsRbGPkWwlxEmRcR9tFdz/d+xWKBFlYsYsQiUtzEiiVi0WBwZxsGxpF2BrH5M40gy3kOSXhCfjySh7Zu86xRxBiDMQatM9eJw3R1r0aKb6+M2tJ/aaZNwbMs1UdF4nx7EaWPFukwiskcPuQwpzv0jy2ne4P1dz8acWsRUlJ99PyRtqGQCCCxKRZDYnf+Xe5hXy697GlFfYxV6MTSN5ZurJkshwSeYqp8vNXt3fV1wkIRLwiozswe67YdDofD4XA4HA7HvcfUxYdJo4j6zDyrV6+wfuM6Y+fOH+re8HYIrEZZj5zR9JRPIiSBPWIDiISpcsgNY6jlfNb7Ma1BSiXvnDbvCYQgETksksD0sFLhmT6B7pOo3Ehh/bHuFiiu3cCLe3QmL44U0Wc53pcorlwjbK3e3hGYfPYju1jZJtUBQsT4MiYSKyibxxclfDy01ZgHsM/bk/BXPtXml39Q4tXlrfGO1Aj+0ffK/NXPtPnU5PEJ3rBN9H4uy/Ref+9g0Xv8qUtMfcaJ3vcqTux2OG4D6Xuc+/HnKZ2b5vrXX0HH207ExrL40g/pXFvm/E9+Dr+Yv3sHei/jDUXtJIWYTPTWwyxvrbOsb3Vvit47iVGsGcWa2foiFVjyIh3aoMebYnhBHr0CMC81eTSTaktSMxa6xqdtfTomoGN8etYnwh/aP4mhEO7E8NMgFSkfi48387xr1PZczsNjjDHG7BgAXdulQYOmaNKle1f/HAQCYS8i9UWMXsaob2PEG3tmSlv5Man8GGEnkfpFpP0kgnshquBwZML2OkYsYrf9bM84v63EJisQTG4TtTeE7f3yqy0PixXUNvtza+GymQQEaZqJs8ZYvEN2df/OjQrabi3nC8NXZtskYZkkP2pTX2h8vHP1I2CzgifI7Mu9483pBtBJwvL33hqZVr4wg5c7vMgsACUU2mosluhA+/I8mBLWBtjAx9Mx1khkFDGQJdbaA0JPUgo9pqsh6qgVTwcQ9bokccTYxCRhoUj+BPP4HA6Hw+FwOBwOx72BkJKZS49x7a03qM/NsXbtKs2lRWozsyfSwCOAoknQKsAzhlgofGuOPJThKcFUOcei6VO2Pq1+gq8k+eD+GVe430llgBGKUHewsoBvBvi6TyJz2BN09Qw7DVQc0Z55GONvu/cXku7kMMf75hFzvLdjill02VD0jrWPJxMQfbTo49siSpSQQGofvC5vT8Jf/lSHf/Y6vLy4TfC2gn/8Wpn/+6fbfGbqeAVvgLBa5vxPfp6pZ7NM7/X3Pt5T9F75wTusvvk+4089yuSnn8QvONH7XsKJ3Q7HHVB75DyFyTGufO0leosrI/M615d491d+m/M/+TkqF1wH1W3je5nIkSQQD/O8k6GtbWruoTzvo2ER9KxPT/ss661sXIUZCt/JZhd4SSb4ewiKByEFlFVCmQS25YEnVtA2GwJ4QEf7dIyPFpIsAkkOix+dGH5Ytl872c3/WrZfN9vhQl2b5XlXqXJRXKQgRnORd1Ic/pu38yQkI13fWty9i2bJFFL/SSxfQsvvYOT3QOzu8LXiJtr712j7+yjzOaT5LIKTy2o6CSwGy+qIqJ0J23fS0QxYhbBTW6I2M9njQ166FYh4VN6ktk1gB1iwVXqEm13dRuvs7/gQlfvtRPKN5dGu7h+b7lLxDY3ahZHpMumT69w81LHuSZqCNcOcbgHh8d9grPzwPdJ+NDJt8lNPHGkbmX15ltSdGD0sdNjGiH25D6aCUT5CWGQSY60gMQGdRBOlhtlqjpyvGC8ec1d3o4EfhISFArVpd03icDgcDofD4XA4MpTnM/vYE1x/+01qM7OsLVyns7ZCeXzyRPbnW0NgDEZqutInForwNkS/nC8ZL4WYdkSqLe0owZMC/xijoBwnixGKSJUJdYdE5fH0gMD0SWWIFicnW3lxn+q1d/bO8a5MoIM8pcUPUfp2RVcBpjQUvTukdBBkonciumjRw6OETwFjLfr22iHuWTwJ//HTHaSAlxa2xj60FfzS98v85U91eG76DsfU9iETvT/H1LOfuIXo/S6rb34wFL2fwC+4ZsZ7ASd2Oxx3SFAu8ujPfYml776ZdYhtO0HqQcRHv/ENJp55nJnPP4NU958oeyoIkXX0eR5EMSDBKkiTLM9bDC1u70PReycaSdOENM12IcQSCr0pgpdlTElkVujyiCK0LyxjKmZMjV5U9IyirX06NhO/OyagZ302O0EFZ1YMP4rYPDJtVxWn3Vxt9DrIjq44nG/ZNfnQrAz/VUSFuqwzJsYoydKB6/j4jDPOuB3HYrOu76Hw3aN3V7q+BRU88xWs+TGMfBUtXwbR2WPBNlr9Hlr+IdI8izIvIDh7nacWjeXmDmF7Ce7QTl7aHKE9h7VTJHZsKG5P3Fa3u4fmolhlVjR3/d0lVvKxHQfIurrt0bq6f3ehTGy2Bg6UsPyxuVZWnFMdtf4uNq/eQSW0zpw8PC8rcApzHPlkdgvSfsTN778zMq18YZbi7OEHdLyhfXlsNQZDyq3tyy0CfA+VZvblcjAgFSXWu30KgSLnK+ZruWM9ZyZRRNTrUpuawfNDivWx49u4w+FwOBwOh8PhuOcJcnmmH7nEwnvvUBmfpLV6E+UHFCrVE9lfwSTEUuIbPezu1tyORF3OecSpASypMVl+dzFAHfP9o+PkMEIyUGUC08Uq8EyEZyKENKTieN3dtnNwjneR5rknKC99iD+4jRzvrb2AqWQOb7JNQhdJgKcSYtoo2cWzJTybH7rFPTgoCf/R0x2UsHzzxlZzg7aC/+4HJf7SMx1emDkZwRtuX/Sm4kTvs4wTux2OY0BIycwLT1Oan+Lq114i6Y520q388F06C8tc+PKL5GqVfbbiuCVSQj6XCSHRUOQ2OrM6T+JM7Pa8bPoDhSCyHpH2WNX5bVMtBZFsdn+Xhnbo+duwQi9ITUFqprelC2sLHePT1t6wG9yna31i4w1zmLfdXBwghsPG9YQ9vNgM25Y9frF51/bYKYZvPd69ix1Hbvc+iN3PYfcxrw7/CQGBCBlX44yrceqyjndAlatAUKJEyZY4xzliYpq2SVM0adE69a5vQQ5lvoA0n8OI19HqJRAreywYYdS3MPIlpH0GpV9EMHGqx7qBJcGKZaxY2BK2ubmnLftRULZIyT5C0TxK3l5kYKusA+nwPbn9kh3LjGjxkFjZ1+nhsp0kRaF1JnIboxHycF3dvVTw7xZHCxA+P9FlPNT0y7MYb7QTudC4cptPYyOnW4Hyh4VOx1/ItPzaW5h4tEp75nPPHHp9CUihSIf25fEh7MuxAcYPkFYjkgShLTEFmv0UbS1jxYBy3qN8zFlzveY6UnnkSmWq0zMnYkfocDgcDofD4XA47m0KlSoT5y8CljSJaS0v4fk+Qf5gx7nbQWHJGY2RkAhFLBS527R0HisGxNpgLax1Y5r9hLGCj7MgvHewQhDJIqHNxtOtlXgmRghLIk/O/W8zxzvq0Zm6MNJEZT2f1txjwxzvlTvsH5FgqmBKGNkmpocnAgQRsWjhyR7KlrAmeKC6vKWA//CTXZSAb1zfEryNFfzyD0po2+HF2ZMTvGG76P0Uy997k/V3DxC93/iA6tOPMvGZxwlzx39edNw5Tux2OI6R0twUj/35r3Lt66/Q+uj6yLzBSoP3fvV3mP/RZ6k/8ZAbbL4TpIJ8PrO5jeJMBNdDa/M4yrK8vfsjz/tOsAi6NqCrA9h2z+BhNoXv8jYR3BNHU4aVgKpKqKoE2CrwiIwcCuBDEXxohZ4iEUKjjdgthu9x9KOP7o7YfGjE9meT/d/+f+Jic/lsGbFz7q6XxlpISFjUCyykCwBURTUTv73xW3Z9BwRMMsmkncRaS4sWDZt1ffdlH4Tcdjwnh8BD2c8g009jxXto+W2svLrHggYjvo+R30eYx1DmRxD23PBzc/xYBlixtNmpnQnbK3DEv4md+LZKyTxK0T5K0T5MyTxKyBQdOiyLZa6xjj2GwoMKfR6VNymJaM/5A+tx2UyySglrQetkq6vbO1xX99eXyvT1ligusPzMfAuA7g4L86C7gh/fTvXzRk63AN8f5nQfr/ALEHd6rL7x/si02qUL5Mdrh96GEh5m+C/d1748BV1lw77ciiyKQ8U9LB7EMYmVNPsR5ZxP4EnmasdbJazTlH67TWlsHOX7VCZOxorQ4XA4HA6Hw+Fw3PtUp6ZJBv3svjFJWF+4wfi5C3jB8XfY5k1CJBWhSYmUh68N6jYGZISAqXKOG7pHteCz3k1oDRIq+ZPrCnacAEIQiQI+CkwPKyWeGRBoQ6JymUvaCRF2G6jrA9ozj+zI8RZ0J89nOd4rVxH7jC8eHgWmBqZEqlpoC77MkYo+QjRQysczJYz1MA9In7cU8B88lQnev39tS/C2CP7ZD0sY0+UL83uPdR0nYbXE+S99jqnPPsXy995i/d2PdoveWtP4/rs0X88yvTuf/ROUnHPemcKJ3Q7HMePlQi5+9QusvfkBN771GlZvVWTZVHPt6y/Tub7E/I89iwrdhdcdsWFxu9HZrVQmeGud/WzMf8BF752kSBomR8Nsz8C15ITOLNC3dYIXRXpkATSUhlDGTLBVfWctdIdW6JtCuPbo242ihLMtNm/fgWCvBU72M7b7uVi6dOjYNh/HHxEQMCbHGBt2fSuxfyesEIIqVaoisyOLbMSaXmfdrtGiicYiZVaMkGU5Z8UJxymECwTCPo7Uj2PMdbT8Fla8s+fLaOV7pPI9hJlHmRcR9nHEbRmcDbdHb8SG3IhFEOt38GwyAjtByTxC0T662bkdUN8U6DWaVVZZFm/Q35Gjfdv7JOVhscKUbO85X1vBNVvnmq1jhq+Z0RpjwBiNlAJxwGdlg1gLfmdhtKv7s2N9ZvMp2ssxKI1afhVvt6s7SQCbdXNLCbmTqeBe/u4bI9/NSMH0808fen0PhQASq9H2IPvyPJl9eQ0Qw67uFLRBJikRedZ72XmyXvAZKwbk/ePtYu81GwgEhUqVysSUi1NxOBwOh8PhcDgcBzJ+/iJJFGGNZvXaVdYXrjN+7sKx30tIIK9TjPKIrSWSioK5vYgwJWG6kuNGY0Alb2n0EpTUFEN3/3OvkcgQiyAwPRKZxzcDfD0gUSH2DsaCboUXDw7I8R4nDXKU7yjHe2RvoMewIiG2LTwh8aRFiy5GNpAEKFNE2wfDuVQK+L98oouUlq9d2WoAsAj+hzeKaAtfPHfygjdsiN4vZPbm33uL9Xc+2kP0Nqz88D1+75/+t/ypX/x/nMpxOQ6HE7sdjhNACMH4Jy9RmJngyu99m2i9NTK/8f4VekurXPjyixSmx+/SUd4nCJF1/nneML9bZN2ASZpleqca/Acjz/vOEAysx0B73NzWaCqxFLd1f5dElgkeyqPZ6ggBJaUpKc3stumpFXSMt9n93TEeHeMTIxlVPu+u2Hz22BCjs/9N0CxxkyV9E6EF1W1Z3wV5sLVOKEJm1QyzzGCsoWmbrJk11s06/W229Rv281IIEEMBXN55Jru080j957GsouVLGPkD2KPb2crrpPJXwY6hzOeR5hkE+3f9Zp22nRFR24pFEK191zkswo5RMA9Rt5+gah6jaB/BZ++Iij59lsUyq7cKXN8AAQAASURBVKwem328wDAvGlwQa6h9us9XbInLZoJo22tkLWiTYq3e1tV9a/7oZpF2Mrrsz843AehWz49UYwidkm/dOOpTyjK6jc46uqWEfHgiVgOD9RZr73w0Mm38yUcIqwe7I2wgEUghSW2KxZLYvezLu2zZlxfBhhipEFIg4wiLRMeSGOhEKWOFAE9JZqq5PfZ4+1hj6LWa5CtVpPKoTk3feiWHw+FwOBwOh8PxQCOEYPqRS6RvR9Rn51m9doXG4gL1ufljd6nM2ZSBVeSMpq88UgTebXa0Bp5kshyy1LIUQ0snSvCVIPAeDMHwfiKVAUYoQt0hUXl8PcDXfVKZwxyiYP922cjx7o/N0q/PjMzTx5bjvQ3rgx4nFRHatvBlGWk1WvSQsoG0AZjCZvPC/YwQ8H96oocS8Dsfjwre//zNEsbCT5w/HcEbIKyUOP8TLzD12U9sdXqb0XPT5//Mz5/a8TgOhxO7HY4TJD9e47E/8xVufOs11t66PDIvbnd5/9e+xszzTzP5mSedrfmdIgWEYSaURDEgwQ6tzZOh1bnnwQleFN2PGARtE9A2oy4EPnqz+3srEzzZV3jbD09YaiqhpkYFo9hKumZDAN/6Se8g0fhBwWJp2CYN3eRDPiJHjjFZpy7r1EQNeUCmvRSSusiWBeibPmtmlVWzRjNtYLHozaz1bQKnGOqSQiK3CeGbovghTm+CcTzzs1jz42j5CkZ+F8RgjwXX0Oo30PIPUOZ5pHkOyAHNEVE7E7bv8AbECgQTCDuDMNMU7SPMmE8xwfyBluoWyzrrLItl2rSPtRajTpdH5U3yYu9q4q4NuGwmabC7yGGjq1sbc+iu7tTAb14fFfI/We1zsZRggd4OC/N86zryqFlrVmfFSVKB9LJz+QkVKC298vpIVa7wFFPPPnXo9ZVQQ/NyS2LSfezLk2325ZmDgvU9lElAg4hiUllgrR3hSUEl5zFdyeGr472B7bVbGK0p1GqUxsZPxHrQ4XA4HA6Hw+Fw3H9IpZi59DjX33qD+swsawvXad1cPvYCWgEUTIpRAmkNkczum273FroYKuqF7L4n1SbL7y4GKOnGXO81jFAMVJlQd7FK4OsI3wxIZYAWxx93toEACmsLqKh/wjne27AhVk8SmwFKdfBlFaNjhOwjVQNpQ6zJYe/zMVEh4C88ngnev/nRaMTb/+etTPD+yQunJ3jDlug9PRS914aid/nCLDOPPnaqx+K4NU7sdjhOGOl7nPvx5ymfm+Ha119Gx9sECmNZ/M4P6Vxf4vxPfh6/eLxZnQ8kUkI+l3V0x3EmbhuddXrHcXaR4nvwAFTFnSQJinWjWN9hhV4Q6aYIvpEJnr8NK/RAGAIVUVejFzGRUXTsqADeNT7avZ/7MmDADbPADbOARFIVVcZknTE5Rk4c3Emal3nm5TnmOYe2moZusKpXWU1XGdAfitlsE7U1ZlMI33rTs65wiRx6x2/Zo+/uCheU8MyXsOYLGPl9tPz23t3YootWX0fLbwJqb2H8KFiJYDITtu0Mws4i7BSezTHOOFN2ijwHn6MTEpZZ5qa4SbKPGH275Ih5RN5kXPT2nJ9aycd2jAVb2zPLantXtzUW5R3uEvA7K0XW4tFl//gwqzvOj5GGox3RxcbHh9rutiODOAVkVqwUeMNz9PHTW16jefnayLTJZx4/9HevNywOSK1GW41mp6i/YV+eY7t9uVY+QoCKIowVpMannxp6sWa6EhL4isnS8Vq2W2vpNdbJl8p4vk9tevbWKzkcDofD4XA4HA7HED/MMX3pcRbefZvK5DTN5UW8IKBYqx/rfkKrN7u7e8onEZLAHs1NcDu1gk+sDdZa1roJjV7MWDFwTUb3IFZIBqpEaHqgwDMCz8QIYUjlycSebXB6Od7bsDl0mkPLPr4UKAI0EUoNECpCmBBtc4j7WPQWAv7sYz2ksPz6h6NNHP/z2yW0FXzl4h2O/90GQaXEuZ94geoLT7H2yptMPfnoqR+D49Y4sdvhOCWqj5wjP1nnytdeore4MjKvc32Zd3/ltzn/pReoXJy7S0d4n+Ep8PJZZ3cUZWqbTjMRPBrme3sbedGO40HQsz497bOsty5IJGaz83t7Jnggjn7zEkpNiGZcjV7Y9I0ait9B9ttmIvheot+DjMGwbtdZ1+t8oC+TJz/s+h6jKioHdn0roRj3xhn3suiFnumxZtZY1Ss0dDMT/rZd4wuxYbMuMCYTwvVQFB/pCpfDDO8NEXyzKzxA6heQ5lmMeAujvo0VS7sPTCTAEYVl6yHs9DZheyYTurfdMORtnik7xTjjqFvcSLRpsyyWWWcde0R3g1shMVwQa8yLdfYqRrcWFm2Fj+04yQGXdVlXt0Xrja7uWxeIGAu/cWO0q/vRcsTjlawIpbujq9uL2gT9I+afb+R0h0F2Xj7B7uPF7/xw5LEKAyY//cSh1pUIJJLUJkP78p1Zctvtywub9uUWwFeoNMKgEIMYTYG1zoCcLykEHrPV/LAg5PiIul3SJKE6PUu+XCEsHBxn4HA4HA6Hw+FwOBw7yZfKTD70MPbDD9BxTGvlJsr3yRUPFwN1WAo6JfUknjHEQuFbc9ujOULAZCkkSQ21Aqx1Y5r9hFreP5GoLMcJIwSRLODbbFzGWoEyMb6xJPJ4o8B2spnjPXWRpFgdmXf8Od7bMHkSkyeVPQIl0DpEigghB0gijAnB5hH3aeOPEPCnL/VREv71B6NjGf/rO0W0gT/28OkL3gB+pcjsl54jNPfna3+v48Ruh+MUCcpFHv25L7H06pssv/rWiJWqHkR89Jt/yMTTjzHz4qeQ6v6t0jpVPC8TUJIEEgHKywRwnYLenuftLnhPCoOkZUJaZnvVpSUQhpLY6gIvDkVw7zbEwrzU5KVmclvGtLHQs97QDj3Y7ATvW8+J4EP69Llu+lw3N1AoaqJKXY4xJuuE4uAq2YIsUJAFznnDrm/bYM2ssaZXiWyExWKtBWsx1mw/3Q1tz4fp62YogO9hj45gKPA+gZBPIOTHWO8lUB8d/knaYFTUtjMIxve8KRBWUKfOlJ2iTPnAzWo0q6yyLJbpi/7hj+fwB86kaPOwWCHcJ+u7ZXN8YCbpcPAN3kZXtzFZdfthu7pfW8uz2B+1B/vZ+SZCgJEe/er8yLxi48rR/rJ0MszpDrKCpNzJ5HQDtK8t0bk+Wiwx+ZknUeHhxHVPeEP7ckhMcgT78gBpDaQpIjUk5GhHKbE2zJVzFAKPWuH4Ldi6jXWCXJ4gl3Nd3Q6Hw+FwOBwOh+O2KY9NkAyysZY0jmksLjB+7gJ+eHydtT6GwGiMFHSlTywU4VHjsbYhJcxUclxr9KnmfRr9mE6sKYVOCrknEYJE5LBIAtPDSoVn+gS6T6JyJzrGJ42mvHh5/xzv809QXvwIf9A59n1bUyAyeTw5wFMSYQOkiFFygL3PRW8h4E8+2kcJ+Jfvjwrev/JekdQK/r1HTmIsznEv487wDscpI6Rk5vmnKc1Nc/Vr3ybpjp6YV15/j87CTS585UVytco+W3EcCSGybkHPz/K7hcg6v5N02FW4XfR2nA6C2CrWrGJthxV6TugRK/SSyITwo0YsSQElkVKSKdNs/Z1pC71h9/f2bvCBfbCLHjSaVbvGql4DDQVRYExkwndFVA60/FJCMS7GGZfj4D1G13RZt+usmXVatjUUBm3221qsZfP/MwF228bERqc3WVf40B4dIxCcg/g8yCVE8ArCexu2F0fYPJhpMNOI4W9sbfPYLWIoUZrhT0ZAwLSYZoopAnGw+NmzfZbsIius7GFjvQ+7Xrqh0L/PS1oi4pJaoSr3rlSNreKyGWfJlofb2ngNdm9QAFqnGJO91nJoH38rrIVf35HVfa4Q80wtO6Z+ZQ4rt11GWkOhcfWW293E6KzwSA3PvWHIsbc3bxyatSx+5wcj07xCnomnLx1qfU8oLHabfflOV4q97cutEKAUMuljrYJYkyJZ70WUcorQU8zXc8eu78eDAfGgT31mDj/Mk69Ub72Sw+FwOBwOh8PhcOzD2Nw5ksEAYwxr166yvnCd8XMXDl1IfRgKJiWWisDoYXf3nQXWeZ5guhKy2BxQCnzaUYIvBaHvxv7uVVIZYIQi1B2sLOCbAb7uk8gc9hDudbfLVo53j87UxdEcb+XTmrtEYfU6uebNExhVFKQmjzY5AhWB7CFsiJQRQvbRNsLaHNjcfSl6/3uP9FHC8qvvFUem/8v3CxgLP/eoE7wdWzix2+G4S5TmJnnsz3+Va19/hdZH10fmDVYbvPerv8P8jz5L/YmHXK7McSFFJqj4fmZljtzK806Ged6el/kqO+4SgoH1GGiPFZ3fNtWS35EHXpQJxdvIA1cCyiqhvMP6OrViMwN8UwS3PrGVPIgieM/26Nke18w1FIq6qG12fd9KEC7KIkWKnFPnSG067PpeZ92sE4t4j/dsbyHcDrvC2dUVPgbpVxHiCwi1lP3N6inYFH+3o/d9+2qixpyaZVxMHHietdayale5oW/QtM09ljiez4eP5lLQZN7r7Pm5NhauJGUuJ9VhTv3hrbKMMVgsSh3u0u/NZo6Pu6OV+n98vrV5XDstzHOdJZSODns0WaGRlNk5N/SGsRInQ+vD6/RvjtqrTz//FPIQ+5TDf1v25Xu85nvYlwNYL0DYFFKDShIGFGj2E4y11AshtYJP8QQ6C3qNdTzfJyyWqM3MuGsIh8PhcDgcDofDccdMPvQwSTSgPjvPyrUrrC/cYHz+HOKYipYVlpxJsRJiIYmEIn8H3d0A+UAxVgywxKRG0xwkjEmJp9w90r2KEYpIlQl1h0Tl8fSAwPRJZYgWJyt1hd0m6tq7tGcexgTbGneEoDdxDh3mKd485hzvIRZBpHMokyNQAzQCKUI8McDIPsYOsDY/FL3vr8/3zzw8QEn4394ZFbx/7YMC2sKferTvEgocgBO7HY67ipcLufjVL7D21gfc+Ob3sXrrIs6mmmtff5n2tUXOffG5Q1utOg6BlJDPZV2FcZKJ3CbNRO84yjoNXZ73mcLumwduKQy7v7cL4Xl59BsiT1hqKqam4pHpsZXbBPAtITy9Dysm90OjWbGrrOhV0FASRerDru+yKB8opnnCY0JMMCEnAOiYDms2E75btjVcasPKfK9u5+wmYcMS3QJ2KIAbU8Smj4wc6a1QKGa8Gc755yjK4oHLRibiRnqDG+kNIntYIZedTuyHWvx80OPxXBt/Hxv/m2nI24MKXeORPc+jfcattUgpD13pu7OreyqX8Px4D4AkKBEXxkfmF9evHPZIho4aZIVHnoLg+Ozvdu3NGBZfHs3qDqplxp54+JbrCrKubjPs5c7sy3cuNCCzL6+w3b7cSAlKIOMYEKSph7bQ7CdU8z6BJ5itHn++WJokDDptyhNTeL5PeWzi2PfhcDgcDofD4XA4HjykVMxceoLrb73B2Nw8q9eu0Fxeojp9fAW2eZMSCY/QaCLlobVB7b4LOxLVgk+cGrCWtJfQ6MWMFwPEUe0DHWcGIyQDVSYwXawCz0R4JkJIQ3qL5ow7xUsGVK+/u3eOd3mcNMhTXryMSo85x3uIttBPcwSygJBdrBQokUeKHlr0MKIPtphF+t1H49o/fXGAFPC/vD06jvdvLxfQRvBnH+s5wdvhxG6H424jhGD8qUsUZyb5+He/RbTeGpnf/OAqveU1Lnz5RYrT4/tsxXFbeENRO0khJhO9dQqpzvK8PZUJ3/fRxcH9hkFkHdgEI9qfwmxmgG/+iITwNkTwQBgCFVFXo2LnwKisE9yOCuHmARDBO7ZLx3a5aq7i4VGXdcZEnbqs44uD84dLskSJEhfUeRKb0jDrm+J3smen8obl91AMB2C77diGRfrBFESBOTnHtJxGiYNty5qmyQ19nRWzkm1ZgceOdQ7Y4VFuxesq4hNhg7JK95zfM4q3BlVu6pBtL8AeOzx4r0JK1CGjGt5vB7zbGhVif2autRklsLOrW6YDcp3RPOx9SVMwZiun+xhz3vZi/d2PiBrtkWkzLzx9qO4DT3hD+3JDatN97Mv7Q/tyf9O+HADfR5oUtEVECakostaJkEJQzfuMF8MTsc/rNdcRUpGvVKhMTh9bl4XD4XA4HA6Hw+FweL7PzKXHufHOm9SmZ1lfvIHyfcrjx1NkK4G8STDKJ7GWSCoKZu975aMwXgpJjKVqYa0b0+gn1Av+/tlijjOPFYJIFgltZmNtrcQzMUJYEnmy4wybOd71GfpjsyPzdFigee7kcrw3iI0hNUVCWUTLDkIKfFFAiy5atLEooICwJ/tanCZfvjBACcv/963SyPTf/CiPtvAXHneC94OOE7sdjjNCbqzKY3/2Kyx86/usvvnByLyk3eWDf/U1Zl54mslPP+EGr48b3xtmeCcQi0zgTtJMlEmNy/O+B9FIWiakZUYv6nz0bhFcJvhip4h1a3JSk5OaCUZzlXtG0R3mgG/8dK2PvU+LJlJSbpqb3OQmaCiLMmOyTl3UKcvygev6wmNSTTLJJABt0x4K32u07WFvCgTsU68qEIzLcebkLFV5cG6xtppls8wNs0DP9oYbkPu/awe8nYd5p0OR8njQYMbr7XM8gstJhStJBYNAneJp/zeuj75WtSDlxckuMHRZqJ0fmV9oXN1MQz8Qo7OCIs8DpSDMnVhON4BJU5ZeeWNkWn6iTvWRc7dcV5G996lNsRgSu8cAi+oCYrd9ufJAgIxjrLUkJiDSmk6UMl4O8JVkunL8Xd1Ga/qtFoVqDaU8qlNTx74Ph8PhcDgcDofD8WATFgpMPfwoix+8S3l8gvbqCl4QkC9Xbr3yIchZzcBm3d195ZEi8O6wu1tKmCqH3DCGWt5nvR/THqSU8wcX6zvOOEIQiQI+CkwPKyWeGRBoQ6JyJzoOJ4DC+iIq7t+FHO8Mg6FvwLdVAltGiyZSKRQFtGiT0sbSR9gigvvjs/6l8xFKwP/0ZnHk/f2dj/MYC//+E07wfpBxYrfDcYaQnsf8F5+jdG6aa19/BR1ts1O2lsXv/JDOtSXO/9Tn8Yv5/TfkODpCQBBkIkyU2c5iVSZ4J3GWCew50fteJ0HRMIqG2S40WUIxFMHFlgBelAnePpbSB1GQmoLsM0l/c5qx0LMeHROMWKL37P3nHNC2bdq6zcdcwccf6fr2bpGfVJZlypS5qC6Q2CTL+bZrrJsGKYev5g4ImFEzzMqZW+aL92yPBb3AkllGH9Ea/HaQWC76LR72W6h9Pl+LaYF34xqRPf3LtKtdnx+sj36/fHW2jT/UpAelKYw3KtQWG4ewMLcbOd0KlA/B0ML8BFl94wOSbn9k2sznn7mlxZ4AlFBoNAZLvFcnwYh9uQcmG9ixgPE8vDTGWglxjBEha90BvpJUQo+ZSu5EMuL6rSbWWgrVOuXxCZR3f9zMOhwOh8PhcDgcjrNFsVZn/NxFANI4prm8hPJ8gvydj1UKoGASjBIoa4ikhzLJHY+ceEowVc6xaPqUrU+rn+ApST5w43z3OokMsQgC0yOReXwzwNcDEhViT9h9Mcvxfof2zCN75ninYYHSzSsnkuO9QWITUi0I5TjYBGQLJX0kMSkttGwgbDAUve99OfCL5zLB+394Y1Tw/r0rebQV/J+f7OJSCh5M7v1Pt8NxH1J9+Bz5iTpXv/YS3cWVkXmdG8u8+yu/xfkvfY7Kxbm7dIT3MRt53kZnoreQ2f8nQ9Fbqkz0Fq67/v5BEFmPSHussf3GzJITejMHfMMKvSiTI180SQElkVKSo6KZtmTit/VHusEHVnE/iOAJCctmmWWWQUNFVIZd32OUbpGX7QufaTXFNFNYa2nbNmtmnTW7Rtd291ynKqrMqVnGxfiBgqa1llW7yoJeoGGbd/QcD49lUvV5PFinsI+dflv7vB3XdxRjnC6/sSOru+Rpvji91WXfrV0cmR/01vDjW3XhW4gTQGzL6T7ZHC0dxSx/762RaaW5KUrz07dcd8O+XFtDYjXmlvbldRjeQFvPQwoLaYpIDYkJ6SWaQaKZqeYIPcV46fhtxKy1dJsNcqUyylNUp2eOfR8Oh8PhcDgcDofDsUFteoZk0Mcai05S1hdvMH7uAp5/50W3oTUMrCE0mp7ySYQksEd35NtJzpeMF0OMjUi1oR0leFLge26M714nlQFGKELdIVF5fD3A131SmcPcIsruTvGSiOr1d+hMPbQrxzsuj9EMcpQXP0Sl8T5buHMsloGJ8IQitJNo00eqNoEIMHZAQhsj1xE2RNjCPS96f2E+QgrLP3u9NCJ4//7VHNrAf/CUE7wfRO7tT7XDcQKcXJ3V0QjKRR75uS+x/OpbLL36JmyrANODmI9+8w8Zf/oxZl/8FFK5KsRjRyrI57PO7ijORHCts8dxlFmde/dfV65jO4KB9RhojxW9faqlINKhHfqWEF4Q6ZGtcpSAikqokABbdtapFZvCd9OE3EzzJDszo+9BWrZFS7f4iI8JCLKub1mnJmoHdn0LIaiIChVZ4SEuEts46/o2a7RsO7MqV7MUROHA/cc2ZtEssqAXiTm5m4ydFETCE8E6E95gz/mJlbwfV7melu6q3f1y3+OV1dHX8MuzbXIq+/7RKmRQHhWLi42Pb73hNAVMJnBLceI53QA3f/DOqDsKh+vq9ob25YlNMWRZ3btQw2KLnfblZDEYMh1gkdjYoJGsdfvkA0XeV8zW8ifi3D7otNFpSqlWp1CtEeSc+4vD4XA4HA6Hw+E4WSbOXySJBlhrWL12hfWF64yfu4A8hpuegk5IPYlnDLFQ+NYcy91yOe8RawPWkhpLo58wVgxQThm75zFCEakyge5ilcDXEb4ZkMoALU7W+Uwac+sc76UP8fsnl+MNkFpNavsEMiBIp9Cij/QkATm07ZEORW9pc2ALiHt4rPHFuRgpOvzT10sYu/X3+43rOYyFv/hJJ3g/aDix2+HYxkqsuTn1HPnmO3i6gRHdYaWTl1lao/ZJhj0ZhJRMP/9JSvNTXPnaSySd0WzX1dffo7twkwtffpFc/XiycRw72MiWTVOI463/1zr72ZjvRO8HBouga3262mdZbwmDEkthxAo9E8Lz+3TxHoQnLDUVU1Mx5+hiAljTORZ1gZtpgfSEbZhOg5iYJbPEkllCIDa7vsfk2C1F60AEzKhpZtStu3QBmqbJgllgxaxiT7GkSWF4JGhywWvveYFtLVxLS3wQV89EMcNv3qiMiO2hNPzkTHvzca96bsTVQpiUfOvGwRs16TCn2x8WEeU46buNpDdg5QfvjUyrPDxPYWr8wPUkIIUitRv25cnuhfaxLwewvo9AQ2KQqSYiR3uQkhrLdCWglPOoFU7mBrvbWCfMF/DCkNr07K1XcDgcDofD4XA4HI47REjJ9COPcf3tN6jPzrN67SqNxQXqs3O3LDS+FT6WwGiMhK4MiIUitMcTPTZWDIhTgwVWuzHNfsJYwceF/d77GCEZqBKh6YECzwg8EyOEJZUn6zC3kePtRX060xexIzneHq3Zk8/x3iA2MSmSnMxBkkfKHp5SKPIktoOmCzLaJnrfm+OMn5uNUaLDL/+whN4meP/RjRzaCv6vT3ec4P0A4cRuh2OItZZXWxFxWCee/Dy5/iK55mtI28XaAXaYrWo2RW8PUGC9E6+CKs5O8tif+2mu/cErtD68PjJvsNrgvX/xO8z/6GepP/HwHV9MOvZADK13lQdpnD32VGZtniaQavBdnveDjkHQMQEdArZHPyvMSA54ScaUREIoD2/BJQVMeAMmvAEmWGNV51hMi9zUefQ9ekG6HYulaZs0dZMP9UeEhJnduRyjJqqo27Cc0lazbJZZMIv72p6fHJZZr8tjfmPf93ldh7wT12mbk73ZOizrkeKbN0et5b8006HoZd99FujWRy3M860byL3yrDewJjtPSpWdP8PwVM6Ty997E5NuOy4hmHnhmVuup4SHxWQd3UbvURhhdtiX19iwLzdCgpLIuI8VApNIDNDoJZRCD19J5mon020d9XokUcTY3DnCQpF82RW/ORwOh8PhcDgcjtNBeR6zl57g2ttvUJuZZe3GNdorN6lMTt3xtgsmJZaKwGhiofCsPpYRWCFgqpLjRqNHreCz3k1oDRIq+bNxf+64Q4QgkgV8m31arBUoE+MbQyJPPjYu6DWpXnuH1l3M8QYwGHpmgC98QlNEmAJS9QmkwlAksW0MfZADpM2Dzd+TovdzMzFStvkn3y+PCN7fXgjRFv7jpzuoe+9pOW4DJ3Y7HEPeb/dZT4aihBAMCrPcyE1Sa39Mpf0xghTQWJFi0VgRYTFYa7NOuKEIvtUF7h3rF4SXC7n4019g7a3L3Pjma1i9pabZVHPt66/QvrbEuS8+hwrdxdmJIAUEYdahGMWAzMScNBnmecthnrcTvR1baCRNE9I0o9bNPnqbAL7VDe6Lgy92pYBJb8CkN0BbWNV5FtMCK/eJ8A0QEbFgFlkwiwgEVVFlTI4xJuvkxcGCYc/2WNALLJllNMdT9X0UKjLiiWCdmtrbJn1gFO/FNRZ1gbPkCPHbC6M3BZ6w/PRsa/NxnK+ThuWRdYqNKwdscY+cbv/kLzvjVoe1Ny+PTKs/fvGW7iceCgHEw4zulMPYl2+7afU9hEmxGmScEIkC690YC9SLAfViQCE4me+GXnMdPwgJCwWX1e1wOBwOh8PhcDhOHT+XY+bRx1h47x2qk9M0by6hgoBitXZH21VY8ibFSkiFZCB9CiY5ljtpJWG6kuNGY0Alb2n0EjypKYRuTO++QAgSkcMiCUwPKxWe6RPo/ma+90mikojqtXfoTF8kKdZG5p1WjvcGiU1IbUooA3xdRJg8SnWHznZFNJ1toncBbO5UnW2Pg89OJfzVz7T5pdfKpNvGtl5eDDEW/tIzHbz7Y8jUcQBO7HY4yLq632v2dk+XHuvVR2kX5qmuf0R+sIQUKSBQAsCQtXAORXCRAn0MFqzFIreJ4AqsD8jbFsGFEIw/9SjFmQmu/N63Gaw1R+Y3P7hKb3mNCz/1eYozE7e1D8chkDKz4k11Zm0uJBiddTDGcda56HtwnwiPjpMhQbFuFOtme1WpJRSZCF4SCVUVMaEGqH0EcCVgyusz5fXRVnBT51lKC6zoHOY++fxZLA3boKEbXNaQI8eYHKMu69REFSkk1lpW7SoLeoGGbd56oyeAj+axoMGc193T+cxY+Dip8GFSOXNFCZ1E8gdLpZFpPzbVoRpsdaX3ahdG5ntRh6C3uv9GkwSwWU63UpA7+ZxugMVX3sCareMWUjL93CcPXEcikEKS2qybe2/78giIQZfZZV+uFEiBjBKwllgHJMbQHiTUCgG+ksxWT6Z6PI1jBt0u1akZPD+kVD/Yqt3hcDgcDofD4XA4ToJ8ucLEhYew1pDGMe2by3i+T1go3nrlg7ZrUmKhyJmUnvKP1c488CST5ZCllqUYWjpxgqcEgVPF7hs2hO1Qd7CygGeyHG8jFKkMR6LcjhtpDeXFDw/M8S4tfUTQb++zhePDYhmYiFSkhATYtIwSRQLVReOT2ghDFyO6ILoIGyAIwQb3jPD96cmEX/hsm3/0WpnUbB3zd5cywfv/9ikneN/vOLHb4SATkf/Y/Djfv9ng+43OLpvV1M+xOvUkQe8ctbUFwqSPERpEgiXBihghdHbyFwKFznI7RYoVG93gMZb+HiL40fPAc2NVLv2ZL7Pwre+z+uYHI/OSdpcPfu3fMfP8J5n8zJMI6c7iJ4anwMtnGd5RlIngWg8fD/O9PY+z1L3pOOsIIusRaY9V8pBmNuiTqs+012NC9ffNmlHCMuP1mPF6pNuE71Wdx9xHn8EBA26YG9wwN5BIQkISkr07cU8BgeW81+aRoLlvV/7NNMc7cZ2+PZm85jvl9xbLxGbru0Ji+ercVle3EYpeZX5knULzyv6fKp1mBUC+n5XL58JTyT7rrzZovPfxyLTxT14iKO8/uCIAT3hD83JDatJ97Mt7YEMgGLEvt4D1PKROwApsrLEiYL07QElBNecxWQpPbLCk21hDKo98qUx1esZFmTgcDofD4XA4HI67RmVikmQwwFpIk5jG4gJj8+fxw9svfhZAScc0vXCbnblB7bpvuz2KoaJWCABLqk2W310MUC7o977BCEWkyvimhxUCaTWeiQl0Dy19UnFyDqlbOd49OlMPZcXyQ6zyaM8+SmH1Brnm8qmM3KVWk9o+gfQJrI9Iy/iyjJJNUpuJ3lZEGLLfCLFN+PbPvM350xMJf+2zbf7h98ok2wTv7y2H/NL3BX/l0238s/0UHHeAE7sdjiFKCp6q5Ljyg+/QrE5japO7BufjQonl/CXC1gqFtQWUliiRQyIRAqRIkUJjSTAkWJEgRCYzCUCKrBNciBQjNZAAUTZYbgErsRsCOPLAPHDpecx/8TlK56a59vVX0NE22xNrWXz5ddrXl7nwU5/DLxZO4BVzbOJ5mbCdJNmPUpngrdNM/PY9kO5067g9NJJFXWRRF/EwTHo9plWPcTXYV/j2hGXW6zHr9Uis4GaaZ0kXWdW5E61aPW0Mhj79u7b/MTngiXCdktyjExjoGo934zor+mSymo+DgRZ8bWHUnvxzEz0mc1uV8v3KHFZtE+qtpdC4uvcGjc6iHdTwvBeGWSHQKbD48usjj6XvMfXZJw9cZ0Pozm74NOle1vdyw768mFmYb7Mvt8pDCBBJitCWxAQMUk031kyWQwJPMVU+ma52nab0221KY+Moz6MyMXki+3E4HA6Hw+FwOByOwzI2f45k0Mcaw9r1qzQWbzB+7gJS3b5ttLfLztw7NjtzgHrBJ0kN1sJaN6bRixkrBq6Y+D7CCEmkSngmxjd9jFIom6BMTECKlgFanNzYbdBrUb3+Du2ZR9C7crznt+V4m/03cozEJiFFk5MBGIW0dQJRxRMtEjoYUoxNQURYYoxo3TPC91PjCX/92Rb/4NUK8TbB+/s3A/7xa2X+k0+38V1awX2JU18cjh1IneLfuIxZW8LOPUyaH7V2RQii6iRxqU5+fZFc82bWxb1ZUCgR5JAij0QhhEZikDLFkoKIh7/t5ldC1hWeIoQZWqEPYFtvmTUKu00Az7rAs7WrD58jPznG1d/7Nt3FlZFD7d5Y5t1f+W3O/8TnqDw0dxIvl2MDITK7Xs/P8ruFyDq/kzQTwMVQ9HZ53o47IEWykJZYSEt4GKaGwvfYAcK3Lyxzfo85PxO+l9MCS7rA2n0mfJ8mOZHyeLDOtLe30J5aweWkypWkfOZf468vlujp0RuUn5lvjTzu7rAwz3WW8dLBHluzQ/tymRUBBd7Q3eLk6S6u0P74xsi0yU8/gZff3z7cH97IplajrSGx+9iXi+325dXNWRbAU8g0xiIxkcYiWOtGhJ6kFHrMVHModTKfgV6zAUChUqUyOXVHg0cOh8PhcDgcDofDcRwIIZh65FHSOKY2O8fqtSusL9xgbP7cHYnHO+3MI6HIHZOduRAwWQ5JtKFWCFjrxjT7CbW8fyouZY7TI5UBqfDxbQRGYJSHp2M8E6FISGSIFScj4qokonLtHTpTF0lKtZF5cbk+zPG+fCo53pA1kPTMAF94hAQYK/DlGDk7jhUDNB1Suvek8P3kWMrfeLbF3/9ehUhv/Q2/vhLwD18r8wufaRO4IZT7jrP1KXQ4zhBy0KVy4z1KSx8i9/iSscqjN3GO5vknifOjXXEWuzlwHhvDwEAv9eilOQZJjSSdRKeT6LSOMWWsLmFMCW3yGF0GXQddQ5gKwhSQwkNJjZIDlGojVQMhGwjRBtEjKCse/rkvMvX8U7suwvQg5qPf+kOu/9GrmPR4LgIdByBF1slYyGcijx9kP5YszzuJybLeHY47I0VyIy3xvWiKP+jN82Y0xqoOM5eIffCFZd7v8mzuJj9euM4nglXG5ABxTPZf9zsSwyN+gy/kF/YVum8kBb7Zn+XjpHLmhe7EwO8sVEamfabeY76wJfqmfpG4ODGyTKExahWesSF0A6GfOVwEJ2cFNrJna1l46Qcj01QuZOKZx/ddxxMKASQ2xWJI7F43k/vblwPg+9nfTmqQSUpKQCfWRKlhvBiQDxRjxZN5Dawx9FpNCpUqUnlUpqZPZD8Oh8PhcDgcDofDcVSkVMxcepywUKQ+M08SDWguL97RNjfszBWWUKckUpEe4z23lDBdCfGVpJr3ibWhE7tx1PsSIUhkjoGqkIqARIUkMnPkC0wfz0QnNpojraG89CH51RvsHMDTYZ7muSd26QwnTWJTuqZPQkpiUiKTkBoPacfJmYvk7Tw5O4Fvq3i2jjR1pM0DGiNaGLmGES2siLBnaMz78bGU/+y5Fjk1ekxvrgb8g+9ViO5OGqLjBHGd3Q7HAQgg7DQIuk36tWn6telddqw6yNOeu4TfbVJcvY5KogO3aTAYy7AlTIIJgGCbFbpBkiKkRpCASLOuYAAsAoMQGtAgNEJk4qmUMPe5OSrnSnz8uz8g6Yx23a2+/j7dGze58JUfIVcfFTccJ4CUkM9v5XfvzPP2VGbze8bFMMe9QYLielrieloiQDM1zO6uyWjfIuRAGM75Xc75XSIrs47vtMC6CXGfy51YplSfx4N18nLvm92W9nk7HqNpTsay+iT4o+USzWS0lPVnd3V1nx95LNOIfHuPQYrNnO4gO9+dUk43QPvqIr0dzibTz34CFeydke5l37ikNsvnjkyyd7nHQfblQmKVRMURFoFOJBZY78YUQ0XoK+aquRN7CfrtFkZrCrU6pfoYfnDvfO4cDofD4XA4HA7H/Y8XBMw8+hg33n2L6tQ0jaVFPD+gNDZ++9vEUtAJVvkk1jCQHsVjtDP3Pcl0OWSxNaAU+LSjBF8KQud5fF+yYW2uTEJg+hglN63NpdZo6aPF3uMKd4IACo0lvLi/f4732g1yjdPJ8YascW9gIiJifOHhoTBDMV4KDyXqeMOOb0OPlA6GBG03XGyjM9nxfamW8jefa/Nfv1qmn24dy9trPn//exX+2mdb5JxCet/g3kqH4xAIaymsLxK2V+mNzROX67uWSYpVGoUyueZN8uuLSHO0SiaDAQs680UF4wEhAoEUIIXOLNFFCiSZ4C029mEz4RtNaSbHEz//o1z9/R/SvLw8so/BWpP3/8XvMPejn6L+xCMIZ6l98uyX552mkJphnrd7HxzHR4ziWlrmWlomFClTqs+M16Wm9rdBCoXhvN/hvN8hMoolnWcxLdI0AQ+68F0UMU+E64yrvQuZYit5P65xPS1yL71W2sJv3hgtfPpEtc/D5a3PiQV6OyzMC81ru50AzLCQRw3PZ6eY022tZXFHV7dfKjD21KN7Li+RSKFIrcZgiU2yLTRkGwfYl2c7UQhrsMYiYo0WOZq9BG0t9UJAJe9Rzh//TTFkz7nbWCdXLOH5PrWZ2RPZj8PhcDgcDofD4XDcCbliiamHHmXp8nukcUJ7bRUvCMiVbr9zNWc1sVXkjaZ7zHbmAPkwc+iyxKRG0xwkjEmJd0LxVI67j5Y+feFtszb3USbCMzGK9MSszbdyvB9GB/mtGULQGx/meC+fXo43ZKJ3bBNimyAQeMLDQ+JZBQgkHkrWCGwdRIyhOxS+06HwHe0Qvv2h8B3cNeH7kVrKf/5ci7/33Qq9bYL3u+s+/82rFf76s23ynnO8vB9wYrfDcQRUmlBe/oikdZPuxDl0WBhdQEgGtWmi8hiF1QXC9uodSx+ZJTpoK8nsU30gj0AghlngUhiESBDCIEiQfoELX/kJ1t76gBvffA2rt74UTaq59vXv0bl2nXNf+iRekAOrAAVWYVFn3nr3nmMzz9vLrMwRQ9E7yWzNpcyyvk8oE8bx4BJZj6tpmatD4XtaZR3f1YOEb6m5IDtc8DsMjGJJF1hMC7QeMOHbw/Bo0OCc19kzD91YuJaW+CCukd6DqTAvrxRYjUYvA//4jq7uQWkK7edHphV3WZibrJBHDnO6Q//UcroBGu9fYbDWHJk288LTe+ZXSzL7coPGYEhM9ns3B9uXW6lASmQ8yNzbUx9tLc1+QjnnE3iS2Vp+j+0eD1GvS5okVKdmyZUqhIXiie3L4XA4HA6Hw+FwOO6EUn2MZO4cADqJaSwtMub5BLncLdbcm8zOPKHpSUKdEikPTxu8Y4xnqxZ8otSAtaS9hGY/ZqwQIPYaHHDcHwhBInJoEeDbARbQ1sczUdb1LTxSGRz7mLlKIqrX3qUzdZF4Z453qU7TP90c7+1YLIlNSGz2d6eEhycUnlFDXUKiRI1AjIGIMuFbdDB2p/DdvuvC90NVzd96vsV/9d0K3WRr3+83fP7r75b5G8+2KfhO8L7XcWK3w3Eb+IMu1WvvEJXH6I3NYb3R7i2rfLpTFxhUJyiuXMcfdI79GCw2MzU3G/vesjAVaJQ0VB//FLmpOa597RtE66NiQOODZbpLbS585TMUZ8tDoZzhTyZ8Yz1AgvWwSJfqe6dICbkcBBoGcSZuGw1JCnGUdUV6ztrccTJE1uNKWuFKWiEnUqa9HjOqS0Ul+66Tk5qLss1Fv03fKJbSAou6SNv43L+fU8u81+VS0CAQe1fPrumQd6I6HXs6mdTHjbHw69dHu7ofLkU8WRntXt/Z1e331/Gj9rYpFuLh58cPsniGU8rpBjBas/TK6yPTwnqF2qULey7vCQ+DIbWG1Kak7BPQdJB9OWB9D6lTrBEQa6zwWe9mr1294DNWDMifoM1dt7GOn8sR5HPUpmdObD8Oh8PhcDgcDofDcRzUZ+eJBwOssaQ3rtJYuM74uQso//bcsNQ2O/N0aGdeMMmxymcTpZBEW6p5WOvGNAcJtbx/anFdjruDEZJIFJAiJNC9LL7MpigT4+seWgbHbm0urKG09CH9aJr+2OzIZ2wjx7u09BFBv33AVk4WC9k4is3GUTyhsq5vaxFWwIbwva3jW4su2qYYm2BFjGVwV4XvC5Wh4P1Khc42wfty0+e/+m6Fv/lci6ITvO9p7r1WJIfjjCCAXHuN2pU3ya0vwR6WIjos0Jp/jPb0Q2jv9AQAiyI1PonJIyvnOfcnfp7qk5/ctVzS6fPBv/o2S6/cQCc1tK5gdAFtPIw1GNHHyg6oBkKtIVULJXsoESFFet9KXSeOVFDIQz7MxKFw2PWtNURRln3rSgscJ8jAenycVHhpMMsf9WZ5L67S1gdfrOel5qGgzYv5RX40v8Alv0FJxtxPn9WqjPh8bomnwrU9he6+UXx/MMF3B1P3rNAN8IP1PAv90eP/2fnWyD27VgH98qg9drFxZXRDaZp99/k+SAHh7VXm3y5rb39I3OqOTJv53DOIPSzUfeENb8402moSu4/QvWlfXgTULvtyqzyEAJGmCG1IdECiDZ0opV7w8ZRkpnpyr0MSDYj7fYq1MfwwT6FaO7F9ORwOh8PhcDgcDsdxMXXxYfLlCvWZeUCyvnADc8QIyO3krMa3hpxJsQgicbw9fVLCdCUk9CS1vE+sDe3B8dmlO842RigGqkQsC6QiIFEFjPDxTEyg+8hjtM6HrRzv8uJlhB4dr9jI8e7Xps/MCFxqNQMT0TE9+nZAQkpiE2KTEmuJNTU8fY6cnSNvJwmo4tlxlBlD2iJgMaKNkWsY0cSKPnZP573j5XxZ84vPtygHo/v6uOVlInjs1I57GSd2Oxx3iLSG4toNalfewu829lwmLtVpnP8EvbHZE8n4uBXS85j6kR9n9qd+BhmGozOtZenl1/ng3/wh/ZZAmyLGFLC2DKaO0TW0LqNNHm0U2qZo2cPKFkKtI2UXKeLdGa6OW+N5UCgMxW4/+y1lZm8exVnXt8NxwvSsz0dJlW8Phe8P4iodc7DwXZApDwctfiS/yBfyCzzqNyiK07dUOi4CoflksMrn8ktU9rB41xY+iCt8sz/Lsi5wL3e12z26uufzMZ+q90em9arnRqMVjKbQvDbyGJ1m5zGlMqH7FC3dTJKy/N03R6YVpsepXJzbtawnFAJIbIrFENv93AxuYV8OCE8h0gRrBTq2IARr3RhPCio5j+lKDl+d3Pd8d30d5fnkiiVq0zMI11XgcDgcDofD4XA47gGElMxceoywUKA+N4dOEppLi1h7++OJJR2jLORMSiolyTGPuXpKMFXJEfqScs6nl6T0YzdW98AgBKkMGagKiQxJZUAsC1gEvhngm+jYx8ODXovqtXdQ8egYTZbjPUdn+qG7oi0cxIbw3TV9eqZPTJLZnw+Fb2MqW8I3kwTU8O0YyoxvE747Q+G7ceLC93xZ87efb1HdIXhfaXv83VcqtJ3gfc9ytv4yHI57GJXGVBY/pHzj/d1fSABS0q/PsH7hE0Sl+l2RhksXH+bCn/p58jO7xYD+wiKX/8W/Ye3yOnEywSCu009KRGmBVBfQuoAxeawtga5hdBVtchirsbI9FL7bSBE5w/OjsJHnXchngrcfbNkAJ3H2s4drgMNxEvSsz+Wkyrf6s3yzN8PluELXHFwdXZQpjwQtvlBY5EfyCzzsNymI/a3RzxICy0WvxY/mbzDnd/dcZinN883+HJeTGuY+uGx6uxXyYWe06Oln5lsjOrVlt4V5vn0DaYbVxXYjp1uB8rNzlndytt17sfLDd0n7g5FpM5/71C7x10MhEaQ2xWKJzAGfTdnLfpsimDzYHbnbngIsItWIRKNtQD/R9GLNWDEg8BWTpXDXZo8LnSQMOm2KtRqe51EaHz+xfTkcDofD4XA4HA7HcaM8n9nHniAsFKnNzDLodmivrtz29iRQNDE+Bs8YBkIdu0SW8yXjxZC8r8j7inaUkKRunO5BwgpBLAsMVAUtAxKVI5E5hDUEuodnj7f5Q6Ux1WvvEnTWd82LS3Wa5x4/VQfZo6AxRCama/p0TZ+ImMSmm8K31hU8PUfOzJFnYg/hG4zoYuTqiQrfsyXNL77QpBaOFq9c63j8nZcrtCIneN+L3Pujtg7HGSPot6lefZvizau7bEcArBfQmX6I1vzjJGHh1I/PL5aY/2M/x9hnX9iVM2OiiIXf+02Wv/0NTGrBhlhTJNUVknSMOJnMRPC0SJzm0DqHtWWMrqN1HmMtRnZBrSNlCykGyFOwILkvkBLyuezH8yEMM2tgY7I87zThfrKLdpx9ujbgg6TGN/uzfKs/w4dxhd4thO+STLgUNPnRwgIv5hZ4yG+SP6PC97jq8yP5BR4PG3hi999Wx3h8tz/JD6JJBvZ47dDuJr9+bdSWeyJMeWGiNzItyVVJcqPLbVmYb+R0i+wc5SkIjjev6lakg4jl778zMq18fobS3OTINIlECplZl2OJTYLd7zwq4szC3GzYl9dGZlshsJ6HSGMsgjTNxP3VTkQukBQCj9lqnj0c1I+NbrOBkIp8pUplahopT7fAwOFwOBwOh8PhcDjulCCXZ/qRS4TFEpXxSbqNdXqt5m1vL7SGwGhCm8UtDuTx37+X8x7VvE8l5+FLSaOfYIwbo3vQ2LI2L6KFT6zyaOkjTUKge6j94tJugyzH+yMKqzcyi75t6CDL8Y4LlX3WPhsYDLFJtoRvuyF8ayIj0bq8TfieJKRGYMfwzBjSlrJtnKDwPVM0/O0XWozlRgXvG12Pv/NKhYYTvO857p/RW4fjGLDW7vz+uC0EkGutEHTW6ddnGFQndwnLaa5I69wTBO01iqvXkXsI4yeFkJLxzzxPYXaexa//Lmm3MzK/+dbr9BcXmPnSVwhrYzvW9sB4GPIYA4lIkCJCSYmSOdAWTYwQKcg+kh7SKrABWB+Ndw8bAJ8CngIvD0kKMVnnZJpmdsFag+9l09yr6Dg1BB0T8L4JeD+pUpEx06rHtNcjL/e37yqrhLJq8ljQpKUDFnWBpbRw14XjvEh4PGgw5e3hwAEkVnA5rnI1LWPvs7+zy+2At1ujedI/M99C7Xia3drFkccq7hJ2h9X2ybDwJhjGLuROrpN5P26+9jYmHi2imPncMyOPJZl9uUFjsCQmxex7U6RBdjP7chsMhe4dqrXnIazJPO1jiyHIKvq1ZbISUgg86sWTE/2NMfRbTQqVGkp5VCanT2xfDofD4XA4HA6Hw3GSFCpVJs5fBCxpEtNaXsLzfYL87TUFFU1CKiQ5o+krj1hIgmN2SawXAuI0u6tc68Y0+gljBX/XeK/j/ieVAVr4eDYCIxAyy/L2TIQkJVUB9hh6TAWQbyyhol5mX662xtOs8mjPPEJ+bYF8Y+nMj14ZDLHNYuUEAl94eCiMVYBE2hJSVPBIsbKHtl0MCdqmGDHAEmFEF0QHYX0EIdgQcYev81TB8IvPt/i7r1RYHWw1FCx0Pf7Oy1X+1vMt6jnXyHev4Dq7HY5t/NabN/l734PLzeP5ipBGU1y9TvXq2/i91p7LxOUx1i88Ra82jT3lC6T89CwX/tTPU7r4yO7jWl/l6q/9Ks133jw4P8f6GFMiSccZxDXitDDM/C5idQ2tSxjrYeUAVAulGkjZQ4jE9SkfhD/M8w78rHsyDDNhKXF53o67iaBlQt5L6vxhf47v9Kf5OCkzMAd3mFZUzONBgy8WbvBCbpELXotQnF6BD4DE8Kjf4Av5hX2F7utJkW/25riSVu47oRvgN3ZkdVf9lC9MjhY7WSHpVedHphUbV7JXQ6fZucf3hm4U4anf2CfdHiuvvz8yrfroefIT9c3HAvCEj8GQWkNiUzT7nTMNqHa2lilm1uVm1L7cSglKIpIUYSFNFcZa1nsJpZwiVIr5em7vzR8T/VYTay2Fao3S2Dief7rd9A6Hw+FwOBwOh8NxnFSnpqlOTlOZnCbIF1hfuEEa354ddGZnnuAN7cwj4R27z6SUZPndnqRa8NHG0hqc7riG4+xghSCROQaqQioDEhWSyDwCS6D7eOb4rM2DfjvL8Y5253j3x+foTD985nK8D8JiiW1CzwzomB4DGxPbhNSkxEag0xLKzBKYOXJMENo6gR3HN+Mn0vE9Wcg6vCfzo+NGSz3Ff/lyhbXBvfPaPui4d8rhGJJqw9///ct81IL//q2Af/aWz8d769NHxksGlBc+oLzwATIe7F5AKvrjczTOf4KoWDtVEViFITM/+VWmvvATCDXacWl1yvI3v87i7/82OooOsTUPY4rEaZ1BPEaUFtCmgLV5rK6jdRljfAwxQrZRah0puwgR728t+yAjRCZyb8/z9nfkeTubeMddQ9A0Ie/Gdb7Rn+Pl/hRXkhKROfjSoqZinggb/HjhBs/nljjvtQnESRZvWKZVlx/NL/BIMJpNvUFTB7zUn+bNeJyY+9Ma+nrP57X10Sr5n55r4+94u/rlWazalv1kLYXmVbA6i1OQCqQ3LMA5/ddq6btvYvW2z4sUzLzw9MgynvCw2My+3GrSfa3E7FDotqDLgA+6tnOJrKvbaDAWE1usUDT7CdZCvRBSK/gUw5NzLLDW0m2skyuWUb5HbWb2xPblcDgcDofD4XA4HKfF+PmLFKs1ajOzSOWxvnAdo29vfCCwhtBocjZFYBlI79hHGpWE6UqOUCnKOY9+oulHrhnlQcYISbTD2jyVAdJuWJsfT7SfSmOq1/fL8a5lOd7+6Tvv3SkWS2IT+iaiY3r0bUREQjwUvtO0iNSz+GaWkAlCO0bAUPg2xyd8j+cNv/hCi6nC6N/zzX4meK/0nYx6L+DeJYdjyP/xvetcXtnKLX2/Kfm7r8J//zrc6Byw4iERQNBrUbv6NoWV64g9Lt6MH9KZeZjW3CXSIL97IyeEEILqE09x/k/+OYL6Ttty6Hx0mSv/6n+jv7R4hK1KrCmQpFUG8TiDtIDWBawpgKmhdQVjclg0QnaGHd8dpIiONX/jvmAzzzsEz4MwyMRvY7Iub+3yvB13G0HD5HgnHuMP+vO80p/ialIitgdfZtRVxJPhOj+ev85zuSXOeW38fTtwj05JxjyfW+ZTuVVye1iuR1byRjTGdwbTtMy9d1NwFHZ2dReU5iemd3+57bQwD7s38ZIexCkgM6eJwMu6u0+ZqNFm7e0PR6aNPfkIYbW8+dgT2XElNh3aZO13Y7khdBvQFSCAdIJdl8ZKgRSQpAhjSbRPqi3NfkIl7xF4gtnqyXZ1DzptdJpSrNcpVGsEudO7PnA4HA6Hw+FwOByOk0IIwfQjl8gVS9Tn5jHa0FhcONhh8gCKJkFZS85otJAkJ9DtGniSyXJIzlcUQ492nBCnbhzzQSeVAX1VJpF5tAhIVAEjFJ6JCXQ/i0W7Q7ZyvK/vneM9//iZz/E+CAukNmWwKXwPiEmHOd+SJC0i9Ay+HgrfbAjfEwcI34cfYxzLGf72801mdgjeK0PB+2bPSalnHfcOORxD/sWr1/ec/oMV+H+/Av/8Lbi5t/PtkRBY8s1lalffJGyt7PpyAkjzZZrnnqAzcR4jT09QCGtjnP8Tf47qJ57eNS/tdrj2G/+Stde+izVH/YKWWJMn0RUGyTiDpDQUvvNYU0HrKsbkM5FbdofCdwshBnCMwtc9j+dlXd5hmAlNYZgJMWnqrM0dZwjBusnxdjzGH/Tm+W5/kmtJ8UDhWwgYUxGfCNf5icJ1ns0tMe91blv49tE8GazxYm6RutrtSmEsfJyU+WZvjhtpCe5Dy/Lt3BwoXl4Z7er+8myHnBr9/kn9PFFpcmRasXFlK6c79LNzThBwN1h8+fWR70zhKaaffWrzsYdCAtqmmS2WOUDoll0g3dbRPQ47uvqzrm6FSNOs+TsWCCFY78VIIajmfSaKIaF/sh3u3cY6Yb6AH4ZUp2ZOdF8Oh8PhcDgcDofDcZpIpZi59DhhLk99do540Kd1c+m2tiWAks7szH2jiYSHPoH7/WKoqBUCSqEiUJJmP0Eb14TywLPd2lzkSGVILLNi9cD08U2EuMNmpSzHe5nywgcIPepit5Hj3atP3xctUanVI8J3Qkpikz2E7/EdwnfWEGHoYuTakYTvWs7yiy80mS2OvrZrg0zwXu46OfUs494dh2PI//gffY7/4mcfp7LHGL4FXlmC/+d34H99FxqHcfS+BVKnlG5epXrtHbx+e/cCQhBVJ2hc+AT96uSp5cdKz2PqxS8y+1M/gwx3dDpay+r3vsP13/rXJN3bbXcXWBuS6PJQ+C6T6mImdpsKWtcwpgBIhOwjVRMpmwjRB1wWDkJkOd75bXneQZidzZMYkgiOoVrQ4TgOLII1k+eteJw/6M3z6mCS60mRxO5/PhMCxlXEU+EaP164zmfDZea8DodL3LKc89p8obDAeb+zZ5z0qs7x7f4s78Z10gfkMui3blQw275DQmn4qZnd3zvd2oWRx0LH5BtXhjndfuYykTv9nG6A3s01mpevjkybePox/GJ24yiRSCEz63IskUn2j8eQPRAx6BKbQrfdIwPbG4rYqYbUoq1HlGo6UUq9GOAryVTlZLu6436PJIoo1scI80UKleqJ7s/hcDgcDofD4XA4Ths/zDF96XHCQpHK5DS9VotuY7dd86G2hSFnUkKrkSdkZw5QL/gUAp9q3kcKaPTi2+5Id9xfZNbmBSJVRotg09pc2BT/mKzND8zxHpujPf0w5h7K8b4VG8J31/TpmT4xyQ7he3pL+BZ1Qibw7X7Cd+9A4bv6/2fvT4Mky87zzvN/zrmL7+6xb7lU1pKVtRdQC4gCRFIkQYgiBYpLazU1KU3Lmt0UezSaHlEy2WisORqj0eYDp8coQd2j1pAjmkxik2xSTWohAQokQRCoQgG1oFCVteYaERmr7+53OefMh+uRGR4RmZGRseR2fmlhHuF+3a97pMd19/vc931Dy3//fJO50nAOsR4p/sevVrnSvjfHH94Ljr4HpePcoQJP8ldfOEa59S5fPJ/ypXlFLx3eoW8s/Mk8vLwIf2YWvu8ElPZZ4ObFPSrz7xMXa3TH5jD+8A1a5dEdP0a/Mk5x9TJB94AGie+idPIU4fgEV/7oi/QW54cu6y3Oc+G3f42xZ1+g+ujjCHXrG3lrA1IdkOoiQiR4IkEqH4TGYhEiRpIiZB9BD6zEWh9rAywe4h6vyLwuKa5VeEcxCJkFUkkKcZTN1PU97vWKVefuYRGs6jyrOs/b8ShjqseU12VS9fDEzh8IpYBxr8+41+exYI1VneOKLrKU5tFbguqa7HMmWKesdv7Q0DOKs/EIyzrP/fR3UY8lf7JUGjrvO6falPzhgwcs0K0Oh92F+kVEEoPysvncYZgF3rfB4stvDv2sAp+JZ88AIBF4QqHRGCyJSa8/DkP2QPTBlIAQ9CjYHV7IBVjPQ6bZ8ylNsse92okJPEk5VMxUc3jqcJ9Lnfo6vh8QFgpUp11Vt+M4juM4juM496Z8qczEA6ewH32AjmOaK8so3ydXLO1+5S0KJiURipxJ6SqfWChCe7DdEIWAyXLIZa2pFQLWOjGNXkIt79+WA8SdO48WHlqV8GxMYPoY5aNMjGdiFCmJDLH7CKQ35ni3J04Ql0eGLktKNZpBjvLih6jkAKr27iAagzYxEVnhgyc9fKuQVoIpIkUZJVI82UOLHpYYbVOM7WNEhKELsoOwHoIQbIjY0umvElr+z883+cVXK1xsXYtQm5HkF1+u8X95/mjyGWdvXNjtOFsECv7MrOaFSc3LyyH/+RJEW94PJQb+4BL8yQL82WPwZ49Dfh9/TQIIO3WCboNedZLeyFQWLGxighytmYfwu00KK5fwjuCFyi+WmPvsX2D9jW+y+torQ+1jTRSx/LUvs/7W64x9/EXKpx5G7DMEsdYnsT6YAgKNJ2OU9DEyxeoCQqRIEoSMEURYJBgfgw/WQ9wnVZpDpIJ8ftDKPMqCKJ1mlYiRzioTlQu9nTuLRbCiC6zoAm9jGFN9pr0uE6qHukHwPeH1mfD66ABWdZ4raYGmCXgwaDDjdXe8nraCj5IK55My5j7cRvz+fIV0UyW9Jyyfmdle1R0VJ9DBcKvz4vIH2TbF8yD0stPboH35Cu1Lw23sJj52Bi8MEGRzug0GbQ2JSdHXO0JX9EF0wRTAhmBGwO5cmW09lc3USg0kFotHJ0qJEsN0NUfoKUaLhzvnPY1j+p0O1clplB9Qqo0e6vocx3Ecx3Ecx3Fup/LoOEm/D0CaxNQXFxg7dgJ/a+fJXWTtzGMaXkhgNLFQeNagDrjGW0qYruS4XO9Tyfs0ejGd2FAMXeWnMyAEqQjRIiCwPSygrZfN8jY9jPBIZXDLHV2FNZSWztGPunTHZocOtNBBjsbco5SWzh1Z8dxRMxhiExMzCL6FwsfbFHyXUELjyT5adLHEGJuibYQR/RsG3+XgWuB9vnltf1grlvw/X6nwiRdbPDpdvk2P3NnJ/bfX13FuUs6DP38K/m+fgO85Bv4Ofy2Rhv94Hn7uq/DFCxDv8yBBYS2F+hVqF94maK3tuExSqNA4/hidsTmMPPw3T0JKRp99jmM/8MN4OxxNmbZbXPmjL3Lht/9X2hfOHVjLHosiMXn6aZV+PEKaljG6gLEFjK5hTAVhQoRMUbKNVHWEaIGIrl/Rdy/zPCgUIAzA869VYLp53s4dziBZ1gXejMb5UneO1/vjXEnz6Bu0OlcCJr0eT+VW+VRh4bpB92Ja4Cu9GT5Kqvdl0L3Y8/jDK8Pb7Zcm2oyE27cHW1uY+711gt561r7cU9m4hNvAWsvClqpur5Bj/IlHsu+Fh8Vm7cutJr3euAsRZ3O6bT77MlUw+Z3XKQUoD5GkCGtJEom1lvVuTCFQ5H3FTC1/6EXunfo6UinypTK1yel9H1DmOI7jOI7jOI5zpxudPUZpZIzq1DSeH7C+cBmd7n2soYclb1ICq5GYQ2tn7nuSqXJIzpMUA592lBAlbh+cM8wKQSQL9FUFLQISlSORIcJqAt3F20drcwHkG9eb461ozTxEd2T6npjjfSMGQ2wTOqZH2/SIbExiU1IjSdICpBNIPY3POIEYIWSMwE6gTAWQGLqDVufrV1udF33L33uuyanK8P9PK5H87G+84UYX3GHcXjPH2UUpgL/4MPxfPwGfms2qC7fqpPDbH8L//Wvw5ctZIdh+KJ1QXjpP5dJZvH5n+wJC0K9NUj/xOP3K+JG8WOWnZjjxw3+J0qmHd7w8rq+x8MX/wKV//1vb2p7vl0WSmpAordCPR0nSCmYw59voKlZXESaPkBYpO4Pguwmid8MZHPccISAIoJDPwm8/yH4WDOZ5x26et3NHM0iWdIE3ogn+sDvHm/0xltI8Zo8buZbx+Xpvkjejcfr2/mxi81Y9x8+/OU1krr3VE1g+O7e9qttIn155Zui84sqH1+Z07/Eo+oPUPHeZ3tLwwV9Tzz2B9D18kf3fJja9+qFmRyIG2R5UcxfAlAdtzK9DeQhjsMZiYgFC0eqnpMYyWgwo5TxqhR1mfB8gozW9VpNitYbyPMrjE4e6PsdxHMdxHMdxnDvFxAOnyJfKjMzMYS2sL8xjzd73Z+VNim8NeaMxQhCJwykayoeKkWJAMVTkfUmjn5BqF4I52xmh6KsSsSwO5nkX0MJHmphA95D7aLd/bY739oKQ3ugMrelTmPvkIHo72EfUNX3apkvfxsQ2RRtBmhYg2Qi+sxnfOcYIrwbfaij4zgcd/o/P1Xmoem2f03hO80//+scRbmTBHeX+eHY7zgGohfCXT8M/ehGen9q5KXQjhl97D/4fL2dzvfca0GzlR10ql9+ldOU8It2+E98qj87EcRrHzpDk9z7DZq9UGDLz3Z/h2A/8MLnJnWeH9pcWufQffpvLv/+7RKsrB34fLILU+ERpiX4yRpJW0KaIMUWMrmB1DWGKCCmRso9UjU3B996PBL0rSQn5XPbl+VlFpu+DMdk87zSBe/54Pudup5Es6iKvRxP8YfcY34rGWE5zN9yuJlbwTjTC13rTrJud21Pf66yFLyyU+R/fnqCrh9/mvTjeZTK3fTvYrc4Nj84wmnzrMigFYe62zem2xrD48reGzgsqJUYfPYWHQgCpTbFYYnO9o6DTQdAdZAG3KYKpXH+dUoKSkKQIA4lWGGupdxNKoYevJLO1nSvCD1K3UQegUK1RHp9A3aYW8o7jOI7jOI7jOEdNSsX0w48SFoqMzs6RxhH1Kwt7rvDO2pknSCyhTkmkIj2kMX+1gk8p9KjkfJSUNHoxdr87hp17kxCkMqCvKqQyRyoDElnAIvFNH9/0Ebe433ZjjvdOHWOTYo3G3KNo//YVNNwOFktiE3qmT9v06NmIiIR0EHybZBz0NN5Q8D2JslU2gu9cuMp/9/wFHhqJGclp/vsXmswdwb4hZ2/cnjPH2aOJPPyXj8H3HYd/fw7e2CHPXe3Dr74DX7gAP3gKnh4fGpmxJwII22sEnTq9kSl61cltwYMO8zRnHyFo1ymsXkal8a2t7Cblp2c59uf/Ip1L51l99WvE69tfQLuXLnDh0gVKDz7M2MdeJKhUD/x+WCA1PqnxERRRUqNkjBQRWI3AIkQCIkGIPpYe1kqs9cEGCA63Mu+28xR4eUhSsuEl6to8b62z6m+lcPO8nTtdimQhLbKQFvEwTHpdplSXUdVHiizgvZyWeD+uknD/zsZKDPzrj0b58tL2g5+OF2L+6gPrO16vUzs59HO+OZ/NMgsGLcxvk/V3zxPVh+dKTb/wJJ7ykEKS2gSDJTIxdscPghpUC6yXhdw2B6Z23fVZAN/Lto/WYmIQQrDWibHASDFgtBhQCA73d2Ktpduok69UkcqjOjl1qOtzHMdxHMdxHMe503i+z/TDp5k/+21GpmepX1lk5cI5SmPjFCrVm66oVFgKOgHlk9qsnXnRJIeyJ2y8FJJoQy0Pa52YRj+hlvdvfaewc0+zQhCLPKkI8E0PKwRyY5637qKFTyqDPd+usJbS0vnBHO+5oeefCXI0jj1K6cp5gm7jIB/OXSEbg5eS2uzAGU94eELhGYUxBaCAFAZP9VH0shnfaFLbJ+/1+akXGvT6kvH7s77mjufCbse5RbMl+K+ehPNN+J2P4OwOGcJiF/6Xt+BEGX7oFDw6so/Q2xoKawuEzVW6Y7PEpZFty8SlGnGxQq6+RGH9CuIQW1YLISgdf4Di3AlaH73P6jdeJm1vb4/b/vB92h99SPX0GUaffR6vUDyU+5MF34rU5IE8njQokSBlH0RK9mKlESICmQARxgqsDcD6gI+4V0Nf38sCqySBWGQBd5JmFd6pzi4/gvnvjnMQUiTzaYn5tISPpqJiOsa/b9uVb2gmks+fHef91vZ33M+NdvmbD68Squ2BcBxWSPK1ofOKjYuDOd17/1B1UEyqufLqW0Pn5cZrjDx0AiUUqdUYIDHJDYLuJiCztuU2B3rsxiv1BgeSJRqrQVuPRBta/YRaIcBXkunq4X+i6bWaaK0pVkcojYzih+5TlOM4juM4juM495+wUGDqoUe48uH7+LkczZVlmstL9JoNKhNTBLmb+6yUs5rEKnJG01E+faHI76Nd9PVICVOVHPP1HrW8z3ovphVpyrn7e3+Fc2NGKCJVwjMxvulhlELZBGViAp2iZYAWe3sOZXO8l/HiHq2pU1h17fpWKlozD5JfWyC/vniv7g2/KcPBt8rCb6sw6abgW/ZRsosloSBDCvnIjQm9Q7ktrePs08kK/PQz8O56Fnqfa25f5kIL/tkb8HAtC70f3EeRs0pjylfOkTRW6IwfQ4dbWmYISX9kmqg8RmFtnrC1dqgvWkJKKg+dpvzAQzTefZu117+O7vWGF7KGxtlv03z/XWqPP8XIUx9DHfIM2NRIUkLQIZ4AJaPB3NZssydFihQJyIgs+CYLvvHB+oh7bcrDxjxvz4MoJguAdBZ6J3EWdvsebrqFczdJUKxq1zboQsfnn74zwVq8/W3dXzhW54eONZHXeSHo1k4M/aySLmFvGfKFw7irN2312++TtIfnTM28+DS+9DGDf4lJySLvrUxW0Y0AXclmde8WdAuwnodMU8CSJtm2cK0To6SglvOYKIcE3uFuI621dNbXyRVKeIFPdWrnkSGO4ziO4ziO4zj3g0KlyvEnnmbt8kWkUhQqNZrLV1i9dIFCpUp5bBypblzAIYCiTkg9SahTIpUd2Owfwog/TwkmKyGLjT5l49PsJ/hKkPNdkYlzY6kMSIWPbyMwAqM8PB3jmQhFQiJDrNjbPgm/16Z66Syt6VPocHg/T290hjQsUFo6hzQuvE2tJh0cBKOEvBp8S10AnQXfiBiBRNrbVxziXJ8Lux3ngJwegf9TDd5azULv+c72Zd6vw//rm/DEWBZ6z+1jzLbfb1O99A5RZYzu6AxWDbfktp5PZ/Ik/co4xZXL+NEOd+gACaWoPfYklYcfpf7tN1h/8zVMMtxO3eqU9Te/SePsW4w89XFqjz+J9A6/lXhqIdUhEKIEKJmAiEBECJFHCD0IvmOgMwi+PSAYtDu/hwLgjXneaZqF3lJmLXs3fvYUKA/X2txx7g6vrub5l++PEZvh7VQgDX/r4VWeG+td55pghaRbPT50XqFxEZHPcd10/AjoOGHpm28PnVecnWDk+BwWQ2o12mpSdprXZgdBt82CbvxB0L3L41EKkbUIwaZgraSfaLqxZqIc4nuKydLhz7WKu13SJKY6OUWuWCZX3McbBcdxHMdxHMdxnHuA5/tMPvAg5fEJVi6cw8/l6DbqtNdW6XfalMfGyZcrN2xtvtHO3CofbQyR9FAmOZQ9fjlfMVYMMTYi0YZmP0EJgX/IB0879wAhSEQOvdHaXAmk9fFMRGB6aOGhZbinwzQ25ni3J04Ql0eHLkuKVRpzj1Je/Agv6R/sY7mLaWvQNiYCFBJPZsF3miqkLQ4Kxpw7jftfcZwDJAQ8OQ6Pj8E3l7KZ3ss75AxvrWZfH5+AP38KJm+xgE4AueYqQbtOb2SafnViW590nSvSPHaaoLVGYXUepZNbW9lNkr7P6DPPUX30Cdbf/Cb1t9/E6uHWQCaOWX31q9S//Qajzz5P9fQZxBG10dYWtM7alitRxhMJSiZY0QORQ5K1P7cyBroYulijuBZ83yNHYnpe9pUkEMdZa/M0HXxp8H3X2txx7mDGwu9cqvK/X9reKmQ0SPnpM8ucKN54e98rTWO84aNRi93F2/63v/zGWXR/+GCpY5/4GEIIEpuirSG2Oz22jaDbDILuANJxdutYYeHq9lBYSBIF1rLWiQk9SSn0mK7mUOrwDwDo1Nfxw5Agn6c2PXPo63Mcx3Ecx3Ecx7lb5Etljp15gsbyEutKkSuVaa0s01i6MmhtPnnDMVA5q4mNwsiUjgiIpEfe7HQQ9f6V8x6R1mAtumup9xLGigHyNh5Y7tw9jJBEqogyAYHpYZS82tpcao2WPlrcfAHZ7nO8T1NaOk/Yuf/meO9GY9AmC767SYonJFK5WPVO5P5XHOcQSAHPTcGzE/C1RfiP56EebV/uG8vw2jK8OA1/7gEYvcWxnNJoiquXyTVX6IzNkRS3hx9xeZS4WCNfv0K+fgVhD75Vz2Yql2P8hU9Sffwp1l77Os333oEt69S9Lst/+kfUv/UaYx9/kdKph294FOZB09airQfGQ4kinkgRMsaIHtgQid0UfPc3Bd8+2BBxL2xCfT+r5E7i7I3ORuidxCBkdqSacKG349xJIi34l++P8Y217UdKPVzu8988ukLF370FVWdkuIV52F3BE4d7QNRu0l6flTfeHTqv+sAc5alxEptisSTXC7plB0i3VHTvvv2SSqAtCG3QiQAE7TglSg2z1Rz5QDFaPPwWVUkUEfW61KZm8MMchWrt0NfpOI7jOI7jOI5zNxFSUpuapjQyyuqlCyhPUehVaS4vsXrxAoVqjdLo2HVbm5dMTCpy5ExKX3kkQuIf0vzd0UJIkloMsNqJqfcSRgv+tkIlx7keLX16wsO3MZgeRvkoE+GZGEW6p9bmV+d4Rz1a0w8Md4mVivb0g+i1RfLrC67f53UYo0mFxt4rxXD3mHsgqXGcO5eS8NIsvDAFf7IAv3ce2lv20Rvgq4vwyhX49Cx85iRUbnGfukoiKosfEhcqdMbmMMGW9FxKeqMz2Tzv1csEnfqhv3j5xRJTn/puRp58ltVvvEz73AfblklaTRb/8AuEb77G2HMvUpg7caShN2y0J5FgcihRQAmTzfMWPbABEvBEihURVsQY+lgrwWYV3+AhNv02jZAIaxGHMP/nwEkBYZgF29Eg5N6Y5x0P5pz7rrW549wJViPFP31ngovd7S8Un55s89dPrXEzndFSL0dUnBw6r9BdOKi7ecuWvvE2Jhk+sv7Yi8+Q2hSDJTIxdqftquyCiEGXuBp0292PclYmIglLZGOZPNLUAllVdzFUhL5itpo7kn0RnfoayvPJlcpUJ6eP/HXQcRzHcRzHcRznbuEFAVMPPky5OcHKhfP4uTzd+nrW2rzdojw+Qb5c2XY9CRRNjFUBqTH0hUJZcyjtzKWEyUqOy/UutYJPvZPQ7KdU8oc/0tG5hwhBIkJS4RPYPhbQ1sczcVb1LTxSGWBvcr9tNhr1LK3pB3eY4z1NUihRWJk/9JGojnPQXNjtOEfAV/Ddx+CT0/Cly/AHF6A33NkbbeEPL8OfLmTLfs9xKNzie5+g28TvNulXJ+iNTGO3tNYwfkB7+hRer01x5RJefP2ZrgclqNaY+bPfT39lmdVXv0Z3/uK2ZaK1FeZ//9+Tn5ph7LnvID81fej3aydZ8A2YEEUeJQ0MWp1b4SEoghJo3yP1AhKVI1UltCqhVYHUK2ClD9agdB8v7aPSHp7u46W97Pu0hzTxnRUfSwX5/JZ53oO25pF287wd5zZ7vxnwz85O0EqHjyAVWP7yA+t8z3T7pkPZbmW4bZUwCfn+8kHe3T2LWx1Wvz18QNTY6QfxRyoYNIlJrhN090D0wRSBEPTo4CCkG5PWIJTEyAAV94hNDili6t0EYy2jhZBK3qd8BDsidJrSb7Uoj03geR7l8fFDX6fjOI7jOI7jOM7drlCpcvzxJ6kvLSKVzFqbry5Tv7JIt7HR2jwcuk5oDbHRGAla+PSlR+GQ2pkrCdOVHPP1PuWcpdFL8KUkH7rKUGdvrJBEooAUIYHuYpVE2RRlYnzdRcvgplubqzS57hzvNFfKRqK21ymsLaCSHdrVOs4dyIXdjnOEQg8+ezKr4P7iRfjDS5Bs6ZQTG/i9C/DH8/C9x+G7jsGtvP/ZaE0Sttbpjk4TVca3tclJ8yUaxx4lbK1RWJtH6sN5Y7dZbnyCuc/+EN2Fy6y++lX6y0vbluldWeDSv//fKB4/ydjHP0E4Onbo92szCxjlY/yAyAswXoD2AqyfnRrPx97MTFsh0V4B7V1nKLvVQ0H4Rgi+8b00ye2JlT0va2eeJJCIQZvzjXneJqvydvO8HedIfXmpyK9+OIq2w1uFgjL816dXeLzWv+nbskbTGXlg+Ha6V5CH1LrtZl35+ltYc+0+CCmZfv4JDIbEaDQ73D/RB9EFUwCbA1PLTm+CZ/pEQRVrIBE5RJKijaXei6nkfHxPMFu7xfkie9RtrCOkIl+pUp6YRLptrOM4juM4juM4zk0RUjIyPUtpdIzVixdQvke+u9Ha/DyFWo3S6DhSXqvfLpqEVEhyRtNTHrGQBIf0mTjwJBPlkCtNS6otrThBKUFwM23ZHGcLIxR9VcKzMb7pY5SHMnH2RUoqA8xNjKS80RxvgLg0QlysETZXKKwvHklu4Dj74cJux7kNij587kH47rks2P6T+ayye7NeCr/zURaIf//JrB26fwvvgaRJKa1cyuZ5jx8jzZeHFxCCqDJGXKqRX18kV18+ktbbhZk58j/4o3QunGP11a8RN9a3LdO5eJ7OxfOUHzrN2MdewN+h/dCtsAiMl4XZehBmGy9A+xvf+1kr78MmFKlfJPWL7HSMnDDpoDK8N6gI7+PpjcrwPtIe4psMISAIsuA7jgEBVkGaZPO8pcouO4rfk+Pcx7SFXz9f4wsL27d/07mEnz6zzHR+L9sCSxTW0GFp6NxiZ36f93R/+msN1t89N3Te+BMPo8p5UpuSssNjFHE2p9vmsy9TzULvm+CbCCMliZ9HxAnaBngmZr0bI4WgVvAZKwXk/MMPnY0xdBsNCpUayvOoTt6eriaO4ziO4ziO4zh3Mz8ImX7oEbrNBisXzhHk8nQaG63N25THxq+2Ns/amScYJfCNIRIeno0PpZ05QDFU1AoBYEmNodFLGC0GKOm6Jzq3QAhSEaJFgG97WEBYH89EWQB+k63NN8/xbk+ewPjhlgUEUXWCuDxKbv0K+cYSwt4FIzud+5ILux3nNqqE8OOPwJ89Bv/xPLy8yLaYuZXAb7wPf3ARfuCBbP63uoV3Xl7cpzL/PnGxSndsbtuLl5WK7tgc/co4xZXL+N3GoVcVCyEonTxF8fhJWh+8y+o3XyHttLct1/rgXVofvU/10ScYfebjePkbhxlWyCzE9rPgenOgbfwAo/xtR6vdiaz0SGWJ1C/teLkwyVAIfvX7tIfSvYOp0pQScjnw9Q7zvKOs6ttzrc0d5zB0UsH//O44327kt132ZK3H335khYK3lw8ZFpKE7vSDQ+d6SRs/bu7z3u7P4itvDv0sfY+Jj51BW02y04E9IgbZBhtmAbcpg9l5W7mVtBppU/phDSykNkAmMXFqaEcpo8UAT0mmK9t/74eh12xgraVQrVEaHcPz3fw2x3Ecx3Ecx3GcW5W1Nn+K9cUFpFJZa/OVrLV5r9mkMjGJFwQE1pAzGishFT69QTvzw9rDNVLwiVODtbDWial3Y0aLAeIu2Efp3JmsEMSiQCpCAtPDCoG0Opvnrbto6ZOK3ce8+f02tQtv06+O7zgS1UpFb2yWfnWcwtoCYWvN7Ql27jj3bdi9tLTEyy+/zMsvv8wrr7zCK6+8wurqKgA/8RM/wS//8i/v+Ta/8IUv8Ku/+qt8+ctfZmFhAc/zmJqa4umnn+Z7v/d7+Rt/429QKt3cjljn/jKWh79+Br7vOPzuOXhth7Gp6xH867PwhQvwg6fgmQnY68F/Agg7DYJuk351ku7I1LZ21MYPac08iN9tUli9jBfffGvcWyWkpPLIGUoPPkLjnbdYf/1VdLRlvcbQePtNmu+9zcizL1B6+jlEvrSpGntQpe37WHVEQYG1yDQefCWoJEalCYFO8HUflCH1BKkfkHp5tApJvTypl4ebaCez6+qlTxL4JMHOFe9Sx4MW6b1r7dLT3tVq8T1V8CsFhfy1kHvzPG+tr7U+d291HOdALPQ8fumdCZb627dn3z/T5MdO1vf8GoBOMUh6tWNDZxfb87f1L7ezuELz3HBl+fjTp1H5gMjEO1wjHVR0+1nAbYpgbq7zh8DimQiNR+LnMVplR0AnCWvdGE8KKqHHVCWHpw7/t2KtpVNfJ1cso3yP2pSr6nYcx3Ecx3Ecx9kvISWjs3OUx8ZYuXgez/eJul2ay1dYuXieYq1GaWSMAgnxlnbm4SG1MxcCJsohidbUCgFrnZhmL6GavzuKcpw719XW5ibGNz2MUng2QZqYgHQwz/vGUaDADkairtGrTdGvTmT7fzexXkBn8iT96iSFtXn8btPtCXbuGPdt2D01NXVgt7W+vs7f/Jt/k9/+7d/edlmz2eS9997jN37jN/jkJz/Js88+e2Drde49U0X4W0/AxRb87kfw7bXtyyz14P/7bZgrwQ+dgsdH9/5+SFhLvn6FsLVKd3SWqLJ9JnZSqNDIl7O5HGsLSKNv8VHdPKkUtSeepvzYUzQuXqCzuoooV5G1satfqjYKuTzb678PgTHINEZtBNrJpu8HAff1fvUpWeyrkHgiQYo6UiZZNaJIMTIgGQT02stCcO0VSVURrQoH0h7cqACjAhKq2y+0FqWjq8H31rnhSkc7h+G+B95gnncsBrO906y9eardPG/HOQDfWs/xP783Tk8Pbwc8YfkbD67x0mRn7zdqNKQp3YlHsHLT2z9rKHQX9nmPb521lsWXh6u6VS5k/OnTRCbZYSukQbWysQqmdG1O903yBuF5HJQwwsNokGlMP9b0Ys1UJSTwFROlcJdbOhj9dhudphRHRihUagS7dC5xHMdxHMdxHMdxbp4f5ph5+FE69XVWLp4nyOVpr6/Rqa/Ra7WojE9QKkmaniAwmlh4eDZBHdKIRyVhqpJjvt6nkvepd2O82FAM3b40Z/9SGZAKH99GYARCeXg6xjMRioREhdhdmvVLoymuzZNrLtMbnSEqbQ8fdJinNfMQXq9FceUyXtw7zIflODflvg27Nztx4gRnzpzh937v9/Z83UajwWc+8xleffVVAH7kR36EH//xH+ehhx5CKcXFixf5wz/8Q37jN37joO+2cw87Xoafeho+qGdzuz9obF/mchv+pzfhwQr80IPwcG3v65E6pbR8YTDPe440t6XzwMZcjtII+bUFcs2VfR+tZSGblz1Ujb3pey/Ijhp75OMU97mu3Qijkcm18FoNAu2N74XeX+siC2hM9o31wHhAHjAIGaOSGE+0EUIjhQAMiARDilYK4xVJvRJGVdCqROqVSFVWIb7vIz6FQHs5tJcjDms73HmD0tEOs8KzUFwKgfC8rLU5m1qbu3nejnPLrIXfXyjz6+dr2+YqVXzNf/voMg+Vd6p03o3JDlCRku7oqaFLcr0VlEn2ca/3p31xkc7CcDuTyY+dQXtgt+1cMKCaZNucchZ069GbXpeyKdKmJDJH6udIjY8kRkYxq52IXCApBB6ztfzWg5cPTae+Tpgv4IchVVfV7TiO4ziO4ziOcyiKtRHylQr1QWvzfKVCc3mJ9cUFwkIDf2oOG+ZJhaQvPQrm+gUu+xV4kslyyGKzTyn0aUcJnhKEntuP5hwAIUhELpvnbbpYJZCDed6B7qGFTyp3b22u0oTS0gVy9WW6Y7Mkhe0d9dJ8mcbxMwStNQprC6j0VvZZOc7BuG/D7n/8j/8xL7zwAi+88AJTU1OcO3eOU6dO7X7FLX7mZ36GV199lTAM+bVf+zU+97nPDV3+/PPP8yM/8iP84i/+IloffmWsc295qAb/3bPwzjr87x/CpR3KmT9swv/7NTgzkoXeJ8p7X48Xdalcfo+4VMvmeXvDL3hWeXQnjhNVxqisnCfs1LPzpUKjsJtCTSvEUHBtvGCo1bjxjq41j9DJpmrsJAuxN4Xbwujb1GpFYk2OlNzgZwMyAiKEFEgUQku8pI8v28BFIAVhAYGwPkbV0KqC9stolSf1cqSDU612f8OyKyHRXh7tXWdmrTXXgvCki4raeFEbFbXwuk1kHCGUcvO8HecmJQZ+9cNRvrK8fdzJiWLMTz+6zGh4K+8jDERZmJ2UxogLw+FwsTO/05WOhLWWhS1V3X6pQOXMSQxb28bZrKIbAboCNhgE3Te3fRFYlInQwiOVPqnKI1KN0IZ2LyLRlolKSDH0qBWOZhRG3OuRRH1GZ+YI8gUKlR26cDiO4ziO4ziO4zgHQkrF6OwxyqPjLF84h+f79NttmivLROfex04fJyzX6PkBsVCE9vD25RdCxWgxAGJSo2n2EkaLAWrP88ocZ2dGSCJVQpmEwPQwSqJsgjIxgU7R0keL3fd/eHGPysIHxPky3bE5dLh9X3FcHiUu1cg1lsmvXzmSDrGOs9V9G3b/D//D/7Dv2/jyl7/Mv/pX/wqAf/JP/sm2oHszIQSed9/+up19EAIeG83C7NdXsvbmV7rbl3tnHd55FZ4Zt/zgKZgpWAR20Ip6UCNo7dXW1OLq/Jlrl+caHUrNBdqjx2iPzG1rR63DAutzjxG218g3lzHKQ/sh2s+hvRDth9uC8sNijcG2Guj6Kubq1xpKp1SOn6A4Ooo8pJZDB0+CyQN5rBlUgw/Cb2wEKAQghEWIBCFS0Et45gpeIhHWQ+CDDZF4WOFhvDz6agCeJ1U5Ei9HqnKYg5hpLiSpXyT1i0T57W3whUlRUQcv7qDSLl4yCMWTLl7cRd7GSlLHudM0Ysnnz07wQXt76+wXxjr8xENrhGqv2zMLOmtdDoDv06mdHFpC6ohcf/UW7/X+NT64SH+1PnTexHOPZU0whthBRbfJgm580OOwS+utzTwTARItQ9KghEahdIKII9a7CaWcIlSK2Vpu19s6KJ36Op4fEBaL1KZmjmy9juM4juM4juM49zM/l2P29Bna62tZa/NCgc76Gs2leTpRhFcbJc4VUdbgHeK+xVrBJ04NWMtqN6HejRktBgg3v9s5QFr69IR3tbW5UR7KxHgmRpGSyHCokO16gl4L/9I7ROVReqMz2zMAIenXpojKY+TXr5BrLiPs3bJv3rkXuPR1H37pl34JgGq1yt/5O3/nNt8b516yEVBjGQTWWTD9/Ljl46Pw8hXB75z3WIu2v/l5fUXwxorlE5Oav3AyYTy30QhWsHFrIDBCZueJq/E3G/F4bn0Fv92kMzZHXBrZto6oNJrN6zhM1uxYja2SmGRpnrU//SN68xd3vGr3G18hPzPH+HOfIDcxdbj381BcC7+z/3qNlRGWeBCCD8IrNEIkIFKk6CNEC5BIAmQa4CU+Hh4CMYiEJFKAEV42I3xQCZ6o3NDp0DzfW2SlR5qvkuZ3rlQUOsGLO/j9BoXmZcLOys4zwh3nHne+7fNPz06wHm//u/uLx+v8+bnm3pth2EHbcmuyg5Z8Hysl3drxocWKnfnb9ndntWHxlW8NnReOlCk8PLt1SVBtrgXdAaRj7CXoVjZBWk0i82gksV9EpBostFo9jLWMFEJqBZ9ieDRvjdM4pt9pU52cQvkBpZFDfk11HMdxHMdxHMdxhpRGRilUqqwvzCOlIl+uslxv0F5dxlQSbKFMWRxuV8jxUkiiDbU8rHViGr2EWv7oumI694mh1uZ9rBRo6+ObKKv6Fh6pDLaN1Nt2M0CutUbYXqdfnaBXm8aq4WI5qzy643P0q+MU1hYI2uuu56dzJFzYfYviOOa3f/u3AfjMZz5DLpdVAmmtmZ+fR2vN9PT01fOd+0u2AbfZAFaGA2sxOH9jmWtHONkbhg7ZJRIJfHJK8PyE4U+uSP7DBY9mLLYsK/jqks8ryx6fnBF89iRUtxcMsjn8tkisAITM7okR5JaXUM020dgEJjzg57LR19qLX201fm1mttTXn43jVyrkv/8H6c5fYvXVrxGtLm9bprdwmYu/85sUT5xi/LlPENS2h/Z3DwWmABSuht8bld9WRmA1WXOYFEQKIgHRQwiyoNsGCAIkQVYFbg0yjpE0CMiWEUIgNp4L0iNVeZJNAfhGZbhWOeyWiv9bYZVPkq+R5Gt0R04i04h8c55C8zJBd9W9CXLuC6+sFPjlD0aJzXBwG0rD/+GRVT422tvjLdqsklungAQ/yMJuT9GvHcOo4ReCQmdhfw9gH9bOfkjcHJ7NMfr8GcRQyzYLsgMkg6DbAz3GXt6+Zu3LY7TwsxZefgUrBCpNsXFMo5tQzvn4SjBdPcKq7sZ6NieuVKE6OYU4qiHhjuM4juM4juM4zlVSKcaOHac8Ps7KhXOowGc51jTbHTqpwQYelVzu0LJnKWGqkuNyvUc171PvxbQjTSnnYhvn4GWtzQtIGxLoLnZTa3Nfp2gZ3FRrc2Et+foSYXOV3sg0/eo4bKkON35Ie+oBVG2S4upl/N4O81kd5wC5reYtev311+n3+wA89dRTNJtN/vE//sf8yq/8CvV6HYAgCPjO7/xO/tE/+kd893d/9y2t59KlSze8fGHh9u2ovh9sDqazsHqjBfjOrcHB3DCk2wisuXptgRGDgFGITefLa9XY4joRuIJPHYMXZuCPLgu+cMHSTYcX0Vbw5Xn42iJ86pjPdz0QUvTl1Qrum3qnlmiCxUV0qURSGwF1c0Gn0CkqjVFJH5X08ZI+Ko2QSYLQ6eA4gFt/pyiEoDh3nMLsMdrnP2T11a+RNBvblutc+IjOxXNUHn6U0Wefxy/dwlDzO87W8DsdhN+Dyu/BTCFLihUJRiQgIrKFJcL6CBsgrY8QPlJIhN0IuwGdInWfXCzIbwrCBdnzU0uf1MuTqPBaVfggCE+93LY3NzfDeCGd0VN0Rk8hkx6F5jz55mWCnjv6z7n3GAv/7mKV3728vfPBWJjydx5d5lhxj63+jYYkBQx4Higv+9QcBuB5dMpzQ4sH0Tp+usNMjCNgkpSlV98eOi83OULx5PTwgrIHIgZdImtdPgZ2b2MYfN0HJKkMSGVIGuSy9u5YWo0OACMFn7FSQM7f/4E8N8NoTa/ZpFgbRXqKyvjkkazXcRzHcRzHcRzH2VmQyzN7+jFaayuISxeRuTytXp9OnKI7K5TLZfxwx0qiffOUYKoSslDvUw59mv0ET4kj+4zq3H+MUPRVCc/GBKaPUf6m1uYJVii08DDixs9BaTTF1cvkGst0x2Z37BCrwwLN2UfwOw0Ka/N4cf+wHpZzn3Nh9y369re/ffV7YwzPP/8877333tAycRzzhS98gS9+8Yv8/M//PD/7sz+75/UcP35894WcQyEwBHo4CBhuB37tezMI96zwBsvJa8uIzctfz7UA2g6WRwjMlmA8u1xe+x7AE7z0IHzsuOGPL0R8+UKfWA/femLgSxcS/vRywneezPHpEzlC7+YjRAF47Taq0yGt1tCFPFZIhNbINEVsfOnsVCUxysTZkWE2ZaOCXZIijUGQDoJTiRHq6tetEEJQfuAhSidO0Xz/LGvffIW02xleyFqa771D64N3qZ55kpFnPo6Xy9/S+u5MHtmQ2+KW8DsahN8b89mzqm8rEqxsY7CAzMIj62UhOD4SOagKl0ghEHb4uSJ1gqf7BGKjFnzwnCX7G0lVcDUI35gTnqoQ7eXRXn7XgyyMn6c99hDtsYdQcYdC8zL5xmX8qOmCb+eu19eCf/n+GN9cK2y77HS5z089ukLZNztc83pMFnIbnYXbXpidBj74WeszLQP6ufGhaxU78/t8JLdu9a0PSLrDVetjLzw2PJdM9kD0wBSBEPQo2L3tWFA2QWCIZR6LIpYFkBIZx+gkpdWNGCkEeEoyVTm6qu5uow5AsVajMjaB8tzbccdxHMdxHMdxnDtBeXScYnUE/9IlRL2BNNDtKpprq4RhjkKlivQOPoTO+YqxUoBtxyTa0OwnKCnwlesC5hwSIUhFiBYBge1hAW19FAnSaHybhdJmEHobcf0J9iqNKV85R1Jfojs2S5rfXmyWFKs0ChXC1hr5tQWU3mORh+Pswu1du0Vra2tXv/+FX/gF+v0+f+7P/Tl+7ud+jqeffppms8lv/MZv8A/+wT+g0WjwD/7BP+DMmTP88A//8G28186uBkGzFhJrJbFUZMHz1Tru611xSyA9qM4WG8H35sBaXg20ry27f3lf8v0P5XnpeMiXzvX56qWIdEteEmn4/Q/7fOVixHc/kOM7joX4ag+ht7X49XX8+voNl7OIrIKOEKxF2RRFgjIJQhkgRFqDtCnSapTNXtyyF085ePHc2+9FSEn19GOUH3yExjvfYu2Nb2CiaPh+GUP922/QePdtRp58hpEnn0H6wZ7Wc3fYEn5vVHaLQfX35vBbJkACsovFZgcgDMLvLARXg2euzFqiD6q8pTAYey3kBq7OBVe6h9J98jSvVYsD1hpskpLgkagcsV+kU50jKY5d95HooEhr/DSt8dN4UYt88zKFxmX82LW+ce4+K33FL52d4HJ3+3bnO6da/NUH1vFu+nOszSqU00FLD98H6YEnIRwE3gOd4szQQSbCpOS7S/t4JLfORAlL3xyu6i4cm6AwuymMF30Q3ayDhc2BqWWneyCweIP25VZIIlXE+D4Yi9CaVqODkoJqzmOyHB7ZDgRrLd1GnXy5glQe1anp3a/kOI7jOI7jOI7jHBmpFMdPnEBVWywuLmI9Hxt4pOtrNJavkCtXyBVLB97avJL3iVMD1pJ2LfVuwlgxQEpX+uEcHisEkSggRYhvIqyVoDYXrmk8mxVVGRRGquvuu/ejLpX590kKFbpjs+hgS7GZEESVMaLSCPnGErn6FaTZS8GH41yfC7tvUadzrXK03+/zmc98ht/5nd9BDVo8T0xM8FM/9VM8+eSTfNd3fRfGGP7hP/yHfO5znxuuXNrFxYsXb3j5wsICL7744q09CGc7IYllgRQ7qFANr7X8vnrKpipkkTUuP6zBLbegFEh+6HSBT5/I8Qcf9fj6fIzZcthVJ7H87ns9/vhCn+89lef52QB1WG+chEALH40PEqQ1KJsgbYKyiuGqb42yMR7x1apvLbxBNfvNkZ7HyJPPUjn9GPVvvc76W69j0+H+7jZNWHvt6zTe/hYjz3yc6pknkTfZnv2uZP1B699S9vPm8NvEcLVFfwoyZSP8ZlD5ba2PHYTf2g5+T4PnlMjqv68G4VIY9OaW6Gz0Pxi0Qw88AmMJkxbETUbbl4mET7s4RXfkGEn++rPV07BMa+IMrYkz+P0G+cZlCs3LeMntacXsOHvxbjPk82fHaafD2xqJ5a+cWue7p9o3/1JiDSRJdirVIOgWEITgD7+1s0C3ODt0Xr57BWm3tAA5AgJYef0sOo6Hzh974bFNC8XZ9sfmsy9THYxt2Btf97FX25fn0EJhlYdIU5JU0273mCiF+J5ionQ4reh20ms10VpTrI1SrI3gh0dXUe44juM4juM4juPcHCEEU5Uy1g/wGw1W6orQD9DNBr1Wk7jbpVCtHnhr89FiSKwtNWC1E1PvJYwW/Dtq37NzbzJCEakC2DzKpngkyEHhmsBmRWtGZ+3ON/bdSy/b38K1ffcCCLpN/G6TqDxGd3QG620ZSSdlNuu7MkZ+bZFcc3XXvriOsxsXdt+iXG545+Qv/MIvXA26N/v0pz/Nj/7oj/Lrv/7rvP3227z55ps8/fTTN72eY8eO7fu+OnuTyoBIZHF3JPe+g/1OUctJfvSxIt95MscXPuzz+mK87SWjGVn+t3e6/NH5Pp95KM/TUz7ykN88ZZXbIRAirM1anZNuevEEYfWg6jtF2QRL1iJ+L1XfKggZ+/iLVB97krXXv0Hj7Fuw5UgxHfVZefkr1N96g7GPvUD5odMIeR+0B7ph+B2RxWMb4fdG5XfMRvh99frWw6LQDEKzjauxEYKLa63QB+3QxaBTAoFEpBqhITQpYWeekeY5+jKgUz5Gb+Q4aa5y3YeQ5KokuSrNqccJumtZxXdzHpW6uS/OneePrhT51x+NoreMBCgozU89usJj1eg619zKZpXcOgUk+EEWdntqUM29fdsYB1VSvzh03u1qYW66MVfePDt0XunBWXLjtewHkYBsgw2ygNuUwZT2vB5va/tykcMqBQJkmrLe7BIoSSlUTFVD1B46nOxXp75OrlDCC3xqUzNHtl7HcRzHcRzHcRxnbzwpGAl8TKUKYY5WvYEvICjk6TUatNZWCXN58pXKgRXRSAmTlZD5uqGW91nvxjT7KZW8v/uVHecgbC5cExZJVrjmmRih9GDffYoyGmlislI2iZEKzbWiNQHkWquE7XV6tUl6tclsH9YmVvl0J47Tr05QWFsg6NTdCEvnlrmw+xaVy9fmDkxMTPCxj33sust+9rOf5dd//dcBeOWVV/YUdjvOfo0XFH/lySLfdTLk9z7o8/bK9nkYqz3Dv/lWh//8UdYK/fEJf08dCG6VFYJUBKQEg6rvrKW5MilSZPdTWINED1qmxHD1yLHhF9Dr8fIFJr/j04w88TSr33yF1gfvblsm7bS58uX/zPq3XmPs4y9SPHHqSB7/HeOmw+9kU+X3RvitNrU897KfAYtFYwGzLQS/Wg2uQHkexoA0Fk+FFIwl1zxHuv4esVekVz1Gt3YCHQ6HdZvFhVHiwiiNqScJuqvZjO/mPErH172O4xyF1MCvnR/hPy9un1U0k0/4O2eWmcylO1xzB0Zns7kx4HmgvOxTcBhkP19HZ0tVt5d0COLGXh7GgfCEx4VXv4FNN1WUC8HYc2cGP6SDoNvPAm5TBHP9A16uR1iDMjFaXmtfjhBYzwOtiVJNv9NnqhgQ+orRwtFVdUfdDmkcUx2fJFcskyvtPch3HMdxHMdxHMdxjk7RV3S1xhCgazVEqYhdX8XzfaJul16rSbK8RK5cJiwcTGtzTwqmKjkW6j0qOZ9GL8FXknxwD3eldO5MQmSty4UikblN++4TjEq5Nqo0QZpsjKlFDGZ8+xghEdZQWF8k11yhOzJNVBnf1qnABDna06fw+h0Kq5fx+52d74/j3IALu2/R8ePHr36/W/X15mWXl5cP7T45zo3MlD1+4tkSFxop/+n9Hh+sbw9YrnQM/+qNDscris8+nOfh0aM9ajB7IVQkkhtUfacoq4deQO3gekao61Z9++UK09/5vYw89Syrr75M5+K5bcvE9XUW/uA/EY5PMv78d1CYmTvcB3yn2hZ+x4PwO75B+L1Rmbo5/PaB4YMR7OCfGYTgiU3x8PA8hUEgAWU8Ah3gpTHh2rtUVt4hDqv0KsfojhzH+FvmvWwQgrg4Tlwcpz79FGFnmULjMvnWAtLcZKDoOAekk0j++bvjvNPc3qb6qVqPv/3ICnnvZlo0mSzkNjoLt73BPO7Az9qX3+CTtBEevcLU0HnFzvyRHyXroYjrTVbe/mDo/MqjJwhqJUCDaoFVWdC9Maf7FvgmytqXi4BE5rPXBSFASmQU0er0yUnI+4qZap6jbObRqa/jhyFBoeBmdTuO4ziO4ziO49wlRkOfWBtKvkfTQnlmDtNp0Vpdwc/l6LVadJtN4m6PQqWKFwb7XmfoScZLOZZafRJtaUUJnhT43n3QkdK5Y13bd5+7GnJ7NkHaQTW3NSibDkLx3qZurQo0lFYukW8s0xmdJSnVtt1+mivSnDuN365TXJtHJTfbCdFxXNh9y5544omr32t947mXmy/3blB95ThH4UTV428/V+b9tYT/9H6Pi83tz9+LTc2/+Eabh0Y8PvtwnhPVo3/eDlV9b2qZokyCEVlwKaxBkQXfns3OuzovBLVj1Xc4Msbs9/0AvSuLrL76VXpXFrYtE60scfk//jsKs8cZe+4T5MYnDvfB3ulskH1tuBp+b8z83hJ+b1SGA1n47W+q/N7+f5KSok2KwsOTCiNBSoUKivjaYNIYmbQIV96muvwWUX6UXuUYvdoxjHedqkwhiUpTRKUp1o0m11mi0LhMrrV4W2YVO/eX+a7HL70zwXK0/YChz842+dET9Z06jm9hQeusbTkM5nJ74MlBy/Ibf8DVMmBl4mNYuWn7bQ2FzvZt3mFSSKSQXHrlDbDXwn2hJGMfPw0YUE1AZG3LbQh69JbWlXX/MCSygMEjEdn2wXoeGEu/nxB3+kwXfYqhR61wdAd0JVFE1O1Sm5rGD3MUayNHtm7HcRzHcRzHcRzn1ikhGAl9dD8hpyTtRDNSrpIrlWitrCClJCwU6DbqNNdWCPN58uX9tzYv5RSx9gGLNiab310MULvvUHCcQ7cxqjTdPKrUxlibNTYX1iJJUYP99h4RRnioOMG78iFxo0R3bI40t72bZ1KqUS9WCZsrFNYXkdoVMTm7c8nrLTp58iQnTpzgwoULnDt3Dmvtddsef/DBtUqmubn7tFLUueM8POrz0Ase315O+L0PelzpmG3LfLCe8s9eafHYuM/3P5RjpnybNhlbWqZsHCWmbIq1CSgfAdmc76F5IdeqvrUYvu/5qWnmfuCH6V6+yOqrXyNaW9m22u78RbrzFyk98BBjH3+BoOrCCWBT+D1ozbwRfIsITMLV8Fskm742Zml7W9qeZ4FdNiF8S+htDVJKVJjDD3OYNEXHEbm4Tm6pTu3Km0SFMbqVY/Rqc1h1nSNnpaJfnqFfnkGYlFzrCoXmZXLtKwi7/XnvOPvxxnqO/8974/T1cBjtCctPPLTKd0x0d78RayBJslOpBkG3gCAEf/ftcOIVWZn4GNobrirP9VdR5uja+0sESihayyvUP7gwdFntiQfxirlrQbeuZtsVPZb9vEdZ+/KEVAZYIYlVIWtfDljlIZKEdj+hIDSh8pmtba+4P0yd+hpK+eRKFaqTU/fXqAzHcRzHcRzHcZy7XMFTFH2DxZIYSztJqfge1clpCpUqzeWla63Nm02S/hK5coWwUNxXa/ORQkCcGqyFtU5MvZswVrxxlzfHOWpDRWvW4g26tSqToJWPwF7db78xptTv9Al7dfqlcTpjcxh/S0GTEETVCaLyKPn6Evn6ktuP69yQC7v34cd+7Mf4xV/8RZrNJl/84hf5vu/7vh2X+83f/M2r33/6058+qrvnOLsSQvDEZMBjEz5vXEn4/Q96rPa2v2i8vZLwzkrCM9MB3/dgjvHC7Z0RY4UcegHdXPUtB/NCNrdN2Th6zCLR0hu0O5cIISgeO0Fh7jjtj95n9RuvkLS2z7Jtn/uA9vkPqTxyhtFnn8cvujmrQ2yYfWU/DFd+i5sJvwMwAaCGQ2/h4YlB6I3E8zyk52OsJk0ThE7JRWvkrqxhl96gnx+nWz1OvzKLVTu/vFnp0avO0avOIXRCvrVAvnmZXHsZwc20lHacnVkL/2m+zG9eqG0bp1D1U3760RVOlXcLmm1Wya1TQIIfZGG3pwbV3Lt/mO2HI6yOP42Vw1XLUsfU6u/u8VHdOkE2p9tgmH/59eH7EniMPPPQIOg2oCuAD3qcnbo/3AzfRBgUWvgkMpe1yAKsUiCg143QUcxkIaRWyCq7j4pOU/rtNuXRcZTnUb7fu4U4juM4juM4juPchUYCj0gbyr6iHqf0tSHvKfxcnrHjJ+g2GrTWBq3Nmw26zQZxt0uhWsULbq21uRAwUc6R6C61QsBaJ6bRS6gW9t8q3XEOxZZurcpqFDFq05jSq8G3iSk35yk2r9AZmaE9OodVW7rwSUVvdIZ+ZZzC2gJha/XIx/M5dwcXdu/D3/27f5fPf/7z9Pt9/t7f+3t8+ctfplKpDC3zq7/6q3zpS18C4Ad/8AeH5nc7zp1CCsGz0wFPTfp8fT7mix/1aEbDwZ8FXluMeeNKzPOzAd9zKk8tdwfMidlS9b0xL0TZ5FrblKtHjxmUifEG52ZzRrLwu/zgI5QeeJDmu++w+trX0b0t1ZfW0nz3bVofvEv1sScZferjqNzRVgbeHcQew+84C75VF/DAhGCDbOauTdFWo4S6GnorJEpIAj+H8TRpaCDVCJ2S76+Q765gFl+jX5yiW52jX57JwsIdWOXTrZ2gWzuBTGPyrXnyjcuE3RX3psnZk8TA/++DMb66sr310slixE8/usJIuEv7fKOz2dwY8DxQXtaqPAyyn29CtzDN2ujjsGWEg5d0GV/5Jl7au9mHtG+e8LAY6pcXaF1cHLps5JmHUYWs5XgWdAeQjnGrQbdnsttKZQGDf7V9OWQtzG2q6cYpBQy+UkxXj3bb3W2sIxDkK1UqE5PI62yTHMdxHMdxHMdxnDuXFILR0GPJWPJK0kk1vpR4UgCCQrVGWCrRXh20Ns+X6DbrNFcHrc0rVeQuI8l2oiRMVXLM1/tU8h71boIXaYqh+2zp3OGEQAsPjQeSwSzvBM/ECKWBcHBeSmn9EsXGAq2R43RGZreN77OeT2fyBP3aBIXVefxu0+2/dYbct2H3l7/8Zd5///2rP6+sXGth/P777/PLv/zLQ8v/5E/+5LbbOHHiBD/3cz/H3//7f58333yTF198kZ/92Z/l6aefptls8pu/+Zt8/vOfB6BSqfCLv/iLh/JYHOegKCn4xLGQj88EfPVSxH8+16ebDIfexsLLl2NenY95fMLnhbmQh0c95B3SPmfzvBDsxtFjyeDosY0XUZOF31ajbFZhbFAYqaideZzyw6epf/tbrL/5DUw8XIlptab+rddpnn2bkaeepfb400j/6Oa+3n12C78HM7835nzLLtAdtDkPsDYgtRZtNZ5QWKHQm0NvFNqT6I3K11QjdUqhu0ihvYiRil5xim71GFF5alsIuMF4AZ2RB+iMPIBM+hSa8+Sblwh667fljdNyX/HtRp7FnkfF1zw/1mUi52aN34nqseKfnR3no/b2+fEvjnf4iQfXCNSNugaYLOQ2Onsj7w3mcQd+1r78JratFmiVH6BZe3jbZUFUZ2zldZRJ9vCo9scfjI2ITcrC194YukzlQ2pPTWV/87oMeIPW5bf2ljTr4rG9fTlkbbSQkl67g001I6FkrBSQ849uh4Axhm6jQaFaRXke1YmpI1u34ziO4ziO4ziOc7BySlHe1M68labUfO/qqCqlstbm+UqV5vIVVOATdTv0Wy2S/hXylSpBvrDnLuSBJ5koh1xpWkqhpR0leEoQendAIZLj3CQjhgvWlM0qvrPufNk++9La5Sz0HjtBrzK5bb+YDvK0Zh7C67Uors7jRTcxLtC5Lwhr7X3Zt/Unf/In+ZVf+ZWbXv5Gv6Z/+A//Ib/wC79w3WUmJyf5rd/6LT75yU/u+X7u5tKlS1erxS9evMixY8cOfB33k34U81t//HXq3S7WWkaK26v07if91PLlC33++Hyf6AY5Wy0neX424PnZ8M6o9r6OzVXfyqaARViLJGudItAIwCKzF95Ys/rW69TfehOr0x1vU+XzjD79HNVHH0cod0Tl3uks4JY9YFD1vRGCi4QsLB/MCLc+AoknFEooBAIlJAoJCLTVaDa14dc6awedaDAWrXx6pWl61WNExYmbChFV3CXfvEyheRm/3zi04LudSN5phrxdz/HtRp6VaHvw92ilz0uTHZ4b7RLeMDx1jspH7YB/9s449WT4/0tg+ZETDf7cbPMGTzObPUfTwbbF90B64MlBy/Kb25ZaBPWRR+mUtr/+57tLjK5960hnGnkopBAkNqV+7hLn/9NXhi6f+PQZak+OgyllB8HosU0Hw+xdoLtYJInKEcsCqbx2W8b30UKyvtqgpFNGfHhspoyvju51qlNfp7myzMTJU4xMzzL5wINHtm7HcRzHcRzHcRzn4BlrWezF9FJNI04peIqCt9M+QUunXqe9toJOU3qtBlGvh+/75Ks1vFsonql3k0Er85g4tYwWA9RNjDxznDvZzvvsDcb36YwfJyqOXPe6QWudwto8Kt1tdOD+tfoRUkA5l+OHPvvnD31997LDyDXv28rug/TzP//zfO5zn+Pzn/88f/zHf8zCwgK5XI7Tp0/zuc99jp/5mZ+hWq3e7rvpOHuW8wTf92CeTx4L+aPzfb5yMSLZITOp9w1f+LDPFz/sc3rM44W5kMfG/Tvuzdb2qu90U9V39sA2V33nfMPcs08x/uijLL/xOvV3z8KW0Ej3eix/7cusv/U6Yx9/kfKphxG30JLo/qXAlLMvkYDoZeG3zQFmUO09qAJHYm1AYkJS62eV3ig0Jgu9hUShroXeSmVfAWA0KtWUWpcoNS6ivZBueYZeZY64OH7de6eDAu3xR2iPP4IXtbPgu3EZP27t61EnBt5vbYTbOS50gm1znrc628xxtpnjX8sRnh/r8tJkh0fK0Z6PBnYOxteWC/zKB6MkdvjvPZSGv/3IKs+M3qBluDWQJNmpVFkFtxQQhFnofZOMUKyNPUU/v/05XGpdoFp/90g7EygkUkhSm6CNYeFrbw5d7lfyVB8bAVMYBN2j+wq6fRMBllSFaOGTimszyyxglUev3UMCFWmYLOePNOi21tJt1MmXyni+T3Vy+sjW7TiO4ziO4ziO4xwOKQRjoZ+1M/ck3VQTSIG3bX+goFgbIVcq0VpdQSpJmC/SbTZorSwTFArky5U9tTavFXyi1GCtZa2bUO/GjBaDq5XljnM32rzPXlg7CL0TVJpQWjxHmFuhOzZLmttemBiXR4hLVXKNFfLri0jjOmPer+7byu57havsPliusvvGmpHhDz7q8/X5iHSXQsFSIPj4TMALsyETxTu/4nljPoiyCfI6Vd9xq8XSa6/T+OjD695OMDLK2HOfoHjspHujuR8iGgTfPcCQVYBvhN4GUGADhAnxRHi10tsTEjmY+6utGa703mA0pIMvbUj9PL3yDN3KMZLC9Y8U3MzvN64G316ye7scY+FS1+ftRo5v13O83wqJzf5Dt4kw4aXJDp+c6DC220xo50AYC791scp/uLz9ILaJMOGnz6wwV7hey3CbVXLrFJCDam4FG23493CAkJYBKxPPkgSVLauwVOvvUm5fvPkHdQAkAk94pFZj0Cy/8wELf/iNoWWmv/c05YdPgsmDGYTet7o+q/FNn1RmQXdfVTCbxhQYpUiUT321QVVaRoXmzHQZpY5uu9xvt1hfXGD8+Ekq45PMnj5zZOt2HMdxHMdxHMdxDlc9TmjGKetxChZqgXfDfYFRr0NzeZk0jog6bfqtFkhBvlwhLNz852NjYKHRoxtr1joxvhLU8jc3Bs1x7iqDYjWPBGESklKV7ugMxt+5cELolHz9CrnGMuIQYk9X2X1wDiPXdGH3Xc6F3QfLhd03p5sYXluMeeVyzEJ794DtgZrHC7MBT00FBEcYNNyqq0eQkSJNgsAgAGE10qZEq8ssffMbtC9fvu5t5CanGX32eQozswh554f9dzTRB9EF2Ser10wHwXdMFnx7CBOiKA5mBd9k6A3ZJ4Q0vRp8J0GRXnmWbvUYaa6y83W28HvrFBqXyTcv46X9q+evRYpvD8Ltdxo5WunengdlX/NgKeK9ZkhX3/i6AsuZasRLE20+Ntpzbc4PSS8V/C/vj/H6+vYPoY9W+vzU6RVK/vWeazqbzY0BzwPlZa3KwyD7eQ8Sr8jKxLNoL79tHaNrb1HoLe3p9vZLAL7wMRhSq4mSiA9+7fdI29eq24OxIid+7BMIWwJTzdqY72d9uotFkaiQWBZJZTC0jA5DWr0Y3YuYIuZ4Lcd46daryG/F6qULgGTs2DFmHjlDoeK6/DiO4ziO4ziO49wrrLVc6cX0tGY9TslJRcnfZd+PNbQbddprq5gkoddqEvV7+H5Avlq96dbmaWq53OjRizX1XkzB9yjlXBNf5x5mLRKDIiEpVeiPTGLVzs95mUQU1uYJ2vUD7Xjowu6D49qYO45zRyj4kpeO5/jksZDLLc0rlyNeW4yvO9f7XD3lXD3l353t8rGZkBdmA+Yqd+7mxwpBKgJSApAbVd8JyqRIkaAmjjH7mVn6Vy6z/PWX6S1vD5b6S4vM/97vIDyP/NQMhZk58jPHCEfHXJvzvbK57MvYrNJb9MD4ZMF3DDLGyi4pHTQBni1gbX4w3ztrby6RmJ1CbykhCAatzg1+GuPXP6C8+h5JWKZXmaNbmUOH1w/mkvwIjfwIjeknSRrrnLuwwlfebXGuvre3U4E0nK5EPFbt83i1z2whQYqs5fkb63n+ZKnEt+q5HdudWwRvN3K83ciRU4YXxrq8NNHmoXLsDuw9IMt9xS+9M8F8L9h22XdPtfjLD6zj7finbbKQ2+js+eYN5nEHfta+fI//QVFYY2X8Gawc/gAsdczYyuuEcWNPt3cQPOFhB0G3tpq1tz8YCroBxl98eBB0l/YVdAN4V9uXB1n78i1BtxWCxArifkLNE+SsYLRwtEF33O8R9/uMTM8S5Asu6HYcx3Ecx3Ecx7nHCCEYDX2u9C0FpeikmlAJ/Bvt9xOSUm2UfKlMc2UZ6SmCqEC3kbU2D4tFcqUKcpfOb54nmCyHLDb6lAOfZpTgKUFut7Ddce5WQmBQGBR0YvLdi6TVCnFlBMTw35zxQ9pTp/CqbUqrF/F6Xaxw++Pvda6y+y7nKrsPlqvsvnWxtrxxJebr8zHn6umuy8+WFS/MBjw7HZD3754Xm61V31hN99J5Vl/9GtH62q7Xl0FAfnp2EH7PEdRGXbvzW2Ky2d6iN6jwttmpiECkCASKHB55sCG+UEgklqzS21yv0vvqzZtBtXeKTQ1Jrkq3MkevMocOdm8tZYzlo4UWb324ztvnGvTj7UeCCCwnizGP17Jw+8FyxG5/CvVY8tXlIl9ZLrHQ2/1o38lcwksTWZvzUdfm/Ja90wj55++O09lSna+E5a88sM53T7d3uJYFrbPOATBoWe6BJwcty/e+3esWplgbfWLbm3iVdBlf+SZ+eoM54Yck66YAiU3R1tCPupz7t19A9+Ory+Rnqsz94HcibDFrX74PyqZ4JiKRuUH78vK2DyzG82gkFtHrMSYND1YDaoWbOzr+oKwvzJPGMRMnH2Di5INUxieOdP2O4ziO4ziO4zjO0WjGKfU4oR6nmEE7c3mT+/qy1uZLpFFMv9um32oipKJQKRPkd9//1OwlrLRjmr2YXmLI+4py7sbt1B3nXmKUR1qrokvl6y4TdtYpL5/DSyK08DDi1g4KcZXdB8e1MXe2cWH3wXJh98FY6mi+Ph/x6nxMJ7nxJsaT8NRkwAtzAadqd9mbsY32KTZBphGdj95h9Rsvk7ZbN30TKpcnPzOXhd/Ts/iV6t31O7gjpFnwLXvZ99hB6B0hhEGhUOQQNocncqi9hN6QBd9aY5OUy23FeaZIa7NMz45TzO8eoGlteP9yFnyvLq7wSKnLY9U+ZyoRxeu1vN6FtXCuHfCV5SIvrxTp6hsHpwLLY9U+L012+NhIj8C1Ob9pX1os8W/OjaDt8N9lydP81OkVHq1G269kDSRJdipVVsEtBQRhFnrvkQVa5ZM0a49suyyIGoytvIYy15sTfng8oZAIEptiMEQmZuUbZ1l79ezQcsc+9ynyk3Ogx/a1PoHF170bti+3QN8Labd71HzLuI45PbW/SvK9SpOElfMfUZmYojw2zsmnnnUdPRzHcRzHcRzHce5R1lqW+jHdVFOPUwIpKe/ls781tOvrtNfW0GlCr9kgjvr4QUihWkXtMvpspRXR7Kf0Ek27nx1wX8l5hK7K27mPmCAgGRnB5PI7L2At+eYyldVzqDTGCA8jJEb43OxeUhd2HxwXdjvbuLD7YLmw+2ClxvL2csIr8xHvraa7vnCMFyQvzIZ8fCagHN59wYCwJgu93/kmrXffJF5b3fNteIXitfB7Zg7/BkelOTsQyWC+dw/Q2ZeMESJGAUp4CBviUUAR7Bp61/uCt9d8vr0a8PaaTyO69rwUAk7NlHnywRHOPFAlH97EBxmjybcXyTcuk29fQdhbC7s3Swy8tlbgK8tF3rpOm/PN8srwwniHlyY6PFhybc6vJzXwb86N8IdXtv8NzuVjfvrMMhO5rdXyNqvk1ikgB9XcCjw1qObe+y/bIqiPPEqntP31PdddYnTtW8gDeB7tlYdECklqUzSWyMQkvT7n/+0XMcm17h7FE1PMfv+fAT0O+5yU5JsIYTWJKpCKkEhtP8rdSEndSLx+j5qEMzWP4s38bR6g5vISvVaLyQceZOzYcUZm5o50/Y7jOI7jOI7jOM7RSoxhsRfTSzWtRFP1PQK1t32bOolpriwTddskUUS3UcdoTa5YIiyVr9va3Fpo9RPWOgmpMbT6Cf3EEHqScs5H3cK+CMe5G1nA5PIkIyPYYPsYQgCModBYpLR6Cc/Eg+tJtPQwwrvhflUXdh8cF3Y727iw+2C5sPvwrPc0X5+P+fp8RCO68WZHCnhs3OeFuZDTYzff+ueOYi221yZeOEc8f57ewgWSRn3PN+OXK0Pht3cTLYycARFtCr4tkCJkjBIpUmSNzj1bQJEDPLQ1dFPDu+s+3171eXvVZ75zcyGZkoKH5so89VCNR0/W8L3dj54VOiXfWiDfvEyuvYS46eMIr289Unx1pcifLBW50t+96nw6n/DSRJvvGO8y4tqcX9VKJP/Tu+Ocbea2XfbMSJf/6pFVclur443OZnNjwPNAeVmr8jDIfr4FRijWxp6kn9/eArvUukC1/u4+4+NbI5F4QpFajUETmwSNYflPv0X9Wx8OLXvix76PsPIQsL8DmJRN8ExMIvNo4dFXFewOrw0d6dOLE0akZZKEB8euc0TvITFas3TuQ4q1USoTE5x86mO7HoXvOI7jOI7jOI7j3P3aScpalNJMEhIDI3toZ75Z1GnTXFkijRP6nRb9dmvQ2rxCkL/+Z9xUW1bbMZ04JUo1zX6KtZZy4JMPJK7awblfWEAXSyS12nX3yQmdUlhfpFBfQBmNIEWQBd9GemihsFv2Zbmw++C4sNvZxoXdB8uF3YfPWMv7aymvXI54aznB7LIFqoaC52ZDnp8NGM3f3e13TLtBPP8R0fx5+gsX9tTufENQGyE/c+xq23MVhodwT+81FmQ/C75FRFYrm+KpFGNSzjdznF2t8PZqgQ/qwbZ21bs5UU55bDTm8VrEw8UunoB+cYpedZZeaTqr7N2F0DH55gKF5mXCzsq+g29r4cN2wFeWiryyWqR3E23On6j1eWmiw7Oj3V1nh9/LLnd9fumdCVai7W+G//xcgx8+3thSoG2ykNvoLNz2/Ow08LP25bf4YVLLgJWJZ0mCyrbLquvvUmpfuE1BN3jCx2BIrSYxKSkpSbvL+X/7B1hzrcq8/PAJpv/MD7DfoDtrX97FCI9UhkSyhJbbD+bQFhrCw08SqsrwREWRO+K2be21Vdrra0w+8CC16VkmTjxwpOt3HMdxHMdxHMdxbp+lXkwn1dTjBF9KKrcwygzAWkNnfY32+vpwa/MwpFC5cWvzTqRZ7UQkqaEdaXpJiicllZyPp1zg7dw/rBCk5QpptZrtq9uBTCIKq/OEnTrSapRJh4NvodDCwwrpwu4DdBi5pis1cRznSEkhOD3mc3rMpx0bvrEQ88rliOXuzm14G5HlDz7q858/6vPwqMcLcyGPT/h4d2ELHlmqkjv9LLnTz1IF0ub6IPw+RzR/Ad3r7nobcX2duL5O4+03AQjHxq9Vfk/NIP3rtGi5rwkweSCPtYalfp+z65qz6x7vrYX0dwmCtxrNaR4fS3h8LOHMaEI52BxM58BaCukqhcUrGAS94jS9yhz90iSInddlVUB35CTdkZPItE++OU+hcZmgt3ZLgaYQ8FA55qFyzF9+oM431/J8ZbnI242d25xbBN+q5/lWPU9BGV4c7/DSZIcHivdXm/PX1vL8i/fGiMzw/5MvDD/x8BqfGN/8N2pB66xtOQzmcnvgyUHL8lsPeBOvwMrEx9DeliO2rWZ09S0KvaVbvu398oR3NehObRZ0A6y9enYo6EYKxp79JPsNugE8HQESLcPB185dC7pWYK2l6MGYx5EH3dZaus0GuVIZqRS1yekjXb/jOI7jOI7jOI5ze42GPrExlHyPZpwSSUO4x3bmAEJISqPj5MsVGstLKE8R9/p0mw2ay0vkiiVypTJih/2jxVCR8wusdyOEEOQ8SbOfstaNKPgepVC5Km/nviCsxW828NotkmoNXS5ve+4bP6Q9fYpu1KOwskDYbwAh0hqkTZA2RdlksD9Vst8Rfc7hcWG34zi3TSmQfOfJHH/mRMj5huaVyxFvXIlJdsi9LfDeWsp7aykFX/DxmYAXZkOmSndvtbdXGcGrjFA483GstaT1VeL5j4jnz9FfuIiJ+rveRrS6QrS6Qv1br4MQ5CYmyU9n4Xduchrp2ufSiuHddTi7DmfXJevR3lrB5z3DmdGEx0azgHuyYG78mUCIrEWO5yGtpRgvU1xYQCPpl2boVuaIihPX/WBhvByd0QfpjD6ISnoU6hcpr76HNOmOy+8mUJZPTHT5xESXtUjxp8tFvrJcZOk6bc67WvKlK2W+dKXMTD7mUxMdPjHRoRYc/Vzoo2It/PvLFX77YnXbwQC1IOWnH13hgVK86QoGkiQ7lWoQdAsIwmxO9z5EYY2VsWewavj/R+qYsZXXCePGvm5/P3zhZQMBrEZbTWKz52S03qL53sWhZatnHsMvj+57ncomSDSJzGOQxGLnlm2pscRCkbcGTwpmi0e/7eu1mug0pTQySrE6gp/b3gbfcRzHcRzHcRzHuXd5UjAS+ph+QqgE7STFkz7qFsNl5QeMzh6j327RWlnGC0Oidpt+p0Xc75GvVAl2+OypJIyXQkqhx3IrwleCTmzoxAlRqinnfALvPm7r59xXhDEE62uYVpOkNoLZoZuvCfO05x6k1+0Qri0RxB2Uzf5GhDUoOxhd6NyxXBvzu5xrY36wXBvz26+fWl5fjHllPuJSc/cZwieqihdmQ56eCgi9e+fIKmstydoS0eVzxPPniBYvYJNkT7chpCI/OUV+Zo78zDFyExOIm2ipfbeLNXzQGITba3C5s7frK2F5sJbw+FiPx8ZbPFjtIaXEGB9sgGD3Wdg7stcqgTUevdIs3eoccWFs9/uU9KgtvEG+vXhr697hrrzfCvnKcpFXVgrbKpm3koM255+abPP0SO+eanMea8GvfDDKy6vbt/enShH/7aPLm4J+m1Vy6xSQWbAtFXhqUM29v21QNz/F2tgT2zoAqLTL+PJr+Onu3R8OiycUEkFsUyyGyMRXm+3P//6f0jm3fHVZ4Xk88ON/HS+/twNLthJYAt1FC59UBkSqjBY7h9iN2GCCgBFSJkPBycLRP0lXLpxHeh6js3PMPvo4+VL5yO+D4ziO4ziO4ziOc/ut9GPaqWY9SvCEpBrs/4Bsaw3ttVU69XV0mtJt1kmiiCAMyVdqKG/nfX7GQKOX0OjFJNrS7CfEqSHvK8qht2N1uOPcy3QQko6MYK5XpGAtqt0mqK/jpX2UTVA2YbWv8YShmgv53Gf/3NHe6XuMm9ntbOPC7oPlwu47y3wr5ZXLMd9cjOmnN95UBQqenc6qvY9VFOIea8djjSZZXhy0PD9PfOUSVu+t0ld4HoWp6UH4fZxwdAyxj1bLdwpj4VIL3lnPKrg/aGSze/dipgiPjmRfD9ci8n6Ep+LBkbcpUiQgIywmmzNvQ7AhYj8NUtIUtCbFp1eepVuZI8mP3PAq+eZlaotvotLo1te7RaQF31zL8ydLJd5p7l6JWvQ0L453+dREmxPF5K7ufLUeKf7p2XHOd8Jtl33HeIf/8qHVa8G+0dlsbkxWua+8rFV5GGQ/74MF2uWTNGqPbLvMjxqMr7yGMns72OUgeSikEKQ2RWMHQXf2R9ZfXuTib708tPzoM88x9vEX973eQPcAiFWeVOaI5c5V3UlqaKAoBooymsdLkvCIj+uJuh3W5i8zOnuMysQkx848cbR3wHEcx3Ecx3Ecx7ljaGtZ7Eb0tKERp5R9RU4dzAfVNIloLi8R97pXW5tbo/HDHNJTSKmQKjsVKvteCIhTw0o7pp9oeomm3c/2K5Zz3pGPAXOc280CJl8gGRnB+tcpbDIGr9nEazYQxtDotAmkoVQo8V9835850vt7r3Fht7ONC7sPlgu770yJtnxrKeaV+ZgP13cPeKdLihdmAz42E1C4l0pQN7E6JV66TDR/Pqv+XprPWirvgQwCClMzFGazym+/NnrXHCSw0ttoS54F3N09dviuBHBmEG6fHoHq9qwTACkifJUgRYQQIIUGEWNEH2M11koEuUHwvY8PBqkGnZKKkG55jm5lljRX3XFRoWNqi9+i0LiAOOA5Masbbc6XiixHu1ewzxViXpro8B3jHSp3WZvzD1sB/+zsBI1k+P9NYPmxE3W+f7Y1CPJNFnIbnYXbnp+dBn7WvnyffzMWQX3kNJ3S8W2X5XrLjK6+idzj3/ZBkkg8oQZBtyE2CWbQtsnS5/LvfpXefPPa8mGOB378r6GC6/xR3SRlEzwTE8s8Rvj01Pa5ShvWeimykKcqNFN5ycng6N/ars1fwqSa8RMnmTr1MKXR3Ts2OI7jOI7jOI7jOPeuXqpZ7ie0k5S+NoyEt97OfMfbbzdprSyTJglRu02axBitsVpjGP5cLKW8Gn73Ukuzb9BC0E0MfQ2h71HOByhX5e3cZyygS2WSWg2ud0CK1vj1Oq0riygpqRXz/KXveeko7+Y9x4XdzjYu7D5YLuy+8610NV+fj/n6fEQ7vvHmy5PwxITPC3MhD454yLskyL0VJomJFy8RLZwnmj9HsrKY9areA5XLUZyeyeZ9zxzDq9TumPC7k2yeuw2ru48zHxIqeLh2rXp7urC3jFICgdJI0QcZDT6cJBjRR9seRliE9RFsVHzv4yCLQfAdqwKNiceJSlM7Lha0lhi5+HX8pJOFr1IOHtT+/8/MoM35nywVeXX15tqcPzXS46WJDk+P9LjTxz59dbnAr3wwRmqHf1d5Zfjbj6zw1EgfuNZ2Hhi0LPeywVe5MPt975MRkrWxp+jnJ7ZdVmxdpFY/e8CHM+yNBDzhY9CkNgu6NYPxEiKmc/ki87/71tB1xl94iZEnn9nXegWGQPeuti/vqwpG7PyBI0oNTSOoFEOKJuHRsk9B7D4C4yAlUcTKxfPUpqYpj01w4sln7phtp+M4juM4juM4jnP7rEUJrSRlPUqRAqq+d6CfF60xtNZW6DYabJ4nbIzF6hRjDEZrTKoxJvuy2pCkCc1uTD8xJNrSS1Isgnzokwt8hJTZKESprn4vNvY9Oc49yApBWqmSVirXfZ6bKMIsL1Gxmr/swu59cWG3s40Luw+WC7vvHtpY3llJeGU+5uxKwm4bstG85IXZgOdmQyrhvf/GzER9osULWeX3/DnSteXdr7SFXyhQnJkhPz1HfvYYXqmCPaLoLTHwUeNauH2xxa7/x5tJ4GTlWrj9QCXLKPdLCUkgFFJGILpImSIAS0RCFyNigEHwnRvM+L7135k1mm5uisb44xgVbF/AaCqL36a89DbCGkBkc6OFvBaA7/P/rK8F31gt8JXlImdvos15ydN8YrzDS5MdThRvX+vtnRgLv3mhxn+ar2y7bCJM+Jkzy8wU0qxLQpJkp1JlFdxSQBBmofcB0DJgZfwZknB7BX+1/i6l1oXbGnQLwBc+BkNqNYlNSe0g+BcJVjS5+BtvEK20rl7HKxQ5+WN/DbnPtu6b25cnMk8irz9DabUT45dLlJRlJq847qVH/nurX1kk6naZfOBBxo+fpDY1fcT3wHEcx3Ecx3Ecx7kTGWtZ7MX0Uk09Til5ivx1ZmvvizXoNEVrjU4TTJpmP6fp4PsEozWb965ZA+1+xGqrRxKndPox/ShFCUPBlygMWDNcSyPEpiB8EIIP9kFJpbLzhdh3FzzHuV2sUiTVGrpUuu7zWEZ9fuChY0zmd9hX69wUF3Y727iw+2C5sPvu1OgbXl2I+Pp8zFrvxu1+BXBm3OeFuYBHx/z7pj2P7nWIFy5cnfmdNtb2fBtBuTyo/J4lPzOLzJex4mAOHDAWFjrwzloWbn/QyALvvZjMw5nRrC35IzXIH0wmuSNPKALhIzEI2cu+hMGQktLF0MeKFBAIGyBsDvBvOfjW0qdRO023OLPj5X6/Qe3yNwi7q9kv0xiufYCRWVB7ANXfy33Fny6X+MpykdVo91/wsULMpyY7fGK8Q9m/vW3Ou6ngX7w3zpv17XOfH6v2+a8fWaHoDyq5dQrIQTW3Ak9ls7kP6AjmxCuwMvEs2isMX2ANo6vfotBbOpD17Icvsv/fxKZoq4ntxoELGlST1vurLH7h20PXmfzUd1M9/di+1uvZGGkSEplHi4C+uv6Hi16saWlLtVaiYlIerHiUjni2uU5Tls9/RHl0nPL4BCefehZ5QHPYHMdxHMdxHMdxnLtfXxuWevHVdua1wMe7Lfsj7abwO8Xo7DSJE5YaHeqtHlGS0OwlaGMo+B7FQCEw2EFFuDUGjMYMTq0xYPWWQByE2KgEV0NV4ULJa5e5QNy5gxnfJ6mNYAqFHS9/sJTnu2ZGjvhe3Ttc2O1s48Lug+XC7rubsZYP11NeuRzxraUEvcvWrRwInpsNeX42YLxwf4UTut0ctDzPKr91u7n7lbYIazWK09MUp7Pqb5ErYIW8qepvY6EeXZu5fXYd2nvMqEr+tcrtR0dgZPei4wO3EXorFIgEKfsgu1g0qY0xoochAqERSIQNweYQ3FoS38+Nsj7yGNrbHthiLaX1D6lceRtpdXaIrjWgN8LvjbB5/9XfxsK7zZCvLGdtzuNd2pwrYXmq1uNTkx2erB19m/OlnscvnZ1gobd9Dvn3TLf4L06u46Gz2dwY8DxQXva7CYPs5wMSBVVWxp/FquH7InTC+MrrhHH9wNZ1qzyhEAgSm2Ix9E08uCQLum0K53/tGyTNztXr+NUaJ//iX84+sN4iYQ2B6ZHKYBB0l6/bvhxrWW7H5MoFioHiWEEyJVK8PfWA2L/W6grdep2JB04xOnucsWPbZ687juM4juM4juM497f1Te3MAWrBwbYzPwjdKOXCepdeFFNv92m0eyhrqOUkoQSrU6zW2andUtBgBoH44BRjMIPTjYB8awwlpMyqwtXmQHxL2/Q77Hfk3H90mCMZGcGG4bUzreXHT01RPqDuj/ejw8g13f+G4zj3DCkED4/6PDzq04kN31yMeeVyxJXOzhWlrdjypXN9vnSuz4MjHi/OhTwx4eOre/+NlCpVKDzyFIVHnsJai27Vrwbf0fx5TK+z621E9TpRvc7aO+8AkBsbozQ9TWF6Gjk2y7oNWY0Ua5GkHsF6H9Y3ne52MMJWvoSHqln19qMjMFPMMtvbKbWa1Oos9CYAXUaYMp5MUaKHpo22CdqmIPpZ8C17CNQg+A73FHzn+mtMLf4pzepDtEsnht/0C0F79CF6lVlqy2+R71wBbUCZQZH3IPS2JkurtR5UMMNeq7+lgDPViDPViL92ap2vrxb4ylKR91o7H3GgreC19QKvrRcoe5pPTHT41ESHY0fQ5vztRsg/PztOVw+HpkpY/tqpNb5zqpWF3EZnj90bzOMO/Kx9+QF+sOrmJ1kbewK2BLgq7TK+/Bp+2j2wdd0qD4VEkNoUiyW6WiltQLUAQfNsfSjoBhj/+Cf2FXQD+CbCINHCJ5G56wfdQCc2WCnIhT5FaSh5Am+vG5V9ssbQbdTJV6pI5VGdnDrS9TuO4ziO4ziO4zh3h2rg0deGsq+oxyldbSgeRjvzfSiEHo9OlVlqRSjlUS4WWGlHrCSasuczWvVRg8/91hpsmgyqvROs1hidYlONNYNQ3OjhFQyCb2sHFeFaX/s5ibN54lsDcSGy1uhqIwBXIK6F4Vk79Xt/P65z+6ioj1xcQBcKRNUaMgjw2k3K/tztvmvOFi7sdhznnlQMJJ8+keNTx0MuNjWvXI54/UpMrHde/sP1lA/XU/Ke4GMzAS/MBsyU749NpBACrzKCVxmheOZZrLWk9ZVB+H2eaOE8Nurvejv91VX6q6vw1ltoJFfCSS7l57iUm2MxnELLvf0+BXC8fK1y+1QF/Dvrc8BVWejdwxOKkACrPaSo4IsavohIRZvUtEAUwSZY0cfQA9lFWG8w3ztEsHtYKK2hVn+PQmeR9dHHSYLy0OXay7M68zz5ziK1+lmUjrPQ2+hrpxvHf2yt/r4abN589XdOWT492eHTkx2Weh5fWS7yp8tF1uKd/79bqeILCxW+sFDhRDHmpYk2L453D7zNubXwB4slfu3cCGbLfS95mv/m0WVOF7swOKo6m8vtZcPdc+GBtSyH7FiDdvkEjdrpbZf5cYPx5ddRV6unbx+JRApJalM0ltgkWCxgB0G3xUQlVl99eeh64fgkxZOn9rVuz8SAIZUFDB6JCK+7rDGWbpySL+VRAsZyinDrh+gj0G01McZQqNUojY7hBW5Wk+M4juM4juM4jrOdFILR0GfJWAqeoptqAinwD3Dfw0EQQjBVyVHL+1yqd/GVpNVPWO3EdOOU0WJAOecjhET4IfgAO3QfZBCIb1SCD06NSSHNgnHM4HT4Sju2SrdGY9MEY/pYs+VA90EgfrVV+lB1+LXzHedWCcDrdmmtrOCPjlJIb/8+PGe7+yPJcRznviWE4ETV40TV44dOF3jjSswr8xEXGjsHI73U8pWLEV+5GHGsonhhNuSZ6YCcd38cJWitpZNY6mqE+kSVevlJGidS0rUlcmsXqTUuMtldILA3rshVGGajRWajRV7kVVKhWAinuZSb41J+jqVwYseqzbEcnBmBR0ezudvF7V2n72hbQ29jLVL4+GICnwlS2yKhiZFBFiLaCCsiDB2QbYT1B8F3sGvwHSQtJq+8TKt8gmblwWy29Ca94jRRbpRq/T0K3QUEmy43ZjgAP6Dq78l8yl880eBzxxucbYb8yVKJb6zmSezOj+VCJ+BCZ5T/9fwIz4z0eGmyzZO1PvttrpAa+NcfjfLHS6Vtlx0rxPz06SXGVS9bUKpB0C0gCLM53QfIAvXao3TK29tb53rLjK6+idza/us2kAg8odBoDJbEpBgGs99VCzCgKzTeOo/uDh/8Mv7cJ/bVfk1Yg7IJqQywQhKrwg0r6juDAxTy+YCSB6EnCY/4g4a1lm59nXypjOf71KZmjnT9juM4juM4juM4zt0lVJJK4A26qBlaiWYkEHdcO3OA0Fc8NFFitROzUId8qFhrxyy3I9pRyngpxFc33m8lhER4Erzr79yzdmMe+HAoPvy9HhyIf/VKYK8zR1xrTBJnl2+dIy4V0g9QuSJC3aHVNM6dzVrM+jqiuPMBHs7t5cJux3HuG6EneGEu5IW5kMV2Vu39zcWYbrJz69tLTc2lZpffebfL01MBL86FnKiqO/JN6M2KUksjMtT7w1+NjdPIkO6Yu41AOAKTTyOtZjJa5lj/Msd6l5mJFvHsjasqPas53r/M8f5lqEMsPOZzsywVZwkmZ5ibm+D0mGL8HnmvcC309gjxB6G3wBdlfKpoE5HQQos2lhwWA0RYIoxoZUel2gBBOAi+d37OCSyV1nkKvSXWRx4jyo0OXW5UwPrYE3SL04ysvYOne9kFV49qHbwNsPZAq7+lgMeqEY9VI7qnRNbmfLnEB62dq3W1FXxjrcA31gpUfM13jHd4abLDXGHvbc5bieTzZ8d3bKn+sdEuf+uBRXIkYCX4QRZ2eyqbzX3AR/oaIVkbfZJ+YXLbZcX2RWrr7yKOeMb0TgTgCQ+DQVtDYlI0GrAg24AGXUZHlrXX3hu6bn72GIXZ/c3VydqXq0H78vwN25drY+mlmlIhj5SSsRBCo/c4dX7/ok6HNEmoTs2QL1cIC4UjvgeO4ziO4ziO4zjO3abiK3paU/EV63FKJ9WU7ti5v4KxYkgl7zO/3sMTklKYstKJubzepVYMqOb8/R38LiRCSVA3CsRt1hJd66wyfKNl+tZQ3G4NxO21IH0QiOuoh+73kEEOL19EeHfq795xnL0SdusgBOeuchiD3O9n/Sjmt/7469S7Xay1jBSLt/suOYcsNZa3lhJemY94fy3ddfnJouSF2ZCPzQSUgjurBY42lma0EVrbHQPtXnrwm3xlUqajK1fD76loCcXeKlVVGFKcniE3e4L87DH8cuWuPqhgK094hMIftIkW+MJDIDEYEtNDyzZGdEBoLBpEhKEPQgMCafNgc8PV2VtYoFucoV49jd3hQ4IwmkrzQ0qtCzcXsG6t/jbXqf42g+pfYLfq78VNbc7r12lzvtnJYsSnJju8ONaleBNtzi92fP7p2QlWo+23/UNz6/yFyRWkMOB5oLzsPoZB9vMB09JnZfxZkrC67bJq/T1KrfNHHtBejy+yx5/YFG018UbnBtkGEYMuAwErXzvH+huvD133+A/9GLmJ7WH+zfJMhLQpiSygZUBfFm9Y1d3oxiTGMjJaoZLzmAqhmkZ4R3zQwOqliwCMHTvOzMOPUqjWjnT9juM4juM4juM4zt0pMYbFXkw31bQTTS3w7rh25jtp9hIu1XtEiWa9G9PsJQSeYrwUEN4B88ezYDvFaA0mxaSbKsNNik0SrDXofg/d72KNRgZZpbf03VgyZ3frnQ5KSmrFPH/pe1663XfnrnYYuaY7dMVxnPuaJwXPTAc8Mx2w2tW8uhDz9fmIZrRzcLLUMfzuez3+4/s9Hp/weWEu5OFRD3nIwexGe/HG5vB6S4V2K7JHGvf4Emo5SS2Xo5o7RTn3ECInib2USnMef+UiycJ5kpWFXW9LRxHN8+donj8HgFcqU5iZIz8zR2H2GF7+7q6aTG1KatMdKr09QlnEkCfWNYyIQHQwoosSBaxNYWi+d7Cpzfnwc04Axc4Cud4q9ZHT9ArTQ5dbqWjUHqFbmGJk7W2CpHXjO31g1d+D0FtKpvOWHz3R4C8eb/B2I8efLBX55lqB1O7893O+E3L+o5BfOzfCM6NdPjXR4fHrtDn/xmqef/n+GJEZ/oAYSMNPPrDEC7VGdl+8wTzuwM/alx/C327iFViZeBbtbXneWsPo6lsUelcOfJ23anPQbTCbgu4uiAhMFnSnrTz1b781dN3SAw/uK+iW1qBseq19ubxx+/IkNfRTQ6UYojzFiC/wrD7yoDvu94j7PUamZwlyeRd0O47jOI7jOI7jODfNl5Ja4GEtRDprZ14LxKHvW9yvSt7n0VCx2IyQQlAMPVbbMfP1HpW8z0ghuK2PYWNGt7xOkbg1mrTTJFFNVC6PjiNMr0PSXEd6PipfRAY7dyR0nP8/e3/2JEl63nt+33fzJfZcaq9uNLrRTZAECJDgIXnmjOZoTLK5kclMJtlcyEzXMpPpr9OFLsY0uhoND5dDEBtJoDcARFV1LbnG5uHu76ILj1qylq4tMysz6/m0lVV1Lu4ekZER4f68z+8RZ58Uu4UQYm2rZ/gfPin533234Is9zz/crvn1Tkt8Th0lJPjl/ZZf3m+ZFJq/vJ7xl9dzJsWbrcRsQnomUvzpgvbz48VPhlYwyjWTQjPO1bqorRmv/54UmtK+aK5QDpc/he99CkCsK+pv/kB953fUd36P33/w0v37+YzpF79m+sWvAcgmm/Su36C8dpPy6nVMdj5XXD6/6K1xylDonIijjQWKCUnVJLUgKYtWfUgrkloR1RSlDKRi3e199DFnYsPW7q+oFnc52Pg+wR6N826zEfev/AcGs39nNP361edFK9XFfb/27O/11zwx+1trxZ8OPX86XrIMmn/cHfC/3u/z2/nzTyp8UvzTbp9/2u0zdp6/ubTkP12ac63nSQn+37dH/L/+MHnm+zYyz//z49t8p1ev53JbMBqK/Ngjyx+qszG72z8imqOPURVbtnd+Tl4fnMh+34TFoOgK3YlE83CRglqBqiD2IWUQN9j72T+S/BPpF0qx9Rd/9Xb7j6tH8eWNLonq238ms9pjjSYvMvq5welIHr59hMJJWB4cYJ0j7w8YX7n68m8QQgghhBBCCCGeMLCGpY8MneFgHWc+PLNx5o8ZrbkxKdnoOf6wvyS3msOq5WDZsmwC2/2MMjubt0NpgxtuYAdj/GKGnx8S84LY1IRqQTs7QBuLLvuYLD+R5gghxMk5m888QgjxDhmt+P624/vbjlkd+advGv7xds1u9fyi4MEq8j9/veL/+/WKz7Ys/+FGzve3HVZ3b4pCTMya9NwZ2Q8L2i+aG35S+k49KlyP88cF7Id/BpnC6ON5U6fzkvKjzyg/+gyAUC2o7/z+UfE7TPdfuo3mYI/mYI+Df/0lKEWxfZne9ZuU129SXLqCNu8+Lul1PCx6O2XJcMQUHxW9c50RiPhoSKkkEUh6TlRzFCUptSRVEVk+7vZOPdRTL+nlaof87n/hcPw9FoObR9+kK8189BFV7zIbe7+mqPfe7IYcQ/d3D8V/3mz4z1v7fFPn/O3OkP/yoM9h+/y3KIet5X+6M+J/ujPiu4Oavo386uDZYe+f9Cv+Hx/fZpwDLu9WcGQ5nODJ47K8zN7Wn8JTM6eNr9h+8M84vzyxfb8ug0YrjU8tkUQdGxKp6+bWC0i9bkFFnNAcNBz+5t+OfP/o0++TjTfeeP8u1kDCm5ygHF5/++rp2kfaEJn0MnRmGdtumUeeTrfY7duW1XzGcPsy1jmGm9unun8hhBBCCCGEEOefUoqt3NLGSN8aZm0g05HcnP04c4BeZvns8pD7s67Le5BZHixqvpmuGOSWzX6GPaPR7Epp3GCM7Q/XRe5DdJaT2ga/WuDnhwRtMGUPk5dS9BbinJBitxBCfIthrvnfflTwn7+T89sDzz/ebvjl/ea5XdYJ+M2u5ze7nr5TbPc0B6vI9J3Fi+vnFrTHhSZ7Xg70KTFln94nf0Lvkz8BwM8OqG//rit+3/4dcfWSgmBKrB7cY/XgHvz8n1DGUl659qjzO9/aPjfzvtvkaV9a9IYUxyhGJFWR1IykHYkIVERWJL2PSm4dcZ4/ijjXKbBx8Bt6y7vsb/4x3g2O7D/YHjuX/4Le4g7jgy8wj+LH39Bbdn9fswv+L1cX/J+uaP513udvd0f8bL//wpjzF3WC/zebh/zfPnyAyw1o0x1Tnp1YN3cC5oMPOZx8+sxJkGumbD/4GSY2J7LvN6FRGGXwKRCBNrbrQnezLnQXEEuII4h99v75f+5+TmvKGDZ//Jdvvv8U0MnjdU7C0OqXjClIifmqJbcal2cMi4wMTx7Dqc89Xx7uo7ShHI0YXbqCOqMn70IIIYQQQgghzja7jjOPCZoYmfuA02c/zvwhpRRXRgWTnuPWfoU1mlndsrdouL1fsdnPGBYvyBQ/A5TS2N4QUw4I9ZJ2eoByGcm3+GpJWM4Iy8W66N3rmiiEEGeWFLuFeJEYCKslJivlxUyglOLjDcfHG47/Y1vy87sN/3C74Zv587sKF21icXj8HYcKGL0gVvxhQbvnXhQvfjbZ4QT7/R/T//6PSSnh9+7T3v6K5s5vWX5zh+S/vQCbgmd55w8s7/wBAJ3n63nfN+ldu4Ebjc/8/fG46O3IsE8VvXMisStMph6kHim2JD0jKoNWPUhN1+2tZqAW6EcR513ROW8OuXL375mNPmI6+i48FRe97F9nVWwzOfgN5fLe8RYQ36D724TED4cLfjicsbip+Yf9EX+7O+Z3y+JFewFAkfgfbzzgf399hrKu22+egT25tzsJOJx8xnz44TOfK6oHbO7+Cn3K3cffRgFWWeL6vzZ61iVv0PN1bHkf4gDikHp3h9nXXxzZxviPf4DrD567/ZfvP2FjTcQSlH2l+PKqjfiYGPUcrsgYGNAJ8ui/9fuOWwyBajqlN55grGV8+c3nlQshhBBCCCGEEANnqUIkJst+0zJvA6MzGgP+Irk1fHJpwN6i5s4B9DLD7rzhwbxmXnu2BznuDHesK6WwRR9b9Al1RTs7QFlHCgNCtSBUc3y1wBQ9bNE7sUYKIcTbOV/PnEKcMKU1Sht0VhCahrA8JCznmKKHkRczsdZzmv/4QcHf3My5PQv84+2an91tqI+hntVz6plY8ScL2sNjjBc/i5RSuK0ruK0rDH74N1z2c9r7t6m++QPVnT9QPXhAit8+YzrWNfPffc38d18DYPuDLvL82g16125iey/pIn2H2tTSpvaZordVhkw5UBBSwCdFipvdbG+9WEec56TkQa2IVOuI8xyVChQZisRo+lvK5T32N/+YJj8aQR1Nxt7WDyl615js/xobVidzI1+z+7vvIv99Mee/vzLl9sLxt7sj/m5vxNQ/FdtuAv/3j+/yg60WtIPMdXO6T3ChQ1Savc0fsOo9W/Tsz28x2f8N6lRzHV7OKktaL54IKeDxQAAzh2TXRe4exDEAOz/9+yPfr13G5g//4s33v+5w7+LLM7zOvv0bUmJee0qnscYyKB0uRWyK2FO+b5fTQ1JK9MYbDDe3MfbsrlAXQgghhBBCCHE+bGSOOkQGzjJtPKsQKc5wcfhFNvs5w9LxzX6FUZph7tlZNNzeXzLpZYxKd+a71k1eYvKS2NS08wOUMRAHhNWSsFpSrxbd1xT97nNCiDNDit1CPEEpRbF1leneLlpbssJ1sSWrJX61xOSFvJiJR5RS3BxZbo4s/4fPevzyXsM/3mn43cHzuw3tk/HiLyhov8t48bMmKk3jRthrBRtXrrP54/+Arhes7t1m/s1d5nfvUe/tvHQ7fjFn+sWvmX7xawCyyQa9azcpr9+gvHodk337rOB34XlFbwCrDEYZcmXWBctIiEM0Q6JakdScpC2aHlATqUj6EIVBpRJSjvNLLt3/Jxb9GxxOPiXpo28FVuU29/K/YXT4FYP5H04nJvoVu79vTOB/HE/5P390wK/2Sv52Z8jXi5xrRcP/9bt7XOsnMBaK/MQXJwXt2N3+MU0+fuZzo4MvGM5+f+oR2y/jVHf/tikQiTSppSt0TyFpiMN1hHm3EKK6e4flrX8/so2NH/4YU3x7h/2LmOTRydPqgoimeVl8ObBoIolEP88oypzcKEyM5PF0u+VTSiwPDygGQ4w1TK5cO9X9CyGEEEIIIYS4mKxWbOaOnVVLbhSL1uO0w5zxwvDzOK35cKvPpN9ya78id4aDZcP+smFRB7aHGbk9+9fVdZaTb17B+bbr9NYGU/QIddV1e68qdFZgyz7qBNMEhRCvTn4ThXiKznL0aAvaBhsrlLaksk+ol4Rq+ejFzJQ9tHR1ibXMKH5yPecn13PuLwJf7bXEdHR2dv+cxYufFV5neOVwqcblkH/wKf0bH3KNQFN7Zvd3WNy5RXXnNu3s8KXbaw72aQ72Ofi3X4JSFNuXu67v6zcpLl9Fn6HFLA+L3gaN066LeU8BrRRGWZwyOGUJKRBSSUwFKXqSnhPVAqNKUmpIakVUi3XEeQ6pZLC4TbnaYX/yR890JidtOdz4I5a9q2zs/xtZOz/dG/6S7m8TIj+63PKjS3vwsLtXK8hycCf/1qa1JTvbf05wTxVrU2Rz71/oLe+d+DG8LqsMii4yP5FoYgtEMDNAdfO5Uw5hE+iKuzv/dLSr25Qlkz/5szfavyJhYk1QlqgMrS5JL3k+jDGxbDylsxit6PUzshTRQH7K0fCr+YzgPYPJBv3xBu4NC/5CCCGEEEIIIcTTetbQs4GEZS92cebjcxZn/qRR4fijK4Z70xqtFf3CsjNruHNQMSodG73szHd5A2jryDcuEUcb+PkharEueq8qwmpJc7iLzjJM0Ue7lyTXCSFO1Pl9xhTipFlH3h8SRy1+Pl2/mHWzO8Kqoj3cQ7sMU/TQZ7AzVLw7l/uGy/2zUzC9EJSiVQVBObKwJBmFSR6Xw+YH1xh/50OCcrTzGcs7t6i+uc3ym1uEqvr27abE6sE9Vg/usf+Ln6KMpbxylfL6TXrXbpJvbqHOwPiCQCTEGui6cx2WmBItYJTBKo1RGYlESAYfLYoRSVXrbu+MlMI64nwFeoVKDh1LtnZ/zmp5mf2N7xPN0eeyNh9z/8pfMZz9ntHhb1F8e4T8ifq27m/o5nKfws+qzsbsbv+IaI6exKjYsrXzC4p6/8SP4XVZDBqFT55Ioo4N6VGhO0EYAw7CFqz70Rd/+D2r+3ePbGfzR3+Jdm+2yMvGGtAEnRN0/vL4cmBRdykZg9zQ7+dYo7GhIY/h1LvmF/v75L0+Ns8ZX5WubiGEEEIIIYQQx2sz7+LMh85y2HgqHyjPQRf0ixituT4pmfQcf9hfkhnNYdVysGy7Lu9BRu+cFPS1sWTjLdxwgl9Mac0UU5SEpiZWC9rpPto6TNmXOoEQ78j5eDYR4h3Sxj3xYjbDLw4fze4Iq2UXZWJsN9c7L050PqwQ77uoDCszwKaGLK6IxmJijY0NBo8aDHCf/THjz/6YlBLNwR7LO7epvrlFdfcOsW2/dfspeJZ3brG8c4tduqSH3rUblNe7ed9uNH7n3flt8rTJo9E4bbEpEpJGozDaYJXBKksk4pMlxj4pNutub4tWPUj1utt7ilKaYrXkyje7TCefsRjcPLpDpZmNvktVXmay/+uzU8x9Xvf3CavKS+xu/gD00X0aX7H94Gc4vzi1Y3kZjUYrhUYDCZ8ikUQb2ycK3RHCCMjAbwPdYoEUI7tPdXXbwZDxZ3/8RsdiUotOgVaXXXy5Kl/6PSEmKh8YZA6jNWWvwMZ1V3d8/qiIk1Ivl7RNzeb2JfJen3IwPNX9CyGEEEIIIYS4+LTq4swfrFpKo1n4QKY1Rp/va829zPLZ5SEPZjVaKQaZ5cGi5u50xSC3bPYz7BloNHkVShvccAM7GHd1gvkhMS+6OkG1oJ0doI1Fl/1ubKLUCYQ4NVLsFuIVdS9mE+xgRKjmtLNDdF6QfIOvFvjFlFDNMUW/K3qfkxdpIc4dpfAq77q846obNZwcNtZkYUnQDq8ylFLkG1vkG1ts/OmfkWJktXOf6k7X9b26f5cUv71TOTY1899/zfz3XwNg+4NHkee9azewvf5p3OLnHxuROjbUdBHVTlls7Lq9tdI4ZciUI6lETAYfMxQTkl4Q1QxFQUoeVEWkAlUxPjigXN7iYOOHeHf0tnnXZ+fyT+jPbzM++AKdTrfg+K7NBh9wOPnsmRMV10zZfvAzTGze0ZE91hW4u4UPkIikR93cAG0MBALoORAgDAEHfosnFw3MfvslzcHekW1v/cVfod4g4r+LL28IyhFVN6f7ZfHlAPNVi1aKXqYZ9jKU0bjgsSliH0bXn5LFwT4uy8l7PZnVLYQQQgghhBDixJTWMHBxPX4sMfOesbPvvPHibSmluDwqGPcct/YrrNHM65bdRcPt/YqNfsaoOD/jQpXSuMEY2x+ui9yH6CwntQ1+tcDPDwnaYMoeJi+l6C3EKZBitxCvSSmN7Y0w5ZBQL/GzQ5TNSCEQqgWhmuGrOSbvYcoSpc9v3IwQZ1lSmtr0MNGRxYpoNCa1mNiQEfA6J6rHi06U1pSXr1Jevsrmj39C9C3VvbtUd26x/OYW9e7OS/fpF3NmX/6G2Ze/ASCbbFBe6wrf5bXr3arNd8CngE8BRfNEzHlXyHfaoJUhV5ZExCeHjwOSWq0jzi2aPlATqXDtb7l07xbz0Z8xG34P1NGFO4vBDapym8n+byir+6ceJ33aEnA4+Yz58MNnPldUO2zu/hJ9yvOjH1I8LnCrIwXu8KjA3f3MIyEFEgn0AlT7uNAdtnny7WAKgd2f/sOR/WQbWww//vSNjtGFFaDxOsPrnKBffvLa+sjKR8alwxpN2cuJKWGI5PF072vfNNTLBZPLV7Eup7+xear7F0IIIYQQQgjxfplkllWIDJ3p4sxDpHeO48yflFvDJ5cG7C9rbh8oysywO2/Ymdcsas/2IMeZ89NA1tUJhphyQKiXtNMDlMtIvsVXS8JyRlgu1kXvHpzzLn0hzjIpdgvxhpRS2KKPLfqEpsLPpl3XWxwQVsvuT71AZwW26KOs/LoJcRKCdlTK4lINURG1xcYaFyuisnidkZ5TktXW0b/xAf0bH3TbWa1Y3r29Ln7fpp0evnTfzcE+zcE+h//2S1CKYvtSV/y+fpPi0hX0Kf/eJxJNamlSi1EapxwpJhQBrRRGWdy6CzwkR4g9QmzXEedzjCpJqSGpisHsp+TVVxxO/po2P1rgiyZnb/vPKKoHTPZ/jQ31qd7O05KUZm/zB1S9y898rj+/zWT/16hT7jJ+UYE7PF3gjpHAusD9kF6CqiEOgayb0Z2OFp8Pf/Ov+PnsyMe2f/LXb7SK3KQWRaTRJQlD+wrx5QCz2mONpnCacc8RtCFPAZ0gP+WFBYuDPbSxFIMh4ytXz/1qeiGEEEIIIYQQZ5tWiq3ccS8mSqNZruPM7QUqlG70coaF485+hVGaYe7ZWTTc3l8y6WWMSoc+R+ffR+oEddWNPbWOFAbr5rg5vlpgih626EkirBAnQKpvQhwDk5WYrRLnG9r5IUobTNknrCrCaklT76KzDFP00S5714crxMWjFK0q1tHmFUkpTPKY2ODCkqAzgvr2jlJTFAw/+oThR58A0M5nLL95XPwO1fLbjyElVg/us3pwn/1f/BRlDMWVa/Su3aR3/Qb55jbqFN/MhhQJqUYBVjkyLDF1MedGGazSGJWRcISU4+OIqCqSnpHISCmQtyu2Hvx/WA4+YTb6EemprtxVeYl7+Qbjwy/pz29dqC7voB272z+iySfPfG508CXD2e9O7fa+uMDteRjEH4mE5xW4H21kBaqC2IeUQdyAdDSJILYtez//pyMfKy5fpXfz2a72lx9zwq7jy7sUhv4rxZfXPtKGyEYvwxlNXuS0CmwM5Cmc6mMseE81mzHY3MJYy2j70inuXQghhBBCCCHE+yo3mpEz8DDOvPVMsvMfZ/4kqzUfbvXZ6Lfc2q/IneGgathfNszXXd6FO38d7SYvMXlJbGra+cEzzXH1atF9TdF/o3FxQojnk2K3EMdI24x8cok43MAvuk5vU5SEpiZWC9rpPtpYdNnv4o4v0BsUIc6CqAwrM8DGpuvsNhYTa2xsMHhanZPUqxWc3WDI+NPvM/70+6SUaA72qb65xfLObaq7d4jtt89oTiFQ3blFdecWu/8EOsspr11/VPx2o8mpnKQkoE0tbWrRaJy2uJQISa27vQ1WGayyBHJCGOLViqRmJGUwqsdwdpeyusvB5M+pyxtHt68tBxvfZ9m7ysbev+H84sRv00nztmRn+8/xrnf0Eymysfev9Jd3T/wYNF2BW60L3Gn932sVuNdfhWq6+PJUQiogTiA+22V98C+/IKyqIx/b/su/eaPHqQsr0qP48oKoXuEELiXmq5bcajKr2eznBGOwMaKBPJ7unPjl4QEKRW80ZnTpMlpOQoUQQgghhBBCnJJxZqnWceYHrWcZIv0LEmf+pGHh+KOrlruHK7RW9HPLzqzhzmHFuHBs9LNz1eX9kM5y8s0rXXPcbN0cV/QI9ZJQLQmrCp1LIqwQx0V+i4Q4AdpYstEmbjjBL2b4+SExL0htg68W+PkhYf0CZ/JS5nUIccz8upM7SxUJCMnhYk0WK4JyeP16CQtKKfKNTfKNTSZ/8mekGFnt3Kf65jbLO7dY3b9LivFbtxGbmsXvf8vi978FwPb6lNe7ed+96zexvf6b3txXFonUsaGmwa5ne9unu721w2EJqcTHlqjnRDXD+cDWzi+perc4nPyIaIoj227yCfeu/jXD6e8YTX976vHex6XORuxu/5hojj5GVGzZ2vkFRb1/YvvuCtwGpdQTBe5ISHFd4E6ElIjpRQXuBMoDofv74b9hXeTudRHm8dnHWlhV7P/qZ0c+1rv5Hcor1177dtin4ssbVbz8m4CqjfiYGPUchTMUuWWpFHkM2BSxp/iYSjGynB5SjkZoYxldvnJq+xZCCCGEEEIIIdQTceY9Y9Zx5gp3ASOwtVJcn5RM+o5be0syo5lWnv1lw6LxbA1y+tn5LGVpm5FvXCKONvDzQ9TCYIrnJMKWfbSVRFgh3tT5fIYQ4pxQSuMGY2x/RKgWXXSJy0i+xa+WhGpGqOZd0VvmdQhxrJJS1KqHVjl5WNAYjUktJjZkweN1/mrdps+htKa8fJXy8lU2f/QTom+p7t19VPyudx+8dBt+uWD25W+YffkbALLxBuX1G/Su3aS8eh2T5y/ZwtvxyeOTR6Fx2uCSJSTdxZ7rx93ekRwfx3iWKDWjv5xRrP6Ww8knLPvfObpRpZmNP6bqXWZj79/Im5fPPT9LqvISu5s/AH30cWH8iu2df8a1x9+1rlHriHIFzylwJ7ridlfgjk8UuBPgQT2nsI2GZLq48mS7f2O6InccPfc49n7xz8+kFWz/5K9f+/aoFDGxIejsUXz5K6WYpMS89pRO47Rms+9olEalhCWSx9Od1V3NpsQQ6E02GGxs4rKT/X0UQgghhBBCCCGelhnNKLMkEk2MzNrARqYuVJz5k3rO8tmVIQ9mNUat6OeGnXnNvemKfm7Z6mfYc3r9XBtLNt7CDieExZTWHB5NhD3cR7sMU/TQcg1CiNcmxW4hToFSCtsbYHsDQl3Rzg5Q1kEc4KtuXoeXeR1CnIioDJUZ4lINURGNxYYGF1dEZfE6I73lJGBtHf0bH9C/8QEAoV5RfXOH5Te3WN65RTt9edG3OdynOdzn8N9+BUqRb12id/0G/Zvfobh89cROZBKRJkYa2kcF7hQTLQGtNFYZMpWRkRHSkNav0HrG5u5X9BYP2N/4Y4I72ins3YAHV/4D/fkfGB98iU6nW6h8E/PBBxxMPnumMOuaGdsP/hkTvz22/nU8LnB3J2iJRKAraCceF7i7gvfDDu4nitoqdP9PAtS6oO3WMeUWePgaotYfz7r53On5HdbtfM7hr3915GPDjz8l39x67dvmYt3FlytHq8tXXlCyaLpCfj/P6GeW3BnmynRzuhPkp/gYSimxONin6A+wzjG5+vrd7UIIIYQQQgghxHEYOUMVAkNn2G88Cx8YuItc1lFcGhaMy4w/7C+xWjOvW/YWDbf3Kzb6GcP8/M4v19qghxvYwfhIImxs6q5ZbnYgY1CFeAMX+VlRiDPJ5CUmL4ltTTs/RGlLKvuEuiKsFt28jizHlD2JLhHiuChFqwqCynBxSTIKnSw21riwJKxjz4+LyQsGH33M4KOPga6YWH1zi+W68ztUy2/fQErUO/epd+6z/4t/xg6GDD/+lNH3PiMbbxzbcT7Np4BPgRqFW8ecx9QFaFttMMpQqD6JkjZ69HJGXv+U6fgDZsMP4al56IvBB1TFJTb2f0O5enm3+7uQgMPJp8yH33nmc3m1w9buL4+lWK9RaKXRPFHgToHI0QK3T4FI2xW19ZMd2w8L22Zd3M67QvYzhW0HZE/8++X2fvaPpPDEbVSarb/4q9e+jTY1QKTVPSKWVr3aSuQYE8vGUzqL1YqNvqNVGhTYGLqC92sfzZurFwt82zK+fI1iMCI/hREDQgghhBBCCCHE8zyMM78bE31rmLeBzESyc9rh/Koyq/nk0oD9ZcPtg4oyM+zNG3bmNYu6izbPzPm9Dx4nwg7XRe5DdJZ3Y1BX6zGo5okxqFL0FuJbSbFbiHdEu5x84zJx1OLnU9TCYoreuuhdddEl1nXzOlwmL2hCHIOoNLUZYGODixXJGExssLHB4Gl1TlLH/0bZDQa4T7/P6NPvk1KiPTxgeecWy29uUd29Q2y+vWvYz2fs/+Kn7P/ip+Tblxl98hmD736CLXvHfqzQFV6b1NKkFoPGaUeKCU9AK4VRlkw5MrYIYYLbm9Ob/4K9rY9p86Mx2dEW7F76EcXyLhv7nx9rh/TbSmj2tv6UqvfsPObe/DYb+79+q9njD+PJHxe4Hxaz46P/D6kl0BBVC7rlSGEbsy5u5+uO7Ydv2x52c2fAw87tN1us0RzsM11H6T80/qM/wQ2fH3f+Il18edslJShNY3qv/Lq1qD0Ag9wwLC2Z1SyUwcaIBvLoX+tY3tbicJ+sKMnKgsmVq6e6byGEEEIIIYQQ4mlOayaZJSVoQmTeBiaZWo9Eu9g2ehnDwnJnv8IozaAI7Mxr7uwvGfcyxqU71/eDUhrbG2LKAWHVFb0fjUGtloTljLBcYMp+V/TW5/e2CnGSpNgtxDumjSMbb+GGky66ZHG47vxuHkWXKGPXq7gKKXoLcQz8upPbpaoLiE4WF2uyWBGUxeuTm42jlCKbbJBNNpj8yQ9JMVLvPlgXv2+zun/3aJftU+qd+zzYuc+Df/hf6d34kNEnn9H/8CO0PZmX9EAkxBrgiW7vRAsYZbBKUzAkbxP9b+6yNzrkcHKd9NTc61XvKneLTcYHn9Nf3D3VTt3nCdqxu/0jmnzyzOdGh18xnP72jY7xaIE7EUmPCtyJQFItkaYrcNOCiuvvfLJj+2EU+cMjsBCfLmwfzz24+9N/gPS4oK+sZfNHP3nt7bhYEzEE5Wh18crx5SEmKh8YZA6jNZNeRkARlSKPAZsi9i0WHLyuZrWiqSomV6/j8pLeeHJq+xZCCCGEEEIIIV5kYA2VjwRnOWhaFj4wvNBx5o9Zrflwq89Gv+XWfkVhNftVw2HVsKg924Ocwp3vsaBKKWw5wJZHx6CmMCBUC0I1w1dzTNHDFj244J39Qryu9+PZUIhzQGmDG06wgxGhmtPOpl10iW/w1RK/mBLWL2jdKi55QRPibSSlaFQPr3KysCQZjUktJjZkIayjzU/+ZVJpTXHpCsWlK2z+6CdE71ndv8vyzi0W//47msP9F9yAxPLW71ne+j3aZQw++pjhJ59RXr1+YnOL2uRpk0ejcdpiUyQkjUZhdDfb++osMqluc29zg6ocHj1knXGw+QOW/StM9n+Faz3qHZS9vSnZufRj/FOzxkmRjb1/o7/85rW293D+tkbxuMDdEFQDeOKjAncgEQG9jhkvnujYfrKw/XQU+ck8368e3Gf++6+PfGzyJ3+G7b1eYoCNXXy51z0i7pXjywHmqxatFL1MMy4dVisqpVEpYYnk8XTnvS8P9rHOUfQHTK5cPbczwIQQQgghhBBCXCxKKTZzRxMjfWuZtZ5MR/JzHOX9uoaF44+uWu5NVyit6OeWnVnDncOKUeHY7Gfnusv7oUdjUJuadn6AMgbigLBaElZL6tWy+5qi131OCCHFbiHOmi66ZIQph4R6iZ8domxGCmG9imuOrxbygibEMYnKsDIDXGogVkRjsaHBxhqtPF7npFMsyGpr6V2/Se/6TbZ+8tfUuzvMvvqc2W+/IFTV829D2zD94tdMv/g1tj9g+PGnDL/3Gflk80SOMRKpY0MNWGVwymLjw25vTe4NH97f47C/4v7GBtEcfbvR5Je4f+W/Yzj9F4az36FSjuJ0nsuabMTO9o+JJjvycRU9Wzs/p6hfsLjgKWZd4FYoEoFAjach0oDyJBWIKXah5MkADmLR/f3o8WTWBe3siY7t0ztJ3fmnvzvy/zrP2fjhj19rGypFTHqz+PLWR1Y+dkVu0xW7E+CV6eZ0J8iPYV76qwpty2o+Y7h9CWstg62tU9u3EEIIIYQQQgjxMlYrJpkjppYmKube4/T5jvF+XVopro1LJj3Hrb2KzGhmK8/eomHZdLO8+9nFKHvpLCffvILzTRdvrs16DOqSUHWFb50X2KKPOqHERyHOC/kNEOKMUkphiz626BOaFX5++MwqLnlBE+KYKEWr8i7aPC5JRqGTw8aaLCwJOsOrN5uJ/HaHpSi2L1FsX2L7P/xHlnduMfvqc+a//y0pPH+OsV/M2f/lP7P/y38m39pm+MlnDD/+9MTme/sU8CmgaB7FnIfURXMPF55+VfFgY5PpYPDUjTPMxn9GVX7I+ODvyZspKhUosufs5XhUxTZ7Wz98JmLd+BXbO/+Maxcv/F5F18Hddfp6UBUeT6SmK2kDSRFRhKhJ0dG9zXpYvNaPC9oPi9unWNh+2vLOLapvbh/52OYP/wKTvV6Ev4urR/HljS6JrzHzflZ7rNEUTjPpObSGRmlQYGPoCt6vdTRvZ3G4j9KGcjRmdPkqWstiMiGEEEIIIYQQZ8vAGaoQiMmy37TM28DoghR3X0fpLJ9eGfBg1nD3sKKXGXbmDfemK/qZZWuQYS9IMqq2GfnGJeJogp9PUQuDKfqEVUVYLWnqXXSWY8oe2p7cdTUhzrL371lQiHPIZAVms8D5tosu0QZTPvWC5jJM0Udn8oImxJuKSlObATY2uFgRjcbGBh0bMjytzkmvUcw7Tkpr+jc/pH/zQ2LbMP/d10y/+vyZguWT6t0d6t0ddv7xv9C7fpPhJ58x+M530fb4C/eJRJNamtRilcEqS4oJFQPbO98wWAy5v7WNf2phjs8m7F76H+jNv2A4+zkmzVGphJSjjrEYPB/c5GDyR890HbtmxvbOzzChfu6t0kSUCutu7ZaAJ6VETKCwJCwx5V2B+1FpVj1R0Hbredtnp3CaUnqmq9v2+oz/+AevtR0XayDhTbdQ5HVm3dc+0obIRi/DGc0g7x6TrTLYGNFAHp+/oOMkxBCoplN64wnGWMaXL5/avoUQQgghhBBCiNexmTmaEBk4y7TxrEKkeI/izB9TXBrmTHqOP+wtsVqzaFp25w239is2+xnD3F6YEWXaOLLxFnY4ISymtOYQU5SEpiZWC9rDfakRiPeWFLuFOEe0deSTS8ThBn4xQ5kppujmd4TVgna2jzYWXfa77rwL8kIuxGnzOuu6vNMKAPWwyztWRGXX0ebvjnYZo0+/z+jT79Mu5sy+/oLZl5/THOw9/xtSYnn7Dyxv/4H71jH46GNGD+d7n8Aq18fd3mCVI8OSLadcr2YcblzicDQ++vykFMvhZ9TlB4wPfkpe/wHUAp1ySCXqLd6uJOBw/D3mo4+e+Vy+2mVr5xfoFEgkIKBUiybCwwI3EEmkaLr52ikjYohREYjd4+BhtzbZet722X57Nf/919Q7D458bPPP/xL9GgkhOgV0ehjzr2n1ayQHpMR81ZJbTWY1m/0crcGjiEqRx4BNEXuKv2XV9JCUEr3RhOHWNuYEFoQIIYQQQgghhBDHwWjFRu4Iq5bCaOZtF2du3tNrwc5oPr40YH/ZcPugonCG/XnLzrxmXnu2BznZBVoMoLVBDzewgzF+McPPD4l50dUIKqkRiPfT2b4aK4R4Lm0s2WgDN3z8gqbzgtQ2+NUCPz8kaI0p+pi8BC0vaEK8rqQUjSrxKiMLXbS5SS0mNrgQCNoR3kG0+dNcf8DmD/+cjR/8mGZ/l+mXnzP7+gtCtXzu1yffMvvyN8y+/A22138833vj+OcTJ6BNLW1q0Wictkz27tGbH7J76SrNU5HZwZbsbf8nysUdxoc/J6Yp6BUqORQlpAz1GsHWCc3e1p9Q9a4+87ne/BaTg5+haEkqoFREKdbbN6RoSCkjpS6KPCa6GdxJk5IDHkaSv/vHwOtIMbL703848jE3GjP63vdfeRsKsLEmYgnK0ujea8WXV23Ex8So5yicoZ93Xe+t0qiUsESKeHqzulNKLA4PKAZDjLOMrzz7eBFCCCGEEEIIIc6SnjX0beyS9mJk1npGzr5X87ufttHLGBWW2wcVRmn6hWVnXnNnf8m4lzEuL9Z8c6U0bjDG9oeEak47O0Rn+dEagTHrGkEhRW9xoUmxW4hz7PEL2mjd2X2IchnJe/xqQahm+GqOKXrYogcXZE6JEKcpKsPKDLCpIYsroum6vG1sMHhaUzwRX/3uKKXIN7e59FfbbP/l37D85vZ6vvfXJP+C+d7LBfu/+hn7v/oZ2eYWo4fzvXv9Yz++SKSODTUNtm64dHvJYrzN4WSL9NRzU9W/Tl1cYnTwG3rL34FaEdUUpTSkYt3t/e3PZ1FbdrZ/RJNvPPO5wfSXjGb/glYKjUWRo5IhJkNK5lE/cYyGkLo/6RwWtp9n+uVvaA8Pjnxs6yd//Vod/vZRfHm2ji9/jWislJjXntJpnNZs9rv7NAFeGfIYUAmydHrF7mo2JXjPYLJBbzwhK8pT27cQQgghhBBCCPGmNnLLKgRGzjJtPQeNZ+gM7j2+Bmy05sPNPpv9llt7FYXV7FcNh1XDbOUZl45hcbEWBSilsb0RphyuawQH6xpBi6+WhOWUUM2lMU5caFLsFuICUEphywG2HBDqqit6WwtxQKiWhNWSerXoZn8X/e5zQohXpxRedXOJs7giadAPo83DkqAdXp2dWThKa/o3PqB/4wNi+98x//ffMvvyc5bf3IL0/GjoZm+Xnb3/ws5//Tt6124y/N5nDD78Ltodf4HXJ49PHrt/h+3FPtPtG9Tl0QJ7NI6DrR+w6t9gsvevmDADVRGpQFeolKFSieLo8SUC3jp2t3+Cd8OjO06Rzf2fMVreBbaArrAdUyQlh0ruUXH76AzuiyF6z94//+ORj+Vblxh85+NX3oZJHp08rS6IGJrXiS8HFk236ryfZ/QzS+Eed3WjwBLI1xH4pyHFyHxvl3IwxOY5k6vXT2nPQgghhBBCCCHE29FKsV1k7KwatHJMW89h4+lbQ2nNuz68d2qQOz67ark3XaG0YpA7DpYNe4uag2XTFb1Li3mNpLqz7kiNYFXRzvdR1pHCgFBJY5y42KTiJcQFY/ISk5fEtqadT1HaYso+oa4IqwWhXqGzHFP00O7sFOeEOA+S0tSmh4mum99tNDa16NiQEfA6f60459OgnWP0yWeMPvkMv1ww+/oLpl99TrO3+/xvSInlnT+wvPMH7lvL4DsfM/zkM3rXbhz7fO9EJDUL+nc+Jx9tM9u8TjJHT8ZWxQb3rv5HJod/oD//Co0HaiIVSR+gkkGRk2hJytO4Dfa3/huiKY5sR0XPld1/paynpNQnxsdR5DEZfEr49PwO+Ivi8Ne/wi8XRz629ZO/Rr3iamZFwsSGiCUqQ6tL0ms83mNMLBtP6SxWKzb6jxcqtMpgY0QDeTy9n8Pi8IAYAoOtbfrjDcrB8OXfJIQQQgghhBBCnBG50Vwpc3brBqMs8zYw94E2JQbWXKgO5telleLauGTSc3xzsCIzGt+LHKxaDqqGg6plVFhGpcNesMKvKUpMURKbmnZ+gDJm3Ri3WDfGLbs6QtHrPifEOSfFbiEuKO1y8o1LxNEGfn6IWlhM0SM0K2K1pJ3uo61DFz1MlsvMDiFeQ9COSllcqiEqlLbYWONiRVQWr7Mz2RVse302fvBjNn7wY+q9XWZfdfO9ny6APpS8777mq88xZY/hx58y+t5n5Jvbx3pcCnDTHSaLAxbbN2kGR6PHk9bsb3yHZe8ql/Z+i/F3CZSk1JBURWSFwlDnH7G/+ZckffTtjfENV+5/iWsSMV0BNIGw7jAPQDzW23MWhaZm7xc/PfKx8toNetdvvvI2bGwA8CYnqPz14suBRd0VsQe5YVhaMtudSHoUUSnyGLApYnl++sBxiyGw2N+jNxpjXcbmjVe/L4QQQgghhBBCiLPCasXlIuOg8YDCmci89Rw0idF6wfn7rHSWjy8NqFrPg2mNtZpJzzGtWqaVZ1q1DArHuHQ4c7GK3jrLyTev4HzTpcFqs26MWz5KhNV5gZU0WHHOyaNXiAtOG0s23sINJ/jFDL+YEvNuVVeoFvj5IcEYTNHrZnZI0VuIV6MUrSrW0eYVSSlM8pjY4MKSoLt5xmdVvrlFvvkf2frJX1PdvcP0q8+Z/+5rkm+f+/WhWnLwLz/n4F9+TraxyfCTzxh9/Cm2Pzi2Y9LBM7z3O5rZHotLHxDt0WJqnefcuvpHbEyvsnl4h8g+gYwILPofsL/x2TPPYa6puXL3NjpoPA6f2nWB+/1y8KufE+v6yMe2X6Or26R2HV9eEtE0+vXmWoeYqHxgkDmM1kx6j3+2rTKolLBEinh6P5v5/i4kGGxuMdzaJitfL5JdCCGEEEIIIYQ4K5RSbOSO3Gj26harLNMmcNC0DJyluGBF3DdROsuHW5arPnJ/tsJpzbh0zFZdwXu2aunnlnGZkduLdX9pm60b4yb4+RS1MJiiT1hVhNWSpt59nAZrndQIxLkjxW4h3hNKG9xwgh2MCNWCdn6IznKSb/BVRVjOCMsFplwXvS9YdIsQJyUqw8oMsLHpOruNxcQaGxsMnlbnrxX1fNqU1vSu36R3/SbxP/5vWPz775h++TnLO3948Xzv/T12/+vfsftf/47y2g1Gn3zG4KOPj200QracYv/936i2rrMabR99g60U++MJs16fq3s79FYzHmxssj96ttu8qBZM7v07TWwI6eJ3b7+Ir5bs/8vPj3ys/53vUly68krf/zC+PChLVJpG90ivedIzX7Vopehl3Ynkw1XlCfBKk8eASpCd0kKE0LYsDw/pTzYx1rH5Gh3uQgghhBBCCCHEWdWzBqcVu6sWnSvmbWDWetqoGVjzyoveL7LMam5u9LgyKtiZ1zhTMy4cs9pzWLXcPljSc4ZxL6N0FyviWxtHNt7CDtdFb3OIKUpCUxOrBe10H6U1Ji/ReSkR5+LckGK3EO8ZpTS2N8T2hvjVEj8/QNmMFAbdTO9qjq8WMrNDiNfk153cWapIQEgOF2uyWBGUe+3I53dBW8fw408Zfvwpvloy+/oLZl99Tr2788Lvqb65TfXNbe7/l/+F/nc+YvTJZ/Suf/DW8711ivR3bpHN9lhc/pCQHe0k9s5x68o1XLNJm+XPfH8x3aP34N9pTykS+yzb+/k/kfwTc7CVYvsv/vqVv9+GGtAEna//vF5iQesjKx+7Irfpit2PPqc0KLAE8uRPLfx/treD0pr+xgbjy1ex2dn//RRCCCGEEEIIIV6F05rLZRdrrlA43c3x9utYc/Oex5o/5Izm2rjk8jBnZ95g5zXDwrKoPYeV55vDisIZxqWjn12sUprWhmy0gRuOuzTY+SExL0i+IaxWhNUSXy26Mah52Y1BleY4cYZdrN9QIcRrsUUPW/SITU07P0AbSyoHhNXy0R+dFdiyh7JnN45ZiLMiKUWtehiVkYUljdGY1GJiQxY8XudEdT4WkNiyx8af/oiNP/0R9cHeenb3F/jF/Llfn4Jn/vWXzL/+ElOWDL/7KcNPPiPf2n6rVcOuXjL+w2+oNq5QbVyBp7rkn1foLve+ody/ewanpp++djbl8Df/euRjo+/9Edlk4wXfcZRJLZrwOL5cvV58OcCs9lijKVw3E+vJc6NWGWyMaCA/pQjztq6pZjPGl65gXcbk6rVT2a8QQgghhBBCCHFatFJs5o5Ma/YbsEoxbR/HmucSa/6I0Zoro4JLw5y9RcP9Wc0gdyyaLt783nRFZrprGv3MXqjueKU0bjDG9oeEaolfztG2IqVhNwa1qQjLKX4J2hWYvOiSHS/QfSAuBil2CyHQWU6+eYUYWtrZIcoYTPnEzI7DPbTLMEUfLd1vQrxUUJbKDHGphqiI2q5jzldEZfE6I52jUmw+2ST/yd+w9RfdfO/Zer53bJvnfn2oKg7+9Rcc/OsvyCYbDD/5jOHHn+IGwzfavyLR279LNt9ncelDfPmCOeEp0X/w7xSzvTfaz0WQUiLWNe18hl/MOfzNv0B8HOGujGHzx3/5SttSJGxsCMp18eWm/9rx5bWPtCGy0ctwRjPIHy+c8iiiUuQxYFPEnlIX/mx3B+sc5WjMxrUbGCtvh4UQQgghhBBCXEwDZ8i0YqduMVoxaz3T1lNGQ9/qC1W4fVtaKbYHOVv9jIOq4d60pp9ZVm3goOqK4M60jEvHILfoC3TfdWmwA2xvQAyesJzjqzm6LSBGQr0i1hXt7AClNTorMXmBkmsq4oyQR6IQ4hFtHPlkmzjaICymtGaKKcpuFddqQTvbRxuLLvtddMkFekEX4tgpRasKgspwcUlSCp0sNta4sCSsY8/PE6UUvWs36F27waW/6eZ7z77+nMWtP8ALZmI3B/vs/tPfs/tPf0959TrDTz5j8NEnmDdYOGPbmtGdL6hHWyw3b5CeHLMQA8O7vyWrZm96886FFAJ+uXhUzPbzOe1i9vjvxfxoZPlTxt//wSsvOnBhRULjdYbXBUG95tvGlJivWnKryaxms58/09WtUsISKU6pq7teLqmXCyZXr+OynPGly6eyXyGEEEIIIYQQ4l3JjOZqmbFXtygUlQ4sfMC3kaGzGLnGe4RSio1ezkYvY1p57s1WFM5Qh8DhsmV3XnOwbBgVjmFpMepidclrY9HDCW446RJhqxlquSCVPZJv14XvJWG16L427wrfEnMu3iUpdgshnqG1QQ83sIMxYTmnnR+i84LUNvjVAj8/JGiNKXqYvJQXMiG+RVSa2gzWnd0VyRhMbLCxweBpdU46h2+KtbUMP/4ew4+/h19VzL/+kulXn1Pv3H/h91R371DdvcODv/tf6H/4XYaffEr/xgco/erR7goopru4xZTl1nXa3hjTVPR3bmGb6hhu2buTUiI2DX4+e1TA9ov5o8J2u5gTlos33r52js0/+/NX+lqTWhSRRpckDI0qXnt/VRvxMTHqOQpn6OePf84J8EqTx4BKkKXTKXbPdndwRUE5GLB54+Zbz5YXQgghhBBCCCHOA60U20XGrPWoR7HmnoOmZWgtmcSaP4diVDpGpWNet9yf1uTG4HuRg6rloGo4qFpGhWVUOuwFvMags5w8y0mjTUJdERZztF2SegNi23Qfq2b4aoZ2OTorpElOvBNS7BZCvJBSGtsfYXrDdWf3IcplJO8JqwWhWnRxJq7AFGU3r0MI8Vx+3cntUkUCQrK4WJPFiqAcXp/f3x9blEz+5IdM/uSHNAf7TL/6nNnXX+Dnz++yTiEw/+2XzH/7JaYoGHz3U0affEa+femV47NMaBne/z0Jzk0gfIoBv1yui9nzI393Re05ybcntv/NH/8lpnj5zG1FfBRfnpSmNv3XP0lJiXntKZ3Gac1m/2iKQas0KLAE8uRP5WdYzWa09Yqt6zfJyh6Dza1T2KsQQgghhBBCCHF2DJ0l05rdh7Hmjeew9fSToTQSa/4ig9wxuOSoWs/9aY21mknfMa1aplU323tQOMalw13AhQNKaWzRxxZ9YgxdzPlyhs7yxzHnTdU1ySn1qNtb2fOVainOLyl2CyFeSimFLQfYckCouxctZe3ReR3TfZSxGIktEeKFklI0qodXOVlYkozGpBYTG7Lg19Hm5/ulOZtssP2Tv2brL/6K1b1vmH71OfPffUVsXjDfe7Xi8N9+yeG//RI3njB6ON97OHql/Z2lU7DQ1Edixbtu7PW/5zN8tYR0OnOpUQrb62P7A9xgSO/GBww/+eyVvtWF+lF8eatLonr1zvuHFk0kkejnGf3MUrij22iVwcaIhlOJME8pMd/bIe/1yXo9tm58ICfwQgghhBBCCCHeS7nRXFnHmmtg6SNLH2hjYujMhZpFfdxKZ/nOluWqDzyY1TitGZeO2aoreM9WLf3cMi4zcnsxr49rbdCDMW4wJrY1fjlHV3Ni6JG8JzYrQr0krJaP6gU6z18r2VGI13W+r6gLIU5dV8wucaHFz6eo5byb19E2+NXD2JI5JssxRU9WbwnxHFEZVmaASw3EimgsNjTYWKOVx+ucdKbKuK9PKUV59Trl1etc+uv/lsWt3zP78nMWt/79hfO928MDdn/6D+z+9B8or1x7PN87z0/56J+VYuy6shezx/OyH0aMrwvbsX1+Qf8kKOtwgwG2P+z+Hgy7wnZ//e9e/40ium1qgNgVubG06vXv+xgTy8ZTOovVio2nuro9iqgUeQzYFDGc/AKA5fQQ37ZMrl6nGIzojScnvk8hhBBCCCGEEOKsMkqxnTumWqPwON3Fmu83iZEzOGlk+la5Ndzc6HFlVHRFb1MzKhzz2nNYtdw+WNLLDOMyo3QXt8irXU42fiLmfDkjVA5T9om+IaxWXb1gOUNnGTorJeZcnAgpdgsh3og2jmy8hRttEKolfjFFuQzisHthW1WEeg9tLLroYbICtLyICfGIUrQq76LN45JkFDo5bKzJwvJR7PlFoK1l+NEnDD/6hLCqmP32K2Zffc7qwb0Xfk917xuqe9/w4O//f/Q/+A7DTz6jf+NDlDmZE4TYNrTzJ6LF1x3Zjzqzl4vT68qGR13ZdjB8XMDuDx4VuHWWHXtnskoRE1u8zkjK0JjeG518LGoPwCA3DEtL9tRK5lYZVEpY4ql0dccYWeztUg5HuDxn6+YHJ75PIYQQQgghhBDirFNKMc4suVHsrlq0csxaz2Hj6VtDaS9ukfa4OKO5Pim5MsrZmTc8mNcMC9sVvZeebw4rCmcYl45+dnHLcUopbNHDFj1SDN340+Uc7fKuXtCsiPUKPz/EK4XJC3RWyFhUcWwu7m+XEOJUKKWxvQG2NyC2Ne1i1sWTFD1i2xDqrhDul7NHXeHKylOPEA9FpanNABsbXKyIRmNjg40NBk+rc5K6OKtpTVEy+eMfMPnjH9AcHjD7+nNmX31BO5s+9+tTCMx/9zXz332NzguG3/0ew08+pbh05ZWLvSlGQrV8ak72fN2l3f39opj1k6CsxfWH2MHgUcz4kcJ2r39iRf1v42JNRBOUo9XFG8WXh5iofGCQOYzWTHpHT1oi4JUmjx6VIEsnX+xeHuwTY2SwuUV/sknRH5z4PoUQQgghhBBCiPOiMIYrpWa3bjDKsmgD83Ws+UBizV+J0Zoro4JLw5y9RcP9Wc0wdyyartP73nRFbgzjnqWf2Qs9Wk1pg+2PsP0R0bddV/dyTix6pBCIdUWoV4RVhTKmiznPindyLUxcHFJxEkIcG+1y8klOGm8SlnPaxRSd5RBD1+m96mZ1aJehc4ksEeJJDzu5XVoBEB52eceKoBxeX7yVjtl4wtaf/xWbP/4PrO7fZfbV58x++xWxqZ/79bFecfjrX3H461/hRmOGn3zG6JPPMEX5OFL8ib8f/3vxwuj0k2DK3qMObDsYdIXt/uDRv3Wen7mTGhu7+HKve28cXw4wX7Vopehl3cwq+1Sih1caFFgiefInHtYfvGdxsE9/PMG6jK0b0tUthBBCCCGEEEI8zWrF5SLjsPWAwprIvPUcNInRekyZeDmtFNuDnK1+xkHVcG9a088sVRs4rLoiuDMt49IxyO2FX0igrSMbbZKGG8RmhV/OCdZieoNuLGpdPdEFnqGzQhJixRuRYrcQ4tgppR+t3grNCr+YobTtZnU0NWG1xM8PCUqji3W3t6zcEoKkFI0q8SojC120uUktJjZkIdCa4tzP8n4epRTllWuUV66x/df/Lctbv2f65ecsbv0e4gvme08P2fvnf2Tvn//xdI/V2HXRevDcmHHbH6DP2fOZShGTHsaX6zeOL299ZOVjV+Q2XbH7ma9RBhsjGk4lwnyxvwco+hubjC5dxhXFie9TCCGEEEIIIYQ4j5RSTDJHrjW7dYtVlmkbOGhaBs5QnLPrHe+SUoqNXs5GL+Owark/qymdoQ6Bw2XL7rzmYNkwKhzD0mIuUKrj8yilHqW+psnWusA968aipkRoamJdPUqI1VnedXxbJ81y4pVIsVsIcaLMejVWGm/il3P8YorOC5L3hLoirpaEavH4Bcxl8gIm3ntRGVZmgEsNxIqoDS7WuFDhdf5G8dLnhTaGwXc+ZvCdjwn16vF87/t3T2X/piyx/YcF7K47+8kubZMXZ64r+2118eVmHV9evvHja1Z7rNEUTjPpOfRT52keRVSKPAZsihhOdga6bxqW00MGm1sY59i4duNE9yeEEEIIIYQQQlwEpTVc1YqdusUoxbwNzNp1rLk1F+66yMlSjMuMcZkxr1vuTWtyY2h7kcOq5aBqOKhaRqVlVDjs0xdTLqBuLOoQ2xsSQ0tYdoXvmBddQmy9ItQr2nofpXWXECvNcuIlpNgthDgVShvcYNzN6qhX+OUUbR2pN1gXvSva2QFKG8y62/uZSokQ7xOlaFVOUJY8zGmNxoYaF1cXNtb8aSYvmHz/T5l8/09pZ1OmX33O7MvPaWeHb7Q9Zcyj7utn5mQ/7Mq279dbIxtrIOJNj6gcrXqzx1XtI22IbPQynNEM8ud3dauUsMRT6eqe7+2itKE/3mBy5RrWPXtMQgghhBBCCCGEeJbVmitFxn7TxZo7HZl5j1/HmhuJmX5tg9wxuORYtp4H0xpnumaBadUyrTzTZcugcIxLhzPvx3VxbRx6OMENJ4Smwi/nKLvAlH2Sbwj16nGznHXo/GHM+ftx/4hX935d0RVCvHNKqa6YXZTE4AnLGX4xIxY9km/wq4pQzfHVHO0KTLHu9hbiPdV1eY/I4pJkwCR94WPNn8cNR2z9+C/Z/NFPWD2493i+d7169DUmLx7FiT8zM3swwBSlrD5+gk4Rk3wXX46m0W8WX05KzFctudVkVrPZz58554h087rz6FEJsnSyxe62XlHNZ4wvX8E6x+TKtRPdnxBCCCGEEEIIcdEopdjMHbnR7NUtVlumTWC/aRk6S/6eFGSPW89ZvrNluToO3F8Xvcc9x2zlOaxaZquWfm6Z9DKy9+g+NlmJyUrSeKsbg7qYo21F6g270ahN1dUSlrOubpAXkhIrHpFitxDindHGoocb2MGEUC/x8ynKZhCH67iSina6jzL20UwPZNWgeA8lpahNHxst2XsWa/40pRTl5auUl69y6a/+E830AKX1uitbOndfh42rR/HljS6JbzgfqmojPiZGPUfhDP382cejVxoUWCJ58ie+RGO2u4NzGeVwzMb1G+dujroQQgghhBBCCHFW9K0h04qdVYvOFbPWM209ZdT0Jdb8jeXW8MFmj6vjggezGqdrRoVjXnsOqpZb+0t6mWFcZpTu/bmuoZTGlgNsOVg3y60b49oCYuy6vet1Sqx6GHNeoN6ztEZxlPz0hRDvnFIKW/SxRZ/oW/xiilrOMWWP1Db41ZJQzfDVHJMXmLwnL17ivdQVtt/fWPOnKWPIN7be9WGcSy7WQMKbfP34yd9sQykxrz2l0zit2ew/f8FBqww2RjSceIR5vVxQL5dsXL2Oy3NG25dPdH9CCCGEEEIIIcRF57TmSpmxV7coFJUOLHzAt4mhsxgpeL8xZzTXJyVXRjkP5jU784ZhYZnXnsOl55vDisIZJqWjl71f18S7Zrku5jw2NW01Qy0XpLJH8u268L0krBbd164L3xJz/v55v34zhBBnnraObLyFG20QqgV+MUO5bL1qa0lYVYRV1c3oKHoYl0u3t3ivSKy5eFs6BXTyeJ2TMLS698bbWjSRRKKfZ/QzS/GclcYeRVSKPAZsihjS2xz+t0opMdvdIStKisGAzRs3UXKCI4QQQgghhBBCvDWtFNtFxrz17DdglWLWBg7qLtb8fYrcPglGa66OSi4PC3bnDQ/mK4a5Y9G0HFaeu9MVuTGMe5Z+Zt+7jnqd5eRZThptEuqKsJij7ZLUGxDbpvtYNcNXM7TL0VmByXKJOX9PSLFbCHEmKaWxvSG2NyS2Ne1i2sWZF/31i9cSPz/EK9VFnBc9lMTUiveExJqLN6VI2FgTsQRl3yq+PMbEsvGUzmK1YuNburpVSljiiXd1r+Yz2rpm68YH5GWfgXT+CyGEEEIIIYQQx2rgLJnW7NQtVnex5oetp5cMPaPfuyLscdNKcWmYsz3I2F823J9p+pmjagMHVcP9WY0zLePSMcgt+j27v5XSj1NiY+hizpczdJY/jjlvKvz8kKDUEzHnMv7wIpNitxDizNMuJ59cIo23CMs57WKKznJSCMS6IqyWhNUS7bLuxUtWbIn3xONY84XEmotXYmMDsI4vz97qcbKoPQCD3DAsLZl9tmhuCNtMAADcEElEQVQe6eZ159GjEmTp5IrdKSXme7sUvQFZWbJ58wM5wRZCCCGEEEIIIU5AZjRXy4zddaz5UgWWPuBjZOjevwLsSVBKsdnP2exnHFYt96c1pTPUIXC4bNmd1xwsG0alY1S49/I+19qgB2PcYExsa/xyjq4WxNAjeU9sVl3H92rZNdLlJTrPUVoahS4aKXYLIc4NpTS2P8L2R4Smwi9mBGMxZZ/Q1MRV1+0dtO5euIpSXrjEhdfFmg8l1ly8lEkenTytLohomreILw8xUfnAIHMYrZn0nl8090qDAkskT/5EH43LwwN827Jx7QblcExvND7BvQkhhBBCCCGEEO83rRSXioxp053vO62Ytp79xjNyBidjxY6JYlxmjMuMed1yb1qTG0PbixwuWw6WDYfLlmFpGRUO+57e79rlZOMnYs6rOWG5wJR9om8Iq1UXc76cobMMnZUyIvUCkWK3EOJcMlmJyUriOBAWM/xiSswLkvfr2d5LfLVAZzkm76Gdk25vcWG9ONZ8ideFxJoLFAkTa4KyRGVodUl6i+fE+apFK0Uv04xLh33BiUGrDDZGNJxohHmMkfn+HuVwhM0ytm5+cGL7EkIIIYQQQgghxGOjzJIbzc6qwSjHtPUcNp6eNZQSa36sBrljcMmxbDz3Zyuc0UyiY1q1TCvPdNkyLByj0uHe0xnqSils0cMWPdI4EFYL/GKOdjnEIaFZEevV4xGpWY7OS7STlMzzTIrdQohzTWuDHk6wg3H3IrWYoq0j9YaEuiKuKtrZPsoYTN7D5AW8p6vbxMUnsebiRWysAU3QOUHnb/V4aH1k5WNX5DZdsft5PIqoFHkM2BQxpDfe58ss9vdIMTLc3GawsUXe65/YvoQQQgghhBBCCHFUbjRXy5zdukUrWPjAwgfamBg6815GbJ+kXmb5aGtAPQrrGd6acW9d9F55pquWQe4Y9xzZe1r0BlDaYHsjbG9E9G3X1b2cE4ve4xGp9YpQr7r6QVag8xJlpHHovJFitxDiQlBKYYoSU5TE0HartZaz7oXLN/hV1cWUVDN0VmCKEm2l+CcuHok1F08zqUWnQKvLLr5clW+1vVntsUZTOM2k5164fqhVBp0SlniiXd3BexYH+/QnG9gsY/PGzRPblxBCCCGEEEIIIZ7PaMWlwjFtNaBwOjJrPQdNV/CWWPPjlzvDB5s9ro4LHsxqnNbruHPPQdUy22/pZ5Zx6Sjc+13A1daRjTZJww1is8Iv5wRrMb0BqW0ezfb21QLtsq6GkBUSc35OSLFbCHHhaOPIRhuk4bh7gVpMUTbrYkrqFWG1pK1XaGPRRReHLi9a4iKRWHPxkE0NJrYE5Yiqm9P9NvHltY+0IbLRy3BGM8if39Ud6eZ159GjEmTp5Ird871dlNL0JxuMti/h8uLE9iWEEEIIIYQQQogXU0oxziyZVuzV7ZFY8741lFauSZ0EZzTXJyWXRzk785qdWc0wt4+K3ncOK0pnmJSOMnu/y4JKKUxeYvKSNNkiVAv8coZyGaREaGpiXeEX0/V87xyTv13jiDh57/ejWghxoSmlseUAWw66mJLFFLWcYcoeqW3wqyVhOcMv55i8wOQ9lJWnRXFxSKz5+8ukFhNbIBG0w6sMr3OCfn5x+pWkxHzVkltNZjWb/fyFXd1eaVBgieTJn1iegG8aqukhw61LWJexcf3GCe1JCCGEEEIIIYQQr6q0hitas1s3GGWZt4G5D7QpMbASa35SrNZcHZVcGuTsLVoezFcMC8eiaTlYer6ZrsitYVJaepl97+epK6WxvSG2NySGlrDsCt8xLyCGRxHnbb0PWSnjUc8wqeoIId4L2jqy8RZutEGoFrSL9WqtGAirah1TUqGtQxc9TJbDe/5iLy6Gx7HmlcSavwd0CtjYoIgEZQk6I6FpdUGr8rfadtVGfEyMel30VT9/8WrsRhlsjGg40Qjz2e4O2jh64wmTq9cw9i2K+UIIIYQQQgghhDg2VisuFxkHjQcUzkTm61jzkbNYSdo8MUZrLg1ztgcZe8uGB1NNP3NUbeCgarg3q3GmZVw6BrmVxQd0abF6OMENJ4Rm1XV72wWm7JN8w9InSOldH6Z4ASl2CyHeK0dWazU17WKKMhZT9olNTagr/PyQoBQ672GKEmUkXkecb12seQ8bjcSaX1AqRWxs0AQihlaXJKUJKutmdau3XHmaEvPaUzqN05rN/ouLyh5FUgoXAy5FDCdzItCsKlaLOZPLV7FZxvjK1RPZjxBCCCGEEEIIId6MUoqN3JEbzV7dYpVl2gQOmpaBsxRGOmVPklKKrX7OVj/jsGq5N11ROsPKBw6rlt15zcGyYVQ6RoWToveaWc/rTuOt9ZjUOWpVo1JES6PFmSTFbiHEe0tnOXl2iTTexC/n3QyOvCCFQFwtCfWSsFqgXYbOS+n2FueexJpfPIrUFbmTX3dwd4XtiKMx5bEtZFg0kUSin2f0M0vhXrzdVhl0Sl2EefTHsv/nme3u4LKcYjhi8/pNtJZFG0IIIYQQQgghxFnUswanFburFp0r5m1g1nraqBlY897HaZ88xbjMGJcZs1XL/VlNYQ1NLzJdthwsGw6XLRv9jFEhxdyHnhyTqqYLTGrJR8N3fVjiOaTYLYR47yltcIMxbjAmNBV+MSMYi+kNCE1NXC27bm+tMXmJLkqUFFXEOSWx5heHTS06NoDC64yg3KOC93EuXogxsWw85TpibONburoj3bzuPHpUgizFYzuOJ60Wc5qqYvPaDbKiYLi1fSL7EUIIIYQQQgghxPFwWnO57GLNFQqnuznevkmMMouRgvepGBaOYeFYNp570xWZ0Uyi42DRsjOvUeuvEU/RBmWs1AXOKCl2CyHEE0xWYrKSOPKE5Ry/mBLzguTbbrb3aomvFugsxxQ9tJNuWHH+SKz5+WZSi4ktkIjKPTWXOzv2BIpF3XVnD3LDsLBk9sURY15pUHRd3cmfyNKJlBKz3R3yskfe77N54wOUltgzIYQQQgghhBDirNNKsZk7Mq3Zb8AqxbQNHNRdrHkuseanppdZvrs9oG4D96Yr7Prayu68xmpNmcn1QXF+SLFbCCGeQxuLHk6wgzGhrgiLKco6iANCvSLWFe10H2UMJu9h8gKk2CLOGYk1P19UirhYo4hEZfE6I6HwuqBVBekEVkCHmKh8YJA5jNZM+t/+uGiUwcaIBooYjv14AKrZFN80jG9eJe/1GWxsnsh+hBBCCCGEEEIIcTIGzpBpxU7dYrRi1nqmraeMhr7VEmt+inJn+HCrj9ZLEok2Re7PVlyblGSy+ECcE1LsFkKIb6GUwhY9bNHDhRa/mKGXM2LZI7UNvq4I1QxfzdBZ0XV7W4l5EeeHxJqffd1c7hqdAhFDq0uS0gSVPZrRfVLmqxatFL1MMy4dVr/48eBRJKVwMeBSxJCO/XhSSsz3dikHQ7KiYOvmh8e+DyGEEEIIIYQQQpy8zGiulhl7dYtCUenAog34FBk6iTU/bTc3ShofiSnxzUHNvemK6+MCIw1e4hyQYrcQQrwibRzZaJM0nHRx5ospymUQh13396qirfe6rvCih8kK+JbCkBBnhcSan02KhIkNJvlHMeVRGSKWxvRO/OfS+sjKx67Ibbpi97d+vTLolLoI8+hP5JiWB/sE7xlsbtMbTyiHoxPZjxBCCCGEEEIIIU6eVortImPWelT9MNbcc9C0DJ0lk0LrKVJ8Z6tH+yBydQx3DiruTWuujgu0LDwQZ5wUu4UQ4jUppbHlAFsOiL6hXUxRS4spekTfEFZLwnKKX84weYHJyy4CXYgz7sWx5hav83d9eO8Vm1p0bADwOiMoty54l3jljn0u9/PMao81msJpJj33rZMaIt287jx6VIIsxWM/nhgC8/09euMJNnNsXv/g2PchhBBCCCGEEEKI0/ewsL37MNa88Rw2nr41lEZizU+L0ZqPtwd8cX/G5VHB3cMVD2Y1l4e5/AzEmSbFbiGEeAvaZuTjbdJok1DNaecztMshBsKqetTxrY1F56XM9hZn3qNY81SReDLWPEqs+SkwyWNiAySicoT1XO5WF7QqP5UiN0DtI22IbPQynNEM8m9fsOOVBgWWSJH8iTxKFgd7kGCwscVw6xJ5r3cCexFCCCGEEEIIIcS7kBvNlXWsuQaWPrL0gTYmhs5Id/EpcUbz3e0+X96fc2mYcX9as79UbPalEUacXVLsFkKIY6CUxvZG2N6I2NRdt7exmLJPbJuu6P3kbO+8RLvsXR+2EM+VlKJWPSzPxpoHnROUvH04bipFXKxRRCIWrzOSUnid06qSdJondCkxX7XkVpNZzWY/f+kanUYZbIxoII/h2A8ptC2LgwP6k02sc2xcv3Hs+xBCCCGEEEIIIcS7ZZRiO3dMtUbhcbqLNd9vEiNncNJEdCpKZ/nOVp/f7izY7MPuosYazaiQ9FJxNsnVaiGEOGY6y8mzS6TJ1uNu7yyHGLuid72irfdRxnRF77xAaZmJLM6e58Wa21ijVJBY82OiSNjYoJMnrmPKk9IE5Wh1+U7mpVdtxMfEqOconKGff/sxeBRJKVwMuBQxpGM/pvn+Lkpr+pMNxpev4DJ5/AkhhBBCCCGEEBeRUopxZsmNYnfVopVj1j4Ra27lOuppGBWOG5MSEvgY2Z3XWK3oZVJWFGePPCqFEOKEHOn2bmv8ct7N9i77pLbB1xWhWuCXc3SWP+72lkgecYZIrPnJUICJDSa161nc3cKCiKXVJUG/o7doKTGvPaXTOK3Z7L98xW6rDDolLJE8+mM/pLauqaZThtuXsFnG5Or1Y9+HEEIIIYQQQgghzpbCGK6Umt26wSjLvA3M17HmA4k1PxXbg5zGRxKJNiTuz2qujTW5lQ57cbZIsVsIIU6BdjnZOMeNNgjVEr+coVzWdXs3K2Jd0c4OUFqvZ3uXKCOrFMXZILHmx8ukdj2XG7zOCMqtC94lXrl3uuBl0XQnMP08o59ZCvftz0ORbl53Hj0qJbIUj/2Y5nu7GOfojSZMrl7DWHm8CSGEEEIIIYQQ7wOrFZeLjMPWAwpnIvPWc9AkRs5itRS8T9r1SUETAinBN4cr7k0rrk9KrETKizNErhYKIcQp6rq9B9jegBha/GKGXs6JRY/kPaGuiKsloVqgXdYVvl0O8sZNnAHPxJpHiTV/HSZ5TGyBSFSOoDMSilYXtCp/56kOMSaWjadcnyxuvFJXtwYFlkiRwrH3+TdVxWoxZ3LlKjbPGV++csx7EEIIIYQQQgghxFmmlGKSOTKt2atbrLJMm8BB0zJwhkIahk6Y4sPNPq2fc2WUc+dwxb1pzbVxId314syQYrcQQrwj2jiy0SZpuNHN8l7M0NaRegNiUxPqCj8/xCuFedjtLR2N4h2TWPPXp1LExRpFJGLxuiApRdA5rSqI6myshF3UXQT5IDcMC0v2kkiqRBdhbmNEA3kMx35Ms90HuCynHI7YvH4DreUEVgghhBBCCCGEeB/1rCHTip26xSjFvA3M2nWsuTUoKbyeGK0UH13q8+W9OVdHBXcOKu7PVlwZFnK/izNBqiZCCPGOKaWwRQ9b9IjBE5Zz/HKGzgtSCMS66orhqyXaWHRRYrICJCpGvCOPY80tWVwStcXFlcSaP0WRsLFBJ/8opjwqTVBu/e+zU7gNMVH5wCBzGK2Z9LOXfw+KpBQuBlyKGNKxHtNqPqdZrdi8fpOsKBluXTrW7QshhBBCCCGEEOJ8sVpzpcjYb9ax5joy8x6/jjU3ko55YpzWfLzd54v7M64Mc+5OV+wuGrYHkvYo3j25Gi2EEGeINhY9nOCGE0JT4RczgrWYsk9sG0K9JCxn+OUcneWYvES7lxelhDgJXmdEZcjDgsaUOIk1f8TGBpNaEhq/XgCQMDS6JOiXx4OftvmqRStFL9OMS/dKM69aZdApYYnk0R/r8aSUmO3ukJc98l6PzRsfyEphIYQQQgghhBBCoJRiM3fkZh1rrrtY8/2mZegsuZEGoZOSO8NH232+frBga5CzM69xpruWJMS7JMVuIYQ4o0xWYrKSNA6EakG7mKKzHGLsOr3rFW29jzIGk/cwuXR7i9MXlaEyQ/JUARJrblK7nsud8DojKLfu6i7wKnvnc7mfp/WRlY9dkfsVT1Ai4JUmjx6VElmKx3pM1WyKbxsmV69R9If0JxvHun0hhBBCCCGEEEKcb/2HsearFp0rZq1n2nrKqOlLrPmJGeSOmxslKYGPkd1FjTWKfiblRvHuyKNPCCHOOKUNtj/C9kfEtqZdzlDLrts7tQ2+rgjVrIs+f7LbW97QidMiseboFLCxQREJyhJ09kSROyed4d/HWe2xRlM4zaTnXmnNTKs0KLBEihSOdUlDipH53i7lYIjLczZvfnCMWxdCCCGEEEIIIcRF4bTmSpmxV7coFJUOLHzAt4mhs5gzfD3mPNvs5zSha3zwIfFgusJOSnJ7dkb2iffLxb/6LIQQF4h2Ofk4J402CdUSv5yiXAZxSKhXxLqinR2gtEbnJSYvUUbeZIjT8T7GmqsUcbFGEYlYWl2QlCLonFYVRHW20xZqH2lDZKOX4YxmkL+8qzvRRZjbGNFAHsOxHtPiYJ8YAoOtbfrjDcrB8Fi3L4QQQgghhBBCiItDK8V2kTFvPfsNWKWYtYGDuos1zyTW/ERcHZU0bSSlxN2YuDddcW1c4uT+Fu+AFLuFEOIcUkpjewNsb0D0bdfVvZwRyx7Jt4S6Iq6WhGqBdllX+M5y6fYWJ+7ZWHODifWFizVXJGxs0MmvO7hLotJE5Wh0SVTnYJFJSsxXLbnVZFaz2c9fqas7oEhK4WLApYghHdshxRBYHOzTG02wLpOubiGEEEIIIYQQQrySgbNkWrNTt1jdxZoftp5eMvSMlljzE/DBZo82RiI5dw5WXcF7UmDOePOHuHik2C2EEOecto5stEkabhDqJWExR9uM1BsSmpq4WuLnh3ilMA+7va08/YsT9EysublQseY2NZjYklD49e1JmC6yXGfv+vBeWdVGfEyMeo7CGfr5qxXoW2XQKWGJ5NEf6zHN93chwWBzk+HWNllRHuv2hRBCCCGEEEIIcXFlRnO1zNhdx5ovVWDpAz5Ghs6ipeB9rJRSfLTV54v7c66OCm4fVNyf1lwZFXJfi1N1vq82CyGEeEQphS362KJPDJ6wnOOXM2JekEIg1lVXDF8t0caiix4mK0DLGw9xMp6ONbfnPNbcpBYTWyARdIZX7om53Nn5Sk5IiXntKZ3Gac1m/+Xx5QAR8EqTR49KiSzFYzsk37YsDw8ZbGxinGPz+s1j27YQQgghhBBCCCHeD1opLhUZ08ajAKcV09Zz0HjGmczxPm5Ga767/bjgfXdasTtvuDQ8f9f+xPklxW4hhLiAtLHo4QQ7GBObFX45IxiLKfvEtumK3stpF3+e5Zi8RLvz05Eqzo+nY83TOYw11ylgY4MiEpQl6OyJIndOOocnSYsmkkj084x+Zincq3Z1a1BgiRQpHOtPb763g9Ka3mSD8eWr2Eyek4QQQgghhBBCCPFmRlk3r3t31aCV47DxHDaeSSYd3sctt4aPt/p8+WDO9iDn/qzGGcWkJ9d2xOmQYrcQQlxg6ono8jQOhGpBu5iisxxiJNQVYVXR1iuUseuvLXilwb1CvKpzGmuuUuzmchOIGFpdkpQmqJxWF8RzOn8oxsSy8ZTOYrVi4xW7uhNdhLmNEQ3kMRzbMbV1TTWbMb50BesyJleuHdu2hRBCCCGEEEII8X4qjOZKmXN/1TDODAfrgvdYCt7HrpdbPtzq8fudJT4m9hYN1igG+atddxLibZzNq8tCCCGOndIG2x9h+yNiU9MuZ12Bu+yT2gZfV4Rqhq9maJdj8h7aufMVzSzOtBfFmmsVaM9QrLkidUXu5Ncd3CVRaSKOxpRE9Wpd0GfVou7mbA9yw7CwZPbVivYBRVIKFwMuRQzp2I5ptruDdRnlaMzGtRsYK29RhRBCCCGEEEII8fasVlwuHPeqxCSzHDSeaesZO4uS657HalJmNONu5F3rIzuzGqM15SsmCgrxpuRKohBCvId0lpNnOWm8SagW+MUM5TKIQ0K9ItYV7WwfpXUXcZ6XKCNvSsTbO+ux5jY1mNiSUHidEZQjYbrIcn3+o5dCTFQ+MMgcRmsm/Ve/Ta026JSwRPLoj+2Y6uWSerlgcvU6LssZX7p8bNsWQgghhBBCCCGEsFpzucy4XzWMnGXaeqZtYOSMFLyP2eVRQRMiKSV8TNyfrrg+KXHmfCYkivNBit1CCPEeU0pje0Nsb0j0DX4xQ1dzYtkj+ZawqgirJb5aoF2GzktMlku3t3g7ZzDW3KQWE1sgEZQ7Mpe7VdmFeczPVy1aKXqZZlw6rH612xUBjyaPHpUSWYrHdkyz3R1cUVAOBmzeuImSMQpCCCGEEEIIIYQ4Zk5rLhUZ91cNIyyHrWfWwlAK3sfu5kZJ7SORxDcHNXenK66PC4xc8xEnRB5ZQgghANA2IxtvUVz5gHzrCm4wxg3GZBuXsIMxpISfH9LsP8AvZiR/fJ2d4v3kdcbKDInKruPBLTbWuFif2jHoFMlChY0NSRla08PrbiZ3ZUZdvPoFOeFpfWTlI4PcYk1X7H7l71UaFFgiRQrH1n9fzWa09YrR5jZZ2WOwuXVMWxZCCCGEEEIIIYQ4KjNdwTszmpGzNCky94GUjm9UmwBQfLTVo59bro5zUkrcm9VEuZ/FCZHObiGEEEcopbFFH1v0icETlnP8YkrMC1IIxLrr9g6rJdq6dbd3Aa/YISrEk95VrLkirudyByKGVpckpQkqezSj+6KZ1R5rNIXTTHqOV11Mm4BWGWyMaCCP4ViOJ6XEfG+HvNcn6/XYuvGBrKQWQgghhBBCCCHEicqN5lLueFC3DLHMGo8CBk7KZcfJaM3H2wO+uD/j8qjg7uGKB/Oay4Ncrv+IYye/vUIIIV5IG4seTrCDMbFZ4ZczgrGYsk9sakJTEZZT/HKGyXJ0UaLt+Z9rLE7ZKcaaKxImNpjkH8WUR2WIWBrTI6qLOZu+9pE2RDZ6Gc5oBvmrd3UHFEkpXPS4FDEczyrc5fQQ37ZsXL1OORzRG0+OZbtCCCGEEEIIIYQQ36awhi1gd9WSnGHWBpQK9O3FvC70rjij+Wi7z1f35lwaZtyf1uxrxWY/f9eHJi4YKXYLIYR4KaUUJi8xeUkch67bezlDtwXEQKgrwmpFqFcoY9dfW/DKraNC0MWaR2XIwpJkFDbW2FijVejixN+STS06No/2FZRbF7xLvL7AizRSYr5qya0ms5rNfv5av5qtNuiUsCTyeDzjC2KMLPZ2KYcjbJ6zeeODY9muEEIIIYQQQgghxKvoWUPKYbfuUu3mbTe2rScF72PVc5bvbPX57e6CzT7sLmqs0YyKV2/EEOJlpNgthBDitWht0Ot53rGpaRdTlHGYok/yLX5VEaoZvpqhXYHJS7RzF2busThZURlWZnCsseYmeUxsgERUjqAzEopWF7Tq4szkfpGqjfiYGPUchTP081c/aYuAR5NHj0qJLMVjOablwT4xRgabWww2tij6g2PZrhBCCCGEEEIIIcSr6jtDJEENKcHCdwXvUgrex2pUOm5MSkjQxsjuvMZpRZlJiVIcD3kkCSGEeGM6y8mzS6TJFqFa4BczlMsgDgn1ilhXtLN9lDaYvEAXJUrLm0XxEscUa65SxMUaRSRi8TojKYXXOa0qSRe8yA2QYmJee0qncVqz2X+9VbOtMqDAEilSOJYJ6sF7Fgf79McTrMvYvH7zGLYqhBBCCCGEEEII8fqGzhLXE9tiSsx9QClFYSSx8jhtD3IaH0kkfEjcm9VcG2tyK/ezeHtS7BZCCPHWlNLY3hDbGxJ90xW9l3NS2SP5pos4Xy3x1QKdZeisxGQXv6NWvJ0u1tyShcVrxZorEjY26OSJGFpdkpQmKEeryws7l/tpKSX2li0A/dzRzyyFe/XbnoBWaWyMaCCP4ViOa7G/Byj6G5uMLl3GFcWxbFcIIYQQQgghhBDiTYwzS2Jd8cYzbz0KSy4F72N1fVJQ+0BK8M3hinvTFdcnBVZGYYq3JMVuIYQQx0rbjGy8hRttdAXuxRxll5CGhGZFXFX4+SFBaXReYsuezPYWLxSVfuVYc0XCxAaT/HoWd0FUhoil1SVBvz9ve1JK7C9bYkps9jNyp9kavN5c8oAiKYWLHpci5tFJ35vzTcPy8IDB1jbGOTau3XjrbQohhBBCCCGEEEK8rUnm1h3eiUhiti54Z1LwPkaK72z18WHOlVHOncOKe9Oaa+MCLU1R4i28P1d9hRBCnCqlNLYcYMsBMbSE5Ry/mBHzkuQ9sa4I9ZK6XmLLPibvgZY3NeI5vjXWPCMoh0ntei531xEelFsXvEu8er9mxj8sdIeYmPQdudVcHRVY83r3QasNOiUsiSL6Yzm2+d4uylj64w0mV65h3evFqgshhBBCCCGEEEKclI3MElO32H+KZ9p6xsripFHn2Gil+OhSny/uzbkyKvjmYMX92YorwwL1Hl2/E8dLit1CCCFOnDYOPdzADibEeoVfTgnWYco+YbUkVHPCaonpDSXeXLzQ82PNGwwtkIjKEXRGQtHqgla9h4+llDis1oXunqOwhqvjguw15x9FwKPJo0enhEvxrQ+tWa2o5jPGl69gnWNy5dpbb1MIIYQQQgghhBDiuCil2ModiW6822HyTBvPOHNYadI5Nk5rPt7u8+X9GVeGOXenK/YWDVuDF48tFOLbSLFbCCHEqVFKYYoSU5TE4GlnByhtMEVJu5jj54dEYzH9Idq9XuSyeD88L9Zcx4DXGUkpgs5pVEFS7+GK25Q4qFrakJiUjvwNC90ArTKgwBLJU+A4Tufmuzs4l1EOx2xcv4E278fsdCGEEEIIIYQQQpwfSim2c8eDBGRw0HgOW8/YWSl4H6PCGT7a7vPVgwVbg5ydeY01mnEpKYDi9UmxWwghxDuhjSWfbBMHI9rDPdCG5Ev8Yk473UdnGbYcoqy8VImnPBVrHowlKEerS6J6TwuoTxS6x6Ujd12hO3+DQncCWqWxMaKBPIa3Prx6uaCulmxcvY7Lc0bbl996m0IIIYQQQgghhBAnQSnFduF4sEqMM8th3RW8J5nFvG8pgidokDs+2Cj5QwIfI7uLGmsU/UyuB4vXI48YIYQQ75S2GfnWVWxd0Rzuomy2jjqf0xzuYooSWw5AZuOIpzycza1IxPexk/uhlDhctTQhMikzCme4Os4p3JvdJwFFUgoXPS5FDOktDy8x29khK0qKwYDNGzdR8vsshBBCCCGEEEKIM0wrxaUi437VkDLLYeM5bLqCt5aC97HZ7OfUvhuf50PiwXSFnZTk9j1taBFvRK40CiGEOBNMXlJcukG+cQnbG5BNtrC9IbFeUR/sEKoFxLcruomLJyn13he6p6uW2kfGpaNwmiujnMK9+QlBqw06JSyJIvq3PsTVfEbb1Ay3LpGXfQYbW2+9TSGEEEIIIYQQQoiT9rDgnRvNODMkEoeNJya5Rnmcro1LNnqOS4OczBnuTVf4EN/1YYlz5D2+OiyEEOKsUUphe0OKKzfJxlvYXp9sso3NS0I1pzncIdQrkDeUQqwL3Z7VutBdOsPlYUGZvXmhOwIejYsBnRIuvd2JRUqJ+d4uRW9AVhZs3vwAJaufhRBCCCGEEEIIcU4YrbhcZOTGMMkskcS0lYL3cftgs8egsFwZ5SiluDtdEd7yupR4f0ixWwghxJmjlMYNJxRXPsAOxtj+6P/P3p3HWXbXdf5/f79nv3utvXe6s7MEQQyEJbIJw64QWVQIAQREAUE2B/hlUIFBMQOIIwohBGSGMLIORB6CCgFCMiEQkUXFbKS3dHftVXc92++Pe6tSnd67qrr6Vr2eedSjTp177jnfW8vpk/O+n89XXnVYxvWVzE0rnp5QFndWe5jAqpptJWolqSqhp9B1NFIOVQiW1uIpNo5kJE+ZgjzVUmPpxvSUkjhWeXhYUbmqQqW6xD0CAAAAAACcXq41Ggk9+daq6rlK81yzcaKcwHvZGGO0Y7iogudqQyVUkuU6MNPmTQU4IYTdALACcuXKjvJxtP9wOOu4CgZGFI5ullsoyytX5VcHJGMUz0wqnp1SnqarPUzgtJttJWrEqcphr6K7Eqq4xKA7lxQbKzfLZCQF2dL+trI01dzkhKJyRa7va2jrtiXtDwAAAAAAYLV41mok9OU7VhXPVZznmolTAu9l5FqrnSNFRb6jDZVQ7STVxBwFTzg+d7UHAABrTa5csdEpxNf5UasozVF2dtTtT3L9sZ+z+i2HrRcoHN6otNVUZ2ZcxvWVtVtKGnPqTI3JCQtyo6JkeQ8X1r65dqJGJ1GlF3QPl4MlB92SlMooN0Z+lsjLMzlLfBNOfWpSeZapPDis0sCQgkJxyWMEAAAAAABYLb7TDbwPtDqqytV0nGg2kcquw7RtyyRwHe0cKuiOg3UNlwIdmG3LdYxqBX+1h4YzGGE3ACyj+aBbkry8GyCfSFx0/22O95zcHL7dye7jRJmj7OlkA/ijPXYi6+YDdyeMFAZblDZnFc9MyvqB0lZDabOudrspNyrJCSOJi0usUfV2qno7USXwFPmORkqByuHyXM7F1pHNcznKFWbJkvaVJonqU5Mq1gbk+r4Gt2xdljECAAAAAACspsCxGgk9HWzFKsvVbCfRnKSyR9y2XIqBp+1DBf18rKE4zTTR6Mh1jEqBt9pDwxmKvz4AWCa5ciXqhsxeLjkycvLFj99v+yPksSccWJ9kkn3/NukrEcCrV82+MgH8oqp3I6lYllMoKW/MyTRm5ZZrStsNJZ2WklZDThjJeove7Zcvev58a6F80YgWtRsiJseZqtFONdeOVQo8RYGj4ZKvcrQ8l3KZpERWQZbI5rm8PFvS/uYmxmWMVbE2oMrIqLwgXJZxAgAAAAAArLbQcTQcSGOtWLnnajZOZJSq5C298x66apGvTrV7fypJc43NtuVYq4jvMY6AsBsAlkkqKTPdoNvKyO99PqpTSH6PF1of/WtzAttoIbA+1j6Ptm6pr+doTz96eG7kF8rKwoKS+qxya2XDSGmrqaTTkskS2bAg63hHfF3HGdh9R1u0bI4UkC9e11tvDtvHoY/f9wqAE9Nsp5ptxyoGroqBo8Gir0q0fO9mjY0jGclTpiBPl/S7mXQ6as5Mqzw0ItfzNbBp87KNEwAAAAAA4EwQuY4GQ2m8FSuXo7k4lTVSwSWMXS6jlVDtJFOe50qyXAdmWtpci+Q5TGWJQxF2A8AySJUrNZJ7okH3Kbr//NnLfoTTEMAfus4c8vUhwfb9XtxRQ2/ryi8PKAsL6kxPKHUS5VmuZG5W2dSk5AdyC2UZZ/5C0xzyKTem+4VZtHLh+MdYb80h67Vo++UJ1nvrslwmiQnG17FmJ9VMO1bRd1UKXA0WfdUKyxd055JiY+VmmYykIEuXtL/Z8TFZ11OhWlNt4yY5Li2mAAAAAADA2lN0HeVBrol2t76lnnQLCCIC72WzdSBSJ82UKdfeqZbunWlpczWUYwm8cR/CbgBYoqwXdDu91uXzLczXixUL4E8gMT6kMtwNFA1tUtyYVXvsXrlepDRtKJ4cUzxxUE6hLK9Ukaxz35zeiz7n9/v6iOtPyqGh+uH7uu/xY653HeWOI9turaPfKsxrxalmWrEKvqtS6KpWWN6gW5JSGeXGyM8SeXkmZwkTDnRaTbXqc6qNbpTr+6pu2LiMIwUAAAAAADizlDxX2UJzx1xzSSpjuq3OsXTGGO0YKug/D2TaVAm1d7qp/bNtbayEsqd0zxZrEWE3ACxBrlxJr/jXUTfwdokkT5vFQfv8UlCoyN9WVjw9rvb4vfJcX/HctJKJMbUnx+SVa3KLFZmTvBhaiP/uF4jnRwjI71tvDgm75z/niyvGDwnDF3296JWlYaAsCGTbbX671pF2L+iOPEfl0FUt8jRYXP4q6dg6snkuR7nCLFnSvmbHxuT5gcJyRYObt8pa/scOAAAAAACsbRXfVda7e5gr0VycysgooN32snCs1TkjJf1s/6xGK6HunW5pbK6tkVJw0vd4sTYRdgPAKcqVaz4Wcueruld1RJhnjJFfG5ZXGVB74oCMtXILZcWzk0pmJpTUZ+RVBuVGxRPf5/zCwlzd+aHrl9FCsG6t0qggp91WGhB4ryftJNN0K1boWlUiV5XI1WDJX/bjZJISWQVZIpvn8vLslPfVqs+p02pqcNMW+WGo8tDw8g0UAAAAAADgDFbzvd7twlyZcs3GiYxc+QTey8JzrHaOFHXH/jmNlH0dmGnLdYwGC8FqDw1nAP7KAOAUzAfd2f3m6b5/S2+sLmMdhcObVDr7gfIHhuXXhhWMbJF1PXUmDqh1cK/STmu1h3mY+dnATZbJaTa6n9ttyRhlQbCEJtPoB50k03Sz0wu6PZUDT0PFlblwj40jGclTpiBPT/kMlue5ZsfHFEQFBcWiBrdsk2HuJAAAAAAAsI7UfFdFz1XFc+U7RjNxojg79cICHKrguTprqKhi4Gmg6GuqEWumFa/2sHAGoLIbAE5Bqm7Q7RF09wXreipsOkvpwIhaB/fKer6ydlOd6Qm1D+6TExXlVQZk3TOvNt9kmZxGQ2mBCu/1oJNkmmp25DvdoLsUeBouB6c2bfxx5JJiY+VmmYykIEtPeV/N2RklnY6qWzcqKJZUGhhctnECAAAAAAD0A2OMBn1Xea8j5HSeaLqTqOa7cikKWBaVyNOWWiTlUpLlGp9ry7NGkU/cuZ7x1wUAJylVrtR05+eeD7otsWNfcMKCitvOVWHLTnnlAYUjm+UPjCjrtNQ6sFud6QnlSwj8Vsp84H1IhbdPhfdaEy8KumuRp2LgaWSFgm5JSmWUGyM/T+VlmZxT/I3Ks0xzE+OKSmX5YaihLduWeaQAAAAAAAD9wRijocBT6Diq+K5cazQdJ0oy7uQtl+FSoJFyoKGir8h3tH+2rU5KBf16RtgNACchWxR0uzLyenN1o794paqKO85XtHGbvHJN0Ybu57Q+o9b+3YrnphfegXmmOCTw7nQka5X7PoH3GtENumN5i4Pu0soF3ZIUW0c2z+UoV5gnp7yfxvSUsjRVaXBYhWpNUbmyjKMEAAAAAADoL8YYDYeeQseq6ruy6gbe6Rl2v7Gfba6FqkaeRsuBPMfq3umWElrGr1uE3QBwgnLlSkx3LmVH9wXe6E/GWPm1YZV3XqhgaIP8yqDCDdvkhEUlMxNqHditpFlf7WEeYj7wVprKdtrKrUPgvQbEaTfodq3RQOSpELgaKQdaye5WmaREVl6Wyua5vPzU/mcgS1PNTU4oqlTl+h5V3QAAAAAAAJKsMRoJfQW9wNtImu4QeC8fo7OGiioFnjZUAsnk2j/TVsb3d10i7AaAE5Ar13zdo9ur5j7zZnfGqTCOq3Bks0o7HyB/YFj+wLCCkS2yrqfOxAG1xvYp7bRXe5gLTJbJbTZl0ozAew1Is1xTjViONaoVPEW+q9FyuKJBtyTFxpGM5ClTkKen/Lad+tSElEulgSGVh0bkR4VlHScAAAAAAEC/un/gLXUDbwLZ5WGN0Y6RoiLf1YZKqDjNdHC2fcZ17MTKI+wGgBOQSspMN+ien6fbUNW9pljPV2HTWSqddb78yoCCoY0KhjdIWar2wb1qTxxQlpx6q+flZNJUTrPRC7w7BN59Ks1yTdQ7cqzRQC/o3lBZ+aA7lxQbKzfLZCQFpzhPfRrHqk9NqVAbkOt5Gti8ZVnHCQAAAAAA0O+cQwJvR7lyAu9l5Fmrs4eLijxHo+VAjU6iiUZntYeF04ywGwCOI+3N0+0RdK8LTlhQcft5KmzZKa88oHBki/yBYWWdploHdqkzM6H8DJj/xS4E3qls3FHuOMo9Au9+MR90W9MNukPP1cbTEHRLUiqj3Bj5eSovy+Sc4m/N3OS4jLUq1gZUHd0gzw+WeaQAAAAAAAD9z7VGo6En31pVPVeZcs3ECRXIyyT0HO0YKqoQuBoqBZpuxppuxqs9LJxG7moPAADOZFlvnm5nUdBtCbrXBa9UlVssqzM1rvb4vXKjouLZaSVz00rrs3LLA3KLZRmzer8PNk2lZlNpIZLtdJT5viRPJuZi7kyWZrkm6x1ZIw0UPYWeo43V0xN0S1LHOrJ5Lke5wvzUuhXE7baaMzMqD4/I9X3VNm5e5lECAAAAAACsHa61Go18HWh2VJGrmTjRTJyq4jmren9xrSiHnrYORNqdS0maaaLelusYFX1i0PWAnzIAHMXioNuVWZirG+uHMVbBwIj8yoDaEwdkrCO3WFE8M6FkZlxJfUZ+dVBOuHrzFNs06QbeUSTbiZX5njJJlsD7jJRluaYaHRkj1Qq+QtfRxmok5zQF3ZmkVFZBlsjmubz81LoUzE2MyfE8FSo11TZukuNySQkAAAAAAHAsnrUaCX0daHUD7+k40WwslQm8l8VQMVAn6d7rirNcB2dacmuRAtdZ5ZFhpdHGHACOIO8F3ZLkqBt4ewTd65ZxXIUjm1XaeaH82pD8gREFI1tkHUft8f1qje1T1mmv2vhskshpNmXSRLYTK3ddZZ63auPBkWVZrslGR7l6QbdntbEWnragW5Ji40hG8pQpyNNTOqt1mk216nWVBoflBoGqoxuWfZwAAAAAAABrke90A2/fsSp7rjpZprkkpaX5MtlUDTVQ8DRSCuR7jvbPtJSkqz8lJVYWYTcA3E+uXPONfb1eNTexISTJeoEKm3eouP08+ZUBBcObFAxtkNJUrYN71Z48qCw9tbbQSx7bkQJvl9/cM0XeC7ozSQO9oHtTNZJrT9+baHJJsbFys0xGUpid2u/q7PhBeUGgqFzW4OYtspZ3xwIAAAAAAJyowLEaDjyFjlXZd9VOM9WTdLWHtUYYbRssqBy6Gq0EMsbo3pmW0lPsboj+QNgNAPeTSsqM5C6ap9tQ1Y1F3Kio4vbzVNi8Q165pnB0i/zakLJ2Q639u9WZmVCenf4LKJskclqt+wJvz1VGe+lVl+e5JpuxslwaLPgK5oNu5/SeV1IZ5cbIz1N5WXZKF4GtuTl1Wi2Vh0bkh5HKQyPLPk4AAAAAAIC1LnIdDQWeQmtV8hw1CbyXjTFGO4aLKnquNlRCJVmuAzNtZVTPr1ncAQeARVLlSgm6cYK8ck1uqaLO1Lja4/fKLZQUz04rmZtSWp+TVxmQUyid1jl35ufqTsNQJpZyrzeHd7I6FefrXZ7nmmzESrNcA0WvG3RXwtMedEtSxzqyeS5HucL85H8f8jzX7PiYgqigoFDQ4JZtzCcFAAAAAABwigquoyyQ8raU5VI96U45V2CO6SVzrdXOkaL+88CcNlRC7Z9pamKuo+FysNpDwwog7AaAnqw3T7fTa13u9wJv4FiMsQoGRuRXBtQe3y9jHbnFsjozE+pMjcnMTcuvDsoJC6dtTPOBt8JQmQi8V82ioLtW9BS6jjZWQnnu6W+sk0lKZRVkiWyeyzuF1k3N2RklcUe1jZsUFssq1gaWf6AAAAAAAADrSMlzlKtbcZwrVz1JZY0UOgTeSxW4jnYOFXTHwbqGSoEOzrblOka1gr/aQ8MyI+wGAN0XdFtJrozcXuANnCjjuApHt8irDas9tk/GcZWV2oqnJ9Qe3y8bRPKrg7Le6bmYsnGsvFd1mxnTDbxzya7SnOLrTp5rqtkLuiNPgeNoYzWUvwpBtyTFxpGM5ClTkKcnfXbLs0xzE+OKSmV5QaDBrdtWZJwAAAAAAADrTdlzlfU6bOd5otk4lWQUOsxEvFTFwNO2wYLuGW8oTjNNNDpyHaNS4K320LCMCLsBrHt5L+iW1Au5OTni1Dl+oMLmHUqac2od2CvrBUpbDXWmJ9Q6sEduoSS3MiDrHP+3rBmnipNMxcCVY0/+zRdOp7OwnEnKfU9ZJ5dNmf9nRfWC7jjtBd2eo0211Qu6c0mxsXKzTEZSmJ38Gx7qU5PK0lSloWEVqwOKSuVlHycAAAAAAMB6VfVd5fl8hXeiuTiRkauAwHvJBgq+Okm3y2GS5hqbbcuxVpFH9fxaQZ4DYF3LlStRNwzyem3LPebpxjJwo5JKZ52veGZSrbF9coJIcX1GyeyUkmZdXqkqt1SVsUe+YJ1uxpqod2SMNNmIVY08VSJX9iTnSHY6HWm+wltS7vvKOx0ZAu+V0Qu6O2mmWuQr8LoV3cEqBd2SlMooN0Z+lsjPMp3sSLI0VX1qUoVKTa7nU9UNAAAAAACwAmpBdyrC7l3rXLNxImNc+Ue5f4gTt6ESqpNkyvNc92a5Dsy0tLkWyePNBGsCYTeAdS2VlJlu0O3IKCDoxjLzKgNyy1V1JsdkJlx5hZLiuWklc1NKGrPyygNyCiWZRSH2RL2j6WasWsFTNfI01Yg11exopreuHLqHbH88Tru9sJzJKPN9WQLv5Zfnmm7dF3SHnqON1UCht7oXzR3ryOaZHOUK8pOv6p6bHJdyqTQ4qPLQsPwwWoFRAgAAAAAAYMB3lfUqvKfzRDOdRFXflUfgvWRbByJ10kyZcu2daunemZY2V0M5fG/7HmE3gHUrVa7UdFuXWxn5BN1YIcZYBYOj8qqDao/fK+O4cotldWYm1Zkak63PyKsMyglCjdU7mm0lGir6qkSeylG3hXkl8jTV6Gii0dFMK1at4KvkOwtV28dzaODtdwPvdkcmI/BeFnmumVaidpKpGnkKPasNlUDhKrdD6hirVFZBlsjmubw8O6nnJ3GsxvS0SgODcjxPg5u3rtBIAQAAAAAAYIzRUOApV7cb6XRnPvD25J7CNIe4jzFGO4YK+s8DmTZVQu2Zbmr/bFsbK+FJd9PEmYWwG8C6lPWCbqdX0T3fwhxYSdZxFY1ulV8bVvvgPhnHU1ZsKZ6eUGtsn2YyV+2gopFaSaXA1daBSMPlQO041b0zbbnWqBp5mmx0dHC2rWnHaqDoq+CfWKBq2+1FLc19ZYEv227LZCcXgOJwM61ErSRVNfIUeY5Gy6GiE/y5rIRMUtu6SoyVl2XylCnM0pM+y81NjMlYR4XagKqjG+X6/koMFwAAAAAAAD0LgXcuyZemOomm40Q1r1sUg1PnWKtzRkr62f5ZbSiHunemqbG5tkZKwUl10sSZhdp8AOtOrlyJkYwkR93KbpegG6eR44cqbNmp4rZz5VUG5A9v0rRfVbvdVrU1pqA5pW21QMPlQJIUeI7OGiro/I1lDZZ8jZZDba6Fso7R/pmW9k431YqPX6FtJNlWSzaOZeOOTJIqCwLltOpZktlmN+iuhJ5C19FIOVQhWL2gO5FRw3pKZBWlicI8UZSlCk+yhXncbqs5O6vy4JBcz1dtw6YVGjEAAAAAAAAWs8ZoOPQUOFZV35WVNB0nSnstznHqPMdq53BRBd/RSDnQXDvRZLOz2sPCEnB3G8C6kitX3Mu13V5VNy0usFrcQknB1nO13xtWHFS0YcdOVYdHNOynSsb2aG5iXPmiquuC7+ickZLOGS1poBBoUyXUxmoo5dK+6Zb2z7QUp8eu0j4s8E4JvJdirpWoEScqh72K7kqo4ioF3bmktnHUdDxZ5SpmHXl5pnLaUTGLT/otPbPjY3I9X1GlqoFNW+S4nC0BAAAAAABOF2uMRkNfobWq+N37MtOdZGFOb5y6gu9q+1BBRd/TYNHXVCPWTCte7WHhFHHXEsC6kStXom4g5DFPN84AcZrpzoMNxVFFZz9kg8LWlLbYukKbaW5iQnOTE2rMTKs8NKyoXFl4Xjl0Vd5Y0lQj1r7ppiLP0Vw70VSjo92TTZVCVwORL9c58u/2fOA939I89X1lfiDboaX5yai3U9U7iSq9oHu4HKxa0J1JalpXmbEKslRensrPM5XSzim9s7HdaKjdqKu2cbM8P1B1ZHS5hwwAAAAAAIDjsMZoJPS1v9VR1Xe6Lc07Sbfam7bbS1KNfG2udd84kKS5xufa8qxR5BOd9ht+YgDWjVRSZgi6cWZoJ6nuPFhXplznjpZUCT097IEXKnKkyX17ZB1XhWpNs+MHNbX/XjVmplUZHpUXBAv7qBU8VSNPE/WO7p1pqeQ7mmknmmrEqrcbKoeeBiJP9ghz+RhJttmUokiSlPoBgfdJqLdTzbVjlQNPke9ouOSrHK7OZVVsrFrGlVGuKI3lKleh1778VM5weZ5rdnxMXhgqKpU0uGWrDJX/AAAAAAAAq8Kx3Qrv/c22ar6rqU6imThRxSPwXqqRcqBOmnUL5bJM+2fb2lyz8h3uhfUTwm4A60KqXKnpti6fD7otQTdWSStOdcfBOVljdN5oWdXI08O211TovWtwZPsOVUc3aHz3PXJ9T+1GQzMHD2h8188VVasqDw7LOt0KYmOkoZKvgYKvsbm2nJmWyoGr6Vai6UasuVaiauSpEh1+8TsfeOdRJEdSGvQC73ZLhnZIR9XsBd2lwFUh6Abdlcg77ePIJbWMq8RauVmmME/k5LnKaUeuTv3n15qbU9xuaWjzVvlRQaXBoeUbNAAAAAAAAE6aa41GI18Hmh1VPFczcaLZOFXFc2QIvJdkSy1UJ0mV57n2Tbd173RLm2uhXIo/+gZhN4A1L+sF3U5vjm6v9xlYDfV2orvG6vJdq50jRdUiXw/bXlPoHdr+2g8jbTr3AjWmpzS26+fyw0iN6SnNTYyrNTen8uCQokp14WLWWmm0Emiw6OvgbEuO01EldDXZiDXV7GimFatW8FQO3EMugI0kp9lUGhXkqN0NvIOQwPsomp1UM+1YxcBVMXA1WFydoDuVUdO6yo1RmCbylCnI0lOam3uxPM81NzGmoFCUXyhoaMs2/ocJAAAAAADgDOBZq5HQ14FWRxW5mo4TzcZSmcB7iYy2DxYUp5k2VKS9003tn2lrUzWkcr5P8LYEAGtarlyJ6QV66lZ2uwTdWCWzrVh3HJxT6FmdM1LUUDHQw88aOCzoXqxQrWnbAy/S0LbtKg0NafisnQqioqYPHtD47nvUaTUP2d51jDbVIl24sayRcqDhkq+tAwVFvtVEvaM9U03NtRNpUZDdDbwbMmkqp92W8kxZECjnYu4QzU6qmVasgu+qFLgaKPiqFU5v0J1LahurhvVklKuYxvKVqZTGKi0x6Jakxsy0kjhWpTdPfKFaW4ZRAwAAAAAAYDn4Tjfw9h2riueqk2ea61Ul49Q51mrncEmR72pDJVScZjo42+b72icIuwGsWblyxb3kx+1Vc9POAqtlqtHRXWN1lUJPZ4+UNFwO9Yvba/Ld4/9TbKzVwMbN2v6gX1B1ZFS1jRs1tGW7lEvju3dpav8+pUlyyHN812rbYEEXbixruBRopBRqSy2S51gdnG1rz1RLzU563zEkOY3FgbcIvBdpxfNBt6Ny6KpW8DVQPL1BdyapaV11rCs/T1XIEvl5qmrSVpCnx33+cfefZapPjCsqV+QGgQa3bFv6oAEAAAAAALCsAsdqJPAUOFZlz1U7zVRPln5vaL3zHKudwwVFnqPRcqBGJ9FEo7Paw8IJIPcBsCblypWoWwXpLZqn21DVjVUwPtfW7qmmagVP2wcLGi2HumhLVdae3O+j6/vacPa5qsyOamzXz+WFoZoz05odH1O7frdKg0MqVGuHtC0KPEc7hguqtwPtm27Kc6zacaqJRkf3zrQUeo4GC54Cz1kIvNNCQU57vqV5INtur+uW5u1e0B15jsqhp2rkafA0B92JjFq2e9kWpYlcZYqyRFGWLNtZrTE1qSzLVBocUmlgSGGxtEx7BgAAAAAAwHIKXUdDksZbsXLP0WycyihV8RgdJHF8kedqx1BRd47VNVQKNDbXZu7uPkDYDWBNSiVlhqAbq2//TEv7plsaLvvaWitoUy3UAzdVljSPTlSuaOsDHqyZg/s1sXePwlJJsxPjmhk7qMb0tCojIwoKxUOeUwwcnTta0mwz1t7plgLPUTNONVHvaO90SwXf0WDRl+fY++bwJvBWO8k03YoVulaVyFUlcjVU8k/b8bttyx3F1pGbZQryRG6eq5TF8vJs2Y6TJonqU5MqVmtyPV+Dm7cu274BAAAAAACw/AquozyQxrtNGjUXpzKmux6nrhx62joQaXcuxWmmiXpbju/Id8gXzlSE3QDWnFS5UtNtXT4fdFuCbqyCvVNNHZhta0M10KZKpLOGCjpvQ3lZ9m2MUXV0o0qDQxrfvUvWcVSoVDVz8GA3AC+WVB4ekesdWoFcjjydH3qabsbaN9VU5FnNtVNNNbrzeZcCV7XIl9M8QoV3qy2j9RN4d5JM082OAteqEnkqB56GisFpO37aq+bOjFGQJvKVyc8yFbPOss9DU5+ckGRUHBhUZWRUXhgu8xEAAAAAAACw3Iqeo0y51JbyXKonqYykiMB7SYaKgTpJ1u0gm+VqZctXdILlR9gNYE3JekG305uj2+t9Bk6nPM+1e6qp8bmOttQijZQDnTNa0s7h4vGffJIc19PojrNVGem1Ng8CNWdnNDM2prF77lZpYFDF2oDMonY7xki1gqdK6Gmi0db+mbZKvqOZdqKpRqy5dkOV0FM1y6VS8X4V3q118RfVSTJNNTvyHatq6KkUeBouBzpdU5h3jFXbuLLKVUhjOcpVTGOFyzA39/0lnY4a01MqDQ3L8TwNbNqy7McAAAAAAADAyih7ruYbMmZ5rrkklTFGoUP77aXYVA27gXcu3Vtvr/ZwcAyE3QDWjFy5EqPuvMPqBt7uuojlcCbJ8lz3TDQ03Yy1fbCgwaKvCzaWtW2wsKLHDYslbbnggZodH9PEnl0KCiXVJyc0Nzmh5uyMykMjCkuHzsFsrTRcCjRYCHRwri1npqVS4GqmGWu6mWiulajSSlQcqi4KvMM1H3jHi4LuWuSpGHoaOU1BdyapbV0lxspb3LY87chdoar6uYlxGcdVsTqg2oZNh3UDAAAAAAAAwJmt4rvdCm9JUqK5OJGRq4DAewmMtg8WFKeZOiZXs52s9oBwFITdANaEXLnm/6lx56u6V3VEWI+yLNdd43XVO4l2DBVUK/h60OaqNlZPT0toY4wqwyMq1gY0uW+PrOMoqlQ1M3ZAk/fuVVAoqDI8Ktc/dM5pa6UNlUBDRV8HZlpyHaNK5GmyEWuq0dZMe0y1kQGFkrJw0Rzep+VVnV5xmmmqGcvrBd2FwNNI6fQE3UmvbXkuoyhN5CpTmKUqZPGKfa87rZaac7Oqjm6U63mqbdi0QkcCAAAAAADASqr5nrJcknJlyjXbC7x9Au9TZozRjuGi6vtn5coo8PhenokIu4GjMUaJcjmSzJqMdNaO+aA7M5K3aJ5ufm44nZIs010H62olmXYOl1SLPF20tarh0umb43me47oa3naWKsMjGtv1c7m+p9bcnGbHD2rsnrtVqA2oNDgkaw+9OHMdo80DkYbLge6dbsmxRtXQ02SzrYkDkwpqZZWSTF4xWpOBd5LmmmrEcq3RQOQpClyNlgPZFb6GzSV1jKOOdeTkmcIslpNLpawjP1/Z+YDmxsfkeb6ickUDm7fIOsznBAAAAAAA0K8G/Ptams8o0UycqGpceSt9g2sNc63VloFIrXaq0aJ//CfgtCPsBhaxxsiRpDRXLik13ZayTp7LivD0TJWKoBurK04z3XmwrjjLdPZIUdXI00O31VQrrO7Fjx8VtPn8B2huckLju+5RUCiqPtVtbd6anVF5eERhqSxzv7Jl37XaPlTQaKUberuOUTVNNVlvaDqTvDhRsVKSu4YC7zTLNdnoyLFGtYKnyHe1oRyueNCdSWpaV5mxCtJUnlL5eaZS2tFK/y9Iu1FXu9nQwMbN8sNQleHRFT4iAAAAAAAAVpIxRoPBfS3Np/JEM51EVd+VS+B9yhzTvWcYeBSKnIkIu4H78XJJcSY53dA0lZQYyeaSo1x2TcQ6a0eqXKnpzs89H3TzM8Lp1E5S3Xmwrky5zh0tqRJ6etj2msrhmdNIvzQwqEK1qql798k6jsJyRXPjY5raf6/86SlVRkblBYe3Wg89p9ump51q33RTvpOolcaaSa2mJ2cVlAuKXE9esnJttk+HNMs1Ue/IWqOB+aC7svJBd2ysWsaVUa5CGstRrkKaKMyTFf9+5nmu2bEx+WGksFTS4OatMvwPDwAAAAAAQN8zxmg48HQwl6q+NNVJNB0nqnqeXNvPd/GAIyPsBu7HqFvOnSeZ3NzIGMnmuRIjJeou09r8zJAtCrpdGXm9ubqB06UVp7rj4JysMTpvtKxq1A26C/6Z98+rtY4GN29VeWhY47vuket5ihpVzR48oLFd96hQqao8NHzENtbFwNG5oyXNNGPtm24pSBLV/UBzjZZmg1CesSrkaV9eLC8E3cZosOAp9FY+6M4ltYyrxFq5WaYwT+TkucppR27vXbcrrTU3q7jT1tCW7QqioooDg6fluAAAAAAAAFh5xhgNh54OtnLVfFdT7W7gXfNdOab/7uEBx3Lm3Y0HziC+jNI8V2yMTJ4r1X2tzd2cKu/VlKv7BgQjydF9gTdwutTbie4aq8t3rXaOFFWLfD1se03hGd7KxgtCbTz3fDVmpjV2z8/lRwU1pic1NzGh1tysSkPDKlSqh7U2l6RK5KkceppqxNo721YQhmpmsVrW01SayW/HKgWubJ+E3mmWa7LekTXSQNFT6DnaWA3lrGDQncqoaV3lxihME3nKFGSpitnpq47P81xzE+MKCyX5UajBrduO+PMGAAAAAABA/7LGaCT0daDZUdV3uxXevZbmBN5YSwi7geNwZLqV3bqvyjs1Umy6c3lT5X365cqV9JbdXjX3mdMwGuvBbCvWXWN1FXxHO4eLGigGeui2mny3f9pAFypVbXvggzV9YL8mHUdRuaKZsYOaOXhAzelpVUZG5UfRYc8zvWC4Gnk62Ii1N3EUKlUr9NWQ0Vi9qYLnqhg4Z3SAmmW5phodGSPVCr5C19HGarRiQXcuqWOsOsaVVaZCmshRrmIaK8jTlTnoUTSmp5TEsQY2bVFUrqpQqZ7W4wMAAAAAAOD0WAi8W/OBd7wwh7c9g+/dASeDsBs4AaYXpjq9Km+bd+eKTnpV3k6ey4rQ+3RJJWWmO7/6/DzdfO9xukw1OrpnoqFS6GnHUEFDpUC/sLUqdyXLgVeIsVa1jZtUGhzS+J5dso6jQrWmmYP7Nb5nl6JSWeXhETnu4ZcL1kobSp6qmdGexGqilcorBWq5Vs3ZhppxqoLvqujbbkJ+BsmyXJONjnJJAwVfoWe1sbZyFd2ZpJZ1lRorP0vl56m8PFOpN0/36ZSlqeYmJxSVK3J9X0Nbt5/W4wMAAAAAAOD0cux9gXdtvsI7TlT1CLyxNhB2AyehG6x225nLdCu+U0mJkWwuOaK1+UpLe/N0E3RjNYzPtbV7qqlawdP2wYJGy6Eu2lLtm7bdR+P6vjbsPEeVkVGN3XO3/DBUY2Zas+Njav38LpUGh1SsDRyxUju0ubYHucpBoPFWqpleeNycbajeidXoGJUCV5F3ZoTeeZZrshErkzTYG+umarRi840nMmrZ7uVWlCZylSnKEkVZsipnrvrUpPIsU3lwWKWBIQWFwiqMAgAAAAAAAKeTa41GQk8HmrmqnqvpONFML/A+k7szAieCsBs4SUZGrnpV3otamydGStRdprX5ysh61fTOoqCbNxfgdNk/09K+6ZaGy7621graVAv1wE2VNXUxGJXK2vqAB2t27KDG9+xSWCxpbmJCs+Njas5MqzI8qqBYPOx5Xp6pZmI5RV/lzGjcdeTIKGq31WjHmmndF3oHqzineZ7nmmzGyvJcg0VfgWe1qRLJdZb/Z5hLahtHsXXkZpmCPJGb5yplsbw8W/bjnYg0SVSfmlSxNiDX9zW4ZeuqjAMAAAAAAACnn2etRiNf+5sdVTQfeKeqeGf2dITA8RB2A6fIyMiXlPZam5telXfaa23u5lR5L6eFoFuSK7MwVzdwOuydaurAbFsbqoE2VSKdNVTQeRvKqz2sFWGMUWVkVMWBAU3s3SPruCpUuvN5T+zbo7BYUnl4RK7nHfI8P89UTjuS42tDYDUbRGrWHbm2qUKQaa6VaKoZy+ukKgXuaZ/fPM+7Fd1plmug6PWC7lCuu/znkbRXzZ0ZoyBN5CuTn2UqZh2tZrP7uYlxGWNVrA2qMjIqLwhXcTQAAAAAAAA43TxrNRL6OtjqqNoLvGcTqewSeKN/EXYDS+So2848WVTlnRopNt3qb6q8ly7vBd1St6rbySWP7ylOgzzPtXuqqfG5jrbUIo2UA50zWtLO4cOrm9cax/U0sn2HKsPd1uZuEKg5O6vZsTGN3XO3irUBlQYGZex98a2fZyqlHc05vkqSvEqoLHRUn23KtVZxkmm2nWiy0VHgWhUDV97pmOs8zzXVC7prRU+B62hjJZS3AoF7x1i1jSurXIXenNzFNFaYp8t+rJORdDpqzkyrPNR9o8LAps2rOh4AAAAAAACsjsCxGu4F3mW5mu0kmpNU9ogM0Z/4zQWWgZGRp15rc2Nk8/vmls56660IvU9FrlxJb9nrVXN7x3wGsDyyPNc9Ew1NN2NtHyxosOjrgo1lbRtcX3McB4WCtlz4QM1OjGl89y4FxaLqkxOqT02qOTuj8tCIovJ9Ve5BnklprDnHk9JEbd/T4IBV2upoqtGR51q1k1RzrUQT9Y5Cz6oUeHJWat7zPNdUM1aS5apFngLH0aZquOyV5ZmktnWVGCtvcdvytCNX+bIe61TMjo/Jup4K1ZpqGzfJcTmTAgAAAAAArFehYzUceBprxZLnaiZOlCtRwXHkrtR9OmCFEHYDy8jKKMilRLlkuhXfqaTESDaXHNHa/GSlkjLTDbrn5+nmTQNYaVmW667xuuqdRDuGCqoVfD1oc1Ubq+u37XN5cFjF6oAm9+2V47iKKlXNHjyoqf37uhXDwyPygkCSFOSp8lTSfODtuPJDX5t9R3PtRFO9yu5mnGmunWi83lbkOioGruxyXkz3gu447QXdnqNNteUPupNe2/JcRlGayFWmMEtVyOIz4mzVaTXVqs+pNrpRbhCoumHjag8JAAAAAAAAqyxyHQ2F0lgrVlmu6kmiyTSTZ41Cx1FgDa3N0RcIu4GjqLcT7ZpoaKjkq+Cf3J+KK9Ot8l7U2jwxUqLuMq3NT8x8dbxL0I3TKMky3XWwrlaSaedwSbXI00VbqxouBas9tFVnHUdDW7epPDys8V33yPU8tet1zYwd0Piun6tQq6k0MCTrON223fcLvCWpHEpF39VcO9ZkI1bkWjU6meqdRM2krYLvqugvwxxBvaC7k2aqRb4Cz9HGaqhgGYPuXFLHOOpYR06eKcxiOblUyjry82zZjnOqsixT3Gpqdnxcnh8oqlQ0uGmLrHVWe2gAAAAAAAA4AxRcR0OBNNmJFTqe2lmuVpJqNk5UN0ahYxU6Vg6hN85g6zbsPnDggG655Rbdcsst+t73vqfvfe97Gh8flyS95CUv0bXXXnvK+240Gnrwgx+su+66S5J01lln6e67716GUWOlOdYo8Kw21SIFntVEPdZ4vaOC72io6KtW8E+41a6RkS8p7bU2N70q7/nW5m5OlfexZL2g2+m1Lvd7gTewkuI0050H64qzTGePFFWNPD10W021gr/aQzuj+GGkTeddoPrUpMZ2/Vx+VFB9elL1iQm1ZmdVGhpWVK4o1KLAO0vVto6U5QpspkrkqRR4mmrGsjZW5FvVO6mavY+i76rgW+lULqTzXDOtbtBdjXyFnqMNlUCht3xBdyapaT1lxihIU3lKF+YsPw2zkB95TGmqTqupTrP7kbRbytV9k0JtwyZ5Qajy8MgqjQ4AAAAAAABnoqLnKHKt6kmquThVYK3SPFMzydRKUzWTVL61Cl0r367WnS/g6NZt2L1hw4YV2/eVV165EHSjvxhj9EtnDeru8boi39GGSqaZZqLxeke7p5raM9XUQME/qWpvR9125smiKu/USLHpzuVNlffhcnUr4Y0kR93KbofvEVZYO0l158G6MuU6d7SkSujpYdtrKofMbXw0xdqAokpFU/feK+s6ikoVzY4f1PSB/WpMT6syMqowDHstzaU8kzrWlckS+Xkma6XBoqdK5Gq6EcuxsSLPUb2daK4Tq94xKgWuIu8kQu8810wrUSvJVI08RZ7VhnKgyF++aubYWLWMK6NchTSWo1yFNFGYJ6f1TJUmieJF4XbcaUuSHMeTH4UqVKvyw0iu78sYq+HtO2g9BQAAAAAAgMNYY1T2XJU9V60001ycyDWZisrVSjO1kkzTnURur9o7cKws95lwhli3Yfdi27dv14UXXqivfe1rS97Xbbfdpg984AMKw1Ce52l2dnYZRojTKfIdPWBTReeNlrR/tq09k01VI0+dNNNEvX1K1d5GRp664XZsjGx+X4vurLfeitBb6gbdce/b4ObdlvCcqLDSWnGqOw7OyRqj80bLqkbdoPtkpzBYj6x1NLh5y0Jrc8dzVWjWNHPwgMZ336NCpaLS4HA3rLaSMqltXakXeEuSa42GSr6qoaeJRkeONSpmrurtWDOtWI2OUSn0TqgFeTfoTlUJPUWeo5FyqChYnqA7l9QyrhJr5WaZwjyRk+cqpx25ypflGMeSJok6zcZ9ldtxR5LkuJ78KFKhNiA/iuR63Tdo+GGksFxRVCorLFcW1gMAAAAAAABH021d7ivJ8l61d6LIcRRnmZppqnrS/ehu58g9wW64wEpZt3fxr7zySl188cW6+OKLtWHDBt19993auXPnkvaZpqle8YpXKE1T/bf/9t/0sY99jLC7j7mO1ZZapC21SDOtWHsmmwvV3rOtRONzJ1/tbWUU5FKiXDLdiu9UUmIkm0uO1ndr81y5EnUDJa/Xttxjnm6ssHo70V1jdfmu1c6RomqRr4dtryn0mNf4ZHh+oI3nnKfGzLTGd/1cXhipMT2luYlxtebmVBocUjgwvFDhff/AW5Jc12i0EqiWeJqox3KsURRkqrcSTTU68hyrcuDKO0roPdtK1IzTXkV3N+guLlPQncqoaV3lxihME3nKFGSpilm8YmeoJI7VaTYWqreTOJYkuZ4vP4pUGhyUHxbkeN1/e4KoqLBc7raQL5XkuITbAAAAAAAAODWuNar6riqeo0av2tuzVqmbq512g+9mmsm3RqHjyLeGroJYFes27P6jP/qjZd/nBz/4QX3/+9/XBRdcoLe+9a362Mc+tuzHwOqohJ4qm7xDqr0r4eHV3pHnaLh0/GpvV6Zb5b2otXlipETd5fXa2jyVlJlu0D0/T/d6/D7g9JltxbprrK6C72jncFEDxUAP3VaTfwIVxDiyQqWq6AEP1vTBA5p0HEXlsmbHxzQzdlDuzLT8jVsVFkpSZtTutTT3FgXekuS7VhurgVqxq4l6LM9adZJMc+1EE42OAteqFHhynfvOD3OtRI1OosoyB925pI5x1DGOrDIV0kSOchXTWEGeLnn/iyWdTm/O7W71dpokkrpvJAgKRZWigvwwkuN2/5UIikVFpW6wHZbKctx1e1kHAAAAAACAFWKMUdF1VHQdddJMc73K7oJr1c5yNZNUM3Eia4wixyqkxTlOM+6KLpOf//znuvLKKyVJf/3Xfy3f91d5RFgJy1ntbWTkS0p7rc1Nr8p7vrW5m6+vKu/5tu7uooru9fT6cfpNNTq6Z6KhUuhpx1BBQ6VAv7C1Ktch6F4qY61qGzaqNDikiT27ZB1HhWq3tXnjnjtlBkflD44o9wK1jCvp8MBbkkLP0eaao3o71WS9I9+1aiep5lqJxuttRZ5VMfDUijPVO4kqgdd701GgUrj0oDuT1LKuUmPlZ6n8PJWXZyr15uleijzPF8LtuNkNuNO0G557QaCoVJYXRvKjSNZxZIxVUFhUuV0syTp0HwAAAAAAAMDp4ztWg45VzXdVT1LNxqkCa5VkmVpppkaaqpGk8h2ryLHyLPdasfIIu5fJ7/7u76per+vFL36xHv/4x6/2cHAanEy191DJV63gyT3Cid1Rt515sqjKOzVS3Ft2tfarm7Ne0O30KrrnK7uBlTI+19buqaZqBU/bBwsaLYe6aEtVlvlllpXreRrdcbYqw6Ma23W3vCBQc2ZGM+MH1Wg25AyOyC3X1LKulMfyjhIgFwNHBT/SXCvRZLNb2d2Mu5XerXpbeS6VA09R0O2uUY6WfnkTq1t5LklRmshVpihLFGXJKZ2duuF2e2G+7U6rqSxNZYyRF4SKKlX5YSQvjGQdK2OtwmJJYamiqFxWUCzKWsJtAAAAAAAArD5rjMqeq5LrqJ1mmk1SeUmmonK10kzNJNNUmsg1RpFrFVhLi3OsGMLuZXDdddfp7//+7zUwMKCrrrpqWfe9e/fuYz6+b9++ZT0eTt79q733Th1e7b1nqqm9vWrvwaKvYnDon56RkSd1W5sbI5t3A+DESHFvvdXaDL3z3us0khx1K7vdNfg6cebYP9PSvumWhsu+ttYK2lQL9cBNFS62VlBYKmnLhQ/S7PhBTezepaBY0tzkuCYnx5Q0G3IGhtUKIpkslnuUwNsYqRy5KgauZluxJhuxIteq0cmUSyoEjoaKvirR0uapziW1jaPYOnKzTEGeyM1zlbL4iNXnR91PnitutxbC7bjVVJZlvXA7UqFSkx9F8sJQ1lpZ6ygslbuV26WKgkJBhne+AgAAAAAA4AxmjFHoOgpdR0nWbXHuxqkix1Gcdef1notT1ZUqcKwixznmFLDAqSDsXqLJyUm9/vWvlyS9973v1cjIyLLuf9u2bcu6P6ysSuipstHTuSOHV3tPNjoan+scs9rbyijIpUS5kkWtzRMj2VxytLZam+fKFfdejtur5uakhJW0d6qpA7NtbagG2lSJdNZQQedtKK/2sNYFY4wqw6Mq1gY1uXe3rOMo6rR1YGZOjbH9ykpVZeWKisqOGnhLkrVSteCpFHqabsayNlae5xoo+qoWlhZ0pzJqWVeZMQrSRL4y+VmmYtbR8WLnPM8Vt+6r2u40m8rzXNZYeWGoYm1AflSQF4Qy1sg6rqJSWWG5W7ntRwXecAEAAAAAAIC+5Vqrmm9V9Vw1kkyzSSLPWqVut8V5K83UTDP5tjuvt28N98OwLMiVlujNb36z9u/fr0c96lF6xStesdrDwRlicbX3bCvWnqmm9k07Gi0Hh1V71wq+hu5X7e3KdKu8F7U2T4yUqLvsqP+rvHPlStStopyfn9vP+/914cyU57l2TzU1PtfRllqkkXKgc0ZL2jlcXO2hrTuO62p4+w6Vh0c1tuvncn1fE+1EU3NzasUdJcWyyp4r/zjpsmOlwaKnWuQpy3O5ztLOHR1j1TaurHIV0m6FeSGNFebpEbfPs2wh1O60mopbrW64bR15Yajy4LC8KOqG20ZyXK8713ap25rcjyIu5gEAAAAAALDmGGNU9BwVvW6L87kklZukKrq5WmmuZppqJk7kGKPQ6QbflvtkWALC7iX41re+pWuuuUau6+qv//qvV+Sm9a5du475+L59+/SIRzxi2Y+L5VMOPV240dN5o2XdO9PS3qlDq70n5jqaOEK1t5GRLynttTY3ea5M3SrvTJKb93eVdyopMwTdWHlZnuueiYamm7G2DxY0WPR1wcaytg0WVnto61pQKGjLBQ/Q3MS4nN33yAsjTdcbmq3PacL1VPUdRWF43P1YqyWdCzNJbesqMVbe4rblaeeQCvMsTRW3Wuq0Gr225C3lkqx15EeRykPD8qOCXD/ohtuer6hU7gbc5bL8MDrlMQIAAAAAAAD9KHCsAseq5ruqx6nmklShYxVn3UrvRpqqkXRbnIeOlce0fjgFhN2nqN1u65WvfKXyPNfv//7v6yEPeciKHGfr1q0rsl+cfo41p1Tt7ch0K7tlunNb57lSI8W9im9X/RcSp+q+BndR0N3PwT3OXFmW667xuuqdRDuGCqoVfD1oc1Ubq8cPUXF6lAaHVKjVVN67V2ZsXH6aaarV1mQ7VqfRULFclustrT350SS9tuW5jKI0katMYZaqkMXK01StZnMh3E7a7W647bgKokjRSFV+GMoNAkmS6we9yu2yonJZXsDvGAAAAAAAACBJjjGq+K7KnqNWr9rbSzIVlauVzLc5T+Rao8hxFNDiHCeBsPsUvfvd79Z//Md/aNu2bfqjP/qj1R4O+sziau/9My3t6VV7x1mmifqh1d6DRV8DRU+etd3W5sbI5lKmbmvzWJKT57Lqj9A76wXdTm+Obq/3GVhuSZbproN1tZJMO4dLqkWeLtpa1XApWO2h4X6sdTS8dZsqQ8O6Y/duOa6j2URqNhtKJsYVhqGickV2md7ZmUvqGEcd68jJM4VZLJOm8uamlTRmNdZsKul0JHXbj/thpEK1Jj8syPW7wbsXRIrKZYXlsqJSRa7vL8vYAAAAAAAAgLXKGKPIdRS5juIs01ycyjWpCq5VJ8vVTFLNxonqRgqto9C1cgi9cRyE3afoT//0TyVJv/Irv6Ivf/nLR9ymXq8vfL7uuuskSaOjo3riE594egaJM55jjTbXIm1eVO0deo42lEPNtmKN1zvaO93UvulDq71T3dfaPFW3tbnNJUdndmvzvBfQG0mOuoG3ewaPF/0rTjPdebCuOMt09khR1cjTQ7fVVCsQSJ7J/CjSBeeeq93jE3IOHJDjumoHgdoTY4pbBxSVyvILRS3l+jaT1LSekiyT06grb86p2ajLmZ1SnGdyPU9eGKlUG5QXRQtV5X5UUFQqK+xVb69UtTkAAAAAAACwHnjWaiCwqvquGkmquTiVb63SPFMzydTKUjXb3XXdFudUe+PICLtPUadX8fXxj39cH//4x4+57djYmH7jN35DkvS4xz2OsBtHdKRq7/Ixqr1rRVfWWpleO/PFVd6Ozrwq71y5kt6yO1/VvaojwlrVTlLdebCuTLnOHS2pEnp62PaayiG/cf3AGqOtQ4Pyo6LGJyZ0YHpa6cYtMtNjqs9Mq91oqFCtnnQldZokaiWpGrmUxXNymnWlaaJiGqvgWgWjG+RHBTlu9wwaFAq9luTdcNtxuWQCAAAAAAAAlps1RiXPVclz1U4zzcaJXJupmOdqp93gezpO5BijqDcHuCX0xiLcuQXOMPev9t471VLkNY9Q7S3VCr5qRV9+6MjkuTJ1q7wzSW5+5lR5zwfdmZG8RfN0n2mBPPpfK051x8E5WWN03mhZ1agbdBd8/rnrJ9YYjRYCGTuksFTWvePjalujUthUa2ZSM+Nj3XmzyxVZxzniPpI4VtrpKOl01Ol01HF9pa4nP89UMlJYLqvmGvnWyBiroFBcmG87LJWPul8AAAAAAAAAKyNwrALHV5rlmktSzcWJQqfb8ryZpqqnqepJqsCxihxHriVjAGH3Kcvz/Ljb7NixQz//+c911lln6e677175QWHNKYeeLtjo6dzR0jGrvUPPaqAcqFh05ckoNVLcq/h2tfqhciqCbqy8ejvRXWN1+a7VzpGiapGvh22vKfQILfuRNUYjoa9c0paNGzQ2M6f6zJSKvquk2VBzZkZx64DCcllBoaQ0iZV02kraHSVxR1mWdffjB8qrgwo8TwUj+VYK81wDUaBiL9gOSyVZy+8JAAAAAAAAcCZwrFHVd1XxHDXT7tzenrXK8lyttBt8t9JMnjUKHUcBLc7XNcJuoA+cSLX3/qmmNCXVyoFKBU+BZw9pbW61OgFzqlyp6bYunw+6z5SKc6wds61Yd43VVfAd7RguarAY6KHbavJdu9pDwxLMB94Hmx0NlUtyg0Ct+pz86Ql5Yajm7KwaMzNqzswol2QkuZ6vICrICQJlfqTYceUbqeJ7KkSRRiolDZbLMpbfDQAAAAAAAOBMZoxRwXVUcLvV3bNxKjdJVXCt2lmuVpJqNk5UN0ah053b2yH0XnfWbdj9ne98R7fffvvC12NjYwvLt99+u6699tpDtr/iiitO08iAY7t/tffeRdXek/WOxuc6mpzrKIoclSNfUegosUY2lxyd3tbmWS/odubn6O59BpbTVKOjeyYaKoWedgwVNFQK9Atbq3Idwsy1wOkF3gdaHcn3JJWVFwqy01Oy1iooFBS3WvJ8X44XyFgpt46SsCDXDzUQBqpEkULP0VDgySXkBgAAAAAAAPqOZ60GA6ua76qepJqLUwXWKs2783q30lTNJJVvrSLXyuM+4LqxbsPuq6++Wp/4xCeO+NiNN96oG2+88ZB1hN040yyu9p5rJ9oz2dQ+r6nRRdXe4zMtOXWjYuApKrjyXCsnz+Vo5au8c+VKTLfS0lE38HYJurHMxufa2j3VVK3gaftgQaPlUBdtqcoyV8ua4tj7Au+q72q6I+W1IQ1UK6pPTCgNO3KDQH5UkIJQLeN0q7k9V561qviOqp5LKyMAAAAAAACgz1ljVPZclT1XrTTTXJzINZmK6rY4byWZpjqJ3F61d+BYWe4LrmnrNuwG1pJS4OqCjWWdO1rSgdmW9kwumtu70dFUJ9FsO1bgOSpEriLfkaeVq7LOlSvpLbvzVd0rciSsZ/tnWto33dJw2dfWWkGbaqEeuKlCoLlGudZodCHwdjTVSdQwnmqbtsgaozzPNZd05+oJnO4Fr2uMhkJfIVX+AAAAAAAAwJrTbV3uK8nyXrV3osjptjxvpqnqSfeju50jlyKpNcnkeZ6v9iBw6nbv3q1t27ZJknbt2qWtW7eu8ohwplio9p5uKk4zTbcTTXcSNZJE1rGKAleR66jo2mWv8k567cvn25YH+erMF461a+9UUwdm29pQDbSpEumsoYLO21Be7WHhNEiyTAdasdppqqlOIiujkudoLk6VKlfJdRQ6jgqu1WDg8a5NAAAAAAAAYJ3I81yNXrV3O82V5rlaabdAJssl3xqFjiPfmpMqmppsx/KsUdl3ta0YruArWPtWItekshtYo45U7T3R6KiZZ5ppJ5prJWraVDOOUcFxVAocuWbp1Y/poqDbysgn6MYyyvNcu6eaGp/raEst0kg50DmjJe0cLq720HCauNZqJPR0oJmr5rua6iQLbYkGfFeutRrwXZU8LnEAAAAAAACA9cQYo6LrqOg66qSZ5pJUbmJUdHO1s1zNJNVMnMgao8ixCmlxviZwJxhY4xxrtKkaaVO1O7f33qmm7plqqBX5qsep5jqJZuNEs51YoXVUClxFnnNKx8p683Q7i4JuS9CNZZLlue6ZaGi6GWv7YEGDRV8XbCxr22BhtYeG08yzVqORrwPNjqqeq3aaqeg58q3VUOjJs7QtBwAAAAAAANYz37EadKxqvqt6kmo2ThVYqyTL1EozNdJUjSSV71hFjuWeYh8j7AbWkVLg6vwNZZ0zUtK9M03dNdnQZMtRnGeai1M14lT76y25uVE59FQKHTknWO29OOh2ZRZamAPLIcty3TVeV72TaMdQQbWCrwdtrmpjlZYx69XiwNu1VmXPUc13mbMdAAAAAAAAwAJrjMqeq5LrqJ1mmk1SuUmmonK10kzNJNNU2u0cGblWgbXcY+wzhN3AOuRYoy21grbUCppodnTHRF0H5tqq+K4aaaZmJ9FUq6PJeq5C4Koceses9s57QbeR5Oi+wBtYDkmW6a6DdbWSTDuHS6pFni7aWtVwKVjtoWGVedZqcyFQJsnhAhQAAAAAAADAURhjFLqOQtdRkvVanMepIsdRJ8vUSlPNxanqShU4VpHjyLHcc+wHhN3AOjcY+RrY7Gmmk+ie6aYOzLY041rFkadWO9FcI9HcdFO+Y7vV3oEjZ1E7j1y5kt6y26vm9lbnpWANitNMdx6sK84ynT1SVDXy9NBtNdUK/moPDWcIY4xObeIFAAAAAAAAAOuRa61qvlXVc9VIMs0miXxrlbrdFuetNFMzzeTb7rzeOLMRdgOQMUbVwNMDhl1trISaasbaP9fSQWtUDD3FcaZ6M9Zko63JurrV3oGrwHOUGSkzkrdonm5DVTeWQTtJdefBujLlOne0pEro6WHbayqHvJ0CAAAAAAAAALA0xhgVPUdFr9vifC5J5Sapim6uVpqrmaaaibvlfh65xxmLsBvAAtcajYS+iq6jYuBqSzXVgXpHY422PM9qIPNVbyWabSWaa7dkHCPfc+TkuTxrFWZGieco9Kxcy7udcOpacao7Ds7JGqPzRsuqRt2gu+DzzxYAAAAAAAAAYHkFjlXgWNV8V/U41VySKnSs4qxb6Y0zF6kBgMMUXEehYzXdSeRaq5Gir4lWrMlmLMcxqkaeWmmmdpYpSzPFHWluNtZ4nCrPu/vwHKPA7Qbf859Dz5FHyw8cR72d6K6xunzXaudIUbXI18O21xQeY954AAAAAAAAAACWyjFGFd9V2XPUSjPNxqk8m0nK5Rqqu89EhN0Ajsgao4HAU9F1NNGJ5VqrSuBqLvZUb6dqdBJlmZQlmWwgeWWjPM/VSlK1k0zNOFUnzjTXTjXR6CjrvfHJtUaB2w2+A88qdLuffcfK8A/FujfbinXXWF0F39GO4aIGi4Eeuq0m3+VNEgAAAAAAAACA08MYo8h1FLmO4ixTO80UOhRknYkIuwEck+9YbQh9zSWppjuSb618J1El8lTzXRVdRyXHUaOTqt5OVO8k3c/tVJ2km3DnytVJMrXiVK3e52acaqoZK826peDWqBuAzwfhvc++a2UJwdeFqUZH90w0VAo97RgqaKgU6Be2VuXSDQAAAAAAAAAAsEo8a+UxdesZi7AbwHEZY1T2XEWOo6lO3Aufc/mO1WDgyRqj0HM0WPQPeV4nydToJKr3gvC5dqJGO1UrTu/bJu2G3+249zlJNdNKFkJwY9QNvnsV4KHndJddK2sJwdeK8bm2dk81VSt42j5Y0Gg51EVbqvyMAQAAAAAAAADAURF2AzhhrjUaDn210lRxlqvoOsesuvZdK9/1VSscuj5JM9U73Vbo81Xg9Xai5qI5v+MsWxSAd9ui1xsdxUm+sJ/AtQut0OerwQPPyuUdVn1l/0xL+6ZbGi772loraFMt1AM3VWhrDwAAAAAAAAAAjomwG8BJCx1H4RKmpnAdq2pkVY28Q9ZnWa5G3GuHPh+Cd5KF+cElKZkPwZNM7V5b9OlmrINz7YWg3HPMfRXgi+YF92iHfcbZO9XUgdm2NlQDbapEOmuooPM2lFd7WAAAAAAAAAAAoA8QdgM4Y1hrVApclYJDT015nqsZpwtt0OfaSXeO8E6iNO0m3Fmeq5Wkh1SDz7RjxY1sISh3rTmkEjz0rAK3Oy84li7Lc6VZrizLlfaW5z+yXN3lRevjNFOjk2pLLdJIOdA5oyXtHC6u9ssAAAAAAAAAAAB9grAbwBnPGKOC76rgu9L9in5bC5Xg3fC73u7OER4n3YQ7z3O10/uqwFtxqmacaqoZL8wL7lhzhHnBrXzXrptW2nl+XxCdZYcH09ni8Poo67P86Pt3rJG1kmOsXNt9Y0PgWY2UAw0UfF2wsaxtg4Wj7wAAAAAAAAAAAOB+CLsB9LVuhbajodKh6ztJ1gu+Dw3C23EvBFeuOOlWjLfnK8KTVNOt+0Jwa6RgUSv0+UrwwLPHnKt8NSwOnpNF1dVZ7+tjB9ZaeM1H0g2pjaw1coyR4xi51sh3rBzb/fq+xyXHWjm9YNvabtBtdOTvV+BZnb+hrA2VcKW+NQAAAAAAAAAAYI0i7AawJvmule/6Gij6h6yP00yN+1WB19uJmp10YZtOmqm9MCd4qlacaryeKO61TDdG8p1uBXjg2kNaojv25EPwY7X/7gbWOnZVdZ4vzFd+f8Z0w2bHmF51dXc5cIwc2w2jXWNlrelWXPdCa7e3rWvMMavbHcfIs1ZuLwB3Hdv7bOTa+5a9XjA+v61j71sHAAAAAAAAAABwKgi7AawrnmNVLVhVC94h69MsV+N+VeD1dqpGJ1kIkpMs61WAz88L3m2H3pltL+zHd+xCK3TfsYtagx89rD5e+++FDyNZa+W5RqG1hwXYzqLKa2t6gfWxgupeEL04eD5WcO3db1vXHjsIBwAAAAAAAAAAWEmE3QCgbvBbDj2Vw0ND8CzrtjpfaIfe7gbhjU660Po7y+fbofeqweNMM81YSZbL9qqlFyqlj9r+ez7U7rYBt+bY7b9tbzuvF4S7zqFhtGt7ldXOoirr+RC7V3FtqaoGAAAAAAAAAAB9jLAbAI7BWqNi4KoYuFL5vvV5nqsVZ4dUgc8vJ+kxSrV7FgfQXq+luLu4wtpZVFm9KLim/TcAAAAAAAAAAEAXYTcAnAJjjCLfUeQ7Gi4FhzzWilM1Oqk6SbYQXC+uuHZo/w0AAAAAAAAAALBkhN0AsMxCz1HoOas9DAAAAAAAAAAAgDXNrvYAAAAAAAAAAAAAAAA4WYTdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvuOu9gCwNEmSLCzv27dvFUcCAAAAAAAAAAAAAEe2OMtcnHEuBWF3nzt48ODC8iMe8YhVHAkAAAAAAAAAAAAAHN/Bgwe1Y8eOJe+HNuYAAAAAAAAAAAAAgL5j8jzPV3sQOHWtVks/+tGPJEkjIyNyXYr1l2Lfvn0LFfK33HKLNm3atMojAgAcDedsAOgfnLMBoD9wvgaA/sE5G0A/SpJkoWv1RRddpDAMl7xPktE+F4ahLr744tUexpq0adMmbd26dbWHAQA4AZyzAaB/cM4GgP7A+RoA+gfnbAD9ZDlaly9GG3MAAAAAAAAAAAAAQN8h7AYAAAAAAAAAAAAA9B3CbgAAAAAAAAAAAABA3yHsBgAAAAAAAAAAAAD0HcJuAAAAAAAAAAAAAEDfIewGAAAAAAAAAAAAAPQdwm4AAAAAAAAAAAAAQN8xeZ7nqz0IAAAAAAAAAAAAAABOBpXdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A2cpB07dsgYoyuuuGK1hwIAOA5jjIwxeuc737naQwEALNE3v/nNhfP6N7/5zdUeDgDgKK699tqF8/Xdd9+92sMBABwD19gA1gLCbqw5P//5z/XGN75RF154oYrFogYHB3XxxRfrfe97nxqNxmoPDwCg+0Lo4308/vGPX+2hAsCaduDAAX3lK1/RlVdeqac97WkaHh5eOAefyps7v/rVr+o5z3mOtm7dqiAItHXrVj3nOc/RV7/61eUfPACsI8txvl4cQh/v49prr13R1wMAa9mtt96qP/7jP9ZTnvKUheviUqmk888/Xy996Uv1ne9856T2xzU2ABybu9oDAJbTl7/8Zb3oRS/SzMzMwrpGo6Fbb71Vt956q66++mpdf/31Ovfcc1dxlAAAAMCZYcOGDcuynyzL9MpXvlIf+9jHDlm/Z88e7dmzR1/84hf127/92/qbv/kbWct7rgHgZC3X+RoAsLJ++Zd/Wd/+9rcPW9/pdPSf//mf+s///E9de+21uvzyy/XRj35Uvu8fdV9cYwPAiSHsxppx22236QUveIGazaZKpZL+63/9r3rCE56gZrOp6667Th/96Ef1s5/9TM94xjN06623qlwur/aQAWDde/WrX63f/d3fPerjxWLxNI4GANa37du368ILL9TXvva1k37u29/+9oWbcA972MP0lre8Reecc47uuOMO/dmf/Zluu+02XX311RoZGdF73vOe5R46AKwrSzlfz/uHf/gHbd68+aiPb9269ZT3DQDr2d69eyVJmzdv1vOe9zxdeuml2r59u9I01U033aSrrrpKe/bs0Sc/+UnFcaz//b//91H3xTU2AJwYwm6sGb//+7+vZrMp13X1ta99TY961KMWHnviE5+o8847T295y1v0s5/9TFdddRXztwLAGWB0dFQPfvCDV3sYALBuXXnllbr44ot18cUXa8OGDbr77ru1c+fOk9rHz372M/35n/+5JOmXfumX9K1vfUtRFEmSLr74Yj372c/W4x73ON1666163/vep5e97GV0WgKAk7Qc5+vFzj//fO3YsWP5BggAkCRdeOGFes973qPLLrtMjuMc8tgll1yiF7/4xXrMYx6jn/3sZ/r0pz+t3/md39Ev//IvH7YfrrEB4MTR2wJrwi233LLQHublL3/5IUH3vDe+8Y16wAMeIEn64Ac/qDiOT+sYAQAAgDPNH/3RH+mZz3zmktrjfuADH1CSJJKkD33oQws34eYVCgV96EMfkiQlSaL3v//9pz5gAFinluN8DQBYeV/5ylf0/Oc//7Cge97w8LCuuuqqha8/+9nPHnE7rrEB4MQRdmNN+OIXv7iw/NKXvvSI21hrdfnll0uSpqam9I1vfGNZjv0f//EfesUrXqEdO3YoCAJt2LBBz3nOc3TzzTcvy/4BAMvne9/7nn7jN35DW7duVRAE2rJli1784hfr3/7t31Z7aADQl/I815e+9CVJ3SqWSy655IjbXXLJJbrgggskSV/60peU5/myHP///J//oyc96UkaGRlRFEW64IIL9Ja3vEUTExPLsn8AwNJlWaaPfOQjevSjH62BgQEVi0U95CEP0bvf/W41Go3VHh4AnHZPeMITFpbvuOOOwx7nGhsATg5hN9aE73znO5K6c7s+/OEPP+p2j3vc4xaWb7zxxiUf9wtf+IJ+8Rd/UVdffbV+/vOfq9Pp6MCBA/riF7+oxz72sfrMZz6z5GMAAJbHX/3VX+nRj360rrvuOu3Zs0edTkd79+7Vpz71qYWWYACAk3PXXXctzEu4+Fr7SOYf37Nnj+6+++4lHTfLMr34xS/WC17wAv3zP/+zxsbG1Gq19LOf/Uzve9/79MhHPlL33nvvko4BAFi6RqOhpzzlKXrVq16lm266SVNTU2o0GvrRj36kd7zjHXrCE56ger2+2sMEgNOq3W4vLB+pApxrbAA4OYTdWBPmK/LOPfdcue7Rp6K/8MILD3vOqfrRj36k3/zN39SGDRv0l3/5l7r55pt100036Z3vfKfCMFSapnrlK1+pgwcPLuk4ALCW/d3f/Z0e+MAHqlAoqFwu67zzztNLXvKSZeu+Me8f/uEf9NrXvlYPetCDdM011+h73/uevvWtb+kNb3iDrLVqNBp68YtfrE6ns6zHBYC17qc//enC8uJr7SNZzmvx/+//+//0qU99Sr/2a7+mz3/+8/r+97+vv//7v9cznvEMSdLtt9+uN7zhDUs6BgCsZS996Uu1efNm+b6v4eFhXXLJJXrHO96hPXv2LOtxXvGKV+gb3/iGXvKSl+j666/X97//fX3hC19YmH7ulltu0bve9a5lPSYAnOluuOGGheX5aTcX4xobAE7O0VNBoE+0Wi2NjY1JkrZu3XrMbefbZdXrde3atWtJx/3BD36ghz/84frnf/5nVSqVhfWXXHKJzj33XL3oRS/SzMyMPvWpT3ERAABHsfh/4KTu/zjdfvvt+uQnP6lf+7Vf07XXXqtqtbrk49x88816+tOfri984QvyfX9h/aWXXqqhoSG94x3v0D333KPrr79ez3nOc5Z8PABYL3bv3r2wfLxr8W3bti0sL/Va/Lvf/a7e9a536e1vf/sh65/61KfqqU99qr72ta/ps5/9rP7iL/5CIyMjSzoWAKxF3/zmNxeWx8fHNT4+rv/3//6frrrqKn3gAx/Qq171qmU5zne/+1397d/+rV70ohctrPvFX/xFPe1pT9Mv/dIv6cc//rE++tGP6k/+5E+OWbwAAGtFlmV673vfu/D185///MO24RobAE4Old3oe7OzswvLpVLpuNsXi0VJ0tzc3JKPfc011xwSdM/7zd/8TW3evFmS9O1vf3vJxwGAtaZQKOiFL3yhPvrRj+rb3/62brvtNn3ta1/T29/+dg0NDUmSvvjFL+pXf/VXFcfxko8XhqE+/vGPHxJ0z3vd6163sJ5zNgCcnJO5Fp+/DpeWfi3+8Ic/XG9729sOW2+M0R/8wR9IkpIk0U033bSk4wDAWnP22WfrTW96kz73uc/plltu0S233KLrrrtOz3ve82SMUavV0u/8zu/oIx/5yLIc77nPfe4hQfe8IAj0mte8RlI3bL//m2ABYK16//vfr1tuuUVS9xx5pCk5ucYGgJPDWybR91qt1sLykUKM+wuCQJLUbDaXdNyLLrpID3nIQ474mDFGD3vYw7R3717deeedSzoOAKxFe/bsUa1WO2z9k5/8ZL32ta/V0572NN1222264YYb9OEPf1ive93rlnS8Jz/5yRodHT3iY/Pt03/yk59wzgaAk3Qy1+Lz1+HS0q/Ff/M3f1PGmCM+tviGIed1ALjPc57zHL3kJS857Px58cUX6wUveIG+8pWv6LnPfa7iONYb3vAGPfvZz9bGjRuXdMzf+q3fOupj9z9fH+0eCwCsFTfccIP+8A//UJI0OjqqD3/4w0fcjmtsADg5VHaj74VhuLB8InOtttttSVIURUs67vHmSxkcHJR06DvxAABdRwq6523YsEGf/exn5XmeJOlDH/rQko/HORsAVsbJXIvPX4dLK3stPn9OlzivA8Bi1Wr1qCGGJD3zmc/UlVdeKUlqNBr62Mc+tuRjcr4GgK6f/OQnes5znqMkSRSGof7u7/7uqG/K5xobAE4OYTf6XrlcXlg+kVYt9Xpd0om1PD+WQqFwzMet7f55pWm6pOMAwHp09tln68lPfrKk7jzee/fuXdL+OGcDwMo4mWvx+etwaWWvxefP6RLndQA4Wa985SsXAvEbbrhhyfvjfA0A0l133aWnPOUpmpyclOM4uu666/TLv/zLR92ea2wAODmE3eh7YRguzO+6e/fuY247OTm5cAGwbdu2FR8bAODUPfCBD1xY3rNnzyqOBABwNFu3bl1YPt61+K5duxaWuRYHgDPT6Ojowj0WrsEBYOn27t2rX/mVX9HevXtljNE111yjX/3VXz3mc7jGBoCTQ9iNNWE+ELn99tuVJMlRt/v3f//3heUHPOABKz4uAMCpO1aLRQDAmWHxG5MWX2sfCdfiANAfuA4HgOUxNjamJz/5yQtzXH/oQx/S5ZdfftzncY0NACeHsBtrwmMf+1hJ3bYt3//+94+63eIWXI95zGNWfFwAgFP305/+dGF58+bNqzgSAMDR7Ny5c+Ecfbx2t9/61rckSVu2bNGOHTtWemgAgFNw8OBBjY2NSeIaHACWYnp6Wv/lv/yXhXsb733ve/V7v/d7J/RcrrEB4OQQdmNN+LVf+7WF5Y9//ONH3CbLMn3yk5+UJNVqNT3hCU84HUMDAJyCu+66S1//+tclSeecc462bNmyyiMCAByJMWahDeO///u/6+abbz7idjfffPNC1cmv/uqvUjUIAGeoj3zkI8rzXJL0uMc9bpVHAwD9qdFo6BnPeIZ+8IMfSJLe/va3661vfesJP59rbAA4OYTdWBMe8YhH6NJLL5UkfexjH9NNN9102DZXXXWV/u3f/k2S9Pu///vyPO+0jhEA0PXlL3/5mFNO7N+/X5dddpk6nY4k6Xd/93dP19AAAKfg9a9/vRzHkSS99rWvVbPZPOTxZrOp1772tZIk13X1+te//nQPEQDWvbvvvlu33XbbMbf5yle+oj/+4z+WJEVRpJe+9KWnY2gAsKZ0Oh095znP0Y033iipex/6Xe9610nvh2tsADhx7moPAFguH/zgB/WYxzxGzWZTT3nKU/S2t71NT3jCE9RsNnXdddfpIx/5iCTp/PPP1xvf+MZVHi0ArF+vfe1rFcexLrvsMj3qUY/Sjh07FEWRxsbG9M1vflN/8zd/s9A68bGPfewJt/kCAJy873znO7r99tsXvp4//0rS7bffrmuvvfaQ7a+44orD9nH++efrzW9+s9773vfq1ltv1WMe8xi99a1v1TnnnKM77rhDf/qnf7oQsLz5zW/WeeedtyKvBQDWsqWer++++2494QlP0KMe9Sg961nP0i/8wi9odHRUknTnnXfqs5/9rD772c8uVHX/+Z//Od2VAOAU/MZv/Ia+9rWvSZKe+MQn6uUvf7l+/OMfH3V73/d1/vnnH7aea2wAOHGE3VgzHvawh+kzn/mMXvSiF2lmZkZve9vbDtvm/PPP1/XXX69yubwKIwQAzNu7d68+9KEP6UMf+tBRt7nssst09dVXKwiC0zgyAFhfrr76an3iE5844mM33njjQkXKvCOF3ZL07ne/WwcOHNA111yj2267TS984QsP2+blL3/5KVW1AACW73x90003HbEb3rxCoaD3v//9euUrX3nKYwWA9ezzn//8wvI///M/6yEPecgxtz/rrLN09913H/ExrrEB4MQQdmNNedaznqV//dd/1Qc/+EFdf/312r17t3zf17nnnqvnPe95es1rXqNCobDawwSAde0Tn/iEbrjhBt1000268847NTY2ppmZGZVKJW3btk2PfvSj9ZKXvESPetSjVnuoAIATZK3Vxz72MV122WX6yEc+ou9973saGxvT8PCwLr74Yr3qVa/S0572tNUeJgCsWw9/+MP1qU99SjfddJNuvfVW7du3T2NjY0qSRAMDA3rQgx6kJz3pSfrt3/7thYpvAMDq4hobAE6Myef7EwEAAAAAAAAAAAAA0Cfsag8AAAAAAAAAAAAAAICTRdgNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAAAAAAAAAADoO4TdAAAAAAAAAAAAAIC+Q9gNAAAAAAAAAAAAAOg7hN0AAAAAAAAAAAAAgL5D2A0AAAAAAAAAAAAA6DuE3QAAAAAAAAAAAACAvkPYDQAAAADACbj88stljNFrXvOaJe3nne98p4wxMsYs08iA/vC+971Pxhg9/vGPX+2hAAAAAFgjCLsBAAAAoM9885vfXAhL3/nOd57Qc6644oqF59x9990rOr616JZbbtGnPvUp+b6vP/zDP1zt4WANu/baaxf+Vq+99toTes6R/r4XrzvVjyOdX8bGxvShD31Iz3rWs3T22WerUqkoCAJt3LhRj3/84/X2t79dP/7xj484zle/+tUaGhrSDTfcoM9//vOn+B0CAAAAgPsQdgMAAAAAcBzveMc7lOe5Xvayl2nr1q2HPb44oOTNBFiLsizTu971Lp199tl63etep6985Su66667NDs7q06no/379+uGG27Qe97zHl100UV6ylOeop/+9KeH7KNUKukP/uAPJElXXnmlsixbjZcCAAAAYA1xV3sAAAAAAACcyW655RZ9/etflyS98Y1vXPL+3vnOd55wRT5wqt797nfrTW960xEf+6u/+it9+MMfliRdc801uvjii4+43ejoqCSp2WzqBS94gb785S9Lknzf1wte8AI9+clP1o4dO1QoFLR//37deuut+sIXvqB/+Zd/0de//nV95CMf0Qc+8IFD9vl7v/d7+pM/+RP95Cc/0Re/+EU997nPXaZXDAAAAGA9IuwGAAAAAOAYPvjBD0qSHvnIR+rcc89d5dEAJ2bLli3asmXLER+bD7ElaefOnXrwgx98zH29+tWvXgi6H/nIR+q6667Tjh07Dtvu6U9/uq688kp95Stf0etf//oj7qtarerpT3+6Pv/5z+sv/uIvCLsBAAAALAltzAEAAAAAOIrp6Wl97nOfkyT91m/91iqPBjj9vvCFL+gTn/iEJOkhD3mI/umf/umIQfdiz3zmM3XrrbfqiU984hEfn/9buuGGG3THHXcs63gBAAAArC+E3QAAAACABXNzc3rve9+rRz3qURocHFQQBNq6dat+/dd/XV/5yleO+dwdO3bIGKMrrrjimNtdccUVMsYcMTC7++67F+a+vvbaayVJn//85/X0pz9dmzdvluu6evzjH3/Ic372s5/pta99rR784AerXC7L931t3rxZD33oQ/Wyl71Mn/nMZ9Rut0/iu3CfL33pSwvPveyyyw57/Jvf/KaMMXrpS1+6sG7nzp0Lr2H+45vf/ObC4+985zsX1h/J/b+PP/jBD/Rbv/Vb2rZtm6Io0rnnnqs/+IM/0NjY2CHP++53v6vnPe952r59u8Iw1DnnnKO3vvWtmp2dPe7rTNNUn/jEJ/TMZz5TmzdvVhAEGhoa0mMf+1j9j//xP9RsNo/4vPmf5Yl+LP4+LPajH/1Ir3zlK3XeeeepUCioXC7rQQ96kN7whjcccw70I/2+fP3rX9eznvUsbdy4UUEQaOfOnXr1q1+t3bt3H/f7IEnf+MY39JKXvERnn322CoWCKpWKLrroIr35zW/W3r17T2gfa8l73vOeheWPf/zjKhaLJ/S8Wq2mZz/72Ud87BnPeIbCMJQkffrTn176IAEAAACsW7QxBwAAAABIkm677TY985nPPCzQ27Nnjz73uc/pc5/7nJ773Ofqf/2v/7UQVK2kPM91+eWX62//9m+Pus3f/d3f6UUvepE6nc4h6/ft26d9+/bphz/8oT7+8Y/rRz/60XFbNR/JN77xDUnStm3btHnz5pN+/lL97d/+rX77t3/7kNd3xx136P3vf7+uv/563XDDDdq4caP+/M//XG95y1uU5/nCdnfeeaf+7M/+TP/4j/+oG264QaVS6YjHuOeee/TsZz9bP/zhDw9ZPzExoRtvvFE33nijPvzhD+v666/X+eefv+yv8b//9/+ud7zjHcqy7JD1P/3pT/XTn/5UH/7wh/WRj3xEl19++XH39V//63/Ve9/73kPW3X333frrv/5rfe5zn9MNN9ygBzzgAUd8bqvV0ktf+lJdd911hz324x//WD/+8Y/14Q9/WJ/+9Kf1rGc964j7ePzjH68bbrhBknTXXXcdtwL6TPejH/1It956qyTp0ksv1S/+4i8uy36DINBDH/pQ3XzzzfrqV7+qd7zjHcuyXwAAAADrD2E3AAAAAEB79uzRk570JE1OTi5UFb/whS/U0NCQfvrTn+qqq67SD3/4Q33+85/XFVdcccRAcLl94AMf0L/+67/q0ksv1atf/Wqdf/75mpqaWqj03b9/v1760peq0+lodHRUr3nNa3TJJZdoeHhYzWZTt99+u2644QZ98YtfPOUxfPvb35YkXXzxxUd8/OKLL9aPfvQjfelLX1oI7P7hH/7hsGB8586dJ33sH/7wh/r0pz+tc889V29605t00UUXaXZ2Vtdcc40+9alP6Wc/+5ne9KY36bnPfa7e/OY365JLLtFrX/taXXDBBRobG9Nf/MVf6O///u/1gx/8QO9617sOC4ElaXx8XI997GO1a9cuBUGgV7ziFXrc4x6nHTt2aG5uTl/72tf0wQ9+ULfffrue9rSn6Qc/+IGq1erC89/97nfrTW9601FfQ7PZ1GWXXaZdu3bJ8zxt2rTpkMf/6q/+Sm9729skSSMjI3rrW9+qxzzmMUrTVP/4j/+o973vfarX67riiis0PDyspz/96Uc91kc/+lF997vf1eMe9zi96lWvWvh9+eQnP6lPfvKTOnjwoF72spfppptuOuy5eZ7r13/913X99ddLkp71rGfp+c9/vs4++2xZa3XLLbfoqquu0j333KNf//Vf14033qhf+qVfOvYPcA2YD+6lbjX2cnrEIx6hm2++WbfccotardZpeQMNAAAAgLWHsBsAAAAA+tiBAwf04x//+LjbTU1NHfPx17/+9ZqcnJTUDQ1f/vKXLzz28Ic/XM9//vP1tKc9Td/4xjf0mc98Ri95yUv0tKc9bUljP55//dd/1eWXX65rr732iC2/r7/+etXrdUnSP/3TPx1Wuf3oRz9al19+uf7yL//ylI5/4MCBhfmEH/awhx1xm2KxqAc/+MEL1a+SdP755y9LRe+//Mu/6NGPfrS+/vWvq1AoLKx/whOeoFarpc9+9rO67rrr9NWvflWXXXaZPvOZz8hxnIXtfuVXfkWPfexjdfPNN+vqq6/Wu971LrnuobcBXve612nXrl0666yz9I1vfOOwUP7xj3+8nve85+nSSy9dqBR/97vfvfD4li1btGXLliOOP89zvfCFL9SuXbskSf/zf/5PXXDBBQuPHzx4UG9+85slSZs3b9bNN9+sbdu2LTz+mMc8Rs9+9rN16aWXql6v65WvfKXuuusueZ53xON997vf1Ste8Qr9zd/8zSG/L0960pPk+76uvvpq3XzzzbrtttsO+3leffXVuv766+V5nv7v//2/eupTn3rI45dccole/OIX69JLL9VPfvITvf71r9d3vvOdI45jLVlc7f/whz98Wfc9v78kSfTDH/5Qj3zkI5d1/wAAAADWB+bsBgAAAIA+9uEPf1gXXXTRcT++9KUvHXUfe/fu1Re+8AVJ0lOf+tRDgu55QRDommuuWQhLTzVAPhn/f3t3HqZ1Xe+P/3mz78KAiIjmFrjkjmmaS2aSJgIetw4nRVHTSjMt/bmlHTVtOYKZelTSOikes8gN0NRESKVvCqIeFwwlBWVJVPZ15vcH19yBMMM2MHzg8bguruvDfLbXPQ4v576fn/f73bZt2/zyl7+scW3rKVOmJEnatWtX6xTlzZs3T/Pmzdf4/suu8dyxY8c1Pn9dlUqlDBo0aLmgu9q3vvWtJEvX2p4/f37uuOOO5YLuJGnYsGHOPvvsJEtHcL/22mvL7Z84cWLuv//+JEv/e9Y0+nyfffbJt7/97SQpr4u9Ov7zP/8zv/vd75IsDdXPOuus5fbffffdmTt3bpLkxhtvXC7oXvbel156aZKlsw/UNkp/6623zs0337zSn5dlR59Xj9avVlVVlZ/85CflOj8ddFdr165dfvaznyVJnn322bz11ls11rKp+PDDD8vbdf1vYNnrvf3223V6bQAAYPMh7AYAANjMjRgxIkuWLEmSlQbd1bbffvt85StfWeGc9aVnz55p3bp1jfurp8T+6KOPag3z19b06dPL2+3atavz66/KnnvuWeP60nvttVd5+ytf+UoqKipWedynA8WhQ4dmyZIladGixSpH6R966KFJlj4Y8e67766y9gceeCA/+tGPkiRHHXVUbrzxxhWOefLJJ5Msfajh+OOPr/FaZ5555grnrMwJJ5yQpk2brnRft27dymuWf/r78Nprr5VH8J9wwgk1Xj/51/chyUqnQx8xYkSqqqpSVVVV+PW6k2TWrFnl7ZYtW9bptZf9ma1+cAUAAGBNCbsBAAAK7KqrriqHa7X9Oe2002q8xrLToK9qKuHq/XPnzl3vozH33HPPWvcfd9xxadu2bZKkT58+OeKIIzJgwIC8+OKLdRLEz5gxo7xdH2F3165da9xX/brX5Lhlg8sk5anX586dm0aNGqVUKtX459hjjy2ft6pgcsyYMenXr1+qqqrSrVu3FaZXr1b9c7fvvvvWODV5kmy11Vbl4Li2Kft32WWXWuuq/m9Y0/chSb7whS/U+n2oDsyTzSOgXfZhk+olA+rKsv+m6vraAADA5kPYDQAAsJlbNtRd1VTFnTp1Wul568OqAub27dvn4YcfzjbbbJOqqqo8/fTTufDCC9O9e/dUVFTk+OOPz6OPPrrW92/WrFl5e968eWt9nbW1sunLqzVo0GCNj/v0AwDTpk1bq7qqpx5fmQ8++CC9evXK3Llz07Zt2zz88MPLBe7Lqv75WZ3psat/7mr7mavt+5D863uxIb4P62LZadirqqpW65xlj6tp2v+10b59+/L21KlT6+y6yfL/pmp72AEAAKA2jeq7AAAAADYedRmUrauVjQb+tEMOOSR///vf84c//CHDhg3LyJEjM2nSpMycOTN//OMf88c//jE9evTIkCFDVhmGftqWW25Z3l7fwX59qA59O3TokKeffnq1z6tpbe/58+end+/emTRpUho2bJjf/e53tY46r1bfP3PLht+PPPLIak8/vr7WcV92ffnVfchi2ZHRdTnd+LLT4I8ZM6a8jEFdWPbfVE0PRAAAAKyKsBsAAGAzt+zauVOnTs22225b47HLTt386XWiq0fOVlZW1nq/up6yuFmzZunbt2/69u2bJHnnnXcydOjQ3HzzzRk/fnwef/zxXH755RkwYMAaXXfZsPujjz6q05o3BtWjdmfNmpVdd911tR4uqM0ZZ5yR//f//l+SZMCAAasMRisqKvLBBx+s1ojh6p+7mtYmXxfLjl5u27ZtPve5z9X5PdbE2qxlXX1cqVSq0+D4sMMOK28PHTo0l1xySZ1de9l/U9ttt12dXRcAANi8mMYcAABgM7dsuPfXv/611mOrw8wWLVpkxx13XG5f9fq+qwqGx48fvzZlrrYddtgh3/nOd/K3v/0tXbp0SZL87ne/W+Pr7LjjjuXR4Kuqub5HJ6+NffbZJ0myYMGC5datXhvXXXdd7rvvviTJ2WefnfPOO2+V51T/3I0ZMyaLFy+u8bhp06blH//4x3Ln1KXq70OSPPvss3V+/TW17Fr1L7744iqPX7RoUV555ZUkyW677ZZGjepuXMMee+yR7t27J0lGjRqVMWPG1Nm1l/03tfvuu9fZdQEAgM2LsBsAAGAzd/jhh5dH9d511101Hvfuu+/miSeeWOGcatXTW48ZM6bGtYb/7//+Ly+//HJdlL1Kbdq0yf77758k+ec//7nG5zdu3DgHHnhgkuRvf/tbrccuu773ggUL1vhe9aFnz57lkH7gwIFrfZ0//vGPufLKK5Ms/bn45S9/uVrnHXnkkUmSjz/+OEOGDKnxuF/96lfln6fqc+rSvvvuW34o4o477sj8+fPr/B5romPHjuVQ/6mnnlrlmuKPPPJIZs6cmST58pe/XOf1XHbZZeXt008/fbVnZvj444/zyCOP1Li/+t/U1ltvbWQ3AACw1oTdAAAAm7nOnTunT58+SZLhw4fnN7/5zQrHLFy4MGeccUYWLVqUJPnOd76zwjHVUx6///775VG+y5o1a1b69+9fZ3U//vjj+eCDD2rc/8knn5RHote0zvSqHHLIIUmSl19+udYQe+utty5vT5gwYa3utaF169YtJ554YpLkf//3f3PjjTfWevw777yzwn/Xl156Kd/4xjdSVVWVHXfcMb///e/TuHHj1br/6aefXh45f9FFF2Xy5MkrHDNu3Lj8+Mc/TpJss8026d2792pde000aNCgHOi+/fbbOfXUU2v9bz1z5swaA/3DDz88pVIppVIpEydOXOuaqkfGL1iwIP3798/ChQtXetykSZNy4YUXJlm6xv23v/3ttb5nTfr06ZNTTz01ydJ/B1/+8pfLI+1rMnz48Oy///556qmnajym+t9mXa4DDgAAbH6s2Q0AAEAGDBiQp556Kh999FHOOOOM/OUvf8nJJ5+cdu3a5Y033sjPf/7zvPTSS0mSk046KUcfffQK1/iP//iPXH311Zk5c2b69++fv//97+nRo0dKpVJefPHF3HjjjZk0aVL22WefjB07dp1rvu+++9KzZ8985StfyVFHHZXPfe5zqaioyKxZs/Lqq6/ml7/8ZTlAPeecc9bqHr169cqPfvSjLFy4MKNGjapxZPE+++yTZs2aZf78+bnyyivTuHHjfOYznymvY77NNtukefPma/dC16PbbrstL7zwQt5+++1cdNFFeeihh3Lqqadm9913T9OmTfPhhx9m3Lhxeeyxx/LnP/85ffr0yde//vXy+ccdd1zmzJmThg0b5sc//nE++OCDWh9A2GGHHdKyZcskS9dE/9nPfpZvf/vbmTRpUvbbb7/8f//f/5eDDjooixcvzpNPPpmf/exnmT17dkqlUu64447VDtLX1DnnnJMnnngif/zjH/PAAw9kzJgx+eY3v5nPf/7z2WKLLTJz5sy88cYbGTFiRB5++OE0a9ZspQ981JX+/fvnvvvuy4gRI/Loo49mr732yjnnnJP99tsvrVq1yj//+c8888wzufXWWzNjxowkyVVXXZWuXbuul3puu+22fPTRR3nkkUfy17/+Nd26dctJJ52UHj16ZPvtt0/z5s0zderUjBkzJn/84x9XOf36W2+9lffeey9Jyg/aAAAArA1hNwAAAOnSpUueeuqpHHvssXn//fczaNCgDBo0aIXjjj/++JWO/E6WhpeDBg3K17/+9cyfPz9XXXVVrrrqqvL+5s2b57e//W0effTROgm7k6XrFQ8bNizDhg2r8Zhzzjkn559//lpdf5999sl+++2XF198MYMHD64x7G7dunXOP//8/PSnP82YMWNy1FFHLbf/6aefzuGHH75WNaxPFRUVefbZZ3PSSSdl1KhRGTlyZEaOHFnj8W3atFnu79WB5ZIlS3LKKaes8n6f/j5861vfyscff5wrr7wyU6dOzfe+970VzmnatGnuuOOOHHPMMav5qtZcqVTK/fffn+9+97v57//+70yYMCEXX3xxjcd37NhxvdWSLB2lXf3gwUMPPZQ33ngjF1xwQY3HXnXVVbniiivWWz0tWrTIgw8+mOuuuy4/+9nPMmvWrPz2t7/Nb3/72xrP+drXvpZvfetbK903ePDgJEt//tbnf1cAAGDTZxpzAAAAkiwNdt98881cf/31OeCAA9K2bds0adIknTt3zvHHH5+HH344f/jDH5Zbn/rTTjzxxDz33HPp06dPttxyyzRp0iTbbrttTjvttPztb3/LCSecUGf1DhgwIPfcc0/OOOOMdO/ePdtss02aNGmS5s2bp2vXrjnttNMyatSo3HbbbeUR1mvj7LPPTpIMGTKk1umtb7jhhtx555055JBDUlFRscKa5hurTp06ZeTIkXn00UfTt2/f7LjjjmnRokUaN26cLbfcMgcddFAuuuiiPPPMM7Wu6b62LrvssowdOzZnnXVWdtpppzRv3jwtW7bMrrvumu9+97t54403ytNor0+NGzfOrbfemnHjxuW8887LHnvskS222CINGzbMFltskb333jv9+/fP73//+7z++uvrvZ42bdrkwQcfzIgRI9K/f//ssssuadOmTRo1apSKiop07949P/jBDzJ+/PhceeWV5fXX15cGDRrkyiuvzNtvv51f/OIXOfbYY7P99tunVatWadKkSbbaaqscdthhufzyy/Paa6/l0UcfrXGkeXXY3b9//zRp0mS91g0AAGzaSlVVVVX1XQQAAABsrGbPnp0dd9wx06dPzz333JO+ffvWd0lQWH/5y19yyCGHpEmTJnnrrbey3Xbb1XdJAABAgRnZDQAAALVo1apVrrzyyiTJj3/841RWVtZzRVBc11xzTZLkjDPOEHQDAADrzMhuAAAAWIVFixZll112ydtvv537778/J510Un2XBIXz17/+NQceeGBat26d8ePHp1OnTvVdEgAAUHCN6rsAAAAA2Ng1btw4v/71r/PUU09l8eLF9V0OFNKHH36Yq666Kvvuu6+gGwAAqBNGdgMAAAAAAABQONbsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCEXYDAAAAAAAAUDjCbgAAAAAAAAAKR9gNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAAAAAAAAAhSPsBgAAAAAAAKBwhN0AAAAAAAAAFI6wGwAAAAAAAIDCaVTfBQCw8Zs/f35mzpyZmTNnZsGCBVmyZEl9lwQAAAAA1KGGDRumadOmadOmTdq0aZNmzZrVd0kAq1Sqqqqqqu8iANg4VVVV5YMPPsgHH3xQ36UAAAAAABtQ586d06lTp5RKpfouBaBGwm4AajRx4sR8+OGHy32tQYMGadiwYT1VBAAAAACsD0uWLEllZeVyX2vfvn223377+ikIYDWYxhyAlZo3b95yQfdWW22VioqKNG/e3NOcAAAAALCJqaqqyrx58zJjxoxMnTo1SfLhhx9mq622SvPmzeu5OoCVa1DfBQCwcZo+fXp5e5tttkmXLl3SokULQTcAAAAAbIJKpVJatGiRLl26ZJtttil/fdnPCQE2NsJuAFZq9uzZ5e0OHTrUYyUAAAAAwIa07OeB77//fsaNG5ePPvooVsYFNjbCbgBWavHixUmSRo0apVEjq14AAAAAwOZi2c8EKysr8/LLL2f48OEZM2aMwBvYqEgvAKiVacsBAAAAYPNT/bngkiVL8vrrr6d9+/blffvtt199lQWwHGE3AAAAAAAAK9W4ceN07Ngx06ZNK3/ts5/9bNq0aVOPVQEsZRpzAAAAAAAAatSxY8dsueWWmTFjRiorK/Puu+/Wd0kASYTdAAAAAAAArEK7du1SWVmZWbNm5f3336/vcgCSCLsBAAAAAABYhSZNmqRRo0ZZuHBhFixYUN/lACQRdgMAAAAAALAaSqVSqqqqsmTJkvouBSCJsBsANhmlUimlUilXX331CvtGjBhR3j9ixIgNXtunbb/99imVSunXr199lwKbBf0BqIn+ANRGjwBqoj8AsLEQdgMALGP48OHp06dPunTpkqZNm6ZLly7p06dPhg8fvspzFyxYkNGjR+fmm2/ON77xjXTr1i0NGjQov8kHim1d+kO/fv3KvWBVfyZOnLj+XwywzubOnZshQ4bk3HPPzf7775927dqlcePGad++fb7whS/k6quvzpQpU1Z5ncMPP3y1+wNQHHXRI66++urV7g+1BY/AxqWufoeo9thjj+WUU07JjjvumBYtWqRZs2bZdttt06tXr9x///2prKxcj68GoP41qu8CAAA2BpWVlTn77LPzq1/9armvT548OZMnT86DDz6YM888M7fffnsaNFj584LnnHNOfv3rX2+AaoENqS76A7Bpefnll3PwwQdn9uzZK+ybMWNGRo8endGjR2fAgAG54447cvLJJ9dDlUB9qc8e0a1btzq7FlD36rI/LFiwIH379s0f/vCHFfZNmjQpkyZNysMPP5xbbrklDz/8cNq2bVuXLwVgoyHsBoDNwOGHH56qqqr6LmOjdvnll5eDrH322ScXX3xxdtppp0yYMCE//elPM3bs2AwaNChbbrllfvzjH6/0Gst+j1u3bp199903b7755ho9kQ0bmv6wanXRH6p17tw5jz/+eK3HbLPNNnVWO6wL/aFmM2fOLH9IffDBB+fYY49N9+7d0759+0yfPj1DhgzJnXfemZkzZ6Zv375p06ZNjj766Fqv2b1799x9990bonyoE3pEzeqqR3zrW9/KCSecUOu9lixZkkMPPTQzZ85MmzZt0rt37/XxkmCN6A81q8vfIc4///xy0N2xY8dcfPHF2XfffdO4ceO88sor+clPfpJ//OMfGTVqVE455ZQ89thjG+x1AmxIwm4AYLM3fvz4/PznP0+y9IPmkSNHpnnz5kmS/fffP8cdd1wOO+ywvPDCC/nZz36WM844IzvvvPMK1zn66KNz+OGHZ//998+uu+6aBg0a5PDDDxd2Q4HVVX+o1rhx43zuc5/bILUD60+DBg1y0kkn5aqrrspuu+22wv6jjjoqRx99dPr06ZMlS5bkvPPOy1tvvVXrVOQtW7bUH2ATUVc9omPHjunYsWOt9xo+fHhmzpyZJDnxxBPLv6cAG6e66g9Tp07NoEGDkiTt2rXLiy++mC5dupT3f/GLX0zfvn2z1157ZeLEiXn88cfzwgsvpHv37uv3BQLUA3PsAQCbvYEDB2bx4sVJkptvvnmFD4hatGiRm2++OUmyePHiDBgwYKXXOfnkk9OvX7/svvvupjKGTURd9Qdg03LQQQfl/vvvX+mH1NV69eqV448/PkkyYcKEjB07dkOVB9SzDdkj/ud//qe8feqpp67VNYANp676w1//+tfyWtynn376ckF3tTZt2uR73/te+e/PP//8upYPsFHyKSwA1LO5c+emdevWKZVK6du37yqPf/7551MqlVIqlXLrrbeu1j1GjBhRPmfEiBEr7O/Xr19KpVK23377JMnHH3+cH/7wh9l9993TsmXLtG3bNoceemjuvffe1brf8OHDc8wxx2TLLbdMixYt0rVr11x44YWZPHnyap1fbcyYMTnnnHPSrVu3tGrVKi1btky3bt1y7rnnZvz48TWe9+tf/7r8eidOnJgFCxZk4MCBOfDAA9OhQ4eUSqVcffXVSZZOPf7QQw8lSXbZZZcceOCBK73mgQceWF7/7qGHHjIlGxuE/lAz/YHNnf5Qsw3RH1bXl770pfL2hAkT1uhcWBd6RM02pR4xc+bM8u8qO+ywQw455JA1vgabH/2hZkXqDwsXLixv77jjjjVeZ6eddlrpOQCbEtOYA0A9a9GiRXr37p177rknDz30UObMmZOWLVvWeHz1m71GjRrlpJNOqvN63nzzzXz1q1/NxIkTl/v6qFGjMmrUqDz//PP55S9/WeP5F1544QojG996660MGDAg99xzT4YNG7bKGiorK/P9738/AwcOXCE0Gj9+fMaPH59Bgwbllltuydlnn13rtf75z3+mT58+eemll1a6/5133sn777+fJDnssMNqvdZhhx2WN998M5MnT87EiROzww47rPK1wLrQH1akP8BS+sOKNmR/WF0LFiwobzds2HCdrgVrQo9Y0abYIx544IHMmzcvSfKNb3yj1qUSoJr+sKIi9ofqh22T5O23367xOssG5cueA7ApEXYDsNYqK6vy0dzN66nQdi2apEGDuv8AoW/fvrnnnnsyZ86cPPTQQ/n3f//3lR63ePHiPPDAA0mSHj16pEOHDnVax9y5c9OzZ898+OGHueKKK3LkkUemVatWGTt2bH70ox9l0qRJueWWW9KzZ8/06NFjhfMHDhxYfpPZuXPnXHrppfn85z+f+fPnZ+jQoRk4cGBOPPHEzJ07t9Y6zjvvvPIT44ceemj69euXHXfcMS1atMi4ceMycODA/N///V+++c1vplOnTjnuuONqvFb//v3zyiuv5NRTT83JJ5+cTp065d13303Tpk2TJK+99lr52F122aXWupbd//rrrwuzalFVWZklH39c32VsUA3btk1pPUxfrz8sr+j94cMPP8xhhx2WV199NbNnz05FRUX23HPP9OzZM2eccUZatGhR6302FVVVVcnCJfVdxobTpOF6CSD0h+VtyP6wup555pny9q677lrrsW+88UYOOOCAvPnmm5k/f346dOiQ/fbbL//2b/+Wr3/962ncuPEa3buoqqoqs2jRR/VdxgbVuHG7lEp+h9Ajau8RK7O5TWFeVVWVBUsq67uMDappwwZ+h9AfVtof9thjjxx00EF57rnn8utf/zoXXXRROnfuvNwxs2bNysCBA5MsHf191FFHrVENAEUh7AZgrX00d2H2u/bJ+i5jg3rxiiPTvtWavUFZHUceeWQ6duyYadOmZfDgwTW+0XzyySczbdq0JFmt6cbW1PTp07Nw4cI8//zz2X333ctf32+//XL44Ydnjz32yPz583Prrbeu8EZz2rRpufzyy5Mkn/nMZzJ69Oh06tSpvP/QQw9Njx490qNHj/L6tyvzxBNPlN9kDho0KP37919u//7775//+I//yNe+9rX8+c9/zvnnn59jjjkmjRqt/Neal19+eYXr7LvvvuXtSZMmlbdXtsbVsrbddtvy9nvvvVfrsZu7JR9/nLcOOri+y9igPvvcs2lUUVHn19Uf/mVT6A+zZ8/OyJEjy3+fMmVKpkyZkj/96U+54YYb8rvf/S4HHXRQrffaJCxckgV/fr2+q9hgmh6xa9K07t9+6w//sqH7w+oYN25chg4dmmTpB9KrCrKmTp2aqVOnlv8+efLkTJ48OQ8//HB+8pOf5Pe///1ahWFFs2jRRxn1l8/Xdxkb1CFf/H9p0qR9nV9Xj/iXTaFHfNrEiRMzatSoJMnBBx+83FTFm6oFSypz3ztTV33gJuTrO2yVZo3qfmYQ/eFfitwf7r777nz1q1/NO++8k3333TcXX3xx9t133zRq1CivvvpqfvrTn+add95Jhw4dcu+996ZJkyZrVAdAUVizGwA2Ao0aNcrJJ5+cJPnTn/6UDz/8cKXHVU8f1qpVq/Tq1Wu91HLNNdcs9yaz2s4775zevXsnSf7yl7+ssP83v/lN+Wnp//qv/1ruTWa1I444ImeddVat97/hhhuSJP/2b/+2wpvMas2aNStPY/aPf/wjTz/9dI3XO+KII2q8TrL0SedqrVq1qrW2Zad2mz17dq3HQl3RH/6lyP2hVCrlwAMPzHXXXZfhw4dnzJgxee6553L77bfn859fGupMnjw5Rx11VMaOHVvrvaCa/vAvG7o/rMqCBQty5plnZsmSpTMYXHfddTUe26BBg3z5y1/Of/3Xf+XJJ5/M2LFjM3LkyAwcOLD84fZrr72WL33pS3n33XfXuiY2P3rEvxS5R9Tkt7/9bXm65dNOO22ta2HzpD/8S5H7Q9euXfO3v/0t11xzTebMmZOLLrooX/rSl3LIIYfk3HPPzaRJk/L9738/Y8eOzYEHHrjWNQFs7ITdALCRqH5KetGiRfnd7363wv558+blwQcfTJL07t17vUx1WyqVanyiO1n6dHWSzJgxIx9/aorqJ59cOsq/Xbt2tb4JPuOMM2rcN3PmzIwYMSJJcsIJJ9Ra66677lqeQu3555+v8bhVPX0+f/788vaqnnJedtqx6rXxYEPQH4rfHwYMGJDnn38+l112Wb761a9mn332yRe+8IWcffbZGT16dC677LIkyZw5c3LmmWeusFYg1ER/qJ/+sCrf+c538sILLyRZGkL17NmzxmOHDBmSJ598MhdeeGG+/OUvZ++9984hhxyS7373uxk3blw5xJo6dWouuOCCdaqLzY8eUfweUZN77rknydIQbn2so8ymT3/YNPrDI488knvvvXelD9xW/7cdPHiw9xfAJk3YDQAbiQMOOKA89Vz109PLevjhh8tvXtbH9GFJ0qFDh7RvX/MUihXLTNG87IjHJHnllVeSJPvss0+N03klyd57711jaDR27NhUVi5dg+3rX/96SqVSrX/++c9/Jlk6DXBN9txzzxr3JUs/HKq2cGHta9AvWLCgvN28efNaj4W6pD8Uvz+0bdu2xnNLpVKuu+66fPnLX06S8qhvWB36Q/30h9pcf/31GTRoUJKlU5/ecssttR5fW39o3LhxBg0alG7duiVJ/vjHP2by5MlrXRubHz2i+D1iZUaPHp3x48cnSXr16pUttthireth86U/FL8/XHTRRTn99NPzxhtvpHfv3nn22Wcze/bszJs3L2PGjMnpp5+ed999N5dccklOOOGE8mhxgE2NNbsBWGvtWjTJi1ccWd9lbFDtWqzf9Y369u2b//zP/8xzzz2XiRMnZvvtty/vq37z2bFjxxx55Pr5vq/qSe0GDf71nNyn3yTNmDEjydL6atOoUaNUVFSs9M1h9Vpga6p66rKVadeuXa3ntm7dury9qqnJ58yZU95e1ZTGm7uGbdvms889W99lbFANawkr6oL+sOn3h29+85t56qmnkiTPPPNMDj54E173vknDpetYby6a1P1am8vSHzZ8f6jJ7bffXp6pYZdddsmwYcOWW+ZgbTRq1Cj9+/fPxRdfnGRpf6htFFzRNW7cLod88f/VdxkbVOPGa/fztrr0iE2vR/zP//xPefvUU09dq1qKqGnDBvn6DlvVdxkbVNOG63esmv5Q3P4wdOjQ3HjjjUmSfv365e67715u/z777JO77rorXbp0yTXXXJMhQ4bk1ltvzXnnnbdW9QFszITdAKy1Bg1Kad+q6aoPZLVVv9GsqqrKfffdl0svvTTJ0jdxjz/+eJLk5JNPrvWp5fpWKpXW+txl37zefvvtOeigg1brvNreTDZsWHvA0KVLl/L2pEmTaj32vffeK29vu+22q1Xb5qrUoEEaLfMUPutOf9j0+8Nuu+1W3t7UR26WSqWk6cb7s1o0+sOG7w8rc9999+Vb3/pWkuQzn/lMnnjiifJ0p+tq8+oPDdKkSc2j/FhzesSm1SMWLlyY+++/P0my1VZbpUePHmt8jaIqlUpp1mj9PkC2udEfitsfqkeAl0qlXHvttTUed9lll2XAgAGZPXt27rrrLmE3sEnaeP8vBQCboa5du6Z79+554YUXMnjw4PIbzd///vflKXTX1/Rh66pdu3aZMmVKpk6dWutxixcvLj+B/WnLTl/WokWLfO5zn6vTGldm2Q+P33jjjVqPXXb/rrtuRiMS2SjoD5t+f1iXD+rYvOkPG74/fNrDDz+cU089NZWVldl6663z1FNPLffAzLrSH1gXesSm1SMeffTR8mvt27fvWgVrUE1/KG5/eP3115MsHdm+zTbb1Hhcs2bNsvvuu+evf/3rKt/TABSVNbsBYCNT/Uby1Vdfzcsvv5zkX9OH7bTTTjnggAPqrbba7LHHHkmSl156KYsXL67xuHHjxtW49u3ee+9d/jD32Wc3zBTYO+ywQzp37pxk6bSgtRk5cmSSZJtttlluejfYUPSHTbs/vPbaa+Xt6vvC6tIfNmx/WNZTTz2Vk046KYsXL0779u3zxBNPlNdArSv6A+tKj9h0esTmOoU564/+UMz+UD3avrbXXm3RokXLnQOwqRF2A8BG5pRTTik/nX/vvfdm0qRJGTVqVJKN94nqJOU1vGbMmJFHHnmkxuPuuuuuGvdtueWWOfDAA5MkgwcPzvTp0+u2yJUolUrp1atXkqUjM0ePHr3S40aPHl1+CrpXr15GWFEv9IdNuz/cfvvt5e3DDjtsra7B5kt/2LD9odpzzz2XXr16ZcGCBdliiy3y+OOPZ/fdd6/TeyxevHi513/ooYfW6fXZPOgRm0aP+PDDDzNs2LAkyV577ZW99tqrrkplM6Y/FLM/7LDDDkmW9oXqUd4rM2PGjLz66qvLnQOwqRF2A8BGplOnTjniiCOSLF23afDgwamqqkqycb/RPO2009K8efMkyYUXXrjSqcSeeeaZ3HHHHbVe54orrkiSzJw5MyeccEI+/vjjGo9dsGBBbrnllsyfP3/tC09ywQUXlN/cn3feeZk3b95y++fNm1de16pRo0a54IIL1ul+sLb0h2L2h9GjR+eDDz6o8R5VVVW54oor8uSTTyZZ+uH1wQcfvE51s/nRHzZ8f3jppZfyta99LXPmzEnLli0zdOjQ7Lfffmt0jaeffrrWWhctWpQzzzyz/CF2z549s+22265L2Wym9Ihi9ohPu++++8ojNI3qpq7oD8XsDz179ixvX3DBBSsdvV5ZWZnzzz+/vO/YY49dp7oBNlbmrQCAjVDfvn3zxBNP5L333sv111+fJOnevXu6du1az5XVbKuttso111yT73//+5k4cWL222+/XHrppfn85z+f+fPnZ9iwYRkwYEC22WabzJ07t8Ynpo855ph897vfzU033ZSRI0dm1113zTnnnJMvfvGLad++febMmZO///3vGTVqVIYMGZKPPvoop5122jrV3rVr1/zgBz/IDTfckBdeeCEHH3xwLrnkkuy0006ZMGFCfvKTn2Ts2LFJkh/84Af57Gc/u9LrTJkyJY899tgKX6v261//erl9X/ziF7PzzjuvU+1sfvSH4vWHxx57LDfccEO++tWv5itf+Up22223tG3bNgsWLMjLL7+cu+66K3/961+TLF0r8M477zR7BGtFf9hw/WHChAnp0aNH+QPxa6+9NltssUV55NTKdOzYMR07dlzua7/5zW9y3HHH5bjjjsvhhx+ebt26pU2bNpk9e3ZefPHF3HHHHeUpzDt27JibbrpprWsGPaJ4PeLTqqcwb9So0UYdQlI8+kPx+kO/fv0ycODAvP766/nTn/6U7t2757zzzstee+2Vhg0b5rXXXsttt92W559/vvz9uvDCC9e6boCNmbAbADZCxx9/fM4999zMmzev/AaoCB9mXHTRRXn33Xfzi1/8IpMnT853vvOd5fZ36NAhDzzwQE488cRarzNgwIBUVFTkmmuuyZQpU3L11VfXeGzLli3Loy7XxXXXXZdp06blrrvuytixY3PKKaescEz//v1z7bXX1niNN954I6effnqN+z+97+677xZ2s8b0h2L2hwULFuShhx7KQw89VOMx2223XQYPHpz9999/nWtm86Q/bLj+MGrUqEybNq389+9973urPOeqq65aaU2zZ8/O4MGDM3jw4BrP3WOPPfK///u/ph9lnegRxewR1d5444387W9/S5IcddRR2Wqrrda6Pvg0/aF4/aFJkyYZPnx4evXqlXHjxuWVV17J2WefvdLzd9hhhwwZMiQdOnRY67oBNmamMQeAjVDr1q2Xm5KqYcOGKw1XNkY33XRThg4dmh49eqSioiLNmjXLzjvvnPPPPz9jx45drRCnVCrlhz/8YcaPH5+LL7443bt3T0VFRRo2bJjWrVtnt912S9++ffOb3/wmH3zwQXnqsnXRoEGD/OpXv8rQoUPTq1evdO7cOU2aNEnnzp3Tq1evDBs2LIMGDUqDBn59on7pD8XrD6effnpuvfXWfOMb38hee+2VrbfeOk2aNEmLFi2y3XbbpXfv3vnVr36VN9980/TlrBP9YcP3h3V1ySWXZMCAATnppJPyuc99LltttVUaN26cVq1aZaeddsrJJ5+cBx54IGPHjs1uu+1W3+VScHpE8XrEsn7729+Wt01hTl3TH4rZHz7zmc/kb3/7W/7nf/4nxx13XLp06ZKmTZumSZMm6dSpU4466qjceuuteeWVV7L33nvXd7kA602pqnoBDgBYxssvv5xFixalcePG2XPPPeu7HAAAAABgA6r+fHDRokV5++23kyydaaKioiLbb799evfuXb8FAsTIbgAAAAAAAAAKSNgNAAAAAAAAQOEIuwEAAAAAAAAoHGE3AAAAAAAAAIUj7AYAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOMJuAAAAAAAAAApH2A0AAAAAAABA4Qi7AQAAAAAAACgcYTcAbCJKpVJKpVKuvvrqFfaNGDGivH/EiBEbvLZP23777VMqldKvX7/6LgU2C/oDAAAAAJsiYTcAwDKGDx+ePn36pEuXLmnatGm6dOmSPn36ZPjw4as8d+rUqRk0aFD+/d//PbvttltatWqVJk2aZOutt85Xv/rV3HHHHZk3b94GeBVAXZk7d26GDBmSc889N/vvv3/atWuXxo0bp3379vnCF76Qq6++OlOmTFnr6w8fPrz8sEFNDyQAAAAAsHKN6rsAAICNQWVlZc4+++z86le/Wu7rkydPzuTJk/Pggw/mzDPPzO23354GDVZ8XvDOO+/MueeemyVLlqywb8qUKZkyZUoef/zx/PznP8/vf//77LnnnuvttQB14+WXX87BBx+c2bNnr7BvxowZGT16dEaPHp0BAwbkjjvuyMknn7xG158zZ07OPffcuioXAAAAYLMj7AaAzcDhhx+eqqqq+i5jo3b55ZeXg+599tknF198cXbaaadMmDAhP/3pTzN27NgMGjQoW265ZX784x+vcP7UqVOzZMmSNGnSJMcee2yOOuqo7LrrrmndunUmTJiQO++8M3/605/y1ltv5cgjj8yYMWPSpUuXDf0yYQX6Q81mzpxZDroPPvjgHHvssenevXvat2+f6dOnZ8iQIbnzzjszc+bM9O3bN23atMnRRx+92te/8sor849//CMdO3bMtGnT1tfLAAAAANhkCbsBgM3e+PHj8/Of/zxJ0r1794wcOTLNmzdPkuy///457rjjcthhh+WFF17Iz372s5xxxhnZeeedl7tGy5Ytc8kll+Siiy7Klltuudy+ffbZJyeccEIuuuii3HjjjZk+fXp++MMf5q677towLxBYKw0aNMhJJ52Uq666KrvtttsK+4866qgcffTR6dOnT5YsWZLzzjsvb731Vkql0iqv/eKLL+YXv/hFmjZtmuuuuy5nnXXW+ngJAAAAAJs0a3YDAJu9gQMHZvHixUmSm2++uRx0V2vRokVuvvnmJMnixYszYMCAFa7xve99LzfccMMKQfeyrr/++my99dZJkiFDhqSysrKuXgKwHhx00EG5//77Vxp0V+vVq1eOP/74JMmECRMyduzYVV53yZIlOeuss7JkyZJcdtllKzw8AwAAAMDqEXYDQD2bO3duWrdunVKplL59+67y+Oeffz6lUimlUim33nrrat1jxIgR5XNGjBixwv5+/fqlVCpl++23T5J8/PHH+eEPf5jdd989LVu2TNu2bXPooYfm3nvvXa37DR8+PMccc0y23HLLtGjRIl27ds2FF16YyZMnr9b51caMGZNzzjkn3bp1S6tWrdKyZct069Yt5557bsaPH1/jeb/+9a/Lr3fixIlZsGBBBg4cmAMPPDAdOnRIqVTK1VdfnSSpqqrKQw89lCTZZZddcuCBB670mgceeGC6deuWJHnooYfWatrnJk2a5OCDD06SfPLJJ/nwww/X+BpsXvSHmm2I/rC6vvSlL5W3J0yYsMrjBwwYkLFjx6Zr16655JJL1uheAAAAAPyLacwBoJ61aNEivXv3zj333JOHHnooc+bMScuWLWs8vjpQatSoUU466aQ6r+fNN9/MV7/61UycOHG5r48aNSqjRo3K888/n1/+8pc1nn/hhReuMPL5rbfeyoABA3LPPfdk2LBhq6yhsrIy3//+9zNw4MAVQuXx48dn/PjxGTRoUG655ZacffbZtV7rn//8Z/r06ZOXXnpppfvfeeedvP/++0mSww47rNZrHXbYYXnzzTczefLkTJw4MTvssMMqX8unLViwoLzdsGHDNT6fzYv+sKIN2R9W15r8u544cWKuuuqqJMltt92Wpk2brtO9AQAAADZnwm4A1l5VZbJobn1XsWE1bpGU6n5ilL59++aee+7JnDlz8tBDD+Xf//3fV3rc4sWL88ADDyRJevTokQ4dOtRpHXPnzk3Pnj3z4Ycf5oorrsiRRx6ZVq1aZezYsfnRj36USZMm5ZZbbknPnj3To0ePFc4fOHBgOcjq3LlzLr300nz+85/P/PnzM3To0AwcODAnnnhi5s6t/efmvPPOK49KPfTQQ9OvX7/suOOOadGiRcaNG5eBAwfm//7v//LNb34znTp1ynHHHVfjtfr3759XXnklp556ak4++eR06tQp7777bjlgeu2118rH7rLLLrXWtez+119/fY3D7kWLFuX5559Pkmy11VapqKhYo/OLpKqyMvNmz6rvMjao5q1ap9RAf9iU+sPqeuaZZ8rbu+66a63HnnvuuZk7d2769u2bI444Yo3uAwAAAMDyhN0ArL1Fc5OR19V3FRvWoZcnTVrV+WWPPPLIdOzYMdOmTcvgwYNrDLOefPLJTJs2LUlWa0rjNTV9+vQsXLgwzz//fHbffffy1/fbb78cfvjh2WOPPTJ//vzceuutK4RZ06ZNy+WXX54k+cxnPpPRo0enU6dO5f2HHnpoevTokR49epTXx16ZJ554ohxkDRo0KP37919u//7775//+I//yNe+9rX8+c9/zvnnn59jjjkmjRqt/Neal19+eYXr7LvvvuXtSZMmlbe7dOlSY11Jsu2225a333vvvVqPXZk77rgj//znP5MkJ5544hqfXyTzZs/KbWfV/c/oxuzcO+9NizZb1Pl19Yd/2dD9YXWMGzcuQ4cOTZLssccetYbdgwcPzmOPPZa2bdvmxhtvXKP7AAAAALAia3YDwEagUaNGOfnkk5Mkf/rTn2pcy7l6iuJWrVqlV69e66WWa665Zrkgq9rOO++c3r17J0n+8pe/rLD/N7/5TXlE5n/9138tF2RVO+KII3LWWWfVev8bbrghSfJv//ZvKwRZ1Zo1a1aeKvkf//hHnn766Rqvd8QRR9R4nSSZNetfo49btar9QYZlp4+ePXt2rcd+2ttvv10O+1q1apVLL710jc5n86U//MuG7g+rsmDBgpx55plZsmRJkuS662p+AGzGjBn53ve+lyS5/vrr07Fjx7W+LwAAAABLCbsBYCNRPRJz0aJF+d3vfrfC/nnz5uXBBx9MkvTu3TstWrSo8xpKpVKNo0aTpSM4k6Whzccff7zcvieffDJJ0q5du1qDtjPOOKPGfTNnzsyIESOSJCeccEKtte66667laZqrpwZfmVWNcJ0/f355u0mTJrUeu+zUxvPmzav12GXNnTs3xx9/fD755JMkyc0335zOnTuv9vmgP9RPf1iV73znO3nhhReSJKeddlp69uxZ47Hf//73M23atBxwwAGrXEscAAAAgNUj7AaAjcQBBxyQnXbaKcm/Rmgu6+GHHy6PJl4fUxQnSYcOHdK+ffsa9y+7xvSyI6KT5JVXXkmS7LPPPjVOGZwke++9d42h8tixY1NZWZkk+frXv55SqVTrn+opwadMmVLj/fbcc88a9yVLR4FWW7hwYa3HLliwoLzdvHnzWo+ttnjx4px44okZN25ckqXr9fbr12+1zoVq+kP99IfaXH/99Rk0aFCSpdOn33LLLTUeO2LEiNx9991p2LBh/vu//zsN1sPa7gAAAACbI2t2A7D2GrdYuob15qRx3Y+WXFbfvn3zn//5n3nuuecyceLEbL/99uV91QFXx44dc+SRR66X+69qNOiyAU31tL3VZsyYkSSrnJq3UaNGqaioWGkAVb3e8Jqqnh55Zdq1a1frua1bty5vr2pq8jlz5pS3VzXleZJUVVWlX79+GTZsWJLkpJNOKk+vvKlr3qp1zr1zxVB2U9a8VetVH7QO9IcN3x9qcvvtt+eyyy5Lkuyyyy4ZNmzYcsscLGvBggX55je/mSQ5//zzs/fee6/VPQEAAABYkbAbgLVXapA0WXXgx+qrDrOqqqpy3333ldd1njFjRh5//PEkycknn1zryMj6ViqV1vrcZQOy22+/PQcddNBqnVdbYNWwYcNaz+3SpUt5e9KkSbUe+95775W3t91221XW9e1vf7scQh599NG55557NpsRnaUGDdKizRb1XcYmRX/Y8P1hZe67775861vfSpJ85jOfyRNPPFGeMn1lhgwZkvHjx6dx48bZbbfd8r//+78rHPPaa6+Vt1999dXyMQcccEB22GGHNa4RAAAAYHOx8X4SBgCboa5du6Z79+554YUXMnjw4HKY9fvf/748xfb6mqJ4XbVr1y5TpkzJ1KlTaz1u8eLF5VGen7bsFMktWrTI5z73uTqtcWV222238vYbb7xR67HL7t91111rPfaSSy7JbbfdliQ59NBD84c//CGNGzdeh0rZ3OkPG74/fNrDDz+cU089NZWVldl6663z1FNPLffAzMpUL3+waNGinHXWWau8xx/+8If84Q9/SJLcfffdwm4AAACAWmweQ4sAoECqw6pXX301L7/8cpJ/TVG800475YADDqi32mqzxx57JEleeumlLF68uMbjxo0bV+Pa2HvvvXd55Oezzz5b90WuxA477JDOnTsnSZ555plajx05cmSSZJtttlluCulPu/baa/PTn/40ydK1fB999NHVXuMbaqM/bNj+sKynnnoqJ510UhYvXpz27dvniSeeKK+jDgAAAED9EHYDwEbmlFNOKU+te++992bSpEkZNWpUko131GaS8jrBM2bMyCOPPFLjcXfddVeN+7bccssceOCBSZLBgwdn+vTpdVvkSpRKpfTq1SvJ0pHbo0ePXulxo0ePLo/s7tWrV43TMd9000258sorkywN+B577LHl1gWHdaE/bNj+UO25555Lr169smDBgmyxxRZ5/PHHs/vuu6/Wuf369UtVVVWtf55++uny8VdddVX56/369VtPrwgAAABg0yDsBoCNTKdOnXLEEUckWbo27ODBg1NVVZVk4w6zTjvttPLo5QsvvHCl0xU/88wzueOOO2q9zhVXXJEkmTlzZk444YR8/PHHNR67YMGC3HLLLZk/f/7aF57kggsuKAeI5513XubNm7fc/nnz5uW8885LkjRq1CgXXHDBSq9z991353vf+16SpVNOP/HEE6moqFin2mBZ+sOG7w8vvfRSvva1r2XOnDlp2bJlhg4dmv3222+drgkAAABA3bBmNwBshPr27Zsnnngi7733Xq6//vokSffu3dO1a9d6rqxmW221Va655pp8//vfz8SJE7Pffvvl0ksvzec///nMnz8/w4YNy4ABA7LNNttk7ty5NY7KPOaYY/Ld7343N910U0aOHJldd90155xzTr74xS+mffv2mTNnTv7+979n1KhRGTJkSD766KOcdtpp61R7165d84Mf/CA33HBDXnjhhRx88MG55JJLstNOO2XChAn5yU9+krFjxyZJfvCDH+Szn/3sCtd48MEHc9ZZZ6Wqqipt2rTJTTfdlOnTp9c6+nSHHXZIy5Yt16l2Nj/6w4brDxMmTEiPHj3Kofq1116bLbbYIq+++mqN53Ts2DEdO3Zc63sCAAAAsPqE3QCwETr++ONz7rnnZt68eeWQZWMetVntoosuyrvvvptf/OIXmTx5cr7zne8st79Dhw554IEHcuKJJ9Z6nQEDBqSioiLXXHNNpkyZkquvvrrGY1u2bFkelb0urrvuukybNi133XVXxo4dm1NOOWWFY/r3759rr712pec/+OCDWbJkSZKlo06PPvroVd7z6aefzuGHH75OdbP50R82XH8YNWpUpk2bVv579cwNtbnqqqtqrQkAAACAumMacwDYCLVu3To9e/Ys/71hw4YrDV83RjfddFOGDh2aHj16pKKiIs2aNcvOO++c888/P2PHjs3++++/ymuUSqX88Ic/zPjx43PxxRene/fuqaioSMOGDdO6devstttu6du3b37zm9/kgw8+KE+PvC4aNGiQX/3qVxk6dGh69eqVzp07p0mTJuncuXN69eqVYcOGZdCgQWnQwK9P1C/9YcP3BwAAAAA2TqWq6kX+AGAZL7/8chYtWpTGjRtnzz33rO9yAAAAAIANqPrzwUWLFuXtt99OkrzxxhupqKjI9ttvn969e9dvgQAxshsAAAAAAACAAhJ2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgNQq6qqqvouAQAAAADYwHwuCBSBsBuAlWrYsGGSZMmSJX6xBQAAAIDNSFVVVZYsWZIkqaysrOdqAGom7AZgpZo1a5Zk6S+2s2bNqudqAAAAAIANZdasWeUBMAsXLqznagBqJuwGYKXatWtX3p42bZrR3QAAAACwGaiqqsq0adPKfzcQBtiYCbsBWKktttgipVIpSfLJJ59kwoQJmTlzptAbAAAAADZBVVVVmTlzZiZMmJBPPvkkydIpzGfPnl3PlQHUrFF9FwDAxqlhw4bZcccd8/bbb6eqqiqffPJJPvnkk5RKpTRs2LAchAMAAAAAxVa9RveyA12qqqry/vvvG/wCbNSE3QDUqG3btssF3snSX3IXL15cz5UBAAAAAOtLZWVl3n///cyZM2e5r1dVVZUHwwBsDITdANSqbdu22WuvvfLJJ59k/PjxWbx4caqqqtKoUSOjuwEAAABgE1FZWZmFCxdm1qxZmT179gojuhcuXJjFixenSZMmadq0aT1VCbA8YTcAq9SwYcNUVFSkbdu2efHFF/P666+noqIinTp1qu/SAAAAAIAN4KOPPkqDBg3SunXrdO7cub7LAUiSNKjvAgAoju222y6lUint27fP9OnTM3Xq1CxatKi+ywIAAAAA1pNFixZl2rRpmT59eioqKtKgQYNst9129V0WQBIjuwFYAy1atMjuu++eZOn6PNOnT8+0adPSpEmTNGjg+SkAAAAA2JRUVlaWB7u0b98+W2+9dbp165Y2bdrUc2UASwm7AVgje+65Z3m9ni233DKzZs3KggULUllZWc+VAQAAAAB1qUGDBmnSpEnatGmThg0bplu3btl3333ruyyAslJVdWIBAGvg448/zrvvvpvJkydn3rx5WbJkSX2XBAAAAADUoYYNG6Z58+bp3Llztttuu7Rt2zalUqm+ywIoE3YDAAAAAAAAUDgWWAUAAAAAAACgcITdAAAAAAAAABSOsBsAAAAAAACAwhF2AwAAAAAAAFA4wm4AAAAAAAAACkfYDQAAAAAAAEDhCLsBAAAAAAAAKBxhNwAAAAAAAACFI+wGAAAAAAAAoHCE3QAAAAAAAAAUjrAbAAAAAAAAgMIRdgMAAAAAAABQOP8/NmgZTq4pxfsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "# Get Meta data\n", + "dataset.get_landcover(buffers=[50, 150, 500], aggregate=True)\n", + "# Create analysis from the dataset\n", + "ana = dataset.get_analysis(add_gapfilled_values=True)\n", + "\n", + "# Make diurnal cycle analysis with plot\n", + "ax4 = ana.get_diurnal_statistics(colorby='name',\n", + " obstype='temp',\n", + " stations=None, startdt=None, enddt=None,\n", + " plot=True,\n", + " title='Hourly average temperature diurnal cycle',\n", + " y_label=None, legend=True,\n", + " errorbands=True, _return_all_stats=False)\n", + "\n", + "fig = plt.gcf()\n", + "fig.set_dpi(200)\n", + "fig.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "d84febac-3bd7-4e06-b787-136641b613dc", + "metadata": {}, + "source": [ + "## Interactive spatial" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "3211be17-f66f-4e1d-9fa2-b56c2b54c871", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset.make_gee_plot(gee_map='worldcover')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/_build/py-modindex.html b/docs/_build/py-modindex.html new file mode 100644 index 00000000..b351d8cf --- /dev/null +++ b/docs/_build/py-modindex.html @@ -0,0 +1,237 @@ + + + + + + Python Module Index — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ m +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ m
+ metobs_toolkit +
    + metobs_toolkit.analysis +
    + metobs_toolkit.data_import +
    + metobs_toolkit.dataset +
    + metobs_toolkit.dataset_settings_updater +
    + metobs_toolkit.df_helpers +
    + metobs_toolkit.gap +
    + metobs_toolkit.gap_filling +
    + metobs_toolkit.geometry_functions +
    + metobs_toolkit.landcover_functions +
    + metobs_toolkit.missingobs +
    + metobs_toolkit.modeldata +
    + metobs_toolkit.obstype_modeldata +
    + metobs_toolkit.obstypes +
    + metobs_toolkit.plotting_functions +
    + metobs_toolkit.printing +
    + metobs_toolkit.qc_checks +
    + metobs_toolkit.qc_statistics +
    + metobs_toolkit.settings +
    + metobs_toolkit.station +
    + metobs_toolkit.writing_files +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + diff --git a/docs/_build/search.html b/docs/_build/search.html new file mode 100644 index 00000000..24434c23 --- /dev/null +++ b/docs/_build/search.html @@ -0,0 +1,137 @@ + + + + + + Search — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Thomas Vergauwen.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + diff --git a/docs/_build/searchindex.js b/docs/_build/searchindex.js new file mode 100644 index 00000000..c7904c44 --- /dev/null +++ b/docs/_build/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["MetObs_documentation", "MetObs_documentation_full", "_autosummary/metobs_toolkit", "_autosummary/metobs_toolkit.analysis", "_autosummary/metobs_toolkit.analysis.Analysis", "_autosummary/metobs_toolkit.analysis.filter_data", "_autosummary/metobs_toolkit.analysis.get_seasons", "_autosummary/metobs_toolkit.data_import", "_autosummary/metobs_toolkit.data_import.check_template_compatibility", "_autosummary/metobs_toolkit.data_import.compress_dict", "_autosummary/metobs_toolkit.data_import.extract_options_from_template", "_autosummary/metobs_toolkit.data_import.find_compatible_templatefor", "_autosummary/metobs_toolkit.data_import.import_data_from_csv", "_autosummary/metobs_toolkit.data_import.import_metadata_from_csv", "_autosummary/metobs_toolkit.data_import.read_csv_template", "_autosummary/metobs_toolkit.data_import.template_to_package_space", "_autosummary/metobs_toolkit.data_import.wide_to_long", "_autosummary/metobs_toolkit.dataset", "_autosummary/metobs_toolkit.dataset.Dataset", "_autosummary/metobs_toolkit.dataset_settings_updater", "_autosummary/metobs_toolkit.dataset_settings_updater.Dataset", "_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta", "_autosummary/metobs_toolkit.df_helpers", "_autosummary/metobs_toolkit.df_helpers.concat_save", "_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df", "_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf", "_autosummary/metobs_toolkit.df_helpers.datetime_subsetting", "_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument", "_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx", "_autosummary/metobs_toolkit.df_helpers.get_freqency_series", "_autosummary/metobs_toolkit.df_helpers.get_likely_frequency", "_autosummary/metobs_toolkit.df_helpers.init_multiindex", "_autosummary/metobs_toolkit.df_helpers.init_multiindexdf", "_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex", "_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf", "_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf", "_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting", "_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs", "_autosummary/metobs_toolkit.df_helpers.subset_stations", "_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf", "_autosummary/metobs_toolkit.df_helpers.xs_save", "_autosummary/metobs_toolkit.gap", "_autosummary/metobs_toolkit.gap.Gap", "_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill", "_autosummary/metobs_toolkit.gap.apply_interpolate_gaps", "_autosummary/metobs_toolkit.gap.gaps_to_df", "_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space", "_autosummary/metobs_toolkit.gap.get_station_gaps", "_autosummary/metobs_toolkit.gap.make_gapfill_df", "_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check", "_autosummary/metobs_toolkit.gap.remove_gaps_from_obs", "_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers", "_autosummary/metobs_toolkit.gap_filling", "_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods", "_autosummary/metobs_toolkit.gap_filling.get_sample_size", "_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases", "_autosummary/metobs_toolkit.gap_filling.interpolate_gap", "_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction", "_autosummary/metobs_toolkit.geometry_functions", "_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list", "_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box", "_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf", "_autosummary/metobs_toolkit.geometry_functions.find_plot_extent", "_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box", "_autosummary/metobs_toolkit.landcover_functions", "_autosummary/metobs_toolkit.landcover_functions.connect_to_gee", "_autosummary/metobs_toolkit.landcover_functions.coordinates_available", "_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry", "_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies", "_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues", "_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries", "_autosummary/metobs_toolkit.landcover_functions.get_ee_obj", "_autosummary/metobs_toolkit.landcover_functions.height_extractor", "_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor", "_autosummary/metobs_toolkit.landcover_functions.lcz_extractor", "_autosummary/metobs_toolkit.missingobs", "_autosummary/metobs_toolkit.missingobs.Missingob_collection", "_autosummary/metobs_toolkit.modeldata", "_autosummary/metobs_toolkit.modeldata.Modeldata", "_autosummary/metobs_toolkit.obstype_modeldata", "_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype", "_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield", "_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude", "_autosummary/metobs_toolkit.obstype_modeldata.compute_angle", "_autosummary/metobs_toolkit.obstypes", "_autosummary/metobs_toolkit.obstypes.Obstype", "_autosummary/metobs_toolkit.obstypes.expression_calculator", "_autosummary/metobs_toolkit.plotting_functions", "_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map", "_autosummary/metobs_toolkit.plotting_functions.correlation_scatter", "_autosummary/metobs_toolkit.plotting_functions.cycle_plot", "_autosummary/metobs_toolkit.plotting_functions.folium_plot", "_autosummary/metobs_toolkit.plotting_functions.geospatial_plot", "_autosummary/metobs_toolkit.plotting_functions.heatmap_plot", "_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper", "_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot", "_autosummary/metobs_toolkit.plotting_functions.map_obstype", "_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot", "_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie", "_autosummary/metobs_toolkit.plotting_functions.timeseries_plot", "_autosummary/metobs_toolkit.printing", "_autosummary/metobs_toolkit.printing.print_dataset_info", "_autosummary/metobs_toolkit.qc_checks", "_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict", "_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check", "_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange", "_autosummary/metobs_toolkit.qc_checks.gross_value_check", "_autosummary/metobs_toolkit.qc_checks.invalid_input_check", "_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check", "_autosummary/metobs_toolkit.qc_checks.persistance_check", "_autosummary/metobs_toolkit.qc_checks.repetitions_check", "_autosummary/metobs_toolkit.qc_checks.step_check", "_autosummary/metobs_toolkit.qc_checks.titan_buddy_check", "_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check", "_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check", "_autosummary/metobs_toolkit.qc_checks.window_variation_check", "_autosummary/metobs_toolkit.qc_statistics", "_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics", "_autosummary/metobs_toolkit.settings", "_autosummary/metobs_toolkit.settings.Settings", "_autosummary/metobs_toolkit.station", "_autosummary/metobs_toolkit.station.Station", "_autosummary/metobs_toolkit.writing_files", "_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv", "contributing_link", "examples/analysis_example", "examples/doc_example", "examples/filling_example", "examples/gee_example", "examples/index", "examples/qc_example", "examples/using_obstypes", "gee_authentication", "gui", "index", "intro", "paper/index", "paper/paper", "paper/paper_figures", "special_topics", "template_mapping"], "filenames": ["MetObs_documentation.rst", "MetObs_documentation_full.rst", "_autosummary/metobs_toolkit.rst", "_autosummary/metobs_toolkit.analysis.rst", "_autosummary/metobs_toolkit.analysis.Analysis.rst", "_autosummary/metobs_toolkit.analysis.filter_data.rst", "_autosummary/metobs_toolkit.analysis.get_seasons.rst", "_autosummary/metobs_toolkit.data_import.rst", "_autosummary/metobs_toolkit.data_import.check_template_compatibility.rst", "_autosummary/metobs_toolkit.data_import.compress_dict.rst", "_autosummary/metobs_toolkit.data_import.extract_options_from_template.rst", "_autosummary/metobs_toolkit.data_import.find_compatible_templatefor.rst", "_autosummary/metobs_toolkit.data_import.import_data_from_csv.rst", "_autosummary/metobs_toolkit.data_import.import_metadata_from_csv.rst", "_autosummary/metobs_toolkit.data_import.read_csv_template.rst", "_autosummary/metobs_toolkit.data_import.template_to_package_space.rst", "_autosummary/metobs_toolkit.data_import.wide_to_long.rst", "_autosummary/metobs_toolkit.dataset.rst", "_autosummary/metobs_toolkit.dataset.Dataset.rst", "_autosummary/metobs_toolkit.dataset_settings_updater.rst", "_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.rst", "_autosummary/metobs_toolkit.dataset_settings_updater.is_timedelta.rst", "_autosummary/metobs_toolkit.df_helpers.rst", "_autosummary/metobs_toolkit.df_helpers.concat_save.rst", "_autosummary/metobs_toolkit.df_helpers.conv_applied_qc_to_df.rst", "_autosummary/metobs_toolkit.df_helpers.conv_tz_multiidxdf.rst", "_autosummary/metobs_toolkit.df_helpers.datetime_subsetting.rst", "_autosummary/metobs_toolkit.df_helpers.fmt_datetime_argument.rst", "_autosummary/metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx.rst", "_autosummary/metobs_toolkit.df_helpers.get_freqency_series.rst", "_autosummary/metobs_toolkit.df_helpers.get_likely_frequency.rst", "_autosummary/metobs_toolkit.df_helpers.init_multiindex.rst", "_autosummary/metobs_toolkit.df_helpers.init_multiindexdf.rst", "_autosummary/metobs_toolkit.df_helpers.init_triple_multiindex.rst", "_autosummary/metobs_toolkit.df_helpers.init_triple_multiindexdf.rst", "_autosummary/metobs_toolkit.df_helpers.metadf_to_gdf.rst", "_autosummary/metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting.rst", "_autosummary/metobs_toolkit.df_helpers.remove_outliers_from_obs.rst", "_autosummary/metobs_toolkit.df_helpers.subset_stations.rst", "_autosummary/metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf.rst", "_autosummary/metobs_toolkit.df_helpers.xs_save.rst", "_autosummary/metobs_toolkit.gap.rst", "_autosummary/metobs_toolkit.gap.Gap.rst", "_autosummary/metobs_toolkit.gap.apply_debias_era5_gapfill.rst", "_autosummary/metobs_toolkit.gap.apply_interpolate_gaps.rst", "_autosummary/metobs_toolkit.gap.gaps_to_df.rst", "_autosummary/metobs_toolkit.gap.get_gaps_indx_in_obs_space.rst", "_autosummary/metobs_toolkit.gap.get_station_gaps.rst", "_autosummary/metobs_toolkit.gap.make_gapfill_df.rst", "_autosummary/metobs_toolkit.gap.missing_timestamp_and_gap_check.rst", "_autosummary/metobs_toolkit.gap.remove_gaps_from_obs.rst", "_autosummary/metobs_toolkit.gap.remove_gaps_from_outliers.rst", "_autosummary/metobs_toolkit.gap_filling.rst", "_autosummary/metobs_toolkit.gap_filling.create_leading_trailing_debias_periods.rst", "_autosummary/metobs_toolkit.gap_filling.get_sample_size.rst", "_autosummary/metobs_toolkit.gap_filling.get_time_specific_biases.rst", "_autosummary/metobs_toolkit.gap_filling.interpolate_gap.rst", "_autosummary/metobs_toolkit.gap_filling.make_era_bias_correction.rst", "_autosummary/metobs_toolkit.geometry_functions.rst", "_autosummary/metobs_toolkit.geometry_functions.box_to_extent_list.rst", "_autosummary/metobs_toolkit.geometry_functions.extent_list_to_box.rst", "_autosummary/metobs_toolkit.geometry_functions.find_extend_of_geodf.rst", "_autosummary/metobs_toolkit.geometry_functions.find_plot_extent.rst", "_autosummary/metobs_toolkit.geometry_functions.gpd_to_extent_box.rst", "_autosummary/metobs_toolkit.landcover_functions.rst", "_autosummary/metobs_toolkit.landcover_functions.connect_to_gee.rst", "_autosummary/metobs_toolkit.landcover_functions.coordinates_available.rst", "_autosummary/metobs_toolkit.landcover_functions.coords_to_geometry.rst", "_autosummary/metobs_toolkit.landcover_functions.extract_buffer_frequencies.rst", "_autosummary/metobs_toolkit.landcover_functions.extract_pointvalues.rst", "_autosummary/metobs_toolkit.landcover_functions.gee_extract_timeseries.rst", "_autosummary/metobs_toolkit.landcover_functions.get_ee_obj.rst", "_autosummary/metobs_toolkit.landcover_functions.height_extractor.rst", "_autosummary/metobs_toolkit.landcover_functions.lc_fractions_extractor.rst", "_autosummary/metobs_toolkit.landcover_functions.lcz_extractor.rst", "_autosummary/metobs_toolkit.missingobs.rst", "_autosummary/metobs_toolkit.missingobs.Missingob_collection.rst", "_autosummary/metobs_toolkit.modeldata.rst", "_autosummary/metobs_toolkit.modeldata.Modeldata.rst", "_autosummary/metobs_toolkit.obstype_modeldata.rst", "_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype.rst", "_autosummary/metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.rst", "_autosummary/metobs_toolkit.obstype_modeldata.compute_amplitude.rst", "_autosummary/metobs_toolkit.obstype_modeldata.compute_angle.rst", "_autosummary/metobs_toolkit.obstypes.rst", "_autosummary/metobs_toolkit.obstypes.Obstype.rst", "_autosummary/metobs_toolkit.obstypes.expression_calculator.rst", "_autosummary/metobs_toolkit.plotting_functions.rst", "_autosummary/metobs_toolkit.plotting_functions.add_stations_to_folium_map.rst", "_autosummary/metobs_toolkit.plotting_functions.correlation_scatter.rst", "_autosummary/metobs_toolkit.plotting_functions.cycle_plot.rst", "_autosummary/metobs_toolkit.plotting_functions.folium_plot.rst", "_autosummary/metobs_toolkit.plotting_functions.geospatial_plot.rst", "_autosummary/metobs_toolkit.plotting_functions.heatmap_plot.rst", "_autosummary/metobs_toolkit.plotting_functions.make_cat_colormapper.rst", "_autosummary/metobs_toolkit.plotting_functions.make_folium_html_plot.rst", "_autosummary/metobs_toolkit.plotting_functions.map_obstype.rst", "_autosummary/metobs_toolkit.plotting_functions.model_timeseries_plot.rst", "_autosummary/metobs_toolkit.plotting_functions.qc_stats_pie.rst", "_autosummary/metobs_toolkit.plotting_functions.timeseries_plot.rst", "_autosummary/metobs_toolkit.printing.rst", "_autosummary/metobs_toolkit.printing.print_dataset_info.rst", "_autosummary/metobs_toolkit.qc_checks.rst", "_autosummary/metobs_toolkit.qc_checks.create_titanlib_points_dict.rst", "_autosummary/metobs_toolkit.qc_checks.duplicate_timestamp_check.rst", "_autosummary/metobs_toolkit.qc_checks.get_outliers_in_daterange.rst", "_autosummary/metobs_toolkit.qc_checks.gross_value_check.rst", "_autosummary/metobs_toolkit.qc_checks.invalid_input_check.rst", "_autosummary/metobs_toolkit.qc_checks.make_outlier_df_for_check.rst", "_autosummary/metobs_toolkit.qc_checks.persistance_check.rst", "_autosummary/metobs_toolkit.qc_checks.repetitions_check.rst", "_autosummary/metobs_toolkit.qc_checks.step_check.rst", "_autosummary/metobs_toolkit.qc_checks.titan_buddy_check.rst", "_autosummary/metobs_toolkit.qc_checks.titan_sct_resistant_check.rst", "_autosummary/metobs_toolkit.qc_checks.toolkit_buddy_check.rst", "_autosummary/metobs_toolkit.qc_checks.window_variation_check.rst", "_autosummary/metobs_toolkit.qc_statistics.rst", "_autosummary/metobs_toolkit.qc_statistics.get_freq_statistics.rst", "_autosummary/metobs_toolkit.settings.rst", "_autosummary/metobs_toolkit.settings.Settings.rst", "_autosummary/metobs_toolkit.station.rst", "_autosummary/metobs_toolkit.station.Station.rst", "_autosummary/metobs_toolkit.writing_files.rst", "_autosummary/metobs_toolkit.writing_files.write_dataset_to_csv.rst", "contributing_link.md", "examples/analysis_example.ipynb", "examples/doc_example.ipynb", "examples/filling_example.ipynb", "examples/gee_example.ipynb", "examples/index.rst", "examples/qc_example.ipynb", "examples/using_obstypes.ipynb", "gee_authentication.rst", "gui.rst", "index.rst", "intro.rst", "paper/index.rst", "paper/paper.md", "paper/paper_figures.ipynb", "special_topics.rst", "template_mapping.rst"], "titles": ["MetObs toolkit Documentation for Users", "MetObs toolkit Documentation for developers", "metobs_toolkit", "metobs_toolkit.analysis", "metobs_toolkit.analysis.Analysis", "metobs_toolkit.analysis.filter_data", "metobs_toolkit.analysis.get_seasons", "metobs_toolkit.data_import", "metobs_toolkit.data_import.check_template_compatibility", "metobs_toolkit.data_import.compress_dict", "metobs_toolkit.data_import.extract_options_from_template", "metobs_toolkit.data_import.find_compatible_templatefor", "metobs_toolkit.data_import.import_data_from_csv", "metobs_toolkit.data_import.import_metadata_from_csv", "metobs_toolkit.data_import.read_csv_template", "metobs_toolkit.data_import.template_to_package_space", "metobs_toolkit.data_import.wide_to_long", "metobs_toolkit.dataset", "metobs_toolkit.dataset.Dataset", "metobs_toolkit.dataset_settings_updater", "metobs_toolkit.dataset_settings_updater.Dataset", "metobs_toolkit.dataset_settings_updater.is_timedelta", "metobs_toolkit.df_helpers", "metobs_toolkit.df_helpers.concat_save", "metobs_toolkit.df_helpers.conv_applied_qc_to_df", "metobs_toolkit.df_helpers.conv_tz_multiidxdf", "metobs_toolkit.df_helpers.datetime_subsetting", "metobs_toolkit.df_helpers.fmt_datetime_argument", "metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx", "metobs_toolkit.df_helpers.get_freqency_series", "metobs_toolkit.df_helpers.get_likely_frequency", "metobs_toolkit.df_helpers.init_multiindex", "metobs_toolkit.df_helpers.init_multiindexdf", "metobs_toolkit.df_helpers.init_triple_multiindex", "metobs_toolkit.df_helpers.init_triple_multiindexdf", "metobs_toolkit.df_helpers.metadf_to_gdf", "metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting", "metobs_toolkit.df_helpers.remove_outliers_from_obs", "metobs_toolkit.df_helpers.subset_stations", "metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf", "metobs_toolkit.df_helpers.xs_save", "metobs_toolkit.gap", "metobs_toolkit.gap.Gap", "metobs_toolkit.gap.apply_debias_era5_gapfill", "metobs_toolkit.gap.apply_interpolate_gaps", "metobs_toolkit.gap.gaps_to_df", "metobs_toolkit.gap.get_gaps_indx_in_obs_space", "metobs_toolkit.gap.get_station_gaps", "metobs_toolkit.gap.make_gapfill_df", "metobs_toolkit.gap.missing_timestamp_and_gap_check", "metobs_toolkit.gap.remove_gaps_from_obs", "metobs_toolkit.gap.remove_gaps_from_outliers", "metobs_toolkit.gap_filling", "metobs_toolkit.gap_filling.create_leading_trailing_debias_periods", "metobs_toolkit.gap_filling.get_sample_size", "metobs_toolkit.gap_filling.get_time_specific_biases", "metobs_toolkit.gap_filling.interpolate_gap", "metobs_toolkit.gap_filling.make_era_bias_correction", "metobs_toolkit.geometry_functions", "metobs_toolkit.geometry_functions.box_to_extent_list", "metobs_toolkit.geometry_functions.extent_list_to_box", "metobs_toolkit.geometry_functions.find_extend_of_geodf", "metobs_toolkit.geometry_functions.find_plot_extent", "metobs_toolkit.geometry_functions.gpd_to_extent_box", "metobs_toolkit.landcover_functions", "metobs_toolkit.landcover_functions.connect_to_gee", "metobs_toolkit.landcover_functions.coordinates_available", "metobs_toolkit.landcover_functions.coords_to_geometry", "metobs_toolkit.landcover_functions.extract_buffer_frequencies", "metobs_toolkit.landcover_functions.extract_pointvalues", "metobs_toolkit.landcover_functions.gee_extract_timeseries", "metobs_toolkit.landcover_functions.get_ee_obj", "metobs_toolkit.landcover_functions.height_extractor", "metobs_toolkit.landcover_functions.lc_fractions_extractor", "metobs_toolkit.landcover_functions.lcz_extractor", "metobs_toolkit.missingobs", "metobs_toolkit.missingobs.Missingob_collection", "metobs_toolkit.modeldata", "metobs_toolkit.modeldata.Modeldata", "metobs_toolkit.obstype_modeldata", "metobs_toolkit.obstype_modeldata.ModelObstype", "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield", "metobs_toolkit.obstype_modeldata.compute_amplitude", "metobs_toolkit.obstype_modeldata.compute_angle", "metobs_toolkit.obstypes", "metobs_toolkit.obstypes.Obstype", "metobs_toolkit.obstypes.expression_calculator", "metobs_toolkit.plotting_functions", "metobs_toolkit.plotting_functions.add_stations_to_folium_map", "metobs_toolkit.plotting_functions.correlation_scatter", "metobs_toolkit.plotting_functions.cycle_plot", "metobs_toolkit.plotting_functions.folium_plot", "metobs_toolkit.plotting_functions.geospatial_plot", "metobs_toolkit.plotting_functions.heatmap_plot", "metobs_toolkit.plotting_functions.make_cat_colormapper", "metobs_toolkit.plotting_functions.make_folium_html_plot", "metobs_toolkit.plotting_functions.map_obstype", "metobs_toolkit.plotting_functions.model_timeseries_plot", "metobs_toolkit.plotting_functions.qc_stats_pie", "metobs_toolkit.plotting_functions.timeseries_plot", "metobs_toolkit.printing", "metobs_toolkit.printing.print_dataset_info", "metobs_toolkit.qc_checks", "metobs_toolkit.qc_checks.create_titanlib_points_dict", "metobs_toolkit.qc_checks.duplicate_timestamp_check", "metobs_toolkit.qc_checks.get_outliers_in_daterange", "metobs_toolkit.qc_checks.gross_value_check", "metobs_toolkit.qc_checks.invalid_input_check", "metobs_toolkit.qc_checks.make_outlier_df_for_check", "metobs_toolkit.qc_checks.persistance_check", "metobs_toolkit.qc_checks.repetitions_check", "metobs_toolkit.qc_checks.step_check", "metobs_toolkit.qc_checks.titan_buddy_check", "metobs_toolkit.qc_checks.titan_sct_resistant_check", "metobs_toolkit.qc_checks.toolkit_buddy_check", "metobs_toolkit.qc_checks.window_variation_check", "metobs_toolkit.qc_statistics", "metobs_toolkit.qc_statistics.get_freq_statistics", "metobs_toolkit.settings", "metobs_toolkit.settings.Settings", "metobs_toolkit.station", "metobs_toolkit.station.Station", "metobs_toolkit.writing_files", "metobs_toolkit.writing_files.write_dataset_to_csv", "Contributing", "Demo example: Analysis", "Demo example: Using a Dataset", "Demo example: filling gaps and missing observations", "Demo example: Using a Google Earth engine", "Examples", "Demo example: Applying Quality Control.", "Working with specific observation types", "Using Google Earth Engine", "Using the GUI", "Welcome to MetObs-Toolkit\u2019s documentation!", "Introduction", "JOSS publication", "Summary", "JOSS publication figures creator", "Special topics", "Mapping to the toolkit"], "terms": {"here": [0, 1, 18, 20, 84, 121, 124, 126, 127, 128, 132, 135, 139, 140], "you": [0, 1, 6, 18, 20, 50, 76, 78, 121, 124, 125, 126, 127, 128, 130, 131, 132, 133, 135, 139, 140], "can": [0, 1, 4, 5, 18, 20, 21, 42, 49, 76, 78, 80, 85, 108, 119, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 140], "find": [0, 1, 4, 18, 20, 29, 30, 44, 49, 62, 76, 105, 121, 124, 128, 131, 135, 139, 140], "class": [0, 1, 3, 4, 17, 18, 19, 20, 41, 42, 68, 69, 75, 76, 77, 78, 79, 80, 81, 84, 85, 118, 119, 120, 121, 125, 128, 131, 135, 137, 139], "function": [0, 1, 3, 4, 7, 9, 12, 13, 18, 19, 20, 22, 26, 27, 35, 39, 41, 42, 52, 58, 64, 76, 78, 79, 84, 87, 100, 102, 108, 116, 119, 121, 122, 124, 125, 126, 127, 128, 131, 133, 137, 139, 140], "method": [0, 1, 3, 4, 17, 18, 19, 20, 29, 30, 41, 42, 44, 56, 75, 76, 77, 78, 79, 80, 81, 85, 103, 104, 119, 120, 121, 126, 127, 128, 129, 130, 131, 132, 135, 137, 138, 139, 140], "us": [0, 4, 5, 18, 20, 22, 29, 30, 42, 43, 46, 62, 64, 76, 77, 78, 89, 92, 97, 99, 103, 113, 114, 119, 121, 124, 125, 127, 129, 130, 131, 134, 136, 137, 138, 140], "all": [1, 3, 4, 5, 17, 18, 20, 29, 41, 42, 43, 44, 45, 46, 48, 51, 62, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 85, 97, 98, 101, 105, 109, 115, 117, 118, 119, 120, 121, 124, 125, 126, 127, 128, 130, 131, 133, 135, 137, 138, 139, 140], "pleas": [1, 124], "report": 1, "bug": 1, "request": [1, 128, 134], "github": [1, 18, 20, 121, 124, 133, 135], "issu": [1, 124, 137], "thi": [3, 4, 5, 9, 12, 14, 17, 18, 20, 28, 39, 41, 51, 75, 76, 77, 78, 80, 81, 103, 108, 109, 111, 114, 115, 119, 120, 121, 124, 125, 126, 127, 128, 130, 131, 132, 133, 134, 137, 138, 139, 140], "modul": [3, 17, 41, 75, 77, 116, 120, 122, 124, 125, 134], "contain": [3, 4, 5, 12, 17, 18, 20, 29, 35, 41, 46, 61, 62, 68, 69, 70, 75, 77, 78, 89, 90, 92, 97, 98, 99, 104, 105, 106, 107, 109, 110, 111, 112, 113, 114, 115, 117, 120, 121, 123, 125, 126, 128, 131, 135, 139, 140], "its": [3, 17, 18, 20, 41, 75, 77, 112, 114, 121, 126, 131, 135], "A": [3, 4, 5, 6, 9, 10, 12, 14, 16, 17, 18, 20, 22, 27, 29, 39, 41, 45, 47, 49, 50, 51, 62, 68, 69, 70, 75, 76, 77, 78, 80, 81, 89, 90, 92, 93, 97, 99, 105, 108, 119, 120, 121, 123, 124, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 139, 140], "hold": [3, 17, 18, 42, 75, 77, 78, 120, 121, 131, 135, 139], "set": [3, 4, 10, 14, 18, 19, 20, 42, 43, 44, 49, 76, 78, 80, 81, 85, 89, 90, 92, 93, 97, 98, 99, 101, 104, 106, 107, 109, 110, 111, 112, 113, 114, 115, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 137, 139], "good": 3, "observ": [3, 4, 5, 10, 12, 14, 16, 17, 18, 20, 29, 30, 37, 39, 42, 44, 46, 49, 51, 75, 76, 78, 80, 81, 82, 83, 84, 85, 89, 90, 97, 99, 103, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 120, 121, 123, 125, 126, 128, 129, 134, 135, 137], "analys": [3, 4, 18, 20, 121, 137], "obsdf": [4, 37, 42, 44, 46, 50, 51, 56, 76, 103, 106, 108, 109, 110, 111, 112, 113, 114, 115], "metadf": [4, 5, 18, 20, 66, 68, 69, 70, 72, 73, 74, 76, 78, 88, 103, 109, 112, 113, 114, 115, 121, 123, 126, 128, 131, 132, 135, 138, 139], "data_templ": [4, 90, 92, 121], "sourc": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 123, 124, 127, 128, 135, 136], "base": [4, 18, 20, 29, 39, 42, 76, 78, 80, 81, 85, 119, 121, 123, 130, 135], "object": [4, 18, 20, 42, 49, 71, 76, 78, 85, 104, 106, 109, 110, 111, 115, 119, 121, 125, 126, 128, 135, 137, 139], "The": [4, 5, 6, 10, 13, 14, 16, 18, 20, 26, 28, 29, 30, 35, 39, 42, 43, 44, 46, 49, 50, 51, 62, 68, 69, 70, 76, 78, 80, 81, 82, 83, 84, 85, 89, 90, 92, 93, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 123, 124, 125, 127, 128, 129, 130, 131, 132, 133, 135, 136, 137, 139, 140], "aggregate_df": 4, "df": [4, 5, 12, 13, 16, 18, 20, 23, 25, 26, 29, 30, 35, 36, 38, 39, 40, 42, 46, 49, 50, 76, 82, 83, 97, 103, 104, 106, 107, 109, 110, 111, 115, 121, 123, 125, 126, 128, 131, 135], "none": [4, 8, 18, 20, 27, 42, 43, 44, 71, 76, 78, 80, 81, 85, 91, 95, 97, 98, 99, 101, 108, 119, 121, 123, 125, 126, 127, 128, 130, 131, 138], "agg": [4, 73], "lcz": [4, 18, 20, 74, 121, 126, 129, 130, 131, 132], "hour": [4, 5, 18, 20, 29, 30, 121, 125, 131], "mean": [4, 126, 131, 133, 135], "aggreg": [4, 18, 20, 90, 121, 128, 130, 131, 135, 137, 138], "list": [4, 10, 12, 14, 18, 20, 39, 43, 44, 45, 49, 59, 60, 62, 76, 78, 80, 81, 85, 89, 90, 92, 94, 108, 121, 124, 126, 128, 135, 139], "categori": [4, 94], "output": [4, 6, 18, 20, 78, 119, 121, 123, 128, 131], "datafram": [4, 5, 6, 8, 10, 12, 13, 16, 18, 20, 22, 23, 24, 26, 28, 29, 35, 38, 39, 42, 44, 45, 46, 48, 49, 50, 51, 62, 68, 69, 70, 76, 78, 81, 82, 83, 90, 97, 99, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 121, 123, 126, 127, 131], "i": [4, 5, 6, 9, 11, 12, 14, 17, 18, 20, 27, 28, 29, 30, 35, 39, 40, 42, 43, 44, 47, 49, 61, 62, 68, 69, 70, 76, 78, 80, 81, 82, 83, 85, 89, 90, 92, 93, 94, 97, 99, 101, 108, 109, 111, 112, 113, 114, 115, 119, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140], "one": [4, 5, 18, 20, 42, 47, 61, 78, 108, 120, 121, 124, 126, 131, 132, 135, 137, 139, 140], "more": [4, 49, 61, 94, 124, 125, 126, 127, 128, 130, 131, 137, 139, 140], "commen": 4, "exampl": [4, 18, 20, 121, 131, 134, 137], "": [4, 18, 20, 23, 108, 121, 124, 130, 131, 137, 138, 139, 140], "paramet": [4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18, 20, 21, 26, 28, 29, 30, 35, 39, 42, 43, 44, 45, 46, 47, 49, 50, 51, 68, 69, 70, 76, 78, 80, 81, 82, 83, 85, 89, 90, 92, 93, 94, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 123], "panda": [4, 5, 10, 12, 13, 16, 18, 20, 26, 28, 29, 30, 31, 32, 33, 34, 35, 40, 42, 44, 45, 46, 49, 50, 51, 76, 78, 81, 82, 83, 90, 97, 99, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 121, 123, 126, 131, 137, 138], "If": [4, 12, 14, 18, 20, 27, 29, 30, 42, 43, 44, 47, 49, 61, 62, 76, 78, 90, 92, 94, 97, 99, 101, 113, 119, 121, 123, 124, 126, 127, 128, 130, 131, 132, 135, 139, 140], "attribut": [4, 18, 20, 42, 44, 46, 76, 78, 79, 82, 109, 115, 117, 121, 123, 126, 127, 128, 131, 132, 135, 139], "instanc": [4, 18, 20, 78, 121, 125, 126, 128, 131, 135, 139], "default": [4, 6, 10, 12, 14, 18, 20, 29, 30, 35, 39, 42, 43, 44, 62, 68, 69, 70, 76, 78, 80, 81, 84, 85, 90, 92, 96, 97, 99, 101, 108, 112, 113, 114, 119, 121, 123, 125, 126, 127, 129, 130, 135, 138], "option": [4, 6, 10, 14, 18, 20, 29, 30, 35, 39, 42, 43, 44, 68, 69, 70, 76, 78, 80, 81, 85, 90, 97, 99, 101, 108, 112, 113, 114, 119, 121, 123, 124, 126, 131, 132, 139, 140], "columnnam": [4, 5, 13, 68, 69, 70, 80, 81, 85], "includ": [4, 18, 20, 26, 70, 78, 98, 121, 124, 131, 135, 137], "inform": [4, 18, 20, 41, 42, 68, 69, 70, 76, 78, 80, 81, 85, 101, 121, 126, 127, 129, 132, 135, 139, 140], "extract": [4, 18, 20, 42, 47, 68, 69, 70, 74, 76, 78, 121, 126, 129, 131, 132, 135], "from": [4, 10, 14, 18, 20, 29, 30, 37, 38, 47, 50, 51, 68, 69, 70, 71, 72, 73, 76, 77, 78, 80, 81, 82, 83, 85, 105, 106, 108, 111, 113, 115, 119, 121, 124, 126, 127, 129, 131, 132, 135, 137, 138, 139, 140], "datetim": [4, 6, 18, 20, 25, 26, 27, 28, 30, 31, 32, 33, 34, 39, 42, 46, 50, 51, 70, 76, 78, 92, 105, 108, 121, 125, 126, 127, 130, 131, 138], "str": [4, 5, 6, 8, 9, 12, 13, 14, 16, 18, 20, 21, 27, 29, 39, 43, 44, 76, 78, 80, 81, 85, 89, 90, 92, 93, 94, 97, 98, 99, 103, 105, 106, 108, 109, 110, 111, 114, 115, 117, 119, 121], "name": [4, 9, 16, 18, 20, 28, 29, 31, 32, 33, 34, 38, 39, 42, 46, 47, 50, 51, 68, 69, 70, 76, 78, 80, 81, 85, 92, 94, 97, 99, 105, 107, 108, 112, 113, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 135, 138, 139, 140], "e": [4, 5, 18, 20, 108, 112, 113, 114, 121, 130, 131, 135, 137], "g": [4, 6, 93, 108, 112, 113, 114, 126, 128, 130, 131, 135, 137], "np": 4, "sum": [4, 131], "return": [4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 18, 20, 21, 26, 27, 28, 29, 30, 35, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 62, 68, 69, 70, 76, 78, 80, 81, 82, 83, 85, 89, 90, 92, 93, 94, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 123, 128], "column": [4, 5, 8, 11, 14, 18, 20, 26, 35, 39, 42, 45, 68, 69, 70, 78, 81, 82, 83, 92, 97, 99, 107, 108, 109, 115, 121, 125, 127, 131, 138, 140], "an": [4, 18, 20, 29, 39, 40, 42, 45, 46, 47, 49, 71, 76, 78, 80, 81, 82, 83, 85, 91, 97, 99, 106, 108, 109, 110, 111, 112, 113, 114, 115, 119, 121, 124, 126, 127, 128, 129, 130, 131, 132, 135, 137, 139, 140], "index": [4, 8, 18, 20, 25, 26, 28, 29, 39, 42, 45, 46, 50, 51, 68, 69, 70, 78, 121, 124, 134, 138], "valu": [4, 6, 9, 18, 20, 29, 39, 42, 43, 44, 48, 49, 68, 69, 70, 78, 80, 83, 85, 90, 92, 94, 99, 106, 107, 109, 110, 111, 112, 113, 114, 115, 121, 127, 128, 130, 135, 139], "ar": [4, 5, 9, 18, 20, 22, 39, 42, 43, 44, 46, 47, 49, 50, 51, 62, 64, 66, 68, 69, 70, 76, 78, 79, 82, 84, 92, 94, 97, 101, 104, 106, 107, 108, 109, 110, 111, 115, 118, 119, 121, 123, 124, 125, 126, 127, 128, 130, 131, 132, 133, 135, 136, 137, 138, 139, 140], "type": [4, 6, 8, 9, 10, 12, 13, 14, 18, 20, 21, 26, 27, 28, 29, 30, 35, 39, 42, 43, 44, 45, 46, 47, 50, 51, 62, 68, 69, 70, 76, 78, 80, 81, 82, 83, 84, 85, 89, 90, 92, 93, 94, 97, 98, 101, 103, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 117, 119, 121, 123, 125, 126, 128, 129, 130, 134, 135, 137], "present": [4, 5, 10, 14, 18, 20, 28, 76, 82, 83, 97, 121, 126, 128, 139, 140], "non": [4, 125, 135, 137, 138], "numer": [4, 18, 20, 78, 80, 81, 85, 92, 107, 112, 113, 114, 121, 130, 131, 137, 140], "sinc": [4, 130, 131, 135, 140], "cannot": [4, 124, 128], "apply_filt": [4, 125], "express": [4, 5, 18, 20, 121], "filter": [4, 5, 10, 18, 20, 106, 121, 124, 137], "user": [4, 5, 10, 12, 13, 14, 18, 20, 27, 39, 96, 121, 133, 134, 135, 137, 139], "defind": [4, 5], "string": [4, 5, 18, 20, 21, 27, 42, 47, 68, 69, 70, 78, 80, 81, 85, 90, 92, 108, 112, 113, 114, 119, 121, 123, 131, 140], "specif": [4, 5, 9, 13, 18, 20, 47, 56, 76, 78, 80, 85, 89, 90, 96, 98, 104, 105, 106, 107, 108, 109, 110, 111, 115, 121, 124, 125, 126, 127, 129, 130, 134, 135, 137], "meteorolog": [4, 5, 125, 135, 137], "condit": [4, 5, 128], "low": [4, 5, 128, 130, 131, 137], "windspe": [4, 5], "high": [4, 5, 137], "humid": [4, 5, 125, 126, 130, 131, 139, 140], "cold": [4, 5, 131], "temperatur": [4, 5, 18, 20, 121, 126, 127, 130, 131, 138, 139], "onli": [4, 5, 18, 20, 42, 61, 78, 114, 115, 121, 124, 125, 128, 132, 133, 135, 139], "new": [4, 18, 20, 78, 80, 81, 82, 83, 85, 97, 99, 121, 124, 131, 134], "either": [4, 5, 140], "follow": [4, 5, 18, 20, 121, 124, 126, 127, 128, 130, 131, 135, 137, 140], "timestamp": [4, 5, 18, 20, 30, 42, 49, 50, 76, 104, 108, 121, 123, 126, 127, 129, 134, 135, 137, 140], "deriv": [4, 5], "well": [4, 5, 18, 20, 121, 133, 135], "minut": [4, 5, 18, 20, 29, 30, 121, 125, 126, 130, 139], "month": [4, 5], "year": [4, 5], "day_of_year": [4, 5], "week_of_year": [4, 5], "season": [4, 5, 6, 125, 135], "quarry_str": [4, 5], "mai": [4, 5, 135], "number": [4, 5, 18, 20, 35, 44, 49, 54, 101, 110, 121, 127, 130, 135], "like": [4, 5, 18, 20, 29, 30, 78, 121, 126, 131, 135, 137], "multipl": [4, 5, 18, 20, 78, 108, 121, 124, 127, 131, 139], "combin": [4, 5, 18, 20, 45, 111, 115, 118, 121, 127, 135], "AND": [4, 5, 132], "OR": [4, 5], "filtered_analysi": 4, "except": [4, 135], "possibl": [4, 18, 20, 108, 121, 124, 127, 132, 139], "winter": [4, 6], "spring": [4, 6], "summer": [4, 6, 125, 127, 130, 137], "autumn": [4, 6, 125], "make": [4, 18, 20, 35, 57, 91, 92, 93, 97, 98, 99, 121, 124, 125, 127, 128, 129, 132, 133, 135, 137, 138, 140], "shure": [4, 18, 20, 121, 127, 128, 138], "indic": [4, 18, 20, 89, 90, 97, 121, 124, 127, 139, 140], "need": [4, 18, 20, 28, 42, 65, 78, 118, 121, 126, 127, 128, 131, 132, 139, 140], "get_aggregated_cycle_statist": 4, "obstyp": [4, 10, 12, 14, 16, 18, 20, 24, 28, 33, 34, 39, 42, 43, 44, 53, 55, 56, 57, 70, 76, 78, 80, 81, 89, 90, 96, 97, 103, 106, 108, 109, 110, 111, 112, 113, 114, 115, 117, 121, 125, 126, 127, 128, 129, 130, 135, 138, 139], "temp": [4, 18, 20, 42, 43, 44, 76, 78, 112, 113, 114, 121, 125, 126, 127, 128, 130, 131, 135, 138, 139, 140], "aggregation_method": 4, "horizontal_axi": 4, "station": [4, 5, 18, 20, 29, 35, 38, 42, 44, 46, 47, 49, 50, 51, 53, 62, 70, 72, 74, 76, 78, 88, 97, 99, 104, 105, 108, 109, 114, 115, 125, 127, 128, 130, 131, 134, 137, 139], "startdt": [4, 18, 20, 42, 70, 121, 128, 138], "enddt": [4, 18, 20, 42, 70, 121, 128, 138], "plot": [4, 18, 20, 61, 62, 78, 80, 81, 85, 89, 90, 91, 92, 93, 97, 98, 99, 121, 125, 127, 129, 130, 137], "true": [4, 12, 14, 18, 20, 29, 30, 40, 42, 43, 44, 78, 80, 81, 85, 90, 92, 97, 99, 101, 114, 121, 125, 126, 128, 130, 131, 138], "titl": [4, 18, 20, 78, 89, 90, 92, 93, 97, 98, 99, 121, 126, 127, 128, 130, 131, 138], "y_label": [4, 18, 20, 90, 121, 138], "legend": [4, 18, 20, 78, 90, 92, 97, 99, 121, 126, 138], "errorband": [4, 125, 138], "fals": [4, 18, 20, 42, 43, 44, 78, 80, 81, 85, 90, 101, 114, 121, 128, 130, 131, 138], "verbos": [4, 18, 20, 121], "_obsdf": 4, "_show_zero_lin": 4, "creat": [4, 7, 18, 20, 22, 48, 52, 58, 61, 78, 87, 94, 97, 99, 102, 103, 108, 119, 121, 124, 126, 127, 129, 130, 132, 134, 135, 136, 137, 138, 140], "averag": [4, 18, 20, 112, 114, 121, 138, 139], "cycl": [4, 90, 129, 138], "so": [4, 51, 76, 92, 124, 126, 127, 128, 131, 132, 139], "get": [4, 18, 20, 29, 42, 46, 53, 54, 55, 71, 72, 73, 76, 105, 121, 126, 127, 128, 130, 134, 135, 138, 139], "diurnal": [4, 129, 130, 135], "per": [4, 5, 18, 20, 49, 104, 105, 121, 123, 126, 130, 131, 140], "rather": [4, 78], "than": [4, 18, 20, 29, 49, 61, 62, 78, 94, 111, 112, 114, 115, 121, 128, 131, 135], "In": [4, 18, 20, 42, 46, 78, 109, 121, 124, 126, 127, 130, 131, 132, 133, 135, 137, 139, 140], "each": [4, 18, 20, 46, 68, 69, 70, 76, 112, 113, 121, 123, 124, 126, 128, 130, 131, 135, 139, 140], "differ": [4, 18, 20, 78, 111, 112, 114, 115, 121, 131, 132, 137, 140], "repres": [4, 16, 18, 20, 68, 69, 70, 78, 80, 81, 82, 83, 85, 92, 106, 109, 110, 111, 114, 115, 121, 131, 135, 139, 140], "line": [4, 18, 20, 78, 90, 97, 121, 127], "element": [4, 18, 20, 76, 121], "observation_typ": [4, 18, 20, 121], "variabl": [4, 18, 20, 92, 121, 126, 128, 131, 135], "These": [4, 10, 12, 14, 18, 20, 39, 79, 106, 109, 110, 111, 115, 121, 126, 127, 130, 135, 137, 139], "should": [4, 6, 18, 20, 78, 109, 114, 121, 127, 128, 130, 132], "categor": [4, 6, 18, 20, 68, 69, 78, 92, 94, 121, 130, 131, 135], "time": [4, 18, 20, 42, 44, 76, 78, 92, 109, 115, 121, 124, 125, 127, 128, 129, 130, 131, 132, 135, 137, 138, 139], "aggreaget": 4, "which": [4, 18, 20, 76, 113, 114, 121, 124, 125, 126, 127, 128, 130, 131, 132, 137, 139, 140], "numpi": [4, 20, 42, 44, 80, 81, 85], "horizont": [4, 20, 90], "axi": [4, 18, 20, 78, 121], "start": [4, 6, 18, 20, 26, 45, 70, 78, 119, 121, 126, 128, 130, 132, 134, 135], "end": [4, 18, 20, 45, 70, 78, 121, 128], "bool": [4, 12, 14, 18, 20, 21, 29, 42, 43, 44, 78, 80, 81, 85, 90, 92, 97, 99, 101, 114, 121], "made": [4, 18, 20, 97, 99, 121, 133, 140], "figur": [4, 18, 20, 78, 89, 90, 92, 93, 97, 98, 99, 121, 127, 136], "gener": [4, 18, 20, 78, 113, 117, 121, 123, 124, 126, 127, 128, 131, 132, 137], "y": [4, 18, 20, 90, 95, 121, 130, 138], "ax": [4, 18, 20, 78, 80, 81, 85, 89, 90, 92, 93, 97, 99, 121, 126, 127, 128, 130, 131, 138], "label": [4, 6, 18, 20, 39, 89, 90, 97, 98, 99, 104, 106, 108, 109, 110, 111, 114, 115, 116, 117, 121, 123, 124, 126, 127, 130, 135, 139], "ad": [4, 6, 10, 12, 14, 18, 20, 39, 78, 82, 83, 90, 92, 97, 99, 108, 121, 123, 131, 135], "std": [4, 20, 90, 114, 138], "representd": 4, "color": [4, 18, 20, 78, 92, 94, 97, 98, 121, 126, 138], "band": [4, 70, 71, 78, 80, 81, 91, 131, 139], "addit": [4, 18, 20, 42, 46, 121, 133, 139], "timezon": [4, 18, 20, 25, 27, 78, 119, 121, 130, 135], "unawar": [4, 18, 20, 27, 121], "given": [4, 18, 20, 70, 78, 80, 81, 108, 113, 119, 121, 124, 140], "argument": [4, 18, 20, 27, 42, 119, 121, 126, 139, 140], "interpret": [4, 18, 20, 78, 92, 121, 125, 126, 127, 131, 135, 140], "ha": [4, 6, 14, 18, 20, 29, 80, 81, 94, 112, 113, 114, 121, 124, 128, 131, 132, 133, 135, 136, 137, 139, 140], "same": [4, 6, 18, 20, 27, 50, 51, 70, 78, 121, 126, 128, 131, 135, 140], "get_anual_statist": 4, "groupbi": 4, "agg_method": 4, "_return_all_stat": [4, 138], "anual": [4, 130], "group": [4, 18, 20, 90, 121, 130, 139], "uniqu": [4, 94, 130, 131, 135, 140], "stationnam": [4, 18, 20, 45, 46, 78, 97, 105, 108, 121, 126, 135], "get_diurnal_statist": [4, 125, 138], "colorbi": [4, 18, 20, 99, 121, 125, 126, 127, 130, 138], "get_diurnal_statistics_with_refer": 4, "refstat": 4, "toller": [4, 18, 20, 121, 139], "30t": [4, 126, 130], "show_zero_horizont": [4, 90], "refer": [4, 20, 124, 125, 126, 127, 130, 131, 135, 140], "convert": [4, 6, 16, 18, 20, 25, 27, 28, 29, 30, 35, 39, 42, 59, 60, 63, 67, 78, 80, 81, 85, 86, 96, 103, 121, 127, 130, 131, 137, 138, 139, 140], "closest": [4, 20], "No": [4, 126, 131, 132, 135, 137], "found": [4, 18, 20, 29, 30, 40, 42, 47, 121, 126, 127, 131, 135, 136, 139], "when": [4, 18, 20, 28, 29, 30, 40, 50, 78, 114, 119, 121, 127, 128, 130, 131, 132, 135, 137, 138, 139, 140], "larger": [4, 18, 20, 76, 111, 115, 121, 132, 135], "timedelta": [4, 18, 20, 21, 29, 30, 42, 76, 78, 121], "maximum": [4, 18, 20, 29, 30, 44, 92, 101, 114, 115, 121], "translat": [4, 18, 20, 121, 138, 139], "ex": [4, 18, 20, 121], "5t": [4, 18, 20, 121], "5": [4, 18, 20, 101, 121, 125, 126, 127, 128, 130, 131, 132, 138, 139, 140], "1h": [4, 18, 20, 78, 121, 130, 131], "upper": 4, "bound": [4, 59, 61, 62, 63], "1": [4, 18, 20, 61, 121, 125, 126, 127, 128, 130, 131, 132, 135, 138, 139], "x": [4, 18, 20, 40, 80, 81, 85, 86, 121, 127, 130, 131, 139], "lower": [4, 131], "drawn": [4, 90], "zero": 4, "get_lc_correlation_matric": 4, "groupby_label": [4, 89], "comput": [4, 18, 20, 42, 46, 62, 78, 82, 83, 113, 116, 117, 121, 125, 131, 132, 135], "pearson": 4, "correl": [4, 89, 93, 137], "coefici": 4, "between": [4, 18, 20, 112, 114, 121, 130, 132], "oberv": [4, 18, 20, 121], "landcov": [4, 18, 20, 73, 121, 128, 130, 131, 135, 137], "fraction": [4, 18, 20, 68, 73, 121, 128], "defin": [4, 18, 20, 49, 61, 68, 69, 70, 84, 114, 121, 126, 127, 131], "dictionari": [4, 8, 9, 12, 13, 14, 15, 16, 18, 20, 89, 93, 94, 98, 103, 104, 106, 109, 110, 111, 112, 113, 115, 117, 121], "returnd": 4, "where": [4, 6, 9, 18, 20, 28, 39, 92, 94, 121, 123, 126, 135, 139], "kei": [4, 9, 16, 40, 70, 89], "cor": [4, 89], "matrix": [4, 89, 93], "signific": [4, 89, 137], "p": 4, "human": [4, 68, 69], "readabl": 4, "0": [4, 18, 20, 61, 90, 95, 114, 121, 125, 126, 127, 128, 130, 131, 138, 139, 140], "05": [4, 52, 126, 127, 128, 130, 139], "01": [4, 6, 58, 125, 126, 127, 128, 130, 131], "001": [4, 130, 131], "respect": 4, "also": [4, 18, 20, 121, 126, 127, 128, 131, 135, 139], "store": [4, 14, 18, 20, 42, 46, 78, 119, 121, 126, 128, 130, 131, 132, 135, 137, 139, 140], "lc_cor_dict": 4, "form": [4, 18, 20, 42, 121, 124, 127, 128, 137], "result": [4, 18, 20, 121, 137, 139], "cor_dict": [4, 93], "nest": [4, 9], "dict": [4, 8, 9, 10, 12, 13, 14, 16, 18, 20, 43, 44, 68, 69, 70, 80, 81, 89, 90, 92, 93, 94, 97, 98, 99, 103, 104, 106, 107, 109, 110, 111, 115, 117, 121], "plot_correlation_heatmap": 4, "groupby_valu": 4, "_return_ax": 4, "heatmap": [4, 93], "af": [4, 42], "correalt": 4, "To": [4, 18, 20, 78, 121, 125, 126, 127, 128, 130, 131, 132, 133, 135, 139, 140], "specifi": [4, 18, 20, 42, 47, 104, 106, 110, 111, 112, 114, 115, 121, 124, 126, 131, 139, 140], "num": [4, 18, 20, 121, 138], "visualis": [4, 18, 20, 78, 93, 121], "first": [4, 18, 20, 42, 46, 121, 124, 125, 126, 127, 128, 132, 139], "chosen": [4, 139], "construct": [4, 24, 31, 32, 33, 34, 42, 61, 108, 133, 140], "print": [4, 18, 20, 42, 76, 78, 80, 81, 85, 119, 121, 126, 127, 128, 131, 132, 135, 138, 139, 140], "analysis_inst": 4, "plot_correlation_vari": 4, "scatter": [4, 18, 20, 89, 121, 128, 130, 131], "vertic": [4, 18, 20, 80, 81, 85, 90, 97, 99, 113, 121, 127, 132], "constant": [4, 18, 20, 121, 139], "marker": [4, 18, 20, 88, 121], "mani": [4, 18, 20, 121, 124, 137], "exist": [4, 9, 132, 137, 138, 139], "reduc": [4, 128], "subset_period": 4, "subset": [4, 18, 20, 26, 38, 76, 121, 125, 138], "period": [4, 18, 20, 26, 42, 49, 51, 53, 55, 109, 121, 123, 125, 127, 130, 131, 138], "assum": [4, 12, 18, 20, 27, 30, 49, 78, 92, 121, 127, 135, 139], "data": [4, 8, 12, 14, 18, 20, 41, 70, 78, 80, 81, 82, 83, 85, 119, 121, 123, 124, 127, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139], "filterd": 5, "containig": 5, "metadata": [5, 8, 13, 14, 18, 20, 112, 113, 114, 119, 121, 123, 126, 128, 131, 133, 134, 135, 137], "filter_df": 5, "filter_metadf": 5, "datetimeseri": 6, "start_day_spr": 6, "03": [6, 139], "start_day_summ": 6, "06": [6, 7, 140], "start_day_autumn": 6, "09": [6, 58, 125, 126, 127, 128, 139], "start_day_wint": 6, "12": [6, 125, 126, 127, 128, 130, 131, 137, 138], "timeseri": [6, 18, 20, 70, 77, 78, 97, 99, 111, 121, 129, 131], "want": [6, 18, 20, 121, 124, 126, 127, 131, 139, 140], "split": 6, "up": [6, 124, 128, 130, 131, 132, 135, 137], "date": [6, 105], "chang": [6, 18, 20, 109, 110, 114, 119, 121, 124, 127, 130, 135, 138, 139], "input": [6, 18, 20, 76, 107, 111, 115, 119, 121, 126, 130, 137], "have": [6, 9, 18, 20, 76, 121, 124, 127, 128, 132, 133, 137, 139, 140], "format": [6, 12, 14, 16, 18, 20, 27, 28, 42, 46, 78, 121, 137, 138], "obtain": [6, 132, 137], "been": [6, 124, 136, 137], "thu": [7, 18, 20, 22, 102, 114, 121, 131, 135], "sep": [7, 138], "22": [7, 125, 139], "16": [7, 22, 125, 127, 130, 131, 138, 140], "24": [7, 127, 128, 130, 138], "2022": [7, 58, 87, 102, 125, 126, 127, 128, 130, 131, 138, 140], "author": [7, 19, 22, 52, 58, 64, 87, 100, 102, 116, 118, 122, 127, 128, 132, 137], "thoverga": [7, 19, 22, 52, 58, 64, 87, 100, 102, 116, 118, 122, 128, 130], "templat": [8, 10, 11, 12, 13, 14, 15, 16, 18, 20, 90, 92, 96, 119, 121, 126, 130, 133, 134, 137, 139], "df_column": [8, 11], "filetyp": 8, "log": [8, 138], "compatibl": 8, "pd": [8, 12, 13, 39, 68, 69, 70, 76, 128, 131, 138], "map": [8, 18, 20, 68, 69, 78, 88, 112, 113, 121, 126, 130, 131, 134, 137], "other": [8, 18, 20, 25, 76, 78, 113, 119, 121, 124, 129, 131, 135, 137], "descript": [8, 12, 18, 20, 78, 80, 81, 85, 121, 128, 131, 135, 139, 140], "nested_dict": 9, "valuesnam": 9, "unnest": 9, "info": [9, 18, 20, 24, 85, 98, 104, 106, 109, 110, 111, 115, 117, 121, 126, 127, 128, 131], "valuenam": 9, "returndict": 9, "dictionarri": 9, "kept": [9, 135], "nesteddict": 9, "templ": 10, "known_obstyp": [10, 12, 14, 39], "out": [10, 18, 20, 76, 78, 80, 81, 85, 101, 106, 119, 121, 126, 127, 128, 135, 140], "structur": [10, 14, 16, 18, 20, 121, 124, 134], "known": [10, 12, 14, 18, 20, 39, 78, 80, 81, 85, 121, 131, 139], "consist": [10, 12, 14, 18, 20, 39, 113, 121, 130, 137], "ones": [10, 12, 14, 39], "new_templ": 10, "optioncolumn": 10, "remov": [10, 18, 20, 37, 50, 51, 76, 104, 111, 113, 115, 121, 128, 135], "opt_kwarg": [10, 14], "template_list": [11, 18, 20, 121], "test": [11, 18, 20, 21, 66, 80, 81, 85, 104, 107, 109, 110, 111, 113, 115, 121, 124, 130, 134, 135, 137], "compat": [11, 137], "dataafram": [11, 26], "input_fil": [12, 13, 18, 20, 121], "long_format": [12, 18, 20, 121], "obstype_unit": [12, 18, 20, 121], "obstype_descript": [12, 18, 20, 121], "kwargs_data_read": [12, 18, 20, 121], "import": [12, 13, 14, 18, 20, 78, 119, 121, 125, 127, 128, 129, 130, 131, 132, 133, 135, 137, 138, 139, 140], "path": [12, 13, 14, 18, 20, 78, 119, 121, 125, 126, 127, 128, 130, 138, 139, 140], "csv": [12, 13, 14, 18, 20, 78, 119, 121, 122, 123, 126, 128, 130, 138, 140], "file": [12, 13, 14, 18, 20, 78, 119, 121, 122, 123, 124, 125, 126, 127, 128, 130, 132, 139, 140], "long": [12, 16, 18, 20, 121, 131], "els": [12, 18, 20, 62, 78, 80, 81, 85, 101, 121], "wide": [12, 16, 18, 20, 121, 137], "observationtyp": [12, 18, 20, 43, 44, 78, 79, 84, 108, 121, 131, 139], "unit": [12, 18, 20, 78, 80, 81, 82, 85, 114, 121, 128, 130, 131, 138, 139], "kwarg": [12, 13, 23, 139], "pass": [12, 13, 18, 20, 42, 103, 121, 135], "read_csv": [12, 13, 18, 20, 121, 138], "invtempl": 12, "toolkit": [12, 13, 16, 17, 27, 78, 99, 124, 126, 127, 128, 130, 131, 132, 133, 136, 137, 138, 139], "space": [12, 42, 76], "kwargs_metadata_read": [13, 18, 20, 121], "extra": [13, 42, 78, 79, 82, 83, 135, 139], "standard": [13, 16, 18, 20, 78, 80, 81, 85, 112, 114, 121, 123, 126, 131, 134, 137, 139], "data_long_format": 14, "seper": [14, 18, 20, 121, 133], "becaus": [14, 18, 20, 76, 121, 127, 128, 132, 139], "do": [14, 18, 20, 109, 111, 121, 124, 125, 126, 130, 131, 132, 133, 135, 139], "relat": [14, 124], "ani": [14, 51, 76, 124, 137], "prioriti": [14, 18, 20, 121], "over": [14, 18, 20, 109, 121, 127, 130], "specific_templ": 15, "invert": 15, "updat": [16, 18, 19, 20, 42, 44, 76, 78, 104, 106, 107, 108, 109, 110, 111, 115, 119, 121, 125, 126, 127, 128, 129, 130, 135, 138], "metob": [16, 17, 43, 44, 124, 126, 131, 133, 135, 136, 137, 138, 140], "longdf": 16, "updatet": 16, "center": [17, 105, 125, 126, 127, 128, 130, 131], "__add__": [18, 20, 76, 121], "gapsiz": [18, 20, 121, 127], "two": [18, 20, 29, 39, 42, 76, 121, 130, 132], "add_new_observationtyp": [18, 20, 121, 131, 139], "add": [18, 20, 42, 78, 80, 81, 85, 88, 121, 124, 126, 128, 131, 135, 136, 139], "alreadi": [18, 20, 121], "knonw": [18, 20, 78, 80, 81, 85, 121], "case": [18, 20, 78, 121, 139], "probabl": [18, 20, 121], "add_new_unit": [18, 20, 121, 131, 139], "new_unit": [18, 20, 121, 131], "conversion_express": [18, 20, 121, 131], "convers": [18, 20, 78, 80, 81, 85, 121, 131, 139], "simpl": [18, 20, 121], "algebra": [18, 20, 121], "oper": [18, 20, 121, 124], "celciu": [18, 20, 78, 121, 126, 127, 128, 130, 131, 139], "273": [18, 20, 121, 131, 139], "15": [18, 20, 121, 125, 126, 127, 128, 130, 131, 138, 139], "kelvin": [18, 20, 121, 131, 139], "32": [18, 20, 121, 131, 139], "8": [18, 20, 121, 125, 126, 127, 128, 130, 131, 139], "farenheit": [18, 20, 121, 131, 139], "apply_buddy_check": [18, 20, 121, 130], "use_constant_altitud": [18, 20, 121, 138], "haversine_approx": [18, 20, 114, 121], "metric_epsg": [18, 20, 114, 121], "31370": [18, 20, 114, 121], "appli": [18, 20, 24, 26, 28, 42, 112, 113, 115, 121, 125, 126, 127, 129, 134, 135, 137, 138], "buddi": [18, 20, 112, 114, 121, 130, 138], "check": [18, 20, 98, 104, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 117, 121, 124, 130, 135, 137, 138], "compar": [18, 20, 111, 112, 113, 114, 121, 135], "against": [18, 20, 112, 114, 121], "neighbour": [18, 20, 112, 114, 121], "look": [18, 20, 42, 46, 49, 104, 106, 109, 110, 111, 112, 114, 115, 121, 124, 126, 128, 130, 131, 139], "neighbourhood": [18, 20, 112, 114, 121], "certain": [18, 20, 112, 114, 121, 139], "radiu": [18, 20, 95, 112, 114, 121, 130, 138], "flag": [18, 20, 108, 109, 111, 112, 113, 114, 121, 130, 137], "absolut": [18, 20, 112, 114, 121], "normal": [18, 20, 112, 114, 121], "deviat": [18, 20, 29, 30, 112, 113, 114, 121], "circl": [18, 20, 112, 114, 121], "greater": [18, 20, 112, 114, 121], "predefin": [18, 20, 112, 114, 121, 139], "threshold": [18, 20, 112, 114, 115, 121, 127, 130, 135, 137, 138, 139], "titanlib": [18, 20, 103, 112, 113, 121, 130, 135], "document": [18, 20, 121, 125, 126, 130, 137], "outlier": [18, 20, 28, 37, 42, 44, 46, 51, 76, 78, 98, 104, 105, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 121, 123, 125, 126, 129, 130, 131, 135, 137, 138, 139], "accordingli": [18, 20, 121], "altitud": [18, 20, 72, 114, 121, 128], "haversin": [18, 20, 114, 121], "approxim": [18, 20, 114, 121, 131], "earth": [18, 20, 114, 121, 127, 129, 130, 131, 134, 135, 137, 139], "sphere": [18, 20, 114, 121], "calcul": [18, 20, 114, 121, 127], "distanc": [18, 20, 94, 114, 121], "epsg": [18, 20, 35, 67, 68, 69, 70, 114, 121], "code": [18, 20, 114, 121, 124, 127, 128, 132, 133, 137, 139, 140], "metric": [18, 20, 114, 121], "cr": [18, 20, 35, 114, 121], "becom": [18, 20, 114, 121, 127], "better": [18, 20, 114, 121], "global": [18, 20, 114, 121, 130, 131], "applic": [18, 20, 114, 121, 124, 126, 132, 133], "suitabl": [18, 20, 62, 114, 121, 124, 127], "belgium": [18, 20, 62, 114, 121], "apply_quality_control": [18, 20, 121, 125, 127, 130, 138], "gross_valu": [18, 20, 121, 130, 138], "persist": [18, 20, 109, 121, 130], "repetit": [18, 20, 49, 110, 121, 130, 137], "step": [18, 20, 111, 121, 124, 130, 132, 135, 137], "window_vari": [18, 20, 121, 130], "qualiti": [18, 20, 98, 104, 106, 108, 109, 110, 111, 115, 117, 121, 123, 125, 126, 127, 129, 134, 135, 137], "control": [18, 20, 98, 104, 106, 108, 109, 110, 111, 115, 117, 121, 123, 124, 125, 126, 127, 129, 134, 135, 137], "settings_fil": [18, 20, 121, 130], "qc_set": [18, 20, 104, 106, 110, 111, 115, 121], "py": [18, 20, 121, 128], "perform": [18, 20, 29, 30, 109, 119, 121, 124, 130, 133, 135, 137, 139], "sequenc": [18, 20, 49, 121, 130, 135], "gross_vallu": [18, 20, 121], "previou": [18, 20, 111, 121, 125, 127, 128], "ignor": [18, 20, 51, 76, 121, 139], "inlin": [18, 20, 121], "repet": [18, 20, 121], "apply_titan_buddy_check": [18, 20, 121, 130, 138], "titan": [18, 20, 112, 113, 121, 130, 137, 138], "see": [18, 20, 121, 124, 126, 128, 130, 131, 132, 139], "futher": [18, 20, 121], "detail": [18, 20, 42, 76, 78, 80, 81, 85, 101, 121, 124, 125, 126, 127, 128, 130, 131, 139], "update_titan_qc_set": [18, 20, 121, 138], "must": [18, 20, 78, 81, 92, 97, 107, 121, 124, 126, 128, 131, 135, 139, 140], "instal": [18, 20, 121, 124, 126, 133, 134, 137], "window": [18, 20, 105, 109, 115, 121, 130, 137], "c": [18, 20, 81, 121, 130, 131, 135, 137, 138, 139], "compil": [18, 20, 121, 135], "http": [18, 20, 121, 127, 128, 130, 131, 132, 133, 135, 139], "com": [18, 20, 121, 124, 127, 128, 131, 132, 133, 135, 139], "metno": [18, 20, 121], "wiki": [18, 20, 121], "apply_titan_sct_resistant_check": [18, 20, 121, 130], "spatial": [18, 20, 61, 62, 92, 113, 114, 121, 128, 130, 137], "resist": [18, 20, 113, 121, 130], "sct": [18, 20, 113, 121, 130], "what": [18, 20, 113, 121, 126, 128, 131, 139, 140], "expect": [18, 20, 76, 113, 121, 139], "nearbi": [18, 20, 113, 121], "area": [18, 20, 113, 121], "larg": [18, 20, 78, 113, 121, 128, 130, 131, 132], "optim": [18, 20, 94, 113, 121], "interpol": [18, 20, 42, 44, 56, 76, 78, 113, 121, 125, 127, 137], "oi": [18, 20, 113, 121], "background": [18, 20, 113, 121], "profil": [18, 20, 113, 121], "python": [18, 20, 121, 124, 133, 135, 137], "wrapper": [18, 20, 26, 78, 121], "script": [18, 20, 121, 124, 133, 136, 137, 138], "prone": [18, 20, 121], "segment": [18, 20, 121], "fault": [18, 20, 121], "perfom": [18, 20, 78, 121], "guarante": [18, 20, 121, 133], "coarsen_time_resolut": [18, 20, 121, 125, 126, 127, 138], "origin": [18, 20, 80, 81, 85, 121, 124, 131, 139], "origin_tz": [18, 20, 121], "freq": [18, 20, 121, 125, 126, 127, 138], "limit": [18, 20, 42, 106, 111, 115, 121, 124, 128, 135], "resampl": [18, 20, 121, 129, 137], "coarser": [18, 20, 121], "timeresolut": [18, 20, 121], "resolut": [18, 20, 42, 46, 76, 78, 121, 129, 137, 138, 139], "naiv": [18, 20, 27, 121], "earliest": [18, 20, 121], "occur": [18, 20, 49, 98, 105, 115, 117, 121, 131], "pytz": [18, 20, 27, 121], "all_timezon": [18, 20, 121], "dateoffset": [18, 20, 121], "offset": [18, 20, 121], "target": [18, 20, 121], "15t": [18, 20, 121, 125, 127], "nearest": [18, 20, 121, 130], "bfill": [18, 20, 121], "int": [18, 20, 44, 49, 76, 78, 101, 114, 121], "how": [18, 20, 75, 114, 121, 124, 126, 127, 128, 131, 132, 134, 139, 140], "fill": [18, 20, 42, 43, 44, 48, 50, 75, 76, 78, 99, 121, 125, 126, 129, 132, 134, 135, 137], "combine_all_to_obsspac": [18, 20, 121], "repr_outl_as_nan": [18, 20, 121], "overwrite_outliers_by_gaps_and_miss": [18, 20, 121], "miss": [18, 20, 35, 49, 75, 76, 78, 121, 123, 125, 126, 129, 134, 135, 137, 138, 139], "gap": [18, 20, 53, 56, 57, 78, 101, 117, 121, 123, 125, 126, 129, 130, 134, 135, 137, 139], "serper": [18, 20, 121], "record": [18, 20, 37, 42, 44, 50, 51, 54, 76, 104, 110, 111, 121, 125, 126, 130, 131, 135, 137, 139], "choic": [18, 20, 78, 121, 140], "There": [18, 20, 78, 115, 121, 126, 127, 128, 132, 135], "duplic": [18, 20, 104, 121, 129, 135], "By": [18, 20, 121, 131, 137], "save": [18, 20, 78, 121, 127, 128, 138, 140], "nan": [18, 20, 78, 106, 107, 109, 110, 111, 115, 121, 125, 126, 128, 130, 135], "labeld": [18, 20, 68, 69, 78, 121], "effect": [18, 20, 121, 130, 135, 137], "combdf": [18, 20, 121], "contini": [18, 20, 121], "rtype": [18, 20, 121], "fill_gaps_automat": [18, 20, 121, 127], "modeldata": [18, 20, 43, 57, 80, 97, 121, 127, 128, 129, 134, 137, 138], "max_interpolate_duration_str": [18, 20, 121], "overwrite_fil": [18, 20, 43, 44, 121], "linear": [18, 20, 42, 121, 125, 127, 130], "debias": [18, 20, 121, 127], "gapfil": [18, 20, 42, 43, 44, 121, 127], "determin": [18, 20, 121], "durat": [18, 20, 54, 121, 125, 126, 139], "smaller": [18, 20, 121], "equal": [18, 20, 121], "max_interpolation_dur": [18, 20, 121], "model": [18, 20, 55, 77, 78, 79, 121, 128, 130, 131, 132, 135, 138], "requir": [18, 20, 121, 126, 130, 132, 135, 137], "automat": [18, 20, 78, 121, 127, 130, 139], "longer": [18, 20, 121, 127], "skip": [18, 20, 121], "overwitten": [18, 20, 121], "comb_df": [18, 20, 117, 121], "gapfilldf": [18, 20, 121, 127], "fill_gaps_era5": [18, 20, 121, 127, 138], "debia": [18, 20, 43, 57, 121, 127], "fill_gaps_linear": [18, 20, 121, 125, 127], "gapsfilldf": [18, 20, 121], "datasetinst": [18, 20, 121], "yet": [18, 20, 121, 133], "fieldnam": [18, 20, 78, 121], "fill_missing_obs_linear": [18, 20, 121, 125, 127, 138], "rectord": [18, 20, 121], "missing_fill_df": [18, 20, 121], "get_altitud": [18, 20, 121, 128], "srtm": [18, 20, 121, 130, 131], "digit": [18, 20, 121, 128, 130, 131], "elev": [18, 20, 121, 128, 130, 131, 137], "googl": [18, 20, 78, 79, 121, 127, 129, 131, 133, 134, 135, 137, 139], "engin": [18, 20, 79, 121, 127, 129, 131, 134, 135, 137, 139], "seri": [18, 20, 29, 42, 44, 46, 76, 105, 109, 111, 115, 121, 124, 126, 127, 128, 130, 135, 137, 139], "altitude_seri": [18, 20, 121], "get_analysi": [18, 20, 121, 125, 138], "add_gapfilled_valu": [18, 20, 121, 125, 138], "analysi": [18, 20, 121, 129, 134, 137], "aswel": [18, 20, 84, 121], "get_gaps_df": [18, 20, 121], "overview": [18, 20, 45, 98, 119, 121, 125, 126, 127, 130, 132, 134, 137, 139], "duret": [18, 20, 45, 121], "get_gaps_info": [18, 20, 121, 127], "get_info": [18, 20, 42, 76, 78, 80, 81, 85, 121, 126, 127, 131], "show_all_set": [18, 20, 101, 121, 126, 131], "max_disp_n_gap": [18, 20, 101, 121], "alia": [18, 20, 121], "show": [18, 20, 119, 121, 126, 130, 131, 135, 138], "about": [18, 20, 68, 69, 70, 121, 124, 132, 134], "displai": [18, 20, 121, 139], "get_landcov": [18, 20, 121, 128, 138], "buffer": [18, 20, 68, 73, 121, 128, 138], "100": [18, 20, 42, 44, 121, 128, 130, 131], "overwrit": [18, 20, 121], "gee_map": [18, 20, 121, 128, 138], "worldcov": [18, 20, 121, 128, 130, 131, 137, 138], "scheme": [18, 20, 92, 98, 121, 137, 139], "choos": [18, 20, 121, 126, 132, 137], "landcoverclass": [18, 20, 121], "landcovertyp": [18, 20, 121], "correspond": [18, 20, 70, 78, 89, 97, 108, 121, 124, 131, 135], "radia": [18, 20, 121], "meter": [18, 20, 78, 114, 121, 128, 131, 139], "esa": [18, 20, 121, 130, 131], "datset": [18, 20, 121], "landcoverfract": [18, 20, 121], "gee": [18, 20, 64, 65, 67, 68, 69, 70, 71, 72, 73, 78, 80, 81, 121, 129, 130, 131, 134, 135], "gee_dataset_info": [18, 20, 121, 130], "aggregat": [18, 20, 121], "frac_df": [18, 20, 121], "buffer_radiu": [18, 20, 121, 128], "get_lcz": [18, 20, 121, 128, 132], "local": [18, 20, 121, 124, 127, 128, 130, 131, 133, 135], "climat": [18, 20, 121, 128, 130, 131, 137], "zone": [18, 20, 121, 126, 128, 130, 131], "wudapt": [18, 20, 121], "lcz_seri": [18, 20, 121], "get_missing_obs_info": [18, 20, 121], "get_modeldata": [18, 20, 121, 127, 128, 135, 138, 139], "modelnam": [18, 20, 78, 121, 127, 128, 131, 135, 138], "era5_hourli": [18, 20, 78, 121, 127, 128, 130, 131, 135, 138, 139], "locat": [18, 20, 68, 69, 70, 78, 107, 119, 121, 126, 127, 128, 130, 131, 140], "download": [18, 20, 121, 128, 131, 132], "provid": [18, 20, 78, 121, 124, 135, 137, 139], "last": [18, 20, 42, 46, 78, 121, 131, 132], "modl": [18, 20, 121], "amount": [18, 20, 78, 121, 128], "writen": [18, 20, 78, 121, 123, 128], "your": [18, 20, 78, 121, 124, 125, 126, 127, 129, 130, 131, 133, 134, 135, 138, 139, 140], "drive": [18, 20, 78, 121, 128, 132], "set_model_from_csv": [18, 20, 78, 121, 127, 128, 138], "2mt": [18, 20, 121, 140], "era5": [18, 20, 43, 78, 121, 127, 129, 130, 131, 137, 138], "implement": [18, 20, 78, 121, 133], "advanc": [18, 20, 121, 124, 135, 137], "gee_dataset": [18, 20, 121], "give": [18, 20, 108, 114, 121, 137], "get_qc_stat": [18, 20, 121, 130], "make_plot": [18, 20, 78, 121, 126, 127, 128, 130, 131, 138], "statist": [18, 20, 89, 98, 114, 116, 117, 121, 125, 130, 137], "frequenc": [18, 20, 29, 30, 44, 49, 98, 105, 110, 116, 117, 121, 125, 126, 127, 130, 135, 137, 139], "qc": [18, 20, 24, 49, 98, 121, 130, 137, 138], "percentag": [18, 20, 121, 131], "collect": [18, 20, 22, 47, 49, 76, 80, 81, 85, 103, 121, 126, 139], "piechart": [18, 20, 121], "With": [18, 20, 121], "ore": [18, 20, 121], "dataset_qc_stat": [18, 20, 121], "tabl": [18, 20, 121], "get_stat": [18, 20, 121, 126, 127, 128, 130, 135, 138], "import_data_from_fil": [18, 20, 121, 125, 126, 127, 128, 130, 132, 138, 139], "freq_estimation_method": [18, 20, 121, 130], "freq_estimation_simplifi": [18, 20, 121, 130], "freq_estimation_simplify_error": [18, 20, 121, 130], "read": [18, 20, 121, 128, 130, 132], "input_metadata_fil": [18, 20, 119, 121, 125, 126, 127, 128, 130, 132, 138], "correct": [18, 20, 27, 57, 121, 130, 135, 140], "done": [18, 20, 78, 94, 121, 126, 128, 131, 132, 137, 140], "themplat": [18, 20, 121], "wa": [18, 20, 28, 121, 125, 126, 127, 130], "build_template_prompt": [18, 20, 121, 126, 140], "estim": [18, 20, 121, 126, 127, 135, 137], "execut": [18, 20, 121, 130, 139], "invalid": [18, 20, 107, 121, 126, 129], "inputdata": [18, 20, 80, 81, 85, 121], "dataformat": [18, 20, 103, 121], "highest": [18, 20, 29, 30, 49, 121, 130], "median": [18, 20, 29, 30, 121], "select": [18, 20, 29, 30, 76, 101, 121, 128, 132], "wich": [18, 20, 29, 30, 121], "apear": [18, 20, 29, 30, 121], "time_set": [18, 20, 121, 130], "round": [18, 20, 29, 30, 121], "constrain": [18, 20, 29, 30, 121], "met": [18, 20, 29, 30, 121], "simplif": [18, 20, 29, 30, 121], "simplifi": [18, 20, 29, 30, 121], "keyword": [18, 20, 121], "import_dataset": [18, 20, 121], "folder_path": [18, 20, 78, 121, 138], "filenam": [18, 20, 78, 121, 123, 138], "saved_dataset": [18, 20, 121], "pkl": [18, 20, 78, 121, 138], "pickl": [18, 20, 78, 121, 124], "folder": [18, 20, 78, 121, 128, 138], "outputfold": [18, 20, 78, 121, 123, 138], "make_gee_plot": [18, 20, 121, 128, 138], "show_stat": [18, 20, 121], "outputfil": [18, 20, 121, 123], "interact": [18, 20, 64, 79, 91, 121, 129, 137], "top": [18, 20, 121, 132], "html": [18, 20, 121, 130, 131], "output_fold": [18, 20, 119, 121, 130, 138], "folium": [18, 20, 88, 91, 121], "geemap": [18, 20, 121], "foliumap": [18, 20, 121], "graphic": [18, 20, 121, 133, 137], "backend": [18, 20, 121, 133], "often": [18, 20, 22, 121, 130, 131, 137], "free": [18, 20, 121, 132], "cloud": [18, 20, 121, 134], "platform": [18, 20, 121, 132, 133], "therefor": [18, 20, 121, 135], "open": [18, 20, 121, 124, 127, 128, 130, 131, 132, 136], "browser": [18, 20, 121, 127, 128, 132], "make_geo_plot": [18, 20, 121, 128], "timeinst": [18, 20, 92, 121], "vmin": [18, 20, 92, 95, 121, 130], "vmax": [18, 20, 92, 95, 121, 130], "legend_titl": [18, 20, 92, 121], "boundbox": [18, 20, 92, 121], "geospati": [18, 20, 92, 121, 129, 132], "field": [18, 20, 78, 121], "timedepend": [18, 20, 92, 121], "statu": [18, 20, 121], "lege": [18, 20, 121], "colorbar": [18, 20, 121], "style": [18, 20, 121], "moment": [18, 20, 121], "minimum": [18, 20, 49, 92, 114, 115, 121, 132], "lon": [18, 20, 35, 66, 67, 68, 69, 70, 78, 121, 126, 128, 130, 131, 140], "west": [18, 20, 121], "lat": [18, 20, 35, 66, 67, 68, 69, 70, 78, 121, 126, 128, 130, 131, 140], "south": [18, 20, 121], "east": [18, 20, 121, 131, 139], "north": [18, 20, 83, 121, 131, 140], "domain": [18, 20, 121], "elemenst": [18, 20, 121], "empti": [18, 20, 40, 47, 121, 126, 128, 131], "geoax": [18, 20, 121], "matplotlib": [18, 20, 78, 89, 90, 92, 93, 94, 97, 99, 121, 138], "pyplot": [18, 20, 78, 89, 90, 92, 93, 97, 99, 121, 138], "make_interactive_plot": [18, 20, 121], "starttim": [18, 20, 26, 36, 78, 121, 126], "endtim": [18, 20, 26, 36, 78, 121, 126], "mpl_cmap_nam": [18, 20, 95, 121], "viridi": [18, 20, 95, 121, 130], "13": [18, 20, 58, 95, 102, 121, 126, 127, 130, 131, 138, 139, 140], "fill_alpha": [18, 20, 95, 121], "6": [18, 20, 95, 102, 121, 125, 126, 127, 128, 130, 131, 132, 138, 139, 140], "max_fp": [18, 20, 95, 121], "4": [18, 20, 95, 121, 125, 126, 127, 128, 130, 131, 132, 138, 140], "outlier_col": [18, 20, 121], "red": [18, 20, 121], "ok_col": [18, 20, 121], "black": [18, 20, 90, 121, 130, 131, 140], "gap_col": [18, 20, 121], "orang": [18, 20, 121], "fill_col": [18, 20, 121], "yellow": [18, 20, 121, 138], "evolut": [18, 20, 121, 135, 137], "packag": [18, 20, 121, 124, 126, 128, 133, 135, 136, 137], "illustr": [18, 20, 121, 128, 139], "specifii": [18, 20, 78, 121], "colormap": [18, 20, 94, 97, 99, 121, 130], "pixel": [18, 20, 121], "float": [18, 20, 121], "alpha": [18, 20, 121], "allowd": [18, 20, 121], "frame": [18, 20, 121], "second": [18, 20, 121, 131, 132, 139], "edg": [18, 20, 121], "identifi": [18, 20, 49, 121, 137], "ok": [18, 20, 112, 113, 121, 130], "filld": [18, 20, 121], "m": [18, 20, 95, 121, 124, 130, 131, 138, 139], "appear": [18, 20, 121, 132], "run": [18, 20, 121, 124, 126, 133, 140], "notebook": [18, 20, 121, 132, 133, 135], "show_outli": [18, 20, 78, 99, 121, 126], "show_fil": [18, 20, 78, 99, 121], "_ax": [18, 20, 78, 97, 99, 121], "assign": [18, 20, 27, 29, 121, 124], "save_dataset": [18, 20, 121, 124], "show_set": [18, 20, 121, 126, 131], "themat": [18, 20, 121], "sync_observ": [18, 20, 121, 139], "_force_resolution_minut": [18, 20, 121], "_drop_target_nan_dt": [18, 20, 121], "syncron": [18, 20, 121, 139], "shift": [18, 20, 121, 139], "sycronis": [18, 20, 121], "tri": [18, 20, 121], "them": [18, 20, 75, 77, 121, 124, 126, 127, 130, 137, 139, 140], "sycron": [18, 20, 121], "10": [18, 20, 121, 125, 126, 127, 128, 130, 131, 138], "after": [18, 20, 42, 46, 110, 121, 124, 130], "io": [18, 20, 121, 130], "recomput": [18, 20, 121], "nat": [18, 20, 121], "forc": [18, 20, 121], "keep": [18, 20, 121, 130, 137], "mind": [18, 20, 121], "outliersdf": [18, 20, 28, 37, 42, 44, 46, 51, 56, 104, 106, 107, 108, 109, 110, 111, 115, 121, 135], "previous": [18, 20, 121], "coarsend": [18, 20, 121], "update_gaps_and_missing_from_outli": [18, 20, 121, 125, 127, 138], "n_gapsiz": [18, 20, 121, 125, 127, 138], "consecut": [18, 20, 44, 49, 121, 127, 130, 135], "taken": [18, 20, 121, 135], "defenit": [18, 20, 79, 84, 90, 119, 121, 139], "Be": [18, 20, 121, 140], "awar": [18, 20, 27, 78, 121, 140], "current": [18, 20, 78, 121, 133, 136], "inport": [18, 20, 121], "update_outliersdf": [18, 20, 121], "add_to_outliersdf": [18, 20, 121], "write_to_csv": [18, 20, 121], "include_outli": [18, 20, 121], "include_fill_valu": [18, 20, 121], "add_final_label": [18, 20, 121], "use_tlk_obsnam": [18, 20, 121], "seperate_metadata_fil": [18, 20, 121, 123], "write": [18, 20, 121, 122, 123, 128, 132, 139], "avail": [18, 20, 66, 78, 121, 123, 125, 126, 128, 130, 131, 137], "merg": [18, 20, 121, 123, 124], "togeth": [18, 20, 121, 123], "final": [18, 20, 121, 123, 137], "qualti": [18, 20, 121, 123], "metadat": [18, 20, 121], "extens": [19, 20, 80, 126], "dataset": [19, 27, 28, 30, 42, 43, 46, 49, 68, 69, 70, 76, 78, 80, 81, 90, 92, 101, 103, 104, 106, 109, 110, 111, 115, 117, 120, 121, 123, 124, 125, 127, 129, 130, 131, 132, 133, 134, 137], "update_default_nam": 20, "default_nam": [20, 130], "come": [20, 77, 78, 126, 137, 139, 140], "update_gap_and_missing_fill_set": [20, 127, 138], "gap_interpolation_method": [20, 138], "gap_interpolation_max_consec_fil": [20, 138], "gap_debias_prefered_leading_period_hour": [20, 127, 138], "gap_debias_prefered_trailing_period_hour": [20, 127, 138], "gap_debias_minimum_leading_period_hour": [20, 127, 138], "gap_debias_minimum_trailing_period_hour": [20, 127, 138], "automatic_max_interpolation_duration_str": [20, 138], "missing_obs_interpolation_method": [20, 127, 138], "lack": 20, "preferd": 20, "size": [20, 76, 114, 124, 135], "lead": [20, 42, 44, 46, 53], "hourli": [20, 55, 78, 130, 131, 138], "biass": 20, "wrt": [20, 82], "trail": [20, 42, 44, 46, 53], "update_qc_set": [20, 125, 127, 130, 138], "gapsize_in_record": [20, 125, 127, 138], "dupl_timestamp_keep": [20, 138], "persis_time_win_to_check": [20, 130, 138], "persis_min_num_ob": [20, 138], "rep_max_valid_repetit": [20, 138], "gross_value_min_valu": [20, 138], "gross_value_max_valu": [20, 130, 138], "win_var_max_increase_per_sec": [20, 138], "win_var_max_decrease_per_sec": [20, 138], "win_var_time_win_to_check": [20, 138], "win_var_min_num_ob": [20, 138], "step_max_increase_per_sec": [20, 138], "step_max_decrease_per_sec": [20, 138], "buddy_radiu": [20, 114, 138], "buddy_min_sample_s": 20, "buddy_max_elev_diff": [20, 138], "buddy_min_std": [20, 138], "buddy_threshold": [20, 138], "buddy_elev_gradi": [20, 138], "length": [20, 76, 135], "minim": [20, 61, 135], "member": 20, "maxim": [20, 139], "valid": [20, 62, 76], "gross": [20, 106, 130], "increas": [20, 137], "variat": [20, 89, 115, 130, 137], "decreas": 20, "2": [20, 22, 125, 126, 127, 128, 130, 131, 132, 138, 140], "sampl": [20, 54, 114, 124], "allow": [20, 114, 137], "accuracti": [20, 114], "flagg": [20, 114], "describ": [20, 114, 124, 140], "0065": [20, 114, 130], "independend": 20, "update_set": [20, 125, 126, 127, 128, 130, 132, 138, 139, 140], "input_data_fil": [20, 119, 125, 126, 127, 128, 130, 132, 138, 139], "template_fil": [20, 119, 125, 126, 127, 128, 130, 132, 138], "most": [20, 29, 30, 62, 126, 127, 139], "common": [20, 125, 126, 131, 139], "befor": [20, 42, 46, 119, 124, 127, 128], "directori": [20, 119], "mapper": [20, 119], "update_timezon": [20, 119, 135], "timezonestr": [20, 119, 135], "utc": [20, 78, 126, 127, 128, 130, 131, 135, 138], "buddy_num_min": [20, 138], "buddy_num_iter": [20, 138], "buddy_debug": [20, 138], "sct_num_min_out": 20, "sct_num_max_out": 20, "sct_inner_radiu": 20, "sct_outer_radiu": 20, "sct_num_iter": 20, "sct_num_min_prof": 20, "sct_min_elev_diff": 20, "sct_min_horizontal_scal": 20, "sct_max_horizontal_scal": 20, "sct_kth_closest_obs_horizontal_scal": 20, "sct_vertical_scal": 20, "sct_mina_devi": 20, "sct_maxa_devi": 20, "sct_minv_devi": 20, "sct_maxv_devi": 20, "sct_eps2": 20, "sct_tpo": 20, "sct_tneg": 20, "sct_basic": 20, "sct_debug": 20, "For": [20, 124, 125, 126, 127, 128, 130, 132, 135, 139], "explan": 20, "we": [20, 125, 126, 127, 128, 130, 131, 132, 135, 136, 139], "documet": 20, "search": [20, 42, 132, 134], "varianc": 20, "neg": [20, 130], "heigh": 20, "gradient": 20, "height": [20, 131], "neighborhood": 20, "less": [20, 29, 94, 131], "min_std": [20, 114, 130], "instead": [20, 128], "iter": 20, "debug": [20, 130], "point": [20, 35, 61, 69, 70, 103, 126, 128], "outer": 20, "inner": 20, "decorrel": 20, "consid": 20, "admiss": 20, "ratio": 20, "error": [20, 132, 137, 139], "posit": 20, "basic": [20, 130, 132, 133], "mode": 20, "timedeltastr": 21, "represent": [21, 82, 83, 92, 131], "mar": 22, "00": [22, 125, 126, 127, 128, 131, 139, 140], "59": 22, "2023": [22, 52, 125, 126, 127, 130, 131, 137], "df_list": 23, "concat": 23, "row": [23, 42, 125, 126, 127, 135, 140], "wise": [23, 83, 140], "without": [23, 76, 127, 135, 137, 140], "trigger": 23, "futurwarn": 23, "empyt": 23, "ordered_checknam": 24, "timeperiod": 26, "datetimeindex": [26, 30, 105, 108], "dt": 27, "target_tz_str": 27, "tz": [27, 78, 128, 131], "helper": [27, 108], "enter": [27, 127, 128, 132], "param": [27, 62, 78], "tz_str_data": 27, "tzone": 27, "multiindex": [28, 31, 33, 36, 42, 46, 50, 51, 70, 76, 78, 105, 108, 127], "level": [28, 40, 128, 130, 131, 140], "relev": [28, 78, 108, 119, 125, 126], "ouliersdf": 28, "outliersdfdatafram": 28, "drop": [28, 76, 138], "max_simplify_error": [29, 30], "2t": [29, 30, 130], "individu": [29, 98, 117, 130], "commum": [29, 108], "rais": [29, 132], "warn": 29, "freq_seri": 29, "boolean": 30, "datetimestr": [30, 105], "assume_freq": 30, "multiindexdatafram": [32, 34], "4326": [35, 67, 68, 69, 70], "geopanda": [35, 62, 92, 128, 137], "en": 35, "columnst": 35, "geometri": [35, 62, 67, 92, 126, 128], "special": [35, 129, 134], "care": 35, "coordin": [35, 59, 60, 62, 63, 66, 67, 68, 69, 70, 125, 126, 135], "integ": [35, 42], "geodf": [35, 61, 62, 63], "geodatafram": [35, 62, 63, 92], "equival": [35, 36, 78, 124, 126, 131], "geadatafram": 35, "datetime_subset": 36, "stationslist": 38, "value_col_nam": 39, "label_col_nam": 39, "doubl": 39, "tripl": 39, "obstype_final_label": 39, "columnd": 39, "drop_level": 40, "similar": [40, 78, 128, 131, 139], "apply_interpolate_gap": 42, "dataset_r": [42, 44, 56], "max_consec_fil": [42, 44, 56, 130], "resolutionseri": [42, 46, 76], "to_df": 42, "colum": 42, "start_gap": 42, "end_gap": 42, "update_gaps_indx_in_obs_spac": 42, "explod": [42, 46], "update_leading_trailing_ob": 42, "obs_onli": 42, "ob": [42, 55, 138], "self": [42, 119], "One": [42, 135, 140], "both": [42, 81, 132], "gapslist": [43, 44, 45, 46, 47, 48], "eramodeldata": 43, "debias_set": 43, "debiaset": 43, "overwritten": [43, 44], "gapfill_set": 44, "obsspac": 46, "expanded_gabsidx_obsspac": 46, "gap_collect": 47, "gaps_collect": 47, "gapsize_n": [49, 130], "timestap": [49, 104], "detect": 49, "thei": [49, 76, 124], "catogir": 49, "n": [49, 109, 115, 124, 126, 127, 128, 130, 131, 139], "missing_obs_collect": 49, "missing_collect": 49, "gap_list": 49, "gaplist": [50, 51], "useful": 50, "whant": 50, "insid": [50, 51, 135], "outldf": [51, 76], "tue": 52, "feb": 52, "28": [52, 125, 126, 127], "17": [52, 125, 126, 127, 130, 131, 138, 140], "26": [52, 87, 125, 130], "debias_period_set": 53, "sample_duration_hour": 54, "sta": 54, "bias": [55, 127, 137], "leading_model": 57, "trailing_model": 57, "gap_model": 57, "leading_ob": 57, "trailing_ob": 57, "fri": [58, 87], "oct": [58, 87, 102], "21": [58, 87, 125, 127, 130], "bbox": 59, "shape": [59, 60, 92], "box": [59, 60, 61, 63, 92, 127, 128, 132], "extentlist": 60, "lat_siz": 61, "lon_siz": 61, "span": [61, 127], "centroid": 61, "user_bound": 62, "default_extentlist": 62, "goedf": 62, "extend": [62, 92], "authent": [65, 128, 132], "latcol": 66, "loncol": 66, "proj": 67, "mapinfo": [68, 69, 70, 71, 72, 73, 74, 91], "bufferradiu": 68, "pointloc": [68, 69, 70], "latcolnam": [68, 69, 70], "latitud": [68, 69, 70, 112, 113, 114, 128, 130, 140], "loncolnam": [68, 69, 70], "longitud": [68, 69, 70, 112, 113, 114, 128, 140], "output_column_nam": 69, "band_mapp": 70, "startdat": 70, "enddat": 70, "exclud": 70, "multi": 70, "obj": 70, "imag": [71, 78, 91], "missingob_collect": 75, "missing_obs_seri": 76, "handl": [76, 108, 131, 135, 140], "append": 76, "max_disp_list": 76, "7": [76, 125, 126, 127, 128, 130, 131, 132, 138, 140], "max": [76, 115, 137], "listsiz": 76, "get_missing_indx_in_obs_spac": 76, "coarsen": [76, 125, 126, 138], "seperatli": 76, "differn": 76, "timerang": 76, "dataset_resolut": [76, 126, 128, 139], "missing_obsspac": 76, "expext": 76, "get_station_missingob": 76, "interpolate_miss": 76, "fill_df": [76, 126, 127], "fill_techniqu": 76, "observational_typ": 76, "wish": 76, "arg": 76, "remove_missing_from_ob": 76, "link": [76, 128, 131, 132], "remove_missing_from_outli": 76, "add_gee_dataset": 78, "mapnam": [78, 80, 81, 85, 131], "gee_loc": 78, "bandnam": [78, 80, 81, 131, 139], "scale": [78, 130, 131], "band_desc": [78, 80], "time_r": [78, 130, 131], "is_imag": [78, 130, 131], "is_numer": 78, "credenti": [78, 130, 131, 132], "ecmwf": [78, 130, 131], "era5_land": [78, 130, 131], "concept": 78, "descrit": [78, 80, 81, 85], "reoslut": 78, "ee": 78, "imagecollect": 78, "bandvalu": 78, "list_gee_dataset": 78, "k": [78, 130, 131, 139], "futur": [78, 128], "add_obstyp": [78, 131, 139], "band_unit": [78, 131, 139], "band_descript": [78, 131], "convert_units_to_tlk": [78, 138], "exploid_2d_vector_field": 78, "amplitud": [78, 82, 131], "direct": [78, 83, 127, 130, 131, 132, 140], "2d": [78, 82, 83], "vector": [78, 82, 83], "compon": [78, 81, 82, 83, 131, 139], "modelobstyp": [78, 82, 83, 131], "modelobstype_vectorfield": [78, 82, 83, 131], "get_era5_data": 78, "startdt_utc": [78, 131], "enddt_utc": [78, 131], "get_gee_dataset_data": [78, 131], "import_modeldata": [78, 138], "saved_modeldata": 78, "interpolate_modeldata": 78, "to_multiidx": 78, "returndf": 78, "obstype_model": [78, 128, 131], "obstype_dataset": [78, 128], "timesri": 78, "solid": [78, 97], "dash": [78, 97], "obsype_dataset": 78, "save_modeldata": [78, 138], "csvpath": [78, 128], "regular": [79, 84, 132, 139], "witht": 79, "earht": 79, "model_equivalent_dict": 80, "add_new_band": [80, 81], "bandunit": [80, 81], "add_unit": [80, 81, 85, 131], "unit_nam": [80, 81, 85, 131], "convert_to_standard_unit": [80, 81, 85], "input_data": [80, 81, 85, 105], "input_unit": [80, 81, 85], "singl": [80, 85, 127, 128, 138], "arrai": [80, 81, 85, 86], "get_all_unit": [80, 81, 85], "get_bandnam": 80, "get_bandname_mapp": [80, 81], "tlk": [80, 81], "get_descript": [80, 81, 85], "get_mapped_dataset": [80, 81], "get_modelunit": [80, 81], "get_orig_nam": [80, 81, 85], "get_plot_y_label": [80, 81, 85], "get_standard_unit": [80, 81, 85], "has_mapped_band": [80, 81], "set_descript": [80, 81, 85, 131], "desc": [80, 81, 85, 131], "set_original_nam": [80, 81, 85], "set_original_unit": [80, 81, 85], "original_unit": [80, 81, 85], "test_if_unit_is_known": [80, 81, 85], "u_comp_model_equivalent_dict": 81, "v_comp_model_equivalent_dict": 81, "bandname_u_comp": 81, "bandname_v_comp": 81, "band_desc_u_comp": 81, "band_desc_v_comp": 81, "eastward": 81, "northward": 81, "input_df": 81, "u": [81, 131, 139], "v": [81, 131], "prensent": 81, "data_u_compon": 81, "data_v_compon": 81, "modelobs_vectorfield": [82, 83], "vectorfield": [82, 83, 131], "inherit": [82, 120, 121, 135], "amplitude_obstyp": [82, 83], "scalar": [82, 83], "angl": 83, "degre": [83, 131], "clock": [83, 140], "rotat": 83, "obsnam": [85, 131, 139], "std_unit": [85, 131, 139], "unit_alias": [85, 139], "unit_convers": [85, 139], "equat": 86, "11": [87, 126, 128, 130, 131, 138], "52": [87, 130], "full_cor_dict": 89, "cor_scatter_set": 89, "scatterplot": 89, "scattertyp": 89, "matric": 89, "groupdefenit": 89, "xax": 89, "cycledf": 90, "errorbandsdf": 90, "plot_set": [90, 98, 130, 138], "lineplot": 90, "vis_param": 91, "labelnam": 91, "layernam": 91, "basemap": 91, "satellit": 91, "legendnam": 91, "legendpo": 91, "bottomleft": 91, "plotdf": 92, "plotset": 92, "categorical_field": [92, 130], "static_field": [92, 130], "display_name_mapp": [92, 130], "independ": [92, 135], "least": [92, 109, 110], "varnam": 92, "varname_str_rep": 92, "heatmap_set": 93, "catlist": 94, "cmapnam": 94, "cat": 94, "grourp": 94, "colordict": 94, "rgbalpha": 94, "tupl": [94, 108], "gdf": 95, "variable_column": 95, "var_display_nam": 95, "var_unit": 95, "label_column": 95, "label_col_map": 95, "dt_disp_fmt": 95, "d": [95, 128, 130, 131, 138], "h": [95, 130, 131, 138], "ylabel": [97, 99, 126, 127, 128, 130, 131], "show_primary_legend": 97, "add_second_legend": 97, "colorby_name_colordict": [97, 99], "small": [97, 128, 132], "colorby_name_colorschem": [97, 99], "colormapp": [97, 99], "final_stat": 98, "outlier_stat": 98, "specific_stat": 98, "qc_check_info": 98, "pie": 98, "effectivi": [98, 117], "mergedf": 99, "show_legend": 99, "colorschem": [99, 130, 131], "under": [99, 126, 133, 136], "44": [102, 128], "54": [102, 139], "dictionnari": 103, "points_dict": 103, "datapoint": 103, "checks_info": [104, 106, 107, 109, 110, 111, 112, 113, 115, 117], "checks_set": [104, 106, 109, 110, 111, 112, 113, 115], "duplcat": 104, "outl_df": [104, 106, 107, 109, 110, 111, 115], "time_window": 105, "station_freq": 105, "intersect": 105, "datetimerang": 105, "half": 105, "width": 105, "physic": 106, "station_dt_list": 108, "datetimelist": 108, "later": [108, 115], "dast": 108, "outlierdf": 108, "inputstructur": 108, "values_in_dict": 108, "It": [108, 125, 127, 131, 132, 135], "station_frequ": [109, 115], "dure": 109, "timewindow": 109, "order": [109, 124], "frecuenc": [109, 115], "repeat": [110, 135], "produc": [111, 130], "spike": [111, 130, 137], "jump": [111, 115], "purpos": 111, "too": [111, 128, 139], "much": [111, 124, 135, 139], "titan_specific_label": [112, 113, 130], "unflag": [112, 113, 114], "outlier_df": [112, 113, 114], "robust": [113, 130], "min_sample_s": 114, "max_alt_diff": 114, "std_threshold": 114, "outl_flag": 114, "lapser": 114, "exe": 115, "move": [115, 130], "increament": 115, "And": 115, "vice": 115, "versa": 115, "decreament": 115, "lea": 115, "gaps_info": [117, 130], "applied_qc_ord": 117, "obsarv": 117, "_applied_qc": [117, 121], "agg_dict": 117, "outl_dict": 117, "specific_count": 117, "copy_template_csv_fil": 119, "target_fold": 119, "copi": [119, 124, 132], "default_templ": 119, "update_io": 119, "some": [119, 124, 130, 132, 133, 135, 139, 140], "missing_ob": [121, 126, 127, 130, 135], "_qc_checked_obstyp": 121, "setup_metadata_dty": 121, "sure": [121, 124, 128, 133, 140], "dtype": [121, 126, 127, 128, 139], "lost": [121, 139], "location_info": [123, 130], "welcom": 124, "greatli": 124, "appreci": 124, "everi": 124, "littl": 124, "bit": 124, "help": [124, 132, 133, 140], "credit": [124, 132], "alwai": [124, 127, 131], "wai": [124, 132, 140], "interest": [124, 125, 126, 130, 132], "clearli": 124, "yourself": 124, "system": [124, 130, 131], "metobs_toolkit": [124, 125, 126, 127, 128, 130, 131, 132, 134, 135, 138, 139, 140], "__version__": [124, 135], "might": 124, "troubleshoot": 124, "reproduc": 124, "through": [124, 137], "anyth": 124, "whoever": 124, "familiar": 124, "affect": 124, "technic": 124, "challeng": [124, 137, 139], "contact": 124, "vergauwenthoma": [124, 133, 135], "discuss": 124, "plan": [124, 137], "attack": 124, "could": [124, 127], "spell": 124, "checker": 124, "best": [124, 133], "send": 124, "readi": [124, 137], "anaconda": 124, "pandoc": 124, "proceed": [124, 128], "clone": 124, "git": [124, 133, 135], "conda": 124, "metobs_dev": [124, 128], "3": [124, 125, 126, 127, 128, 130, 131, 132, 135, 138, 139, 140], "9": [124, 125, 126, 127, 128, 130, 131, 135, 138, 140], "poetri": 124, "activ": 124, "spyder": 124, "id": [124, 140], "depend": [124, 125, 135], "cd": 124, "branch": 124, "dev": [124, 135], "checkout": 124, "switch": [124, 132], "bugfix": 124, "now": [124, 126, 127, 131, 139], "build_and_test": 124, "sh": 124, "build": [124, 133, 137, 140], "success": 124, "deploiment": 124, "push": 124, "onlin": 124, "commit": 124, "text": 124, "upstream": 124, "onc": [124, 126, 137, 140], "adapt": 124, "still": [124, 135], "work": [124, 129, 132, 134, 139], "progress": 124, "o": [124, 133, 138], "review": [124, 136], "mark": 124, "resolv": 124, "master": 124, "releas": [124, 135], "deploi": 124, "pypi": [124, 135], "adequ": 124, "question": [124, 140], "mail": 124, "thoma": [124, 137], "vergauwen": 124, "meteo": 124, "inspir": 124, "ravenpi": 124, "project": [124, 128, 134, 137], "thank": [124, 137], "continu": [125, 127, 128, 132], "serv": [125, 127, 128, 135], "introduct": [125, 129, 134], "your_dataset": [125, 126, 127, 128, 130, 131, 135, 139], "demo_datafil": [125, 126, 127, 128, 130, 132, 138], "demo_metadatafil": [125, 126, 127, 128, 130, 132, 138], "demo_templ": [125, 126, 127, 128, 130, 132, 138], "definit": [125, 127, 135], "20": [125, 126, 127, 130, 131, 140], "temp_final_label": [125, 127], "vlinder01": [125, 126, 127, 128, 138], "02": [125, 126, 139], "30": [125, 126, 127, 128, 130, 131, 140], "453659": 125, "gap_interpol": [125, 130], "45": [125, 126, 127, 139], "207317": 125, "25": [125, 128, 130], "960976": 125, "714634": 125, "468293": 125, "vlinder28": [125, 127, 128], "07": [125, 127, 140], "14": [125, 126, 127, 128, 130, 131, 138, 139], "114815": 125, "251852": 125, "388889": 125, "525926": 125, "08": [125, 127, 139], "662963": 125, "5111": 125, "built": [125, 128, 130, 131], "around": [125, 137], "39": [125, 126, 127, 128, 130, 131], "precip": [125, 126, 130, 131, 140], "precip_sum": [125, 126, 130, 131, 140], "pressur": [125, 126, 130, 131, 140], "pressure_at_sea_level": [125, 126, 130, 131, 140], "radiation_temp": [125, 126, 130, 131, 140], "wind_direct": [125, 126, 130, 131, 140], "wind_gust": [125, 126, 130, 131, 140], "wind_spe": [125, 126, 130, 140], "38820": 125, "rang": [125, 126, 137, 139], "gt": [125, 126, 127, 128, 130, 131, 138], "23": [125, 126, 128, 130, 131], "total": [125, 126, 131, 139], "dai": [125, 126, 128, 139], "seen": [125, 131], "As": [125, 127, 130, 131, 133, 137, 139], "demonstr": [125, 127, 128, 131, 138], "accord": 125, "phenomena": 125, "windi": 125, "afternoon": 125, "18": [125, 126, 127, 138, 139, 140], "47": [125, 139], "101453": 125, "101717": 125, "48": [125, 128, 130], "101448": 125, "101712": 125, "50": [125, 126, 128, 130, 131, 138, 139, 140], "101461": 125, "101725": 125, "55": [125, 126, 139], "101468": 125, "101733": [125, 126], "19": [125, 127, 128], "58": 125, "101460": 125, "101726": 125, "76": [125, 140], "101314": 125, "101266": 125, "101320": 125, "101272": 125, "77": [125, 140], "101325": 125, "101277": 125, "78": 125, "101339": 125, "101291": 125, "65": [125, 126, 130], "79": 125, "101343": 125, "101295": 125, "6347": 125, "dirunal_statist": 125, "note": [125, 126, 127, 128, 135, 139], "short": [125, 127, 135], "context": [125, 126, 127, 130], "cost": [125, 126, 127, 130, 137], "fair": [125, 126, 127, 130, 137], "school": [125, 127, 130, 137], "ghent": [125, 126, 127, 130, 137, 138], "directli": [126, 127, 128, 132, 135, 137], "equip": 126, "meta": [126, 128, 131, 138], "tip": 126, "call": [126, 127, 139], "practic": [126, 127], "creation": [126, 134], "assist": 126, "uncom": 126, "cell": 126, "120957": 126, "256": 126, "occurr": 126, "network": [126, 128, 130, 135, 137, 140], "call_nam": [126, 128, 130, 140], "assumed_import_frequ": [126, 128], "vlinder": [126, 128, 138], "980438": [126, 128], "815763": [126, 128], "proefhoev": [126, 128], "mell": [126, 128], "vlinder02": [126, 127, 128, 130, 138], "51": [126, 128, 140], "022379": [126, 128], "709695": [126, 128], "sterr": [126, 128], "gent": [126, 128], "vlinder03": [126, 128], "324583": [126, 128], "952109": [126, 128], "centrum": [126, 128], "turnhout": [126, 128], "vlinder04": [126, 128], "335522": [126, 128], "934732": [126, 128], "stadsboerderij": [126, 128], "vlinder05": [126, 127, 128, 138], "052655": [126, 128], "675183": [126, 128], "watersportbaan": [126, 128], "81576": [126, 128], "98044": [126, 128], "70969": [126, 128], "02238": [126, 128], "95211": [126, 128], "32458": [126, 128], "93473": [126, 128], "33552": [126, 128], "67518": [126, 128], "05266": [126, 128], "nativ": [126, 127, 131], "datetime64": [126, 127], "take": [126, 127, 128, 131, 132, 139], "head": [126, 127, 128], "101739": 126, "75": [126, 128, 130, 140], "101731": 126, "101736": 126, "85": [126, 139], "102005": 126, "101997": 126, "102002": 126, "101999": 126, "favorite_st": 126, "favorit": 126, "4317": 126, "syntax": 126, "full": [126, 130], "lt": [126, 127, 128, 130, 131], "temperatuur": [126, 127, 128, 130], "2m": [126, 127, 130, 131, 139, 140], "librari": 126, "custom": 126, "xlabel": [126, 127, 130], "vochtigheid": 126, "rel": [126, 131, 140], "mention": [126, 127], "abov": [126, 128, 131, 133], "101732": 126, "102003": 126, "68": [126, 140], "101723": 126, "101990": 126, "summerschool": 126, "40": [127, 130, 131, 140], "get_gap_info": 127, "erron": [127, 137], "printout": 127, "clear": [127, 131], "typic": [127, 130, 137], "892": 127, "657143": 127, "485714": 127, "528571": 127, "571429": 127, "614286": 127, "600000": 127, "300000": 127, "800000": 127, "025000": 127, "891": 127, "NOT": [127, 132], "algorithm": 127, "shortest": 127, "your_stat": [127, 128, 135], "era5_modeldata": 127, "gapfill_df": 127, "access": [127, 128, 134, 136, 137], "url": [127, 128], "web": [127, 128], "instruct": [127, 128], "earthengin": [127, 128, 132], "client": [127, 128], "auth": [127, 128], "scope": [127, 128, 132], "3a": [127, 128], "www": [127, 128], "googleapi": [127, 128], "20http": [127, 128], "devstorag": [127, 128], "full_control": [127, 128], "request_id": [127, 128], "goikcfy39t": 127, "lasm_esufmul1xalzlqe3kviyy7vuj04": 127, "tc": [127, 128], "5lanpc": 127, "y_m4z8qvxtutp71dwfdgrunhjkygsdwvirrq": 127, "cc": [127, 128, 130, 131], "3auxy8yegzbho3lwk01g2qp8a9qf5veoeohxuxl65": 127, "workflow": [127, 128], "past": [127, 128, 132], "below": [127, 128], "verif": [127, 128], "1afjohxnkdn9makx": 127, "q9l7u6fhnf4fr7u6vh8zu5wxcgt1szmjko7tfv3g3ig": 127, "successfulli": [127, 128], "token": [127, 128, 132], "share": [127, 128, 140], "feedback": [127, 128, 137], "our": [127, 128], "annual": [127, 128], "develop": [127, 128, 131, 133, 134, 135, 136, 137, 139], "satisfact": [127, 128], "survei": [127, 128], "qualtric": [127, 128], "jfe": [127, 128], "sv_doiqkqg3nj1t8i": [127, 128], "api": [127, 128, 134, 135, 137], "gap_debiased_era5": [127, 130], "470136": 127, "200433": 127, "018491": 127, "836549": 127, "654607": 127, "account": [128, 134], "lcz_valu": 128, "eilddu9n_in7zxxle8vhryohvajpnaulh": 128, "m6nkerdfa": 128, "6gnxs_webnafrf2ibpoa4cluf8zpjxcu5ev4z": 128, "p7mie": 128, "g2tqjavudm_wfoujbqqeoavdr8blfgxrcm7w": 128, "4wlkjo": 128, "1afjohxk4_ehqtiin6agegf_pv9imrjotvbh17orbc6cnf": 128, "ei4_kuuj_0kli": 128, "plant": [128, 130, 131], "midris": [128, 130, 131], "spars": [128, 130, 131], "water": [128, 130, 131], "vlinder06": 128, "tree": [128, 130, 131], "b": [128, 130, 131], "vlinder07": 128, "compact": [128, 130, 131], "vlinder08": 128, "vlinder09": 128, "vlinder10": 128, "vlinder11": 128, "lowris": [128, 130, 131], "vlinder12": 128, "highris": [128, 130, 131], "vlinder13": 128, "vlinder14": 128, "vlinder15": 128, "vlinder16": 128, "vlinder17": 128, "vlinder18": 128, "vlinder19": 128, "vlinder20": 128, "vlinder21": 128, "vlinder22": 128, "vlinder23": 128, "vlinder24": [128, 138], "dens": [128, 130, 131], "vlinder25": [128, 138], "vlinder26": 128, "vlinder27": [128, 138], "session": 128, "ask": [128, 140], "bill": 128, "accept": 128, "term": 128, "suffici": [128, 132], "insuffici": 128, "written": 128, "home": [128, 130], "anaconda3": 128, "env": 128, "lib": 128, "python3": [128, 133], "site": 128, "shapelydeprecationwarn": 128, "deprec": 128, "geom_typ": 128, "geom": 128, "startswith": 128, "prefix": 128, "is_empti": 128, "715": 128, "futurewarn": 128, "is_categorical_dtyp": 128, "version": [128, 130, 131, 134, 135, 136], "isinst": 128, "categoricaldtyp": 128, "sea": [128, 130, 131, 140], "41": 128, "83": 128, "35": [128, 130], "int64": 128, "land": [128, 135, 137], "microenviron": 128, "circular": 128, "perviou": [128, 130, 131], "impervi": [128, 130, 131], "worldcover_10m": 128, "aggregated_landcov": 128, "250": [128, 130], "radii": 128, "000000": 128, "981781": 128, "018219": 128, "963635": 128, "036365": 128, "428769": 128, "571231": 128, "535944": 128, "464056": 128, "245454": 128, "754546": 128, "160831": 128, "839169": 128, "979569": 128, "020431": 128, "881948": 128, "118052": 128, "446604": 128, "224871": 128, "328525": 128, "242406": 128, "526977": 128, "230617": 128, "995819": 128, "004181": 128, "433034": 128, "566966": 128, "002911": 128, "149681": 128, "847407": 128, "029552": 128, "970448": 128, "030423": 128, "966666": 128, "974895": 128, "025105": 128, "129686": 128, "870314": 128, "125173": 128, "874827": 128, "273457": 128, "726543": 128, "204337": 128, "795663": 128, "803321": 128, "196679": 128, "004188": 128, "313829": 128, "681983": 128, "006042": 128, "993958": 128, "044648": 128, "955352": 128, "803469": 128, "196531": 128, "835386": 128, "164614": 128, "798196": 128, "201804": 128, "918644": 128, "081356": 128, "367579": 128, "232926": 128, "399495": 128, "448841": 128, "217178": 128, "333981": 128, "989899": 128, "010101": 128, "980923": 128, "019077": 128, "447270": 128, "552730": 128, "343485": 128, "656515": 128, "129964": 128, "870036": 128, "039639": 128, "960361": 128, "000487": 128, "962068": 128, "037445": 128, "973231": 128, "026769": 128, "884010": 128, "115990": 128, "399503": 128, "600497": 128, "272793": 128, "712724": 128, "014483": 128, "960773": 128, "039227": 128, "946138": 128, "053862": 128, "790001": 128, "152027": 128, "057972": 128, "899936": 128, "063972": 128, "036092": 128, "148975": 128, "851025": 128, "174383": 128, "825617": 128, "011601": 128, "988399": 128, "018481": 128, "084840": 128, "896679": 128, "489951": 128, "510049": 128, "721950": 128, "278050": 128, "era5_data": 128, "celsiu": [128, 131, 139], "temperature_2m": [128, 130, 131], "THE": 128, "amout": 128, "TO": [128, 132], "lareg": 128, "FOR": 128, "WILL": 128, "BE": 128, "export": 128, "era5_timeseri": [128, 135], "1isju6u": 128, "kfers_yikiyapoc09snbmvvo1": 128, "upload": 128, "visual": [128, 131, 133, 137], "spatial_map": 128, "demo": [129, 131, 132, 134, 138, 140], "inspect": 129, "exercis": 129, "bad": 129, "classifi": 130, "raw": [130, 137, 138], "mere": 130, "presenc": 130, "signatur": 130, "sever": 130, "exce": 130, "scroll": 130, "section": 130, "vlinder_github": 130, "datafil": [130, 135, 138, 139], "db": 130, "target_time_r": 130, "60t": 130, "resample_method": 130, "resample_limit": 130, "app": [130, 138], "print_fmt_datetim": 130, "print_max_n": 130, "time_seri": 130, "figsiz": 130, "tab20": 130, "linewidth": 130, "linestyle_ok": 130, "linestyle_fil": 130, "linezord": 130, "scatters": 130, "scatterzord": 130, "dashedzord": 130, "legend_n_column": 130, "spatial_geo": 130, "extent": 130, "260609": 130, "49": [130, 139], "118359": 130, "350618": 130, "cmap": 130, "inferno_r": 130, "n_for_categor": 130, "fmt": 130, "pie_chart": 130, "anchor_legend_big": 130, "anchor_legend_smal": 130, "radius_big": 130, "radius_smal": 130, "color_mapp": [130, 138], "duplicated_timestamp": 130, "a32a1f": 130, "invalid_input": 130, "900357": 130, "f1ff2b": 130, "f0051c": 130, "056ff0": 130, "05d4f0": 130, "05f0c9": 130, "buddy_check": 130, "8300c4": 130, "titan_buddy_check": 130, "titan_sct_resistant_check": 130, "c17fe1": 130, "f00592": 130, "missing_timestamp": 130, "f78e0c": 130, "d406c6": 130, "model_debia": 130, "6e1868": 130, "07f72b": 130, "f7cf07": 130, "f20000": 130, "alpha_error_band": 130, "cmap_contini": 130, "n_cat_max": 130, "cmap_categor": 130, "correlation_heatmap": 130, "cool": 130, "x_tick_rot": 130, "y_tick_rot": 130, "correlation_scatt": 130, "p_bin": 130, "999": 130, "bins_mark": 130, "scatter_s": 130, "scatter_edge_col": 130, "scatter_edge_line_width": 130, "ymin": 130, "ymax": 130, "legend_ncol": 130, "legend_text_s": 130, "world_boundary_map": 130, "world_boundari": 130, "wb_countries_admin0_10m": 130, "shp": 130, "pseudo": 130, "region": [130, 140], "longtitud": 130, "radiat": [130, 140], "precipit": [130, 131, 140], "intens": [130, 131, 137, 140], "cummul": [130, 131], "wind": [130, 131, 139, 140], "speed": [130, 131, 140], "gust": [130, 131, 140], "air": [130, 131, 140], "unknown_nam": 130, "qc_check_set": 130, "time_window_to_check": 130, "min_num_ob": 130, "max_valid_repetit": 130, "min_valu": 130, "max_valu": 130, "max_increase_per_second": 130, "0022222222222222222": 130, "max_decrease_per_second": 130, "002777777777777778": 130, "min_window_memb": 130, "15000": 130, "num_min": 130, "max_elev_diff": 130, "200": [130, 138], "elev_gradi": 130, "qc_checks_info": 130, "outlier_flag": 130, "numeric_flag": 130, "apply_on": 130, "titan_check_set": 130, "50000": [130, 138], "num_iter": 130, "num_min_out": 130, "num_max_out": 130, "inner_radiu": 130, "20000": 130, "outer_radiu": 130, "num_min_prof": 130, "min_elev_diff": 130, "min_horizontal_scal": 130, "max_horizontal_scal": 130, "100000": [130, 131], "kth_closest_obs_horizontal_scal": 130, "vertical_scal": 130, "mina_devi": 130, "maxa_devi": 130, "minv_devi": 130, "maxv_devi": 130, "eps2": 130, "tpo": 130, "tneg": 130, "outl": 130, "gaps_set": 130, "gaps_find": 130, "label_columnnam": 130, "is_gap": 130, "negative_flag": 130, "is_missing_timestamp": 130, "gaps_fill_set": 130, "debias_period": 130, "prefered_leading_sample_duration_hour": 130, "prefered_trailing_sample_duration_hour": 130, "minimum_leading_sample_duration_hour": 130, "minimum_trailing_sample_duration_hour": 130, "max_interpolation_duration_str": 130, "5h": 130, "gaps_fill_info": 130, "final_label": 130, "missing_obs_fill_set": 130, "missing_obs_fill_info": 130, "missing_obs_interpol": 130, "demo_templatefil": 130, "global_lcz_map": [130, 131], "rub": [130, 131], "rubclim": [130, 131], "v1": [130, 131], "usag": [130, 131, 132], "band_of_us": [130, 131], "lcz_filter": [130, 131], "value_typ": [130, 131], "dynam": [130, 131], "is_imagecollect": [130, 131], "categorical_mapp": [130, 131], "lightweight": [130, 131], "heavi": [130, 131], "industri": [130, 131], "bush": [130, 131], "scrub": [130, 131], "bare": [130, 131], "rock": [130, 131], "pave": [130, 131], "soil": [130, 131], "sand": [130, 131], "f": [130, 131], "demuzer": [130, 131], "kittner": [130, 131], "j": [130, 131], "martilli": [130, 131], "mill": [130, 131], "moed": [130, 131], "stewart": [130, 131], "van": [130, 131], "vliet": [130, 131], "bechtel": [130, 131], "support": [130, 131, 134, 137], "urban": [130, 131, 135, 137], "environment": [130, 131], "scienc": [130, 131], "volum": [130, 131], "3835": [130, 131], "3873": [130, 131], "doi": [130, 131], "5194": [130, 131], "essd": [130, 131], "dem": [130, 131], "cgiar": [130, 131], "srtm90_v4": [130, 131], "2500": [130, 131], "v200": [130, 131], "cover": [130, 131, 132, 135], "shrubland": [130, 131], "grassland": [130, 131], "cropland": [130, 131], "60": [130, 131], "veget": [130, 131], "70": [130, 131], "snow": [130, 131], "ic": [130, 131], "80": [130, 131], "perman": [130, 131], "bodi": [130, 131], "90": [130, 131], "herbac": [130, 131], "wetland": [130, 131], "95": [130, 131], "mangrov": [130, 131], "moss": [130, 131], "lichen": [130, 131], "006400": [130, 131], "ffbb22": [130, 131], "ffff4c": [130, 131], "f096ff": [130, 131], "fa0000": [130, 131], "b4b4b4": [130, 131], "f0f0f0": [130, 131], "0064c8": [130, 131], "0096a0": [130, 131], "00cf75": [130, 131], "fae6a0": [130, 131], "spdx": [130, 131], "org": [130, 131], "licens": [130, 131], "BY": [130, 131], "intern": 130, "64": 130, "28984788359789": 130, "707671957671955": 130, "00248015873015873": 130, "29": 130, "658564814814813": 130, "869378306878307": 130, "0085978835978835": 130, "17113095238095238": 130, "34143518518519": 130, "47205687830689": 130, "34": [130, 139], "52794312169312": 130, "46345899470899": 130, "53654100529101": 130, "29232804232805": 130, "99": 130, "99751984126983": 130, "initi": [131, 139], "alias": [131, 139], "percent": 131, "globe": [131, 140], "pa": 131, "pascal": 131, "hpa": 131, "hecto": 131, "psi": 131, "bar": 131, "atmospher": 131, "6894": 131, "7573": 131, "mm": 131, "m\u00b2": 131, "liter": 131, "l": 131, "milimet": 131, "sec": 131, "km": [131, 139], "kilomet": 131, "kph": 131, "mph": 131, "mile": 131, "44704": 131, "cw": 131, "prefer": 131, "upon": 131, "At": 131, "convenion": 131, "temperature_obstyp": 131, "co2_concentr": 131, "co2": 131, "ppm": 131, "ppb": 131, "1000": 131, "concentr": 131, "measur": [131, 137, 140], "surfac": 131, "know": 131, "your_new_unit": 131, "era": [131, 138], "cumulated_precip": 131, "cumul": 131, "midnight": 131, "squar": 131, "total_precipit": 131, "catalog": [131, 139], "ecmwf_era5_land_hourli": [131, 139], "accumul": [131, 140], "liquid": 131, "frozen": 131, "rain": 131, "fall": 131, "weather": [131, 137, 139], "pattern": [131, 135], "trough": 131, "front": [131, 135], "convect": 131, "warmer": 131, "rise": 131, "849": 131, "357": 131, "brussel": [131, 135, 137], "tstart": 131, "tend": 131, "datasetsband": 131, "surface_pressur": 131, "u_component_of_wind_10m": [131, 139], "v_component_of_wind_10m": 131, "problem": [131, 139], "while": [131, 137], "transform": 131, "clockwis": 131, "wind_amplitud": 131, "avoid": [132, 138, 139], "reproject": 132, "preprocess": 132, "easili": [132, 137], "transfer": 132, "page": [132, 134, 139, 140], "person": [132, 139], "charg": 132, "guid": 132, "lot": [132, 139], "googel": 132, "login": 132, "go": 132, "websit": 132, "click": 132, "three": [132, 137], "dot": 132, "hit": 132, "affili": 132, "next": 132, "confirm": 132, "newslett": 132, "subscript": 132, "quit": 132, "worri": 132, "pai": 132, "servic": 132, "consol": [132, 133], "projectcr": 132, "pli": 132, "organ": 132, "few": 132, "regist": 132, "unpaid": 132, "academia": 132, "research": [132, 136, 137], "summari": 132, "read_onli": 132, "propt": 132, "quantiti": 132, "interfac": [133, 137], "explor": 133, "remot": 133, "colab": 133, "sometim": 133, "tricki": 133, "intend": [133, 137], "streamlin": 133, "process": [133, 137], "explain": 133, "jupyternotebook": 133, "machin": 133, "pip3": [133, 135], "metobs_gui": 133, "jupyt": 133, "launch_gui": 133, "schemat": 134, "setup": 134, "enabl": [134, 137], "topic": 134, "irregular": [134, 137], "gui": [134, 137], "why": 134, "launch": 134, "contribut": 134, "pull": 134, "guidelin": 134, "tag": 134, "acknowledg": 134, "joss": 134, "public": 134, "paper": [134, 138], "dataset_settings_updat": 134, "design": [135, 137], "tradit": [135, 137], "tool": [135, 137], "clean": [135, 137], "analyz": [135, 137], "higher": 135, "pip": 135, "command": 135, "main": [135, 137], "v0": 135, "manual": [135, 137], "functional": 135, "orient": 135, "program": 135, "oop": 135, "heart": 135, "tabular": [135, 140], "station_a": [135, 140], "contrast": 135, "insight": 135, "your_dataset_analysi": 135, "recommend": 135, "scientif": [135, 137], "own": 135, "attach": 135, "anoth": 135, "europ": 135, "journal": 136, "softwar": [136, 137], "friendli": [136, 137], "submit": 136, "draft": 136, "doc": 136, "pdf": 136, "addition": [136, 137], "creator": 136, "situ": 137, "highli": 137, "toward": 137, "afford": 137, "sensor": 137, "technologi": 137, "commun": 137, "emerg": 137, "novel": 137, "alongsid": 137, "institut": 137, "studi": 137, "impact": 137, "citi": [137, 140], "mocca": 137, "devic": 137, "enthusiast": 137, "crowdsourcing_statu": 137, "howev": [137, 139], "exploit": 137, "crowdsourc": 137, "firstli": 137, "protocol": 137, "usual": 137, "secondli": 137, "storag": 137, "tempor": 137, "address": 137, "facilit": 137, "autom": 137, "techniqu": 137, "offer": 137, "linkag": 137, "popular": 137, "lcz_map": 137, "microclim": 137, "investig": 137, "primari": 137, "scientist": 137, "involv": 137, "necessari": 137, "sophist": 137, "titan2020": 137, "crowdqc": 137, "aspect": 137, "task": 137, "aim": 137, "framework": 137, "entir": 137, "flow": 137, "moreov": 137, "face": 137, "particularli": 137, "geograph": 137, "tradition": 137, "gi": 137, "manipul": 137, "variou": 137, "incorpor": 137, "pipelin": 137, "easi": [137, 139], "manner": 137, "comprehens": 137, "autoref": 137, "fig": [137, 138], "overview_fig": 137, "synchron": [137, 139], "examin": 137, "min": [137, 138], "criteria": 137, "reanalysi": 137, "latter": 137, "evolv": 137, "respond": 137, "would": 137, "eas": 137, "adjust": 137, "particip": 137, "ca20108": 137, "role": 137, "beta": 137, "tester": 137, "idea": 137, "deal": [137, 139], "european": 137, "countri": 137, "were": 137, "instrument": 137, "improv": 137, "fund": 137, "belgian": 137, "flemish": 137, "grant": 137, "fwo": 137, "sara": 137, "fellowship": 137, "1270723n": 137, "wout": 137, "1157523n": 137, "belspo": 137, "kobe": 137, "b2": 137, "223": 137, "p1": 137, "cordex": 137, "ii": 137, "202": 137, "mask": 137, "michiel": 137, "212": 137, "p2": 137, "climpacth": 137, "steven": 137, "fed": 137, "twin": 137, "prf": 137, "2020": 137, "018_aura": 137, "andrei": 137, "vub": 137, "srp74": 137, "lsd": 137, "ozr3893": 137, "innoviri": 137, "ilsf": 137, "ian": 137, "vito": 137, "ug_phd_2202": 137, "math": 138, "sy": 138, "pathlib": 138, "plt": 138, "datadf": 138, "regio": 138, "ghent_stat": 138, "isin": 138, "dummy_dt": 138, "datum": 138, "tijd": 138, "to_datetim": 138, "induc": 138, "iloc": 138, "180": 138, "tolist": 138, "abspath": 138, "to_csv": 138, "join": 138, "metadatafil": 138, "use_dataset": [138, 139], "paper_dataset": 138, "fc0303": 138, "20t": 138, "ax1": 138, "set_titl": 138, "set_ylabel": 138, "t2m": 138, "3600": 138, "10000": 138, "ax2": 138, "dummy_mod": 138, "cleariti": 138, "ax3": 138, "150": 138, "500": 138, "ana": 138, "ax4": 138, "gcf": 138, "set_dpi": 138, "tight_layout": 138, "aris": 139, "introduc": 139, "perfectli": 139, "henc": 139, "interv": 139, "being": 139, "toler": 139, "he": 139, "let": 139, "netatmo": 139, "On": [139, 140], "4320": 139, "87": 139, "remain": 139, "commerci": 139, "compani": 139, "sell": 139, "data_template_fil": [139, 140], "2021": 139, "27": 139, "56": 139, "netatmo_st": 139, "timedelta64": 139, "testdata": 139, "3t": 139, "4059": 139, "938": 139, "92": 139, "try": 139, "tlk_std_unit": 139, "aka": 139, "left": 139, "wind_component_east": 139, "wind_u_comp": 139, "5min": 139, "But": 139, "10m": 139, "model_data": 139, "reus": 140, "belong": 140, "stack": 140, "passiv": 140, "hum": 140, "station_b": 140, "71": 140, "northen": 140, "easten": 140, "networknam": 140, "3664": 140, "67785": 140, "6752": 140, "1332": 140, "fastest": 140, "simplest": 140, "prompt": 140, "match": 140, "feed": 140, "metadata_template_fil": 140, "further": 140, "ye": 140, "piec": 140, "load": 140}, "objects": {"": [[2, 0, 0, "-", "metobs_toolkit"]], "metobs_toolkit": [[3, 0, 0, "-", "analysis"], [7, 0, 0, "-", "data_import"], [17, 0, 0, "-", "dataset"], [19, 0, 0, "-", "dataset_settings_updater"], [22, 0, 0, "-", "df_helpers"], [41, 0, 0, "-", "gap"], [52, 0, 0, "-", "gap_filling"], [58, 0, 0, "-", "geometry_functions"], [64, 0, 0, "-", "landcover_functions"], [75, 0, 0, "-", "missingobs"], [77, 0, 0, "-", "modeldata"], [79, 0, 0, "-", "obstype_modeldata"], [84, 0, 0, "-", "obstypes"], [87, 0, 0, "-", "plotting_functions"], [100, 0, 0, "-", "printing"], [102, 0, 0, "-", "qc_checks"], [116, 0, 0, "-", "qc_statistics"], [118, 0, 0, "-", "settings"], [120, 0, 0, "-", "station"], [122, 0, 0, "-", "writing_files"]], "metobs_toolkit.analysis": [[4, 1, 1, "", "Analysis"], [5, 3, 1, "", "filter_data"], [6, 3, 1, "", "get_seasons"]], "metobs_toolkit.analysis.Analysis": [[4, 2, 1, "", "aggregate_df"], [4, 2, 1, "", "apply_filter"], [4, 2, 1, "", "get_aggregated_cycle_statistics"], [4, 2, 1, "", "get_anual_statistics"], [4, 2, 1, "", "get_diurnal_statistics"], [4, 2, 1, "", "get_diurnal_statistics_with_reference"], [4, 2, 1, "", "get_lc_correlation_matrices"], [4, 2, 1, "", "plot_correlation_heatmap"], [4, 2, 1, "", "plot_correlation_variation"], [4, 2, 1, "", "subset_period"]], "metobs_toolkit.data_import": [[8, 3, 1, "", "check_template_compatibility"], [9, 3, 1, "", "compress_dict"], [10, 3, 1, "", "extract_options_from_template"], [11, 3, 1, "", "find_compatible_templatefor"], [12, 3, 1, "", "import_data_from_csv"], [13, 3, 1, "", "import_metadata_from_csv"], [14, 3, 1, "", "read_csv_template"], [15, 3, 1, "", "template_to_package_space"], [16, 3, 1, "", "wide_to_long"]], "metobs_toolkit.dataset": [[18, 1, 1, "", "Dataset"]], "metobs_toolkit.dataset.Dataset": [[18, 2, 1, "", "__add__"], [18, 2, 1, "", "add_new_observationtype"], [18, 2, 1, "", "add_new_unit"], [18, 2, 1, "", "apply_buddy_check"], [18, 2, 1, "", "apply_quality_control"], [18, 2, 1, "", "apply_titan_buddy_check"], [18, 2, 1, "", "apply_titan_sct_resistant_check"], [18, 2, 1, "", "coarsen_time_resolution"], [18, 2, 1, "", "combine_all_to_obsspace"], [18, 2, 1, "", "fill_gaps_automatic"], [18, 2, 1, "", "fill_gaps_era5"], [18, 2, 1, "", "fill_gaps_linear"], [18, 2, 1, "", "fill_missing_obs_linear"], [18, 2, 1, "", "get_altitude"], [18, 2, 1, "", "get_analysis"], [18, 2, 1, "", "get_gaps_df"], [18, 2, 1, "", "get_gaps_info"], [18, 2, 1, "", "get_info"], [18, 2, 1, "", "get_landcover"], [18, 2, 1, "", "get_lcz"], [18, 2, 1, "", "get_missing_obs_info"], [18, 2, 1, "", "get_modeldata"], [18, 2, 1, "", "get_qc_stats"], [18, 2, 1, "", "get_station"], [18, 2, 1, "", "import_data_from_file"], [18, 2, 1, "", "import_dataset"], [18, 2, 1, "", "make_gee_plot"], [18, 2, 1, "", "make_geo_plot"], [18, 2, 1, "", "make_interactive_plot"], [18, 2, 1, "", "make_plot"], [18, 2, 1, "", "save_dataset"], [18, 2, 1, "", "show"], [18, 2, 1, "", "show_settings"], [18, 2, 1, "", "sync_observations"], [18, 2, 1, "", "update_gaps_and_missing_from_outliers"], [18, 2, 1, "", "update_outliersdf"], [18, 2, 1, "", "write_to_csv"]], "metobs_toolkit.dataset_settings_updater": [[20, 1, 1, "", "Dataset"], [21, 3, 1, "", "is_timedelta"]], "metobs_toolkit.dataset_settings_updater.Dataset": [[20, 2, 1, "", "__add__"], [20, 2, 1, "", "add_new_observationtype"], [20, 2, 1, "", "add_new_unit"], [20, 2, 1, "", "apply_buddy_check"], [20, 2, 1, "", "apply_quality_control"], [20, 2, 1, "", "apply_titan_buddy_check"], [20, 2, 1, "", "apply_titan_sct_resistant_check"], [20, 2, 1, "", "coarsen_time_resolution"], [20, 2, 1, "", "combine_all_to_obsspace"], [20, 2, 1, "", "fill_gaps_automatic"], [20, 2, 1, "", "fill_gaps_era5"], [20, 2, 1, "", "fill_gaps_linear"], [20, 2, 1, "", "fill_missing_obs_linear"], [20, 2, 1, "", "get_altitude"], [20, 2, 1, "", "get_analysis"], [20, 2, 1, "", "get_gaps_df"], [20, 2, 1, "", "get_gaps_info"], [20, 2, 1, "", "get_info"], [20, 2, 1, "", "get_landcover"], [20, 2, 1, "", "get_lcz"], [20, 2, 1, "", "get_missing_obs_info"], [20, 2, 1, "", "get_modeldata"], [20, 2, 1, "", "get_qc_stats"], [20, 2, 1, "", "get_station"], [20, 2, 1, "", "import_data_from_file"], [20, 2, 1, "", "import_dataset"], [20, 2, 1, "", "make_gee_plot"], [20, 2, 1, "", "make_geo_plot"], [20, 2, 1, "", "make_interactive_plot"], [20, 2, 1, "", "make_plot"], [20, 2, 1, "", "save_dataset"], [20, 2, 1, "", "show"], [20, 2, 1, "", "show_settings"], [20, 2, 1, "", "sync_observations"], [20, 2, 1, "", "update_default_name"], [20, 2, 1, "", "update_gap_and_missing_fill_settings"], [20, 2, 1, "", "update_gaps_and_missing_from_outliers"], [20, 2, 1, "", "update_outliersdf"], [20, 2, 1, "", "update_qc_settings"], [20, 2, 1, "", "update_settings"], [20, 2, 1, "", "update_timezone"], [20, 2, 1, "", "update_titan_qc_settings"], [20, 2, 1, "", "write_to_csv"]], "metobs_toolkit.df_helpers": [[23, 3, 1, "", "concat_save"], [24, 3, 1, "", "conv_applied_qc_to_df"], [25, 3, 1, "", "conv_tz_multiidxdf"], [26, 3, 1, "", "datetime_subsetting"], [27, 3, 1, "", "fmt_datetime_argument"], [28, 3, 1, "", "format_outliersdf_to_doubleidx"], [29, 3, 1, "", "get_freqency_series"], [30, 3, 1, "", "get_likely_frequency"], [31, 3, 1, "", "init_multiindex"], [32, 3, 1, "", "init_multiindexdf"], [33, 3, 1, "", "init_triple_multiindex"], [34, 3, 1, "", "init_triple_multiindexdf"], [35, 3, 1, "", "metadf_to_gdf"], [36, 3, 1, "", "multiindexdf_datetime_subsetting"], [37, 3, 1, "", "remove_outliers_from_obs"], [38, 3, 1, "", "subset_stations"], [39, 3, 1, "", "value_labeled_doubleidxdf_to_triple_idxdf"], [40, 3, 1, "", "xs_save"]], "metobs_toolkit.gap": [[42, 1, 1, "", "Gap"], [43, 3, 1, "", "apply_debias_era5_gapfill"], [44, 3, 1, "", "apply_interpolate_gaps"], [45, 3, 1, "", "gaps_to_df"], [46, 3, 1, "", "get_gaps_indx_in_obs_space"], [47, 3, 1, "", "get_station_gaps"], [48, 3, 1, "", "make_gapfill_df"], [49, 3, 1, "", "missing_timestamp_and_gap_check"], [50, 3, 1, "", "remove_gaps_from_obs"], [51, 3, 1, "", "remove_gaps_from_outliers"]], "metobs_toolkit.gap.Gap": [[42, 2, 1, "", "apply_interpolate_gap"], [42, 2, 1, "", "get_info"], [42, 2, 1, "", "to_df"], [42, 2, 1, "", "update_gaps_indx_in_obs_space"], [42, 2, 1, "", "update_leading_trailing_obs"]], "metobs_toolkit.gap_filling": [[53, 3, 1, "", "create_leading_trailing_debias_periods"], [54, 3, 1, "", "get_sample_size"], [55, 3, 1, "", "get_time_specific_biases"], [56, 3, 1, "", "interpolate_gap"], [57, 3, 1, "", "make_era_bias_correction"]], "metobs_toolkit.geometry_functions": [[59, 3, 1, "", "box_to_extent_list"], [60, 3, 1, "", "extent_list_to_box"], [61, 3, 1, "", "find_extend_of_geodf"], [62, 3, 1, "", "find_plot_extent"], [63, 3, 1, "", "gpd_to_extent_box"]], "metobs_toolkit.landcover_functions": [[65, 3, 1, "", "connect_to_gee"], [66, 3, 1, "", "coordinates_available"], [67, 3, 1, "", "coords_to_geometry"], [68, 3, 1, "", "extract_buffer_frequencies"], [69, 3, 1, "", "extract_pointvalues"], [70, 3, 1, "", "gee_extract_timeseries"], [71, 3, 1, "", "get_ee_obj"], [72, 3, 1, "", "height_extractor"], [73, 3, 1, "", "lc_fractions_extractor"], [74, 3, 1, "", "lcz_extractor"]], "metobs_toolkit.missingobs": [[76, 1, 1, "", "Missingob_collection"]], "metobs_toolkit.missingobs.Missingob_collection": [[76, 2, 1, "", "__add__"], [76, 2, 1, "", "get_info"], [76, 2, 1, "", "get_missing_indx_in_obs_space"], [76, 2, 1, "", "get_station_missingobs"], [76, 2, 1, "", "interpolate_missing"], [76, 2, 1, "", "remove_missing_from_obs"], [76, 2, 1, "", "remove_missing_from_outliers"]], "metobs_toolkit.modeldata": [[78, 1, 1, "", "Modeldata"]], "metobs_toolkit.modeldata.Modeldata": [[78, 2, 1, "", "add_gee_dataset"], [78, 2, 1, "", "add_obstype"], [78, 2, 1, "", "convert_units_to_tlk"], [78, 2, 1, "", "exploid_2d_vector_field"], [78, 2, 1, "", "get_ERA5_data"], [78, 2, 1, "", "get_gee_dataset_data"], [78, 2, 1, "", "get_info"], [78, 2, 1, "", "import_modeldata"], [78, 2, 1, "", "interpolate_modeldata"], [78, 2, 1, "", "list_gee_datasets"], [78, 2, 1, "", "make_plot"], [78, 2, 1, "", "save_modeldata"], [78, 2, 1, "", "set_model_from_csv"]], "metobs_toolkit.obstype_modeldata": [[80, 1, 1, "", "ModelObstype"], [81, 1, 1, "", "ModelObstype_Vectorfield"], [82, 3, 1, "", "compute_amplitude"], [83, 3, 1, "", "compute_angle"]], "metobs_toolkit.obstype_modeldata.ModelObstype": [[80, 2, 1, "", "add_new_band"], [80, 2, 1, "", "add_unit"], [80, 2, 1, "", "convert_to_standard_units"], [80, 2, 1, "", "get_all_units"], [80, 2, 1, "", "get_bandname"], [80, 2, 1, "", "get_bandname_mapper"], [80, 2, 1, "", "get_description"], [80, 2, 1, "", "get_info"], [80, 2, 1, "", "get_mapped_datasets"], [80, 2, 1, "", "get_modelunit"], [80, 2, 1, "", "get_orig_name"], [80, 2, 1, "", "get_plot_y_label"], [80, 2, 1, "", "get_standard_unit"], [80, 2, 1, "", "has_mapped_band"], [80, 2, 1, "", "set_description"], [80, 2, 1, "", "set_original_name"], [80, 2, 1, "", "set_original_unit"], [80, 2, 1, "", "test_if_unit_is_known"]], "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield": [[81, 2, 1, "", "add_new_band"], [81, 2, 1, "", "add_unit"], [81, 2, 1, "", "convert_to_standard_units"], [81, 2, 1, "", "get_all_units"], [81, 2, 1, "", "get_bandname_mapper"], [81, 2, 1, "", "get_description"], [81, 2, 1, "", "get_info"], [81, 2, 1, "", "get_mapped_datasets"], [81, 2, 1, "", "get_modelunit"], [81, 2, 1, "", "get_orig_name"], [81, 2, 1, "", "get_plot_y_label"], [81, 2, 1, "", "get_standard_unit"], [81, 2, 1, "", "has_mapped_band"], [81, 2, 1, "", "set_description"], [81, 2, 1, "", "set_original_name"], [81, 2, 1, "", "set_original_unit"], [81, 2, 1, "", "test_if_unit_is_known"]], "metobs_toolkit.obstypes": [[85, 1, 1, "", "Obstype"], [86, 3, 1, "", "expression_calculator"]], "metobs_toolkit.obstypes.Obstype": [[85, 2, 1, "", "add_unit"], [85, 2, 1, "", "convert_to_standard_units"], [85, 2, 1, "", "get_all_units"], [85, 2, 1, "", "get_description"], [85, 2, 1, "", "get_info"], [85, 2, 1, "", "get_orig_name"], [85, 2, 1, "", "get_plot_y_label"], [85, 2, 1, "", "get_standard_unit"], [85, 2, 1, "", "set_description"], [85, 2, 1, "", "set_original_name"], [85, 2, 1, "", "set_original_unit"], [85, 2, 1, "", "test_if_unit_is_known"]], "metobs_toolkit.plotting_functions": [[88, 3, 1, "", "add_stations_to_folium_map"], [89, 3, 1, "", "correlation_scatter"], [90, 3, 1, "", "cycle_plot"], [91, 3, 1, "", "folium_plot"], [92, 3, 1, "", "geospatial_plot"], [93, 3, 1, "", "heatmap_plot"], [94, 3, 1, "", "make_cat_colormapper"], [95, 3, 1, "", "make_folium_html_plot"], [96, 3, 1, "", "map_obstype"], [97, 3, 1, "", "model_timeseries_plot"], [98, 3, 1, "", "qc_stats_pie"], [99, 3, 1, "", "timeseries_plot"]], "metobs_toolkit.printing": [[101, 3, 1, "", "print_dataset_info"]], "metobs_toolkit.qc_checks": [[103, 3, 1, "", "create_titanlib_points_dict"], [104, 3, 1, "", "duplicate_timestamp_check"], [105, 3, 1, "", "get_outliers_in_daterange"], [106, 3, 1, "", "gross_value_check"], [107, 3, 1, "", "invalid_input_check"], [108, 3, 1, "", "make_outlier_df_for_check"], [109, 3, 1, "", "persistance_check"], [110, 3, 1, "", "repetitions_check"], [111, 3, 1, "", "step_check"], [112, 3, 1, "", "titan_buddy_check"], [113, 3, 1, "", "titan_sct_resistant_check"], [114, 3, 1, "", "toolkit_buddy_check"], [115, 3, 1, "", "window_variation_check"]], "metobs_toolkit.qc_statistics": [[117, 3, 1, "", "get_freq_statistics"]], "metobs_toolkit.settings": [[119, 1, 1, "", "Settings"]], "metobs_toolkit.settings.Settings": [[119, 2, 1, "", "copy_template_csv_files"], [119, 2, 1, "", "show"], [119, 2, 1, "", "update_IO"], [119, 2, 1, "", "update_timezone"]], "metobs_toolkit.station": [[121, 1, 1, "", "Station"]], "metobs_toolkit.station.Station": [[121, 2, 1, "", "__add__"], [121, 2, 1, "", "add_new_observationtype"], [121, 2, 1, "", "add_new_unit"], [121, 2, 1, "", "apply_buddy_check"], [121, 2, 1, "", "apply_quality_control"], [121, 2, 1, "", "apply_titan_buddy_check"], [121, 2, 1, "", "apply_titan_sct_resistant_check"], [121, 2, 1, "", "coarsen_time_resolution"], [121, 2, 1, "", "combine_all_to_obsspace"], [121, 2, 1, "", "fill_gaps_automatic"], [121, 2, 1, "", "fill_gaps_era5"], [121, 2, 1, "", "fill_gaps_linear"], [121, 2, 1, "", "fill_missing_obs_linear"], [121, 2, 1, "", "get_altitude"], [121, 2, 1, "", "get_analysis"], [121, 2, 1, "", "get_gaps_df"], [121, 2, 1, "", "get_gaps_info"], [121, 2, 1, "", "get_info"], [121, 2, 1, "", "get_landcover"], [121, 2, 1, "", "get_lcz"], [121, 2, 1, "", "get_missing_obs_info"], [121, 2, 1, "", "get_modeldata"], [121, 2, 1, "", "get_qc_stats"], [121, 2, 1, "", "get_station"], [121, 2, 1, "", "import_data_from_file"], [121, 2, 1, "", "import_dataset"], [121, 2, 1, "", "make_gee_plot"], [121, 2, 1, "", "make_geo_plot"], [121, 2, 1, "", "make_interactive_plot"], [121, 2, 1, "", "make_plot"], [121, 2, 1, "", "save_dataset"], [121, 2, 1, "", "setup_metadata_dtyes"], [121, 2, 1, "", "show"], [121, 2, 1, "", "show_settings"], [121, 2, 1, "", "sync_observations"], [121, 2, 1, "", "update_gaps_and_missing_from_outliers"], [121, 2, 1, "", "update_outliersdf"], [121, 2, 1, "", "write_to_csv"]], "metobs_toolkit.writing_files": [[123, 3, 1, "", "write_dataset_to_csv"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"]}, "titleterms": {"metob": [0, 1, 134], "toolkit": [0, 1, 134, 135, 140], "document": [0, 1, 124, 134], "user": 0, "develop": [1, 124, 132], "metobs_toolkit": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], "analysi": [3, 4, 5, 6, 125, 135, 138], "filter_data": 5, "get_season": 6, "data_import": [7, 8, 9, 10, 11, 12, 13, 14, 15, 16], "check_template_compat": 8, "compress_dict": 9, "extract_options_from_templ": 10, "find_compatible_templatefor": 11, "import_data_from_csv": 12, "import_metadata_from_csv": 13, "read_csv_templ": 14, "template_to_package_spac": 15, "wide_to_long": 16, "dataset": [17, 18, 20, 126, 128, 135, 138, 139], "dataset_settings_updat": [19, 20, 21], "is_timedelta": 21, "df_helper": [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], "concat_sav": 23, "conv_applied_qc_to_df": 24, "conv_tz_multiidxdf": 25, "datetime_subset": 26, "fmt_datetime_argu": 27, "format_outliersdf_to_doubleidx": 28, "get_freqency_seri": 29, "get_likely_frequ": 30, "init_multiindex": 31, "init_multiindexdf": 32, "init_triple_multiindex": 33, "init_triple_multiindexdf": 34, "metadf_to_gdf": 35, "multiindexdf_datetime_subset": 36, "remove_outliers_from_ob": 37, "subset_st": 38, "value_labeled_doubleidxdf_to_triple_idxdf": 39, "xs_save": 40, "gap": [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 127, 138], "apply_debias_era5_gapfil": 43, "apply_interpolate_gap": 44, "gaps_to_df": 45, "get_gaps_indx_in_obs_spac": 46, "get_station_gap": 47, "make_gapfill_df": 48, "missing_timestamp_and_gap_check": 49, "remove_gaps_from_ob": 50, "remove_gaps_from_outli": 51, "gap_fil": [52, 53, 54, 55, 56, 57], "create_leading_trailing_debias_period": 53, "get_sample_s": 54, "get_time_specific_bias": 55, "interpolate_gap": 56, "make_era_bias_correct": 57, "geometry_funct": [58, 59, 60, 61, 62, 63], "box_to_extent_list": 59, "extent_list_to_box": 60, "find_extend_of_geodf": 61, "find_plot_ext": 62, "gpd_to_extent_box": 63, "landcover_funct": [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74], "connect_to_ge": 65, "coordinates_avail": 66, "coords_to_geometri": 67, "extract_buffer_frequ": 68, "extract_pointvalu": 69, "gee_extract_timeseri": 70, "get_ee_obj": 71, "height_extractor": 72, "lc_fractions_extractor": 73, "lcz_extractor": 74, "missingob": [75, 76], "missingob_collect": 76, "modeldata": [77, 78, 131, 135, 139], "obstype_modeldata": [79, 80, 81, 82, 83], "modelobstyp": 80, "modelobstype_vectorfield": 81, "compute_amplitud": 82, "compute_angl": 83, "obstyp": [84, 85, 86, 131], "expression_calcul": 86, "plotting_funct": [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], "add_stations_to_folium_map": 88, "correlation_scatt": 89, "cycle_plot": 90, "folium_plot": 91, "geospatial_plot": 92, "heatmap_plot": 93, "make_cat_colormapp": 94, "make_folium_html_plot": 95, "map_obstyp": 96, "model_timeseries_plot": 97, "qc_stats_pi": 98, "timeseries_plot": 99, "print": [100, 101], "print_dataset_info": 101, "qc_check": [102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115], "create_titanlib_points_dict": 103, "duplicate_timestamp_check": 104, "get_outliers_in_daterang": 105, "gross_value_check": 106, "invalid_input_check": 107, "make_outlier_df_for_check": 108, "persistance_check": 109, "repetitions_check": 110, "step_check": 111, "titan_buddy_check": 112, "titan_sct_resistant_check": 113, "toolkit_buddy_check": 114, "window_variation_check": 115, "qc_statist": [116, 117], "get_freq_statist": 117, "set": [118, 119, 135, 138], "station": [120, 121, 126, 135, 138, 140], "writing_fil": [122, 123], "write_dataset_to_csv": 123, "contribut": 124, "type": [124, 131, 139, 140], "featur": 124, "request": 124, "report": 124, "bug": 124, "fix": 124, "implement": [124, 137], "write": 124, "submit": 124, "feedback": 124, "get": 124, "start": 124, "requir": 124, "softwar": 124, "setup": [124, 132], "environ": 124, "pull": 124, "guidelin": 124, "version": 124, "tag": 124, "support": 124, "acknowledg": [124, 137], "demo": [125, 126, 127, 128, 130], "exampl": [125, 126, 127, 128, 129, 130, 139, 140], "creat": [125, 128, 131, 139], "an": 125, "method": 125, "filter": 125, "data": [125, 126, 128, 140], "diurnal": [125, 138], "cycl": 125, "exercis": [125, 126, 127, 130], "us": [126, 128, 132, 133, 135, 139], "The": 126, "import": 126, "inspect": [126, 127], "make": 126, "timeseri": [126, 128, 138], "plot": [126, 128, 138], "resampl": 126, "time": 126, "resolut": 126, "introduct": [126, 135], "fill": [127, 138], "miss": [127, 130], "observ": [127, 130, 131, 139, 140], "outlier": 127, "googl": [128, 132], "earth": [128, 132], "engin": [128, 132], "your": [128, 132], "extract": 128, "lcz": 128, "from": 128, "gee": [128, 132], "other": 128, "geospati": 128, "inform": 128, "era5": [128, 139], "transfer": 128, "interact": [128, 138], "appli": 130, "qualiti": [130, 138], "control": [130, 138], "duplic": 130, "invalid": 130, "timestamp": [130, 139], "bad": 130, "work": 131, "specif": 131, "default": 131, "updat": 131, "special": [131, 139], "2d": 131, "vector": 131, "field": 131, "account": 132, "cloud": 132, "project": 132, "enabl": 132, "api": 132, "": [132, 134], "test": 132, "access": 132, "gui": 133, "why": 133, "how": [133, 135], "launch": 133, "welcom": 134, "developp": 134, "indic": 134, "tabl": 134, "instal": 135, "thi": 135, "schemat": 135, "overview": 135, "joss": [136, 138], "public": [136, 138], "about": 136, "paper": 136, "summari": 137, "statement": 137, "need": 137, "technic": 137, "refer": 137, "figur": 138, "creator": 138, "creation": [138, 140], "style": 138, "each": 138, "label": 138, "vlinder28": 138, "spatial": 138, "topic": 139, "irregular": 139, "new": 139, "map": 140, "standard": 140, "metadata": 140, "structur": 140, "long": 140, "format": 140, "wide": 140, "temperatur": 140, "singl": 140, "templat": 140}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"MetObs toolkit Documentation for Users": [[0, "metobs-toolkit-documentation-for-users"]], "MetObs toolkit Documentation for developers": [[1, "metobs-toolkit-documentation-for-developers"]], "metobs_toolkit": [[2, "module-metobs_toolkit"]], "metobs_toolkit.analysis": [[3, "module-metobs_toolkit.analysis"]], "metobs_toolkit.analysis.Analysis": [[4, "metobs-toolkit-analysis-analysis"]], "metobs_toolkit.analysis.filter_data": [[5, "metobs-toolkit-analysis-filter-data"]], "metobs_toolkit.analysis.get_seasons": [[6, "metobs-toolkit-analysis-get-seasons"]], "metobs_toolkit.data_import": [[7, "module-metobs_toolkit.data_import"]], "metobs_toolkit.data_import.check_template_compatibility": [[8, "metobs-toolkit-data-import-check-template-compatibility"]], "metobs_toolkit.data_import.compress_dict": [[9, "metobs-toolkit-data-import-compress-dict"]], "metobs_toolkit.data_import.extract_options_from_template": [[10, "metobs-toolkit-data-import-extract-options-from-template"]], "metobs_toolkit.data_import.find_compatible_templatefor": [[11, "metobs-toolkit-data-import-find-compatible-templatefor"]], "metobs_toolkit.data_import.import_data_from_csv": [[12, "metobs-toolkit-data-import-import-data-from-csv"]], "metobs_toolkit.data_import.import_metadata_from_csv": [[13, "metobs-toolkit-data-import-import-metadata-from-csv"]], "metobs_toolkit.data_import.read_csv_template": [[14, "metobs-toolkit-data-import-read-csv-template"]], "metobs_toolkit.data_import.template_to_package_space": [[15, "metobs-toolkit-data-import-template-to-package-space"]], "metobs_toolkit.data_import.wide_to_long": [[16, "metobs-toolkit-data-import-wide-to-long"]], "metobs_toolkit.dataset": [[17, "module-metobs_toolkit.dataset"]], "metobs_toolkit.dataset.Dataset": [[18, "metobs-toolkit-dataset-dataset"]], "metobs_toolkit.dataset_settings_updater": [[19, "module-metobs_toolkit.dataset_settings_updater"]], "metobs_toolkit.dataset_settings_updater.Dataset": [[20, "metobs-toolkit-dataset-settings-updater-dataset"]], "metobs_toolkit.dataset_settings_updater.is_timedelta": [[21, "metobs-toolkit-dataset-settings-updater-is-timedelta"]], "metobs_toolkit.df_helpers": [[22, "module-metobs_toolkit.df_helpers"]], "metobs_toolkit.df_helpers.concat_save": [[23, "metobs-toolkit-df-helpers-concat-save"]], "metobs_toolkit.df_helpers.conv_applied_qc_to_df": [[24, "metobs-toolkit-df-helpers-conv-applied-qc-to-df"]], "metobs_toolkit.df_helpers.conv_tz_multiidxdf": [[25, "metobs-toolkit-df-helpers-conv-tz-multiidxdf"]], "metobs_toolkit.df_helpers.datetime_subsetting": [[26, "metobs-toolkit-df-helpers-datetime-subsetting"]], "metobs_toolkit.df_helpers.fmt_datetime_argument": [[27, "metobs-toolkit-df-helpers-fmt-datetime-argument"]], "metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx": [[28, "metobs-toolkit-df-helpers-format-outliersdf-to-doubleidx"]], "metobs_toolkit.df_helpers.get_freqency_series": [[29, "metobs-toolkit-df-helpers-get-freqency-series"]], "metobs_toolkit.df_helpers.get_likely_frequency": [[30, "metobs-toolkit-df-helpers-get-likely-frequency"]], "metobs_toolkit.df_helpers.init_multiindex": [[31, "metobs-toolkit-df-helpers-init-multiindex"]], "metobs_toolkit.df_helpers.init_multiindexdf": [[32, "metobs-toolkit-df-helpers-init-multiindexdf"]], "metobs_toolkit.df_helpers.init_triple_multiindex": [[33, "metobs-toolkit-df-helpers-init-triple-multiindex"]], "metobs_toolkit.df_helpers.init_triple_multiindexdf": [[34, "metobs-toolkit-df-helpers-init-triple-multiindexdf"]], "metobs_toolkit.df_helpers.metadf_to_gdf": [[35, "metobs-toolkit-df-helpers-metadf-to-gdf"]], "metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting": [[36, "metobs-toolkit-df-helpers-multiindexdf-datetime-subsetting"]], "metobs_toolkit.df_helpers.remove_outliers_from_obs": [[37, "metobs-toolkit-df-helpers-remove-outliers-from-obs"]], "metobs_toolkit.df_helpers.subset_stations": [[38, "metobs-toolkit-df-helpers-subset-stations"]], "metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf": [[39, "metobs-toolkit-df-helpers-value-labeled-doubleidxdf-to-triple-idxdf"]], "metobs_toolkit.df_helpers.xs_save": [[40, "metobs-toolkit-df-helpers-xs-save"]], "metobs_toolkit.gap": [[41, "module-metobs_toolkit.gap"]], "metobs_toolkit.gap.Gap": [[42, "metobs-toolkit-gap-gap"]], "metobs_toolkit.gap.apply_debias_era5_gapfill": [[43, "metobs-toolkit-gap-apply-debias-era5-gapfill"]], "metobs_toolkit.gap.apply_interpolate_gaps": [[44, "metobs-toolkit-gap-apply-interpolate-gaps"]], "metobs_toolkit.gap.gaps_to_df": [[45, "metobs-toolkit-gap-gaps-to-df"]], "metobs_toolkit.gap.get_gaps_indx_in_obs_space": [[46, "metobs-toolkit-gap-get-gaps-indx-in-obs-space"]], "metobs_toolkit.gap.get_station_gaps": [[47, "metobs-toolkit-gap-get-station-gaps"]], "metobs_toolkit.gap.make_gapfill_df": [[48, "metobs-toolkit-gap-make-gapfill-df"]], "metobs_toolkit.gap.missing_timestamp_and_gap_check": [[49, "metobs-toolkit-gap-missing-timestamp-and-gap-check"]], "metobs_toolkit.gap.remove_gaps_from_obs": [[50, "metobs-toolkit-gap-remove-gaps-from-obs"]], "metobs_toolkit.gap.remove_gaps_from_outliers": [[51, "metobs-toolkit-gap-remove-gaps-from-outliers"]], "metobs_toolkit.gap_filling": [[52, "module-metobs_toolkit.gap_filling"]], "metobs_toolkit.gap_filling.create_leading_trailing_debias_periods": [[53, "metobs-toolkit-gap-filling-create-leading-trailing-debias-periods"]], "metobs_toolkit.gap_filling.get_sample_size": [[54, "metobs-toolkit-gap-filling-get-sample-size"]], "metobs_toolkit.gap_filling.get_time_specific_biases": [[55, "metobs-toolkit-gap-filling-get-time-specific-biases"]], "metobs_toolkit.gap_filling.interpolate_gap": [[56, "metobs-toolkit-gap-filling-interpolate-gap"]], "metobs_toolkit.gap_filling.make_era_bias_correction": [[57, "metobs-toolkit-gap-filling-make-era-bias-correction"]], "metobs_toolkit.geometry_functions": [[58, "module-metobs_toolkit.geometry_functions"]], "metobs_toolkit.geometry_functions.box_to_extent_list": [[59, "metobs-toolkit-geometry-functions-box-to-extent-list"]], "metobs_toolkit.geometry_functions.extent_list_to_box": [[60, "metobs-toolkit-geometry-functions-extent-list-to-box"]], "metobs_toolkit.geometry_functions.find_extend_of_geodf": [[61, "metobs-toolkit-geometry-functions-find-extend-of-geodf"]], "metobs_toolkit.geometry_functions.find_plot_extent": [[62, "metobs-toolkit-geometry-functions-find-plot-extent"]], "metobs_toolkit.geometry_functions.gpd_to_extent_box": [[63, "metobs-toolkit-geometry-functions-gpd-to-extent-box"]], "metobs_toolkit.landcover_functions": [[64, "module-metobs_toolkit.landcover_functions"]], "metobs_toolkit.landcover_functions.connect_to_gee": [[65, "metobs-toolkit-landcover-functions-connect-to-gee"]], "metobs_toolkit.landcover_functions.coordinates_available": [[66, "metobs-toolkit-landcover-functions-coordinates-available"]], "metobs_toolkit.landcover_functions.coords_to_geometry": [[67, "metobs-toolkit-landcover-functions-coords-to-geometry"]], "metobs_toolkit.landcover_functions.extract_buffer_frequencies": [[68, "metobs-toolkit-landcover-functions-extract-buffer-frequencies"]], "metobs_toolkit.landcover_functions.extract_pointvalues": [[69, "metobs-toolkit-landcover-functions-extract-pointvalues"]], "metobs_toolkit.landcover_functions.gee_extract_timeseries": [[70, "metobs-toolkit-landcover-functions-gee-extract-timeseries"]], "metobs_toolkit.landcover_functions.get_ee_obj": [[71, "metobs-toolkit-landcover-functions-get-ee-obj"]], "metobs_toolkit.landcover_functions.height_extractor": [[72, "metobs-toolkit-landcover-functions-height-extractor"]], "metobs_toolkit.landcover_functions.lc_fractions_extractor": [[73, "metobs-toolkit-landcover-functions-lc-fractions-extractor"]], "metobs_toolkit.landcover_functions.lcz_extractor": [[74, "metobs-toolkit-landcover-functions-lcz-extractor"]], "metobs_toolkit.missingobs": [[75, "module-metobs_toolkit.missingobs"]], "metobs_toolkit.missingobs.Missingob_collection": [[76, "metobs-toolkit-missingobs-missingob-collection"]], "metobs_toolkit.modeldata": [[77, "module-metobs_toolkit.modeldata"]], "metobs_toolkit.modeldata.Modeldata": [[78, "metobs-toolkit-modeldata-modeldata"]], "metobs_toolkit.obstype_modeldata": [[79, "module-metobs_toolkit.obstype_modeldata"]], "metobs_toolkit.obstype_modeldata.ModelObstype": [[80, "metobs-toolkit-obstype-modeldata-modelobstype"]], "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield": [[81, "metobs-toolkit-obstype-modeldata-modelobstype-vectorfield"]], "metobs_toolkit.obstype_modeldata.compute_amplitude": [[82, "metobs-toolkit-obstype-modeldata-compute-amplitude"]], "metobs_toolkit.obstype_modeldata.compute_angle": [[83, "metobs-toolkit-obstype-modeldata-compute-angle"]], "metobs_toolkit.obstypes": [[84, "module-metobs_toolkit.obstypes"]], "metobs_toolkit.obstypes.Obstype": [[85, "metobs-toolkit-obstypes-obstype"]], "metobs_toolkit.obstypes.expression_calculator": [[86, "metobs-toolkit-obstypes-expression-calculator"]], "metobs_toolkit.plotting_functions": [[87, "module-metobs_toolkit.plotting_functions"]], "metobs_toolkit.plotting_functions.add_stations_to_folium_map": [[88, "metobs-toolkit-plotting-functions-add-stations-to-folium-map"]], "metobs_toolkit.plotting_functions.correlation_scatter": [[89, "metobs-toolkit-plotting-functions-correlation-scatter"]], "metobs_toolkit.plotting_functions.cycle_plot": [[90, "metobs-toolkit-plotting-functions-cycle-plot"]], "metobs_toolkit.plotting_functions.folium_plot": [[91, "metobs-toolkit-plotting-functions-folium-plot"]], "metobs_toolkit.plotting_functions.geospatial_plot": [[92, "metobs-toolkit-plotting-functions-geospatial-plot"]], "metobs_toolkit.plotting_functions.heatmap_plot": [[93, "metobs-toolkit-plotting-functions-heatmap-plot"]], "metobs_toolkit.plotting_functions.make_cat_colormapper": [[94, "metobs-toolkit-plotting-functions-make-cat-colormapper"]], "metobs_toolkit.plotting_functions.make_folium_html_plot": [[95, "metobs-toolkit-plotting-functions-make-folium-html-plot"]], "metobs_toolkit.plotting_functions.map_obstype": [[96, "metobs-toolkit-plotting-functions-map-obstype"]], "metobs_toolkit.plotting_functions.model_timeseries_plot": [[97, "metobs-toolkit-plotting-functions-model-timeseries-plot"]], "metobs_toolkit.plotting_functions.qc_stats_pie": [[98, "metobs-toolkit-plotting-functions-qc-stats-pie"]], "metobs_toolkit.plotting_functions.timeseries_plot": [[99, "metobs-toolkit-plotting-functions-timeseries-plot"]], "metobs_toolkit.printing": [[100, "module-metobs_toolkit.printing"]], "metobs_toolkit.printing.print_dataset_info": [[101, "metobs-toolkit-printing-print-dataset-info"]], "metobs_toolkit.qc_checks": [[102, "module-metobs_toolkit.qc_checks"]], "metobs_toolkit.qc_checks.create_titanlib_points_dict": [[103, "metobs-toolkit-qc-checks-create-titanlib-points-dict"]], "metobs_toolkit.qc_checks.duplicate_timestamp_check": [[104, "metobs-toolkit-qc-checks-duplicate-timestamp-check"]], "metobs_toolkit.qc_checks.get_outliers_in_daterange": [[105, "metobs-toolkit-qc-checks-get-outliers-in-daterange"]], "metobs_toolkit.qc_checks.gross_value_check": [[106, "metobs-toolkit-qc-checks-gross-value-check"]], "metobs_toolkit.qc_checks.invalid_input_check": [[107, "metobs-toolkit-qc-checks-invalid-input-check"]], "metobs_toolkit.qc_checks.make_outlier_df_for_check": [[108, "metobs-toolkit-qc-checks-make-outlier-df-for-check"]], "metobs_toolkit.qc_checks.persistance_check": [[109, "metobs-toolkit-qc-checks-persistance-check"]], "metobs_toolkit.qc_checks.repetitions_check": [[110, "metobs-toolkit-qc-checks-repetitions-check"]], "metobs_toolkit.qc_checks.step_check": [[111, "metobs-toolkit-qc-checks-step-check"]], "metobs_toolkit.qc_checks.titan_buddy_check": [[112, "metobs-toolkit-qc-checks-titan-buddy-check"]], "metobs_toolkit.qc_checks.titan_sct_resistant_check": [[113, "metobs-toolkit-qc-checks-titan-sct-resistant-check"]], "metobs_toolkit.qc_checks.toolkit_buddy_check": [[114, "metobs-toolkit-qc-checks-toolkit-buddy-check"]], "metobs_toolkit.qc_checks.window_variation_check": [[115, "metobs-toolkit-qc-checks-window-variation-check"]], "metobs_toolkit.qc_statistics": [[116, "module-metobs_toolkit.qc_statistics"]], "metobs_toolkit.qc_statistics.get_freq_statistics": [[117, "metobs-toolkit-qc-statistics-get-freq-statistics"]], "metobs_toolkit.settings": [[118, "module-metobs_toolkit.settings"]], "metobs_toolkit.settings.Settings": [[119, "metobs-toolkit-settings-settings"]], "metobs_toolkit.station": [[120, "module-metobs_toolkit.station"]], "metobs_toolkit.station.Station": [[121, "metobs-toolkit-station-station"]], "metobs_toolkit.writing_files": [[122, "module-metobs_toolkit.writing_files"]], "metobs_toolkit.writing_files.write_dataset_to_csv": [[123, "metobs-toolkit-writing-files-write-dataset-to-csv"]], "Contributing": [[124, "contributing"]], "Types of Contributions": [[124, "types-of-contributions"]], "Feature Requests": [[124, "feature-requests"]], "Report Bugs": [[124, "report-bugs"]], "Fix Bugs": [[124, "fix-bugs"]], "Implement Features": [[124, "implement-features"]], "Write Documentation": [[124, "write-documentation"]], "Submit Feedback": [[124, "submit-feedback"]], "Get Started": [[124, "get-started"]], "Required software": [[124, "required-software"]], "Setup a developer environment": [[124, "setup-a-developer-environment"]], "Pull Request Guidelines": [[124, "pull-request-guidelines"]], "Versioning/Tagging": [[124, "versioning-tagging"]], "Support": [[124, "support"]], "Acknowledgement": [[124, "acknowledgement"]], "Demo example: Analysis": [[125, "Demo-example:-Analysis"]], "Creating an Analysis": [[125, "Creating-an-Analysis"]], "Analysis methods": [[125, "Analysis-methods"]], "Filtering data": [[125, "Filtering-data"]], "Diurnal cycle": [[125, "Diurnal-cycle"]], "Analysis exercise": [[125, "Analysis-exercise"]], "Demo example: Using a Dataset": [[126, "Demo-example:-Using-a-Dataset"]], "The Dataset": [[126, "The-Dataset"]], "Importing data": [[126, "Importing-data"]], "Inspecting the Data": [[126, "Inspecting-the-Data"]], "Inspecting a Station": [[126, "Inspecting-a-Station"]], "Making timeseries plots": [[126, "Making-timeseries-plots"]], "Resampling the time resolution": [[126, "Resampling-the-time-resolution"]], "Introduction exercise": [[126, "Introduction-exercise"]], "Demo example: filling gaps and missing observations": [[127, "Demo-example:-filling-gaps-and-missing-observations"]], "Missing observations and Gaps": [[127, "Missing-observations-and-Gaps"]], "Inspect missing observations": [[127, "Inspect-missing-observations"]], "Inspect gaps": [[127, "Inspect-gaps"]], "Outliers to gaps and missing observations": [[127, "Outliers-to-gaps-and-missing-observations"]], "Fill missing observations": [[127, "Fill-missing-observations"]], "Fill gaps": [[127, "Fill-gaps"]], "Filling gaps exercise": [[127, "Filling-gaps-exercise"]], "Demo example: Using a Google Earth engine": [[128, "Demo-example:-Using-a-Google-Earth-engine"]], "Create your Dataset": [[128, "Create-your-Dataset"]], "Extracting LCZ from GEE": [[128, "Extracting-LCZ-from-GEE"]], "Extracting other Geospatial information": [[128, "Extracting-other-Geospatial-information"]], "Extracting ERA5 timeseries": [[128, "Extracting-ERA5-timeseries"]], "GEE data transfer": [[128, "GEE-data-transfer"]], "Interactive plotting of a GEE dataset": [[128, "Interactive-plotting-of-a-GEE-dataset"]], "Examples": [[129, "examples"]], "Demo example: Applying Quality Control.": [[130, "Demo-example:-Applying-Quality-Control."]], "Quality control for missing/duplicated and invalid timestamps": [[130, "Quality-control-for-missing/duplicated-and-invalid-timestamps"]], "Quality control for bad observations": [[130, "Quality-control-for-bad-observations"]], "Quality control exercise": [[130, "Quality-control-exercise"]], "Working with specific observation types": [[131, "Working-with-specific-observation-types"]], "Default observation types": [[131, "Default-observation-types"]], "Creating and Updating observations": [[131, "Creating-and-Updating-observations"]], "Obstypes for Modeldata": [[131, "Obstypes-for-Modeldata"]], "Special observation types": [[131, "Special-observation-types"]], "2D-Vector fields": [[131, "2D-Vector-fields"]], "Using Google Earth Engine": [[132, "using-google-earth-engine"]], "Setup of a Google account": [[132, "setup-of-a-google-account"]], "Setup of a Google developers account": [[132, "setup-of-a-google-developers-account"]], "Setup a cloud project on your developer account": [[132, "setup-a-cloud-project-on-your-developer-account"]], "Enable API\u2019s on your project": [[132, "enable-api-s-on-your-project"]], "Test your GEE access": [[132, "test-your-gee-access"]], "Using the GUI": [[133, "using-the-gui"]], "Why a GUI": [[133, "why-a-gui"]], "How to launch the GUI": [[133, "how-to-launch-the-gui"]], "Welcome to MetObs-Toolkit\u2019s documentation!": [[134, "welcome-to-metobs-toolkit-s-documentation"]], "MetObs toolkit Documentation": [[134, "metobs-toolkit-documentation"]], "Metobs for developpers": [[134, "metobs-for-developpers"]], "Indices and tables": [[134, "indices-and-tables"]], "Introduction": [[135, "introduction"]], "How to install": [[135, "how-to-install"]], "How to use this toolkit": [[135, "how-to-use-this-toolkit"]], "Dataset()": [[135, "dataset"]], "Station()": [[135, "station"]], "Analysis()": [[135, "analysis"]], "Modeldata()": [[135, "modeldata"]], "Settings()": [[135, "settings"]], "Schematic overview": [[135, "schematic-overview"]], "JOSS publication": [[136, "joss-publication"]], "About JOSS": [[136, "about-joss"]], "JOSS paper": [[136, "joss-paper"]], "Summary": [[137, "summary"]], "Statement of need": [[137, "statement-of-need"]], "Technical implementation": [[137, "technical-implementation"]], "Acknowledgments": [[137, "acknowledgments"]], "References": [[137, "references"]], "JOSS publication figures creator": [[138, "JOSS-publication-figures-creator"]], "Creation of the Dataset": [[138, "Creation-of-the-Dataset"]], "Styling settings": [[138, "Styling-settings"]], "Timeseries for each station": [[138, "Timeseries-for-each-station"]], "Timeseries with quality control labels": [[138, "Timeseries-with-quality-control-labels"]], "Fill gaps and plot timeseries of Vlinder28": [[138, "Fill-gaps-and-plot-timeseries-of-Vlinder28"]], "Diurnal Analysis": [[138, "Diurnal-Analysis"]], "Interactive spatial": [[138, "Interactive-spatial"]], "Special topics": [[139, "special-topics"]], "Using irregular timestamp datasets": [[139, "using-irregular-timestamp-datasets"]], "Example": [[139, "example"]], "Creating a new observation type": [[139, "creating-a-new-observation-type"]], "Observation types for Datasets": [[139, "observation-types-for-datasets"]], "Observation types for (ERA5) Modeldata": [[139, "observation-types-for-era5-modeldata"]], "Mapping to the toolkit": [[140, "mapping-to-the-toolkit"]], "Toolkit Standards": [[140, "toolkit-standards"]], "Standard observation types": [[140, "id1"]], "Standard Metadata": [[140, "id2"]], "Data structures": [[140, "data-structures"]], "long-format example": [[140, "id3"]], "Wide-format example (temperature)": [[140, "id4"]], "Single-station-format example": [[140, "id5"]], "Metadata structures": [[140, "metadata-structures"]], "Metadata example": [[140, "id6"]], "Template creation": [[140, "template-creation"]]}, "indexentries": {"metobs_toolkit": [[2, "module-metobs_toolkit"]], "module": [[2, "module-metobs_toolkit"], [3, "module-metobs_toolkit.analysis"], [7, "module-metobs_toolkit.data_import"], [17, "module-metobs_toolkit.dataset"], [19, "module-metobs_toolkit.dataset_settings_updater"], [22, "module-metobs_toolkit.df_helpers"], [41, "module-metobs_toolkit.gap"], [52, "module-metobs_toolkit.gap_filling"], [58, "module-metobs_toolkit.geometry_functions"], [64, "module-metobs_toolkit.landcover_functions"], [75, "module-metobs_toolkit.missingobs"], [77, "module-metobs_toolkit.modeldata"], [79, "module-metobs_toolkit.obstype_modeldata"], [84, "module-metobs_toolkit.obstypes"], [87, "module-metobs_toolkit.plotting_functions"], [100, "module-metobs_toolkit.printing"], [102, "module-metobs_toolkit.qc_checks"], [116, "module-metobs_toolkit.qc_statistics"], [118, "module-metobs_toolkit.settings"], [120, "module-metobs_toolkit.station"], [122, "module-metobs_toolkit.writing_files"]], "metobs_toolkit.analysis": [[3, "module-metobs_toolkit.analysis"]], "analysis (class in metobs_toolkit.analysis)": [[4, "metobs_toolkit.analysis.Analysis"]], "aggregate_df() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.aggregate_df"]], "apply_filter() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.apply_filter"]], "get_aggregated_cycle_statistics() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.get_aggregated_cycle_statistics"]], "get_anual_statistics() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.get_anual_statistics"]], "get_diurnal_statistics() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.get_diurnal_statistics"]], "get_diurnal_statistics_with_reference() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.get_diurnal_statistics_with_reference"]], "get_lc_correlation_matrices() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.get_lc_correlation_matrices"]], "plot_correlation_heatmap() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.plot_correlation_heatmap"]], "plot_correlation_variation() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.plot_correlation_variation"]], "subset_period() (metobs_toolkit.analysis.analysis method)": [[4, "metobs_toolkit.analysis.Analysis.subset_period"]], "filter_data() (in module metobs_toolkit.analysis)": [[5, "metobs_toolkit.analysis.filter_data"]], "get_seasons() (in module metobs_toolkit.analysis)": [[6, "metobs_toolkit.analysis.get_seasons"]], "metobs_toolkit.data_import": [[7, "module-metobs_toolkit.data_import"]], "check_template_compatibility() (in module metobs_toolkit.data_import)": [[8, "metobs_toolkit.data_import.check_template_compatibility"]], "compress_dict() (in module metobs_toolkit.data_import)": [[9, "metobs_toolkit.data_import.compress_dict"]], "extract_options_from_template() (in module metobs_toolkit.data_import)": [[10, "metobs_toolkit.data_import.extract_options_from_template"]], "find_compatible_templatefor() (in module metobs_toolkit.data_import)": [[11, "metobs_toolkit.data_import.find_compatible_templatefor"]], "import_data_from_csv() (in module metobs_toolkit.data_import)": [[12, "metobs_toolkit.data_import.import_data_from_csv"]], "import_metadata_from_csv() (in module metobs_toolkit.data_import)": [[13, "metobs_toolkit.data_import.import_metadata_from_csv"]], "read_csv_template() (in module metobs_toolkit.data_import)": [[14, "metobs_toolkit.data_import.read_csv_template"]], "template_to_package_space() (in module metobs_toolkit.data_import)": [[15, "metobs_toolkit.data_import.template_to_package_space"]], "wide_to_long() (in module metobs_toolkit.data_import)": [[16, "metobs_toolkit.data_import.wide_to_long"]], "metobs_toolkit.dataset": [[17, "module-metobs_toolkit.dataset"]], "dataset (class in metobs_toolkit.dataset)": [[18, "metobs_toolkit.dataset.Dataset"]], "__add__() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.__add__"]], "add_new_observationtype() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.add_new_observationtype"]], "add_new_unit() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.add_new_unit"]], "apply_buddy_check() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.apply_buddy_check"]], "apply_quality_control() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.apply_quality_control"]], "apply_titan_buddy_check() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.apply_titan_buddy_check"]], "apply_titan_sct_resistant_check() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.apply_titan_sct_resistant_check"]], "coarsen_time_resolution() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.coarsen_time_resolution"]], "combine_all_to_obsspace() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.combine_all_to_obsspace"]], "fill_gaps_automatic() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.fill_gaps_automatic"]], "fill_gaps_era5() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.fill_gaps_era5"]], "fill_gaps_linear() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.fill_gaps_linear"]], "fill_missing_obs_linear() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.fill_missing_obs_linear"]], "get_altitude() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_altitude"]], "get_analysis() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_analysis"]], "get_gaps_df() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_gaps_df"]], "get_gaps_info() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_gaps_info"]], "get_info() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_info"]], "get_landcover() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_landcover"]], "get_lcz() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_lcz"]], "get_missing_obs_info() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_missing_obs_info"]], "get_modeldata() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_modeldata"]], "get_qc_stats() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_qc_stats"]], "get_station() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.get_station"]], "import_data_from_file() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.import_data_from_file"]], "import_dataset() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.import_dataset"]], "make_gee_plot() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.make_gee_plot"]], "make_geo_plot() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.make_geo_plot"]], "make_interactive_plot() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.make_interactive_plot"]], "make_plot() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.make_plot"]], "save_dataset() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.save_dataset"]], "show() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.show"]], "show_settings() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.show_settings"]], "sync_observations() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.sync_observations"]], "update_gaps_and_missing_from_outliers() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.update_gaps_and_missing_from_outliers"]], "update_outliersdf() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.update_outliersdf"]], "write_to_csv() (metobs_toolkit.dataset.dataset method)": [[18, "metobs_toolkit.dataset.Dataset.write_to_csv"]], "metobs_toolkit.dataset_settings_updater": [[19, "module-metobs_toolkit.dataset_settings_updater"]], "dataset (class in metobs_toolkit.dataset_settings_updater)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset"]], "__add__() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.__add__"]], "add_new_observationtype() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.add_new_observationtype"]], "add_new_unit() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.add_new_unit"]], "apply_buddy_check() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.apply_buddy_check"]], "apply_quality_control() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.apply_quality_control"]], "apply_titan_buddy_check() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.apply_titan_buddy_check"]], "apply_titan_sct_resistant_check() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.apply_titan_sct_resistant_check"]], "coarsen_time_resolution() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.coarsen_time_resolution"]], "combine_all_to_obsspace() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.combine_all_to_obsspace"]], "fill_gaps_automatic() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.fill_gaps_automatic"]], "fill_gaps_era5() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.fill_gaps_era5"]], "fill_gaps_linear() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.fill_gaps_linear"]], "fill_missing_obs_linear() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.fill_missing_obs_linear"]], "get_altitude() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_altitude"]], "get_analysis() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_analysis"]], "get_gaps_df() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_gaps_df"]], "get_gaps_info() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_gaps_info"]], "get_info() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_info"]], "get_landcover() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_landcover"]], "get_lcz() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_lcz"]], "get_missing_obs_info() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_missing_obs_info"]], "get_modeldata() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_modeldata"]], "get_qc_stats() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_qc_stats"]], "get_station() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.get_station"]], "import_data_from_file() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.import_data_from_file"]], "import_dataset() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.import_dataset"]], "make_gee_plot() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.make_gee_plot"]], "make_geo_plot() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.make_geo_plot"]], "make_interactive_plot() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.make_interactive_plot"]], "make_plot() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.make_plot"]], "save_dataset() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.save_dataset"]], "show() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.show"]], "show_settings() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.show_settings"]], "sync_observations() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.sync_observations"]], "update_default_name() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_default_name"]], "update_gap_and_missing_fill_settings() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_gap_and_missing_fill_settings"]], "update_gaps_and_missing_from_outliers() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_gaps_and_missing_from_outliers"]], "update_outliersdf() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_outliersdf"]], "update_qc_settings() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings"]], "update_settings() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_settings"]], "update_timezone() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_timezone"]], "update_titan_qc_settings() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.update_titan_qc_settings"]], "write_to_csv() (metobs_toolkit.dataset_settings_updater.dataset method)": [[20, "metobs_toolkit.dataset_settings_updater.Dataset.write_to_csv"]], "is_timedelta() (in module metobs_toolkit.dataset_settings_updater)": [[21, "metobs_toolkit.dataset_settings_updater.is_timedelta"]], "metobs_toolkit.df_helpers": [[22, "module-metobs_toolkit.df_helpers"]], "concat_save() (in module metobs_toolkit.df_helpers)": [[23, "metobs_toolkit.df_helpers.concat_save"]], "conv_applied_qc_to_df() (in module metobs_toolkit.df_helpers)": [[24, "metobs_toolkit.df_helpers.conv_applied_qc_to_df"]], "conv_tz_multiidxdf() (in module metobs_toolkit.df_helpers)": [[25, "metobs_toolkit.df_helpers.conv_tz_multiidxdf"]], "datetime_subsetting() (in module metobs_toolkit.df_helpers)": [[26, "metobs_toolkit.df_helpers.datetime_subsetting"]], "fmt_datetime_argument() (in module metobs_toolkit.df_helpers)": [[27, "metobs_toolkit.df_helpers.fmt_datetime_argument"]], "format_outliersdf_to_doubleidx() (in module metobs_toolkit.df_helpers)": [[28, "metobs_toolkit.df_helpers.format_outliersdf_to_doubleidx"]], "get_freqency_series() (in module metobs_toolkit.df_helpers)": [[29, "metobs_toolkit.df_helpers.get_freqency_series"]], "get_likely_frequency() (in module metobs_toolkit.df_helpers)": [[30, "metobs_toolkit.df_helpers.get_likely_frequency"]], "init_multiindex() (in module metobs_toolkit.df_helpers)": [[31, "metobs_toolkit.df_helpers.init_multiindex"]], "init_multiindexdf() (in module metobs_toolkit.df_helpers)": [[32, "metobs_toolkit.df_helpers.init_multiindexdf"]], "init_triple_multiindex() (in module metobs_toolkit.df_helpers)": [[33, "metobs_toolkit.df_helpers.init_triple_multiindex"]], "init_triple_multiindexdf() (in module metobs_toolkit.df_helpers)": [[34, "metobs_toolkit.df_helpers.init_triple_multiindexdf"]], "metadf_to_gdf() (in module metobs_toolkit.df_helpers)": [[35, "metobs_toolkit.df_helpers.metadf_to_gdf"]], "multiindexdf_datetime_subsetting() (in module metobs_toolkit.df_helpers)": [[36, "metobs_toolkit.df_helpers.multiindexdf_datetime_subsetting"]], "remove_outliers_from_obs() (in module metobs_toolkit.df_helpers)": [[37, "metobs_toolkit.df_helpers.remove_outliers_from_obs"]], "subset_stations() (in module metobs_toolkit.df_helpers)": [[38, "metobs_toolkit.df_helpers.subset_stations"]], "value_labeled_doubleidxdf_to_triple_idxdf() (in module metobs_toolkit.df_helpers)": [[39, "metobs_toolkit.df_helpers.value_labeled_doubleidxdf_to_triple_idxdf"]], "xs_save() (in module metobs_toolkit.df_helpers)": [[40, "metobs_toolkit.df_helpers.xs_save"]], "metobs_toolkit.gap": [[41, "module-metobs_toolkit.gap"]], "gap (class in metobs_toolkit.gap)": [[42, "metobs_toolkit.gap.Gap"]], "apply_interpolate_gap() (metobs_toolkit.gap.gap method)": [[42, "metobs_toolkit.gap.Gap.apply_interpolate_gap"]], "get_info() (metobs_toolkit.gap.gap method)": [[42, "metobs_toolkit.gap.Gap.get_info"]], "to_df() (metobs_toolkit.gap.gap method)": [[42, "metobs_toolkit.gap.Gap.to_df"]], "update_gaps_indx_in_obs_space() (metobs_toolkit.gap.gap method)": [[42, "metobs_toolkit.gap.Gap.update_gaps_indx_in_obs_space"]], "update_leading_trailing_obs() (metobs_toolkit.gap.gap method)": [[42, "metobs_toolkit.gap.Gap.update_leading_trailing_obs"]], "apply_debias_era5_gapfill() (in module metobs_toolkit.gap)": [[43, "metobs_toolkit.gap.apply_debias_era5_gapfill"]], "apply_interpolate_gaps() (in module metobs_toolkit.gap)": [[44, "metobs_toolkit.gap.apply_interpolate_gaps"]], "gaps_to_df() (in module metobs_toolkit.gap)": [[45, "metobs_toolkit.gap.gaps_to_df"]], "get_gaps_indx_in_obs_space() (in module metobs_toolkit.gap)": [[46, "metobs_toolkit.gap.get_gaps_indx_in_obs_space"]], "get_station_gaps() (in module metobs_toolkit.gap)": [[47, "metobs_toolkit.gap.get_station_gaps"]], "make_gapfill_df() (in module metobs_toolkit.gap)": [[48, "metobs_toolkit.gap.make_gapfill_df"]], "missing_timestamp_and_gap_check() (in module metobs_toolkit.gap)": [[49, "metobs_toolkit.gap.missing_timestamp_and_gap_check"]], "remove_gaps_from_obs() (in module metobs_toolkit.gap)": [[50, "metobs_toolkit.gap.remove_gaps_from_obs"]], "remove_gaps_from_outliers() (in module metobs_toolkit.gap)": [[51, "metobs_toolkit.gap.remove_gaps_from_outliers"]], "metobs_toolkit.gap_filling": [[52, "module-metobs_toolkit.gap_filling"]], "create_leading_trailing_debias_periods() (in module metobs_toolkit.gap_filling)": [[53, "metobs_toolkit.gap_filling.create_leading_trailing_debias_periods"]], "get_sample_size() (in module metobs_toolkit.gap_filling)": [[54, "metobs_toolkit.gap_filling.get_sample_size"]], "get_time_specific_biases() (in module metobs_toolkit.gap_filling)": [[55, "metobs_toolkit.gap_filling.get_time_specific_biases"]], "interpolate_gap() (in module metobs_toolkit.gap_filling)": [[56, "metobs_toolkit.gap_filling.interpolate_gap"]], "make_era_bias_correction() (in module metobs_toolkit.gap_filling)": [[57, "metobs_toolkit.gap_filling.make_era_bias_correction"]], "metobs_toolkit.geometry_functions": [[58, "module-metobs_toolkit.geometry_functions"]], "box_to_extent_list() (in module metobs_toolkit.geometry_functions)": [[59, "metobs_toolkit.geometry_functions.box_to_extent_list"]], "extent_list_to_box() (in module metobs_toolkit.geometry_functions)": [[60, "metobs_toolkit.geometry_functions.extent_list_to_box"]], "find_extend_of_geodf() (in module metobs_toolkit.geometry_functions)": [[61, "metobs_toolkit.geometry_functions.find_extend_of_geodf"]], "find_plot_extent() (in module metobs_toolkit.geometry_functions)": [[62, "metobs_toolkit.geometry_functions.find_plot_extent"]], "gpd_to_extent_box() (in module metobs_toolkit.geometry_functions)": [[63, "metobs_toolkit.geometry_functions.gpd_to_extent_box"]], "metobs_toolkit.landcover_functions": [[64, "module-metobs_toolkit.landcover_functions"]], "connect_to_gee() (in module metobs_toolkit.landcover_functions)": [[65, "metobs_toolkit.landcover_functions.connect_to_gee"]], "coordinates_available() (in module metobs_toolkit.landcover_functions)": [[66, "metobs_toolkit.landcover_functions.coordinates_available"]], "coords_to_geometry() (in module metobs_toolkit.landcover_functions)": [[67, "metobs_toolkit.landcover_functions.coords_to_geometry"]], "extract_buffer_frequencies() (in module metobs_toolkit.landcover_functions)": [[68, "metobs_toolkit.landcover_functions.extract_buffer_frequencies"]], "extract_pointvalues() (in module metobs_toolkit.landcover_functions)": [[69, "metobs_toolkit.landcover_functions.extract_pointvalues"]], "gee_extract_timeseries() (in module metobs_toolkit.landcover_functions)": [[70, "metobs_toolkit.landcover_functions.gee_extract_timeseries"]], "get_ee_obj() (in module metobs_toolkit.landcover_functions)": [[71, "metobs_toolkit.landcover_functions.get_ee_obj"]], "height_extractor() (in module metobs_toolkit.landcover_functions)": [[72, "metobs_toolkit.landcover_functions.height_extractor"]], "lc_fractions_extractor() (in module metobs_toolkit.landcover_functions)": [[73, "metobs_toolkit.landcover_functions.lc_fractions_extractor"]], "lcz_extractor() (in module metobs_toolkit.landcover_functions)": [[74, "metobs_toolkit.landcover_functions.lcz_extractor"]], "metobs_toolkit.missingobs": [[75, "module-metobs_toolkit.missingobs"]], "missingob_collection (class in metobs_toolkit.missingobs)": [[76, "metobs_toolkit.missingobs.Missingob_collection"]], "__add__() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.__add__"]], "get_info() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.get_info"]], "get_missing_indx_in_obs_space() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.get_missing_indx_in_obs_space"]], "get_station_missingobs() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.get_station_missingobs"]], "interpolate_missing() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.interpolate_missing"]], "remove_missing_from_obs() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.remove_missing_from_obs"]], "remove_missing_from_outliers() (metobs_toolkit.missingobs.missingob_collection method)": [[76, "metobs_toolkit.missingobs.Missingob_collection.remove_missing_from_outliers"]], "metobs_toolkit.modeldata": [[77, "module-metobs_toolkit.modeldata"]], "modeldata (class in metobs_toolkit.modeldata)": [[78, "metobs_toolkit.modeldata.Modeldata"]], "add_gee_dataset() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.add_gee_dataset"]], "add_obstype() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.add_obstype"]], "convert_units_to_tlk() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.convert_units_to_tlk"]], "exploid_2d_vector_field() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.exploid_2d_vector_field"]], "get_era5_data() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.get_ERA5_data"]], "get_gee_dataset_data() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.get_gee_dataset_data"]], "get_info() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.get_info"]], "import_modeldata() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.import_modeldata"]], "interpolate_modeldata() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.interpolate_modeldata"]], "list_gee_datasets() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.list_gee_datasets"]], "make_plot() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.make_plot"]], "save_modeldata() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.save_modeldata"]], "set_model_from_csv() (metobs_toolkit.modeldata.modeldata method)": [[78, "metobs_toolkit.modeldata.Modeldata.set_model_from_csv"]], "metobs_toolkit.obstype_modeldata": [[79, "module-metobs_toolkit.obstype_modeldata"]], "modelobstype (class in metobs_toolkit.obstype_modeldata)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype"]], "add_new_band() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.add_new_band"]], "add_unit() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.add_unit"]], "convert_to_standard_units() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.convert_to_standard_units"]], "get_all_units() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_all_units"]], "get_bandname() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_bandname"]], "get_bandname_mapper() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_bandname_mapper"]], "get_description() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_description"]], "get_info() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_info"]], "get_mapped_datasets() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_mapped_datasets"]], "get_modelunit() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_modelunit"]], "get_orig_name() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_orig_name"]], "get_plot_y_label() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_plot_y_label"]], "get_standard_unit() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.get_standard_unit"]], "has_mapped_band() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.has_mapped_band"]], "set_description() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.set_description"]], "set_original_name() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.set_original_name"]], "set_original_unit() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.set_original_unit"]], "test_if_unit_is_known() (metobs_toolkit.obstype_modeldata.modelobstype method)": [[80, "metobs_toolkit.obstype_modeldata.ModelObstype.test_if_unit_is_known"]], "modelobstype_vectorfield (class in metobs_toolkit.obstype_modeldata)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield"]], "add_new_band() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.add_new_band"]], "add_unit() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.add_unit"]], "convert_to_standard_units() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.convert_to_standard_units"]], "get_all_units() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_all_units"]], "get_bandname_mapper() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_bandname_mapper"]], "get_description() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_description"]], "get_info() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_info"]], "get_mapped_datasets() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_mapped_datasets"]], "get_modelunit() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_modelunit"]], "get_orig_name() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_orig_name"]], "get_plot_y_label() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_plot_y_label"]], "get_standard_unit() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.get_standard_unit"]], "has_mapped_band() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.has_mapped_band"]], "set_description() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.set_description"]], "set_original_name() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.set_original_name"]], "set_original_unit() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.set_original_unit"]], "test_if_unit_is_known() (metobs_toolkit.obstype_modeldata.modelobstype_vectorfield method)": [[81, "metobs_toolkit.obstype_modeldata.ModelObstype_Vectorfield.test_if_unit_is_known"]], "compute_amplitude() (in module metobs_toolkit.obstype_modeldata)": [[82, "metobs_toolkit.obstype_modeldata.compute_amplitude"]], "compute_angle() (in module metobs_toolkit.obstype_modeldata)": [[83, "metobs_toolkit.obstype_modeldata.compute_angle"]], "metobs_toolkit.obstypes": [[84, "module-metobs_toolkit.obstypes"]], "obstype (class in metobs_toolkit.obstypes)": [[85, "metobs_toolkit.obstypes.Obstype"]], "add_unit() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.add_unit"]], "convert_to_standard_units() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.convert_to_standard_units"]], "get_all_units() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.get_all_units"]], "get_description() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.get_description"]], "get_info() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.get_info"]], "get_orig_name() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.get_orig_name"]], "get_plot_y_label() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.get_plot_y_label"]], "get_standard_unit() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.get_standard_unit"]], "set_description() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.set_description"]], "set_original_name() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.set_original_name"]], "set_original_unit() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.set_original_unit"]], "test_if_unit_is_known() (metobs_toolkit.obstypes.obstype method)": [[85, "metobs_toolkit.obstypes.Obstype.test_if_unit_is_known"]], "expression_calculator() (in module metobs_toolkit.obstypes)": [[86, "metobs_toolkit.obstypes.expression_calculator"]], "metobs_toolkit.plotting_functions": [[87, "module-metobs_toolkit.plotting_functions"]], "add_stations_to_folium_map() (in module metobs_toolkit.plotting_functions)": [[88, "metobs_toolkit.plotting_functions.add_stations_to_folium_map"]], "correlation_scatter() (in module metobs_toolkit.plotting_functions)": [[89, "metobs_toolkit.plotting_functions.correlation_scatter"]], "cycle_plot() (in module metobs_toolkit.plotting_functions)": [[90, "metobs_toolkit.plotting_functions.cycle_plot"]], "folium_plot() (in module metobs_toolkit.plotting_functions)": [[91, "metobs_toolkit.plotting_functions.folium_plot"]], "geospatial_plot() (in module metobs_toolkit.plotting_functions)": [[92, "metobs_toolkit.plotting_functions.geospatial_plot"]], "heatmap_plot() (in module metobs_toolkit.plotting_functions)": [[93, "metobs_toolkit.plotting_functions.heatmap_plot"]], "make_cat_colormapper() (in module metobs_toolkit.plotting_functions)": [[94, "metobs_toolkit.plotting_functions.make_cat_colormapper"]], "make_folium_html_plot() (in module metobs_toolkit.plotting_functions)": [[95, "metobs_toolkit.plotting_functions.make_folium_html_plot"]], "map_obstype() (in module metobs_toolkit.plotting_functions)": [[96, "metobs_toolkit.plotting_functions.map_obstype"]], "model_timeseries_plot() (in module metobs_toolkit.plotting_functions)": [[97, "metobs_toolkit.plotting_functions.model_timeseries_plot"]], "qc_stats_pie() (in module metobs_toolkit.plotting_functions)": [[98, "metobs_toolkit.plotting_functions.qc_stats_pie"]], "timeseries_plot() (in module metobs_toolkit.plotting_functions)": [[99, "metobs_toolkit.plotting_functions.timeseries_plot"]], "metobs_toolkit.printing": [[100, "module-metobs_toolkit.printing"]], "print_dataset_info() (in module metobs_toolkit.printing)": [[101, "metobs_toolkit.printing.print_dataset_info"]], "metobs_toolkit.qc_checks": [[102, "module-metobs_toolkit.qc_checks"]], "create_titanlib_points_dict() (in module metobs_toolkit.qc_checks)": [[103, "metobs_toolkit.qc_checks.create_titanlib_points_dict"]], "duplicate_timestamp_check() (in module metobs_toolkit.qc_checks)": [[104, "metobs_toolkit.qc_checks.duplicate_timestamp_check"]], "get_outliers_in_daterange() (in module metobs_toolkit.qc_checks)": [[105, "metobs_toolkit.qc_checks.get_outliers_in_daterange"]], "gross_value_check() (in module metobs_toolkit.qc_checks)": [[106, "metobs_toolkit.qc_checks.gross_value_check"]], "invalid_input_check() (in module metobs_toolkit.qc_checks)": [[107, "metobs_toolkit.qc_checks.invalid_input_check"]], "make_outlier_df_for_check() (in module metobs_toolkit.qc_checks)": [[108, "metobs_toolkit.qc_checks.make_outlier_df_for_check"]], "persistance_check() (in module metobs_toolkit.qc_checks)": [[109, "metobs_toolkit.qc_checks.persistance_check"]], "repetitions_check() (in module metobs_toolkit.qc_checks)": [[110, "metobs_toolkit.qc_checks.repetitions_check"]], "step_check() (in module metobs_toolkit.qc_checks)": [[111, "metobs_toolkit.qc_checks.step_check"]], "titan_buddy_check() (in module metobs_toolkit.qc_checks)": [[112, "metobs_toolkit.qc_checks.titan_buddy_check"]], "titan_sct_resistant_check() (in module metobs_toolkit.qc_checks)": [[113, "metobs_toolkit.qc_checks.titan_sct_resistant_check"]], "toolkit_buddy_check() (in module metobs_toolkit.qc_checks)": [[114, "metobs_toolkit.qc_checks.toolkit_buddy_check"]], "window_variation_check() (in module metobs_toolkit.qc_checks)": [[115, "metobs_toolkit.qc_checks.window_variation_check"]], "metobs_toolkit.qc_statistics": [[116, "module-metobs_toolkit.qc_statistics"]], "get_freq_statistics() (in module metobs_toolkit.qc_statistics)": [[117, "metobs_toolkit.qc_statistics.get_freq_statistics"]], "metobs_toolkit.settings": [[118, "module-metobs_toolkit.settings"]], "settings (class in metobs_toolkit.settings)": [[119, "metobs_toolkit.settings.Settings"]], "copy_template_csv_files() (metobs_toolkit.settings.settings method)": [[119, "metobs_toolkit.settings.Settings.copy_template_csv_files"]], "show() (metobs_toolkit.settings.settings method)": [[119, "metobs_toolkit.settings.Settings.show"]], "update_io() (metobs_toolkit.settings.settings method)": [[119, "metobs_toolkit.settings.Settings.update_IO"]], "update_timezone() (metobs_toolkit.settings.settings method)": [[119, "metobs_toolkit.settings.Settings.update_timezone"]], "metobs_toolkit.station": [[120, "module-metobs_toolkit.station"]], "station (class in metobs_toolkit.station)": [[121, "metobs_toolkit.station.Station"]], "__add__() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.__add__"]], "add_new_observationtype() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.add_new_observationtype"]], "add_new_unit() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.add_new_unit"]], "apply_buddy_check() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.apply_buddy_check"]], "apply_quality_control() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.apply_quality_control"]], "apply_titan_buddy_check() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.apply_titan_buddy_check"]], "apply_titan_sct_resistant_check() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.apply_titan_sct_resistant_check"]], "coarsen_time_resolution() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.coarsen_time_resolution"]], "combine_all_to_obsspace() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.combine_all_to_obsspace"]], "fill_gaps_automatic() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.fill_gaps_automatic"]], "fill_gaps_era5() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.fill_gaps_era5"]], "fill_gaps_linear() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.fill_gaps_linear"]], "fill_missing_obs_linear() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.fill_missing_obs_linear"]], "get_altitude() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_altitude"]], "get_analysis() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_analysis"]], "get_gaps_df() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_gaps_df"]], "get_gaps_info() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_gaps_info"]], "get_info() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_info"]], "get_landcover() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_landcover"]], "get_lcz() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_lcz"]], "get_missing_obs_info() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_missing_obs_info"]], "get_modeldata() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_modeldata"]], "get_qc_stats() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_qc_stats"]], "get_station() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.get_station"]], "import_data_from_file() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.import_data_from_file"]], "import_dataset() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.import_dataset"]], "make_gee_plot() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.make_gee_plot"]], "make_geo_plot() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.make_geo_plot"]], "make_interactive_plot() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.make_interactive_plot"]], "make_plot() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.make_plot"]], "save_dataset() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.save_dataset"]], "setup_metadata_dtyes() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.setup_metadata_dtyes"]], "show() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.show"]], "show_settings() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.show_settings"]], "sync_observations() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.sync_observations"]], "update_gaps_and_missing_from_outliers() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.update_gaps_and_missing_from_outliers"]], "update_outliersdf() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.update_outliersdf"]], "write_to_csv() (metobs_toolkit.station.station method)": [[121, "metobs_toolkit.station.Station.write_to_csv"]], "metobs_toolkit.writing_files": [[122, "module-metobs_toolkit.writing_files"]], "write_dataset_to_csv() (in module metobs_toolkit.writing_files)": [[123, "metobs_toolkit.writing_files.write_dataset_to_csv"]]}}) diff --git a/docs/_build/special_topics.html b/docs/_build/special_topics.html new file mode 100644 index 00000000..f7d4265d --- /dev/null +++ b/docs/_build/special_topics.html @@ -0,0 +1,325 @@ + + + + + + + Special topics — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Special topics

+
+

Using irregular timestamp datasets

+

Some datasets have irregular time frequencies of the observations. These datasets +come with some extra challenges. Here is some information on how to deal with them.

+

A common problem that can arise is that most observations are not present and +that a lot of missing observations (and gaps) are introduced. This is because +the toolkit assumes that each station has observations at a constant frequency. So the toolkit expects +perfectly regular timestamp series. The toolkit will hence ignore observations +that are not on the frequency, so observations get lost. Also, it looks for observations +on perfectly regular time intervals, so when a timestamp is not present, it is assumed to be missing.

+

To avoid these problems you can synchronize your observations. Synchronizing will +convert your irregular dataset to a regular dataset and an easy origin is chosen if possible. +(The origin is the first timestamp of your dataset.) Converting your dataset to a regular dataset is performed +by shifting the timestamp of an observation. For example, if a frequency of 5 minutes is assumed and the observation +has a timestamp at 54 minutes and 47 seconds, the timestamp is shifted to 55 minutes. A certain +maximal threshold needs to be set to avoid observations being shifted too much. This threshold is +called the tolerance and it indicates what the maximal time-translation error can be for one +observation timestamp.

+

Synchronizing your observations can be performed with he sync_observations() +method. As an argument of this function you must provide a tolerance.

+
+

Example

+

Let’s take an example dataset with Netatmo(*) data. These data are known for having irregular +timestamps. On average the time resolution is 5 minutes. In the data file, +we can see that there are 4320 observational records. However, when we import it +into the toolkit, only 87 observational records remain:

+

(*) Netatmo is a commercial company that sells automatic weather stations +for personal use.

+
#code illustration
+
+#initialize dataset
+your_dataset = metobs_toolkit.Dataset()
+
+#specify paths
+dataset.update_settings(
+                        input_data_file=' .. path to netatmo data ..',
+                        data_template_file=' .. template file .. ',
+                        )
+#import the data
+dataset.import_data_from_file()
+
+print(dataset)
+
+Dataset instance containing:
+     *1 stations
+     *['temp', 'humidity'] observation types
+     *87 observation records
+     *0 records labeled as outliers
+     *85 gaps
+     *0 missing observations
+     *records range: 2021-02-27 08:56:22+00:00 --> 2021-03-13 18:45:56+00:00 (total duration:  14 days 09:49:34)
+
+
+

The toolkit assumes a certain value for the frequency for each station. We can find this in the .metadf attribute:

+
print(dataset.metadf['dataset_resolution'])
+
+name
+netatmo_station   0 days 00:05:00
+Name: dataset_resolution, dtype: timedelta64[ns]
+
+
+

We can synchronize the dataset using this code example:

+
# Code illustration
+
+# Initialize dataset
+your_dataset = metobs_toolkit.Dataset()
+
+# Specify paths
+dataset.update_settings(
+                        input_data_file=' .. path to netatmo data ..',
+                        data_template_file=' .. template file .. ',
+                        )
+# Import the data
+dataset.import_data_from_file(**testdata[use_dataset]['kwargs'])
+
+# Syncronize the data with a tolerance of 3 minutes
+dataset.sync_observations(tollerance='3T')
+
+print(dataset)
+
+Dataset instance containing:
+     *1 stations
+     *['temp', 'humidity'] observation types
+     *4059 observation records
+     *938 records labeled as outliers
+     *0 gaps
+     *92 missing observations
+     *records range: 2021-02-27 08:55:00+00:00 --> 2021-03-13 18:45:00+00:00 (total duration:  14 days 09:50:00)
+
+
+# Note: the frequency is not changed
+print(dataset.metadf['dataset_resolution'])
+
+name
+netatmo_station   0 days 00:05:00
+Name: dataset_resolution, dtype: timedelta64[ns]
+
+
+

The sync_observations() method can also +be used to synchronize the time series of multiple stations. In that case, the method works by trying to find stations with similar +resolutions, finding an origin that works for all stations in this group, and creating a regular time series.

+
+
+
+

Creating a new observation type

+
+

Observation types for Datasets

+

The toolkit comes with a set of predefined observation types. Each observation type has a standard-toolkit-unit, +this is the unit the toolkit will store and display the values.

+

An overview can be found on this page.

+

Each observation type is represented by an instance of the Obstype class.

+

As an example, here is the defenition of the temperature observation type:

+
temperature = Obstype(obsname='temp', #The name of the observation type
+                      std_unit= 'Celsius', #The standard unit
+                      description="2m - temperature", #A more detailed description (optional)
+                      unit_aliases={
+                         # Common units and a list of aliases for them.
+                          'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'],
+                          'Kelvin': ['K', 'kelvin'],
+                          'Farenheit': ['farenheit']},
+                         # Conversion schemes for common units to the standard unit.
+                      unit_conversions={
+                          'Kelvin': ["x - 273.15"], #result is in tlk_std_units (aka Celcius)
+                          'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write  = (x-32)/1.8},
+                      )
+
+
+

Similar as this example a user can create a new observation type and add it to a Dataset, +using the add_new_observationtype() method.

+
import metobs_toolkit
+
+#create an new observationtype
+wind_component_east = metobs_toolkit.Obstype(
+                      obsname='wind_u_comp', #The name of the observation type
+                      std_unit= 'm/s', #The standard unit
+                      description="2m - u component of the wind (5min averages)", #A more detailed description (optional)
+                      unit_aliases={
+                         # Common units and a list of aliases for them.
+                          'm/s': ['meter/s'],
+                         # Conversion schemes for common units to the standard unit.
+                      unit_conversions={'km/s': ["x / 3.6"]} #result is in tlk_std_units (aka m/s)
+                      )
+
+#add your observation type to a dataset
+your_dataset = metobs_toolkit.Dataset()
+your_dataset.add_new_observationtype(Obstype=wind_component_east)
+
+# Now you can import a datafile with wind_u_comp data!
+
+
+

If you want to add a new unit to an existing observation type you can do so by +using the add_new_unit() method.

+
+
+

Observation types for (ERA5) Modeldata

+

Modeldata objects also holds a similar set of observation types. But in addition +to the observation types stored in the Dataset, extra information is stored +on where which (ERA5) band and unit the observation type represents. Here is an +example on how to create a new observation type for a Modeldata instance.

+
import metobs_toolkit
+
+#create an new observationtype
+wind_component_east = metobs_toolkit.Obstype(
+                      obsname='wind_u_comp', #The name of the observation type
+                      std_unit= 'm/s', #The standard unit
+                      description="10m - east component of the wind ", #A more detailed description (optional)
+                      unit_aliases={
+                         # Common units and a list of aliases for them.
+                          'm/s': ['meter/s'],
+                         # Conversion schemes for common units to the standard unit.
+                      unit_conversions={'km/s': ["x / 3.6"]} #result is in tlk_std_units (aka m/s)
+                      )
+# create a modeldata instance
+model_data = metobs_toolkit.Modeldata("ERA5_hourly")
+
+# add new obstype to model_data
+model_data.add_obstype(Obstype=wind_component_east,
+                       bandname='u_component_of_wind_10m', #See: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands
+                       band_units='m/s',
+                       )
+
+# Collect the U-wind component for your stations:
+model_data = your_dataset.get_modeldata(modeldata=model_data,
+                                        obstype = 'wind_u_comp')
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_build/template_mapping.html b/docs/_build/template_mapping.html new file mode 100644 index 00000000..3b5461c9 --- /dev/null +++ b/docs/_build/template_mapping.html @@ -0,0 +1,403 @@ + + + + + + + Mapping to the toolkit — metobs_toolkit 0.0.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Mapping to the toolkit

+

The MetObs-toolkit uses standard names and formats for your data. To use the toolkit, +your observational data must be converted to the toolkit standards this is referred to as mapping.

+

To specify how the mapping must be done a template is used. This template contains +all the information on how to convert your tabular data to the toolkit standards. +Since the structure of data files differs for different networks, this template is +unique for each data file. A template is saved as a tabular .csv file to reuse and share them.

+

On this page, you can find information on how to construct a template.

+
+

Toolkit Standards

+

The toolkit has standard names for observation types and metadata. Here these standards are presented and described.

+ + +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Standard observation types

Standard name

Toolkit description

Type

temp

temperature

numeric

humidity

Relative humidity

numeric

precip

precipitation intensity

numeric

precip_sum

accumulated precipitation

numeric

pressure

air pressure (measured)

numeric

pressure_at_sea_level

air pressure (corrected to sea level)

numeric

wind_speed

wind speed

numeric

wind_gust

wind gust

numeric

wind_direction

wind direction as ° from the north, clock-wise

numeric

radiation_temp

radiation temperature (black globe observations)

numeric

+ + +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Standard Metadata

Standard name

Toolkit description

Type

name

the name of the stations (must be unique for each station)

string

lat

the latitude of the station

numeric

lon

the longitude of the station

numeric

location

location (the city/region of the stations) (OPTIONAL)

string

call_name

call_name (an informal name of the stations) (OPTIONAL)

string

network

network (the name of the network the stations belong to) (OPTIONAL)

string

+

In the template, you map your observations and metadata to one of these standards. What is not mapped, will not be used in the toolkit.

+
+
+

Data structures

+

To make a template you must be aware of which format your data is in. The toolkit can handle the following data structures:

+
+
long-format

Observations are stacked in rows per station. One column represents the station names.

+ + ++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
long-format example

timestamp

2mT-passive

2m-rel-hum

ID

2022-06-07 13:20:00

16.4

77.3

station_A

2022-06-07 13:30:00

16.7

75.6

station_A

2022-06-07 13:20:00

18.3

68.9

station_B

2022-06-07 13:30:00

18.6

71.9

station_B

+
+
Wide-format

Columns represent different stations. The data represents one observation type.

+ + +++++ + + + + + + + + + + + + + + + + +
Wide-format example (temperature)

timestamp

station_A

station_B

2022-06-07 13:20:00

16.4

18.3

2022-06-07 13:30:00

16.7

18.6

+
+
Single-station-format

The same as a long format but without a column indicating the station names. +Be aware that the toolkit interprets it as observations coming from one station.

+ + +++++ + + + + + + + + + + + + + + + + + + + + + + + + +
Single-station-format example

timestamp

2mT-passive

2m-rel-hum

2022-06-07 13:20:00

16.4

77.3

2022-06-07 13:30:00

16.7

75.6

2022-06-07 13:40:00

17.2

77.0

2022-06-07 13:50:00

17.2

76.9

+
+
+
+
+

Metadata structures

+

The metadata must be in a Wide-format. Here an example

+ + ++++++ + + + + + + + + + + + + + + + + + + + +
Metadata example

ID

Northening

Eastening

Networkname

station_A

51.3664

4.67785

demo-network

station_B

51.6752

5.1332

demo-network

+
+
+

Template creation

+

Once you have converted your tabular data files to either long-, wide-, or single-station-format, and saved them as a .csv file, a template can be made.

+
+

Note

+

If you want to use a metadata file, make sure it is converted to a wide-format and saved as a .csv file.

+
+

The fastest and simplest way to make a template is by using the metobs_toolkit.build_template_prompt() function.

+
import metobs_toolkit
+
+#create a template
+metobs_toolkit.build_template_prompt()
+
+
+

This function will prompt questions and build a template that matches your data file (and metadata) file. +The template.csv file will be stored at a location of your choice.

+

To use this template, feed the path to the template.csv file to the data_template_file (and metadata_template_file) +arguments of the update_settings() method.

+
+

Note

+

When the prompt ask’s if you need further help, and you type yes, some more questions are prompted. +Once all information is given to the prompt, it will print out a piece of code that you have to run to load your data into the toolkit.

+
+
+
+ + +
+
+ +
+
+
+
+ + + + diff --git a/docs/_templates/custom-module-template.rst b/docs/_templates/custom-module-template.rst index 0ef7378f..d066d0e4 100644 --- a/docs/_templates/custom-module-template.rst +++ b/docs/_templates/custom-module-template.rst @@ -64,4 +64,3 @@ {%- endfor %} {% endif %} {% endblock %} - diff --git a/docs/build_doc b/docs/build_doc index d78b7d5b..c44f42dd 100755 --- a/docs/build_doc +++ b/docs/build_doc @@ -16,6 +16,3 @@ cd .. sphinx-build -a -E -v docs/ docs/_build/ cd docs - - - diff --git a/docs/conf.py b/docs/conf.py index eb817c1b..35fe3ccd 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -37,6 +37,10 @@ pass print(sys.path) +#%% +logofile = os.path.join(basefolder, "docs", "logo_wide_1280x640.jpeg") + + # %% @@ -64,8 +68,8 @@ "sphinx.ext.napoleon", # To convert Numpydocstring to readable format "sphinx.ext.autosummary", # Create neat summary tables "myst_parser", # for including md files (readme) - "sphinx.ext.autosectionlabel", #for cross linking - "nbsphinx", #to render the notebook examples in the doc + "sphinx.ext.autosectionlabel", # for cross linking + "nbsphinx", # to render the notebook examples in the doc ] @@ -75,11 +79,11 @@ templates_path = ["_templates"] autosummary_generate = True # Turn on sphinx.ext.autosummary -#Specify how to render the following file formats: +# Specify how to render the following file formats: source_suffix = { - '.rst': 'restructuredtext', - '.txt': 'markdown', - '.md': 'markdown', + ".rst": "restructuredtext", + ".txt": "markdown", + ".md": "markdown", } @@ -105,7 +109,8 @@ # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] - +# Make sure the target is unique +autosectionlabel_prefix_document = True # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for @@ -136,10 +141,9 @@ html_static_path = ["_static"] + html_logo = "logo_small.svg" html_theme_options = { - 'logo_only': True, - 'display_version': False, + "logo_only": True, + "display_version": True, } - - diff --git a/docs/examples/doc_example.ipynb b/docs/examples/doc_example.ipynb index 1a18736d..3ded40b8 100644 --- a/docs/examples/doc_example.ipynb +++ b/docs/examples/doc_example.ipynb @@ -816,7 +816,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.10.0" } }, "nbformat": 4, diff --git a/docs/examples/index.rst b/docs/examples/index.rst index fc7a7c81..e8311580 100644 --- a/docs/examples/index.rst +++ b/docs/examples/index.rst @@ -10,5 +10,4 @@ qc_example.ipynb filling_example.ipynb analysis_example.ipynb - - + using_obstypes.ipynb diff --git a/docs/examples/qc_example.ipynb b/docs/examples/qc_example.ipynb index a8d38b0f..02d5a24b 100644 --- a/docs/examples/qc_example.ipynb +++ b/docs/examples/qc_example.ipynb @@ -679,7 +679,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.10.0" } }, "nbformat": 4, diff --git a/docs/examples/using_obstypes.ipynb b/docs/examples/using_obstypes.ipynb new file mode 100644 index 00000000..bdbccb5e --- /dev/null +++ b/docs/examples/using_obstypes.ipynb @@ -0,0 +1,674 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e4b8a66f-c3df-400b-a1d1-c031ff7d5f1c", + "metadata": {}, + "source": [ + "# Working with specific observation types\n", + "In this demo, you can find a demonstration on how to use Observation types." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "80d48024-5cda-43de-8f32-9b231f1243c7", + "metadata": {}, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "\n", + "#Initialize an empty Dataset\n", + "your_dataset = metobs_toolkit.Dataset()" + ] + }, + { + "cell_type": "markdown", + "id": "24e53b6d-f2e9-4ac0-b175-b765c16988a6", + "metadata": {}, + "source": [ + "## Default observation types\n", + "\n", + "An observation record must always be linked to an *observation type* which is specified by the [Obstype class](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.obstypes.Obstype.html). \n", + "An Obstype represents one observation type (i.g. temperature), and it handles unit conversions and string representations of an observation type. \n", + "\n", + "By default a set of standard observationtypes are stored in a Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "361a4341-e217-411d-a3b8-9c0829b0de92", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "your_dataset.show()" + ] + }, + { + "cell_type": "markdown", + "id": "03a66ed6-de2a-44d6-8f4e-5fb577f0d0d5", + "metadata": {}, + "source": [ + "From the output it is clear that an Obstype holds a **standard unit**. This standard unit is the preferred unit to store and visualize the data in. The toolkit will convert all observations to their standard unit, on all import methods. *(This is also true for the Modeldata, which is converted to the standard units upon import)*.\n", + "\n", + "A **description** (optional) holds a more detailed description of the observation type. \n", + "\n", + "Multiple **known units** can be defined, as long as the conversion to the standard unit is defined. \n", + "\n", + "**Aliases** are equivalent names for the same unit. \n", + "\n", + "At last, each Obstype has a unique **name** for convenions. You can use this name to refer to the Obstype in the Dataset methods.\n", + "\n", + "As an example take a look at the temperature observation and see what the standard unit, other units and aliases looks like:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "14e49af0-77cc-4539-8a59-8374d06c9d18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Obstype instance of temp\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "temperature_obstype = your_dataset.obstypes['temp'] #temp is the name of the observationtype\n", + "print(temperature_obstype)\n", + "\n", + "temperature_obstype.get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "f6cdac58-d288-4af0-990e-e1e5403fea0c", + "metadata": {}, + "source": [ + "## Creating and Updating observations\n", + "If you want to create a new observationtype you can do this by creating an Obstype and adding it to your (empty) Dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "b80f7106-f6ec-45f2-a5a5-ef175480fcda", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Observation types --------- \n", + "\n", + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "humidity observation with: \n", + " * standard unit: % \n", + " * data column as None in None \n", + " * known units and aliases: {'%': ['percent', 'percentage']} \n", + " * description: 2m - relative humidity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "radiation_temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit']} \n", + " * description: 2m - Black globe \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "pressure_at_sea_level observation with: \n", + " * standard unit: pa \n", + " * data column as None in None \n", + " * known units and aliases: {'pa': ['Pascal', 'pascal', 'Pa'], 'hpa': ['hecto pascal', 'hPa'], 'psi': ['Psi'], 'bar': ['Bar']} \n", + " * description: atmospheric pressure (at sea level) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: precipitation intensity \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "precip_sum observation with: \n", + " * standard unit: mm/m² \n", + " * data column as None in None \n", + " * known units and aliases: {'mm/m²': ['mm', 'liter', 'liters', 'l/m²', 'milimeter']} \n", + " * description: Cummulated precipitation \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_gust observation with: \n", + " * standard unit: m/s \n", + " * data column as None in None \n", + " * known units and aliases: {'m/s': ['meters/second', 'm/sec'], 'km/h': ['kilometers/hour', 'kph'], 'mph': ['miles/hour']} \n", + " * description: wind gust \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "wind_direction observation with: \n", + " * standard unit: ° from north (CW) \n", + " * data column as None in None \n", + " * known units and aliases: {'° from north (CW)': ['°', 'degrees']} \n", + " * description: wind direction \n", + " * conversions to known units: {} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "co2 observation with: \n", + " * standard unit: ppm \n", + " * data column as None in None \n", + " * known units and aliases: {'ppm': [], 'ppb': []} \n", + " * description: The CO2 concentration measured at 2m above surface \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + " * originates from data column: None with None as native unit.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Outliers --------- \n", + "\n", + "No outliers.\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "co2_concentration = metobs_toolkit.Obstype(obsname='co2',\n", + " std_unit='ppm')\n", + "\n", + "#add other units to it (if needed)\n", + "co2_concentration.add_unit(unit_name='ppb',\n", + " conversion=['x / 1000'], #1 ppb = 0.001 ppm\n", + " )\n", + "\n", + "#Set a description\n", + "co2_concentration.set_description(desc='The CO2 concentration measured at 2m above surface')\n", + "\n", + "#add it to your dataset\n", + "your_dataset.add_new_observationtype(co2_concentration)\n", + "\n", + "#You can see the CO2 concentration is now added to the dataset\n", + "your_dataset.show()\n", + " " + ] + }, + { + "cell_type": "markdown", + "id": "caa6522b-f0d7-49ac-96a8-7ace2d564d88", + "metadata": {}, + "source": [ + "You can also update (the units) of the know observationtypes :" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "5a9e5569-d917-48a6-8c9c-5b44a70f4a63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temp observation with: \n", + " * standard unit: Celsius \n", + " * data column as None in None \n", + " * known units and aliases: {'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], 'Kelvin': ['K', 'kelvin'], 'Farenheit': ['farenheit'], 'your_new_unit': []} \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + " * originates from data column: None with None as native unit.\n" + ] + } + ], + "source": [ + "your_dataset.add_new_unit(obstype = 'temp', \n", + " new_unit= 'your_new_unit',\n", + " conversion_expression = ['x+3', 'x * 2'])\n", + "# The conversion means: 1 [your_new_unit] = (1 + 3) * 2 [°C]\n", + "your_dataset.obstypes['temp'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "38f08e3c-88d7-484d-823e-38b324d6a940", + "metadata": {}, + "source": [ + "## Obstypes for Modeldata\n", + "\n", + "Obstypes are also used in Modeldata to interpret and convert the modeldata-data. Similar as with a Dataset, a set of default obstypes is stored in each Modeldata. To add a new band, and thus a new obstype, to your modeldata you can you this method:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ee043b1b-f195-484b-a752-90bb5e501ada", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['cumulated_precip'] \n", + " * Data has these units: ['m'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)\n", + "\n", + " ------ Known gee datasets -----------\n", + "The following datasets are found: \n", + "\n", + " --------------------------------\n", + "global_lcz_map : \n", + "\n", + " No mapped observation types for global_lcz_map.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'}\n", + "\n", + " --------------------------------\n", + "DEM : \n", + "\n", + " No mapped observation types for DEM.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'}\n", + "\n", + " --------------------------------\n", + "ERA5_hourly : \n", + "\n", + "temp observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'temperature_2m'} \n", + " * standard unit: Celsius \n", + " * description: 2m - temperature \n", + " * conversions to known units: {'Kelvin': ['x - 273.15'], 'Farenheit': ['x-32.0', 'x/1.8'], 'your_new_unit': ['x+3', 'x * 2']} \n", + "\n", + "pressure observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'surface_pressure'} \n", + " * standard unit: pa \n", + " * description: atmospheric pressure (at station) \n", + " * conversions to known units: {'hpa': ['x * 100'], 'psi': ['x * 6894.7573'], 'bar': ['x * 100000.']} \n", + "\n", + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n", + "cumulated_precip observation with: \n", + " * Known datasetsbands: {'ERA5_hourly': 'total_precipitation'} \n", + " * standard unit: m \n", + " * description: Cumulated total precipitation since midnight per squared meter \n", + " * conversions to known units: {'ppb': ['x / 1000']} \n", + "\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''}\n", + "\n", + " --------------------------------\n", + "worldcover : \n", + "\n", + " No mapped observation types for worldcover.\n", + "\n", + " INFO: \n", + "\n", + "{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'}\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "era = metobs_toolkit.Modeldata(modelname='ERA5_hourly')\n", + "era.obstypes\n", + "#Create a new observation type\n", + "precipitation = metobs_toolkit.Obstype(obsname='cumulated_precip',\n", + " std_unit='m',\n", + " description='Cumulated total precipitation since midnight per squared meter')\n", + "\n", + "#Add it to the Modeldata, and specify the corresponding band.\n", + "era.add_obstype(Obstype=precipitation,\n", + " bandname='total_precipitation', #look this up: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands \n", + " band_units='m',\n", + " band_description=\"Accumulated liquid and frozen water, including rain and snow, that falls to the Earth's surface. It is the sum of large-scale precipitation (that precipitation which is generated by large-scale weather patterns, such as troughs and cold fronts) and convective precipitation (generated by convection which occurs when air at lower levels in the atmosphere is warmer and less dense than the air above, so it rises). ...\",\n", + " )\n", + "\n", + "\n", + "# Define locations\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "# Define a time period\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "#Extract the data\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=[precipitation.name]\n", + " )\n", + "era.get_info()\n" + ] + }, + { + "cell_type": "markdown", + "id": "4d97ff9f-940f-4d4d-8052-9e8ad249850e", + "metadata": {}, + "source": [ + "## Special observation types\n", + "### 2D-Vector fields\n", + "At a specific height, the wind can be seen (by approximation) as a 2D vector field. The vector components are often stored in different bands/variables in a model. \n", + "\n", + "A common problem is that observation measures the amplitude and direction of a vectorfield, while the models store the vector components. So we need to transform the vector components to an amplitude and direction. \n", + "\n", + "This can be done in the MetObs toolkit by using the **ModelObstype_Vectorfield**. This class is similar to the ModelObstype class but has the functionality to convert components to amplitude and direction. \n", + "\n", + "By default, the *wind* obstype is stored in each Modeldata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "53e08158-082f-4bb0-957c-ed97f07d8b84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wind observation with: \n", + " * Known Vector-East-component datasetsbands: {'ERA5_hourly': 'u_component_of_wind_10m'} \n", + " * Known Vector-North-component datasetsbands: {'ERA5_hourly': 'v_component_of_wind_10m'} \n", + " * standard unit: m/s \n", + " * description: wind speed \n", + " * conversions to known units: {'km/h': ['x / 3.6'], 'mph': ['x * 0.44704']} \n", + "\n" + ] + } + ], + "source": [ + "era = metobs_toolkit.Modeldata(modelname='ERA5_HOURLY')\n", + "era.obstypes['wind'].get_info()" + ] + }, + { + "cell_type": "markdown", + "id": "633d3eb8-78d2-4b68-a198-a0a58d312f4c", + "metadata": {}, + "source": [ + "When extracting the wind data from era5 it will\n", + " 1. Download the u and v wind components for your period and locations.\n", + " 2. Convert each component to its standard units (m/s for the wind components)\n", + " 3. Compute the amplitude and the direction (in degrees from North, clockwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a1c15608-02da-453f-a58c-51695230fdc1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Modeldata instance containing: \n", + " * Modelname: ERA5_hourly \n", + " * 1 timeseries \n", + " * The following obstypes are available: ['wind_amplitude', 'wind_direction'] \n", + " * Data has these units: ['m/s', '° from north (CW)'] \n", + " * From 2023-01-11 23:00:00+00:00 --> 2023-01-14 23:00:00+00:00 (with tz=UTC) \n", + " \n", + " (Data is stored in the .df attribute)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "from datetime import datetime\n", + "\n", + "lat = [50.849]\n", + "lon = [4.357]\n", + "name = ['Brussels']\n", + "metadf = pd.DataFrame(data={'lat': lat,\n", + " 'lon': lon,\n", + " 'name': name})\n", + "\n", + "tstart = datetime(2023,1,12)\n", + "tend = datetime(2023,1,15)\n", + "\n", + "\n", + "era.get_gee_dataset_data(mapname='ERA5_hourly',\n", + " metadf=metadf,\n", + " startdt_utc=tstart,\n", + " enddt_utc=tend,\n", + " obstypes=['wind']\n", + " )\n", + "era" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e7750ef4-4ff7-4fa5-8458-697eb51981cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8DklEQVR4nOzdd3iT5f7H8Xe696K00FIKLXtTKrKXiDLEBYqiDCduxe1xHReOg6L+FMWFA1BBFBVcIFM2Ze/ZFuigLd07ye+PQqCy2tLm6fi8riuXyZNnfHJOaZNv7vv+mqxWq5Uq5uDgQGJiIkFBQTg4OJxzP5PJhNlsruo4IiIiIiIiIiIiVcpkj6KbiIiIiIiIiIhIXXLuYWdVJD8/396XFBERERERERERsSu7j3Rzc3Oja9eu9O3bl379+tGjRw/c3d3tGUFERERERERERKRK2b3otmLFCpYtW8aSJUtYuXIlxcXFREdH24pwl19+uT3jiIiIiIiIiIiIVDpD13QrLi5m3bp1fPzxx8yYMQOLxaJGCiIiIiIiIiIiUuM5GXHRPXv2sGTJEtutoKCAYcOG0a9fPyPiiIiIiIiIiIiIVCq7j3QLDQ0lLy+Pfv360a9fP/r27UuHDh0wmUz2jCEiIiIiIiIiIlJl7N69tH79+uTm5pKYmEhiYiJJSUnk5eXZO4aIiIiIiIiIiEiVMWRNt/T0dJYtW8bSpUtZunQpO3bsoFOnTvTv359XX33V3nFEREREREREREQqlaGNFFJTU1myZAnz5s1j1qxZaqQgIiIiUs01adKEdu3a8euvvxodpZSTawMvWbLE0BwiIiIiJ9l9euncuXN58MEH6dChA8HBwdxzzz1kZ2czefJkYmJi7B1HREREpMpNnz4dk8l0ztvq1asBztju4+ND3759mT9//jnPnZ6ejpubGyaTiZ07d551nxdffPGs13Vzc6uS1ysiIiIiBnQvnTBhAn369OGuu+6ib9++tG/f3t4RRERERAzx0ksv0bRp0zO2N2vWzHb/8ssvZ8yYMVitVmJjY5k6dSpXXXUVv/32G1dcccUZx86ePRuTyUSDBg2YMWMGr7zyyjmvP3XqVLy8vGyPHR0dL/IViYiIiMi52L3olpycXKb9Xn/9dSZMmICfn1/VBhIRERGxk8GDBxMdHX3efVq0aMEtt9xie3z99dfTpk0b3n333bMW3b755huGDBlCeHg4M2fOPG/RbcSIEQQGBlb8BVRDubm5eHh4GB1DRERE5Ax2n15aVq+99hppaWlGxxARERExVOvWrQkMDGT//v1nPBcXF8fy5csZNWoUo0aN4uDBg6xcufKc57JarWRmZlIZS/quWLGCrl274ubmRkREBF999dUZ+xw4cICRI0cSEBCAh4cH3bp1O2Oq7Mmpt4cOHSq1fcmSJZhMplJrtPXr14927dqxYcMG+vTpg4eHB88888wZ183OzsbT05OHHnrojOcOHz6Mo6MjkyZNqtgLFxERESmjalt0M7C/g4iIiEiVyMjIICUlpdQtNTX1gsccP34cf3//M56bNWsWnp6eDBs2jK5duxIZGcmMGTPOea6IiAh8fX3x9vbmlltuISkpqUKvY9++fYwYMYLLL7+cyZMn4+/vz7hx49i+fbttn6SkJHr06MEff/zBvffey6uvvkp+fj7Dhw/nxx9/rNB1oaQR1+DBg+nUqRNTpkyhf//+Z+zj5eXFtddey3fffXdGk65Zs2ZhtVoZPXp0hTOIiIiIlIXdp5eKiIiI1FUDBw48Y5urqyv5+fm2x/n5+aSkpGC1WomLi+PZZ5/FbDYzYsSIM46dMWMGV199Ne7u7gDceOONTJs2jXfffRcnp1Nv8/z9/bn//vvp3r07rq6uLF++nA8++IC1a9eyfv16fHx8yvU6du/ezbJly+jduzcAN9xwA2FhYXzxxRf873//A0qWCklKSmL58uX06tULgDvvvJMOHTowceJErr76ahwcyv/9b2JiIh999BF33333efcbM2YMM2bM4K+//uLKK6+0bf/mm2/o06cPjRs3Lve1RURERMpDRTcRERERO/nggw9o0aJFqW3/bmbw2Wef8dlnn9keOzs788QTTzBx4sRS+23ZsoWtW7eWmiZ500038dprr/HHH38wdOhQ2/Z/T7O8/vrr6dq1K6NHj+bDDz/kqaeeKtfraNOmja3gBlC/fn1atmzJgQMHbNsWLFhA165dbQU3KBmBdtddd/H000+zY8cO2rVrV67rQkmRcvz48Rfcb+DAgYSEhDBjxgxb0W3btm1s2bKFTz75pNzXFRERESmvaju9VERERKS26dq1KwMHDix1+/f0yKuvvpq//vqL+fPn8+KLL2IymcjNzT1jVNg333yDp6cnERER7Nu3j3379uHm5kaTJk3OO8X0pJtvvpkGDRqwcOHCcr+Os40S8/f35/jx47bHsbGxtGzZ8oz9WrdubXu+IkJDQ3Fxcbngfg4ODowePZqffvqJ3NxcoGRkoJubGyNHjqzQtUVERETKQyPdRERERKqRRo0a2aahDhkyhMDAQO6//3769+/PddddB5SsfTtr1ixycnJo06bNGedITk4mOzsbLy+v814rLCysQo2r/j0676SKrMlrMpnOuv3fa7GddHIqbVmMGTOGt956i59++ombbrqJmTNnMmzYMHx9fcudU0RERKS87DLSbeLEieTk5ACwbNkyiouLL3hM7969y/WmSkRERKQ2uvvuu4mMjOTZZ5+1FbWWLl3K4cOHeemll5g9e3ap27Rp08jNzeWnn34673mtViuHDh2ifv36VZI7PDyc3bt3n7F9165dtucBW4OI9PT0UvtVdCTc6dq1a0fnzp2ZMWMGy5cvJy4ujltvvfWizysiIiJSFnYpur3//vtkZ2cD0L9//zJ9o7pgwQIaNmxY1dFEREREqjUnJyceffRRdu7cybx584BTU0sff/xxRowYUep255130rx581JTTI8dO3bGeadOncqxY8dKNRmoTEOGDGHt2rWsWrXKti0nJ4dp06bRpEkT2wi9yMhIoOSL2ZPMZjPTpk2rlBy33norf/75J1OmTKFevXoMHjy4Us4rIiIiciF2mV7apEkT3nvvPQYNGoTVamXVqlVnbXsP0KdPH3tEEhEREbG73377zTbS63Q9evQgIiLinMeNGzeO559/njfeeIPBgwfzww8/cPnll+Pm5nbW/YcPH867775LcnIyQUFBhIeHc+ONN9K+fXvc3NxYsWIF3377LZ06dbpgF9CKeuqpp5g1axaDBw/mwQcfJCAggC+//JKDBw/yww8/2Naoa9u2Ld26dePpp58mLS2NgIAAvv322zLNjCiLm2++mSeeeIIff/yRe+65B2dn50o5r4iIiMiF2KXo9tZbbzFhwgQmTZqEyWTi2muvPet+JpPpnOt3iIiIiNR0zz///Fm3f/HFF+cturm7u3P//ffz4osvMn/+fNLT07nqqqvOuf9VV13F5MmT+fbbb3nwwQcZPXo0K1eu5IcffiA/P5/w8HCeeOIJ/vOf/+Dh4XHRr+tsgoODWblyJU8++STvv/8++fn5dOjQgV9++aVUZ1UoaXBw99138/rrr+Pn58ftt99O//79ufzyyyslx6BBg1iwYIGmloqIiIhdmawVWfG2grKzs/Hx8WH37t0EBQWddR8tbCsiIiIilenaa69l69at7Nu3z+goIiIiUofYtXupl5cXixcvpmnTpjg5qXGqiIiIiFSthIQE5s+fz3/+8x+jo4iIiEgdY9eRbieZzWZ++ukndu7cCUCbNm24+uqrz9l+XkRERESq1rFjx867zIeLiwsBAQF2THRxDh48yD///MOnn37KunXr2L9/Pw0aNDA6loiIiNQhdh9utm/fPoYOHcrhw4dp2bIlAJMmTSIsLIz58+fbOliJiIiIiP1ccsklxMbGnvP5vn37smTJEvsFukhLly5l/PjxNG7cmC+//FIFNxEREbE7u490GzJkCFarlRkzZti+LU1NTeWWW27BwcGB+fPn2zOOiIiIiAD//PMPeXl553ze39+fLl262DGRiIiISM1m96Kbp6cnq1evpn379qW2b968mZ49e5KdnW3POCIiIiIiIiIiIpXO7tNLXV1dycrKOmN7dnY2Li4u9o5zQRaLhaNHj+Lt7Y3JZDI6joiIiIiIiIiIGMhqtZKVlUVISAgODg7n3M/uRbdhw4Zx11138dlnn9G1a1cA1qxZw4QJExg+fLi941zQ0aNHCQsLMzqGiIiIiIiIiIhUI/Hx8TRq1Oicz9t9eml6ejpjx47ll19+wdnZGYDi4mKGDx/O9OnT8fX1tWecC8rIyMDPz4/4+Hh8fHyMjiMiIiIiIiIiIgbKzMwkLCyM9PT089ax7F50O2nfvn3s3LkTgNatW9OsWTMjYlxQZmYmvr6+ZGRkqOgmIiIiIiIiIlLHlbVWZPfppSc1a9bsvIU2Hx8fNm3aREREhB1TiYiIiIiIiIiIXLxzr/ZmMIMG4ImIiIiIiIiIiFy0alt0ExERERERERERqalUdBMREREREREREalkKrqJiIiIiIiIiIhUsmpbdDOZTEZHEBERERERERERqZBqW3RTIwUREREREREREamp7F50e+mll8jNzT1je15eHi+99JLt8W+//UZoaKg9o4mIiIiIiIiIiFQKk9XOQ8ocHR1JSEggKCio1PbU1FSCgoIwm832jHNBmZmZ+Pr6kpGRgY+Pj9FxRERERERERETEQGWtFdl9pJvVaj3rem2bN28mICDA3nFEREREREREREQqnZO9LuTv74/JZMJkMtGiRYtShTez2Ux2djYTJkywVxwREREREREREZEqY7ei25QpU7Bardx2223897//xdfX1/aci4sLTZo0oXv37vaKI1LliswWnB2rba8SEREREREREalCdiu6jR07FoCmTZvSo0cPnJ2dK+W8y5Yt46233mLDhg0kJCTw448/cs0119iet1qtvPDCC3zyySekp6fTs2dPpk6dSvPmzSvl+iJn88OGw3yy/ABf3taVYB83o+OIiIiIiIiIiJ3ZfRhO3759cXR0ZM+ePaxYsYJly5aVupVXTk4OHTt25IMPPjjr82+++SbvvfceH330EWvWrMHT05MrrriC/Pz8i30pIme1aGcST/ywhV2JWYz8aBVxqWd26xURERERERGR2s3u3UtXr17NzTffTGxsLP++tMlkuqjupSaTqdRIN6vVSkhICI8++iiPPfYYABkZGQQHBzN9+nRGjRp1xjkKCgooKCiwPc7MzCQsLEzdS6VMHvluE4383fkh5jBH00sKu0Hernxzx6W0CPY2OJ2IiIiIiIiIXKxq2710woQJREdHs23bNtLS0jh+/LjtlpaWVqnXOnjwIImJiQwcONC2zdfXl0svvZRVq1ad9ZhJkybh6+tru4WFhVVqJqm9dhzN5MeNR3j/733U83SlWZAXAMlZBdzw8So2x6cbG1BERERERERE7MbuRbe9e/fy2muv0bp1a/z8/EoVuE5vrlAZEhMTAQgODi61PTg42Pbcvz399NNkZGTYbvHx8ZWaSWqvORsO2+7fcEkY39/dnQ6NSn6m03OLuPmT1azcn2JUPBERERERqcGyC4rPmC0mItWb3Ytul156Kfv27bP3ZcvM1dUVHx+fUjeRCykstvDTpiMAuDg5MLxDCAGeLsy441K6RQQAkFNoZtwX6/hrR5KRUUVEREREpAb5fVsif+1IZPQnq3nw201k5RcZHUlEyshu3UtPeuCBB3j00UdJTEykffv2Z3Qx7dChQ6Vdq0GDBgAkJSXRsGFD2/akpCQ6depUadcR+XtXMmk5hQAMahOMr0fJz7W3mzPTx3fl/pkxLNyZTGGxhQnfbODtGzpydadQIyOLiIiIiEg1V2y28PKvOziSngfA5sMZbDmczvs3daZDIz9jw4nIBdm96Hb99dcDcNttt9m2mUwmrFbrRTdS+LemTZvSoEEDFi1aZCuyZWZmsmbNGu65555Ku47I6VNLR0aXXgfQzdmRqbd04bHZm5m36SiuTg6EBXjYO6KIiIiIiNQwC7Yl2gpuTg4mii1WYlNzuX7qSp4a3JrbejbBZDIZnFJEzsXuRbeDBw9W6vmys7NLTVc9ePAgmzZtIiAggMaNG/Pwww/zyiuv0Lx5c5o2bcpzzz1HSEiIrcOpyMU6llXA4t3JADTwcaNXs8Az9nF2dOCdGzoR4OnCZa2CiWrsb++YIiIiIiJSg1itVj5ZdsD2+H8jOzB9ZSyb4tMpMlt5+dcdrNqfwlsjOuLv6WJgUhE5F7sX3cLDwyv1fOvXr6d///62xxMnTgRg7NixTJ8+nSeeeIKcnBzuuusu0tPT6dWrF7///jtubm6VmkPqrnmbjmC2lCxoel1UKI4OZ/+mycHBxAtXtT1j+8nFUPUNlYiIiIiInLTmYBpbj2QA0C7Uh6s7hTK0Qwj/+2M3H58oxi3cmcyQ95bz7qjOdG0aYGRcETkLuzdSAPj666/p2bMnISEhxMbGAjBlyhTmzZtX7nP169cPq9V6xm369OlASSHjpZdeIjExkfz8fBYuXEiLFi0q8+VIHWa1Wpm9/tTU0hFdGpX7+Ffn7+SpH7baCnciIiIiIiKnj3K7s3cEJpMJZ0cHnh7Smi/GX0LAidFtCRn5jJq2iv/7e69RUUXkHOxedJs6dSoTJ05kyJAhpKen29Zw8/PzY8qUKfaOI3JR4tPyOJCSDUCXcH8i6nuV6/gPFu/j0xUH+W59PA/MiqGguPLWNBQRERERkZrr8StbMqJLI5rU82BI+4alnuvfMojfHupNt4iS0W0WK2TkqaupSHVjsp6c22Ynbdq04bXXXuOaa67B29ubzZs3ExERwbZt2+jXrx8pKSn2jHNBmZmZ+Pr6kpGRgY+Pj9FxpBo6nlPIvE1HCPFzZ1DbBuU6dv6WBB7+biNF5pJ/hr2bB/LxrV3wcLH7zG8REREREamGCostuDidfbyM2WLl//7ex9I9yXx7V/dz7icilaustSK7/4s8ePAgnTt3PmO7q6srOTk59o4jctH8PV0Y17NpuQtuAEM7NOSTMdG4OZf8U1y+N4WbP1nD+kNplR1TRERERERqoPMV0hwdTDw0sDnf331mwS0m7jhFZktVxxOR87B70a1p06Zs2rTpjO2///47rVu3tnccEcP1axnE17dfirebE/4ezuxNzmLER6sYMXUlf+1IwqK13kRERERE5DycHEt/tN9xNJNR01Zz48erOHw816BUImL3OWwTJ07kvvvuIz8/H6vVytq1a5k1axaTJk3i008/tXcckQorNlvO+ONWUZc0CeDbu7rx86ajtk5E62OPs/6r9TQL8uKuPhFc0ylUw8VFRERERGqxvEIzoz9dzbVRjRgR1Qh3F8dyn8NisTLx+00UFluIiUtn0DvLGNAqiKaBnvh5uBDg6Yy/hwv+Hi4EeLrg7+mCp4sjJpOpCl6RSN1m9zXdAGbMmMGLL77I/v37AQgJCeG///0vt99+u72jXJDWdJOzScrMZ/C7yxnaviGjuobRNsS3Us5bWGxh3qYjTFt2gL3J2aWea+Djxm29mnBT18Z4uzlXyvVERERERKT6+Hp1LM/9tA2Am7qGMem6DhU6z6b4dB6YFUN8Wh5NAz04mHL+0W7OjiYi63vx+8N9Sm3PzC8iv8hMkLdbhXKI1FZlrRUZUnQ7KTc3l+zsbIKCgoyKcEEqusnZTF2ynzd+3wXAgwOaMXFQy0o9v8ViZfHuZD5aup91h46Xes7bzYn7+jdjQt/ISr2miIiIiIgYx2yxMvDtpRxMKVnr/NcHetEutOJf7mfmFzFpwU783F2YunT/BfdvHuTFXxP7lto2acFOvlkdy4S+kdzRO6JCI+9EaqOy1ooMbZHo4eGBh4eHkRFEys1qtTJnQ7zt8YguYZV+DQcHE5e1Duay1sFsiE3j46UH+HNHEgBZ+cUUFmtBVBERERGR2mThziRbwa1HZL2LKrgB+Lg5M+m6DhzPKWRI+4Yczy3keG4haTmFHM8t4nhO4WnbimgaWPqzeXxaLl/8c4hCs4XJf+1hxpo4HruiJdd1DsXBQVNRRcrC7kW3pKQkHnvsMRYtWkRycjL/HmhnNpvtHUmkXDbGp7P/WMkfw0ubBtC4XtUWjruEBzBtTAD7krP5ZNkBft+eyK3dwkvtk5yVz+HjeUQ19q/SLCIiIiIiUjU+ObG2M8CdfSIq7bz+J9ZtKy9PVyduvCSMmWvjMFusJGbm89jszXy+4iDPDm1Nj2aBlZZRpLaye9Ft3LhxxMXF8dxzz9GwYUMt1ig1zuz1h233R3RpZLfrNgvy4o0RHXhxeNszhnV/tvwgX6w8xPwHetEsyEv/rkREREREapCYuOOsjy1ZVqZ5kBf9WtQ3OBEEeLrw8jXtGNsjnNd/28XCnckA7EjI5OZP13BZqyCeHtKKZkHeBicVqb7sXnRbsWIFy5cvp1OnTva+tMhFyy8y8+vmowB4uDgypH1Du2f4d8EtI6+Ib1bHElnfk6Hvr2Dq6Cguax1s91wiIiIiIlIxny4/bZRb74hq9SV6syBvPh17CSv3pfDqgp1sP5oJwKJdySzZc4y7+0TwxJWtDE4pUj052PuCYWFhZ0wpFakp/tieSFZBMQBD2jfE09XQZREBcHN24LqoUHYmZFFYbOG1BTspNmvNNxERERGRmiA2NYfftyUCEOjlytWdQwxOdHY9mgXyy/29mDyyIw18SrqZmi1WAiowdVWkrrB70W3KlCk89dRTHDp0yN6XFrloczacmlo60o5TS8/H1cmRl65uR5fwkvXc9h/L4bv18Rc4SkREREREqoPPVxzEcmJcyvieTXB1qr4dQh0cTFzfpRGLH+vHY4Na0KahD7d2L73edF6hGYtFA21EwICi24033siSJUuIjIzE29ubgICAUjeR6upIeh4r9qUA0DjAg65Nq8/Pq8lk4pkhrW2P3/lrD9knRuSJiIiIiEj1ZTKZcHF0wN3ZkdGXNjY6Tpm4uzhy/4Dm/PpArzOKhK8u2MHVH/zDpvh0Y8KJVCN2nxs3ZcoUe19SpFLEpebSwMeNhIx8RnRpVK3WWQDoEu7PkPYNWLA1kZTsQj5eup9HB7U0OpaIiIiIiJzHi8Pbcm//SLYezsDPo2ZN1XRwKP2ZaF9yFrPWxmO2WFmw5SjHcwvp3zLIoHQixjNZtcDaeWVmZuLr60tGRgY+Pj5GxxGDmS1W/tmXQssG3gSfWMegOjmUksPl7yylyGzFzdmBJY/1p4Fv9cspIiIiIiK1z5bD6Tw2ezNZ+cUkZOTj5+HMggd7E+LnbnQ0kUpV1lqR3aeXApjNZn744QdeeeUVXnnlFX788UfMZrMRUUTKxdHBRJ8W9atlwQ2gSaAnt3ZrAkB+kYXJf+42NpCIiIiIiNQZHRr5seDB3rRq4A1Aem4R982MobBYjd6kbrJ70W3fvn20bt2aMWPGMHfuXObOncstt9xC27Zt2b9/v73jiNQ6DwxohrdbyczxOTGH2XGipbeIiIiIiFQPVquVuTGHySusfYNPnBwdmHJjZxr5l4xu2xiXzpu/7zI4lYgx7F50e/DBB4mMjCQ+Pp6YmBhiYmKIi4ujadOmPPjgg/aOI3JBeYVmjqTnGR2jzPw9XXhgQDMArFb4bMVBgxOJiIiIiMjplu45xsTvN9Pj9UV8vz7e6DiVztfDmQ9HR+HiWFJy+HTFQX7flmhwKhH7s3vRbenSpbz55pulOpXWq1eP119/naVLl9o7jsgFzd+aQK83/uaWT9cQE3fc6DhlMqZ7E9qG+PDs0Na8dl07o+OIiIiIiMhpPll+AIDjuUX4uDkbnKZqdGjkx7PDWtsePz5nM3GpuQYmErE/uxfdXF1dycrKOmN7dnY2Li41q1OL1A1zNsRjtcKKfSnUlL4jbs6O/PpAL+7oHXFGC28RERERETHO9qMZ/LMvFYAm9Ty4vE2wwYmqzq3dwhnWoSEAWfnF3DtzA/lFtW9Krci52L3oNmzYMO666y7WrFmD1WrFarWyevVqJkyYwPDhw+0dR+S84lJzWX0gDYCIQE+iGvsbnKjsTCbThXcSERERERG7+nT5qeVfbu/VFEeH2vu+3WQy8fr1HYgI9ARg25FMXp2/0+BUIvZj96Lbe++9R2RkJN27d8fNzQ03Nzd69uxJs2bNePfdd+0dR+S8fog5bLt/fZdGNbqQtf9YNrmFxUbHEBERERGpsxIy8vhl81EA/D2cGdElzOBEVc/L1YkPRkfh6lRSfli0M4n03EKDU4nYh5O9L+jn58e8efPYu3cvO3fuxGQy0bp1a5o1a2bvKCLnZbFYmbOhpOjmYILroxoZnKhiUrMLmLJwLzPXxvHQZc158LLmRkcSEREREamTpv9ziGJLyZI1t3YLx92lbiwF07qhDy9f3Y4F2xJ4+4ZO+HloaSmpG+xedDupefPmtkJbTR49JLXX6oOptq6lvZvXp4Gvm8GJKiY9r4iZa+MwW6x8tHQ/o7qGEeRdM1+LiIiIiEhNlZVfxMw1cQC4ODlwa/cmxgays5HRjRjRpREOtXg6rci/2X16KcBnn31Gu3btbNNL27Vrx6effmpEFJFzmrP+1NTSEV1q5ig3gMj6XtzctTEAuYVmpizca3AiEREREZG657t18WQVlCz3cl3nUOp7uxqcyL5MJtMZBTeLpWY0qhOpKLsX3Z5//nkeeughrrrqKmbPns3s2bO56qqreOSRR3j++eftHUfkrLLyi1iwLQEAHzenGt9R6KGBzfFyLRnY+u3aOPYmndlBWEREREREqkZRsZkZJ0a5AdzRu6mBaaqHlOwCxny+lu/XxxsdRaTK2H166dSpU/nkk0+46aabbNuGDx9Ohw4deOCBB3jppZfsHUnkDAu2JpBfZAFgeKcQ3Jxr9loLgV6u3NMvkrf+2I3FCq//tovPxl1idCwRERERkTrhr53JZOYV0bVJAPW9XWkW5G10JEOl5RQy9L3lJGUWsO5QGu1DfWnd0MfoWCKVzu4j3YqKioiOjj5je5cuXSguVmdFqR4a+LrTPaIeACNrSUeh23o2pYFPyVpui3Yls3JfisGJRERERETqhukrD5GaU8jaQ2ncdGLpl7oswNOFy1qXzCYqKLZw34wYsgtUD5Dax+5Ft1tvvZWpU6eesX3atGmMHj3a3nFEzrAvOZtpy0oaDvz9aF86NPI1OlKlcHdx5LErWtoev7pgp9ZQEBERERGpYjsTMll7MA2AyPqe9GxWz+BE1cPzw9rQNqRkdNuBlByenrsVq1WfT6R2MbSRwh133MEdd9xB+/bt+eSTT3BwcGDixIm2m4gRvl8fzz/7Unno200s3XOsVnXXvbZzqG3Y9vajmczbfMTgRCIiIiIitdtXqw7Z7o/t0aRWfb64GG7Ojnw4OgrvE2tP/7L5KN+ctu6dSG1g96Lbtm3biIqKon79+uzfv5/9+/cTGBhIVFQU27ZtY+PGjWzcuJFNmzbZO5oIhcUW5saUdC11djRxdadQgxNVLkcHE/8Z0tr2+MeNRw1MIyIiIiJSu2XkFvHjxpIvur1cnbguqpHBiaqX8HqevDWyg+3xy7/sYOvhDAMTiVQuuzdSWLx4sb0vKVJmf+9KIiW7EIBBbRoQ4OlicKLK16t5INdHNaJLuD83ROuPvoiIiIhIVZm9Id7WoO36qFC8XO3+Ebzau7JdQ27r2ZTP/zlIodnCvTM38Ov9vfH1cDY6mshFM2R6qUh19d26U+2qb7ykdjRQOJvJN3Tk5ksb4+SoXwEiIiIiIlXBbLHy1apY2+NbuzcxLkw199TgVnQK8wMgPi2PD5fsNTaQSCWxe5k9Pz+f999/n8WLF5OcnIzFYin1fExMjL0jiQCQkJHH0j3HAAj1c6dXs0CDE4mIiIiISE11PLeQUD934tJy6d08kGZBXkZHqrZcnBz4YHQUV72/nIj6Xnz+zyG6RwbSr2WQ0dFELordi2633347f/75JyNGjKBr165aRFKqjTnrD3OymeeILo1wcKg7P5vbjmTg5epEk0BPo6OIiIiIiNQKgV6uzLqrG7sTsygyWy58QB0X6ufO04Nb8/icLQC8Mn8nPZsF4qzZOVKD2b3o9uuvv7JgwQJ69uxp70uLnJPFYuX7DSVTS00mGFlH1jpLyynklfk7WHswDXdnR2bd1Y1AL1ejY4mIiIiI1BotG3gbHaHGGNGlETPXxrExLp19ydnMXBPH2B5NjI4lUmF2LxmHhobi7a1fOlK9rDqQSnxaHgC9mgXSyN/D4ET24erkQJC3G8lZBexNzubGj1eRmJFvdCwREREREamDTCYTzw9rY3v8zsI9pOcWGphI5OLYveg2efJknnzySWJjYy+8s4idbIw7brs/6pLGBiaxL09XJ0ZGN6LeiS6t+4/lMPLjlcSn5RqcTERERESkZsopKGbJ7mQsJ9eukXLp3NifazuHApCeW8SUhWqqIDWX3Ytu0dHR5OfnExERgbe3NwEBAaVuIka4f0Bzlj7ej4cHNmdgm7q1WGdkfS++v7s7jQNKRvfFp+Ux8qNV7EvONjiZiIiIiEjN8+PGI4z7Yh2Xvb2UFXtTjI5TIz1xZUvcnR0B+Hp1LPuSswxOJFIxJqvVatfy+8CBA4mLi+P2228nODj4jEYKY8eOtWecC8rMzMTX15eMjAx8fHyMjiNSZZIy8xn96Rpbsa2epwtf334pbUL0cy8iIiIiUhZWq5UrpixjT1LJe+pfH+hFu1Bfg1PVTO8u3Ms7C/cA0L9lfb4Y39XgRCKnlLVWZPeim4eHB6tWraJjx472vGyFqegmdUlqdgFjPl/L9qOZAPi4OfHlbV3p3Njf4GQiIiIiItXfyv0p3PzJGgCiw/2Zc08PgxPVXHmFZgZMXkLCiTWnp4+/hH4t69asJKm+ylorsvv00latWpGXl2fvy4qcVXZBsdZaOE09L1dm3tmNqMZ+AGTmF3PLp2tYtT/V2GAiIiIiIjXAVytPrV2urpsXx93FkacGt7I9nrEmzsA0IhVj96Lb66+/zqOPPsqSJUtITU0lMzOz1E3Enl7/bSe931zMlIV7yMgrMjpOteDr7szXt19Kj8h6ABSaLeQXmQ1OJSIiIiJSvR1Jz+PPHYkABHm7ckXbBgYnqvmGdwyhX8v6PD+sDR+OjjI6jki52X16qYNDSZ3v32u5Wa1WTCYTZnP1+nCv6aW1V16hma6vLSQrvxh3Z0fW/ucyvN2cjY5VbeQXmXlg1kau6xzK4PYNjY4jIiIiIlKtvfXHLj5YvB+Ahwc25+GBLQxOVDucrBWIVCdlrRU52TETAIsXL7b3JUXO6rdtCWTlFwMwtENDFdz+xc3ZkWm3dtEfOBERERGRC8gvMjNrbTwATg4mbu7a2OBEtYc+j0hNZveiW9++fe19SbKysnjuuef48ccfSU5OpnPnzrz77rtccsklds8i1cd36+Jt90ddEmZgkurrbH/gPlq6H09XJ27tFm5AIhERERGR6mf+lgTScgoBGNK+IUE+bgYnqr12JWbi7uxIeD1Po6OIXJDdi24A6enpfPbZZ+zcuROAtm3bctttt+HrWzWtlO+44w62bdvG119/TUhICN988w0DBw5kx44dhIaGVsk1pXo7mJLDmoNpAETU96RLuLpzlsVXqw7x+m+7AMgtKObuvpEGJxIRERERMd5Xqw7Z7o/toS+nq0JGXhFv/r6LWWvj6NcyiM/HaRCNVH92b6Swfv16IiMjeeedd0hLSyMtLY23336byMhIYmJiKv16eXl5/PDDD7z55pv06dOHZs2a8eKLL9KsWTOmTp1a6deTmuH79adGud0YHaYhy2WUlJlvuz/pt128/dce7LwspIiIiIhItfPqte25IboRXcL9iWqsL/SrgrOjiUU7k7FY4e9dySzdc8zoSCIXZPei2yOPPMLw4cM5dOgQc+fOZe7cuRw8eJBhw4bx8MMPV/r1iouLMZvNuLmVHt7r7u7OihUrzti/oKBAHVVruWKzhR82HAZK1lu4LqqRwYlqjsevaMXjV7S0PX5v0V4m/bZLhTcRERERqdPahfry5oiOzL67u77QryIeLk48NbiV7fErv+6g2GwxMJHIhRky0u3JJ5/EyenUzFYnJyeeeOIJ1q9fX+nX8/b2pnv37rz88sscPXoUs9nMN998w6pVq0hISDhj/0mTJuHr62u7hYVpra/aZsnuYyRnFQBwWesg6nu7GpyoZrmvfzNeuKqN7fHOhEwm/7nHwEQiIiIiItWDg4MKblVpeMcQOoX5AbA3OZtZa+OMDSRyAXYvuvn4+BAXd+Y/jPj4eLy9vavkml9//TVWq5XQ0FBcXV157733uOmmm3BwOPPlP/3002RkZNhu8fHxZzmj1GTfntZA4UY1UKiQ8T2b8sZ17Wkf6svyvSn83+J9fH3aOhYiIiIiIiKVzcHBxPOnDQB4+689ZOQWGZhI5PzsXnS78cYbuf322/nuu++Ij48nPj6eb7/9ljvuuIObbrqpSq4ZGRnJ0qVLyc7OJj4+nrVr11JUVERERMQZ+7q6uuLj41PqJrWH1Wol1M8Nb1cnGvi40ad5faMj1Vg3dm3MiC6npuY+//N2ft925uhREREREZHaqMhs4dbP1vD16lhyCoqNjlNnRDX25+pOIQAczy3ivb/3GpxI5NxMVjsvxlRYWMjjjz/ORx99RHFxyS8mZ2dn7rnnHl5//XVcXat+qt/x48dp2rQpb775Jnfdddd5983MzMTX15eMjAwV4GqRvEIzB1KyaRtSNR1z65I3ft/F1CX7AXBxcuCb2y+la9MAg1OJiIiIiFStBVsTuHdGSTPAYR0a8n83RxmcqO44mp7HgMlLyC+y4ORg4s9H+hBR38voWFKHlLVWZPei20m5ubns31/yQT0yMhIPD48qu9Yff/yB1WqlZcuW7Nu3j8cffxw3NzeWL1+Os7PzeY9V0U3k/KxWK4/O3szcmCMA+Lg5MeeeHrQIrprp4iIiIiIi1cGNH69izcE0AL65/VJ6NQ80OFHd8s5fe3h3Uckot8taBfHZuEsMTiR1SVlrRXafXpqRkUFaWhoeHh60b9+e9u3b4+HhQVpaWpV1Cs3IyOC+++6jVatWjBkzhl69evHHH39csOAmIhdmMpl44/oO9GlRMlU3M7+YsZ+v5Wh6nsHJRERERESqxq7ETFvBLbK+Jz2b1TM4Ud1zd98IGvi4AXA0I5/MfK3tJtWP3Ytuo0aN4ttvvz1j+/fff8+oUaOq5Jo33HAD+/fvp6CggISEBP7v//4PX19NK6xrlu89pkU2q4izowNTR0fRoVHJv6uEjHzGfr5W/3uLiIiISK305cpY2/2xPZpgMqlrqb15uDjx4vA2vH5de359oBc+bhpUI9WP3Ytua9asoX///mds79evH2vWrLF3HKkjMvKKuPOr9XR9bSHPz9tmdJxaydPVic/HXUJ4vZKp4nuTs3n+Z/1vLSIiIiK1S0ZuET9tLFlaxcvVieuiGl3gCKkqV7ZryKiujXF0UNFTqie7F90KCgpsDRROV1RURF6epqNJ1fh581HyiywUFFvQr+OqE+jlyle3daWepwutGnjzzJDWRkcSEREREalUszfEk1dkBuD6qFC8XJ0MTiQi1ZXdi25du3Zl2rRpZ2z/6KOP6NKli73jSB3x/bp42/0bLgkzMEntF17Pk5l3duP7Cd0JPrHGgoiIiIhIbWCxWPl69amppbd2b2JcGDnDtsMZ/HiiwZtIdWD3kvwrr7zCwIED2bx5M5dddhkAixYtYt26dfz555/2jiN1wPajGWw9kgFA+1Bf2oZoPb+q1rLBmZ1LLRYrDhr2LSIiIiI12NI9x4hNzQWgd/NAmgV5GZxITnr51x18ty6eQrOFbpEBNPR1NzqSiP1HuvXs2ZNVq1YRFhbG999/zy+//EKzZs3YsmULvXv3tnccqQM0ys142QXFjP1iLbPXx194ZxERERGRamr53mM4O5Z8kTxGo9yqFScHE9kFxRQWW3j/731GxxEBDBjpBtCpUydmzJhx3n1ef/11JkyYgJ+fn31CSa2UX2TmxxOLnLo5OzC8Y4jBieqenIJiRk1bxbYjmazcn0qgtyv9WwYZHUtEREREpFzScgr5clUsXq6OdGjkx4BWek9bnUzoG8mMNXFkFxTz/bp47u4TQXg9T6NjSR1n95FuZfXaa6+RlpZmdAyp4f7YnkhmfknjjiHtGuLrrjbS9ubh4kh0eAAAZouVe7+JYVN8urGhRERERETKyd/DmdkTunN9VBi9mgWqY2Y14+/pwh29mwJQbLEyZeFegxOJVOOim9VqNTqC1ALfaWqp4UwmE88Na8PQ9g0ByCsyc9v0dRxMyTE4mYiIiIhI2ZlMJqIa+/P8VW24u2+k0XHkLG7v1RR/j5KBFj9tOsLuxCyDE0ldV22LbiIXKy41l5X7UwFoUs+DS5sGGJyo7nJ0MDH5ho62/w/ScgoZ8/kakrPyDU4mIiIiIiK1hbebM/f2awaA1QqT/9xtcCKp61R0k1rL18OZZ4e2pkWwFzdcEobJpOHfRnJzdmTamGhanehsGp+Wx/D3/2Hasv1k5BYZnE5ERERERGqDW7uHE+zjCsCfO5LYrKVtxEAmazWdx+nt7c3mzZuJiIgwNEdmZia+vr5kZGTg4+NjaBapGKvVSrHFirOjaszVQWJGPtdPXUn7UB9+354EgLuzI9dFhTK+ZxOaBXkbnFBEREREpLTn522jaaAnQ9s3JMjHzeg4cgHfrI7l2Z+2AdC7eSBf336pwYmktilrrUhVCKn1TCaTCm7VSANfN/6a2KfUm5W8IjMz1sQx8O1l3PrZGv7elYTFUi2/DxARERGROuZoeh5frYrlv7/s4JbP1hgdR8rghugwGgd4ALD1SAZJmVrWRozhZHSAc+nduzfu7u5GxxCRKuDh4sRLV7djbI8mfLnyEHM2HCa30AzA8r0pLN+bQpN6Hozt0YQRXRrh7aausyIiIiJijAVbE2z3h5xoDibVm4uTA09e2Yq9yVnc3qupPk+IYew+vXTgwIHccsstXHfddTViuqaml9Y8xWYL986IoV/LIIa0b4Cfh4vRkeQCMvOL+H5dPF+uOkR8Wl6p5x4b1IL7BzQ3KJmIiIiI1HVXf/CPbV2whRP70izIy9hAImK4staK7D7SrW3btjz99NPce++9DB06lFtuuYUhQ4bg7KzKs1SOVQdS+XNHEn/uSGL53mNMvaWL0ZHkAnzcnLmjdwTjezbl713JTF95kH/2peLi6MCoro1L7ZtfZMbVycHWGMNqtZJdUExGXpHtlnniv00Dvej6r66198+MwWK14uPmjI+7Mz5uTif+64yPu5Nte6ifO56u1XYwsIiIiIjYQXxarq3g1qqBtwpuIlIudv9E+e677/LOO++wcOFCZs6cyZgxY3B0dGTEiBGMHj2avn372juS1DI/bTxquz+8Y4iBSaS8HB1MXN4mmMvbBLM7MYsth9MJ9HIttc87C/fw29ZEHB1MtiKb+Rzrv93SrfEZRbe/dyXbprKez3s3dS7182O1WvlwyX6u6hBC43oeFXh1IiIiIlLT/Lrl1NTSq/TZokZLzswnMTOfDo38jI4idUi5i24HDx5k+fLlxMbGkpubS/369encuTPdu3fHza1sXVwcHBwYNGgQgwYN4qOPPuKXX37h1Vdf5bPPPsNsvvCHYZFzyS8y88f2RAC83Zzo3yrI4ERSUS0beNOyQelOprmFxXy7Np7GAe5sPZJ5wXOk5xaVelxktpSp4Abg41b61+PK/am89cdu3v5rD9d1DuX+Ac0Ir+dZpnOJiIiISM3065ZTX+hf1UFFt5qoyGzhf3/u5suVhwjxdefPR/rgpEZ7YidlLrrNmDGDd999l/Xr1xMcHExISAju7u6kpaWxf/9+3NzcGD16NE8++STh4eFlOmdiYiLffvst33zzDVu2bKFr164VfiEiAIt2JpNdUAzA4HYNcHN2NDiRVKaUrEI6N/ajoa8bh1Jz8XV3xs/DGV/3028utvv/Hv7v5GBi23+vIDOviMz8IjLzik+7X0Rm/qnHYQGlR7N9uvwAAGaLldkbDjN34xGu6RTKAwOa0SRQxTcRERGR2uZgSg7bj5Z80duhka9mO9RQTg4mNsalk19k4UBKDnNjjnDDJWFGx5I6okxFt86dO+Pi4sK4ceP44YcfCAsr/QNaUFDAqlWr+Pbbb4mOjubDDz9k5MiRZz1XZmYmP/zwAzNnzmTJkiVEREQwevRovvvuOyIjIy/+FUmd9tOmI7b7V3cKNTCJVIXG9TyYPr4rVquVSdd1KPfxJpMJL1cnvFydCKF83ZGnjOrMF/8c5PMVB8nML8ZssfJDzGF+3HiYazqH8sCA5jRV8U1ERESk1vh186lRbsM6qGtpTWUymXj8ipaM/GgVAO8u2svVnUNwddIADal6Zepe+scff3DFFVeU6YSpqakcOnSILl3Ovni9u7s7/v7+3HjjjYwePZro6OjyJbYzdS+tOTJyi4h+9S+KzFaCvF1Z9fRlODqYjI4ltUxmfhHT/znEZysOkpF3avqqg6mk0PvIwBb6FlRERESkFhj87nJ2JpSMdPvnqQGE+pXvS1upXsZ9sZYlu48B8OJVbRjXs6nBiaQmK2utqExFt8r0119/cdlll+HgUDPmUKvoVnPMWhvH03O3AnB7r6Y8N6yNwYmkNsvKL+LLlYf4dMXBUmvHzZ7QnUuaBJznSBERERGpCVKyC/htWyL7krL479XtjI4jF2nbkQyGvb8CgEAvF5Y90R8PF7v3lpRaoqy1onJXvmJiYti6davt8bx587jmmmt45plnKCwsvODxl19+eY0puEnN8tPGU1NLr9HUUqli3m7O3D+gOSueHMDjV7TE38OZns3qnVFwKyhWcxgRERGRmijQy5Vbu4Wr4FZLtAv1ZWj7kmnCKdmFfPHPIWMDSZ1Q7urX3XffzZ49ewA4cOAAo0aNwsPDg9mzZ/PEE09UekCRskjLKWR97HEAIup70i5UoxLFPrxcnbivfzOWPzmA1/+1zpzVauWGj1Zx+5fr+GHDYXYlZlJkthiUVERERESkbnvk8hacXIHo46X7Sy0XI1IVyj2Wcs+ePXTq1AmA2bNn06dPH2bOnMk///zDqFGjmDJlSiVHFLmwAE8XVj41gF82H8XHzRmTSWu5iX2dbNBwur93JbP5cAbtQnx4dPZmAFwcHWjRwIs2DX1KbiG+tG7ojbebsxGxRURERETqjGZBXlwX1Yg5Gw6TmV/MJ8sO8NgVLY2OJbVYuYtuVqsVi6VkpMbChQsZNmwYAGFhYaSkpFRuOpFyCPZx447eEUbHELHJLigmxNcNj9OKcYVmC9uOZLLtSGapfRsHeHB9VCMeGtjc3jFFRERE5DTTlu3n8PE8hnUIITrcHwc1Z6tVHrqsOfM2HaHIbGX+1gQeHtgcJ0ctgSVVo9xFt+joaF555RUGDhzI0qVLmTp1KgAHDx4kODi40gOKiNRUV3cKZViHENYdSmNjXDo7EjLZcTSDAyk5/LuFTVxaLjmFxaW2Wa1Wvl4dS0SgFz2b1dMIThEREZEqZrVa+WZ1HHFpuXyzOpY1zwykvrer0bGkEoUFeHBP30i83JwY072JCm5SpcpddJsyZQqjR4/mp59+4j//+Q/NmjUDYM6cOfTo0eOsx7z33ntlPv+DDz5Y3kgiItWWo4OJbhH16BZRz7Ytt7CY3YlZJ4pwmexIyGRXQhZtGpZei/BQag4fLT3A0fQ8OjTy5d5+kQxq00DftoqIiIhUka1HMohLywWge2Q9FdxqqYmDNKVU7MNktf57vMXZHThwgIiIc0/dy8/Px9HREWfnM9clatq0aanHx44dIzc3Fz8/PwDS09Px8PAgKCiIAwcOlCN+1StrG1gxhtVqZeRHq+gU5sc1nUNpF+prdCSRCjFbrJgtVlycTn3TNnXJPt74fXep/SLrezKhbyRXdwotta+IiIiIXLzXFuxk2rKSz6STrmvPTV0bG5xIRKqjstaKyvyJrUOHDrRr145nnnmGtWvXnvG8m5vbWQtuUDL19OTt1VdfpVOnTuzcuZO0tDTS0tLYuXMnUVFRvPzyy2WNIwJATNxx1sce59MVB3nzj90XPkCkmnJ0MJ1RRLurTyT/d3PnUiPg9h/L4fE5W+j31mI+X3GQ3H9NSRURERGRirFYrPy6+SgATg4mrmzbwOBEYi/xabkcSc8zOobUQmUuuqWkpDBp0iSSk5MZPnw4DRs25M477+SXX34hPz+/zBd87rnneP/992nZ8tRwzpYtW/LOO+/w7LPPli+91Hk/bTxqu391xxADk4hUPkcHE8M6hDD/wV5MH38JXZsG2J47mpHPS7/uoNcbi/lo6X4DU4qIiIjUDhvjj3M0o+Szbc9mgfh7uhicSKpaRm4Rz/20jQGTl/DGb7uMjiO1UJmLbm5ublx11VV8+umnJCQk8MMPP1CvXj2efPJJAgMDueaaa/j88885duzYec+TkJBAcfGZIzPMZjNJSUnlfwVSZxWZLczfmgCAm7MDV7TTN1FSO5lMJvq1DOL7u7szZ0J3LmsVZHsuLaeQ2NRcA9OJiIiI1A6/bE6w3R/WoaGBScReHB1NzN+aQJHZysr9KWw7km50JKllKrQgkMlkokePHrz++uvs2LGDjRs30rt3b6ZPn06jRo344IMPznnsZZddxt13301MTIxt24YNG7jnnnsYOHBgReJIHbV87zHScgoBGNg6GC/XcvcFEalxopsE8Nm4S/jtod5c3SkEF0cHJvQtvd5mbmExsak5BiUUERERqXnMFisLTnyh7+LowCBNLa0TvFydeOiy5vSIrEdGXhGvzt9FGZe9FymTMjdSKKvU1FTS0tJo3rz5WZ8/duwYY8eO5ffff7etAVdcXMwVV1zB9OnTCQoKOutxRlEjherroW83Mm9TyfTST8ZEc3mbYIMTidhfanYB9bxKd9X6fMVBXv51By2CvWlcz4Mgb1eCfdwI9nElyMfN9jjAw0WdUEVERESA1QdSGTVtNVDyhf6nY6MNTiT2UlBs5vK3l9m61n58axeuUNFVLqCstaIKDQ06evQoK1asIDk5GYvFYttuMpl44IEHqFev3jmPrV+/PgsWLGDPnj3s2lUyZ7pVq1a0aNGiIlGkjsopKObP7SXTkf08nOnbor7BiUSM8e+CW2GxhU+WH6BFsBe7k7LYnZR1zmOdHEzU93bl94f74Ot+qhGO2WKloNiMh4tGj4qIiEjdsHDHqaWOruqoqaV1iauTI88Mac2EbzYAJR1s+7Wsj6uTo8HJpDYo9yeq6dOnc/fdd+Pi4kK9evUwmU6NkjhZdCuLFi1aqNAmFfbXjiTyiswADGnf8IyujyJ1ldliZfSljSkyW9mbvBfLecYyF1usHMsqwPtfU7OX7E7miTlbePLKVozo0kij4URERKTWe2pwK/q3CmL+1gQua60ZNHXNFW2D6R5Rj1UHUolNzWX6P4e4u2+k0bGkFij39NKwsDAmTJjA008/jYND+QsdZrOZ6dOns2jRojNGygH8/fff5T5nVdL00upp3BdrWbK7pGnHd3d149KIc4+uFKmris0WUnMKScrMJymzgOSsE//NzCc5q4CkzHxMJvj1gd62YwqLLVwxZRkHU0rWhOsY5sdLw9vSMczPoFchIiIiIlL1dhzNZNj7y7FYS9Z6W/xYP+p7u174QKmTqmx6aW5uLqNGjapQwQ3goYceYvr06QwdOpR27dqVGiknUhb5RWa2H80EIMTXjUuaBBicSKR6cnJ0OLGWm1uZj8ktLKZ1A29b0W1zfDrXfPgPN0aH8fgVLc+YzioiIiIiUhu0CfHhxksaM2ttHNkFxbz9124mXdfB6FhSw5V7pNsTTzxBQEAATz31VIUuGBgYyFdffcWQIUMqdLy9aaRb9VRktrB87zGyC8wM7xhidByRWmflvhRe+Hk7e5Ozbdt83Jx47IqW3Ny1MU6OmtItIiIiIrVLSnYB/d9aQlZB8YkZIb1oG+JrdCyphspaKyp30c1sNjNs2DDy8vJo3769rQPpSW+//fZ5jw8JCWHJkiU1Zj03Fd1EpK4qMlv4cuUhpizcS3ZBsW17qwbevHR1O7o21ShTERERqdmW7TnGtGUHGNahIYPbNcTXw/nCB0mtNm3Zfl5bUNL08dKmAXx7VzfN0JMzlLVWVO6hCpMmTeKPP/4gKSmJrVu3snHjRttt06ZNFzz+0Ucf5d1336WctT4REbEzZ0cH7ugdwd+P9eX6qEa27bsSs/hwyT4Dk4mIiIhUjnmbjrJiXwpPzd3KmoOpRseRamBsjyaE1/MAIDEzn2PZBQYnkpqs3CPd/P39eeeddxg3blyFLnjttdeyePFiAgICaNu27Rkj5ebOnVuh81YVjXSrXorNFk1rEzHIhtg0np+3nT1JWfzxcB8i6nsZHUlERESkwgqKzUS/vJCsgmK8XZ1Y/9xAXJ0cjY4l1cDiXcnsScpiXM8m+pmQs6qyRgqurq707NmzwsH8/Py49tprK3y81F1Wq5Wr/u8fGvq6cU3nUK3lJmJnXcID+Pn+Xmw5nH5Gwe2ffSmYLVb6tKhvUDoRERGR8lm6+xhZJ5bQuLxtsIorYtO/VRD9WwUZHUNqgXIX3R566CHef/993nvvvQpd8IsvvqjQcSI7EjLZeeKWlV+kopuIARwdTHRu7F9qW36RmSd/2MLh43nc3qsp9/VvRoCni0EJRURERMrm1y0JtvtXddBnCxGpfOUuuq1du5a///6bX3/9tUZMD5Xa4+dNR233h3cKNTCJiJzux41HOHw8D4CNcce5fupKvhh3CU0CPQ1OJiIiInJ2eYVmFu5MAsDX3ZmezQINTiTV2b7kLFbsTWFcz6ZGR5EaptxFNz8/P6677rqLuuicOXP4/vvviYuLo7CwsNRzMTExF3VuqZ0sFis/by4pujk5mBjavqHBiUTkpFGXhOHq5MCXKw8RE5cOwHVTV/LJmGi6hPuf/2ARERERAyzenUxuoRmAK9s2wMVJ60bL2U3+czcfLtmPxWolukkA7UJ9jY4kNUi5i24XOz30vffe4z//+Q/jxo1j3rx5jB8/nv3797Nu3Truu+++izq31F5rDqaRkJEPQN8W9TV1TaQaMZlMXBfViEsj6jH+i7XsScomLaeQmz9ZzZQbOzFYRXIRERGpZn7dcmoWzbCOeq8i5+br7ozZUtJ/8qVfdvDd3d0wmUwGp5Kawu7l/A8//JBp06bx/vvv4+LiwhNPPMFff/3Fgw8+SEZGhr3jSA0xb9MR2/2rO2tqqUh1FOrnzuwJPegRWQ+AgmIL986M4dPlByhno2wRERGRKpNTUMzfu5IBqOfpQveIegYnkupsTPcmRJxYNmXtoTQWbE00OJHUJGUqul155ZWsXr36gvtlZWXxxhtv8MEHH5xzn7i4OHr06AGAu7s7WVlZANx6663MmjWrLHHKxWw289xzz9G0aVPc3d2JjIzk5Zdf1gfAGqSg2MyCrSWLnHq4ODKwtbrIiFRXvu7OTB/fleuiSorjViu8Mn8nL/683fYNoYiIiIiR1h5MI7/IAsCV7Rrg5KippXJuLk4O/Gdoa9vj1xbsJL/IbGAiqUnKNL105MiRXH/99fj6+nLVVVcRHR1NSEgIbm5uHD9+nB07drBixQoWLFjA0KFDeeutt855rgYNGpCWlkZ4eDiNGzdm9erVdOzYkYMHD1ZJIeyNN95g6tSpfPnll7Rt25b169czfvx4fH19efDBByv9elL5luw+RmZ+SSvvK9o2wMOl3LOiRcSOXJwcmDyyI2H+Hry7aC8AX66K5Uh6Pu/d1En/hkVERMRQv21LIMzfHT8PZwa1aWB0HKkBBrQKonfzQJbvTeFIeh6frTjIff2bGR1LaoAyffK5/fbbueWWW5g9ezbfffcd06ZNs00FNZlMtGnThiuuuIJ169bRunXr855rwIAB/Pzzz3Tu3Jnx48fzyCOPMGfOHNavX3/RDRrOZuXKlVx99dUMHToUgCZNmjBr1izWrl1b6deSqlFqamkntfIWqQlMJhOPXN6CRv7uPD13K8UWKwt3JvF/f+/jiStbGR1PRERE6rANsceJP55HQkY+l0YEGB1HagCTycRzw9pw5ZRlWKzwweJ9jOzSiCAfN6OjSTVX5uEGrq6u3HLLLdxyyy0AZGRkkJeXR7169XB2di7zBadNm4bFUjKU97777qNevXqsXLmS4cOHc/fdd5cz/oX16NGDadOmsWfPHlq0aMHmzZtZsWIFb7/99ln3LygooKCgwPY4MzOz0jNJ2R3Lymd3YskU5HqeLvRSK2+RGmVkdBgNfd2555sNNAv24sHLmhsdSUREROqw9NxC9h/LAaBtqC9uzo4GJ5KaokWwN6MvDefr1bHkFpp584/d/G9kR6NjSTVX4Tk+vr6++PqWv1Wug4MDDg6n5syPGjWKUaNGVTTGBT311FNkZmbSqlUrHB0dMZvNvPrqq4wePfqs+0+aNIn//ve/VZZHyic2NZfM/GKaBXkytnsTrbcgUgP1ah7InHt6UM/LRW9sRURExFAb49Jt96Ma+xmWQ2qmRy5vwbxNR8jML2bOhsOM6R5Oh0Z+RseSaqzWVzC+//57ZsyYwcyZM4mJieHLL7/kf//7H19++eVZ93/66afJyMiw3eLj4+2c2D6sVit5hdV/8cfoJgEsfbwfV3cM5Yq2Wm9BpKZq2cCbQC/XUtvi03L5ZfNRgxKJiIhIXRQTd9x2v0u4v4FJpCYK8HThoYEtAGgR7EWxGoXJBdT61awff/xxnnrqKdtouvbt2xMbG8ukSZMYO3bsGfu7urri6up6xvba5sMl+/l501Gm33YJDX3djY5zXh4uTjygKWkitUpGbhHjvljL/mM5xKbmcF//ZphMJqNjiYiISC23IfZU0S2qsYpuUn5juofj4+bEtZ1DNRNLLqjWF91yc3NLTWcFcHR0tK0rVxfN23SEt/7YDcB1H65k+viutGzgbXAqEalLfog5bFtP5X9/7iE+LY9Xrm2HCcjKLyYrv5jM/CIy84tsj7Pyi8gpKOb+AaWL8Et2J/PzpqM0C/aiRZA3LYK9aeTvjoODingiIiJySrHZwub4dAAa+roR4le9Bx9I9eTs6MDI6DCjY0gNUeuLbldddRWvvvoqjRs3pm3btmzcuJG3336b2267zehohunQyI/weh7EpuaSkJHPiI9W8vGtXegRWT2aFFitVv7v731cGxVKI38Po+OISBUY37MJBcUW3vh9FwDfrY9n7sbDFJkvPET/rj6RuDid+jJl7cE05m48UmofN2cHmgWVFOGaB3vTPMiLVg299TtFRESkDjt8PM82HVCj3ETEHkxWq7Xck5DT09OZM2cO+/fv5/HHHycgIICYmBiCg4MJDQ2tipwVlpWVxXPPPcePP/5IcnIyISEh3HTTTTz//PO4uLhc8PjMzEx8fX3JyMjAx8fHDontIyW7gNumr2PL4QwAXBwd+N8NHRneMcTgZPDXjiTu/Go9Lo4OPDm4Fbf3amp0JBGpIj9vPspj32+mebAX24+WrVv0hmcHUu+09eHu/Go9f+1IuuBxvZoF8s0dl5balpVfhLdb2Ttwi4iISM1WZLawMyETRwcTbUPK3xhQ5HRWq5VtRzLYGJ/ODdFhahpWh5S1VlTuotuWLVsYOHAgvr6+HDp0iN27dxMREcGzzz5LXFwcX3311XmPT01N5fnnn2fx4sUkJyefMc0zLS2tPHGqXG0tugHkFhZz34wYFu8+Ztv2nyGtuaN3U8PWVio2W7hiyjLbtLOPb+2iBgoitdyG2OO4ODow8ftNeLs54ePujLebMz5uTni7Odu2+bg54ePmTPfIeqXe0OQXmTlwLIe9yVnsTcpmT1IWe5OziU3N4fS1bcf1aMKLw9vaHlutVn7YcJisgmLG91RxX0RERETK55m5W5m5Ng6AORO6E90kwOBEYi9lrRWVe3rpxIkTGTduHG+++Sbe3qfWARsyZAg333zzBY+/9dZb2bdvH7fffjvBwcFaONtAHi5OfDImmmd/2sa360q6tL66YCdHM/J4bmgbQ9ZD+n79qXWeosP9GdQm2O4ZRMS+TnYO+2ti3wod7+bsSJsQH9qElP5jd3oxbk9SFpc2rVfq+fcX7eXdRfuwYKVJoCf9WwZV7AWIiIiISJ3UoZEvM9eW3F8fe1xFNzlDuYtu69at4+OPPz5je2hoKImJiRc8fvny5axYsYKOHTuW99JSBZwcHZh0XXsa+rrzzsI9AHzxzyEcTCaeG9bGrllyCoptGQCeHtJaRVkRqbBzFeNOKii2Yj4x2PuhWRv55YFehNfztGdEEREREanBopucWhtw/aHjULHvkKUWK3d/W1dXVzIzz1x3Z8+ePdSvX/+Cx7dq1Yq8vLzyXlaqkMlk4qGBzXnz+g44OpgI8HTh1m7hds/x6fKDHMsqAGBwuwa20S8iIlXh0UEtbKNpM/OLufvrDeQWFhucSkRERKrCsj3HuOPL9Uxdsp9DKTlGx5FaIiLQCz+PkvWBN8SmUYEl86WWK3fRbfjw4bz00ksUFRUBJQWbuLg4nnzySa6//voLHv/hhx/yn//8h6VLl5KamkpmZmapmxjnhkvC+HRsNJ+NjaZJoH1HexzLKuDjZfsBcHIw8fgVLe16fRGpexwcTEy+oSOR9Ut+3+1KzOKJOVv0ZklERKQW+md/Cgt3JvHG77vYlZhldBypJRwcTHQ50Qn3eG6RbakkkZPKXXSbPHky2dnZBAUFkZeXR9++fWnWrBne3t68+uqrFzzez8+PzMxMBgwYQFBQEP7+/vj7++Pn54e/v0Y2Ga1/yyA6/6t9dkGxmX3J2VV63XcX7SG30AzAzZc2JqK+V5VeT0QEwNvNmY9vjcbLtWS1hV+3JPDJ8gMGpxIREZHKtjE23XY/KtzPsBxS+3Q5bYrphtjq1RhSjFfuNd18fX3566+/WLFiBVu2bCE7O5uoqCgGDhxYpuNHjx6Ns7MzM2fOVCOFGsBisTLx+80s3X2Mj2/tQs9mgZV+jf3Hspm1tqSRg6eLIw9e1rzSryEici7Ngrx4+4aO3PX1BgBe/20XbRr60qt55f++ExEREfsrLLaw+XA6AGEB7gR5uxkbSGqVS05rnrD+0HFuvKSxgWmkuil30e2kXr160atXr3Ift23bNjZu3EjLlpo+WBN8ueoQ87ckADDui7W8NaIj13QOrdRrpGQV0NDXjcPH85jQN5JAL9dKPb+IyIUMatuABwc0472/92GxwgOzYvj5/l6EBXgYHU2kUu1MyCQlu4DezS+8Dq+ISG2xMyGTgmILgG0qoEhlaR/qi4ujA4VmCxtijxsdR6qZMhXd3nvvvTKf8MEHHzzv89HR0cTHx6voVkOMuqQx/+xLZeHOJIrMVh7+bhNH0vO4t19kpY1SvDSiHose7cu3a+MZGd2oUs4pIlJeDw9swdYjGSzefYyCYgv7j2Wr6Ca1zg8bDvPr1qPc1TuSTo39iNKHTxGpA04vhESpWZtUMjdnR9qF+hATl86BlBxSswuop4EkckKZim7vvPNOqcfHjh0jNzcXPz8/ANLT0/Hw8CAoKOiCRbcHHniAhx56iMcff5z27dvj7Oxc6vkOHTqUI75UNXcXRz66JYrnf97OzDVxODuYmL0hnm1HMnhjRAd83JwvfJIycHVyZGyPJpVyLhGRinBwMDFlVGcenLWRZ4a0pmUDb6MjiVyUrPySplfep/2tbtnAm09XFPDSrzu4vVdTFd1EpE6IiTut6Kbfe1IFopsEsCsxi86N/UjPK1LRTWxM1nK2aZs5cyYffvghn332mW202u7du7nzzju5++67GT169HmPd3A4s3eDyWTCarViMpkwm83liVPlMjMz8fX1JSMjAx8fH6PjGMZqtfLhkv2sOZDKsr0pADQO8OCDm6No38jX4HQiIiJy0qGUHKavPMScDYeZ0DeC+wecWiv1eE4hnV/+C4DOjf348d6eRsUUEbGbHpMWcTQjHw8XR7a8MAgnx3L3ExQ5r6z8ItydHfWzVYeUtVZU7jXdnnvuOebMmVNqemjLli155513GDFixAWLbgcPHizvJaUaMJlM3Ne/GS2Dvdl8OIOMvCLi0nK5fupK/jO0NWO6h5drummR2cLLv+5gbI8mRKpTqYhUcynZBVpvUqo1q9XKqv2pfP7PIRbtSuLkV6pfr47lrj6RuDiVfAjw93QhItCTAyk5bD+SSUGxGVcnRwOTi4hUrYSMPI5m5APQsZGfiiJSJbwraQaY1D7lLrolJCRQXFx8xnaz2UxSUtIFjw8PDy/vJaUaGdgmmPkP9uL+mRvZFJ9OodnCCz9vZ83BVF6/vuzTTb9dG8dXq2KZsSaO54a2ZlzPplWcXESk/AqLLbz063Z+35bILw/0oqGvu9GRRErJLzLz86ajfP7PQXYlZpV6zs3ZgQGtgskrNNuKbgCdG/tzICWHQrOF7UczNdVKRGq1mNh02/2ocD/DcohI3VTuottll13G3XffzaeffkpUVBQAGzZs4J577mHgwIHnPbawsJCffvqJVatWkZiYCECDBg3o0aMHV199NS4uLhV4CWJvjfw9+P7u7rz5+y4+XVEycnHB1kS2Hcnkw9FRtAs9/3TT7IJipizcC4DZYqWT3uyLSDU1+c/dfLM6DoAJ38Tw3V3dcHPWqCAxXmZ+EZ8uO8CMNXGk5hSWeq6BjxtjeoRz0yWN8fc8871V58Z+/BBzGICY2OMquolIrRYV7sek69qzIfa4OjeLXVgsVgrNFr1nFADKPbb2888/p0GDBkRHR+Pq6oqrqytdu3YlODiYTz/99JzH7du3j9atWzN27Fg2btyIxWLBYrGwceNGxowZQ9u2bdm3b99FvRixHxcnB54d1oZpt3bBx62kdhuXlst1H67k69Wx5z122tL9tg8Iwzo0pFOYX1XHFRGpkHv6RRIWUDK6bXN8Oi/M2045l0IVqXQ7jmby35+38/k/h0oV3Do39uP9mzqz/Mn+3Nuv2VkLblB6EfGNcelVHVdExFANfd25qWtj/jeyI90i6hkdR2qxHUczGf/FWjq99Cef/6NltaREuUe61a9fnwULFrBnzx527doFQKtWrWjRosV5j7vnnnto3749GzduPGORuczMTMaMGcN9993HH3/8Ud5IYqBBbRswv6EP98/ayOYT000TM/LOuX9SZj6fLC/5BeTsaOLxK1qec18REaP5ebjw8S3RXDf1H/KLLHy3Pp4OYb6MvlRLJYgxNsenM+bztWTkFRER6El+kZkh7RsyvmcTOpdxxFrLBt54uDiSW2gu1dFPREREKs7FyYHFu48BsOGQ/r5KiXIX3U5q0aLFBQttp/vnn39Yu3btWbs6+Pj48PLLL3PppZdWNI4YKCzAg9l3d+f133ax7WgGjww898/FlIV7yCsq6VB7S7dwwut52iumiEiFtAnx4Y3rO/DQt5sAePHn7bRq4E2X8ABjg0mds+5QGuO/WEd2Qcnaup6ujvz+cB+aBZWvIZGjg4mOjfxYdSCVhIx8EjLytF6hiIjIRYqs74m/hzPHc4vYEHcci8WKg0PZmw1K7VTuotttt9123uc///zzs2738/Pj0KFDtGvX7qzPHzp0CD8/v/LGkWrCxcmB569qQ2Gx5YyOQLsSM2kZ7M2+5Gy+WxcPgLerEw8MaG5EVBGRcru6UyhbDmfw2YqDFJmtTPgmhvkP9CLIx83oaFJHrNyXwu1frrd9cdUtIoDPxl6Cp2vFvj+NCi8pukHJFNOG7VV0E5HaZ0NsGtkFZjqF+eHrru6SUrVMJhNdwgNYuDOJ9NwiDqRk0yzI2+hYYrByv1M7frz0MMmioiK2bdtGeno6AwYMOOdxd9xxB2PGjOG5557jsssuIzg4GICkpCQWLVrEK6+8wgMPPFDeOFLNnN4dDWDL4XSun7qSQW0bkJNfjOXEUkj39I8k4BxrzYiIVEdPD27F9qMZrD6QxrGsAl6Yt533b+58xhcNUvOs3J/CVytjGdsjnG1HMrmzT4TRkc6QmV9ModkCQJ8W9fn4li64u1R8geaoxv6E+LrRubG//h6LSK01bdkB/tiehMkEiyb2JaJ++UYGi5RXdBN/Fu5MAmD9oeMqugkmayWsCG2xWLjnnnuIjIzkiSeeOOd+b7zxBu+++y6JiYmYTCXDLK1WKw0aNODhhx8+77FGyczMxNfXl4yMjLNOjZVzKyg2c/nby4hLyy21vaGvG4sf66duLiJS46RmFzDsveV4uTmTX2Tm7r6R3NJN67vVZDuOZnLjx6vIOjFl0wT88kCvC3biNsK8TUf4bWsi797UCVeni/sbarVabe/FRERqI6vVStfXFnEsqwBvVyc2vzBIU/2kyq0/lMaIj1YBcH1UIybf0NHgRFJVylorqpSiG8Du3bvp168fCQkJF9z34MGDJCYmAtCgQQOaNm1aGRGqhIpuF+f3bYk8PmczWfnFuDg6UGi28NaIDoyMDjM6mohIhSzelcz46esACPRyYfFj/fB205SVmig+LZfrp64kOaug1Paoxn7MmdCjWn44U7FMRKRs4tNy6f3mYgB6Nw/k69u1frhUvfwiMx1e/JNCs4Um9TxY8nh/oyNJFSlrrajS5sTs37+f4uLiMu3btGlTunfvTvfu3at1wU0u3pXtGrDgwd5c2jSAn+/vyXs3dea6qEZGxxIRqbD+rYIY2r4hACnZhXy0dL/BiaQi0nIKGfv5WlvBrVOYL5H1S5r7xMSlM3fjESPj8f26eKb/c/CM7Sq4iYiUzendmbuEl627s8jFcnN2pEOjktHyh1JzOfavL/ak7in3mm4TJ04s9dhqtZKQkMD8+fMZO3ZshYPEx8fzwgsvnLMRg9RcYQEefHd3dwBaNdRoQRGp+Z68shV/7Uii0Gzh0+UHGX1pOCF+Woi+psgtLOa26es4kJIDQER9Tz4f15UdRzO55bM1ALz+204GtQ3Gx4BRjF+tOsTz87YD4OrsyE1dG1fp9fKLzGTmFxHkrcYgIlJ7bIg9VXSLaqyim9hPlyb+rD/x87ch9jhXtmtgcCIxUrlHum3cuLHUbcuWLQBMnjyZKVOmVDhIWloaX375ZYWPFxERsZfG9TwY26NkLbeCYgtv/bHb4ERSHn/tSGJTfDoAQd6ufHVbVwI8XejVPJDBJ94Yp2QXMuWvvXbPNm3ZflvBDeDAsewqu1ZyZj5X/98K2r/4By/9sqPKriMiYoSTI91MJujU2M/YMFKnRIcH2O5vPZJuXBCpFso90m3x4sUVutDPP/983ucPHDhQofOKiIgY4f7+zZm94TDpuUX8uPEI43s2oUMjP6NjSRlc3SmUrPxi/vfnbr68rSuN/D1sz/1naGsW704mv8jCl6sOceMlYbRsUPWdx6xWK+8t2sc7C/fYtt3fvxmPDmpRZdcM8HRhb3I2RWYrG+PSq+w6IiL2lltYzM6ELABaBHkbMmpZ6q6uTQJ48/oORDfxp2mgp9FxxGDlLroNGDCAuXPn4ufnV2p7ZmYm11xzDX///fdZj7vmmmswmUycr2+D1ikREZGawtfDmYcua85/T4wQemX+Tr67q5v+ltUQt3QL56oOIfh6lP4g1sjfg/v6NWPyX3swW6y88PM2Zt1Ztf+/Wq1W3vxjN1OXnFof8LFBLbh/QPMquyaAk6MDHRr5svpAGkfS80jKzCfYR1NMRaTm2xyfgdlS8rkzSuu5iZ35ejhzwyVqHCglyj29dMmSJRQWFp6xPT8/n+XLl5/zuIYNGzJ37lwsFstZbzExMeWNIiIiYqjRl4bbvsFcezCNP3ckGZxIziU5K/+Mbf8uuJ10Z58IGgeUjH5bfSCNX7dcuDN7RVmtVv77y45SBbdnh7au8oLbSZ1PW+do42mLjouI1GSnN1GI0tRSETFQmYtuW7Zssa3ftmPHDtvjLVu2sHHjRj777DNCQ0PPeXyXLl3YsGHDOZ+/0Cg4ERGR6sbFyYGnBreyPZ785279LauGFmxNoM+bi1mwtWzFMzdnR164qg0AnRv7VdnUEIvFyjM/bmX6ykO2ba9c0447ekdUyfXO5vTFxWM0xVREaglfd2faNPTBwaTOpSJirDJPL+3UqRMmkwmTycSAAQPOeN7d3Z3333//nMc//vjj5OTknPP5Zs2aVXi9OBEREaMMahPMpU0DCPRy5ckrW2l6aTWzan8qD3+7iUKzhftmxjBnQo8yfQC7rHUwX97Wld7NAnFwqPz/T80WK6/8uoP5J0bROZjgzREdGdGlUaVf63w6nzYCJCZWI91EpHa4pVs4t3QLJ7ugGE8XR6PjSB1ktlhZtucY6w6lYaWk873UTWUuuh08eBCr1UpERARr166lfv36tudcXFwICgrC0fHcv9B69+593vN7enrSt29f2+PDhw8TEhKCg0O5Z8CKiIjYjclk4svbuuLmrDf11c3OhEzu+mo9hWYLANdHNSrXNKO+LepfeKcKKDZbeHT2ZuZtOkpkfU8cTCZevqYdV3UMqZLrnU+glyuNAzyIS8tl65EMCostuDjpvZeI1A5eruVewlykUjiY4LHZm0nNKcTHzYnHB7Wski/xpPor82+h8PBwACwWS5WFOV2bNm3YtGkTERH2m2IhIiJSESq4VT+Hj+cy9vO1ZBUUA9C/ZX0mXdf+okYimi1WHEwX1/ipyGzh4e822Ua4xaXl8sHNUQxq26DC57xYUY39iEvLpaDYws6ETDqG+RmWRUREpDYwmUxEhfvz144kMvOL2XcsmxbBVd8NXaqfMhXdfv75ZwYPHoyzszM///zzefcdPnx4pQTTmjgiIlJT5RWayS0spp6Xq9FR6qS0nELGfL6W5KwCADqF+fHB6CicHSs+gmv1gVRe/Hk7Ey9vUeECWZHZwoOzNvLbtkQAXBwd+HB0FAPbBFc4V2WICvfnp01HgZLFx1V0E5GaLK/QjLumlEo1EH2i6Aaw/tBxFd3qqDIV3a655hoSExMJCgrimmuuOed+JpMJs9lcWdlERERqFIvFyk+bjvDWH7uJCvfng5ujjI5U5+QWFnPb9HUcOFayjmxEoCefj7sED5eKTzHaEHucUdNWA/DSrzvo06J+hUY3Lt197FTBzcmBj2/pQv9WQRXOVVlOb6YQm5prYBIRkYt3zQf/kFdkpmvTAN4a0UFrrYphopsE2O6vj03j5ksbG5hGjFKmr3wtFgtBQUG2++e6qeAmIiJ1WW6RmdcW7CQhI5/5WxLYoIXp7aqo2Mz9M2LYFJ8OQH1vV768rSsBni4Xdd6oxn70iKwHwOHjeXy0dH+FzjOwTTDPDm2Nq5MDn4yJrhYFN4CWDbz5dEw0G54dyIvD2xodR0SkwjLzi9iTnEVcWi67EjNVcBNDtQv1sa2Tuv6Q3hPWVVopV0REpJJ4uTrxyOUtbI9fmb9DyyXY0T0zYli2NwUAb1cnvhzflbAAj4s+r8lk4r/D2+J0YgHkqUv2E59WsRFhd/SOYNGjfausSUNFODs6MLBNsKZDi0iNtykunZN/dk8fxStiBFcnRzo28gVK1nBNzso3OJEYoUxzLd57770yn/DBBx+scJjT6VsJERGpiW6MDmP6P4fYm5zNxrh05m9NYFgH+3elrO2KzBYcTaZSncAGtW1ATqGZvUlZvHdTZ9qE+FTa9ZoHezOuRxM+XXGQgmILL/+6g2ljos97TH6RmS2HM+jaNKDU9kb+F18IFBGRM8XEnRpN1CVcRTcxXpfwANadGOW24dBxBrdvaHAisbcyFd3eeeedMp3MZDJVWtFNIwNERKQmcnJ04JkhrRk/fR0Ab/y+i8vbBOPqpEWdK8POhExmrz/MvE1H+L+bo+h+YtonwND2DVmwNYElj/XDy8250q/90MDm/LTpKCnZBfy5I4mle46dc8RaXqGZO79az5qDqUwd3cXwZgkiInXB6cs6aKSbVAfRpxV/18eq6FYXlanodvDgwarOcYYdO3YQEqKRASIiUvP0a1mfXs0CWbEvhfi0PL5ceYi7+kQaHavGSssp5OdNR5i94TDbj2bats/eEF+q6Obp6sT08V2rLIe3mzPPDGnFxO83A/Dfn7fz+8N9bOu1nJRbWMzt09ez6kAqAE/8sIVlkf3xcq14M4eqZrVambPhMBvj0zGbrbwxooPRkUREysVisbIpLh0oWdOzkb+7sYFEKD3icv2hNAOTiFEu6t3fydFoF5oKet1115X5nHPnzgUgLCys4sFEREQMZDKZeGZIa4a+vxyrFd7/ex8juoRd9IL+dUmx2cLSPceYvf4wi3YlUWQuPQLexdEBRwOWori2cygz18SxPvY4B1Jy+Pyfg0zoe6qgmlNQzPjp61h7sOSNtberE5+Mia7WBTco+Zl97++9xKfl4ebswCvXtsPZUUv/ikjNsTc5m6yCYqCkAY6WK5LqwN/ThSHtGxDk7Ua3iIALHyC1ToXeTX322We0a9cONzc33NzcaNeuHZ9++uk59/f19bXdfHx8WLRoEevXr7c9v2HDBhYtWoSvr29F4oiIiFQ7bUJ8GNmlEQBZ+cW8t2ivwYlqBqvVyoKtCXSb9De3f7me37cnliq4dWjky8tXt2Xtfy7jrZEd7Z7PZDLx36vbcnIpuQ8W7yPnxIe87IJixn6+9lTBzc2Jr++4tMasK3RyKlZ+kYVdCVkGp6kcVquVjXHHKTJbjI4iIlVM67lJdfXh6C68OLwtV7bT1NK6qNxfuz7//PO8/fbbPPDAA3Tv3h2AVatW8cgjjxAXF8dLL710xjFffPGF7f6TTz7JDTfcwEcffYSjY8n6NmazmXvvvRcfn8pb8FhERMRojw5qyS+bE8grMvNDzGEmDmqBTxWsNVZbWK1WHp+zBQcTpGQX2LYHerlyXVQo10c1omUDbwMTlmgb4svoS8PZl5zNi8Pb4unqRGZ+EeM+X0vMialNvu7OfHP7pbRvVHO+UOwc5se8TUeBkg+vNSn72SzZnczrv+1iV2IWH93ShSvbNTA6kohUodPXc1PRTUSqi3IX3aZOnconn3zCTTfdZNs2fPhwOnTowAMPPHDWotvpPv/8c1asWGEruAE4OjoyceJEevTowVtvvVXeSCIiItVSsI8bE/pGEn88l8cGtVTB7QJmrz/MnA2HAfBydaJ380BGdGlEnxb1q91Ux2eHtcbF0QGTyURGXhFjPl/L5vh0APw8Sgpu7UJrVtEq6rQPqTFxxxnbo4lxYSqByWRiV2LJiL1Za+NUdBOp5bYezgDA2dFE25Ca9ftXRGqvchfdioqKiI6OPmN7ly5dKC4uvuDxxcXF7Nq1i5YtW5bavmvXLiwWDf0XEZHa5cHLmmldmTLYmZDJc/O22R6/fE07ru0camCi8zvZjdZqtXLHl+tsBbcATxe+uf1S2oTUvNH7rRv64OrkQEGxhY0nRuzVVHuSstiblEWQtyvJWQUs23uM+LRcwgI8jI4mIlXk5wd6su1IJnFpObg5q2O4VD+JGflsiD3O4HYNcHDQe8O6otxfG996661MnTr1jO3Tpk1j9OjRFzx+/Pjx3H777bz99tusWLGCFStWMHnyZO644w7Gjx9f3jgiIiLVmgpuF5ZdUMx9M2IoKC758u2Wbo2rdcHtdCaTiXv7NcPF0YF6ni7MurNbjSy4ATg7OtDhxJTSuLTcUlN8a5q/dyXzyvydJGeVvAarFb5bF29wKhGpSq5OjnQJ9+fazo2MjiJyhqfnbqHbpEXcNzOGvcnZRscRO6pQK63PPvuMP//8k27dugGwZs0a4uLiGDNmDBMnTrTt9/bbb59x7P/+9z8aNGjA5MmTSUhIAKBhw4Y8/vjjPProoxWJIyIiUmNk5RcRm5pb46YeVhWr1crTc7dyICUHgLYhPjw7tI3Bqcqnf6sgPr61C4383WkebPyacxcjqrE/6w6VrIsUE3ucQW1r5pTMLYfTbfcdHUyYLVa+Wx/PQwObV7upyiIiUvtFBHrZ7q87lFYt1qgV+yh30W3btm1ERUUBsH//fgACAwMJDAxk27ZT00LO9c2+g4MDTzzxBE888QSZmZkAaqAgIiK1ntVq5evVsczbdITwAE/+N7KjphYAM9bE8cvmksX7vV2d+HB0VI2cFtS/VZDRESpF58an1nXbGJ9eY4tum+NL1nbycHGkd/NA/tiexLGsAhbtTFL3OBERsbsuTU79fd0Qe5xbuoUbmEbsqdxFt8WLF1faxVVsExGRusJkMrFk9zE2xKazITadkdFhdI+sZ3QsQ207ksFLv+ywPX5zRAfC63kamEiiGvvZ7sec1gmwJjmWVcCR9DwA2oWWdJr9Y3sSADPXxqvoJlLLFJstPPL9ZjqE+tI9sp5Gkku11C7E17Zu6vrYNKPjiB3ZfXx9UlISt956KyEhITg5OeHo6FjqJiIiUltdc9o6ZbPX1+31paxWK//5aRuF5pJ13Mb1aMLg9iqGGC3Ix43rokJ5ZGALHh7Ywug4FXL61NJOYX70ahZIWIA7AMtPNFQQkdpjV2IWv2w+yqsLdvLxsgNGxxE5KxcnBzqG+QEQn5ZHUma+sYHEbso90i0/P5/333+fxYsXk5ycfEbH0ZiYmPMeP27cOOLi4njuuedo2LBhlS8w3aRJE2JjY8/Yfu+99/LBBx9U6bVFRERON6hNML7uzmTkFbFgWwIvXt0WHzdno2MZwmQy8eHoKO6fGYPFCs8MaW10JDnh7Rs6GR3homw+nGG736GRLw4OJkZd0pi3/tiN1Qrfrovj8StaGZhQRCpTTNypUbmnj9YVqW6iw/1Ze7BklNv6Q8cZ2kFfNtYF5S663X777fz555+MGDGCrl27lrtotmLFCpYvX06nTp3Ke+kKWbduHWaz2fZ427ZtXH755YwcOdIu1xcRETnJzdmRazqF8OWqWPKLLPy6OYGbL21sdCzDhPq5891d3cnML8LFSYvbS+XYHJ9uu9+xkR8AI6Mb8X9/72Ngm2AG1JL190SkxOlT4buE+59nTxFjRZ+2rtv62DQV3eqIchfdfv31VxYsWEDPnj0rdMGwsDCsVmuFjq2I+vXrl3r8+uuvExkZSd++fe2WQURE5KSR0WF8uapkBPb36+PrdNENSqZbBHq5Gh1Dagmr1WqbXhrg6UIj/5JppUHebqx/diCeruV+6ysi1dyGEyPd3JwdaN1Qa4ZL9RXVuHQzBakbyv21cmhoKN7eFW9vO2XKFJ566ikOHTpU4XNUVGFhId988w233XbbOUfoFRQUkJmZWeomIiJSWdqF+tLmxIeCTfHp7EnKMjiR/WTkFvHiz9vJLig2OopcgNliZcfRTH7ceNjoKOUSn5bH8dwiADo28i31fk8FN5HaJzkrn/i0ksYpHUL9cHbUqGmpvvw8XGge5AXA9qOZ5Bbq/VBdUO7fSpMnT+bJJ5886zppZXHjjTeyZMkSIiMj8fb2JiAgoNStKv3000+kp6czbty4c+4zadIkfH19bbewsLAqzSQiInXPDdGNbPfrSkMFq9XKo7M3M33lIYa/v4K9dajYWBON+XwNQ95bziPfbSY1u8DoOGVWbLFwdacQmtTzsC1YLSK1V0xsuu1+lKaWSg0Q3SQAVycHuoT7k5pdaHQcsYNyf+UXHR1Nfn4+EREReHh44OxcegHotLTzt7+dMmVKeS9ZaT777DMGDx5MSEjIOfd5+umnmThxou1xZmamCm8iIlKpru4UymsLdlFotjA35ghPXNmq1n87/+nygyzcmQTA8dxCjTqq5to09OGffakAbIxLZ2CbYIMTlU1EfS/eHdUZ4JzLmeQXmVmwNYEis4UbL6nb07tFarqNaqIgNcyTV7bkv8Pbai3bOqTc73hvuukmjhw5wmuvvUZwcHC5GymMHTu2vJesFLGxsSxcuJC5c+eedz9XV1dcXbW2jIiIVB1/TxcubxvM/C0JpOYUsnT3sRpT1KiIDbFpvP77Ltvjt2/sRIifu4GJ5EJK1p05CJR0BqyJP59ne4+aX2Sm1xt/k5JdSKCXK9dFNar1BW+R2uz0dbE00k1qAj8PF6MjiJ2Vu+i2cuVKVq1aRceOHct8TGZmJj4+Prb753Nyv8r2xRdfEBQUxNChQ6vk/CIiIuVx0yWNcTCZuCG6ET0iA42OU2XScgq5f+ZGzJaSUUf39oukf0t1j6zuTv/wGhNXexZ7dnN25JImAfy2LZGU7AIW7khicHt1jxOpiQqLLWw5kgFAeD0PNeURkWqp3EW3Vq1akZeXV65j/P39SUhIICgoCD8/v7N+82i1WjGZTJjN5vJGuiCLxcIXX3zB2LFjcXLSdBYRETFer+aB9Gpee4ttABaLlYnfbyIhIx+Ark0DmHh5C4NTSVkE+7gR4uvG0Yx8thzOoNhswamajwjLLSzGhAl3F8fz7nfzpY35bVsiADPXxqnoJlJDmS1Wnh3ampjY4wT7uhkdR6TcrFYrxRarRlzXcuWuQL3++us8+uijvPrqq7Rv3/6MNd3ONlLt77//tjVJ+Pvvv8s9JfViLVy4kLi4OG677Ta7XldERKQum7p0P0t2HwOgnqcL79/UudoXbuSUzuH+HN2SQG6hmd1JWbQN8TU60nn9ujmBp3/cSvMgL54a3Ip+5xhR2TMykMYBHsSl5bJ8bwpxqbk0rudh57QicrHcXRwZ070JY7o3MTqKSLlsOZzO+3/vIyb2OA9f3oJbu4UbHUmqULmLbldeeSUAl112Want5xup1rdvX9v9fv36lfeSF23QoEHnXExXREREKt+aA6lM/nM3ACYTvDuqM8E+GolQk0Q19mf+lgQAYuLSq33RbfPhdMwWK7sSs3BzPvdoNwcHE6O6hvHm7yU/n7PWxfHkla3sFVNEROo4s8XKXztKmkttOJSmolstV+6i2+LFiy/qgn369KFfv3707duXnj174uamN+AiIlJ35ReZ+WN7It+vj2fi5S3pUgsWgj6ansc7C/dwYhk3HhzQvNZPpa2NTu8EuDHueLX/ULD5cDpQUuRtF3r+AuHILmG8/eceii1WZq+P55GBLdRJTkRE7KJtiC9uzg7kF1lYH1t71k2Vsyt30e30UWsVMWjQIJYtW8bbb79NcXEx0dHRpYpwHh4a3i8iInXHgq0JTPx+MwBh/vE1vuiWkVfEuC/Wsicpm57N6uHk4MCDlzU3OpZUQJsQH1wcHSg0W9gYl250nPPKLzKzKyELgGb1vfByPf9b3PrergxqG8yCrYmkZBeycGcSQ7S2m0iNsvpAKk0DPQnydrX78kUiF8PFyYGOjfxYczCNw8fzSMzIp4HWJay1KvyVXm5uLrt27WLLli2lbhfy7LPP8ueff5Kens7ixYsZNmwY69evZ+jQobZ130REROqKK9s1sBUIftl8lNzCYoMTVVxBsZm7vlrPnqRsAA4fz2PKqE44OujDUE3k6uRIu1AfAr1caRHsRZHZYnSkc9qRkEnxiaGVHcP8ynTMzV1PjdybuSauKmKJSBXJLihm1LTVXPraIsZ8vtboOCLlFt3k1Jes62PTDEwiVa3cI92OHTvG+PHj+e233876fFm7jx44cICtW7eyefNmtmzZgre3N3369ClvHBERkRrNw8WJqzo2ZNbaeHIKzSzYmsiILo2MjlVuFouVx2ZvYc3BkjeOAZ4ufDm+K/4eLgYnk4sx/baueLs6VftRJFvi0233OzYq29pzPSLrEV7Pg9jUXFYdSCU5K58gb400EKkJ9iZl2e438nc3MIlIxUSHBwD7AVh3MI1hHUKMDSRVptwj3R5++GHS09NZs2YN7u7u/P7773z55Zc0b96cn3/++YLH33zzzYSGhtKjRw9+//13unXrxm+//UZKSgo//vhjhV6EiIhITTYyOsx2//v18QYmqbg3ft/FL5uPAuDm7MBnY6NpEuhpcCq5WD5uztW+4Aaw+XCG7X5ZR7o5OJiY0DeSBwc0Y+nj/VRwE6lB9p4YUQ3QPMjbwCQiFdO5sR+9mtWjbYgPG+K0rlttVu6Rbn///Tfz5s0jOjoaBwcHwsPDufzyy/Hx8WHSpEkMHTr0vMd/++23BAYGcscddzBgwAB69eqlddxERKRO6xzmR7MgL/YlZ7P2YBoHU3JoWoMKVl+vjuXjZQcAcDDBBzdH0blxzV6bTmqWk00UXBwdaNXAp8zH3dS1cRUlEpGqtPu0kW4tglV0k5rHz8OFrPxith/NBNBo61qs3CPdcnJyCAoKAsDf359jx44B0L59e2JiYi54fGpqKp9++imFhYU8/fTTBAYG0qNHD5555hn+/PPP8sYRERGp8UwmEzdEn5pSOmdDzRrt1q1pAKF+JdN7Xr6mHZe1DjY4kVSFwmILlpMtacshNjWHt/7YhdVa/mPLIiOviAPHcgBoHeKjLqQidcCeUkU3LwOTiFTc6Z3d/9mXYmASqUrlflfSsmVLdu/eDUDHjh35+OOPOXLkCB999BENG16465O/vz/Dhw/n7bffZsOGDWzZsoUWLVrw1ltvMXjw4PK/AhERkVrgms6htoYDczYcxlyB4oZRmgd7M/feHrx8TTtGXxp+4QOkRvlx42FGTF1J+xf/KDW6pCzi03IZOHkpHyzez03TVnPrZ2sqPd/pH77Lup7buVSkqCgi9ndyeqmvuzP1vV0NTiNSMb2b17fdX75HRbfaqtzTSx966CESEhIAeOGFF7jyyiuZMWMGLi4uTJ8+/YLHp6amsnTpUpYsWcKSJUvYsWMHfn5+XHXVVfTt27fcL0BERKQ2CPJ2o3/LIBbuTCIps4Ble4/Rv2WQ0bHKLNjHjVu7qeBWG6VmF7I+tmS9mZi447RuWPbpm2EBHgxoHcQf25NYfaLJRnxaLmEBlbe0yCVNAtj8/CC2HsmgnlfFGnccSc/ju7VxzN5wmFl3dtN6hCLVWEZeEYmZ+QC0DPauEetOipxNVGN/PFwcyS00s3xfClarVT/PtVC5R7rdcsstjBs3DoAuXboQGxvLunXriI+P58Ybb7zg8UFBQdxzzz0cPXqUO++8k40bN5KSksLcuXN56KGHyv0CREREaovTp5huPq0bY3WTnJXPpAU7KTJbjI4idnD6+nwb49LPu+/OhMwzppE+O7QN3SICbI/nb02o1HwAvh7O9GoeWK6C4Ol+2XyU9/7eR0JGPt+uq1nTu0XqmtM7lzbX1FKpwVycHOgWUQ+AY1kF5R5NLjXDRS964eHhQVRUFIGBgaW2+/j4cODAgTP237JlC0lJScyZM4cHHniA9u3bn/W8//zzDwUFBRcbT0REpMbo3yqIxwa1YPkT/Xl4YAuj45xVdkEx479Yx8fLDnDb9HVkFxQbHUmqWNsQH5wdS755jzlHh7XkzHwmfr+Jwe8u5+cTXWxPCgvw4I3rO9geL6iCotvFGtGlke01ztkQT2GxCsoi1dWe0zqXqomC1HS9mp2qo6zYqymmtVGVrTR7rsVy27ZtW6bjBw8ezJEjRyozkoiISLXm7OjA/QOaV+rUu8pUZLZw74wYW6etA8dyyFXRrdZzc3akbUjJWmkHjuWQnltoe66g2MyHS/bR/39LmBtT8r7t9d92kVtY+ucivJ4n7UJLRqFtOZxBXGqundKXTaCXK4PaNgAgJbuQv3YkGZxIRM4lPa8QF8eSj7Ea6SY1XZ8Wp4puy1R0q5WqbXunqupwJSIiIuVntVp5eu5Wlu0p6Vru6+7Ml7ddQpCP2tvXBVH/mmJqtVr5c3sig95Zxpu/7yan0AyAj5sTd/eJwNnxzLeYQ9qfarhVWVNMV+1P5ck5W5ixJpaj6XkXda7RXRvb7s9cG3ux0USkitzbrxk7XrqCRY/2pXOY/4UPEKnGIut70eDEe6m1B1PJLzIbnEgqW7UtuomIiNR1Fou12kzffOevPczZcBgoWYPk07HRNAvStJ66onNjP9v9hTuTGPP5Wu76egOxJ0asOZjglm6NWfJ4f8b1bHrWotvQ04pulTXF9J99KXy3Pp7//LjtotdB7BZRjyb1PE6cN5VDKTmVkFBEqoKTowOR9b1wd3E0OorIRTGZTPRuXjLaLb/IwtYjGQYnksqmopuIiEg1k5FbxNt/7aH3m4t547ddRsdh1to43vt7HwAmE7x7YycuaRJwgaOkNokKPzWaZMaaOJafNgWmW0QA8x/szSvXtCfA89zdQ0+fYrr1SOVMMd18ON12v2OY30Wdy8HBxE2njXabtS7uos4nIiJSFqO6hvHmiA6senqA3l/VQlVWdFOrWxERkYpxcIBpy/ZzJD2PeZuOGDrV4O9dSTz70zbb4+eGtmHwaSOWpG4I8XUj2McVh9Pe3oX6uTN1dBSz7uxW5q6hQ9uH2O5f7BRTq9VqG90W6OVKQ9+Ln+p8/ekNFdYfVkMFERGpcl3CA7ghOoyGvu5GR5EqYPdGCmWlop2IiNRV3m7OtvWvMvOL+WN7oiE5ftuawH0zNmK2lPxNv7N3U27r1dSQLGIsk8nEt3d1Z8nj/Qj0cuHRy1uw6NG+DG7fsFzv2U6fYrruUNpFZTqUmktmfsn0605hvpXy3jHQy5UrTjRUSM0p5Pft1a/Tqkhd9uuWo9z99Xom/7lbU8BFpEaosqLbb7/9RmhoKAA///wzRUVF5TpejRRERKQuuyE6zHb/5Fpq9pJdUMzz87Zxz4wYQvxKRg8N69CQpwe3tmsOqV6aBnrSOMCTFU8O4IHLmuPmXP61lBrX8+CZIa2Ye28PPh0TfVF5tpw2tbRDI7+LOtfpbu7aGJMJ2jT04b1F+87oxCoixll7MI0/tifx/t/7SMrMNzqOiMgFOZVlp4kTJ5b5hG+//TYAvXr1sm279tprSUxMpH79+jg6OpKQkEBQUNB5z5OVlVXma4qIiNQ2lzYNILyeB7GpuazYl8Lh47k08vewy7VNwMIdSQBk5hVxX/9IHrysOQ4OGoUuVKjYdrq7+kRWSo5NpzVOuNj13E7XPbIed/WO4ONlBwB4Yd523hrZsdLOLyIVtyfp1GfEFsFq5iO1R5HZwoq9KSzfm4K3mxOPXN7C6EhSScpUdNu4cWOpxzExMRQXF9OyZUsA9uzZg6OjI126dDnr8fXr12f16tVcddVVWK1WTR0VERG5AJPJxMgujfjfn3uwWuGHDUd4aGBzu1zb09WJ569qwyPfbeaO3hHc1uvs3ShFjLTl8KkObx1CfSvtvCaTiRsvCePr1bHkFpqZveEw3SPrcV1Uo0q7hohUzN6kbKBkKrj/eRq3iNQ0ZouVe2ZsIL/IQgMfNx4e2Fx1k1qiTO+gFy9ebLtdddVV9O3bl8OHDxMTE0NMTAzx8fH079+foUOHnvX4CRMmcPXVV+Po6IjJZKJBgwY4Ojqe9SYiIiIlru/SiJPvt2ZviMdiqfylF3IKipn0207i00p3kryibQOWPdGfu/tGquAmVaoiS4oUmS1sO1JSdAuv51HpH74j6nvx2rXtbY+f/Wkb+49lV+o1RKR8UrILSM0pBKBFsJfBaUQql5uzI12b1gMgMTNff3NqkTKNdDvd5MmT+fPPP/H3P9U63t/fn1deeYVBgwbx6KOPnnHMiy++yKhRo9i3bx/Dhw/niy++wM/P76KCi4iI1HYNfd3p07w+S/cc4/DxPFYfSKVHs8BKObfVauX3bYm89OsOEjLy2Z+czadjL7E9bzKZqO/tWinXEvm39NxC5sYcYcHWBAa2CWZC3/JNOd2TlEXBic6ilbme2+mu6RzKyv0pfL/+MLmFZu6fuZEf7+1x0dNrRaRiNLVUarvezQJZtucYAMv3ptAsSD/ntUG5i26ZmZkcO3bsjO3Hjh077zpsrVq1olWrVrzwwguMHDkSDw/7rEsjIiJSk90QHcbSE2/Avl8fXylFt0MpOTz/83bbGzuAZXtTOJiSQ9NAz4s+v8iFZOYV89KvOwDILzaXu+gW4OnC41e0ZHN8Or0rqRB9Ni8Ob0tMXDr7krPZmZDJq/N38vI17arseiJybienloKKblI79W4RCAtK7i/fm8L4nuoYXxuUu+h27bXXMn78eCZPnkzXrl0BWLNmDY8//jjXXXfdBY9/4YUXgJIi3e7duwFo2bIl9evXL28UERGRWm9gmyD8PJwxW6y4ODmQnJVPoKdrhZoa5BeZmbpkP1OX7qfwxCghgL4t6vPf4W1pooKb2Enjeh60D/Vl65EMth3JJDY1h/B6Zf/5a+jrzn39m1VhwhIeLk58cHMUw/9vBQXFFr5eHUv3yHoMad+wyq8tIqWVHumm6aVS+7QM9qa+tyvHsgpYfSCVwmILLk5a4qOmK3fR7aOPPuKxxx7j5ptvpqioqOQkTk7cfvvtvPXWWxc8Pjc3l/vvv5+vv/4as9kMgKOjI2PGjOH999/XCDgREZHTuDo58vVtl9I82Isxn62l66uLcHIwEezjRrCPKw193Qn2caOhrxvBviX/jQj0pJ5X6amhi3cn88K87cSdtnZbQ183XriqDVe0baDFesXuhnZoyNYT67LN35rAvf2qvohWES0bePPf4W15au5WAJ6cs4X2ob6EBeg9q4g9nT7SrblGukktZDKZ6N0skLkbj5BbaCYm7jjdIuoZHUsuUrnLph4eHnz44YekpqayceNGNm7cSFpaGh9++CGenhf+hvKRRx5h6dKl/Pzzz6Snp5Oens68efNYunTpWdeDExERqevaN/LFzdmRxMx8AIotVo6k5xETl878rQl8/s9BXl2wkwdnbWTkR6v4dl18qeOfn7eN8V+ssxXcnBxM3N0ngoUT+3Jlu4YquIkhhp42Wmz+lgQDk1zYjZeEMbxjCACuzo4kZ+UbnEikbrFarew+MdIt2McVX3dngxOJVI1ezU8tmbBib4qBSaSylHuk20menp506NCh3Mf98MMPzJkzh379+tm2DRkyBHd3d2644QamTp1a0UgiIiK12oBWQcSn5ZKQkU9SZr6ti9u/NfBxK/W4W0QAX62KBaBr0wBeuaad1sMRw4UFeNChkS9bDmew/WjZp5gmZeaTnFlAywbedpt2YzKZePXadrg7O/LYFS3VZETEzswWK49d0ZK9SVm4q5mJ1GK9TlundPneYzx2RUsD00hlKHfRLScnh9dff51FixaRnJyMxWIp9fyBAwfOe3xubi7BwcFnbA8KCiI3N/csR4iIiAiULOp+uoJiM8mZBSRk5JOYmU9iRh6JGQW0Df3/9u48Luo6/wP4awYYhmtmQG4BQRE5VMD7Fo80r7JLszWPymxXwzyy9GeRbZu2raWl6266oVZ2mO7mZlYeiHceHN4KKCrKrTDcx8z39wcyC4FyOHy/M/B6Ph7zcOY73/l+XtTHL/Lmc6hqnRfRxRVT+nijj58TJoa158g2Mhlju3ngTFrTppj+N/E23tt1EQpLOT55NgyPdhVnfTUHpRU+eLrpv3AmoodnaSHH8/06SB2DqMW5qpQIdHfApYwCnLmVj7zicmhsFVLHoofQ5KLbSy+9hNjYWDz//PPw8Gj6lJT+/fsjKioKW7ZsgVJZ9Zv4kpISLF++HP37929qHCIiojbL2tIC3k62Da4tpbS0wIonWSwg0zOumwdW7r4EoGqKaWOKbtVFuvJKPbwcpV1XTRAEFJRVQqXkVDciIjKOZ3p5Iz2vBIM6O8NGwZGd5q7JRbfdu3dj165dGDhwYLMaXLNmDUaPHg0vLy+EhoYCABITE6FUKvHLL78065pERER0f83Z6ZRIDN5Otgj1UiPx3hTT1JyiBnfRPZOWBwCwtpSji7t006TvFpXj9e8TkV9Sga9n9YOlBXeYIyKih/fiID+pI5ARNflfB46OjnBycmp2g127dkVSUhJWrFiBsLAwhIWFYeXKlUhKSkJISEjDFyAiIiKiVmPsvQ0V5DIg/ubdB56bV1yO1Nyq5UhCPFWwkqjQJQgCXv7iFPZezMLJ1LtYvTdJkhxEbcXZtHzkFJZJHYOIqMmaPNLtz3/+M95++21s3rwZtrbNG9Jva2uLWbNmPfCccePGYePGjfDwEGedDiIiIiIS34RQT9hZW+LRru5wtn/wBgXVU0sBoLuXpoWT3Z9MJsObY4Iw6Z/HoNMLWHcgGf06tqu16xwRGYcgCHhu43EUlFYixFOFXZGDpY5ERNRoTS66rVq1CikpKXBzc4Ovry+srGqvYREXF2eUYAcPHkRJSYlRrkVEREREpslTY4OpjVwgPfFmnuF5mLemZQI1Us8Ojnh9dBes3H0JggC89m0Cfpo3CK4OyoY/TESNlqEtRUFpJQBw52BqU9LuFuNwUg48NTYYEuAidRxqpiYX3SZOnNgCMYiIiIiIHiyx1kg3tYRJqrw8uCOOpeQi9ko2cgrLMP/bBGx5oS8suI4ikdFcySw0PA9wk24dRyIxXc4owOjVBwEAjwS7sehmxppcdIuKimqJHERERERE0OuFejf/EAQBifc2UVApLeHb7sEbLohBLpfho0mhGPvJIWRqy3AkORfrDyRj7vDOUkcjajWSMgsMzzu72kuYhEg8nV3t0c5OgdyichxPyUWFTi/ZOqb0cPh/jYiIiIgkdzYtH2//cA59V+zDtZyiOu9naEuRXVC1kHp3L43J7Mrbzt4aa54NR3Wcj/ZcwYlrd6QNRdSKXKlRdONIN2or5HIZBvpXrRNaUFZZa3kFMi+NKro5OTkhJycHwP92L73fg4iIiIioqY5dzcGWY9eRXVCGn86m13k/Pb8UHuqq9dJCvaWfWlpTv47tEDmianSbXgBe2nwS/4xNwfXcusVDImqamtNL/TnSjdqQmpvzHErKkTAJPYxGTS/9+OOP4eDgYHguk5nGbxaJiIiIqHUY09UD7/90CQDw45l0zBnmX+v9Hj6OOLZkBLIKSqWI16BXh3fG8au5uJ5ThPzSSqzYfQkrdl9CZ1d7jAx2w8ggN4R5a7jeG1ETCIKA5KyqopuXow3srJu8OhKR2Rpcq+iWjfmPBEiYhpqrUXet6dOnG57PmDHjoRo8ePAgBgwYAEvL2k1XVlbi6NGjGDJkCABg6dKlHDlHRERE1EZ4O9ki1FuDxJt5uJiuxdXsQnR0qTuqxVR3B7WQy/DplB44k5aHFzefMhxPyipEUlYh1h9IQTs7BYYHumJksBsGd3aGrYIFBKIHuZ1fisKyqp1Lu3BqKbUxHmob+LvaIzmrEIlp+cgvqYDaxkrqWNRETV7Tbdq0aYiOjkZKSkqzGhw2bBju3Km7zkV+fj6GDRtmeL1kyRJoNJpmtUFERERE5mdcN3fD8/qmmJo6FwdrDA90xd4FQ/DGo4Ho2cERNSeI5BaVY9vpNMz+4jTC3t2DtLvF0oUlMgM113PrzKIbtUHVo910egHHUnIlTkPN0eSim0KhwIoVK9C5c2d4e3tj6tSp2LhxI5KSkhr1eUEQ6p2empubCzs76XehIiIiIiJpjO3mYXi+62yGhEmaTyaTwd/VAX+M6ITtfxyAk/83Eh8+3R2jQ9xgY2VhOM/VwRrtNTa1PnssJRcnruWirFIndmwik5SlLYXlvSnZAW5cz43anppTTA8nZ0uYhJqryWPaN27cCAC4desWDh48iNjYWKxatQqzZ8+Gh4cH0tLS6v3ck08+CaDqHyIzZsyAtbW14T2dToczZ85gwIABzfkaiIiIiKgV8HKsf4rpzsTb+NfhawjzUmNKXx8EuqukjtpozvbWeKaXN57p5Y3SCh2OpeRiz8VMuKuUdX4R/Y/YFMReyYbCQo5gTxXCfTTo4eOIcB8N2mtsuK4ytTmTe/vgiXAvXMspgpvKuuEPELUyff3awcpChgqdwM0UzFSzF5JwdHREu3bt4OjoCI1GA0tLS7i4uNz3fLW6apcpQRDg4OAAG5v//WZPoVCgX79+mDVrVnPjEBEREVErML6bBxJv5gGommI6d3hnnE69g8SbeUi8mYdHgt0B9wdfw1QprSwwLNAVwwJd67yXpS1FpU4PACjX6ZFwMw8JN/MQfSQVQNXU1R4+GoT7OCLcW4M+fk4swlGboLCUo4s7p5ZS22RnbYmB/s7QC8Bgf2fo9AI35DEzMkEQhKZ8YOnSpThw4ADi4+MRFBSEoUOHIiIiAkOGDIGjo2ODn1++fDkWLVpkNlNJtVot1Go18vPzoVKZz29ViYiIiMxR2t1iDPogBgAQ5KHC7nmDMXHdESTcK8QlRo1qlQtJ55dU4OCVbBy4nI34m3dxNbvovue6OFjjxNIRtYpuWdpSqGysoKwxhZWIiMzf/ZboImk1tlbU5JFuK1euhIuLC6KiovDkk08iIKBp29ZGRUU1tUkiIiIiaiO8HG0R5q1Bws08ZGlLkaUtxYXbWgBAR2e7VllwAwC1jRUmhHpiQqgnACCvuBwJN/MQdyMP8TfuIuFmHgpKq3Zx7OGjqfMD2NJ/n8Pei5lQKS3hplLCVWUNNwclXFVKuDpYG455OdrAQ21Tp30iIjJNLLiZtyYX3eLj4xEbG4sDBw5g1apVUCgUhtFuERERDRbhMjMzsWjRIuzbtw9ZWVn4/UA7nY4LxxIRERG1ZYtGdYFcBvTxc8LF9AKU35t22d1LLXEy8WhsFYjo4oqILlVTUfV6AVdzChF3PQ9uamWtc8sr9SgsqwAAaEsroS0tRFJWYb3XHRXshs+m9ap17G5xOaws5LC3bvbKM0RG99vVXGw5dh2d3ewxpqsHp5gSkVlq8nfW0NBQhIaGIjIyEgCQmJiIjz/+GHPmzIFer2+waDZjxgzcuHEDb731Fjw8PFi1JSIiIqJaBtXYrS0hLc/wvLuXRvwwJkIur9oV1d+1buEhr6Qc3b000OkFZGrLkFVQitIKfb3XcVPVLdi9ujUOeSUViJ7RBy4OXKyeTEPcjTzsOpsOnAX8nO1YdKM2r1KnR2JaPtzVyjq7X5PpanLRTRAExMfH48CBAzhw4AAOHz4MrVaL7t27Y+jQoQ1+/vDhwzh06BDCwsKak7dZbt26hTfeeAO7d+9GcXEx/P39ER0djV69ejX8YSIiIiKSzJl7a7kBQKi3RrIcpszVQYmlY4MMrwVBgLa0EtkFpcjUliFTW4qsgqo/+/o51frsO/89j8PJuQCAp9YfxZYX+sDX2TzWXqbW7UpmgeF553qKzURtyaGkbPzpqzgUlFZiwSMBiBzRWepI1EhNLro5OTmhsLAQoaGhGDp0KGbNmoXBgwdDo9E06vPe3t51ppS2pLt372LgwIEYNmwYdu/eDRcXFyQlJTVq0wciIiIiklbivZFulnIZQjy5qVVjyGQyqG2soLaxqndkXE3T+3dAzKUspOeX4sadYjy1/iiiZ/Zu06MKyTRUF93kMqCjCwvB1Lb5OdsZ1vU8nJTDopsZaXLR7csvv8TgwYObvZPn6tWr8eabb+Kf//wnfH19m3WNpvjggw/g7e2N6OhowzE/P78Wb5eIiIiImk8QBGw5moormVVrkwW4OXBnzhbQxV2FHX8agOmfn8CVzELkFpXj2c+O4x9Te2JIgIvU8aiN0ukFJN9bl9C3nR3/7lOb5+VoCz9nO1zLKULcjbsoLKvkOpxmQt7UD4wbN67ZBTcAmDx5Mg4cOIBOnTrBwcEBTk5OtR7GtnPnTvTq1QvPPPMMXF1dER4ejg0bNtz3/LKyMmi12loPIiIiIhKXTCbDF7/dMLz240iXFuOhtsG22QPQx7fq3+LF5Tq8sOkk/h2fJnEyaqtu3ilGWWXVuoQBbpxaSgQAg++td1qpF3A8JVfiNNRYopdGV69eLWp7V69exfr167FgwQIsXboUJ0+eRGRkJBQKBaZPn17n/BUrVmD58uWiZiQiIiKiup7v3wEHL2fD0c4K47t5Sh2nVVPbWmHLi30w75t4/HI+E5V6AfO/TUR2QRleHtJJ6njUxlyusZ5bgJu9hEmITMcgf2dsOXYdAHA4OQcjg90kTkSNIRPEXGBNAgqFAr169cLRo0cNxyIjI3Hy5EkcO3aszvllZWUoKyszvNZqtfD29kZ+fv5DjfAjIiIiIjJ1Or2AqJ3n8OXx/40yXPVMKJ7q6SVhKmpr1u5Pwt9+vQIA+HRKOCaEsuhOVFBagbB390CnF9DRxQ77F0ZIHalN02q1UKvVDdaKmjy91BhSUlKwbNkyTJkyBVlZWQCA3bt34/z580Zvy8PDA8HBwbWOBQUF4caNG/Web21tDZVKVetBRERERNQWWMhl+PPjXbHwkQAAQB8/J4zr7iFxKmprqtdyBDi9lKiag9IK4fd28b6aXYRbeSXSBqJGEb3oFhsbi27duuG3337Djh07UFhYdUNNTExEVFSU0dsbOHAgLl++XOvYlStX0KFDB6O3RURERERk7mQyGV4d0RlrnwvHhud7cRF7El31zqWWchn8nLmeI1G1wZ3/t8HN4aRsCZNQY4ledHvzzTfx3nvvYc+ePVAoFIbjw4cPx/Hjx43e3vz583H8+HG8//77SE5OxtatW/HZZ59hzpw5Rm+LiIiIiKi1GN/dE2pbq1rHbt4pRlZBqUSJqK14vn8HPNfXB+O7e0BhKcnkLCKTNOjeZgoAcCgpR8Ik1Fiib6Rw9uxZbN26tc5xV1dX5OQYv9P07t0b//73v7FkyRK8++678PPzw+rVq/GHP/zB6G0REREREbVWOYVleP5fv0EnCNjyQl+OQKIW84e+nJVEVJ9QLzUclJawt7aEh1opdRxqBNGLbhqNBunp6fDz86t1PD4+Hu3bt2+RNsePH4/x48e3yLWJiIiIiNqCt/5zDqm5xQCAp9cfxeczeiP03vpCRETU8iwt5Ni7YChcHaxx9lY+LqZrEeTBdehNmehjdZ999lm88cYbyMjIgEwmg16vx5EjR7Bo0SJMmzZN7DhERERERNQIURNCEOhetah9blE5pmw4jsOc3kREJCo3lRIp2UWY/vkJTP7nMZxMvSN1JHoA0Ytu77//PgIDA+Ht7Y3CwkIEBwdjyJAhGDBgAJYtWyZ2HCIiIiIiagR3tRLfzu6PPn5OAAC5DNh9Lh1pd4slTkatSXJWIfKKy6WOQWTSVv16GXeLK6AtrcTUjb9h/6VMqSPRfcgEQRCkaPjGjRs4d+4cCgsLER4ejs6dO0sRo0FarRZqtRr5+flQqThsk4iIiIjattIKHV7ecgpn0vKRV1KBx8M8sebZcKljUSsx6uNYXMksRHuNDQ4tHga5XCZ1JCKTU1RWiVe+PG3YTMFCLsOHT3fHkz28JE7WdjS2ViTZVjA+Pj4YO3YsJk2aZLIFNyIiIiIiqk1pZYFPn+sB2b1ayA8Jt5FwM0/STNQ6lFfqcTW7CABgb23JghvRfdhZW2Lj9F4Y390DAKDTC1jwXSI2HroqcTL6PdE3UtDpdNi0aRP27duHrKws6PX6Wu/v379f7EhERERERNQEahsrvDYyAFE7zwMA3t91Ed/O7geZjEUSar7U3CJU6qsmYnV2s5c4DZFps7a0wJpnw+Foq8AXx68DAN7bdRF3isrx+uguvB+bCNFHus2bNw/z5s2DTqdD165dERoaWutBRERERESm77m+PujobAcAOJF6B7+c55pC9HCuZBYYnndxc5AwCZF5sJDL8O7jIXht5P9mD/79QAqW7DiLSp3+AZ8ksYg+0u2bb77Bd999h7Fjx4rdNBERERERGYmVhRxvjgnEy1+cBgCs3H0RwwNdobCUbAUbMnNXMgsNzzuz6EbUKDKZDK+NDEA7OwXe3nkeggB8c/Imxnf3xKDOzlLHa/NE/46oUCjg7+8vdrNERERERGRkjwS7oe+93UxTc4vx1W/XJU5E5iypxki3AE4vJWqS5/v74pNnw2FlIcPSsYEsuJkI0YtuCxcuxJo1ayDRpqlERERERGQkMpkM/zcuyPB6zb4k5BdXSJiIzFn19FKFpRwd2tlJnIbI/EwI9cSv84fi5SGdpI5C94g+vfTw4cOIiYnB7t27ERISAisrq1rv79ixQ+xIRERERETUTN29NHgivD3+HX8LecUVWHcgGUvHBjX8QaIayip1SM0tBgB0crGHBXcuJWoWP+e6Beufz6UjxFMNbyfbZl+3vFIPnV4PSws5rCy4jEBjiV5002g0eOKJJ8RuloiIiIiIWsii0V3w09l0WMplcLZXSB2HzNDV7CLo7u1cyqmlRMYTcykLc7fGw8lOgS0v9kGgu+qB55eU63ApQwu5TIZQb43huIVchk1Hr+ObEzfx5phAPBLsxh1SG0H0olt0dLTYTRIRERERUQtqr7HBp1PCEe7jCBcHa6njkBlKu1sCuQzQC0AAN1EgMgq9XsBHe66gUi8gq6AMk/5xDJ/P6I1evlVrceYUluHCbS0upGtx4bYW52/n41pOEfQCMCLQFf+a0ft/1xIEbD56HbfySvDyF6fRx9cJS8cFIaxGYY7qkgkSLa6WnZ2Ny5cvAwC6dOkCFxcXKWI0SKvVQq1WIz8/HyrVgyvCRERERERE1DylFTqkZBfCyU4BD7WN1HGIWoW7ReWYsekkEm/mAQAs5TKEeKqQoS1Fprbsvp/zUCtxbMkIw+ssbSle/uI0Eu5dp9pjoZ54fXSXh5q6ao4aWysSvehWVFSEV199FVu2bIFerwcAWFhYYNq0afj0009ha2ta/6NYdCMiIiIiIiIic1VUVolXvjyNQ0k5UCktoS2trPc8hYUcAe72CPZQIdhDhWn9fSGvsb6iIAj49UImVu6+hGs5RbU+N2OgL+ZE+ENta1XfpVsdky26zZ49G3v37sXatWsxcOBAAFWbK0RGRuKRRx7B+vXrxYzTIBbdiIiIiIiaJq+4HGv3J6OXryMe7eohdRwiojavvFKPqJ3nMdC/HeZujYdKaYkQTzWCPasKbMGeKvi72jdqk4QKnR5bf7uBNfuScKeo3HBcY2uFyOGdMXOgb6tf781ki27Ozs74/vvvERERUet4TEwMJk2ahOzsbDHjNIhFNyIiIiKixruVV4Kxaw4hv6QCPk622LNgCKwtLaSORUREqCqYZWpL0V5j89CFMW1pBdYfSMG/Dl9DeWXVTMZHQ9zxj+d7GiOqSWtsrUj0fV6Li4vh5uZW57irqyuKi4vFjkNEREREREbkqVYixLPqB5Abd4rxxbHrEiciU5ecVYh538RjXUwyzt3KlzoOUatmZSGHl6OtUUaiqZRWeOPRQMQsisCT4e2hsJDjjTGBRkjZeohedOvfvz+ioqJQWlpqOFZSUoLly5ejf//+YschIiIiIiIjkslk+L9xQaj+ee6TfUnIKy5/8IeoTTt7Kw8/JNzGh79cxuHkHKnjEFETtdfY4KPJYTj0xjD4OdvVeu+HhFv401encT236D6fbt1EL7qtWbMGR44cgZeXF0aMGIERI0bA29sbR48exZo1a8SOQ0RERERERhbiqcaT4V4AAG1pJT7ZlyxxIjJlVzILDc8D3OwlTEJED8NNpaz1urRCh7/+fBk/nc3AnguZEqWSluhFt65duyIpKQkrVqxAWFgYwsLCsHLlSiQlJSEkJETsOERERERE1AIWjQ6A0qrqx40vjqciNadtjnKghiVlFhied3Z1kDAJERlTSnYhyip18HGyxfP9O0gdRxKWUjRqa2uLWbNmSdE0ERERERGJwENtg1mDO+LT/cmo0An44OdLWD+19S+uTU1XPdLNVmGB9hobidMQkbGEeKpx4PVhuHmnuM1uqCP6SDcAuHz5MubOnWuYXjp37lxcunRJiihERERERNRCZg/tBGd7awDA7nMZOJV6R+JEZGpKynW4ebdqQ73Obg6Qyx9+cXciMh321pYI8rj/7p6tnehFt+3bt6Nr1644ffo0QkNDERoairi4OHTr1g3bt28XOw4REREREbUQe2tLLBwVYHj93q6LEARBwkRkapKzClHdJQJcuZ4bEbUuok8vXbx4MZYsWYJ333231vGoqCgsXrwYTz31lNiRiIiIiIiohTzT0wvRR64hq6AMj4d5Qi8AFhzMRPdcrrGeW4Ab13MjotZF9KJbeno6pk2bVuf41KlT8eGHH4odh4iIiIiIWpClhRxrn+sBNwcl1LZWUschE1NrEwXuXEpErYzo00sjIiJw6NChOscPHz6MwYMHix2HiIiIiIhaWICbAwtuVK8zt/INzznSjYhaG9FHuj322GN44403cPr0afTr1w8AcPz4cWzbtg3Lly/Hzp07a51LREREREStjyAIkMk4z7Qt23cxEyeu3kHPDo6wtpTDQ62UOhIRkVHJBJFXMpXLGze4TiaTQafTtXCahmm1WqjVauTn50Olars7bhARERERGUNWQSk+3pME33a2mD20k9RxSCK/Xc3FtM9PoKxSDwDYNLM3Irq4SpyKiKhxGlsrEn2km16vF7tJIiIiIiIyAWWVOsz+4jRKynXYEZeGp3p6wdneWupYJLJzt/Lx0uZThoLbhFBPDO7sInEqIiLjE31NNyIiIiIiapusLS3Q08cRlzIKUFapx6YjqVJHIpGlZBdi+ucnUFBWCQCI6OKCVc+EwkLOqcZE1PqIPtINAE6ePImYmBhkZWXVGfn20UcfSRGJiIiIiIhE8OJgP2w+looKnYAtx1LxSkQn2FtL8mMJiaysUocZ0SeQW1QOAOjVwRHr/9ATCkuOBSGi1kn0727vv/8+li1bhi5dusDNza3W4qlcSJWIiIiIqHXzUNtgYlh7bDudBm1pJb7+7QZmDekodSwSgbWlBZaNC8arW+PRydUe/5rRGzYKC6ljERG1GNE3UnBzc8MHH3yAGTNmiNlss3EjBSIiIiIi40rOKsDIjw4CANxVShxcPIyjndqQ367moqOLPVwcuJ4fEZmnxtaKRP/OJpfLMXDgQLGbJSIiIiIiE+Hv6oBHgt0AABnaUvwn4ZbEiail1DfGo2/Hdiy4EVGbIHrRbf78+Vi3bp3YzRIRERERkQl5ZWgnw/N/xKZArxd1Ag6JoFKnx+wvTmPTkWtSRyEikoToa7otWrQI48aNQ6dOnRAcHAwrK6ta7+/YsUPsSEREREREJLKeHRzRx88JJ67dwdXsIuy5mInRIe5SxyIj0esFLN5+Br9eyMSvFzJRXKHDnyL8pY5FRCQq0Ue6RUZGIiYmBgEBAWjXrh3UanWtBxERERERtQ1/rDHabf2BlHqnIpL5EQQB7/54ATviqqYNKyzkCPXSSBuKiEgCoo9027x5M7Zv345x48aJ3TQREREREZmQiC4uCHR3gLtaWasAR+btk33J2HQ0FQAglwGfTAnHQH9naUMREUlA9KKbk5MTOnXiN1QiIiIiorZOJpNhx58GwFYh+o8l1EI2HbmGj/deMbxe+VR3PNqV04aJqG0SfXrpO++8g6ioKBQXF4vdNBERERERmRgW3FqP/8Tfwjv/vWB4vWxcECb18pYwERGRtET/DvfJJ58gJSUFbm5u8PX1rbORQlxcnNiRiIiIiIiI6CHsvZCJhdsSDa/nDvPHS4M7SpiIiEh6ohfdJk6cKHaTRERERERk4nR6AXsuZGDDoWtYPTkM3k62UkeiRjp/Kx9L/30WOn3VRhhT+/lg4agAiVMREUlPJnCLoAfSarVQq9XIz8+HSqWSOg4RERERUav0r8PX8Ocfq6YmTu/fAcsf7ypxImqMnMIyjPvkEOwUlsgrqcAgf2esnhwGuVwmdTQiohbT2FqR6Gu6VTt9+jS+/PJLfPnll4iPj5cqBhERERERmYAnw9vDxsoCAPDtqZvILSyTOJG0qkeNmTKdXsBr3yQgU1uGqzlFCPFUYdWkUBbciIjuEb3olpWVheHDh6N3796IjIxEZGQkevbsiREjRiA7O1vsOEREREREZAIc7RSY0scHAFBaocfmo6nSBmpBer2ATG0pTqXewb/j0/DJviRkaktrnZNXXI7Ir+OxM/E2THVy0pp9STicnAMAcHGwxqpJobCykGxcBxGRyRF9TbdXX30VBQUFOH/+PIKCggAAFy5cwPTp0xEZGYmvv/5a7EhERERERGQCXhrshy3HUlGpF7D52HXMHtoJdtbmu7upTi/g1/MZuHm3GDfvlNz7sxhpd0tQVqmvdW6otwZuKqXh9Y9n0rEz8TZ2Jt7G9tNpeG9iV5Na5y72SjY+3Z8EAJDLgE+nhMPVQdnAp4iI2hbRv4P9/PPP2Lt3r6HgBgDBwcFYt24dRo0aJXYcIiIiIiIyEZ4aGzwW5okdcbeQX1KBb07exIuD/KSO1SyXMrS4klGAN7afRUmFrsHzb94prvX6TFqe4XnslWyM+vggFjwSgJkDfWEp8Wiy23kleO2beFQPwFs0ugv6dWwnaSYiIlMk+t1ar9fDysqqznErKyvo9fp6PvFw3nnnHchkslqPwMBAo7dDREREREQP75WhnQzPNx66ivJK4/+M0NKKyiox56s4RH6TAIVl7R+5lFZydHa1x/BAV0zv3wHLxgXhH1N7YkSQa63zVk0Kwz+f7wn3e6PfSip0+MtPF/H4uiM4m5Yv2tfye+WVeszdGoe7xRUAgBGBrnhlSKcGPkVE1DaJPtJt+PDhmDdvHr7++mt4enoCAG7duoX58+djxIgRLdJmSEgI9u7da3htaWm+Q9SJiIiIiFqzADcHjAxyxd6LWUjPL8XOxNt4uqeX1LGa5O0fziMluwgAYG9tibfGB6Gjiz28HW3hbK+ATNa4jQZGh7hjQKd2+Nsvl7Hl+HUIAnD+thaPrzuMmQP9sOCRANGn367cfQlxN/IAAO01Ntw4gYjoAUQf6bZ27VpotVr4+vqiU6dO6NSpE/z8/KDVavHpp5+2SJuWlpZwd3c3PJydnVukHSIiIiIieng1R7v9IzYFejPYybPa96fTsD0uDQBgp7DAFy/2wdM9vdHDxxEuDtaNLrhVc1BaYfnjXbHjjwMQ6O4AANALwL8OX8Oojw8iv6TC6F/D/QiCACc7K8hlgMJCjvVTe0BjqxCtfSIicyP6kC9vb2/ExcVh7969uHTpEgAgKCgII0eObLE2k5KS4OnpCaVSif79+2PFihXw8fGp99yysjKUlf1ve3KtVttiuYiIiIiIqK5evk7o1cERp67fhZ+zHQpKK6G2rbtEjalJzirEW/85Z3j9/pPd0NHF3ijXDvdxxH9fHYQNh65izd4klFXq0bejE9Q24v13kclkmDu8M8J9HHE7rwTdvTSitU1EZI5kgqnuP20ku3fvRmFhIbp06YL09HQsX74ct27dwrlz5+Dg4FDn/HfeeQfLly+vczw/Px8qlUqMyEREREREbd65W/mwtpSjs1vdf7ObotIKHSauO4JLGQUAgGd7e2PlU91bpK3ruUX468+X8eeJXeFk97+RZoIgQBDA6Z5ERC1Mq9VCrVY3WCsSvegWGRkJf39/REZG1jq+du1aJCcnY/Xq1S3afl5eHjp06ICPPvoIL774Yp336xvp5u3tzaIbERERERHd15IdZ/H1iRsAgAA3e/wwZxBsFBaiZvju1E1sO3UTK57sBn9X4xUrr2YXGm3EHhFRa9DYopvoa7pt374dAwcOrHN8wIAB+P7771u8fY1Gg4CAACQnJ9f7vrW1NVQqVa0HERERERHR/exMvG0ouNlYWWDdcz1EL7jlFJbh/Z8u4mTqXTy+9gje2XkOWdrSh77ud6du4pGPD+KfsSlo5ZOkiIiMTvSiW25uLtRqdZ3jKpUKOTk5Ld5+YWEhUlJS4OHh0eJtERERERHRw6vU6fHfxNtIziqQOkq9bt4pRvX+CO8+HiLJlNgsbRk099Z369pejU1Hr2PQX2Pw9g/ncCuvpFnXvHBbi7f+cw46vYAVuy/haEquMSMTEbV6ohfd/P398fPPP9c5vnv3bnTs2NHo7S1atAixsbFITU3F0aNH8cQTT8DCwgJTpkwxeltERERERGRclzK0GL4qFq9+HY91MSlSx6nXnGH+2DyzD14Y6Iene3pJkiHYU4WfXxuCJWMCkZJdCAAor9Rjy7HriPgwBm9uP4PruUWNvl5BaQXmbI1DWaUeADCljw8G+ju3SHYiotZK9N1LFyxYgLlz5yI7OxvDhw8HAOzbtw+rVq1qkfXc0tLSMGXKFOTm5sLFxQWDBg3C8ePH4eLiYvS2iIiIiIjIuHycbKEtrQBQNY1z4agAeDnaSpyqriEBLhgSIO3PGEorC8we2glP9vDCxkNX8cXx6ygu16FCJ+Cbkzex7XQaHg/1xJ+G+cPf9f5rtAmCgDe2n8G1nKoiXYinClETgsX6MoiIWg1Jdi9dv349/vKXv+D27dsAAF9fX7zzzjuYNm2a2FEa1NjF8YiIiIiIqGV8tOcKPtmXBACYMcAX7zwWInEioLi8ErYK0ccwNMndonJEH7mG6KOpKCitNByXyYCx3TwQNT4Yriplnc9FH7mG5f+9AABwUFpi16uD4dPO9AqdRERSMdmNFADgj3/8I9LS0pCZmQmtVourV6/WKbgdOXKk1i6iRERERETUNs0Y4AulVdWPLlt/u4GYS1nQ66Vb1P/mnWIM+WsMoo9cM+nNBRztFFgwqgsOvzEci0YFQGNbteabIABHk3NgZ123aBh34y7+suui4fWqZ0JZcCMiaiZJim7VXFxcYG9f/7DmMWPG4NatWyInIiIiIiIiU+Nkp8CzvX1gbSmHnbUFZm46iYEf7Meff7yAuBt3RS18lVfqMffreOQUlmP5fy/gX4evidZ2c6ltrDB3eGcceWM4lowJhLO9Ai8N7lin6HY2LQ9zv4pD5b2C5uwhHTEqxF2KyERErYIk00sbw8HBAYmJiS2yuUJTcHopEREREZH0cgrLkJpThKf/cazOe+01NhjbzR3junsi1EsNWfVWoi3g/Z8u4rODVwFUrTf3Y+QgqJRWLdZeSyit0EEvCLWmx2ZqS9FvxT5U/3TY29cRW2f1g5WFpOM0iIhMUmNrRaa9CAEREREREREAZ3trKK0ssOqZUOw6m45DSdmo0FVViG7llWDDoWvYcOga2mtsML67B2YP7QQnO4VRM+y/lGkouFlZyLD2uXCzK7gBVRsu/N5nB69CEABPtRLlOj3WPteDBTcioofEohsREREREZkFe2tLPNXTC0/19EJ+cQV+vZCBXWfTcTgpxzAl8lZeCaKPpuLVEZ2N2nZ6fgkWfJdoeL1kTBC6e2mM2oaUunupMbmXN96aEIzUnCK41bPBAhERNQ2LbkREREREZHbUtlZ4ppc3nunljbzicvx6PhM/nk3HkeQcDOviAvvfrVf25x8v4E5ROQLdHdDRxR5+znbwcbKFwrLh0VyVOj0iv45HXnEFAOCRYDfMHOjbEl+WZB4Pa4/Hw9oDALq2V0uchoiodTDZoltLrsNARERERESth8ZWgUm9vTGptzfuFJWjoLSi1vulFTocTsrG5czCWsflMsDbyRZ+znbwc7ZDR2c7+Dnbo4+fU61i3Md7r+Bk6l0AVevHffh0d/68QkREDTLZopuJ7u9AREREREQmzMlOUWctt3O38tHJxb5O0U0vANdzi3E9txgHLmcbjp9fPtpQdDt4JRt/j0kBAFjKZfhkSjg0tsZdK46IiFonky26FRQUSB2BiIiIiIhagV6+TgjycMArEZ1wLacIV7OLqv7MKcS17CIUlesM57qrlLCrMTXV0VYBD40St/NK8froLujZwVGKL4GIiMyQ6EU3Pz+/Bw7Fvnr1qohpiIiIiIioLbCztkJ3L02dzQ8EQUB2QRmu5lQV4qo3ZKjWzUuN6Bl9EHM5C7MGdxQxMRERmTvRi26vvfZardcVFRWIj4/Hzz//jNdff13sOERERERE1IbJZDK4qpRwVSnRr2O7es/p0M4WrwztJHIyIiIyd6IX3ebNm1fv8XXr1uHUqVMipyEiIiIiInowpZWF1BGIiMgMNbw/tkjGjBmD7du3Sx2DiIiIiIiIiIjooZlM0e3777+Hk5OT1DGIiIiIiIiIiIgemujTS8PDw2ttpCAIAjIyMpCdnY2///3vYschIiIiIiIiIiIyOtGLbhMnTqz1Wi6Xw8XFBREREQgMDBQ7DhERERERERERkdHJBEEQGj6t7dJqtVCr1cjPz4dKpZI6DhERERERERERSaixtSKTWdONiIiIiIiIiIiotWDRjYiIiIiIiIiIyMhYdCMiIiIiIiIiIjIyFt2IiIiIiIiIiIiMjEU3IiIiIiIiIiIiI5Ok6LZlyxb88MMPtY798MMP2LJlixRxiIiIiIiIiIiIjEomCIIgdqNyuRyBgYG4cOGC4VhgYCCSkpKg0+nEjvNA+fn50Gg0uHnz5gO3gSUiIiIiIiIiotZPq9XC29sbeXl5UKvV9z3PUsRMBnq9vs6xS5cuSZCkYQUFBQAAb29viZMQEREREREREZGpKCgoeGDRTfSRbkOHDsWLL76ISZMmQalUitl0s+j1ety+fRsODg6QyWRSx5FcdTWXI//IHLH/kjlj/yVzxv5L5oz9l8wd+zCZM1Ptv4IgoKCgAJ6enpDL779ym+gj3cLDw7Fo0SK8+uqrmDRpEl588UX069dP7BiNJpfL4eXlJXUMk6NSqUyqwxM1BfsvmTP2XzJn7L9kzth/ydyxD5M5M8X++6ARbtVE30hh9erVuH37NqKjo5GVlYUhQ4YgODgYf/vb35CZmSl2HCIiIiIiIiIiIqOTZPdSS0tLPPnkk/jhhx+QlpaG5557Dm+99Ra8vb0xceJE7N+/X4pYRERERERERERERiFJ0a3aiRMnEBUVhVWrVsHV1RVLliyBs7Mzxo8fj0WLFkkZje7D2toaUVFRsLa2ljoKUZOx/5I5Y/8lc8b+S+aM/ZfMHfswmTNz77+ib6SQlZWFL774AtHR0UhKSsKECRPw0ksvYfTo0YaNCg4fPoxHH30UhYWFYkYjIiIiIiIiIiIyCtE3UvDy8kKnTp3wwgsvYMaMGXBxcalzTvfu3dG7d2+xoxERERERERERERmF6CPdDh06hMGDB4vZJBERERERERERkahEL7oRERERERERERG1dqJMLw0PDzes19aQuLi4Fk5DRERERERERETUskQpuk2cOFGMZoiIiIiIiIiIiEyCXIxGoqKiEBUVhWXLlmHYsGGYN2+e4djvH9Q069atg6+vL5RKJfr27YsTJ07Uev+zzz5DREQEVCoVZDIZ8vLyGnXdyMhI9OzZE9bW1ggLC6vz/oEDB/D444/Dw8MDdnZ2CAsLw1dffdXgdW/cuIFx48bB1tYWrq6ueP3111FZWVnn2j169IC1tTX8/f2xadOmRmUm82Nu/belrkvmSar+e/nyZQwbNgxubm5QKpXo2LEjli1bhoqKigdel/dfqsnc+i/vv1STVP23puTkZDg4OECj0TR4Xd5/6ffMrQ/zHkw1SdV/U1NTIZPJ6jyOHz/+wOtKfQ8WpehWzcLCAqNGjcLdu3fFbLbV+vbbb7FgwQJERUUhLi4OoaGhGD16NLKysgznFBcX49FHH8XSpUubfP0XXngBkydPrve9o0ePonv37ti+fTvOnDmDmTNnYtq0afjxxx/vez2dTodx48ahvLwcR48exebNm7Fp0ya8/fbbhnOuXbuGcePGYdiwYUhISMBrr72Gl156Cb/88kuT85NpM7f+29LXJfMiZf+1srLCtGnT8Ouvv+Ly5ctYvXo1NmzY8MBfXPH+SzWZW/9tzHV5/207pOy/1SoqKjBlypRGbQ7H+y/9nrn14cZcl/fgtsMU+u/evXuRnp5uePTs2fO+55rEPVgQWc+ePYW9e/eK3Wyr1KdPH2HOnDmG1zqdTvD09BRWrFhR59yYmBgBgHD37t0mtREVFSWEhoY26tyxY8cKM2fOvO/7P/30kyCXy4WMjAzDsfXr1wsqlUooKysTBEEQFi9eLISEhNT63OTJk4XRo0c3KTeZPnPrv2Jcl8yHqfXf+fPnC4MGDbrv+7z/Uk3m1n+be13ef1snU+i/ixcvFqZOnSpER0cLarX6gdfi/Zd+z9z6cFOuWxPvwa2TlP332rVrAgAhPj6+0dcyhXuwqCPdAOC9997DokWL8OOPPyI9PR1arbbWgxqnvLwcp0+fxsiRIw3H5HI5Ro4ciWPHjkmSKT8/H05OTvd9/9ixY+jWrRvc3NwMx0aPHg2tVovz588bzqn5NVWfI9XXRC3DHPuvqV2XpGNq/Tc5ORk///wzhg4det9zeP+laubYf5uL99/WxxT67/79+7Ft2zasW7euUefz/ks1mWMfbi7eg1sfU+i/APDYY4/B1dUVgwYNws6dOx94rincg0Uvuo0dOxaJiYl47LHH4OXlBUdHRzg6OkKj0cDR0VHsOGYrJycHOp2uVucBADc3N2RkZIie57vvvsPJkycxc+bM+56TkZFRb97q9x50jlarRUlJiZFTk1TMsf+a0nVJWqbSfwcMGAClUonOnTtj8ODBePfdd+97Lu+/VM0c+29z8P7bOkndf3NzczFjxgxs2rQJKpWqUZ/h/ZdqMsc+3By8B7dOUvdfe3t7rFq1Ctu2bcOuXbswaNAgTJw48YGFN1O4B4tedIuJiTE89u/fb3hUvyZxjRkzBvb29rC3t0dISEizrhETE4OZM2diw4YNzb4GUXOYcv/l3wtqyMP232+//RZxcXHYunUrdu3ahb/97W8tkJKofqbcf3n/pYY0t//OmjULzz33HIYMGdKC6YgaZsp9mPdgakhz+6+zszMWLFiAvn37onfv3li5ciWmTp2KDz/8sAXTPjxLsRtsiekDbZGzszMsLCyQmZlZ63hmZibc3d0bfZ2NGzcaqrdWVlZNzhEbG4sJEybg448/xrRp0x54rru7e52dTarzV2d2d3ev92tSqVSwsbFpcj4yTebYf03humQaTKX/ent7AwCCg4Oh0+nw8ssvY+HChbCwsKhzLu+/VM0c+29T8P7bukndf/fv34+dO3caisSCIECv18PS0hKfffYZXnjhhTqf4f2XajLHPtwUvAe3blL33/r07dsXe/bsue/7pnAPFn2k28GDBx/4oMZRKBTo2bMn9u3bZzim1+uxb98+9O/fv9HXad++Pfz9/eHv748OHTo0KcOBAwcwbtw4fPDBB3j55ZcbPL9///44e/ZsrZ1N9uzZA5VKheDgYMM5Nb+m6nOa8jWR6TPH/iv1dcl0mEL//T29Xo+Kigro9fp63+f9l6qZY/9tLN5/Wz+p+++xY8eQkJBgeLz77rtwcHBAQkICnnjiiXo/w/sv1WSOfbixeA9u/aTuv/VJSEiAh4fHfd83hXuw6CPdIiIi6hyTyWSG5zqdTsQ05m3BggWYPn06evXqhT59+mD16tUoKiqqNXc+IyMDGRkZSE5OBgCcPXsWDg4O8PHxeeDClsnJySgsLERGRgZKSkqQkJAAoOo30gqFAjExMRg/fjzmzZuHp556yjAfWqFQ3Pe6o0aNQnBwMJ5//nn89a9/RUZGBpYtW4Y5c+bA2toaAPDKK69g7dq1WLx4MV544QXs378f3333HXbt2mWM/2RkQsyt/7bkdcn8SNl/v/rqK1hZWaFbt26wtrbGqVOnsGTJEkyePPm+vy3k/ZdqMrf+25jr8v7bdkjZf4OCgmqdf+rUKcjlcnTt2vW+1+T9l37P3PpwY67Le3DbIWX/3bx5MxQKBcLDwwEAO3bswOeff46NGzfe95omcQ82yh6oTZCXl1frkZ2dLfz6669C3759hb1794odx+x9+umngo+Pj6BQKIQ+ffoIx48fr/V+VFSUAKDOIzo6+oHXHTp0aL2fu3btmiAIgjB9+vR63x86dOgDr5uamiqMGTNGsLGxEZydnYWFCxcKFRUVtc6JiYkRwsLCBIVCIXTs2LHBrGS+zK3/ttR1yTxJ1X+/+eYboUePHoK9vb1gZ2cnBAcHC++//75QUlLywOvy/ks1mVv/5f2XapKq//5edHS0oFarG8zL+y/9nrn1Yd6DqSap+u+mTZuEoKAgwdbWVlCpVEKfPn2Ebdu2NZhX6nuwTBAEob5inNhiY2OxYMECnD59WuooRERERERERERED0X0Nd3ux83NDZcvX5Y6BhERERERERER0UMTfU23M2fO1HotCALS09OxcuVKhIWFiR2HiIiIiIiIiIjI6ESfXiqXyyGTyfD7Zvv164fPP/8cgYGBYsYhIiIiIiIiIiIyOtGLbtevX6/1Wi6Xw8XFBUqlUswYRERERERERERELcZkNlIgIiIiIiIiIiJqLSTZSCE2NhYTJkyAv78//P398dhjj+HQoUNSRCEiIiIiIiIiIjI60YtuX375JUaOHAlbW1tERkYiMjISNjY2GDFiBLZu3Sp2HCIiIiIiIiIiIqMTfXppUFAQXn75ZcyfP7/W8Y8++ggbNmzAxYsXxYxDRERERERERERkdKIX3aytrXH+/Hn4+/vXOp6cnIyuXbuitLRUzDhERERERERERERGJ/r0Um9vb+zbt6/O8b1798Lb21vsOEREREREREREREZnKXaDCxcuRGRkJBISEjBgwAAAwJEjR7Bp0yasWbNG7DhERERERERERERG9/+5C7/VEageQgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "era.make_plot(obstype_model='wind_amplitude')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/gee_authentication.rst b/docs/gee_authentication.rst index 20de3275..19476c7b 100644 --- a/docs/gee_authentication.rst +++ b/docs/gee_authentication.rst @@ -125,11 +125,3 @@ Test your GEE access extract small data quantities from GEE. For larger data transfers, GEE will write the data to file on your Google Drive, which will raise an error when you select 'read-only' scopes. - - - - - - - - diff --git a/docs/index.rst b/docs/index.rst index 5d94b8f0..ecdd4ead 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -35,4 +35,3 @@ Indices and tables * :ref:`genindex` * :ref:`modindex` * :ref:`search` - diff --git a/docs/intro.rst b/docs/intro.rst index 1888ff37..614a1f91 100644 --- a/docs/intro.rst +++ b/docs/intro.rst @@ -31,12 +31,12 @@ To install the PyPi version of the toolkit. To install the github versions one c For some advanced quality control methods, the `Titanlib `_ package is used. -Since the installation of Titanlib requires a c++ compiler, we have chosen not to include it in the toolkit. If you want to use -the Titanlib functionality you must install both the toolkit and Titanlib: +Since the instalation of titanlib requires a c++ compiler, it is categorized as a *extra-dependency*. This means that +the user must install titanlib manually if this functionallity is required or use the following command: .. code-block:: console - pip3 install metobs-toolkit titanlib + pip3 install metobs-toolkit[titanlib] .. note:: diff --git a/docs/logo_wide_1280x640.png b/docs/logo_wide_1280x640.png new file mode 100644 index 00000000..8f5f3666 Binary files /dev/null and b/docs/logo_wide_1280x640.png differ diff --git a/docs/paper/paper.bib b/docs/paper/paper.bib index f37fb8e5..f0c1e0f4 100644 --- a/docs/paper/paper.bib +++ b/docs/paper/paper.bib @@ -214,6 +214,3 @@ @dataset{lcz_map doi = {10.5281/zenodo.6364594}, url = {https://doi.org/10.5281/zenodo.6364594} } - - - diff --git a/docs/paper/paper.md b/docs/paper/paper.md index e9aba0bc..124fa8c3 100644 --- a/docs/paper/paper.md +++ b/docs/paper/paper.md @@ -64,12 +64,12 @@ The MetObs-toolkit is a Python package developed to address these issues and fac # Statement of need -The primary objective of the MetObs-toolkit is to enable scientists to process meteorological observations into datasets ready for analysis. The data cleaning process involves three steps: +The primary objective of the MetObs-toolkit is to enable scientists to process meteorological observations into datasets ready for analysis. The data cleaning process involves three steps: 1. resampling the time resolution if necessary, 2. identifying erroneous and missing records, and 3. filling the missing records. - + Sophisticated software such as TITAN [@titan2020] and CrowdQC+ [@CrowdQC] exists for identifying erroneous observations (QC), which is one aspect of cleaning a dataset. These packages offer a wide range of functionalities for this specific task, while MetObs aims to provide a framework for the entire flow from raw data to analysis. Moreover, researchers often face the challenge of coding scripts that can generate analyses, particularly when using geographical datasets such as landcover datasets. Traditionally, this requires the installation of numerous packages, storage of geographical datasets, and GIS manipulations (often manually done with specific GIS software). The toolkit implements one user-friendly framework for creating various plots, generating analysis statistics, and incorporating GIS data through the use of the Google Earth engine. By using the toolkit, scientists can set up a pipeline to process raw data into analysis in an easy-to-use (and install) manner. Additionally, the developed pipeline can be directly applied to other datasets without any formatting issues. @@ -86,7 +86,7 @@ Quality control is performed in the form of a series of checks. These checks are Gap filling is applied by using interpolation methods and/or importing ERA5 reanalysis [@era5] time series to fill the gaps. The latter is stored as a Toolkit Modeldata, which has a set of methods to directly import the required time series through the use of the Google Earth engine API. The user obtains a cleaned-up dataset ready for analysis. A set of typical analysis techniques such as filters, aggregation schemes, and landcover correlation estimates are implemented in the Toolkit-Analysis class. -\autoref{fig:overview_fig} gives an overview of the main framework of the MetObs-toolkit, but it is an evolving project that responds to the community's needs and input. As an example, the development of a graphical user interface (GUI) for the toolkit is planned. A GUI would increase the ease of use by enabling to create templates, adjust QC settings and plot data interactively. +\autoref{fig:overview_fig} gives an overview of the main framework of the MetObs-toolkit, but it is an evolving project that responds to the community's needs and input. As an example, the development of a graphical user interface (GUI) for the toolkit is planned. A GUI would increase the ease of use by enabling to create templates, adjust QC settings and plot data interactively. diff --git a/docs/paper/paper.pdf b/docs/paper/paper.pdf index 6f2522bd..f9f5bec9 100644 Binary files a/docs/paper/paper.pdf and b/docs/paper/paper.pdf differ diff --git a/docs/special_topics.rst b/docs/special_topics.rst index 310effc3..17ed82a1 100644 --- a/docs/special_topics.rst +++ b/docs/special_topics.rst @@ -23,11 +23,11 @@ convert your irregular dataset **to a regular dataset** and an **easy origin** i by shifting the timestamp of an observation. For example, if a frequency of 5 minutes is assumed and the observation has a timestamp at 54 minutes and 47 seconds, the timestamp is shifted to 55 minutes. A certain maximal threshold needs to be set to avoid observations being shifted too much. This threshold is -called the tolerance and it indicates what the **maximal time-translation** error can be for one +called the tolerance and it indicates what the **maximal time-translation** error can be for one observation timestamp. -Synchronizing your observations can be performed with he :py:meth:`sync_observations()` +Synchronizing your observations can be performed with he :py:meth:`sync_observations()` method. As an argument of this function you must provide a tolerance. Example @@ -125,4 +125,98 @@ resolutions, finding an origin that works for all stations in this group, and cr +Creating a new observation type +================================== +Observation types for Datasets +-------------------------------- + +The toolkit comes with a set of predefined observation types. Each observation type has a standard-toolkit-unit, +this is the unit the toolkit will store and display the values. + +An overview can be found on `this <./template_mapping.html#toolkit-standards>`_ page. + +Each observation type is represented by an instance of the :py:meth:`Obstype` class. + +As an example, here is the defenition of the temperature observation type: + +.. code-block:: python + + temperature = Obstype(obsname='temp', #The name of the observation type + std_unit= 'Celsius', #The standard unit + description="2m - temperature", #A more detailed description (optional) + unit_aliases={ + # Common units and a list of aliases for them. + 'Celsius': ['celsius', '°C', '°c', 'celcius', 'Celcius'], + 'Kelvin': ['K', 'kelvin'], + 'Farenheit': ['farenheit']}, + # Conversion schemes for common units to the standard unit. + unit_conversions={ + 'Kelvin': ["x - 273.15"], #result is in tlk_std_units (aka Celcius) + 'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write = (x-32)/1.8}, + ) + +Similar as this example a user can create a new observation type and add it to a :py:meth:`Dataset`, +using the :py:meth:`add_new_observationtype()` method. + +.. code-block:: python + + import metobs_toolkit + + #create an new observationtype + wind_component_east = metobs_toolkit.Obstype( + obsname='wind_u_comp', #The name of the observation type + std_unit= 'm/s', #The standard unit + description="2m - u component of the wind (5min averages)", #A more detailed description (optional) + unit_aliases={ + # Common units and a list of aliases for them. + 'm/s': ['meter/s'], + # Conversion schemes for common units to the standard unit. + unit_conversions={'km/s': ["x / 3.6"]} #result is in tlk_std_units (aka m/s) + ) + + #add your observation type to a dataset + your_dataset = metobs_toolkit.Dataset() + your_dataset.add_new_observationtype(Obstype=wind_component_east) + + # Now you can import a datafile with wind_u_comp data! + + +If you want to add a new unit to an existing observation type you can do so by +using the :py:meth:`add_new_unit()` method. + + +Observation types for (ERA5) Modeldata +---------------------------------------- +Modeldata objects also holds a similar set of observation types. But in addition +to the observation types stored in the Dataset, extra information is stored +on where which (ERA5) band and unit the observation type represents. Here is an +example on how to create a new observation type for a :py:meth:`Modeldata` instance. + +.. code-block:: python + + import metobs_toolkit + + #create an new observationtype + wind_component_east = metobs_toolkit.Obstype( + obsname='wind_u_comp', #The name of the observation type + std_unit= 'm/s', #The standard unit + description="10m - east component of the wind ", #A more detailed description (optional) + unit_aliases={ + # Common units and a list of aliases for them. + 'm/s': ['meter/s'], + # Conversion schemes for common units to the standard unit. + unit_conversions={'km/s': ["x / 3.6"]} #result is in tlk_std_units (aka m/s) + ) + # create a modeldata instance + model_data = metobs_toolkit.Modeldata("ERA5_hourly") + + # add new obstype to model_data + model_data.add_obstype(Obstype=wind_component_east, + bandname='u_component_of_wind_10m', #See: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY#bands + band_units='m/s', + ) + + # Collect the U-wind component for your stations: + model_data = your_dataset.get_modeldata(modeldata=model_data, + obstype = 'wind_u_comp') diff --git a/docs/template_mapping.rst b/docs/template_mapping.rst index 9113776a..5aeb4e2e 100644 --- a/docs/template_mapping.rst +++ b/docs/template_mapping.rst @@ -13,7 +13,7 @@ unique for each data file. A template is saved as a tabular .csv file to reuse a On this page, you can find information on how to construct a template. - +.. _link-target: Toolkit Standards ==================== @@ -46,8 +46,8 @@ The toolkit has standard names for observation types and metadata. Here these st * - pressure_at_sea_level - air pressure (corrected to sea level) - numeric - * - windspeed - - windspeed + * - wind_speed + - wind speed - numeric * - wind_gust - wind gust @@ -214,18 +214,3 @@ arguments of the :py:meth:`update_settings()\n", - "In this documentation, you can also find some examples for the most important functions of the toolkit." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6qgBtHRTSmt9" - }, - "source": [ - "### **0.1 Introduction to Google Colab Notebooks**\n", - "\n", - "Colab provides a free Jupyter notebook environment. In such an environment you can write, execute and document Python code. The latter gives the opportunity to make the code more understandable since it is possible to use text, figures and formulas in the explanation. Additionally to Jupyter notebook, Colab runs entirely in the cloud. In this way nothing has to be installed on your computer. Finally, you can easily share your work/code with colleagues and they can run it without having to download all the Python packages you used.\n", - "\n", - "If you never have worked with Google Colab Notebooks, then it might be useful to watch this introduction video:\n", - "https://www.youtube.com/watch?v=inN8seMm7UI\n", - "\n", - "
\n", - "\n", - "**Basics:**\n", - "\n", - "- Before you make changes, always copy the document (tab File -> Save copy in Drive) or make sure (when you work with multiple people in the same document) that only one person at the time is making modifications. Normally, you already made copies of the Google Colabs so you do not have to copy the Google Colabs again during the summerschool. When you made a copy, the Colab notebook will show up in your Google Drive under the folder 'Colab Notebooks'. If you want to store it somewhere else, you can move it by clicking on the three dots next to the header. If you want to place it in a new folder, you can first create a new folder by clicking on the '+ New' button in your Google Drive and give it the name you want. In this folder you will later during this session copy all the data that you want to explore.\n", - "- To run the code (cells with a grey background) you can:\n", - " - click on the \"play button\" at the left side of the cell with the code\n", - " - \"Cmd/Ctrl+Enter\" to run the cell in place;\n", - " - \"Shift+Enter\" to run the cell and move focus to the next cell (adding one if none exists);\n", - "- To change code or text, you can easily double click on the cell you want to change.\n", - "- To add content, you can add a new code or text cell, by clicking in the top left corner on \"+ Code\" or \" + Text\", respectively.\n", - "- The symbol \"#\" in the code cells indicate comments to make to code understandable.\n", - "\n", - "
\n", - "\n", - "If you need an example or more information on the basics of Colab, you can use the following links:\n", - "https://colab.research.google.com/notebooks/basic_features_overview.ipynb#scrollTo=KR921S_OQSHG\n", - "https://colab.research.google.com/notebooks/intro.ipynb#scrollTo=5fCEDCU_qrC0\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "clZMLpWpT0WP" - }, - "source": [ - "### **0.2 Installing packages**\n", - "\n", - "First, you have to install the needed Python package(s) containing some functions that will be used during the following code/exercise. Here we use the Python package MetObs_toolkit which contains all the basic functions that are needed for the different aspects to research an (urban) meteorological network. More information on this package can be found here: https://vergauwenthomas.github.io/MetObs_toolkit/\n", - "\n", - "And the developper page is the following: https://github.com/vergauwenthomas/MetObs_toolkit" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "JPGilg7qlhTr", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "ecef4349-daf6-4daf-a622-9d817ec9d3a8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting git+https://github.com/vergauwenthomas/MetObs_toolkit\n", - " Cloning https://github.com/vergauwenthomas/MetObs_toolkit to /tmp/pip-req-build-x45_t_rs\n", - " Running command git clone --filter=blob:none --quiet https://github.com/vergauwenthomas/MetObs_toolkit /tmp/pip-req-build-x45_t_rs\n", - " Resolved https://github.com/vergauwenthomas/MetObs_toolkit to commit c9001bf25e1b80d3c32feed8deb37800bed78978\n", - " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", - " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", - " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "Requirement already satisfied: earthengine-api<0.2.0,>=0.1.340 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (0.1.357)\n", - "Collecting geemap<0.21.0,>=0.20.0 (from metobs-toolkit==0.1.1a2)\n", - " Downloading geemap-0.20.7-py2.py3-none-any.whl (2.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m23.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting geopandas<0.10.0,>=0.9.0 (from metobs-toolkit==0.1.1a2)\n", - " Downloading geopandas-0.9.0-py2.py3-none-any.whl (994 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m994.8/994.8 kB\u001b[0m \u001b[31m64.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting mapclassify<3.0.0,>=2.4.0 (from metobs-toolkit==0.1.1a2)\n", - " Downloading mapclassify-2.5.0-py3-none-any.whl (39 kB)\n", - "Requirement already satisfied: matplotlib<4.0.0,>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (3.7.1)\n", - "Collecting mysql-connector-python<9.0.0,>=8.0.6 (from metobs-toolkit==0.1.1a2)\n", - " Downloading mysql_connector_python-8.0.33-cp310-cp310-manylinux1_x86_64.whl (27.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m27.4/27.4 MB\u001b[0m \u001b[31m52.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: numpy<2.0.0,>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (1.22.4)\n", - "Requirement already satisfied: pandas<2.0.0,>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (1.5.3)\n", - "Collecting pyproj<3.5,>=3.4 (from metobs-toolkit==0.1.1a2)\n", - " Downloading pyproj-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.7/7.7 MB\u001b[0m \u001b[31m96.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting titanlib<0.4,>=0.3 (from metobs-toolkit==0.1.1a2)\n", - " Downloading titanlib-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.5/12.5 MB\u001b[0m \u001b[31m72.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: google-cloud-storage in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.8.0)\n", - "Requirement already satisfied: google-api-python-client>=1.12.1 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.84.0)\n", - "Requirement already satisfied: google-auth>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.17.3)\n", - "Requirement already satisfied: google-auth-httplib2>=0.0.3 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.1.0)\n", - "Requirement already satisfied: httplib2<1dev,>=0.9.2 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.21.0)\n", - "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.27.1)\n", - "Collecting bqplot (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading bqplot-0.12.39-py2.py3-none-any.whl (1.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m69.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting colour (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading colour-0.1.5-py2.py3-none-any.whl (23 kB)\n", - "Collecting eerepr>=0.0.4 (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading eerepr-0.0.4-py3-none-any.whl (9.7 kB)\n", - "Requirement already satisfied: folium>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.14.0)\n", - "Collecting geocoder (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading geocoder-1.38.1-py2.py3-none-any.whl (98 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.6/98.6 kB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipyevents (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading ipyevents-2.0.1-py2.py3-none-any.whl (130 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.5/130.5 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipyfilechooser>=0.6.0 (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading ipyfilechooser-0.6.0-py3-none-any.whl (11 kB)\n", - "Collecting ipyleaflet>=0.17.0 (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading ipyleaflet-0.17.3-py3-none-any.whl (3.4 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m71.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipytree (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading ipytree-0.2.2-py2.py3-none-any.whl (1.3 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m69.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.13.1)\n", - "Collecting pyperclip (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading pyperclip-1.8.2.tar.gz (20 kB)\n", - " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - "Collecting python-box (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading python_box-7.0.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.2 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.2/3.2 MB\u001b[0m \u001b[31m86.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting scooby (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading scooby-0.7.2-py3-none-any.whl (16 kB)\n", - "Requirement already satisfied: shapely>=1.6 in /usr/local/lib/python3.10/dist-packages (from geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (2.0.1)\n", - "Requirement already satisfied: fiona>=1.8 in /usr/local/lib/python3.10/dist-packages (from geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (1.9.4.post1)\n", - "Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.10/dist-packages (from mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (1.10.1)\n", - "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (1.2.2)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (3.1)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (1.1.0)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (0.11.0)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (4.40.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (1.4.4)\n", - "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (23.1)\n", - "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (8.4.0)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (3.1.0)\n", - "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (2.8.2)\n", - "Requirement already satisfied: protobuf<=3.20.3,>=3.11.0 in /usr/local/lib/python3.10/dist-packages (from mysql-connector-python<9.0.0,>=8.0.6->metobs-toolkit==0.1.1a2) (3.20.3)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<2.0.0,>=1.3.0->metobs-toolkit==0.1.1a2) (2022.7.1)\n", - "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from pyproj<3.5,>=3.4->metobs-toolkit==0.1.1a2) (2023.5.7)\n", - "Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (23.1.0)\n", - "Requirement already satisfied: click~=8.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (8.1.3)\n", - "Requirement already satisfied: click-plugins>=1.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (1.1.1)\n", - "Requirement already satisfied: cligj>=0.5 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (0.7.2)\n", - "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (1.16.0)\n", - "Requirement already satisfied: branca>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from folium>=0.13.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.6.0)\n", - "Requirement already satisfied: jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from folium>=0.13.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.1.2)\n", - "Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client>=1.12.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.11.1)\n", - "Requirement already satisfied: uritemplate<5,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client>=1.12.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (4.1.1)\n", - "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (5.3.1)\n", - "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.3.0)\n", - "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (4.9)\n", - "Requirement already satisfied: ipywidgets in /usr/local/lib/python3.10/dist-packages (from ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (7.7.1)\n", - "Collecting traittypes<3,>=0.2.1 (from ipyleaflet>=0.17.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading traittypes-0.2.1-py2.py3-none-any.whl (8.6 kB)\n", - "Collecting xyzservices>=2021.8.1 (from ipyleaflet>=0.17.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading xyzservices-2023.5.0-py3-none-any.whl (56 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: traitlets>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from bqplot->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.7.1)\n", - "Requirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from geocoder->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.18.3)\n", - "Collecting ratelim (from geocoder->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading ratelim-0.1.6-py2.py3-none-any.whl (4.0 kB)\n", - "Requirement already satisfied: google-cloud-core<3.0dev,>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.3.2)\n", - "Requirement already satisfied: google-resumable-media>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.5.0)\n", - "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (1.26.16)\n", - "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.0.12)\n", - "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (3.4)\n", - "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (8.2.2)\n", - "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (1.2.0)\n", - "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (3.1.0)\n", - "Requirement already satisfied: googleapis-common-protos<2.0.dev0,>=1.56.2 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-api-python-client>=1.12.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (1.59.1)\n", - "Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /usr/local/lib/python3.10/dist-packages (from google-resumable-media>=2.3.2->google-cloud-storage->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (1.5.0)\n", - "Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.5.6)\n", - "Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.0)\n", - "Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.6.4)\n", - "Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (7.34.0)\n", - "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.0.7)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2>=2.9->folium>=0.13.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.1.3)\n", - "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.5.0)\n", - "Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ratelim->geocoder->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.4.2)\n", - "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.1.12)\n", - "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.3.1)\n", - "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (67.7.2)\n", - "Collecting jedi>=0.16 (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", - " Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.7.5)\n", - "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.0.38)\n", - "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.14.0)\n", - "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.0)\n", - "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.1.6)\n", - "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.8.0)\n", - "Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.4.8)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.8.3)\n", - "Requirement already satisfied: pyzmq>=17 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (23.2.1)\n", - "Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (21.3.0)\n", - "Requirement already satisfied: jupyter-core>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.3.1)\n", - "Requirement already satisfied: nbformat in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.9.0)\n", - "Requirement already satisfied: nbconvert in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.5.4)\n", - "Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.5.6)\n", - "Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.8.2)\n", - "Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.17.1)\n", - "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.17.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.7.0)\n", - "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.6)\n", - "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.1->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.7.0)\n", - "Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (21.2.0)\n", - "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.9.2)\n", - "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.11.2)\n", - "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.0.0)\n", - "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.7.1)\n", - "Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.4)\n", - "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.2)\n", - "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.8.4)\n", - "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.8.0)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.5.0)\n", - "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.2.1)\n", - "Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.17.1)\n", - "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.3.3)\n", - "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.19.3)\n", - "Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.15.1)\n", - "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.4.1)\n", - "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.5.1)\n", - "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.21)\n", - "Building wheels for collected packages: metobs-toolkit, pyperclip\n", - " Building wheel for metobs-toolkit (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for metobs-toolkit: filename=metobs_toolkit-0.1.1a2-py3-none-any.whl size=7578358 sha256=9a0a58c4180aff509c4ea4bf23a3bbecd0cf7c92cd8e1e6c159b13928f6658b2\n", - " Stored in directory: /tmp/pip-ephem-wheel-cache-hyj9g3tl/wheels/7c/16/4c/97f8d14c86eb3acbcef44e8f39855c6f2336a93c85693673cb\n", - " Building wheel for pyperclip (setup.py) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for pyperclip: filename=pyperclip-1.8.2-py3-none-any.whl size=11124 sha256=34dda337e43868b649e1cc7266865e91ce0a75c6dc2ed14f2b202f1d72e5e767\n", - " Stored in directory: /root/.cache/pip/wheels/04/24/fe/140a94a7f1036003ede94579e6b4227fe96c840c6f4dcbe307\n", - "Successfully built metobs-toolkit pyperclip\n", - "Installing collected packages: pyperclip, colour, xyzservices, traittypes, titanlib, scooby, ratelim, python-box, pyproj, mysql-connector-python, jedi, geocoder, mapclassify, geopandas, eerepr, ipytree, ipyleaflet, ipyfilechooser, ipyevents, bqplot, geemap, metobs-toolkit\n", - " Attempting uninstall: pyproj\n", - " Found existing installation: pyproj 3.6.0\n", - " Uninstalling pyproj-3.6.0:\n", - " Successfully uninstalled pyproj-3.6.0\n", - " Attempting uninstall: geopandas\n", - " Found existing installation: geopandas 0.13.2\n", - " Uninstalling geopandas-0.13.2:\n", - " Successfully uninstalled geopandas-0.13.2\n", - "Successfully installed bqplot-0.12.39 colour-0.1.5 eerepr-0.0.4 geemap-0.20.7 geocoder-1.38.1 geopandas-0.9.0 ipyevents-2.0.1 ipyfilechooser-0.6.0 ipyleaflet-0.17.3 ipytree-0.2.2 jedi-0.18.2 mapclassify-2.5.0 metobs-toolkit-0.1.1a2 mysql-connector-python-8.0.33 pyperclip-1.8.2 pyproj-3.4.1 python-box-7.0.1 ratelim-0.1.6 scooby-0.7.2 titanlib-0.3.3 traittypes-0.2.1 xyzservices-2023.5.0\n" - ] - } - ], - "source": [ - "# Installing the MetObs-toolkit package\n", - "\n", - "!pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit\n", - "\n", - "%config InlineBackend.print_figure_kwargs = {'bbox_inches':None}" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NZdHe7qF1obv" - }, - "source": [ - "### **0.3 Importing packages**\n", - "\n", - "After a package has been installed, the package has to be loaded or imported before you can use the functions of the package in your code." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Ab7FRpkiodFi", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "0496657a-187f-43cd-f1ee-060b751bc255" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit:Logger initiated\n" - ] - } - ], - "source": [ - "# Importing/loading the metobs_toolkit package\n", - "import metobs_toolkit\n", - "\n", - "# Loading the panda package and refer to it as pd further on in the code\n", - "import pandas as pd\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "3NEMcUvQu1SV" - }, - "source": [ - "### **0.4 Importing a dataset**\n", - "\n", - " First, your data has to be uploaded to your Google Drive. Go to the folder where you copied this notebook to. Drag the data from your computer to this folder. The data will now be uploaded (this can take a while)." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "C6myA1BWAGaA" - }, - "source": [ - "To be able to work with the example data or uploaded data, you have to make the connection with your Google Drive. If a window appears after running the code below, select the account you are currently working with and agree with sharing the data." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "t368VXHy_BMp", - "outputId": "c43366da-a452-47df-f458-28f188bc9ed3" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Mounted at /content/drive\n" - ] - } - ], - "source": [ - "# Loading your Google Drive\n", - "from google.colab import drive\n", - "drive.mount('/content/drive', force_remount=True)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "rJQkpDdKAt-4" - }, - "source": [ - "After running the above code, you should get the output \"Mounted at /content/drive\" and you should be able to see your folders in the left side-bar if you click on the folder icon. If 'drive' didn't appear after clicking on the folder icon, you can use the \"Mount Drive\" button (third button form the left) in the left side-bar." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VGBZ2Y381ovC" - }, - "source": [ - "As an example we will use a dataset *vlinderdata_small.csv* that is present in your FAIRNESS_summerschool_23 folder. Now, you will tell the code where to look for the data *vlinderdata_small.csv*. Later you can do the same with your own data you uploaded. If you want to know how your file structure looks like as needed for the code below, then you can click in the left menu on the three dots next to the folder where your data is stored and select \"Copy path\"." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "LF4zuhkdAs95", - "outputId": "fafb4a53-da28-4d3a-9141-b17b3eff3585" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "BASE_DIR: /content/drive/MyDrive/FAIRNESS_summerschool_23/\n" - ] - } - ], - "source": [ - "# Set relevant directories\n", - "import os # importing a package that is needed\n", - "\n", - "# Your data directory\n", - "BASE_DIR = '/content/drive/MyDrive/FAIRNESS_summerschool_23/' # change if needed\n", - "print('BASE_DIR: ',BASE_DIR)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "itGaBEYY5OxJ" - }, - "source": [ - "Next you specify the path to a data file. You can do this by using the\n", - "os.path.join() function, that constructs the path to a file. `BASE_DIR` contains the path to the file as specified in the previous coding block.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 678 - }, - "id": "nvQGc0Bl28OK", - "outputId": "28f787d2-37ed-4d84-e9d0-e7015d6bc1b1" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " Datum Tijd (UTC) Temperatuur Vochtigheid Luchtdruk \\\n", - "0 2022-09-01 0:00:00 18.8 65 101739 \n", - "1 2022-09-01 0:05:00 18.8 65 101731 \n", - "2 2022-09-01 0:10:00 18.8 65 101736 \n", - "3 2022-09-01 0:15:00 18.7 65 101736 \n", - "4 2022-09-01 0:20:00 18.7 65 101733 \n", - "... ... ... ... ... ... \n", - "120952 2022-09-15 23:35:00 13.4 77 101373 \n", - "120953 2022-09-15 23:40:00 13.3 77 101365 \n", - "120954 2022-09-15 23:45:00 13.2 77 101359 \n", - "120955 2022-09-15 23:50:00 13.2 77 101359 \n", - "120956 2022-09-15 23:55:00 13.0 77 101369 \n", - "\n", - " Neerslagintensiteit Neerslagsom Windrichting Windsnelheid Rukwind \\\n", - "0 0.0 0.0 65 5.6 11.3 \n", - "1 0.0 0.0 75 5.5 12.9 \n", - "2 0.0 0.0 75 5.1 11.3 \n", - "3 0.0 0.0 85 6.0 12.9 \n", - "4 0.0 0.0 65 5.0 11.3 \n", - "... ... ... ... ... ... \n", - "120952 0.0 17.8 275 0.0 0.0 \n", - "120953 0.0 17.8 275 0.0 0.0 \n", - "120954 0.0 17.8 275 0.0 0.0 \n", - "120955 0.0 17.8 275 0.0 0.0 \n", - "120956 0.0 17.8 285 0.0 0.0 \n", - "\n", - " Luchtdruk_Zeeniveau Globe Temperatuur Vlinder \n", - "0 102005.0 NaN vlinder01 \n", - "1 101997.0 NaN vlinder01 \n", - "2 102002.0 NaN vlinder01 \n", - "3 102002.0 NaN vlinder01 \n", - "4 101999.0 NaN vlinder01 \n", - "... ... ... ... \n", - "120952 101326.0 NaN vlinder28 \n", - "120953 101318.0 NaN vlinder28 \n", - "120954 101312.0 NaN vlinder28 \n", - "120955 101312.0 NaN vlinder28 \n", - "120956 101322.0 NaN vlinder28 \n", - "\n", - "[120957 rows x 13 columns]" - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
DatumTijd (UTC)TemperatuurVochtigheidLuchtdrukNeerslagintensiteitNeerslagsomWindrichtingWindsnelheidRukwindLuchtdruk_ZeeniveauGlobe TemperatuurVlinder
02022-09-010:00:0018.8651017390.00.0655.611.3102005.0NaNvlinder01
12022-09-010:05:0018.8651017310.00.0755.512.9101997.0NaNvlinder01
22022-09-010:10:0018.8651017360.00.0755.111.3102002.0NaNvlinder01
32022-09-010:15:0018.7651017360.00.0856.012.9102002.0NaNvlinder01
42022-09-010:20:0018.7651017330.00.0655.011.3101999.0NaNvlinder01
..........................................
1209522022-09-1523:35:0013.4771013730.017.82750.00.0101326.0NaNvlinder28
1209532022-09-1523:40:0013.3771013650.017.82750.00.0101318.0NaNvlinder28
1209542022-09-1523:45:0013.2771013590.017.82750.00.0101312.0NaNvlinder28
1209552022-09-1523:50:0013.2771013590.017.82750.00.0101312.0NaNvlinder28
1209562022-09-1523:55:0013.0771013690.017.82850.00.0101322.0NaNvlinder28
\n", - "

120957 rows × 13 columns

\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 5 - } - ], - "source": [ - "# Construct the path\n", - "data_path = os.path.join(BASE_DIR, 'vlinderdata_small.csv')\n", - "# Open a file\n", - "# Use the following code if your data has some information on what is in the\n", - "# column. This is the case for the vlinderdata_small.csv file.\n", - "data = pd.read_csv(data_path, delimiter=',')\n", - "# Command the upper line and unccommand the following line if your own data\n", - "# has no information in the header\n", - "#data = pd.read_csv(data_path, delimiter=',', header=None)\n", - "# If you still get an error, then try to change the delimiter\n", - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hT95STFhqQ7z" - }, - "source": [ - "The above cells are a demo on how to use data files stored on your google drive. For the rest of this introduction we will introduce you to the MetObs-toolkit." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Y9uigeW28KmQ" - }, - "source": [ - "### **0.5 Basics of the MetObs-toolkit**\n", - "\n", - "**0.5.1 Key concepts:**\n", - "\n", - "The MetObs-toolkit is built upon three classes:\n", - "\n", - "\n", - "* Dataset: a collection of all the observations and metadata for all stations.\n", - "* Station: the collection of all observations and metadata for one station (lat, lon, ...)\n", - "* Modeldata: external model data (e.g. ERA5)\n", - "\n", - "More information on these classes and their full discription can be found on this page in the [documentation](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#how-to-use-this-toolkit).\n", - "\n", - "\n", - "**Let's get started!**\n", - "\n", - "Let's go over an example, before you start using your own dataset. When you want to use the toolkit, you have preferably three files, structured as follows:\n", - "\n", - "\n", - "* A datafile: contains all observations\n", - "* A metadata file: containing the metadata of the meteorological stations (lat, lon, ...)\n", - "* A template: this contains information on how to transform your data set to the default-dataset that holds the same structure for everyone using this toolkit. It contains the information to go from your data set to the standardized data set (and back). This standardized format is needed for the proper operation of the functions/computations of the toolkit. Because every data set is built in a different way, this template will be different for each data set. More detailed information on the template and the mapping that is done by the toolkit can be found on this page in the [documentation](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html).\n", - "\n", - "\n", - "First, we show an example of how the three files of such a standardized dataset look like:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "pvwu7o6qCPZ3", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "outputId": "71914caf-c3af-4cc0-db6c-27ad8c0e827f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " Datum Tijd (UTC) Temperatuur Vochtigheid Luchtdruk \\\n", - "0 2022-09-01 00:00:00 18.8 65 101739 \n", - "1 2022-09-01 00:05:00 18.8 65 101731 \n", - "2 2022-09-01 00:10:00 18.8 65 101736 \n", - "3 2022-09-01 00:15:00 18.7 65 101736 \n", - "4 2022-09-01 00:20:00 18.7 65 101733 \n", - "\n", - " Neerslagintensiteit Neerslagsom Windrichting Windsnelheid Rukwind \\\n", - "0 0.0 0.0 65 5.6 11.3 \n", - "1 0.0 0.0 75 5.5 12.9 \n", - "2 0.0 0.0 75 5.1 11.3 \n", - "3 0.0 0.0 85 6.0 12.9 \n", - "4 0.0 0.0 65 5.0 11.3 \n", - "\n", - " Luchtdruk_Zeeniveau Globe Temperatuur Vlinder \n", - "0 102005.0 NaN vlinder01 \n", - "1 101997.0 NaN vlinder01 \n", - "2 102002.0 NaN vlinder01 \n", - "3 102002.0 NaN vlinder01 \n", - "4 101999.0 NaN vlinder01 \n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " Vlinder lat lon stad benaming \\\n", - "0 vlinder01 50.980438 3.815763 Melle Proefhoeve \n", - "1 vlinder02 51.022379 3.709695 Gent Sterre \n", - "2 vlinder03 51.324583 4.952109 Turnhout Centrum \n", - "3 vlinder04 51.335522 4.934732 Turnhout Stadsboerderij \n", - "4 vlinder05 51.052655 3.675183 Gent Watersportbaan \n", - "5 vlinder06 51.027100 4.516300 Bonheiden Mechels Broek \n", - "6 vlinder07 51.030889 4.478445 Mechelen Noord \n", - "7 vlinder08 51.028130 4.477398 Mechelen De Lindepoort \n", - "8 vlinder09 50.927167 4.075722 Aalst Heuvelpark \n", - "9 vlinder10 50.935556 4.041389 Aalst Centrum \n", - "10 vlinder11 51.222422 4.381726 Antwerpen Linkeroever \n", - "11 vlinder12 51.216477 4.423440 Antwerpen Zoo \n", - "12 vlinder13 51.212211 4.398065 Antwerpen Inst. Trop. Geneeskunde \n", - "13 vlinder14 51.350618 4.315013 Antwerpen Zandvliet \n", - "14 vlinder15 50.935300 4.192600 Asse Koereit \n", - "15 vlinder16 51.266850 4.293436 Beveren Haven \n", - "16 vlinder17 51.065269 5.613458 Oudsbergen Oudsberg \n", - "17 vlinder18 51.136244 5.656769 Bree Tongerlo \n", - "18 vlinder19 50.841455 4.363672 Brussel Koninklijk Paleis \n", - "19 vlinder20 50.847025 4.357971 Brussel Kathedraal \n", - "20 vlinder21 51.260389 2.991917 De Haan Golf \n", - "21 vlinder22 50.989501 2.856220 Diksmuide De Blankaert \n", - "22 vlinder23 51.260578 3.580151 Sint-Laureins Boerekreek \n", - "23 vlinder24 51.167015 3.572062 Eeklo Het Leen \n", - "24 vlinder25 51.154720 3.708611 Evergem Kluizen \n", - "25 vlinder26 51.161760 4.997653 Geel Centrum \n", - "26 vlinder27 51.058099 3.728067 Gent Ottogracht \n", - "27 vlinder28 51.035293 3.769741 Gent Gentbrugse Meersen \n", - "\n", - " school sponsor \\\n", - "0 UGent Universiteit Gent \n", - "1 UGent Universiteit Gent \n", - "2 Heilig Graf Stad Turnhout \n", - "3 Heilig Graf Stad Turnhout \n", - "4 Sint-Barbara UGent Volkssterrenwacht Armand Pien \n", - "5 BimSem Stad Mechelen \n", - "6 PTS Stad Mechelen \n", - "7 TSM Stad Mechelen \n", - "8 SMI SOLVA \n", - "9 SMI SOLVA \n", - "10 Sint-Annacollege Stad Antwerpen \n", - "11 UGent ZOO Antwerpen \n", - "12 UGent Stad Antwerpen \n", - "13 UGent EnerSys \n", - "14 Sint-Martinus AllThingsTalk \n", - "15 Sint-Maarten Katoen Natie \n", - "16 Sint-Augustinusinstituut Bree Nationaal Park Hoge Kempen \n", - "17 TISM Bree Stad Bree \n", - "18 UGent NaN \n", - "19 UGent Vivaqua \n", - "20 Zeelyceum Royal Ostend Golf Club \n", - "21 ‘t Saam Natuurpunt De Blankaart \n", - "22 Richtpunt Eeklo De Boerekreek \n", - "23 OLV ten Doorn Provinciaal domein Het Leen \n", - "24 Einstein Atheneum De Watergroep \n", - "25 Sint Dimpna Stad Geel \n", - "26 Sec. Kunstinstituut Stad gent \n", - "27 GO! Ath. Stad Gent \n", - "\n", - " Network \n", - "0 Vlinder \n", - "1 Vlinder \n", - "2 Vlinder \n", - "3 Vlinder \n", - "4 Vlinder \n", - "5 Vlinder \n", - "6 Vlinder \n", - "7 Vlinder \n", - "8 Vlinder \n", - "9 Vlinder \n", - "10 Vlinder \n", - "11 Vlinder \n", - "12 Vlinder \n", - "13 Vlinder \n", - "14 Vlinder \n", - "15 Vlinder \n", - "16 Vlinder \n", - "17 Vlinder \n", - "18 Vlinder \n", - "19 Vlinder \n", - "20 Vlinder \n", - "21 Vlinder \n", - "22 Vlinder \n", - "23 Vlinder \n", - "24 Vlinder \n", - "25 Vlinder \n", - "26 Vlinder \n", - "27 Vlinder " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
VlinderlatlonstadbenamingschoolsponsorNetwork
0vlinder0150.9804383.815763MelleProefhoeveUGentUniversiteit GentVlinder
1vlinder0251.0223793.709695GentSterreUGentUniversiteit GentVlinder
2vlinder0351.3245834.952109TurnhoutCentrumHeilig GrafStad TurnhoutVlinder
3vlinder0451.3355224.934732TurnhoutStadsboerderijHeilig GrafStad TurnhoutVlinder
4vlinder0551.0526553.675183GentWatersportbaanSint-BarbaraUGent Volkssterrenwacht Armand PienVlinder
5vlinder0651.0271004.516300BonheidenMechels BroekBimSemStad MechelenVlinder
6vlinder0751.0308894.478445MechelenNoordPTSStad MechelenVlinder
7vlinder0851.0281304.477398MechelenDe LindepoortTSMStad MechelenVlinder
8vlinder0950.9271674.075722AalstHeuvelparkSMISOLVAVlinder
9vlinder1050.9355564.041389AalstCentrumSMISOLVAVlinder
10vlinder1151.2224224.381726AntwerpenLinkeroeverSint-AnnacollegeStad AntwerpenVlinder
11vlinder1251.2164774.423440AntwerpenZooUGentZOO AntwerpenVlinder
12vlinder1351.2122114.398065AntwerpenInst. Trop. GeneeskundeUGentStad AntwerpenVlinder
13vlinder1451.3506184.315013AntwerpenZandvlietUGentEnerSysVlinder
14vlinder1550.9353004.192600AsseKoereitSint-MartinusAllThingsTalkVlinder
15vlinder1651.2668504.293436BeverenHavenSint-MaartenKatoen NatieVlinder
16vlinder1751.0652695.613458OudsbergenOudsbergSint-Augustinusinstituut BreeNationaal Park Hoge KempenVlinder
17vlinder1851.1362445.656769BreeTongerloTISM BreeStad BreeVlinder
18vlinder1950.8414554.363672BrusselKoninklijk PaleisUGentNaNVlinder
19vlinder2050.8470254.357971BrusselKathedraalUGentVivaquaVlinder
20vlinder2151.2603892.991917De HaanGolfZeelyceumRoyal Ostend Golf ClubVlinder
21vlinder2250.9895012.856220DiksmuideDe Blankaert‘t SaamNatuurpunt De BlankaartVlinder
22vlinder2351.2605783.580151Sint-LaureinsBoerekreekRichtpunt EekloDe BoerekreekVlinder
23vlinder2451.1670153.572062EekloHet LeenOLV ten DoornProvinciaal domein Het LeenVlinder
24vlinder2551.1547203.708611EvergemKluizenEinstein AtheneumDe WatergroepVlinder
25vlinder2651.1617604.997653GeelCentrumSint DimpnaStad GeelVlinder
26vlinder2751.0580993.728067GentOttograchtSec. KunstinstituutStad gentVlinder
27vlinder2851.0352933.769741GentGentbrugse MeersenGO! Ath.Stad GentVlinder
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 6 - } - ], - "source": [ - "#path to a datafile (the example data used here are included in the MetObs-toolkit)\n", - "datafile = metobs_toolkit.demo_datafile\n", - "#path to a metadata file (the example metadata used here are included in the MetObs-toolkit)\n", - "metadatafile = metobs_toolkit.demo_metadatafile\n", - "\n", - "# open de files\n", - "data = pd.read_csv(datafile, sep=';')\n", - "metadata = pd.read_csv(metadatafile)\n", - "\n", - "# take a look at the content of the files\n", - "print(data.head()) # only the first rows of the data file are printed with .head() because otherwise you get a long list of output\n", - "metadata" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "90Xg4WOkDy21", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "outputId": "9c7bb594-9261-4243-c667-8bbefe884d47" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " varname template column name units \\\n", - "0 name Vlinder NaN \n", - "1 NaN NaN NaN \n", - "2 datetime NaN NaN \n", - "3 _date Datum NaN \n", - "4 _time Tijd (UTC) NaN \n", - "5 NaN NaN NaN \n", - "6 temp Temperatuur Celcius \n", - "7 humidity Vochtigheid % \n", - "8 pressure Luchtdruk pa \n", - "9 precip Neerslagintensiteit l/m² \n", - "10 precip_sum Neerslagsom l/m² \n", - "11 wind_direction Windrichting ° \n", - "12 wind_speed Windsnelheid m/s \n", - "13 wind_gust Rukwind m/s \n", - "14 pressure_at_sea_level Luchtdruk_Zeeniveau pa \n", - "15 radiation_temp Globe Temperatuur Celcius \n", - "16 NaN NaN NaN \n", - "17 NaN NaN NaN \n", - "18 _ID ID NaN \n", - "19 lat lat NaN \n", - "20 lon lon NaN \n", - "21 location stad NaN \n", - "22 call_name benaming NaN \n", - "23 network Network NaN \n", - "\n", - " description dtype format \n", - "0 NaN object NaN \n", - "1 NaN NaN NaN \n", - "2 NaN object %Y-%m-%d %H:%M:%S \n", - "3 NaN object %Y-%m-%d \n", - "4 NaN object %H:%M:%S \n", - "5 NaN NaN NaN \n", - "6 2m-temperature float64 NaN \n", - "7 relative humidity float64 NaN \n", - "8 air pressure float64 NaN \n", - "9 precipitation intensity float64 NaN \n", - "10 Precipitation cumulated from midnight float64 NaN \n", - "11 ° from North (CW) float64 NaN \n", - "12 windspeed float64 NaN \n", - "13 windgust float64 NaN \n", - "14 pressure at sea level float64 NaN \n", - "15 Radiative blackglobe temperature float64 NaN \n", - "16 NaN NaN NaN \n", - "17 NaN NaN NaN \n", - "18 NaN object NaN \n", - "19 NaN object NaN \n", - "20 NaN object NaN \n", - "21 NaN object NaN \n", - "22 NaN object NaN \n", - "23 NaN object NaN " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
varnametemplate column nameunitsdescriptiondtypeformat
0nameVlinderNaNNaNobjectNaN
1NaNNaNNaNNaNNaNNaN
2datetimeNaNNaNNaNobject%Y-%m-%d %H:%M:%S
3_dateDatumNaNNaNobject%Y-%m-%d
4_timeTijd (UTC)NaNNaNobject%H:%M:%S
5NaNNaNNaNNaNNaNNaN
6tempTemperatuurCelcius2m-temperaturefloat64NaN
7humidityVochtigheid%relative humidityfloat64NaN
8pressureLuchtdrukpaair pressurefloat64NaN
9precipNeerslagintensiteitl/m²precipitation intensityfloat64NaN
10precip_sumNeerslagsoml/m²Precipitation cumulated from midnightfloat64NaN
11wind_directionWindrichting°° from North (CW)float64NaN
12wind_speedWindsnelheidm/swindspeedfloat64NaN
13wind_gustRukwindm/swindgustfloat64NaN
14pressure_at_sea_levelLuchtdruk_Zeeniveaupapressure at sea levelfloat64NaN
15radiation_tempGlobe TemperatuurCelciusRadiative blackglobe temperaturefloat64NaN
16NaNNaNNaNNaNNaNNaN
17NaNNaNNaNNaNNaNNaN
18_IDIDNaNNaNobjectNaN
19latlatNaNNaNobjectNaN
20lonlonNaNNaNobjectNaN
21locationstadNaNNaNobjectNaN
22call_namebenamingNaNNaNobjectNaN
23networkNetworkNaNNaNobjectNaN
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 7 - } - ], - "source": [ - "#path to the template (the example template used here is included in the MetObs-toolkit)\n", - "template = pd.read_csv(metobs_toolkit.demo_template)\n", - "template" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vFW0YIfIDyl4" - }, - "source": [ - "When you make a template yourself, then this template has to contain the same column names, containing information on the standardized variable names, the variable names in your data set (that will be mapped to the standardized variable names), the units of the variables, a description, the data type and the format of the data.\n", - "\n", - "- 'varname': this is the default naming of the column names in the toolkit. If you want to do something with temperature when you use the toolkit functions, then you will have to specifiy this with 'temp' in the code.\n", - "- 'template_column_name': these are the names that correspond with the titels in the header in your data set. The toolkit will link these names with the default name. If one of the default names does not occur in your data set (equal to NaN or empty), then this will not be used in the mappeing. For example: the default name 'datetime' cannot be mapped, if there is no equivalent in the data set.\n", - "- 'format': tells you which format is used for the timestamps. For example: 2020/10/21 has %Y/%m/%d (=Year/month/day) as format.\n", - "\n", - "*Note there is an interactive prompt in the MetObs-toolkit that will guide you in the construction of the template (see metobs_toolkit.`build_template_prompt()` function on this page of the [documentation](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html)). This function will be demonstrated at the end of this introduction to transform your dataset into the framework of the MetObs-toolkit.*\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1suYDUfoFjQj" - }, - "source": [ - "**0.5.2 Create a dataset**\n", - "\n", - "To get familiar with how the MetObs-toolkit works, we create an empty dataset with the function 'Dataset()' of the MetObs-toolkit and we ask to visualise the characteristics of the dataset with the function 'show()'." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "MHXZsQJxFh2y", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "aa1b8960-ac86-4e12-9672-ad106a5eb06d" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Initialise dataset\n", - "INFO:metobs_toolkit.settings:Initialising settings\n", - "DEBUG:metobs_toolkit.settings:Updating Database settings.\n", - "DEBUG:metobs_toolkit.settings:Updating time resolution settings.\n", - "DEBUG:metobs_toolkit.settings:Updating app settings.\n", - "DEBUG:metobs_toolkit.settings:Updating QC settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gap settings.\n", - "DEBUG:metobs_toolkit.settings:Updating data templates settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", - "INFO:metobs_toolkit.dataset:Show basic info of dataset.\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - " -------- General --------- \n", - "\n", - "Empty instance of a Dataset.\n", - "\n", - " -------- Settings --------- \n", - "\n", - "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", - "\n", - " -------- Meta data --------- \n", - "\n", - "No metadata is found.\n" - ] - } - ], - "source": [ - "#make an empty dataset\n", - "dataset = metobs_toolkit.Dataset()\n", - "dataset.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "PLJlJhY0GI3Z" - }, - "source": [ - "You should obtain the warnings: `Empty instance of a Dataset.` and `No metadata is found.`\n", - "\n", - "Note that each dataset carries it's own settings. When you create a new dataset, it will use the default settings." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "jNSrl0m5GDh5", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "2930e44b-433f-48fd-bcb1-cb11b6432c33" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.settings:Show settings.\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "All settings:\n", - " \n", - " ---------------------------------------\n", - "\n", - " ---------------- IO (settings) ----------------------\n", - "\n", - "* output_folder: \n", - "\n", - " -None \n", - "\n", - "* input_data_file: \n", - "\n", - " -None \n", - "\n", - "* input_metadata_file: \n", - "\n", - " -None \n", - "\n", - " ---------------- db (settings) ----------------------\n", - "\n", - "* db_host: \n", - "\n", - " -framboos.ugent.be \n", - "\n", - "* db_database: \n", - "\n", - " -vlinder \n", - "\n", - "* db_obs_table: \n", - "\n", - " -Vlinder \n", - "\n", - "* db_meta_table: \n", - "\n", - " -Vlinder_Identification \n", - "\n", - "* db_user: \n", - "\n", - " -None \n", - "\n", - "* db_passw: \n", - "\n", - " -None \n", - "\n", - "* vlinder_db_meta_template: \n", - "\n", - " - VLINDER: \n", - "\n", - " -{'varname': 'name', 'dtype': 'object'} \n", - "\n", - " - ID: \n", - "\n", - " -{'varname': 'id', 'dtype': 'object'} \n", - "\n", - " - Location: \n", - "\n", - " -{'varname': 'call_name', 'dtype': 'object'} \n", - "\n", - " - stad: \n", - "\n", - " -{'varname': 'location', 'dtype': 'object'} \n", - "\n", - " - Latitude: \n", - "\n", - " -{'varname': 'lat', 'dtype': 'float'} \n", - "\n", - " - Longitude: \n", - "\n", - " -{'varname': 'lon', 'dtype': 'float'} \n", - "\n", - "* vlinder_db_obs_template: \n", - "\n", - " - StationID: \n", - "\n", - " -{'varname': 'id', 'dtype': 'object'} \n", - "\n", - " - datetime: \n", - "\n", - " -{'varname': 'datetime', 'fmt': '%Y-%m-%d %H:%M:%S', 'dtype': 'object', 'timezone': 'UTC'} \n", - "\n", - " - temperature: \n", - "\n", - " -{'varname': 'temp', 'units': '$^o$C', 'dtype': 'float64', 'description': 'temperature'} \n", - "\n", - " - humidity: \n", - "\n", - " -{'varname': 'humidity', 'units': '%', 'dtype': 'float64', 'description': 'relative humidity'} \n", - "\n", - " - pressure: \n", - "\n", - " -{'varname': 'pressure', 'units': 'pa', 'dtype': 'float64', 'description': 'airpressure'} \n", - "\n", - " - RainIntensity: \n", - "\n", - " -{'varname': 'precip', 'units': 'l/m$^2 per ?? tijdseenheid$', 'dtype': 'float64', 'description': 'precipitation intensity'} \n", - "\n", - " - RainVolume: \n", - "\n", - " -{'varname': 'precip_sum', 'units': 'l/m^2', 'dtype': 'float64', 'description': 'precipitation cumulated from midnight'} \n", - "\n", - " - WindDirection: \n", - "\n", - " -{'varname': 'wind_direction', 'units': '° from North (CW)', 'dtype': 'float64', 'description': 'Wind direction'} \n", - "\n", - " - WindSpeed: \n", - "\n", - " -{'varname': 'wind_speed', 'units': 'm/s', 'dtype': 'float64', 'description': 'windspeed'} \n", - "\n", - " - WindGust: \n", - "\n", - " -{'varname': 'wind_gust', 'units': 'm/s', 'dtype': 'float64', 'description': 'windgust'} \n", - "\n", - " - pressure_0: \n", - "\n", - " -{'varname': 'pressure_at_sea_level', 'units': 'pa', 'dtype': 'float64', 'description': 'pressure at sea level'} \n", - "\n", - " - BlackGlobeTemp: \n", - "\n", - " -{'varname': 'radiation_temp', 'units': 'celscius denk ik??', 'dtype': 'float64', 'description': 'Radiative temperature'} \n", - "\n", - " ---------------- time_settings (settings) ----------------------\n", - "\n", - "* target_time_res: \n", - "\n", - " -60T \n", - "\n", - "* resample_method: \n", - "\n", - " -nearest \n", - "\n", - "* resample_limit: \n", - "\n", - " -1 \n", - "\n", - "* timezone: \n", - "\n", - " -UTC \n", - "\n", - "* freq_estimation_method: \n", - "\n", - " -highest \n", - "\n", - "* freq_estimation_simplify: \n", - "\n", - " -True \n", - "\n", - "* freq_estimation_simplify_error: \n", - "\n", - " -2T \n", - "\n", - " ---------------- app (settings) ----------------------\n", - "\n", - "* print_fmt_datetime: \n", - "\n", - " -%d/%m/%Y %H:%M:%S \n", - "\n", - "* print_max_n: \n", - "\n", - " -40 \n", - "\n", - "* plot_settings: \n", - "\n", - " - time_series: \n", - "\n", - " -{'figsize': (15, 5), 'colormap': 'tab20', 'linewidth': 2, 'linestyle_ok': '-', 'linestyle_fill': '--', 'linezorder': 1, 'scattersize': 4, 'scatterzorder': 3, 'dashedzorder': 2, 'legend_n_columns': 5} \n", - "\n", - " - spatial_geo: \n", - "\n", - " -{'extent': [2.260609, 49.25, 6.118359, 52.350618], 'cmap': 'inferno_r', 'n_for_categorical': 5, 'figsize': (10, 15), 'fmt': '%d/%m/%Y %H:%M:%S UTC'} \n", - "\n", - " - pie_charts: \n", - "\n", - " -{'figsize': (10, 10), 'anchor_legend_big': (-0.25, 0.75), 'anchor_legend_small': (-3.5, 2.2), 'radius_big': 2.0, 'radius_small': 5.0} \n", - "\n", - " - color_mapper: \n", - "\n", - " -{'duplicated_timestamp': '#a32a1f', 'invalid_input': '#900357', 'gross_value': '#f1ff2b', 'persistance': '#f0051c', 'repetitions': '#056ff0', 'step': '#05d4f0', 'window_variation': '#05f0c9', 'titan_buddy_check': '#8300c4', 'titan_sct_resistant_check': '#c17fe1', 'gap': '#f00592', 'missing_timestamp': '#f78e0c', 'linear': '#d406c6', 'model_debias': '#6e1868', 'ok': '#07f72b', 'not checked': '#f7cf07', 'outlier': '#f20000'} \n", - "\n", - " - diurnal: \n", - "\n", - " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", - "\n", - " - anual: \n", - "\n", - " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", - "\n", - " - correlation_heatmap: \n", - "\n", - " -{'figsize': (10, 10), 'vmin': -1, 'vmax': 1, 'cmap': 'cool', 'x_tick_rot': 65, 'y_tick_rot': 0} \n", - "\n", - " - correlation_scatter: \n", - "\n", - " -{'figsize': (10, 10), 'p_bins': [0, 0.001, 0.01, 0.05, 999], 'bins_markers': ['*', 's', '^', 'X'], 'scatter_size': 40, 'scatter_edge_col': 'black', 'scatter_edge_line_width': 0.1, 'ymin': -1.1, 'ymax': 1.1, 'cmap': 'tab20', 'legend_ncols': 3, 'legend_text_size': 7} \n", - "\n", - "* world_boundary_map: \n", - "\n", - " -/usr/local/lib/python3.10/dist-packages/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp \n", - "\n", - "* display_name_mapper: \n", - "\n", - " - network: \n", - "\n", - " -network \n", - "\n", - " - name: \n", - "\n", - " -station name \n", - "\n", - " - call_name: \n", - "\n", - " -pseudo name \n", - "\n", - " - location: \n", - "\n", - " -region \n", - "\n", - " - lat: \n", - "\n", - " -latitude \n", - "\n", - " - lon: \n", - "\n", - " -longtitude \n", - "\n", - " - temp: \n", - "\n", - " -temperature \n", - "\n", - " - radiation_temp: \n", - "\n", - " -radiation temperature \n", - "\n", - " - humidity: \n", - "\n", - " -humidity \n", - "\n", - " - precip: \n", - "\n", - " -precipitation intensity \n", - "\n", - " - precip_sum: \n", - "\n", - " -cummulated precipitation \n", - "\n", - " - wind_speed: \n", - "\n", - " -wind speed \n", - "\n", - " - wind_gust: \n", - "\n", - " -wind gust speed \n", - "\n", - " - wind_direction: \n", - "\n", - " -wind direction \n", - "\n", - " - pressure: \n", - "\n", - " -air pressure \n", - "\n", - " - pressure_at_sea_level: \n", - "\n", - " -corrected pressure at sea level \n", - "\n", - " - lcz: \n", - "\n", - " -LCZ \n", - "\n", - "* static_fields: \n", - "\n", - " -['network', 'name', 'lat', 'lon', 'call_name', 'location', 'lcz'] \n", - "\n", - "* categorical_fields: \n", - "\n", - " -['wind_direction', 'lcz'] \n", - "\n", - "* location_info: \n", - "\n", - " -['network', 'lat', 'lon', 'lcz', 'call_name', 'location'] \n", - "\n", - "* default_name: \n", - "\n", - " -unknown_name \n", - "\n", - " ---------------- qc (settings) ----------------------\n", - "\n", - "* qc_check_settings: \n", - "\n", - " - duplicated_timestamp: \n", - "\n", - " -{'keep': False} \n", - "\n", - " - persistance: \n", - "\n", - " -{'temp': {'time_window_to_check': '1h', 'min_num_obs': 5}} \n", - "\n", - " - repetitions: \n", - "\n", - " -{'temp': {'max_valid_repetitions': 5}} \n", - "\n", - " - gross_value: \n", - "\n", - " -{'temp': {'min_value': -15.0, 'max_value': 39.0}} \n", - "\n", - " - window_variation: \n", - "\n", - " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': 0.002777777777777778, 'time_window_to_check': '1h', 'min_window_members': 3}} \n", - "\n", - " - step: \n", - "\n", - " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': -0.002777777777777778}} \n", - "\n", - "* qc_checks_info: \n", - "\n", - " - duplicated_timestamp: \n", - "\n", - " -{'outlier_flag': 'duplicated timestamp outlier', 'numeric_flag': 1, 'apply_on': 'record'} \n", - "\n", - " - invalid_input: \n", - "\n", - " -{'outlier_flag': 'invalid input', 'numeric_flag': 2, 'apply_on': 'obstype'} \n", - "\n", - " - gross_value: \n", - "\n", - " -{'outlier_flag': 'gross value outlier', 'numeric_flag': 4, 'apply_on': 'obstype'} \n", - "\n", - " - persistance: \n", - "\n", - " -{'outlier_flag': 'persistance outlier', 'numeric_flag': 5, 'apply_on': 'obstype'} \n", - "\n", - " - repetitions: \n", - "\n", - " -{'outlier_flag': 'repetitions outlier', 'numeric_flag': 6, 'apply_on': 'obstype'} \n", - "\n", - " - step: \n", - "\n", - " -{'outlier_flag': 'in step outlier group', 'numeric_flag': 7, 'apply_on': 'obstype'} \n", - "\n", - " - window_variation: \n", - "\n", - " -{'outlier_flag': 'in window variation outlier group', 'numeric_flag': 8, 'apply_on': 'obstype'} \n", - "\n", - " - titan_buddy_check: \n", - "\n", - " -{'outlier_flag': 'buddy check outlier', 'numeric_flag': 9, 'apply_on': 'obstype'} \n", - "\n", - " - titan_sct_resistant_check: \n", - "\n", - " -{'outlier_flag': 'sct resistant check outlier', 'numeric_flag': 10, 'apply_on': 'obstype'} \n", - "\n", - "* titan_check_settings: \n", - "\n", - " - titan_buddy_check: \n", - "\n", - " -{'temp': {'radius': 50000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0, 'num_iterations': 1}} \n", - "\n", - " - titan_sct_resistant_check: \n", - "\n", - " -{'temp': {'num_min_outer': 3, 'num_max_outer': 10, 'inner_radius': 20000, 'outer_radius': 50000, 'num_iterations': 10, 'num_min_prof': 5, 'min_elev_diff': 100, 'min_horizontal_scale': 250, 'max_horizontal_scale': 100000, 'kth_closest_obs_horizontal_scale': 2, 'vertical_scale': 200, 'mina_deviation': 10, 'maxa_deviation': 10, 'minv_deviation': 1, 'maxv_deviation': 1, 'eps2': 0.5, 'tpos': 5, 'tneg': 8, 'basic': True, 'debug': False}} \n", - "\n", - "* titan_specific_labeler: \n", - "\n", - " - titan_buddy_check: \n", - "\n", - " -{'ok': [0], 'outl': [1]} \n", - "\n", - " - titan_sct_resistant_check: \n", - "\n", - " -{'ok': [0, -999, 11, 12], 'outl': [1]} \n", - "\n", - " ---------------- gap (settings) ----------------------\n", - "\n", - "* gaps_settings: \n", - "\n", - " - gaps_finder: \n", - "\n", - " -{'gapsize_n': 40} \n", - "\n", - "* gaps_info: \n", - "\n", - " - gap: \n", - "\n", - " -{'label_columnname': 'is_gap', 'outlier_flag': 'gap', 'negative_flag': 'no gap', 'numeric_flag': 12, 'apply_on': 'record'} \n", - "\n", - " - missing_timestamp: \n", - "\n", - " -{'label_columnname': 'is_missing_timestamp', 'outlier_flag': 'missing timestamp', 'negative flag': 'not missing', 'numeric_flag': 13, 'apply_on': 'record'} \n", - "\n", - "* gaps_fill_settings: \n", - "\n", - " - linear: \n", - "\n", - " -{'method': 'time', 'max_consec_fill': 100} \n", - "\n", - " - model_debias: \n", - "\n", - " -{'debias_period': {'prefered_leading_sample_duration_hours': 48, 'prefered_trailing_sample_duration_hours': 48, 'minimum_leading_sample_duration_hours': 24, 'minimum_trailing_sample_duration_hours': 24}} \n", - "\n", - " - automatic: \n", - "\n", - " -{'max_interpolation_duration_str': '5H'} \n", - "\n", - "* gaps_fill_info: \n", - "\n", - " - label_columnname: \n", - "\n", - " -final_label \n", - "\n", - " - label: \n", - "\n", - " -{'linear': 'gap_interpolation', 'model_debias': 'gap_debiased_era5'} \n", - "\n", - " - numeric_flag: \n", - "\n", - " -21 \n", - "\n", - " ---------------- missing_obs (settings) ----------------------\n", - "\n", - "* missing_obs_fill_settings: \n", - "\n", - " - linear: \n", - "\n", - " -{'method': 'time'} \n", - "\n", - "* missing_obs_fill_info: \n", - "\n", - " - label_columnname: \n", - "\n", - " -final_label \n", - "\n", - " - label: \n", - "\n", - " -{'linear': 'missing_obs_interpolation'} \n", - "\n", - " - numeric_flag: \n", - "\n", - " -23 \n", - "\n", - " ---------------- templates (settings) ----------------------\n", - "\n", - "* data_template_file: \n", - "\n", - " -/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv \n", - "\n", - "* metadata_template_file: \n", - "\n", - " -/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv \n", - "\n", - " ---------------- gee (settings) ----------------------\n", - "\n", - "* gee_dataset_info: \n", - "\n", - " - global_lcz_map: \n", - "\n", - " -{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'} \n", - "\n", - " - DEM: \n", - "\n", - " -{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'} \n", - "\n", - " - ERA5_hourly: \n", - "\n", - " -{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'band_of_use': {'temp': {'name': 'temperature_2m', 'units': 'K'}}, 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''} \n", - "\n", - " - worldcover: \n", - "\n", - " -{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'} \n", - "\n" - ] - } - ], - "source": [ - "dataset_settings = dataset.settings.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "0fJ0HrX34mjQ" - }, - "source": [ - "Now, you will add some demo data to the feature dataset.
\n", - "First, you have to tell where the data file, metadata file and template file are located. Then, you will be able to import the data with the function 'import_data_from_file()'." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "bGZr6vSxGO1Z", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "99f8bbe4-1670-4d03-8134-b0b6b470b270" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.settings:Updating settings with input: \n", - "INFO:metobs_toolkit.settings:Update input_data_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n", - "INFO:metobs_toolkit.settings:Update meta_data_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_metadatafile.csv\n", - "INFO:metobs_toolkit.settings:Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", - "INFO:metobs_toolkit.settings:Update metadata template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", - "INFO:metobs_toolkit.dataset:Importing data from file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Update input_data_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n", - "Update input_metadata_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_metadatafile.csv\n", - "Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", - "Update metadata template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", - "Settings input data file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "DEBUG:metobs_toolkit.dataset:Data from /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv imported to dataframe.\n", - "INFO:metobs_toolkit.dataset:Importing metadata from file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_metadatafile.csv\n", - "DEBUG:metobs_toolkit.dataset:Merging metadata (['lon', 'call_name', 'network', 'sponsor', 'lat', 'school', 'location']) to dataset data by name.\n", - "INFO:metobs_toolkit.dataset:Updating dataset by dataframe with shape: (120957, 17).\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "WARNING! The following columns are not present in the data, and cannot be mapped: ['ID', 'lat', 'lon', 'stad', 'benaming', 'Network']\n", - "WARNING! The following columns are not present in the metadata, and cannot be mapped: ['Datum', 'Tijd (UTC)', 'Temperatuur', 'Vochtigheid', 'Luchtdruk', 'Neerslagintensiteit', 'Neerslagsom', 'Windrichting', 'Windsnelheid', 'Rukwind', 'Luchtdruk_Zeeniveau', 'Globe Temperatuur', 'ID']\n", - "WARNING! The following columns in the metadata cannot be mapped with the template: ['school', 'sponsor'].\n" - ] - } - ], - "source": [ - "# Add your datafiles to the dataset settings\n", - "dataset.update_settings(input_data_file = metobs_toolkit.demo_datafile, # this will later have to be replaced with the path to your own data file\n", - " input_metadata_file = metobs_toolkit.demo_metadatafile, # this will later have to be replaced with the path to your own metadata file\n", - " data_template_file = metobs_toolkit.demo_template, # this will later have to be replaced with the path to your own template file\n", - " metadata_template_file = metobs_toolkit.demo_template #contains also the metadata mapping\n", - " )\n", - "# Now the dataset knows where your data is located, let's load them in\n", - "dataset.import_data_from_file()\n", - "# Check the logs for warnings, and try to understand them" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ZOeWs7-C6G5H" - }, - "source": [ - "Don't be worried if you got a warning, check if it is essential data that failed to be mapped. If not, then you can continue your research." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "w2WfhVZoGUBi" - }, - "source": [ - "**What is in the dataset?**\n", - "\n", - "There are automatically some actions executed when you load or import the data into your dataset:
\n", - "1) Looking for duplicated timestamps.
\n", - "2) Looking for observation values that are not valid (e.g. some text instead of a number).
\n", - "3) For each station a time resolution is estimated, based on this time resolution the dataset looks for missing observations.
\n", - "4) When a series of consecutive missing observations are detected (and this is longer than a certain threshold), then this is labelled as a gap." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "oHhksTOoGWex", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "92ea050a-b02e-4b4e-f7bb-54b1b7f008a8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Show basic info of dataset.\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\n", - " -------- General --------- \n", - "\n", - "Dataset instance containing: \n", - " *28 stations \n", - " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", - " *120957 observation records \n", - " *256 records labeled as outliers \n", - " *0 gaps \n", - " *3 missing observations \n", - " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", - " *time zone of the records: UTC \n", - " *Coordinates are available for all stations. \n", - "\n", - "\n", - " -------- Settings --------- \n", - "\n", - "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", - "\n", - " -------- Meta data --------- \n", - "\n", - "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", - "\n", - " The first rows of the metadf looks like:\n", - " network lat lon call_name location \\\n", - "name \n", - "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", - "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", - "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", - "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", - "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", - "\n", - " geometry assumed_import_frequency \\\n", - "name \n", - "vlinder01 POINT (3.81576 50.98044) 0 days 00:05:00 \n", - "vlinder02 POINT (3.70969 51.02238) 0 days 00:05:00 \n", - "vlinder03 POINT (4.95211 51.32458) 0 days 00:05:00 \n", - "vlinder04 POINT (4.93473 51.33552) 0 days 00:05:00 \n", - "vlinder05 POINT (3.67518 51.05266) 0 days 00:05:00 \n", - "\n", - " dataset_resolution \n", - "name \n", - "vlinder01 0 days 00:05:00 \n", - "vlinder02 0 days 00:05:00 \n", - "vlinder03 0 days 00:05:00 \n", - "vlinder04 0 days 00:05:00 \n", - "vlinder05 0 days 00:05:00 \n", - "\n", - " -------- Missing observations info -------- \n", - "\n", - "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", - " * 3 missing observations\n", - "\n", - " name\n", - "vlinder02 2022-09-10 17:10:00+00:00\n", - "vlinder02 2022-09-10 17:15:00+00:00\n", - "vlinder02 2022-09-10 17:45:00+00:00\n", - "Name: datetime, dtype: datetime64[ns, UTC] \n", - "\n", - " * For these stations: ['vlinder02']\n", - " * The missing observations are not filled.\n", - "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", - "None\n", - "\n", - " -------- Gaps --------- \n", - "\n", - "There are no gaps.\n", - "None\n" - ] - } - ], - "source": [ - "# Give an overview of:\n", - "# 1) the observations,\n", - "# 2) outliers in the observations,\n", - "# 3) number of missing observations and\n", - "# 4) number of gaps\n", - "dataset.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "5-4xJcD_8ytz" - }, - "source": [ - "You can also extract the above aspects of the data set separately." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NTegpKdIGbMZ", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "69bf1a37-38f2-4efb-d69b-5510ca3cac30" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "The dataset.df: \n", - " temp radiation_temp humidity precip \\\n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65.0 0.0 \n", - " 2022-09-01 00:05:00+00:00 18.8 NaN 65.0 0.0 \n", - " 2022-09-01 00:10:00+00:00 18.8 NaN 65.0 0.0 \n", - " 2022-09-01 00:15:00+00:00 18.7 NaN 65.0 0.0 \n", - " 2022-09-01 00:20:00+00:00 18.7 NaN 65.0 0.0 \n", - "... ... ... ... ... \n", - "vlinder28 2022-09-15 23:35:00+00:00 13.4 NaN 77.0 0.0 \n", - " 2022-09-15 23:40:00+00:00 13.3 NaN 77.0 0.0 \n", - " 2022-09-15 23:45:00+00:00 13.2 NaN 77.0 0.0 \n", - " 2022-09-15 23:50:00+00:00 13.2 NaN 77.0 0.0 \n", - " 2022-09-15 23:55:00+00:00 13.0 NaN 77.0 0.0 \n", - "\n", - " precip_sum wind_speed wind_gust \\\n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", - " 2022-09-01 00:05:00+00:00 0.0 5.5 12.9 \n", - " 2022-09-01 00:10:00+00:00 0.0 5.1 11.3 \n", - " 2022-09-01 00:15:00+00:00 0.0 6.0 12.9 \n", - " 2022-09-01 00:20:00+00:00 0.0 5.0 11.3 \n", - "... ... ... ... \n", - "vlinder28 2022-09-15 23:35:00+00:00 17.8 0.0 0.0 \n", - " 2022-09-15 23:40:00+00:00 17.8 0.0 0.0 \n", - " 2022-09-15 23:45:00+00:00 17.8 0.0 0.0 \n", - " 2022-09-15 23:50:00+00:00 17.8 0.0 0.0 \n", - " 2022-09-15 23:55:00+00:00 17.8 0.0 0.0 \n", - "\n", - " wind_direction pressure \\\n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 65.0 101739.0 \n", - " 2022-09-01 00:05:00+00:00 75.0 101731.0 \n", - " 2022-09-01 00:10:00+00:00 75.0 101736.0 \n", - " 2022-09-01 00:15:00+00:00 85.0 101736.0 \n", - " 2022-09-01 00:20:00+00:00 65.0 101733.0 \n", - "... ... ... \n", - "vlinder28 2022-09-15 23:35:00+00:00 275.0 101373.0 \n", - " 2022-09-15 23:40:00+00:00 275.0 101365.0 \n", - " 2022-09-15 23:45:00+00:00 275.0 101359.0 \n", - " 2022-09-15 23:50:00+00:00 275.0 101359.0 \n", - " 2022-09-15 23:55:00+00:00 285.0 101369.0 \n", - "\n", - " pressure_at_sea_level \n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", - " 2022-09-01 00:05:00+00:00 101997.0 \n", - " 2022-09-01 00:10:00+00:00 102002.0 \n", - " 2022-09-01 00:15:00+00:00 102002.0 \n", - " 2022-09-01 00:20:00+00:00 101999.0 \n", - "... ... \n", - "vlinder28 2022-09-15 23:35:00+00:00 101326.0 \n", - " 2022-09-15 23:40:00+00:00 101318.0 \n", - " 2022-09-15 23:45:00+00:00 101312.0 \n", - " 2022-09-15 23:50:00+00:00 101312.0 \n", - " 2022-09-15 23:55:00+00:00 101322.0 \n", - "\n", - "[120957 rows x 10 columns]\n" - ] - } - ], - "source": [ - "# Here we print what is saved in the .df attribute\n", - "print(\"The dataset.df: \\n\",dataset.df)\n", - "# not all items can be plotted (too much information) so ... is given for\n", - "# the data inbetween" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-cXLi4AJB9ki" - }, - "source": [ - "The observations labeled as outliers are stored in the attribute .outliersdf.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "_4875_PaB9BE", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "2bf43473-d301-439a-d6aa-23b12a28fe3e" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "The outliersdf: \n", - " value label\n", - "name datetime obstype \n", - "vlinder02 2022-09-07 10:35:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-07 10:40:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-07 10:45:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-07 10:50:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-07 10:55:00+00:00 radiation_temp NaN invalid input\n", - "... ... ...\n", - " 2022-09-08 07:30:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-08 07:35:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-08 07:40:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-08 07:45:00+00:00 radiation_temp NaN invalid input\n", - " 2022-09-08 07:50:00+00:00 radiation_temp NaN invalid input\n", - "\n", - "[256 rows x 2 columns]\n" - ] - } - ], - "source": [ - "# Outliers\n", - "print(\"The outliersdf: \\n\", dataset.outliersdf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "00yI2vFoDFWK" - }, - "source": [ - "Missing observations can be retrieved with .missing_obs." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "NelZxsOADNRp", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4a630faa-6ef6-4413-b8d0-7a1338c5f6f5" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "missing observations instance: Missing observations: \n", - " name\n", - "vlinder02 2022-09-10 17:10:00+00:00\n", - "vlinder02 2022-09-10 17:15:00+00:00\n", - "vlinder02 2022-09-10 17:45:00+00:00\n", - "Name: datetime, dtype: datetime64[ns, UTC]\n" - ] - } - ], - "source": [ - "# Missing observations\n", - "print('missing observations instance: ', dataset.missing_obs)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "_PI5gzupDRrp" - }, - "source": [ - "Gaps are obtained with .gaps." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "FjqNiaYmGfph", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "61f5c9ce-9c53-4ef5-ef51-7dd003ef7b0a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "gaps instance: []\n" - ] - } - ], - "source": [ - "# Gaps\n", - "print('gaps instance: ', dataset.gaps)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hU0R_hNZCX-C" - }, - "source": [ - "Additionally, the metadata is stored in the attribute .metadf." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "IJ84IHTFCYzy", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "6d78e9b1-d8d5-4943-b13d-fb2308c2209b" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "The metadat: \n", - " network lat lon lcz call_name \\\n", - "name \n", - "vlinder01 Vlinder 50.980438 3.815763 NaN Proefhoeve \n", - "vlinder02 Vlinder 51.022379 3.709695 NaN Sterre \n", - "vlinder03 Vlinder 51.324583 4.952109 NaN Centrum \n", - "vlinder04 Vlinder 51.335522 4.934732 NaN Stadsboerderij \n", - "vlinder05 Vlinder 51.052655 3.675183 NaN Watersportbaan \n", - "vlinder06 Vlinder 51.027100 4.516300 NaN Mechels Broek \n", - "vlinder07 Vlinder 51.030889 4.478445 NaN Noord \n", - "vlinder08 Vlinder 51.028130 4.477398 NaN De Lindepoort \n", - "vlinder09 Vlinder 50.927167 4.075722 NaN Heuvelpark \n", - "vlinder10 Vlinder 50.935556 4.041389 NaN Centrum \n", - "vlinder11 Vlinder 51.222422 4.381726 NaN Linkeroever \n", - "vlinder12 Vlinder 51.216477 4.423440 NaN Zoo \n", - "vlinder13 Vlinder 51.212211 4.398065 NaN Inst. Trop. Geneeskunde \n", - "vlinder14 Vlinder 51.350618 4.315013 NaN Zandvliet \n", - "vlinder15 Vlinder 50.935300 4.192600 NaN Koereit \n", - "vlinder16 Vlinder 51.266850 4.293436 NaN Haven \n", - "vlinder17 Vlinder 51.065269 5.613458 NaN Oudsberg \n", - "vlinder18 Vlinder 51.136244 5.656769 NaN Tongerlo \n", - "vlinder19 Vlinder 50.841455 4.363672 NaN Koninklijk Paleis \n", - "vlinder20 Vlinder 50.847025 4.357971 NaN Kathedraal \n", - "vlinder21 Vlinder 51.260389 2.991917 NaN Golf \n", - "vlinder22 Vlinder 50.989501 2.856220 NaN De Blankaert \n", - "vlinder23 Vlinder 51.260578 3.580151 NaN Boerekreek \n", - "vlinder24 Vlinder 51.167015 3.572062 NaN Het Leen \n", - "vlinder25 Vlinder 51.154720 3.708611 NaN Kluizen \n", - "vlinder26 Vlinder 51.161760 4.997653 NaN Centrum \n", - "vlinder27 Vlinder 51.058099 3.728067 NaN Ottogracht \n", - "vlinder28 Vlinder 51.035293 3.769741 NaN Gentbrugse Meersen \n", - "\n", - " location geometry assumed_import_frequency \\\n", - "name \n", - "vlinder01 Melle POINT (3.81576 50.98044) 0 days 00:05:00 \n", - "vlinder02 Gent POINT (3.70969 51.02238) 0 days 00:05:00 \n", - "vlinder03 Turnhout POINT (4.95211 51.32458) 0 days 00:05:00 \n", - "vlinder04 Turnhout POINT (4.93473 51.33552) 0 days 00:05:00 \n", - "vlinder05 Gent POINT (3.67518 51.05266) 0 days 00:05:00 \n", - "vlinder06 Bonheiden POINT (4.51630 51.02710) 0 days 00:05:00 \n", - "vlinder07 Mechelen POINT (4.47844 51.03089) 0 days 00:05:00 \n", - "vlinder08 Mechelen POINT (4.47740 51.02813) 0 days 00:05:00 \n", - "vlinder09 Aalst POINT (4.07572 50.92717) 0 days 00:05:00 \n", - "vlinder10 Aalst POINT (4.04139 50.93556) 0 days 00:05:00 \n", - "vlinder11 Antwerpen POINT (4.38173 51.22242) 0 days 00:05:00 \n", - "vlinder12 Antwerpen POINT (4.42344 51.21648) 0 days 00:05:00 \n", - "vlinder13 Antwerpen POINT (4.39806 51.21221) 0 days 00:05:00 \n", - "vlinder14 Antwerpen POINT (4.31501 51.35062) 0 days 00:05:00 \n", - "vlinder15 Asse POINT (4.19260 50.93530) 0 days 00:05:00 \n", - "vlinder16 Beveren POINT (4.29344 51.26685) 0 days 00:05:00 \n", - "vlinder17 Oudsbergen POINT (5.61346 51.06527) 0 days 00:05:00 \n", - "vlinder18 Bree POINT (5.65677 51.13624) 0 days 00:05:00 \n", - "vlinder19 Brussel POINT (4.36367 50.84146) 0 days 00:05:00 \n", - "vlinder20 Brussel POINT (4.35797 50.84703) 0 days 00:05:00 \n", - "vlinder21 De Haan POINT (2.99192 51.26039) 0 days 00:05:00 \n", - "vlinder22 Diksmuide POINT (2.85622 50.98950) 0 days 00:05:00 \n", - "vlinder23 Sint-Laureins POINT (3.58015 51.26058) 0 days 00:05:00 \n", - "vlinder24 Eeklo POINT (3.57206 51.16701) 0 days 00:05:00 \n", - "vlinder25 Evergem POINT (3.70861 51.15472) 0 days 00:05:00 \n", - "vlinder26 Geel POINT (4.99765 51.16176) 0 days 00:05:00 \n", - "vlinder27 Gent POINT (3.72807 51.05810) 0 days 00:05:00 \n", - "vlinder28 Gent POINT (3.76974 51.03529) 0 days 00:05:00 \n", - "\n", - " dataset_resolution \n", - "name \n", - "vlinder01 0 days 00:05:00 \n", - "vlinder02 0 days 00:05:00 \n", - "vlinder03 0 days 00:05:00 \n", - "vlinder04 0 days 00:05:00 \n", - "vlinder05 0 days 00:05:00 \n", - "vlinder06 0 days 00:05:00 \n", - "vlinder07 0 days 00:05:00 \n", - "vlinder08 0 days 00:05:00 \n", - "vlinder09 0 days 00:05:00 \n", - "vlinder10 0 days 00:05:00 \n", - "vlinder11 0 days 00:05:00 \n", - "vlinder12 0 days 00:05:00 \n", - "vlinder13 0 days 00:05:00 \n", - "vlinder14 0 days 00:05:00 \n", - "vlinder15 0 days 00:05:00 \n", - "vlinder16 0 days 00:05:00 \n", - "vlinder17 0 days 00:05:00 \n", - "vlinder18 0 days 00:05:00 \n", - "vlinder19 0 days 00:05:00 \n", - "vlinder20 0 days 00:05:00 \n", - "vlinder21 0 days 00:05:00 \n", - "vlinder22 0 days 00:05:00 \n", - "vlinder23 0 days 00:05:00 \n", - "vlinder24 0 days 00:05:00 \n", - "vlinder25 0 days 00:05:00 \n", - "vlinder26 0 days 00:05:00 \n", - "vlinder27 0 days 00:05:00 \n", - "vlinder28 0 days 00:05:00 \n" - ] - } - ], - "source": [ - "# Metadata is stored here:\n", - "print(\"The metadat: \\n\",dataset.metadf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LOgBma-iGl3a" - }, - "source": [ - "**0.5.3 Frequently used functions**\n", - "\n", - "1) Coarsening the time resolution of the dataset" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "txLS2Dx9GmEK", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 405 - }, - "outputId": "872e30fd-c345-4c44-ce28-a189baf00abb" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Coarsening the timeresolution to 30T using the nearest-method (with limit=1).\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - " temp radiation_temp humidity precip \\\n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65.0 0.0 \n", - " 2022-09-01 00:30:00+00:00 18.7 NaN 65.0 0.0 \n", - " 2022-09-01 01:00:00+00:00 18.4 NaN 65.0 0.0 \n", - " 2022-09-01 01:30:00+00:00 18.0 NaN 65.0 0.0 \n", - " 2022-09-01 02:00:00+00:00 17.1 NaN 68.0 0.0 \n", - "\n", - " precip_sum wind_speed wind_gust \\\n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", - " 2022-09-01 00:30:00+00:00 0.0 5.4 9.7 \n", - " 2022-09-01 01:00:00+00:00 0.0 5.1 8.1 \n", - " 2022-09-01 01:30:00+00:00 0.0 7.1 12.9 \n", - " 2022-09-01 02:00:00+00:00 0.0 5.7 9.7 \n", - "\n", - " wind_direction pressure \\\n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 65.0 101739.0 \n", - " 2022-09-01 00:30:00+00:00 85.0 101732.0 \n", - " 2022-09-01 01:00:00+00:00 55.0 101736.0 \n", - " 2022-09-01 01:30:00+00:00 55.0 101736.0 \n", - " 2022-09-01 02:00:00+00:00 45.0 101723.0 \n", - "\n", - " pressure_at_sea_level \n", - "name datetime \n", - "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", - " 2022-09-01 00:30:00+00:00 101999.0 \n", - " 2022-09-01 01:00:00+00:00 102003.0 \n", - " 2022-09-01 01:30:00+00:00 102003.0 \n", - " 2022-09-01 02:00:00+00:00 101990.0 " - ], - "text/html": [ - "\n", - "
\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tempradiation_temphumidityprecipprecip_sumwind_speedwind_gustwind_directionpressurepressure_at_sea_level
namedatetime
vlinder012022-09-01 00:00:00+00:0018.8NaN65.00.00.05.611.365.0101739.0102005.0
2022-09-01 00:30:00+00:0018.7NaN65.00.00.05.49.785.0101732.0101999.0
2022-09-01 01:00:00+00:0018.4NaN65.00.00.05.18.155.0101736.0102003.0
2022-09-01 01:30:00+00:0018.0NaN65.00.00.07.112.955.0101736.0102003.0
2022-09-01 02:00:00+00:0017.1NaN68.00.00.05.79.745.0101723.0101990.0
\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - " \n", - "
\n", - "
\n", - " " - ] - }, - "metadata": {}, - "execution_count": 17 - } - ], - "source": [ - "# coarsening timeresolution of the dataset\n", - "# (before runing this code the vlinder data had a resolution of 5 minutes)\n", - "dataset.coarsen_time_resolution(freq='30T') #30 minutes resolution for all stations\n", - "# 1 hour resolution for all stations\n", - "#dataset.coarsen_time_resolution(freq='1H')\n", - "dataset.df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CXQKIsYLG6wI" - }, - "source": [ - "2) Extracting the data of one station out of a dataset with multiple sations
\n", - "
\n", - "The structure and the available methods of the dataset with one station is exactly the same as for a dataset with multiple stations." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "C4isO1cjG_1A", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "4da0b62d-71ff-48e9-ff79-d4562156578d" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Extract vlinder02 from dataset.\n", - "INFO:metobs_toolkit.dataset:Coarsening the timeresolution to 1H using the nearest-method (with limit=1).\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Missing observations: \n", - " name\n", - "vlinder02 2022-09-10 17:10:00+00:00\n", - "vlinder02 2022-09-10 17:15:00+00:00\n", - "vlinder02 2022-09-10 17:45:00+00:00\n", - "Name: datetime, dtype: datetime64[ns, UTC]\n", - " network lat lon lcz call_name location \\\n", - "vlinder02 Vlinder 51.022379 3.709695 NaN Sterre Gent \n", - "\n", - " geometry assumed_import_frequency \\\n", - "vlinder02 POINT (3.709695 51.022379) 0 days 00:05:00 \n", - "\n", - " dataset_resolution \n", - "vlinder02 0 days 01:00:00 \n" - ] - } - ], - "source": [ - "# Extract a station\n", - "vlinderstation = dataset.get_station('vlinder02') # 'vlinder02' is the name of a station\n", - "\n", - "# The structure and the available methods of the dataset with one station is exactly the same\n", - "# as for a dataset with multiple stations: some examples\n", - "print(vlinderstation.missing_obs)\n", - "\n", - "vlinderstation.coarsen_time_resolution(freq='1H')\n", - "print(vlinderstation.metadf)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TDr17tFrHHca" - }, - "source": [ - "3) Plotting the data\n", - "
\n", - "- Plotting the timeseries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "moEUH8yyHHp5", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 290 - }, - "outputId": "6b062524-7b9b-42ab-f79e-5450fd437016" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Make temp-timeseries plot for all stations\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Warning: colormap: tab20, is not well suited to color 28 categories. \n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 19 - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gkV3X4/W+Fzj09OWyO2qhVWuWAhIwkQAhMME4YCQyWETYvxvD+jLBJhleGnw3YBgQYEMJGgBESUSiAUM55c5ycQ+dQ8b5/1Gz3jHYVd3dmZ/Z8nmeerr5VXX2rOkz36XPu1ZRSCiGEEEIIIYQQQgghxBGjz3YHhBBCCCGEEEIIIYSYbyToJoQQQgghhBBCCCHEESZBNyGEEEIIIYQQQgghjjAJugkhhBBCCCGEEEIIcYRJ0E0IIYQQQgghhBBCiCNMgm5CCCGEEEIIIYQQQhxhEnQTQgghhBBCCCGEEOIIk6CbEEIIIYQQQgghhBBHmATdhBBCCCGEEEIIIYQ4wiToJoQQQgghqoaHh3nHO95Bc3Mzmqbxla98Zba7BMDy5cu56qqrqtfvueceNE3jnnvumbU+vRyf/vSn0TRttrshhBBCiFkgQTchhBBCHDGapr2sv2M9UHI0ff3rX+d73/vebHfjBf3d3/0dd9xxBx//+Mf57//+b17/+tfPdpeOuptuuumwgoulUolPf/rTx/XzWgghhBAHM2e7A0IIIYSYP/77v/972vXvf//73HXXXQe1r1+/fia7dUz5+te/TktLy7SsrWPJ3XffzVve8hY++tGPznZXZsxNN93E1q1b+fCHP/yqbl8qlfjMZz4DwEUXXTRt3T/+4z/yD//wD4fZQyGEEELMRRJ0E0IIIcQR8653vWva9UceeYS77rrroPb5QilFpVIhFovNdldetmKxSCKReMH1IyMjNDQ0HLH7q1QqhMNhdP34LLAwTRPTlI/cQgghxPHo+Pz0I4QQQohZ4/s+X/nKV9i4cSPRaJT29nauvvpq0un0tO2WL1/Om970Ju655x5OP/10YrEYmzZtqpbw3XLLLWzatIloNMrmzZt5+umnp93+qquuIplMsn//fi677DISiQQLFy7ks5/9LEqpw+rTHXfcUe3TN7/5TQBuuOEGLr74Ytra2ohEImzYsIHrr7/+oNtv27aNe++9t1pqeyAz6oXG/vre976Hpml0dXVV2zRN49Of/vRB2z5/3LMDt7333nu55ppraGtrY/HixQfdbuq2Sim+9rWvVft3wP79+/mjP/ojmpqaiMfjnH322fz617+eto8D46z96Ec/4h//8R9ZtGgR8XicXC53yPsE+Nd//VfOPfdcmpubicVibN68mZtvvvkFt3+l8vk8H/7wh1m+fDmRSIS2tjYuueQSnnrqKSDITPv1r39Nd3d39ZiXL18OgG3bfPKTn2Tz5s3U19eTSCS44IIL+P3vf1/df1dXF62trQB85jOfqe7jwONzqMfVdV3++Z//mVWrVhGJRFi+fDnXXnstlmVN2+7A8+2BBx7gzDPPJBqNsnLlSr7//e9P285xHD7zmc9wwgknEI1GaW5u5vzzz+euu+46YudRCCGEEK+c/OwmhBBCiBl19dVX873vfY/3vOc9fOhDH6Kzs5OvfvWrPP300zz44IOEQqHqtnv37uXP/uzPuPrqq3nXu97Fv/7rv3LFFVfwjW98g2uvvZZrrrkGgOuuu453vvOd7Nq1a1pGled5vP71r+fss8/mi1/8Irfffjuf+tSncF2Xz372s6+qT7t27eJP//RPufrqq3n/+9/P2rVrAbj++uvZuHEjb37zmzFNk1/+8pdcc801+L7PBz/4QQC+8pWv8Ld/+7ckk0k+8YlPANDe3n70Tvaka665htbWVj75yU9SLBYPuc1rXvMa/vu//5u/+Iu/4JJLLuHd7353dd3w8DDnnnsupVKJD33oQzQ3N3PjjTfy5je/mZtvvpm3vvWt0/b1z//8z4TDYT760Y9iWRbhcPgF+/bv//7vvPnNb+bP//zPsW2bH/3oR/zRH/0Rv/rVr7j88ssP+9j/+q//mptvvpm/+Zu/YcOGDYyPj/PAAw+wY8cOTjvtND7xiU+QzWbp6+vjy1/+MgDJZBKAXC7Ht7/9bf70T/+U97///eTzeb7zne9w2WWX8dhjj3HKKafQ2trK9ddfzwc+8AHe+ta38ra3vQ2Ak0466QX79L73vY8bb7yRd7zjHfz93/89jz76KNdddx07duzg1ltvnbbt3r17ecc73sFf/uVfcuWVV/Ld736Xq666is2bN7Nx40YgCOxdd911vO997+PMM88kl8vxxBNP8NRTT3HJJZcc9jkUQgghxKukhBBCCCGOkg9+8INq6seN+++/XwHqBz/4wbTtbr/99oPaly1bpgD10EMPVdvuuOMOBahYLKa6u7ur7d/85jcVoH7/+99X26688koFqL/927+ttvm+ry6//HIVDofV6Ojoq+7T7bffftCxlkqlg9ouu+wytXLlymltGzduVBdeeOFB237qU59Sh/podsMNNyhAdXZ2VtsA9alPfeqgbZctW6auvPLKg257/vnnK9d1D9r+UAD1wQ9+cFrbhz/8YQWo+++/v9qWz+fVihUr1PLly5XneUoppX7/+98rQK1cufKQ5+NQnr+dbdvqxBNPVBdffPGLHtuB+5r6mB9KfX39QcfzfJdffrlatmzZQe2u6yrLsqa1pdNp1d7ert773vdW20ZHR1/wMXn+4/rMM88oQL3vfe+btt1HP/pRBai777672nbg+XbfffdV20ZGRlQkElF///d/X207+eST1eWXX/6ixyiEEEKImSflpUIIIYSYMT/5yU+or6/nkksuYWxsrPq3efNmksnktLI9gA0bNnDOOedUr5911lkAXHzxxSxduvSg9v379x90n3/zN39TXdY0jb/5m7/Btm1++9vfvqo+rVixgssuu+yg+5k6rls2m2VsbIwLL7yQ/fv3k81mX/Y5Ohre//73YxjGq779bbfdxplnnsn5559fbUsmk/zVX/0VXV1dbN++fdr2V1555cse527qdul0mmw2ywUXXFAt/zxcDQ0NPProowwMDLzi2xqGUc3S832fiYkJXNfl9NNPf9X9u+222wD4yEc+Mq397//+7wEOKtndsGEDF1xwQfV6a2sra9eunfZcb2hoYNu2bezZs+dV9UkIIYQQR4cE3YQQQggxY/bs2UM2m6WtrY3W1tZpf4VCgZGRkWnbTw2sAdTX1wOwZMmSQ7Y/fww2XddZuXLltLY1a9YAVMdIe6V9WrFixSGP7cEHH+R1r3sdiUSChoYGWltbufbaawFmPej2Qn1+ubq7u6tltFMdmIW2u7v7Vd/fr371K84++2yi0ShNTU3Vcs0jdc6++MUvsnXrVpYsWcKZZ57Jpz/96UMGZ1/IjTfeyEknnVQdK621tZVf//rXr7p/3d3d6LrO6tWrp7V3dHTQ0NBw0Ll8/msAoLGxcdpz/bOf/SyZTIY1a9awadMmPvaxj/Hcc8+9qv4JIYQQ4siRMd2EEEIIMWN836etrY0f/OAHh1x/YED6A14oO+uF2tXzJkg4Gn06VAbXvn37+IM/+APWrVvHl770JZYsWUI4HOa2227jy1/+Mr7vv2Q/DjWJAgTj0r1cL7TtTM+u+nLv7/777+fNb34zr3nNa/j617/OggULCIVC3HDDDdx0001HpC/vfOc7ueCCC7j11lu58847+b//9//yhS98gVtuuYU3vOENL3rb//mf/+Gqq67iD//wD/nYxz5GW1sbhmFw3XXXsW/fvsPq1ws93s/3cp7rr3nNa9i3bx8///nPufPOO/n2t7/Nl7/8Zb7xjW/wvve977D6KYQQQohXT4JuQgghhJgxq1at4re//S3nnXfejASCfN9n//791ew2gN27dwNUZ6g8En365S9/iWVZ/OIXv5iWmfT80lR44WBLY2MjAJlMhoaGhmr78zOfDmybyWSmtdm2zeDg4Kvo/UtbtmwZu3btOqh9586d1fWvxk9/+lOi0Sh33HEHkUik2n7DDTe8uo6+gAULFnDNNddwzTXXMDIywmmnncbnP//5atDthR6Tm2++mZUrV3LLLbdM2+ZTn/rUtO1ebgANgnPl+z579uypZgpCMFlFJpN51eeyqamJ97znPbznPe+hUCjwmte8hk9/+tMSdBNCCCFmkZSXCiGEEGLGvPOd78TzPP75n//5oHWu6x4USDoSvvrVr1aXlVJ89atfJRQK8Qd/8AdHrE8HspGmZh9ls9lDBo8SicQh97lq1SoA7rvvvmpbsVjkxhtvPOS2U7cD+Na3vvWKsuJeiTe+8Y089thjPPzww9P69q1vfYvly5ezYcOGV7VfwzDQNG1av7u6uvjZz352uF0Ggsy/55eBtrW1sXDhQizLqrYlEolDlose6nF99NFHp50HgHg8DvCynitvfOMbgWAm26m+9KUvAbyqGVvHx8enXU8mk6xevXraMWazWXbu3Dnrpc5CCCHE8UQy3YQQQggxYy688EKuvvpqrrvuOp555hkuvfRSQqEQe/bs4Sc/+Qn//u//zjve8Y4jdn/RaJTbb7+dK6+8krPOOovf/OY3/PrXv+baa6+tlo0eiT5deumlhMNhrrjiCq6++moKhQL/9V//RVtb20HZZ5s3b+b666/nc5/7HKtXr6atrY2LL76YSy+9lKVLl/KXf/mXfOxjH8MwDL773e/S2tpKT0/PtH28733v46//+q95+9vfziWXXMKzzz7LHXfcQUtLyxE7d1P9wz/8Az/84Q95wxvewIc+9CGampq48cYb6ezs5Kc//Sm6/up+x7388sv50pe+xOtf/3r+7M/+jJGREb72ta+xevXqIzImWT6fZ/HixbzjHe/g5JNPJplM8tvf/pbHH3+cf/u3f6tut3nzZn784x/zkY98hDPOOINkMskVV1zBm970Jm655Rbe+ta3cvnll9PZ2ck3vvENNmzYQKFQqN4+FouxYcMGfvzjH7NmzRqampo48cQTOfHEEw/q08knn8yVV17Jt771LTKZDBdeeCGPPfYYN954I3/4h3/Ia1/72ld8nBs2bOCiiy5i8+bNNDU18cQTT3DzzTdPm0Tk1ltv5T3veQ833HADV1111Su+DyGEEEK8chJ0E0IIIcSM+sY3vsHmzZv55je/ybXXXotpmixfvpx3vetdnHfeeUf0vgzD4Pbbb+cDH/gAH/vYx6irq+NTn/oUn/zkJ49on9auXcvNN9/MP/7jP/LRj36Ujo4OPvCBD9Da2sp73/veadt+8pOfpLu7my9+8Yvk83kuvPBCLr74YkKhELfeeivXXHMN//RP/0RHRwcf/vCHaWxs5D3vec+0fbz//e+ns7OT73znO9x+++1ccMEF3HXXXdXsvSOtvb2dhx56iP/zf/4P//mf/0mlUuGkk07il7/85avKzDrg4osv5jvf+Q7/8i//woc//GFWrFjBF77wBbq6uo5I0C0ej3PNNddw5513csstt+D7PqtXr+brX/86H/jAB6rbXXPNNTzzzDPccMMNfPnLX2bZsmVcccUVXHXVVQwNDfHNb36TO+64gw0bNvA///M//OQnP+Gee+6Zdl/f/va3+du//Vv+7u/+Dtu2+dSnPnXIoNuBbVeuXMn3vvc9br31Vjo6Ovj4xz9+UNnqy/WhD32IX/ziF9x5551YlsWyZcv43Oc+x8c+9rFXtT8hhBBCHBmaejUjDgshhBBCHOOuuuoqbr755mkZSUIIIYQQQswUGdNNCCGEEEIIIYQQQogjTIJuQgghhBBCCCGEEEIcYRJ0E0IIIYQQQgghhBDiCJMx3YQQQgghhBBCCCGEOMIk000IIYQQQgghhBBCiCPMnO0OHOt832dgYIC6ujo0TZvt7gghhBBCCCGEEEKIWaSUIp/Ps3DhQnT9hfPZJOj2EgYGBliyZMlsd0MIIYQQQgghhBBCHEN6e3tZvHjxC66XoNtLqKurA4ITmUqlZrk3QgghhBBCCCGEEGI25XI5lixZUo0ZvRAJur2EAyWlqVRKgm5CCCGEEEIIIYQQAuAlhyGTiRSEEEIIIYQQQgghhDjCJOgmhBBCCCGEEEIIIcQRJkE3IYQQQgghhBBCCCGOMAm6CSGEEEIIIYQQQghxhEnQTQghhBBCCCGEEEKII0yCbkIIIYQQQgghhBBCHGESdBNCCCGEEEIIIYQQ4giToJsQQgghhBBCCCGEEEeYBN2EEEIIIYQQQgghhDjCJOgmhBBCCCGEEEIIIcQRJkE3IYQQQgghhBBCCCGOMAm6CSGEEEIIIYQQQghxhJmz3QEhhBDi5coM9qGhYYTDJJtbZ7s7QgghhBBCCPGCJOgmhBBiTvBch223/RwAzTA496q/nuUeCSGEEEIIIcQLk/JSIYQQc4JdKtWuKDV7HRFCCCGEEEKIl0GCbkIIIeYEp1wLuinfx/e8WeyNEEIIIYQQQrw4CboJIYSYE+xScdp116rMUk+EEEIIIYQQ4qVJ0E0IIcScMK28FHAqEnQTQgghhBBCHLsk6CaEEGJOcMrTM92cSnmWeiKEEEIIIYQQL02CbkIIIeaE52e6SXmpEEIIIYQQ4lgmQTchhBBzgl2W8lIhhBBCCCHE3GHOdgeEEEKIF/LU8FP8ev+vuWz5ZXi58WnrpLxUCCGEEEIIcSyToJsQQohjku2U+eSDn8QrjfK/u/+XL/nvJU64ut6VoJsQQgghhBDiGCZBNyGEEMckdd/nuLVuI6GUzuWDvyfqhqatl/JSIYQQQgghxLFMxnQTQghxzOma2EVE+YS04N/UZdGl6GjTtnEl6CaEEEIIIYQ4hknQTQghxDFFKcX3H/+3aW0XaosO2i4zlGH7AwMz1S0hhBBCCCGEeEUk6CaEEOKY0pntZKE2vZR0cbi+uux5CgC7XOaxX3Xi+2pG+yeEEEIIIYQQL4cE3YQQQhxTfrTrR6ji8LQ2x6sNQeo5DgBmyKOYqdCzdfqspkIIIYQQQghxLJCgmxBCiGPK1rGtrDCT1evDY2WyRb963XUsAHRdoeuKLff2zXgfhRBCCCGEEOKlSNBNCCHEMcPxHHZO7GTlZNDNdX3q68IYZoSkWcHr68ctlWrbt0wQqwvj2N5sdVkIIYQQQgghDkmCbkIIIY4Zu9O7Ub7LEjMBQDpr0TdYIGNFKbhRjAUdaIXarKXJQoJdjwxRTFuz1WUhhBBCCCGEOCQJugkhhJh1Sil8z2Pg/oc4V1tBSNMpDixmYtwn078Eyw3GdIsWM3iVQvV2phlkuBUyEnQTQgghhBBCHFvMl95ECCGEOLq23/krcoMDxD2Xd3Ixj3UbRLKNJDNvJBmxsAjGbaszimxPT7D/3rtpbG3H9w1gDUUJugkhhBBCCCGOMRJ0E0IIMesquRy+56JQeKEsjtOMk8pQrMsQrsSDbUpF7nx8J+FwHLtkMTLQj/L7CCWjFDOrZvkIhBBCCCGEEGI6CboJIYSYVUop7FJQMlo2HFYZcYZs6Ovcg7I0HFVh+br1DPf2YNkelp1H0zSU7xGKJPHdYbJj+Vk+CiGEEEIIIYSYTsZ0E0IIMas828J3XQAscjSn21iwZy29e/fQ17ub4b4e8uk0o/39AGiazqkXXEg8WYdjFfAq95MZ7JvNQxBCCCGEEEKIg0jQTQghxKyyCrWJEZrCGl4uRcYanbZNbmcW13UAiMRWg1ZH84IF1fX5sd6Z6awQQgghhBBCvEwSdBNCCDGrrGIt6NamhfDsCBPW4LRthkqdJOMhFrUn8PXTqFQixBLJ6vpybmjG+iuEEEIIIYQQL4cE3YQQQsyqqUG3pBPBcUOMWQPTtnGVTaHkYDmghxZiVcLEEonqers8hvLVjPVZCCGEEEIIIV6KBN2EEELMKqtQmwShnG7k3rTOUHky0+15cbQli5YBUClHiMTiaJoGgOekKeXtGemvEEIIIYQQQrwcEnQTQggxq+wpmW77+hcy4ZRx/SwAmharrguZOsm6FQBYlTC6rhONxwHw3Cz5ifIM9loIIYQQQgghXpw52x0QQghxfJtaXrqnYID1TPW6Fl7NxWfa6ErHDBf4+v7FFCIO55QjAEQTScrFIiiPse5+OlY0zHDvhRBCCCGEEOLQJOgmhBBiVh0oL3VdHcfqw6ncj66baOYm9PBqBtNhvpZPYWuKjK/hhz32KMUXFcQSCdKT+xnt6QE2ztpxCCGEEEIIIcRUc7q89Prrr+ekk04ilUqRSqU455xz+M1vflNdX6lU+OAHP0hzczPJZJK3v/3tDA8Pz2KPhRBCHJC5vZP0r/ZhF4JMN6es8Oz9RGNJfN9FNxRtbfXsHGhlpw67dY1RA8YMRb8JSil0o7G6v4mB/tk6FCGEEEIIIYQ4yJwOui1evJh/+Zd/4cknn+SJJ57g4osv5i1veQvbtm0D4O/+7u/45S9/yU9+8hPuvfdeBgYGeNvb3jbLvRZCCKE8n8I9fWQf7kZNzpYwPpbFt5+iUi7Q1JJg5QVN7C5G6QopGrU0LWR4C1tpIRjvbUxFaGgOA6BpJuV8dtaORwghhBBCCCGeb06Xl15xxRXTrn/+85/n+uuv55FHHmHx4sV85zvf4aabbuLiiy8G4IYbbmD9+vU88sgjnH322Yfcp2VZWJZVvZ7L5Y7eAYhjllKK/ueeItnaTnF8jOxgP8XxURLNrdVL4EXbDnf9gcv6BYtYtOmUGT4DQhxdXi6YadQO1yY/yGfGqsvf1y+gc88K1jZZpGzF14x/50xjNwBfdt7Gv3vvYIfTzDmxArph4Hsu2ZGuGT0GIYQQQgghhHgxczrTbSrP8/jRj35EsVjknHPO4cknn8RxHF73utdVt1m3bh1Lly7l4YcffsH9XHfdddTX11f/lixZMhPdF8cQpRRDO7fR/cQj7Pr9HVjFPJ5jY5eK0y5fqu1w19ulIrmhAQa2PcvA1mdn+7QIcUR52eDHDStWBF8jm0lQnAy6KWAguhCAXRWTLRgktEr1tucZ2wHYnodQOIymaQDYpYkZPIK5R/mKwZEStz4wwC8fH+H+7XK+hBBCCCGEOJrmdKYbwJYtWzjnnHOoVCokk0luvfVWNmzYwDPPPEM4HKahoWHa9u3t7QwNDb3g/j7+8Y/zkY98pHo9l8tJ4O04k+nrYWTPTiJ1Kax8DrtUwgiFCccT0y6BF2073PVmJIprVfAcm4qUzYl5xstYKM2nUJ8GXRGPpXGdcQDS0VYsI1Ld1vJ12owck1WobNZ300CePcUotEIkFqOUz+O7OeyyTTgWno1DOmbteGiAvU+Nkhst4xuQH60QWZik0BGHDU2z3T0hhBBCCCHmrTkfdFu7di3PPPMM2WyWm2++mSuvvJJ77733Ve8vEokQiUReekMxbw3u2EJhNJhwY/Epp7Ns81mz0o/C2AjP/vwnACg1K10Q4qhxMxalZBbfdAEY7KtlsnWHF1aXI4aO6zk0qVrg2cDnDeaTPJp8Pb4PkVicUj4PKAb3D7Bs4/KZOow5YecjQwzszkxrq3TncCfKh76BEEIIIYQQ4oiY8+Wl4XCY1atXs3nzZq677jpOPvlk/v3f/52Ojg5s2yaTyUzbfnh4mI6OjtnprDjmVXJZ0r3dAEQSSZaeesYs9karLUrUTcwzXtbCipRAges4DHVvr67riwVBt7UpnU9ddhIXd/gY1F4DPhqfML7Pa3M/JeOEiURj1XVDe3tn7iDmgErRYXDvoTNl3aKL6/kz3CMhhBBCCCGOH3M+6PZ8vu9jWRabN28mFArxu9/9rrpu165d9PT0cM4558xiD8WxbHjPzupyx/oT0fTZe4kcGKcKQCn5YizmFyddIt8wju9A9+5efDeNrodxT38z/ZPjuZ2ehFjY5F1ra+Wiw83n0dX8WpJahY+aP6E5/zCR2NSg254ZP5ZjWdeWMZQfBCxbliRZcsUKjGQoWOkrxodKs9g7IYQQQggh5rc5XV768Y9/nDe84Q0sXbqUfD7PTTfdxD333MMdd9xBfX09f/mXf8lHPvIRmpqaSKVS/O3f/i3nnHPOC85cKkQpkybZ1k6pmKNu5Qq6c90sSy2bnc5oUzPdZqcLQhwtpfwExGGofz8TI72YRgJ0mzEzhaMHQbYNZlByGqsMVm830nI+sdIWGIeYZlP2nGlBt9GeXTN7IMe4zmdqM8Je8M4TeHzCJraynsJzQftIf4H2RcnZ6p4QQgghhBDz2pwOuo2MjPDud7+bwcFB6uvrOemkk7jjjju45JJLAPjyl7+Mruu8/e1vx7IsLrvsMr7+9a/Pcq/FsUr5PumeTpTvM6il+f6jn+CZkWf44mu+yAWLL5jx/kzLdJOom5hnynYWFVMM9/XgOcHYYhe87gK+UFoGBLNqbtBLdAHxci3oVo4uYDRpsrr3NgCKrkM0VQu6FdMDM3UIx7xK0SE3XqZ9eYpS3qZuURJ/fAKzvjZu6cRgcRZ7KIQQQgghxPw2p4Nu3/nOd150fTQa5Wtf+xpf+9rXZqhHYi6r5HMoPyjjHGCCB/ofIKSHeLD/Qf531/+yfWI7G5o2VC+BF2073PXDIz38P1wKgOs5M3cihDjKfNujYhTIjI1ilYOAW3NTC4nVGxl+MMhu01CsU3m6lT8t060cXQBjtfHfLM+jfsqYbq6dQyk1LWh9vNrx0CBjvQUATnv9UopW8P42NeiWkfJSIYQQQgghjpp5N6abEK/W+Fh/dTltlDmz40w+cdYnSEVSFJwCI6WRaZcv1Xa468et8Wp/do7vmI1TIsRR4WUt7EiJzNhote38zQnGaGW4EATdWlWZmK6I26VpQbcJN4nK1677noOjYhjm5DhlymNicGhmDuQYpnzF1nv7qtdb1tUz8MT9GHYBs742Rl5uVGYwFUIIIYQQ4miRoJsQk3b2PFtdXtyxim9f+m3evubtJEIJkqEkbfG2aZcv1Xa46+vCddX+KJm9VMwj1mgOJ2SRHh0hHKsjZLayYmkdO0sNKKVYlIpwQTgDQMIqEp8MuvmaQVaP0bR9uLqvsGZT8XSiU8Z12/f4UzN6PMeifU+NkBsLApjJJSY9zz1AuWcXTXvvonX/bwjXBe8pxbGyvL8IIYQQQghxlMzp8lIhjqTh0W6WkwLgxOWnV8vTrtx4JVduvHLG+7Ol50lydz0SXJHvxPPO7nvuopLPYoQjLD/9HBLNLbPdpRmTHxrCsW3sSgWokIg2UjKa2D1m4/qK/pxFWyJ4/SXtArHJMd0qkXb8cCfm2iUw/hgAMWx6yhEisRjFfA6Avu1bOfMtl8/KsR0LPM/nsV910rQ4gWXnWdGxE62o4WsGuvIwXI9YE9h58CoelYJDrC780jsWQgghhBBCvCKS6SYEYHkWarKsDeCU5WfNYm8Chl6LictECvOL73mMde0jPzJMpq+H/OjwS99oHrHLZZycX70ejyZJGx3sHctX285PugAky+NEnDQA5WgH3vIxnFPbqtvFsOiyo4SjMcLRGE60ntG+vTN0JMemZ+7qIT1UYqKvQDReQYWj6L6NH6plA8ZSHnoiRKQ1SnpIJlMQQgghhBDiaJCgmxDAltEtdKgGAMqmRyQSe/EbzABdq708NYm5zSvZwX6U51WvV3LZWezNzCtmxijatTELk4koI9qCatAtqrtsTuoUurvRux5FTf6rKoTb8EN5HK8WJIpqNjtLIcLRCHalTKiSJTcxhuscn5OPVIoOoz3BeTRDHktauzHtPJqh07LhtOp2iYSDX3SwRiuM9hVwPXmTEUIIIYQQ4kiToJsQwMNd9xMjKK+qq49A78NQHIH+x2etT7pee3nKmEvzy0T3/mnXy9n0LPVkdni2hVWqzZpZXx/hqcpSinaQ3ba+0Evnv32Z3lt+TuLpm9DwKRUTVB4dJzqQo+yX8SaD0jEsdrghDLM2I2faSDDW3TmzB3WM2PP4MPueGiXZFGHB+tp7SDIB1tbfVq9Ho7Wg5FNPj3HbkyPyPiOEEEIIIcQRJmO6CQE0/u891D84iOb7tF68EpJdEEmBlQPPgaXnznifdN2Yck2+DM8XSinGe6YHhErZzOx0ZpY4boVKuRZ009s72DFmVa+fOrR7coWiaUkQkIzFiuhbelj9Nci/fxmuGcJwLJqMCmgajp+o3t7UNQb37aZj9ZqZOaBjSOezwYywhQmLJadbMBnPjZsOKmJTdoMfF0KUYXIMSyddwfPBdhWRkDYb3RZCCCGEEGJekqCbOO75ymfRvhxGNijJKvdOlq5ZOYg2gluGZ26E/ADULaxdwou3Hc76SIoVxRFSzQZ7xpsl5jaPlLMZki1tWPk8ViGH5zhUcll8z0M3jJfewTzgejaVaqabRqF9E7u7cixrTJB3MpzWvQ2AukUVzFgw9tvEYIJcfRNOQwI17uOaISKOBb5DGRj1k9X9RwyN4X17ZvioZl+l6NC/KwNAXXMUXa+VLSfNEhoOYxUT33PR7CKhVBgnZ+OmLZRSlCyPSEgS4IUQQgghhDhSJOgmjnu7O5+h0a2VpqlsFuqXwYJTIbUERreDawVBuFhz7RJevO1w1jtlDN+hJQF7xgEp+5o3Sulx0j1dAMQbmyilJ0ApKrksxkQadJ3Kjh3UXXwxejQ6u509SjzlUCkFwW1NryOnHLYNBwGiBZEyq7IDADSsTZLDJ0WWLSveTfSsPyASieN3/gRfjwAFotgA9Ghx2if3H9E1PNed6cOadd1bx/H94L1i2coIOLVzUGcWwdDQdB08UI7FkhUx9j9ro1wfL+9Qsjwak6HZ6r4QQgghhBDzjgTdxHHN9z36tz5DW7FW6uZMlGDTn0C0IWhI7wMzEpSbTr2EF287nPVurdROzC9TJ02I1TcGQTegnB5l9F1XotLB+oX/+VUirz2PqDm/Am/KVzi+VQ2KaXoDt4/WAj0XFLcDYEQ8Es2DaCiyyVMIrXoX/uQ4h9HUX6HvuBcYJ6EFr5X9ei3oZiqP/U/N3niMs2VgT6a6nPjNtyi+9QIgSJSNmS5a9Vqgsa1WSuqkK5Ss2uQeQgghhBBCiMMnQTdxXBvY+izR0TJGMV9tc9NlykWd2IFYx7ILgr+Z9Oh/BmWmk2T20vmjPCXolmxpZbxrHwvr8jTs+z63rPsYrhkHdJI3fI5fVFr4yRU/mb3OHgVuwaJUqb3eCNXzeG8QeAwZiksffwCA5GIbbfKJn49vQtN1tK5tqIWrIRzB14MXaJDpphj1omiahlIK3XexyyU818Ewj5/Mrf7daRo64oSjBo3FccrO5I8JZhh9Mr4WwsKbnEMpUe9Xb+tK0E0IIYQQQogjTgZvEcetSj5H71OPg+ehFSrT1t36//6CX/zHMzx0697Z6dzkzIwypPn8MzXTLdXSxEkdIzTGy1gTFexwA74RwTdCLBloZO/4Lgp2YRZ7e+SlR0awysXq9UqkgTWtdSxIxThhUQm9I4LXsZDGVbVI80TDhQB4fb8let8vAKpBNw3FmmiBaCWCGQ4mCVBekEVXzuVm5JiOBXbFJTtSJjNUwjB0vAXN6F4wQ6mmm+QKUTKVMGG9lkUbidjVZSddoShBNyGEEEIIIY4oCbqJ41Z2qJ9M3EYvFA6aqCA80U/v9gl2PDiImo3x1DRtyoWSMd3mkQNBNzMaJUmauohNQ9RmoCdSfdwBbKOdE3p9nhp5ara6elQMj/Th2A6JVAozFCMdree5wQyDuTIrGsZY8GQ3obE+og3BebLNBgrx9SgUlVUJzH1bgFrQDSBtK3YZYISCoJvnBsGkcv74Cbqlh2ol8vX1GqxdWb1uKp3USAsNjkld2MaMREk0tRCOakQTJmZDGDRNMt2EEEIIIYQ4wiToJo5bPc8+SSqvEy6lD1oXLw0BUCk4ZIZLB60/6rTaLJYH4m5i7rIrLp7r0/ncCBPDQUmfmYijxrdXt9nb2zLtNqVkB0tGfR4fml9jk+UmRikV8hRzOVynTD7aWF3XqIKy08iqGL4KykLHGy4ETccJl/FPXY3Ztw98H0+vTX6yNpYFNJQ5menmB+f4eAq6ZYZq2YNJo0SJePV6zNRB6Ty9cxTDy5OfGKMwPkphbIREQwQ3Y1PpyVMsu7PzI4MQQgghhBDzlIzpJo5LnmNTyWYoega/KLbwbjT0KZGteme0uty/O0NjR2KGeyiFpfPJk7/p4qk7egAIhRZxwoad9FT2s24oQ0I3cTyNTDkFtVgrpVg7F+0x+ME8C7oV8znsSrl6PR2pAzt47TU4QSltcnMzut9JMbqS8YY/AMCKFEiuWsOOvz+bhRMD0zLdTojmeKAIrlFrM0zzuAq6Tc10i4/vZCJiYiaD4KMaG+a2vbvZMTwAzwTbbDr7POLFInXNMcb7i+ArnKKL7SoiIXn/EUIIIYQQ4kiQTDdxXMqPjaKUxmd7O/ixOpGr/+CjfOSCv0FNlvfVTQu6HZwJd9TptZempimZSGGOy0/Uxgx0nBDPPVIAq5+EHvzuMaQlKGqTmW6TmUbFWDurM1H+aPhEBjp3znifjxa3WMGqBOdD00yyRi1jraGSR5kGDexAAyLOCPnEKUAQdGuKtFI4oQVtuBNfj1VvtzIWBNesKUE3Mxw+rsZ0mxp08x65E6e1DUuL8uyDD3D/Q/cFAbcpculx7FKBVEvtnLkFW0pMhRBCCCGEOIIk6CaOS8MD+3mqGGd1LBhUvK+unR3Ny+ltXks2tZLk4lb0sEKh6N+dmYWSqylBtxm+Z3Hk5QbGJ5cUhjaCZrRyViTCNjvDiPJoXn0FFT0FgOEFASk7Uo9T8Onw6+kf656lnh95qmJjl4NjNMwEhSkZppGxItGT2jH9oFQynToXpQdlpla0SGu4g8rCFAPnhFD5Wjnl8nBQllqaGnQLhY6zTLfgfBgG5F/3JkJ+CTc3QrmYx1JBxlt0ykyuuYkJPMehrrHW5hUcmUxBCCGEEEKII0jKS+cx5fsMf+5z1L3hDVS2bqPxz/8MfXJ2v+PV6L7dRJIpRnft5Pe5ep4tTi8bfbb5BK7Y9Uv6dtTzvysqLKyEqDNtbvn07+i2bJZHI3RVLJZHg+ycA8uHajuc9RvrE+wrn8GfLRri3LCH5kvobS7LjFmAiaF7eH4bRrgNrAIbw6P0m2F276snYu3BDtURdTIUzSCLqxRtQy8UGC0Mz+4BHEkVB98PAju6mSTvBcvxiMIbcUnWxv9nov7C6rIfs2kMN6OhkVk8jptogsmJONvtYB95LUZqcvtQop7SlJli5zPP88mOBiW7ibCNXYFIJE+lWAtMrmtbyOvWnsi3H7mbiuOSS0+glCJe51e30UoOjuMftH8hhBBCCCHEqyOZbvOMchxyd92F1dlJ15/8KembfkjPX7ybkS98gfztt89292ZVOZel81vfYMvPfkz4me3kK8EX9ZDnVLd5rm01tm7ybOtqOn14MOyQazQpez55FCXXq15OXT5U2+GsfyYfZ9SO8PWuJYAiXIm9wFGJY11udALLCn7faEjWxjLbun8xpUqIh7ecxRO3dWFFGkkU+mn1alltpUQHsWKaUml+ZGwV7ALKsmsNepK8E7wOk3EfJizqIv0A+FqYdOrs6qaRRAhDM3nfso+wNraCijdWXReygh8TMnpt8gAzEjtuMt1yo2V8L8gYNAyb0mlnoaEoFwvVbVYk6oiEQixtbgLAc11K+RyRaC2zrZK1KUimmxBCCCGEEEeMZLrNM+Pf+x6j//YliEahUpm2Lv2Dm6h/85tnqWezb/jHP6Lu579BmSaa6zLyxnMhDI2VLOVEPUVMFiyPkT7pPXQWW1gwkcONJ2iJh8kXHepcl7hpVC+BF207nPXe5CBuCtA00NSxmenWt2MriYZGGhcsmu2uHLN67r8XqAegtTFLrhTDcU16h5u58dfn4ysTCAIdUTtD8wJF12QceLT5RJaUdlKpNM9O54+w4eIwml0Lcvt6Cm+ydDsRc1gRSRPzBimYy6kkTqZ/URdOyEJpPq1GisqeNKbpsqS8ksGFNkwmsjmNSzjLg/GhWtANTT9ugm7pwVpGm2pKYlaCE1OekukWzQUBuMWNTeweGgEgOzGBGao9Hl7BwXYl000IIYQQQogjRYJu88i+X/4M6z/+MxgDrFJBT6UwFyzAHRrCz2YpP/ss5S1biW06cba7OuPu2HYrC775TfS6JEa+QKU+RSEcfEFvqeR5x4oi0ajJ/kqYUDzCW2J5up1Wrl61h0v/5I2gz+xL5U1f+Dlb08F4bhrH3iwKnc88yc4H72P3I/ej6Tp/8pkv8h9932V3ejfJcJKPnv5RNjRvmO1uzq4tP8QvZwhnbGATAI11ZZZ1jLG3rwPQJgNu0K6PMeEkWB/fQXzjOSzcO0B6xGCs9VT6MyU8237h+5lDRiujOHYt288Op6rLyYTF+uauYNntIht/B2PtndX1Jz/TTnlwH9HlcdrjdSS8TcC9AOhYnN8Y5odDtXJx3ypT9q2je0DHiM7nxmhckCAWsqmsX4hR2Q9QzXTTlMIcCSaHWdLQTFNjHEdFKOVzKLdCOGZil128go3jHnvvN0IIIYQQQsxVEnSbJ5RSlL5zA6qthVD/IMZrziN2xZvQliwm9vBjZL92PdETTyR326+Py6Bb510/p+ncs7A3rif01LPYm0/m9RNZbs/Uc/YKnebyAOXRAqsNk6yXor6pmf9nwShtmkf/b24mmy5RtCokItHqJfCibYez/h2JMFfXO4w6JjFHJ/H8A5olnuswsPVZ+p97homufbi2TV1LGwO7d9DcV2S9qqeNevrNJ2lZbtC2au1sd3l2OCUY3oKOIldcUW2uT5ZIxivsH2hFIxh38aKlYzhbfk5P3wBPpCL4D6VZt/QiBuLr0d0KJRXFHTVm71iOoPHiONaUoFs5Xgu6rTT7aYsHM2xWwgspJ5cDQ9X1LW6K2OIIuB4q51HnNVXX6b7FmkQdsVDtX5rr+Dhq/mdt2RWXfU+P4lQ8srqi7bwYbs84SqnqmG4hpcHk5BVN0TqKRQvLLlEq5KkU8tQ1xxnvK+AVHSxbykuFEEIIIYQ4UiToNk/kfvUrzJ27AbCXLsZ9zTmMjvTDSD+Ni9oJL1xI5ZlnsLZvp/mv/gqzsXGWezyz1t7bhda2CkwD+4xT0TSNMxIlLm/IYWiK/Q/txJosxx1qaGXNqmD2wx0DOdYui+ARw0YR9bzqJfCibYe1XvdpCvk0hWyy6NQfI8kn+eEhep58FA1YtnYdowN95MdG+N13rueU8y8kGp8s7+vKsaf7d7SuXIOmHZulsUfV6E5AoRSkM7XAUn2yRGNdkZWLRti+L0ldrpkVjR4/KefpWdgAgF4qMvLgTSyKnUf/kkvp1DYTHQiCKHP9XObSaWy7VvKYr2uDyRjc+e5OXBXF1CoMtbwNU5uYdtuoFozb5nsK3dBAr81UavgV6hIpKpFaGa6yC3iRtnlx3l7MrkeGcCbHp4wtTWIrh0Ynj12p4PtB0HFcr6fU/SxKKXTNYMnCOvZ2ZfBcl9GeblLNpzLeVwAFpezxkR0ohBBCCCHETJCJFOYBpRQj//al6nVr88nYXi1boVQpU/fa1wbb2jbZn/50xvs4m5Rtk1y4Buv0U8D1iMRMXM1jRzlKU8hjfDhfDbgB2Jlxdjz5GFseeZD927fgOlkMwySMhmEY1cupy4dqO5z1tq+TdY+9l2d2sL+6rGkaja1t1eulQn76xkphTxnI/bgyuh0AJ1/P2FA7ZsihfcEoyVgJw1CYhk85u5gVjR6u7zFgTgaFlCLseXS2NeL4jxO10gBUMs309A290L3NGeVcAcsqVa/n4/WTS4pLRn6Pjk0htoaRpssx6zU0tGBgQwUhM/iNyK/4KMW0oJvuB6/fU1tSoAdZga5jY6RacKzpY1vON7sfqz0v4id10Lmvi4iyp02isK9uGVktgpMNxnpb2p6srhvp3k+qpTZRSzkjQTchhBBCCCGOFMl0m+O6r3oPRl0SY+ECKprCS9XhrF6Bcu3gCytg5XMk/vDNTNx4IwDpH/6Ipve8B82YHyVrL6W8dRsqkQBdBx02rG3klueGKPo6E45BbqBz2vYGU0rSFGzfso0//tLH0YzQjPX53778C4ZGXT6/dHDG7vPlmBp0A2hsa2dsMCgJTP32HkJnn42zcll1fSmTJpKsm9E+zjrPhvEg6zQ30ULLmv0sjNiYIZ8n98bYs+hZTtnVTlJp9OQ1trqjuEYQYK23NPLh4G25pz7BiqE7GVz+pwA8c083y/5iwewc0xFSyZXwrSC1zTBDFMLBa2qj1kWDNQ4aOGYjbqiBcHuCU+OnknsoTVJbihYO3s9c26cSM6gzItX9GvlRTG0/y6PNGE0dxJwCvucTql9IOZcjHJ2fs/+Wcja+p0g2R/DQiERdyqUMg6bB0EStjHc00szty85k/dg44YYGlnbUsi8nBvpZfmYtgFnJzI/xA4UQQgghhDgWSNBtDvOLRUqPPAKAsWAB9trVVE4/BaAacDugZBrELzgfb3gELRajcN991ey3+S738IP4dZOZHUoRc0YYdcL8JlPPbydiXFkMETc6UF4GqGXFGL4i6Xm0LWjnZ5/8ACODE7QtbGFkYIy2hS0A1eVDtR3O+hPMNk4sjPNcn0k0nmDV8iUzcKZenOfYFEaDWQ9HBwbIjA0HU6tOqhvPUVnQPu025UyaxsVLZ7Sfs258H6QW4rsWE+Mp4i3BAPbK1/D60tSNL+Oh7m4aS/+L21QfBIQn3b3ydbiuxVmjD9GGjm/vQXcrNDcWKXnHSI3xYfAKlWrmWSgcpzA55tplxuPVbSYaLgS7THTJGZw4sZi9g534i0IwGQwvRE0qvoYKQevkbfQQuB0r2VSusNWxKUxmdMXcOsr5HPVt05+X80VurMxId5BhGl/XhB9PEssM0rHAZWSsm2iyjv1uklTZ4pcrz+fPx+4htRqaEnHCkTC2ZZMdGyPRaBBri+Gh4VVcPF9h6PO3JFcIIYQQQoiZcuzVr4mXze7trS6bJ26gcsap04IgU2WH+mn6i7/A2r2byrPPkv7BTTPVzVmXffhB/FSQbeUrH600yHAlyJJZVBkkZnehvCG00Go0Ta+ewhMaV3NGWsPrHMau2BSKNna5Ur2cunyotsNZb3o2Ma9MqZBnYmSIkZGZyXhTjofVm8fqzmL15qatyw0PoSaDJMN9PYwPDTE+OIgZiYBS6PUpVCw67TblbHpG+n1MGd0KmW603DDFSi0by0rXoUdM+vbvo1wpM6D7jGTSjA70Y4ZCaLpOuq6D3Y0n4YZijCiHrpY6ovYIo/lmJh4LSsnnMi1dIRxNYJghzHCCvOMCcKn+JAAKjYn6C6CSIdKyBrs3j5UKEdFqx20rGHMUYa0WrDScoJSyLhZFRWtZXF66RDk//Xk8n+TGa9lsZjKEXy5RX2cy3NdDuVCgUsjTFrIYau9gWWKI25MG2L1ovkFzSwOarmOGw+y672YKfVuwR0o4aQvbnf8TUAghhBCvhDsxwdh3v0t5yxbKW7bMdneEEHOIZLrNYXZ3T+1Kc/OhN9I0UIqxzr2oZSvRO9rxh4YpPvAAVmcnkRUrDn27ecJ3XZy9+1EXnRc0hEFTiqFC8IV9UaVWLmmGV7D2oktINLWSH+0i1b4Sa+9WvLu+gd+QJOp6+P0T1UvgRdsOZ33aVlSMKFEvyAqaqWCLPVBg9PrnANATJgv/6RxcOyg3G9j6bHU7q1QblysWT2AVS6iONp6vlDnOgm6+hxrdgQZMdK6gYtTGVtQyMDbUj+e602+jFIZpsvbUzeTCBg0rT6CYXYw5tBNNU/SqXppZCr6GU/EIx+bu23ao4FEoBwEyLZQgbzm0McESLcigzCc24oRacPM7COsRMkNF7DqDMLXnv5ZzSRR9epbn2XRgv7pTXa8nmlDsA8BJj5LPLJyZg5sFubEpmbnJEOn9+1gesRkeG6u2X3ZWM8s6f8afhO+FCLi55Zj+Ozn55BUsWX8Kzz38IDsfuhMA3fxrvEIc2/WJhY+P4QeEEEKIlyP9ox8z9h//wSgQWriQ1Xf/bra7JISYI+butzeB3dNdXfYa6w9a7+MzuiLGWquNTH8vo3t3EV27mvjQMACZH/2Y9o//w4z1dzY4nZ344VA1AzAcTIDISCXIyFpcHqhuG4ouoa41GDOrvn0VaBpq2Qmc0r6UUncP1vAwkfb26iXwom2Hs/4z5/wBmY4GLun5GTBzQTc/Xwte+GUP5StGdu+g89EHqu0RM4Vj1wZb13WdRMXG3bAWCkWMfAGvqQEikeMv0y3TRbmvgfTO8/FdE6d+kGroIjvK/nKeUDRGyDBI1jcQSyYZ6uki1dRMoi7F68wxtLG7GVjQSM/k+PhjxigN+BjolAvOnA26KaUIl2vJ1WYsSdGyeVviOXxPw6GFdOp8AHwKaJpGoWRBKkJ4SqabZ/kYnqLPrwXddL0WyAwnWznw7FROhsFul5OO9sHNkvz41KBbmLF9Q7SHy2TGJ4jWNRNpbOKUFVGSe/dWt1NOP4WcTTRqEHZdItEYlWIwo6zv9uEV6nHcuZ1RKYQQQhxJynXJ3PyT6nVnZATlOGihmRvvWQgxd0l56Rzm9NQy3SbKtZkjdzPAFq2bx7W97AwNYpeKoGnEm5qxNq3DS8RxliyiPDE+G92eUXZPD4RrJX7JkIfyNUY9nbBn0WIHGSGG2cyixbXbhf0gu8sLx3CizejhEGYyMe3ypdoOZ72hPHxtystzhoJubnbKzIW+wh0vM969f9o2/rgz7brnOtQpDXdBOyQTeM2NGKPBc8spl3Hn+eyR04xuwykmUW4IDQ0nVDufQ5VO8D2ccom6BUtZuPm1LFi2nJZTL2DlhhPRDQNN+eA6tLc0YEzO1rnY6uXZUHDOKwXnkHc7F+TsHCGn9jx2QvUUHcUSq586KoQYoxhfC4BvlFG+ojRZzjw16NaQjNJaF4NYbXKEA7OXAjQlmmp3auQpV+bvB+L888pLbadEIZdF+S6V/Dhty85A+bA8MlzdLoRD1OojHtVxidCxdHl1ne/24pUcKtbzsjGFEEKI41jhnntwB6YM9eK6WLd+Gh79Kjz6H+B7L3hbIYSYmykTAgCra0qmW93kmGUovmL8Cl/zQcHphdP5P1f8H/IjwySaWxjcvoXcD24m1NtPeXz+ZyHZ3T21SRSAer3ERC7FhK+xzBpEnyxbS7UvQ6tvY9HQ9/C0KB3pO9ix4vNYkYVw0utoW91BKGTiOG71EnjRtsNZb24Lxrc6QPkzE3TzpgbdgHJ3mtzwICiodmd0+riBtmWxsLEZvz4YS8scHsUYT+MtDsr6SpkMqfaOo931Y4PvUSjVnm9+ODifyvcZtSZT1zSN8AXvZqIwTDQ/wb3lRi6PFWg0agE1J7aAxtY2chMTuLpJ0XkWxRmUC3N3Zsnx8jj6lNLaYrgOKrBOq/14UIytBkBFffyCgxvWCRVcIo2TzzlTp/nPN6BpGomxIXgwaPZUOQhMaxr1jQs48LHYLk2QG5m/H4Rzk5lumqmjRQxaTIvi+ER1fV3zcnL5bdTrzwui5fcQXhhMcJJqbETTdJTy8Z1eUJCbsKA1PmPHIYQQQhyrlOsy9l/fJnriiVS2bav+EG7t6ybaNDkGaq4PGpbNYi9nVu9YmYrt4fmwdlEC7QXGFBdCBCToNofZ3UHQzY/FUPEUhFvxQvVc5/y//Mz5NW/wT+bG9L0YoTANi4LZL5ecegZbk0lIZ6FUwrdt9AM1l/OQ3dM9LegWNTxyQwvw0TjLSIMRBs+mbeWJtLcWWLb9m9VtV/b+X3as+hL7nVaeS7ye0d4CrUuTjPYEl0B1+VBth7M+G+vHozZummKGgm6Z6UG3oYefhbhC9wx808O0I5Ry+WnbOJZFaNVaDoSMzMFh9EJQrqY0GB8fgMY4yVASXZvHybW+C/2PYxbPwyEo7zZND9/32btlC76hgwPxFScTqm/h1u4Sj/cvp+x4vLZdo9EPgiVKKczd3XSsP4XM/XfhWxVOsh6nr3EdpXQOaJnVw3y1xivjKL8WNMyEUlCB9XoQdHO1JI7eCIBKKEojRcrNEUARnpy5VIuFqx/sdN3EMUOEXAfdt4joRSyVJFXXRCgSwbEsPCePY83PscmUr8hPBEE3IxnCV4p8LE4kHQR3Q7E6wrF6StkSBwYfsJWJiQtOBlMLAnGGadLQ3kF6aADlT6D8IrmxMqxtnI3DEkIIIY4pE//9P1SeDcY1jp99FqVHHgXAGpgyUVO687gKuj21P4c/GW9c1REnZE4Pug2lLRoSJoauYRqaBOXEcW8efwOe3/xKBW8kGHzcb2pGazoXEqsJOVnqKxne7Z1Hm0ryR+WzeOgH/8Utd34DAE3T0FO12f3c8fldYmr39FRnLgUIh3x2Oxor4iEW53aD5xBvWkKqbRXNufun3bY+/wTJ4nMUIwb5/VmKGYtiZ652OXX5UG2HsV7TdPwpL8+KPTPx8ecH3cgE/1F900NzDeL5evqcXdM2UUpRbKmV9BlDI+gTGXBdNAX/9ch/ct4Pz2OoOHS0uz+7ymmUUjilYJIO36iAKpEZHWFieAC/UqThrDfRdOblDOfLPNg1SsXxeE2HzsLdT1d342Wz1D3xAHSsJdUSTE4R8S2y9nZyk6/5uWi8PI7r1cpAR8wELWRp1bIAlELBh1VtfBgaTMYH87TpPieG/OqMwiVdr45vaGgGrhGUjhq+RUQLJmgwDINoPAhgK6+CU37ec3qeKGZt/Mmx14xkiIm+AdaYZTwnOMfJpiXBh9xi7Tlzt38KWZKYdjeRYm3264a29uqy5/RQmDiOSsKFEEKIF6Bcl/SPfhhc0TQa3vXn1XWV/qlBt30z3LNZNiUXoGxPn/Hccnwe3pXhN0+N8asnRqnYMiO6EJLpNkc5fX3VZa9psnTPK6IqfWhMVgIacRpoQFVsEr0V/uiWt7OxYxN/3FCbdMEaHCC8YMGM9n0mWV1d+GedVr3eVQpxi6NxZavH+LYgs0jTNcxIjKbsvdXt8rF6DL+BlX1fZnTBtwgZENUgpNUu4cXbDme9oXy8Kb8KzVim22R56XhrL6VkHqX5hKMJ7EoRZXoo28Dv3QGp6aVnNnAgX9IcHEaFwzA5JlkTQdBzpDTCwuT8nUmS8jheOUZ/fh9Pjf8OS5UJD0aolEtEEg1Y5TxNvQMkNpzLd57rwZssGV4ytIP6hx/BHhoickKciRGb6P4d+ERZecJqChPjlIw4C0rPMDw8d6cEGCuO4rq1YM4YEdbq26vXC/E1YBh4qRiLjZXUZ3P4uiKsQU7TKZshur0wi4fLrOyIo2s6rmmCFYzpFtOyoEO6XEc02UQ+Hfyg4BbnZxn91PHcYmGbvm17aIsVq22JlkXBZbGz2naPdzKvN54AIJTZB6EzAEim6mlaup503yC+00VxYn4GKoUQQohXIvuzn6FFooRXrSK6bh3aphNR0QhaxaLcPYHnKwxdg0x3UPGgHx9fracONV2xPVLx2nF3j5anbVtxfGKR+Vl1IMTLdXy8M8xD9pRJFJyVK1H5naB8XDx0NIzYSoguoDG/BUWBJFHi+TJPaE/wpw0ncOA3B2toiLpD38Wcp2wbb2gYPxVkvfgK/uSpE2mNxlk59kz1yV/fvgTDzZHKPwVA2WjHcutocYIZ/1r0XSzsWEQsGqbSANHJS6gtH6rtcNY/1d/FQGxR7VhmYCIF5Sm8XFD+Z0XL+GZQfuYVbQ5MwbnV3U45HJw5zfdRepCNZ1cqkKpH2T56Lo+K1EqWGwkyv0ZKczdL62UpjeOUkuTscUpe8OtnuRgU3VrFDEvjHay7/adsOfMcTL2O1kQEz/d52/9+D9NzaE110b4sT0/diRhvXcs5O/8PIVWgp+NS7O7tmMBzff28ZRYP8XAUsxlwasGcYc/k0qnjuaU2AqDyIzS6i4hpCjRwFJRNkwkzRD4WIVN0yBYdDExcczLTzbMwcMj5HRgRiNa1AXsA8O0MdsUlHJ1f/+5yU2Yu9ZsbyVU0itnar+7GohS2uR/TS1M21zGSy/Fr/Rw+q75HWPPQxvejtfsoTScUCpMb7kL5ZZQqU0qXDnWXQgghxHGl9PTT2Lt3A9Dx2c+SHhrA6GjA7xrGLzp0f+MxkouStL1l4+S4bstnt8MzwPenpwJMzXRTStE5PP0zRMX2gPk7qZUQL8f8+hZyHPCyWfK/u5vCQw+CHkwD4C5sAysYOjyEwd3aFi5vOx2rGMGM1mMXgrKrN4ZP4PO536M1nlHdnz2Hy9Veit3fD76PPznJxJhrUvJNTkxFSQ3sqY6Y1nLxpfTv/BZLo620VUb4WcKl4C7i/ZNBt/axm9m+5p8JKYWtaYQnL4Hq8qHaDmf9uSe8lktUhX2Tc2WoGRgLwctb1XRxz6gNvO7pQeDIczUeyT3CGjNB2LXQfA8rPBl0syooH8qlOJqhY0Z1cBwIhWhUQdBzPgfd7P4CqjNDvnsFBe+Jg9Yb4RgrBkcxWtbyRLrI9mGft+gPsLZ9OYvX28TbbGKNZUCxzHgOK9JGpBycr9Mbe7lt8nkwmh6oThgw1/gTJTw7COrqRoTRksN6vVbiWJqcRCG7TCNRDD6cOQoe1WPk6+rQAOUqukcrJKMmRlKvBd18G11z0fBQGETrF6JpGiocx/fS5NMWzQvm17+73EjtQ62RDFMql8mO9ROOpbDLOUKLTFbsu494ZQAYwNfWkyfOw/5GLjSeQ3cKpNw+sqGlREOK5Sedyt7HHwJlURjYA2yetWMTQgghjgWV57YEC4ZBbOMGun5/J/WL6yj0jaJcH2v7INZ2aLriHMzi6HERdHOfN7lbxalNWJUvuySjJiXLnrJeykuFmF/fQo4D+bvvZvDaa4Mv3UpRPu88/LoQKAcfyFJkVcsK6iqPstAoclN6A2dN/rhwAmsw+D2luhCRyf05o6OzdShHndPTgwqZqFgUgHHHIO6VeY1WR38uCGhEWpfSryIsnfgVCyoF8prGbXGDHZF9/EVnkqheoLHwKCft+Qh1pd3kEmtJFXeRS6wFqC4fqu1w1q+MnEBLZTcPN9Xx5MRiMGJH/XwdGM/N1/xqlhtQnbU0Vw6xOvMWLPPnoHTaih4jkwltI4NhxtLriOOx6dLzmPjtIxjZHF5LcxB0U/M76Ja7s4vKrmCsxIKTOWh9asWpRLfcTOjE1/PIqEYEm0+Fvk9TuoC9LkFRX4apj9OTWIOTPJtspZNTs6NoKBZo+4kbKUpehFB5gEp+lGiqbYaP8PAZBZfKZNBNC0WpuB5rw0Gmm1IapejyYDnuYqaDJ13Jh3IyeLdqbwgzlAluP5qzqa+rjemmKxfbj1Cnj5LzO6hrXYWmGyiriG/2kx4t07wgMZOHe9Sle2oTmhjJEHXFbsq5MdB0Vp74WqLxcTrGfgYEMyGHU8shD3f6p3Oh8RwKjUS5k2xoKQqDFU0V9k7urzy2/aD7E0IIIY4nfrGItS8Yqy2yZg2EQni5QRa+bR3aOzey97p7cAeDcWntzk7MBftg0Rkvtst5wXGnB91KVhB0U0oxnLEZydrT1kvQTQiZSGHOSd92W7CgFH4sit/aBirIROo3Cnwm9AMuafT4yp4Gzn/wJP6rpxZXrdhx/ia1lvFE7c3PHR+b0f7PpEpnJ14yiapYDNomXWWdq3q+z+iz3yHRtITmZafSeO5beXjs+5xdDsZCcjSd56IRLF3n3sK7+FX2I+xteT26XyTijGJ4herl1OVDtR3O+ubSViLuGGc0B2P3zUR56YGgmxuyqoG2qexiAn8y+w8NJjpeV133hFshdVYTyy9axP4LP4S94Uz0fJBhGdZMkkQZLg0f9WOYLfZgbSytgjM5VqBmcMJJp7J41Qk0rj4Zo1Kmty5HTznKFcbDNE0O/K/0DqIqSVlr4MeREd4Rf4Arm7p5NLSRQnQ19ZU9nN0RjE/WXhnmwWd3HdyBOSCS1fC9yQ9mZoIEZdZpPYw69Uy4G1F6EFyLT/m3VFQabigIrC1piRINBevG8w46Bpn6ZrJ1jVihOlxHo94IJusIJxoxJrPgfLef9Fjt8ZkvxvZl0KMGobY4zkQv9WMHnheK9pYONj25lYgTvObSqXNJLD+Bhkqeu71T2OktQelJGkrbJ2+hsarN4kAduVPajTvll2shhBDieFPZvp0DU3TGNm2ilB4npafRwyaarlE4rTZbqTWch9L8TWSYyvWmB9H6xy1+9ugwP3905KCAGyATKQiBBN3mFL9cpvTII8FyPEbmmvdib9hUXd8dy/DjBZfg5yzuGGnBVTplXyftBYG3il3hbdGziIQnqrfxJubnIOMApT17UHVJtGiEBWEXLT+BgY9VHAffJd68iMiSlazK7CA+GdR6MrYIf7J0b2vkdMYTS/H0XvJmhkI0Oe3ypdoOZ72aHHA+dqDMcyaCbpOTKDjhQw+iXi6G8Zz9k9dC6KE11XX1fpHF8XAwmKymE9p0OsaUWSMbSc7bTDcvZ+NPjoXnKZuSG2QgReMposnlpDo2k3AVWjTKw0vXAIp3G3dWb591PsCI8wn+aOmJfL8+hUvwmH+8PUvM6kLDY0NdH6bmYeCze9vuGT/GIyFcqH3oskNxztB3EdJ8WkNZ3GhjdV2jU8vqLPgadXmbuphBR2OUllSYtD2I43mULYXpOdTn00ScPGa5SL0RBJk0TSPVujRYxmF4354ZOsqZ4bk+mbKHX/HwKy7jz95BONVKJNFExwnnsDweZmFlhInkGkqRpQw3v5lMwzrOHtpGy2iGBgrofp46ZwjU5AzFhAk3noAeXYwRbWRwT/csH6UQQggxe8oHSkuB2EmbyI+O0ByvTRIwMDlmNIA9VIDiaPV/6nzmeNO/k7ieQqlghJoDWW9TSaabEFJeOqcM/v436E7whdxevQJ0nQhZCpqO5vtYpdU87ZboKZi4KggcrV2Ro6sSojHhEtF9bhloZ0NdbTY7L5OZjUOZEXY+h7O4NjOrl61l9XWsOY+6dWczWOhnzfiT1fYtzSuBILBkLs/xrj95F0/f38BT27cw0r2PthWrqpfAi7YdzvrXNz/MMn2YA4OszUSmm5t58aBbIZMGFXzYMIwlaFqcIDPGo8kvYUwZZ8xbvgZt34PV621e07wNutl9tTI/i3uqWYLxuiiJZAVbaTDQQ8nxub3UzlXxh4i7Fn2qhbpYM3ZlLc9Fu1lkLGVYjWJiUiDPMmsj+xONnFB4johmsbYxwx2lE1E9c++X1IpbQSsd+CCmsMwYb4ztgMmmbOPZAHi6S1slVb3daDxGvi5CvaZxZ/dv2Dcxwv/0fJsl0Q28v+M9hCO1WXRLWpiEmsCgguvYpFqXMt4XZH+Nd+8CapmZc91Yd64ahw81R8k/txvdDcZ4W7j+IpqL26CyjSZvDF8LkUmdA1o3qaTG7S2reZITuJzHMHGIOyOUwh0opRFJtGKndwLQv2svSzasnK1DFEIIIWZVeUst6BbddBLpwZ0kUZRsk2FyZNpbquvt4Tz4Dlg5iDbMQm9njvu8oJsCUIr46E7QNaJ6CKdlFQcS4ixbMueFkKDbHNL73MMkIyEMy8Ffs4x4yKHkBPPBPF2M8t3BDhZGKqxpUIR0DU8pXnfeEPV7wxBUp/HwaIz3Lk6yc3Kfaspsd/ON+9wWtGWLq9dD+VrQJ9W+Ch8oFXpZ7nm4gK8ZjKjarJvLoj75+/s5/U1v5fQ3vXUGew6dn1gPgK6BhgJ8lFJoR3EAfWV7KA2ccG1WxKmxPqtcAC0KqsLGzkcwzXGeXpxE+VliVobs0B7qO04AoJxoIZyrlfStza9nW+SOo34Ms2Fq0C2XqQW0o/EgIGSnFlL39L386Oy3MOIY/JX+QxbqE5RUmOIV3yaTX8U/PPxjdPUAAFeE3sYvnVt4Mrmd7xpNXFcAjzBNZpbFlUG6x5LMNcOlYSKaYmP9MCc1DnKTvZJznYequdbZtgsBsCIFIl4UpcACypOz4NbFDP7juW+xLxuMrZJ1humc6KE5UsuKC7k5/EqUuJEjH2qjftEp8PRdAORH5lem2+COWrayHs9XA251bSuIREwi2Tx4wY8MuegJKD1E2lnJaR2P8r8uPOuv4nLjMQCSVi9N5e2Y6X20pP6MSKTImJVguGv/wXcshBBCHCfcsTEwDLRIhMjqVcT3/pK6SDCkzw8m9nHRCX+BCv0GzXGC8lKA4shxF3QD0HyH5Og2IBiywl68lorjYzm+ZLoJwassL3Uch97eXnbt2sXExMRL30AcEZXb7kS3HELNcU4+xyAZra17thR8wR+wotwzHKMlYfKWU2NE7tuNVpcnn0mjlCKlV+i1G9DjwXhHKp8/1F3Necp18UdH8ZLB4Ome55EsBV9Co3UtROL1GJ6PVtnFeeUKNtAfXUIovrC6jyYngdc9htU/8+fIm/LS1DWFUgrlH91/Wu54BU3VMt2Ugt3bl/PcU6vZs20pnr0fVAXD82gqlOgYfYrT29oZjbSC8tj78E944tbP0b/9Xhw0jGStZHCF007FrZCz51eQ1/M9rN7gmJRrMbJ9b3VdNB489+yWpTxS1LmtfTPvNX7DQi14z9xibqR1/YWsW6qxqL4WrItVziPqBGNrPRFW5OMb0TSf05v6MTQf3SpRqdQCo3PBYHEQwytwfmsXC2N5PpL6Pou04JeAvGrEiTQD4IbL1KkQCqh44ISC34U8I1cNuGnojNjdfGvbFymFI9X7MN0sbiVOXA9K5qN1LYQmg3JWrrs6ntx8MLIvW132Jmq/xDcvPhHTzoDTV23rMk6YXNLZtL4dgOfUqtptSs+xOHcP8UInb1Of58K2INg20S/lpUIIIY5P7vg45SeeANMkeeGFPNU5TFIb51/2LOO/uhfSVVhBox5ifMEiAJzxEr7jBSWm85zjHfx9xLBrP7RrKBJhquPwVhx/Rip2hDiWveygWz6f5/rrr+fCCy8klUqxfPly1q9fT2trK8uWLeP9738/jz/++NHs63Etkx+lZdRGA/SoiRkxyVZqiYpPFuPTtn9rvc6mR2/HubeX0e8/wbbHHmFPzxAb4hXumViMWRd8WdUK82+AcQBnaAjN8yk2NAFBaaRO8E+irm0F253nMByH+lKQ8xcH3Lp11Jl11X34TZBYGaN8z/4Z/2fhTwu6Bf+sPHV0gwbK8VGoYCIFwHFMyqUYFRxK5QRKBc8VX9eJTQ6yHm4sYUaSGOE4fuNSnHKOvi13MdGzBb2tNsBsUqW46onPc/vXtx3VY5hpjw89xsT+QQDcwh5K4VB1XTQex1Umv31uD//RcS7r6OTvQj9l1OwgF17KPav/AfbvQ/vlrWQmxyJLqia2jJokrCBYNK7lKIXa0JWLrkFzuETSK9A1MDjzB3sYhgqDnOzfTd4J46vJDM7JhMdCdA2mW8KODGCGgvJlXSMokZ/cqLP4XHVfC+NL8PFwlM2IX3tNmF4Wp5wgMRl00zSN+paFjIVb0EMtFNLjM3S0R9/IwOT7tgbFkR3V9ob2RcSs8WlBtwftFdXleMMC6r0SW/wV+JNDEDTZ+yibLRx4h1uSyBLRXfKjtX0IIYQQx5NqaallMdy6hD+74SkueuR0vtG9hM/vWcn9ey/h7XeZ/Nf61wfbKbBHCsdF0O1QmW6GU5p2Pa7Z1aCbUmC7EnQTx7eXVV76pS99ic9//vOsWrWKK664gmuvvZaFCxcSi8WYmJhg69at3H///Vx66aWcddZZ/Od//icnnHDCS+9YvGy7nvwtqcn3q+iieiqOgeUEX5qGHANnSlBoiTtO5LHbKBoGuhHCn8yKye3fxqaOJn4+sZJz41GggGbbeOUyRiz2/Luc06zOIHPISdUTAsaGBtGSC3h4fSd641a2F29mk38eVxVqJVR6/WnUabVZdyzdxrMVRmOE4s+2ous+vq9XL4EXbTuc9ZqqBW8MFCiF93QfStfxs2X0+lj1EqguK89HZcvoTQnMlW3ojdODsS9G2R5WpIjumXi6QzobYyI2hOZrtJYLjHlZFBBxPB5vX8+j7et5wj6FD588wRvzjzNR6mFPvcvWbAcTfVtZ2b4WCGboDIU9om6S7ODcytB6KY/sfJCV0TrW6s3Eh3ZQjNQeN6Uaec6q4+dDJpvqMnzG+i46ilZ3iJ6Oqzl5xQnw0P3s1bKUCZ53J4RW83epbq6PNPIwBRzdIxddQPtkYlNrtEh/rsjevmHWrVxxqC4dk0ZzQ7Rqg8TjJUquwYjWQlSzGNGbCC25FNeME7biuKl91ds4U6bQ3ZF9qrp8wZLz+dGuIAurd8qHPNPN4ThJ4vpQtc0Ix2mx9+EDhXSGVEvbUTzKmTGwN0N2cnYwsx7KhQjxpsUYmka0YTnJsQfA7q1uf3tpKadOLuf8dk6M7+FBq4O9agFrtAEAku4Q5dBSYk4PhqZYkZxgZ87EKhWJTGZsCiGEEMeLyuQkCj7wRXcxlqcx6gUJC0tiRXrLwf/G+2KrOX/RqVzQ/zT2cIFocX6OXzzV8ydSANDt6UkcYWURCde+g1Qcj0hI5m8Ux6+X9ex//PHHue+++3jsscf4p3/6Jy677DI2bdrE6tWrOfPMM3nve9/LDTfcwNDQEH/4h3/I/ffff7T7fdwZfO6R6nJkYYq8FUI3FJ6Ce7N1nJQqsCxWxlAe50QKGGYYu5Ql1baChgXBLJOxRJJiNoNbqRBN1sqyrKG5lTXzcpT2BGM4ackYruswPjRERvWws3WY7WaQ3fZEWmNJJfjS6QN1yc1Etdp5GUiFsM9agaZrgEIP69MuX6rtcNb7GNV+BOWlPspxUY4H1vTLacuWC66PP5LHG3tlZbHK9ig0pPFCwXgVXaU4+5ufxjErZLUW/MnAUNh1uX/hJm5beS7jKs75/iM0WDtYaezg1ObgfKYHdtKbXINvBdmF4XCwT+8QKelzlVKK/Z27OK24AX8izNhED6VIEt2IYJgh6hoUg1owKcD5lftpjgaPsBNeQquxlrPzvWDbPBKpzYR1oupgQVORNlULdAyGasstkSIh5bK3Z269ZrPZEaIEx5l3o3zF+Bj/VP89PpT6J9J1wa/EdrhE3KsFLStG7TXw7Fgw2YmhGbxjTW18xf2V2nM85GWxK0nieqbaZkRqmau5sVr7XLbvqWESOmghHS2eRxvdS3mij0TTYpSTxrAtlBME3fIqzlWr1+NPZgQW/WZObQ+Ctdv8FbiTgf5ceCmPRS+r3sfquiArcLSnawaPTAghhDgGjO2k/OQjuEaE357yQexSBANFnYI32PDJVI7Tg3ntaFYOd697G+mlJ9HXl4DS8ZDpdvBnefN5mW6FnjGcsdrn24o9fz7/C/FqvKxMtx/+8Icva2eRSIS//uu/PqwOiUNzduyuLpsLm+kpN+N7GhqwsxzlLYuGeHP7Xp7b2sHOZ2/DAsKJBtrPuZyoZfLg9k+STYxjGD2cE1lMX3wF9fQDQdAtvmJ+zVK3f8sD1GsakYjJSG83vucy2Dwly0pBsul+VncFv8x0h0J0hNqIurWB8vbZNtsmXE4NGaiyhm/7gF69BF607XDWq+eN6eYrhTI0NNNARUy0UO0SqC0rVS0T4xWWxDquTTGZAaDo6XzbDnNK1CLm1oEqcWAm1ajj0VvXAcC6ZITWfC0grPTJY3BtfH8ASzUQI0co7AI+vjN/0su3jW8jng+CRLuyj7EvFnwCSzUsYv1pa9A0jfuHHNYY43zUvBnDdsikWlH1b6TRtQkP96E8j2ciw0xWPnOmHae1qBPRa8/D/lAt+NQaDZ6vPd21bK65QBsfQNeCx77gRHjrqSejRxL8OuNw4HmfrR9i+ZSZS0uR4N9ThREGi0GQcWPzRtY0rqEt1sFIeYh95drYZqabpVhJYuKg+2V8PTY96DY+P8YTLGZsij7g+0C62h5LtYI9SpOTx/cKGBoUY2u4vL2OHldjbPI5dnJTPfSU+Uf3vXyK93HTkgewjHp22gs4W0sSUQU6onlMzaXrmV0sXrdxVo5TCCGEmA1q168pb93KROMGHmpbztNooGBz2eBEO8zuXSu4CMg0FNmrhRivC7F29ftZn+lkg70f7AKE596kVy/XoTLdTHd6ptu+B7vw4hC9cAmATKYgjnuHPXtpLpfj7rvvZu3ataxfv/5I9Ek8j1KK1s7aF8btTX+BsvcAwa8KnVaYNR0FWiIuXm3yTepaNvP/WZ/EJIS2uEg2buEZsMZ5jN0rT+eMR4PZEvs7t9F4znkzeUhHleM7ZPbtJBWPo2sw3BdkfQw1TQ26hVnj5DmQV7M/Ws8CTSMeqpXZ2qpCtuQQv3jVjM+4aT9W+4dmaD6+Ujgbm4knm170dv54AfuxyUH5/VcW4CpERkEPbnNPLkkJg211g5zb04Dyx6rbhV2PrlQQdHtz/QixsYHqukbzQHBOY6JvG80Lz0Erl4nGHGJxi3Iphuf5GMbcTzH/Xc/vWGC3AlC0axPKxJIhNE3DVTBgh7ix7mYMJ8j061uwjNElC1jTuYh80xBho5ndXjCem4ZGc0OEUU+jOFF7nEf1ErbZSNhN0xopAIrR8cLMHegRUD86XF2u6A0Y4Ri6pnFxqlbumUsNEcvXrpdCwatze/Eeym6ZE5tP5G1r3oamaZy98Ex+se8XjE95WZpuFl+FoBQjpIpYxDCnlDbkJmoBurmsMFF7H/Pd2vMuWteK6Y1Qyu8lqhRZczHNzWfgASnNo4KiiE5bLMKX6/Pc/8ST3HLChYxHVmFqUOfDL7mMC51HaA33sy41RvfWXZw/C8cohBBCzIriKE5vN2l9IVtPfD+94ckMLg3evbKXzv2LMQ3FgnCZ18Qc9paDH/f2hD06Iksoj+0gluuHlrWzeBBH19Qx3c5cncIwdHp6KjhTtgmFHHKjZSJKoWkalmS6iePcK/7m+853vpOvfvWrAJTLZU4//XTe+c53ctJJJ/HTn/70iHdQwGB+gJaR4E1fS8bxE/UoN0jZHXRCGLpicyzHXut1DOV38uPX9vKz8wf49oqfkVc50mocJ6LhaxAvGzzp9TLSOkjmqj9FaRrp/v0vdvdzzn2999GS8cg0d2BbFpFEI/GmxYy0BP8OwlqcRmsBm6za+G1DsWBWv2ii9suU41ewXTUrv874B81e6uP57kvfUH91wUHlKxzdJlJK4Dsmv80G5+HEzNlo6ChVC/LYWhjLDKK756qHpu0nrHkQi1HXthJN04nW1xONBec9WRc8hysFh/mg6BTZoAVjVxZUEPzQNJ1lJwTle/12iBbSrNe68aOLKcWSDLb8HV7pTLpTq+kzN9IbX42JwWpjHSvrl/HcmkZ+c5rFSqejej85MpSiwWyTcdMlbjgUys6cmY1TKUVzrlZ2kLMNdD3I3ksaYZLWCJ6xi1IiTXTKrwaWYeApjwdGfw4EmYVndpwJwOa2zZxQv476hnZcLXithN0M/uQ4cGEyAJhTgujFzPyYqbmSnTLuZKEWzIzFwjSaNulyP6YO9V4fKraIjOuxfeF2SraNQqOIxsUb19LklWguZyF5GlbqDNpaTuF/KifTGgoyoE9tGiU7Mv/HphFCCCGqRrdT7krTv+g1WCgGjeBzxQmRChefuJ+/eMODvP68IRp238WZTq2UdE/IwzfCdD/tQXp+fa96vqmZbm0NEdobwnjl6T8Gh8IuVsHBywWfWSTTTRzvXnHQ7b777uOCCy4A4NZbb0UpRSaT4T/+4z/43Oc+d8Q7KKBr22MYpSC7QXUsok3fyoFSPz+2jCtPSLCr8mbyfhvPsI9yzCeTcsjGa1kQ51RO59TdDZRiHn3RAdLRXvzWZvTT1mCNza9Z6p4YfJzYRIHupSdjlctkhnsYsDopTY4r1h5az9m00e66PBMJM2gYZGNLAUjEakE325+cgKL0MoJdR9jzg24ohadexj+sqRl5ryDTTdke5bosVryI0hQjTghT87mUIPij/Fra+OjyTQDEDZ0mwyMf3zitHLZez5Mf2c9E3zYiyQRoQUJtMhUEXkr5WtBgLruv775qeWnZC54r4WgUfTLw2WuFOdfYRrM9gF7pY6L5NBKllcTLjQC4RolRNcJ+bw97vZ0QUji6Q8NIE6vGFlfvJ62KFCNLq9dbo0WW2SMMjc6NcUPyTp52u/ZcrOgNk+1B0LDb9Phd9Nfcu/sx/nT0A1w58Y/0uINE4iF67UcYs4LA0gWLL2BJXVCmsLZ5LXuyOxnMjZI3g+dXyM2iNB3sEBEmUF4ZXau9dsu5uZUd+EKsA+9HuoabDcqMdTOMHjVp9jRaY7Wgdja0gjvdAfY09hHK9Ey2aoxpIS5vHOWGZ24iFKsnGk4SjyRJhlrpVEEguS2aodF+mvGB+VGWK4QQQrykkW1kRnxG2jfTZ/pMTvTNuQ05qISxaGC32oz72jfQsqKVT6ywuKwhy6ihSOsevb118z7o5rq17yOVp0YY/d+t+G7w2WNscIB927aQGd2G5/SgT5RpSJj4L+c7jBDz2CsOumWzWZqagtKn22+/nbe//e3E43Euv/xy9kwOXi+OrOyzz+AngjIpe+FibKsrWKFHWNq4hAsbF6C8OjzXZm/q0GM9bYydxrLhWqlVlxZ8YS/Ut9E8OH5U+z/TBru3Ybg+2aZmHDsI8IynLBJekPXSoU5gk2rjtaUyp1g2LZ6HSqwGIDYl6OaoIJCSneWgm4FCKYXnvox+TA26vYIx3dyShWcG+3ecMCl8Lmsdp03p6MqFKUG3vlWnA7AyGaZt/FfUlbbhTRmDLBqz8HSFa5ewyi6uFrxfJJNB6emOB2vlqHOVUoqx4hgLnFYc38LzgnMXidbOQ48V5nXJLdXrkeocklCMT+CGLUbdWiZRc7QRK55npGOYPW+snaMJVaYYXghA2TNoChcpKegZmhvjug0Vh2j0a4Egy2wG4BPP9bOb/eRHv81P+x9ly9BOchTY7u7n5vJv2Zrby//2/jsJM5hI4k/W/kl1HytStZlbM5OlyoaXQ2k6vhUiopfQjBiheGt1u2Jh7gfdlFJYdhCs1BMaFIIfVmJ1reTNCuPFDAktCFIqLcSbtpp0LeoBDZT+WzR8QJH3NZz3/AnOn39k2v6L8Xa+710SLLsmS+LjbL3n2Zk7QCGEEGK25Aep5MvcP3EphlOm16wFis5pH2fEWMQe+3zQDVh2AnbLSWxobufdrWmSyue2uENfeAXeSBe4lRe+nznuQKabAWRv2UN+e+0za9/+vYz29zHcsxXPeppsT55M0WUiP/PfpYQ4lrzioNuSJUt4+OGHKRaL3H777Vx66aUApNNpolO+cIojR+/uRy+WwDTobWnjxu4g24NQw7TtRtN7p49bNimuJVjVcDr1pRBhJ3jIO7VhFApn9UoSr3CWy2OZUor8/mDSiVJ9E44bBKEGWisUjTJJo4mLtA4uI8EKJ/gHsDMcptUMykvj8drA67OZ6fb8iRQU/sub+XNqdekrGNKtkslUly0nzFI9z58tGGT/QBu+AlOrZU0OOUF214lxm5AXZMF4U56LE2v209lRRPkeoYhChRYAYJg+sXiFfU/1o17heHPHmqyVpc6OE1Yhim4tEyg85T0wrcNZ2vbJawblcC3olksNkyg2M+T1V9sW+5OBJA1o1dAnA6jjlCiEFmCZrcQMj4WxPHVugd6BuZHpNlQcIqFqM1g54TZ8pZiwPXx6GTPGDrrNLeXf8avhr1LwJkiEEnzirE9w3qLauJPxUJy2eDD+28Tkc15XNqYag6G7CPnBe5oRrj0exdL0QX7nolLWrsbS9cnx/QBi9W1YqQJXhX+M6QQffsuRZdhmhKWJNlCQac2xxNxOCCihoZUXU26ZXqK8KmFyk3smA9ZCYobLGc39dD39zMwdoBBCCDEblELt/CWd+0yy0SU4oTijUyYrOiXl0uucQoUUdrYMk5ldWqgRjARNYZ8BU/FE3SKy+3OQ6ZqlAzn6DozpZk4Oe+OGggSHQjZDpVj7rKW8CayhIr7vky+7qFc4wZsQ88krDrp9+MMf5s///M9ZvHgxCxcu5KKLLgKCstNNmzYd6f4JwDww657r0RevY2lksjwv1FjdRiPNU/ZtqMlHNOzUxkZabqwiFIqQqF9ASyZoz2tl0hTx6+twvDBepntGjuVoGy2PYmTz2C2NxCLgTKZAjzVYAJS8LK+3TdqcTPXJvzUSplUPzmVsStDNUcFtZifTrTZjpaH5oBSu9zLGQnuVmW7lbG2QedcxOSXVzQInAmigm/iR2r56rKBvp0VqGZJ2uKW6vNBxq+n4rlUilKjnwFtNMlXCsdJ0b5vb2ZXDpWEW2MExF/zah7JItDaGWL5UoqUSBCvLoRUUorXXa8fQOsJWHX10VdvajQUkCk20Dq5GVzrxcLCvca1IWU9hTgY4O2IFkm6B7p65Md5WupImSu1DmB1eQNr28IGmkMP+1tqkEeeHTwPAwqavsoOF8cW0xlu5aMlF6Nr0f1cr6oMgZXrKc77d/Rf0wiO0b/8Kp+z4UwwzUl3nWNOns5+LsqO14KXSps5c2obXkGGpY1ffOXrNhZy1rJn64ik0j4UpNqVocndwIMzmVJKocGLa/pclIliE6fUXomsQMTxS2YcpZq2jfGRCCCHELBp+lv49GR7dspJoeQzftUhHoiysr/DG1nF6/UvQlIvyFd74OMb2e2q3jS7iYycu5TtnLONNr1nIb/KnQLpzto7kqHM9Bb6LsoPPJK4ZfD8Z6umZtp3y0yirhJu28BWULCkxFcevVxx0u+aaa3j44Yf57ne/ywMPPICuB7tYuXKljOl2lMRytaBPjxljafhA0K0BgLHup+m+89s8Wd5H20SExnyUZePraCi101FpY6O3DoCGhetY6NRmB3zaHcPrncCJxCk/d9uMHc/RtDu9m46sgTmeJRL2KFR8bNMnmwzOYUd4JfvTLr7dW71NOrmURUZwXsyuWvBJacEXzXzZxZ/hzCylPS/TTSk89yhmuuVqx522w5yxOM+Tva04xXuwCz/Hye2rri+bcdbUR1gXqmVaZSMbq8uLXA93MiXftUtouoFrtpHPxgmZLomKS2Z4bgdARkojLJycuXTcrZ0HPRKjqxJmZznCpW1PV9ujkWUUwkFwSeGjoaGhMzplEN5wi8+KfWfTMbKWzROvp14Pgm45ZeFgUYxPvo7DFVpJ0zslAHMsGy4NEyUo7XR8HS3WyrgdvB43FnS69FrZ5ztjl9CiNbDIWICPx0VLX8ONb7iRjkTHQftdWb8SgIxee614xFCA4ZaIV7qI67Vgn+fM/VKP7GjtdVN0ahmC0boWCnqGNU5tvMRHvRTtKZNvd17LTf0P89PKCEZpjEWGi4YiZjjoflBOf+DX50Xx4EeZX1DLKlxdt52h/fNj5lchhBDiIMqHnocZLq+g6CSoxFrQxh4mq4UYyEZZm2rAUTEqNGDrOtrWR/G8CZRnoewMhBpoioSJmTr1YZPdxhJw5sZntFdKKYVvlWne/WsS/U8w2tGFG6pg5cKUiy6xZHM1NgDgWkNUeoLqg3xZSkzF8ct8NTc6/fTTOf3006e1XX755UekQ6/Eddddxy233MLOnTuJxWKce+65fOELX2Dt2to0zRdddBH33nvvtNtdffXVfOMb35jp7r4qlmcRKwRvUkrTaI2FSBk2GT9OoxHjHusOsiMP8czyTgZagiBRqpTk4s73oqGx4BSDpliQzZBoWkxqdxmC4aHIRbMYS5bjjizE3rcHNo9CovWQ/Zgrdqd301oKYdXXsy5RYbdbYby+lqWxQWvj7JiNO9ZfjTi/b9mn8dUC0DWiuVqkyqdCJKQTMjQe3pkhV3FpSJhkisElUF0+VNthrZ+S6aZrCuX71XHDXtSUrJ9XksZdKdZKJIuOyRWtOnc8l8Szn5q2nRuKMV7x8X2XBrc2hkPXohgN4xpJpVjoupTDtaAbgBlpoK5+iFDYpdQXozwfgm5O8FrJurWMox2qg5+PLWOi7PDDDT+nUGwjWRylUn8W7uSEEp5pY7pRlFIM+8E5TEbieHUlzIiOjo6WDdPupOgnyAjM+hkK8fWkisH4WvGkxvAcyT7K5seqmW4FN0wonmLccomGPaKaT84Ogm46OmeGN/HLlv+ky/T5fd1u/ubMP0abmr05xYFx3bJG7bVS5z82bZuEMxC8JpRCzYPxVSYGa0FEqzJBfV0zdilHpK4Rr1hkjV3Lhn3Qi7Ms0UvP0DaogJ7TcYspmusKjNBA2QtNidH7gEFbJExK83ncOQXH1wnpPitifTz+XD+rTm1DCCHE3OGm05QefRQtFsNsaSG2ceNL3+h4NLoTcj2MDDTUmvTaZ6y1zbXJrYqNdaSWNUCjBfYoWmwxz5eN1OEN34ux/q3TK1DmAddTJIeexfAcDG+cUh3ojolVGKGYC8aUTdY3UMhmAFDuMJXuHKlT2yhUXCDywjsXYh57xUG39773vS+6/rvf/e6r7swrde+99/LBD36QM844A9d1ufbaa7n00kvZvn07iUStbOb9738/n/3sZ6vX4/H4oXZ3TOrL9mLmgy9abksT7SFFSAdHr2fI6+eH5e/CCdNvs25gLdrk1yl/3WqcSomw5dCwcC2tT9aOvXfyC71fl0TrHYSdP4PT3jen/0HsTu/mpKJBdv1GwoBjVRitr2V/nFMKjl9XgwAoI46vJrNoTJ2oV/tnYBo2b9zcyo7eAqM5m4rt40RU9RJ40bbDWX+o2Uv9lzWm26srL7WmBN1CSpEdamI8c3AibE6LoQHvXNJIpFSb9XbfApe27SZrHIeFrosdDgKElUqRekALJVFAJGqjhxpgYG4Paj9SGqHdDiYEKPu1Y9npxpmwHTatzbBx5FmSxSxKi7Ov9WKC1EMNK2RhulFyKktJBa/txng9mqaz4sQOOp8dxrFsmvRlQFCekFFZ8vH11ftZF+rnf12CX1JDtZLWY5Hf20VYmxzvwwkTjqYYtz2ScZdCTFHKBcGweq0BYzLDM2wkeNPKN79gwA1gVcMqYHqmG4CvpdBV8HyOW93oZhTfKYM394Nu6d7guaaUIjSxm4pVxIwk0eoTxApJVk0Jug00JIm4W6vXfeWT822azRKt1NPnTZ3p2AYjhq7r1Mci7FY6+ypLWRfvwtQ8Srt+B1MmAhFCCHHsK/z+9wxe+wkAQsuWsfqO22e5R8eovocBGJmoB8Bwy+xPBEOCLImFiBtBFrhr6HjKwl65FMMbgMoAHCLoVhcL89SIwRl2ASJ1B62fiw78kF/KFzGs6bOa+yGX3ERt2JiG1tZq0M33BnEzFm7OIl8+tj+vCnE0veLy0nQ6Pe1vZGSEu+++m1tuuYXMlMHYX8revXu54447KJeD9NtXM7ji7bffzlVXXcXGjRs5+eST+d73vkdPTw9PPvnktO3i8TgdHR3Vv1Qq9YL7tCyLXC437W829Y7tR89nUUDunX9Ik+Fi+RpupJlnnMcP2t7wTTak3w6Arge/JzT2BqVBhhlmYdMGlg7FiFUM9qhOHHxK9Y3YQ4Vgius5Ps317vRuGksa7qrFoEdxrGJ1PDeATU0XYaVi6O5kwDGxDhoS6EubIGxiagahyVh0xQ2em6apETI1omF92uVLtR3O+qnlpQY+Svm4L2P2Uu3VlpdWJgNHroE9UsdtD5+M8g8eeL6gx9iQinJhWx0xuxZ0GwiH6A8F5y0ExMLBOd8xlma0YoNZB0YSTQM/pqOGeg/a91wyXBqmxWlkXM9g+7USgl4aMDQ4u6OLVCF43TnRZeS0BAqNfDKGHQ4ys6ZOorAxcwKvb3sbze0pDDN47Jv0ZdSbcWJ6iJxWIh9dXd2+I5an5Ou4+eGZONzD0jA4WF0uuBFCsTrGLZeGiIuTbKQ0WYLRrNfGvLN1nfr4i/8mdGBMtwOzlx7g67WZTWOVrupkCpo/NzIDX0x2JMgQVSqDbgWvz0TjAvx4GVXWOaVSYVTX+W0shtms0VN5btrt+7QSUKZZV2hT3yC8Wubp0skS04ecUxmz6jA1RXPpPjxHxmIRQoi5xB6oVST4pbldYXDUlCZgYi/FcoRCOfi8UJfvYWdzMGndGxemMNBxdbA1i5a9txP1Js+rV0Q56YN22Rox+U1PCkpzY8Krl8MvOPR/4gE6v/9bDLuAZ0zPWMtN1CZcW9K+AMMMPsP57hAAlZ68lJeK49orznS79dZbD2rzfZ8PfOADrFq16iVvPz4+zh//8R9z9913o2kae/bsYeXKlfzlX/4ljY2N/Nu//dsr7VJVdnIw+KampmntP/jBD/if//kfOjo6uOKKK/inf/qnF8x2u+666/jMZz7zqvtwpI0OddFeKuIuaEeLx6hD8XQhyuqWFM8Wn6huV1cI01bZQNPihSQTTYSao/gtXUw03kq0pYVkaSN2zCCx8mRC2fsoRz3Ao9ss0lFfT+XxIjSuguEt0PTSj+OxyFc+yVCSRi+G054EM4FdzjPSGHzZDusRlqsw4T3XotDx2t6EX7cJLWSiGToUgu1iWgRHuZQngwEnLEhwwoLEC97v0XD/rdPLS1EKz/Ne5BaTXkWmm++6OJNloI4VOnCvhM009vO2TUVD/NXqVopA1AqCbsVYkkylwr5QiIaIh6NpRI0g4ybiW7RGJyf1CDdCuYAX0wlvexJ468vq37FopDRCm3saupXCdYLgh24YDPpx3rI0xdtHao/DcP05OKaB6XooTcPXUoDPkF/7MLwhvoGl8SBYtPKkBex7doAGFSdbCR6XHGUssxmLOBFKdETzhCsWgyPDLGlaPmPH/WrU52s/XBTcMOFYHRG/i/WJCqXtKVQieJ4267X3bVvTSb1E0K0l1kLYCJF9XqabZ27C9IIy3FilGzO0AgfQfRvf89GNV/xb0zFBKYXmK1IRRcHtrb4269tXEQuDX9hCHIj7PrauYYbT7Mlvn7aPXq/CKVoJQ4MmTVEwJoi6GTKWg0JHK5RYEAl+ib5bbeK9keD//aLIHsb6CrSveOEfrIQQQhxb7N17qsvexATKddHMVzWy0PyV64Gm1QzvqX1us40xRmNLSRg657Qk0YARd5D/n73/DrPsOuu04XvteHKoOpW7ujp3q9UK3ZKjLGNJlgHjQGbg9WBm+MAwBmNM+AbeAb6B8WA89hhem4HXxsZjTBxsDM5RlpOy1JI6p+qqrhxODvvstL4/9qmzT3WsVre6uqVzX1dfXXXO3muH2mGt3/o9zzPYcngJwEeh0buVSHUWVYKQNtLoRwjBsKFzvCygtgjZLetzXFcZr9gEHxytiSI98DwCa0cT3/OotJxtyUgUGY+T7R/AcRxqZdB7HNyq0xXduryouSqjD0VReNe73sUHPvCBSy7767/+62iaxuTk5Crh66d+6qf40peeu+3Z933e+c53ctddd7Fnz5725z/zMz/DJz/5SR544AF+53d+h7/5m7/hLW95ywXb+Z3f+R1KpVL735kz6+vIaUwG27e3hw/tI3YGSZ1x9wQA6YrGjz18F29y38kbxt5J/49sI/PqYbzXjHNHbRvKsMXYM1/lpuOPod10J0Ol0Or8ePFpoqbKYt6DwklYOHBZYYnXE3krz1MLT6HoURbzkoJv8LU9kzR1n/5akh3mRvTFL+LHtyPwEdY0fu4HURIm3mwJDA0MjYgIZm8a3volQZVnhZdKKfH85ye81KqGokjdCgQyVfXYPRp21lBU6loCPd7DHUsfZs/kezHcYFarnMpS9hv4wN6mzUutJtFWJSPV7TiHrcIfU1ELc/7ADe2cWawtkHVTLLkeTqt6k2ZGMTWF+4eS9JRCh1EpeSe661GPRmjEohTcGl93Ps+zzSfQMUhpOYyBXXzxyUW+dyTP96YbNFEw3XS7jYpoAA7L6lbmG3EWrTijzHNm/vqvApup28xYGRasOBU/iaLqPFuLYUiFk33hNbAhExZLEIaGdglxTAjBSHoQEplVnz+0byOuFghH0eYEqt5yuuFTLd64Yc1W1aFQtCk3BTU7cA/aqsd3B4/xpeIX0SthKOljkQglbwZPru7gTkRAEFyvY7pkLHaUUfVxcJYRRhZ6RrglFpz3h4xtlOzgWThkzrF46oUzY9+lS5cuLwaaR4+Gv3geztwcB5YO8GdP/hnve+x9fHXiqwCUPvc55v74j1n80Iewjh5bp71dJ4oTkD/BwmzYH6lUAvfa9/UnMBSFx+zv8u7yb/Kx6sf5R+U7fFMc4P+kZ/lfzt/xDfk9KO9HVg7hOEG/OxPReMAegdqNUWV+LbjFwJjgaWHUgCCIUKiWisjWGGVjphdTgmGalBYXcJsLWHOnaU5XsV1J8wbu+3fpciVctemOkydPrin87Stf+Qpf/vKX2bBhdQz89u3bmZiYeM7bf/vb386BAwf4zne+s+rzX/zFX2z/fMsttzA0NMR9993HyZMnz+vMM00T07x+kjyKuUUkYG8P9tWX4Gg9PNj8Kgk/RkWtMTYXR1M3EtvVg2iJNZ5aod/KsK00wjZG8F/loSgqOT3K7S//Nb5T+R0AxvV5asU8D4/cwV7LQaUGN2gOgtlqMBBVsz0M5BSOeGdwdIlUoKn7/KZxJ9rMnwAgo4M42/87CIFfqoPjgecjBpJEZ1dEt/XLAbUqvFRIpPTXmNOts5G1iW7NagVF6PjSodES3TYNLmGXwvDS7Ov/Ex886PLhTZNsmPuzVeuXk1mqzTp1Jdy4pgauvK26jYbERYCWAQQJ3eZZTWPDTJ7sWG5N+3i90ajU0FBZ9PKoqobr23hmnK3xCGmhk64ElUs9YVCJ3YwvBNVkIP6cco/wqdon2m3dlf5BEsYeLNtHAI4rqZgmqVqn6FYH36ZmjrLdexaAnfY0Z+Yr1+6gnwNSSnq8BsPxIgBOPUUEWLZdNiiCAmFVzH4jB62UZHpMP7ex8xA34ky2QqMl4Ctxju5U2H28l/6lKUxnkaihsiK1lRaLpHpvTLdWaTFMxeA3JlCBchq+rj4AFXhDPezcPxo1WW4skTWzFJph6MtUREGIMMTI9CKoig++jfQdhKKzIR48AzxFY6LRz63GGTTFxzr6XbjvxnRBd+nSpcuLDb9ex56cXPWZPTHBp8TX+Ofj/wzA7rnd3D92P0sf/gj2sUBsk5ZFZOdvXvP9XTcaweRlZVmguhaeFuGZ3BBpzWF7XGHGnWXZX8TF5TE9SMGT9GJUasG79Aw6dzBADwk86QMKMU1BahHy+Vl6LrTdGwyvVbzLV1fEtwhq1YAIFJeX0XQD17EZzfaiSkikwj6s783jVbdjCEm96WHqN2bEQZcuV8Jli27vete7Vv0upWR2dpbPf/7zvPWtb73k+rVa7byhnfl8/jmLXb/yK7/C5z73Ob71rW+dI+adzcte9jIgyCm3lnDY9cZcbuBuGMLPBg+vow2TjZka/9L8HE21yYb5CDvOxIls2IHRHyaojDUOsKMUR134HHgVXG8RNf1ads09wfLOXyOVj1PWa0xFljj11EEO9b2KxsR+Ejv7oDp7Q4puc/U5Ik0JsSgSyUeVf6CSs9BcwV2V29msdOS22P5TaLduR+mN482WkFEDWW2ijeWIHL4eRLfO8FL/OYaXrm1bVrmELx2kD81WeOmWkQUOfjcUdAoiRkqvstt/9pz1y4kMFatGrSPMz1B8fCFxm0USiqToC4SiIbUEmUiTD932I+z5zL+R/bWLF2a5HrE9G1HzkVJSEXO4jg1CsBzp46W9MXoLX8N0ghwWlfgtSMWgkD3DRqfJpDHEXDPMmxhTUmTMBIMZk3zVIWoqNGwfK2KQ1MIcZxXRAN+hFtkGLc1kqzbH+PT17XQr22VSHZekq2V4Il+j7PgMqzonvDDfW189FiQEBCIt4edS9MV7eNDQuXNsA39s30O2L6iwmU8HohtAj9FgxaNVWCozesVHtT60RTe/hOoEMqI9mAam0KRkrxV0hOdVlUlNA9/GbtpsiG9kqhYMvOYUpe10A9DdLEJpifluFYws0WiMpKZQcX0O22PcSuC2Nma/BvzstTnYLl26dOlyRTSPHz9n8tWZnORMTxjBc7p8GqfZwO4wPbiF4rXaxeuDetCPmlzqx9MiVJtzPNC/i2FN8LK+LP9Q/2sesL+E4avYStAPr6jh5JWNw0eVr/LL/g+iCo+VoXXO1Dg1V3rhiG7FJr7iIUUwO+oZCYqHJpnXxqjMP4iUNsPpLJt7+ihIQSKdaa8r3TmQUMs3qTc9som1Tax26fJC4rJFt6eeemrV74qi0NfXx/vf//5LVjYFuPvuu/nEJz7BH/3RHwFBiJDv+7z3ve/lnnvuuax9kVLyq7/6q/zLv/wL3/zmN9m8efMl19m/fz8AQ0NDl7Wt9cDxHbIVaLzypeC6PNZM8d1yAiP7GZpeMMCKWxqJZhJzZCys9Cc97njkjxmoT4C0EUh0QM59gQGvyo5Imp2xO4iWvsy3ohFOq0vopsvTJ3zu2glU56B3x7od93NlrjbHSD2Gn0gwL6pURDAw7c8bbI6OkiyHLkg5+kq0saD6pK9VEMkI6i0bwJdEW+GlHh6O76Ar1/7lsFp0C5xuci1ON+Xyw0ub1eA8CQV0VycVbTA6sMR3lvLQysc255nsy/qkq0+211vK3cezO5Ms9A1QPfko9Q7BLyZ9LMOj2bBICiiufKFnGNanmImk+aenn+TWNe3h9cViY5EeN03RkyBbQq6UFLU0PxKZYft4kBNyoe8Hme79fkqpMpWeCbbu7yVyM3xq8XD7yfvr2z7Ca2/eSi5ltpqRfPHJJZqOj0gMtE9cmcDp1ojtgFau2s3aAt8qSXAt0CLX8AysnbyVJyZCB7Rr5Ci7wXU8qsSZUMLEu1k9uB9ndYNoZm3H0xfP4QtBUwiOaTV6tiUBl0ImdFD2GKFjs7xcOk8rNwbFlSIK3hJ2JEsmGqXWEwhoNzdtYq37/bFIbJX4njHTzNRUfDyWhI0QZVTlWRx/K4ocAnYAVfCq0AoVuSse45F8jW/5N/FTBM/NDerjNBsuZrSbD6hLly5drnesztDSlc8mJjgkw1yfdbfO049/gXgzDBm0x8evyf5dF/geWEWajoYlg9zNX85E8ITCyzIKUkqedoL82Y7wiFoqjYjHFtvBFbDkRsi6MU4m5/lL8SX+k3gVQZ4z6I9oTFU87vRsUNc2kXg945WauHpHpmfLoWRlaMgppAz6J1HdIGaaOFJiRCLoponTbOK7c0gpcUtNbLcbXtrlxcll954feOCBK9rge9/7Xu677z4ef/xxbNvmt3/7tzl48CD5fJ7vfve7l9XW29/+dv7u7/6Of/3XfyWZTDI3F7hL0uk00WiUkydP8nd/93e8/vWvp7e3l2eeeYZf//Vf59WvfjW33nr9D/dnq7PEohncscCbsQmbfxIOQ9JikAGKzUX2Hc2iaKPENmWCRNtCsHXikwzWwpwMtfhG4rVJ8KpYsVE0r8F/mX2ILbVF/kXP8OVYL4PlE3yvnuYugMrc+hzwFTJbm2VjPYafjHNMDR1AQ/ko6jYfrRh0QKQwEBvuaH+vbe4LG1EFESUc8DfcBrqxDqIboeim0srptianW0cba3yvNWthnquSpeG5GhHNppHpBauCUDR2a9BMSRJTwTmsxrby8L4/J6E/QjFznGqzvsrpFvcly4aP3ajiVRY4/L3PEOyOz+7bb+IOqpwmhu+6KDdYUt+F+gI9boplV+I6YUifbxrcPfEOKrFbSNf2Y7h5Tm96PfnezzMyYVJ9tk5/ZZozWuA6Sogkb963g6gZHr8QgqGsyemFBnY0Tpw4NWqUaQTOpcQ2HF9BV3zGtEUsSwYieWbTtT4Na6JgFRhWQtHNi/Tx+HINgWRDPMWiH4puCbWXJgpuIkp/cm2u5/5EeO8e0wrsTgXbWugbIZ+4E8MrM9KYADIAVAvXdzjuxSjNBuKh9AsYVoG6VaAQDc7TrqbNo6ZJTPo8Hc2sWu91m+9nrjHLUmOJGWeaX1q2sPwneXfqt8mpMST7EHwb6YbPgeGYRqEkOahvZrKWRiBJxJosHj/DhlsvPbnVpUuXLl3Wl+Z5crOdXjhKZWj1e/Dhw1/lvo7f7VOneNFgFUD6LC8F/f551SfmNdkW97klleW7T/0l+S1LAGwspYiWIdm3wAfnF5nVNE4WcrwyeZpGQfAnI5t40v0md+tvBIIKpqfyOtSWIDW8bod4tfCKTRw9FGebmWHKmo9d/VZ76HHzwAhSQkIAEhLpDIWFecBG+gXcYn9XdOvyouWaB1Xv2bOHY8eO8apXvYo3v/nN1Go1fvRHf5SnnnrqssM9/+Iv/oJSqcRrXvMahoaG2v/+8R//EQDDMPja177G6173Onbt2sVv/MZv8GM/9mN89rOffT4O7aozWZlEkRKlGLgz/nqhl57sJMf8p5ljnp1zg5iugRYfQ8uaCCmJ1acZmfsClh6EWZXtV3Dy3wyOFrbxjZf8Ov/yA28kbs2xpXYSANWwuTszh4nPftGHb7tBeOkNyFxtjuF6BC+Z4KgIQ0mHliP0+UsINxDi/OQtiFjigu1E1VB0qzvrU2JddjhVguqlPv7zVEihU3SzbR1Tdzm1lGsXCNDjGXYmEnyfcRzRks7mcy/HURTi9dvYUOyj7jTO63SzbIvpyQMUF05RXjhFeeE0UwVJI6rxnf6bOPbYAW40ilaR7fpWLM+j2QpLUDSVXzI+he5VSNf2M93/Mh657YP4wsZV8/QfywBQcIrk9eB+3pXevkpwW2G4JxBSkgmdtAxC8cs0QNpoZoLlZvBZr17lCZnDr1y/92u+sYzRqmQL4Bj9HChZZKIu8UicRT/MN3Y6sZlvpHJMxuLEI+r5mjuH3lgWpXXdnVQK9C4bCA8Wc0Ok6odINI4xwhEiSrAPjdINLLrNB88i1w/dektaEYCXWRYvbTbZYzvM9a4OoL13470MxPtbv0m+11ziSWeCbzUfBgKRUlU08EJH4M2t8N5lvZeSE2E0XiYrllCO/Ovzc3BdunTp0uWq4lXKGJs3gaYhjOCZfsg618X2RHl1P8wrFnHz+XOWe0HS6sMtTgV9sdOax4FYihO1KDmvwjNeGN21ZTnFSxZ93lKqUFcUtjkOrzSXSEpJv+fTV32Gh5e/0l4+Z2ocXY7iVl8Y59ItBk63RrVKOb/M9OMPUyp9mLKsBMXfPJWcZiIEqAhiQDIepkmR7hxuyabp3JjF+rp0uVLWZDHZt28fX//618lms+zduzcMYzwPTz755AW/cxyHH/iBH+Av//Iv+b//7//78vf2LOQlRIXR0VEefPDBK97OejG1dJrRm3YCUKrYPF2PcetoOAM1Mu0BLpGxHQgh6LctXv7Mf0EtPoWHTmHg35Pf+Q42/PYo4/N15prPUBUPUY/6jPe/jtjy13lTrY5DnU/WDvPN1E1UT50iZZrgu6DcWA6k+do8t9R0/A0xjsmgY6E7gp6ywVjjDFJoCOnip/ainUfsWCGmhbnxGlYd4s/7rp+LUNs52RQRCF2u41xkhfOwRtHNrlZa7atIqRAxHI4lXo7nB/dOxAxEnmT+c0gEAsnBWBAKWFM1NpzJIYF6h9Mt5kss08cqOoxPrM4D11w4w8aeHg41ojzynf3sesXtl3dc68xMbQa/YjMnizh2MOu3ocdlQCyDBMsY5tnd/5FGJENmrsjtX9yH7qjENkc4Eglzqewcuum87fcmdVQFynWPOAlgkSYull8lqqgsOykGo1UUASPKItOzEUav00RlxeUZDCU4Rw1XY1aL4khJv+kS1XSWWqJbREQxleA62zIQvWB7Z2MoBuloikK9xIwssdhjoQiFiGWwkL6X4cLn0HC4OTPPE/kNNKq1Szd6nVJaDnJMupTRAF9IlkUwYLilGYR8VIWA3GaYCfLZZSNZxlJj7Mjs5ODSoVXtPeh8g5/Wmrj+DoQCuLXgmSEEPVGNAVcwryUYr/ZyS2YegOTyt4B3XovD7dKlS5cuzxHpeVS+9nVkvY4+NobQNewTJzmqh1EgKSNF2S4zaVRwBejRGLIeTO7Yp06h9bxQspFdhFYRhfySgaq5TGoeCcWj6ivYpSWWU61wSgnbKj38eOwgw40GrqIzG9/JjB3hDicY9/67cpXPZpepLE6Q7Buj19TY7+o05qdJDu9ZryO8KkjXx6/aOH1NFqanmJ0IxlgmsKgNcTSxjcnIRn6iOcOKzDbow2w2CS2d1/OWuuGlXV7UrElVefOb39wucvDDP/zDz3ljuq7zzDPPPOf1X2yUFmcZJRiInrE0QLKsBOF9mqfQWzKRQiO5J8i/NrzwAGoxCNFt6in+pu+t3C9UUoUqw31JJo/tpvmlR5gv+yz9xAfJP/xy/j+lAjrw8twZPtso8vRxyd27PKgvQWJwPQ77OTNbm2Wg2cusXqFCICQNFCIoUrDRmgUp8GLb8VN3gnHhSz+id4hujeoFl3s+WRVeKgLxTDqXDi8VQgQhppI1FVKQvk+zHggRth2cE93wKRthhUc93kOscYLB4oNUkXw2meBjjS/z49brUM0t7NeDN2rKyAHB4DzmB043x/OYX15xYgU7tjx1jE19O4A0T40vcenyK9cXBatAxs5gKStVwSR3pY/Q4xepRbYyOfSLuHoSvXGGweNgWjrmoEFsY4SvLXyv3c7O7M7ztq+pCqmoRqHmEtVz4Abnt+KXiAJ5rwcInJy7lEkOzyav2+IA9bkpTBGIRXVPZ8ILZtu3GjEUIaj7Fj0iTdIMjkBTBaO5teenG45spC/eS6FewpEeFatGxkySKynMZr+f4cLnALglM8sT+eH2tX6j0aw7NK3g/heyDEAtEeSd7HNdBluh5wdNg5HURv5x3z9StIrt9bNmONu88nh4tDlDVZZIqvuRYivgIL06QotjxHRutzWeMFwe9m7iTQSCXax2+IackOnSpUuXFxPNkyfbAlpk1y6kbWOfOMmJAclKHpLXb34935r4JjPMMXFTht1yiObhw8H6p04Ru/PO9dr9a0c9cKEVq3F233GCP1IkioCP5DcxVzrF1LYG0YbCWGSI779ljuHJwGleTST5/JvehKdpjH4uT//SaTa5Li+nzPiBL7Lprl8gZ2ic8RJYy8vceKXpVuOVbZDgag0aHdExdSWGrRg01QizsSE+szzHO1qRtBkpiKVSRBMJbKuJ787glpo01zCW6dLlhciaes5/8Ad/cN6fnwtvectb+OhHP8p73vOeK2rnxYBbKkNLdJsQCfriRcoEzpD+vIEqBVIfwOhLoDkVRo//N/zoFpAWxit+l1+sR8CqI+sR+sdMVAXU4S1Yj3wPIQSfSm3ntbUnKSgKO+MF7mo8y0O1bdydGoHa4g0lujmew1JjiYw7xITSYLuyi2JhgsF6juSem8laf4fAQbHOILM3I5QLuzWjelhdt9FYn3A0qai0IjmD8FJAumt0ugkROFbW4HSzG/X2co4d5K6TEQOvWmwvY8SSbJr8YzQkSaCkKqTMET4y+S5+ZfNHedzdD8ApLwwVjEmJZax+sSayI6CA51hk6/PAIEe8GNJ1ETdQXre8lWdDczOWH4RkDEYqDGtBzg9LaBTSd9PQHaJ2lkz+EYyhPr488ARfyz/Ekxxut7Mje+FiJdmETqHmEosO0tKPKcsKfdKnSH97ud3iNIcXtvE66QeVMK4z3Nlp9Falq4anM+8HkzcbDR1f+izJIhJJXA7QY0BvbxRNXftxqEIlGQnv10K9xGijj1zFwzL6Wcrcg6jNEnVPsjleZKlxY4pu7cqlUqI4LdGtN7hf9zTDxMYLqZ38wOYfYHfv7lXrv3bstSxW6hxcOoZeH+coBVwknypP8SPLA8iYATTByRNVdMp1lz26wVdUhyU/TcGOkDUslNoc1vh+IltfBIOxLl26dLlBsZ4NIgxO98P/s/sJbOGwYWMKO+FxW2yM3t4N7OjZwT8c/QcAnk2VuDVye1t0s0+9SIoptJxuNTVFvxr2Ye/r03mqEJyLRtTn3zsL7Jw6yVK2H8Nu8sTNP4WnBv3WJ299CWMPF4nbVX65WOKfxCKby9P0pEYoKDHqjelrf1xXGa8YRCw4mtUW3Wyh89GNP8vNwuEgwYTq/xEb+BW/gaKA7mlkMfBcF891EGIR3/WpFewLbqdLlxcylz1Ke+yxx3jkkUfO+fyRRx7h8ccfv+T6ruvyF3/xF9x555287W1v413veteqf11CzGL4YJq2DW5u/FP798F84AYxBjchhODmo+9Fs5dQGqeQsa0oL/up9rKyZqMqgoGMSXZ0jOTcBEq1RFQM8uFMir22TUxz+cHYfhZKLrJ4JkjOfgOx0FhAIjGAGaXMcf8Ii+kGiXyDWH0SxQ8Gqn7iFkT04uFrUSMcxNet9Rmkd1YvXXG6ue4aZ4faVWwvLbqtVC6FIJ8bgGOkcKth56PPbDBrpFhSFCY0jS9mt3HcOYEtLf5t9gMcKuwHwDfD8xr3fSwjUA17E0lMI8LY1pdQXZ6iUV7CXZpCQXIqNUzlYChE3QgUrAJmMw0Soske7sjNt7+b6/sxXM1G9fvY/OQE0h8ifkcv+7WjPOEeQiLJmBm2pLewJbPlgtvItMqpx82wUEBZNMB3KClDFOwI0/UkMWlxOK9Dh6vpesJYDHMr1l2d5VZVr9FYgqJfR7bsmIaaJG/DWP/aQ0sB+sxBsvF0+/dCvUwqH6WvrIL0WOz5QXqdI8Q0h9t7ZvDdxlU4qmvPiuiGrCNkkIetkgle352i2yvu/FVu77/9nPVv6buFX9/3W/zc6Hv59/rL6VEMNqlx/rx+hMf6i/iidd6lS0Mx0BMxsnGdUVehrCU5U8sAIKSPc/BLz9txdunSpUuXK6fREt2WUoKpSJEFs8ah3hoTqSZP148R1aPc3nd7e/mDY4KjkbDf1xx/kRRTqC/jeiBSLYe9YkJ0lGFDZyIa9O32WRYZI4qt6eQKCzQSb2bX3Eu561CwTjV5EzEh2Oi6bHNcbjWeojx/gqSuoACz9RtfZPJKTTzhQaVOsxH0Rwp6hp3JCL+2p59f6hP8QNTBk/Cv1aA/oakeOUcjlggiZ6R00DJNqvM35uRnly5XymWLbm9/+9s5c+bMOZ9PT0/z9re//ZLrHzhwgH379pFMJjl27BhPPfVU+9/+/fsvd3desHi+R8pqiSdCZWj+AFVzEdMO/mSDy8HDPrNrJzcd/Z8MLj6IREEqEbyX/z7C1EELlpX1YIbi5o0JvMQglqETPXWEpOzjS4k4y61cXDuTC4wP5LDnKlBfvMZHfGXMVmcxpY6u6hRb4WwAMUtjx2A40PZTexGRi7uqYh2iW2OdRDc6RDelZXlbu9Ot9f8awkvtWujkW3G6KYaKXyujGMGLc0ic4qbiw+R8n08l4vxc6ifoUTIAzDSP4/hBh2Kgb2O7rZiUNFpOt+VqhZ60YMdYDiMWCCTlpWlGlBq2qnPg8YNrO67rhLyVBydOszHJTu1ZxqJLOFLFUVMsZe/H0S0kFdKLNhn9/yX2ips47gShqALBv7zxX/jXH/5XotqFBaZsS3RLqGFYYIU6+DaekcNUPEZiFe5V93OkmoDq/IWaWlcipTCBcN0zWPSD2dAR3ecxO7wvo2qSnOKTjF6e47HPGCQbDa4pQ9VpuhbJfJSRZRWJRyH1Shpa4AzcHC8Qs27MGedasYmhCmRHEYV6DCKYq0S33M5XXrCNVCw4t1uie/j/pm/mtFfDlh7fWpzi8963eVqcBjcsHGMmNLY7KhUtyZl6cI4dYRA784W1l0bu0qVLly7XHOuZQHQrx8OoDssMf74ldwtH80eJekFf88gGwQPuQUQ8DqaJtC8zh/CNiB/0UfMzGtFEqyqnnkbEt+HUG8z1BH2UH6zWefWpAxiuQz7xagaU3Qw35tkzpTFQjrOc9fn03lfiAjaw2SwjF59CEYKNXp2Fhnv+7d9A5BcW8QybihkeS0HP8vrhFIlklldv28S928eYSfTx3/JZil4wruzFJ54Ig2vtxWlqM13RrcuLk8uO6Tp06BD79u075/O9e/dy6NCh86yxmgceeOByN/miZL4+T6ZVudBTehhxHuErIzUcXdKXN8iVgsHrcNpmy9G/w3DLuD334mfvRt2xByEEImYgyxay4SB9n0REY2QwTXnDViKnDpO6aQAHwaeSCX6xVEYVkvujT7B4KsqGHTeW6DZXnyNNDKnr5P1iW3iKq71ssU+3l/NT+1BM/aJtRcywckKjuf5Ot3Z4qf08ON1WVS4NHgfNWBJncRHfboBQyBEKFd+Mx/mIsRctnebT/jM8UfpC+7vRvjF8oaBIn7jv04iG+7tra46MWSU7vJv5Ew8hfY899mnOaHt47PFjvPLn13Zo1wO1WgXHc3h1+mk2xRaJai6PsJfEpp/DVyI4uovWrBJXv0li4Cg2kgk7SGy/TRulV0tffANAMqKiqYKEFopuYQXTGHkrSkxz6FPK5C1JozBNtO/8hRnWk2SjCq0J5CZxSq0EukOywrwMO/VRJcGY3zxfExfFVCMMx4dRhILtOSxWC6SW4mhqGSE9ECqz2TeyZfGjCAEbjRtz9n55uortSSShSD4dX6bpN7i1NTiqKRniqZELtmHqChFdod6zkXuag/xQdIRdeoovzIxzxPgmUpX8N2+UPm4GIBLX2OYoHDOSnCr0cKDYz57MAiwewjv8RVQFKE3By972vB57ly5dunRZO75lYR07BkBpJAuUzllmNDnKOx94J7miS6NX0DQEZ7I+1kgv5rFJ6o89hvR9hHL9pa24ajTLUF9k4pBGdLg1CagmAJjNH6Y8EAhMr2yJZj4K2di9AJStOooQ9M9mmE/VaAxt4i8yaX6kWuVmt0ZS/xqT3q8hUhmmylPBRNV1mAJkLUhPMvPoMZKaglULx0SNSA/7snGQPhvm/zdRcw+/oX2Db3i382C9hzcn6xiGQ8rMMc1JAIScpzFbQ0p50aKMXbq8ELnsJ4BpmszPn+uqmJ2dRbuB8jJd70xWJokqwWh1fvI4k7FFHD0QUZINDUUKkhHJvQf/E77eixQqMnETfu9rURJBCJeIme32ZCMYmN06lkQOjhB/5mEGW3rLP6USHPbjFO0IPxX5FoemlKCQwg3kZpirzZEhhqeb5N2wOlNy5BYy9cBlJJUoMr4LLlK5FCAa6RTd6hdZ8vlDdiQqXxHdPO/5DS9tO91MFc9qfS59Mk7wsqwIgRrdRFpJcFd0L5uit6Ki80NDb+ENY69lQ3YIVwuE4oSvUEw5uIpEVRRuGhsgFT1IIhfmMdtaPslIZYFTBQvp3jgzgbLqsjP6UW5JT+P4Co6vUItsppS8AwBPiRCpVUhrfw2xXk6VTuG13Irb1I1rEk+FEGTjOgk10/6sLOrg1lAUnXwzdGNuEXMcm166ugd5lUh1uDObSpLh6jJ7Eippr4otw2svI2L0NazzNXFJNiW3tCtZNxyL5HJw/2pecM4Xcm9mwUkx10yyPT6Ov9Yw7euIdk43Nxg8OarPolbgVVaTqO/hxW/mUO6N4b1/AQYyBlosQ1RR+ePs7bw1voVEXUG2njFP+4faz41IQiUlFQa1JLavUbBXnJkS5dO/Af/wM/DF34Y/fyk8808X2GKXLl26dLmWWIcPQ6tPVRxMnfO96oPztaf488w+fqIWprBYyMCi3noPuy5e6Vyx7gVFYxnp+UxOZ4nGg+P2W6LbETtwCvZ6Hhvd4LuGOopQI5SsBp8/9ix/f+xZHv/Ul8GHTDTFJ9OpdqDJxliR+PSnyegq02UV2VyfomxXg/I3Jhmu5XC15VVFFEb7hzFkjc1T/5ONsx/mlsn/zK9qn+HvjXfzsWLQlVAUnx4jvMYE8zjLDaqVF4GTskuXs7hs0e11r3sdv/M7v0Op42FcLBb53d/9Xe6///5Lrn/PPfdw7733XvBfl4DJ8iSKGohmpaU5xrOhkLRxIYsa3cidWwUKHpHGON7Aj+EN/TREdIQWuKRE3GivI1s5BSKGSubOVxGdOE4yEwgg85pGSTfIGBZZtY7LQlChrlG8Rkd75ZTtMq9K34zfk6UkgpdCpKmwJzOBIj386M14udeBoiEuIbrFoon2z3VrnV6U58nptmaxYO2a21lOtw7RrRbc3wmtSaRVIOFYNMlLjFsB0BTBbenX8mtbPs6bhn6en7npJ1AVFVcNxCBTuriapJiz2ZYbwJQGmiJRjQ1Ekn0k+zZj6BrTyX5Oxwew1uCSvR5wfIdbihUc4dP0VJK6zZdLL0fd+Rs0FJdCZgpPi5OuLKCM3Qq738yxwrH2+tu1UaS9NoGxN6kzkg47KxUaIARmPM2yHYpu9zoHOLNQvnoHeZWQUpLtuI5tJcWZeC+zTYnrgSVCQTsj4ggrcOReLoORESJ68Kxs2BZGzUBK0Fpt+ZE+hPQZNCsMRpZpLBQu1tx1SWk+EN0ULXC6LadspJD8u3IFFVBrBxm86dLFDTRVsGAnKFlZRNNAWBF+6URY+3a/cgqV4DljxoPnZERLIYHHlzew7CQguRFh7gQ1F6y0eBSKk2dvqkuXLl26rAPO1BSxl7+cyK23Usga53y/saAT8TR2GWluW9YZXvLZM+7zqtQQqVjYcXQXbqyIl8umnmfmazMU+7ahq62IEq3ldPOnGFg2uWc57K9FI5uR0RjmS17KD/zeu6kV8jilGt7pCqqiYpop/ltvD03gdDVNvPAQaUNlxjJwyjdevwPAnqpglxuU1Co2VRodTreXDSTYc+TnGFj6V+rGRlQ/6NM96u/iP4h/YLYVupzTsm3HpOcug4SpYzfm+ejS5Uq4bNHtfe97H2fOnGFsbIx77rmHe+65h82bNzM3N8f73//+S65/++23c9ttt7X/7d69G9u2efLJJ7nlllue00G8ELGtBmgaUkrKy9NMDgSDLtXX2NJ8B4P3/jw3q4FQIYWKO/QzAIhY+ILt/FnWwtCtnp1bEZ7HpmfCXFqfNkOhaUfPCXzHg/rC83NwzwPPLj6LWlrGUg2qajArNVAX3J3/PAoWSuMgXu/rQFcRkXM7IZ3EjPUPL/WVMARWEa2cbs4a3WCXFV5aaS/qtMJLFVPFLwWdreFEeN08pQeiEYDeyheY0QdwXR8zElw/bqvDEl8RPIYdfujmvShO8PK1GgpmPENlcRxnaZKI1+BMoo/aww+v7djWmaJV5M66w57o1zBVj28vjHHS307dlUSliadZuFqc/o174T9+EV7+yxzLh6LbtsRWZGNtSXWTUQ3HCnNhlEUDpBuElzbDfHB6pMGhyShUr69Z6abXRFfCa7ahZQDIGQpEopREmNOtXwau3hVH7uXQY/QR1YP1G7YFCKRUUPxQpF5we4BAwK4cffKyt7GeOE2PeiW4ZlS1CMBSpskGx+FVLXdgRelj5O6fuWRbyaiGpSbZH30DTA/B7ABb1RxDfhDGfELMUXODe1/TFTRTYaMWpabG8VH4uzP7sIfeEkwKaB2hrO7lhwZ36dKlS5erj3XgIPWHH8Z65hkK5rn9xi3zAJKUojOQ95nJKRzYrHDYaLA5G6a0cBdf2KKbrCxworETI+Fy2jJ4VE7zlPs4X65+molMnvneJruUcAxwMHI74mffSuSVr6JnaITtL7sLAOfpWXwXBrQMB80cC4rOpkSJrd6j5DTJXDNKs5C/0G5c19iTFZqPLZL2ErjRZtvppgjJ3fWP4xr9KLggBIc3/w+Kso9Xq8/yw+r3ONqqFp9EJZZojRHsMlI6TB8rrtchdemybly26DYyMsIzzzzDe9/7Xnbv3s0dd9zBn/3Zn/Hss88yOjp6yfU/8IEPrPr3oQ99iO985zu8853vRNcvnmvrxcT04mkAapUyJaPWDv8Z1bcw8uY97DS+iSKDQaWffTUYgeugU2hTOsNLO6rn5HZsAmDjg1/GaCU2/14qylIrZC2p12memoDajfPCHS+Ns21ZIGPLxH2XnyhX+L+qRfRWDgUv/Qpk6jbUsV7UgXPt9p1EtEj7Z8uz1uxMupoINbwXVpxuyhqdbuIyRDenHsxMSUdjxSKnGCpuPRDjhhOhMPKsabBJGw6WMXVEq33H9TH0GEhw1UCwjEkJUvLdXBFfSHACQc9uekRToXtryF0mH00z9eB313Rs603eyrOxEYbwzTTS9KYHSRsqdbNMNTUL+AwM5trLrHK6ucPI8trCKFNxDV0xiPjBfVymDr6LZsbJdzjdtooZJiwDOXl8bfbGa0TdrdOZPrHeCpXtMwS2olNQw/MweAWi26A5wqaWOOlKD0s0kb6CIHTNzcvBcD9OnVt9+3qmXbkU8N2gw7uUdXl1vYHVutcfFq9C0S4+mQCQaBWRaeihaNvz5h/mntHAZW5IlcP20+3vInGNYQwqWnB+7aYEW4CIgNJRCMR9bqHBXbp06dLl6lI/cxoJuAostyI/BGG/ZWTBxVQ9VCEQVYd4I+g3FBQHLRWOG17oolvz1AmWplT0dJWxSJP/rX+Bv2r8P3za/UcKyaAvsr250o9QeGLwnlXr3/79PwSAdyiP9CGVylBQazzZGoepwmcnp5klfsM63dzlVmoLJHbEwLaCd/3LB5forXyXdPUpmuYQh7e+n2LmVSzpL2uvW7VOAxBTXOLtKvMC31te1a/p0uXFwnPK6hiPx/nFX/xF/vzP/5z3ve99/OzP/uwVC2Zvectb+NjHPnZFbbyQ0GvBA7+czzPXa9HUfJJugrH0DuKxGrtPfhDNLeNlXhm43GI6ysYetK397TZWOd06RLdUbwovkcIsLpF2MwBUIjaPLw0z34gzoJcQcwdvGNGt1CyxbC2zkQSvzv8135mc5veXC/y0W0BIHy+5D2/oF0ADoV36ku+sKtmQzVXn7loh1Y6cbqzkdFtj6N3KIV5Cf5FS4jQtPASO1XGtKA6+HwiN/WYYtnjANNikBqKbGjfQWgKP60kMYSCk0RbdFCAqJSXD42kxD47eOgaPaCq8Rjf7Qdj0qcklpHP953jIW3lyXujqKTsmuhkIYMXeM6heEimqREfCYgkroltWpOhV0vj5tbknExEVRcAYY2R8nRJ1pO+gGzHKjonjB3/orWKG000V8e3HcGavH3dqbWkO3QiF4pLaC0BOFziKToGw09UrgnPoly4/h6IiFLJK6E4taVV8qbQnJQAW1bCyLksHLnsb60lpsSWMS5dmNR84HbMuP1uuIKWkHt3Bk87uNbWVjLYcpx0TC6Je4/6b38iwzOHh84T7ePu7SEJFlyqdNZcmliUk7obYHWHD3rV/Rnbp0qVLl3P5Xz1P8+/+s8rP/LZG3g/Enpzo4799YZjXf2Ub248niIgmM85NlCsJ0q3XbkE6aOnw3fBCF93KJ2aYH7iDTLJOFQuPsM8gFYj5PvvsOg0SHBa3UM5swLI9qg0XKSXJjTvoefVPMvSG36a+5NOTzABBX3mFbdZTFNUojeKNKroFIpujWTieg+s46IbGvvQ4ABKVv8+8DtsMJjatTJjmIuGeAEA3bNKRHEYkCgJ0Y5GFYwX8tY5punR5gbCmygf/9m//tuYG3/SmNz2nHXnooYeIRCKXXvBFQqQ1Hi3nl6n0uEgVKlS5SdvHnqP/A9NpPcAVE5m4CWFoKDEDJR7OUmFqoAjwJX4tdCIIIWBwGE6U2dbYSsaIUvQqPOHq3GMED1JDTEPx9DU62itjvDROTiZJiqDAh9rxneJVcbKvwigtwOvvh9TFXW4QiG63J/fgN2yiwgxEt0zskutdTYTWGV7aUs/WWkhhZUbTv7jq5jk20vNQAadjFjSyuFLhURJRfZ40otRViWX2kWyJGyJmoFVcHMD1QRcGih/B00LxY9uij2KkKMYb4GpICarmoyhhKPOQF1jux9MD1A8cIL537xqPcX0oWAV2K4EL0PUFDU9Ha1W7bZo1NHcI1W+gGMFVeKp4Cl/63DlwJzuawwghkJXAPSmMiz9+FSFIxTR8TaPotypUygqGOQQICnaU/kiNMTHPtCuQEo7900PsfsebEcr6V4WqnzxOXA3EGCkhrwQhnv26wEanIUPxMT00CFUNf6aI3Nx32fuf6RDdimoF6SvhfQMsR7a2f442bqwKpiszwqqSByQVWWGYMiMt52tNTbK1v+8iLYSYuoKuChwUmpqJ6TahVuO2gVtZFiVcfI7J8XZlMTOu4RebJJuhqPZEUbI9waq8k12nW5cuXbqsP9LzKLtVZMsF7bcc341mlj8d+mHGzQyfG7R4v2XgOWnUWo1UHWZ6oSZdvFQoGLlLL2DRTUrKkyX0iE/S8DhO8ZxFtrcqg0ep8pTTi2PDNw/ksRyf2zYlKdddMnd8P1L6VA9X6XlJEJr7bIfoNmIdAF5HfqnChWuLX7+sON0cbxarFRlze3KcvN9LMiKox8eo3jeKc7yC5maoDN1Nc1HDFC7b5FE8+QY0vUlK5IK0SYDw5vGEpLxkkRm4tmOrLl3WkzWJbj/8wz+8psaEEJessPijP/qjq36XUjI7O8vjjz/O7/3e761pOy8GdBvUM9NgO1iZUEjrFyaaW6Ua20S8uYgz9mvB8ns2oCRXi5ZCCJS+JLLpImtN/IrVXkYbHkaeOIIp4DgToMFCoo9DpX729syiKD7OsVlkbBJtUw7lGotOl8N4aZwxf5hcPXSw1AUgdSLx7Xi5N6AtH0AkkxdupANTNdlfCdoaVvtW5cO7VihKZ3hpazZoraGDbcHi4su7zfC4PE9pr2uJ4B5OaDZ96gJ9Nnw7GmGkM4eTqaGpXhBSKgSaBYofaRdSACj0SKb0KiecPPf6W3BtFd3wMRID7WXSTpCHbM7IsvylL173olveyhNTAsG74pqAQG+JbrZZQ3N6iBCGIz9w5gEKzQKPzz/O3Rt/EVrahJ+voQ6mz27+HFIxjZQ5CI0gf2NBFhg2YsSzI5TcE/RTQxM+vWKZvK+wMVbm4Hdm2PPq9e/eNU+dwlBaVb88jbIenKd+TdDUTDw3zEGXrOnQdJFNF+/0EtqWtYlIK5ztdJMyjtoRXmpFx7CqGhHVJeXPXMlhXXNWRDdFCQZApZjDj5ZCweuMcgs7UymcI7Pou4Yu2pYQgkRUo1B1aOiRQHSr19FRuUkZZb9/ihJVFtzTJOojCEDaPgPNOrXWa+hgtSXAiQ53ezenW5cuXbqsO+78PJbqc3YgU6kRYzYSiELbC2d4tLCV1w72ka5XSNUkK5O1lVS4XnN+7lrt9rXHrlBaUDE3BZN/c8q5OXF32OFk02G5kZtSERp20K84MFFBts6ZEAqRhQipuIYmFY4ZBg6gA/1eMMm3XLz2aWquFOlL3HzL6cZ8W3TbHC8wpJbAge/d+RPoBtixApFjeWS1xqQ7ynZ9nFGxyEmrzAalj3gk0dHwMggozNe7oluXFxVrCi/1fX9N/y4luAGkUinS6XT7X09PD695zWv4whe+wB/8wR9c8QG9UBiw4lR70hTLRYpqGOK3rXCAkfkvk6ifxs29PszlZqjnbUcdyiCLdXA8nAPTyJZwEx8L8u8N1cKkqYWkw/5CED5Ydw1EbRZ/toQ3fX3bosfL47zJGiPuzgJwXNf4gdER/iT2szjb/2vwWhwYCAsMXAJDDWepbBz89Qgv1c/jdLuEc63NymFewrm9XA1nMZ2W6KYYKuriNAB9ZuhEOmYYbFSGw00YGpoarOMLgVL2A9Gtw+kWb+2v3RIN3brAMHxcJ46qBSN4wwpcY1PJfmrfuf7zulUrM+hKIIJUnOAYtEgcX0ocvYHipUkZ4d/uG5PfaP9876b72j+vNcQ0HdNIRUMBrSCLqJpBo7zAYkPHlzDj97CDM5x2NJKyxvFvHL+iY7xaeOOn8aXA9hUans4SQdh2vyapmVFKMgwl7dmzPfhBAW+pctn3XFYNBfWiWsH3FRQZ3gBGIsuiFVybcaUK9RsnqXFpIThPK0UUiimHO+wwjHiuGCWrJvHGl5DOpd/BKyGm7bxuUoJlsTcS5mQ96h0nnjZI5kyk47Gl5WSrKxFOVW2WPIVVc3Zdp1uXLl26rDv25CSF1Ll9Xc8N3pG657C/fwd/U1SQbgPFqpPqyOpQjoXrLp45dnYzLxhkdYlKPoKWCvpiZ7zqOcvsaIYpT06rm4nqOtlWVW9FFfit8VQqqtGfHCNbVRgSWRwhOGIE44iMyJOkzmzFg+dQnX098YpNhO+iqjauV6BRqaEKn6FoMCZtGMPM9mQAkF4Md3AL3rZbKLljAMzLLHOV/ZhmkyFnpF3B1LUDgbMwuz6F6rp0WS+eU063FSzr8jvaH//4x/nrv/7r9r+PfvSjvOc97+F1r3vdlezKC464r1MtBQ+majSYIYnLNBsWHmgv42/68XAF/fyim9KfRMSDh78sNWh+4wju+CKxjcFAfqwSDpxKPYK8HeNktYeI6qAtfhaac+BdP8nZz8d4cZwddjhL9ZV4nIKqokU2I80hkD6ir/8iLazGVENnoS2ddcnppp5HdBNrFt3WVkhhvhQ6fhw3uH4UU8VfDsTLvkin6KZzkxq6aISpo3UIvaLsIs5yusVaoofdcn7JioNhuNgNSTQd/D08q4rmO5xJ9CNPTyDt6zw3VH6q/eOK6KabcSoycPqobpzNuQ0ALNQXeGbpGQC2Z7cztmFnWxD1ZoprqmKaimmkjdAZmJdFhBDokSRT9RS2rzGs5NmnnmDSDe7lHneZSn79RRD1zGlSagVD8Vlqxpj1A5dtTpM0zAiWt1IFSyGZy6Fu6wddQy7XcA+FEwRrIauFoltJqyJ9BbUjp1sklmGhGQrCzN84ed1K8yu57wKB+vboEltb+Q/Lsc3MFy3SqSBfnr9QPl8Tq0hGg+vE6iimQKXCyzLb278edZ8FQI8oSE8SjWfw0In5Fn32In9TTIHoFN26TrcuXbp0WW8aBw6ydJ4sKn5LdNtcCvp3DgKvOgHQzukGUFRdlJV3xPzsZb2HbxSk57P0mWkaniCTaAAqU82pc5a7yQ77EP2b9pGJa7xiV5Zbx5Js7o8iJWzqi7B9KEp8bBcbxmGDCN7FnXndXqEdY64iYO7Gcg66+QaxeJH+gWdpxhXsZp3haBlNCa6JanI3ti7om99KtBYWD8PZzZPKTgZEgVvdB1hsVjE1STTaKshk1dB0i8L85efw7dLlRuayRTfP8/ijP/ojRkZGSCQSnDoVWGd/7/d+j49+9KOXXH/Lli0sLy+f83mxWGTLli2XuzsvSBzfQRc61VIRV/FpRIIH/4ibIlcIkly7ma0Q2xysoCrtGYSzEaqCdvMIykAKpS8Btot7fAGjbwPNrTsZWbbQZCCeFJKBCDDfSLSFHqX8FPI6T3Y5Xh6nr3mShtrLCTXCd6KBGNITayVP9z3oH7hIC6vpFN2a0l4X0a2zEmFbdFvryh0LXqzDtFwJ3TKu23K6mSpeKXAB5czVotsmIxCTlKE0Im6gm6Ho5pVsVNc8r9OtuZKctmKj6WA3VhdT2MIy0/FebF8w+/UH13qU60Jican9cxBeCpoZp6pYRK0IQtHoGQ7CRv/q2b9qL3vfxvsQuop60xBKbxwcD/uJiUt2aNMxnbQWhloWCMRlPZJg0UpgKoGg+QrlEKc9ie012J4pM3OssO6VTKP5M+2fG57BbKtSclYHKxal4QciUtJIoggFbVPYafMXq/hL5848X4hMp+imVpBytehmahpzTpolK8ZSMw7169u9u4Ln+FSLgaDl2kUGIhV+WZlCBT6RSlAZ/HEazQp663nhza9BdIsE9+1iPEct0weGAfll9g7fRJSgnWPuEaSUqJqCqgtIDaJ7gdDX31zknyoxXDrDS9df5O3SpUuXFytT73wnR1/yUqb+9H1UYuf2FqWbwkSyqzDR/qxQDfqAqXpH/lPPQUsFE2Tpms+npj75PO/5tafywBkazxTxepMkdJeTU0UW1aDfq7kKry3ewltnb2J7S3SbkjmyPQNsGYxh6gpbh2LomkLEUEjENAayEfTeEXpmXEbUIHrokajJCTdO3dV5tTzAlC3g1Il1O+bnwv/71Q+AkJQOHcZLp7AadUZjxfb3VnYMrR4hNT9KvENOkNmtFNWgH5wUDcYL30BVXZJmcG6klKTTkxTnuk63Li8uLlt0e/e7383HP/5x3vve92IYoTCwZ88e/uqv/uoiawacPn36vGGozWaT6enpy92dFyTlZhlFVamWStSi4bm6p95EtGIG5a7Xt0OJLhRauoLam8DYNwYrlTs9Hy3Th3nyKOnKEsMED8KiWSfSP8ohf1t7XaXyFFzHopvt2UxVpkg6U0S9ZcY8iyOmieoJehNBuJSvKrDGRONwbngptrumsK2ridBNnJYYql6qDOk5K3eqbhderFgNxW/PC7YlTBW3HgzcV8JLHeC0rrM1NQamhpKOIjQVvaMSrKdpKK6g2VGtMtYSfeyW6CZ8lbhZb4lu4d/jVe4UUc/mK2Mv4Zm/+Dv8tTr61oHcfCgEldtOtxiSOpFGP5rnY+oq/3DkH/j7I3/P5vRm7ui/g/s2BqGl2mAGv5UjUCRMvIlzJyA6MXWFTZkwrDdPGSklejSJ5essttxbu8UE8+UKRv4jDFl/wvA33gSHPnM1D/2y8JtNYs0whLPspyi5wXWZ1hSkprWdbikjmJYXuoq2ewgUgcgl8ObPzbFyIXr0MD9eaSW8tOM6MlVBQaTIRerkzBpufuJ8zVx3lJcb9PVF0PojJOzT/OTGZ3m2VV057Usa5l6ymf52Hkd/qXLJSZJ0XGcgY6CnEsSLi2DbMDtLtG8je7VRtvgDbFCGKLQqCxsRleX+EVZeRaa0eQkVpt0OR3D50mJfly5dunR5fmiOn8avVFi+QK2wUaOHu+Iw2pFWZLEW9PE6nW7T9VRbdNMsl0rpxnJnXQp7popXsbGtCRjNogpwrQKVSDC53m9s5F2DP8mvJW4lRvDZuBjjztEeNvSGebO3D8X5wX19bB+KY2gCVVGIFlVGtWA8dcgw2abViGkOdyhHmHU15PipdZ8MXStlu8yeUj9CcckfOIifiGPV64zGw35ZJbeBbRN3MSQVdmp+YHAAvL4RGj2bKMg4R9hMQhapiwXSStjvj8WmiahHmTty8JofW5cu68WaCil08olPfIIPf/jD3HffffzSL/1S+/PbbruNI0eOXHC9zgqoX/7yl0mnw0GS53l8/etfZ9OmTZe7Oy9IiuUlpPSpV8pUe8Pkm7vsJsXkTaSqx9BufhPegdYoSF/bn1Hb0o89EzwwFSMJyRRmcZ4R2cukWEIKyVTzBANlHbtfxRAeSvmp67qs85nKGW7L7iR66isATKoREo0ouqeSyQZODEUBomtP1qkpGqpQ8aSHLTxE3MR+ahJZtVDSUfxSAyUdDHxXfj7fZ1fyPXYUFxUdD2WlkMIaxSghRKi1yTBB7tlU6kVKyxZWvcby7Emk8kMohoLlNFGFT48Z9MTOGDESSprRV70UVQ0F3pWcbgBOqYHek0Uy2P4s1spfYbcKMwhPI6Lb2A2P3uE+tEgCw4yB2qCuRvnEza/nvz7xN0weWGbTrR1W9euIXEcV4IpjomgGiqpTTVZJ+AniiuBI/ghLjSUiWoTx0jhvu/tt7OrZBYAwNYyXbcV+8Cj+bAlZt1c5vM5HVg9dgQVRBemit5LSTtYy9EdqKEJyD58DdwYBJJmFRz8MN//I1T8Ja8CemMBIhPlQ6togjpQkVIEnwZc+lr9adINAlPSOziOXguprctcwQrv03FCPHrZR1KpIS0FFIqWPEAq6ojAvwmWs/ByJ8zV0nVHJWywuWpjROvf2HcJQPW5zG/xbPMYH+rbx/qUFenuGIBuDUgMlFcUv1VF7Lnx0UUOh0fRZEGluESqa9ODMJCJiMCgSfE85Cf48i/4cPWoOPaJiaClGlpc5NhSEzhwtL3CqL8NYq02vUbkGZ6NLly5dupwP2QjSECydJ58bgOqlee2GXqKjI6Q0hbLrszgxzkRPCktxoSUwTWGgxcP+sru0dN72blScqSq1R+ZQCnn03X2Az5y30O4m90U301MpMVc5w0qW03pmNyM5E/UCVdWFEMRMlaaqsoU0htTwRZZ5FhnAYZsywTICUW9Afhl6r8/+bSfTlWmSThrZWECMbsCxbRTfxpeCspdEj2VIytvZoIGrmeBKjGYDO5rA7xum70iD7yVexg/VgrzGB+QRepSwirxVqzEyUGThxAkGd928XofZpcs15bJFt+npabZt23bO577v4zjOedYIWKmAKoTgrW9966rvdF1n06ZNvP/977/c3XlBUq4sU69UkFK287lFfZ/vqx1Gly6N1FYiA3vhQCByXsrptoKIm4ELSkqoNjF37sCfPMKwP9b2PBaSDrmSyclmPzdFZlGas8jqFHB9hv6eKp2iOf102wF4MKpQjFmMVnrJqQrgIzKZy27XVE3qbh0nJlCG0vjL1aC6ouOF/8PFP7uC74Wv4aASBdSVQgpijTNkq5xuF16nVi9z+In97d+N5D4Us5cy0GPU20VQDxiQEalVghuApobbcYWC4sdWhZfG2uGlrZxuUiNqNHEsn0hqANeq4lpVekzBjl6L2abPpJ5G/9yTbLr1+szxmHEsVqLqKq7ZrlwqE1V0ZweJpM5nTnyGvz38twD8yLYf4fWbX7+qDSVmIGIGsm4jqxZSSsRFinxk43ESnkFVtcmzWnSbqqe5szdwCN+l7l+94sT3YP4gDFz7Do19ahwtFYr1ZRlMsvQZKnlX0vTryJY03Cm6ASi9Cbx6HqTEL9ZQc5euOpzSEqhS4AkZhJf6StCHlh4IBUNRyCvhdpYnjtwQolu1ELgic8azGK1Q4lO6xv+vr5fdWj+FpQVGhjajDqTwlmv4+RpKvg4XEd2EEGweiPL0aZd8vJf+6gJYFjx7gLFkOBm25C+yEzCiCrbeQ289zNs2YC9Q8HsJuhAuqt/NzdKlS5cu64WXD5zlyx2vS4GCbPWN/8PGTWyKpeGH/h0vObnEY9PT6EunOTjaRyFhA0Gut6LfQBhZYBKAWKl5yT7KjYRbCt5jtiySSPSCEmGeeYQPUoFcdIzYcp3j9izDUqAKiTF4K1sG4hdtN2qoqPE0w75ARWFeK/BYxOQNloMuPEa0KXzZi7K4eEOIbjPVGW5yc9jzT1GtlLHqNYajZTa2nG4zidfSRx8IUAydhnQxfSeQbjWdiBXhxNYhOBKIbop/hJT28nb79ZbLsp5/YYm6XbpcjMsOL929ezff/va3z/n8n//5n9m7d+8F11upcLpx40YWFhZWVT1tNpscPXqUN7zhDZe7Oy9IauVCu4hCJRYMtO5qWOgy+NnbeBfS6XCfXaCIwtkIRSCSQUiQrDWJ7tiBX7cZ9sMXQL6V1+10o7f9mbL46HM/mOeZ8dI4d1XC4z/WCnnuFb0M6a1y3ukL+O0vwkpet6bXRGgKQlfB1Fb9f6nPruR7VVFwW+Gl7eqla3Wld/aNLrKOXV+dT8Ft7kdVfDzfZmO82P78mGEwbJ6bE2+16CZQiOFq5xZSWMnpJpQoMSPo8ChaBkUN1KtapcJPZZZwFZWP3Pomag99lpNPhvnmrheaXpMk4TmrOCZaS3QjXkFze4mn9XbFUk3R+K2X/NZ5O6si2QpT8OQlcwbGIxpZLxBRitTxfRsjEvSsp+rptgEyISwa5h4wdoUrP7k++Viap06ip4IdkxIqSvA86TNU5h2wvNAZlTLPEt16ws7thaq8np0LT9UMMgTntKgFOd0UgNY1qCuCQ2ZYKKA8dRL3ei/aAVSWAvfCPvPfyBoNCq7BB7IZHCEY0fqwnQa54VHU3lBk8yuXzq+2sS+CpgoWE6s7/2NuWFxh2Q/CkPSIihNLk+4U3ZoL5H21XUxB8buFFLp06dJlPfCbTfxq4BwvbAjfp7u1H6N64l3UTr6TASN8rxpCsqdysN1VjNhhH7pIDTsRprSIFpsU7Bun2vel8Fo5Uq1sYBLxRYyFSAkJpBtRNpjDCOkz4B/GQ/Bd9pHYdS/xyMXHWVFToZHJkbQFOYL+2ffiYQqGW/WT5KUCE6efl+O62kxXppCOiVtewMukzwkttWJ7kFJiS1BMDZGMEOno6ypeisrYIHZrHJOTR0nqWVYGKPVyMFHnORZ2oztp1+XFwWU73X7/93+ft771rUxPT+P7Pp/+9Kc5evQon/jEJ/jc5z53yfXHx8ef046+mGjmqzi2TSKdoZ4OXqT31cKHkr7njdCRY0wYa/8zimQEWQ4GZeamrRTrDkNejq1yEF9L4kQCsWOqEuep6BZuidYRi98FfvMqHNnVZ7w0zg90jPeOtap+ZvUREsIPRKc1ipKdrOR1a3pNtM19sHntOeGuBurfn8Rltegm/DXONK7B6SalxKs36Twzvn2MYmMWxa2xJz1H2Tf5SkrjoUiEWxLnim76WaIbfgRXvXAhBUWLEFVaeeIsSSwzSHX5DM1GnQFsUjGVeUdnyS3zlb86yI/8psngljTXC/lGnqQS5K5qeiq2r6HrJkfLFQzpI5UIc/YJZmvBjPHLhl5G0ji/S0tJRvBbSe9lxYKOztnZJCIqabKcIY8vfErectvp1vQ1vlu8lZPJQX5O+wrLaAxvei3OiQqK0NGe+HvEfX8ARuSC7T8fODMzpJPBJEHVNZBGy+lmqhR8aPhhbrxznW4dotvy+UU398gc3nQhKE4x1ouiavTIKMuiQUmt4suVGaXg2tOEwnxHQQrVqfHIZ/4Pd/3k/3UVjvb5Y+l0GfDpF6dQBZiq5MFYIIwNK/34nkdqcBARM4O8br4MrqdLoKkKG3pNLHsQ5g61P9/oJlh5KCz7wbvATBuUXBXd95HCRMgmfc0lCo4MRDcJwr+wy71Lly5dujx/eB0hoIUNaWhNDs4ujLLV3IDtSaJa2NsbxWKkcrj9u+koQV9ZQEWWcVLhxJ2Rb3CydJye/nAi/kbGazn3bOFwqm6S1AVL6SYoUIo2GDRTHF36JjtF8P7LRiC3efQSrQZOt3pqACN/mh6Z5IxY5tGYCa20va9QDnGyeTe5GyT/6XJpFulvxist4+8co9moMxoLRbdf4+/xlr/CPeabedf9v4S1UCU6G4qzntJDJifZL7fxUnGUfuaZUUqkhnfQaDbxG+W2g7JeWMa4jBRAXbrcqFy26PbmN7+Zz372s/zhH/4h8Xic3//932ffvn189rOf5f77719TG7VajQcffJDJyUnss9wG73jHOy53l15wyKod5HMrFSmrFTQpeXUrX4OjJTC3vQYv3zGwugxRSUlGWPHIGcMbwZekiDBDnoY3RyobDM4rNZ1t+gyatJCFErhN0C4sDKwXp0qn2OSFqtuK080wxjBWBCf1sg2dbaeb7a2PG0ZRRIfo1iqeIdaYW28NotuytYzuiva1gNBR1FGspz7OKwfz5CLB9XaTLTlu6NwfHTynjU6nmy0EoJ7f6dbK6aboBqpdBkVgNzximSGqy0GFy6RXYlAfZN7ROZjeyGv6JM9+c4qe4ThG5LIfU88Ly40lcAepyyg1K+h8RKNpeiIaVjOFp6o8sfSt9vL3jt57wbbaTjcCZ5IykAJfIs5zrcYjKik1B5wEoCCX6IuEAtLTczt5X/RH+LR3Ny+hye/15xGn+9Dt/cECT30OXvbjV3Dkl0/z2ccx9gZCTMGO4psmuJDTVYpAo9PpdpboJkwdETeRtSayVEe6HkJb/YzzlsrgeEjHwy81EC3RDcBRXOqKFdTh7HC69XQIoBFTY+nMaZymhW5eW0HycqgsNOjVJoiI4Hl/xIshW/f3kJojEqmhJKOBizlhIstWcN48/7zXUieDGZNH5lLcpEXRNAXDqjHiZdqi29KK000BxzeQqobebDKVCHIMRqrLEGvdm/717xrscm1wFhdZ/shfIS0LY8tmen/u59Z7l7p0eUHjLocFmZbi4YT8xFIcPJu7c3FERwhEj7vEAXOAHjtP2q2iIDAdlabhUfGLWL1DJEZy2BEftW4zURvnJbycFwJesYm0irgjA2yJNVmqKSyng/dXwosz7Hsk3Cfbyx8f/Rl2py899omZCgUzji6ht+V0m9c0Ju0Ymm+gGy7HmzYvK3tBv/w6D9etFpcBgV3I42Vuxa8uMZgK+m2ndZ3Tmg3+LBPiJKqukuiNYZvmyjwnZAeJqHme1nfwUu8oALryJKrj4CyfBsBpNjEiEWr5ZTLDlxY2u3S50XlOo9m7776br371q89pg0899RSvf/3rqdfr1Go1enp6WFpaIhaL0d/f3xXdAGG52FYwyBII9lmCWc0kaduUB19Dr2aAEzpAxGWIbiIZhg/pvUMgBDo+faSZZJGKaeEJiSoFD3i38Sb1EYTfgFMPwo7rK8+WlJLx0jj9MngRlFBZbg00c8aGdhfjUoPP89HpdFsPVEXFO6t66ZprHq0hvHSqMkXEU1nxT6rGThAJIvYxUqaPi46Cy3/N9SCFYDB2PtEtPK9NpeUrUjtEN3919VJFUVALBYSpYDd9Ypmh9rL1aoV+zQZiPDK0hx86/lWOzd/PpltzbL/zXJfdelCozrLHfAaASRE4t3QzTtGvkrJ68VXBbH2StJmm3Cxz78Y1im7lBu6z0/hNJyiqoIhV4YJxUyWt97OikBb8ZYYjm9vfJ5TgPD8jt2JUzgB58uZuBldEt2c/fU1FN7/ZhKVT7d+LdhQvZqI7Pv2mSkEouJ1ON/Pc8G+lN45Xa0LcxC81Vp0PaTlQ7RB5PB9F0+ghfLYVRYMBSZDTjeB+OmzrtCJQ0bw6Jx59iNNPP8n2l77yKh351adeddhuHGj//owenodhtQ8lpgS5OgElGcVruZhl1UKkLz5znE3oSEXhyzf/ILmUzt35A8QOHiCrGBR8uyO8VMFbsnEzvQyWqrit4s750izEAmexkO6FNtPlRYYzMUHhE58AQBsY6IpuXbo8z7hLHaKbGbwbNWGAF7wDbs+ufheoiyfZ3AhytulCw8El0lQC0U1WaPRsQJsO3HOpwSSnrflrcRjPO1JK3FITvzSFM5ZEQzBlTeCkgz7UkDJGtDzJhKPSp2kskmbv635qTW1HDRVLj6D5ghxhn+YkMe6JLDFMkZO1w5DZBfUaxK/vrLJOuYp0LdxKGS+dIjr3MGrrPD0aCUXIeTkDgBHREYoIRLdaGbsBacvh8cxWWIa8nySl/w0bYm+i0Fq3UatiRCLU88t06fJiYM1qRKFQ4IMf/CDl81hjS6XSBb87m1//9V/njW98I4VCgWg0ysMPP8zExAR33HEH73vf+y5v71+gqI7Eblq4is9itsnLG0V22haeYsKm+4PQwLnQ5ns54aVKx2AfG9TRUTTh0i+Dl4QUUG3lkXvUCgtmuM/+6xUe1dVnvj5PtFklSjDQPKWY7dmjVEco2Q3pdFMVnLPDS9e68hqcbjPVGQy3U6w1EWqEwYTFLbGjKHjsT27msBmMsAfj54puneGlK6Kbo4UdiYS/OqebIgSUSqimhl11iWXCNuuVCrfpgZBc1KP4fvASHn/6+kmyWs2faf/c9IJ7TovEaRhljGYvRXear535KuVmmfvH7icXvXCyXBEzoHX+5FIVb6aAXKriPH4a98jcqpxluqbQGwkFyry/1A4vBfBVn95G8Dw4LPrwJehjo8jW9SNnv9Mu5X4taJ44gR4L75uiE6GuGjhCoc9QqCv6RZ1uAEo2HoRLVpv4y1WkL5FSIm0Xb371e0Y2HISqkZWh6DbbVDm9vLEtugFIxcSTwTk3lODzE489fHUO+nlASknT9hgxnml/9lQs/LsPqX2kEj0oLdFttZB76RDTiKESNYL7tlh1kT29gGBYCQZoRZnHlS5GRMWrODjZHJsXC/itJ1GsPIls5XQTfld06xIgIuF1KG+AvIldutzouMtL2EGkP9OtFBiqTLPSa9yaWO3UsgunAYJnef9GACJ28C6wsVlOpqHVp0tMlam4N0ZI5KXw6y44Pl55CmImaEkm5VT7+5HIDtxj3+aV+mEEPt/RX8XGvrXlhI4aKpZmokul7XQDeEQJfx7xW+/y0vV9PqWUyGoT6rNIRaGmKvQbYejoYx2i26R9ut1f9QzQiosQT+FuvYXemSoLgxv4efs3iAsLUxS4w/wOWxJB/36lmEKtK7p1eZGwZjXiQx/6EN/61rdIpc59AKXTab797W/zwQ9+8JLt7N+/n9/4jd8IXC+qSrPZZHR0lPe+97387u/+7uXt/QsVx8WxbarRYGD4kpbrTfMbJLbdjT9Xxl+ogALazcOrciBdCmFqKIMpRNxAli1iL38FmnDpI8ydtVK84VhjAMdrCTNHvwDe9TWwOlU6Rb/r0VCylMlwrCU+KlJhJNbTXu65ON1WRDdPerjrMKBUFKXtdLuSQgoXKl46U5vB8MLzIoSBNvgK5Egg7ij4PJQKRaPBxKXCS891uq2IbrboEHzKdRRDxaq7IMIcIfVKhR0xlZuWTxPzbL6nDZDW55l4dgnPXWNY7fOMMz/T/tnGJJEbI5YZwjRr6E6ak9ZDAEgke3J7LtqWECLM4+ZLSHQMVMsNZKmxavm+5AibyNAn09RlDVWPIJTgem+KJjvrQaelpkU4saiSTddoqDuDbXkleOqzV3bwl0Hz6DGMZHjPFO0oFRGIt32GhlQVIkaYo/J8optIR1mpEOEtlGl+5QDNrxzEfmz8XNHNclBUjQEZZ6vfw4jdT02xglJkMrx2DFWhRqz1c/D5qScexXOvr+faCs2aiy99ho0g51rD1TiUaIlcUmFA6SWVyCIS54pua8nrBoHbDcD1JfVo8HcYFq2KvEgK/lIwe227uNkcScdmJhI8CyJOBbeVZ1JI77p7P3RZJ/zwnuuKbl26PP94S0u8+6dU3vE2lVErwhu9XYjpNwKgC0Gf2dFXa1SwykG+siWzj0o6iCToLKZwsJFHTWcBMOYqOHJt75PrnZUiCl51Bk1XQM8wpYb9uuHsdpxi8LsufBI7X7PmtqOmgq2ZCA969XDS//GIidWapL1NPQTShXLpQs1cF5TtMinbQNZm8NMpysUCg5EKc77OIV0nH93BkBIcY92rtfMYy7iG5gVpRWQsSWaiQU/O5aQc5rQc4Iy/jV71JG/ecIisUaPW6ufWi3mkf33087t0eT5ZsxrxqU99il/6pV+64Pdve9vb+Od//udLtqPrOkprBqW/v5/JycDinE6nOXPmzMVWfdHgNQL1vxpzifo+NzeDjms9thkt3o+3WA6cMj5BHihTv7wNCIGs2eD66GYEw23QJ8OBbzkWPDSjTp0nGjdjNYdwZBROfv2qHN/VYrw0Tq/nEfULpChSMoKORZYsvUbHglcQXgrr43ZTFQW3dXuqa83ltoJyadVNEQoRv+MkCZ2luOAlIhjgSwSPmmEnbDA5dHYTq0Q3pyW6uR2iW/ys8FIAv+agmgKn4ZHuz2DEArG3VimTTkY42rORmh7l25mtvH7bcXAtpo4WuB5QpsLZuIYjqC5NYMYzqH1lNCE4WP5O+/v7Nt53yfa04SzKUDoQSV0PdVt/+zt3YvXMXy47xGmKLIoSeZlHCNF2u9mexS43PMePTWfwzBwLyj4sZQeemoPvfODCCuxVpnn0KEKTzDqDTNVTFGyTIsEzqs9QQVGYqJ3mpp6buHfjvYylxs5pQ8SMMFdltRkIzr4McpZVLURPHLTWfW27SAQqCieVPNPGAjWlHjwfvTrSKZCvljAVQU0GwtTKpW3VqkwdPnDO9q8HyssNBvSj1PwUk7UUR8o5dCWCW9vMmH8LmlDJ9A220wso5xHdpC9pPnqK5kMnaX73+DlVX7Px8N2Rb7lUN4jQTbeS102TEjsTXJ/TsZH29/VOQdwqXoWj7nKjIztEbN+yzrnmunTpcnWpLs9zfBjmewSLhktcZvmZWJb33DbCf90zhBArfTlJeSFM/TAZGcGJ9hBPZ0mpmfbnDmXoaQlHTZd42ca7hm755wuvFIhurtOKoNCzzJotB5eE/lw/OUJBrG/XK9bctq4q6JqC4wp63fBdXIp5nKoGJoC4sGhap6B0fYtuU9Up+v0UfnUWL5mgODdPb7TGoOKwwXN5XJlmj767vfyxwjEAjEwMs+M6ic1p3Kza0JPmj5TfYZ6gDzHTSPEjo4dwq0UqZZ1IMo1Vub7df126XA3WrEacPHmS7du3X/D77du3c/LkyUu2s3fvXh577DEAvu/7vo/f//3f52//9m955zvfyZ49F3eHvBhwHQfHaoluUZe9VpOVYZGdvgNsF3+6iKzbKP3JIAfUZaL0hIMqLTuA7jbolx1Ot3jQac44JR6s7SJizhJ1puGxjz73A3seGC+Nk+kQGwpaIAL1aUNEO4Se9uD8MlhxugFY3rWf5VNUBa8dXgog1yyaiM7wUv/864yXxldVwEUY1FhgTE4AUIvuYEIEebd6lDRGJHpOG3qHmOm1tikVjaXsBhrxEeK+D1Kucrr5lsQ0HFxb4jk+8Z4NRJI5pJQc2/8tbq0FnaGZRB+n5+vs3FHjmW9MXRcDNzMf5iGzPA1FM1BiOdK+ZEHUOVEJxJttmW1sTG28ZHva5hzG7RvR79iE+cptaFv6gms1ooOUSC8UNAZ7Q6GjKoPngx4JwhZcz+YmLUHCrrO9vsCxySq6vYA7vAuTRVRvCQr7Yf8/Bg08z+fSOnaUWK/NkD7HhliZihNlqSXw5gwFU5GcajzJ4fxhvjv9XUaT5ybQFUKgpFvX3Nm723SR+RoiEgpG0pPECH+3lGZQ7VfREHqWnkQaU1GotPK+GYqLqusM77yJ6vL1E8LcyfxEic3mY/Rqc2yMl5ly45yJLKLFx1EUB9/3MTJh6IowNUTUgFQE3/exn50KwpaXa8hiPRAsz3LArTjdAJZdFSIRhjtEt2V3CunW2XpnBm/vayhv7qGUGsRHsKT3UG12uNus60Mc77K+SLujkq3nIev1Cy/cpUuXK+ZZaxy31f+9jc28htu4syfGxpjBpoTJSviDikN5PhynTUVGiEUj2JaFuVQnXTUYVkZJRMs8ef9rOfCjP8UDe+9jy4LLQn1hPQ7tquKVmkjPwaMGCAr1CkhJph6hx0qgm1W2KnMAzMgce3fvvKz2o6ZKU4sSU6PEZTCGqEZdjld6aUqV/d5WStbEde90m6nO0Oen8StzOFt20mwUyWiB+WBc1/mx6Ou5Vbu1vfyK6JbszxIzwsl8305gj9rMlE2+Y2V5h/vLNLw72BArkzUstplHSaYcGsV8V3Tr8qJgzWqEqqrMzMxc8PuZmZm2g+1i/Pf//t8ZGgpcM+9+97vJZrP88i//MouLi3z4wx9e6+68YKnmi+0iCtWoy0utMJG/kbgV2SGUdIpnl0NnOKoWzyIsi76OxJ+VeDDYj3p1/lW7C6fWyg11/CuQH39O23w+yFt5BuuhMFFuXX+9Sj8JJxwMXkkhBVgfp5tQVDwZ7rcqJHKt8aWrCimcfx3bbaJ0am7obHSfRGlto5i4nbwfvAQHlN5zqkfCaqeb2yH05bMDRGvTbHFd7rSa2IR/C09EEEbQVrPuseOut6DqEaTvUy2Xubt+rL3sl5YTDCunmDy4zKn9i2s79ueRSC0ULCxfI94zwnKtRrwR54i9n7gWCCAXK6BwPtS+JMLQEKqCkkuC5eDPllaFmA6ke1Fa+cgqBOKf0ZHXbXuyD0szOB7r55v+KF7dZuNInjPiJ1tLCPjaB+Ho0/D5z0Lj+RkISylpHjmK3qqgZnkatjQoY2AISGsKij7OYiP4e75i6BXE9PMn/L9oIQDRyvu2gieJyVBAaihNhL86vNRUBdVWJQVd2PiOzczRw5x88tHnerjPK0cPnWJL5BEg0M6f6MgTM6IM4XoOSsxYtY7xfTsw79gExQb+VAHv9GrH5NmhuZl4mA+03vQgk2HYD7ez1HgGEGiGitE7SHK6juFJHsvcQc7J0+h0ujW6oluX1U43ALfQvS66dHk+eVqdbv+8Qw4DoHQ4kldQ/DrlxVYfXgjmIoMkNUm8Z5hYU6OUsJnxzzAnZxnNxBne2kftzr1kJipMFievybE8n7jFJn5lDj+eRKpJvnXyEyymGxRjFjviL8NcOkRcBGOu+cSuVRPLayFqKFiRJEIJ87rVIh7jtTS21LldPUmq+RiUilf70K4qy41lBt00XnWZ6qY9ZM1wDDSu6/x8/I30qmGEworoZqbjxJJh/8HRsggkfT3BOZ3xVWbdn29/f2t6As9pRXKVuu+JLi981vxE2bt3L5/5zGcu+P2//Mu/sHfv3ou2IaWkv7+fV7wisOz29/fzpS99iXK5zBNPPMFtt9221t15wVIvVLCbwQOqGnN5WSMc6CvJvchmOIsszhpwrRURM8AMBltqJAsNixQxDBl8VktKhGbS6xSYi2ZZPBkM7gUSnvyb57TN54NjhWNsscNB44roliFH3OtQlK4gpxusTwVTVVVxCYUuZe21S88qpHD+RaTj4nXmYBI6Q04YZjed2NEW+QbU3jDUrwNFhPqe16H0nRkJK2v+dLmC0yF8eCKKYbYKLNRdFFVlaNfdqLpB02pA7Vk21QO33YPqACNRiSp8Hv/8aZr1DgfFOhDpcHA0PY1E7yi1yjIRK8n+2oPU3So7szt57cbXPudtKLmOAgmlUBhLRHRSMrjfK7ScbtFwWVU6bLMCMW4iOcip7y1gKBZTyVdA9CWg9kLtAPzrb8L0NDz9NDhX/3x6S0t4xTx6LLj/So6JZsawpErOUPGBWe3J9vIXEyiVzFnuyo7LWulPtXOZAUh3tdOtrDSJSrGqkIKpKFQ7ii3oLdW5dp2KAu70YbJaMNE1XU8xkwifY1u0EaQC+vbVlX2FEMGzfaVIR331hIF/luimawo9CR1NFSyXHeToRgaVTPv7ZWkFOWhW1k/3krbrHI9vw0NZNTFAo3glh9vlBYJ0Vl9z3nI3SXaXLs8nTyfDd9hOOQJKBKG3crJRYVh9hn2RT1M6+EUapXmMWJo9+27HVTT64imSua3kSuF4Ytw9AXoGgKQB+2dzzEzc+PexV2ziV2aQUY1azeZoJDQRbB14FbG5cNI3umXtoaUrpKIadiyJogp6ZSA+SQWKpuCUE5hNIrKMXHz2mqX7eC7M1GboLfs03QYVM0KK8G8/pSeIyzh33r4XXQn6XMcKx6g9Noez0CAfD/v7dqyfhOvT3xuOY4/IIWb9DQBkDYvh/FcAyJ+ZuBaH1qXLurJmNeJXfuVXeP/738+HPvQhvA5Bw/M8PvjBD/KBD3yAt7/97RdtQ0rJtm3burnbLkK9VMZuBg+olFFnm23zpGkymXsD6Fmk1eHgil5mLreV9YRA6QlcImoig2i6CES7mELJaOB5FgqSuNfg4MIYjXqGJX878smPg319hIsUrAL9Hf37cktcy4p+zM6knDeg6Ca0sJACgCL8tYdYrqF6qXQ8/I7QXBSDbWKcJXMnpfheTkbD/GKDai5Ipn7OZkTb7ea3vpe4nBrbjm0Gzsl76w0ynhW69JQYphFst1kP/u/btJexm/a2E9q/bvEBbimfoSEUqjNN/uNtJ/nB9DOc+OdH1nb8zxORDvHB8jS0RA5ZncNqxjjVeBqJpGyX2dWz6zlvox1SCfgdTreooZJeEd1kHSllO7w02J8a+zry6X35uMonR1Mcfv1JjnpvxvNaobH1R0GZhxPH4Zmnn/N+Xoj6U/uJbumjleKPsh1BN2M0fIU+Q6Xq2DzT+F5wrELhNaOvuWBbnecCQAxnUMd6UfpTaJtyq59/rr9KdPOUJtGzCykogiphm7HWpEWtGFblup7Y6oTi5IlKjmo2fB7sNIYDd2T03ImXIDS3dS14q/NByoqFf5YQp6kC15O4vsSNJ9nQTHC7nuUWPQPCByc8P36qh5RVpWBkeTyzD98Iz+eZQ8/QpYs8S8x389fn/dXlhYmUksrC3HrvxjWj2qxyvCd4pg82Y2SIg9GDtEtYdpVB/Thjxn7seoEDB4N3vt0okxsc5cdG8vTFMyR6hsk0FG6tBvfuhHcST8sA0KN6fNbdRWGxet7t30h4pSZ+dQ4nnmB6/ABTA8FYy8RkYEgjkw9DaDffevdlt69rCjUtgqqIVRVMq1GX05VwgkxUn4Zq5XxNXBfkagPMb7md8n/+C2zbJmuGY76S3kfN1OkfzXHv6L3clrsNr+Yy/+lDLH/yMKrjIZpB39XrGWR4qkF/bziGOmNWmVRfxeFSjrqrsc3+Hrna/m4F0y4vCtasRvzYj/0Yv/3bv8073vEOenp62Lt3L3v37qWnp4d3vvOdvOtd7+LHf/zHL74xRWH79u0sd2c+L0i9VMJpOd1e7xWJAPuaTczYpkC2sDqcbucZcK0VJZeEdBQRNRCty6C/VUzBVyS1SCAwpNwyJ80R7CLklOOI+jIc+NRz3u7VwvVdynaZbMeYMu70sVHdTErpJ9Ix2L4Rw0tVRcHruD0VIZ9T9dILiW7C9VY53ZIZyW3qKXLNo6jSYkYLc04MGH3nawIIQ0xla6O+2sDXVKY2v4JFzWS/afCmShWX1t9Di2PqwflcEd0A+sb2kMxk8RQTW+tjWVeZTA7y5NEZDOGTMhzcyTPMnVqfXBiO72DK8N6zPI3c0A5Uv86B5jG8VgjtvRvvXZ1T7zIRiUi7EIYshqJbRFdIt/KiucLDooGZ6CUyMIiyIRmIbmamvfxTIzuR0yVcQ/J1dYTvlt+CRIPRV0HxCajV4NAh6HSEXgUaTzyBKIehLiUngm5GaPiC3ojDu8p/QsnNs7d/Ly8fejnZSPbC58LUAzdbzABDxbhpGH33MMYdYyg9cUQkvEel668KL7UUGyEF0Ol0E6ucbtF48HOtULgucgaejZA2095NWL7BjHYzlVS4jzebG1Aj5oXX7Siq0CZuILIx/MXVbrdYR8GUWs8AMT/CCbfCs06RM8oismPSwR3ZSLYSDBYey9xBPRZu57GvPcjUkYOXfZxdXmCcFV7qdUW3LtcI33U59JXP8cxnP834w99h+sD+9d6l551/OPy3ZKuSnWd8brWD0FK0NMJIEzESJOUcSMnRU0U29ORQNIPBHXcR7xnjv28cJ2ef5jXFP+BNI4f5+OIsb6pUKcsSZRn0tXpVh/5aHrtwfUy2XwlCV7BqZ6imcxx2jmJrQf9gR/LlOPFxUrUij/k7mBLDmBv3XXb7UUPB0iIoQjAgM4wxQv+yScN0OdIcxmulCJHWQfjiF+A6zXeZtLO4mRyoGnajRDpaa3/XMEaIlqDwyUPgwdNLTzPpnuGJvT7jI0mM4z5aPbh2/Ewfew7v5IecTe31T2hNavIVLPnDxDSXqkyQsKdX9Ru7dHmhcllqxLvf/W4efvhhfu7nfo7h4WGGhob4D//hP/DQQw/xnve8Z01tvOc97+G3fuu3OHDg+qwYt95Y1UqQ001zeGMjGNw0hYLe/wYEIBstAUhX21XrngvahixqTxyaLpoSDN76SKOhkXXTVCPBy2jEWmQ22U9lJnQ+8eiH190aXWoGD/V4hxJ1NFpg0hsnqfWhde7eFRZSWJfwUk1bJboFOd3WyBrCS4Xrr3Ks9mvH2z+XEnuZlmfIKRk0VAbNC4tupq6sOr2eEghF41vuIuva3Nm0+elKBVsG51CNxTCVYHaxWXPJlB8iUTvA5uX/w7YNCVS/SdKeZEs9sP0fyNu4rRyHo2mLJ740gXeWe+dakG/kMZRQfHW1FGY8S9yv8oS3v/35WqqWXgyhCETL4SUbNtIOBrCKIkh5ochU8UqoehRrfg5/qkJeLnArKmrrvjzmDpB5JpjtT982x4H692OrGTjzHah/F3wL6jWYOH1F+3s2tUcfbedzAyg7JpphYvkKemQBhIonPfJWng/d+6FLtmfevYPI9+0kct/uc553nYUU/Ka7yunWUJoIqawOL1UVaoQikdkSrVzHxn6ectw9V3zfZ6v+KCPqYYR0mVsskjdbTgMvwpCaRY+dR1hrcY7oZqhQs5GFOt7sauF6leimmMh4llzr+VegQmExbKu57w5S5SCUSQqFcl84e98ol/jaR/4cz13fMPAu68vZTrfSqVka1Ws/cdXlxUdherLV/5HMHHyaqaefuC4nVK4Wc7U5PnLgoyylBSeHBK/l9uCLViVqpM/ivz2DW7N54tllJpYW8D2Psd2voCmjLGv9bJn6n8TsKbYmC6gSbms2ubveYFxdBjVBRIPHe3ZQbng39Ln06w7N40W08hLVaJRls0qyFqSn2TAcIVld4LbaUV6iHCOeSIOZvESL5xI1VJp6BE2RpIkzwTQLvU1KCRdh2Tzq30RTqjgiDu4iHD+27mOp82HUwn5Ts16ixwz69Q4QiW5masnjTMMjvtTbXu5otsDC1iy9P34rvtdy8SkKjeUyr1TDMcRDMYjnDB6dS3Gi0kNCVBmpfpeUdf3kC+/S5fnistWIl770pfzZn/0Zn//85/nCF77An/7pn/LSl750zev/7M/+LI8++ii33XYb0WiUnp6eVf9e7DhNC7tpMZhZJtKqPPmNyEaiavASlS2n23MNLe1E29KHSBgoWhBqmpFxXFwKWolqfGW22uFwdozKiSrFeiC8yeVTML++joZiswhARJxbSCGhppBmx6BTvXznUafTbX3CS7VV+ZIUIZ9TeOmF1lE8id8hug1qR9s/lxJ3cNI5ypJfJCOS7E1cuKrwq3ZnMfVwP30lEC+q8ThPJ4McFjnPR1oHwJ5A1y16GodIq7M06y7bJt7Nrcd+gZHC57lDfJsVlTBnB27YU8kB8k/vB6DHsJg9OM/+r177hL7L1jKaCIUZER1ECEFSVjnlBoJlxsywt//ieS3XwoVCTFNeKARX/BKxdNiRybNADMEuJTh/04kc8ljQ8XHGGphCZdx5ZbCw9KDZ+ns/8jBUr07YiFcs0jxyZJXoVnIi6LpOw1d4OvYxnvEOYigGf/jKP0RXr/AZZqihK9DyznK6NQOnW4fodnZ4qWGE+SCrhevLjTMzt0hUCcSxhmfgqD5lPbj+VLc/cFPq2gXXV1KRs36PIuLB9SMLdWRH1dGYET4v6k0PMbCRPiVY38JmvhRux09mGdDCdet++JxUhaS8tMji6W7n+cXM2YUUjnz5MOPPXJ8Vgru8cPB9j+Pf+gbFMxPtPpBrWTSv4zC+K+XbU9/G8oJJydccgFSkFxDQSjUhvToDL0mwZPnUGsF9Odg/ihLtpebnWCiZGG7Q16p5USq+zk9WavzeUp4Z51A7r1uP5jFf96nkrXP24UbBmasjpY9fXaAmfE4P16jEXXRfY7gnzabJsA8cv/2Hn9M2YqaCpUfQoJ3TDYLwUtWp8RX/DgQCw52EuUfh4Ydg4fqrChsvheMGpzxBTg3+7hO6zqjRx/jNOU7vHSQa29RebtGeRALTCJx42Ber1KokNIVcq184X4hw6J5ZhBZhf2G4vVzancGxrv1Yq0uXa8maRLfJycsb5E5PX9gm+qd/+qd8+MMf5mMf+xh/+Zd/yQc+8IFV/17MSCmRdhPbanJneo6yInjWMPh85LYwYrD1LLyS0NIVhKGh3TSCbga53LKE1QAbZvCATLkVjqVHkEBlMsm8vQ3Pk/DUJ694+1dCwQrcFroI9tMGLCFIkMJUQDVaAoUAsYaqumcTUcNB63qElyqqitdRSEEV/tpnxFaFl16gfZd2DjWAUeVwa3GF6dgmTjeDgXNcidIXu7DTTRGC3qSOqQteviNNPRE4WF29wffimfZykfIDkP8kPc0Psmfq3bwm9b/IesfaHT6AtHuGHZki0BLdpOR0Zpj840/itELaRhJ1Hv/CaazatXXTLDeW0UVH5z0eCNDFaIGaX2Uwspkf2PwDaMqFhZC1onRU7fSXQ0Es3SG6lb0ikUQPK3/suhcINC8TOptLM0Q8h+m54H5uRn1u3t3gSPHOcCORaRgYhHIZvvaVqzLbWn/8cZASPRFeV2UngqrreEqDmhLcs7t7b2bfwOWHbpyNECJ0uzn+eZxuYlVOt4i6upCC2VGR93orpnD62BQRJfjb112dcrxDJHMDd5m4iINXJCJn/W6iDIQVqr2FIMRU+j7a/jCBcc3yYMMGckq4fnxn+EDxlRhDOwfbvzc6RLd4TCWezvDQp/9hbQfZ5QXJ2U433alSXmxcYOkuXa6c6QP7eeh/fxjPDgbt0XSYtqC6dP2JGleDptfkfzz+PxhWehjOC35mYlMgNqoxxEpSVbeKHd/MUw+GjqRN/RtYGfptm/wgjprG0vr4pvfTLNnBeRvyPN44/RloVWTPai5Hy1HyJ6eu4RFeXZy5GrK2BL6LZTcoJIPnVFQmiBoRNneIbsbtP/GcthExVCwtgi7kqpxu9aSCQPKUuxVDtN7l9sng/4OtqK/ryPGmu8F7Xfo+US+PLoJ9G9c1BpU+/NaE5ZAMRbOlZpCr/dRcnezGDejjB6BRo6GZ+E2LndHgmnNcBX/aREsOMm+FxcAS9hQHvrn/Whxely7rxprUiJe85CW87W1v47HHHrvgMqVSiY985CPs2bOHT33qwjm/3vrWt17034sZp+ni2TV0LLbpFXK+JOt7jKu7z1n2ajjdAJSeOGoqB66CVgs7KiuiW9KtUIwkWYhmqR+qk9PH0fwa8vDn1vUlUWiuiG7Bi7OsKCAEWbWHmOLAiovmOeRzg/V3umm6vkp0U1h7eKlYQyEF1ZXt8NKoatOvBEJ5NbaTp/wj7a19n3knQrtwGLOqCPZtTXPfrTmGeiIoZpD7wTFVplNxHo+YfCsaQfMLICsIfASwwTzAyxOhcOuhUza38/LcJAJJ1LeIeXVOJQbxbZe5Bx4EYKy3yYZdPYw/vbjGs3F1WK4voivBsdmeih4NXLkTRgmHJnPWONsz26/KtpRsDDGQQiQjeNNFZKvgRdIPBaOyV0BRdYxYIKQ0G8G+5bI24+lh6nqE0zJH7wmVzFyC2lCJorsbW7SEl6XHoLwEigJmBB763hXvd+3RRwHQ0uE1V3JMfFVFNcPE1jt7dlzxtlZQR3tQ+pMglFWim6U04TxOt87wUl2EQla1sMz404t8+n88wT/98WM8+aX1raSVPxkWG2p4OqV4KGRkZEv0ush9KVQFOpx8ImaidohuK1VMZaVJrCNcu265MDREruM8udFy2zGr6AZqTy5c3g2fk8JzKM7Psjx17Z2oXa4fpLPa6WbYFQpz11f4dpcXFo7VgI7iWT2jY+2fK4vz67FLzzvPLD5Dw20w5S+z44yHpsQAEYaWAqZfYiFvcso/3fpEoGYj4DtoToG4dYqIM4+jpahpN/HA9EaqKOzXYryytsjY1B+ClGQ1jyN2iubsjZsWyJmr4VeDfsiCu4DbykHTp24kWq8ysBAIimUlB71bn9M2VEUgI1HwPCLoJFqTfGWjjpQeC80EJdlyIdrjwaTgyRMwOQGf+N/wb5+B737nCo/0yhFasN+OY5MkzzER4dGIyVOmSZ8+QDzfQHc87j5poLRkhJJ/hlxKRwLKyEbc0R0QjePsuoP60ae5v9dg98YyKd3l6PcGUeN9WJ5OwQ76GnFnhqlnDq3XIXfpck1YkyJx6NAh4vE4999/P4ODg/zQD/0Qv/ALv8Cv/uqv8pa3vIV9+/bR39/Pxz72Md773vfyjne846LtnTx5kv/yX/4LP/3TP81Cy1r7xS9+kYMHX9xJmK2aTaNaYFeu0Y6I/F48R4/SyqfWoaVcDacbBDmkzC3bQPMZioWDOKs1vk85weDsWHYU3xYs1zYG65XPwNz6VasrWAWElKHo1hLX0vQQlU3kivD0HEW3zpxu61JIQVfxr0J46YVEN80X+K1CCn2RGse8HZSVHsqJvex3QnH9HvMlcIncgUKIdoipIYLz5giJUZ3nl/tz3NxsnT8RRbaExLyzgVEzuH4kgmrsJlLN4/TpZbYkglC/nL1MQ4+w2NOPmohT9yAiLU4/s8TEgWtbjKU4N40pAmHL8jWMWArH8zgVCZ1oe3IXDsO9HETUQIig0iS2i3ssGDRkCDvTFT9wtkWSgQAimy5Nr8FILhSIj2ZH8YuTFAerzG7NM2bonKzfgR8bAM2E5j+BXws6fMePrRq0PMc9x7xpF3oiaKfhaji+hqdqKJFO0W3nFW4nRN3Yg5+vgRDoqGite6ahNBEI5FnVSysdTjeDUMgqLec5fTTP7MkSixMVTq5zOJw3E4rKdU+nGnXIecP4doY+grDtizndAETcCJ5/qoKI6kGuQEOFuIH0fKTr4RfrGNJHaT0n6pYHsTh9hG7LmlbCX3FOKAZaIjyHtY48g6l4cG+XFxa6ed1exLiN1ZNUulPtim5dnle8s0KaB3aGE9XVxRem0+3xucfbP+9qDNP4id+C+HaIbW5/3nQsFnyJjMYwonGSmQxeRCfemCVdCatjl/QRIiPDNMQwf1Lfzm43uF8PiBkG6k+Q1TxcVMZLN+597MzW8CtzeIry/2fvvePsOus7//dz2u1leh9Jo97cu40BAyYQauhLCIT8kmwWdhMg2dQN2Ww2pGwgy0JIKAlJSKFDYsAEbGOwLTdZlqwujTSa0fS5c3s59fn9ce7cc8eSLEuaGbnM5/W6rzlz7inPOfecp3yez/fzZVwEz0R7eID+iRNMtvdT8wxKnTdd0nkiEZ1IXRm2oHarhF08IempTPOItxUA4VXAm4XWVnjwQahVYXISjhy+pPMvCcJ+lIRlFukKFdkka9xQM5nQNVrCPZRbI2xan2Ldf7uJ/ngfANO1UWbyJpYjOTplEjL9Pp9MpMmOj3FnIsGJsTgFW+MrtTA/Mv1zTFX9e6RKB2V+34pHsaxiFSuJZ8VItLW18fGPf5zJyUk+9alPsXHjRubm5jh2zPcyeve7383u3bvZtWsXr33ta5/xWPfffz87d+7kkUce4Rvf+Aalup/Q3r17+ehHP3qJl/P8RqVgUs5lGNQDCfd3opLBBdKtiT9ZKtINILp9CwCppoHWAukWd8so0uVIyyBSVZifbvLdO/ydJSvDhSJn5mgpy4ZaZcHPLemlka4Hjj/YvpjMpXD5EykoqnZm9tJnq3V7FuGlYVfHrSuoBqIlNqlHSXrz5MMbKdazVnUoLWzThi4oYYeh+M+lJW2MgZuoqSrv7+kiE7sKOn+LUuv7mNZuJ6bON7jBYmwn493vaxzj6pYJIPB1GzY6yO99CvvIIYbSZVIhi8x4mZWEM5YnpPohUjVXw4ikME2LYaOuuFQMNrYsjdINQNvc0/Ar80o1vLJJSguUSgu/UTgehI3Mq7O467Ok6uU82jJA136fsCu31FDbajxq/zK56DVQy0HhNKTqHi21GkwFxNjFoPC972IePoSh+52mvO3PYDpqCKVJ6bapZemUbkJTMW5aj9Ln10sLareaqL+zXvAChFWFcrOnW5PSLZeZp9CUTbdQuLzeIlo+yDBacXRmOlzm1AkUI8eAMlDf6JnfS+PGIcJ3bid853bUziRCCNTetJ9QYb6MN1tE5qsIIOL5116xPaSUtDSRk1lnFk9tIt3CArVesVSaSLdEpO6vJz0KL9CB7irOj9rTBuaGXSQ/U8G7DAlwVvHiQCWzWPnuOg5GzJ+kKs3NIC95Qum5h0enHm0sbyl1QTiGiPQh1KDuxi0xdmoYa3oEq1qma6A+aV4eJToaqNvzoSH0vhbSnYMkRzv474keykLwU4VpBnLfpUv13+kJK4tjPv9IEelJX+lWnKSUipNLBm1/e7yTDScP0Dt3mpCw0K96+yWdKxJSUer9jjZZ9+IWUA47rCud5mEvIISlGIe5OSg0JTey7cua1dTzJIT8sWC1WqAnHNiqDGttKEoYVUrWdUYQqmBdegiAmlujtcXvlysKRNqaPHOT7aTw+G/poF8zpvl9tgXSDSBSepTjjx9fvotbxSouMy6IkYhEIrz1rW/lL//yL/nmN7/J3XffzZe+9CU+8pGPsGPHs1N5/NZv/RZ/9Ed/xA9+8AMMI+iw33HHHTz88MMXVvoXGCq5IqXsLGvj/kA+oygcDrUxpLecsa2ILh3ppva0ARIdjYj0yaZKPbxUQRJ3yhzp3YhUBcqRoHMjLyPplq1l6S+emUQh4bYgVRXc+mD7IjKXwuUPL1V07QxPt2cdzfsslG5RaeDWlW7toaCBPxyKM+IOExExbjGuQhHKeZVuzdDrpJsjbYx2n4Q6YegMp16Cpxh4oTWUlU3sd1/PuLWNb7ufZqTvv5FL3khV98PmBmI5usMF2haSKaR8ZY9Z990aShXJzVSwLffpp182qOMVtLp/oOlqGJEkeXOOqbrZ/frkZnRlaUK+AZSogbq+AxE1kJky7sk52oyAYCvJxUo3gNnwNIW2Cj0dPulW0SPUTgSdS29TjpATZtf4HchwGqwiHP5TWPDVuwQDfCklbjaHHnUR9Vnegh1GD8ex9TBqeLKx7VKF4S5ASYTRN/vPSAS/o1dVFki3xUq35kQKCypZgOJ8Bs8N3hWnslg5sZKwLZeQE3R0K67OXNInRz0nxoDm/+bnVbo11wN1KB1Nvm7TBbw6QbJAurkSLEfSpgb+nnlnpkG6CaEgVION7iyadClYQRhqPBKcLzcV/N6reHHBs57m6WaV8ByPwtzz14R9Fc9deK5LaW4x6bb3W1/GKvsT+p7jUHyB+bqZrsm+WT9SoLMcIvLW3wHXRjbZKUjPwTHLzI77VgmKqtLS4U/gFz2XmPWUvx0KxdAapB6mdWgLihSox/v4cdgnjEJejZs8n+Dbn48zd/T5lyjHma8hbQ+3NEUulSATCzwme+MGfZP+NZXcMK3XPrNw5HyIGCpKfea72detFHXoMmc5UB0MymWdw8Zi7vIp7UuzwbvkVjJ0Rfy+yIyq4tKNLRR6dQW93v9YlwqUlXp8mlhIxfOgpEcbnrq1rdcxcvgg7+rUeH+8xP8Lq9TCddKtFtyjDm2WJ773zedcNvlVrGKpcHGMxCXgqaee4s1vfvMZ6zs7O5m7jBXNcwHlfJ5QeZR5K8w+w+CeaIS4HKBzwZtHV1H6W1C39Cyp0k3RVZS6ciHp+TMcZd1s+HolnCLHI51Iy8MtOJwoXMOktRmyozB/YsnKcSHImTnWVIJBciNzqZcmmk4GZNPzNLxU0w28pyndliq8VEpJm4w3spe2h/zOqatEOFlXKVVlmbWab5J6YUq34L5pItjPw0NBoKKhVKrsFj/Pv83/T8YzvZRj20AojHf8JzKhTViexks6RxiwMqx3PY6l+wGw5uukW7oEEuYnVk7tFskFA8mF8NIx82hj3ZaW7Ut+Tm1NeyPLpDuRpT0SJLQoSn/GMJwIiLiMNoMZs+kaCMo6XEo11F6nN87SqsBIdgOlrb8EZp3YMes+GidPXrRPo1cqgeOgxx2KRgeTVgeT1Th2rURVDzc83VroJKpHz3O0i0D9PV/IYLpAuilN4aUhRVCSAUnUHF5azs5jVwOizak4OPbKkbrNyE6WiSjBjHBWUajpftm8Wj9tTe3BhUJpjTUmIrzpArJUNx73gmstm+7iZ80cx22uR5UQrYbEESpFO3jfY6Gg3smukm4vWsjq4myRqnRQ3RrZqZVVJ6/ixYHxp/bgOeeeJFE0jezoyMoVaAWwd2Yvluf3S7cW63W1qkN5BOlUuHtiDr12lNmJ03j1ur2jtx9V89sOXeRp1X3f0KLRh6uEUOdmCA1tQjG20Ztfx9dCARlyrfUTNs+PMFPUKI8Or+CVLg3sSb/uEWqIYkcX8wn/3ulSZ3vtCGp9cm7a2IyqX9rkaSSk4KLhoTwtg6mLjsmjxlZ+5F7BmDqIWxqD9nbYtg3amxKWff978I9/D//8pSWw/bgw5EYDUlUvnySs+s/PgZBBt9aBRDA0GFidDKWGGsuniiMkoxqehLzWSo+3h9g3/xrtyBMU1mzlSHIz/3ltniuvDPF3a9NUlBgztSiT1TiT1Tgh1SMztp8Hv3x5E/WtYhXLhRUn3dLpNJOTZ3bI9+zZQ19f30oX5zmF4uwoLWqe7nCFKyyLYcMg5fXRbfiDK3WgFWNnP/q69vOqHC4USl2dkqpnMHUUF7tuNLpDqzCgmg3yo5YP0WMcQViFyxZimjWzrLMD+fKCp1vcSpLu72qsv9jw0suudNN03CZPN1XIi8te6p25j+VadMgkrutiKA5pw59VqoTXM+UFYYDr9D5EInxBqkpdBNuqakAKVOsEh4ZAKhpKSMFDQ3og653HuY7XE3PmCKsOg7E825JjjAqHp9o34CKoZHxFVnesRlRzyIyXWCnEqgEpYboaeiTJae9YY93OjqXxc2uG0FXUvrT/jytpcWMo9WeihH/t4XigdCu6PinZ0xUoSg5pHQwcztAynqCcrjH/5mOgehyvNPmWyOOwZg10dsLd34Mv/QP8+7fh777gG/u65yef3LoKMZR0SFiz9BizmJ6OHopQogKK//t3qgMXezueGYr/rDXCSxV/0kA0Pf8hZXF4qSIthOY/r5V8dhHpBlw2ZU45Z5LUgmyq400Kslanl/6QX+89U4KTc0EoAqWzrnZrujeR5mQKpktXx4bG/yVnDk9ZTLqtq5ep7ASkW7SJdMtNT1xw2VbxAkHtTJWCserrtoplQDWfY/LQ/sUTjU+D5zhMHz3YmGR8ISBTzXBrzy10m0nWuf3BF04ON/sIj2cmiLojzM9Mk0i3oOghugcDhVXcOs2ku5WcMkA+5CcNMPuGKKYGaE23gTtFZb6VfYbOIUOnoOvQJni0lsQrPP8ymDrZGsa6JE7mGPOGQ7GeDbyLHtZO7GlsZw/decnnihoqthbCU43FSreIg6tKhJTUCDHgjhK2J+CWTfCSl8LtLw0O4nl+iGmx6H9WEKXx8cZyhx1MLJ+QbaynH1tVaO0MJk43t27mlt5buKrjKj71xKf4s4P/mdPVwxS1FIOJI/T1WXidA8hkK55mkFE3YiZGSXSlkcYGJvUuEppFT6REbySP5xTY/6MfYtVWM16v4oWHFSfd3vnOd/Kbv/mbTE1NIYTA8zwefPBBfv3Xf52f+7mfW+niPKcwPXyYtqZQv5OGhlntpie8MMhavp9LrZNuSRlUptWwhxJOkivOc0zGebTH9yJwp5o6L4fuWrYyPROytSzrZBACtaB0i9JBS0uw/vmqdFMMfbHSjYtUup0FlUqBkKeBlItCS8uR9Ux5QYO7RulB6UqipJ+9MqlZ6aY2Kd3M+rOrAV44htbE4ymO/3x7SpjhTr8OKDsaW43TbKwcp6KHGU734eTzeK7LbCVEV7RC5vTKkW5G02SjJSIoiorpFmkRvtLs6s4rluW86mBdyRbS0KVOop5VMiDdAo9Fu+ivWwgvba3mmQmnue6hk1RaqqBAyFVQhvIcPByD9npCg+JRuO06aGkB24JyGbJZsCzf2DcbEEDnwgLpZjR5pcybEYxwhNNqlqjThY5Ghzp4rkNcGpTFSjcpJKawF5FuhiooNSdSkCZqPfurVcyfQbrlZy9Pp29+soxG8GyfjgcP31RhLb319uBiQ+cbWUz1YP+o4g8GIp6LaXm09F+JUa9/cqJyhtKtS6+HWjdljI0Erz756UvzB1zF8xeyGrw3QtchlUCzy6tKt1UsKaSUDD/4I+xKuTEhWS2XKBXyzIyP4TYphOxqlczI5YnKWA4cyBzgwcmHmAoV6A4F4X24NSqeQn/IojCXoZjNUsxlibZ3EYkF6qSkOUKPeoi0N0Y+uh5PCKQaAkWla816FG2Awekod8XjbLVs1lZP8Sb9MSxUKlZhRa09lgLWSAHzeAbh2UxEqqSLOqoraGcQ1a1R00NUXY309WdGYV0oIoaCaSSQirFI6VaMOiAEm/InebieTAGgdvA+vFqN0sGDzD3yGEc/+3km77kXK5fzN1j4u0Kozc03ltNOkIn8kZRJbyRNOBFatP22tm38zav+hrZIGyWnxLHCAfYXfwSKQpU0idvW0/HAtxClPLgOBRGhXOwndl2KtvSr+I/ud1AN+Sq/mGqh4GFVKxz6yY+W/2JXsYoVxoqTbn/8IbftkAABAABJREFUx3/Mli1bGBgYoFQqsW3bNm6//XZuueUWfu/3fm+li/OcgZSSYmaSFiPosJ7QdYTVQ9vC4GgZSbe6Z/uiZApmVMGrFeitZ6F5sM8nFrTxGeZtf3ZNjj0CpZX3y8jVcvRo6cb/C6RbxE0T0ZpIp+dpIgWhCuTFhpcqwfXLsyjdSrkMbiO0NBgIVSIbmXJ90s1Apyfcc8FE70IiBQClqRwB6SZwo0n0UFAu0ww6x7n0S5nyriSsumxPz/B28SMA9rWvR3gSK1+gI2qyLl1mbgVJt1jTvXcUvyN1LHSCrMygYbAutTwKLiURRulLg+kgqh7JBulWRkqJqofQ65mmnHn/twyHPG7v15iPpHikdwcTJ6rcuCeFZqrMDGVRXnuKYrZMpe9VwYm+8xE/XNEIQSwGoSAMk/nzZ4p1Gkq3oDOesaKEQiFm1Vkq2jQ2DrVlU7otkO4BCVRTzKcp3QQlmsJLZRWlfu88s4JdWaxsy89cHmVOOWcSUQJj5ZFEcA0tTh+doTqZfRFKNwClI4Fx+ybUNb5KUhnqIBJWkUJQVVSKFRvROUR7vQ7MUD1D6daq+gSlSfC+G6ps8P2r4aUvYjRlrpW2DfkigiyZFbQDWMULDPLMEDuzVKSSWzwhdOiJx9n/8EOcOLCfSnnx81aYeuGob4t2oH4KJ3wbECldkBZlV6E/WuPUcJNiac36RfsnrECtVlE7kSp4mt826pu6UCO305FP8oAWEHWv0/xsqXO2wezI+Sfinkuwp8pIu4ydiDMTKpJL2LiqZLNpsPb0McK2yalKO10btlzyuSIhlWoohdR02p+mdAPYnB9hV1MyBfvI/dT272fsl/8zsw/twi1XyO3bT+7AIX+D3MreaycX9KvbCd6ZA0aIDZFuonEdKSWytti7c2trQCQeKj2AlJI9rW/DVSSdr7yS2Ff+H/pTu3AjSapeK/tnh1F1hatNjZxa96kVENd9kcO+H3yHx/79G5RX+PpXsYrlxAWNqG3b5v3vfz8nT168kaZhGHzuc59jeHiYu+66iy996UscPnyYf/zHf1wUjvZcQ+3+I1i7R7B2j1C799Civ+dafvo65+TsOY/vOR7VYpa2cN0EXQhmVI0oXYEh9jLenwWCJC0CJYgZ9R+PXnMa1XMYjXcxHmuHmsW85zdOAgn7vrxs5ToXsmaWeNOgs6Ao6OjobgilyRD9+RpeKhTlzEQKS5S9tJLPNkItOsJBx7QYXseM52e7HNB7ib1yO9q6jjMP8AzQm0g3VQT33myyyRCpFHqTdKxScwl5FtKtQaiDfPLOhvLyzuheFOmyr90PdzPn/Vm4zmiNzHjp2RORlwhDC9SObj2LaFb1O74pox1N086631JArYcDKuFoQ+nmCo+q9Emhjp4diI4IVBy8XA0k7FjT29j/nlI3A06FztG0vyLiIvtKHCq9DO74H6BH4dC/QXkX3Hkn/OzPwS23BAXInJ90c+t+e0ba71hWHI2aq2OEDfJK0Gnqiqy52NvwzDgL6VZVTBQpGubSIUVQJYQr/RdE90zQA3LdrhRoxuVSuhUyFcJNpNuJtF9+z2plSygYBF2s8lmoCkos5O8f0lAMlVik6b5VHdDDtNdVq3lpYQoH0/KQbhWERrKudLNk8NwLz22YK+enpxpeQqt4cUHaZyrDja4p5idKuPYLL4vkKlYAh74J9/wu3Ps/4Pj3AZg6tB9F09CMoA5v9nY7PRzYPyi6zvzYyIr1F5YbBTNoq8Kpenip608aVTyFHnJMzPh9JSMcprU1UMSXqjFilk+m1NQUtprADrmNCIlC5yYivWtRlBTRuQT7Nf/+DnijDIppThQSFE48f3zdPNPBna8hrQqlgV5ysaB+Wmc2Tdz2Xo2yBGOskCYQ8RRoOgY6CepZdOukW291kqOyn0xdBReZfYTqvn1nHKdyuk6MrjDpJEv+/QnXTtGuzTOOxpcScQqqwoDWQ+TkDOb3D2D++Oii9+mXr/xlburxbUuy9hTT5knmLR0rNojeH6Fj7QYStRJYNURunthYHy3dOtstlaIMns+N61O8/XVDUMuy66v/zLf/4n+v6PWvYhXLiQvqteu6zte//vUlOfHg4CCvec1reNvb3sbGjUubzW5ZYDlI20XaLpjOor/nWl7461UsMB3cyTxe8ew+QbblYpfnSWr+QO+krtOl9pJoisNbzvDShcamWenmttUH+9Kly/TVbPdcdwuVgTTmmMVY7QrM5GZ45K/BWrlZ7JpTo+pU0dRgUFdQFNJKK45tQ5M/0cWqAy93eKmqijMSKTxbTzdxnkQKtXy+kbm0o0npdioUx8O/pwPRiyNHDBHcN9GkjrGbQtlEMo2hN5nW26AqKkINI4RKoes6Jiw/rLI3UuRV1i72t63DFQrFOgHUGraIxZUVSaZguRaIoHPm6mmqskJN9Wf6Wo3OZT2/0pmEsI4SCrPWa2OT18M6r5u8zAGgq1HkbBUkuCfyRMohrt8VEGUPtG+F6nH6ZgPChg1ZnngihBPtBbsKHVvgJ/8HHv2c/31rkKDh2Sjd3GwWRffQ61mP5y2/HgmFI5RUf38pBb2xZVK6CYGHbISXAtSUGkIqsEC6qQogqNZ93QyquHoMo3MNofZenMriRD6XjXSbCxIpVKVG2InS523ELuxgR7yJ3L1IpVtj93UdhO/Y6v+NGYh6XVEx6ypYgne54mUJGQpCjYAaIWb42zaHl0rPxTDqSRpch+KLPDHSixb2mab2m12TA9hMj+TPssMqVnEeVLO+2s1zwPInm2rFAmaxgGP5k6K2Zfn9vzoKszMcf2ovAJ5tY5VLuNbKT6AuB4pWoHSLhuqEhReQbi1mhjXt7URiMdq6elC9hT6sIObMoEn/PpQMn7CLHDgJpengmJta0BKbSZV0fpAIJuLvVB7neDmEnAtUdM912HUvSWlXKHS0ko8Hz8gmO2ij7PZtZ+x7MVAUhbwaR9THVBsZZEgO0WLF0fs6aDULSBQeqYeYarKMe/BHjf21lhYAqlPTeLa94uGlwvbb9u65bwDQh8OkrqFJjU6lhZCsj0VcD5lbHA1wx+AdjeVDpQfwhIq86i0UXEnba24lPnWI6Nf+Cq/dnxTuWRMjEVUpeUF/cyTUR0XvoFwoY5s1Jo8eppSdZxWreCHgghmJN73pTXzrW9+6pJN+4QtfYMeOHYTDYcLhMDt27ODzn//8JR1z2WFoCF31MzmGtEV/z7XcWFcfzMh8FVk5O4FjVkwSIt+IDJwwknSKAXrDTT/RRaq2ng0U3R/MNZNuTjIIxRqsjbM2XmGqFCM6loODp3HRCBWOQP40/OhPlq1sT0fOzAGgERCYBUUhRQuuayObSbfnqdIN5UzSbamyl1qFAq7jAhJHCmbsdnL6Wg5ZgRJzsHX9Gfs9GywKL20qRjPppmo6hhq8B7bjYctgYyfWwV7r5Tie4FS1ndewm97yHE92rCc/Md64xHAlx8hTyz+wz2XGUUVA7nmhVrJeQES1hbvOttuSQSgCbaAVEfFTsB9VJjmpTDHv+mVIdQW/lXqoSufpITp6Y2xX/fdgX8cG5kZnaTuRRnH9+yw25rCqNkeqL4U3/j+YPQzVebj3f/nvczQK4fr7/2yUbrksRqLZz82vR7RwiKrm76957XQlYmfdfyngCkmkiQQaVqpUJI3QpKgquCVehPozaogqrqphzZzCnJtAOvUw+fqjeLnCS6tFm4iSAyCHQi5cYVw5hmd1csVCnawqCOWZvRsvBEoiTLgui606/v1qk8G7XLGngqpEMQgbAk3IReGlnusRrif96d28jdL8Kun2YoRpS073voSRgVcx1XkdAO1VSS1kMX40d3kLt4rnJR6ftPirk318/lQvh+rCH7u6uH4+dfjgov+llMxNTSKbvN2sygsjmUfB8idlVA+MhcmRutJNIlFy85yam6NaLpNqa0N4ftsc9iShXECYlQx/Eix8cpLo8EmEdEB6hNckEd46UmWde2IRLGA01MGV6hjHTYWhyvSKG/xfLOwFL0m7QtW2GqSbLnX6LN/nz5MQ3/byJTuniCYbpJtJjRPiBOOpPMWZKUQYEmaZY+Ve5klhap2ESg/4+4XDxF/5Cv8gnkdlYnJFSTcpJcLTUdwKnRk/SV5NCL4Vj9EpO1HE4vGUO704OuCOgTvQhMZQYjMld4ZUVGUqZ2INvRZP7KHtbW9n4LpbSYsyuA7Sstl4Yxt6KJiMbXVz3J1vY+eWQP02/PjDy3jVq1jFyuGCGYmNGzfyh3/4h7z1rW/lYx/7GJ/85CcXfc6H3//93+dXf/VXef3rX89Xv/pVvvrVr/L617+eD33oQ/z+7//+RV3ESiD80s0Y167FuHYt4Tu2Lvp7ruWFv2p/UHmcLZskQCmbo9UIOgSHdJuobGdtKFAzLGsihXqa7FRTIoVaNDjfemuSkVKUH/Vfw3wogVKpcfTk1bgLg9z5E1BcGfPsnJkDKREyuF8FVSEh00RVD+dYUI6LDS+93Eo3RVUWebqpF0S6NS2fZRenXMFzHVqNKmtieTr1OdzoGspaQLpt7Np0UeXWmxIpNCvurGalm2NjKME9dRyJLRSE7asgpHTZef17cKTKmsgcr4ztYSTVzffX3IRbCRRnXdEqJ/acO2R7qVAYOY4mg86FDLUz7wWEQmeke9nLoHQnUYwwbV4w65ypk6SxzjUo9aQV3vECSXOIwkCMN7WnAEjWSvzoZJhYtEzbaX+d8EDpqTB2eB551bvh2p/3D6pHYd9XfFazrT77WK36mbSeAU42S6g5iYLll7MWlbj1zKVmpY2osXxhuJ6Qi8JLWxSbeJPSLazAB3oyKHVCPSTLKImgvvMcv94Q9WfVMV0cZ2XD4aSUOBWLsOLf71mj/g5JBbe0lWta6h4xS529ui1OuB4OakuBbbm0eP5vpSGoWXM0dMWKgetKBg1rkdLNkx7hens1ceQghbnlfzdX8dxDXiY4uumdnFj/JoaHfGNypeoQ75/l2KHzE/irWAVApWhiWw61ksnfHkvyZ8Pr+KNjQ/ztfr9TY9VJN6Go1KoVatWzKJOlxDSDSVOr+sLwFVxQukVtLehn1ZVuc7aOWgsmpI1wMHnuCEHSDszxi3WlmzY7R3j0OK1ylldW/oGoWsHo7qetluaUrnPM0Bk0Z/lp5Sdk7SqalLgHDsATu1c8/PFCYU/6v7m0ymSTYYr1MM9+r41ucwyAOTNG1+alS4YVDocakR4x2TSW0D1qhsqm3BifMt7MtJck5MyQ7MoQbrUIb99O9MYgs3zl9Gmo1fw+2ArAzeWQ0Tjdc1/HEf5z851YlIKqMqCcObnsTRcWjUu6Yl1saNnAieIRHs99n6lijtHZGq0DnRy2buOA3Y6+rZ/14R/QXjmJHo+g6QpuOEiw1S7m+eTJQfSeIILk+CMPLuNVr2IVK4cL7rl/4QtfIJ1Os3v3bj772c/yiU98ovH5y7/8y/Pu/5nPfIbPfe5zfOxjH+MNb3gDb3jDG/jYxz7GZz/7Wf7qr/7qYq7huY9mRYJ39kFccX6e1lBQsZ7UdXASrA81DVKXU+mmnal0K6llQvXsiC3VKVTPQQrBwz3bAUhPHuNA7bXIeDccvgv2/suyla8Z87V5QjYoMuhYmCJCt9NPW0htKDKUoXbUNW3nOMoz4/InUlCelr3Ue9bhpedTunmVGq7r0h0JZipL0a1MuIG57ub2S1e6NU+K2U3JLUTNwhAmoh6K5tbDkaSTQ3oWaHHsaCvz0p/9imsWr3Qe4aGeHeRKni+5x/d1mzlVpJQ9e8j2UqE8OkJY5JHS9yrzIl3MNynduqLLq3QDUOJhlHiYdjcg3eZcn9RwQwYTIb8MtUoWs+x3gjdEowyUM2QjKX6gb0BVxug91kakEIK0jbqtwPDuWSaP5+GVfwB914FZgHv/CPLjTwsxfWZ5v5vNPS1zqV+PZCPBu+NZnXSnwmfsu1RwBYvCS4uKiZAC8OtcTfEJoRPp11JT02iKzc3qLkTd181zfdJNCasITaFStKnkVvbdt2suBsF7OVcnAA1ziKFQCqFYKOs7CN22tJYMQlOINBHjlYk8KWEQESoOEtPJ4NZfaKEYqKrCtfEKZtP99jyXUNMkUSW/Gkr4YoTV3tNYthN+qJRnufzRhlMMpXfhnn7ichVtFc8jHNx1ise+d5Qn7hkmqaca6726asuuExGKqjIzNkYpn2ts0+zzVi0F9ekLRem2kEgh6jWlga8r3RwJZq3JemXnW6h0bGWuX3I87TCg7AZAIigbfQCosxncDVuIpVpJyBx9znHCPXHa9M1ojuDBiN/vUJDcoD3FVKIAhw/DY4/CffeuxCVfNBaUbp5bYZo8UoGfyxf43dkxlPqsdIZOosnUMx3mghAJKSiqwPUUYk1tpKl7mEiumTmCjc633NsAv8vefW2O1o0FooNBH6k8urK+bvbpcQzdZGDqi4TcDAdqKf4+6U/0rQ118fTRq6xYePOLiezrunx1s0QyUtlHxXTJ22DnJRZhMuQwKNHXWoF8Dtv0CPVtaOzfSQYXwRfy/STj/r0bO7gfs/rCeHdX8eLGBbM4J0+ePOfnxInzp+S2bZvrrrvujPXXXnstjnOmF8gLAk3eVmfLJglQmJ1dpHQ7oetUrChrmwyuL9XD5xmLWCfdwhhonn/OvJejtX8Hbe2DRKJJeuv+B/dvvpbC5g6i5QkOZm5BlOrKssPfWbbyNSNXyxGvgtJEhs2qNqFKnJgmEJpaNwjXliSRwuVQugnBsoSXOmYNHBfPdegOB53RYnQbR+0jrFUGuCH1Etam1l5UuXXRRLo1h5c2PbrCstBVG2n5Tbhj+SSa51mIOmlX8SR2+tbGPm/kQVxF5e7BGylP+s9bV6zuf7h3ecPYqqPjRNQSQkBUcyDevyi8tCe+/Eo3AKU1RpsTDCay9fBSVRFMRPsb6/PTvslxqiVMIeR3mHZ3bqY0cYCO8RTVhP/eeOt8Iu2pH52GSBrW3wFOzVeG7f5ioHQDOI9qyc1mCSUDr5SMFUUIwazR5IVndtCdXD7SzX6a0m1KLWPUIih1UtdXBAgsLY3h+s/+DZX76OpJ+zt4RaRXRjFUZF3hVphbWV+3cn5x5tL5ev3VVd3GHW1+8gNFVxHLoBiMNhGipck8qUgH1bpK0PKKeM11qWLw8mQRVwTlkNIl0kS6VYurpNuLEk19HG8hqZFbQymkuGZgCvXwV2Fq72Uq3CqeD3BsF6sajAfieuBHWrVdXMfBrSfsEEIwPzO9aH+9Sd1VbCIsnh6S+nyElDJQujVNki8o3XQhKZbrbZ6u4yRMHL1KxDnNq45/jqiaJ6NvZCT1U7hKCK9aJfPqd1Ec3ExbexseCj3OMK3tNXSjuxFiuoBXK48xYUhkPRkXs7NgrXwf+dlAStlQupmizK+k7ueT07PcUq5yTTV4ZqyWrec6xEUhaqgoQqAq3qI+iVlPIHbNrJ+Z9Avua9jvDjH1RJJaVifOE2jf+k8kb7qa8LohrPkMTrV63knPpYI1eooB79uoXgUBZBSNkyG/T75G7wkCZxSB0pUEVcEdnl00Nrm++/rG8kjVr+eHJ8u0dMXQZibJZDqZOrKF2FiW/vEfoihga6149b5Ei8wS8hwenG1hw1ALvV1RYlGN0X17VuIWrGIVy4rlk06dA+95z3v4zGc+c8b6z372s7z73e9e6eKsDJRnVh4BlDIz2J7CIRnliK4zpmvElBRRvSk73HIq3VT/PALBuvwW1sjNaK4gFk+TmRulVs7ysy1VYqrCgcgg6nARtVxBm8tRi9dDEU8/BoXJZSvjAmzP5sbINiypcJAIj4ZDVIWgzeohagiMqwYbBuEXi2alW81dXiXV2aAoArkoe+nShJdalQpOIoztqYuUbsfCCbLMMOKNUVWrRLQIFwOjKbwUEZzcFMHMq2I7GFpA0Hj1jHZCisY11iSk176pMX67KXSUHbPHmI2kmTk1itXWjaHClZslJ55c3jA2ZzZHVPHvleMJ1FjPovDSvkTvuXZdUiitMTrKQR2QlQHxp4Zi5LQkic511Mp+B80Oq7ykrl6qaSEemHQJVQ1apnwiTrTXoLXGiT2zlPMmXPfzUA9TZfcXoSUFvX0++Xbk8DlVugAUp4h0WuRjV3Cq0kbRDoER5pQTkG6e1UlnMnTuY1wiXGWx0q0WLiKFxFObyi1U8mon44nbcNGYimynNx187TlTKJGgzi1kVvbdr+QtImKm8b9tR4mT4Nj8NqiNUujgkuq1Z0I01aQO8QTJlnWN/y1ZROpNzLlikNI8dsaC9xjPJRIO7l2lSXmyihcPvGZPVQ9cRQe3SjHTgaF6FGtJPwPl3OHLV8hVPCcxeniWo4+fZu99i7NjtoUCL9BMTSwizxzbolZZrLZp7Q0moXJNCV2syvM/vLTiVPDqPqURpckj1fUniCK6Tbnqk2BqrAXD7aDVmuHlez6PcDw8qZCwx5mL+uGUVU+SeePPoSSS9LdHmAltQtUETk83ariXVEnnoGEwVfcou03Zz7G8Qlb3E60hJUwtf7//YuAWLfSBOCPaLCJ+irSweHmlynrHRsejFIozrnWgrrt5Sc8bCamNYV9MBgSwWc/6HU/HGSrP4aDxOvt/ccK5gnCnjkIR4dVo63mK2slhPMumND3jqwoXiM2mZCFLDffkPlwtQiW0lhpR/kELQjwH1K5gaJEM4+Wr4Hp4mRLeRK6x3bVd1yLqW56q7qU1rpGvOCjdnTidPVipDqzWTkDQ39HH5NE8nhRYmj/Jm/BymIpGyU4zn04zMV2hUDQZe+LHy3bdq1jFSuGCp8vf//73P+P3f/u3f3veY3zhC1/gP/7jP7jpJj92/ZFHHmF0dJSf+7mf48Mf/nBju49//OMXWrznJBYZXp9D6VbOzXF9PEtCWMx5CrYQGCKOpmrBPsuZvVQLBqtCwClxBAAzHWwjCuP86Q23c7SY4/j227hy7w/prh1nLv4y+ktH/Y2OfAeu//+WrZwA05VpZk8P06rM0Y3NmKOBECRKncQ7tCW5T4pQ0BUd27Mvk9JNIJvYs4tVuj19H7tWQyvWEHaJzrDfAS2q3Tzm7W9sc8fAHVwsmsNLmxk/SwkGYhqgq8EstltXvKEYCGmCCGOhYkS7GTG76DdmMaXGf+/+Chu1CYxZBWNUQuw2dqon+ddDktnRIh2DiYsu9zNBFj2iab9DW3FDaKEo87WAGBlI9pxr1yWF0hYnRgRdatjCIUdAus21buWKyfsozhTwHIfBnXfiSsmrt6zhrkO+cfKPo0Pcrs3RfbKVbI9PIopNOdonOzh9JMvmG3ph6+vg4L9DehBmHwFVCxIp7H8KrrjyrGVr6z2CZkhS5X0cKA8iESQiYfJ6cJ9SWi+hZVTruoJFs8rheA5tOtTwdANAKMzaGuHorQwU76e3+hQi5PAE7YAfYqrGAiV2cYVJt3LBRJdT5KwYIlRlJGpjY2Nbada7x4mn08t27miTlUHVconrQciHeRal26ylsSbsQp1XdR2PUDQG+IPcSmFV6fZihOexaDq3sm4joWSEfZMhLC/Gm7YXoAYc/jbctA605SPiV/H8gZSS00fOPoG2JhYQF7M1DbuJPKuWzyTSOtasY/zwAYBFGU1fCOGlizKXKgmUUhEvGgHpX2dMmJTq2em1eAvh2jQduSNIBB3OaY5WX8Jw7KdIqICUWLKupk4baKqC1KK0lg/TEZ6mlEzR4cQ5IcrcG4vwjkKZ47IPa/YUhY5BGtM/4+MweHEZ75cTbs7EOp5nLR140YnG+s+0pAnlX0v7q9qp3DXCW3defJ/3bIgYCoqQuECMxZ5uAKW4wc1jT3By8ytZnxvnQDVG+6ODbHzNJDg51EScDW88hJk1yO7dS3rtGvjSP8ANN/o+eq+8E3qXfrJXTOym0/DJrYPO1UzFA6V/vxaQbmoijDKUxH7iFIR1nEwJr1BF7W0hlUqxpXULh+YPMVEb5nQ+Q1RNMYzOAkVccOt9DcdE1Ewcy8MM9RC2pzFklSg1KoT5GmWuFz6vO3bgqSW/3lWsYqVxwexENptd9JmZmeHee+/lG9/4BrlnkWVl//79XHPNNXR0dDA8PMzw8DDt7e1cc8017N+/nz179rBnzx6efPLJi7ic5yieBelWLWSJqH6jOV/3HgoTQ28mkJYwW90ZRWwi3QYraxvLJ8KTKKr/XWV+lNaQxk3t7Xi3vRaA1PxBDmWuDg40svyGl2W7TF8tjCH8+zWuqaREGrUSIh7Rluw+LajdLkv2UsATAUGhiKXxdPNc/54lvRnUuhItrw/xpP1YY5vXbnjlRZZ4cSKFZqWbFdiwowOKGhjWu3a9vGoE6dRNb4WCDdztvo3PHL2Jk4U0aVmgR2Rp68wgi3eDM0dYcxhKF/0QyWWCsHUi9WyrVekrABfCS0NKlPbo0nmBPGM5wjqKC631rkteyTZI1WQ4TLHue1PNTzUytt3w0jUNg/y9Wg9Obg/dJ1sax1T7S8ycKnLowfpM9Y3/GWJtMP44PPwZuLbJCuDUKThLeI4c3U0o4a+3lCR7sn5n0AiHmRI5ADwnTnf84vwVny28p5FuSriAbhuN7KU+VGYdnelsP7bi/5ZJLxjoec4kWiIgjleadKvkLeLiFGmjTEp6ZFWVGEn6QiqJ4jyRJfSdeToiRtDW1BSVSD4Y6NYo4zXZJJhmjA7D4RXpCk590CYtDyu+JbiWVdLtxQnZlPxJeNhvfjkzL72R1NAMm//++2SP+yyttCtQnDjXUV7U8LwLmGR7gaA5nDSAfw/ShkZbPTPyjKljlYKQ0VJ2Hk9IZH1biUTRgokwywzq8BeC0i1vBvVqONaFF09QW7B4AeJucI1aPE3f1PdYf/IzqI7DqL2VewsfYGRuC9u7b0Xd+FrMq/xkJz2tft+t1HYNAB3uGEo8Qq/it9vfjMUpKyG2KqNcVX2Esh2o2Jl8br7Hbj6YME9Egnv0WCjM31fuxG5JYJganes2nG33i0Y05IeXAkSbSDezTrrl+9JcOXsURXocbxngkZ5tlHquoLbtfzG79YsooTB6RBLvNRH2Ed/H2LbhwQf8pAonT0CxcNZzXwqU0vHG8mi1nULUHy+oUqFbaW+QbiIWQu1Kou3sx7hxHXI8hzuSwTnq3+OFEFOBYMLxPTxrrmxEa5WVCKPf+BYzjz5Jd3uIasHG1AObljWK3yfba+m0tfn9tLnZApWp81tYrWIVz2VcsNLtm9/85hnrPM/jV37lV1i//vzm6/fdd9+FnvL5j2dBunmVebSw/928qqCgkERBUxTABU1ZlA1yqaHqQcOwphqEFR2x9/Oqtl4mZ07hlvOYtRKhcJye3n6kpqPls1zZ3YlrvRylcAQOfhv74X14FR0l5VeWXr6Kkoo0/javO9/3SmvsjHCqsl1mg2VAPQJyQtPoVvuwai7RiLFk98lQDbAvI+kmn+7p9iwzKT5DeOlC0oK0DBRIE6FextxHAdioD9Ibv3jlli6ajNVFUF5zEekmELqGElJxbQ93YSJajYCdBfxOnimhr2Unx0f3YnkqjutRkmHiooaQDrL4dbzY+3lJ/wz/8FiS61+3lkTrxYXFngtSSoSQDR7TFHGKZpUsfghnSuskpK9clL6iqLTIONMijyVM8naRlB5je9giF24naefxXJtaKUMk2YFju7xnY4QfPjHCyVQv903s5ad6NbpGWij325SG8hBymDqRx7U91MGbIdoO5VkYexi8Gdi6DWamYWIcDhyA665fVCZ5z/9EC7tk9bWMhV+OrU6ghTSstEZeVOi0Wzld3EJ3enkVLa4iFoWX2noZzQqBbBrMCZWMA8lShGq0Hd0bI2pnCHdspzY3inTGUaLBS1PIrKynWyVvEVMD/5ZZVcXwYlzbEsaaqC2p2fPTEW32Y1NUOgjeJdOr4DYp3WwvTkj1mzZH6GiYCGmjKAqqpuE6DtXVRAovSrhK0K00QnYwCSRAXXMtx757iit/ZQeaHkU9/TA0hTG/2OG5HoqqcPrILKePziEUQXtfko3X9F3uoi07apUzIwpULNw6abE+HiIzX6HkapRzWVw8VBSKuRz7N5fZsy6DkLB2MkboJ019JSlxHQdV0zDLpTPO8XzDIqWb8D3dKla5Qe1E7WBiTI210DP9bX8Zj58UfgWXEFo0xHxPB9OWRlh6dMcEnSl/sinc2svc6T7a3dOIxBrWOL3AQQ6HdHJCIQlcJY7ziDOCldqOUcn7vm7VKkSWtv91qXALC313m2TIb1enFBXFHkSioQqPZKhtUYbXpYCuikbiu8Xhpf5zmUtp3Jwdb3TVj6QHKRshvvjDXjRN8N6NvahFn6xqWV8k70Hck+jxOHaxiH7ooJ9R/lV3LnG5gwnIibJOMWoTL2tsj+1EaxIBEPOfNq2/xZ8cUAW4Eq/oE9yvWvMqjmWPsXtmN8fNH3Nl8pXYroejqaiuh5dooVwNYZ6u0rFhksNyDVYkCGXdqM5yyBsAu5NM+9iCeJ7Tu+5i05v/25Je8ypWsZJYktGioih8+MMf5hOf+MRSHO6Fh+Zwv3P4IqlWMNCaV1XiIklYlYiF2c5l9HMDUPRA3dHutBF1fL+GpzhOUg8qw0OjvtdGSFOZ33ojAGL8MK7ejahOIKSLmPgxmA7SdpG221g+27pn+t4r1HAn89hHp2hG2S6zpsnAe1zT6Fb6sG0PfQkJkAWl2+UILwWQTa+niiRG7pl9teoQz6R0qycrSYo849U2JqxOvqdVSMkuOpxN3NlyyyWVWREKG2Pb6A71LRLcWdJG1pUyqpRYRghlIXupVZ/VV8PgBLO0NSnY0tKPh2D3fD9fmbia682/YspuoTSXRtROEsn/P8KqydbOCo9/99Qllf1s8PJ53Cb/OVNNI3ULp+5RlzY6UJZRgfp0aIkUrQSm0kV1HiFUrmqNQDjZWF/J+cq1SsHk9pfs5GTKV599PbQeOweRQoiSVgIFxEAJ1/aYHsn7ddUNTeHhj34Wrrk2MPI9dBDcpnDNzDDKqftRNAgLkyfMzbhWBadSYCzuky4z+jzSjS5r5lIA+TSlW02x0DQb0fzOCIV5W0O4KqbhK/4EkpRaA1kEXOzcMErY72CueHhp3iSq5Br/z6kqOFFuSIVwPG+RQfhSQ1dFo5mpaSqJzqDer8rqIqWb05RFV9brYoV6SJNeV0avKt1elGhWaIdCT2s7B3dQmCoQ0h1UOwe1lcnK91zG/GSJb/yf3fzTRx/mqx97HIBqyb9v0pPYpvtMu79gYFaCdtYIKbSqp+jwDnD1gbdzxeH38if27zW+z+XyfFK5i48q/8I/rN/DRKKEFOApUAmDUJIg/P6bqmlYpk++WGcJRX2+oZl0i4gYqmmSrwTjh4gVTBTFoirtWf+ZmqaLnO173alxnaOujhQCS1EJZUqoEzmk5ZCMapzUd6BIGzVisDYxQHc+Rm8xzfdCQab2ROkRhktp6OuHeNxXXz3H4Bb898gQR1AV/z16NBpCahoRQyBzJoNbdi75eYUQCEVFSnHW8NKaVSWU7mdd3u+nnU50oG9M4LkSy/Q4rP43XMUXG8S6LfJ3/wvHP/0ZTnztGwx/5m+ws1kYOQlL+Dy7+SzhuH+8gtbDhF3C0aEUc9A0QUHXEKkISmcCJR70Q4QQKKl6Qg/TQZoOO9p3cLJwEsu12DX5AGU5jeVIzKY+hPaKD4GnkiycQkqHUmQTucT1FEPr2KL6ykm7mubBeCAQGDty9NlH/KxiFc9BLBlDMTw8/Kyyj9ZqNf78z/+c1772tVx33XVcc801iz4vRJzP001Kie4EA5SsqhAXKQZDvs+QiBoorbEz9ltKNJNuqgJ9FT85gqk65Jr0kE5uNCjnta+AdWuonTpGJfmSYP/ZH0FIQ+gqQlcby2db90zfYznIfBV3bHHmnpJdorvJOmxC1+ik0x8wLiE5ebnDS6tEOCQ3MG+GuaJlkjeEvwxfeQ+Y55mtfRbhpV1igr5Ihi59lvsSp8iLaebUY9zRf2mkG0DFLTNljlN0c411pmtCnTDQAdsLBVY+EjxHIoSGS0By1CR0hcMUdJ8cabPmsT2Vd5R/j1C0Lq1Xu6C8i83xWQ4+MM740aUdxNmzs3h68PvbWuuizKVtTZ3QFYHt0tJEus07/hRgWzyNFw9IknJ+klgqhPQ8btvcxaD0Z7+fahviWPY4bRMBQScG/U78+NGcv+KKd0IoCZ1b4dSDUJ2ANXW/lkoFTp4MyvPo5xuL0+0/Q6TpXVkg3QDcyhBdy5i5FMBTxCLSrSIdMqEquE3vgFCZczRCmktFaW+sbo0H9Wv19D7UuF/BlHImrvMsFaZLgHK2RlQNBlWzmopthrkhHV6WjKXNEEIQqYdw1VSNeFP22opXw/CCwZwuHcp1PkWp2yEodUWhbvj3zqpWFvkpreLFAU88TenWBNneSUio2G69nXZXn4+50yUmj+fJTVeYO11idqyIWQ3uy4slzLT5moc2hdgS/jEDtbuJWGPEq0cZsvfTit/un8qPc0RMMK3kmYqXKTQldLFC0ic9VL9+dx2HWp2ckJ6f+fT5jKLdpHRzdZKzMzhNIQ2KFyjd1nACgd9+DRs3sxAGocZ1bAm6gLjrMFQt4xycwHx8hPBohiltAyk5TzpSIqyFKBsWE8k8/5h2qRLhiNeHadY4erwC46ehVPIn5J5jz6qX9/sjhnKQCTfFtKryWDhMzG0nEvbw5qsMbF960g1A01U81MWkW7jeN5+3cLZsZnPO99uVQiETDvoZB0+ZuEPvxnMVqhmd1u4T4DiYR44gbZupe3/kZ489dPBZl2ehHjlXfWI99gMUtZ7ILLaV+XDwHA0afVTTCUK3bMC4di1K1Fi0r0gEfTuvWENTNN6+6e3++ZDsLvwbAI4WtA1Oe5LEa38ekZnALdawjG7SxcdImCe5Qvh9TNXsJNdjoOqCzrYwZjEHlSAxyipWAecWMz0XccEMxYc//OFFnw996EO8853v5B3veAfveMc7zrv/L/zCL/Bnf/ZnrFmzhte97nW88Y1vXPS5EHzsYx/j+uuvJ5FI0NnZyZve9CaOHDmyaJtarcYHPvAB2traiMfjvOUtb2F6evocR1wmNLH7ZyPdXMdDd4OGdF5RicgkPbruE269aYyrBpe3iE3hpYri0VvwPQ4MSzAR9YkMV0gytUOYrocrJbWWTuTIKKUnfszjxe0Q9QdpytxDhF+yFuNa/xO+Y+uiv+dafvo6EalX7E+7ZxW7QlIJBoDjmkonHaiKh1hCo3ZDrQ8eL5PSbVZ28Kd8kMOFDsKqiy4cmHgSPnUd/PM74S+2+n9/8vHFWWOb3+qzhJeqXo1UfWA/5kbICH95q7iKde2XbobbG/afVbXpubddG1EPPdCAcg10I6go7XoGU9sLSLeqBEVXMEI99cuSdFhznAr38MRD63EdDcynoPgf6KLKutYqP/jbg0wcz13yNSzAzWRQZeCd4RjtZLxZQp7feegIryzpphphWmRAus3Y9Q6I0FkTC97h4vwk5bxJZrKIlPCfNvn7pM0iB6xpWieTjWejQbodqROWoTi8+mMwcxjmT8Dfvhrcx6H8CHjTMFYn3g98C/b9KxIFVxjMtL2eXDEgPU+GfHJSkxpudWAFSDeIyGbSzeVhqaN7TS+EUJl3VHTdoRTYQJPWbcB/32tjT6HE6vtIKM6vnNqtOF8grvl1W1UIykLg2XF6wxpaxDjP3peOhRBTISSyv4OY4v9mFc+kYsQbHXYRizM17y87daKzQbqFgt+5uqp2e9FhkdItvLjttEWR9r5rMBuk2+VpW59LyE0U0ewKNbeKNOe5++/voZwP+jeO6VDdfwC3WMRsnvB4gaFWDp6FkChzfyZNJTO2aJsbFD/j7b2VRxbZaFSbCIti2GTjBoFez4aoagaFbDBxaz/Pfd0WhZfqaeK1EqLZP9cMJr7SzGELvz4uai9rrFfjBq6E9nSIa8Je0GXMV5EnZ4kIhazSTWskh+sqtNi+kikfgoPGdWxWxrlaPkVv6imq0bpH7NwcrPTY6jxYULpF1Z/Qq+Zpd11+EgmjeV2EQy5y3qR305bzHOXiIIwQrjCINJFudsh/aN1SjcmfuZor1r608d2IiNI96P9WpiP5l0dvYM5aQ6TNJjlYI9ZTw6uH7rumSXVyCnK5Z0V0esUa1gPHcGcKWA8cw8ucOXHvPRVYP+XUteTjAZFdTW6m2p0+97U2kW6yHmL6Mxt/Bl3RUVH50eR3OVh8AKdpfGbpAmdGwamZDEZLlELrGxM2W+qkm+nFmXbyuDHJTKbG4eEc1tRq1utVBMh961uMvPNduIUCbum5bx9wwaTbQqKDhc++ffsA+Iu/+Av+8i//8rz733XXXXzrW9/iM5/5DH/wB3/ARz/60UWfC8H999/PBz7wAR5++GF+8IMfYNs2d955J+Umye2HPvQh/v3f/52vfvWr3H///UxMTPAzP/MzF3SeS4ZybuURgG26hJpmp7Kqgi4TdCmur/xaxqyljSIaTXJhRdKZXUNSJrEMyf7ECdoSa0BAdGKWXTNZLE/S192N2zUI1Rrqk7tg82vqF1SGo99fgkLV79vTSLeyXSasBC/XuKbR7rWhCcdXyS0RmpVul2O2WQEcKbA8jYqjUfXCsO2NUJwEs+CbUA/fC/f8T/jmLzfteW5lpec4xK3xhhjuQDjoELzWeCVaNHrJ5e4NDwCgKsFvYbom1AfjCgLFsjC0IGzGri9aSKS3kLQAhCFYGwqyNHWZvtT8kcTVFE4ukBAOLRzktr4Zavkq9/z9Qb74Ww+y5wenLvl3c4tFdJoUW5FuZr1pTMUhSoKB+Mr6EWnR6KLw0lk7mPXb0NWFotUVWlmfhJUSqkWTt73pFtrdKnkjxr9FOtCLFsmM/1uLriqEHSaO55kbq3fod7wZ0v7vSHUeHv0/UPgmzH8NDh+Au34b/uN3oTpPPn4lx9Z8lAMVg9GM7wlSjDjMq3493G/1gtTpXmbSrTvet0jplldTHG9rR3WbFGJCIeNo6LpDUQaEacqbQNH939IzK7iVoGO3kiGmpewcsXo485yqghCkXP/31qPL75fTmTLQVYHjQq7iEA/5GYHLngVC4Eq/4tBDKlNjVU7WDBBnV7oBVPK5ZS/zKp5baFa6NYeX2qZJZONp1r61nWKl/iyvKt2o7H6C2x/8DR5wjvB/uiJ8wgovyv1ilqqMvPWtHL3+Bk797HsuX0GXGYvUfVaW//rEBqZmFqta3qw+hBAVHnPq2dbrzXuT/S225uKtD/OSbe0kQlFcx6LcZDpvnSUZ0PMJBSu4loiIoXtuIymWKyHXUCRL1mfvQfEsZuwhjp8YaOx3xdY08bDKlv4YrTu6UTd0ol7R3+hzJ0ybWbWfZKiM6yq0OUGf47gIDO975MMcyKSDwh0/tvQXfAlwCxaqmMJQfBLnoGGQ0TQst5eQbhIxo4smiZYShq7iCR0VhbD020RzYaJZwnhyki1NExRPZXVe9jqdt//O9WzY1kLJirDXfEPj++jVIU4OvRrZ1U91YpK5Rx717/ePPwUnfwK7Pg2nd59RDq9s4hyfRpZM7CdGkSUT6+gUnhm8b+50ATEXZAedk93km9SjHcYgYePcYysleSbp1hZp42Mv+RjXdF1D3spxz9znychsQwdgx/x2Qoo4mzsMqjWVStgXe7R508SpIBFgtzKb8olkKWHm0JnXuIoXJ9xSmZn/8xfU9u3j6A03Mv7rv3G5i3ReXDCbc9999y363HPPPfzrv/4rv/RLv4SmnT/8pa+vj0QicVGFfTruvvtu3ve+97F9+3auvPJKvvjFLzI6Osru3f5Lmc/n+cIXvsDHP/5x7rjjDq699lr+7u/+joceeoiHH354ScrwrHCe8NJKsUhIBAO7jKoi3AR2OYNx7dozEgksSxH1oNJUhEdLqYuy8DsnY5EZUqRQPYHmCcz5A0TqYZzFzX5IcNv4w1gb3wzr74BED+z78hIUKiDdmsmTsl3GEH7Hwwai7gBRJ4qmeAh96UKwFpRuEonjrXxIgqJIXOH7mX3m2M18ufRuZLIHEr1++F+iF+qhA8w1dXYWeYwtft5cxyZuBZk+n4hpDCpDqLU13BHZighd+sC+I9SNJnQUoaAI/zlpDi8FCJlldDVo1Au1EcbdMSJaG5jTSDuPlODqCjubSLdN3gQdao2H24cojjd1lswDJDWT6wcLdKxJUs6ZPPadEU4vqLcuEl6xREgEnVwv0se05/tNVCjSl1j6tO3PBC0WW6R0m3eCUNdIJEU05XeIvUoWs+qThZVCjba2FFHND2M4leiiNraLtvF6iKmA/lfpSE/yzf+7m+G542DE4Kc/AWtug62vh/rviD0G2b+Hx/8KVANPDWPrnWRTtzJjuij1zGrD/cHER7/pqyeXW+mm6yHCTbmBRu0csc4EttP8PvhKN1VzqKhBvZriNIqxAzW8GSUUpTb5AFL6TPBKkW6u66ErM4RVv66ZVf1Obo+aBiDRtfyqymhIxa6H484VLBKG/4yUpP+ueiyQbgrOvENClch68hRxFtJtVen24oOIx9n+8g52vqKDWP9Gdt9/L4/f90N2//g+CiUHhIJzYqO/8arSjcq030Zlw36/eDBqoDl5YnXi33EFsl7/upkMbrF49gM9z7Hg6aZqCv/62XvRhclmxe+rLPRi7lQfZU/ov/Dd0cPcbHXS1jQB1YxZbwqtazMl0+/DVorFRh+yODd71n2eLyiaixMp5IUkWg8LtKWgWvbvY0o3Cbl5VOFRcdOoukrvhhQvf88W1m9r45VXtpGO6YiQjr6xC72vBXWT339IuA5zaj8RUcaTKp0EdhT7NZ1CPYt7h9zH3pMKsr0d2jt8n7HnSKiXlBK3YBJRgrHePTG/3BWrk0jMoa9veVRu4Gdv9xS/bVwIMTU1j1jHAKI1TKk4T9dVBrE6Ybq3kKBNPUXHYAItZqAocMJ+KXPGjczpV9KanGbj9Rmcsv9Ml0dGsOfuh/t+D/ef3wXf/x34u9csGgtIT2LvGcWbK4Gh+vPxikBYLvYTfsSCV7Ww94+jeWOUvW6yiRuYs1PkmpRu7cbAouzmT4do8njzioFK92UDL6M92o6u6IR1nb+b+DC1kIoaNXDDClKAVHvw5qfxbJNSbJt/PCRXKr5H4FD0Ro4nA5HF5PCx51wY8youD6b+4A/QuoNJAHd+/hm2fm5g5dLu1fEXf/EX/OZv/ianTi296Xm+ni2ttbUVgN27d2PbNq985Ssb22zZsoXBwUF27dp11mOYpkmhUFj0uWQ0kSDyLKRbfnKKSBMBkVUVhBuneuHJZS8azZ5uiipRUOl0fY+oTLRMR5OipzTxeGO5uMkn3cTkQcaqW2DmkK/EOno3NPm/XVyhzq4QLFslwor/u0xoGiXdwrUddJUlVQUuKN3g8vi6KYDjBffAkwJ54wfgI4fgP/2r/7fvOv/L4gTU6s9qM8fwtP6P5zjEzSBk47G4xqh3AsfsoM1wQbt0YkQVKt2hvvqy/3tkzFly8aAwIae2iHTTXYM+dQBdS4H0EHoKTyhUNIVWowOMLsZDPchqlVknxMO9OxjNd+Ba9YutHUZ2tHHFVrUx62vXXCYWfMouEl6pSFg0DXLiA0y6441/16dXVummxhO0EGe9181gbQCryZ8mFEnS0r+NdO9WPKFy6J7PYVWLlOsZvLat9UkmS9U5Ob2P9rEEHXNx+kNrmR7ai/Izx1HfeYwflr7JY7MPwsZXwvvugrd8Ad7yt6BoEBoCexJEGJk9xfj6X+d4569RcDW+dHKOpFtmpLvM3vU5OmSSIaeXbssn3ZY7kYKiaigIItKvN7NWhvUdSSaa+HIHFVsqoHnkyh24wq/3ksoUkf7NSJHDMys4xUlc088etlIZTGslG6UWEOJz9YmNTbEuXM/F85bfUL09GbQDcwWLmOEPamvSBa+Gp/rvm1AEoXCCf88mGuGECh5Id7HSbZV0e9FBajpGWEUzVKxaDds0fW8/KTk5Mo2QLrpl4BTiPun2Ih5ASU+Sn5lGAtNRv996VSjDFYffy/ZjH2Tt2Mdpz/4AGQ9Ij9r+/ZeptMsH6cmG0k1MjvLlSjc3Koca31uqHyoqgDQWSU/Sap5ip+w/6/FmvCkqqX760v49dWyLaj1z6fzpS+yXXibYx6ax9oySGw/6H1FHJydtUqrfNkghqZX8+9ibChq+vFzPz/7hLfz0B69k2629JFrDixNu1aH1t4ChkW4N4+jdhNwyEpVuLfD3nBXz3OddDUCICu3yAJYeg7lZ39g/89zw3JKmi7Q8Imow1rs3GgUJhUqKcNhmaGDbsp0/bGjIp5FuNaVGaXYUOV9DzlSY0Ma4SWpclyzQFTKZGDsOnssNb9rAe3+6nTe/rI3EDb9Nm3sQBY9N8psMvso/VnJNFa/2I4rRdtS6z1+t7wr4u9c2xl7uyJyvPLNd9Mn9GHIMfWY/slRF5io4p7NYu4bBmsMI5YgpU2huhUqlSiHhP1NRJ0xETTT8Xs8GoSqIur2JLNYa49yQGuJPX/Kn7GzfyVj5JBlrigPmE7gVC1dTsCMqamojWkc3oflRctpQ45i360cB6LWvYDoVjL+mJnNQeX4T56tYGlQeewxz//6Gj/kLknRbt24dQ0ND5/ycD9dddx21Wo2hoSESiQStra2LPhcLz/P4tV/7NW699VZ27NgBwNTUFIZhkE6nF23b1dXF1NTUWY7i+8SlUqnGZ2Bg4KzbXQjOl0ihODdDVAtmfOdVFeHE8c7SKC4X1CaVoiJ8cqRPWw/4WQHnYyZqvQHpyM5SMP3yhgbX40Q0rNYoxx+9B657v38Q6cHjf3tJZRLNXnhNZuiKWUATfsdiQtNIiTSOYxMWFkJdek83uEykmwBXBPdASonMPW0Q274xWM7UZ7ias+U+bUDj2jZxyyfdqlJhpK4MjLt9qMIGdWl8o3rDgwiURoip6ZocSGfxIhFMJNtth4QedAqlWSc2lAjYgTqthEANqfQYMfrMSbrNaTqtWTyh8J01t1CeS+N5CjLUghj5Hvr0BLfdHKj1xi9R6WYXc0TUYJbNNjqY8vxOb0ptJxk6+0z7ckFPJgmjkxUlRsNjnAw9hee5eF4Noer0bXs5dq2IIl1UI0phephKwVdqbd8QqPK+te5mRo7kmP5uLyeH44zlNXbPR7n7qMEje9o4fc/9HPr+P/jPkhbyw01/dS/03giyBPGrmRz6I8ZiP42Mpnk0k0faVVxhgQRVKsyKAtfYW0hb/RiaQktUP9dlLQ3qJFWvTKBKgYdLVFc43TR5YUuVzmqWgisQUqFaH0zE5SzOTJlo3+sAEKE4CI9Ei4I5m4eHdy1OILEMqJVtYgTt0mzd/+SKZBemZRKOL41C/JkQ0hUSEf+82bJDTAueb8/N4qoqVs2lWnSIxlM8UIhjKnFqSoqqmkbxbDQjmKxYJd1ehFCafBXziz2exk+NY7kqTqkVc7oLkCBfHNk5z4bifA3bzJEJJ6nqYRJUeKf593gihOaV6Z37Ku3Z/8BLtDT2qe576hmO+PyEWbMbcjanVqG1kuetyo+ZkO1ICcX4DjzURbr9n6nFuZKesx5v1p3mcfdJxtYLJtqqlMIOcxMTmLUq5exzf2B2NrinMnhTeYq1QAgQq0oyEvT6RKPjOAhNoCSj9MSCMFozvIF4Swgj/MwT+UJXCb18C23be8hKA8V08YROvxGowueUDPfL6wEY9/rYHHmceVLBQZpIwcsJN28iqODJGK4XYkTTOGnoJKww86ZCWHdYv/6KZTt/NBbFq/eno9JvEz0hsbX6UzxaYWZTnj6h8HghyZOFJI/MGpA7hQhpqDGDZFxFlWOwxbfuEeEEqehTxPpNuq4pENJqJCpzPHrl7Yz0byQ8+hiUZ+Affx45Ooqs2WCoCLuMWs6gnBpBrWRRajkAnKdOo5amUY58o1HufOIaZrPHqRp+/7y97n0bfgalG9R93TQFhMDeP94wtxdC8P4d729s9+Pq3Y1lK66hhJNYhSytsyNU00EyxevV47RpNZR5g3zCZqEbNzVnXrqgYxXPe0jHwZn1yVdZH8c+H0i3C5ZS/dqv/dqi/23bZs+ePdx99938xm+cP572Xe96F+Pj4/zxH/8xXV1dZ51tuRh84AMfYP/+/TzwwAOXdJzf/u3f5sMf/nDj/0KhcOnE2yLS7UzpdXZ2grXNSjdFJeVEKWrLb5y9AEUNHgWh+I1ClzvQoGUPRY6yLrKesfJhhOty8NRRbtq0A8MIIdsGiQ6fQIx9H+tdf4px/5+BZ8PJH4NdA/0iFS5nISs96dFWCZRH47pKi9qOVbNJqKpf6S8RmpVulyOZgoLEbZatSQ85NQltQQec9k3B8twx6Lv2GbOXUprB8PzQv2ERQda37acfFGfxvpeA7cmr2Jm8hi898i1qjonjuRyNznDdu36J2t9+kRSQVmpQDw9xbZ2TznHWqmvAziOlhxAKRU8QVxT6QhuZLPly8w3lE8yEOnlkzXWMPfJ9NiQKhJQJsP4DIjuIzJ4m1RkhP1NleqSAbbrooYsjY8uleeKqT1q5UiGnSCrSv3+d+gCGvnLEOICeSgPQJ9uYFyUspUrGm6Fd7W7Upd3XvZX9P/wMzI1wLHOKjnXbgTVs6QnUEt/t2cZ3ASqQ+qFLvrYORZF4dWXl+ncUqU3vZ8P0NPpCWGOqH9ZshMl2XNHGaPw2ABzP419GiyTtErNpkx9d6890D8p2rjd3sEcqdCVCS1bXnxN1glcgcOuDkJw9SzkW+BR+v9DCTERwqjDNNl1Q01qJ25MowiWhTtO59RqOlYcwJ0/g8CD5uc1M1yrgnoJIBHp7IRQ66+kvFWbZJqoEM7gL4aVXxtuxKlXC6eUn3QA6kgbFqk+CGyK4d46bQxpJjLAKYYgmUtSkwuFqmJcIn1zTsND1VaXbixpNE3iV3GLSzXEcxuaypAAz206MYV/tpqycqv+5hOxUBcPKM1bPPP3r2pfZUvtJnWBSEHjEK4eQiZsb+9T2vwBJt0rQ/53M5Ij0WdyhPQnATKGbkZ2/wZE1f8AXpn+Oz06PoQE7agVMtTWIPZU0VP4z7iQPWPeQ78pBF1x1JEXXzBwDGzdRzjxPVTL1sUPBC6wb4hWPSSFJ1a+7nMtgZv0J4u6+wBbBS2x+1qcRiiCkCKIKYINUNbrUQOmW1QoU1Wt4ylvHTuUkbniOPfO/FNCfkxNw1dUXdYlLCbdgoYkJIuqjABysW6eknTgTrkcEuch3eKkRj8eQ6oLSLRgDWSEwHHDmiuSSBbo2ZuGo3w/elU3x5onHoXUIkYoiaofRxCFI98DQS/FO7kKRFu3XWKh1f7jTiUH2XHU7hl3jHd/8a6LVEmSH4Uf/jNvx0wCoTR7YAGotgxdtA9dCmzqKOfFjqDf1+dhVTFgBCdcRGUJVQFefuf+m7ezD2TuGN1PEyxRxx7Joa/zn5ra+2+iL9zFeGmfSGWXey9CqtGHGNeIzJqaRIOHajIcHcZUoqldhozxB3tE4WrS4YsuVFJKzJOd1CsUaldF9RBeifFbxooQ1PdWoE52wgm6BV6ngFTIoybbz7H35cMEMxa/+6q8u+vz6r/86//RP/8Qf/uEfnpE59Gx46KGH+OpXv8pv/uZv8r73vY/3vve9iz4Xgw9+8IPcdddd3HffffT3B3Lz7u5uLMsil8st2n56eprupjjgZoRCIZLJ5KLPJeM82UuLuQzRunm2DRQUgWGFceOxSz/3s4TSrHSrk24dTkA2nkiMMRjdSovRjYYge3pf4ztnnS/Rbn38JI9mTsINvwid22B8Nxz45iUU6kzSrWJXGKoGCqlxTaNV68S1HBJh0VC7LAUue3ipCDyUwPeWE5MTizdqb+pMzfrv3yJu42mPWyh3GJBkahF2NSXP2GoMIpSl860zlBCaojeUMq50saTFofJTyJT/TsW9gMh0vDBHaw/5RqtCgOPP5poIvIhCX2wjCz3qTbUThBWHE5EWPtf/Bqx8XVnhlaB4L5waoW9T2l/lSqaGL37gnytXiGkLiR0iTMng/rcbA4T0lY3Q11p8wrWPQBV8Wk4sIrSkEeVovK6AlJL508epFE22dJ+dtMnX/H1bIsHzvnt/K4UtHQx//QuLN37ZR+AXdjHb+58ambQenitRcT1aZAlLDyYVrvM2oEkNpM37bl170df8rFGvZ9tkQBRl7FFak4HyMVTf5mBZEhUeRWOQitaBi0aLNk40AaGuppBhWSZrGj53Xa3CMg54ayWHqBp49GVUFU3qpNQItlUjHF8ZVWV7KiDNhAzunePlcZuyj4Xjvrphwg3aSM2trHq6vYghpUQuIt2CrNqRmP/8HjrlK2HMcgJpKy9qX7fsVJk2u8hYoos+bYR3q/cA4AmduYgfsWE488iOFKJO9r8QlW7Vpsylk7bHb2hfafyfq0VxZJxpMjwWFeyr34eok2GtavLqg/28+pEuXv54e6O/M2YeJS9zjWPU4i7lYoHp06N4jn1ZEmNdCqTnNaI9ip5PoGhohCoWVRG0uYVZn+QWSDrw372800Ws48J9oVtaQrgYSFXDQCNm+fV6IWyywS6xx/NN71Vhoox+DxaScE1OPid83dy8hSpmGv8P1yeDWtw0AKkl8C9+JmjheGMCItaUwVTUI6+8uQrS9hA3n26kf3o424Kc2oN571eZ+84pVFn3o1NUuO3XMLtvodR2G2ZyJ0JALacxMt5HV07BMsI8dN0rsUI9fl947F/50aMZ9hwu48wujuxSzBzaji707DGEdFGFb2vhoTIj+8iGA2K3t2UrbQnjvJOmiqaidCb9MZgE5+AE7rTfj1cVlXdufiebWjZRcrM8Yv0EADPh3x/PjRBt70KiMNL7QcqhtSRkgV9Uv8twNcIGcR1jqcDmY+rogRe1LcEqIDMa2A/Y8aDP6f7g45ejOM8aSzZifM1rXsPXv/718263ZcsWqtWl8ciRUvLBD36Qb37zm9x7772sW7fYX+naa69F13XuueeexrojR44wOjrKzTff/PTDLR/OE15qlotEdT/EIlvPWBezQlSM5VFUnA2LSTe/wWy3AgLzFFN0JdeSt2ZBSkKZI+zPVThWrFHZcRMAsdEcp0Z/hLXlNTBz0N/xsc9dQqGavfD8MpXsEj01l2E3zmPhECOaTlpGcC2PZExHLCHpdrnDSwU0lGjgP+/K5MTixqY5vHTuaH3HcyvdwvljKEjawlWOxP17pXsproi1NhSOS4kF4tLzPNqMTvYWHmN6TTc1JEkvmIl1XAPDOka72okwOlBlUEeYKZ2wGqMjPQhAwswTNv2O57+tv41HJl6CU1Mwq21QeQjyB9nYFex/+ujFh5iWzRqRurG9pSSZavJzaw8NElqBzMLNMOqkW78MZnJOe2PU3Fzjf9WpMh7ua/yfnx7mwIMjZJ+aYm3i3HXKf3npOkKOP/h56kiKYlnlUF8BJ/u0+9fRSb5nAwkrh2JXuWvS71ht1WpYWtDZjhICKZjxwnQmltfPDYC6MqyDgHQbLu4iHQlmeSN1BdxRESOheFhakqgzi4pDu3YKPWyixdKN7aVXxvEUSo4O3T0+6VZZnux3lWKNeJNyclZVibr+wMCyaysSXgrQnjDoTBm0xHU8OxiY2G4etyl834hHCXkOOYLJIc2roq1mL33xwnXJaUX+vPhRfr/wIb4y4A+uBALbMvFcl/GZDK7n4LoG7nzrizqDaXaqQqtZZDTZzn9Nfpw9oTBzWpi9na9nJnJlY7vq0BC7r/8tjg+9EWd6Gnt6+hmO+vxDbrqEgYm+70FUay8ugoPeIKVUHyNtG1BnxznpHgfg8aaM61OZWa6odtGTCbNmNkbS9tuZWWVxmNF0wu+/jR07Cghy02e3l3nOwgwmRIue3/5ERAy1ZmLVM0pLKSnM+CRTe9RCw2/LZ+yNpDovPCt9S1ynpiVRdb/Ob7X9er4W8ugyR/lH91WNbYesb+N21hXxtg2zs5edFHELJpoI/OWm6hNGKc/vO3WmlzlBnRZGrfcPo02kG+n6JJUHkVOSlIgw0OE/n6PVEBO1EOPFgyQH9nHwZB+um8LzOnFDVxN671eJvPMfSL3kTuyqSv5klMRD06yd9J+B4aHtmMIFbIR9kgH1KWans4Rtvw8k64S1sC20h+9DrWSxIjZ6xO+Ll2LbKGRnqWkunRmD/kqalD6I9yx/S22gFW1Ld+N5tQ9O4Nn+8ivWvIKj2aN4uOxxHgPAiah4ClBSCHX1oWZnKcW2EDX98NFf1b7OgJim+vgWZlI1Yh0avV1RstmCH0a7ihctMmNNpFuTX7QzOQpTz13f0yXT9H/ta197Vp5sf/Inf8JHPvIR/vf//t/s3LkTXV/s83MhyrIPfOAD/PM//zPf/va3SSQSDZ+2VCpFJBIhlUrxC7/wC3z4wx+mtbWVZDLJf/2v/5Wbb76Zm2666YKur/TQLpI/9eoL2qeBZ/DYAqgVskRUv9ItKCE66Cdt60SjK0i6LQov9QfOITNOPBanJErMx2vUYh7tUwPMlEeI2FVSlWkGetchY5uR4SiiViH9+DEOX/0arujeCVNP+Wq38d1+2OMFQpxFIVixK2ywHNarJdbX4P+2pBlSOxGeQksyvKThpRvSG7i191amKlP8+WN/zsnCSba1buPg/EG2tfrqvoXls627lO/74/0cWL8ftdKUXUl6iEoZikVYeE/Sg6CGwDWDrEXPQLpFysON5Sdj/runWD1satVBXfpO0gJx6XguD409jOlYPGE9xWOhx1mntXIT/x0FBcfR6I8t/HYCtzoNaithVaGaMghRpTe0nlw8xwknRk91kpye5mrV5hupbWzf/yg919VVQsVv03d6A/0tA1jJdnLTF0+SOG4VpU7U1ESCKS9QurWF1mCssNJNrWeA7Wsi3ca9U1TMMcLRNJ5VgeIMc6H2xveFmWFs08U2XV7Sm2TkiB9eo7s2dj38QQCvjld5fGw3u3q2Y6cjfPnrA7zl9YL0yLd4afq9jUy0rusxX/CQRhrLthithwatUbI8qQSkWwQDpEDi8ertZ1cWLynq9UVHk9KtX0sRi/aC6RODra7fuRw3EhhqhpIWlKtNO0VWFFBjgT+NrIfy5PQ2ElN11c7hQ3DNhddn50NxLktcCQYJs6pKwvMHOpZVo3WFSLeQriAEZEs2Kk1KNzeP2zSpYURV4maFvB4o8DRZRTeCNr26FImIVvG8gWvZVAyT466feVOk4cEdHmkzQosRo/eAwHFdpmsj9EY3YBZTaC9ipZtdtYmaBQ5tmeSPa/OkPI8S8C1iXD8+x/b669emHGW3di3V3pu5omsaa3Q0CPt/nsM2HbLTJSQhxIYrWLf/K1yhjABwZPObEfcVELMTjLT4fZdHI2F+tgS21kKtPE8oHLSFg3YfWCVmtDJ2xCAv83i45OMOnoCWllbKhTyTRw/S0n12P7jnImQz6Ybfn4mKKKppYoY1jtcMnHwGx6onUehLMyV2ELIzTNsb2dl74RE7LTGdGT2FqptgQ7uXYgx/Ak6NzHPMuZKH3G3sELM4SivzM0fpSLb5Weq/9x3QdXjFq+AcUUXLDT+8NGhPTStBSyVMHL883fGWc+26NBAKan0SLSYDUkAmg0kqeyZPbYNK72CBE7M+CfinR9fyndl23tM3yT+c7uIXCik+dM0GlKkSuS8PgxAYAz/Nsal7SR45jkGNztEJdm/pJG05DO+4lase9yOM1onv0t/9ZsqWQNF1alorLSLrjx+yWXCyiEOfxhEqpoyT77qW0sQYuaTNTJsFWKT1LqLPkETh6VAHWvGmCnjZMiKi4x6fQdnay0BigE0tmziaPcop5zhZb54WpRUrphEqSMSWNtRjJyiv38Fkx9vomf0Khxji97V/5Eveh9FFD+VZhzIOybgO2RMQf2HUgau4cBTGT9AKON0D8Ipfptr2MNrkCO6+78Mdb4PuHZe7iGfFBY8Yr776aq655prG5+qrr6anp4ff+Z3f4Xd+53fOu/9P/dRPsWvXLl7xilfQ2dlJS0sLLS0tpNNpWlourBL8zGc+Qz6f52Uvexk9PT2Nz5e//OXGNp/4xCd43etex1ve8hZuv/12uru7+cY3vvEMRz07ct84v4rvXDhfIgVZzjUyLs6qHiZlOsMh4rEV9HRrChtaCC91bI9e1c88KCzJk8WHGIgG4YzHT+71v1MUsjtuxTVUIqM5nsrtQV7/i/5G0TZ4+K8vslBn3reSXaLfCQb245pGmjjCU0i2p5Y0vPTdW9/NX7/qr7lzzZ240mWmMkPJLjX+Ni+fbd2lfH94/jCmZlFJPIWsx0w0CNuJJqNaRYU2X+bP/LCvGjhXeKnnEamMAFDwdKbrqhWr2s26qI5YBludBdLNkx57Tx/ix8cf5d7RBykKk33aJDNxP4uxbQvkzvrMvhavJ1NwMdEpRlRcXdCtrcEu5RmoTbChcgJD2uz2Qnx3zY3sn1pDdb6ePcn1ENn76GwX5MZynNgzSyl7kUpFr4Lp+vfJ1loXZS7tjgygrGCyEwBFUcHz6CSFJv1yjTunkOYcO145QLR4hGMP/hNbCweZM/zBSDk7gWP5yr9NTYqzgUKgllgf04kdP8TPH/wuN08eoFzTqXg6Tx1P88VHBR+7J/DKLM1XG9mpTpWD+9ou5xaFl0YJIYDBiIuxEorAOunW3qS86lRVqjLwgEwTmLbPKYKS7MbDv49t+gms8izZJv8Vu+7fl401DdAOHliW8JnC2OlGKDPAnKbSIuukm22uWHgpwFCXT1yGleBeWl4JT1Ea9VAoohJ3LHI0kW5uFaEoKPX33rZevITKixFOxcRRg3fsKqvGXyjHifWO8UHlYTqiPgl7unwMcDGzbS+q8FIpJcO5YUpWidH8KDMHZijJPOujU6TqdcpPYlGOFw4yPhZ4j7V6vordUiKUdz2Cdfz4ZSn/cmD6VK7Rnnh77udWzQ+fLRFltH8IknHUuUlGXJ90e9IwCHtVUuYpNlv7kE1KyXfZb+N3H97ObSci3GrcwRWab8zuKZJ8zCI7O8PU6ClmTwzzfMIC6eZJj4r0J44iIoZqmXhCsCFskTbnGxMeg2mTbrmfFm2SOXs9id70BZ8zHdOpqgmMkP/bdOIfw7AEJeFPPn7JvpOkMku7sp/Kkbuovf7tkG4B04RSCX5yP7iXJ1GKtFyUpvDSg0mLbLSKpvi2OQPJi0/c92yxEEDUHF7qxoL+Reoxv/+4pscnUg0kd8904ErBF0/34iF4LB/n9nvH+YVvHuRkpowzXaHy+DSzN/jXYcdDVB48xVDJZC6s88SmDXiKgUQQsfeQLH+KWO3fyEw/hHH0Q9jyuzD1OTj9P6nOfg1FlNEMl2kxxFjPL1LKnKYSDn6zpNZG5AI8kYUQaNt7ESENma3gjmTw8v71vWLwFY3t9tqPIfGTKaAKak4Nvd5PHe35JQqhIa4WR3iluof1lXu4efbWxlhoPm/6pNsqXpTwpIc14YdEm7f8NN7AVmqv/3kqb3g/jqmAvTzRKEuBCx5mv/GNb1wU260oCh0dHbzsZS9jy5Ytz7Cnj/vuu+9CT3lOPBtfhnA4zKc//Wk+/elPX9K5nPFD59/omaAInzg6C+mmWbnG8ryqEJXttEbCJFeSdFPP9HRzLY/NoSs4WTxEJery2JEH+c9Dv87u2e8D4M0eAt4EQOamn6Jlzz103zPMiV+eZWbTO+i68l2w/xvw1Fdg59tg050XWKgzE1CU7TLrpL9sCsioCmnilKRNKKwjlmFwH9NjxPU4ndHORX+BZ1x3Kd+bTp3MEBJXAc3zn/dM3KVtdBS2bA0K2L4RZg6A50B2BFJNWYSd+gyplDB/As3zG7XjMtJQxKXcXgxFgLb0BFKzL95MyVeiGarRSExxsn0f3aV1eKYHSoyKMktErQ/0zVmIrkEKgb0jQb8ZITIfp1otscGeRutK8M0ZvwP6vWvfysZ9n6dj6xSxrhlk8Qdcu/GnGehcTyQWofboCTQdlJQvHfDy1TOWz7ZO10OEVBfbE1SNfqZdP4NlTES4vapSu/fQBR/zbOsuZB9V1UG6dHutnFZnmXUnuantGpx9p9g0dBWDb1vDq+an2D2sMT+SASnJTx2jbfAKNoU0Hrx9kGPf+icKB/YiHJuht/0atd40iuWx/j0f5L90rOXoyRq/N5Tm48M6+3Pw45NF7nD2cm1HisxM0KDdN+ff/6QmUCpZrHhQv0WlgZCwIb18ZsWLMLQeTpygoxgo3fRElJHyY/Tim+62RAyoh92MOQ69ToiK3kXcniCtTlKZGedrJ9rrtRpMKgWGgKwThTVr4NQpKJfh6FF4Fu3dhaA8OdUg3Rwgqyhcq/sDA9NaufBSgK60QSykEmoi3UyvCELgeKCrYERUoq5DTjaHl/rPRiiSoFrKkJscR0q5/Ek0VvGcgFuzsJuSQv1SrsA62+HjM3PoQLVzlB+c2srpymES2RbWutuIzJWILLPo5LmCqfIUb/r2mwCIqlE+av8u920L8XJ9P9QdEe6NRpirZam43RTsEEndJGUdQqWGq4SxjGQja9sLAZmJuhpWeljj95PY6N+IE+EtHNJcjq8p8fp7vs3oNTYokNb7KUbbSZWfpFPOYrhN9gHJTuTMKDEtg0KIddoGnqyHss206bSUoFzI89R4mRttl7C+Qm3TJUKa/jtVkTVkfYI+KmJojgV1T7fM9CS2ZaNEE3RIP+rBkwpVZQAleeFth6YKiKYJVaawgHVKF2FToRbymAln6Z+f4fuJa5mVrXSIeQbUxzh43252DLb6E2Ce56uppqagr++851tqOJkasSal23R9jGNKvyxDLcuvktLqyQeaw0udSDDWMufzDJnXofaO8/NvOUH51Ha+8niVDR0xOsI6suawRlV5cirPnONghi3+byiOY1pMvayP2JGNdP3wOKXHDrBubyfD1/TiqgoH1ZtYN72bWEcZ7FNgn8K1biBmzDN3epoIFjGvgFM0qM2EibTZ7F7zbrodh3J2nErYHzcYUiekxIicJ3Pp06HEQqgDrThH/YldZ3gG/ao13DF4B5/Z+xkA9tl7eVno1VTaQyQna1i1GiFVUAE8Ncp462tJTf4/AN4b+g6Hhm/i4bhHvKoynzOR88MIz20k0FrFiwcZaxZ9pog0wlhX3hp8IQSuqYBVOvfOlxkXTLr9wR/8wSWd8KUvfekl7X+50H3FOPb4KHrf4MUd4BlIN90JQnDmVRXNbaU9FiUVW7nwUiFEo51c8HRzTY9upQe77tM0Ha8wl5hmILqFkpPDq2XI5DO0pdpI9AzwaPcObhzfR9e+SQ52HKRr3Uth77/4J/jOR2DNLghdgFpjkadbPbzUKtOq+gPTCU1DIkjJMBXF8wd2S6h0W8B7t7+X926/uCQfF4sP3PMBfnz6xwA4modmqUjP49+uLHL7yeOEiuvpia9DFaofups/DbU8ZIYhvT440OQk/P1PIB6HDYE657AWIl3QCcX6GNT8GTOxDB3Q921/H6pQ2TW5q7FuZ+8m9owdwEMy0rqPm0begDRtUuUQp7Y8yZb99TqiNoGMDCKEIGtodHoefV1DHB/Zh+OY3Kbl+Y4IYUn4j9b1/GxGJz5vEOuyENJGG/u/xNb8GZFInPmSDVGBtOszeKZz5vJZ1hmu32nTFYkdbkdhlLVWF5sSQ3436mzHOc8xL3UfRdFwXZc+2cZpZpF4nPDGWVtbSzScJh5LEStmWNPZT7Q2z0x+lnKddHM9iKmwtaeN+R+PAJA8uZu27T+DOSFQIlE2dnfwTwmHdEwjOVZE1gXRv/XYBJ+7WWeuFnR09uWrvKxb8IpkEeOAAKM5vDSE7QnaUyuUECaVgmqF9iZPt4zMUXZGkdHrCFckiZY2+iIm41WbH5dV3hYWlPVu4vYEipAUZ4aZ9YIBgi3LnFZd+uYdeOUV/sqZGdj9GKxf74fQLBEqhTyxVr9uy6gqUgh6w35WQ9s2MSIX7stzsRBCsKk3yvFqCur2R8VsDtrBQaADmqGQEmKx0q1O6it1Fa1jW9TKJSIrSBiu4vLBqZjYdQ/MX5vPkXZdfxAFVIWgO2ry5q3zPHj6So4WH+do8XF+6oe/yPqNOy9ruVcKR7NHG8sVt0KbN8/3rkjxL+URACwEP4lG8DT/Hj48O8Cm5Bxr4zmuiv0bT1TfTjXSjjM7d7bDP+9gVm0kkkhYYO97ilA68FqbatvI1578D7KyxGPvxPd+Atap6ykkDFLlJwFokdOcxLcECCc7EOU8r99lUb75ana3Nnl6pVU2n/Lbp0G3yLf3nOYdN6xZmQu9RCwo3WbcedplC3G1jbXqEJrroCgSKSWVoq/o1lWXVMVXAc07g8TD2kVn3I62dWBlnsICBvV2avX2fSKeR/ccXFT+wXkFH9G/iiI8rJ98lvLvfoZYTy/c/V2IxXwf1MtAunk1B7VOus0rCpYiiNkh5qoqqnDpTCx/e6qpAofF4aU11SLZtRElW6DmVdhwYpATW4fp7oCnpmfoTnbwjusH+MXb1+N5kr/84hMoU3k84PGaxT/fnuZn5rK4MYPymjSiPjZyv7iX9UfmaP/eYWpdUaxWSaQF7OSNGPZ+pJrC0btQQ2kKJRvsFDJfpOz1kjnWz/xVO4jNjSAUjUrY/51TIoEQgugFKN0WoK7rwJkpIgBvuoh7ao7Nazdza++tjBdmOVk+giUtiOm4msApmRAL+lPZxM2cmNvFqarKy7VH6Nn2XY5P30GtWsNxJMV8keT88cXJ5FbxokDezhKftjCveSmEg/dYRpPYpgbWc1fpdsEMhaqqzMycaWCYyWRQ1Wf3Yv7kJz/hZ3/2Z7nlllsYH/fDtf7xH/+RBx544Dx7Xj6EmcP+7h9e/AEW/MmeFpbkeR66F7Cy86qCa7XQFouQXgnz8SYo9TIGSjeXITUgcEp9OidH9mDEkmStKRTPZt+Jgxwr1jhVsSls8dUkoYMznCofx7vi7bDupdA6BEYUfvSxCytQM4FWb1is0hRGfWZvQtOIyxiqdBubLmUihcuJmNbk+6DViVopueojd/GjtVm+k/kmD2Z+yE+mv8eT7kkYfxwyx/wQ02ZLNwTUapDJwOnHGut3x3VySZtp5RRXRuoJM/Sljy9Nh9I8PPnwonW/uvM3uDLtD7LyoTmykUlcSxIRLTi6RTVeBiUEXg3sOUK4qFKSQ9DbFaj4yplTXJ002BjT2BbXOPCyd5E50YNdMajOG4jqMMmRD1Mp5igVLDA0hK765GLozOUz1mkKYRl02ucjaWblFCPGNC4g1bMf5xmPeY51F7LPwhO+RfYxmN1Ki+jga9UfUnYrKIZGzaxgWjXaIyEmZ09hVQvMnT6IrCtES4pK/MZgdqh66DFc00OKKNIVOMU8YVPilMr8hT7LUAw2xTQmqx5vvG8Ep16CmZrNvOVyvGDztr59zGRqlBYlUjCIIjFSgUfaskLXYdNm2ps83eZknjVGKyUhMBEIReEXhtoRwD1uK49bGqMySBhTKU9TU8K49WtscaqMah7Z6Yo/cHAcP4tpqQSPP7b4/JkMfOcu+P73YM8TF1x82yxTsMIcs+McMFpY73XTp/mkmydWXi3W3x7Bc4PBml1X4blNXpsdkQh5eSbpZjQN8krzQUbWVbywYdcs7HoW7O2myQ7LJgq8ta8bDWiVFXrEKcpunppbpuaWGT94GNdZ+nDt5yKaSTeAvZExOtJTTKsqe/UQjxgJyopCNezihBWmagkGYzkArk98jWturFBLdL1glG612SyVvEm1JlHnJrBCGrvcLYx6HdwfKzNUzzRZCoNhSa6ciLFVv4J8PPDU7A1naWnrJ9W9EVUzEOX6JHY5T7oUhBDOJAIFZqU4yxMP7Xv+ZDGtk24T3ixzIsuIdxwJGJ6Lrkgss4Zbj2ro7YiiSH+CbtreQOoS5ju0eAyjrgxvVRLETJ8UmY6V2Vn3EP4X9w5M4kxb2+lQj3LwJ6ehs9OPpJibgwUv1BWGrJio+Ak1Jutxnu104FUl61tq6CtgeaGH/PMmCbPeHmCDuhkXFykdctY0eWsWdW+N7pBPSu7cMca//uoafvF2f9ylKIIPv/9a/ubWQXQBVyYMPv3jE3ypo24t8qbtWL3diEQPXs2m666DaGWL6IkcU4+nOXF3J1OHehG/8iBrfu+raL91lFM7P8UTbX/C44+/mvEH2ijuNkn+1A3MWYLhE/swZbUhtEhpvgQ5cgGebgsQikDf0o3M+QSIc3QKr1ijK9bFSOkoFVnihHMUhKDaYiDLko62geAAaoQj8XegCn//vXITP9uxB7U+/pvPVuH0rjPOu4oXPgpOFm02j9fSgTZ8sMEPyFiCqhcBq3yeI1w+XPAo+1yNlGmaGMb5wyG//vWv8573vId3v/vdPPHEE5imH0aXz+f54z/+Y7773e9eaJFWBLaSRGZOQWESkhdhwFpXbcmnKd3K2TwGFpNeCFW3mVNUKrUUbYZKIrZ0KopnVURVAcdDqBI1piMMhRaRJq6mKbk5TmvzTB4/QtvLr4d6lHBp5gQbr34JAAc3bod7IL13kpOKy1RlhN7X/SX8zW3+SzB3DK54O/Rcee5CNOFsXngiP9ZYNa5ppEiCZwX8nLb0aq3LgageEAdO/TGQ0qOaMtjwqYc48usv5VBpH4oHHWGPqxY2nj+xOJHCAqTEnj+No7YScuZ5LOnfMMNrY1vMP5cwlv5529mxk3dufif/cuRf0BWdjmgHV7Vfzas3vZZ9jx6gtdbJidanaB3vRa2moOU0hdQ04ak4wjKhOo5pdIAKc55CbKazcezHTx3lYFsXRd0ndSLR7dzS+3JG/uNbDN6RReAiaxa5Jz/Gk9H/gbMpxbZre5912WVxmqgIMndORqJ+3B/gGb1MDnbRNXThBsWXCvlYEXSDq1nLvyZ2YcoK3zfnCNei/K9rP86BA7u4995/AqClu4/s1DhmrUhhbpRw11oqHSn6r91G6K83YR49ij0xTObHx/GKOWq7v4iaGiBy469QnNiHfPTT/I+hbfz5prdghZNc3aozWrHoiWjsz9fY2Zbht6O7ELkEpukuyl4awUAIMC4gOc4lY/t2Ovbvbvw7V51jW/wKToYrtOQcHC1GsVxmnSE5YQlOC4VIvL0R2tWbUKEoqKgREm4Z1SuzJ+Rwc96k8P2DhNu3gpXCM+IoeRd+8AQeBkprHC9TRKn5BJTnSBRvxF8+R9iwSISR+Spqbwp9Wx9hZZbeqK9WOKZ4DCtTJFV/xCQvw1yCpgquHOiCunVKbr4A68DTVaiTJG2RCE+4wQSBKv32PBRZTLp1DK5dsXKv4vLBrZrYik9uDNWz1s0rCuOGwU+iEV5drqB7Va5fH+OH+/yO8fHCE3TcNczWN20853FfKDg8uW/R///WfoA3VEtcWfc+/GsRkETtN17J7P172D3fy/VtE5Sjm0iKSSovuRNn31dXtNzLherkLI1ZwmqGm1v9BBxPeBt5SBtlzs4hEPyXp9rp2DfJ5mqMwm/cTkmr4QkNRTp0qbNkM6dJ9WwCz0PRkkilRkRz6U72Ey3GCYswZTUM+M9mIZfhZT0Z9ozluGbwuR/bvBBeOuYGSsBOpRtdZAkrbkPlBtCbsBYcFMi660mlL34yNRExqMrAc7GrkuJEaA5b9+i1DwEvZY4Uw+5mthl+u7vvwXtxX7MONd3iZ/qu1fyJqkjkHGdZHojaNEL126mFzKVdxgCP2C4pa2XGCSFDpyIFKRFjWB/Dt5QVbItuB3yrkuzUOFu1nUyZ4yS0FPdn7iasvpnupgz0L9/RzSdyZT54wJ/Aqjgmpycj9PdUqb76zRhf/Bsc6TXm2+duXUP8ZBYmCti7HsHMeoRa/W+veuUgO69PceyzjyMBJRYls2Mnm6dCTM4codzs56b6vsAXGl66ALUlhjfYijs6j4gY2I+PcF3HlXwD31f9qHOQLfoOqq0G8TFBaGO80cdGjRCLOPzP6n/n49GPcp3qWzxtTLRxuNDJfM5k7dxRqMxDdPn9+Vbx3EF+fpKuchXrhlcho3FwPUCAomLr3WA/d8NLn/Wb9MlPfpJPfvKTCCH4/Oc/3/j/k5/8JJ/4xCf4wAc+8Kw83f7oj/6Iv/7rv+Zzn/vcosylt956K088ceHqgJWC6lVI1R5FPvq3F7V/g0B6Guk2NXaSlGHSo5h0uh7zmkq+kiKtiRVXbQVKNw+3bGNm/AHUgLEJAMvwKEYdxGQer345ifwYNbcu2e/rQwqF+HAGtWxxYuYhZHot3PZhf2Mp4aFPwf/P3nuHSXKV1/+fW6lznBx3NmdJq9WuchYCkWWMwSbZ4IwxtsE2/Px1JjgRbWPZBozISYBBCAllaZW1Wm3OM7OTY+dU8f7+qJ7pXmlRXO1Kst7nmWeqq7urb1dX3fvec897jvcMhVVPALpphYaQ/YSmkhAp8OyGaenLhemmn5jplto1RfvdQ5z/3wc4/4BBoizIx5uSxszg8UYKCwCcdFAHbyXkZpi1w2Trg2ir28H5qTqjMvDCaAh+cPMH+dSln+KRdzzC9a+5HiEErxl4DR2RDmaDk+zr3IYrHLyKD84U4lO4gTpQY2dxF9xDoxrBYAvBuuZbqzlHSW2wbB5SJHLVayC9hYmH2zDzGhpjLDPuozvzbfbeM86zCS87SVTzO29PwmgToJTUuwicYufShVCEnzAGhc7mMV8nUSLZXziElJLejWctvlZXG33skaM7CXgwP57HqtrErrpy4YDYgw+gtazCWHoZet8SlIjOgehyjJWvYUlsE/+vkGNzq8v7NhosiwYIKIKD+Xk2VA/RYbioSYHryUUjhYDUUVFRpCSUSp6K0+JHMkWks5+Q9Ccac5UZ+uNpbD1PpHgQhMKWrhY+UdrNxvIUE5ZBRW+4q0VqPsJUrTNNw26VqvAoCsn8bA2Jgky3gmogTQdZqoAjkZYDLkhFQyoaKAbSdo8vDa7/X9zOlsF2cY9lcHI5EkaDQT5UHxtTSv0+OE392pImR/J80m+LF2hcU/FYgnyTcYVWF/kOBBt9yStMt/874VZr2MIi6nm01wXUS5UoSMEd4caku80YJxb2AeWKVWT4tvupll7+hgr7hx4+7vHRVJ4rKz6Tw5NwoNIYyzOhElogyIOzvqRJvLKXvqmvoHR0Ys+9PO4pK++DRZY0GWtrgEMylSRT9Rlr3Uofa2tp1o2CKPjMJU8Jkg/5urYxzWRDYopwvB1RKUJxEhmJEVfvh2PX8/+yVa7ID2NGjiCT/gJjpVLhUr3Ap36wndniczRZOoWxUF465jbMj9plGl1VCKvecaBbh9a4Nuac5Sxf9tzzulhIw/Aa92WP1Vj0dLsLiDp7/iZ3y+L+Pu7n2O55aDbGy+eecxueS0jHQ3Ea4+kC6Napd1N2Be2nSLknGArgeipBDGKef+3NetO0phvEjYIzT8dgistaXkPZKVLzqjyy6za+duwL3HjgW9w+cyP3Bx/lspYgv9sfRxPwnfuKPLzbB8QCkaXoyy4/7nMn3riOidfX5+OaRuZrXzvu+czXv9HQdL5wFbsPzRIoTWFV84t6bgAxrQ1dFc+LFait6kRd3o6sWGA6nK039KgPuHsBMMMqihWg6hZRK3XARA2hqpKrzurk4/Y7Ft+zKeWbeGRyNTj2ENz3GRjeBtN7n3MbX4mXVpSHB5GJFh9wA4TThKsY7Ui7dppa9vTxjO+kz3zmM3zmM59BSsl11123+Pgzn/kM1113HZVKheuue3qXyoMHD3LJJZc8aX8ikSCXyz2rxp/a8AcX+ciXwXkOyaE4Meg2OTpEtMmxbkZV6c57CEU55eVEC2YKilgAecCxPPr1xgr0XNJi/uAR5hJ1RoNTYOdhf/U2auhUlq1HeJLEnimG7UlqI3m44A9h5ashvdQ3VXj4v55hg55spBAoNFb6xjWNlNoK0mJhHviyKS9tAt2cOujmO/f458S4ZQcD986w9geD1AJhLL2eRWQGEa7rA5wAmn9ixmPjKLKeuHmNsuWk24ZWv87Ec9T9eCbf5eqBq1EVlc6ID3C0hFpY37oegIpRYLhtN2bV70DNYJlauAGm2TSowqXOIP2RdehKkIhXpd1qlNnUJOxoMQid+z4c2cXEw8nF07A5egOV0aNMDzX0E58uvPwUcc2fEJW9EDNe47MSgS6M0wS6qU2mJ2fOXsgSuZ4WpZ2D9jEemnqI9PIBlvSuJhyKMT89jhB+OysTe/E8Dylh6liW+BvfSPzK8xGKwDp6B14tjz5wMfryy/DKNhtTUUj2o/ZvJdjdzacnQ7RX/URPxeMr1ffxu7d/m9RwDsvy788F0C2Mn+gLJLFk8hSeHRDdPYslprOVWfSIgqvlMaoTi69Repbyz/dex8WVWWw1ykz4TMoixiblCGFqEIrX2+8Db1OaZL4s/RLfWMQv91VAeA44pi/oKx2E5zT2acpTlg03A2nmgUOktMb1NVQv9U7XQTfxHMo7TkY090PlevfgGY3rLx4OUyKEU6fiNYwUGn3MK6Db/51wa1VsxWbAbpTyFewkAa+Fe8IhFva2VvbQtXQpyXQrpldlPHcXP//vXTj2M1yQewlGdud2xgLHl70s146xvM4InHFaaEmdvfjciMwQjCWoaHGqrj+O6/YcaipBtXsV8jS5Qp7MsIp+f/HV8nXsTjSAgVIqglfPuXvUfrLXXsGOT72O3JntSM8/X0Mdv8lPKptRFcmVnUdIR9R6aakksUHQN/NVLs5/kTfkhvjL+QznV6pkuqIEw2Fcx2GymOWc2gx/9OUH2bFv6kltezHFIugmG2NERyWMFtKIqR6VUgN0a7WGAbClgaN2Eul47kzzcEAh6DRAyT63IcUw1AdL837p6Dfdsxa1X/u1B9h52wg0j/vZRsXAqQhfz61xrhrlpSkkgp7wqUHdDEPHrReUteH/DnmZRYknF19TsDNYOzP0hZfRrnXRP9VDeESnIssUCxmOlg6w39zD7tAwv2EEiNXJEYMjUWxHEC4GCKx9E6HNl9P3gSuIvHk9+TM6mX7VSnKXrUWNRsl957tUH38cAGtsnPkvfhGA2JWXkj6vlcetBOWJfQDHOZfGjLbnVFraHEJX0frTEAmAodIy7NBfl7QZdo5QETZeQEEGw1RrJeLZSSjnEIoBaoT17QaIlRz2/NLT7nCRtkCBYGUMRh+F+z4PX3kd/PgDz5zQ8Uq8pENOz+B2NfQ4D1qNfMMhhGu9eK+DZzxrHBoaYmhoiEsvvZSdO3cuPh4aGuLgwYPccsstnHvuuU97nM7OTo6cwO5827ZtLFu27ATveHFELn4BAIo5h/foc6D2/wKmW3ZmgqjeGNRmNQ3PTWGfBq0JpT4wCeFB3Zq56goGtBWLr6n0h2gfWIZmNGn97Pgu++74b/LTRymc91qsgTa6ts8iPMHs2F7QDLj4Q77eGMDtf+8L/z/dd2zSDlooy00WGhpbE5pGWmsHzyK8YAJwCnQaTkUcD7r5/6X0YM1VBM86C6lpjN/wA7Rv3cmmP/wxdr5+feVG4KbPsfD7oWqYhmA8fHTxeIeUxoT46sSChoIHxila/qvH21e/fXF7R8dtVGpB2ud1gpUYtWgLZqQdK5iiWh2kolgE4wGsrjAxI43t+SsZvdXj2Wt3lmsgDQIb341dTVCcbKOW1fE8jUvj/8WjPxt6xu2rTA4Srgtal2WceZlZfC4eOH1MN7Xpd9IV2ORdxbznr+p+Y/83UGJBgrEYlWoR17HpW78Rr2MpNcelXPBXyqeHc+j9SxDBGNLxwK5i7v4OQg8hayHURIDx4AR/vuVmfn3V3/LBgU9SiLs4daAo7pVRvQqOHUQJ65j1QW6hvDS04NbluUSjp84AAIDubtrq7KuCU8IRPuhm2R6a50963YE1EO7kTXd+AxwXVwSJyCIBYfOB9kMk0i2Lhwu7FSZVjxlpIHrbUAY6CFyyGn1FEmNuP8GJRzBCJYLzuzHm9jf2rW7F2DxA8Iq1x/1f2FZaG2I7pYPHSOkNcGqoXuqdrINuygtQ+v1MImY02mjWATW3CSxMBDWgYaag119jBF4B3f4vhlcpYysWS5uS4AItRL1OSorCd2JRHlNWockaa+KjWJZJ2iiTt2eY2XU7P/n8zpeOztazjO1f+BiyngcurGteWWmAcCNWNxuXvXbx8aSYohK1UJwKJdu//w1nHjWg44VjuC/qRepnFlbVX3Ce82ZYZTcWnw94DaZCr9pPoHUJxfUdWD2t4Pn5cjl2NnHpn7+pWozLzc9jh4MEruynu38/xdDqxRxzZ8DgC9OzJMPz1OrMwh3ZAheFTHbNlvmVr23n4d3+osxTXX/SchZLPZ/utScrpJSwUF7q+OBggACJkkstoBFVPSpFfzFR1yQlt40Jcw0j5ibWr9ARqedeeieEwHAbv8sSpWEkN5K22Tq1j/Vzg7TWJHOez2BKqpPUhndTcJo0qU/xterV3ONAt6m63njKSwIwkDo15k66YVDz4pSKIdJOg/lXijWum6I1jzmYR5uVnHvjWjbetwzD0wmWDJACiSSWj7Cvb5AD6SHOraf6tqNg7x0gWAwgtCCx1/wB0Usvof+qlfSXLdqSPRRWpf1+Qkom/+qvkbbN1N//HbJaRVaraHoFoz3KuAxRyowTax3ATjQYyVG9g1Dg+ee5Iqijb+wBywUJm4P+gruLwzFrv++KHtKoVWsEky0QSfpvNFox7BJXrqjyJfdqHvVWMmNGuLBthLMDuyHUdG2Pb4dHvvi82/pKvLhDSomYzeIuPWtx32S10SdPhTtRXiACycmIZ3033XnnnaRSz10D4bd+67f44Ac/yEMPPYQQgomJCb7xjW/w4Q9/mN/7vd97zsd9oWOq9c146FQDK+CBzz17ttsC6CblcQN1KTO/yHSzgZpood9zsDm1LDcApc6KEgLEQlZYsVnGAHEtzbrkWgqlLDNDR4mZOqWAgydAlQ75qcMcmxikoAUwhmcx9o1RCsGI9DU66D8XznkfqAb0nw//dRl8fhPsv/EXtudEmm5txfzirpIZIq22gWcRWbDhfpkw3Zo13Wy9UV66Y/UbCKxchSyXUdt9qn/s8DzuAhYpPZjONQDNgMEj6wV9exsCzvtiDWH7FYEF3QgLoZ9azY0tnVvo0ftJljvIhqf4TuUfKQbAMiReoAW9lsWoZYlXiyh6lFrBxEKSbF26eIw15jBJTBSgw1B4DJdpPJTkcmLr1jF5v4oacIloWQaC29EO/Zi7vnEA7wQuwk8Mc+bw4nZZpJhvZrrpnQROE8DbDLopimS5tdkvswbuHr2bqfIUPf0NdqoiVJTpIaJOkcHh3VSlJJoKUcpVaf+Lv0IJ66jJiJ/4zB8FKTD6YgxeUONQYpw5I09OL/PV7p8vHjNhRPC0JE5FoKTSWLaHK+QiK3OB6aZISSh48g06njI6OmlpcjDNuVUcrYATjBOvA1tSM3ACHm5+HnU+w3x43eLr36Y+wJJkgx0QqYNuY7vmmPr0dqY+vZ35bx0gc1cTa3J0FCrHs1hoKvk5UTS7BTtFk5TuswE8YFjTURDEhT85UIOnJ4kwVAND8X9Lsw5YeoqCIyXlrIle76Pz0m+n7vqvMZraW8q+Arr9XwlZqWILa1HPDaCkdtCCz3C+ORrhbO8QCg5L87dw1fI871n2GK/pmuCtXV+kp7PA9PAzZyO/VKK6Zy+HMgcXH2+qKFxbLHFGrUZNCGwpUNa9hxa9l16ln16xhINigq+s2cm2jXMMRf1+VZE2mlvAC8deFmYKTs1BSsm0nGS11cipd5nVxe0edQlq3h9DrI7UIuimqhr/O7uJo8U0veECAa9AR/bH9LXtRBEesepB/tr+db6nX84m00ID3mE9uijE7lUzbAnWCEmbgajBDx8bI/PAEexHh/HchpSErOfsbr6Kdf8RrMdGsAdnqN22F/POA3iVF7gsug5UONJlol4y2e6m0WbGsY0InutSLfv9bkuLQZfcTXfgAFLorBQjEHl+i14KOjU3TLkUJKq10poxSOd0kILeygR7W5dxKJRgu7sVW21l3FxHn/E4e/Y0fsNTDbrJqoMmmpxr64SCqOvnvsueB/vv2YQeCKJpLtFYle4mKZR8oIJSl/4o2P74mPvfozjDJZi1WTG4hNfveTUX/3gjm+5eTTFWxtFcDp4xQvfZjbLZx6Z01LqTvDVTgdQyCLWw0g4z6c4x/KaVWCu7UVtaCKxZw5GrXoWby6MkE2gtCdqubMcO9mDXID91mOLcMGWjQQKJGp3Pm+m2EEoiDPWcZzOr6Y5002usYpfty0o5IRW7ZJNONH4bGexEsatcsCzCPucCVosx2gNllkazhFUbqhlor7uXdp0Jc4eenszxSryko5LLoNd6KJ3VKGkfbeqDh9tX+vPgF6mZwnOaNY6NjfGFL3yBj3zkI/zJn/zJcX9PFx/5yEf4tV/7Na688kpKpRKXXHIJv/mbv8nv/M7v8IEPfOC5NOeUxFCwi7n0qwiZR1DyB/Hu+Jdnd4BmAKmpUzALeaKa38nNqiqa10Kv5uGd4tJSAKVJY2/BwdQxPeJeGIHCvtx+Rnp9i3c9b3PzeVPcfVYj8QtVZmlbewZSD/i6biWT8XQeadcTmKv+Gn7vfkgNQHkWskNw059C7Rck2ScoL43XX1sTgsG4S0iEQTrEowFQxPFA3Us4wloT6KbWy0ulx2eFjbz6PbT83u8y8J1vE7nUL9W2Sk3ARi3PAtPNkSZ7W/MkCn4ZgIfCdr3RQa3Q+/A9Ti3QTq1brhCCjy39FxSh4CoOZS/H48N70c0OEAI73AaA4lpYSmMlQ+nrJlRPYFLVGWquX4gybXlM2S6fpoZEErzgHSjBONPb/UTL8XT6jB2YhRLHds89qT1PDCvbcN2qqu2LoFtcpNAV47Qx3bRg43dSVA/hKFwcuMpvmxHn5uGb6WvSdTObwJ+54d2EhCA7VSQ3U0JLt5C68izcXBln7BFq2/+VyNY06bevZibW5DomYVgb5e7KLWwzb2dwYhc3ux/G8wKoiTi1moOtN5koyED9bR76qQbCNY22UNviw1w5j1RMKsIgqjQAILnRP2fqfJZCYCmO8M9rKnsvvYFjXNg2TEi1CLtlpjUPU0oKLuBKanvnqR6zcL16nznT0NpZjOJTgweiqUyzMlsgpfuvn1A1LEUQJ4xSLw3WQqdv5S5q+Pdarc5iQwjQVCKpAO1tQaKassh007wqQroIJchCKXzxFabb/5mQ5SqWsFjaVF5a1no5w24FYIeW5Me6rxHrCY2l9iMoAtYnB0kaM3Ts/hv2PUvtzZdCZL/5TQ53C8I1f1y+rGTzd3MZrqzWCErJQf0yrPSFqIrOb0X+iCk5AQI8RTLYW2Ey2OhDdXseJ9bykgfdpOth25KczFD1SqyssyPHNJUDSkMIu1ftRy36k3UnHV8E3QBSdo5tswOLj5fPfwW33o8fTZ7P17yr+evqu3m8znwoqNAW8ll0s/k8Ukp+pU1yuGjxrf2z3H1oDm+uhHXXAewDk9Tu2I/18BDW/Uexd4wgbQ+Zq+COZsD2wHRw9o6/oIw3afkA9pQ3h+sr8dMa7APPw4x61CoVAkF/wTSZbIwTrppCUyQkn6dRhBbCUKpEojUiUZ1U2SCTtJkMFVBWNYC1H1sb0N05egL7WBW6h9FjVWQd7CJ36stLBTXcurbrlKYS9oJIx7+PVveeGuF9IxDCU/3rcaG8FGDWmyEY93OUkp3FVTzcnLk450n98ipSb1xOxx+fw5lXXMbaqs8i1KRK2/o5DN1FVTzmZkJ8xC3zZgr82ew8d9+qk9vbz8DsHGHHA1Vh55+fT8dfX4Whz+NMTyPMOVKvuYC+j/wKakjn8YwkXZhhYc5gRRsgW9xoJ3wSmG7g5/tK2l+cu1TdRMkqMWYd4gHrbkxZwwyrUBYIYaNnfEanooYxKlkyehu/2VLif51L/f31aZ5FGFZc5gNukzt9ptvM/pPS3lfixRfSk4wensDr3Ips8XURbU9yrAl0O9qzlp3TBjOTx05XM58ynvXddPvtt7N69Wr+4z/+g0996lPceeed/M///A9f/vKXebxeM/5UIYTgL/7iL8hkMuzZs4cHH3yQ2dlZ/v7v//65tP+Uxc/MHzPR9rZF3QKx+7vPiu0mmkolm0tMRSG3WMI2o6lgp+k3BFI9HUy3huCqUPwJtG35jjgthl+GWFNMrLA/0eyfCTPaUcGrTwzLuSmEELgdfQgJid3T5KIec6N1x9FgAlpX+qCbWk8OihPw/d8Aq3KCBj3hnHkeQdtnuk1oKghBSPptiUXiLxuWGzzRSKGuJ+h5zCD58O0HiP3eH2B0ddH7uc8hYxGsYhPoZmdZ0CC0PJvYsTlCIT9RzdHGXKxeAuiE0JEoYg+G9rNTDroBdLV0cv7wm4iYSWbEMW6df5AjM/6ky4o0gBOs+bqmHZjtIdqjfj2/ADbndhx3zMdwGMajPBWj8zWXYTtLyB8LIlyXdeHbEQdv5Pbr92M/Vd2/lFBtrChWjA7y0k8cU5rPMDxt5aVNguSK4uFZHhcaV9CrDZC38nxl71eILO0mGvbBxtmxYdoH/NL9cGUas+x/j1LWT5iTv/LWpuM5JN+0BqEpHM41mH5dpRAHlAN8x7qer1X/i/cH/pF/b/0e0iqjhoNkdk4e51za0HRr7DuV0ZZouNRm5/3JaT4RJ6rO4Ur/d9+9MoAE1EwWKTQyIV94WOBxSe5LnNc6ymUdg0ScCld2x6m26cyHVGKv8Y0mQFCr1MFx7wTfs1iE0RHYvcu/npqACACaVpCFYmMofrsWTBQSorEyrj1PtsLziahe11p0y4j62GXrjf5mTTxITjbaqrhVdN1PmAFKM7P+5HX7MNb24cXtE+17uucX/jtDL23A4eUaXrWKTQN0sz2BFehimbIKrBiKVuWfY/1UzTPJRbagSYuMHcN0/Xuh29iPVn5xJsvPNaRlMX/f3Ty4VlAJCpYXV9HfpF03L1SCqYaER7vSxasib2Gzt5wLZpcQsBTm1EZfYdhzuLEWnJmX9j3gZcu4msGYO0KP4xCuA1eHDIPZgH/9RESMhEiRnknx6i9tYXXb+Yugm2ubhJ0Sc2aEibrAv4qDJivQfQZ3BH1x+YoT4BupfipCsNYscW6Hv0BSsyyKZo13Lm/kPbfO1UEky8Udy/iGN5kyslCFqoUI6YhECKWJKeVlyjgHp14w4E3W/HMx7jbykTalE6VSoqIIquUSZq0KCGKhRk7iqkkIh+H5lloZMST+9aeoLr3FBoh35CxI1Bkl22QrlufnGe36UWrjw40S00IBHIdTFV7VQVNGUYVDBZhTFFpkCwXbJiBhoLvlaY9xMkIPhvDqesttslFhMutNEaqDbhKJeHs74bM7iJzbSeL1ywiuSKKEdfTWEIElcc5fezXnJC5kdXEAJeDxB2fn+f4FAS5tTZCVHnPAvTj83YFJcoOd3PXIVvqn4Pb7OxiLtnFvr4HQPbRkEFVzUc1RgqFZCCT4Sq6V1tLoYtsqIf93EkBMazlpTDdgEXQLKgEub7kQgCoVHrK2YUc0dDPIntLjBGqNhTrNMyjINi5fcww6Nhx3vN2FjThSh+5NjZ3D205ae1+JUxvyCZWAT4zMdJHMpIoMxFHrmqbjVYuc1WT+Yehce+gCrvjiM5cSOpXxrGeNH/3oR/nwhz/M7t27CQaD3HDDDYyOjnLppZfy1re+9Wnf/973vpdisYhhGKxbt46tW7cSjUYpl8u8973vfU5f4lTEsHOUSngV06lr8IJLkJaJ99CXnvkBTlAqCRA0c4vbM6qKaydZEtZPiyHAE8vWwAfdPEWhzWhoOdSW+yWJazNtLE0vx6q7kNUKM3iuw+CqrQAkd/lMmcG5fXjSw6kL4HLhB+APHoGec/xO9MhtvgjmE4G3pnMmPQlju/GAwwS5NexP6EL4E9SgHnzZ6LnBiUE3pGSFgAdqko9+50EAlGCQ4JuvId+8munMLTqYOkKw8t6Diz4eU24L1bpQaovZhsRCETZCuKcFdAvHDfrya7lw6JdwhZ9c/nzsW0w7e6nEG0CGUZmlVge5bClJRRsimmcU9rBUKfIby1LENIEC/ANVpCVRVlyMnoyRPRJBrTOxNoZvwqw4HH7kBOykhajlwGwwxObDycXtVN3t0tBOD6tSazKZUFQPabsktFbSug80ZWoZbstto6d7OQCOY9O+dPnieyaO7QGglK0hpWRPi4a1zJ9EuCULZ2YGKSWHMn5JcrgWRCg+0Lew0g4wEs1ysAe8conM9vFFEwVo0nQ7Tbdka1ujBHkq5/dDxbYQIXuaj+Z/nz/OvY9Pxv+D716mUSjPcFCMMxI5i53LXkU5vGRxcWVdYpZfb53knUvSXLC5hemWEPFL+2j9nTNQUwFqWhfFSgcnTBPm5uCmn8L998HXrof7j08GRRNwpQQazI6jdQZcvM4eOzS4EyNyajRoThTrW9ezNLaKiJZaFCq2mljR6+NBck0Opob0J65avVy9WiniVmpP7+b6DJ7HdPCyZZzheZzBlzbo8HIMp1LBo0Zfvbw0Y4fQQgm6gv2g+GBJNjJBzVuHLsJYapwj5gB3Tw9QdnRqXjdtxdtO51c46VF57DEe2KBRCvnjRcaLsrxeSmlKwT/VrmSmt5H7KkLh6viv8hveq7k8u4KrHm6j4Db6Ct2exwtHX/JMN+fIDF4gzLBzhFVNGoDj0QSyPrT2Kv0IIZCKimareBiLoFu12Pj++8UFjHb8OjNiI1W9Hat9Pd+YXkZUtfm1nknmossx6pO5RLBRdjRVyNGamyNel0C4O1fDWZKGoO4zkXUFFIHSmwJVQYmH0LcuxVjTjX52P6IlCqqCOzSHO9LQfD2ZIW0XIgHGmlxJ25VOlFqVqgSzusA2k4TVxhjsKYnjzQyeYyiRVAN0kyZrgmcuPrcvWmBVZgSAgqYzIxslX0uDDzOVaUoA8g1pmBc6vJqDgs8cd4RCohigjyXkLYuU9AhHT814ahgBpOGPg200QLcZdwovlFx8vO2RR1CCKlo6SOyiniceBl0x2Jy6gJARIWwHuLArwbr4ANGwQSqosdA7HMXjY1T5g6LOB366gYd3tfD1Hw5w10yKHW/fSPcnr6Hvd8+j5coVeBI+P7GRn+6LEy7WQTchKGk+EzRGmJZokJBx8pK4BdAN4K3RVy9u323egqsJgk4czRQonSqiNIt0K4hgG1g17Egrv7q2wg/ty7l7eoDd2Q4eKnRz5/a1EG840DN8z0lr7ytxasMr1jBv2UPt1n2YDxzxy/qbSv2nhrJgW8h4y6IAV75W5WM9w4uvSdbniSUbai9CY6ZnfTft37+fd7/73QBomka1WiUajfJ3f/d3/OM//uPTvv/666+nWq0+aX+1WuWrX/3qs23OKYs5pqjKCjNtv4RSO4ZiTsCh+5/5AU4Eutm+PsdCmHobVq2VJbEQqnbq3eoWNAbAZ9DAAugmaG0C3azlXXSvXkvRqzA8P0gm4SdMUnpUCzMcWHsRNVWnZccUvXMKe5P7+ebYf/JwrqkzTC2B130KssNgxCAzBD/54BMa9IRzduh2NGmzkhqVBRaca1CuhNHFy8e5FI7XdFt0L5Ue00AcQXBunI1/cwuv+ew9aBddjXagCbAMzUH9+hFSMFupcMTqYg9r2OtE6ZgP0J4J0FddSsF7GE09AIoGTb//qYpQzGdELcueyYrymbTqPQih8D/Df8UxbRS3XlqrV2axgmGiqRChqEF4w3rSRhcg0HC5dvR7/ElXENOVlIHDeNSQ5A9H6LjkUsx8FKvsg4pdxkFa1SPsvmvsF6+qlCbR7EZyPt0EdCWMTgxNnHJ34YVQmxJGRfHwbP8evSj8msX93z74bfpXb6CjrZ/Otn4UqdDSu4TpUBfTx3YC4NguP9z/I37j3o/wF2+w+Ke3KBzthOKtP2e+Nk/W9BlxPcpy3l16LSoaS9RlqLLRN9281WD+fx/FiwePA90WNd1OExC+qn8z13gr6fcS3FzcQe+eBxDBGkO5KfLkqOCDXDecB/9wdYV/U27iI5HtHEhsZvf6d7F92R9jSo1Rq5MzlPsRQnCoWENNK3iuh9EeRu+MUJ3UwHb8BCCVgt6GuxvjY9De4W9XqzA8fBwjrtmRVDiNkroFE4UIUearVWbmxgjGGtffqY5cLcdQ8RBz1ghWXbPNMnRkncW4PhEi38R0U73jQTeAsls9zrn1RG6uz+R5dNUv66rZyJLJK/HiCq9mkrIy7AwabA8EGK3G0YNRjECQQMEvBxFaiWMBEzd6MY90f4QD7npGKykimk1MGyRmDp7mb3Fywxwa4sa+hpzBm+Ovpp8629hNsCV+2aIj50J4ikCTGpqi0VYIUnIbVQg1axBCL23QTboefzX0Kf5NfJGfmT+i03F5OBDgcKiT3QooHpxfOZMz9M0AePWJlFWugOcDltV8g/mViZ7LaPfvcH/877mp9Qt8YeYMhqthSq7OjkqMVCrGWL3UMUmRhVK6qUIOrVLk7Lo7aNn2eFTVCZy3DOPiVQSvWk/gklXoG3owLlqJtrEHpZ5bqR0J1O4E2C4iHsSrWViPDGHef2TR+OukhOVA2WSkPLa4q13pQDGrmKIZdIMwTX2iEn/+paWAkW6HejWLQpWEFydW9s/lpJljudq4th+tnrW4vTz0MLVomqxIQHu7vwh1ikJWHVThz60yqkImYaNrATKmQ0q6pyx3U1QFUdc3jRAg5Plj4qw3TUfnCuIdKygEW9mz5yCxi3uJXeznD9W6NEX1CRIVG2Ob+ZWZa9hgr0HpSvAH79nE1//mVdzw/gsxFMFGFG7DoQYU6pdgKmHx/Zv7+ebeVr7f38ZUJEJO7+Q395zFp3fAsvQ8asm/l0KpLgr4Y3xKRMmVHYInkekmYkFEKoxIh1lt93BGy1kM6KvxkBx29+MpOqIAu5aO4Gk6Qg2DliQ8O8JgcCnZgIKy4SK25Zbz86lVZMtlpjNxUFUIJv0PGb7vxJUHr8SLPmS2AhLmTY+j8ybbbzvMnXcd5cpP3cXvXv8IP9k7hchOQyiCqWtMWS5hShjC8Y0GgTVhjw93TfPn3VPMFmtP84mnPp61wnUkEsGqr9J1dXVx9OhR1q/3nUjmnqJTLRQKi9TBYrFIsEmXyHVdbrrpJtrrwvAv1jjmDBIOrcJDRcGF6Z14uQpK8hmU/jyBtSUAN58nHWx0DoeVAnY1Qkd7nOppKF1TmoC+Zk03T1FoNfoWn8uETCYOH6LbC5As6kzGpunGZ7tVspMsiy/lcOcqtto5rEmbsVYV2y2xp/AYKyPraAvUVyW6z4L33gzXvwEmtvt/Z74dVlwJPNFIwYNj9y0+fLiucZQSgkCgbjvxMgLdIloz060Bun1BRMhKyX/lXIqmw4GpIvuTZ9Dr6DimwHFVjFaJVATChftnilwc2EdKlHCY5Zvu2Uy3+InZltkYcaO+EnAaWG4AgbCGogk8R3LZ+Lt5uOsmdhVuJ633cOfst+kNX0xHOY5rxLCpYlYV7JoDLW14mgDLPzfxlnYmp4e5trOF70yWsICHcehzVdojLQz86tvJPPhFOjfVqNXCvCn1V5TdZWTv+RDpS9/y5IYVp/Bch4wdJKQ5TAT1RUPYeLCFSPDUg+ILoYUa/Y2ieEjLQwrBQPAsYkoCqbjUnBoTAx7TP/VXoe0DHlo4SEf1GLIKxbkRSCeplmooQuFY2OHYKoUlVZ31P7qBicsbTtLr48vojlzDP4QuJk4Cbcch/rj/Y2CaKHqEuQMT1FJJrKZrKFzXdFNPUwnu2rYNHNYLjLh5IM9fzk9zVXIXt1tHoemnU4TKeN3AQHEF/5r9EUlFJSM0rtcFK4WvLTJR3MuauD/O/eCuQd561UpC61uo7c+Qz3SiLO0m8uZzQdfhK18G0/TLaWamIRiEWs3/m56Crnrpa5Omm7CmmbdDRHSLoToDLldW+eg9P+DM4h7W/eqbX/Bz9osiEWis0NfcIjoJPE1F8SaQSi+9YYMdouFyqtdBNz0QhDpZ1F6Twlg98LzbIqs25l2+OY90XnyrmP/XQ1ardLp5zqn5OeJ9jo4ejKIGNKLZdsy0Xzr6ULzE8kWDbY2S11Q+6ZaedNyXcoxPHqQtL5lKQVrp4Rwrj1I3qpqrBenYdCHURvGCS1Dqi4meIlA8DaVeVqrnIiyQh4vWfkiFcE4hiHGyY3Z2nJusexcfn2mabDVNYIpzBt7AOXs3csWKNzCUULFNF0cpUYkUKBeySKGAa5KdHccJtaBYJUJxf+5QmNcplTSyaY1WwyJrG1xw1TRmLc0xI8CA46DjENNMLKOFkmWRqWr8W98Yd1UDfN7r56sPHOOy1Y25iAjVpRLCBk8MrTeNMDSUWBDzkSEo+9e9N1NA7Uw86fXPKepsDRubTqWbrJehVelAtUxsqJeW+hHxGguFqho7KUw3NZb2QTfp5xuheCed80GKkRIeHoG1VahfiveVArwh3g6eg65Kxo5lOXNlHmaA9ASsXv282/NMwivXUIR/LnL1eUFSTVL2FJLy1I4bapORVKubYlSpkpXzGMk2CtNHiSPJzrqUTYdIQOPQg9u45brPcd4vvZ0Hbvg2l73rfZxxlb+gOu8pmOk4Qgh0VaOrftwz+5Jcf+0Z/OoN/oKqLiCpKlzsqPxgJoxAsudImLGJPgY3zXDL/UtJ1RdJ5XiRYKoXuzSL7GqnnQS2dGlXfMD2ZMqoCCFQYsFFVujb2l7LX8x/AoC7rZ9zfuh9hEsJAvk8+dQMyWoSIQSqFiRnhjEUeH3rPPeFWgmWJwh6VUbLNrKaRfSfB4du9s0VZvZB54anasor8SIML+OP/RM42K4BFYeglMiKzc37Z1iTULkoWkF3XAK2Q6ehkvfm2KkMYZoSUHnr3OPookJG5Pjv7TPck7mFi3ou4s+3/jkxI/bUDTgF8azvpvPOO49t2/wymde+9rV86EMf4uMf/zjvfe97Oe+8837h+5LJJOl0GiEEq1atIpVKLf61trby3ve+l/e///3P/Zucghh2jyAVg4zqs76U2jHcsWco+nsCplt1dhrFyS3untFUkjkFNZbAMJ41Hvq8Q1GbJoF1pptrOkghaAs0mG5z9jiBbt8dMV00mI83WFbl3CSJZIKfdp1FdXycyOAcepOU0e2zN3Lz9A8YLB3kaPkApdYBeNXfNV7w6JcbZabNmm6uh5x+1P8MFPYbfgIU8hS8OvNGvFzLS9V6kiAlfULlbDQG7MYk5cFjBZxV7ZSnAgTDDsrcYbzqMGXXY3r4VlLC78gmlTMZ1RsJWqcdJ67WV9i10yPULoQgXGe7GeUAr21/P0tCG8nb0wxlh/mucg+q52JUMxiVWbyOxveOndMYVOdnxhg8toerWhvsmu9gsgwVsxQmkE4R2/AWjt7SSXkYglqVFm8voXs+CuYJJnnZITq1adKBGhkzzKzWWHFMaUtQT6Nhh6o1GImqKvEsF1dR0DzJ5cm3+ays3CE+N3M96U6/VGF+aoyVWy9YfN/04Qc45OzjH/Z/Akc6i4Digz0OtX2HefznX1t87YbYAIGIRlxJYhQtuq1WNpXWUYgKti0vMtwBjqpgnqC8VA+devYk+NfVH/f86uJjG8nPjv6YbWqjBOjtwXfzgcifc55+CZunU5zh9ZEXFY7JIkUvyzcSjQE6Pf71xe3xoSyb/+oWrr3nIPdjA4LisWBDNDr6hIH9zLMa20MNnYlmpluSPbQEqgjhsb9eulm1Y4Rdvy8MPvGYpzCaQbeq2yi5DlpHAV/IVml6jVY3XDACDRC2dLLMFJonAK+Abi+6kLUanVajjCxrhjGCMYQiaMt3LO7fESmwAGGomobZVD4Zki8v0G1H6QAPr1GoBgVLtTPQsrsXn3MSa1GER6lg4JiN69kTAsVVF0G3yEzj/i+Zh5g18tTmGkyvl1rcOXh8CfFAXQPQE4KQ2cUF1gXonWG0eh7supPMdg9jyyoCC6EGqMweQqvOI4B4+wAAjuUxmK1w/WgPc5bBZd0xNhfXcVnml8g0mevoHRXMSpm9UxO4QhBVPV4frRIr5bjjwAy37J16xt9FbY8jQsZxpXPuseP7O69sYj08iFe28Oaf3fUt66Db49YhprwJLCySIo3umHgCzKrf3wpFIdRUOWOo4ZPCdCMcPU6TOhDvoCtT79slVPsDBOr50BAS09iMSoZ2ZTdhdy+uV8+VJiaef1ueYchy4/xn6/dQQolRcRXS4tRpywFoTfOSlrp7qkTyNe/LPLbZpmK4iMA037tjO5VCnv07HseqVrnnG/+DXauy6/77OPjgfWy/6UYOPXqUHT+7mbGDcxzbN02tSUD+vE3dvAGdVSi8JxhmZTLCAILfI8BGoTKbDTI2a/Dg3iRTeY/9czDQU+Kq9sPUsmO4tkm2RTAlcsyLIr1aL4oA/STri6v9DT29y2tnEFP9c/KY/TBTsTLhUpxQQWGuu8Hk1aRBVbTyUDqEKqC3vZFbTLlTmLbumykACBVGHzqpbX4lXviQUuLNl/EkWE2LcJ6EpVF/PmE7VRw81KaSU1s9yn+ot/Dl2n8ylPksvbPf5sLMj3nD/D3cPvp15mvz/O/R/2XP3J5T/p1OFM8apfj0pz/NueeeC8Df/u3fcuWVV/Kd73yHgYEBvvSlX6xxduedd3L77bcjpeT73/8+d9xxx+Lftm3bGBkZ4S/+4i+e+zc5BTHkHgFgONCY7Ms92/DKT1/m8iTWFpCbHiOmNd47rwbpzlRQgmGMwGkA3bTGZ6p1QVbH9HA1lZjaQkDxGTaz9ijRVecAkCrqZGMNVK2SmySqqUx1+kyZrp0Z3v2woPNoO21GJ3kny7HqUW6b+wm3zf6E+zK3w6Z3wfproW01HLgR7q6XKTefs/wgwsoBsEsP4op6+YX0EAuDunr62EcnO05opCA9Mq6Pjvy+F0XUkZIH9x7CWNVCLdO0Ejt/N58fyrPJbCS3U8FLKIYbCUeXCBMUNgTikBh4Ab/NU8dCialnOmy1HuOfQ1cSwh9UD5SPMVpfRjUqs4wps6hpB9uo0tV5KSJY/84SBmcOsDVhEK0nCfvwKGgmu5eYSCSR/mUYHQM4VXVBmoqQO41552ee3KixRxYvv6xsY9KbIECQPjFAm9F32kwUANRmLTDF13TzFAXF8zgr/QbiAV+fbaw8xt0bp/HqrAqvZBKI+GWAcyM7mbMb7qRdGf81462C8TTsO9JIWrq8BstVnfQnI+vzXYv7Js+Io/QmT1heGoicHgYlwCWrr+E3nLP4lHU1cY5nKUSFxjWhc1inn8lvRN7PH+TfQnK2SkwGiWDwVvd8bglHKdQvgqXVewgW/MnyxmSQjOVwaKbE34saX8fEmqtgDtXBhia9Mzo7Yc1aFkUVDx2ERx6GfXvBrifMdpakUmfUeSFq9X6sZMWI1Vk/wejpKy+NGw3R8GrTpE6zOnCECwJaoo1EWqsz3YxgA8gvzp8kVo6qLOpVLrpivxIvnrBteqwGMJsxw+gh/9rtqaaRrt8f7ArOoeKBBFXV8FCwPb9PVSk/+bgv4Ri2G9qh64Jr8CYbsiRqogOZeYCJQxb2kUkwbObScayAgeYoi8w3WW6wm9Ouxd/U/pxfvnI3tvcEc5aXSNwxdffi9lnKOayod4WFWIpozS+x07si6IF6Tmfn/P9SYtdsKrlpqnn/vIpoG5rhnx/Xlgw3nZPzfvTvtD48TThrU2ltgL52Z53djIcbb+SZ59edTT976yHMZ6kHpK/vWWTDeZkytdv3Yx+cxKuY2HvG8ebLWPcewnp4CO9ZlD0tMHqnPR9ISistqIpKQFOQeIvlpXo4SNj1X1Nx44Q16UsePN8IBI+bv9RKITrmgrTkDHRP4ZA1yG+nPZJmiZ2xVszgwOJrVwQfYarcZKbQ5KT+gkYz6Fa/h+KejnAU2tVTe89E9cZ19OraeVxuXAPADucRdnWM870rxnhwfYbhe+7lW//+Hxy6++eY6JS0OLYWZnLfLn782X/iruuv49Eb/p6jD32P7MRBPFdy57YhRjMVvvXQMf7h5we4CZtDeHypWuH+uSJfxGYTKmdKlRjwW8vL9IQ8VkYdOlqrvP68GcJTjTF9JNwAurqMFQQN9aSX4iqxIKIOUOsVj8tT/vnwcPlx5OfodpDkRIRgrYD0/PtEaHE8VcMqLmEorLNlWaNNeTnFdiXBjYkilfYVoBlw9I6T2uZX4oUPWTLBdskLB1En0tiOTclxeceSNAKYrKlYgQBKkynLPI3Fp7cWcscdc73VwFcOZQ+9oO1/pvGsZo6u6zI2NkZ/v896ikQiXHfddezatYsbbriBJUuW/ML3XnrppVx22WUMDQ3x5je/mUsvvXTx7/zzz6e7u/sXvvfFEketQxwp1rBjDdBNlPbjTRee4l0LL2zquOo6UsW5GSJNoFtVa6fPKiCEwDiJdfTPNIxwhFhYEAgIFoxMHUviSYkQYrHENG9PYyxdBwhSBYNqwMXs68GK92JV8kjpEWrtJG+EKU/MQjXEWY9HcVwHHZ02o3PRiXK4cpjh6lG47P/zdd0A7v9XmNp9HOgmZh5c3H607sYUlAZ4NdQF1d2XEdMtpIUQC9J/agN0y3oeU7ZLQrdZrfvXyP68gVjSSXGsqWR7+l7umzhAFxkedVeSmY8xbaw6DnRr10L+ZWkWFjU7TkeE4wvAmaCnvJfVcojfKF5IUqToiXRzo7odAL08h+UIBmM70a0QqqaTWL0GpSuK6AhjrwqTnR/jl7sibOkJYwQd/vPcYXZumWHbWh94i65aS+ZgjMGfteM4BhPWGowHPwMTTQ6oroWc3rf4cKyW5ph3FJMa83KWuNZG8DSCbkoT001RffdST/VBN00NsSV9JW2hNs4KdrBdP8q2M3zAY2jHI6y75ApEez9WuI3DTYPQxuEGgPHY1giTSY812SAXdF1Au9dBCA+raGLNDlGc3E3n/bcuvn445qB0J45zL11guoUTpw8soqODP5EXc7W3gu/bb0Fr0u8700jRrR1Fwb8frDXn8OavHuQHj/fxGfVXuFKeyWut1/ONeIyfRUKA5IzBPySZu5eQobGmvvLWnwxxHSaf1Cwm7xjxNQLPOAPWb4CODtiw0S8v3bARzjsfli33gbd770HceRt4Dkqhce3tazIkmDPjLO1uZckZmwiET5+RQjPTzbTzGKaF6ri4di+aVNGFQGiN16j1RDkSj+LqSzDCHUweOfj0HyTl4tj4i0IIsahXiePC9N5n/4VeiRcuPEmv7TNvPCDnRFHr2n5JXcPObcIpL0VD44CYQ8dnugGY9dVtjfLJ1cQ6zTGi5ha326wYKb0BKhYCbeQyMSrlEGk3TzUYwtV1BBLVURaZbrZUqdXVYFpdDw8XV4Wpor9w8mxAnNMZXrFG0SzycPFxAFKihQ8G3oGBD4SUlBhxy59H6J0RdENDujWo9ynFXJ69O9cwM9i47wNdaxe3HctjVGuAHBtnj6BOHoNECy0d5y/u75Emcwk/9z50009xa/72FSGLJUGDQs3hu482HB2fSQghUJe2ovakED1JsBzcwTmsh4Z8B1JFLPZv7sizYP7aLlVZo1BngKaEv8ChuWVcx8SrL+KHIgbhOjBX9loIBQWcDAOeQOA4Zr9ne7QEOrA1D1v1GHaP0NESpKO1BVvVuX+yA+r3fLfxOJOlprnM5Klhu4lq4/wulJfGiTCDQpdxahdrZCCCV5+jdCgxrLoRyFmqbzgnFZhqMTGs3ZQP70eRHjoOW9/wJ3T1rUWRLkq9JHZBt2rwkR9wJFdAK1r8yVcf5aM/3MN/3jPEGXH/vAvgXFQqSP4LkzACExja30Lf0U7OboXfvGqc+SNxzDkfgDbCCY4qPrFEkQqd4bNfsDxXW9KCaI+BofFm9VKWaKvoU5dxl7yN0fg8nbkBPFWlFBhDVuZAuoSLORx1KbtSQTZ2aORCHUwGOgg5ebZn4oynUij5cbCrvoPpK7puL6lYYABPZhralZOmR9LQCKoK0a4fwpLP8ZeBT7Kr9gAAluswhX+v99k2F1ePHwcvqjXmSi8W0O1Z0alUVeXqq69m//79JJ+jVkAzMLdx40Zuuukm+vr6nuIdL47oEW0kRBsdEZOgfgbUFy+V0l6c6TzasranPkBzqWQ9oSzPz9EWaIBultJDn1sv/zsdrC0hKFbqwvX1Kj0p/dVDgDajn/HaQSSSvFEi0DlAat7vpKVWIlDIUwUOjB9jaSTB4WQf6ZlRFFsQSWY458DlRC+JEtMSHCzt5sHs3XQGepmuTTDQdglc/CG4+5+g/zy46U8Rv/xdvxGuiTL4XcqRLpxKnofCPrgUEhGQLqrnUlUhFg/xcgkhBAYaJs4i6IaUhAIqcVMibZUz8TiAv0R8OL6a/uADVKpFwqEq8eohfj98Pz3uPD3MM84WarU8hbSf3EasMIlw00pu5Gmu3xcwQvEGC6lqBgjHS7wlsIavy4cZL08wJRSqmIQ80CtVit05POGiSJW+tgvYvXOX/+bOCLu9/VzccSVf2T4JaOwYjLNuXZaCIbh/mce51X6mhMAuaWQG43Sv8vWhyl//XSIfug9UDUrTeNnxRemvwUAXJfk4AD3qUoQQBPTTx6pUm5hUPtPNw1EEIcfFrUwSlgP86xX/yjt/+nZUKYkqYWZXKrTlLNojHciZEXSg1sQIOOO8j3Cv/W/0aj3sTw5yuBOgxobxI5gtAaoIjFgAvVciH3uI/vkaC8PHxOow9mPe8Uw3aSAlBOINltQpD1WF7h6oVujy4lwx63JfOERYVdhitBBTZogr05huANNx4erXYk9sJ9+lERsJsSV6MX8euJHPzc6gIZkyk6wb+jOGE7/Kx7rex52jef49WyEA7HIs3n1knA98skwkGSHV0cUFb7m40ZYLLvT/33UnlEpgGBCJIso2SuGxxZftUht9WM2OUR66n/mWlkVg4nREM+hW8UpYAf9+rRhRJH6CH14QMQY0TIR0icZCKPYElm1z9NEinusuggi4bmOMO3QQCnkYHYV1G55W90coHlK6qPs+Dnf9BDb/Ohy82S8vmdzZKDM50fYz3fd8n38ptKNjA4w/Ci3L4V0/gsDzB8ilFCyx/MR3StGQenSRKRGLB/GsToyWB8gCPwpmeZXb2wDdXI2oZqOKMrblYgRP3zV/ssKrVBiP+iXomqeSyXqkAz4oKSU4aiuZOf/+agmZTNQZWyG7iubRuF+AkhclqOToaBq2R47toUNR8UYzqMvaEGEDrS/9C9sjPXl81cUpCiklzoFJ3OF5DiWmudA4i73Vw6wKbSRsjiy+bq63m+hUAq0zjNYSQp9UGyw3wJHtIAS5iQbolu7ztTal61LxPGbq5ksr7FkSVgWvOI0JOHqjX+mQJWaTJq35ANlsjqFvf5e+N76ejUnBZM3Eqgmuf+AY7zxvybNi+mj9LdAP1u6xhqN1rT7OhnUwHXAl7ngObVWnbw7zdOfOdpl2GyBSWmlBVMt4rXGE1QBw0zHpa00DZTdNZ3fr8Yv9zzUCARSVhm+5tAknu+jMHKQQLeHiUovNsTTSw8GiycN5weuWLoWpfajCRFOGgVb/vRMTsOqF13WT1Wamm3+OY56O4yikIqc2dwuHAmQ8HUW10HWXtyjv4/zoJSxXVvO92vXcYd0MwM62MbaO+eN/om2ARFQjsvkN5CYO+C6OVhU9nKBYrVJRwrQM3kvk7NdxZtjgYFCjWHPYV6rx8WSCjqrHUhMO4bIhFaYKfC0/T0aAEdQpzkT5wbdXM2PN8WsLeWB7GzP4ufQAbaihFoIn0bm0OdTOBLJs4swUWRVsY8BYxd2VGwH4t+7v8YkDv03HgSiZvlli9goAQrUqJW85FTuPG3+AhDNC0q5iCZ2Hp8/nYpFjsqOfpSMHoZaD6T3QdcYL0v5X4uSHV6ghwyrVXGDRmXSyatMf8Re4ReQQqp6lAuw1t7NF20rZtjjqFUCBs2om94aCnFUzidUXN7aaAgUFD4/D2cOn54s9IZ71HbVhwwYGB0+Ou9Tw8DC2/dKgx4/LWQ5ykGlvkmqgH5MgLjpK4VHE8B3+StZTxROMFABqhQIR3QdNCorAk110Kv7QdjqcODUj0LTdVDNt+dsLTLeYmmbOHiey4myCtkrYVJlpbSDMydIYW1oiHEz141YquOUS8WiWyuNZ2gKdBNUQZ8S3kNBSTJlj7Cw8jOnW4KI/hqWX+IYJIw/Af5yJMn8nxo5rUYqHiZQnmZZJdoX8ZDykhMGziagqlWgAbWnrqThNpywC0gdXLLWxyhUScKTmP960kEwENP5xdD2j526ifNTfN+61cIF95+KxZla/i3x5ilrA/y0TZopYtMnx9DSCbguabgCVmgGOSjqY59x6CaOLxx7hrzpHcwqXtb2eUIv/PcMt/YtahO7RHDP9NVYVSrTUV7FHJiNMzIQY67TZu7xKrt0gvNQH/ouTaVwtCYDt6oz+5Jt+I6b3oFR9dthMLcJ4qpGkdet+AnBay0u140E3ANeTKFKiBTtYET6flkAX/1TVcYVgV9ccD7WOMzs7xtS+/aj18zUv/RVOIWFp+CxalQ4OO0d4dGnj3l/12BzVenmLgU13fhqlOkzYhLZ6NeVhp0jNco8D3UIEkJ7ASJwkMennGj09vmtapsDfBK7gRudd3NH1Kt4bW05EKzJgPEKVFF66g+LWt1A4XKJsViDUQzw+QG82zp+2t/KdSJSk4a+0RGu72TD5Nj7o/jpf58esKM4xjqQsPR7JFDm6a5adt49Szp1AduCyy+FVV8OVr4J4HFx7kenmScFOvcFWDZmgIEm0dTz5OKcwmstLa25Dr6u2KoVXH9fiIb+MyUSjo/Agm6Y+x8rqzyDgjxmuXWH7TfWyurk5+N534NgxGBqEHY/B9u0wMwMP3O87vZ4oPA/u/AT6rj9Anfw26uwtID3Y8XUoTsD8ocb/X7T9TPc93+dfCu0Ye9AXnR57BI7cduJz/ixD1WtE62yMEdVAMRogcqgtgVNch6yzPu6R+3G0WBPTzf+viipW2eLlENXxUSbrGFha6WIJOWKaheMJysSQQl8sq01EHJy6g3jIrqIiUJTG2JOvOx+GPZtgncUx/OhdyJKfe7mDszj7J0/oyC09iX1gEuuRIdxCFS9fedJrXshwj80v5sgHpnZzt7WdObXAMmUVodrw4uuyiVaW/eYFdP7RZoQi0AMa2NnF53OZLqSXw7FNhFAIJTqIxduxPA/XMhlTPRYKH87IDSPCYVo2rADXRbe7KQX8c7jUsplN+tfYlBHGNW2KRwdRPZv3aT77+chMiQcGn5sWpbGxF6Xj+AUn48x+1J56uWdIf+a/ge0y7TW0SNNKK6KUx2xNH2eikI42qhjKXppA7CRJO6jqcVKaSIdIsovO+cbxDzn76K7rtz4mIsikLy/jkkAr7cLxBC7iF/ftJzlOyHTzNHRHJRQ5tfrFwUgYty5voWkutuOxUluLoii8MfQ2DE9HuFCiiFPP5+IdyxiuHePn5k85tjXN964c46HXG+S3XEFA1wkXx5k8eC/l7ASXdcT54js383dvWs8N77+Q12/uY40pCCDYiEb6VQOs/NOt3HLRGv7RDZESglnHZT8u15iN8zTb2WjzKtmNp4Ve0IoOdVkb6kALgZrFVe2/TkL498YEE3yq9+u0Hm6hFptD2n4lmaKF0B2X3pku7tffS7jVL0M3pM30hIPiBhnvGmh8wPC2F6ztr8TJDel4eJM5asdG0SeySMemUK0yVXeVdqXDWc40SyyLTsfhkLUdT3oYskpR9a/ha8oVLq7WiElJub7YsMTM0Rv0L+wjuSM4T3AJPx3xrO+oj33sY3z4wx/mxhtvZHJykkKhcNzfyz1m3CkQCjf1/huzThLh1dDGv4q79+6nfuMJjBSscomE4g/8M6qG6rTSaSzok5361Ugt0AS6NekQ2KY/ELQbA+giQNHNMGMOEepfB0CqoLM/2hCezU8fZSASYKpnFQDVqWlkJUzEamibCCHoC/kDs0QyaY75Yv6X/GnjNdUM+pG/RmnSEXrE7EPWz2VIiYK00TwPNfTyYbktxALo1igvlbgC2qI6R02XMz2NvydIzXIYy1b5ctc1fNW9gm3WBnqUeTqVHADVcpRq11lMWw3abtpqJx5tAgXCp885ONzEdKvYMdBdRKTKG2WDAfu48EuPjco8bjVKb68PyCmqRjI1AIAsWFgJyZ2bHmPT+kaifvc2v9OVChzocEmsWYMWjWJNlshNdOMFEiTN3XQf+BvMHd/HefRriystY5UEM7FGotgT2wicXtCtWXtRqV8bjitRJERLFTShs/PYGK+aHmaV6fcvcymLSsDhwNHtdLb58gDVgP9c1AmhlcucqZz1pM9aMxHGq4N0YnyI3Pd/hMzOwobL6DeWA1CRLjOidlx5aRgDKQXGyRByfj4xMLC4GYudT1j4TJIF9oJOGSx/0JbhGNami4nun4GAf31dNrORgZE4H2tL8flkkj21JJO1BAFnHl0tsoUb+Mvdn6fDsagI+J5mM2q4eJ5k772/wGRn2XLo7/fZbrUxlJrv6DhVi5ILNq6raB13SLSdXlfvJzLd1LqeRt5TcOtMHDXSz5n217nOfQMaNiFnjq7Sg5yZKLLg0pG55zt4N3wNfvBdyOfh5pvg57dALtf4MLMGt/3cd39tjmoOfvjb8NB1KLkdqJk7EV4NGYhBegkYEX/8WPj/i7af6b7n+/xLoR1NuqHs//FJuVY0vSESP6roDco8EOpIId0Ysub3P5NMMi0Ki6Cb5TYAJrvY6L9fynHs2E7cei7Xq/eypvR9orqF6ans0y4BwK4GaQ3WUJrcMUNWBR2J2sR0y7sNkKPV9fOz8cJRZLbScG53PZ9N1RTScrB3jfjAV6aMfd8RnIPTnKrwClWcA5N4UwUIaOSCjQXahJokVO//AMx0H3qTFiRuDSxfZ0pKQTEfxLP2YldnUI0QXasuoiWgoQrB/MwEB8KNMWj91BDp97ybyMZ1qONHCVWS5JP+4mKL5+FGfZZYMZHEsyxmt91H8dBhfjPeGO9v3//czSr0dd1oa7vQL1qJtr4bJRlGtMf93L5k4k3mn/4gPJnpllJaEOUClWR80UQBINlUuVAVLYj0yRt7tab5iJAu4dTxoNtBZy8DAf81+6PtFLR+SPWjUGBt6A7G8h5CShg5BpUXHvAVTUBtVlUIugaqdAjaKtHUqdWZDYbCuErdAVeAtBrfPyhCnKOdh4JgpKvKTMof94x4C1+r/jf/636f+2OPUxBF9nuH2BG/mb41dUMs6XHkwe9ilTKYjz3MO87tY0NPguh5XRhLE6TfvZb2959FaEMrQhEkYwZq3CBqaMQMjTYESbPRD0xEG/OsVbIbqRovGNPNPxcCbU0XSjpCDwF+ueWDXGRcxZyY457oI4zJLF3H2hFmI4+Kj43QVipQ0yLEuxrmfmplhuLEUiY7mySuhu/llXhphDdXBE9SMLM4KzYiNJ2jNY+S7Y9lU94En52Z4cbxKW4dnWBldYZB9xCmkyMjSiAlZ9Qd0wtSZbAO4Ia8Mstz/mfYns2xwrETffwpjWfN33/ta18LwBvf+MbjaNeyrvvlus9cfPTiiy8m9BIDSybwqfCdqSUMH+2kPVBFmOOot/wmrNkOkZYTvk+cAHSjmqUYVJnSBTuDAaTVQlegvqJ1GphuepPbnNaki+FYLirQYvRgS39QyJjDKJFrEEaQdNFgd1sBNdyLWylTmBlEeh6x5WuQd0BtahpjyXpausYpTZSJdvvJfnewjz1FX69rojbCQHgFDFwIW38HAlHkru9COY+nRHBbL+dA4giD9zcl8XWmW0nqxPteXiw3AIMF0M1FIhHSwzGgx5Q8ZEv6DegTKm1S0JoK8dg8PLbqbaSVr3IRDaeWXPpipO0wKxvAaJvTTqQOuqBoEEqeyq92XITiDeZWteZPMrxQmfODA8RkkKKosUcZpaKG0J0aOyeO8sa151Doq5CfqxDtWUFmzi9zdo/mqJ4bYrNaYvagyVw2wLH5EPsPxtnS4rB/oMLa9f14t/rX8ex9ZdLvDIAJam0e9cgPYWQbLhoHcyn25duYDOUW29cb9+nqp1PTTdUbkzNVWQDdFCQQqppUwkGKxQiO0LmiUuVQvRxwpKNKeETDdR1cRVIN+vd4LOeR+pf3suVtb+HGZY3P0TxYGVzJAudEy80SvfxySnfeSeu1F9OpHYKa72A5adSw9AbDIoSBJxUCz1GG4KRFIumLSWezkC0SFAI8AYrf1qlSGFk+jKpGYH6e6uveQ+KRn+Kt8IfGjS1noETHOShL/FhL87XVFp/aPcvaeAAFCzfWzpaLB/mz7d/kQ2f9OgCPBVwGLI1dd46x/pIeIolfsLJ+xpnw0Ffw0BmtJjiYS1Lt9ZMMVSpE64BpvP30Mt0SRgN0K4oKquuxYDbpaCqG7YBQSAeDFGphLC2ELqvUtDSvavkB1eo6DhdbODYzhZPLYkgdhAvyCWU+4bD/NzHhl+FecSkM3QOrXg0/+G04fAt0noGc3ofU00i9DTrXQt8G0EKQXOIzuGJ1fdgTbT/Tfc/3+ZdCOzwP7vksuBYcvhVcG9Tn5zasBRqT3Qk1jBpulDquivTz5a2Sr+fP5RH85HePu4/zNB9UXmC6ATi5DNDzvNryYoijU/sXt7fWBMu9RwDQhaQS7EP1BK6rEA47VAMNs4SwXUUTHkpTHpi3g9SlMllpWYzpOpPePAR1lGTIB7XwnTLVYON3tHaMIDNliAeh4ANeXqaEV7VQQsZi7v5ChXNgctEdW+1Nkc9KqOu1x0SckNk0EWpdtbgpPY/JnXeCdDHtBJnZMEKVOKZvaONYVZI9a/zjCsFUzeOQ4hBHsMwU9GeLxF9zDUokjPqT69H6VzHScwbZ4jzLqxWWq2VMzfPHcsfvazOP72bJmvW8rpTgaDrKHQdm+H+vW/uczo8I6mgD9by0zjpTk2GcuhnWMzFg87+oy5TbMKJJKa0o5TzltuCiiQJALNAAW6tKC5zEsVdTm6aK0iGc7KIltpRYeZZixGTYPUpLHfB0VI2vTYb5g3AakR1BFQ6G+RCKOM9//+wMLBk4aW07UQg3z4I+SE5RiXoRoEbY1oilTjHTLRTCU4O+yCUgzAoVI0mwMIES7GZtYA33ez5ANNVSozsT4WDHPGP1+0JBRUiBFJLD7n4eWrqMdTMrQSjkJw+y/7b/5MyL3sNDP/o+5137K6gxg7bf3ogQgsHHHqGv4wwUVGIX9xK7uJc/qrfLydX46od+SL3egSFjlA6ZJiGDrFS6yZ4CGRUhBNqGHtKPTzCQugBZmecB6y7aRTsfXfI5Prv/z3HW5FCtDCgGWjCKqE4QtKoYXZ0LKk90mTPsP3wmkcvbqAZChMy6rttJGNNeiRc+3LoufqXJhClruWTqVXblynbSTRp9LZ7HDvthznJ94LXXcUnUGfZDXpgRz2Bj/dJdMTLBnfVh5e7Ru1meXP5Cf52njGcNut15551P/6JnGDfddNNJO9apill3jOFiGQuNe9J/x4b5PyQarAuu3vqX8OYvnPiNTwTdpER3sqSFQ9qGncEAopYkFvN1VU5LeWkz063J4ccp2wSAFq0LBRUPl2l7HD3ZjrFyKf0eaB3LSaxoJ7PrAK5do5yb4NyWGIWBVcTzeVRAb59g5KERotf6wrddwd7Fz5isNYnWvvaf/P/nvA9z2xQ4BRzF4P6N92Pd1XClCRECPIqWeZzQ68slgnXQTQpwFYnmCaTlayitDansr3qsj6j8T2sbfz/rg7VLjQyfst/KtWwjWDSRQmN6y1uxPJOM2ljJanHThI06KyHcenqNFJrLS0UHMIiigwhYXCHXcVRMMy+r7HF3ssVexUymDc1Q0Q0Vq2oTb290os7BeYy1bagJwdmdMf5n3k+mb3+gk9XvPoSiwNFeg97V68nveRxp2pRKfcREfUV78D6o+ddrKlBjyowyoftgZYtoIar5Kyinm+kWjcYpzJRwHH9kkbaHi4ungF2YwI7HGOx/B1dOfJXrUj5oMtJrcmF5FVOzI1RCjQQ9XvSPsXzHEZLL0+Skfy0NaH14v/zBxdcFagVCmzbR8ZE/J+9F6HmgwViYClWxNZeufJi+SK+voyAF6mk0AFiMgaU+6AYoUkIhjCOLEHTZmbZJzlfwrDno8FdJvU1XI60cqAHSLQofWrIBJa/zZeUwIPhSXMdL/Dubxbdpy90GOlzcM8kSq8YxI8hR1UMsj+IcK/ODf97Oa3/3DFp6T6CX5bnoMzeiYLMkNMdt4wOYddAiLEPEHZ+JEX8xMd1kiWDNXNR1c5uYOJ1BnS+VX0df/4VcnP8Zy3M/AeCKzmGq6gB5y2EiN0s02kVreAZZ7kTQ1G+vWwo7D4GmQWUa/vUSKByGs98N44+BakB+DPvC/8SzfV0go3APYtIENwmd7TAnoLVeKn+i7We67/k+/1Joh+6BsRaqO30zneF7YfkVv/hCeAah640yuDFXY0nT7yuEIKgKXhU9n13zd9FiRhgO7OdC1QcCTbeRjtqzz51h9GKKwdwgxECXkrdP3cG000GceR6Y64fONjxLAwQJvUpBbQCUIauKobjHlZcerHTQF+lhqXIvfzOXZVg3mBQljAuW400XFkE3WTKhxe9vnJF5REBDCgE1G6UzgTeVBwnWPYdQ0hGk62Gcu+xZA0vSdBCBp55CePkqUlEQ0QB4Em15O9ltDWB2uhRArwwDUA5FCUcaQOvIYw8TSqSxK0UUUWVuqgOrvAfp+UyhdO96AuFG33RHTccFCkg0qeKsuYzg6lVIzyM4sh/vyHKsFb1sqPj96hXVGvckTLozOWrJToK5KWrTU5gzk/xxIsxVU3WGbtmiJXpygBqhqxDQwHT83+lpQnoeuJKp48pLW8AdxVOU40C3UFPObiotcBJZ5s3SM0K6WKJCLTdFz4zOfFqhtWUFGXWKLdUpxtQIN0528/7z18P44wgg5d0DcgsI1ZcReAFBN2l7qDRy3YyqEJURPM8lbqsk20+t5EXQUPH0INR/blGrUEwkCWaOUJYFNrVsgHoRymwHpKvrud85zEqxhiGO8vfrPsrPvvJZbt88S5fbxq38FGXr61l6h29KEe9ayY57/wctYHDkofuoFPK0L13OxMH91EpFOpat4G1/8w/HkSoAZmaGKFoZ4h0rMKMaM9wCAqJ0ElYCZDk1i8tKJEB7axiZhbPDlzLhjnKz+SMQ8Iixk3NCK1ErRUTYz8/k0XEum5xFSY9zoH6MNnOGnw7bXO7FmVh1AS35LMnZIXjsq7DlfS/4d3glnntIT+LN+Per6TT6xKLtka87SLfmjy8V3ui18Xnzbh6sK02ub6qMKGdS1CoxhluqBFWHi9Qy/103KPvC419gqjLF1Uuu5pzOc17Q7/WL4lmDbpdeeunz/tCJiQm2bdvGzMzMovPOQvzhH/7h8z7+CxELTpK5SoaBVv8HrDhxbrltCdeeN4PQDJg9jBi6x9cle2IcB7p5UK1i0KCXj+sGRlZHTdQTr9MCujUx3RQbNaojHY/iwRzGQIpgVCOtdzNnjzJvjeFJF6Wsos0V2LH0IBd0vxn2GejhNBPH9uIsu4RDMkZycAddooxVjBOo7AF80C2ohmgx2pm3ZpizZqi5VYJNQuIi0QNqBpRWXIp4NQc71khCg/Vl34pmHEd/f7lEgMYKja1JNAvsJDANDpJgWGVf1aMvpPBnvS1cXq4RPWeWfXfuYOonMaTXRvWya6lF11Ia2U0x0gBalhJDEfVVhdOo5wZPMFLwmkSgwxXelO/jvcZjIOBeZT9JN8r149+ksn0nx/LHuEp7My1tvSiagaJqOPvmKU4+yhv/+q/of+s67t17G8N4dNkah4ajrFlWYrjF48xNPuimp9LM7kkQ2dqKYzkYqo5UA0jH4tbJFeQiDt10kxcFlogGnf30arppVKpllLBHWNSZC5aLF9IxHI82EWNeS3Fg5R9yxfQt9NgOjlCYTZn8vGUfZ2fTVMINVlqyVC+1PLqXdfqlPGjdi0ChT1uPozTux74P/A6RtihSSqbuP8by+AoCFY1uNcB4skYu5pDDocUzwQPpidNjCPPEWLrM1w0Lh/3SlvkWsgezzN78M5aEdaoblmLE91G54gM++BwMIwgja5M4qk1NwK/FlvPV4iCOcDnSW2H/I/fSdfmbfdANiLcO84bBR/i35RezUqj8rFDgNY5CMKLz/X/ezuXvXM2qLZ3Ht+vwrSi2Dy4MlVJk7CAhL0BEhjGcBFHHB8VPu6ZboKFNVPFKWLoOUqJ6Hm7TONVjCDrK8+yYU1mZOo9U7RDJ2kFGvFaWG49zd245X9pdYK5L53OB/8RouwZqFliDYI3BbRr0XQxzrTD+HdA7AAl7bgCrBBvfBlf8BWJSh2P1cqtKAqwiYFI+NEskUKZcn5+eaPuZ7nu+z78U2uG4KlpgA1R3Y2utuF99D7mAXz4fMw9QDKxZ/P90+xa2EyrY+KSOCRlgQH8y2LzE6EZXVSaSQ0wAb5L+wkgz082bn3vS+16Kcczy3UXfmyvQYuVBg5FSnMez3Ww1ApTLdT27gkLGbCdq13CkJGyX0XXrOCOFfZVurmYQVZrMaQHeWizy1YCOoivQpFMlmxhU7kQemfVBJmPLUnA8rKl63ulJvDm/j/EyZdSWZ26k4YxlcfaNo29aglesIrMVRDSIvvr4Ps6bKyJn/TxDXdOJUBUytQaAtDWk4Oop5j1BNZkgrif97yAlUwf34tRqgMLIsRVY1aM41bsJRFswS/N0rrpg8Ti267Gn7KIqGhEXLqxpzCTX+yw+RSEa8FD/+28Z/6V11EIaQdfhskqVHyVNuudDDG46n3V3/pBAewf5g4fp2DrAq8IVbq2EOTpbPmmgG4ASDeCZDtgu0nIQxlNMw+qTzslmIwXRimSQiCtBUXCCURzHxahNknW60UUNR0/DSdRT1YONuYEQHvFIL9FUF6nSPAeWZph1dnOWuwUt2sekG2LSgx8UV/CW1BK87DQFp51Q7SCE1vlMtxcwvJqD0gS65RSVpV6UsqfQgiAYCz/Fu09+BA0FaTRAN9UrodVyOBT5YvY/+Mh5Hyd1JEg2WGM6UmTGGudB19d53di6kSvPeR3TP7wDd/sObtsyBRKyMkP0gl42z1xAxaliVfOoegfZqUnsWpVEewe1kn/fhRNJbvmPz/G6P/xTRN3Qz3Ucbv2vf8OxTArTRyit3rDY3tWyexHsfyHLS5sjurKN8ENTWIbOBcalPugGPBo8yAX5zVAbh1A/CEF+yRq03B50O4amJ3HsHK3WPFXT5oFDAYyBpfzyT273D3z738Ka10Ps9OZQr8QvDi9bRsSCyKKJLRsVdgXHRaVGtTDLytzu496zxA1SoTGObDQbGrBT1RgT1QRdoQMEVJcWr0LKDJI3NEzP5FsHvkU6mD5toNtzuqPuvfde3vnOd3LBBRcwPu7XW3/ta19j27anFy78yle+wtKlS3nf+97Hv/zLv/CZz3xm8e+zn/3sc2nOKYmY5QMgs2KOiuevLm1IhNie3MDskQE8y0SMPww/+SOwT2Df3sQkkp6EcpkAucV9eaONQHYONVofKE8D6KZo2mKnrKs2sTPb8Gqu/1exUTyPtrqZgiMt8vYMWixNoqyjuDDaYxIMh7ALUxSPbWdtLEBtw3lI16MyMYk710I8dgzpNsCf7qB/PBWN0eoJDDrqlFFXEXhjRaxy08reAugWjqO9LJluDTDKrutleT1BREihRVVYDuRCCvnuIKW+MGvXpImVuul5dwyx9RI6PvB3yIv8cvDS/AiFcGMldAlNiUf49IJuzZpupVpwsfrapcQ5XhfLPH/F9rCY5Ablfspega/s/Qp3jt3Jd9wvowd0Eh0rcMwKSFCKHsXHjhEI6vxxTxoDOOTCvQ93ICVkW2sUOztp2boFO5vB3HuAefeXKLxrO1OBS3DO/h3uHj2TWTPKbNLkmDhGTmbp9XxGhq6K086s1IM+GLagvehZLi7+76u6LsLzcKXHWOcb+NLkFDHPxZYOpWVhikGbUqAxSEVr9UTM83h38NV8PvFV/i3xNa4NvX3xNQKPUNq/ZmZH8xTmKiSqLWwMdjPklplONyZ6m+SAv/FkPe/TE62tcM1rjxNxtgtFhCdRSxaxBw8iR2ZQhxsl2XguVIaQrsKxkEGHorE5srX+nMfh8C72hKYpRHyQQgnBtbkbuMCFw9Jlt22SXx4iO13BMV3GD2aZHy9xXAzdjawPwY9nu8hHbeZCJWZEHuFGiS2Abqe5vDSgBghp/vVWdYvUQgHaqxVcRTmO6fa2uT1cNf4Yc5YGQjCYfANjop91xgib0xO8Y2AHrwrfxT/p/45BDW/uRnDmwK2CLEI1C6PbIP9t8MpgDkHHVt+dNNbtO5GlliyWBgPI+uTA8xRcV8FxNFz3F28/033P9/mXRDscDYJroOMvcYzNBEUB1SmiOkUiYv64/0+3b2G7poTRgS8lYlRdDS2QWDSOao7VbF7c3mP4NA+zSdPNK2Se9J6XUriOh5SSYTlPxHVZY/n9rScFd80sRwsEEYqCXc8rO40w1ViEkh6kZoSImiUCqn0c6KZJhx94v0s5sIxVtsm7CiU2yzJWfsRnktVjgUElPYks1PWjQjpKPIRIhUF7cm7pHmuAOu5kHrdUw3xsGOvxEez9EzhHprF2HMN6dAj76AzO3nFwJfbjI7jD83gzRdzBWbzc8XpdXqbhrqm2++D9AuimY9BR3EHMHKTFzjDSs4xE3dioks3UATdAT1HKZvCcEcDBruZZetU7CXWtWDx2IVegKlQuXNrCL4XiGAhKFUFmwv/8wBqfGRs9MMdg91IAEp5HT106It/di5pqx5yZJrdzJyEyfKwlS1R4HJl5Qr/9PENEnvxb/aKQddBtqg66GQQIiwheyKCkCArzc2i1EromSWX2k9ImqHgpaoGlJ3XBSw81AFkhJFJKwskuEuXGwvCUO8G1TaXC35lso9h2FkJ4dOgHcMt1I52ZGd+69wUKr+agKj6w7ABFRRAXMSquQlKTBMKnFnTTVQFNoKXrSJxwC3akjTYS3Dl2F2ckfAdeT5HsjTbmQZvaNwFw1qtfR+9smPN2pwhaCg+79/Nj7Wbk6tWoqoYRShCIppBSJRhNEIhECcUThBMJhnY8ysEH7mXX7b5Lql2r8eNPfYJyPgdAJNXDZKpxny7oucGpk1ERikJbKoit63So3XQpfhXU/tAgYkTQE+lGWv5CjDR0ho442GaAcMiXc/IQtJhzHDyYZjbVyaHlfl6GlLD7e6fkO7wSzy28qbyvS+q4NKuTFW2PmChRGbqTtHv8uJJ2q4RpVNFsaAbdalEcqbIn7+fNuiL5ux06b7+90e9OlCZeoG/z9PGsmW433HAD73rXu3jHO97BY489hlmn9eXzeT7xiU88bcnoX/7lX/JXf/VXfPSjH0VRTh9b5NlGrKJRTlqU1SrF6hThyFI0RVDaeD7Z7/yMWFL62EXmKOz5AWz6tePe/yRNt3KZgNZYjdED64nMjaNv9lfvxGlgbgkh0IwAdq0Kro3RHUEJqkhXkrljFOPKHtq1XhZUSmatEdqiaRQpSJZ1DpvDbF6+jqEdj2JVcmQn9hNd4bPaauPjJLuWoyUyFB69lcS51wCwLLyaWXOaaXOcI+UDrIyubzSoWATXBVXBUxS8Q7njxNpDGH5ime5BfRky3YLieKYbgKrqZFYaJHcVkIbCkjWx42zhk1YHG7rfTvp9JpOzDqanEMSjnDnGXJ+JYQnWKH10xJvc4U4z0y0Y1ulakWB+vEwhY1MKdBKaHkJPh6Ds8HZ3A59QfM2LY8ocfdpyppxRbCx2ZXcyOnCUWOsSsuP7AJCuy87bfsama97AVW9ay9IvPsBey2EuF2B8OkRvZ5Uftnm8Z/1aMtsfQ7ouc9/8Od0bL6V18yaqe49yeD4AQZhLNYDKTnyA+HSy3BZCD0cwyyU0zUVo4JkuQnPBUREIMqWjhMNt7F/1Qa6aupE3F3P8W3sn01qBO85xWDbeSDyNOsPEUnV+OhLij5Yr1Kw5MmqKhaHOEGWU2hwy3MbYIT/5EUKwNdrLo7URFqrIhISNddBNvFhANyGgoxP6+/GEwh3aANGhLMHeYaYuaaH1gQmqK87BOLyHwM4H6b7sEmYUKHn+2HbUCbJEsXhV6gKGZ48yG5phz7IC6+7aydHNb2NgOkyq+BC9Z5lcmT3K/a1+ufO9us3vrk8xfyjP/vsnyU1XufZDZ/ttqmbh4f/CkwaH3G6GSmnmehuJr6x1EXWzCKEQTZ9+vcq4EafqVKm6RRACLaARxcNqWkBRVy4lvGcv1PzzZuppDqrn0O+MIAR0hkroiktMqXHU62JK9rElGkSzFJRyGBQF1l8Lj34JtC5QotD6Tnj1e+DVH/c/xDERxWGgzr5T6k688+0cqYRpcQPMq/7nn2j7me57vs+/FNrhhQqs6TJB6KhekLJswdViAJRNf3vh/9PtW9g2FYNpRaWsqqieih6KsX/bHIoiSK01SKdi6Irg8sT5bK/eCMAu5RjnKtpxTDdl7z3A7z31RfkijpEDMwzu2ceRtMWbCy5XVarU9A4OzcKsGSUS9yfhtq0hvQJJPc1o3J8UqE4Vo5JDavpxJZ+a53BAhhnq+xAbjrwfgLcVixzZfx9rz38H6CrY7qJWmCybUNcPUxINAxn9zD7QVZzxLHK6AJaLN1PAq9ngSexdo4u6wyfqwoXp+M8HddS2GF7NQs76wJS9exxjywAiqPtlQ3WWHQENUTeKWADdYiJOS75hQDbd0c9q3V9gK0w1xNPHj+zFLBbw7KMINUKyswe5+nyUQmMiVi6WaAlIUuEgKwZi5Kd9SYh92ya4+G2rCK6ug25H55kY2My60cMAnG9kOSCWEvCqlNvPIpj9OdJ1ye/ZR8eWzXymbZ6HZ06uQVwzQOqVTZT0U0gw2C5SSmY9H3RLKy0IIZBBFce2/fJT4Kz0FKr0++JxawOB8LOe2j1lGLHk4raqeriOJJzqIjHSBLp5EyxLrePq3Q9xMNXPw3TxSfUSPm7cDaaFah8BewZoh0LhpDLxmsOrOmjCB91yqgJCkBAxLE9BVV0Cp1jyQgiBFmgiXQj/N7Mi7bRnEtw+cju/dcb7uPsRX996rK2xOLix1QePVp1/Mbm5Ca557At8fCrIriUVbCxuNW/kV9f+Ot3rLgOhLOozauo0V73v93nwh99h160/A+Deb32VB2/4DoFIhPmxETQjQOvSzXStvpDvur6kjyYVlskOnLrJzqnMdfu6ohTLNjIPZ+lbmDTHkELyuH2ARGgTZCeRahgCYXK9cYozCuloG4XSPJqXZ5k3z0NTHWzfmya85Sr6yw7B3CTc9jdwxq9A9PTKdLzcQpoO7kQOdaAFPPmcJLGklIt6bgiBdBvHKDouvRRIlW6iLexyUFNZ7fioXFfN4WOR/+EnxX+gfyrAxtr/goCSkqJn67sJxFrZffh/2cw3AdiYnObI6ErAX8h5SYFuH/vYx7juuut497vfzbe//e3F/RdeeCEf+9jHnvb9lUqFt7/97S8pwA0gXGy0d3IqS8dyf7VsSVc3N/Wdw2sHD7Eivg/Sy9C2fQrOfBs06XE8SdOtWiZSd/rygKLRSrIwi5aqAyCngekGoAWDddDNRYsZhJYnKe+tr4KaLh1Nmhuz1ihdcd/lL1UwOJI7whlXf4ihHY8CMHnwPlZd9ptII0h5dIy2Cyyc6Xai4j6ongehFO2BLkpOAYlkpDpIwc4tlhiw/VGQfkKvoOAcyy0yvgCCUkdYLkZb78uT6SaamG51l8qZWgk1msZbFaGWDIAqUCQ4UqIoAiVk0BseIFM6yKznn5OaJxlyB3E1cJEotTCxdBGphhF950Ki/4Sff6pCKALXkVhVB6vqYCeWEbfqpg+RCm/MruYn+ihBT+MR5QjLlSVck3wn38x/hm69lzvMn3Ft7xsZ2eknF1JKMuOjjO7dRf+GM3lbS4y/mvR1ZB5+sIPQpRMEV5TYN9pO5zkXUR05iJXNM/Fnf8b47/4hwR/todbiJ5OZpA+6CQQdmg+mvChAt2Cj7FPFQZouKBbU2ZHV2iSp+EoAhvt/jfcc/EduXr6VPbnDVKKQjzSSZeEGKAQNPE/jm5MmF6crXB6zCSmCSVkkqo4TUTKwbweFJe8kWH9vIKzzK8oa/mvufhagl85KmnjAb5vyokHdgEAAXn0NiutS3ZGh+Ob3ob/x7Yx3fZ/ca36fgOcrraq4JOeOwNT+RSAxqwS5tcNj43waJRTHU2bIxm1GatNE5mZY6vlJQyBicW3hq/xc/Tg11+HIXJkdy9KsHNWoFm0mDueYHy/R0hOFQz8Hz0EVDrNOEolgLtFgPeTK/cScUaItLYvujqczEoEE05Vpqp5fsuIiuOiMFh677ejia5xoG285to3XyCFqA68HwDSuYKqym4zdwarQ/WiKQsEO8H0u5r+cN3HDjMoZ5z0AAQkX/CnmI19BjXRRjV5CLX01bZ4N+ZxviAFw9BbIZaDOlJLCH2M/13oD4wM6j04/yjkdftnAibaf6b7n+/xLoR0r48u5Yfo1CCFRoheh/cpn6VyWXPw9I0/4/3T7AL73Dx/nU11+XrhhTqCH2imU/UTZyVV5qObRHtA4t2U56WorGeY4KMbZEhg4TtNNndhF7dAhgqtW8VKMatFiz8j/Ijtgi+X3D0F7mr0534jHqOvn2paGKjN4eitmxO+746UjqNLBdYIITaKoKp7rokmHXa5DIbqJyUCaLjPDJtPiA/c8wr9e8E5EJIDMVaBmIx33ONaZkmgaL+qMMzUVwTam8OZL4Hh4kzm/3LSJmbioAQcoHTG8ad9ljoCG2p9GX96O9CTWg0fB0JCzRcz7jxC4eBWyVGuAfi1RhBB40iNn5gBoI0yy+DDg67nNtHYT13wgJj/ZAN0ycxU822f/CCFYc/nbmDKClCKC9vE5VEuwKtrK9RvGORzpxC3b1MZLuCWbAw9McvZrlhBYs4bQli1I0yQTHuDBWJKYWeaqaomhSIFqZozvXnw57zr4cwSQ2bmb6voLeFWkSvvETigvhcjJAWtEpMF6eiZMt4IsY9ZrE1OKvwAjQxpWwQdnBB5b6uwoKQV7Kq+mL3pyxeP1hf4XUFQXz/GZbkFLwbAULMNjyh1HdC7jnd//T37nij8F4JtTXfzewNn0TdW1mCsPQOJNfonpCwS6yZqLgj9OZetzsKQaRToqUpgYoVPLdANQFEGpHEF4Ho7n5492uJU2EowU76cn1cclvZdwbPIw44mG4dmGVr/sc7g0zAeL/0zrgElZqrSUIeUlOBrZTW3/zwhufh3QcGWvVqLc+PlP0bN6DVogiGPWiKZbmB89RrS1nUR7J+Vcjtb+M8l4CrOeb0kwQAcGOqaWIKgrL6jByhMjHdMpo2AEDTZyAUPuYcq1OW5PP8iV9nl0BmBaDYFQsJetZezGb5Bq62TYyyGAeHkSwuu4+6F2Vg0UmO1eTd+Ckc326+HSPz1l3+XlHm6+gr1jBKo27lgGPIlxyapnrwuarzbctlsiqFZocS5RtF0GglnWhfwcc4XjUvJUooqLbs8yWirxNu8i5rMPkBEhHKlgdq2nbam/sP146WIylUeo5aZRcYl0JQl7NSpKjfHi2Mk6Fc86nvXs8eDBg1xyyZM1yxKJBLlc7mnf/773vY/vfe+lR/eMVhuDWMmZpuZYHCrU6AjqfHHTW/ibtjdwqNqFVj4M80dg7JHjD9AMCkmJLJVIqz7qOqWqRJU+WoWDWKCEnybQbVFsU0rwXJRAAziUlkuf0QDd5qwRtKivwZUq6tieDQNpkh1duNFOasU5KnODVNdspjo1RbWkIsshcrNJrKP3AaAIhXWxMxePubvwmL/x8ENw8MAiQ9C1HLzR4hMcEnWE46AYodNe7vdCRFA0VkQXwMa0HkAAgbiOV6foaxLaev0ExnMlgx/7NKNll6gAkIRK04wlGq4wq+kiapgItwLBBISadNROU7T2NBLakt7Ql5DhChEMPu+8kfd6V/Jnzpt5Y/AalsfPISIiHLL2cd/kNvSWVhRtwZa9XrJ3y08BuPbiHpKKYBUK0lKJhB0iYZdvLHNp3XoGkb4+vFoVPZFEXvd5KlPj2KqCo3jMR/17tEvpJVhnBL4oQLcm12dNd3BrLorRuFd1y8L1fDbjsZ634ChBzk00JrDZWIPp2J2Hg11pLFXnnBh8aiiHvf8jJGa+xSpdZ2ngAO3BGXAtKuOHyc2UqZUtWrrjtKCwhVYMSxA0FQZKTY6D8vSfp+NCCNA0OpMG6aiGrUSI5S/C8PwyJeFZ9FUO0XnZVtJN3cnSIyoTEYO8ZrEl+obF/fv782Qe3smB9PvxhEbO2IgszfGf8q/5iP5xKo7DV+8/RqtwMOrH23lnfbA/8JPF44xU/YWLuaT/mwgJmWI3Ac887XpuC7FgpuBIC9szsaQgGDbQNP+LBckR1Ct0/fZFBMdmF98XiAl+kPkkdxY/xM8mX8+Xjmziv49s5bb8elwh+F9To5ZJYzkuQ+PjvOHRM7nM+3d+rfDLvGGXzp7pMozXVyXzozD6IEI2lRrUmW4HQlNE9Sjt4XaievQXbj/Tfc/3+ZdCO4pOGVPxU1xNt8l8aw9z1+9l7vq9TH7ioeP+P92+he1K0/isuQIRbrA0A9UA3x/NsiwaQAhBn3smMa+DHqebyZSJ6TX6L9XNYw0Nn9Rr+FRGtWSyw9sOUrK1zvx0RICpqr+IaNTzLNOsEDByFJo07yP5WWozNzFRWAGeQK3nhAEcZiRUPcnjqfPJCsEjgQCb7cc5OpVDOU7XzfInNPVoBt2aQ+1JIXNVZMnEGcv6zLaQDgENfcsA+ll9GOctxzh/OfpZS/zti1YSvGIt+nKfOSIUgb51GVSsxc+y903gzjfKMhfYXHkzj1eXDLmwYqLU9fyG+1cT1mLoiu+mmp/073nHtqgUCixw7pLd51CJ+ifLDBokRyrEx6tIXSWvpdEAPaqjhjScnIlVc9n23cMEVqyg+sgj1HbtIjRWZT7ewnrLNwi7uvMopflREvFOPn3hb+NFO5BGK7GJAzgSIo4JP/g+zExzMkJpLgV+OgdT22WiWc9N8cvppCox6+W3ZyYncdApaN0cM8+m4HYRSgRPeLjnGs0u5KriYZsm4aRvhLNQYpqV81gxg7Zqnnfv/xlCelzYkuVO9XwkAWyWY1tZMrYB99wNP/upX81yksOrlBB1z/VcfR7luTEKpo6kihE8uefmmUTA0IlGykRiVfSAjVatIlWdcKSP87rOY7w0ju3aHHMncdT6tR5I0hPtAc/j2ze/nxoeY7pOBcHWfXAkVmRUmWC0ug/KPrBv18pI6VHOjNG17pdwGUAoAYxQmEoujx6MYlYErQOb2fCqPyDVs4b5+Cj9ldW008Eqz89FaoH4KdNzWwhVEQy0h3A1jWWyj6JXYFSb4lBghNHDE3TEe9Acf+wXWhirI0FHMMKCTe0SexZDgc7WKrfd18njKzeyuHL66JehiZX/Sjz3cCdy2A8OIuoO2bJkIisW3uyzv5cXWW5A1tBAb+AsRcdjRe0O0sL/3e4Mhynaft8ZliVkXf8tbE/TGSrTGy5ixhv5hiVC5IMr6A4V6AiVSYtJ0qo/Zk2WJnC9plrWUxjPegm9s7OTI0eOMDAwcNz+bdu2sWzZsqd9/yc/+Ule//rXc/PNN7Nx40Z0/fgVmU9/+tPPtkmnJGKVJpFfZZaAq7CqrkV1cVuMW9wNfF2+ik/wPwDkH/sBif7zGgd4gpGCmZ0mKvwffUTXiLgdpI1Diy85He6lcLyDqeLax03kpeXSIrsWH89aI2ixBdDNPxeH80e44r2/ww2f/Bss4MhDN2BsfjXRob04U4cIrVhOyrBh6kFYdTkYEdbYvTzqgaKoHCrspO3gNKsO+GUJjrRRMZibGvM1RJrLS6WO5/qPX45GCiERWKzvcOrlpZ85MM3/d+0yjCkdWfEI5C1aj5ZR2mAhNcsEOnAQICEuPKZmR5hua3QwA+YSotF5SK2B3nNP8bc6cTS7OxbnDIpTRWKdMUTQQWoWUo0hXItldGLaVQ4zSmugjenqJC4uh6sHibctJTd5EOm5CEWhUshRmJ0hnI5wTUeEb02WIBNg3WCMtavzrFpucEdiFf8/e/8dZtlRnfvjn9rx5Ng5d0/OoxnNKGeBQIBAIgeBjeHaGDDmOt7L9QVj+zpgGxvbGDDBYIJJIggQklAejaSRRpqcp7unczjdJ4edf3/s0316QGmUZsT3t56nn1NdO9XZZ++qVW+9613ny0maNZXsnn1InkdZr7PcYiZe/bHqV5Yj6iEWL5XOxdPZUqabojjYNRtbDqC6NkJSGJD6uL94L+fFX4lsTDCbvphtoU6+VD+mGLJRLYEje5hozMZ00lXBY0UAm3+WL+Bj5hfxbvwDBG+FPf8JpSJW7gTgh4DvGyuTtMp8xF3Fbb8YRSAILV8P/rwA6SVcJT0T29gX4849fohs0GnGq79kWu4ElclDiC0bmVyRguO+4HOXqTB6aiVVo4uNLRHuOP4fGHKZqm5T0ODh+37MdNsbkbqu4pUdv4euHeYi4K3uvfzCuZpvGRU+GA6wu+ZycvcMbV0qa0/4Qr8lJ8B0SceWXObrQGgHSaZN21+9PcuZSxcsrjVYCVWniCklAAjHgxTmKtRI+JTt/lVUlx9d3FcOSXh1p3hMuRKPHwCwsXCAicgKDuHwwRM9DJ/opPTQIHogyFi2xhiQFIL7qwF6R8eIrl0LU3tBj0K1EfLt1UG3Gza/g3dveu+Leg9+3exL+7/E3N5ROss+sKvYBdyaDwo5BRM5bS9+PlPdQrnQcA/QPAWhB4F65mBLYHvw8QOT/MWGDi6PbmNv5S6KEkRbUxjZJUw3zcUcXpLR/GVkjuNSzM6xvylPt23TWheqmVcGcOvr3Fqgrkeb/QUtrZ1k2xoTwkhxkprWgpzXkFPyoqi5cP19SpbDVOwqLpi5jW2GwXr285m7d/IHF27zT6DJONkybr4BTounAN2ksI6I6D7jqmQsMq+UdR3ITf6zIJINZtDS8mnnUSS0CwYwHzqBO+NPvkREXwx5lepJGrK1RubSLdUcppJGs+cY6V2zqOdWzWVBlvFcl/zcHEKW8SwVcOjpXksh6PdF0XKRQMHDEw5uxGFe7UbTJCqmS3RrK7WRIq7hYNZs5uZc1K4urLExIk+McNdrt7N5ephO20FRLH6r916KM6P8Wfp9fLtjPW8/dhfTu1RG2tdwbbiGZ2uIoSE4dWpRquA5m674i+qO67MBn8Y822HSzpEUSfJenpTj/ya4FmatRlgxuLTlFLrsYNtlbi3+LwBCTxey+hxMCzWAKkl28YoFlEQbejhFvJRhNuk/N0PyHOtamrl+5GH+a+2reXAuyZFCmLfHVqGW94ENduk4qL0wMgJTkxCNvqBt9XKNRA3ZekRVr6z4qj6ysahb/VKaHghjeQIhPFTVRsnmKAWDtOur2Tvxn0S1KG9f/XYemnxo8Zj1TesRQlC6/2+51WwAvv3TsGLC47b6/yPzj7D9kw9TeO9HYdWlAKS6VuI6Aghz4U3vY3jvTpoGrsBzLYKxhYU83+85UDzASMgfs5fjM6GdQPSsLC73tQQ5PqoTKVe4Ur+Ob1T/A4CfBR5kQPTQpDczVZ8CGuvXo+07hJCb8ZwpgkaWtqDEyJT/7M+nW7BbL0OZvh9XxLC+/2XEslcCflblhYWIhfKzrXu+21+qY16Ic4qAimc7UDZhAQsw/fHMy1ZAkaEe8mntH8MS4ozaAfi4qAfyZB5Uf9uIPURRGgdlgown0eS6nIheTf/MTtArSMLFrU6DDmGnof8a1zYtKuU7Qqek9y1uawsWSTjLGZPAER5jD++mXW95we5XbaKx2Px0dsag2/vf/34+8pGP8OUvfxkhBBMTEzz00EP84R/+IX/2Z3/2jMf/9V//Nbfffjur6hoLS+mILyWV9UxtKeg2Hj5FqORQradLv6kvylThCOPDKexuCUW4cOSn4P1tQ29rCejmuR7WxEEWhrExVeHIbJg14SWO0VkD3ZZkKXJMxJLVDs90iLghonKaojPHrDGC0uGDbqmCD7odyx7jVZuvQ27tw50exqrkqMVD1HpWkTt0mOjyZXhzSeREAXf8MaTeywieHOWV4zq7V9jMxmz2JWdoUWUSkSaqIYmIARMTQwC/pOkmY9fv768j0y0oadQzIi+Glx4vVvnPkw/wsdZXohTKBLMWsuFS++9fwCuuBcBeuRnwwywfzVZwJg4zvaYuyu4GafXiyHIGup8ky+5ZsnRnA3SbPJEjnK8Rbo36r02oSlOhwLH6KyhZFWJqMwer+xaPOWofZHvrMnKTvvMgKSrjRw6x767bufhVb+S65pAPugGTj7dyfqdBOTZLrtclsuINGI5DTVlL6NAdzF25DY7uYTbRYIP1ycvw6mGT5wTTbSnoptqYNZuaFCZoT4CWJCQnOZbbwbLwFoiuZbj7zZynOChCwfZsLNVDsQUXHkgh6quB83G9Tr8OcItzKSsDFm9JNQFN0LIepvZgOY1FEsMTSE4N2RSL55ClJRO0c7Q/11WJjX1RxuZqGLJLbk6mGjiOLPmLHnPDg8w210j4sj9UhUf3kYPMNaVoCsOW+evYnfoZ0+kqo805YiMxTpyqokz9kFxTP634z+Afyj9i3Gtlp7uS3wt8hc2xNxApfR/9Lhtkf0K8w9sMlRzzMWuRGDggWpBqPtMjdo4x3QCqbgFTTmFULAIRjcJcY3JfdNLIm9rwHBchSyhemZa2GWamWhBuKzoaBiZtxiz/aZp8SQvx82pjoac7AGvaolRMh5lsib/LJgkfzvKeC0Zg9EFAQKx3AccBSaZiWWz54NcY3fAYtUOHCKxdC/Ck5Wdb93y3vxzasaW/hdC6VqhPwtIto1iSD5goPUVsKbr4+Ux1C+Xykmz0mtARS0X7bV8KIW85/Gg8xzv71yAh4+IwES9juI3Jt6R61E69PEG3Wslk5Oj3MXtge6HBZBqXW1kY0BciCmzDJBpNUEk0pCTIXs58uM3XOnTkxWQKumvyCltmbrhC77KN3Btt5qb8NEEc5CO38sSWrWwMa3hlE2ciC0Uf0BERHaE8tai+1BrDKS2ZMOgKclfyKfd/KhO6gry8BXu/HxrqlQwQIC9rQQT9cWOu5i8Npm2HS/InUXA51TrAeGsvWwK9ABSmJ7ErZTzPIzM5gVubASQkbQ1N6cBiXsrYrN/v1GIqilZFKDrdzQGOjleQAwrR81oo7p1l5OA8qq6wbtWqRdAt+Z41/FlTGhl4U6bKgKgRtY/wpvBP+cDa97N+bogN00e5ZQj0ZQF6LriI3kOP+cwsTYN3/8ZzTlQghPCBznwVr2ot9pVPapbDqJsh6/kdXlxrA9sEz8SoVVkbm0GX/WdqULucnOML0IdbX9jQTUWWcT2BJDxk2cUrzwNthJLtJEpDi/tNueOs2vYKtHu/y9q5YR5rXc2cpTEb2ERH2ffXVPMA4P/WzL/wCVO8/BLQrf4bxVyFkqUgS9WnOuxFtWg6xSwqCiaKYkOuCB3tmOEWerPN7M/s51OXf4qkniRr+L/1yuRKGN3F7Y9+hlpTCoQgKYdYPlFi+USDUXyiQwIc1Lu/j7lqOzKanzm+brYVom3ZdpRwCqtWpjw/QTDRiiTJ1EoWJ2rHFjUCej0/msNWAqSiL2yI8rOxkC7T1xEmU65wgXspt1S/QZUKjyYOMzNUgZYxUOqAt5rANGaRlFYcxw/JvSZt8ZWy/5t/7ZhJKP1K3qAeQy0cQRn7FnbPNf6xhr2YpGSx/Gzrnu/2l+qYF+KcxhJ2oNMY2xcWDYhokK/6+O0CGHcG7TjNajW8esKWW2vfI9D7KK86NUbQ8xiUNFa3/iHlk78J9aylSm0UR5ZJSA22nKwvWyzHtACl+FV4M59D4NEeLBI1dKhPnQaP7qRtzeteuPtlPjsm5RnPHv/0T/+Ud7zjHVxzzTWUSiUuv/xy3ve+9/Hbv/3bfPjDH37G4//hH/6BL3/5yxw+fJh7772Xe+65Z/Hv7rvvPtPmvGQWqSpsLMbpkkMcDg0SmKnhWf5Njgqdm6+Jc13iBLvc1QDEa2MwfXDx+NNWV1wPKz+8+O+UFGS0pJJaqnFwDjDdeox9yEqjcxeWjWJbrIleQpu+DNszKZJHCkYJmjIBQ+Lo/FGEJLH2ze/D0KLo4SSnHv8J1df+BsXhEaxCEVl4OPNxnKGdsG8vHD9GVzlCqqajuBI1xeOn2wzKq/upSr7TOjJ2FC2YxFyiqxFwFYjESEbUc3aC/3wsIC0NL61ro3gu9xydILYlxfqmAC24oIJ7aBfBH38ZbdcvQJKQho7y08k8mvA4Udm/yJRbRSeKAGwJ4h1n42s9qS0F3Y7tmubnx97C52+5muIsiEgVgUDUWS2yVSGsJNFEA3h63HqESMdyZtYmkPUQjuUDZvvu+jlOQOb8RIB4fQK4r6jg1QfmrDXHUW2I8P94O92vvZHU9b/DRJ+/XybRmDD1yctx6+/wOQe6KQ5UDTwhI+xZPCsPbo3AkkFyJn0pmlllVWrVYp0je6QKKs35MrFKjVld5nfN7/M6aScFwvxx9g185q7jWI4LK18DiX6qotFHecJDxcI0G9eRJIVaVaVS0ZCUl95pe7bW0xzkolUJEnoMRypjqzkqCZ9dOz12gkl1mqxaRPM88gLOs1Wm7/oSbq3K5s5XYCr+hPbQshJuva+2jTJ3eleQHUyQHw3TJM3yRfVv+bjyVbYot3G+8wesD93BMvluLE/lpPMqvm5dAa512rM2QAtJyaRzzXraV5wbmlYxPbZYrjhFLEni0EiRk1nrtP1KbhNNmkItP0G+6wI8SaW1PUtP6wk8T6Et7xIv10ASHCntJ44gCryueZaOgMH69gjf+Z2L+NzNW6jWUcivzumcGv4FAFUJToX8hR7HdTg6cRInl0fO5HBKJezpaZxS6SnLz7bu+W5/ObQjMJHFGZ/CiUxCrIgkueitOnqrjixbp30+U91CuSIaCxWapJ+2rGtboNXdiR2zJVxHo0/2neRsyCC/ZF9ZdbFGG7peLyerZPIcyN1LrKRwSbUBzJxa0ncuhLhtfO2fEO7Ygh1obAsWDKrhdoyYguTKSPX+RfEcrrdV1LJLTI3y83jv4jFvET/nvd98lLn6xId8zc/knY4gDzx9oiS5NXb6/92p58wGktsTp2dH9UBKhxf9swWm25uKJRT8cWO+pQ1HFsQ1nyJdmvVBE0mWKeXz9RO5KHofXrQBToam/b6nmtZwZUF3SqdpSSb00IrEYqTA4J4Z3AEfcA6fyrEqE+JYKM3DwQBDQWkxmearvXt4l3QHn93wekxJ5soTD3PzVDP3Tsu+LiiAacLE83s2RSzgg6FhHa9mPeV+nuUw6+QW/49LCR90A1Rjjktbhpk1QmTlJh6xfgslLBNp0Ui3vbBMNyEEXv1lliQXpeJPdOMty0iZjednyhlHa9mEUrZYmR1ZrL9n/Ho8z/9tgvYBqIcYe3OZF7SdAFKhoddUtRVaC2GiroRsyyiK+TRHvngWjIZw6nIxiuqgzY8h1wpYkRZWKMuZKk+RNbJ8YMPv8751H+BPtnycq5quJHvb3/PVeIy047A10M77N3+QG7PLac1BpOo/tMc7BB4gT4xTLuzHM2bwvIZP5skR5GArnlMjP5VjdkRdZM8WCjVmg/79aiaJrqUJqRKurBPWnxuo/HytIxmgHAxghxNcGXkty+SVlChxW3I/ImNCvd9ATWB3NBOUE4vHdpmzXN4W5mOro7QEPf7fRB9jZn1BuPA4Um0Iocp+YhdVPq38bOue7/aX6pjnfc5fJrLIUgOXCCigK0iagogEYEmkmWc6PgPuma6pLomikyWsfB43HMX0DA7b+1hmWgTrHfOcG0eTdUylMZaFSoPUKmXSur/44gFmuLFI3RuN4QW7KSq+5E2TXiZeaABjJw7c/cLeL+3ZcdjOmOkmhOBjH/sYf/RHf8SJEycolUqsXbuWSCTyzAcDuq5zySWXnOllz7oprqDk2ozVU9cWkveTGLycmbYgalShPbOOzCtL7LhTRQ3ZBIRJ17f/nORH6vp1S0Eh16Ncm2RBSSsv4kwWawSbWjEBPRU+PdvpS2hLmW5VLwj6EjF/00PyBJoIMmX44obj1aO0dy8jP3WM64zzeCR3nIpV4fzz1vCQHqFWnATAnhzE3HgJmScO0XTJpTCXoqAXSNeGoVJBBq7sexNF5x4mjFFQ4cHUFCuzCfLFeeZzPr3akhqDZtCTqCU7cI2zE5v9YltQWvJbaP531AIjVMr93HLsR7x73U3Y0yWqkzXcuWMEJnZTu+wGRH4O/eBD5CKbsdosxpIlmrIaATXAumAPYc3EqwUQmvZUl37JLRBWiSR1SlkffHC9elZCu4loIAOyg+661ADJMcF12BC9ioPlu6k5NWbcKb4gf4ETfUfpDYS48vEmBIJqIc+JR3eyrG2Aq9sj/GC0QBUo/KIP/eYjtOgdHCrtYXV0A4nXDmBd2k7m+/dixpqwAln67G6EHqBTaiNTfyfPCdDtlzTd7IKvGaQEXGzJn8BdIFZzpLiT7ckbcGWdaSPMawZeQ0JPcCRzgOVTgjYjxYrpY+xc6a+QxwyTziYHu6SwtdnhH+88xkMn5/j6+y6A1TfiTB5GoYZNgOtqPvXfcVw620IMVkKoSoBAsB6iJF56weIzMSEEG7tbeNz7F2zPwtZkPDympGkcxUOKBzEz/m8+LtlsSsfJndpHS8cV9B3ewFBqH+WghXnpJci7dhKNtTM7c5K9hfPY2uqHiQyFtvDKyuOUvTBBfKbliL2MHuUko1mPCa2Fy5t6cRLD9FZV0D06vGZGSuOMz46S/t2PnrX7s9R+ObwUYDRnIS0yaDxAUDQSrFjZjFaFR0QIxSqDAkosiDutoYo+8qHjSK7NdPkYH05dxdtVhVDYJbr2GK3LIrjVEitaIwy01RicCjBoqXyuVOOmZICjMR2reIC3uu38+KefZ2JulGYcCuv6CJuzlOufwJOWn23d893+cmiHrkB5rIR6ahdv27aSdMcG0OrAQjjslxc+n6muXq4t0RHTpeBpHqZje6iynz/McD12z5XoDa5iEJ9hOhJvOMSS5mGPT+GZNuJZOrPniuW//B+cSNUoRMAtlxjT1xMTFUZtCSnQRjjooAeCeEJFVgNIRBdBN61ioVguRjiOK0AtBFFojNOxYJ6JGYFRcWgJX8E9of2EXJfltSp/FLub39oT5rtr0yh1f9PNllHWdz5pOxdMxIKIRAgEeBUTpfu5a7wKWULuSePOl/BqNlI6jJxuzA0ylTkUz+PNRb8v9BAcWuULX3cE/DGoOOv7eq7rYln1sVZIrOlopqKHSZdmMbwAkYyBB1SSGrYs0ZcIEA00nhVdl0msSzG/ewbPhRFpBU2AcD1cw6RTayJvlPm3pjgdp1Jcm5jA0Nv4pPdV/il6E9/d9CbeeOxuljuv4YFHxnn3O7cgfnGHf/KhIeh+7iGmQgjchSQKtvvUO1ouc15u8d+4SILjL/gsV44hCWjWKxyLnU9pOIpbtalYHrHUk4cTPx/zJBk8C1l1kc0yVcnGdgwi2cZ7O+1OUO3qw93UycqpBlP1ACo1dzNBeRcBKYtpTKAFunCmM2c+CX0GE6VJHLmfJ6RJjoclCrqJioxjy6j62dH1CmgyrqKDXUQIcE0bJ+CDlWuS13Hr3H08MT5IuHwJqxQJq+pyKl8jH3gVW+wE53vLyFsW604GUQanEMCyKcHefiiGYCIJnVkHPTeKl44h9BZwTZA0H/AWCqom45Rmaelft9iuo9MncPr9e9LnplHsMqaigiSTCJ+dRdOmmEooqlNUFDY6V3Nb6TsA3G/ezivSr0JyXVwrj1CCOK29RJ8YYUE90pgY4n3XXYARu4ORHd1kzRBfk6/l4+p/AaCWb4Mr/+GsfK+Xk3mWg3HXIf+fgIp+5aqnJbZYB8ZwRrOIZAgvW0FEdLSrVj/DMeM4oz5rzVjeyuiR43id/Ry0nsDCZL3ZmOt7NX9xzgt3LkZ/NdsTFEsxUprvcxTkGPviI6TmfE3wlqCG59QoR9YTy40hCVhWzi+e84BaRO4LoaX7zvj+PJkFVjy7cfM5zx41TSMajdLe3v6sATeAj3zkI/zLv/zLc73sWbXuycYk8j79ME3eIMpsAUmScIVLwjmPno2vYZM0yAZpmNDc/WDVndBfyl5adOY4pqrMyhIVL0m7aVBLtqDB06cQf5FN0ZaE+tQOIi1hurmmi0DQo61YrBuvHaXmCGJrr6XZWU1SLOOnQz8lHdHJRLsX98tGQxjbrqYyPIgw86iyQ8oycafrVHBFgaZmNsa3LR4zVDmGkCSGRhqMQSvYaJ9ednEjTb+Wem4AMSlMohQmaCmc6C6RjZpItU48s5kv3n83DH6H2ZOv5ouRf8Az6iKW+3cQ/psPMnRgL/1KESk7yEhbhUzSZCxSYKXXQTxcRViR04Hgc8BSHb/63E/Px/yY/1CVsNtYEZatCv2hzXRoawhKfv9zwqlrSXku3756jHs3z6Iva+fk448igirXxjQUoB3BF8pgj/UxaYySs+Y5XvazHM0F5jDHc3jVacZSBYYVX6tMxSGquYR0meASncOzZb/MdHNrDp7rIYUDi6ucq5S1DJYeXtxvknZuXnszn3vF57h985/whoGPIjyPRNXw2UfA7HyNd73p3fzdmzZwtOC/a4mQyp9+fx9ZQ6Fb28u6wJ20KMfR62LFhbLF+FQFvZBBXpKxWV3Cmj1XTRYy7fXJnqU6mFFBvhsiVpBsdwPMn1Z1Wrt6CbpVWid+wSvryV8SRpof6j/g1ksz3NL/GEW5zMGmKEf3dzG6p4Xw5DTNIsdOZRtvMj/O75q/x7vEx7hf+wQ/DLyGTjdPMXOKU6EpTgVnGBGzhK1mWo0ZYs2txFvOjfDSpUw318kjPA9XCBxZqZNJ/L7EUmKMiu1MBF7n9++yBpHVBNNN9J+XwF59GcmKP9kUdo5RcZg9bzrAqTVVZgMF9vyfv2bPO2/gob/6CG+86wfgebTGKzz8RJqyBXPfPkLui4/w+P57mZnz2SYznoyhyAwp6cXPpyo/27rnu/3l0I5ZEcSRZWqawmf3Glgdo9A24//1jp/++Ux19bK5JMmFrgRPi8BzHI8l7gQjhsvG4MbF/4eT1iLjSFZd7Ozcoj7Yy8Gmh/Icvu8Ux4pphtoEAdflFZUqXcYBHFXCOpnHrU1RLmRBiiFkf7xzlABKLY9klggVfCDJCurUYiqe5MCSua8i+f10ZqTCJnUb/5yIc0HNIE2VGwvfJJsZ5a656iLzQFneihR6+sU1IQT6RcvQL1yGftXqRYHs52rKylb0i5ajX7EKde3pbPrp7AyXlSuMKgqGFGBCWUcpkiCpNhGUwziWRSXrh6CW5ovg+f6zrHSzqc9iOt7BXKQZXAkhXMyIDJpDQU2QjCgENGkxk70kBGo9G68a16iq8QXiG+k9M7SFmogSIF5R+U5zit2lDSStU1TQeHPwPi5bdj/zqsOKkV0cKlQ5Pq03QkqHh1h8WJ+LLWV5WE+9aOxZDvNubvH/uJQALIRnsTo4DIDjCUabrsGt+uBJpCX4okR+eKLOdBMujuWhuzKtA9uJVBU0Q5Cshph359jvGhhvvoKVuQbodsizqboX4XkqBssxSr6/pZhVqD29rt2ZmlQ5hewMcb5VoyRJROvi644jE9CemlX4YlpAFaeFIxuuBHUh90h6G5el3sb4fAFZElRNF9sFxcxT7DifrdJakkToVlupjJxCzvssw2Wlxrz7C68VfPUqwT9Jt/Kv6le5R3yHHcZ9fLb0KUZtP/zX9SSaVm9AD8lYhkOlYHHKa2Qf7/N8/VhXT6DKgkjg7Pi5QggGWv25dkfnatbFtwOQ8TLs9/aBpCDpSYQcgGAnqYgL6CAlcWo1soE4a4c0Xn2FT/j4vnM5VQJ48V4YfhCyp87K93o5mTtbXGQJy62xZ+xPlHWdKGvb8XILOm0C+/Dk019jIdGOEJiSjFQpgKKyx/KTUG4wGtEfWaUfAC/av1jX4mSgMoNWD6/PRhLIVqLRJkkBSaOsNMCw7nyjTzoS1sn+8FtP28YXw854kcG2bf78z/+cz3zmM5RK/k2LRCJ8+MMf5uMf//ivJEb4Zdu1axd33303P/nJT1i3bt2v7H/LLbecaZNeMmuf0MGPHuVh9Rgf7DiPvoMlssHzKXQpqHaARLKLPfplbDfvQZdqeHu/izj/3b+SSKHJGaXFtTCBqtNE3CwzF+7AlCVCytlj0pym6eaa9Izfwixb/Yp66MKA07a4z1jtCOd3XkNi63UkgS7P5VtHfo83rXgT/Rs2wYSfEj4/fZL0ea/FKJeYvvcBOq+/DqcQRVlY5WtqBkmiO9hPVIlTtH1E2sJicOTQ4vXs+kAgEAQDCoaio/6agm7LtU7Wn+pmx7ojCA+O9BTxtAeRzRXMZs7jg7v/H/lUlMTJkxgK6Dbc19vCVfvzrMmOEAkJHs8Oko35jkaf20KSCKnoHJjdz3D1l95i6V9dnZ2ZrzNswhUCpUbnKVkVekPrWR29GM1T2T32ZWzPxvRqHFLvoRZwGe6osH/fMYydk6zfchnnBz3+siPOn074z9bQ4TSx0ChNKZODhSdYE9nIUPk47miRTPyX9NyETdH0tTNCZ4l2v9ROZ7r576VrOj5jolAENU5A62W6METVKRGUI+RECttxUWSJasnAar2M+MohePQAvXN59oUDyIrKHZ/7Z978Z3/F8t/azv/89h4eODxGxZF5W+oYm6QZFGGzXH64zm2Caq0xaZBlHfAn3kvFl89l6wh0M1r1HdO55R6lekKDFieMFgphVsogYFT2fOfDc9gsQnzCfhu/KE2xI30vNaAak7j7/AwXH9PYc95Wtj2ym3Q0TyUdYr45zt7RFTzuSOiSy0dKq5ECNlfnT+LhkQ/772iaKLmqIOAadK/dcJbuyK/aUqabpVTxhPCzcEviNDFdgAnHX2mUbQsnvhUhBdACoAF6eDnKTBtZOwfA+PQvWPaPOaIn57A74mjHMsg1GzX3KJdnKzwWW8k9YivkYZctUMZLePM1Dpu7sXGZ0pqZ0ltZXhnCkHVKXhhD9idZT1Z+tnXPd/vLoR22UNDroWoTwSAX/Ww1q1x/5fmo3MsqZ37x85nqFsprBxpJNHQliOouWbRzPLwl7p4a1lmmrERGxsEhG7Ux52V02UFSPZxiDjtbfE76YmfDfva5/VTyJplQGFvxWGbYi6vamVAIr+y/47FkkmDQAdnvwy01gBX2xzbdzGIHJDxZ4EgS0NB0A5DrCx2ZsQprV3ZRDPbyvWiRNxXLOAhukB/kv0vLed071+LNlpCaz0yk/oUAaxbOISQB0ulj5VRumncVS5xvGNioDGk+66Yj4Psj5bmGttzEqWn8zIQOWzpTmKHGondkxkC2IN59BCuRZC50MSFdRghBJCiTK9vULJeWtiDZ9jDmZJnjeZN0optQbpT4XYfYcvE1HGrycaoAAQAASURBVJw/yXQox4HODHcNttHc9gbC5l667SEELgc39vL6PQ9ye++F7Ht0hmXLOpHHR8CyYNfDsP3C57R4eZrG3jOAbtk66CYQREUczxsnUT2BU3+19pU6mXcbC+Hprhc2McGCCVkBFyTJw1IDeKqKRpRAMEn/1DxHe0tknROc8A6x/sKLqVy2i5bKPDOhFEfdGvliJ7FYGF05gWJNgHsFSBqlkxNE1g3497RUhEAQcjlob3/GNj2ZSebUYnlcUYhWA6CD4ypogbMzVwjpCk4wBobP4qy5Ei2z+5lp3QxCcE3Te5ms7WGTu4e8E6VIDDPUAkKQaVuFPHGQ3mQv0nDG1xQ0TTY2b+QWdoLncbhLZjbikYmUoHKcg5Xji9culKf5zcgf8LXi53hL4Dc47hxia/FKwtMPIrc0+uv+OuhWCbWedcmenuYAUzmD6ZzJpsjrOJjfhYzMt6v/SbvcRbPUghAS6K0Eox5SrQvXOok5ncUoZAlXE1zhjnBHe5mRyTB/7b2Tjxe+iuzZ8LM/hHd855wjHZxL5lXMxQQH0i/JDzyZCSFQepsgpGMfHMed8udYUmvsNKaz57hg2jiZkn8NQCSC1KoWwqjieA7Trg/WbaiH3bselAIriAIivpyFTAmqXSBgz0B9bT+fbCWca8PFQ6rjLZXSKCXZH1s9D9aqWcD3ZWfjMPPzu2n6rY88jzt15nbGoNuHP/xhbrnlFv7u7/6Oiy66CICHHnqIT3ziE8zNzfHv//7vT3t8IpHgpptuem6tPYsmhxOotTKrzDRHtTmO20VmU8MExXqiI1m8hEohmiCERqDvnXDsHgDcnZ9H3nrzaaCbW8nR5PoP5XFNI+w20VvL8cGjee6/YQux9NkLy1qq6WY7Em3WINRBN8f28DyPjqmDxOUQeVFhonqEcH/joZWERKZU5PD8Ya654gLuvP2LSHgUpk+ComKt3kJh30Mktl1KuHkJs6mlZfH4S1LXoAiFR3MPYhccpmb8lQk50Yot++WgCCE8B0eP/doy3SRZpmMuQUs5TM+IxlhzBTv1IEGxg/KJP+H2sb9ECo7w0SO7EM5hMpEod0avZGUkT39hEkMxOBpqrOps9vxVglA+CrEXxzF7PnbedT2su7yTfKbCXV89hFV1mZ6L4XkgQjU00QCjZasKqoam+sDO1W03E60ZWDWbr0SnGGc3AFNpg5VjUb7/r3/F5nWXccGya1g3USSHx7dPluiv9PHWG44xb83ytdHPYswV8AommeWNVZZ+ZTlOXZ8soErnRnjpaUw3f4XbrdpU43FC9jCO6g8s5we2sHP+u5wXvw60DibmDXqagxw32kCB2MrtwBdpz5XJJCoU+rrJTo7zwLe+ymXveA9/eN0qqnu+zQ2ts5RNhazoJC2PIInGZLpyGujWGFICkbPH2D0T6wg0woTmk43wuPCIjVmtgAdBScKLhHFqJaIYzNsabSSIqtMEzDCO5JAwkszGJ9mxeoLkAy57Nq5jxfBJio/Oo/9rDx+4+AQP70ujKB4P72liIGERm81S1R0s1b+f7cSZzdcQQPe6cwh0W5JIQdErBCTYkMtRVhSsphDzM2WUJSL6EiYKBp50ej8TjKpUr7oJ7vwyAHOGQV/RRc9UMONJKhf0oh+YpLamheiOQa4Z2c093VtJmlnkh3dRlTQUSSXpKUxLAY5HVrAnvond7mWkPZd5IZGqMz2frPxs657v9pdDO9rdMq8e/RoAPfYUtwXidBR9FkUm5JcXPp+pbqHseo33J6iFUZYEU3jOohoPADHZQfXCXKJdxe7qDmZSNapzMjoOsuqC52EeGkRb3/2y0GyV6n7IVGQYgH6rwaqZXZKAJpaqp3dW/cmMpTaYaFIpjxWq96FC4Kgy0lJ9tYCvO+laHjVXYpOylS+lSqwwjjNgOvyx8h0uOXUpT4yuZmvvcw8TfTHMsV3U2WNsr/lja01vYaYzAUCH1wSWRfYxf5G2UiySmxsEJOLhlWzpSXIy0tDziWb850xPZRhWLycZ1RafkWhQIVf2x8T2ZIDhjgjmpH/fsv0XEXpiFGlwnCZHZ53XzbTI4cgeD2ycZ85q4u0tNxAf/xJBLK7reIIDmW62TR/isapOTyzN9s0p2LMH9u6FllboHzjzm7GU6WY/Hehmk3N9HbyoiCELGc8zaS08TEi2mK2FuK+8mnQ5Afj3taPvmSfJz8WEqkL9kTaVELIsoVkQSXfTkZngaK9Pwjgm3c3syd+k9IoVrPreKDOhFDVZY9fuW0kuM0gMgEwFansgtJ2ZJ4Z90G14GO72tTufT7IKyWkkUphQFFZYvo/oySrBs7QQqCkCsWRuZXoS/TO7qBkVzEgbw1qZwdoBrpwvoBlJ4lqM+eXX4ckaqfgmvO52lMRyvO/dhmeasG4DF1z+Lr468Nvs/cn/5PvzGdrmXDKJX71fQ94onyz+ITY2f1P6GK5wmC1mufm2Oxj6LX98lpDoogmAcrSd9sjZ1eNVZInupgDTOZOV4e1c3/p+9pdvZ7Q0wneqX+VtwffQJLchhIyydgPSg8dxLZ+1Vx09Qq4zyOpslMu3zXBiJMoP9lzE7+q30CayeMfvQBz5Cax53Vn9jueyOTMFX79NEkjJZ+/HK81RGGjGPugnArOPTyMlQouJYty5Etbu05mGUipMrWAiTIMRZ4gh5zgxJ8pyy9eEzBhh5nIhWl0PdwnTLejlCFqN99kKrcUqugztzSIkaOkJIktjVPRWjomt9Dh76A/nubwc4f6wjBGs8C1nFR86MkHr6pdO3/yMQbdvfvOb/Pd//zevfvWrF+s2btxId3c3b3/7258RdPvKV75y5q08B8wp51BVlc35FvRWmbwoc489xk1tW3Amvw5DN5K7Mkc6s4JSaC1TkYsZy8+xJXscxncj0o0wCmt6/wI4ywkvSMhN0yQqyJKgI3F22SFLmW62KxEPeCA88ASO7YJTQcKj12thnxim5lXIh+16d+3blqZLuWP4Dj6y5SN8N9RKqjJFtTCDWS2ibLqM4MgY2UfuI/za6xsHNbcsFntDfvx2q97Jjr1fQY2mkWIpak3LseqZAQMEEI6DqwR+fUE3SSJS03n7sY3kJscZb67iSQ4CCLR9n+rYe8EJ0lqqoHkuTaU8PQNxds6up9erMTF1mMFVpcXzLYBuWk2HpnOPhbTAdGvqirDv/lNMHCpi2BrzowrpVkFANQlaNoVwJ8IxCaIxWH2YoJQioAwQqPmO9buaf5/dud/Akhym0wYeHgLB2PRJLtr8Kv6REO/F33doUuHAnrW85TKFw6V96Ad9Z/50pttyHNUHwmOhc0NfSJJlZFXDsUw/kQLg1hyKiTiqWUCqY3KXRC/ji4VvcU3zbwIwOFUhElQYk5eTzD6BXeeQy55HwrDJ2jaRZIpT+/dQ/myWN/7vTzI0ZqHLHrpsMWykMNwIXdpBFt66TKkBwMlSw1nToy8P0K1Ja2Vd9Dwqdomh6nGCVZWEGyecqyIkiUAyRjWfQ6pWGGiOk8qP86it4iF4jb6BldPvJD8+zG1rvonkSgQsmSfOM9n6RJZsexOXzec5//v72PbOTbRu9nhofzPRkIUcNQjW5pmKNCbnrV6K+bksac4t0K0n2sOr+l7FidwJRqvH+F8bYzg7Z2hyLOZ1iXwdcPM8cCmxfOY7jLXdiOfaYGRA0rGcMLYpSDWvJrpsOVUrQ2U0R02EiAQSmO4aukPzpP5wM+gwk6+wdf8xrh7dTXfIZ8AEXJMdyQv5udTOULPPuO53XN5UDFPUKkTNIEXNZ1o+WfnZ1j3f7S+HdtRUgZCb8JwMqlWivTJL0PXBiqZanqBrL34+U91C2V4CuumBMIrU6Bs81+OymspUWBBPz7Dx2CD2eVfSIrVRlv0Qs6IkkQAk1X+enNkZvKqFeIYQyXPBFnDB0Zg/WVgKumXmG+NGPFUHw1SfwecsZbJZRcxwYvF/R7aRl2x/cCbJAm+gYAg61R7ulIo8FAqwySyAgPcF7+VTty/nW++/8JwBKz3P49BDp7h0vhG1MBy/AdpVOvUe2nccgepBcpU8nucxePgAfnyTQ0tEJairzEbqXqbrEZ2r4koOE+leqlKU3iX6U9Fg434FNIn2FXGKu32G0VTTBtJrj6PNTdEyo/E6bxuH3FF6jgmm4jUeSxzmRCDPB9O/y2vn/w6AgXXT/O5Dt/D9pg08+kiFVZ2az5VoboY7bodXXQ+9jaQWz8aeLdOtZljkPX+BPiYSAEhukaQ1iCQgqFjsdZZxWVFnAXRr731xQDdJ1xdI7BhCI2AZgCCS7qZ77z5CVZlK0OG49wQ7j72OV77+FWy77w5M4zj7pW5+tOwSth8/TGKg3keUHoTA+VgT01img3pquHEx04STJ2HlmScSEq4fnlyQBEVZImbXQTdFRQueHUKDEAIt1PCHbE+QrmRpM+5l3FiGKs3wuPFj3uLcRA2DKXuMiZkf05TaQlTvwCy2c+zUEMt23IcA7LFxhkIrubSlhfO2vJ9LP/aPGEMVPtjhMR+vM009aMl5rJoQ3L/OJuAq1ITfV++I/4zVLQaTkssqfR1thoKGghDgBGIkw2ffz+1KBxjN1BACVtlX8Gj2dmJqgjH7FF+o/DN/ov0RkqxB03LUoIld3QGAM7qH8qqL6Jmu8upmg++pKg+T5l/DN/Pe0ndpjgWJ/uR/Qt+lEHx5sKhfcrMcX2tSlc9YX17uTmGP5xACvHwV++Qs6kpfJsWdLzd2DKjIHQnklhi1ySmwLY7ZvpTUgJVhoYecqkaRpAie6+HJAfaXl9MkTdGiF8gaDb+gluuG+RpG2e9P23ODNK3OUDQ0zEgbgaJf/39mM/xO+GL02jTfWn4Z533pW9z0qT94jjfqzO2M3yxd1+nr6/uV+v7+frRzSJj9xbLOaZ1vN/srKffUpvnNrlPI9hXsGKmQsFUK0Wm0XJrH1Yu5Xv5732/Y9QV4zb8tnsOd379Y3h1TiJbTpI1ROuJBlLOUtXTBluow2a5EMKiC5oCh4FguWP6qW5/XzD6GARgrPk6T3nA6qgbsGN/B72/9fSLL1jN/wqVNVzh8fDebm/uxq7OUhkxcy0KqhxcboRCNK/smIzM0ewyzkIFChtqyyzHqo35QBNFcB4RAPcv37MUyP8OQRzyaBtPkioMS37l8GFdAJDRETCvR27GO7rIvNFoLhNhyySVccOFqxr44x63du5mPWrTkI6iRIG0kwKu/9Oe43lZbX4KJQ76ez7xIk9anUXWTqhNBrWaxAklUqZPvjHyKD/d/mZqsoAYDhIwa8XiU5ZW1HLb3Uw7YFCMusZJMJjOJ5RpEFJk/soP8PhU2dyf4ySM5QqisW6lhj5Xw8JitZ5MMiTDNUitV2X9O4+cI6AagBgI+6KbWmW41G0eECal5qk4NnBod8U5Gpg8yWTtBe2A52bLN3QdHkEWEbPI8uocaiyByrUbfpq2M7N9DJZdlJJflyI57WROqgg05J8yEvZ6IlKGLhs5isepPkG0lgLyEAadHX3gx5xfDJCFxafpa9uUfZcacZEP7VjbEz6fckkENBjm54x6quSzpvmXMJTWOp3PET9QoGAEU2aT58maCO/K89vAH+Mr2P2UyVaVWha3ohJt7eWSVw6WPnmLta7fRHa1QuWiKTRdN4ZkO5Xvz5Fsa4s5dUgxH9WgdWE6sqeVpWv3SWmu4ld3Tu5mtzjJSGMEMuihBDa9qkiiWKUejhIsVbFlGcXQKTZvYFLyNQ5W1FEr+mJHL99M80IvjOkSbeyk+fAKA6c7NZAeuZqTqMuk4WPdneP2rDqJvX03lRIY/mr+LO4wwtixhCYVDkTVcMHWE8UgrrhCsr+nomqCnLU1m1qCn2WcSPVn52dY93+0vh3ZElTBO53LmRzII4OOrw3S0+qHBhhJAt2uLn89Ut1D+2+GvLT4zKaWVPsVlaMlztNZSOC8U5p3rLCZHQgyqKpulbXyv9nUAsip0OyApICQPOzeH9cQpPMNGivv9iZuv/kr52da9GMcslL1qXeMy6WcDHLAa73V+pJ55W1EIRWM4aMTicdqqVY6r0gKWQW9nE8ISNMkOIQmmYqHTwksv7giyr04UMAyXjmAfAN+NRnh/roAMvMG9k78bvIH//v4e3tifPCful1m1GCjMI9dy7NU1+i2b4+4FXG63Uz5uIDsexaBGrbqP2nwegQpSFIHCtguvppySKNaTTcRsi8SqIEJTcM11XECe6HiZ2vFRpHgQvWSD7jN4soemuDjgMagIbNujJlIsf9P7MceGELVeBpUR/q/1Fk6U9/L53scoBx1K3ghS55v58eylXC49Tl5EuPj8ozRVf0jiyg+AKWMuvwi3YiM1pWHPKO7JyhndGxFsgIT26Dz2cOZJjylaBdy6cnhc8gGCZOkJ5HrdyWIaU4tDtqGLFpnOYM7Pv+C/q4S8qIlneDG2ugaKrJJq7WTEE6wciXB8WY2+wGr6g+OsPHYh0etfxZfvc6hYHjs7NnLfqU20zT2A2taBRBVDmadnzQUU7zlKyEohNa3xr6lFkI7NQXH4zNoZ01Dr4bjjiv/OxZ161tBomNWJVdTuPvyc3/Hn8x7onrLI9JUVl2rLq+mOJEhZJbZrYc6zzqPDSxHWosyb80iqTkgkKRdrxJ0i1dlJtN/4n+jdAxRti+7JDPlyiZC3kc73forq4DBvkB7mu+xFdQTrlAH+XLqeH18+xZHsrVzmnMeRaYMjLY/QXevgltfnMclx1DjIBsePWgsoMtGQQvIsM93AByovXBlnx+EcSbWNP1r7Wf764PvJepNknTnusm7nlfrbAVi+uoUDOxU8bApjw8xxI575BBdmqqxvGqF8oczXH76Ay9SdDJQe8y9wx5/B6//1LH7Dc9e8Bdmn5yB1JYRAXd+J9eBx8MAZnEVujyNFA7hzDdBN29aHFPEB8VrZxNKCHLX3ALDGMJgigVSzmKhGqXo6U67OdmuQkqTQHvTJJCujGaaqEQgGGc9rNE01+sGkZiE5MgUjAPGLmMo8SFiqsF8P8NVT95FwXe5QPs1t41fy0Nd3c/OVy9jYlXhuN+wM7IxnkB/60If4i7/4C77yla+g1yfuhmHwV3/1V3zoQx962mN/9rOfccstt5BKpfjN3/xN1qxZs7gtm83yxje+kbvvvvtMm/SSmKiHTbmzBnE5Rd6ZZ4+ZJZOYJ7Xa5Ma2KFatxv5wE458BaGe11DNf56gW8Q7+AO4+pOL55IKjQnrkBtkvRJlMhSm7yyGlS7YLzPdtKgGug+6uZYLVg6APvwJYYgAd2e/RW/sQpKar8HQLvWyI/NtcrUcF1xzDU/s/wVmFRQB7oYrMLZcQWDnbZRHRogMLAPJJfPo7XS+/jdPa8vw8Wnmp3xtAjmSxBUlAoSRMQgRRFPrYsFnKdPri22yqiJUjXAsxcix/QSAvkyMweYCnake3rKtwttWXcrRT/uaOonlA7x5TTu7Dw/zl5ccRrdVkKAUdvmE+QZQQfYEAnHOg27t/UlgFMUuc+/uNUxkEmzqbghzylYF2fNQHcHts5/jpvY/wYwFCU3XqOQNVinrOGz74PZUskKsFAU8JmaGSYa6Ob/g8bcE+dhoDoDasEZx13oSE8coBxxquj/o9MnLEEJgSf6CwrnCdANQgyFqxQKK4iKEh1vzJ3mBoKDqWAgtgZP3aHVVHs3+iBva/4CSnSUghUGCeOkYPWO3Mlc/nyMEowf2cO37fpcf/f1fokeijOx9jJUrKiiKhKn4E/aSm6ZsKwRlG0mAbZoogKepCK8x0VTDLw+m24JtjG87LZFLtM6+XXPt9Yzvf4L29Zt4/LvfYGJdiZ6A4w/mgFaeJdiTQh0pkKq0k4mMkQvWCLf1U5gaBBkO9PfT9os9XPi6VQyHNQwZ3Fl/qp1bwnTrlWKcGj9I+ytf9RJ+82c2SUhc3XM13z76bUzX5MGJB7mqbQPOUAYppKGFg8xpGsFqDbXiMCNvocWdpVM+QQH/uRFegZOPZenfnKCz63KmlAdwbZNT2QME4xcBOqOmDLTy8I5O2k0X+YYbOXbwG+jWJLas0Vq1+b2xBzguWtA0mQ+1pxiQZZLtQYLCpM2LERQ++PFk5Wdb93y3vxzaYVUMMrMrmB95GEULcfSh7zCV9rW1irlpoonWxc9nqlso19Y3Eh9E9SaiS0D4BdN1CUloxJwSblCjudpGm9PClDzDvAYs5J5SXexsBs+wwbAbgvNPVn62dS/GMfUyrkdNK+FINioaK616BlFkTK0FIeaJJVMIIajpzcyHInTUqtTqoJrwXKKyTKWug6cJUOTTNd0kpdG/urZHc3QAqSAxoyjsDCS4rJaj4AV5SP8wx49fQKXlkwTOgftllU3C0z9lrelPur4Xa8HNl4l4YaSyhScLRstj2J7D8NARijl/VGpqex1DUhKLCAHHoSZJNLkWkiIwAkEirgcyaHh49WuFaybooOAyogTopEp7WmV02sQwoawk0IMhhFEjpIYxrAqpllbOO5Zgxyb/uj8zHyAd/R/MFL7F+5TbqCoq6dIupNlr0eOrMeUQimLg2TWQ1TO/N0sz8toOmM6THpOx5hd385MoQKr8+GLdsWITTjJONe+PIaGIgoJ3+rleoN9VkpSFxIHYjoPuWCCrdDR1AoJlmSR7Vg1z0N6LLmzeVr0GWzP538tU/vjIHEnX5EB6gKtOTtCTOoIQHoHpL2K0XY1asiAUwZMUX4pH0fFcByq1M2tncR5Rb+VEHXRLOkFc1w+hVGTteb3jz+c9CATVRXBdD9jkayqtiQCGUyMgB2mxE0hCRpN15qUya+V2jBPHiUdiBKIpvFIeIlGURBoPCHgu2bKFFAighZuRgjO8TVzG+5t/F/PkYRhYjqLmeFfTRbxTvo7jGZe7RiaYiYwwFG2E+KlobFe24lk2shJAVyQC50CyMPCjfS5eneDASInhabip7Y/50uhH0Qhwu307ei3BZdp16O1NBJN9VLIncCoFMtMVHApoqMQtlw93jjHaH+ETQ+/hMvkAGiaFfT/DMP+I9pv+GuRzx68/J6we8i6eI6FFjgZwB5pxTs5CQMWZzCECzXgFf3AX0cAi4GaZDrblMm07nLCPAHB51aaNEgRgshpFbU+jdMdoOzDLj7yLWYe/X1BxCColDmorMNM9FEca/kauvYN0xQKqICT2cCnHBucYWDVIAp89HNcKvKfnZ3z7boOfpH7rJQHdzviOPvHEE/zkJz+hq6uLa6+9lmuvvZauri5uvfVW9u7dy0033bT4t9S++c1vcsMNNzA1NcVDDz3Eli1b+MY3vrG43TRN7rvvvuf/jV4kU5t8ZzRXrbA54sf/esA95hSSbqG2zBOSK6w1J3BxcaUAI4nX+gc7Jjz2hcVzKSUfdCsLQc6KgKvySLyb/uazP0mVNW0xTsJyJdSQhgj4L6BjN0C3FV4nH3BeTc0zybnzjIz+dPEcbYqvkbR7ejeXb19HJug75ZXsBMXMKYyLXo0HzO6fZnx4NUU3QEI6ReZgA4ysmQ6PPLgL6qErrX3rmbdMiuSoUSXuRdBC/mrMr2t4aXN7Gr1jGYFQlGQdAFh/JExLIcjJ/En+cdc/87W/+WMOtiY51JHG6erlwR//nO/t+Cy5iMVstEKH08w1mfcQrYczLEJt5zjo1rUqSfyjg0TsYUxb5cDJHkayDV0pya7hahFeH7uBPYU72Ve4E0sSGJr/TKxUGmnRsx2NVbsxdxo56QNoF6PwATRaEPx4Os9nnApz1jQTTY0QqT55OQBufeJzrjHdFkxWbJy6tpqtx8BeCCsWfEas51MH/4vvnfoDHs3diiJpRGbv4Lx9f0rIbaw8uZKglJ0nnEiy+pIrcEyDgzvu59iQP0BVvPjiOf/m5AWsueciXvvYdhTHd/hFQEV4jVAZaUmyh5ezSYpC93nbUFSNREc36cNBInoDKItP70f0toKAdGVhbPAIXXgZsubfg4wqc+iwgbFrhIv2G9w4VmDFvcMA5JeAbv0iDp7N8vMvfOm+4LO0q7uvXizfNXIXckfCD/srm8QNA0eRcSXJV75FMGhcQNFr6OUFYlDMmMwMl1G0IM19WwDwXBOkA7T3h+jfkmDdVc3UeiLMbk0z2alyQs5SDmikKhZXr76EtwSy1JrX8p6eFBu7okTag1gI8pK++PlU5Wdb93y3vxzaYek6sY5lrLnuDxjeFOKblxznB327+UHfbr5+4cHTPp+pbqE8nWhkLw0GEsjSr4JuQQ2EsJCqJZQ6KLfe8/vr0hL9Mkn1sHMZcFzQFYQqI1T5ScvPtu7FOGah7Dguw32PU5CmkT3oMn22dNFJkZvL4HkukUQCACvagicEZSFRqScb0G0LyzGxJB82sGwPT7h1xrtvNbvRV3i2ixWI0Cb5fc7fp8MMTd2Ap8ZpEnkuMu7gkeHHz/r9QpExHQdv+ruLbT+cvISYlaWs1NANm7JRoGjmqJZL5Od84EtIcfqXbaTiSuSiCWqyTKxm0Fko49oeSlTHlGUCIfW0a0ZUwYVyDReBJUlMSRptrQ1/Z2Q0j1ut4M5lCMi+LxBPN7Eq14xu+M/fPvMoV7dG+ZHyRg44fSAL2roH8Z74FJWKTT5ngiYjNBlhVME2EK5zZvdmwYR48mM0hVknt7hbXCTBtYjXfIaw4ciMlOM4eoyFrArpxIv3u0pLgAnHdcCsYkkSKDrtHSuI5F3CVf97HbCOM1OpEtJjXNMhszktyEsa31t5FfvmwpTn6mF9dgFp5jZUjPo9tBHBIDgmolZFVEpn1s7q+GIbF0E3L4zjyMiKwJN4Xu/48zkmssTnloTNfNHGs4rYro3pGCiuhOmaFJwirnCxC1nszCzO8Ens3BxuuYjtWVTdEtVAhZokMBGULA9XcpClIlrFgnwOr1pFK5TJqiaODJ4uMzg7jerqnD92HUttq3Y+sTortxRop6f53PLbFFliU1+UtT0RtrRu4bUtv0dLoI8SVe6p/YSJ6h5UXSXd3UgmkpseYvKOYTK3H6V0cIoVBYN3bBnhvCsMvtr1O9zhnE/KmSN06FsYU4ee5urnrrmFKm7FxLMcPOOFy8rruV7dh8NPkvUcTVnWgkiEoGrinJzFmcwtbpNSDayjVjLAcTiaqGJQQ/Y8thg+Y61sq8ybMQI9TUSK8+iOSVVfzUSlkZzB8QSHYlcjR1NUmuvEJQGnlq1l38Ali/uVV63EFkmqNYW8EIzLEuczymZ5kKvDj7N35y6855OR+lnaGc8gE4kEb3zjG0+r6+5+5kyIn/rUp/jHf/xHfu/3fg+A73znO7z3ve+lVqvxW7/1W2fajJfc9NY+rHk/bGB7pZf7OADAN4qnuMFcjRo1ELKL8CAkz1Nzmii1vZn7pg9zqXIM6eHPItZtxxMSASsDwEFdI2FHkFyZw0oT16fPPugmhEDRdGyjhuP6Dois2tiAFjDB81/uYLiNVssg6gTwPLjbuRMt08+apmtIBP3nYdfULq7pvQZl/WXw6PcAmDq2k9gl78BavhFp9DDaZpvC8ErSySzyyR9hL1/O0LzNoZESueE9i+3a3LGSn5cbWYliIoyi/3qDblLbepTwMIgKfWvW4jgeKwf6OFC8jZkYGIrDXcEDbE3HcGSJ2eI8ew79K4+unidkqiguvLntw0jHo4gmXwtPX8g5eY6DboomE4kFyXUZ4L8uTGSSpDvmMBFItg+MrQ9u57zAfh4f/xbro1chxk9Ccw998gBrlA3MubNMpGt46AgEQ3t3c8nNr0OPC8w5i5vdAFNTeb7rmQScIjXXYbTVQHMkVqqr2aD6wIArSQjhizSfK6YGGsxYRXHQKgVCjk5ZbyVQO4UR8Jmn6c0fpemK9/Pa236He4PLyVuzVEsHSRYOUJbXsaAF49bB9l0//C7nv+4mjjzoL4I8cXCOtSuSVGiAnt29A2yQcxw8Oc5V9To5qCLRAN1k/dzTDXy+tuKKa+B+CHl76DVzTJfC1GyITe1hNhQhVWkIsk7Lsyzf/BpmTzxCOT/NwbY46W8eoPUai/R1KzFP+s/wQubSsBegGRU1EKRr7fqz8v2ezra1bSOqRilaRe4ZuYfM1j8gXnfK4pUaRHQq4SDNVRNTlAjs3Im8sRdBCQ+BrvnP2fRgmWiLQrzjfMxaieLsEEb+YYKhTahqM1pAxig7OJrEiaO349aDclJtF4B6HiUny3YtyepWP4TMQ+BKAmQHPAXkOhvoycrPtu75bn8ZtMMVLodLR/ii+DShuEJFczDr2UwrQb+88PlMdQvl1mKImmqzqdDB/ECQR+JpkKcXQYHO9bC56zE0ZYTZb/4UN9EGzX1sUy5hdGY/w3KBo6pNc1VFCTjYsxPgeehXrj5jbZmX2nJf/hd2r32YV5QrnFBMNPx7PWs1koloeopKJYAd95MCnJT1xX43EPAYNjxKZf+dKkSCGMEepCVsg/vLRVrwtQw928VSFHrNdiaUMQY1mf2xNJcFXOqSpUyM7EC/4hJEb9+L/fWf0syqRfbgT2k1fHHtXQEdI7SCWvcQd3VYvHlHiGHJwcVj9EhjAizrm/jP8Xne27SMYn3Rq5rLUXukgLEsRMcVK0AST6pb59ZsgodzWI7LqKTTcWk/nbUR5ifLjAxPEr3zUwBE/+eHQQZV01CDGqtGIow31ygmKhwXtyHXruGD4sPcp/uaP8nUCQ78cAePxNfzrk9eRHT4IDy6x79oLQU3vOFZ+VaeaWPcdRgAKRZEO7/vV79DtszwXY3In7iUIJ7fheoUmLUSDBdCgOQnTVIEeirAsit60LZ2PuP1n4up1Wmseo4CSXLJTzzK4eRr0HIFnFAKgaBtLsDJrjImJv8wvp9Pr34V3+n8Ea2WivuA74881L6e1Q+O0vuaTiTdRhn9HAenBtjQZEBHB1y6Hb79LV/XbV6Ca18B/b96f57M3F/cs1geV2SEC3HCOLZMIT9KLtVO07Y1T3OGF88SeYPpQwKBh6I6TM/Ns9G9hcHI2kWiQ54yn5D+m8//u8d0shVzdBQpHCb66ldRvude5rZ2su8VG3EVjUTpQjjUTHQgjkOcCyfvZO57+0+75m9/SOZysYIpySMxeyX9bKQ3t552rZNmyeG8/DytgS2AjQDMRAdd56DesxCClR1hEiGFbPk1FN0JpmsnqXlV/tn6V/6f8++EUytJdA5TnBmmcngXRqQb4xf34NQMej96Odevlqithodq3UwPr+UV3mPMuWE6/+Nq/mHrz7luywrWd8afuTHngHmui/nECFRMEAKpI4G2seuFObnTSHcknkN46eKxsoTcFsPO+Qtx9slGZmppCdZRKRoE5kYYivkTvdWmSahOthmrxBFSlKbkLJHpeRxHEJeTPDzXS6pQJqRYGK5KZWA1eihObjYHgBzVELKEI6ILM16ioQQI2JXr4JNrZFbVDP5lqkjRSfKK9G66Z6b4uz/p45JtHay5uJ10ZwPYeyHtjGeQzzURwvHjx3nd6xrZQt7ylrfQ3NzMDTfcgGVZ3Hjjjc/pvC+VxYS6GIaVHDXpXtOO53mczE3x6swT3JW7mkzrKE1Bj4TIMEUTht6OLVLIogI2KIN/jRNcSUkKsivgsTMYpKkYQXckyp5KX9PZDy8FSHR2Uzm2B1lT8DxQVcsH3TSLqCOwdJWW1QNEpgO8Znwr35QfAK/CXHUYAFULE5GSPDr9KACXvfJadjz+c0Qwjl4pUhg/hXrVTYR+9jXsmWGU5tXkjqxDvvgUdz46TrwpiVWtUBs/TrBjBRGrRk9bP+apk4ttTHohZMVfpTzbOngvloUiUdZcegXmgdvQA0FWbb2Q8akZrpwaYLz1MPGySlY1qGoqqZJBdPkA+cQ4pu5hYvHniVdD80XkzN2L51xUXTzHQTeAkBwm96ojqF/vxyLA+GyS9s4MpieQbAM8F1tvJrZ3ht//yimyXe+ieaZG/v98EVkoSEJixvWBWjGwEX26SCk7z0x4nva+GE4piwz87w9uY+fXH2ejNUMtU2WspYwnYNQbp1f2k084skQ0qCymoj4XTA02nCNFtamZChU5jhOQ6TIfZiH/as6M09q3me35DP8v/H12Zr/P5ZUq7wBcNQ74mltyool07wAnHnuYZEcnzb39zJ4aYmq2yvBYgUpHwyG5bG0Ln3pomKjT0FBQAjKSaAzY8q+hxqcQgpVXXAsH5oiXDzKai6HgESlM0drbQnqsAboNlg9wsXYds0LgOia1qsmR87ej3PYA5VGZjOdi6S6VoA9UtpFAsRy61m9GVs4dcHfBVFnl9ctfz2RpknvH7uXm227ma+f9G/ECJByLtGVgC0EuEWLLqSqFwRFitUn0lb3UFAXFqSCHFZyyzeCjOVZe1EFWDWAbPkIwvf979FzyHixDAcciM3yQ3PQJYqkeatU83VfciHygxHTza0h2BsnP1IikdcrxMLUwiGAF2wig6HUn70nKz7bu+W5/ObRDeLDryCNYrSZ5zSTk6TRFfZH/kufRFE0tfj5T3UK5OdSC4c3Qqy4nFEmRTuiUNjZRmyhjTlcoVjRixgiuZhPd2I528iA099EdXolhVzA0WGWZoJjYHc3MHTqGNTODVlqGiJ1bDIzTzPPoaXuEPy9O8IpKlUmpMb7OVxrtjqeDyKpJqa45ZmkNFna6OYVXtllYBDECOsIKncZ0c71Ggh/P8vvaZeVuHor7vtZwT5TN020kZV+WY8A4wOM/vIutr7gQ1jbY3y+llXMllk39CyfkKKZc479jUbpzLYS6LPrGZMq45CQ4eWA/83NzCLkDvAq50BquDkQpJQKE56pUoyrJ8TGkWBPR1a1PG/oUDiis743wyLE84CFSQXIzVapFC0OkseUAilNDKVeg/lyFmhP0jofZt8LPxvuAdIS3NL2W/51p515nE1fKe9EiDtFjXyfU9Q889rMhtl+/hvDJE6DpMD0Ft3wPXvkqSKef/qYsYZAshiL+knmmTcbNL/4fF0lS2TuR8GhWczxcbcNFILwI2B7GTJVk24s3h1ACIcpmFM+wEcJFQUIEYkR1MNtXMnPi4UXQDWCPdRhvcBurN61huu8Jbq+Dbjvb13PzkTuo5pqJN+0BIGLspGxfSKinFxEKwarVsH8fuC7ceQf09UNrK2za/LRt9OYaCpLjikLIkFEVFduWEYpAD529OVY0qOAqOrJdQ1FtRrIxpASkK3spyWEKeg8P6fvpK4UJFDKYhVOELr6Yzr//FHIshv2hD/FA5Zu4roXzn6uYC83AsEHh4BzJK7s5dt3HaP7xm3FN/9maToCVSPOj4gnSFlxfvpmZ2CnSqTjv6Lua37j3M5xa/maGa0GgCELQ1N+NfA75uL9sLQmdi1el8bzfYbo8xJGqP7fZMfFFtjX/FmYph2NVceZGGFt7LW1VAwFMfuNx+v74CrZnKjStVxjs28xPfjjEjZK/sDy1+ye88ZEL+OJ7zueyFc1P04Jzw5zBjA+4AXge7mQOb0376Qza52pLsyk/D6YbgNyZxD427TPnahYiGkDoymkZUatFg/DECfLtJl2s4crqkcVto+U4elAjJOaRalkyikszgl3VPoZKfj+tBEI0R9oRUgSnHo6vxTQ/q5ck46phZKtMoCIjN60mlvXnO0cDOp/sWMGnRn2Nv9Ut4+ye/BqHd76bgw+Mc+27VrFse/vz+v5PZi+ZZx+LxZienqa/v5Hy9aqrruInP/kJr33taxkbG3upmvLcbP1FcHwnsWAYI2PwitWX8rVHfgDApKNxZeDrmFmLy2rNfDDSDawG4OfNH+DCyQcJRRSk6iBScQ8acGkF/iKd5pXFBCHX7+R6zwGmG4BtGFSUMJh+iKkuWVSBYLhGUfbANgmnUjiWSddYw7nI241U3ecFtnHSPMDBzEEuX7OaHwTbWV46jlECOahgta/FLBeQMvtQmlfheRKHK1dSi4ap5UwK++/HKWWplrIsX30hCAlXbejFJN0AQvYdW/XXlOkW0mUGOiIcPtD4folwkMS7/5FtJ/6GHcpdQJUbYik2jZmMRpuYS9RD/RCsiy5nX9lCXaIDswiDaC8H0C2C0RUjrk4yZ/VTMzUWlHwFIFk17GCSd90rCJoQHKwzIXOzuJE468ObOJjbC0C2L0xy0NexuO2z/8x17/oYHd0+aCWbFj/84CX8yf9+kKO9Rbz67b5cuRLHtgioJqFA0zkVWgqghiLIukZxXqDIDla1LmguRYhYQywEmJayZRCCgUALKcdhXpbZHdCxAU9ZwsIY2MzcqScQkkQxM0uirYPMyDCJqMrP7hmj75ocibg/wR5oi/OBK5bxvZ82wjkkLXAa6CYpZ1+M90WzcAtRfQ9rWzMcmG4GTBKhaZqqDdBt0htH9KxkWTzB3ts+jaKFKGNTTjfDwT04523BaNVoyWVwE0HavSTCslh10RVn73s9g/3xtj/mrT95K47n0BXt4iele3mnchEhDywhUaj/5uaqJMGhVYQiFmFJwUGmokdI9tjMnwTh2hzdOUcodgmKfAAJh0JximPSt1F/eilVPYxR+CF4NQrzI6y6/DeQHf/FnLM9Ul0hVE3C8aBFOYbXXWVr5+vP4p15+dnR0RKfT5xY/P//8lZk1e/jArZCTbEXP5+pbqFcrUQJCIPZqRThLTGmcgaRTS2EN3jUThVYGd1PKgCg0PL6dUx9ey+Fba9Bdh0uGexidsPcYntORiwStkfme18hcOlGpHMYdHPKFbaEphio+OxVy1KwJRfb08nU/ImLoqqomk7NCS8yW9wloJts2+TzPuBmKTKuLCM5ymmablvjJbzQFKViGMv2F0F67Eakyakml+JdCtUtUYJOke3yUb5oBNg6OuovtC1bfuZfzvMaqVmfg8kP/RNqdZLlwB5F475Qgn+aVTm+MsRl96tMSh4z42OIemix50ygRt9NLiCzuj3OSMr/3dXgLJd86DXP+rqJJRlNS4bDwKYm9t83jusJ5lo20hPNIc/OQbQLBCQSzaQODxOuyJRDDnudEf4oX6YJwY+dV3K5tJdyLkBH1yDBwb0cyq5hcE+GrVeex/LJh4l4HgRD8MNb4IorYfmKp2ybkATIks8qsZ8CdDNs5tzs4v8xESVdegjw9ZaHykkqcgi96gIykiLR2vfiMXVUTSWsFUGDYj4CsoylKnhArGUAgLb5JZrQweNMShLLjkR5YsClp9VkZFpjON7BRChN4KhKvJ6QNuXez3/ufxtvfu2Arxa9bp0PuqkqWBYMDUKp+Iygm8iNLJYnVIVwSUGSFRxbxnNrZy17KYCuSnhKAOwaimJTM1Xm1I2sznwMYq3YuTJX/cYPmN51giwfByC87XyUerbjUkKmc6aMeyLO4Ezje8TIkr+1hHztcsIXXoH+wAMIGZTeZfxe/7/w4Ox/0ju7jZAZJmwmWdHh8cqdX4ZYF+XIGuSCP6+SFZ3+theH3fNCWnNcZ2VHmEuKb+HIuA+6PaQfJPXElwm3nk8lfysAY9UsyZv/AO3b/4pnuYz884OsfN927GWCmZRN/2uugZ/5oNulziPsCF/G7QemWN4SoT1+7o41btnAmS5AUIVqPazU9XDG5lH6nz9guJhEgefHdAMQmoLckcCZyIHr4RVrKGv6EUs0LcsFA336FLN9x5hllHW1BiNutJIgklbQq7PYwJwAzZVQtThG1Qfd1GgKHAfVaIxRciKwOGbZehTZKiM7Ar2rn+DUbhRHYMsex3STv/du5hP8B8fdTt7S+gO+Xm5DEq/gF189wsTeaS56z3oU7YWb+53xHZ2bm+ODH/wga9eupampiVQqddrfU9n27du57bbbfqX+iiuu4NZbb+Wf/umfzrQpL6kp8WYC7QMUCvOcGjnFSqOfGzZcw3ld6wjoHvNShRIWx8wCFW908biuWJKvjV2HKXUj7AI+XABfTMTIKDLtcooYPuW4K3luvOiBWCPleM1WFsWXVXUJeBOKEE6laVoScpb1/JfFcxzi5SgT5Qk++fAnUWSPpoGGA1KaGwVJxrjglVSkDJWIxuDKXjJxjerIIapHHyb34A8W91+/+kKmDQfUhgPSbEo40gLT7dcTdAP8jmMxzNzDmBnBrZisUFcv7jIxEEfvWEbz6guZ1nykv1NL4irN2MVGdksAbQFRepkw3QDsvtJinWE1Oj/J9gUySftAfi7oh4GGfv4NJFml326kmx+P5hcdQ9u0eeyBO8g7YHrgDGVIC4+roxVKAf9eyZ7EZcHr0dQgKiZl0yMeOjfEZRdMCwRwDJNQ2EDTLbxq43eWIhFfKwswa+B5HiLSwrY6MKd6HsdVFU9uOFlyUwcDr/8tAuEIR3bez+DuXVxzeR/Zgkm15lDKzGDV/FVsVZf54NXL+Z3VjSFEyAEkeQnT7Rxka71gFvKdm3jAJF0HHRRh0Rb1CJl+/znpjeN5HsF4C619W7BqRebKM4z0dGELyDo5ZrwpZhJVMszT7MWwaw7Lt257ysuebRNC8JmrP0NTsIldU7v4pz3/TGZTGP0Va+lvbywaDQuV8MaLKY1NEvYEFg5qLU9kWYjAQArbVnFtl9K8zAV9mxB4WK6LffcgXXM/xa49xsJYmepcR6prLaYiqIVlCgEJVfOfO0tVWGk+hgid+6vT55p5dpEpzQ/5a/eS5Ht1SqsjlFZHOHp57bTPZ6pbKI/l+zm0dwWz02li4dDiQoWQBMH+OJarM5fz6zzPpXPApuCApAVJ6e1EJxu+x1Sf/2mODTP0ttcz+oHfZfZzn6d29NhLep+ejRnzeRSl3t8Co9kkirDYV34lh/O+jxSKxhBCYMpRH8gC7CWAWmZoDqnuyxi679t4soq8ZB+7NEdLW5a2ztlFpluH1MgcP2oPUV22BVz/mkEMHstPYQ8NwYM7wDB41uZ5sPsx2PEATE7A6MgzH/PLtve/CR31M9q6wN+mkyxXVyOsDOsnm8BTKbkuYyeOMTM2iouMHL4eWWni5oBMrr0xPl2ybNUZXTqoSSyQ4YpVh/7zGn1EbvXVGMeOUbz/gUWd23QoiRASvdM+oOHgctvm+3kbGj90N/E953KiyRrhFpOt0n8BUCtZPPiTMb6/r5VKqgMys2DbkMlAofD0DayzUp6K6YZhk61n4gTorc2hOb5/d6qcwHIVikoE3fSfpdaBGLL64kV9qIHG/ERRbEx8UNNSFVQ9RCjRTrSqEKn473dNG+Ufh+8lZGisspYx0Of770G7xkPt6zHmTarWRgAkLFbq9zO4pz7hjifgbe+Ad7wLFhjzmcwzPr9esUHemFAUwjUZWZFxHBmcCnro7BEbhBAIzQclJQlk2WW8FgClCQoTKG/5IqJ9MxxqLIQENmxcLM8YE2zJVrGeaGQ1TyfzzM0GMGoy5qFhDq59Hw++/gs8ctN/MH7jp7CPVNk6dCPhfY3F1Q3RO6E4BZljVOVWFmZPQgsROYfkU57OVnWGefXqy+jwfNJHQa4xWDxKXksh1ckYpflRyu3d1D78NxhuCGO6yOQXHiG9d5KVBYPJSBVP9/uXVyh7yORLfP2REb75yHPo514i8zwP+8C4n5CgaiH1Nkgvbq7ywmiSLV0EeAGiyJSVrejXrEFZ14GyoQs5fTqwWynUmMrmKZBBcl0669OYkq0ybwZR9BBe/Sk1BSiejBpozF/lcAw1FKGcNxdcRpR4I8rG0RvPfiLchKJvWuyj5twZWvsu5GPmb9IlZlElh+3Bn9Mc+DyWY5IZLzPy06N4ZmNu9XztjO/ozTffzJ133sl73vMe/v7v/55Pf/rTp/09lX30ox8lEHjyWPErr7ySW2+9lXe/+91n2pyXzIQQhPo2LP6f+frDtAfSXBhaxfJOBc8OInsSE26V983dsRgGsCyic4+6icxuD1dvZWz5p/hBKM0XE3GEC616EwFFkNYF+vOkcr5QFog1gLSqIRGR66Cb1hBr1DSNcCpNlAABzx98551p7MIcCOhVfAfp0NwhHp58mLUbG6ENhTkflKydfxXT19zIwWv7mR1IUjy0k8nv/wOTP/sPvHoWxLZ4H6lEK2NVC0fOLZ6jxzVx+PXWdAP/uVvoRgXg1WqoheyiwD/AySYTu28Vo87wYnr585QwFRHFKZg+IOMBrkRgoVN+WYBufudcurjRTRWrSzpby2cVGB3LKfS28LUbY5zoktGOPA6WQY88QED4juIx+yD9224k1roMyygzuu8O9mVmmBIymDbW4UmmC0MMdVbQTMEqadVitjBR15RKRs6tcEkt3BhMVM3GrjUG3FJ8FZLtr2B6yJhVC6JtXFit0W7Z5GSZx4M6ntxwQj1FQ1lxCasvvRKAeFSwojtAcypAIKAy+sgtzA7tRlYkJFlCV2Q6RIN9qiphJMm/V54nFpkLv5YWbkzgmsONxBvpltyirltFMcl7/kSja80FPkAMjEsmuZD/HBdDjT61Q45ieEH0czwBRVu4jbeueuvi//fNPYgQgp6+xCLreLBWJRcKcTShEl3iCOpGhtDyBHJEoeXKZnovUEicdwHNSZ/yYFRgNFnAMR4Fz0QoPazqOQ/JsrAiKnPLIpBc8h7qLp6oEVTODZb4y8n2Dt+NW2emrvQ6cAohVFdDdTUCldM/n6luoYzTGIsDusLAL4W7aW6NwekwpcPTSJpC69X9tM/vxHMcApE0ifHk4r4xPYdx1auRui7Eyc1TevgxMp/5DGO/+8GXRPD4TKw6NU+0ruE2IytYjkrRjmAsmcCEIn5/7egx5Hq9u+QcwrBxHY9aIkI16PcPnqQiLelHXcc/LhQyUOvCbRUlxXX5SwkQ5KhzkNllyyjsb4ATl7OLR2s6VKuw54nTG14s+tpZ+/bC178GD+306w0DHrgPHnsUDh2EH/8I7r3n6UGP8hzc93fw4L/AP6yB/7oJfvA7KMY8P5OW88/JBAd0nVXKOlDKbD5iUXYthudmMOvnVdQ+HG0lSd0hJUUo1pOLBRVBInxmgIAQgkjAP6ZSc2hdFkevg8AzUieukDDm5om7oHggywpqaws9041ndqd6kLUrckhIfMe5crG+u/Mor71wdPF8JUvl9qF23K4e37fau8cHLJ+ufQsskqdgujmGdRro1lds6HWdLNUziSsRgvWHqGd1khfT9PAS0E11MD2NgFXFrLM1463LALhsT4o19ko8YXKv8i2m5BL94ynWLMvT017GVDR+uuwSnHKG7MR6jNAFRJV5Lop9nZEnhhsXjMdh/giER8AYhMo+mJrk6UxU/WiHvCRRkiTCVQVZUbBtGdcpo53F8FIAZSlwqdpMFEOw8q2w8jro2gaSRG3fvsV9gusb86Zq9iihnMLYtP/bR8NVLrpiL53Nc2xdPUiLNk35VA0zZ1OesZjbOYudM6icyC4C9FpaZ2jVjezb9hnmz/8IhtnoWwKpl4eeGYAsCfrbwrxOvYoVbjtZucwja+ZoVg4j6Zeg6C1U8zOcOHAnRksP5bf9Hvb6CzDG8pj//jBd/+MW9FsPkGn2WcIhr8I1st83fmvXyGn99rlkbq6CO18X7AyqqCvbkNrjoMq4UwW8Yu3pT/AsbCnT7fmGlwIIXUUoMkpPGqXr9D7KrNlI5RLHHRuDKsttmwGrSs0LcKLQBAicSBeinvDGACRXoa1nNRsvvpRNF19K+vI3owZDaHXSgRRSkGMNH9HWGvOkmF5DDa4iVvb7bUe4DCRlxo0V/My6gD3OAOuUE1yv/Yw1qX/jG6URXv/QKX7z8w9xwV/dyc1feoTK8wTgzhjWfuCBB9ixYwebNm06o+OuuOIKrrjiqcNmrrrqKq666qqn3H62TZ6bIrruErIP/gDPscgMn0L+9AxOrsqV717H0elX05n4ISPhY1RxqMq7Gc9voknTyLT2k3+oSOK3v8RsNcFfNMWwhEO0ohAORiiUbba1nzvilcEloJvhakTrTClN8z+FB2qlitLSjCTJNBNnlAzz7iwiGkcImXiom9ZaMy3xNj7z+Gf490u/zJe/LpDwmJoeJjQxQWdLM17rVgA816G0+67F68aUJtKBDga6ffBuuGRTDvqrfBIyraEQpvj/AugGi/GOeEiyTMSxCEltBAhSo8qQPAYr3ske65HF4zapcaoihl000XXLP49w0dwFptu5BSA9mS0w3WirkU4XUDyXWlUjEPNBjsDsScRcEaOzj/j+MI/05ImvcFg5YqE9fj/mRdexXF7NAfsJCl4eo6VKONVJYdrXBhzc9X3Cr/wgXWEZez7PtO0LeZqaR5vaB4DwTJz6as/ScJVzwfRIY8UoEqxSVi08x0XIEtnoGsLzeWr4Dtrc2DQdkVbWmBaT9RCyA7rOq52GE+ipGrbjsf41b6N6ag/XbIsR0ARXvuZSvvtfvwBgfuIQ217fyExdXbKar0ihJaDbrzHgBhBKQ3IZbq1Eqpwj4oJjGhiqSld2AFsykaRpxtQTJMLbQYuT6lzF/NhhTLvGWDoBQCHcGMC75RB26MWdOL1Qdk3PNfzbnn8D/Eym71zzThRZsKIjzFh+hj969C38qxIj3z3Lp09dSKhjE54QBOZGSBtFVlyf4lRoFUFHMOhFCbz6tzG+/Q/MiyAYC+EFNrK6HLl0N47iL3g5YYXm3sbEKajkyQmZoPz/B93O1B4e/sXisutKp5N1gWvZ8iSC7mdiX/n+Lsx6YLumS3Q3BRiZrRIPK+iKRGXMwFSCzM0H6A34/enAQJFHjkyih6NkjAAOIAPtjslfroE/DKTQJ1JgW0iuizU+RnXfYUKb1j6vtr6QVprK0OX6fV9RyOytnscTozaC9cD9AISivvPvxlNoto1T74eF5xKo1AiENayiQRVBOhnA9WCuaMGSrJHuEpHrZGgKmzWEQhpN8zFq+OPivclj9M+3UKzFULQSNyo7+A/jlWzvaULe8wT09EJ7u89ku+27UM5DIgrFPOwrg5uB8SzMHIeOjTBbD/mtVOC+e+HCC/021WoQkKE4Bs2r4Suvgswx6LsMihN4yX4WlgyLMvwktpE+WWGZvBLP3ofmuWQlj+mRU4vfSdY3oSHRmnbJtYfx6vpS7U2BJ02Y8EwWDSrkKzYeULM8VmxrJTNWopKvUWjfQGJiL05mDrvVHyebujYQHoN98yWkWIypQobRS05yxfh67qqs5pv2VWw3D9OnTZN68E9424fu4K57fLB0erjIIwP9XOTW2Vanhn1NsqdafFrQX3I8PNf9lUUqs2JR8HIABL0A4bkjFNR+sEucKPrjhKzGidd9us6VL+7YEQw3+lhFcag6MonyFHPhbihXibWtIDtxlB4hGKxNIyISthXhXZP/i9uaP01/WxBJ8nCQmAyleLxlJRcMzZEa8J/piDzH6up/Mn18Pa3RGcicgB/+DtgmCB28KjzeB71//OQNNMvgOUwEu3iCMi1zOvGSgtws49gSrlU8q5puAKFUE7niPG6+RjpVomoo0Hc9nP8JkCQ8y6J22E+wofb2ICcSuJ6LhKBt/AgTmQSt6SxVKUFheY6frw5zfewYcamDHz6+Go88IiijRTTskkVUlzAUGS2hkuiOUI3pmLJFJdZP3DiKUfAWJWeaB545IeK5ZJoicVX7dm4buReAbNTivuo+ti77IIVD/lxobvwIheHHSPRuptC7hmg2S7i5RuGUQ8e39zH4nh7SqT6kSpb3K/fy89I2MiWTnx+Y4vWbX5yEJE9ntuOiyBJPjGTZ1JX4FQ1p59g0Ih7AM2yUtR0IRUJKhnEnfe1HZ7rw/GUYXsDw0meySqFGvDbHyYS/yLTe8Ak+AVGjTIx4ugl5YBOyPYYD2AKEJxFNSOh6FMeTkVPdSHaFqFci44FbsVEiGiFdwnY8AkuklGJMsn6LxEOzUUbq4+XR7Ahv7XH5wOQHeKu4h3XSKVB7uIb7WKUc4Trzr5mdU5iuWUwXM7z/a4/xjfdduPhbnamdMei2evVqqtXqM+/4a2bBwSO4PSuIrLkQMfgExWoZJ+ffh9oPjrH1ql4en+yFsB/6MGENsjJ6EQBdzU3MBJOkHt7JzIZLsWQfRY9VNSa0MIrrEAmfO+yG05hulkJU99u7EKaoyTIil0W0tRFKpGjOxRgVGVxc5kvDNEeXo6U7WX2omfssf3WuKGWoRVsIFaeRyxma0klQVEJVg1owgHj0EYySP9lK6x1c3v1agnqE6GZ/kByvOmQDvvOXEHFiUcGkWNB0+/Wd4J/uaHpEm1vxRBBJCPrVZRy2DpAnz5dC/87D9exgAOu1BONSDKdQRI82xJcXod2Xhaab7+QJAUY0zNywTMRSSbT6A4wna9T61yCMKpmW3+U3QjWs10h4936cwEO3YW69kpXaJnLuPLFwlHxfjjXKNrJjh3FdG1nVyU4cJrtiPdbUOOVgY3Ur5YXxnCphbwZDbyYWUs45cFcLhurhxx6e7JGr6MSKOexEilygn1Z1B4ZbRkgSuSmHjmgbK00T1fOwhOCApuHVGmC/p9bdr6nHuP7iOGOTJbo7IsSZQ4+3YORnKE4PYVaK4CuvUC01mG6SCDfCS3/dQTdJAbOIVJ3BC0EUmAzo6FgkRYiHY4MATM7vZn14O2owTltzitx0gHCinVkxCp5NMdQA3fqVEHJT61n6QmdmyxPL6Yn2MFIcYff0brK1LMlAklWdYf7zyA+wMMjbfn/+1ytG+FPvCkLVPEL2aPuvT1N813sInL8MQ4S5K38rOWeakVfMMrDfoXM0gqqomG4aWd/IuGqRMAcJ6MuolWwCkXr4kmvy8+yXmc+eZP+xH9LttjAmZunyfBbik5Wfbd3z3f5yaEfcDqCFFDQU+uxenrhzlMmTft86O1KiuSey+PlMdQtlC0AWKHEdXZORJcHl6xqyIyc7/Axr2fseojltoyZDpOLTVPJdBMIxPARFWyOhmHTYUEyM8eMVN/DKK1+P/uBPCf34ywBkPv89ej77f8/giX1xbW70CAtBnhVPxq76z74Uagi7L4BuUiSG6jhYlg+8eUKiGgoyDsQiIUxHkC3bbFse56GjOcQSbUzHdfA8KJeCREM5hvNHOESU12Qv4b+bfo4jXB6o3cHmG65noPwFLrD8RZFV4i/45tyruJlNePffi3jTW+ChH8GR/wsiCGMWIEH4CvjFTyDYB9VTUGiDV/87PH7ID/kbGvTBpGQSLzeBmP0CSFXY+l4o1TV9J/fghlvZOWZwnhxjl3wef522caRhcKDLbqW1aTmeV+Lk3CzVSplwLE6lJCEpvcjA+s397E2HiOsSFtCRfG6L0tFgg6lRrNq09cc4cJ+vQ1rd9hqaHp1FW5Koojmgsm9qmnAzHE9NggPz07Ns7yrx8LEIP7bfyav030eRPaKdVSb+8je46A//i+//1wyu7fHE3RNseVUH+uQpnxU4OQmdTz55F4rcUA6xXNBPHzONmk1aNBOVY4QIEffuQbWLVAlTdXz/bVQKMpAKEXIELX0xXkwLBHQ8JAQuimpTrWikS2McC8qEXRWBoFb0n/urD3RSvDDARPAYeeDe2hOsqS3nwrXDDI/7/cWtA5dw/q6vMV/4E9qi+xmtrsFwVILffR1YJ8BzoPtCGH3YB9zkNJz8EUxdD21Pkt17ci+Sm6WjmmVnNMxM2mDDYAxZVnAcGeFWkM+yzqyq66jVPGhg2oLMXAJzbgKtDrjWjh3DM31/PbhhI5Zj8rPp73Lx5Bxt5TIHS91Mzfn9afQVUAXua5bZNNVEdEs74Y2tOCWT7nY/0+eaFQnKeQPP9Ziq1Dg+bRGzh9hQvoNHA9fDbEOTN90x8JLfj+drybYu3pt9A58ofpFOI8UTsZNsFHMog1dilX9KINjB0N47WNexjrhjY6y/kOl1m7FCzYS++280PXISd0MGyShxHnvpV+Zo7ujl1r0TLznoVjUdbvjXHZzXk+B7u8e4dk0r//qOLWh14MszrAbLLayhtPjvu9wawz7kz/3c6QKseH4+pOcsTaTw4vrx5YJBMjvKdJM/99iwhEk9WtDJVzPE23rRxsZZQJ1cyUPX/QgRwwmCEAhFo5StHytACipYjodle1iBJlrjzVhzM8iKQFFcesOt7MUfr0bzB3jTyku5dN9hbotuo2bKfKLl2ySBiJrmMfXPeFPxbxCSDAL60mG2fPJOZEnwlzeu57p1bWf0nc/4jn72s5/lYx/7GPfddx9zc3MUCoXT/n5dLTjsg2npK9/ONa9+N1evP4+mHt/NEprMmofvxyk1Le5/ymnE5a+NBTiW7Ca/7wCz5iSxkoLsCFJWiO6QQcmT2NDz1Hp4L7UFIqdrugU0P1uRqvovo+Y4fqYmIJRK07JU183yX35JD7G23OjE7x69m1SvHxIp8Lj9uH8/HUCrVJl/6NuEZP+6q+Lb0ZwkoYuXEdjiM93KjkHZ81fQU8QJaTbW/yc03RblX/y0x6lmjHIW8NgkNVbtdpij2DjICFQEy9U4FRHDLhrouj+I65KMFAj6q9Qvg8ySoSXsFafFz7pnLdF0U4s+COvpQYqd2+hOXsZA6hJGL9mGmJ9CufNbbJDXM+ae4lDxAHcO/4LWgY10b3wFZjlLfuo4k0d2kNMk5rJTlAMNACSldoGk02IOYssqyci5xXIDEJK0qFGywELV8xmEZxPwSthJBU8K4xKkmLMg0ooKrKmvJg1rKtUl42sw5LLOeoTkzP0IAd0dEQYzMb7z01FSXQthDh6l2fq769mUjCVMN9EIL10Ipfy1tog/2AoBEblxI3tEg3FwXC8yPlajkp+i4gQJRtIUZ4ew6uHzxTrTLe6FiAoVaQl78Vw2IQRX91yNQNAebucNP3oDH77rw3z0no9y2/jXTttXkXQ+bn2Wz0u3k6OM1d2J/h+f49KH/pLLK9/iwblvsyv3I6a8GZ5YX+LCq9t4503r0SKvQwiJqWofD1gP4joeWn0S7bkew/IYtxV28og8TUWzKdoVyrpF0a48ZfnZ1j3f7S+HdggUTGFzhbcOXW6hVrIwqzZm1aacM077fKa6hbIclMHxCHRH0fVf7QOWXXwFW970TtZ/7guc+u+9nPjkLygemCIgmQQkH8Avmz7AknAtJp2DKJGTDJb+f+yddZgld5X+P+V1Xdt1pmemxyUzkYkbUaJIggdfWNhd7LcLywqLrS8sLCy7sLhrIEhIQlzGMu7T7nZdS39/1J2+PUkgkxCZBM7z9NPVVXWr6lZXfb/nvOc976lirDxj/jjlA49gjBced/zny9KZ/vnlMvWEllMaRaglB/2BIIapEvA5NC5J1plu4AUOgkDOFmiNa1y4Ok7DcV0aaYE+jWXRv38fkjjDzMhRhLt/it/az96ywNn59QCEpBjfSu7gr5pD5EQBE2h0SrTP/QRr6uO4w5+FTyyCh/8FXAPsabDToKhgToBrQukIuFWgCD+/GdL/BwfeC6mvwuyX4cD7EKa/hVudgHIK96H/g0oGQkug54P8tfkRXlt6L6uK/81nhZuRNA+MiQpxArNzdMsV5mybY4f2Y1arFHNZQoGLvO7QGxvJn95CURLJVh1CukQy/PTm39ACjapCxaJ1ARssHejGGh/H3P7o/Lp4yI/i859QYro/O4F8zgidiDyCn7+13wiAWRLx6eP4vnMz16zzmOChmMbBiQUA4WAddH2cLeg06D5BOVumnOegvZc++wiaXUCxvfcj69T9bUMKos1UiDb5kZ7lAFlTJJzasyjLNuWqQjQ/S1jvQpA1Ym3L8cc8aYVyaoLr1HrTi//M3073RIKlHQXCQRPZtZjxRTkaaqI6OUvp7B9xR/UjxOVRwsZh3ONw5NgO2PxuCJ8B9hwU9sED//XEFzhaL+fdW5NPCS4oL5VE44k/9xxaJFGP83SfBxKkp2fn1xl9fajdXcQu6sFa3cSje/+VtYOHiGS8slojVx8Lets8neyirNCneCCkKLkoUY3Jss1YyfMtAhGNIOP09P83HYEKGSFJv7KBabEdXBtHVBBEnle9u6dr/miU5ozM1c4mxvQURd3i59JXEbRliOpKKuVxSsUMmW3fY2V2D8KaczCj7V4Z76WvINNxFU7S08cWcXirdjtbhwvceXCafWPZJzn7M2ufuusIR6cLfG/7KI4LtuvyH3fW9Uvt6XqCW2qujwGCriDUGj+4+QpO6fd8zk9guj27kleVVB5tepBcwhunjzPdHBemKkFUfwQ5EMHn1K/J8dVJX5War4AoUUh7pbWiT0YQBdriNYkGWSN8xpWUbYvp8SkA2rUOcMFXlhjLH2HKaufd2RFUx+LW8PlcVvk4BamNqH0Anz3GF0M/5p1VH68Jhhk5nCJVMpgpVPm7W/eTr9QlYk7GnvIoHY1GyeVyXHzxxTQ2NhKLxYjFYkSjUWKxF0ZpzNOx1JyO67qIikbWH2N1QzPtnd00L1qEm6ogTRdYLtSZRkfMCeyavtaKiI9D0U4qosp4qZ9c0MKWXKKuN7GnHYn1ixqf8LzPh4myjFLLCFUsCVW2Tmyi4ALTHkociCdocOsDQNaanF/WqhGEmi9x1/BdrDutLgo6PnoYQ5GRgPKBh5gRi5TsHIuj61jztmvQVyYInds2L+Q4K9WbKMQI4lMsjJoz+2IG3TyiW728dFGngx6MEhDG2fCYt7ddSvC/8qV8uriR8kg3DiJusYwkewOW7rpeSYiv3tnlVDZd8iPUvns14QFsplF3omX7iRm3o2eeBZZJ8P7bSJaDNIhe5ufR6R2MTk2Q6FyLHvTKSbJTx9h5x/c5NL6Pom8B6CYmwZgl7hYxJYXYU9STea5MrekEyYqNIDr40jOIOBSkJPvCQcp6jXbu6pQVr/316qqBVgsMJ2uMNEGVOKd7D8uqD6O4VXJ2A8PGOiZ917L47DeRaKtri2y/7QeUshlmSpPk1NL8ekEMIElubfnUvF/PqIXq7cRDSn3i7VSDiI53X0fMcab3ZrCFJIIWpi1aD65MyaFcYxE3EEFzXZTQ81v+8lTs9Stfz29e+Ruu7bmWVCXFZGmSu4bvwna973R60+n85fp/oi2wmDx5dooD3C8eILOoA59pMfn93ew/soeiU3duKxh8rzGELySja55DVZ2OsFc8QH62ysj+HKnxMkcHqhyR6oLHqimhuRr+qoLmar91+WTX/b7bXwjX4Rd8RN0APlfFFAP4IyqqT0b1yQSi2gm/n2zd8WVBkRD9MqIqov4Oh10Oh9n3ppfwV6+BravPxa8a6Lq3f96sg1ZNts1u8R4aNRktlsDs8AJNe2aUwVu3YFSeOYHj38fyZt3vqaCjzusXu4gyrN18LqIkUbX9NDbG6G0L8tJNDZy3MsYZSyOc1hPmjGURWuMap/WECflkJFEg5JMQlHqgXcxlmRkfYfeDDzA20MfswGGEB27l4bWz3Dx5MT3WIsadEQbtPmZlib9NNvPqtg526RpB10Z28hwtGmBnsa0q1egmzPAKqvFV3Lfio9yjLaLaegEpfQ2O2oWrrAArB9UyODlct4LrlsDJeZqLOCBGEXxrcMUwiEvYNiNyX9n7/kHJYl14BkPwAqJmqRVjZoBMOsU9Rw5TrVXNqHozVamLlp4IK67sYmS2Prf3tgefVmkpQPAEpptNKK4TbvAC1OlpC7FrMebhowi1zKZrV4guXkHLrA/Z8s55LNuPodqc1+GBvLc5Z/EPxhvY+eBKfHGTUGSYtrH/YsOaOQqZKtt22zjHfbaBfk8vz348qCYsAN14gmYKU9V6J99lZv37Z6x6YkYVvDZsS0979hvJSCI4cs3nli3KpkSUErZjYtUqJ47ruoFL+1wAv+Nd16RzjKtm/oz9Rw5w8eZJgprJQKSVz6x/OdXJXRhzSVac08aksYwJYxmTvR+GtTfB1f8Gl38Mrv2UV2IKcOAHUE7zOBveNr+4ryafEqwoCKKIg4IiPf86kPHGuvC9pnsAQ7poz2fWS48+iuhmaX7ZGjraZunKl9AcF9WFkuYjZR0ndrisDbTz+qO9nO1cglPz51rtPuK2B9DlyzaFvkcwdn4LZ+fXOOT0cjQlk7UDjOhrwaiillOIjone8OyyJJ8tCze3IqkaL3HXEXM90HDKHWNk6WFkfTPHi/mmp/qZyc4QM0uIY4OI0wM4TR1U157LtHUubm18ucG9m1WCB5R/7eHB5+x7fH/7MD9+1GMdyqJAS1jjroPTfP6ePu4+7MXazlTdT5KaTvx/Lfzbmfk9yU8naLo9u0C+PDmKOTdHwVdGdxyWGJ4fPVsNYLkS/kaP2BS06/61o9TvQ7lWqWNbUM57+0g1gsTiJv98mDs+V2HTDTcT7ewimwnQozbis2TKPpuJSIHp6RzaNW281vQA8BmifDZ9w3wDhyZhO+vUCRZN2wgTZY4PJamSwbaB1FP7zk9pb+A1r3kNiqLwrW99i6ampqc9Gb7QzFnRifPQXgLrOkkF4sgIxHx+7OZW0tPT5Clz+qFBhluDlNUCh8wsCDPgNtOgyQwvWY9VPspcdRxqlaQNUgzTFpixJJa1nFoilnogiJlNYzkSkmyhqAtAN4B0GkwTXyRGg1t/4TPVevcgfDE2Wj1sl/rYM7OHlgs/xGxiGcH0EK2FAWYRSFYKDO+qd7Vt15bizFRJvt7Taym7Nh+/5w7sRfVzJGwfsuhiiN4L9+IG3YQ6002AgJylSTpEl7qTrHYFL4tcTNFKMVUd5OJdcbaMHsKp5FhxZQy7YqGH686cbjt4JSQvDDaNKIj4JD8lu4jQ6DnhjiPhOh6RSv4tFSf+nnMQ+BSC6yIf3cn65WdwR/VnODg8MPEAZ8nn07L8bAa2e63Fp44+TKRlMUW9fq9iYgInP4QqyJiSQvwUZLoBaIEgx/NfqmpC2sYWPIdTNzrJRY7hq3hjy2Q+yiJgtWGzOfK/ABhRDb3pIbR5HS2wXYk5q5MJy3sHfeEkllWl88xrKIztIzU6wHc/8lcUcmkcapOhCJJQB4xE8dnNkJ0SFqzTynXNQKrq2AKEA1Wi5SZSgQkyvilswWJ6pExDYzOThzOIkoxjn1ha2uiG0R0BJ/DCyTY31DqGBpQAjf5GImqEhC/B+uR61jetZ3VyNRubNpJx+tk25+l13i8c5LLul2GKIuM9q3hQLM4fLy63IOJyZ/ZOFvv/En88CFNVVEelMHcue8emCaRVUmNl4pd0MlY9PP/Zt/Z8mjX+pWRtgUjNI3qi5ZNd9/tufyFcRyh1FHHKk3/ItTWSXNNNvMauEosW0YA8//vJ1h1frprO/HylyL97Xj7/hnezvHQTQ4f3kVDyZMsRJFkhb9VBt2bLZqu1i5QwTJBFKNe9Bekn/4cwfozirrvZ8esWNl3Ri6I+v+NNWcjOdxm3XB+dS3uxbZup4SFU3QPhSlIDleZFxGNBtFqXyWT4RMZ5a/zESa23NcAhrS49UsovKOeXdGyrgF2tsL5vB/ZIC93RAH0L87fx63m79jKOlt9KyZ1hUrIZMVXCQpxpI8iU08jewCvJGQLffkTndaLAw0Ib33bezJ1tEwjlewkLESbsAD43RtYOsViykcQIlh1CFqI4vnMRw+cghK+k6sJfjTUzbcmcGc1wddMs1Z4hqBG+msRWjg3vYEc5SyAcBUDVQ0j6ZbiCVyI5WLTIFC0SIYWIXyYRevqs/OONFAByJW+ualsWJTdTxrFcjLOvQf72p9ENi7KmUHUd4q1dzOzfQduMj6GWEkWnwNxUkdbzhgl+azkFBL7iXM6DK5fxfetf0Ukj4LKp8kkOOH9L1Q3z4GQzG1+5Fv/erfDoDq8k95rrTry4BQHtYzuYurbDtFUHlhZb9blirlp/HvxCCAToWf/sg26CIICqQzWLIELFVPBpDtX8USxlEVQg3NjDxKH7AchP9XP9uldzdybLSHkHmfBe7ph7mJevjyP7G8CAo7EOPhMf5S93DbH8nWexZ/9ruaN4E1qfxk1//b76ybuWeWy37P3gGPCrf4YbPnnC9bljOxCAsiDSpyjoVREdBUEQcAQF5RRo7OQP+HFkDdGqouse0y1TUT09xXCU6uEjxM73KoREQaCsKMTlKFU7jb/zIqp5F7AIKha+X/7Sa4JiNuAPlrGo0GodIl3USSVbQBAYLygUjCWM+87BRwkEEQGXoApM1Ukiestzr1/2TJgoSsQ7urD7jnCzcy4/rW5hWs1xT/wb3KR9EEk/G9vqI1ed4FcH9/GGMyLEMnGGDj9C6ZouxEqJ4dabiKgHCVQG8M0c4bvqRyngY9+eRdgD40iLzoUbvnCCtuYzZabt8Lm7j/Efdx4F4IYNrfQ2h2moDvK+33j7fOhHe/nem06nYbbmK+kKwmN024SmCMJMHrdoYE9kkbuSPF1byLoVnmXppkh2gmIqQ0WD5YY5D0hNVbwYVV+8GrFqIuQCEKkRCLR6CWqprBEBzGIdlJP8CoIAYb/MslY/szmTubzJaNVP+/IVbP/ZKJ3RIiFXp0yBuYjB+OA+ms/ayHkXj3D37X3kfCH+O3A2L8vdy+LoHJI1wUsab2On8QqqQxF6TZnvR0xCmsTHfrCb825chRM7uXnqKT9F+/btY+fOnfT2PrX23S90CwQKZAoKSEEqusis4xASBcqhMItXr+PgFq/rU6IYZFQtUMWhYh4gIHuBWbCpDdOwSJu3z4NucTGEbUvkLAtdObWCVF88QT7rTfqC5D6G6VareZydwReN0kAdEEsbddBNTbaxfryL6ho/mqTR547RIFVxnSq6UWXH0YMsH9+OKKv4wo1ER4dpak6Q+80wvrUNKEkfR351Hw8aCVYodVCgwfYGgqrkQxK9yenFal6VXv375Y0Y3epOMnITc77zWLfgu1fcQ2hkiFgNlNQAbtVBcesZY9/xhgyhejeXU938UpCSXYRkGS+qEbAs2evW6bie7odQe3dcFwQBXU9SWbwCX98B9KN7Wb/mcu6oegDbXnc7L4lfTvici5g69jCyGiE33YdZqcxruomIhCwRp5JHUBTwW4T8pyZzS1sAoCqqRbkgErFnyEoN2E4judAOmjxGNamcyiJgmdTDnFAPbCubr8S/5dvzf8/ai5iwVuICZrWAWcrhjzTTvGId+488iBYI0LKkl/331hufWAqIC3TcJPnUvF/PqAXrTDdBMwi6kBVAUR0aijFSTOCIDhnfFNKoQkd3A3O5KromovmDDIcAvKx00g2jCWAHXzig23F7w6o38IZVbwCgZHrMR79SB2DfteFd9Gf7uWPoDnJCiT3+CXyn9VJyCjwSKIDjUe5f4+vhM/kHAPjRzP/w6vg/Q+3ZZWglShVagiVmlBhaS4Dx4QMASILC6844nUDghcMSPBXs2AOHmKrdX0sNYzlgWh5yVDEcTM2d//1k644vSyLYNfBJfZJkWFOgiaZAE33Dxwj7ZzFdC83nI2/WndclRZ19WgM/q3yfPw3+P6z2HtxqAdGxUXfcSfmyV5CeytPYEX0G78xTN1MsUCtswHL9BJY2o5ZF4o1NyIoX+AtCjmJzM0HfyY+N0aCCo/poW9xDPpMml0ohqzqusIJQooXU+C+8c47PkYmbvHryarbHBmmQ42R8WV6qnUbCLnJv9Bo+F/kJAMbsOlYW30OXZrGtEmBs0hu31wRLfKlQLwl830yCXcbN2O6rOcsv85uqjVx1+SA650sug8osyyqtRJQUEXcSW7H456kkfbX/X8WWOGNZhs85deZFYGiKdCkDQLlURNE0IokefI3tlHPQcU4rjw57jLJCxeas3ujT+XfMmyQKdDXoFCs2ubIHCrcti3HwQW/czbasJQEomSzlpiQIUDkaRpBaWZxVKfiHCEVbyE5laVgXYkNvhurhOHtwOJxYxLf3X8kb5O9hGyJ+t5/XtP0Vv87+HcPOIvL3FLhKL3rAyMzM45oqnMB0e2x5qWExu4AB3GnU/bjZkjd3W4JE1A0Qbgvi+z2AyadioloHhU1HRNQNGlNHqdZKHcONi+a356b7udh3A78enMTV6qWfQ2MjvPrcFfzPz0S6U+P8fNFmfJkB3v/DBEtLJgnb4YGRArnZMuFkLVhSFLj4vfCzw6AGYe9X4fw/hYSnEUlxFqHgMYUOqgq2IBCrlZYCOKKCXz01fBLBF4H8NIpqI0k26aIfJvtwgxswxwYIv/48AKqiQHLpGwklOgEwxyYpF7w5L6TbYJogCOQjDZiGSWzgfiYVE8MwCFW2UGjdyHhepShHMAUNCxVdEelu8tFmzTC+fT9ztcexo/MJNPJeIJboXsxM3xHWuYu4X9zPmJzBJM/W5T/nkrk3UDh8CNd1SJdyPNh/mHN7VhILr8K97SuUb3g7AAf1d3J6xlse8q9iVXkH40ILUnES9v0Aqjl49feeXoVQdhTCbZAbh0gd3JzJV/iL7+ziwb45NncFOTo0RiKf4U/WBnDTI/yooZmyLXEgL3L95x/m06uTnNEVR4z6H0d2koIalmGDYeEaFm7VRNCeJlHgGe5e+tvMnpwiVJpjf8nFkNKsKdbBtImyF6NqPadRzRsYmcY66CabHIeuClkIzAyiSXUdOymg4FclBEGgq8HPsQmPvdY/WeaC1acTfKSC687QK3QwzUFcEQ4Wt7OseiMTSya5zJD4l71e5upT+Qv4r/BnvQM7RzgtPkVSKfJovhN/2WS4BvalBmYRjp5c59inPApt2rSJkZGRPzjQTfNZFAct9LyB5PNDqIEGp8i0WaLhwS0crN3JzskqVkInIqkcsh5ljXgBoyWLFREfJauZTHl6/piNWgLXkXCdU68xhS/ZAAOeLp0jgKLWkeT56X16Gn3NWqJiiIQbQhc0RBeOU5HUZDvCfbPsbd4Lgie+ffblV/Po1z8HgLvnl8wWRgCQRIWeUDvm4H0EX/Jqpj+/GymicHjfg6TD5xLw9XOcVNMqSrguVCXtRd1EAU5kugFM+zqYEHuQXBMRCwcFp1LEdV2cUoEL3/FXNE8McnQoi1O15ynssKCJwgsIdFNrrC1BcSFehZROMe+jtWmOkqUQG99GuvUM73kzMxhSgDlrDP/m8+jsO4B+cDuLpHcTIoxfClGoFJmdS9PT284t//EFdvzqCOnxA8TaVvGVtAccxMQEojmH6UhgOZiSesoCuws7mKqqSTYnscrsJyt5mW/JieE4JQTH6/xjSGH8+lrmFhzDOO18GLhz/m/LVXGBqq4yNLCX3KO/xh9p5vSXXsY1f/YBpo4dYXDf7hOuoyrZCCwE3U5NZuAzaloYZB9YZRzdRJFdb7AEVgZDHOdhGa1HUMvLKJVltECUhDDBrLWGYswB9gPQSATVERCCL5x384lsIdi20G7uvZk7hu6g00lyl7CbGxt7OFTto2JUaVXiNNsab51Zw336MPsYpVVu5kh0O914bMs3xvPMDjUxYajobSK+sTuYrpX0tQsNHPjp9wgkGijOzRBIeM/+Ey2f7Lrfd/sL4TokVa2VXomIgTC4UCjXk2vHl092HTDP9lIk4aQ7e12++qXMHvkUk7MxgpEIpWL9HYiRpyTCHmuGncZWzg+ciXjJdfCdzyEWsih7HyHVHn/eQTek4jzoJhAg22hTSDr0bFW9piuORaF5PcgqQe3kA5mQTyYaixJcsoyJwQEqxSKtvRuYGN5EsSSjBLYgWEUqpSJD1Qqz5k94fWolYGO/5QyWGoOM51ZwbuhqbsvdhoVFKPIQ7711D19d+XLGokuRbAtHFNlb8PPqw7/mtmXno+gipZiLlLHJlyV2mRVAwULg41T4VmORdFYn1jLFG5fnUfwWt/ZH2ZoP0ukrM17R+LvVR+nX/ZhbB6A2LFjDk0S0RrLVHEvXrScST3DkQDelrMsN/28jO0aLRPxex9F13aF5EfHfx1RZZCjvBUSD02XalkWRFZFIo4/hCZdEYzNyoQhNHjvElEUkdTGNoyPMLTeYc4dw8gJLaOdly7J8KaNSmfITBv5lxRUsf2AfZ551BEFwcfMOlxT+nF8ffRcDU+dSuLiBoDHmASSZDMQXaDcvCGhdc0GgC7hVi1knM/93s1EH4KaLtYBTCtAoybSvSfBc2ULQLRws4ygG7akS+2sMWln14Qs34joWkuKjXMjy8SuX8+pvvAI1eAxXrLB79iBrlyznlZs1vvbIKgTHxshP8MuJNC8RNIoOLNVEBnbPsu6SBR01110MD62BqVqy73vvgnf8xFse2zG/297jpaVlGUSFSkXBESUijU9N8PzZMiUUwcp7caCmG6QzAezRvdj+JuLnd1Adz6G2hnFoIPSre2H5Cjh4gLyS5LgXH4rIcOPLoVSkNAah8a0Iro1heO+LYuZIHPk5guugxJcQygwj+YMsXr2S5rbVTP94C5naqyVIIsHE02dGPd8WbetElGUC8SSvy17F35r/h+IqZBpmmdaHCY+8BCP/TQQxwo6RQWxb5Yzu9URTjRw+vBNz8SrEUpaD0rvpXvUIi3NpJodj5BwJV6zhbIFGeOTzsPmdv/tiaol/AGwT7vg72PFl2HgL7PyGx5hbfhU7h9O84xuP0hH30UCaD0z+PYuSDjEpCT/cjWBX+XLTWt6ceSMVU2OJJnHLjkk+kK7w1tee/oSnFpvC2P0eOcWeziN3PD2d+BP0JZ+t8lLHQbj/PkRcBqsuJWaJ2zaHVD/dZZOU24geiCAFY6Rn55Csejzhii6VooIriGDKyA3d5I9l5rdLQQWf6l13QJdY3h5k/3CBWEBm/3CeaEs7hbEhlkfauR+vU/Bkooo5t4tmbSnJi8sk96WZdYP8PHE2/5T/EsFQGYp9EMjT1BzjIvUo94438mO8MXxftsraxpNLfDzlO/rud7+bP//zP+crX/kKO3bsYM+ePSf8vFhNFMHnr2LXKOppf4yQbaMc7Se4/wjhkjept4/5yTomh80ctxsHMe0ii4MaZyeD6C0dZOW6BlKjnsA2RfQFgNapYr7jHUxdFwdOKC+d58hMTyOIIoFIDD8aY8yy196LU/ZCeiWcRGleQiKr0q4vpz81TqVpPRXJy14FyrM4tUewa9O1CJteAgwgN8u4RZPKaJZHqzmSmooh1MuQugJ+HGQc6dTrKPmMmwC49e/Yp26gX93AgLoOR1AIPHIHqS0/Q/IF8S/dxFxVRZqbI6+HcCvWfJcXAP04ePcCAt1Eoe6YSo0egDg00IplqICAUski1/Q9EtY4omOT0BZRPPcaHFVHKpUQBNikns2UPcYhex8HzD0Uv/sNlGoJX1Al0bEGSzAoSd7xY0ICqjO4jheQyj7ncdd1qpgaqP8vFdWk4PhpznpANq5NsLSWqpZHkP3Yrp9Uw5XkQhtPPIhRwbqwznCwXQW5IcjGzR1svuRcrGqR3HQfR7c9THqon/LMJE1NTSi9yQWfceZ1cQBk9Q8AdBOE+RJTUbJJ2PXv3+7WA6FSYgB7Kkt61mRxS4CxgoZNnKxeF1BuFiMIjoj6AhQzPhk7vfl0rmu/imFxlkFxhp1dc2xZlWZGzpFyC7zHPgcBgQ8ZZyMgsKdykC3C93Hw3j0zF50/VqylzGjxwPzf3UIjRqmIbRrzv3/b8smu+323vxCuQ9F9uI5D57oNLG715vugT55nYi38/WTrji9Ha2X4Pc1+RPHk5mafphBrAtcSWbxyNW1rz5nftmbOO67rijxQvZtpo0hx7fm4gCvJyAMHSE/lsa3nd4yWxXriVHBDXHfBn/KSpTfSeNHLmVl+HZmuc6mG2wlo0knfl+PWkPT+Ny3dizjtgosJLd+MIHjsOb3ztcjBKK7jYJsmOSrkS1OUyzn40jHurKYI+g8SEsNsUs6sXavA/52X5s3DP+Avdn6X9+z6Hm/feysf3vJlXnfw13yy7zt849B/06HnWLYkz4aVKd56wSiL2z0GmgP0TQRJlVQqGYmBYYufbomx/XAEyxWxHIEvrD1IarHATCVHulr3QSIFmaJVoWeVB7iVijpqMMJ1f7GB/oxBpmiRLVksavTRGn9mOqwvaqonAgamSvijGusu6WBurEh6osTURe9kqt/zyx0HFMVgUWs3ESJE897zPGINIc06TLUVecnVw6wMWOQBS5T5yzP/jL8R/5FyIYbfN0WwqcoZoe+x9NgPOHRsgaj59PTCy/qdTDe3apFy6uWliZq+myWoFGrNpApykI7lSTZc2P5736OTNWlBqXO+rFMWIIDMA3PfpCaBR6R5KZVCivxMP/mZQZaGffzJ+SuoZk4DwLZl7tj/AA2rLd6cugPJdflp++l8VcriahIdqkivLjKyY+rxF/CyfwehBvzlB2HfL6GShbs+ilsLgOdBt5KMqohomokjiqeMFJIeidaX9SrZkh+3OIx5aBvx8xfj64pRMV2UXAIKBTh8CIpFcvn6GBdevQiSSdyOTsxCCqGmo6q4oCgOcjmH4FgIroMv1Y9kVyA/y+CWB7j/of8mOGMczxEQaWlHOAVKb5+uSYrC6a+6hZWXX0PEkLjZOZeqaDBeOcyd/i9jnZfkl+dWmQnn2dud4bMdj3Bl9NP8VecObpd/yCcLH2QgoZHpupB0cRH6otP4Rdf7uMX8IK+zP0xZ9MOub8A9n4Rq/okvYt+PYHQbfO918PB/eZ2cv34DDD8EZgke+ZzHltvzXUr/uBTjGzfx0fLH+M+J1/Dl6JdYp44RKxyDmaNglcF1UPNj/J/6L9zUNM1g2cJy4c6Cxft+eoCy8XgNyBN03aZ+D103e2EjhWfpuZicxLUsHNNkTzCCIVS5sFRhuVFCEU0mshDt9nSk8+UqoiMh1BLaqAp6wCSTCnldnwH7MeWlvgWJrSUtflrjGumixWzORO0IkU2HWOa2zu8z4p9h6MhhRCOBNKCxbqN3/4LVEvdXvMSvgItlD6MV04Q0k3WyQUDwzr9PlFDXdp7UV3/Kd/Smm27i4MGDvOlNb+L0009n/fr1bNiwYf73i9n8gTJ2rSNM2hdDMkxifUMAJAoe6OY3ZBaZXuA05BSYKnq0akkQcF2HglwTjjVFdFHFtiQSCwTcTxXTQhEk0wJcyiXw++rUSVGsBZfT3qToi8Rocz1U3cWlOPkgRnqCKWuY5AU3c3b1DN7c+Smuiv01FVvCOesm7ux9A3tDqzgQXkls2Xk09pyOtWQN1aEBind9E2SB6coQBwOLaQ3rzDrTXtkfQdo0Fdv1HA/lRQ66CYLAAqIbTs2x0Eb6UXJzONNDFPY/gGt7z9BEqoIzPc1cIIlTNX8L0+2FI5p6ccNVvLb9Hby06ZXE2zzn2XVFlIKO6IJQydM4fBcXFL/JWvdhfCWvbETQg+Q2XwqAU06zWlk/f8yHjXsobrmbA1/5NJF2F0WTSDl1McyYEAWnjOsKWJKCfgqDbgvLS1XVpGTJhNIGG8u/xO/mcV0/lXjz/DM0HX0J+cAaAGS3ABMHIRCBjnpG2ZF0hq1d2GoRp8Um0uhRt0f27WGmxn6VNA31xiXI57dhvmclfW3FExiZin7qd8d9RixUz56rvip+FwQXOtx6lnGMOYKhEpWyw8o2H0uCc4T1IDm9XjLfJgXAEUF7ZgLNU80EQeBVa16HUEsgPBDpn+/c2mbFWdPuZW9XOnHWSl6JUtpNMb3sCIgC2czx++ISU8bZy9D8sbv1FlR/AElR53//tuWTXff7bn+hXYcsC+iqiCILKAuWT3bdY7fLT6Ln9lgz1RgNIS+xZsjR+fWthkk8ewaYUfbZj/KT8ncwJQX1vCtAUtC3/Brf7DCZqZwnWL97F8zOPvFJnkVThTroJhJFFhVa9Q66OhqQJQEj2AyCgP8psNyOm/KYMcHyBeaDISevEz7rerRAkEWrVqPqOhoSQcFHqZim8JMBCnNTJMQjXOm7jGu0V1CSbLYvE9l6zQVs3riCdZefyUt8s1ygjaM2Bek5dAB2D9Oy4zBd+0b4i0fvYnO+yPVnj/LypRN8bMUxerQsl+Qe5PMr9yEP9tE2sINFuT4SisGrF08STTrMmB10fWono7r3f1UsgbiUpLm7i2RrM9OTMcZGGum5oocJw2FgyruHkgjL2gLPGEgS0CWaa3o7ZcNheKbM0tOb5sHPQ6kER5JXYxgyAhBrqnLpxmlW9q6ms+zNi67gMrM9h+u4aKrDtVcME65d3qTm5/tyIz8ZuxSnFhi2dIyykp+T27kLtzYxTty7h+mhHMzWxv0TmG72/H6uaWOVDTI1ppvmOIRMD3QrCDEcx8WQdKa1Lpp6E0TCz91cK2t1ppss2xQrGhHV5MxqGrMGIkZbls3vk5vqo2/3OFfHAixzX0J1+jIswWA4N85vDj9E7OoKSyteHDHo6Oxf5N0/URDQxgr0TQxwML+HsfIQxwoHobEb1rwTtC4oDcBt74afvBNq2pQ/b72Wh30eMBgsy4iS17kU0SFwijT6Cy1gO2o+A8cVyZsCUmEXQu2Z9JUTyHnLK6tta4dAgLxRT2SGGrwYs2o6+Kf2IlVzuGqAJaLC2rKELLnk2nqxtBBGsAmnlrx2HIfQIYchse6sxdpODiw4lU1WNWRVRQuGOJNeOvASwnPmGF/jL5kOT3L3ximKmkDWrZCWK6SEDL+KDjMkjPKT0ncoCxXGrHMY+dUQVx95hKsapjkqL+VWo9Y1uwaaPc6yo/DTd8MXXwIHfwZ3/C3853oYvB9mj0GsG1rWY2+4hXvTcfyVadxKllbdpEVIsSypIS2+APQIRFpB1sAXg0oWJTfKJ/xf4W1tR1gRMnh0usCPd47x/36wm5FU6YTLECI+0Grl1LN57Ezp8dd6MvZclJfu2I6Yy5DLlDjcHEF1XLpNDzibqwZwkAisOAOxWmSolOLVFJm2TryWXDaEgITruieCbgEF3wKNV1EQWNpaT2anZJFiJYJUjNLieGPCbMRgdHIHZqWAPBPmwu4i6zpTGIrC50I3zH/WGf0RRtVEUFRu6ZjhUr83Z+2tOgi+kyMaPOXy0oGB39EC+0Vu/kCFSo2mnvZ7A2cgGmUumSCi1h2jTaNhDizykNJ7nLvpci9CEgSqxQxFzQs0QqYGKjiOSE/s1AOO9GBovqW9KWlIch1ZP9pm0ZWVSORLMD2NLxqjfajO7Jh0Z0kZd/Hz6a8QFuNo7UFOF44/ai6XXn4xP/7uDjRRxRBV0t0XIggiSCJm7waK9/yUzq/ezH1fHeRAcAOvCGnsdbM4OBTdIi2aiI0CgoD8FLPGLzR7rN8ZLmZAlljy7c9QOniAw60JkueegVScwQm3UDIcxqQIZdWPY5RQNQ90E5GRaqyRFxLTzSd5g2VADrJ8WYXiwDDWnMWQE2WpME0aB8sWkStZ/JpBp7qDg3hCtKlLrid8720oUyP0dq1Gx0eFMrutHbzrejDkQS65cxs3r/gUKaceqMUdz7EUHAFDkvGfyqDbgvLS42zUQjaE4k7hCjayW8GWNPJBl3ChSkHvhdq7GJMmKVarlEQRWahPWg8qD/KPA7/i85MNzJRneN+GV9A51szE0UPMTU7S0tVNYsMqhEAa/eoljM8O469KCG79Psm+39Ll4sVm8SVQnMUpTjHTUcI6puO6AiECrHI6KApV8kKZYKhEIW2S6rqOa4u/4P8GEhhykS6ngQgBEqqIXZFf1Fp4qxpXc6X/bFLFGUL4uEPYjVYVWbdVpvjmyLwy6C32Jh7FA3d36ndypbN8/hiBSBVLTLGNoyQJ0pZczZoN53F66zXPwzd6cdnSluePZen6Eyxr28Gj4y1YYoCjlU5CbooGrciZE5v5xbKdANxr/Jpz1AtpOO1MuP9XHGqH87b/jIA0By1JLxG4bSu84iaIPHfNqXzU9Whc6mOypois6goxNFWmNaER8T91BrCknAiqqAE/eiOUx4vYRROtYwOnvbEV98jDNLS0YRaKHNvZj1At4Eu77LttO0uvbqQ12EGHPYVSlUiKzXzDfzv+097OKuUc5PgZdHf8kurBEca+vB3f8k7e4DtC5v4p3NkMwbEhXveqDcS6vHlS37OFobk8R3fEEY0oDakhLnOOIgeX8IpyjNLPl5EQjrJDsMjWEn+RokZ371I0vQMo44oyUnsHE4KIXfDmn4AusbjJ97TAyd9lPc1+HBfyJYvDY0UuWZtk/WWd5OcqBCIqu+4cRpZtBBE0O0NKaeaSsya4Z8tS9tAPwN7J+7l8+zUEenxkwwbXrEmz81CAA4aCi8AHu24g49i81thNQO6n7ZwM1j3fIrP3SmJrV9PCHMWffRcUC156LUKwDr64pkX13sPguGBYVJsiZN0MAF2mxfHUa9r0ni3VrhCPNdDaEXpOGVyKz8fxNK4sWxTLGlHVoCuXZ5+6n9UsJ9S4iFqJBrnpfhzbJT9V4K96VvKvEymOOfchWa0cmx1iVJzgesvmIJ7W1Rf2H+JTUg8SAk2NVe4q/Qi36qAKGoZbRRREFr/kPXDwh95FVGbg0G24TesRpg8zJkOuVtYerGm62ZaEIFgEok+v3O6ZtnhDsqbkynwzhXQhQLRlmuLROeSAjlbuAGxYsgQuuBCA3A+PAV7H7nDC869mR0aQa+wrUdOJl8qAwOlVkYlSlp2LzqSxMIFPCWHNHaLodyiVRUoiiAI0r1pPtP2FD7odt5YVaxjc+iCvsS/gv7md1tgZ7M7fgZ8IiqMiiQlUawh/WaJYLqJEZIIITFiDfCP7r7y14W8Z195K6F/+nFecAbcnb+brwmXcLN/jneDBz8D614JS829tE378DjAK9YtYdiUc+hlEOsE24Mb/od+/mI/depBFw99hlZYgb/uJ+vy4eguqCBhZOO1VOC0bECMdzJZnSPzoz3CVKOLUQf4sUWTJkjfy/j0drIy7/GzPBA8NDvDlN68jqInE9BgxPYbc04CTreCMpTG3DiCevwxBf2pzznx5qYD3kDzTVqnAxDgCYKTnGGkIcKYdR8ar0JmpBIg1NELLMhxZw62mGcFHzhE53i4mU9Qol2qNFHkM6BZU8Gsn8sniQYXuRp10wdP1DHY2gjPMOe5ythcOMqZlGWoosPLY3XSuuYgzJpdS1gbYLcbZyyJ+VD6bS8sHCMczlI7+K7S+DTWe4FX+MrcWAzw6mJ5PmjyZPWWmW1dX1+/8eTGbP1CGGY8RU9ICVCWVQCiEPDtHoKeHgKoRK5RpHZJpFDVWKREsRWcyO022ajCa7sep+RLhWmDvuiKdp2C7ZlnT5nWsKoY030jBskRyAYdEVvK4+Pv34Y/GaKMOuvUxzp2ZbwKQc1LMmMPMGt4LZfgPsrk3zj+9fA17ouuQVl/AXVP1Aau69hwCmzeT/eF3uKe5C1tQWBLUyNdEZYP40GUXx/Vu5Iu9vNTTdFvQLEHTOafvASJdXklBVleZPnyE1kSd9t/fXMs0VssYVYVC3ofuLhh4FwA1LyRb0tNNqV/EyGqM5lTcRfVnbq7go2TLLC9NEyzOopZTOKEImStuRB0eQhGUE9huRR1MGX4VGSZtPUB6AegWs71nS3TAkmQC+qn7jMmajljrqqTWytTzhkK4WuCC4g+wUbCdAFXN02lDkJGsHKHCLqLSDNH990MuhVzNzB/zYG4ATdKYKXsZ+R8YdzO8bzdmtcrM+BiSqiK317PG6VKWcElBXNDWW/Gf2F3pRWuhNkgdRazmiAsWci0+FhCwsBkUphkR5nAjM9gFk2l/F0Y+T1qUmQ1MMCTOUMVAl00M4cVfkvuu5W/j3clXkxAjRJ0A6wZjrGhdw+2/vBU3EMAJRDm/EqVTSLCaLlLqKGPhI/OfDzS6fNe6hwJVZilQYIKOYMfvOOMf7YVgSjCJLttIgg2CgCo5NPsKBBWTC+0h5KnLwFFYLa/nv4r/zCf8P+HfbhD529fJ/Ed4O1IljTsxAcUi2Dbce4/nnzwHZmez+Kkzyk3pRPByUaOPC9fE6W0L0hx76kxWST0RdFu3tIGlK+oAgjlbJudvp9qoYKmAqtB29jp8DuQpkTPnKD6wl22dv6GhB16beCXjzigVqtxZvQeJCtW4wp7yVUjLl7D7rRfTcstaMCyGXIc9nY1sL7p865sH+MGPj/CjX48yNeOxKEZGcnT4VUTHxh+JYA/08YufP8Te/V9m7/hWKjE/TSmN5lyQ3sA6oskkuq/K8PAiio2r6KxpdmWKpify3qjT0/zMN0RpCKu4jsd0K1UdDo4WOOvaxVz25lUEohp+H7g16RhBgFHFC+82yCvnjzEeK2I+PEEhbGNpNu2bJzi/pYSLgFIDxW61Xs7P5F5E2aWSkWk9I0PuwF2YBY/tF6j50c4998ACtpFbMaFsQtUCF6pTebI1ptu6qkXet5ys0MJwvn5v5Jalj+t++2ybqtfndVmxKeaCyIpFtKJSDkxScCs4tkkg7oFopcwkZsXz74NRnRtiZ1IZfBdG7d1sjCR5+OIBkuUUq/Mj7BIb+LCUYty1OHbGKOqE930Nt0pEjnEwv5s5rQJtrwMkkGuteg0DN/EuHtHrYG2wJCNJEpYpg2AQiJ0aoFs4FsYJJKjIISTVoTGeYTrlgaf+ngTF/QbzzdPa6qXD+bk6mzZU8/enD++bXxdYvBp6l4OmIagabTPTXGWMEQ9OMrz8GMMbbKixhVRFxXHBH4vjj54aDMBnwhLdXsK9jTgfyF5BouQjLCXYFLuaVw78JWePv5VLdy7nLQ+v4PJtLbz6kU5wRGaEOR7lIGknhTg2SOHdn6R1/xFuHHuEIaGdg/JKjsjLcQsTuF+5inJ2jkohg/vVa2H4YZymNbjBJnjjr6DzLAi1wobXwtvv5T4rybWffZjdU2m+IVzNWdVPc8cFr6HxT/4H4fKPQOcGiHaAKDIwu4fbtn2XHypHuPvcNyHYZQSnCjNHuUp6mJ+cvotsyUDUxnFa/oPX3fZ23n7Hn3DTbTdxcPYgUmcCt+TNRULMj9U/87tu1xPbcaabLD07gP7wEMfLYvrzLoTLxCoj85vnzBDxtqW4soZgVYm53lyzu+gjLfgpOwJH5+oJtZAkzoNugiTQ0uQj/ASN71a0B8mXLSqmAy0BcqUoS90WBoMZTMXlWE+JkaM7KZQhZXfyuvZZlkaKxEImn5NvRIxWcBw8pvHgZ8n397PRX0YTXFIVk6ncyTVSeFoFu1//+tc555xzaG1tZWjIK/P41Kc+xa233vp0DveCMLsmWCAU82AaBEsZZiQfocWLCPcuQ2hIoGo66aCPyZLLJjHBfjPLDnsPJecu/nznCN8e2Dt/vOjxbKgjEDxFJoPHmqZ7E17VlhAEME0J01A4FoGqXHsx+47h0320LdAwOmwfosGNnnCsA/kHKFoZ9uQ8EdSXrGzm7vdfyIauGIdyFfKmTcG0sZatJ+WEyNx6K9tnVVTXYVFAJe96oFsUDRMdy/Gc15MVa37B2mPGvHMP3IluG0SW9xJZs4pNm86ktaObVau8yUa1DVKaNyCpVo5AsEIwVEa1a9mLQACkU6tT7smaP6gRaatlmKb8ZJsC88LdqZIfn2iBZrI6fTuGL44Va2D2ujd5LW6A9YpHExeo39YWR2Pfdz9FYfdP588TdzzwQ7YFDElEP0W6Xj2RCYKAFgxhC2LtVrjkDAW5oOKjTKPtZUYdWcWSJXAdbDlMuLiXhsAclPKEP/9hAtt+OX/MnFDlyt5LeNvZr+L6VS/hlsBl+JKeY1bK54gvWU6eOlCeLmWJlFWcBRO0GvgDAd30CIS9wDFWNZnoqDNeFiYiUr5JZMmiUnKYvPhbzPnHT9hPkyws6cUPurWuWEM5m+ZCayX/6L6eq/znMnb4AMOHD3AoHEAoZZEQ+X8Nr2AfQ+SVMvct/R6WaGALNrdHfsQhYQzZldBElfOWnD7Phv2jvXDNH23EdVx8kgG4jLnd89sW6VvZOH4B5YH30CYuJuOmmRNKbFvmzf1HAkXeJN/Kkc6V9YRSPgd33uEJ2D/Llus7TNipVwKY4omgkde59OkHL7J6IlAXiYZoWezN8VJIwcobuAho61ZQbHDQdB1Jg/KCMr+R0S088uhW/rf/R/yseAcR1Uv0HrD2kHOPYAk+cB1GjLV8NXMa/zm2mKYbVzPa28JoLER/KEhFlsmN5EmNl6lUbQRBZNnZLye+4hoS59+EWbFxcSlHowxEvbFswpdmKlFlMlwgKcm4SjPW2isIX7uJ4KokqYJFd6OPl6xPcuXGBpa1Bp+VQE8QBNYvCiEKHnmjXLUpGZ4Pu/7STm7+xHnIx1WuZBnpm1/DdaE7YNJCB4olUFVthjP7CGzzgC5fUWH9sjznL85i1jyKcdnkQ9ZreChwFb6YhRqwadmUZnbLwwAYtrdfJufAwX1eLa0q4y7o3AdgWO480+3iskmofIiIO8F41nvms0qEnp4OkuHnds7Q/AtAP9mmaEmIwTJVtYOrO7sZFsZQ9RDhxsXz++Wm+9GDKsVMhSW6wvpQJ87w21DNRobT4wyVprhh0S8YVuO4gkAmM8V75SKHkgWq7QXkjJ8e3wqyVprRyhC7jj2I4V8JDe+F5F/AGe+n2vFhqmI7KafulwTLEpLslZe6rkEgGn0O79RvN1EUEUQJ3coTDJRIFwIMTnjgYXrbKEq03uGSlrruVH7OC+oFAYJxjUo+h1Wt4IgStqwT61wEm8+Gm1+NcOXVcOXViBddTPfml3PV8rdxxfq3sfral7HkvItZdc2NLLvoMpqWrXhOv/uzbXooTCCeAEEgEAhx4YjKe1r+l0sb30RsWQeCICPHb6RghTBsi2pRpKffe6YdHH7j3Ia1YiN2YwfFM67lDeP30m5nuKHwfmyjiGBVmZyepvyfp3P4v27GHN4OjsnUzCyf6fo0Xxxu4i1Hz+Ss6md5y9DFnPmZvfzjLw9g2gJzWZmzoin+5tLD/IPYh77tC7hzR2sXHqYvk+au7ihjGztAFJguGWzZ4EnkuKE23GKaZYES/73hEZJN92LYLo48zWRpAgGBt9/5dn7W/zPU07vBp+DOFrCH5jxA/ymYexx0e7Zi6wXVknsqCgFfmmVG/Rqnyz7Udi/ZIVeyNCkWEi73lhP89Ugbb+/r5HC6TlQKysI86Cb6FSqGSzz4+HFRVyXaagxRqTlALhuii0YWud67N+OvMKrPMvjobbhIzNlL+PLqAyTCVY7Zrbxe+msmSRBsyBFsKVM4+DMyWx7hPK1E2BW4ddf44875RPaU7+rnP/953vve93LVVVeRyWSwa8F8NBrlU5/61FM93O9l9913H9dccw2tra0IgsBPfvKTE7bfcsst8w7P8Z8rrrjiaZ1LEEH3GYQiBRBECv4oKX8cUVGIn7aBjsZmos0t8/tH0/V/+o9LFlc3zaCLC0rYRK/ET3DdU4b2/FjTj2dABBFJsVEUm3JJxaooHGqr6dA5Dr58gTA+wq43eM2504wKMzQq9QnjUOFBpqd3s3+2npnpSgRojujIosDH908wW7VA1ahsuoiJDReR8sXoCOnYYgkL73xxSUcVKrg1J+cPg+lW/9s6dmh+fcslF7OqrZMr1m3Cryuc24qX3a85rb4FQryh46DbC6i09Imsu7eW2URg99gYwdq/v+qIZCsqVUui2ZemKTcKgKPpFLp7AFirnMYnQ//G7U2X8I/RDbRLfibEKl8932GmOjZ/jrjrBW4SAoYCyinOQEp0L0Z0HXw+g0CoRK6qoJQ90KvF6pvfr+LO4mZ3EYrJtN3yMTj/A7hVAyk1hbig7Onc5WfT3pBEVRTaky3oCT/tbd3z2w89dD8Zs66Bl83n8JXEeTFf+ANppHDcGutsiIivrqOxMBExyhy+QJly2eXYXBtzgfET9lNFB0t7kScQ8ESP29bUtF9dl2Ubz5jf9sCvf066tQUkifOGBdbLHnO+pOa46/xvcvdF32afso+sUGKl286V3ecQ1Pz4pGeeGfNHe25Nii+iXBBY2ZxmU+c4RxvbsWsM7w7hIKsNhSWFBvKGQlSIE5JinJNqZOWQw6FOgV3SJB8Z+nd2dMWgdzm5nbtw+vuY++sPMfLWt3L0ggsZecc7GXnHO+eXT3bdk20/8G8fJVxj7pQRmKe7PlP35jFjqaL7SLQFEESw8ybGVImK6RCwV3PxBbcgNoUJnLOMNZtWodQAO0NVufxrBh/+WJZXfEWlfU/9Gv8q8698q/AlBu0Us/ZirmoN8d0hH7/YZ5Ipen6XzwHNdlEMAzWbR7FsmvUkasc6rLZuIhsvI3nB6wjEWtCbl2CJAsFEO+6SevVLXO8mtfRMhFAY03JpCCssaw2wftEz06X0ySzok1na4kcQBMZSVQam6mP1RNak1FEvY1dmJrFzNolonrNHr0MRdAp+m0dWp5l9YDc9g23cFD4Hyydy1iVjBP01lrklIwLvzr2OGb8HekpqhUDofqbTcP90O5NFnbhYQNj1KGIQMCwonRgYFx2LopvH5zicXvbKByv4GS95/tu43kZPa5jAM1yG+2Sm+xcy3SwKFQ1km4As0TYzzqPKXRTMItmZwfn9slP9ROJ1uYk3rmklrAbITl4+v+7hxWn+dPw2Vs4NsD/QwqgtcGQwSKkssXxrC40/akLBew/61X7mBkyQE15g1nA50twsFZ/AnOMxe/SqiOyISDVNN9cpn1Jxlq+hHisGQ0XmsiFyQ81Uj7oE47UiunDkhKqUXA10C8Q0prIGE4f2Y6amwIVSYhkBn+ppwuo6NDdDp1c2Kouyl5yVdKLRJpqWrcAfS9CweOlz94WfQ1t28eVEW9uRZJlYLEKy/3YCk3sId0Di6kVEV/cg+y9DUduxxaUsG9Ko6eGzPfMI5RqzyjjzYmJvu4k3zN5PBZ33m+9gu9XLT8vriNtzlItpVAym5RbeWf4T/n2Hw7ZDA6SLBSZzFabzKaZyBnmzzFkMcKY8xt9M/oJrH3wU3QG/aSKYRVIYHCnPcdf6blxBANMmMpkjtzTK7hUrmWxZCYUJhIEHIDPKfxX3Ug7sRhCr2OVWKC9iPFMhXU3zxd1f4ZPb/xGnuf7cOKniE92m3261WPFZaaJQLsOkV1xtSiqHXR1NT50AuhWkJpykBzzL1Syr/WXODBWZLTtkyyY2Au6CJjRixZrv/iwFFXrbf7se6HEWtSiJqF3NVCsKFzqr57cf7MyTne4nM3mUWbuLZs3kL3qm6WgucETo5CPW6+b3jXTN4vPdwX857+Wd8jd44MF7T+oWPGUKx2c+8xn+93//l+uvv55//Md/nF+/adMm3v/+9z/Vw/1eViwWWbduHW9605u48cYbn3CfK664gi9/+cvzf2tPU6haEDzkI9pYJC0KCEBKDmHk8qixKK2ySm9LGwNHa6DIqAu1JMKskOXdTbN8Y6ZO9UzWxIJF5xQG3eIJmBg9YZ1hqMh5iUPtFVZl48iGg3TkME29K+job2S/Ozi/7zp9NbttgWlnjNHKIYrbf0G6Y5jxwjitQQ+Qe8t5i1kW83HLNx5lf65Coy7jjzehvvxPaN47wemJAFmn3i49KXnOol0rl3zxN1KAhXS3uWPHKB85RmztGvxtrSAIxEpl+OpXiCoqyfhyClqA6PRB5sR6p51o7fl9ITVReCJrXRZl9288KrI7HMKnzyGWBfKCwEAqSslSEICg+Ahl1mIqITIXXEFitoCGTrPq0iL7aJHbuKc6xWi5hCVBf5dOrOoS1TpJ1NSlJBeqskVIPLWbAviisfknJBFJkZrREKreNbfY/eyqtTGvBJsITO0iEsoi14RGXcOjosuB+rhYfUyGa6y9ROOYj7kOgXBW4ujWh9CX5FHXNjJVmKLNbECghCgt7F56at+zZ9QaVsGx2wHYYPvYpSm4VZP2Bc0URtw0a0JlSnmDyUyFuWAd5G134+iCS1V7cY9lx611zXrmBvuxTYPc+Aibrr6eQibNoQfv5avf/jLvuOBydAQ+nD+TTytwUE4xUN0FQLMQx3JM1rrdNLcspSPQQ0xJ/u4T/tFOfZNVDEshIHnOty+mMToaoSuYIShkeXvDm1hSuYxvTb+WW5quYFlAR9ZHqQ5+kb+LH6Ip5bC3az9/dvhjfObwSzF+8wuSD8T55XkquzrzHFtbYUl2KwDHVnrLx38/2bon255f5PDZquf0F5GRnmEdHEmpj82CJCGIIpEGX63JkouV9VhSIzMGqzsbSW68kWMTJTRytPcsYW5qklxqjkJIIDGR59zBIpsmHD6orma6MYgR3M695q8ZdI/yV8FPsD62jH87u8qxO7fOnzcSjNArNyOE5rDamrGTMWwlhJvaipsKoRWLNGglhNPXM9w/SdEXItG5nmJ0G8cJZMGWi1FUDU0R0VWRppj2nOsI9rQEODrhBdWDM2VWdASRRIGJtIGt1K+lePrZVEZHSC72E59cjdbup0SZiWSFI/1Hcb9lsOmjFxNQx9DNIps7itxxOIqLwCUNKe6eiXFL+ha+aPwfDXI/4Y4q7tFP0HP6f5Ix4zQzjuC6iCOHcEJL6+K9ooC4uIGZ4T5Iw+ZyBa2mlTpitXPcF7T8nXQkfc95R07Np+EKIoLreEy3jHfPonqFwtgUm1au5Td9W2kop5AUHVFWSY8fxM6MI0ohHNsl6UI8rDM9vQLHjCIqGYbSY+Su7eZtt97BP+s3YAkS925twjRkrh+NIVXLtB5KMrR8Akd26Oss01Jr0Ogc60NxSkzrPopGgaQdJzLjvROSLHmNFJzyKcN0A2jo7GCkfzcAwVCJ9FyU/vEmlvX01r391jppwazaOI5DpNFHtC3IlkMpkkf2IwKC61CNdDxOx+oP1XzhKNG2DnJTk1QLBYJBBXnuCOLYPkoN6xHURuRQI27T62DqIQJ5H2v6Ikwky8zE5vj68D/zijVvJEYXQ1zC+hU21+x6hA5ljh+lN7OyY4TJWIyS66Ng+tlZXY/SuZGWuQLJwZ2U7ADJaoTgYIqor4X4xBzL9u7nxv77MF2YBIT2CBMrGmmpWNzZnKQ658eVJVoLVdqzZVoHMtwX8aEAe3pXcNmE1629OPAQjyZ1YkBZVDjHfh+iovPzwteQAwcYzI4ykD9Ky4okr2IzAE6qgNQaPal75zou2DU//tloorB1i6fp1tJC35zKZNikIv6GZbU4pGgpGGojVthr3tbS1kjbyivYuGOKh7bXSSRNMR/U2MH5YW8giLQFaFjXQNvv6HodCyq0xFTyZRt7aZzUg2FWxlawKTBMnzHCYFuJoYkp5C3fJ3T1+xllPVco+5g7N8QPtolsSa3lO9WLuN9aw1XOw5wv70MTy7xN+AWnWbv56W89c92e8ls6MDDwhF1KNU2jWHyKiOrvaVdeeSUf+9jHuOGGG37rPpqm0dzcPP8Te5odbAw7CoCq2egTnshzLpRk5pEtiIpCGZdWWSNac5CckXoAqgYmuftQHuR6G9+E5AX2rmUTTDZwKpr+BKyockmneVYgE3RxjQqUSjA1hShKNNsnAjoXmkvZmLyO7ko7vorEQw37uWR7I3fs//kJ+527spk1CR9HihW2zBUhEEaSZf6kp4GLGkMU3Dro1ijXsr7zZecv7kBVEAUWti/NNSZJZ7OMDg5STjZ65aI9PVApo/h1zrBGOXt6F9X8GJrmZcZsSyR0XD/kBc50a10anccg3eEQo50mOdHFFaBkKXiNnQVKrkMy20/Z14IjqpR93nsZkept6BfJC5p/hC3SmkmOLD48wEgBKmoF+RRnusU7uued9mC8Sk4IIzgKjiWhuyXarIMk/AKu5kfoWEMpNTf/WbfqTVxioA6SGaKAUhEIlGuTV1hmR2+G2NpelJzHfKj87CBWtkDYF2JydBCf5gOr3oVZfBE3BHicBRo84C3Wg7+Uoa2zjYisssKJI9bYOhPSLLpexcoZFCZKpPRal11XoIU4muAi6y9MrcWnaqIokVy8lHI2A8DitetxatnV5p5lHBj2yg96hSSvt9dRdCu0ilE0WaXsVnmPfQ1nC8upSBXKdhFNenF2fP1DM9OtdwLucR0O5BrZn2lk2OnGL2W5yv8jVpYfZGlIRxIEyo2tlKbW8skv26B6DJy26Srv6Pku73qHxOfOzJCWDUq6QCosUNKgpDG/fLLrnmy7I0KkVl5qWDKSfHKCyidrklKff8SaNIQoiUQavay9lTNwHRfLgd/snWPbtw4z+tM+Dj4UJRBfSrnml5d9EgPxGJLrUPC38KGfjdOQ8nSFEWDIHuBW8zu4wTR2rkxhZpJQpAV/tIXOl7yB8rJmKuvOwpUl3FAQMxxDsis4mQKCYyEI4EoROk9/Jadd+5c0LT2bScebb0VEYmorS1r9bO6NceVpDc9L4w5NEedLjEzLpW+ihGk5zOQMbLV+PaVVG8hlLfx6lYAAF4/fjOZqtMz5Oby4hFUp8qNP/h0Xbrqel+mv4ZyWColohe54hfvSEd61YgjX18uH1ZchqFAt6IRa8rQPvZnZfIZMRWY874PMHFKx7pOI8QDq0iZmDK8q5pJSnY03YrUTisUR/CHCyaWEfM/9HKspEk5tvJUVi2LZu5dBn0khnefilnPYX32YpkvfiG1bmOUcRjHN5OAw0UZvfrMMm3+4ZBlBVaGpfB6NxeUEbB/fsrdwbG2Zjz74Reb0CK4rsPtADMuQEAWBrl0N+HIqyVSMVHOZYj5CpRRAyGUAOKLkMTGYlVKg+AnF4iiahm1JiKKJJJ86flxLRyuu4IXfobD3Pz6SCuFrbPDYbd2LvJ+aFdIVjJJNdrpMqmDiS/Uh2p7vVg23gepDU/4IuoFXBdS2ZgObbno9Ky+8FBcvZPDpKoHsEIEVMRpf1kPzVYuIXX8jnW/5N3pnmkmFPf/10fBBtt72ZVzXJSxOkl56GW97xblcXDlMXFMYYD1DP06QGF7CyA+jbN8TYcXWn/I/Bz7La3/4JT665xt8/Zcf5a+3/YBv/eBved9v/pPXOPvm4zi9K8bY7WM8HFK4p8FPVpYwfApavkpXxWZD2SHm83P9cJZgrspQ5zLKPu/dCZTm+N74DLeNTvBfQiuvaGnDJ+lYUzdQnb0CV6jiGFF+MvQgO8yDjFUsRkczOI7LaPokupnadR3UZ4zp5rqQz0NfHxw66K2amWVmNsfing4ka4ZEjSk+WwmgR8O4NXJN19JFiMlOzlq1gvaoj65YgNXNEVZ213Gc4T1ePJMdK7JuTeJJExHxkEqhYiMFFKxQkpDfZiXtpH3e+/TQyhlylRSDj/6cCWcFhujjon6Z6y+a4ozVGT5ovoXd0bXsjC5jZ3AxjgOi4LJcHPmd5z1uT/muLlq0iF27dj1u/a9+9StWrDj16sPvueceGhsb6e3t5R3veAdzc3O/c/9qtUoulzvhB0BQ23FdKOR11KlBAOxwlNmpFOnZWXwIxBDoamhGtm1aQz5ilvfg5IVxCtNpcnKdQhl1vQlesB384VOTfaQFH39dlbJGPC0guC6FUL3ENBGM0OrGCLgaMjKLpaV06gk2Jy5nwp+irNuMNlXI+U0O/OaOE44pigLXrmlh22yJrw2mKFo2OdOm3a8SUiRyC0C3plrphsUfhqabIDBfSgtQPWsTude/ksL1V+F/+cvhpldBY5MHvuk+hM4u5lYsxRU8oVuASklDkGSIJ+AUyvY9HdMDCg0dQaSkAYrD4QSkWo+XNdbvk+2KtFoT83+XfTouEBY9B9d1wVdoqu9fQ3E7nLqehipARSuf8uWlsqbhb/aAe1UzqQoOjgtixXtXuq2DzJVcXEFixt/F7NgYTg0gc4xaRthXY5AClgC+rEhkwAEHmtQ2bjntjTSctppSuw9bcBFUmfL/7iE/PMOamUaaOxYhCvXyUukZLrE65a15LaT7wLXpkvazevVaNjgqXa6nvTROmkn/MN/W/4FHQj9lNuAx3RqFGCEZXEHCCfzhlEkeFzwGSA0N8NI//39c+Ia3Mn74AMdmp+e3neW2823jZXzitL/kpasv4YPOjXTTiKG7IMCq8OMTgH+0F6ZpscVUJwqYtkhcFjmQbeJXE70YtgcuSILNnztfYlft+dBVCeWG65lY+2d86Kc66/scDrZalHSoqgJ3nCbSt6yZaHIxjU6QeKKTeKJzfvlk1z3Z9rZoB1otoLKqKpr0zINukqohqSp6qC4gHW+pjReOi10wEATIZ6ukj2YwJkuAQMpYxKIVXvm7HggxsLyDwvU30ZyaoKWU4sszEb5yxZcA6A538+vSz/jVtk8zuf9uTKtCPjtBvGMVohpFXHwBhXAr2UQvhilTzdkYhtcd0qoImE4Ix78EU60gSCqGUmLG9sro42obsqDQ+jQaSTzTtrjJA2jDPomDowX2jxRwXbCV+vgriQYTvWdgTOZoDKZYnm4mQSMTiRIjyQJpIUt6YowdP/8Jke5GrhrZxPqoxWBKx7AkfpFKsjQ0zF3uOt5c/XtsS0OUXYxygI3pv2XLsExrqIyMjZQeAMcEWUSIetcwVZqjybLYUKkyoSaxbJkjMwr5dAqnXGRRW8tz3kQBQJVFTD1CqaJjVBSKZc830vUKBdtHt1FFym7DaAsjh+qB8fjIMNGkH1ES0PwKwniOa3ob6R87hwkjQlEq02zE+WbHNL+8pMCZM57+daEqcR8WtuuipnxIlsRsPM3kohQFx4/uL857fQNk5s8XTZvk0ykEQcSyZNTn/7E7wRRVgZDH0FY1k0TcYK6icc9wE3auAKk56Kg3CMqn6iLtiWiW4NQ+TC2MC5TjPfjUZ0n0/gVsiq7TsW4j6697JQDlYgG9MEHu7q8z/u2PIVZy6IkgcsDP5hv+hvMsr1ounlX5xbLDfCz9Xm4tPwqAJDk4N/8Tm1/1Ws47azVqQkMR8yDADX338YrKo6iHPNClPJDCWLmB9Ns/wRffupy/+BOF/7t6DX//4TVk3/Y+Jl7/b2Re8XFOf7SFi46luXDbNOd/ehs37xxnbcb7P2dppO+L2zhrzyTNFYe9bWdhIGMCjZZB2HHYMPAA/ffs5Y0NU/zk8kYu8V1EZeYSRDVDf+lRPj65lcu2jHPFfUP8/Y/38pJ/v4+/+ck+TMt+/M06bgu3PRHoNjkB27fBzkdhoP93/wMcB/bshocfhm9/E+66AxIe0WEsupT9M2nygTLrylX2qwojqExVgghtS+YPEfLJzOYNprMG7zp3OR+4eCX/cdMGTl/dQNOiEIomkU95MUxDZ4im7ifHUhbOQfKKxbgubHZ7WWK1IVmQyGrMtgnM9G9jZPu3Ga9006oNsvTIZjYvr3Dz1UMULJkv2lfzmYnr+Y+BG3FdmDW7n/Tc8BTKS//hH/6B97///bz3ve/lT//0T6lUKriuy9atW/n2t7/NJz/5Sb74xS+e7OGeE7viiiu48cYbWbRoEX19fXzoQx/iyiuv5OGHH0b6LWLyn/zkJ/nIRz7yuPVapAkjM0wwVMF1KxRsE1dSqCxewUQ+R7zR05o6bfEyjg4cZS5dJTgnkW6CilsiUT7GYb3+QEeoZdVcG0E8NYEj/TGliI4jUK2olCsqbSWTOX+eGB5zKlypcoGynnOMFdgCFEJrKaYO0dilcmnyzfx8+jNIFjywfo4z9rvMFmZIBusMv5df0MO/3T9AyXb5xP5JbuqMsDYWxHXd+SYKAA3yieWlL3qmm3Ai080fS1BKzVLJZrAMA1nTYO0676dmhbt+Ra2iEACrooK/6mk8LF3GC90WrU0yc1sBUOFYhNTiFPFxGRcXYQHwZjo2jbMPMZ08GxeXqiYiCh7YVLRU/L4QPCb50+nUtTYUXHKKjSye2qAbQHP3cvonprEsEd1fJVdVCFcUxGCZiDNCo55nuhICx6LiayA/M0WkpQ236tG6pVrW3BAFEAT8OZFoMcC4mGHKGMNX9HHL6lvIffAqfvKdzzBz/05QBKTvDtKUBau1ihZcALopf0BMN4DGNRB9BDIDIEhQizeWugkGyGAJNt/x3cGEmGa88+j8x9qdGJLkologqJHfcvAXnx0XPC6m5ijMTmOUS2y86jriLW2kJ8ZwJ6bBshCAnkWnY6y4kF19h4g6XsBs6S4hOUKnb/HvPtEf7QVjcizO6Me20vnBywmpdf/sodJGfEEfbdJeVNfklrE3YObXUNC6iWcepn/V+5hZ+de85djP+X+dD1KqdYiME+Wzr/4KIe3ZZXdPb9sFoxcAULHlZ1zyQgsEOet1b3nc+lhzAPAkS6ysgRzWqC7QKVMSOqbmR1O6CEb6KdSYpRNxkWgyiT07S+HXv8anBHhfYD3/074PR3MYzR0gXZpkMREEQaSxqxdBCWJbNkpwMbbiMDdRBhkmp6ooJZvzFocYbQLB9eOaDmV1ltjWuzG6vURzUu0g5JMIPg/srMdaLKhwVm+ELUeyXrCU8+bAhUw3gDl9Gfv/9wesuTrCL49ezOL0esbjXmA93FRi1UicXXfeT0N3D8nNrbznO3Ns9eXJl2Vm8irFeAVw2acu4x3iJ/hc6oME4l4S/4zif3E4/R56YznKloDeDOJpK8EFy7RJ2zk+NJemw7JxmWWwuIFq1XuubVmns1EjoD+3em4AiuxpY/v1CujgIGJaIpIDht6I238v55YqPJD+KReuvYiZ+78HQGp0H+rMo3St3MjA3kkEAa7pjGGkS5Sd1zCRlUn592FhM7a4hTWj9/IQ61Etg18LsNENEBBFQuNhCvEyLi7HloWJDqXRdA+oGDPq8j2RQi0+UBSsvITuO/XiBH9DK+XcNI6gIPgMnJRKtqowXdJpufpcWBAXFtIesBAMFxAEB8F1UKp5Mh2bMf1JgvKp9/1OFQsmG+g87UyGH90CQKM5y9zMCOn9jxBbcw6K5KMQbeZC3+tpvMNmv3gX+3tyjDLOj8vf5Vy1m4BgkqELQQBfqIPRv/gbvlT8LC+76kMMGv0M5O6l72yH7qKO29jGoDxMu/MFDiYGsHD5cehBsOED8TFep/4pPyx8A79p88p0D90xk8iZCYqGjb29QNpXZXpVO5Hrr8Qer7D4kTEeNl/KZ/wBQqGH+JN0lrWGgWkrXB36GEcOvJHGjmFe33Q68Xs1bqvJXg/ah7C5CNuBr23zxq2B0Rn2faePDTdc6hE1HmPzTRTwpAweZ3v3Qn9NJzoWg0W/w/9Kp+Hhh05cl0rBOedy960Fdpsya+JFGoYrrKppum0pRZHaeud3dxyXdMHbpskS56+Ke51JWwJM9GWZGqhLKK25sP2kgOegTybkk8iXbaSon8pwCJ+U5xo28h/SGEMtJar6DC3DjaRm5/jNrx/gZRcm6XaPUh1Zh7HkYV790iG+eWs325pXsY1VnLuvH7HhbGDvk57/pNGej3zkIxQKBd7ylrfwT//0T3z4wx+mVCrx6le/ms9//vN8+tOf5uabbz7Zwz0ndvPNN3PttdeyZs0arr/+em677Ta2bdvGPffc81s/88EPfpBsNjv/MzLiPazBqE4u61E8BQHUwiQAlUXLOTYxSqWGjERVlbas5/jE8vVgfS5kkKuJrYquSAgveBDc56at/dMxLXiis1opa4CAU1ZZk60y6c/MbxMmxonXSmslFyIWIAXxFSe5sOk6zo69nIgdpOiz2bU0wyd+/te4CzoERHwq16/3NAwGSgY/Hs2RLRY5uGOCbKUuBp8QvXNYyMiSi/5ip1SfiLkRTNRLIgsLGCELrTAzdULzBdQ4xOOwfPkT7v9Cs45V9XvgHolihEQaN5/Gkc1lphcZ89uygkZvfgsNsw/hyDJVv40iVjCBvqRAapOM/hi9tk6nzn7TBAdDdk/58lKAaFsHtiAjSQ7ReJ6x/lncggyGjOZCr7sNXbRxFT/F5rVkxj2m1Xx5qV4D3WoBY5O/neWnXzR//IrjtasPJxs567obEVoCiM1BlIwFLui+MKJYf+jEU6iU4zkxQYDea0GPQ2kOph6i3BBh6YJmChNC+nEfa3Vj+BQTbBHlD6S89LjFu+oOW3rE64K+aMMmTrvqOoQrrkK4+dWwfgOccy6qqHJJ8Mr5/QPBGOclXoIovMjH/z8gk2MxjJkcTiaMGaqPH5ZpsVt6FVsLN3HIuZIwWUrlNC2p2wiZfSwrfZrVvr2UNryRW8bO4j2/1HnD0TO4fOo1yIezGDsGqfzmIMaOwROWT3bdk24/UgfRK7bCc5VviDbVmVnHdd2MibrEy/JLOmhsDjA7Gye5oAti366dFM86B/DEGMSf/4gzvredax+sEs+5PLpU5IG1GTIBk3hTE6o9gWVUMCzQNZFAWKZlWZDWnhBdqyO0ywIZvwCu59MaapmOfVlmlJ3z52zzd7Gi/dQY3wRBoDGi0dXgoyOp01rTAGppCM8HmpJZxAg0UuxtJFIdJR4u0DpSb5gz3gmSrJAZP8w9X/sGBwd34LRFeGdE4KzuPJmSyp2jSS4PlSm6LvcS4wvi32Kb3vwa1o9iFB5mqqijCTbC9q24xRKCKFApGjRnd3BOyZtzK67GbGQDllkDB2U/icTzM+6JgoCr1p87RbUoFn2IqkPQB6WhfZxZqTA+/GtO/+wnCTve/SxnpxnY+hCJRpVQ3Ef3mmbiqsR1bTFe29VEoHITr8hcQdD2c9A3xc8unOal/Xej2wZbJPh1yMYnCrSM14kAw6E5pmbayKaamBhZyrhVb1QXKdZAN1nBFhV8/ucf7H2sdfR0IflDiK5JpN1EVgQmSgF+OdqN095JcW6W8X27sS2T/PQMoujQ2T1BxB3DUfzEFy1h7bplXLWxgTN7o8/31zmlrXX1OlS/BzKFY3GSHV2kHvgBM4/8glDcj1iocMb4Xs5YfhV+w4dkee9plQpfyP+A/y7cxa8rP+LH5a/yQPXb/H32b+izhvl8+QvMiSUywRipsECxuZ2C6iftZjGdLBYmAerMqoyQ43Olf2HcHeGYPM4nuJ+3pR/hR6MHmf7X+xj+yp0Uv7KNxpESAXsxdrgTfpUhfVTmQOIA9/t9/EWiid2FRYiCQ1wZITz3EDse0Wn88cd5/T0/oXXO88MlfYRLAxleH62wVrMICA6PjBb5k4Pg7HzUk4Z6rC0A3R7HdHMcGK9rEZNOP/Exjtt0vWyeRAJ6l8PSZWTiXRwslpmJtTFrj3NR7RiGKzBWCqPF62XVUxmDTA10k0SBkK8OBK48p4VYS4Ar/2QNF79+OUs3NXKy1jrf2EXATnpEi2W0EDM9HeapSBkr6aecmyE/M8jtD08iFrcRLFk0jffS7sbYvLEO8v+fcgGB/u0nde6THrkXAiSvec1rOHr0KIVCgcnJSUZHR3nzm998sod63mzx4sUkk0mOHTv2W/fRNI1wOHzCD4A/opFN10EoLec9fOXFyxnPp5m1vAlRBFarAZKqwMZoPeA6utQhF7Roq0Z5qXsRYo2RIz7DpQjPpMmqirRAm6lc8gaPUkWls2RSVQyI1NgZk5PE8wV0FJD8YM4hSEHsqX4qBlyQeA0hfwuqKVD2OdxReZgfHP3BCed7w3k9XN8ZYbPPoD+X51f3PoJqFElX650SE9Jx0E3FsgV09cUddHlMtzp6H4g3EGpsxh+LU0w9vlTaKJeoFgsIAlQrCrPTUaRQE7zsFRCJPodX/uxZU1cYf6QWlA1F2eA/h6alKzD9ML3IQqiNy7mqRswnIFS8QKSiJnlUuxQZyMkSqtFMIlgvgRCRaHfq4veFiEVBd5CFU89he6zp4QiSR1JD91eZy7hITgBkLzseKfQRDiggiDiKj+lZjz06D7rVuqBVaxqCLeFuGrqXoAoeKFmxy/PncmMKvndsQEz6ECSJTS+9gWhTF6JYn7AX6hD9wVioGbQQ4EJxGjEoc5HdzTvM89js9IIAAStI59xKluZW8jL7LNa53fgUCxzJ6zz2B2Sx9k4C8STBZMPjx7K2Nm9uOfMs8HtBXtisB3taMESHbxF/tBePSXFv7JXmJA766g60aRrYgSjbCjdTsoIYagBDkHBEjaqcRHbHaZ79OOcL3+XM5S9j+WV/z1kb38sFy85j5+4UrmlD1cI17ROWT3bdk26vZOavtWLLqM8R6yTWXH8fzEwVAahO1oIgAZasStB+RhPqhaehhboXfNLP1tkxsqdfSOWCK3BECQSBDf1RNh8AV/SGo4c2ZvA39VDOOwzlwIrAEXs/+fDYvJKDHlYIrwtSbPZhKGVKvgxmxwwtwt9xuLEwf8ak2klT9NSRHJBEgQ2Lw5zWE0aRvcYO8bCKXks0S0YJ0xenuLSZzG+OcsGGg7Q5MRK2VxI4GkwzJ3tzaCWfpW/XEcpxlcszCRaHbUTRoSlZ5va8H1kW6I74+B+9lQdmzqU4FwJXZo38dYTK3cjOHKI1w+D378euVqim57hh6g4ykkq/EmDfRBdTwXqzGFfy0/g83ktRqzNkFNWkaHjXElZNCtk8GypVAkWPfdYxnSLStARZC3B0WkDZ/nlWn9NNc3cMSZGQa01HXrs4yVT1XM6srMIWHAq6TbxxNznNA2q/XMgzW5wmvgB0qyTT7LP8TJSbyMc1plwPdBNdgVCpVpKuyFimRDBc77p6qliitQWn4r2vASmH2hrAcaBcdhndP8qe237IwJYH2PHdr2OmttLRPY6qef6cFAjTe+GldDQF0VQJn/rcsx5fSCYpCj3nXoikqCAIdPUsQVYUigceZCZVQNMlwuMFogmFTe7LePW284jlVC7cs4JkPsIdlV38sPJdflX9BQ+Y+zGoEhXC+AQfsiCiqSJRIY5f8hNyXKJCnIir0mD7ednYcl6RW8q15lJaqzqKYeHDx3Kp3jXzF21F+ptgMgbTcoX83Xvoj6xg9LZfkB+c44D+Y3AMmtIhWkaiPDoVp2Ja5I0oPb6H2Rz8MofzveidMVYN1TAF0eHa1A/5m+gst7aMc4ZexUJgypbZs7sPHrj/cffJ/V3lpZMTXhOEhTY48Ntv+vQCUsjms+H8C+DCi+jfm2ZQLJMIhwgU95Gs6cgdrURx/WHEBY2DRubKlAxvezQgn8BkizUHuPnDp7N4fQMrzm6dbw53Mtae0GlPaCgiWAEPpxEQWGV4HX1dEUZ6TGRVxx9tZWJsjO/ffoTm3MM0zCxCtjRW9WTRaxJOd3ecxuTYzG8930J7StHkY6l7fr8fv/+Fo0MzOjrK3NwcLS0tT77zYywQUSnk/ViWhCzbaLlx9P79OOU84eUrODo+SntnDwDRlSu4dPYA5speds9kmHBdhiNeUDGmZTjPqj/Mp3oVlqTp2JbnPFVq2aNyrTNiq6NBSxKCIRgfI+I4VEQTbBMQUH2dVNPDxJdJuIUQb1j8Gb5/x00c7M7iL0tsH3iYdQ3rWBbzSh57m0P869UruO2/7+CMYp6gchq6z6Ak1523RI2ZZNUYby/2yeYx1aXo4Qj5aY9lWZh7PNMtOz6GpGrYRhVNNynkXbRA4ASq+gvdBFFg8bpG9t03hmtBdGQRerI2DglQbdZoSWVwcTlQSEI1S0DdhxrSGfct4xFBYs4xiaWX0yhvZQwvIxNTmvDV5hTXhbaiQJ8qvyC0MgRBwBdOUM5MoaoW0xUBx7AQqxr4qijVIu1RgekaGztlaliGgWuaiLrsNewALEekWW6la80mAHTJh2EZ80w3gLyVRdQktJuWc/bLzmbt0nMZuGM7h/bum9/nVBItfk6tcSVkPdaWHLTodZMknAQz4i6iboBNubNYMfdyGhrnaHQ9FrVPnoOy/gcHugUSDRTTc+C6XtesJ7FqoT4PdCZe+GXyf7QTTaol8FzDwNYV0CSo2liGiap52e6duWv489jZNNs2f750CStmvkTb9Dep0oZ//ItsmPgShq+NqeoVNM39iILeS37CJWQcIa96z8zx5ZNd92Tbg1YBw5GZq+pMVkO089wkUh/LdHMNCyvtTWBqXGfLQB4BiCYDWJ09BA5HKOayuHaWsr2RA6e10XreNfhWdHLo7l8SXb+BxoO7CRWnkCxIBSt8NXA7N9nvQ10Z4DNjf81w8QjL/T3Igs6fun9NIXgMyRzHEs9GNX1MN00j53p5ZNP/cnTsY2B5c+s5i1ackvq7oiCwtCUw39RhfyhMOZtBcG0E18JYsobqxB10x7IEdJNFs6cRax1izB7h12fNcvkjDZAao3P9ldi6xOSqMK8baKFwTh8/vd9jFzqORabqUgHeEn4z9w+8h0DCoppTaQjfhjvzMwQxQlfmR0x+4SwiMZug5YEx9ykCbp9EfsmCZhpKiJbG50+KwB8OYnlSfaiqSbHWcCmkmEzaQZpcl9UZE5BomktzYLoP13WZGtpPLn8aEQEQBJae1oZp2AyPZpmpmmgNPlTxImAbAAfPqnL5r7byYOMq1lSm+eXoIV5V3kAw5aPky2FGclzy8U2ookbpzl8wPe4FvdGKf76BkawoOIgEg899044nM1GSCDe3kB0fRTRL+NsVSkMgKyYj224n3NREbnIMs1JGAGIJg0LeRyBcpfOM8xFfRD79c2Hxjm6CyQayE2MoqkpX73L69u2lsPd+wmdfzsO+Ni4d2E7uvDPY9+17ufaBZgRK3NtcphqoEhcaSLkzjJhzRIQQG5Ul9K7oYdWkSOfcpcyEN6CXpohWq4SMHKphoCsuo+UpcqNDiPvGWZE4je4wzJ2+iXD7Rv6n+Cn2WTvJBwQ+erNEuAJFv8QrBoqcNXyYygU3MGVXOBj+FIbqMqXmOWd3CylD5Y4jy7mq9yCaaNCu7WWwcw2VYR/nd4a5A48UtK10mNMfitB4/mlcHihxd9kDn2/Pqawf6IfBQejurt+k440UHBtBlsA04XgCva9ecTZv/X2wctUT3/CZWnwqCJ7ueO153bJjgkolw3miQlv+wPzufbkEUjJxwiGmM/XKpVjw8TGF+DTnlLBfxnLAdEAINmFqYaysxUa3nQfwypAH5Cmuuvr9TDx0L6WMSzzZyJatOznn0hj67LnER32s6c0yvF8ikUlxT+t6OLD7Sc/9lK542bJlxOPx3/nzXFqhUGDXrl3zjR0GBgbYtWsXw8PDFAoFPvCBD/DII48wODjIXXfdxXXXXceSJUu4/PLLn/K5AhENURYplTzxSkcNYjU3U11/LlMjIxwdGQSgguuVSUzl6VaC3BTtZoLMvNbUUqmbsxzvIbUtEcV/6mT/nsgUn89DIFwXp+hlWUoVlbIAIcPEMbeAbYPrIosygeP+pl3EFWodI/GCJVmUWRU5hyUjAUo+m19M3sFDYyfWfFtBiaHhvTiz/VSrPgJ+g5zgOSACEK2BbqagIQo8Z1nl58sey3TTgiGEWknVCV0oXZeRXdsZ3rkV26jiumCaEuMjTWiBFx8Asni9pwcYafQxNZBFERREPAB2bo3M8qiILLrkqh6NuHv425RcL2tqomJbHksmLizGy3EIJNQOJLzgzrYkNMmlegpo0JyshRrr2XArESc3NIxbqgM5zc4Ix+uOjUg70wf3AyD66s9HWROI6PVxXBe9wK7ilHFqpfB5q9ZcRhBo6/IC0GrJPIHpJp7q2YRnyxrqJUiS6wUBPhcuddfxj/breKm2hhVnxWlM1Du9+hXLa4H4Bwa6iZKEHvaCx3I2cwKb/omsWqyDblrghd2F+Y/2eBNkGTOgY1cqdE/LCH5vXLJMA02rOd+2SykTYG82yAOpCkNt72JH0/upilUEwcZFQisP0Tx1F5o1g+IUkN0imjWD7BZPWD7ZdU+2XcBBFS0GCnH6y21o8nOTCFR1meBxUeiCQVOuSjipI0gCSnOtUZcA+bKNtmgFscam2ud82OYBSgceoP8LH2D7I7/BjEUYO3IQLRjl8q1NiIKIJTmUHYcv6P/G90f/ldHiAC4uB6eOsTe9j4c6f0wpuR1Lc8mFx5lomUQ0VyNX8+xxZnnQGiYoxRAQ2dT+wgDJ9WAYQVax1CBStQB6J/n2CNXZEm0NaTb2X0XADlOmhC4GGG0oo/rDHL7/W+y743PMTe5h1m9w80yMtb2enEAsUuXGrhqjSdb4eWYz41sjiJKFgA1I4KSRzH5aU99CHfgFFUGkJAh8PJkgbks4ZnX+Gn2BKMlk9Hm4O565C7TvVNWkUPR8LJ9iUBZCuMDqrDe/6ZZNg1jrWlotsm3nOCxghvasaybsU+gJ6lzcFOK08Fo6xC5kZFRR5pqrypQUPw+HF/HzrjOwpg/S+2/3cPpbf0RzX5Xh8gCCIHBsug8L75zhUp3VJooqgu4jFIs+uzflaVqkud64KxQtgQDtnVPgVslNjhFqakGQpHm5GJ+/SnbxRbS2JX/LEf9ov8uWXvASEARc10XVfSRa20g99EOmDjyKtXEZD7iLOHPmAI2XvsqL2YUAF2xXuOzopbxX+wBvU17Px/z/xD9Hvsgr/X/Jpr6XcnZ/HOGe/YQ+/GYaD23Dn58hSpWsofLDwTj/2XU/v752FXev/EuyTTfhJE+jbbyIJuhcrl8LgOwIFP0CE3EBQY/wvZVT/LrxGJXuXrYU76To9xhVvSMyL9syiia4DMthbp/0mFkFJ0lLW5rmixwuNUfpNE1iRpCRpiRblNP58a4o53WNINYSQreX/F6X3IlxFmoRuSUDwSmgTWxHGOuDb30DDhyAY0fhyGHw+bxJJRAAVYWpKa+pwmN9N9P09NsAYvF54G56OM99hQIzrkQwnqTBLDAjyVjAaL4JNdnKb7P4E4Buv4+t6w4hiQKuKGFrIXx6iV5fkoAVRDP9ZCSLfdN3svT8NxJKdjE7M83YVImxvgMs41fEzWbeOBVjyo1wILGIX/ScfVLnfUqR0Uc+8hEikecvw/JY2759OxddVNcdeu973wvAG97wBj7/+c+zZ88evvrVr5LJZGhtbeWyyy7jox/9KNrTCG70kILrQGZOIxwGycihFqex/AkkX4h8fo5spUxE96E2JJmY9gKEy3wt7KwaWNpFyM1ZVk51I5czANi2RDCs/46zPv+27pqXk/7615n853+mb8P7IAhlQ0V1oN2UqAzfjX7d2+GRrXDBhUS3PkhxwCvfNdwqOCJyahhUTxyxe+VLKX//UY51eCV/9x69kysD5yErCkalzMTRw1iWgew7H0GKISlD5PFYNhE05BrgZIg6Pk18QbCQfi8TThzPBFHEF41RSs9RzmRwbBtRksiMDTO8Y8v8foahMjLYhG1L6C9C0K1lWYR4a4DUeJEDD05w1vU96JKPkl3wWFmRJfjKewlpFfJVjRnfBjqm76XctgGfm2LO7cCSU5zWuomzky9FTO0mE+hCSHl1+ZYtIckWtv7CAY9CDQ1MH/GWhWSEzJa9RFZeBrXkkZY7RszfRrrsYokqA3v3EgekBaCbIQo06vWJT5fqDmzVqeCT/OTNemOTkOzNB0bFQZI80M11BUTxxc1A/a3mT0KgCYpTUJ3FifrRTQWqOiAQb/FTxca269pLPsUC+w8PdAPwR6JUshkc26JayD+uec9CMxaAbmrg1NCH+qM9syZEw1ilMp0zDQh+GTcNlmkiiQYe51vgzKjBYbXK7dPQ6ddZ3voy+kK9SP3/jRm+gpVzd2I4S5DkNJKlIFoClptArjH0jy+f7Lon214VoGDpGI6EKMkoynPn08Wa/RTSVcyyzd47RrCqNsEmH+E1ScJ+iVWdIUZmKixtjbH10Ok0tbczMTTM+MAxZMGPaRjguqiaTrVcRlEUekI9tFaW86vgMCvb1vOTye8TU1qxMQhKEQq2N/4fTQ/wjtV/wb7UQVQzhCMFsCSVBzI/5VBpKyYGkqvw75u/Rkh9YYDk/ngC1zKQMZCNPJXQEvb//XUsfnSAtoYUu492cXHqlYwmBplTZ5hbBUsHNqIcPEp+pkglP0u8YzXrmi7n2nWPMj7tY3TWx9fTDv++0mLXAT/3tqzm7O27qGYUAuf7CN78byg//wsU06OPqU6e7XqEr4UVZhU/oeYwil0v6woFn99SSV8oxPGRWFEtCgXveiTFoeTrJq92sbhszu+/aGyC6WZvvB7N6bipIYQ2T9ZD86ksWtHIwF6veiOmKVzGdXyr/MX/z95/x0lynee9+PdU7uqcJufNGbvYXSQiEIEEGEExi6JIyqQkS3KQJcuyfXVlXfte6SfJkiUrmYo2FSkxiAHMBAESOS0W2JzD5Onp3F1d8fdH9UzPIBBLEGFDP/jgs9WVurqm6pzzPud5n5f9zjw5/Qw7+yM8MWNxPprlXEym98lDiMAn96ffYvpUlXUf/w2eLZyGdmiaaGfkCEnCDzSEArFUx0bkYkJyYBDCApnorUWSwyYRM/xbS4rOptvfQnl6ks///nH6+ucoW1luuHsEWbrM455XCXo0ysjOPcwcPkBSCPRIhMWZaaqPfpFg4TTWrrdw9okaGwey2De9n+IDXyHw6gydrFA58SXeuHEjIjFNfTSLK2s4ikHJzJNfU0OMf5BINo0bwGRT58TCMJ+hxe7JnyFSMrg/6rCnrjAT28im1oPYwDp5E/95/7XoO9/K3/APCARFf57ZYIZvNL7APc7fIfV1AsC3qWuZ/0APA9oYp566j1P1DN9Y2IG08xcZOfZfSHknEAL+22yMZyM16mmJeP0oPdJ59EMzfDAWsKv1ML/ufZQTi03W1J6G9RuWq4oGk9PIxWmE5yAdbHty7mv7v3leOEZ9592ganDfvWEK6dEjUCiE6aNaW0RUWOgErj2hQML3A775N4doSi6TSowRcZjr6qEa7l45RtOR6BkIU24VWTCc1Tk112n3Xkjp9sPA1GW2jUR55nQFKz2OUZlEQnB38yb+MXIvlViTexeeZH3mDOO77+aLT/06MxmLk5UGh+ce4u7ISX7U3Mu2eIpnqipzkQtrY36giPIDH/gAPT0Xblb3auOWW275vrPjX/va116x75JlCTOh0ah1JP2KFQ4+1l7/Rmb2fY+FWoWkEUGSJGQtglNzUWMKv5TayHe4g+nIAXqivfgiDOw9TyLa89Ilbl9PCEnC2LYd4florRrEgEDQammYho2f6IXHfhfe+usAJNdtZLJNuuGUMWMZKqcPo/cYuGaWRGI96lAPmj2Hrfk8vfgM/+c//mtkJGK5PL7jgIgh6zsB0HSbSpt0y0idwWxLMi771FJgOe1vGUFANJOlUSwQBD7NUpFoNsf0wdVVUyQ1Sa0SDnQuR9JNUWRyQzEWp+rYTZfJo0WMZJt085oEQ1sZmt9Hf6bEI9O9BIDd8tnbuoenIlfjSXVc8yxNcz9N4F984zeQjSwPZv4NAL4r0Yz5KNLFTYqvRDTTkWZrpkN5tgItHXwBUkCweJyhibtonJ6nJXSaSthJrFS6tSTBkNa3/NmQOgN8y2uGpJsbtnu6ZKC107xbLbdd3VhFjlw69+xVwdo3g6TA9FPgPo0s+ehn+2kFMlalTHqNTaE9KaPJLrIUgHfleboBRFIZOHsagGa5+H1Jt1atU6lKj3VJt8sRaiaLV28QcwURVWOJmvY9F1VzcWyVX9gY8ETPUf7xqRFONtJsTERoxrdyYuK/87uHp5HcLdymavzYdR/FrAdULZmWqqO31UJLyxe67qW214Tg8Xt+Hc+xMGIqkdewIMo171xDIjfFge9O4bZCNcTAWII7bukoaPpSejhOHrsKazKFPDmFputomoyqxgh8D0VV0XQdSdbwyLEmOsxv7/0F7ufb9FR6SOlxSm6OqxNv54Hi39HyLZ6YfJrJHRGa+XXUa4OofoMj1W/whco/IoAN6Q3kzBx7Rsdes/vxwyKywvfWdMpYyjiGejsLkb9gLFdCEMC0yVsGf4RPNf8XAAfVaa5qT446Vo3K7FFqO+/mmifG+G68zH1FcDyJ+yNzrL/TIWsquB+TsRY1Jr9i8tU9vfza+/4Z/zP/gqqymWjzc9wbM7nXVMgEUWYmxhFOJ/jM9L++wodYIk6VMPNEM2xKUx1CNac6TMevo9d9kmqbmsvMzhJbM4YduBTOHeSZo0W2dx5P+sbTVBYbPDBdYcT2GWcnS6aB97eOcofh8kR73wcH1vLuw2mq/TLpfdOw7585W0pw2jrTId2qYVygqCquIyOUgOhFSrrFcj1IioLvuqi1OfoGTDTXpVHXsf0BFE3Hj/XTap7hzMlBjIEo/ekrfHz1Q2Loqt2UJs9hN+oYEZP1O3ZxdN8TNKZPkapXOXXtOzFPnGNifDOHz5ygNnUM31lkDodDc4KN5h4mZp7i6OA1AExHBticWESSfGqVNIVGg7MFcJz9vKH8GKbeSzo5zAe1BI9s38XIxj6aZzrZImPrfgQ/Psq/41fwA5//fer/oWLOMzDtcXDcobemU426TLCG3X0/TTmVRvcUzh96AseqsX8+gfTt/00s3aKhqCzaJjvNMjvbvLcf+0skAfjwq/5RNLlFPwV6C1Og98M3T8FbfoFAzyAfexLhNPFlDWG044LxCdj/NBgGDA1DNgeyDMMjUC6DbcOJ4+H2PXvDcez5850bng8V1ocfmuaRqTI7otPMRAYwy/cs73LaC/tMPR8q95KmQm9K59yCxZaRGJoiE3kV/NvHek1OTNWoRnvxFBPZbbA70svnfRkbOJ+r8939f81VQ3dy384FfClgutKk5Lv8Rf0BbhyS+FlzLT99aN0Ff+cF/4rLXlF0AYimdKyWhu+3/QJaYfC5/uY3UZqdYX5lUJDL0ZoNOx1VtND8JkYzhyvJSCIkCj1Xxsxc/DOAxuZNRK+7jki8kwpbbc/2aolBePiP4NE/BSDeu8Ivzy3h+1F8x0FpVfG08MXas/5d9C2GAaaj+BQSNkEQUJ2fo14qkh56F7rRIJaU8fU6rggHk5kVBEBLjmBeCaSbgGbdoFI2cT0Tx7IwV5Ar9cUCVqW8XP1v+bjImuVl4xWeIbhYsJRiCnBy38KyKsvDw+3rhWgWWXOJtVOTLFel5UqYyjMUej6DlOh0DM1IlJZl0WpIVCsmjVqEesRHkS6de2emO2mh0bhNYeBqWnMFqJoEDZ3Ac8jLRVqyCZKMnxsBQDY7v9GRJNJaJ3VhpdJtKcW07oXt3JLKDcCxAzTdQTec5RTdKxb5TZBdBwTLKbeZWIO44aALi4F0BQjXm2o7zdSXQLsCSbcVQW6j9Pzqrish2h446eGRK9cz8DJHJNeD267amAo64w3XsdG0sF1pRLcw5szw1jtnWcxPMdmweabUZE1c51e2DTKQNLhzZz/3TMJcIOErEp4u4yurly903UttdwnwlwppSQI9lnrN7lfPSJx6Ofzu8R05zKTGG97z/ABACEGmf4AgkWJgbJwdt7yL9TuvZuOuq7n65lvZsPNqdtxwO778PpruG9ny9h9hfMswH9nyEb713m/xR7f/Ab+45u+5JfchdiXfyvV9txAQ8NGvfpRnFuYxNXim8QT/NPM7bNXzBMCtI7fyh7f+IUn94smOeSlE0ys8hZplZAlEoHBk6/vRNZdsqkqz4jJW3Ipo235MDhVYP3gXuqIwmEthVUtMn36ciufzbrczSf/g4Qw98TpGj8T8m9dT2DVA3LcofvrTPKVmsd71V8Tj2/nM2/8Vfx3XQQjigcmpnhGcVsfbaGLz61tAJhpR8ZWQ+FFVl1K5029lVYdCZAu+1WmfBaADdqMEBBw/vECj1bFXEEKwYfcQP/H2zTgTaX7l2XnkSugp6+Lixh5e3vf+/vWYb/qvSPmw8nVpWx/1P/sUNavMWnkja+WNJMphfKUoKp6rIGsQTb221kcXCkmW6du4FS03iOS1iHiLCBEgyz6nD+s8e/8kh451MgtyvSa62vVy+2EghGDNG25B0Q3ivf2k83nWbN1OLJmitO9eTv3Db2BtGGeRCPl3/TSRgVsADyHlObtwhvsOfIWTszpK1UErO1hEaQidmbkhzk5H+PzhL/PE3BdYsAu0vBo2NmcbBzl25gv0zH0P2VQprL9q+Xr8vmHUqdD3UHnyMBsfbnD3/f1ELQXTUtA8g7hrssu4nkqqH9/XEbJE7/rrSI1sQtIj+J7N9+Yn+MtTb6bhhlqq+9uT3wI4W+8lCEAJHA77QzwZrCVGCbwKHPsH+Ot34z/wIJIT+gdiROD9H4T3vj9MJY1GYdt2uPkWUJQwMN29h+CNt4HrQjSGf/IU/oMPhqmlRw5DKgVr1kJ/P7Vii+99+ij+kM7C3BwjpsZAuZOZdbycQ46YqMkw9kiaCv0ZgzfvyjPRF2UoZ7wqHJQQgl3rUkBAI7MGx0ihNXXeWnoTkVaCfHWY+7Rj/Hbp9xjxQ27DbQ9LXHzOBmXuGJhlhwQ/zoVZhV2w0u2l/FauBESTGgQCq6lhRlvIrSr4Hlo8zdCmrSwUOh5bei6HPVmENSkAku4C5XISV/WXb7rnScTyqdf8d/ygkAyDgAB5+hS0PZzOYtJLLSQlMhPge1A+j5IcwjQTYacqaXhK6P+gVyep94bSUatnnMGZHs4SEkUzWYvemokRjdOoOjRrWUDCiLaWVW4AGbnTuTdlkx79SiDdBEKCRDL0BLGqpVWKpnpxASEJUoPDlKbOoxoRPMdBKFEg7KwvR6UbwMiWLLIq4Tk+p56eZ/DWDkHUlBzUG94PD/53kkaLait8diotnVL7dphKlJIb+g7UIzF0J4Ju+ug08CyVeiRAFZfOvZNVDSUSx21W0VSL8+vuoLH4LYzWMCJZR7iQmH8ITbkF2w1o6CkCIVall2p6Ell03qslTzcAy2tQcysEbV+IuNJWJQUBthMsp5ciXTopua8qtryPVuEcWquAKvlU24FI4dDjQPisRtQ2QRko4WDmCoO5QoHQ/D6km+95lKdCkjyWu3jU9l28sjA3bWHh2JNkgbynt+2gwbEdNN2mXjN5+tTT3PTWd3Oo9Tg7dp7mzNNrWS+H71bVdvj3m/qQheDGXIxCs0LRdshIMoutUC20tHyh615qe8v1Cdp+l7IEWvK1U9UISfCWn97G2YOLjG7N4tge6otMRuYSGvO9a2hEk3iRFNIzx5EbR9ANG4REoZDCcVRu/7EN9A6vJikSpsL6gShHJuu8f+xf8QdHfwHHd+jR1vBnZ36JmzM/xjONe7ADl2db8/zcVT/HT+34qdfiFryiUCMRVNPEaTTQ7Uqo5nJ6cclSkCL05irUGjqlAwZr927gmHeYOWaYXzfMSCvPsflpAGaPPkDfXf+WjUeq7FIWOe8FDKgen30yR01SeO8d69j9818A4CePfpnf+8x1fPC6TVjbPBoFB789KRN3NE6JPInm6eVrHJpY89zLfk1h6jK+aiK7FqrqUfNNPE8gywGa1iLuFrEaqwNQbeYExEPytTF5lGdPltm7Kfu8c9+1c5BEXONTX7V5iO8yKI2wP3iQ941ez1MNlVOLDX49ZfJvUx/l4I0G63//ewCc6HE57h0GYE9tGGgr3VwZ37fQIhdf9dIlZEbGmHp2HysphYX5NAPr0hTnGxx+qlMVsW/g4isIcSnCTGXYcufbefoL/wRAPJ0hmc3huS7z8wuUPvs/uPXNH+eY1cC7805mPh3FqX4N/IDAzPPA0b/nOrGXHYP9NOwosi2IJk/x1eNPEVGyVO0pZpxJhBSjYTkEjTmQFcyoTmvmNPSNkWxUwEyAkHAG1kDdYXryKZLaEGX7PNunbmVnYQdCijG+O03KMAkIKy8/VLIY2n472ZSPsJ7CcDdgPztN7ZjKNxtv4WT8cX659xtc37SI1FVGj4wxmr4LTR/mz/QMO5XHmQ7S9HoFpMCC2RKF4qdIpK9FEw7fOtdP+hvn2f2Wcdi+I/z/OZg7U+F7n15gYngHW4pPoEo+HD2MY9moS0WvYnFIp7n/j/djtTxGW/PcE+vjDqPE4GKYWvqspqGUYmjDHflrwgzHwtpzK6i+CsjEdfrSEWa9UWJzzyAicJOf4bHaOKeyncIIp5UpNs3mGDgr+Nae8J086VSRTfir/gLnzib4fy/g+y54lO/7/kvvdJkjlgoDd6tpYEbDEu1Kq0LLTbLzzrfxwP/6g+V9jZ48jZlDnWMpoTeSePHOQ+R7Embu0jDEjN92O9pfPQCAwOfx+zbjr4ly1eaT6JEkfPU/4EQz+JvfQTyboXHuNHgNXGMQEMitKqrXxJEjqOYgd6Ru5CHOoEka+rXreN9HfpHeibV89je/wPz58B6tvSrO4WoDLVCwhUuuncrmBTItNfR0u+whoLnCDL9eKJAaHF3+3Ggr3UqTYSVEp9kgOTDE7JwfVj4NwIhensG8qssMb8pwev8CmiEjLZrQ5ogsv0nC7If0WpLNcyxp2sqWTkkLZ1ljcieVrRGJ4VqdYN5rqdSMAEVc3IVOnotEb57F01VcT6KOyvS0TaZmQrYEso+Y209u8FamSh6BatAaXoMU6bTtEX31QPi5SreCs4AqNJzA7ijdWi0cD1QtJOMk+dIhKl9VCEFj6Ab07zxOUu2o/0pNDUkC32/7uQWAZoSzh1cYIisIima59KL7WdXK8vJS8YUuLj/kfu5nWfyZjwIQUZ6jdGtXMKUueLo6BxoEdZnkvmkKowP4ZYs1+cjyjPhCy+Hes8c51lB41oqz1QgVukvLF7rupba33IA729cpKwpq6rUd0wlJMLo1bLdfjHADGM0bWLbHISeLjGDolh2ceDiGJzQUK2BhcoYN1/axfm/fCx6/YTCKIgkOnKvxvv5f4VvFP+apxfsI8Jl0n6DUCknzm4Zu4ie3/+Qr/0NfI0TTOUqNs3h2i5EknCyCQOGguZ2bdjzCLVcdolI2sYu9HFMPEyPOyfQzbBjczbH5LwLQKE1TnDqMPLaeX91nkwrgp8qwrxT2p2+Qt1N48wmyXzuAG1F4i/UZ9jnXkhyySXz6PLRtVZOSSd3R6PEslkopvN6pkqYu46kmajOcsFR1n1LNJJuoE1F8Ksowydp3WfkkpislptukW3n2BIXpKtN9MfrTz1d3b02Z3DWyjmzj3Xyh9Y8AlJL/zI9EP8b/KDSYNQSfmbG5W3onz/x6hsRTp5lKnYYAosTQ3TAukBUF15WRVO9VvR8/LJL9g2TH11I4dTyczhQSe979BkY39/JX//lB3BUVHOOZbmrpK4VYroctd76DRrFA8dwZSpPnUDWNTCbFs0cf5IlHPk12bBzfj3G6Z4AJ3otduxe7cAzwOTJ9imp5ihsmdmIaLl8+8CyLrZCMEcoQcuSdKGb4fPvOd7Frj1F5/MuIwEPvG0PLZ7HrYZ/mux5icpKTtZDkEXIPSuQNy0Xzqo6LMD1kXyDbFltTVbygSuzkSWKRGFrjWdzhBCUjR1pJsFhfS598hO+Z5xAGfFBA5cwx4v1jGMEgfx7p5c+9t/JHqSe5y/rvCCDm7Ofw7E5OVkeZrgdIk6dZs6uHdN/ziV7f87n3rw+zcK7G9Ako53LcPDyH7QuaJyZJqoAk4V17Hd/72yPMn6tS1gL2HH+Yzya2cZN+mgVZIee53G+YxBsK+potSAL8AJLmaxtDbBiKMlNq4ZhZtEYBJapw68E7+d+pQ7hy+P6l/AgfT93IgwcfXT7u2aYLSdBSZVqFCxu/XwGsxSuHaLuDWEmCKFaZluOzdu91KNkMrh828EZvD62ZTrqpKZVRHQ836NxyEQj0i9Rr4LmI334b/dMPctN3f4GYvYBvqzx+aC1uS4O+TQDs88/xV+f+Jwf0o8vHBW6dNbe8g21vuZvBXJsREYJkYhvbglGEEDxUehx/MI6QFVx3aGkXesdUSqKOLVzkQDCshMd7gYovpCvD001As7mCdCsW0EwTxQg731phYVUVU4DUwBDVxbCCaSSurkoLvtwwvCmNHlUozTaxTnV+p+W1FZLr7iTux0MvFqDU1Cmp4XOTUFPL+zfMGHV1RWq0rVIzfNRLKL0UINk7gJBUNM0jEm1xUl4LgQTVdscZeOScTipyY+NVq5RuUX21imilp1vTazLXmgoJNznBUKSd5tJs4qyYkxFXoGLrxWD0bgBXIdY0lmeym7aE70NMa5HSmjCXAf3KHEwruo4aCdv1lUq3IAgIgoDTjz2EVa1gVTopNl3S7fKFkCRm94TtiqGu8JpsNpfTS/Vamr899PeYzQz+o73YMzqNRwtMPVViYdrivuky//PoHH92osCj9SjnHR1BwHlHX7V8oeteanvF7mSBSLKMmr44J1KFEIzmI6SjCrvWJIhoMmN7J+jZ2s9wfxwjbpIbir1oGo8sCcb7IgxkdK4a6eXnt//f3JB5H5sTe3nj6BvwAo+9fXv5z9f850vajmZlJkFeqUN77DAvr1tuwxPJBu8dUtjAEHVq3N/6JlbPZnIrqiqfe/oeak4RJmLYvRE2BJ3n+fHzKj0ffje19X1oZYtNf/8YY406Ur2JdKbUuRY9Tl51ceyQchNCRo++vmonRRYIvaOA1zSHhTMRCAQi0iIqeYha241RDsdambqLaBdXsipz6IV5jk5WcbzVYo4gCDj59DT5AHbLN2EQ9otPOo9gmqe4oTfBgYU6n6TFM4sa/aUdlG7bQzkIJ2XSQedvt6R0W5oMvJgxcd2NqGPbKay9k/LQNWgDaSRZIvIcwiPe9XN7RZEaGGJgyw6SA8PLk55mLM7Elm2cOnGIxZkzDPlzZAeLJPIp1OidyPp2hDrIQmmW/VNn+dRTJ/i7Jx7n8GxYCAWho0XfhmREEJqE0GVk7erl72zNngJAG8lx9ZvWEY+oCMln+uRDy/vI2laEkNg9ViH3tglS6XmSZ+8ndv4+jLlHiC0cJF44guw2kdwysmeh1+eIDTdY3DVMLQMTbATC4f/ZEZf5uIRVeJZ1ToeD+P3SLs4Hd2GLPGZwhDH+lnknfOZ8N+Abf3mAJ756mqljJYozdayag+/5fPtThylMhmo2M6FxwsqxbzHHl2Y3c2QhxslmltOpTXzr89Mc+N4kjcUWjUSLY/OLkBtg1PoOOc9lTpY4YscRCBKDNxAEsK7fJPkaC0UyMZWoLtGKd9R2E6bDTSffx1sP/BR3P2DyxqO93Db7V2wf2Irshc/KsfoCDS+KkS4Qsc0XO/0qdEm3HwDRttJtJQmitMrYjo8kyaT7Bii0ZZVqPI6UHaFWUql5aTQaBFj4vkezqVGvGviOjGxcGo2o2tdHbPN6FM9CNDtkYq0RgUgKzDSOU0EEAcXcipklt4Lj6iT7BxkbTNGTVPGdCuV0P+N+Dy2vRUDAp498mqljJerlFr3jCdbt7SNwGxQIv8sTAbm2j48XqCBJRK6Q9FLPVXDssBFqLC4A0LN2I/GePjzHXqUCgXDmrFYMU2Bc20c3L18SpGc0QaseKtfs2U5zZvlt0i0xiBzJ0RerEZcdWp6CsahiWoKU2hmgNSJxam3SLQggIfltpdulRbpFUmkCPwxOs30e5xM7qDc8KMdxGzpEsuQL31vev7L3FuztI8ufY8ZzSLdVSrcGp+vHAKh5VXJa21Ov2cBbYT8gq5cvyfuDwjBT2EqAhCDWjtiCdugWBAJD88FVrsgiCkuItCeeHKuJY4Xt1jNf+ixPfPpTTO5/kme+/DmapcXO/l3S7bKGvD20oRhKZdB6IyiqSrW4SDzTQtJKlCerbFzIsPiFKMETPQSxeWCRIIC5M3WSh2wKrsXH37KR97xhMxtG+ggQbBjpW7V8oeteavvW/s4YTpZllPjF69Mb0WVu3pphKGugKIJUTOWN2zJcc9cYH/2NG7jq9pHve7wqS+xdl2TjUBRNlblr4KP82jW/S0KP02P2cNPQTQzEBr7vOS52rPTM9WslUgkPR1nADwz2a4OcVtO4sk6vEiGn2QQELAYLHDCPsWZsG0PJDBFNpV6apVUrUO8xaGmCX8BguK1cebQWxT9zkpFde1A8H8nx6b33EGv/cj+1FYbhfhBlRLOXPd0088VJ0dcSSqRDBqmaS6FogBSAgLzRQLJCklBqxzeJJrjLWj2oz5ygXmhy6Fx91XnLC3WatfC39tpl8tUbGJNG0YTOp5qf5P3DJrn2pOlv0iS+v4eRr/YuH58POmnRQRDBbiloxut/v14KWsRk9Oq9+HoMOzHIdLGF5/lErx9AG4gSXZ/i5g9tIDvULSD0amBo+062v/09RLN5fN8nPzBI/+goR556gtnJ89weLzE2dhopbRDb9E5kdSsIGcW4gaYXY7YRxgmqmkSJ3IyQTOLb8vR/cCP9t/SjKDGEFPYLrZnTBL5PzQ1QinUWJyt4889yrrQfAElSkPVQyOJuGEZPK0StyeVrXX6afY+m41O0XZZG32bhGGrTIbF5jC35O9itXYMZGBwYKuCLgKqYYndqhg0tmT5XcIyAfyx8AC8IY/YUz/ITH5mjZyzByOYM82dqPPz5k3zxD57m7//ro9z/D0f59qcOc+ThGaIZncqgzl3/chs/8ds34777jTQTJoGiUjgzw9e+WmHuGw/SPxIh0OHqI/fwYH4DV2dMjMYRANKeT8POE+sZR4lnCAiVtK9Hdd4Ng1HsRKfvSg0HrF/Yw3BlM7c/k2HrExW8qz/GW6KfI9n+exe1Ot88OgS6e8HuMF3S7QfAEulmNTqDLMUq03LD2ZqN19/IfD0kiYQQuCfPEzFbxOQiMbmALJtILYtIxCYat5BFcEmlFMXvuB190yYGjE4AVKm3g/LMBAP1Fu89W+a6ShWlXSxCuGWsRlueGVWx7ABJTaCYA1yrXYfSVv599thnOfLkeeymx+ypCmPbskzPnWJBdAil4banmx+ET7f5KlQzudiw9HgsEb1uq4XdqKNFo1TnZgi81dJ5SVUxszlqxXCAE8u8OgaUFwsyKzwuGtMd4mdZ6QaQ3UK0FqXqqYBg/QGDtz0SoefJM6Sr4TPUjCSx1FChYDV1HE+mfgmSbrF8hzSTggo+Mk+fhMbpWfyWgGaBuDtDqnaGZPE01tqtnB14Ky0Bc7qMGR1cdb6VSreKU1r2wOvVB4nI7XvfaOL5nXuvqJfWPXs1ISSJejQMEtLu6m3ZZB1RjYJlXNGkW7ynj3hvP/GePurFAm7Lojo3s1ytNJ7vZf7k8eX9u0q3yxs9mZD4SZsxKDi4jsPi/ByL06dpzH4Ku/QFBp9Yh7//QayFP6U1+Tms2l8TyZ6nVbTxLYtf3DyK4soUKi6OG5CKqDhusGr5Qte91Pao6KSOC0lBusjf5aXxwLr+KOv6oz/w+EAIgRCCdf1R7tqVZ+NAYrngwke2fOTVuOTXFM/1zB1IJVDdHLIf4+nMAH927jj/eSFMMfpQfGx53+/636Seu4m5WpWmHT4TC6f3AVAZMpnflOAdgUoPgr0KfP3Z7STftHc5is5/bT+9XzlAdUXhq5odo0d1cJxwDB3PXhwFAbRoh/zRNIfFhc41Z2Idck2sUOXVIk1k1SCWHaFw7hki9SYnZhoUa533Z+ZUR+28fv6v2DEtUGhQDcrM+tPca3+B2/tVRiMWLvDTUpXPJeaWj4nbnesyTIHvy0QuEXuVfEJDlcOHYXrR4vh0HVWWWP8ja9l+91q23jiImehOaL5aiOd7GN19LYqi4gcB8XSGjXuv49SBZzj4yIP47gJvfofPrqt7MLNXEV37U8iRvQihI0dMhBSD6DaivduQDJn0qMFA6Tx3Lj7I8EYDSQnH5oHbQjv8DcqLFVpfvYdd9j7mz+3DjMeJxGKk8iMIoaOrLlM9A0QWTyC1M+h8wFEiBEKm6Ko88Z1v8qvPppkvJggAy4yg1kNfyZ5kP+fFHA1hUUw4HBivUNVk4s2n6PEFM0qAh6C2yUKs+XkCoRCMXo9636/xto+PUJgKCfFYxsBtefhewLHHZjn19DxqQuXPrQp/XZ7h9586y57/9k0+8teP80d2hbqziPnVP+WqQ3/CVfv/gKHP/Re8yS+x5uB3eaJ3I9ekVVKtWQDOSxqJGQmRTODLdVJRhfHe18d/cSgXIdBj2GaOlplDUlxiifAeeHofmWqDybKM4SywUYScTyDB04e/xNn59eh69fudfhmXRmt0kSCabBMfroKPRqBISHaNVqMJpMmNTnBMEtiui9Woo8TjtBaamANRdFFDUiWE3SEDJO/SIkPit93G/O/8LnI+Alv2AFBdIt3yaxlxQMIn7dgc0FuULIMg8CicnWPtVQMIIZjoi7DvVPhwKtlt7JxfyxPBcfqj/XzmyD+ylTciKYLhzWkOHiswS2n5+weX0kt9mUA4KPKVQLqFz0izoZNIhg1AY7FAdnSC04888Lz9E7392A0fr53vF38Bz4zLCZqhkMhHqMw3qc26GEEETdVo+VZnp0yWnCtzWg5wBSwCsg31I8foT6mUdrawtF5i7QICVlMnqfiXZHqpqhsYiSRWpUzEtEAEHLFHuHZQRir5ePEpBC5XW1/k3t6fBkCPysx5G1iITtJjrk6NisgdyXTJ6ZDt4+aKCnmOzcoEDkXvDgxXohXTodwkFQjO0p5okeCRUZ3hx9r39wqsXLoEIxZncjYcKNYX5vHsFUGbJFE4fWLV5FSXdLu8MZAZB55ElWW29Q/zxLlTBL7P2SP7QagE3ixuXSUQAVAHH4QcpXT2ywSOjJDyHP68h9qX4tb3/DRv2thPoeqQjbcLmbSXL3TdS22fPLhAO7EISVZAuvzHJZczIsk0SBJaxMR3XfIxHQgLWSl+jkw0wd9UJrFSW7lBzzMgmRR8H5MoQU5GaFuh+RQAsdr08nlbKY2tmzL84aFp5lyouyofO9citqWP2qF5hBolsBtUo53nR/FNXM8O5fdAPPv84gOvB4xYnKqQsZsCWXYpWVFwZVA8jEgLyVDwLRfP0JFSKUQygacu4Nbj1ApnqRcnGa2WyBgqh86pXLsxTaNsYdVtZFVCxiNTuo//pDzE/5x7N6dyBXQiHHEP8LHcWmZrHl9tGvTnosxEOvYqKacTsCuqSqspE71EiCpJEvSmdKYWw7HrofMNAqDl+Oxem3pdr+1KQXpohE13vIXD3/oKsWSSwPcxY3GcVouDjz2CkUiz+bYN5IfSfOuefWy7eRunju6lbsnUjtnIKZDSgt4bN9Azc5jd84eRCBhX5pnLR1loC9ac84cIxq9B9puUsZg5fwarEbYxE5t3ceJYgJ2KolXOY84fwhEKauBy+MnHqSzMs+b6W0nnUtz58Z/mNsdn8zXX88Rn/5ZIo0m8dJQZM4Ua6eedvb/A/zr7c0T8sBiioRo0546yPXkXDxrgCfjMrMkvXj+BiL8P9v0tADNf+I8MffC/MdSEgXUpHv/yaQ49OM0xw2c2cMhENW7a/w3uOv49vnnyWn7n5KMcSw0S187x4OY48e0+xcQp3v9dn7pwufH4d3m8Zz2qpoN1CKVdKOaQrtBTNIje+EYkL8pEn/m6iURkSdCb0ijkNpA6G8bWw6PTHH52glp0gKHCY5x1Bxm/9VfY/uTv8yDhOHReXuSRg0d5Q++FFfjqkm4/AJYKKQBU66MkYicRgYd9Zh/sGiCW60GKx9AUBS2RpJUPK5iaA1GEAEWzkeodMkAKLi3STZuYQBsbI1JYWF4312p3cpHkquo7cd2mZIWKQK9VwqrbRGI6wzmD/Wcq+L6gEUlyl7eXaVHgSPEIJ7KnGD23g63r1/H4/ENkGhplOWyITF8i2SZAfF9GKCtIlcsZ7ZtqNTvqyvpigfTwKNFMlvpz/NzC1NJO0Bq7zEk3gNxgjMp8E88OsIo+rUx5mSAKggCRDY2je4OAyfb9nG+Pa6WKxPoHDQJjnCXvlmZDJ6u62CqXVPXSJcRyPViVMpIUEIm0sGsKR4sJNmYqNB6u4htFkruH2Gl9jaeN2zijbmNamWBA/sLzzqVJOgJBQEDT66SCjJlrOzvVavh+R8alXuRKj9caXjwKNIkBE9ddRe+Ga/nuqS8h146D334Qr+B7tlKdWVuYo1WvrdjWS3V2ejnolFQV1bh4K9F18cMjGu+oeXYMjvLEudADx/c8zFiUfDZJTQxRrhTw6gnkhIkIFJyFsFxO4FdwXHDPGcw++EWa81NUJ09THBwDWF6+0HUvtb1enF2+XqlbufmShyTLRDM56gtzFBsN1twkCMcGAsXJMRLrZ4wJSAwjVae4xsjyucY5nnAf5kb9Nsz8XlpnQ9JtrlxAPfM02dGw+l8qbTCkKZy3XQ7jMXcsSv/730JkejPlb30H+8iXKKc67VvLiuD4nfGcmUy9hnfixRHLpKkFPoYR4MYsZvQBgloEkaoBAclrRyh+5yS2aaCdOw+lEjvGs5yUfFRfIvA95o8/Qp95O63TLkcjMvbZRRqVFrIqMdZXQsIjLpr8m8o/Mpn5II/Lj3LcO8xfNHz+ZPMe3Egfv/K+a/ilz35m+bqGHcHSKEVRVZyKQiJ76VT83DYaQ5EFp+c64oyxnghR4/K30rlYkB4eZXD7Ls499RhCkti0+xoOPPogVqPBkUcf5NCjD1ItLmI3m3zv6e+w5q6PYRRraP0GmumSTNtoR49TcyRCbZqgz5skmYktk271cplsc5F5zeTA9Lllwi2RyRJPRdF0h0ReEKvOIwUenuNy+Jl9tNQkvdftYXC8DyEJdtx+1/J1V1xBSg1w1RZjn3uCU++/g8HIRob1DZxrHeHJjRbj01EcS2fNaIMNszoHNQ/LhW8cOMyNez+M9tTniIkmxulvsfPct8lm8zD2F7zxx7YQG4nyF/cdptB0uevU41xzfj+ZVpW3nXsc0ypTpIdvbK3znR1N2ClBACO1CXTW0vvUV3l03Q2sieuYwbeWr7nYjKHLBpHRLQQEDLzO8erm4TjfWuzDbhdUkBWPZLpCbXGQiONx8onH4MN/wsS5e8E9C0A55lBamKHcd2Gp390puR8AWkRBbfuIVUrG8oymuniK+mIBRdcx+jpm7Go8jj3dSY9UZAfJ6ZBF8qXFuSGEIH7H7RhWR/Ey1Ypyzl6A809xOKqw0C5uENM7FXdwqtSKYSeiyBLr+qLMtU4hGRlS6Z1MBKEngyvbPDn4NSauyvP1AyEBsEgYgPXQ8bLwfQnNuDJINyHE8yuYFkPSMzM6sWrf4V3XkBtfS3Wxc29iV0C1o+xgZ1Al5kLlUMkJyciHF+/jk4U/xZEC+nzBqCfIy6AGIAdgagLVltAqHa1Ws2kgjJBEUi4xpRuE6XhLGF4v4ck6D0/lsD2BFh3EEX34riBnC/JKCQBbRDkXvep555KEhC6Fz5Ad2MTkBGvMjauKUGA1CfxOmrNmXLkE0gtBagdKAkFQLyHJMq2oh+6s6ACuYNLNTGdChRBQm5+lMn1+eVtubHUbF4knL+t0+S4ARYF3vRvueDPprdu57l3vY92OnSiqSt9AP7df1cfgxFZ6r34HI//yv5J5z0eJbd6DFIljbLwRJB2ERnzje7HkOs1GCbdWpNkorVq+0HUvtT1oE209QyNk+8de33vXxSuCJXIrCHycaplYJBzXKm6aRl7mk7t+ByO/GYDNakd5u+gXGFmfRzZuRFLGqNstjj/8OZ75xj3MHL2XeMZgUzok1TzgqZpB8Znrcb0+hBpBGCmqZmcskkdeLqIAEL1ISLd4LIKvhr8jEmnho1KdS0DVhACyd6xDMhTcTHp5wmRzMYodXZFKeuxhfN9Dtx3mnplejhE0XSGjzS/vFxUtfq32BFERBrUnvKO8dfrzDG68Hys4T0PrTDznW53CDIqi4PoK6czF67H4XBiaTF9aR5UFOyfiDGZ0No90fdxeawztuJrs+Fpi+V5UTWXj1XvZcPVeNCOC3WhgN5uMbd7G4MbNpK3zpI0CQ/1n6c8UyOYUZK+FElTZ17ZdmVc9UtlO1khxYQ65Mst5t8G5M6eX1/cNh9YKsXid/uhx9OoULjLlUolqtc66W+7ijo/+C/a840fY/bZ3rbrm0dG2NYyAfxAn0I8fJzVVYcDYuLxPU/fxAp+mqLCzJTPkSPi+4E/ODrF44lF+3f1R/l/nR/m0fzPZYBEWjhD8n7sRv7uJs0/+FvVmjTWlSX72kb+lt1HEiUTJbd2M0tPDxJYeHtyyglIS8A9vcckNxilnBvhOei3rYxpO47HlXfy5NLHcGEKSQKugKq8vJZUwFfrSOo3Bq3H0JCAYHJmjHhsgAPxnDzJ/9jTjN/7y8jH1lESjPM/T52Zf9Lwr0SXdfkAs+bqVCwHB0DY8JYIbyXDq0VCOqPd0Al41HsdeUcE0kHwkr0OImJdgIYD47bejOjUkLxwINGsR5pJpXN+jaGh8vT/sIOKaTUKzQUmAW6Za7Pzu4XyEHj2sUNbIrOFu/xribpJhZx1n8gc4nzvE/Ow5ytTx2rnTvSKxfLzvSSCtrnp0OUMALUvHspKh71GhQBAEZEYnVgWgRiyOEU8sF1EAiF0B1Y5WmstqhVAlUXaK+IGP5TcJhM++cZupAUFOhkPbLXb5Ers9QdyXcBUfApBaMvOzaZp1g9m+kDS+JJVuK33dqBIEgrqj8sh0Dj2RIPPxX0a6/f/GfPPHyE/0Le8rasMveL6VxRRqXoWU9hxfGcsCOu+jalwa6RyvFdRUfnm5d99Z+PTfc92359G6pBsAkiQTzYX3yKpWltW70WyO9PDYqn27qaVXCHp6YGIC7ngT13/gxxnftJWrbryZnrEJDlt9JLWz7E09yY0bZKLsx37TAuYvXU3kqnH0xMfRk5/AC3IIXUHoEeRYGqFHVi1f6LqX2i6pETRdJ2KaaFdwmvjlhJXFFOqLC2RjYZ8mkPD0JIUzJyC7HrLr6VtROKJUPIrZk2Bs5xsw5LZiV2RolM4xc6zCwunH2TuWXt7/SVyCIMCdbaCtvQP97l+npnVU44MytKwm0XiCWGaA7PDoq/zLLwxRXUaOpQCQFR+9Z5G5GQGSj5BATUbIv2Mz6vgYQbuYgnxykTW9mzonCWxqkwcJZAnHCMdZQhaMb++nabVWfV+udIQPRT9BSqS5WrkWW6rzuTNf5sNf+TEWRThJYxBBr3cm+2VFJZA1Utk0lxL60zpv3pljrMdk7/oU2utMRFyJkGSZietuxHNshKKQzOVJZ7MkMhn0aJTxTZvpGxpi855rSA8OLx8jpADfDYllWVYoNCvUJY2CAFVT6R0ZI5nNYVsWp+79DDNTU5QLC8RTGTKJFOn22L2nr4CMgyCgVq1x/KnHyNz2YXq2X0dv6oX7mNRgZ/y+VS8zd/BeRGATVTrPv6WFk+NW+QRDER1HBDgIDlVizFYs1m/dyd+rd9MKVOxAxkPmu9JuqE7z9uo/8BvyZ/n5ff+EHPjEnQbqmmuRtv8E0bt+k2+tG6Zd74+EF2OzvJ1pf5L/tv0+PvfR/4QtJIicYaLVWL4e3x1Gb6uAhVF6Zf54PyQ2DcWwtQSeHkdRPFTVI9oX0NISZGtN9n3tS4z0X81VyXXssMFxWwS+x9Tk1EufnG566Q+MaEqnNNvAbXlIPWvwpo6gNhcpTy7SLJeI9g3gHjuJIgRKPEZrdgXpJktIXtgpeJ5AkS+94NTYtg2lr4+IX6Mu61DWsCIJqtWzPNOewSuoEpoEnieBFyr9KvMFIAzw4xEFX1lEcjP4WgwpOsqOI7fwvbF/BuBvnv4NbpS3U/A7965XSi0v+55AVVcXELicIYTAD1XKVOdmAKgXFggCHyOZQkgyqhGhZ90GAGqLK9JLM5d/EJAd7JBuYiGKfyiNV9K45+v7cHfbkIEn1zoIPCTPx5NBxGLI1RpjjmD/1Ta3PxLh0Hyayekw+K+PRslpMrp86aWyRbN51IiJZkaJ+AGSAqreoukqNBwZc7EAbW8YxajjKmGbpMsKjx8rIckSO8fjy4TuymIK8Bw/NwDLQqwwdVO7SrdVMNOdoEz2gWKRONBbXjGYvoJJN4B4ridMIwU0M4qsaST7hzASSRRdx22FbZoeT3y/03RxmaL/qqupfPtrSAF4SHgBTJclxv/qj7lBHmDqqwvcJ01jbzyHFL8TajrejE/kHVsxd92E5KTw1RLA8vKFrnup7f5kjeHZZwDwrStnMvByRjTT8TatLxZIj41wZj6czJT9HLMzp1h3wy2I+jx9K3yaC/EAXIdBMUXP236Wx7/8uzjWeUDQslI8ec89XPeJzcv7P4ULTqfztGMRqkFn3Ou5EWZKTRrVClAhmrw4CKSoIdNUEkTaboa6rTHnqaxdyEBkGnuxhpoxacg28niO2KHzUK0xaKaYaZ/DsZqUJx+l/+Zbqc3UCGQJsy/B03Mtqs717M7dRN/C/eHOns2e9HbWSL/Pfa2v85TzBL5w0N1+SlJIuvVIfYigE9AjGUi6QjKdeu1uzCuE11vx00VYUXbHO97DmccfZvrgM+jRGGvXbSR57PDyPsVzZ9CiUUJpRIDve4gVRktClphvlPBiIfEcT29n/vyXAQh8nxPPPAJAtbSIq0RY386e0w0HVzKQAodTTz/G+mtvYO8730RP8sU5g9TgCGceewiAWDLJVKmFJsHEWfh2Oxmo7fhE89jjJO54N7sOtPhKe/z/tzO9/NbGwwRv2MLvfvc9PJB+P4P1Q2wqPs6NCui0eIfyJc7Er8JqRBFGHHPiXfwJf4ekSzSDFqqv4AqPX7b+HX8o/wUBAWvia/h29SvAGylpTzNqh5MRNV9moWwxuuNaACSj/PL/WK8gUjGVjYNRTtTXYlTabUtuntPDN5Kb/TZP3X8vN7zlbk4vnKGkQSwfkqytRumCzt8l3X5ArPR1k1oB1cwE8faAa/rQM4ztuZ7Wgw+i+EGodFuoE3g+QpZwfAk5CIMH11FIJy+9gF5IEun3vx/j21PUs1nwJKakBCPRTjA0E1HZUmmRjdepl0JlQmNhEt/fjNQuBby2P8bJc+C5DRpaH+tnr+eRoa/iKC32Nae51ruKiugMPvqljsLB8ySuKK/2tjVA00ph6GHDVDhzEtdq0iyF1Z7W3/Km5d1XKt3iV4DSLZmLoGhSWDyiruJ/ZxDKOmcoYTgC3hruFxASbqpQkVJpqNZQ3IDBRZkEgpbbaQ4r6jzCblySSjdZUUgNDDF/4igAm/b0c+AhOFbX6Us02D41BevWA9DwaxTT9xFIFpHFH+VcPWyfRvMG2Xj4kqlS52WLyXEyan71F1oWgs596irdViMSz+GKAOU5Hp6DhRVK5yucdFupzrQbdRTPY2jHLoQQRFKZZUKu6xd4ZSIzOs6eD/0Es//pP1JaP0xFNZBEwNnEAOLMFJIi2HPXu3ji4LfxCseR9S3gSUx+/dsEldOImQZBX5jes7R8oeteantPKwcb1r3AVXdxqWJlBdPGYoHBrW0/YRwUJ4cTn6U0PUV66Br6j3bSihamH8V8ykXsvhFHj5If38nUofuAAEnOoWgGC09/idH4bs5UW1QIWMAni4QAbFOh1ibdDEz2xmwONkvL58+Pjr0Gv/6lIYRAT2agnQUaibSYq8XArUAphpYL0HJR0q7MqcVsSLoBZrmKEjVw297WM8cPc0eshr4uy5pek/1nqiwutgCFQ+v+LaXkVjac+GMEAUm9Sk1EucN4G+u9m/kef8+jTqeYWF7uxbE7vrMEBkITKGo3zO3i5UFWNcavvREtGiM1MMTi2dNEUhmapUUiyTTNchEjniShpKnU5rG9Fs1yERFIBMJHN00mK1UgjMPqtTxD6+6guvgkxflO1V3y4+RG303LOoKmu2HdKEni8JP72HzTG7nmXe9fzrJ7MUTTmbDgVBAQz+ap7/8Gze0LxIzU8j5BNglnHSTbRvWPszFIc69vYwl49ljAs3Pz/PgdX+btt8S457TE/zM7wT3BGhxU/p36T/gtQWbwEFNzA2h7fowj0fN8MX1fWNTINUFy2bRwC39pZ5iZ+xgM/w+eqDwGMVDUnRTtB5eLrhWsKHo0jmTGCPBRIrUX/F2vB9YPRjk1m8fREqh2BReFhaEbGT/3PXqFwvlPfpJMpEWpX1BXbfyVqoOXQJdO/wERTXUCSr/pYqXGCUR4GxdOHsNzbIiHHgKSoiBrBvZC2BHYiolMKB13XYVo4tIkRJJvuWuVr1uxIlONrfC1aKfNZiOdGcDAmqde6nze1j9I0T8Bkkpd9KH5Bhvm9wLgC8EJMUuBFUo30VEz+a4gol05vj5LiqOGlVpeVzh9nLnjR4DwOUu3vQAAqotXViEFIQnW7OxBkgX1s0C5845ah0yC5uo07rzeh1iRptZfDLe33BX7GaGScmX1zksJ2fE1y8vJZMfz5GwxRnD8GLSVQw2vRiBbICC6wkvm1GznXfWCjqq03xh+nqdWYFkIOvvIapd0WwkhSdgr2qtACYOAZH1F93uFp6XFVvgQAuQm1i4XTFh3021c/f6PsPdD/4K+Tdtej8vr4nWGJMloRoTsBz9E33ydQaVBX7SOJxTcsRHs8VGSJ8sMyn0MjNcR7UGwX87gWw5Bxca3nFXLF7rupbbrKzIWLrXiWF28MNSIidJOi6wXF0hEFOKJJgIZwxqlKtvMHj0IA7tJyBEi7crns0YN/fF7UeYmIfDJDG2hGLdpKT6HJu7j1LU1vpad5hPDDm/tTzBJwJdNHwFU+g1qPfoy6RYhRhAEbZVb6DN3sRRSAEjkO2pAw7RYFO0xVSVB4IWKz3EtoL6hM0mnz57jibECstwhwg7d/222jsSJ6DLJqELClMk65yklt3J0/ONM9YYTyqlHf2X5mNFonB81P847I+9nvbyZ30n8OR8I3o3V6oxDAhHhErTk7eIigxCCoe27iOV6kFUNI55AM6MYiWSoylc1IrEEg4nx5WP8tsexJEnYSwqRACrlGK7fx5qt20hmc4xu3MzZ8VsZuONjOHMKJ4+NcHD/Wlw1gUjm8O0miXwv0dRLK1yFJKFHwzhZUxUUTaMyewIj3plACLJpzEicpq7hn7mfxEiCm5sqGV9wJtbLb8xs4vh/+CzNP/syb198iv++5Sg9Wou/b95GeSaLkAKSYxa9bx2g9aHt/P7A37SriIPTHAUngS8S1D2fkhWlVdy7/N17h/axsTlJr+dRQuJYOU8kPwQEWMZJlIvIbUuWBBN9Jna8jyAQxBNNzGzAM5s/hl1bz8K3niTZCPuHQEBDv/DMu+4UwA+IzGCUvjVJmlUbt2oTZE3quQ1kgzKtwjRnn3iUib4BKIcdpRqPYc/U0HvjBG7nD+M6Mlri0lO6AWijoyT7E7QLsRB5qkZhfUepUFLDtyeiuuhSQMsX4JYozRaJZ0ISQ5IkdN1GdlSscjjI2DJzI07qIEeNRe6TDrA16OSo98tRIJTBup5E1LhyHt0ljsP3VOI9fVTnZmiWSsvbe9ZuQFkRtC8p3YyYiqJdRC3Zq4h41sBzl0ijFYGPK+F/ZxD5rrPLq/JaHyQ6ysxsNSQ/LG/FvYqE5HhEvnQqX61EZngMPRqjVa/RKEwSyWg0Fw3OVU2clod25DBs30Hd7RDbm8ZUnjggsN2A8wsWa/oipGMa16RuYs6epmDPsz62ZfUXBQGu7SJ1Sbfvi8ndozRLMyTmm2TyI9SmjtJbklme9rvCFVxGPMHonuvwXZfFs6cZ3X3t8rZI18etizbMPXto7NtHcv8jNK4fR5E8PF9gHjuKKwz6t64jGHQwjEkmz/Ui1Xupqz4iEhC0/WGXli903UttV+ROZN+l3C4PCCGIprOUpydxmk3cVpOYrlFt6xSc6ASLR07RuuYN6EPX0Dt3H6ftEo2YzJ/d4fORZ7/GlrUDHIv38+3dC7jCJ1/UaMol5v1ZZuU5fn7sV1i0Pb5SsXh3ysDTQn/ZRhBO0keI4dgtXCdMX8qPjr/o9b4eyOazVIWECHwikRbNmkExGyVRaOBO++hDEprvs26oM9aKLJSZvWYBz+uMq/Z948tc++73o5tRNg7G2DAQ5ejX76GgDhJtnOPRnf+TG87/LpmDf4nqFHDUkEQQQnCrfhe3aG9GEhJydYqZNukmJAnf15C7pFsXryAGt13F4LarnrfeL9TwLJvyYzVaVp1arSNKkVUVw/WQXB3Pk6lVYhSaYwzfsZVAksn7gzBbJfB9PCOOljcZu/MNjPZEuenut/9A1xfN5GjVqniyTjTXT3nuJJmJTjEqR/Ox255zc6dPMLKmzEZH5sF2vPNkfj1/1XcjH37qm1SfmOSGd9X457UznPyL/RQlSN4WDlhT0af4F6d/kdPaIkptA44ByP4iAABrUUlEQVRwGD9xA15mjLGUyQlFwpAETnUz5MNqpafUB/l4OZzMT+Ez34qh9a9FoOApZeSLjI4a7zU5ZSSXJ/Bi3gznU+uBdezPXIMTuQf4LgD5baNsU1Lwua+/5Hkvrl95CcBM6MycCFP8ckULsiZWapzWya9DEDBz+Fny6zaz1M0osTi1Q7N46zbQjEdYotkcR0HXL12hYf7GXfBA+DBGnm1Q3NuZzSq1iR4hIKtbTNm9gM/CyWMMbxpc3u/2Ddu5f38dtxyqbtJWL4psEIgAC5vDy7QeDMgxIGzIHA8iypUT2C8pi4IAcuNrkVUVhKAyM4UQYpX6w/d86uWQnLwSVG5LGFifgntWrxO6T5BpEjydx487SG8IU9R69H5Idu6N2Qrfw8bK5lAPvRme62d2qUBIEn2btjJ77DCqbtBHiVOLffiBxNlKlLXPPgtbt1H3OpLuhBplNB8wX7FptDwePFzihk1peqL99Bj9L/xFto2H9BzSrTvSfS6skV4eih2AIdijKew4KCOvVMVc4aTb0mwywPDOPd0KpV28KHKf+ATOs9eRPvzPDPbP0mhJ6P0mzz7mE1gOiq6TTFuksmex5atoNv4v5qUa+XYVwKXlC133Utv94kloe1uZqksXlwfMTI7ydDgGbSwWWNeXZmq+hkAg5HX4wQlmjxxgZO0u+oXCacDG5+RtG/juVILtTpnv1r5KNRIGuYWUTTOYRUIiJ/VwT+k+MtpW7trQw2K8rarzOsG68Awa1c6kWG5k7LX66ReETELnuJ5AtUroho0A/PMOciRAzm4H7Rwl4bDNsjj94Z0Un14k4+nc3KpCjwJz7ayfVosD932bXXeFBIMQgg0LX4TZZzi4/hcBeKr3w9xy+G+Q/AaQXXUdEVHHrh0mMjuzrHRTFBXXUZAj3X6ki1cfUjaGBAyXtvHs498Kq3G2q/bKioIF5NvVfm1b4/xRjZiTREkbrNkYo3GgjF938YE1bx1nJP/yMmwi6TScPYXstUiv28HciWMkVvihl+U6PRN7mDryXXzPp1o/STS/mTd7Ep/z64zKDf5205tRAp+fcJ9m7nMHQBwkk++lsWBSPOMQHYcnNIm3zZb4Hxmw1UWuenwXu8rfIO+n8Yp53nnDR1AUmcriSX5DJFkIyriixPXNMNavuSpTzTgDI1sBaBlnkcXIC/2k1w26KpHJxHHbNIQfT0DRQXXqOFqSmN0pKDe6rsEOLkygcemyPq8T0r2dG9tYsNAUQSQRx1x7FQCRVJr5WmV5HzURwzpXxo9FkNyO15brKOixSzfQyr9hJ5JnEWnMop9vYlc7gXZTlmi1vdt6YrWwmIJXozF/inNH51g4X2bubIneWIYSJ3DKnftynTOOFiiogYwqFFJKgqyRJbFiysoJAgz50kzNfTlYij8DP2Bg6w623PkO4vlefNelf8uOVf4j9bJN0C5THc9cOfeobyKJpKweYEm3nofpKBBAWSd4KiSG83o/rFDP+CLAUgKafpssNjyEFBYQkMSl20T2rt9Mq1qhOjdDQq4gJJ+4aTHTiIBjw9e/RqsVDuolJCJylM0jMRKmgu0GKJLg8Pk6Tfv7SKctC0fISKJLun0/DBgd1e45Mcup3ucE51c46bYSXcKti5eCumULOMNQjWJGXQLLZqB8nLW1g5h+CUlyMOUqevExDPtRRkefxbAfXbV8oeteans0MRcWOvIhZ9ovee1dXBqIZrIIRSGSTFNbmCMbjeHqMwS4eHIDu3cjZ2sq5+wMMWNs+TilPsfnIoc5IhbYJ82QcFUkX/CmR3u5/ckN+Ph8z/k2j5QeYMTUWBs38IOAIAioBXX6pSHSIovq6KtIt/xFRrpFNInATOEGCs2GjmFYTHntScq5Jqx/O6mWhQ/kN/aw7po+WidO8oZpeHSstOpcj3/xMwTBCl+kZon1Jz9JdvFRAISR4IE9/5t47alVx8mKRIs4QWwPRmMBRZHRjQi6GcETKpp56Y7furj0ENsywVXveh/DO3c/b1v+ztuXl+UAmifLNA4vkjRUWrNhARDJkLnm6p6XPQZK9PQtL8f7x+h9zy8QtFrobU+5alCmd/314faoinP+WYyJBOOLAW+r6Zz0ohDA5OhVfFZsDE+kyDA3g73jBk7f8JsofoXr6iVuakyiNYd488PD9Fuht/j8TJHFyaPUZg8Rl2bZlVnkmuZalEDm+oaFEYQq8RPVLAgJrWcMVynhKVVkcfFlZQ0PpJaXUxMGWw7+JTuf/gP6Zh8hZndSfqfqdXwuTKDRbZF+QERTGqoRPhzV+Sa2G1C3PJye9ST6BmiWisxMn6fWzhtS43GsM0UKZR3J7Xhtua6MFr90A61EzsSXDZpmL7X4CKlvhel7qt3CVGKU1PDRikZaKFKbtfcanH36KEefmOTUMzN4ns/1I8O4ZYt8b4HNO46yXpvgx/1b+FXv/dwob+N9G9/PN9/1NSS50yFb+OhXEOnGCqXbEmRVQzOjq9JKAaqFjhdX7AooorAEVZPpHVtR2VD2CbbMI249C1EH/5ks0nfGeV/sp4nJ8VXppXIgONXj0vTa91m/tFNLl6BGIuQmQoNv4XmkhwpUGwYHF1N4DYtgZhp1IVTtmnIUIQSSEGwbjZOJqViOz3Sxxf7T1Rf/EquJLRQkuVO1T9auHBXqhSKj5pdVkwv2HM+OOJ2NQoDSFZ130cUFQwgYWwvFJEE1ijsVTjzFNJsNvUVSUo3NvYtIio+seGiai6x4q5YvdN1LbZdEgCSB2lIYGtrxOt+YLl4pJAeGkISgWS5SPHcGADU5TSB8VK+HcnKCeW2Qx49X8JSNy8et1zMUhcV/Ub/Dk9I0vgh4b+tGko0kfQtNpHZX2dJmadXKPLlY53DFQghBLagy7Z+nGBQwA4lGbQXpdpGllwoh0FI5FOFiRluY0RbnlnxxXQ+Ufp7KpZg1FGLJCJG1WdJvGGdDqY+F5CyZ7R3f2VqxyJd//7c7xJtVRgA7j/x/rOmLUPc0yvH1zPbsWXUNnhveTM+ZxVs8Trli0bKaRMwoTlMiNRB/LW5FF10sw0gk6Vm7cdU6SVVJ9fWhRVYTS17doXqmQuCEz3F+IkncfPmT1ma6I8BQWhWEEJwrHCcehOrsil/GiGeZGJ+gWneonDkGwSkA1rkSNwtIy/CtaD9/uvXtVG+8heqP/zKtvbdj3/1RzvVGOGyEsdM6x2HP4QH66kX6W7OYyQ7hVzh3gH7xBBnF58Pnf4R/OP2r/F/lToxwvJolksohKSotPeQOZHHxjYGzmU6cGMgBiV/7GY7lPNTFe4jZHeHGkYePMP/IhRVT6JJuPyCEEKR7QxKptmgRtBt9ywnIr92wvN+0FP4BlL4+bFliYUqsUro5joIWv3RJESOmomrh49M0svR86wSJwhzXP/p1oujLKaYIyK9UINWPEwQenutTmKwQm11k68aD5PsKaJpHQpjsDtaSI0EqmiFhJHEtCyGB7etYXpQmDpp06d67HxTLSrcVrNvgtqvY88GPPs9foLrYQlYFyZ4ImYFLmzT6QdE7voJIS3pICsh75xHrQ2LJaXns/0aYkosswzveCbfdQUuF0z0uvtVuDtv+BuYlWkRhJfo3d1KPc7kiEOC4EqfrJg2avPUxjWhTYCqdQiWaInHthhSKHD54U4st7nl8jmPT9dWz0QCWhYWKJK0g3bpKt+dBCEG/MQSAGzjMpnwen2hx5tYt8O73dl7yLrro4sKwcRPsuQ6xkMdQsyR37EQfHEFuOayJVpGbDfpji2TNCqpwyZqVVcsXuu6ltueiVTTJYzBZ75LnlxGMWBzNbAers9PYzQbpuIQvtcfxamd8kFA7hWAm5Ai28HlWCqsTGkY/m3s+jKxvRQoEiXrYP5aNecpHzvDbR+b4/GSJiuPywPy55fP00lG6CUkiM9hRS18sSPV0vJzNaJP52opx+fwcT6Y19qUNAk8gaxF67t6COrCW9wYR5nMO0UQSSVYIfI8jD97Hge98MxxjWOGYLR6UGc1HMHWZbP0ohcyWZRvUlUkItdp3WZA6fagZj+M6Mj0TnWIPXXTxWkGPxlaN6ZK9AwhJ4h3/Zid3/7udpPs7bUftRGl5ef32H+55XSqkAKC02u/QztuI6WFs1KSBE9hkB7Z2vv/Q/ag9EQSCvcUIG9KhOKgpZP7L8LuoTWyn8e5/Sa92nD8r/gH3rFCPfrD1BD3xFmNRh7v6BD+59lHeOXSA652/I/nYH2M/9gg97gl61D8kby9S8+PcOzPOojJK5qqbMA2flh62edJFqHTTjAhLTq2S26KRX890Os6x/hQxp3O9CwmJ+uNPXNA5uyOEl4F0X5S5M9XQBLvuQFLHsn3yG9Zx+tEH8ewW8wLGCNAMA83zWbBjSF5H6SY8gWRcusSREIJ4LsLiVB0rkqUxkEQ5bhGvlelxFbxIBqozAPTLNaaVdNgIOUUo7ydIXsXksQVEfRpJCtA0jyBYHXt+Yu/Pkhocpjo3g6K4aFILaFGTdfQrinRbYt1eet/yfBPPCSjPNTETV5biaHx7ntJsk0BxOZvez1KTKN08iXayn0TW5OyBAtVFK0y97R8A4H5jH2dqZ8MyNITppXDpK90A4vle0iNjuI5NMDNNJldmcSHFU57Je1qhpH1sTqGaWS2N1lWJ7WNxDp+vk4goTBVbHJ9qYGoyg9kV755lYQcKclvpFgQCSbr4Os+LAQPGCKcaxwCQhUywezfx6AbQsi9xZBdddPE8pNMwNxsur1mLltgFJ45DpYK8aTNcdz1jr8UEwPQ0fOHzYKtd0u0yQ2Z0nMn9YerU4tnTDA4OU0nM4xUTq/ZLKB3y6U+rx4ghU8NDk0ze0ffvQB1kMlujbxKSdZVS3MGXPO6/+s/I+hEmrSy/uO9jWNEKkXY8nkEhCAJiyRSDm7ehXISTWcmePEUEgoBoqsm5M/0sZHRyZgt/bgZ31GXK0BAzERicByC1Z4D3Pv0dfj93juv2vomnv3c/LS+c6Pzan/weqhFhg1WmofRgGilUu8obt6Z57MHQ7zkQLUSgE/gQTRqI+QOctY5QX+HYkMhkaRQkRkdSr8Nd6eJKh5AkFN3AtcLMo0Q71ljKxrnpAxv4598NU6Xt6fryccMbX7pK6Ut9r6zpeHYLyW2R0T1soREzc2CfBKAaVBgc3Eoq8VVKFZvm2YNkrr+L1vQiCJO92iKnRD+jgcyjdZvfePI8f6RG+bJ5glO9s7hmhF9cLAGwNTnDjfppPBI0vT7iaouSrQMuiqig8CCG/iCeG6EhZcGtcK6Rou41yY5sp2UL3GToY3kxppcKSUI1DByrieK3WGgIEmu2UzmxH73WQAQSgfCZSyk4p05d0Dm7SreXgZUsNbXQw6Npe0iyQs+6DSiGQVKSKIsANRm+ZE6ub5XSTXgSXOJpWInsUslcBeO0zdi9zzA4c5qgVeGc1DFoN5Qqanw9uKHXnWJEUYNZWk2H2kI4G+h5EiWvnwAIhMCIJ0gOhMoQx2qiSGGP6gUK9YiHKi6+AcirhaUZveepjF4A5fnG8nIyf2kWAXi5GFiX4q0/s523/eQuRm7s/HbJCNhy/SCzJytUFixOPT2/6ri4mQfrhSqXXvpKN4CBLTuoTk8hgoCB4VkUxWV+NrGcrrx23qBXH3jecUNZg1u3Z9HUkIy0HJ+pxdbqnZpNWoGyrHQLuPg6zosFA8YwEclEk3Q8PPzAI6PlX/rALrro4oWxYSO84264+RawLKhUQhXz+fPw+c9CtfJSZ/jh4a6I9ruk22WF7Fin8t/imZNktTwz6mP4uPiiCYGPbJXpi3Ta8XrgYuGTkFLcnPkQY+Y2hKpRGjqEJwKStc4zYmkNbKOAFztNzRVElU4Arjk2zXqNWrn0PBuRiwXpuIFrpADQFRtJ+Nx7rhc/gGAuHNvHLAFWBMox8ME6VyWe3kWPdRJJkth49e5VZX+/9ed/yFH1Wp7q+9ec0K/nqc/+HbMHnuL66DH65u+lYaZw5XBQXC9bTMz/KS5xZpqhZYOiqpixOHI+SyLSfR+7eH0Qz/WgRkwkRSHes7oQWd9EYpl98S2PaK9JMh8h1fvDxxx6NBQLCAIqNYua5WHSmRSo+CWacoLtm3IYukysb5zS43+CXfk/2JVPwiPf40d5iO1n/oyPnfs/JPQH+DXjO5xRZxlq9XBOVTnrxjnRzFO0DRxMVFGG+BksktgYeFIUvy1isOUcStBkpq7zueJdzLdijGzYhEgNEI160K4OejGSbgDq0iyIYxEEAbnbf5zs2DpktUW0nWK6GL+w1FLoKt1eFlYWUwgqNmIQ/AAcLyA7tobpA/spAbKAdLvSpN0ziFZ8Zvk4GXHJk27xXIfYsIwM+aePQR9E62Um4+ELFPggZI891Wepve1u9n/ps7i1SYRcIIinEEEYxDfqBtXsWoKRLRjWLLkNm5cVXnazSUyE5KYXqATRK8xs+wU83V4MlfmOp1viCiPdVmJLfCeTVugVYEgR1u7u5fGvhL4sJ/fNs/2NnVSNlJqB5oqm0Lg8PN2WkBoYIrdmHQsnjuEKQTxZoyg0JoXBEBZ9i9Bn7HzecUIIZAE7xhJMFlo4XsBMqYXvB0hLqRyWRSuQO0q3i9CX4WJBWs3x4eGfoeqWOVY/yM7kta/3JXXRxaWP3nZq3003w/AIPLMfpqcgFoOjR2F+HhbmIdcmRpaWL3TdS21vdia6kC/OwKGLl4dYrgfNjGI3GjiWRTyIE9dMCj2fIRAt1j+QRNYyNAd3rTruw/ENjPf/HqwIJG+sbOB46hmStedPGAvZ4UfNeSY9myfb66R6x/ezb826V+X3/bAwdRnPTKNaRYQAM2oRSFC0VJKei+JCvNlmFxaTEGtgrk3hu3E+9vjDfDNaIhtNMbR2PeePHQWgVa/zzSMGG69uMdMuUNEsl5iPDrDrmY/zzTd8lXosQ9Z3Ge4ziR16mkDfTss7D0A8nUEIQaYvQFW6upIuXh9sfvPbgBcWSyiqzODaFJNHSwA4lRbv/S/XviJxbSSZplEM1WOp1iwL6gRRuVNpsxKUEQTE17yJT2x6nC/si1Gbaau0Agi8Bbwpi4gfioSm09+kkqizD3ijtJer9u3iM+cP4CNx3eA8E9E0hcgoR4Z/Ds8POPTtT1KdP01EHuGOHWmKa36G2LO/ydfPBHhBkWxfP+nxzZQkiVi0M4l/MXq6QeiNTRFE4CN8By1i4GbGcCdPEmulqOlF6oZH6wIvv9sivQyk+jpstFPuPDRN2yPR04fcnpUqC5AIkPI9eMkMkhPu6/sCTQSXPOmWWJFm1jRy2EUFtyURLc1SVgRFVQpVWpEWwrKIJ9Ok2r4UgWcheR3FUaMeIWafxZc1asl1HJr1WKiERFur1kBZIt08Bcm8cFb5csALebq9GMpt0i2a1FC1KzcAGDXXcnv+7fzEyL/hvYMfJTMQXSYhp46VsWqdAW1KzRCsUrqF6aWXg6fbEsb23oART6LLHoMjc7AQYXqpRHcQwOFDL3qsJAn60mGb5noB85UVFfosi5a/opDCRdpxXgwQQiCEIKGmuDp1/SVdGbeLLi5KjI/DjTdBNgdvujNs2+wW1OvhvyuXL3TdS21fItp2XQ1XPX/yootLF0IIetZvQlZVavOzlCfPMW6uI5BaICC6dxSpNkesUeE/rPknfnH873hT9sPsyv/7VYQbQG90I2t6hkjWn0+6+SLgZuFi0+lbg0ontuhbu/7V+5E/BIQQqKmOyi8SbzBfjvLsYgalXKW3LBNvtgewvgy1cEwlKTJafBPpZpjyNjA6ht5WlPi+T7PeYPL0YVRnAS0aY/74EU4cOElw9SfYfuT/I1k+QEFSOFJysT1wS517mkhnCALYcePFVXiiiysTS+O+5+KWD23kY795A4Mb0lz3rrWvmB1QNNvxhdPKofAgpnTSVit+mUDIlFiPKyWI6y0kI4YcTREb/xEkpRfhbwQEtuJTjYfqW4UodraJOTeFj0QA9PRuphgZ58jwvwYhI5BID+0FoOlpfON4jP3f/We+cljCCySEEAxNrMWPpACIrCLdLs54VYt04sCM7tESETI3vBvJZFUF08ULrNnSHfW/DCTzEURb6dEqdh4ay/YRkkSyL5SSugIaQDCxHnwP2WnQqOssLiTQFS75WdH4CtLNMkImvTGnYRbOEkgSrbYEHM0FyYNKhexoR64veYXl5UbNINk8jrlwZDmfct+pCp7nU6mHsnUA35M6cs8rBBfq6dZqujSrIZmU7Lmy7tFzIQmJNdGNqJJGRDYRQjCxI+yMAj/g9DMLy/um1ewqpZu4zJRuALoZxcxkEYCieERjTRbtFKxdB4YBzz4Dtv2ix/dnOuktq1JMLYumUJHahWOE1CXduuiii9cR6TS8+z2Qz4cTm5oO0Wj478rlC113odt1HaTukPpyQ7JvAM8J+8bCmVOMmR3V2ZyxiGYYjBs1ehSD9f4ib8h9hKIy0jlBe7LUHdvEDjnPOl7Yw/OBssCNdFSTfimcQJUkmfzo2Cv8q145xHKd1LVoJBwblBohCTawKHeUbgDlTmQaDOxkhzzPk87X+Y58kDVbtmGYnXHr7NkZHjr2JJnhMQB81+VUo5fBqS+gO6HPXtP2eWDnH1OfPIVpqCSzvaRyeTxfJtfbtW7o4uJFqtfETOi8899cxdabBl+x7K1opkO6uaUCvQmFvNlpcyp+CYIATTQ4YL2Za7YlGfuXv8fIJ36LkbtuRU9+CC16E2rmncxPaEtW12Snskx8Q0W3q0wZ/WTXXs/cxn/PmcEPgxA0yg6Th2s0yyOkB7eRX3Mnsfwm6qUmBAFmIsvgxBoisRiukUSVQdU7McfFSrqpkU7GWFwJY0OhqGRueivRVqeCqfjln72g83UjpJcBWZEY2ZzBaXlYjk8QBAghaNohMZTsH2Lx7GkgVLv567egNheRAhcz6mI1DfRLW+QGQCLbeRibRvhSN+Y0onPHgRuY12X6rLbfSX8MqlUyI2OceCBc5Vkdv5VGPUKSKaqLKlZylEgmh+/DsekGditY9nzwPAnZuLIIpWXOzf/+rNvK1NIrzc/tQjC+I8/pZwtEExpzZytsvC4kx3XZQG1FWKaSlgopSJfXc5YdnWDxTDiznExXmZvOwEQr9EICeOxRuOENL3hsb1InasgYqkSl4S63eVgWDRFjyVZaVq4cr8UuuujiIsVSp7l9R/h/F128TCT6B5bNyYvnzrD2xltJKRkM2USRDHa88+2oRgTjsYeYaVSQNBtf0oi4i5iWj61oVI0E9sA4vfskiuUami2wtdXjuZpWphF0xnBBtQXIZAYGL+p+NZnLUDazgEBr1ICAYisMcAYWZWpGp7I5joq7KHCdFmrawH3Y4o5vnqGQPIe0fhOltI/R5h0F4J73qdsWyArRdJrFYoH50Q+yafKvKWSvIVXaz6SVpFUNJ1ENuYXr5bBbyhXl+9zFpQshvbJWSZFkasWnAK2xgOR11lXsMwTSApYektKSJ/BdC0kxcGSFZI9OaaaFHEzQinZI8o3TFvJsKJTpp8bItjsAaGASODaLUxYLZxtM9BU423gzqudQ5ShIKkKO0TvcS+/gaHiNqkM+rRHgLZ9fvkjpqJUin4F4wJwvIQUuXv8YvUeHGCptwFLqnF57YRNuF+evvAQgyYKpYyUAeq52UOIalh0+QEuVSgDKIkD09BKZPrq8rloxSV0GnMgqpVski5pWceoKmVJYUWzOUGAp/bY+A6Ui2sQE8Z4+rEqZIAiw6mG6bSBUov4sNUaJTz1GyXwzAXBkss6Q77Hkzx40XdREgisKy+ml33+30tyKIgo9l8ED9gqjb02SRtmmNNNgcbrOje9bvzy7ZDiJDukWufyUbgCZkdEwGA0CkqkqU+eaNHddS2R6KlTd1utQLkMy+bxjFVmQiChMt5W9izWHbFwDq4kllA7pdhFWWOuiiy666KKLlwNJkskMjzJ/4iieY1OZmSKppjnTPAGAnb0VXZaZuPYNZKfOYez/E2aN9fS7J1GnkjyZvYG6kFAaTWrrdqGdOki0qeDKLr7UmVCu6Ys4RkdFrjthENczPvG8a7qYkIppnJF19OoUmglmrEm9ZmJ7gnxZQvJX7y9L61B6w3goeetVFL47R2auiVx9go2f/I/M/vEXqTcaSIGEI3t845N/iKYbZHt7mZ88z5OyzOCGbeQf/C2eOFBYVYRhcGyYeKJJ3TOvLN/nLrpoQ4/FEbJC0K4IbJ89QCw7TkxKE0HBDTxwitAm3RadPGrxPF5+LZ4sEe8NSTeAo5mwGAoB9C9qCFkj8GwGd72dSCRK0JpH1A7huz7zpzciRVrkrjlPySoR9DWI7buGYOwmNqzzCRbuJ3AUfMenaK5hOK5TW0m6XaRKt5XppX6ryVUTIzx4uIQcTZI3Jzif+hQAD04+dEHn62rhXybSK3zd3DaxtKR0i2ZyKG2/tpIAa3AQSe5UuKpVo+j6xfmA/SDQTQXNCH9HKz2EU3SoTRlQ9FCRmdNXmtPbYUAPbLztTvZ88KP0bdzKwlyaQ/vXoOoyhhOaP6qtKgNGqL7xA9D8jgTVb7posdRr8wMvEiwNHl7K0a28Sul2eam0XglIkmBgXQqAZtVhcUWp7pTbSUXopJdeXvdQ0Q2S/YPhsuIRi9eZWwB2XAWOA6dOwoFnX/T4/nQnxXS6nWLqWy3sFd2I0iXduuiiiy66uIyQWWGLUpmdCosvtVFqj1sBkgPDLKrrGHEPowQ2RBtsmD2ILiTsdJ7jE7tJR2O844F+fvxrI7zl4MeXj21EithtjyPVk5HaeV1Dm7e92j/vh0IiotCKd4QGqVQVgKKlIweCRCMcH/jtEaxoCOgPC08ISSKxN/R59pqC2x8/wdvfvpdMPMyCUTwJfB+72WD69Clcx8G2LE49/STTU0W8egm/HsYViqqTXbL2US/9+KqLLl4OJFnGTKWWPweVOVJKmppfZN6f57x/FtxOllnZzZOqTIUfhOAziU8RCB9bWJTl8N3KNGMM9F3Frnf+EsPXfoD+8QSe3wKnDIGHLAfIisva9SbTconKzhLVPhs3dgrfrDAydwLXEgS2iy/r+LJOf1rHCzq8iHSRkm4r00vtZpPelM5g226n1xwjYYXpvPsL+y/ofF3S7WUi3ddRwSyRbktKNyEE626+nXQg8AU0Zg6jNkL5c8tScWwV3bj0b70Qgng7xdQSUYL2lFP1vEHUE1RUidaSdFZvQSV8gTUzipAkAmQ8VyIIJFRDBi21fO6cPcVIzmCiN4LWrqIC4Dda6OrlRYa8FJYn7F5C6tZNL31pDK5PLS9PtSsHAQSVDqFExMOQIpel0f3g1qtQY73Iis/A8Dwzp8qwdVvnITtyOCTgXgB9aX15Unmq2CLwPBqBDG6n41Q0/QWP7aKLLrroootLEanBYWL5HmRNY+HEMVJqxyNpJekGYG6+g8WGjuPKkKxjaosk2lYqlhZBy/Qj2j1pst7pLxtmmZYIsxU0JzRfz/YPMH7V7lf75/1QUBWJzMjY8vg/ma4CAaV2iqnhhuvdpZi62YTxN0F8EMmM0vPOrSiJ8D4sfvqfGYrWuDExhVBciIcHBe3/JE1lbMtWVF3HkkNFfhAEaJ5N/7prkdo+2V7k8hu7ddHFhWKlrxueh1EvEm9XMC1QRXKmCYJQJNQkS16qLu8uogZzIwcoZ07TlBvEvSjXjt7Jhhs/jGYkuDafJqsdxz3/OFjnlo974+4D7Bo/QmSySsSC/qKEc+N53Jse4UjvGSSv3Q5EUqTdGQxNxgsufqWbusLOymlXKt82GsNQJWIbsqyXwvY5EP4LHv9cdFuml4nUKqVbqMRaUroBJPsH8WR5WZ4k2gu1anicHrk4H7AfFEsppn4gaOlhJ1idyxG1XRCCuSVFn+JDrbDq2GjPBuZnw8GLoXs0et5ImmmimSz1+RmuXpvE1GW0oEO6uY0munRlBfbLSreXeKdXKt0SXdLtBTG4vlNtZvJI24y3ajNzuIKa8xDXTkPMvmjLV/+wSA4MIYlwksCMWlTOHwkLKaxtm0PbNhw/9oLH6qpENhEq2eqWR3W+RDXVg3A7JJ2sd5VuXXTRRRddXD5QNA1JVvBsG6taIWZ3rFVKzupxbaJvgKo+gaa2J+ETVXac34fqtsjWFvB7Rpf3NS2HJafyeryG5YfBr2YLgiBAUhRimRcuvHAxQTUMnGgY6OuGgxFpcVJRKJqdoNrVVoSbDpBdB04DISD/9vWYoxGsmRaVz/4D6wd0/tX7txO9eg2uFCDa/1WyAX2DwyTTWebPnFqu6hqYMma6U61UjXf+Pl10caVhZXETgGhQIyOFsU9FNPDVs4i22s0XURJ6J+tnbXwH79h9C/PyIoiAqlzHbHWUvYveeUaqC3jBavoonmiQVU5x84a93PWn59GKYdxu1Fxmox3BiBPJ0GuHVVVXk24XZ8y10tNtiXSL6AqaKqEkTdYH1/5A5+uSbi8TK5VufjUk3Synw4rIqsaW3iGGfcC3CYSEHUSoVcPjNPPyCE6zQ1HyI3H6JhK445sBaE47xM5PAzBjKASeAU0dvPIqFU291PGvkAyDRW0bDc+kvligMjuN02wynlPRvNryfk69ji5dWR3qktFm8BJKN0kW9I4l6B1PoEcuzgbs9UZ2KIZuhvdm8liJwA944J+OY1sezoIMVY14NEa/MfQ6X+mrA0mWWXfTGwGwHRNFXsR1bNiyNay819cXeru9CAbSBhFNIh1TODddoRoosIJ004wrixDvoosuuuji8seSNQOAVOhMBBft1Uo3IQSJzTdhOe0xmNnClKtk64sUYjnc3jXL+2osEHVjAJSlRdwg7Eu1tp/blptvf1V+yyuNXEKjFR/AlQzqNYNUukK1rpFudMQFVa2jiKdWg6FrWDJkS+xdR+OcBYFg9qEAb2EadfoR/uVP/w4/+0efQokYVFIBZ/RFntn3KMXCPEIIZk8eZ+jdt9Oj++B34i83uaLCehddXGGI5TukmxFPwMIZcl5HiDGTttCd0HsdIfAVDRoFXKnI7UN3MjSiUYlNLe/f74X2O0Hgsd0KiEVkZGXF+wzUbRWyG1CzUcxt8OaCxBsO6DRiArPcoZoCI0afPwOwKr30olW6RTp8g93sCFvibWut9duuJxFk2Zy4MEVyl3R7mdAjCmYylE87bfKo5fj4KypMSqkUI4GE3bON0ugbOGddTbEQWo4vBf6XOqIJnfmzVWZOVvCuuhkAJeqS+O5hAAqGgpAtiLTC/yudXPJ6udMxqoaML0eJGG0T9yBg8dxpHKuBLHfY8FajhnalkW4XUEihVmxx/nCR2dMV1MvAL/DVwkpfN82QOfzIDM16ONDVIwof/NCb+dDwT3Fb/m2v41W+ukj2DdByc2hqA00ucX7/IcjnQ8XbzMz39XUbyunYrk+x5nLaCquyCa9DuunmlfVudtFFF110cfljJelWn51frm7+XKUbQHp4jLIaKtpankqjBzKNtmdxpuN/NtxznIlYWz3uF5fXa66EphtsvfVNr/wPeRWQT2hYyRHkwCEas8j2lCjYKi25M2itrqxiWq+BkYJ8OFEvxbP0vWsjALLuUT5rwtv/BwhBLJ3hR3/tt/iZ3/5zdDPKnFPAcxxSuR6uv/s9+Nt7GRBxhL/CHyrTLaLQxZWLaCaHkNpeip6HbJXJBrHl7WfjEvHK4+EHr0XFSWIEEoqfZqbk0Go2qSUml/cfkkMRguTMIeGz2NDQ9PB9WxKDNLRB2P5jiMnHiA6Z+IkK2SmZ2x8xyE+t9Hc3ibY1R5dCeqkkySiGgZBk/BVWOrG2sEUSEj+/4W95X/+vXtj5XpWrvEKwVEzBa7r4VvjHWKl2IxESSM3UKE60B2yPpZkdPaq9ptf6amFlmm1reDN6VsKtKxjfOQdBwPyLFFMAqK1Qui0RRU6kIxEvnDmJVakgSZ0Xs2m3rjil2xLr9v2UbnOnO2Rmz9gVVt31B8SmG/qJpXUqCxZP3HOas88WMJMau982RjpzZdw7M79ueXn2yLPhs5Vqp95aVui78gLQVZm+VKhms4VCwcwivE5HpEWvsHeziy666KKLyx7xfC+i7RlWnp5c9nVr+g1anvW8/VO776YexNBlB0OeIt0MyTk12QmIC6UWfak1zzs2LkfZsOca9GjsedsuRkR0GTNm0oqHhQxU1SMptfj2VouvXwvH3n8Dp3ufo3QDGH8jJEehMU/qtm1E1vVhVzTmD+bxk+uXd8+PjtMb72P38DUU1SaqrpNIp1FlmYXaPBk5giQ6k39KvKu47+LKhSTLy75udqOOBOTdDucw5cfpLX4N4TVB1qkEA6TmTwIQ+AGzczKLeuhDr/sRkiKMDTKtEoEUMFdd0S61OY9Gpcp8zeVQ9FYCYL4V54QEMzUJ32/7uWkxMhQQkZAbuRRIN4Bk3yCB79EoFnDtkLeIr7AIk4WM479UqcMQXdLth0C6t5NiatgehiZRa67oWJIJAsCR27Su03nAtOjl0SmsvAfVpopkhiScmHNJPjNDQ5FwlzzYdBvKndm8lemlPa2HiNYP0lBHkWN9ABTPn6Vw7gyy6NzTeuBegZ5u4b/fT+k2u4J06+2Sbt8Xg+vStBrhM7Xkg+e7AVtvHPx+h11W6Fs3Qr0WEmRus0R1bgZWVDyiVHrRYydWEO0N3USmRctSqdcimMn4q3TFXXTRRRdddPH6QFIU4j3h2LRVrZCqdtK1nltMAUBP5SAa7i9LAUIP07mErKAnQ8JusWSRUPqed2xcijCyefsr/hteTeQSGs1Mh0DM9RY5LavMZQTJSJ7FmM90yqURU6DaHq8mBqGd3SJ8m/x7rgPAb9rM/uZvEgTBqsnmD374l3j4ugbJmzfRPzaOVS5BoYosq6hKSLoFgUDRr6wYoYsunotYvnfV5xyduPBr57/Jm3ub/Hz15/ADH19OEW+ehyAgUanRaPgU28UV+pUBXCfAtaYoOGUelgJKjRWT6/VwwsH3PB7ed47DwSa+on6YE9V2u7ZCdOoaKdL+DFIi9IjzLwFPN1jt61ZbmAMg/jItnLqk2w+BdH/nD1GcaWDZPvVW5yEimcLrG8SX2hV4VmzTL5OZmGhKCyuPAsWZOunbdyxvG/jCIQBqRpuYkwKozCxvX0m69Vrfox7dDEKgpdaQ7B9C1Q3mjh5Bkezl/YRmXrHppd+PdZs7s0LpNtol3b4ftIjChmtXD3Q33dCPol28My2vNHpGEyzMpbCaKrValIf+8WG+9ohEudWeICgVX/TYbFwlLTuMFE6Tq86jyS10wyEaa67qnLrooosuuujickFubILMyDiSoqI8OoNeDwdnxRdIMQUwt961vByLzaMTjmXNjdexZixB4MPsPQ8xUIyRqHd8nnuSfUSzF38BhZXoTaoke/uxiVGrGuALcvO9rI9tJqVmqUYC+ksKZs2FxUX42lfhi1+Agw4oERjYjbZuPaM/fyNDP3UNpX/4NGc//glOveMd+G2fWVM1edvE2yiYndghWQyw1QyqGk6ker6CIl0emURddPFykRocJjM2gaSG7Uo26EyIBwTUJYk6NcpBCSEpOIpGolJDdj2mvWmCdvHHPnkQVZOQhUbgN/ERWF6HcNIqVaL5PhwzR9KeJT75OLHTD0ErFDQIzyNAohXrpRUfIO3NIpKhR5y70tONizf+iq/wyKvNh6RbzOiSbq850r1R9KhCotfEq4edabW5gnSLxbBLnXRK3156wAK0y4R0E0KQ7g0D7UrBwnzjbUi6h2T4SJIgY0UpRleoX+rTncU26SbJAf3Vr6I68wBYlkZlvoDTbBD4Ekp7oOIHgrJqY8hXWGXO5fTSF94c+MFyemk0qRFLXx7P1quJrTeHqjZZDZvArTddOSo3ADOh4ZFH011isTq6Msvx4y3mG+1np1QK/d2+8XU4chie2R+uP3YU8eAD3Fw+xNVT+8g2F9GU8P0MAjBiXcK3iy666KKLyw/9m7cjJIHvOshGhNykQVrOUnFLL7i/SAzgxYZwffC8AKN2HoDknrcyuxD2m6nAZCpdoxLtpEea6MuquksFPUmdYsOjrvUTi1tEYxaD5TR70zehSRq6Huv4uhWLcPoUTE1CqQ6D74ZNP4LqnMNckyW+rR+9P07jgQdoHTtO+YtfWv6eu9fezYPWM8ufM02dppFFaVeL9VFQpcujUF0XXbxcZEfH0aMxfMcJ43RiCJ7vdTjfLmrgaH1ELBvN9Zj1zi1v7xODeK4P9aPL61zAamp4riAmBdTnZ1AbC7iFaSKl08iuRdD+rl57koq5mfLojbSSQ6T8OaR2eql/iaSXrixMUW2TboosMFdUZI7qF0andUm3HwK54RithktltoE9E5aSra5ML5UknHR++aPfCjscXfYRl5H8ebmSawBldR3xAQvfksjef4rgwFFOGisqCbkdGX6jEg46ohEPWXj0Lvwz0K7WmdoLyasR0XUoIjze9xS8qI4qrqwOtZNe+sKsW2mugW2FjVfXz+3CkB2I8YFf2ctP/t5NfOD/3ksid4URuUB+NEO1HL67quoRjTUptdozxMVFuP87cPIEfOdeePjhkIh78AF49hnE2TPg+0g9eTS9TYr7GpJy8UrEu+iiiy666OKHwZobbsFMZ3DLVdLnBP75EucbpynYc/i+j+Wt9kOVN74dZJ2Y5jAoh8GskAS73vYm0rvX8Imf+f/Bc4Z2JhpmOvNa/aRXBKoiMZwzsLMjy+ucWmeSPaVmKEXbpJvjrD748IlwoJsaW17V+5Fbl5fnfuu3qD3wAIW//Ct6P/8Q8YaDSzjmTToaTT21vG8gSShXWIzQRRcvhNGrr6Vn3UYmbrgFFZm4FH3ePvPeLEEQMKMquJ5LwZ9nZgWp3ToYZfLgLPidON6MWhgRG2G7BH1jy+tVu7a8XO3bgTq+nqG1Kq2RtQAk/EUUHNDafvhcGumlkWQaua0YrM3PLq+PrUgxvX5j+oLO1SXdfghE4h1VkVOwCPxgNekG2KnOH8JzPAzZJW20QLuMSLeVabatHqK9nXTQ+JF5zqitzphCqkOphN10aVYdInGVvmyoBuxb+DzjPQsMTGQACaEmQM+iiPb5Wg4iaiLElVWZaPn3+i+8fep4aXm5d7xLul0osoMxJEkiO3BpmBW/0siPxCkXOyrUZKpK0W6nbs/NhbPRS/A9+Oo9YZEFgHgColEGggaKsjTDfOURl1100UUXXVw5UI0Ia66/eflz9rzCvDPDP039b/707O/wd+c/ufqA5DByZgyAQf8EefcMAij2XUv/O6+lb2QjeX101SEmBqpx6fWnE30RSKdoNsP4RpGqtNqpof//9u48vq66Tvz/65x77r7mZrnZ07RNF9rSVmRpgRa0wCCjxcFRVBB9OMOgOIJ+HWcYtwfOOOIygutDZgZRUWAc4YczzveHKIuigCxtoS10S9MtzZ7c5N6bu5/P94+T3IUmbVpDkybv5+ORR2/u+ZxPTk7fSc55n/fn8wnZK4tJt9c72gkjI7DiL8FmPfjzNhlEPrABADORoPPWTxB9+GH6v/VtbvnhIHerR2mnGyOWIOMoXsNphi6VbkIANrudtg1vpXphGyuu3EyV49jEUL95mG6zk8/EPsHHYtdx+8j/oauk0i0QqyEbj5ftM7YODPaeHnqWXoSpj63kmSsuKJMOLaDLvZwO91qwWdsrxqrqsFvJv9KFFPRZXOmmaRq+KqvaLTOaIJ2wzkfpvG5HB9MT7vt6knT7E41PWq9yJrnhNMmMSS5ffGyV8Yes7UqRSytSeYOcqYNj7sw5ULqYwlB/HveC4lwUvj39ZHWNnFELSSfY8tCxtzCBfTKWxVBWlaAjN0Bdoxu700C3WYmmqkqjsJCCSubQ/Mdm6ue6E1W6tW/pIxRx07q6ioalU8u2C9GyspKGlW2FYcvBipFi0i2dhqoqcBcv/NVwFOrrUT4fvO0quO4DxCuLk7VqNpnPTQghxNzmj9ThCVvXuZ4RG66RwsS7ZFSGZH602FjT0JZfjXIGyWZMspoLpdlIaBFSPSa9XX00upaV9R9w+M/Ih8tBj536sIvRbLFKr3ffPsCqdBvyTZB0C1VAbR10HQXDBU0XQstGqFxC8Nwm2r62GdeyJWg2GyqVQmUyOGMpbF1d6GjkhwdRjuLNr+Y0pdJNiBI2u51QfSNe+7HX6APqCD25JwBrrrc0aTq0HlqoZZlzPYF0VeHB+usZR7sZdleQc1rDRVHWz7fu9tNQ5cTU7LzmuBBdZWkZeI6G3F4It8HYceRL53SbxUk3KF+YYnxet/qwk8W1bnQNXj0Sn2zXMpJ0+xOVTlqf7bcSSfFUMZCyY/OZqZxZuLl12vJzKukWKlnNMNqdwH72xehO64IhsLsPlGLU5wR3Gux5OLyjkHQDCBq9xc581dQvruSCP1/OqosX0FZZvHjJx1Povvm3OqKmTz6n20h/kiOvDRLtSdJ3KEZN8/w7P+LUVDX62PDeVVQ0NJFKudE0yNlHyY8HWn8/5uLF0NhIyuvjJZtif+9RttohO/aoK15SDac75mfFoBBCiPlD0zRql61EsxvEKvJ4h8pvGAczfeU7uEJoF/4dwaUX0my+WuxHLaK7e5DFweVlzUPuM/fhaWOVi7heQzarE4+56dvfAUCFvQoVeN1IDIfDWrSpu8uaQxZg8eXQ9meQiWHTEhhujaav3caCn/+c6r/9WGHXdR0Gzzb183zmFXJmMUGpubPYtblzfyXEdDmv5SL8Th8u3V+Y361b9dPOlrJ2Q1qCg3Rj5KPYNFthvsRSSsHoeX8GQG5sBeJxoZoqYmmrf1c2hqnZyZp2qpKHoLINxhaXHK9009DQtdmdjvJWVuIKBAnUNZBNWfmLqoCDTF5hKqjyTy3RP7u/yzNApGQOrcxY0q10iGnGaVVmmSUrl7oMc04l3YI1bnRdw+7USY/m0KrbcIesc+EYSuLsT3A0VHJDnu5muDNa+DSgHy1u8xYnLPSHPWg9xTLXfDyNbT4m3UoeeL6+2m3n052FZNyKi+vRbfIjLU5Oy7kX4HQmcThzNC7o4jUNOjWT5w2T59tfo2/xIvbXVJDWoAuTZGyEjj/+HoDUcHGhGMMlSTchhBBzX+WChahcHv+QjYqu8vmIBl6fdAPQbegLLyG2sg1TS6PIAx4G0gZhva2saTgQOXb/M0R9hRNbuJJM2oHPnyQ52ElisJ+wo4qDrtetih4umbfu9SumtxbndDOynTgaG/Bt3Ahj88ZefijEdy77Lsv1WnR7jlzOuvY1fUkMGV4qxDFuedMtfPiCd/M3F3yQCru1UEtXdoAXUhOvvrzafjY2nwPDKJ82CwU+LUE+r9B1UO5Q2WZvuIqLzqpgWYOXS89rYXmjl3OvuhL9in+ClosL7caTbrN5PrdxnlCY1MgwI12dxErmdVvbGmB5o5c3LQoeZ+8iuUP/E1W3+BlfECRbSLoVE2yZseytyhTLqp12yjMpZzibTadhaYhs2uTIriFyC6/EVVmcKNW/u5+DzpJMuTvF4M5DhU9D5n7rhcNXmGARANOErmK7dF8Uwz8f5ywrxkppzi2fNzm4w/plqds0zrpofq3AKaaHt7IazW4NldF1xbChGKyuIgvkMxk6XvojQ4cPlu0zeOgAh19+iXS8mHRzysqlQggh5gGH24Ov0loozZXQsRWnMmYwO0HSbUyGURLeHSgth3JEyDiCRJwLy9pEqprekGM+HXRdo6UtxNBA8Sa069XtuG0e7B4/Gb3kIraqGjxjU8ZEo+UdhRcX5nejexuMHMGW78e37lwAskePkt69G99AEq8njmGYxONuBsPJebfYmhBToWkaPnuAvDFMwG393GVIMaSsX162kntNTcEF2XocHr2s0u3wvjo8GY3K7BDRczZimuANly/64g1X4jB0ljf5cLkcLGv0oesamq28Inh8eOlsH1oKYHcXcxPZ0UThta5rLGv04TBk9dLTwuEyCNdZwZsdTKFyZlmlWzZn/YEprXRzLmpmrvFWWHNBmaaiP1WPu6U4r5t/dx9dZpR83ppcVTkz5ZVuuV1jnRRXegWgpxvMUcjp5IZMkoej2ANTyybPJWVVtyVZt+59wwz3Jalq9LHk3AiewNypnhSnj6ZpBJrPITbioedoJWg2HKEKdJuBbtipWmg9hfdUVFK7bCXhBYtQpsmhF58jEysODXfPw59NIYQQ81Owrvigc2W6OC/bhJVuY1L5JGnXQTQ1dr2maRianb+wvZX35i7ixvzlhOvO3KQbwIoVlWiNi8nnrYvX3n17yKZSVLvqSTtKkm6hkPUB1iJNyZKVX212qFxivTZz8OLdsOU/qL56Ne61a9G9XmK//g1hb0Nhzqm8chANaFLpJsQkfLYAaOD3HZvoqqeYWGqgkoZYL+dFenHVFCvRrrnkJdYuOUw2U9zfX1VV1s/4fJcnYhYq3c6ApJvLjTZ2M55Jjp6g9eRmf03fGaBhaQUOt0Eslceby5cvpJCzKtzMTEnSLTT3JhyPtPjZ9Yy1PHjPwRhnrb8M1/MPEw1X4+oaIaMyJA4ME1jkQtMgrllD0dw+O87M2FwOvpryTjs6wJEDw8So0DETGexjC1PMJ6UT6pZWuh3ZM0QuY9J/JM7qTWf2RZqYWVVN1fzuP1sARdWi5Sy9dDVKKTKjCfr378Ph8VLTtoyGVWvo3L6VwQPteKuqSfRbNxfZjA2XzzWz34QQQghxmgTq6uncvhWA6liQYDBEPB1lSBvAVOaE8xSlzCSmESfj7MSZbiy8vyl7FnY76DYDf1XNMfudSfx+B4ZhZ7A7gMebwnDo9Ox5jZqWWtoj+4kM6wRtITzVNTA4aK1eCla1W8niTUTOhlwKYkcha93oOp09mL3tmLEYsccfJ3bRuYXmsdEwOaNLKt2EmITPsKZoCrqLUzWFTScrVS1L7V5esHUxmLFxjrmIUa+LJbV++ntHIQUKyHZHSQ8nGR5dUNj/1cwWaqsd5LMZDM3Ob0cfp3+4lyqHNUy+P9NDlSNS+Hf8PYfupMHeQoNr9hciaZqG3e0mM5ogMypJtxkVqHSx/ckjAPR3Jhh12cnmTOyGXki6qdKkW3juzX1UUzK3Xe+BEVZf9m7y6V/g2juCoyNOdRRGfv8q/pa15NJOElnrKZ8/AIyPvC2tdFMKYjHwFrNMqc4RnP4zd4LZUzXZnG5H90QLrxuWzL/zIqZPRa0Xu8uGL+QkPrYSW3wozd4XBvAEIlQuv4qGVdbPZ8OqtTh8PvY/8zQA2ayNZNKF0yMXukIIIeaHQKTeukBTimjnIep7IZ11Eq3N0556gZGIid8I4NRdtHgWAValG0DSs8tKupk59GwSzcySN0E37OjGmX9rtn7zQv7/bxylOrIHgP1/3EJT/Vt5bJk1lG2Zr4aNVTXQW5wfiegQ1NUVP4+ssj7iPXDoD3D0BbRAE6G3rqbnx08TSyXIO51kszZyWQOFNZpGVi8VYmLeQtItQMgZIpaJMain2ZRdyDtHl0PlEFuyHrCB5g7guHQD+v0/AUDZHHgaAtAQIHq4OO9kiiFGzvXRlT5CnbMRVIZEPk7ADAEUXh/znhGi1tnA2tAFp/UcnCqHx0tmNEE2lUSZJpp+8oNFz/zf7LNAKFKsXMtF0wBEEzmqg47C8NKypJtn7p32ygYfNkMnnzPpOTACDefjXXcR0V8/h54zcf9yK7Eth0lfuoxEsJh09JmDxU5KK90GB+BAB7RYGeX8aIZMPI3DPf8WUmCCSrdcJk93hzWfVqDKhT8sVUbi1Ll8dsJ1Xno6Roj2jJKMZ9j7QjfP/n/WfIvugIOFa4pJ8erWNjzBMC898lt2bgsCGufNwd9rQgghxEQMhwNfVTXxvl7SowlsZg6PacMzYqP76DZePW8ENHDbvHzA81EAUqZ1TWs6+9iwxM2e/3mQnKkKsylVNLXM0HczvSJhF9WXLiOxtxuvYwSbnmJ46wAs1kBT9KatkTGESh4Yv35et3G+CCx7Bwzug5FDVLy5it6HXIxedgl4XGg5k85DNfgj1n2WXYaXCjEhn80qkGmtbOS6thvoiw6z65Vfs7lzrOp2xIffk6I34YXhURL9veg5K69hGi7SuLANR4lVF5PjDrvCoTvx2nw4dCvxPdHrid5z6GfOtEh2z1iuRymyqSSO8fkoT4LcJU2Ditriic8NW8E5GM9SHXQUKt3IliykMAdvTm2GTlWTj56OEYZ7k6SSeTyX/BnRXz8HQPWT7ZBXxLYdIXZO8aLCk+iA8dNXsnIpHR2g52FsroZU5wh5jx2/be4NzT2Rsko308q6de8fxhxL6DYslSo38aerXxyip2MEpeDAKwMc2F5c0Sg5kiERTeMNOQvvecOVJDJtgDXEVCrdhBBCzCcLL7gYm8NJX/sehod7GTlwCE2BHs/hHdJJhE2S+QQZM4NDdxQq3Vw2N5XhAIvWb2DwUAcDB6wHXMHa+pn8dqaNpmmsWFnJrpE2GHoJgKOvbMfvayBWd4TBbB/pfBLn+JxugBoaYrIl5pRmg8olHH1tJ0dHfKjrrsEcm0c2NeomHvMSbrbOrVS6CTGx8eGlAIlcjEubL+XSWDV0WiNXyNpxDvSAy7oxj+57GW1s7jXTcDJiq8LY/hrVV7+Z7pS1y+bGd+F1zf552f5UjpLFFDKjo6eUdJOFFKaBv9KFbWzlitywVTo9FLf+TY8l3bSypNvc/IMQKRli2ncwhueiSwqfezpHGFlSRTQfpqunuNJJhaMTdAds+DtYckWxs44OcBRXQE0fHSHndeCyzb+KLk0vzbpZ/3TK0FIxzRauLVay7X2hh6724bLtR3YPopSyKlnHpEeLP6NO79x7mCCEEEJMxl9TiydUgeFwEq5upP+s4vVadYdRuGbrT3ejlCJlFpNuADVty8r681Wf2fO5laqvdJGqa2GUMPGYm2AogfflAI2uBTh0JweT+8HrJTt2v57oPchwZnDCvpLRIV7Y0k9f3EMmb+AIWjfAptI5fLAW0NDcVhZAKt2EmJjPKN6nx/Mx64W3fMor24GuwuvB17YXXps2J8N6FYm9I6SN4gN4l2N+pJIcnpKkWzJxnJaTmx9n6g2m6xqhiPUHNDeSRpmK7miGLe1RzLFc21wfXgpQuyhIZaOP2tYAXfuj2CMR7M3WBIkaENjTz8HqFrYfaMLvGaWhepDa1SGoeS8MH4WGN1kdRaPW8FJnSdKtc5icx4FTn4dJt5LX43O6DR5NULsoiD/somFJaEaOS8wtkQWBwgq4R/YMFW4Wxv32gT088ePX+PkdL/L8/1hP5VOj1krNuqFh2OXPiRBCiPmnYdUaGletpWXpWrJOk9FAHm/URtMOB5jQm+kiY6ZRY39YXXpxwYBYn7UKuM1uxx2cOw9RnXadyoCTbN1CfH4r2RgwOznceZSMmebV2DayKseB6ixHQzm8aTAff4zCjVOJgYP7yabSJLIObJqJw2XNsRTPVZNOjSUAvKNoaOjM/aobIU6F11asdIvnxh6g+8uTbrHHXsKuWfffo3ox0WQaTqLZCkxvA6mM9TPqMDRs+mT1qXOL3V2sbMue4mIKcpc0TQpDTBXkYxmUgoN91lBTTStPurnmaKVbfVuIgSNxujtG2L/VGnLmOeecwva+1mV0eWoARWzUQ1tTNzX+UVjgh7NusBolk/D4b8DlBkemsO/48NL5mHR7/ZxuiWia/dv66G4fxuE28FXMw3Mipp2ma7SurgINHE5bMezG/s2m8ux61lppWAGxwVSh0s3psZetsiuEEELMN8sCq9n/5jSOpI6GhpaHmg47r8Zepj2xq9BuvNItnUiQScQB8FXVzLm/o3VhJ+mKFkZNayioqQxqnqpCxQ160kdpT+zi6RVpKhI2NDQSuVhxNdMSgwc7Cq/X1PdyVnOOc+uPMDBaXAE2F0hg1+RaRIjJ2HU7Lt2NQ3OSHxs2WlrppjQdlc7gGrDu4VVpmshm54hrGV1Xvr+QdHM75k+Cu6zSTZJuMytUW/zPyI7N6wYQ9tl5+7k1uEv+CDjmaKWbN+gk0mqVrg50JhjuG6X6E7ey5DcP0f3xVby66gZG9i/Grg1TM/wyzemDVgQaJhx8FkaHoPMI9PdBKglhq+pGmYp0lzW8dHwSxvmkbNV5BR2v9Bc+bV1ddfoPSMxZ51y5gA/ecSFnX9qIUnDWRXVUNxWfjNkcOmjw4v8eYNuvD5Eeq3RzzdHfaUIIIcRUuW0ermj5S5ZdfDmG10NgwKDmgB2zJ8bTg78utHONVZDEB3oL7/mqI8f0d6arr3CBphFvOoe0FsLlSlITjOLc50XlYU98B1kDfndWioxN0Xg0h/nkEzA0ZD2Ef+Jx0v29xPut8+StqMD1lr+HujehsgkyqeIFciaUxZChpUIcV52rkYxK05fptuaYdDrhw38NN96Edv0HiHzus1Ru+LNj9gvRjzKcHK1bXhgIM1+GlgJlc7id6vBSuVOaJhUlSbdam0ZVrRunobOkwYumaaST1s2pw2VDn8OlmAvXVNPTYZWs7t/Wz9rLmoEaEpVvI/+KlZCzu9Kcl/0FXfcN4/3Hq9BdOui9sPU/4VUNAgHIjkIuimkPMfzkNlQmj/K50LX58wM+TiurdFPs39ZX+Lx0RUkh/lTjq+A63AbekJOKWi8L19aQjmc5sGOAxmUVPHmf9bQ+2jtKNmU9KZurQ+aFEEKIk9HgboFWUOks7X94CoC6vQ72hVN4DB8bK/8M/9jcSvG+XhweL3aPB/8cTLp5XTba6jz0egxS0RqciSiaBnUHDHoCdXQvtKraDtTm6e7M09xvoI+Ows8eBLsdslkG+3sK/YVb28DhA8NJxllDLlUcRZQMZXFo7mOOQQhRVDrEtC/TTZO7FYyxa3i3m/D73086kUCl+jncfgRTWffdRiIOyiyrBJlXlW4lCylkk1LpNqMqIsUMqIplOHtBgKWNvkLCpHQY1lxWWnnVUZIcSva1QfMIGCaN11XhPv8q8iMp+h85iNIAXcHoQdCyMDICK+oAhZ6NYqbH5nbzzs8/pqWV8qnRHJ27hgArQVLV5JtkLyFO3ZpNzXzwjgtZs6mZlhWVLDm/lss/vILl6+swxp5sDXWPUtXoo2FpiLrFoZk9YCGEEGIWiSw9C73CR95rI+/SWZlcyjX1H6DZ00qFoxKA0aFBMqMJEv19eMLhE/R4ZqoOOhgezZFuXkkGD4mYC5crg7sjU5jjTsfGQIO/fMdsFlODaC6LPxDCG64i3NxqbWu5mNG1N6ONWtPQGHZIeUzssnKpEMdV46wrvO5Ld0/Yxun14m5ehak0DC1LNf2E920h2HOwrN18qnSzu2V46awRqvXg8hmEG7xkS+ZvA6s6aXwY1lxf4a+i1ktFrQd/pQtN10gMpxnpT9K7Iw2HAlAXZ7Quin3BAgCiL++EkbHEkQYEYlbGXS+uYNTXFSOxoAKzfn5WdZVWuh3dO0SkNYDTa9C6pkrmrhCnlaZpBKvHhsUMpeg/EqdzdxTTVCfYUwghhJg/NE1j8ep12BJ5vAMQiQbx2LxlbUYHrelCdMPA5Q/OxGG+4SIhJ42VLtB19CUX4PWnsNvz1Jop7CnrGrbaGWGozldIwgHkUOSVYnA0TmwkSj6bwRuuhGwW/veXJPcdIJuy2tsdCjSw644Z+R6FOFOUJt16013HbD80up9dse287N1N9zl5dp6X4VWjj/rbvkHjeavK2rrnUdJNt9kwnNZooMyorF46o+wOG26fg8HOBB2v9JPPFVffyWVMzLz1h2E+DMNqe3OE2ECKo3ujHHiln849Q4Vt+oIYfelu7E1NAOSTSdJ9TmtmdgUE4tDogaF91vasjvrjIbwHhqBmbj4FPJHSvFrHtn662odJJ3IsWjt3lpYXZ45gtVVxqkoWGKtqkIpLIYQQolRFY0vhIi7WU36Dm89mSMWs6Vg8FZVz+iHq8kYvug6D9jCDw1aVn8prBI5Y90Qhe5g31b+FAV/xwmJ/bY4BXRUWcwq3LLTO0ZaX4Mhh4rs7UGP3Wg6n9a8hlW5CHFfACBXmR+9Nd6FU+UPz3/T9D78deJS9o6/SH8qQ9Wl4rrwMu+GkOlCe1HbZ58/wUiguppBJjh5z3qbijE66/e53v+Ptb3879fX1aJrGI488UrZdKcXnP/956urqcLvdbNq0ib17975hx1PdYpVGmznFQGe88P740FKY+8NLAZpXVhZed7zcT+fuaOFzrTlGRqVJNxSf6EX3Hoa+Ckg6rUUVjF1gWucssX+Y8QdfalXbaTn+WafkOmw8geny2qldGJihAxLz2XjSrVRloyTdhBBCiFKG04m30pp2ZXRwgGwqWdiWGCyO6PCGK4/Zdy7xuQ3CPuv+Z8i2mETchaZD3UE7Vwffw5uC6wjZwwyvW8WRK89n1wV1bF2Uocco3thWNi+A9n2wcwcAI6arsM3htEYTyUIKQhyfpmnUOKxqt6Q5SjwfK2zLmlmyKnPMPq0e6/476DXKCkFc9rn7oGAiDrdVqazyefKZY8/TiZzRSbdEIsHq1av57ne/O+H2r371q3zrW9/i+9//Pn/84x/xer1cccUVpFKpN+R4alqKSZDeAyOF1+NDS2F+VLrVtPjxVVhZ9EOvDXBkt5Uo0u1AnTUOuj+YI/iud+FasYLhp3+PqlgOvgCgQ/XZACh/I4OPWX9ck3V+jLq5N8nsVJQ+/cyNLdO8YHUVuu2M/vEVZ6hgTXnSTdM1wrXeSVoLIYQQ81ewrqHwunffbgCUaTI6VFyJfq4n3WBsJVPAqA0SG/Zhs1nXsyPb9+K3BYj1drOwdQONzW9i6dmbSTudxMcK3+wK/MMj8JuxFWAbGojix+az44h4yDVbiQOZ002IE6t21hZe95UMMY3lose01dBodi8EQNc0FtV6aK1xsbTBg8c1vyrdAnUNBGrrcfoDjEaHTrzD65zRGaArr7ySK6+8csJtSinuuusuPvvZz7J582YAfvzjHxOJRHjkkUe49tprp/14IguKSbeeAyOs3Gi9nm+Vbpqm0bq6mu1PHUHlIRFNA1DZ6sbmqUFDozN9iGXKJLVzJwDR4VEq3nMrxLthsB2GA2TSQZK7rVWLMmsXETIqZupbmlETjTiQVUvFTHl9pVtFrQebXRLAQgghxOsFaxs4un0bAAdfeI5Ybw8ohd1d/FvqqaiaZO+5oy7s5JWDMZy1HkZeriGiBtA0Re/eXeQyGQYPdVDZspCll15OZjTBgi120HL4TPApGN7xLP5QEFt0GCqrGB5wk49Hycez5M8ZRUOGlwoxFbXORqodEUDj0Oh+FnqXAjCcjRba6NjwGX78RhCnrVhVuqrldQuezCM2u52R7qMAJAb6CERqT7BHuTl7p9TR0UF3dzebNm0qvBcMBjn//PN59tlnJ90vnU4zMjJS9jFVVU0+dN3KkPQcKJZrphLzq9INoHWNdQHhcNkKqwu3LqslkYvRl+lmf2I3nmv/otB+6P77UWjgr4eWi+Hi2xjeOlDY3rUyiH1sDPq8U5J1c7hsGE4bTcvmZwJSzLxgjafs80qZz00IIYSYUKC2vvBamXkGOvYxcKCd4a7OwvveObpyaSmP00bIa2C4DCo3LCI65GN8WqTBg/tBKUwzz4EXn+PQS89biyIoDUPBQlMjNJC2Em4NjXDBOmJdJZOZ11v3anYZXirECTW4mxjORenLdNM+upt03hoBOJIrVm9tqLyM9zb+NVdF/nKmDnPW8VcX51KP9/ee9P5zNunW3W0tgxuJlA9JjEQihW0T+fKXv0wwGCx8NI1N+D8Vht1WmNtoqDtBJmUl20qHl7rmSdKtvi3EtZ87j7Pf2oQyYe3lTaza2EibbwUAefJ0NOVwr1kDQObIEZJbthT2V0oRf/KpwufRs2sJ2ef+RclEtJKf0kwqz9LzIxiO+VXSK2YPX8iJphcTwZUNMrRUCCGEmIjhcHDOX17Hm959Pe5AqPB+cjgKgMPrK6yKN9ed1eTDadfJBR2kAkvZt7eN7s4qkukwTp+foUMHOLp9K737dqESGVw+HwtNDa10cuPzzgdNI9VrTVej2XWotEbUSKWbECdm0wzavGcBkFNZdsetqZxKK90qHFbxzFxe4OVkecNVaLp1Ux7r6znp/eds0u1U3XbbbQwPDxc+Dh8+fFL7F4aYKug7aFW7zbfhpQA2m05lgw+n28AbcuIJOHF57azwrym0eTW2jYoPXI/7nHNAKQZ/8pPCtpH/+39J79pFurmKg+9dTabKS4V97s95MZHX/8KrWxSamQMRAmsON4e7mPStrJdKNyGEEGIyrkAQtz/A2ne9j5q2ZSy99HLqV66hZslyFl24caYP77SpDjgwbBqapqGf3YLuCtB9tJrdr0QINa8sb6wUy9/6NtwlCbeEC1RVFdGBJPmxggZXxFUYECKVbkJMzevvx5VSjJTM6RYwQqf9mGY73TDwhq1kZDI6RO4kF1OYs2VXtbXWONuenh7q6uoK7/f09LBmrLpqIk6nE6fz1IcxNiytYKhnlEwyx5HdQzQsrSA9mqO2NYDdZcNbMb+GSK7Z1MyaTc2FzwP2EM2uRaTMJCZ54hcuIfOlA6hkktivf0O2pxeVSdPzpX8BwHmon/gHV+PWPWVjyueX4upNmq7RsnJ+Jh/F7LHs/DoGu+PkMibhRql0E0IIIU5E0zTaNrwVgHQigcPtIdy0YGYP6jTSdY01rQGe3TVEyOsgv7SCWI9VsXZoj4uqSB1mPk8unaJm8VI8VdXgdELaqmTrqM7QnB+hs724IJ6n1sHw2GupdBNiaiocVTS4FpBTGfIqR2+6q5B0c+hOXDb38TuYp3xVNYWhpfH+XkL1jVPed84m3VpbW6mtreXxxx8vJNlGRkb44x//yEc+8pE37OvWLgzyq3+3yjTNvOL8dyxkoDNOd4c138DG9y17w772mWKxbzlP9P8SgJf1bTS9Yz3Gvf8DuRzPfe1vqdnajxEKkR8Zof+8egbWt1A3T6vcADLJfOF1ZIEfl1cuKsTMuujdbTN9CEIIIcQZq2HVmpk+hBlRFXBQFXDQHc2gNwUwXN14Aw4624dJNKwlXB8g5LHhCo4VKVRUkBvoRc/mOVidx0gdpmu/o9Cfp94oJN3smuPYLyiEmNBi7zJ+O/AoAO2JXcRzVq4iOE8XLpwKX3UN7LJez6ukWzweZ9++fYXPOzo62LZtG+FwmObmZm699Vb++Z//mba2NlpbW/nc5z5HfX09V1999Rt2TL4KJzULAvQeGGGgM85wX5Lo2FMcm6Hjr5yv1VpFLZ6F6OiYmHSmDtL7Fjfn/ciqDXdtP0S+ewQzb+L6wLvZd7n1/nydzw0ozA0IViWlEEIIIYQQZ6LFdV4r6WbXCZxby9AfjqJMRfyXhxhaWYnNbSfkNVjS6MO/6lKO9HXxcuUvMXUd25EjHH6+WGHvbSzOlGTI8FIhpmyBZzG/G9BQKPaP7kGNjawK2EMze2CzmL96fK0AzVqJ+iSc0Um3F198kUsvvbTw+Sc/+UkAbrjhBn74wx/y6U9/mkQiwY033kg0GuWiiy7i0UcfxeV6YxNfC9dU0XvAyha3b+1luDcJQCjiLqxuOp85dCcN7hYOJzswMUlX++j41Cb6V4aJ/Go3qfYBQkOQetdGMo6XAKhwzN9Ktz//2Gqy6Tzd+4eJtARm+nCEEEIIIYQ4JVUBO363jVgyj6M5gG1rL7l4FjOVJ/aiNXQrqsMB02pvOHV856wi5uyj/Wk75HLoXoPQunrsoTiMtbPL8FIhpsxlc1PnauRo6jCJfKzwvlS6Tc4dDFG9eAkDB/YzdPgAmeTolPc9o5Nul1xyCUqpSbdrmsYXv/hFvvjFL57Go4KFa6p57pH9AOx7sQfTtI6xolbmPhq3wNPG4WRH4fNFf/nXnG342PfM10mtCfDsny8k7D4MY2tQzOdKN8Nuw7DbaD27eqYPRQghhBBCiFOmaRpt9V6iiSx9wxn0ixsZ2dqDK+igf0/UmsrYLLbPpU2izziw1y4in0uhO3V0uw0j6ARbf6GtVLoJcXIWeNo4mrIWjdTQWBu8gAWexTN8VLOXpus4PD7MnDUKrWfXqwQXLZnSvmd00m22qqj1UtXsx2ZopBPFlUtDtZ4ZPKrZZYF7ES/qHuy6g7SZYrF3GYZuJ/NXf8tv+v8Ht+5lKNtfaD+fk25CCCGEEELMFS3Vblqq3Yym8xgrwtjfvoB83mTXCz389se7cIQcZKIZbE4bdq+d1GCK3GAG3W3gbvPhX1WLbreBLUONVo+hGbg0mcJHiJOxwNPGy9Hn0TSdeH6EtJmi2lk704c1q9UuW0Hn9q2gFN27dhBonVqSUpJub5Dm5RVs+dWhsvcqJOlW4DF8XN/0UTRNI2fmMHQrFBf5rOTbS9FnSGYS6Ojomo7PJsMqhRBCCCGEmCs8TlvhtaHbWLm+nvpFIY4kc+zeYy2R4A07Gdzej2tBEN1tQ9MzYOpoQFR105s5avVl+GbiWxDijOU3Ary/6SYyZpo9iZ2s9L9ppg9p1nP5A4SbFjB4qAOH18vQ4YNT2k+Sbm+QhWtqJki6yfDSUppmzW83nnAb1+JZRMge5ncDj3Fp1dtw6s5CWyGEEEIIIcTcFI54GOhKYA84UEA6p/Aut+Z2Hg49jpGtwptYzZJ6Dy/lrFExLt2Dy+aewaMW4sykaRpOm4tVgXNm+lDOGHVnnU2sr4d4Xy+jmeyJdwD0EzcRp6KmxY835Cx7LxSRSrepCtoreHvte/AZfuy6LAEuhBBCCCHEfNBW56WlpjyJ5nJopF2dmHoGZUuh2UxG8wlApqERQpw+wfoGDIeVn4h1H53SPpJ0e4NousaCs4srbrp8duwO23H2EEIIIYQQQghRFShfGCHscxC2V5H0vkZ/9X/hD0cL2yTpJoQ4XTRNo3b5ypPaR5Jub6AFq6rQdA2nx6CyQYaWCiGEEEIIIcSJVAXKR7pU+OzUu5oBUCgOjbYXt9krEUKI06WmbRm6YeCtrJ5Se5nT7Q3UfFaYG+/agCEVbkIIIYQQQggxJW6HDYehkckpAEJeA8NoYkdsCwDd6c5CW6l0E0KcTobDyZuueR9pUwEfPHH7N/yI5jHdpqNLvk0IIYQQQgghTsr6ZRW4HDrprInfbRBQTYVtQ9mBwmtJugkhTjenz096ZGRKbWV4qRBCCCGEEEKIWaXCZ8ftsBHy2rHpGi6bmzWB84g4G8gpa9VAm2bgN4IzfKRCCDE5SboJIYQQQgghhJj1apx19JQMLQ0YITRNm8EjEkKI45OkmxBCCCGEEEKIWW+Bp41G1wIAdHQCRmhGj0cIIU5E5nQTQgghhBBCCDHraZrGxqor6Ev3sMCzmLzKz/QhCSHEcUnSTQghhBBCCCHEGcFnBPAZAQAMTW5nhRCzmwwvFUIIIYQQQgghhBBimknSTQghhBBCCCGEEEKIaSZJNyGEEEIIIYQQQgghppkk3YQQQgghhBBCCCGEmGaSdBNCCCGEEEIIIYQQYppJ0k0IIYQQQgghhBBCiGkmSTchhBBCCCGEEEIIIaaZJN2EEEIIIYQQQgghhJhmknQTQgghhBBCCCGEEGKaSdJNCCGEEEIIIYQQQohpJkk3IYQQQgghhBBCCCGmmSTdhBBCCCGEEEIIIYSYZsZMH8Bsp5QCYGRkZIaPRAghhBBCCCGEEELMtPEc0XjOaDKSdDuBgYEBAJqammb4SIQQQgghhBBCCCHEbBGLxQgGg5Nul6TbCYTDYQAOHTp03BMpxJ9qZGSEpqYmDh8+TCAQmOnDEXOcxJs4XSTWxOkisSZOF4k1cbpIrInTSeLt5CiliMVi1NfXH7edJN1OQNetae+CwaAEnjgtAoGAxJo4bSTexOkisSZOF4k1cbpIrInTRWJNnE4Sb1M3lcIsWUhBCCGEEEIIIYQQQohpJkk3IYQQQgghhBBCCCGmmSTdTsDpdPKFL3wBp9M504ci5jiJNXE6SbyJ00ViTZwuEmvidJFYE6eLxJo4nSTe3hiaOtH6pkIIIYQQQgghhBBCiJMilW5CCCGEEEIIIYQQQkwzSboJIYQQQgghhBBCCDHNJOkmhBBCCCGEEEIIIcQ0k6SbEEIIIYQQQgghhBDTTJJuQgghhBBCCCGEEEJMs1mTdPvyl7/Mueeei9/vp6amhquvvprdu3eXtUmlUtx8881UVlbi8/m45ppr6OnpKWx/+eWXee9730tTUxNut5vly5fzzW9+s6yPhx9+mMsuu4zq6moCgQDr1q3jV7/61QmPTynF5z//eerq6nC73WzatIm9e/eWtdmyZQuXXXYZoVCIyspKbrzxRuLx+An7fuWVV7j44otxuVw0NTXx1a9+tWz7zp07ueaaa1iwYAGapnHXXXedsE8xOYm1yWPt4Ycf5s1vfjOhUAiv18uaNWu47777TtivmJzE2+Tx9sMf/hBN08o+XC7XCfsVE5NYmzzWLrnkkmNiTdM0rrrqqhP2LY4lsTZ5rGWzWb74xS+yaNEiXC4Xq1ev5tFHHz1hv2Ji8zXWUqkUH/zgB1m1ahWGYXD11Vcf06arq4v3ve99LFmyBF3XufXWW094vGJyEmuTx9rvf/97LrzwQiorK3G73Sxbtow777zzhMcsJifxNnm8PfXUUxNes3V3d5/wuGctNUtcccUV6t5771U7duxQ27ZtU29729tUc3OzisfjhTY33XSTampqUo8//rh68cUX1QUXXKDWr19f2H7PPfeoj3/84+qpp55S7e3t6r777lNut1t9+9vfLrS55ZZb1Fe+8hX1/PPPqz179qjbbrtN2e12tWXLluMe3x133KGCwaB65JFH1Msvv6ze8Y53qNbWVpVMJpVSSnV2dqqKigp10003qV27dqnnn39erV+/Xl1zzTXH7Xd4eFhFIhH1/ve/X+3YsUM98MADyu12q7vvvrvQ5vnnn1ef+tSn1AMPPKBqa2vVnXfeeTKnVryOxNrksfbkk0+qhx9+WL366qtq37596q677lI2m009+uijJ3WORZHE2+Txdu+996pAIKC6uroKH93d3Sd1fkWRxNrksTYwMFAWZzt27FA2m03de++9J3OKxRiJtclj7dOf/rSqr69X//u//6va29vV9773PeVyuU54zGJi8zXW4vG4uummm9S//du/qSuuuEJt3rz5mDYdHR3q4x//uPrRj36k1qxZo2655ZYpnFExGYm1yWNty5Yt6v7771c7duxQHR0d6r777lMej6fsd584ORJvk8fbk08+qQC1e/fusmu3fD4/lVM7K82apNvr9fb2KkD99re/VUopFY1Gld1uV//1X/9VaPPaa68pQD377LOT9vPRj35UXXrppcf9WmeddZa6/fbbJ91umqaqra1VX/va1wrvRaNR5XQ61QMPPKCUUuruu+9WNTU1ZcHwyiuvKEDt3bt30r6/973vqYqKCpVOpwvv/f3f/71aunTphO1bWlok6TbNJNYmjrVxa9euVZ/97GeP20ZMncRbMd7uvfdeFQwGj/s9iFMnsTb577Y777xT+f3+sotbceok1oqxVldXp77zne+U7fcXf/EX6v3vf/9xvy8xNfMl1krdcMMNE96Yltq4caMk3aaZxNrxvfOd71TXXXfdlNqKE5N4KxpPug0NDU2pnzPBrBle+nrDw8MAhMNhAF566SWy2SybNm0qtFm2bBnNzc08++yzx+1nvI+JmKZJLBY7bpuOjg66u7vLvnYwGOT8888vfO10Oo3D4UDXi6fU7XYDVknuZJ599lk2bNiAw+EovHfFFVewe/duhoaGJt1PTB+JtYljTSnF448/zu7du9mwYcOk/YqTI/FWHm/xeJyWlhaamprYvHkzO3funLRPcXIk1ib/O3rPPfdw7bXX4vV6J+1XTJ3EWjHW0un0McPk3W73cfsVUzdfYk3MPIm1yW3dupVnnnmGjRs3Tmu/85nE27HWrFlDXV0dl112GX/4wx+mpc+ZMiuTbqZpcuutt3LhhReycuVKALq7u3E4HIRCobK2kUhk0vG9zzzzDP/5n//JjTfeOOnX+vrXv048Hufd7373pG3G+49EIpN+7be85S10d3fzta99jUwmw9DQEP/wD/8AWHMuHK/vifot/brijSOxdmysDQ8P4/P5cDgcXHXVVXz729/msssum7RfMXUSb+XxtnTpUn7wgx/wi1/8gp/85CeYpsn69es5cuTIpP2KqZFYm/zv6PPPP8+OHTv4q7/6q0n7FFMnsVYea1dccQXf+MY32Lt3L6Zp8utf/5qHH374uP2KqZlPsSZmlsTaxBobG3E6nbz5zW/m5ptvlr+j00TirVxdXR3f//73eeihh3jooYdoamrikksuYcuWLX9SvzNpVibdbr75Znbs2MGDDz54yn3s2LGDzZs384UvfIHLL798wjb3338/t99+Oz/72c+oqakB4Kc//Sk+n6/w8fTTT0/p661YsYIf/ehH/Ou//isej4fa2lpaW1uJRCKFDPCKFSsK/V555ZWn/L2J6SOxdiy/38+2bdt44YUX+NKXvsQnP/lJnnrqqZPqQ0xM4q3cunXr+MAHPsCaNWvYuHEjDz/8MNXV1dx9991T7kNMTGJtcvfccw+rVq3ivPPOO6X9RTmJtXLf/OY3aWtrY9myZTgcDj72sY/xoQ99qKwaQJwaiTVxukisTezpp5/mxRdf5Pvf/z533XUXDzzwwEn3IY4l8VZu6dKl/M3f/A3nnHMO69ev5wc/+AHr168/sxfvmOnxra938803q8bGRrV///6y9x9//PEJx/Y2Nzerb3zjG2Xv7dy5U9XU1Kh//Md/nPTrjE9++8tf/rLs/ZGREbV3797Cx+joqGpvb1eA2rp1a1nbDRs2qI9//OPH9N3d3a1isZiKx+NK13X1s5/9TCml1IEDBwr9HjlyRCml1PXXX3/MWOYnnnhCAWpwcPCYvmVOt+kjsXb8WBv34Q9/WF1++eWTbhdTI/E2tXh717vepa699tpJt4sTk1ibPNbi8bgKBALqrrvumvT7ElMnsTZ5rCWTSXXkyBFlmqb69Kc/rc4666xJvz9xYvMt1krJnG6nl8Ta5kmPudQ//dM/qSVLlkyprZicxNvmSY+51Kc+9Sl1wQUXTKntbDRrkm6maaqbb75Z1dfXqz179hyzfXwywZ///OeF93bt2nXMZII7duxQNTU16u/+7u8m/Vr333+/crlc6pFHHpnysdXW1qqvf/3rhfeGh4fLJhOcyD333KM8Hs9xJwEcn5Q3k8kU3rvttttkIYU3kMTa1GJt3Ic+9CG1cePGKR2/OJbE29TjLZfLqaVLl6pPfOITUzp+UU5i7cSxdu+99yqn06n6+/undNxiYhJrU/+9lslk1KJFi9Rtt902peMX5eZrrJWSpNvpIbF2ckmQ22+/XbW0tEyprTiWxNvJxdumTZvUO9/5zim1nY1mTdLtIx/5iAoGg+qpp54qWxp2dHS00Oamm25Szc3N6oknnlAvvviiWrdunVq3bl1h+/bt21V1dbW67rrryvro7e0ttPnpT3+qDMNQ3/3ud8vaRKPR4x7fHXfcoUKhkPrFL36hXnnlFbV58+ayZXOVUurb3/62eumll9Tu3bvVd77zHeV2u9U3v/nN4/YbjUZVJBJR119/vdqxY4d68MEHj1mCOZ1Oq61bt6qtW7equro69alPfUpt3bp1yiuDiHISa5PH2r/8y7+oxx57TLW3t6tXX31Vff3rX1eGYah///d/n/L5FeUk3iaPt9tvv1396le/Uu3t7eqll15S1157rXK5XGrnzp1TPr+iSGJt8lgbd9FFF6n3vOc9JzyX4vgk1iaPteeee0499NBDqr29Xf3ud79Tb3nLW1Rra+ucWoXtdJqvsaaUVb2ydetW9fa3v11dcsklhXuBUuPvnXPOOep973uf2rp1q/wNPUUSa5PH2ne+8x313//932rPnj1qz5496j/+4z+U3+9Xn/nMZ6ZyasUEJN4mj7c777xTPfLII2rv3r1q+/bt6pZbblG6rqvf/OY3Uzm1s9KsSboBE37ce++9hTbJZFJ99KMfVRUVFcrj8ah3vvOdqqurq7D9C1/4woR9lGbhN27cOGGbG2644bjHZ5qm+tznPqcikYhyOp3qrW99q9q9e3dZm+uvv16Fw2HlcDjU2WefrX784x9P6Xt/+eWX1UUXXaScTqdqaGhQd9xxR9n2jo6OCY9Zqo9OjcTa5LH2mc98Ri1evFi5XC5VUVGh1q1bpx588MEp9S0mJvE2ebzdeuutqrm5WTkcDhWJRNTb3vY2tWXLlin1LY4lsTZ5rClVfEL82GOPTalPMTmJtclj7amnnlLLly9XTqdTVVZWquuvv151dnZOqW9xrPkcay0tLRMe04nOj1QfnRqJtclj7Vvf+pZasWKF8ng8KhAIqLVr16rvfe97Kp/PT6l/cSyJt8nj7Stf+YpatGiRcrlcKhwOq0suuUQ98cQTU+p7ttKUUgohhBBCCCGEEEIIIcS0kaWUhBBCCCGEEEIIIYSYZpJ0E0IIIYQQQgghhBBimknSTQghhBBCCCGEEEKIaSZJNyGEEEIIIYQQQgghppkk3YQQQgghhBBCCCGEmGaSdBNCCCGEEEIIIYQQYppJ0k0IIYQQQgghhBBCiGkmSTchhBBCCCGEEEIIIaaZJN2EEEIIIYQQQgghhJhmknQTQgghhBBCCCGEEGKaSdJNCCGEEEIIIYQQQohp9v8A2cOo02sprhUAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } - ], - "source": [ - "# make a plot of the temperature timeseries, including all stations\n", - "dataset.make_plot(obstype='temp',colorby='name')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "WVefkBS6G7hy", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 271 - }, - "outputId": "9674a508-5dad-4454-aa04-9a17f93015d0" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Make humidity-timeseries plot for all stations\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 20 - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABOYAAAGUCAYAAACRLi1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hb9f39j7Ys7z0zbGc5i0BYCQkjCYQdIF9GG0rYlFmgwK+0hE1paaFAoVA2lEIpZW+Ik0AIIUBCtrNsZ3hP7S3d3x/SvfpcT8la98rv1/Pkia15JUt3nHve5yg4juNAEARBEARBEARBEARBEERCUSZ7AQiCIAiCIAiCIAiCIAhiNELCHEEQBEEQBEEQBEEQBEEkARLmCIIgCIIgCIIgCIIgCCIJkDBHEARBEARBEARBEARBEEmAhDmCIAiCIAiCIAiCIAiCSAIkzBEEQRAEQRAEQRAEQRBEEiBhjiAIgiAIgiAIgiAIgiCSAAlzBEEQBEEQBEEQBEEQBJEESJgjCIIgCIIgCIIgCIIgiCRAwhxBEARBEESE7N+/HwqFAn/961+jehyFQoF77713xPe94YYbonp+Fv41vfLKK8Pe9tJLL8X48eNj9twA8K9//QtTpkyBRqNBTk5O1I830DJG834PRjwekyAIgiCI0QMJcwRBEARByJazzz4bBoMBFotl0NssW7YMWq0W3d3dCVyyEJ9++ikJN8Owa9cuXHrppaiursbzzz+P5557LtmLlHT8fj8eeeQRVFZWQq/XY+bMmXjzzTf73eaVV17B2WefjTFjxiA9PR3Tp0/Hgw8+CKfTmaQlJwiCIAgiEtTJXgCCIAiCIIiRsmzZMnz00Ud47733cMkll/S73m6344MPPsCpp56K/Pz8JCxhQJh7+umnBxTnHA4H1Gpp7I6NGzcODocDGo0m4c+9Zs0a+P1+PPHEE5gwYULcnkdK7/dw/OEPf8Cf/vQnXHXVVTjqqKPwwQcf4Je//CUUCgUuuugiAIHP92WXXYZjjz0Wv/71r1FUVIT169fjnnvuQW1tLVatWgWFQpHkV0IQBEEQxFDIY8+EIAiCIAhiAM4++2xkZmbijTfeGFCY++CDD2Cz2bBs2bIkLN3w6PX6ZC+CgEKhSNrydHR0AEBMRliHQkrv90A4nU5otVq0trbi0UcfxfXXX4+nnnoKAHDllVfihBNOwO23347zzz8fKpUKWq0W69atw9y5c4XHuOqqqzB+/HhBnFu0aFGyXg5BEARBEGFAo6wEQRAEQciWtLQ0nHfeeaitrRXEHZY33ngDmZmZOPvsswEADQ0NOP/885GXlweDwYBjjz0Wn3zySb/7OZ1O3HvvvZg0aRL0ej1KS0tx3nnnob6+vt9tn3vuOVRXV0On0+Goo47Cjz/+KFx36aWX4umnnwYQEL74fzwD5ZOtWbMGRx55JPR6Paqrq/HPf/4T995776DOp/fffx/Tp0+HTqfDtGnT8Pnnn/e7TXNzMy6//HIUFxcLt3vppZdEtxksY45/fL1ej+nTp+O9994bcDkG4x//+AemTZsGnU6HsrIyXH/99TAajcL1vIgEAIWFhUNmtv31r3+FQqHAgQMH+l135513QqvVore3d9Bl6fvY/Pu6b98+XHrppcjJyUF2djYuu+wy2O120X1dLhduueUWFBYWCp+ppqamAZ8nnPd7zZo1UCgU+M9//oO77roL5eXlMBgMMJvN+OCDD+DxeHDdddeJlv3aa69FU1MT1q9fDwDQarUiUY7n3HPPBQDU1dUN+l4QBEEQBCENyDFHEARBEISsWbZsGV599VX897//FZUh9PT04IsvvsAvfvELpKWlob29HXPnzoXdbsdNN92E/Px8vPrqqzj77LPxv//9TxAzfD4fzjzzTNTW1uKiiy7Cb37zG1gsFnz11VfYvn07qqurhed44403YLFYcM0110ChUOCRRx7Beeedh4aGBmg0GlxzzTVoaWnBV199hX/961/Dvpaff/4Zp556KkpLS3HffffB5/Ph/vvvR2Fh4YC3//bbb/Huu+/iuuuuQ2ZmJp588kksXboUBw8eFEZ329vbceyxxwplEYWFhfjss89wxRVXwGw24+abbx50eb788kssXboUU6dOxcMPP4zu7m5cdtllqKioCOdPg3vvvRf33XcfFi1ahGuvvRa7d+/GM888gx9//BHr1q2DRqPB448/jtdeew3vvfcennnmGWRkZGDmzJkDPt4FF1yAO+64A//9739x++23i67773//i1NOOQW5ublhLVvfx62srMTDDz+MTZs24YUXXkBRURH+/Oc/C7e58sor8frrr+OXv/wl5s6di1WrVuGMM87o91iRvt8PPPAAtFotbrvtNrhcLmi1Wvz8889IT09HTU2N6LZHH300gMDnZN68eYO+nra2NgBAQUFBxO8FQRAEQRAJhiMIgiAIgpAxXq+XKy0t5ebMmSO6/Nlnn+UAcF988QXHcRx38803cwC4tWvXCrexWCxcZWUlN378eM7n83Ecx3EvvfQSB4B77LHH+j2X3+/nOI7jGhsbOQBcfn4+19PTI1z/wQcfcAC4jz76SLjs+uuv5wbb5QLA3XPPPcLvZ511FmcwGLjm5mbhsr1793JqtbrfYwDgtFott2/fPuGyLVu2cAC4v//978JlV1xxBVdaWsp1dXWJ7n/RRRdx2dnZnN1uF72ml19+WbjNrFmzuNLSUs5oNAqXffnllxwAbty4cQO+Jp6Ojg5Oq9Vyp5xyivDechzHPfXUUxwA7qWXXhIuu+eeezgAXGdn55CPyXEcN2fOHG727Nmiy3744QcOAPfaa68Jly1fvrzfMvZ9v/nnvfzyy0W3O/fcc7n8/Hzh982bN3MAuOuuu050u1/+8pf9HjPc93v16tUcAK6qqkq4jOeMM87gqqqq+r12m83GAeB+97vf9buOZdGiRVxWVhbX29s75O0IgiAIgkg+NMpKEARBEISsUalUuOiii7B+/Xrs379fuPyNN95AcXExFi5cCCBQwnD00UeLnEYZGRm4+uqrsX//fuzcuRMA8M4776CgoAA33nhjv+fqO0564YUXihxa8+fPBxAYmY0Un8+HlStX4pxzzkFZWZlw+YQJE3DaaacNeJ9FixaJHHwzZ85EVlaW8Pwcx+Gdd97BWWedBY7j0NXVJfxbvHgxTCYTNm3aNOBjt7a2YvPmzVi+fDmys7OFy08++WRMnTp12NezcuVKuN1u3HzzzVAqQ7ucV111FbKysgYcIQ6HCy+8EBs3bhSNFb/11lvQ6XRYsmTJiB7z17/+tej3+fPno7u7G2azGUDgswMAN910k+h2fd1vI3m/ly9fjrS0NNFlDocDOp2u33LyGXkOh2PQ1/LHP/4RK1euxJ/+9Ke4Z/YRBEEQBBE9JMwRBEEQBCF7+HKHN954AwDQ1NSEtWvX4qKLLoJKpQIAHDhwAJMnT+53X35ckM8tq6+vx+TJk8Nq7xw7dqzod16kGyrnbDA6OjrgcDgGbCUdrKm07/Pzy8A/f2dnJ4xGI5577jkUFhaK/l122WXC8w4E/35MnDix33UDvY+D3b/vbbVaLaqqqgbMiQuH888/H0qlEm+99RaAgBj29ttv47TTTkNWVtaIHnO4v+OBAwegVCpFIijQ/7WN5P2urKzstzxpaWlwuVz9Lnc6ncL1A/HWW2/hrrvuwhVXXIFrr7120NdLEARBEIR0oIw5giAIgiBkz+zZszFlyhS8+eab+P3vf48333wTHMfFvY2VF/36wnFcXJ833Of3+/0AgIsvvhjLly8f8LaD5blJlbKyMsyfPx///e9/8fvf/x7ff/89Dh48KMqDi5RY/R1H8n4PJLKVlpZi9erV4DhO5NJsbW0FAJGjkuerr77CJZdcgjPOOAPPPvtsRMtNEARBEETyIGGOIAiCIIiUYNmyZVixYgW2bt2KN954AxMnTsRRRx0lXD9u3Djs3r273/127dolXA8A1dXV2LBhAzweDzQaTdTLNVibal+Kioqg1+uxb9++ftcNdFk48A2iPp8PixYtiui+/Puxd+/eftcN9D4Odv/du3ejqqpKuNztdqOxsTHi5WG58MILcd1112H37t146623YDAYcNZZZ4348YZj3Lhx8Pv9gpuSp+/7EM37zTJr1iy88MILqKurE40Nb9iwQbieZcOGDTj33HNx5JFH4r///W9Ybk+CIAiCIKQBjbISBEEQBJES8O64u+++G5s3b+7nljv99NPxww8/YP369cJlNpsNzz33HMaPHy8IIEuXLkVXVxeeeuqpfs8xEidceno6AMBoNA55O5VKhUWLFuH9999HS0uLcPm+ffvw2WefRfy8/GMuXboU77zzDrZv397v+s7OzkHvW1pailmzZuHVV1+FyWQSLv/qq6+EPL6hWLRoEbRaLZ588knR+/biiy/CZDIN2GgaLkuXLoVKpcKbb76Jt99+G2eeeabwPscDPuPvySefFF3++OOPi36P5v1mWbJkCTQaDf7xj38Il3Ech2effRbl5eWYO3eucHldXR3OOOMMjB8/Hh9//PGgY64EQRAEQUgTOp1GEARBEERKUFlZiblz5+KDDz4AgH7C3O9+9zu8+eabOO2003DTTTchLy8Pr776KhobG/HOO+8IBQWXXHIJXnvtNdx666344YcfMH/+fNhsNqxcuRLXXXddxAUDs2fPBhAoDli8eLFQVjEQ9957L7788kscd9xxuPbaa+Hz+fDUU09h+vTp2Lx5c4TvSIA//elPWL16NY455hhcddVVmDp1Knp6erBp0yasXLkSPT09g9734YcfxhlnnIF58+bh8ssvR09PD/7+979j2rRpsFqtQz5vYWEh7rzzTtx333049dRTcfbZZ2P37t34xz/+gaOOOgoXX3zxiF4PEHAXnnTSSXjsscdgsVhw4YUXjvixwmHWrFn4xS9+gX/84x8wmUyYO3cuamtrB3QyRvN+81RUVODmm2/GX/7yF3g8Hhx11FF4//33sXbtWvz73/8WRm8tFgsWL16M3t5e3H777f0KNaqrqzFnzpzYvAkEQRAEQcQFEuYIgiAIgkgZli1bhu+++w5HH310v8KE4uJifPfdd/h//+//4e9//zucTidmzpyJjz76SOTeUqlU+PTTT/HQQw/hjTfewDvvvIP8/HzMmzcPM2bMiHiZzjvvPNx44434z3/+g9dffx0cxw0qzM2ePRufffYZbrvtNqxYsQJjxozB/fffj7q6OmHkNlKKi4vxww8/4P7778e7776Lf/zjH8jPz8e0adOGzWU79dRT8fbbb+Ouu+7CnXfeierqarz88sv44IMPsGbNmmGf+95770VhYSGeeuop3HLLLcjLy8PVV1+NP/7xj1GPCV944YVYuXIlMjMzcfrpp0f1WOHw0ksvobCwEP/+97/x/vvvY8GCBfjkk08wZswY0e2ieb9Z/vSnPyE3Nxf//Oc/8corr2DixIl4/fXX8ctf/lK4TXd3Nw4dOgQgIDz3Zfny5STMEQRBEITEUXCJSicmCIIgCIIgRsQ555yDHTt2DJj3RhAEQRAEQcgXypgjCIIgCIKQEA6HQ/T73r178emnn+LEE09MzgIRBEEQBEEQcYMccwRBEARBEBKitLQUl156KaqqqnDgwAE888wzcLlc+PnnnzFx4sRkLx5BEARBEAQRQyhjjiAIgiAIQkKceuqpePPNN9HW1gadToc5c+bgj3/8I4lyBEEQBEEQKQg55giCIAiCIAiCIAiCIAgiCVDGHEEQBEEQBEEQBEEQBEEkARpljQF+vx8tLS3IzMyEQqFI9uIQBEEQBEEQBEEQBEEQSYLjOFgsFpSVlUGpHNoTR8JcDGhpacGYMWOSvRgEQRAEQRAEQRAEQRCERDh06BAqKiqGvI2shblvvvkGf/nLX7Bx40a0trbivffewznnnCNcz3Ec7rnnHjz//PMwGo047rjj8Mwzz4jCk3t6enDjjTfio48+glKpxNKlS/HEE08gIyMj7OXIzMwEEHjDs7KyYvb6CIIgCIIgCIIgCIIgCHlhNpsxZswYQS8aClkLczabDYcddhguv/xynHfeef2uf+SRR/Dkk0/i1VdfRWVlJVasWIHFixdj586d0Ov1AIBly5ahtbUVX331FTweDy677DJcffXVeOONN8JeDn58NSsri4Q5giAIgiAIgiAIgiAIIqy4s5RpZVUoFCLHHMdxKCsrw29/+1vcdtttAACTyYTi4mK88soruOiii1BXV4epU6fixx9/xJFHHgkA+Pzzz3H66aejqakJZWVlYT232WxGdnY2TCYTCXMEQRAEQRAEQRAEQRCjmEh0opRtZW1sbERbWxsWLVokXJadnY1jjjkG69evBwCsX78eOTk5gigHAIsWLYJSqcSGDRsGfWyXywWz2Sz6RxAEQRAEQRAEQRAEQRCRkLLCXFtbGwCguLhYdHlxcbFwXVtbG4qKikTXq9Vq5OXlCbcZiIcffhjZ2dnCPyp+IAiCIAiCIAiCIAiCICIlZYW5eHLnnXfCZDIJ/w4dOpTsRSIIgiAIgiAIgiAIgiBkRsoKcyUlJQCA9vZ20eXt7e3CdSUlJejo6BBd7/V60dPTI9xmIHQ6nVD0QIUPBEEQBEEQBEEQBEEQxEhIWWGusrISJSUlqK2tFS4zm83YsGED5syZAwCYM2cOjEYjNm7cKNxm1apV8Pv9OOaYYxK+zARBEARBEARBEARBEMToQZ3sBYgGq9WKffv2Cb83NjZi8+bNyMvLw9ixY3HzzTfjwQcfxMSJE1FZWYkVK1agrKxMaG6tqanBqaeeiquuugrPPvssPB4PbrjhBlx00UVhN7ISBEEQBEEQBEEQBEEQxEiQtTD3008/4aSTThJ+v/XWWwEAy5cvxyuvvII77rgDNpsNV199NYxGI+bNm4fPP/8cer1euM+///1v3HDDDVi4cCGUSiWWLl2KJ598MuGvhSAIgiAIgiAIgiAIghhdKDiO45K9EHLHbDYjOzsbJpOJ8uYIgiAIgiAIgiAIgiBGMZHoRCmbMUcQBEEQBEEQBEEQBEEQUoaEOYIgCIIgCIIgCIIgCIJIAiTMEQRBEARBEARBEARBEEQSkHX5A0EQBEEQBEEQxGiB4zjc//FOzK0uwKpdHbhhwQSU56Qle7EIgiCiwuPz4673tuOK+ZX4Zk8nnv+mAX4OOHNmKX67eDIydKktXaX2qyMIgiAIgiAIgkgRvtjRjpfX7cfL6/YDAIx2N565eHZyF4ogCCJKXl7XiLd+OoT/bWrC8RML0G5xBS7/bj9OnlaMudUFSV7C+EKjrARBEARBEARBEBLH4fbhgY93ii77bHsbvtnTmaQlIgiCiJ42kxNPrNwLAPBzHKoKMpCpD3nImnsdyVq0hEHCHEEQBEEQBEEQhMR5evU+NBsDB6iTijOEy+/9cAdcXl+yFosgCCIqHvq0DjZ3YB32y6PHYsVZU/HYBbOE61uMziQtWeIgYY4gCIIgCIIgCELCNHbZ8Nw3DQAAjUqBp5cdgdnjcgEADV02vPhtYzIXjyAIYkR8V9+Fj7a0AAByDRrcvngyAKAsRy/cptloT8qyJRLKmCMIgiAIgiAIgkgC25tNmFScidfW78cLawPi2vTyLGxvNot+tjg9cPv8AIAr51dhYlEm7l8yDWf9/Vv4OeB/G5tw9fwqqFXkuyAIIjF0Wlxwenz4YkfbgOuvvr8P9LPR4RZu+/9OnYIcgxYAUJFjEC7nncKpDAlzBEEQBEEQBEEQCabT4sIvnvsexdl6zCzPRps5MK41Lt8w4M9nzChFh8WJGxdMAABMK8vGyTXF2NVuQU6aBt839GDexNQOSCcIQjo89MlOfLa9DYePzRlwndX398F+XjClCH6OwwVHjhHul5WmRoZODavLOypGWUmYIwiCIAiCIAiCSDB/+mwXLC4vLB1WpGtVKMkKjG5l6tUD/nz42BxcOb9K9BgnTC7CFzvbcaDbPirGvQiCkAYbGrrx/ubACOrmQ0YUZeqgVChE6yxg8PUZ+/Pc6vx+6zaFQoGyHD32tFvRbHTA7+egVCoS8dKSAglzBEEQBEEQBEEQCeSn/T14Z1MTACBLr8ZLlx6F/AxdxI+TnaYRfjY5PDFbPoIgiMHw+Py4+4Mdwu8rzpyKZceMi/nzlOekYU+7FW6vH102F4oy9cPfSaZQCAFBEARBEARBEESC8Pr8WMEc1N62ePKIRDmAhDmCIBLPa+sPYHe7BQAwozwbFx01Ni7PU56bJvzc3JvaOXMkzBEEQQwBx3HgOC7Zi0EQowb6vhEEkQqw67K+67XXvz+AutZAAPq0sqyonCYkzA0O7cMRiSSZn7V4PPdgj9lhceLxr/YAABQK4IFzpkMVpxHTspyQMJfqOXM0ykoQBDEEX+xow+vfH8T08iy8/3MgR4FvEfL6/PD6OcypzsffLpwFvUaV5KUlCHlT32nFTW/+jMPH5GJlXbtw+XCNXn1/TtR9kvGcibiP2+eH38/h+EmFePIXh4MgiMh5onYv6jusUCoVGJtnwG9PmQwgUPjw+vcHMbMiG1ubTLh/SXQHtawwZ7STMMfyzsYm/PuHgzh1WgmmlGbhhEmFyV4kIkWxu734xXPf41dzxqPH5sJL3+4HkJj9D4/PjzStCo+efxiOqcqPyetp7LLhhjc2YdaYHNTWdYiWc1uTCRwAjUqBpUdUYNaYnJg850CUM8JcqmdokjBHEAQxCHa3Fw98XIdmowPf1XfBHzxx1Ldt6LPtbbjjVCcqC9KTtKQEIX84jsO9H+7AjhYzdrSYRdeF0+g1khawaO+TjOdM5H0+2tqCJy6aBYUidcOWCSIeHOy24+nV++DxBXYcNCoFzj28HFWFGfjz57uwr9MKALjq+CrMHpcb1XORY25gLE4P/vjZLvTY3Pj5oBHzJhSQMEfEjadX78OWJhO2vL0FswdpKI3n/gdswN0f7MDHN82DRhXdUCTHcbjvo8H3x9otLgDA5ceNx40LJkb1XMNRMYpGWUmYIwiCGISnV+9DszGwERiXnw6H2wcg1CJkdnpgD17WbiZhjiCi4fPtbVi7twtAIAg9TauCAgFBKJxGr5G0gEV7n2Q8ZyLu02Nzw+3zg+MAs9MrOvAnCGJ47vtohyDKAYDHx+Hej3bipgUT8L+NocKHa46vGuwhwiZTr4ZCgcD3lYQ5gcdX7kWPzS383s6KGAQRQxo6rXjumwYAARH+6Mo8NAfHLuO9/8FxHLptbnj9HHa3W/Da+gO4Yl5lVK/ny53tWLO7U3gewyD7Y2U5achN10b1XMNRJnLMpfZ3mIQ5giCIAWjotOL5bxoBBDayLy4/ElWFGaLbPP9NAx76tA4A0BE8e0QQROQE3Kk7hd8f+b/DcOr0kiQu0ejmhjc24eOtrQAAo91NwhxBRMDKne2o3RUY/SrK1EKpVKLN5MQ3ezrRGHTKAYHCh4IRFj6wKJUKZOk1MDk85JgLsrvNgle+2w8AUADgABzotsPn5+KWhUWMTjiOwz0fhoT4q4+vwu2Lp+D/nVaTsGXYfMiIc/+xDhwHPP7VHpw1sxRFjOgXCQ63D/d/FNof+/PSmTh9RmmsFjViijL1UCsV8Po5wSyRqlD5A0EQRB84LnBm2+3zAwCuml/VT5QDgKKs0A51B52JJYgR89SqfWgxBb5Dx08qxOJpxUleotFNriF0BryXMqsIImycHh/u+zjUtnrXmdNwz5lThd8PBUexppZGV/jQF148J2EusA+34oPt8AXzR6qLAvtvbp8/5UfhiMTzxY6Q278sW4/rT5qQ8GWYNSYHFx45BgBgcXnx8Ge7RvxY/1gTmhaaN6EApyX5JKlKqUBpTkBkbO6ljDmCIIiU54PNzZhTlY8Pt7TguW8ahPGHsmw9blgw8Ea2KDN0NooccwQxMho6rfi+oRsAoFUpcd/Z0yjTLMnkGkIOuV67e4hbSofVuzowJs+AA902jC9IR/UAJ1OI+LLxQC8ADj8fNOKFtQHHebhh5784egx+ccxY0XZVLuxpt6C6MAMvr2vEM2vqhe/MnKp8nDUz4DSZP7FAOHgHgAfOmRZT5xYvzJmdXnAcl5Lr0BajA5sO9qLV6MCLAwTr879vOWQS/gbj8g04aXIh9nUEnIoNXVaMzTckfNmJ1GFPuwUtRgf2dVjxwtpGWF1ewZV591lTYdAmR16549Qp+Gx7G0wOD37a34Nj/rgSCigiKpzY1mQSxH2NSoF7JbI/VpadhkM9DpidXlicHmTqU9PFT8IcQRCjnt1tFtz63y1I06hw5PhcQWQ7cXIhLj5m3KAbWdYxR9klBBE5/AjIpoNGzCzPxsnTiimrUQKwmTFGGQhzPTY3fvPWz7A4vOAAHDchH69fcYwkDihGC26vH//vna3Y12FFTUlmxGHnf1u5F3aPD3cmcPwrFpgcHpz+xFpkp2lQVZiO7uBJvSPH5eL+JaGD2vvOnoa3fjqEuVX52NJkwuxxeTFdDl6Y8/k5WF3elDxwfeiTOnyyrRVjctOG/Ex1WgP7cMdPLMAV86vQbgpd39Bpw4mTE7vcROrAcRzuen87fmjsQVVBuvDZ+8XRY5Cl12DxtOS5y/LStbjv7Gnw+Tkc7LHhidp9ACIrnOBLHc4+rAyHjcnBhCJpnOAqz00DAud60GJ0YnJJ6q3fABLmCIIY5bAjD1aXFxwHIdR03oQCLJo6+EhdMZPfQMIcQUQOOwLSZXVFHVhMxAbRKKtN+qNxf/liF8wOr/D7un3d+HRbG86YmbxcnNHGy+saBVeSyekJO+y8KEOHjqCQUlvXITth7us9nfD6A+HrVYXpwus7dXoJJhZnCrerKswQXtsJk4tivhx9m1lTTZj7dm8XPtkWyL3strlRlKmDUqEYMkD/+EmFOGFSIX7a3yNc39hlS+yCEynFB5tb8ENj4PPUa3ejOEsHBRSoLszAlfOjL3KJlnMOLwcAvLC2IarCiZkV2ZLaH6sQFUDYMbkkc4hbyxcS5giCGNV8uCW0kR2Xb8A/fzUbeo0qrPtm6NRI16pgc/tolJUgIiRQ+FAn/J7MERBCTI6MRlk3HzLiPz8eAgDo1Uo4vYFs0Ac/2YkTJxciXUefqXjTanLgidq9AACFAnjuV0dienl22Pdf+sx32HigF/s6rDjQbcO4fPm4ZlfVtQs//2bhJMybWJCU5cjqI8xV5CZlMeKC2+vH3R9uF36/7+xpOD+YpxUOrAubhDlipFicHqHwDQAeu3AWToqDyB4LrpxfJQmhMFaMlmZWKn8gCGLUYnF68OAnoY3svWdNC1uU4+FbjzrMJMwRRCQ8vToUMDx/YkFSR0AIMeLyB+kKcz4/h7s/2A4ukPGO354yCSdOLgQAtJqceGr1viQu3ejhoU/qYHf7AADLjhkbkSgHAAtrQge3tXUdMV22eOL1+bF6dycAIFOnxtGVsR1PjYS+jrlU4sVvG9HQGRDUjhibg6VHVER0/7x0rfD+NDCtuAQRCY+v3IvO4En4k6cWS1aUS0XKcxlhLoULXOg0IkEQo5YXv20UNrKLaopx0pTIN7JFmTo0dtlgdXlhc3nJnUEQYdDYacXz3wQCQzQqBRU+SAypt7K+sLYBL6xthMPjE0SIScUZuPS4Spw8tQSn7PsGbp8f//y6Hu9sbIJSoegXen3xsWNxw4KJyXoJssbs9CBLr8ELaxvwzJp6IVct16DBbadEHuC1qKYYj3y+GwBQu6sdl0tohGooNh7oFT5/x08qhFadPL8DK8yZU0iYazU58NSqgBtTqQDuXzIdyghLMxQKBSoL0rH5kBEtJiccbh/StJGdhCVSB4vTgwydGi9+2xh2Sc2WQyYhu1CnVuJupmmZiD/lIsccCXMEQRAphdPjwze7O3F0ZR52tJhwz1kj28gWZYmbWStJmCNixO1vb8bOVgsKM3W49eRJmFmRk+xFigkcx+Gej3aiqjAddrcPZ84sRRU1aEqK3PTQQb6Uyh96bG5c9dpP0KmVogBrnVqJ+5dMh0alxPiCdFxzQhU+296GmRXZeHdTM4D+oddP1u7DvImFmDUmJ9EvQ9Yc6rHj9CfWYtmx46BUQBDlMnRq/O60KchhRN1wmViUgTF5gda9DQ09gvAndWp3hdx9rOsvGaSqY+7Bj+tQlpMGH8dh3oSCiN2YPFVBYQ4A9nfbUFOaFcOlJOQCx3G46c2fYXV5Mak4/JIaXpTLMWhw+XGVGJNHzb6JhB1lbSFhjiAIIrX4vqEbm4I7aWcfVjbijWxxZqiZtcPspEZJIiZwHIfPt7fD4goE2p82vSRlhLkvdrTjmz2B8a+KXD1uOGlCkpeI6EuGTg21UgGvn5NU+cPqXR3YeKAXAJCuVQkB97+aMxbHVuULt7v+pAm4ccFEvLZ+P77L6gYQCra2u70wO71w+/y4+4PteO+646CK0IEzmrnvo52wuLx49ut6zJtYIISFXzJnHM6fHX7uF4tCocDCKcV45bv98Po5rN3TJYvijtpgvpxSAZyY5LG2VBTm2MKH/HQtblk0acSPVVUY2jdr6CRhbrSysq5DGD/f3WYRyhvCLUi47LjxuPS48Qlf7tGOXqNCQYYWXVY3jbISBEGkGquYM92nTR95tlVRVkiYa6cCCCJG7GgxC6IcABglOE44EhxuHx74eKfw+x9OnwoDuUwlh0KhQI5Biy6rS1KOOXa9/crlR+Oo8QNnevFZoQMFYHt8fpz55LfY3W7B1iYT/vPjQSw7Zlz8FjqFWLWrHSuDYlRRpg7PLDsiZu2fC2uK8Mp3+wEEBC+pC3P7u2yoF3LPcpGXHrlTMJakmjDXt/Dh/502BblRvMeVBSFXdmMX5cyNRpweH+77aIfw+x/Pm4EzZ5YlcYmISCjPSUOX1Y12ixNurz+p0QHxIvVeEUEQxDBwHCcETGtUiqha1IrZUVZz6jYFEYmlbwB6qrT+9i18ODUKUZyIL7nBZtYeiQhzbq8fXwedljkGDQ4f4QiqRqXE/UumCb//5Yvd6LVJ4zVKGafHh3s/ZET1M2piJsoBwDGV+cgIivSrd3fA5+di9tjxYCXTxrqwpjiJSxIg1YS5l9aFCh8OH5uD/4uw8KEv7DRDAzWzjkr+saYeTUG31dzqfJwxQ9riPyGGL4DgOKA9RY+3SJgjCGLUsavNIogDx1blR3VwUZQpzpgjiFhQu6td9Hsq7IQ0dtnw3DcNAAKC+L1U+CBp+AIIp8cPp8eX5KUBfmjsgTXoIj1pchHUqpHvwh5TlY9zZgWcEka7B498sTsmy5jKPPdNAw722AEAx1Tm4ezDYus00aqVOH5S4CRZr92Dnw/2xvTxYw3r3lyU5Hw5oK8w5x3iltKn1eTAk7WhwocHRlD40BeRMNdJwtxo40C3Dc9+XQ8AUCsVuH8J7X/IjbLsUM5cU4qOs9L8CEEQo45a9kz3CJpYWUSjrCkgnhDJp93sxNYmk+iyVBB993VYUF2UjrpWC66cX4VqKnyQNDmG0IF+r92NUmanOBmIHUrRCyG/P70GK+s64PX70Wpy4Ng/1gIYvp1voOuG+5njOHAccNasUty+eIowaisXDvXYsb6+C5l6NexuH+5fMj0uB7ULphTj021tmFiUgQM9dhw5yKhysjnYbUObyYkMnRq56RpMKEr+uiyVHHNf7+5EVWE6tjebseyYcSMufGBJ06pQlq1Hi8mJhk4rOI4jYSbF+XF/D77d24W3fjwEr88Pjgu4cK+YV4kJRZlJXjoiUoqzdNCpFSjO0sPsTE2XOwlzBEGMOsRNatGNoIhHWeUvnhDJZzXz+dSqlXB7/SkxJv1E7V7UtVqgUihw3YnVyV4cYhjYzKxemyepwhzHcYKLVK1U4PhJhVE/ZlGWHo9fOAuTSzLxv41NWBMMBB+unW+4Fr+h7v/it/tx7uEVMREaEsn9H+/E+oYe5Bg0+M3CiZhcEp+D2mllgUD+vR1WrN7VgaVRji/Giwc+qUNDlw25Bg3uPK1GEgJPpl4NhSIw5iVnYc7v5/DoV3vQaXGhOCvQSB4rKgvT0WJywuz0otfuSXouIBE/LE4Pzn92fb/LT5lajBsXTkzCEhHRkpeuhcvL4WCPA61G+e8TDwQJcwRBjCq6rC5sDraxTirOiLryPEOnhkGrgt3tQ7slNTcURGJZyeTLFWXq0NTrQIfFJfsz/HyTVkm2PqbZVER8yDGEDlqTXQCxr8OKQz2Bz8/RlXnIitHnZ9HUwImZwRr5hmrni+Rnq8srjOE2Gx2yEuZW7+rAVzsDoqhGpcRlcWwkHJ8fGjeUqkuYfT/UKiXmR5FRG0uUSgUydWqYnV6YZSzMbWs2oTP4t59Rnh1V4UNfqgoysG5foKW5odOKvHRpOjKJ6GlkcgTTNCrBUXp0ZZ6QZUnIizRt6O/m9vmTuCTxgz6ZBEGMKlbt6kDQzR6zwObiLD0au2zoJMccESVOjw/f7gs4dwoydBibZ0BTrwN2tw9Wl1e2gpbdHXAoAIFmLUL65IpGWZN7oM+K1fEI2h+ovTWWvLOxCb99ewuAkEAtB5weH+5lWgz/cHpsCx/6kqZVIVOvhsXplaRLONHvR6RkGzQwO72ydsyxEw0LpsT2u963AEKqo9JE9LDC3M2LJuKaE8ilL3d0TAury5OawhyVPxAEMaqIZb4cT2FmIGfO4vLC7pZ36DKRXL6r74IzuMOxYEqhaFS6XcbCLytG8M1ahLTJZRxzvUl2zMVjvZ1I2M88XzwkB57/pgEHugOFD0dX5mHJrNgWPgwEv87jXcJSIhnvRyTwriCTwyO59y5camOcJclSWUgFEKOFeubvW0V5timBTh3KZnV5U1OYI8ccQRApjcfnh1qpwIvfNuL5bxqE8Zi8dC0OH5sbk+fomzM3voBWranA9mYTppVlYUeLOW6jZxzHYUeLGd83dOOFtY2iEaSFNcXYxDQTdlickggZHwmsGFGWox/iloRUEJU/2JInzJkcHvwcjB+oLkzHeMb1IhdYl2iLhIU5j88PjUqJF9Y24PlvGtBlDfzdVUoFHohT4UNfijJ12NdhlZxL2Oby4q2fDgFI7PsRCbww5/NzknrvwqXV5MCOlkBxyozybNG+VSyoLghtPxu7rDF9bEJasI65ShluM4j+aBnHHI2yEgRByJAna/fioy0tyDVo0R4U5RbVFGHehAKolLHZqS7OFDezyvHAkRDz7d4uXPziBuSna9Ftc+Oda+di9rjYCLksH2xuwc1vbcaUkkxRSPysMTmYN6FAVAkv53IRVpgrz4ku15FIDGy2UzJHWfe2WzC1NAscx+GoSnmOnpVk66FUAH5O2o65a1/fhDazA+latbC9nDUmB0dX5sWt8KEvfV3CUhGXXv/+APwch5rSTBxWkZOw9yMS+jazSuW9C5dVomKu2Dtjy3PTMDN4kk2tpKGxVIYXXpUKYGyUWdKENBCPsvqSuCTxg4Q5giBSmpV1Hdjfbcf+bjuKMnVQKhQ4tioflx5XGbPnKMpihDmJBlYT4eP2+nHPh9sBAN1Bp9CK97fjoxvnxUzMBQKtYQ99WgcA2NVmQa5BI1j1z5xZinSdGsXMZ6tDxuUiNMoqP3IlUv5woNuObc0mAMD/zZZmS+dwaFRKFGfp0WpySjZjjs+3dHr8SNephAKLM2eW4op5sdteDkdRn3WeVFzCtbs60GJ0osXoxFO/ODzZizMgfYW5itifS4ortWyWZIzz5YCA0/FAjx0mhwcmp3xz+Iih4TgOjcFR1jF5BpHTipAvOg0jzNEoK0EQhLxoMTpQ1xoYi5hZkY0Pb5gXl+cRj7LKVzwhAry0rlHIJ0nTKOHw+LGz1Yx/bziAS+aMj9nzPL5yr9A+d8rUYjx3yZH9blOUmRoZcy0ixxyNssoBcflD8oQ5tu061qNtiaQsJw2tJie6bW44PT7oNarh75RA2HzLM2eU4c//NzMpy8Gu86TiEjba3dh4IBArUFmQjuoi6bnlACA7LSSmy60AwuH2Yd2+LgBAcZYO08uz4vI8WWlqmBweWJyUB5yqdFhcsLkDjqoqmmBJGbQqZpQ1RYU5kpAJgkhZ2HaveJx95SnMZM/wS+NAghgZrSYHnqzdCyAwAnHf2dOF6/76xW50WWPz993dZsEr3+0HELDnrzhz6oC3Ezvm5PvZEmfMkWNODrDum2SOsrLiTJGMhTk2Z06K46zi5tvkFWxI0SW8ZncnfP5AmYKUy0fY76xZZsLcun1dggtmwZTiuOX3ZeoC75HFKd+CDGJo6jtD+YGVBdJw3BLRo9OkfvkDCXMEQaQs8Wz3YiHHXOrw4Cd1sAfPtC47ZhwuOGoMlh4RGJ8zO73482e7on4Ov9+PFR9sFw70rj9pAsYMkoEidszJ97PFj+/lpWth0JJZXw6oVUpk6QN/q2SOsrLiTBFzEkRuiJpZJTbOynEcVgWFOa1aiXkTC5K2LFJ0CYtO8tXE7yRftPQdZZUTtbsS07ycGVyneXyc4BAlUgtR8UMhOeZSBVHGnDc1M+ZImCMIIiWxu734rr4bAFCSpce0sviMRQDig0WpHEgQkWNxelBdmI7SbD2y0zS47ZTJAIDfnTYFGToVxualweX1o80UnUD24ZYWuDw+FGfpMC7fgKuPrxr0tmlalXAgIVfR1+vzC8UW1MgqL/gCiJ4ktrKKHXPyFebKJNzMuqPFLHxH51bnJ1U8j6VL+KudbXh85R5c+/pGWEaYKebx+bFmd0CYy9SrceR46Qa3yVWY8/s5tJmcmFGejew0DY6bED9hOIt5j0b6mSCkDZ8vBwDVNMqaMmjVqZ8xR8IcQRApybd7u4QMggU1RXEbiwCADJ0aBm3AYi2V0Rsicg71OPBk7T60mpyYU52H7GDGVmGmDucdUYGDPQ58uKUFKxknZqQECh92YUuTCb02Nx5YMn3YrCnekdlhccly9KbN7ETQHCga5yOkD18AYXZ64fUlZ0eYz5jLYcpR5EiFhEdZRaH7SXaExdIlfMf/tuLxlXvx2fY2Ib8sUn7c3yPkkZ04uQgalXQPneQqzG1vMWH17k5sazbhqPG5SNPG73vOn+gCAus1IvVoIMdcSqIjYU7+WCwW3HzzzRg3bhzS0tIwd+5c/Pjjj8L1HMfh7rvvRmlpKdLS0rBo0SLs3bs3iUtMEEQsYA80FsU5L0ehUITEE3LMyRYnY40vyRILSOfPHiP8vIoZa4qUJ5jCh+MnFeH4SYXD3od3ZNrdPlhd8juQEDWy5gw8sktIE7YAIhkH+hzHCevU4kx5uy2lPMqaqDHCcIiXS5jdJ4iEVQncl4gWuQpz7N/mpDh//rL0TA4fOeZSEn6UNU2jkv12gwjBlj+QMCdTrrzySnz11Vf417/+hW3btuGUU07BokWL0NzcDAB45JFH8OSTT+LZZ5/Fhg0bkJ6ejsWLF8PpJNcLQcgVv58TMmH0GiXmVsc/L4cvgLC4vLC75SeeEIDTExLm+rrYppdnCSNW6/Z1weGOPN9id5sFLzOFD/ecNXDhQ19EGYYyLIBoMbHFD7STLCd4xxyQnAIIs8Mr7IDLeYwVEI+ySskx1252YmuTCQAwtTRLEuUssXIJs+v01bs74PdH/lj8voRKqcAJYZxISSZiYU4++yFiYTi+js0sxjFHzayph8fnx8EeO4BAg7JSGb9pGSKxKBQKYZyVWllliMPhwDvvvINHHnkExx9/PCZMmIB7770XEyZMwDPPPAOO4/D444/jrrvuwpIlSzBz5ky89tpraGlpwfvvv5/sxScIYoRsazYJ7ZnzJhQMOyoYC8QFEPITTwjAxQRB6zXizaNCocCC4AGDy+vHtxGORXEch7uZwofrThy88KEv4gxD+Z00Yt1BFbnJP+gnwieHEeaSUQDRLip+kLeom6FTC8KJlIS51buk0cbKEguXsMfnh4NZp3dZ3djcZIzoMRo6rYL7Zva4XNH3QYrI0THXZnJie7MZQOAEWEl2fL/nmXrKmEtlDvbYhf0sGmNNPfhx1lQtf0jpajSv1wufzwe9XryST0tLw7fffovGxka0tbVh0aJFwnXZ2dk45phjsH79elx00UUDPq7L5YLLFTrwNpvN8XkBBEGMiB0tJmhUCnh8XMLycljxpMPiwngKnJUdQznmgMAY05s/HAQArNrVjpOnhv/Z2tFiFkZYx+YZcM0Jgxc+9KWIEX07ZeiYY0UIGmWVF+woazIcc+xJjmKZO+aAQMaiyeFBm8kJn5+DSgJujp2tZigUAMclP1+Op69LmBVTwmUgYWpVXQeOGBt+ecPPB43QqpVwe/2SH2MFAvlp/N9SLsIcGw0Rb7cc0CdjTkauwkTw7qYmLJxSjLc3HsILaxsBAMvnjsOlcyvjmvs3EG6vHy6vD2/9GFqW6eVZgogLABcfOxbXnFAtyn1kix+qaD885dCpVbDAKzqRnkqktGMuMzMTc+bMwQMPPICWlhb4fD68/vrrWL9+PVpbW9HW1gYAKC4WbwiKi4uF6wbi4YcfRnZ2tvBvzJgxg96WIIjEs7KuAzq1EuPyDTimKi8hz1mQoUVxpg45Bg2dhZUpbMacXt1/8zi3ukA4W1dbF9lY1DNr6nGox47KgnT89pRJEbk4WUFClo45Y2iZy8kxJyty0tlR1iQ45sysYy4FhLng59/r5yRRFMRxHD7e2oqcNA1mj83FzPLsZC8SgNi4hAcSpiIt7vlyZxtUCmBCUTqOS0AkRrQolQpk6gLCk1kmwlwt8zdJhGOTWlkH5qf9Pbj1v1uw4NE1+OlAL9rMTrSZnXjk8934dFtrwpdn08FezLj3Szy1ap+wLBanV/i5zezEX7/cg619XLCNTPFDFTnmUg5+H9ydpDKqeJPSwhwA/Otf/wLHcSgvL4dOp8OTTz6JX/ziF1AqR/7S77zzTphMJuHfoUOHYrjEBEFES2OXDVaXDx1mFyrzE7Nh1mtUaLe4YLR7ZBnQTwBO0Shrf+EsTavCvAmBg7MOiwvbW0xhPa7b68c3ezrh8XPotbtxxozSiJZL3FIoQ8dcbyDvRa9RihxYhPTJYzPmbIkX5thMRdZFJVfYVmIpFEC0mJzosbnRa/cgXa+WTB5TLFzCrDBXkBH4HO9qs6ApuD4Kh+3NZjg8frQYnZhSmjWi5Ug0fJu4HBxzDrdPiIUoytRheln8heFMypjrh9fnx4oPdgAAum1ugOOEbTWHQDxMotkefE6jw4MsvRolWXpkBv9ncwK3NYmXraHLKvxcWZCRmIUlEoYwyupJzVHWlBfmqqur8fXXX8NqteLQoUP44Ycf4PF4UFVVhZKSEgBAe7v4DFp7e7tw3UDodDpkZWWJ/hEEIQ36Br8qFIk50EhjhJyRFAMQyWe4UVZAPOq1MsyWvx/398ASFGtPnFQItSqyTS/rmJNb+QPHccIoa3lOWsK+j0RsSPYoq8gxlyKjrDxSyJljD2ql4pYDYu+Ym1CUKfwcbqt2t9Ul/I2ml2VLYuw4HPicOZPDE1VxRiJYt69LKHdZWFOUEGE4k1pZ+/H69wdQ1xoYEZ1WloWnl83G6ttOFK7fngRhjhUD37jqWHz/+4V4YflR+P73C/HaFccwtxPHSTUwo6yJOjFPJA6tkDFHjjlZk56ejtLSUvT29uKLL77AkiVLUFlZiZKSEtTW1gq3M5vN2LBhA+bMmZPEpSUIYqSwwa+JtLGz+RuOFD2Tk+o4hyh/4FkwJTRqs2pXeGNRK0WjOpFn6Igdc8kff4uEXrtHeF/LcylfTm4ku/yBdUvJvfwBEI9yS0KYazYKP0+XkDDHuiNH6hJmRzlnVIReW22YJ1RYYUBK781w8MKcz8/BJvGThLUJzpcDqJW1L50WFx79ao/w+/1LpkOlVCDHoMWYvMD6akeLWdivThT8SQOtSolJxZmi66aUZEIdFHHZdRgQGmXNT9cK7lEidWBHWaV+4mEkpLww98UXX+Dzzz9HY2MjvvrqK5x00kmYMmUKLrvsMigUCtx888148MEH8eGHH2Lbtm245JJLUFZWhnPOOSfZi04QxAhIVvCryDFHwpwsYR1zukEccyXZekwvD7iktzeb0WYaWijjOE44EFQrFTh+UmHEy5WmVQnjN3Irf2DH9cpz5C+sjDZy01nHXHIz5gpTIGOuTGKjrKzbhBWvkk0sXMKsY25SUQbKgm2f6+u7YQsjboJ1Cc2okM9kjFyaWTmOE05u6dRKHDchMRl+1Moq5m9f7REEyvNnV2D2uFA5yoygIO3w+FDfaR3w/vHA4vSgISiwTSnNFFxSPHqNChODYt2+Divsbq9wP359QflyqYlOHdg35zjA40s9YS6lW1kBwGQy4c4770RTUxPy8vKwdOlSPPTQQ9BoAivmO+64AzabDVdffTWMRiPmzZuHzz//vF+TK0HIHY7jcNN/NsPs8GBbswkqhQJOjw8FmTo8f8ls0aiHnGGDXxNZlc465pwSP0tNDIy4/GHwcoaFU4qgUiiQrlPj50O9OC178My4+k6rMFp91Pg80UFTJBRl6mBxemXnmGs2hvKc2DE+Qh7kshlzyRhlDRYk5Bg0ERWmSJVEjrL+54eD+HR7K3ptHtywYAIWTxNHtHAcJ4hPeelaQbiSArFwCZuYz2uuQYv5Ewuws9WC4iw9GrusmF6eM+T9WcfcDBk65oDAeyDV9W6z0YFpZVkoy/EgP12XsNZPamUNsfFADz7a0oyjxudiX4cV/++0KaLrp5dn49NtgTLEbU2mfs61eLGjJXTCYDC36ozyLNS1muHngLpWM2aPy8PmQ0ZMKs5AYYYOx1bnJ2RZicSiY6ZZXF5fP9FW7qTWqxmACy64APX19XC5XGhtbcVTTz2F7OzQl1yhUOD+++9HW1sbnE4nVq5ciUmTJiVxiQkiPhzotuOjLS34ek8nemxudFpdsLi8aOyyhZ2VJQfY4NeqBAa/so45OwlzssQVxigrABw1Ph9bmkz4rr4bGxp6hnxM9rsVTeMcP9pld/tkVS7SxDrmqJFVdug1KuG7kOhRVo7j0BEcYyxOgTFWIFBCwB9IxNsx9/HWFnyzpwvbmk1Yu7ez3/V88QMQOPiVUv5jLFzCrFss26DBxOJMbGs2YWVdOxq6hi+A2B50Exq0KlmFyGfJxDHX2GXDql2d+PmgEROKEvf+6jUq4Ts4mjPmvD4/Vry/AxaXDz/u78Vtp0xGQYbYlcwK0oksgNgehiguWrbg2Os3ezqxp92KdfXdGEPRGSmJlslodqdgzlzKC3MEQQTYymzoMnRqFKSHnBCrUkmYY0ZZxydwlFVPo6yyJ5zyBwDCKCsw/M5qLZMvt2gE+XI8sQhDTwYtxtCylmWTMCdH+GbWHltiD2LNDq8Q8JwKxQ9A4GQw72BqMTrimpHDnixineQ8bPHDjHLpjWry67xYlD9kp2mQnxHa5+m2Di329djcgqNxWlmWbIofAPmMsjYn8aQNnzM3mjPm/r3hIHYGCx+mlmbhoqPH9rsN25KbyAKIcNyq00WiYeB18JmFSgVwwghiQwjpI3bMkTBHEIRMYTeqT/5iFn5acbKQwfDTgR702hKfHxQP+FyKggztiMcGR4KByh9kT7jCHBuKvHOIUORemxsbD/QCCOSdRCMUi8PQ5SPMiUZZyTEnS/gCCKPdndCw5Q4L08iaIo45IDTOanP74iqcsH+pfR3986HCcaUkk2hdwv2EufSQuNttHXp/R67FD4BYmDNLWZhjRrkrEjxuy+fMjVbHXJfVhb9+uVv4/YFzpg0oPuema1GRm/gCCP77N1DxA09NaUgw395sQmOXTTgxf+S4POQy5gMiddAxMTMkzBEEIVvYs+P8jibv4PFzwJo98nfNWZweYewlkWOsQJ+MORLmZEk4raw84YQir9nTAX4/Nhq3HAAUMcKcnAog+IMvpQIoyUodcWU0wRdAeP1cQseo2TbOVHHMAeKcuaY4jrPaXKHtULvZ1c8lJnKlVOTEbTlGSrQuYeNQjjnb0OtQVrScKaFSjHCQjWPOmHzHnNXlhT/BbaNS4M+f7RLcgv83uwKzx+UNelv+8+/w+NCQgAIIazBiBxi4+IFHr1EJot3eDgs+39YqXBdNbAghbVJ9lDXlyx8IggiGPLcEdjSLs3SC+2DBlCI8900DAKC2rgPnHl6RtGWMBfuZ3JjKBI6xAn1aWSljTpaEW/4AhBeK/OHmVpRk6dFmdmLhlOh2FIsyddAoFcjP0MKYhBD+kaJXq5CdpoFBq4JaRecC5Uheug5ZejVUSgUWPPo1VAoFppdnCRlcg/082HUcx+G8I8px1mHlmFo2+Agl65grToFGVp6ynDRoVQrkp+uwt90SN0dWXxF1W7MJJ04OrIekXPzAw7qEO8wuVBdGdrKNd4tp1UroNSpRflbXcI65Jmm7CYciU6+GXq1Epl4Dt1e6+yLsKGtZkhxzHAfY3F5RU2uq09Rrh8Pjg0algF6jwu/6FD70RbSv02wS2lDjxY5mE3hj9nDrRrYA4hMS5kYFfcsfUg3aSyaIUcCBbrtwdmwG00R25Lhc4ezq13s64fHJ++wDW/yQyEZWQDz6SOUP8iTcUVYAmMl8jwbKmVu5sx2rd3egzezEsmPGYva43KiWrShLB4+fQ5vZhUM9wweXSwGO47DpYC9MDo/IrULIiycvmoWt9y7GJXPGo9PiQpvZCYvTizazc8ifB7uu3eLCM1834I+f1g35vGLHnPSEo5Fy3IR86DUqtJqd2HiwN27P01eYY11gLSYnuiVa/MDD/s1ZkTZceLcYv4/DNgz3DBPdwa/T5Vb8AACZOg2cXj86rS50DiNAJhPeMZedpkGGLrE+EVEz6yjLmftwSws+3toKpUKBS+eO71f40BdWmN7aFP+cuUjakNnr+by8cfmGiEV8Qj7o1JQxRxCEzBlsQ6dWKXHi5EBAqsXpxY+NQzdMSh22+KEqwY45nVoJPqKDRlnlCTvKqhumgp0tgOgbiuz0+HDvRzuE34+tyo/aLca2UrbLZJTV6fELo7yZutHjSEg1eNEmU69GSZYeJVn6sH4e6LriTJ2wntzWbBoys07kmEuhUdaa0ixhXbOqriNuuX19g+3Z/QCpFz8A0Y+y9hXmtGql8PNQ5Q9yLn4AgHRG5LK7pSk6+fwc2kyBv2l5gt1yAJDFOOQsoyxnrjZY9uby+nH+7DHD3j7RBRCRCHOso47f11g4pViSJxqI2MCONtMoK0EQskQU8lwh3glfWFOMDza3AAg0Gs2dUJDQZYslbPNcVYIdcwqFAmkaFWxuH5U/yBReUNWqlVAOczDGF0Ac6nEIocj8Adwza+qF7Ki51fk4c2Zp1MvGZmx1yKT8gXXspOuGdiAS0ufK+VW4cn5V1I9z+Ss/YtWuDpgcHjT1OjAmzzDg7TpYx1wKlT+k69SYU52Pr/d0osXkxM5WM6aVxX5c0uoKCA5KReCglR0xlnrxA9B/lDUSPD6/4FxnM9fyM7QwOTxDlj/IufgBEBdRSdW932FxwhtUUhI9xgqIHXOjqZm12+rCpqBLd2JRBsbmD7zuZeELIJp6++/rxINwih94+AIItpRiEY2xpjTi8gdprt+igRxzBDEK2DpA8QPPCRMLhY1sbV17Qlv3Yg0/yqpUYNCDvXjCF0CQMCdPeFu8fhi3HM9ABRAHum145ut6AIBaqcD9S6bF5OytQatGZtAJ0SETx5xNJMzReUAiALsNGmgMnId1SRWmUMYcIM5A4h0sscTj8wuuPIM28N1rNjoEp5gcxCeRYy7CdV7fRlaegmAzq8XlHdTZLgfRcijYIiqp5t2y+XIVSWjrzpJJc22sWb27U8hvWxhBIRW7rxPPAgi2+GFyyeDFDzx6jQoTmJPwGTo1jhw/eJEFIX9Eo6ye1HPMkTBHECnOYMUPPNkGDY4aH8i/2t9tx/5ueeRX9YXjODQGR1nH5BlEZ1USBZ9LJtWdYWJo+AO14fLleEQCQ1D8/sfqesFef/m8Skwoil1QMu+aG8lYVzKwuUmYI/ozI0xhjhegcwyasL+TcmEBUwZTuyv2whwriucYQiLEtmYTfD4/Nh8yAgByDZqkjBKGQzQu4cGEOTbrcrCcOTkXPwDycMyJGlnJMZcwVu1qF36OpCAh3JMp0fLNno6wix94WMflzIrsYcU8Qt6IRlllnos+ELSnTBApjrj4YeAN3aKaYrg8ftjcgZy5RDeaxoJOiwu24E5ospaf3yEmYU6eRCrM9RUYstM0eOunQzhibA7sbh9uWjgxpstXnKVHfacNdrcPVpc34YHZkWJzhb4HUl9WInHMGEDQ7gvHcYIAXZRibjkAqMg1YEpJJna1WbDlkBEdFmdMx3VZsaEgQyuM1m9vNqHV6IDJ4cFx1fk4aUqRZPOYDFo15k8sgNnhgTrC0blwhLluq3vAMcpDvXbMLM9GVpoGVTIMkWcbxe0Sde+zwlxyRllHX8ac2+vHN3u6AAQE+SPGhl9INak4AzPKs6FUDF+cMlI4jsMbGw4hQ6fCginFODvMCJAr51dialk2jHY3TppSGJdlI6SDaJSVHHMEQciNcEZWZo3Jwc+HjNjTbsXPh+LXEhdP6kXFD8nZmU7ThEZZ5TwSPFrhR7/0mvA2jWwo8tZDRtz3caDwYdNBI649sTrmYlS0YeiJhnXtsC4OYnRTnKUTmgAHK4AwO73CaHlxCjWysrCOldUxds2x+Y6s8LHxQC8e+WI3AGBdfTemlkqz+IGnxejAliaT4PALF1aYY8cW89ND69AuW//x2F6bGztazNjabILL65Nd8QMAKJWK0L6IRMsf2FHW8mSMso7CVtYNjd3CeuGkyUURfbbLcwzY1mzCliYT9nXEZ5T1ix3t+HZfF6wuH37a34PDxuaEdb/jJhTi9sWT8dC5M7CopiQuy0ZIB3ErqzRPPEQDCXMEkeKEk5cytSxLaMpLRB16PGCLHyoTXPzAwzut/FxqWqxTGY7j4PRG5pjjQ5EBYGuzCYd6Agcbc6rycfZhZTFfxmjC0JMBKw6QY47gUSgUQhMoXwDRl44UzpfjYTOeYp0zx373SrP1gjD+Q2MPeu0B0eqsw8okX/bEr/NsQZdwuJgHy5jr45jrixyy98KB/3tLdZS1JemjrEzG3ChxzLHrmEjy5QDx96ZriOKUkeJw+/DAxzuF31ecOVXIxiQIFq1ImEu94ywS5ggixQmnetygVaM6OLKxp90iy7MQjV2hs3hVSRpllUPoMjEwbp9fyDbRR5BPOLMi8J3iG+ZiWfjQF1ag6LDIyzFHGXMEy3A5c2zBSao65mZV5CA/PXDAu3Zv16BlBCPByriAsvRawd3Lxz2ka1X4w+k1MXu+eDFSl/Bgo6x5jGOOL8JgCWd/SQ5IPe+WH2XVqpXCdyCRjLaMOY7jUBvMl1MrFZg/KTJBPpf5G3UP4DSNlqdX7xM+E/MnFuDU6eR8IwZGR8IcQRByheM4YUezOEuHoiEOcPidUI+Pw+42S0KWL5Y0sKOsSXLMpTFOK2pmlRdOJqtCF+YoK9DfVXH5vEpMLI5d4QOL3BxzNuagkIQ5gmW4MHFWhClOUcecUqnAScESCIfHh/UN3TF7bItIFFdhWpl4ZPU3iyaiJFv6gudI13kmexgZcwNkZcm9+IFHyo45juOEUdbynDQokzAunD3KWln3dlgFR/8xVXnIYhyD4aBRKYUSmYGcptHQ2GXDc980BJ9HgXvPjs+JTSI10DHHWakozNGeMkGkANubTei0uPDlzjas2tUBBRSYXp6FbU0m+HwcKnLSMGuYvIbp5dl49+dmAIEDpZkVQ99eamjUSswoz4bF6UFxDEO0I4Ecc/LFxQipkTRAzizPQWGmFlanD3qNMuaFDyxyzpjL0FHGHBGC3b5sH0CYa+i0YWppIGJhnAzLiMLlpMmF+HJnG2pKsnAwho3orGMuU6/GYWOyUZSpg8nhQWGmDpcdVxmz54onI3UJD+aYE4/kDe6YM2hVsix+4BGKqDw++P1cUsSvwTA5PMJJm2Q1Ao82x9y2JhPmVOVjb4cFJ00Ov42VJS9dC6PdM6DTNBr2dVgwf2IBVu/uwOXHVQrTOwQxEFoV08pKwhxBEFLk+bUN+GBzi+iycfkGtAfHga6aXYFbTp405GPMqAidHR7oQEnKeHx+rNzZDq+fQ01pVtJ2QskxJ19Yx1wkwty8iQX48Q8nw+nxobHLFtcsNdY90m6RgWNOVP5AuxtECL4AosvqEgogWJfEd/Vd2NlqBgBMKYmPA1UKHDE2F2aHFxsae6DTqLB87viYPK7VFRKmMnQanDGzFOccXgGL04N2sxMalTwGZkbsmBuslVU0yip2/vTa3MI43dTSLFkWP/CwJwmdXp+k1r/iRtbknERlt9OjoZV19e4OwZF7dGXeiB6jIF2Hhk4bbG4fHG6f6DMWDf/6/iC+2dMJAPjVseNi8phE6sJOtMgxdmk45LFlJghiSHz+UKtdYYYOJVl6ZOrVKMnSCz8Px9TSLPDHRQONFkmZQz12IeMrWWOsgFiYi2VeEBF/nMwGXq+OfNOo16hQE+eGw6Isxj0iA8cclT8Qg8EWQBjt4gKILqsLPwdbOCcVZ6A0OzmumkRQkq1HZvC70dAZu7ZD1jGXwWz/M/UaTCiSj9AZ64y57DSNILj19BllTZXiB0B8IkRq46yiRtYcQ1KWQa1SIj0oLI2GVlb+ZLtOrRxxE7N4DDx2JwabewNOYb1GmZSGXkJepHrGHO0pE0QKwApzH9543IgOZNJ1akwozMDeDit2twUKIHQRhOAnE7aRNVnFD4D4LLXUdoaJoXGOcJQ1kRi0amTq1LC4vKJwfKlip4w5YghmlGdj9e6AU2Jbswlj8gIH6at3dQhFLJG2B8oNhUKBysJ0bG0yodnogNPji8n6x+oKfffkLIqLHHMRrPMGE+aUSgXy0rXotLj6jeSxwtzMCnkLc1KO1WAdc8kUYjL1GtjcvpR3zJmdHuwPjsnXlGZBPUK3LCvM9djcqMiNXlTlOA4txoDgXpaTRtlyxLCwwlwqjrKSY44gUgBWmItm/EKuBRBs8UOlRIQ5qe0ME0PDjrLGakQjHvCuObk55tIpY47ow2AFEKt2dQg/L6oZWR6SnOC3WRwHHIhRzhw7yhqOY16qsC7hkTjmtCol9H3KfPgW0C6bGxwX2nfaniKNrABgkHCsRosERlmB0PfC7Ehtx1ysPtdDjYGPlF67R/h8JitvkJAXrGEkFR1zJMwRRAogEuaiOOM0XFOeVGlgHXNJDI6ljDn5InLMjWCUNVEUBYtNbG6fSPiSIjYaZSWGgM01XbevC0AgM4bPG8pL12LWmNykLFsiqSoIbbMau2IzzpoqY+S8SxiIzDHHN21mGzT9XDgFGQGBwe31i96nVCl+AELlD4D03PusY64iSaOsAJAVdFI6PD54fNI+wOedQS1GR8S5WiJhLgon6HDFKSOBHWuuoDFWIgxEo6wpeJwl3aMPgiDCxsec9VUrR/61lmsBBHswU5lPGXNE5LB/L51ER1mBQGg+j9Rdc7wwp1CIvxsEAQAlWXr8ZuEElGTpsLXJhDW7O7ChoUdobDxxcqGsA/jDpZLJRWVPMkWDZZCMOTkyEpcw75hjx1h5RFlZQedPr80t5BzKvfgBANJEGXPSOoHDizEKRSBjMVmwTlKrxHPmzn7qW1T//lPM/dMqrAmO/4fLtmaz8HNUjrkMxjFni41jTlQEksJZokTsYB1zbokL6iOBhDmCSAFYx1wUupxsCyD4Udb8dC2yDf13xBMFZczJF6d3ZK2siaaIbWaNoKUwGfBulHStmrJjiH4oFAqML0hHW/BzfO+HO/Dlzjbh+kUpni/Hw+aisrEM0SAaI5dQI+dIiNQl7PH5BXF3QGGOHckLhthvb0md4gdA7JiTWqxGczBTrDhTD20S3emZ+tBnwyzxnLl2s1PYz+cdxeHCFj9MLBq5E5QfAQfQL59xpEglb5CQD1qRY46EOYIgJIjXFxvHXLpOjergCAdfACF1rEwQfjIbWQGxoEOjrPJCXP4g3U0j21LYYZG2Y44XpylfjhiMc2aV4+jxeQCA/d12fLi5BQCgUSkwf2JBMhctYbC5qI0xcszxDqB0rUr27q9IXcLmQYofePJFI3kB58+2FMqXA6Q7yur0+IQxyGTmywFAFuOYs0jYMWd3e9FrD32mV+3qEGUjDoXZ6RHWKdEUPwB9HHMxypgTN/SSMEcMj0iYk8ExaqRI9+iDIIiwYUdZo90JZwsg9rTFJu8mnuzvkkbxAyDeGXZKaGeYGB5xxpx0hSRRS6FcHHMyzrgi4otCocB9S6YJ2y1z8AD5mMp8kaMllUnXqQXxKWbCXPC7J/cxViByl/Bgjaw8BQOMssYqh0sqSLWIqkXkkEpevhwgH8fc/i5xIUyryYmdreZBbi0mloUmooy5GI2yiotASJgjhkelVECjCuwv0CgrQRCSJFatrIB44y2Hcdb6zpB4mOzAZip/kC9ix5x0hTnWMRdJS2Gi4ThOyJiT+ygdEV9qSrNwyZxxossWjoI2Vha+AKLH5obRHv1BL++Yk3PxA0+kLuHhhLk8UbtkQOjj93XSNCphakDOiB1z0nGDtRhDf79kO6TYjDkpN7MOJNbX1gWaq31+Tth3GejvHEthLkuvgTp4fBHrUVZlkvMGCXmhDTo/aZSVIAhJIsqYi3JqZXpZNg6ryMaxVfnolPioHCDeaUm2Y44VdKQ0PkIMj9PDZsxJd9MocsxF0FKYaJweP/jVEo2yEsNxy8mTkJuuwdTSLMwoz8bCKaMjX44nlgUQfj8Hq5t3zMnfdRipS5gV5rKGK3+wudFmcsCgUeGYyjycNqNE9qO/AJCmYcofJHSSsMfmxrFVeThyXC7G5yfXMcd+NiwSdsw1dPafXKmtawcAvPXjIZz06Bpc8Ox6XPDP9aJjAUBc/BBtdqJSqUBeMGcuZqOsQWGuJEsPTRRjtsTogi9oc3lTT5iT/6k0giCEjbFKqYg6ZH1SSQa2NAXOsslh/5QV5qqSLMyJxkcktDNMDI9sHHNZ8nDMsSHtqeDaIeJLll6D1b89ETkG7fA3TkHYbVdjpw1HjM0d8WPZPT7w6RaZKfDdi9QlPOwoK+OY67K6sGpXJ3a3B8SPm6omRrOokkGq5Q8He2z4vqEHAHD18VVJXRa5ZMz13cdt6LJhS5MJe9oseOSLXTDaPWgNOhHf+OEgfnVsyH0sKn4ojt4Jmp+hQ4fFhW6bCxzHRXW84XD70BMciaXiByISdMGcOXcKCnMkTxNECsAKc9GSY9AiN9hsGqu8m3jCt9gpFcDYJJ+BFWXMkTAnK+TimDNo1cLBdqeEHXPsWA1lzBHhMFpFOUBcXNTQFV22q9WZWqJ4pC7hSMofuq1uwX0EAItSZIRaquUPbEYgmx2YDESjrFJ2zAX3wxUK4JRpISfxXR9sh9EuXu6/frFbELv6Fj/EwpHGN7N6fJyQBzpSmilfjhghfAEElT8QBCFJBGEuSrccDz8S2mpySiqfpC8cxwk7HhW5BuiSHNovypiT0M4wMTxOZgOf7M/RcBQGXXNyccyRMEcQQ1NZEHKzRHtCzOoKHaynRvlDbB1zBq1KOPnSZXXh231dgefJ1GF6mfyLHwCxe19KwhybEci27SaDLD07yirN/VyO44RR1rLsNCyeViJc90NjwHmYoVPjtOmBy00ODx75fBcAYAczxhqrpmGxqB3diUFWmEt23iAhL3SCMEeOOYIgJIjXH1g5qWM0e8qWKEjZNddpdQkCQLLz5QDxCCSNssoLuYyyAkBxZsBpYHP7RAKYlLC5Qu9nulba7ydBJJuK3DRh+827wEeKJcUcc5G6hIcT5hQKBfLTQyc3+IO7BVOKoJRDfkcYGJjCHYeETq7yjjmFAijISK4wl6mXfsZcj80tONOqCtNxWEWO4FrjuXnRRNy3ZJrwHXnrp0P4+WAvtjUbhdvETJhjxsB7omxmFTf0kjBHhA9/8pxGWQmCkCR83qtKFVvHHCBtYY49gGFHgZKFTq0Eb1okx5y8cMlklBUQOw06JOqas5FjjiDCRqNSClEM+7tt8PcJcY8EVqzPTAHHHBCZS3g4YQ4ACoLOH3Ycb2FN6hSOSHWUlRdW89O1SQ/7l0Mra0OfcjOlUoHjJxWILls+dzyKMvW45eRJAIBsvQZXvPoT/l67T8iJjrb4gYd1zHVFWQDR3EujrMTI4EdZvX4OXp/0xLlDPXZ8t68L//y6Hsf+sRYL/rom7PumxhabIEY5vGMuVqOsbBB1tGfv44mUih+AwJl4g0YFm9tHjjmZISfHHJvN0252iRyuUsHmTi3XDkHEm6qCdDR02uD0+NFqdo54vCvVMuaAgEu4odMmuISHel3hCHP5fdxaOrUS8yYUDHhbOSLFIiq/nxNGWYsyk5svB/RpZXVJ0zHX2Nl/H/e2xVNw1xlTsafdCq1aKQicl8wZB5VSgQ6LE0+vrhfud+W8SkyKQfEDEBK0AaDbFrtR1goS5ogI4EdZAcDt80MtsUbft386hCdX7YNWpYDbx8HvCv+7Iq1XQhDEiAjqcjEpfwDkM8raKDqbKA1xgt8hlsrOMBEebMac5IU5pqWQzeyREuSYI4jIqOzTzDpSLCn43YvEJRyWMNdnHHBudb5IzJI7Bo30HHO9djc8voATtCjJ+XJAIGKB32WWasacyDEX3C8vz0lDfoYOc6rzMXtcqL1ZrVJi+dzxyDVoUZKlD/3L1sdMuGBHWbvJMUckCVaYY6ddpMLKug4AgNvHoShTJ9pnH47U2GITxChHcMzFSJgbl2+AQgFwnHjHQGrwobiANEZZgZCo43BLb2NBDI6olVUt7XNWrGOuwyzNZlYrmzGXIuIAQcQT9oRYQ5cV8yaOzMHFOuZSZZQ1EpewKTiWqFUpB40l6OuYS6UxViAg0mhVSrh9fskIc2yjbrEEHHMKhQIZOjXMTq+oyVdKiPZxw5wKuXJ+Fa6cXxWX5YlH+UOOQUP7CEREaPs45qREi9GBna2B4pWZFdn48IZ5MJvNyH4gvPtL++iDIIiw8MXYMafXqIQxmoZOKzhu5Hk38YQXDfUaJUqykr+jB4SaWaUUuEwMDz/KqlYqJGeL70ux3BxzKeREIYh4URmjCAk2Yy5VRlkjcQnzIktWmgaKQeI92JE8AFhYUxTlEkoPwb0vkX0RNh9QCo45IDTOKlXHHD8VolUrJeEqYws7uqIof/D6/GgLfh6okZWIFL78AZCeY27Vrg7h5wVTIt+uSPvogyCIsPDF2DEHhA4SLE4vuqNsX4oHHp8fB7vtAIDx+emSaVNjR1mlKmgS/eGFOamPsQL93SNShEZZCSIyWEfMtmbTiB8nJYW5CFzC/Chrdtrgr13DFGWVZOlRmp164gBfACFFx1yRRE6k8s2sFqdXcvtrPj+HA8I+riGm+/cjJVaOuXaLC75gwQ0Jc0SkiEZZvdJYv/HU1rULPy8agRM7NbbYBDHK4TdwsdxwVxWkY+3eLgCBs3bJrrbvS4vRgQlFGTBoVZhRkZPsxRHgHXN+LmCxZs/sENKFH2WVeiMrEHDMHTchHxanVySASQkqfyCIyCjM1OGa46uwbl8Xfj7Yi11tZkwpyYr4cUTCXIqMsobrEnZ5fSjPSUO6ToWJRYOPu540uRiWU7w40G3HpOLMmC6rVAi596Vx4MpmA0aSuRRPDh+TgzSNEjaXDzaXFxn6gTMJk0Fzr0MY06uSSIayQatGmkYFh8cXVcZci5Hy5YiRoxUJc9JxzNndXqyr7wYQOOEzrSzy7XdqbLEJYpQjCHMxamUF+uTddFpx1Pi8mD12LGjudWBXmwUAcKSElo0NkHa6SZiTC/xZNzn8vQw6NfZ1WNFudvULMZcKNsqYI4iIUCgUyNSrsb0lkE9z9wc78NbVxw46jjkYoow5nXSEhmgI1yXcYXZhd3tgv6Ake3BX1th8A25YMDF2CyhB+H0Re9C9H+nnKNaIMuYk4pizurzYdNAIAOi0uiUlzDV0hfLlKiWSoQwEXHNNvY6oJmnY4oeKXBLmiMgQjbJKSJhbt68b7uDyLKgpGtE6V/rWAIIghsUbB8ecKO9GggUQbNW6lKzwacwoJDWzygc5OeaA0Bn0bpsbJrv0gqutlDFHEBFz5fwqjMs3AAB+aOzBB5tbIn6MVHTMhZsxx15XJIGCgWTCj7L6/JwkAtLbJeiYY5ejfZi230TTyDayhln8kAj44pReuxveEX6upLr/TsgDnUaao6zsGOvCEeTLASTMEURK4A9mY6hVcRLmogiijhfNErXCs8KcXSKhy8TwyCljDhCfQWfPrEsFypgjiMjRa1S496xpwu8PfVoHizMy4Z11zKXr5LE+G450nRqZwfXIUBlz7HVSKRhIFmna0HpXCuOsrNOxUCLCHOvcYx19UoDd766WkmMu6NLnOKB3hCcFpbr/TsgDLVPQ5paIY87v51AbLH7Qa5Q4bsLIWtVJmCOIFMAbh1HW8pw0YY6/UYqOuV5pnnFjR1nJMScPvD6/8B2SizDHBsVL8fvJC3MKRci5QRDE8Jw0pQgnTw2ERndaXHhi5d6I7m8Jfve0aqUsRvPDpTAotA3lbBK7ska5Y050kjD5+yKdQeGrIEMLjUSaz1nxtkPSjjlpZMwBEMVndNtGJmaK9t9plJWIELFjThrC3PYWk7COmzehYMTHEnQamyBkjt/PgS+TiuUoq1KpQGV+Ona3W3Cg2wafn5NEKxRPi0maG3bWMeckYU4WOJkNu2xGWQul7Wi1BQ8E07XqpGcbEYTcuPvMqfh6dweKs/XotrlhtLuRYwgvT9LqCrhYMlPMqTq9LAs6tRJKhQK9djdyB3g/xDlm0nBlJQv2hEiihbmPtjSj2ehAr82D3502BUBozLhQQoIpK95KzTGXqVdjWlkW7G4fcg3Syb7LZ4rgekZYAJFr0GBaWRasTq9kc3IJ6SLFjLkXv23E1NIstJocWDAl8jZWntTaahPEKMTHVLzHWjirLAgIcx4fh6ZeO8blS8dOz59xy9CpkSWhHB2RY84tjQ0GMTSsgKqXicOEPYMuZcdcqozSEUQiGZNnwNmzyvG/jU041NOMEyYV4pzDy8O6Lz/Kmir5cjyZeg3qWgPFDrvbLDi2Kr/fbdhxydHumBMVUSX4JOEtb20RXOiXHVcJrVoJjy/wu5QEU9YxJ6WMOb+fw1c72+H1c5hamiWpk1sFGSEhrWuEBRDrG7rRbnahNFsvqddGyAO2lVUKo6w/H+zFh1tawHHA1NJMnHt42YgfSx7WgCjw+XxYsWIFKisrkZaWhurqajzwwAPgGDGD4zjcfffdKC0tRVpaGhYtWoS9eyMbHSCIZME3sgKxF+ZErhwJHfz7/RxajIGdqPKcNElt2PWUMSc7RMKcTEZZK3LToA5+36X03eThA+jTtaklDhBEolh6RIXw80omVHooOI4TvnsZKeaYm1GeLfy8vdk04G3Y8gcpCUDJIFmOOb+fE0Q5ANjWbJJk8QPQJ2NuiOzCRNNrdwvvodQ+x/mMMNdtHdl7Jpw8SLF1FJEYdGrplD/4/Bzu/mCHMLm2dPYYUb5npCRcmGtoaEjo8/35z3/GM888g6eeegp1dXX485//jEceeQR///vfhds88sgjePLJJ/Hss89iw4YNSE9Px+LFi+F0SufsCUEMRjyFObYAolFC43JdNpfQMialMVaAWlnlCN/ICoizK6SMRqXE2GB7Y2OXFX5mPZBsOI5jHHO0400QI+HI8bnIDLrevt7TCU8YDYgur19wJqXaQe+MipAwt20wYS4ormjVSmSnSWf8LxmwB4eJPElocYqfa1uzqc+IsXScjBk6tdAa3j5E22+ikbLzMz89JBR2j2CU1efnhKiLVHP1EolBJMx5kuuY+8+PB4Xt0eTiTCyfMy6qx0v4EciECRNw0kkn4fXXX0+I8PXdd99hyZIlOOOMMzB+/Hj83//9H0455RT88MMPAAIHEI8//jjuuusuLFmyBDNnzsRrr72GlpYWvP/++3FfPoKIFq9ImIvtV7pKos2PbHBsWY60dloMSRwfIUaGHB1zQKgAwunxo01CYzgurx/8aolGWQliZGhUSpw4uQhAQOz4cX/PsPexMm3ImSl20DupOFMYYRpUmAuKK0WZOkk56ZOBQRSrkbh9kV67WKzZLmHHHAAUBYVCKTnmpOz8FDnmRlD+YGNE4lQ7eUAkBlaYc4dxwipe9NjceOTz3cLv9y+ZBnWUxTYJF+Y2bdqEmTNn4tZbb0VJSQmuueYaQSSLB3PnzkVtbS327NkDANiyZQu+/fZbnHbaaQCAxsZGtLW1YdGiRcJ9srOzccwxx2D9+vUDPqbL5YLZbBb9I4hkwTpl1LEeZWVyrHa3WWL62NHAVq2X5xiSuCT9SUvSzjAxclgrvFwy5oA+jlYJjbOy4gDteBPEyFlUUyT8XFvXMeztrc7U/e5pVErUlGQCCKzvLE6P6HqX14dee+AyKbmykkWyRln7CnP9Rlkl9rfhhUKryys4vZMNKxJK7f0qYMofRlKYwa6jUu3kAZEYROUPSXTMrdndITjZz5lVhmMGyD2NlIQLc7NmzcITTzyBlpYWvPTSS2htbcW8efMwffp0PPbYY+js7Izp8/3ud7/DRRddhClTpkCj0eDwww/HzTffjGXLlgEA2traAADFxeIGjeLiYuG6vjz88MPIzs4W/o0ZMyamy0wQkcA65pQxPkOcm67FklllKMrUYXuzWTIOMClXrYsy5iTyfhFDw46yyqWVFQCqCkPCeUOndByt7MGNgTLmCGLEnDCpUIioqK1rF+UjD4RIFE/Bg97pwZw5jgN2tIhPinda2PE/abmMkkFakvZFjHaxYNppceFAl134XWqiKSt8SaWZVcoOwzyDBkeMzUFRpg6txsid+nTijogWKWTM+fwcHvqkDmkaFSYUZeD3p9fE5HGTdgSiVqtx3nnn4e2338af//xn7Nu3D7fddhvGjBmDSy65BK2trTF5nv/+97/497//jTfeeAObNm3Cq6++ir/+9a949dVXR/yYd955J0wmk/Dv0KFDMVlWghgJfi5+jjkA0KqU6LC44PD4sL6hO+aPPxJaRI45ae3ksTvDTnLMyQK5jrKyjjkpFUCwO96UMUcQIyfHoMXscbkAgP3d9mG/5xaRYy71MtaGKoBgc7mkJv4kA/akiCOBGXM9AzR11jNRKFITmoqZ5emQSCSEVDP5AECjVqHX7kGHxYX93bZhTxb0JdXXUUT8kUIr6+ZDRnTb3Oi2uVFdmB4zZ2vShLmffvoJ1113HUpLS/HYY4/htttuQ319Pb766iu0tLRgyZIlMXme22+/XXDNzZgxA7/61a9wyy234OGHHwYAlJSUAADa28WNV+3t7cJ1fdHpdMjKyhL9I4hk4Y1j+QMALKwJuUlXhTFKkwikPMoqynUhx5wskK1jjhXmJFTOYnOFPvcZlDFHEFEhHmcdup01lTPmgJBjDuifM8eKKoUSE3+SgVRGWQGInFVS+9sUMRlu7VJ0zEksYw4InRS0u30iQTwcUt3VS8Qf0ShrkoS5VbtC22L2ODlaEn4E8thjj2HGjBmYO3cuWlpa8Nprr+HAgQN48MEHUVlZifnz5+OVV17Bpk2bYvJ8drsdyj6B+CqVCn5/4A9ZWVmJkpIS1NbWCtebzWZs2LABc+bMickyEEQ88cdZmJs/sQDaYJhlOKM0iaApOMqqUSkkd/ZVT62sskOujrnCTJ0wCiKljDk23JkccwQRHexO/8phTo5ZXaExwlQcE5tUnCnsj/QT5iTsMkoGycq77TvKCoTEuvx0LTRRhqPHGvazIjXHnEIhznSTCmK3fmQxGqKMuRRcRxHxR6dJ/igrn/mqUAAnTS4a5tbhk/C14zPPPINf/vKXOHDgAN5//32ceeaZ/YSzoqIivPjiizF5vrPOOgsPPfQQPvnkE+zfvx/vvfceHnvsMZx77rkAAIVCgZtvvhkPPvggPvzwQ2zbtg2XXHIJysrKcM4558RkGQginsTbMZeuU+PY6kCgZYvJibrW5JdA8KOsJdl6KOPwmqNBvDOc3BpvIjycMi1/UCgUwg5yU689aTsofbFRhgxBxIzqwgzhe77xQC+MAziSeNiD3lQUxbVqJaaUhgogWPcN6zKSWpNlMpCCY45f//OuFqkVGQBAUab0MuZ4gVCKQiYAVBWO3K0vOnlAjjliBGhVyR1lbeq1Y1ewEPGwipyYuoAT/o346quvMHbs2H5iHMdxOHToEMaOHQutVovly5fH5Pn+/ve/Y8WKFbjuuuvQ0dGBsrIyXHPNNbj77ruF29xxxx2w2Wy4+uqrYTQaMW/ePHz++efQ66W3ASGIvvj8oZVSPIQ5IDBK882eQDHLql3tmFqWvPFti9MDc/DgozxHWsUPgDhjzuGRRsMXMTTsKKtORqOsQGAHeVuzCX4OONhtx8TizGQvEpU/EESMOeuwMtR3WKFSKnDK376G28thalkWzphZimXHjBNuZxkFoviM8mxsbTIFCiCaTUITXoeo/IH235MlzLGOuSklmfjpQK/wu9QmHIA+o6wScMz5/Rw6rYHPslQ/x9E0wltSuDmaSAxix1zihblVu0LOdTZqIhYk/AikuroaXV1d/S7v6elBZWVlzJ8vMzMTjz/+OA4cOACHw4H6+no8+OCD0Gq1wm0UCgXuv/9+tLW1wel0YuXKlZg0aVLMl4Ug4oGPWSfFo/wBABZMCa14hhuliTdSzpcD+mTMUfmDLJDrKCsgzQIIK5Mxl04ZcwQRNbeePAlPLzsClQXp6LC4YXR48F19N97/uVl0O9GYWIq6UWYMkjNHjjkxaWz5QwJPErKOucPG5Iiuk+LfRTzKmnzHXK/dDY8vMAkjxfcLAKoKQo3wkQpz1MpKREuyM+bY4+AFU2KXLwdE6Jjz+/34+uuvsXbtWhw4cAB2ux2FhYU4/PDDsWjRIowZM2bYxxgsn8pqtZJDjSBGgJdxzMVrrLMi14ApJZnY1WbBliYjOi2upAX4ihpZc6XnmKOMOfnhShFhTio5czTKShDxIVOvRkmWHh0WJ/wcsKPFDJ+fE9zyo+Ggd7ACiM6gY06rViI7jdoeDZrkOOb4VlatSonDx+aIrpNi9l+GTg2DVhUoMrAk3zHHlilI1TFXnKUT3rOGzpFnzNEoKzESktnKanV58X19NwCgLFuPmtLYTqmE9Y1wOBx49NFH8cwzz6CnpwezZs1CWVkZ0tLSsG/fPrz//vu46qqrcMopp+Duu+/Gscce2+8xbr31VgABd9rdd98NgyHkdPH5fNiwYQNmzZoVm1dFEKMIfwIccwCwsKYIu9os4Dhg9a4OXHDU8EJ8PGjuZR1z0ttp0amVUCgAjgMcHsqYkwNOZsOuV8trlLW6MHTmOtId5HhB5Q8EER+unF+FK+dX4Zp//YQvdrTD7vahscuKCUWBg4PR0HjIF0C4ff4BHXNFmTooFNLKnk0GaUkeZc0xaDCzPEd0nRRHWYGAYNjYZUOnBBxzHRbpOz/5fNsdLWYc6nXA7fWLxJKhGA0nD4j4olMnr/zh272dcAdH1RbWFMd8WxPWN2LSpEmYM2cOnn/+eZx88snQaPqfiTpw4ADeeOMNXHTRRfjDH/6Aq666SnT9zz//DCDgmNu2bZtolFSr1eKwww7DbbfdFs1rIYhRicgxF8ed0QVTivH06noAQO2u9qQJc00SH2VVKBRI0wTOJDrclDEnB+Q8yjqeHHMEMeqYUZ6NL3a0Awi4xgRhbhQ0HvIFEFubTEIBhEalQG9QEJKq+JNodGollArAzyU2VoMfZc01aDEmLw06tVLS5Q9AoOG8scsGi8sLu9ub1GxUdpy2UKLvFwBBmPP5ORzssWNCUcbwdwIJc0T0qJUKYd2W6FHWWnaMNcb5ckCYwtyXX36JmpqaIW8zbtw43Hnnnbjttttw8ODBftevXr0aAHDZZZfhiSeeQFZW8sLjCSKV8DPj4fF0zM0ak4M8gwZWlxc+LhBQm4xG1BZj6GyiFEdZAYSEORpllQVyFuYydGoUZmhhcXoxSFJEwrExGXNs5iJBELFhRkWO8PO2JjPOPTzws8nhQYZODZvbm7KOOSAwzrqtyYTy7DT8fLBXNNIvxXHJZKBQKGDQqmENik2JwOH2CQfKOQYNFAoFirN0ONgTOKEq1dzDvjlz4wuSKMyxjjkJi8xVheKcuZEIc1L9PBDSRqFQQKtWwunxDzjKum5fFwoytMhL1yHXoIE6Rs3GFqcH25pNSNOooFAAc4LFQ7EkrG/EcKIci0ajQXV19aDXv/zyy2E/FkEQw+P1hY7G49XKyj/2pJIsfN/QjZU729FtcyclZ6651y78XJotzR3wNK0KsAEON42yygG2lTVNZsIcAJTnGrD5kBE/HeiF1+eP2U7ISKEz4gQRX9gChO3BcU6nx4ctTUY4PX6cNLlQluuycFkwuQifbWtFk9GBdfu6RSPzJMyFSNOqYHV5E+aYY4sf8tIDk1Fv/3oucgyBSSuVREeMWQGs3ewUOdETjShjTsKf5SqRW98KILwQfNbVS1EXxEjRqVVwevz9HHMcx+HKV38UooRW3nq84CiPlsdX7sWuNgty0tS49eTJcTmRP+JvhNfrxT//+U+sWbMGPp8Pxx13HK6//voBCxzOO+88vPLKK8jKysJ555035OO+++67I10kghiV+PyJEeaAQNAlj8XpSY4wFxxlLcjQSdbdxB8QOckxJwvEjjl5ZcwBoQMgADA6PCjISO5ZdjtlzBFEXMlL16I8Jw3NRgd2tJjg83NYX98tnGQoTPGctcPH5sDoCIyurtrVjlljQkJlsoqppAjvWLYnaF+EL34AgBxDYLskB6G0iMlya7ckN2dODhlzQJ9G+M7wYzT4E3d6jRKaJJ9EJOQLnzPn6rNuq2u1iPK9nTHK+t7dZsEr3+0HEMgPP2lK7MdYgSiEuZtuugl79uzBeeedB4/Hg9deew0//fQT3nzzzX63zc7OFnYQsrOz+11PEMTI8SVolBUQ284tzsTnp7m9fnQEd5qkOsYKhEKXHR4fOI5L6QOkVIAtf9BJVOwdCt6NAABGuzvpwpw1OMqqUMjTgUgQcmB6eRaajQ7YggUQK+vahesWTAnPvSJX8jN0OHxMDjYdNGJPuxW72yzCdXIQghIFv/5NVPkDX/wAALkG+TTjikdZk9vMyjvmFAokfVs+FJWFjDAXQb4tf+yQoZPP54OQHnzZCF/EwFPLbAcBxCRSiOM4rPhgu2CEuf6kCRiTF5+M87CFuffeew/nnnuu8PuXX36J3bt3Q6UKrPQXL148YBsrIB5fpVFWgogtXsYxF+/Mt0x9aENqdnqGuGV8aDM5hRwtKTay8vBOPp+fg9vnh05N4oSUkbtjLtcQcsz12hP/vewLX/5g0KiSkkNJEKMBtgBia5MRq3YFQqm1KiXmTyxI5qIlhIU1xdh00AgA+HF/r3A5lT+E4E8Sur1++Pxc3Kcq2FFWdrskdViXZUeyHXNBYTA/XStpR1mWXoOCDB26rK6Iiqd4xxzlyxHREHLMiYW5lbs6RL/H4qTEh1ta8ENjDwBgXL4BVx9fFfVjDkbY3/iXXnoJ55xzDlpaWgAARxxxBH7961/j888/x0cffYQ77rgDRx11VNwWlCCIgfH7E+eYy0pLrmOuyRjKlyvPka5jjg28d1LOnOThrfAKReCgVm6wzoReZpQoWfDCHI2xEkT8mM7kzH29uwutpsAB/Zzq/FHx3VtUE3IF7mknx9xAsPsiiSiAMNrZUVb5OKKk4pjz+zl0WgPCYFGm9D/HVUHXXKfFBUsYJ+s5jhOEOcqfJaKBNzywGXMdFie2HDKKbueIcr3HcRyeX9sg/H7vWdPiGqMU9rfio48+wltvvYUTTzwRN954I5577jk88MAD+MMf/iBkzN17770D3vfwww8Pe5Rr06ZN4S4SQRBInmMunI1wrKnvsGJiUQYKMrSYXi7dZmd2fM/h8SEb8tlBHY3wGRR6tUqWY8e5bMacBBxztONNEPGHLYD46UDIMbawJj7ZN1JjUnGGkLPXybicyDEXIk0TWgc73D7RPlw86BWNssrHMVckKn9InmOu1+6GJ1joViThfDmeqoJ0wUnU2GXDTKYteiCcHr8wDkj7B0Q0sKOsfGTQml2d/W4X7Sjr5kNGZOjUmFScgew0Tdyy5XgisgZceOGF+OGHH7Bt2zYsXrwYF198MTZu3IjNmzfj6aefRmFh4YD3O+ecc7BkyRIsWbIEixcvRn19PXQ6HU488USceOKJ0Ov1qK+vx+LFi2PyoghiNJFIxxxrPTc7Eu+Y29lqxt4OK9Y39KAsJz7z/bGgrzBHSBv+byTHMVZAfADUY0+uY47jOGF0YDS4dggiWeRn6ATneKvJIVy+IM4HDlJBoVBgUVCE5PeCtCqlrJxa8UbsmIv/voholDVdPsJchk4tvFds+UKiYcdoi2XgmKsUNbMOP85qcYWE2wwaZSWigB9lBUKuuZV98uWA6Nd7ezus+L6hB3varTh9RmlUjxUOEX8rcnJy8Nxzz+Gbb77BJZdcglNPPRUPPPDAgG2sPPfcc4/w85VXXombbroJDzzwQL/bHDp0KNLFIYhRj8gxF2e3T1aSHXPbmk0AAiOHU0ul65jTJ3h8hIgOpyDMyTMLkD0Q7U2yMOfyhs6Ip+vk+X4ShFzgCyD43YApJZmoyJXuSatYs7CmGK+uPyD8nupttJGScGHOxmbMyUcgVSgUKMrUYX+3HR1JdMy1M2O0snDMFWYIP9eH0cxqZSJwMunEHREFbFEbL8yt3dsFAMjUqWAJlpA5olzvNfeGTnqNScC2NWx7wMGDB3HBBRdgxowZWLZsGSZOnIiNGzfCYDDgsMMOw2effRbW47z99tu45JJL+l1+8cUX45133gl/yQmCAADhIBhIsGMuwRlzLq9PaF6rLsyQtBuHdcw5yTEneeQuzLGOOaMtuaOs/BgrAKRrpfsdJYhUgB1nBcS5a6OBY6ryYGCcznIQMxJJmjax7n25jrICQFEwZ87i8ibthCrrmCuSQVZipI45dv+AHHNENLB50G6vH+sbuoV1HDtSHe0JiRZjSJgrz41/tnnYwtwll1wCpVKJv/zlLygqKsI111wDrVaL++67D++//z4efvhhXHDBBcM+TlpaGtatW9fv8nXr1g3puiMIYmBYYU4V5+D6ZLay7mmzCtkbfQ9GpAZ7ltpB5Q+Sxxk828Za4+WEuJU1uY45GyvMSVg8J4hUYHqfbeGCUZIvx6NTq3DU+Hzmd3muw+OFeF8k/sIcX/6gUABZafJxzAF9CyCS45pjiyfkkJU4Ns8gNP02dlmHvT3rmKOMOSIadBp2lNWHVXWhNtajK/OEn6MV5poZYa4sAaWDYX8rfvrpJ2zZsgXV1dVYvHgxKisrhetqamrwzTff4Lnnnhv2cW6++WZce+212LRpE44++mgAwIYNG/DSSy9hxYoVI3gJBDG6EQlz8R5lTWIrKz/GCvQ/GJEaesqYkw1+Pwd3UJiTq2OOHWVNdvmD1eXFtNIseDkOpdl0so0g4smM8mzo1UqoVUooAMwaJnw9FZk7IR/r6ruQoVOjMj99+DuMIgyMazkRLjDeMZedphEEG7lQkZOGCYXpSNdp0G11YXxB4j9LbPGEHNqFtWolZpRnwenxQwkF3F6/EMo/EBZyzBExom/GnNXlwZSSTBzotomEuWhbWXlhLlOnRnYCTjaE/a2YPXs27r77bixfvhwrV67EjBkz+t3m6quvHvZxfve736GqqgpPPPEEXn/9dQABYe/ll18Oy3FHEIQYH5e4UdZkZsyxwtzMCmkLc+woK2XMSRu2al2u5Q96jQoGrQp2ty/pjjmT3YMdrWYAwImTBy6EIggiNuRn6FD3wKlQKBSwu71xb2aXIpceNx6Xz6uEJs4TA3Ik0UVU/PYnT2ZjrACQbdBgXzAnjR0pTSRs8USxTMaya0qz8eYPBwEAP+7vwXETCga9LWXMEbGCFea6LC6893MLAOCIsTnIzwh9d6JxzPn9HFqNge9kIsZYgQhGWV977TW4XC7ccsstaG5uxj//+c8RP+kFF1yAdevWoaenBz09PVi3bh2JcgQxQkTlD3HeKdepldCoAs+R6FbW7TIpfgDEuS6UMSdt2L+PXB1zQGicNdnCHJsxJMeDM4KQG3zZgWGUZjrq1CoS5QYhkeUPHp9fmKSQYzNuPtMi22VLznaUd8wpFEBBhjyEubnVoVHyWmaccCAoY46IFTp1aN22M3gyGAAOG5MjNkdEcQzWZXXB7QucvE/EGCsQgWNu3Lhx+N///hfPZSEIYgT4E1j+oFAokKXXoNvmFtWexxuX14ddbYEVr9SLH4DE57oQI8fpZYQ5tXyFuRyDBs1GB4x2DziOS1ozYY+dbeUjYY4gCCJZpCVQmDPKuPgBEAth3dbkOOY6g069/HStbMTm4ycVQq1UwOvnULurHSvOrBl0/0MkzOnkJ94S0oF1zPHFgEBgoipWx2BNbPFDgoS5sL71NtvwTStD3T4vLw9dXYEK29zcXOTl5Q36jyCIyEikYw4INbMmMmNOTsUPQN+MOSp/kDJOj/xHWYHQgZDXz4lyXBKNkXEayNE1QRAEkSqwLspos5aGw2hn1/3yE+byM0LL3G1NvGOO4zhhlLUwU/r5cjzZaRocNT5w/H6g2476zsFLINjjhnSdfE+EEsmHzTJkP3MzyrNjlq3Z3JvY4gcgTMfchAkT8Jvf/AbLly9HaWnpgLfhOA4rV67EY489huOPPx533nmncN3f/vY3ZGZmAgAef/zx6JeaIAgBnz8kLMTbMQeEmlktTm/CnDlyKn4AEp/rQoycVBllFRVA2DyiPMhEwo6y5qbL7+CMIAgiVUjkKKto3S/DkzJsLlW3LfGOuV67RzgBLZd8OZ6FNUVY39ANIDDOOqEoc8DbWZlJm0xyzBFRwDrmGrsChjCDVoXKggwoFYFxcI6LzjHXwjrmEpQxF5Ywt2bNGvz+97/Hvffei8MOOwxHHnkkysrKoNfr0dvbi507d2L9+vVQq9W48847cc0114juv3z58gF/JggienyMISsRLVh8M6vPz8Hu9iVkrJQV5uTgmAtsHNLh8vrg9ZFjTsqkijCXx4hgvXY3xuYbkrIcRtEoK+14EwRBJItEjrKy+aZyPCkjyphLgmOu1+ZCUaYOerUSY/OSs/0eKQtrivHgJ3UAAsLcNSdUD3g7tvyBMuaIaGAz5vjv67SyLOE4OE0TKESLZr3XnIRR1rC+FZMnT8Y777yDgwcP4u2338batWvx3XffweFwoKCgAIcffjief/55nHbaaVCpwjuw6ejoQEdHB/x+8UHrzJkzI38VBDGKYR1zqgS419izXBanNyHCHFv8MK1M2sUPQEDg4c/gmBPcXktEBjvKqpPxKCs7OpTMAohemY8zEQRBpAqJzLs1yjxfVK9RIUOnhtXlTUrGnMXlE9pglUnKiB0plQXpqCpMR0OnDT8d6EGvzT2gOGt1hT6DGRLPiiakDTvKysNOVBm0MRDmeiUqzPGMHTsWv/3tb/Hb3/52xE+4ceNGLF++HHV1deA4TnSdQqGAz0djXwQRCSLHnCpxjjkgIDqVZMc3C8Pt9QvBnlUF6ZIvfgDEZ6kdbnLMSZlUKX9g3WnJFeZCQnROGjnmCIIgkoVBw2QtxTlWo8cm71FWIJAzZ3V50Z2EVlaRm0wG+7l9WVRTjOc6G+DngDV7OnDu4RX9biMaZSXHHBEFugGEOXaiij8OiyZOiHfMaVQKFGUmZrw84faAyy+/HJMmTcJ3332HhoYGNDY2Cv8aGhoSvTgEIXsS7pjTs465+LvB9rRbhLrqmRU5cX++WMBmzDkpY07SuFJklJV1KPTakufS5EXBLL0aapm0yhEEQaQi4pOEVP4wHHwkhNHugSfBMSSsaCXHMc8FU4qEn2vrOga8Dd/KqlYqBhRWCCJcBppwYYU5/qREVOUPQWGuNDstIeWKQISOuVjQ0NCAd955BxMmTEj0UxNESuJjnKeJKX9gHXPxb3/c2iSv4gdALMxFs1Eg4k+qtLKKyh+S6ZgLOg3kmDFEEASRSiS2/IHNmJOpYy495IrptblRlJW4dlSLzB1zR47LRXaaBiaHB1/v6YTH54emz8k53hWYoVcnpDiOSF20faLTDFoVqgozhN/5kxJOjx9+PxexsGZ2eoTvZFlO4tYDCf/mL1y4EFu2bCFhjiBihNcfEuYSoeizbY9mR/ydOXa3F8dV56Pb5sbk4oGbnqSG6Cw1OeakjQI4pjIPfo5DtoxHL0WOOXtyHHNen18Q6+XqmCAIgkgV0jQqLJhSCLPDG/cTt+JWVnmu/wsyxAUQiRTmeDcZIM8xT7VKicXTirG3wwoFgB8ae3DchALRbfjXKEfhkZAWfR2XbPED0Cdf0xN5UaGokTUncWUsCf9mvPDCC1i+fDm2b9+O6dOnQ6MRHwidffbZiV4kgpA1fn/yHHOWBDjmNh8yYl19oIZdLk1VOrUyVNXtoYw5KWN2eLChsQcA8MtjxiZ5aUZO31bWZGByyD9jiCAIIlVQKhU40G1HfacNWpUSbq9/wND0WCAeZZXn+j+fEea6bYktgJB7xhwAHDehAP/9qQkAsGpXRz9hjj9mkOvrI6RD31HWvhNVfd3CkQpzouKH3MQUPwBJEObWr1+PdevW4bPPPut3HZU/EETkJNoxJ86Yi78wZ2TD5GUyHqFQKISqbmecx0eI6GAzAHUyLn/IkUD5A+uYyJOpY4IgCCKVmFGejfpOG9w+P/a0W+IWCcKv/9O1KtluS9lR1p4EF0Cwjjm5ClcnTiqCSqmAz8+htq4dd51RI4ysur1+uLyBE9VydAQS0kLbZ0x6Rp/1GpsZPZJG6maRY05io6xbt24N+wFnzpw55PU33ngjLr74YqxYsQLFxcVhPy5BEAPjS7Bjrm8ra7zhRQa1UoFMGe2s8MKc3UMZc1LGxTga5RxGnKFTQ61UwOvnklb+kArh3wRBEKnE9PJsvL+5BQCwrdkUP2EuKGTJed2f32eUNZFYWGFOpsJVtkGDo8bn4vuGHuwPOjUnFAVyv2wpIDwS0kHXp6ytrzAncsyN4DisWcqjrLNmzYJCoQDHccOGNQ7neOvu7sYtt9xCohxBxAhWmFMlOGMuEa2svGMux6CVVVgsf7bG4aZRVinDn8EF5O2YUygUyDFo0WV1Ja38gXUY0CgrQRBE8mEPWLc1m/CLODwHx3EwBqMM5Fr8AAAFGSHHXLc1eaOsmTr5voeLaorxfUMgHqS2rl0Q5kSOQL18Xx8hDdgT6WqlQlT8AAAGbUjiGknxjaRHWRsbG4Wff/75Z9x22224/fbbMWfOHACB8dRHH30UjzzyyLCPdd5552H16tWorq4e4SIThJgvd7TB5fWhqiADOo1K2AiMFhItzCU6Y44/2Jfbgb5BaARKrVHWLqsL+zqs2HLIiJfX7QcAXHzsWJw4uUg2rbksLi8zyirjVlYg8B3psrqSVv4gHjuXr2uCIAgiVZhWni1k3m5vNg1/hxHQZXUhQ6eGzeWVbfED0CdjLsGOOWsKOOYAYMGUIjz4SR0AoHZXB645IXC8L/fWWUK65Bq0/Y5/RSV8gwhzWw4Z8d2+Lry6/gAAwM9xmFScib9dOEvkmCvNltgo67hx44Sfzz//fDz55JM4/fTThctmzpyJMWPGYMWKFTjnnHOGfKxJkybhzjvvxLfffosZM2b0K3+46aabIlh8YrRjcXrwu3e2oid4QPh/s8vx1/NnJXehEkzCR1kT2Mrq9PiEVlO57ezxGwWHxxeW21gufLqtFXd/sANalQJuX+Cz99cv9+DZrxuw9Z5TEpJzGEvEjjm5C3OB74jD44PT4xNlbCQCNttObkI6QRBEKpKhU6OqIB31nTbsarXEpQBi00EjTA4P0jRKLKwpiuljJxI2Yy6Z5Q/pOvm696sKM1BVkI6GLhs2HuiF0e5GjkEr+9ZZQlpMKcnE/j+dAafHh+4B8iANGnH5Q196bG4seXpdv8s7LC786bNdgmOuIEOX0H3piL8Z27ZtQ2VlZb/LKysrsXPnzmHv/8ILLyAjIwNff/01vv76a9F1CoWChDkiIp6s3SuIcgDw9Z4u+P2c7MSBaGCFOWUCxJ+MBDrmRA4cmR3o8ytyn5+Dx8dBq06Nz+TKug4AgNvHIT89sLPl8vphdXnR2G1DdaG8HKvijDn57gwD4hEio92DkuxEC3NsK6u8hHSCIIhUJd4FELV17QACLfTj8tJj+tiJJNegEdyFycqY06qVst8XWVhThIa1jfD5OazZ3YlzDi+H1RXaPyDHHBEtvNlBr1GhPKf/qGmaqJW1/7HqNsY9bNCqkKFVo9PqAgfgnU1NwnWJHGMFgIhPmdTU1ODhhx+G2x1aYbndbjz88MOoqakZ9v6NjY2D/mtoaIh0cYhRzJ52izBKx+twnRaX6Ms2GvBxrGMu/o4fjUqJtKDoFO/yB7EDR14H+mlRNgJJEavLi+/ruwEAZdl6/HTXIty4YIJwfbzGZOKJaJQ1RRxzQOIb5QBx+YPcvq8EQRCpyvQ+OXOxxO/nsGpXJ4DAfs+c6vyYPn4iUauUwrYr4Y65oHCVCqLVgimhHPnaXYGTuTTKSiQSNmNuoEgh9njlj+fOwA93LcL9S6b1u10iG1mBEQhzzz77LL744gtUVFRg0aJFWLRoESoqKvDFF1/g2WefjccyEkQ/OI7D3R9shzfoFjtpSsg6z5+5Gy14WcdcgnQFvpk13o45kTAns8wqkTCXIjlz3+7thNsXcJgtrCmGQqEQ7fBvbZKjMMc45mSeMce24SWjAEJU/iDjAHCCIIhUom8BRCzZ0mREV7AoYd7EgoRHKMSa/OC+ZsIz5oL706kgWh05PhdZwemaNbs74PH5UyZDj5AHolbWAcwRW5uMws/8ccwvjxmHaWVZotsN5MaLJxF/M44++mg0NDTg3//+N3bt2gUAuPDCC/HLX/4S6enD25cvv/zyIa9/6aWXIl0kYhTyxY42ofVnTF4a7j5zKmqDI3a1uzpw6ymTk7l4CcXnS6xjDgAy9Rq0m10JHWWVW2YVu1GQozB3sNuOMXlpaOp1oCwnDSqlQviOAcCCYI5MPHf4E0GqtLIC4u9IMgogjDTKShAEITniWQCxaldov2DhFPnmy/HkZ2ixtyNwMG93e0XOm3jBcZwgXKWCMKdRKXHi5CJ8uKUFFqcXPzR292mdlf9rJKRN2jDC3PZmMwAgXatCVUFAv1IpFbh/yXQsfeY74XYlWYl1zI3om5Geno6rr756RE/Y29sr+t3j8WD79u0wGo1YsGDBiB6TGF1YXV7c8+EOTCzKgI/j8IfTazAuPx0zyrOxrdmEHS1mtJocKM1OrMqdLNhR1kS0sgKh4Farywufn4vb84ocODI70NeH0QgkVYx2N5Y8/S3SNCp0Wl24+6xpWHb0WKzeHdgBN2hVmFMVGFfJz9ChLFuPFpMTO1vMsst4TNVR1t4kOOb459RrlLJ3TRAEQaQK8SyAWMmesEsFYY4tgLC6YciLv4jk8vrhCZ5kTxU32SnTitFudsLo8GD1rk6RUJIqr5GQLoYhjsF6bG6hdXVaWbbomGX2uFycObMU3VY3jq3Ox3ETCxKzwEHC+mZ8+OGHOO2006DRaPDhhx8Oeduzzz57yOvfe++9fpf5/X5ce+21qK6uDmdxiFHOk7V70W52od3swsIpRVhYE8gyWFhTJDh2aus6cPGx44Z6mJSBLX9IlDDHNrNanV5kx8nNxo7jya38QTzKGl9nYaz565e70Wv3oBcBB9RfPt+FMTlpQhjyvAnicZXp5dloMTllWQAhLn+QuTCXntxRVt6lJzcRnSAIItWJRwFEs9GButaA8+SwimwUJdhdEg/yM0Lbr26bG2PyDHF/Tpsr9dxk8ycU4jf/2Qyfn4Pb68cJkwqF69JT5DUS0mWoUVZ2umeg9eCTFx2eNINBWN+Mc845B21tbSgqKsI555wz6O0UCgV8vsidIUqlErfeeitOPPFE3HHHHRHfnxg97G234KVvGwEEmovuOSsU1LiophiPr9wLIGCtJ2EufrBV52anJ27CnKjlUc4Zc27/ELeUFtuaTPj3hoMAAp8nn5+D2enFI1/sFm6zqKZYdJ8Z5dn4cmcg23F7s0lewlxwlFWtVECtkrkwl8RRVo7jBDEwh4Q5giAISTG9PBvvb24BEDgwjYUwJxpj7bNfIFfEjrnEFECkYv5atkGDI8flYkNjDxq7bJhUHNovTBXxkZAuaZrQZ6yvOYId559RIc6UA5DUqZ+wjkL8fj+KioqEnwf7NxJRjqe+vh5er7xcJURiCRQ+7BDKDq49oRpj80NnsqaVZaE4K7BBXbevS3bjgyMlOcJcSACIZzOruJVVZo45GWbM+f0cVnywHfx09PUnVgs7UDuDZ8UB4MQphaL7zahgcuZkVgDBj7LK3S0HiAWx3gS3slpdXmHdnEfFDwRBEJIiHnmwbNlaKoyxAv0dc4kgVRtL2ZO4+7tsws+pIj4S0mVIxxxznDKjPCdRixQWUX0znE4n9PrIbMu33nqr6HeO49Da2opPPvkEy5cvj2ZxiBTn462tWN/QDSBQ+HDtieLRZ4VCgQVTivHmDwfh8vrx7b4unDw1Nc7gDQUrzKkTNcqaFlp1xLMAQs5h8nJsZf3fxiZsPmQEAFQXpuOGBRORY9Di/o93Crc5rCIbRZni9b6cCyCcwVFWXQpkookdc4kV5nptoe8qOeYIgiCkRawLIOxuL76rD+yTl2br+7UZypUCVphLUDNrKjrmgEBJ2EOf1gEAWk1O4fJUEh8JaRLOKCtb/CAVIrYI+Hw+PPDAAygvL0dGRgYaGhoAACtWrMCLL7447P1//vln0b+tW7cCAB599FE8/vjjkS4OMYpo6LJiSkkmAOCeM6cNGC6+YHIhtGoFDh+bg5ZgsGOqwwpzSkXiM+biKcyx5Q/ZafJy4bCOOacM3Jsmuwdv/nAQE4sC4wb3L5kOrVqJS+aMQ1VBOtRKBdI0qgHPivMFEACwI1gAIRdSyTHHfkcSPcoqZ3crQRBEqpOhU2NSUQYmFGZApVCENVXi8vrwqxc34IW1DXh3UxM4pmysrtWMo8bnIc+gxQmTC6FI0P5nvMnPSMIoa4o2llYXZqAyKHyYmdeYnoCmW2J0kzZI+cNQxQ9SIOJvxkMPPYRXX30VjzzyCK666irh8unTp+Pxxx/HFVdcMeT9V69eHflSEqMeq8uLx1fuBccBVQUGLBrECTdjTDbcXg4/HzQiU6/B8rnjE7ugScDrD+WXJcoxJ8qYc8RPAOAzq7L0atnlf7GOObtb+mP6f/1yN34OuuUuP64Sx00INBGpVUo8c/Fs5Bg0yE/Xwu0bOC9PrgUQfMZcKghzapUSWXo1zE5vwssfxMIcOeYIgiCkxryJhXgxmNP8XX3XsLlwL6xtxNq9XVi7tyt4/wLBMb/xQC/W7QtcPqsiJ34LnWDy0xM/yipyzKWQMAcAC6cU4YXgZw4IvD6piSFE6mFgxF/2GGy44odkE/GRyGuvvYbnnnsOy5Ytg0oVOvA87LDDsGvXrpguHEHw7Gg2CblXc6oHry4uztRDrwl8rJt77YlYtKQTbFiHQpG4wEqxYy6eGXPBlkeZFT8AfTPmpF3+sL3ZhH9vOAAgYP++6vhK0fWTSzJRnKWHWqUUbexY2HHWWIzJJAq+lVWnlv8oKwDkBb8riXbMsWPnNMpKEAQhPY6tyhd+XlnXMcQtA42rT63aJ7qsodM24M9TU2SMFRA75roS5JiziEZZU8tx3lf8TTXhkZAmKqUC2uAJd3aUdbjih2QTsTDX3NyMCRMm9Lvc7/fD4xn+QKC9vR2/+tWvUFZWBrVaDZVKJfoXa8aPHw+FQtHv3/XXXw8gkJN3/fXXIz8/HxkZGVi6dCna29uHeVQi0bAK94whFG6FQoHynDQAgZ0K1nafqviCjjlVAscIWMdcvEZZA22ggXWKHA/05ZIxxxc+8NOnNy2ciNLstIgfZ7oMCyA4jguNsmrk75gDQt8Vk8MD7yDuxnjAOuao/IEgCEJ6zJtQILjDV+1qH3If+cGPd/bbd2lkAvwbmJ/HSyynKRqy9GpoVIH96YRlzKVo+QMAHDk+V3TMkK5LjZOghPThc+bY9Zi4+EF6jrmIv/1Tp07F2rVrMW7cONHl//vf/3D44YcPe/9LL70UBw8exIoVK1BaWhr3TIIff/xR1Ba7fft2nHzyyTj//PMBALfccgs++eQTvP3228jOzsYNN9yA8847D+vWrYvrchGRsT0C62lZThrqO21wevzotXsEB0mqwh97J6qRFUhMK6vJ4RFcknLMrBJlzElYmPvfpib8fNAIIFD4cPlxlUPfYRDkWADh9XOCIJkKo6yA+LticnhEZ//jCdsCK0chnSAIItVJ06owtzofq3d3ot3swo4W84D71N/s6cRn29sAQIhHAICGTqtwG94xV5ChE01RyB2FQoH8dB3azE502xKUMecK7UdnplD5AwBoVEqcMKkQH29tBYCUySIkpI9Bo4IRHpFjjj8+MWhVqCyQXuROxN/+u+++G8uXL0dzczP8fj/effdd7N69G6+99ho+/vjjYe//7bffYu3atZg1a9ZIljdiCgsLRb//6U9/QnV1NU444QSYTCa8+OKLeOONN7BgwQIAwMsvv4yamhp8//33OPbYYwd8TJfLBZcrtLI2m80xWVaby4sf9vfgpMlFcHl9KTNaFQu2Br9IWpUSk4ozh7xtRW7I7dPc6xgFwlzQMZdAYS4RrawiB44MD/TlkjH3bTA7BgDuO3u6YP2OlIJgAUSLyYndbWb4/X4oldIWu/h8OSB1RlnZfLdeewKFORk3KBMEQYwWFtYUY/XuTgDAyrr2fsKc38/hq7rQ5NBNCyfiwU8CzZq8Y87s9AhjnlWFqeOW48nP0AaEOasbHMfFXUxKZcccAMyfWCAIc4l08hOjG94gwZc/mBwetJoCxQ/Ty7ITetwcLhEfNS1ZsgQfffQRVq5cifT0dNx9992oq6vDRx99hJNPPnnY+48ZMyZp44Vutxuvv/46Lr/8cigUCmzcuBEejweLFi0SbjNlyhSMHTsW69evH/RxHn74YWRnZwv/xowZE5Pl+9vKPbjs5R8xZcVnOP/ZwZ9/tGF1eYWdgSmlmcMKB/woKwA0G1M/Z45vZU2WYy5uwpzMHThsa7DDLc0dkZ0tZnxX34UxeWk4pjIP8yYOnt8YDsdPKkR1YTrcPg4tJmeMljJ+uBgnY6o45ioL0zGhMAMFGVp0WhL3N6BWVoIgCOmzsCbUrF47QM7c9hYTXv/+AKoL03FMZR4unTNeyG7mx1f3M2OsVSk0xsrDn9Dy+jmYHfE/sSrOmEs9Ye7kmhLcsmgiXr7sKLyw/MhkLw4xSuAzse1uLziOQ2OXDXnpWlQVpGPmGOmNsQIjEOYAYP78+fjqq6/Q0dEBu92Ob7/9FqecckpY93388cfxu9/9Dvv37x/JU0fF+++/D6PRiEsvvRQA0NbWBq1Wi5ycHNHtiouL0dbWNujj3HnnnTCZTMK/Q4cORb1s+zoseGXdfgCA0+PHnnaLILiMdtjih3AaVMpZx5xR+uJAtCRHmGNaWeM0yip24MjvQN8gg1HWdrMTXVY3DvU4RKHQIyU7TYP6Thvsbp8oi0aqiBxzKZIxp1ersK/Tii6rG10JyscBqPyBIAhCDpRmp2FasKxhW7MJ7WbxfvLKug5wHFDfacOSWeVQq5UYnx8Q3w522+Hx+UXFD5WpKMwxkzZdCRhnZR1zmSnomMvL0OI3iybhpMlFmFA09NQTQcQK3jHn5wL7+20mB7qsbjQEBTopMuJvv9vtRkdHB/x+sRNk7Nix/W6bm5srsgHbbDZUV1fDYDBAoxEfcPf09Ix0kYblxRdfxGmnnYaysrKoHken00Gni914EMdxuOfDHfAyQpzT40dDpxUThxnbHA2EW/zAU5YtHmVNdfjPjTqBwlyGVg2FAuA4CNkjsYZ14ORIdAU6FHIof2B3yIuyol+nsSMtDZ02zJ9YOMStk08qjrKyf8e+B1zxhP++qpQKZKXgGX+CIIhUYeGUIuxoCcTwrNrVgV8cHTp2q2XGWHl3XXVhBna1WeD1c2jqdYiKH6oKpZfTFC2sMNdtdaM6zrsy1hR3zBFEMmANEg63D+3mkMhelKlPxiINS8Tf/r179+Lyyy/Hd999J7qcn8FnixZ4Hn/88REvYKw4cOAAVq5ciXfffVe4rKSkBG63G0ajUeSaa29vR0lJScKW7dNtbVi3rxuAOGR1W7OJhDn0qTaO2DGX+qOs/iQ45pRKBTJ0alicXlji5Jgzynw0ji1/kGrGXIcltJEqjsFGig1SlYdjLvVGWdmdjU5LYoKrgZBjLtegoXBngiAICbOwphhPrtoHICDE8cJcm8kpCHYzyrNRnBXYnrCuuMYuq2j7npKOOSabtduaAMdcUJhTKsQndQmCGDmsMGf3+NDBxLsUx8CMEA8iFuYuvfRSqNVqfPzxx2G3qi5fvnxECxdLXn75ZRQVFeGMM84QLps9ezY0Gg1qa2uxdOlSAMDu3btx8OBBzJkzJyHL5fL68OAnO4XfLztuPJ6oDWwstzWbcN4RFQlZDimzLYLiBwAoydJDqQhYV1tGwSgr75hTJfhgOEuvgcXpjVv+BjvKKsfyB51aKbgKHR5pZszF2jHH7qA3yEGYY/4u+hTZGU6WY64nmAlJY6wEQRDSZkZ5Ngozdei0uLB2byesTg8y9BrU7gq55RZMCWXR9XXD8+2sKqUCY/MMiVvwBJGfwTjmbPGPhOBHWTN0ajqxRRAxQpz17U1Nx9zmzZuxceNGTJkyJR7LExf8fj9efvllLF++HGp16CVnZ2fjiiuuwK233oq8vDxkZWXhxhtvxJw5cwZtZI0125pMOLYqH9/Vd6G6MAOXzAkJc6xTbLRidXmFA/xwih8AQK1SoiQr0A7ZbEz9UVZ/MIBPpUrsxpzPmUuEY06OB/sKhQJpGhXsbh+c7uSOsj7/TT02HzLC5fXj96fXCKMnIsdcVvQbqYIMLTL1ASclv+MuZcSjrKnhmGP/jh0Jcsw5PT5hXFuO7laCIIjRhFKpwJkzS7GjxYwWowP/+v4grj2xWlQGsaimWPiZPelW3xlyzI3JTRtxk7uUKctJw9GVefBzHEyO+AtzfPlDKjayEkSyEDnm3L4+xzzSdMxFvDadOnUqurq64rEscWPlypU4ePAgLr/88n7X/e1vf8OZZ56JpUuX4vjjj0dJSYlo3DXerN3bhfd+bka72YWlR1QgP0MntIruaDGP+gKISIsfePhx1h6bW7JjhLEimY45ICBusCOBsaKHOUuZmy7Pg31+JCHZGXP/+v4gPtnWhpV1HdgZHFMBgI6go0qhEGeqjBSFQiE0tDUbHZItveBJxVHWDJ1a2BlJlGOOih8IgiDkxZXzq7DxQC+aeh14evU+HOy2Yd2+wPFdcZYO08uzhNtWMTEVe9qssAdPNqbiGCsAlGTp8ENjD37a34tdbfE/ySg45ihfjiBiBt/KCgSFueA+sVatRHaaNI8rwzoSMZvNwr8///nPuOOOO7BmzRp0d3eLrjObzcM/WBI45ZRTwHEcJk2a1O86vV6Pp59+Gj09PbDZbHj33XcTmi/H5jQcFqzu5XPUAs2G0nedxJNIix94eHETSP1x1mS0sgLiZlZLHAogxK2s8jzY10tEmONdlQBgdITeV/7sUUGGDmpVbIQpfked44CDPdLOeHR62FbW1BhlBUKuuUQ55nplngdJEAQx2ijPScMFRwbicqwuL27/31bBRb5gSpFopDLboBFO3jUwxyWpWPwAAGPyDOB3qeN9HOb1+YV9RHLMEUTsEJXwMY65okydZEfGw1oD5OTkiF4Ax3FYuHCh6DZDlT8Qg8Nv4JSKwIYAAGZUZOPzHW0AgK1NplFdLR1p8QNPWQ5bAOHAhKLU3HkAkifMZTFnGyxOLwoyYmsL5kdZ9RqlbPO/+AIIR5JHWT2+kADFu6j8fk7YSMXS0s3uqDd0WsPKhUwWqeiYAwI7HY1dNlicXtjdXtFZw3ggFubkKaITBEGMNm5fPAWfbW+D0e7BhsYe4fKFU4r73bayIB3dNrfopGmqOuZ0ahUqcg042GNHY6dNOMaNBzZm/zBDTye2CCJWsKOsJodHmMSKRXRPvAhrb3316tUxf+J9+/ahvr4exx9/PNLS0uK60pMqHMehsTOY05BngE4d+ACxI5ujvQAi0uIHHlEza29q58wJo6zKxAoLYsdc7HPmeoWWR/ke6PMbBYfHl9R1nJ3Z8eO/D902tyDqxjIEVU4FEGz5Q0oJc2zOnNmF8QXxFebYUdbcGIxEEwRBEPEnL12L2xdPxh/e2y5cplMrcdyEgn63rSxIx08HekWXVaWoMAcECi8O9thhCzpt4nUwzzeyAkAmOeYIImawwlwHW3aXKc18OSBMYe6EE06I2RN2d3fjwgsvxKpVq6BQKLB3715UVVXhiiuuQG5uLh599NGYPZfU6bS4hDMl7MEs6wwbzQUQRrsbHh8HpSL84geecpFjTtrjdNHiD4or6iSNshq0KnRbYxuOy3Gc4JiTszDHO/18fg4eHwetOvHCnM/PiUaNm4KFKPGqDRcJc50SF+ZE5Q/ydGUORDGz09FhcWF8nA+e2kxOGLSBohMaZSUIgpAPFx01Fq9/fwB1rRYAwFHj8wS3P8tAY6upOsoKBPZl1uzuBBDYl4mbMMfsn9EoK0HEjjRmWqTLGtuyu3gR8Rpg69atA16uUCig1+sxduxY6HSDH+TdcsstUKvVOHjwIGpqaoTLL7zwQtx6662jSpirZw5a2WDVvHQtynPS0Gx0CAUQiR5TlALr67txsMeOTJ0Kp88ojei+oyljjnfMKRP8GaksSBdaRztjnGVldXnh8QVel1yLH4A++QYeX1Lay8wOsZuxhRfmmNrwwjg55hql7phjR1k1qeSYC22DE1EAcbDHDrvbhzyDRtKjywRBEIQYlVKBPy+dif3ddhw1Lhe2QQrT+o6tpmlUkm02jAWiWI4uK+ZU58fleayu0D4alT8QROxgHXNdjIGkUO6OOZZZs2YNOY6l0Whw4YUX4p///Cf0+v4He19++SW++OILVFSIxzMnTpyIAwcORLo4soY9aK0sFG/wppdnodnoEAogRmPO3MpgbbvF5UNNadYwtxYzWkZZ/Uxrb6Idc0WZeiGwtj7G4bip0vLYN3g0GS1APXaxm7HN5ITPz8XNMZeuU6MkS482s1MGwlxqjrKyZwMTUQDBO7t77B6Mz0/d0SaCIIhUZGZFDmZW5Ax5m6o+xymVBekpHUHEjuk2xtH9byHHHEHEBdb5y+fLAdJ2zEV8JPLee+9h4sSJeO6557B582Zs3rwZzz33HCZPnow33ngDL774IlatWoW77rprwPvbbDYYDIZ+l/f09AzptEtF2KafvjkNM/rkzI02fH4Oa3YHhDmDVoVjq/Iiur9BqxZGqpqNqSvMeRlhTpXgHaTKOO60pErLI7tRSFYzq7GPMOf1c2g3O9HOOOZimTEHhD4bPTZ3v+eXEuKMudQZZWXPBnbE2THn83PY0RJoZK/ITaOMOYIgiBRkXL742K2vUJdqJMr9L8qYI8ccQcQMA2OOMDLTQ1LOmItYmHvooYfwxBNP4IorrsCMGTMwY8YMXHHFFfjb3/6GRx99FMuWLcPf//53vPfeewPef/78+XjttdeE3xUKBfx+Px555BGcdNJJI38lMoTNX+q7gZvBnLna1mRO1CJJhs2HjOgOqtvzJxaM6KCZb2ZtMzvhZVopUwk/xwhzCXbMleWkCaOZsd5pYVu/5JwxJxLmktTM2mvrX8zRYnTEzTEHiNdnUi6ASNVW1kQ65uo7rYLoHElzNkEQBCEfdGoVCjJC+2Op2sjKU5KlF6Ye4rkfQxlzBBEfDNqBSwql7JiLeA2wbds2jBs3rt/l48aNw7Zt2wAExl1bW1sHvP8jjzyChQsX4qeffoLb7cYdd9yBHTt2oKenB+vWrYt0cSSJ2+tHr9097B+eFzPSNCoU93GssAc4W5vELUijgdq6duHnhTX9a9vDoTwnTcjoa7e4RLlzqYLIMZdgYU6lVKAyPx272y040G2PaRbi/2/v3uPbquv/gb9yaS5N2/R+v6zdrbvKGLgLl8E2nIIyYIIgMJjy84tOuSioKIobysULQxAEFYegXET4IuJXEAaM28ZgG2wdu9F2dO3W+/2SNE0+vz/SpJ+z3pI2l5OT1/Px6OORJScnp9knac4774ucZaWZUtYoZcy1jZCxVtfep8iYC/UfqROzKU8uTgvp/kNFUcqqoR5z8v9nuHvM7a0dyuiey8AcEZFmJVsS/L2a5CCdFun1OkzJtGH/8U7UtPbC5fYgwRD6zwlyxhx7zBGFjpwc0SW9ztTcGzPod5jy8nLcdddd6O8fOtlzuVy46667UF5eDgCoq6tDTs7IwZS5c+fi0KFDOP3007F69Wr09PTgoosuwu7duzF16tQJ/hrq8F5lCy568B2c+otXsfaRHYr+XydyuT2oafVOC52SaRvWuD/dZsJ58/JwSkkaatscUcu2iZYtg/3ldDrg7JnZE9pHPPSZc0cxMAcMBWD63Z6QPsdtUi+AdI0Mf3BErZR1eMZcbVufv8RRpwMyQlx+OPWEpslqpcyY004pa5LZ6G96G/bAnNRqgRlzRETate60KVhzcgEuXFCARaXhGYagJr42Q26PwNHBc7ZQY485ovCQhz/0Ob2f901GfVT6fQcq6HeABx54AOeffz4KCwsxf/58AN4sOrfbjRdffBEAUFVVhW9961uj7sNut+PHP/7xBA9ZvT6u78CumnYAQEefC8/uqsXFpxSNuO3R1l5/ttNofRpSrAn4915v5uHbnzTjnNkTyxyLNUdbe3GwwTu2/TOFqROenqKczMrAXDjIQ0sqm7tRnDG8f+REtGpl+IP0R6E3WqWsI2TMeUtZvRlzmUlmGEP8LXCsTGaVe8xZNJQxB3iz5qqbe8JeylrBwBwRUVxYu2QKsCTaRxE5irYcTT2KSa2hwh5zROEhB+Ycg1/EZyebVT20JugzkaVLl6K6uhobN27E/PnzMX/+fGzcuBHV1dVYvHgxAODKK6/EzTffPOL9p02bhp/97Gc4fPjw5I5cheo7lCdAd/3nADpGyFYBlCerJw5+8Fk5ayhTTC7t1LrXDjT6L8vPQbDkwJxWB0AMeIYCC9EIzIVralW7YvhDDAfmVFrKWtvWi6bBgE04mqAWplmRYPCux6owTjObLOVUVu1kzAFDAyC6HANhy7jm4AciItKqSHzJqOwxp95MHqJYIydHuNzeRBY1D34AJpAxBwDJycm49tprJ/SA69evxxNPPIGNGzdi4cKFuOKKK/CVr3wFubm5E9qfmhzvUAZ/Wnr6cc8rB7Fh9dxh28pv8KM1UF06NRNmox7OAQ9eO9AIj0cMK3nVoldD0F8OUJay1mq0lFWKy8EYjcBcVng+tCiHP8TuBxX5j4JDBcMfTAY9+t0eHG0bytgNRxNUo0GP4vREVDb14EhLj2rfu7Q6/AE4cQCEAyUZoW/UXcXBD0REpFHy+Vm4BkCwxxxReJgMehj0OkV1mZoHPwABZsy98MILcLlc/stj/YznxhtvxPvvv48DBw7g3HPPxQMPPICioiJ87nOfU0xrjUXHOry9fPS6oUyZx7d/in3HOoZtW6mYyDpyarTVZMDp0zIBeCfrVYywH63pdg7gvapWAN6Mt/Lc5AnvKz8OSlnljLloBD5KM8PTS4zDH0JHzpjLS/X+QTrWNtR3LFzfHvnWhsPlwfEw9zmbKIdLuxlz8v+rPOgjlPZw8AMREWlUmfwZtyk8/XLlpvTsMUcUOjqdDokJys/2msiYu+CCC1BfX4/s7GxccMEFo26n0+ngdgd28jljxgxs2LABGzZswPbt2/HNb34T69atw9q1awO6vxodb+8DYEKe3YrLFxfjly8dxLwCOza9cgh/uPIUReCkWgpilI6RybB8Vja2DJZ2vrq/EfMLU8N1+Kqwt7YdJ5ek4sDxLpxdnjWpOvAMmwl5KRbYzAYYDerL1gmFaGfMpdtMSE1MQHuvK6SlrHqdDtOzk+Bye5ASw98gWhKi32PON/zBbNSjKC0Rn7b0wiGVcGaH6dujGTlJONjQCZvJiIq6DlVORVZkzGmux9zQh4/GrvAERjn4gYiItMqemIAMmwktPf1hLGUdqmpgYI4otKwmgyL4Ha5znlAJ6EzE4/EgOzvbf3m0n0CDcj47duzADTfcgAsvvBCHDh3CxRdfHPxvoCIdfd7/+II0K645vQznzMrBR7UdeHV/I57bXafY1td3KcNmgn2MUr0V5UOlnK8d0H6fuXc+acH2qla097lwakn6pPal0+mQYk3AJ009eOtQsyKVVSsUPeai1MzSl+p/rCM004Ndbg+2VbXgcGM3jAa9qpt0jkcuZY12xly6zYT81OF/kMI1NnxxWQaOtvbhQH0XtlW2hOUxJkvuMWcK8QCMaJPT9cOVMcfBD0REpGW+z7iNXU50OUbuGz4ZvlLWRJMhKr2iibRMHgABaKSUVfbYY4/B6Rz+Ib+/vz+gUtRDhw7htttuw4wZM3Daaadh//79uPvuu9HQ0ICnnnoq2MNRpYJUK0xGPdYuLfFfd+f/7UdHn/cNvds54J+UN9pEVp9cuwVzC1IAABV1najvUGdJWKjIGRinlE4uMAcM/UHtd3tQp8E+cx4R3amsQOib4x5q6EL/YMBkTn7KpPcXTYqJQFEIzAkh/IG51EQTClKHT83NTg7PH6kFxan+ARCv7m+AEOoLjPumspoMelX2wJsMeZp1YxhKieXBDwWpHPxARETaI5+nHWnuDfn+fcMfmC1HFHpWk/J1pfZS1qADc+vWrUNHx/BeZ11dXVi3bt249y8vL8dLL72E9evXo7a2Fi+//DLWrl2LpKTQj6COFl/J1hnTs3DuPO9Qi5aefmx65RAA4EgAgx9ky6WsuS0azpoTQvgzMNJtJuTbJx8wKJVHnYewB5paDHiiH5ibKvVIDEVgTktZOIoec1EoZe3pd/snEaUlJigGoviEK2Mu2ZKARaUZALzDVw43qu/15ytl1drgB+DE4Q+hz5jj4AciItK6cPVS9vGV2TEwRxR6ms+YE0KMWFpWW1sLu338D+cHDx7Ee++9h+uvvx45OROfuKlm8snvrefN9p+cP7btCD4+1olKqYHoaIMfZCtnZfsvb9nfGMIjVZfjHQ609Hize+YW2ENSwlgmT1QKYQ80tRhwRz8wp8yYm/yHFjlrMtYbyke7x1xbz9Dgh7TEkUtZw5UxBwDLy4feu+Rpy2rhK2XVWn854MThD6HPmFP0lyuM7dcpERHRSOSMuVCfRwgh/KWsnMhKFHonBubUnjEX8LvAggULoNPpoNPpsGLFChiNQ3d1u92orq7G5z//+XH3M3369IkdaQyRp4Hmp1rx7eXT8KuXD8IjgF+9fADvH2nz3x5IxtzcfDuyks1o6nLio6NtcLrcMCdoa4IgoJzwN68gNCWM8h/UcDVujSa5lDUawx+A0H9o2Sutg1gvZbVGuZTVN/gBAFITE1B4QimrTgdkJoWvBHHlrBxsfPFjAN4vFb511rSwPdZE+ANzGpvICni/fU80GdDb7w5Lxtz+453+y8yYIyIiLVJ8wR/i84jefjd8H+OZMUcUenLlUoJBh9Qx+vqrQcDvAr5prB9++CFWrVqlKD01mUyYMmUK1qxZM+J909PTcejQIWRmZiItLW3MTKjW1tZAD0m1Tpw+eM0Zpaio68C600rxzifNeP1gEwDgS5/JwyklaePuT6/X4bx5udhW2Yratl7sqevAqVMm339NbcJRwhjuFPRok0tZo9Uja0pG6D60uNwe7K/vAuD9MJRsUfcb6HjkMd3RGP7g6y8HeDPmcu0W6HTwfxDMsJlhDOPQg+KMREzPTsLhxm7sqmlDa08/0lXUi8zp0m4pq06nQ3ayGUdaesOSMXe8w4GS9ERYEgyYkaOdVhREREQ+RWmJmFdgR6fDheYQf8nVI02LZGCOKPTkjLl0m0n1AwUDfhe47bbbAABTpkzBV77yFVgsgZc/bdq0CcnJyf7Lan9SJuvEwJzZaMDvr1gIANhT247cwfrmzxSmIiMpsJTK6TnJePTdTwf3oc3AXDhKGNNtJqQmJqC914VqDZayejzRz5izJBhQkGpFXXsfqpq6Ry13D4Q8+CHWy1iBE6ayRqOUVQ7M2UwwGfXISjKhsct7fbj6y8mWz8rG4cZuCAG8fqARaxYWhv0xA+XLmDNpMDAHeMfCH2npRZdjAH39bsV6nKzKph582toLo14X1nJoIiKiaLGYDGjodKCxyxnyliRdcmCOpaxEISd/vk9LVE9iwGiCfhe46qqrAHinsDY2NsLj8ShuLy4uHvU+AHD11VcH+5AxJd1mGvPk55ozynDNGWVB71fOIJMzy7RCHvyQlpgwLLg5GaWZNuyuacexDkfIT06jTQ0Zc4C3nLWuvQ+djgG09vQHHHA+kZYGPwDKTKyoZMwpesx5sw9zUiz+wFzmBP+fgrFyVg4e3loFwDu8Ri2BOSGE1GNOO+8JMuUACAdKMsZvnRCopi5vFl52sllzE22JiIh8CtKsaOxyoqnLCYfLregfPBm+iawAkMyMOaIwGPp8qvYyVmACwx8OHz6MM844A1arFSUlJSgtLUVpaSmmTJmC0tLSce9vMBjQ2Dh8gEFLSwsMhtg/OQplQEk2MzcZCQbv4tqrwcCcPPhhXmFqSLMqlcMJtJU1p4aMOSB0z7HWGsrrdDp/f4PoZMwN9ZjzfVOUZhsKxtnM4X/PPbk4zf/H8M1Dzf6MyGjrdw8dhxZLWYETB0CErgTH5fagudv7fp2l8glXREREkyGf29V3hK41RDcz5ojCSj5PjoVy8aCP8Oqrr4bRaMSLL76IvLy8oAMoQmpWL3M6nTCZ1J9iOJ5wBebMRgNm5CRj3+BU1x7nAGwxsMACpQjIhGjwg89UafJtdXMPZsf4QAGZnDFniGKJeOkJ029PmWCp9d66oYbysT74wSfRZECfyx2VjLl2qZTVFxyzSRmjkRh6YNDrcPbMbPzv7jp0OwewrbIFy2Zmhf1xx+OUAoSh+vZbbeRS5cau0J1MNHcPBflyVD7hioiIaDLkc7u69j5MCWBwXyC6HHKPOfVn8xDFGpdU2anJwNyHH36InTt3ory8PKj73XfffQC8GSR/+tOfFMMj3G433nzzzaD3qUYFaeEJzAHA/EI79h3rhBDAx8c7NdVnLpwljMpsLm0NgHDLgTl99LJ+5uSn4NQpaRjwCByo7xz/DiNwuT3+SY9aGPzg4wv6RGf4w/CMuVOmpONgfRf0Oh0WFKVG5DjOmZ2Dg/Wd0EGHh9+sxJkzMqPea9Tp0n7GXJ7digXFqTAZ9IqSmcmSs++yI9CnkIiIKFrkc7u6tr6Q7dc14MFnp6TDIwQykrTxmZdITU4uTsP+Y51wuT1YUDz+wM1oCzowN3v2bDQ3Nwf9QJs2bQLgzZh76KGHFGWrvqmuDz30UND7VZv8MGXMAb5m+EcBAHs1NgBiT23oBz/4lGUps7m0RA7MGQ3RC3TMzE3B7pp2DHgEWrr78ZMvzg468KK1wQ8+vp6GDhUMfwCAr59eiq+fPn7bgVD6wtxc/PbVwzjY4A28vrq/EefMzonoMZzIOTD0/6HVwFxaogm7a9oBAAsDmAAeKHnKaw4HPxARkYadmDEXKi09Tuw40goAuGJxScj2S0ReVy2dgquWTon2YQQsoMBcZ+dQBszdd9+N73//+7jjjjswb948JCQoI/wpKSOXn1VXVwMAzj77bDz33HNIS1N/1HIiwlXKCmh3AEQ4Bz8AwBSp4XmVxnrMKYY/RDEDyW5NwKlT0rGtqgU1rb2obOrGtOzkoPahtcEPPr4ec70u96Qm1k6ELzBn0OuQEsX+JTqdDt9ePg3feXI3AGDDv/bhjOmZUS0hdSgy5rRZypqRNNQeoqW7f4wtg9PYJZWyssccERFpWH6YAnOKHnMxUGZHROEV0LtAaqqyGb8QAitWrFBs4zvhdLvHzgp5/fXXJ3CYsaMwjKWsvgEQLrfAHg0F5uTBD3ML7CEPXFgSDChItaKuvQ9VTd0RD46Ek0eoY/gDAKyYlY1tVS0AvBlRwQbm5D6DmsqYGww+uT0CLreAyRjBwFyPt5Q11ZoQ9TX/xfl5eHJHDd6tbEFtWx8efKMS3z1nRtSOR5Exl6DNjDlFYK4ndMMfGqWMuSyWshIRkYaFq5S1i8MfiEgS0LtAqINptbW1eOGFF1BTU4P+fuW3+Pfcc09IHyvSwlnKqtUBEHsjkClVlmVDXXsfOh0DaO3pR0aSNk4mFRlzUQ7MrZyVg5//ez8AYMv+Bly7bGpQ91cMfgjxAJBoskrDFvpcbpgiWDbpG/6ghhHhOp0OG1fPwefvfQsDHoGHtlZizckFKMkITRPlYMnDH7RcyurTHMqMuU55+AMz5oiISLtSLAlIthjR5RjAsY4QZsw5mDFHREMCehdYtmxZyB5wy5YtOP/881FWVoYDBw5g7ty5OHLkCIQQOPnkk0P2ONFgSdAjLcwnwPMKtDcA4mhrr/8P3vzC8ATmSjNteOuwtzdidXOPZgJz8hjoaGfMTcm0YWqWDZVNPdj5aRvaevr9fc3GM+D2oK9/ADodUJphQ4pGBj8AQxlzAOBwuWG3RuZ36x/woGewr50coImmadnJ+PrppXj4zSqkJyZgX11n9AJzcVDKmmDQIzUxAe29rpBmzDVIE145/IGIiLSuINWKA/VdON7ugMcjQvJluFzKmsyMOaK4F3SawObNm/HMM88Mu/6ZZ57BX/7yl3Hvf8stt+Cmm27C3r17YbFY8Oyzz+Lo0aNYtmwZLr744mAPR1XyU61hLxeTS/z21mqjnPWDI23ocgwg3WbCzJzgyh8DJU9m1VKfOTVlzAHAilnehv4eAbxxqDHg+9W09uJQQzeMeh1ODmGTejVQZMxFcABEuzT4IVUlgTkA+M6K6chKMqOhy4m7XjoQteOIh+EPAJAxGBxvDUPGnFGvQ7qK1hYREVE4+Ppf97s9aOoOzRddzJgjIlnQZyN33nknMjMzh12fnZ2NO+64Y9z779+/H2vXrgUAGI1G9PX1ISkpCRs3bsTdd98d7OGoSq49/CU9ckaZVgZAVA8GyrocLhSHKXumLCvJf1lLk1ndnqGsn2hnzAHAivJs/+VX9wcemPOtAZdbIC8Cr6NIkgcc9EYwMNfW6/JfTrepJwMxyWxErt0CIYDatl5FgCySFKWsGu0xB8CfHdzT7w5ZYLhxMGMuK9msii8EiIiIwknuM1cboj5z7DFHRLKgz0ZqampQWlo67PqSkhLU1NSMe3+bzebvK5eXl4fKykr/bc3NzcEejqrk28PXX87HNwACUPZmi1Uej0B1izcoU5JhgyFMJ3llUsZcdXN3WB4jGtxDsYWwPXfBWFiS5i/VfPNgE/ql4MdYqqUsRjm7UQsST+gxFymtPUMZUmopZfXx/R97hLeUPRqUPea0WcoKAJkhHgDhcnv8/eqyOZGViIjigNxD/FiIJrP6MuZMBr2mP4cQUWCCDsxlZ2djz549w67/6KOPkJGRMe79Fy9ejLfffhsAcO655+J73/sefvGLX+BrX/saFi9eHOzhqEp+avhPUnwDIAD4B0DEsrr2Pn/wpiyMAZn8VKu/6b5WM+YMKpg0azTocdbMLADebwI/ONIa0P0qpf8TObtRC07sMRcpai1lBZTB18oovR6drngpZR3qAdcSgnLW5m558AP7yxERkfYVSIG5ulAF5gbP4ZgtR0TABAJzl112Ga677jq8/vrrcLvdcLvdeO2113D99dfj0ksvHff+99xzDxYtWgQA2LBhA1asWIGnn34aU6ZMwSOPPBL8b6AikSrB800u9QwOgIhlikyprPAF5gx6HaZkJAIAPm3phVvqzRbL5N/DaIh+YA4Y6jMHBF7OKmcxlkZpGEC4RKvHnFzKGu6hNMEqy5IzWKMUmIuDqawAkBHijLkGaSIrBz8QEVE8kEtZ60JUyuoPzLG/HBEhwKmssttvvx1HjhzBihUrYDR67+7xeLB27dqAesyVlZX5L9tsNjz00EPBHoJqyYMZwumkolR80tgNjwCONPfE9GTWqqahgEw4M+YAYFFpBuzWBLjcAsfb+1CYnhjWx4sExfAHFWTMAcCyGVk4uTgVOuiw40grhBDjDkXxZTFm2EywqyyINFmKHnMRzJhrU3HGXFmm3PMxOqXlyh5z2i0hkSdQN4cgY66xc2gia04yS1mJiEj7CsJYympjYI6IMIHAnMlkwtNPP43bb78dH330EaxWK+bNm4eSkpJwHF9MKc2MTAleSYYNH3zaBsA7DCKWZ9nK2TLhLmFMMOjx/hHv81ankcCcR0gZcyroMQcAdmsCTEY9tld5y1grm7oxLXv0abvdzgE0dnmzcMrCmDUZLXKPOUeUprKm29QVmJuSOfTai17G3ND/hUXDGXOZ0v99KEpZG7qYMUdERPElK8kMk0GPfrcnJKWszgE3+gcbRSczMEdEmEBgzmfGjBmYPn06AIybDZOWljbuNj6trYH1pIpnU1VQBhYqVRFs+i/3ADzWEZpvu6JNkTGnksAcAKycleMPzG3Z3zhmYO6Ihgc/AMoec5Ec/qDmUtZkSwKyk81o7HJGLzDnir+MuZbuyZeyNkkZcxz+QERE8UCv1yEv1YJPW3pDUsrqy5YD2GOOiLwm9E7w2GOP4Ve/+hUOHz4MwBuku/nmm3HllVeOuP2999474QOk4bKSzbCZDOjpd8d+YG6whDHZYkRGmLN6CsPQHyLa3G71ZcwB3j5zP//3fgDewNz/LJs66raVUiljpLJOI8kSrcBcj3pLWQFvELaxy4nm7n509Ln803wjJT57zIUgY07uMcfhD0REFCcKUq34tKUXXc4BdDpcSLFM/HNLj3Po8yB7zBERMIHA3D333IOf/OQn+Pa3v43TTjsNAPD222/j2muvRXNzM2688cZh97nqqqsmf6Tkp9PpUJaVhL11Haht64VzwB2TY7YdLrc/c60sKyngrMqJKkgdKp8L1USlaHNLpawGFQXmSjNtKMuyoaqpBx982oq2nn6kjRJ4VZYzazBjTipl7Y3o8Ac5MKeujDnA+3/9XrU3q7K6uQcnFaVG9PEdcTKVNdMm95ibfMZcY5fUY44Zc0REFCfyU5Vf8KfkTfyzVZdzqKqBGXNEBExgKuv999+P3//+97j77rtx/vnn4/zzz8cvf/lLPPjgg7jvvvsC2kdlZSVuvfVWXHbZZWhs9E5t/M9//oN9+/YFezhxy1fy5xFATUtvlI9mYj5t6YUvrhTuwQ+AspS1rt0xxpaxQ57KqqbAHACsKM8G4F2jWw81jbqdIjCn8VJWRwQz5tJsJkzNsmFKRiISDOoLPMkDIOSpvJGizJiLvS82ApViNfqzaUPSY24wY86o1yFdhZmYRERE4VCQGrrKG7mUlT3miAiYQGDu+PHjWLp06bDrly5diuPHj497/61bt2LevHl477338Nxzz6G723tC9tFHH+G2224L9nDiltyLqypGy1mrFCWM4Q/IpNtMsCR4l3xdW2wGM0+k6sDcrBz/5Vf3N4y6na+cWa8DijNifyDHieThD30RzJjbU9uByqYe9EsBKDVRvIc1Rf49TB7+YE5QX+AyVHQ6nX/4R0tP6DLmspLNquprSUREFE4FUkucyfaq7nZKPeYYmCMiTCAwN23aNPz9738fdv3TTz/tHwYxlh/+8If4+c9/jldeeQUm09C37cuXL8f27duDPZy4JZf8ReOkNhSqIlzCqNPp/N921bX3QUhloLFKEZgLcylwsE4pSfP3Ddt6qAku9/AAkRDCnzFXmJaoycylaPWY8wUBE1X6ga80K7pfLsRLjzlgaABEa0//pN73XG6Pv08dBz8QEVE8CWnGnJPDH4hIKeizkQ0bNuCnP/0pPv/5z+P222/H7bffjs9//vPYsGEDNm7cOO799+7diwsvvHDY9dnZ2Whubg72cAJSV1eHK664AhkZGbBarZg3bx4++OAD/+1CCPz0pz9FXl4erFYrVq5c6R9soVbRLgMLheooTOP09YdwuDyKqZWxSg7MGQ3qCswZDXqcNTMLANDlGMD7R4ZPXG7qdvo/nGhxIiug7DEXqcCcEAI9/d7nVc7YU5Pi9ER/lmd1NDLmXPFRygoAmYMDIFxugU6pfCZYzd1Of/sBDn4gIqJ4IgfmaifZq7rLwYw5IlIKODBXUVEBAFizZg3ee+89ZGZm4vnnn8fzzz+PzMxM7NixY8SA24lSU1NHLHndvXs3CgoKgjj0wLS1teG0005DQkIC/vOf/+Djjz/Gb37zG6Slpfm3+eUvf4n77rsPDz30EN577z3YbDasWrUKDod6+5BNyRwq+YvVyayRLmUFtDeZdUAKzOlVljEHAMsH+8wB3umsJ5KzPbU4+AFQ9piLVCmrw+XxB1DUGphLMOhRnO59H6tu7oHHE9kM1ngpZQWgmHjdMokBEI3SRNacFAbmiIgofuRJvaqPTTIwJ2fMJTNjjogQxFTW+fPn49RTT8U111yDSy+9FH/9618n9ICXXnopfvCDH+CZZ56BTqeDx+PBO++8g5tuuglr166d0D7Hcvfdd6OoqAibN2/2X1daWuq/LITAvffei1tvvRWrV68GADz22GPIycnB888/j0svvXTYPp1OJ5zOoROUzs7OkB/3eJItCchONqOxyxmzpay+gGKe3YJEU2T+KCnS0Nt7Ma/QHpHHDRdFxpxefcGFs2Zkw6DXwe0RI2bMaX3wAxCdHnO+bDkAsEXotTURpZk2VDf3oM/lRkOXA3l26/h3CpF4LGUFgJaefpRlTWw/DZ1DX1ZlJ7OUlYiI4ofZaEBWshlNXU5UNXXD4xET7rXarciYm/h0VyLSjoDPRrZu3Yo5c+bge9/7HvLy8nD11VfjrbfeCvoB77jjDpSXl6OoqAjd3d2YPXs2zjzzTCxduhS33npr0PsbzwsvvIBTTjkFF198MbKzs7FgwQL88Y9/9N9eXV2N+vp6rFy50n+d3W7HokWLsG3bthH3eeedd8Jut/t/ioqKQn7cgfBlmbX09KMjxsoy23r6/aWkkSxhlBu3amEyq1uod/gDANgTE7BsRiamZyehvsOh+IYQOLGcOenEu2uC2ajHycWpmJplg0BkssJ6nUMBQLX2mAOUwdhIl7PKgTmTCqfWhlJGUogy5rqYMUdERPHrps/NwLwCOzr6BvCPXbUT3g97zBHRiQI+GznjjDPw5z//GcePH8f999+P6upqLFu2DDNmzMDdd9+N+vr6cfchhEB9fT3uu+8+VFVV4cUXX8Rf//pXHDhwAI8//jgMhtCXXFVVVeH3v/89pk+fjpdffhnf/OY3cd111+Evf/kLAPiPOycnR3G/nJycUX+nW265BR0dHf6fo0ePhvy4AyGX/lW3xFbWXKQHP/jk27VVyup2qzswBwCpiSYcbuxGY5dzWOq/XM6s1VJWnU6Ho219qGzqQU1LZKYB97rkjDl1lrICygEQlREuyXcO9vszG/XQqbAMPJQybUNBtObu/gnvp1HOmOPwByIiijMFqYnYW9cBALj7PwcmnBjBHnNEdKKg0wRsNhvWrVuHrVu34tChQ7j44ovxwAMPoLi4GOeff/6Y9xVCYNq0aaitrUVRURHOPfdcXHLJJQFNc50oj8eDk08+GXfccQcWLFiAb3zjG/h//+//4aGHHprwPs1mM1JSUhQ/0SAPgJADHLEgWplSyoy5yARJwkntGXPA2FOsfAFaS4IeuRo+0ff1+Gqe5FTMQPVIGXNWNQfmopgx1z+YMaf1MlbgxIy5iQfmGqQecxz+QERE8eb06Zk4b14eAG/F0j2vHJzQfrqdQwE99pgjImACgTnZtGnT8KMf/Qi33norkpOT8e9//3vsB9PrMX36dLS0tEzmYYOSl5eH2bNnK66bNWsWampqAAC5ubkAgIaGBsU2DQ0N/tvUSnFSG2MDIORJspHsLZabYoEvfnVMC6WsntgKzMlTrAbcHn8G2ZQM24T7dMSCzMEeX/0DnmHlvOHQGyM95qI5XdpXympJUG/gMlSUPeYmU8o69J6Zo+FAOhER0Wh+fN4s/2Cvx7d/in3HOoLeh6KUlRlzRIRJBObefPNNXH311cjNzcXNN9+Miy66CO+8886497vrrrtw8803+6e8httpp52GgweV32YcOnQIJSUlALyDIHJzc7Flyxb/7Z2dnXjvvfewZMmSiBzjRMllYLE2ACJa0ziNhqHMrLpJTlRSA+XwB3UGtuQsRbmU9Whbn3+q7NQsbfaX8wlVxlKgehQ95tQbeMpJMfuHY1RFupR1cCqr1ieyAidOZZ18xpxRr0N6ommcrYmIiLQnP9WK61Z4q708Arjtn/uCrobwDX/Q6ZRDwogofgUVoj927BgeffRRPProo/jkk0+wdOlS3HfffbjkkktgswUWXFm7di16e3vxmc98BiaTCVarcgpfa+vwyY2TceONN2Lp0qW44447cMkll2DHjh34wx/+gD/84Q8AvP2fbrjhBvz85z/H9OnTUVpaip/85CfIz8/HBRdcENJjCbXi9ET/xMtIn9ROlkGvwyklaehzuRUZVZFQkGbFsQ4HWnv60ds/ELGJsOEgB+bUmnGWP0opa01LDxaVpsM54MGsvORoHFrEZNiUGUtTwpwlGisZczqdDsvLs9EwOBiko88FuzUy08mcLl8pq/Y/EMuB4eYJDn8QQiDJbMApJWlIsSao9v2GiIgo3L5+eimefL8GQggUZySisqkb07ID/yzbNZgxl2Q2ar7PLREFJuAzti984Qt49dVXkZmZibVr1+JrX/saZs6cGfQD3nvvvUHfZzJOPfVU/O///i9uueUWbNy4EaWlpbj33ntx+eWX+7f5/ve/j56eHnzjG99Ae3s7Tj/9dLz00kuwWNRdqpNg0KM4PRHVzT040twzqbHdkeTxCLzycQOcAx5MzbLBGOGJiAWpVryPNgDectZp2bGbrRUTGXNyYE7KmDvc2I33qr2B+CsXl0T8uCJJGRgJf8Zcb7+UMafyb2Kzks14cc9xAMBbh5vwxfn5EXlcx8DQ8AetSzQZYU0woM/lRkvPxNbfsQ4Hdhzxvm+eMT0zlIdHREQUU0xGPb58ciHueeUQjrbWYUFRalCBOV/GXDLLWIloUMDvBgkJCfjHP/6BL37xi5OannrVVVdN+L4T9cUvfhFf/OIXR71dp9Nh48aN2LhxYwSPKjTKMm2obu5Bn8uN+k6HIjtJrY519Pn7O5VFoYQx/4RAUSwH5gbkjDmVfuNmSTAgM8mE5u5+RcZctCbzRkNmhEtZ5Yw5tWeErijPweZ3jgAAtuxvjEhgzu0RcA1ONI6HwBzgDQ7XtvWhZYIZc3trh3rozC+0h+qwiIiIYtLp0zNxzyuHAMA/qTVQvh5zSRz8QESDAn43eOGFF8J5HDRBJw6AiIXAnDyoIpKDH3wUk1nbYrvPnNvj8V9Wa8Yc4A2GNnf3o6HLAZfbgwSDXjGFszQK6yCSFKWsEwyMBCNWeswBwGdL05FkNqLbOYDXDzZiwO0JexatbyIrEB+lrIB3AERtWx/a+1wTeo4rpJOOeQUMzBERUXybnZfibym0t64z4Pu5PcJf2WBjxhwRDYqPVAENUwyAiJE+c1VRDsgoSyt7I/74oeSWes0aDOoNzPmecyGA+g7vZMeqwSmc6TYTUjXeSD5dzpibYClhMGKlxxzgLQc5c4a3NLK914VdNe1hf0zf4AcgPoY/AEDm4AAIIYC2XlfQ95ezAeYyMEdERHHOkmDA9MGqm8MNXXC43OPcw4sTWYloJPFxRqJhZZnePwgJBh2au8KfiRMKioy5KJSyyoG5Y+2OiD9+KMkZcwaVlrICyue8tq0PPc4B/4THaGRNRlqmlDE30eb7weiJoR5zgLec1WfLgYawP55TkTEXH38GFZOBe4Jbg0IIf2AuLTEh4gN7iIiI1Mj3RdWAR2D/8cCy5uTAXDJLWYloUHyckWhYfqoFdmsCXG6Bw41d0T6cgMiZfVHJmNNUKetQypxB5aWsPsfa+xTBWa2XsQInBEUi0GOuTwrMxUKZxNnl2fDFlbfsbwz74/kmsgLxVcrqE+wa9E2xBrwnIZwgR0REpGztUBFgn7keZswR0QgYmItx2ckWdPR5y5IiMe0xFKqavCWMyRajoil+pCSajEhLTACgnBIai2IlMKcIhrb3nTD4IXaHbwQq0WSAZbBksjUCpazyh75YyJhLt5lwcnEaAOCTxm582hLesnxFKWu8ZMzZ5MnAwWXMyYMf2F+OiIjIS27tEOgAiC6HHJhLCPkxEVFsio8zEg2zmgywDZ54R6Kp/GQ5XG5/MKws0xa1zAtfBld9pwMDbs84W6uXIjCn4iwWRV+/tr64GvwAeCc/+wZABFtGOBG9MVbKCgArZmX7L4c7a05RyhovPeYmkTHHwQ9ERETDzc5Lge978UAHQCh6zLGUlYgGxccZicb5SpQikYkzWTWtvRCDsaRoBmR8gSK3R6AhRnrzjcQXmNPpAL2KM+YKpYy5Yx19qB4c/AAAZVnaD8wB8GeHtvb0KwKq4dDTL2fMxcaHvkj2mVNmzMVG4HKyJtNjTs4CmFfIwBwRERHgTZCYkZMMIPABEN1SxlwyS1mJaBADcxrgO+Fq63WpPvvLV8YKRLeEUSt95gYGAzxGFQflAMBuTfBnbtW1DZWy6nRASUZiNA8tYnwBdI8A2nvDG0TvdXo/GFoS9KoucZbNyEnyB3Dfq2pFpyP4yaGBUvaYi48/gxm2iWXMCSH8GXMc/EBERKQkD4A4UD9+v+9u59DnG2bMEZFPfJyRaJx8wtUa5hP+yYr24Aef6dlJWFSajpOLU9HQGbuTWX2ZV2oPvuh0Ov8JfW1br7+UtTDNGj8ZSzY5YynMgTmX99tYW4xkywHeNXL+Z/KxqDQdZVk2vHWoKWyPpZzKGh/rLzPJhKVTM3BKSVpQGZvHOxz+9crBD0RERErzguwzp+wxFzuf04govBiY04DMCE98nAy19BZLSzThvepW7KppR01rb9SOY7L8gbkYOFn2ZSn2uwW6BvtrlGZqf/CDjzwVM9jm+8HyZcxZY6S/nM/isgy8V92KQw3dYe0zJ5eyWuKox9z7R1rxwadtATeoBoA9HPxAREQ0KsUAiNr2cbdnjzkiGkl8nJFoXEYMBebUkjEnl7LWxnApq1vERsYcMDRwQ1YWB4MffCIZQPf1mIuljDkAWFSW7h9m8/rBxrD14lNmzMXHn0G9Xoc8u/c1GMw0ag5+ICIiGl2wAyDYY46IRhIfZyQap+gdFIGJj5NRPRiYy02xwBbFP0Zyn6RjQZykqk2slLICGLE3VbwMfgBODKCH73Xq9gg4BnuoJZpjK2PObDTgzBlZALw9M3fVtIXlcRQ95hJi6zmaDN9rsMsxEHAPPzm7bi4Dc0RERApWkwHTswMfAMGMOSIaCQNzGiCf8DerOGOuvbffPzk2mtlyAJBuM/lL2ILJHlGbocCc+l/K8mRWn2ivg0hSBtDD9zrtlSayxlrGHAAsL8/2Xw5XOatDMZVV/a+dUMkP8gsJefBDamLCiK9hIiKieBfMAIguJ3vMEdFw8XNGomGZSfK0PfVmzMllrNHOlNLpdP6T1Lq2PggRnpK5cBsKzEX5QAIwYilrFCfzRlq6LTIB9L7+oaBTYoz1mAOAs8uz4WuZuGV/Q1geQzmVNfaeo4kKdhp1Q5cTJRmJyEkxY24+Bz8QERGNZH6hHclmA2bnJeNww9iBOWUpa0K4D42IYkQMnM7TeGKlx5xaBj/4+Mq6+lxutPcGVtalNgODgTljDGTMnVjKajbqkZdiidLRRF6kAug9MR6Yy0wyY0FRKgDgcGM3alpCP5zFGacZc4VBZsxVNnZjV007GjqdmJmbHM5DIyIiillzC+zocrrx8fEufHBk7DYccimrLcZajhBR+MTPGYmGyZk4au4xV9Xc7b8c7Yw5QBkoitVyVk8M9ZjLSbFAPszSTBv0MXDcoaJ8nYYvgN4jfeBLjNESiRWzcvyXXw1D1pxi+EOcTGUFlFmrtQG851U1Db1nT8uOn+xWIiKiYCgHQIw9+dyXMWdNMMAYCyUvRBQRfDfQgPTE2OgxVy2XsmZG/yRPDszF6mTWgRgKzBn0OmRJWWNqCM5GksmoR8pgk9/WsPaYG8oGs8VgxhwArJg11GfutQOh7zOnnMoam8/RRARbyqqWKdpERERqJg+AODTOAAhfxhwHPxCRjIE5DTAa9EhL9PYoUHXG3GApa4JBp4om4vJJaqxOZo2ljDkAsCcO9dIoTE2M4pFEh6+ctTmspaxSxlwMDn8AgJk5yf7A+XvVLegKcIJooJyu+CxlzbMPlY4H8p6n/DKFgTkiIqLRBDoAwveZJjlGqxqIKDzi54xE4zIGT/hbVZox5/EIHGnxnuQVpyeqInU7XwOlrP6MuRhpyi5nJ8lBunjh6wfZ5RiAc8CNLocLQgj0D3jG/HY1GPLwh1jtXaLT6bByMGvO5RY485evY/EdW/Cnt6pCsv94LWW1JBj8weFA3vN8X6YkmY3ISjaPszUREVH8mleQ4r88WjmrEIIZc0Q0Ir4jaESGzYRP4G383tfvhlVlJWzHOvpgMxkxJcOMU6ekRftwAJzQYy5GS1ndIrYy5n72pTk42NAJ54AHK8qzx7+DxmTYhoIbrT39+N7TH2HX0Ta4PQK3njcLVy0tnfRjyD3mrDGaMQcAX15YhOk5yahu7sYjbx8B4MIf3qzCGweb8NdrFk1q392OAUzJSERGkhl2S3wFiAvSrGjudqKxy4n+AQ9Mo2QMOgfcqG3zDt4ozbRxIisREdEY5hXa/ZcrakcOzPW53Bj8Th1JzJgjIkn8pAponGLiowrLWY8096Klpx8H6rtUEyzItQ8NI4jVjDl3jJWyLpyShq8uKsG600pRnBF/pXHyBOX6Dgd21bTB4fLA5RZ463BLSB5DCz3mAO8H3CsWlyDPbkXu4OCQxi4n9tS2QwwGpCfqaFsvjrT0YldNmz/bOF74JrMKARzvGP19r6al13/ywP5yREREY5udZx93AIRv8AMA2BiYIyIJA3MaIZ/wt6iwnFUxkVUlJ3kJBj1yUrw9l2Kxx5wQIuYCc/FODgK9/UkzHFJJ5TufNIeknFULPeZk15xRhu0/WoGlUzMBAJ2OgUkPz/AF4nOSLaNmjGlVfupQn7mxvpCQBz/E26AWIiKiYAUyAKJLqmpgjzkiksXXGYmGySVyasyY8/UqAtSVfeErZ23p6Vf05ooFHilpyMjAXEzIlALo26uUGXJ9Lje2VU0+a67XGfs95kYiv2/IQwmC5XC5/dOr5SBVvAi0hL+aE1mJiIiCIg+AODjCAAi53Qh7zBGRjIE5jZAz5ppVmDGnOMlTUfaFPJk11spZBzxD2VZ6BuZighxArxgsc5DnoGzZ3zDpx5BLWbWQMecjB4eqJhGYk7NjC9LibzKw/DuPmTHXNJTlPDUrKazHREREpAXyAIg9g5/zPIPfpHs8QlHKyh5zRCRjYE4jMmOklDXZbESWino6yZNZY62cVYrLMWMuRsgB9I4+74ezRaUZMA1G517b3zjp/mm9ilJW7WTMyeWUcgZusORglJw9Fi/kLMGx3vPkL1OmMGOOiIhoXCcOgGjt6ceK37yBHz67B2f/5g0caRn628qMOSKS8R1BI+TeVS3d6ipl9U73854Almapa7qfoqwrxgJzcsYce8zFhgybadh1n5udgwSDHlsPNeFYhwMfH+/EnHz7CPcOTI9i+IN23uLLMoeytqqlnpXBUmbMxV9grjA1sIw5X2AuO9nMb/WJiIgC4BsA4RHeARC/fOkAqlt6Ud3inXL+xI4a/7bsMUdEMmbMaYR8wt8yycbooVbT0guh0ul+ilLWMfotqZGcMcfAXGwYaQLoilk5WDEr2//v1/Y3TuoxeqX+JYka6jFXkGb1ZxZOpsec/DoviMMecylWoz/QNtp7Xkefy98SgYMfiIiIAmM1GTAt2/tF4sH6Tjz9wVEAgO9TekVdp39bZswRkYyBOY2Qe1c1qyxjrlIqO5OzXtSgIIZLWRUZcyrKQqTRpVoTIP9PzchJQlF6IpaXDwXmXj0wucCcPJVVSxlzBr0OJRnebK8jLb3+icTBqlWUssZfjzmdTucvZz3W4fD3vpEpBz+o6z2biIhIzXwDINwC/sSE80/KH7ZdkjkhkodFRCrHwJxGpFiN/j5jausxp9bBD4AyMFcbY4E5OTDBjLnYoNfrYJNKF1bMygEAFKYlojw3GQDw0dF2NHY5JvwYvunCOh1gSdDWW7wv47Z/wDPhQLp8v3icygoMve/1D3jQPMIUb7lUuExlWc5ERERqNr9A2Y5kZk4yfv3l+Th1SprieraJICKZts7a4phOp/M3lm8Z4UQrmuTpfmo7ybOZjUhN9H5jFWulrG5pSIDRwMBcrLBKwbIVUqbcysEgXYbNpCh1CJavx1xigkFV/RxDQQ7sVzZNrM+cr69aisWIZEt8fls9Xgm/PFyDpaxERESBkwdAAMDG1XOQYDRgw/lzFdcns5SViCR8R9CQDJsZDZ1OtPb0QwihmpNyZVmU+k7yClKtaO91ob7TAbdHxEz22YB7KDCnV8n/NY3v39efAYNOhw+PtmNB8dC3p6dMSUNWkglN3f1481CTorw1GL4ec4ka/CZ2qmIARA/Omhnc/d0egePt3mzEgrT4K2P1kUt4j7U7sKBYeXuVyt+ziYiI1GpOvh0vfud0AMBbh5uxqCwDADA7PwW3fWk25hbYMS0riT3miEiB7wga4suYc7kFOh0DsFvVkQ3iC8zlpJgVZXxqkZ9qxb5jnXB7BBo6HchPjY1JjR45Yy5GgokEZCd7yyd9Zaw+c/LtaBosQ6+axHADX8aczaSdwQ8+csbcRAZANHU5MTBYAl4QI6/zcJBLeOvae4fdXj2YMWfU61CUHr8BTCIiomBZEgz+PnNzTyhrXXdaaTQOiYhiAEtZNSRTmvjYopIBEB29Lv+UWLVmXsgn6HUx1GduQOoxp2dgLuZlJpmQPBi4lnt8Bat3cPhDooYGP/jI7yFyuWWg5CBUPE5k9Skco5TV4xH+oGdxeiISDPyYQEREREQUTvzErSEZNpP/si8YFm1VchPxLHVO95NPUmNpMqs8TZEZc7FPp9P5M8Jq2/rgHHAHvY/+AQ9cgyXONrP2MuYybCakWHzBy+ADc7VSEErusxZv5FLWunbloJGGLgf6XN61p9YvU4iIiIiItISBOQ3JUGHGnHzyrLbBDz5y6WptDA2AGOBUVs3xvUaEAD5tGV5iOB7fRFYAsGowY84bvPQG+Ova++BwBRe8PCYFoeTgVLzJSjb7g/mftigDnHuPdvgvMzBHRERERBR+DMxpiK/HHAA0d6skYy4GpvuVZibi9GmZWFCciuMxlDHnZmBOc0ql4QYTKdXsGSxjBbTZYw4ApmZOvM+cXMqaH8elrAa9Dt84swyLS9NR3dyDirqhYNwzu2qRnWzC6pPycdbMiQ0gISIiIiKiwDEwpyGZUmCuRSWBOeVEVnWWspZmJmFbVQt217Tjg0/bon04AVME5jiVVRPk4QZVE+gz1ysF5rTYYw5QZnEFHZhjKatfVrIZ26tbMeAR+Mk/K+DxCLxb2YxXPm5AY1c/3jrcjJNLUqN9mEREREREmsfAnIZk2KRS1h51lLL6pksa9TpFLzc1sSQYMD3bGzQ83NgddHlctChLWflS1gK53Lt6IhlzzqG1q8Uec8DkJrP6hruYjHpkSu+X8ejyRSWYOvhc7q5px9MfHMVP/7nPf/sPPj9Ts8FdIiIiIiI14dm8hmSoLGPOO93Pm/VTnKHu6X7zBseZuz0C+493RvloAuMR0vAHAzPmtGAy2WAA0Cv1mNNqUKVMyrytbAo8q1AI4c+Yy7db4n6Sscmox8bVc/3/3vjix/ik0ft8nlSUiosXFkXr0IiIiIiI4op6IyUUNDljrlkFwx/qOx1wuDwA1Dv4wWdeod1/We63pGYD7qHAnJ6lrJpgMxuRk+J9HVdNKDAnl7JqM2NuSubQ0IZggpedfQPoGQxcxnsZq89p0zJx3vw8AEODQ3Q64PbVc+M+cElEREREFCkMzGmI1WRAvt2ConQrIhmnef1gI14/0IjN71Sjf8Djv37fsU5My05CZpJJ9dP95hYMBeb21MZGYE6RMceTaM3wZYS19vSjvTe4zNceRcacNgNziSYjCtMsKEyzwqjTQUivg7HUSoMfClIZmPO59bxZsCTokTCYdfvVzxYrvqggIiIiIqLw0matUxzLTrHgw6PtONbuQF+/G9Ywn5wLIfA/j32A/sHsrRk5yThtWiYAYFtlCz5p7IZRr8OZM7LCehyTNTsvBQa9Dm6PwN5YyZiTeswxu0U7SrNs2FbVAsCbEbag2DTOPYb0OqWprGbtvr3PzrPjvx83oLatD3XtfShMSxz3PsfaHf7L+QzM+eXZrXj4ylMwv8COj2rbcVJRarQPiYiIiIgorjBjTmN8QwzcHoGPI9Arraa11x+UA4BX9zcA8AbsthwYvAxgfmFq2I9lMmJxAITHw4w5LZLLvquCHAARDxlzgPcLAJ+9AWa41rUxY240y2ZkIc1mwlkzs5GaGHggmIiIiIiIJk/zgbmf/exn0Ol0ip/y8nL/7Q6HA+vXr0dGRgaSkpKwZs0aNDQ0RPGIJyfSvdJOzC7bsr8RQghUNvXg0xbvifCpU9JgtyaE/Vgma26MDYBQTmVlYE4ryiYxdbRP6jFn0+jwB0BZeh5ohqtvIivAHnNERERERKQemg/MAcCcOXNw/Phx/8/bb7/tv+3GG2/Ev/71LzzzzDPYunUrjh07hosuuiiKRzs5EzlhnYwTH6OmtReVTd3Ysn8ouLlyVk7YjyMU5sfYAAi3Z6ifHwNz2lEqTR0NNjCnyJgzazdjTv4CItD3ObmUtTB1/NJXIiIiIiKiSNBuSoXEaDQiNzd32PUdHR145JFH8MQTT2D58uUAgM2bN2PWrFnYvn07Fi9ePOL+nE4nnM6hqaednerJrpJ7pUUiuDTSY7y6vxGv7W/0/3tFjATmIh3UnCz3UFyOpawaUpRmhVGvw4BHoLKpO6j7yj3mEjWcMZdvtyDdZkJrTz8q6joghIBunIk3Na3eDF6dDsi1WyJxmEREREREROOKi4y5w4cPIz8/H2VlZbj88stRU1MDANi5cydcLhdWrlzp37a8vBzFxcXYtm3bqPu78847Ybfb/T9FRUVh/x0CFcleaUIIVNR5g5LptqG+RP+tqMcHn7YC8JblqX0iq48vqAkAe+vUE2wdzYCUMaeP5BheCiujQY/iDG9G15GWHkUvwfHIGXM2DfeY0+l0mDcYSG/rdSnKVEfS1+/G4cYuzMxJwqWnFsNkjIs/fUREREREFAM0f3ayaNEiPProo3jppZfw+9//HtXV1TjjjDPQ1dWF+vp6mEwmpKamKu6Tk5OD+vr6Ufd5yy23oKOjw/9z9OjRMP8WwZkn9UoL5wCIo6196OhzAQAWFKX6e2PtPtoOXyxhRXl22B4/1OSg5qGGLtUPgPAIafiDgYE5LfENgHC4PKjvdIyz9ZBeqcdcooansgJD73PA+KXnb3/SDIfLg4MNwWUgEhERERERhZvmA3Nf+MIXcPHFF2P+/PlYtWoV/u///g/t7e34+9//PuF9ms1mpKSkKH7UJFIDIORyz7kFdn8vOTm/J1bKWH1iaQDEgDQNlxlz2lKWNdRnLpjJrL1xkjEHBFd6/tqBoZ6XsfRlARERERERaZ/mA3MnSk1NxYwZM/DJJ58gNzcX/f39aG9vV2zT0NAwYk+6WCGfsO6pDV9gbk9du//yvAL7sBPeFIsRp5Skhe3xwyGYLJxoU2TMscecpsjl39XNgWd59Tql4Q8a7jEHKL+AGOt9zuMR2DLY89Js1OO0aZlhPzYiIiIiIqJAxV1grru7G5WVlcjLy8PChQuRkJCALVu2+G8/ePAgampqsGTJkige5eTIvdLCGVyS9z2v0I6FJWmKLJ0zZ2TBaIitJRZLAyAGpN5jegbmNEUOzFUFMZm1Z7CU1ajXab6Pmm8ABAD/AIiRVBzrQGOXd1jP6dMyYdV4JiEREREREcUWbZ+5AbjpppuwdetWHDlyBO+++y4uvPBCGAwGXHbZZbDb7fj617+O7373u3j99dexc+dOrFu3DkuWLBl1ImssiMQACHnwQ1ayGTkpFhgN3myU3MET5mUzskL+uOE2Oy8FxemJWFiSBncQTfejQT4+ZsxpS2mmDTNykrCwJA39A57x7zDIV8qaGAfBJ51O5w+kjzUAYos0IXr5LJaxEhERERGRumi71glAbW0tLrvsMrS0tCArKwunn346tm/fjqwsb9Bo06ZN0Ov1WLNmDZxOJ1atWoUHH3wwykc9eXML7DhQ3+UfAHFycWhLSuXBD3L550NXLPRnbwUzTVItrCYDDHoddn7aho+PdeLXFwvoVNq/TQ7MGRiY05TsZDOOtTvQ7exG02C2VyB6nN6MOZvGBz/4zCtIwZuHmgB4s+YK0xKHbbNF0V8utnpeEhERERGR9mn+7O2pp54a83aLxYIHHngADzzwQISOKDLmF9rxj521ALwnrKEOzMllnnJgTi6pjNXyytJMG6qbe9DncqOh04lcuyXahzQiBua0S6fToTTThr11Haht64VzwA2zcfwsuL44ypgDgHkFqf7Le+s68Pm5eYrb6zsc/szeOfkpqn0tExERERFR/NJ8KWu8UvRKC8MAiNECc1pQJvf3agq88X6ksZRV28qyvOvQI4Calt5xtxdC+HvMxU3GXKHcE3L4FOXXDgyVscbahGgiIiIiIooPDMxplDwAIhxDDE4c/KAlpVkTa7wfaYrhDyott6WJC3YAhHPAA9+SsCbER8bceAMgtuwfKmNdyf5yRERERESkQgzMaZQ8AKK914Xewd5ToSCEQFOXA8DQ4ActUQREmtQbmJN7+BkNDMxpTbDrsHOw5yMQPxlz8gCIfpcbe2rb/be1dDtxsKELgPd9am6+tr5AICIiIiIibWBgTsPOnJ6FdFsC6jsdODB4ghoKTV1OHGzoRrLFiCVlGSHbr1pMzUryX65uVm8pKzPmtC3Yddg+GJhLsRoV5dha9z9nluIzhXZ097tx35ZP/Nf/+r8HUdvWh2lZSbh51cyY7XlJRERERETaxsCchhWkWdHa4z1ZrwhhOauvrK7LMYCMJFPI9qsW2clm2Aab51eruJRV2WOOL2WtmSIF1wJZh3XtfQCAzr4BWOKklBUAPlOUhvpObwbvlgONePXjBnx4tB1PvX8UAFDf6cBZM7KieYhERERERESj4tm8hoVrAIQcJNBiZo5Op/P3mTva1of+AU+Uj2hkbsGprFqWZDYiJ8UMILBS1rq2Pv/lgjRr2I5LbZLMRvz4vNn+f//sXxW49fm98L08blg5HdkaK7cnIiIiIiLtYGBOw2bnpcAXrwnlAAh5UmmZVG6nJaWZ3t/L7RGoaR1/ImY0yBlzDMxpk6/PXEtPPzp6XWNu68uYA4CC1PgJzAHAl+bn+cvqa9scqBic0DojJwlXLZ0SxSMjIiIiIiIaGwNzGmY1GTAjJxkAcLixGw6XOyT7lTPmSjWYMQcofy+1lrMyMKd9vgAxAFS3jL0Oj7XHZ8Yc4M1y3bB6Dk6cgbJx9VwkGPhnjoiIiIiI1ItnLBrnK2d1ewT2H+8MyT59PeYsCXrkarREbGqWPBFTnQMgGJjTvmDWoVzKmm+Pr8AcAMzIScbXTi9FeW4yTipKxeqT8rFYg8NpiIiIiIhIW4zRPgAKr3kFdvxjZy0AbznrguK0Se3P5fagpsVb2lmamaTZSYexljFn1Oj/Q7wLZh36SlkzbCZYTfEz/EF206qZuOULs6DTAU6V9oYkIiIiIiKSMTCncaEeAFHb1oeBwYCQFgc/+MgBkSqVBuYGpMCcXsfAnBYFug5dbg8aBieTxlsZq8xsHApIxtNkWiIiIiIiil0sZdW4UA+AkMvptNpfDgCSLQnISg58ImY0uD1DGUHGE5trkSYUpSf6syHHWof1HQ744rTxWMZKREREREQUqxiY0ziryYDp2aEbACGX05VlaTcwBwwFHpu7neh0jD0RMxrcUqUee8xpU4JBj+L0RADAkeYeeKQsSVldHA9+ICIiIiIiimUMzMWBUA6AqIqDiaw+cqnuERWWs8oZcwaWsmqW73XW53Kjocsx4jaKiaypDMwRERERERHFCgbm4sD8wqE+cxWTLGeVS1nLMpMmtS+1K1NMxFRhYE5KnmLGnHYFsg4VE1kZmCMiIiIiIooZDMzFAcUAiEkG5nylrBk2E+yJCZPal9qVSoFHNQ6AUGTMMTCnWYGsQ7mUtZClrERERERERDGDgbk4oBwAMfFS1h7nABo6nQC0X8YKnDARU8oUVAu31G/MyMCcZgWyDutYykpERERERBSTGJiLA/IAiEMNXRMeABFPgx8AoDg90Z+JVq3KjLmhwJyegTnNmiq91kZbh77AnDXBgFSNZ7ISERERERFpCQNzcUIeAPHxsYmVsyoHP2i7vxwAmIx6FA2WBR5q6MLiO7Zg8R1b8Ic3K+EcmNx021AYYMZcXMhKNsNmMgAAKkfImBNC+Ic/FKRZoeMgECIiIiIiophhjPYBUGQsKktHdXM3Grqc2HesEyeXpAe9j+qm+JnI6nPLubNgMuqx9WAjHn33UwDAplcOw2TQ4+rTSqN6bHLGHHvMaZdOp8MlpxbhgyNtONjQhYZOB3JSLP7bW3r64XB5+w2yjJWIiIiIiCi2MGMuTkzNsmFXTTvq2vomPACiqnkoW2dqHJSyAsCqObk4e2Y2CtMSkWEzAQD6XG5sOdAY5SNjYC6eJJmN2FvXgf4BD14/Ye0da+dEViIiIiIioljFwFycmJ1nn/QACF9/K50OKM5IDNWhxYRrzijDB7eu9GckvVfVim7nQFSPiYG5+LFiVo7/8qv7lYG5ujZOZCUiIiIiIopVDMzFCXkAxOEJDIAQQvhLWQvTrDAbDSE/RrXT6XRYMSsbANDv9uCtQ01RPR5FYI59xTRtfoEdmUlmAMDbnzQpXr+cyEpERERERBS7GJiLI74BEAMegQP1XUHdt6nbia7BDLGyOBj8MJrl5dn+y9EuZ3ULZszFC71eh+XlWQAAh8uDbZUt/tsUgTlmzBEREREREcUUBubiyLyCFP/lvbXt426/ZX8DHtt2BD97YR/O/e1bSDQZUJZlwyklaWE8SnVbXJaBxMEJma8faFRkrUWa77H1OnASZxxQlrM2+C/LpazsMUdERERERBRbOJU1jswrtPsvBzIA4un3j+K/HzcorvvS/Hx8Z8X0kB9brLAkGHDG9Ey8vK8BLT39+PBoOxZGKVDpC8wZ9Yyvx4MzpmfCZNSjf8CD1w40QggBnU7nz5gz6HXISTZH+SiJiIiIiIgoGDyjjyPBDoDwBe9MBj1yUyzITbEg2cJYrpy5tGV/wxhbhpc/Y46v4riQaDJi6dQMAMDxDgf2HfO+hn1TWXNTLDAauBiIiIiIiIhiCc/i4ojVZMC0bG9/uPEGQDR3O3G8wwEAWFCciu0/WoHtP1qBa84oi8ixqtnZM7Phqxx9LYp95gaYMRd3Vkg9Dl870Ije/gG09boAcPADERERERFRLOIZfZyZV5AKYPwBEHKp67wC+6jbxaOsZDM+U5gKADhQ34Xatt6oHIdnMDDHwQ/xY/kJ2ZpyfzkOfiAiIiIiIoo9rEuMM/MKUvDsLu/lvXUdmJOfgr9t/xRrFhaitq0Ps/K8AyIqaqXAXCEDcydaOSsbHx5th9mgx5fufxtmowFzC1JQIZUIy/8O5HKw92nqcgIAXG5PmH9bUouCVCtm5aVg//FO1LT24pKHtyluIyIiIiIiotjCwFyckYNsFbUd2Nw/gDv+7wA2vPgxjHod9ty2ClaTgRlz47jw5EIsKE7DtsoW/O71TwC4UJKRiPpOh38b+d+BXJ7ofa5YVBK+X5RUZ8P5c5CWmIAX9xzDb7d8AgBYt3QK1i7lOiAiIiIiIoo1DMzFGd8ACI8Adta04V97jgEAhABcboF3PmnGytk5qBgMzCWZjZiSYYvmIatSQaoVBalW7D/eidwUCwAg2WL0Xz7x34Fcnuh9slM4iTOefLY0HQCQbEnwr4OCNCuyky1j3Y2IiIiIiIhUiIG5OOMbAHGooRuVjd0QJ9y+5UADTipOxbHBwQ9z8lOgZw+zUV1zRhkHYlBUcO0RERERERHFPg5/iENzB0tTfUG5VKsRZqN3KWzZ34i9te3+bVnGSkREREREREQUHgzMxaG5+SmKf//wC7Nw2rRMAEBjlxNb9jf6b+PgByIiIiIiIiKi8GApaxxaVJaBL87PRXVzLzxC4JJTiuAWAq8d8AbktlW1+Ledy4w5IiIiIiIiIqKwYGAuDs3Jt+N3X10IAOjtH4Ber8OK8hz8GBUAgJrWXgDewQ+lHPxARERERERERBQWLGWNc4kmb2w2127BnMESV5fb231uNgc/EBERERERERGFDQNz5LdiVo7i3/NZxkpEREREREREFDYMzJHfylnZin9z8AMRERERERERUfgwMEd+c/PtSDIb4Kte5eAHIiIiIiIiIqLw4fAH8tPrdfi/685EQZoVvf0DsJm4PIiIiIiIiIiIwoWRF1IozkgEACRbEqJ8JERERERERERE2hZXpax33XUXdDodbrjhBv91DocD69evR0ZGBpKSkrBmzRo0NDRE7yCJiIiIiIiIiCguxE1g7v3338fDDz+M+fPnK66/8cYb8a9//QvPPPMMtm7dimPHjuGiiy6K0lESEREREREREVG8iIvAXHd3Ny6//HL88Y9/RFpamv/6jo4OPPLII7jnnnuwfPlyLFy4EJs3b8a7776L7du3j7o/p9OJzs5OxQ8REREREREREVEw4iIwt379epx33nlYuXKl4vqdO3fC5XIpri8vL0dxcTG2bds26v7uvPNO2O12/09RUVHYjp2IiIiIiIiIiLRJ84G5p556Crt27cKdd9457Lb6+nqYTCakpqYqrs/JyUF9ff2o+7zlllvQ0dHh/zl69GioD5uIiIiIiIiIiDRO01NZjx49iuuvvx6vvPIKLBZLyPZrNpthNptDtj8iIiIiIiIiIoo/ms6Y27lzJxobG3HyySfDaDTCaDRi69atuO+++2A0GpGTk4P+/n60t7cr7tfQ0IDc3NzoHDQREREREREREcUFTWfMrVixAnv37lVct27dOpSXl+MHP/gBioqKkJCQgC1btmDNmjUAgIMHD6KmpgZLliyJxiETEREREREREVGc0HRgLjk5GXPnzlVcZ7PZkJGR4b/+61//Or773e8iPT0dKSkp+M53voMlS5Zg8eLF0ThkIiIiIiIiIiKKE5oOzAVi06ZN0Ov1WLNmDZxOJ1atWoUHH3ww2odFREREREREREQapxNCiGgfRKzr7OyE3W5HR0cHUlJSon04REREREREREQUJcHEiTQ9/IGIiIiIiIiIiEit4r6UNRR8SYednZ1RPhIiIiIiIiIiIoomX3wokCJVBuZCoKWlBQBQVFQU5SMhIiIiIiIiIiI16Orqgt1uH3MbBuZCID09HQBQU1Mz7hNONBmdnZ0oKirC0aNH2c+Qwo7rjSKFa40iieuNIoVrjSKFa40iiestMEIIdHV1IT8/f9xtGZgLAb3e26rPbrdzYVJEpKSkcK1RxHC9UaRwrVEkcb1RpHCtUaRwrVEkcb2NL9DELQ5/ICIiIiIiIiIiigIG5oiIiIiIiIiIiKKAgbkQMJvNuO2222A2m6N9KKRxXGsUSVxvFClcaxRJXG8UKVxrFClcaxRJXG+hpxOBzG4lIiIiIiIiIiKikGLGHBERERERERERURQwMEdERERERERERBQFDMwRERERERERERFFAQNzREREREREREREUcDAHBERERERERERURTEVGDuzjvvxKmnnork5GRkZ2fjggsuwMGDBxXbOBwOrF+/HhkZGUhKSsKaNWvQ0NDgv/2jjz7CZZddhqKiIlitVsyaNQu//e1vFft47rnncM455yArKwspKSlYsmQJXn755XGPTwiBn/70p8jLy4PVasXKlStx+PBhxTa7du3COeecg9TUVGRkZOAb3/gGuru7x933nj17cMYZZ8BisaCoqAi//OUvFbfv27cPa9aswZQpU6DT6XDvvfeOu08aHdfa6GvtueeewymnnILU1FTYbDacdNJJePzxx8fdL42O62309fboo49Cp9MpfiwWy7j7pZFxrY2+1s4666xha02n0+G8884bd980Mq630deby+XCxo0bMXXqVFgsFnzmM5/BSy+9NO5+aWTxutYcDgeuvvpqzJs3D0ajERdccMGwbY4fP46vfvWrmDFjBvR6PW644YZxj5dGx7U2+lp7++23cdpppyEjIwNWqxXl5eXYtGnTuMdMo+N6G329vfHGGyN+bquvrx/3uFVJxJBVq1aJzZs3i4qKCvHhhx+Kc889VxQXF4vu7m7/Ntdee60oKioSW7ZsER988IFYvHixWLp0qf/2Rx55RFx33XXijTfeEJWVleLxxx8XVqtV3H///f5trr/+enH33XeLHTt2iEOHDolbbrlFJCQkiF27do15fHfddZew2+3i+eefFx999JE4//zzRWlpqejr6xNCCFFXVyfS0tLEtddeKw4cOCB27Nghli5dKtasWTPmfjs6OkROTo64/PLLRUVFhXjyySeF1WoVDz/8sH+bHTt2iJtuukk8+eSTIjc3V2zatCmYp5ZOwLU2+lp7/fXXxXPPPSc+/vhj8cknn4h7771XGAwG8dJLLwX1HNMQrrfR19vmzZtFSkqKOH78uP+nvr4+qOeXhnCtjb7WWlpaFOusoqJCGAwGsXnz5mCeYpJwvY2+3r7//e+L/Px88e9//1tUVlaKBx98UFgslnGPmUYWr2utu7tbXHvtteIPf/iDWLVqlVi9evWwbaqrq8V1110n/vKXv4iTTjpJXH/99QE8ozQarrXR19quXbvEE088ISoqKkR1dbV4/PHHRWJiouK9j4LD9Tb6env99dcFAHHw4EHF5ze32x3IU6s6MRWYO1FjY6MAILZu3SqEEKK9vV0kJCSIZ555xr/N/v37BQCxbdu2UffzrW99S5x99tljPtbs2bPFhg0bRr3d4/GI3Nxc8atf/cp/XXt7uzCbzeLJJ58UQgjx8MMPi+zsbMVi2bNnjwAgDh8+POq+H3zwQZGWliacTqf/uh/84Adi5syZI25fUlLCwFyIca2NvNZ8FixYIG699dYxt6HAcb0NrbfNmzcLu90+5u9AE8e1Nvp726ZNm0RycrLiwy9NDtfb0HrLy8sTv/vd7xT3u+iii8Tll18+5u9FgYmXtSa76qqrRjx5lS1btoyBuRDjWhvbhRdeKK644oqAtqXxcb0N8QXm2traAtqP2sVUKeuJOjo6AADp6ekAgJ07d8LlcmHlypX+bcrLy1FcXIxt27aNuR/fPkbi8XjQ1dU15jbV1dWor69XPLbdbseiRYv8j+10OmEymaDXDz3tVqsVgDf1dzTbtm3DmWeeCZPJ5L9u1apVOHjwINra2ka9H4UO19rIa00IgS1btuDgwYM488wzR90vBYfrTbneuru7UVJSgqKiIqxevRr79u0bdZ8UHK610f+OPvLII7j00kths9lG3S8Fh+ttaL05nc5hZflWq3XM/VLg4mWtUfRxrY1u9+7dePfdd7Fs2bKQ7jeecb0Nd9JJJyEvLw/nnHMO3nnnnZDsMxpiNjDn8Xhwww034LTTTsPcuXMBAPX19TCZTEhNTVVsm5OTM2qt8bvvvounn34a3/jGN0Z9rF//+tfo7u7GJZdcMuo2vv3n5OSM+tjLly9HfX09fvWrX6G/vx9tbW344Q9/CMDb/2GsfY+0X/lxKXy41oavtY6ODiQlJcFkMuG8887D/fffj3POOWfU/VLguN6U623mzJn485//jH/+85/461//Co/Hg6VLl6K2tnbU/VJguNZG/zu6Y8cOVFRU4Jprrhl1nxQcrjflelu1ahXuueceHD58GB6PB6+88gqee+65MfdLgYmntUbRxbU2ssLCQpjNZpxyyilYv349/5aGCNebUl5eHh566CE8++yzePbZZ1FUVISzzjoLu3btmtR+oyVmA3Pr169HRUUFnnrqqQnvo6KiAqtXr8Ztt92Gz33ucyNu88QTT2DDhg34+9//juzsbADA3/72NyQlJfl/3nrrrYAeb86cOfjLX/6C3/zmN0hMTERubi5KS0uRk5PjjyLPmTPHv98vfOELE/7dKHS41oZLTk7Ghx9+iPfffx+/+MUv8N3vfhdvvPFGUPugkXG9KS1ZsgRr167FSSedhGXLluG5555DVlYWHn744YD3QSPjWhvdI488gnnz5uGzn/3shO5Pw3G9Kf32t7/F9OnTUV5eDpPJhG9/+9tYt26dIquAJoZrjSKFa21kb731Fj744AM89NBDuPfee/Hkk08GvQ8ajutNaebMmfif//kfLFy4EEuXLsWf//xnLF26NHYHjkS7lnYi1q9fLwoLC0VVVZXi+i1btoxYZ1xcXCzuuecexXX79u0T2dnZ4kc/+tGoj+Nr1vviiy8qru/s7BSHDx/2//T29orKykoBQOzevVux7Zlnnimuu+66Yfuur68XXV1doru7W+j1evH3v/9dCCHEkSNH/Putra0VQghx5ZVXDqurfu211wQA0draOmzf7DEXOlxrY681n69//evic5/73Ki3U2C43gJbb1/+8pfFpZdeOurtND6utdHXWnd3t0hJSRH33nvvqL8XBYfrbfT11tfXJ2pra4XH4xHf//73xezZs0f9/Wh88bbWZOwxF1lca6tHPWbZ7bffLmbMmBHQtjQ6rrfVox6z7KabbhKLFy8OaFu1ianAnMfjEevXrxf5+fni0KFDw273NT/8xz/+4b/uwIEDw5ofVlRUiOzsbHHzzTeP+lhPPPGEsFgs4vnnnw/42HJzc8Wvf/1r/3UdHR2K5ocjeeSRR0RiYuKYTQt9TYT7+/v9191yyy0c/hBGXGuBrTWfdevWiWXLlgV0/DQc11vg621gYEDMnDlT3HjjjQEdPylxrY2/1jZv3izMZrNobm4O6LhpdFxvgb+39ff3i6lTp4pbbrkloOMnpXhdazIG5iKDay24QMmGDRtESUlJQNvScFxvwa23lStXigsvvDCgbdUmpgJz3/zmN4XdbhdvvPGGYiRub2+vf5trr71WFBcXi9dee0188MEHYsmSJWLJkiX+2/fu3SuysrLEFVdcodhHY2Ojf5u//e1vwmg0igceeECxTXt7+5jHd9ddd4nU1FTxz3/+U+zZs0esXr1aMS5YCCHuv/9+sXPnTnHw4EHxu9/9TlitVvHb3/52zP22t7eLnJwcceWVV4qKigrxy5qIcgAAAwhJREFU1FNPDRs97XQ6xe7du8Xu3btFXl6euOmmm8Tu3bsDnnZCSlxro6+1O+64Q/z3v/8VlZWV4uOPPxa//vWvhdFoFH/84x8Dfn5Jiett9PW2YcMG8fLLL4vKykqxc+dOcemllwqLxSL27dsX8PNLQ7jWRl9rPqeffrr4yle+Mu5zSePjeht9vW3fvl08++yzorKyUrz55pti+fLlorS0VDPT5SItXteaEN4smN27d4svfelL4qyzzvKfD8h81y1cuFB89atfFbt37+bf0QniWht9rf3ud78TL7zwgjh06JA4dOiQ+NOf/iSSk5PFj3/840CeWhoB19vo623Tpk3i+eefF4cPHxZ79+4V119/vdDr9eLVV18N5KlVnZgKzAEY8Wfz5s3+bfr6+sS3vvUtkZaWJhITE8WFF14ojh8/7r/9tttuG3EfciR/2bJlI25z1VVXjXl8Ho9H/OQnPxE5OTnCbDaLFStWiIMHDyq2ufLKK0V6erowmUxi/vz54rHHHgvod//oo4/E6aefLsxmsygoKBB33XWX4vbq6uoRj5lZTBPDtTb6Wvvxj38spk2bJiwWi0hLSxNLliwRTz31VED7ppFxvY2+3m644QZRXFwsTCaTyMnJEeeee67YtWtXQPum4bjWRl9rQgx9y/zf//43oH3S2LjeRl9vb7zxhpg1a5Ywm80iIyNDXHnllaKuri6gfdNw8bzWSkpKRjym8Z4fZjFNDNfa6GvtvvvuE3PmzBGJiYkiJSVFLFiwQDz44IPC7XYHtH8ajutt9PV29913i6lTpwqLxSLS09PFWWedJV577bWA9q1GOiGEABEREREREREREUUURz8RERERERERERFFAQNzREREREREREREUcDAHBERERERERERURQwMEdERERERERERBQFDMwRERERERERERFFAQNzREREREREREREUcDAHBERERERERERURQwMEdERERERERERBQFDMwRERERERERERFFAQNzREREREREREREUcDAHBERERERERERURT8f4mcXvTSbcAOAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ], - "source": [ - "# A plot as above but for the humidity of one station\n", - "vlinderstation.make_plot(obstype='humidity')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "SpI_Xq9LHda4" - }, - "source": [ - "- Plotting temperature on a map\n", - "\n", - "The `make_geo_plot()` function creates a geospatial plot for a field (observations or attributes) of all stations in the dataset. In this way you obtain a spatial visualisation of the data. You can change several things in the visualisation such as the presented variable, the title, the time for which you visualize the data, ... More information on all aspects that can be changed can be found [here](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_geo_plot).\n", - "For other functions used above and later during the summer school you can also define several settings. You can look them up on the same website." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Yy2ct04SHTgQ", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 655 - }, - "outputId": "e0137af4-7d4d-4874-a29f-9c47b4267e93" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Make temp-geo plot at 2022-09-01 00:00:00+00:00\n", - "/usr/local/lib/python3.10/dist-packages/geopandas/plotting.py:48: ShapelyDeprecationWarning: The 'type' attribute is deprecated, and will be removed in the future. You can use the 'geom_type' attribute instead.\n", - " if geom is not None and geom.type.startswith(prefix) and not geom.is_empty:\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 21 - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAKLCAYAAACgz61ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADI10lEQVR4nOzdd3hU1dYH4N+Z3mfSeyOUQOhVpCtSrChYseu1oV6u7Yr6KRbkXvu1YgUsqICgKIgCUqV3QglJSO91aqbv74+YyJA6k2lJ1sszj+bMOfusmUxm1uyz99ocY4yBEEIIIYQQElR4gQ6AEEIIIYQQ0hwl6oQQQgghhAQhStQJIYQQQggJQpSoE0IIIYQQEoQoUSeEEEIIISQIUaJOCCGEEEJIEKJEnRBCCCGEkCBEiTohhBBCCCFBiBJ1QgghhBBCghAl6oQQQgghhAQhStS7mN27d2PhwoWoq6sLdChBZ8WKFXjnnXcCHUanbNiwAQsXLnTrmNOnT2PGjBlQKBQIDQ3FbbfdhsrKymb7LVq0CFdffTWioqLAcVy75zlx4gQ4jsP+/fubtq1btw7Dhw+HRCJBYmIiXnjhBdjt9mbHbtq0CePHj4dMJkNISAjmzJmDvLy8Vs/1+OOPY8CAAQCAAwcO4OGHH0Z6ejrkcjkSExNxww034OzZsx4//jNnzuCpp57C0KFDoVQqERMTgyuuuAIHDx5s1t6aNWtw4403olevXpDJZOjXrx8ef/xxt/7mOvo7cTqdeO2115CSkgKJRILBgwfj22+/7fB5gI7/Turq6nDfffchIiICcrkcU6ZMweHDhzt8Hndi7ejjv1BeXh44jsMbb7zR4v1vvPEGOI5DXl4eli1bBo7j2r0lJyc3HX/06FHceuutSEhIgFgsRmhoKKZOnYqlS5fC4XB0+LkghBC/YaRLef311xkAlpubG+hQgs4VV1zBkpKSAh1Gp8ybN4+582dZWFjIwsPDWWpqKvvf//7HFi1axEJCQtiQIUOYxWJx2RcAi46OZtOnT2cA2AsvvNBm24sXL2aRkZHM6XQyxhjbsGED4ziOTZkyhX3yySfskUceYTwejz3wwAMux/3888+Mx+OxkSNHsv/973/s5ZdfZuHh4SwuLo5VVFS0eK5+/fqxJ554gjHG2OzZs1l0dDR75JFH2KeffspefvllFhUVxeRyOTtx4oRHj//xxx9nGo2G3XPPPezjjz9mr732GktNTWV8Pp9t2rTJpc2wsDA2aNAg9n//93/s008/ZY8++igTiUQsLS2NmUymNp8zd2JijLGnn36aAWD/+Mc/2CeffMKuuOIKBoB9++237Z6HsY7/ThwOB7v44ouZXC5nCxcuZO+//z4bMGAAUyqV7OzZsx06V0djdefxXyg3N5cBYK+//nqL95///peTk8O++uorl5tYLGYTJkxw2bZ27VrGGGOffvop4/P5LDY2lv373/9mn332GXv77bfZlVdeyTiOY4sWLerQ80AIIf5EiXoX05MSdaPR6Nb+vkrU3Y2jM9xN1B988EEmlUpZfn5+07ZNmzYxAOzjjz922bfxNVNZWdmhRH3ChAnsjjvuaPp5wIABbMiQIcxmszVte/bZZxnHcez06dMu+/Xu3dslKTt69Cjj8Xjssccea3aenJwcBoBt3bqVMcbYn3/+2SyhO3v2LBOLxWzu3LkePf6DBw8yvV7vcmxVVRWLiIhg48aNc9neGMf5li9fzgCwTz/9tNl9F+poTEVFRUwoFLJ58+Y1bXM6nWzChAksPj6e2e32ds/V0d/J999/zwCwVatWNW2rqKhgGo2G3Xzzze2ex51Y3XlNXsidRL0lcrnc5TXbaM+ePYzP57Px48cznU7X7P4DBw6wpUuXthkbIYQEAiXqXcgLL7zAADS7nf+h9dVXX7Hhw4cziUTCQkJC2I033sgKCgpc2pk0aRJLT09nx44dYxMnTmRSqZSlpqY2fYhv27aNjR49mkkkEta3b99mPY6NcZw+fZpdf/31TKlUstDQUPboo4+y+vr6ZnG7E9PBgwfZhAkTmFQqZf/85z8ZY4z9+OOP7PLLL2cxMTFMJBKxXr16sZdeesklOZg0aVKz56UxaV+6dGmLH+5bt251SRDbi8NsNrPnn3+epaamMpFIxOLj49mTTz7JzGZze786tmPHDjZnzhyWkJDQdOz8+fNdemjvuOOOFn+/bYmMjGTXX399s+19+/Zll156aYvHdCRRr62tZXw+n61cuZIxxtjJkycZAPbBBx+47FdcXMwAsJdffpkxxlh1dTUDwJ588slmbaanp7PY2Nhm2999912mVqtdks2WDB8+nA0fPtxlmyeP/3zXXXcdCw0NbXc/nU7HALT4ReNCHY3pgw8+YADYyZMnXfZbsWIFA8B27tzZtK2uro6dPn2a1dXVNW3r6O+EMcauv/56FhUVxRwOh8u+9913H5PJZC6v4ZKSEnb69GlmtVo9irUzvxNfJeozZsxgAoHA5csDIYR0BTRGvQu57rrrcPPNNwMA3n77bXz11Vf46quvEBERAaBhDPLtt9+OPn364K233sL8+fOxZcsWTJw4sdn42traWlx55ZUYM2YMXnvtNYjFYtx00034/vvvcdNNN+Hyyy/Hf/7zHxiNRsyZMwd6vb5ZPDfccAPMZjMWL16Myy+/HO+++y7uu+8+l33ciam6uhozZ87E0KFD8c4772DKlCkAgGXLlkGhUOCxxx7D//73P4wYMQLPP/88nn766aZjn332WQwdOhTh4eFNz4un49VbisPpdOLqq6/GG2+8gauuugrvvfceZs2ahbfffhs33nhju22uWrUKJpMJDz74IN577z1Mnz4d7733Hm6//famfe6//35cdtllAND0GL766qtW2ywuLkZFRQVGjhzZ7L7Ro0fjyJEjHjz6Br/99hs4jsO0adMAoKmtC88VGxuL+Pj4pvstFgsAQCqVNmtTJpOhpKQEZWVlLts3bNiAyy67DAKBoNV4GGMoLy9HeHh40zZvPP6ysjKXNtvaD0C7+7oT05EjRyCXy9G/f/9m+zXe32jt2rXo378/1q5d63I80P7vpHHf4cOHg8dzfcsfPXo0TCaTy/j/BQsWoH///iguLnY7Vl++Jj1lMpma3nMSExP9fn5CCOmM1j8ZSdAZPHgwhg8fjm+//RazZs1ymSSVn5+PF154Aa+88gqeeeaZpu3XXXcdhg0bhg8//NBle0lJCVasWNGU+F922WVIS0vDLbfcgt27d2PMmDEAgP79+2P69On44YcfcOedd7rEk5KSgp9++gkAMG/ePKhUKnz44Yd44oknMHjwYLdjKisrw5IlS3D//fe7nGfFihUuid8DDzyABx54AB9++CFeeeUViMViXHbZZYiLi0NtbS1uvfVWD5/h1uP4+uuvsXnzZmzfvh3jx49v2j5w4EA88MAD2L17Ny6++OJW2/zvf//r8hjuu+8+9O7dG8888wwKCgqQmJiIsWPHom/fvti0aVOHHkNpaSkAICYmptl9MTExqKmpgcVigVgs7tDjPt/69esxbtw4qNXqDp2rpKQEABAVFQWNRoM///zTZZ/q6mqcOnUKQEMyFx0dDaAhidq2bRs++uijNuP55ptvUFxcjJdeeqlpW2cf/86dO7Fnzx4899xzbZ4baPj98fl8zJkzp8393ImptLS0aWLvhfsBaHpOPT3X+ceXlpZi4sSJLe7XeK5Bgwa1ea6OxOrL16SnsrOzYbPZ2nx8hBASrKhHvZtYs2YNnE4nbrjhBlRVVTXdoqOj0adPH2zdutVlf4VCgZtuuqnp5379+kGj0aB///5NSTqApv8/d+5cs3POmzfP5edHHnkEQEMPqScxicVi3HXXXc3Oc36Cq9frUVVVhQkTJsBkMuHMmTMden7c0VIcq1atQv/+/ZGWlubyWC655BIAaPZY2noMRqMRVVVVuPjii8EY87iXsb6+vineC0kkEpd93OF0OrFx40ZcccUVHT5X4/08Hg/3338/tmzZggULFiArKwuHDh3CDTfcAKvV2iymP/74AxaLBTNnzmw1njNnzmDevHkYO3Ys7rjjjg7HdOG5zldRUYFbbrkFKSkpeOqpp1o9N9DwRfHzzz/H448/jj59+rS5rzsx1dfXdzj2O++8E4wxly/LHf2duHuuZcuWgTHm0hHQ0eN99ZrsDJ1OBwBQKpV+PS8hhHgD9ah3E1lZWWCMtZpICIVCl5/j4+Ob9Y6p1WokJCQ02wY0DJW50IXnSk1NBY/HayrD525McXFxEIlEzfY7efIknnvuOfzxxx9NH7qNtFpti213RktxZGVl4fTp003DjC5UUVHRZpsFBQV4/vnnsW7dumbPpaePoTH5bxxucj6z2eyyjzsOHDiAyspKl0S9vXOdf56XXnoJVVVVeO211/Cf//wHADBt2jTcc889WLJkCRQKRdO+69evx8iRIxEVFdViLGVlZbjiiiugVquxevVq8Pn8Dsd0/j7nMxqNuPLKK6HX67Fr1y6XeC60c+dO3HPPPZg+fToWLVrU6n6exCSVSjv1u3Pnd+KNc3X0MbUVU0fO1REXvne1RaVSAUCLw/cIISTYUaLeTTidTnAch19//dUlmWl0YTLS0j5tbWeMtRvDhR+e7sbU0gd4XV0dJk2aBJVKhZdeegmpqamQSCQ4fPgw/v3vf8PpdLodV6PW6ia3FIfT6cSgQYPw1ltvtXjMhV9wLjzPZZddhpqaGvz73/9GWloa5HI5iouLceedd3boMbSkcXhB43CD85WWliI0NNSjIQYbNmxAcnJyU13zC8914WMtLS1tGqsMACKRCJ999hkWLVqEs2fPIioqCn379sUtt9wCHo+H3r17u5yrpasoQMMXmJkzZ6Kurg47d+5EbGysy/2ePH6r1YrrrrsOx48fx2+//YaBAwe2+jwcO3YMV199NQYOHIjVq1e3OYbek5hiYmKwdetWMMZcXqONx174eNs6V3u/k5iYmFZj6ui5OhJrZ1+T7fW6m0wml/06onfv3hAIBDhx4kSHjyGEkGBBiXoX01rSmZqaCsYYUlJS0LdvX7/EkpWVhZSUlKafs7Oz4XQ6my6ZeyOmbdu2obq6GmvWrHEZY5ubm9ts39aem5CQEABoNnk1Pz+/w3Gkpqbi2LFjuPTSS93qzQMaFg46e/Ysli9f7jJ5dNOmTc32daftuLg4REREtLhoz/79+zF06FC34my0fv16XH755S7bGts6ePCgSwJYUlKCoqKiZpOIgYbx6o095Q6HA9u2bcOYMWOavqBlZGSgoKDApee+kdlsxlVXXYWzZ89i8+bNLl8aGrn7+J1OJ26//XZs2bIFK1euxKRJk1p9DnJycjBjxgxERkZiw4YNbfa6exrT0KFD8dlnn+H06dMuj2/fvn1N97fFnd/J0KFDsXPnTjidTpcJpfv27YNMJmv377OjsXb2NRkREQGZTIbMzMwW78/MzIRMJuvQBOBGMpkMl1xyCf744w8UFha2+aWaEEKCDY1R72LkcjmA5knnddddBz6fjxdffLFZ7zdjDNXV1V6P5YMPPnD5+b333gOApvHG3oipsSf+/OOtVis+/PDDZvvK5fIWh5GkpqYCAHbs2NG0zeFw4JNPPmn3/I1uuOEGFBcX49NPP212X319PYxGo1uPgTGG//3vfy0+BqD577c1s2fPxi+//ILCwsKmbVu2bMHZs2dx/fXXd6iN85WXl+Pw4cPNkuf09HSkpaXhk08+cbkS8dFHH4HjuHYnWb7xxhsoLS3F448/3rRtw4YNiIqKalYhxOFw4MYbb8SePXuwatUqjB07ttV23Xn8jzzyCL7//nt8+OGHuO6661pts6ysDNOmTQOPx8Nvv/3W6nCnzsZ0zTXXQCgUuryWGWNYsmQJ4uLiXCYna7VanDlzxuX17c7vZM6cOSgvL8eaNWuatlVVVWHVqlW46qqrXHq5S0tLcebMGdhsNo9i7cxrks/nY9q0afj5559RUFDgcl9BQQF+/vlnTJs2rdUrf6154YUXwBjDbbfdBoPB0Oz+Q4cOYfny5W61SQgh/kA96l3MiBEjADSUI7zpppsgFApx1VVXITU1Fa+88goWLFiAvLw8zJo1C0qlErm5uVi7di3uu+8+PPHEE16NJTc3F1dffTVmzJiBPXv24Ouvv8Ytt9yCIUOGAIBXYrr44osREhKCO+64A48++ig4jsNXX33V4lCcESNG4Pvvv8djjz2GUaNGQaFQ4KqrrkJ6ejouuugiLFiwADU1NQgNDcV3333X4jLrrbntttuwcuVKPPDAA9i6dSvGjRsHh8OBM2fOYOXKlfjtt99aLEkHAGlpaUhNTcUTTzyB4uJiqFQq/PDDDy2O+2/8/T766KOYPn06+Hy+y6TfCz3zzDNYtWoVpkyZgn/+858wGAx4/fXXMWjQoGZDSr766ivk5+c3DR/YsWMHXnnllabHl5SUhA0bNkAikTSVxjzf66+/jquvvhrTpk3DTTfdhIyMDLz//vu49957Xcr2ff311/jhhx8wceJEKBQKbN68GStXrsS9996L2bNnN+23fv16zJw5s9lVhMcffxzr1q3DVVddhZqaGnz99dcu959fEaejj/+dd97Bhx9+iLFjx0ImkzVr89prr236kjRjxgycO3cOTz31FHbt2oVdu3Y17RcVFdVUQrM1HY0pPj4e8+fPx+uvvw6bzYZRo0bhxx9/xM6dO/HNN9+4JKNr167FXXfdhaVLl7pMKO3o72TOnDm46KKLcNddd+HUqVMIDw/Hhx9+CIfDgRdffNEl/gULFmD58uXIzc1tujrmTqzuvCZb8uqrr+Kiiy7C8OHDcd999yE5ORl5eXn45JNPwHEcXn311XbbuNDFF1+MDz74AA899BDS0tJw2223oU+fPtDr9di2bRvWrVvX9LdACCFBxZ9F24l3vPzyyywuLo7xeLxmi3/88MMPbPz48UwulzO5XM7S0tLYvHnzWGZmZtM+jYv6XCgpKYldccUVzbYDcFmRsHHBo1OnTrE5c+YwpVLJQkJC2MMPP9zigkediYmxhpUqL7roIiaVSllsbCx76qmn2G+//dZssSKDwcBuueUWptFoXBY8Yqxh9cupU6cysVjMoqKi2DPPPNO0WmJLCx61xGq1sv/+978sPT2dicViFhISwkaMGMFefPFFptVqWzym0alTp9jUqVOZQqFg4eHh7B//+Ac7duwYA+CyIqLdbmePPPIIi4iIYBzHdWiV0oyMDDZt2jQmk8mYRqNhc+fOZWVlZc32a2lRqMZb43MwZ84cdvnll7d6rrVr17KhQ4cysVjM4uPj2XPPPeeyMA5jjO3bt49NnDiRhYSEMIlEwoYMGcKWLFnCnE5n0z51dXVMIBA0LajU0Thbej468vhbW0yq8Xb+31Bb+02aNKnV58bdmBhjzOFwsFdffZUlJSUxkUjE0tPT2ddff91sv8ZFu1paPbMjvxPGGKupqWH33HMPCwsLYzKZjE2aNIkdOHCg2X6Nz9WFiwp1NFZ3Hn9rTp8+zW688UYWGRnJBAIBi4yMZDfddJPLaqstaW3Bo0aHDh1it9xyC4uNjWVCoZCFhISwSy+9lC1fvrzZYlCEEBIMOMY6MEuQkPMsXLgQL774IiorK90aK0qCm91uR1hYGBYvXoyHHnrIp+dauXIl5s6di6qqqqbKQoQQQghxRWPUCSEAgJqaGvzrX//Ctdde6/NzaTQavPvuu5SkE0IIIW2gMeqEEABAZGQkFi5c6JdzTZs2zS/nIYQQQroy6lEnhBBCCCEkCNEYdUIIIYQQQoIQ9agTQgghhBAShChRJ4QQQgghJAh1i8mkTqcTJSUlUCqVbi/vTgghhHR3jDHo9XrExsaCx6M+OuI5s9kMq9Ua6DCaiEQiSCSSQIfhM90iUS8pKUFCQkKgwyCEEEKCWmFhIeLj4wMdBumizGYzpFJpoMNwER0djdzc3G6brHeLRF2pVAJoeANSqVQBjoYQEsyeWnUMGzLKAh0GIX7ltJhQ/NGdTZ+XhHji7550fkDjOF9ZWRmsVisl6sGscbiLSqWiRJ0Q0qpqgwXb84zgiWWBDoWQgKDhocQ7OHAI/GuJofsXLqSBaoSQHuOdzVmotzkCHQYhhBDSId2iR50QQtqTVa7Hiv0FgQ6DEEK6AQ4Ihqsz3b9DnXrUCSE9w6sbTsPh7AHv6oQQQroNStQJId3ejrOV2JpZGegwCCGEELdQok4I6dbsDicWrT8d6DAIIaQb4QXRreMWL16MUaNGQalUIjIyErNmzUJmZqbLPp988gkmT54MlUoFjuNQV1fn1jm8jRJ1Qki3tvJgETLL9YEOgxBCSIBt374d8+bNw969e7Fp0ybYbDZMmzYNRqOxaR+TyYQZM2bgmWeeCWCkf6PJpISQbktvtuGtTZnt70gIIaTDOPCCojyjuwUaN27c6PLzsmXLEBkZiUOHDmHixIkAgPnz5wMAtm3b5p0QO4kSdUJIt/XRthxUGYJnqWtCCCHep9PpXH4Wi8UQi8XtHqfVagEAoaGhPonLG2joCyGkWyqqNeGzXbmBDoMQQrofjhc8NwAJCQlQq9VNt8WLF7f7EJxOJ+bPn49x48Zh4MCBvn7GPEY96oSQbum1jZmw2p2BDoMQQoiPFRYWuqxM35He9Hnz5iEjIwO7du3yZWidRok6IaTbOVxQi3XHSgIdBiGEdFM8IEjGqAOASqVySdTb8/DDD+OXX37Bjh07EB8f76vgvIISdUJIt8IYwyu/nAp0GIQQQoIMYwyPPPII1q5di23btiElJSXQIbWLEnVCSLfyy/FSHC6oC3QYhBBCgsy8efOwYsUK/PTTT1AqlSgrKwMAqNVqSKVSAEBZWRnKysqQnZ0NADhx4gSUSiUSExMDMumUJpMSQroNs82B//x6JtBhEEJIt9ZQnjE4bu746KOPoNVqMXnyZMTExDTdvv/++6Z9lixZgmHDhuEf//gHAGDixIkYNmwY1q1b59XnsKOoR50Q0m0s/TMPxXX1gQ6DEEJIEGKs/arrCxcuxMKFC30fTAdRok4I6RaqDBZ8sDU70GEQQki3x3E8cFyQTCZ1Z8WjLoiGvhBCuoW3N52FwWIPdBiEEEKI11CPOiGkyztbrse3+wsCHQYhhPQQHIKjr7f7r5URDM8yIYR0yqL1p+Hs5pc/CSGE9DyUqBNCurRtmRXYfrYy0GEQQgghXkdDXwghXZbN4cSrG04HOgxCCOlROI4PjguGvt5gmNDqW8HwLBNCiEfe25KFs+WGQIdBCCGE+AT1qBNCuqTDBbV4n8oxEkKI33my2BDxDD3LhJAux2ix47Hvj9IEUkIIId0a9agTQrqcRRtOI6/aFOgwCCGkR2pY8Ij6ev2BnmVCSJfyx5lyrNhHNdMJIYR0f9SjTgjpMmqMVjy1+kSgwyCEkB6Nxqj7Dz3LhJAugTGGBWuOo8pgCXQohBBCiF9Qok4I6RJ+OFyM306WBzoMQgghxG9o6AshJOgV1piwcN3JQIdBCCEENJnUn+hZJoQENYeT4fGVx2Cw2AMdCiGEEOJX1KNOCAlqn+08h/15NYEOgxBCyF84jh8kPepcoAPwuWB4lgkhpEWnS3V48/ezgQ6DEEIICQjqUSeEBCWL3YF/fX8UVocz0KEQQgg5D5Vn9B96lgkhQemt38/iTJk+0GEQQgghAUOJOiEk6Ow9V41Pdp4LdBiEEEJIQNHQF0JIUNGZbXh85TEwFuhICCGEtITjuCCZTNr9PyiC4VkmhJAmL647heK6+kCHQQghhAQc9agTQoLGrydK8cPhokCHQQghpA0c+ODAD3QYPQL1qBNCgkKFzoxn1p4IdBiEEEJI0KAedUJIwDHG8O8fjqPWZAt0KIQQQtrBcTwao+4nwfAsE0J6uK/35mNrZmWgwyCEEEKCCvWoE0ICak9ONV78+VSgwyCEENJBvCBZ8IhRjzohhPhOXpURD35zCHZn93+zJYQQQtxFiTohJCC09Tbcs/wA6mhcOiGEENIiGvpCCPE7u8OJh1ccRk6lMdChEEIIcRPH8cFxVJ7RH6hHnRDid6+sP42dWVWBDoMQQggJatSjTgjxq6/25mPZ7rxAh0EIIcRDXJBMJqXyjIQQ4kV/Zldh4bqTgQ6DEEII6RKoR50Q4hfnKg146JvDcFCFF0II6dI4jgdeECx45KQedUII6TytyYZ7lx+Etp4qvBBCCCEdRYk6IcSnbA4nHlpxCOeqqMILIYQQ4g4a+kII8amXfj6FP7OrAx0GIYQQL2mYTBr48owcDX0hhBDPfbknD1/tzQ90GIQQQkiXRD3qhBCf2HG2Ei/+fCrQYRBCCPGyYCnPGAwx+Fr3f4SEEL/LrjBg3gqq8EIIIYR0BvWoE0K8qtZoxT3LD0Bvtgc6FEIIIT7A4/jgcYEfo04LHhFCiBusdice/OYQ8qtNgQ6FEEII6fKoR50Q4hWMMbywLgN7z9UEOhRCCCE+RGPU/cetR7hw4UJwHOdyS0tLAwDU1NTgkUceQb9+/SCVSpGYmIhHH30UWq22zTYZY3j++ecRExMDqVSKqVOnIisry/NHRAgJiKV/5uHb/YWBDoMQQgjpNtz+KpKeno7S0tKm265duwAAJSUlKCkpwRtvvIGMjAwsW7YMGzduxD333NNme6+99hreffddLFmyBPv27YNcLsf06dNhNps9e0SEEL/bmlmBV9ZThRdCCCHEm9we+iIQCBAdHd1s+8CBA/HDDz80/ZyamopFixbh1ltvhd1uh0DQ/FSMMbzzzjt47rnncM011wAAvvzyS0RFReHHH3/ETTfd5G54hBA/yyzT49EVR0AFXgghpGfggQ9eECx4RJNJW5CVlYXY2Fj06tULc+fORUFBQav7arVaqFSqFpN0AMjNzUVZWRmmTp3atE2tVmPMmDHYs2dPq+1aLBbodDqXGyHEv+wOJz7beQ6zPvgTegtVeCGEEEK8za0e9TFjxmDZsmXo168fSktL8eKLL2LChAnIyMiAUql02beqqgovv/wy7rvvvlbbKysrAwBERUW5bI+Kimq6ryWLFy/Giy++6E7ohJB2MMbAcVyH9j1VosPTa47jeFHbc1AIIYR0PzSZ1H/cStRnzpzZ9P+DBw/GmDFjkJSUhJUrV7qMRdfpdLjiiiswYMAALFy40GvBNlqwYAEee+wxl/MlJCR4/TyE9BT1VgeufG8n5GIBhiVoMDwpBMMSQpAQKgXHcdDW25BdYUB2hR5HC7VYebCQFjMihBBCfKxT5Rk1Gg369u2L7Ozspm16vR4zZsyAUqnE2rVrIRQKWz2+cax7eXk5YmJimraXl5dj6NChrR4nFoshFos7Ezoh5Dyf7DiHnEojAOB4kRbL9+QDAMIVIvA4DhV6SyDDI4QQEkR4f/0LvGCIwbc69QgNBgNycnKakmydTodp06ZBJBJh3bp1kEgkbR6fkpKC6OhobNmypWmbTqfDvn37MHbs2M6ERgjpIMYYvtqb1+J9VQYrJemEEEJIgLiVqD/xxBPYvn078vLysHv3blx77bXg8/m4+eabm5J0o9GIzz//HDqdDmVlZSgrK4PD4WhqIy0tDWvXrgUAcByH+fPn45VXXsG6detw4sQJ3H777YiNjcWsWbO8+kAJIS3jOA5DE0ICHQYhhBBCLuDW0JeioiLcfPPNqK6uRkREBMaPH4+9e/ciIiIC27Ztw759+wAAvXv3djkuNzcXycnJAIDMzEyXRZCeeuopGI1G3Hfffairq8P48eOxcePGdnvjCSHec9vYJGw+XR7oMAghhHQBHPjggqA8I9cDyjNyjLEu/yh1Oh3UanVTOUhCiHucToZL3tyGvGpToEMhhPiA02JC4Ts30Ock6ZTGfCtBPhU8rlPTHL3CyewoNG7u1q/r7j8KnxDSLh6Pw5WDYwMdBiGEkC6goThjMPzrWEnhrowSdUIIAGDqgKj2dyKEEEKI3wT+ugUhJCgMjlMjQilGJVV5IYQQ0gYqz+g/3f8REkI6hMfjMLV/ZKDDIIQQQshfKFEnhDSZ2p+GvxBCCGlbY9WXYLh1d5SoE0KajOsdDomQ3hYIIYSQYECfyISQJhIhHxP6RAQ6DEIIIYSAEnVCyAUuTg0LdAiEEEKCWPAUZ+z+aWz3f4SEELckhckCHQIhhBBCQOUZCSEXSAylRJ0QQkjreCw4yjMyFvgYfK37P0JCiFtqTbZAh0AIIYQQUI86IeQ8NocTz6w5EegwCCGEBDEuSMaHB0MMvtb9HyEhpMN+OlqCrApDoMMghBBCCKhHnRBynkP5NYEOgRDiZX0iFWBWHgoDHQghxG2UqBNCmvB5XKBDIIR40ejkUOzPq4HTYgp0KKQbaSyPGGgsCGLwte7/CAkhHXbz6ETIRN1/SWZCeorTpToMilMFOgxCiIcoUSeENEmPVeP7+8YiRCYMdCiEEC/QW+w4XapHegwl68R7Ar3Q0fn/urvu/wgJIW4ZFK/GmzcMCXQYhBAvsTsZzlboAx0GIcQDlKgTQpq5JC0K94xPCXQYhBAvsTlYoEMg3QiP8YLm1t11/0dICPHIUzP6YVCcOtBhEEIIIT0WJeqEkBaJBXy8d/MwSIU0uZSQrkQlEWBoggaD49WQ0+Rw4gM84K8ljwJ96/6oPCMhPcjRwjrkVxuhN9uRGqHAkAQ1ZKLW3waSw+W4Z3wK3t+a7ccoCSHu4Digf7QKSokAVQYLciqNOFpYBwDgcUDfKAUUnJjqqBPSBVGiTkgPsT+3Bjd9sgfO84aq8nkc+scoMSYlDPeMT0GsRtrsuPF9wilRJyRIDYpTQVdvw6lSXYv3OxlwttxAddQJ6aIoUSekG9OabNh2tgKbT1fgj9PlLkk6ADicDBnFOmQU6/DV3nzceXEyHpqcCo1MBIeT4ZfjJViw5kRggieEtEok4GFIvBoH8moDHQrpgYJl4EkwxOBrlKgT0s3kVhmx5XQ5Np8ux4G8WjguzM5bYbU78cmOc/h2fwGGJ4Ygp9KAotp6H0dLCHFXeqwKBrOdknRCegBK1AnpBhhj+P5AIT7deQ45lcZOtaU327H9bKWXIiOEdFakUowolQQyER/FdfU4WdLyMBdC/KVxMmegsSCIwdcoUSekiyuuq8fTPxzHzqyqQIdCCPGSUckh0NXbUVxrQoXeggq9JdAhEUICgBJ1QrqwrZkVeGTFERgs9kCHQgjxApmIj14RchrWQoIaj/HAC4Lx4YwWPCKEBLNKvcWjJF0hpu/ohASjflFKZBTT0BZCSANK1AnpwoYmaNw+5pYxiTjw7FS8eHU6JEJ6CyAkmDjBwOv+w24JIR1E3WqEdGGpEQrIRHyYrI429xPxebi4dxhuHp2I6enRAIA7Lk7GxL4ReHzlURwuqPNDtISQ9hwr1KJvlAK1RhsqDTQunQQnLkgmkzqDIAZfo0SdkC6Mz+MwKE6Nfbk1AIDEUBkm9Y3AoDg1uL/ev9RSIS7uHd7icJeUcDlWPXAxnv8pA9/sK/Bn6ISQVpwtN0AtFSJeI0VRHZVIJaQno0SdkC7uol5hyCzXY0Z6NP4ze7Dbx/N5HF6ZNRBRKgne2nTWBxESQtylrbehT5SCEnUSlLi//gVaMMTga5SoE9LF/euyvvjXZX071QbHcXj00j4IkQnxfz+d9FJkhJDOOFGkhVIigN5MVZ0I6aloJhkhpMmtFyVheKIm0GEQQgBY7E70j1EFOgxCmmlc8CgYbt0dJeqEkCYcx+Gxy/oFOgxCyF/qrdSbTkhPRok6IcTFuN5hGJ0SGugwCCEAhHz6mCbBJ9C96NSjTgjpsTiOw7wpvQMdBiEEDZO9CSE9FyXqhJBm+scoAx0CIQQNX5wJIT0XVX0hhDQTLhdDJODBancGOhRCeqyEECmyKwyBDoOQZqg8o/9Qok5IkHI6Gcp0ZuRVG3GqRAerw4lYtRQzBkZDIuT79Nw8Hoc4jRS5VUafnocQ0rLEUBkMZhtqTLZAh0IICSBK1AkJIKeToVxvRm6VEXlVJuRXG5FbZUR+tQl51UZYWujRjtkowaxhcZAJ+RAJeE03seCvn/k8iM/bLhXy0TtS4XZyT4k6IYGhFAugM9tQR0k6CVI8jgMvCIZl9YTJpJSoExIAdocTy3bn4Z3NWTBY3Cu/Vqo146NtOW4dI+RzGBCjwpwR8bj1oqQOjXuN00jdOgchxDs0ciEKa2hFUkIIJeqE+N3pUh3+/cNxHC/S+u2cNgfDsSItjhVpsfdcDV6bMxhycdt//vEhlKgTEggWmxMJoVIU1tSDQ8MXbSdjoCkjJFgES2nEYIjB16jqCyF+4nAyvP7bGVz13i6/JukXWn+iFI9+ewQOJ2tzv5vHJCJMLvJTVISQRhV6S0OSzgEMgNXBIBLwMTolFCJ+909MCCF/o0SdED+pNlrwwdYc2NtJkP1hy5kKvPl7Zpv7hCvEePW6QX6KiBByIXbeW4XJ6sD+3BrEaKR0tYuQHoQSdUL8xGhxBDoEFx9uy8FPR4vb3Gd6ejTeumEILkmLhEhAbxeEBFp+tQnVBiuGJmgCHQrpwXhBdOvuesJjJCQoGMzuTRr1h6dWH8exwro297lueDy+uHMUjj5/GT65bQRuGBmPcAUNiSEkUOptDhwvqsPgeHWgQyGkS1m8eDFGjRoFpVKJyMhIzJo1C5mZrleXzWYz5s2bh7CwMCgUCsyePRvl5eUBipgSdUL8Rm8JvlJrFrsT9311EBU6c7v7ykQCTEuPxmtzhmD/M1Ox5qGL8dDkVCSHyfwQKSHkfE4GCPn0EU4Cgwuif+7Yvn075s2bh71792LTpk2w2WyYNm0ajMa/SxH/61//ws8//4xVq1Zh+/btKCkpwXXXXeftp7DDqOoLIX7iSY/6hD7hiFFL8Gd2NYrrfFOurVxnwT+/O4oV/xjT4eXKeTwOwxNDMDwxBPOn9sVbm87i4x05LmNqCSG+da6SVi0lxB0bN250+XnZsmWIjIzEoUOHMHHiRGi1Wnz++edYsWIFLrnkEgDA0qVL0b9/f+zduxcXXXSR32Omr+OE+InR6l6iPrZXGD6/YxRemzMEPz8yHv1jVD6KDNhzrhqrDhV5dKxIwMPTM9Ow4t6LEKOWeDkyQkhL+kQqUEsLIpEAaVzwKBhuAKDT6VxuFoulQ49Dq22owBYaGgoAOHToEGw2G6ZOndq0T1paGhITE7Fnzx4vP4sdQ4k6IX4yvncEQjtY7rBXuBwf3Tq8aQJnqFyED24Z5tNyiS/8dBJbz1R4fPzY1DCsfWgckmgoDCE+19H3EkJ6goSEBKjV6qbb4sWL2z3G6XRi/vz5GDduHAYOHAgAKCsrg0gkgkajcdk3KioKZWVlvgi9XTT0hRA/iVCK8eq1g/DA14fa3E8jE+LzO0dBI3P9IO4VocCP88bh8125WHO4CDovT06ttzlwz/IDmDkoBpP6RmBinwhEt9NDbrU7sfl0OTLL9Kg1WVFttEIi4Hs1LkJIcxX6jvUYEtITFBYWQqX6+6qzWCxu95h58+YhIyMDu3bt8mVonUaJOiF+NGNgND67fSR+O1mGXdlVcDgZFBIBlBIhlGIBlBIB5k3pjZRweYvHJ4TKsPDqdDw9Mw0bTpTiu/2F2J9X47X4nAxYf7wU64+XAgD6RSkxsW84br0oCUlhrjH9cKgIi389gyoDJQyE+JtSQh/fJHA4BMeQjMZZVSqVyiVRb8/DDz+MX375BTt27EB8fHzT9ujoaFitVtTV1bn0qpeXlyM6OtpLUbuH/tIJ8bOpA6IwdUBUp9qQCPm4bng8rhsej73nqvHIt0dQ6YMetsxyPTLL9VixrwAvXJWO60fGg+M4/HK8BE+sPkaTRwkJkJwKA+I0Up9NMiekO2KM4ZFHHsHatWuxbds2pKSkuNw/YsQICIVCbNmyBbNnzwYAZGZmoqCgAGPHjg1EyJSoE9LVXdQrDOsfGY/rP96D/GqTT85htDrw1A/HoZIKcNmAaDz9wwlK0gkJIKPVgTAFB6mQh3qbM9DhkB6G47gOVwnzaRxulmecN28eVqxYgZ9++glKpbJp3LlarYZUKoVarcY999yDxx57DKGhoVCpVHjkkUcwduzYgFR8AYLjygUhpJMiVRJcMzTO5+cp11mQXWGAwRJ8izcR0tMU1JjQO1KJSGX743EJIcBHH30ErVaLyZMnIyYmpun2/fffN+3z9ttv48orr8Ts2bMxceJEREdHY82aNQGLmXrUCekmpg2Iwrtbsnx6jmqjFSY3y0wSQnznRLEWfB6HYQkamKwOZJbrAx0S6QF4CI6eXndjYB24FCyRSPDBBx/ggw8+8CwoLwuG55kQ4gXpsSqf1loHgIQQKQQ8etsgJJg4nAxHCuuQWa5HaoQcIxI14Ad+VAIhxAvoE5eQboLjOPxjQkr7O3rool6hmDMiHjEaWtSIkGCVU2nEoYI6aGQijEkJhUYmDHRIpBtqHKMeDLfujhJ1QrqRKwfHYkiCxuvtTuwbgXdvGgaO4xCuEPt04SVCSOdVG63Yl1uD3hGKQIdCCOkEStQJ6UZEAh5WPzAWj1zSGzwvdDT0jVLgv7MHYfldoxCp+rsn/eLe4Z1vnBDic2abI9AhEEI6gSaTEtLNCPk8PD6tHy7tH4Xlu/OwMaMM9R34sOZxDaufDoxVYWCcGqOSQzE4Xt3ipcWbRiXg52MlvgifEOIlKokAp0p1gQ6DdENddTJpV0SJOiHd1NAEDYbeOBQvz7Lj1xOlWHO4GAfza2BzMAj5HPpGKTEwVo2BcSoMiFWjf4wSMlHH3hLG9Q7Hw1N64/2t2T5+FIQQT/WNUuJgfm2gwyCEdAIl6oR0cwqxANePTMD1IxMAABa7Axw4iASd64t4Yno/DIhV4e1NZ5FVYfBGqIQQL7I5aCEk4hs8Dl4ZXtnpOAIdgB9Qok5IDyMW8L3W1uWDYjBzYDQq9RaYrA6YrA7U2+wwWR3YlV2Fj7ef89q5CCHuyas2BjoEQkgnUaJOSJBwOhmqjBaUay0o1dajXGdGqdaMMp256f/rTDbEqCVICpPhsgFRuGZIHHg+6NZwOhlOleqwM6sKerMNcrEAchG/4b9/3RRiPmQiARR//RyrEbn00k/oEwGVRIjXf8v0enyEkLbFh0hRVFsf6DBIN8X99S/QgiEGX6NEnRA/sNqdKNc1JN1l2r9uOtf/VujNsDnaXzWtxmjFyRIdNpwow/Ld+fhg7nDEaaReiTO3yohPdpzDplNlqDJY3TpWJOBhXGoYLu0fhWkDohCpkuCW0YmUqBMSAN0/fSGkZ6BEnZBOMljsKNPWo+yCnvDz/+tu0ttRRwvrMOej3fjqntHoHan0uJ2MYi0+2paDDRml6MAKyy2y2p3YmlmJrZmV+M+vZ/DezcMwJS0SITIhak02j2MjhLivsLYeSjEfeguVZySkK6NEnZAOsjmc+G5/AY4VaV16wg0We0DjKtWacePHe7H+0QmIVnd81VDGGPbn1uCDbTnYcbbSqzEZLHbcs/wAnrtiAHpFKHCIKk8Q4ndpMSocyKO/PeJ9NJnUfyhRJ6QDDubV4LkfM3CmTB/oUFpUbbRi/vdH8M29F4HfwXfPbWcrcdfSAz6LycmAl345BanQe5NXCSEdd6JYi4QQKQpprDohXVZP+DJCiMdqjFY8tfoY5izZE7RJeqO952rwxa7cDu8/pV8k3r5xSIcTe091ZLElQoj3mW1O8HkchPwg6Pok3QoXRLfujhJ1QlrgdDJ8f6AAl7y5DSsPFgU6nA5b+mcuHM6ODzK/dlg8Pr51RKdrqhNCglNetQnDEjSBDoMQ4iH6dCbkAqdLdbj+4z349w8nUNfFJkGWaM3YfrbCrWOmDojC8rtGQyGmkXCEdEf782oxME4V6DBIN9IwRp0Lglugnwnfo0SdkL8YLHa88sspXPneri47+XFCn3CopSK3jxubGoYV/xiDEJnQB1ERQgKNFj8ipGuiLjTS4zHG8GtGGV76+RTKdOZAh+MRjUyIl68ZiCsHx4DjPOtiGByvwaoHxuK2z/ejVNs1nwdCSMsMZporQryHh+Do6Q2GGHyNEnXSo+VXG/H8Tyex3cvlCf0pNUKOr+8dgxh15xc96h2pbErWc6uoB44QQggJpJ7wZYSQFtUYrbh+yZ4unaQDwCVpkV5J0hvFh8iw8v6xGBBDY1oJIYSQQKIeddJjvfjzSVToLYEOo9O++DMP64+XIlIlQbRKgmi1BJEqccP/qyQN29UStyaLRijF+Pa+i3Dv8gO0YAohhBAXHNdwC7QgCMHnKFEnPVa9tXuM2XQ4GUq0ZpS0M65cIRYgSiXGpL6RuGVMInpHKtrcXy0V4ut7x+Cznbl4/49sqodOCCGE+Bkl6qTHSo1UAKfKAx2G3xgsdhgq7cipzMUXf+ZidEoo5o5JxIyB0RALWl49VCzgY96U3rh2WBze+D0TB/JqUFpnRqRSjLgQKWI1UkiFfNQYrdifV9PlylkSQghxH8chKEojBkEIPkeJOumx+kUpAx1CQO3PrcH+3BqEyIS4ZUwi5k/tCyG/5WkrsRop3rphKICGKjktVZaptzqw5kgRPt+Vi3OVNBGVEEII6SyaTEp6rMsHxfT4ZB0Aak02fLA1B3ctPQCduf0e8dbKP0pFfMwdk4TN/5qEpXeOwvje4RAEQ5cLIYQQr+KC6NbduZWoL1y4EBzHudzS0tKa7v/kk08wefJkqFQqcByHurq6TrdJiK+IBDwsnj0IQn5P+FNv367sKsz5aDeK6+o71Q6Px2FKWiS+vncMTr40HRsenYC3bhiC+yf2woQ+4ZCLWh5mQwghhBBXbg99SU9Px+bNm/9uQPB3EyaTCTNmzMCMGTOwYMECr7RJiC8NTwzBsrtG44GvDkFvsQc6nIA7W27ArA/+xNI7R2FgnLrT7YkFfAyIVWFA7N+lHqsMFrz5eya+O1AIxjp9CkIIIaTbcjsjFggEiI6ObvG++fPnAwC2bdvmtTYJ8bVxvcOx+sGLcedSWpETACr1Ftzw8R58OHc4JveL9Hr74QoxFl83GHPHJOHZHzNwrLDO6+cghBDiOzwEx2RSXg/o7HF7jHpWVhZiY2PRq1cvzJ07FwUFBZ0Owt02LRYLdDqdy42QzugXrcTah8ahPy3yAwAwWR14cvVxmKy+u8owME6Nr+8Z3W6ZSEIIIaSncitRHzNmDJYtW4aNGzfio48+Qm5uLiZMmAC9Xu9xAJ60uXjxYqjV6qZbQkKCx+cnpFG0WoLv778IsWpJoEMJCpV6C5b+mefTcyglQnx6+0ioJDTcjRBCugpeEN26O7ce48yZM3H99ddj8ODBmD59OjZs2IC6ujqsXLnS4wA8aXPBggXQarVNt8LCQo/PT8j5VBIhXr1uUKDDCBpLtudAW+/b2ugp4XK8d8twn54jkKQiPsakhCJSKUZ8iBQjEkMwgK7cEEII6YBOfRnRaDTo27cvsrOzvRVPh9oUi8VQqVQuN0K8ZXK/SFw1JDbQYQQFvdmO9cdLfX6eSX0jkBoh9/l5/Eks4GF0SgjEAh725dagQm9BUW09DhXU4lSpDr3C5UgJlwU6TEIIcRvHBc+tu+tUom4wGJCTk4OYmBhvxeOTNglx1+OX9aUa4H/58WixX84zKjnUL+fxB6mQj1iNFPtza1tdrfVclREF1SaMSArxc3SEEEK6CrcS9SeeeALbt29HXl4edu/ejWuvvRZ8Ph8333wzAKCsrAxHjx5t6g0/ceIEjh49ipqamqY2Lr30Urz//vsdbpOQQEgOl+OGUTT3AWhYwbSo1uTz8/g6UZeK+OgdqcCwRA36RCp82hPTL1qJ3Kr2V2d1MOB4UR1Swn13NUHI5xAXIvVZ+4SQnofHBc+tu3MrUS8qKsLNN9+Mfv364YYbbkBYWBj27t2LiIgIAMCSJUswbNgw/OMf/wAATJw4EcOGDcO6deua2sjJyUFVVVWH2yQkUP55aR8oxTTJEQB+Olri83P4IlHvF63EqOQQRCrFqLc6kF1hwJGCOmRVGDAqyTdfDMakhOKoGyUnbQ6GCIXYJ7EMT9SAxwEltfUYkxIKfk/4VCOEkG6EY6zrLzmi0+mgVquh1WppvDrxqlUHC/Hk6uOBDiPgekcqsOlfE8H5sBt6d04Vbvl0X6fbiVFLkBgqQ0GNqc26+AoRHwaro9PnO9+QeDWOFWndPm54ogaHC+q8GgsAhMpEqDFZm37uFS6HkzHkVfv+CgkJLk6LCYXv3ECfk6RTGvOt28Puh4jnmw4Gd1idFnxZ/XG3fl33hMo2hHhszoh4XJrm/UV/uprsCgNOlvh2vYIfDnVuLPywRA36RSlRqjVjX25Nu4tXWR3OTp3vQklhMpwt96xUrcXu3VgAIDFU6pKkAw3j4gtrTBiZTOPiCSGe44Lo1t1Rok5IGziOw7s3D8O/pvaFXMT3qA2ZiI+0aCU0MqGXo3NPn0gFhidqEKeRQsh3/+3to2058NUFOKPFjl8zPKsukxohR98oBY4U1CHTjURZ7sVhTWqpEBabA/U2zxJuudiz11ZbolUtrwfgYEBGkRah8sC+HgkhhLSPBuAS0g65WIB/Tu2DWy9KxM6sKhzKr8Wh/FqcKdPB2UbeenFqGGYPj8eMgdFNSeH7f2Thjd/P+inyBjwOeP7KAbhtbHLTGGWnk6HWZEVRbT1+PlaCVYeK2q2Xvv5EKcYfCMfNoxO9HuPGjDKY3ByGEiITIjVCgYP5tR6dUyERoLaViizu4PM4xGokOF3q+cJv9V4eggMA1UZrq/eZ7U4MTtBgf25Nq/sQQkhrgmUiZzDE4GuUqBPSQWEKMWYNi8OsYXEAAIPFjmOFdTiUX4sTxVrwOQ4yMR+9wuWYNSwO8SHNa2Q/fEkfSIR8vLL+tN/injMiHneOS3HZxuNxCFOIEaYQY0iCBg9N6Y37vjzYbtK7cN1JyMUCTOkXAaXEtUdWW29DQbUJ+TVGKCVCTOwT3uaY9nqrA/vzarArqxLrjnV8sqqAx2F4kgYni3UeJ+kAEKuWorCm3uPjG41I1GB/nudxcACyK9qvEOOOXuFy5FS23ebh/BpEqcQo11m8em5CCCHeQ4k6IR5SiAUY1zsc43qHu3XcvRN6QSri47kfM+DrqdwiAQ//nNq33f1C5SJ8fe8YPLHqGH5pY4Eji92JR789AiGfw6jkUEQoxcivNiG/2tisd3pYogZ3XpyMkyU6bMwoQ7nODIVYAJmYD5lQgNxqI6wejM1OCJXiRJHW42EmACDkcW4Nk2nNyKSQTiXpABAf6p0vDOfjd2Bok90JxIfIKFEnhLiNh+AYOx0MMfgaJeqEBMDcMUmQCvl4YtWxNofPdNbtFyUhTtOxGtoSIR/v3jQMCaEyfLQtp819bQ6G3TnVbe5zpKAORwqOumyz2K2o7mTncW6VCYPiVDhR7Pnk1qQwGbLb6XFuT79oJY4UdC5JB4BwhdirifrIpJAOX2nQ1bc+PIYQQkjg9YQvI4QEpeuGx+PzO0ahV4RvFrtRiAV4aEpvt47h8Tj8e0YaFl83KKhrbnemNx0AZJ2cSBqpFKNCZ4bDC1+yhDzvvQ2HyoXIquj4lQKFhCaUEkJIMKNEnZAAmpIWiU3/moR3bx6GvlEKr7Z938ReCJWLPDr25tGJ+OLOUVAE6YJPna1YcrxIi9HJoR5Vv4kPkUIs5Lk9ETVGLcGwRA1GJocg/ryrHDVG7ww94biGc2jr7R0+RsSnjwBCiPs4Lnhu3V1wfgoT0oPweRyuHhKLKwfF4LeTZfjfliycKevc+OkwuQj3jE9pf8c2TOobgVUPjMWDXx/y2gI5CV4Yjy0V8XHEC4sD7c+rQXKYDFEqCRgYnE6gzmRFYa0JaqkICSEycBxQqjWDgUElEUIpEeBEkRZmj8bWy5qqrHAcMCRBDaPFgZwKAxRiAQyWjifYLRmdHIp9blZx0Zs7d05CCCG+RYk6Ia0wWOxYuO4kjhXWQSLk46Vr0jEs0XcLxfB4HGYOisH09GhsPl2O/23J8niRoSem9/NKnfD+MSpsnD8RS7bn4MNtOR5N/mwUp5Fi3bzx2J1TjXkrDnvcjloiRJmu7cWMOiqv2tTil5AKvQUVetee7hJ07py28xZYYgw4VtiwgmlatBI6s61TiXq/aKXbpRaTQmU4VerbRawIId0TlWf0H0rUCbkAYwwZxTo8vuoozpYbmrZf99Fu3HVxCp6Y3hcyke/+dHg8DtPSozElLRIPfXMYm06Vu3X85H4RuGlUQpv77MyqxKc7cyEX8RGpFOPqobEYnhjSYjlFiZCP+VP74qZRidhwohQbTpQiq8IAq90Ji93R7mRYpUSASX0jMG9Kb4TIRbi0fyQ4Dh5XvLE6HOBx8OkkXF84UlCHgbEq8HkcdGYbrA4Gu8OJMp0ZFrvT48eUECpFpc4Cdw+NUImRX+OdKyWEEEJ8gxJ1QtCwANDRojpszCjDxowyFLSQwDAGfPFnLn4/VYZXrx2EiX0jfBqTkM/D+7cMw73LD2JnVlWHjrl6SCyev2pAm/XLdWYbnlx13KVXevmefKRGyHH/xFTMGREPXgvdFNFqCe4en4K7LxhSY3c4YXU4YbGd/18HzH9N+OwXrYTwvLHQEiEfQj7P4975GqMNo5JDcKCTZREDIaOdKyQ8DpAIeIgNkSJMLkaF3ozcqtaT6eQwGbT1No8WbsquMLS/EyGEtID76xZowRCDr1GiTnosu8OJA3m12JhRit9Olnd4OEVRbT1u/2I/Zg+Px/9d2R8amWcTNjtCLODj49tG4I4v9rskphIhDxP7RCBWI0WUSoIYtQTpsSr0iVK22+aOs5UtPtacSiOe+uE4Vh8ucmsiqYDPg4DPQ0efBsZYp4bQAMCZMj1iNRKU1HlnCEywcDLAZHMiu8KIbDSUj0yPVQFAs2FQvcLlqDJaoHNj8mgjAQ+o88KqrIQQQnyLEnXSo1jtTvyZU4XfMsrw+6ly1LSxzHp7fjhchO1nK7Dw6nRcPjCmxV5ob5CJBPj8zlF46/ez2JZZgYFxajw1PQ2JYc1XPu2I84fztGR/bg1e33gGL14z0KP228NxHDQyYacSRb3ZDrVUCIWYD4PF4cXogk9jgp4SLkeoXAQ+x8FktSOzXA+bh/Uhw+RilOtpoSNCiGe4IBmjTlVfCOkG6q0ObD9biY0ZpdhypsKrlS6qDFY8vOIIwhWnMKlvBCb3i8DEPhFQy7xbn1olEWLh1ekA0jvdVlYHVuRcsb8AD07ujWi1pNPna0lSqAx1Jm2n2iiqrUd6rAqnS3Vdbry6J3KrjMit6uRqUX9Ry4SUqBNCSBdAiTrplvRmG/44U4GNGWXYllmJeptve12rDBb8cLgIPxwuAo8DhiWGYHLfCEzuF4n0WJXPetvd5XCyDlWSsTkYlu3Ow9Mz03wSx4ikUBwr6lyiDjT0No9OCXW74klP5+u/B0IIId5BiTrpNmqNFmw63ZCc78qqgtXRuXHQnnIy4FB+LQ7l1+LNTWcRrhBh4l9J+8Q+4T4d096eV9afanGibEu+2Zfv0aJJVQYLVh8qQrRKgrQYJdKiVc32uX1sEpbuzm1W+cVpM8NSkgnYbRBG9YJAEdru+fKrvdPL3JMU1tQjLVrZ6Xr9hJCeiYfgWDEzGGLwNUrUSZdWoTPjt5Nl2HiyDCaLHUcKO99L621VBivWHC7GmsPF4HHA1P5ReOvGoX5d9VNvtuHTHeew9M88N46x465lB/DZ7SMRoRR36Bir3YnbP9/vUp/7umFx+PfMNESp/h5GkxwuxzVDYvHj0RIAAHM6oN21AqajP8NW3/BFguPxIOs7FiFTHwRfrmn1nOU6C5RiPvTdfKy6t9VbHV5ZaIkQQojvUKJOupzCGlNDcp5RhkMFtU29somhnk2u9CcnA34/VY4bluzBsrtGIVLlmzHgjXKrjFi+Ow+rDxV5lJAdK6zDmFc3Y3hiCHpFyJEUJsfEPhEYFK9ucf8PtmY3W0RnzZFi/HayDK/NGYwrBsc2bX9l1kDkVBqRW2VA2bp3oD++BY/cmYxbr4uDQibAr9sqsOj9Q6j67imEz30LfImixXOGK0SoMng+Kbinyq8xIS1aiXNVxk5X4SGE9CwcFxwTOYMhBl+jRJ10CTmVhqYa5yeKW+41L62r79RCOv50qlSHaz/cjeV3j0LvyPZLKrrD6WTYmV2FZX/mYmtmZefbY8DB/FoczG8oD/m/zVl4akY/XDssDiEyUdP4+5MlWnywNbvFNqQiPh7+9gj0ZjtuGp0IAFBIhPjgluG4dMFnqD66GUsWD8Jt18U3HXP/3CRcOi4co6/ZDf2hn6EZd3OLbceopT0qUWcOO+rPHYK9rhQ8iQLSPhe1+iWmPWfK9BgSr8bxYm2X+LshhJCehhJ1EpQYYzhTpsevGWXYmFHabklBALA5GaJUYpTrukY1i+K6esz+aA9evXYQpqdHQcDv3Gg7g8WONYeLsGx3Hs5V+m7cttXhxCvrT+OV9afB53EIkQkRIhOh1mSDvZXyK7GahmT66TUnIBHyMWtYHAAgMUyG3rUHYI6VY+6suGbH9U6W45arY7Di99+BFhL1EJkwKEqE+Yspax+0mz+AVVcDiVQMi9kK3uYPoRhxLdQT5oLj3H8NHSvSYmRyCA52wQWkCCGBQWPU/YcSdRI0GGM4VqTFrxml+C2jDHnV7i9vHibvOok6AGjrbZi34jDiNFLcMiYRCRcM3xHxOYxMDkW4ovUx4nlVRizfk4fVB4ug9/N4Y4eTocpgbbdHWyrkN/3/axvPYOagaIgFf20zVGFof3mrlXGG9Fdi2epiDE/UgM/jwOM4MDSsSHe8qM4r1WO6gvq8o6j6cRFmXj4Eryx6AoMHJ6K8XIv33/sd/3l1JZx2K0Ivucejtg/m1WJ0Sgj251KyTgghwYQSdRJQDifDwbwa/JpRht9OlqFU27mVJuVifvs7BaHiunq8/ltmq/cPjldjct8ITOoXiRi1BHlVRuRWG7HldAW2ZlYE/bAFk/XvLxAlWjM2ZpThmqENPehRUVHYs9MMxhi4FgYcns01QihX4XBBnb/CDUr6P7/GmDG9sWbtfAj++pITFaXGy69cD4GAh0Uv/whwPIRMvsOjnvWcCiN4HHpETXpCCOkqKFEnfmdzOLEnpxq/ZpRh06kyr44v5nXTmSXHi7Q4XqTFu3+0PAY8mHEcmpWE3HuuuilRv+2227B8+XJs3FaJmVMiXfYrq7Tgq7WlkAy4ym/xBiNbXRnqi87gX28/2pSkn+/hR6Zh8aKfoN//AzgOCJl8l9vnqDZaMSBG1WwyMCGEXIgmk/oPJerEL8w2B3ZmVeHXjFJsPlUOnRdXBz2fM9i7lnugATGqZoss7Tv39wJFl1xyCUaNn4Rb5/+Jlx/vg7nXxkEu5WPjtkoseD0LFsgQMeJqf4cdVJz1Dc9fau+oFu8PC1MiLESG9Agjth5YA+WIqyBQhrt9Hn+WDCWEENI+elcmPpVRrMWS7TnYeqYCRqvv61y3NHSCBBa/hd/JuSojSurqEauRguM4PP3m57jjnvvw1OJteHLR6abqPdK4vgi/6XEIlGEBiDx48JXhAMfh4IFzGDo0qdn9eXmVqKgyYOHlfOzOZjCe2g71mNlun6dEW++NcAkh3RyPA3hc4DvGekIxAUrUiU9Y7A68tyUbH23PgcOPg16dNMA2qIxODsH+VqqJzP/+KL6+ZwxEAh74IgnCrngM6ol3wJx3FMxhgyi6N8TRvf0ccXASKEIhTx2J115bj+tvGAO1+u9Jx4wxvPziGqhkPNwylo/XNjJUGT2bFFpUW48YtaTTc0UIIYR4R0+obEP87EhBLa58dxfe35rt1yQdACy0cEvQSA6T4UhhXav378+twQvrToIx1jRkSaAMg2LQpVAOnUFJ+gVUk+5CQbEeF416Hl9/tQvZ2WXYsiUDs656A8uX7cSbN/JgtQPFNXYIFJ5fgbiw8hAhhFyIC6Jbd0c96sRrzDYH3tp0Fp/tPBewyhEGiy0wJyYuJEIe7E4Gm6PtF8K3+wugkggwZ0R8m/sRQBSeiIibX0Peymdx5+1LmranxfLx3UMCzBnFx/Nr7LA7OcgHTPb4PDkVBupVJ4SQIEGJOvGKA3k1eGr1ceRW+W6hnY4w26hHPRgMjFU3rWTano93nENxXT3G9w7HruwqH0fWtYkikhBx02JUfDkfsSob5l3C4fZxPJTUAQ8us+HT7U6ox90CviLE43NUG60Q8BqGLVkdTgj5/L/mDDDYnQwCHgeO43Awr4ZKORLSQzWMUQ90FMERg69Rok46xWS147WNmVi+Jy8oann7e6gNaW54oqbDSXqjX46X4opBMfjfTUOxbHcejvTwmultEYYlIGLuG6ja9D7+vTIT/17ZMElbJFci5NKboPRChRy7E63OLWg0JiUU+3Jr2tyHEEJI51CiTjy2O7sK/15zHIU1wVMporUl7Il/JIRIkVmm9+jY9SdKMTI5BGsfGoejhXVY9mcufjxa4uUIuwdRZAoi5r4Ja2U+7LXF4EQySOLTwQmEfothX24NhiVo2pyHQAghpHMoUSdu05ttWPzrGazYVxDoUJoJRI+6kM9BwOeh3g/lJ4PZ4Hg1zlUY3C7D6bSZUZ+1F3ZdJZ4/HYKZnz6LoQnhuHpoLCXq7RBFJEEU0bxco7+U62kcOyE9EQ/BUY0kGGLwNUrUSavsdjsOHz6M+vp6pKWlISoqCtsyK/DMmhMoCdKJZiqJANp630woFfI5pITLIWNmlJ87hRqjDbbQFNggg83hQIhMiGiVBAqJAAaLHWfK9EExHMjXOA4YnezZMAjDic3QbvkEdosJCpEYJTYrkhM+xIJnnsGJyKk+iJZ4k72dycK+khathFIiAI/j4HAynC7V+WWdBkII8TdK1EkzjDG8//77WPzqYpSWlQIA+Hw+eo++FIbht0KgCA1whK2L1UhRWOudoTgjkkIAxqC32FFvc6C4ogZ7lr8LU8YfcDoavgzwBSLIBk+DZvJdqDUBtaa/vySEyoRIjVTA+FfS3h1H5agkAiSGyTxK0o1ndqF6wzu4IiYGD6QMR7xMhhqrBSsKCrBw4UKoJ2RDc/FNPoiaeIu/v4j2CpdDJOBw5oLhVeEKEfpEKXC0UOvfgLqQpDAZCgMdBOk2OK7hFmjBEIOvUaJOmnnuuefw6quvYoi8P6ZHjYOUJ8E5cwF2HdgN66ljiLr9LfBl6kCH2aIiLyXpI5NCXCZEMrsNld89D1aehfl9YzEzLhwMwC9FlVhy7FdUVxci/IaXwPH4TcfUmGyo+WtCXohMiN6RChgtDpwp03WLpL1XuBwmqx0ZxTq3j2XMCf2O5ZgQHoGXBwxsWlE2VCTGw737wM4Yvt6zCqoRV4Mnprrewcrhp0yd44BRyaE4lFeDljrxqwxWVBmsGJaowdHCuh5xJctdMhG//Z0IIUGnJwzvIW7IycnBq6++isnqi3B12FQkiGMQLgzBaOUQ3B05G5xBC93e1YEOs1XFdfVIjZB3qo2kMFmzqiXG09tRX3way8f2x4P9EpCskCJFIcUjaYn4ZEwaTPnHYDq7p9U2a002HMirxalSHdRSIUYmh2BAjKpLlpaSifgYkxKKoloTynQWj9qwlp+DpbYUtyYmNiXp57slIREOuwWm7H2dDZf4kh8y4kilGP2ilNif23KSfr4jBXUYnRy8V/wCJT1WhdOlnk3yJqQlPLCguXV3lKgTF0uXLoVMKMVFyqHN7tMIVBgu6w/j8U1gLHjrlYfJxZ06XilpfqGp/vjvGBcZguFhqmb3jYvUYGiYGqbjv3eo/VqTDQf/StpVUiFGJYcgPTb4k3bpXwm6gM9hX24NrJ0Yn+ysb0ga4qTSFu+PlEgg4PHgNBs8PgfxPV+/CwxP1MBktTcb6tKWfbk1SI9t/nfak/X0ie6EdGU09IW4yMw+hzBBKIS8lsu8xYoi4dAfAbPWgxN3rufaV44V1aJvlAJnyz1L8ngt9PA6dZUYGNX6EIxBahkytRVun6vur552AFBLBegXrcKBvJqgunQvFfIxKF6NzDKd1+pmCzRRAIATWi3ipM2f1zM6HexOJwSaaK+cj/iG3eH8azGkv7clh8kQqZI03AcOPB7AgWvYDw1zYBhrGDbjcDDYnU7YHAxWhxMWuxMcgMRQGSr0Fhz2sJ5+pd6zKz3d0fBEjcfPIyEk8ChRJwAaPjx/PFqMbfn1MNt0cDIneFzzCy61di04nhCcUBKAKDvGYmcoratHYqgMBTUmt4/Xm5tXjeFkapwztL4AzDmDGZw8zu1znU9bb8f+3Br0i1Ki0mBBjdHaqfY66/wEfb+XF7YRhsRCGp+OT/PyMDE8AjLB329FDsbw4bkciBQhkKYM9+p5iXcZLA4oxHz0ilCA44DcKiPyqk3Iq3b/7+58pZ2sKlWhtyBWLQna6lT+EquWIKuCrkoRHwiSyaQIhhh8jIa+EJRpzbh3+UH86/tjEPSdCINdj1Om7Gb7WZxWHDSdgmzABJdJk8FIb3HAZLUjUun+MJgaY/NEXTLwUvxRVoMcffME5FSdAbsraiFNv9SjWC+UWa5H70iFV9ryhETIw+iUUIiFPOzPrYG23u6T82im3o98iw23HDyAdSXFyDbo8UdFOe49dBC7qquhnvZwi68zp8UEp9kAFkyXHXowg8WB40VaHCvUQuej14onYjQtD6vqKWQiPgR8Dnpz8PxOCCHuox71HszucOLrvfl4c9PZpjdzcUxfyPqMxbrsLTA56zFE3h8iTohCSwl+1+6GETZEX3R9gCPvmCqDFREKMUYlh+BEsRZmW8dG1EYoxc1qsSsGXgrT4V8wd/dpPDMgEdNjw8DAsKG4Gq+ezIc4MhnyAZO8FrvF7v8xpWIBD0PiNciu0Hu9B70loqheiLz1NVRuXYoXTh1p2i6J7o2IaY9BmjKsaRtjDKbT22HYtxbmipyGeEPjIB95DRRDZ4Br4eoP6dl6QEdbm3pHKnC8iMpVEt/gcQiKeVXBEIOvcawbdEvpdDqo1WpotVqoVDSJqCP2nqvGwnUnW5ykxexW1Pz2AQwnt4JjAI/Hg8Nph0gTi9Crn4A4pm8AIu4clVSA/tEqFNXWo0Jvhu2CiZBRKjEilGLIhIKGkoMlzUsOOgy1qFn/Jkx5R8EBTXPN5amjEHL5fK+WrEwJlyO3yui19toiEvAwNF6N7AojakyBGW5j11XCrqsCX6aCMLT5EKLa7cuh27sK6YoEjFX1AhiHvfpsZBiKwFeEAdaGKx3ihIFQjLwG0uShfn4EJNikRSvdmoTanVxYXhZouBJV+M4N9DlJOqUx33om8T5IeKJAhwOz04pXCz7p1q9r6lHvYUq19Vi0/jR+OV7a6j6cQISwK/4F9YTbUH/uAJjNCmFEEiRJg7tsz6Wu3u4yETJUJkKoXAgHA0rqTCjXWVDeTqlBviIEETe+AltVIcxFJwGOgyRhYIuJZWfJ/VDzmOMaPtBzKo3Yn9f6+Ht/EKgiIFBFtHifpSQTur2rcH3kaEwLHYjfazKwueYkau0NX2R4xjoMUkShnzwCu0pzUPj9c9BMvgvqMbP9+RBIkDFYeuaQD4VYgJxKGpdOfCtYSiMGQwy+Rol6D2G2OfD5rly8/0c26m0dG1YhUIVDOXSmjyMLjBqT1ePeY2F4AoThCV6OyBXfx9fz1FIhEkKkTRVngpn+yAaEilSYGpKOT0u246DuHAbJ0zAzpA8YgFOmsziiz4RSIMFbvWfi2/JjWLNtKSSJg7rk1R/iHdoAXR0KtP4xyi7xd00I6RhK1HuALafL8dIvp5DfyUoMxH86+mXKE70i5DCaWx7eE4wcFXlIl8XghLEI+3U5mB0+AwNkfZru7y1NQrIkAT9Vb8L4kGTcFD0E2+vyoT/8C8RXPBbAyEkg6S0OCHgc7N1hGWA3WB3Bu8YF6T64IKn6Egwx+FrXHMdAOiS3yoi7lu7HPcsPUpLexRTX1iNG7f0SmCOTQlBYY0J5F6ozzYnE0DvM2F57BnGiKJckvdEgWT9EC8Pxe1UW+BwPY5SxcBRnBiBaEkyGJWoCHYJf8Tggh8oxEtKtUKLeDRktdvx34xlMf3sHtmZWBjoc4gGjtaE3UCH2zkUvIZ/DyOSGCWYXTqQNdpK+43DcUIgSax0SxS3PB+A4DomSOJRYGq4SWJwOgE8XDHu6A3m1GJ0c2iN63QAgNUIBg4VWISWkO6FPsm6EMYZ1x0qweMMZlOl69kIf3UFhbT16Ryog4vNwukwHAY8Dj+PA43Hgcxx4XMNY9sZtDeWyOPB5DatA8jgOaqkQQj4PWRV6HOyi41YVgy6FYd9q6E0G6B2t9xbq7AbI+EKYHTbs1hVCNOIqP0ZJgtX+vBoMjlPDYnfibIU+qFb99TalhD7SiX/wEBw9vcEQg6/RX3U3capEh4XrTmJ/nu/rXxP/yT7vMnZDT3g3zjJawZMoEH7TIlR8/SROm7Ix1T4OSoHrglBaux5Z9bm4PnoQ3sjfCQsYQod1z4nQxH3HixvqiWtkQqRGyOFwNiwsVm/tXr3Pgp5QVJqQHoYS9S6uzmTFm7+fxTf78tHD5kyRHkQUnojoez9C2WcP4avKH3F16FTEiaIAAEXWUqyr3gwBx8Oq8gwwvgDh1z4LgToqwFGTYFNnsuFQfh0AQMjjkB6rgkTIx6H8rnm16UJcTxnjQwKO4xg4LvBJRzDE4GuUqHdRDifDdwcK8MZvmag1NV/ynngfc9hgytwNc8EJAAzihIGQ9xsHThD4RR96AoEiFFG3vY6q1S9jafkqKIRKMMZgtBvAF0ohiO0DZeooKAZPA1+uCXS4JMjZnAwn/6p8NDBWhYIaE3Tmrl173dmdx/UQ0kXYbDaUlZXBZDIhIiICoaGhnWqPEvUu6FB+DV5YdxIZxV2jvF53YK04h+rVL8Kqr0aKUgUeOOQc+w26rZ8jbPbzVK/bT4RhCYi+bwnM5w7DXJQBgENk4iBIkod22cW4vIk5HajP3of6c4fBnA6IY/tBPmASeCJpoEMLahklOvSLUqDeZmxzsrVUxIfZ5gjace7Uo078hcaou9Lr9fj666/x3XffYf/+/bBarWCMgeM4xMfHY9q0abjvvvswatQot9umRL0LqdCZ8Z9fz2DNkeJAh9KjOExaVH33HFKEHF696GKkKhrGR+cZjXju1Elkrvw/RN39IQTKsHbbYnYbLMWnwewWCMOTIFBH+jr8bofjeJCmjoQ0dWSgQwkqtppiVK9+AZbaMvRSyyHh83A6YzN0275A6DULIE0ZFugQg1pmuQF9IhUw2xyoNdkg4HOIVUuhkAhgtTtRWlePcr0FPA4YkqBBSV09KoKszKnJ2rWvCBDSFb311ltYtGgRUlNTcdVVV+GZZ55BbGwspFIpampqkJGRgZ07d2LatGkYM2YM3nvvPfTp07zMcGsoUe8CrHYnlv6Zi3e3ZMHYzSY/dQWG478DFiM+HDkeYWJx0/ZkuRwfDB2GGX/uhOHoRmgmzG21DcYYdPt+gGHfD7Cb9X9t5SDrNQIh0x6ihJ10itNmRvX3zyGaGfHBZQMwKEQOACg2WvDvQ/nYveYlRN35LoRhvl1Rt6vLuqAGeV0LwwqdDDhaWAeJgIfekQqXCd+Bdq7SCA4tTzkfGq9Gob8DIqQHOHDgAHbs2IH09PQW7x89ejTuvvtuLFmyBEuXLsXOnTspUe9O/syuwv/9lIFzlcZAh9JjWTL/xJSICJckvZFaKMT0iEj8dnYX0EaiXvvHZ9Af/AlTQvpjUkwa5HwJThqL8FPRUVR8/SQib3+rQz3yhLTEeGoHrLpKLJ85CCnKvxfKipOL8dnFvTHu1wzoDv6EsOkPBzDK7sVsd8JosUEm4sMUJB0oJqsDo5JDcOC8UqwamRBJYTIcyS4NYGSku+FxDLwgmMgZDDF8++23HdpPLBbjgQcecLv9YBneQy5gdzjx2sYzmPvZPkrSA81mQYhQ2OrdISIRYGv9Eritphj6gz/h+sjRuDV6HBIkYQgVyjFB0w/PJl4JodkI3b7Vvoic9BDmrD24KErlkqQ3kgh4uD4pBNazuwMQWfdWqrUgLVoZ6DBcHMirRZ9IBfpGKTA4Xg0OwLFCbaDDIqRH0ul0+PHHH3H69GmP26Ae9SBUrjPjkW+PYH8u1UQPBryIZOwuPNI0MeR8jDHsqqkFL6pfq8cbTmyGVCDBpSEDmt0XIpRjsroffju+GSGX3AuOx/d6/KT7YzYzwkWtv52HiARw2qx+jKhrcVpMMGRsgeXsLsBuBqeJh2LoTIjj09udoHm4oA4jkxpW/Q0WFw7hIcTbuL9ugRYMMZzvhhtuwMSJE/Hwww+jvr4eI0eORF5eHhhj+O677zB79my326Qe9SDzZ3YVrnh3JyXpQUQx7HIUGg34rrD5CM8fS4qRrddCMfTyVo936KsQI9JAyGs5kUqUhMFhqwez1nstZtKzCCJSsKvSAKvD2eL928r1EEYk+jmqrsFWU4yKZfOg2/YZLhkixtwrExFlPYvyFU+jdvMSsA6UeDmYX4sxKaGIUokxIikEIxJDEKUUI0opxqA4lR8eBSEkGOzYsQMTJkwAAKxduxaMMdTV1eHdd9/FK6+84lGb1KMeJJxOhve3ZuPtzWeDtvRXTyVOGAjlyGvw2sGfsLumGjOjosFxwG/l5dheWQHFkBmQ9BrR6vE8mRqVNj0czAl+CyUEyyxa8PgicFRCj3hIMXQGSg+tw/9OleCJgXEuvcC/Fddid7kWYVfcE8AIgxNjTtT8+AriIwT47cgbSE6O+Gs7w8dLtuDhh5ZBGJEM5dD2V7nd91fnSrnOdRhcud6CgXEqKqdLuhUe13ALtGCI4XxarbapbvrGjRsxe/ZsyGQyXHHFFXjyySc9apMS9SBQbbBg/vdHsTOrKtChkBZwHIeQS+6FKKoXDu5fi10nTwAAJOGJCJ3xKBSDL2vz8rgi/RKUHvgRe7TZGK9xrbducljwhzYT0gGTaNgL8ZgoPBGaSXfi/e3LsL/aiOuTQiHh8/BbcR3WF9VC3m8c5AMmBTrMoGM+dxjmykIsX7ewKUkHGv7mH3hwKv744xQ2bP8JiiEzOlejnDpfCOkREhISsGfPHoSGhmLjxo347rvvAAC1tbWQSJrPIeoIStQD7EBeDR5ZcQRlOnOgQyFt4DgOioGXQjHwUjgtRoAxcGJ5hz68RVG9IO8/CcvP7ITWbsJETRrkfBFOGouxuvIQjDyGqLHX++FRkO5MfdEcCEPjcGL/Guw/0DBxSRwSA82l90E57HL6ItgCc8FxxCVEYMyY1Bbvnzv3YqxZ/Q4chmoIlOEen6ekzgyOA10tJd0GBwYuCCqucEH2LXj+/PmYO3cuFAoFkpKSMHnyZAANQ2IGDRrkUZuUqAcIYwyf7jyH/27MhMMZXC800jaeWO72MWFXzEetVIm1RzdiTeXBpu3iiBREXvk8hCGx3gyR9FCyvmMh6zsWTqsZYA5wIhmtVtkGxpwQCHitPkd8Ab9xR4/PoZYKoJIKUGMK3GReIZ/DwKQQqqNOiI899NBDGD16NAoLC3HZZZeBx2sY7tqrVy8ao96VaE02PL7qGDafLg90KMRPOL4QoZc9APW4m1GfexjMZoEoIhmi2H6USBGv44k8u8Ta04jj+iP/wI84diwfQ4YkNbv/h1X7IQ6JBL8Taxz0jlDiUEHgKsIMT9SguLYeh4KoKg0h3dnIkSMxcqTrytlXXHGFx+1Rou5nxwrrMG/FYRTVUoWPnogvU0ORPiXQYRBCAMh6j4FYE4l77v4cv/3+JMLC/q6JvuaH/fjmmz+hnngnuBYmgXdUlbH1NRZ8KT1WhXqrA4cL6gJyftK9cQiOsoHB1s119913t3n/F1984XabwfA89wiMMXy5Jw/XL9lDSTohhAQBji9A6KxncTKzEilJ/8J9936KF55fjXEXv4Qb5rwLad9xUI68plPnkAj8OzdAJOBhRFIITpbocK6KFssj5Hw7duzAVVddhdjYWHAchx9//NHl/vLyctx5552IjY2FTCbDjBkzkJWV1eH2a2trXW4VFRX4448/sGbNGtTV1XkUM/Wo+4HebMPTa05g/XFawpkQQoKJKCoVkXe8D8ORDfh23Z9gtnrwQhIQfs3TkPW7uFO96QBQoq1HYqgMBTUmL0XcuiiVGAqxgIa5EJ/juCCZTOpmDEajEUOGDMHdd9+N6667zuU+xhhmzZoFoVCIn376CSqVCm+99RamTp2KU6dOQS5vf37a2rVrm21zOp148MEHkZra8qT19lCi7mOnS3V46JvDyKWeDUIICUoCZRg0E28DJt7m9bb1ZjtEfB6i1RKUaX1X3Ss9VoXCWlOzOu6EkL/NnDkTM2e2vC5CVlYW9u7di4yMDKSnpwMAPvroI0RHR+Pbb7/Fvffe69E5eTweHnvsMUyePBlPPfWU28dTou4DVQYLNmaUYf3xUuzLrQYVdSGEkJ6r3mpHQqjKZ4n6mJTQpgWXCPEHHoJj7HRjDDqd64JiYrEYYrHYrbYsloYvuefXO+fxeBCLxdi1a5fHiToA5OTkwG63e3QsJepetDOrEh9uzaHknBBCejCJgIeB8WqAARwHnCnT42hhndfPIxPx0SdSQUk66fESEhJcfn7hhRewcOFCt9pIS0tDYmIiFixYgI8//hhyuRxvv/02ioqKUFrasaHLjz32mMvPjDGUlpZi/fr1uOOOO9yKpxEl6l5gczjx5u9nsWR7TqBDIYQQ0g67oQbmvCNgDjvE0b0hivJs7GhrzHYnMsv00Js960HriIRQKZgTOFak9dk5COkqCgsLoVKpmn52tzcdAIRCIdasWYN77rkHoaGh4PP5mDp1KmbOnAnWwbUUjhw54vIzj8dDREQE3nzzzXYrwrSGEvVOyq824n+bs7DmSHGgQyFdDGNOMJsFnFDc6QlrhJD2OW1m1G76CMaTW8Gczqbtsrg+0Fz+BIShcV47V59Ihc9KIw5N0CCzTId6m7P9nQnxAR7HwAuCyaSNMahUKpdE3VMjRozA0aNHodVqYbVaERERgTFjxjSri96arVu3djqGC1Gi7iGzzYGVBwvx31/PgOMAiZAHM71pkhYwxgDmbFrC3a6vhm7fahhPbIHTagJPIIFs0CVQXzQHAlVkgKMlpHtijKH6x1fhLDyK16/m47ZRIihEwK+nnfj3z7ko/PYpRNz+LgSdWNzofAKe97988zhgZHIo9tNQF0J8Sq1WA2iYYHrw4EG8/PLLAYuFEnU36cw2fL03H1/sykOV4e/Z9SOTQnCQSmKR81jKsqHb9wNMZ/cATjsE6mjIBkyC6djv4FnMGCQagFBlOOocNTh9fDvKzuxC1Nz/QhiW0H7jhBC3mAuOw3TuMFbfLcJVA/+ubX7VQD5GJ/Ew8D8G6A/+hJApnl2evlBdvdUr7TRSiAVIDJVRkk6CAofgWGzI3RgMBgOys7Obfs7NzcXRo0cRGhqKxMRErFq1ChEREUhMTMSJEyfwz3/+E7NmzcK0adNabXP48OHYsmULQkJCMGzYsDZXGz98+LCbEVOi3mEF1SZ8e6AAX+/Jh97SfNxhtdG7b8qkazNl70fl2kUAA8AYAB7s2gro9qyEgqfANZpbIOP/XZN1oHQo1ml/QM36/yHq9jcCFjch3ZXx5FakRgpwZXrznu4oJYc7RgEfH9oEeCFRj1SKcbbc0Ol2Ggl4HBJDpThVqmt/Z0JIqw4ePIgpU/5eHbxx8ucdd9yBZcuWobS0FI899hjKy8sRExOD22+/Hf/3f//XZpvXXHNN05j4WbNmeT1mStRbUWWwYHdONf7MqsKfOVXtriaaW2VEaoQcOZVUL72nc1pMqFr3GhpK/5y/0DID4MRI+ViXJB0AJDwpRsnGYnPpelgrzkEU2cvPURPSvTmNdegf4Wy1t6tvJA9WowGMsTZ7xDoiOVyGCr336pkPT9Rgfx5dsSXBI9jGqHfU5MmT25wY+uijj+LRRx91q80XXnihxf/3lm6fqJfU1WP98VKYbQ7EhUgRp5EiLkSKaJUEAv7fPSsGix37c6uxK6sau3OqcKZM7/a5QmQiAJSo93TG09vBbGYAfLhemGt4c0gQJTU7hjHWtGfNutcgiO4D+aCpkCQO7nTSQAgB+KpwHM3nweFk4POa/00dLXJCrArx6O9NxOcwJEEDk9UObb0dx71YiSVSKaaVRgnpIg4cOACn04kxY8a4bN+3bx/4fH6HJ6Wer1sm6naHE3vP1WD9iRKsOVwMi735JE8+j0O0SoI4jRR2pxPHi7Swd7L4eUtv/qTnsZafA3gCoJW5xWanGRKetOlnO7Nhs+4XFFoL0VctRprCgBNFe5F7civkfcci7OqnwPGFfoq+e3BazdAf2QDTkZ/hqNeDJ1FBPvxyKAZdBoexIekRhsbR89qDKAZdhqKjG/HNQQ63j3b96MuudOKbwwySUTM8antgnBoH8mrB53EIV4i8WlggOcy7vfOEeAPHMXBB0KMeDDGcb968eXjqqaeaJerFxcX473//i3379rndZrdK1HdmVWJHbh5+P1WGWpOtzX0dTobiunoU17U9pMUdFqr6QoC/kr/GN4/zv7xx4MAh03wSYxTjm7b+qd+GKkcxvr4kBVNileA4Dowx/FKgxbxd+1C3/UuEXHKPHx9B12Y3aVH+xcNwGuvg/Ov34LCaodu2HLrty+H867KnUKaEbNiVUI+9ERy/W70VkhaIYvpCMXAK7l+5DafLGW4bxYdCDGw45cTLvzsBRSSUI6/2qO3GK+kOJ0O5ru2kmuOAYQkalGrrEaWSolRb3+oxITKhTxZKIoT4xqlTpzB8+PBm24cNG4ZTp0551Ga3+nR68OvD4IllATu/t2f5k65J2ns09IfWoWFsumuizgAcrz8MJV+FfpJ0WJxmZFvO4IWRMbgk7u8asBzH4aokDU7X1uP9oxugHndzQF/bXUnld8/CbqzFKGU6xquHIlSgQpGlAn/U7UdWfSH6qkV4Y0IMfjqnw7I938NekYuwWQuaymeS7onjOITOnA++MhLv7VmHt7bWN22X9R2L8MseBF+i8KjtWlPH3vt7Rypgszua6quXai2IUoqhlAhaXBypb5SSVh0lpAsRi8UoLy9Hr16u88xKS0shEHiWcnerRD3QyrTmQIdAgoAkaQiEkb1gq8z/q6utMVlnaOxp/9OwDYeM+yDmieEEw5xeIS22dX2vULxzogKW4tOQ9hrhl/i7Mmt1EWyV+RirGoQrwyY2bU+UROO2qCvxeelaZGnLES0T4D8XR2NynBy3bdoLadZeyPuNC2DkxB84Hh+aibdBNfZ6WIrPAA4bhJG9Ol07vaNVvzRSIQ7mu1aDKddbMChOhZMlOpw/+jI+RIqMYlp1lAQnHv4ukxBIwRDD+aZNm4YFCxbgp59+aqrFXldXh2eeeQaXXXaZR20G22Ps0sx2J8IVokCHQQKM4zhEXr8QwrA4AA6AYw3/hQMcOFyqnoQ7I+dikLw/JLyG14uE3/KfolTQsJ05fbcUeXdiOLIBDAzj1cOa3cfneBivHgYGhl9yG8rczUhSYkSUHKZjv/o7VBJAPKEE0uShkKaO8soCR0mhHbva1VJpXwA4UazDwDg1RH/9vUepxLDZnTBaHZ2OjRDiP2+88QYKCwuRlJSEKVOmYMqUKUhJSUFZWRnefPNNj9qkHnUvC1eIUWWgITA9nUARipi73kN9zgFo966CtSQTI+TDMFIxFCqBEgAwWT0eVbZqLK34Br8XaXFNcvNe9Y2FWnAcB1Fkqr8fQpfktJog5ATQ/PUcXyhC2PAcG8+bTzI2UoxThSV+iY90TyV19QiVC1FjbHtuVFtXXY8XaREiE4LPod1x7oQEWlctz+hrcXFxOH78OL755hscO3YMUqkUd911F26++WYIhZ4VL6BE3csUYnpKSQOOx4esz0WwluVAUFGCSzQTmu0TLgxDjCgSLx0qxYgIOeLlf1+Rydaa8caJSsj6XASBKtyfoXdZ4rg0GE9sRrVNizChutn9ZdYqAMAl8X/XsS8w2AGJxl8hkm6oxmTDmJTQdseTa+ttrY5HB9BuEQRCSPCTy+W47777vNaeW1nlwoUL8eKLL7ps69evH86cOQMA+OSTT7BixQocPnwYer0etbW10Gg07bb7wQcf4PXXX0dZWRmGDBmC9957D6NHj3YntKDRRh39gHCaDWBOB3hSJTiORjoFAl+uht5hQr2jHlK+tNn9adJ+2KHbiYnrzmJ2shp91BKcrK3Hj/k68NXRCJ82LwBRd03yAZNRt+ljbK09gNkRl7rUxLY57dimPYQIiQCjoxsS9SKDDRvyDVBMnBOokEk3kV9j6tB+yWEynCimFUZJ18bBtVRCoARDDOvWrevwvldf7X5lKbe7f9PT07F58+a/GzhvFqvJZMKMGTMwY8YMLFiwoEPtff/993jsscewZMkSjBkzBu+88w6mT5+OzMxMREZGuhtewGWW6yDgcZ2uyd5Zxsw/Ydi7GuayLACASBUJ2fAroRp5NZWi8zNZv/Go3fIZDhmPYrxqrMt9dmbHyfpMCGL7Q5w8FKszNsOeVwWhMhTy8bdCOexy8MTyVlomF+IJJVBfci+ObPoIFmbDePVQhAnVDVVfag+gwlqDlTPiwBjDzhITHttdAb4iFIoh0wIdOunCBsapOzzxUySg6kKEdCezZs3q0H4cx8HhcH/eidsZm0AgQHR0dIv3zZ8/HwCwbdu2Drf31ltv4R//+AfuuusuAMCSJUuwfv16fPHFF3j66afdDS/gDBYHBsapkBHAHhPtnpWo2/ElBihiMTFuPMQ8AQ7pC7F7+zJYi04i/NpnqBSdH/HlGqgumoM9u7+D1WnDCMVQqPhKFFtLsVO/F5X2GkROfhKS+P7A+LnNjrdVF8FSmglwPEgSB3tl8lt3php+BXgiKc7+8TlOla5p2s7jC+EEw91bywGuHDqzDZLIZITNetbjsnyEAADfjW69zDI9hDwOtgB35hBCvMPp9O0aOm4n6llZWYiNjYVEIsHYsWOxePFiJCYmenRyq9WKQ4cOufS+83g8TJ06FXv27Gn1OIvFAovl78k2Ol1wXUYUBnCFUltVIep2fIlZEYMxJ3JY06X/0epkXKROxhvZf8CYsQWKwdSD6E/q8XPBCUQ4smclDpUfbdouVEcj8tqXGpL0C9j11ajZ8Dbq8/7en+N4kPWfiNBpD1Fd9TYoBl4C+YBJsJScgbNeD4E6EsKIFFiKT8FccAJgDFEJAyFOGOjRkvGENApXiHDCjTKKBosdQ+LVOFZEpRdJ10WTSdtnNpshkUg63Y5bifqYMWOwbNky9OvXD6WlpXjxxRcxYcIEZGRkQKlsucpCW6qqquBwOBAVFeWyPSoqqmnce0sWL17cbKx8MDlSqO3QxCJf0B/bCIVQilkRQ5olIMOUCRisjMPZwxsoUfczjuOgHnsDlCOuQv25Q3BajBBqYiBOHNji3AGn2YDKFU9DZtLjrvgJGKlKgp05sKvuHL7P3I0qXSUibn6Vroy0gePxIYlPd9kmiU9vto2QzkgKk7td6UvgThc8IaTLcDgcePXVV7FkyRKUl5fj7Nmz6NWrF/7v//4PycnJuOce91cZd2t24cyZM3H99ddj8ODBmD59OjZs2IC6ujqsXLnS7RN3xoIFC6DVaptuhYWFfj1/R+zLrcGIpJYXsfEle2U+BkgjIWwlgRssj4G1usDPUZFGPJEU8rTxUA6ZDknS4FYn+OqPboRTV4nnk6ZhnCYVYp4Acr4Y08P64/GEKagvOon6nAN+jp4Qcr60aCUO5de6fdzpUr0PoiHEfziOBc0tmCxatAjLli3Da6+9BpHo7ypuAwcOxGeffeZRm50qA6LRaNC3b19kZ2d7dHx4eDj4fD7Ky8tdtpeXl7c6Dh5oWKJVpVK53ILRkYJaDIzzb2ycSAKto/UavDq7GTyB2I8REU/Un9iMi1RJiBI3f/2kK2KQIouA8cTmFo4khPiDgNcwjMUTJqsDARwhSQjxkS+//BKffPIJ5s6dCz7/7w7TIUOGtDlSpC2dStQNBgNycnIQExPj0fEikQgjRozAli1bmrY5nU5s2bIFY8eObePIrsHJgOxyA3pH+m+imrTvWGQay1Bsrmt2n9Vpx3btOUjSaKn0YOcw1iJO3LwOeKN4kQrM4H5PHiHEO0YkhaKott7j40WtrEZMSFfAgYEXBDcOwdWjXlxcjN69ezfb7nQ6YbN5tk6CW+8UTzzxBLZv3468vDzs3r0b1157Lfh8Pm6++WYAQFlZGY4ePdrUw37ixAkcPXoUNTV/j9W+9NJL8f777zf9/Nhjj+HTTz/F8uXLcfr0aTz44IMwGo1NVWC6OrPdiWqDBSEyz1akcpc8bQJEmhi8VvgHskwVYH8Vdq+w6vFmwVbomQ2qkdf4JRbiOYEyHPnmlhNxxhjyLHXgaBEkQgIiTiPB4YLOfVEWnjdOnc8BI5NCMCBGCYmQh1i1BCMSQzA4Xu1SnEDE5xCvkSJCQVdFCQlGAwYMwM6dO5ttX716NYYNG+ZRm25NJi0qKsLNN9+M6upqREREYPz48di7dy8iIiIANJRWPH+S58SJEwEAS5cuxZ133gkAyMnJQVVVVdM+N954IyorK/H888+jrKwMQ4cOxcaNG5tNMO3Kak02DEvQoNZU5/NzcQIRIm56BVWrFmLhuQ2IEKsh5glQVF8NgViB8NnPQxiW4PM4SOdIB1+G/Vu/QJG5FvES17kOR/RFKKyvRuSgywIUHSE9m1oqQnGduVNtCPl88DkHhieFoKDGhIPnjXUv0ZpRom1oXy7iI1EtQY3RilqTDUV19RiVHIJKQ+tDHAnxNY5ruAVaMMRwvueffx533HEHiouL4XQ6sWbNGmRmZuLLL7/EL7/84lGbHGPBtpam+3Q6HdRqNRLmrwzqknVDE9Q4WuifklzM6UB97mGYzx0Cc9ohiu4L+YCJ4Ak7XyqI+J7TWo+Kr56AoK4CcyIGY6QqEXbmxJ915/Bj1QmIkocifM7ztNosIX42IlGDo0Va9AqXQ8jncLbc4NECd6kRcpTUmVFvc38BFE/KOzotJhS+cwO0Wm3Qzusiwa8x3/pswC2Q8UXtH+BjJocV955aEVSv6507d+Kll17CsWPHYDAYMHz4cDz//POYNs2zanu0RKUf1Vvdf0P2FMfjQ5Y6CrLUUX47J/EenkiKiFsWo/b3j/Bl5p9YXrqvYTtfBPnQGQiZcrdXk3TmdMB4egdMR36FvaYYnFgOaf8JUAy/AgJFqFvtmDJ3w3R8I5iuFJxYCfGAS6AYdFlQf4kmpKMMFgekAh6yKgwAGiq/nClzv4pLTqXRo/OHK0RUg52QIDZhwgRs2rTJa+1Rou5HOrNnEwlIz8SXqhB+zb9h11fDWpYNjseDKK6/11fRZA4bqta+ClPOAfSWxaOXpA+0diMO71sL4+H1UI67CcLwREgSBoITtN6Dwuw2VP34Mkw5hzG2Dx9jRwPnKqvx89bPUH94HcJuWgyBKtKrsRPib5nlrkm5XOzfj9FkD+q2E+JttOCRq9raWnz99de44447mvXsa7VafPnlly3e1xGUqPsRvbkSTwiUYRAow3zWvnbvapjPHca90ZejvzypafvljjH4qGQdKv74HE4wCCUKyMfMhmrMnBZX86zb9Q1s+Uew/jEhpg/6u7c/p4Lh0teqULPuP4i49S2fPQ5C/K13pMKjOuqdwaO6joQEnffffx/Hjx/HI4880uw+tVqNnTt3QqfT4dlnn3W7bRrg6kc2B4PSz70vhLSFOewwHvoFFynTXJJ0AFDwpbghYjKcYHhxcC/cFKtE3fblqNv6RbN2nDYz6o+tx6OX8VySdABIjeTw3q0cTMVnYSnN8unjIcSfpEL/rwzcDaaVkW6A+6s0YjDcgsEPP/yABx54oNX777//fqxevdqjtilR96OBcSroPVwggxBfsNeVwV6vxWB5rxbvTxRHQiOQocxsxfODe+HJ9CToDvwIW12Zy362ynzYzPW4flTLbymXD+ZBKuLBXHDC64+BkEBIDpPhRLH/x4rbHMGRmBBC/paTk4M+ffq0en+fPn2Qk5PjUduUqPtJYqi0U4tjEOITvIa3AAecre7ihLNpFcXbUmIgEwpgzNjiulMHamSxju1GSJcQKg9MxYsqKstIggCPC55bMODz+SgpKWn1/pKSEvB4nqXclKj7QUKoFHqzHXUmmkxKgotAHQWhMgKH9S0PScmqL4bObsbYCA0AQCrgI0khhUNf7bKfMDwJQokMK/e3nPBvOOaE2eqEOHGwV+MnJBCiVWIcLawLyLmLausxLKH1VYsJIf43bNgw/Pjjj63ev3btWo8XPKJE3cdiNRIYLXbUUpJOghDH40MxehYOGbKwV3fKZfxrhbUWq6u2YYBagdFhDTPVLQ4nioxm8OWuizDxhGJIh16Odzc5seGYaxnSrDIn5n3NIItPgzi6+dLKhHQ1sRopPCid7jUninUYkxIKAX2CExIUHn74Ybz55pt4//334XD8/RnocDjw3nvv4e2338a8efM8aptmNvpYrFrqsuIcIcFGOeIq2KoKsOrYb9iqPY5UcTRq7QZk1RchQSbBR2PSm6q8rMwvh95qRezAS5q1oxk/F46qfFz9zgGMSmUYmwqcqwQ2HHNApIlG2FVP+/uhEeJ1g+PVOFxQF9AY7E6Gfbk1SAiVQi4SeFTHnZDOoPKMrmbPno2nnnoKjz76KJ599ln06tUw7+vcuXMwGAx48sknMWfOHI/apkTdx86W0xsoCW4cx0Po9IchHzAZhmO/4Wh5LmzGEkRKRXgqPRHhEiFK6y34LrcMS7KKoRgyA8LQuObt8IUIu/Y5yLL24eTxX5FxqBScRAXNpZdAnn4JLXhEurz4kOCaa1RY0xBLYqgMMWoJCmqMKNXSGHZCAmHRokW45ppr8M033yA7OxuMMUyaNAm33HILRo8e7XG7lKj7WGKoDBklukCHQUibOI6DJHEQJImDAADW8nOo+/UdPHwgs2kfvlAExZjZ0Ey4rfV2eHzI+l0MWb+LfR4zIf7A54DB8RpYHU6cKtUhGKsjFtSYUFBjAgCMTAqhq7jE54KlNGIwxHC+0aNHdyopbwkl6j4mE9FTTLoeUVQvRNzxP1jLsmGrKgAnFEOaMgw8sTzQoRHiNzwOGBCrwpEATRx1l0oiQFYFXcUlxJ8KCgqQmJjY4f2Li4sRF9f8qnRraCqKj5Vqg+cyKSHu4DgO4pg+UAy6FPK08ZSkkx5neGIIThR3nSuifaOU0NbTWh3E9xpKI7IguAX6mQBGjRqF+++/HwcOHGh1H61Wi08//RQDBw7EDz/84Fb71N3rY4W19YhSiVGuo3GDhBDSVYxJCcW+3JpAh+EWD8s0E0I64dSpU1i0aBEuu+wySCQSjBgxArGxsZBIJKitrcWpU6dw8uRJDB8+HK+99houv/xyt9qnP2s/SAylSXSEENJVjEwK6XJJOgDUGqkMMPEPjmNBcwu0sLAwvPXWWygtLcX777+PPn36oKqqCllZDeuTzJ07F4cOHcKePXvcTtIB6lH3C6u99VUfCSGEBI9BcV1nTPqFcioNUIj4MFgd7e9MCPEqqVSKOXPmeFyGsTXUo+4HWeV6CIJhIBUhXRBjDLbaElgrcuG0mAIdDunGekfKkV1hhCOQqxl1gpMBqZGKQIdBCPEi6lH3A5PNibRoJS1KQYibjKe2Q7f7e1irCwAAPL4IsoFToJl0B/hSVYCjI91JjFqCKoMV9bau3RstEfIDHQLpAXgIjp7eYIjB1yhR9xOOOtQJcYvuwE+o/eNTpIiTMTT0Ssj4UuSZC3Hw+DaUZe9H1N0fQCCjZJ10nkYmBMcBdaauP8bbGYyF3gkhHqNE3Q+UYj7yquiSPSEdZTfUoG7rFxghH4op6gng/vqmGyuKQZq0D76s/BaVqxci5va3Ahwp6erEAg7hCjGyKwyBDsUrCqrps4b4XrBM5AyGGHytJ1w1CLgBseoufzmVEH8yntgMHjhcrBrTlKQ3ChWGYIh8EGylWTCXZLbSAiEdkx6r7jZJ+sA4Fcr1VAqYkECw2Wy4++67kZub69V2KVH3gxqjNdAhENKl2GpLESYIhYQnbvH+OFEsGBgMh9f7OTLS3Zi6SYWUSKUYxbW0wB7xj8AvdPT3LVgIhUK3FzPqCErU/SBEJqKqL4S4gSeRw+AwwMlaLm2qd+jBAXDUlfg3MNLtiAVd82NwaIIGUUoxRHwOUUoxbA4narvBGHtCurJZs2bhxx9/9GqbNEbdD/bn1SBaJYZQwENhDfV4ENIeedoElB34EVnmHPST9nG5z87sOGY8AQVfAruYStGRzhHwu16inhatxNHzar3TcBdCgkOfPn3w0ksv4c8//8SIESMgl8td7n/00UfdbpMSdT8p01mQHqsMdBiEdAmimL4QqKOwoXYTbE4b0mR9IeAEqLJVY5t2J7QOLezMibC08YEOlXRx/C54tbOr1nkn3UiQTCZFMMRwns8//xwajQaHDh3CoUOHXO7jOI4S9WB3skSPhBApCmkcISFt4jgO4bP/D+VL/4lf6zZji3Y7xDwR9A4j5HwxpAIxLHINZGkTAh0q6eIKa0yQCHkw27rOCtLVBupBJyQYeXsiKUBj1P0uSiUJdAiEdAniiGREzf0vBFI1rMwGB+yQC8QwOiywaaIQcdMi8IQtTzYlpKNKtWYMjtMEOgy3KCXUx0YCiwcWNLfujv7a/exgfi1GJYfgbLkB2vq/J/4I+Q2XX22O7v+iI6SjxHFpiJ23DKaze2EpOQOOx0dkynBIkoY0K9tIiKf259UgPVaFkyW6QIfSIRqZCPk034mQoHP33Xe3ef8XX3zhdpuUqAfAgbxaAECMWgy5WAh9va1pMlB6rApGix15tGgFIQAAji+EvP8EyPvTMBfiO6dKdBiTEoqD+bU0BpyQdtCCRy2rra11+dlmsyEjIwN1dXW45JJLPGqTEvUAKtVaALiONTxZokOITAiZiN9t6vsSQkiwYwD25dagd6QCTifDuSpjoENqEZ/HdZsFmgjpbtauXdtsm9PpxIMPPojU1FSP2qQx6kGo1mRD/xhVoMMghJAeJ7vCgHNVRgyKUyEtOvgqdQ1N0MBInTgkwHgI/EJHPK5rjFHn8Xh47LHH8Pbbb3t0PPWoB6l6qz3QIRBCSI91orhhvHqoXIR4jRTHi7UBi6VvlAI6sx3xGikO5de2fwAhJKjk5OTAbvcsr6NEPUidKtVjSLwax4oC9+FACCE9XY3RipQwefs7+pBGJsLZcgPKtOaAxkEIadtjjz3m8jNjDKWlpVi/fj3uuOMOj9qkRD2InS7VdalKBI0SQqSIVElQWGNCBa2YRwjp4owBvsJpsdFQFxJcaDJpy44cOeLyM4/HQ0REBN588812K8K0hhL1IGZ1MJwt02NwvBrHg7xnvXekAqFyEUrq6lFYW9+0qFNKuBzhClFTpRtCCOlKRHwOuQGeWHqmTI9IpZg6PggJclu3bvV6m5SoBzmbk+FksRZDEzQ4WlgX6HCa8Hkc+kUpIRfzkVdlarUKQW6VEblVRoxOCcX+3Bo/R0kIIZ3TN1qJjOKWr2oOiFGhymDxeQJtsTsRpZKgzmSFldbaIEGgcTJnoAVDDL5GiXoX4GDAscI6DE/U4HBBXcDiEAl4SItWQsjnIatCj1OlHR+Ssz+3BmNSQrGPknVCSBciE7b8MdnY+cDn4JchiieKtUgMlaHaYKGqL4QEqZSUlDYX4zt37pzbbVKi3kUwACeKtIhSiVGu89/lT4VYgL5RCjidwJkyXaeG4BzOr0W0SoIyHU2IIoR0DSXa5iuApoTLcSivodPBwYDcSgN6hct9Xnu9oMZEVydJUKAx6i2bP3++y882mw1HjhzBxo0b8eSTT3rUJiXqXYjNyZAYKvNLoj44Xg2Hk+FMqc5rvfg2J0OMhhJ1QkjXIRXx0TtS0TS8j89r6C07fwSKyeZEncmK+BApimqbJ/aEkJ7hn//8Z4vbP/jgAxw8eNCjNilR72IyirWQi/g+u/QZrhAhTiP1WVnIIwV1Lh96hBASzLLKG96r0qKVUEgEqDNZkV3RvOe8xmRDvc2B0SmhAAM4ruFKKAeAMQBgYACcDHAyBjBAKOAhr8ro5hj34OpBJIS0b+bMmViwYAGWLl3q9rGUqHcx9TYnRiWH+KSKSr8oJYpqTT6v3S7gtT5+ixBCgtGZMn27+9TbnB4NS4nTSCER8iDgcRDweeBzHPg8DjwO4DX24DtZw8RVPw59JKQ1HBi4IPjSGAwxdMTq1asRGhrq0bGUqHdBpXXeHzqSHCZDcZ3JL5OUznSRkpOEEOIPxXUdHy4zOjkElXqaUEpIMBo2bJjLZFLGGMrKylBZWYkPP/zQozYpUe+CiurqvVquMUwugs5sh8Hivzf+WqMVfB4Hh7NrfBsmhJBgsD+vFmqpEEmhYuTXmAIdDumhqDxjy6655hqXRL1xwaPJkycjLS3NozYpUe+iCmpMXqsykBwmwyE/l30srK3HsAQNjgRRbXhCCOkKtPU2JIXJACr+QkhQWbhwodfb5Hm9ReIXNUYrSurqMThe3al2ekcq/J6kN7LY6dItIYR4gq5GkkBqLM8YDLdgwufzUVFR0Wx7dXU1+Hy+R21Sot6Fme1OHC/SYnC8Gn2jFB61Ech5nadK9YjTSAMXACGEdFH51b6t2U4IcR9jLX9xsFgsEIlEHrVJQ1+6gcZJmf2ilBALeR2epBnolU4BIFYjcWsiFSGE9HRiAQ9mW/MrkkIeh9RIOZwMqNJbUWOyBiA60hPQGHVX7777LgCA4zh89tlnUCj+7jx1OBzYsWMHjVEnQGZ5Q/mwhFApIpUSHCusg72Vy6MiAe//27vz6Kjqu3/g7zv7ZDJLhuxkZQ1bUhZBFHcrogerctrKQ619tPXRH1iVYitV61Lb2D6t2vax0GNbsa0+Pnqq1tYWa1WwqIBsglskMSvZILMvmUxm7u+PSGTIOuu9M/N+nXPPYe7c+eZz50L4zGc+9/uVxcIc77bYsbTaih5XPzodfgRD8vhHR0QkV4HBMBZWWPBxlwtTcrUoMevQHwzjaK8bH3cPzfuuUytQU2yc1LSSRBSfRx55BMBQRX3r1q0RbS4ajQZVVVXYunVrTGMzUc9A7TY/2m1+FORqUV2Qg/ePueA7bSqvheUW7JHJMtQn5x02aJSoKzNhX2vi54gnIsokBz/7NrTD7h+16NIfDKO1z4ea4tzh5J2IkqO5uRkAcMEFF+D5559HXl5ewsZmop7BjnsCOO4JIFerxNJqK2zeAbTZfLJK0k/lHQhhX6tdFi05RETpzh8Moc3mR5FRi64Ap3KkxJHLjZxyiOFUb7zxRsLHZKKeBTyB0HDVWgBkmaSfyuZlXyURUSL4BkKYlm9A1wmpIyHKDh0dHXjppZfQ1taGgYHIfObhhx+Oejwm6llGXp89R9fS50OhUYteN5fKJiKK1/udLnyh3Ix2qQOhjMGK+uhee+01XHHFFZg2bRo+/vhjzJ8/Hy0tLRBFEYsWLYppTE7PSLJUOSVH6hCIiDJG03H2qRMl2+bNm7Fp0yYcOXIEOp0Of/7zn9He3o7zzjsPX/7yl2Mak4k6ydLpN78SEVHs3P38nUqJI3w2PaPUm9wq6h999BG+/vWvAwBUKhX8fj9yc3PxwAMP4Cc/+UlMYzJRJ1n6pMcNpZSrMRERERFFwWAwDPell5SUoKmpafi5Eydiu1GEPeokS/OnmoenHyMiIiKSuzPPPBO7du3CnDlzcNlll+E73/kOjhw5gueffx5nnnlmTGMyUSfZUQjgjaREREQyxZtJR/fwww/D4xm6H+T++++Hx+PB//3f/2HmzJkxzfgCMFEnGVpUkcdFj4iIiChthEIhdHR0oLa2FsBQG0ysq5Geij3qJDvsTSciIpIvQfi8qi7tJvU78TmlUolLLrkEdntiC41M1El2vIFBqUMgIiIiisr8+fPx6aefJnRMJuokOz0u9qcTERHJldTTMp66ycmDDz6ITZs24W9/+xu6urrgcrkitliwR51k57gnAKNWBTcr60RERJQmLrvsMgDAFVdcAeGUvhxRFCEIAkKh6NczYKJOslSap0dDt1vqMIiIiIgm5Y033kj4mEzUSZbMOv7VJCIikiNOzzi68847L+FjskedZMk7wOWuiYiIKL38+9//xte+9jWcddZZOHbsGADgj3/8I3bt2hXTeEzUSZYaul3Qa5RSh0FERESnkX5axs83Ofnzn/+MlStXQq/X48CBAwgEhibHcDqd+PGPfxzTmEzUSZYGw8DsolypwyAiIiKalAcffBBbt27F448/DrVaPbz/7LPPxoEDB2Iak43AJFsqBT9HEhERyY1cpkaUQwynamhowLnnnjtiv9lshsPhiGlMZkIkW58e90odAhEREdGkFBcXo7GxccT+Xbt2Ydq0aTGNyUSdZMvmG8D0AoPUYRAREdEppO5Ll2uP+re+9S3ceuut2LNnDwRBQGdnJ5566ils2rQJN998c0xjsvWFZC0/V4smVtaJiIhI5u68806Ew2FcdNFF8Pl8OPfcc6HVarFp0ybccsstMY3JRJ1k7YQnIHUIRERERBMSBAF33XUX7rjjDjQ2NsLj8WDu3LnIzY19cgwm6iRrTce9sBo0sHkHpA6FiIiIwAWPJqLRaGA0GmE0GuNK0gH2qFMamJbPPnUiIiKSt8HBQdxzzz0wm82oqqpCVVUVzGYz7r77bgSDwZjGZEWdZE+pEKQOgYiIiD4jCCIEhfTVbLlV1G+55RY8//zz+OlPf4rly5cDAN555x3cd9996Ovrw5YtW6Iek4k6yZ4or3+HRERERCM8/fTTeOaZZ7Bq1arhfbW1tSgvL8fatWuZqFNmCoOZOhERkVwohDAUQljqMGQRw6m0Wi2qqqpG7K+uroZGo4lpTPaok+yxok5ERERyt2HDBvzwhz9EIPD5jHWBQAA/+tGPsGHDhpjGZEWdZC/MTJ2IiIhk7uDBg3jttddQVlaGuro6AMB7772HgYEBXHTRRbj66quHj33++ecnNSYTdZK9UJiJOhERkVxwesbRWSwWrFmzJmJfeXl5XGMyUSfZ6+OiR0RERCRzTzzxRMLHZKJOsnfM0Y9Ssw6dzn6pQyEiIsp6rKinDm8mpbRQatFLHQIRERHRmPr6+rB+/XrMnTsX+fn5sFqtEVssokrU77vvPgiCELHV1NQMP9/f34/169djypQpyM3NxZo1a9DT0zPumN/4xjdGjHnppZfGdDKUufa12rG4Mi/h404xaLC02opl1VZ8odwMnZqfXYmIiMZzsqIuhy0ab775JlavXo3S0lIIgoAXX3wx4nmPx4MNGzagrKwMer0ec+fOxdatWyc9/rXXXotXX30V1113HX72s5/hkUceidhiEXXry7x58/Cvf/3r8wFUnw9x++234+WXX8Zzzz0Hs9mMDRs24Oqrr8Zbb7017piXXnppRF+PVquNNizKAkc6HJhdZERDjzsh480rNaGtz4u9zbbhfZVWPXrdA/AHQwn5GURERCQPXq8XdXV1uP766yNmYDlp48aNeP311/GnP/0JVVVV+Oc//4n/9//+H0pLS3HFFVdMOP6///1v7Nq1a3jGl0SIOlFXqVQoLi4esd/pdOJ3v/sdnn76aVx44YUAhprq58yZg927d+PMM88cc0ytVjvqmESnGgiJaDruxhlVeXi3xR7XWAummtHQ7cJAKPLTeKvNj0prDlptvrjGJyIiylgKEYJCBv3hUcawatWqiFVDT/f222/juuuuw/nnnw8AuPHGG/Gb3/wGe/funVSiXlNTA7/fH1VME4n6e/6jR4+itLQU06ZNw7p169DW1gYA2L9/P4LBIC6++OLhY2tqalBRUYF33nln3DF37NiBwsJCzJ49GzfffDP6+vrGPT4QCMDlckVslB0Gw8C7LXZMLzBgXqkp6tcrFQKWVVtx5JhzRJIOAHq1Aj1u3rRKRESULk7PCU9dcCgaZ511Fl566SUcO3YMoijijTfewCeffIJLLrlkUq//9a9/jbvuugs7d+5EX19fQnLVqBL1ZcuWYdu2bdi+fTu2bNmC5uZmnHPOOXC73eju7oZGo4HFYol4TVFREbq7u8cc89JLL8Uf/vAHvPbaa/jJT36CnTt3YtWqVQiFxm49qK+vh9lsHt7inaOS0k/TcS8+6HRhTokRMwtzJzx+Wr4BS6vzYNKpsOeUVpfT1ZZZ0B+U15LERERENLby8vKIvLC+vj6mcX71q19h7ty5KCsrg0ajwaWXXorHHnsM55577qReb7FY4HK5cOGFF6KwsBB5eXnIy8uDxWJBXl5s99lF1fpy6tcFtbW1WLZsGSorK/Hss89Cr49tVo5rrrlm+M8LFixAbW0tpk+fjh07duCiiy4a9TWbN2/Gxo0bhx+7XC4m61nqo66hfvW6MjNEAJ/0uNEfDCNHo0SBUYsikxY9zgA+PeHFpye8444lAGie4BgiIqJspxBEKGQwNeLJGNrb22Eyff4te6z3Ov7qV7/C7t278dJLL6GyshJvvvkm1q9fj9LS0oiOkbGsW7cOarUaTz/9NIqKiiAIQkxxnCquedQtFgtmzZqFxsZGfPGLX8TAwAAcDkdEVb2npyeq/vNp06YhPz8fjY2NYybqWq2WN5xShPc6nAAAtVKAUauEOxBCa58PrX2T7zU/+StnUYUFg2ERogiIn+0VP3tSFAFXfxAd9sT2oBEREVFsTCZTRKIeC7/fj+9///t44YUXcPnllwMYKkofOnQIP/vZzyaVqL///vs4ePAgZs+eHVcsp4orUfd4PGhqasK1116LxYsXQ61W47XXXhtePrWhoQFtbW1Yvnz5pMfs6OhAX18fSkpK4gmNslQwJCI4TtvURHrdAfS6J+5ty9UqUTXFAAjA+8d4jwQREWUPQQhDEKRvE01kDMFgEMFgEApFZFe4UqlEODy5n7NkyRK0t7dLl6hv2rQJq1evRmVlJTo7O3HvvfdCqVRi7dq1MJvNuOGGG7Bx40ZYrVaYTCbccsstWL58ecSMLzU1Naivr8dVV10Fj8eD+++/H2vWrEFxcTGamprw3e9+FzNmzMDKlSsTdpJEieYJhPB+51CCPqsoF6GwiKbjbJshIiKSK4/Hg8bGxuHHzc3NOHToEKxWKyoqKnDeeefhjjvugF6vR2VlJXbu3Ik//OEPePjhhyc1/i233IJbb70Vd9xxBxYsWAC1Wh3xfG1tbdQxR5Wod3R0YO3atejr60NBQQFWrFiB3bt3o6CgAADwyCOPQKFQYM2aNQgEAli5ciV+/etfR4zR0NAAp3OoTUGpVOLw4cN48skn4XA4UFpaiksuuQQ//OEP2dpCaeOTHg/0agVqio34uDsxc7wTERHJVSyLDSUrjmjs27cPF1xwwfDjk/c7Xnfdddi2bRueeeYZbN68GevWrYPNZkNlZSV+9KMf4aabbprU+F/96lcBANdff/0pMQoQRRGCIIw7UcpYBFEUpX+n4+RyuYZmf7ntWSi0OVKHQ1lKqxIwvcCID7vYCkNE8hIO+ND+6FfgdDrj7uWl7HUy3zp8xWIY1XF1TyeEOziI2pf2y+bvdWtr67jPV1ZWRj2m9O8yUYYIDIo45vDBoFHCO8CVTYmIiLJJLIn4RKJe8IiIxub0D2L+VLPUYRARESWNoACEz1YnlXaT+p0Y6Y9//CPOPvtslJaWDlfYH330UfzlL3+JaTwZniJRenuv3QGrQSN1GERERJRCW7ZswcaNG3HZZZfB4XAM96RbLBY8+uijMY3JRJ0owfoHw5hRaJA6DCIioqQ4eTOpHDY5+dWvfoXHH38cd911F5RK5fD+JUuW4MiRIzGNyUSdKAm8AfaoExERZZPm5mYsXLhwxH6tVguvN7YpnHkzKVES2LwTL5pERESUjuRSzZZDDKeqrq7GoUOHRtxUun37dsyZMyemMZmoEyVBtzMAlULAYFhev0SIiIgosR544AFs2rQJGzduxPr169Hf3w9RFLF371787//+L+rr6/Hb3/42prGZqBMlgQig0KRFp6Nf6lCIiIgS6uSsK1KTQwwAcP/99+Omm27CN7/5Tej1etx9993w+Xz4j//4D5SWluIXv/gFrrnmmpjGZqJOlCTWHA0TdSIiogx36tqh69atw7p16+Dz+eDxeFBYWBjX2EzUiZJEr1FOfBARERGlPUEQIh7n5OQgJycn7nGZqBMliQBh4oOIiIjSjCCERySmUsUhF7NmzZrwPbHZbFGPy0SdKElEyKN3joiIiJLr/vvvh9mc+JXJmagTERER0aQJgkxuJpXR9IzXXHNN3P3oo+GCR0REREREMUpmGxAr6kREREQ0aVzwKNKps74kGhN1oiRJ4r9bIiIikolwOHk3tbL1hShJZHBDPBEREaUxVtSJkoQVdSIiykRsfUkdVtSJiIiIiGSIFXWiJMn8z/lERJSNBIVMpmeUQQzJxoo6UZL0B0NSh0BERERpjBV1oiSxeQNxvd6kU8GoUyMwGMIJz0CCoiIiIoqPIISTOnd4NHFkOibqREnS4wpAqRAQCk/81VxdmRkQALs3CHd/EA5fEK7+Qbj6BwEAaoWAIrMOFr0aOo0SDl8Qjb2emGPTqhQoMulg0qngCQyipc8X81hERESUHEzUiZIkLAIlJi26nP3jHre02oq9zbZxjwmGRXTY/eiw+4f31ZWZYfMOoP2UfRMpy9Oj1KzDkWNOtNk+T87rysxw+oNM2ImIaELsUU8d9qgTJZHVoBn3+aopOXh3giR9LO91ONHj6scZVXkTHrtgqhnzp5rRYfdjb4sd/mDk14XvdThxwh1A5ZScmGIhIiKixGNFnSiJ9BrluM/naFRxzQ4zEBLxbosdNcVGKAQBH3a5ThlbiflTzThm9+HIMeeEY3kGQtAHQsjP1bAnnoiISAaYqBMlkXKcm23qyi14r92RkJ/zcbcbADDVoodaKUCEiOOuwIQtNac77gmg0poDvyYE7wBnrSEiopG44FHqMFEnSqJuZz9ytUM3bJ5KIQC9rsn3lk/WMUf8Y7bafJhbYsInPW4MTuJGWCIiIkoO9qgTJVGrzYcikxZmvTpif02xEV3O+KZvTKYPu1yYVWTE1Dy91KEQEZHcKET5bBmOiTpRkjUd98KiV0XcWKpRjd+7LgcfdrnQ4/RjWbUVaqX08+USERFlG7a+EKVAq82PqRYdikxaaFUKHEpQb3qyDYaBPc02zC0xornPBz/71omIsh4XPEodVtSJUuSYox++wCDabInvTU+2D7vcKDXrYMlRT3wwERERJQQTdaIUcgfStyLddNyL6QUGqcMgIiLKGmx9IaJJO9Tm4DzrRETZTiYrk/JmUiKiU4REYFpBrtRhEBERZQVW1IkoKh8cc8KgUXJBJCKiLCUI8lhsSAb3syYdK+pEFBXvQAjzppoj9k216LGw3IzZRbmoPe05IiIiig0r6kQUtebjXqgUwvDKpVMtOuxtsQ8/v7DCgo+6XOgPZv7UWURE2UaQSY+6HGJINlbUiShqxz0B1JVbhh+fno4fbHOgPC8HRh1rAURERLFiok5EMWnocmFZtXVobvVRihpHez2YXWRMfWBERJRcQhhQyGDLggWPWO4ioph4BkLY02yDUgD2tdpHPabD7ktxVERERJmDFXUiiktonBbB/Fxt6gIhIiLKMKyoE1FSKAUgnPn3+RARZR1BEGUyPaP0MSQbK+pElHBqpYDacgs+7HJJHQoREVHaYkWdiBKq0KiFUafCwTaH1KEQEVEScHrG1GFFnYgSZnqBAcFQGE3HvVKHQkRElPZYUSeihNCpFPAPhGD3BaUOhYiIkkkRlkepV5H50zPK4W0mogxQW25Bp7Nf6jCIiIgyBhN1IoqbQgCO9rilDoOIiCijsPWFiOJWNcWAT0+wL52IKBtwesbUYUWdiOJmNWikDoGIiCjjsKJORHETBKkjICKiVOH0jKnDijoRxc3p50wvREREicaKOhHFxaRXobHXI3UYRESUKpyeMWXk8DYTURqbWWBEOPO/fSSShQprDhRsNSPKGkzUiSguYZFZOlEqLKqwoMvpx5Iqq9ShUJY7OeuLHLZMx9YXIoqZUgA+4fzpREmztNoKl38ADl8QB9ocAAC7d0DaoIgoZVhRJ6KY1ZQY4R0ISR1GWlIqBCyuzMMZVXlSh0IyNasoF3ubbfi424NuV2B4f/MJD/Jzx54SVaNSYEllHqdNJcoArKgTUcwMGrXUIaSlJVV5aO/zYX+rHTXFuVKHQzKVqx39v+jBMFBuzYEnMIj+YOTNdCadClVTDNjXakdZnh4CNOhjBZ4SjNMzpg4TdSKKWZvdJ3UIaWdptRV7m23Dj9v6Rr6HhUYtXP3BEUkYZZfjnsCYzx1sc8CSo0btVDMAAYIA+AYG0dLnw+FjTgBAh92PxRV56PMOIC9HjfYUxU1EicNEnYhikqtVotvZL3UYaeX0JB0AfMEwKq16FJn16A+G0GH3o9cdwKIKy3BPMmUfvVqJDpt/3GMcviD2ttjHPebo8aF7SAbD/NBHCcTpGVNGDm8zEaUhs579r9FYWjUyST+p1ebH3mYbDnc4YfusTeFAmwNT8/SpDJFkpKbEiER8qe8PDN1D4u7nvSRE6YgVdSKKyVj9szTSkso87G0ZPUkfTyiU+f2XNLpQghYnyNEq4fQPJmQsopPkMjWiHGJINlbUiSgmnsAgKqw5AIDZRUbUlZlh1KlQU2wcd0aKbLO4Ig/7WsdvTxiLP8gqaDaqsObgo05XQsZy+gdh0CgTMhYRpR5LYkQUk2OOof7ZCqseDafMpf5xtxtnVOXhhIczTSwst+BAW2xJOgB4A6yEZpsSsw7ewCCCCVzutzRPD7VJ4M2kRGmIFXUiikvbKDe8DbJlA7VlZhzucMTcZ1xs0mIwgckayZsgDK08GgqLCZ9O8WiPB0H+m6REEkRAIYMtC1pfWFEnooRrs2X3tI3zSk34qNOFeHKjAqM2YpEbykyCAHyh3IIT7kBSZ/lh+wtRemKiTkQJ1+cdQKlFh05H9k3fOKfEiKM97rhbF3I0/PWc6WYXGeELDuJgCqbh7HSOP9UjUTQEhTwWGxKyoC8kC06RiKRQas6+qQVnFeWi5YQXAwloM0jUrB8kTwummtF8woP2CeZKTwSrQYNuJ7+dIUpHLNkQUVKIWZZnTi8woNPuhz9Bq4kOhDJ/IY9sVTUlBx92OuNqjYpGuTUHJ2yO1Pwwyg6KMKAQpI5iqE89w7GiTkRJ0eHInj71qik56HUH4BmIfzrFpdVWFORq4U/AWCRPhSZdypJ0ANCp+F89UbpiRZ2IkqLHFUCxSYduV2b3qU+16OH0B+Huj38qxbpyM/Y221BhzYHdx+ktM9Vgir8t4bczlGhDCx5JHQUXPCIiikvllBypQ0i6fKMGdl8wIWP1f9Y202bzcR76DBYYTG3i7PIn5u8nEaUeE3UiSprmE16o5NDHmCQmnQrvtTsTMtaMAgMaut0TH0hpz5fitqaeDP9WiyiTMVEnoqTpdQewqMIidRhJMzUvcTPbGPXqhI1F8qVVKdBu86bs55n1angCvN+BEkzqhY5O3TIcE3UiSip/MHOThER9V2DUqXC4IzGVeZK3L5RbkMrOF61Kgboyc+p+IBElFBN1IkqaErMOghzuOEqSxuNemPXx35Ofn6vlvOlZYGmVFXuabSn9mb3uANSc9YUSTRGWz5bh+K+XiBJuikGDJZV56HUHMrpSPDAYxsxCY9zjKPmbOOMtq7Zib0tqk3QAKDbpcLDVnvKfS0SJwekZiSihaqea0WrzYV+WJAeKBNwsa/NyVo5MVmLW4V0JknQAKDRpYfMGwL9hlEiCQoQggwKDwB51IqLJUQjA0qo8HD7mhDOLpoMLpniqPUo/Bq0KUnU2He5wotSSuJueiSi1mKgTUdxUCqC2zIy9LdlRRT9VIj6U5GiUCYiE5ErqG6pb+nyo5Q2lRGmJrS9EFBe1QkBNiQmHEjSfeLrpcvrjHqPUrEeHPf5xSJ5CIem/nldm8E3dJAFBTNy0V/HgyqREROOrK7fgyLHsTNILcrXwB+Nvfel1c0GaTCaHNb8cfq50S5SOmKgTUcyq8w1Zc9PoaAqMmrjHmFGYi5Y+XwKiIbnKN2qlDoHf2FBiSb3IERc8Gt19990HQRAitpqamuHn+/v7sX79ekyZMgW5ublYs2YNenp6xh1TFEX84Ac/QElJCfR6PS6++GIcPXo0trMhopQqyJU+AZGSQRt/96CFK5JmNLVSwKAMWl+CMoiBiKIXdUV93rx56OrqGt527do1/Nztt9+Ov/71r3juueewc+dOdHZ24uqrrx53vJ/+9Kf45S9/ia1bt2LPnj0wGAxYuXIl+vv5VTCR3Nm8AalDkFQwFF/bi16twAddrgRFQ3KiVgpYUpmHErMOH/IaU4YZmp5RHlumi7ocpFKpUFxcPGK/0+nE7373Ozz99NO48MILAQBPPPEE5syZg927d+PMM88c8RpRFPHoo4/i7rvvxpe+9CUAwB/+8AcUFRXhxRdfxDXXXBNteESUQpn/K3JsSoWAoz2euMaYV2rO6tahTJWrVcGsV8vq2uZo2OlKlI6i/pd79OhRlJaWYtq0aVi3bh3a2toAAPv370cwGMTFF188fGxNTQ0qKirwzjvvjDpWc3Mzuru7I15jNpuxbNmyMV8DAIFAAC6XK2IjotQzaLJ34qjZRUZ4B+Kbds/Znz3zzWeTOSVGHHPIqyfcN8D5/imBBBn0pitEzvpyumXLlmHbtm3Yvn07tmzZgubmZpxzzjlwu93o7u6GRqOBxWKJeE1RURG6u7tHHe/k/qKiokm/BgDq6+thNpuHt/Ly8mhOg4gSpNXmlToECcX3H0SlVR93RZ7kScGpEIkoQaIqh61atWr4z7W1tVi2bBkqKyvx7LPPQq9P3cpnmzdvxsaNG4cfu1wuJutEEnD6B1Fq1qHTmV33lCyYao57Ssoisx6tNnlVXYmISF7ialqzWCyYNWsWGhsbUVxcjIGBATgcjohjenp6Ru1pBzC8//SZYcZ7DQBotVqYTKaIjYikYdRlx6wlJWYdasvMWFplxftxJulqhYCGbneCIiO5+aTHjfzc+KfuJJIthYy2DBfXKXo8HjQ1NaGkpASLFy+GWq3Ga6+9Nvx8Q0MD2trasHz58lFfX11djeLi4ojXuFwu7NmzZ8zXEJG8qFWZ+TV/hTUHSyrzMC3fAK1KQJezH4c7nNjbYov7Jtr5ZWY4/exPz1R2XxDV+QapwyCiDBBV68umTZuwevVqVFZWorOzE/feey+USiXWrl0Ls9mMG264ARs3boTVaoXJZMItt9yC5cuXR8z4UlNTg/r6elx11VUQBAG33XYbHnzwQcycORPV1dW45557UFpaiiuvvDLR50pECWbJUSOQgJU55WRqnh5FRi0OtDnQZkvOQkRymFebkktgnzplsKGpEaWOApye8XQdHR1Yu3Yt+vr6UFBQgBUrVmD37t0oKCgAADzyyCNQKBRYs2YNAoEAVq5ciV//+tcRYzQ0NMDp/Pxr4+9+97vwer248cYb4XA4sGLFCmzfvh06nS4Bp0dEyeTwBREcDGNZtRWH2h0IDKZv0l5i1qHUoseBVjuOJXkVR7nNCEKJZTVocKhNPlMzElH6EkRRTPuPIy6Xa2j2l9uehUKbI3U4RFmpIFeLiik52C+juaMno9CoRYU1Bwfa7Ain4LehSa+Cyz+Y/B9EkllcYcH+NofUYUQIB3xof/QrcDqdvK+LYnYy3+p7WA2TXvpvjVx+EVM2BjP673X2ToJMRAl13BPAcU8A1fkG6NXKUVdjNOlUKDLrYNKpoVIIGBgMwx0IwqLXIBQW0djrgTuQmiQ2P1eD6nwDDrbZ0etO3QqrJq2aiXoGMuvVmFGQi2A4LLsknYjSFxN1Ikqo5hNDc6tXWPUoMukQFkW4+gfR4+qHyz8IV/9oc4cPvUbA0EJClhw1TngCaDqe+HnarQYNZhTm4mCrHe+2pL763+HwY2GFBQeZzGWMaQUG9HkC2M92FyJKMCbqRJQUbTY/2qKcJ1wE0NDz+bSFlhw1pucbAAFoOu6Fwxf7TCmWHDVmFRpxqN2Ovc22mMdJhHabD3qNEv44VzYl6WlVCvQHQ3DyWxLKJnKZGlEOMSQZE3Uiki2HLxjRRjC9wID8XC0cviCO9ron1VNu1qsxu9iIw+0O7G2RNkE/6YRnANMLDDDr1Tjc4cRgKprjKSkWTDVjX5rdl0FE6YOJOhGljabj3uF2mFytEjOLjFAKAlr6vDjhGYg4ttSsQ7k1B0c6HJJX0Edz8jysORrMLMpF03HPiHMg+fMHWUmnLMSKesowUSeitOQJhCL6vKum5GBKrgbu/kF02HzodPaj09kvXYCTZPMNYE+zDQoBWFhuwYddrrSe5jKbFJm0+KCTK8wSUfIwUSeijNDS50NLX3IWKEqFsAgcbHdgabVVlt8A0EjleTnocaVuxiAi2VAIQ5vUsqCingWnSESUPj7qdMKoYw1F7qrzDexNJ0ozb775JlavXo3S0lIIgoAXX3wx4nlBEEbd/vu//1uagMFEnYhIVtyBEOaUZObCHZlEr1ZKHQKRZASFfLZoeL1e1NXV4bHHHhv1+a6urojt97//PQRBwJo1axLwrsWGZRsiIpnpdEQ3rSWlVm2ZGYc7nFKHQUSfcbkiF9jTarXQarUjjlu1ahVWrVo15jjFxcURj//yl7/gggsuwLRp0xITaAxYUScikhlXf+zzxVNyKRUCbJydh0hWysvLYTabh7f6+vq4x+zp6cHLL7+MG264IQERxo4VdSIimfEHuBCSXC2uyJPNfPxEkpHZzaTt7e0wmT5vGRytmh6tJ598EkajEVdffXXcY8WDiToRkcyUWXPQfMIrdRh0mlytCg09rokPJKKUMplMEYl6Ivz+97/HunXroNPpEjputNj6QkQkMwVGjdQh0Cjmlpjg9HOBI6LhiroctiT497//jYaGBnzzm99MyvjRYKJORCQz3U7OzS1H/UG2JBFlg9/97ndYvHgx6urqpA6FrS9ERHJSbNKizZa+Czdlsl53AIsrLdjf6pA6FCJpCTLpUY8yBI/Hg8bGxuHHzc3NOHToEKxWKyoqKgAMzSDz3HPP4ec//3kiI40ZK+pERDJSZs2ROgQaQ7erH/tbHVhckQeNUgZJChFFZd++fVi4cCEWLlwIANi4cSMWLlyIH/zgB8PHPPPMMxBFEWvXrpUqzAisqBMRyYiPM77I3v42O6rzc+DyD6LPy6kaidLF+eefD1EUxz3mxhtvxI033piiiCbGRJ2ISCbYVpE+mk/4sGCqmYk6ZSdBMdT+IjVh/KQ7EzBRJyKSAa1K4GqXaWLBVBP6g2EoBQG5WiU8/BaEiJKEiToRkQxMydWi09EvdRg0AUEAjjn6YWMlnbKZzBY8ymRZcIpERPLX6ehHuVUvdRg0gbklJibpRJQyrKgTEcmEWadGO/xSh0HjONrrwYKpJhw5xhVKKYspFDKpqGd+jzor6kREMvF+pwuzi41Sh0HjKM/Tw+4LSh0GEWUJVtSJiGTEoldLHQKNY2AwjA47v/WgLMeKesqwok5ERDQJhUYt2pmkE1EKMVEnIiKaBBVXIyWiFGPrCxER0SS4/YNSh0AkD5yeMWWy4BSJiIji5w4MosiolToMIsoirKgTERFNUuUUA3rcAanDIJKWQhi6oVRqirDUESSdDN5lIiKKl1IOX0NnAZuPix0RUeqwok5EJCNhcXLTjU0vMGCKQYuWPi/svgEEQyLmlZrg7h9Em82X5CizV2OvB4sqLDjQ5pA6FCLpKBQyqahLHUDyZcEpEhGlj/2tdtSMsehRoVGLZdVWlOXp0XTci70tNvS6AwiGhpL7Dzpd6LD7sKQyL5UhZ502mw8zCgxSh0FEWYAVdSIiGQmLwMfdblhy1Cg0apGrVcEfDKHH2Y9edwC9E/RHh0VgX6sdSyrzsK/VnqKos8sJzwBOeAZQOSUHhUYtPu5ywR0ISR0WEWUgJupERDLk8AXhiGOp+n2tdiyuyMP+NibrydLa50Nrnw9WgxqFGtWEH6KIMgZbX1ImC06RiCg7HWizY1GFReowMp7NG0SxWSd1GESUgZioExFlKBHAwTYHFrNnPekOdzgxo5B965QdRIVCNlumy/wzJCLKYiKGblCdX2pCeZ5e6nAymkHDblIiSiz+ViEiygLvd7qgEIC5JSbk6lTosPvQ6eiXOqyM8l6HE9X5BjSf8EodClFyCUp59KgLmb9+BBN1IqIsERaBD7tcw4/LLHrkGTQ4cswpYVSZxaxXSx0CEWUQJupERFmqw+FHt8uPBVPNTNYT5FC7A5VWPVptfqlDIUoezvqSMllwikRENJbBMNBq88JqYCU4UYpMvBeAiBKDiToRUZZz+QdRnpcjdRgZwzswKHUIRJQh2PpCRER4r8OJRRUWHGhzSB1K2nP3M1GnDMfWl5TJglMkIqLJONrrgdWgkTqMtOf0x76iLBHRqZioExERgKFKcBnnWo+bJzCIxZUWKDJ/5jjKVicr6nLYMlzmnyEREU3a4c9aYCh2obCI/a0O5GpVOKMqDzMKDFhcYUGhUSt1aESUZtijTkREEY72uDHFoEGfd0DqUNKaq38Q77bYhx/PKzWh1x2QMCKixBAVCogKpdRhQMyCcnMWnCIREUXDHQihwKiFVsX/IhLp42631CEQUZrhb2EiIhrh4243ZhQamKwnUEGuln3rRBQVtr4QEdGoPuh0Y0aBAa7+wUm1bGhUCmiUCvgGBhEWUxBgmjHpVeh2SR0FUQLI5UZOReb/opHBu0xERHLVeNyL/sEQFpZboFZGloOLTFqcUWVF7VQzdCoFBgbD8AQGUTvVAiVLxxGsBjU+6fFIHQYRpRlW1ImIaFwu/yAOtjugVyswr9QEjVKBLlc/2m1+9LhGVtoPdTiwsMKCQ+0OiJlf8JoUo04Nm5fzq1OGYEU9ZWTwLhMRUTrwB8M41O7E3hY72m3+cY892ObA4oq8FEUmf8UmndQhEFEaYkWdiIiSYl+rHUur8rD3lCkKs9Ugm/YpkyiUQ5vUsqDcnAWnSEREUtnfasesolypw5BcfzDEGV+IKGqsqBMRUdKERMDuDUIQkNX96h90ulBhzUFBrhYqpYCPu11w+gelDouIZI6JOhERJdVxTwCzinKzftaTNpsPbTYfAGB2sRFOPxdAovQkCgqIgvRNGaKQ+Z/+pX+XiYgo4+XlaKQOQVaO9rhh0Migx5eIZI0VdSIiSrrMr3tFJywC1fkGvN/JFZAoDQkyuZk0C+77YEWdiIiS6oyqPOxttkkdhux4AuxRJ6LxsaJORERJ1dib3b3po5lXasIHrKZTuuL0jCmTBadIRERSyVErYPdxRc5T1RQb8elxfnghoomxok5EREmjUyvhC4Yj9pWadSi16HHCE0BLn0+iyKRRYtbhmMMP/2nvCVE6ERUCRIX0tV5Rkfn/jqR/l4mIKGPZfEGYdJE1oUKjDvta7Wiz+bCkMg+zi4wSRZd6ZXl6uPvZm05Ek8NEnYiIkmpmkRGV1hwoBOAL5WYc6nAAGJr5ZF+rHQ09bky16LG02gq1MnOncVApBHzczbnTiWjy2PpCRERJtb/VDgBQCsChdueoxxxz+HHM4ce8UhOajnvQn4GtIXNLTTjcMfr5E6UV2dxMmvkTv7KiTkREKRGaxP+pH3S6UGHNgV4tgyQgwVSKzP22gIiSgxV1IiKSlU96PFhWbcWeDJp73axX44NOVtMpM4gKJUQZVNRFVtSJiIhS7/1jTpj1aqnDSJiaYiMCg5mfVBBRYrGiTkREsuMdCGFptTkjVjSdV2rCgTa71GEQJQ571FOGFXUiIpKlg612FBq1UocRF7VSwEAojOBkGvSJiE7DRJ2IiGQpGBZRbs2ROoy4BEMiGnuHeu6JiKLF1hciIpKt/a12VFhz0GZL3xVMRRbTKcPwZtLUYUWdiIhkzZKT3jeVKgSg6bhH6jCIKA2xok5ERLJ2uMOJWUW5+KQnPZPdunILDrY5pA6DKHF4M2nKsKJORESyl65rBc0szMWHnD+diGLEijoREcnex90eLJhqwpFjLqlDAQBYDRqY9Sq02/wYDI9e1SvP06PH3c/50ynjiAqFTHrUw1KHkHSsqBMRUVrwB5P3n7JJp0KudnK1q8WVefAFBtF8wodikw41xcYRx8wszMXAYBgu/2CiQyWiLMKKOhERpYXGXg+sBjVs3mDCxszRKDF/qhnvdzjgC4ZRNSUHhSYtPj3uxQnPwIjjq/NzcLjdgeBnVfQOhx8AsKQyD+7AIAQASoWADzrlUfknSgpBJj3qAivqREREslFs0idsrFlFuVArBexttsH3WbW+pc+Hvc12OP1BLK2yojrfALVyqEF+eoEBwUFxOEk/1b5WOxq63TDpVEzSiShhWFEnIqI0kph+b4NGCacvCOcYrSnBkIi9LTYAQzeyFhm1aDrunXDcvS121E414/Ax3kBKRPFjok5ERGnDEwhN6ji9RomKvBw09LhHfX7eVDP2NtsmNVZYBHrcgUnH2GrzIj9XM2rrDFEmkM+CR2x9GddDDz0EQRBw2223De9ramrCVVddhYKCAphMJnzlK19BT0/PuOPcd999EAQhYqupqYknNCIiyjA5agXa7eOvUKpVKbCs2gqVADT0uDG9wIC6csuI45y+5CXRTv8gCo06CGk6pSQRyUfMFfV3330Xv/nNb1BbWzu8z+v14pJLLkFdXR1ef/11AMA999yD1atXY/fu3VAoxv5cMG/ePPzrX//6PDAVi/1ERPS5AqMWrTb/mM8XGrXI1aqw55RK+cl2lUqrHkVmPQZDYaiViohjkuHDLheWVlsnXbUnSisK1dAmtSxY8Cimd9nj8WDdunV4/PHH8eCDDw7vf+utt9DS0oKDBw/CZDIBAJ588knk5eXh9ddfx8UXXzx2ICoViouLYwmHiIiygEo5drFndrERva5+fHpi9D7yVpt/3CQ/Gfa12LCwgquSElHsYmp9Wb9+PS6//PIRiXcgEIAgCNBqtcP7dDodFAoFdu3aNe6YR48eRWlpKaZNm4Z169ahra1tzGMDgQBcLlfERkREma3puBdleZGzvujUCiyttqKxxw27L3HTNiZCWAQOtTmwuDJP6lCIEkuhlM+W4aJO1J955hkcOHAA9fX1I54788wzYTAY8L3vfQ8+nw9erxebNm1CKBRCV1fXmGMuW7YM27Ztw/bt27FlyxY0NzfjnHPOgds9+k1A9fX1MJvNw1t5eXm0p0FERGlIpRCwrHpo2sS6MjPMOjX2NtsQkuk34CKA/a12LCy3oMKaI3U4RJRmokrU29vbceutt+Kpp56CTqcb8XxBQQGee+45/PWvf0Vubi7MZjMcDgcWLVo0bn/6qlWr8OUvfxm1tbVYuXIl/v73v8PhcODZZ58d9fjNmzfD6XQOb+3t7dGcBhERpamWPh/2NNvQfMKL9zqcUc3GIqWD7Q602XyoKzfjC+UWmPVqqUMiojQQVY/6/v370dvbi0WLFg3vC4VCePPNN/E///M/CAQCuOSSS9DU1IQTJ05ApVLBYrGguLgY06ZNm/TPsVgsmDVrFhobG0d9XqvVRrTXEBERpYP32j+fX71yih5FRh0GQiJa+rxwyKx1h2gsokIFUQY3k4q8mTTSRRddhCNHjkTs+8///E/U1NTge9/7HpTKz3uF8vPzAQCvv/46ent7ccUVV0z653g8HjQ1NeHaa6+NJjwiIqK00drnR2vf5ze4llv1KDHrEz5TTF2ZGUePpcc3D0QUKapE3Wg0Yv78+RH7DAYDpkyZMrz/iSeewJw5c1BQUIB33nkHt956K26//XbMnj17+DUXXXQRrrrqKmzYsAEAsGnTJqxevRqVlZXo7OzEvffeC6VSibVr18Z7fkRERGmh3eZHu82PZdXWhE4f2ecdgKd/cgtFEU2KQiGPGzkVmf/3OuHfWzQ0NGDz5s2w2WyoqqrCXXfdhdtvvz3imJOtMSd1dHRg7dq16OvrQ0FBAVasWIHdu3ejoKAg0eERERHJ2p5mG5ZWWbG3JTHJuicwmJBxiCj1BFEU077Bx+VyDc3+ctuzUGh5Vz0REaU3S44aTn8Q8f4PXZ2fg+YTPoQDPrQ/+hU4nc7hdU6IonUy3+poWAeTUSN1OHC5B1A2+6mM/nsd0zzqRERElDwOXxAzC3PjGmNRhQXNJ3wJioiIpCD9LbtEREQ0giUn9orl4so87G+1JzAaolMoVEOb1BRhqSNIOhm8y0RERHS6bqd/4oMAKBUCjFoVcrRKmHRqGHUqHOlwTvxCIpI9JupEREQy1Gbzo9SiQ16OBgaNCoPhMAbDIgLBMPoHB+ELhOEJBOEPhuHwB+HwB9GJfqnDJqIEYqJOREQkU8fdAXQ6mHyTzLD1JWV4MykREZFMBUNpPzEbEcVBBh+HiIiIiChdiAoVRBlU1EVW1ImIiIiISArSfxwiIiIiojSiBAQ5pJAhqQNIOlbUiYiIiIhkiIk6EREREZEMyeF7CyIiIiJKF7KZnpGtL0REREREJAEZfBwiIiIiorTBinrKsKJORERERCRDMvg4RERERETpQhBUEGQwPaMgsKJOREREREQSkP7jEBERERGlD4UKUKiljoI96kREREREJA0m6kREREREMsTWFyIiIiKaNPncTCp9DMnGijoRERERkQxl/kcRIiIiIkocQTW0SU0OMSQZK+pERERERDKU+R9FiIiIiChhBIUKgkL6FFIOMSQbK+pERERElPHefPNNrF69GqWlpRAEAS+++OKIYz766CNcccUVMJvNMBgMOOOMM9DW1pb6YD/DRJ2IiIiIMp7X60VdXR0ee+yxUZ9vamrCihUrUFNTgx07duDw4cO45557oNPpUhzp5zL/OwMiIiIiShhBUMpiakRBUEZ1/KpVq7Bq1aoxn7/rrrtw2WWX4ac//enwvunTp8ccXyKwok5EREREacvlckVsgUAg6jHC4TBefvllzJo1CytXrkRhYSGWLVs2antMKjFRJyIiIqJJO7ngkRw2ACgvL4fZbB7e6uvroz6n3t5eeDwePPTQQ7j00kvxz3/+E1dddRWuvvpq7Ny5M9Fv4aRJ/70FEREREVGM2tvbYTKZhh9rtdqoxwiHwwCAL33pS7j99tsBAF/4whfw9ttvY+vWrTjvvPMSE2yUmKgTERER0aQpBBUUMuhRPxmDyWSKSNRjkZ+fD5VKhblz50bsnzNnDnbt2hXX2PFg6wsRERERZTWNRoMzzjgDDQ0NEfs/+eQTVFZWShQVK+pEREREFIWhWV+im3ElWXFEw+PxoLGxcfhxc3MzDh06BKvVioqKCtxxxx346le/inPPPRcXXHABtm/fjr/+9a/YsWNHgiOfPCbqRERERJTx9u3bhwsuuGD48caNGwEA1113HbZt24arrroKW7duRX19Pb797W9j9uzZ+POf/4wVK1ZIFTITdSIiIiLKfOeffz5EURz3mOuvvx7XX399iiKaGBN1IiIiIpq0U6dGlDqOTMebSYmIiIiIZCjzP4oQERERUcIoFAooFNLfTKpQZH69OSMS9ZP9RuGAT+JIiIiI5Ofk/48T9ecSTYbL5Zc6BADyiSOZMiJRd7vdAIBjW74hbSBEREQy5na7YTabpQ6D0pRGo0FxcTGqym+VOpRhxcXF0Gg0UoeRNIKYAR+vw+EwOjs7YTQaIQhCSn6my+VCeXn5iGVrMxHPNXNl0/nyXDNXNp1vrOcqiiLcbjdKS0uzol2Akqe/vx8DAwNShzFMo9FAp9NJHUbSZERFXaFQoKysTJKfnYhla9MFzzVzZdP58lwzVzadbyznyko6JYJOp8voxFhu+LGaiIiIiEiGmKgTEREREckQE/UYabVa3HvvvdBqtVKHknQ818yVTefLc81c2XS+2XSuRJQhN5MSEREREWUaVtSJiIiIiGSIiToRERERkQwxUSciIiIikiEm6kREREREMsREnYiIiIhIhpioj6K+vh5nnHEGjEYjCgsLceWVV6KhoWHc12zbtg2CIERs6bBy15YtW1BbWzu8yt3y5cvxj3/8Y9zXPPfcc6ipqYFOp8OCBQvw97//PUXRxi/a803X6zqahx56CIIg4Lbbbhv3uHS+vidN5lzT+dred999I2KvqakZ9zXpel2jPdd0vq4AcOzYMXzta1/DlClToNfrsWDBAuzbt2/c1+zYsQOLFi2CVqvFjBkzsG3bttQES0RJx0R9FDt37sT69euxe/duvPrqqwgGg7jkkkvg9XrHfZ3JZEJXV9fw1tramqKIY1dWVoaHHnoI+/fvx759+3DhhRfiS1/6Ej744INRj3/77bexdu1a3HDDDTh48CCuvPJKXHnllXj//fdTHHlsoj1fID2v6+neffdd/OY3v0Ftbe24x6X79QUmf65Ael/befPmRcS+a9euMY9N9+sazbkC6Xtd7XY7zj77bKjVavzjH//Ahx9+iJ///OfIy8sb8zXNzc24/PLLccEFF+DQoUO47bbb8M1vfhOvvPJKCiMnoqQRaUK9vb0iAHHnzp1jHvPEE0+IZrM5dUElUV5envjb3/521Oe+8pWviJdffnnEvmXLlon/9V//lYrQkmK8882E6+p2u8WZM2eKr776qnjeeeeJt95665jHpvv1jeZc0/na3nvvvWJdXd2kj0/n6xrtuabzdf3e974nrlixIqrXfPe73xXnzZsXse+rX/2quHLlykSGRkQSYUV9EpxOJwDAarWOe5zH40FlZSXKy8snrNLKUSgUwjPPPAOv14vly5ePesw777yDiy++OGLfypUr8c4776QixISazPkC6X9d169fj8svv3zEdRtNul/faM4VSO9re/ToUZSWlmLatGlYt24d2traxjw23a9rNOcKpO91femll7BkyRJ8+ctfRmFhIRYuXIjHH3983Nek+7UlovExUZ9AOBzGbbfdhrPPPhvz588f87jZs2fj97//Pf7yl7/gT3/6E8LhMM466yx0dHSkMNrYHDlyBLm5udBqtbjpppvwwgsvYO7cuaMe293djaKiooh9RUVF6O7uTkWoCRHN+abzdQWAZ555BgcOHEB9ff2kjk/n6xvtuabztV22bBm2bduG7du3Y8uWLWhubsY555wDt9s96vHpfF2jPdd0vq6ffvoptmzZgpkzZ+KVV17BzTffjG9/+9t48sknx3zNWNfW5XLB7/cnO2QiSjapS/pyd9NNN4mVlZVie3t7VK8bGBgQp0+fLt59991JiixxAoGAePToUXHfvn3inXfeKebn54sffPDBqMeq1Wrx6aefjtj32GOPiYWFhakINSGiOd/TpdN1bWtrEwsLC8X33ntveN9E7SDpen1jOdfTpdO1PZ3dbhdNJtOYLVzpel1HM9G5ni6drqtarRaXL18ese+WW24RzzzzzDFfM3PmTPHHP/5xxL6XX35ZBCD6fL6kxElEqcOK+jg2bNiAv/3tb3jjjTdQVlYW1WvVajUWLlyIxsbGJEWXOBqNBjNmzMDixYtRX1+Puro6/OIXvxj12OLiYvT09ETs6+npQXFxcSpCTYhozvd06XRd9+/fj97eXixatAgqlQoqlQo7d+7EL3/5S6hUKoRCoRGvSdfrG8u5ni6dru3pLBYLZs2aNWbs6XpdRzPRuZ4una5rSUnJiG/35syZM26rz1jX1mQyQa/XJyVOIkodJuqjEEURGzZswAsvvIDXX38d1dXVUY8RCoVw5MgRlJSUJCHC5AqHwwgEAqM+t3z5crz22msR+1599dVxe7zlbrzzPV06XdeLLroIR44cwaFDh4a3JUuWYN26dTh06BCUSuWI16Tr9Y3lXE+XTtf2dB6PB01NTWPGnq7XdTQTnevp0um6nn322SOmAv7kk09QWVk55msy6doS0SikLunL0c033yyazWZxx44dYldX1/B26teI1157rXjnnXcOP77//vvFV155RWxqahL3798vXnPNNaJOp5t0S4VU7rzzTnHnzp1ic3OzePjwYfHOO+8UBUEQ//nPf4qiOPI833rrLVGlUok/+9nPxI8++ki89957RbVaLR45ckSqU4hKtOebrtd1LKe3g2Ta9T3VROeaztf2O9/5jrhjxw6xublZfOutt8SLL75YzM/PF3t7e0VRzKzrGu25pvN13bt3r6hSqcQf/ehH4tGjR8WnnnpKzMnJEf/0pz8NH3PnnXeK11577fDjTz/9VMzJyRHvuOMO8aOPPhIfe+wxUalUitu3b5fiFIgowVRSf1CQoy1btgAAzj///Ij9TzzxBL7xjW8AANra2qBQfP6FhN1ux7e+9S10d3cjLy8Pixcvxttvvz3mTYpy0dvbi69//evo6uqC2WxGbW0tXnnlFXzxi18EMPI8zzrrLDz99NO4++678f3vfx8zZ87Eiy++OO6NtnIS7fmm63WdrEy7vuPJpGvb0dGBtWvXoq+vDwUFBVixYgV2796NgoICAJl1XaM913S+rmeccQZeeOEFbN68GQ888ACqq6vx6KOPYt26dcPHdHV1RbTCVFdX4+WXX8btt9+OX/ziFygrK8Nvf/tbrFy5UopTIKIEE0RRFKUOgoiIiIiIIrFHnYiIiIhIhpioExERERHJEBN1IiIiIiIZYqJORERERCRDTNSJiIiIiGSIiToRERERkQwxUSciIiIikiEm6kREREREMsREnYiIiIhIhpioExERERHJEBN1IiIiIiIZ+v8GLFwYycigpAAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ], - "source": [ - "# Spatial visualisation of the data, show the data on a map\n", - "dataset.make_geo_plot(variable='temp', title=None, timeinstance=None, vmin = None, vmax = None)\n", - "# You can change:\n", - "# the variable e.g. obstype='humidity', obstype='precip' or another variable. If\n", - "# LCZ information is available (using the dataset.get_lcz() method) one can use\n", - "# variable='lcz'.\n", - "#The title e.g. title='Temperature Vlinder stations 01/09/2022 00:00'),\n", - "# the moment of the day for which the data is visualized e.g. timeinstance=,\n", - "# the minimum and maximum value in the legend e.g. vmin = 15, vmax = 30" - ] - }, - { - "cell_type": "markdown", - "source": [ - "### **0.6 Using your own dataset**" - ], - "metadata": { - "id": "cBGLZ0T6-mr-" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "zkhsLW-UadUQ" - }, - "source": [ - "**0.6.1 Creating a standardized data set**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NjSSrJEGceal" - }, - "source": [ - "In order to use your dataset with the Metobs-toolkit, you need to standardize your data set. This is done by specifying which column or row of your dataset represents which type of observations, which column or row indicates the locations, etc. By doing so you create the template.\n", - "\n", - "This process is also explained on the [Mapping to the toolkit](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html) page.\n", - "\n", - "The easiest way to create the template is to make use of the `metobs_toolkit.build_template_prompt()`. When running this code, the prompts will guide you through all the steps that are needed to build your own template file.\n", - "\n", - "To be able to build the template file, you will have to look in to your own data (and metadata) file to answer the prompted questions. First, you have to fill in the path in your Google Drive that leads to the data file e.g. /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv. Everytime after you answer the question you have to press 'Enter'. Next, you will have to answer how your dataset is structured. You can choose from the following options:\n", - "\n", - " 1. Long format: When your data has the station observations stacked as rows. The column headers contain the name of the variable.\n", - " 2. Wide format: When each column contains the data of a different station. Every row contains the data of a particular variable.\n", - " 3. Single station format: When the file contains observation(s) of only one station.\n", - "\n", - "In the following steps you have to map the variables of your data set to the variables that will be used in the Metobs-toolkit. You can map the following variables: name, datetime, _date, _time, temp, humidity, pressure (air pressure), precip (precipitation intensity), precip_sum (cummulated precipitation), wind_direction, wind_speed, wind_gust, pressure_at_sea_level, radiation_temp, _ID, lat, lon, location, call_name, network.\n", - "If there is a variable in your data set that is not in the above list, then answer 'n' (no) when the prompt asks you if you want to map this variable. In this way the variable isn't used for the template.\n", - "When everything has been answered, the code will generate a template file for you.\n", - "\n", - "The `metobs_toolkit.build_template_prompt()` will also ask you if you want help to import your datafiles. Here it is best to answer 'yes'. When you do so, code will be provided by the prompt. All the code under ========= RUN THIS CODE ========= needs to be copy pasted by you in the next coding block. By running this code, your data is imported in this environment, which makes it possible to investigate your data.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "id": "h2SQUkIldai9", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 470 - }, - "outputId": "73271a07-be7a-4958-c967-e66d15fa59a8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "This prompt will help to build a template for your data and metadata. Answer the prompt and hit Enter. \n", - " \n", - "\n", - " ******* File locations *********** \n", - "\n" - ] - }, - { - "output_type": "error", - "ename": "KeyboardInterrupt", - "evalue": "ignored", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Run this code to start the prompt that will guide you through all the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# steps that are needed to build your template file.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmetobs_toolkit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild_template_prompt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_build_prompt.py\u001b[0m in \u001b[0;36mbuild_template_prompt\u001b[0;34m(debug)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' ******* File locations *********** \\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 110\u001b[0;31m \u001b[0mdatafilepath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0musr_input_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Give the full path to your data file'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 111\u001b[0m \u001b[0mmeta_avail\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0myes_no_ques\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Do you have a file with the metadata?'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmeta_avail\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_build_prompt.py\u001b[0m in \u001b[0;36musr_input_file\u001b[0;34m(text)\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0mis_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mis_file\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 94\u001b[0;31m \u001b[0minp_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'{text} : '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 95\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minp_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 96\u001b[0m \u001b[0mis_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 849\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 850\u001b[0m )\n\u001b[0;32m--> 851\u001b[0;31m return self._input_request(str(prompt),\n\u001b[0m\u001b[1;32m 852\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 853\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_header\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 895\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user" - ] - } - ], - "source": [ - "# Run this code to start the prompt that will guide you through all the\n", - "# steps that are needed to build your template file.\n", - "metobs_toolkit.build_template_prompt()\n" - ] - }, - { - "cell_type": "code", - "source": [ - "# PASTE HERE THE OUTCOME YOU OBTAINED WITH THE metobs_toolkit.build_template_prompt()\n", - "# It starts with '1. Define the paths to your files: '\n", - "\n" - ], - "metadata": { - "id": "EOyJEy9Ua04L", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "dcf1b4b9-7ed3-4418-867d-d7a2fc9c6454" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Initialise dataset\n", - "INFO:metobs_toolkit.settings:Initialising settings\n", - "DEBUG:metobs_toolkit.settings:Updating Database settings.\n", - "DEBUG:metobs_toolkit.settings:Updating time resolution settings.\n", - "DEBUG:metobs_toolkit.settings:Updating app settings.\n", - "DEBUG:metobs_toolkit.settings:Updating QC settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gap settings.\n", - "DEBUG:metobs_toolkit.settings:Updating data templates settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", - "INFO:metobs_toolkit.settings:Updating settings with input: \n", - "INFO:metobs_toolkit.settings:Update output_folder: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23\n", - "INFO:metobs_toolkit.settings:Update input_data_file: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n", - "INFO:metobs_toolkit.settings:Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /content/drive/MyDrive/FAIRNESS_summerschool_23/template.csv\n", - "INFO:metobs_toolkit.dataset:Importing data from file: /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Update output_folder: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23\n", - "Update input_data_file: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n", - "Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /content/drive/MyDrive/FAIRNESS_summerschool_23/template.csv\n", - "Settings input data file: /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "DEBUG:metobs_toolkit.dataset:Data from /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv imported to dataframe.\n", - "WARNING:metobs_toolkit.dataset:No metadata file is defined, no metadata attributes can be set!\n" - ] - }, - { - "output_type": "stream", - "name": "stdout", - "text": [ - "WARNING! The following columns in the data cannot be mapped with the template: ['precip_sum', 'pressure_at_sea_level', 'radiation_temp', 'call_name', 'location', 'lat', 'lon'].\n", - "WARNING: No metadata file is defined. Add your settings object.\n" - ] - }, - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Updating dataset by dataframe with shape: (627330, 7).\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "You will have to run the above code every time when you start a new Google Colab / exercise. It is recommended that you save this code somewhere e.g. in a text file (or that you do not change the above code and copy paste it every time from this Google Colab)." - ], - "metadata": { - "id": "g9vyS2dcgdJb" - } - }, - { - "cell_type": "markdown", - "source": [ - "To save the work you have done, you can use the method\n", - "`save_dataset()` see [this page](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.save_dataset) more information." - ], - "metadata": { - "id": "IPA5T886rk49" - } - }, - { - "cell_type": "code", - "source": [ - "# Save the work you have done to a .json file.\n", - "your_dataset.save_dataset(outputfolder='/content/drive/MyDrive/FAIRNESS_summerschool_23/',\n", - " filename='dataset_after_introduction.pkl')\n" - ], - "metadata": { - "id": "21FmrhDesKLr", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "dc1db5c0-ed56-429a-eefa-c3eab35695f1" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Dataset saved in /content/drive/MyDrive/FAIRNESS_summerschool_23/dataset_after_introduction.pkl\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# If you want to work further on your dataset, you can import it using:\n", - "\n", - "dataset = metobs_toolkit.Dataset() #initiate an empty dataset\n", - "\n", - "dataset = dataset.import_dataset(folder_path='/content/drive/MyDrive/FAIRNESS_summerschool_23/',\n", - " filename='dataset_after_introduction.pkl')" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "S3VjyG9WWe2l", - "outputId": "46a4ba6d-5de9-4bb2-d69a-b6e84b9f22b3" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Initialise dataset\n", - "INFO:metobs_toolkit.settings:Initialising settings\n", - "DEBUG:metobs_toolkit.settings:Updating Database settings.\n", - "DEBUG:metobs_toolkit.settings:Updating time resolution settings.\n", - "DEBUG:metobs_toolkit.settings:Updating app settings.\n", - "DEBUG:metobs_toolkit.settings:Updating QC settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gap settings.\n", - "DEBUG:metobs_toolkit.settings:Updating data templates settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", - "DEBUG:metobs_toolkit.settings:Updating gee settings.\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**0.6.2 Using MetObs-toolkit for your own dataset**" - ], - "metadata": { - "id": "CVA435w0_Jte" - } - }, - { - "cell_type": "markdown", - "source": [ - "Now you have loaded your data, you can start making plots. You can try some of the above functions of the section **0.5.3 Frequently used functions** to check whether your data was loaded correctly." - ], - "metadata": { - "id": "PeXFg_tLg-nq" - } - }, - { - "cell_type": "code", - "source": [ - "# Making temperature plot\n", - "dataset.make_plot(obstype='temp',colorby='name',legend=True)\n", - "# Try some other functions yourself" - ], - "metadata": { - "id": "PmFjDKiig-EF", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 438 - }, - "outputId": "e7b8872a-04b5-49cb-c326-c1fad8d9c2e4" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "INFO:metobs_toolkit.dataset:Make temp-timeseries plot for all stations\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "" - ] - }, - "metadata": {}, - "execution_count": 10 - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAH0CAYAAAAnhe8sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRlWV3nf7/3PufcOebIoXKorKqsCbSRtkRAgeIHJUirqNAij/rYoLatIq24tJV2/ZSyRfzpanECHB7EAREbW34u2gHRFrTBhGKGAooaMivnjDnufM+w9/PHPufccyMjMiIyIzMyq76vtRJu3Lj33H3POfdW5nd/z2cra61FCCGEEEIIIYQQQgghhBBXRO/2AIQQQgghhBBCCCGEEEKIJwIpuAshhBBCCCGEEEIIIYQQO0AK7kIIIYQQQgghhBBCCCHEDpCCuxBCCCGEEEIIIYQQQgixA6TgLoQQQgghhBBCCCGEEELsACm4CyGEEEIIIYQQQgghhBA7QAruQgghhBBCXCV/8id/wt13300QBExOTu72cAD4wz/8Q5RSnDhxIr/v+c9/Ps9//vN3bUxbpZTiDW94w24PQwghhBBCiA1JwV0IIYQQQlx3PvKRj/CGN7yBlZWV3R7KZfvSl77Eq171Ko4ePcrv//7v83u/93u7PaSr7uzZs7zhDW/g05/+9GVv42/+5m+kqC6EEEIIIW5Y/m4PQAghhBBCiLU+8pGPcP/99/OqV73quukM364PfvCDGGP4jd/4DW6//fbdHs41cfbsWe6//35uueUWnv70p1/WNv7mb/6Gt7zlLesW3Xu9Hr4v/4QRQgghhBDXL+lwF0IIIYQQ4iqYm5sD2NEJg263u2PbuhFVKhUpuAshhBBCiOuaFNyFEEIIIcR15Q1veAM/9VM/BcCtt96KUuqizPF3vvOd3HPPPVSrVaanp3nlK1/JqVOnRrbz/Oc/n6/8yq/ks5/9LPfeey+1Wo3bb7+dv/iLvwDgQx/6EM985jOpVqvcdddd/MM//MNF41BK8aUvfYlXvOIVjI+PMzMzw4/92I/R7/cv+R5uueUWfv7nfx6APXv2XJQ9/ta3vpWv+IqvoFwuc+DAAV7zmtdcFJ+Tjf8Tn/gEz3ve86jVavzX//pfN3zNz372s7zqVa/itttuo1KpsH//fr7v+76PxcXFS451Oz7wgQ/wnOc8h8nJSRqNBnfddVc+pg9+8IM84xnPAODVr351ftz+8A//EIB/+Zd/4Tu+4zu4+eabKZfLHD58mNe97nX0er18+6961at4y1veApA/XymV/369DPdPfepTvOQlL2F8fJxGo8ELX/hCjh07NvKYLLf+wx/+MD/xEz/Bnj17qNfrfPu3fzvz8/Mjj/34xz/Oi1/8YmZnZ6lWq9x666183/d9347sPyGEEEII8cQn7SFCCCGEEOK68rKXvYwvf/nL/Nmf/RlvfvObmZ2dBVzhGuCNb3wj//f//X/zile8gh/4gR9gfn6e3/qt3+J5z3sen/rUp0Y6ypeXl/nmb/5mXvnKV/Id3/EdvO1tb+OVr3wlf/qnf8qP//iP80M/9EN813d9F7/6q7/Kv//3/55Tp04xNjY2Mp5XvOIV3HLLLbzpTW/i2LFj/OZv/ibLy8v88R//8Ybv4dd//df54z/+Y9773vfytre9jUajwdOe9jTAFfLvv/9+7rvvPn74h3+Yhx56iLe97W088MADfPjDHyYIgnw7i4uLvOQlL+GVr3wl3/M938O+ffs2fM0PfOADPPbYY7z61a9m//79PPjgg/ze7/0eDz74IMeOHRspXF+OBx98kG/+5m/maU97Gr/wC79AuVzmkUce4cMf/jAAT3nKU/iFX/gFfu7nfo4f/MEf5LnPfS4AX/d1XwfAe97zHrrdLj/8wz/MzMwMH/vYx/it3/otTp8+zXve8x4A/tN/+k+cPXuWD3zgA/zJn/zJlsb03Oc+l/Hxcf7Lf/kvBEHA7/7u7/L85z8/n1Apeu1rX8vU1BQ///M/z4kTJ/j1X/91fvRHf5Q///M/B9xVCS960YvYs2cPP/MzP8Pk5CQnTpzgL//yL69o3wkhhBBCiCcRK4QQQgghxHXmV3/1Vy1gjx8/PnL/iRMnrOd59o1vfOPI/Z/73Oes7/sj9997770WsO9617vy+770pS9ZwGqt7bFjx/L73//+91vAvuMd78jv+/mf/3kL2Je+9KUjr/UjP/IjFrCf+cxnLvkesufPz8/n983NzdlSqWRf9KIX2SRJ8vt/+7d/2wL2D/7gDy4a/+/8zu9c8nUy3W73ovv+7M/+zAL2n//5n/P73vGOd1y0b++991577733XnL7b37zmy96P2s98MADF+3HS43vTW96k1VK2ccffzy/7zWveY3d6J8pgP35n//5/Odv+7Zvs6VSyT766KP5fWfPnrVjY2P2ec97Xn5f9p7vu+8+a4zJ73/d615nPc+zKysr1lpr3/ve91rAPvDAAxu+RyGEEEIIIS5FImWEEEIIIcQN4y//8i8xxvCKV7yChYWF/M/+/fu54447+Kd/+qeRxzcaDV75ylfmP991111MTk7ylKc8ZaT7Obv92GOPXfSar3nNa0Z+fu1rXwu4xT236x/+4R8Iw5Af//EfR+vhX8X/43/8j4yPj/PXf/3XI48vl8u8+tWv3tK2q9Vqfrvf77OwsMCznvUsAD75yU9ue6xrZVcO/NVf/RXGmG0/vzi+TqfDwsICX/d1X4e1lk996lPb3l6SJPz93/893/Zt38Ztt92W33/TTTfxXd/1Xfyf//N/aDabI8/5wR/8wZFO/+c+97kkScLjjz8ODN/j//pf/4soirY9JiGEEEIIIaTgLoQQQgghbhgPP/ww1lruuOMO9uzZM/Lni1/8Yr5QaebQoUMXRalMTExw+PDhi+4DF0Gz1h133DHy89GjR9Faj2TKb1VW2L3rrrtG7i+VStx222357zMHDx6kVCptadtLS0v82I/9GPv27aNarbJnzx5uvfVWAFZXV7c91rW+8zu/k6//+q/nB37gB9i3bx+vfOUr+R//439sufh+8uRJXvWqVzE9PU2j0WDPnj3ce++9lz2++fl5ut3uRfsSXLyNMeaiXP+bb7555OepqSlgeNzvvfdeXv7yl3P//fczOzvLt37rt/KOd7yDwWCw7fEJIYQQQognJ8lwF0IIIYQQNwxjDEop/vZv/xbP8y76faPRGPl5vcdc6n5r7aZjuNIs9O0odoVv5hWveAUf+chH+Kmf+ime/vSn02g0MMbwjd/4jZfVkb7eWP75n/+Zf/qnf+Kv//qv+bu/+zv+/M//nBe84AX8/d///Yb7FFw3+jd8wzewtLTET//0T3P33XdTr9c5c+YMr3rVq3ZkfFux2XFXSvEXf/EXHDt2jPe97328//3v5/u+7/v47//9v3Ps2LGLzi8hhBBCCCHWkoK7EEIIIYS47mxU1D569CjWWm699VbuvPPOazKWhx9+OO8UB3jkkUcwxnDLLbdse1tHjhwB4KGHHhqJQQnDkOPHj3Pfffdd1hiXl5f5x3/8R+6//35+7ud+bmTsO0lrzQtf+EJe+MIX8mu/9mv80i/9Ej/7sz/LP/3TP3HfffdteNw+97nP8eUvf5k/+qM/4nu/93vz+z/wgQ9c9NitTmjs2bOHWq3GQw89dNHvvvSlL6G1vuhKhq161rOexbOe9Sze+MY38q53vYvv/u7v5t3vfjc/8AM/cFnbE0IIIYQQTx4SKSOEEEIIIa479XodgJWVlZH7X/ayl+F5Hvfff/9F3ejWWhYXF3d8LG95y1tGfv6t3/otAF7ykpdse1v33XcfpVKJ3/zN3xwZ/9vf/nZWV1f5pm/6pssaY9a5vXaf/Pqv//plbW89S0tLF9339Kc/HSCPXNnouK03Pmstv/Ebv3HRNjfaxlqe5/GiF72Iv/qrvxqJ97lw4QLvete7eM5znsP4+Pglt7HW8vLyRftw7XsEePTRR3n00Ue3tW0hhBBCCPHkIB3uQgghhBDiunPPPfcA8LM/+7O88pWvJAgCvuVbvoWjR4/yi7/4i7z+9a/nxIkTfNu3fRtjY2McP36c9773vfzgD/4gP/mTP7mjYzl+/DgvfelL+cZv/Eb+9V//lXe+851813d9F1/1VV+17W3t2bOH17/+9dx///184zd+Iy996Ut56KGHeOtb38oznvEMvud7vueyxjg+Ps7znvc8fuVXfoUoijh48CB///d/z/Hjxy9re+v5hV/4Bf75n/+Zb/qmb+LIkSPMzc3x1re+lUOHDvGc5zwHcFcgTE5O8ju/8zuMjY1Rr9d55jOfyd13383Ro0f5yZ/8Sc6cOcP4+Dj/83/+z3Uz87Nj/5//83/mxS9+MZ7njSx8W/SLv/iLfOADH+A5z3kOP/IjP4Lv+/zu7/4ug8GAX/mVX9n2e/yjP/oj3vrWt/Lt3/7tHD16lFarxe///u8zPj7Ov/t3/y5/3Atf+EKAy8rxF0IIIYQQT2xScBdCCCGEENedZzzjGfy3//bf+J3f+R3+7u/+DmMMx48fp16v8zM/8zPceeedvPnNb+b+++8H4PDhw7zoRS/ipS996Y6P5c///M/5uZ/7OX7mZ34G3/f50R/9UX71V3/1srf3hje8gT179vDbv/3bvO51r2N6epof/MEf5Jd+6ZcIguCyt/uud72L1772tbzlLW/BWsuLXvQi/vZv/5YDBw5c9jaLXvrSl3LixAn+4A/+gIWFBWZnZ7n33nu5//7780VngyDgj/7oj3j961/PD/3QDxHHMe94xzt41atexfve9z7+83/+z7zpTW+iUqnw7d/+7fzoj/7oRRMXL3vZy3jta1/Lu9/9bt75zndird2w4P4VX/EV/Mu//Auvf/3redOb3oQxhmc+85m8853v5JnPfOa23+O9997Lxz72Md797ndz4cIFJiYm+Nqv/Vr+9E//dCRWSAghhBBCiI0ou5WVoYQQQgghhHiSecMb3sD999/P/Pw8s7Ozuz0cIYQQQgghxA1AMtyFEEIIIYQQQgghhBBCiB0gBXchhBBCCCGEEEIIIYQQYgdIwV0IIYQQQgghhBBCCCGE2AGS4S6EEEIIIYQQQgghhBBC7ADpcBdCCCGEEEIIIYQQQgghdoAU3IUQQgghhBBCCCGEEEKIHeDv9gCEuFaMMZw9e5axsTGUUrs9HCGEEEIIIYQQQgixS6y1tFotDhw4gNbSkyx2jhTcxZPG2bNnOXz48G4PQwghhBBCCCGEEEJcJ06dOsWhQ4d2exjiCUQK7uJJY2xsDHBfpOPj47s8GiGEEEIIIYQQQgixW5rNJocPH87rRULsFCm4iyeNLEZmfHxcCu5CCCGEEEIIIYQQQmKHxY6TgCIhhBBCCCGEEEIIIYQQYgdIwV0IIYQQQgghhBBCCCGE2AFScBdCCCGEEEIIIYQQQgghdoAU3IUQQgghhBBCCCGEEEKIHSAFdyGEEEIIIYQQQgghhBBiB0jBXQghhBBCCCGEEEIIIYTYAVJwF0IIIYQQQgghhBBCCCF2gBTchRBCCCGEEEIIIYQQQogdIAV3IYQQQgghhBBCCCGEEGIHSMFdCCGEEEIIIYQQQgghhNgBUnAXQgghhBBCCCGEEEIIIXaAFNyFEEIIIYQQQgghhBBCiB3g7/YAhBBCCCGEEOJKPfLII1hrKZVKHDlyZLeHI4QQQgghnqSk4C6EEEIIIYS4ocVxzMLCQv6zFNyFEEIIIcRukUgZIYQQQgghxA3NWrvbQxBCCCGEEAKQgrsQQgghhBDiBhfH8W4PQQghhBBCCEAK7uI69Mu//MsopfjxH//x/L5+v89rXvMaZmZmaDQavPzlL+fChQu7N0ghhBBCCHHdKHa4+76kZgohhBBCiN0jBXdxXXnggQf43d/9XZ72tKeN3P+6172O973vfbznPe/hQx/6EGfPnuVlL3vZLo1SCCGEEEJcr5RSuz0EIYQQQgjxJCYFd3HdaLfbfPd3fze///u/z9TUVH7/6uoqb3/72/m1X/s1XvCCF3DPPffwjne8g4985CMcO3ZsF0cshBBCCCGuB9ZatNYopTDG7PZwhBBCCCHEk5gU3MV14zWveQ3f9E3fxH333Tdy/yc+8QmiKBq5/+677+bmm2/mX//1Xzfc3mAwoNlsjvwRQgghhBBPPK1WC2OMLJ4qhBBCCCF2nQQciuvCu9/9bj75yU/ywAMPXPS78+fPUyqVmJycHLl/3759nD9/fsNtvulNb+L+++/f6aEKIYQQQojrTLvdzm8nSbKLIxFCCCGEEE920uEudt2pU6f4sR/7Mf70T/+USqWyY9t9/etfz+rqav7n1KlTO7ZtIYQQQghx/Zidnd3tIQghhBBCCAFIwV1cBz7xiU8wNzfHV3/1V+P7Pr7v86EPfYjf/M3fxPd99u3bRxiGrKysjDzvwoUL7N+/f8PtlstlxsfHR/4IIYQQQognnizDXQghhBBCiN0mkTJi173whS/kc5/73Mh9r371q7n77rv56Z/+aQ4fPkwQBPzjP/4jL3/5ywF46KGHOHnyJM9+9rN3Y8hCCCGEEOI6UsxuD4JgF0cihBBCCCGe7KTgLnbd2NgYX/mVXzlyX71eZ2ZmJr//+7//+/mJn/gJpqenGR8f57WvfS3PfvazedaznrUbQxZCCCGEENcRay3GGACiKMJai1Jql0clhBBCCCGejKTgLm4Ib37zm9Fa8/KXv5zBYMCLX/xi3vrWt+72sIQQQgghxHWgH8Z0QkMtUFiQgrsQQgghhNg1yhavvxTiCazZbDIxMcHq6qrkuQshhBBCPIF8/tGTLJw7ja8VK33DS+59Fp7n7fawhBBCCHEdkzqRuFpkZSEhhBBCCCHEDS2MLIkFXytma550twshhBBCiF0jBXchhBBCCCHEDe38ShsNhInhTCvO89yFEEIIIYS41qTgLoQQQgghhLihha1FKr4i0IqbGp4U3IUQQgghxK6RRVOFEEIIIYQQN7QDY5oojFFa0291SYwsUyWEEEIIIXaHdLgLIYQQQgghbmgnVw1e4KM9Ta3iE8fS4S6EEEIIIXaHFNyFEEIIIYQQN7SH5yNQCpRCLSwSIx3uQgghhBBid0jBXQghhBBCCHFDm2guwOoqxDF2Zoa4F+72kIQQQgghxJOUFNyFEEIIIYQQN7RavQzGQhjCwgK9Zm+3hySEEEIIIZ6kpOAuhBBCCCGEuKHN1spY62JkjNKYnhTchRBCCCHE7vB3ewBCCCGEEEIIsV0LCws88sgjAExOl1EmAc9Dm4Sw3drl0QkhhBBCiCcr6XAXQgghhBBC3HCWl5fz27paQSUJlMtw5GaQRVOFEEIIIcQukYK7EEIIIYQQ4oZjjMlvK8AmCfR6mJOniMLB7g1MCCGEEEI8qUnBXQghhBBCCHHDqVQq+W0LWM8DpdBaYyOz8ROFEEIIIYS4iqTgLoQQQgghhLjh+H5hOSoLNk7AGJIkkYK7EEIIIYTYNbJoqhBCCCGEEOKGUyy4KwUq8CEI8MolTBLv4siEEEIIIcSTmXS4CyGEEEIIIW44pVIJrTVaa0yn5xZNDQLYvx9ZNFUIIYQQQuwW6XAXQgghhBBC3HCMMfnCqapWwXp194skIYmlw10IIYQQQuwO6XAXQgghhBBC3HCWlpZGfrbdLsQxydw81kqHuxBCCCGE2B1ScBdCCCGEEELccLrd7vAHpTCdLgxCbG8AUnAXQgghhBC7RCJlhBBCCCGEEDccrQu9Q9aiSwGUS3jTk5husnsDu0E8+OCDtNttAO68806mpqZ2eURCCCGEEE8MUnAXQgghhBDiMoWxQeGW6Cz5cvHotdRoNOh0Ou6HJEENBlAq4S0sYMtSPF7PF77wBfr9PgBKqTx6J8vCF0IIIYQQV04K7kIIIYQQQlymr33jPxAnhlrZ52M/e99uD+dJ5aKc9r17AQi1jx9LpMx6ms1mfrtUKuW3l5eXWV5eBuDQoUNUKpVrPjYhhBBCiCcKKbgLIYQQQghxGeLEsNKLAAgT6RC+1s7PL6HSortVCtvtomo1/NuOYI8v7PLork+e55EkLm4nDMP8/oWF4f4KgoAjR45c87EJIYQQQjxRyHWvQgghhBBCXIZWP85vh4l0VF9rjz02h1IKpRReGKFqNQC8L39ZIlKuQNbpLoQQQgghLo8U3IUQQgghhLgMsRR1d9VULYAoGv65MAe9HmGlhkx/rE8mIoQQQgghrj6JlBFCCCGEEOIy/fY3TIKC5Z4UMq+1icXzUL8JtIbAh0YdfB/v5kO0vniOJDF4nvQXFRUXStVar1uAzyJnhBBCCCHE5ZG/gQohhBBCCHEZFIqZmma25nF0SvpYrjXV7UC5DLUaBAHJ0hJ0u3gPPUS7a/j0/350t4d43SkW2Dfqdr9oMVohhBBCCLEtUnAXQgghhBDiMlggMhAlllYoRcprTd95GwSB+8EYVNUV3qPJKbTa3bHdSLTWKDXcYWNjY7s4GiGEEEKIG58U3IUQQgghhLgMxhpKniLwFJVAKrzXXKk0vJ0YvF4XggC9by/I4dhUkE5WGGNGutrb7fZuDUkIIYQQ4glBrn0VQgghhBDiMsRxQpgYFBDFuz2aJ5/QKsppodhWytjARxkDgwFKYlEusry8vKXHSYe7EEIIIcSVkYK7EEIIIYQQl6mULsqplBR4r7XBwjLl/bPgaUgSbLOFmpqEJGG7S9g2m02+/OUvA1Cr1XjqU5+64+PdDWEY8slPfnLd38WxmyXyPG9kodRut5s/Z//+/Rw4cODqD1QIIYQQ4glECu5CCCGEEEJcBqWG6YzdSAru15p34nGYqIHvo+IEncRYz4NGA0+tbGtbnU4nL0A3m82rMNpLm5ub4+TJkwA0Gg3uvvvuHdluGIYjPwdBQBRFwHBx1CRJRu6P4zjfFxIvI4QQQgixfVJwF0IIIYQQ4jIcn18FY/G0ouRJaPi11tl/kPr4uPthMMBaA2GIWlkhMdvrcdd6d5e2OnXqVF7kXllZ2bHt9nq9kZ+zojq492yMQWs9cn82DoClpaUdG4sQQgghxJOFLJoqhBBCCCHEZdg/UcfTrtAebzfDRFyxchLD6ip0uxDFmEEEpRJ27160521rW41GY7jdcnmnh7ope5Uy55XaeCLI913vlbnE5MRu7AshhBBCiBuddLgLIYQQQghxGYy1dMIEpRT9WCJlrrXavmmYSDvcu11QFoxxee52ezMgxQVFB4PBTg5zS65Wwf1SBfONXtP3/bzLfWpq6qqMSwghhBDiiUwK7kIIIYQQQlyGbqtJLdAopaj4UnC/1qJ+RDAYgOdBuYyu1SCK4Nx5V3jfhmq1epVGuTWX6jK/EtZalFJ5cb2Y1V6MkSna7Xidol6vly/oWrwKQQghhBDieiYFdyGEEEIIIS5DkkR5ZIckuF97frUEWWRKr4dpddCNGl63g7XbK6D7vo+XxtAEQbDTQ91U3B/glUsA2A0K4Zdjfn5+pJNdKYXneXkRez3XU8H985//fD7Wr/3ar72uxiaEEEIIsRH5G4sQQgghhBCXw7oOYmstiWS4X3ODXuhuKAW1GvqmfVCpYGs19DZnQKy1GGNIkmTDzu+rSUXDhUp3cvJmPFtUNhXHcV7Azs5dY0avzkjiYTH+Uhnw10I+oVXo0hdCCCGEuN5Jh7sQQgghhBBbZK3lc5/7HHEcE0ZxXhDUWoqB11qiNZRKYCxkme1BgLn5ZuzymW1vT2uNtXZXOtx12Adq7ocdzJAvlUojPxeja/JidhJjlZf/HBUK7lcr6martNZ4nifFdiGEEELcUKTgLoQQQgghxDZ0u92L7pN64LXXMGknulaAi4PBWlAKZTeOTFlPp9PJO793Y9FU+v3h7R1+/WKEjB4MMGsXUvV9kuVl/HIZwogwtgTTkwB0VvrspuyqA9j9bnshhBBCiK2SSBkhhBBCCCG2qNfrrXv/diNMxJXrL6zA8gr0esNFUuMYe/ossL0ZkHa7nd/elcJuseC+g13lYRgOi+1aY4rZ7YWJI69Wg1oNJidcpk32Z5f/tVjMmpcudyGEEELcKKTgLoQQQgghxOWQAuCu8m/aC1OTLlam20OdPQu9Hn67iTXbOzZTU1P57fLaDvBrwH7mwfy2ajZ3bLtnz57NbxtjUK0WdDqwsEDS6UCni11cRGXveTDASyKUctH4Z1q70O0vhBBCCHGDk0gZIYQQQgghtsj3h399NhZ0koBW2EG4i6N6crIlH6IoXTS1im3UIQyx5Qq6t70u9eXl5fx2v3/tY1QsBtXrufeygwX3OI5HfrZag9YQBHgTEwAoT7urBIIAwhCvXsMYiwXOLK/u2Fguh3S1CyGEEOJGJB3uQgghhBBCbFGn08lvK4XLktEaVS5t/CSRC8OQXq9Hr9e7qBi8XVVfg+e5A2EtxDEYQ89AbLdXcJ+cnERrjVKKSqVyReO6HD2vDNUqVCrYickd2+7aRVOZmoJy2e2rhQUXK5N1vXse1GrYahWtFZ5W3Dq5u/1ZOlvYVbGjUTtCCCGEEFeTFNyFEEIIIYTYonK5TBAEaK2xceI6rEGKgVv0+c9/ns985jN85jOf4fjx41e2sSRx3dpJ4iqyvg+VCuWjtxAE2yu4J0mCMWbXOqrDsYnhD62d63Dfs2fP6B2+7/bZzMwwEklpmJ11+7CQZQ9gHr7CY3SFjHEZ7taCjSXeRgghhBA3BomUEUIIIYQQYouWlpYI0yK71QoMEMeoZmt3B3aDKJfLhKGL36nVale0rf5Km0pWaM/v7OMdP4GJqiStkIU/ctno5dsmGHvuoQ23ZaylGxq0gjOtFl91RSPbvqn20vCHsfEd225xAsFECbrXgXIFWk1sUEIFAZQTWG1CxXW+K2PSlnKohN2NNn3VfP7zn88XJ7ZxDNoDazCDAVQb13w8QgghhBDbJR3uQgghhBBCbFEYhihAAcYqGIQQhiSS4b4lnuehtcbzvCvuJvdnpqDRcMXhXo/kwhxUKiRPuRtVDsBCdKFDeKZN7/OLl9zWw+db1EqaSqAx1i0wek0Vol+U2l53/lbpwMOEEZRLMDuLmpzIc9sZ9F3UzMyMu1pDKRc7swsd/4PBgCRJSJIEPB/leSg/IDx37pqPRQghhBDickiHuxBCCCGEEFvUGBvnocfPUfEVSRwT+J6L6PC93R7aDaHT6eTF7MHgyiJC+hcWaEyNQeBDtYpXr0O/jz7xODaqgALTibGDhLATXXJbD51d4qlTaWa4tdc+WqbYiZ7sXLF/6dQCSRyjlCLuDSjNzrhfrKwMJyu89Nzt9VymO0ClAtYyKFd3bCxb5XmeK7YDJlsU1xiWV1eQ/nYhhBBC3Aik4C6EEEIIIcQWGWNJDBib1kjTWBSvVCJJDJ4nF5BeShQNC98rKytXtC2bJFhAlct5BAqlEsnRo4x3BnheCX+qTHS+i9KX7hpvrbQpTVZBaQ63Llz7gvtzvz6/aaendmyzrdUm3pj7J1+pUYO5OVdopxDFU6+7//d98H1sYlC+B0lC5Jd3bCxbleXp52NKJwUe6w44fM1HI4QQQgixfVJwF0IIIYQQYotiAxO2T1CquxiQVst1uDdbu5G+ccPRWufF1CstajduO4zShQmOhQUXlaI1QdXCNlJ+vq5zHFqHoVxGW3vtI2UKOfSm29+xzQ48n/LSoouLAez4OMr3MVEM8wvoeg3T6aH3uM531W672aRSAIB3leJtLmWjSJ25ZnyNRyKEEEIIcXmkBUcIIYQQQogt+vsHzxA00o7g1VVXyCyXMeNj+WKqYmPl8rBjenx8+4uDDgYD5ufnmZ+fJ1lehWbTTXpYC7Oz+eO2W8y3E2meuedhUcRppMk1EwTDsQQ71xP16LlVmJ52XexKQeLy2VXgo/fMuis0FDA/D50ONk5cRI/nopIa/V1eDPgqRe0IIYQQQlxNUnAXu+5tb3sbT3va0xgfH2d8fJxnP/vZ/O3f/m3++36/z2te8xpmZmZoNBq8/OUv58KFC7s4YiGEEEI8WUXGuk7qLOu6VALfR9frxOYaF2lvQMVImX5/+53cc3NzHD9+nOPHj7tFU8fHYWxsGCmTJNBswbnt/V3RO3jAbadSwdaqtHvXePKkWFju9nZss92w0BWeJKh6DTwPVdj3SmvYswfqdazvu30Yx2AMnrr2l22MTJZkt5ME072yzH8hhBBCiGtFCu5i1x06dIhf/uVf5hOf+AQf//jHecELXsC3fuu38uCDDwLwute9jve973285z3v4UMf+hBnz57lZS972S6PWgghhBBPRjqJXRHQWjDGFd6NwcYx1zqF5EbkecPFZfv9PsePH+fEiRNbLr4vLS1hjMEY4wqzUQydDnS7qLNnXWf2+Bi029sa13IrzIvMxDGd1Wvb2T1odYbnVXnnctP3t84P35e1cOFCfs4Sx64Ibw02SfLbaO3+KEXUGOfYsWMcO3aMj3/84zs2rksZiZTJCu6ex0p75yYihBBCCCGuJslwF7vuW77lW0Z+fuMb38jb3vY2jh07xqFDh3j729/Ou971Ll7wghcA8I53vIOnPOUpHDt2jGc961m7MWQhhBDiqhgMBnz+858HoFqt8tSnPnWXRyTWOpA0YWoqL0hmi6aq/gBPSy/LZrqDGJ0WUaPY5FctNhoNKpXKps+P40LHtgVMkl9lYNNjAdCrjlPdxrgWF9tM1X2U75P0BoStzjaefeUGpy9QLpfAGgYr25ssuJR986egfcAtlFqpuCsCAKs1qtWCWg2jfXQ2EVKvQxS5Lncg9AOyozKy73dAp+P2sVKKWuHYhWEhfD/LtreWW/fVEEIIIYS4EUjBXVxXkiThPe95D51Oh2c/+9l84hOfIIoi7rvvvvwxd999NzfffDP/+q//esmC+2AwYDAYXnrabDav6tiFEEKIK5UkSR65sdPFLbEzViKPyaUVvHoNBn1XdK9WoVYlNrJq6mYWQ9hbch3M7UHCdL0EbD1zfWZmhvPnzwOgtHLd4N3uyKKjAH57BfZtfVy+r1GFgr9Nru3nL1HKTR4Ygx7s3KKp52cPc3hy0v2wskKyvIzXaKD7feyMWyhVN5uoxUVsuQy9HszMuAkloNxo7NhY1vrc5z4HuIL7oUOH1v+7ehzDYICKIgar3as2FiGEEEKInSQFd3Fd+NznPsezn/1s+v0+jUaD9773vTz1qU/l05/+NKVSicnsHwqpffv25f/Y2sib3vQm7r///qs4aiGEEGJnFYuO2130UVwbZxZbHD3ggacB5QrucQy9HtEWFnU0xjA3NwdAEAQcP34cYwxKKZ7xjGdc5dHvvpVWn9lp90+QaqCIYtdJ3erH7NnC81utdaJePA+iCLvaRNVr6MVFqssL2xrXbDnB9vqowEfVqkStq1/cfeyxx/JzYerw3nQBU0Vp78yOvUb15puwiXGTE7UanjFQLmOVcrE7pRKJ8vBmpgGwYYTq9fLIpGRpFf+Wwzs2niKlFNZatNYsLS3lHe/Wuo+VtaB83129ADQ+86WrMg4hhBBCiJ0mBXdxXbjrrrv49Kc/zerqKn/xF3/Bf/gP/4EPfehDV7TN17/+9fzET/xE/nOz2eTw4avzDwYhhBBiJySJLLp5vTPGwLQrDdv+AAWuu3psDLOFSRJjDCdOnLiqY7yerfYTjPFBgbUKncZ1Pzbf5rYt/DUtK8oCJIMQr9OB6SkA1J5ZAEythr2wvYJ7qVTCKlCACSNsdPU73BcXF4c/NBquyhxFmMWVHXuN+dOL7CkZbLUKYQRh6P50u66irTWeTVDLy9jxcdT0FAxCd/UGkHj+Vf8Ho7V2JLd9+LOF/gCMQUUR5cXtHVMhhBBCiN0iBXdxXSiVStx+++0A3HPPPTzwwAP8xm/8Bt/5nd9JGIasrKyMdLlfuHCB/fv3X3Kb5XKZ8g4uOiWEEEJcbVmcjLi+/MH/Oc4v/K8vAPDfj6xAdwxKJZTvuVxsY+DCBZI7Ns/cLxaMn4xCAxYLdrhGqFKKKNx+gdsrl6Bccoum1usjv9MYl/G+5XEpykqB7+MfOoBtXf3Jr6TdxVZcpA7GoPp9dy6pSz9vO44sn8Yy5Yr52XarVahUyWc7eulipNa6K2sKDy2bq/OdZLPXwk1CFRfNVdaA1W4MacyPBaKpqasyFiGEEEKInSYrO4nrkjGGwWDAPffcQxAE/OM//mP+u4ceeoiTJ0/y7Gc/exdHKIQQQuw86XC//lW7LVcUNcZFyXS7Ls7ED4jN5pEyq6urG/6u233iZ1SPqwRPKbRS+JphZ3PY29LzG8VM8cFgmN+eJC4iJdULtrNkKoRx4orSxsDZc5go3PxJVypyV0hkf6jVoFrFjI3t2EuYPbNuu0Hg/uzfD0phlxZheQXCEOv5rgM+SVALi6hSyS2u6vvEhVPa931WV1dZXV2l3b6yhV3Nms9KqVQa/lC8UiSO8xx3vYXIpqtp0FqiefpLNE9/iXB1flfHIoQQQojrm3S4i133+te/npe85CXcfPPNtFot3vWud/HBD36Q97///UxMTPD93//9/MRP/ATT09OMj4/z2te+lmc/+9mXXDBVCCGEuBHVC126xYgFgJMnT9JqtbDWctttt1Gr1a718J60VKFVutVLmFldxU5Nubbb9DioPWW2UG8fLRiv0Ww2n/DH9a75x9CTtwIuroSq62CObbCl55fL5WGxN72S0Xa6qHIZGg1st8fg3BzLfcN2ytbjYQ9KaYr8gZuwc9fgSoR63RX5wRWZkwQ8D12/snOg2Wxy6tQpAIKbD7uOdoB2G9VsYvfvR83O5o+3rU6+YKzRnWFHVq2Gf+vNI9v+4he/CIDneVe05sDaLP5ebzjhojxvOPmRLYbr+4TVq7eA61Y8+i//RHP6IADj85/lqd/yil0djxBCCCGuX1JwF7tubm6O7/3e7+XcuXNMTEzwtKc9jfe///18wzd8AwBvfvOb0Vrz8pe/nMFgwItf/GLe+ta37vKohRBCiJ1XXChV69ELERcWFghD13Xb7Xaf8IXZ60liwE/jN9oz+7AHXdGNfh9abdCKeLWFOXLnptta29lb9GSIFCrvncY2GpAk6HgYI9MabC1SJi48xxrjusPLw+5oVatSOXqEsf7D2xrXagQzzSZqfNy9TvcaHIuzZ+HAgeHPngdhSDS/dEWbXV1dzQvaXqUM8/NuYsjzsGkko5lfAN9HjzVQteHVANorfO90u0RRTDCR7pPCvr/Sq3HWRiuNLBJdmGw03R46HV9Y3bnO/8vRbkYw5cbZmX9yR0MJIYQQ4tKk4C523dvf/vZL/r5SqfCWt7yFt7zlLddoREIIIcTuUUphrb2oMJsV2wEGg8G1HtaTWmQSPOUKbXFi4Nw5mJhwv1SA1ljYUqTM2omUovqaHPInIpvF8YCLOEmdXt1anI7neWitXYE23Ze220XV6267ngeAr7YXhD5GlBfbIc2Zv8qMscPzodmEUgmsHS16X4bid4WuBNjKNEpr9xoXLsDYGFormJoEQK2sQDiAatUtnBpFLq6nViMo50H7Ltol7Ti/1Hm8FeOFfb0hpfJiO4B3Ra94aZ/5zGcwxuB5Hk972tPWfYwpZMib6vYii4QQQgjx5CIFdyGEEEKI60RxIcFLKcYviKvv5GKLt77YFdv8uI5aXcbWanmcDEBpfmFLi3ReqlB5pUXMG4Epld37TJLh2qDWsvfMI8DXb/r8KIqGk1HLy6g4hj1pFIznQbdLeH6esLe9DvWu8fAXFvFqNZJzF/Ds1Y8vWWn2mU4/yyYx6GwV2Ss00n2ulCu2g5skyiaKilfIKJXfr8BNZASBy8dPEsgy5aMoL7hv5XvqUnx/m/8M7XSJoqu3xsVG36mtVovz588DkFSqeOlETq9UuWpjEUIIIcSNTwruQgghhBDXiXPnzuW31xa0tNZ5oXFycvJaDutJ79xCj/JNGgUYPGxQcnEy/b4rXJZK2JsPk8Sbx6IEwdayyp+orEqLv4UOdZRib9za+EkFI1d+TE25OY5m0y3yCVCrUbrtCOaLj2xrXNoYPAXUqnhHb4FHrv6imMrX+T7Q1kKlAkpRufUQ//LhfwVgKdR86//1zG1tt7igqQLodFwBPSsqV6tun1WqUApGJ4oWFiDLd7fW5SllHe6FIvmVFtyLz/c8DxNF2LUTTtZCGLqs/nqN4DLmox599FEWFxcBuPnmm9mfRuoUXSrmqdls5s+ncOWBusKcfSGEEEI8sUnBXQghhBDiOtHtbhyrUSwKed7VDFcQa33NoQBfp/vf80jCEC+pAMrFgADq8cdJ9h3ZdFtrF4t8slmZW2FmasIVgI3J87rL5a39syQJL77PKj3slu908E6dwqz24ODWx+UrV5zOysA70Gi+qXKv6/aBtTAz7YrvvR4GRVByEzMzpe13dRcjZVDKLc4K2MEAlXWrFxZNHTE7C0mCXV0F7WG1QmfxPIWYniv9DipOClhrsWHoJhyK4jhfGBfAXEbMT5Y7r5QayaAHePDBB/MYmUvRWqOUIgnD/JxVi1eWsy+EEEKIJzYpuAshhBBCXCcu1WmZZbsDnD9/nlarhVKKqakpGo2rH39xLfR6PRYWFgAYGxvb1U7+drvN0tKS28e+yfe9UmlRtlyBIHFd7pUK9sgRTLJ5hnv2/i5iLWqbueNrfeITn8gXXr3nnnuuy276xr5pV2yP42GHO7DVdx7HhaiYdht6fdTEhCta9/tQr5PcfTf24ZObbmthYYFHH30UgOqBPdh4WKg216Diro11EzZKueiWJAFjCMIIqpcfWeL7fl5ctsbCyrLryNaFwvLiIszMuNvjY/lrm5UmqlGDIECtLYArRZy4/bLQXWfmYxuKi6YaY/KJKwD6A/BdPFDxfq223+I+GAzy79V+v7/uGC71vRuG4fD3enhFAtNTHDt2DIBSqcRXf/VXb3tsQgghhHjikoK7EEIIIcR1olKp5N2pxTxvYww2SfIO0+7qKqurq4Dr4HyiFNyXl5c5e/YsSina7fauFtxPnz7NysoKAPsrCeC6XLEWbY1bZDIModEAY1DnztEfuziuYq2LFrzNCrvGEIXbyx1fS2t93efA+xcuQCVw53IhR9xuYcFZgNgWCr2NhvvTbEJp3EWlJAmEIUHU33gjqSRJ8okUU62gdLVQ+L/6BffK9NgwpiXr9tcaWwrycejLmIOp1Wo0m818u2qsAb6ParVgbg7GxzFao+IYpRSm1UbPTIPnoSfTaJ5uF+LY5b+ncT02Seij0Aqi5Mr2T/VSi442V11uvDFuHFpDGBJH2/98RIXnFK8garfblyy0Z4rRNyaM8gz3wXKT0pTLva+snZgQQgghxJPe9f03ciGEEEKIJ5GNcpFtlnedFnuKNbiLCrg3sGzRWGPMFWdEX6ms2A5QDdSw+1wpOHjQFYsbrpCJ1phyGaU2H/NFi0Uq5SIqmk2+8LHPX9GYs25eY8xIofF60te+m2RYc3yTmamtbWC9XZwWhJP5BbdwarVKVL5EQTe1vLyc3/Z8D+X7kCR4X3roGp1/hU9yELhzyULiF65MuIyrHorfCUqnsUdZd/bevVCp4Bnj3q/nuWJ7ZmXFTSRZ99qJ5+fnKL5Po6SpBZo99SuLlCkVOtdLpXRNBGPcn7173eSJ57nPWaUC4+N4l3HFRj2N0wGYyBaMZevRTsViujXWjcnzqMRhPsF1pVemCCGEEOKJRwruQgghhBDXiWLhpth9abKcZ/cgiknEN3rBfXFxkYWFBZaWlrBprEr2ZzclDOvCxbFYa+Hxx91ClN2u66i2FiYnMd3OxhtMbRTzYsfG8L74qcse79oC8fnz5y97W1dTteS5wrLnuViZKIIwpNfb2vHOjom1uP2/tARp4dzbMwv9PurcOfxWc9NtFSdVAGy77TL6777rivvbl5aWWFhYGC64mWq1WiwsLLhooX17h2+m23VFZ5UWyQvvd7tGurITg2m2II6xhXPPBiUXydPvw/yCW1C123WFdt+HShnKZXQx31xd2bg2cma5514/nRSwq013XhRfezDAxtufRCp+nxT3y+V8v6gkgcEA+n3icjmf3NrtyUEhhBBCXH8kUkYIIYQQ4jox6PWGP3SHt5MkXTgxi78IIyi7DtHrMad7Ox5++OH8dr1ez4tXaxc4vNZsYlCe600prO2JQhFrb/iX6LQoqHyfJL6ywpsXXv57Xlv020pcxm6IwphyFLniaqnkirvGUN279Q73PMq7VnN/mk1XLG42Yf9+7E03Efe2t9ioAtRggE3jma50uufhhx/Oj8lMlpWOW6gzF4buxDLGXS2RKvaOX84ZtXfvXs6cOZNPYOlxt1CqarVJVlbxxhqoKMSm4zKdHjqLeOl23UKl5TK0WqgwdMV3pUb2ib+FqzkuxZjh8y0M44WSBDVRiLXJYmDCEMP2u+qVUmit832RqdVqFxXh3WAsJ06cYHV1FaUUY9kis+CipNLvYl0afu+uzYYXQgghhJCCuxBCCCHE9SJOhtXdUoAxZpjL7VqtAYgGA4K04P5E6q4sLqS460WsQnVxpBnWWvy9e1yheDUt9FYqEMck7c2LvBcdrwsXXF51pwNcfgzMjVJw928+CI266xTOdqzWVGpbmzjS8wvYiTQmJAzdfqtWXaxMrQadDvrcOfRyB2Y32VhiIJ1UQSnMxER+2JNr8bkqvkYyPHdMWiS+/M3a4g9uP3ke+B7e1D53d7lcfMbwptbunO503cKlhWgiC6j0e+hKJyQsljCxeMrdNsais4Vj00ksqxQqK8TXavj63LZfxxgznLAsyK6ouUiS0G638yuHyoX9ZLU3PGc9XXjK9iZ31nPy5EmMMfi+z6FDh654e0IIIYTYXVJwF0IIIYS4TlQSwyAttKnTp/OCO+AKlEHgCoqF51xy8cEb2EVZ59cLrWBuHmamXUEyKwhGEcrbvAO3Uq7m+dHWgtrnCqB0u+h6+RLPvLS1BfbdjuTZiCqX0qLq6PHVW7xSIzp9En/sLlf4nJhwf1ZXXSRJpwPjE8T7b8KauU231e5HNGpplngYYpst1OQkpj/AbnP3rbS7nFvukFjLZLVMlBh8vU4HdVG16v7EMbQ7YBJQGlut5lewXM5RXDx1AZN2oJsoRnkKFQRQrkCvD4EPyytQClyGu0lcgd0YV+zPrhxotVzB3RhAobpdqFbcZFOSjFwF0uv1MMaglKJWWAx3I3FsKHnu3XkmQZVcNjpKweIiVCqo4joExlC59aZt74vixN3y8jJHjhwB1slwb7bc++q0ScbG8s9TMedflQLX7Q9wYR6bFuW7c4vwjGdse2xF586dy7vwpeAuhBBC3Piu03/JCCGEEEI8+UTahzSh3d5yS140Ncagmk3svn0wMUHSC/NwhZ3orrxeVCoVwjBEKTWy2OFusIZ8taPCxQXO4bQgtrTkirz1OtTr2NUtLJpaKDSbCLzh2pGYiS3Gqqxj7RUB1yJqyBjDQw89BLhO4Ntuu23T5yjPc13USTKyU80W43RMVoI2FlZWUK2Wi4HJitftDuGFeaLO5ldItBeaNI7scT9ojd7jWuJ14KPM6pbGk/nIp7/ItO8KxKf7MFlx49xSo7y16QmX3i58pi+n4N7vG1RW89YalRaJ1aCPTSNSlFbYdBFR1e9j6+4JemHBdbi32yjfd4/PJpLCEMbS6BtjRhrjP/vZz+aTC8961rM2HeP8cje/PdtrQml8ON4kcduy1k2kVKugNV6tssHWNlaceCp+Vx48eJAvf/nLQNq5n8bu4OnRdTGMcecraYxMmnOvrHWZ7hboX/k6Gtm+u14nyoQQQgixPVJwF0IIIYS4TrTiEM9Pc8MvzJEkCZ7njS6aCvTDmFL1xs9wX9v9W6lU8sLxrme4FxeILN5vLSwtoxp11xGbTgyo8+cx5T2bbnfQHRYatW9gteUiaYzhzML2J08+/elPE4bhReeIDcNtb+tyrK66wrTWeksF9/5jp6hONdy+q9XyovtKd2txOuHNt1Cq111XuF/HTk66Dvd+3/2ZnKTSqKMeP7PptjpJGrcCrpAaxzCb5tBcQd3TV7a4xvHolSoF0SAi8AM3eTA5mb7BEBVFxInBWljeZhY9gDZ9kiTtkC+eE37gOtvrdbdoasrUai6rPY6x1SqqVIJSCWuMu6om20alPIyn6XSLL4nnecRxvOWCcRJGroO+WnUd99nnwhjs3r1uvLFBFa7g8crb/67b6AqDi2J3snGni6Hmigs49Af5FS1aa3cOM7rI7eUYWeT2Oo2CEkIIIcT2SMFdCCGEEOK6MZqlHHZ7lEoljDHuN90udHuUSsPIhm7ryrsrd4u1llKpRJgWPa21eWFytycSijU0YyyezjqWLUmrQ1CtYBlmWUdhjFWbF7n73c6wa1YpVLuNDQIUMH4ZVd4kSYZFukKxs7S8su1tbVexOLiVzHFrLZXbDrv33u/n+4DBgLOnly75vGyBy97SKo1G2RVJu13Uygq2MeYmLSoVaLfxzpyFVg82uWAgSCK3cCu4SKAkyT+B241wTyx0Q7c/lgaaRnk49o2q936t4orNcQzNpnt9pdCJcbEuSrFHb9ypX9wvMOyONl4JlTalqyBAnTuHnZjAGouamnS/WF2B5QR8Dz0YYGdnoVRCLSy6YxKGrsPdK+SWW4b7a80VKNkEmbU2nyi8FBPFbu0CgKkpF5lVdgV9NTeHrVRQZs2k22V0f5fL5ZGrPz760Y8CjIxPKYX+8sPY8THs/v0Xv2b6uqp45UHg5/tCXWGs1xPpKiUhhBBCOFJwF0IIIYS4Tni44pkC1Mw0cd91/VprIe36ZDBA+cNiUXcL0RnXsyQeFpuiMMqLuLvd6dmPLI1yWmgrVN+11ujDBy5aONK/+RDR+fam29WWYQFPKZLJSXRQIilVsMHmGfBrjeynQqeuja/+RMzKykp+eytXJFhrGZw6R6WeFpqDII0mscOomHVkRVKAif0zw/c5Po4dH3cd7t2ui/cJAqxWW+pQb0V22FkdxZjEoFotvPPnsXbzHPKicTWgHLhJh716mEekjHELgqbnUOCXiOIIBSRRgue5898qlRb7FQrrJiQAdeLEhq9Z3C+NRiM/BpGX4CUKpRVKg73JZZ+rldXhIr1aQ1p8L14NYfQww92uro52fzfqw58vsX+NMZsW3B+dX+TmCZ3HteSF/FJp2OG+uorKCvGA6W//qo1izT6KYrJJzeL5aq11M2zrFPSjdns4+TfoQxq9o8zw3NEryxc9bzueSAtfCyGEEMKRgrsQQgghxHUij55QCs6do7XnIJP7Z11R9dx5mJyAKIbA5JHPce/GLbhn3bAWwEIcDovHu931+eBCxNP3ZbEbFj8tmJo4gbkLeNPTrjM9K3B3ugw6nU23Gy53oF6Mo9Cu2GcTUNubZMgWqcxlhbsk4fHHTnHo6y9+zvz8PCdPngRgcnKSo0ePbus1iy6nUFg5ctDdyCJcymWoVKiUt/bPEr8cuIU749gV2JtNtxjoRLrQZxgS79mLYfMiqF8qDRe9rRh3LIBkbAz1xXPbel+jsSA27z53XfzDx0VRCMqlyOhaxX3WrUVl3d6ttls8NfseuMTiwVrrfMKl2+3mtz1l0daCUW4fKeW6/30PJrNFenuuqxxc53uvB1GMTrvbaTZB6dEidKfjtrNuMV3l59/ZRxY48pRLL3DqdbtuEYOJCbcwa9Ylbi12YRFVClBRDBOFhYS3GN3S6/WI4xhrLa3lDjatlytrGVlxOj1kxljU3r3Doj/DeQWv0RidFMjy3H0vf7wXXNk/qddeqSCEEEKIG58U3IUQQgghrhP2k5+BO26BSgXd7RKHriB2ZrmDsi5WRmHx2i1Uwy0g6Hk3bpEmSRJIm2WtgTDp50Wwfmd3o3LuuamUF9k7oSFIu5SVp4kGMZ6x0Ovni0iqRh21tPmYe1rjpUVUO7+AShfqJErQ24yUiaJotLM8jl0R0PdZ+cSD8L0XPyeOY6LIXTnR7XYvfsA2bHeBx36/j+323BUaWo8UOLe6KdvuQBK7J6SL1bKy4uJlOh3wPIK5OZLOAPZdeltHwhUgvXKk2cSGEapcxjt3Fmsa23pvxamSsqeG+8ZaEmPJLkopNoyP7L9mE2VtvpBpJilkrV/0moWrG4rFWu0XYmCKBePCYqBGa3TaOW51x8WiVIGFBXdcZmdhZc3CscZsUGyHxJg8dumLJ1Y2LbjPVGowk/5TtDipoFT+mbArqyOfiGiL3wkPPfTQMEZG6eG5tearMkv7UQDj4yO/y5+TRcpYi/W84Xiqlfz3iX/l8VfZ8dvsygAhhBBC3Bik4C6EEEIIcZ3w4jCvyClrGbR7AHRXlrAHXIyJ1RplTF6g+ZdzPZ6xm4O+AtZa16mfVbGGSRyEvd1dNNUrVPoqvkprbhaiiGB6EnwPNYhdd67nkbQ7EG3eld8f9KlnRfqs2A5oa0i2maJzUUes77vzJ44Z+OX1n1Sw3YL5WhcuXMgLyFtpzo3j2C28mT1pELpomSRxLd8bKHZy62rZFZGLEw1KuQiUWg06HeJ6HRtv/t68pLCNsTFUWuxMJsbhC5svulqkisMv7pBej263R3nCHfO5bsJUVZMklmq36Tq7E+PiccB1uJdLLm5HKbzZ6S29fvFcyFPjrYV2x3WGV9IC8dISVGuuAz6la8MMcqMUOopcl3vxWIGLoun2XKf84mjmfrH5vG17m463FYZULyxi9+3L3kA6AOO2XQpQcfr5SiNduourG2zNxetk+6BazFS3ZriAbeH7xV1RE+IFPkmSoBfm3T7KJjysdVceDGdHUMW1EirVfKIgiq8s/ipbu8IY4674Kb6uEEIIIW5Im69uJIQQQgghrgk9MQbT01CtYoEoDSC2STSMmKhU8Mpll/MOTJ/68m4O+YoYY1yR3QIobKSwxnW7Y3e34NQJ3aSGtRad5rUrQAcB/oULEMdYnUbDKIWu14nizQvurZNnXVxHrwdzc0RnzkKv5zqkt/mWL4rdybpxg4BKeeOCu9YarfUVd9P2er1CZ/rmFfdSqQTW5ZXT77vCstaQJEziio0ji8CmRn6uVFxRVilot13GeZLkBVKqVThwEDu9yYqpQFyrDgu9cYy6cAFaLbyHH0Zt4f2MbCu2+flSzGCnUmH17Fz+3gaJITaWyOI6zuMYohBaLdTqqstJT88pAH3q1LbGAbj3lO2zJCFptlzhGtLvlwoJFtNqwWoT0+m683FpyRXifd/tx0E43F62zVrVdcDPXDwRkL3//RObZ60vdPuuQN7ruSsUsnPX82DvHpicxHpBXmzHWvrRxpNwxQmH4lUfpvCvXVNMX8ISxCHa0wSlAPbtGxbbIR/P8PS2w3Mly3xP7/NrlU3f76UYY4ZxQJ636+tXCCGEEOLKSYe7EEIIIcQVaLVaaaevZXJykj179lz2tvqlCqU0/sHeeSe27wo8ttcZxi6ki0xmXbS3LV5GQe46ErY7+BUfO4hQ1RpeFn+xy0k5jYe+ALcfhSTBGgsTaeREq0XfL1Ei7RDPFkD1FN4WBj37FUfyRSCpVgkefxysy9zW22yFuahgnlW/222ajdmLn4ArkmcFvcHgymJ7YuUD27sSQXmF49vvu4J7GDJ+/jgPPPAA4N7XM56x/nUbJk7wKr4rIDca2EYjzRtP33urhX/uHKYzgNufcsmxDPwK1UIncYzGs9DRJeLtnn96GCNjjC2EgHucX53j/ANz+foMtXRxVaUUtlx2sTjpLrGtNqoUDBcKvfnmbQ6EYfEaYGoSL10clfZwUV9fKWyaG68XF12BvVrFLC27HPfs+VlMUbbd4mtc9LLuvsEWLtW4tREAcf66676NYlCPUuy/6/DI70+ePMlgMLioGzyLTAKw2k2YAfSNoeoVPmSNNDZoeRmmNp+gGdmvSeKuAlCK0tLi5s/dRPZZ1lpLlrsQQgjxBCAFdyGEEEKIK7C4uMjCwgIAnU7nigruyeIyzM1BrYY5d4F4z63AmugQY2B5BaYmwVpMY3tZ09cTay2638GrTYKv6HU6VAJXBFRqd4tOycQkXqkExqCaLWi18gU+g4kxCAKsMS72QinU0hKEm3e428IFprbdJjHgW0sC6CuZZcg6cLV2hcQNFiHNs60Z7QS+HCcWQo6MuzGvTYQpRnzcfvvtzM6umQDIOqZ9HzyfWqFwf6k4DdvuukVFYdj9bCyEITZOUJ5HPDOL8dsbbiMzcXj/8IdSCW/fHogiquM1uv3tLUZ8uhVzd9kdWxPHeOAmBdrtvJirlKLmK8LYECaWRrXqCtrdrnsvUYwK/JFs+3i1ueFrBkFAFEUXL7hpjJuESLcZd9r4U1MQJy4XvVwmsRY9GECSFJOc0Gty4VV/4I5VNkmURbxc4lRtDTb/HKg4xIxV0XHsutyzRWONYWTmaTDIX9uuOV/Pnz+/eTe4SbDKFbNtp4OdcK+TJAa/13WvOzWFOnMWW624KwAKbKuNqpRdgT0xLmbH990Y05gec+cdm77ftQaDAb1eLz9uy92IsqcIjVtI2r/EYrlCCCGEuP7Jf8mFEEIIIa7AyspKfru/zSLdWgHGFc+0JkgiwBWuVLePnUiLi3HiFurUGqwlCDePbwA4fvw47bTD9Y477qBSubIYhJ1grSXYny5a2emgksICh+raJx8+8MADeUyLPniAfKXLqUkXdZFmuKvZGVd4VDq/8sDu2YOd2zz3eyTqu9HATydMVLuz9ZVDs+cXH2+MW/CyMYZeWKCk199WrVaj2XRFXL2mpf4LX/gCxhg8z+MpT7l0dzjAl+cSrI2pB5rmwPD1hd8VC8BZJ70xhsFjJymXfbfoZHbVwGDAICiTnZGXKrjrsQaUg2FECi6iRpVKqBKolRW8hXlMP4RN5r4sljw0JIpQi4vYWg29uIihtun7X1hY4Ny5c/mYs3HHnR6BcleiqNVVbFpwT5KEsdVFSjftpeRD0gzx0n2VL1rabGHVAFVycTv6EtE4WSf32o5oay2qXIaaew9Bq+nOO99HNVw3va4OP/+603Gfv14vnfhJKdxxCgqLgvZ6EIaoxY27uoNk8+8kG3bQ4zPuh6zYDqA1ZnnFxfKY9H2k4mi0uF7M9t+I6vRQaZG9FIf5R0yrwusuLqK6Lut+7TyCymKPwBXYC4vhuu8A5Trdt+nMmTPMzc0BMDY2RphYPAX9SLrbhRBCiCcCKbgLIYQQQlyBKy2yF2nPw6bdk2Glih+6gprp9yEtGlEKhp3MQGd235a2vbq6mo+13+9fNwV3ul3Xwao0lYULUHfdvd5nPgrPu+eajqeYiZ5Hn6SLohbzm027g9baPSYr+HW7VObPbvoaxcVYbZKg0pgRvW8vwdzKtsZrrcX3fZcB3e+n3eIeNvDx7PqFyKWl4WKXYaFQ2O/380L8Vj00P2C8pthTTaP4N1jsMVvE0loo35ZGpKysuO5uz4N6neDrn5k/Pgqji7aRMVHkTn1j8u5wlS4Ua41bgTepVLFm8wkbE8Xo0jAj3Hrus9fzy5jOyqbPbzabdDodAO6cCfLCd0kDaNAaxegkS3n/nvxc8va4grPqdNIs9xhrzUiXt+ltLfYn63YH3P4IgnQxWuO+UzwP+gPM8jK6XMZ0e67onl6hQb2OrddhobAYqrXDYnJWdK9UoFTCFrrwYXT5gQm7eQFatzrDH6JoGJkF6CwCZ3l55DHRwsroNtK1CIANC++xglLPLeLa74bUs49xp+u61bV2UTpHj44+MY3usqtN1FjD7Uul8olOwtA9JghgfmHT97uWUiofu1KKaS9GaY9Kv8VKN2TfJdZgEEIIIcT1TwruQgghhBC76Pz585w96wq16s7bXTc14CcxNnZFpCiKCLKCbxi6jl7fhzCkqUrrbfYixbzuK40S2VHZApFJDPV0QUalhrEhuykrfCaJK6wZA2GEPz+HmZnB+lVXMAfwffqT6+emFxULk2uL00ZrwjDMC+mbLWra7XaHx7KcFg99fzgJsI5yuTxSaM+sd99mytqQGI/sSFljUd7FBfesGBrHMYPHzxBoi6rX3TkMrrCphnMaAJ/+9KeJ4/iiLnxdShfSDEP3XsfHXXyK1u7qEGMIY0uMZv1k8KHe42cZO3rYFaPLZbdYZ69HJQmJ9eb/TCoWTW1hssaiwLqFXLMifN6NnU0yRJGLKcoWgfV914EehW7NgGxh2DXnQHacLjp3Cpk+Ubvriv6eB54PBw64nRsE6HR7ajAYZsfHcX5eKk9Br0fc7qA9jfIDd15FkYuySq9KsIXXX1vsVn7AZmwUw4ULkEVw9XruuPZ6eWc+qOF+0PqifRHH8bqF9lKpNNxPnp9nxKtSx80MKdy5l+0D3yc6ewGvUkLPpl33UQS9Hiq7uqXXGy5c7Xnueyot5EeeTxzH24qBsdbmY0+SxJ1HWuNhOLXQYt/U2CZbEEIIIcT1TAruQgghhBC7aGVlJS8O2XotL3z18SilvbFePMijDMxKE512xlIqMau3Vpguxk4UFxXcTdZa1Pw89uBBmJkhsSovMvfKm0d6XFXZAonGjBbcga4OqFiL7fZQiQFriM4vuM7izRQfUywmt9oEh/bxyU9+EoDJyUnuvvvuS26qUqnQHhgCDX4c4jVXYWwMFcd4G0TK1Ot1Wq1W+hbVyLa261Szz10HaiTGxbMYW0yoHzp//jxxHDO/2qLiK+j3sbWaK1hWq67D3/MKaR12C1eODMduUfnEh7utqBzaT1xpsnhzzPj59bfQOLTPFU/X5IYrC2yx4L7ez76J8yxwe+ut+e+19jBZLbpcRrVarivfGBfp0kkXR9YGkhIEgcsPL/jMZz4zciVGJgljSOvR2iRgFWgPwpB4cQl/etK9Tr7mw3Ds2cSHXVjEAqpaxa9WsSur4KWFbs9zExLpxF3xXB+JtLGW+KFH4Rvuu+S+S6p12Lcv2zGolRXsnj0j8TWmMKGB5+GvmcwpRsoUc+yLxyVYWgA1A9ZS6XdJ49wxng+1dEqm0yE4dNPoAMvlYV49uMsUigV/rWFyMv3VksuXv8zc9TCx+esoa4nj62CyUQghhBBXRAruQgghhBBXoBjlAPDxj38ccLm8d91116bPv6izuNmCaoWgUcP0XeFl8dGz7KnVYWICbWKs57lymbW02H70wPUQJwOwMLeI3bcvz0M22stqhsTe5l2y27G8vJx3kk6vWRjxkpRyXcntdtpB7uGPNbDaQ/mey7gGSrUS9S8+vOnmwsUVKgdcbr1Nu3eVUjDWQBWiVNYrqq73nmoll0JudZAXMJOxcZL5pXWfs7ZjPGPSCI18kmELpr0Bh6OYKa9OgiaJY3z/4q78PXv2sLCwQBRG2IMH3J2rq25/GgNRRGLsSK74RlTgp93avjsui4uoxpgrjkYRWoFfr6JqVayO6EzB+EbbKsYzRRG23UZ5PpHnY73191PRhfMXsOmkmMr2HbjttVoQlDDnz6NvOYIxhn5sqHTbrqs6SbDZQrJR5KJfKhU3uVNYLyBZWhl5zY2iU6waltDV+LjbP1EESYI/4TrcbRgOH2MS6PfdY8IQZmZQszOo+QUYDLC9vos8yr7bClcjEEWowtoVgDue9TpEEcHchU333aATUV1eRTVq7qqdrNO93R6d6Mr0eoSDkI9+9KOA+97daF/o9GoHABsErhvdWjAJ7TChnE5Gee0OlN3EhplfRAU+anIi29EQlNzVE5WKC30fDNyx8X1XgE8nSLSJCQchwWV+r0b9LiwtuVifIKBk+iwsLFAulxkbk053IYQQ4kYkBXchhBBCiCtQq9VYXV3Nf84iPrbaRT4+Pk632wUg6YUw6KM9TdLu4h+c4rOf/SzVr3k6TLj4h0T7eFlhTylKjc2CMy4WBDtbzL5c5Uo1L+SpVouwGxFMNMDzKN+0d8deZzAY8NBDD+U/P+tZz1r3ccUu2cKdruDmpwVewJ+pYvt9F8sxGEC5jN2/H9M4telYSr7Kc7Oz/PZcoSv9onGsI0kSdHblA7irBfbsQc1MM/bpL6/7nGLsRWlNDnee573FeJmfOvmP2INfQzKVHav1i9Tlcjnvqh9SrosYYDBA1+pbes28ezmLYdm3D9tsooKa6xLWGj01mea5g73Ev3ZsVphN41bU1BS21yPRPnYL69faYjp7GOaZ6arZhIkJbKXsiu2dLiiFF8cuAse9keFzs89juYxdbYIfuEVTgWBmcvQ11zkvlFJYNbw/i43B84ZFa2tRvZ7rqi+V3IRRpeLO7QKjPXS57BYrXVl1Yxvp3FYQBPlCsJB+16Xd3ihFvIWrU7xBDzU1MXz/8/NQq6H6/XwiQi2vDJ8QRfi+n7//MAwplUr5xJQtxPf0+/38dk8FVMMQrGWgfRoa8LU7VVs9dxyieHjVUOH16HYhe59hWIi6ccdep/FeJZNgtnJ1S0HxOFpcHJNOEqzShK1FHmkt4vs+X/M1X7Ot7QohhBDi+iAFdyGEEEKIK5AsLg4LUoVYga10KMNo4UUHHqo2Cb5PcHA/tuTT7XapNipw8hTsmcUzcfHJJFss9KyNX7gedFs9kjPn8KZdgdSrVfLYBrPF/bcVK2u7cTdg18RkqOLttAsZpTGDEJUk2KDkCpOA7Q/oj2+hcz7LqM8KvZkoGmaas7WCu18eTrYkUQLax0sMNonpNqbWfc6Dj56i4bttr3SGuf7W2uEikFs8P+oPPkDnq/+Ni4ZRChNFULl4MscYw9jYGL1en3jQT2NJRt+fSQw67SqPjSVYJwu+2ERepCyuQ9wYt/AoA1TZFazNJWLwTRTjZR3zAGGIMoZSPKBvtvkZCQJXvI4iqFSwE2kx+cTj6Jv2u05oreD0GZiZdo+rVoeLcCqNXVxEeZ5rVfc9NwmwhZd254rN30bS7eLH6UKkWrtOdt/HBqVhYbxQzDaLS+iZ7Nw1LsO9lWa45w9K8+ez2J/CgVhZWRl+XqylM7b55yCp10nm5vHGxrBRiEo73JNBODptkyTuPdRq1NvtkW1slOHu+/5wwlOTf9YqJoJedzh5ll1hMOi7z7Qin+jIP6NRNIwbarfdaWsSVJy4qyCUwihFt9NjLOuO34Li51uBy4rXGmUMJrEoFHEo0TLi8i0vL+cLYc/MzNDI46SEEEJcC1JwF0IIIYS4AnG3D+PpP2QLxZ+tLky6tDSM/tClEmp5GWpVonNz+EdvcfdrTez5+KWSy4ZutVxhOgyZOL95V3WxKLVuF/cu0UmMnppIO3zVSDG1v9jcsdfJig7AaJF7jXK5nC8um09KWIvq9gDrIjO0RvcHYMGaBMIISmnWtt28QBYHJUpZMa/fzxd0pFQaOX82WzAVII4NzV5ExffQgNeoARY1v4DeIG6jGXmMBW4fRMmafZEVaLd6BYQPanER/fjjoBTRnV9Fdcx1ARd3s0kX/03i2L3H7E+v5953peKKu1kG+ppGeZsudDkim7DodPPtKWuxvR7xwhL+4QMo7aMudUiyxTizGJdqFTpdkolJxibG+ej730/5U5/m6T/z0xtuIn+f1qLSDncbJ7C8DNUqSamMZ60r8IYhHDroHp/tC2tdNMnYGGqsgR2EUCqh0mOQnN0ggL64X6z7/2z/6XIZGnU3sZEkaT1f55MQACqJoduDcDAsyrfbZB3s/ngD2+vlme34vjtWcZJ3y7uFjd1xyz8v2cK9KdPtEl24gDWGqFLjQtBAobBYvPExl2XvaegPwPfQxrgu/yhyi0Nnn4NeD3rDCSK3ywtF6/R7TSk1cnWRu9LBfd6M56OzAn6SuBiXSgVQ6PKaqz2CwH3eu133mOLVIKXSyORqpAPiwfbWxShe8WGtdVdFVKtuPzTGRq52EeJyzM3N5VffKaWk4C6EENeYFNyFEEIIIa7A+U89yOS9z3Q/XEbneKVSyQtEViu0tdh6neD24WKLSin8g25RP7u8gjqQLvBnLckWCrOdTicvumdFqd10+vRp2u02zfk5VBrToLDYXj8vZNWOHt6x1xvJLb9EwT0rto9ot11Oe6nkul2tdYstdrouEqbkCqO9R08QJ5vv1+5Dj1E6sj/tho5dDMzNN7uhGZMv/rlR1nrR0sIc49W0OO75eSeuHvTzSJW1vjzf4eAR15XfKXTQWmuHi0JeFP+yvtZrfwqzd5/rzJ2bY9BtAa6zvniKzc8tobRCKe0ytYPAFaTTDHtKJbzCFQ2d0NIoFxb1XG9XxLHbTqMOKyt58dMqDdpDZ1FFcV6Pvlg2SM9zVxicOYOdnEKXAqhWsNUKg9uPXmIPaJRy+9lYXKZ/kmCmp9BpVItt1IexLWsmMlSrhfXTDnvfd13ohZx1AH3oAF/60pcAF1818vxsv6y5WEL3utB0C35aC0mrjT85kXbOp/tFa2yt6s7lxbTwXKm42+lY6PVd7E8xUiaOwK+4eJXeKpRmL96thcGs/L//Lxd+4b8B0Lv73/Cyu/8DAK+fTZjO9kuxmD07g2o2UVFIUrhfGePGW7D2ipS19wGU6jU3MWCMuxol6/BfWcknPNRoOFD6ggp6PVQUYavV0TG6F4LFRahUqESDrS57kCtOqFnAxgZtjPueTvP4tSf/VBdXbmRCTAghxDUj/xUXQgghhLgCNiwUaQs5wovNNseOHQNc5/S//bf/dt3nj4+P592OJu2W1r0e8emzeLffNvyH8uIiTEy4rsvl5bzbuj+zb9Mxru2W3u0O94WFBfr9PlRKbgJhrIGp1vBKZhjJ0+nu2OuVYZhHconCw0hkSa+XFh4D1w27uup+9jyXGZ7mfmcTBNWjt9BfWT833RiTL6Zbf+pR15XteW5bpgFxjF1eganJ/DmPzre5++5Lvy8zcIti5gu7hiFUKsSNMfDX77j9+gPDHOxG0s/vPz7fGnbtjo1hjNm06G+mpvMistWaXnoer41TWl1tcbIbUTYheysWtdqEifFhfE277WJY0smgekm5RVTTQrKyykWDGFDZqTwYDAvYxuTd3GBQtbJb8FN5KOvy7dd7J97Dj8Aht6AoExPYW25x+7BwdUq+mOd6BmDTIWhP54VzZW1eAdfJaASUXVxENRquE75aBaWw/QEqDF2nuwUVx/kYzGqL1bTY2+/3WU+YWEr9HlTKw2x73wfPR3kaf2Lc7Zt2272GUiRK5/tEZ/uv13PjHgyw3Z7bh9mLxHEeTQNpskq6yLEprleRxttkTGHMdqzMf7vDfa7HEx8WFlwBPAzzc9eEEbrRwDYa6DB0k1xKYbPFSrdAaw9jEjdR6aULG4chWnvDq0hKJWwYoYDEgl5edp/JLGM/iiAxJOUKOo7dfqtW3WOy83bG5b73/BJhb3vfV5VKJV+7A2PQNTepp4EYSKzlfLvH125rq0IMLc8vYdMP+dzZ8xw+vHOT2EIIITYnBXchhBBCiCtQuev24Q++nxfIG4UK37qd06nl5eX8tlcKsO02TFbx71jTWZsWd1SnDeVKXmA18eYxJlvplr6Wsv1hrXXZxYDtN9H+cGLA38EM9/AD/wBP/yrARaBsxBiLl2WHZ1Ev/b7rjg0jV/RLErxmE1upuIJpoQi40bUG1tr8CgPf81xHbZJAkqDabez0NGrPrLsvFW+hY3a1E1Otpq+aJJBGBvidNipZv+CurStEA4wlw8VRtVbD9+L7hGFIZc2CmhdvrPCOlSZKO+bX5morG5DYEJTFxDFqZRXd77kM7UrFjduY/LNjAS+N1BjEhkowvH9Et4s+dw4zMTFcgLXVdlns6SRTyxr2bTTH8tR1ZjTWLnZ8qXgdm84C5G9UuWNaWAxXD4ZFY/p99OqqO28A1e+7SRdwn+d2G1WrDwvm1qLGGyOLga7Xrq8A2i13I4rcZBy44ndi3L/4PM9N2GXP6fVdXEq3i9HaxdCUyy5mJVs0dXklncgwEA5QcYxNzzEFnDqzyC13T2GLEwFKoU3Efb/2QayF//p//oED6a/i5zyXO77CFf1sFA33re/nC5J63S42/b6y3R5q2l0xYY0lrlZZ72gUJ8qscRFGVqffLysrYN2EQxIl+PVavj21102m6DAcLo6aCQKs76HH0hiONVcX5B3u1SpKK8w289Y7nc5wl8FwbYfE4KdrGay3joEQW9V/5DEqd7u/RzQ//xA88xm7PCIhhHhyub7+9SWEEEIIcYMpHyx0mGedrdaitlAIB0byho0xaeuoccXXwcAV0LKOV2NIlAeedoXK8XGCxiZF0XWst9DgtVTssE9Wm67Dc2rCFZzSPO6w1bnEFranf/Jk3nFs1xbWCorRJVlBnCDAao1VuG1Uq5gjR7DVmuvKLUymxBtcObA2+sL95LrtrdbQ7eI9/DA2TtzvrSVMNj9Ghnh4zvm+G7MxbrwbPMeGw+fos2fz+x987Owwl8Rauu3epq+vLPm2TGIIB/2L3m9sLMfOtl1Z2oJXr6PvvH1Y3E/P9/x9MBpJojUkJr3fKyzumhZpzdGjrpic3j/cv44XD/Iuz5F9ZwzqoYeg2XJXL2Q569Wq+2wVPssb+fxKj25s6MZm+J59f3Tf23QhWt934zt0KI9vsTMz2MnJfFFQDh92VzlkGeF2tLpurB0ptmevGXgK9u512yiVoN3BrDRdx3o4gFOnXId2t9CF7aWvOTub5sDbYWe/dRNC1uQB9e5cLS70qzWDnjtHmr3hxA2A2jfL/3UAXnhIESzMXTRewE1MnD3rjmWSwPw8dLskqHyBVmutew/p1Qt6TYd7tjmlwEZppr1lGBCjIPI8N5FQr7vIn5WVdD/Y4eelWs0/d7kwhCRdiDe7wqXbdfdnLzo5mZ8rcWdrMUyZarUQj6O1+x7QGluv5WO5TpbaEDeo0mC4vkV5YeO1IIQQQlwd0uEuhBBCCHElikWRQqul6nagXlv/OQXF7nOtFKrm4g84dRpuvcUV44zB9Proes3Fr2DRUQxJQu3Wgxw7doxSqcRXf/VXr/sacRwTG4vCxU8cn2/xVVl0wi5SgBf4LgC72cQGw4VDPWNcF+oOLB5o7rzD3UiLis1mE6UUnuddlIvtHmaHdU1rXQHYGHcswoi42UR7Hnp8zBV7jYFm072PzWgP43luTUTPc0W7Wo3kjjtQnW6+sGX9kS/DCy4dKFHWjETkqHbbRaMcOYK39Mi6z0keO0Hwb57injcxPAe8JBxuSynCOFz3+UXdxFJNF6H0eh3i1fTYeR4X2jGTFU2YwEJ3wMFyQuAZaEVw+gxMjKXRHLh9Vy7nVxWoc+eI9h8g8BQlT+cFyMRY1/2b5r5jjItJSZL0SgTrrvpA5RNVwaCPVesvFmj27UdVK8PPre9Dp4OxFr3JAoP9fp+7Zj08rTBAEkb4xrhFdCtll8evFHZs3MXFlEouruThh+HgQbc4ZlZRNQn0epjVJirwXYd6enWBLmlMWnyNYkullHb729GFfTFmuPBrteq6qro9V1g/fNgV0zsdN8Fg089WFGPjyO23LJLIWOj3UWmkDJTceZ/tjyh227QWrCvQx8XzXinGZid5YZBe/fBt/47Vr3t2+j7NSJXcHkh731dWIY3uUYN0EdfsezHt9lflMiosRtcUutot7vKS7PTV5Ln2ifII+n1XPE/MMLap2cwXPCaKUWuv5iiV3FUA7bY7T8vl0asdCou0GjRxuL1JzOKkp7UWnV6RoZpNbK0GxtJYXd7o6UJsKun10P0+WEsYrn/FkxBCiKtHCu5CCCGEEFdig3qwOnd+mP98iVbFUqk0jFgBVL0OUYROYreIqHad0Hp+DvQ+vJVl1yUL0OlgjcEPSviXyDdeXV3FTwvXFWtZXGjBpdaCvFaUyqMaVBTiTU2m7aoW4/suykJvFNRyaVEU8fDDDwMQ3nzzMOs8ivjCF74AQBAE3HPPPesMS7mFQ7VGhaHrQi6X8+fbMMZ6ww54wBXO9YV1x2KtzXP0zSDEiyK3WGaplHcze488AtMzZDM4/tz62xrR70G5ng06jwzRjz7q4krWUbr7jnVz7I/smSJsL+S/i3ubFxCDSgBpDJC97TbM+Th/v/sa7nyMjKFqQ2459TBmzx7M7BF4yl1w7lwe36Li2HUSa51OQkyx1EtolDQaS7XkXsMvRmxEkTsm4+MuCzzt5CQxaC9dmDUI0IMBVtt18mhATaYRK52OWzT13Dns7CxmMECn5+VGkU1JkhD4aVHYWFQpcOOPE6xSbiLNWkyni0fNjbc/gDvc5I+Nh0Xe7P91teqy/DPGwOISek/ahV74iI8cwqzYnt1ebWLjCJ1encH58y6Syg/ySUC1sgKBjwp8bLeX7688QimJXfG9VhsuIDoYuM9C6gtzPe7CxSQNx5JmuGefi1uODAdbiNqxQYB36jTm8CHIjgNp1MvqKqrVgkp1uEbAyiqmUnFXVeC62bOvBqUYfg9nuf/p/eWpCXeO9gfYVgvbaqHGxlCFCUc16BM1W2jPw9u/1905GEASw/S0+7nZHC5+22pDHKHDCNuoo5JkJPd/K4qLWCoUydw8Xr3uiv/p1TXV7va65oUosvVG/t/XqFzd5NFCCCF2mhTchRBCCCE2kC16CnDnnXcynRVfiorFrjjOC7u2vbVIlJFCeRRju12U52M8HzU27LKNtE/gedhS2XVd+r6LWcCSdDqEJ0/C05627msY46IRFKCSmPENFtS85qzF9vqocgnbGHOd5GnBXVmDMQZvw2T0S4uiKF+MVqWLUwJ5vrXKiqLF4Rg7jB/RHqoUYLM4EN93xUitKZU8TOyKu/lCo26rG44nW0hUBb6biIljiCJMq4UeGyO5+25X5EuzyIvxNouLi5w+fRprLWNjYxw9ms6WxOsfR3P0KGywgKvKcvKtxfQKRfm3/Tp87//X3R4MGLQ3P0eWF1rs2T8JgH7oIaKxWwGIBsPiYyPs8uzjn4DZhqt5h6Hrss4iU7TGzs66z02WdW4SSoHC127xVLpdNzHRarn/h+Hzl5aHhXqtsZ7nrhJIF70ERURCKT2PTpw4Qb/fH4lyolJxWeq33w7tDr5SeYe18jc//zSus95lcMfoMN2mMagoSi/lcIvk8tCX4dBBV1RN2eUVVKMO3W5ebM0mI5JyOf8ErE24Uf2eO1/Scwnfd+OYmnQpMVHk3sf4uHtMt4ttd1BJjE2sm5Tp99EmvUKg03GfwXodW6/DhTm33WzywPPdgq7pVR2Li+7z1R8M96VVoIrfafvWLOqcLSarlCu2A/T6WGtQ2WetFGCz4xxGoBXKJHiBP5xo0KObzO83BtPp4VXK7vslDN1VA0mMCkqosTH3uGbLFeLTxWWDg7Oj48zingYDt0+KEU9jDYgikuVV15leKRP3N78ipGh1YZU8kF6BFwRQLrkJ1rSwH1S3HxcmRKaTKErpZH40tvtXtAkhxJONZLgLIYQQQmxBs9lc936zJk6BctkVBRujUSX9DTqOlws52qoUuIJQ4BP7Jdd52+tBv49/5LArxEShi3eoVIaF4EqFwSU62KrVqlvIUWuIIvyVhW2886tIKRfp4XnYbheTXfZuDFZ7JFvIMd940yqPIjHFSmVhwda1i9nafh+lFCqKUHHkio2djitEzs25Yqa1RIklsdZ1wMYx9Hroh76MXrvgZmplZWXkPdssTsLz0FkB0JiRyIqgsBjnyZMn6fV69Pt95ufn8/uT83OuCJ3FgSwvQ69HdPI0YbR+Z7bqdFxB1xhU4ZxOstZggFKJhc45PvWpT/HFL35xw30cZXnwQHLHHcSJK7S3mm2374yBUonqoIM5eBB75Ah4Ht7S4vCKA2thcckVfNPCN2NjGAtlX1EredDpuvN8ctLFnWSfpUoFDtzkCqd5JI1CldNu7UoZAp/EDicAFhYWWFlZGVm0MitG8+ij7pgW45bWuRrg4p2qXPd6Fr0SBHk0EoGf58Jba/IrVgDsahOTLZocBC4OyPfc1Q9px7nXqOcvk6Xp5EOqVt1rZhM16SQcq03M/IL77uj2SM6ed48JAlfYn5hA+ek6EJOTGM99hzAzg1VuTQEW0mOUHadyGVWruuOjFHS77O24BYhLDM97Be45mbULNhffwOkz7rV6XXQ7Xew2SdxY9u5131lxlG/vkoFNSZJmyCTocOD2e+CjB4N8/QsVR25R2G7PjatSgVLJZdOv5fuuE75Uco+bmnTbz74zPA89Ow2VCqV2E/uFT19qdBcP1675rpiadMdvMIwainrr/zdDiK2oVdOrqMplJgJZgFcIIa41KbgLIYQQQmxBtEExdaTltNDZ2e4XisVKEbXb6z496Q+LviqK4fRpGAzw9sy4buyqi1WwJ0+5Bx08OHxyMX/8EguhlkolFyvR7aK6XQbJ9bEany20pmprRnLTd1JsCi2wa4rsRX7hdRW4YsXsrOv43bvXHV+lKJkYL4mHxcNqFXPXndhg/YtHw3C0+1WlHcMMBqgzZ9ydhbgNAFPIrt9okdveUtMtApltf2oKqlWCmw8RBOv/NV89+pgrbvd6I/34KosOATcpgJuQaG9w3gJ4heKxOX5imGGv00iRtPM80SX06dOokyehPyBS3rAoqxTMTLtzPV2YUj32GDNV19cd9d0kB90uLC66ovDMTF70NY+fdF3X2dhN7Dqas32n9Mj79Lx1OtbLZfdZOnrUFbuL+2WDgrtde44q3H5dXXU551mhuVYddstn50utBlNTqIlx9NSUe3K3C6dOoePYZb6nReJ1i8HpbrPpYyiVXKxOt+smOibGXQyN70O5hHdgv3uPYeSiURbTYnq3CwsLaLtm0rBWg9kZ9zG0QJJgO11spzPczwuLqHRf6sL3iVptblIZz3cgkXbFe+N57vNVr2Mr5eGExOjDR9ZI6IbxcDHd7AqCNApKZWtnFM+ter1wrUyaOZMeF2sMyfk5zNxwMit/0ez9NpvDCdVMur6Gh0WtLOV3nz59mkceeYRHHnlkw89uMpJHb0nmFtxEAMPPlNrlxa3FjS3pRfm5FK2s3zAghBDi6pFIGSGEEEKILdio8DZybyHHV1fKI4+LVldd8XaNwvKcGAW2XMEDt2BhvqiicZnDcYxdWXW3dbowZLbQpFm/oxlccdAGAUq7BSgHnd6l3+w1opRyxb+xMUxQKuQwu+70OE4oXea2O2fPDuMrknjYWXyJrPt4cRnfd3EZtpIuprmwCNWKK7ilncphpYrt9lwihDEulmN+frSztziWzpp4oaVlt1hjpYIdG4MwJDp5muDorflDknC4rWSD7bZ1wOThw+kPbdftXi5jlpaxG0yqxCgXXwEk+/fn99t9N7mCcak0zEeHi2J3imbTOBkAqjWSvjv/H5svnF9hyEJlnINJgrIWW6+h7ziK/uAH0R/+CMnznoupVGFsDFUuu31y220uJ7tcIohD18GeLR7c7aKzxTdrNfSRm7Hnz7srEQDTD9FmeEWDCnwi28/PreK+jOcX8SsuQ596A9otF4cyklEy6vz587TbbTcBZ8ywS9/z3TiVcoXi1SaqXEaXy8PHodzt7MqVRsM9t1Jy51athl1cdMcg61aH0YkYY13qjrF4zabrxjfGHS/Pdcbbbg876KPTgrZttlxcSynIvy9YWnaZ7tUa9Lru2He7kLhFUxkMXCRNLft+MSPfb6H2selHyWCxp8+gZqYxxqC8wjlT3I9rJimCA+780+D2SfbZTBJss+m+03zfraWgXAE+W6i0GnjobFKq2x1OPlarJMbghRGEA2ytNvzuDvw8xohB6D4zpRJaKciy2zNJAu2Oe/+JSRfmHbjLDLIrGFabMDVJctdd+F8+PnKOxOm+OnLkyLqfod7cCqV6NTuoeDZJ10MI8itQkrJEyojLZ2yST8aGjYlNHi2EEGKnScFdCCGEEFuyuLjIo48+CkClUuFpG+SFP1E1Go1179fFrmal8jz38i2HhvevrECcQJa9XdA/cZrGlPvHsO31sX0XD2GLHc9BgGm28EoBqt9HedplHBcK7lqvXyDMxGFEUHWZ1jrZXt7wTsvjXoxBzcwAblFE27F4SQKeRzUesPzRs9S+4fbLeo1HTp3Ks5B1FqcDrpiY5rgXC4DWWrw908OFETPZz/W6KwomCaV+jyjrKlfKHZ+ZGcpq/QJZschrrcVEEV7gQ3/gir4H9hPcftvIeFRpGC9TKpXWjSSqD/pw4gTs2ePeX1p0TPoD7EZtxrfemueg2wM38bGPfQyA+Cl34vV6bqKhXF7/uWsUr0gIWqtEvntec2mV8WympFSi5CmUMW5EnS7mzBkq585T/t//m+aRI/j79pKMjw339SOPwO23ZztvuHBlu50vZsrqKnS66Pk54lIZjcJmC2YWYktUUAzncWsmGGMw1uLvcecerbYrRk9PY6NodBJtzdUJJ06cGP5QLKQWol9UVgCPY4y1ecHVeB76zjvdgwaD/P1mr5ecOu2yx9fbx/lLunu8sD+yX8gWM+33UDZC9/vYahXr+24NgyjKO+BVr4ctV9x7LgWYXg+dpMW5II1QqVSwzXaen2/TBX5Vs+niVICKcns2aXdQh9Irb3prriApTl4U42SMQZ06hZ2eRkVRvhir6nbB81BTU24yLjtX06sudHZFzOqKW2y3VnPjzjLy4xgvi2kqBW5iIXALMCdYVJygk8Rl/WfHbO2EGLiiugIThug4nfzMjk2z6X4/NTl8m4x+l2ymZIdXZSjPG2bdt9ruc+x57qoTIS6TNbirbRQbXikjhBDi6pGCuxBCCCG2pNfr5ZfHb5RH/kSTdVMCLLUGZA3Bx48fZ25uzv1QLLoVMrh1vVAsmZykXRtjnSVXXRdlnIAC3aijJsZhMMDvFbqEjXEF2DTb2QbBmjBnXA7zBvrtLsFN6eCVwpsp8dGPfpTJyUnuuuuureyKHaW1JkkSF63S7br9ZtNef2NBW/p+maWPnmXfvz2IP7txPv2G0m0CrhCX3d6giGWMQWVd7TDct4tLUK+5IlupBOUKUblKHCZ4WXdzFMHcAlF7/U70YqSMVsptL83f99MFGO3Zc6ibDxcGNLy5UQGvVC7BzIwb12CAHQxQ5TLBLTfjrTyy7nO8E8fh6G2u87nfx6QTHmpiwhUNk2RkUmLDKCVA6WEhNT54iOSs+14YmNHneOMN7GDZ7dN6DX3nHZgvfIEITWTA+GVKWQe177tie6/nbhvjCq+NxuhnLe0ot+UyOjFQLrmFQj2N7feHBfBeD0uhqz2O8++xpNt1ETOF6A6VRZOk+9y0u/nvFhcXh69v8/9xi3PGsTt/w9Cdw8vLMD01MnlhlUKdPIU9cJM7D9P1GTA2PScCQKXbcF38tlweLbr3eu7c7veH3eqTk66An14FYIMSxg/QKFSSuEmELComCLDj49jFJVSvDwO3EHAWu6IWF92VNEnizqv0O011u8NM9yDAT2KyaHwzSKD4sdqoq73fd++tXHZd7OnVGSYM8/eYraPA3LzbJ2mnuMqy5Uvp1QATE25SEtznu9Nx7yGKhldqxAlqeso9ptOBMHYLoKIgjjCLy+h61a3DsbDkvoNnprMTBWC4xsLqqrtPqeFVBb1efgya0fbiX0pz5+HIgWEG/+oqTEy4Lvd0rYi4tXGckxCbUdlCvNa6q7yEEEJcU1JwF0IIIcSWFLNoN4pXeSIrFk1XVlaGRdCN4ieMybvdSRLOLre4eZ3tlu4+6mIKADsIMefO401MkHg+XiFSxkQx2hiM76OzQptSrgAWhq4zcgNRp+MKUZ6L5siiZS6Vz3212LTjN0kS1+3d6uCNNYZRD+EAbIACQsyWukUzJ0+eZGHBLQhrlMq7YYHhMSpGhqzd9vHjcOCAO3ZxAtrFg+RxGqWSy8QOfFeoVGnBr1yGmw9RbQ2Ls48//nheoC1+dixp8TArtM3Pw759qP37sh0EQP15z+TYsWNAmsG/jsHsPmrlsisSa50XqNXjJzH94YTNhQsXOJNmxav9+/JFW5Uu5Jl7hSsq1kxKtDsdonCAASbqdfzSOh3w585jjCtO7hkfw3bnXLRIv+/eb5ZH3u0SXVhghTKfvO3reObENLUjh9z4Ox13tcAgRE+kC5caM/wTJ27RS2Nd13Kjjr3pJjhzJu9EV1HkiktZ5MviEpHxsemhmm/HVH2DMVDL3ucghF6P5MI8nqfcOglZ7nph8eORaB/FSMi4yq5IyT6b6USKLpxnSitsNqnSbLoO9WoVu7KCKpXwZqexrRaqVHaFsmzB0qLqMIYkt7IynJDQGtWou+7tdsf97PlgkuHCoktLqGrNvUbgo5dXoNvFtjtYT6PC0P0pRjBp7fb/+DhoTVwuE4aGj/zVF1ie7zFT99PvOzP8jMHo+LUeLkjbbhOfv4A/Po4aDFDNVroGgstJtzfd5Lrps+71KMTzfXdcrXVd/dPTw/PGWrdPEuMmUkol8DSm2XSxPpUKumzzyCDVtahJNymjez23/kFRHKexMm3XJWwSd574/vB7PY398Y4fp1yME0u/39xhWr8Q73tq2HXc72NnZtznOF3cFmspVbd2pYm48Xz2s58ljmO01jz96U+/om197nOfI0on1Z7+9Kfnfz8zceTOY2svOSEvhBDi6pBvXiGEEEJsSbnQqflkK7hba/H9YdEzLhRXrC2ksBeK7CN7yPOYVRt0QPbDPKtZBz4cOuiKlKXSSLFKaVe40+HAFdezTshq1RXt6vX1t09aF866743Jj99GMTlXk7U275pWSuHt2+N+0W6jxhpu/6ULyUabxOSs1el08okRa8ywI7p4272w+//usEDe7XaHkT9prA0UjmOt5gqY/T5qdRXT7uBlkRLp1QaqsCDn0tLSRYulpjsA1Vx1xyv7AxfFuFg1fO3idjrh8DyqzTbceQIugiJ9/VB5rgM8de7cueE2pqYhLcYnpPnZ6bjyiYhe33UXA4PY8Lz/5x9YCt32/n/foLjvhf8u3U/D/RorjbVubKXAJ/TdWGwYufUDrOvuN7Uawa03s3JmhT/4qmfwFd2T+KfOUr5pb16MzSeUwBU1Jyfd+Vu8Pwyh20UvLhIX34dJI1yy8/3QQeyD8xC54ud4yeKlY+6fvUC5WnKfh+oY3i03w4ULI9nsJk6wxg67+YuKC2pmC+EmxnXXF8eQ0muvrmg2XYHV86DfJ15aQZfLozX24nfA2u/duTnYu3cYJwOu8zsMXfd2tYKqlN0+HCRZCDoqSVBY1yGutYu6qdVQtRp2admd67UayWOP4+8drjuhtMoXlfVu2sfMPguL4JV1Hv2Sda/n7704qdXtueJ4pQJRhB+FgMVqBVPuSgu9vOwmCUoao3W+z5TW2Go1XxxVwXCB2+wljAVr8KZn8/2rswI/QGKw8wtuUdUocl30jY2/N1HKTWSA60Cvrzl+2VoIt9+O//mHNt7OOky5Mvy+UMp1I4PbX6H7b0LYuj7W2hA7r9/vbzgZcznbWm+djyAO84m5J9lf2YQQ4rogBXchhBBPaIPBIO/irVQq1C9RlHyiO3XqFBcuXABgz549HDlyZFvP11rn2dteobD4ZHF8ucNXpreL/7hVhUKuTcywiFIs8FqL6bfW3W5pcmzYMdkfYJpL6Hp1tACjNV6akWzCEJ1eJj5SjLvE2M8urgyH4nmQGLTv7d7ESQJWu6K4Xl1xi18micuvj+O049+SqI3jTNbT/qcPwr9xR8kMQrx64VgUsqPzfVevE0URQRDQahWOT/GYttsuaqbZShdMrGCqNZJmhyB7XBhillYYNIeF8XWL7aT59TfdlMdr2P4AVQqIz13Av/XISOFW+T5KKQaxIUhfKjHDAuaZE3PcurqEPnTAPSeNG/HqVdT88P2MjMX3XKEwSfB6/WH3NQzPw0JhMUygorPHWL60BPdl7yUrQluLtoY4Le50Om28C3PoiYnhYr6lAFNzESHxaou+VQQKxm6/mdLsxLBT2fPc1QnZBIS1w+JtrzfMeU8jUkythj51On8fcWIp5wuOKlhdySNljDHExmKxxAlUDuwbbjeKMMur6EF0UVyTizlSI58Xa8FGETpb2NPzXCd02V1lYOcWUPVqmouexkH1em5c9bo7D9NJNRVF4Pt4tSomi/CJonR7pdHzd3nFFYmDdMHTJHFxQqRXLHS7qOkpvJv2Ydsdd4612+4qA0+DLmFrNTeJMBgM42sGAze+7HYWzdLpugWHrUspt4tLqFoV0+7SDaHuTxGcfhT23A7VqttmdYMIqEY9L5ijFAaF9n1Uf+AmH5TKX9+srIBOo2K0JjEWXYjSssa459Rqbrvp4qqYBJsuWEuSYNpttNLY2F3ho8plN4YgyCcqbK+Pbjbd7axAr/ToOZDF+CTJ8AqLMMwniUauYimuxbDBd2w8CAmy2CTPIzl7Hm9izE0epN9RpWSw7nPFje9Si1Fvl1LD7yZjTP73s4EOqHpeek5tvKi6EEKIq0MK7kIIIZ7Qzp49mxeZgyDgnnvu2eUR7Z4oivLO7GKH9lYppfJ/JAZBwOc//3mMMQRBwFOe8pQdHev1aIIBn/3sZy/+RRoJDKAKC6harYdF8CShE9Ty5x89ejSf/DFz8+gx10VpK2V0teK6qIuRDIlBnzmNmZ5ynbzrFLTW7cBNtfoxtXK2OYWxFmV28UoFL03ksDZf+NFo7XKdw0FabFVEdpsdgFkxGQh8f1gwy6I5ios3pv+fFcdGIpitRa2uuqsXEuO6XKenoNWCOMFEEYm1w7gNa4m7PYofq2KsRDF/pHC6QJK4bGzdIEgibLebxupEqInxfA2Bbi9kou46iL3mav4aR/bV0bNTroCYmOECuntm4dxK/rhqtUonWxgyiz3p911Bs3gOJEn6+mHecd8oKQ6Pa872QWOJTaHonHYaoxTlJCZKg+cfOT7HU27d6x7U7biicreL7nQw09P4M1NUS3M8ZaLG6pc+j394L6XZKbd3rEWvndCbm3NF6uyKDnAF4TBELy1jErcYsNvNxmVhZwWtbg9rh8WtdmipBooosVSyBvQ4BmOJen2CwB++vlJ41fUXwlWKdGHbtBBbqUDFTdCQGJJeD7+WLkCbdmlbpVzBF/Iiv+r1sH4AUYzXamK9wtoDJhlG1WSyqyrCEGrpvggCdLPpFjY1LgYlXm3h1aow1nCLb/Z6WKVR5ZKbPGi18jiqLLvfRGlGeZxgEoOxDCdfrB1Z08JeWCAyAfjgtQqLtrZao13t2eOtdQXv9LjYxKCzfHXdG0bNLC65hU/bbZKJqfwKENV1+yufcMkW1ABUu50vukq3i/F8F/sE6LRDXbXbbu2LcjmNJypEwHh6WGjPlEvu89jtpp9RPVykNt0fVCpu4uqRR7DRcHujEzPrR2INjCYYDNx24tjtl+yKl34fUAQbLXwsbnhZkXwn/hucxbOt1ei5/16BHbn6SgghxLWxc1OrQgghxHWouODf5RSZn0iu9PJlpRRJkpAkCXEc0+l06Ha7l5UDHscxjz/+OI8//ng+IXK9yRZXtMaSxAm+HdDtdl30SEHxH7rFf/Kq4iXevs/A9/PnF/fZwChX/IljVKcDJ0/mi+blf7TCHD7kijFZPrJNIyHSRS7tJTLcV89dGHZ2W4v2PYyyLJ5vXvF+2i5rLTZyddG1GepKpX85rdXwD+4nYXsd7slGC8AqNdolPBxMXhR/9NyyO5ZpFrSdnHS5zmkOOWfOuuOkXXRMstRE/defQ9//i+gzZyhh0BsWyOxwwUlj3KKeacyNKZdBa/q1hisGlkquGzxy+b5aa5a/8JiLv+n1GFscfl7sY8fdgqJxzMjZ1+vhx8N91zl7dnQ4UQRJgi4XIk+UGnYfr4m3OTKRRmegme8Ov0ei5bT4nyT0KzVMejyPHqjn+9LW6u5gJ8aV43s94tPnqBnDT969jwkTUVIJVCuuUJ7FhuTnvnaxKfV6vn3AfUa0JixXXFG/24FOh3hxefhcY9Js+nQBVGOYaC9T05YJ32LDEBtGgAJP4/te2tXdGWakp+sduNOl8Fm3uGPSahUy5mNUpYJq1PGPHE6Lu3aYna406vx5lwsOUKthxycwyg1h4Jcw2WOzFyl+b4dhnslMqeTy7AcD6HSwMzMwNuYWXm008A/eNDIBCKCsGX5feL7LSh8bc53xtRp6z6wrzNVrLkNfefnEBta6ScA07sS/5TCl6QY/8LHH+dJq3+2LKMoWKWBdhe80Za37HMSx269RBIPQ7QvtEZVr7r13XIyTLX6fGoO9MJePy9ZqmPmFvNiuJ8bdvk+ja7IufhtGmMVFd4ytO/7E8fqf2tgtsKpqNZidTSe1ktHjAa47/a67SBrDgn2criMBEC8vr7sr+nv3uUmKdDJGW+PGv7LiHqAVRnuYJ/nfW240jzzyCMeOHePYsWM8/vjjGz4uiqL871JXyrba7nthMCAaDK+K6AcVNwmp1HC9ESGEENeMdLgLIYR4QttKp9mTRfH9X84/8ooF+zAM8+1dqpBf7KovlUr5pc69Xo9z587l9+/bt2/b47nakiTJx+tfopSqC53lqhDzMtLhHsfDuA7c/u/1XD6vv7oM4d60I1eRKI3nNjzSoa3PnsNMT2E8j7Q+NyySeh5qfIw4jvHTrmtjDK1WC2MMs42SG0MWtRHH2CSh9fhpeO61vepjeXk5/xuo8j3ihSX8ahmqFVSt7gqJUURw9iwdJra38bWLi67zmR/pMAf+P7/7UU63I+49oPiOp6Z5zUrlHbC2XkcFAXZ62kV/lEpoz8Mv++ilJVTgERtL5AUYO4xuuShTN8uELxZUgwA95o5f4BUyv5VCex7GGEySMNtdAXMoPyeyTuMAOyzAGoONIpTvY6wlVoWOxn5/2EFsrSvSrimqjxRJo9hFZuC+Q29qBMAAjaU5GO7T1mKTSZPgNepYpfLvgub8IrOHXCa3W3bWunz39H2XkhCd7p9BUMbHIwhDFy3iaZKghLdO0VbV69hWG9XrumNdreJXqyQf/gjV//5mjNIsHriLyX9zJ3bfPlCKxGRjcBFj3uz08Pga62Z4rHFRPNOTML/g9o12C73S7ebjttamN9N9kGWyr66621q7YnqphI1dd7o1Carfd13+icHMzqK0di+dFsvxXfE7mJ0mOT83UuwfiaYqnt/dLrbRcOemUth2272V7KqJ5RU3JjVALS9jjXUFftwCy7ZaQQ0G2CxWqNuDfi9/voljEgrf7dkkUZJAuYwZhJhBTC8xnGvM8FXpWhb5IsPZuLMCO2DSqyqU7wrJutWEyUl3fDpdMAnauhz2UtQnDvTwe1ApVziPIpfxbk2aq16HwcBd1QFo3x9eeVIuu0gZk040Vt2ixyjlri5I96e1FkK3GKsqp/s4SbCNuvu8rq4CajjxMBi4bvlOBxoN9KnTtGeGHfe2sBixWSdbG2Dy3EmYbYDvu5ivqSlU4LtzIt2TSlkG3R7V8bF1t7FTkiQhiqJ0rRKfYM3aA2LrskXBs9ub2ZFomUHfXd1lDM3HjlP5yq8A0gm2fAw7kxcvhBBi66TgLoQQ4gmtWHB/si30uVa/389vr66uXuKRm9sor3at48ePs7S0BMD+/fu55ZZbgNFjsVHW9W5TWYGnVBrmaqel2izLHhjNUl8TpWCjyBXX+gN0IRd7cXGRM2fOABDs3zPsgK3X8Bp1t2hlURhi0gx3er18/42srTg9xalTp7j11lvz+774xS8C4E9PuhxmcIVf30f5PnYw2q1/reSH31j82TSmodVx3cieKwQnR49iH5/fmRfq9/OMZ2sL+00pTq30WOwbYrMmOiQt2qmlJZieRlUrELtca9XpYLIrCkyCFw7wGFBaWtx8TFq7Lu4svkUpF/fRHwyjR7pdl+Gfdv6WVVJY+FVBYsF3ZWSdTp4Aee6/rtVQ/rCQo5XCFL//lLpoQc8iY+3IZbATVfeTQfHQyrCYWAn7+GGATSqoOCabYvLCwTDGx1qU1ijjJgmssXTxCNOipFcuU7otXU9idRWswvMKrx5FmGYLXatiez03GRVFGD9AdbtErQ70B1QT19EfVxrYqan86d7BmzBfcB3+QRCQLCzi790DQYDKdkG/D/0B4dIK5UF/OLmmNTQamCRB46cRELDeigm220WFIcoYd1wuzGH37nGTcPmxK3SsZ4XoKHJd5f0BSTpB5lUq63eJnz+PihPs1GS6sKgrDqv/P3v/HW5bdpZ3or8xxgwr7bxPrnBOJZVUCkhCiSAwNha2STbp6e7bGAxOLQljcd3G0BcMj7Es32tj32vAdpuGftwP4DYYY7IxyQhlCQnlkirXiTuuveIMY4z7xzdmWLvOqTpVKlVJsF4eUfvsvdaac4455phrvt/7vW+eo/McH0VCXjuPDedQpR0J6J1M8FYIOFf5ofd6Ekq6swN4IcqVlt8D2l9pVOtVtkIo8ulOh0Fk+N/veQx94FGV9cuJ7cV9rjzXg02WChY92lkKp4h9GAtcc014zyxKiVDN2FVra9t6pUJ1DL0ejMc4pdGDPsxm6C0p/HA0kkJKmJN+MsWPr4nljNLBHqiFspRCydYWbG7ih0MZnyjCb2xI0SvY1bh7X8DwHR9tDllMeuTnG1h5RBtrdRFMjUbQkXXP9ftopaCw0kmTf/a9t3d3d2s1dr/f57777vusb/NPKrz39fejmyHcJ7l00n1GxHtp62LYg+/8ECcD4Z5srDeWTEuF+xJLLLHEc44l4b7EEkssscSfaLQfYpLj6tc/ZWg//D0Te5mdnadPfh5W7fGwEEp53JblcxHj/f1GUXpMob7wIN3+uU2uONcQoMdUjtba5hzEibyvHdSJbzzcj0G3t+kWX9Me73w4bO2bbxxH2rub3viauHjxYl0U2N7e5o477rjha58xvIfDQxlnZ0VZnc3FMx3w7mkWY44FydbHX4VDpim6LMEnrddX3uo3IEeSVDoCDg9RUQxaU2jDYdTnJ1/+Lbxs/0G+YkUUqH54/WBc5gX4Us5xNacq4i/LUOMJPopqVb2KIrHDUAqsJRusEVdzRCn29vdweLLzd9DphkDOVteK290TxW71709/WojDytIDhNweDBbnbAihPM719uP2L1q2KoMV7Ma6BF86i3PyWZ0kbj5XKRQeZYM/eBzR6XeI/SEAen8P8/FPYO+5WyxRqvNSQSn0diBN53N85aN9OARjSJIY5z0FGqc1+4NN3GyGDuPsHr+0sN5FJ0/ID7M5HOzL9dftQL9H0u/hH7/YEL/hmjx817vY/jNfFhTuwce8vYamqQTr9nr4oyMwhmJllUhrPErI3Ioc914I/iKHZIDrdkUVHhlUpyNBp7MZoCQgeW21nit0Oo1X+WTSeNvPZvhur1lHBn3pOhiNoMjxkwKVZai+vEYnkRQDJ1P8fBYCVQ0+TdGzebCNcdjxOKi6kePt9BeU+Xp1lcE956G8pZlre3vo9fVmPStLGA5RUXAkH40gTnDKYPpdiAw+V1I80BpXOjRggg0RQbFeE/lFIeMzHEpxYGNdfhfWUae1nPuKpJ/OZG1xEi5bFZvU2mpT+C2uU4BWCtKO7H+VqdEi+RXI9RJI82nRui7a1+KN7rW33doUpbTBDYfolRVR6AN4yNc3efzhS9y7vX79z3iW8Ke9+++5hveefJahtcaUJVle0O2kT/3GG33e2qqsP1lG5+f/Pff/1I8R33Yb+Wu/hDhkd3ymloJLLLHEEks8fSwJ9yWWWGKJJf5Eo+2V/af9gePSKGNNBxuYZ6B2qixQng5WVlZqNf16RRRBHRgKfM62r08efrj5x5N1R9xAmbbwjrXVBRIxa/msuk4qatNK0Vy9dyHM0mGvXsNsrOPTtCGKjgU6tuf46NFH689Y+LzWx+onOa7Kwx4WsxCeVShVhy2aS5fxa6sQD2A6pbiyg366zkfHA0CDlQRJ0th/gJB1cYza20cr+f21ljd5bV1R+a4P+qjtbbEL6feJ+n3i1X3eee5WEpvzFaOxjOsN7CPUbIrfCPY4WQaPX4TtLVgVosQXBapSKZalEIrV/hpDLzU12eeiiAcffgjnHOmtpxdV/OG4ooN9VLtz5MKFhgCvig/HxwtQEyH+1TEFfOlaxaDWPFZFLurKKBJP8LC+lKVvyMhOh3hzDR5ytZVLMc9xSh5D8rTPLO2SgFxLbcsd2SDs7kKvh/Et5bBCPMjTFJskZFGMR+GiBD3PqNyI9C1ncZ94HAooSguXLsP6mhQkzp4N8+EIplP0zg5FVoiVVOu6Pnz0Ybb5ssWQwxACWp2j1ihCkhCd7EJQvJOm8vqdHeksMQYD+E6K6qRi/2LFY9yjmus2WJ/UyuzWGkpZirc94OcZvizRzuLLsnWJy76objcQ3UL8q5UVVJYhObMKfJjnRQlW8iSwFv/w4/T+9Y+hvGP6d/4O/sX3NdfTYCA/VxYuQeFfFwFb4+S1FqG7MXUxTc1m6PEInyYor1BlKUWQRCxfEg1FOMcA7O6JHUxFpqvQMVCWMM+EUE9iGde1cPKnU1xRyGdrLWGw0wmmF4oTIYDXlxZ/cAh5gT51ojm/2RwGfRgM8MMjserxXoJu01SCWLXGXLzICbMw6otdEteDc62sAocO++ydkwDVRKN7XY6uXgZedP3PeJZggn0VXMcKa4mnhSp3A568qzLphnltCw4OJ3RP3zzhnuc5H/qt35Ishf19/Oa2rDPWEZUFdn8flCJ6TVOA1k8Sqr7EEkssscRnB0vCfYklllhiiT/RqPysl4BP7BS8MnAJw+zpe7hHdMh9IF4tqGNDW3mynzlzpv5d27rm8PCQW2+9FThG2j1HVj97e3scHUlI6MmTJxdI/+uhyEpIK7PxG+/jcU/w9u/Z3UP1uuKhXJF7x+CUEd9i52pv4YXAVIA4wpwSck1Vv89zIYA3N+v9K1u2QbtXrkgI5XEshDLemFyxBwf164orV+BGgaQ3wEMPPVQH4p44cYI777wTEELCFQXaiOesD/7Opdbo6RQ/m6O3NonvuJ35p28cOnddHLf3mc9kXFNRqaMU/nCI2goq6f394BXuGWZeyEpjan9wAH9w2Jxf74XEm82ZDyfAJg4dPMIV2lyfXPOzqSjpq8+98w4h1b3HBysANx5Lx0HlV906FvWCu5tzFplFS6dgW0SwCAFw589jpg82O9AfNO9PQkdFFXKZNGr/+qqcTOTztKbc3ed3H0/4i3emvHA7ZnfcEPkKmqKG1hBCbqNHH4Hzr5IXVfOtFU6ZlAWqlM/x1bHM543FTpvALgoJrQTsLJNukWDboqqwUmcZlFLESooMqzUmXE/28lVsIIEv7ezjz5yW/e50cOMJfjYVhb6KyeMO0Wy+aGECHAXSd3zU6swJ3Qd4L+O1utqo3rOMcveAaGO1njNCmuuaZPXV76dT6T4gWFUNmyBjXwWV3qijJhQilHcoJUUZFfbdF4V4OM/nqPlcvNrXVuU62Nlp1gbfzCWlFRYtXTRak3slSnNknknYKeLHX1pUZJpz3Ovhez3Y219cu5IEtbkpx5llEvLb7Yq905kzoqzvdPBKQbcHY1Hk5lGCKgt5n9YNEV1BG7mmOh0pvITxs5Mp7O6jux28c+ioOkaF76Ri2dW2A3NOrtt2MaP6W7UuOwf4xvKp32/U84MB9gUvQO1/4vrnqHWtfuC+l9IJ1kf80A9JEc2LBRBFIUr+ajyzDLe7x2z+2e/Ma9+nP2vF1T8lcM5d11LGOcd73vMeIHRetiy3bD4FNm96G9Zayo0NqfFqI/kM4S7lIinmWefRWxtyfVA3ci2xxBJLLPEcYslCLLHEEkss8Scag8GgJlmt/dOtcH/BIx8iPvkyUIqN+dP3cLfF9cdPKcUHPvABiqJAKcXh4SGT0MbcRpvgfvihR2oJYJ7lvO997wNgdXWVe+6552nv283gwQcfrNV73vuntEjJ2hYj1jZBfDeDKrgwkFXWB1uZ6jOsrUnFyKhGSd3tCtFp3WJoahQJQRu3rDp0IIlaBLNtPeCXh4cLhHv+6YdJzpwQYieQyU+Wo3Zw7VqtRp0+A8//G1kYJUkilhS9nhCn0ylKBY/vJBEirTqG+OZZAh/Ia9W2sjCmIUanU+h2hRwPAbL+llu4b2fEHeueWwdaPJu7XbHoSFPZPxXUt/N5CNn0EhAajs95JwGKxsh/n7BjUHqIqvFoFwSyDJUXoizudGs1r7dW6JNA+KlqLni/2AnhPTz4INxyixB7eS4WLA89hJ+2OlIG/eb9RSAxnavPLyC/q4pls1ldAIqM4qvu6hFpxUZHM14zPPTQQ1y4cIHeoAORkEfWWkorxzbrD0gfeQx9YgsOD3H7h4EUkuMvu12IZI0orXiK0+m0FL+t8x7HdVFGrfSbkGDnZD/HE8x0SonGKSiSDroqWgHGluRKrvvVTsxB6FIA0N2OZBvkuXQGrK3AeLhY9PCe/Nd+nY/+q59g+o/fColuzmPVKVBdr1rjjUZ1OkS3nQvWMUWdH+BWG8sQdzSSDhMr6mrV7cA8a851sOKp9yUUGurOgySR+ZIkeK2bMSkK6HTkWprNxYam36+7H4gi3MoqoNA+dDsp0EmCi6JaZe49+DhmbmKMbSngFagsB7tY7KPq2jmucC8K/GwmlhdRVCu7VZ7j81zsk8LaqA4O5N/eY7wTG6K2FVwriNUrpOsEYH9frHu6HSHeYwNa4dEyFnEihYcsE+uWbk8uTK3BROKhfXQkXQ+VfVGaNkGxRSlzcD6X+RfHUszRRubaZCIK++qSN829omzZfplWcWM2K+hU49JJpdgXRc24hXmfl599xflgMGB3dxdYWu99pqgtpwDX+s75BNueUcgUKAqK2dMrcqhqTQDY2sQcjSTkWkFx6+04HeOTLsV4QjybQet+tcQSSyyxxHOHJeG+xPOOt771rfyn//Sf+MQnPkG32+WLvuiLeNvb3sYLWkq6+XzO93zP9/BzP/dzZFnGG97wBn78x3+cU6dOPY97vsQSS3w+YP9y46ns/pS3Sq+e3KgJpHjn2tN+f9ESDw8Lx1oIZex0OrXdjPeeoiiu6wk7aJF7s/m0kYU7sS+Bmw9z/ehHP1r7wF+4cIHtinh5ErT36Wba5lW7BTuOr6tivy6GQ9AaO5uj+hJKqNt2JtNprToDhFCKYyHKKjgLPmrUkXkBve7xA1pU3iu1MMf9xqJiLrnrvPxw1PIZb1nbHIff3a39iblOAeXpoN3F4L1viN6KbI4MGl+HuVbQN2EDtffv/y/Gv/M7QnR853c027EOZS3KlvjBABfHaGPwSdJs49oO3/EF20+01jGm9t9X47EQhYMBfjxBAZF3pEGhfWX1JG6eoSJDSdvnP3C2wKQIDifBv7u4fI14c10Ux90uriiJdEvZXRE1ldo7yxqitVJGVqi+L00mNTk5jVKKpDXHXauAk+d46wOhS/NZzqEefxy/sYHrD2oPdKKISNh/EgNbvYiDh3c4yyZ+bQ3V60KW0S/mFOH4ddonnk2wfhPtPcZ7UWEjinZXWKoFoFPM6Jdz6r3N86ZYEojNOiQ4yxsCthWe6dIuEQ48xLZAra/VY6m9k7BPoHQOde0a/vRp2c7GhhR+8lyKHwcHkGX4SpEOkOV0tEbvXmM6mpJutYoU1XU8ncr4FwXaWlkH9w6IN9YlG8D5MJ9CL8TBgcztJIa8QCVS3DFlQRaCTaXjQM6/CnNyQflvnXjVn9gW0rbCaCRz5OpVWN+A+RyXSTeMPnNa5nIco50FPOIyTwhcBe19/bPRCqcMSnupGvZ78to4rq8Pju+bnjTFgVAoUGUpYxSuIwCvDSqsi7Xli0K6E1DYKCaaBVW8iWBrs+k8KIqFa0AphQ5BuWoyre1Z1GxeB8v6PA9EvX7CWmqckyJXkTdl1nkmczRY5ug8q8+3OzhExxHeWZmj6+sU6mL9ee2up3KyD0jgtUPVv4+21iV01VopPFRronNNB5PnOSdKl37unxlG+zN8kJNPjpqOM+dcfU+YFI5udY34MDefBhasrZzDzueYyEBZkn/TN0rnidL0IlOvl7F3PPLt3w4oBq//Ura+/dufleNdYokllljixlgS7ks87/j93/993vjGN/KqV72Ksiz5vu/7Pv78n//zfOxjH6vVkH/37/5dfvVXf5X/+B//I2tra7zpTW/ir/yVv8If/uEfPs97v8QSS3yuYzKdozuiOPLA/fffj/eeOI45PDysid5Xv/rVz++OPgcoHnwEs70FSYKrwgmfBh4+nHJmxQUC0bHRj2qCXSmF9x6tNfP5vFY0a61xzqGUWlA5LxDeLe7wZv1jy7KsX5vf5MNqe/s34+c/nmSwHlUbxBtTP+RGUVTPneNEvO92UR5UaaV1vLIkqJTlvZ6QcxUJP5kIoWSETFKjEb5SoNfWIgsH0pBNbYsF77HznE9+8pMopZjmLZsa7/GXLqM2N0QJVyG9sW9s2ek2xN8zKFZVpMCTEzgeHUfBHqJ1kHmOqojDp8Dk7W9n+v73y7H+9e9stj+Q7xB+NBLbCO/F0qNdSOn3F4a2HB4RdYKyNdig4IQk5/BQvLCjCK8UhZd3PrBxG/m2wyQJxbDJjKhYN6Wgf2676W5QivjCbUJA5jneedyhFGmik1I4aqskGY1qCw68xyktxyIvxD5+EXNiW/Z1PIZOh2RjjWLWDm70zXviRD47L+S4qnmYpvhbJPxS7x9I0SdNwRish+HMcbIv5K/PLNmDQ8rxmLjIodsjP3UG//i+bOLkGuX2LWLxYQwupykUGIPqpGIhAmRRh1ncIcnzxqKl8hJfWRHCtVK/21L+XYUuTybY6Rw3n1Og8QrOrCXy92CJ4warsDGDKXz68iHdylKnGtssqwlj1+2h9vaacMwsg/09si99PfkrXoHVx+ZyVSBsBWq6LEMlCfFgAGUZvJUtzOboyNQEristOhQM/P4hClFM45pOGB2OoeqGcEqjklD8U6CrINGdXSGRnZcmDGNwPSHHldaoOJJ5H8ZXTyb4Tid8jsYXQsi7okRvbdaFvrlTzE1M4mX91vO5KMmrDoI26X54KB0hIYfABXsrvbUl56+yKSpK2RfnZPy1kc6UNIGoVdhUCls6TFX4qsY5ENK+24HRGJUmkuk6nqCT0P1xdCTbcq7JLHAWFUdilzObyXXtpKvIDVZkTrbPrdHSoTSfw2yGUwqd5xI6u7EuL5lLwKwfLxYkVUvt/sFLQ3p775Rp8rVfhxodgNK4yQwGs6agsrcnBaBw7JgI7R1FK4yV/QdhfFn+vv1C6G7wbKAdaL70cP/MUMxLCPWv2aj5bpJlWW1tNS8saRQKwNqSz55eiLzL84V7e70gKBWu0VTuGVVxMs+JypzpO98FgD08XBLuSyyxxBLPAZaE+xLPO37jN35j4d8//dM/zcmTJ3n/+9/P61//eobDIT/5kz/Jz/zMz/AVX/EVAPzUT/0UL3zhC3nXu97Fa1/72udjt5dYYonPE3zisODuk6CVZ5Q51P7+dV+3QHD9CUW8vSUEFkD89NvGB52YwlnhArSvSevs8lWS0yeFkAmBYRUJXo2p937hQb7XHTCdBXKyLQe8SbR9Zp9JmGtFlj8Z4iimflWWo/rBv9f7RcL+ePCk1qKITBNRma6s4Pf2UbcKmcl02lidgDwYt4hvv7WFn84a9XGlEr12TcIAq9ceb/1XirSTcHBwAMBRblktikBUWtS54CHfUrUrnoQM39yot+/PnXuK0XoiDg8Pa7K9HRLrWxYLtS0OYGfzRh+eJPitLZS6/vXahi+Kxtojzxu7nPEYZW3jET6dCinaVgOni2MYrQVFf4uIdvsH6E4HTp/GT6ZSPDIG56CjpaAQra6gux3sdewfvKOxCTmOskSVJcpZzOmT9bZVy3oC5ygefkyCRyvLndZnmWpetY4r2t1FTVokjm5ZpJSlKPK1FkuaCtMpdncfs7Eu12NFxI/HnDs94NzKE9W20doqdFIhgw+G+KDMz64esHp4FXvuHPrwED06QtkQEtnpEHU6mAf20EZhKrVmRYRnmZCyedF0eFRWO6VFpakUB45GqH4f0+9jNMQ4nIcojWWdC0St76aYdeAiDLTDhhwJskxet7IiBG2nI0rxa1dr33Ccg7Nn8bcaPNA9XjyqLJv2D2pPfOXE37zY2ydeX5Px6XbFU902imhVlPL5R0coo6HfQ/d7+L1DCaLF40Zj9MkTcu7SFB1yCACZywcHMhZaowLhrw4PodNBnz6NPxLbCtXtSsGvtKA9ZVFiekqIX6VQSYoaDNAgXQ6h8GJP3cq/+9Z/ysve+Z/5UptjnXQpUIQuhEA8Yy1+ZRXwqOksdCXoel5VVkdy/oPi3DlcXhB5C4kUdnyVKaAgUh7KQrYDwf4lhNnO5zDPhKiPDA4VMgAUIpO3weJHxo00RR0dyX/b3UYBajqV89SGtTht5NrvdFDDoYxfWUrxoNvDlhaT5US7O4vdRdrUt7RupKR7BeBr/yLzUCRNr+3IWlWWUsQIPv4NkeqIXUmsmq6G933kEqWWx/e7Dj/O9ku+6AnH8kzQLlp/Lincy7Lkwx/+MN57Op0OL3rRZzc89tmAiQzWy5yN06YgPs9ysY8DNqo8BQDrKFv3x996+7vpaln3ZtGAr3z1S56wjWJ3T4p9wfbIbG/LfJ/NKcYTtC7RaeseYi1qa52jt/0T8ND99Kee7cNeYokllljiOlgS7kt8zqGyE9jclFb497///RRFwZ/7c3+ufs29997Lbbfdxjvf+c4bEu5Zli084FcezkssscSfLtyy1QWmRFqRRtcPNIRFwv2RRx5hPxDzp0+fXggB/XyGOjysiSX3DIoLj+7PuPuEtMRvtB4kTachLbXWC8T6jdRy06M5BHHkM+DbP+PQVa1vPBfqz21/Teo3JI1Sik6nU1vaPGHfpjMhMotWuKRzsL8vpGhRQBQ3ZKK1wT7At4j3EKSnXGMxUBGmCxtr2cq0igBKKXYfusTq2fvkF+0ugNZHLBC7x3HxItx5Z6P0fppo34Pbnv5lYeGRR+DECSECdnfxcYw5deJpbwNYtOJpz4XBAA/48ViI1JWVxXEAOScnrrPdG5FOqvqfxhYyJs5Tk/oL1jSq9V8bzmXYX335Mm51Vew1jIFRSyHb6Sxuf22N8nBC5AiWH61z5hEP9zOn5d81mbhYQKw/TikRQsrILBYf1tcxG2GOZY0VQm0rdB1ML14lTWOic6eJ77iN6KMPAZChmZqUFLBoyjjF22YOee9FrGw9LrcyJWtve0KB4NjGgi0NR0eNGng2w84yitITmRTwZF7Te+ObsCdPUnzbXwUgz9aAFaY7VzC7O0RnTi1cLwtrUMvu5jhU+xpsX3vtAkX4Hpu6Ete62FT7OnLVyQwFp+FQcgOyvPmbD6+rsh+UaqynjMGNx2JD7v1C4WyxIcaLJ3uRw+4+3HkBjCEqBkK0hzqMLkux0SlLLAodzlHPwN+84wSPTF6Ot4814+I9rB3rkqrI7nYxUSkZl9DV4/McPx6je33U+hpaa5kLo1HgmJ0o9Y0RspurzZEMj5qwY+fQa2t4I4Us7Xy9RuvZrFGKHxw2++dEre6zDLURionTGQsLYmW9BFLgcMeutXCyFeBV5cnu6ylwPTzhVtMK1mU4hLU11KB1r6mKfZ0Oc5NQtIKty+DTDXB5pnhqI7Wbw/r6eq1yT5+k6+m5RlEU9X3k8yXMtX3nqItOCOFeo20N5X1dqASxPowiuS72R9cXE7jKjgYkY6TqyrEWpTR2JLZOur2+9wf4kE+Q6RvN1iWWWGKJJZ5NLAn3JT6n4Jzju7/7u/niL/5iXvziFwNw5coVkiRhPSjgKpw6dYorV67c8LPe+ta38kM/9EOfzd1dYoklPg/w4Qcf57V3reOsIpvO6a09Ud12HAcHB/VD3nA4/BNDuB+snWCr8rO9Sa/0hx9+mJ2dHQBODIK62ytM+xtECHerVOw305Je+LIOkXTeY3hqAryNNuH+TELesifxLq9gyGHiaiKnvc0FVX0rAJVSwvUIftVVWCIeCRgEIVQODhpFZTsQczZD7+zg1tbk96Wv7TFcf4AyplFAVkrLtbXAmlWfIyry9auPwei2msR3ly6jV1fx3qHCtm15YzVjdmWHNKiB1aVLTz2oT4I2+ZvlpXh/B2sNX1lx7B+iV/pCKDpPOTy6oX/xdDqtVZk2TRbCGCv4ssTP5lAWKA9uOkV3u9BtEdpaLxZsqmDJykM5F09u5nPKozF6awOlNboDW3efw31c2M1yNIa8wLZU5e2P9aWVcY8iSFPc+fNCHFd/tw5XFHWgplKqsSKazTDdjpwzo8XLug5gBe68oyZ/fZahvGdmEmzSkDi6Ghfv5ZhN1KiAW2Psh0NRkFsr9jRJIjY2zsl1X+XRdjS7s5xupCXjdjQiu3ZAUYRr/9pluufWpOulLPD4xlplPofRuCaMytLL9ZHlYhnjvZzPs6EjY29P9qWy5FldhdVV1PAIul1Mt4vSELkShUd3ezjrMfM5hXPkJuKT3vK/lId8yR9N+fY7TMOCjschvLAD8zl2nmGyubQlONXMgzSlCh6si3WjUWNx0g7kjiLodXHnz0tYaJVTUOQ4QE+nsH8gHuhrq42aPoqEoItMY9VShd1WgbjWNoGvzstcNkYCcqdTUbqvDMA53NER2joJTTUa1+lgZjNQmnI4IlqXNUYliSjLQ41PZ3OYSFaBWDopLvuIC0VJFQLtur0ndEhUYcWuLKWQFMeyz5Wy3lp5Tacjx0godPswN5xDO4cPKnYVK7I/fB+9D3wQ7z3l616HHvRlrIoS32tt01n0wYEoxq1trGqsRc1mcp6VhpUV6QSoQmCr/cgy1GQivu0Vqa+UnNf5HKYzKWpUr1ehOyBO0ECBPsasN+Nijq1L9cJw+lRjsTOd4GdzCc71vn69SROMv35hN7efGWn64IMPsre3Byzmq3wudfqZ9nr+OaS8fzLkztaX77RoiowPXR0TT6cyD4dH+LxA9XuS/dEqBD+0n/OCbflOM57MeP/73w/Ic+8tofPk2rV9sa6LIinSdXt12LAe9NBpsmgDp7V014SC33z+9Dzjl1hiiSWWeGZYEu5LfE7hjW98Ix/5yEd4+9vf/hl/1j/4B/+At7zlLfW/j46OuLVqI15iiSX+1ODFj3yE6N4vA2BjOoSVzqL6LqAoilrZ1bYL+XxRVd0M+jG1olV7aguYJ8NsNqsJ9E2V0TMJRGbxYS7PceFzbeEwsWlI9xYPNRs1JLe1BXESnkqLHEwgn2/ymbrX69UK805bxXWTaD/I3wh7Dz5C8tIQSFkUCyGBShl8aBtfIFOiCL22Kt7S1uHzgqjjKLVuvnR1Oosk/bHPcLfdJkR6FajmQRkj4ZRtFMWi8rzyNg5j2B8fovIcH86xPhsKR6PGZ1wXN37wPigVp0shQH3rPTcLB3UZZWabE6sBVRXRp9PaGkdvht+FcY4GffTHr7/dhx56qFbNRy9/Bfb1r5c/tMZROYcqJHiQXhe9IqTSAp0UCkU1yVRZhJgQNpck+DxDBRsUwngAFNcOMGpFCPfDESqe4a5DZCgFyoj39o2gCH7d1W6hhEzUQhIm1x5AuT6+1xMys1aDe/QDD+JOnZR9q4hbf0xt7x0QlMfBIsMPjxZDU0HI4apIVJFwWSZWUTSkl088O/oAtXa2tvjolTMyJ5+lTbD5ICwBSoWODbH7EFL72MXubENgt88jiGWJqtoLWsc0maDmc2xhSYMSeDS3vOfcSzhfHrKqNFZFnDm3xt87m3CuvwLdVoEuL7Bey9zQGrOQLaFaHQP1iWnQVv7v7dWhqd7Kketr13Dr66EY5MM1H9UfU5PPnU7jOR6DL10dmGkuX8HfdWewR9GoLGt2wdraPkl1UtAafXCAixPY3kKvr0sBJUkkALXObvBEITC1krgr5yTcVWtKNFHIPJFr0XHu7hdycHGfoBsXr/SFcfFi15bn0r1jNAqNPxzCdk8+x1qwpRDgKyuy+TRZ6DpRiIWTWl8DFPaxx+DS47IvL3+FkJVVf8ZohMsLzGAglkZeQpal6CDqez2fS/EhL1GdVObKdIZJUwms7XQkLNjL+VHZvBnfOG5878vQlRTWKgV4J/PYxxFxKPZcD+11sCp41X/b20OlKcpEqNOn5JfDIXW4+WiI8i3S2UHlMJM+7b6wRRRFUd+nh5PmHFw+GPNcGLdc/Wf/nNn73gdKcfoHf4BOFf7cws2S7JcvX66LB+fOnWMjdDgURcEnP/lJQL4z3HHHHc/S3t8Y77wy5pVnJFfgvZeGfHH4/WRnl3VCGLQClc2lgJPnON10Fdw7vkLnpDyvnu/a+jtoWySQj3PUaggcns1R0wmooHAP65Lfa9mxhdyRqmhZFq11boklllhiic8aloT7Ep8zeNOb3sSv/Mqv8N//+3+vK/ggdg55nnN4eLigcr969SqnT5++4eelafo51Ra5xBJLPE/I80Yd2ek0ntjH0FZ1JUlSq2d71/F7/XyF9Ura2INv780Q7u1xMWUBLhJSyXtRWwOsrra4M1/byiilcNaDATyMDhulnoGacFNRtCDYvZn9auOZKN9u5v5w+eIet18YiaLUOfKswBvDtPSsJR6t1YKrBCBjM8+knVuBMgq0QkWmIRjrENVSDng0kvnpfUPiLVjIePF/3t0TRWsV6AiLqkqtcVqHcEHIXv5q0pZnuX/oYdT6uhBS1XsGrc86hpMvuacm9Nzq2lOO13Ho4bA+nviRh+C1TTBx+fAjROfOCamVZTIeBwfSBRBCMtV8Tn/n0+z/Xz9F5+7zrH31XwJgd3eX0dGoprfc+fOw/sT989rgtXQE6CwTpWpQbFdZBrY/wCwQ0+FTo2jhV2o+F1J0e7s+L5fe8zHcnbcB0FMWYwxW2fCeFpHvPSrLAuGq5fqbz9FZLoSu97g4QpdlfU2pPBOyT2vxLT95UgongYhrk9Xu5AmZE1XXg/c47+tQ0iq0uD6YLAsKZrVoi+K9zIcowlkrZOUNrkOvPJgcbz1+PEEbzSTu4oyQQ3p1HdvrYLQEvMZeSEsfOjFcpwNKCia6yEhsvjj+ZYna2cH3elJkqHz5250lUSSBo/0+cRJjAxl733rK93zpt/HiT/4h32yEbN7a6LJVFQB299C9rnxWp4PxZb2GOA/j/jqrVZfDbCZztO48aA3C3n5QKIeiTu2hPpRj7Hbl93EsvvuoBRsbCYct8GUpxbMsow4oDvPUKyP7EEVi92IdXNuRAoGzUjSJjFzTxuCjSIjfspTciUrVaq2o91dXAIVVCvUvfgz9mlfhAPWaL6wVslEoXCjv0aoENDqo+0lTOSbrnlAwdL2w1kxEbe+mcwkqnc/l+KyT+V/Z47jQ7VCFqSYJbmMdfeky9HsoFGY4InJSbCm2NmqFOUkinSZ1yCjoKnNhMkNneWObpLWs1QCdLias5wvnofKXT1r3hSpLIE2brpeqAGkk/NbHCSjNLO7goxvch9rXa9uSyBgJlC0tzGdw6bJ0PbXWnqq7pMJoPGN1Ta6FD35qnxe/7vqbvBm0c0yGkxndSLZzefjciAxG//U3KR55FIDxu979GRHuw+GwLsCPx+OacM/znPF4XP/8bOJd73pX/XPb3tTh61zudl7Jox9/gPUXnZR5FkV4pVFa45WmjDQf+9jH5D22Gf8blVSyPMMd5OhOKl0ccSzz1Hnc3j52OkcnrXlkbbC5C/eHbKlwX2KJJZZ4LrAk3Jd43uG9581vfjO/+Iu/yO/93u9x4cKFhb+/8pWvJI5jfvu3f5tv+IZvAOCTn/wkjz76KK973WfwTXOJJZb4U4HRrXewHsWQxLjgTbvw8BtwdHTE9rY4ora9uT/f8x92dnZ49NFHUUphTm5Jy3wS46IYX7jrfhOosjNg0a5FVWQJoEehRT8yougMRMhRZtnuJHV4qlNl7XttW7YLxXhOrFMhFb2v33+z3Pln2l5eFAUf+MAHALhw4UL9gN7GeOtUY8cynZNsCKk7zi3eq4oLX3wq9l7CIX3wAt7YAGMwFelSES79vpBPQVlZ28FMp+hLl3Db2yEgU7ajK0JVtUi7SjVcoSJWldicqF63JvXIMkoTEyuFrmTz3ova9AZQadJcI6srNcGglOI1r3nNUw/y0VGtGFdBfQgwyzO8iUQ16lxNVNqjESZJ8HEsxRqlGew+wP5v/t9Ep0/XhLuoMn0z7FXYJgghVu2zVmKvMZ6IUj1NUWUpqvoQNmkODvDds80xV+doMhGFdzWmlSr8cBiG3TOxqt6H8uQpGPQpD4/CbpT1fAC5dnwSC8ltNDoWVS55Hqy63aK1i0dIFKVQUYTa3RGSr9dv5ko4Xnt4JB0bpQQaow1aq5ort9YuMsXHFe6Vav1ohMszTH8gIZsV8ddSfVefogJBqbMp7O/B5iZaKapSjjWG0jqMc1hlRHVd+WOnKSQJOgTiKpOSm4Sk25XLaR5UxpXIwjbWOjgH47GQ5rfeIv+eTKRYEYKgV1LDV22u8tijK/L3eJEs91UYanUd9vswFIW5zjOIWuNbXa/t9eby5aYTYlUKN37/ADWd4osSZUvorklQ6ngscw6Ly7M6rFopJcrnoqCczoireacU3vpa9V06SxTG1Csp3KlNWavcbC7dNAATsZ3ixAn8gXS2lKMx2mh0nuOtxY4ndU6C04buo4/QffB+AEavfZUQ095T6khuC0qhvUKTY7Cy5lak5Sfvh7vvWiz+xRH4qFlTtAKv5fqMY7nuCAVVH15fKd/LEooSNRpR/OiP052P2elvsa48qQs2GFVAK+C9g7zETaaYE1viVT2dgQKDa4j5EDbL9hZqPIb5TKxbogiMljEFfBTJ+ep0pEgROkW8UmKxlCTiM18UUgRbXQ2dFyUM+iSdlGjvgWYs2rensmwCrtvXoXNClnon5GvdgTSqX5d1eviW+nz12uMQS4B1/2MfAP4CzxRtW7R+5DCBJb4weG6sW/Ze8zp405sAKD7+iev60bfv83H05LTF9b4TqCqQmefOKucl82t049sBuCUf1r/vZ5kUWEN2gHeBBPce20nqDDMfJXWhs9O7vjCgmGfo0yuh6yXHD/rSMZPLmqBXV3CHre+ucYw6sV3btd30F60lllhiiSU+IywJ9yWed7zxjW/kZ37mZ/ilX/olVlZWal/2tbU1ut0ua2trfMd3fAdvectb2NzcZHV1lTe/+c287nWvu2Fg6hJLLLFEhbVeXHtlK6MXH3hbaKufoiiq//1sq6Kea2RZVpPnHaOFCPYeZS2uFCLNOcenP/1pQJTfbRudtroO5xvyoNsRZWfcq8lygNWOoSxL8Xx2jlHpWA1htQ+N5nxh9cJrV+DE3QCi9A242Wfip/vwvHAcyHmtzu18Pr/eW7jt7GpjdxI3x7jVM+yNHYNUsjB7yRNS8cI2PfraNdjYwCnVqPajSMhfrYVsCoUeZjPodnF33YWvPJSDxzGzOaosJFSwer3WsDJYGDRVBbCWJd1Lj8KdgcSJY9KdnRDiqGpyz6rFfb98+XIdnrd3+YDtu4RQK5SmjnO92Yf1c+ea/QqfCbDz2OPEZ0/X9iIVzKmT8trqPYnGRTGq10evNAGN6niXSqVar8ZEKSksTaeyrypY8lQq1lZ3g9rZXfgsfemShJkGYo0Q6qimUzmG9/8RejTC6gitmk6BCI+KI6Iw1y9evNjM0aIQIq/ayHRKsX9IrBEiEIjbHvwQlPCBaD04gKrzryKda3Wxwtx6rinmzOfSXbG2QtJ3Txyv1rF6QE2nMl/iGO2dzB+8BP9WZG5RBGXzoh0GIATS+fNBee7rj+/1YtILt4T9HwpxqTWcPNm8V8sxRNXuVZ0XvZ7U6K5ewweP8kph7LRBDwbowUAKOqur0q0QReg8XMfO8hUnu1y96xY6d9wmCvDQbeCcQwfC2s8zGE+wO7uY9TXAY5Xm6NOPsflP/yn+9Cnst/4/4ML5xS6AKtNjPofDQ9RshktSVNhvDg+lcLa7i+t0ZYy0ksUiVfXYV0i8W7imvGp+jqytLwh17LpbqPPN56hWsDO9HlGvh68KXcE2poLxjlxH+AgKHaGyTAo83qMuXkKnsexkYXEkxEZhVUvR7hx6OJROhdB5oY5GqPkMX62Z3uN88EDPMtljoyUToer6mE4lTPXUqbDeDVjLjjC2ZJCNSVdW8WkHFCRvfgudYkbxpV9K+SVfjDt5ktJZmM1w0xnGaHya4pSuMwucksIvWotNU9C9a3wY81Dwra4/gN1dOWezmYzZfA7zTKZAsDzye/tCYJ45IxkLjz6KKVv3sda6pls+3sdboupMjjYqKyfnZM60zrRaWZGOD2ArevpB1m2076EqjA4gPv/PBS6cx4fAavvYxeu/pjXny93dG37UjYj1KpQXbhzg/kxRNWwIZ97YkvUOd2Eqx3XqcKd+fe/syXrddkaHoFSFx6NHo2CjBIlp5ohuHX+WZXzqU58CwPcS9P4+fjCQjpjDIarXk+9nVVdme4GYTmWtD+MdR08vM2eJJZZYYolnhiXhvsTzjp/4iZ8A4Mu//MsXfv9TP/VTfNu3fRsAP/qjP4rWmm/4hm8gyzLe8IY38OM//uPP8Z4uscQSn49weSkPzFrj9/ZQnY48kFiL7/ZoOLGGZE7TtCZjV9s+vZ+HODg4qH+2K31MIEOiO27Hzmaw0sV7z/6+qE2Pe5u3285VmjThfeNxQwwsvgHf8qJe7YQHu6Jg8uFPwFeJrUg5zxqrhOtZszwFKkL/ZnGcoG/7oe7t7S0E4x4cHOC9p7fRHJ+LY3RFwpYlUVGQhuP31jb2OkpRhZaCkq4KY4TMqqyNqiDFividzRbJVlggGmoSVBnUlUuigl1ZkddU/vXtro2wL8UL7yWqAlatxVUdZK2ujeiYF/POzk7d4RFpakXrM9YGVn7nZUN22MkRrLfI3LEEaHrvJdBwNpN9PjqifOUrmNxyVkIhr/O5EFr4q3/MZqJGDeSvKi1O6dq6QwHkRa2u9Wm6YGHkqiJBS5Gv8VIk6fVJjKL767/GzCSYF7yeouow2D9A5dkT9xNEOVyR3t5Dr0fc68GVq/X42v1D4hNbDZFe2VdEEWpjAx57HAhWOAsFBoV34hnuJxN5vZEIYhcSTouiaNTlIOTndCoEblqRMwpXWiEjvReVdjVfs6wOwPQrKwvXkpvP4eAQ3e/VRCoAZbtQ6cWSJMvhyhVYX8fPs5oIS1ywqypL2c9SfI59KMBQeRE7JwWnLBOf6ySpCwzYUjoAkGvdYzBJQv7Qo+i1FdTGOi4ouJmO0drIsQ76RIO+eI17j/GOSdTlX7/k6zifZLxeRSTt7oPjC9X6On59vfFwD0ptej3K1TUoy9BRAr6aZ1rjdZgPUYTr9fH7++jZDK/kfNZdB/haBVvPicNDuYc5ix9PJC85KP3ZP5B73HyOn8/FjkiLdQWqCcgtlZbQag+RLfDTqRDlSqP+w8/TmQyx2pB93XewqhWpUoxso4zVZcHg+/83sle+kuxv/U05lsEAO5+jOh0JYrUOrKlV/T4vZN9CQau2wUGhjkbiqT6dMfeKLgrjLNHRrtgrAWXaZ2ZSfFEy1wlROB3VOXFpKnO/IsmdQ1e2NUcjvDHSIdDt4JWGJBale1nKOFa2UYMVKdInieRdRBF0wGUZWos/mk7ECssdHKC7XTId43TLiqV9H606jar5cx2oshSiP00bFbRzaFuK9U51Jc0zWTOB2fbWdT/rZtHtdht/8GlGrysdTa74zIj8m4Wfz6Qwqlg4xjZsWcprQjfCjeBcU7RqF6/KsqzX9pvJbXkylHt7XP3jPwYgPnEilG4UILY/1efHWteF+k7WFJpXjZEujCRGmQjtMvASFMzGWnOvzEu5b9eDIOvqpfd/iMHdcg93/Rh10OpUqwJ9FfjDIXY6R+nWeHW7MreCvdTSUmaJJZZY4rnBknBf4nnHzSjlOp0OP/ZjP8aP/diPPQd7tMQSS/xJgouTmpRUJ07CdFITne3Ht7b6yebNulRkn9/hUlGrDdsVFjU9RCcJxZUdilvk4W2cFcxLOeY8t6wm1/0oQV6IjUyv35DMbSw8+La4KWM4MW3I/2Q+Dd7dHmZThv0N4kgxmvubui+0VekXL17kRFBu3QhP9plV+GaF+++/H+89upvWdi9a6zrME2NYrSwCSrug8Md7nFJC9hJcFdIUdSJtSM9Op/EtbhEKFSGrL17EbZ+AVLbhglWH0h7tHLbqNCgK3GQqit2K0NUaMlG4T8ZTutvB+qIoUI89hj97VgolwWomnzaFB1jsBBhsrck+KkW0tfGk43tDhAlQ9lb48Ic/LL/rtMJfnasLN+riRYhjbF6ggTIr4ZWvwHqPm2etj2wptitf2qp4EcgqReicr3SbSSIk4HQqnS7BCqPsdIgCIWOtwwSSmq2GzHJodFFi53PcPMOiUN4zjjvEgdQoNjdJNtawR+IXPDpqzalKxXpcIa6oyTPsYvGo9lcPyHVE4sqFgko1vnUnREsZ68bT+u3z417saQppK3Jx/wAig0oTVLDtUEXZFNSqok63u9CRAIiVx5nT+OmMUmt8LJ8a0bahUSjlK2cpIZ7nszpQOYoTitKRevGdV0FxX59T3ZzvCI9PU1HKHx01a7s2jarYexSWKOnidi6jtMJsbdaFAl3Nt+kEP5lir1zFhGvIaYPu9PjDC3dxWOzypXqx80BVtiqV6r4+DeIf77RGn5AOFJ0kuMPKUkJhgk85SslcRDXz8t/+H6x96P0APP6Vf5ktL4TY7GhKfPvtzfaNwQc7G68NOmQwuPlcijreBQJTcgtsZcfjPLrI6nkfV/kRCnKdUv6Tf8mgnHGU9NFKE3tHbJ0owZ2nG2nGKrxBybatUqTvfz/24x/HnjuH39pCnzmN29uXokfotGF9DeIIVR5BlqH29qVzIXStqCSu1xnimJ4tUEBqC4xrSOxhb4Or6QrnjFx3KkmJghWYygtR+IKcg2rOVh0hs6kU85JELGKmU/lfKEZWoalMJmIDFv6tihyfrMv78lyIYRPVtkz6zBnppNFm4br0qvX9ovKsB5k71bwuCtTuLr4vuQnU9kCTurvGaQO6WRtKHRGFeae7N87fuBm0c1L0eAK+lGs8iuq1emVlhfPnz39G27khev26+xB/fTLdWgt5JoXELLvuayAU2a5DuENzT/tMFe5Hv/GbPHbhvJybo6O6AKCU4tO//MtU1Lra3qztuGzcfJlKO1qKL4Aqx/UEqe9R4f5vZqGIGMcL3UyDTvNZuizFighZHp1XsmaXJWp9jWh9DbdzrCOgtHVGQHyDAscSSyyxxBLPLpaE+xILsNbyi7/4i3z84x8H4IUvfCFf//Vfv0DYLLHEEkt8ruP+T36K/QNRqPbObIiqKE3Eb7Uomjb2rRP1Q89Ky7JiMpxQ+WdMD69vN/L5gm63W1uEuHlG3IlFYXvH7VgvD6L/v9/6BH82iElT44njhLIsawuGCqPhlM2+kAeqIsG8F+VwdZ/wHm+phF/yEB+sU+IWedLpRMFqQcN8xqoq0XFKP36iGv16aL/mZgj69mu01gvHdfz9VRt6WZZCsiQJNs+FMKu2X5GYld1G+29BOapig9/YkIfna9eE7IoimX9bW0LqGCOKz4p87fVwd9+NH40RZ4mgYktivJcwTCHKhHhVFbEkBxKqHPLz5qmNhrQNKns/Ggnptyp2Oabfej+iAqzV3rv7MOhJIGKWoUzwwqYJjNNa8+pXv5rrok0Ym6gpbCRG1NOdjihdo0jILSX+3rpSAhoVPOolNLYe30opHuCms5p49GH8PWqBhMFaUfvKTjf72LKXMUbX3TCMxkIUzueAEz94YyiVYa5jchNTKi3nAzAPP4S+2sUE4nwybZSNC+rWivSpyMjqJZUivKVcr19vLfHJUACoAndbdjV27wCztdEovIsCNxzhlMzjBfOAYIlBUeBnM9RgBd/vLVhgyDhKQUYpJYS80eidXexdd3E9qCtXOPjpn8fecy/8NTC/8Gt0rjxI+c3fgD99FhdVIaBhzdC6tlVJIkNekWntgkKWLVrhaI1F18fjvXR/eOdxeFwic1l7j0fTSQwDPHZjte6iAd/q2lDQ7xHdeUEU88H2ph8Z/vELTrG/l6HIm+uqQlVsM0bOYZ7L52qFth6/u4eq1Meuqjp68vGYJI0hScUCoyiEXJ3NKYuSsUlxWrP/4U9z4bd/FRTEX/Il8MqX1cWahZUqFM0I1ig+TWF7Gz+boT0UyohCWim8URTKYIJPdH5lhxVbktgCoyyjtC/j6R14hUU85itS0WjNpfd/glt/8z/LtJuV7HbW2JodSmeEtfjRGHd0JGuSUiEMu5nDsgGNS2JZI8tShnY4Qp/Yqs99RVsbPNnWGdLDXVDwobtfw/9xy+v42/lHeY0tIM9woxF6dUWsX4pCjtV7Gdf5HOcVWilspyvL5nyOy3L5OY6arhMdinAXLtT5DpQW6z06dC6o1dVaec7+UP47HMH2JubMSTh89LrXBmXZ3B+q9SZcw06bUDBzYgtUho68KJL51boHOycFkApPp8PrenhCILoOhVDVFKHLsvysEe66LOr1c+iub3FS5mVdfOBJFOo3+g7Q/v3x7xXtrJqXv/zlTx2kbssmb6UocLOQh2MdkyyjrOxx8j1MKOZMo+Yz8+kccwgqSXDVulzNv4MDKXZU9++qUAT1cVtjRD0P5B75fqBUKAC7qpoZwn6LRauiSqAQCr+u9X13iSWWWGKJzx6WLOoSNT760Y/ytV/7tVy5coUXhKT4t73tbZw4cYJf/uVf5sUvfvHzvIdLLLHEEjeH/YO9+kEr7nXkIQSkbX1jXR5gjGGUlax25VY4L5qHk0+PM+5K5QH5o8MZn89pEW3rFa2pyQ+f5+S5EH6qnNcPo977+iH0+ENsL9bCaDoPZSbjqLXYpVRIU2pOQAFFIAezTLyxA+YYOtNpbY+h223zN0GgL/jP3gRBL6GU4WfrFtob2sGwzrlaCaeMkTA7pST09DgqUuSYr/WCurFSPp4505B2FblZkTcVgd5+4PfV/iohjzY3ZKxVIA4D8erHY7EcgaalwAeS+uIlOH9b7bHsKh/ww8OmFf1YRsHsgQdwp0/LuHTj+mFfxXFLVO4xWnyxtb4+UQLU1iAAedI6tqDc1EExW5HgZRwTFYV4zXpPHFrkqWwjAoqKZKw6AoqiHtOq60JFBtZWMUWBG02k4GAMflKKnU8upJpqedg752plrF9dQWkdSOxAEjuHdS40I3jKtBfmnmfiIjpRShnBq//Rb/H3Xtnl1o3ma3Z9SYRroRyOiFqEsnc0KvgK1by0Vghxj+QmmJaaNoowZ06BdaJ4tBZmc/Fj956j97wXf+akjE/1nvB+P5uHxohQPMtzuLYDg74E/87noubVCra2cFtbT1C4M5nC1auoK1cx83nto37t7D3M9vZZLyylNljvZd/CubZRTJxqzt65xeyTBVfmvvbN99bJeayuh8mkLhRoL57d6tJlWcvzXKxLStd4uOc5oElP30rWizGDQLYSig3Bq5xY7J24fEWKK87VPuen1ru4WQc4Zr2glLzHGNlOryfq22BhglKiVLYWu3eAzzJ0Z6OZk1oHSWqraFLXFMQ+ZtVAGoqTh2mfQfU65/BFgbu2gwnZDb7yrvbiiW4rSxk8kQoe6kmCAiKlMN/z91HA1ZXTbMUxymiSKAbnq7oA3igyE2OVxhqDNgpnPUVWws4OeMVHT9/Lj3z5/4y2Jf/WXaWnNVorjHM4Xc1phy+btc6jZB1JEznXZSnWLt5hf+lXMS95kdybwlDHzlLg0FbG4p6T6/z50wM6l2JykxAbA1HcXEOh20NcvQLxHroTxAgmjBNSqKHXlWusKPCTqXjBX7mGWQt2Xd5JCHCns1h0cQ5XWjQKG0cYpdDeYYqc4W88zNpXnRc1cYWrVyV3o7oG07RW86sT29I1Npuix2PUZELvH7+V4p57yL7+6/GmsY+y1uErT3yQefQZYHTYhMOzMqg7Wvw8h9AY5VqFzmcDeZ7X30d8ZSEFXDOd675+b38s46W1FOl845X+vve9r7a806b5DjLLr/9dwjvH5H3vk0v/xDY63E+PCwtuCG0WOtNiuTFhnGU0yUlDtEpitJDnQHdrlfe85z0opYi3e6g1Ibp1Nm/uwe1cFWslkLmyFTo6qtXy6sol3Fm5NyutsFGEOaaORyncZEZ5NMakLZonjhc6gtwNcmuWWGKJJZZ4drEk3Jeo8Z3f+Z3cd999vO9972MjPLwfHBzwbd/2bfyNv/E3eMc73vE87+ESSyyxxM3BAqbV7ksuymFCqz8I+b4a/l0MR3zq0pBbz54CYHfuuDu8/6hFxM9mMx59VFRsg8GAc61QyM9VtB8ktfUQi1JMdbv1g+v2pz+KP/ui+nWVMvi4EtzMptDfaCmx5P328hVMtyMPdeMxbJ4iMBxwcCgEXp5T9tbrz0rSGNbDvyvi6mmg2+0ymUxQSj2lnQwEz/aaMAYdwsqOo912rpSScFjARTFPoJZvoLjTgRz1Wmw6atTqZS2+2xVZX5HW4wlUSu2Ll4n+2b/AO4/9H78FbhWyXGld2cRTeUDX768sZcID+mxnyKDqPGgr+lUIUCxLIRBacC0rlbxwJOOxEEOtTrc2QdH2+H8CWoWYtRcuKqN1r1JTqvp1qrSNghuF296uww/bvtmmTfK7kFx3/FxYi5tMUbPp9YsCVQHGNJ+78KrRGDY3UJ1O48uuFB2b0ytzLAW3qZx58HAvrCMJBYThLGdmE+qv2RUpCqI+7HaJul3Kq6r5Iu6EGK3PpbVCSgYbEnvxMjgrRGub/CsKyp09otVgkxKIl6QU1fXjf/tvk37bt8ErX9GM42yGHQ5RcVLPFz+fS+Es2JW4WYZyHmU8zoPZP0Bfu0Z+990sjHS/B3dcgKII1gayX7OswGvDunOIXl5hinyh66CXaM6/+BRX3lFweazrsFT/BHudhjhz2qC7Xfydd+D3DyQMV2vxnK8QlNR42H3vRzj1xS+Ta6Kygwn2Ja4o0WtrcMcF/NGR7JtW9b1Dq6Qp+LQtjLrN3PXW4h+/KB0Wwa7F7x+gNjcwJ7exO7vUfJppKapn88ZOQxshp71YUV3avo3V8R6gKMYZq9eu4XrSaUKSYKoC22zeui4D6ax13X1UakPUKnrZNA30nEebQPApDdpggj2FUbA2PSTxLijcDc6GuRanVMTgeqQ4348pS8P6/lXs7WfwKMo4RrmKSAydElWBSM3kWo1jKSLFsZDf3qF/7deJM1mLhsmA9XwsK3Sc4tIe4Hn5C9b5+r/+Zfz6D36wPhWEDiCvdT0WOoRKq35POmO0xqUplGJVo30grrNM5kOeo5IUul3MhdvF8iacX2VLfJY1+QLBEkjbEvBE1kqHThThkg7ZQ9JBsLAenTzZFM/aqMlgL3kSa2t1hoLJMox3KNWEbY8zK+crkKYmejLvt6dG6Zp7oun3YHgkPuDWyvEqRTGdPvmHPE18/OMfr/NT/IUL9TjN3PWLB9l42twfgHf/l99lfnAZD3TuuSDZBMC1yztsrMi4vOcPPsgL7rrwhM8qs4xHv/Ovy2cNBvh/+2/w3i+Q+E+Go0cuQds3vy6QeplP1UeUZQiRhuTkVn2vNIOe+PR3u+0KrAgYNPU9ug4Trr4fhDHyp07Xc6EoHLFzkntgtHRGdDr4MF+SzXXctSawlWoEw/uz9Ol931piiSWWWOKZYUm4L1Hjgx/84ALZDrCxscGP/MiP8KpXvep53LMlllhiiaeHo6OSjdXG4gTnYJ4JqdLtQJxgQVrF+33itRVMvl/bZLx8fhnKWwG47/GPAV8GSBGyCiE9Ojr6vCDcjTHNw2S86DtcPfPdeyKuX1MWJSr4MB9Xffm1NSGuKouAQCKYM6dFddfpQL+PG43RXbELIQQfemPAt4IoJ1MYjRqf0tBGr4bDGyrcZ7MZ47F4ZBdFgXNCSNyMN6sxBm9BmYrz8vUD8uBY+Gv1AO69Rz3wAJw5I8Fmtd9sKDbM50LaDAYNwaIkKBUfAu+GQykmhAdiQI5zOm08sSu7BSOt6urgAH14SGRLvHdk3Z5sPyiDF1TQuglCrMnqMJ69gx2YbAsR2O3i9vbRWtUkBVrjjhFB3hixewAhu5NEznlFLtwEMVF/lnX1tvwxz1h3dQe9tSEEz2yGz3IcYKIIn3bweb5IgLfm4vDaBB57TFSjo5H4n1fEf9QiueMYXAdXFOgshyKXIkevu+CjvICgKFRxJMrXw8OaMFRJglMaKQd4OuNDooqHdb6eU1FQ2NawVop+gZwhz3HTGe7iZaJ3/iEA+eEYvvctzblsk7wA/Z6Qf1EkY1qdwygiuuWsHEfVueF9IO7ARxHTvHXego2RTlLZVJ7LnKvo0eGReLlHBlV5Ss9m+M0N7OYGk+GU1ZVOs/2ylHl1NKLwSpTxQFTkbMyPRJHvxcPdWScWJcag06R2eY82N+FgGJTpSjz2QdYRpfDayHErhZ/JNacODupikwKciXBR8LZujf3okw+zfddZotMn6332kynKhbDCLMeNRyhtoJdAHOMUGIKK3fl6TKvx86MxKk3kcohj1O234fYPZE2zZW0z42Zz3HSG6XWl7WV/n84v/Dzgme8d4t70v6CjSGZTsJ7xwLvvfDX/7s4/A8Bf+9R/4/wP/wj2RS+k+OqvhtMn63Oky0LWl6KQYzZGQpCtFJOUYqGo5g+HdebAiVijvEO5Em8VSWFJbIlTmRDShOXRW4IInXfe9Tr+qH8KDZw7dSs/9fIhhdN8+oNdNrWWHIBOKoUzH4h021hcVHYp9nCIHo/h3DlQYKMYozTRb/0OY5OijSbTEYWO0Em3vmfpfvC/Dl0pWit8mtQFTGYzmQvjCXp1RWypnIXBQMj70Cnjqy6tNASj5nld4PL7+xLyGuaWL1vrXru4Ge79vtPBD4fku4cUswwqHrO93g2HUlyu7Eiqe7D30m0UJ/L6w0PUbEbpPWWeY4P2uZp748ND9C1n63+X5c1ZyjzywEXKvEAZxfm7bq1J2/ocI4rpykNeHR013UlP4pv+TFDdt4GFIrv2nnf80scAWNns8JIvvUP20YYw4CjCO8fB5cfY+ALpwm7fE7bzMUR9UIpTVx++/sajSO5vQHzmzML3m5sh3K898Ch88atqq5+6e82Goq+WjixrYglQ9ZDvjYhXBlKknuV1MYiyBJ0GQl033XLe4zqd+r7rUXXXjR2sYKp9TgzlXBGF9a86l4rQWXJwuFi4LEvpiAjfNfSzXEhZYoklllji+lgS7kvUuOeee7h69Sr33Xffwu+vXbvGXTfw7FxiiSWW+FzE/No1WD0r/3DhIbeTojqNElqPx7UiUe3vo9c3679VijUAPWgeCruVspFFG5LPZVRKde89Oo4WbEsu7l3h6miP+Laz9e/UMZI9TdNakRav9BribjIRki+MIfMQ9DUei/1KII/bJIVraWPLoiQqivohE+fkAXNr64YPv1evXuXKlStPOL7p6Knbo7XWYIX3woPSbbphEdX26/2oWr0rjMfYeY4JBNCCmtH74CEdQjutFe/3tu3OdCpK4soDviIexmPodvEnT+J29ymNAW/Qd5xvQi7XVsXqJKipdVDgU9mCVJ7JzotHdBUMqBR6S+a4Gx4Jme09vlKvLg6AHFZs6qKKn80aBa91NSn6ZFCtDoLj51SfCtfifC6EWLdLPJuKzUSWNV7r1blYXeFDH/qQbP/yqN5PBfi00xDtFYoC9fhFykEfHceS4ZAmQrZGYdxbxYUaLdsjAHXihHiYW4vJM0xQyYIE4sVh/wbZhH6Z4pUm0isc5cfIsOo8jUbQ66GTREjbP/oQCsiTFZI8b9TTvS6NX/QBZLkUIc4OFon4tk1MmGPeGLj3BVhAeU/W6y52QSQJajOR7pM0lULQXCwOVNi+ms5adgbN9nZ2J6yutdSRUYQ+dRKzt8e9Ow/wWPCa90az31mlj0Jp6TjSlX1R5acfjiM6/xL0A28PpFAI/U1i9EoohB0eigVIWQKiKs+nGdFaHAhrmG2dofvCLwQgufPu5nROh0S4xkfbe3Qh/vkewJZERyOxu3Jiw+MLi6VLFOXUfspV8KX3qNUQ9llt5NMPoDY3QElgZzXGOknkuqnmsLWUH5Qwyg/e+jJeGq5VHwIQVSjTXFhfAWS+rCQxpQ7zVCkwEaoal+ms6UjYP0SHMFx3cIhW8pBXFy+VwmhNkovyVhczVJGjbIl2HmcSknJOUsxCQak6vZqNUyvks4zh6jYf0CtoFF+90ePCbRex1z7FQ2og1kNpignbRyEZAlpjwn5VPvkojSpKUZ8rpBiuNFYbsk6PfjYldSWpK3n46/8Wa+duA2D7vBTHqpBjnEMXch6V0fXc9eOpdB5Mp9DpotJUglJ392UN6/fx1krxzXvpZjFSuDTDIW5zs9lPQpFIKblOqoJzhTBnlBLP+Rrtjq2NDXlf+x4Qzgnr60L4zwrUbIY6OmIc90hCJ4FS4MJaWw6PZB5UKuX8xp7mbVy++ljdvnOuON3yKm/ugV4p1HAoBScdiU1Xu7D3LOFGHVGr3eZ7yWQ0q9f6jLmMT7j2TMsCbGEdbOWomBbRXLSsfWo1u3MUuXtyO7Tr4H1bF3hF6HBAaymWGKlGKe+bIkvSfM8y4bi893g8bncf3es0nWhVd4QNBcDqu1AmRSCVF9JFRLCBCZY0JopwkymshEyCKKz/gYC3SYJqBY3X98dwv3BPs6NwiSWWWGKJZ4Yl4b5Ejbe+9a1813d9F//wH/5DXvtacSx+17vexQ//8A/ztre9jaOjo/q1q8ceSJdYYoklPpfgbLmgfqqDUsdjeeDoiK+7Gg6ljXtzM7xeHsC6GiEz8HXIHDTkNdycIupzARevDYmDlrTMSiI3RgVFd2FLilkpREUgZkwcYYzBOYcxhvEsI1LBNmM8I+mmEkCIEsXibNYo1asH0criZTxeeCheG12rfx7212g1ZwucEyuQsO3jqLoLgECSGPCOyScfgfvuedJx8N6j9y7jz5wJv2j+Np/Peeihh0RB2yIXnXWNpUm1f0qJ9cU8o/IW965Rcjcf7lFxjF4PZrjXromSMYlxs7nkcPZCF0BNsjYPwcaWJKUQTHlZ1FYhaE3vB34QFLxz+wW89AfeWB1gY3mQJOL3/AUvQ1XWLW2v9lrWqIhsyYc+9CFmoQVete1Kjo7EOz6O0a19axPpT4q2grD1uR5QjzwiVgstwrvUhqjTEYL8aETbOkVFUb2PH/vEo7zotA5q1aAat7aZfyCEx+mTMk+87It3DuUsEIsFBSx2CABqZwcfx1JU6HUpd/eJAmlilSIqLdVRnf/Kr+FHV0/Ifjz4SezqKpw6xY/frbDWN8df7VtlSzGdYkcj7N5BreK/tHmWF3zwg/jXvEZ+YSJqQ+rtLfzla8GKZLZYXAihoaosahsIP8+EFI5jRv/yX8DeYfP6akxLscRgNguElhZ7guplUVQTy8xmQmCW9ok2THlOcfEK0d4euYnrv/eyMffuPcSseBlTD+CgLJr1QKk6ANL0V9EhZ6OxaPBQWvGlrwhr71FaoXo9kjtuF2/syRTwHG3fRvrF3whAsl5CWLYP+9ucalt6ONccQSCx550ukXP1uSiDTZCKY8zJ7drmqX7P7q6cg9KKxcRdd+IPDpvLamM9FLMstigx4wkoGO6O+N4/972gFB1n+ZebGzIeqWOoO9hYLHVestHn607I6viRDwbLlKIiDkNItVK4JEFlGepoLOrV6VTWmRVZc6w2ooIP41cYUwfL+u4APx7iTYRPOriiZGoSZlHKRjYKWwIde+599a1cfHAP5R6QZQaPVhZe+j/h85L1X/hufHkvTKe40bghlqtOonbnjTEYHGRz1ESuTb+7S2QLujYjHu1Q6pgcTamNzJtqPa0GuLLvUAqrNdr5WgmtylIKF4Ek98j1xmgkeRyB1FTjsXQmVWR69b8oau4NKvxYNTccjVCdtLb2kckramdVWfnUZ0k1d5Jx8CEvS/n8ivBuh2kniXwXOXWKtXxCmfVwQZVfqZon73kvvOB8vV5t3NsUyp8M7WM42Blx+hbZ/mTuGXRVdah18SZKEtm3OH7CSv9Tf/gQj+5P0cDf/cp7GHSOFRGeDlr3hyjWMJjLjppmrfeFFZsUJK9gcN+dzXrdzqUYjmrf8042rj/38v540cc9dEO0s1oAbiY3JmsVBQD82pp8Z6iDkQVmOlv8/hkg3y/Ca52X++tgANMZOmTZ4D1xrytrTnXPD11YIpwI2wZR1svOh24U33Q3dbv4o1Zwt2utr94T3ew9fIklllhiic8IS8J9iRpf/dVfDcA3f/M310RS9QXka77ma+p/32z7/hJLLPGnC0VRkOc53nvSNCU+ruZ6DmHmGRRBSZXNw8NQeCDq94UQyDIJ7ZpOYTzBb2/XD8guSdCJqCGTtDmOT91/uW7jnn+etOQ+fGXMuS1pozZGib/ubAbjcXPMFdkQUK3xZVkyy0t6saa0DjuZkriiDuEjioQs7naFtIsivNK4q9cwW5syzhU5OJkwW20o9tV+IufCGDkHZQlZjtrbveGxZO329m6jai6mDzIJtgnGGDqVdUsL3vuGbK98nAPm8znTcD5V6AaQf7BoxVGp/o6O0FUeQBEfI9vBooJdg5WW/DiGlRV5fyAa/eZ6INtSKVhUyr9Ol/JgSHRwKMQU4Hb3MLeck9d3u2RZiffwmydfyhf+3/+R/Ju+sfFJrvYxjvFXr0JyRv6dF7B/KLYqa2v1g3epTU1uyDE3Snm1utoETFr7BJXcU6EcjohOCkkhHQY22DSUqPPn5UVHR7LPRSEkxGwG02ngQltFLevErsM5XnT4ANzyopai/1jYKAjB0O0SRZGcg6BsFKLCBrsZtzDvKQp8KBap/X0pNGys47IM7WVCPH7nKznxtr+JpmQFT+zk3O8qg4lTYq3RgDI05P9kIgTdaCz/7SeotTVUv1eT96oKda325WhYq+39cEhU5pA3RZ4a3qOKvCaPpSsAOebQQXGwe8jG5lpz3pzDF6UQ9d2uEFXTaW29hdF4W6ImEyHiUa39O1ZoTBLiC7dRzKdc3rwN2wmhgKmpz1tSyHWrtKmtiXTwdQfQKyt0piNcax1SLhQFFKhuFx/mj1iHzHG7e+hIU6l0/cI12OzjO06/hBe0uno8wU/feZxS6DgmWVsRq5pgt6C8fFZUkWAL88rLefGBMJvN4No1dL8PPkZ7j9s/QK2u4CZT7OOXiH7yJ/HA7ukX0vnib0UpOIHH7+/L+FvHz7z0a3jfC1dAwQ+nTSdRGhkpOARPfjz1daSq9ck78BqUxqZdKYiFTpvSa6LaCkpJYQZQRc78y76+JsLj//7L9GxOz+ZYGs7ZB0VxZAxKCemtgM5KKEoYjZ7NpKRbkX06dFFEEWoyF7Vunsl1Wi278zm9//UfoPBc7m1gjGFOwjDucmo+lPtVlc+AIyJHKZlTnWsXic+vyraqYls1v5SV38Uxam1Vzqv3WBOJz3+e40oLk6l0BEQRJEIsqzjGnjyFHh3JPCOMNR6nNOY97yGaTChecA+88IXN9W2C/cwNO3qUrKPGNMRnsFbi9Gm5VrMMJlPU8DDMf4c7cwajNGYuhWrdiZtteo+Ob24dlo4umbJ7j484fYvcu2xZ4n3re1qeg9YUB4fE/Z6M1cFw4aP+ze8/wJUjuZ7/x1ff9rQJd2NM8wy5vw8hMyTpxuieFIWtLepeOG+UnKc4hplC40CF+1DVIQewulJfM9c2Ttfb+/S1I061T0WcgNL4tPu0Cfd0a73ehldKAsfjWIqCJqrX4EJr4sqnPivq0ou3jqjygC9LWUfiGOtHGB2+CzhHeTgmnkylk6Xfr797uBByDZBnBUmaNPvjqbu1FKDKAnvsPlEXWssSPW6R8UssscQSS3zWsCTcl6jxu7/7u8/3LiyxxBKfx7h48SI7OxLStLGx8bxaUXmtxUICYBJIrl5X/le9JqiXfa8HvR4uK0l6QsyMs5JBnoPzDFVD3l6ZzDkVxI5W3Zx/6vONiS3xXoi8tCwhbkjyWpFZectCY70ARFFEX+UYExGVBbabiM+r93iVoVrEts8yVJKguh3M/Z9ERQZf2sbDvdslPdOE1ppbzsoDpvdyfqrOqSy7qYdfnBOCwHtyBR/+sFg1pGnKy1/+8ie8fIFUThIpINcf1WpBd56obSlTEcPTmTzgDwZCElThZ1mGX1kRArcaTwjyUNOoGavCBNThkPXYOSdEnjGoboeo24G93eqTMFeviTobIMtJz97OQV7yqnvu4uA//wr9N7yhUeGGMFQ1neF2D8XOofKYPyOhwGp4VD+ox94uePm2FcjFLCM6Gol9TNtCKcsWrIluhOhkc76dtejgga9KC9XHqeBpHMdErW6SOjCu2iejIQrbfMOfw09nqCTBdzriX33cUgbAOsr9Q6JzZxqCKy+EKAn2PbrbXSTdK3gPWYbd2cVUSm+j64xVR4RWTpTFgPctQrhSze/vy9hvbODLEncoVj4qyzBHR7jRiF4gjLYSzSztk7ZDU2v/e4/xHoXH6sXiGFrCRpnN5Nr1Xnyn0+Z1dtwqDgYVr4oiCYOczvCBaFNJ3MopkO0qLZ0B/mhEdm2Pnj5mRTCdkl++RrS7F5ToxwJPnWMepTil6AYLn8qioyIlu2dOM7/1NpLqGqoKAvM5xll8msr1ZW0QwDuxpIkqjbxfCPVtE+6lSdEf/TjunruCGllIZKVAVwWxvX3J9gjrQLX+JEZhfvbn4Nv/amMB0eoCwKt6X5XWLXutDKwlKnIy63hs9TQKuHbmHt7zQ38BgP/8c+8Hf7kucOVe16c18Q5Vig/7q+65gL1yG9NOD+MdtixQ2RyfpngToYJ8WXshzqNshk2T2l4iips1yJw9FTo8QDlL9hXfID/vX0X/wa/UhzWPUjplLiGqYQ52+jGoiESJurwz2KhHepL26SRSQDX9vhQcsjwoc71YbTixzPFKoVCi3I5jnLOkJgKrpFjbCgJVQBoBGEq6+HDPze98IS5KSdIOrIoHuz46CoUHj/MKnWWws4MO3VwGJPzVyjh5a4UojyKIYhmXKEINIlb+zt9BWctB0if6+39XLHYU5J98AP3hDxP98q/j3vS3cF/4StnRXhfT6dDf3IBPhX3f2YFbQsZLnkG0tnBd1PZJ9Vzyos4Pdlo6y9CXLpHHXXwQD6hTZxpvdSDaPR6KeQPU9mme0bTpdOr7HKWCZZjz9RqvQneG8tTbrjCdNf++zqr5lFi4t7dssKwyzQdqX4u3J/OS1fC9zbfzaKDpqgO5/4UurLU7b6tfUuzvo7aba3b2pv9F5uLV/YVQ+CzLFiwDr4ek1Q2lynIhPFnHwTLIQ4xq1pJWIcZaSC5dxq+tyveD+v00FnOzGfGgK91FVXdIuHc55xnn8j3AlZYky8A5sTJSNN7ygDvendAq1OAcmVpSQEssscQSzwWWq+0SNb7sy77s+d6FJZZY4vMYo2lR+2XujjOez+SHUe44U6mXTCQPj3mBz3PUfC4PZ8bgfSBt8xydpLXiSUeRPHx6T9xtCABPUT8wRvqZPG4+95gUEAXRqxoMFgmjQLTV7f5KhTbtCLSiLEvUaAS+LyRuUQhBVfmyZ5m8dj4Tr9HJlHI8Jt7clEJGnotyttdDxTHJ5qD2YM8vXqWz2pNz0QpNpdvF2qcuZvjQxl+ptKuzdD0rGggK66tX4ZSQzlXHVvgrFVGo8gLfUg6q/X1Rp/e6MieKQryvk7h+wG6T7ZUa3DsvisrRWNT480zIWWPEk/u07AfOi+IcxEalIoPH41rxPP3kp+m/Rvyp51f3cG98KxHwehzfXXw//+Zf/xvKP/Pl2FvOiZ2P1rgkJuv1pdMkKN/90REqz/FJKmOnFG51jVpIujDAnrjfFQJWa7lunBPy7ibIdu89bjRCrwTFsw/hd/1+Y3MDi6xNmgoJkaZyrVbK3EphX51b7ymORiQba9isQOEx87nMyXZhQIGZTMS2YW1NiJY8l2OqOgJGI+h05dyMx6ELoVKuGuJOpXL2KA9VTmGsZqB7ELzae64Un/Kwj15r2Ay5EDs7sg2QMFZjKHREWVpUPgMPJya77DhF2vI5r7oVdBLjul38bCaWGG1Svyxx4yloJV05WqNMi5SvChctdTtFgTsayQD1e6h+ULhXJyNcGyoKdhkAUSSZBfNjE6XXI7nzPG4+EyuPsgqhDXRPWRIlGpRhfvcLmxBIpWpfaW006soVeMFdzfaDb7EPhTUfRWLxsroqBNf6inh0Ux1We83w9ebjwQB3bqUm9lTSASUksM8LlDGU/QHK2kZVG96cKMUj2+e5vZp/RSFzpCo0KimS2cEA7SWE21kpUBDH2MEKk9VNvu/L3wzAi9eax66YLOynbCv3qg7gRRt8FIJB73gZw5e8jsf+6B2cijsk2uCiGG20kMrGSAi4tRjvcTqSAorv4YwRAjdYGpXDMS6VeWi7raBopVHek+uIuYkZ99eJj4TMHYRBObg6EpFsGNs0MuGtik+cuIeXFqUc/zRYHhkNodBbEau+yunoddGdBFVkGGBztMssTohtQW/WKG8VFW/p0JQoqm3Kuks2x08mqFkIoK5CdLO8sY4L+Q4+TfDzDCKDNga3siL76KrOGS/zbDypi5vWg/MqeOFDbDSpBgxM77m76X7IMvxkSjGaQ2WUNm/liqSprH1lWdt9kWXiJT/P5DpLU7GUCTkbfjoN08PjlWb3//wo451d+JKg3h5P0B/4ALuTe3lKtNzWph/6CI/+0q+gvCd6/QVYCTk2tsQfTcTrnlBsNgadxOz+nx+t3/+yh97Paj7F49n7pbOsps16m96xxsqX3vKku1IeDqXwWpZSuK6U15Gpv1tpW8qcBbp7u5AN5B7qnFx/1f0yFE0Biv1DYi+FhezxS/X2zkYZTKUrj7LEhgJ6nnRJWmtGdhPhsGvziQgLjMEeDjFJAp0UX9radk+6IaqlTfImGrcsR6FkPuG97H8cy5o+GsmxKEU5mROnk9oip1K4J5EiMmHtjBVuc0PmfHVvbhcz5tmirY21CzZHcVnwrl/5OP/hd/4AdelRUPDav/xVfPM3f8lTjsMSSyyxxBI3jyXhvsQC5vM5f/zHf8y1a9eOPbzA137t1z5Pe7XEEkt8PuCB3SGriGXDI4cjXvsFz9++nIiQB1qENFJV2OPRkaiIO51FdfZojO82quN4bVArZk2LHJwVNO+5CRH25wLuGV0kjYTI8ocjmHiIIvLhEcn2ljwZtlTNtO1YvJfgwjSFLBNv7So8sLKsCApqV0hQn1IaX9mQKIWv7GcApTUPP/wwAObEJr7M5REwiurt+rNnmU3ndLtPtIVpQ1VEYpY1XqbcuDVca12T7XKoLabXuZr8M9MJBN91733d8l4rqIMPMWUptkWVd3b1d10/aqOiuOmqGLS+cvmWlUlkYD7Hj6cQGVSSwOYmutdF2RIFnP6j96L/6D0AHJx9AcnfeVX1QeDB3H8/7r4X4U6ewFeESZqiuIYrSwlji6I6VLAO/VOK5NwpCmsx2tS/q2DTVCgu70UZPp+LMjRJrq8ob8F7j55OpVgB4lFbkeFt8lxp/HgcVMZdmIcQOBuUlKmQ41WBoLrwEluIoteWuP5gcd7Wx6HI4wST50TV350D63B5LsSPMU03THWuAV/kskacOYM/OEDFsdiqhO9Ghe8Soagk704bHApd2ea0Czpao1YGmJUBDI/qa2N/ZZvkn/w8AD19hLn8ycZaqBW063s91GCAOrGNH42bsQhqdb25Lh0YSbg+bfC9Dq/bPr3ejHkosLm8QKeJEO1FEaxWgNlUFL/VWFXXk7Ni5aJafubhXOaPXCTa20d5j2lnBYS/67U1SBLsl7+e+H3vg9U1Cm2IT95avyz74EfodhJcmlDedjs6juVayDIhQ0sL2RxdFPiTJ1EbG8R//MdgDLmOyOebi9sVQS//w723Yaf3YzbWw7kgZCkk+J1dsa7Jc9zFy0TzKV4pZuNOOG2ah7OI20MIaEWISSixk8JMp0N0uoPfPxDiulpPyxIzn2GmU2ZO9u3RaaMO1qYHunqPY+aMZGN4iBWicA/z2BMRoeiWOS6O6vuZy3KxSSpK6ULRGhcZOf9ai/rd2rpAFlUEv1JNUSnMz5VCOoASV9JJt0ic7OvtayGIMlJo1dgAed90A9hq+0pDFAOuzuNQrXuKLy3KOikITJpiSZF26WYTNND1ive95muw164AihcNOjg0jgSCwl13Oygt9lzKaLRzuNouw+K1kut0PhfLljAdFE2hKrp6RcZK60CiRnLODg/qOW8U9N75DuyF88xMQvexR4lyIdLNRz6C/YIvkANIU7SJiDtd/GG4Xo4ruavrtQp2tU4sd9ZSfJajsgw3mVLuHkjHkZNOAq0VkVG4eYkrHeqhh/CnTgXVfISbXz+E9EZQ7/0tJh/4ffnHq76vWe+1Rm1I14KeSZA1gNnNF7bxpj/+T6zmU6xSjL/0L+O8xpcOe5Bhhxm6E9F/1WluhKro0e7gAehvriysl9XaF588Uc9flWVyTivCvSoAgxRPwvu1b2zhtEmgF9b31j1LHQu9v9H3hkd+5me4EpTzt66Dms3wnY6swYO+jJvW2OksBJGDj0zd7aKmOVULmVKa6EwYm6MRbjaX7yXVcZclFAVmrWUlA/V9T41GTdfEfI49mqDTFNfrSacWLSFBmtRFRxkfIxkDYR7aKKYsLX/hTMbq618FeGaTy1y6dImzZ28uG2CJJZZYYomnxpJwX6LGb/zGb/Ct3/qt7O4+0T936du+xBJLPBVcUdLtyYPDXavPr91Kn3n9YKvmmQTadYKqNyhd3f4hGI1eX0NtbS6ogZSn8TRuBXV28wKlglLyOqFYn4vYuvuWpg1aK7E5GQxIVgYwHIKrFHdhzCaTJvRUKfLDEcmKhbLEd7t1GJ1aWYHxpCZwdEVo5TkkPXlgthZ1eChKrcmUXEV0tuV1Jk1Q66sNART2sXzkccrbLjzlcfmiEBWcdbiWaj8/TvhVrz/ue93KKimdJ64e/qOoGa/Wfrk8r33IXSDYdbcjhHqbvK+2U5Gex38PlFGMyTKZj3kuqu9ORxRvAM4xS/uUP/jvuZzlzH7yn/CKnU+hgBP7F2mO0HGiE/Etf/GH+X93H+REe1tKkeAwgD9mm6K++/8J/99/Lj93Urw/1q1RkRWBUMB72Nw45mt8E6gKHNOp+Di3gwYrRAaV9qRos7uL7vUkoHW3sdS5bnUrkAKuMpWulJLVeQzKVeXBlQghrWSd0lXR6NjxcnAoIbHV76Yzit09ojOnpCMGFrzCVWzqYs+GKXD9TiBIj32u9xKUun+A7vdRXuZWqkGHs5lGGZdO3E4cJyS2IGqNkdIanxfYRx8jOnt6cd/LEjeUUHvtuqAL1NGRWD+BvHZ97Tq++60im1IyVStrp2AhgwqZDzSv8cc7IYwhueM29HgohOaxuSE+8BWRpoh//heCEhWK7/9Hzeu8Jv6pn8b1evDmN+H6PbENGo1gbbU+xU4bNKJ8N3/0QZIPfpAu4L7xLVwPsVZ8/wc7PP6uK/zY3Yes3nWbfNDeXiCHPZErmX3oI/Te+XbZl6/6jvr9Dx7BF/2//hHrdsrs7/993NamBO46hwPxL7+6ixl0AbH9qYIRrYlwccK/e+U5vPKsdZqxSbSG3X1YF3X1m+85w+baAO/h1sOS6CMHoCB7abD8SGPKCxfQJhQZ2+PqHT6ov7VSKCuZCArIlSEJ3QuFdfi+dAi4Ew2p5stC7GlCkcsUrTXUVJYyKVGwx1AeVFDgK6VIDo4qGh6lPGjpVFLdLkwkk4E8x6cd6fBQillnQD/tgbNYE1OVy1JXcu9f+RZs+I1hCuQYSlSwd4u6CZainrvO2jAvKsJVxr/UEfrgEL2xjk8S9NZWfR0UzmO63bBeKOlwSVPcbbdx1FkhKTKUs7jf/QPi3/4dMtMhsY0tmbOuuW9ZizKGqJty8e6M3Y9+FG69jtI7zHtZRz1kGe5oJN0caYJeGZB0O3zL17yVeD7iX9uceNAlTgr0JILIL9zHpt1VdOepH+VV67+61+rGunCh2S/v6+9J7fXLnTkt2yao7f/Vv2AYziHvGqE7p3CZxY0L3Lgge2j4pIS7CYWc45md0/0j1s6daPZnMpFzc3go2wq5Cc6Y+vxW6yreY9p+7Ebz7l/9BAAPPXKJO155vvmeET6/DvGuLFgOj+riTBuzpIuvCX6P39wM25033xVmc/muEAo+Cl13DJV5RogeYFRaOleuSGE3TevQaJSqrZYc4EZjcSrrt4qbSmF13BTAq/tyJQAAUbHv7cHKKnWYeOtcEodCeRTRf+EdTDli8LqX1/fMDvDYY48tCfclllhiiWcRS8J9iRpvfvOb+aZv+iZ+4Ad+gFMtFeASSyyxxM1gnAHB3ndWeI6OjvDekyTJU3pjPuv7QsRmWQbyy6MqMth51OEBDFbQnQSX59IOPp3hVldrWw0VR6LCco5Oi6eyh/uwsSk2D/v7z+kxPVPk1/bonD7R/MI5IR9HR/IQawwUrgmTdU4sMHo9ODoiPnmq7u13B4cYo5sAuDgSci7LxG4mSTFVkCrU6uRKWRavNA+QKk0kPFNrsQ9RCrTGxAbXau8ej8fYSinZRhzXyvuo9acbFYeddfDQw3DyBEwmlCtrRN0UFeZIhbIs65BB71wTiFoRkiB+wd2uPGBPp7C+3mzIBxWoUvLQO5ujjMYpJYpGwKyu1K37AH4ygWoM5nPs0YhsXhJv9FAq4mD1BEeHF4m8ZW/rFlaaUeT77zvDb1/tUe48Tq4N8XxeExF+dRV/Ujz0OToSe4nZjCIriD/8YVycMHUR3btvA5LmAb4ikar5EI6rJizcIluS5znJdRSD9tJlzMkTzRxoE9DVZxUFvigor+6iV/qiYMzy6vBk3Ofz2uKpxqOPwokTeOfx85nYqRjTvE78L/Ba4Z1tKbV9TW5RlDCdNNZKtpQilBdSkTgiWV/F7h+gQteDDR9jyIj6XZhL28u48HScQ2sdsnabSemQcE69uloHcxrvMNaKchdwussHL4143+6UE5MDvuqUbUKFQawwtrZwcYxuFYLQGt3riR+7GK/jTIRp2xxZtxgw6D3eBx/ryh4qF5LWl1KkqAmp4IutvAdnWUuPXYdFgZ1MGfqYX/uCr+XUiR5/CfjYl3w1/y65m/+BR7gjXNukcU22D+Meg6hh77fSLrFSlNaS1Spq2X5F5srFI0UqdzSm9BChKEyEpV0JWNzHH3nFbUxKi7/2XvG673SkyBTmiNWREF3Vu22j6L39i76c/3K0w7d97NdF5V+NSxXAqxS+k+C8FzshreWzlUIbTYTn7K2bKDzrJ5srN9Gen/1vD/Kahz+AUor1v/2DREqjrcMoXatltQfDnOJoFtavbVz4u1IKFUeoQR87k/PvUBiPWLigSLJ53TXhi5Kj7/0JaslthbRfhz56E+HSLipOq6kiY6I1f+nsGi+dyk3+tSekoKOUIjdBTRssPeikYY55PK6+Xyjv6/wAvb4WGGCN07reIzkPBileyDrgSHAk9Sodb8SU+2U9d12nJyQsLZIxiojWV+XazjIpkD/2OJwTMlGVVuaCUmKXFdYvdzBkzWY4bzG2JAmzYtXOgyWHfP6YiH676yncJ/Kew432n9ApVtk/cXiIm2fSMRPH0jVWBUqPJ5Q7u6hkjTxOGPkdOibBdyK2v/E+Lv/6VSYuWPagsEnK9l+9j6fCp9/xjvpn/dqXwzt/V477oYfwd9wh+5bnwZbHoHTWEN57+2z/1S8G4Ggyh3e+vbalW9ncYftbv4JiZ8rVf/b+p9wPQGy2qs6V1npuokaVrqq8hJD0WnqI5FKVtbQu4DXWfzp0eOAcg0EM5mEAbo8ncp6NkWMK301K55swYe8pH3kM7r2H45jO8nqdcGUJe/voTkfuFVevSidAkUshobp/asI0dJCXzAqZQ9aBjROxvTNAKteQHx5BNbesk86ruAlEBSBJMJ0wbuH3yllwFu1C4f7Bh/Dr62HNPiYyCNku1VpgRxMGWxuAXjgPN5Wfs8QSSyyxxE1jSbgvUePq1au85S1vWZLtSyyxxDNC3EmYFtJuPco9H/vYxwAYDAa8+MUvfk73RTkjpJ2qGDuBzuaiUAJ5aNzfF+IkL3DW1f7f5WyOSSKxSyib9+dRE/L1BAL4cxVXd2BrXX52HuccGkVRWJLQHo2nfhgtZ3NipfD9viivq8+Zz8WPu5MKeTedBvIyRfV6otaMgsK1GpuWjYhXulZFyr5IS31NWmuxIyjzEt9SWN5///3XVa2r/f2a9L6ZZ8T5JEN5V8+GvLBkxpFbz0rS7JdOk8YWpnWO9XgkhBtgUajpTB6MnV+0lKk6ANZWmrb1OBYCbTxu/NCrv3kvFhH9Pv5oJMrZopQQO0ArizZROA8K1bKCSFTOF37tF/JFwH/5Fx8lPn97fa4ciuhgXx7sT52C1dWajtJa4S9cgJUVert7DVUZfHsBmQ8VGdRGsDpoYzwes1ldVy2Ys2fkhyhCXb2GXwm+0Xku8ySE3ql+n3gwwO7syvXonOQNVKRV1G3mVUVcBS9etX+IQTWkVqXYHo8DIWfAFgQWHL0lCnY3HIpFjIlqWwJvotpP3+8foIqCYjiSeRoKOd4J2R4zx1a2H8DUGnpV8K+XEk41f7R3kBfY4VAU7pUSum2F1D/J8GjIe0YFnj5/tnORuOW7roqCcndPCl5V5wFIYWQ0kv1bCwU0D348qYsELk3EVqhlXxB7iyNq1rOyBBNJp4UNYaLBSoFsF68UXms6xxXucYxZXyO9eJUHTt8NW/KCoxNn+fAJy/90+dNyjVgr/vkBSoGJm8eQNCpwUYxHi9qz25VOhGAV4ZFODR3mhEljkjLH4DG2oFhYA/wxBa0jUgp97gysrggpPpogyn3pWvBBya/wtEoVxFrTL8QuQjmHUgqnxK7FeFnvkvmMstevlaoV8eacxzvFi157G8exls54+/nX0J1PMcDrjaisXWJQUbPzm2XOnau/ztBHlNE2idYY72Ut916KJONJKGghBPRggA7BsO7ggJXv+m4AHjv/BfT/9uuesC/0JVRZ5XOUs/j5FF1I0VObKPxX8ZL1Hi9Zl7dsDZoC25XeRrMmaE323f+A7lf9GRnfl76ksUbaPwjrW8F877C+XpVSzKIOkSsZpQOqRA5PB6XG9bmsridT+XknslbrjgS2iqVNJF0swZLJ7eyilZLAzZZFh3at+1RVLLCWKJsJgQqoWjMPB901+hrSbCJ1QN1cO3Y8FssskI6QOTg/QbcVysg8q+ayBjmHRYFaXa0tgSKj+bedk3ijya5dozYAR8opte2VnuJXV7geLu2PeccHJETc6pjb00YRrZKY8f/69+SF1foe1NkqBCb7ohTP9E4Hdcu52qbkE5dHCxkZ02Ttutu/EbKHH5bOpbV1IayrorP3GNcqqrdskNCauCzxSoqASiHdQqMxRinIonp9qYqZqtuFYI9jhxPpZICFfddJK3AVGCUJH/3oR/Hec+utt7IW7gOjfpe0I51L6G3MZIIPDRG4pnCslZLrEaRzJmRQxCtFXZ9OjMLbVrHZStFH9XuoNBHVe6+HvboDxzOCQmG6HpfpDKeMFIFCXoDG41wzxxfWQK3r4imAsXbR9gzw1pI8x+KYJZZYYok/6VgS7kvU+MZv/EZ+7/d+jzvvvPP53pUlllji8xD9xz5F/07xlzSzA+yKqKoPJ08dRvWsI47kgbFSr2WZPHz3ejCfo6IIN5JQSqJIAujSQAo4SAaNJYrf3ODd7343AOdO9WsvZL/69B42ny/EL7639qj25QitRYEYK/BRLEr+PK+92ZXzEho6m0k795lAmnY6on49OJTPixcfWJ13aMAWJWZ3VwiQyURCVVcGqH43qD+rd1QqNS0qsUBemK1NxgeT5nPbVj+VahwWfNuT1VYA4DG8973vbVTvd9wh/53NSCOFUZa+LykOZ7WViK5U3UrhncdNJpg0EcuCar5o3fihHxaLfubGoFf6FA8/TnL+llpR54K1ASBWGUWwRJg3rekqTcUGBbClRVOgcUysUOXee1zrKdr0WoTLZELx8KPEZ07JPvZ7qLUV8fuFWhXsZjNMadEPPIDvdMkspOutuVwR2lWwHwQyw0nBIYRWtpVwBwcHzMND/2QyYW9vrzp58t8yFFH29oTE9R4OhzLmgcz2R6NaOV+Ru7raRuWVr4OKsSjqAEKlFVZpIV9AQmrjqPYg1qsDysvj+tj8/j6q25Ox9l78k4Oas637VQqIY6K1FSHvg8BaabCkGFUu2KckwwP8xUuoM2L5okD20yP7kqbiZR7mllUaW3kNIBv+/pfdwUPvusjlu/pk+Q5xUTSZCXGMPrEl3s1l2pBHWuPTBDuZYSrF7mgk4xx8tPMru3TWB/WaJiHAPfzVa7WHu/NeiMksQ5VWyB2mQsRrhUoSko1V8uxYdWs+h91dRrMCTYnz8cKfr6ke542EtrokZapjImdxqIUA55xUHkpcKUW9av5NZxLsihQR7HSK6XZxkylTFZHohGmcUrTHEt10RwAb+hJDv8Xh41eJ0widxEI2hSJN5D3OikLVKx+OPXxS1SkRrgPf6UiRJpvjlEEnCXZzS4I7fXA4D3NHGQNxe78adMwEvOO/3PV6Yq348lZhS7cKEfS24eV/Df/2/4LzomBHKbQvQcv2aouSat7u7InCXSnGl3dZDZO61AaFxXOsahI6ELw2Etgax/Iz1N0/0bHjMKZZ+1+zcz9qegK/toZyjpVsjJqM8UBRFW+8Fx/+OEYbg14ZMP6O/w2P5sH7P8p9/+1nQMEoSllvbUfWGRvMNsI9wsS4KsTWg7+2i7qrKnYpWasmE9T+fugGWZE1FZp1om0J51wYvlBMqc4DjgxFjGd9dsgfffP3cNcrv0jG8v7fke0D5uFHoPLmvniFT//cr3PX7Arlj/5/qsGi8s1XhHus8yit0FG414LY61y8itqUriSXl7jhCKc01lqs9fDxj8Ntt8n6d7wYGvCx+y9yy0COIhsewsFQurCKEnXuLLYqpDkn26787ucZpIkorcsSZjPs/iHOiRhhsxuz2+pUmjxNFmH/D94uVjtxDDaStSeOcXlOnDV2PUxn8h0j2AJFLg8dE0jBudfD9HoimJDThuv2pOhhrVjVVdhYk66lXk8yBMKao1cWvzOMvast3UajUU24D3cOOHlKwl2981gUWupdsj2lIIpxVa6JiaS4OZHvMN3hPqzLtvrFhLIqDFfjr1RzNU4m8v20Kvq3O8FCcYnxOBTFPUkxr9XsMg7ynaWJRm2t1dW9vLq/j0aok9sLY6Cdo6ju3UssscQSSzwrWBLuS9T4V//qX/FN3/RN/MEf/AEveclLiOPFh6bv+q7vep72bIkllvh8wOHhlJNFIQRGp/GnLIfPrvXKu9/97lqZ84Vf+IU18WeMaRSleQjXCsSgqpS01cPKxob4ulbE6uYG5TwnShNRPB4OxVfVWuxsXm8jaj8IjUfP6nF9tmDHU0wkZImqyMosqx9C6XRaVgAdeYislLVJAtd2xIYlhIOxsd58RqXm9B69udGot9fWanuPypvUT4aimKtEhQrc1WvoMM5oIeWiq5dxg416/8sqRBLopB1m8/BgfipYpcxmmONqsADn3KLFzP6+KN82NjCVKj2KiNvnsrK/AJS3mEpFOJnKeCiF2z9Ep8GOZnV1UfBtLWo8kfbzPBCuWon/6/BIHviNbojUSIgHN55I0GmaEGtIfAl4jFIUBHUfND7qwK0vOtPsdmXbElTqXmvsdI65cqUmyfX2pjzcK4W99TZYW0UPx835DvtfE+7zJc3oQAABAABJREFUuTALcRQUd7omcYmi+nrb2dmp377g/1pIsCl5jspzvDH1fFP5NQlPtBafphT7h2IB0RHv57YamjgCvMzZbk8I2aDMVHEsnu+VGr76byDDtHP4rCFQxX/bSgDf+rqEzFbnO0nw4wl+PkOZCFUU5KMJiVZ1Aa+yrch9l5Nbfda25b3pLzxEEb2i2Wfv6yKS2xuhOx1RMlY+/dX1VL8e7v6Ld3L3X7yTD/7KuznYa0JTyTIhxXf30e96F+pVr8C/4AXyN2PEY9hRk3pOGwnIDPvhbbnoB+yczDfvZbw6XdRkLHM3zFtVkb6hCEdRoPb2oH+sk8E5VJZTWE/pDaX1C3/ObCCEnEPZkp6TczH3TpTJAerxR1DZjAhQs1lTVJlO6uIJ3qOsjJUzEb0iI3Y5nohbBo1Fk/gBLa4JWimmB0NW/Vn5HK1lTiuNjSIeWruVj9xWoJRicMtd9ftiY3ho81b5tCwUJtMUkhi9tw9FQTGeEhvV2AUVuYxXWUoR5DrIfQ9UDkqU6t00ajxtFnY8gvXb0FFKlXnoq46O6hiNlmsxKG87/+FnSR58EIDRmbtEEQ+cTngi2R5QK7arbpqKxA+nc3WzhzYKF86va9lKucEaq9/3/cy//uuwKP7a1/9jMi8PmT+hRs0907u6uGgijb1d5vDHH93lbhODgkJHxEywxMSMcXRA+hjq45VAadfqkOk2ti5ay+Xc7eLOnZNiWriOdLvAE6ckSgozTmnpbEpTOHUSryOUK7Go2sjGgHSEyGhJd0pRAIpZbln7e99L7Cy5julv38ooHVBrhcOapIqy7oJQwXbEOY/yTtZvZdDK1V0Sdp4Rs4LGMzrcx3sHd90VbOCKG3bZDcYH0JPJlOZz6XDSGnT4XlStBdOpfAcIpDFB4a4qIlkpjLdNcXU+bTqIvH9Cp9NT4crWmUahrRR2/xCztgJFKcXsWiFumoK+0ZRJh6jbRaUpvixF3T2eyHkOBVw/mzf3rdbzq+l1ZM1XOnTxVYHIUsypqemkKSRUxWOAo5nnZFinTRLX9x7dScV6r9ORz6yOqyikshOs2ayOxGYP8Bvr+EtXm/EzRgry43G9dksROJDj3U5j+aWUFBnqTiUd7PDAaik4+yjCIAukDyWqGkkiwopw/rxSNeFfI3TmzLOCTrrIASyxxJ9U2FB0tJPJU794iSWeAZaE+xI1fvZnf5b/+l//K51Oh9/7vd9b+CKnlFoS7kssscST4mQxrtW8endPSBMgfujhZ3U71cOf954//uM/pgjE2ste9jLS8NDjtJYHoCgSdWxFbG1vw+6ePGhOp/Ig1ungjkawutF0+uoQzOU9SdmQdco5IYCiqCHOPseRPPow9AI5V/sye8puD7MSWtmLEvIxzGb4yRR1Iiif9vag8gC3Vh5ynZMCRidtHmyVwu7uYaoA0UrxfXgopN7WFmp7a9EfVGtp6/dCirrgfT03CatlsO845hUzm86o+KJiOCKODRQlk06fik5s37uKllIVEP9YkAfdNsnc7TUPnm0StPK4DsdY/c20lGELpEdlc3BiG3/pmih4q2ui5emrjo5gNJLPnmeifvath1/vcV68i5XSnBnv0rG5eGvPplwfrcfrYNPg19ch7KufzVrheR7z6CP4Xg89z3AbL262HYoQtFvLZ7NGURmIeNX2KG7BtMe1IiGqMN7K614pfLCE4eAw7FOADvq82awhXUahIGID2zoKCtrNTcrJFF0V24K/N/v7ogJVCr2+inrg4Wafgn1ERZ23SW81HMLmJmrQh+ER9HokvZ540c/norz3Bk1BouZ0B6c5d5eM7+9s30rv5MmFIhTDoSget2TeqRC8qsIRW+/RwWbJtBTEU9urvXaB4Gnv6di8tnOqy0jhumnUkJWCstoPiPHNPB4ORf08zxpfX+/ReY4PSnzyXIg5kNfGseQPGHNdkq2eOqrEq0WiZup16z2K3c4q3TKj0BFRaw6Zy49JBwFiweOqD253xHgnFkFCOaOdOLd3tGKr12nG5Aakcke31Mve4Vqq+Ec2z/GLL38FWin+5smt+vev3Ozx6pfeAe8RWynrhGj1wyO8FtMRragLi+Lj0tg6HKs/NGO2cgYYhvd4orqYc30Yo+jOp1i2gnrfN64TSqNCUQ2tsarRuPZjjUvlWt5c6TG5AUuqyhydyTkvN7bxaSCJW9fH6laPo/2Z3BfT5hHy8EWvZfLffxGXFUxNAlEgDsP/6uuhIqm9xx6OUKtyxs++8D7+5/hHKD30jeJfk+KJyNgkZoQmR2PRRgovcWokfyCMsUehDocSYF1ZpIRzbf7N/87gI2KvMvz276iDnBMnBU3xybd1cVDthu6AEog7uPmYapaktioCqtb16bFpF6cNNpDQZbfP7OzJhnBXStY/WwqxXSvqPYZWEKoHZa2QoYDe3iQ6uYUHLj38mLyluud6MNc/lfBLvwDf8nXycycVr/GNDVRRoKLW9dkP1lTzecgRyYK9TXNdWGUo8oIoilCt70LVPebpIBvlsN4O8Pb1GsVs3oxVS0UfxREc7MPqADXP5PtKvw8r/ca2q9oX3/q8AFMR24BaX5f7ivcwPML3B7XNnc1yIieF3TiEUAMkzkk4fCeFvMBNpyISGI+fkGUihxR+VwWVr+V1wLEdB0IvrLl1l9JsHs6rZIcYPObqFWwcy3wNRREfR1IM6Yilkr7iZT2qulGMqTs3VOv/AzK/lZJtRpEUAtoB4+GeoYC9K7ucu70p5i+xxJ9kPPiGN2AnUyZPs4C4xBI3iyXhvkSN7//+7+eHfuiH+N7v/V70DdoUl1hiiSVuhN502Ch15nPxygXmZvFW84EPfADvPcYYvuALvuBpbaNNwCqlyFrhmu2/eRPVZJLKM7FhSFMhN7eFTPGTae3zqrtdVGqEIHCeKM+g1wEUttcQjw7EDzSOcbfc8rT2/fmCH6yIB3XwqK3sKaIQdkoSQ1mIVUKSoK0TK5lOpwlzC2ooFUXyrFyd49lMxrUo5EEwjlFFKcr1QT88VKZBUX+EqlTpIH/r9cBofLDYJoqIV/uUhZAZk+OKk9YXYp3Eonw2BtOyLfI3YrgAt78vaujRSI5vMBBiqNtZaMJWw2EdyKomEyGm4ygojUvceCQBmK0gNjccoVfl85jPKfMQUFZ1WozG0JUx9p2OWJpU5FC/DysDUcBHEW5lFTojwBMpzy2jq0TBy3fdzppwx9ax5U6L+j2okcky/OFQyNP1NfGvPzgUpb73+DjG9Qdk/VWSLGuU4VWAaJaJzURQkqo4FsU+BJ91sUQ4jqOD66iE5nP89nZDRuR5Pa5VS7wLnTGUpcynX/01kiwj/6o34Dtd6HawKIz3yP9p8YP2YNZWm0JJlqHnc9z992N2d/GHR+TpgG6teLfghfj2ozEqMjVB53xD1XpnUZMJ5eERytuGpFdSCCmPETt7L3wJXaQToeoyINgSsLsLq6vYyVTCEpMErTWxAhd84G3RItjx+LZNkZdzkA1W6StHUVlChLG0RyPKoxFmEH5vVDPWgVQsdvfRkRGiOoowvS7lQaO+9sH6w+UFulK+VlZHhXSD+PV11HFLmRah2o0ieoHAOjFIufNEnxe991Pg/6yMR6dDp5gTeYvWUU0UAdhuDzWTIqYvSlk38LhORwIRVaDjnWzLO0dJhDEG75ys+a3xu15lIC+d1CW8x3pQVlTXHk/pFKUXwqt9hEqppnA0Gtehqy5EaBIZTL+Hn4pFDEAJEsgIC6R+G0k3YlxYyrCnGnBK8hWuR7z7OGZiNKn3Qu5bC1qKyiqOZc0aDMA5ojyrP2E1DTZCCihyFEVQi7e/53vpjIhT0Ib8K/8y/kjmxta997bGopmvedbM10Rp+uUcfv3XKDorzP/Cl1D4EIDaItl9WYpljQLb64fh8kGtK59ljDqmwlchNJU62yOKNHlh6U5Fce0vX8W+9/3E3RR99jT2pS+RdXk0wllHjgSzTpSmX9mh6Lj+2TlfF9gtBKu1GLt9huSRT9Zjmcyl2Bkzpb9zCQoJLDXTiTh1mIiD3jp/+Tf/A3/wi7/WHl3pEgmEvCoLuXdFEb7XFyJeaXkqb4VpF7McW8q5O9rfw5QF5aceJDq1jSutjNnv/iAAP334lbz1vUco4J8/+iiblRK9IlmDZZZrn/lK8WwtPopEZZ7n2MMhJkkgjvDOkc8zur0u8z/6I7ituYfPy2MF7RvgHe96jxT5T/ZJLl2SwmuWyRIVOh+8Vk3XXKXqBlwUwdo6OopwKpMCiTGNIn4ygdLKGlUVMmwJNBkp7O3JNVvl0IBspyylSAvgLD6R73qPf+xT3P5K6VZajQ3eu2A/5cL9Q6ydPIHQD4VoD9h5TpSE7wrW4kZjTK8KrVeYTtoU+50LuS3NGuqQjgu8FyFEUJ1TWlwIYFfBrz7TMZF1ot6v7kcVea6OCRYefhgmc7jnTkhT6ZYIVov1xRdHeDNg7/BgSbgv8acCF3/99ymuSYdm2bKpXGKJZxNLwn2JGnme8y3f8i1Lsn2JJZa4aTzyyCMcHYkaqLzjDpLqIUkpdFDxGLf4JaYKwGxbhdws2uGZx9XPbbVVbHQT1lkUtd+2mh/i8hy1udGouAE12fn/s/fecZolZ33vt6pOeGPn6cm7O7urXUkraZWzRJAQsjCSyRjwNSBMMMbYAmOMbBxwAPkS9Lm2sY1tMBiuuYBtMMGSkQQKBEloFVHaODt5pvObTqiq+8dTJ3RPz+6MduWVoJ/PR9qe7vc9oU6dCr/n9/x+qCKHSsriyGHZhEynNcAAiN5quEd7/uINX/8TEcXSMknaAJnOe1ReYKczorikEqZWIbHgI4Oq9E2dazaHo5Hs/coCXYHGcSzHtFb0qQFfbgt4EZ6HKwphhLXBdsCPxrjJBDMYyLHC+aO1NVzQPJ1M9mdzew9+mommeFHgtib4hbmrMLa985muGO5tdnZZigxOv18nFmqgtNOpwRa3ti7H0wH0rUDPAJDobjdIsDisjigLK8zgSk6gBaSoLG/OMRo1Jf4K0SVPElycAJ7EKIqWrvC1WIX9YkrHW1yQBSCOiRZncCgA3dvbmNkUdrb41PIt3DmZok1E4oGjq82muzIQnUwEMChL0aQ1QQPBe9BmX7BdmrP1vlfAbacj/a91Dt8qwVf9Huntp5rv5TmbNiW650P0X/UlovVuLRVrWyVpbYrHpTVhIEaRJI/6fdzNNxP/7tvo/NqvAXBh9Tbmf/FnccMhO9/93XDyhIAaIH04aP9iHWpzU0DVXg/6faJ+H3vmnJzLCyMVoCSlPQQN3Czod7fA7hrIkHOYJBEZnXAslTeAlW5XBqAEDBuPGwCuLEm3twRcajd4kmBWloUVG/qatq7Rl1caHxniFen7fnu7NjP2W5vU2tVeqjB0kkg7VgxMawVoVqA2N1GdOXZFv4+77Ta6xUP848MDllblet/wqjt5w6vu5L//4X+tJRC81mRxCmWBU5qk3yQzR//oPwMwnc7or7+3TsToChSC2iS5ei6Ry9HWgp2i9P7AdhOeWeGodFmUVq2ftSR8lEIrFdjmTbib7uDWN38D7/njmI42NatWRMpLzGgHe/osUVekOGw/+BwovcfMtYnxVsZ/fpH0eU3eSLVcI2EYJRHWWlRI2hHFMJuGBOAYvXoIFRl8FFEMl4jSoMUc6aAhLmx1hdtHVsYJAOwE+M3ufDFoTU+tEbWMOXe9820WsfGMIxkrR1GnLq4AGtY/yDMNSR/TSerx+kgv4Y6hSDbd2k9pJwMKWsmlqQAjSRqLHnx4DtNun8GHPkxsC+ydd+Kf+9zaiDrBkyBGzEab5rmpxkAYhfStOEYrxfYP/2w434jkH/3V+n3bLB1HgZKEM5cK7vi+HwQ85w8/iWL5FAq4ODzElwD59pj4aKhsUUoICIX4UDhlREu+MhXfCYbcSjGzNVTMYGOd+HbxxSkurxOlPUqlpX+qcNzAul8b52SBcd29/dQuWTi1sSHzlXP47TFU83scy+fSVJKiWYbq9zGrh6QSJjRNmck5smwENPP4w7NrJ7fb4Z3FaIXVomHvqwqEvb4F1by8vVMTNphO0WGtpsfjcEEhmR208b0CX8kqhWqd2vDZe3wUo/p9MbENawqrDFGVbGX30qFozWHbs4yFAH67vMC3/EJMVZWWZfi8QA0HRP3AbM/zYKqq63Y21jE7f4lua32kFDitaqk37ayYdwfNIV+tS6zF2/bYr3DG4LzDBxKEiox8DkIfb316lsHxo/ilJWHHd1JZn+yp7POzGfed3eYZd8uv22v8U6dOMajkvQ7iIP4MxPZDFxl/79/Ez88z2d6G7/quJ/qSDuLPYBwA7gdRx1/9q3+VX/7lX+aHfuiHnuhLOYiDOIjPk9ja2qpB0ZpFrZSAINXPvtm8OPc4Mgj2kBjbAHyZB43xSmd6c0sYxPPzArCBsE4rDc0oDoZXQWpkfT2AhBbVqtv2pUUp0RuPlNzP53qSMppNwM7LhipJJRES0BKHCqZyTswjjcaPxtJmcSzAY9UmbcACJDExnUobo/DBjBa0tHMS47NcGJtZBtvbdTk/IAz4uaGwnaczGIl8i01TrBUgcm9SRUoMAgluKQDW4zG9fCybzj2xq+rBe9HtTpIa+EBruYcK2DdGNKyD/jx5AX3ZuCs5iIDFi4u1wRpZDstL7ZMGVQknEkRBisWXZQ0wWBRmZ4dd8hPV8cP1qPEYVsSgLZ2Nanyrt73GTv3x5ruTqENfR8RZVoO0bjwWrfr5ucBgTfCdLv/gRd/Gz3UvknY6WOtEZ7ofKhLyXECawUBAAgL4DnJtStWM1aovtF/F0WyzRttUBXqMRtKe1fXOZqitLQGByhLGY/Lzl4iOH5GqE2Byy5M5/KXfwvaF99KZPUBy682YI6swm+FmGe78RaJBn+im4w24VAYj07V1/nt5hPj2LyQymj942isZbayzZEf8rSghVUpY0841WvXWQhLjF+ZhYQG3uYUuLa4ocNvbAhACZWGRN8fukr9140yecaWjXz3P0K8oLT6b4YtSTPHKUqSv6mffHhvFVJWQFKDbBW2Y9ofEOkZPZ03lSTDAs+cvSYUAYDe3UMMB1dNRbZimqnQpSyi9mNGC9MPAcGd7B93vCniTF0FzWuPSDu7yNncvf4I/WruDpN/BDPq4LMMXlknRY97uTqSeueXpHP3Rn0C9+PnkGGJn0d6h97L4A7E7ShLGKhKJKIW8m2He8C4wTSdT0Vstbf1eePYZAHYdHOIsC+9x+F1glSrknSTIe+irkloK88xvgHf9kvSbJMVojRuNQCuKtIN/7/uJPvQhnIfob34n/sghKZy4BiYp80ozDkeJxtown/ir50lvNLgcP8vweY7f2EQNBmh8kH9ugO1dw2ZvgO/Ie+jmF3Gke49MRBGY//LvWE8oGDDxy7uGpyJvRHva4Hscp2RRInm9dMibn3Wcd12RMcOVG/UFudJhQtXSdGvE3KI8/yNY/u5TD4fn1PLcCK0jv3dBhgfi2TqjacF8eH/SSNO3GbooyMdbFKVUpzCZYE2Eq5Ixv/kWzO/8Fh7YuPOZ9G8RMFtbJ7IeeQ5r65AeqW4ytJDEYqJDe83Io6jWAE80rH3LD6JQHI0FnNaHr2YI++kMFUeoyuiyAlGtrZnGHVvUFUw7Zczw4hXwsLlTkqwEbxwnbGZvDA9ld6PwnHrX7/Bbv/+bAIxe85pdNRK+NVZXPgP1z07GfKUUKpg6u80tMRXV4jUyDc/M6Ug+Hypo1rf3Z7jfc3qDt33iElrB3fNdqvS2VpLQr/03QgLXe+Hdq0pT3GhZL0QxznnsQ2eIVxZlXtMaP53itnYwi7KuUc7JPF0TC/LmHr2XioLJpEmkBqmjdvLae1fLBGUbGRf/1T3ER/qkURzGPyX9sBlwmuj1UIPQV4pS3m2tJbGgkPlFa9R4RNfQVB4AOC9jRHhGLgDlHiVJmMrfRuvmnQvH7RQZzsYi1RQqX/TmJr4/kGO0xmI/GML58yKN0+3KXFW1B8gYW5SoLGP49t+D17wQgO3t7brScDqd3jDg/pbf/l0G85JY/ei5nO/4mi+6oe+z9inYfBBQsPo0GB4w7w/i8Yv8t38R+3d/QN69zxOZ0IP4/IsDwP0g6rDW8qY3vYm3vOUtPOMZz7jKNPUnfuInnqArO4iDOIjP1SjKZnPsWmX/enGhXsibFkOuzWq/Cky9jlBK7QITtFJXbZzkcwTzKmH/qAXZSLK1LUyobldYRIN+kEoI7ChjoCzFCFOLHnRkVC2PrRSyKe90YWmRe+65B4AkSXj6059+w/fzfyTW1mAhgNO9HgyHoJToJwfmEt7L5iuRzSUmbIoHA2Hfzc9Df4DXqi5nriQiUAoVNwkWj4fRCNXv463FK4OOY/zScvOcvBfA8dIVkWGJAstOKQoLqpB+dVUywzRfdzs7GKMDeF6xFtnfeLCKKvEymYhO7dKSGIq2EkS1ri3IJv3MWej3atCRosRub6OXl1BaCzu/KOD0aTh2TI6hlRCMK61WYwTsD6x2szAvUjqAz3Nh7m1sQH9Qa6yq5AqgiEzE6cEhlrdEw3fabxjGu/TqK1mCtmGcdbJpB+nn3Q6+1+O/vmieWVnilhcE3AvPsZIbqvXH41jA/04H+n18FAm4sddsrRV5CYnZkw8LUhe7GO5HAqi1tQVak3gruulzQyhLKk6/sIm1PIsgm1EZRLZB//BhkXs6dIh42fIlf+2LgJK3ffACZ+YSpvl2DT57oQU2LMuiQLnGMFYjALTe3mLyO79L5+MfBRTZ674L0FexhN3GliShWvrDbbkVFCgTCTM3ivCB6VqF3cVs1ux88BMMzzwEz3t2MA31JGUuuu/dbpNkiCJJcI2mVE6MCqSiwpj6d9z/gPx7bk6ktaYTAdsrVmgAeSUH5Gv2rYpjYbg7B7ZEpQt0v+AbcL/0a9CJIc9xmzv40uK8x7s9gKnLGJ55APX/PUCsIqZxWktsJO2+ajS2dBgFpfNNRUQLNDLe47yTZ2+kL1awtb8qeXE14z3PfQD7kHmhJbthfQPaJ1fj7ejFY2C9gFt5BlkumtDGYNIUB3StaO1vOYQF26DYV8V4c0bzhkSUhYCw1rqahN0OE0Uo61rAejAD73RRqwnu8mX0/LxI4lRSani4/Q5GX/s9cgwKNAVul6SMoiSmfNErcNMczLXNEqNYS8IBXxtxA8wtLPBNr/7h+pp/Rim+7JiMdbPLrmaVK2frsTWJY5736jsAOPeBe3jw4eq87cZ3NFtVg58LAPn8UQFVKxPr+YXQfz06L2Q+6XTEjHnpCMnRHRSQlZ7BxUsoFPqmac2odqOxmGCaCLe4CFVh1Z4qnigRmTmlFEfn54mCHMlqL+LY0gBQxFq0yJ//tBU+cmZz1/dVSN7qbkeeTTCTpiggloSe9U3qSHd70ie1x2mPxxGdOCb3V26D1pwvbwcM6YmzjH5S9mn+0qXmpHHc+DdAY5YJIrFiIrx3+NLB+hSVdtC2lPE2ivBlyeaVLeZWdnDDRXkfTQLOcefGg+wX//Q3PsSDnzqLAn4pjvh/vvomeYJG4xcWUXGELwoZYwHjvLTHJCR0SysAulLo6RS9uiz3URSNDJX3jZkyClWZqbd8KQCZU9Kge95qi3gQfCoCAK9MVI+pyS0rFO8dUZwZkRzXQUNdy7gJ9eTmtGkkyMI4X164RHx4Reb8yEkXquYAbaR6skp6Ki1yacOBrEe8R+2M8EqRx1KbkVZjlAnSVb56QxRZ3BEddq0lSag1nf/vV4jOnaMwMbPv+d7mofR7cPK43Iu11RDSzMtOqlz8cEjxlLtqucb7L24zn8ol33dmjUOHDnEjMV9OILgZ3PLgh4EbBNxP/wGsfbL59wHgfhCPZ1SSSuH9OYiD+GzEAeB+EHV85CMf4VnPehYAH/3oR3f97UaNcQ7iIA7iz0dsjTN6YZ+czs/Xmxw/maKCVmZetKzstKZ0ThjRN46345zbF+fz3jOdTumEDXRZa2IGfUs5uei3r62BtVK6GwAfVZlXycEaFrz3IqdRnR8wRQnMKNY36w37Veacn0NRmqQuUWc6hcCyYzYTky2QtgkyLqatD52mjaTF1paA9UkiG89KGmMw2LVQVcbUJpFiUIYwZ0djzJHAcA/Mbl2h4xUzOYoEtAudYzptNKahwVcFv6m2nTBLepSFwxghpe9XeeABFc7vp7PAlJ2gJlPRsO92m016q5NpW8rxQDal/T6m2wmmaU7A9uVluO22WrdVKSWYRn2xHhU0XgHc9jZ6ZVmA0Urmpt+X5EaoKDCta5h0B/gtuduiN2z05lsvUa8sSHyJL4qWDrBDlVY+Z4xoPXuPQzRydScVvex2IqTqE+F3rtsV3XtjQgJLSxXAzg5og754AXvrrfV1GCUJMFUdr9K4bb+40yl6fR3XH9T6t5Iz8a1HoNFGEa8uYwZdYeZVVQFQV2EE3mHz7LRGpwnTGgqJeNbygHJ9Qo8IVDUeOWGXttpQQQNOzTIBKfotQ13JpWDIiFSGjo409/2xj6CefYdIAFTXM5k07PnhMDxbfbVpL1evs37u+Cv48NaMX3v3H1B84cuh20UrhXMeZcsGkC1L9GgkbXN0VfpaEjeJF6OJjh4mP3MeAQS1AH/9Hn5rp37WVmlMkNlQ1TMLIJBXAjLmUUrcl+NOT18kNavQSUlKYV07EvZmvKzqtKBdT+otfZuDzXeBtp1+wnhrhtYaXyVyvUdPpgy//TsA2LntDtxf/3bwnsgW4llQHVsr9jzJq8N5AdrDJ1QAggUUUzUItd++W0UpeCtyaYhUlt/cwvS62CynA6i0I8aZs0bSIh32rj4YkHQM+bTqi63xxii081fxvFEGN8vks0qJf6xWYDTKaLS1zXjQ6eCTtG7DitUurbX75gRun1F88etq+ZaYFtOv1S9n40I02YHJzqz+fScyPGexx70jqSDoJZq65KjRlsFXWtN7jitzdHVdYopLrWx/daRJTLy9KeMt4Ec7+N4ANRnJ70LVis4y1p/xUvyXfTsAx37pR9GbIgW3dPEs86//NgC27nwqfM93gS7R29u46Fi4lKS6dDlP8AlQSjP8kq9i+iVfDcB8vMUsrAEiFRju3SGwueu6q/dILczjL12pk9ZqOg0sb4XKmwST0gnJbTcDMLe2DVs7xA8+gD10CG0taZnxTz70MOeKhH84P5DKKxC2fjsZubIi83avh5nl9dijQ/JdTacC+HbnRBJtNkWj6vdjo5yw/fGPwuqwnlfVaERntj8jdP7CGf7LW/8ZAGt3PRPP36wrS1SowqnmCB+LXj6DflO1o1U9DnvnMQ8/jL355jopr0wfs7ZWm5GS53K7zjcJ43CdejrFp4kk5NovdprUkjRS1dVomedt5ntpxesjTQT3dmUt4dKuhKkTfyDH63bl2S4tSZLCyzudPPQQdmVFkuvGw2SMsyUmVJSVKCIF3XxG7hycPQfHj9XztyQTwrVp1cjWSIdBz0TaLNrvfqtkRFFA0KCv7yC0t9Ka4a2H+dCHPgTA6uYF1AlJdGUf/Sg8q/F0uJ5QD58RM27vWbh8/oa+C0iSwoSxTB/AVgfx+Mb0O7+jWacfxEF8luJg5DqIOt7xjnc80ZdwEAdxEJ9nIbi2rP6djiAJm6SK0VuVyobY2NiogcSiXat+nWGtZZw5kkgAzbRFxjt//jyLYcMZxy15mOo8FcAaBbMy7wWkShLc2gY6DuxPaMwUrSU3cYsrqWQjlSbE/f2BlM+5mBvKZiqAxQwG+NFIhCaSsOms9KJNhN3ZwaQJJCluYxMVGWE4h3Lj2lSzAiazTEAd68TI1FoB5zsCtPlUWIja+4ZN5cPWtNsVlpcCFYBIBdjrMGOL5iRB4Ecj1OI8/bTaXDre9773AZCmKdNZQZqIsWJ1zTpNBAAFkTWZTuVaKuZZdZ1JIgBqpS2bprK5X9+owXvaxq7eC/O2Ag2rPqi1AAvBQFVZB5OpAMzTWZOgsC7oweZkhaVSuH7bi76ePzjzKQCe8eTbeW7rdFVMTEKhjWy0rYXxGBXHuG5fWNxlgd/OsDsj4mgOs76G8oUY2LW0bHdFkqBGY/x4Ihr7tmxA6cp87qr3uLWNbyUcdl1wHONOnpSfNzcByHWEUVreO61JjKM312Hn/m0MDhNFlOjapM4DxNEuHeAqceO2tnnafBeBGEu+6uQiX3VykfOXY/DnQz9TeDtr2JCV7nklMWSMPItZhit9fflKGxyRAKKtW9/0huWyaO6x1ded9+gsw+2MpEJgaVHgxBYb3LUMu7rDBA3ECsrZTJI7UUSWpHTziRicVqE1rtOhzEuG3/k3ADgzd4RDb/ybon0PuJ0R3gk10jsnchvTDJ83TFDlrCQDdEgKZJlU+0xnAsYZQ9qJ8dMAuHVifDeFOMbOL6DXMjpmZ5d8DUCcxGQ6InUlXmsKFTHTEU5r8dqoulonYrKj8M7jrKUWIvZNosoUmciSeY9rMXXrvvYoUcxKMVdUqjaMVlEERnPXfIebl1YAz029vbIrAkTZnVEAuUN1TybApvLhmqtnWeS1dMouT4NWCFO8+o6vAWrn/L63oozGTmWsVSh0kYvBrZ/AeEzyi7+IGgzJTMzObc9BP+2lKDydJx1GI8C0I2YviO2JyOkQq/xqWv2e8C22ftLdbVL7hic3cmHPu3vK5eIWnHV8aq3xPVG4+rm61sl0S14HQClJvGnl0VFg/0Pdt3RkGBPXfVcbzU0/+Ndw0xl/+q5PSgIlinAoYrWORkBsdfoBVCZJ3N7aZdGbB3LrSYLEkG35ZWDMbpNRL8+r8DHtca4oDJYYUJRVn+wtAQ/vbsDZTExjixw3y2rdbm/D3KQU5dxcvTlXM0tx4ZIkPBX4jfspTjxZKsaswx07yj94kiT4su3AAFcK1+/LsauEZwVMZwFsnwVA3iPvulIyLmzviJY/CjEKlWellfQ5D6KvniZ4a+lF+3cY6xyzAI76F7+gbk+joXj4LPHSAr4ssdpgsqw2LwdEJqosUesbAhJrsHdIJURl5I1zFA7iag0Skq8+MrsqlvAe1wuSgS0DcwB3ZR3T68j8V8374XjjS2vAXH1oHdaTynlyFHHFDO90mqrIomR2ZZPO0ZUmUbm9gx1P0NUaLHFkJsI4j8pmkjB2VnyOqufhHE6J10W2MeKX3/EpvvU1TubfkATVQYrHWIu2Ctd6L32W7f8at/146veRZtwMfYcsQ2lTr+vVeFyvcWyRc6ORRTFJWD/5V79q34rURwxbgM2aeziIg3g8o002OYiD+CzFAeB+EFfFvffey3333cfLX/5yut3ujU+OB3EQB/HnJvKypB/LIt56J2CsUvjK1EqpYLYoYUxUjyemzG98fPGqAVYNVLwipRTzlQkloKeT2gzMB9kB0fIs8eFzbjwRhhdyib4qlc0yVEsGJzVxTSByucPMJsJYWl+HEyeAz+0qIHNoWcDkLMOPx3LfSYwzBlUU6GrTmueQIJvsLJONnVZiuglitOYDSD6dCmOuAiWLUjRfQdhp1bNIU1Rggvu2fIf3Al5XhqJQG0Qmt5/C3Scl8QsLC5w/f77F5G4zoJs2b4NdWeHpBCDAWku3E7Iys5lUNwyH8vOwecbkOWo2wyfJ7hL8ssSvyP2rzc2aveyUwmxuCrOskD5fnrtAYhQ+SQRI8DTGldaK/n8ogfdKNUCvc5IIungRFhalzdqVBcDmYJ4PnHw2ALetLta/b/c648NvKpb63Bw+jtEXLwow6hx6lqE3N7ErCWOrSKcFyQK7Nau3t4OBqPzPzjJML0j3VJr+1jZs/Er/IhzC5YVkwtqsoVpeI/w7SSgvXCJKIrnPfp/o1j720hVMrWscvmoi0eqNIqJepQYs7Evn9wi7KAVpil49xOraRbpqCzBMfTC2TTrU2sllKdIFaWAM+5BMKEvUeIwfDqUSZjpBVLYBPFaBx1B6s2uTNviy1+GN333PShHUyqUtpzNMEqPyXFTgVbMMty3A/VlffDvuD+6n8BDv7FAEPeAEh7IOnwdN4kp+KIqIuymlFnbwJO6g/94P4//h35PKDetIb79F7mBrS5I+WoRxakkZvCRYjEF1G4khH8civWWMGN1eFMDSdDuYYOhnrSO3npkd4vxuo2OlNJlJKLVhuzPP6uiyGM86iKImY/qUF4rsRLG5xu/dW/UnhWoDoM5LMjewS1V4vxTsZj+6ksZ6svVrr/A/+A+IbcE06ZO+8fvkHrVhJY15+sr++sQ6SIvMlTPRnU9TdJpirwhI5ZWuKyVUpb2vRIfZXcPMtWzpoYMi7kSUWUll/Lg3TBpTTme1zImqy30ArYk//gkMkAJb3/6llLfdgcZCtAVl1YIlsvWrOP7V2Ql9IMfwCKCaU/XXoridht5txKqU4tjty7jSce89acOeTTr1c01aci1N0kzmc+8DIGgMcRrVnh7VKaKky2kGnArvmgaGX/mt0k7v+OsiiWQtushZNqd5Vv9joBM+rBoJkK6CqBSWflTMyAJr2eB31Wj4wydxkxFEMYdvvhUHOB/RThB4ZR41WSHt19QYuJYBvHIy5qEURVHWm/OFhQHTtQ10kqC1wWEEwEV8BlS3W8+DOk3qqhaZCkL7zmaNwfRohF5ZqgFXt7WNLkWWjzSBOZEbifK8Xiep9XVMnsu85JwkmYz09/gapIkyd3ScJDnsuYcpleiBKyA+KWxpZR1RWcr71E7M2lLOEwywTb9P8dDDuMLS+63/iTq8in3uc9DKNHNkUQpzPoqgCBUC1TF7PZnbqyRiJZ9mjIDtcagGunQZVmV+iVtm7U4pSWxpjY8i4pDE1JNxI9WX5+As/v4HKLIZyfHDECcovBAJnJXcWllSajEqNZHcH/0+XL5cM/ur91op8RnZfvqLMTv3YbIZdm6Iirq16WwZRfL612NPSJxWjd1+xzzN+qZamyuaeVkpsA6XFxhVNp44R4/U67RrJQ8fKTqjbVxZ1gml7Xfcz/wX3/aI3znzvd9L/uBDANz8/a9sCC+fu8vsg/h8jWoI+xzewx3E538cAO4HUcfa2hpf+7Vfyzve8Q6UUnz605/m1ltv5fWvfz2Li4v8+I//+BN9iQdxEAfxORbzUaOVmxgNXlidNbtK7eY7bo1molWdppjxmHPnztVyLCdPnsSY/cGJKmbTjPWJZb6r8R7yyZTeQBKDl65sc/y4bOZ8nMhGszKqDMCg916AwyhCzw3F4EorSqUxV66IDEBR4NY30UkE1lJsjjALQ4gjYqVkkwbQ6wUgRl3lefG5FL60tUa5UpXxlmzsKoYdxjQA9CyH5cCMHU9RZdD73N7Gxwl+PBYN2rq8OaxYsxwiI6as6+vQ7YpGbNjs++msSX6AAIZra7XuufceNZlQnL8MpbSnc+4qrf8KHPJB6xjvicq8Lkefz3aguwAEqZ8zZ0Sr3VoxK1UCgukKDN/ZEfZ5xUavmF57JWmcE8BZa6nSCP3Ab2ygej2i229Fv/s96IdPUyQ9GB4T4C2A0cpaYSprjddKJFSCXAe9Hv7UKfz2NmoyES3b0QhWZYP7fXcuMnMGrRxzaVxvEtomxGWLFFxHklBoLYs9pfDG4API2S1zUiIxRG3LCIUqD7exKf3DChdVRZEkAspSnn3VXyKDdR4TNvfahFJ276VPxPuYiGYZ0ZFV+XlrCyYT8isbRN0Ammhd+0bG4220OtL007IMeKGCC5fgyGq9mQ+NAnnOfM/wrC+4hTNnFac/vRUuVSEmAQLk+koPPLCUMUaeRRwHr4YOLo5RPowdKErnUeTEqkBHTR+569QCF9bXMEH7mNksjDvhoaiQcArjogYi24BuSWf3kvyfP8tzfrJM+esz6SMeiijhUjxkNWr8E8gL/HRCfnmdxTJD4THAKOnS63Rgfl4AmU9+SjKLKysBZNZYD0FUSxj+lSnu5Su11rCuGOZVYihAlu6++9HzHbjpONGwTyeCQbwlsjSt0FrTsTmJK9HTTWkDZ3FRjDdXb3K9Du9a6MxtM+TC2ub9R4lHRPW9dr+Pe8Bu81aA/vYV+vmE2DviMmP84/8PyUufJ4mR5edf9fkqarPCPK+TZN7aivMr+Ho+RRU5Gk+aTUTpAUds96/W6c932brcVMcUszLch98Xu1W2YG6609xsI+YcWO/SZDMTY1WCI8YRs2g+we3pHwNwvnwaF7KbgoZ7/WXAU9AFNI5kl6TMridUsXCB2U7W/HrXpzy+qlBScOFn/xunds4AiuJlL8V86SsBKKP2nLmnH4SbqcY3H4BdFwA/E8XMm1bVTAss0bffRjkYoJME3+lgqzWFy4mfdTf2/R+Q79x8SoB0wHq961hP/4JbwMPH3n0fO2/4KfaLYXfCzlQSsJ04oyy7KMB0+1d/2HvURz8qTOuVZXCOcjojqmRTWm1RExIixbO+/ov4w/e8B704TwLM7ng25vJFGZMjU/sEePbIzVe68KGarzYJb1caeS/fSWJUHMuv8kJw78o4NZHfS/VbSLQGYoIvCvLe/gmq57qLTL/+66VioNdtnpFz8PAZWD2E9w6nDX40xgQtfjmwpDdVaVHTKXY0EemySPHA07+IPyoP8cq1iyws9WW8AvGi2M5rtv6u+XsywaUdqdKrDNOloSkvXSZaWsJZix+NRdbGe0yr8kgp3zDBnaM8f5FofijJ3osXg+9KDEqTzCakW2vYm48HoklIbDkvZu/QrI2DTr7b2kYfWqmfjwOi0P+Nc/zC3e/kA2dvFhlAFSr1vIckJl5dEUZ8UaCrtUQZ7J/3+Kx47+o1MdU6rJJ6q+Y+rWV81rpO3pSX1oiCTI/qNv4xjxRv+U//hbmbjwIKe+ImoslE1oOjMWfeeS/F6RmDFyds/dqvgVJ0n/sc5l75yvr7s098Eru2hveeYlbuktc7iIN4XGMfg/KDOIjHOw4A94Oo42//7b9NHMecPn2apzzlKfXvv+7rvo43vOENB4D7QRzEQVwVZn1dABzA7GyLlnXFigx6m6Zlevfguct0Kz3o6ZRz585hA/C5srLCYLD/Bq4KpWFpvA6+B9MZkZeNDGVJfnkL7paxyywMa5a1n05lExtFUro8mwmoPpmJYaeKxdg1sLgwBl0xp8qSGAXzYaNRGTfGMXZjE3X8OCi/C/j8XAtXlAKmOSdJgl4XRiO81Y1Jp7P4PBcpFG9x6xvobgfvnehDR0Y2csM0/FwG7VCEYasUbKwLWKvCcY0W2ZSdHZT30g+qTXCWCVt2eQU1y4TZFdrce3+1SkkINZ0GAzOFGgc977JspDmUEsZYO0IVApMJZm5OAGA/acqrq5LyauOZ5w0z3TmR1NCq2YQagx8ORMfcObzzopM+m2HLEv+236dIB/i/9PUNkdQJQFIx3NV0CkPRYldX1gU4WFuDwVDur9cjOn2ZFw9/haKM+DCvpENPwFQt4DqAaxltXhjnhHTTrtuPXADJogiS4H5mPf7wIfzq8tXMHmvxk6n0E2MEFJ4/SlW2z2gk7RMSE6IB38a7fQPspEndjrsY787hZ7PmvUwSzKEl9M5OeIyKJJbPbvzuH3CkG8tzLAqqchPjHayvwXQMt9yyC+S36xvE0RzMn8BfuFzfWr9T4Ge2YTXm2e5n76y841euSL+YzVCjEa4yFwVKbXaX4oc4+fRTXH7nWgNiVGz7KIK1dXACvnqM3L9SECWcuFPGz7ml3RJVTzt2nqetvZPfHhxiSWkqJvO7jj+DVyYD5rJM3t0K7vSOmRFN+0IbvuvVb+Snzl9mMM3El+H48fC+FALIaC0yNtXYZctaI7l+h5SS9tBaEhFJip7I5/trl4A7hTU6njArPLOyi7XZrvvophmZjiiVZjMdcFiVuCIT6aV9EqxaR9hKDVlJYrDu0WVd3oLVGhslRNVzaCfI4g60dchDZOlAqgC8YhR1sZMJ9rffytSkuL/ywqs+vzc2j9zCfJCmUKORMJvlgsiWjxHdrCicw77vHpKR9OXN2XDfY0VxixGuH2HfH27P2BnJeEv450pRGtNIj+CZ6YiOK4mcJWVGpdgekZMi1+JQ4t+w5wQeiMkC6A4FKWBJmaDUSv3JtJeQh8TA/Oq15molTPZw7TkGtT2WZ3h4tWYlx0tNRZpv32hLXsc7mE2apNTWlTErx+dJ0pSNjQnxW94KSjHdmsLXfy0ASa/P7PRZ9PEjWC+Mf9GA9nS+/EVcetU3A9D70O+jPvIBwBNtbVK+7R0o7xnNSoZf8ZfaF7ZvmN4cBA1+Gy/ggyJPxc7fFWVJ/NBDfPSdH8Xg8c5x9LVfLD4qIFJtWtrDRIYTd67QG6bES/OMHzgfqvcUmbX0jMY7h/aN14YCmY+q8dY6MYJdXJBxbjqV/1ZjczU+VRJ644kMZwFsdc6jtXzWV1VYRSFzYwBPKUuI9rlX4EVPPUR+V9hHhooaCMe/WSpZyAsBnzc2ybOCZHlB+oZWUm1jLbgIpTzxolzn/AMbvGGyxCfnzslnAijsyhLVTaULFWW99gQCM9/KtU9n4slhDGrQx2xvAaG6p9epE89xq8ZB+2Y+U9X/heSr01qSFsZAR8ua5tKl+tzi9xDGMu/RRhMdXkFFBp/lcjxrg2F6XyRm+n1IE7mC0pOojHJpGQa9YFxt0WEO9CD3ViWgtfir1EnIdvJT6XrtRFHIZ6ZTWQ+HSikAVRbUGRylpEqm8jraM7ZfK/oUTeVFktT9R69dYevCeZYWC7bfdob1X/gFALof/9NdgLufzXAjGb9F1KmmIV/X+Q/iIK47sqwlj/i5u487iM/vOADcD6KOt771rbzlLW/hRAVOhHjSk57EQw899ARd1UEcxEF8LkdmEtKgD55Pc5LAANaKepFemGaquf9T57jrjgWg2hvZmpl14comtz8K4L65NcMpjVYKjxc2TldAgocurfGC8Llo0KsBQVUBpdaKVEQldzKrACtQW1v4I8EAcWdHNqtxJKzk7W3ZYMWBjRbYhA6FtT7sX65mU36uRNTvCAPLO2GqbW4KeOY8brSD7nalncJmUymDDmXTptuV+3ey6fGzDL8zQndT0T6vQK6KRRcYWnq0I89Fq9o8l8mkZldV5l3l2gbR/BDvRB5CaU23mDFyJlyLIk1TsmCOVzOx19YCyyslyDw3APojLZq7nfpHv7mFiiPUZIJfWqp1V2t95gASq+o7s1mzKe126+MIaCwb+EhremXGOO5hKzCu2qxXRqOIXi47O9IelZb9iROorS3RXp/NsJOg966hoEMQAKFsSY+MtxvjwrwMhnPtTakKVDnvpdojG8P5i/jVU0Qri410TtVm4f7VsPUeOg8XLkglAuDTFDWb1e+3xovESSdpDtXo/sh/i0I+3wJeVKfVrkB0+TJ2MKwlH+bD8f/j7a/mjZVMSVzpFEc4E+HykvjiQ/jjJ0IiRcCheDZFhyqHNuZgjA5Ad7jvamwKEhQ+TaS/Doe4zU20lzFGBYBFPhrhSPDe1lIjAMnqLeDeJwBK0BkmywJgLc9FWPUNI1cbzU1PXmXfUBqUYXtugXljhJOsFRNnSOdDoqyVxNDeixkp0C+mOO+x1lPmJbrjMAMB0X3wYFBaM/nje5h785sFwPv6r6JYDdeysyPeDwFsUmUJWYYtSjqR9I1Zf540sDe9czgPPbWOYXe1T9LpkrqCxFnIx+gyR0bvHB3t/iyAikxQhRBWv0sSZsG88vdvfykvUxqNvHc6VOoAYiB4rTh0J2zMmCyukroS4z2L+Yi1rgCZkQrSD48ShY9FGguEnVtftGLr6S+F1z6DUWGZvvkHuePXfwOA7O7X7HusNiPfe3jx655a/3vtFz/OdM/n01tPUb777a0vKzHhRJJAXS/Gzto7urGmBql80fxsS/YDrRS6BtsBEpWR+wEZQ9p8exWAPYXfc5h24sTXL53Wmv/68m/mgXGO854f/ehbOH74EAqYnd2G13xJ/bkGdt+f4V8dGkAbw8PbOb33/DoA23ONfny3n7LxU/+K+AtegosSOncM6ns+Fb2XU9EfAnB6fomdMH8YEzH8X28B6+gtN+9jFIkJ936hki5VUifq9hjEMob25jpXf3Yyofurv8a9d7yCn3/qXwDgZ9yn6soEWhreVu0eE47+7L9l9tP/BoCFOMIPO5TnL17VSq60zVPwDlMWzSeq+WplWeRa9iQLlQJvIlSaSDZXK7zRqH6fuN/HXVlHE5LOlTxNluGSLvvGlcugpD+r8RhfVQU6B/ffD7fcEjxBLObyJSqfBmkLLw0fvqNHE/SFi6iyIJoEXwQVUZqIKMuE1FGWYsyppOqlAosBSY4ZI7+3lcyhQXdS1FYYu6yjyEoqETdzZBVCntYkkbSZc6jq+2mKNi22efCemSweIZ7s1M2gq/ekehDWUV65jBn0MJ2OsOkJzPRwHN3voqKIzm03k40+iY4SVJqgB31J/ucZ+Bgs+FkO44nM1z54O1TrDaOhXUFUJZcDk10GDosa7eDn5oSMoo1UFwz7krRwDtftoXPJJil3fevc6OSJWoZGl7Y+twF6Z3+XzQ/9KvpLX8Hob32vjKXbO7u+76rKBWPwtmzQqv3crA/iIB5DaOuEJIJDzx714wdxEJ9RHADuB1HHeDym1+td9fv19XXSlpbs53vc+4pXsnDzzdz6q7/yRF/KQRzE5334WVaX2asW4OGtFVBONRsAgDvSomZbeROhi7wG7jbf/nb41v/rEc832pjIQj6KQGlctyPSIEXB4YXWOGVdfVyKUhimc0ORihiPxdAzTcQctdvB9fqwtiYgYFkKK8eIcZTVsUjdGGGmqrBh0RUlUQkh78qVK1hrUUqxunoNEO0JiMnDFxkcWZL2CJqhfkd01VUUNzIq2zuQxMIWD3rqbmeMxjUmW3EE/W4jzRMYV5QlvtNBmaCRmyQiveJa1nhRy8hWa5TzRF3RK6+MbHGO/PAR3EUBMsajMVnW0hQOyYIavK3K3NsAwl7APdzLLtmBOKorIJwO2q7Oy0bdeflOi/VVHzeA7nZnhO51BewLMivu0mXceExeAe2m/V3fMMS9R3tVy6D4cgZ5jhtNwCi0iXBpKs/GlSgPTgRgEdZq1Dps826NsgDeVImDEL7bk3dTKXzaoewP0DjytXU6q4ckYVAlKypjOaiZqP6Wm5ne9xC9oDmsKrmCnR3QGgvELfdiHand8gVQA7dA0Ia/OiniUfT/3b+DjoBgC6/+arYQYHeiS3pxLABAaWtQPsmnuJMnhLUItfdAubREMpNPxakhTuX+4mSenUtB2gcEDA/VKxYwRSF/u3ABdWhVzF2V4tdveTEXV16AB1546Ki8DnGXONnN0HaHV9HVuNP2K3DCciyNmOmaGmh7BArt7a+G4+sUv/XL9We1UkysZnzmAmknqSUQQOGcp0CAFBcnpFrR05Z+J8JFmuy+B/HOkxxeFrNka/nk0il+6fknifIZf8MHTSIFWcUMhsZsL46JtEZl8h5dPHwbfWOI4gjV7xHrdQrVw+2haiulKZVIek1NSkeBd6Uw3Pe7b2UYTTNWw8ix2Vvgb73uX2DxvPbih2vzZY3HGoOPhb1cl31cI2xp2Vk6ysQkRM6RmYSozEnKTCoPrqG13g5XabV7j3YWhwZXyREpFCValZh8Ri6W0czvrO17rPbr0eldhyRZtyvXXiGTRSnnjSJMJ0V5V3NBkyglq8aJuA9hTNJxFBiwmsYK1Ip2u3KUPsVTkvsuwvwtUaqZV2+56wizqYBvg8VrgK0o1OKp5l/KUQQj2PF9p1HvfScAZ5/2qtY3PAph5nbMhKltpCsWVvqMtmRMWjjSJAKPp01/L+IG5E4Sg/Ke5K1vxUYp5iV/D55+l7TMQ++BLSEQeVfSJC4MWIdyVgDN1rEawL1Jusl9Nf9M0og7XrKbrLRfHO5EPHmYMClLfEu2pLSOqJKG2ZP4iSKZX6sxWoWqqj1Ka5hu85xMFOEr75WdnYbBubMj82cFFIckuS+tVJJMxqi0g3Ierzwqz/GzGXphLjCjtSSqO6mQlpN99oYefGFrfwU/HDaseq3h9tvl93keqnEiXOlaSVwv88N4DFGMM4pybh7vHPnSAC5K8tpU45JS4rCRZbLulDKD+gWz2qCSFB0nOBvmjlDF5ZWuq2wafxBJXoxuloerUuG7a2OwSQLTbZnvp1O0NlJVEM7VO7rEha1VjgTZGrltVZevuIoi77wQRsL11TIzZYkbTVGDLrOHz+O2x3DX11C+4xMo59CRwbsgBWgiDBlqYx03DMnU9oCaZZiKwQ4y11QeLL5KGyJJg6ryQSsxIp/N6jlcBzlCvMf5Rx5jAc4/fAm7M5aEgpLj2aLApCn2yBGKFzyf+L//D0ajHextouU+PX161zF0r4ObzVBG7VlHPOrpD+Igrjucc5jNbVySgFcsnx8/+pcO4iA+gzgA3A+ijpe97GX8/M//PD/yIz8CyCLBOceb3vQmvuiLvugJvrrHL4ppxuTcJe77C8I6Su+8kxM/9ZNP8FUdxEH8n4vKqLTSxn4shp/d0SZ+eV7YK1oJGB7HsokpigZgDZGuHqKcCXPUFQXaDGog1C8vPer5Oh3PaDYlCGCjZzPZQBoD5xvpiOLyOmlqhNltIlgWDW9lrWwAEXNHvbgg584y0dEE0XUPpdaMxsRaiWEoyIbFWgHjo6i+tc3ccu+999bn/1wC3Pu3nZTN02xW66arwRCtDaqSyglyMxAYaUFSQi/Oyya9BZbq8RjfFXM173wjkxLO50YTsA5tHBYFOztoa3E6asw5K6b4oUMwmeADo0lpjd3cruUVJpMJu3ZZFVMuaRkiOocrLNH6Or7T2dXfpAGCPIbWuCtrIpXSoi3q2Uzut9J3nc2k+gEgzym3RyijMWlSs7ZM6DcAbGxCv4c+dhQ+/WkSbzk83WAjajG6EfailMk7YQ8G1qHKCkgS9FIiSY9OiiIVhpqOUF4hBpAGMBjta7w6bhkXTosAatgSTGA/e4+aBgmAbloD/iv5g1z6uf8X9bf/xu72Uqq+x/pXBOmassWOrXReK7Z4awyJ2kzjopBy+UrvXy4aigJ18aIw+0KFRR4lDB4+h5oJm73/V76BLeAfP+Mk+daafN+6wNDUYDS5iogqxmV1/WVJtL2F6Uh/PnzTEodvkrFl/coVPnifEjYfSDIuIGequi+lwvgoVRh6NuNyf4V7BktoBV+zvCwYNAYdPwJIG4WqEudFWkApjNZY1TBM9SMhCINVGKziKsBTi1TXUxd7XP5v/43Vy5+m/Ik3wfw8PorIvSI3MSiYoBlZT3zbKdxA2iFNUszZs5RFMLDzYq56z9GbiGZTPB+thaAtKjDsQw8ISTXnvIAgBFay0nWSxhclkfZ7xKQhTRS9wLwvlaZ89kvweYHv9K9i2gKoKCa+coXogx9Eocgeusy091IANp2WttQaZyKy25+NPryBwooc0yOEB8rhQg1wWWOYm02I8OAturwGlbkVcZzt0ok23uG1wqMxCjwRRmlWx2tEQZZifvPcvsdqy5DFnUffjkWRIc6nNZM/0jTvoNaUOqbj5B5Ui9mqfImkk5Ck21VbP4MjRvsiyM20Enp7qhV6cym9uatBVhWBb5Nf4xZbXntio/AeTm5doFtmKKAz2Wg+r3V9XdbHmFhjC2mfJz33xC6D1iqsNuShQmJqmuuMBj1iZ+nYgo4t6M4twcqd8seLH4HtAGjXCVFHKJnAB2PMKuYODRiNK2mi3X3VV1JdcFWfv1asdgq++ti93LuzjJqYZuypqvGAeI+vwW2//hY+dPrBcNNWkorq6joF3R7H5+dQly+LEXzbHHw4lLm+SgZWIL4X3wnV70slVJ7JrZUlantbztnvC1t8ScZSkYJrZG3aoZYXmnllbq71h1a/DOz0Morx1okZsjFynrKUqsOuQmkj1ViAOi3vklMGF0UCugfZKYoCnWXi35PnMv4qMNaiygKfzKGTGMYTab/JWPLrnY6MB7pJ3seHltgaihGu2VqQxk5TVJJI1V+eQ2lxqZE1TVgfxbYgrozEtZZ9tAnrHiVjqjLNHCOfM7xzIyFKNc9NtqAsMJ0EHRkZhw89hWTzD0iyMXZpSQgCKozJoxGMRnVCXe0u56I3GVNW48xwHhvFckob2i2M4V4hfSKK0HNzIqkWkjG1zw9cl9z1Qx+/HzPoNWQFrXGzTEgrgwHFq1/NzvOeh7vvvvq4dk+y1E9HkOd44PKvvofZvefBew5/360MTn3ho1/EQRzEdYTPMlwUKj48BxUUB/FZiwPA/SDqeNOb3sQrXvEK3v/+95PnOT/wAz/Axz72MdbX13nPe97zRF/e4xbT0jIeZxybhUX0dZQRH8RB/FmKe952L7NxAQpuesohTjzp0Gd8rKlJ6IAsVoZzQSfUwc5ImKpK7WK+u63zou+qrt4xrmePXq76wMUd5gNzSika/W2gGDX1gOl8TyQRQEC1wNLxnt0M6GrDtrxUm7lSlsLi0ip81gmo2kl3S2VU8hBAN959M865UCb/xIZzjvyhs6SLc9LeSUKJxgwGcn/VBt5aueckbgwSq6SM0ihvRa+01xMpmdEIut3A3grF7RVrNwpAfpUQqTb8l6+IGah3NcjK2XNw9EjY+AlYShKRLg65//77saXDlwoVhXa/ckV8AryXawjMK6MRWZjq2qvwiGnqCVE31yvL8pHpDOWFmWoD0IFzKOcFeO/3g/SNrwFd71zNbuXKFTGPq5iCkwn6/HnY3mFsEsbpAPfJe+n8/E+C98y+9VvhyXcIQFlp4IwnuCyXn6dT7OU19NwANZngipIyd/CyH0KNL8PvNSzZtOMpvSzf2izTzIcbbhvQKYWNklpqQCoTLHf038+DD51jrmJOVjq9m5tiMOscbG7B0qJUKgy6DRBf2qC129Iqr9vb7/5vHMPqqiRtOp1GaiWO8QtSYUDQbU9sIfudMDYkdz0Tzu0+HFr0plW3g+qkFIcO0X/jPyDWitmrvoTyFa+ATpciTkn3AXONBufsbrZ91VFa77YYVwooYk3E1x6b568fPYkvPb1BhPVQZPYq0Gvyxn/K6niNyTd9I7z4xXLkTgd/8XINLrkr6wL8ANPpo4O8uj3uaMVtHcO//8Jv5b5xxr87e5FurxcMkD1VYiepOMydhn3p+z0mSYe40nxXCldavPbMopTzvVWCqJYkdMLNOaVQVUJCIdISgPNNH1NKCbxsc7zd3SqREpkphSQYZl/5eiyBlb4PTqlQTM+t0Xu7SLJsrzwJXiqAe2oM2jkBhoxn9MIvxS8fvvoge6LuPiZCe1Be0lff+eU/wks+/ftoB89YvelRj4NOdv87MMy198RbV+AkGDx/73X/hI1sRuwVr16ZZz/KSjZpnr26DsBWK4/Pmu+UUUzn+/8u+ou/AIdiLR2ykI/YpaEEcrMhpkUHAd/ladS3cc3Ej9v3Ge2NE7ct8/AnW0z+Pd+ZBq+Jd938XF5y+gMAjFaa9t5cK6hkaQqXMFhIycK7ofcx1gWInK3B+6jFFnedDoMkIrcpRZJyuJ3MeMpXwpNfB0D31Bbnj78C5xTRvX/C4Od/ErxD72zVH+8vDICdq28Ief+ryK/jPQa4+8g8d/xfr+cDH7rA6Dd+IfzW4/ICszMCPJPRbl0DHWk4d07G5arSzPur0U+9G2ytmdPQyFxVsVfyy7PvPQLY4Ry610MZ0XZnbV38XayVhOl+EZjL+56rkrTp98O6DJy1qDjMW86Jx0z1Ne9qGToTxhznWj3WS92XHgzwvR4+yySBEQ7gogi9vNw6t1yLUwblm7nAb2zCwhygiPtdfDDl7aws7m6ZIClT68TPMqCQe7kwEh+Q+r49Korw/Z4cI89FsqUt66PgNz824hIJT+1/gv5TpQIALZJRBNlEe3hFpGzyquLP49tyZ1GE76T1Gjx5ylNw73w3/Ox/kuTq678Tf/dTK1675FG1xuqIuO4HYR6sqtq9x2otb6bn6rFln4jimOnZNTlmRbjZ2QnrDCF2uIVF7HBOWPCAP3XLnoNoVGpAK2YPXiEPFY/FhUuPev6DOIjrDT+dVotCGUTUdVSaHcRBfAZxALgfRB1zc3N8/OMf56d/+qcZDoeMRiO+8iu/ku/+7u+mKK5vMfn5EPZH/hFd59kMrC938Qq3Pcp3DuIg2rH9wANka+t4PPO33kpaAX2fJ5EF0zM8jNb3KsXeWKhKr9k77CwTxqcJzPIgK9KuCL33suO229LAsERA08EQ8PhP33uNszRx8f6Hmb9FzKUYT2B9XdiqeY5vbSjLwhJXDHtCKW0UyWYolC5rK7rERBF2YwOdpmgtbB+tA3M3MCmNb22QUrl+VxZEYeOUKI9SUQ3Afy6FWZwXdnMAOqO5geiZYhqtU2NqrXU3nggrvdNBTSa1ZqtaX6/NrIyJpB1LYWyrKoGSdmTjOZnIptaDHo8liQGBLu1lA9bv44dDOUfr2eluBzPf5/LlyyRRgs/GKBIYj/EBXCTLGubc9jba5mLOliQ4FLrSXVfAyVDqPx43zGaoGWZaa0EYC/EfIM9Ft35+vjGhA/z2tmyytcZ6jxmPA0gvpmLlyiGi9H4BuYHto7fz4SWZXW7CkCD6ygKUKGHF93u4K2vQ7WJuOoHf3g4VIhHEBqIElfSABsxaXtacfPYdVz/nKEK3tder9lw9hFegZjMp8z93Dk5luC98Ee6DH0E/9U6pbhiJzBCTKZw7D72usNxA2qcCJqwV482KyWdb7DSlmt/vlZSZThvDPeclwWUtdLohMRDx1Pf9IbTYqpx7QL7eBjFCgkOVJeXlDZR18r9ZVo9FxlrM/NWbp8hoisLKtVRVNkrWAh6EFdnrwe23ozY2RbrEOeJYk6QRpGCr54cYOg5bZqfxaASzDHPPPdi7ngZ41MYmJlRkGAX5ez/A8N2/h0ex+fJvuOoa94aKYuxvvwXTSSlNjDv2XIa9DmbmKbO8bmetqAEwh+buhQ7llXXMYUmoKu9RcQx5CYkATdaCM/K9opUsUbOM+Nd/Q27zygbF13+NJNCcQ4Xk4idmcGt4qV0Ui6a+7uLVbiDQ0xFJGTxOm8CiDszefWRclDEUUcI4EtCn7PSIlSh7T5XC/ubvYJ7zTEkEmFvC3ZY4kquOtTfun1peikg7lMBW0uG/PflLibXi7kdIkFbyC1or6SghIVP5iQBkKydJsRjtKJOEbWfQKIqF/bdavbmU2UjAs27/0a89NppMJ6SVxMN0ireO6HfeyjRKMVFCGjSW08mD9OMtwDCX7EARmMw4duutAzgickoSBHUoiSmwJBgKtL5aanJvpP3drPd21VyiPZ2QUPjvz3gNP/fUv4ACXj3X8sHYBfh7nv6yU496ztwkNaA8LBuQWg/6oBWR0Rit0HHr2rRUCQHMH17g5DMUtrScf/iTuLSD8h43mK8/btu6MXuinTApHoUs4IEzSyd50qu/BkzCwnyXTaVIQpLUz3J6P/hDeOCTx++Cb/2m+rsmipj/oTcy/p6/QXnsGAyHeOcxe6XU2qHEE6WWfasA1DzfXZE0HjeVat7jtrfRva7oucexgFHbI9xshhkO8JMJZjgQNvx0hlaO9z+4jtvKUDiOVk8kz3eP/9AA4NOpmNKHai+QqkJf5CJZVyWBg7G1G01QZ87CNAPVQ8+Fd0UF2bI4QvW6+OkMt7MjEnWqOR/OyTqx28NNJlLhFkXoQU/GEGvxWd5ULHjbVLGAgONVm7bbt04gBNNSa0FH1IJngeDhywK2tkUf30s9iWqZvKso4qsXEzbiDsWFCcaJvI8yEQvz4d07cbTxr6mqR7XGJylF2iUuS1lzA4vf8JfJHzpNeuspsnf/oSQfAHIrb79z0OlgYjHc9pvbkrBo3Zus46T6S4WqVazF2pLttTEoRdqNSbtXz7HlaCISP85BlkMnJS5K8A4XxWIibgx+ZUXmYaUwW1u7juFnucgcGYNODCpIt/l9pOgO4iA+09hZ34HZFJ3NUAXQMgg/iIN4POMAcD+IOk6dOsX58+d54xvfuOv3a2trnDhxAtveVH8+x6AvGqthIa2D9t1BHMT1xkfe80eYo4eFVPK/f4/nft1XPtGXdEOhFneomWvJo2+mHyniIyvCVCoK9GjcmGK2WDLtzfeRrsePJ2LQ6X2QZxGGQXc2u9Zp6lg6sggDWeR7o9Hei4xIp4PWLeOlblfOXxl0DgZybdo0G5eW4apCo4Omt25JavjRGDeaYI42EjFqfV2MIwlyCpHo4kadTi0T8EQD7w8//DDb29t474kWAjA9kbJx5udR4wk+Mrs3kSGUMahK33x7B72x0WzgOx1MpyPa95VG597vd7tiiAZSNl5JugRgGZANcBSh5ufw43GzqQVIEpSW6oHSWfTWFhw7KtddfaZlWsrcnPxvexu6Xdqwmfce/eCD+NVVeVZXrgjAa50A9MagZhm+24W4I0BBBbxlmUifVAmaQ6ESxDnM4YZV69Y30HGMno/rMmqvFDvHbuOnX/JtAPzL+BzLcbK7LUKYvfzSOBY4MqpMYHcbHSo7uarNAZ5/eFHeqz3PxF28JED8oC96z0UJ5mGOvCTl9Nkeh2YZamFBGJSXRZYpi1MiFCZo766f3eDvf7jHcLzFjz0jp3PbzU1Fwh7W2y6Jqokkb1QU49Ok7m8+iZv3MCStzOJCI1FwVejq4PL50I5mZYkiSigQHecK/FTKiwTQnogjg1a6xehUDeOyKGn5RgZDSpGZMLt8AZr73SvBvjjbJsYRv/9PsO//EzSQP/nJjL/5mzFepICc9RRaKkniR5KkCZH2Uvij96OLGT7pob7lZfyt246wNtuGK+dCUqQCr+X+iyjm7zzlKN2/+1XY7/wOyqc+VSoMspzyN3+L7kc+TKkNk+f/ZaJDCqu8jFle2rhMUv6vwatwHv7K+H/xhQiw7LQhDcmDpy0HOTBnUWWJLku0Ltk7ophsLOx77+nnE4qw9ejo7Wuyp49cOUOnFDB6ONuhDFU0mUqI3v0HpIk8A//cmwF9XWA7QK41C4W8P15pUmMYW4sN+viPFipO66oOpWgSUd4jl2RQyqC1JtaOSCn63f2Pu7g6qIHa+ZVHX4dqrRl86AP0vkcqTjfSIcY5Ym9R5YwrnTlmRubQQ4w4kpyXL5oVyGX97vZl8GkcKZEqKHwMJJQYfJCauZ5YPbnA6T+9RFnaJvkawpgYpUSia7vwVNB00WrvQ0ciLl6Rn2N9fQQfZQyjKAUUW2mTaNT5ushw2RLtHaqzvwdV2o05/qQVysJy3sSh3/pdw6d5hArYueU+a+e2getImKRdll70xeijUmnVSxJmcZcehP4kslMecMnVpqt6OMRbL/Ncp0N8LKVcW9+9ibe2kfHwYsSp4j3PL0maCjDv63FUjccyxw364g2Qj6EswlzcAJ0amjWTUuRO8dX/Vkxov/nOLq9diTHDbdxHH27myyDBV51TV3NgZbSOGJfWEivV38J5jFH4m04C4N53Gbed45dbfaws8ZOpJMOrCMfyFcvcWny3I4n4XHyDvNboM2fwKyv4vMDMD8ULxIY1R1nKGjLPUWtrRH/6cYoXvkDA54q5HUUwGKB/7v+l89AZiq/9dtRoowb7FYhfRjCsJivwSuOVlrnVe3xZ8tXLx7CR4r77NkSdKDKYQY/uWMYqU7WN9836xDlcIfc+933fT/4lr5Dfn3w1vRe9Vj5S/HGdXrNHVqVaKszbbnMTs3qI5NabGxP6ql+Ik7C00SQYaMcxvoz46LsfAmD52Bx3Pm8f3wJX0Ctn2KoPKk1hIkmz5sE8vciJrlyGhXl5TuXuhJXLSinE0R7QqKqy7TrG6IM4iOuNe+85j+/2pebP57Xy2kEcxOMdB4D7QdRxLYBoNBrR6Vy9APx8Dqd0s/A48ujlyAdxEO0onMcENsnlzf3Br8/lsNh6zf7g1hpz52SzuLi4SLcNZF5HlLOMJC+EDVMZXxoDRYnb3BJzShqJlSKnJX0QSmFDFK3N7c7ODp/4xCcASJKEWQDjF+cVnD8vG8/S4jqpmMBZ25TyAm5zC4ZdkYHZpVHdunjnBKTt9dD9rgCnaYqbTFHDPkppVBwRDXoCzoYkgQ8gZNxNG7ZYUWCtxVUbxyc4Hjh3GeMEsNIXLqKSsEms8itbm6jhEB/MYclzYaxrLeyr2UzAT0/NcK90Pf0sk89kWWC4C+PSZTm63wOlxbysLIU5l+dQlCIFUUVoMzedSX+on5ESdlPwGbCFbWRuAD+ZiMHq9jYkQZbCWmxRCjgyHgvzc3m5fg7+VGBLjka1Brwqy8Y01fnaBFQlibCc+7KZ9iYSIBpEbiUkGezGllQOVGzT2Qy7vkk8HhGVBSqRPl9B6bY6x3gi70rQnCXPsR50UUh5q3XSxs6hqNjlHsiomJmHFvYHpAYDi59ORYe3FV4hfb20YC3laAzdGc+cn3HvQ4tYFFFRNBrrCozyOO8wlYRBmtJ3nlhpdClGrgGfIjdRA3f6JnmgvJd3ptfDb23XUjdeGh0/nYlcQAWUWHvtknVX1ibIejKpmZvZrODNL3k9EfBNiwVHTQRJgl9Y2Be7N6FvVlJy7qHTmJ/5j6Cg/KZvhGffLccejUOpfjC2M0EKSIQ+6+PtBcynSQedT3YLdhQi30Uco/tBYsv7gFU/+g7vLB0OO0tkC7r5hCRVaAo8wvoWIAY2kwE/+aLXg4fh4hJ/03liwE6ntVmeV6LfOygFAH3BoYyX3mk5548wiCcQKkM6R1ZwD4gUTIGCn/4ZIqPYSXvw/X9HHrXRRHODxlxXa3AlPtudOI2OHKJUBqU8uYkxlDgiZm5ut+ZwKy7PH+bkBal4yoIkkigaKJwC9dbfpTAx+rmvuyEfPY2iRJ5Nt5iyldvW30KlgFHiWbBP2G5at6WbzqR6p5rjauNPh0GMQsvq+ewTh29e5PDNi9d97Up5NrrzJPkMrxQZmjlb4IBcR3z3K75fPgf8yZEziBTKnvv3Fpo3NPxXxhrvQVPiKfB15mn3HP1IYa3DleGdad3ztz3jBA9dHIFX/JcHLnPfRMaZpLXnMAvHiZOzKKA3mOO6whgBLfGkZWOsvVPOo7fXm3t+1P2LF/3wIgc8ZM2azj+CqbHbO5/tCaUUCkkce90he/lr679NNsYMf/M36PzB2+UXa9vEoTrh8Mb53eexFjca4W3ZmIVrtTtJvV+0wfa2hNZ4XFfvEUUwmdYGntV6yIV70kpVfxHpFu9rANcBnTLjf/zGDwKw9Y//MfmhY4CFJ7XqhiuguJqPx2MBxyuZP4DNDVAnQvIKWVOEJIB3nvLsefxkSjkLEiRVZWUlaedDsV5l/hnFjbyhMkIuKMtAupAqNhWSy2iDMg6/tRWu0UuVXGVqDtjRVKRcKpmUisGfptgLl7j4nFdy+C/ezs13rXL6V+5t7lWBLwoIa0uUb5LGWlj8ajhg6ZVPJb9ykeTTq3DkiMi4xTFckn5sd0aiHQ8BcFcQx5j5IcVggOv0id/++/juELf6KlxVxXrx4foxrL/1bcyd/Aa096HSDnxe4EZjFKr2APBeEhQYI/N8ZGrvIpfnsh7RCqX2fzem04KONmK86+tlQkjaqLqaZRZ16FQVa3vm0e0f/VF88OTo/MkfUgwWUR6G6YTrHzEP4vM9sknBlbNboKA/12Fh9eoKzscS8X/4EfKv/xqxN58UqPQ6556DOIgbjAPA/SB4wxveAMji8Id/+Ifp9RrGq7WWP/7jP+aZz3zmE3R1n8UIQIK3Dl9Y1HUwzQ7iIACiIq+lFqKzD+Od3bc0/nM1Su9IlVxv12ScPn0agOl0xm233XpDx/LjCRw+JGW9IOCLlw2sHgRTPLXGbDKhNxhgIiWbmQrxb+1Tld69gK82tNPptPUZjTPCIPRRJIxerZvy6RDJsCeSGHIA2UgeOSKMrs1NMRpcWhLtcIS1roLRqc6yRq96NMJOpkRBloE8Fw1xoNweEY1GkCTY0aSWK/He45wTk6jPMD78ZV+FPv1pQBF9yWt48k/8ixv6/mQ6ZT4NbdztNNql0ynq/AWUd7iFhUY7PeiSAnhthL0OYggYtM69NgJ2940A31Ub1ZIW4WGORO6DoDXqSytyJu0LVLJh1HEsQHiSNGaaedGA5dMJrIQyT+caVn1Lz9bv7MhGe3EBlMLNst3n2qtfC5IQqECI0sr+ODDfatmhNK213SFAT86DlrJwkkTaJsuF+X/sCO5jXQoT4RQNUAHEgy6qZbSqBqG8PssEZA5MOba26vassdi5VSIexmJQOFK/ue8zN6nBr29K3231PaV1XU3inCOf5FQvXk8HRmdRBDM+Db0e0c09ynMXBKDw0PUF/4M5/qSvMDctNFI7zu0GPPdWTEynYgSbBNPU6VSetff4vMSvr6GPHBbTx+KRwGdVX4v1CEvfWWZ5ySeXT6GVIkvP4L1DFQVuMpWKg71HMVrQmvBMtXONtLCX+6EoURvr+IVFAXyiiIaXq3ap5Swe3r0BjF/+Osrty8zu+UMGxRgFjFQi/bko8NOMyDkiLdjLTdcxRLzmjjmybITGE5eOeHBImMfK4yvAWim80dx3SMbvJ3VleX/vwgmOPPvZ4qOgFOniHJn3jE2C05q0F/GMwwWLsy7rZ3dq00BJOPRQeLSC5KEH6Zcz+kAUzCZtWVCOdogikTjwQY/Z70kixHMD3nnyOSKz1J3jNWSAI2EalOavjqzTIzMJCk+hIzEIBeIoQjtP7B1xmTE2CkuOwgdd+Pop7Xvc567OM0u6pEWONRErqeFK0OKPwxhx6hlHue+e/Y1OVX9I5wd/iMSV5GjGnT5pkZGbhPw7fphe2FZpGjzw8VoZJEqz1VtgYbyBU5rtwSKHsi25rhYQupyYPWoeutae78QFXJWvEyNVW0v9tLeGvp4jHy20VnijwnTSYq93EjpDmYuvtBIcWUuDvL88z/P+wvx1naeK5e01OsGMd3nrYv37Y/PrfPjHfpX0nf8TgGj5kWUClNKQdMUs1Xtc1GZKX/t7JmraRe+jwd/pdDi2eAuXH94Sz5xWzB8a8PGZZSkYrevWqZZHa7s+mxw6xFM+/qe87Wd+jn4wri7PnifJJnh1tPlgG4CfBoC4AjSrZzid1mMB06nMd/OxMNwr75IiANMOaukUYyQR66yspaIInCNSniQkCqLF1vNLGu+Ien1RNWnl35Jloe00nY215hoVkhxMU/GG0Eqk/aKIdqWTahm2mgBka9+SdyEkfSODn5uTfry9LeucSnrrxAn5fSdFR6YmVahuy1i228VeuIi95WZpn+pednZgOETfdAL9sTV84SjefQHlVHONKCE7VP4l2wXKBJlFH5Lr4wlJp0OhFZ1uRN5is6sw1npopHaslexCWWJ2tslHY0kYWQUaVDdBB98C35qfZw+cYfB9f4/l6RY73/md2FOnoCyxm1vEC0NJyEeRPO/qXAqsDWOLD7NgpZhzjZfjvrURty8kJKFyQ56nlm6Ar71fdCTHr71gWuG7vXoNM3vOi+p9xfa5Bzi+71kP4s9ibFzc4aE/Fd3+/sLjC7hf/Jn/gFm/HHyBlCSWDuIgPktxALgfBPfccw8gINFHPvIRkqQpjUyShLvvvpvv//7vf6Iu7/GPMjAt+yGxkOfYaUYUPzZpjYP48xMZuh48Fzcu8NZfez9f+jUveEKv6YbCNRUtQn6Vn//oE5duHHB3wHQm5ds6uL2XpayfWxv1fCSAe7y5hr7jGQDonRHFeEqcdmQxvdhUm6yPc2alLOm9ggo7VlqFzYoXNvD2jrDYp9PdKrBJMHW0VjZ/R8PGVKma5czmloC0iDEgQcfdOYfa2kY5V7OD/cZGKFlWuPFmYCupZkNLIC0FbNM9GvvsUeLK13wlvZuOglKc/+D9PPkGv9+JGo1RmySYKmnR7eJvPQUPP4wqihpkaG+KvXOozU1Ikka7XinRAa824EFHG+frcml99ixuOJTd4aAnBl9rawg1zgpgPZngswysQ00mlBtbmF5Htm5hA+69w5UWrQ1umhNtb+KPHt0Nmu/doHmP29xEBz3w6t6d95gHH5Tnb63IAc3Po5cb3wW1tIAvCvxkuhv+88GUrErK1FwthdUGU50n9CH94IOY0Q5dm+Ozcf1egWK2NRZ2e2grf2UN1e+hvUgJVNcsRR9yJm2bMuvn9f4bDxdPk7+n+5s7JmuXmPt3P8X02/8aLhh2CpNayzONIgFQvQeThGftRXM9MNFZW4PJlGJjswa4AXRghButifIZ+EH9DNJOS06hxWSs/+2D7Ea3K+eYTqEoMFiULXF/+wcwznFm/hi85tX73lvrgHKskEwbDFLhzHmP8+FZRRG62yGtTFlbobTBO0UFb230F/k7r/3n4D0/wadZqmUlFGp9XRKJzqF9I9eitYAN+4FsN91yF8Wkx+mP/gm6GAPQH20wqQxGtSIxhkRrcJ5Dkb/qGHujd+wwf+sbfpJnfOTt4Byv7TTyDp7mXiJgFvrcjhWgY+Xv/iSz0X10KpBtcRGPom+lfHpNuKxESnHfOz7Enf/qX6KA86u3w8u+C7wi95pMR2BSLvSXeHoAQkyS1MC2UgqjNDt2hUTv3lp0YsNPPuurAVHseRXhHVD5NQsaYm8ZWBkPEnzNi/TeMVfKWLaWDkm1uU45GbnOpy/0KP7JL6Df9RvETAUQC8NZfI1r6fQTuoOgwW903eIeYWn3bU7f5kyj5r5NJTkDn5F59vI3PuWq3+ngt+FDW2yalFHcI3KWaZzy8y+8BaUU0TQnTj7VfLHYhlDtpPxueaqqbRyaiIySzlV/uR6jRJB2KjJ7tWdr6z25e77Lezem4X5uvF3asTDbqH9um6b24hngyF7+5QAUeckj1u0p8FGMyqbSMpNR/adHkobbxX6/BjA/3pqRZwICDxe73PQUSeoXWcnZlZu59bSwrKdEmJDUG6X770WSW0/WMisxThjDFTC6N4oCFxjqu8bjKAqVaSEh3qv8K5R4YFy6FKTblIC6aSpJ8VykX2zwLKjIzcY3t27Ksp7z/LkLcNupVmO15gXdgOa1L8jKcuP5E45fJ4qrMcbDUq2m4vGtMiunNBoxuDZzc816piwhD34jIMbvlRTM/Dz68mX8kSNyhtGoAeO1ln/nBdG73kny679J8Q//fnPtUSQkhOkUt7lNb6y5NczXtTxKoHeropA1T0ViUCqsD5UcJ1QV5TMPWyXqodP4I0fCrQUyA83PdVLUeUoTUcQJ2pXobAbZjKWveTLpSZHgufBmXT+fTj5lJ+riE0fqWu3aXGrTbkEmkryQZEYlm+UfwTcgxE09h1FQe9WgmgRkr9dUwlY+Tt7vSpB6J2tDX1UCgPQNqKs2D+LPR/h8XP+s8qsrth5LrHdWUMbg7rwTAP3xTx1IyhzEZy0OAPeD4B3veAcA3/It38Kb3/xm5iojuj+rIWgYrG9AmuCLgsnGBnNzB4D7QVxfaHy9eC6/8i/R/Xf/Bj6PAPfLWzMOL3bAw+VxyXxPNKM/fDnjG2/wWHrYF2aAd8EAiWYDuLYGnQ7ewXhnxMKRVbL7HqB74hDMzwlDZ2FewDPn6EcNC+z82TVcngftRgVpo01KkgiolgSDrfBOu9bmWK2tQSdqJF8mU2F6F0XN5vZJipqIS71HYdIgP6MUal7GQbW9IwZWlaxKUYjpFog+eaVX75zgivW+4ZE3JY8WypX1Jie1jUSDHY+ZvO99oDXx6mE6T75z3+9vzhyrfbkG0+tKG++MIMvwG5uo6RRfJR68b7RfCUz18DdfFMGM0slGtSylqsG72mSViZTgu+PCPfJr69I2VcVBFEFHTM1UryebrvUN0RMf9iVx0u3Wpdomy4X9BBRRhFkJyZIrV2TDGww+fX8g27koQmtdlz875+SZVSXxp26VPaKJREcccFfW0CtSqVBJyahKZkxpMNJv1C7ApWELmqVFefZ5jhuN0XND7PwCJorJlCE3Md7omjXrnMcVOXoc9s1dSUh45+W9yTKRXZEPy3Nos9SjhKgMzLbVp+77zKuS886v/wZ5WVI++cnCwHMWV7rAMlOYbgK2Sm54YSSPx8Lqd04MB9M4GHKGMnAFC19xO51Pf5qNez7I4suf35gKK7XbcK0NrkSRPK8yGBRXUkXa4LoxLC6FjT50zLXfGe+qdlECNIXqiWkmEhlaKSyqBgctit7c1VISSkHpGuNa7z02POOyKKV9owi7uIT7h/+U5MXPo1AR6rYvro8h5EmPs7ulMwBWXngf5CM2734DG8i7+cD73s0tStpCB4kCD8KsegRAr75mPP/gKcf4zeXXBXp/H/AYBet/9CEWP3IPaMX6rE/3sAA13QDOaqUYfehekmEPnSbYnTHWWXIdiXKDikBJv7BKMzEpKJjEndBenkhD6koSV7CSjVDVUDxcAS/vpI8iShTDeU083C3Tp5QjUnLPqXFUSavMD1Bqf1aZjWLyANx7T63hnqMYRymJLejYYq/7wSNHnf9SZC9/LSUT0g9u0A3JpGSfBIrWime/8vbmXnp9ch1hlWIadVlINL6MQWsWYkeOrUWH4oDMG/XIhprXG3Gk6E136JUzNHBkskHqCiJnUVaRhb5YdhOSbgucOPliSIeAYvzxa7WXR2HRFGgyUDHWS4IOf33Xf02j09Yp/2RtQjWbfXD06J4tjxSfetoXcusDHwYUawuHuTv8XncGGDI8EQpLf/6R9fEV4CODT7tC6u41n9ePNI/rJplwLemZ409aYeHQjM3L4zppAzAdZSxvX67rZra6Q/pTSSC4vbrrIWYPnSe+4xZh4c9yjLWSMK+vp52Q1uhecz53+mH0ieP4JJE7ynMZT2czMbb0XkhIw+MCrudZqN7KJFGsFczNoZdDVeBkAp0Uf2SVXEkystiZEIck584sZ7iz05jbVwlu78Usezhs5oWiQL37Xcz/h59h8k3fSH7yJjh6BGZT6PdRcYxJE3QSoy7Y0N7VPcvAIvI6HjMaiS54Vf2WZVLNtrEhWuvVGk9rWZtOp9IGeS5GsS0dfOc9+soV1pN5piefypG3vBVe/63yt+lUiFveY4wSv5PAKt++9yzHzn4K/7Sn4g8dkoR8WLOSF9LfCitrsgrcB0ykYLJD51d+BXf4MKBIn/Yc6S//47fpP+9uqNZ7Yf+h04Th+ct4FeHiBJJ015xkjh6Bh2agoDQRx0dXiGzOLM/weCE3ALFzUtnXJooYA4MET1+uuSyxUSwki3aZ155weY5PTFM56B2RtzhbivxWRVIJZBa5/+ZYbjrDe1uvq9VkJNKHQOoOENE/TzF5+zuY+4//FvD4E7fDl/zC43bsvMyZvunHGsJUpwPjR/nSQRzEZxgHgPtB1PGzP/uzT/Ql/J8NVf8fm+tbzN18UKh2ENcXpttpNjedDtF3fMsTe0E3GMujdeL+MjjPwFoGiZRQp/sADo8W0cKcbCaSRADWogBrhRkcpFdgjYsba1z8wCZzr/2Sprqk3290vZUiasnyFJ/6JN2VDmiDdQ5apmg+m0Ga4AoBICud0fby360si867DZuIbleuzfvGKCyf1frkSu3UbC89GgnD2zlhI6FQ6xvi+wCwtQ3dDj4vRHtSKSLv8NNxkNrwOPvYGO5JzQ7yRLZ5Lg/+k3/C2tOfIRIIH/gAz7wG4L7cNbXES7G2IfqwcQzpAHXkMGo6Ec3loEmvvG+Yb+3NT1Fi5uW+3XSGroxOt3cEpHVONs+APX8R0xVd9UrDXSklm6UkkY1tHZI4UUmC39yiTlAohW/1A2VbpfiVlAzAeFwzw/z2Nt66WrJFa91I0jhfs7PZU3XgRyOU9yJB0+9LBcNsBlGEi4ywssYT/KUruLIkqvptpX2764HJvagoIvUWVUx59Uqf19wkwPADn9boULLfcJJl465Akk+zKWWSisEbe4hkK3dwrJyKNER3ce/jlst6xjMxgLp4Ef+Rj2CPH8f3+1gjpr5VMinqpmDCM63aVSmc1uBEZsVmBa6qbkBw7MELjjKw50k/tEZWadcrhev3d1cGVBfuvZSsT2eYKJJ3Mc+DmbGYxfm1DdJQer+YPlJJb2DkqXD8StJrMuZJwxNyCz6FBx+ElWX8ZMbcfoboOsL7hvVpjCZS4bjOS6Kl6pfOw/9+O0XUQd/xqvo65uY1Kumh90sQKAPKsMFxqtr7eRMJSBVAg+nyEfo33YlXkBy7BkjZCjO5iPJ9/uKROQFq5EQkOmJyaRN95iMyUtzxIjgc7iuycj9akV/ekHaPjMh52UYGwvSW4OSL4N41YRyHdqnYxwrF/GyHjs0w3jOf7RCHcdD0unjn5LlaS+QcRB18vNukMlYJnXC8xaTNsK5TD1ffs/HkOqrB0CJ8bDgb03XCto2VJ9caQwZ4LFcnWNqxGyNSWDr8i7uPPypjc9d1DXo4JQCRNTJ+KluABaU9lbBLZJo+Zv3js9WKlGE+G9XvWqQ1mYkplSaL0muI8wCDY3D4LgCGp9/DXtsZRUlEgUfjxPKXmBk+GKdeS2f/ekMbhYk0zjlec6LH75wXAPCuxRvzi9kb06O38Pq/+COg4OnzEV9e/eGur+QF5X+B0XnQEXSf84jHUVqhun3szXdKAuzQkeYck+ya95SkcQ20XytvNlzsMVzsceTU0q7fK6X4xdf9HT64JXPiXzj3Qb7lA7+KB4p9TFMBNv/oHoYuQ3vP6JMPMrz1uIyDbYB+HBCjbIabyQikL15k+3+/i7kXPAt/y83Q7aJQwctKDOfr70FDeS5KWStV0nFFKfKJcQzDIWoyRfV7ZG/8QZRSxK3ERmpL6f/V8euG09iiRE+nqJBA1nMDTs71BOvyyGSTJPK9MMeoOEYNQLERLjFUl1U68KEqTJUFbjwRGZc4FhY6nrIoiIpCfGbIROJsc1PmxMp8tCwxZ8/BTSdDyUuMO/0wq5vwv07exYk//DV6fygGsdMTJym+93vk2ZuIuWcus/IF8o7Fv73N3B/9HlkSMR0M8fMOnxfobkeGBKVQ3uK/63tRr/wiXJSgXvISUdU7fgj9tv+B+vjH5T7npN+4j34Cs9DH3n5bQ2gJ9xwNuuhIg43k2bQS9Yde9xeZ/PF7JaF9eUryqQtEePI8r6sVlda7jXT3VCLUo6Mxov1e7ROu0eeVEt18qaSTa7E6gnL3+ktHYXyv1h/B5wlnYWFJ+kCeQZHXc6f/DPYoB/H5G35nhCoCOWT6+KLhObbxxABZ/x8A7gfxWYoDwP0g/vxFFMkiMshNaO8Ynd+AZz3RF/ZnI9Z+9udw4xGq02Xl217/RF/OZye0anShvSc7d/HRv/M5FOmRQwIMe48up+SlgDgnBzc+JfhZ2Lz4YDQFYrbkHD7LRGczjuQczuLTFM5fgPk57PYIU2mjAz6KOHPmjGx604opCz7PAAHcXVZglAat0Ti8FnahMgZXNDuAaDqBrL9bH3JPeXW7kFUrhd/ekY2a1jX72+/soFQuBlqVxrkxKGNQO+PW8YN0hi3BWrLiUcrYH61ddbAJVIqyxVxb39rCBdkfe8vN1/x+S16W2Chq4c1QSu7KxoSyMhLzxsiiM4rwwRhTBZ1RXNC9ns5w2zvo2EDclWe0tS2b3sD4UpW2fq+HXVsTY8GiQC8tyuesxXuFHo8pd8ZSfjzoC3vXWkxZ1JUD8XgEnUYD1c9mqDgWNlp1g1rYVO7KFXRXQMBZbkX+oSjQD5+Hw4eFRR5Y3rqla2uMSK5Qye5Yi55OYW4ONRwIgx4ElKgMPlsIi8YHBneOy3NKFNM45USacaL/LgDu5wi+KFHjsfiGZBl6MEAbjS89pCluZUU0ZgM7n3bS5ul/+VH7TDcOSQZA5YVsZBG9eVcZximFneXw3O8EPOUf/go1c19pvCCH6DjCTqg34DYAS1ppMhU1zDylaqZf/W5NJvLvAPBXxquSqAgbnCiSd2p5gV4hoFO3d23AXZjgArp7V9bGcVEc84O3CkD2iftHqDf/ONp7djpD4q//un0OFIxKq+utjuuRNipyGHupkLEW7T2pt4xqgzjFsRMRS7df49171jeDzXnG5Q22Pv7HeAXWbOCLVek/pWVz9VY6r/9L4GFwHZtIbz0uDnq3tVK3J9Ken7vry9C3vhzjPTcdOUzPSjpnOTU1MFI4XbMKlQZdFpRKo/CULQZvqYwk3wDjypp9vzheQweGuUXV/SpJNIxDAkBpMg/ZOJd3qRXzHcN/esER8HCydx8PTELyBK7yVqiiu7VNr5R+MTfZohs+1lOuNouMnSVT8S7t9hsLAYZuJGIFSSkeET7PoNuSs1FiZuvw3LtTMA3NcP/2/ibHNxpKe7biHkO1jVOKc70l7hxvoPBBwz3DIqa0uxHgR64C8EQtWXcPFPioC0Vgofb2T/Bdb4y3ZtgAtn3FySW+4qR4URy5ZeExHbdrskqRgnLvLd79TfDQu67rOFVSePT6vw9AJ2kY/Wl/f7kiFySbtK6k1m7w4j1815NWWS9K8JatLeiH/n75Gsl6ffoM5j1vA+Cek8/mZV/84iDLEW6+RSYgz9FFAf0+7tZbSU49BL2qakUJ0N3S0Ffey7pgbR09HDTj4641k4fLlyXpbYWMoNMUd1swSA2JN4DYe0mCz2a40QS9tFCPt5EOSfg6UaCg0s0vi+CV4hqD9MkE3+lii4LqG9753d3ae9CGWW9IXN1PJcdSS+voWianTpiH+9NaiBWEqkUV1kKT4zfx4hf9KeP157P+0IfpnvlTudUSWZOkqax3oqYDrF58UPplWaK9kyqEwKz3RREMuz3+h/8jPo6JExPGWsfOXa+g95QPEN/3MWnH54s03EZ3jmEW5FSiSKoSrMyD0UMXiGKNy0HtkXxZ+fZvh2//dgD+8Gu/k0UTo0vwRYGp5m2tsYSZpb1Wbv0dQJUlyfFl8qUtAE6Pp9zJyav6qS8tEFN6h+r0xfy138NPWoQL79FIogStsc7zvve8R+aespQqiIUFqah0tjZ0d9dIK26NM17+f/8+4Dk87PDWN3zBvp87iM+vGPe7TH/8xwDQpx+W9ckND7b7R3e6SS0e5j2+zOFRkvYHcRCfaRwA7gfx5y/iuM6WAzgUtnh8Sn4PAs696V9ivMOh/swC7mo8FXCu2xXt8M3tJ/qSbij0dCoguXPo1gIm/kzKNY2RjU8uzPZqA+icw49GmF5PZEOUbJCMVrCyLHIi0e7SabO0xJkzZ+TnlQWYTa46nfIeDosOKuOJsOWNEbmS1jrMJh0xLfVeWMs7I/lemgqzKUnkesPP1nmRitFaGFI7O6hqXFDgvUPluWw+QkmyqcwXAxhFvycbFWsZTXP2kZC+7tD9HnS6gdHbTNV2scWUuw5TVu89ajBo2kFrfByHZy7MXuUF6FYVmLy9jaqY5EpJtYJSAiwnMWpxAT+doqpxdDYDY4gW5oPe/SZqOpVNv0farChxs5mwvPMcgixTlKQCclb3YgxOm0bfNzIyZmsNg4EwuAiJAGtloxqSX3opVCvkBZ0kaLZ6A7fcIscqy/qandZSXg64LEflhVxXJbPT64mBKYiZ2HQqMkiZMIXrzXuSSKIpz2FtDT2bEeExzjJ8UgSXBGRw1qHiSNiF3uNnM8DjnBez4Dyn3NyW7aTWIkuR7A/2XCuMahAIVxQ1IG51hHLTxsR2PIahgNTeBN1zrQV0UArSBB0tsPXgRbK1BwBY89JW2ihUmYsMi/N4JeDTLo3Zynh9NqvHAq0Qk9lYWGvKWlxR4K+s1+Xi9K9tiKUqgL/C3Z0H5YUlGeL4iWO897YXAlDMLfPK/TZmSklpO+E4qqmM8SHpgNbkSUeeU6hwEXkf3/rfNaInVT2D4VEGt4r0z4UH/jNZSJ45rcW4FeTdvg4daz23AjsBpNb1hRNrzVY6YBKLtNLzF4d8x83y3q70NljbsniluLw95qYALEUKsAVRANtM6/QfP3EXbrQJHjaO3Vbf5ZSIqt4m1xFRR96tpWWD7FgVKI9BUeblVTIvsZ/RpQQFo9mebcc1mlIbhw3MalWNrygePnIbvtNDZVPwLhht1/oS12zDq7tCC/R/hFB7GJVxNxEdY8CUM3w0wCWdkHDo48O26mgn5oGJwNiPoJR0g6HY6S+gt84ReVgZr9ML0lCljurEg8MEj4YqmeNbR9jvYiwKi8EGDXeZ37Rxwv5+jIbwJjYUWfWeivyIRz9aHuBRo/QJmZM2Hhf7gNQ3v+y6jxXrksKFOaN1qDTZf5vcHSaiZa7FXWBvP3m0GCz16MeGfmyAnCyAngqu2S29dVSCVJkyu6usWtIkAAyHMvc7h19fp3PXHSIvNp2JrEdlbDydSiIwmHbrfh/yHOWqc7UvwMs4WHnjTGdSZaZa5unhmkwnwQVZPm2iXddWm7WHBHDRxs6rZEMpyWnm5sF51HhEvLGJ1kLQ8M7L4NUNSf+ZVLl0ygznOzIHhTWOLy1qbk700iNTa7VbZTCLi0IwyAv0XAfmh7tJGefPw02w0onYfuVrye69FQVcfsoLWez2ZCzXGjNcqL/z8TtfwnSSs4QBE4m2/WiCGfaFUW4iWReFtUyZW7TWaJ0Amsk3/1B9rLmniOHv//2Ff51vmH6EF1YSidMxwx98I8wvEr/si6RabDYTQsI15hQfJyIjE/xDqvYRTx6uHiQrsL2SuHvgAYpkKGQF4P7NJll8+aHLPPS++8F78lFGb6ErLPcgc6f6Pfz2SJ55WHvrisThXCDW5DLfTqdSeZokck1la33Y2jNcvHiRs2fPAjCYW6AIEjZZabn88AVsUeBRHL31xL7t8VjDZRl2Z0f2Ub0eZvD4GXoehIT1lYeIx13HfudGQulWVQegHltR8kEcxCPGAeB+EH/uQ5gFB7pwj1dYFBFQPsZN2udylF7BlQ3iQ4rZxTWmQfLj8r/5N2Sf+CQez5G///eJV1ef4CvdP2ySCBjtHB1XYALqcuIT7wGuf5MKiMyK0YIFDQehDDSwqwKTVJdlY/SU58KAXV4W0H+WNbqOefMeutKi4wTiwIQNobop9twFzMIcDi+GXoByVjScQ0RGWLSUpYDsg0FY2KsGVM0agDUajWs9VKVUrU+utndEGmU+oOd5LqwrwBojLCFoNic1q/ixoQna6BoN021U7KUvaTZG12HMqgKbGBD2VmUCagyUhWy0JhNpn303auoqwzFljGzUqwWwl2PbzS1MHNfAMt2u6PgHsF9bC3NDVGllMz+boXZ28FXb1my6FnAcxQ3wvL0t/QaC/IdpSpLLEndlHd3rSEly1Y6jUfO8nRcQvWI2z2bC1CtLkaPpdYP0huhbozTKuwDul/hK0qTFtqYoJBHR68FNPdyHPsQ4ShnHPfSRu+Cpz5Nb+8C/3WXAWl9DvaGABCeM4yDxo/2NzUvx7DwTHdNxBarIqZEbpaSUPoAQptKuB4gTQkap0RMPAPzaTPGmLdHPf92dh8LHDa4ssd2u9KuiqA0Z6345naI2N/HdHsSxsPxUqAoBCB/XCGuuuk7deQR2UUVlJTzvIO8Tt7xXVlcWWPq67wLAZNd4N5Tiyh99jJt+6ecAuHTTszj0AqkesFnQkvWetMwpwvul8GgTh+tsVYtcZ8wPO1zyCOBjvNQBhedvouvY5a0+Fc5daNiYRgnDFlBGi+QWsFnY+tqUt0S59NNjZz6J4ovkWNrsKpwwphlbP9Y/zDuf/jo08PT5FDXKJUkaxfKsgJ4rMKk8p8SEUS6ghCoveeGX7+MvUE5AyTvci3Ygb8ZpdY1N9Ki/RG5kbN/uzdegUBGqamoGq4641vMwRtfM6tvuPsafvLVlJBqepWaG24fV9uLX7e+TECWar/vqH8c66Eean/3dH5VrU4o0mjILffl4T3M2k2sWUPWxh1KKxa2L9SyXGMUk6qDw5FFCh4ySVGRg4g4Nbb1p717P01PrzPwQV/OFDcL2V+AbGQlnvVQdPcaIE0PDba2eVfUufeZhQmISqKsuPtPo6hGFCxJljRELC6vDXZ978vNPsnS0+d3NT93tV3Dd5xvsTqYuJnFduzJ0+xOAltfO0rM5Hnja2gMt0BSZw9tyIlrjLl3BzA0AYXi7Sje7Cu/redqPxqjZDLu5jZ4fSmKmJekCyLx45Ejd3ymKZo1VSUuF9ZhPE1hbF9+cyVR01QNYXCXNscJcLta26ktSthS9b4IiFtQVHLos6t6jvZZrrOdTuZ9MxUSlFS12Y6AQH6CaTT9rZATZ3q715HWR43pdVByjz50j/v3fB6B813vhBV+II6F8yvMonyLzec9avvE3T/MD8wL4/sXv+Kb6Hj7x1Jfy44vP4geiT3OXiTBpipkXMoIajTEa4mxKubtrSSKfZgwHxck7ZA+hFNwbLfLC1rNTeQbrl/EPPyTkgWBIqq7hATDX70o1hzZCsFCI55CuLKlb/SLI5kXv/xPU5UuUz3kOM50QOVt7ZyzNGp+I0e/8Dt2f/ilAsfqSl5KfeLEYn25FQuTIc3Q+a/pMnuOiCONdnUyt5YMANjfx8/PyHJVuvd/NdW7ffz9FkJabrW8wCUm3NLN89LVfwbCYCuD+0Xv2bY/HGme///sZ/e/fBaBz992c+uX/+lk5z5/n6CwsklfeSqduoSws8TWSoDca5X0Pwclb6j3FVQnGgziIxzEOAPeD+PMdYdO2sTl69M8exHXFKO5RuIJC/9kdXowrRbfVeaKlORZPHuP9738/s1tuJbrzTvCeh95zDy/9ii991GOt/ef/zNq//xkAhl/6Ko7+8A9/ti8fd2VNWHfWYicZpjMBPNbc+DOzV9aIlhagKHBFIczk6n+drrBayxLVWmiTJJBllGsbRIeWZWM0m+2WIvAeiixs7HJ8tZHzHmVL8KI1zdqagMVxHHiYEuVoTJJEzQZwPBaZE+fqTaluLbBKFGYyEUA6jmVjMJ2K/Id1DQvMOdjegTQR8LRiXxvTGLLmOdnGBTjSAjZvNLa3ZJMajKPqaAsRl/tvzK21jYa596jt7VrPuQpXWnQuWsjMZnIflQxIFNfsZO89TGfCQrdOZFnGE1mcVqaxRkPUEYM5pVBlIX8LmyWMsOe81oFhHsrwTUQRp0Tnz8PRo1RlzL5tFur3bAS3tgUYT5Pdv1dKTHSNEWB/NquP5y5dRs/NyTnnAri/thYAAIuaBYbcxroca3k54BIe4kTkhQ4dEuBAK7m3qsKlKIUBnWXYyZR0NqVTSU60nonqpaKFXBQwE8MyvMdYhwvk6VwbeU/CPc9awM/1RNoZ8u6jd3H35XsxFkqliQJe4oqiNrctthtmWjwcoBbm5Tkpjc8KkcaZzXAoOomA5IdXhb2lUOx0hyROpIZUWTbvUfWsjMH1euBV3Q7eiQGfK2QsUMFEznUb4aWJvra5oa1kYJC+y1jGrGxWUPcED0c/svUozFnFTmeOzIhRdNLv82PPPAE4Lv3xB+r7yLXBeamA895jTIEwqVsA1HWGSjtigkzAu1oJIRVfB8s6SPNUMZjvsLM5wzvPk/uGe7YC0ND6TO47HP2wAFkffsYrOBbeba81JYoiJHnKFqA6DdUCDkKyQf5mdf02UCpTM7a1QqoFwnOx7H8vqr8Msx3wUKoubXa5Uvs/LIWiXwp7OymFveqBmYlxwdCVILulgvWkv+EtjdoXbH+kMDqWnEwD9Yb/eDIzV3/uy48NeNqCR+F46anHi3ygWJk04GTpPP/+mV8h71enx7cFhnusgj9HHU0bL3EfS72P85Hpq9hxh+u/exTEKeSNp4oMCeoxl/DffNdhsnHOeDTj3KeuENBRtH5sAEdX51SvT/IYjxXHLmhM66ve77Qbkc9CH/OP7Tx1KEh7clzvEo70UnxYMy8O9heji2mepAYyD2l1PS0tYjm+wgTjdVWBmhWbWG6kTpQzm4nheJoQ9Tr4KJI52Bh8pasNeGuxV9aJlpdCOyhZy1Xz9XTaJEVXhJlNVRkU1jHee1RlphqqIb21RIcOodIUnxciG5Km6Lk5kRTJc1wnJV9cpr8h1+KcVI3pcXAhDwn4tJ9iA5u9vk9r8ZtbqG5H2O4bG3LdHkkqGEOpNGxsYdbX0FubpG95KwAPHHuyHIaI9riVhDb5sS3x/npt6zkZ5ekaKLzHO4/PcuzGJtFwgI9jfBwz0wm7Uy6E8czU52jHt56a471nDvP2d93LkdEaz/rkH8n12JJiZ0wSKrVUtYbbJ6xK6im6KCXRb6rhy/lm/g5rTD8akeUl/vQG+vYdDIiXR9ArXCmadcRHr2xz9O67AchXlsJkUdZyc9p5JoWlVz0TL+fxpYXEN8kjY/BpR9b4xog2/2RUe7Y0kmqQPfyw9DPv2bjvNC87ex68Zyfpkf7Q91EGaaTJeEqv/9j8IvaLzXsfqK8mW1t73I9/EKDLvEn6GUN+/jzxzVfLGH0mYfNS9jRVlXLpQmXYQRzE4x9/dhGxgziIR4oqg58koDVb06ulKw7iMwvz0z+JVQrlRDe4zU7+sxLeRFKOqhCGnRZQRnU7wtYGsguXrutYH9/Oib73ewG4ePocRz9bF90KbXSt9akdNVvUp71H+Nb+EW1vwdHDomU5nojJEYD32DzHREZYKmlgKWiNKx16mBIdOyJgPMJQ27WXVQS2cYzKy12bfnVSSkRdAFW1tbhZthvgXFyU8uBCpAxUryeL9jZIXTGdgEh5fCWF4QJbLI4FrNZ6lzYqAST0eRE2nFo2SxUTO8vw0/yG23J3qIYF294/VWW2IKXR+8SsZU4qjOJC2OydDownqI0Nyvse5NA/+2cAbHzDN6Jf9pK6PFuNJ/i5wPAfT4Wl1u2gr1yR55ym+K1tkfNwQbe120XNywaZsW/07osClSZicnvxEiaOIMtQ3S5EBt1N0Wd2cKurAfRV6EEDvBpboE8/jLvpJFSbeICtLelXZVkD5G5tXUrelWmM2soS3Y+E+eWs6PR7L6hikKJRq4fAOczWFrbflw166KuqLFBXruC3t+HkTdKg1qK2d/BJ6NNefudnOWXpGEUp46S3a9vcP3kEgtmkjyJUJskkq4JpWb9H1O9Rnj0Xnj0iG3ADMThyC//6hX8F5+GF/iLfaiJq2ZLSNv2plZjS9z2IOjovz88J6400QacJJ7ox9/zA7qShiQxzow1meS4b5lqaqHW3lenoaAz9Hqrfg/UNKC0mz2Rz75wkzXYaOa79QDMT0N22oaeqcQ+1q3zeXQ8bVyneefeX8h9ufwUoePWReU6FP41L6nPE3lFoRVIWRN5SJjG72bnXH747wBcClHoIrOxwruswpPR4dKRR3tOd67B0dI4oiShHWxiC6SuiJ11FomZU4MTgxO3CFgxz8dxkizhIyqQbjf/IU+d7fGxLfAwirQP9EayK6rG1VLrW5DfG4KrEl1LY2TUMJrN1lK9Yra3KC/ZU77Ti0olb+KOzT0Ph+fiJu5iFHMWlmQ3yHXKMQndpgzA3GoYxlmsnevZGoj2j0M9S7/FPuZtyYwOlFJ2eIyPH47mlrzjWFwD+2GD/drnhUAqMxku+mQvDQ7z9xHNwQN9ovjMw3Avfq3Xur4rOAnvZ5ZqCiBleddDGE6eRAIWO2hT0scTcUg+Weiw7x+Z9DzKxc4DC3WBCcW/EKqHw0raTx6gKadwUVaVR9oDq2uhdWOTjEUZrsvZFK9Uk5fz+z+6Bm58G938QgI+eeBq3jiw3D62MgVlWr0sI96C0wff7sna5KO+51QbTZgunKaSpGIgnCb7bFTmXSrc7VHwBzGZBQ91WFYvNuXBuN+jf7dbArxqPa8KEW9tA2QKNDsdV4B3Hf+zH4Md+jF/78X/PoTghyTJJis/NSWcvCvxojKmSsg4xCq3WZVkO1pLPctTsisjLhbU4zok8YBKLbrjWqH4f0++LJv3CPCZN5Z5WV3CnH8anXba/7Ye5+aZDwG8SJR6y5uHf8rQj/LVY88DaGAXM9xtW+dmpZWYh14GA0EmJwtpIWUlLdovpVXXVKu3RHsvaU8MzFzsU/gj/+tOGF164wvM+9enqU0yf9QUs+4uUly+hogjT238d31/o1kQCc/MJIXRoLXIo0wn1A62SJnnBVmeR7NlfyIoO2vrKN9UCUeta51LKb/4rAJitEXYyFYPTqhpCa7JJTq/qH1p+pxU4pVCRauQBy0LGncp3ptNtiDOt989Xko+dDultJ/nu206i19bg8hXKQPbBeYosh88C4H5ufcJN4eeN8WNd7x/EvqGDBFSvB7MZZ//3e7jj277+8Tl2ZMLeLYx1RkP6uVmVfhCf//FnDwk7iIN4lHBr6/g0bUqZ54bMzR9Iyjwe4XaZ5yny0YhOJefweRS3/tBv4QNx995//mW7/jbe3JbFYmBpKCUMxKK0suj3AiS50e5N9lv/y28xd++fADDaGPPKN4sRzLqNWA0SD2VmeeihhwCYn59n4bPUdmZxURa2eY4bTyCJAuPkxqQSvPcCHk4mspnYw5AxlW5xUTaAWShlZTqF9XXRCldKNiJZAxTboiAyBjppoy0ewp05i15cENOvubBpGI1RLeaoyWaQBTColj4Ji/hKw302w8/NoZQSIKkURphzXpg5ZSnMXO9wG5voClza2YFeD59luCxD97qURUk0GkkbFgVFfg3A4zrC5Tn+jiehtJh5+haQ5vv9Zp873FuT3ERlfhj+1YAIWuEjg1O63vCpQoxUcR4I5qfjcf3v+rqUlnYpAjM+JGoYjSDPsTsj0bWPY+lfAVTFOnwlceLBWQfjiWjml5bCCQBR9ZtdmIbWuJuOyc9XrkhJdK8nOudBisZvbYsu/cJ8qDAQFjkmaM2aIFlUCGsK50Q5odMB63CXr6AHfQEFgvRRfZ7QlqIJS8PCUrTaRuQYIg0fXb6Ff/3F34dREb+rdj2BJrI9m7MKgC5L/NaOSC0BQ3djZotGx/zzZxxDoXnovhHx0VV5NzodyrKsL8K1QOrLJ25hSetGg90j7VPafQExpRSXOgvMVQkJj5iYVgDfZCJttLUtQPt4LGNM0Dv2xoAtQldQjNIe/vt+EuVh9a6rmUsuAH6X/+c7mNs8LaTM17yGdHVZAPv2Bnwv+/Qa4FiwrJPdew1Marwta48Xv7iIRQVpH0dsSlSlheNvjBW9bYcotqQiwHt0rSHftm2+digvn/XhHo/dvsyx25fZ+dgZDI6pk3dmWjZjzqyI6YbEikkTYXUuLqI8FC1z6ez4TfXP3ru6DW/qxnzbrYdAwT0LX8X4Fz5C5Cy5ifFhnjAKNv/Vf+RosYVHkT3rdfvfQJnhg3yJ3iWXcW329IeW7uC9L7gVgNt7mh++ZRnQzMUa3lqNZx5D3jJNvbH5CzyBc3ndoYC+EaWVRHme/K9/XMBpFB//3ffivMwRec2I9cBnPhfsPrniw6eex/M+LeaCx3Yu19ek8ZQ0oB+9FciCCXTSSijUlQtNHzjxpGWGiymfvGcdZz3ZZM+48ziBzFprfG8FPSlQRhE9koTUdUSvU9AJA0D6GIsIvEnRlDjA6N3PS0ci4wTXpeJ2fefzclwX3F7d/CJ2YQVQqOO37Pud33vZV/LPniLv2LPmOmyO4Ejp6URO5pD2+KcU3ss8S5HjFxdlXN7Y3P25aj53Lnjd7MgcWcm83fMh7v6u7+CX3/YeFn/rf/H/s/ffYZZlV3k//tl7n3BD5aquqs49PVGaJGmUNUqgSBQYjC0DMsGAjb4YjMlZj2yS/TU/bMA2mGj5y2OiANuyQQYkpJGEwiiMNKPJM93TqXLddMLe+/fH2ufcW9VVPZ1mNEi1nmekrqp7T9jnnH3Wfte73nfhtS+DRkPytaDBLoOkqTqG6xOszlVpfJ6LpJjyGKUq5aJwCMPP6sGApGwMgdpaYk4hYlyBbV9tILD2fSVHYkwgYjBci2iNRdWFBuUc9HrY9XXxEer3sZ2eKPgtLdPrZdjv+bf4iRkSzobdbH0IvPf88Jc+a8fr9B3XT3OyA+ljj8nRZjl2bQOTJvhGQ9LgnYrpZmueq0fMHzSeWyeb/OztBzky+SDqY7H09hw4Bne8lP1fdtuOxzIajbmJet7kk5+Ca49Do4EvCk4UMS2rmak6IZVCt1tYD+N2FXP4BtmIHVkrj8zd0VhjCMSnEfTE4NQqjQHJYbNiy3e0Ct1qhMJe9adqHVmVBzpdkb7zCPM9RHXNUUoKR1rjFhdh/34Z99DhePb0EpMzk086PpcaSW+zntlPx7vn4ntx+eGcr6WoMIb+asHSb92Dyyw+s8QLLSZffwwzeWHj9Hu/+HX41VXAc917/5q43cZXJLAQPsv2UNG9eMpi79baiy+48IBaX5eEMopQHly5V52+GpH1+vjNDiqJoSxZO7PC4g6gcV6UfPbkBsp72o2YY/snzt/Y5zB+6e7fYOyFt4uBIFsB943llcAUVOCs8FGcEzBPK0hSwKO2McP6g5yJ170GgFavP/yDrYAwj5ka49SpUwB0NzaeMsC92OwQB3mUoVyBv2Qd1DwvxIg0SagNs5QSUFtraQ2NIsmdg1GVRwljOooECK2+E8e1GRNAXMmCTE6Cd/UCy/vAXk8TMVfqdNGNVAx1RnwDnFIoFwxhswxWVmBmRuRnAmPLZ0M9dsGkvYBbg4EcYzAOM0L1k53Hca35F3W7eBMNk7ZGOK92i3Jj5BpfYvQ2OuSPniBd2AdlgRrR8vZlWR/zKIvROcfffvRjAsxZtxUjieLQsStyOX56Gpem+Grxap3I6FTXMcuHzLHRjgCPGGU6XxutyoLX4+MInSQC1keRMOSslWPMM9T6uoDqaYKOI9xmpwYRR2VUzos4FvC/0QAUvtJwH2Hxe8WQzQbyHJog85Om6JMnhUGPF7a9D8y9wUC0RZ1oz5aLi+i1tRo4UN2ubKOS21lbAxR0NocdGwSQOo5hchKbNumPz7HY2JpedU+cpTUeCgWjhSHvBNjOMlxvgPro3Yy/W9rZF77l0kynTfcU+xr7AcXS1Czu7Fn0vn3hj7pmhVszBOZOFDE3Mlzseu9hMMB1ujh7fiHaaEXfIYA7gX2dZdRdY+sbcOig3D+bmyMLGiXyPFEEVtiUaEMyPYUzcoy6vTvT+CPXvJDPPjaO83CbbjARNjk6ZUXpxaW0XkGtWhu+HyWGZjmQOcQYfJLyx9e9kuef/gxOwbPiOICoOwD7TxKFqwqaUoj2WwoZT47gZVles/f7m8NCrh7bhzbrNAP2ZKLhdksfA/LZ9uIC5Z//FvHkGF4pBtYzqCXfhnOmDubIHmG4zzVExOJc3GYUpq0Y7lGkKQcFdmNDCqu7tGM7DD0ngMf+9L7qsIAw5+7w3mlFQ4EarSNunGwTUDSyl38Fqt/Ba4MlqX9/6VGd0db9X+gtaAz0w2NReEXSGD5Lfovox5BFHF0hGFwfl4KikdZmsoWJSLRcr9RoIvJgegrq2tfAzA5svWe/Sf5778OwEt5RUYOClHLEeHQUDL5KeDsA/c2QawdJkCsJbRV5yLMGV8iZsaWq76W83HrGB66do7+R4ZVnfObqMGWVph5fAHvDc9n4of8EwNj4ziP+UMcyCEN2rrCsn3bM91a480CQumu3hu/RinHeSKWAG8BQE0DKUMOTuTvkMapiw3e7UvwFujqh0Wjwj7/sNfzBn/wvyYMGQYt7VN99ewuA9wLuN0UHXq2tw1gb7T1+fCIA9GKWOaqdvOE00yalEfIUpbWQAbSYtiuVABbnE5mHw7tHBVmZpMgYlNtAYa0xofvUh84sVZU6AzBvnMWbmCJKyWNFMi3PzmIsvg/9cqsh5oVeARNJTHsy4lz1zk1iTJpIPlmKmbn3wxyt4rlsl9dqtIfzqUMRG82cUSwuzLCaJHggmZnipi/eGfjfHotzk6xrOXObFTjvQ/EZ/vyTK/x1qfj1V2r0iKdOoi0333k7933yXszcDCqJ0E2ZY8qRNU6UDP0DTJLgnKVOK4J80JYx8x60QTEs8lbrIJwT3504Bu9QzaZ0XgCsDydTnyZbuyoqOR1jhsUfaxn0BjwVYV77ajZf/QrAE//tJ3nwrHScTjZj5sYvDAB/oUfWzbGB0NNoJ7Vs1XmhvBRbatNchRuU2LUMu5pRnOzQfPYszQsA7q7Xo9zsyjrDaOzGJnG7jTt8VPK9qlO2uMI2qb3YiwvEHuC+F19woSqWYmAURivLPPHEyuf6sD4vIu+L1mols9A/twE3nv+5e+47x5v/28cAmEsj3vsTr3t6D/QCkZWWye/6J2Iw6B1uRMMSYPPx06EFTZjAqt0WpmcSSytwWF2rbRl5d/kM6CAYM8LSUL7KSpW0tYbvbaw8dfdkXORB3iJFdXpDgDG6RIag0qixsBCJoiF4UrGEg4SGWdiHW1mV5F4hBk8AZYFdXsVMjOGzfKtpp9G1oabKMgHLCc9vxazWGj09Jf/e7OJGQZdmQyR+AEhlIZnlIq0SAGvth9+IvKvbnis2BcaI/qaJMDoYPo4wuCwaZR2qWvBVuuFZhj25dmljORLlIBPgWsn9MTailalGUMbB0vAesc5T5jlGKwaFoxGHsbQi+aKLXBbeUYSKImKta817bUOyWd0HtsR3OnV7L92uSOvECUQGFRmRDqoWN4NMFk9pIiyR/gAmxgOAvxkM1Vw9NmowqFlMBo8qsmEr/3bwbWpqmGyP/qksYWMD1ethokj8CFxYnA1yAXQD+8kdF6YsG5tDFtYIA856hckyohMncBW4XgHKle58kqC+5/tpFBl4S/+n/3V9XN57Yfh3++xPY371hUfPO9xsM5P7LzKosqyLW1bp4X3lHRFyX8KlsynFA0G2G09M45+4X56bekEq/zNaWHvlgfbw74GFTquFabUwj2+wPYwBU7EpR8HS0UXvZge1vCSsSmNqEJfIoBAdcfIcpRT6zFnMEXlJ6AsU/B46+Cw+M34Nznuuj0/Vvx9VoYmj3b8/Gkpp+gEs6IX/V0qxVigOmqpQZPl7/+gb6rnfqFWMF+av0mM7b3iXMInG5fJO9AowI/PMRXQVJSMmeFuktSb2ofWDBNRqiyfFKDtydjnnwU8+TDvvUZiY6zsrxKGIl4xIytSCOduAn67TOKVxymOVwgRWcRIZjPKkXsAV43ZBPZNxbFfm4iiOtgDuuy20rxmPef+SdEJIHUWAcYUje8VQMTmmT0GTy4OFKyvYi492rGkakT+Lt42TV4qh5kH1/wbnL/G9ulsojdcxJoB1kbPSbEf1+I2cy24Axm6xDUDcIs90tXRURkJrhblCM9nrpiKOBVDy2VNXNsZOV4UbSOKtwMu+Q1efHXuhUNHOzP/NkcaD3HlOdyz/Yb3FC45HxM10i+wWWsP4+HnIsItjdKuFarXwZ87W72Y1OpGOvP90mL8BThy4joNKD7dZgaChM21LRBGE3Ex1OvhSDt56iNbX8Y20ln0b3bWrvDryHN3phC4+MRv3qKCdbkGHObFiuCuRZXPto/DI49KRBrW03ZZTC4U2h0IHQoFVGlXNxR40JW29yr7kBACTjXUG/SGL+UIGi1Xur5AOMPICNRADT1oi2+ejuH5aW+OhSLbtXdAcAW2j9jhkMr/OvvnrWPzH/2jX/e8WrXOnGARymRv0KAgFT61485GY71gYI2Mor+oHGS6K2H/rTXzm4/eQaKQAErxgbH/ECnk0f08S4sVQ6A/diAogGskVGg3JqdZWRae9yhEqEsPaOkxOSBdFPCS1jOYupihqWcAtc9Ro8cdEJOoqtaUAP/O/PsO9pzdRwFcdOMp8KHKV84u86ZfeBwruODLFb37zi67aPj8f4zPf/cOos5LH3fBb/5Hm1C4dAt7Xfk2q28Pg0I0IF1989+djv/V7ZF/+Rtw+6diz4Zn3C7PyPIbunF3sZPZiL65K7AHue/GFF6Ntj1GE27ePQzsw+fbi0qO/0ZWMOozx0tnVWh93NHxuKcM1yK+Q5TQaa/fdx72PPipA3voG07/+65Rnz4L33PChD6JHgIvd4omVXmAzO7zzvPfjj/HK5x6r/97pDqhYrb50Q3Omuv1VYuyxT27Z7nSqagRNj4hy64o5DVsXLVdxXLaHGxsTZlNeELmyTjjMvmn+6m/uAuBsFvH3v/gFO35/Y2ODfr9Pt59hV9cwraa0DEdBkiNoofrNDjqJYWMT3UjF0DIwqogiYaE30mCyum0Jo4JesDH4JIGyxDmH6w+IygLGxoQR3+sJqOfcVu3TtQ3RF49iYffmeTBXHb72fDxkEJVa1VxPvWXx6FEmEpA5iqR1e3NT2qobiSxGk0SYXJVZbBRR7qJNfDFx5vd+n8aUGD7hHL32VP23/KFHSQ8tCjNjRDN5vV/UC7hoBGyjKEPCGpjYWYbv9ykHOWX4hh0fxyTB/LUssVqL94I2Agi226IFO2IM5Z0Tlrj3AqR6jz23jMozVKspzLM8xystjPxGGlhxgVca7m+njSx6K6LpCGgM7LyQAlnItdv4iQlYXwfCc6W1FL0quYJuF06fEb3S0sLGhkjOQA0yaRy027gbb4QTJ4ZMK5Qs+DY30Rsb/P+e93W88IlPERcZt+tIWtQDsw5j0I1UiFtkxGrrgmBgA5fMS/dLZZrqXSh0RZEUiJTGpQJkqFG9lIsI3RwfHrd3rEdNZsoSUNhBHvwVFOUI4ytOHPghiFLJCbleX1hq2yLSBj3oD4sNbqSbopIgiiKR4/EyPp5Q1Ol2oSjxvR5qekpa/VttjJXiktvWFTQaYUYR0loN8CjcSPeHiS8upY1wNSu8VT8rgVnX60MjxWU5Rpd4DBGZTJE2MLuTS3u2k2ZC7zd+j3aqpGvqOSMWe/uefFuzh6aIGxHeK5IR7QydNBEswQeQaGQsRkCGxMPbXvpPKD1EGt7xzh8mCjmPawy7Ck7187oQ8eCIJNqr9qUMopQk6xI5V9+XaaTJVEQnEmBImZ0B1CjVTOjTcgUvUibJKEWF+ZYOFA6FxW1hs2eIZW647y5JUsbRNB36tgk8eV5QRRJFJFrj8DS3UdcNFuprUP2tRKurk18qwCtNrsSbIUtb/LPrZgBNy8jYKCyxyi7IwN0pxqcaVFiq1oooMeT9yuj36iERSdNQZGLqfaU4/sFWxNtvmwZgqrF5RdtKdRfFBB6Dc1epQHKB2N7VEaWGMrvwfbLYUKwHOag7ppu88wk5596JM4zvn0MnIx0mzg3zkaobrdOV3+e5aKI7L12GjVQ60YpCzOWzHCbGUWwtKl0z05KCm5zAeWD2lnBu2NWoFK7dFvBea3yQUBR2OtiRvE0pXb/+LQrtHCqV3KSZ92uTT+uDuWgs3bSGTIr5/T5+MJB3TWVkXwhbX7Waweg+GoLDDcnbDA6SiKiZYrJQWB2ZT897ni7wSEw1N1nqzuB87QogY5Bl6IlxKfKPj9ezVW9T3sfba69pczgvRbHBlW5LV9alxsbDj8vaBlD50PNIO8/8vpwbXjzHe/6fnyH5lq+HsTFUkkjhLR2T5Yi1UkwIxYy4Obz+a72CVh66VyLpXPVA/J9/DZ51Ix5Fd9BiOhNpIUqRoXO+yoO2mfk2BZD3WkO3I7mLR3LOEMXGJlwzIhsZOmvr7YT1Qm6v3vNcfuQD3K4seEf72Yfl/vGeZiPiP//xj+A9nDx0I3zzO67aPj/f4uHf/Z9EH/sbVL8na6X1ddgFcPfOS9dkI8V7j73nvZyY/TTETeb4oovan0sNxa23SAHSOQbrG7QPQ7S0TN5o1KQeb/QVuMHsxV5cOPYA9734wgttxIinakVTCqZnPtdH9XkRvnQY72rGgttl1RdtrPLv//znADg1fQB4w1XZ/8lHT9UAuFWa4rHHapC7XF4mWVx80m30O11hWlqLzguit34TvO8v67/n6x1hYyjE3HEXJpl95Su3/NyMh+YsbGEsDo2fzMZmrZHolpYu6pxPnTrFmWCItX//fhYWFi74ee89tjcQU6k0FcC6cmmPDdaLHvDZtd0lUU6ePMnm5ibOOUzFMA9saJVl+ESAaBd0tJ3W6DyXpAYFhZigeh1hpoQ9pspySyFCKY01KSaOg9a2RZelsDgrWZFOR8DTJBALRwBK289QRmPGRQeeRqNeaFbjrbKBFFZMWLxtbqKKAgvoXh+32UHFkciQVEaeRRHkZjzknSGrPw/bbTTCIm7toq7fTjHwEUYH+Mx59AiQqGemZT/WboGX7nligyScfqQVPPwwLCzI8U5OSrK5sVmbnuo0JotkseIrKZxw3xut5XeAObeEJxiojq70PEOT2E4HsDXLUnnqNk0PYm6aF8GgSMkCt+o0QhZ8bhRc3m1BOTeHWl8XWZJ+fyh7U7VAV9HtCrAeRXLNjwRt8I0NmftBNK3DNfV5jur1GZxZonnuFObxx3FRTHHkCHpyAtVoYNtjfGJ/zEcO3MLEYJ1/85GPYZ59IxgjjN+qLVVRQ4KjgHkUh2KA0sGQVYoZYhrpg+lqhrIlutJeLi8NqNPtWUDAgvE4ovPp+5ntr+FR2A9+hMav/RooePTYHfAtXw/Aofmcx9eaMg9VDLZ2G91uo06cD2LFOrCyg6SOyqRFvwZ2tJZCV68nz0H1jvVuaNRsy3qRnRUlsa+GYHcU4wUzbZpGUzrL6uNLKN0FPO7xJdj/EgCuuXWRc3/0yJOOk9IGVFnXSkDAfoUO0jsKrRSGEgtE2nJD6wM0XZiTJ/+fi7kcdUzORKw+8ijkXbwymDveVP+tVzw5ehJFmpnF82XXtFYUpKACw1x7dNCZj9QQmDDG0A/nWTj4rq/9OZZymT/+7e2H6s993dEZ3neui6LkxXPDZ2qhAf/8S36Ur/7Uu4g1PN/IfJQYjTXS+aOAxO4szafbc3ieAMBHY5hIuPhRvDsQ4kqHCbeUUR6PDhJYowW5xiUx3Kfmx1g9I23/Tb3Bcxc/yftPXhoT0WjFrzz/AI4ItU0OSCmLxuKAhB6WRAoFV4shrhRaG8rwnuyalOfNDO+L6mhy37rkYp1JIqLYYK1Ha1WD7QD9bs7Y9KUbqu8U+cCG+pDfYvJ7OVGWmqqwUborg0oK38KHbbXSp15icvu5x8kI4L7LsLxisclEeMm/aG6cj64NOJuVNDfXSROPnZoYsn0rsD0wwEXybAJ/blneNUFaRXKjVMzErcMNcrQVc0+PYmBGCApq6MsjFZ9civney7t19D3s/fDnbhfd7dbSbGppSaT4Ws36nq7HxWgpZLda6IkJAeW1hjjGPusmko8YoKCpEhmnMuQWoahQWoctyq1jEEeo4Hfjs1zM3o2XdDHLIEnEnya896LscRwxNGfr45purrHij9bX6EIlqEERJP98dS0UzkQ4n4sHDiqYuFaXu+om2DofqhHpsdtfefwCe7y4WBs/QlsbQHyKJAdRGOUZ238jLNwM9z8gnZrtNhhNHo5BA359Y4tsoxohqrWacch/FPR65CvrDDLP4Y98GP+BD4CC5373z7CWT3Pyvk8yMz9OPD8LC7ImM50NbNUtm2eoIpe8rChQ1uISAfftCEnGLof38WiXnXNbPJuUs7hzD8BdH5Df3fDlMHv9ZY/ha549CQfEUyi/77MwJcfcLAboH/8hUIr9H7/nsrf/hRC9n/kxOj/7r+vCjR3x7jovvJWO2bAG6v/jt9TrFP7nRe6wWIXZY1QJxfKJNWZvQeb7kXlC64hxvQeL7sVTE3t31l58wYV2dgguQWipLMnX+iRTV9/J/Asp1lfXsErVpnSDjZ1ZR0Vng6mf/XFAMRnYqVcjOh//GLz4+fJDM2X9V/9znYS5wQVe6iOxcWZJWLmNBr7RwH/3W7f8Pev10WHt6dbWhVVZaQZWmtYgifxI+BNPwLOulR9OPjH8Pb5u0aTbETCX3Vvtt8ejjzxWs2juv/9h/u+nHkOhGJ8Y50tfMNTz+cD7JOn1IGztXg+KQliP4VlozkzWOsD7mhe3GK4Zrt7D2JgwW6tnqz8A79FKiTSMUiIPU7XcOgdnz0pynxfCMqpCNjocT62lhbnRqJksDl2DPcZZebZDpDYDXzG7Pd5aYVpHUd2B4aNoCMAOBjA+LjzJpSVoNdGtphhyZplopyexIHTr65IsRhEqgLbGr8ri0zl8UVAklw8AnErHaEYJqfc471EjjPXszBLRWBOVpsTHDmOzDJOmlNmAZHQj14Tekk4nzHFWigP9PnQ6uF4vtD4r+PR98Jxbh4ai1fV0Tp7ncG97Qru0c0ELvUIrvTD+Wy3o9vC23Co1ohRWS8u2Dgmum5xEJwkKWFMtJjqi6U4ybDWvwlthRPrVNZgNxdFBhu908Z0uOjIQGZy16GZzWFQF0UY/eQo9XnUMeLyzct8Gs1+ch1aTxjWHWc1KvueTCTd2T/E9M33SCWHFSCFGEvZMJ7R+//dJXEnebpH/yI+glRIQJQAVsJXBueLhWGiX9lqhxicEbEhi3No6NBqigR/FuKQhoP0lErP02DQEk7d9zZgPPLbO7HukWNhJWxz00knQ6AyliNLDz0epk9RG0J0O9Hq4QSYdPNv3YeCxsQVm+qEoUMkPKCVdOVEkhZipKWFPhnvAlg6T53jv8b2BXCe/1SDX7yZJArxqYYIvWkgpbc43Lt3Ef3xc+jNed+BWvi58xl5kp5p3rjZp89aRtmIa7YT1TgY/8COoV72SzaTF+Iu+AkfCwCWoqAlleMIucJw7xeRkhPGWVimswlU/fBdVt/PlhMdzqO25b1PmwflU4cIsUOaWGoyMFcdbMRuFxShw3jMIlYbRLobnTrd57nTFeK9YngIte+/oRymlGT72caRIy4xmKe86u8P9AqB0BD4IOZQFd7wuAB4XeMV85f6CF+87jEfRUAMMJeDwaAHDwpcLgmcKrgZMd4vJ+XYNuBtKWDt5wc/vFF5pXL2frbBb6ZJwbJCPzMbd3tZc4LJDBdZt3RFXKeuPdGlcLv0VH9imwS9lpJHAXS3TV0a26fxF5zi7hWbUX+TKWPiJHoR7SNPPL77j4XJj+1zlvUcbeYekrZ33/6Xznjvn5qie65+4ZT/OQ3nmlDCBR7ssq46lUsBzrMWvb4RusyDnsbQsc323C6GLL1K+ln9ReNojnTL9+QM4PQhGoAP++K/u51mNghtf/Kyt41+9E5aWhtIuI1I3fnJKcpJuFwYZxdpQuizPnWxqMJAcNRSA8R4eeQTnbsQApgyF6lC4d0qjm010owGnlkbGICS9QeZQVwkj8nUCyK1DToBz5F4RAzNTGazJR2eby5zSKRvZUHJlt8jNNGCH/qJBotDja7KNHmtveRbkY9ue3asohQLgF47gJ6WIUGDqcSh0RFLKNZjct4/+8gpMT4eiuHymLEpsu4EZyUVVWfLwww8DkM5OyS+DlFHSbFKudUlvuInsvgdBKWbG9nHdzF/x2funmfQQlSXq7FkYCwz6Tke+b6XzD4Th7EsxucV78kf7LP3mp2D5fpFme+ghmJ+Xaz0qoTQio7fxoGPpsaPy892nSW9pMv7yYaH5UqIsHVEwhrcjnTCu2aqNiYtjRy9r218o0fnhH5RuY62hKIIU7c7h8DA3I5/typq16mbwxBf1tuulbSojYIC1v3oP7rUvhmIwJO6UBt2+5vJfn3uxF08Se4D7XnzBhfUM2y29FybxRofO2XPMTB35XB/e3+koBn28DQwm57GVdMO28I/cD886DPir+n4bjE+TBoDWliWmYtUUBYXS7KyMuW0bSx0ajeHL2exf4F3/4y94w5eK4al1Nmi9KUnQ83wLCFyx2LezVfrTMzRrEHL4N1WZMgIuadSL0OwitH0BypV1opnA3ikyFgPr+LEzZ9gioG/L4eJirC37dE4kX6p/a13rKCcXeDuUQd4FwOcFSisBzzc3ReYkEQNOM9aW5KjXQ62sDBdOdVswwmLSGopStNKrcVEqrJdksYK1MtaDAc6IcZPCowJD3m52cNHwoItmGxPFAskrJePc7wdzsaBbPSJhoa2ThC7PcR50vy8LwmAkWEvGOC/MaOdgbR2/sopqNSlRRGUZ2mljXPti7radoyg9zRHJkcb8DB/4X/8LgPahBVSzCWVJ/ugJujfdxESa4s4+gRobRXhXoBXGuyiGLLAoEl3UOKEVGKlFd0POp2IIOS/MMWeFkTUY4DtdeVZLiy8KfFnW0js+Mijv8B1p5VYz03LN8lw+E0WY8TFs1dLuPebUKfzcHAoYnFlm+nd+A1yJ/edvhdtu3TIetVRFe5Rl6VFjbdRYG7+2LrI2aQMig+/1UZ2OHINS6KkJkRbq9SAbQH8grLI4kfHoiQmc7w8gy+jHE2yapoDDzoucUX/Amw7P4DyM64zUFWggyXOyqnarDU5XHg6OUcS9kWj4H+9CaYU7fBjzgjvkLAIDjsEAl2Vi7FTpmV5AYmWn8NvMv//7rW/gF2+U7qHv+9A7OLJxBpSi3x4yEadnJsn/3S/R0hbrPf4Vr6DSZt+JgKqVEQZhHBiGtTxPoKlXci/eCzCtpavFWyvST7IRiGOUUjTajVpvPL7QpAMc2p8zOVay72MR5wKLsHCKI8+aF4WD5lbTzt2YxTYUj7wHNSi447UCAL//VzVJv0/8P/4Mn7axL/p7gEeTgc3BXaapVtAfHuhYun1GDutK2M9Ka77q4CxfcVCjcMQ6r00k+2aeo182Sf8zy9hJw9vnDsqXPPzQJ0+SagFrd5LRVpQYBgFo9cEkVfEnN7yKhlH8VKV1rTWDqEEvSkVTfBcZLRVFOBU6z0xDuj2eJOLGOM1BYIqSYDEoPDE9CkwNrkfaUrr4ScH282LiELzybfDOT1zS15RWGHIcmlhvfd7EqLaKYcGj279aDHfNkZP31vP2kY3TWwoNW4oOF5k/VGGMxuYBXbOOsZlmbdCbpjub4V5pjPoMXE6kbg0IFasrBNylwafAo0iip948L0njLdLnSmuc9TjryXo7582Rzkhcj5w24GgYeS4Lo4IpOJIjZVnN3FSE/CkWcoDv9WEwkCd4dkbm5CiW92UU4cbGxRvlf/5vnFKsdoaFAeVz6SQMgHrXNLn7E49w3ctvR7fjIfECBDCfmwOQTseJCZF07A1gswOrazzwgXu498Qm1zz/QL0P1+1Jp4xH8ryylNwvimBxkWa3QU6OwQBlyCdCztLroYoSm2fD4oNCct+lZZgYFzJN8HfxIMBfFOGUQfd6sLKK6nRRY+d7iox2JVzobhufbbN8YkOKjMHvROOxlZcNHjPo44MiS6Mt84ZSSmSdKo5JdHUhGnv9rWz84K8AcPqPfpUDyA0Y4UgiIZuVb/1RekufoVXIPXiuG4qpVsxNvVJSwPEeUxSceeghUJrG9IQU2iut9ThGTU9y6Bf+C2d/6W45n/F5ePkP0P7bX5Xc3TNsyxnNdbyXfK26hs1GLd3ioxg3KFj+Lz+OevPXoYsCV5Zy31fri6rbDimuL+mY/z17GO/h5qWCxbtO4UvHxKsvY70f1rdCJBp2e3il6nWcMnvQ2oXCb5N2vZB2uvLAqdMyV4W1A0UJ/T6lMcQXIRfkBiPzuVK4W54tx5E00XkBT5xm5u5ZGiT4F17OGe3FXjx57M0Ke/EFFyZNWHv3+5i44xZ0u4XOcpT39E88ATfsAe5XEmV3yNxT3ks72A6h5hfrpN3pS1woXyDuXyu5JbS56kYTFyfoJMbHMY8vb/DsiyAe6DyDBnXiqKKIqZF26tESga/AzCSRhG8kQXYjC96//i9/xExLDyUW5oa0Ro2X76IEoArgYjp2cS3cgyJnrJLmiCOawfh0YXzbuC6dg8lJlHe4zQ6MLQroNcjkuItCQLFwDtEF2r03N7u1Oo4OxqjkBYy3YQIBNstS/n9sDKuMrP+glgUIxCRcf4CODMqW2xjuwWipP0D1uvipqbpQpieCxIlzwjaPIqKyJBrRAnVFKcxn7wNg3BMt0NFkrzp2wBmDbrcE1F1eETZ9s4lfWxdwud+X70bbksXw/x5EEsQEjerVy9eUbSmLIhQc8DA+VreKq85WA9WsM4BZiD/wN/CaO4cbCSazVNrzaRqMT2NUHIt0SDUMvQ6DEUa6NwYVR0BUM91daVGR/F7FEer0et0yrgIjXRmDXVtD9/pioFpaWejHMu5Rtyta8ED6B39I8t734oHHjj+fMStzx0Zg4g9PUmFPncFMjuN7fXy4X6xnK880ALgoJd8PjDacx25sYoJZGc6JLrtCdEHL8LkwLjZtyp8qwZ6ylOLGuRW+7KBI0zQ5h33eKxh89lPYIsd7KVQoZ4lKK5rHSm9ZoB+Z0pj/8xdySe64A573HAE7rMXlJTSkEOWUXFkqYOMSQremgPX67jjUNqyX8qyZRowNc2020qoeNZp899ir+OLP/CXNYsAbXqmGYM0OC8ckUpTB9BRCh0scC3ABsjgqCnmG5mblHHW4l0sr01yeY/ICryAfFJiWnGdRPAlzfPpamGuT85dUkEcbx6Eb5i5pnNYs5GFoz43I2LhIo/FE3tEoMnrhHnA00FEMFbP6Et9ZWWaZzTZRzoIDW9haHXiQX/77TylI44Je0ZR5VZfVDYR1mvE7D0rxZG2zBjSUGiC9QYEcugN05InQKEpkfkwN9K30UVnvpUMKSJOIZpkxVjHcdwF5+13LwI3hgfV8jvmLOLeNfNSYVhPelPgRsL2lVijiOVReyjN4WeX7S2ORiiqzwhNRuK37a0Yd+mUbwZFG9K0v1f14t33rCF11GiHFOoPFhvHYUnS4RPxZKUXSiLClQym49c5jV08KZ5dYemKDfYenLvv7ebpA7fF4hSCXdiWWGNDk+VPv6aSNlnkxzD+DzpN3Qfh4DFumKDxp4hjkcs6Dfk7aDOZ/aTossldEjrKUqSF0UlVmpxVwqmyJ8x4dx6hEoY1h/M/+hG6UUhy8od5/3BpHma4Am+02Si/zR9e9ktd95B5mbjqKn5kZyiamKerUafzEuPgUra1J11MAwE2/y4Hbb+Drf2Gr+eeKNQx0TKPVRI+P4TsdeQ/F8Rb5xogYfDn8fTHyb0aKvp5g4Dot57y+LsUAExF7h6uMX7WSd9jYGKZ4FBMbtN763E7Nj2GD38j4BbqhG60YE2lykwgYHMcCFK+dYPynf1aOa34R9+O/BAqm9g3nupd8+bOf9D643GiNp/Q25D7rekLxV2GVJgpdFXd8xQv5q9+4LxTO4dCUFNusU1K88b5eo9ixsZCTK5Tz0tGaylqoXN/k1V/1leSPn58HtzaXaMym+CSujXX1+jpudP6u7k3n8GkyIsdp0Kmm9+3/RHS5jcH1+oAaSlKOdI9oPPf0B7zj/iXw8G3tNl+76ShOP3mnwk7hq+NQYRUTuoJQ1B5FT5371udJBM10IBgeX2C+1R4Oh26Eblj71F0tGdB80jS5/MSn4ZZn1/m/XpVuDmWGjVxGmUt+Z+7FXlxK7AHue/GFF0rx+OD5bL7P85wjD9A6uIBvNvjM37yfg1/04s/10f2djqw3gMiHfNfTzXZmChWlBR/Yp97ymf/4uzzrO/7BFe8/xuOcq2Ur6HbAtVB5XrfaP1kM1jdJJtLzWmS7WUk7jXCFlYWt9yS9DkyOD1nYVQUetrBbz338bg694tZ6W7XcBQTGECGRTIY6iN3dNdRHI3n4EZgOhjNlGfTIYWKbsZ8zWtjsXvQbTbeHLypTSyNa4RXtE2gsn911n1lpSYP+ruoP5PsK6HaxnS4mTSBNxZw1ilAqrxc/NcATwGQdgEWPMJqGkEEwlmw28ONjdQJOUWDXNzDNBk4JKKiMkcXDCMPXJLGcrwKaTVS7LQz3ME4Ep3pKC7YcdivkhVzHohATrsD8dihhy5cFrt9Dp6mwt72DJCFeWJB9DTI0nrLc+d5/srjvW7+TGTegePmdOD8lQNnIAsKx1Rqw35NzsnPTw1ZukAVumg4LQaurslAeDCDPsVlOrgIzcmV1pAU3yO8MBrLf0NJt2m04t1SPC0Uh24ItfhjeBsDZe2G91+OaUzow3S6+LMXYDPDaMNNK5Fi8FZB+G9Bj9osvgSpLVPXs5CvSjdDrgfMo66SDwwVN/ShIPRmNGRcWG/2B/C4y0sUQTFZ11aJ6bgnV7dDQY9jwPKvQtZKkMVVGrjBkX/dtxO95F0+ceII5hRh8RRFFHGMRg8vR84jGDT/3km/C4nnu8v18+c//G+wLX0CZ5/A8kcHSwOmjt5Jc/yIiCqZfeAOXEqOFCqWgbVIaZgAKpnsbjJUy5gudoT+EMjHjkeZPb3gladbnDb66dh63g4Z8EmmK3AbJLDExVfhgiFrUc6FttVBWgF0iEzqf3MiixotG7ahh3kWco1IC+lbfOpdf+vL2x24Z48FuAihumx2ySXMX0dMxhdKcas0yV+uFO3zURCSqAH1pkhOlBT8xA5trslCfGhYI/BWAsUpBXlYFTB8koqo/yv+Nv/wQ5i8fgI1QICEhc75mwqsdV6sOGWExwE605euPTWE9jBlbXzKlNV0T16ap0S6v2OZ4UrOvc3tx7+HCjfic4EKh26OVw/gcS0LPz0C2fUa81Lg0cFW4qjuvzJ3X2HpZZevjUvHldzttCUWA+yUiG2SucChKlPQ5hM9eOlhuS4stPUpfWefFxcbU/JVJODZUh3WCD4e9Qla6NkGiRpFETw9k5kaKfdoorBvNjc6PIlnAVka2SUxcdMF7WtceGhIJvKd0Q5lAQJjlxqDn92HXN+R9XJZiED0xLmA1iKF6lsPyCrkK3gzFaBeHEtmvbhcGA0rrSRRs6pi2VyRV7uqcbCvsV76qqi1Aq005v4A/u3reOc7mXWJXQn8g+WlvAGNtlHNk55YBeSdGaCiECY/WuCyX/FVreifOMPVL/wH1ojsoX/lKWFyU7ss0Hea7WlOgUUvL6EYDbx0+y3C9PkVWBm+ercd24LpZDlw3u/2Qzw8v8loLU5OQnUUK6B7nFZ23fB/KO6LxlOe9/Jon39ZVjHLkfZ44huuWJBleJxgWK4AoPFfR5Bhm/z7Jo0rxYHFFLjliVexB3udea8oLaGGfVBM0dEScF9A7B+22yOcl1dwVfAdCiZV+v15fJVMFM196kAf+5tqaUa+qfKDKk0cvnPfsm0p5bTsBD9HaFb4vajkvL90KFZM+HCpcXtn3CyWcc7C8JDr44TqtPLHJ/O3Dz3RPnObk296Oe/Qhyltuhv3zQjoKBseVdKv1FzfnF3fcNvxhMIB1Wdv6vMDHhXAo9uxS9+Ipjj3AfS++8OLRx3kjzwXgM8euwU+2AU/nwED0Dq9yG98XUuSDjGRMsg7tHYufuQv4R+d9znsnrNgoglaLlY3H6Q1ytNY0nkRWACrNQx+6B1W9OJxLzZaESFdUMCD/+MfhzifvF/vkySVedvTw1qRNax49tcSzjy3ivUWpCKUVPWtojS6OzIg3wMj3m4cX4ODB834PELkC8EM5mkEABbudJz1WAD3o14mmiqIgxXL+ik1XrCdrifYvCIO141C9wNx2VhhPoX28PbY7SJAYMRX03mP7faI0EaB1YgLTbuO7PTGm6vfF/Ko6ZQXEEX5sTNpn1zfw2tQQho5Gkh6tabhcEumKVWMM9AdEq8v4hQXJ8dtBM15Bqz/UAo0OLMh5DYJOX78vGo9pYB5GkTDwjYYoRemefL7qVgisbNbXA1saYUHpCN0WSRmfZbKA7PVwSqHTNNxvCn+JLf1VnDp6HY0X3Tw8zm5f7otENNPt6XO1FJBSMOgJiOr62RbQnDyvv0OrJWD7xsbQ1DVNKQJTN8n6QwaR93IdgikmvZ6M3epaLc+kuj2RlgnMdp9lMm96Yd1X5qBOSWuvKktsPwtjqIPEhnxGRTEz4y2iOAZn0FpJUj7CZquNaUtbFxV0YKXrqSmRlClLVFaKBjyBeR2Oo5YQynM5r0ZDziecoz+7hGq3UPsXMRsZL55roeM+6bX76+MwZg63HkCDJGbePYR99c08/uGDzFoHRRm04UFjiVSxRdUhntrPPfsmccBkv0P5sb8huv9B1tNxGs9/gdwzkaFsTlAevQFFhplocymRb2ud/eGbenTtNB7NE39lKcIB5Wlry+fe84b7+bVPR/ztynFQAxkzo9E7sEYjE+FW14i+7wdlW9/wj+CO58o9phScOQvOEQ/62LlZ8TkAPEtDpm9dVFFYZWppidGui11DwQvmxnj36TA/Ni79OZtIWzw7knt3fmo4zyba0rY5iSs52FsmqxfmBnXz34OJyUveF8DMTMp6maNt0EY2UY2pZVfAcNdKUwZdAg/kDAHM3acfTawNcWBvuh0Af6McOmqiw+1kjOJL9rexoWhdSzwZw4eveT6PnX0MFOx71nU77nFqpgHJR1kpD5HoiwVGh+9JFxjuAKVqYb30SjXVGn0/fZHb2y0urXiilB6BvLe+yxebJ9nsJyjlOVuOFMuiqwW4a04eejbzSycA6KVjNPE4NJ5kC07rLtLPYDS00ZKbXaG2+sWGutLuxmKEpeqvDCS3pa1JGXlxheD95ey/GOm02aUIF7ebsC6M4fbUGDccOwHZOh94z4pILlRyHpGGcvg+F7Z7Ap1N9ORELdHnrAuSLeKHQZqiGg3czAy5kY6oMhnOKV55yWuUvMPnGzEva40xvbFEstqEqYkh8B9F+DEl91K3VxfkVeg4jJaXdpSBGj/xEAnXYLV8t5ZmU9Bww+Ko0cFPJ+Rbqm5wURQm5f2HnsOzknFaJsY4jx1kRNrUHjQASit0GDfT74kMYpoSL63jrENdJnRaabI3k4Q8dHWBxhmDPX6zXEtzeQzrK4liJD9QGpTRQXYIIadUEQoXwx+gtbGCyaeHxCJrUWWJT9Ph+6DacNVhuEt8Jk+5xhjQkicrglZ8ZfCrVDhAjdcK0hHvptJi81w6QKsiTrXAcG7YZRykZRyKw0dnuX5Gcp4zD2awfPljWHVRSueErl+0ZkTC6OmaP/8uxuZqd9jpDRBF9P7bb8AbX1Z/5syf/xWDj36Qsizxt94MkxNDLweQNZ1zFGUX6y/cCe6sRccJdpDJWrHRwN0onaoqScTLAnVBWZu92IurEXvI4l48I+I973kPP//zP89HPvIRTp06xR/90R/xpje9qf67956f+Imf4Fd/9VdZW1vjZS97Gb/yK7/C9ddfutv4Y7//bm5+00uw3YIH7n6U5x4fg+lpDugun/yxn+C2n/5XV/HMvrDCZTm0g2me1vhbdm6PVKNMXEAdnOHfv/P9nB0o/u1bXvmk+/nYn91bM/RufslhJhaE4W08wjooLbY/QGthJXtgs3VxC/Nbj7bwjcbWY1SK9cdOwbFF8JVJKESzM/ISrwyrvKuTeT3a1thItrKPR8LGDWpB4cD6xnuK3eiC22I9HaPi3GTnVmkcmBfm4cb2hH5kvEcTwskJAR6LAnXuXC0TYs6d23Wfyvsa1I9tifdBv7NmMQGNVIwqiwJXFMKWStM6wScvROYjTWq2s9NmyxJMxnnbuCnITUzs/RAUDmHj4ZjpBx/CjY/Bvn3yubbol6oKiAYBYGtTr+Hx4x30+sKeVgqSRM6l+k4IH8Bl5Ty1SocS0YHL1ZTNo5hGo1EvbJwLFn2BPRwfCiBwYJNlgeE+Xm693qrS3GSErTiik5mUOe2gBVx2cia+863SyfHqL6L8qq/cynD0MiZOKXSrJca4jz5am/2qzY60BivxNVBJAk0xnXWrwp5XWqFa46LHWRQ4E+GTFLRBNZr1+Hu7FWxn5PhHz0UI5BWNVwo4NfulMiz2SCHpzBn8RLjPrRW2vw6a/oGtRb+PPnuWeG2Nb7/2Rs6ezRh85BM0b78ZrxX5iVPEE/PgobVwkGv0vdA9x6QSM2BaTZHpCDrW3qst94CLJ0D1wcOHDt3OXx28DY/CuJLfcU406HUwliQW9t0lLtziZGiEFiWGGxsfhaJH7lI+Oruf/cuPCUN8mywSL3or37r4Xibfr8EPRkCM8+crBezbWKnvHd/r4soS3+/LsxG+kpkE85n7UAvzVMy3agtOqVoEIwldKUpxUc+MUorIGBpaQJb25KUVJQBKN0x9R4uTh+7/BJErcUChhjNRrLpX1m2sFOs/+l9AKSLfw7MN3LjczRrF2HSTzmplYDv8mx1h/pfbzEwPt4Tl7r1notJ2HwnrI0wUOjyUwnof5DZgXJ8FL94gysP7r38Z5468BIXnh+d3fsemzZiFxgls1rwE8Hl0YIb3ofeeiAElDfp+GmWGshyXExOz42wsX1w3GYBSHk2JI2L7xVtMH2bRC2t3FHCfPzJ12ce3dd+KtcPXkH8yQeHJo5h0t4LBBRimu8XzX3/DrgX7pyLKK5ZuGb2vr5BXOurP8HRRVKUSeV4Uu4yLQpjwSiE+CNeKrxD/30/Arc+u85dBNyNOIylsVjIzSsHGBt46VLsV/FUqRrAGRBfZFQXq9Nm6S21UJqrslqjx4eA8ZzLldUf2cc8np3gO/rxeEXvmLNHkJF6rkNsFc9O6uH/+OeaTs1slOSqyA9QAK4icnK3+7j3Gu7prcWBSfuWOv88/yz/F7VoTKU/sLd478d8JLHzj3XCbI3mmMwZtNFF0efdnVUD2xhDdeKPI1SEduI12A+9h+uC+y9r2lcSRm/bx6Kclr2+eO8vkd76V7HWvBRTqn39j/TlZhlTjIe/BtUeeYHFqHL8wL8SVKKJ13THJpebnt+ZseU5xZndUu6hA8QqkLktZPmkduoSVyGuGTrvR604S48tcOsPCPOUqksdIl8co+WSqv4YupTC9/9QngDsubwAh+DQJ+ad57PDw+DXQkuKUGbv0nOQLJVY+9PF6jUnoRC1f/qItn0kOH6L3739x+IvtJLY0hV4P+7Ffp3/sq4Bbdt3f/f/5v+FmU8k/q87X/ft54pd/FcYbEPCBvRLJXjzVsQe478UzIrrdLrfffjvf/M3fzFd/9Vef9/ef+7mf4xd/8Rf5rd/6La655hp+7Md+jNe//vV8+tOfFnDqEqLxkrew+C9fwOZ7T7Dwwc/Wun3uuuvoFTubFe3FxYUtSiHTBIPLfrJz9dk6h/IeHQBB32hyx37Fmc2LYykV/+GHaS6fBuDhH/x5bv9a0a52vsSVBdo3BBhXUZAx8JS9i2OM236O7fWIxoNMi/dQlrTKkESHxN2j8A88CDffOGyprIB3kCp+CG81xfIq8ex0/fe//uxZjNJY54RVVpS4wUDY05FBXWzS1khrVkfqy9p0ceyJx7eeF2CqVtHNTQGaoxg3yERSw3spNIRFi97Y2L6n4fl0O+ixMflOZdbV74sOfJYL48Ra7PomptUQnXelhhIlIEZWjDDXsww92hauNcXsvuHirAqliY+MaPplGZQlpYNec0p+7xzF7Bw6jqRwUhSQ5zI2Nrz2rJX/BgORE6lMWbMssMIFMPara7iiwK+uoZJY6iG9nhQPvBPtSmXx/RzfbArY3GqhzMXdb9tDE/RUCQvMqm01GIBuuQ7Okq+ty+ns3y/XF2ShUsiiREUR5Dn+zFloNWUMvCcrLLkW0Eg5W0tLmKxPaYMMjPcCskcGPzGJGvTrsXTWB1MvJV0C1uEVIrlQlCglBqRKaWlnbzbEyHVqUmR6igxdBFb+oWNkX/INOOfJdUQUgD45R4daWpJ52lp8MHzTZSna/OeW8K0mxAneezEr9l6ui3Yi25imYv4KYIwUDLLgXaC1GMlFEeX0DOVGLsy7KCU6sIiPw/3SaPDi19+ATqu06S0AlO/7b7gsx+S5dHxYVzNyRwHzZiMYQCppu4mUwgKxiVFTInkjBZIKitaXLP08vTDOS79ipMj54UXYeBzlFGdLTexlEavzwflfPvpyWnd/uO4iqM3xtoc23PWcL+YTrXmc0rwuakvBzwMorJN5JrU5+fvuIv7oRylMjP+mt8CBRcBLUcXLODhjhBHoh8zAC4UCfB5ki1AU28DW6a+5gd4nzu5Y3KwiSiPsIHRiTQwVxc8dfxZHzjxYSxNQ7cO3r0xiw3u0KnHElKrFFhmTK9isUopBd6j9vBvJ10Rbd/LPb9lPkckx3DA/zsZyb9vnNXm/OkaP0QUGhyVl083XjEKljbBAlUehzjMKryNpwXWv5wBAOn6pp7klvIeSBHlCSq655RDOw8qpDuvnuk/6/e1x88uOcdeffOaiP68u4G1C1AS9w7x/tQBcpdmYP85v3/xG2ejcIl/PAIfB4/AjuvGXw86t7vGnUk5GRxoXCkCzByee5NMXjkJPoMKztF1v+1IjPvYiuC+QDNIrO66LjRtfcIi8XwCKhz95+kk/n/WLWobGjhTRzJ/8Ge3f++/1Ff/zl38tr/2aO0GBS5JhDlUUoqce3nsMQq6Dr3MFrTU0UyJXopTHjTzT43NtdKspc2uzgbXCtl+cajJojUneXzHIi4IoG4AfRzm5Q3FW9p+mlHP7MEur553j/Qdu5FhzjCSK8cZg3RpRYNTbZJhTKysmpFHodkWbwIoG0pi4EIke74TpbMfG0XEkpp8B6C29wmx2aik6ej300jJ2bQMm/Y6m4RcT1Tzs0wbF++8ifYlIxpVpyvNec+kksasVayPz4+PpJFNxm/Tdf83p8XluGWGp+ziq83QX/r939FoGWoguOlznwfIqjV5H3slxIrIfRroIvNu9WPHKa2dRvlsD6uRFbS4rxZBAgvBeJAaraS38bLNsKN8Z7jdfWpFIqnywqnzZWUodk4Q5LZ+ag92XNk8a1jpMkCKUzmA5DoeSTg48dvPycv8vhFj+nf8M3/4tW8ko1x7f8pmsN4BOD2am6m4cOh2RYq3GfnaW3o/+KOr/PHTB/W1g8QsL8r1qn8Zw1hV43wwkpD16+1489bEHuO/FMyLe+MY38sY3vnHHv3nv+YVf+AV+9Ed/lK/8yq8E4Ld/+7dZWFjgj//4j/kH/+DStL+fFxKL8ZcfYvNPn4CX3iAvZq3hmmuu7ES+wEM5C1ZDaXGDjKzY+UVmHnsIbliU7xQFlUGmvUiEyb7uFRQL+wDP6vr6cLveCkCJl8mtSuAqSYqLiHKjhzu7LIuSZlhcxDG5c3z0ox9l7Lbj2JNnUEBPN2jAEGyvXuhKDfUIw7j4jY6wa5oN8J63/PrfAvBL1zeHutTZILB05Lg/9alPAbCwsMC+fTszYiY2V0WDU0lLeCVFIszSnUIJQwWg18cXBWQ5OCtgeSYg6IWkkc3qmoyNc9jlVcz0pIxXMJ5kcxOsyEq4sVbNPFFLS/jAjsFaPErA19LilN7KcPeefHWdxsTYMOkaZDjn8I8+jpkcl+2mKaQpeqNTm1Q6Z9GzMzXwD+CiSPTVU1Mz3FWnI0C7dfLZ0GKoBwNhb3e7cm9GRhZqKEgiKYZYK4bLOuiUKwG5KRV0ukNd1EsM3WhQnjhFNDWB39gkVmwp3my/llnQpdejxZ5StGjlYsn5qsOH8Msr9SJFlSVJYPWNHmnZy4YSNiDnkiSoJMHlWW2Aqs3y8DNpA+JIGN5RaAN3Due8jJXWOGuDyR94pYnzvO4GaV13HeXhG3HWsvnxdxONMpS0xhnZtvGulrFx3R7aWqJuhyJJoJ3IGZeFgOhay/Xyshjz1gn73HtsbyDrySADA6GLIUmI9Gk8BpNOkj38CeLFfaAUaSsdjulImIkG2tjQmoosxjA4DFE0BCsmxqtVoyIyskDzztOIFG55GbNvboTNJf9dMfA1WAUncgEmjuvr3Sx3NuibnzLk53yYfjRmJyNCrdmcnON9178cgFeo+/BaTJEtUPX2Z1GKqsDwEU1YgKTu3xWdfxNAnYs5X6VUYHkGZtK2r7TvWMD1Llw4b060yQYCPjg1lExYn9qPU5rIW4wrt5i4qcuUiAJCa/t2TfLgn3A1sU2R8wYgaY6w+LfN5QLA7Q6I2G2M+NLF9fGP6zPgb5I/RBFns5KBE55YtBvgbmI4/JJLORO2Pmuj10HhfQCDiJlZHCduJBQDe1mA+6WGjiI0fRSWSOVb/6gC6Ld9nrhKF1lpzV/2Eh46LgSDqUjxDyQDwdDbckX9DnPV7ht+uijdIgFY313+yvablVH9HJXllcnTWDu859PWpckMXW7M7h8C+4/dd7buStG7IL2D7nBeWzk9NKN861e8jR/4i1/kWauPAdA9s4r53h8AwL7x9fCG1wHgNzZRk5NSNC8KrFY16xzP8H3eFOPwGpwPkfqBdDOGnNoEoCpuNjAz03VeV0kXFkoTo0TOZlb6MN0gQ2cZ0dkzeHV+F2ermWImxoR04rWAu86BBZMNC8WpUnQ/+zDNnjzzeZISjY+hgJkYfu2l1/DAn/8t7XKANUaILCD5pvfQ6QjBuizw3lB1pw4Kh1OReIHqywPiNpfDPNQaR2WFrEnU7qbST1f4kYJ2oY3IOhKuZTJyLQb5cE0RcobJhshoKm3kfGyJygpKZYjWN4nvej/FN/1j2U+SXvDZzuM2US7rNqUDQ9yEeaGSkwmzmTIK3+sOgXUCCYNhx0Oo9YN36OVlXKMh4Gwco70XuZxENNzT+Ql47PLH0EZmSGypQgmBgrYQzKLJKysqfz5H+Q1vHno+BTKbPn0W1+uhQ7fxmkKuVxTV2IwaDIQoA0NiWxxRTF0YxowosSNymfV+0yjIY7HncrsXT0vsAe578YyPhx9+mNOnT/Oa17ym/t3k5CQvetGLuOuuu3YF3LMsI8uGwMJGYOzu++YhA3Dhhc/estjIO0+/rt7nU5S2IPIyrQiBceekayNu03joUZL98zgneu4N4znYvDiQ0hw5jA1s8Yn/+JvwrV8qv6/YyXEsyU8F9HhHfpEibcKYUgIoj4SNHDbL0EmCizS+tJRlMdSVq046gIh2bUijcFUF3dmaOfw1NzTwSuH6Z3Gra+gklrY2LQlGFEd01tYEIHzf+9n37d+24/EOkhZx0F0v45RocxO0JlsesoeyLEPPzQ4lN86eFdC9LASk1wq8wjeCvrX39Ju7J41+elrYu85hjKrPaQtrKk1wM9PCfPceogibJOgKiNYanxjRf9xpgakUcRrXBjkiC9NCFTk6FpaD6w/CokEKc1WOb8sS8+gjOKVgbh+0W+hGQxYRztWmqT6O6+unz54TkH1tHRfFkvy1WvjVVSFQyZnL8fT7YsA1PibJ/8bG0HywSuguYm3lnOOJJ54AIEkS5ufncZEBFNbDo92I4wuJsLNr7cgRMBolBsSAyreCqC5NhvejtQGgLsFEeDwm0tgAygirXBbz3X5Jsxoj52QhWpbD61qWYcGeD01ol5fgkHQd6BGmlC4KXL+PSlOUtTInGAMe1p/9Qo4fOwrAgTe9Ep2meOf4y4+GzoMRLU49MQ5lifWgNzdrVh5pit1/QJhN1ZCE6yBD5FHGYGZmZEzW1tDGDAENrVHeY5yFssTlBaVTgCdKFGN3fxhe9FxQCqd2BnRcO8EXG7W8zlA72W/B3SYSkUFBwWys+dbjArasDTaF8R06S0ovZpUKB+oKgZ9b/yH0lsBqZtPfomtSPNBNx3b8+PHZnI/+699mQsm94L70W877jAKsj+nbAgcMCk9lhGziSAyOlUJPTYhxsAft7RBvV8I8NNW/TVQDvLuZUW4/AA21XFJRnA8cj7/80AU34b2vmcp6pChyol+Sq4hSG1abU4yNHM9FHdsFIqKHJSKiIGWTPtJWPTV9ZcaR241yq59GQbvtt+6oZMVOr2ilt4P0DoMYlW66hS3z9VyiOJtV77enfuWqDVJAq0qzTzM5TSmFJcZjcH7bwN76D6DsAwr+cq3+dbGLefzlxHRsIUy7WnkMAzymnsslrvRuferi1pcfC8+7Im1e2RJ0qtGh25kGqs6hy484GXpJXEynzdWORiumG97hZbHzczQqwTOK3R5vR5xozzHbX8ejeGDyEN9/5z8F4Cvu/RAv/eS/RQGrPcvkv/iOIcO9L8bX2jt5b2UZ3nvcmXNVAxLFiDSRabbxZR8fK3Ce0oT30/v/lkjfhjt8aOh9U7HlkfybQOQQdnyTcv8B1NKwaFCFTiJ8lSMqhZsYR4duT7cwD4FfE3vPyfd8lKOrj+OtozQR03mXQkf0X/tV3PytR7n/Lw39uEFinXQyVkAfBAa0xk/L/cMgg7ExkrExinsfChLil3cfjM+12FwfAJFIsDSlKJZMPz2dE7vF5tpQOqu9uUqzGGC8Iy5zkXMJ8auPtFm7+yG8hy953lFeD0CVeyIdASbBTI5Trm1Qxpoz+69j4dFHYW5OcqnwXtpJnspP7kOTw/i4zFMbG5D1a3ITM7NyvUDkwipWczgO5+yQEQ8Y5+r5zxEA+8BwtzrCD4KHU5LQKHfo7rvI8N4TVUSRimAV3nleVV4FUGxsZbj/7U/+CnrlLHjPNd/7HcwcW7zsY/i7HA99+omtaz3vw7UfcP83/ROO/MLb+fhnHoWpFFRD5IomRL/dj41R34PVd63FzbU59QtvI7/r3QBE19/A9e/8o3oXtuq6qdZO4ftlbtFNH+Q/9xD3vXjqYw9w34tnfJw+La2WCwsLW36/sLBQ/22n+Omf/ml+6qd+6rzfR4vD7dzxshfw7999L18yJYlIsnyOh3/xP3DNd731ahz6521472XR7mVhHyWy8KwXKhXYtcsiSBlf6wTqoEWN9zQudpk4MzXU3v6aL6t/PYhjGia0+lWs6LIUttdu7LvtkUTo6cACAlAKtbaGn5oSZjCBZacU7dmJYQLvvQDP1kJRYlfWtp00NdsY5/iaa+Ql33lQAEip5JuaVe/zApWLoeoTNuH2kU2VZSmFCqWIWs06GfVFAc20ZolUZpOPPfbYFqM7pgMbKUnELCYSSRffHy6KhNG7S6yvQxxY6lNTwniq9c5jGASW00aH0nthf3iPti6YJCHs+PUOemaylk3ZcvW1Ri/My3UbTdq1EYd7EOPLiv2tN2sQrXTgqm6Vfh8GA1xRorIMlQZT1MFAttvrybFW7Pjqevb7uH5f2A+xwePrVuSKyaW6vbBQCeZgVOxkLso0Nc9zTpw4Uf88MzMjLGwFfqPD7zyY8uOzrjaf3RLGEB/eT+/jT+BLJ/f8yDj52Vm5Tzc3Ue22gNaDPuQZynv60/N0fvYdgOLML/8Mh06IrELfKRrei9Y9oJ3c13ajg4qM6K/3M7R1dTdFaSKiopD7uMhBjdcdIhopgKkogtX1YUFqeoFDP/W9W05JaU1pbTA7HUnMq0V8t4d3fshSKwqK1XUhvFR054ohNVKg8GVZccbFcNZZnInEINh7bLeHyXP06ir0uhDgvP7SOs2KRbUL6zCPm5Cv1Ul9rD2tNEOZCnCQ2DcW8fsvEYCjofscaHwIXMl7zh6geN+DxHNTAYy4HjDhCK7QVHDyMEweFkaWAeG9Khw7A4Dp3CGKtQ10dwWFwuwEPGlDxIBEh0JX1c6PtJ9Xo2S0oigDS24rwR03NoYJxlnpzBT7r5nBe8/sgScHJKwTwZ5QViG/DB1opVTN9htlc+cYEm+JnGVisLmV4X4FBo/WO0rk+S1IuLn5F7R0KMjOffNlbxe2mi1qrWumbqM9ZCweuGaOB+8+BQijUEfBm26XbXonMjS2DICGcjgPmpym2iC8sFBxg1hHKCX30xat3SuOnXMBuZUzHBGx6j+t7GyQOURT4nFEehvDvTUz8sNa/a/u+sVrxF8wXMkLZiM+siG5SeGojWy3j1fSuDgPmKc7mmMXyCsuNdr7UJ0cBSTxlenBK61quZZRc8mnK0ZB/t3KJY1WzCB07+iR/OJrjiT84PPfTMV/bynoS6MSRz76CO2NkyjgzMQB3OQkutK6VvI/XgcjzNClFU1NEHmLxdD3w/1EcYPv/N9LrBcyM/7EzccA6By9ianqXacD2Amhc1MNdeTl5KAoKFfX0eb8grJ1kH3sU0RffKewmbOi9qvxo10IKH7hZd/MaiF0ll/+i5+jYQtSW9AgZ2yqSTe30kkW1gR1/gayvUpe0Xshw/T6FGfPkfcLmqXHu8ubW449e5Fjz15k7VyH9/yrdzB/o+SiRfdzS+hqjsf01uQuOb52ojahHS/6mHh4LVaa4zzsW9LFG/xelBY2fJ3nKlCRkS4HpWBiRO5nJA/eEuFXR6+Zx59d3TJ3ex0PGc1brpOWHD9NoSzpFTGP3NcZrmFAOoc3NwVgD8UeE5jRet8s2lrpeFQKf3A//mNPvs4ssjK85RA/BKAsLWWc1vI0W05NQ/VeTEb8IJxzNP70N6j6euzXvly8wL4AY/NP/wBe+pwtzyAmwrfadG67jfv++M/h+FGIW0MCV3WN2+2t9wWAMZTHpjj3IU107BjNs2fon9qKCXm/dS1QzU1u0EW1mhBp1OfAJHsvvvBiD3Dfi8/b+KEf+iH+xb/4F/XPGxsbHD58eMtn9s3N8rbF/8td+otRzSbMznJmY4Nrnu6DvcQ4t9rje//rR/HA8dkWP/Xm5z2t+/fO87G/uB8PxEnEHa8VXcKhJIBQ7fRurFCtBIhrNIaO5WWJGVzkwtTa+sVr+0Nmb7OVYHsZUb+PWl7GHz4sAHeWkV4k3j713JvEMA5q13s/Nyf6041G3c6mgMmlAXb8DG52WhLCVksq9kqJhEkIvVPyGRj06dwU1WLZK1UD45URI4DbVoH/1Kc+RR4A0bSzUQPuUbM5RLZGEpN+T2NPn8VMTuD7fdSsAAO+15P7HkSWpWVrZkm/uzsTRO1fFAB0MEAvLeErU65KWidsQymPjiMZF60F+HSjx+drpgIoTHsEVLYW89jjuPl9wo4OLGU1MY594jSmAhQGAyrmQyX7UBQ55r77cErhjx8Xxm0UBZCdsM8Rlkqa4ttt0TBttXDnlkKBwIqGpZKrWC8eo0hYPGkq16nIhwx4PNpZzAUkG+px3Ja4O+cwkSYKDJ7/18+zOWF3lpRRCpUk2LWM1T+4H7W+LgWXKBLt9DFhMSvnoNulOLNE1EhrJr7oL8sRx66kFUwwGeRybQPA73q9AHAGVrD3Ad1WQ9ZR0OAGj1NiOFYVpVTQWifPh3k2YJKdH0ittEgcBTaaArlWeVY/975aCoUCGEUpngBhgawmhgxuVY3J1oFGT7Tq49fTU1IoarVQ6zmgiHTEvUWTO//Jtwk7sDEJH/zi847XVKCBUngUzfGU57zh/PnYZKscTz44/EXI8eMIBnd9GNNbBRTuG34YTY6hROudmeiXGkop2r1NUisA+Gx3bcfPRUmDn3z997EaAJX/dPjA+dvSmns2YBCe47HehnQTKSWdGIH95Z3D+RFhi8q0CrAPPETzJ9+GR/GpY8/h5X/2pRd/Mk5xqJ0yl8occ93kpTPER587NVIJuG1/i8xEFNrQbYxxZdzzYRQ7K/iEuDI27b7Dk5x7XGifs/snuO6551+zhaPTLBydrn9+/zs/Xe/Z7WI4mrZiehvBGNdrbBDS7fo5RrW+jR6WJa6QZLwl9o13OLc5GX5yVMUnrTXORjgSMp+cZ7D8VIfKVnCkeKLQDXMR37lakjLJGF96ZIxXLzbRiGxYUbdSbQUvTfz5v7wTJZQED+T2ygoMxWAo17JdUunpiAPHZ+uiWLzbtdvlPrppJuJZkymf3pCJ5oaJmM92SryH1fY0bJzEA8YWuLs/iX7WDUAAsCssqihrkolf26AfpXgUZTQc19gYjFI0tKIVaRqpvO+mX3Ib2dlHSZUa+vQohZ6cELnAziZsbIpETcj50qzHxrkGS791z9ZTpC3v8uDVotZWYXoClMZkGa5fYKZTJiYS9KlePXs6bWRNAbVhsK+AYaVqoM0H/yjKkkh5kTgEbFZgWk3iY0doDIIudHMa2oGgNb1VZ/piQinFhAVWVuWwdtCsfzpj/uAMj26cAeAjN97JnR9/F7Er2UjHYGZ4fueKnDwUWrIkeCRERjpI67xdPltJLcbtKUqTCLlGqQvymxammpw+WQw7DpotKNalsFLJEjknevCAD+sJrHhnWctQ/qgsRfqxegspRXlmCQYZZmaa4uwSUbsp0obG4FfX8a61lQGwQ/yzX34/G6UjVvBf/+Wr5JdFSZr38JU+fHVfVVKa4fksR7pCXGnp/tAPwvwcAO/8yGkefvhvL7jvz9e4c2Kem0Y6YM8+cIrJyKLxdGbmaDxwP+bwgVoGVG1siIxMFIH3vO/PP81zzSqtmTbcfvuwkPcNX0cJbPb7dO9/hG/9reH4fmnm2F9dr9Hu4NufQ/eJsxgVYRX8AEFi8J7zu272Yi+uRnz+Z2R78Xc+FhelGnzmzBn2799f//7MmTM85znP2fV7aZqSpk/CpokbMHcT//B3+7zjxZvoifGr2v77VMUT5zq876Qssu9b7vJTT/P++6fPkP7hvwMURDG89j8AiB5ykHDxlezDThHF0io4GMjLNCQtTE/z4d/+bzz/G998wf37ymwHMNdeg81LvC2JXUlcivRF6cGsrQt7u7ACPD5JFEVB5Cx4vdUAFSTBC+wOjxQdZqf2cWziLv7ik8dpTrUx+8WcxaHQYy2KXs7d732EksBgGk3ywuKm7A8E4PceZUPyaAyVkSp4km3rrMFgCIYP9u+nFX62WUbUFNa98p6PfvSjeO/p9WVsxOTT4tc3UM2GJLD9PiqKZZHjfa3vbi7QZmfXNkRn01psuy1yLaNjFWR9XLuN3eyhcwE9lXWCMNZmQ+GznQ7lfQ9gZ2Zo3nBc/hbHlFpYwl6bWheULJNjjyN0loER40/dbJLMVYsqj73xRjmWTgfiOORaShjzcQwNMfYijoW1vdnBtJpSMIkiKbQ0m6hBFrYpY8egqD+jG03J84McCFEMCko0LnpyJt/2dltrrUiyWIfLcw7eeC+/fc8Et+xv0jy0GAhpqr5/7PJqDeurEyfxzwtA79gYnDo1ZMW328TH23DqdC3p4mtGU8XjCTHoCkjdHdFDjiJMq4kvCzARKmXYJu49trRE1f1SCGCNC9r2jQYqiqQTYCD68B6IpnaWS7FVx0XVrquUMNejCO29AON6WOBRSYzvDFDVuXqPGgyG7Hbr8BsbAvwbI9e11RLGfQCI7fIy0eyMSMpkOWPqHFYV9OIGfZMCnk/MXc9Ld8A7ktTjz3ZDQUGh/S7vj7nrYP/z5biWHoBcFt+xKujGTcZ0B5THa4MjwZHgr1DjeDRWx+YoAgO93KUQSpSglcgZKfnx/PCaYmQuPVUkLMKwcLa2Bu02Kst5z/zNPNZ4FsrDWzY2pLNEKeJOh3bQkV/or13SeWijeMX8OK+Yl3mqOX7pQFsZ9GnlsIfPYBG3iJxDhzZ7TYFHo65Q5HNypsHQqc2jGjNQ9qofryiUBh2pK97OaGij6HWG7O1yZKmgKOvOKaWUNKwoAWAa0dW7X322CUF2J6ZPoaT4FKmCDFBYDNIB9nSGR6GxoQSweyUlbcdkQXN7cu4iDdCfJJRW5GWCJcGSiixDHZYr7oj5OxZ55qkEeLW6Mob76rmhDES5g0zVUx56Z5mr0XAjc9VouhWNzfKDz3ZUOnb3rK1z330rAHx65ji3n3sAvGe5OcHkb/4OSTEQdbi3/6S8j5XG57nkBQpcs4kI23ka8QjDXSO5fSh5X3O8wXOffy0f/FiX3nLo3gz5XEVKIIrQStUdkRQW4phiZg53tovb1k3g4gb5apd2OFerQ/ec0tjCotuSN6THp4jOnMIgd36hNJkSUFg102pIUQ4oLb7TRW1ukPyP/4l2jvzld+KmplH9vnQrhty7eOIM3Y0+6Qw0D90Ex57N5YbHM97Paf7k2wDPxPU3wXd+62Vv70rjwHWzHLhOtPTv+mMhm3g/0tUZ4qPf+1zongUUzFwLIDr3TrqaKUvpiB1Ix573YjDrXVnLv1yoxjjRjHjk//t9Gt/8DfKLCp2v8ui1dcn5Gg2505I0kCZKFF5qJ5XciPdY56XY4j3Gi7Hq5P4GK/efJPYWNTMpx20txWaX0knOYEvH6plNUJCkMROzQ8LP9Mr97A/FZDt4Mfe//BX4bg//vd8j93FlwlmWUJQYrYZkg5F8+sw9D+GCvxHO4bOMzc9BB80zIc6uZRx/4jQqjllaGfC7j7f4tiNrxLFBxRFucQGT57XklT94EB5+OBRhHOdWO6zMp7Qfexx/441b5VyVEsLM4gKbp4fj63GU6+tEjaasWQJ5qRgMcM6jncc5TzcUk3aSQNqLvbgasQe478UzPq655hoWFxd597vfXQPsGxsbfPCDH+Sf/tN/euU70IaGLgWYca7Wo30mRxRpkqAHnFysVMpVjGJtncGbv06A3f6Qla6cpTINU1AvILaHL0faxarqM4BSbOyy2HnX2/895l1/CijGf+x76+94rSk3c/qnTpBqAfm993gT1W2E4CkvgmVWdPsiMRLHtZY53sPpM8I2D+2yFXt3MpUXfjI9gbn2qBxPlqFiRRQZ7rnv05StnPHj+9HbWBiVkWhS5Bha+MCQpbByzB4xgHROdOi2DOBwU94KQxulUK1CQK0AcBYB1I8jsGiiinU8WZm0ZgLKGoPPMnynW7MAGvMz7BTee+xggGk1hClcGbCur8s5bWygkgQ/NoZqNNCDXMD86l4YMb5RlQSI93BuGZeXqCMHJPEZG0dfe0wA9vV1fCwAqdcaXZkSZZmMUbgPKiZzWZSYe+8FwM7NwZiYadHv1TJD9PpyjYNRquoPqhOUpL02Ci3QWqN8KCY1m5LoB71TEB1wpZUA0girfHARdE+9jZ1Z9vrQSPDOYrOCqX/8Fu7+xXcz8dApbjy4KDi29ww6AxJvKbv9uobTLzyNEyfw0zOoQR9fFSeXl6HbZXD6HI3E1Iaq2rmatTqK6/qS4IEQktleXySSen0xn0oTFAmFiYir+zKJ60RWz87A/Q8AHre0in7+c+R+KEq5vxriXaD1bulHWLhUoHnF7o8ieT7KEt/vy/0zO4s5sIh7sD/Uk88yuT5GZJLAS2Emz/ETk7UBrHdO2qO1JsILS34wQOcFt7X+N1Y1WfrH/5C///G/D0AL+I4djnapb5n/jXdwpHNOrsM37yJH1piAm/+e/Psjv1ED7mPG8/Yv/i6WgzTKDy+MtBtfPfySYmoaqwVGyeKdix0qbqCVIkgZM3ZsB4kXE3G4rblvU4Cu/Ow51Pq6PLObm9AInRFac6K9j/87JV1lX/KXv8zRP/wDQKE8tebq2cbk+fvYJRTQGn/yQtaTxahGcjkiU5CrMazSOKUZ6JgosIY9JrTSX26MflehlIOq7fwK9UOn9o1RDOTemVq4eh0RaovE1/BG9IxIJSm4fXqcyV4OeI5MXk0Zk+E+tfZDY7MoQeUDHIYSc9XY4xcb2ph63uQCgHscRxSRXJckvUpLLa3IXGuXP1Zge2Cgfo4NGp+OKJ2meraKK2S4x0kEVQHjc7AE0NrUMlfO7jwnpA1D3pccozkyD5rxKVheQcpBTnx5wvOjdfDYUIrIRIxnPUx4mLJmWwriBDJCWUjXSjEs5HRHujgioyhRDJxnkFtMKLC94PZbef/K8rCTLEgrqiyXvDaQVZRSqKmGFPD3zRI90EU3tj4bSRQL2UPJSswaA9//oxjvODsxz43f/v/KeTXMSOlryGYHxWwwvdVayTLBObQtUevrmLs+iLEF+W23Sa7knByv1kJMuP44jc8+wku/4vKB9nrsNgbQaOEDKcTvVuj+HMQLFqJaDibaPocGKbrRUCaCWA2nZWuJAOu9mMFGRlZ9gfkdXaDDZryV8rZrv5KfzEtMZIh9jtcB7FRKiEE6RrJrh6s8hayl0XAcPp5yz2ro2PJiND/suoL+mVVu+5KXsGnHhu/t8H0UuFCcG3RzPvvhkwCkzZg7Xnd9fYxf/UXHJdcvS4pOH9vry/r22muFwFMUqKrTWjHstPKexA27ZfIzp+u52HvPWKIYb3xhQm+tWImJcFbQPbNJalsEoSKM1tipaRIYStMphbn/fqJ1IRdOdSf52KkJmp/4JEff+U400Pu2f0L5nOfU68pyaZXxxjwASb/Lgc4S6mwbPz3N2iOnmXrhrQAUZ1YwSVxjFOONGN2O8WOfg2LrXnxBxBfmU78Xz7jodDo88MAD9c8PP/wwd999NzMzMxw5coTv/u7v5u1vfzvXX38911xzDT/2Yz/GgQMHeNOb3nTlOx+b5y9e8l7uOX2cxiC/KCb05zo2Onml4PA5qciunlur/12O7L6xuUw83wY8zjn8LqCj91ZYcZUMSRXWopxl870nGLvzIB96z3vxCrR1TP7hOxjPOuRf/dXkjeFiw/f7OOdYO7dMfvgwZqyFjmNh3CoCi8MTXQRg0uv1KVbWMc6iDywKkB1FcOggPs8lefMe026hkwLVEzBwsNZBPfo48dwsFIUApoOcQRyjvKcx0QId2mllAIYGc4FRWhkBKm+BSJLXIPditgFkhYXIyLbimclaakN5L2wRrVHGYDc76DjCuyDtAuA8dmkF02oKkzmYyijnUJU0DFDuYhzmvSeprp33YsCqhIFMMBp1G5uofh/X65OvrtFYnEd5cEVO+6d/hvJFL6Q4fBgmAvNEKbwt6f/l+5gmp7z+BnyzCSeWYWwMa4ywpAjnmG0DOpQSNrX3eOfJswx7003yt42N2rhVdbv42dkhE6s6/1L0GlEKpw0ejbHBvNN5nNKAFYa1C8z4QjoGSFJotsRQN9xjynvaxw/zgQ98AICjR49u6c4ZHcvhv2H98ScARakiNnQKOubXb38fP/upl7F69yr/9ObPwou+g7/4z/8VMyNFhMkvuo7PqlXixTcIGyhN8e1WzSb22qDabRrXtuGEbB+8LGRDWB3RMwJYFB58mqCcq8eERoox07jNjuj2O0dcFHXHRnluhcZ//W+goF/A+KMPY5xlkDRp3PEc8MJAKn7xV0i6mzgTob//B3e8v1ylDa9ULU1UXWOngjyTCwa51kJeyPVsNMKtpGpT3Oo+8dUAIyxsX5b4bhc1ORmKavIp7b0sqkyCGV/kFZ0P8ru8ElDsBudMJlLMqt4a/mLccg+/FLqnwOakjTG09zQ0pFoTuwxNhKZE6d2Niy81HjtyB3/4RQuA4vq5NjuJuOSZdNSYsIZMt7fWIGvHF86mfHZTChwf0zO85nv+BQrIFhbIvu9fyueAno7rf0eocLt4zrbnuG5DFrr7B2uXfC5RqikzGfEovnRg0dUSSFvZrD4RHwQhbQ+NQsNfL3k/dWwZRo/vrwwx+PUTsO+my9703MFJ5g5efNECIGlG5H0B/HcCrG3ptpk+j/4wzI8U8DVHpuuf949dPfDbqAIdVKlHFT76PY/Ip1ygg+4pDDVxEMUZxKj0QsWfYUfb1UzRxpN1NvNxQkWeoZSMqxn3KU+/tv3nIib0GVY4AoD2+ZN8+sJx6IZZNpal6yS+WgWSS4qd2eujMT7TIgvP7cz+YTG00YoJ+jp4DMZGVOWy/3XsJdy1eAveQ9Ru87N/9naaNsMBxcknSFO5f1xZSjchooMd0kvGR+ZXE/x0FJXAXgXqK/wHPwR3vkQ+GIr1fnwc1tcFrA3+L3V35bklkkMpc19785ZzPPUrZ7h5vQO9HspLbqG8GLvGtmDuLcPP63d/qv73fG+V2Mlcbp8QHedaikQrrIrxjRbWJERoGB9HTU/LceW5yKFZi8sLinwImF5JKAX69AlUFrqZzp25Ktu9GmEeP0Wr6KOAvL/+pJ+PmjFUnVQKVFnK2kwprPdDjyiQNVKygwxiiDg2nNywvOVdm3zJtQ2eFa9xx/5xWX9oLUUarVEmwjXbQgApRXby0TXLO959ki9bLFAL8yJnWFpcEqMRE/aDr3kJ4wvXkL33EzT2z8vaZDAIHZkwCKbwZbfD2C//sOTx03Pwul8fHmSvV0tOPvBT/xqssN31Qw/jkgS1b5+QiJJEBqTymtKaPBqu1x5+9AHS40cD89/w2pvn+O7Xv+CSrtXnS9z7B6dZzyVvvMVEfPlNnvutw5kIHxtIIwHbq/y908FuRug1BTi+6Q1HONm6gcFr30jvw/+X1h//JtH776J87nPrl+yMsvzaW2R8H/hHX8/yl30pft8+cJ7JxiL6vvsAxcTqEvbgQVDQwPPvji2SHp/E3z7B71wFHude7MX22APc9+IZER/+8Id59atfXf9caa+/5S1v4Td/8zf5/u//frrdLt/2bd/G2toad955J+9617to7KRtfKlx/DUcSif5zJ/eI0yPSHP6E5/GaMXkNUdIRtuWniFhH7iPX/+zn8ADJ6cPwI+/7mndf3+zD40aJRYjQ63QqbASVNDI3lG7HAAltNper5YwwXt45BGKfkb3g6fR1zelzVUrbH+A/fZvoXPzs2otxtqhfjDg0ZUOn3r4FAduWAjscAeNtG5rVc6jzZMvQLsbXbxSlCYWmKWSSTh7LujNp8JwDxrFVZTOBYZN+A8l8ilFId+LgoxKOdJKGFZVZmoCV2EHgZyGB68RBgXgreVP7j5JVlrGEkPLWyoQRI2amw76+FYb5WS5Zfo90O3AxKAG4k3QcK+AZhXOVWVZbTxZbO5s8GSthemZGrT2U1OBPd6vwWvlHaRNKXwM8poF4tF8eO42+nef5XjPM/38W0ArVBIT21KGJBjFohR5nErhZMS4q1qWKuR8Kga0X13D9nIBzEoH3R613EvQV/Qg18Q52NgUYDfIoujJSdAK3Srlvsxz+Zuz4ZIG5nVeyOI0y1FjreG5eagupFOyCK3vj3LnFtKysCPyDHDm/sdRkbA2NUrkcvbdzA8875OyoH7+t0OjgfGOlpYCQxEeJaVAbWyKnn517yolAHK/T3FuBeOdNBp4RVxpcQL33XwnH09mAM/hziqL55Zgn2g1eycFDru2ThQWp6ooYHysZpUkBxdpfVY6Cvqt6fox0CMguVcaStFrNN6LkdkO4UqRDUIpeOQRks98hvLW23AL83I+SsBQ5zTkOcVmF5Xl6MFANKR7XZiZke/bUDQYGwcrprlkGarXE/3aLMM7h9WaqNHAJwk+XQJbgLMYrTlYaUe3IzG03RbNJA4t2eF5vpiOo/kbYf6HAWifOIt930fIHRTeyZgR44jx5dVj25QRnBkTHdGF5s7H2GwnfMn+NmczmRXm2+eXGZQ24BskeoDC45IG/SglciWdAuJgWKu0otQxLaNYSDXvvfFOps4+hlKKY2sn6XdkUbqSXjor+9rbDtBZGwCe+cNTl/z98elmbYyYNoeL4+a4PMsaiPHY0RT5ChjDWwFXhYra4ML8Ovb0G6ipkffyTliw1oq4GdWSKFtj+N7z9f/KXHI1MV7nFK4G+ndaqoT37NMNLGsdpIZKInYHecWH0Qs4tUun36WGUtDJ27BlXKpta17U/oORT7/8quzzmRy6NQMrcj9e6RiPTbU5cK3IbYzOCU9XGG3qnGG3czl28yLHbj5/vjh0/T6WT27SXReA+ehkwusWpQj3oeVNTprhPP7O61/J887eRzMfMFEzikPO7j3KOwGfFSgCezlEpRjlERmX0Rynd/Q6JitiiB+ZGeIEbInHo9aDXF+a4hYXYPn8HDNShsEn7yW5669x2tDUMeOlgHSHNrYC1pHWNLXDOs/Z1jRpN5ij3yhMZeMhKQYQx+hmE8bHMK4kdgX50jJ+3xxqdhbGxnD5KjrPic6dIx7p2r2SmJ4f58wLXop/8OOSl07PX5XtXo0Y3HoH8cfuQntPN3nyNW6ZtEl0N0y7SnKTOJKpyCkhBRlVG9wm6YWfoe988TR/cc9ZPnrCspIOeN7yo6ibboSJCZH/S5IgYeNlzWck9/QKstJKl27FLsfJM6MVxBHTYwoVJfRXN0jnZ6UYoHQwQfdkWvKq1cceovfWbwFAnzy59QBHupA7L7qd+JF7Kb7t22ByMhB4wrqkklBVul5Hjb5Vo6gBmx1Ze/V6JBc2dPm8juyDd6FuvhFQkJ1j8qXXwl+tgHF4Yyo4oV67oA28+MvJUpm/0saHGC+WGbg5yud/McWRl6HPPbKFtDdKeEm+8ivwrbb8vd/HT83hFuS+cQcPyDV3GmVz5r5JCnkbGxvsxV48FbEHuO/FMyJe9apXXZCprZTibW97G29729uemgM4+AK8E7ZEfOgAj2yI/mH7PSe59Y2veWr2eQWRfPYzjOeiOZmsPP607z8fiPRFtcJ2/RLTjsknp0m0MA28tbT2z/Kx//57KAXP+dqvHW6gAvuqZD6wpa0y6DSlfKJPd32z/psHomTbdFVJyszOUnzdG7nu2DHyr/xK3OwMzM3BrCyeKEvY7BArz6Pf+Z1o61j8yZ8gXjx/4ZJtbFIvYNO0TrjYv4hfXpHuhygCZ9G9HqRtGD/A5GQDs7hP5CoaKSrLcb0LsMy0rjWyy0GBaiRIU6waAuAVYG8t3jq+63fvrr/+O69tgQk6lUUJzVB4ao9JctlsEB/aL4WCENYrjHV4a9FnzuDHxvBlCVFISMpSmEcBRPW7dHp4D5w7C/Pz0pFQFaT6/S2JcdVerEf0HBWer/26aT6VvZlHPv0+ZiqWPNAedIjXz6HyXM6/2SQZG4PNDi4YxFbJvqpA5W53yHb31FI8vizFyBHkWERoWMxXYZioV4auCGCvpqdgYgI3yNDeB/zcDeWFggGnjiIB9CsTMOcwsan3qZdXtoxZp9h5bjtx39IWwKjnLGZhHwCNirl4+9fDo++Vfzen5FqmKfZ4MLmqrlMci7lvFWGMnNJoJ4uCeiGvYCrVFJWsx5Fb+b34GAD/4uN/xOSP/AjZ619H79i1cN01svmw+Nahk4DNTRlboDy7TGYSWVRHCWPZBsoWNEpYr68bov2qNE4p9I4C4WDKUVa7Jv2z/4EqCooXvQg3MSnsuXYbzi2BcyRlTu5dvcZR3uND14YvS5TSInlDXN8raoThTLVQyjJ8P6PMheUdetFHDkyjdijafdn1Y7zf6NqwzYwyvS4imokUgxwju60Oreju9rVLjiVbkofTOTfYeV6KYsPfPzpgIxfW8tT4DgtxpUgCKI1SrIzPcXpsH+B5ZPY4z1Mq/E3zpYdm+O4jx0hVlx/Rz+Gx+dtQyvMf3vUzJEFSRW+Xy7qImD0wweyBHeRuLjK8G5qFjpqG+qTNmXAua+Oz3MAAT4TCDp+zy4nt3VUTB8GKvA9Thy5/u1chdroTnPPgPO1Jea9UQJ7ECAAXGxpqk4GfAJQUWq9SRKoIxtOelC69YGHbbBv64bFI6F4ax/0qMM2VloKYMNx3B3lvf9Wlmyw+6b6Voh336BRy7xvtRm7LkYp9dBWIKH8HQu+7IXRtgW/tu6JtmUhz9NkLV+OwLiuUCc8d4MpLv1FH10/TkzH/4KiQKqy3vOtUh6q/8ndvei1ZlHDtymO84MEHUeNBimFdgCavNC6SQo4HVovhPZ7EMUZB0ygaWovBeQi9uSnyc9VLLEjV0O1AmgZTSWQezTKilRXK6Pxi6/ExxbUbJyT7cQWPzCySbJZo71lNx7h15LPGaCmQavjszFGRhgOun5H3lk0b5Doizgt8aXFPnGKszFF4yrIQMsFgIFJyXvxc+kT0r5L0S7OdcujNX81Dt7wMvKc1+cx5LtXYFB6NU37nl8C22L9/gk4RD7XLZ6YDAULDRpekkaISXxOiovjCY/hdLx6ntfRRPrAqhrj87u8Rv/RFlK9+lZAzpqbkOM+cEePM4KnVdJZWrIeSh85JPlexXpwnnj8GQNZz2NV1omnpZNTOkpQFauMMcBN3n1hncboNCtzccP7w3kOrPUzGjh1Dz8/X8ptEkXS41kQLNfysUqiRd6R1HlNN0t5j/w500D9lkfVr7zWdF3D05ejTd+H3L8L4BG5ysiaG4RxKKY4vP45blbEdf8kaJ/KDgAOvKFNN06u6wxtAjUhVDvp9TK+Hm55BrWwyPuXYtG2536zFXXedXM+RdTa62fgAAQAASURBVPJe7MVTFXuA+17sRYiyWvhXL0Tn6G5endbCqx1Ol6z/Rmh/24U9+1TGoNuFybhOYkAA2vHuGr4V470jGmvD1CTZlCQ71toajPIB8MrOLJG6oZGmmpyg0SxwD1rOPLEibXpRhE5iypm5rbIw1QJjc5P8la/Az+3DNxvkGz3cE/fQuOVZtYGP3jcHC/OcuuYolCX3v/fjfGj9UbxXvPiGWV79SjEG6vf7aCca1/R6ktRpDb0eupGG9kGw3T4fuXeNF/zLZ8PEc1CP/8GQeS8HJwl85Vx/oWISHhMMS5VSqLhqv82H2zQRd5y5l+nBBk4plH5VzaawKyuYIPHi+wORoRkMsEvLaKMJPleYRiL6297hx8JCpyyHGvze442pc+9oF8Phjd5ATDlDMcIvLQdGygijxXsBY4uCotfFTLTBI2BtCKsiHKCDBmPXR/SSNnNFXoPbttNBFWWtwylfdLj1DbQN9/1ox4NSfOJ9DzHINqHC40KRxFefNcHcq93eYv6ky2BY2+1Jwh2J0ZGrtBpBAPeylPbWLMdPiWmT6/YwSSzfryRKRpDTd3/6DM86fuS8sRxlvnvvyU6dIym6oDzd1ZG55+hWtmJROIoz5yCOZTGBdJlQZLKw7fel5dcYtAfaLeJ2Cx58WK6LB9XvoYJkQxpsERVw3cojOCD93/8HdfvtdK87LkbArbYYyFaGRnd/kqmf+zkcikdnjjIdANQccHGKMhF2bAL1W+8g0iI9NR4ZoqwkcY7ZiV3kGMbatZRSeeQwP/Wib8KsWr75xFnGb2xDt4dbWxf5DyA3MaXvE4fFtnWgg9yNcqL/qZdXYGMDPzODiiJsq4VeX6Nqj3dBtx882nopZilDORgeo9vcjc2qKdBkOhp291xKaE2Cl/FXgKrkMoD2zj4KlxNvPjzPi6blel8/tTsz94YXXQtFYB62d5C00ZpYCbscD49PLPI9r/5urIcJSn5lalLmomYTq5YAyHwbrZZrmYNPLdzAyx/5EAAN9fQvQPNs+GwVIwZmcaz4vi/6Hiwwkyh+IXQaACKLcJmxVZ3Lw9GXwb4Dl729Kw61y79HwjMEjd//zk9v+8swBr4VNmMhv4rssNkb8MH8LJ2a4/D1h6SjZ2OVh+/bwBOR0+Zyic2Xi72rZAxNCViMeprzQwV5aVBYFBbjMooga6NwcFswm4+aT+9xfY5CR1s5G3+nw/vhuVxGM83o6U/NTzHorALSZdYwCuc9YwrOWfij617JFz/8AV7xzt8neucfUQLuK94Et90c8srqfxSH2yOSMlpRekXfOvpV12QVRS7/eWBlGQ4dqj2PaDTk380mZJLXlu0x1A6voV7W5f7ZY1y//DheQdFoB79pT+K3Fme7RUnuPNbDr93+VTgg0fDXN0jB2CuFKy0qSVDNBur6a/lXL/xGXnzqHp7rVS2bA2CVxkQRjUZEdoUm2aMxtTDBdc81cvzNq+lxcWUxN6ZRTrpJE7tzN+toRHGCfeIkenpimEODdP1udFCRofX2txF15B2w7+f/9YU3OHM93/rlim9FOke7Uy/m3Dv/lqWbn0V59Jjk2nkuy6cgj0hZMh2XfLt7lBP3r0KjiTl1Cu67D//Vfy8cV1zrxxtlUVFgoQcpSO0tpZVnY7EVGPqhQFR1mw4G0tlahzFk3zo0u/WAajUlFw7kMZ9Tr8mqPOfD//MeevfeT+MFN8u3nMe7q9e1+Hct+i99CRwQac2iK+tON3dAcvkkluJc6WBC1qcez+xL1tH9czLOznJd+UG6dpZi6mWoaIx116TuRPdeiFAhfKOBcwrVH+DsNDePv58Pn7hRJIGKEr+yBkiX/F7sxVMde4D7XuxFiHhhH9HitLy0gzRG3H9mVqNVluN7PWFGrqw+7fvv9UtaEKr5YPMcypLyjjsgidFKofN8iyHqKOBetf8pr3Baiz530L/TjZRBvIrvJxBLcuLyguLRx4gmxob6ztUKa2KC4qu/Wv6d5/izKzyUNZj87AnmxxO0LbHWkxw5UAPw7zmxzG+ekcX8Rza6NeBePvBZoptvqLdVsSpkoZANW92M4ZbZRcyEJJ13nS552bwbMhkHAzmnykRqJxCu3R663dcrl8C40Vr04uNY2mEjzU984NeJA4NwnVdSGbpGY+1alkdHUS2xEunAmg0yHExM1Mem+n3RSLcOP9ES6ZDBYAsKEfd3ZtcaQHU6wjopLWpudusHTp2CtCG6illOOSilNVCFcYhakIGJEjH3UgplDAMU3aTJvtLKOFpL3OlIG2izMWx9xkt3QVni22MyhkDiSpwr2FjpsbHRZXzpJMZZTDMdsq3aYhJWa84HnXaVZzgtOvG10kppcaUVtk3V6ZBlci8YI6B2BfY7F76vQXms1sJqqf6ud2b7dH1ny8+qVghQ4Yedw3qZr6p9h8s8NBgdG6svpVtZRff65KvrxB/5OBPv/j9ySK9/PfroQQBS1SAKyNW5sX0c2jiN9hZVlhgvXRG+KDC4WrKm32gxBWg8sXOU4Rwj79ADuXdMB6Y+9mH5fHOcuNVERaI326g6ELZFaV19Tnkv50P7pdXz69VDgkSoYKSllZictdsUDz2OWl2Rc56akoRdKbxyqCQREH92RgoiSYJOElS3gw8sKb3ZAaVEPMZbmLsRpo6hqs4CgN20wo08q9X5X2r5U+SEVD0FiA9A+KF/9QDMmTRhJly7sfQCzPnpCzNzlVIkqqifR6Mg1Uq8PFSE7/dRaYpyDqMUmpyYfu3BICQ0TxHGy8VPPwhx653X7Ph77yH3AuB0SoVj5Lm9EkmZLWmE2g3j/pzEbpIsux2j2jaXNXSfgRtHjGWv3rX0zSkwq4DCtMeYDZrVm2qApxeO8eknG+jIYFUq7wjz9DJWtVIksSXPTWDYB3IA4DEwf/OFN/B5FlmvrJ+trPf03wtXM7TRdQfa5cgkzR+ZYmNVvGpaE42aLa+p+rSUpKeho+eDB27h8Yfey3x/jUIZrHVBZg5io2iWgoaPrwzZn7HtYhQ0tCI1gd0c4qOfWWb6j/8Sj+eW7/mGoe+Q0gLOVjlXlgtpoiiIzfmFIRs1sWjpbvGKmcFGxSEORfFhLDYTCpfjnCMLTW5No/FTMr/rJB6aotoSdeIkdx24lbsO3Mq/t/ewLzLDjrkz58A6ssKRX4wPy0VGnJgr6sZ6qkKZFFN1mQ2eXEKnNd5ko7MOk5JbkRdCDCqFXZw/PGCsNS05M+A/pVk6dw+uv8tzGTdg/hb5d5nRPtpg48DUkDleSVyC5INBKtT2clb+6q/QX/EV0OvRKtdYvuUW4liIICpJaKRyX0VxHNYeGt9IURPj8iy0J6AArTyuGfJQ7/FZhmo06Pcz6aA8eGAbkYr6s1vWoM4N5ZWUEi8E7zn909/H/luvoQiEKF3muOKpKdI+8qkzrJ7tgPdcc9siU/uujoH6VY2KwAboaSmKydpIgdKoQU+6k8ekk0ApjV5/CKqu1+YsDd2joXtwXQIvuY7uPQ1YfYyq03j0emUPP4w6IMQG1SPsWzo6nA5eZ96PSNftxV48dbEHuO/FXoR4/LOnuc5lJPsX69Vm5Wb+TItz47PMhZeLuwLm3eWGdaWwARDJimyzSxSV2DPnUFOTkMQ4r4isDYxaz8rv/i6L3/iNgFSuK0TwD//mYf46m+atcytcf5MAgGu6h1s9DSFp0N7hdDIEFGGYhLkA0FXguNbYtQE/dGqSHM1b20u84PhkrS2ItTQfewhSSfZOjejUPnRihcM3BDPId/4pvPTFsLAg26915TSm1WTmhmES/Y6TY7yMT8GN18uiYm2dMkmIsmwI1m6HMMI2jdHy2VZrS9InA+Wh3yfdXGHwkz9OXyn08jI+SQSQB7w2Q0C/YnIoJUYxK6siNVK16IEA2FqL7A9DgYAKZ6625fbvrC1c5Bn+2DH5odcLxqJOwMypKdi/X+RGFHKMpYUf+BESVzLQCfzZn8AHz2B1LHInCBNpan2Jic1zeBuY4EqRR4mwUsLn6oPUIuDhjZax8p7cxDijKL3odifHj8qQLC2jlMKh0FUBqCrwVOOmtRiiVmPgLEQGbTS205XzBDmvRkPkdvoD1GYH8JiyhOmp4f3oxai32v74Llq/buT3npAEhvOML7Dmbqea7OHH0GkqprkV26gsh0We6rqEBy3FoooBqtKQzPrc2L5b/qafwyAAF5/ady3POnMvprS4fh+npevBaIXPXX3NG5vr9XGfnD7A2+/8VvCKb37or1n4zF/IxvIBtj2JKnLSUMhUWb++vjvG6jqsiCTP6r2PA8fkdEqRBaqSczzQ61H2BwweP8nc//xjAPrf8k34I6MyHV6uV1kK+9w5vPfYwmKq66rkeKwxYGK49R/Krz/8nnorOt25aKIQCZtmKeN6svPkbLEt3x+RXAICY1euWXkZ0gK7h4UAIOfl5bfMq/Ds9ANwYxRkTsx2nYLye36I9Itfjlcaf92rAPAqYimz5NXcojRjYbyi7jNHMzM2pn4vGTwK8ebQVwjsxo0GFWMUYH0tZ/7KFDCuKPwWyv3O95jZpcC0XTUmc83hNnYpLF5OOGuDtIbfcrxJO6nNbD3R7vPIUxQq+BMoPCZ6ehfqSiu8fyaVaz630RyPiVK5BpOzzzyvpUuJ8ZkWd7z2BsBfFuC+/9pZKlv2ficjaUoe4EOujod9iabvYaOUfEl5wn8O+5fvIfnrvyaLUvpW0UtFJuqTN7yALwnbjVuzrBWP4oGB8/RGSBm/P3Mb515wGwA/dvcj3PySwGrvdSUvaQnBQ4U8KYoMqnN+XnTT/gVag/WQl3pSW/DP3vBDOBTtSDFSAudHbj9ImVmcc3z9Bx8FIHcWIiksd62izAtSrfDGkKVNYqAAXBa8fHo9IaGEskSKJbXPzM7mqxnx/Az16nbE5HO3SJIG+tQpkfUzokfuW6268E4Ok1/2XWDDNR1bwA1Euz8+Ok56zSSTrzm688ZNAu39zL/JcfpxRamQdcvEBKwGecZwD3utcZH0M+pmjJmY5saj+3no5BMi6VhakpAPm0aMGmtvNU2dmIBD+3mi28UNhFhHIDd96G/+BpIEn+XYvCQ6eRImp2BifOt7pijJzq2SHlyQtYi8pras8Ab9jNkfeivF1NSQdBYnkF9afnixsbnSo78pOVW/kz0jAffoxBnKwEBvVZ5HZx6TtaaeqEQZa1Kd9x7ai4CHqWvg7CfP2+bB6/bhP3CCpTMn5BcjLW+DhYUgFeSBBrgSv7wKM1P4mRmYnZV9djrnbXcv9uJqxx7gvhd7EcIqhP3hHBgB9Lo8MwH3lQLmKi20S5UwuAphcWLGSIQuS5Y/cS/J/nkxT7UWXyrKtQ2iqYlgfuMo82ES65XHBQD7hqZlaaxPXliKzS7EEXYqQuuo5hc6FJnWtPO8NusEarZ5pVeNUmhbsqg1937JA3TvH+M3Hy9JqiQwjkFrVifnIBTNi2IIpiQzE/hTp1Ae7p86zsN/cR9f9JI+ShvMvllIKxYD7Lt+KBESRaB/+T/Rcjn5y19O+bKXSlvjqIGlDmDs2pqwpEuRkcFooo0NiIycVrIt+dUaNT2FOyL7s4cOoU6chH1zwvLu9yGV87LdHlGWi3TM6lrQhQ6AY6eLigx4hw56hWpVnOClGKFFjiTInKjTp3e89vnqGjz0ECwuSkdBXoiJplai476xKRJBjSZKa6JmgsoyChSddhMfN8JpKfTkRK2JuByNUbYm2V+EBWIcE42P4TY2hmaVSuGVwk9IAcWXhUjiKDGpVc7iQusm6xuARxU5xJOygCuL4fUoilCkEdki324L0z+K8WfP1vuqzMSkpTUw4ssS7n8Afu03SW1B9vVvhqPD+8FHMcqYeuG8f2cyt7B5KiIYDL1hvWeidaFFkBQPjEGul3PgvGjPz4kMidvYRJeFMKaTGDc9LS3ZlTTPagde/Qvy74f+ilTL4vnm5c/SKgdyPGWBD8aEVhvRKa+ev8AkccBGY5z1WE7yvsXr+aIAuAvAbVFlDs7iZvdBYB9ZtfP5ZQ8+ivnj38MrOLH/ZrjjGKkGtMbFEdpoXPWMxAmRMbSMqtdDvjLFJYDhRYna2IClJdi3D7IclQ1k3IL2ox6fkE6S0uK3IIoXMf+riEYzZdCTZ/3A2CWyfLWhCMUwBUF/RE4m11ebGSfbLeyVpX5eN2jonhRilDDWNdA2EClP813/G6/A//M34IgpvGKz8BW5kgxNT8eAokifOfIXSeRIjFyCsVhhyHFEaBxXgnPqbYBGOnG1r+ulxWjK4NzO+UNzYljc1hEEMuR55uONKGNQyme3s9+v7Bh9aGhRuBEpMtFodWhydK1M/TSC0FoFNqNCP92AuxKgX4V5SRvqKUo9Q3PVpzJmFiZ54RsmP9eHcVVCa83VahBpjqU8/3XSqflr99xfF9Mf6blQLBIJFa08XoHzChw0+x1S1eWeQ7fzb573D1HANx4fzgNRsvUASzt87m5fSPnrJwTwy/MwWThH2c/RP/XTmNe8SnLYF78QAB9FKLVTIVPz8MwR5nrSubvWnmIQjLXTZOtzHkWaMrNorfn7h6cBz0QyzLtaqaxP0AYVxzSmxjHao5ynyEdywYobEfIke2b9Ekb772aopBUmED9CCto92q2Uzjv+kH3ZBuX8Prrf+m3otpCcHB4TG/TMwV2/b9qxyLvseDAKXvJdmI/8KvqhjkiLaOkixdmwJhK2jTdGZDe9XEeFp8hy2j/1U8P7+qu/CpBuyyEBBul2CP+deeA+Wov75f4wRsg0lUym1hTaYDHE1g7X2BWhRmuwpSQKQQNfcjchwXnnuOeeB4frBxB5nLU13KhH0dWMlbPok2cBT3ndM6+jAqQbVsZSkf7/2XvvMNmWs7z3V1UrdJy8Z2bndHLSOUoncBSQECIjQIDJGWNyMMGEawPG4TFwMZh7McEGDCZYmItJkpAEAoEkhLJ0cto5Te6ZDmutqrp/fNWre2bPzvsESf0+z+w9oXvlXuurt97vfYMwKL3nbvLlVRl/RjE+7w3Ec8ZIJwRAsv0gKk1TpucnWTzxjPxi2CO/OQESHsXUUgy7DXbvbskfCwp3WfYLx+pphE9ejAj3EUYI2D8Ty806kWAYlSR0l1+YieK7GqGl2Z+fx/acIHeiGPZgUZhaQrsrx8qttjCVJDhjqDJEcynL6OtODcFGBrh9IuZbX7rBn76/SrRrHp3EsAvcRkfsHQA8pEUmKoU4Pt+ipX8Q8gKvNFo7cJbm/qfZd2YPkbUyHC2KEPQ4OGh7JyL+8K/eI1YVExP0sgyPYjJVvHViD680EdpEmPFQxDiHSxJ23zDw4N2RrvMVX/DvcMB3V0/wkrhKspXH0FoU+v2wn9BaqIwh1xFRsykK9KVlOXZRJF+VCq5fEIRj1nWKivOh6ByQqNqDsw7tPUUUEQUZpd5oy0E0ouS2i0uYJMY7i2qGAWu7XSo9cI4s3r5dXkcGysBOL+2o3uGnZ+V31SqsrgrpToSKY+y//R0AdkUL5XIK3YTFRVGcOEfXg9cR2lqURwrUtTX8+gZ6ZnpwjnuZhLuCkPvheBp/VoJLJ3skYxoaY+Xr6fWEQD9xCrVnt1TH6xuiuuofv9C90C/k8V4COIP62XswtpBzoRRq5zwGKSLN77+J/EV3oSsVfJoQzQ2FlwLvO9njM7c5li4v0MFvUgj3Qb9BJbmwz3a8vEgldTjdGHQlaFWS7WphAd0PUF1ahihCRWJ4Ww5Z88G9bbHo0At16gfmbuLeY6IkiTtd2gwU+xbxOQU23Xh0ZEoy9cz4jnIdrjEu2xen+CTB3HE3/pmnAajt2r6Dorm2RCVMkO1uBQ9wB9HkOKoeQqt0sP3Keqhuj0qnLYMrwDiH7X/GNtrSx1Gvw8QEbmUV7RzOQ+u//DrTK+fw9SrFv/tpMfpIk7LlHoB7vwve+6ELngfZd818JRKyUUGzfoVllVJsFOJxL/s6RC5eR/XumDrHmhcNZKKvbdB3qmPpukFHSNUorJcuCIMn9hY8JEYGV56YOyZqfGRVLA/SNKbmQn5A99lRfF0N4mKdng2TSH3XHK+x6EHL+NVAGzQ5LpTc6djzq8a1Q0G1rtieqB3eWxOZ8nV+C0Gf6zF8n+yduoCC8SqwvtJFspA9G6uDe5UxOqhRValKfS5hjObez7nlOV9vH1oH+xhA+6EMkFFb/AjbwJkGClFwNlPDqa58Vq2OwFN2Gp1NEnomJjeGvNrkcDPFe7hzbEDGJvGWZ1s8mCz99e/6DACWz67zu7/01OA1ChpFF/WXf4nVhs5NN4jFX1EQxeercCebKe+uTfMiIzVvllT51ZfLfSWtbiGGh56Pb9gzcd6yvDFiURGJqMPV62ha0gE5N4ObGBcbRu9F/BDqpMh88n+WTBrT23dYhgXTlyZoa8bRGpuhudzD58GlPNjhaRSN+/cwc981Wlo1d6Hdw2ilccHqR509g+9PWOc5SmuZrOnvB7D7Va/gRKWBLgpyM7hGKqaCDvkBuq9yDzlO2cQkVWdxnS46TWQ8W77TYxQDcr3/f8gkUEaLJWfaH5dpsdjpW+EAem1RComha9R4R3H6WQro/NX/SPOkdHnk6Q/C7f/s2VnPtWBoYicKdUQSusXQwhWYbhfX7eG1QmU53P11g/cff++2i42qVfqWfyoyLJ5c4/TTS7DRRnfbqNzSWE7DGHxs0LEevN8r7ZHCfYRnHyPCfYQRAnbfew+ry2sl6UaeY68ivfrtD5/h6FIbpeCL79nN2LMQlNN49MNw8NMhWLM454L373MD74rSO9t7z8riOmpKof0gQNU4UQOT52Atf3+8w1399ysJllGAGZuHl30ej73z93l5p4uOpZgy9Uo5062qVVhYwSstKoX1dVSrhd+7VxYYVM79WYjCRVCZgM4GSmvyuTmxEwlE/ae9dA+fO9EABWfWC3bW5fftuUkqYzKIyM6u8sXjfYLSD8j+PGf18aPw6sHxUEpRCUq7W1ZOkeYpPqkNiFw5UJsPYrVaqqijWk2O0/qGhIG2WjA5WVrEFOsdiUYLy0gmxySsyEZolHi4OweFFdU4QGsde/QYZnpKSGMjqmunNCYKYbL44KlZlH7mYYeItirtA3qdLnZlFRPIap+I7QuLi9Bs4no9UZt3RUVcbHTpj6vmk8eBl8ixbk5h9SmhDpSivrSA6a5Dnsv2xjG2OUbRzdG9TFQtgLKFBJv2/R03NgYWMdUUHbvNfix+4OunjJIgXhX+16b09VedDiSJXF9DPuID+ZNMZpTX/VqLqgacoqPCPSMyQtJDGaAEsH5mcdtj6WK1mSZRavC5qE5s+x6AqNfG3nL/YP+NEauU9Q1Uo46fmZHfF1b2P8vwWcbC/CGmP+drAUfzvrvL5S1uDF2b3R5dFRHh6HTzcj+0EpsHQsBQ319TA9PKkZb+sxFMia+/HhvDnluUSaGi4Maf/5kLhvH2saIqzIbi+XRtkr6orffIU6hd0zDWRMUx3jqIY5wx2EoVl1RBQeY1JhPC3jsrOQPFGv7MGfTOeYgjtFZ4K/cg3+2iw2cRo3FXqNJ1zrP+xd+KarXQ3jLz4luv6P1RYviJO3bSyh3gONAYhKZeQHx8VfBpo+zqqcYXnsy5HHTt5mPkw3WugEJpMiXWTU4PzrVBJjo8ivGN5VKPG231KLkYnuVmLp3UiFQb56GqPc7U6HOa1zr5cXvz3VjrQGmS9LbrsLVXj+FdSWopG2ubr4c9t+xgds9AOSy1RV9VvbnOiBJNkdnS7el6Ia1EdMJ2xUP2NkorCkKXTLltn0JQCiiEpPAWnsfJhxFe+HhqtVfeNutaDTzdg7XeepSSq4hCGVKbE7uCHTH8mzt2Aop6ZTDZpRRUNXSdEJ037Z09b33NySrT6eBG4L3H9O/xrhAxBWCNEfHGVuSO1aRBx8QoFL3G5OBvW+4vqv/PVv1N/x5lYnzRC5PzGWppGaMTvHdsHD/DzJ03Sh3tggVgluF7GXn+yd8t4lRC61/8ewDGhoQwF0RtPGQWeXyRlaeiP+2ur0cWi0lwXfHkJxOhjMuDSEopsIXwpEOT/WgNq6fwX/eD/M3pVawxhMqYk415Zt/yNpJbb8ZaxyMfOcrtr7kbgPWT50gP76Ie7GK0tcHvXQW7TumU1c3GgBPoi5LyHN/L5GdjoNvDKRE8gQLnydoboMM4wlroC9KuZ1E3BOe8jB2BIt+uc+T5h9MqCISGhsV47M55sRCqVODESaY/kISuAQOfdenlliIgL7ac5979DjbOtXBzDVSeo7o9CRKvTDD21OOst2ZwtQoojW63qb5ArYNH+OTCiHAfYYSAvXvm+Nib3sr+1z8QVNk53c7l34i9EwLn+//gQ6x15YFXixRf9vID131bs6kZkokJANxGG2vtczvwDKrf0psu76KLBjaQVQZpGRWvFQ1ZRjGkqlNKScAkHhNJobZjp0UXeQgQHCZMPX5xibReQY0Jsfzen/9dHnjdi7B9wt17WZeRQUOlZ+HF3wiJgX/8VSlG+rPrUcRY4ogjWcdEZaD6zXNL7ykJYCkKz4Edx2mpQxgNdDqYI0dYf/o4b8pezGcPHY437GvzyNI67VO76UweoJdUiEy8+ZwMk+9QkqTkOZw5A2PjYpuhDdlGh0raEe9AYwatvH0FRd+2pShwGx1MJRWyuFpBra7ix8eJ5mZxx0+E86RRzcB6r2/AuJApPi/EHqXXRRkjBU8gRJOdM3zwgx/Ee8/MzAz7gqVN0c0wE4GMKQqohVa/lZUykJLV1dJvP64NKeVve2P5rVYK+08fIhprYFzB/MIJlLXkzuKUDnY5XezqOvGxZygOHhSPeGOgXkPVa/jlFfpBmqJwGAo9XV/HnDyJjVPx4QdsWsGkonTw1SrEsXjAVyoyaRXOj4rMIC/g+EnME0/h8fQmZ4gDmavWW6ieqHMbJmJ9rFn6p6stn8U93e0Jd7/lexNpuWa8pzI9ve17QGykzGOPYcfGBpMtIH6VAa7TlSK/VkEXFtvpkdUnye54HQBmajCQfvWehHctyH7dvnyUSmAZG+0WK16OrY/iQV4ChDwAwaGlZ+iFgcRys8mt//AuADY+8Gae+YYfReU9VN4bBKldBCduvZuTuSQMvHP33aUlo/FWjlJRSGhvHENhRcFmw998UMv0bZGsk2DUJEaNj+FX11CFxeUZibcyQMpysvV1dLD5iBoX8v/ZHtYZ3NxBmBOrLdO49D5uen9u2V8fnoQYBCFeX3vqQbnnr5EZ/cpDM3zlISFb3nRskTefXJOPXOHJMOTa4JUm1YN7vg7dFRpPtdcu7cKSvqf/CwDaFhgtnVuJMWhjsNYOgm2vAc3X/IvrtJXXDjdU1kTR+fu158aZCyr6nd1M7BZZ+Pk68wi33X9g298LsVMQqozru9JPAMhnyKHw1NMeWeb6znQjjHAeJhMDIaeobT3TqeFcL4gGUMRFTqQtadHDeIvxUDiPJieiR3VIMKRMzIOzTR5Z6xIrRXWr4h2IYoPf6KA+8CEA7OPPlH/TQPz+f8JXaxReYR549Xnv3ztT55l7XsHXHn4QgPum63x3+Fu1uZnUtYW76C3AVGOUbYN1eGXJezm/dv/NtLsF7d//X+giBxeLzaJWUkMnCTr95LeYiJN+oazI3KXDn3WUsPPTXkv8zCN8dHGZ/cZIro/SOKWIx6+DZ7iKoHBCfCeJfG1sDHzWrcMnsdR+SuwgtUmgMcu9d/4v3lW/h2iotjm0c4Luv/9zotUVjFY8Yg5xsxVRljcRSd4FNSGFVt+PXgdrzTA+Jc/Lrt9yrFMUuCiiMJHU61pU/oOIIUWvkxE3kkHnLB6vNf5ZulFHSQiI9Z7IXNfC8fpiS/h8nldQTz2Cv/VWGccXOZVg2x9mMC6JdFI6e72W8XHr3CLu5kNC4rc7sNYOtkXfR+XRn2Vdy5gYo1FKYbYLxh1hhOuMEeE+wggBY9M7+aniDr7/997MLQ/cTqENteTybsS2sHzku/8vjp8+w4+dPsnJ+jQKOHfb18OzQLifi5vsWl1FxQnee87+519ELS2Cidj10z913de3FdrogWLbOdYzR8O5cvZaF7nMtvfbtuKYm+4dtGELqS6vjYPn8ZffFvHQ9/wnev/6/xKyswyQVOiZaTonH8U9dQTrPL9771fwAA8NNsgjRKxS+MOH8E88Wf7JIsn1JYqCKBCj3nvW2jmNyQreeyrtFrXgsddWmvjgvXD6HF5pmJzETk7i2p5f/5bXbToe33zDKmyc4/ipG/hwIdvMVvXOsG3JFhRRgglvM3gqebaJbdMMhbYqhVWKKIQVeRBitSjw3Z54ULfb4lttQ9Ck9/hWC2UihlPvlHcSNFSvnTducSaiF1TMZ04uloS79x6eeAJ27YK8QC0v49ttOWftNra1IV0K7bYo3JdWiZrn7TJ3TNT4fv8S1hYdv/8nP4rq2wf1MrRSuFoNU6uh1zZIf+E/Ec3PkX3jN2J37pJLx7lAgsmgoVAGr0xJ5NFoYG+6CU6dgraQeqbXLUljVRSynLYom2o//COoomAtaaK/69ug05HW44cfov7Xf40D9Nd/PcUNB4bOhQbvsM0J6t/+HXRf+xrszp3kew8QH9xXnuvaUAhXt9vlxIkTciyHjofyfuBV72Fs/MK2E258QvZNFrjZtxBQS0tiw9PPDMCLqnvommp3Bmt/bfMkh+59qSz7cY+TzSO3bvA511rOfVhGnHcJQxKK5hiVUOxWh4rkatIRf/zc4LW5LLflzs0v4reT28B7mpFmLHjOLpsZZpRBo3Bai3o9bBfl/cQNPmchu0D11VJPP4PaKQFMGvjJV30Hx3zMzPoCv/zkk7h77pH9v2AmxvZb7lVfM6gJLpWX2MPNiJLNZVhVb9BxMqF1gSaTq0LNrNIKymDtr03hrozBD4Wm+hBwpT2cbkxjN/qDGVBkaLKyTd95SNxAgTW+sXxN23I9oSspmc3wwFpe4KwPDS6fXMSuMZoifH6i+MoGmzffu2fTz2k1FrsZ9RwdJx1RBl98KhLu2uOQeib3Kc5H4Rb9AiZZRnjecN9Mg6NtycV56Uyd9y22SUWEy+71c8TIMzOH8nke+wEhvxmKrz84zZ+fXMNs678uKBbWMf/nTwDP0cn9rI/tpJL3SGxG9L//jNTmdJrTTL/qddsvwG8jWwdWzmxs/sUFLvnlsy127BmXrtZesG70ENtcCEkNR4uYKaXlaa315tVl1/Z8/ERAZhOUku4H3Zi69BuUxz3wOrr3v44//JsP8AOo0lLGAOYCFpRXhNZJtHaDpoW+9Uef6HZOxCz1mgjJeznZ08dgfDe85t/yA6/ZvLi7XnKYh+Z2Yd75d+QoVl99mHRRutYjbwdDrL716VAdHTUb2LV1bGsd02jIFkUhpLteZ/nhY/zEhyp87/QZbr9zL7qahiwsRTw9QffcMppExCC9DNXryeVqtqfd1pc7nH5GmObxHXV2bGORdDFk+3bjHnypHLjTR6/ovc8FvHPyIdwyCogij5+fL+1m7KFDEMYfqMvr2lKVVDp8J8flWvnwh+Gmg/01D7K7YCAk0HLtekDZF47oY4RPXowI9xFG6EMpXrcn4f1nbuJGD8payC+v8PqLH/xJdnzlZ7NDa7CWO77tX6Cs5eNvG4evfe1131SjkNlsLRYUZ//p/WjrQCumuxlp5eoVGv/0lsdwzmEiw0ted+O2r/F4acHzjijrwqMfJZv49DIQRecZyjlRnwJYx/rpdf7xzY/y8s+6OWTPSGEVV0Tdmd71xfzBK7q8IUm2JaW1zTCFQTvPL750F+qD/4Q+ehTXaGwOPfGe2PmymFJKYbodSEKxdOIk+sD+0mtvPFuHrpQAFVeURKZefpTUL0vngvOwsoI7u0DeycUPexhKhQAiMEhojndD5F/Yri1pdSF0RxE1amV7pKvWcCbCbFLH+03L0WNN2Wdj5JgnsUxMxJEongFfqaCyTIjSnkM5BdrJeWu1xPLBOfTGhljyBGsVoliuq8KKkgSwtsd7/v69gCfPLKrWIOqrNiYnxf5meRkCSc7KiqgLjKFbq7FdKa6U4itumqcbadxfxPjMhuKnEOuSjQ1od7ALy7z9Db+EOvs+HnAOVeTQagnR32iWlifKWVS9UpKvvpfBubOoXg7jQpw5G65bgCyX/QuhWeskNH1BtbtOT1Gq1YukQiHmO7SdInFhEqNP8AK620MVBbW3vJXOTTeTf9n+Tdfj/G2Dn1utFufOhaJfbb4e+p8LnGd2/4UHQS5JB4ODKBKPeufwG21R/k9N4VdWUd2OFLKxtGcL4S7bn5hBEWom5mkunAYUlZffxNpDjxA5h0WF9YRCud9JApuUOpX2OrFSeK2oDE006chgVIH3DuX8ZXXh+KDe9Ar2JRG/9JUvBuCv/8dTEEk3g44iXJaLPYz3dKbnqH3OKwDF6bhKvf9ZcxJ2qYzBzc6i+6FWStHCoLRhtTZJlp8k2pDBvM7zi2zd+WiMpUDfh9yj1ZWVVUkaEVcMefDW1arA0Atkx8Xtd64Eq/kUfVYh89cWVOqHfO6dtXT65DvwHz/9O1gvHBWt+Im4iSfGElHV3fIaqXfWSn7j+Qj9viC8Ka1uuhYO3jlHkfcn9kYAzjsWWku+BR5s9ty0Zqe1iLxnJXfhOuDgXfMc+fgZmWB5gSO3Yu+jgMh4dKTx1mOe4wDXET4x8GnzTe6fkZrQJJr3LRxBhwnSVpQynsuzq0+FAWSFRcJ5/WarImOI6fC5u8YvvlKjQ8i0kLLf+ZofAODLH307b3z87SRFzsTa4qCLcBhKsZpLSoFWMB5f+Lream/VR5lxqQ0uD8/8OMKOT6ALT6Q19WEvGh8IwW4X2+1RfAq4M62vdMvj1N24dM2jtcbZ4N1uYry1QXficR4q9esQft46JePucC5otUQ0lOdB/Vxg9+7F7tkDcUx88jiNl7041PznTxybtEL323+c+G/fTO4d3kFHSXaB117GVX7LV39/x5sUq2tB2OHLa0QFNbRzjkjB8npP7C3jSCwc0wTqdSrNJn2P8Nb7P8bE/ASlIm0bLJ5e4+zxVfDQbmVXTri/6gH8bgmttY89dkXvfS7gskw6rb2XYVMgvqf2zrLw+Bjx+z4AKNzOFwFCgF9u2aWUQq0uw1gDXIEbG98kCGQoJyiu1yDvjw1ke3Rj4rrt5wgjXAgjwn2EEYbwC2+c5x1/+AToKVFqb+cxuA3iu+4sCR7abUlSt5Zo49kJ40h1sAPRGuUV2Ze+Eb9DQhJPf+hjnH3mSSGzNzJe9E1fdUXLznvik3exwac2GqsURilyk+B3HyQdsozxPgyF+6Rg1mP3Y++n8ra/hM/6bZRWqDBcTmuhUDMxX3l4iba5sb8QePyJ0v8xxRO7Alc4GnqRdq2KC6prWq3BA9ZDVB0MCJQyYs0SSxguhw6ilpclrBOob6xBsyZEtivInjwib7TQ2HkIdfpRlFYwMYGemMC1B+r5ElM3gBFyTGFk3zwD252+MniYcPReSNtICFFa6xLIU61ialUJ1AwvdcPXoVJSgPZ6kOXoTpidj4zYbZw5g280UBsbksYOqMLKPjiHUwZTFHgVzkAIJ2J9fdDGWRToYlgBAighQaNUo/qBl5UKrG+gFhfEumNjA9vuSNt7HMvuDXl26y2tjg/Oj9GYqFIoVVoAuyxDm0FoUrrc4o2nUt7T9432HmcdNrNEerCBDo020UDBkCawZw8cO15eG9oWmCeewCtFcfwU3PdytFIUWjPdawGwEddFqZLnKO8hitGpBIjVOi2KcJH1khqzX/HrxB3H8hN/gPnY2+U0aIhv6Ksr5Hw1xgaDkbW1taEjsPl4CAGvcc4RVy6scC8aY4Nrqf8ZU0pCRQN8XqDaHRhPhHCPY2IF4/oMHti3ayCf1nEVRU7PV8nm7qVn3oJTBU4p/ONPwvQkTpkyAFmOpS/3YPrgfv5rCDYbS1Y37Xvzlmk6R5YlVPQycNtUwqFz8tp7GhG7DgdrHaNRzabsd7WKP3EKshznPUWtwcEHpgDFY++Lh8fRqG4PH1vsuUXitWXcvn3ooqBiYpYdZFFCz+uyY8SlV6bUimwLoZrDAP4qOMA+2S4bLQtQeK7QTv7i0An9A2PVdRgcBywM+d3q8BVrRTM2YUwln+xvuGkHX3/jLDrS/EX0ray+/Q9ESb7vcEh1eP5x984qv3d/E0+EURmz+yaf7016VjC9e4zOunQvXTFRu6UscM4NxrbPEV/9ktfddN2WpZRi58Epjj+6gLMvTO/bYXTzFOmDg3ZW4d7Pff4CXEd44WPX4RmOPyoe3crDnRNVTnSFwDTebXpc9T++3hgsMQ7D+vpmdWjOoMa40ERkcWAPT35c7B6fnL+h/P1ipUmtkPqhZntE/WD7IWitmE0Vi7k8OeKLsG4m0phIi7XMMMKNSKsieGgXKO/Qq6tEkwatFTaIg8o6HMA5oiL/lFC4D4/vLmfOWynF/V8g2SNffvIYxi+g0xSqFZJGk+h62HJM7CWqPYYySsjtPINYl8If8rzsZO7Xv1H1wqIEFdTk2Ss/F4cl+ut/JLnxEADpQ8/gV9dgr5DUW7tE+8KSMs0ecL0eplIFPM3I8F9ffoAn3/qPxEs1qCRDMz19FbVso+9nPCkl471tYK0rPRrz3pU/h8yJkxRTItKJFre3sHxeEcRfAMM6Iz+2G/wJ9JFwj5q8ukl0ldTKDoKoklCo/ogSsU0Ni61Mz8BpCcEV60+FSa5Dd8YII1wCI8J9hBGGkdTouJzxRNp0MxTHHj0HCmZ2jVFtbP9wzxeXYd+0tLqNjw+K2N6zU7iZPBPyUgvJ42ZmRHXtPWePn8LukAdvYa68Xb+vmLqQhysg4ZN+0G6v5qfwExFGzVIsLNMtLCaKKHXnSYJ68D66CyGcR4mawKEwQ2E77dYqyU/+FP7++6HI6d1yG9wgBVJ+7DR+vI7tZNxbfRvv1UOBTWkqxUyWsfLxJzD2cFn0KGcHD3vvyY4cJ6lXpHgDIa77BV2ckOyRAqyz8Dj1HTvBPyIq99U1egtL4o29FTd9DmTr8EcfQLtQZPUVwcNwgwBPeZGX4J2lJVStBs7gOx26yy3efMzxRa8OxK2JykY8771MBCUJRJGo1I34GWIifDOFKMb7dYoTp4iaddm/vs2G97goFq9r64RczrJBuI+1on6PI+lSAFrtjLFGKEoUuPUN8bkMIUJSEEsRHEVGOhuKAu88rtuDMK5S4e9RUC1V60n4/ZDdSC4kKu02rtujuyLqBOMVHZOQxAm62UBPjAe7FDnase2VqonyWK+uwnoLqqJ814uL1P/bf0MhgXvrd9wK4+Obghtj5cnQgxbHWg1fqWI9FBNToRBXFPUhn5zaVDlYtdZj11qYRn1QeLcHCotzTy3jg92lOOKEd66vE3uHsjk2K7ZV7PSxntZoZPlA4RXHcrzOLaAnJyDPJcBY5P+QF3hbYIHb638j76kM2rknqys00w9xMr+V9bhClLeJvKNA0fmd/0mt1yGLYvIf+L6BhYvW5T67uZ0oihDtMHTNK8PurxerGiaGJiEugnubi+y9XSbSZhqD+9dTbcehoEKS7hEbvDNDBkOUQgiskg+KCl0Dcg6MzWn8l1+m9/rPlO2uv5ZUK7zzqDNn4IYweTd0ri6LPa9MAgv0SfcrtZQBaExW6K6Llcne9FHiYgU8VKe/5IqXdSHEtSrdrkzO+ejKfOq3YuehKU49Je3PS52hTgmEtHEesjITQa4Hj6gqvXUsTe3hJx78NkDx0hnDt17T1lw/yNl2gCXihU++Xi0Ov2jn870JLzjEqbkqouO5hnU5/aFbtxip2ke4OPwwkagVX39opv8X/nH+Dl608DgAZyrj3Lh2EoDYWuRZZqimw3YLnog2Bal0oV1gnSdn9vGbn/ZtAFSHhOS3n350wG0DurLNxK/3rOa+7JpauMhn8uaX7ibPHI/849FNk9b97VKVptTrWoM2uEoFm1sKD45IOkPTVGqKNRGcOK2vr5fbCxRJNSILWWNbhTCXgosr+MhIcESe406eJr7j7mvfqM4qttUR7lspGVdYK2OUoBYnGfiiO6UwyUW6uZUiSmLJXA3dFp0nnhHNUifHtVfEcjIIk7Z2VjuQOjogO7tIOiefn14UA44TU3s4aGIRbFi7ecwXRHiqGuOaTXySoGo1GTNvmUhKKnF5Hiq1K7/+XNYra3M3fokOlOcBrtfDh2644TtHkeeAp/eKzwegubRylStwqJVVUFCoSD7XWsP4OMWLXgz/KC+r7rsBTj8KZcevv2CnzAgjXE+MCPcRRhjG1GHMjoNEe3cAYM+u8fm/JXfqf37fPv7FF9y5/fv63mTBRqRPHq5ULsMb7yrg0lRUzEpCa9TqigRKOkd3YYF4StQlhQ+z5UphInVZlg42lwLdOb9tYQAMlhMIw3h2AuIIQ4yqdehtbKD7CgGlIE3x8/P46Wme+k+/gGqMi4caUBtS5e5sRqwcPY458vtkOqL7E3dTLQppV19rQd7D5ha+8N/TWf7jgVWJtUJke+jkjumDFVRQ7hnZ4AH52ffqc/39HLaR8PSePgbeYz0klRQfCG3VbJDWa/Raz1z0+CmlqbgezmwZTGxnKRNFUK3CzAy+00WF0KZKvcHcw0eG3hu8qPuKiXpdZue7XXS1IssoCvzGBmq9CyEg1YdJBrwXRbvWkjVUqyFE7KqQ7e32wFKm1xOLlnYHNSNZBHXtSoEGgD5zBg4dhEZD3tdsiqVMtSphpIuLkImtEBubfTfr4xVe/jkDVd4j/3gMhjzO6Q2UEFopYid/i72l4nJRIa6uoc6ewc/MlAS4Cj71TA5Uqb7RhM4zJD/8Y3SjBOUsDoXG09Mx+l//W6LP/UwcitWkTjPboJZ1KIwuJ0aKfbey9iNfwlI3Z4ZHSyI+HRtct9UbX0/vo28Bm1EojV1cLoNsAfy5geLERcVgXmD481iroQ7LzIRZXITowqqL5eUeU/Ykyc4dEgasFEQROgQpE0X4JIGpKTlWeYbqdtGugNI/ezCQMEsPY3SbVLfpas1qVCF2BRbFeKLJXAyVGip4oPZVYeVuKPBBdekYmigYTmd0l2fVsit9nF36/fJDMgm8HoA0d/heDxUGyAR/eQeQVOAV/woA9a5fkPcqcVT3YTuLMGmVvOWt8ucvea10MABjf/zHVP/3HwCweNsr4Xu/4bK2FYAoJaJHgSifNk04XCbueuWhwQ/v/Stot8Kyr99AYHymxsaqTBbWxq7Nqiau6HJweMt4wkPrQspUIii8p+c8vcyXIcQANpfj4qxMmOgwGWSu4ng9W5BrVwOG4lOoPL4yy5wtrx1679Vp00a4MgzImGsNPx7hkx/FkPrbaLVpGvH3HvgKfimXKeJv+cD/4vaVY4AnzruAQmlFdeeBoXeo8JxDvLYvcPm1s2zYiIZKeIylQ0RbZhLGtiG6rHU81R687lSnd95ryuXWUyp1yLdYWe27WcZvH1/3jK+2GItjiCLMWBMfytFK1pbnU1+Y473UrL0e0WVaiX4iY3hysT/mu1wok6Lq9bIW9lOTJJcxtrwkVk8OdSp7yHIh9bOQadW36OxfeFGESS8uHnjxZ7+Io4+cle1+p6V6YA94T6V3nCyaRPUKku0u5CAYUGXblqedNvBRBQ8szuxhFk07aRLZXhA0sdkHxVo4exb70GP4l75IJhGAPM9JkoQnn3yS5WURldSjibLr4GqyUFQ+qM19r+Bj978KFJiXP8itv/AzV7y86w3X6ZTjcDX05JrbN83THz5TFg+37v8Apx+7+zKWuPmc2fU1fG1a1B5dyQ8jiqDTofreM6AOA1DdeRjvH5NBiw49meaTPyR5hOcfnzojihFGuExMpAnmkUdAKeJGha95cR284p9OXLhNywyTuEXB+g//ECwsMn302bGUUd0OanUVKhUhNY2WB0xRcLbQhCY5HPD+t4mCZdfhKTot6dOc2T3G9M7z2zkBaHaCAl3IEROdX4wYLWrFsn5utYTkjSJ0rUpVs5ls814ITGM4e9et6GdOBQMGxdj0dPmy/d/44+y/MeIP/5sUIfPeln7pya5ZoslxijU5pma4lbCvUFfQMIZ7Duwt/ySdAH3imcCwh9c7D416GcrjV1bLQEGjFGma4qwT3+52m+LsIq53cZ9ag9gJKefwWTZQZGwt6uJYFNhxjAvhpCov8L0evaU1HpgfqHvTmwdtuXi/2UO+tS4e7H2lhw9BQ40GUd/nv9OV8qTfZme2tPYFb0KfpuWx1NVquc3tU+dIdkxLwKO1RIcDQdhuy3uXlvBjY/JzpyPXYjimUfPC1ih9rP70/wRg9zt/kaWPHcdpgwacVuQ6qOBd39nG45VHO0dxbkE8FbUh0wmx0ptIbKU1HkXNZtRsxunaFNUiw3hR8Svv0Z2O2GAUXfq9CZXf+G3S1bN4pTFf/G0UU5AozfL7H2JybhZQdNcHyq/KhiPvdcAVVLIuPu9tyhUoVgb3ATUkXpH6PFwXeT4g6BuNC4YrATydZxxWZuBtGWyG1OIiPnyeSq/JIbseKS77n5uhAdLkQTi9zK74YeaqGe9Vov5wTqE6GyTOU8ktZyt14nBeh6/BNOpyZ/135IfqNHCvfN8eumcWFx44b8Idb4TH/lS2eGYwMTObxAPPCqUk8Bch1SM12Bc7NEB32pSkr9XR5hJdG5RVeOV5ZP4Gbjn3pNg0NGbKl1zWuMfEJKpH4WuAuna/73u/69refwGocA8K9MI1LSuKo3JweNtYnT89JfeX1GgyB1XtqEdmaC0OhiZilnLohjH+yfYLxzB3cakfeuvRn8QK963Yf9ssJ59clKySK0RzqhbCZT21sVFr9rONetymncuE+u70SeCe53eDRnhhww/uwps/3YpT2eA38701+j1rY+0Veb3zdNcH5LN0vYbnqTO4C9wvbNREK5k0rsSavBCC7VxtsnwmdExCvM2EslKa+dRwKtTZ+WXckoxW2OFtCSu5d1eV9KEMsgxfWIqNTvkUWhnbQfGDP07jlffilaLzeZ8vqtgkucwH/yc6rr4GMEkqQdmh9lQo0isM394WaZ046aHjGFeriQjlzOlBx0K/u3FISJSOT1xysVGw5MyVpnv0hAg1ejmJy6j2FHZd7DypVDaJs/pjVPlB8cyjJ/j5f5Jx5GvmE24/kJGjyGuhLq6xWVi11mLlPR/iZW98FU+cPSsCIaCzskIyO8viwhIuKOhXzz7F2L/7KQD8jXfAg79yZcducjCO9lpjlmWSIfvYRzj+fd8PCmoveQlTX3VlFrPXC7bVEhsX2HRP0kO2oODgKgNM/c03iOgQUEdPyDWjFCQJsTNl+aniitwI01QsXBWY9JO/o2WE5x8jwn2EEbYgSiM2ejJwTMcmuHtcSLBe3uPGH/tz8HB4R4M3f9+rht7lxdJDixWF378fdu2m0v7os7KNNgm+38GKo2yfQpH4QRgnUAbcPXTiccZr8tQ58bjjNTs/bftlpxlKiYDUWbetx6v3XjiUPrkLA2+9JBFC19pB8TJMQo2NQbIgdYlzxPGW2eVX/AgvXXivbGfnmcE6l5ZxnQ6+K4Sa2+hAnxsrFe6ewkPzFXsG7ytC6E5RgNboogCCStZZdC+E82iDM4b40H4A1OKTKG1I9u1CpRLkaqYsLJy5+LnRik6cEqE2BwJ6D+3OYHKg3cEVVjoBnJfXai9Km/x8sscXhZCo3sPqmtgXaY0fG5OU9kxUzPRDZ8MEB4Bud8rz5J2T7bAW5x1aG+lA8F6OUwgtUmtrMDcnp+zAbthohwpUiO5oekq830EmFkAUBZWKbF9X1LTd7rDr58Whkgh0FK4tKXVdUGQ7HdG1irhSESudyUmSn/oZ1Kc9QL5nN35+D85adLcr+xBF6JUVWF8rA8HGuy10IGqV98S+IA2K5340qEMKVgkCdHhE5aK8Z8qu45MU8FQmG5s33iRhMkfJJE4hnSX0erC4UL7MbbQwY/JeBYPPSRSVLanZybMXPU71aiRhTv1z7ZxM3GgjfoXdLmpjA7+2BlPTonivVmXyyQZC+vRH4GC4hyWDffEKGqZAeYhcryThXLfA5hlx6FjY5HdsYlCB/K9MDH7fGew39jJVY9M3wv3ff96vM6XRb/9r9OSY5GfN7yyv6eEpsN5Tx4lOPQVA96ab0C+5Rz73lZQNk5K44E2P3Cushz+99XW8a/4OjIK7brn78rZzGMphfC8U+S9MtYyJjFhjAeYKW8i3wgf1I8j1kodrpHAeh6fwno4tGOqB2PT+TjE4Y70hj9TnG5Njlk5XARrHaBB2OTh05/zzvQmfUnjRncBjfwh4aO6+1MtH+BSHjhT9+egi21xX7q8aTnQkgHe1MR1M4RDP6YCoMqAJtt6p3QXSRb/04CxfGKw3/ubsGr9/RMQj/+em13BibB5w+IkZfnobUxptFO0hxfrqZQQxn7eU/rx8WsMWss/KB0FUP/ominEo+Kt3UKBxr/50dEWyerpXYQv3CYdr4Me1Z9Ap6T3GFcTXw5bj8Gfg/vzXcVkOGxuotTURkMRxUG73SjuZvl1L1Li0oGfXDUGEohCPfhTKOrIkgSglTVOpv4fHqVqLBZ4f2MTMVOCLDu9GKfjcmVUO9j6AoyaT9O02vpeh4qgUG1FJ6R46TDQzTfzXbyZ/+ctlO4LAynk7uHjH69iDIhRTy6eu+NB558oJEKeg/WVfJoKeVofW294MQH7y1PNGuGetddlX78+zXbxh11n8whNoZaF6EVcAPURZ+i33HjvgIrwKbgPhGnGnjsKeA/I6E6Nba9i5HXK+rUWZUa03wrOPEeE+wghbYGIzmFEf8oTecfoIP/e238GjeOuNnwYMCPfUhYSf4bAUrYmuR5vdFvg8Z/7Iw+S37cdrjYpjfEMsRrwx1PfMiGc1ECdJaP1XVN/zD6j7XgJKUXn4UT46KQr3Wq3G4cOHy+VHWtSQF2v1V8E7Pvw08M4OPnvdTkHlhgNSxAxZofRn/+OpMdhoi/945fzK79CLhZw7+feD3yUb6+i8iw8FuEmGbl/hePskJd+52Z+22+phfuCHYec89qu/EhclMDSgcPUGuhn8uNfXpbsB0MqAiTFD9iJ6rIkrjl/wuAAkHV2StmVgan9dzg5sFuo1CQUK3oL4voRbUwR/7PLqKwrUuQWYnpKirteFOIIsRxUFqrWGr1RkXb1e6e+u+sdcq3Liw3jpwlB5Fgpn8bhXxuADUU2lIkVj3//TOaik5aSG76zhrRMf+DiGHTvEUqYfurq2VhY8/grac2uvewUn99UpzAZJaDxU4VzF3hPv3VlOLvnZWapFhnrLm9H33IN+/Qx2au/gWlMKNzdHdPSoWIooTSepEPc2SoudjahCbnPOVCc43DoNBCdupdCBUI7znB3vX6FVgY985Dh3/cU3A/DMzAF2ve4nym0f/9JfovuRv2Rl3JL3cpKiKI9jZUj9YyrJ4D7hnITcjo/LeQrqqnhm4qLH6ctfew/H/va9pWqZWCbgStV5oyEq+bk5WF4ZqO2HPe6HEzmHQoZ1fZJUixVLUq+ilMWGgMW+D6b8MPR+zaAAzoa6eobX4S89cL4YkkhR+8P/jzgsp/3Zn4PvCPmvNwbKWlVk1P/ubwHoNcfL6zDtrFOzvb4LFkpHRMphlOep6f2sT+wj1oo7rlSlaxLwYNmmc+AFhF03TJcDz2uFwpcTMbOVmDsnqihgPFZ8eLlLpKBmFNXYhGeF2qSe/oHbdtI/TjP1peuyTdcDlbRABWsktXVAN8IILwTsvV++rideOHNeI1xnaKXKR7OOlcwwB/zcPTNkXsjBj53aQe+ZBFB0k1o/dod6czj0fsuz7QLztlEckyE1w6tnx3j1rCztBz94lLemL5NlAT+zzcRvFBumqgmrbakbbxkfsma8wPriJKJXDCzr+l1mZ2zEjo7YkXilcFqXPLOPIjSe1BWkQLayCpMTKKVIPwXu/eZCB/MykEauDCQFhU0r23YrXDF23YOrVGFGSHZfr6OPH8XNzouS3rnQWS1fynuiiZlLLzfghw6dZdnJ9Z5oRzI9TbpbREXnhaYqsWD1fRsbYLKa8LNfdvfQi15F+sHfRdXGpds8TdEf+CDu1ltk/BTH7D28B3wOhUUvLwNKxoaAxuCG5CKdb/0WAMyJKyfcda83sHFqNMg/M2Q0tdvwl38q3xfPX9ee749vAWUdRIOxwex4G1ZFJFNweLu3C4a75rdcvnpxWboi8GKdevwEfnwM808fxOx7XRlIi1JEEzXsEF8T1bbJkhhhhOuMEeE+wghboI0hmZ8Vwq7dkfA0Y7jzRXtJn7qF9G1vZ98H3gT8m/I9RZxsbiULcFsf4peB5Tf9Efmxo6AUU9/0TUR9Mjhg6c//AvBlIeBUoC7CbG6NAcGpvOPL/04eZL8402A2+MzlO3exsdYCPBsLSyXh3utmm/zjzh4/x+7D2wSs6S1Esmfgh6g1pxa77J1YFBV0CNah2wXv0QsLaBOjihydZ+jKNreh/a8AIP/TXyXxTwKKbPcudKWCbQUTRjv08M1zOHuW3zqWMq0rfMHQoqZOfJx60cOur9Hpn6O+Gh+wWouHe9j+brUhBXpb1BSdR56ketuNAwWyvvhts1Fo1lGoajV0IYRCtF+89RXN3a4ENuLReFylKn7sxlCLIlgbUtJHkbTL9a2LtPite6VEZd4nUrNs077BkG1J33qkVoNGHZ8nsL4hP9dqEnTaP65FIevp9WR5Cwvl68gy4n2irPNrLVS3BydPwPR0qY6nl5XHc/oyLGVKZC28GZONrqQon0h3AeCUhiefhltvkcmGdrv056bXpRtViO2gOKbTgdNnKNZaFIG8X02a1HttQBE5y0SvhQYardOsRlUaRQeHxmmDS6qhyzFYlxjFzmUJFXNAFp9PzCY3vI6OfobajqDKCedbD3vUt1qb7GZ8/7xkmXjfb2yQ/5+/gNe//oKHKU5SyTLoo9sTNX6lgup3UGTZIAx3Y0MsZwoHUU2O7/6hDpfhFk9l8XmBzx2eAtOooFIJyNr4nTdRdW3wEC8P7GL80L+b/BCHB67XSOr4vfO04ipj2QZOKTp//S4m//Iv8MDCP/ue8nWNVLMRbHOybpcKMlHQias0CHMD/WV6j1JQEKIy/VU0WnuwPmbLUfikhtaq9HCfSg0/dOscoDi+0eWDy208YL3ihtubmELI+BNPDK6XiIyin8BxifvpcwlVm8KzDjgU1zZB9MmE2phYqwFEyXWwDhhhhBGeEwz7cxtjsJu6JwdPK61cKOk9bui5bYfGMGrL083Z7e+RU/NN2qvnW8i9dq7JHx5ZwQITCTSSbe79Cg43E9ZCF9T900P14wUerv3wzz7SutRAd1TXSI4/jm13pAJcWYWJsO06kk45FBaFz4uy1iviF84z6dlCVNEQomKGhWWXg8R42v/990m/95shTdHu+j0ra8snWVtbg1oVslwI+H521fALtcY1Gqjq5QfAm6RHJxZytYhy3OIKdNrEe3aik2TTuAnv8Vrj8qEgVHs+YV2YcVQUhEgeTj59hrQN9Z2TtNfavPob/hm9h/8e8ry0eO93XbijR2B+VsZYRSFiIsBeLAj2ArDNZvn+vogKQC2vDHYpz7d553ODPC/wIS716uezLlxdV1fbdJqr5at8HKPWWiRnoT5hoTmYENK9rhwfDy6KzgvLHWGEZwOf/E+VEUa4QhgToY8+LcLtMNMOQK1GdtPNpG97O8o7Hn7DF4FSpDvn4faXYH3o0isVoBJS2ceRD3yMo9/yz/F4lub384Y//71t17/wX/8rxYkTANQ/67OIbhEfY+ccxalTnP5P/wn/GZ8xIGDX2/JQrVZQ6+sUK2tEtZqQtBvr/M4j/wevYG36wfC88phGtZ90CBre//73Y61FKY1yrtzupdOr2xLuSil5qDtHkneA5qCF68hR/LlzRHubkIYiJlheEMe4NEX3evgzZzepbbaDmpnGHRBy1z76JC6KKHr9FtEtdi3rbR5ar/JAfXPxaCd3hNa6lhRMUSKEbX9+RA1sb4wCs2MKlCJfEpXB//jbE3xTGmFuvhGMuSQ/NK6rZK2TMD9zXgGnUENq//D7SgWfpjJpEuxBuifOsHXO3S6vYMbHcBttVBL3m3/xvR7OFui0IgrnoG6nKPDO4dY3UFGENtGgHTPPYW1NAkTbbVhfl/ekqRyPLMd1u1KE6kAIj42VhWFx8jRRsyHnoF6DffvEpibLZL1D50cbzWXXV6YKOkK5Ano9vLXYtljTaG3o9QrSbgdcgj5zBlWN0b7Ao4htBllPltGfWDh0EBYW5fTicVqH76ETpRgc1aJHrmO6JqHiMhwab6JwgpR4j0egveL4+C7q3RZeKbLa9hkIymvyhSXi+dmSWHdDJLQ+exY3M6TKCS2zvpdhraco4G9v/cyh/pnzUTMKa62cR2NkW61DbbSlE6Hdxnlwa+voibHyGiNdg1f/xPkL1GqQa2AtuhJjXY5Wmqkv/hzs8iLK5TzxzmPo1XOgFDZJiemfm/59Tm0m3IdV8Nfoba5mp8i1oWfEOieP0tAJotFDLaG7qgZnNB7PRi+XzxyeFMfv3vl5NLrrGK0xehAibbxDIZOG0RUOPjERET3yoHBX6vIHgJ+oEOuc/nFS9KcpFns5q/15O+9o1CPm9oiCLK5EJTGy+MyJgdjKPX+qq61YWbKEHpehjoURbr133/O9CSOMMMJVwMTDZNLmejvzQmYb2nxo/hZOHBTC6sz8Yb6636w71A26VeGuLmAjsp0NJUBqFDq4IkY6kuyrLVAavvHQju135oKP5s371X+uOyZpkTL7gz+IR/P03jvY/50vBqAXJYBMuOvQmdtHO7+2WuUTAcNj0ystzUwU0zjyJMk73oE9fAPkGbzmNddnu06dC4KfcE572WYhmzFDXaz6ijJz4nqNZG4WvMeePIftOZTSuJU1VBrEPdXByEtpRe8jH6fy+KPgoVDni4fSaiQWoH3fd2vpPP0UnWc0X/wrPwdAPn8buLeKkMsPjr1ZXMLWKrLOTkfEU87JWPVK0emKQAqQwW34vyhE/AWo2vNXm7o8K2vx87Ji5l4Uxgoe3ARcTX6O1qVozBuNRoGJ2DF/P7a7+aUqy4LdLShjMJVR9swIzz5GhPsII2xBtWJYSmSwHXW64vkdRTKDfecdrP3f/zf58irdOSFU/VoLfXIRlxeIizqllYgbKjyXnzlJpSfq7GRp4fwV99H3GgTMUDChXVnh6S98Axv//Ftxt91WrkOe8wMDkqxSw4QgGw4dIvoR8UOefuqp/saJ1U3wPffGYK3Fe49zRRnGSp4TbxNIU6ytkdoc/BCxNqSqds6xEtUG9iZ9b7wsKxXfqlJBtN0XJ9z1UJtoLe+Aj+kG5YvLi4ENYb0ON99IdmSZhc7mp2vrFZ/Jd9buxVvL/8MylbEGjIuFhup0MGstabszRqr9foBqIN4+dPhl9NQSteBJrrbxVx9GGqUDP7l+ER+U6X59A8aa8nNfLdHrybFZWYWd8yX5T7RNEaBkssMHT3HvParRQMdxmLH3QpqHAF/V6ZB+9CPkd99TDlasB5OmYgOztFwq19XqauhuEDdzjS+3JUtrxKGFE2Nw1uG8kz8bIwXjxkbZZTHsRqTUFagHshZ0asS7J6FSQQPR/CRx0sAsKckj8Mg6rHx5wGQ9DF5I6L53eiC7I1dgvBejCKXke+/RyHYa7zE2YyNKSZ0FLG011CUQ1N9x7jFa4ZTY/XS2jv7CjwZIvJUrO1gdqSEll0/Fbx+t5dwHH/yyQUTB6/dd/Jg1UgmDVajBvSnst6pUoFLBnFsg7rYpkOtNQRmKti1c+Kyl49z07z6bc3/+MCjNzL/8afn90hNU//67y/Optw50+mGsw+d7z33whPhHUp+96D5dCjXfwYfWcI9iul4l6sgd4OaxAeEueQuAV/h2l77VVx4n/PnNryH3nqrR/Pydu0jCZMU3vfcZMgeFc5grVbtoQ5cxXCBoi+KTf7CulRry7x2QJvvrMWORIvdQ1VAfGrzuOjyws1k6cuK52tQrgjxa+lOZI3xKYXTCR/gkxHDH6jBjndYMurtCxzWx1Pj6+28lu188prW2pcPG8GNeKelsclbGHRPTW3JsLoGTnYJ2KIk3LmBv0VnfrIxXeqCIndm9vcih1qywsSr1eaUxGJfMTyve19zB5LqMtzpDz6rWxgbNbCPUhuBDze5Q1BtXrjD+RMOhO3bxwTNPABeeILkQYh2zXh9n8n//MQpoVRrwbd92XbYrmZ1BK3BxDHFEdOIIxeSkXIiNoevNOVRxZYrtWmzJTp1FAVknA60kzt27Td7rvihC2ahYPruBf+SjoKD5tV993jKtNyz/+19g7uV3YLWhd2yBL/vhF0F1cvCi+g789Axu1y4AllotJgE9PiZ9dEoF+0UZBOjqlRPAOoqxfeJ4927oj9+cxXckiLS93L7i5V4vWFt6unCeW+34HvkCOHUUOHLpBW5xEzAmGSxXGbAZ6gIOA1Fl6DrSmigdiStGePYxItxHGGEL4jgtvQW01qgTJ/C7d4uaNI6hqoKFg5DczlrxJ1tcRFUSIav7GCKf1lY3aDgJKLpYC15XG+z996PwrHVz1o6tyIT1yjmWf+bfBguR4QJJ4ZQSWxIPRmshxYZ91YFuZqn0H1J9crZaRXW75FmOiiKKTpckScGIQnp5C3kN0H3mCEr5MqTFRbEEf4YJgF6UUsdCnwzsq6rTyoBVBAplyNUlbkHrG6iTJ1He00nqYBRZv1AfVsf0ehQra7zGp7x2avND1ltHZj0WTZYVVLWW/c9zfF7gtEK70J5gHcVjTyKz8LL8/+vT9sHppXJ9Tp+vyjlvs3WFWrcnRPjqKuZv/hYWFrGtNnzlG2FqCrIQMhlOiSpysYhRSlLTza5N/vfKFUKs4jHBekahxNKltS7dBN6LdU+zKddhklCst4Wc7SvON8Jrez1ZfpZBpyP+7f0QzrwIQZ4GtEHhUH0rnKLA1Kqips9z6PVQy8uy7WHixXmxZpINvzImw49P43W7dML2yjD3nfdQ/Y9/i8s6kMRQq2FvujFYtnjodOiYlGQ4pDfPsUsr+HYvhIEpnPf0tEF7jXaO6lCQZ1fH9FSEU8i+9KEdU3e+n5yEqb9apFHIZ2LHxgW8py3kyhB5UZdImNJgEOkPHNhkM8TSUkm6g3yGzCVUO+nYNM5t9j9RSm+2qmk2ydc30IUtz/VWYUmJHbeL1YxSsPQ0nHg3uhJDPNRn4R07IoUJVhsuTkInQBAj9Y9lPlzU+0FIa35txb5O69iwwxoPRV464eQry+Xr1MwOiBJpKy3CNnkfwnJ9af0lfRdyHrqOMjC3Hg8OajxTZeorpcNIj114EC76+NCO/jz6ZD5XEBsk+lL38vdaRcFjFTyKKNo+jCrWOb0QShqZFw7TOb13mrWVM+A98WgQNsIII3yCY/XcRvl9nhflfVsHwYumQFFgh0KilXcoZYabl0r0CXx1ieDtfgkTVTR5R56NwzRi124vWPdbSLIoNuS9kNt0AUX9wbvmyTq5NGLODFTItYkZMgb1XJIPxjM32nUiJ8IIC1JLhpr6ugSAvtChfTk8vVCnwoUQaegNTUxn0fWboCgWVlBnz0FTJlecZUCuDgnQcA6zcOb8BVwEqWtjnHTgai/qdo3HORFS6Y0NyDKRryUJzsPUg6+g+UVfhwIOHjr/ijVJxNzSKep/KSTx2OxBuO83Nr3GK8hrVREmKcW51VXO/f3fw+S4cAr9ut3LNeiCIOxysPY37+Tk938/+gu/ELtxUMZgi4swOSXlrdL4fh32PFqnFJ1Oqbr3lzGGBi7S0bINtBrUpEUmKvZtLIAAvO2royJ8baRuH+G5wYhwH2GELWjMzcIjD4lHXBzjnCcKdigAxDExK+HVHuMkQMbpaKCuDQWeHmrnfHphndu0KE3tRZ4k3c/7POwdtwPwjo+f4JcfOQbAN8wV3HZDsvmhqRSRD23wIRDTGi22Ev3ipN/q1vfVhpI4xVqs9UKi5Z5kYQEOH5Q9swXZNgGAUaNBVqnjo5hIaWlTC4UExpBUYqrzszJj3+8OUErI23YbfeIEbn4etLp0jmK9ht+1S57TTx0Z3p3NSFOiuR180/hJdt+4meRRrkOiFYXzWOc3zXorPFr3BxYKl8REN4mfvf6IrO8Nn3U77/ytDw61nF6aIBJvdsSeY3kF9dDDcPwEnX030tQaH8eyI+0OxBHKaKkpg/LZbGyIUrl/rotC2l6VhIi6rCdts97jqxVUs4Hv9VBZhutm6JqltPJprW8KTVXBV9x2M2ltLMS+RRmDT5LBxEJPhe4O2WW3sYGu18F5zPRkuV1ojWq38bWaHCNrJXCwT1jFV1CMVyagPk71938X+9K78EqzcykPi7HEaxtkeS7X0cmTkg9gFNrKYKssXp2DbpdkeQm6bSKhX5koOlhl8MqzUBlnprtKvQiBoApyIyqT7Ka7iMcnZKC2bz+1uQ+Tu4SZ1TOlPc5CbXKbHRB/6+jAkAXD2BidiaEW6ZVVmJ6S762VyReAbrcMmEyT7YnKEiZMrvRHTN5LsW77kzKi9DaNGg5fhqteMCgrbcL8XfL92Y8DMP3aG8BsLkaViWQyDlA2Q/WDZVVO+bnoLA6/4eL7cQWIkwrv2vMidq0vERvFSyoKn8u5i8cH5yJ+9atZvuuzKZzjibf8CXcqcW13uuw/wqEwfUURsL8acSYM6seGJkN1aqjddYH29iHsqz7OeiaqmcnpO6/D3r6woUoP92GlO6RG0/OKzHly78XGahsUPsYHtaH1Fy9DZ/dNkKTymrGZZ7kl2lO2O+fZJ//EyQgjjPDJDWcH92etFOPzDRETKdg4pXBEQETMOp6MRLVxpo5Hl6KiYRijcRrMxQh3FUhc7zflHL54usYfnxK7jFRT5oBsWn60+XkQpxFj0zU8MLWzed7rAcamtn8uRLYLWmOVdAS2hgQEH5zYz73h+0IZlA+1K4TJ+U9u6CHL0/O6FS+BSCkcinYkNf4vvuhLecV12q5oTDP+a79M+75XApAfODAY9PW7pJWIuYqZ+StadlytYTMjF78JonKUjFdCjez6x0UplFbsns4wkRD7jdrcectUUUzTi7BD/MnPv3YUCuMcts8N9Lu/PfKztdJeF5lyHH25OPVv/g2+3RabVMLy+scojvHTU2UngM+ziyzp2YW3/ck+Fewrr6+ffJClyTdJgi9s/wQHDF3jJvi298WAI4zwHGBEuI8wwhaMzY5T+q9rLfJN5/DWikq4KPAqKIa1DqpRIVidZ2BB4xxuqO1p2neoBnIvvsDMa4lArp5pZ5zsyDIePrvGbQcmy79tfj2lbZvxbtuHSNSvfLXGV6vykE8S8emGYENixRoEUFmOXTkJ3L1pORutlqzLerx3YrGyskK22uLssXP8+eosr7jlBuDoYF/6JG+nQ5ZUSZQWEveCkltBbmL6dK0U8AwU4VlPCN9QnPhexsShx6js3by9qshLitx5L36D/aLEOrwxAwWF94OgyeHD6yiPubtIMT7/yrcBio8/vluKp0oFd2A/2Vd+Eze++n52ri9xbHlFzk8c49da9NsIu16VCiDXLwb6CNeTbKInUqpU96qgUlfOQZKIX5/34n0IFCutTdMm1kToSgUdRbj19c1FR98Gx3sh+MNh0Qr0xIS8LsvEvkTrsoRxpbJaluXyAtOWcE3faUN/PHSpuYqg8Ijf/x7S9/wtAPGe2+AnvpuoGbPSblCLYzmue/eCTsVjPtj8+P7xcE5U8LfcTLSwUK5Wa9F14YPw3osuuVCGU7WpsgvAvvR+oqk3oJVjR/RU2DPHB/fewf1HPwTA1Pr2CnflkGMfR2UxXQx1vRRPPEXknHjfe4/P88HAxzsSm6HGJi5+nJTGBYsjmThzlAWl96WvpbdO7lUgraqXIxlp7IIzH5bv60Ne88rgJnag1lcAj4sSVFDu93wVCAr22pB1zJC3+jUkJcnqrec3b/88AHbEmv/84r3lZ6SZDpEK5EAVrTVW5FHyfuSz6yGEpQ5uJtb145y4pM3VdtitPzCQ79VffBV794mFPLM4G46fpi/up1bxpQJyOJx2Kypxj04mB8xf4lk4t3+Suf3bT25dfwx7YT1HqxxhhBFGeJYQVWJYF3LLObjl5XsBOPnEAuunBq8riPEkdH2CsTleO7Gs2/Lc9t7jCn/Rx/n8gSlmd4/jleLpj55i8YSQ7PvrFX75JftQeIxR24Z1RvHm31XqCTe/bO/V7Douz6itLpfjroMrx8u/HR3fSUfHVF1OxVvWGQilrsgG8RMUcRrx4tceBrY/DxeD0fCvH/gWci+tgb3k+qmElY7xzpG+5a0AZN/7PYOu8VOnYC6Q3tYSrV6gy/RCSOukWQdMRO4tSsVhyKLQlVQyulxod4wiolqFWz/9teF68BBtTdaChIKh6pv5tbPnvSbr5iR/8Zf0ds7jdu6U/Ylj6Ubuj1fSZCCSu8xa2VlLr1an+69+BDc7O3j/+HjI41KQpqz+xq9L/X/85JUdr+uIItTYHrj8UK8tuMjEkO93XHjwzkpHuFbbWrMmvXVoy/hLnT1H9OJ7rnKDRhjh8jEi3EcYYQuiJMUHkjbqJyx2u6iNDXmQRTG+UReLDWMGXsowsOgI6mXrBg+IJKmz/rM/CwqqC8vbrls2YGhW1ntKgYgtSk9okJl05b3MGDfqwcsZ6fcrLCSbi0bfnxGINMqD7WaYZ56Bm24KxKDDTU8LAZ9lgMf3zp8RP3J6lchmoCzU58uQGbe8RstqlkydSqyDFbgfHBdrMXmBybv0mXN3AY+1Psx6C06fhuDdTGHL96S2wPYtV6zFHjtOPOPYmmpqjCIPFgjWMwj/BDByTL3Wcg6dIzu7KMGxQw93sTYXFYS6CBMTJTKwsV7hrUP1MuzSMo3JCeb27QS3g8f/4I+o7N4ZyO1gc8EWK4qthYVzZMqQ9CdWjAnuGEKsu9Y6ptkAX6C6XahWEP0+RMNWGmFZqtcTu57+xEO9Lj5/wW4DJxMRqlKR6tqti31MUI+b06eFZE8S8VWcnIS1NbF7QVqSS3XUReyTzsP4XmjrcFz6x0L+S5MErwtRoGY5xfIqk1/99Rhyznzsg4CXNkLv5TrPc/S5c6jWWnnGtLPSkYIn9gVJ8C3PTcRPPPAtZavj/1ddYyqWz+i+ysPltVyJIro6BjztxvZtn9pripVVoolwna2tkQ/dB+z0DNFYU457nqPOnoWJCXwUSbhptUZl6tIDzKI3dFy9l/tGmgqJ3yfdjZHzFlBPLkM5YxKGeo03rSP74m8nDy2Y8Uf+AX3uhByXPTcAYfAzTLJfKmH4CpAkQ8dQKZJ2j6wasjbUUNeKNkE9rXDLKyR/+WZpnl/dwM58Hrn3OOuIyCmC73pkFKaQfU7iS3QXbAdToUxmutRk6icBdh2aZtch8WR/+mOnOfO0fFaSxJBohfaeVOsLtg53uoNnk/NXNth/NjG+o4E2MmCO01F5PMIII3xiox9UDWwKK1w+u07XDexXPINORK1FTIQfsgYM2HPzDpZPty5K0hqjS/uXyflmSbhrrRkPq6mPV7ZdxvTOCY48vFCScldKBg9DN6eZ3VgoBSez60v0TWXu3DUn4eve4nwY61iLCxadn+zQWpNUrm5iQSG5Tq1wOdWv4RxthXWhDzPWUDWiBO90BsrwMP7TR48y9thDV7Rs/dKvp7vwDlQc46NCiG3v8XG0STmPtYPJl8r2uQF91JtN/uLQg7zk9MdxKP7wNV/Lr255jYm0CPGKYrO4S2vJD0srYcwGOIdeu7zQVNvt0v7RHxmMZ62VsXu7Lf9Xq2EsH1Z5ifH2swkRKQZS/FlYvkoiofO9hyiFOJHJk6gCbM6FmJqcovihH5YfoojqV33ls7BFI4ywGaMRxQgjbIU28ixUCq9DYo+1qKII3rWqJHnxHq08yewUya5ZeaD1ladKbSJtk6oqH6p6fPvWSECIfADvmW7E/Oj9FfEZPJdjl1cxUYxL4tCNpnBaEXW6kMRo77BRiu+0US4dKAO8FwsSRWnxYqIm1R//ZdwrHqS4+WbsHXegJ8ZL9TXW4ZPND+hieZno93+T7NWvwhcWt7wCUYSppuCh8IZX7D1DNZqCvC/BHihvUUqsS+QPl5zpjm/YX+5D4hydZ45jQ8FS+63fpfv615Df9SKopNIY64vNlhaAq8yQqAVKm+Xhtr6wGf3JE+0slXYL5RwdMxiMiBpWDVoAtz9zm3+U/kK8tei+V72O0OhSkU2zESZQFKpPTvbDSYfRV5OrQKP3/dQrFbzW6F4PGuLB7bUmfuJJ6v/5P+OALK7Q48vlvGstvpUu2I9EQVURRahuV7zG+y2ORovqAkQp0A8UUprcxDLNpLR4uUcRamWl9CrXWX9Y4zGdjcsXNOhA2Lsh0jKQdmZllfrsjGyT1iRYJr7qa6iMV9j477/CMkjhmiallZHbtw995Gi5qFq3RRpI9kbWJjcxcdGjXvQ2kYNRlBKp1fBDBaxGOYeLUyrh/dWN1W13wSiN7nXwTs6tynJiOyDHVbMxsNtJ0xBwBKyu4bs9ipUWZvbgJQ+VV8EENVxnpDX53HqPcuGzVuRy3sIkXVS9DHsf5QcKm+HzoMp/5E+3v5jc3AdAo7YIn/HvtlmYHtjSmGvzxE6Nphp8GhtGs/PEKqup3EfH7xkMiuQlomwfP3Oc6GOPo7xnYXwn8es+jyKMpYzKKbxs23+8dY4idGns665d+cb1yXaAonPV+/iJCAnblvuVs9CxPnzewzNnG/TsQHVks+vbWnwtUKGNfLhLZIQRRhjhExXjUxXOrgvpVjkvDLTf5VXAkIf7RK3Dja+5e9vl7b5h5qKik62Y3TPB7J4JAB569xHWFtt4f+Ggzko9oVpP6bSklvSX6IK9GHRaY6k5zcyKPJOfmDnAnvJvFTpxhXrI5HG//ybGf0Oo0tXP+dKrXuenAqJIk0aaVh5ya67jsrOjp7AbeRDNOFTpbx7GPUFAEj3xJLW1c1e0bJ1UiWamUNUKxkN+7CTgyRdX0EkqwalZLsIhd2lBGMCHzrZ5+11v4IuCxeSJyfPFMkkaw113Q6U6sJ01BhoNseN0dkDyWyt2q5dRg3TOLqCPn8TtnJNxUrCUpFYbTCD0ejAxIW+oPH+5NANdhYdtrGqvFVYnQWIWJjKUHozxt2Dqi76I1v96E1mrhZp8rronR/hUx4hwH2GEbWCtI7Y5WondgKhGCbPSiAo8ScSj23tct0extIKOTWkPAZsfmEfWc24OwTzeef7k3Q8BnulGlQfvPDRYef8ZoRQTsWVvENKu5BFZtwsnT+Pn5lBJTGpEbeBDQ1WuDF4rWGvBuBoQ7kqhpzfb0Thr+bk7vowfestvkrzlraz/4L/E33yzvL4oIM+w2WZ18vGHHqf9FV8uYat5DqstdBILWT3WpDaW8S13d/nfzygyk5AM27UAvlrFViqYWFTClxI/m6E2T7Qm8pY8FEFKm0Bcy/npxCnR3vtg/x2bllHRijR4RdpNyumgYDAakhQiI4qXsUnwDrcyeK0v92GIjLwIXGFluVGEGhtD+wGZ6/3A5sKsrkpx572ElvZXsdX7uijKkFpjc0gaIcw0bH8goYUoEiVDmCLAoUl/47+TP3A/bs9uCbo0oob2RZgg6nZl/eMy4eK7XfxGG7+6KsGv3sP6uljWeCe2Rc4PLIiWl+X9pdICKfRQUsBeLqZvhhOn8CZG2dAtsC7qWbVrFt7xQdi3F+IYG8WoVD5rcbGC0nXodeX8FBYSh9toQ6c9+EgN2QulRReJg4WNobZDBezgOHPJKYhrEgZqexgNkbJk4dxkyfntpf3z5yrV0gfSpwnFkEosXVrAN2sQxYEolyJYaek2MNWUuHJplXXU7VKG7vbbUotCzkelIhMOzTHiP/ojdLUqBfmN915yufQ6A2X7cL3q3aY5pdh1scGjO7qQH6O3AzK6t3LpdV8EifJl00zmPTppMnYqLPu+PeXrvPg/4VHs6SwSeYk03bWxyHffNMNfn2ljVNifMFScXT1BsTiOR1G/5RoHA0PBbJ8K2H3DDFOzTTye9TNnmEg0PeupRYrkAtfxzNgG59YmADDx9fP5v1Z4FQge9eyosEYYYYQRnkvsvWWO6V0TAFQag/uxdPD0n3UKRTZQufcurrDddcP0VW3L2mI7WJGJLdmFJmSjRJdNdknlWmgKjYoT+hKff9x5e0m4r+UWXEEusZlMbSxJ2WpievEoSPFi6LWLQG4KapcI0L0SNO/eS77cwW70AE/1D/4ANz0D3tN93WtwM2Jz6J3D9a5QsV2pwCOPow/tk870IFgpsoK07O614CMocrLV9Usu8iVjKe84AX98w6sA+Bcz51cOSkF+roXqdGBifJAHZgx+eloU/F66csky8AprLVF08Wt/7dRpShvU/jitUhkIyvIwcdGH9yz81scvukzvPb5TEO9qUH/5TpKd9Yu+vo9H3neMtQWxldx/2w7m9k9t+rsDUIFHudhp08M14+VfV3nmcTftGtijrrVK7/qtUEpx4Pf+52Uve4QRrgdGhPsII2wDrZQEyWgtbUlKSbCl1sG6JTzEsgyvwHQ38CsONTM1CBBtNKjffVO5zIOLx0DtFkV4o86MX0UBxeoaMCDclRnYxjSLDqmT4q+Zd9BaiKTls6ssEHPbjgoKhzJJUG4LEa3iCJrNTWpsV6kO/NrDJMHEbS8ie19E6guSv3knvUoF9uwJy9JgN7diLZ5ahem4tLbx3gtRqBRJGjGbAC/7VuLj78EUCAloTBlQorpdTLcLyUyYjLgErdFak66AUEBUnCUPlg21L/oSVuan0OPjoBRpsgYHHxSl9xDunq3x/7x0PwBLTxwtiel+taWdE6KWdKAIsBYVbwli6hP0l5OwbqRwUYXFrW+gJwYKXDU0idDLLWmYQHCooOb2WD2kwAch7pUZdFc0JKBRtTtSaO3aie92UWVo7+CtOk6In34Gu28vqtnETU/hncMWhexLpQKVCmp5Gd/tgg+K/75KoN+psbFRnkdrohA4q6Fel68jR8p2z41MU80PyH7dsP/Sx2sLsgc/l+iJj6BQTH+BtP7FY2O0VEIztJWafnAsUJk9iF+z5fYS7IeKjQ5JlpeHYxCTCSiDCam99aJLTTk8mtkIZiY6QhZnrUC69w+mIQ8kcxFtrxZRymALKz7tSQITE0zcMdS63e4IMR7HeBRuYRFTq+LjGFWpYMaaRBci84dgrCvPtVNaPPedg6VlmJuV89TLaH74w5ilJTyQf+9LL33wGzOQjsmRag6FRPXaWz6uXu49gN9ynxgcjKEBtbs2HdSOyZheGDx0rUMzOC2bVqlM2Db4yMwNvKa1INuoDXeOJzy9Ie8qiOmXQDv2fIT6gaBsv/WLrnzjTCITM8DVG1R+YiKtxqRVGSRlKwv8l5cIpXHBSRhgeBzk7QtH4d4fnCrYRCiMMMIII3wiYvj+PAxfqtsVoDFkFH3C3V+BDeAVIIoNWajf+wr2C72ur2vJs2vZFkdPR2yE7jozVFN/dHWDr8m7xOF5faY2RaO3ThZXiEZBihfF2EwFo1T5jLx74vqFmXeePodd65a1pjl9BnP6DCjovOIVYQykSPaMs+ebv+OKlq0jIdL7wiSlQ+dqlpfjHYei/cQxUIruxqVruRsm6sBAaZ9uY0Xn8aS2TXs4X62f0xXHA3V7GJc6zWWp67tLIYOrWt2c29YfJxpzXke26168Dvfekx9pkR1pkZ9YZ/bb777kdgD0NnKK8FndTpPmOh0orMgDVePCC6oNEfXb+K9fCFF3Bdz8YH9jc0HCfYQRng+MCPcRRtgG1XYLFTXF29taqFYlaHRrenilAvPzmGgR2+lhV1eJ+l7K3R7+iafhlZLf3p3dW7ok9j24URBpT7vdphYsO4qNjZJsVUNqaDEekT+dPHKWPzvmuenBSeJmXf5QrWKqVXxrHZbapee4LEiFMJhAynU6vO93/4qxu17FV37Bv+VzHv9bHogyduto4Os9NQlnNqs13UPvg894Nf0wFj05Id7RWsO5c2QnJM1dK0RpD6Kgfts7WH/HP9D82i/Fz8tDMS6yTaGy26HyI/+K7Ae+H1+t4g8fprjxBvyTJwA48J3fzEd/9pfZ0WxIQKV1pUfcJliPKmQ9Nu8T0gM/QKXUkIKd8DOYoQJmfblDOiNqB+cvXYx7KJldrcAOM+BD63LaiF+kh65WjCnAK4z3+DwTAj1sR6z7Nh+D/12vhwaKU2cwO6bBaCkihw6r9aJbqr7tHXS1wd5/L/1BVlnVOifHIEwW+U5Xgmf6qo/hoF6lMHM7RHG/vj7YpuFOhmtoAwbofs7XyLHLHGpRCsSofUq2K5y/Ih4Q3kmtil9eG3xAkO2t+GLTsNKiMWGA1VOaxFsRiCsNyqFxpHEX0/cj37pdpT0SIZBzG3i/+T7hPa4oePLJJ+XnGw+XKhSVZZiZoBZrtXC9jOzcEmb3TecvdwuyyoDE1301S1iv62XlxI4fUvWTXMbAaP4u+dqKtZMo5ssfe6qORyYNlns7tl/Wjtvg038yTIRc2yDWKlXq8S7mRanzFlDDA9XxCXk9yCALy+fvqhKrruQ5BMreJ+OguqLs15fuLjgP6Ti0w6Br60TdpxBqzRRNC0e0+Z63BVGaQggDR1+GzdFzBBNp4lQs5Sr1F852jTDCCCNcT1RqMYMaUKGVG+qufXYI5+wSZF8f6gL18hUjrvDw2C52tOTZvJAOhC/fdGiK2BXlLjd7LWJn0Xl3ZCd2Cdz80r20//LR8ix9/q4LW6ReKbKVjU3CDjNZxW5k4Dz+tlvKzLBibAp6l1agb0VXJ1RXW/goki5UB76wYrdiDCoyfNreJzF4VHTpWjDWm3UolYmd572m08oofDKwAh3KYgOChacZ2ISaiE6nQ5JcvAYp2h0ZD621oF4bLKM/Zut2B2NdELeVS3SM+Kv8vJlIoUOnw3bjepVW8JGTTSmu8vM1vm+QCTb0WQaYvv0ONp54DH9gHyQJ3hiucRg6wgjXFSPCfYQRtsOunfgdM2KV0qjDyoo8FKemzp811ho9M01x5CTeBouHQPpF+cDP1/fJ7hBqWDhHEmk8iiefPsKdt98qr4vSMmHc7JwXIs0DXkhRBTTxvKyhZba+UhHCud2GpSVUrX7+FLO1KFuIQj/grbteyg/OWR7r1Hj3Ha/jtQ//nhD8IfjVra9j882hqfbGGzb9rM+ehVpVFNfG0OeEYx3hisGD/oMTB/jF17+SXzdHMYmo8Z2JUO7iD973vfoN3Ln/gHidZzn50RPkrcEkwMTpE3DHYfAejUdF56vPo0mNOhPCMYnOn/HXRpQafcVGmoAxuN7gWP3W0h4e/gf5/ocO77roNgO4OEUFP3EzNUGsB+Rw8fa/ptqs4b3nvc0bObY2AQrut4rZUGDpmUn82XXxR+9jzx4hb8cm0FkGIeQJrTCJKM6JIik0xgfFSOoKTNXgcovPc6w2mDjC1KuiOuh2paXR2tJfUKUJJLHYBhEI3TlRO/teD3X6DMoWUKtDp4tab+EnJkt7FD12daTj8acXz/9lOF+mcxrnfWnZFA0piXVSRTcKUdqD7AdgJybx9bFyYODjpLT86LuxKMB4x/cdOobWjl1VJ6SrC9e+iiT801mqqSd2BcpDs9jADAWXqkoE7QKDxjRC8escvtvFttqcOyeDPlepoPuKlv6kRZLINnqPLnL0ZQx4N84to//kzwBPccMN6FtukoFyHKOD9VHkCnwyFIIab6/KvywoI8V9QOK79O8OM+mZ7d+jNXB9iMtbd4/x1Ge+p1TKn/nYF2/7up5NcMGPdmb1dHnuI1vQRsKEez7hvtrvCskAoGtQhL25GnXfjZ8F7UWkK+D8AdenChxiYSX9Ohc+jjqOGMxIvnDUhEkl5iWvu/Rk1wgjjDDCJzL23DTLiceW6N+HrR96TqfXj0C9Glhnh3Lbr5781lqz70veyC+f/hKUUtw5Pqh/YqN424H7aHbWcB5uXzlCxW6gbX7RZ9cIoCPDr7zsyjtXLwfFFpsYu9IpGW39+JO4e+6W7727quvU9XJyRACiAhntsww++jEZ9/cyqjuQmnns0rVc3tt8rdwzP37ea5QBn1axldpA2d4XKR05Ip2wU1MDq5msh7WXvgbzdheV+gG30PeAt7bM7OpntgGgFTNfd/tFl+m958S/etcl133+Tg5109vzBTHOaPzYmFAZ7atkwm+/cLZCphK8j6QTO47FHnWpjV2XMay/pk6ZEUa4dowI9xFG2A7Blxyl8FEkhCNCNuKcEMzhAeOdC2pSNk91RzH5nkFR4vshQdZCltM2KZGBwnmyIeLZJYmsTymMMfLwAIwxMhMPjNeqHLAKFbzCvRJNSGFitNY49KAtMgS0+CQZPJSV4uWTHV5z+DSvmT/Nf/jop2GyfOjBLCppv0Wl6CYnNsWd+EYdVa/LQz1N6dfGlakq6qST3xuDVSEY9MbDEMhgNTEOJzcuehoOff6LRHngvUwqRBo7pGI/vvcGDtbrYm/TbG7rCakrBmUywFNbOgv+psGMfyDZVZaJ4gHEJijLqTUHhdOmo3AZ6pex3ROovhVOtUrkB0qJQ0WX3j98EICFu+Z4q5PW2rlzT3BzItvZPrlEvHPf4Fg7hzp1Cr9jB6pWkUKqyOU6sRbdbuObjfJ4U62Wl2P0yq/ilm+a5qnffDendUqlH4obx9DugHU460RVH641b2XixXmP9tJ8rM6ckZAfgPlgNbKyIoqDPKdYXiOKQ3HXu/xWvpndY9THKqwubFBkBaZrcRpM7okyVx79ysQsSq9JcapUGeIKiAd/0h2cG2Og00GvrOA6gwmaYcLYKV2S7oUyfNO+U+hyxmgcCg1xBW74bFF8byzQ/e0fJwkKi4rNygkmgLnvugddifAf/DAnn3kKPzYmnSXLy1QIqmylUHEsCoyiEB/+egij7WV4LSYtepuJo6148s4H+amnc7zz/HT3GHv7/pO9rqhdAGtiCSk2JhD612B3Um0w/EnQWguxj8I0r87T9cqgLsuW5tBtkxw6/vfYwvFnygzZCQ2uJVlcUPcpDSEI96oV7jtuu/L3fBLCuoEnsLtIMJaqz8K5Zflh7PyQsRGee1yGwdsII4zwSQJjNt+fbZgYV1oRzx9+VtZZbSZ0WtklX9da7JSlSnf96m0hlFK8fMZw2+Q0frijE0i145fufmNJrf+vP/ux8MTy6K0ZSiNswrOp/zd6iymfVoR2RKIzZyTHTCkZu1xFJ4Lr9MQuNhDRnoKiV6D+x28TvfZVOK3h53/2spdXrW2m0eaa59ugNCdqqLwHe/cItwCoI0ep/s7/xjUMvTd8gVyZzonAbnycxx57DK01L3vZyy7YceGLHFIjmVUg7+31xJo0jDP6/IG84dl7wmedvMxnMFudABBhmx+TCRIVXXzcfzUYq3pO2xg/Pi7jv1oNpRRmLAYH0cylbTpHGOHZxIhwH2GE7dDuwrjMEnvv5UExnPqd5yFcsife2c0GHqkLWiplSouHmpmZLBe5njvGPSgPyjsmzxyHHTtgtcV6ZfC63EO6sCAe7J2OkPvW4fUgHNV5RaW7SnXd4+xOqVIQ1a/zngJN9MgjsGsXjI3Jg3Z8HE6eFCX8m/6YL//Gz4d9D8Djf8l3jJ3gr2+9Fz9EUHmPpKeXP3uyxRUqQb3rreXcuRazWQaTkyhjiFvLYTt6ZLYgDoXCuDH82KEZKBZL0t+juNQk/n037+ejRzsDD3ilN/kwdlc25HwYg8q3L+SVB0sEeFYaU0wN261Yh9EKH4kvvVPSceCBVA+KnL3TixxdFt+5malLFwunfuePOfQdX18G66rxgRLjwG//Vvn9n/+rPycP23N6tYf+uV9AAe3pvTS+/J8RdzqlP18ep5iVVfH6btSlqChEKd1LUiIUutMVIv7Y8cHQwuZw99cyvudReKpdTh4BQphqhTZawibzXMj9PMdbK56HWmMRb2wDcmEsL0sYaiWFeh1fr+MefxL6aYPDHvRDxeLq245gt+FMq0A3Bas9cbugOx5TxJqiZji34ZgF0shjn3xaFPlJIjYwAd2jx4midLDOfutmJcVrjQ+++0UUQyZdJ14ZespgvCfXBqIUXOhI6a2G5XQHimelMMdPl8c1aa1ue+6V0qKk77eNhsJ3uGguzi5gKgnKOTi1Bo06qlJBKYVqNiQX4RIwzoPzWB8K72EEZYtSGh1pfL0phya+BrV50sAODVgn3CIHJ0Lbx45Pu/rlXi6UgrgOeUc6Di6E+bth/m5Ue4XxlTcNttg5NBmuH5XrLGgv51f13f1HlOO1wOddBsPxC1/DS2cHoXzrK50Lvm6EEa4nRk4RI4xwcXjnKXrPjhq00kgvi3BXw56I1/CZzfOCHs0h4VC/pxGqJtmkY18zVWqFiF/izsVDYz/l8SzeR+s3zbFycmAVM/O5t9A9usz6o+dEtKKNrD+OwFxeoOcw7Ilj6EM7gRgfp7iOx+cFxjuiN7+V/DJsZIbhnS17OGuR2l7dbR1MzwSv9jCxZR2z3/mZrD96nO70jHQH91XvwRbGFQXHjh1j375926678AWgRUjTt/2sVstOY1m5G1hcPosPwDiNxDJqi0VriY0N9DPHhE/Jd2DiC0ykXWUJXjiHT4Oivw9niefkGkkPnd95MMIIzyVeOL28I4zwQsJb3yatXoCemcZqM/D+TgOxl+cUK6v4lVUhVRW41Rb/8q0r+Pf+E2phAbW4RLYmYXzLeREeiqBD0ChKYVzBx08Ieeecw5uhB0Z/neE9KoShKBSdXYdo60QCX5yDWg0/N4eKY7TRfPRIi9ZKCFXpk3+7dsHMDt5TTDFx6G7Y/VKIEpr7n2Z+amUQFBcCRdVQ7dBeX0crj336KBvveBdf8WerHHv8NKI8dWAdeVUeaipuSqhjQBPPTTsa6Dwf+MtpRVddnACs775106x8gsW4wYN6fWIWi8J56F1AmVrZMcvc+Bpz4y16UUWKE2shy4hOnxJCdKwppKhW4oGuFWMzM+Uyfv4lx3jvq97He1/1Pj73xZduM3zl9DmZ2Ahe09Wd89u+7oZmQkVDRUPdFVRsRsVmxL0Odr2L+uhHZVudI2rWUd6h11algGo0yomWxFu0QgJmx8Zw8/PiTQ7U67Lu6e/5cc5VJ4NnvLQgOm0greDHx3EmEsI9y+V69oB1wQ5dY5QvCzZlrdgZOSf7efoMPPok8XveTfye99A7vojaxkDPZwWuu/3X+GrB/FLBznNdKajDtd8LH4dqGomNTj/MeKh2rN/9IjlOw37zlQpueprO5Ay9l72G3ss/gw8efFnp6b6e1ki9JcKRuCIE1gYkfUue4QJVcebwTbRNQtuktJqbPQTLV6ngDB4KZz8zs7kIBCJXyGdZKVwc/ubkunTL2xP5WxFF4ENjTW4ZtKpqU3bnaDzJl72O1o/+Cms/9mswt/uyln1B9CdSfJiWcoV8+WsLRL0sKA35BuAGdj8X3VTNuz7jq2hHKW2Tcq7Z95nXeKLNYw8fyHbvBh6RI1wxGrOzoR3foS8SmppnxdD3o+M9wggjjPCCwbPEy7WWLs9zWw+p74treD50WhmZHZCPkbbMHZhg/sAkc/Uewzrcuh10QlaPH7nqdX4qYLtO4usFU9msjq7umWDvN99HvLMpQb/eiSjIGJi6club2YUTGBzGGGQYrlAK3rX3Hp6a2sMTMweuaHmR0RijMFoRa4PbzjhcK5w38NgTIqLrdGB5lfnkGWJjxJbVGCnqo4hhJdqZMxewawwou3aH/x/+OntWLDY7HVT7+oobrHUUhaPILfrbv4ixf/nFjP3AF7H2//7cea/Nu1buK1pRbVka7vpOajWMgtUCNtrgpPPb65yZr7udma+7neYr9lzX9Y0wwpVipHAfYYRt8K6D9/LyKCXpdnHrG6hKOkgCz3MIgYS6Ucfs3V2Gb2rveff97+cfTu6jud4FPDb4Sc9VotKDfTjIRDnPzScfAe4D5zBJjHWhAVJpdLD/0DMz+BOn8d6jjSaOUyrNcWgES5duF7W+AXFEWmSMLZ7h7//sDJ/1zTMDG46Tp1hb7/HfX/KFfOOOoLp+8IfhyN9xuPt3PNI2mEpoidN6k6XM8hNPC7lnIo5rUXtnhZNgWSCPYk7c+FL5fcdi5neURKNqiL2KIwQfhiJn41L+zpVx9J/8Ke7el8H8vBRZQ5YyT1VneFlDZrBlu88fKaRjkxx+9QMAfOid7x0ce+fQSmGD5U6/yFFabQodBcRaJA+DheEU9Qtg55e8iEcqk9SCx04SbX+rPdBIWQy2Kbf1FsJ0h6KRd2hHXs7bkDrBOo83SWkX5JVG1Wpw6BCsi9rfFxZ/5iynx+Zo7djLvXMHw/s1sfIDYjZMqqAVCoXq9/AqJd0QEEJRPR4fAkeDFYtWoLS0DtZqMtlz6hS1v/8bAIpXvBHjFcVAUCSLTqJLWjabasywzKEXKx5+z1F89z7a6s+Y+54fwHzGqym0gQdfCYCemgX98MAPOuyfUgobJXS++NvkeP3J75WbU887bEQVUpuLwn34nJfb7DcVskoF73XPtkp9gDjp+1MrsJbi5Bkib2ViYipcO/1goyRBj4+XE3gAcbd98QPU38TEoCgAT3t4TOqsTAKONSl6ObHpDf52LQJupYnznCxcj3G2Nvjb6rFrWPDlrl9JIGl+eccHX+BU/54g0yw6aNoilbPpYPihY/QC8hT/RENaTdEUeDSGC0/CTM40WDot99MkHZWhI4wwwgjPNbRRpQ1EXI3IO3LPfrZ0sEXv8gqQKInIezKp7oqrt8Gb3TdO69hRWr0qoIiM4/CLJIPpkbVlDtSXOdcT8YDxfqRAvEokW0jya0F85wPw5sfKn10YjM1+5s2sf/wcbmVFXrewBMmVK9w/fOO93HrggNR51qJaG/hezq+9+I14D80IvuIKlnfLPXv5jUw+Md57bHH+BFGcROizxzHtubKrQvU6YGJQlVKYBWxWpyuFHbLE3ApXq8BYEF71hWlPH4Fd8wNLmWazJPJ97fraqvzTmx/Dhs/nWK2BWs1EHOi3u4PI6xSg/VXYNl4C1eklKntn6T79DBw+CHix7xxhhBcIRiOdEUbYBuOJGyg5vadzbonagb0Di4hMlNp2tUWxuEK6cwc+eF43bvt07JHH8N6hANsTMifFopNYHn69nsw6Vyr4+TnSCSkulXNUexsU8TTEsbTQFYWQcRsbmEIUvgaNqjXptE+SFoV40oWgVoci0zHvnTzER+OYz+pb4SBBM5VeB2iQpkMP3/2vYHpsL+4t/4hpt4Xgz/NNAYInFlcxe3ZigEbHcmvRZq42DlOTYumC4thpeahOTTdZ/tgi7AohoK7gxnv38nu/9k5efF8V4hhXWE60Lu3PuDi+i0klCv2iWiOPB5Yun37XLla6S1QixXp26WJer6zIsQxfvXqTyDlYXZVCJ4rQOoMip5IMFT63vAE6IdBz4tKqChPH/ODbVulaT6QUf3vX9g/+rznQ5Cv2Cwn7rpU76Tz9AVCwWh3j8HjM8uqanP9A0Jo8R4UgTrIMXxSojQ2KhWV0o4ZuNlBak4+NU/3RX6YK8MRKub4droO2BXS7uF4mSoCwLGzw3Pce2m08wW9cyQSECseHLENXKhLA65wsqytEvw1DNZN1MWMJRXvz+R3/jP1MzjUuefwe+5OHyu+9UhSFxfmYNNLkymDf/rcsNAcdCMmOHVjrB3ZDwRrHWUee9zXtML08sIRp5huspw2Md2RGuhvwEZhqkI5HoX11QOLfPBtjvBPbocr2AaQmSiQ0NRw77x3MzIj9Tr9VtNZA2VyyAzbaEvbbLw67vW2Xe956+iSyAjNWlwlBpWBujsp3fS8RjlbahO/4jKF3XQPj7j2TZ5bJvCiNGvsJVizA2DUq5y8LoZNG6cvzWTcxUWRlklOBxwRrKU3hQZlE7m86grgK3X5nwWjYfdVQOnjlajwXHoTrZPC3auP6hOqOMMIII4xw+bj9gQO017p4PE99+HT5+wt5Rl8zJE/7kvBDdcq1aASsc6wHsh0sFb9c/k35nP9w1wy/d6xHOy8olC7X5UZE3SVx3+fewrkTq3jvr+uk+dg9+zkdLj9di6ntl85EbTTp3/0d6d/9HQBTn//AVS1/zzMfwTw5i9+7B28iGWNHBh+U6UZf2eRBc2qQJaWUEluVbaCXz4n1Y3+MMjMDtAZq9n7gabc7yOJaXka1O6GGPf8z6TdW8eNVwA+I+iii8vt/gI8jep/1WWJb28+gy68+D2E7uKGJgvyW21C2h8ITHTxw/rYqJeNNYOysgtnruilge9zd+BveYx6QsRaQq1EtP8ILByPCfYQRtsFcYok0QjYCBLMVVdqbePAQTU1KCEocSTihV0Q3vgL/548CouLuP+R8nEBdZuR9t4uLEky7g19cpJcFxbL3ZLfchkpkeRrkwZsXooRtiio9WTklriLHnsHu2jFQLGsj/ylY6jiK3MHiYni4gxsfh6VVXjKxTpJuIQxrU0GYKwpo17eiCYje/H/Qd9wOHna+9W180Tf/OCf/6q0cCq8xacKtU/J9s1Gl9zP/gXohs/MLN7yUye/6Bo7oKe5JU5TW6EaD+5NLq1W7jQkJ6YxjdCUl6g3sJA7snOFr/t+neM3hChUUn3MJK+nHJvbS+plfATwHvvrziQ4fxKcpqlotve48CtvqEA+Hck4dBq4sSCr30HEAnjTZnlSaPbSTdqsHKM5M7Obh6YN4POd2HORlSZdWL6PoK9LTFOs93sQySZDlZbeENyEQqijw1tLOHI1QoNXv7p9nhUuqODTaWnQWiF1rUXmOdQ4dttP3CynvodcTVcLGOkQG7Tyq24W1NQmosRaT9RhrrwQSGGaPPdxf5VWNmIbHZdp7osjgUoPTEakvqNicuHV203v8iZOwf+9gu61FW0tUDK6XlV0H2Xj8nwA4ObObH/20b6fnPLFSPMQHg0VKC9IxsUkZlrHriN0P3sgvjP8gAA/u1vCR87fdpLEEH4fjHzXqUkgvLMD0tEzqNGr4joQ+qXAM6fWCb+PltVDfMVvl5uOAh/bppYGdjrWkXqY+Jrtrm23bzTUMJBtz1NonSNbluolecgO8+p9d/fKuFEqJpz6A3TIpsR0/kDZpUZfPB6C1xxNCgQFe85OD1773v0B3Rb6/lmDZT3Uoxfj8FN554osMwodVi1nvObAjGmGEEUYYYROaU1WaUyK8GSbcs+zZuSdP7KizcubSGUj1sSrdIMaJoqsnzar1CgqLJwIMPTsQGem8BVSoGo32hr849AA3rJxA4Vl78PN58KrX+qkBHWnm9k9e9+WaznFu/aU3bLPCzUWeXVu5quXfvgeOH9gPaSp2MmlCZcNAtT/Sh4Xf+viVLXSMsgbdONs+7/0eGdOYwsq4RimUMyx89F6yIx+D24IALwtjlTCe1ysrKA9n/sfHiPzmz4HzDt8cQykj479+F3W9SvyBD4FSFHffjZ2dHViBXueJpOGhXfb61+DnhUU3Tz99/oujYMtrHWZbBfw1Yu2E/L+xIeMsQI01L/KGEUZ4bjEi3EcYYRtYHWHrdVHyJgntbJHa6ipUqtDrwm/+DnphAT7rM+DwYZiYRAHZsviSiUetx3slqeqA6/UkbDJYtngUeIdq1KmPjfGed78bAJ3GQsAVhZBw9boUG32luvdgKkSRYrk6xlh/5juKYEq2I242eerdD4sS/4kn5AEUSNvEO379zsdQ5nM273Q6RpQXJeHkgdr+HbznPe+R7f/8z4Mjx8B7Tu69mW+6/xC/8d+eBl5SFghpJNsSG01HJ1SRfffBhiLPe6h+AGpkqKvzE923wu2eK48ZlQq9IQWC0QoHvPnJLuOX0Qh7z3zE9z3wzXjgZx55LzP1OvGuedlbrVFRBLUqZtcslea1td8lSsp8rc6rFUscuGPg7Z7/49P8+wdl2+6sxnxL8gyVN72J9Ttul/PnPcZaWViaSldBaz34aSPqASUe9NXgc5+wRuO2MHGgApE+9H7XWkdrjY8idLc78EEHmXhx4uHuNViTYnSwk6nX5XoM6nsfx6ih468O314uwl+jRXNSwK337SM/+RAfcw6LIleadrpZKe8+/BF44N7wgwtqcihUmIxAcfzGu/hNP4cC9kzE9KzHAlp5fN4b3gMwiSip+ypu57g7eoLfvCe8ZPIQx7cj3LVCP/II7N8PtRpqSgYlvlKR5VuLLwrpKHAWOsGzPhTDvctUZdw5E/Mjt8ox+Idf/hC84hbwHr0sKi4PtKIKU5XrVHQ25pi5/zFcS+5x0aHPvz7LvVx45Fx4B9HlfTZrkSo/H972Uw22mQVqLw2+712ez+wI2+PWe7cP+BpGfbzC0km5ji5GzI8wwggjjPDsQ+mhuebtQg+vA7az29gOO3aNsbYgYpzG5DXU4d7jGCIZh7wiTbUJ6zmfu2sc5xzfcNtnl6kjX1u5cquSEa4TzAU63rbUxbo+cVWLn/ziL+f4MyfEhhMwczuY6HyIn37xHA5P3YPrXOGE03hUktrOO1z3/Ovct1ZwtarYvACuUccVu/D+sWCXGIu4rq9w1xoXLCifnpZJKuXh0Efl89AqOviKglYLVjcg3Q0ozIc/ik9kvKzWNwZCHO/x0fWz/gEY+8lvRK+LteTaj/2r8vdOn1/TuX7N/SzdW3jRV8LaCW566BnaJ55BpzUad9767KxrhBGuAqORzggjbANVnRBLlW4XNjoceeIcM68WEpFqhejkCaLVFVrdAuMc2nu8gqWOKC973uG1kUbGvsJda5zzaB8mw0MwkNWRWGH0H0SdDtnZJaJ9u9B9otkYcE4SvgtLsmu3+Hg3mqXqnaFiVvV6FF6z2hhj/aPvp3HLLfK6PEdnmbCg2xB7mdak/dlwL9vuLIGs9RKsiaLYsRudRvzT7G3c/dfvxL0ksJBeyMU00vzPe7+MfaceRyvF2N33AfDhM12+bGlJPMK9Z9fr7rjkuTjVcuzOcukkUIrIDYohozVKWZSXUE91CTVMtWpLqq1wXiY9bCGz4n0SGUApqnPjl9y2i6HwiiJ0QpgLMe5DaBeObhjwOKOp3n4rHzx8OzeOjw86DebnArlNaWtEpYKZTfDrrbKYK8YnMHgilaFVf8CiUHkm78kybLsjbYpJgo8TVKslEzzOo9ptsUyJIsCjlEaPNWU72h1cu4NbXkFPjqOTBB/H5I0JkkoNPOS3vpgYxCN/iNy8pk5lHbF77SwVK8p+vcVEvYLFdUIoUD84FY9xlp2RKO5n6+usTYn64ebJNvGiIgLqkQSMggZTk5GnzeSr/7nc6hdZmdj8c9i3OElo/9Kv0czb2J/6N/j5OVHS9LpyjYVjLmoWJe9zrpxMK8z2VjVboQAXHuFTG6uM/UtR3g/rs+s2w9z+hfA0ZTvntSAya9AIXSl29eIvvt5QKjACHoo2l+M025jwvOXgfeChOzaJTDFuCRYAsENhUp2F67bJI2yPqbkGRSZdGGPTtUu+foQRRhhhhGcPtbEKGyt9v+hnx1Imrae0FmUdcXph8m9q1xhTu7YPpb9y9J/3niqDmkU3puDcaTQZWjtqkWK9kBrpVXuvr9f1CFeA7vZhmmrL5eKvkrit3/liOn/xq1QD4a6MoVEZY3ctFp2NtWh/ldSY9xiv0JVtCOfJHdiZmTKTy4010N2IqFYnfvvbsbffDkVB9OijFLffjpuehomJsNyhBVU0Go3qZaHvHiIsvUkJBXWvfiP5q78UgPgDfzQkoFKD5V0nqPWhMYAdjDzUdl2i/cHfs0W4V8ahMs7U7G1cOmVthBGee4wI9xFG2Aa92iTGL0tmolHUlKK3tELSbACexs/+IrfMr/KmP3qYXdoAntRZbmxJovjE3DTxLmmvamUZswQ7Ghf8pJUKkpKgOh5+CEURHnCnTqNnpiWUUinodrG9nMXlNje8dDcbj5ylYnuDUM08eL17T/Zrv83Xvf47OFBP+Z/vPM23jo3J6xoNXKOBis5t64Oc2qIkKz1QyzbQG0YU5nGE2S2K7KUnn0bFmmLPDfj/8V+JFhbwSqEfFIuJahzxsV138DeztxIrxdftElKlmRjGf/CH6L3+M8l0TPOHf/yS5+Kx7hov/egJuOtOALQbTCyksaaDIkeBcihz8YHC/jv3sP/oipyjc8tUiy42+PT3CzgFMgFyjf5vzahN1yYoJUn2l0ItiqiE7TcokjtfwT+++jSTZ1aY3iM+hi6K0FFQUzQbuDxH93rY1RZaq9KWxK5tQF1R+CrUhWBGaZxT0tpXq2FqNbE5MWFiSBkM4LXCszlAynsPKysSjhrci0wICu6//9zdr6J4w/dccP+qjYSJ2Uv7t8NmS5nIDgrGczv2Mn78IYx3xHazH2GsFb1qGCh1OkGd71HOcbAmLZ7ffucU334wBDLFNT79b+/DepiMNfRDHu06RONgUvH37ndUaCOfmdA9IJ7fgw6FPqI0ZWdnBYBVLR0HwIBUJwz/TBQsa5R8xsNkybAn5MUwt3+CuewvATi9czft1WOAQnlLLRwb4x0mToDswgu6EszdAatH5fsdN1+fZV4ugtXVlRTsKmny63eIEn821XweFodGbTWSnTgIK6ENtn69zSVH2Ir6eJWD4yNSY4QRRhjhhQA9JAopsmtsS7wAduwapx1I/an5y6sFrwVRbBhMHii6amCB0lrNyBmIKAo/cI6fHj2anj8kY1AMdRkqA96iky101dXytmO76CxvUD1+Epp1sqVV5r7ilSyfluXreoWZL73pihb5xJ89LOHDWrH3xXPMHJo+7zUnfjcmef8HKNIUlKZ6+hQz3/U6qquHOf03j0FNPnPV3/0jiCvYiXP4mRlcpYLauROiGFBMf/VtGGNY+/v3wzEAhS8chgzwWAYdAm7/gfO240J+8FcDv+cgnBMrKtVs4vs2rBewpPJjjSFifmTdOMKnFkaE+wgjbIOk3sBNRujIQJqwbE/xc48YvmL8JArP3Mt2wv670P4hHAoNFNqwPiUe0t2jJ1A37AbvWWq3OYwEjHhng+BCYepViCM4fQaSQKI6B84RN6oUnR7+/2/vzuPkqqv8/78+997ae+/0kn2FEEJC2A2IgITFEQVRHEQE/OIwOIiD+HNXFhVlREUUHUQUYUTFUUcccVBkERwgjBBAEEIIWSDp7Om9a7v38/vjVlV3J91JJ1TS2/v5ePQjXVW3bn2q+t7UveeezzmF+tpAGEjt7GLD6k1MXDAPLxInnQ2IZgpBd9cpZUIH1lLphVnfsc7WfrXY/YoU5pB3Q2Tnci45DJFitn0srE1POh02ZHTd8Mf3OfTQSQC4gc/th7+HI599GsfzaHxzscGkxTjgB2Hmv1+oCf6WSRV0ejHsA4/Qmqgi8rnd15SbPesAWtc8T40FsOHfpPh3cl2Sbh7fGuqiu58GOK2pkf9Z/BewlntXOmQdDzcex1ZWhsHqIs99w0k+Xz7oVTpyLo4ZWhOqjJ8jX8hC7iwclDQkXD7ytAtPh2VCbm5cTf3Rh5bq+uOHdefdeIwgmy1dfIniA5YcEaiaUngFQyTdhVOYthjkclhrcTNZCHzcbBpsVVjGP5eHlFuaWYHjEMRjOK6LEwRh8NnPhyVlurrCz84v3wFUxHPJF2ZsJAp/72zWJ1LIavcxbOvTNBXAd5zwglMxKFtoAGv7TlHd4e9w3cLJhU9mh23Hz4Z1wv1M/5reNTNg24rCugYZvOuxIV5NRT4Tlovx/cIVCje8aNGnTr6JRMCz5NIZcMOv49XxRnY/7wOoPzD8AYLER8kU6rO7viEoTI5ui1XSXM4GaPPeVb517TGHPa2vHnV8EoX/kuojljelfs7a7ELCP96hfZYMCilUxWqbIiIi40M8FaVje2Gm1z76CqxtqqC2ad8H2vsxFC7SG4j1zlrN9Cn7YcjzjkmVbMtaDIbamBp5D5uaqdC9vvd2oSalu2Nz9T1sblpiDFOe/l/ch+7FALlIjOjv7sFs6iq0Ztu7SL5xwHVdJg0QbAcgGiN+331w333YZIrYGWcUnkjYZ6A73Ok6L/8SlgjeE7+CxsbwPCabgVwW09ZGNruQRCJBvquLcMAWN8iRLQXae4+RbdOk3truAEFAkMvhDtJTbI/fc3srTqYHS9iXrngOHQww09wm4uGs6WIwPlDAXcYXBdxFBlBdF8FfvwanMaydHXEcXtyc43ObK0h5Dv/z5vDLPmINxnUKjStd/EKTDrtxY2+D1UIX8kg8ittUyJ7s7sG4YXDd6duc1FpsLkeuswebz2P6Zr8X6qTnLVQlI3RFItDdGZamcN0wkFcIkHrpbhrjEVxj+J+mw/nH1g7iteEUTQPQ3DfY1FchfdlxcOIJrIEg74dZ1QBBQO65F5h5SBMAHoa/Tl1EVdd2aj2HqcVjIM+hJZ0nZ8P35BcCZdObG3ih8UACYGtVIydGd3/QdPkJ0/jDT/7e28CyTwA1FTGEh8gGO5RGLDYIm2EC6ZyP73q4mQz5zm48grDsjjHQ3Y0ZQhmYXTlpQisDlq8YxKa8CT8vYH06DJhe9bZZ/OjltUD4Oa1//G/UTJ+EVxvWnXQIwuY/sRhm85bSttbjGyrDwiu9L+A4eD1d4WwFzwPjYLp7wM9j8z6BcXH7BmeDIFxf8cAoW7jwk0yGF2Cqq6C9PSyTkkqRM+UrMeJWRmB7+F6Sh4XbWiTq0hMLM5JcLDWd2/o/KZ7sLQmUy4V16insWsUmm36fTG+vN5Pc4hJ+VhYiiXAbs4ULC30P7Dtawn+NC/HebKm+nGiUhnRbeBHuJ/9B9xe+ED6QTIafZaExklPMeDcG1rzGJWsmEXcd5lcn2dPq6KtPOpVPTj6NADioex1XPXwbUT9LYBzisSiQ2d0qRr4dLxAOYbda1uoUGhfD2kIswTO5AZ5s+jQb0ImAiIiMH/FUpJQ1bN5otslIYqH4fZ+o7g32O31msFo83jmlN4EjFlEj72Fz8FnhOVo+DV4MWp4GIFqbJD6jhkxLJ8Zz8Kr2fhpC8oiFZB98BIBILoM3oRnjvIrB4A5hNvKOjONggmCXk6Izi0/DtG/DbdsKyRQm4haeazBhAVDCIpFZfAzO1Bnkp03tDZhnMhhryWbyJBLQ09pO6Xw92PGFw+3d+l7/PdkY/Gy2bAF3khXQvj0808zlCQo9wMwOs1CttdCTwSQykAuARL9+CiLjgQLuIgOIpVxMn26PzdvWkYw1kwksEcfgFjKJs5lCSQgIs6ILX45rOiJM2bQJ4nGcqiry+Tzp7jQVGzbhVlVALIaNRjDWYqZOKdUnJxLBxGI4W1vxXYNNJsNGntZCPk8kyBPzfQ6aWMvalzqo6ukKX7/weLGkSDqTJ+4YgsIX34sbuzmsJrwYEFQOnmFiCwFbgoCgvR2nYQImSrj+dBpyeTa8uoE3v/t4AAyWvA34xey3EAOOKHwUAQETYx5r0/mwREth/U7U5euLLyLtWxIu/H8Vu69X7eQzbN/aRXVXWDs63ae+XipiqI4EWAuNQ6nEMfFQqJ8DGMz3riwcGBQumuR9yGTDv+Pr64awsvJK07u9uYXms0xcxERvNS358BOc2LYRr1CSyBiHwDg43d34nV1hEDyRAGuJTgpL0Ngd/ouPv/g8mfZ2bGMjjgdBEGaCm2ImO/Qp22FKJyumMCuj1Iw0k4HVq6G5uTQrI5sLGwUPFgl9o4dXkfQWAtcjbxwcG5CL9t92gmeeo/Kpv0IQ0PGRy2DKlPBiTzYHb/5MOIKlN/c+Ids7bdUhRynQmusGJ0oxe6SfXKF+ufUh3QoMUH7E83AjBnIWP+/jvvQS/tSp4WeWTod1FK3FBjbct42BCROwayyFrgJ7zCUg7rhYoDriU5nrwrEW3/WIVOx+Fsmo4A2ttn1fJzRmeWRT+HtDNPxkJ0Ve3HlBJ9LnQp5OBEREZPwIrC3kFph+5WVGuwmTK9myLqwL3t3Zm3DhRvq+x4AoXWRJ7VxuTva/+e/p/X3aWyDIw8o/ktnwO2wmj82A396916uvO/V4Nj7+v2GlxYokjusS5IvlXvd8fYedNCss1bKr/cZ1cTe9Hq4+00PuhbDM5c4TUMNx+Ns7cf6+nGDuAaX4gLWQ6eqCmkrw04WxWpxBGs9bW4vdanFq2ksz1Jc99xwLFi0imXzjvXMsAUE0DoawIWwhycm6/RPpgiAAB0x7O3TngcH7MxjPwakKj8W9CartJGOHAu4iA4hE3N4iE8bguy7t+bDPdjbrEy1Mb3M2bMR9ywJwHNxal8jasIa7g8XW1EIiTg7YsGEDyaZaTE1VmIXrOGGw1/fJrWsh2tzQm1HseUTyOXw/6L2vMA4XmORaSNZRX7uBzbEKagy939qFYKntTuM4Dg7wj1MivLRiHYdNrQxjiNsGz0S22Vz4eoVAY5DPQzaPG/VKsdSXK6dhCpnCXdahMx/W+54aj+AVDjgcxxAYiDlhPfJE4fs3FekphbMsZmhZ5DVT+Q8zm5f/N7x50dSGUgZwJJHi0avP3v06ihwvbK4CxDq3E8lnw9r0jgPbe4g+/AcwkHvu7/Chi4e+3jK49V2H8vqLm7FARU1vNu/jJz8DfoaOrMcr960mY214YcZabE8PRKM41S5BrrjFGqzrlFoF9OV2tGFz+TDLOgiwNijU6ze4Qb5Q7sQQeG7YRLQwHdcpltwoBqAjEZg8OVxPTxryOQIbsC+abZUqcEZiOIGPb8JSQK2Jmn6vV+1BsLU1LArSkw4vNhkDkRjECwd4fTPc+304BrwE5Atp0JnW3oeyfQ/s+5yM7djFqcBxHCacfghdL7awKtZIzZSpYfPjSKRUV77Y0JWeHqxx6NnahmECWEjkAlLVO5d72qVYJQHhOK1x6fFiJPIZYvkMxh0jAfedDKFpqsmQtzEskNlVHN2N9fl7jp1gg4iIyO40TKouZbYPtY/MaOB4bnhaBLh9ejzVNFb0aRJryZIiPHNzwOybGvayFyrDGa7keog2pMi8Vjh/fQOlEuuOPZK6G9/L1vtfADcengdRXO2erzea2P0xtvU8ML2JfF5zc+n1TCSKE1gCPyBHEjBEWjbizz8cEoVzAdeFwCfd1gqTm8PSN5EwhOd7fZPo+p6HORAYzPOrsAtng+NggY6tW8sScA9iMUxDfZgm1NUF6QxgwwB73/deKjdqdsp+35GbjDDps8e84bGJjDQKuIsMIEmG5Zs6aSgEYTbXTccWKlgEQCwRBtzXr9/KpC1bsHVh6Rk3GZaZmNryCrQdAdEGcF1ef/11KmZPxaR7woB2NgutbXS091A5dyYAtr0DqsIa2sGM6eRffpWY61I6WrThlW+38GVWkcyRb98SBrCLQbzCv9mAUjug9T0BHS0duFd8AoCtVQ1w/vsGfN8dP/opja3r6L7kn/AnTsJUVJDbuBm3qT7MbHZcsr4LjfMAqI14OGEyL6+kc2RtOLUtUREngiETAFiyhe/Y2IQpdPmrgT0Ia7kRNucd/EKws9UpTwZKT7yKTC4gVrwAgiH+298CsH3qwWV5jT3Sp3pQv1LVEw6CzS8Scy2b3YowN6A4zdAxYYa654UZ+lD4YMNPd4ckcPKV1WGgHsAYvHQ6rCVuDCaw4UEh4BSnKkI42yGZxLgepqcn3HaTSaioCGuSpwoNcePby/hhDLB11Exn5vqXSBSC5sV67kWxSY30bNwU1qBPp0vjd2N9DobdGASFoHu/DzkANxLeF02F2evFxwerG54bPMOm4fQDcDzLutdqaXj9NfwpU8Ixbd0a/q2AIJkKSxgBkYY6el6FniCgI+sTGSRjZTCRfAdO4f8qPxLBsQFe4cdExu/XfN6miDk+Foi7wJKvwppHd17w0Pfv76GJiIiMCMmqONOq9vBC/yhgCpnBUJjRWeA6haSH8IiRKB34xImabhxn8AxcGSZTjsS4/4ET98B1cKtTu3/OYBoPgsarqD8xvJktlPCENxTH3yW3qxVj/VLCWfSwsKyrcQw2sGHT1WJZSxyCmYdQ/cUvYXt66P7gRfgHz8fkfNZv38b6x5+A6ZNLg01lXiVdeiVD8fzJ4LM49TOe2RAjfdDUMOknn8d/7m8wdeqA49yTCw7pD5xHMLEZMJjW7djCuaAT6X8BIp/LYxwnLC2zm4C7yFg1fs/ERXahLunxiZaJBC3hV9f/m95DfFuePIaUE5Ao1B5PH30UAabwvedgImEgfsqGV4j98Y9k3vY2bE0NWdfDxRJYS8TzwoBpZQU9qzYQW7WGaOMErA0KsVIDnovt7MYUa7s7YbkZm0qVGjx68RROIo5f/HLbtInEL34BhHXait+b1jj0uFEybgQL9CR2cTBpHLqMh83mwtg9hLXW+pQLmeUmwhIMgGd6644bwhl6EGb5GmtJOOEXeLKQye4ZSk0Ma7yBM4QHMq/K8Net4WtURcoTcI/mc3htreD72MCGweOCKm///9fYt/5fv35AC84NH+/pZF3Ta1Tk8zjZbJh5Xmxa2pPGX70Gd97c8Dk9PRCHRKJ/bb/MrFmQ7z24zAXg5cPtyYbTN4BwZoNTvNOGMxisMRAUGoBmswQdnTh+IVveQr1jCfagZv0eMw7Lp85n/itP4dgA4+f6PVx98pGkX3yJwDfY9vawfIsx2K6e3oWaFsK6J8Lf3d6TS4uBTHt4oycDJqynSPEzKKo7ALatBCxEKwcf68nXUX8yNN5wMxkniue6BPE4Nh9Q829fgSCg/bOfheYmDBCpSuHQgwvMCfb8gHR9BxR7gLX4FfjGkDUeOddh+bJN4fY9Fhx4BuR6wp3lhd1vZ9bGydMFQDYoLD/9+H05QhERERkBBosfOm7fHkcGnzg+MXpsDBsow33EMR7p9R2QDf826VfKV/bTYktllJy9qOE+FKnq3m3KAn5VmJznGLPD8Xl4IcifczCVJy2g409PYzZuxB54ILYmPHcP8+oKG3Y+T029w9Z037UXfyss09DY7zwmn+9/7rS3gtJnZbHFc1FjMJn+PaNyHa2lUZmxci4isocUcBcZwKQp0zmgYjVrexyMhZm1WU7PdoINOKiiC9cLA86HzcyRfeZ5YgfNCatSxMKazrl4iljex2ltxU8kiMTCoLzJ53vLShQafRrHDRtYum7vRDBjMOlMmA1fbKrqeVBbixMLA4UViTib4/FwqlmB97fnAXCrJ5W+Xz3H8PKEWZz/tquJGjiiJkGfCnn9BT4pm6cnn8M4BsdAPPDhfx/j6aUrCRyXhpMvKDV59TynX8XjeE1vSvX6TJ50mH5PrpCV75qg1MSwwx964LyxMoO7LTwwMm55vrDXOzESvqHSWixBeJEhlgAssar9n+GS6eotd5Lu83uR5zikct14fj4s9RPYMGug0LSUlWvwnnkWA6S3dhM/Zh7d3f0/4/SBh5I0Tvh8KF3gsRh818ErNNMxntvb0NMWgu19Sxfl83itrTirVxPMCmdoYB2CfVmOwzjUtG/Cs2FfgFKppeLDxsEWegZU3nUX3HUXXW6MjhPP6l0oUdPbHDPfVbrbssOU0FQD9GwrzEPu81jnBkqB+GKAfhemzzyIjuxWCMID0nw6i41Ew/UWppQCmHw4fyMAOp30YKsb1JqePAEOYGj1DalcBoPF+A75wBBLRUhUxGiaVrPH6x5Rph3X+7t5ereLT6/Oc1RdAgPMSOlAX0REZLzoG0DtmzvR09U/6OiRAQwRenBsmZpKSvk4LsU5CQBBrjxBY4BIxKNuUiUGQyy5b8JiHRMPI5VI4fR0YYBcLCxtGk4mNmH2N9D3IlDlkQswmzfAn/9Md3UtuWOOJgyjF8rGBAHeAw8SPf0welPc+57zuVA9EycaliHF88BxSr3dgiDAKZzL9/29uzpC68wkxnPo+tsGZi5oZiCOMQTFc8KqqvA8NAj6xSQA8h0dYSC++IZFxiEF3EUGEq8mFnNxun0w0Ng4gW9N+itkw+Y7xWBf5cGn8cLNlzPlt/8DQMWXwqaMfz7mbE6eF4EDDuj9orEWE49jHYcgsARehLrJtUQmNoZlQXK5fukYnW6Cz/1yNR+q3c6Cty7qrQGdDq8ep5w0G7anaS5kJZueHgyQB76+5ApuSIS7d4Rs6SAla6Ezv4vsDcehCxeTyZQanaYjcdYlG7jpyGNwDfxgwbbS4i4QJ/yur3bhuNm9teT6HtwWDwE8Y4kXjicq3KF/8V5/bJ4vT38qXMekw4b8vF2xGIhFw8/eGJg8qfSY4+4c8N7X0j29B5D+QBcjjCGSyxJMnAiJBBYIclkca7HWEm3fTvKunwCwdebR1ByzU0yaTG0zDV/6UiHIDt2Xf4SAJgxhE0+6u8PDuUwWt6o4RcJi01lM3PTriZqOJah+9C9E/uMn4DikL72K/kVeys1Q2afRlWv9HR/GxDx86+Fkw6PPSJAn1rdUYb5P5oUT47DILxiw0WvnBkqH9ltfgYmLwt8nzIMNy8KH4jW7HXGkPkZ0bQZrwsPoSD6HsYU1r18Pcw8svRevMIoJ1bvInB/EN07yeM/vMvg2QmPcpW+Wixdx8KIRqiekqJ80vqZKT6tO89EDJmOBZGTvm2yJiIjI6NI/w733uGjClGo2rm4t3Q5w8IniE8Wmt+y38ckQ5XPYbJ8s8V2dx+4hx3U48IgpZVvfQKw1mJ7eJJ+m+uL4DbZf2lrv+UjilHOpntcAN/2MdHtreEIXBGHCmw1nZSfu+Q2c3vecuHeDjyY8MJZ8MhUG24slZzvDWb9P/uUvYVwBiBvDoje9CYBs93oi9z6MAdqnzoUFlw34noLqGojHw/Vu3hw2TbXs1Ha4WNI9ANw9SLQTGUsUcBcZhElUYTq7MBhM8wKobSgE3A1Ew+7ZvolwzbH/FC4P/GFuWBctqKqEzq19GiTSG3jv6uKlDocMHk0t7TTFIng1NeG3kueFy+fzRDNpplXPotPthmwOrCXo6CRXGb6GYwyv1c+guZBFjoUuL0bW8ch5EY48NQzm/WTF3wjD4qH2XRyoBMbFGgfTkw7L2FiLcQ1+PiBqLMbA1KresGo+CCgW7OjwIVJRU3psVirKqz2FiwG58DOwkVShMZPdo+vcEfJEipntZSr3krI5YtWFCwQ2HI/JhIFas3VrWV5jT8STUdoKjS8TFbGdHjeuS13HRujuhlgs/BQLQXKTz+O2tZaWTaWL2df9P2WbzoWzLAqCmtpSZ3mTTIaNVgkIfItbzILo0zwVG4DrQTJJNJnET1UTKTQANaZ8B1LTDmqgsy38W9ROrCy9lS2HHEGyZR0OAblI/3qjTjyGzfrh+Avv3LM+vu2TbWGc3s/E+iSihQC8G4W+u8XB74FcZ/iemxb2eSCAoHBhJNfF7iTiUdqmT8eJRbGJBMGBc7DFGvvZLBSydPLPv4hjZmOwtDXseZPT5rlH8ZcJKwDL6m1Z2u92iVgfbMC8IydCZOzVZh2KoKedgKmAJcgrw11ERGS8cBxTOgVz+2S7V9f3rwGeJwr4ROkp9dmREWTLq2HEqnD6YvZR6Zd9JZ4Ijz9LpVUKJWyKrdcK99L3ohCOC4suoPljNWz6wZ+gox2SiVJMwfgBc758Lj21szEbi7OWfYLCjN3qCSnAw8/1SYWylkx34RzmtddhymQAcn97EQoB92DtM0SfeQSw5De9BgwccKetDaKRPs3HLAS2VJq0KOjp7m2WqpIyMk7pW0VkUCbMfLaEzUsn7pxZ3VAZwzPhd4hjoK4QHIwGlsrf/IbOmTOw9fXhVWDHgWgUrOXmP6+jK1nD1+dW49TWhvXZe9JhMNTzCpeEDTdmE9zj5MPvYd8n19aJVxFmYucDJyxHA2HGsuPSEU2Rcz0ifQ5GnFiKvtHEjvwuAqOOG04Hy/vkXQ+v8BnUu4bn/uHF8D3MPqW0eFsQFrIIgIRrcPp0PrdOsWkq5INiwD1WOKYwe9YNvu4ASLcBFmpnDf15u1DduY3UyhXk5szEGEPOGg7+938MX2Pe2WV5jT0RS0RwPQeLJRIbKOhqqMh0Eqxfj59MFg5ugnAaH9BV1wReHIOlM1nIZN7hM46bXCkEb4Cqq64q3d50/kV4i48MH7OFkLUBx4Z9AIrNWE0+j+3uJrd1O1EbhMv2rSlYBjWNFdQ0VvS/03jEsj3EghzGWqrSHf0erjr+aKq+t43Xu2fS9vHrey819J1JseXvlA5orR/2IghyYW16p09D1drZkKjeeWDdW9mTKZFVDXW89uAjxA46AAD/heWUmhrZAPJ5sBZvzWqyqXCZJ9buPpC/k8qJ4Q/Q0fYkTqHRa9qN7rsuUKNAxqktXNpzyJudL2KJiIjI2NS+vbsUD8xm+s/BdBxTaqRqcLAYcsQx0X07V1P2Qq4Dx/NK5TCDTPlKyuwPsZpK/KpanPbtADiZTQCF0q2GwNpC8L1wfoAtNfZyF74Td/YKjBfB+j5m8xacDS1461uIffA4uqMpbCFZy9lxnvHhF5P46efpnDEdEmGw3okU1tuTxi/EHOxBB/DCCy8wadIkvK3rCr2+LG7P4DNDjeuG5UathQkTSueiNp9n9Qc+AEDte/8Rv6mh+AyM4u0yTingLjKIb7z3UFq7c1gs8ycOEHwDmqri1EYcOvIBjjEkI4UAeOATBAG2WGO9qyv8iURwX3wRx04KA5ntHZhYYSpbIlEI/DkQixGfOw3zXJZcUJhiZi02CDjgoPBLzcfgdndRzG73XRf/8BNwgCvn9palOPOQJn79yvrS7Z5dZHpGbJ6KfJpMR3uYiW4Ax4NctveCQ5+M3625fGn6WH3U9Ls4b7C4FOPr4Rf87NoKPnlgEwB7VDhj0uHhTxm52R68J54gd+IJ4R3pNBQznrOdZX2tIelTx2/AJpfGpTVZR0WfTu/WD8IsaWvx8z4xP4vFUJVP43hQ39w/aF3n9TYaCoC2WAXVmU4sEMt2Uwwm+4HFKyZbBD7GC+8PDDiEPQWcWAy3s733T75mBUxdULaPYyeOS8u2HmYWgsmJzA6B6WgK3Bit+XosBlMYWaTvRtm+qff3INenU62Fo/65t+RMbJCts2szpY08u/vAeM2kJmLZdGkGBZksxZoyxg966zYaQ6UbHij/vyMn73a9u3JgQ5yXknHIZIg5xVz/8ckEWXq36fH7OYiIiIw3fUs1FhtjFh1y/Aw2rmkl3Z2jbVN4zG9xoH76fh2jDEG8CpOIQLoQUB5lGe7b2qM4F30Okw1nj0dmh+dKA+fDFC4CZduBsC+ciSWxbjhD1zqGyLJnSL70HFz9KWjZisPOFyCK5xe52onEf3wHmbPfFZ5nZsNl/fr6cIaz6xJEo3R0dLBy5Urcww4nf8bRYQur1zYP+p5sMtFbUmbDhtLsc7+1g67nXgCgu/Jhqs87s3DKapXhLuOWAu4ig5jTuPuQcGADTmyuYlvGx/Uc4oWA+9NUckYQQL5Qc833cVethniM7Vs6aE3WEHeg9bUWmg6dDZEIxs/Dtm1QWQnW0v3cCiafuJ3EX2eG08isxToOk2fXAFDRPIWXvSoOLWQf57woddVhZnOkovdL7cCaoZeoyDsuXW4Up6enNGXPeA4eDng7Z4i2pHu/5LdmgjDNv8DBEClOm/PCJkTJ2hhzq8NyPM4wx7/aKycQ+FtKRzy+cWHJV4ZtPAYI/EIg3Q5wUOI4WC8aNtgxYRaEoTfgnupswysEo+fYHg55+8E7rSLimFKFQAfoiiaJ5sMgfcbxiJmwQWrpT1Msf1JooOoYE15AisVwG2K9DUiBfPs+vkjhuDQle5v02h2PVJsWhD/3PUZHrILqTAeBcbB9pwc3L4QNfy2usHBca8BLlDLEd6liImxfUXj67g/4vWhhZkuhmH6GCMGhR+PbGNHHHydobQ0/4+Uv87dPJCBWC8eftftx7EIsGmPi8TPo/HtLODXaGb9f89X2NTYwDYCo6dnN0iIiIjJWTJxRx9q/h4kWkVj/Y6GKmgQVNQm2b+ooBdxhkONvGV4Nc4lNSNG9PTyOC9r3YiboMDIGgskzSrfdVC0ATqGnW7iM7ZPhHhCprCst77huWM7TgHEcnHQPjmcgXg1sJiiE80zfBKNibtAhi4mufQHa2jDWEuQL5+2JeP8Gp9aSz+XInzQfEuH5fjCvfyD/6T+twFqIxj1Mdw82EcYmcJzCmwzw58yk48vXgrUkXlxJkEn3myUtMh6N3zNxkTJwcHjX5PCLMxLzShkUuUQq/BKqrAivAMdimI4OkrfeimM8ku9eTI1ryf7tZXjzIVBfH2YNP/ggyT/eT96N0HXk22HJV5n86k9KATsnESfSGGbEexGXztQULv5TDxZYWFnFFW95ZzgWWktjrHRzpIDi4UlddBdfeIUa105XVxhchULAMIDpx++0+B3vWsDmlevBiRCnrV8QvT3nkw3CzN4NhfvcuFf6vnVj7o6r26+q0h3ENq0j9i9hfbrVkxbAu84o4wtMhnwavKHVz05URolXRMGGJwIDqe7Y3OdwyoZZA4UyPjaZpPjhBoNkEaQnH1Sq5t/lxajOp0n5YVPdbmtKFx+CTBba28OEhEwGU1sb1uArFSAMl+uZcTBuT1jyKL9o5+2jrIxLQ3p7sSAL0WDgab8T582ms9Ck1LEBnt9nueqpfQLuUGrvM4R67OFyfYK2ufTul3cjpFNVxAtTRDM4+O++gG5by48feZKP3flvAGxO1haGU4Zpsjag8R1zcZOF/WsIFwbGKqeiHkp9cnWgLyIiMl5k09lSIktPV3bAZXYsh2h0rDDyNC8kfshMeta2goHIlObhHtEeiUYh01Pcrmy/2RbF0kZhsD1ksBDrnaFsfRuWfAWsFyHxpoOYvTicnW36BbL7bLuFX30MdHbiFKtpFvt2bd2KTRXKwHZ2hhnqPT2QsTA1nIlu1m0orc5aS65QlikIAmxtTXj+GQRhnMMY6O7GplKQqgADfmUF5PMYE6Z6GWW4yzilgLvIG+A4Bi8afgnGkr2Z5EfWBVhbDOblIJ3BvvQKZtIkOPREfnhUIzXuelbWHQPZfKEhpSUwLj1ujL/XTed3M9/MPwJ+Jl8KuNtsDgrZ4sYY4sZSbEDq5HyKAcSM3xuwdaIxqmIuXZlwHSc29dZZ31FdXQ1uxyb8TA7fmLBxpu2tJbejjavawAlL3HRT1++xU5qrebEjDFCeeGjh4KjPscBwJ5FU9rT1u51Ktw2y5F46epBGM4Ooa66irrlql8vkcfDSmVKzTZvNhqWKgG43QrUbZm2bVGrA50fdLD5hMDqRzxBEvFIMPdrVAdlsmEG/rZXkN74OWLpPPAnOPKO3aWouCMvvdHay/fizCM64BCgc9O3Lv6kxJA85Gp7+a/gyA8y4ADCeYUuyBjefJcCQi/W5eJGoDRukWguRKsgUmuOaIV786RsQ94cQHDeF5qiF/wuqOzeWHkpFHDrdsKdBxovD3DMhXjO0cezyNV1wo9QvmQuRwff18cCpaMDZGv6/F3FUl1VERGS8iKdiOIU+PrHEwLN9I9H+oRBluI9MTq4zTP4CyAwh4WUEqZlYzcZXWwu3fJw+M2+N09s5NUI3FgePbL/zkogpNIqzYeA63jQTc1RYJz3IZil2k43RzaSFcwGoqA3PfVwC6OrBBuFnZ40NA+ZTp4bnKLkcVR+7kq6PfYyguQlbnYJ0MVOld1/wc354YQAwPtDVEQbpI5HSLOiwB53tncLuOeTyud5SMsW/n8g4o4C7yBuQrI5z9NvmDvCIxQlsWB4GwPPomjOPoy6eBnQDv4TEBOa8dQ6PrYngFb6sjOeCMbjG8OWJYWA90toWNlc0hkhP/0zcqClUSS9817mFL91UpLehZHJCAwnvdRL5AAPMTA0eXIxd/DF6ggQv/8/PmFOYImYcQ8Qdyn8VptR5HeD06bUsyVWBhVlTaoofC64XBu+9yPBm3m6rnEB9x1aKn0Z1ehjqtu+hfLKSmu99r3R76xUfh+lhyQw3FsMULszgDXxi4bgxfEptOwmqaksnF4n/uQ/vd/9NYAztVY29UxO7u7GxOCYRD/sMbNsGvo/1AyL0HvS6EYd8dt8eTAVz5pau2dj4wLMAaupTuFgqCvXYt/bNhJ9wAJx0bfh7Rwss/XZhZUMcd7QSugtB8yFmjsdLDYsNHROaqKxshvYM+YpaXqqfAVja6iZzytQ3DW0Mu9OxDvxCJle2Y9fLjnGVtXGO3vrr8EasGjhhWMcjIiIi+0fz9Dqap9ftchl3h3ORdNfoasg5bpiwxCkw6mq4z14wmdkbby7cMhDvLV9a05iiszWN8dMc7v2690nO4tKvxhAGsY3BOJBsbuxdzM8CYbzAGo/mmf23dyeaIHPye3EShdI1gY+1FrdlA+QyOC0bMHWVmHQa60XCzzZeyIJ3euMFvl+Y5WzBx8dUVYWZ7UHQW4w+nw970RWC+8RiBPmgkGxncdRLScYpBdxlVPnud7/LDTfcwIYNGzj00EP5zne+w9FHHz3cw9rJ+p4IW5wY0a1bIZHA5vL0xCshHoH09rCucqoBx2RIfvnf8FJJwGI2b8HmcyTzGSq2hIHCdZ0uVTd8C4yhJVYHH7yw9DoWn2LTVIcAWwiS9svPSDUUvussAZDzB//Cc034JVmZ98PpZ9biOA5u164Cd6U6I/2nZtqg9FB3RyEAaOyuG4PuR/eccC6X/Owr1BSazcSzI7/G87ZYigmF3y1g87kww90YggCsU8hwH+T5sUSUvnkLxs+GB0cYPD9bKMNiaauoY2JPa/ictjYygQ/5PDaXxzhOWP7I8zB9Zj7E4h757MBTdsslEgkIomFRnCASHXghY4nks+SMG25+nYNsu/m+Yx3itti8AFpfCX+PD9xIeUdb7/kjjen28PdZh1E3N3zdrnglVx37TxhgXmWUjwxtBLvXt4SOM/T+DWPS9OPCHxEREZGd2LDVjYFoLErT9JrhHpAMoO6EuVQeEs6Wdufu4xKW+8KCDwD+Tsflc4+ayvpXtsLKBwd9qhMrFAO1FmsMkfre84+qCZUc+vp/gQUvUQEc1e+5xhBmlueyhb6lPq1bNuFPagZr8auqmHP1qTz7UrisDXzo7g5fjj7JSBYc18H3A8KpuekwMN83+cgNkwaJFi4ABJZ8Jlt4uikm4ouMOwq4y6hx9913c+WVV3LLLbdwzDHH8K1vfYvTTjuN5cuX09jYuPsV7Ed/aXVY9uYP8/XqaowxmCAgFk3CwndBy7JwobrZUDWVRyvvYWb7BmrbNlNXCP42dG7Bi4ZfYhumHcI33JmAYWbc45w+r5PBxRRykStwaPJWAlCZ7J+xu2RiNWs7w1rdM6oqGIxjwgC+CSjVmDOOIbrhtYGfYIBS3bn+QctkdYLO7WF9+UikmNXu0TQ9rFcdSwzvfz+ZeIrNFfXUdIY16tKRgUuUjCTPznoTB256FYAAQ6RPZkHKC7czAJPLDPj8xrlzWEVYUgYgd+RbsJ3pMOP9mUeJdYZldaZm23CzYfZ6Pp8LSxplMph0IaM9CLBBQJ44xb97Jr1vg+0AzbXb2VC8qOAOPFPDcTwa2zcTKYwr8cLfBl5ZagKFDXjoJWW6Nvf+nhliCaJsGrOhJdxPZjmleqJuoYGtBTLlnBjQcBCsLhy4D1LnXkRERGS8iydjvOntBw/3MGQ33Ooa3GITqujIT5DaSdPg29ikOfXQmYEthTt2OCcx0UhY2rVwvhev7i0X6VQ1kZp2UHgjtXMspHFmHeuf97GRKBaDH2TwO7bhrGvBGnA3bcU7yMds2ICprg5rs1dV7TSOwAYYx+BYg+s5+Ns7wlnPsVhvhrvrhsl2heQra22Y4e44hcD/0D8ukbFEAXcZNb75zW/yT//0T3zwgx8E4JZbbuHee+/lRz/6EZ/+9KeHeXT9zakzrF4fwXZ1YSIRrB8QTcTCRppVk/ste+qV/0R7tobtN13DhPXLAajK9dD07vAKsY8hHQBY7A6py++fUcv7Z4U5z3XrtjEz9nD4QGJav+WWTK0hlw6/6WLJwXf7YmMTvEJz00gEPI9czcQBl4/EPHLpgYN6NijWQjSl2WWO4zBzwchodnNIVZ5MIgmFSjJ17siv21isRVnkrXiZYGJ4gOW+3ntRZLAalF62g62VDVT2hFnfmcOXQHW4/VT95d7SJZOka/Cbw20ok6igVLMIA9EIpFKQShFr76CYTx9LRPd9hnsySee1t+Gzi4sjjtNbDgewuUGCztEUpYtEzhC/CpsWwLYV4VuunT2kpxx1zGQ6/3cTORvjyIOns71wv8GSKFzUqo+VcXqsccBLgvXHfQ13ERERERnlcn1KqvZsG75x7CuzToSerWAs1Mzs91Ak4oYlZTwP4nG8SJ9zllgFzD1j0NVOmtXAlo1r8Gsa8WfPIh+J8OqWDpyIh8nn8YyPOe7/I1j+G4gnezPWbf/p0kE+IPnlSyCXh3iCrssuCc+g+ma45/P0fZIxPh2VNdhkoffcK6PwQolIGSjgLqNCNpvlqaee4jOf+UzpPsdxWLJkCY8//viAz8lkMmQyvZm+7e3t+3ycRZfMzPLxFgfHWnBdjDFE2wc+QJhas5Ge1pd5pKoGuz68z3dcmHUSAMZaEi5gYacCEX1qppto3yBr/4Br3wBsv7IvOwisweBT/fIyTPdCbCKBBdoOPnLg5YNCSZsBipgsOH7GoK8zEnxgdoR17/sg6aWPggE7bc5wD2m31mX6pgdYtm5J03jvI2ANQXtr6a9ue7oHXkGimsr3XoTt7MI1Pm4yHnawJwwAF/+KjufScfm/AdB973+QKjTP9a3FyeUxXV2QyWBtb+B72tx6Vv5tM9mefZdV7TjFLS3ANQEDbsrWho1RC3XMG2ZOGnyFxttlU+Cd1EyDxVf0uePR3T6l8X2n0fjWpvDGhCoeX2Ww1pLH0FMoq7QtW8a0D+MAQRhw9/f9rAMRERERkX0m6FNbPzvye27tsaopsPhfB3zI8xzI5cKAu+8PtYVU+NyIS+MZp9Dy8rP97g8AxxZmSWd7CExhxq+lVIPdAqtWrQqfkLf4M6aSO+wwyGWxES/MaO9bw91xwHNLTWDxfcym9VBbAxYS61pIHuQRr9809DcgMgYo4C6jwpYtW/B9n6ampn73NzU18dJLLw34nK9+9atce+21+2N4OzmovoLA5LCVlRjHCUu+HH74gMtWxLqpiKyibfIBbFv1dwywoX46xaWN55XKthj6f8sa1y31e6w8zIPWwgM7NIFMVSdo2xRmB3iRwctnOFgsLt3RBBM//wWyp50KQPzQdwz8Po+axgv/u7owtpGfId6X4xqcyVNJn/3P4W3vDTZzcaPQuCAMdMaqyjDCnU2dNRH+Wng5oGv6QfQsPg2A1A2XlwLmZsuGAZ9vvBj+gYcS4GLJkTJtdNkYFoudOA278fVw3Y0TqPE2hXX/ezpKF3ZcW6jdV6jXH5hCYx3yGMdlwqQqNr8ellqpn1xJLuPTujE8MG6Y8sY/k4q2Jzk69QRrswsh2YAXWTjAm3Tg5NPJvt4CxqHxvPcOvsKGeYVM8NRejSd5ZBOZ1W0Yz8EM2sSpz77oxmicVk02kye9fF3p79WRL2NNGeMWpp664I7dGu7JI5rI1ITbWnTy4GWyRGT3GqfVkEnnwhJ4o7CvWU1TBY7nsGlNK9G4R+P0GmKpCOmuLIawWXtFbZLa5vD/ipoJ/f/Pb5hWTfvW8EJ1qjq+4+rHnIYp1XjR8Fiwqn7gBuQiIiPGhINhy9/D35MNwzuW/SxakaLyk1eRfesJEI3Doeft0fNjk6cQdGwKa6s7Dlgb9uPCwQkCSFTh5PywzKUpzGi2FuJxNm7cCBQKcF50YdgotZjJHov1BtehN9vd9JakdZwoQSYPNqB61kIitdtx68fX309EAXcZsz7zmc9w5ZVXlm63t7czderU/fLaPSTx2U7+298lcvhhWOMQOfqEgRe2YXbra7PncF3l1QBMjhneXXh4SkMFqfVh0HLOtP6NGo889UACP8BaiK69vzfgvkMN75qGJB2Fk0nHG/zSuMXikGFCRXgCFv3DH/GB+cedNeDy1RNSxCvCLuS7CuSPTH6/iwSx+Bv879CNwMI9OwjaUzOnT2BTooaKbDcZL0bgepQCupFo6d14qYEDyNaLkSdNeOjkgXHwbaG5Taant7P8yhXMS/wFDPx+UhN1AJ6HjScwuRxEPKxj8EwxCyJc14xDmplxyD4sGVQxETrW4ZkcZLcOulj65HeRoxIAv24X2eNv8O9V954D6Xg0vEhhBtuvDvwHmHVyeFAaiTPbC4M5nQ+8WPp7tZYzw93PQD4DWMiNwsjZEFUeN5nK4ybvfkER2a1Zhw5cNm60qKpLUlWXxCmc6Nc1V1LXXNlvmcraBPOOmTbQ05k8ZwKTR/4kt7JpnllH88y64R6GiMjQHPJeyHWHCSXuyO+5VU5O40SwAdH7H8Qmk3Dlnp27tLZl8B7/X3KnnBKWigVsLofJ9GBeWwuxKmK57aRNdf8J68W66wZsPggD7UE445lcNiwxWgyyBwEU+3xRvMsSRFyC6krI52n819Mw6x8DBv4eFhmrFHCXUWHChAm4rlu60lq0ceNGmpsHDvDFYjFiseH5Us75HkfUpaj9/TKcZ5cRAI1vG6TGmhMBHLrdeCmzLOr1Bq//37sX8f/ePfBTI7E+u3C6TwAy13+63ZaWtlKzxo5tg5QbIfxuDYjA7AXw9yeBMJM64Q3+X8XhJ4/Os1Q/MORJUiy/Ey/UmBvJntoEB6U78axP3jgEnotTaPseTJ6FaVkNgNswYcDnu5UNQDjTIcAFm8chLDvS/Z4PE3nlBbBQdehkYANYS3MF5B94EHvQQWHtvomF/c1xiJEBsmE5mv2RFtkZbuOTIi9CrGbgZYwhR+8Fh02bDFP24ZAqj9/N2r14+LMjv7f0TqScH102XbqIh5/e9bIiImPIpDn1wz0EEREpNy8W/oxDkboJWMcJ+6w5zk5NVXfHOA6mu3A+YAwEASYaBRsQmxkmrji5bvCD/hnr1vampZlCLD6fh2wG2tqgsrLfsiSSkEwWAvNBeF7oeYWgvMFEXJh+/F5+CiKjlwLuMipEo1GOOOIIHnjgAc466ywAgiDggQce4CMf+cjwDm4A3dkKzpvp0hFN4QU+WS/CwVOaBl74sAsB+FfvHs6aMQUDJL3Bg+KD6/MluUNN6uapdbzatjFcd+UuDlgMgAPzj4T//mH/u8eY7ekawssJ4bvL5UZ++/QDa6LhdD8LsSCPF4mU/jZ+XSNBLAkG3MaBt7VI1KPK2YiPh2eyGBv25wGLP/sQ/NmHAmDYCkHYhNVGG4j97EfYnm6yjofN52DaVAgCXC9JrlCIiD2oKbjXElXQXZi9kRz4osKOW2siWcZyLWVUEQdT6AFVGyvjV3F1n6zvPTwoFxERERGRkSFS30z7NXeABdfxYcLcPXp+bVM1rRMKyVLWgjHYVBIiHsntYezAbNmGmZLFkArPMyGsx15goNSyzQDWi9Cv/pzj9N4OAggCgkgUjMHkc5geNUyV8UsBdxk1rrzySi688EKOPPJIjj76aL71rW/R1dXFBz/4weEe2k5M1MGNOET9PJ6fw7EBTvWu6wxPcl9lUuqJ8EasDli8Zy9afwBsXRH+Hu9feqZpRh1NM4Ywfdj6OGQKzVALjIOT3LOhjAYN7mrWBDUUI8X7JUP7DTpylkckyOEAJsjjpZJh7XjAvnkJXRNngrE0nnLEwCswhkMS95dudvvVpG24Xb6UeQvFizaGoFTXvLG6k42Oh/unh8jEKqh99C84mTQ4Ll2fvRFb/Pz2Rwn/WCV0F5rtZFoHXSzBdrKksBimTR2ZdcwdenseH1ZTxqwdp0+Q3Y78i0giIiIiIrIzxzW4rsEGPp6750lEiYooppB1Xspgj0Sw6TReJJxtGz1kEV3RGNaENd6xFvwA09EalqHp7ILKCnDdMCCf7oHt2yGfx33+Bfw3H1cqV1OsAe87Lo4NMNtbcde1lOnTEBl9FHCXUeMf//Ef2bx5M1dddRUbNmxg0aJF3HfffTs1Uh0J4sk4XnuemB+W23D9HDi72d1iSSiWXre5XS46oLo50HRI+Hv13tWqd4wJr2KnKske+mYwhqC+mYp5Iz8YvacyQZww7Bm+t8Duj4jxG+NGew+0DNAwMcExZxwMwOsvb6F71nQwUHXwIPuEGw2znguB2KTbRpKw8WQs00mGmnDdXgRO+BwAqXVfI2nzGD9PzE9jrYPJhWVoHNdQSm3fHxcstq/s/T07SLaE43JYw/9B95bwdnLf1tXfW54DUcdgLbjl/Oi8GCz5ahlXKCIiIiIi+5tbzDR3vL0qq+NGHGw0GpZ7gTDw7rqYnh7cqnB9uYwLcQvJRNhcNZsNz+uKP64D2RxECZuuxuI4mzfjbNlC8s476fJc8osWha8RiUAkgnHd8LmOA/mROdtYZH9QwF1GlY985CMjsoTMjuYdNYWt//0UF572WU5ftRTXMRyyuydNeROsbA1/n3DQnr9oRSMsOHfPn9eXG8XmHIjH6T73isK8MTBm+xtb7wjU4fdP26+qHaDO9ggzOb2SFnqLpjhubzbzlAMHK7Gyg0gybKzpB0BvHfE6dw0bC59JzOtTX9zNl+r4WcfBehGsG9bkM9Yv1IC3+ynF3aHUJDbIDL5YMdgO/TO+R5DmGFS4BoNhUmJkZuGLiIiIiMjwcBzDEaceGN7YiwSdaDyCDfww0F4KoLuY7m5qTwhnRKeDKLR3wMS+CVu2NyM+CMAWzr9sWEveOi7WOPg1EwgiSUgkwnXn85DN9pamcT1MRc1evXeRsUABd5F9wIt6HFWzlDkNs3ip7h+YwBCCkZMODX+GkVPdhPF7INebYe/kxuZV6ebIOlbmZlAso9I8a+Q3W0uYbjZUNFCTbsdicKN78V94rqv3oKmP8LCouJ32bq9edS0m5oF1cVMRchnCg60gIG1SFL9GMp1ZqEuxT9XPg60vFIY4xAB/dmQ2Dr3kAMOZUydj8fCcvZjRIiIiIiIiY5YxBi+y98lDxhjwfejp6c1yN4agfkJpvUm3jY6uTG85GUyYmOX0ifBbSud/troaUklsT9hzLnb//WQmVBNMnBgG3mMxqK3GbAtnUTujoGyryL6igLvIPpJ607ncbW+kY81MiCSGezhDcvCbpgPwf/csJWfC2t52ZCYIv2FN/3AJK+/5+3APY4/EnE7qetpJ+mF2d7pnL4LJ0QrIZ8DPA/1r9QcUpyr2Hhg5DTNxCsu5Jk/guFjHAIZkTQ3ptA8GYqn9kKXd0acG4FDrk3eOzLqBxu1ba33klzMSEREREZHRxW9ugni8N8s9n8dkemcK20glJtsJmSy4bhhoNwCm0GjVCcvKmPD8z9m6BdPTg9PaitO+nfyMAyASK8yeJlwumYRCwN0YZ7+/Z5GRQgF3kX3FArEqKg/YAqnG4R7NHonFIZcmfA/OGA4GFkrmAASjoL6cqT8ArF8sqsLWzdv2fCXHfyb8N9cDj30Tcp0ATIosp8ZtwWCJ1zaUFvcmz8WJeuGmUBEjls2Rx8U4hoOXHPjG3tCeOuB0eOGnhYHtopOvcXqz+J2ReZBn8n1K4ijgLiIiIiIiZRb/xd3YuQcQeC7BnDk4be24r7fAm84HoKE+Q/f6wmzbYlC+mN1uCsH34rmKtQReBIcebD4PgU8QFAPthLPkjQnrwOfSGD/AjNDZxiL7gwLuIvtKRWNvcHOUqa0K6EyH0WhnqJnEo9D0eY1sXd8OQDQRHebR7J4Tq+SF495NtmUtWMvJ85r3fmWRBEQTpYB71MkSdTaGj3k1pcXcumYO+Ob7wxvRCmhbU3hkGKYHNhwIE48ID+QSuygB1LdkTqHB60hjggylhr2M0WkkIiIiIiIybCIbN2FeXxvGzf/wRwDMIfMpnoek5i/GefRH4c1inXdLb1Z7sfkp4VNM4Ie9vHrSBKkqIutWke8bVM/70JPGJlJYP4BoHpHxSgF3EdlJovjFaAy4Yzf7dvIBE5h8wBCbjY4AJt/JnDPeTdg8FGpif3uja+zz+yB/52gCjvv/wt/zGXj4mvD3yC4yzPcVLwbz37P75YzbW3JmhGa4T4v+nWmRp3kttxDcGLBwuIckIiIiIiJjSO7gI4g9+7873NkbBHdqarHpdCHQbnuz2n2/UNe9T8C9+DiAn8dkM2SnzyWYOjUsW2Mt5HIYx8FOnRw+ZVvHfniXIiOTAu4ispOtrRGKAVifGNAzrOORAjcBBBQD5X7NGyzpkul7ANS3pM4gwXfHg7lnho9H93GD1DfCDnpjxDCJFPSk8UwOnP1Q/15ERERERMYVP5YkiCWxmW4MBjwvbKZaEKmsDGu6l5qmAoEFY3vvcwrZ7q6LjcUx3WmCqgl0ve8KIv/3IHiFc5lCNrwNfNiyDZPP46h0poxjIzP1T0SG1YQJeQrzyhipActxae7bcMNq6oCDW/kGs/OdQa65uoMEgB0Xpr4Jpi6GphGckd23IWm2c/jGsSvRCnBjTEqsYtK8acM9GhERERERGWPcTBdOpjssYOk64Hr9ZgA7sQQmn+vNXAfwPKivh1QqPO00BmIxqKmBmmpMkIdUNfn5R+O4Dvj5/j2pfB+nox1n+zZMdmSW9xTZH5ThLiI7qUrmcciF5dvIDfdwpMg4xE0HPbYCAGsTb2x9R18Gua7wAOmvt0JQOCDKj/IDo2QDdKwLf694A3Xu9ykDfrbPvyIiIiIiIuUTS7kE0RgEluzcw8ic/G4iFX3zbg3ulIl9bpowgL51G0S8MNDuur0Bec/DnzgJk24Jb778LNHf/w/ZM94eBuqtBdcjaKoBP8CmX99v71VkpFHAXUR2EmlZSrM3kwCXiMkA04d7SAJgXJojL9Md1GCBVOWb3tj64tXhD/SfyOCM8iae0RS40cIB3wgt15LpJPzQLZgROkYRERERERm1vC2vkc9mwkS6rlaCybNIuWt6FzAGLxXvn+HuOBCJFCa871y/3XR2YrKFpLxsBtPSEj4eBGHtd4DOTkw6iwk0W17GLwXcRWRn1VOZkV3W5w4F3EcE16Mp8krv7dixZVy3C8X+OanG8q13OFROhnQbYMNs95Eo16d+vlWGu4iIiIiIlNcBX/1/sOkF8DOFe35S+Pes0jKBqcRpbQXHIaipKdxrwQ/CsjLFYHxgwyB8LFpK1soc/w5MZjvO5s0EyRTGMVjCEvAm8DGOqljL+KWAu4jsrHIibP7bcI9CdmTC2u1hVrQT/p3K5ZB/DOudGwca55dvvcNhzqnhz0iWmACdG8KDVmV+iIiIiIhI2ZndLhFpnk7qy1+CbJruj16OP2UqRA20tkFlZW/APZMGx8W6kdJ91nXwNm8m+qXryB59FLnjjsPW1mKNwdihvb7IWKWAu4jsbOLh8Oofh3sUMpCmQ8Ka35Fkedc7YW551ye71rMF8MPskK4twz0aEREREREZayYcGPbs2vLS4Ms4LiYXZsCbXK5USsZN9xD9t28QzJmFjUfJHXEEtqYGE+Rxsnl8wBQSwkw+j9PTE8bhjQkz243BMQq4y/ilgLuI7CxRHZbiyHSENbAnHz3cI5KiBe8b7hFIOVQ0Q9va8PdkzbAORURERERExqCmheHPnz7Te9/U48IEu6K5BxNU1UJPN0FlZVhGJhLBj8Yw7duJ/f5e/GiU7JIlEItho1GCSNjzyzouWB8biWIzWWyh5rt1nELdd5WUkfFLAXcRGdixV8LKP4W/j9TGkyKjVd99SgeiIiIiIiKyr7ix3jru8ep+5yJOLE77Z2/Fe/5JbCbf2xw1HgsboQJOLte7LmOwNig8OTyPMfkczratYAMIfDARjAHHVchRxi9t/SIyOC823CMQGZuqp0OuB7BQNWW4RyMiIiIiImNV7WzItAIGph/f7yE3EoYFbSSGt/pVcjOmQCwWNj71fQAcayESCQPs1uJ0pQkAvAjGGAh8nK6ucP19ary7KcUTZPxSwF1EBrfDl7GIlMnsJeGPiIiIiIjIvrToA4M+NP2gRras2YbvOZDtzWQPXJfAiWAAB4j+7OfYuloIAmw67CfmvfI3nNUrwAYE6Wz4RGvDgHsQYGIKOcr4pXnsIiIiIiIiIiIi44zjuhz1D/NJVriY7u4wWG4MJhql65+/SOdH/g1cj8SDD5L85a9I/vq/cHJh5nvusOOhkCHv5jIYANcJS2Y6Dl5CGe4yfingLiIiIiIiIiIiMk65boCzcVMYcLcWawzG8QimziY35xAsBgvkph5IEE8BELgeFMq54/vY4srCVYRlaETGKQXcRURERERERERExql4dhvRFX8PG6VaC57HjHnV1KR6wIKNRAFwt67H+IXSM46HsX6p7Ax+PnyutYWmqQq4y/ilgLuIiIiIiIiIiMg45U1swkaieKvXYLq7MZ0dTJhcTX1VN5F1r+AUSsY43Z1QyGU32zZCobEqhE1Wwzx4i0l348Wjw/JeREYCBdxFRERERERERETGKae+FtJdJG+6icj//i+Rp58hsBBYg+3uLi1njYONhLXZ/UnTsa7TW0omCLCFGvDWjdBbb0Zk/FHLYBERERERERERkXHKiycwEGax9/RATw+RZBLX8zC2N3BubIDJF0rKVNdjMGGz1PBRcF1wXIhEcb34/n0TIiOIMtxFRERERERERETGqeYJGYJoAgvE/vBHon/4I9a4GMf0W84CNpYo3DJh3faiYnkZU1huh+eKjCcKuIuIiIiIiIiIiIxTxnHIHroYKFRoNw7GcTD5nt6SMUVBGFi33g5NUbPZsGlqYDHW4sWU4S7jlwLuIiIiIiIiIiIi41XXZnJvOgXruGGwPeJCNI7T9TqkKkqLGSiVmCnWci895vvhEibMbI9WpfbX6EVGHAXcRURERERERERExqtsJ3bKTGyqAus4gI9xXaiZgz/n4NJi1hisU2gHGYnusI4sOIWmqQ6Y6sr9N36REUZNU0VERERERERERMarVFP4r1sIEwZgjME3MfLpXCl4aOlTSmaHkjL5+QdDRUWY4e65RJMJRMYrBdxFRERERERERETGq/o5pLwN5D7/Dby/3E/z3Cnh/W2rcZJVlNqfOi7GKVR19yL0bYsaXfok2RNPANfDWHCNmqbK+KWAu4iIiIiIiIiIyHhVN5sFb58d/n7GMaW7baqZzJEnEHn2L5jABz9PdPlTZA8/CQwE9NaqNh3tYdNU1yWorMC4CrjL+KWAu4iIiIiIiIiIiPST6+7Gr5+ENaY3m33CBMJQu+mX4R6kUv1KyjiO2kbK+KWtX0RERERERERERPrJ5QzYPMbPl+6LuAFR0jjk8GsbehfeshXa2qCnB9avH4bRiowcynAXERERERERERGRfowBvHi/+2I1lcw78yie/e0jBBXV2O2bw/uf+zvxxx7HBAFBw0Q455xhGLHIyKCAu4iIiIiIiIiIiPQTq4xDRWX/+058CwCBV4E9YCGOnwccbDyB19UOrovfOHUYRisycijgLiIiIiIiIiIiIv00zF/Eq+tWkT7lH4m89BS4HiYZZrxXVWTYetqZpE87F/BJ/vS7WC8C1mIdd3gHLjLMFHAXERERERERERGRftxECkOGzJJzIBoG2l3bA0Au65EnARjABeuDtQDYRGqYRiwyMijgLiIiIiIiIiIiIjtxyOATJ/OWdxbu2QBA4+QU2172CQPuYNu3YzJhMN5d9fdhGKnIyOEM9wBERERERERERERk5InR0+eWxQnj65i6qRSD7RDgrl9TWsopNFIVGa8UcBcREREREREREZGdVDQ20xtYNwRh1Rh6OjOF+w3gYNzeuu1udfX+HaTICKOAu4iIiIiIiIiIiOwkUl3f55Yl54eB9ar6JGGw3QIWG4uXlkotmL8/hygy4ijgLiIiIiIiIiIiIjupaaokDKoDGFpzDQBEEpHSfWDwD1iEjSWwsQSRSZOGYaQiI4eapoqIiIiIiIiIiMhOKmsT9JaUASeRBCAa9UjVxunang7v/+BHmLv4a1gMXjQy0KpExg0F3EVERERERERERGQnjuPgRRzyuQCACRPD+uzGGHo606Xl0j0BXiIxLGMUGWkUcBcREREREREREZEBHf0PBw14f5Dr/d3P2wGXERmPVMNdRERERERERERERKQMFHAXERERERERERGRPVJRFy/9bhRhFCnR7iAiIiIiIiIiIiJ7ZPKceuIVURIVUZpn1g33cERGDNVwFxERERERERERkT1SP7Ga+kITVRHppQx3EREREREREREREZEyUMBdRERERERERERERKQMFHAXERERERERERERESkDBdxFRERERERERERERMpAAXcZdtdddx3HHnssyWSSmpqaAZdZu3Ytb3/720kmkzQ2NvKJT3yCfD6/fwcqIiIiIiIiIiIisgvecA9AJJvNcs4557B48WJ++MMf7vS47/u8/e1vp7m5mccee4yWlhYuuOACIpEIX/nKV4ZhxCIiIiIiIiIiIiI7M9ZaO9yDEAH48Y9/zBVXXEFra2u/+//nf/6HM844g/Xr19PU1ATALbfcwqc+9Sk2b95MNBod0vrb29uprq6mra2Nqqqqcg9fRERERERERERGCcWJZF9RSRkZ8R5//HEWLFhQCrYDnHbaabS3t/PCCy8M48hEREREREREREREeqmkjIx4GzZs6BdsB0q3N2zYMOjzMpkMmUymdLu9vX3fDFBEREREREREREQEZbjLPvLpT38aY8wuf1566aV9OoavfvWrVFdXl36mTp26T19PRERERERERERExjdluMs+8fGPf5yLLrpol8vMmjVrSOtqbm7mySef7Hffxo0bS48N5jOf+QxXXnll6XZ7e7uC7iIiIiIiIiIiIrLPKOAu+0RDQwMNDQ1lWdfixYu57rrr2LRpE42NjQDcf//9VFVVcfDBBw/6vFgsRiwWK8sYRERERERERERERHZHAXcZdmvXrmXbtm2sXbsW3/d55plnAJgzZw4VFRWceuqpHHzwwXzgAx/ga1/7Ghs2bODzn/88l112mQLqIiIiIiIiIiIiMmIYa60d7kHI+HbRRRdxxx137HT/Qw89xIknngjAmjVr+PCHP8zDDz9MKpXiwgsv5Prrr8fzhn7NqK2tjZqaGl577TWqqqrKNXwRERERERERERlliqWHW1tbqa6uHu7hyBiigLuMG6+++iqzZ88e7mGIiIiIiIiIiMgIsXLlyiH3GRQZCpWUkXGjrq4OCEvY6MqljGXFq/SazSHjnfYFEe0HIjvSPiES0r4gElZCmDZtWileJFIuCrjLuOE4DgDV1dU6oJBxoaqqStu6CNoXRED7gciOtE+IhLQviPTGi0TKRVuUiIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCrjLuBGLxbj66quJxWLDPRSRfUrbukhI+4KI9gORHWmfEAlpXxDRfiD7jrHW2uEehIiIiIiIiIiIiIjIaKcMdxERERERERERERGRMlDAXURERERERERERESkDBRwFxEREREREREREREpAwXcRURERERERERERETKQAF3GVZf/epXOeqoo6isrKSxsZGzzjqL5cuX91smnU5z2WWXUV9fT0VFBe9+97vZuHFj6fFnn32W973vfUydOpVEIsG8efO46aab+q3j17/+NaeccgoNDQ1UVVWxePFi/vCHP+x2fNZarrrqKiZOnEgikWDJkiWsWLGi3zLXXXcdxx57LMlkkpqamr3/MGTMGwvb+zvf+U6mTZtGPB5n4sSJfOADH2D9+vVv4FOR8WYs7AczZszAGNPv5/rrr38Dn4qMN6N9P3j44Yd32geKP//3f//3Bj8dGa9G+34B8PTTT3PKKadQU1NDfX09l1xyCZ2dnW/gU5HxZqTvB7/+9a859dRTqa+vxxjDM888s9Myt956KyeeeCJVVVUYY2htbd2rz0LGr/21H/zlL3/huOOOo76+nkQiwUEHHcSNN9642/EpTiRDoYC7DKs///nPXHbZZTzxxBPcf//95HI5Tj31VLq6ukrLfOxjH+O///u/+c///E/+/Oc/s379es4+++zS40899RSNjY385Cc/4YUXXuBzn/scn/nMZ7j55ptLyzzyyCOccsop/P73v+epp57ipJNO4h3veAfLli3b5fi+9rWv8e1vf5tbbrmFpUuXkkqlOO2000in06Vlstks55xzDh/+8IfL+MnIWDQWtveTTjqJX/ziFyxfvpxf/epXrFy5kve85z1l/JRkrBsL+wHAF7/4RVpaWko/l19+eZk+IRkPRvt+cOyxx/bb/ltaWvjQhz7EzJkzOfLII8v8acl4Mdr3i/Xr17NkyRLmzJnD0qVLue+++3jhhRe46KKLyvtByZg20veDrq4u3vzmN/Nv//Zvgy7T3d3N6aefzmc/+9k38EnIeLa/9oNUKsVHPvIRHnnkEV588UU+//nP8/nPf55bb711l+NTnEiGxIqMIJs2bbKA/fOf/2yttba1tdVGIhH7n//5n6VlXnzxRQvYxx9/fND1/Mu//Is96aSTdvlaBx98sL322msHfTwIAtvc3GxvuOGG0n2tra02FovZn/3sZzstf/vtt9vq6updvqZIX6N5ey+65557rDHGZrPZXb6+yGBG434wffp0e+ONN+7urYkM2WjcD/rKZrO2oaHBfvGLX9zla4vsidG2X3z/+9+3jY2N1vf90jLPPfecBeyKFSt2/WZFBjGS9oO+Vq1aZQG7bNmyQZd56KGHLGC3b98+pHWKDGZ/7gfvete77Pnnnz/o44oTyVApw11GlLa2NgDq6uqA8KpkLpdjyZIlpWUOOuggpk2bxuOPP77L9RTXMZAgCOjo6NjlMqtWrWLDhg39Xru6uppjjjlml68tMlSjfXvftm0bd911F8ceeyyRSGTQdYvsymjdD66//nrq6+s57LDDuOGGG8jn87t+oyK7MFr3g6Lf/va3bN26lQ9+8IODrldkT422/SKTyRCNRnGc3lPsRCIBhGULRPbGSNoPRIbL/toPli1bxmOPPcYJJ5ww6DKKE8lQecM9AJGiIAi44oorOO644zjkkEMA2LBhA9FodKeaV01NTWzYsGHA9Tz22GPcfffd3HvvvYO+1te//nU6Ozt573vfO+gyxfU3NTUN+bVFhmo0b++f+tSnuPnmm+nu7uZNb3oTv/vd7wZdr8iujNb94KMf/SiHH344dXV1PPbYY3zmM5+hpaWFb37zm7t8vyIDGa37QV8//OEPOe2005gyZcqg6xXZE6Nxv3jrW9/KlVdeyQ033MC//uu/0tXVxac//WkAWlpadv2GRQYw0vYDkeGwP/aDKVOmsHnzZvL5PNdccw0f+tCHBh2P4kQyVMpwlxHjsssu4/nnn+fnP//5Xq/j+eef58wzz+Tqq6/m1FNPHXCZn/70p1x77bX84he/oLGxEYC77rqLioqK0s+jjz6612MQGYrRvL1/4hOfYNmyZfzxj3/EdV0uuOACrLV7/T5k/Bqt+8GVV17JiSeeyMKFC7n00kv5xje+wXe+8x0ymcxevw8Zv0brflD0+uuv84c//IGLL754r8cvsqPRuF/Mnz+fO+64g2984xskk0mam5uZOXMmTU1N/bLeRYZqNO4HIuW2P/aDRx99lL/+9a/ccsstfOtb3+JnP/sZoP1A3hhluMuI8JGPfITf/e53PPLII/2yo5qbm8lms7S2tva7erlx40aam5v7rePvf/87J598Mpdccgmf//znB3ydn//853zoQx/iP//zP/tNAXrnO9/JMcccU7o9efLkUibKxo0bmThxYr/XXrRo0Rt5uzLOjfbtfcKECUyYMIEDDzyQefPmMXXqVJ544gkWL168x5+FjF+jfT/o65hjjiGfz7N69Wrmzp07pPcvAmNjP7j99tupr6/nne985x69d5HBjOb94rzzzuO8885j48aNpFIpjDF885vfZNasWXv1Wcj4NRL3A5H9bX/tBzNnzgRgwYIFbNy4kWuuuYb3ve99ihPJGzPcReRlfAuCwF522WV20qRJ9uWXX97p8WIzjF/+8pel+1566aWdmmE8//zztrGx0X7iE58Y9LV++tOf2ng8bn/zm98MeWzNzc3261//eum+trY2NcOQvTaWtveiNWvWWMA+9NBDQ3odkbG4H/zkJz+xjuPYbdu2Del1RMbKfhAEgZ05c6b9+Mc/PqR1i+zKWNkv+vrhD39ok8mkmkbKkI3k/aAvNU2VfWl/7gc7uvbaa+306dN3OTbFiWQoFHCXYfXhD3/YVldX24cffti2tLSUfrq7u0vLXHrppXbatGn2wQcftH/961/t4sWL7eLFi0uP/+1vf7MNDQ32/PPP77eOTZs2lZa56667rOd59rvf/W6/ZVpbW3c5vuuvv97W1NTYe+65xz733HP2zDPPtDNnzrQ9PT2lZdasWWOXLVtmr732WltRUWGXLVtmly1bZjs6Osr4SclYMNq39yeeeMJ+5zvfscuWLbOrV6+2DzzwgD322GPt7NmzbTqdLvOnJWPVaN8PHnvsMXvjjTfaZ555xq5cudL+5Cc/sQ0NDfaCCy4o8yclY9lo3w+K/vSnP1nAvvjii2X6ZGQ8Gwv7xXe+8x371FNP2eXLl9ubb77ZJhIJe9NNN5XxU5KxbqTvB1u3brXLli2z9957rwXsz3/+c7ts2TLb0tJSWqalpcUuW7bM/uAHP7CAfeSRR+yyZcvs1q1by/hJyVi2v/aDm2++2f72t7+1L7/8sn355ZftbbfdZisrK+3nPve5XY5PcSIZCgXcZVgBA/7cfvvtpWV6enrsv/zLv9ja2lqbTCbtu971rn5f6FdfffWA6+h7VfKEE04YcJkLL7xwl+MLgsB+4QtfsE1NTTYWi9mTTz7ZLl++vN8yF1544YDrVsav7Gi0b+/PPfecPemkk2xdXZ2NxWJ2xowZ9tJLL7Wvv/56uT4iGQdG+37w1FNP2WOOOcZWV1fbeDxu582bZ7/yla/oopPskdG+HxS9733vs8cee+wb/ThErLVjY7/4wAc+YOvq6mw0GrULFy60d955Zzk+GhlHRvp+cPvttw/4vKuvvnq3r9/3PYjsyv7aD7797W/b+fPn22Qyaauqquxhhx1mv/e971nf93c5PsWJZCiMtep0JyIiIiIiIiIiIiLyRqlduoiIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJl4A33AERERIZDEAT09PSQyWSw1g73cERERERkHzPGEIvFSCQSOI7yD0VEZN9QwF1ERMadjo4OVq5cie/7wz0UEREREdnPXNdl9uzZVFZWDvdQRERkDDJWaX0iIjKO5PN5nn32WSKRCFOmTCEWi2GMGe5hiYiIiMg+Zq0lk8nw+uuvk8vlWLBgAdFodLiHJSIiY4wC7iIiMq5s27aNVatWMXfuXCoqKoZ7OCIiIiKyn3V2drJ8+XKeffZZzj//fAXdRUSkrFS0TERExpXidWbV7RQREREZn4rHgStWrOD73/8+QRAM84hERGQsUbRBRERERERERMadWCzGiy++SGdn53APRURExhAF3EVERMaAa665hkWLFpVuX3TRRZx11llveL3GGH7zm9+84fXI/qXtQfrS9iB9aXuQvsb79hCJRMjn82zbtm24hyIiImOIAu4iIiJj0E033cSPf/zj4R5GibWWq666iokTJ5JIJFiyZAkrVqzot8x1113HscceSzKZpKamZngGOkaNxu1hxowZGGP6/Vx//fXDNOKxZSRtD7lcjk996lMsWLCAVCrFpEmTuOCCC1i/fn1pmYcffninbaH483//93/DOPqxYbRtDwAvv/wyZ555JhMmTKCqqoo3v/nNPPTQQ8M06rFlNG4PTz/9NKeccgo1NTXU19dzySWXKGNdRESGlQLuIiIiY1B1dfWICFpns1kAvva1r/Htb3+bW265haVLl5JKpTjttNNIp9P9lj3nnHP48Ic/PFzDHbNG4/YA8MUvfpGWlpbSz+WXXz4cwx5zRtL20N3dzdNPP80XvvAFnn76aX7961+zfPly3vnOd5aWO/bYY/ttBy0tLXzoQx9i5syZHHnkkcP4DsaG0bY9AJxxxhnk83kefPBBnnrqKQ499FDOOOMMNmzYMEyjHztG2/awfv16lixZwpw5c1i6dCn33XcfL7zwAhdddNHwDV5ERMY9b7gHICIiMmz+/mvoGuaT81QzHHz2bhe79dZbueaaa3j99df7NXw988wzqa+vZ9q0af2Wv+iii2htbS1N5z7xxBNZuHAh8Xic2267jWg0yqWXXso111xTes6KFSu4+OKLefLJJ5k1axY33XTTTuN47bXX+PjHP84f//hHHMfh+OOP56abbmLGjBn9Xveoo47iu9/9LrFYjFdffZVvfetbfP7zn+fMM88E4M4776SpqYnf/OY3nHvuuQBce+21AMOaWbf9VyvIbewattePNKWoffcBu11uPGwPAJWVlTQ3Nw/14yu7V199le7u7mF7/WQyyaxZs3a73GjeHlatWsX999/fbz0333wzRx99NGvXrmXatGlEo9F+20Eul+Oee+7h8ssvxxiz28+nXF55Zj3d7Zn99no7SlbFmLNo0m6XG+vbw5YtW1ixYgU//OEPWbhwIQDXX3893/ve93j++ef32/8ZLV/4ApmXV+x+wX0oduABTPzSl3a5zFjfHn73u98RiUT47ne/W3p/t9xyCwsXLuSVV15hzpw5Q/04RUREykYBdxERGb+6NkDba8M9iiE555xzuPzyy3nooYc4+eSTAdi2bRv33Xcfv//973n00Ud3u4477riDK6+8kqVLl/L4449z0UUXcdxxx3HKKacQBAFnn302TU1NLF26lLa2Nq644op+z8/lcpx22mksXryYRx99FM/z+PKXv8zpp5/Oc889RzQaBeCBBx6gqqqqdJK8atUqNmzYwJIlS0rrqq6u5phjjuHxxx/vF2AdbrmNXWTXdgz3MHZrvGwP119/PV/60peYNm0a5513Hh/72MfwvP13+Nrd3T0qyhKM5u1hIG1tbRhjBs2y/e1vf8vWrVv54Ac/OLQPqEy62zN0bu/Zr6+5N8b69lBfX8/cuXO58847Ofzww4nFYnz/+9+nsbGRI444Yu8+tL2QeXkFPc8+u99eb2+N9e0hk8kQjUb7XUxIJBIA/OUvf1HAXUREhoVKyoiIiIwCtbW1vO1tb+OnP/1p6b5f/vKXTJgwgZNOOmlI61i4cCFXX301BxxwABdccAFHHnkkDzzwAAB/+tOfeOmll7jzzjs59NBDectb3sJXvvKVfs+/++67CYKA2267jQULFjBv3jxuv/121q5dy8MPP1xaLpVKcdtttzF//nzmz59fmuLf1NTUb31NTU2a/r+XxsP28NGPfpSf//znPPTQQ/zzP/8zX/nKV/jkJz+5R5/TeDGat4cdpdNpPvWpT/G+972PqqqqAcf6wx/+kNNOO40pU6YM6b2NN2N9ezDG8Kc//Ylly5ZRWVlJPB7nm9/8Jvfddx+1tbV7+nGNeWN9e3jrW9/Khg0buOGGG8hms2zfvp1Pf/rTALS0tOzRZyUiIlIuCriLiIiMEu9///v51a9+RSYTljS46667OPfcc/tlde1Kcep90cSJE9m0aRMAL774IlOnTmXSpN5yBYsXL+63/LPPPssrr7xCZWUlFRUVVFRUUFdXRzqdZuXKlaXlFixYUMpWk31nrG8PV155ZamUwaWXXso3vvENvvOd75Ter/Q3FraHXC7He9/7Xqy1/Pu///uAy7z++uv84Q9/4OKLLx7S+xqvxvL2YK3lsssuo7GxkUcffZQnn3ySs846i3e84x0KsA5iLG8P8+fP54477uAb3/gGyWSS5uZmZs6cSVNT05Dfn4iISLmppIyIiMgo8Y53vANrLffeey9HHXUUjz76KDfeeOOQnx+JRPrdNsYQBMGQn9/Z2ckRRxzBXXfdtdNjDQ0Npd9TqVS/x4r1dDdu3MjEiRNL92/cuJFFixYN+fWlv/G2PRxzzDHk83lWr17N3LlzhzzO8WK0bg9FxWDamjVrePDBBwfNbr/99tupr6/fqYmm9DeWt4cHH3yQ3/3ud2zfvr10//e+9z3uv/9+7rjjjlJ2s/Qay9sDwHnnncd5553Hxo0bSaVSGGP45je/OaQeGCIiIvuCAu4iIjJ+pYavGePejCEej3P22Wdz11138corrzB37lwOP/zwsgxj3rx5vPbaa7S0tJSCoE888US/ZQ4//HDuvvtuGhsbBw2GDWTmzJk0NzfzwAMPlAKq7e3tLF26lA9/+MNlGX+5RJoGPtkfia8/3raHZ555BsdxaGxs3PM3tJeSyeR+e603+vqjdXuA3mDaihUreOihh6ivrx9wOWstt99+OxdccMFOAcD9IVkV2++vubevP5a3h2Ij4x2zlx3H2aMg8BsVO3D3Da5HyhjG8vbQV7FU2Y9+9CPi8TinnHLKHr4bERGR8lDAXURExq+Dzx7uEeyx97///Zxxxhm88MILnH/++WVb75IlSzjwwAO58MILueGGG2hvb+dzn/vcTq99ww03cOaZZ/LFL36RKVOmsGbNGn7961/zyU9+ctB6ysYYrrjiCr785S9zwAEHMHPmTL7whS8wadIkzjrrrNJya9euZdu2baxduxbf93nmmWcAmDNnDhUVFWV7r7tS++7hD6DsibG6PTz++OMsXbqUk046icrKSh5//HE+9rGPcf755+/XGs2jLTtyNG4PuVyO97znPTz99NP87ne/w/f9Ui3/urq6fuUlHnzwQVatWsWHPvShsr23PTFn0aTdLzSCjNXtYfHixdTW1nLhhRdy1VVXkUgk+MEPfsCqVat4+9vfXrb3uTsTv/Sl/fZa5TBWtweAm2++mWOPPZaKigruv/9+PvGJT3D99dcP2nhZRERkX1NRMxERkVHkrW99K3V1dSxfvpzzzjuvbOt1HIf/+q//oqenh6OPPpoPfehDXHfddf2WSSaTPPLII0ybNo2zzz6befPmcfHFF5NOp3ebsfbJT36Syy+/nEsuuYSjjjqKzs5O7rvvPuLxeGmZq666isMOO4yrr76azs5ODjvsMA477DD++te/lu19jjVjdXuIxWL8/Oc/54QTTmD+/Plcd911fOxjH+PWW28t23sci0bj9rBu3Tp++9vf8vrrr7No0SImTpxY+nnsscf6LfvDH/6QY489loMOOqhs720sG6vbw4QJE7jvvvvo7OzkrW99K0ceeSR/+ctfuOeeezj00EPL9j7HmrG6PQA8+eSTnHLKKSxYsIBbb72V73//+3z0ox8t23sUERHZU8Zaa4d7ECIiIvvL1q1bWb16NfPmzRv2chEiIiIisv91d3fz4osvct9997FmzRo++9nPMmPGjOEeloiIjBHKcBcRERERERERERERKQMF3EVEREREREREREREykABdxERERERERERERGRMlDAXURERERERERERESkDBRwFxEREREREREREREpAwXcRURERERERERERETKQAF3EREREREREREREZEyUMBdRERERERERERERKQMFHAXERERERERERERESkDBdxFRETGgGuuuYZFixaVbl900UWcddZZb3i9xhh+85vfvOH1iIiIiIiIiIwHCriLiIiMQTfddBM//vGPh3sYJdZarrrqKiZOnEgikWDJkiWsWLGi9Pjq1au5+OKLmTlzJolEgtmzZ3P11VeTzWaHcdQiIiIiIiIie0YBdxERkTGourqampqa4R5GKWD+ta99jW9/+9vccsstLF26lFQqxWmnnUY6nQbgpZdeIggCvv/97/PCCy9w4403csstt/DZz352OIcvIiIiIiIiske84R6AiIjIcPn0r55j+caOYR3D3KZKrn/3wt0ud+utt3LNNdfw+uuv4zi918vPPPNM6uvrmTZtWr/lL7roIlpbW0vlYE488UQWLlxIPB7ntttuIxqNcumll3LNNdeUnrNixQouvvhinnzySWbNmsVNN9200zhee+01Pv7xj/PHP/4Rx3E4/vjjuemmm5gxY0a/1z3qqKP47ne/SywW49VXX+Vb3/oWn//85znzzDMBuPPOO2lqauI3v/kN5557Lqeffjqnn3566XVmzZrF8uXL+fd//3e+/vWvD/XjFBERERERERlWCriLiMi4tXxjB8vWtg73MIbknHPO4fLLL+ehhx7i5JNPBmDbtm3cd999/P73v+fRRx/d7TruuOMOrrzySpYuXcrjjz/ORRddxHHHHccpp5xCEAScffbZNDU1sXTpUtra2rjiiiv6PT+Xy3HaaaexePFiHn30UTzP48tf/jKnn346zz33HNFoFIAHHniAqqoq7r//fgBWrVrFhg0bWLJkSWld1dXVHHPMMTz++OOce+65A463ra2Nurq6vfm4RERERERERIaFSsqIiIiMArW1tbztbW/jpz/9aem+X/7yl0yYMIGTTjppSOtYuHAhV199NQcccAAXXHABRx55JA888AAAf/rTn3jppZe48847OfTQQ3nLW97CV77ylX7Pv/vuuwmCgNtuu40FCxYwb948br/9dtauXcvDDz9cWi6VSnHbbbcxf/585s+fz4YNGwBoamrqt76mpqbSYzuC1F0TAAAE70lEQVR65ZVX+M53vsM///M/D+m9iYiIiIiIiIwECriLiIiMEu9///v51a9+RSaTAeCuu+7i3HPP7VdiZlcWLuxfumbixIls2rQJgBdffJGpU6cyadKk0uOLFy/ut/yzzz7LK6+8QmVlJRUVFVRUVFBXV0c6nWblypWl5RYsWFDKdt8b69at4/TTT+ecc87hn/7pn/Z6PSIiIiIiIiL7m0rKiIiIjBLveMc7sNZy7733ctRRR/Hoo49y4403Dvn5kUik321jDEEQDPn5nZ2dHHHEEdx11107PdbQ0FD6PZVK9XusubkZgI0bNzJx4sTS/Rs3bmTRokX9ll2/fj0nnXQSxx57LLfeeuuQxyYiIiIiIiIyEijgLiIi49bcpsrhHsIejSEej3P22Wdz11138corrzB37lwOP/zwsoxj3rx5vPbaa7S0tJSC4k888US/ZQ4//HDuvvtuGhsbqaqqGvK6Z86cSXNzMw888EApwN7e3s7SpUv58Ic/XFpu3bp1nHTSSRxxxBHcfvvtQ87cFxERERERERkpFHAXEZFx6/p3L9z9QiPM+9//fs444wxeeOEFzj///LKtd8mSJRx44IFceOGF3HDDDbS3t/O5z31up9e+4YYbOPPMM/niF7/IlClTWLNmDb/+9a/55Cc/yZQpUwZctzGGK664gi9/+csccMABzJw5ky984QtMmjSJs846CwiD7SeeeCLTp0/n61//Ops3by49v5ghLyIiIiIiIjLSKeAuIiIyirz1rW+lrq6O5cuXc95555VtvY7j8F//9V9cfPHFHH300cyYMYNvf/vbnH766aVlkskkjzzyCJ/61Kc4++yz6ejoYPLkyZx88sm7zXj/5Cc/SVdXF5dccgmtra28+c1v5r777iMejwNw//3388orr/DKK6/sFLi31pbtfYqIiIiIiIjsS8bqLFZERMaRrVu3snr1aubNm0cymRzu4YiIiIjIftbd3c2LL77Ifffdx5o1a/jsZz/LjBkzhntYIiIyRqg4qoiIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiLjijEGgCAIhnkkIiIiIjIciseB1tphHomIiIxFCriLiMi4kkwmAejs7BzmkYiIiIjIcCgeB7a3tw/zSEREZCzyhnsAIiIi+1M8HicWi7Fu3ToAKioqcBxdfxYREREZ64IgoLOzk3Xr1vHaa6+RyWSGe0giIjIGKeAuIiLjzsEHH8zzzz9fCrqLiIiIyPjx2muvsXTpUnK5HJ7nUVNTM9xDEhGRMUQBdxERGXccx2HhwoX84Ac/YOXKlaWsdxEREREZu6y1tLe3k8lkyGQydHd3s2jRIqqqqoZ7aCIiMoYYqy4hIiIyTmWzWW677Tb+9re/kcvlhns4IiIiIrKfeJ7HQQcdxKWXXko8Hh/u4YiIyBiigLuIiIxrQRCwdetWtm3bhr4SRURERMY+Yww1NTXU19fjeZr4LyIi5aWAu4iIiIiIiIiIiIhIGTjDPQARERERERERERERkbFAAXcRERERERERERERkTJQwF1EREREREREREREpAwUcBcRERERERERERERKQMF3EVEREREREREREREykABdxERERERERERERGRMvj/AfbEdbitcKcuAAAAAElFTkSuQmCC\n" - }, - "metadata": {} - } - ] - }, - { - "cell_type": "markdown", - "source": [ - "**0.6.3 Send file for model data extraction**\n", - "\n", - "\n", - "\n", - "Use the `fairness_coordinates_for_alaro_25_csv_creator()` method to generate a file. More detailed documentation can be found [here](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fairness_coordinates_for_alaro_25_csv_creator).\n", - "\n", - "Send the file created by this function by email to mivieijra@meteo.be. In this way you will recieve the ALARO model data (spatial resolution 2.5 km x 2.5 km) that will be needed to complete the exercises where you will analyse model data for the region of your meteorological measurement network.\n", - "\n", - "The model data that will be send back to you will contain:\n", - "\n", - "\n", - "* Timeseries of climate model data of the nearest grid points with respect to the locations of your stations. If your measurement network is a micro-meteorological network within the spatial extend of 2.5 km by 2.5 km, then it is likely that you will recieve the same timeseries for each location.\n", - "* Spatial plots of the model data that contains the locations of your stations. By default the spatial plot extend will be a tight-fit around the locations of your stations. If you prefer **a larger extend** of the spatial plot e.g. to represent the complete city, then you can specify it with the `*_min, *_max` arguments as shown below.\n", - "For example for the city of Ghent and some of its surroundings this could be:\n", - "\n", - "\n", - "```\n", - " lat_min= 50.984024,\n", - " lon_min = 3.626097,\n", - " lat_max = 51.143149,\n", - " lon_max = 3.872475\n", - "```\n", - "\n", - "You can define the coordinates of a larger extend with the help of Google Maps.\n", - "\n" - ], - "metadata": { - "id": "4rxgNmTUYzor" - } - }, - { - "cell_type": "code", - "source": [ - "@your_dataset.fairness_coordinates_for_alaro_25_csv_creator(outputfolder = ' .... ', #folder to save your metadata\n", - " filename = ' ...... .csv', #filename ('YOUR_NAME_metadata.csv' for example )\n", - " #Define the extend of the spatial model plot that will be prepared for you.\n", - " #If None, a tight-fit will be use.\n", - " lat_min= None, # minimum latitude of the extend\n", - " lon_min = None, # minimum longitude of the extend\n", - " lat_max = None, # maximum latitude of the extend\n", - " lon_max = None) # maximum longitude of the extend" - ], - "metadata": { - "id": "WysmPNh2nYya" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RD72JDXhziOQ" - }, - "source": [ - "**Well done! You are ready to for the next step: performing a quality control on your data.**" - ] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/examples/Quality_control_excercise_02.ipynb b/examples/Quality_control_excercise_02.ipynb deleted file mode 100644 index 7c57ab38..00000000 --- a/examples/Quality_control_excercise_02.ipynb +++ /dev/null @@ -1,806 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "toc_visible": true - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "Welcome to the second exercise of this summer school! During this exercise you will learn to apply different quality control procedures to (your) observational datasets. This exercise consists of three parts. Firstly, the necessary packages are again installed and imported, in the same way as the previous exercise. Secondly, the different functions from the toolkit concerning quality control are explained and applied to a demo dataset. Thirdly, you will apply the quality control capabilities from the toolkit to your own dataset." - ], - "metadata": { - "id": "0fEU-Sn_haHV" - } - }, - { - "cell_type": "markdown", - "source": [ - "# 1. Import and initialisation\n" - ], - "metadata": { - "id": "hjqkbB-pOSeA" - } - }, - { - "cell_type": "markdown", - "source": [ - "## 1.1 Import the toolkit and additional packages" - ], - "metadata": { - "id": "GtWdGonvSESQ" - } - }, - { - "cell_type": "markdown", - "source": [ - "As each exercise is a separate Google Colab notebook, some initial steps from the previous exercise will have to be repeated in this new notebook. Firstly, the toolkit will have to be re-installed in the same way as before." - ], - "metadata": { - "id": "gFI6DFHXgKBs" - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LyDl5HeisFto" - }, - "outputs": [], - "source": [ - "!pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit\n", - "%config InlineBackend.print_figure_kwargs = {'bbox_inches':None}" - ] - }, - { - "cell_type": "markdown", - "source": [ - "Next, we will again import the toolkit and other additional modules, which are necessary for this exercise." - ], - "metadata": { - "id": "_wD5Hbt_f0jX" - } - }, - { - "cell_type": "code", - "source": [ - "import metobs_toolkit\n", - "import pandas as pd\n", - "import datetime" - ], - "metadata": { - "id": "z9OHrlihUyO2" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Finally, you will also have to link your Google Drive to this notebook again." - ], - "metadata": { - "id": "0b__D3f5f7tU" - } - }, - { - "cell_type": "code", - "source": [ - "# Loading your Google Drive\n", - "from google.colab import drive\n", - "drive.mount('/content/drive', force_remount=True)\n" - ], - "metadata": { - "id": "FkW_zmVpKzbp" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "# 2. Quality control\n", - "\n" - ], - "metadata": { - "id": "IpxEiCvcRrw2" - } - }, - { - "cell_type": "markdown", - "source": [ - "## 2.1 Initial quality control" - ], - "metadata": { - "id": "y-EhZHSklMCk" - } - }, - { - "cell_type": "markdown", - "source": [ - "In this second part of the exercise we will work with a demo dataset. We will first load in this dataset in largely the same way as in the previous exercise, with one notable addition. Firstly, we create an empty dataset and we update the settings to link to the files from this demo dataset." - ], - "metadata": { - "id": "yOhgucXZhQbu" - } - }, - { - "cell_type": "code", - "source": [ - "# Make an empty dataset\n", - "dataset = metobs_toolkit.Dataset()\n", - "\n", - "# Add the demo data files to the dataset settings\n", - "dataset.update_settings(input_data_file = metobs_toolkit.demo_datafile,\n", - " input_metadata_file = metobs_toolkit.demo_metadatafile,\n", - " data_template_file = metobs_toolkit.demo_template,\n", - " metadata_template_file = metobs_toolkit.demo_template # Contains also the metadata mapping\n", - " )" - ], - "metadata": { - "id": "doAr70nxRrGD" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "When you import the dataset some initial quality control steps are already exectuted:\n", - "\n", - "1. The toolkit looks for **duplicated timestamps**. As there is no way to know which of these timestamps are the correct ones, all of the duplicates are eliminated.\n", - "2. **Invalid observations** are removed. For instance, when the dataset contains some text instead of a number, this is an invalid observation.\n", - "3. Based on the observations, a time resolution is estimated for the dataset. With this time resolution, the toolkit searches for **missing observations**.\n", - "4. When a series of consecutive missing observations is present, this is labeled as a **gap**. The minimum number of observations needed to define a gap is a number you can choose yourself, based on your preferences. This value can be modified in the quality control settings with the parameter ```gapsize_in_records```.\n", - "\n", - "It is important to note that the toolkit looks for gaps at the moment the dataset is imported. Therefore, if you want to use a specific number of observations to define a gap, this needs to be defined before importing the data.\n", - "\n", - "In this exercise we define a gap as a series of missing observations which lasts longer than 1 hour. As the time resolution of the demo dataset is 5 minutes, we hence set the parameter ```gapsize_in_records``` to 12, as there are 12 observations in 1 hour. We use the function ```update_qc_settings``` to perform this step:" - ], - "metadata": { - "id": "uwTaud1hTk4w" - } - }, - { - "cell_type": "code", - "source": [ - "# Update the gap definition\n", - "dataset.update_qc_settings(gapsize_in_records=12)" - ], - "metadata": { - "id": "fjr7Dr8lll6z" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Now we are ready to load in the dataset and take a look at what is inside:" - ], - "metadata": { - "id": "yvqHF7tVnVIa" - } - }, - { - "cell_type": "code", - "source": [ - "# Load the data from the demo data files\n", - "dataset.import_data_from_file()" - ], - "metadata": { - "id": "N01q1Zuqlh1Q" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# Look at what is inside the dataset\n", - "dataset.show()" - ], - "metadata": { - "id": "JwVf_sKSU_1j" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Observations that pass these intitial quality control steps are contained in the ```df``` object. Any observation that does not pass one of the initial quality control steps is not stored in this ```df```, but it is stored elsewhere depending on which check it failed. labeled as an outlier. Observations with duplicated timestamps or invalid input are labeled as outliers and can be found in the ```outliersdf``` object:" - ], - "metadata": { - "id": "IkWnaXr9nQpm" - } - }, - { - "cell_type": "code", - "source": [ - "# The outliers are stored in the outliersdf object of the dataset:\n", - "outliers = dataset.outliersdf\n", - "\n", - "# Print this object to see what is stored in this data frame:\n", - "print(outliers)" - ], - "metadata": { - "id": "uQJh2TXlXUU7" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Each row denotes an observation that was flagged as an outlier. The observation is characterized by the name of the station, the timestamp and the observation type. Two columns then declare why this observation is an outlier. The first column ```\"value\"``` gives the value of this observation. If it is ```NaN```, then the observation is not a number. The second column ```\"label\"``` explains which quality control check this observation failed. Here, the label ```invalid input``` was given, because the observation was not numeric.\n", - "\n", - "Missing observations are stored in the ```missing_obs``` object, while gaps are contained in a different object, aptly named ```gaps```. In the next exercise you will learn about gaps and how to handle them.\n", - "\n", - "**For more information about the structure of a Dataset in this toolkit, you can consult the documentation [here](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#dataset).**" - ], - "metadata": { - "id": "Y5VL-gCpybWb" - } - }, - { - "cell_type": "markdown", - "source": [ - "## 2.2 Additional quality control checks\n", - "\n", - "Five additional quality control checks can be performed with the function ```apply_quality_control``` ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control)). Each of the five available checks will be explained in the following exercises.\n", - "\n", - "The quality control is performed based on settings that are associated with the dataset. The following code shows how these settings can be accessed. Take a quick look at the structure of this dictionary. It will become more clear when we will tackle the individual checks.\n", - "\n", - "\n", - "\n" - ], - "metadata": { - "id": "HP0ui42tkm86" - } - }, - { - "cell_type": "code", - "source": [ - "# All settings, labels, replacement values are defined in the default settings in /settings_files/qc_settings.py\n", - "# To inspect (and change) these quality control settings, you can extract them:\n", - "qc_settings = dataset.settings.qc[\"qc_check_settings\"]\n", - "\n", - "# These settings are in a dictionary which contains multiple levels.\n", - "# The first level concerns the specific quality control check which the settings are for.\n", - "# You can print the keys of the dictionary to get an idea of the different available checks:\n", - "print(qc_settings.keys())\n", - "\n", - "# All of these checks will be explained in the following parts of the exercise." - ], - "metadata": { - "id": "g2e4xh2_leXf" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "### 2.2.1 Gross value check\n", - "\n", - "The [**gross value check**](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html#metobs_toolkit.qc_checks.gross_value_check) tests your dataset to see if the observations are between certain thresholds. The settings for this check can be found in the settings dictionary with the key ```\"gross_value\"```. For temperature these settings already have some default values. In the following code we will show how you can access these values." - ], - "metadata": { - "id": "WYistOconmJZ" - } - }, - { - "cell_type": "code", - "source": [ - "# The settings for the gross value check can be found in the qc_settings dictionary\n", - "# by using the key \"gross_value\"\n", - "print(qc_settings[\"gross_value\"])" - ], - "metadata": { - "id": "GDK-Xy7ApA2Y" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "code", - "source": [ - "# You can see that this dictionary only has one key: \"temp\".\n", - "# This is because default values are currently only given for temperature.\n", - "# The settings for temperature can be accessed in the following way:\n", - "print(qc_settings[\"gross_value\"][\"temp\"])" - ], - "metadata": { - "id": "vGDLKYOFvFXp" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "These variables determine the minimum and maximum threshold used by the gross value check. What values would you choose for your own dataset?" - ], - "metadata": { - "id": "nDhgEas9vJVG" - } - }, - { - "cell_type": "markdown", - "source": [ - "**Extra information**: In this exercise we will only work with temperature. However, if you want to apply quality control to another variable, you can add this variable with the correct settings in the dictionary. For example, let us consider the relative humidity. This variable is expressed in % and needs to lie between 0 % and 100 %. The gross value check could then be applied to check this in the data." - ], - "metadata": { - "id": "YbpcTYFqvYKV" - } - }, - { - "cell_type": "markdown", - "source": [ - "### 2.2.2 Persistence check\n", - "\n", - "The [**persistence check**](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.persistance_check.html#metobs_toolkit.qc_checks.persistance_check) searches for a consecutive series of repetitive observation values in your dataset. The check functions by looking at a certain time window to see if the observations are constant in this window. The length of this time window is defined in the settings by ``` \"time_window_to_check\" ```. This time windows should reflect a time interval during which you expect some variation in the observed variable. For the check to be executed, this time window should contain a minimum number of observations, which is determined by ``` \"min_num_obs\" ```. If all observations in the time window are identical, they are all labeled as a persistence outlier.\n", - "\n", - "For temperature some default values are already set. Look for these values in the settings with the key ```\"persistance\"```. What values would you choose for your dataset?" - ], - "metadata": { - "id": "Tq1k-lNTqaOq" - } - }, - { - "cell_type": "code", - "source": [ - "# Print the settings for the persistence check and find the default settings for the temperature" - ], - "metadata": { - "id": "Dhh_TFatqxyx" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "### 2.2.3 Repetitions check\n", - "\n", - "The **[repetitions check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html#metobs_toolkit.qc_checks.repetitions_check)** is very similar to the persistence check but works in a slightly different way. With the persistance check you define a certain time window during which you expect some variation in the observed variable. This time window is absent for the repetitions check: it simply checks the series of observations and looks for a series of consecutive constant values. A series of such constant values could indicate a connection error. In many cases the persistence check and the repetitions check will give the same results. However, in some cases, one of the checks will be more suitable, for example when the time resolution of your data is very coarse.\n", - "\n", - "Can you find the default values for temperature (analogously to the two previous checks)?" - ], - "metadata": { - "id": "aGYFnBDe9Npr" - } - }, - { - "cell_type": "code", - "source": [ - "# Print the settings for the repetitions check and find the default settings for the temperature" - ], - "metadata": { - "id": "lqWJdDPp_yKS" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "### 2.2.4 Spike check\n", - "\n", - "The **[spike check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.step_check.html#metobs_toolkit.qc_checks.step_check)** inspects your dataset for abrupt changes in the observations between consecutive timestamps. If an observation varies too much from the previous observation, it is labeled as an outlier. You can find the settings for this check with the key ```\"step\"``` in the settings dictionary. The change between consecutive timestamps is expressed per second and is defined by the variables ```\"max_increase_per_second\"``` and ```\"min_increase_per_second\"``` in the settings.\n", - "\n", - "Take a look at the default values for this check." - ], - "metadata": { - "id": "XMAlHg5vr2-C" - } - }, - { - "cell_type": "code", - "source": [ - "# Print the settings for the spike check and find the default settings for the temperature" - ], - "metadata": { - "id": "tlAgZAFssKJw" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "### 2.2.5 Window variation check\n", - "\n", - "Lastly, while the spike check looks at the variation between two consecutive variations, the **[window variation check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html#metobs_toolkit.qc_checks.window_variation_check)** investigates the variation of the data in a certain time window. This variation needs to be between a certain minimum and maximum threshold which can be found in the settings as respectively ```max_increase_per_second``` and ```min_increase_per_second```. The length of the time window is controlled by the variable ```time_window_to_check```, while ```min_window_members``` determines how many observations need to be inside of this window before performing this check. All of these settings can be found in the quality control settings dictionary under the key ```\"window_variation\"```.\n", - "\n", - "Take a look at the default values for this check." - ], - "metadata": { - "id": "2Tbxsvknv05v" - } - }, - { - "cell_type": "code", - "source": [ - "# Print the settings for the window variation check and find the default settings for the temperature" - ], - "metadata": { - "id": "sG1bpCSkv7Dr" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## 2.3 Applying quality control\n", - "\n", - "The five quality control checks can be applied to the dataset with the the function ```apply_quality_control``` ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control)). Before applying the quality control, we will first coarsen the data to a time resolution of 1 hour." - ], - "metadata": { - "id": "kePsuwgCwq69" - } - }, - { - "cell_type": "code", - "source": [ - "# Coarsen the time resolution to 1 hour\n", - "dataset.coarsen_time_resolution(freq='1H')\n", - "\n", - "# Apply quality control\n", - "dataset.apply_quality_control(\n", - " obstype=\"temp\", # choose which observations you want to check\n", - " gross_value=True, # set True if you want to perform the gross value check\n", - " persistance=True, # set True if you want to perform the persistence check\n", - " repetitions=True, # set True if you want to perform the repetitions check\n", - " step=True, # set True if you want to perform the spike check\n", - " window_variation=True, # set True if you want to perform the window variation check\n", - ")" - ], - "metadata": { - "id": "OAsCrwCcxHk8" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "This function updates the outliers data frame (```outliers_df```) in the dataset if some observations do not pass the previous quality control checks. Take a look at the outliers dataframe:" - ], - "metadata": { - "id": "3oXjxGNowQNf" - } - }, - { - "cell_type": "code", - "source": [ - "# Print the outliers dataframe. Are there more outliers than before?\n", - "dataset.outliersdf.xs('temp', level='obstype') # Select only the temperature outliers" - ], - "metadata": { - "id": "Ll7lpJ4Awgxw" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## 2.4 Plotting quality control results\n", - "You can plot the results of the full quality control nicely with the function below ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.get_qc_stats)). This function generates pie charts to display the quality control statistics. There is a general pie chart with the overall label of the observations: ok, outlier or missing. Next, there is also a general pie chart, specifying how the different types of outliers are distributed. Finally, each quality control check also has its own chart, denoting how many observations pass this check by labelling them as ok, outlier or not checked. Observations which are already labeled as an outlier are not checked again by the following checks, which results in the \"not checked\" label.\n", - "\n", - "Inspect the code to generate the plot and look at the overview plot itself. Can you recognize all the features as decribed above?" - ], - "metadata": { - "id": "7f_pGiNn2dnf" - } - }, - { - "cell_type": "code", - "source": [ - "qc_statistics = dataset.get_qc_stats(\n", - " obstype=\"temp\", # Specify which observation variable you want to get the statistics for; here we choose temperature\n", - " stationname=None, # None means all stations are plotted. You can also plot a specific station by specifying the station name, e.g. 'vlinder01'\n", - " make_plot=True, # Set True to make a plot\n", - ")" - ], - "metadata": { - "id": "7nfcyA0Cy0FC" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "If you are interested in a specific station, you can do the quality control on a specific station rather than the full dataset. The following code gives an example of how this can be done. However, if you run this code right now, it will give an error because all quality control checks have already been performed for this dataset. If you want to do a new quality control procedure, you will have to start again from an empty dataset." - ], - "metadata": { - "id": "lxP70rzPI_AG" - } - }, - { - "cell_type": "code", - "source": [ - "specific_station = 'vlinder01' #the name of the station\n", - "\n", - "station = dataset.get_station(specific_station)\n", - "\n", - "station.apply_quality_control(\n", - " obstype=\"temp\", # choose which observations you want to check\n", - " gross_value=True, # set True if you want to perform the gross value check\n", - " persistance=True, # set True if you want to perform the persistence check\n", - " repetitions=True, # set True if you want to perform the repetitions check\n", - " step=True, # set True if you want to perform the spike check\n", - " window_variation=True, # set True if you want to perform the window variation check\n", - ")\n", - "\n", - "qc_statistics = station.get_qc_stats(\n", - " obstype=\"temp\", # Specify which observation variable you want to get the statistics for; here we choose temperature\n", - " make_plot=True, # Set True to make a plot\n", - ")" - ], - "metadata": { - "id": "c8pE4YfAJMzN" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "When plotting a time series, the quality control outliers will also be present in the form of scatters on the time series. To visualise this use the `colorby='label'` attribute in the plotting function ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_plot))." - ], - "metadata": { - "id": "Pw6VqefCIKve" - } - }, - { - "cell_type": "code", - "source": [ - "dataset.make_plot(colorby=\"label\")" - ], - "metadata": { - "id": "67c0SboWuFI_" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "You can also plot just the observations of one or more station of you choice. You can specify which station by using the ```stationnames``` argument of the plotting function:" - ], - "metadata": { - "id": "FXmzHLRzVDco" - } - }, - { - "cell_type": "code", - "source": [ - "dataset.make_plot(colorby=\"label\", stationnames=[\"vlinder05\"]) # Here we plot only the observations of station 'vlinder05'" - ], - "metadata": { - "id": "Ii_Ww0MtVZ3T" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "## 2.5 Changing the quality control settings" - ], - "metadata": { - "id": "LfXNOBQvKoH_" - } - }, - { - "cell_type": "markdown", - "source": [ - "To change the settings used by the quality control you can use the [`update_qc_settings`](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings)function. You need to execute this function before applying the quality control." - ], - "metadata": { - "id": "_Zxl_762LE90" - } - }, - { - "cell_type": "code", - "source": [ - "# Make an empty dataset\n", - "dataset = metobs_toolkit.Dataset()\n", - "\n", - "# Add the demo data files to the dataset settings\n", - "dataset.update_settings(input_data_file = metobs_toolkit.demo_datafile,\n", - " input_metadata_file = metobs_toolkit.demo_metadatafile,\n", - " data_template_file = metobs_toolkit.demo_template,\n", - " metadata_template_file = metobs_toolkit.demo_template # Contains also the metadata mapping\n", - " )\n", - "\n", - "# Update the settings\n", - "dataset.update_qc_settings(obstype='temp',\n", - " gross_value_max_value=27.2,\n", - " win_var_time_win_to_check='3H', # 3 hours\n", - " step_max_decrease_per_sec=3.6/3600,\n", - " gapsize_in_records=15)\n", - "\n", - "# Load the data from the demo data files\n", - "dataset.import_data_from_file()\n", - "\n", - "# Coarsen time resolution\n", - "dataset.coarsen_time_resolution(freq='1H')\n", - "\n", - "# Apply quality control\n", - "dataset.apply_quality_control(obstype=\"temp\")\n", - "\n", - "# Visualise the effect\n", - "dataset.make_plot(obstype='temp', colorby='label')" - ], - "metadata": { - "id": "y0xK4wq-zyIN" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "# 3. Apply quality control to your our own dataset\n", - "\n", - "After going through this exercise, you should now have a good idea of what quality control entails and how you can apply it using this toolkit. It is now up to you to use what you have learned and perform a quality control on your own dataset. Copy (parts of) the code from section 2 from this exercise to perform the following steps:\n", - "\n", - "1. Import your own dataset following the steps shown in the previous part of this exercise.\n", - "2. Change the settings to improve the quality control for your data.\n", - "3. Apply quality control to your own dataset\n", - "4. Visualise the result\n", - "\n", - "After performing these steps, you will save the quality controlled dataset for further use in the following exercises. This will be explained below." - ], - "metadata": { - "id": "2aKk_6DiSU-Z" - } - }, - { - "cell_type": "markdown", - "source": [ - "**Step 1: Import your own dataset**\n", - "\n", - "Copy (parts of) the code from section 2.1 to read in your own dataset. Do not forget to modify the length of a gap with ```gapsize_in_records``` in the quality control settings before importing the dataset. A recommended gap length is 3 hours. Remember that ```gapsize_in_records``` defines the length of a gap in terms of the number of missing observations, so you should define this value based on the time resolution of your dataset. If you are unsure what this time resolution is or if the time resolutions is variable, you can load in the dataset first and check the time resolution value in the ```metadf``` object under ```assumed_import_frequency```. Based on this value you can define an appropriate number for ```gapsize_in_records```." - ], - "metadata": { - "id": "nNbi1oCa5Exg" - } - }, - { - "cell_type": "code", - "source": [ - "# Step 1: Import your own dataset" - ], - "metadata": { - "id": "rrvAtyDAECrR" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "**Step 2: Update the QC settings**\n", - "\n", - "Use the [`update_qc_settings`](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings) function (as in section 2.5) to update the QC settings of the different checks. Information about the checks can be found in section 2.2 of this exercise." - ], - "metadata": { - "id": "1KdyB1jDEewh" - } - }, - { - "cell_type": "code", - "source": [ - "# Step 2: Update the QC settings" - ], - "metadata": { - "id": "KPTm0lX6Ev_T" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "**Step 3: Apply quality control**\n", - "\n", - "Copy (parts of) the code from section 2.3 to apply quality control to your own dataset. For the following exercises it is important the dataset is coarsened to a time resolution of 1 hour! Make sure to **coarsen your dataset before applying quality control**." - ], - "metadata": { - "id": "s2cNcKA-Eykt" - } - }, - { - "cell_type": "code", - "source": [ - "# Step 3: Apply quality control" - ], - "metadata": { - "id": "Mgl9yPbzFQfG" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "**Step 4: Visualise the results**\n", - "\n", - "Copy (parts of) the code from section 2.4 to visualise the results from the quality control. Use this step to verify if the quality controlled dataset matches your expectations. If not, you can repeat the steps above (starting from a new dataset in step 1) with some new settings until you acquire the desired result." - ], - "metadata": { - "id": "7tjgBLI9FW2R" - } - }, - { - "cell_type": "code", - "source": [ - "# Step 4: Visualise the results" - ], - "metadata": { - "id": "LN49YXNQFeoM" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "**Final step: save the quality controlled dataset**\n", - "\n", - "As each exercise builds on the results from the previous exercises, it is important to save your dataset, so that you do not have to repeat all the previous steps when you continue working. Saving your dataset to a file can be easily done with the function ```save_dataset``` ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.save_dataset)). The dataset is save in a pickle file, with the extension ```.pkl```. In the next exercise you will import this dataset from this file and simply continue working where you left off." - ], - "metadata": { - "id": "REHyXQBQFgq3" - } - }, - { - "cell_type": "code", - "source": [ - "save_directory = # provide a directory where this dataset needs to be saved\n", - "filename = 'qc_controlled_dataset.pkl' # name of the file in which the dataset is saved\n", - "dataset.save_dataset(outputfolder = save_directory, filename=filename)" - ], - "metadata": { - "id": "Lm7-mSChxnj3" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "# 4. Extension\n", - "\n", - "The quality control checks that are implemented in the toolkit are applied on each station, using only the observations of that station. Each of these checks looks for certain patterns in time to determine if observations pass the quality control check. If you are interested in using more advanced quality control, and if you have a dense network of observations, then **spatial quality control** checks can be applied.\n", - "\n", - "Spatial quality control checks test the quality of observations by making use of observations at other locations. Sophisticated software exists that includes this type of quality control checks. An example of such software is [TITAN](https://asr.copernicus.org/articles/17/153/2020/).\n", - "\n", - "It is possible in the MetObs-toolkit to apply one important spatial check from the TITAN framework to your Dataset: the [TITAN buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_buddy_check).\n", - "\n", - "Go through the documentation provided and try to apply the TITAN buddy check to your own dataset (or the demo dataset)." - ], - "metadata": { - "id": "4q-AOy3ZrvWu" - } - } - ] -} \ No newline at end of file diff --git a/examples/overview_fig.png b/examples/overview_fig.png deleted file mode 100644 index 00e0635f..00000000 Binary files a/examples/overview_fig.png and /dev/null differ diff --git a/examples/Gap_filling_excercise_03.ipynb b/fairness_demo_exercises/Gap_filling_excercise_03.ipynb similarity index 99% rename from examples/Gap_filling_excercise_03.ipynb rename to fairness_demo_exercises/Gap_filling_excercise_03.ipynb index 41c73391..e30fe467 100644 --- a/examples/Gap_filling_excercise_03.ipynb +++ b/fairness_demo_exercises/Gap_filling_excercise_03.ipynb @@ -57,7 +57,7 @@ "outputs": [], "source": [ "# Install the MetObs-toolkit package\n", - "!pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit\n", + "!pip3 install MetObs-toolkit==0.1.1\n", "%config InlineBackend.print_figure_kwargs = {'bbox_inches':None}" ] }, @@ -1351,4 +1351,4 @@ "outputs": [] } ] -} \ No newline at end of file +} diff --git a/fairness_demo_exercises/Introduction_01.ipynb b/fairness_demo_exercises/Introduction_01.ipynb new file mode 100644 index 00000000..cf253235 --- /dev/null +++ b/fairness_demo_exercises/Introduction_01.ipynb @@ -0,0 +1,3838 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "VfqFWQFblNzF" + }, + "source": [ + "# **0. Introduction to Google Colab Notebooks & the MetObs-toolkit**\n", + "\n", + "This demo is provided to get to know how Google Colab Notebooks work and to introduce you to some basic functions of the MetObs-toolkit. The MetObs-toolkit is a Python package that is developed specifically for investigating (urban) meteorological/climate data. More detailed information about this package and information on all the functions that are included, can be found here: https://vergauwenthomas.github.io/MetObs_toolkit/\n", + "
\n", + "In this documentation, you can also find some examples for the most important functions of the toolkit." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6qgBtHRTSmt9" + }, + "source": [ + "### **0.1 Introduction to Google Colab Notebooks**\n", + "\n", + "Colab provides a free Jupyter notebook environment. In such an environment you can write, execute and document Python code. The latter gives the opportunity to make the code more understandable since it is possible to use text, figures and formulas in the explanation. Additionally to Jupyter notebook, Colab runs entirely in the cloud. In this way nothing has to be installed on your computer. Finally, you can easily share your work/code with colleagues and they can run it without having to download all the Python packages you used.\n", + "\n", + "If you never have worked with Google Colab Notebooks, then it might be useful to watch this introduction video:\n", + "https://www.youtube.com/watch?v=inN8seMm7UI\n", + "\n", + "
\n", + "\n", + "**Basics:**\n", + "\n", + "- Before you make changes, always copy the document (tab File -> Save copy in Drive) or make sure (when you work with multiple people in the same document) that only one person at the time is making modifications. Normally, you already made copies of the Google Colabs so you do not have to copy the Google Colabs again during the summerschool. When you made a copy, the Colab notebook will show up in your Google Drive under the folder 'Colab Notebooks'. If you want to store it somewhere else, you can move it by clicking on the three dots next to the header. If you want to place it in a new folder, you can first create a new folder by clicking on the '+ New' button in your Google Drive and give it the name you want. In this folder you will later during this session copy all the data that you want to explore.\n", + "- To run the code (cells with a grey background) you can:\n", + " - click on the \"play button\" at the left side of the cell with the code\n", + " - \"Cmd/Ctrl+Enter\" to run the cell in place;\n", + " - \"Shift+Enter\" to run the cell and move focus to the next cell (adding one if none exists);\n", + "- To change code or text, you can easily double click on the cell you want to change.\n", + "- To add content, you can add a new code or text cell, by clicking in the top left corner on \"+ Code\" or \" + Text\", respectively.\n", + "- The symbol \"#\" in the code cells indicate comments to make to code understandable.\n", + "\n", + "
\n", + "\n", + "If you need an example or more information on the basics of Colab, you can use the following links:\n", + "https://colab.research.google.com/notebooks/basic_features_overview.ipynb#scrollTo=KR921S_OQSHG\n", + "https://colab.research.google.com/notebooks/intro.ipynb#scrollTo=5fCEDCU_qrC0\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "clZMLpWpT0WP" + }, + "source": [ + "### **0.2 Installing packages**\n", + "\n", + "First, you have to install the needed Python package(s) containing some functions that will be used during the following code/exercise. Here we use the Python package MetObs_toolkit which contains all the basic functions that are needed for the different aspects to research an (urban) meteorological network. More information on this package can be found here: https://vergauwenthomas.github.io/MetObs_toolkit/\n", + "\n", + "And the developper page is the following: https://github.com/vergauwenthomas/MetObs_toolkit" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JPGilg7qlhTr", + "outputId": "ecef4349-daf6-4daf-a622-9d817ec9d3a8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting git+https://github.com/vergauwenthomas/MetObs_toolkit\n", + " Cloning https://github.com/vergauwenthomas/MetObs_toolkit to /tmp/pip-req-build-x45_t_rs\n", + " Running command git clone --filter=blob:none --quiet https://github.com/vergauwenthomas/MetObs_toolkit /tmp/pip-req-build-x45_t_rs\n", + " Resolved https://github.com/vergauwenthomas/MetObs_toolkit to commit c9001bf25e1b80d3c32feed8deb37800bed78978\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: earthengine-api<0.2.0,>=0.1.340 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (0.1.357)\n", + "Collecting geemap<0.21.0,>=0.20.0 (from metobs-toolkit==0.1.1a2)\n", + " Downloading geemap-0.20.7-py2.py3-none-any.whl (2.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m23.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting geopandas<0.10.0,>=0.9.0 (from metobs-toolkit==0.1.1a2)\n", + " Downloading geopandas-0.9.0-py2.py3-none-any.whl (994 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m994.8/994.8 kB\u001b[0m \u001b[31m64.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting mapclassify<3.0.0,>=2.4.0 (from metobs-toolkit==0.1.1a2)\n", + " Downloading mapclassify-2.5.0-py3-none-any.whl (39 kB)\n", + "Requirement already satisfied: matplotlib<4.0.0,>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (3.7.1)\n", + "Collecting mysql-connector-python<9.0.0,>=8.0.6 (from metobs-toolkit==0.1.1a2)\n", + " Downloading mysql_connector_python-8.0.33-cp310-cp310-manylinux1_x86_64.whl (27.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m27.4/27.4 MB\u001b[0m \u001b[31m52.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: numpy<2.0.0,>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (1.22.4)\n", + "Requirement already satisfied: pandas<2.0.0,>=1.3.0 in /usr/local/lib/python3.10/dist-packages (from metobs-toolkit==0.1.1a2) (1.5.3)\n", + "Collecting pyproj<3.5,>=3.4 (from metobs-toolkit==0.1.1a2)\n", + " Downloading pyproj-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.7/7.7 MB\u001b[0m \u001b[31m96.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting titanlib<0.4,>=0.3 (from metobs-toolkit==0.1.1a2)\n", + " Downloading titanlib-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.5/12.5 MB\u001b[0m \u001b[31m72.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: google-cloud-storage in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.8.0)\n", + "Requirement already satisfied: google-api-python-client>=1.12.1 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.84.0)\n", + "Requirement already satisfied: google-auth>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.17.3)\n", + "Requirement already satisfied: google-auth-httplib2>=0.0.3 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.1.0)\n", + "Requirement already satisfied: httplib2<1dev,>=0.9.2 in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.21.0)\n", + "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.27.1)\n", + "Collecting bqplot (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading bqplot-0.12.39-py2.py3-none-any.whl (1.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m69.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting colour (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading colour-0.1.5-py2.py3-none-any.whl (23 kB)\n", + "Collecting eerepr>=0.0.4 (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading eerepr-0.0.4-py3-none-any.whl (9.7 kB)\n", + "Requirement already satisfied: folium>=0.13.0 in /usr/local/lib/python3.10/dist-packages (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.14.0)\n", + "Collecting geocoder (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading geocoder-1.38.1-py2.py3-none-any.whl (98 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.6/98.6 kB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipyevents (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading ipyevents-2.0.1-py2.py3-none-any.whl (130 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.5/130.5 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipyfilechooser>=0.6.0 (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading ipyfilechooser-0.6.0-py3-none-any.whl (11 kB)\n", + "Collecting ipyleaflet>=0.17.0 (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading ipyleaflet-0.17.3-py3-none-any.whl (3.4 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m71.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipytree (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading ipytree-0.2.2-py2.py3-none-any.whl (1.3 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m69.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: plotly in /usr/local/lib/python3.10/dist-packages (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.13.1)\n", + "Collecting pyperclip (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading pyperclip-1.8.2.tar.gz (20 kB)\n", + " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + "Collecting python-box (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading python_box-7.0.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.2 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.2/3.2 MB\u001b[0m \u001b[31m86.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting scooby (from geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading scooby-0.7.2-py3-none-any.whl (16 kB)\n", + "Requirement already satisfied: shapely>=1.6 in /usr/local/lib/python3.10/dist-packages (from geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (2.0.1)\n", + "Requirement already satisfied: fiona>=1.8 in /usr/local/lib/python3.10/dist-packages (from geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (1.9.4.post1)\n", + "Requirement already satisfied: scipy>=1.0 in /usr/local/lib/python3.10/dist-packages (from mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (1.10.1)\n", + "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (1.2.2)\n", + "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (3.1)\n", + "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (0.11.0)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (4.40.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (1.4.4)\n", + "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (23.1)\n", + "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (8.4.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib<4.0.0,>=3.0.0->metobs-toolkit==0.1.1a2) (2.8.2)\n", + "Requirement already satisfied: protobuf<=3.20.3,>=3.11.0 in /usr/local/lib/python3.10/dist-packages (from mysql-connector-python<9.0.0,>=8.0.6->metobs-toolkit==0.1.1a2) (3.20.3)\n", + "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<2.0.0,>=1.3.0->metobs-toolkit==0.1.1a2) (2022.7.1)\n", + "Requirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from pyproj<3.5,>=3.4->metobs-toolkit==0.1.1a2) (2023.5.7)\n", + "Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (23.1.0)\n", + "Requirement already satisfied: click~=8.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (8.1.3)\n", + "Requirement already satisfied: click-plugins>=1.0 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (1.1.1)\n", + "Requirement already satisfied: cligj>=0.5 in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (0.7.2)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from fiona>=1.8->geopandas<0.10.0,>=0.9.0->metobs-toolkit==0.1.1a2) (1.16.0)\n", + "Requirement already satisfied: branca>=0.6.0 in /usr/local/lib/python3.10/dist-packages (from folium>=0.13.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.6.0)\n", + "Requirement already satisfied: jinja2>=2.9 in /usr/local/lib/python3.10/dist-packages (from folium>=0.13.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.1.2)\n", + "Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client>=1.12.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.11.1)\n", + "Requirement already satisfied: uritemplate<5,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from google-api-python-client>=1.12.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (4.1.1)\n", + "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (5.3.1)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.3.0)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (4.9)\n", + "Requirement already satisfied: ipywidgets in /usr/local/lib/python3.10/dist-packages (from ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (7.7.1)\n", + "Collecting traittypes<3,>=0.2.1 (from ipyleaflet>=0.17.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading traittypes-0.2.1-py2.py3-none-any.whl (8.6 kB)\n", + "Collecting xyzservices>=2021.8.1 (from ipyleaflet>=0.17.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading xyzservices-2023.5.0-py3-none-any.whl (56 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: traitlets>=4.3.0 in /usr/local/lib/python3.10/dist-packages (from bqplot->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.7.1)\n", + "Requirement already satisfied: future in /usr/local/lib/python3.10/dist-packages (from geocoder->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.18.3)\n", + "Collecting ratelim (from geocoder->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading ratelim-0.1.6-py2.py3-none-any.whl (4.0 kB)\n", + "Requirement already satisfied: google-cloud-core<3.0dev,>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.3.2)\n", + "Requirement already satisfied: google-resumable-media>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.5.0)\n", + "Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (1.26.16)\n", + "Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (2.0.12)\n", + "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (3.4)\n", + "Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (8.2.2)\n", + "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (1.2.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->mapclassify<3.0.0,>=2.4.0->metobs-toolkit==0.1.1a2) (3.1.0)\n", + "Requirement already satisfied: googleapis-common-protos<2.0.dev0,>=1.56.2 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-api-python-client>=1.12.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (1.59.1)\n", + "Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /usr/local/lib/python3.10/dist-packages (from google-resumable-media>=2.3.2->google-cloud-storage->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (1.5.0)\n", + "Requirement already satisfied: ipykernel>=4.5.1 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.5.6)\n", + "Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.0)\n", + "Requirement already satisfied: widgetsnbextension~=3.6.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.6.4)\n", + "Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (7.34.0)\n", + "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.0.7)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2>=2.9->folium>=0.13.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.1.3)\n", + "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=1.4.1->earthengine-api<0.2.0,>=0.1.340->metobs-toolkit==0.1.1a2) (0.5.0)\n", + "Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ratelim->geocoder->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.4.2)\n", + "Requirement already satisfied: jupyter-client in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.1.12)\n", + "Requirement already satisfied: tornado>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipykernel>=4.5.1->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.3.1)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (67.7.2)\n", + "Collecting jedi>=0.16 (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2)\n", + " Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.7.5)\n", + "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.0.38)\n", + "Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.14.0)\n", + "Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.0)\n", + "Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.1.6)\n", + "Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.8.0)\n", + "Requirement already satisfied: notebook>=4.4.1 in /usr/local/lib/python3.10/dist-packages (from widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.4.8)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.8.3)\n", + "Requirement already satisfied: pyzmq>=17 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (23.2.1)\n", + "Requirement already satisfied: argon2-cffi in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (21.3.0)\n", + "Requirement already satisfied: jupyter-core>=4.6.1 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.3.1)\n", + "Requirement already satisfied: nbformat in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (5.9.0)\n", + "Requirement already satisfied: nbconvert in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.5.4)\n", + "Requirement already satisfied: nest-asyncio>=1.5 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.5.6)\n", + "Requirement already satisfied: Send2Trash>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.8.2)\n", + "Requirement already satisfied: terminado>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.17.1)\n", + "Requirement already satisfied: prometheus-client in /usr/local/lib/python3.10/dist-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.17.0)\n", + "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.7.0)\n", + "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=4.0.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.6)\n", + "Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.6.1->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (3.7.0)\n", + "Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (21.2.0)\n", + "Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.9.2)\n", + "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.11.2)\n", + "Requirement already satisfied: bleach in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (6.0.0)\n", + "Requirement already satisfied: defusedxml in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.7.1)\n", + "Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.4)\n", + "Requirement already satisfied: jupyterlab-pygments in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.2.2)\n", + "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.8.4)\n", + "Requirement already satisfied: nbclient>=0.5.0 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.8.0)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.5.0)\n", + "Requirement already satisfied: tinycss2 in /usr/local/lib/python3.10/dist-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.2.1)\n", + "Requirement already satisfied: fastjsonschema in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.17.1)\n", + "Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (4.3.3)\n", + "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.19.3)\n", + "Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (1.15.1)\n", + "Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.4.1)\n", + "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (0.5.1)\n", + "Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.6.0->ipywidgets->ipyfilechooser>=0.6.0->geemap<0.21.0,>=0.20.0->metobs-toolkit==0.1.1a2) (2.21)\n", + "Building wheels for collected packages: metobs-toolkit, pyperclip\n", + " Building wheel for metobs-toolkit (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for metobs-toolkit: filename=metobs_toolkit-0.1.1a2-py3-none-any.whl size=7578358 sha256=9a0a58c4180aff509c4ea4bf23a3bbecd0cf7c92cd8e1e6c159b13928f6658b2\n", + " Stored in directory: /tmp/pip-ephem-wheel-cache-hyj9g3tl/wheels/7c/16/4c/97f8d14c86eb3acbcef44e8f39855c6f2336a93c85693673cb\n", + " Building wheel for pyperclip (setup.py) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for pyperclip: filename=pyperclip-1.8.2-py3-none-any.whl size=11124 sha256=34dda337e43868b649e1cc7266865e91ce0a75c6dc2ed14f2b202f1d72e5e767\n", + " Stored in directory: /root/.cache/pip/wheels/04/24/fe/140a94a7f1036003ede94579e6b4227fe96c840c6f4dcbe307\n", + "Successfully built metobs-toolkit pyperclip\n", + "Installing collected packages: pyperclip, colour, xyzservices, traittypes, titanlib, scooby, ratelim, python-box, pyproj, mysql-connector-python, jedi, geocoder, mapclassify, geopandas, eerepr, ipytree, ipyleaflet, ipyfilechooser, ipyevents, bqplot, geemap, metobs-toolkit\n", + " Attempting uninstall: pyproj\n", + " Found existing installation: pyproj 3.6.0\n", + " Uninstalling pyproj-3.6.0:\n", + " Successfully uninstalled pyproj-3.6.0\n", + " Attempting uninstall: geopandas\n", + " Found existing installation: geopandas 0.13.2\n", + " Uninstalling geopandas-0.13.2:\n", + " Successfully uninstalled geopandas-0.13.2\n", + "Successfully installed bqplot-0.12.39 colour-0.1.5 eerepr-0.0.4 geemap-0.20.7 geocoder-1.38.1 geopandas-0.9.0 ipyevents-2.0.1 ipyfilechooser-0.6.0 ipyleaflet-0.17.3 ipytree-0.2.2 jedi-0.18.2 mapclassify-2.5.0 metobs-toolkit-0.1.1a2 mysql-connector-python-8.0.33 pyperclip-1.8.2 pyproj-3.4.1 python-box-7.0.1 ratelim-0.1.6 scooby-0.7.2 titanlib-0.3.3 traittypes-0.2.1 xyzservices-2023.5.0\n" + ] + } + ], + "source": [ + "# Installing the MetObs-toolkit package\n", + "\n", + "!pip3 install MetObs-toolkit==0.1.1\n", + "\n", + "%config InlineBackend.print_figure_kwargs = {'bbox_inches':None}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NZdHe7qF1obv" + }, + "source": [ + "### **0.3 Importing packages**\n", + "\n", + "After a package has been installed, the package has to be loaded or imported before you can use the functions of the package in your code." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + }, + "id": "Ab7FRpkiodFi", + "outputId": "0496657a-187f-43cd-f1ee-060b751bc255" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit:Logger initiated\n" + ] + } + ], + "source": [ + "# Importing/loading the metobs_toolkit package\n", + "import metobs_toolkit\n", + "\n", + "# Loading the panda package and refer to it as pd further on in the code\n", + "import pandas as pd\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3NEMcUvQu1SV" + }, + "source": [ + "### **0.4 Importing a dataset**\n", + "\n", + " First, your data has to be uploaded to your Google Drive. Go to the folder where you copied this notebook to. Drag the data from your computer to this folder. The data will now be uploaded (this can take a while)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C6myA1BWAGaA" + }, + "source": [ + "To be able to work with the example data or uploaded data, you have to make the connection with your Google Drive. If a window appears after running the code below, select the account you are currently working with and agree with sharing the data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "t368VXHy_BMp", + "outputId": "c43366da-a452-47df-f458-28f188bc9ed3" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "# Loading your Google Drive\n", + "from google.colab import drive\n", + "drive.mount('/content/drive', force_remount=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rJQkpDdKAt-4" + }, + "source": [ + "After running the above code, you should get the output \"Mounted at /content/drive\" and you should be able to see your folders in the left side-bar if you click on the folder icon. If 'drive' didn't appear after clicking on the folder icon, you can use the \"Mount Drive\" button (third button form the left) in the left side-bar." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VGBZ2Y381ovC" + }, + "source": [ + "As an example we will use a dataset *vlinderdata_small.csv* that is present in your FAIRNESS_summerschool_23 folder. Now, you will tell the code where to look for the data *vlinderdata_small.csv*. Later you can do the same with your own data you uploaded. If you want to know how your file structure looks like as needed for the code below, then you can click in the left menu on the three dots next to the folder where your data is stored and select \"Copy path\"." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LF4zuhkdAs95", + "outputId": "fafb4a53-da28-4d3a-9141-b17b3eff3585" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "BASE_DIR: /content/drive/MyDrive/FAIRNESS_summerschool_23/\n" + ] + } + ], + "source": [ + "# Set relevant directories\n", + "import os # importing a package that is needed\n", + "\n", + "# Your data directory\n", + "BASE_DIR = '/content/drive/MyDrive/FAIRNESS_summerschool_23/' # change if needed\n", + "print('BASE_DIR: ',BASE_DIR)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "itGaBEYY5OxJ" + }, + "source": [ + "Next you specify the path to a data file. You can do this by using the\n", + "os.path.join() function, that constructs the path to a file. `BASE_DIR` contains the path to the file as specified in the previous coding block.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 678 + }, + "id": "nvQGc0Bl28OK", + "outputId": "28f787d2-37ed-4d84-e9d0-e7015d6bc1b1" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DatumTijd (UTC)TemperatuurVochtigheidLuchtdrukNeerslagintensiteitNeerslagsomWindrichtingWindsnelheidRukwindLuchtdruk_ZeeniveauGlobe TemperatuurVlinder
02022-09-010:00:0018.8651017390.00.0655.611.3102005.0NaNvlinder01
12022-09-010:05:0018.8651017310.00.0755.512.9101997.0NaNvlinder01
22022-09-010:10:0018.8651017360.00.0755.111.3102002.0NaNvlinder01
32022-09-010:15:0018.7651017360.00.0856.012.9102002.0NaNvlinder01
42022-09-010:20:0018.7651017330.00.0655.011.3101999.0NaNvlinder01
..........................................
1209522022-09-1523:35:0013.4771013730.017.82750.00.0101326.0NaNvlinder28
1209532022-09-1523:40:0013.3771013650.017.82750.00.0101318.0NaNvlinder28
1209542022-09-1523:45:0013.2771013590.017.82750.00.0101312.0NaNvlinder28
1209552022-09-1523:50:0013.2771013590.017.82750.00.0101312.0NaNvlinder28
1209562022-09-1523:55:0013.0771013690.017.82850.00.0101322.0NaNvlinder28
\n", + "

120957 rows × 13 columns

\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " Datum Tijd (UTC) Temperatuur Vochtigheid Luchtdruk \\\n", + "0 2022-09-01 0:00:00 18.8 65 101739 \n", + "1 2022-09-01 0:05:00 18.8 65 101731 \n", + "2 2022-09-01 0:10:00 18.8 65 101736 \n", + "3 2022-09-01 0:15:00 18.7 65 101736 \n", + "4 2022-09-01 0:20:00 18.7 65 101733 \n", + "... ... ... ... ... ... \n", + "120952 2022-09-15 23:35:00 13.4 77 101373 \n", + "120953 2022-09-15 23:40:00 13.3 77 101365 \n", + "120954 2022-09-15 23:45:00 13.2 77 101359 \n", + "120955 2022-09-15 23:50:00 13.2 77 101359 \n", + "120956 2022-09-15 23:55:00 13.0 77 101369 \n", + "\n", + " Neerslagintensiteit Neerslagsom Windrichting Windsnelheid Rukwind \\\n", + "0 0.0 0.0 65 5.6 11.3 \n", + "1 0.0 0.0 75 5.5 12.9 \n", + "2 0.0 0.0 75 5.1 11.3 \n", + "3 0.0 0.0 85 6.0 12.9 \n", + "4 0.0 0.0 65 5.0 11.3 \n", + "... ... ... ... ... ... \n", + "120952 0.0 17.8 275 0.0 0.0 \n", + "120953 0.0 17.8 275 0.0 0.0 \n", + "120954 0.0 17.8 275 0.0 0.0 \n", + "120955 0.0 17.8 275 0.0 0.0 \n", + "120956 0.0 17.8 285 0.0 0.0 \n", + "\n", + " Luchtdruk_Zeeniveau Globe Temperatuur Vlinder \n", + "0 102005.0 NaN vlinder01 \n", + "1 101997.0 NaN vlinder01 \n", + "2 102002.0 NaN vlinder01 \n", + "3 102002.0 NaN vlinder01 \n", + "4 101999.0 NaN vlinder01 \n", + "... ... ... ... \n", + "120952 101326.0 NaN vlinder28 \n", + "120953 101318.0 NaN vlinder28 \n", + "120954 101312.0 NaN vlinder28 \n", + "120955 101312.0 NaN vlinder28 \n", + "120956 101322.0 NaN vlinder28 \n", + "\n", + "[120957 rows x 13 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Construct the path\n", + "data_path = os.path.join(BASE_DIR, 'vlinderdata_small.csv')\n", + "# Open a file\n", + "# Use the following code if your data has some information on what is in the\n", + "# column. This is the case for the vlinderdata_small.csv file.\n", + "data = pd.read_csv(data_path, delimiter=',')\n", + "# Command the upper line and unccommand the following line if your own data\n", + "# has no information in the header\n", + "#data = pd.read_csv(data_path, delimiter=',', header=None)\n", + "# If you still get an error, then try to change the delimiter\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hT95STFhqQ7z" + }, + "source": [ + "The above cells are a demo on how to use data files stored on your google drive. For the rest of this introduction we will introduce you to the MetObs-toolkit." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Y9uigeW28KmQ" + }, + "source": [ + "### **0.5 Basics of the MetObs-toolkit**\n", + "\n", + "**0.5.1 Key concepts:**\n", + "\n", + "The MetObs-toolkit is built upon three classes:\n", + "\n", + "\n", + "* Dataset: a collection of all the observations and metadata for all stations.\n", + "* Station: the collection of all observations and metadata for one station (lat, lon, ...)\n", + "* Modeldata: external model data (e.g. ERA5)\n", + "\n", + "More information on these classes and their full discription can be found on this page in the [documentation](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#how-to-use-this-toolkit).\n", + "\n", + "\n", + "**Let's get started!**\n", + "\n", + "Let's go over an example, before you start using your own dataset. When you want to use the toolkit, you have preferably three files, structured as follows:\n", + "\n", + "\n", + "* A datafile: contains all observations\n", + "* A metadata file: containing the metadata of the meteorological stations (lat, lon, ...)\n", + "* A template: this contains information on how to transform your data set to the default-dataset that holds the same structure for everyone using this toolkit. It contains the information to go from your data set to the standardized data set (and back). This standardized format is needed for the proper operation of the functions/computations of the toolkit. Because every data set is built in a different way, this template will be different for each data set. More detailed information on the template and the mapping that is done by the toolkit can be found on this page in the [documentation](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html).\n", + "\n", + "\n", + "First, we show an example of how the three files of such a standardized dataset look like:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "pvwu7o6qCPZ3", + "outputId": "71914caf-c3af-4cc0-db6c-27ad8c0e827f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Datum Tijd (UTC) Temperatuur Vochtigheid Luchtdruk \\\n", + "0 2022-09-01 00:00:00 18.8 65 101739 \n", + "1 2022-09-01 00:05:00 18.8 65 101731 \n", + "2 2022-09-01 00:10:00 18.8 65 101736 \n", + "3 2022-09-01 00:15:00 18.7 65 101736 \n", + "4 2022-09-01 00:20:00 18.7 65 101733 \n", + "\n", + " Neerslagintensiteit Neerslagsom Windrichting Windsnelheid Rukwind \\\n", + "0 0.0 0.0 65 5.6 11.3 \n", + "1 0.0 0.0 75 5.5 12.9 \n", + "2 0.0 0.0 75 5.1 11.3 \n", + "3 0.0 0.0 85 6.0 12.9 \n", + "4 0.0 0.0 65 5.0 11.3 \n", + "\n", + " Luchtdruk_Zeeniveau Globe Temperatuur Vlinder \n", + "0 102005.0 NaN vlinder01 \n", + "1 101997.0 NaN vlinder01 \n", + "2 102002.0 NaN vlinder01 \n", + "3 102002.0 NaN vlinder01 \n", + "4 101999.0 NaN vlinder01 \n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
VlinderlatlonstadbenamingschoolsponsorNetwork
0vlinder0150.9804383.815763MelleProefhoeveUGentUniversiteit GentVlinder
1vlinder0251.0223793.709695GentSterreUGentUniversiteit GentVlinder
2vlinder0351.3245834.952109TurnhoutCentrumHeilig GrafStad TurnhoutVlinder
3vlinder0451.3355224.934732TurnhoutStadsboerderijHeilig GrafStad TurnhoutVlinder
4vlinder0551.0526553.675183GentWatersportbaanSint-BarbaraUGent Volkssterrenwacht Armand PienVlinder
5vlinder0651.0271004.516300BonheidenMechels BroekBimSemStad MechelenVlinder
6vlinder0751.0308894.478445MechelenNoordPTSStad MechelenVlinder
7vlinder0851.0281304.477398MechelenDe LindepoortTSMStad MechelenVlinder
8vlinder0950.9271674.075722AalstHeuvelparkSMISOLVAVlinder
9vlinder1050.9355564.041389AalstCentrumSMISOLVAVlinder
10vlinder1151.2224224.381726AntwerpenLinkeroeverSint-AnnacollegeStad AntwerpenVlinder
11vlinder1251.2164774.423440AntwerpenZooUGentZOO AntwerpenVlinder
12vlinder1351.2122114.398065AntwerpenInst. Trop. GeneeskundeUGentStad AntwerpenVlinder
13vlinder1451.3506184.315013AntwerpenZandvlietUGentEnerSysVlinder
14vlinder1550.9353004.192600AsseKoereitSint-MartinusAllThingsTalkVlinder
15vlinder1651.2668504.293436BeverenHavenSint-MaartenKatoen NatieVlinder
16vlinder1751.0652695.613458OudsbergenOudsbergSint-Augustinusinstituut BreeNationaal Park Hoge KempenVlinder
17vlinder1851.1362445.656769BreeTongerloTISM BreeStad BreeVlinder
18vlinder1950.8414554.363672BrusselKoninklijk PaleisUGentNaNVlinder
19vlinder2050.8470254.357971BrusselKathedraalUGentVivaquaVlinder
20vlinder2151.2603892.991917De HaanGolfZeelyceumRoyal Ostend Golf ClubVlinder
21vlinder2250.9895012.856220DiksmuideDe Blankaert‘t SaamNatuurpunt De BlankaartVlinder
22vlinder2351.2605783.580151Sint-LaureinsBoerekreekRichtpunt EekloDe BoerekreekVlinder
23vlinder2451.1670153.572062EekloHet LeenOLV ten DoornProvinciaal domein Het LeenVlinder
24vlinder2551.1547203.708611EvergemKluizenEinstein AtheneumDe WatergroepVlinder
25vlinder2651.1617604.997653GeelCentrumSint DimpnaStad GeelVlinder
26vlinder2751.0580993.728067GentOttograchtSec. KunstinstituutStad gentVlinder
27vlinder2851.0352933.769741GentGentbrugse MeersenGO! Ath.Stad GentVlinder
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " Vlinder lat lon stad benaming \\\n", + "0 vlinder01 50.980438 3.815763 Melle Proefhoeve \n", + "1 vlinder02 51.022379 3.709695 Gent Sterre \n", + "2 vlinder03 51.324583 4.952109 Turnhout Centrum \n", + "3 vlinder04 51.335522 4.934732 Turnhout Stadsboerderij \n", + "4 vlinder05 51.052655 3.675183 Gent Watersportbaan \n", + "5 vlinder06 51.027100 4.516300 Bonheiden Mechels Broek \n", + "6 vlinder07 51.030889 4.478445 Mechelen Noord \n", + "7 vlinder08 51.028130 4.477398 Mechelen De Lindepoort \n", + "8 vlinder09 50.927167 4.075722 Aalst Heuvelpark \n", + "9 vlinder10 50.935556 4.041389 Aalst Centrum \n", + "10 vlinder11 51.222422 4.381726 Antwerpen Linkeroever \n", + "11 vlinder12 51.216477 4.423440 Antwerpen Zoo \n", + "12 vlinder13 51.212211 4.398065 Antwerpen Inst. Trop. Geneeskunde \n", + "13 vlinder14 51.350618 4.315013 Antwerpen Zandvliet \n", + "14 vlinder15 50.935300 4.192600 Asse Koereit \n", + "15 vlinder16 51.266850 4.293436 Beveren Haven \n", + "16 vlinder17 51.065269 5.613458 Oudsbergen Oudsberg \n", + "17 vlinder18 51.136244 5.656769 Bree Tongerlo \n", + "18 vlinder19 50.841455 4.363672 Brussel Koninklijk Paleis \n", + "19 vlinder20 50.847025 4.357971 Brussel Kathedraal \n", + "20 vlinder21 51.260389 2.991917 De Haan Golf \n", + "21 vlinder22 50.989501 2.856220 Diksmuide De Blankaert \n", + "22 vlinder23 51.260578 3.580151 Sint-Laureins Boerekreek \n", + "23 vlinder24 51.167015 3.572062 Eeklo Het Leen \n", + "24 vlinder25 51.154720 3.708611 Evergem Kluizen \n", + "25 vlinder26 51.161760 4.997653 Geel Centrum \n", + "26 vlinder27 51.058099 3.728067 Gent Ottogracht \n", + "27 vlinder28 51.035293 3.769741 Gent Gentbrugse Meersen \n", + "\n", + " school sponsor \\\n", + "0 UGent Universiteit Gent \n", + "1 UGent Universiteit Gent \n", + "2 Heilig Graf Stad Turnhout \n", + "3 Heilig Graf Stad Turnhout \n", + "4 Sint-Barbara UGent Volkssterrenwacht Armand Pien \n", + "5 BimSem Stad Mechelen \n", + "6 PTS Stad Mechelen \n", + "7 TSM Stad Mechelen \n", + "8 SMI SOLVA \n", + "9 SMI SOLVA \n", + "10 Sint-Annacollege Stad Antwerpen \n", + "11 UGent ZOO Antwerpen \n", + "12 UGent Stad Antwerpen \n", + "13 UGent EnerSys \n", + "14 Sint-Martinus AllThingsTalk \n", + "15 Sint-Maarten Katoen Natie \n", + "16 Sint-Augustinusinstituut Bree Nationaal Park Hoge Kempen \n", + "17 TISM Bree Stad Bree \n", + "18 UGent NaN \n", + "19 UGent Vivaqua \n", + "20 Zeelyceum Royal Ostend Golf Club \n", + "21 ‘t Saam Natuurpunt De Blankaart \n", + "22 Richtpunt Eeklo De Boerekreek \n", + "23 OLV ten Doorn Provinciaal domein Het Leen \n", + "24 Einstein Atheneum De Watergroep \n", + "25 Sint Dimpna Stad Geel \n", + "26 Sec. Kunstinstituut Stad gent \n", + "27 GO! Ath. Stad Gent \n", + "\n", + " Network \n", + "0 Vlinder \n", + "1 Vlinder \n", + "2 Vlinder \n", + "3 Vlinder \n", + "4 Vlinder \n", + "5 Vlinder \n", + "6 Vlinder \n", + "7 Vlinder \n", + "8 Vlinder \n", + "9 Vlinder \n", + "10 Vlinder \n", + "11 Vlinder \n", + "12 Vlinder \n", + "13 Vlinder \n", + "14 Vlinder \n", + "15 Vlinder \n", + "16 Vlinder \n", + "17 Vlinder \n", + "18 Vlinder \n", + "19 Vlinder \n", + "20 Vlinder \n", + "21 Vlinder \n", + "22 Vlinder \n", + "23 Vlinder \n", + "24 Vlinder \n", + "25 Vlinder \n", + "26 Vlinder \n", + "27 Vlinder " + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#path to a datafile (the example data used here are included in the MetObs-toolkit)\n", + "datafile = metobs_toolkit.demo_datafile\n", + "#path to a metadata file (the example metadata used here are included in the MetObs-toolkit)\n", + "metadatafile = metobs_toolkit.demo_metadatafile\n", + "\n", + "# open de files\n", + "data = pd.read_csv(datafile, sep=';')\n", + "metadata = pd.read_csv(metadatafile)\n", + "\n", + "# take a look at the content of the files\n", + "print(data.head()) # only the first rows of the data file are printed with .head() because otherwise you get a long list of output\n", + "metadata" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "90Xg4WOkDy21", + "outputId": "9c7bb594-9261-4243-c667-8bbefe884d47" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
varnametemplate column nameunitsdescriptiondtypeformat
0nameVlinderNaNNaNobjectNaN
1NaNNaNNaNNaNNaNNaN
2datetimeNaNNaNNaNobject%Y-%m-%d %H:%M:%S
3_dateDatumNaNNaNobject%Y-%m-%d
4_timeTijd (UTC)NaNNaNobject%H:%M:%S
5NaNNaNNaNNaNNaNNaN
6tempTemperatuurCelcius2m-temperaturefloat64NaN
7humidityVochtigheid%relative humidityfloat64NaN
8pressureLuchtdrukpaair pressurefloat64NaN
9precipNeerslagintensiteitl/m²precipitation intensityfloat64NaN
10precip_sumNeerslagsoml/m²Precipitation cumulated from midnightfloat64NaN
11wind_directionWindrichting°° from North (CW)float64NaN
12wind_speedWindsnelheidm/swindspeedfloat64NaN
13wind_gustRukwindm/swindgustfloat64NaN
14pressure_at_sea_levelLuchtdruk_Zeeniveaupapressure at sea levelfloat64NaN
15radiation_tempGlobe TemperatuurCelciusRadiative blackglobe temperaturefloat64NaN
16NaNNaNNaNNaNNaNNaN
17NaNNaNNaNNaNNaNNaN
18_IDIDNaNNaNobjectNaN
19latlatNaNNaNobjectNaN
20lonlonNaNNaNobjectNaN
21locationstadNaNNaNobjectNaN
22call_namebenamingNaNNaNobjectNaN
23networkNetworkNaNNaNobjectNaN
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " varname template column name units \\\n", + "0 name Vlinder NaN \n", + "1 NaN NaN NaN \n", + "2 datetime NaN NaN \n", + "3 _date Datum NaN \n", + "4 _time Tijd (UTC) NaN \n", + "5 NaN NaN NaN \n", + "6 temp Temperatuur Celcius \n", + "7 humidity Vochtigheid % \n", + "8 pressure Luchtdruk pa \n", + "9 precip Neerslagintensiteit l/m² \n", + "10 precip_sum Neerslagsom l/m² \n", + "11 wind_direction Windrichting ° \n", + "12 wind_speed Windsnelheid m/s \n", + "13 wind_gust Rukwind m/s \n", + "14 pressure_at_sea_level Luchtdruk_Zeeniveau pa \n", + "15 radiation_temp Globe Temperatuur Celcius \n", + "16 NaN NaN NaN \n", + "17 NaN NaN NaN \n", + "18 _ID ID NaN \n", + "19 lat lat NaN \n", + "20 lon lon NaN \n", + "21 location stad NaN \n", + "22 call_name benaming NaN \n", + "23 network Network NaN \n", + "\n", + " description dtype format \n", + "0 NaN object NaN \n", + "1 NaN NaN NaN \n", + "2 NaN object %Y-%m-%d %H:%M:%S \n", + "3 NaN object %Y-%m-%d \n", + "4 NaN object %H:%M:%S \n", + "5 NaN NaN NaN \n", + "6 2m-temperature float64 NaN \n", + "7 relative humidity float64 NaN \n", + "8 air pressure float64 NaN \n", + "9 precipitation intensity float64 NaN \n", + "10 Precipitation cumulated from midnight float64 NaN \n", + "11 ° from North (CW) float64 NaN \n", + "12 windspeed float64 NaN \n", + "13 windgust float64 NaN \n", + "14 pressure at sea level float64 NaN \n", + "15 Radiative blackglobe temperature float64 NaN \n", + "16 NaN NaN NaN \n", + "17 NaN NaN NaN \n", + "18 NaN object NaN \n", + "19 NaN object NaN \n", + "20 NaN object NaN \n", + "21 NaN object NaN \n", + "22 NaN object NaN \n", + "23 NaN object NaN " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#path to the template (the example template used here is included in the MetObs-toolkit)\n", + "template = pd.read_csv(metobs_toolkit.demo_template)\n", + "template" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vFW0YIfIDyl4" + }, + "source": [ + "When you make a template yourself, then this template has to contain the same column names, containing information on the standardized variable names, the variable names in your data set (that will be mapped to the standardized variable names), the units of the variables, a description, the data type and the format of the data.\n", + "\n", + "- 'varname': this is the default naming of the column names in the toolkit. If you want to do something with temperature when you use the toolkit functions, then you will have to specifiy this with 'temp' in the code.\n", + "- 'template_column_name': these are the names that correspond with the titels in the header in your data set. The toolkit will link these names with the default name. If one of the default names does not occur in your data set (equal to NaN or empty), then this will not be used in the mappeing. For example: the default name 'datetime' cannot be mapped, if there is no equivalent in the data set.\n", + "- 'format': tells you which format is used for the timestamps. For example: 2020/10/21 has %Y/%m/%d (=Year/month/day) as format.\n", + "\n", + "*Note there is an interactive prompt in the MetObs-toolkit that will guide you in the construction of the template (see metobs_toolkit.`build_template_prompt()` function on this page of the [documentation](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html)). This function will be demonstrated at the end of this introduction to transform your dataset into the framework of the MetObs-toolkit.*\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1suYDUfoFjQj" + }, + "source": [ + "**0.5.2 Create a dataset**\n", + "\n", + "To get familiar with how the MetObs-toolkit works, we create an empty dataset with the function 'Dataset()' of the MetObs-toolkit and we ask to visualise the characteristics of the dataset with the function 'show()'." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MHXZsQJxFh2y", + "outputId": "aa1b8960-ac86-4e12-9672-ad106a5eb06d" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Initialise dataset\n", + "INFO:metobs_toolkit.settings:Initialising settings\n", + "DEBUG:metobs_toolkit.settings:Updating Database settings.\n", + "DEBUG:metobs_toolkit.settings:Updating time resolution settings.\n", + "DEBUG:metobs_toolkit.settings:Updating app settings.\n", + "DEBUG:metobs_toolkit.settings:Updating QC settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gap settings.\n", + "DEBUG:metobs_toolkit.settings:Updating data templates settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", + "INFO:metobs_toolkit.dataset:Show basic info of dataset.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Empty instance of a Dataset.\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "No metadata is found.\n" + ] + } + ], + "source": [ + "#make an empty dataset\n", + "dataset = metobs_toolkit.Dataset()\n", + "dataset.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PLJlJhY0GI3Z" + }, + "source": [ + "You should obtain the warnings: `Empty instance of a Dataset.` and `No metadata is found.`\n", + "\n", + "Note that each dataset carries it's own settings. When you create a new dataset, it will use the default settings." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jNSrl0m5GDh5", + "outputId": "2930e44b-433f-48fd-bcb1-cb11b6432c33" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.settings:Show settings.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "All settings:\n", + " \n", + " ---------------------------------------\n", + "\n", + " ---------------- IO (settings) ----------------------\n", + "\n", + "* output_folder: \n", + "\n", + " -None \n", + "\n", + "* input_data_file: \n", + "\n", + " -None \n", + "\n", + "* input_metadata_file: \n", + "\n", + " -None \n", + "\n", + " ---------------- db (settings) ----------------------\n", + "\n", + "* db_host: \n", + "\n", + " -framboos.ugent.be \n", + "\n", + "* db_database: \n", + "\n", + " -vlinder \n", + "\n", + "* db_obs_table: \n", + "\n", + " -Vlinder \n", + "\n", + "* db_meta_table: \n", + "\n", + " -Vlinder_Identification \n", + "\n", + "* db_user: \n", + "\n", + " -None \n", + "\n", + "* db_passw: \n", + "\n", + " -None \n", + "\n", + "* vlinder_db_meta_template: \n", + "\n", + " - VLINDER: \n", + "\n", + " -{'varname': 'name', 'dtype': 'object'} \n", + "\n", + " - ID: \n", + "\n", + " -{'varname': 'id', 'dtype': 'object'} \n", + "\n", + " - Location: \n", + "\n", + " -{'varname': 'call_name', 'dtype': 'object'} \n", + "\n", + " - stad: \n", + "\n", + " -{'varname': 'location', 'dtype': 'object'} \n", + "\n", + " - Latitude: \n", + "\n", + " -{'varname': 'lat', 'dtype': 'float'} \n", + "\n", + " - Longitude: \n", + "\n", + " -{'varname': 'lon', 'dtype': 'float'} \n", + "\n", + "* vlinder_db_obs_template: \n", + "\n", + " - StationID: \n", + "\n", + " -{'varname': 'id', 'dtype': 'object'} \n", + "\n", + " - datetime: \n", + "\n", + " -{'varname': 'datetime', 'fmt': '%Y-%m-%d %H:%M:%S', 'dtype': 'object', 'timezone': 'UTC'} \n", + "\n", + " - temperature: \n", + "\n", + " -{'varname': 'temp', 'units': '$^o$C', 'dtype': 'float64', 'description': 'temperature'} \n", + "\n", + " - humidity: \n", + "\n", + " -{'varname': 'humidity', 'units': '%', 'dtype': 'float64', 'description': 'relative humidity'} \n", + "\n", + " - pressure: \n", + "\n", + " -{'varname': 'pressure', 'units': 'pa', 'dtype': 'float64', 'description': 'airpressure'} \n", + "\n", + " - RainIntensity: \n", + "\n", + " -{'varname': 'precip', 'units': 'l/m$^2 per ?? tijdseenheid$', 'dtype': 'float64', 'description': 'precipitation intensity'} \n", + "\n", + " - RainVolume: \n", + "\n", + " -{'varname': 'precip_sum', 'units': 'l/m^2', 'dtype': 'float64', 'description': 'precipitation cumulated from midnight'} \n", + "\n", + " - WindDirection: \n", + "\n", + " -{'varname': 'wind_direction', 'units': '° from North (CW)', 'dtype': 'float64', 'description': 'Wind direction'} \n", + "\n", + " - WindSpeed: \n", + "\n", + " -{'varname': 'wind_speed', 'units': 'm/s', 'dtype': 'float64', 'description': 'windspeed'} \n", + "\n", + " - WindGust: \n", + "\n", + " -{'varname': 'wind_gust', 'units': 'm/s', 'dtype': 'float64', 'description': 'windgust'} \n", + "\n", + " - pressure_0: \n", + "\n", + " -{'varname': 'pressure_at_sea_level', 'units': 'pa', 'dtype': 'float64', 'description': 'pressure at sea level'} \n", + "\n", + " - BlackGlobeTemp: \n", + "\n", + " -{'varname': 'radiation_temp', 'units': 'celscius denk ik??', 'dtype': 'float64', 'description': 'Radiative temperature'} \n", + "\n", + " ---------------- time_settings (settings) ----------------------\n", + "\n", + "* target_time_res: \n", + "\n", + " -60T \n", + "\n", + "* resample_method: \n", + "\n", + " -nearest \n", + "\n", + "* resample_limit: \n", + "\n", + " -1 \n", + "\n", + "* timezone: \n", + "\n", + " -UTC \n", + "\n", + "* freq_estimation_method: \n", + "\n", + " -highest \n", + "\n", + "* freq_estimation_simplify: \n", + "\n", + " -True \n", + "\n", + "* freq_estimation_simplify_error: \n", + "\n", + " -2T \n", + "\n", + " ---------------- app (settings) ----------------------\n", + "\n", + "* print_fmt_datetime: \n", + "\n", + " -%d/%m/%Y %H:%M:%S \n", + "\n", + "* print_max_n: \n", + "\n", + " -40 \n", + "\n", + "* plot_settings: \n", + "\n", + " - time_series: \n", + "\n", + " -{'figsize': (15, 5), 'colormap': 'tab20', 'linewidth': 2, 'linestyle_ok': '-', 'linestyle_fill': '--', 'linezorder': 1, 'scattersize': 4, 'scatterzorder': 3, 'dashedzorder': 2, 'legend_n_columns': 5} \n", + "\n", + " - spatial_geo: \n", + "\n", + " -{'extent': [2.260609, 49.25, 6.118359, 52.350618], 'cmap': 'inferno_r', 'n_for_categorical': 5, 'figsize': (10, 15), 'fmt': '%d/%m/%Y %H:%M:%S UTC'} \n", + "\n", + " - pie_charts: \n", + "\n", + " -{'figsize': (10, 10), 'anchor_legend_big': (-0.25, 0.75), 'anchor_legend_small': (-3.5, 2.2), 'radius_big': 2.0, 'radius_small': 5.0} \n", + "\n", + " - color_mapper: \n", + "\n", + " -{'duplicated_timestamp': '#a32a1f', 'invalid_input': '#900357', 'gross_value': '#f1ff2b', 'persistance': '#f0051c', 'repetitions': '#056ff0', 'step': '#05d4f0', 'window_variation': '#05f0c9', 'titan_buddy_check': '#8300c4', 'titan_sct_resistant_check': '#c17fe1', 'gap': '#f00592', 'missing_timestamp': '#f78e0c', 'linear': '#d406c6', 'model_debias': '#6e1868', 'ok': '#07f72b', 'not checked': '#f7cf07', 'outlier': '#f20000'} \n", + "\n", + " - diurnal: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - anual: \n", + "\n", + " -{'figsize': (10, 10), 'alpha_error_bands': 0.3, 'cmap_continious': 'viridis', 'n_cat_max': 20, 'cmap_categorical': 'tab20', 'legend_n_columns': 5} \n", + "\n", + " - correlation_heatmap: \n", + "\n", + " -{'figsize': (10, 10), 'vmin': -1, 'vmax': 1, 'cmap': 'cool', 'x_tick_rot': 65, 'y_tick_rot': 0} \n", + "\n", + " - correlation_scatter: \n", + "\n", + " -{'figsize': (10, 10), 'p_bins': [0, 0.001, 0.01, 0.05, 999], 'bins_markers': ['*', 's', '^', 'X'], 'scatter_size': 40, 'scatter_edge_col': 'black', 'scatter_edge_line_width': 0.1, 'ymin': -1.1, 'ymax': 1.1, 'cmap': 'tab20', 'legend_ncols': 3, 'legend_text_size': 7} \n", + "\n", + "* world_boundary_map: \n", + "\n", + " -/usr/local/lib/python3.10/dist-packages/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp \n", + "\n", + "* display_name_mapper: \n", + "\n", + " - network: \n", + "\n", + " -network \n", + "\n", + " - name: \n", + "\n", + " -station name \n", + "\n", + " - call_name: \n", + "\n", + " -pseudo name \n", + "\n", + " - location: \n", + "\n", + " -region \n", + "\n", + " - lat: \n", + "\n", + " -latitude \n", + "\n", + " - lon: \n", + "\n", + " -longtitude \n", + "\n", + " - temp: \n", + "\n", + " -temperature \n", + "\n", + " - radiation_temp: \n", + "\n", + " -radiation temperature \n", + "\n", + " - humidity: \n", + "\n", + " -humidity \n", + "\n", + " - precip: \n", + "\n", + " -precipitation intensity \n", + "\n", + " - precip_sum: \n", + "\n", + " -cummulated precipitation \n", + "\n", + " - wind_speed: \n", + "\n", + " -wind speed \n", + "\n", + " - wind_gust: \n", + "\n", + " -wind gust speed \n", + "\n", + " - wind_direction: \n", + "\n", + " -wind direction \n", + "\n", + " - pressure: \n", + "\n", + " -air pressure \n", + "\n", + " - pressure_at_sea_level: \n", + "\n", + " -corrected pressure at sea level \n", + "\n", + " - lcz: \n", + "\n", + " -LCZ \n", + "\n", + "* static_fields: \n", + "\n", + " -['network', 'name', 'lat', 'lon', 'call_name', 'location', 'lcz'] \n", + "\n", + "* categorical_fields: \n", + "\n", + " -['wind_direction', 'lcz'] \n", + "\n", + "* location_info: \n", + "\n", + " -['network', 'lat', 'lon', 'lcz', 'call_name', 'location'] \n", + "\n", + "* default_name: \n", + "\n", + " -unknown_name \n", + "\n", + " ---------------- qc (settings) ----------------------\n", + "\n", + "* qc_check_settings: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'keep': False} \n", + "\n", + " - persistance: \n", + "\n", + " -{'temp': {'time_window_to_check': '1h', 'min_num_obs': 5}} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'temp': {'max_valid_repetitions': 5}} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'temp': {'min_value': -15.0, 'max_value': 39.0}} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': 0.002777777777777778, 'time_window_to_check': '1h', 'min_window_members': 3}} \n", + "\n", + " - step: \n", + "\n", + " -{'temp': {'max_increase_per_second': 0.0022222222222222222, 'max_decrease_per_second': -0.002777777777777778}} \n", + "\n", + "* qc_checks_info: \n", + "\n", + " - duplicated_timestamp: \n", + "\n", + " -{'outlier_flag': 'duplicated timestamp outlier', 'numeric_flag': 1, 'apply_on': 'record'} \n", + "\n", + " - invalid_input: \n", + "\n", + " -{'outlier_flag': 'invalid input', 'numeric_flag': 2, 'apply_on': 'obstype'} \n", + "\n", + " - gross_value: \n", + "\n", + " -{'outlier_flag': 'gross value outlier', 'numeric_flag': 4, 'apply_on': 'obstype'} \n", + "\n", + " - persistance: \n", + "\n", + " -{'outlier_flag': 'persistance outlier', 'numeric_flag': 5, 'apply_on': 'obstype'} \n", + "\n", + " - repetitions: \n", + "\n", + " -{'outlier_flag': 'repetitions outlier', 'numeric_flag': 6, 'apply_on': 'obstype'} \n", + "\n", + " - step: \n", + "\n", + " -{'outlier_flag': 'in step outlier group', 'numeric_flag': 7, 'apply_on': 'obstype'} \n", + "\n", + " - window_variation: \n", + "\n", + " -{'outlier_flag': 'in window variation outlier group', 'numeric_flag': 8, 'apply_on': 'obstype'} \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'outlier_flag': 'buddy check outlier', 'numeric_flag': 9, 'apply_on': 'obstype'} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'outlier_flag': 'sct resistant check outlier', 'numeric_flag': 10, 'apply_on': 'obstype'} \n", + "\n", + "* titan_check_settings: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'temp': {'radius': 50000, 'num_min': 2, 'threshold': 1.5, 'max_elev_diff': 200, 'elev_gradient': -0.0065, 'min_std': 1.0, 'num_iterations': 1}} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'temp': {'num_min_outer': 3, 'num_max_outer': 10, 'inner_radius': 20000, 'outer_radius': 50000, 'num_iterations': 10, 'num_min_prof': 5, 'min_elev_diff': 100, 'min_horizontal_scale': 250, 'max_horizontal_scale': 100000, 'kth_closest_obs_horizontal_scale': 2, 'vertical_scale': 200, 'mina_deviation': 10, 'maxa_deviation': 10, 'minv_deviation': 1, 'maxv_deviation': 1, 'eps2': 0.5, 'tpos': 5, 'tneg': 8, 'basic': True, 'debug': False}} \n", + "\n", + "* titan_specific_labeler: \n", + "\n", + " - titan_buddy_check: \n", + "\n", + " -{'ok': [0], 'outl': [1]} \n", + "\n", + " - titan_sct_resistant_check: \n", + "\n", + " -{'ok': [0, -999, 11, 12], 'outl': [1]} \n", + "\n", + " ---------------- gap (settings) ----------------------\n", + "\n", + "* gaps_settings: \n", + "\n", + " - gaps_finder: \n", + "\n", + " -{'gapsize_n': 40} \n", + "\n", + "* gaps_info: \n", + "\n", + " - gap: \n", + "\n", + " -{'label_columnname': 'is_gap', 'outlier_flag': 'gap', 'negative_flag': 'no gap', 'numeric_flag': 12, 'apply_on': 'record'} \n", + "\n", + " - missing_timestamp: \n", + "\n", + " -{'label_columnname': 'is_missing_timestamp', 'outlier_flag': 'missing timestamp', 'negative flag': 'not missing', 'numeric_flag': 13, 'apply_on': 'record'} \n", + "\n", + "* gaps_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time', 'max_consec_fill': 100} \n", + "\n", + " - model_debias: \n", + "\n", + " -{'debias_period': {'prefered_leading_sample_duration_hours': 48, 'prefered_trailing_sample_duration_hours': 48, 'minimum_leading_sample_duration_hours': 24, 'minimum_trailing_sample_duration_hours': 24}} \n", + "\n", + " - automatic: \n", + "\n", + " -{'max_interpolation_duration_str': '5H'} \n", + "\n", + "* gaps_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'gap_interpolation', 'model_debias': 'gap_debiased_era5'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -21 \n", + "\n", + " ---------------- missing_obs (settings) ----------------------\n", + "\n", + "* missing_obs_fill_settings: \n", + "\n", + " - linear: \n", + "\n", + " -{'method': 'time'} \n", + "\n", + "* missing_obs_fill_info: \n", + "\n", + " - label_columnname: \n", + "\n", + " -final_label \n", + "\n", + " - label: \n", + "\n", + " -{'linear': 'missing_obs_interpolation'} \n", + "\n", + " - numeric_flag: \n", + "\n", + " -23 \n", + "\n", + " ---------------- templates (settings) ----------------------\n", + "\n", + "* data_template_file: \n", + "\n", + " -/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv \n", + "\n", + "* metadata_template_file: \n", + "\n", + " -/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv \n", + "\n", + " ---------------- gee (settings) ----------------------\n", + "\n", + "* gee_dataset_info: \n", + "\n", + " - global_lcz_map: \n", + "\n", + " -{'location': 'RUB/RUBCLIM/LCZ/global_lcz_map/v1', 'usage': 'LCZ', 'band_of_use': 'LCZ_Filter', 'value_type': 'categorical', 'dynamical': False, 'scale': 100, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {1: 'Compact highrise', 2: 'Compact midrise', 3: 'Compact lowrise', 4: 'Open highrise', 5: 'Open midrise', 6: 'Open lowrise', 7: 'Lightweight lowrise', 8: 'Large lowrise', 9: 'Sparsely built', 10: 'Heavy industry', 11: 'Dense Trees (LCZ A)', 12: 'Scattered Trees (LCZ B)', 13: 'Bush, scrub (LCZ C)', 14: 'Low plants (LCZ D)', 15: 'Bare rock or paved (LCZ E)', 16: 'Bare soil or sand (LCZ F)', 17: 'Water (LCZ G)'}, 'credentials': 'Demuzere M.; Kittner J.; Martilli A.; Mills, G.; Moede, C.; Stewart, I.D.; van Vliet, J.; Bechtel, B. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data 2022, 14 Volume 8: 3835-3873. doi:10.5194/essd-14-3835-2022'} \n", + "\n", + " - DEM: \n", + "\n", + " -{'location': 'CGIAR/SRTM90_V4', 'usage': 'elevation', 'band_of_use': 'elevation', 'value_type': 'numeric', 'dynamical': False, 'scale': 100, 'is_image': True, 'is_imagecollection': False, 'credentials': 'SRTM Digital Elevation Data Version 4'} \n", + "\n", + " - ERA5_hourly: \n", + "\n", + " -{'location': 'ECMWF/ERA5_LAND/HOURLY', 'usage': 'ERA5', 'band_of_use': {'temp': {'name': 'temperature_2m', 'units': 'K'}}, 'value_type': 'numeric', 'dynamical': True, 'scale': 2500, 'is_image': False, 'is_imagecollection': True, 'time_res': '1H', 'credentials': ''} \n", + "\n", + " - worldcover: \n", + "\n", + " -{'location': 'ESA/WorldCover/v200', 'usage': 'landcover', 'band_of_use': 'Map', 'value_type': 'categorical', 'dynamical': False, 'scale': 10, 'is_image': False, 'is_imagecollection': True, 'categorical_mapper': {10: 'Tree cover', 20: 'Shrubland', 30: 'Grassland', 40: 'Cropland', 50: 'Built-up', 60: 'Bare / sparse vegetation', 70: 'Snow and ice', 80: 'Permanent water bodies', 90: 'Herbaceous wetland', 95: 'Mangroves', 100: 'Moss and lichen'}, 'aggregation': {'water': [70, 80, 90, 95], 'pervious': [10, 20, 30, 40, 60, 100], 'impervious': [50]}, 'colorscheme': {10: '006400', 20: 'ffbb22', 30: 'ffff4c', 40: 'f096ff', 50: 'fa0000', 60: 'b4b4b4', 70: 'f0f0f0', 80: '0064c8', 90: '0096a0', 95: '00cf75', 100: 'fae6a0'}, 'credentials': 'https://spdx.org/licenses/CC-BY-4.0.html'} \n", + "\n" + ] + } + ], + "source": [ + "dataset_settings = dataset.settings.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0fJ0HrX34mjQ" + }, + "source": [ + "Now, you will add some demo data to the feature dataset.
\n", + "First, you have to tell where the data file, metadata file and template file are located. Then, you will be able to import the data with the function 'import_data_from_file()'." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bGZr6vSxGO1Z", + "outputId": "99f8bbe4-1670-4d03-8134-b0b6b470b270" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.settings:Updating settings with input: \n", + "INFO:metobs_toolkit.settings:Update input_data_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n", + "INFO:metobs_toolkit.settings:Update meta_data_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_metadatafile.csv\n", + "INFO:metobs_toolkit.settings:Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", + "INFO:metobs_toolkit.settings:Update metadata template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", + "INFO:metobs_toolkit.dataset:Importing data from file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update input_data_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n", + "Update input_metadata_file: None --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_metadatafile.csv\n", + "Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", + "Update metadata template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_templatefile.csv\n", + "Settings input data file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:metobs_toolkit.dataset:Data from /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_datafile.csv imported to dataframe.\n", + "INFO:metobs_toolkit.dataset:Importing metadata from file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/datafiles/demo_metadatafile.csv\n", + "DEBUG:metobs_toolkit.dataset:Merging metadata (['lon', 'call_name', 'network', 'sponsor', 'lat', 'school', 'location']) to dataset data by name.\n", + "INFO:metobs_toolkit.dataset:Updating dataset by dataframe with shape: (120957, 17).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING! The following columns are not present in the data, and cannot be mapped: ['ID', 'lat', 'lon', 'stad', 'benaming', 'Network']\n", + "WARNING! The following columns are not present in the metadata, and cannot be mapped: ['Datum', 'Tijd (UTC)', 'Temperatuur', 'Vochtigheid', 'Luchtdruk', 'Neerslagintensiteit', 'Neerslagsom', 'Windrichting', 'Windsnelheid', 'Rukwind', 'Luchtdruk_Zeeniveau', 'Globe Temperatuur', 'ID']\n", + "WARNING! The following columns in the metadata cannot be mapped with the template: ['school', 'sponsor'].\n" + ] + } + ], + "source": [ + "# Add your datafiles to the dataset settings\n", + "dataset.update_settings(input_data_file = metobs_toolkit.demo_datafile, # this will later have to be replaced with the path to your own data file\n", + " input_metadata_file = metobs_toolkit.demo_metadatafile, # this will later have to be replaced with the path to your own metadata file\n", + " data_template_file = metobs_toolkit.demo_template, # this will later have to be replaced with the path to your own template file\n", + " metadata_template_file = metobs_toolkit.demo_template #contains also the metadata mapping\n", + " )\n", + "# Now the dataset knows where your data is located, let's load them in\n", + "dataset.import_data_from_file()\n", + "# Check the logs for warnings, and try to understand them" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZOeWs7-C6G5H" + }, + "source": [ + "Don't be worried if you got a warning, check if it is essential data that failed to be mapped. If not, then you can continue your research." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w2WfhVZoGUBi" + }, + "source": [ + "**What is in the dataset?**\n", + "\n", + "There are automatically some actions executed when you load or import the data into your dataset:
\n", + "1) Looking for duplicated timestamps.
\n", + "2) Looking for observation values that are not valid (e.g. some text instead of a number).
\n", + "3) For each station a time resolution is estimated, based on this time resolution the dataset looks for missing observations.
\n", + "4) When a series of consecutive missing observations are detected (and this is longer than a certain threshold), then this is labelled as a gap." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "oHhksTOoGWex", + "outputId": "92ea050a-b02e-4b4e-f7bb-54b1b7f008a8" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Show basic info of dataset.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -------- General --------- \n", + "\n", + "Dataset instance containing: \n", + " *28 stations \n", + " *['temp', 'radiation_temp', 'humidity', 'precip', 'precip_sum', 'wind_speed', 'wind_gust', 'wind_direction', 'pressure', 'pressure_at_sea_level'] observation types \n", + " *120957 observation records \n", + " *256 records labeled as outliers \n", + " *0 gaps \n", + " *3 missing observations \n", + " *records range: 2022-09-01 00:00:00+00:00 --> 2022-09-15 23:55:00+00:00 (total duration: 14 days 23:55:00) \n", + " *time zone of the records: UTC \n", + " *Coordinates are available for all stations. \n", + "\n", + "\n", + " -------- Settings --------- \n", + "\n", + "(to show all settings use the .show_settings() method, or set show_all_settings = True)\n", + "\n", + " -------- Meta data --------- \n", + "\n", + "The following metadata is found: ['network', 'lat', 'lon', 'call_name', 'location', 'geometry', 'assumed_import_frequency', 'dataset_resolution']\n", + "\n", + " The first rows of the metadf looks like:\n", + " network lat lon call_name location \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 Proefhoeve Melle \n", + "vlinder02 Vlinder 51.022379 3.709695 Sterre Gent \n", + "vlinder03 Vlinder 51.324583 4.952109 Centrum Turnhout \n", + "vlinder04 Vlinder 51.335522 4.934732 Stadsboerderij Turnhout \n", + "vlinder05 Vlinder 51.052655 3.675183 Watersportbaan Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "name \n", + "vlinder01 POINT (3.81576 50.98044) 0 days 00:05:00 \n", + "vlinder02 POINT (3.70969 51.02238) 0 days 00:05:00 \n", + "vlinder03 POINT (4.95211 51.32458) 0 days 00:05:00 \n", + "vlinder04 POINT (4.93473 51.33552) 0 days 00:05:00 \n", + "vlinder05 POINT (3.67518 51.05266) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n", + "\n", + " -------- Missing observations info -------- \n", + "\n", + "(Note: missing observations are defined on the frequency estimation of the native dataset.)\n", + " * 3 missing observations\n", + "\n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC] \n", + "\n", + " * For these stations: ['vlinder02']\n", + " * The missing observations are not filled.\n", + "(More details on the missing observation can be found in the .series and .fill_df attributes.)\n", + "None\n", + "\n", + " -------- Gaps --------- \n", + "\n", + "There are no gaps.\n", + "None\n" + ] + } + ], + "source": [ + "# Give an overview of:\n", + "# 1) the observations,\n", + "# 2) outliers in the observations,\n", + "# 3) number of missing observations and\n", + "# 4) number of gaps\n", + "dataset.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5-4xJcD_8ytz" + }, + "source": [ + "You can also extract the above aspects of the data set separately." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NTegpKdIGbMZ", + "outputId": "69bf1a37-38f2-4efb-d69b-5510ca3cac30" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The dataset.df: \n", + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65.0 0.0 \n", + " 2022-09-01 00:05:00+00:00 18.8 NaN 65.0 0.0 \n", + " 2022-09-01 00:10:00+00:00 18.8 NaN 65.0 0.0 \n", + " 2022-09-01 00:15:00+00:00 18.7 NaN 65.0 0.0 \n", + " 2022-09-01 00:20:00+00:00 18.7 NaN 65.0 0.0 \n", + "... ... ... ... ... \n", + "vlinder28 2022-09-15 23:35:00+00:00 13.4 NaN 77.0 0.0 \n", + " 2022-09-15 23:40:00+00:00 13.3 NaN 77.0 0.0 \n", + " 2022-09-15 23:45:00+00:00 13.2 NaN 77.0 0.0 \n", + " 2022-09-15 23:50:00+00:00 13.2 NaN 77.0 0.0 \n", + " 2022-09-15 23:55:00+00:00 13.0 NaN 77.0 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:05:00+00:00 0.0 5.5 12.9 \n", + " 2022-09-01 00:10:00+00:00 0.0 5.1 11.3 \n", + " 2022-09-01 00:15:00+00:00 0.0 6.0 12.9 \n", + " 2022-09-01 00:20:00+00:00 0.0 5.0 11.3 \n", + "... ... ... ... \n", + "vlinder28 2022-09-15 23:35:00+00:00 17.8 0.0 0.0 \n", + " 2022-09-15 23:40:00+00:00 17.8 0.0 0.0 \n", + " 2022-09-15 23:45:00+00:00 17.8 0.0 0.0 \n", + " 2022-09-15 23:50:00+00:00 17.8 0.0 0.0 \n", + " 2022-09-15 23:55:00+00:00 17.8 0.0 0.0 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65.0 101739.0 \n", + " 2022-09-01 00:05:00+00:00 75.0 101731.0 \n", + " 2022-09-01 00:10:00+00:00 75.0 101736.0 \n", + " 2022-09-01 00:15:00+00:00 85.0 101736.0 \n", + " 2022-09-01 00:20:00+00:00 65.0 101733.0 \n", + "... ... ... \n", + "vlinder28 2022-09-15 23:35:00+00:00 275.0 101373.0 \n", + " 2022-09-15 23:40:00+00:00 275.0 101365.0 \n", + " 2022-09-15 23:45:00+00:00 275.0 101359.0 \n", + " 2022-09-15 23:50:00+00:00 275.0 101359.0 \n", + " 2022-09-15 23:55:00+00:00 285.0 101369.0 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:05:00+00:00 101997.0 \n", + " 2022-09-01 00:10:00+00:00 102002.0 \n", + " 2022-09-01 00:15:00+00:00 102002.0 \n", + " 2022-09-01 00:20:00+00:00 101999.0 \n", + "... ... \n", + "vlinder28 2022-09-15 23:35:00+00:00 101326.0 \n", + " 2022-09-15 23:40:00+00:00 101318.0 \n", + " 2022-09-15 23:45:00+00:00 101312.0 \n", + " 2022-09-15 23:50:00+00:00 101312.0 \n", + " 2022-09-15 23:55:00+00:00 101322.0 \n", + "\n", + "[120957 rows x 10 columns]\n" + ] + } + ], + "source": [ + "# Here we print what is saved in the .df attribute\n", + "print(\"The dataset.df: \\n\",dataset.df)\n", + "# not all items can be plotted (too much information) so ... is given for\n", + "# the data inbetween" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-cXLi4AJB9ki" + }, + "source": [ + "The observations labeled as outliers are stored in the attribute .outliersdf.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_4875_PaB9BE", + "outputId": "2bf43473-d301-439a-d6aa-23b12a28fe3e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The outliersdf: \n", + " value label\n", + "name datetime obstype \n", + "vlinder02 2022-09-07 10:35:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-07 10:40:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-07 10:45:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-07 10:50:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-07 10:55:00+00:00 radiation_temp NaN invalid input\n", + "... ... ...\n", + " 2022-09-08 07:30:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-08 07:35:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-08 07:40:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-08 07:45:00+00:00 radiation_temp NaN invalid input\n", + " 2022-09-08 07:50:00+00:00 radiation_temp NaN invalid input\n", + "\n", + "[256 rows x 2 columns]\n" + ] + } + ], + "source": [ + "# Outliers\n", + "print(\"The outliersdf: \\n\", dataset.outliersdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "00yI2vFoDFWK" + }, + "source": [ + "Missing observations can be retrieved with .missing_obs." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NelZxsOADNRp", + "outputId": "4a630faa-6ef6-4413-b8d0-7a1338c5f6f5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "missing observations instance: Missing observations: \n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC]\n" + ] + } + ], + "source": [ + "# Missing observations\n", + "print('missing observations instance: ', dataset.missing_obs)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_PI5gzupDRrp" + }, + "source": [ + "Gaps are obtained with .gaps." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FjqNiaYmGfph", + "outputId": "61f5c9ce-9c53-4ef5-ef51-7dd003ef7b0a" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "gaps instance: []\n" + ] + } + ], + "source": [ + "# Gaps\n", + "print('gaps instance: ', dataset.gaps)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hU0R_hNZCX-C" + }, + "source": [ + "Additionally, the metadata is stored in the attribute .metadf." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IJ84IHTFCYzy", + "outputId": "6d78e9b1-d8d5-4943-b13d-fb2308c2209b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The metadat: \n", + " network lat lon lcz call_name \\\n", + "name \n", + "vlinder01 Vlinder 50.980438 3.815763 NaN Proefhoeve \n", + "vlinder02 Vlinder 51.022379 3.709695 NaN Sterre \n", + "vlinder03 Vlinder 51.324583 4.952109 NaN Centrum \n", + "vlinder04 Vlinder 51.335522 4.934732 NaN Stadsboerderij \n", + "vlinder05 Vlinder 51.052655 3.675183 NaN Watersportbaan \n", + "vlinder06 Vlinder 51.027100 4.516300 NaN Mechels Broek \n", + "vlinder07 Vlinder 51.030889 4.478445 NaN Noord \n", + "vlinder08 Vlinder 51.028130 4.477398 NaN De Lindepoort \n", + "vlinder09 Vlinder 50.927167 4.075722 NaN Heuvelpark \n", + "vlinder10 Vlinder 50.935556 4.041389 NaN Centrum \n", + "vlinder11 Vlinder 51.222422 4.381726 NaN Linkeroever \n", + "vlinder12 Vlinder 51.216477 4.423440 NaN Zoo \n", + "vlinder13 Vlinder 51.212211 4.398065 NaN Inst. Trop. Geneeskunde \n", + "vlinder14 Vlinder 51.350618 4.315013 NaN Zandvliet \n", + "vlinder15 Vlinder 50.935300 4.192600 NaN Koereit \n", + "vlinder16 Vlinder 51.266850 4.293436 NaN Haven \n", + "vlinder17 Vlinder 51.065269 5.613458 NaN Oudsberg \n", + "vlinder18 Vlinder 51.136244 5.656769 NaN Tongerlo \n", + "vlinder19 Vlinder 50.841455 4.363672 NaN Koninklijk Paleis \n", + "vlinder20 Vlinder 50.847025 4.357971 NaN Kathedraal \n", + "vlinder21 Vlinder 51.260389 2.991917 NaN Golf \n", + "vlinder22 Vlinder 50.989501 2.856220 NaN De Blankaert \n", + "vlinder23 Vlinder 51.260578 3.580151 NaN Boerekreek \n", + "vlinder24 Vlinder 51.167015 3.572062 NaN Het Leen \n", + "vlinder25 Vlinder 51.154720 3.708611 NaN Kluizen \n", + "vlinder26 Vlinder 51.161760 4.997653 NaN Centrum \n", + "vlinder27 Vlinder 51.058099 3.728067 NaN Ottogracht \n", + "vlinder28 Vlinder 51.035293 3.769741 NaN Gentbrugse Meersen \n", + "\n", + " location geometry assumed_import_frequency \\\n", + "name \n", + "vlinder01 Melle POINT (3.81576 50.98044) 0 days 00:05:00 \n", + "vlinder02 Gent POINT (3.70969 51.02238) 0 days 00:05:00 \n", + "vlinder03 Turnhout POINT (4.95211 51.32458) 0 days 00:05:00 \n", + "vlinder04 Turnhout POINT (4.93473 51.33552) 0 days 00:05:00 \n", + "vlinder05 Gent POINT (3.67518 51.05266) 0 days 00:05:00 \n", + "vlinder06 Bonheiden POINT (4.51630 51.02710) 0 days 00:05:00 \n", + "vlinder07 Mechelen POINT (4.47844 51.03089) 0 days 00:05:00 \n", + "vlinder08 Mechelen POINT (4.47740 51.02813) 0 days 00:05:00 \n", + "vlinder09 Aalst POINT (4.07572 50.92717) 0 days 00:05:00 \n", + "vlinder10 Aalst POINT (4.04139 50.93556) 0 days 00:05:00 \n", + "vlinder11 Antwerpen POINT (4.38173 51.22242) 0 days 00:05:00 \n", + "vlinder12 Antwerpen POINT (4.42344 51.21648) 0 days 00:05:00 \n", + "vlinder13 Antwerpen POINT (4.39806 51.21221) 0 days 00:05:00 \n", + "vlinder14 Antwerpen POINT (4.31501 51.35062) 0 days 00:05:00 \n", + "vlinder15 Asse POINT (4.19260 50.93530) 0 days 00:05:00 \n", + "vlinder16 Beveren POINT (4.29344 51.26685) 0 days 00:05:00 \n", + "vlinder17 Oudsbergen POINT (5.61346 51.06527) 0 days 00:05:00 \n", + "vlinder18 Bree POINT (5.65677 51.13624) 0 days 00:05:00 \n", + "vlinder19 Brussel POINT (4.36367 50.84146) 0 days 00:05:00 \n", + "vlinder20 Brussel POINT (4.35797 50.84703) 0 days 00:05:00 \n", + "vlinder21 De Haan POINT (2.99192 51.26039) 0 days 00:05:00 \n", + "vlinder22 Diksmuide POINT (2.85622 50.98950) 0 days 00:05:00 \n", + "vlinder23 Sint-Laureins POINT (3.58015 51.26058) 0 days 00:05:00 \n", + "vlinder24 Eeklo POINT (3.57206 51.16701) 0 days 00:05:00 \n", + "vlinder25 Evergem POINT (3.70861 51.15472) 0 days 00:05:00 \n", + "vlinder26 Geel POINT (4.99765 51.16176) 0 days 00:05:00 \n", + "vlinder27 Gent POINT (3.72807 51.05810) 0 days 00:05:00 \n", + "vlinder28 Gent POINT (3.76974 51.03529) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "name \n", + "vlinder01 0 days 00:05:00 \n", + "vlinder02 0 days 00:05:00 \n", + "vlinder03 0 days 00:05:00 \n", + "vlinder04 0 days 00:05:00 \n", + "vlinder05 0 days 00:05:00 \n", + "vlinder06 0 days 00:05:00 \n", + "vlinder07 0 days 00:05:00 \n", + "vlinder08 0 days 00:05:00 \n", + "vlinder09 0 days 00:05:00 \n", + "vlinder10 0 days 00:05:00 \n", + "vlinder11 0 days 00:05:00 \n", + "vlinder12 0 days 00:05:00 \n", + "vlinder13 0 days 00:05:00 \n", + "vlinder14 0 days 00:05:00 \n", + "vlinder15 0 days 00:05:00 \n", + "vlinder16 0 days 00:05:00 \n", + "vlinder17 0 days 00:05:00 \n", + "vlinder18 0 days 00:05:00 \n", + "vlinder19 0 days 00:05:00 \n", + "vlinder20 0 days 00:05:00 \n", + "vlinder21 0 days 00:05:00 \n", + "vlinder22 0 days 00:05:00 \n", + "vlinder23 0 days 00:05:00 \n", + "vlinder24 0 days 00:05:00 \n", + "vlinder25 0 days 00:05:00 \n", + "vlinder26 0 days 00:05:00 \n", + "vlinder27 0 days 00:05:00 \n", + "vlinder28 0 days 00:05:00 \n" + ] + } + ], + "source": [ + "# Metadata is stored here:\n", + "print(\"The metadat: \\n\",dataset.metadf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LOgBma-iGl3a" + }, + "source": [ + "**0.5.3 Frequently used functions**\n", + "\n", + "1) Coarsening the time resolution of the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 405 + }, + "id": "txLS2Dx9GmEK", + "outputId": "872e30fd-c345-4c44-ce28-a189baf00abb" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Coarsening the timeresolution to 30T using the nearest-method (with limit=1).\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tempradiation_temphumidityprecipprecip_sumwind_speedwind_gustwind_directionpressurepressure_at_sea_level
namedatetime
vlinder012022-09-01 00:00:00+00:0018.8NaN65.00.00.05.611.365.0101739.0102005.0
2022-09-01 00:30:00+00:0018.7NaN65.00.00.05.49.785.0101732.0101999.0
2022-09-01 01:00:00+00:0018.4NaN65.00.00.05.18.155.0101736.0102003.0
2022-09-01 01:30:00+00:0018.0NaN65.00.00.07.112.955.0101736.0102003.0
2022-09-01 02:00:00+00:0017.1NaN68.00.00.05.79.745.0101723.0101990.0
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ], + "text/plain": [ + " temp radiation_temp humidity precip \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 18.8 NaN 65.0 0.0 \n", + " 2022-09-01 00:30:00+00:00 18.7 NaN 65.0 0.0 \n", + " 2022-09-01 01:00:00+00:00 18.4 NaN 65.0 0.0 \n", + " 2022-09-01 01:30:00+00:00 18.0 NaN 65.0 0.0 \n", + " 2022-09-01 02:00:00+00:00 17.1 NaN 68.0 0.0 \n", + "\n", + " precip_sum wind_speed wind_gust \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 0.0 5.6 11.3 \n", + " 2022-09-01 00:30:00+00:00 0.0 5.4 9.7 \n", + " 2022-09-01 01:00:00+00:00 0.0 5.1 8.1 \n", + " 2022-09-01 01:30:00+00:00 0.0 7.1 12.9 \n", + " 2022-09-01 02:00:00+00:00 0.0 5.7 9.7 \n", + "\n", + " wind_direction pressure \\\n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 65.0 101739.0 \n", + " 2022-09-01 00:30:00+00:00 85.0 101732.0 \n", + " 2022-09-01 01:00:00+00:00 55.0 101736.0 \n", + " 2022-09-01 01:30:00+00:00 55.0 101736.0 \n", + " 2022-09-01 02:00:00+00:00 45.0 101723.0 \n", + "\n", + " pressure_at_sea_level \n", + "name datetime \n", + "vlinder01 2022-09-01 00:00:00+00:00 102005.0 \n", + " 2022-09-01 00:30:00+00:00 101999.0 \n", + " 2022-09-01 01:00:00+00:00 102003.0 \n", + " 2022-09-01 01:30:00+00:00 102003.0 \n", + " 2022-09-01 02:00:00+00:00 101990.0 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# coarsening timeresolution of the dataset\n", + "# (before runing this code the vlinder data had a resolution of 5 minutes)\n", + "dataset.coarsen_time_resolution(freq='30T') #30 minutes resolution for all stations\n", + "# 1 hour resolution for all stations\n", + "#dataset.coarsen_time_resolution(freq='1H')\n", + "dataset.df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CXQKIsYLG6wI" + }, + "source": [ + "2) Extracting the data of one station out of a dataset with multiple sations
\n", + "
\n", + "The structure and the available methods of the dataset with one station is exactly the same as for a dataset with multiple stations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "C4isO1cjG_1A", + "outputId": "4da0b62d-71ff-48e9-ff79-d4562156578d" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Extract vlinder02 from dataset.\n", + "INFO:metobs_toolkit.dataset:Coarsening the timeresolution to 1H using the nearest-method (with limit=1).\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Missing observations: \n", + " name\n", + "vlinder02 2022-09-10 17:10:00+00:00\n", + "vlinder02 2022-09-10 17:15:00+00:00\n", + "vlinder02 2022-09-10 17:45:00+00:00\n", + "Name: datetime, dtype: datetime64[ns, UTC]\n", + " network lat lon lcz call_name location \\\n", + "vlinder02 Vlinder 51.022379 3.709695 NaN Sterre Gent \n", + "\n", + " geometry assumed_import_frequency \\\n", + "vlinder02 POINT (3.709695 51.022379) 0 days 00:05:00 \n", + "\n", + " dataset_resolution \n", + "vlinder02 0 days 01:00:00 \n" + ] + } + ], + "source": [ + "# Extract a station\n", + "vlinderstation = dataset.get_station('vlinder02') # 'vlinder02' is the name of a station\n", + "\n", + "# The structure and the available methods of the dataset with one station is exactly the same\n", + "# as for a dataset with multiple stations: some examples\n", + "print(vlinderstation.missing_obs)\n", + "\n", + "vlinderstation.coarsen_time_resolution(freq='1H')\n", + "print(vlinderstation.metadf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TDr17tFrHHca" + }, + "source": [ + "3) Plotting the data\n", + "
\n", + "- Plotting the timeseries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 290 + }, + "id": "moEUH8yyHHp5", + "outputId": "6b062524-7b9b-42ab-f79e-5450fd437016" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Make temp-timeseries plot for all stations\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: colormap: tab20, is not well suited to color 28 categories. \n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABN0AAAGUCAYAAAABPVSIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gkV3X4/W+Fzj09OWyO2qhVWuWAhIwkQAhMME4YCQyWETYvxvD+jLBJhleGnw3YBgQYEMJGgBESUSiAUM55c5ycQ+dQ8b5/1Gz3jHYVd3dmZ/Z8nmeerr5VXX2rOkz36XPu1ZRSCiGEEEIIIYQQQgghxBGjz3YHhBBCCCGEEEIIIYSYbyToJoQQQgghhBBCCCHEESZBNyGEEEIIIYQQQgghjjAJugkhhBBCCCGEEEIIcYRJ0E0IIYQQQgghhBBCiCNMgm5CCCGEEEIIIYQQQhxhEnQTQgghhBBCCCGEEOIIk6CbEEIIIYQQQgghhBBHmATdhBBCCCGEEEIIIYQ4wiToJoQQQgghqoaHh3nHO95Bc3Mzmqbxla98Zba7BMDy5cu56qqrqtfvueceNE3jnnvumbU+vRyf/vSn0TRttrshhBBCiFkgQTchhBBCHDGapr2sv2M9UHI0ff3rX+d73/vebHfjBf3d3/0dd9xxBx//+Mf57//+b17/+tfPdpeOuptuuumwgoulUolPf/rTx/XzWgghhBAHM2e7A0IIIYSYP/77v/972vXvf//73HXXXQe1r1+/fia7dUz5+te/TktLy7SsrWPJ3XffzVve8hY++tGPznZXZsxNN93E1q1b+fCHP/yqbl8qlfjMZz4DwEUXXTRt3T/+4z/yD//wD4fZQyGEEELMRRJ0E0IIIcQR8653vWva9UceeYS77rrroPb5QilFpVIhFovNdldetmKxSCKReMH1IyMjNDQ0HLH7q1QqhMNhdP34LLAwTRPTlI/cQgghxPHo+Pz0I4QQQohZ4/s+X/nKV9i4cSPRaJT29nauvvpq0un0tO2WL1/Om970Ju655x5OP/10YrEYmzZtqpbw3XLLLWzatIloNMrmzZt5+umnp93+qquuIplMsn//fi677DISiQQLFy7ks5/9LEqpw+rTHXfcUe3TN7/5TQBuuOEGLr74Ytra2ohEImzYsIHrr7/+oNtv27aNe++9t1pqeyAz6oXG/vre976Hpml0dXVV2zRN49Of/vRB2z5/3LMDt7333nu55ppraGtrY/HixQfdbuq2Sim+9rWvVft3wP79+/mjP/ojmpqaiMfjnH322fz617+eto8D46z96Ec/4h//8R9ZtGgR8XicXC53yPsE+Nd//VfOPfdcmpubicVibN68mZtvvvkFt3+l8vk8H/7wh1m+fDmRSIS2tjYuueQSnnrqKSDITPv1r39Nd3d39ZiXL18OgG3bfPKTn2Tz5s3U19eTSCS44IIL+P3vf1/df1dXF62trQB85jOfqe7jwONzqMfVdV3++Z//mVWrVhGJRFi+fDnXXnstlmVN2+7A8+2BBx7gzDPPJBqNsnLlSr7//e9P285xHD7zmc9wwgknEI1GaW5u5vzzz+euu+46YudRCCGEEK+c/OwmhBBCiBl19dVX873vfY/3vOc9fOhDH6Kzs5OvfvWrPP300zz44IOEQqHqtnv37uXP/uzPuPrqq3nXu97Fv/7rv3LFFVfwjW98g2uvvZZrrrkGgOuuu453vvOd7Nq1a1pGled5vP71r+fss8/mi1/8Irfffjuf+tSncF2Xz372s6+qT7t27eJP//RPufrqq3n/+9/P2rVrAbj++uvZuHEjb37zmzFNk1/+8pdcc801+L7PBz/4QQC+8pWv8Ld/+7ckk0k+8YlPANDe3n70Tvaka665htbWVj75yU9SLBYPuc1rXvMa/vu//5u/+Iu/4JJLLuHd7353dd3w8DDnnnsupVKJD33oQzQ3N3PjjTfy5je/mZtvvpm3vvWt0/b1z//8z4TDYT760Y9iWRbhcPgF+/bv//7vvPnNb+bP//zPsW2bH/3oR/zRH/0Rv/rVr7j88ssP+9j/+q//mptvvpm/+Zu/YcOGDYyPj/PAAw+wY8cOTjvtND7xiU+QzWbp6+vjy1/+MgDJZBKAXC7Ht7/9bf70T/+U97///eTzeb7zne9w2WWX8dhjj3HKKafQ2trK9ddfzwc+8AHe+ta38ra3vQ2Ak0466QX79L73vY8bb7yRd7zjHfz93/89jz76KNdddx07duzg1ltvnbbt3r17ecc73sFf/uVfcuWVV/Ld736Xq666is2bN7Nx40YgCOxdd911vO997+PMM88kl8vxxBNP8NRTT3HJJZcc9jkUQgghxKukhBBCCCGOkg9+8INq6seN+++/XwHqBz/4wbTtbr/99oPaly1bpgD10EMPVdvuuOMOBahYLKa6u7ur7d/85jcVoH7/+99X26688koFqL/927+ttvm+ry6//HIVDofV6Ojoq+7T7bffftCxlkqlg9ouu+wytXLlymltGzduVBdeeOFB237qU59Sh/podsMNNyhAdXZ2VtsA9alPfeqgbZctW6auvPLKg257/vnnK9d1D9r+UAD1wQ9+cFrbhz/8YQWo+++/v9qWz+fVihUr1PLly5XneUoppX7/+98rQK1cufKQ5+NQnr+dbdvqxBNPVBdffPGLHtuB+5r6mB9KfX39QcfzfJdffrlatmzZQe2u6yrLsqa1pdNp1d7ert773vdW20ZHR1/wMXn+4/rMM88oQL3vfe+btt1HP/pRBai777672nbg+XbfffdV20ZGRlQkElF///d/X207+eST1eWXX/6ixyiEEEKImSflpUIIIYSYMT/5yU+or6/nkksuYWxsrPq3efNmksnktLI9gA0bNnDOOedUr5911lkAXHzxxSxduvSg9v379x90n3/zN39TXdY0jb/5m7/Btm1++9vfvqo+rVixgssuu+yg+5k6rls2m2VsbIwLL7yQ/fv3k81mX/Y5Ohre//73YxjGq779bbfdxplnnsn5559fbUsmk/zVX/0VXV1dbN++fdr2V1555cse527qdul0mmw2ywUXXFAt/zxcDQ0NPProowwMDLzi2xqGUc3S832fiYkJXNfl9NNPf9X9u+222wD4yEc+Mq397//+7wEOKtndsGEDF1xwQfV6a2sra9eunfZcb2hoYNu2bezZs+dV9UkIIYQQR4cE3YQQQggxY/bs2UM2m6WtrY3W1tZpf4VCgZGRkWnbTw2sAdTX1wOwZMmSQ7Y/fww2XddZuXLltLY1a9YAVMdIe6V9WrFixSGP7cEHH+R1r3sdiUSChoYGWltbufbaawFmPej2Qn1+ubq7u6tltFMdmIW2u7v7Vd/fr371K84++2yi0ShNTU3Vcs0jdc6++MUvsnXrVpYsWcKZZ57Jpz/96UMGZ1/IjTfeyEknnVQdK621tZVf//rXr7p/3d3d6LrO6tWrp7V3dHTQ0NBw0Ll8/msAoLGxcdpz/bOf/SyZTIY1a9awadMmPvaxj/Hcc8+9qv4JIYQQ4siRMd2EEEIIMWN836etrY0f/OAHh1x/YED6A14oO+uF2tXzJkg4Gn06VAbXvn37+IM/+APWrVvHl770JZYsWUI4HOa2227jy1/+Mr7vv2Q/DjWJAgTj0r1cL7TtTM+u+nLv7/777+fNb34zr3nNa/j617/OggULCIVC3HDDDdx0001HpC/vfOc7ueCCC7j11lu58847+b//9//yhS98gVtuuYU3vOENL3rb//mf/+Gqq67iD//wD/nYxz5GW1sbhmFw3XXXsW/fvsPq1ws93s/3cp7rr3nNa9i3bx8///nPufPOO/n2t7/Nl7/8Zb7xjW/wvve977D6KYQQQohXT4JuQgghhJgxq1at4re//S3nnXfejASCfN9n//791ew2gN27dwNUZ6g8En365S9/iWVZ/OIXv5iWmfT80lR44WBLY2MjAJlMhoaGhmr78zOfDmybyWSmtdm2zeDg4Kvo/UtbtmwZu3btOqh9586d1fWvxk9/+lOi0Sh33HEHkUik2n7DDTe8uo6+gAULFnDNNddwzTXXMDIywmmnncbnP//5atDthR6Tm2++mZUrV3LLLbdM2+ZTn/rUtO1ebgANgnPl+z579uypZgpCMFlFJpN51eeyqamJ97znPbznPe+hUCjwmte8hk9/+tMSdBNCCCFmkZSXCiGEEGLGvPOd78TzPP75n//5oHWu6x4USDoSvvrVr1aXlVJ89atfJRQK8Qd/8AdHrE8HspGmZh9ls9lDBo8SicQh97lq1SoA7rvvvmpbsVjkxhtvPOS2U7cD+Na3vvWKsuJeiTe+8Y089thjPPzww9P69q1vfYvly5ezYcOGV7VfwzDQNG1av7u6uvjZz352uF0Ggsy/55eBtrW1sXDhQizLqrYlEolDlose6nF99NFHp50HgHg8DvCynitvfOMbgWAm26m+9KUvAbyqGVvHx8enXU8mk6xevXraMWazWXbu3Dnrpc5CCCHE8UQy3YQQQggxYy688EKuvvpqrrvuOp555hkuvfRSQqEQe/bs4Sc/+Qn//u//zjve8Y4jdn/RaJTbb7+dK6+8krPOOovf/OY3/PrXv+baa6+tlo0eiT5deumlhMNhrrjiCq6++moKhQL/9V//RVtb20HZZ5s3b+b666/nc5/7HKtXr6atrY2LL76YSy+9lKVLl/KXf/mXfOxjH8MwDL773e/S2tpKT0/PtH28733v46//+q95+9vfziWXXMKzzz7LHXfcQUtLyxE7d1P9wz/8Az/84Q95wxvewIc+9CGampq48cYb6ezs5Kc//Sm6/up+x7388sv50pe+xOtf/3r+7M/+jJGREb72ta+xevXqIzImWT6fZ/HixbzjHe/g5JNPJplM8tvf/pbHH3+cf/u3f6tut3nzZn784x/zkY98hDPOOINkMskVV1zBm970Jm655Rbe+ta3cvnll9PZ2ck3vvENNmzYQKFQqN4+FouxYcMGfvzjH7NmzRqampo48cQTOfHEEw/q08knn8yVV17Jt771LTKZDBdeeCGPPfYYN954I3/4h3/Ia1/72ld8nBs2bOCiiy5i8+bNNDU18cQTT3DzzTdPm0Tk1ltv5T3veQ833HADV1111Su+DyGEEEK8chJ0E0IIIcSM+sY3vsHmzZv55je/ybXXXotpmixfvpx3vetdnHfeeUf0vgzD4Pbbb+cDH/gAH/vYx6irq+NTn/oUn/zkJ49on9auXcvNN9/MP/7jP/LRj36Ujo4OPvCBD9Da2sp73/veadt+8pOfpLu7my9+8Yvk83kuvPBCLr74YkKhELfeeivXXHMN//RP/0RHRwcf/vCHaWxs5D3vec+0fbz//e+ns7OT73znO9x+++1ccMEF3HXXXdXsvSOtvb2dhx56iP/zf/4P//mf/0mlUuGkk07il7/85avKzDrg4osv5jvf+Q7/8i//woc//GFWrFjBF77wBbq6uo5I0C0ej3PNNddw5513csstt+D7PqtXr+brX/86H/jAB6rbXXPNNTzzzDPccMMNfPnLX2bZsmVcccUVXHXVVQwNDfHNb36TO+64gw0bNvA///M//OQnP+Gee+6Zdl/f/va3+du//Vv+7u/+Dtu2+dSnPnXIoNuBbVeuXMn3vvc9br31Vjo6Ovj4xz9+UNnqy/WhD32IX/ziF9x5551YlsWyZcv43Oc+x8c+9rFXtT8hhBBCHBmaejUjDgshhBBCHOOuuuoqbr755mkZSUIIIYQQQswUGdNNCCGEEEIIIYQQQogjTIJuQgghhBBCCCGEEEIcYRJ0E0IIIYQQQgghhBDiCJMx3YQQQgghhBBCCCGEOMIk000IIYQQQgghhBBCiCPMnO0OHOt832dgYIC6ujo0TZvt7gghhBBCCCGEEEKIWaSUIp/Ps3DhQnT9hfPZJOj2EgYGBliyZMlsd0MIIYQQQgghhBBCHEN6e3tZvHjxC66XoNtLqKurA4ITmUqlZrk3QgghhBBCCCGEEGI25XI5lixZUo0ZvRAJur2EAyWlqVRKgm5CCCGEEEIIIYQQAuAlhyGTiRSEEEIIIYQQQgghhDjCJOgmhBBCCCGEEEIIIcQRJkE3IYQQQgghhBBCCCGOMAm6CSGEEEIIIYQQQghxhEnQTQghhBBCCCGEEEKII0yCbkIIIYQQQgghhBBCHGESdBNCCCGEEEIIIYQQ4giToJsQQgghhBBCCCGEEEeYBN2EEEIIIYQQQgghhDjCJOgmhBBCCCGEEEIIIcQRJkE3IYQQQgghhBBCCCGOMAm6CSGEEEIIIYQQQghxhJmz3QEhhBDi5coM9qGhYYTDJJtbZ7s7QgghhBBCCPGCJOgmhBBiTvBch223/RwAzTA496q/nuUeCSGEEEIIIcQLk/JSIYQQc4JdKtWuKDV7HRFCCCGEEEKIl0GCbkIIIeYEp1wLuinfx/e8WeyNEEIIIYQQQrw4CboJIYSYE+xScdp116rMUk+EEEIIIYQQ4qVJ0E0IIcScMK28FHAqEnQTQgghhBBCHLsk6CaEEGJOcMrTM92cSnmWeiKEEEIIIYQQL02CbkIIIeaE52e6SXmpEEIIIYQQ4lgmQTchhBBzgl2W8lIhhBBCCCHE3GHOdgeEEEKIF/LU8FP8ev+vuWz5ZXi58WnrpLxUCCGEEEIIcSyToJsQQohjku2U+eSDn8QrjfK/u/+XL/nvJU64ut6VoJsQQgghhBDiGCZBNyGEEMckdd/nuLVuI6GUzuWDvyfqhqatl/JSIYQQQgghxLFMxnQTQghxzOma2EVE+YS04N/UZdGl6GjTtnEl6CaEEEIIIYQ4hknQTQghxDFFKcX3H/+3aW0XaosO2i4zlGH7AwMz1S0hhBBCCCGEeEUk6CaEEOKY0pntZKE2vZR0cbi+uux5CgC7XOaxX3Xi+2pG+yeEEEIIIYQQL4cE3YQQQhxTfrTrR6ji8LQ2x6sNQeo5DgBmyKOYqdCzdfqspkIIIYQQQghxLJCgmxBCiGPK1rGtrDCT1evDY2WyRb963XUsAHRdoeuKLff2zXgfhRBCCCGEEOKlSNBNCCHEMcPxHHZO7GTlZNDNdX3q68IYZoSkWcHr68ctlWrbt0wQqwvj2N5sdVkIIYQQQgghDkmCbkIIIY4Zu9O7Ub7LEjMBQDpr0TdYIGNFKbhRjAUdaIXarKXJQoJdjwxRTFuz1WUhhBBCCCGEOCQJugkhhJh1Sil8z2Pg/oc4V1tBSNMpDixmYtwn078Eyw3GdIsWM3iVQvV2phlkuBUyEnQTQgghhBBCHFvMl95ECCGEOLq23/krcoMDxD2Xd3Ixj3UbRLKNJDNvJBmxsAjGbaszimxPT7D/3rtpbG3H9w1gDUUJugkhhBBCCCGOMRJ0E0IIMesquRy+56JQeKEsjtOMk8pQrMsQrsSDbUpF7nx8J+FwHLtkMTLQj/L7CCWjFDOrZvkIhBBCCCGEEGI6CboJIYSYVUop7FJQMlo2HFYZcYZs6Ovcg7I0HFVh+br1DPf2YNkelp1H0zSU7xGKJPHdYbJj+Vk+CiGEEEIIIYSYTsZ0E0IIMas828J3XQAscjSn21iwZy29e/fQ17ub4b4e8uk0o/39AGiazqkXXEg8WYdjFfAq95MZ7JvNQxBCCCGEEEKIg0jQTQghxKyyCrWJEZrCGl4uRcYanbZNbmcW13UAiMRWg1ZH84IF1fX5sd6Z6awQQgghhBBCvEwSdBNCCDGrrGIt6NamhfDsCBPW4LRthkqdJOMhFrUn8PXTqFQixBLJ6vpybmjG+iuEEEIIIYQQL4cE3YQQQsyqqUG3pBPBcUOMWQPTtnGVTaHkYDmghxZiVcLEEonqers8hvLVjPVZCCGEEEIIIV6KBN2EEELMKqtQmwShnG7k3rTOUHky0+15cbQli5YBUClHiMTiaJoGgOekKeXtGemvEEIIIYQQQrwcEnQTQggxq+wpmW77+hcy4ZRx/SwAmharrguZOsm6FQBYlTC6rhONxwHw3Cz5ifIM9loIIYQQQgghXpw52x0QQghxfJtaXrqnYID1TPW6Fl7NxWfa6ErHDBf4+v7FFCIO55QjAEQTScrFIiiPse5+OlY0zHDvhRBCCCGEEOLQJOgmhBBiVh0oL3VdHcfqw6ncj66baOYm9PBqBtNhvpZPYWuKjK/hhz32KMUXFcQSCdKT+xnt6QE2ztpxCCGEEEIIIcRUc7q89Prrr+ekk04ilUqRSqU455xz+M1vflNdX6lU+OAHP0hzczPJZJK3v/3tDA8Pz2KPhRBCHJC5vZP0r/ZhF4JMN6es8Oz9RGNJfN9FNxRtbfXsHGhlpw67dY1RA8YMRb8JSil0o7G6v4mB/tk6FCGEEEIIIYQ4yJwOui1evJh/+Zd/4cknn+SJJ57g4osv5i1veQvbtm0D4O/+7u/45S9/yU9+8hPuvfdeBgYGeNvb3jbLvRZCCKE8n8I9fWQf7kZNzpYwPpbFt5+iUi7Q1JJg5QVN7C5G6QopGrU0LWR4C1tpIRjvbUxFaGgOA6BpJuV8dtaORwghhBBCCCGeb06Xl15xxRXTrn/+85/n+uuv55FHHmHx4sV85zvf4aabbuLiiy8G4IYbbmD9+vU88sgjnH322Yfcp2VZWJZVvZ7L5Y7eAYhjllKK/ueeItnaTnF8jOxgP8XxURLNrdVL4EXbDnf9gcv6BYtYtOmUGT4DQhxdXi6YadQO1yY/yGfGqsvf1y+gc88K1jZZpGzF14x/50xjNwBfdt7Gv3vvYIfTzDmxArph4Hsu2ZGuGT0GIYQQQgghhHgxczrTbSrP8/jRj35EsVjknHPO4cknn8RxHF73utdVt1m3bh1Lly7l4YcffsH9XHfdddTX11f/lixZMhPdF8cQpRRDO7fR/cQj7Pr9HVjFPJ5jY5eK0y5fqu1w19ulIrmhAQa2PcvA1mdn+7QIcUR52eDHDStWBF8jm0lQnAy6KWAguhCAXRWTLRgktEr1tucZ2wHYnodQOIymaQDYpYkZPIK5R/mKwZEStz4wwC8fH+H+7XK+hBBCCCGEOJrmdKYbwJYtWzjnnHOoVCokk0luvfVWNmzYwDPPPEM4HKahoWHa9u3t7QwNDb3g/j7+8Y/zkY98pHo9l8tJ4O04k+nrYWTPTiJ1Kax8DrtUwgiFCccT0y6BF2073PVmJIprVfAcm4qUzYl5xstYKM2nUJ8GXRGPpXGdcQDS0VYsI1Ld1vJ12owck1WobNZ300CePcUotEIkFqOUz+O7OeyyTTgWno1DOmbteGiAvU+Nkhst4xuQH60QWZik0BGHDU2z3T0hhBBCCCHmrTkfdFu7di3PPPMM2WyWm2++mSuvvJJ77733Ve8vEokQiUReekMxbw3u2EJhNJhwY/Epp7Ns81mz0o/C2AjP/vwnACg1K10Q4qhxMxalZBbfdAEY7KtlsnWHF1aXI4aO6zk0qVrg2cDnDeaTPJp8Pb4PkVicUj4PKAb3D7Bs4/KZOow5YecjQwzszkxrq3TncCfKh76BEEIIIYQQ4oiY8+Wl4XCY1atXs3nzZq677jpOPvlk/v3f/52Ojg5s2yaTyUzbfnh4mI6OjtnprDjmVXJZ0r3dAEQSSZaeesYs9karLUrUTcwzXtbCipRAges4DHVvr67riwVBt7UpnU9ddhIXd/gY1F4DPhqfML7Pa3M/JeOEiURj1XVDe3tn7iDmgErRYXDvoTNl3aKL6/kz3CMhhBBCCCGOH3M+6PZ8vu9jWRabN28mFArxu9/9rrpu165d9PT0cM4558xiD8WxbHjPzupyx/oT0fTZe4kcGKcKQCn5YizmFyddIt8wju9A9+5efDeNrodxT38z/ZPjuZ2ehFjY5F1ra+Wiw83n0dX8WpJahY+aP6E5/zCR2NSg254ZP5ZjWdeWMZQfBCxbliRZcsUKjGQoWOkrxodKs9g7IYQQQggh5rc5XV768Y9/nDe84Q0sXbqUfD7PTTfdxD333MMdd9xBfX09f/mXf8lHPvIRmpqaSKVS/O3f/i3nnHPOC85cKkQpkybZ1k6pmKNu5Qq6c90sSy2bnc5oUzPdZqcLQhwtpfwExGGofz8TI72YRgJ0mzEzhaMHQbYNZlByGqsMVm830nI+sdIWGIeYZlP2nGlBt9GeXTN7IMe4zmdqM8Je8M4TeHzCJraynsJzQftIf4H2RcnZ6p4QQgghhBDz2pwOuo2MjPDud7+bwcFB6uvrOemkk7jjjju45JJLAPjyl7+Mruu8/e1vx7IsLrvsMr7+9a/Pcq/FsUr5PumeTpTvM6il+f6jn+CZkWf44mu+yAWLL5jx/kzLdJOom5hnynYWFVMM9/XgOcHYYhe87gK+UFoGBLNqbtBLdAHxci3oVo4uYDRpsrr3NgCKrkM0VQu6FdMDM3UIx7xK0SE3XqZ9eYpS3qZuURJ/fAKzvjZu6cRgcRZ7KIQQQgghxPw2p4Nu3/nOd150fTQa5Wtf+xpf+9rXZqhHYi6r5HMoPyjjHGCCB/ofIKSHeLD/Qf531/+yfWI7G5o2VC+BF2073PXDIz38P1wKgOs5M3cihDjKfNujYhTIjI1ilYOAW3NTC4nVGxl+MMhu01CsU3m6lT8t060cXQBjtfHfLM+jfsqYbq6dQyk1LWh9vNrx0CBjvQUATnv9UopW8P42NeiWkfJSIYQQQgghjpp5N6abEK/W+Fh/dTltlDmz40w+cdYnSEVSFJwCI6WRaZcv1Xa468et8Wp/do7vmI1TIsRR4WUt7EiJzNhote38zQnGaGW4EATdWlWZmK6I26VpQbcJN4nK1677noOjYhjm5DhlymNicGhmDuQYpnzF1nv7qtdb1tUz8MT9GHYBs742Rl5uVGYwFUIIIYQQ4miRoJsQk3b2PFtdXtyxim9f+m3evubtJEIJkqEkbfG2aZcv1Xa46+vCddX+KJm9VMwj1mgOJ2SRHh0hHKsjZLayYmkdO0sNKKVYlIpwQTgDQMIqEp8MuvmaQVaP0bR9uLqvsGZT8XSiU8Z12/f4UzN6PMeifU+NkBsLApjJJSY9zz1AuWcXTXvvonX/bwjXBe8pxbGyvL8IIYQQQghxlMzp8lIhjqTh0W6WkwLgxOWnV8vTrtx4JVduvHLG+7Ol50lydz0SXJHvxPPO7nvuopLPYoQjLD/9HBLNLbPdpRmTHxrCsW3sSgWokIg2UjKa2D1m4/qK/pxFWyJ4/SXtArHJMd0qkXb8cCfm2iUw/hgAMWx6yhEisRjFfA6Avu1bOfMtl8/KsR0LPM/nsV910rQ4gWXnWdGxE62o4WsGuvIwXI9YE9h58CoelYJDrC780jsWQgghhBBCvCKS6SYEYHkWarKsDeCU5WfNYm8Chl6LictECvOL73mMde0jPzJMpq+H/OjwS99oHrHLZZycX70ejyZJGx3sHctX285PugAky+NEnDQA5WgH3vIxnFPbqtvFsOiyo4SjMcLRGE60ntG+vTN0JMemZ+7qIT1UYqKvQDReQYWj6L6NH6plA8ZSHnoiRKQ1SnpIJlMQQgghhBDiaJCgmxDAltEtdKgGAMqmRyQSe/EbzABdq708NYm5zSvZwX6U51WvV3LZWezNzCtmxijatTELk4koI9qCatAtqrtsTuoUurvRux5FTf6rKoTb8EN5HK8WJIpqNjtLIcLRCHalTKiSJTcxhuscn5OPVIoOoz3BeTRDHktauzHtPJqh07LhtOp2iYSDX3SwRiuM9hVwPXmTEUIIIYQQ4kiToJsQwMNd9xMjKK+qq49A78NQHIH+x2etT7pee3nKmEvzy0T3/mnXy9n0LPVkdni2hVWqzZpZXx/hqcpSinaQ3ba+0Evnv32Z3lt+TuLpm9DwKRUTVB4dJzqQo+yX8SaD0jEsdrghDLM2I2faSDDW3TmzB3WM2PP4MPueGiXZFGHB+tp7SDIB1tbfVq9Ho7Wg5FNPj3HbkyPyPiOEEEIIIcQRJmO6CQE0/u891D84iOb7tF68EpJdEEmBlQPPgaXnznifdN2Yck2+DM8XSinGe6YHhErZzOx0ZpY4boVKuRZ009s72DFmVa+fOrR7coWiaUkQkIzFiuhbelj9Nci/fxmuGcJwLJqMCmgajp+o3t7UNQb37aZj9ZqZOaBjSOezwYywhQmLJadbMBnPjZsOKmJTdoMfF0KUYXIMSyddwfPBdhWRkDYb3RZCCCGEEGJekqCbOO75ymfRvhxGNijJKvdOlq5ZOYg2gluGZ26E/ADULaxdwou3Hc76SIoVxRFSzQZ7xpsl5jaPlLMZki1tWPk8ViGH5zhUcll8z0M3jJfewTzgejaVaqabRqF9E7u7cixrTJB3MpzWvQ2AukUVzFgw9tvEYIJcfRNOQwI17uOaISKOBb5DGRj1k9X9RwyN4X17ZvioZl+l6NC/KwNAXXMUXa+VLSfNEhoOYxUT33PR7CKhVBgnZ+OmLZRSlCyPSEgS4IUQQgghhDhSJOgmjnu7O5+h0a2VpqlsFuqXwYJTIbUERreDawVBuFhz7RJevO1w1jtlDN+hJQF7xgEp+5o3Sulx0j1dAMQbmyilJ0ApKrksxkQadJ3Kjh3UXXwxejQ6u509SjzlUCkFwW1NryOnHLYNBwGiBZEyq7IDADSsTZLDJ0WWLSveTfSsPyASieN3/gRfjwAFotgA9Ghx2if3H9E1PNed6cOadd1bx/H94L1i2coIOLVzUGcWwdDQdB08UI7FkhUx9j9ro1wfL+9Qsjwak6HZ6r4QQgghhBDzjgTdxHHN9z36tz5DW7FW6uZMlGDTn0C0IWhI7wMzEpSbTr2EF287nPVurdROzC9TJ02I1TcGQTegnB5l9F1XotLB+oX/+VUirz2PqDm/Am/KVzi+VQ2KaXoDt4/WAj0XFLcDYEQ8Es2DaCiyyVMIrXoX/uQ4h9HUX6HvuBcYJ6EFr5X9ei3oZiqP/U/N3niMs2VgT6a6nPjNtyi+9QIgSJSNmS5a9Vqgsa1WSuqkK5Ss2uQeQgghhBBCiMMnQTdxXBvY+izR0TJGMV9tc9NlykWd2IFYx7ILgr+Z9Oh/BmWmk2T20vmjPCXolmxpZbxrHwvr8jTs+z63rPsYrhkHdJI3fI5fVFr4yRU/mb3OHgVuwaJUqb3eCNXzeG8QeAwZiksffwCA5GIbbfKJn49vQtN1tK5tqIWrIRzB14MXaJDpphj1omiahlIK3XexyyU818Ewj5/Mrf7daRo64oSjBo3FccrO5I8JZhh9Mr4WwsKbnEMpUe9Xb+tK0E0IIYQQQogjTgZvEcetSj5H71OPg+ehFSrT1t36//6CX/zHMzx0697Z6dzkzIwypPn8MzXTLdXSxEkdIzTGy1gTFexwA74RwTdCLBloZO/4Lgp2YRZ7e+SlR0awysXq9UqkgTWtdSxIxThhUQm9I4LXsZDGVbVI80TDhQB4fb8let8vAKpBNw3FmmiBaCWCGQ4mCVBekEVXzuVm5JiOBXbFJTtSJjNUwjB0vAXN6F4wQ6mmm+QKUTKVMGG9lkUbidjVZSddoShBNyGEEEIIIY4oCbqJ41Z2qJ9M3EYvFA6aqCA80U/v9gl2PDiImo3x1DRtyoWSMd3mkQNBNzMaJUmauohNQ9RmoCdSfdwBbKOdE3p9nhp5ara6elQMj/Th2A6JVAozFCMdree5wQyDuTIrGsZY8GQ3obE+og3BebLNBgrx9SgUlVUJzH1bgFrQDSBtK3YZYISCoJvnBsGkcv74Cbqlh2ol8vX1GqxdWb1uKp3USAsNjkld2MaMREk0tRCOakQTJmZDGDRNMt2EEEIIIYQ4wiToJo5bPc8+SSqvEy6lD1oXLw0BUCk4ZIZLB60/6rTaLJYH4m5i7rIrLp7r0/ncCBPDQUmfmYijxrdXt9nb2zLtNqVkB0tGfR4fml9jk+UmRikV8hRzOVynTD7aWF3XqIKy08iqGL4KykLHGy4ETccJl/FPXY3Ztw98H0+vTX6yNpYFNJQ5menmB+f4eAq6ZYZq2YNJo0SJePV6zNRB6Ty9cxTDy5OfGKMwPkphbIREQwQ3Y1PpyVMsu7PzI4MQQgghhBDzlIzpJo5LnmNTyWYoega/KLbwbjT0KZGteme0uty/O0NjR2KGeyiFpfPJk7/p4qk7egAIhRZxwoad9FT2s24oQ0I3cTyNTDkFtVgrpVg7F+0x+ME8C7oV8znsSrl6PR2pAzt47TU4QSltcnMzut9JMbqS8YY/AMCKFEiuWsOOvz+bhRMD0zLdTojmeKAIrlFrM0zzuAq6Tc10i4/vZCJiYiaD4KMaG+a2vbvZMTwAzwTbbDr7POLFInXNMcb7i+ArnKKL7SoiIXn/EUIIIYQQ4kiQTDdxXMqPjaKUxmd7O/ixOpGr/+CjfOSCv0FNlvfVTQu6HZwJd9TptZempimZSGGOy0/Uxgx0nBDPPVIAq5+EHvzuMaQlKGqTmW6TmUbFWDurM1H+aPhEBjp3znifjxa3WMGqBOdD00yyRi1jraGSR5kGDexAAyLOCPnEKUAQdGuKtFI4oQVtuBNfj1VvtzIWBNesKUE3Mxw+rsZ0mxp08x65E6e1DUuL8uyDD3D/Q/cFAbcpculx7FKBVEvtnLkFW0pMhRBCCCGEOIIk6CaOS8MD+3mqGGd1LBhUvK+unR3Ny+ltXks2tZLk4lb0sEKh6N+dmYWSqylBtxm+Z3Hk5QbGJ5cUhjaCZrRyViTCNjvDiPJoXn0FFT0FgOEFASk7Uo9T8Onw6+kf656lnh95qmJjl4NjNMwEhSkZppGxItGT2jH9oFQynToXpQdlpla0SGu4g8rCFAPnhFD5Wjnl8nBQllqaGnQLhY6zTLfgfBgG5F/3JkJ+CTc3QrmYx1JBxlt0ykyuuYkJPMehrrHW5hUcmUxBCCGEEEKII0jKS+cx5fsMf+5z1L3hDVS2bqPxz/8MfXJ2v+PV6L7dRJIpRnft5Pe5ep4tTi8bfbb5BK7Y9Uv6dtTzvysqLKyEqDNtbvn07+i2bJZHI3RVLJZHg+ycA8uHajuc9RvrE+wrn8GfLRri3LCH5kvobS7LjFmAiaF7eH4bRrgNrAIbw6P0m2F276snYu3BDtURdTIUzSCLqxRtQy8UGC0Mz+4BHEkVB98PAju6mSTvBcvxiMIbcUnWxv9nov7C6rIfs2kMN6OhkVk8jptogsmJONvtYB95LUZqcvtQop7SlJli5zPP88mOBiW7ibCNXYFIJE+lWAtMrmtbyOvWnsi3H7mbiuOSS0+glCJe51e30UoOjuMftH8hhBBCCCHEqyOZbvOMchxyd92F1dlJ15/8KembfkjPX7ybkS98gfztt89292ZVOZel81vfYMvPfkz4me3kK8EX9ZDnVLd5rm01tm7ybOtqOn14MOyQazQpez55FCXXq15OXT5U2+GsfyYfZ9SO8PWuJYAiXIm9wFGJY11udALLCn7faEjWxjLbun8xpUqIh7ecxRO3dWFFGkkU+mn1alltpUQHsWKaUml+ZGwV7ALKsmsNepK8E7wOk3EfJizqIv0A+FqYdOrs6qaRRAhDM3nfso+wNraCijdWXReygh8TMnpt8gAzEjtuMt1yo2V8L8gYNAyb0mlnoaEoFwvVbVYk6oiEQixtbgLAc11K+RyRaC2zrZK1KUimmxBCCCGEEEeMZLrNM+Pf+x6j//YliEahUpm2Lv2Dm6h/85tnqWezb/jHP6Lu579BmSaa6zLyxnMhDI2VLOVEPUVMFiyPkT7pPXQWW1gwkcONJ2iJh8kXHepcl7hpVC+BF207nPXe5CBuCtA00NSxmenWt2MriYZGGhcsmu2uHLN67r8XqAegtTFLrhTDcU16h5u58dfn4ysTCAIdUTtD8wJF12QceLT5RJaUdlKpNM9O54+w4eIwml0Lcvt6Cm+ydDsRc1gRSRPzBimYy6kkTqZ/URdOyEJpPq1GisqeNKbpsqS8ksGFNkwmsjmNSzjLg/GhWtANTT9ugm7pwVpGm2pKYlaCE1OekukWzQUBuMWNTeweGgEgOzGBGao9Hl7BwXYl000IIYQQQogjRYJu88i+X/4M6z/+MxgDrFJBT6UwFyzAHRrCz2YpP/ss5S1biW06cba7OuPu2HYrC775TfS6JEa+QKU+RSEcfEFvqeR5x4oi0ajJ/kqYUDzCW2J5up1Wrl61h0v/5I2gz+xL5U1f+Dlb08F4bhrH3iwKnc88yc4H72P3I/ej6Tp/8pkv8h9932V3ejfJcJKPnv5RNjRvmO1uzq4tP8QvZwhnbGATAI11ZZZ1jLG3rwPQJgNu0K6PMeEkWB/fQXzjOSzcO0B6xGCs9VT6MyU8237h+5lDRiujOHYt288Op6rLyYTF+uauYNntIht/B2PtndX1Jz/TTnlwH9HlcdrjdSS8TcC9AOhYnN8Y5odDtXJx3ypT9q2je0DHiM7nxmhckCAWsqmsX4hR2Q9QzXTTlMIcCSaHWdLQTFNjHEdFKOVzKLdCOGZil128go3jHnvvN0IIIYQQQsxVEnSbJ5RSlL5zA6qthVD/IMZrziN2xZvQliwm9vBjZL92PdETTyR326+Py6Bb510/p+ncs7A3rif01LPYm0/m9RNZbs/Uc/YKnebyAOXRAqsNk6yXor6pmf9nwShtmkf/b24mmy5RtCokItHqJfCibYez/h2JMFfXO4w6JjFHJ/H8A5olnuswsPVZ+p97homufbi2TV1LGwO7d9DcV2S9qqeNevrNJ2lZbtC2au1sd3l2OCUY3oKOIldcUW2uT5ZIxivsH2hFIxh38aKlYzhbfk5P3wBPpCL4D6VZt/QiBuLr0d0KJRXFHTVm71iOoPHiONaUoFs5Xgu6rTT7aYsHM2xWwgspJ5cDQ9X1LW6K2OIIuB4q51HnNVXX6b7FmkQdsVDtX5rr+Dhq/mdt2RWXfU+P4lQ8srqi7bwYbs84SqnqmG4hpcHk5BVN0TqKRQvLLlEq5KkU8tQ1xxnvK+AVHSxbykuFEEIIIYQ4UiToNk/kfvUrzJ27AbCXLsZ9zTmMjvTDSD+Ni9oJL1xI5ZlnsLZvp/mv/gqzsXGWezyz1t7bhda2CkwD+4xT0TSNMxIlLm/IYWiK/Q/txJosxx1qaGXNqmD2wx0DOdYui+ARw0YR9bzqJfCibYe1XvdpCvk0hWyy6NQfI8kn+eEhep58FA1YtnYdowN95MdG+N13rueU8y8kGp8s7+vKsaf7d7SuXIOmHZulsUfV6E5AoRSkM7XAUn2yRGNdkZWLRti+L0ldrpkVjR4/KefpWdgAgF4qMvLgTSyKnUf/kkvp1DYTHQiCKHP9XObSaWy7VvKYr2uDyRjc+e5OXBXF1CoMtbwNU5uYdtuoFozb5nsK3dBAr81UavgV6hIpKpFaGa6yC3iRtnlx3l7MrkeGcCbHp4wtTWIrh0Ynj12p4PtB0HFcr6fU/SxKKXTNYMnCOvZ2ZfBcl9GeblLNpzLeVwAFpezxkR0ohBBCCCHETJCJFOYBpRQj//al6nVr88nYXi1boVQpU/fa1wbb2jbZn/50xvs4m5Rtk1y4Buv0U8D1iMRMXM1jRzlKU8hjfDhfDbgB2Jlxdjz5GFseeZD927fgOlkMwySMhmEY1cupy4dqO5z1tq+TdY+9l2d2sL+6rGkaja1t1eulQn76xkphTxnI/bgyuh0AJ1/P2FA7ZsihfcEoyVgJw1CYhk85u5gVjR6u7zFgTgaFlCLseXS2NeL4jxO10gBUMs309A290L3NGeVcAcsqVa/n4/WTS4pLRn6Pjk0htoaRpssx6zU0tGBgQwUhM/iNyK/4KMW0oJvuB6/fU1tSoAdZga5jY6RacKzpY1vON7sfqz0v4id10Lmvi4iyp02isK9uGVktgpMNxnpb2p6srhvp3k+qpTZRSzkjQTchhBBCCCGOFMl0m+O6r3oPRl0SY+ECKprCS9XhrF6Bcu3gCytg5XMk/vDNTNx4IwDpH/6Ipve8B82YHyVrL6W8dRsqkQBdBx02rG3klueGKPo6E45BbqBz2vYGU0rSFGzfso0//tLH0YzQjPX53778C4ZGXT6/dHDG7vPlmBp0A2hsa2dsMCgJTP32HkJnn42zcll1fSmTJpKsm9E+zjrPhvEg6zQ30ULLmv0sjNiYIZ8n98bYs+hZTtnVTlJp9OQ1trqjuEYQYK23NPLh4G25pz7BiqE7GVz+pwA8c083y/5iwewc0xFSyZXwrSC1zTBDFMLBa2qj1kWDNQ4aOGYjbqiBcHuCU+OnknsoTVJbihYO3s9c26cSM6gzItX9GvlRTG0/y6PNGE0dxJwCvucTql9IOZcjHJ2fs/+Wcja+p0g2R/DQiERdyqUMg6bB0EStjHc00szty85k/dg44YYGlnbUsi8nBvpZfmYtgFnJzI/xA4UQQgghhDgWSNBtDvOLRUqPPAKAsWAB9trVVE4/BaAacDugZBrELzgfb3gELRajcN991ey3+S738IP4dZOZHUoRc0YYdcL8JlPPbydiXFkMETc6UF4GqGXFGL4i6Xm0LWjnZ5/8ACODE7QtbGFkYIy2hS0A1eVDtR3O+hPMNk4sjPNcn0k0nmDV8iUzcKZenOfYFEaDWQ9HBwbIjA0HU6tOqhvPUVnQPu025UyaxsVLZ7Sfs258H6QW4rsWE+Mp4i3BAPbK1/D60tSNL+Oh7m4aS/+L21QfBIQn3b3ydbiuxVmjD9GGjm/vQXcrNDcWKXnHSI3xYfAKlWrmWSgcpzA55tplxuPVbSYaLgS7THTJGZw4sZi9g534i0IwGQwvRE0qvoYKQevkbfQQuB0r2VSusNWxKUxmdMXcOsr5HPVt05+X80VurMxId5BhGl/XhB9PEssM0rHAZWSsm2iyjv1uklTZ4pcrz+fPx+4htRqaEnHCkTC2ZZMdGyPRaBBri+Gh4VVcPF9h6PO3JFcIIYQQQoiZcuzVr4mXze7trS6bJ26gcsap04IgU2WH+mn6i7/A2r2byrPPkv7BTTPVzVmXffhB/FSQbeUrH600yHAlyJJZVBkkZnehvCG00Go0Ta+ewhMaV3NGWsPrHMau2BSKNna5Ur2cunyotsNZb3o2Ma9MqZBnYmSIkZGZyXhTjofVm8fqzmL15qatyw0PoSaDJMN9PYwPDTE+OIgZiYBS6PUpVCw67TblbHpG+n1MGd0KmW603DDFSi0by0rXoUdM+vbvo1wpM6D7jGTSjA70Y4ZCaLpOuq6D3Y0n4YZijCiHrpY6ovYIo/lmJh4LSsnnMi1dIRxNYJghzHCCvOMCcKn+JAAKjYn6C6CSIdKyBrs3j5UKEdFqx20rGHMUYa0WrDScoJSyLhZFRWtZXF66RDk//Xk8n+TGa9lsZjKEXy5RX2cy3NdDuVCgUsjTFrIYau9gWWKI25MG2L1ovkFzSwOarmOGw+y672YKfVuwR0o4aQvbnf8TUAghhBCvhDsxwdh3v0t5yxbKW7bMdneEEHOIZLrNYXZ3T+1Kc/OhN9I0UIqxzr2oZSvRO9rxh4YpPvAAVmcnkRUrDn27ecJ3XZy9+1EXnRc0hEFTiqFC8IV9UaVWLmmGV7D2oktINLWSH+0i1b4Sa+9WvLu+gd+QJOp6+P0T1UvgRdsOZ33aVlSMKFEvyAqaqWCLPVBg9PrnANATJgv/6RxcOyg3G9j6bHU7q1QblysWT2AVS6iONp6vlDnOgm6+hxrdgQZMdK6gYtTGVtQyMDbUj+e602+jFIZpsvbUzeTCBg0rT6CYXYw5tBNNU/SqXppZCr6GU/EIx+bu23ao4FEoBwEyLZQgbzm0McESLcigzCc24oRacPM7COsRMkNF7DqDMLXnv5ZzSRR9epbn2XRgv7pTXa8nmlDsA8BJj5LPLJyZg5sFubEpmbnJEOn9+1gesRkeG6u2X3ZWM8s6f8afhO+FCLi55Zj+Ozn55BUsWX8Kzz38IDsfuhMA3fxrvEIc2/WJhY+P4QeEEEKIlyP9ox8z9h//wSgQWriQ1Xf/bra7JISYI+butzeB3dNdXfYa6w9a7+MzuiLGWquNTH8vo3t3EV27mvjQMACZH/2Y9o//w4z1dzY4nZ344VA1AzAcTIDISCXIyFpcHqhuG4ouoa41GDOrvn0VaBpq2Qmc0r6UUncP1vAwkfb26iXwom2Hs/4z5/wBmY4GLun5GTBzQTc/Xwte+GUP5StGdu+g89EHqu0RM4Vj1wZb13WdRMXG3bAWCkWMfAGvqQEikeMv0y3TRbmvgfTO8/FdE6d+kGroIjvK/nKeUDRGyDBI1jcQSyYZ6uki1dRMoi7F68wxtLG7GVjQSM/k+PhjxigN+BjolAvOnA26KaUIl2vJ1WYsSdGyeVviOXxPw6GFdOp8AHwKaJpGoWRBKkJ4SqabZ/kYnqLPrwXddL0WyAwnWznw7FROhsFul5OO9sHNkvz41KBbmLF9Q7SHy2TGJ4jWNRNpbOKUFVGSe/dWt1NOP4WcTTRqEHZdItEYlWIwo6zv9uEV6nHcuZ1RKYQQQhxJynXJ3PyT6nVnZATlOGihmRvvWQgxd0l56Rzm9NQy3SbKtZkjdzPAFq2bx7W97AwNYpeKoGnEm5qxNq3DS8RxliyiPDE+G92eUXZPD4RrJX7JkIfyNUY9nbBn0WIHGSGG2cyixbXbhf0gu8sLx3CizejhEGYyMe3ypdoOZ72hPHxtystzhoJubnbKzIW+wh0vM969f9o2/rgz7brnOtQpDXdBOyQTeM2NGKPBc8spl3Hn+eyR04xuwykmUW4IDQ0nVDufQ5VO8D2ccom6BUtZuPm1LFi2nJZTL2DlhhPRDQNN+eA6tLc0YEzO1rnY6uXZUHDOKwXnkHc7F+TsHCGn9jx2QvUUHcUSq586KoQYoxhfC4BvlFG+ojRZzjw16NaQjNJaF4NYbXKEA7OXAjQlmmp3auQpV+bvB+L888pLbadEIZdF+S6V/Dhty85A+bA8MlzdLoRD1OojHtVxidCxdHl1ne/24pUcKtbzsjGFEEKI41jhnntwB6YM9eK6WLd+Gh79Kjz6H+B7L3hbIYSYmykTAgCra0qmW93kmGUovmL8Cl/zQcHphdP5P1f8H/IjwySaWxjcvoXcD24m1NtPeXz+ZyHZ3T21SRSAer3ERC7FhK+xzBpEnyxbS7UvQ6tvY9HQ9/C0KB3pO9ix4vNYkYVw0utoW91BKGTiOG71EnjRtsNZb24Lxrc6QPkzE3TzpgbdgHJ3mtzwICiodmd0+riBtmWxsLEZvz4YS8scHsUYT+MtDsr6SpkMqfaOo931Y4PvUSjVnm9+ODifyvcZtSZT1zSN8AXvZqIwTDQ/wb3lRi6PFWg0agE1J7aAxtY2chMTuLpJ0XkWxRmUC3N3Zsnx8jj6lNLaYrgOKrBOq/14UIytBkBFffyCgxvWCRVcIo2TzzlTp/nPN6BpGomxIXgwaPZUOQhMaxr1jQs48LHYLk2QG5m/H4Rzk5lumqmjRQxaTIvi+ER1fV3zcnL5bdTrzwui5fcQXhhMcJJqbETTdJTy8Z1eUJCbsKA1PmPHIYQQQhyrlOsy9l/fJnriiVS2bav+EG7t6ybaNDkGaq4PGpbNYi9nVu9YmYrt4fmwdlEC7QXGFBdCBCToNofZ3UHQzY/FUPEUhFvxQvVc5/y//Mz5NW/wT+bG9L0YoTANi4LZL5ecegZbk0lIZ6FUwrdt9AM1l/OQ3dM9LegWNTxyQwvw0TjLSIMRBs+mbeWJtLcWWLb9m9VtV/b+X3as+hL7nVaeS7ye0d4CrUuTjPYEl0B1+VBth7M+G+vHozZummKGgm6Z6UG3oYefhbhC9wx808O0I5Ry+WnbOJZFaNVaDoSMzMFh9EJQrqY0GB8fgMY4yVASXZvHybW+C/2PYxbPwyEo7zZND9/32btlC76hgwPxFScTqm/h1u4Sj/cvp+x4vLZdo9EPgiVKKczd3XSsP4XM/XfhWxVOsh6nr3EdpXQOaJnVw3y1xivjKL8WNMyEUlCB9XoQdHO1JI7eCIBKKEojRcrNEUARnpy5VIuFqx/sdN3EMUOEXAfdt4joRSyVJFXXRCgSwbEsPCePY83PscmUr8hPBEE3IxnCV4p8LE4kHQR3Q7E6wrF6StkSBwYfsJWJiQtOBlMLAnGGadLQ3kF6aADlT6D8IrmxMqxtnI3DEkIIIY4pE//9P1SeDcY1jp99FqVHHgXAGpgyUVO687gKuj21P4c/GW9c1REnZE4Pug2lLRoSJoauYRqaBOXEcW8efwOe3/xKBW8kGHzcb2pGazoXEqsJOVnqKxne7Z1Hm0ryR+WzeOgH/8Utd34DAE3T0FO12f3c8fldYmr39FRnLgUIh3x2Oxor4iEW53aD5xBvWkKqbRXNufun3bY+/wTJ4nMUIwb5/VmKGYtiZ652OXX5UG2HsV7TdPwpL8+KPTPx8ecH3cgE/1F900NzDeL5evqcXdM2UUpRbKmV9BlDI+gTGXBdNAX/9ch/ct4Pz2OoOHS0uz+7ymmUUjilYJIO36iAKpEZHWFieAC/UqThrDfRdOblDOfLPNg1SsXxeE2HzsLdT1d342Wz1D3xAHSsJdUSTE4R8S2y9nZyk6/5uWi8PI7r1cpAR8wELWRp1bIAlELBh1VtfBgaTMYH87TpPieG/OqMwiVdr45vaGgGrhGUjhq+RUQLJmgwDINoPAhgK6+CU37ec3qeKGZt/Mmx14xkiIm+AdaYZTwnOMfJpiXBh9xi7Tlzt38KWZKYdjeRYm3264a29uqy5/RQmDiOSsKFEEKIF6Bcl/SPfhhc0TQa3vXn1XWV/qlBt30z3LNZNiUXoGxPn/Hccnwe3pXhN0+N8asnRqnYMiO6EJLpNkc5fX3VZa9psnTPK6IqfWhMVgIacRpoQFVsEr0V/uiWt7OxYxN/3FCbdMEaHCC8YMGM9n0mWV1d+GedVr3eVQpxi6NxZavH+LYgs0jTNcxIjKbsvdXt8rF6DL+BlX1fZnTBtwgZENUgpNUu4cXbDme9oXy8Kb8KzVim22R56XhrL6VkHqX5hKMJ7EoRZXoo28Dv3QGp6aVnNnAgX9IcHEaFwzA5JlkTQdBzpDTCwuT8nUmS8jheOUZ/fh9Pjf8OS5UJD0aolEtEEg1Y5TxNvQMkNpzLd57rwZssGV4ytIP6hx/BHhoickKciRGb6P4d+ERZecJqChPjlIw4C0rPMDw8d6cEGCuO4rq1YM4YEdbq26vXC/E1YBh4qRiLjZXUZ3P4uiKsQU7TKZshur0wi4fLrOyIo2s6rmmCFYzpFtOyoEO6XEc02UQ+Hfyg4BbnZxn91PHcYmGbvm17aIsVq22JlkXBZbGz2naPdzKvN54AIJTZB6EzAEim6mlaup503yC+00VxYn4GKoUQQohXIvuzn6FFooRXrSK6bh3aphNR0QhaxaLcPYHnKwxdg0x3UPGgHx9fracONV2xPVLx2nF3j5anbVtxfGKR+Vl1IMTLdXy8M8xD9pRJFJyVK1H5naB8XDx0NIzYSoguoDG/BUWBJFHi+TJPaE/wpw0ncOA3B2toiLpD38Wcp2wbb2gYPxVkvfgK/uSpE2mNxlk59kz1yV/fvgTDzZHKPwVA2WjHcutocYIZ/1r0XSzsWEQsGqbSANHJS6gtH6rtcNY/1d/FQGxR7VhmYCIF5Sm8XFD+Z0XL+GZQfuYVbQ5MwbnV3U45HJw5zfdRepCNZ1cqkKpH2T56Lo+K1EqWGwkyv0ZKczdL62UpjeOUkuTscUpe8OtnuRgU3VrFDEvjHay7/adsOfMcTL2O1kQEz/d52/9+D9NzaE110b4sT0/diRhvXcs5O/8PIVWgp+NS7O7tmMBzff28ZRYP8XAUsxlwasGcYc/k0qnjuaU2AqDyIzS6i4hpCjRwFJRNkwkzRD4WIVN0yBYdDExcczLTzbMwcMj5HRgRiNa1AXsA8O0MdsUlHJ1f/+5yU2Yu9ZsbyVU0itnar+7GohS2uR/TS1M21zGSy/Fr/Rw+q75HWPPQxvejtfsoTScUCpMb7kL5ZZQqU0qXDnWXQgghxHGl9PTT2Lt3A9Dx2c+SHhrA6GjA7xrGLzp0f+MxkouStL1l4+S4bstnt8MzwPenpwJMzXRTStE5PP0zRMX2gPk7qZUQL8f8+hZyHPCyWfK/u5vCQw+CHkwD4C5sAysYOjyEwd3aFi5vOx2rGMGM1mMXgrKrN4ZP4PO536M1nlHdnz2Hy9Veit3fD76PPznJxJhrUvJNTkxFSQ3sqY6Y1nLxpfTv/BZLo620VUb4WcKl4C7i/ZNBt/axm9m+5p8JKYWtaYQnL4Hq8qHaDmf9uSe8lktUhX2Tc2WoGRgLwctb1XRxz6gNvO7pQeDIczUeyT3CGjNB2LXQfA8rPBl0syooH8qlOJqhY0Z1cBwIhWhUQdBzPgfd7P4CqjNDvnsFBe+Jg9Yb4RgrBkcxWtbyRLrI9mGft+gPsLZ9OYvX28TbbGKNZUCxzHgOK9JGpBycr9Mbe7lt8nkwmh6oThgw1/gTJTw7COrqRoTRksN6vVbiWJqcRCG7TCNRDD6cOQoe1WPk6+rQAOUqukcrJKMmRlKvBd18G11z0fBQGETrF6JpGiocx/fS5NMWzQvm17+73EjtQ62RDFMql8mO9ROOpbDLOUKLTFbsu494ZQAYwNfWkyfOw/5GLjSeQ3cKpNw+sqGlREOK5Sedyt7HHwJlURjYA2yetWMTQgghjgWV57YEC4ZBbOMGun5/J/WL6yj0jaJcH2v7INZ2aLriHMzi6HERdHOfN7lbxalNWJUvuySjJiXLnrJeykuFmF/fQo4D+bvvZvDaa4Mv3UpRPu88/LoQKAcfyFJkVcsK6iqPstAoclN6A2dN/rhwAmsw+D2luhCRyf05o6OzdShHndPTgwqZqFgUgHHHIO6VeY1WR38uCGhEWpfSryIsnfgVCyoF8prGbXGDHZF9/EVnkqheoLHwKCft+Qh1pd3kEmtJFXeRS6wFqC4fqu1w1q+MnEBLZTcPN9Xx5MRiMGJH/XwdGM/N1/xqlhtQnbU0Vw6xOvMWLPPnoHTaih4jkwltI4NhxtLriOOx6dLzmPjtIxjZHF5LcxB0U/M76Ja7s4vKrmCsxIKTOWh9asWpRLfcTOjE1/PIqEYEm0+Fvk9TuoC9LkFRX4apj9OTWIOTPJtspZNTs6NoKBZo+4kbKUpehFB5gEp+lGiqbYaP8PAZBZfKZNBNC0WpuB5rw0Gmm1IapejyYDnuYqaDJ13Jh3IyeLdqbwgzlAluP5qzqa+rjemmKxfbj1Cnj5LzO6hrXYWmGyiriG/2kx4t07wgMZOHe9Sle2oTmhjJEHXFbsq5MdB0Vp74WqLxcTrGfgYEMyGHU8shD3f6p3Oh8RwKjUS5k2xoKQqDFU0V9k7urzy2/aD7E0IIIY4nfrGItS8Yqy2yZg2EQni5QRa+bR3aOzey97p7cAeDcWntzk7MBftg0Rkvtst5wXGnB91KVhB0U0oxnLEZydrT1kvQTQiZSGHOSd92W7CgFH4sit/aBirIROo3Cnwm9AMuafT4yp4Gzn/wJP6rpxZXrdhx/ia1lvFE7c3PHR+b0f7PpEpnJ14yiapYDNomXWWdq3q+z+iz3yHRtITmZafSeO5beXjs+5xdDsZCcjSd56IRLF3n3sK7+FX2I+xteT26XyTijGJ4herl1OVDtR3O+ubSViLuGGc0B2P3zUR56YGgmxuyqoG2qexiAn8y+w8NJjpeV133hFshdVYTyy9axP4LP4S94Uz0fJBhGdZMkkQZLg0f9WOYLfZgbSytgjM5VqBmcMJJp7J41Qk0rj4Zo1Kmty5HTznKFcbDNE0O/K/0DqIqSVlr4MeREd4Rf4Arm7p5NLSRQnQ19ZU9nN0RjE/WXhnmwWd3HdyBOSCS1fC9yQ9mZoIEZdZpPYw69Uy4G1F6EFyLT/m3VFQabigIrC1piRINBevG8w46Bpn6ZrJ1jVihOlxHo94IJusIJxoxJrPgfLef9Fjt8ZkvxvZl0KMGobY4zkQv9WMHnheK9pYONj25lYgTvObSqXNJLD+Bhkqeu71T2OktQelJGkrbJ2+hsarN4kAduVPajTvll2shhBDieFPZvp0DU3TGNm2ilB4npafRwyaarlE4rTZbqTWch9L8TWSYyvWmB9H6xy1+9ugwP3905KCAGyATKQiBBN3mFL9cpvTII8FyPEbmmvdib9hUXd8dy/DjBZfg5yzuGGnBVTplXyftBYG3il3hbdGziIQnqrfxJubnIOMApT17UHVJtGiEBWEXLT+BgY9VHAffJd68iMiSlazK7CA+GdR6MrYIf7J0b2vkdMYTS/H0XvJmhkI0Oe3ypdoOZ72aHHA+dqDMcyaCbpOTKDjhQw+iXi6G8Zz9k9dC6KE11XX1fpHF8XAwmKymE9p0OsaUWSMbSc7bTDcvZ+NPjoXnKZuSG2QgReMposnlpDo2k3AVWjTKw0vXAIp3G3dWb591PsCI8wn+aOmJfL8+hUvwmH+8PUvM6kLDY0NdH6bmYeCze9vuGT/GIyFcqH3oskNxztB3EdJ8WkNZ3GhjdV2jU8vqLPgadXmbuphBR2OUllSYtD2I43mULYXpOdTn00ScPGa5SL0RBJk0TSPVujRYxmF4354ZOsqZ4bk+mbKHX/HwKy7jz95BONVKJNFExwnnsDweZmFlhInkGkqRpQw3v5lMwzrOHtpGy2iGBgrofp46ZwjU5AzFhAk3noAeXYwRbWRwT/csH6UQQggxe8oHSkuB2EmbyI+O0ByvTRIwMDlmNIA9VIDiaPV/6nzmeNO/k7ieQqlghJoDWW9TSaabEFJeOqcM/v436E7whdxevQJ0nQhZCpqO5vtYpdU87ZboKZi4KggcrV2Ro6sSojHhEtF9bhloZ0NdbTY7L5OZjUOZEXY+h7O4NjOrl61l9XWsOY+6dWczWOhnzfiT1fYtzSuBILBkLs/xrj95F0/f38BT27cw0r2PthWrqpfAi7YdzvrXNz/MMn2YA4OszUSmm5t58aBbIZMGFXzYMIwlaFqcIDPGo8kvYUwZZ8xbvgZt34PV621e07wNutl9tTI/i3uqWYLxuiiJZAVbaTDQQ8nxub3UzlXxh4i7Fn2qhbpYM3ZlLc9Fu1lkLGVYjWJiUiDPMmsj+xONnFB4johmsbYxwx2lE1E9c++X1IpbQSsd+CCmsMwYb4ztgMmmbOPZAHi6S1slVb3daDxGvi5CvaZxZ/dv2Dcxwv/0fJsl0Q28v+M9hCO1WXRLWpiEmsCgguvYpFqXMt4XZH+Nd+8CapmZc91Yd64ahw81R8k/txvdDcZ4W7j+IpqL26CyjSZvDF8LkUmdA1o3qaTG7S2reZITuJzHMHGIOyOUwh0opRFJtGKndwLQv2svSzasnK1DFEIIIWZVeUst6BbddBLpwZ0kUZRsk2FyZNpbquvt4Tz4Dlg5iDbMQm9njvu8oJsCUIr46E7QNaJ6CKdlFQcS4ixbMueFkKDbHNL73MMkIyEMy8Ffs4x4yKHkBPPBPF2M8t3BDhZGKqxpUIR0DU8pXnfeEPV7wxBUp/HwaIz3Lk6yc3Kfaspsd/ON+9wWtGWLq9dD+VrQJ9W+Ch8oFXpZ7nm4gK8ZjKjarJvLoj75+/s5/U1v5fQ3vXUGew6dn1gPgK6BhgJ8lFJoR3EAfWV7KA2ccG1WxKmxPqtcAC0KqsLGzkcwzXGeXpxE+VliVobs0B7qO04AoJxoIZyrlfStza9nW+SOo34Ms2Fq0C2XqQW0o/EgIGSnFlL39L386Oy3MOIY/JX+QxbqE5RUmOIV3yaTX8U/PPxjdPUAAFeE3sYvnVt4Mrmd7xpNXFcAjzBNZpbFlUG6x5LMNcOlYSKaYmP9MCc1DnKTvZJznYequdbZtgsBsCIFIl4UpcACypOz4NbFDP7juW+xLxuMrZJ1humc6KE5UsuKC7k5/EqUuJEjH2qjftEp8PRdAORH5lem2+COWrayHs9XA251bSuIREwi2Tx4wY8MuegJKD1E2lnJaR2P8r8uPOuv4nLjMQCSVi9N5e2Y6X20pP6MSKTImJVguGv/wXcshBBCHCfcsTEwDLRIhMjqVcT3/pK6SDCkzw8m9nHRCX+BCv0GzXGC8lKA4shxF3QD0HyH5Og2IBiywl68lorjYzm+ZLoJwassL3Uch97eXnbt2sXExMRL30AcEZXb7kS3HELNcU4+xyAZra17thR8wR+wotwzHKMlYfKWU2NE7tuNVpcnn0mjlCKlV+i1G9DjwXhHKp8/1F3Necp18UdH8ZLB4Ome55EsBV9Co3UtROL1GJ6PVtnFeeUKNtAfXUIovrC6jyYngdc9htU/8+fIm/LS1DWFUgrlH91/Wu54BU3VMt2Ugt3bl/PcU6vZs20pnr0fVAXD82gqlOgYfYrT29oZjbSC8tj78E944tbP0b/9Xhw0jGStZHCF007FrZCz51eQ1/M9rN7gmJRrMbJ9b3VdNB489+yWpTxS1LmtfTPvNX7DQi14z9xibqR1/YWsW6qxqL4WrItVziPqBGNrPRFW5OMb0TSf05v6MTQf3SpRqdQCo3PBYHEQwytwfmsXC2N5PpL6Pou04JeAvGrEiTQD4IbL1KkQCqh44ISC34U8I1cNuGnojNjdfGvbFymFI9X7MN0sbiVOXA9K5qN1LYQmg3JWrrs6ntx8MLIvW132Jmq/xDcvPhHTzoDTV23rMk6YXNLZtL4dgOfUqtptSs+xOHcP8UInb1Of58K2INg20S/lpUIIIY5P7vg45SeeANMkeeGFPNU5TFIb51/2LOO/uhfSVVhBox5ifMEiAJzxEr7jBSWm85zjHfx9xLBrP7RrKBJhquPwVhx/Rip2hDiWveygWz6f5/rrr+fCCy8klUqxfPly1q9fT2trK8uWLeP9738/jz/++NHs63Etkx+lZdRGA/SoiRkxyVZqiYpPFuPTtn9rvc6mR2/HubeX0e8/wbbHHmFPzxAb4hXumViMWRd8WdUK82+AcQBnaAjN8yk2NAFBaaRO8E+irm0F253nMByH+lKQ8xcH3Lp11Jl11X34TZBYGaN8z/4Z/2fhTwu6Bf+sPHV0gwbK8VGoYCIFwHFMyqUYFRxK5QRKBc8VX9eJTQ6yHm4sYUaSGOE4fuNSnHKOvi13MdGzBb2tNsBsUqW46onPc/vXtx3VY5hpjw89xsT+QQDcwh5K4VB1XTQex1Umv31uD//RcS7r6OTvQj9l1OwgF17KPav/AfbvQ/vlrWQmxyJLqia2jJokrCBYNK7lKIXa0JWLrkFzuETSK9A1MDjzB3sYhgqDnOzfTd4J46vJDM7JhMdCdA2mW8KODGCGgvJlXSMokZ/cqLP4XHVfC+NL8PFwlM2IX3tNmF4Wp5wgMRl00zSN+paFjIVb0EMtFNLjM3S0R9/IwOT7tgbFkR3V9ob2RcSs8WlBtwftFdXleMMC6r0SW/wV+JNDEDTZ+yibLRx4h1uSyBLRXfKjtX0IIYQQx5NqaallMdy6hD+74SkueuR0vtG9hM/vWcn9ey/h7XeZ/Nf61wfbKbBHCsdF0O1QmW6GU5p2Pa7Z1aCbUmC7EnQTx7eXVV76pS99ic9//vOsWrWKK664gmuvvZaFCxcSi8WYmJhg69at3H///Vx66aWcddZZ/Od//icnnHDCS+9YvGy7nvwtqcn3q+iieiqOgeUEX5qGHANnSlBoiTtO5LHbKBoGuhHCn8yKye3fxqaOJn4+sZJz41GggGbbeOUyRiz2/Luc06zOIHPISdUTAsaGBtGSC3h4fSd641a2F29mk38eVxVqJVR6/WnUabVZdyzdxrMVRmOE4s+2ous+vq9XL4EXbTuc9ZqqBW8MFCiF93QfStfxs2X0+lj1EqguK89HZcvoTQnMlW3ojdODsS9G2R5WpIjumXi6QzobYyI2hOZrtJYLjHlZFBBxPB5vX8+j7et5wj6FD588wRvzjzNR6mFPvcvWbAcTfVtZ2b4WCGboDIU9om6S7ODcytB6KY/sfJCV0TrW6s3Eh3ZQjNQeN6Uaec6q4+dDJpvqMnzG+i46ilZ3iJ6Oqzl5xQnw0P3s1bKUCZ53J4RW83epbq6PNPIwBRzdIxddQPtkYlNrtEh/rsjevmHWrVxxqC4dk0ZzQ7Rqg8TjJUquwYjWQlSzGNGbCC25FNeME7biuKl91ds4U6bQ3ZF9qrp8wZLz+dGuIAurd8qHPNPN4ThJ4vpQtc0Ix2mx9+EDhXSGVEvbUTzKmTGwN0N2cnYwsx7KhQjxpsUYmka0YTnJsQfA7q1uf3tpKadOLuf8dk6M7+FBq4O9agFrtAEAku4Q5dBSYk4PhqZYkZxgZ87EKhWJTGZsCiGEEMeLyuQkCj7wRXcxlqcx6gUJC0tiRXrLwf/G+2KrOX/RqVzQ/zT2cIFocX6OXzzV8ydSANDt6UkcYWURCde+g1Qcj0hI5m8Ux6+X9ex//PHHue+++3jsscf4p3/6Jy677DI2bdrE6tWrOfPMM3nve9/LDTfcwNDQEH/4h3/I/ffff7T7fdwZfO6R6nJkYYq8FUI3FJ6Ce7N1nJQqsCxWxlAe50QKGGYYu5Ql1baChgXBLJOxRJJiNoNbqRBN1sqyrKG5lTXzcpT2BGM4ackYruswPjRERvWws3WY7WaQ3fZEWmNJJfjS6QN1yc1Etdp5GUiFsM9agaZrgEIP69MuX6rtcNb7GNV+BOWlPspxUY4H1vTLacuWC66PP5LHG3tlZbHK9ig0pPFCwXgVXaU4+5ufxjErZLUW/MnAUNh1uX/hJm5beS7jKs75/iM0WDtYaezg1ObgfKYHdtKbXINvBdmF4XCwT+8QKelzlVKK/Z27OK24AX8izNhED6VIEt2IYJgh6hoUg1owKcD5lftpjgaPsBNeQquxlrPzvWDbPBKpzYR1oupgQVORNlULdAyGasstkSIh5bK3Z269ZrPZEaIEx5l3o3zF+Bj/VP89PpT6J9J1wa/EdrhE3KsFLStG7TXw7Fgw2YmhGbxjTW18xf2V2nM85GWxK0nieqbaZkRqmau5sVr7XLbvqWESOmghHS2eRxvdS3mij0TTYpSTxrAtlBME3fIqzlWr1+NPZgQW/WZObQ+Ctdv8FbiTgf5ceCmPRS+r3sfquiArcLSnawaPTAghhDgGjO2k/OQjuEaE357yQexSBANFnYI32PDJVI7Tg3ntaFYOd697G+mlJ9HXl4DS8ZDpdvBnefN5mW6FnjGcsdrn24o9fz7/C/FqvKxMtx/+8Icva2eRSIS//uu/PqwOiUNzduyuLpsLm+kpN+N7GhqwsxzlLYuGeHP7Xp7b2sHOZ2/DAsKJBtrPuZyoZfLg9k+STYxjGD2cE1lMX3wF9fQDQdAtvmJ+zVK3f8sD1GsakYjJSG83vucy2Dwly0pBsul+VncFv8x0h0J0hNqIurWB8vbZNtsmXE4NGaiyhm/7gF69BF607XDWq+eN6eYrhTI0NNNARUy0UO0SqC0rVS0T4xWWxDquTTGZAaDo6XzbDnNK1CLm1oEqcWAm1ajj0VvXAcC6ZITWfC0grPTJY3BtfH8ASzUQI0co7AI+vjN/0su3jW8jng+CRLuyj7EvFnwCSzUsYv1pa9A0jfuHHNYY43zUvBnDdsikWlH1b6TRtQkP96E8j2ciw0xWPnOmHae1qBPRa8/D/lAt+NQaDZ6vPd21bK65QBsfQNeCx77gRHjrqSejRxL8OuNw4HmfrR9i+ZSZS0uR4N9ThREGi0GQcWPzRtY0rqEt1sFIeYh95drYZqabpVhJYuKg+2V8PTY96DY+P8YTLGZsij7g+0C62h5LtYI9SpOTx/cKGBoUY2u4vL2OHldjbPI5dnJTPfSU+Uf3vXyK93HTkgewjHp22gs4W0sSUQU6onlMzaXrmV0sXrdxVo5TCCGEmA1q168pb93KROMGHmpbztNooGBz2eBEO8zuXSu4CMg0FNmrhRivC7F29ftZn+lkg70f7AKE596kVy/XoTLdTHd6ptu+B7vw4hC9cAmATKYgjnuHPXtpLpfj7rvvZu3ataxfv/5I9Ek8j1KK1s7aF8btTX+BsvcAwa8KnVaYNR0FWiIuXm3yTepaNvP/WZ/EJIS2uEg2buEZsMZ5jN0rT+eMR4PZEvs7t9F4znkzeUhHleM7ZPbtJBWPo2sw3BdkfQw1TQ26hVnj5DmQV7M/Ws8CTSMeqpXZ2qpCtuQQv3jVjM+4aT9W+4dmaD6+Ujgbm4knm170dv54AfuxyUH5/VcW4CpERkEPbnNPLkkJg211g5zb04Dyx6rbhV2PrlQQdHtz/QixsYHqukbzQHBOY6JvG80Lz0Erl4nGHGJxi3Iphuf5GMbcTzH/Xc/vWGC3AlC0axPKxJIhNE3DVTBgh7ix7mYMJ8j061uwjNElC1jTuYh80xBho5ndXjCem4ZGc0OEUU+jOFF7nEf1ErbZSNhN0xopAIrR8cLMHegRUD86XF2u6A0Y4Ri6pnFxqlbumUsNEcvXrpdCwatze/Eeym6ZE5tP5G1r3oamaZy98Ex+se8XjE95WZpuFl+FoBQjpIpYxDCnlDbkJmoBurmsMFF7H/Pd2vMuWteK6Y1Qyu8lqhRZczHNzWfgASnNo4KiiE5bLMKX6/Pc/8ST3HLChYxHVmFqUOfDL7mMC51HaA33sy41RvfWXZw/C8cohBBCzIriKE5vN2l9IVtPfD+94ckMLg3evbKXzv2LMQ3FgnCZ18Qc9paDH/f2hD06Iksoj+0gluuHlrWzeBBH19Qx3c5cncIwdHp6KjhTtgmFHHKjZSJKoWkalmS6iePcK/7m+853vpOvfvWrAJTLZU4//XTe+c53ctJJJ/HTn/70iHdQwGB+gJaR4E1fS8bxE/UoN0jZHXRCGLpicyzHXut1DOV38uPX9vKz8wf49oqfkVc50mocJ6LhaxAvGzzp9TLSOkjmqj9FaRrp/v0vdvdzzn2999GS8cg0d2BbFpFEI/GmxYy0BP8OwlqcRmsBm6za+G1DsWBWv2ii9suU41ewXTUrv874B81e6uP57kvfUH91wUHlKxzdJlJK4Dsmv80G5+HEzNlo6ChVC/LYWhjLDKK756qHpu0nrHkQi1HXthJN04nW1xONBec9WRc8hysFh/mg6BTZoAVjVxZUEPzQNJ1lJwTle/12iBbSrNe68aOLKcWSDLb8HV7pTLpTq+kzN9IbX42JwWpjHSvrl/HcmkZ+c5rFSqejej85MpSiwWyTcdMlbjgUys6cmY1TKUVzrlZ2kLMNdD3I3ksaYZLWCJ6xi1IiTXTKrwaWYeApjwdGfw4EmYVndpwJwOa2zZxQv476hnZcLXithN0M/uQ4cGEyAJhTgujFzPyYqbmSnTLuZKEWzIzFwjSaNulyP6YO9V4fKraIjOuxfeF2SraNQqOIxsUb19LklWguZyF5GlbqDNpaTuF/KifTGgoyoE9tGiU7Mv/HphFCCCGqRrdT7krTv+g1WCgGjeBzxQmRChefuJ+/eMODvP68IRp238WZTq2UdE/IwzfCdD/tQXp+fa96vqmZbm0NEdobwnjl6T8Gh8IuVsHBywWfWSTTTRzvXnHQ7b777uOCCy4A4NZbb0UpRSaT4T/+4z/43Oc+d8Q7KKBr22MYpSC7QXUsok3fyoFSPz+2jCtPSLCr8mbyfhvPsI9yzCeTcsjGa1kQ51RO59TdDZRiHn3RAdLRXvzWZvTT1mCNza9Z6p4YfJzYRIHupSdjlctkhnsYsDopTY4r1h5az9m00e66PBMJM2gYZGNLAUjEakE325+cgKL0MoJdR9jzg24ohadexj+sqRl5ryDTTdke5bosVryI0hQjTghT87mUIPij/Fra+OjyTQDEDZ0mwyMf3zitHLZez5Mf2c9E3zYiyQRoQUJtMhUEXkr5WtBgLruv775qeWnZC54r4WgUfTLw2WuFOdfYRrM9gF7pY6L5NBKllcTLjQC4RolRNcJ+bw97vZ0QUji6Q8NIE6vGFlfvJ62KFCNLq9dbo0WW2SMMjc6NcUPyTp52u/ZcrOgNk+1B0LDb9Phd9Nfcu/sx/nT0A1w58Y/0uINE4iF67UcYs4LA0gWLL2BJXVCmsLZ5LXuyOxnMjZI3g+dXyM2iNB3sEBEmUF4ZXau9dsu5uZUd+EKsA+9HuoabDcqMdTOMHjVp9jRaY7Wgdja0gjvdAfY09hHK9Ey2aoxpIS5vHOWGZ24iFKsnGk4SjyRJhlrpVEEguS2aodF+mvGB+VGWK4QQQrykkW1kRnxG2jfTZ/pMTvTNuQ05qISxaGC32oz72jfQsqKVT6ywuKwhy6ihSOsevb118z7o5rq17yOVp0YY/d+t+G7w2WNscIB927aQGd2G5/SgT5RpSJj4L+c7jBDz2CsOumWzWZqagtKn22+/nbe//e3E43Euv/xy9kwOXi+OrOyzz+AngjIpe+FibKsrWKFHWNq4hAsbF6C8OjzXZm/q0GM9bYydxrLhWqlVlxZ8YS/Ut9E8OH5U+z/TBru3Ybg+2aZmHDsI8IynLBJekPXSoU5gk2rjtaUyp1g2LZ6HSqwGIDYl6OaoIJCSneWgm4FCKYXnvox+TA26vYIx3dyShWcG+3ecMCl8Lmsdp03p6MqFKUG3vlWnA7AyGaZt/FfUlbbhTRmDLBqz8HSFa5ewyi6uFrxfJJNB6emOB2vlqHOVUoqx4hgLnFYc38LzgnMXidbOQ48V5nXJLdXrkeocklCMT+CGLUbdWiZRc7QRK55npGOYPW+snaMJVaYYXghA2TNoChcpKegZmhvjug0Vh2j0a4Egy2wG4BPP9bOb/eRHv81P+x9ly9BOchTY7u7n5vJv2Zrby//2/jsJM5hI4k/W/kl1HytStZlbM5OlyoaXQ2k6vhUiopfQjBiheGt1u2Jh7gfdlFJYdhCs1BMaFIIfVmJ1reTNCuPFDAktCFIqLcSbtpp0LeoBDZT+WzR8QJH3NZz3/AnOn39k2v6L8Xa+710SLLsmS+LjbL3n2Zk7QCGEEGK25Aep5MvcP3EphlOm16wFis5pH2fEWMQe+3zQDVh2AnbLSWxobufdrWmSyue2uENfeAXeSBe4lRe+nznuQKabAWRv2UN+e+0za9/+vYz29zHcsxXPeppsT55M0WUiP/PfpYQ4lrzioNuSJUt4+OGHKRaL3H777Vx66aUApNNpolO+cIojR+/uRy+WwDTobWnjxu4g24NQw7TtRtN7p49bNimuJVjVcDr1pRBhJ3jIO7VhFApn9UoSr3CWy2OZUor8/mDSiVJ9E44bBKEGWisUjTJJo4mLtA4uI8EKJ/gHsDMcptUMykvj8drA67OZ6fb8iRQU/sub+XNqdekrGNKtkslUly0nzFI9z58tGGT/QBu+AlOrZU0OOUF214lxm5AXZMF4U56LE2v209lRRPkeoYhChRYAYJg+sXiFfU/1o17heHPHmqyVpc6OE1Yhim4tEyg85T0wrcNZ2vbJawblcC3olksNkyg2M+T1V9sW+5OBJA1o1dAnA6jjlCiEFmCZrcQMj4WxPHVugd6BuZHpNlQcIqFqM1g54TZ8pZiwPXx6GTPGDrrNLeXf8avhr1LwJkiEEnzirE9w3qLauJPxUJy2eDD+28Tkc15XNqYag6G7CPnBe5oRrj0exdL0QX7nolLWrsbS9cnx/QBi9W1YqQJXhX+M6QQffsuRZdhmhKWJNlCQac2xxNxOCCihoZUXU26ZXqK8KmFyk3smA9ZCYobLGc39dD39zMwdoBBCCDEblELt/CWd+0yy0SU4oTijUyYrOiXl0uucQoUUdrYMk5ldWqgRjARNYZ8BU/FE3SKy+3OQ6ZqlAzn6DozpZk4Oe+OGggSHQjZDpVj7rKW8CayhIr7vky+7qFc4wZsQ88krDrp9+MMf5s///M9ZvHgxCxcu5KKLLgKCstNNmzYd6f4JwDww657r0RevY2lksjwv1FjdRiPNU/ZtqMlHNOzUxkZabqwiFIqQqF9ASyZoz2tl0hTx6+twvDBepntGjuVoGy2PYmTz2C2NxCLgTKZAjzVYAJS8LK+3TdqcTPXJvzUSplUPzmVsStDNUcFtZifTrTZjpaH5oBSu9zLGQnuVmW7lbG2QedcxOSXVzQInAmigm/iR2r56rKBvp0VqGZJ2uKW6vNBxq+n4rlUilKjnwFtNMlXCsdJ0b5vb2ZXDpWEW2MExF/zah7JItDaGWL5UoqUSBCvLoRUUorXXa8fQOsJWHX10VdvajQUkCk20Dq5GVzrxcLCvca1IWU9hTgY4O2IFkm6B7p65Md5WupImSu1DmB1eQNr28IGmkMP+1tqkEeeHTwPAwqavsoOF8cW0xlu5aMlF6Nr0f1cr6oMgZXrKc77d/Rf0wiO0b/8Kp+z4UwwzUl3nWNOns5+LsqO14KXSps5c2obXkGGpY1ffOXrNhZy1rJn64ik0j4UpNqVocndwIMzmVJKocGLa/pclIliE6fUXomsQMTxS2YcpZq2jfGRCCCHELBp+lv49GR7dspJoeQzftUhHoiysr/DG1nF6/UvQlIvyFd74OMb2e2q3jS7iYycu5TtnLONNr1nIb/KnQLpzto7kqHM9Bb6LsoPPJK4ZfD8Z6umZtp3y0yirhJu28BWULCkxFcevVxx0u+aaa3j44Yf57ne/ywMPPICuB7tYuXKljOl2lMRytaBPjxljafhA0K0BgLHup+m+89s8Wd5H20SExnyUZePraCi101FpY6O3DoCGhetY6NRmB3zaHcPrncCJxCk/d9uMHc/RtDu9m46sgTmeJRL2KFR8bNMnmwzOYUd4JfvTLr7dW71NOrmURUZwXsyuWvBJacEXzXzZxZ/hzCylPS/TTSk89yhmuuVqx522w5yxOM+Tva04xXuwCz/Hye2rri+bcdbUR1gXqmVaZSMbq8uLXA93MiXftUtouoFrtpHPxgmZLomKS2Z4bgdARkojLJycuXTcrZ0HPRKjqxJmZznCpW1PV9ujkWUUwkFwSeGjoaGhMzplEN5wi8+KfWfTMbKWzROvp14Pgm45ZeFgUYxPvo7DFVpJ0zslAHMsGy4NEyUo7XR8HS3WyrgdvB43FnS69FrZ5ztjl9CiNbDIWICPx0VLX8ONb7iRjkTHQftdWb8SgIxee614xFCA4ZaIV7qI67Vgn+fM/VKP7GjtdVN0ahmC0boWCnqGNU5tvMRHvRTtKZNvd17LTf0P89PKCEZpjEWGi4YiZjjoflBOf+DX50Xx4EeZX1DLKlxdt52h/fNj5lchhBDiIMqHnocZLq+g6CSoxFrQxh4mq4UYyEZZm2rAUTEqNGDrOtrWR/G8CZRnoewMhBpoioSJmTr1YZPdxhJw5sZntFdKKYVvlWne/WsS/U8w2tGFG6pg5cKUiy6xZHM1NgDgWkNUeoLqg3xZSkzF8ct8NTc6/fTTOf3006e1XX755UekQ6/Eddddxy233MLOnTuJxWKce+65fOELX2Dt2to0zRdddBH33nvvtNtdffXVfOMb35jp7r4qlmcRKwRvUkrTaI2FSBk2GT9OoxHjHusOsiMP8czyTgZagiBRqpTk4s73oqGx4BSDpliQzZBoWkxqdxmC4aHIRbMYS5bjjizE3rcHNo9CovWQ/Zgrdqd301oKYdXXsy5RYbdbYby+lqWxQWvj7JiNO9ZfjTi/b9mn8dUC0DWiuVqkyqdCJKQTMjQe3pkhV3FpSJhkisElUF0+VNthrZ+S6aZrCuX71XHDXtSUrJ9XksZdKdZKJIuOyRWtOnc8l8Szn5q2nRuKMV7x8X2XBrc2hkPXohgN4xpJpVjoupTDtaAbgBlpoK5+iFDYpdQXozwfgm5O8FrJurWMox2qg5+PLWOi7PDDDT+nUGwjWRylUn8W7uSEEp5pY7pRlFIM+8E5TEbieHUlzIiOjo6WDdPupOgnyAjM+hkK8fWkisH4WvGkxvAcyT7K5seqmW4FN0wonmLccomGPaKaT84Ogm46OmeGN/HLlv+ky/T5fd1u/ubMP0abmr05xYFx3bJG7bVS5z82bZuEMxC8JpRCzYPxVSYGa0FEqzJBfV0zdilHpK4Rr1hkjV3Lhn3Qi7Ms0UvP0DaogJ7TcYspmusKjNBA2QtNidH7gEFbJExK83ncOQXH1wnpPitifTz+XD+rTm1DCCHE3OGm05QefRQtFsNsaSG2ceNL3+h4NLoTcj2MDDTUmvTaZ6y1zbXJrYqNdaSWNUCjBfYoWmwxz5eN1OEN34ux/q3TK1DmAddTJIeexfAcDG+cUh3ojolVGKGYC8aUTdY3UMhmAFDuMJXuHKlT2yhUXCDywjsXYh57xUG39773vS+6/rvf/e6r7swrde+99/LBD36QM844A9d1ufbaa7n00kvZvn07iUStbOb9738/n/3sZ6vX4/H4oXZ3TOrL9mLmgy9abksT7SFFSAdHr2fI6+eH5e/CCdNvs25gLdrk1yl/3WqcSomw5dCwcC2tT9aOvXfyC71fl0TrHYSdP4PT3jen/0HsTu/mpKJBdv1GwoBjVRitr2V/nFMKjl9XgwAoI46vJrNoTJ2oV/tnYBo2b9zcyo7eAqM5m4rt40RU9RJ40bbDWX+o2Uv9lzWm26srL7WmBN1CSpEdamI8c3AibE6LoQHvXNJIpFSb9XbfApe27SZrHIeFrosdDgKElUqRekALJVFAJGqjhxpgYG4Paj9SGqHdDiYEKPu1Y9npxpmwHTatzbBx5FmSxSxKi7Ov9WKC1EMNK2RhulFyKktJBa/txng9mqaz4sQOOp8dxrFsmvRlQFCekFFZ8vH11ftZF+rnf12CX1JDtZLWY5Hf20VYmxzvwwkTjqYYtz2ScZdCTFHKBcGweq0BYzLDM2wkeNPKN79gwA1gVcMqYHqmG4CvpdBV8HyOW93oZhTfKYM394Nu6d7guaaUIjSxm4pVxIwk0eoTxApJVk0Jug00JIm4W6vXfeWT822azRKt1NPnTZ3p2AYjhq7r1Mci7FY6+ypLWRfvwtQ8Srt+B1MmAhFCCHHsK/z+9wxe+wkAQsuWsfqO22e5R8eovocBGJmoB8Bwy+xPBEOCLImFiBtBFrhr6HjKwl65FMMbgMoAHCLoVhcL89SIwRl2ASJ1B62fiw78kF/KFzGs6bOa+yGX3ERt2JiG1tZq0M33BnEzFm7OIl8+tj+vCnE0veLy0nQ6Pe1vZGSEu+++m1tuuYXMlMHYX8revXu54447KJeD9NtXM7ji7bffzlVXXcXGjRs5+eST+d73vkdPTw9PPvnktO3i8TgdHR3Vv1Qq9YL7tCyLXC437W829Y7tR89nUUDunX9Ik+Fi+RpupJlnnMcP2t7wTTak3w6Arge/JzT2BqVBhhlmYdMGlg7FiFUM9qhOHHxK9Y3YQ4Vgius5Ps317vRuGksa7qrFoEdxrGJ1PDeATU0XYaVi6O5kwDGxDhoS6EubIGxiagahyVh0xQ2em6apETI1omF92uVLtR3O+qnlpQY+Svm4L2P2Uu3VlpdWJgNHroE9UsdtD5+M8g8eeL6gx9iQinJhWx0xuxZ0GwiH6A8F5y0ExMLBOd8xlma0YoNZB0YSTQM/pqOGeg/a91wyXBqmxWlkXM9g+7USgl4aMDQ4u6OLVCF43TnRZeS0BAqNfDKGHQ4ys6ZOorAxcwKvb3sbze0pDDN47Jv0ZdSbcWJ6iJxWIh9dXd2+I5an5Ou4+eGZONzD0jA4WF0uuBFCsTrGLZeGiIuTbKQ0WYLRrNfGvLN1nfr4i/8mdGBMtwOzlx7g67WZTWOVrupkCpo/NzIDX0x2JMgQVSqDbgWvz0TjAvx4GVXWOaVSYVTX+W0shtms0VN5btrt+7QSUKZZV2hT3yC8Wubp0skS04ecUxmz6jA1RXPpPjxHxmIRQoi5xB6oVST4pbldYXDUlCZgYi/FcoRCOfi8UJfvYWdzMGndGxemMNBxdbA1i5a9txP1Js+rV0Q56YN22Rox+U1PCkpzY8Krl8MvOPR/4gE6v/9bDLuAZ0zPWMtN1CZcW9K+AMMMPsP57hAAlZ68lJeK49orznS79dZbD2rzfZ8PfOADrFq16iVvPz4+zh//8R9z9913o2kae/bsYeXKlfzlX/4ljY2N/Nu//dsr7VJVdnIw+KampmntP/jBD/if//kfOjo6uOKKK/inf/qnF8x2u+666/jMZz7zqvtwpI0OddFeKuIuaEeLx6hD8XQhyuqWFM8Wn6huV1cI01bZQNPihSQTTYSao/gtXUw03kq0pYVkaSN2zCCx8mRC2fsoRz3Ao9ss0lFfT+XxIjSuguEt0PTSj+OxyFc+yVCSRi+G054EM4FdzjPSGHzZDusRlqsw4T3XotDx2t6EX7cJLWSiGToUgu1iWgRHuZQngwEnLEhwwoLEC97v0XD/rdPLS1EKz/Ne5BaTXkWmm++6OJNloI4VOnCvhM009vO2TUVD/NXqVopA1AqCbsVYkkylwr5QiIaIh6NpRI0g4ybiW7RGJyf1CDdCuYAX0wlvexJ468vq37FopDRCm3saupXCdYLgh24YDPpx3rI0xdtHao/DcP05OKaB6XooTcPXUoDPkF/7MLwhvoGl8SBYtPKkBex7doAGFSdbCR6XHGUssxmLOBFKdETzhCsWgyPDLGlaPmPH/WrU52s/XBTcMOFYHRG/i/WJCqXtKVQieJ4267X3bVvTSb1E0K0l1kLYCJF9XqabZ27C9IIy3FilGzO0AgfQfRvf89GNV/xb0zFBKYXmK1IRRcHtrb4269tXEQuDX9hCHIj7PrauYYbT7Mlvn7aPXq/CKVoJQ4MmTVEwJoi6GTKWg0JHK5RYEAl+ib5bbeK9keD//aLIHsb6CrSveOEfrIQQQhxb7N17qsvexATKddHMVzWy0PyV64Gm1QzvqX1us40xRmNLSRg657Qk0YARd5D/n73/DrPsOuu04XvteHKoOpW7ujp3q9UK3ZKjLGNJlgHjQGbg9WBm+MAwBmNM+AbeAb6B8WA89hhem4HXxsZjTBxsDM5RlpOy1JI6p+qqrhxODvvstL4/9qmzT3WsVre6uqVzX1dfXXXO3muH2mGt3/o9zzPYcngJwEeh0buVSHUWVYKQNtLoRwjBsKFzvCygtgjZLetzXFcZr9gEHxytiSI98DwCa0cT3/OotJxtyUgUGY+T7R/AcRxqZdB7HNyq0xXduryouSqjD0VReNe73sUHPvCBSy7767/+62iaxuTk5Crh66d+6qf40peeu+3Z933e+c53ctddd7Fnz5725z/zMz/DJz/5SR544AF+53d+h7/5m7/hLW95ywXb+Z3f+R1KpVL735kz6+vIaUwG27e3hw/tI3YGSZ1x9wQA6YrGjz18F29y38kbxt5J/49sI/PqYbzXjHNHbRvKsMXYM1/lpuOPod10J0Ol0Or8ePFpoqbKYt6DwklYOHBZYYnXE3krz1MLT6HoURbzkoJv8LU9kzR1n/5akh3mRvTFL+LHtyPwEdY0fu4HURIm3mwJDA0MjYgIZm8a3volQZVnhZdKKfH85ye81KqGokjdCgQyVfXYPRp21lBU6loCPd7DHUsfZs/kezHcYFarnMpS9hv4wN6mzUutJtFWJSPV7TiHrcIfU1ELc/7ADe2cWawtkHVTLLkeTqt6k2ZGMTWF+4eS9JRCh1EpeSe661GPRmjEohTcGl93Ps+zzSfQMUhpOYyBXXzxyUW+dyTP96YbNFEw3XS7jYpoAA7L6lbmG3EWrTijzHNm/vqvApup28xYGRasOBU/iaLqPFuLYUiFk33hNbAhExZLEIaGdglxTAjBSHoQEplVnz+0byOuFghH0eYEqt5yuuFTLd64Yc1W1aFQtCk3BTU7cA/aqsd3B4/xpeIX0SthKOljkQglbwZPru7gTkRAEFyvY7pkLHaUUfVxcJYRRhZ6RrglFpz3h4xtlOzgWThkzrF46oUzY9+lS5cuLwaaR4+Gv3geztwcB5YO8GdP/hnve+x9fHXiqwCUPvc55v74j1n80Iewjh5bp71dJ4oTkD/BwmzYH6lUAvfa9/UnMBSFx+zv8u7yb/Kx6sf5R+U7fFMc4P+kZ/lfzt/xDfk9KO9HVg7hOEG/OxPReMAegdqNUWV+LbjFwJjgaWHUgCCIUKiWisjWGGVjphdTgmGalBYXcJsLWHOnaU5XsV1J8wbu+3fpciVctemOkydPrin87Stf+Qpf/vKX2bBhdQz89u3bmZiYeM7bf/vb386BAwf4zne+s+rzX/zFX2z/fMsttzA0NMR9993HyZMnz+vMM00T07x+kjyKuUUkYG8P9tWX4Gg9PNj8Kgk/RkWtMTYXR1M3EtvVg2iJNZ5aod/KsK00wjZG8F/loSgqOT3K7S//Nb5T+R0AxvV5asU8D4/cwV7LQaUGN2gOgtlqMBBVsz0M5BSOeGdwdIlUoKn7/KZxJ9rMnwAgo4M42/87CIFfqoPjgecjBpJEZ1dEt/XLAbUqvFRIpPTXmNOts5G1iW7NagVF6PjSodES3TYNLmGXwvDS7Ov/Ex886PLhTZNsmPuzVeuXk1mqzTp1Jdy4pgauvK26jYbERYCWAQQJ3eZZTWPDTJ7sWG5N+3i90ajU0FBZ9PKoqobr23hmnK3xCGmhk64ElUs9YVCJ3YwvBNVkIP6cco/wqdon2m3dlf5BEsYeLNtHAI4rqZgmqVqn6FYH36ZmjrLdexaAnfY0Z+Yr1+6gnwNSSnq8BsPxIgBOPUUEWLZdNiiCAmFVzH4jB62UZHpMP7ex8xA34ky2QqMl4Ctxju5U2H28l/6lKUxnkaihsiK1lRaLpHpvTLdWaTFMxeA3JlCBchq+rj4AFXhDPezcPxo1WW4skTWzFJph6MtUREGIMMTI9CKoig++jfQdhKKzIR48AzxFY6LRz63GGTTFxzr6XbjvxnRBd+nSpcuLDb9ex56cXPWZPTHBp8TX+Ofj/wzA7rnd3D92P0sf/gj2sUBsk5ZFZOdvXvP9XTcaweRlZVmguhaeFuGZ3BBpzWF7XGHGnWXZX8TF5TE9SMGT9GJUasG79Aw6dzBADwk86QMKMU1BahHy+Vl6LrTdGwyvVbzLV1fEtwhq1YAIFJeX0XQD17EZzfaiSkikwj6s783jVbdjCEm96WHqN2bEQZcuV8Jli27vete7Vv0upWR2dpbPf/7zvPWtb73k+rVa7byhnfl8/jmLXb/yK7/C5z73Ob71rW+dI+adzcte9jIgyCm3lnDY9cZcbuBuGMLPBg+vow2TjZka/9L8HE21yYb5CDvOxIls2IHRHyaojDUOsKMUR134HHgVXG8RNf1ads09wfLOXyOVj1PWa0xFljj11EEO9b2KxsR+Ejv7oDp7Q4puc/U5Ik0JsSgSyUeVf6CSs9BcwV2V29msdOS22P5TaLduR+mN482WkFEDWW2ijeWIHL4eRLfO8FL/OYaXrm1bVrmELx2kD81WeOmWkQUOfjcUdAoiRkqvstt/9pz1y4kMFatGrSPMz1B8fCFxm0USiqToC4SiIbUEmUiTD932I+z5zL+R/bWLF2a5HrE9G1HzkVJSEXO4jg1CsBzp46W9MXoLX8N0ghwWlfgtSMWgkD3DRqfJpDHEXDPMmxhTUmTMBIMZk3zVIWoqNGwfK2KQ1MIcZxXRAN+hFtkGLc1kqzbH+PT17XQr22VSHZekq2V4Il+j7PgMqzonvDDfW189FiQEBCIt4edS9MV7eNDQuXNsA39s30O2L6iwmU8HohtAj9FgxaNVWCozesVHtT60RTe/hOoEMqI9mAam0KRkrxV0hOdVlUlNA9/GbtpsiG9kqhYMvOYUpe10A9DdLEJpifluFYws0WiMpKZQcX0O22PcSuC2Nma/BvzstTnYLl26dOlyRTSPHz9n8tWZnORMTxjBc7p8GqfZwO4wPbiF4rXaxeuDetCPmlzqx9MiVJtzPNC/i2FN8LK+LP9Q/2sesL+E4avYStAPr6jh5JWNw0eVr/LL/g+iCo+VoXXO1Dg1V3rhiG7FJr7iIUUwO+oZCYqHJpnXxqjMP4iUNsPpLJt7+ihIQSKdaa8r3TmQUMs3qTc9som1Tax26fJC4rJFt6eeemrV74qi0NfXx/vf//5LVjYFuPvuu/nEJz7BH/3RHwFBiJDv+7z3ve/lnnvuuax9kVLyq7/6q/zLv/wL3/zmN9m8efMl19m/fz8AQ0NDl7Wt9cDxHbIVaLzypeC6PNZM8d1yAiP7GZpeMMCKWxqJZhJzZCys9Cc97njkjxmoT4C0EUh0QM59gQGvyo5Imp2xO4iWvsy3ohFOq0vopsvTJ3zu2glU56B3x7od93NlrjbHSD2Gn0gwL6pURDAw7c8bbI6OkiyHLkg5+kq0saD6pK9VEMkI6i0bwJdEW+GlHh6O76Ar1/7lsFp0C5xuci1ON+Xyw0ub1eA8CQV0VycVbTA6sMR3lvLQysc255nsy/qkq0+211vK3cezO5Ms9A1QPfko9Q7BLyZ9LMOj2bBICiiufKFnGNanmImk+aenn+TWNe3h9cViY5EeN03RkyBbQq6UFLU0PxKZYft4kBNyoe8Hme79fkqpMpWeCbbu7yVyM3xq8XD7yfvr2z7Ca2/eSi5ltpqRfPHJJZqOj0gMtE9cmcDp1ojtgFau2s3aAt8qSXAt0CLX8AysnbyVJyZCB7Rr5Ci7wXU8qsSZUMLEu1k9uB9ndYNoZm3H0xfP4QtBUwiOaTV6tiUBl0ImdFD2GKFjs7xcOk8rNwbFlSIK3hJ2JEsmGqXWEwhoNzdtYq37/bFIbJX4njHTzNRUfDyWhI0QZVTlWRx/K4ocAnYAVfCq0AoVuSse45F8jW/5N/FTBM/NDerjNBsuZrSbD6hLly5drnesztDSlc8mJjgkw1yfdbfO049/gXgzDBm0x8evyf5dF/geWEWajoYlg9zNX85E8ITCyzIKUkqedoL82Y7wiFoqjYjHFtvBFbDkRsi6MU4m5/lL8SX+k3gVQZ4z6I9oTFU87vRsUNc2kXg945WauHpHpmfLoWRlaMgppAz6J1HdIGaaOFJiRCLoponTbOK7c0gpcUtNbLcbXtrlxcll954feOCBK9rge9/7Xu677z4ef/xxbNvmt3/7tzl48CD5fJ7vfve7l9XW29/+dv7u7/6Of/3XfyWZTDI3F7hL0uk00WiUkydP8nd/93e8/vWvp7e3l2eeeYZf//Vf59WvfjW33nr9D/dnq7PEohncscCbsQmbfxIOQ9JikAGKzUX2Hc2iaKPENmWCRNtCsHXikwzWwpwMtfhG4rVJ8KpYsVE0r8F/mX2ILbVF/kXP8OVYL4PlE3yvnuYugMrc+hzwFTJbm2VjPYafjHNMDR1AQ/ko6jYfrRh0QKQwEBvuaH+vbe4LG1EFESUc8DfcBrqxDqIboeim0srptianW0cba3yvNWthnquSpeG5GhHNppHpBauCUDR2a9BMSRJTwTmsxrby8L4/J6E/QjFznGqzvsrpFvcly4aP3ajiVRY4/L3PEOyOz+7bb+IOqpwmhu+6KDdYUt+F+gI9boplV+I6YUifbxrcPfEOKrFbSNf2Y7h5Tm96PfnezzMyYVJ9tk5/ZZozWuA6Sogkb963g6gZHr8QgqGsyemFBnY0Tpw4NWqUaQTOpcQ2HF9BV3zGtEUsSwYieWbTtT4Na6JgFRhWQtHNi/Tx+HINgWRDPMWiH4puCbWXJgpuIkp/cm2u5/5EeO8e0wrsTgXbWugbIZ+4E8MrM9KYADIAVAvXdzjuxSjNBuKh9AsYVoG6VaAQDc7TrqbNo6ZJTPo8Hc2sWu91m+9nrjHLUmOJGWeaX1q2sPwneXfqt8mpMST7EHwb6YbPgeGYRqEkOahvZrKWRiBJxJosHj/DhlsvPbnVpUuXLl3Wl+Z5crOdXjhKZWj1e/Dhw1/lvo7f7VOneNFgFUD6LC8F/f551SfmNdkW97klleW7T/0l+S1LAGwspYiWIdm3wAfnF5nVNE4WcrwyeZpGQfAnI5t40v0md+tvBIIKpqfyOtSWIDW8bod4tfCKTRw9FGebmWHKmo9d/VZ76HHzwAhSQkIAEhLpDIWFecBG+gXcYn9XdOvyouWaB1Xv2bOHY8eO8apXvYo3v/nN1Go1fvRHf5SnnnrqssM9/+Iv/oJSqcRrXvMahoaG2v/+8R//EQDDMPja177G6173Onbt2sVv/MZv8GM/9mN89rOffT4O7aozWZlEkRKlGLgz/nqhl57sJMf8p5ljnp1zg5iugRYfQ8uaCCmJ1acZmfsClh6EWZXtV3Dy3wyOFrbxjZf8Ov/yA28kbs2xpXYSANWwuTszh4nPftGHb7tBeOkNyFxtjuF6BC+Z4KgIQ0mHliP0+UsINxDi/OQtiFjigu1E1VB0qzvrU2JddjhVguqlPv7zVEihU3SzbR1Tdzm1lGsXCNDjGXYmEnyfcRzRks7mcy/HURTi9dvYUOyj7jTO63SzbIvpyQMUF05RXjhFeeE0UwVJI6rxnf6bOPbYAW40ilaR7fpWLM+j2QpLUDSVXzI+he5VSNf2M93/Mh657YP4wsZV8/QfywBQcIrk9eB+3pXevkpwW2G4JxBSkgmdtAxC8cs0QNpoZoLlZvBZr17lCZnDr1y/92u+sYzRqmQL4Bj9HChZZKIu8UicRT/MN3Y6sZlvpHJMxuLEI+r5mjuH3lgWpXXdnVQK9C4bCA8Wc0Ok6odINI4xwhEiSrAPjdINLLrNB88i1w/dektaEYCXWRYvbTbZYzvM9a4OoL13470MxPtbv0m+11ziSWeCbzUfBgKRUlU08EJH4M2t8N5lvZeSE2E0XiYrllCO/Ovzc3BdunTp0uWq4lXKGJs3gaYhjOCZfsg618X2RHl1P8wrFnHz+XOWe0HS6sMtTgV9sdOax4FYihO1KDmvwjNeGN21ZTnFSxZ93lKqUFcUtjkOrzSXSEpJv+fTV32Gh5e/0l4+Z2ocXY7iVl8Y59ItBk63RrVKOb/M9OMPUyp9mLKsBMXfPJWcZiIEqAhiQDIepkmR7hxuyabp3JjF+rp0uVLWZDHZt28fX//618lms+zduzcMYzwPTz755AW/cxyHH/iBH+Av//Iv+b//7//78vf2LOQlRIXR0VEefPDBK97OejG1dJrRm3YCUKrYPF2PcetoOAM1Mu0BLpGxHQgh6LctXv7Mf0EtPoWHTmHg35Pf+Q42/PYo4/N15prPUBUPUY/6jPe/jtjy13lTrY5DnU/WDvPN1E1UT50iZZrgu6DcWA6k+do8t9R0/A0xjsmgY6E7gp6ywVjjDFJoCOnip/ainUfsWCGmhbnxGlYd4s/7rp+LUNs52RQRCF2u41xkhfOwRtHNrlZa7atIqRAxHI4lXo7nB/dOxAxEnmT+c0gEAsnBWBAKWFM1NpzJIYF6h9Mt5kss08cqOoxPrM4D11w4w8aeHg41ojzynf3sesXtl3dc68xMbQa/YjMnizh2MOu3ocdlQCyDBMsY5tnd/5FGJENmrsjtX9yH7qjENkc4Eglzqewcuum87fcmdVQFynWPOAlgkSYull8lqqgsOykGo1UUASPKItOzEUav00RlxeUZDCU4Rw1XY1aL4khJv+kS1XSWWqJbREQxleA62zIQvWB7Z2MoBuloikK9xIwssdhjoQiFiGWwkL6X4cLn0HC4OTPPE/kNNKq1Szd6nVJaDnJMupTRAF9IlkUwYLilGYR8VIWA3GaYCfLZZSNZxlJj7Mjs5ODSoVXtPeh8g5/Wmrj+DoQCuLXgmSEEPVGNAVcwryUYr/ZyS2YegOTyt4B3XovD7dKlS5cuzxHpeVS+9nVkvY4+NobQNewTJzmqh1EgKSNF2S4zaVRwBejRGLIeTO7Yp06h9bxQspFdhFYRhfySgaq5TGoeCcWj6ivYpSWWU61wSgnbKj38eOwgw40GrqIzG9/JjB3hDicY9/67cpXPZpepLE6Q7Buj19TY7+o05qdJDu9ZryO8KkjXx6/aOH1NFqanmJ0IxlgmsKgNcTSxjcnIRn6iOcOKzDbow2w2CS2d1/OWuuGlXV7UrElVefOb39wucvDDP/zDz3ljuq7zzDPPPOf1X2yUFmcZJRiInrE0QLKsBOF9mqfQWzKRQiO5J8i/NrzwAGoxCNFt6in+pu+t3C9UUoUqw31JJo/tpvmlR5gv+yz9xAfJP/xy/j+lAjrw8twZPtso8vRxyd27PKgvQWJwPQ77OTNbm2Wg2cusXqFCICQNFCIoUrDRmgUp8GLb8VN3gnHhSz+id4hujeoFl3s+WRVeKgLxTDqXDi8VQgQhppI1FVKQvk+zHggRth2cE93wKRthhUc93kOscYLB4oNUkXw2meBjjS/z49brUM0t7NeDN2rKyAHB4DzmB043x/OYX15xYgU7tjx1jE19O4A0T40vcenyK9cXBatAxs5gKStVwSR3pY/Q4xepRbYyOfSLuHoSvXGGweNgWjrmoEFsY4SvLXyv3c7O7M7ztq+pCqmoRqHmEtVz4Abnt+KXiAJ5rwcInJy7lEkOzyav2+IA9bkpTBGIRXVPZ8ILZtu3GjEUIaj7Fj0iTdIMjkBTBaO5teenG45spC/eS6FewpEeFatGxkySKynMZr+f4cLnALglM8sT+eH2tX6j0aw7NK3g/heyDEAtEeSd7HNdBluh5wdNg5HURv5x3z9StIrt9bNmONu88nh4tDlDVZZIqvuRYivgIL06QotjxHRutzWeMFwe9m7iTQSCXax2+IackOnSpUuXFxPNkyfbAlpk1y6kbWOfOMmJAclKHpLXb34935r4JjPMMXFTht1yiObhw8H6p04Ru/PO9dr9a0c9cKEVq3F233GCP1IkioCP5DcxVzrF1LYG0YbCWGSI779ljuHJwGleTST5/JvehKdpjH4uT//SaTa5Li+nzPiBL7Lprl8gZ2ic8RJYy8vceKXpVuOVbZDgag0aHdExdSWGrRg01QizsSE+szzHO1qRtBkpiKVSRBMJbKuJ787glpo01zCW6dLlhciaes5/8Ad/cN6fnwtvectb+OhHP8p73vOeK2rnxYBbKkNLdJsQCfriRcoEzpD+vIEqBVIfwOhLoDkVRo//N/zoFpAWxit+l1+sR8CqI+sR+sdMVAXU4S1Yj3wPIQSfSm3ntbUnKSgKO+MF7mo8y0O1bdydGoHa4g0lujmew1JjiYw7xITSYLuyi2JhgsF6juSem8laf4fAQbHOILM3I5QLuzWjelhdt9FYn3A0qai0IjmD8FJAumt0ugkROFbW4HSzG/X2co4d5K6TEQOvWmwvY8SSbJr8YzQkSaCkKqTMET4y+S5+ZfNHedzdD8ApLwwVjEmJZax+sSayI6CA51hk6/PAIEe8GNJ1ETdQXre8lWdDczOWH4RkDEYqDGtBzg9LaBTSd9PQHaJ2lkz+EYyhPr488ARfyz/Ekxxut7Mje+FiJdmETqHmEosO0tKPKcsKfdKnSH97ud3iNIcXtvE66QeVMK4z3Nlp9Falq4anM+8HkzcbDR1f+izJIhJJXA7QY0BvbxRNXftxqEIlGQnv10K9xGijj1zFwzL6Wcrcg6jNEnVPsjleZKlxY4pu7cqlUqI4LdGtN7hf9zTDxMYLqZ38wOYfYHfv7lXrv3bstSxW6hxcOoZeH+coBVwknypP8SPLA8iYATTByRNVdMp1lz26wVdUhyU/TcGOkDUslNoc1vh+IltfBIOxLl26dLlBsZ4NIgxO98P/s/sJbOGwYWMKO+FxW2yM3t4N7OjZwT8c/QcAnk2VuDVye1t0s0+9SIoptJxuNTVFvxr2Ye/r03mqEJyLRtTn3zsL7Jw6yVK2H8Nu8sTNP4WnBv3WJ299CWMPF4nbVX65WOKfxCKby9P0pEYoKDHqjelrf1xXGa8YRCw4mtUW3Wyh89GNP8vNwuEgwYTq/xEb+BW/gaKA7mlkMfBcF891EGIR3/WpFewLbqdLlxcylz1Ke+yxx3jkkUfO+fyRRx7h8ccfv+T6ruvyF3/xF9x555287W1v413veteqf11CzGL4YJq2DW5u/FP798F84AYxBjchhODmo+9Fs5dQGqeQsa0oL/up9rKyZqMqgoGMSXZ0jOTcBEq1RFQM8uFMir22TUxz+cHYfhZKLrJ4JkjOfgOx0FhAIjGAGaXMcf8Ii+kGiXyDWH0SxQ8Gqn7iFkT04uFrUSMcxNet9Rmkd1YvXXG6ue4aZ4faVWwvLbqtVC6FIJ8bgGOkcKth56PPbDBrpFhSFCY0jS9mt3HcOYEtLf5t9gMcKuwHwDfD8xr3fSwjUA17E0lMI8LY1pdQXZ6iUV7CXZpCQXIqNUzlYChE3QgUrAJmMw0Soske7sjNt7+b6/sxXM1G9fvY/OQE0h8ifkcv+7WjPOEeQiLJmBm2pLewJbPlgtvItMqpx82wUEBZNMB3KClDFOwI0/UkMWlxOK9Dh6vpesJYDHMr1l2d5VZVr9FYgqJfR7bsmIaaJG/DWP/aQ0sB+sxBsvF0+/dCvUwqH6WvrIL0WOz5QXqdI8Q0h9t7ZvDdxlU4qmvPiuiGrCNkkIetkgle352i2yvu/FVu77/9nPVv6buFX9/3W/zc6Hv59/rL6VEMNqlx/rx+hMf6i/iidd6lS0Mx0BMxsnGdUVehrCU5U8sAIKSPc/BLz9txdunSpUuXK6fREt2WUoKpSJEFs8ah3hoTqSZP148R1aPc3nd7e/mDY4KjkbDf1xx/kRRTqC/jeiBSLYe9YkJ0lGFDZyIa9O32WRYZI4qt6eQKCzQSb2bX3Eu561CwTjV5EzEh2Oi6bHNcbjWeojx/gqSuoACz9RtfZPJKTTzhQaVOsxH0Rwp6hp3JCL+2p59f6hP8QNTBk/Cv1aA/oakeOUcjlggiZ6R00DJNqvM35uRnly5XymWLbm9/+9s5c+bMOZ9PT0/z9re//ZLrHzhwgH379pFMJjl27BhPPfVU+9/+/fsvd3desHi+R8pqiSdCZWj+AFVzEdMO/mSDy8HDPrNrJzcd/Z8MLj6IREEqEbyX/z7C1EELlpX1YIbi5o0JvMQglqETPXWEpOzjS4k4y61cXDuTC4wP5LDnKlBfvMZHfGXMVmcxpY6u6hRb4WwAMUtjx2A40PZTexGRi7uqYh2iW2OdRDc6RDelZXlbu9Ot9f8awkvtWujkW3G6KYaKXyujGMGLc0ic4qbiw+R8n08l4vxc6ifoUTIAzDSP4/hBh2Kgb2O7rZiUNFpOt+VqhZ60YMdYDiMWCCTlpWlGlBq2qnPg8YNrO67rhLyVBydOszHJTu1ZxqJLOFLFUVMsZe/H0S0kFdKLNhn9/yX2ips47gShqALBv7zxX/jXH/5XotqFBaZsS3RLqGFYYIU6+DaekcNUPEZiFe5V93OkmoDq/IWaWlcipTCBcN0zWPSD2dAR3ecxO7wvo2qSnOKTjF6e47HPGCQbDa4pQ9VpuhbJfJSRZRWJRyH1Shpa4AzcHC8Qs27MGedasYmhCmRHEYV6DCKYq0S33M5XXrCNVCw4t1uie/j/pm/mtFfDlh7fWpzi8963eVqcBjcsHGMmNLY7KhUtyZl6cI4dYRA784W1l0bu0qVLly7XHOuZQHQrx8OoDssMf74ldwtH80eJekFf88gGwQPuQUQ8DqaJtC8zh/CNiB/0UfMzGtFEqyqnnkbEt+HUG8z1BH2UH6zWefWpAxiuQz7xagaU3Qw35tkzpTFQjrOc9fn03lfiAjaw2SwjF59CEYKNXp2Fhnv+7d9A5BcW8QybihkeS0HP8vrhFIlklldv28S928eYSfTx3/JZil4wruzFJ54Ig2vtxWlqM13RrcuLk8uO6Tp06BD79u075/O9e/dy6NCh86yxmgceeOByN/miZL4+T6ZVudBTehhxHuErIzUcXdKXN8iVgsHrcNpmy9G/w3DLuD334mfvRt2xByEEImYgyxay4SB9n0REY2QwTXnDViKnDpO6aQAHwaeSCX6xVEYVkvujT7B4KsqGHTeW6DZXnyNNDKnr5P1iW3iKq71ssU+3l/NT+1BM/aJtRcywckKjuf5Ot3Z4qf08ON1WVS4NHgfNWBJncRHfboBQyBEKFd+Mx/mIsRctnebT/jM8UfpC+7vRvjF8oaBIn7jv04iG+7tra46MWSU7vJv5Ew8hfY899mnOaHt47PFjvPLn13Zo1wO1WgXHc3h1+mk2xRaJai6PsJfEpp/DVyI4uovWrBJXv0li4Cg2kgk7SGy/TRulV0tffANAMqKiqYKEFopuYQXTGHkrSkxz6FPK5C1JozBNtO/8hRnWk2SjCq0J5CZxSq0EukOywrwMO/VRJcGY3zxfExfFVCMMx4dRhILtOSxWC6SW4mhqGSE9ECqz2TeyZfGjCAEbjRtz9n55uortSSShSD4dX6bpN7i1NTiqKRniqZELtmHqChFdod6zkXuag/xQdIRdeoovzIxzxPgmUpX8N2+UPm4GIBLX2OYoHDOSnCr0cKDYz57MAiwewjv8RVQFKE3By972vB57ly5dunRZO75lYR07BkBpJAuUzllmNDnKOx94J7miS6NX0DQEZ7I+1kgv5rFJ6o89hvR9hHL9pa24ajTLUF9k4pBGdLg1CagmAJjNH6Y8EAhMr2yJZj4K2di9AJStOooQ9M9mmE/VaAxt4i8yaX6kWuVmt0ZS/xqT3q8hUhmmylPBRNV1mAJkLUhPMvPoMZKaglULx0SNSA/7snGQPhvm/zdRcw+/oX2Db3i382C9hzcn6xiGQ8rMMc1JAIScpzFbQ0p50aKMXbq8ELnsJ4BpmszPn+uqmJ2dRbuB8jJd70xWJokqwWh1fvI4k7FFHD0QUZINDUUKkhHJvQf/E77eixQqMnETfu9rURJBCJeIme32ZCMYmN06lkQOjhB/5mEGW3rLP6USHPbjFO0IPxX5FoemlKCQwg3kZpirzZEhhqeb5N2wOlNy5BYy9cBlJJUoMr4LLlK5FCAa6RTd6hdZ8vlDdiQqXxHdPO/5DS9tO91MFc9qfS59Mk7wsqwIgRrdRFpJcFd0L5uit6Ki80NDb+ENY69lQ3YIVwuE4oSvUEw5uIpEVRRuGhsgFT1IIhfmMdtaPslIZYFTBQvp3jgzgbLqsjP6UW5JT+P4Co6vUItsppS8AwBPiRCpVUhrfw2xXk6VTuG13Irb1I1rEk+FEGTjOgk10/6sLOrg1lAUnXwzdGNuEXMcm166ugd5lUh1uDObSpLh6jJ7Eippr4otw2svI2L0NazzNXFJNiW3tCtZNxyL5HJw/2pecM4Xcm9mwUkx10yyPT6Ov9Yw7euIdk43Nxg8OarPolbgVVaTqO/hxW/mUO6N4b1/AQYyBlosQ1RR+ePs7bw1voVEXUG2njFP+4faz41IQiUlFQa1JLavUbBXnJkS5dO/Af/wM/DF34Y/fyk8808X2GKXLl26dLmWWIcPQ6tPVRxMnfO96oPztaf488w+fqIWprBYyMCi3noPuy5e6Vyx7gVFYxnp+UxOZ4nGg+P2W6LbETtwCvZ6Hhvd4LuGOopQI5SsBp8/9ix/f+xZHv/Ul8GHTDTFJ9OpdqDJxliR+PSnyegq02UV2VyfomxXg/I3Jhmu5XC15VVFFEb7hzFkjc1T/5ONsx/mlsn/zK9qn+HvjXfzsWLQlVAUnx4jvMYE8zjLDaqVF4GTskuXs7hs0e11r3sdv/M7v0Op42FcLBb53d/9Xe6///5Lrn/PPfdw7733XvBfl4DJ8iSKGohmpaU5xrOhkLRxIYsa3cidWwUKHpHGON7Aj+EN/TREdIQWuKRE3GivI1s5BSKGSubOVxGdOE4yEwgg85pGSTfIGBZZtY7LQlChrlG8Rkd75ZTtMq9K34zfk6UkgpdCpKmwJzOBIj386M14udeBoiEuIbrFoon2z3VrnV6U58nptmaxYO2a21lOtw7RrRbc3wmtSaRVIOFYNMlLjFsB0BTBbenX8mtbPs6bhn6en7npJ1AVFVcNxCBTuriapJiz2ZYbwJQGmiJRjQ1Ekn0k+zZj6BrTyX5Oxwew1uCSvR5wfIdbihUc4dP0VJK6zZdLL0fd+Rs0FJdCZgpPi5OuLKCM3Qq738yxwrH2+tu1UaS9NoGxN6kzkg47KxUaIARmPM2yHYpu9zoHOLNQvnoHeZWQUpLtuI5tJcWZeC+zTYnrgSVCQTsj4ggrcOReLoORESJ68Kxs2BZGzUBK0Fpt+ZE+hPQZNCsMRpZpLBQu1tx1SWk+EN0ULXC6LadspJD8u3IFFVBrBxm86dLFDTRVsGAnKFlZRNNAWBF+6URY+3a/cgqV4DljxoPnZERLIYHHlzew7CQguRFh7gQ1F6y0eBSKk2dvqkuXLl26rAPO1BSxl7+cyK23Usga53y/saAT8TR2GWluW9YZXvLZM+7zqtQQqVjYcXQXbqyIl8umnmfmazMU+7ahq62IEq3ldPOnGFg2uWc57K9FI5uR0RjmS17KD/zeu6kV8jilGt7pCqqiYpop/ltvD03gdDVNvPAQaUNlxjJwyjdevwPAnqpglxuU1Co2VRodTreXDSTYc+TnGFj6V+rGRlQ/6NM96u/iP4h/YLYVupzTsm3HpOcug4SpYzfm+ejS5Uq4bNHtfe97H2fOnGFsbIx77rmHe+65h82bNzM3N8f73//+S65/++23c9ttt7X/7d69G9u2efLJJ7nlllue00G8ELGtBmgaUkrKy9NMDgSDLtXX2NJ8B4P3/jw3q4FQIYWKO/QzAIhY+ILt/FnWwtCtnp1bEZ7HpmfCXFqfNkOhaUfPCXzHg/rC83NwzwPPLj6LWlrGUg2qajArNVAX3J3/PAoWSuMgXu/rQFcRkXM7IZ3EjPUPL/WVMARWEa2cbs4a3WCXFV5aaS/qtMJLFVPFLwWdreFEeN08pQeiEYDeyheY0QdwXR8zElw/bqvDEl8RPIYdfujmvShO8PK1GgpmPENlcRxnaZKI1+BMoo/aww+v7djWmaJV5M66w57o1zBVj28vjHHS307dlUSliadZuFqc/o174T9+EV7+yxzLh6LbtsRWZGNtSXWTUQ3HCnNhlEUDpBuElzbDfHB6pMGhyShUr69Z6abXRFfCa7ahZQDIGQpEopREmNOtXwau3hVH7uXQY/QR1YP1G7YFCKRUUPxQpF5we4BAwK4cffKyt7GeOE2PeiW4ZlS1CMBSpskGx+FVLXdgRelj5O6fuWRbyaiGpSbZH30DTA/B7ABb1RxDfhDGfELMUXODe1/TFTRTYaMWpabG8VH4uzP7sIfeEkwKaB2hrO7lhwZ36dKlS5erj3XgIPWHH8Z65hkK5rn9xi3zAJKUojOQ95nJKRzYrHDYaLA5G6a0cBdf2KKbrCxworETI+Fy2jJ4VE7zlPs4X65+molMnvneJruUcAxwMHI74mffSuSVr6JnaITtL7sLAOfpWXwXBrQMB80cC4rOpkSJrd6j5DTJXDNKs5C/0G5c19iTFZqPLZL2ErjRZtvppgjJ3fWP4xr9KLggBIc3/w+Kso9Xq8/yw+r3ONqqFp9EJZZojRHsMlI6TB8rrtchdemybly26DYyMsIzzzzDe9/7Xnbv3s0dd9zBn/3Zn/Hss88yOjp6yfU/8IEPrPr3oQ99iO985zu8853vRNcvnmvrxcT04mkAapUyJaPWDv8Z1bcw8uY97DS+iSKDQaWffTUYgeugU2hTOsNLO6rn5HZsAmDjg1/GaCU2/14qylIrZC2p12memoDajfPCHS+Ns21ZIGPLxH2XnyhX+L+qRfRWDgUv/Qpk6jbUsV7UgXPt9p1EtEj7Z8uz1uxMupoINbwXVpxuyhqdbuIyRDenHsxMSUdjxSKnGCpuPRDjhhOhMPKsabBJGw6WMXVEq33H9TH0GEhw1UCwjEkJUvLdXBFfSHACQc9uekRToXtryF0mH00z9eB313Rs603eyrOxEYbwzTTS9KYHSRsqdbNMNTUL+AwM5trLrHK6ucPI8trCKFNxDV0xiPjBfVymDr6LZsbJdzjdtooZJiwDOXl8bfbGa0TdrdOZPrHeCpXtMwS2olNQw/MweAWi26A5wqaWOOlKD0s0kb6CIHTNzcvBcD9OnVt9+3qmXbkU8N2gw7uUdXl1vYHVutcfFq9C0S4+mQCQaBWRaeihaNvz5h/mntHAZW5IlcP20+3vInGNYQwqWnB+7aYEW4CIgNJRCMR9bqHBXbp06dLl6lI/cxoJuAostyI/BGG/ZWTBxVQ9VCEQVYd4I+g3FBQHLRWOG17oolvz1AmWplT0dJWxSJP/rX+Bv2r8P3za/UcKyaAvsr250o9QeGLwnlXr3/79PwSAdyiP9CGVylBQazzZGoepwmcnp5klfsM63dzlVmoLJHbEwLaCd/3LB5forXyXdPUpmuYQh7e+n2LmVSzpL2uvW7VOAxBTXOLtKvMC31te1a/p0uXFwnPK6hiPx/nFX/xF/vzP/5z3ve99/OzP/uwVC2Zvectb+NjHPnZFbbyQ0GvBA7+czzPXa9HUfJJugrH0DuKxGrtPfhDNLeNlXhm43GI6ysYetK397TZWOd06RLdUbwovkcIsLpF2MwBUIjaPLw0z34gzoJcQcwdvGNGt1CyxbC2zkQSvzv8135mc5veXC/y0W0BIHy+5D2/oF0ADoV36ku+sKtmQzVXn7loh1Y6cbqzkdFtj6N3KIV5Cf5FS4jQtPASO1XGtKA6+HwiN/WYYtnjANNikBqKbGjfQWgKP60kMYSCk0RbdFCAqJSXD42kxD47eOgaPaCq8Rjf7Qdj0qcklpHP953jIW3lyXujqKTsmuhkIYMXeM6heEimqREfCYgkroltWpOhV0vj5tbknExEVRcAYY2R8nRJ1pO+gGzHKjonjB3/orWKG000V8e3HcGavH3dqbWkO3QiF4pLaC0BOFziKToGw09UrgnPoly4/h6IiFLJK6E4taVV8qbQnJQAW1bCyLksHLnsb60lpsSWMS5dmNR84HbMuP1uuIKWkHt3Bk87uNbWVjLYcpx0TC6Je4/6b38iwzOHh84T7ePu7SEJFlyqdNZcmliUk7obYHWHD3rV/Rnbp0qVLl3P5Xz1P8+/+s8rP/LZG3g/Enpzo4799YZjXf2Ub248niIgmM85NlCsJ0q3XbkE6aOnw3fBCF93KJ2aYH7iDTLJOFQuPsM8gFYj5PvvsOg0SHBa3UM5swLI9qg0XKSXJjTvoefVPMvSG36a+5NOTzABBX3mFbdZTFNUojeKNKroFIpujWTieg+s46IbGvvQ4ABKVv8+8DtsMJjatTJjmIuGeAEA3bNKRHEYkCgJ0Y5GFYwX8tY5punR5gbCmygf/9m//tuYG3/SmNz2nHXnooYeIRCKXXvBFQqQ1Hi3nl6n0uEgVKlS5SdvHnqP/A9NpPcAVE5m4CWFoKDEDJR7OUmFqoAjwJX4tdCIIIWBwGE6U2dbYSsaIUvQqPOHq3GMED1JDTEPx9DU62itjvDROTiZJiqDAh9rxneJVcbKvwigtwOvvh9TFXW4QiG63J/fgN2yiwgxEt0zskutdTYTWGV7aUs/WWkhhZUbTv7jq5jk20vNQAadjFjSyuFLhURJRfZ40otRViWX2kWyJGyJmoFVcHMD1QRcGih/B00LxY9uij2KkKMYb4GpICarmoyhhKPOQF1jux9MD1A8cIL537xqPcX0oWAV2K4EL0PUFDU9Ha1W7bZo1NHcI1W+gGMFVeKp4Cl/63DlwJzuawwghkJXAPSmMiz9+FSFIxTR8TaPotypUygqGOQQICnaU/kiNMTHPtCuQEo7900PsfsebEcr6V4WqnzxOXA3EGCkhrwQhnv26wEanIUPxMT00CFUNf6aI3Nx32fuf6RDdimoF6SvhfQMsR7a2f442bqwKpiszwqqSByQVWWGYMiMt52tNTbK1v+8iLYSYuoKuChwUmpqJ6TahVuO2gVtZFiVcfI7J8XZlMTOu4RebJJuhqPZEUbI9waq8k12nW5cuXbqsP9LzKLtVZMsF7bcc341mlj8d+mHGzQyfG7R4v2XgOWnUWo1UHWZ6oSZdvFQoGLlLL2DRTUrKkyX0iE/S8DhO8ZxFtrcqg0ep8pTTi2PDNw/ksRyf2zYlKdddMnd8P1L6VA9X6XlJEJr7bIfoNmIdAF5HfqnChWuLX7+sON0cbxarFRlze3KcvN9LMiKox8eo3jeKc7yC5maoDN1Nc1HDFC7b5FE8+QY0vUlK5IK0SYDw5vGEpLxkkRm4tmOrLl3WkzWJbj/8wz+8psaEEJessPijP/qjq36XUjI7O8vjjz/O7/3e761pOy8GdBvUM9NgO1iZUEjrFyaaW6Ua20S8uYgz9mvB8ns2oCRXi5ZCCJS+JLLpImtN/IrVXkYbHkaeOIIp4DgToMFCoo9DpX729syiKD7OsVlkbBJtUw7lGotOl8N4aZwxf5hcPXSw1AUgdSLx7Xi5N6AtH0AkkxdupANTNdlfCdoaVvtW5cO7VihKZ3hpazZoraGDbcHi4su7zfC4PE9pr2uJ4B5OaDZ96gJ9Nnw7GmGkM4eTqaGpXhBSKgSaBYofaRdSACj0SKb0KiecPPf6W3BtFd3wMRID7WXSTpCHbM7IsvylL173olveyhNTAsG74pqAQG+JbrZZQ3N6iBCGIz9w5gEKzQKPzz/O3Rt/EVrahJ+voQ6mz27+HFIxjZQ5CI0gf2NBFhg2YsSzI5TcE/RTQxM+vWKZvK+wMVbm4Hdm2PPq9e/eNU+dwlBaVb88jbIenKd+TdDUTDw3zEGXrOnQdJFNF+/0EtqWtYlIK5ztdJMyjtoRXmpFx7CqGhHVJeXPXMlhXXNWRDdFCQZApZjDj5ZCweuMcgs7UymcI7Pou4Yu2pYQgkRUo1B1aOiRQHSr19FRuUkZZb9/ihJVFtzTJOojCEDaPgPNOrXWa+hgtSXAiQ53ezenW5cuXbqsO+78PJbqc3YgU6kRYzYSiELbC2d4tLCV1w72ka5XSNUkK5O1lVS4XnN+7lrt9rXHrlBaUDE3BZN/c8q5OXF32OFk02G5kZtSERp20K84MFFBts6ZEAqRhQipuIYmFY4ZBg6gA/1eMMm3XLz2aWquFOlL3HzL6cZ8W3TbHC8wpJbAge/d+RPoBtixApFjeWS1xqQ7ynZ9nFGxyEmrzAalj3gk0dHwMggozNe7oluXFxVrCi/1fX9N/y4luAGkUinS6XT7X09PD695zWv4whe+wB/8wR9c8QG9UBiw4lR70hTLRYpqGOK3rXCAkfkvk6ifxs29PszlZqjnbUcdyiCLdXA8nAPTyJZwEx8L8u8N1cKkqYWkw/5CED5Ydw1EbRZ/toQ3fX3bosfL47zJGiPuzgJwXNf4gdER/iT2szjb/2vwWhwYCAsMXAJDDWepbBz89Qgv1c/jdLuEc63NymFewrm9XA1nMZ2W6KYYKuriNAB9ZuhEOmYYbFSGw00YGpoarOMLgVL2A9Gtw+kWb+2v3RIN3brAMHxcJ46qBSN4wwpcY1PJfmrfuf7zulUrM+hKIIJUnOAYtEgcX0ocvYHipUkZ4d/uG5PfaP9876b72j+vNcQ0HdNIRUMBrSCLqJpBo7zAYkPHlzDj97CDM5x2NJKyxvFvHL+iY7xaeOOn8aXA9hUans4SQdh2vyapmVFKMgwl7dmzPfhBAW+pctn3XFYNBfWiWsH3FRQZ3gBGIsuiFVybcaUK9RsnqXFpIThPK0UUiimHO+wwjHiuGCWrJvHGl5DOpd/BKyGm7bxuUoJlsTcS5mQ96h0nnjZI5kyk47Gl5WSrKxFOVW2WPIVVc3Zdp1uXLl26rDv25CSF1Ll9Xc8N3pG657C/fwd/U1SQbgPFqpPqyOpQjoXrLp45dnYzLxhkdYlKPoKWCvpiZ7zqOcvsaIYpT06rm4nqOtlWVW9FFfit8VQqqtGfHCNbVRgSWRwhOGIE44iMyJOkzmzFg+dQnX098YpNhO+iqjauV6BRqaEKn6FoMCZtGMPM9mQAkF4Md3AL3rZbKLljAMzLLHOV/ZhmkyFnpF3B1LUDgbMwuz6F6rp0WS+eU063FSzr8jvaH//4x/nrv/7r9r+PfvSjvOc97+F1r3vdlezKC464r1MtBQ+majSYIYnLNBsWHmgv42/68XAF/fyim9KfRMSDh78sNWh+4wju+CKxjcFAfqwSDpxKPYK8HeNktYeI6qAtfhaac+BdP8nZz8d4cZwddjhL9ZV4nIKqokU2I80hkD6ir/8iLazGVENnoS2ddcnppp5HdBNrFt3WVkhhvhQ6fhw3uH4UU8VfDsTLvkin6KZzkxq6aISpo3UIvaLsIs5yusVaoofdcn7JioNhuNgNSTQd/D08q4rmO5xJ9CNPTyDt6zw3VH6q/eOK6KabcSoycPqobpzNuQ0ALNQXeGbpGQC2Z7cztmFnWxD1ZoprqmKaimmkjdAZmJdFhBDokSRT9RS2rzGs5NmnnmDSDe7lHneZSn79RRD1zGlSagVD8Vlqxpj1A5dtTpM0zAiWt1IFSyGZy6Fu6wddQy7XcA+FEwRrIauFoltJqyJ9BbUjp1sklmGhGQrCzN84ed1K8yu57wKB+vboEltb+Q/Lsc3MFy3SqSBfnr9QPl8Tq0hGg+vE6iimQKXCyzLb278edZ8FQI8oSE8SjWfw0In5Fn32In9TTIHoFN26TrcuXbp0WW8aBw6ydJ4sKn5LdNtcCvp3DgKvOgHQzukGUFRdlJV3xPzsZb2HbxSk57P0mWkaniCTaAAqU82pc5a7yQ77EP2b9pGJa7xiV5Zbx5Js7o8iJWzqi7B9KEp8bBcbxmGDCN7FnXndXqEdY64iYO7Gcg66+QaxeJH+gWdpxhXsZp3haBlNCa6JanI3ti7om99KtBYWD8PZzZPKTgZEgVvdB1hsVjE1STTaKshk1dB0i8L85efw7dLlRuayRTfP8/ijP/ojRkZGSCQSnDoVWGd/7/d+j49+9KOXXH/Lli0sLy+f83mxWGTLli2XuzsvSBzfQRc61VIRV/FpRIIH/4ibIlcIkly7ma0Q2xysoCrtGYSzEaqCdvMIykAKpS8Btot7fAGjbwPNrTsZWbbQZCCeFJKBCDDfSLSFHqX8FPI6T3Y5Xh6nr3mShtrLCTXCd6KBGNITayVP9z3oH7hIC6vpFN2a0l4X0a2zEmFbdFvryh0LXqzDtFwJ3TKu23K6mSpeKXAB5czVotsmIxCTlKE0Im6gm6Ho5pVsVNc8r9OtuZKctmKj6WA3VhdT2MIy0/FebF8w+/UH13qU60Jican9cxBeCpoZp6pYRK0IQtHoGQ7CRv/q2b9qL3vfxvsQuop60xBKbxwcD/uJiUt2aNMxnbQWhloWCMRlPZJg0UpgKoGg+QrlEKc9ie012J4pM3OssO6VTKP5M+2fG57BbKtSclYHKxal4QciUtJIoggFbVPYafMXq/hL5848X4hMp+imVpBytehmahpzTpolK8ZSMw7169u9u4Ln+FSLgaDl2kUGIhV+WZlCBT6RSlAZ/HEazQp663nhza9BdIsE9+1iPEct0weGAfll9g7fRJSgnWPuEaSUqJqCqgtIDaJ7gdDX31zknyoxXDrDS9df5O3SpUuXFytT73wnR1/yUqb+9H1UYuf2FqWbwkSyqzDR/qxQDfqAqXpH/lPPQUsFE2Tpms+npj75PO/5tafywBkazxTxepMkdJeTU0UW1aDfq7kKry3ewltnb2J7S3SbkjmyPQNsGYxh6gpbh2LomkLEUEjENAayEfTeEXpmXEbUIHrokajJCTdO3dV5tTzAlC3g1Il1O+bnwv/71Q+AkJQOHcZLp7AadUZjxfb3VnYMrR4hNT9KvENOkNmtFNWgH5wUDcYL30BVXZJmcG6klKTTkxTnuk63Li8uLlt0e/e7383HP/5x3vve92IYoTCwZ88e/uqv/uoiawacPn36vGGozWaT6enpy92dFyTlZhlFVamWStSi4bm6p95EtGIG5a7Xt0OJLhRauoLam8DYNwYrlTs9Hy3Th3nyKOnKEsMED8KiWSfSP8ohf1t7XaXyFFzHopvt2UxVpkg6U0S9ZcY8iyOmieoJehNBuJSvKrDGRONwbngptrumsK2ridBNnJYYql6qDOk5K3eqbhderFgNxW/PC7YlTBW3HgzcV8JLHeC0rrM1NQamhpKOIjQVvaMSrKdpKK6g2VGtMtYSfeyW6CZ8lbhZb4lu4d/jVe4UUc/mK2Mv4Zm/+Dv8tTr61oHcfCgEldtOtxiSOpFGP5rnY+oq/3DkH/j7I3/P5vRm7ui/g/s2BqGl2mAGv5UjUCRMvIlzJyA6MXWFTZkwrDdPGSklejSJ5essttxbu8UE8+UKRv4jDFl/wvA33gSHPnM1D/2y8JtNYs0whLPspyi5wXWZ1hSkprWdbikjmJYXuoq2ewgUgcgl8ObPzbFyIXr0MD9eaSW8tOM6MlVBQaTIRerkzBpufuJ8zVx3lJcb9PVF0PojJOzT/OTGZ3m2VV057Usa5l6ymf52Hkd/qXLJSZJ0XGcgY6CnEsSLi2DbMDtLtG8je7VRtvgDbFCGKLQqCxsRleX+EVZeRaa0eQkVpt0OR3D50mJfly5dunR5fmiOn8avVFi+QK2wUaOHu+Iw2pFWZLEW9PE6nW7T9VRbdNMsl0rpxnJnXQp7popXsbGtCRjNogpwrQKVSDC53m9s5F2DP8mvJW4lRvDZuBjjztEeNvSGebO3D8X5wX19bB+KY2gCVVGIFlVGtWA8dcgw2abViGkOdyhHmHU15PipdZ8MXStlu8yeUj9CcckfOIifiGPV64zGw35ZJbeBbRN3MSQVdmp+YHAAvL4RGj2bKMg4R9hMQhapiwXSStjvj8WmiahHmTty8JofW5cu68WaCil08olPfIIPf/jD3HffffzSL/1S+/PbbruNI0eOXHC9zgqoX/7yl0mnw0GS53l8/etfZ9OmTZe7Oy9IiuUlpPSpV8pUe8Pkm7vsJsXkTaSqx9BufhPegdYoSF/bn1Hb0o89EzwwFSMJyRRmcZ4R2cukWEIKyVTzBANlHbtfxRAeSvmp67qs85nKGW7L7iR66isATKoREo0ouqeSyQZODEUBomtP1qkpGqpQ8aSHLTxE3MR+ahJZtVDSUfxSAyUdDHxXfj7fZ1fyPXYUFxUdD2WlkMIaxSghRKi1yTBB7tlU6kVKyxZWvcby7Emk8kMohoLlNFGFT48Z9MTOGDESSprRV70UVQ0F3pWcbgBOqYHek0Uy2P4s1spfYbcKMwhPI6Lb2A2P3uE+tEgCw4yB2qCuRvnEza/nvz7xN0weWGbTrR1W9euIXEcV4IpjomgGiqpTTVZJ+AniiuBI/ghLjSUiWoTx0jhvu/tt7OrZBYAwNYyXbcV+8Cj+bAlZt1c5vM5HVg9dgQVRBemit5LSTtYy9EdqKEJyD58DdwYBJJmFRz8MN//I1T8Ja8CemMBIhPlQ6togjpQkVIEnwZc+lr9adINAlPSOziOXguprctcwQrv03FCPHrZR1KpIS0FFIqWPEAq6ojAvwmWs/ByJ8zV0nVHJWywuWpjROvf2HcJQPW5zG/xbPMYH+rbx/qUFenuGIBuDUgMlFcUv1VF7Lnx0UUOh0fRZEGluESqa9ODMJCJiMCgSfE85Cf48i/4cPWoOPaJiaClGlpc5NhSEzhwtL3CqL8NYq02vUbkGZ6NLly5dupwP2QjSECydJ58bgOqlee2GXqKjI6Q0hbLrszgxzkRPCktxoSUwTWGgxcP+sru0dN72blScqSq1R+ZQCnn03X2Az5y30O4m90U301MpMVc5w0qW03pmNyM5E/UCVdWFEMRMlaaqsoU0htTwRZZ5FhnAYZsywTICUW9Afhl6r8/+bSfTlWmSThrZWECMbsCxbRTfxpeCspdEj2VIytvZoIGrmeBKjGYDO5rA7xum70iD7yVexg/VgrzGB+QRepSwirxVqzEyUGThxAkGd928XofZpcs15bJFt+npabZt23bO577v4zjOedYIWKmAKoTgrW9966rvdF1n06ZNvP/977/c3XlBUq4sU69UkFK287lFfZ/vqx1Gly6N1FYiA3vhQCByXsrptoKIm4ELSkqoNjF37sCfPMKwP9b2PBaSDrmSyclmPzdFZlGas8jqFHB9hv6eKp2iOf102wF4MKpQjFmMVnrJqQrgIzKZy27XVE3qbh0nJlCG0vjL1aC6ouOF/8PFP7uC74Wv4aASBdSVQgpijTNkq5xuF16nVi9z+In97d+N5D4Us5cy0GPU20VQDxiQEalVghuApobbcYWC4sdWhZfG2uGlrZxuUiNqNHEsn0hqANeq4lpVekzBjl6L2abPpJ5G/9yTbLr1+szxmHEsVqLqKq7ZrlwqE1V0ZweJpM5nTnyGvz38twD8yLYf4fWbX7+qDSVmIGIGsm4jqxZSSsRFinxk43ESnkFVtcmzWnSbqqe5szdwCN+l7l+94sT3YP4gDFz7Do19ahwtFYr1ZRlMsvQZKnlX0vTryJY03Cm6ASi9Cbx6HqTEL9ZQc5euOpzSEqhS4AkZhJf6StCHlh4IBUNRyCvhdpYnjtwQolu1ELgic8azGK1Q4lO6xv+vr5fdWj+FpQVGhjajDqTwlmv4+RpKvg4XEd2EEGweiPL0aZd8vJf+6gJYFjx7gLFkOBm25C+yEzCiCrbeQ289zNs2YC9Q8HsJuhAuqt/NzdKlS5cu64WXD5zlyx2vS4GCbPWN/8PGTWyKpeGH/h0vObnEY9PT6EunOTjaRyFhA0Gut6LfQBhZYBKAWKl5yT7KjYRbCt5jtiySSPSCEmGeeYQPUoFcdIzYcp3j9izDUqAKiTF4K1sG4hdtN2qoqPE0w75ARWFeK/BYxOQNloMuPEa0KXzZi7K4eEOIbjPVGW5yc9jzT1GtlLHqNYajZTa2nG4zidfSRx8IUAydhnQxfSeQbjWdiBXhxNYhOBKIbop/hJT28nb79ZbLsp5/YYm6XbpcjMsOL929ezff/va3z/n8n//5n9m7d+8F11upcLpx40YWFhZWVT1tNpscPXqUN7zhDZe7Oy9IauVCu4hCJRYMtO5qWOgy+NnbeBfS6XCfXaCIwtkIRSCSQUiQrDWJ7tiBX7cZ9sMXQL6V1+10o7f9mbL46HM/mOeZ8dI4d1XC4z/WCnnuFb0M6a1y3ukL+O0vwkpet6bXRGgKQlfB1Fb9f6nPruR7VVFwW+Gl7eqla3Wld/aNLrKOXV+dT8Ft7kdVfDzfZmO82P78mGEwbJ6bE2+16CZQiOFq5xZSWMnpJpQoMSPo8ChaBkUN1KtapcJPZZZwFZWP3Pomag99lpNPhvnmrheaXpMk4TmrOCZaS3QjXkFze4mn9XbFUk3R+K2X/NZ5O6si2QpT8OQlcwbGIxpZLxBRitTxfRsjEvSsp+rptgEyISwa5h4wdoUrP7k++Viap06ip4IdkxIqSvA86TNU5h2wvNAZlTLPEt16ws7thaq8np0LT9UMMgTntKgFOd0UgNY1qCuCQ2ZYKKA8dRL3ei/aAVSWAvfCPvPfyBoNCq7BB7IZHCEY0fqwnQa54VHU3lBk8yuXzq+2sS+CpgoWE6s7/2NuWFxh2Q/CkPSIihNLk+4U3ZoL5H21XUxB8buFFLp06dJlPfCbTfxq4BwvbAjfp7u1H6N64l3UTr6TASN8rxpCsqdysN1VjNhhH7pIDTsRprSIFpsU7Bun2vel8Fo5Uq1sYBLxRYyFSAkJpBtRNpjDCOkz4B/GQ/Bd9pHYdS/xyMXHWVFToZHJkbQFOYL+2ffiYQqGW/WT5KUCE6efl+O62kxXppCOiVtewMukzwkttWJ7kFJiS1BMDZGMEOno6ypeisrYIHZrHJOTR0nqWVYGKPVyMFHnORZ2oztp1+XFwWU73X7/93+ft771rUxPT+P7Pp/+9Kc5evQon/jEJ/jc5z53yfXHx8ef046+mGjmqzi2TSKdoZ4OXqT31cKHkr7njdCRY0wYa/8zimQEWQ4GZeamrRTrDkNejq1yEF9L4kQCsWOqEuep6BZuidYRi98FfvMqHNnVZ7w0zg90jPeOtap+ZvUREsIPRKc1ipKdrOR1a3pNtM19sHntOeGuBurfn8Rltegm/DXONK7B6SalxKs36Twzvn2MYmMWxa2xJz1H2Tf5SkrjoUiEWxLnim76WaIbfgRXvXAhBUWLEFVaeeIsSSwzSHX5DM1GnQFsUjGVeUdnyS3zlb86yI/8psngljTXC/lGnqQS5K5qeiq2r6HrJkfLFQzpI5UIc/YJZmvBjPHLhl5G0ji/S0tJRvBbSe9lxYKOztnZJCIqabKcIY8vfErectvp1vQ1vlu8lZPJQX5O+wrLaAxvei3OiQqK0NGe+HvEfX8ARuSC7T8fODMzpJPBJEHVNZBGy+lmqhR8aPhhbrxznW4dotvy+UU398gc3nQhKE4x1ouiavTIKMuiQUmt4suVGaXg2tOEwnxHQQrVqfHIZ/4Pd/3k/3UVjvb5Y+l0GfDpF6dQBZiq5MFYIIwNK/34nkdqcBARM4O8br4MrqdLoKkKG3pNLHsQ5g61P9/oJlh5KCz7wbvATBuUXBXd95HCRMgmfc0lCo4MRDcJwr+wy71Lly5dujx/eB0hoIUNaWhNDs4ujLLV3IDtSaJa2NsbxWKkcrj9u+koQV9ZQEWWcVLhxJ2Rb3CydJye/nAi/kbGazn3bOFwqm6S1AVL6SYoUIo2GDRTHF36JjtF8P7LRiC3efQSrQZOt3pqACN/mh6Z5IxY5tGYCa20va9QDnGyeTe5GyT/6XJpFulvxist4+8co9moMxoLRbdf4+/xlr/CPeabedf9v4S1UCU6G4qzntJDJifZL7fxUnGUfuaZUUqkhnfQaDbxG+W2g7JeWMa4jBRAXbrcqFy26PbmN7+Zz372s/zhH/4h8Xic3//932ffvn189rOf5f77719TG7VajQcffJDJyUnss9wG73jHOy53l15wyKod5HMrFSmrFTQpeXUrX4OjJTC3vQYv3zGwugxRSUlGWPHIGcMbwZekiDBDnoY3RyobDM4rNZ1t+gyatJCFErhN0C4sDKwXp0qn2OSFqtuK080wxjBWBCf1sg2dbaeb7a2PG0ZRRIfo1iqeIdaYW28NotuytYzuiva1gNBR1FGspz7OKwfz5CLB9XaTLTlu6NwfHTynjU6nmy0EoJ7f6dbK6aboBqpdBkVgNzximSGqy0GFy6RXYlAfZN7ROZjeyGv6JM9+c4qe4ThG5LIfU88Ly40lcAepyyg1K+h8RKNpeiIaVjOFp6o8sfSt9vL3jt57wbbaTjcCZ5IykAJfIs5zrcYjKik1B5wEoCCX6IuEAtLTczt5X/RH+LR3Ny+hye/15xGn+9Dt/cECT30OXvbjV3Dkl0/z2ccx9gZCTMGO4psmuJDTVYpAo9PpdpboJkwdETeRtSayVEe6HkJb/YzzlsrgeEjHwy81EC3RDcBRXOqKFdTh7HC69XQIoBFTY+nMaZymhW5eW0HycqgsNOjVJoiI4Hl/xIshW/f3kJojEqmhJKOBizlhIstWcN48/7zXUieDGZNH5lLcpEXRNAXDqjHiZdqi29KK000BxzeQqobebDKVCHIMRqrLEGvdm/717xrscm1wFhdZ/shfIS0LY8tmen/u59Z7l7p0eUHjLocFmZbi4YT8xFIcPJu7c3FERwhEj7vEAXOAHjtP2q2iIDAdlabhUfGLWL1DJEZy2BEftW4zURvnJbycFwJesYm0irgjA2yJNVmqKSyng/dXwosz7Hsk3Cfbyx8f/Rl2py899omZCgUzji6ht+V0m9c0Ju0Ymm+gGy7HmzYvK3tBv/w6D9etFpcBgV3I42Vuxa8uMZgK+m2ndZ3Tmg3+LBPiJKqukuiNYZvmyjwnZAeJqHme1nfwUu8oALryJKrj4CyfBsBpNjEiEWr5ZTLDlxY2u3S50XlOo9m7776br371q89pg0899RSvf/3rqdfr1Go1enp6WFpaIhaL0d/f3xXdAGG52FYwyBII9lmCWc0kaduUB19Dr2aAEzpAxGWIbiIZhg/pvUMgBDo+faSZZJGKaeEJiSoFD3i38Sb1EYTfgFMPwo7rK8+WlJLx0jj9MngRlFBZbg00c8aGdhfjUoPP89HpdFsPVEXFO6t66ZprHq0hvHSqMkXEU1nxT6rGThAJIvYxUqaPi46Cy3/N9SCFYDB2PtEtPK9NpeUrUjtEN3919VJFUVALBYSpYDd9Ypmh9rL1aoV+zQZiPDK0hx86/lWOzd/PpltzbL/zXJfdelCozrLHfAaASRE4t3QzTtGvkrJ68VXBbH2StJmm3Cxz78Y1im7lBu6z0/hNJyiqoIhV4YJxUyWt97OikBb8ZYYjm9vfJ5TgPD8jt2JUzgB58uZuBldEt2c/fU1FN7/ZhKVT7d+LdhQvZqI7Pv2mSkEouJ1ON/Pc8G+lN45Xa0LcxC81Vp0PaTlQ7RB5PB9F0+ghfLYVRYMBSZDTjeB+OmzrtCJQ0bw6Jx59iNNPP8n2l77yKh351adeddhuHGj//owenodhtQ8lpgS5OgElGcVruZhl1UKkLz5znE3oSEXhyzf/ILmUzt35A8QOHiCrGBR8uyO8VMFbsnEzvQyWqrit4s750izEAmexkO6FNtPlRYYzMUHhE58AQBsY6IpuXbo8z7hLHaKbGbwbNWGAF7wDbs+ufheoiyfZ3AhytulCw8El0lQC0U1WaPRsQJsO3HOpwSSnrflrcRjPO1JK3FITvzSFM5ZEQzBlTeCkgz7UkDJGtDzJhKPSp2kskmbv635qTW1HDRVLj6D5ghxhn+YkMe6JLDFMkZO1w5DZBfUaxK/vrLJOuYp0LdxKGS+dIjr3MGrrPD0aCUXIeTkDgBHREYoIRLdaGbsBacvh8cxWWIa8nySl/w0bYm+i0Fq3UatiRCLU88t06fJiYM1qRKFQ4IMf/CDl81hjS6XSBb87m1//9V/njW98I4VCgWg0ysMPP8zExAR33HEH73vf+y5v71+gqI7Eblq4is9itsnLG0V22haeYsKm+4PQwLnQ5ns54aVKx2AfG9TRUTTh0i+Dl4QUUG3lkXvUCgtmuM/+6xUe1dVnvj5PtFklSjDQPKWY7dmjVEco2Q3pdFMVnLPDS9e68hqcbjPVGQy3U6w1EWqEwYTFLbGjKHjsT27msBmMsAfj54puneGlK6Kbo4UdiYS/OqebIgSUSqimhl11iWXCNuuVCrfpgZBc1KP4fvASHn/6+kmyWs2faf/c9IJ7TovEaRhljGYvRXear535KuVmmfvH7icXvXCyXBEzoHX+5FIVb6aAXKriPH4a98jcqpxluqbQGwkFyry/1A4vBfBVn95G8Dw4LPrwJehjo8jW9SNnv9Mu5X4taJ44gR4L75uiE6GuGjhCoc9QqCv6RZ1uAEo2HoRLVpv4y1WkL5FSIm0Xb371e0Y2HISqkZWh6DbbVDm9vLEtugFIxcSTwTk3lODzE489fHUO+nlASknT9hgxnml/9lQs/LsPqX2kEj0oLdFttZB76RDTiKESNYL7tlh1kT29gGBYCQZoRZnHlS5GRMWrODjZHJsXC/itJ1GsPIls5XQTfld06xIgIuF1KG+AvIldutzouMtL2EGkP9OtFBiqTLPSa9yaWO3UsgunAYJnef9GACJ28C6wsVlOpqHVp0tMlam4N0ZI5KXw6y44Pl55CmImaEkm5VT7+5HIDtxj3+aV+mEEPt/RX8XGvrXlhI4aKpZmokul7XQDeEQJfx7xW+/y0vV9PqWUyGoT6rNIRaGmKvQbYejoYx2i26R9ut1f9QzQiosQT+FuvYXemSoLgxv4efs3iAsLUxS4w/wOWxJB/36lmEKtK7p1eZGwZjXiQx/6EN/61rdIpc59AKXTab797W/zwQ9+8JLt7N+/n9/4jd8IXC+qSrPZZHR0lPe+97387u/+7uXt/QsVx8WxbarRYGD4kpbrTfMbJLbdjT9Xxl+ogALazcOrciBdCmFqKIMpRNxAli1iL38FmnDpI8ydtVK84VhjAMdrCTNHvwDe9TWwOlU6Rb/r0VCylMlwrCU+KlJhJNbTXu65ON1WRDdPerjrMKBUFKXtdLuSQgoXKl46U5vB8MLzIoSBNvgK5Egg7ij4PJQKRaPBxKXCS891uq2IbrboEHzKdRRDxaq7IMIcIfVKhR0xlZuWTxPzbL6nDZDW55l4dgnPXWNY7fOMMz/T/tnGJJEbI5YZwjRr6E6ak9ZDAEgke3J7LtqWECLM4+ZLSHQMVMsNZKmxavm+5AibyNAn09RlDVWPIJTgem+KJjvrQaelpkU4saiSTddoqDuDbXkleOqzV3bwl0Hz6DGMZHjPFO0oFRGIt32GhlQVIkaYo/J8optIR1mpEOEtlGl+5QDNrxzEfmz8XNHNclBUjQEZZ6vfw4jdT02xglJkMrx2DFWhRqz1c/D5qScexXOvr+faCs2aiy99ho0g51rD1TiUaIlcUmFA6SWVyCIS54pua8nrBoHbDcD1JfVo8HcYFq2KvEgK/lIwe227uNkcScdmJhI8CyJOBbeVZ1JI77p7P3RZJ/zwnuuKbl26PP94S0u8+6dU3vE2lVErwhu9XYjpNwKgC0Gf2dFXa1SwykG+siWzj0o6iCToLKZwsJFHTWcBMOYqOHJt75PrnZUiCl51Bk1XQM8wpYb9uuHsdpxi8LsufBI7X7PmtqOmgq2ZCA969XDS//GIidWapL1NPQTShXLpQs1cF5TtMinbQNZm8NMpysUCg5EKc77OIV0nH93BkBIcY92rtfMYy7iG5gVpRWQsSWaiQU/O5aQc5rQc4Iy/jV71JG/ecIisUaPW6ufWi3mkf33087t0eT5ZsxrxqU99il/6pV+64Pdve9vb+Od//udLtqPrOkprBqW/v5/JycDinE6nOXPmzMVWfdHgNQL1vxpzifo+NzeDjms9thkt3o+3WA6cMj5BHihTv7wNCIGs2eD66GYEw23QJ8OBbzkWPDSjTp0nGjdjNYdwZBROfv2qHN/VYrw0Tq/nEfULpChSMoKORZYsvUbHglcQXgrr43ZTFQW3dXuqa83ltoJyadVNEQoRv+MkCZ2luOAlIhjgSwSPmmEnbDA5dHYTq0Q3pyW6uR2iW/ys8FIAv+agmgKn4ZHuz2DEArG3VimTTkY42rORmh7l25mtvH7bcXAtpo4WuB5QpsLZuIYjqC5NYMYzqH1lNCE4WP5O+/v7Nt53yfa04SzKUDoQSV0PdVt/+zt3YvXMXy47xGmKLIoSeZlHCNF2u9mexS43PMePTWfwzBwLyj4sZQeemoPvfODCCuxVpnn0KEKTzDqDTNVTFGyTIsEzqs9QQVGYqJ3mpp6buHfjvYylxs5pQ8SMMFdltRkIzr4McpZVLURPHLTWfW27SAQqCieVPNPGAjWlHjwfvTrSKZCvljAVQU0GwtTKpW3VqkwdPnDO9q8HyssNBvSj1PwUk7UUR8o5dCWCW9vMmH8LmlDJ9A220wso5xHdpC9pPnqK5kMnaX73+DlVX7Px8N2Rb7lUN4jQTbeS102TEjsTXJ/TsZH29/VOQdwqXoWj7nKjIztEbN+yzrnmunTpcnWpLs9zfBjmewSLhktcZvmZWJb33DbCf90zhBArfTlJeSFM/TAZGcGJ9hBPZ0mpmfbnDmXoaQlHTZd42ca7hm755wuvFIhurtOKoNCzzJotB5eE/lw/OUJBrG/XK9bctq4q6JqC4wp63fBdXIp5nKoGJoC4sGhap6B0fYtuU9Up+v0UfnUWL5mgODdPb7TGoOKwwXN5XJlmj767vfyxwjEAjEwMs+M6ic1p3Kza0JPmj5TfYZ6gDzHTSPEjo4dwq0UqZZ1IMo1Vub7df126XA3WrEacPHmS7du3X/D77du3c/LkyUu2s3fvXh577DEAvu/7vo/f//3f52//9m955zvfyZ49F3eHvBhwHQfHaoluUZe9VpOVYZGdvgNsF3+6iKzbKP3JIAfUZaL0hIMqLTuA7jbolx1Ot3jQac44JR6s7SJizhJ1puGxjz73A3seGC+Nk+kQGwpaIAL1aUNEO4Se9uD8MlhxugFY3rWf5VNUBa8dXgog1yyaiM7wUv/864yXxldVwEUY1FhgTE4AUIvuYEIEebd6lDRGJHpOG3qHmOm1tikVjaXsBhrxEeK+D1Kucrr5lsQ0HFxb4jk+8Z4NRJI5pJQc2/8tbq0FnaGZRB+n5+vs3FHjmW9MXRcDNzMf5iGzPA1FM1BiOdK+ZEHUOVEJxJttmW1sTG28ZHva5hzG7RvR79iE+cptaFv6gms1ooOUSC8UNAZ7Q6GjKoPngx4JwhZcz+YmLUHCrrO9vsCxySq6vYA7vAuTRVRvCQr7Yf8/Bg08z+fSOnaUWK/NkD7HhliZihNlqSXw5gwFU5GcajzJ4fxhvjv9XUaT5ybQFUKgpFvX3Nm723SR+RoiEgpG0pPECH+3lGZQ7VfREHqWnkQaU1GotPK+GYqLqusM77yJ6vL1E8LcyfxEic3mY/Rqc2yMl5ly45yJLKLFx1EUB9/3MTJh6IowNUTUgFQE3/exn50KwpaXa8hiPRAsz3LArTjdAJZdFSIRhjtEt2V3CunW2XpnBm/vayhv7qGUGsRHsKT3UG12uNus60Mc77K+SLujkq3nIev1Cy/cpUuXK+ZZaxy31f+9jc28htu4syfGxpjBpoTJSviDikN5PhynTUVGiEUj2JaFuVQnXTUYVkZJRMs8ef9rOfCjP8UDe+9jy4LLQn1hPQ7tquKVmkjPwaMGCAr1CkhJph6hx0qgm1W2KnMAzMgce3fvvKz2o6ZKU4sSU6PEZTCGqEZdjld6aUqV/d5WStbEde90m6nO0Oen8StzOFt20mwUyWiB+WBc1/mx6Ou5Vbu1vfyK6JbszxIzwsl8305gj9rMlE2+Y2V5h/vLNLw72BArkzUstplHSaYcGsV8V3Tr8qJgzWqEqqrMzMxc8PuZmZm2g+1i/Pf//t8ZGgpcM+9+97vJZrP88i//MouLi3z4wx9e6+68YKnmi+0iCtWoy0utMJG/kbgV2SGUdIpnl0NnOKoWzyIsi76OxJ+VeDDYj3p1/lW7C6fWyg11/CuQH39O23w+yFt5BuuhMFFuXX+9Sj8JJxwMXkkhBVgfp5tQVDwZ7rcqJHKt8aWrCimcfx3bbaJ0am7obHSfRGlto5i4nbwfvAQHlN5zqkfCaqeb2yH05bMDRGvTbHFd7rSa2IR/C09EEEbQVrPuseOut6DqEaTvUy2Xubt+rL3sl5YTDCunmDy4zKn9i2s79ueRSC0ULCxfI94zwnKtRrwR54i9n7gWCCAXK6BwPtS+JMLQEKqCkkuC5eDPllaFmA6ke1Fa+cgqBOKf0ZHXbXuyD0szOB7r55v+KF7dZuNInjPiJ1tLCPjaB+Ho0/D5z0Lj+RkISylpHjmK3qqgZnkatjQoY2AISGsKij7OYiP4e75i6BXE9PMn/L9oIQDRyvu2gieJyVBAaihNhL86vNRUBdVWJQVd2PiOzczRw5x88tHnerjPK0cPnWJL5BEg0M6f6MgTM6IM4XoOSsxYtY7xfTsw79gExQb+VAHv9GrH5NmhuZl4mA+03vQgk2HYD7ez1HgGEGiGitE7SHK6juFJHsvcQc7J0+h0ujW6oluX1U43ALfQvS66dHk+eVqdbv+8Qw4DoHQ4kldQ/DrlxVYfXgjmIoMkNUm8Z5hYU6OUsJnxzzAnZxnNxBne2kftzr1kJipMFievybE8n7jFJn5lDj+eRKpJvnXyEyymGxRjFjviL8NcOkRcBGOu+cSuVRPLayFqKFiRJEIJ87rVIh7jtTS21LldPUmq+RiUilf70K4qy41lBt00XnWZ6qY9ZM1wDDSu6/x8/I30qmGEworoZqbjxJJh/8HRsggkfT3BOZ3xVWbdn29/f2t6As9pRXKVuu+JLi981vxE2bt3L5/5zGcu+P2//Mu/sHfv3ou2IaWkv7+fV7wisOz29/fzpS99iXK5zBNPPMFtt9221t15wVIvVLCbwQOqGnN5WSMc6CvJvchmOIsszhpwrRURM8AMBltqJAsNixQxDBl8VktKhGbS6xSYi2ZZPBkM7gUSnvyb57TN54NjhWNsscNB44roliFH3OtQlK4gpxusTwVTVVVxCYUuZe21S88qpHD+RaTj4nXmYBI6Q04YZjed2NEW+QbU3jDUrwNFhPqe16H0nRkJK2v+dLmC0yF8eCKKYbYKLNRdFFVlaNfdqLpB02pA7Vk21QO33YPqACNRiSp8Hv/8aZr1DgfFOhDpcHA0PY1E7yi1yjIRK8n+2oPU3So7szt57cbXPudtKLmOAgmlUBhLRHRSMrjfK7ScbtFwWVU6bLMCMW4iOcip7y1gKBZTyVdA9CWg9kLtAPzrb8L0NDz9NDhX/3x6S0t4xTx6LLj/So6JZsawpErOUPGBWe3J9vIXEyiVzFnuyo7LWulPtXOZAUh3tdOtrDSJSrGqkIKpKFQ7ii3oLdW5dp2KAu70YbJaMNE1XU8xkwifY1u0EaQC+vbVlX2FEMGzfaVIR331hIF/luimawo9CR1NFSyXHeToRgaVTPv7ZWkFOWhW1k/3krbrHI9vw0NZNTFAo3glh9vlBYJ0Vl9z3nI3SXaXLs8nTyfDd9hOOQJKBKG3crJRYVh9hn2RT1M6+EUapXmMWJo9+27HVTT64imSua3kSuF4Ytw9AXoGgKQB+2dzzEzc+PexV2ziV2aQUY1azeZoJDQRbB14FbG5cNI3umXtoaUrpKIadiyJogp6ZSA+SQWKpuCUE5hNIrKMXHz2mqX7eC7M1GboLfs03QYVM0KK8G8/pSeIyzh33r4XXQn6XMcKx6g9Noez0CAfD/v7dqyfhOvT3xuOY4/IIWb9DQBkDYvh/FcAyJ+ZuBaH1qXLurJmNeJXfuVXeP/738+HPvQhvA5Bw/M8PvjBD/KBD3yAt7/97RdtQ0rJtm3burnbLkK9VMZuBg+olFFnm23zpGkymXsD6Fmk1eHgil5mLreV9YRA6QlcImoig2i6CES7mELJaOB5FgqSuNfg4MIYjXqGJX878smPg319hIsUrAL9Hf37cktcy4p+zM6knDeg6Ca0sJACgCL8tYdYrqF6qXQ8/I7QXBSDbWKcJXMnpfheTkbD/GKDai5Ipn7OZkTb7ea3vpe4nBrbjm0Gzsl76w0ynhW69JQYphFst1kP/u/btJexm/a2E9q/bvEBbimfoSEUqjNN/uNtJ/nB9DOc+OdH1nb8zxORDvHB8jS0RA5ZncNqxjjVeBqJpGyX2dWz6zlvox1SCfgdTreooZJeEd1kHSllO7w02J8a+zry6X35uMonR1Mcfv1JjnpvxvNaobH1R0GZhxPH4Zmnn/N+Xoj6U/uJbumjleKPsh1BN2M0fIU+Q6Xq2DzT+F5wrELhNaOvuWBbnecCQAxnUMd6UfpTaJtyq59/rr9KdPOUJtGzCykogiphm7HWpEWtGFblup7Y6oTi5IlKjmo2fB7sNIYDd2T03ImXIDS3dS14q/NByoqFf5YQp6kC15O4vsSNJ9nQTHC7nuUWPQPCByc8P36qh5RVpWBkeTyzD98Iz+eZQ8/QpYs8S8x389fn/dXlhYmUksrC3HrvxjWj2qxyvCd4pg82Y2SIg9GDtEtYdpVB/Thjxn7seoEDB4N3vt0okxsc5cdG8vTFMyR6hsk0FG6tBvfuhHcST8sA0KN6fNbdRWGxet7t30h4pSZ+dQ4nnmB6/ABTA8FYy8RkYEgjkw9DaDffevdlt69rCjUtgqqIVRVMq1GX05VwgkxUn4Zq5XxNXBfkagPMb7md8n/+C2zbJmuGY76S3kfN1OkfzXHv6L3clrsNr+Yy/+lDLH/yMKrjIZpB39XrGWR4qkF/bziGOmNWmVRfxeFSjrqrsc3+Hrna/m4F0y4vCtasRvzYj/0Yv/3bv8073vEOenp62Lt3L3v37qWnp4d3vvOdvOtd7+LHf/zHL74xRWH79u0sd2c+L0i9VMJpOd1e7xWJAPuaTczYpkC2sDqcbucZcK0VJZeEdBQRNRCty6C/VUzBVyS1SCAwpNwyJ80R7CLklOOI+jIc+NRz3u7VwvVdynaZbMeYMu70sVHdTErpJ9Ix2L4Rw0tVRcHruD0VIZ9T9dILiW7C9VY53ZIZyW3qKXLNo6jSYkYLc04MGH3nawIIQ0xla6O+2sDXVKY2v4JFzWS/afCmShWX1t9Di2PqwflcEd0A+sb2kMxk8RQTW+tjWVeZTA7y5NEZDOGTMhzcyTPMnVqfXBiO72DK8N6zPI3c0A5Uv86B5jG8VgjtvRvvXZ1T7zIRiUi7EIYshqJbRFdIt/KiucLDooGZ6CUyMIiyIRmIbmamvfxTIzuR0yVcQ/J1dYTvlt+CRIPRV0HxCajV4NAh6HSEXgUaTzyBKIehLiUngm5GaPiC3ojDu8p/QsnNs7d/Ly8fejnZSPbC58LUAzdbzABDxbhpGH33MMYdYyg9cUQkvEel668KL7UUGyEF0Ol0E6ucbtF48HOtULgucgaejZA2095NWL7BjHYzlVS4jzebG1Aj5oXX7Siq0CZuILIx/MXVbrdYR8GUWs8AMT/CCbfCs06RM8oismPSwR3ZSLYSDBYey9xBPRZu57GvPcjUkYOXfZxdXmCcFV7qdUW3LtcI33U59JXP8cxnP834w99h+sD+9d6l551/OPy3ZKuSnWd8brWD0FK0NMJIEzESJOUcSMnRU0U29ORQNIPBHXcR7xnjv28cJ2ef5jXFP+BNI4f5+OIsb6pUKcsSZRn0tXpVh/5aHrtwfUy2XwlCV7BqZ6imcxx2jmJrQf9gR/LlOPFxUrUij/k7mBLDmBv3XXb7UUPB0iIoQjAgM4wxQv+yScN0OdIcxmulCJHWQfjiF+A6zXeZtLO4mRyoGnajRDpaa3/XMEaIlqDwyUPgwdNLTzPpnuGJvT7jI0mM4z5aPbh2/Ewfew7v5IecTe31T2hNavIVLPnDxDSXqkyQsKdX9Ru7dHmhcllqxLvf/W4efvhhfu7nfo7h4WGGhob4D//hP/DQQw/xnve8Z01tvOc97+G3fuu3OHDg+qwYt95Y1UqQ001zeGMjGNw0hYLe/wYEIBstAUhX21XrngvahixqTxyaLpoSDN76SKOhkXXTVCPBy2jEWmQ22U9lJnQ+8eiH190aXWoGD/V4hxJ1NFpg0hsnqfWhde7eFRZSWJfwUk1bJboFOd3WyBrCS4Xrr3Ks9mvH2z+XEnuZlmfIKRk0VAbNC4tupq6sOr2eEghF41vuIuva3Nm0+elKBVsG51CNxTCVYHaxWXPJlB8iUTvA5uX/w7YNCVS/SdKeZEs9sP0fyNu4rRyHo2mLJ740gXeWe+dakG/kMZRQfHW1FGY8S9yv8oS3v/35WqqWXgyhCETL4SUbNtIOBrCKIkh5ochU8UqoehRrfg5/qkJeLnArKmrrvjzmDpB5JpjtT982x4H692OrGTjzHah/F3wL6jWYOH1F+3s2tUcfbedzAyg7JpphYvkKemQBhIonPfJWng/d+6FLtmfevYPI9+0kct/uc553nYUU/Ka7yunWUJoIqawOL1UVaoQikdkSrVzHxn6ectw9V3zfZ6v+KCPqYYR0mVsskjdbTgMvwpCaRY+dR1hrcY7oZqhQs5GFOt7sauF6leimmMh4llzr+VegQmExbKu57w5S5SCUSQqFcl84e98ol/jaR/4cz13fMPAu68vZTrfSqVka1Ws/cdXlxUdherLV/5HMHHyaqaefuC4nVK4Wc7U5PnLgoyylBSeHBK/l9uCLViVqpM/ivz2DW7N54tllJpYW8D2Psd2voCmjLGv9bJn6n8TsKbYmC6gSbms2ubveYFxdBjVBRIPHe3ZQbng39Ln06w7N40W08hLVaJRls0qyFqSn2TAcIVld4LbaUV6iHCOeSIOZvESL5xI1VJp6BE2RpIkzwTQLvU1KCRdh2Tzq30RTqjgiDu4iHD+27mOp82HUwn5Ts16ixwz69Q4QiW5masnjTMMjvtTbXu5otsDC1iy9P34rvtdy8SkKjeUyr1TDMcRDMYjnDB6dS3Gi0kNCVBmpfpeUdf3kC+/S5fnistWIl770pfzZn/0Zn//85/nCF77An/7pn/LSl750zev/7M/+LI8++ii33XYb0WiUnp6eVf9e7DhNC7tpMZhZJtKqPPmNyEaiavASlS2n23MNLe1E29KHSBgoWhBqmpFxXFwKWolqfGW22uFwdozKiSrFeiC8yeVTML++joZiswhARJxbSCGhppBmx6BTvXznUafTbX3CS7VV+ZIUIZ9TeOmF1lE8id8hug1qR9s/lxJ3cNI5ypJfJCOS7E1cuKrwq3ZnMfVwP30lEC+q8ThPJ4McFjnPR1oHwJ5A1y16GodIq7M06y7bJt7Nrcd+gZHC57lDfJsVlTBnB27YU8kB8k/vB6DHsJg9OM/+r177hL7L1jKaCIUZER1ECEFSVjnlBoJlxsywt//ieS3XwoVCTFNeKARX/BKxdNiRybNADMEuJTh/04kc8ljQ8XHGGphCZdx5ZbCw9KDZ+ns/8jBUr07YiFcs0jxyZJXoVnIi6LpOw1d4OvYxnvEOYigGf/jKP0RXr/AZZqihK9DyznK6NQOnW4fodnZ4qWGE+SCrhevLjTMzt0hUCcSxhmfgqD5lPbj+VLc/cFPq2gXXV1KRs36PIuLB9SMLdWRH1dGYET4v6k0PMbCRPiVY38JmvhRux09mGdDCdet++JxUhaS8tMji6W7n+cXM2YUUjnz5MOPPXJ8Vgru8cPB9j+Pf+gbFMxPtPpBrWTSv4zC+K+XbU9/G8oJJydccgFSkFxDQSjUhvToDL0mwZPnUGsF9Odg/ihLtpebnWCiZGG7Q16p5USq+zk9WavzeUp4Z51A7r1uP5jFf96nkrXP24UbBmasjpY9fXaAmfE4P16jEXXRfY7gnzabJsA8cv/2Hn9M2YqaCpUfQoJ3TDYLwUtWp8RX/DgQCw52EuUfh4Ydg4fqrChsvheMGpzxBTg3+7hO6zqjRx/jNOU7vHSQa29RebtGeRALTCJx42Ber1KokNIVcq184X4hw6J5ZhBZhf2G4vVzancGxrv1Yq0uXa8maRLfJycsb5E5PX9gm+qd/+qd8+MMf5mMf+xh/+Zd/yQc+8IFV/17MSCmRdhPbanJneo6yInjWMPh85LYwYrD1LLyS0NIVhKGh3TSCbga53LKE1QAbZvCATLkVjqVHkEBlMsm8vQ3Pk/DUJ694+1dCwQrcFroI9tMGLCFIkMJUQDVaAoUAsYaqumcTUcNB63qElyqqitdRSEEV/tpnxFaFl16gfZd2DjWAUeVwa3GF6dgmTjeDgXNcidIXu7DTTRGC3qSOqQteviNNPRE4WF29wffimfZykfIDkP8kPc0Psmfq3bwm9b/IesfaHT6AtHuGHZki0BLdpOR0Zpj840/itELaRhJ1Hv/CaazatXXTLDeW0UVH5z0eCNDFaIGaX2Uwspkf2PwDaMqFhZC1onRU7fSXQ0Es3SG6lb0ikUQPK3/suhcINC8TOptLM0Q8h+m54H5uRn1u3t3gSPHOcCORaRgYhHIZvvaVqzLbWn/8cZASPRFeV2UngqrreEqDmhLcs7t7b2bfwOWHbpyNECJ0uzn+eZxuYlVOt4i6upCC2VGR93orpnD62BQRJfjb112dcrxDJHMDd5m4iINXJCJn/W6iDIQVqr2FIMRU+j7a/jCBcc3yYMMGckq4fnxn+EDxlRhDOwfbvzc6RLd4TCWezvDQp/9hbQfZ5QXJ2U433alSXmxcYOkuXa6c6QP7eeh/fxjPDgbt0XSYtqC6dP2JGleDptfkfzz+PxhWehjOC35mYlMgNqoxxEpSVbeKHd/MUw+GjqRN/RtYGfptm/wgjprG0vr4pvfTLNnBeRvyPN44/RloVWTPai5Hy1HyJ6eu4RFeXZy5GrK2BL6LZTcoJIPnVFQmiBoRNneIbsbtP/GcthExVCwtgi7kqpxu9aSCQPKUuxVDtN7l9sng/4OtqK/ryPGmu8F7Xfo+US+PLoJ9G9c1BpU+/NaE5ZAMRbOlZpCr/dRcnezGDejjB6BRo6GZ+E2LndHgmnNcBX/aREsOMm+FxcAS9hQHvrn/Whxely7rxprUiJe85CW87W1v47HHHrvgMqVSiY985CPs2bOHT33qwjm/3vrWt17034sZp+ni2TV0LLbpFXK+JOt7jKu7z1n2ajjdAJSeOGoqB66CVgs7KiuiW9KtUIwkWYhmqR+qk9PH0fwa8vDn1vUlUWiuiG7Bi7OsKCAEWbWHmOLAiovmOeRzg/V3umm6vkp0U1h7eKlYQyEF1ZXt8NKoatOvBEJ5NbaTp/wj7a19n3knQrtwGLOqCPZtTXPfrTmGeiIoZpD7wTFVplNxHo+YfCsaQfMLICsIfASwwTzAyxOhcOuhUza38/LcJAJJ1LeIeXVOJQbxbZe5Bx4EYKy3yYZdPYw/vbjGs3F1WK4voivBsdmeih4NXLkTRgmHJnPWONsz26/KtpRsDDGQQiQjeNNFZKvgRdIPBaOyV0BRdYxYIKQ0G8G+5bI24+lh6nqE0zJH7wmVzFyC2lCJorsbW7SEl6XHoLwEigJmBB763hXvd+3RRwHQ0uE1V3JMfFVFNcPE1jt7dlzxtlZQR3tQ+pMglFWim6U04TxOt87wUl2EQla1sMz404t8+n88wT/98WM8+aX1raSVPxkWG2p4OqV4KGRkZEv0ush9KVQFOpx8ImaidohuK1VMZaVJrCNcu265MDREruM8udFy2zGr6AZqTy5c3g2fk8JzKM7Psjx17Z2oXa4fpLPa6WbYFQpz11f4dpcXFo7VgI7iWT2jY+2fK4vz67FLzzvPLD5Dw20w5S+z44yHpsQAEYaWAqZfYiFvcso/3fpEoGYj4DtoToG4dYqIM4+jpahpN/HA9EaqKOzXYryytsjY1B+ClGQ1jyN2iubsjZsWyJmr4VeDfsiCu4DbykHTp24kWq8ysBAIimUlB71bn9M2VEUgI1HwPCLoJFqTfGWjjpQeC80EJdlyIdrjwaTgyRMwOQGf+N/wb5+B737nCo/0yhFasN+OY5MkzzER4dGIyVOmSZ8+QDzfQHc87j5poLRkhJJ/hlxKRwLKyEbc0R0QjePsuoP60ae5v9dg98YyKd3l6PcGUeN9WJ5OwQ76GnFnhqlnDq3XIXfpck1YkyJx6NAh4vE4999/P4ODg/zQD/0Qv/ALv8Cv/uqv8pa3vIV9+/bR39/Pxz72Md773vfyjne846LtnTx5kv/yX/4LP/3TP81Cy1r7xS9+kYMHX9xJmK2aTaNaYFeu0Y6I/F48R4/SyqfWoaVcDacbBDmkzC3bQPMZioWDOKs1vk85weDsWHYU3xYs1zYG65XPwNz6VasrWAWElKHo1hLX0vQQlU3kivD0HEW3zpxu61JIQVfxr0J46YVEN80X+K1CCn2RGse8HZSVHsqJvex3QnH9HvMlcIncgUKIdoipIYLz5giJUZ3nl/tz3NxsnT8RRbaExLyzgVEzuH4kgmrsJlLN4/TpZbYkglC/nL1MQ4+w2NOPmohT9yAiLU4/s8TEgWtbjKU4N40pAmHL8jWMWArH8zgVCZ1oe3IXDsO9HETUQIig0iS2i3ssGDRkCDvTFT9wtkWSgQAimy5Nr8FILhSIj2ZH8YuTFAerzG7NM2bonKzfgR8bAM2E5j+BXws6fMePrRq0PMc9x7xpF3oiaKfhaji+hqdqKJFO0W3nFW4nRN3Yg5+vgRDoqGite6ahNBEI5FnVSysdTjeDUMgqLec5fTTP7MkSixMVTq5zOJw3E4rKdU+nGnXIecP4doY+grDtizndAETcCJ5/qoKI6kGuQEOFuIH0fKTr4RfrGNJHaT0n6pYHsTh9hG7LmlbCX3FOKAZaIjyHtY48g6l4cG+XFxa6ed1exLiN1ZNUulPtim5dnle8s0KaB3aGE9XVxRem0+3xucfbP+9qDNP4id+C+HaIbW5/3nQsFnyJjMYwonGSmQxeRCfemCVdCatjl/QRIiPDNMQwf1Lfzm43uF8PiBkG6k+Q1TxcVMZLN+597MzW8CtzeIry/2fvvePsOus7//dz2u1leh9Jo97cu40BAyYQauhLCIT8kmwWdhMg2dQN2Ww2pGwgy0JIKAlJSKFDYsAEbGOwLTdZlqwujTSa0fS5c3s59fn9ce7cc8eSLEuaGbnM5/W6rzlz7inPOfecp3yez/fzZVwEz0R7eID+iRNMtvdT8wxKnTdd0nkiEZ1IXRm2oHarhF08IempTPOItxUA4VXAm4XWVnjwQahVYXISjhy+pPMvCcJ+lIRlFukKFdkka9xQM5nQNVrCPZRbI2xan2Ldf7uJ/ngfANO1UWbyJpYjOTplEjL9Pp9MpMmOj3FnIsGJsTgFW+MrtTA/Mv1zTFX9e6RKB2V+34pHsaxiFSuJZ8VItLW18fGPf5zJyUk+9alPsXHjRubm5jh2zPcyeve7383u3bvZtWsXr33ta5/xWPfffz87d+7kkUce4Rvf+Aalup/Q3r17+ehHP3qJl/P8RqVgUs5lGNQDCfd3opLBBdKtiT9ZKtINILp9CwCppoHWAukWd8so0uVIyyBSVZifbvLdO/ydJSvDhSJn5mgpy4ZaZcHPLemlka4Hjj/YvpjMpXD5EykoqnZm9tJnq3V7FuGlYVfHrSuoBqIlNqlHSXrz5MMbKdazVnUoLWzThi4oYYeh+M+lJW2MgZuoqSrv7+kiE7sKOn+LUuv7mNZuJ6bON7jBYmwn493vaxzj6pYJIPB1GzY6yO99CvvIIYbSZVIhi8x4mZWEM5YnpPohUjVXw4ikME2LYaOuuFQMNrYsjdINQNvc0/Ar80o1vLJJSguUSgu/UTgehI3Mq7O467Ok6uU82jJA136fsCu31FDbajxq/zK56DVQy0HhNKTqHi21GkwFxNjFoPC972IePoSh+52mvO3PYDpqCKVJ6bapZemUbkJTMW5aj9Ln10sLareaqL+zXvAChFWFcrOnW5PSLZeZp9CUTbdQuLzeIlo+yDBacXRmOlzm1AkUI8eAMlDf6JnfS+PGIcJ3bid853bUziRCCNTetJ9QYb6MN1tE5qsIIOL5116xPaSUtDSRk1lnFk9tIt3CArVesVSaSLdEpO6vJz0KL9CB7irOj9rTBuaGXSQ/U8G7DAlwVvHiQCWzWPnuOg5GzJ+kKs3NIC95Qum5h0enHm0sbyl1QTiGiPQh1KDuxi0xdmoYa3oEq1qma6A+aV4eJToaqNvzoSH0vhbSnYMkRzv474keykLwU4VpBnLfpUv13+kJK4tjPv9IEelJX+lWnKSUipNLBm1/e7yTDScP0Dt3mpCw0K96+yWdKxJSUer9jjZZ9+IWUA47rCud5mEvIISlGIe5OSg0JTey7cua1dTzJIT8sWC1WqAnHNiqDGttKEoYVUrWdUYQqmBdegiAmlujtcXvlysKRNqaPHOT7aTw+G/poF8zpvl9tgXSDSBSepTjjx9fvotbxSouMy6IkYhEIrz1rW/lL//yL/nmN7/J3XffzZe+9CU+8pGPsGPHs1N5/NZv/RZ/9Ed/xA9+8AMMI+iw33HHHTz88MMXVvoXGCq5IqXsLGvj/kA+oygcDrUxpLecsa2ILh3ppva0ARIdjYj0yaZKPbxUQRJ3yhzp3YhUBcqRoHMjLyPplq1l6S+emUQh4bYgVRXc+mD7IjKXwuUPL1V07QxPt2cdzfsslG5RaeDWlW7toaCBPxyKM+IOExExbjGuQhHKeZVuzdDrpJsjbYx2n4Q6YegMp16Cpxh4oTWUlU3sd1/PuLWNb7ufZqTvv5FL3khV98PmBmI5usMF2haSKaR8ZY9Z990aShXJzVSwLffpp182qOMVtLp/oOlqGJEkeXOOqbrZ/frkZnRlaUK+AZSogbq+AxE1kJky7sk52oyAYCvJxUo3gNnwNIW2Cj0dPulW0SPUTgSdS29TjpATZtf4HchwGqwiHP5TWPDVuwQDfCklbjaHHnUR9Vnegh1GD8ex9TBqeLKx7VKF4S5ASYTRN/vPSAS/o1dVFki3xUq35kQKCypZgOJ8Bs8N3hWnslg5sZKwLZeQE3R0K67OXNInRz0nxoDm/+bnVbo11wN1KB1Nvm7TBbw6QbJAurkSLEfSpgb+nnlnpkG6CaEgVION7iyadClYQRhqPBKcLzcV/N6reHHBs57m6WaV8ByPwtzz14R9Fc9deK5LaW4x6bb3W1/GKvsT+p7jUHyB+bqZrsm+WT9SoLMcIvLW3wHXRjbZKUjPwTHLzI77VgmKqtLS4U/gFz2XmPWUvx0KxdAapB6mdWgLihSox/v4cdgnjEJejZs8n+Dbn48zd/T5lyjHma8hbQ+3NEUulSATCzwme+MGfZP+NZXcMK3XPrNw5HyIGCpKfea72detFHXoMmc5UB0MymWdw8Zi7vIp7UuzwbvkVjJ0Rfy+yIyq4tKNLRR6dQW93v9YlwqUlXp8mlhIxfOgpEcbnrq1rdcxcvgg7+rUeH+8xP8Lq9TCddKtFtyjDm2WJ773zedcNvlVrGKpcHGMxCXgqaee4s1vfvMZ6zs7O5m7jBXNcwHlfJ5QeZR5K8w+w+CeaIS4HKBzwZtHV1H6W1C39Cyp0k3RVZS6ciHp+TMcZd1s+HolnCLHI51Iy8MtOJwoXMOktRmyozB/YsnKcSHImTnWVIJBciNzqZcmmk4GZNPzNLxU0w28pyndliq8VEpJm4w3spe2h/zOqatEOFlXKVVlmbWab5J6YUq34L5pItjPw0NBoKKhVKrsFj/Pv83/T8YzvZRj20AojHf8JzKhTViexks6RxiwMqx3PY6l+wGw5uukW7oEEuYnVk7tFskFA8mF8NIx82hj3ZaW7Ut+Tm1NeyPLpDuRpT0SJLQoSn/GMJwIiLiMNoMZs+kaCMo6XEo11F6nN87SqsBIdgOlrb8EZp3YMes+GidPXrRPo1cqgeOgxx2KRgeTVgeT1Th2rURVDzc83VroJKpHz3O0i0D9PV/IYLpAuilN4aUhRVCSAUnUHF5azs5jVwOizak4OPbKkbrNyE6WiSjBjHBWUajpftm8Wj9tTe3BhUJpjTUmIrzpArJUNx73gmstm+7iZ80cx22uR5UQrYbEESpFO3jfY6Gg3smukm4vWsjq4myRqnRQ3RrZqZVVJ6/ixYHxp/bgOeeeJFE0jezoyMoVaAWwd2Yvluf3S7cW63W1qkN5BOlUuHtiDr12lNmJ03j1ur2jtx9V89sOXeRp1X3f0KLRh6uEUOdmCA1tQjG20Ztfx9dCARlyrfUTNs+PMFPUKI8Or+CVLg3sSb/uEWqIYkcX8wn/3ulSZ3vtCGp9cm7a2IyqX9rkaSSk4KLhoTwtg6mLjsmjxlZ+5F7BmDqIWxqD9nbYtg3amxKWff978I9/D//8pSWw/bgw5EYDUlUvnySs+s/PgZBBt9aBRDA0GFidDKWGGsuniiMkoxqehLzWSo+3h9g3/xrtyBMU1mzlSHIz/3ltniuvDPF3a9NUlBgztSiT1TiT1Tgh1SMztp8Hv3x5E/WtYhXLhRUn3dLpNJOTZ3bI9+zZQ19f30oX5zmF4uwoLWqe7nCFKyyLYcMg5fXRbfiDK3WgFWNnP/q69vOqHC4USl2dkqpnMHUUF7tuNLpDqzCgmg3yo5YP0WMcQViFyxZimjWzrLMD+fKCp1vcSpLu72qsv9jw0suudNN03CZPN1XIi8te6p25j+VadMgkrutiKA5pw59VqoTXM+UFYYDr9D5EInxBqkpdBNuqakAKVOsEh4ZAKhpKSMFDQ3og653HuY7XE3PmCKsOg7E825JjjAqHp9o34CKoZHxFVnesRlRzyIyXWCnEqgEpYboaeiTJae9YY93OjqXxc2uG0FXUvrT/jytpcWMo9WeihH/t4XigdCu6PinZ0xUoSg5pHQwcztAynqCcrjH/5mOgehyvNPmWyOOwZg10dsLd34Mv/QP8+7fh777gG/u65yef3LoKMZR0SFiz9BizmJ6OHopQogKK//t3qgMXezueGYr/rDXCSxV/0kA0Pf8hZXF4qSIthOY/r5V8dhHpBlw2ZU45Z5LUgmyq400Kslanl/6QX+89U4KTc0EoAqWzrnZrujeR5mQKpktXx4bG/yVnDk9ZTLqtq5ep7ASkW7SJdMtNT1xw2VbxAkHtTJWCserrtoplQDWfY/LQ/sUTjU+D5zhMHz3YmGR8ISBTzXBrzy10m0nWuf3BF04ON/sIj2cmiLojzM9Mk0i3oOghugcDhVXcOs2ku5WcMkA+5CcNMPuGKKYGaE23gTtFZb6VfYbOIUOnoOvQJni0lsQrPP8ymDrZGsa6JE7mGPOGQ7GeDbyLHtZO7GlsZw/decnnihoqthbCU43FSreIg6tKhJTUCDHgjhK2J+CWTfCSl8LtLw0O4nl+iGmx6H9WEKXx8cZyhx1MLJ+QbaynH1tVaO0MJk43t27mlt5buKrjKj71xKf4s4P/mdPVwxS1FIOJI/T1WXidA8hkK55mkFE3YiZGSXSlkcYGJvUuEppFT6REbySP5xTY/6MfYtVWM16v4oWHFSfd3vnOd/Kbv/mbTE1NIYTA8zwefPBBfv3Xf52f+7mfW+niPKcwPXyYtqZQv5OGhlntpie8MMhavp9LrZNuSRlUptWwhxJOkivOc0zGebTH9yJwp5o6L4fuWrYyPROytSzrZBACtaB0i9JBS0uw/vmqdFMMfbHSjYtUup0FlUqBkKeBlItCS8uR9Ux5QYO7RulB6UqipJ+9MqlZ6aY2Kd3M+rOrAV44htbE4ymO/3x7SpjhTr8OKDsaW43TbKwcp6KHGU734eTzeK7LbCVEV7RC5vTKkW5G02SjJSIoiorpFmkRvtLs6s4rluW86mBdyRbS0KVOop5VMiDdAo9Fu+ivWwgvba3mmQmnue6hk1RaqqBAyFVQhvIcPByD9npCg+JRuO06aGkB24JyGbJZsCzf2DcbEEDnwgLpZjR5pcybEYxwhNNqlqjThY5Ghzp4rkNcGpTFSjcpJKawF5FuhiooNSdSkCZqPfurVcyfQbrlZy9Pp29+soxG8GyfjgcP31RhLb319uBiQ+cbWUz1YP+o4g8GIp6LaXm09F+JUa9/cqJyhtKtS6+HWjdljI0Erz756UvzB1zF8xeyGrw3QtchlUCzy6tKt1UsKaSUDD/4I+xKuTEhWS2XKBXyzIyP4TYphOxqlczI5YnKWA4cyBzgwcmHmAoV6A4F4X24NSqeQn/IojCXoZjNUsxlibZ3EYkF6qSkOUKPeoi0N0Y+uh5PCKQaAkWla816FG2Awekod8XjbLVs1lZP8Sb9MSxUKlZhRa09lgLWSAHzeAbh2UxEqqSLOqoraGcQ1a1R00NUXY309WdGYV0oIoaCaSSQirFI6VaMOiAEm/InebieTAGgdvA+vFqN0sGDzD3yGEc/+3km77kXK5fzN1j4u0Kozc03ltNOkIn8kZRJbyRNOBFatP22tm38zav+hrZIGyWnxLHCAfYXfwSKQpU0idvW0/HAtxClPLgOBRGhXOwndl2KtvSr+I/ud1AN+Sq/mGqh4GFVKxz6yY+W/2JXsYoVxoqTbn/8IbftkAABAABJREFUx3/Mli1bGBgYoFQqsW3bNm6//XZuueUWfu/3fm+li/OcgZSSYmaSFiPosJ7QdYTVQ9vC4GgZSbe6Z/uiZApmVMGrFeitZ6F5sM8nFrTxGeZtf3ZNjj0CpZX3y8jVcvRo6cb/C6RbxE0T0ZpIp+dpIgWhCuTFhpcqwfXLsyjdSrkMbiO0NBgIVSIbmXJ90s1Apyfcc8FE70IiBQClqRwB6SZwo0n0UFAu0ww6x7n0S5nyriSsumxPz/B28SMA9rWvR3gSK1+gI2qyLl1mbgVJt1jTvXcUvyN1LHSCrMygYbAutTwKLiURRulLg+kgqh7JBulWRkqJqofQ65mmnHn/twyHPG7v15iPpHikdwcTJ6rcuCeFZqrMDGVRXnuKYrZMpe9VwYm+8xE/XNEIQSwGoSAMk/nzZ4p1Gkq3oDOesaKEQiFm1Vkq2jQ2DrVlU7otkO4BCVRTzKcp3QQlmsJLZRWlfu88s4JdWaxsy89cHmVOOWcSUQJj5ZFEcA0tTh+doTqZfRFKNwClI4Fx+ybUNb5KUhnqIBJWkUJQVVSKFRvROUR7vQ7MUD1D6daq+gSlSfC+G6ps8P2r4aUvYjRlrpW2DfkigiyZFbQDWMULDPLMEDuzVKSSWzwhdOiJx9n/8EOcOLCfSnnx81aYeuGob4t2oH4KJ3wbECldkBZlV6E/WuPUcJNiac36RfsnrECtVlE7kSp4mt826pu6UCO305FP8oAWEHWv0/xsqXO2wezI+Sfinkuwp8pIu4ydiDMTKpJL2LiqZLNpsPb0McK2yalKO10btlzyuSIhlWoohdR02p+mdAPYnB9hV1MyBfvI/dT272fsl/8zsw/twi1XyO3bT+7AIX+D3MreaycX9KvbCd6ZA0aIDZFuonEdKSWytti7c2trQCQeKj2AlJI9rW/DVSSdr7yS2Ff+H/pTu3AjSapeK/tnh1F1hatNjZxa96kVENd9kcO+H3yHx/79G5RX+PpXsYrlxAWNqG3b5v3vfz8nT168kaZhGHzuc59jeHiYu+66iy996UscPnyYf/zHf1wUjvZcQ+3+I1i7R7B2j1C799Civ+dafvo65+TsOY/vOR7VYpa2cN0EXQhmVI0oXYEh9jLenwWCJC0CJYgZ9R+PXnMa1XMYjXcxHmuHmsW85zdOAgn7vrxs5ToXsmaWeNOgs6Ao6OjobgilyRD9+RpeKhTlzEQKS5S9tJLPNkItOsJBx7QYXseM52e7HNB7ib1yO9q6jjMP8AzQm0g3VQT33myyyRCpFHqTdKxScwl5FtKtQaiDfPLOhvLyzuheFOmyr90PdzPn/Vm4zmiNzHjp2RORlwhDC9SObj2LaFb1O74pox1N086631JArYcDKuFoQ+nmCo+q9Emhjp4diI4IVBy8XA0k7FjT29j/nlI3A06FztG0vyLiIvtKHCq9DO74H6BH4dC/QXkX3Hkn/OzPwS23BAXInJ90c+t+e0ba71hWHI2aq2OEDfJK0Gnqiqy52NvwzDgL6VZVTBQpGubSIUVQJYQr/RdE90zQA3LdrhRoxuVSuhUyFcJNpNuJtF9+z2plSygYBF2s8lmoCkos5O8f0lAMlVik6b5VHdDDtNdVq3lpYQoH0/KQbhWERrKudLNk8NwLz22YK+enpxpeQqt4cUHaZyrDja4p5idKuPYLL4vkKlYAh74J9/wu3Ps/4Pj3AZg6tB9F09CMoA5v9nY7PRzYPyi6zvzYyIr1F5YbBTNoq8Kpenip608aVTyFHnJMzPh9JSMcprU1UMSXqjFilk+m1NQUtprADrmNCIlC5yYivWtRlBTRuQT7Nf/+DnijDIppThQSFE48f3zdPNPBna8hrQqlgV5ysaB+Wmc2Tdz2Xo2yBGOskCYQ8RRoOgY6CepZdOukW291kqOyn0xdBReZfYTqvn1nHKdyuk6MrjDpJEv+/QnXTtGuzTOOxpcScQqqwoDWQ+TkDOb3D2D++Oii9+mXr/xlburxbUuy9hTT5knmLR0rNojeH6Fj7QYStRJYNURunthYHy3dOtstlaIMns+N61O8/XVDUMuy66v/zLf/4n+v6PWvYhXLiQvqteu6zte//vUlOfHg4CCvec1reNvb3sbGjUubzW5ZYDlI20XaLpjOor/nWl7461UsMB3cyTxe8ew+QbblYpfnSWr+QO+krtOl9pJoisNbzvDShcamWenmttUH+9Kly/TVbPdcdwuVgTTmmMVY7QrM5GZ45K/BWrlZ7JpTo+pU0dRgUFdQFNJKK45tQ5M/0cWqAy93eKmqijMSKTxbTzdxnkQKtXy+kbm0o0npdioUx8O/pwPRiyNHDBHcN9GkjrGbQtlEMo2hN5nW26AqKkINI4RKoes6Jiw/rLI3UuRV1i72t63DFQrFOgHUGraIxZUVSaZguRaIoHPm6mmqskJN9Wf6Wo3OZT2/0pmEsI4SCrPWa2OT18M6r5u8zAGgq1HkbBUkuCfyRMohrt8VEGUPtG+F6nH6ZgPChg1ZnngihBPtBbsKHVvgJ/8HHv2c/31rkKDh2Sjd3GwWRffQ61mP5y2/HgmFI5RUf38pBb2xZVK6CYGHbISXAtSUGkIqsEC6qQogqNZ93QyquHoMo3MNofZenMriRD6XjXSbCxIpVKVG2InS523ELuxgR7yJ3L1IpVtj93UdhO/Y6v+NGYh6XVEx6ypYgne54mUJGQpCjYAaIWb42zaHl0rPxTDqSRpch+KLPDHSixb2mab2m12TA9hMj+TPssMqVnEeVLO+2s1zwPInm2rFAmaxgGP5k6K2Zfn9vzoKszMcf2ovAJ5tY5VLuNbKT6AuB4pWoHSLhuqEhReQbi1mhjXt7URiMdq6elC9hT6sIObMoEn/PpQMn7CLHDgJpengmJta0BKbSZV0fpAIJuLvVB7neDmEnAtUdM912HUvSWlXKHS0ko8Hz8gmO2ij7PZtZ+x7MVAUhbwaR9THVBsZZEgO0WLF0fs6aDULSBQeqYeYarKMe/BHjf21lhYAqlPTeLa94uGlwvbb9u65bwDQh8OkrqFJjU6lhZCsj0VcD5lbHA1wx+AdjeVDpQfwhIq86i0UXEnba24lPnWI6Nf+Cq/dnxTuWRMjEVUpeUF/cyTUR0XvoFwoY5s1Jo8eppSdZxWreCHgghmJN73pTXzrW9+6pJN+4QtfYMeOHYTDYcLhMDt27ODzn//8JR1z2WFoCF31MzmGtEV/z7XcWFcfzMh8FVk5O4FjVkwSIt+IDJwwknSKAXrDTT/RRaq2ng0U3R/MNZNuTjIIxRqsjbM2XmGqFCM6loODp3HRCBWOQP40/OhPlq1sT0fOzAGgERCYBUUhRQuuayObSbfnqdIN5UzSbamyl1qFAq7jAhJHCmbsdnL6Wg5ZgRJzsHX9Gfs9GywKL20qRjPppmo6hhq8B7bjYctgYyfWwV7r5Tie4FS1ndewm97yHE92rCc/Md64xHAlx8hTyz+wz2XGUUVA7nmhVrJeQES1hbvOttuSQSgCbaAVEfFTsB9VJjmpTDHv+mVIdQW/lXqoSufpITp6Y2xX/fdgX8cG5kZnaTuRRnH9+yw25rCqNkeqL4U3/j+YPQzVebj3f/nvczQK4fr7/2yUbrksRqLZz82vR7RwiKrm76957XQlYmfdfyngCkmkiQQaVqpUJI3QpKgquCVehPozaogqrqphzZzCnJtAOvUw+fqjeLnCS6tFm4iSAyCHQi5cYVw5hmd1csVCnawqCOWZvRsvBEoiTLgui606/v1qk8G7XLGngqpEMQgbAk3IReGlnusRrif96d28jdL8Kun2YoRpS073voSRgVcx1XkdAO1VSS1kMX40d3kLt4rnJR6ftPirk318/lQvh+rCH7u6uH4+dfjgov+llMxNTSKbvN2sygsjmUfB8idlVA+MhcmRutJNIlFy85yam6NaLpNqa0N4ftsc9iShXECYlQx/Eix8cpLo8EmEdEB6hNckEd46UmWde2IRLGA01MGV6hjHTYWhyvSKG/xfLOwFL0m7QtW2GqSbLnX6LN/nz5MQ3/byJTuniCYbpJtJjRPiBOOpPMWZKUQYEmaZY+Ve5klhap2ESg/4+4XDxF/5Cv8gnkdlYnJFSTcpJcLTUdwKnRk/SV5NCL4Vj9EpO1HE4vGUO704OuCOgTvQhMZQYjMld4ZUVGUqZ2INvRZP7KHtbW9n4LpbSYsyuA7Sstl4Yxt6KJiMbXVz3J1vY+eWQP02/PjDy3jVq1jFyuGCGYmNGzfyh3/4h7z1rW/lYx/7GJ/85CcXfc6H3//93+dXf/VXef3rX89Xv/pVvvrVr/L617+eD33oQ/z+7//+RV3ESiD80s0Y167FuHYt4Tu2Lvp7ruWFv2p/UHmcLZskQCmbo9UIOgSHdJuobGdtKFAzLGsihXqa7FRTIoVaNDjfemuSkVKUH/Vfw3wogVKpcfTk1bgLg9z5E1BcGfPsnJkDKREyuF8FVSEh00RVD+dYUI6LDS+93Eo3RVUWebqpF0S6NS2fZRenXMFzHVqNKmtieTr1OdzoGspaQLpt7Np0UeXWmxIpNCvurGalm2NjKME9dRyJLRSE7asgpHTZef17cKTKmsgcr4ztYSTVzffX3IRbCRRnXdEqJ/acO2R7qVAYOY4mg86FDLUz7wWEQmeke9nLoHQnUYwwbV4w65ypk6SxzjUo9aQV3vECSXOIwkCMN7WnAEjWSvzoZJhYtEzbaX+d8EDpqTB2eB551bvh2p/3D6pHYd9XfFazrT77WK36mbSeAU42S6g5iYLll7MWlbj1zKVmpY2osXxhuJ6Qi8JLWxSbeJPSLazAB3oyKHVCPSTLKImgvvMcv94Q9WfVMV0cZ2XD4aSUOBWLsOLf71mj/g5JBbe0lWta6h4xS529ui1OuB4OakuBbbm0eP5vpSGoWXM0dMWKgetKBg1rkdLNkx7hens1ceQghbnlfzdX8dxDXiY4uumdnFj/JoaHfGNypeoQ75/l2KHzE/irWAVApWhiWw61ksnfHkvyZ8Pr+KNjQ/ztfr9TY9VJN6Go1KoVatWzKJOlxDSDSVOr+sLwFVxQukVtLehn1ZVuc7aOWgsmpI1wMHnuCEHSDszxi3WlmzY7R3j0OK1ylldW/oGoWsHo7qetluaUrnPM0Bk0Z/lp5Sdk7SqalLgHDsATu1c8/PFCYU/6v7m0ymSTYYr1MM9+r41ucwyAOTNG1+alS4YVDocakR4x2TSW0D1qhsqm3BifMt7MtJck5MyQ7MoQbrUIb99O9MYgs3zl9Gmo1fw+2ArAzeWQ0Tjdc1/HEf5z851YlIKqMqCcObnsTRcWjUu6Yl1saNnAieIRHs99n6lijtHZGq0DnRy2buOA3Y6+rZ/14R/QXjmJHo+g6QpuOEiw1S7m+eTJQfSeIILk+CMPLuNVr2IVK4cL7rl/4QtfIJ1Os3v3bj772c/yiU98ovH5y7/8y/Pu/5nPfIbPfe5zfOxjH+MNb3gDb3jDG/jYxz7GZz/7Wf7qr/7qYq7huY9mRYJ39kFccX6e1lBQsZ7UdXASrA81DVKXU+mmnal0K6llQvXsiC3VKVTPQQrBwz3bAUhPHuNA7bXIeDccvgv2/suyla8Z87V5QjYoMuhYmCJCt9NPW0htKDKUoXbUNW3nOMoz4/InUlCelr3Ue9bhpedTunmVGq7r0h0JZipL0a1MuIG57ub2S1e6NU+K2U3JLUTNwhAmoh6K5tbDkaSTQ3oWaHHsaCvz0p/9imsWr3Qe4aGeHeRKni+5x/d1mzlVpJQ9e8j2UqE8OkJY5JHS9yrzIl3MNynduqLLq3QDUOJhlHiYdjcg3eZcn9RwQwYTIb8MtUoWs+x3gjdEowyUM2QjKX6gb0BVxug91kakEIK0jbqtwPDuWSaP5+GVfwB914FZgHv/CPLjTwsxfWZ5v5vNPS1zqV+PZCPBu+NZnXSnwmfsu1RwBYvCS4uKiZAC8OtcTfEJoRPp11JT02iKzc3qLkTd181zfdJNCasITaFStKnkVvbdt2suBsF7OVcnAA1ziKFQCqFYKOs7CN22tJYMQlOINBHjlYk8KWEQESoOEtPJ4NZfaKEYqKrCtfEKZtP99jyXUNMkUSW/Gkr4YoTV3tNYthN+qJRnufzRhlMMpXfhnn7ichVtFc8jHNx1ise+d5Qn7hkmqaca6726asuuExGKqjIzNkYpn2ts0+zzVi0F9ekLRem2kEgh6jWlga8r3RwJZq3JemXnW6h0bGWuX3I87TCg7AZAIigbfQCosxncDVuIpVpJyBx9znHCPXHa9M1ojuDBiN/vUJDcoD3FVKIAhw/DY4/CffeuxCVfNBaUbp5bYZo8UoGfyxf43dkxlPqsdIZOosnUMx3mghAJKSiqwPUUYk1tpKl7mEiumTmCjc633NsAv8vefW2O1o0FooNBH6k8urK+bvbpcQzdZGDqi4TcDAdqKf4+6U/0rQ118fTRq6xYePOLiezrunx1s0QyUtlHxXTJ22DnJRZhMuQwKNHXWoF8Dtv0CPVtaOzfSQYXwRfy/STj/r0bO7gfs/rCeHdX8eLGBbM4J0+ePOfnxInzp+S2bZvrrrvujPXXXnstjnOmF8gLAk3eVmfLJglQmJ1dpHQ7oetUrChrmwyuL9XD5xmLWCfdwhhonn/OvJejtX8Hbe2DRKJJeuv+B/dvvpbC5g6i5QkOZm5BlOrKssPfWbbyNSNXyxGvgtJEhs2qNqFKnJgmEJpaNwjXliSRwuVQugnBsoSXOmYNHBfPdegOB53RYnQbR+0jrFUGuCH1Etam1l5UuXXRRLo1h5c2PbrCstBVG2n5Tbhj+SSa51mIOmlX8SR2+tbGPm/kQVxF5e7BGylP+s9bV6zuf7h3ecPYqqPjRNQSQkBUcyDevyi8tCe+/Eo3AKU1RpsTDCay9fBSVRFMRPsb6/PTvslxqiVMIeR3mHZ3bqY0cYCO8RTVhP/eeOt8Iu2pH52GSBrW3wFOzVeG7f5ioHQDOI9qyc1mCSUDr5SMFUUIwazR5IVndtCdXD7SzX6a0m1KLWPUIih1UtdXBAgsLY3h+s/+DZX76OpJ+zt4RaRXRjFUZF3hVphbWV+3cn5x5tL5ev3VVd3GHW1+8gNFVxHLoBiMNhGipck8qUgH1bpK0PKKeM11qWLw8mQRVwTlkNIl0kS6VYurpNuLEk19HG8hqZFbQymkuGZgCvXwV2Fq72Uq3CqeD3BsF6sajAfieuBHWrVdXMfBrSfsEEIwPzO9aH+9Sd1VbCIsnh6S+nyElDJQujVNki8o3XQhKZbrbZ6u4yRMHL1KxDnNq45/jqiaJ6NvZCT1U7hKCK9aJfPqd1Ec3ExbexseCj3OMK3tNXSjuxFiuoBXK48xYUhkPRkXs7NgrXwf+dlAStlQupmizK+k7ueT07PcUq5yTTV4ZqyWrec6xEUhaqgoQqAq3qI+iVlPIHbNrJ+Z9Avua9jvDjH1RJJaVifOE2jf+k8kb7qa8LohrPkMTrV63knPpYI1eooB79uoXgUBZBSNkyG/T75G7wkCZxSB0pUEVcEdnl00Nrm++/rG8kjVr+eHJ8u0dMXQZibJZDqZOrKF2FiW/vEfoihga6149b5Ei8wS8hwenG1hw1ALvV1RYlGN0X17VuIWrGIVy4rlk06dA+95z3v4zGc+c8b6z372s7z73e9e6eKsDJRnVh4BlDIz2J7CIRnliK4zpmvElBRRvSk73HIq3VT/PALBuvwW1sjNaK4gFk+TmRulVs7ysy1VYqrCgcgg6nARtVxBm8tRi9dDEU8/BoXJZSvjAmzP5sbINiypcJAIj4ZDVIWgzeohagiMqwYbBuEXi2alW81dXiXV2aAoArkoe+nShJdalQpOIoztqYuUbsfCCbLMMOKNUVWrRLQIFwOjKbwUEZzcFMHMq2I7GFpA0Hj1jHZCisY11iSk176pMX67KXSUHbPHmI2kmTk1itXWjaHClZslJ55c3jA2ZzZHVPHvleMJ1FjPovDSvkTvuXZdUiitMTrKQR2QlQHxp4Zi5LQkic511Mp+B80Oq7ykrl6qaSEemHQJVQ1apnwiTrTXoLXGiT2zlPMmXPfzUA9TZfcXoSUFvX0++Xbk8DlVugAUp4h0WuRjV3Cq0kbRDoER5pQTkG6e1UlnMnTuY1wiXGWx0q0WLiKFxFObyi1U8mon44nbcNGYimynNx187TlTKJGgzi1kVvbdr+QtImKm8b9tR4mT4Nj8NqiNUujgkuq1Z0I01aQO8QTJlnWN/y1ZROpNzLlikNI8dsaC9xjPJRIO7l2lSXmyihcPvGZPVQ9cRQe3SjHTgaF6FGtJPwPl3OHLV8hVPCcxeniWo4+fZu99i7NjtoUCL9BMTSwizxzbolZZrLZp7Q0moXJNCV2syvM/vLTiVPDqPqURpckj1fUniCK6Tbnqk2BqrAXD7aDVmuHlez6PcDw8qZCwx5mL+uGUVU+SeePPoSSS9LdHmAltQtUETk83ariXVEnnoGEwVfcou03Zz7G8Qlb3E60hJUwtf7//YuAWLfSBOCPaLCJ+irSweHmlynrHRsejFIozrnWgrrt5Sc8bCamNYV9MBgSwWc/6HU/HGSrP4aDxOvt/ccK5gnCnjkIR4dVo63mK2slhPMumND3jqwoXiM2mZCFLDffkPlwtQiW0lhpR/kELQjwH1K5gaJEM4+Wr4Hp4mRLeRK6x3bVd1yLqW56q7qU1rpGvOCjdnTidPVipDqzWTkDQ39HH5NE8nhRYmj/Jm/BymIpGyU4zn04zMV2hUDQZe+LHy3bdq1jFSuGCp8vf//73P+P3f/u3f3veY3zhC1/gP/7jP7jpJj92/ZFHHmF0dJSf+7mf48Mf/nBju49//OMXWrznJBYZXp9D6VbOzXF9PEtCWMx5CrYQGCKOpmrBPsuZvVQLBqtCwClxBAAzHWwjCuP86Q23c7SY4/j227hy7w/prh1nLv4y+ktH/Y2OfAeu//+WrZwA05VpZk8P06rM0Y3NmKOBECRKncQ7tCW5T4pQ0BUd27Mvk9JNIJvYs4tVuj19H7tWQyvWEHaJzrDfAS2q3Tzm7W9sc8fAHVwsmsNLmxk/SwkGYhqgq8EstltXvKEYCGmCCGOhYkS7GTG76DdmMaXGf+/+Chu1CYxZBWNUQuw2dqon+ddDktnRIh2DiYsu9zNBFj2iab9DW3FDaKEo87WAGBlI9pxr1yWF0hYnRgRdatjCIUdAus21buWKyfsozhTwHIfBnXfiSsmrt6zhrkO+cfKPo0Pcrs3RfbKVbI9PIopNOdonOzh9JMvmG3ph6+vg4L9DehBmHwFVCxIp7H8KrrjyrGVr6z2CZkhS5X0cKA8iESQiYfJ6cJ9SWi+hZVTruoJFs8rheA5tOtTwdANAKMzaGuHorQwU76e3+hQi5PAE7YAfYqrGAiV2cYVJt3LBRJdT5KwYIlRlJGpjY2Nbada7x4mn08t27miTlUHVconrQciHeRal26ylsSbsQp1XdR2PUDQG+IPcSmFV6fZihOexaDq3sm4joWSEfZMhLC/Gm7YXoAYc/jbctA605SPiV/H8gZSS00fOPoG2JhYQF7M1DbuJPKuWzyTSOtasY/zwAYBFGU1fCOGlizKXKgmUUhEvGgHpX2dMmJTq2em1eAvh2jQduSNIBB3OaY5WX8Jw7KdIqICUWLKupk4baKqC1KK0lg/TEZ6mlEzR4cQ5IcrcG4vwjkKZ47IPa/YUhY5BGtM/4+MweHEZ75cTbs7EOp5nLR140YnG+s+0pAnlX0v7q9qp3DXCW3defJ/3bIgYCoqQuECMxZ5uAKW4wc1jT3By8ytZnxvnQDVG+6ODbHzNJDg51EScDW88hJk1yO7dS3rtGvjSP8ANN/o+eq+8E3qXfrJXTOym0/DJrYPO1UzFA6V/vxaQbmoijDKUxH7iFIR1nEwJr1BF7W0hlUqxpXULh+YPMVEb5nQ+Q1RNMYzOAkVccOt9DcdE1Ewcy8MM9RC2pzFklSg1KoT5GmWuFz6vO3bgqSW/3lWsYqVxwexENptd9JmZmeHee+/lG9/4BrlnkWVl//79XHPNNXR0dDA8PMzw8DDt7e1cc8017N+/nz179rBnzx6efPLJi7ic5yieBelWLWSJqH6jOV/3HgoTQ28mkJYwW90ZRWwi3QYraxvLJ8KTKKr/XWV+lNaQxk3t7Xi3vRaA1PxBDmWuDg40svyGl2W7TF8tjCH8+zWuqaREGrUSIh7Rluw+LajdLkv2UsATAUGhiKXxdPNc/54lvRnUuhItrw/xpP1YY5vXbnjlRZZ4cSKFZqWbFdiwowOKGhjWu3a9vGoE6dRNb4WCDdztvo3PHL2Jk4U0aVmgR2Rp68wgi3eDM0dYcxhKF/0QyWWCsHUi9WyrVekrABfCS0NKlPbo0nmBPGM5wjqKC631rkteyTZI1WQ4TLHue1PNTzUytt3w0jUNg/y9Wg9Obg/dJ1sax1T7S8ycKnLowfpM9Y3/GWJtMP44PPwZuLbJCuDUKThLeI4c3U0o4a+3lCR7sn5n0AiHmRI5ADwnTnf84vwVny28p5FuSriAbhuN7KU+VGYdnelsP7bi/5ZJLxjoec4kWiIgjleadKvkLeLiFGmjTEp6ZFWVGEn6QiqJ4jyRJfSdeToiRtDW1BSVSD4Y6NYo4zXZJJhmjA7D4RXpCk590CYtDyu+JbiWVdLtxQnZlPxJeNhvfjkzL72R1NAMm//++2SP+yyttCtQnDjXUV7U8LwLmGR7gaA5nDSAfw/ShkZbPTPyjKljlYKQ0VJ2Hk9IZH1biUTRgokwywzq8BeC0i1vBvVqONaFF09QW7B4AeJucI1aPE3f1PdYf/IzqI7DqL2VewsfYGRuC9u7b0Xd+FrMq/xkJz2tft+t1HYNAB3uGEo8Qq/it9vfjMUpKyG2KqNcVX2Esh2o2Jl8br7Hbj6YME9Egnv0WCjM31fuxG5JYJganes2nG33i0Y05IeXAkSbSDezTrrl+9JcOXsURXocbxngkZ5tlHquoLbtfzG79YsooTB6RBLvNRH2Ed/H2LbhwQf8pAonT0CxcNZzXwqU0vHG8mi1nULUHy+oUqFbaW+QbiIWQu1Kou3sx7hxHXI8hzuSwTnq3+OFEFOBYMLxPTxrrmxEa5WVCKPf+BYzjz5Jd3uIasHG1AObljWK3yfba+m0tfn9tLnZApWp81tYrWIVz2VcsNLtm9/85hnrPM/jV37lV1i//vzm6/fdd9+FnvL5j2dBunmVebSw/928qqCgkERBUxTABU1ZlA1yqaHqQcOwphqEFR2x9/Oqtl4mZ07hlvOYtRKhcJye3n6kpqPls1zZ3YlrvRylcAQOfhv74X14FR0l5VeWXr6Kkoo0/javO9/3SmvsjHCqsl1mg2VAPQJyQtPoVvuwai7RiLFk98lQDbAvI+kmn+7p9iwzKT5DeOlC0oK0DBRIE6FextxHAdioD9Ibv3jlli6ajNVFUF5zEekmELqGElJxbQ93YSJajYCdBfxOnimhr2Unx0f3YnkqjutRkmHiooaQDrL4dbzY+3lJ/wz/8FiS61+3lkTrxYXFngtSSoSQDR7TFHGKZpUsfghnSuskpK9clL6iqLTIONMijyVM8naRlB5je9giF24naefxXJtaKUMk2YFju7xnY4QfPjHCyVQv903s5ad6NbpGWij325SG8hBymDqRx7U91MGbIdoO5VkYexi8Gdi6DWamYWIcDhyA665fVCZ5z/9EC7tk9bWMhV+OrU6ghTSstEZeVOi0Wzld3EJ3enkVLa4iFoWX2noZzQqBbBrMCZWMA8lShGq0Hd0bI2pnCHdspzY3inTGUaLBS1PIrKynWyVvEVMD/5ZZVcXwYlzbEsaaqC2p2fPTEW32Y1NUOgjeJdOr4DYp3WwvTkj1mzZH6GiYCGmjKAqqpuE6DtXVRAovSrhK0K00QnYwCSRAXXMtx757iit/ZQeaHkU9/TA0hTG/2OG5HoqqcPrILKePziEUQXtfko3X9F3uoi07apUzIwpULNw6abE+HiIzX6HkapRzWVw8VBSKuRz7N5fZsy6DkLB2MkboJ019JSlxHQdV0zDLpTPO8XzDIqWb8D3dKla5Qe1E7WBiTI210DP9bX8Zj58UfgWXEFo0xHxPB9OWRlh6dMcEnSl/sinc2svc6T7a3dOIxBrWOL3AQQ6HdHJCIQlcJY7ziDOCldqOUcn7vm7VKkSWtv91qXALC313m2TIb1enFBXFHkSioQqPZKhtUYbXpYCuikbiu8Xhpf5zmUtp3Jwdb3TVj6QHKRshvvjDXjRN8N6NvahFn6xqWV8k70Hck+jxOHaxiH7ooJ9R/lV3LnG5gwnIibJOMWoTL2tsj+1EaxIBEPOfNq2/xZ8cUAW4Eq/oE9yvWvMqjmWPsXtmN8fNH3Nl8pXYroejqaiuh5dooVwNYZ6u0rFhksNyDVYkCGXdqM5yyBsAu5NM+9iCeJ7Tu+5i05v/25Je8ypWsZJYktGioih8+MMf5hOf+MRSHO6Fh+Zwv3P4IqlWMNCaV1XiIklYlYiF2c5l9HMDUPRA3dHutBF1fL+GpzhOUg8qw0OjvtdGSFOZ33ojAGL8MK7ejahOIKSLmPgxmA7SdpG221g+27pn+t4r1HAn89hHp2hG2S6zpsnAe1zT6Fb6sG0PfQkJkAWl2+UILwWQTa+niiRG7pl9teoQz6R0qycrSYo849U2JqxOvqdVSMkuOpxN3NlyyyWVWREKG2Pb6A71LRLcWdJG1pUyqpRYRghlIXupVZ/VV8PgBLO0NSnY0tKPh2D3fD9fmbia682/YspuoTSXRtROEsn/P8KqydbOCo9/99Qllf1s8PJ53Cb/OVNNI3ULp+5RlzY6UJZRgfp0aIkUrQSm0kV1HiFUrmqNQDjZWF/J+cq1SsHk9pfs5GTKV599PbQeOweRQoiSVgIFxEAJ1/aYHsn7ddUNTeHhj34Wrrk2MPI9dBDcpnDNzDDKqftRNAgLkyfMzbhWBadSYCzuky4z+jzSjS5r5lIA+TSlW02x0DQb0fzOCIV5W0O4KqbhK/4EkpRaA1kEXOzcMErY72CueHhp3iSq5Br/z6kqOFFuSIVwPG+RQfhSQ1dFo5mpaSqJzqDer8rqIqWb05RFV9brYoV6SJNeV0avKt1elGhWaIdCT2s7B3dQmCoQ0h1UOwe1lcnK91zG/GSJb/yf3fzTRx/mqx97HIBqyb9v0pPYpvtMu79gYFaCdtYIKbSqp+jwDnD1gbdzxeH38if27zW+z+XyfFK5i48q/8I/rN/DRKKEFOApUAmDUJIg/P6bqmlYpk++WGcJRX2+oZl0i4gYqmmSrwTjh4gVTBTFoirtWf+ZmqaLnO173alxnaOujhQCS1EJZUqoEzmk5ZCMapzUd6BIGzVisDYxQHc+Rm8xzfdCQab2ROkRhktp6OuHeNxXXz3H4Bb898gQR1AV/z16NBpCahoRQyBzJoNbdi75eYUQCEVFSnHW8NKaVSWU7mdd3u+nnU50oG9M4LkSy/Q4rP43XMUXG8S6LfJ3/wvHP/0ZTnztGwx/5m+ws1kYOQlL+Dy7+SzhuH+8gtbDhF3C0aEUc9A0QUHXEKkISmcCJR70Q4QQKKl6Qg/TQZoOO9p3cLJwEsu12DX5AGU5jeVIzKY+hPaKD4GnkiycQkqHUmQTucT1FEPr2KL6ykm7mubBeCAQGDty9NlH/KxiFc9BLBlDMTw8/Kyyj9ZqNf78z/+c1772tVx33XVcc801iz4vRJzP001Kie4EA5SsqhAXKQZDvs+QiBoorbEz9ltKNJNuqgJ9FT85gqk65Jr0kE5uNCjnta+AdWuonTpGJfmSYP/ZH0FIQ+gqQlcby2db90zfYznIfBV3bHHmnpJdorvJOmxC1+ik0x8wLiE5ebnDS6tEOCQ3MG+GuaJlkjeEvwxfeQ+Y55mtfRbhpV1igr5Ihi59lvsSp8iLaebUY9zRf2mkG0DFLTNljlN0c411pmtCnTDQAdsLBVY+EjxHIoSGS0By1CR0hcMUdJ8cabPmsT2Vd5R/j1C0Lq1Xu6C8i83xWQ4+MM740aUdxNmzs3h68PvbWuuizKVtTZ3QFYHt0tJEus07/hRgWzyNFw9IknJ+klgqhPQ8btvcxaD0Z7+fahviWPY4bRMBQScG/U78+NGcv+KKd0IoCZ1b4dSDUJ2ANXW/lkoFTp4MyvPo5xuL0+0/Q6TpXVkg3QDcyhBdy5i5FMBTxCLSrSIdMqEquE3vgFCZczRCmktFaW+sbo0H9Wv19D7UuF/BlHImrvMsFaZLgHK2RlQNBlWzmopthrkhHV6WjKXNEEIQqYdw1VSNeFP22opXw/CCwZwuHcp1PkWp2yEodUWhbvj3zqpWFvkpreLFAU88TenWBNneSUio2G69nXZXn4+50yUmj+fJTVeYO11idqyIWQ3uy4slzLT5moc2hdgS/jEDtbuJWGPEq0cZsvfTit/un8qPc0RMMK3kmYqXKTQldLFC0ic9VL9+dx2HWp2ckJ6f+fT5jKLdpHRzdZKzMzhNIQ2KFyjd1nACgd9+DRs3sxAGocZ1bAm6gLjrMFQt4xycwHx8hPBohiltAyk5TzpSIqyFKBsWE8k8/5h2qRLhiNeHadY4erwC46ehVPIn5J5jz6qX9/sjhnKQCTfFtKryWDhMzG0nEvbw5qsMbF960g1A01U81MWkW7jeN5+3cLZsZnPO99uVQiETDvoZB0+ZuEPvxnMVqhmd1u4T4DiYR44gbZupe3/kZ489dPBZl2ehHjlXfWI99gMUtZ7ILLaV+XDwHA0afVTTCUK3bMC4di1K1Fi0r0gEfTuvWENTNN6+6e3++ZDsLvwbAI4WtA1Oe5LEa38ekZnALdawjG7SxcdImCe5Qvh9TNXsJNdjoOqCzrYwZjEHlSAxyipWAecWMz0XccEMxYc//OFFnw996EO8853v5B3veAfveMc7zrv/L/zCL/Bnf/ZnrFmzhte97nW88Y1vXPS5EHzsYx/j+uuvJ5FI0NnZyZve9CaOHDmyaJtarcYHPvAB2traiMfjvOUtb2F6evocR1wmNLH7ZyPdXMdDd4OGdF5RicgkPbruE269aYyrBpe3iE3hpYri0VvwPQ4MSzAR9YkMV0gytUOYrocrJbWWTuTIKKUnfszjxe0Q9QdpytxDhF+yFuNa/xO+Y+uiv+dafvo6EalX7E+7ZxW7QlIJBoDjmkonHaiKh1hCo3ZDrQ8eL5PSbVZ28Kd8kMOFDsKqiy4cmHgSPnUd/PM74S+2+n9/8vHFWWOb3+qzhJeqXo1UfWA/5kbICH95q7iKde2XbobbG/afVbXpubddG1EPPdCAcg10I6go7XoGU9sLSLeqBEVXMEI99cuSdFhznAr38MRD63EdDcynoPgf6KLKutYqP/jbg0wcz13yNSzAzWRQZeCd4RjtZLxZQp7feegIryzpphphWmRAus3Y9Q6I0FkTC97h4vwk5bxJZrKIlPCfNvn7pM0iB6xpWieTjWejQbodqROWoTi8+mMwcxjmT8Dfvhrcx6H8CHjTMFYn3g98C/b9KxIFVxjMtL2eXDEgPU+GfHJSkxpudWAFSDeIyGbSzeVhqaN7TS+EUJl3VHTdoRTYQJPWbcB/32tjT6HE6vtIKM6vnNqtOF8grvl1W1UIykLg2XF6wxpaxDjP3peOhRBTISSyv4OY4v9mFc+kYsQbHXYRizM17y87daKzQbqFgt+5uqp2e9FhkdItvLjttEWR9r5rMBuk2+VpW59LyE0U0ewKNbeKNOe5++/voZwP+jeO6VDdfwC3WMRsnvB4gaFWDp6FkChzfyZNJTO2aJsbFD/j7b2VRxbZaFSbCIti2GTjBoFez4aoagaFbDBxaz/Pfd0WhZfqaeK1EqLZP9cMJr7SzGELvz4uai9rrFfjBq6E9nSIa8Je0GXMV5EnZ4kIhazSTWskh+sqtNi+kikfgoPGdWxWxrlaPkVv6imq0bpH7NwcrPTY6jxYULpF1Z/Qq+Zpd11+EgmjeV2EQy5y3qR305bzHOXiIIwQrjCINJFudsh/aN1SjcmfuZor1r608d2IiNI96P9WpiP5l0dvYM5aQ6TNJjlYI9ZTw6uH7rumSXVyCnK5Z0V0esUa1gPHcGcKWA8cw8ucOXHvPRVYP+XUteTjAZFdTW6m2p0+97U2kW6yHmL6Mxt/Bl3RUVH50eR3OVh8AKdpfGbpAmdGwamZDEZLlELrGxM2W+qkm+nFmXbyuDHJTKbG4eEc1tRq1utVBMh961uMvPNduIUCbum5bx9wwaTbQqKDhc++ffsA+Iu/+Av+8i//8rz733XXXXzrW9/iM5/5DH/wB3/ARz/60UWfC8H999/PBz7wAR5++GF+8IMfYNs2d955J+Umye2HPvQh/v3f/52vfvWr3H///UxMTPAzP/MzF3SeS4ZybuURgG26hJpmp7Kqgi4TdCmur/xaxqyljSIaTXJhRdKZXUNSJrEMyf7ECdoSa0BAdGKWXTNZLE/S192N2zUI1Rrqk7tg82vqF1SGo99fgkLV79vTSLeyXSasBC/XuKbR7rWhCcdXyS0RmpVul2O2WQEcKbA8jYqjUfXCsO2NUJwEs+CbUA/fC/f8T/jmLzfteW5lpec4xK3xhhjuQDjoELzWeCVaNHrJ5e4NDwCgKsFvYbom1AfjCgLFsjC0IGzGri9aSKS3kLQAhCFYGwqyNHWZvtT8kcTVFE4ukBAOLRzktr4Zavkq9/z9Qb74Ww+y5wenLvl3c4tFdJoUW5FuZr1pTMUhSoKB+Mr6EWnR6KLw0lk7mPXb0NWFotUVWlmfhJUSqkWTt73pFtrdKnkjxr9FOtCLFsmM/1uLriqEHSaO55kbq3fod7wZ0v7vSHUeHv0/UPgmzH8NDh+Au34b/uN3oTpPPn4lx9Z8lAMVg9GM7wlSjDjMq3493G/1gtTpXmbSrTvet0jplldTHG9rR3WbFGJCIeNo6LpDUQaEacqbQNH939IzK7iVoGO3kiGmpewcsXo485yqghCkXP/31qPL75fTmTLQVYHjQq7iEA/5GYHLngVC4Eq/4tBDKlNjVU7WDBBnV7oBVPK5ZS/zKp5baFa6NYeX2qZJZONp1r61nWKl/iyvKt2o7H6C2x/8DR5wjvB/uiJ8wgovyv1ilqqMvPWtHL3+Bk797HsuX0GXGYvUfVaW//rEBqZmFqta3qw+hBAVHnPq2dbrzXuT/S225uKtD/OSbe0kQlFcx6LcZDpvnSUZ0PMJBSu4loiIoXtuIymWKyHXUCRL1mfvQfEsZuwhjp8YaOx3xdY08bDKlv4YrTu6UTd0ol7R3+hzJ0ybWbWfZKiM6yq0OUGf47gIDO975MMcyKSDwh0/tvQXfAlwCxaqmMJQfBLnoGGQ0TQst5eQbhIxo4smiZYShq7iCR0VhbD020RzYaJZwnhyki1NExRPZXVe9jqdt//O9WzY1kLJirDXfEPj++jVIU4OvRrZ1U91YpK5Rx717/ePPwUnfwK7Pg2nd59RDq9s4hyfRpZM7CdGkSUT6+gUnhm8b+50ATEXZAedk93km9SjHcYgYePcYysleSbp1hZp42Mv+RjXdF1D3spxz9znychsQwdgx/x2Qoo4mzsMqjWVStgXe7R508SpIBFgtzKb8olkKWHm0JnXuIoXJ9xSmZn/8xfU9u3j6A03Mv7rv3G5i3ReXDCbc9999y363HPPPfzrv/4rv/RLv4SmnT/8pa+vj0QicVGFfTruvvtu3ve+97F9+3auvPJKvvjFLzI6Osru3f5Lmc/n+cIXvsDHP/5x7rjjDq699lr+7u/+joceeoiHH354ScrwrHCe8NJKsUhIBAO7jKoi3AR2OYNx7dozEgksSxH1oNJUhEdLqYuy8DsnY5EZUqRQPYHmCcz5A0TqYZzFzX5IcNv4w1gb3wzr74BED+z78hIUKiDdmsmTsl3GEH7Hwwai7gBRJ4qmeAh96UKwFpRuEonjrXxIgqJIXOH7mX3m2M18ufRuZLIHEr1++F+iF+qhA8w1dXYWeYwtft5cxyZuBZk+n4hpDCpDqLU13BHZighd+sC+I9SNJnQUoaAI/zlpDi8FCJlldDVo1Au1EcbdMSJaG5jTSDuPlODqCjubSLdN3gQdao2H24cojjd1lswDJDWT6wcLdKxJUs6ZPPadEU4vqLcuEl6xREgEnVwv0se05/tNVCjSl1j6tO3PBC0WW6R0m3eCUNdIJEU05XeIvUoWs+qThZVCjba2FFHND2M4leiiNraLtvF6iKmA/lfpSE/yzf+7m+G542DE4Kc/AWtug62vh/rviD0G2b+Hx/8KVANPDWPrnWRTtzJjuij1zGrD/cHER7/pqyeXW+mm6yHCTbmBRu0csc4EttP8PvhKN1VzqKhBvZriNIqxAzW8GSUUpTb5AFL6TPBKkW6u66ErM4RVv66ZVf1Obo+aBiDRtfyqymhIxa6H484VLBKG/4yUpP+ueiyQbgrOvENClch68hRxFtJtVen24oOIx9n+8g52vqKDWP9Gdt9/L4/f90N2//g+CiUHhIJzYqO/8arSjcq030Zlw36/eDBqoDl5YnXi33EFsl7/upkMbrF49gM9z7Hg6aZqCv/62XvRhclmxe+rLPRi7lQfZU/ov/Dd0cPcbHXS1jQB1YxZbwqtazMl0+/DVorFRh+yODd71n2eLyiaixMp5IUkWg8LtKWgWvbvY0o3Cbl5VOFRcdOoukrvhhQvf88W1m9r45VXtpGO6YiQjr6xC72vBXWT339IuA5zaj8RUcaTKp0EdhT7NZ1CPYt7h9zH3pMKsr0d2jt8n7HnSKiXlBK3YBJRgrHePTG/3BWrk0jMoa9veVRu4Gdv9xS/bVwIMTU1j1jHAKI1TKk4T9dVBrE6Ybq3kKBNPUXHYAItZqAocMJ+KXPGjczpV9KanGbj9Rmcsv9Ml0dGsOfuh/t+D/ef3wXf/x34u9csGgtIT2LvGcWbK4Gh+vPxikBYLvYTfsSCV7Ww94+jeWOUvW6yiRuYs1PkmpRu7cbAouzmT4do8njzioFK92UDL6M92o6u6IR1nb+b+DC1kIoaNXDDClKAVHvw5qfxbJNSbJt/PCRXKr5H4FD0Ro4nA5HF5PCx51wY8youD6b+4A/QuoNJAHd+/hm2fm5g5dLu1fEXf/EX/OZv/ianTi296Xm+ni2ttbUVgN27d2PbNq985Ssb22zZsoXBwUF27dp11mOYpkmhUFj0uWQ0kSDyLKRbfnKKSBMBkVUVhBuneuHJZS8azZ5uiipRUOl0fY+oTLRMR5OipzTxeGO5uMkn3cTkQcaqW2DmkK/EOno3NPm/XVyhzq4QLFslwor/u0xoGiXdwrUddJUlVQUuKN3g8vi6KYDjBffAkwJ54wfgI4fgP/2r/7fvOv/L4gTU6s9qM8fwtP6P5zjEzSBk47G4xqh3AsfsoM1wQbt0YkQVKt2hvvqy/3tkzFly8aAwIae2iHTTXYM+dQBdS4H0EHoKTyhUNIVWowOMLsZDPchqlVknxMO9OxjNd+Ba9YutHUZ2tHHFVrUx62vXXCYWfMouEl6pSFg0DXLiA0y6441/16dXVummxhO0EGe9181gbQCryZ8mFEnS0r+NdO9WPKFy6J7PYVWLlOsZvLat9UkmS9U5Ob2P9rEEHXNx+kNrmR7ai/Izx1HfeYwflr7JY7MPwsZXwvvugrd8Ad7yt6BoEBoCexJEGJk9xfj6X+d4569RcDW+dHKOpFtmpLvM3vU5OmSSIaeXbssn3ZY7kYKiaigIItKvN7NWhvUdSSaa+HIHFVsqoHnkyh24wq/3ksoUkf7NSJHDMys4xUlc088etlIZTGslG6UWEOJz9YmNTbEuXM/F85bfUL09GbQDcwWLmOEPamvSBa+Gp/rvm1AEoXCCf88mGuGECh5Id7HSbZV0e9FBajpGWEUzVKxaDds0fW8/KTk5Mo2QLrpl4BTiPun2Ih5ASU+Sn5lGAtNRv996VSjDFYffy/ZjH2Tt2Mdpz/4AGQ9Ij9r+/ZeptMsH6cmG0k1MjvLlSjc3Koca31uqHyoqgDQWSU/Sap5ip+w/6/FmvCkqqX760v49dWyLaj1z6fzpS+yXXibYx6ax9oySGw/6H1FHJydtUqrfNkghqZX8+9ibChq+vFzPz/7hLfz0B69k2629JFrDixNu1aH1t4ChkW4N4+jdhNwyEpVuLfD3nBXz3OddDUCICu3yAJYeg7lZ39g/89zw3JKmi7Q8Imow1rs3GgUJhUqKcNhmaGDbsp0/bGjIp5FuNaVGaXYUOV9DzlSY0Ma4SWpclyzQFTKZGDsOnssNb9rAe3+6nTe/rI3EDb9Nm3sQBY9N8psMvso/VnJNFa/2I4rRdtS6z1+t7wr4u9c2xl7uyJyvPLNd9Mn9GHIMfWY/slRF5io4p7NYu4bBmsMI5YgpU2huhUqlSiHhP1NRJ0xETTT8Xs8GoSqIur2JLNYa49yQGuJPX/Kn7GzfyVj5JBlrigPmE7gVC1dTsCMqamojWkc3oflRctpQ45i360cB6LWvYDoVjL+mJnNQeX4T56tYGlQeewxz//6Gj/kLknRbt24dQ0ND5/ycD9dddx21Wo2hoSESiQStra2LPhcLz/P4tV/7NW699VZ27NgBwNTUFIZhkE6nF23b1dXF1NTUWY7i+8SlUqnGZ2Bg4KzbXQjOl0ihODdDVAtmfOdVFeHE8c7SKC4X1CaVoiJ8cqRPWw/4WQHnYyZqvQHpyM5SMP3yhgbX40Q0rNYoxx+9B657v38Q6cHjf3tJZRLNXnhNZuiKWUATfsdiQtNIiTSOYxMWFkJdek83uEykmwBXBPdASonMPW0Q274xWM7UZ7ias+U+bUDj2jZxyyfdqlJhpK4MjLt9qMIGdWl8o3rDgwiURoip6ZocSGfxIhFMJNtth4QedAqlWSc2lAjYgTqthEANqfQYMfrMSbrNaTqtWTyh8J01t1CeS+N5CjLUghj5Hvr0BLfdHKj1xi9R6WYXc0TUYJbNNjqY8vxOb0ptJxk6+0z7ckFPJgmjkxUlRsNjnAw9hee5eF4Noer0bXs5dq2IIl1UI0phephKwVdqbd8QqPK+te5mRo7kmP5uLyeH44zlNXbPR7n7qMEje9o4fc/9HPr+P/jPkhbyw01/dS/03giyBPGrmRz6I8ZiP42Mpnk0k0faVVxhgQRVKsyKAtfYW0hb/RiaQktUP9dlLQ3qJFWvTKBKgYdLVFc43TR5YUuVzmqWgisQUqFaH0zE5SzOTJlo3+sAEKE4CI9Ei4I5m4eHdy1OILEMqJVtYgTt0mzd/+SKZBemZRKOL41C/JkQ0hUSEf+82bJDTAueb8/N4qoqVs2lWnSIxlM8UIhjKnFqSoqqmkbxbDQjmKxYJd1ehFCafBXziz2exk+NY7kqTqkVc7oLkCBfHNk5z4bifA3bzJEJJ6nqYRJUeKf593gihOaV6Z37Ku3Z/8BLtDT2qe576hmO+PyEWbMbcjanVqG1kuetyo+ZkO1ICcX4DjzURbr9n6nFuZKesx5v1p3mcfdJxtYLJtqqlMIOcxMTmLUq5exzf2B2NrinMnhTeYq1QAgQq0oyEvT6RKPjOAhNoCSj9MSCMFozvIF4Swgj/MwT+UJXCb18C23be8hKA8V08YROvxGowueUDPfL6wEY9/rYHHmceVLBQZpIwcsJN28iqODJGK4XYkTTOGnoJKww86ZCWHdYv/6KZTt/NBbFq/eno9JvEz0hsbX6UzxaYWZTnj6h8HghyZOFJI/MGpA7hQhpqDGDZFxFlWOwxbfuEeEEqehTxPpNuq4pENJqJCpzPHrl7Yz0byQ8+hiUZ+Affx45Ooqs2WCoCLuMWs6gnBpBrWRRajkAnKdOo5amUY58o1HufOIaZrPHqRp+/7y97n0bfgalG9R93TQFhMDeP94wtxdC8P4d729s9+Pq3Y1lK66hhJNYhSytsyNU00EyxevV47RpNZR5g3zCZqEbNzVnXrqgYxXPe0jHwZn1yVdZH8c+H0i3C5ZS/dqv/dqi/23bZs+ePdx99938xm+cP572Xe96F+Pj4/zxH/8xXV1dZ51tuRh84AMfYP/+/TzwwAOXdJzf/u3f5sMf/nDj/0KhcOnE2yLS7UzpdXZ2grXNSjdFJeVEKWrLb5y9AEUNHgWh+I1ClzvQoGUPRY6yLrKesfJhhOty8NRRbtq0A8MIIdsGiQ6fQIx9H+tdf4px/5+BZ8PJH4NdA/0iFS5nISs96dFWCZRH47pKi9qOVbNJqKpf6S8RmpVulyOZgoLEbZatSQ85NQltQQec9k3B8twx6Lv2GbOXUprB8PzQv2ERQda37acfFGfxvpeA7cmr2Jm8hi898i1qjonjuRyNznDdu36J2t9+kRSQVmpQDw9xbZ2TznHWqmvAziOlhxAKRU8QVxT6QhuZLPly8w3lE8yEOnlkzXWMPfJ9NiQKhJQJsP4DIjuIzJ4m1RkhP1NleqSAbbrooYsjY8uleeKqT1q5UiGnSCrSv3+d+gCGvnLEOICeSgPQJ9uYFyUspUrGm6Fd7W7Upd3XvZX9P/wMzI1wLHOKjnXbgTVs6QnUEt/t2cZ3ASqQ+qFLvrYORZF4dWXl+ncUqU3vZ8P0NPpCWGOqH9ZshMl2XNHGaPw2ABzP419GiyTtErNpkx9d6890D8p2rjd3sEcqdCVCS1bXnxN1glcgcOuDkJw9SzkW+BR+v9DCTERwqjDNNl1Q01qJ25MowiWhTtO59RqOlYcwJ0/g8CD5uc1M1yrgnoJIBHp7IRQ66+kvFWbZJqoEM7gL4aVXxtuxKlXC6eUn3QA6kgbFqk+CGyK4d46bQxpJjLAKYYgmUtSkwuFqmJcIn1zTsND1VaXbixpNE3iV3GLSzXEcxuaypAAz206MYV/tpqycqv+5hOxUBcPKM1bPPP3r2pfZUvtJnWBSEHjEK4eQiZsb+9T2vwBJt0rQ/53M5Ij0WdyhPQnATKGbkZ2/wZE1f8AXpn+Oz06PoQE7agVMtTWIPZU0VP4z7iQPWPeQ78pBF1x1JEXXzBwDGzdRzjxPVTL1sUPBC6wb4hWPSSFJ1a+7nMtgZv0J4u6+wBbBS2x+1qcRiiCkCKIKYINUNbrUQOmW1QoU1Wt4ylvHTuUkbniOPfO/FNCfkxNw1dUXdYlLCbdgoYkJIuqjABysW6eknTgTrkcEuch3eKkRj8eQ6oLSLRgDWSEwHHDmiuSSBbo2ZuGo3w/elU3x5onHoXUIkYoiaofRxCFI98DQS/FO7kKRFu3XWKh1f7jTiUH2XHU7hl3jHd/8a6LVEmSH4Uf/jNvx0wCoTR7YAGotgxdtA9dCmzqKOfFjqDf1+dhVTFgBCdcRGUJVQFefuf+m7ezD2TuGN1PEyxRxx7Joa/zn5ra+2+iL9zFeGmfSGWXey9CqtGHGNeIzJqaRIOHajIcHcZUoqldhozxB3tE4WrS4YsuVFJKzJOd1CsUaldF9RBeifFbxooQ1PdWoE52wgm6BV6ngFTIoybbz7H35cMEMxa/+6q8u+vz6r/86//RP/8Qf/uEfnpE59Gx46KGH+OpXv8pv/uZv8r73vY/3vve9iz4Xgw9+8IPcdddd3HffffT3B3Lz7u5uLMsil8st2n56eprupjjgZoRCIZLJ5KLPJeM82UuLuQzRunm2DRQUgWGFceOxSz/3s4TSrHSrk24dTkA2nkiMMRjdSovRjYYge3pf4ztnnS/Rbn38JI9mTsINvwid22B8Nxz45iUU6kzSrWJXGKoGCqlxTaNV68S1HBJh0VC7LAUue3ipCDyUwPeWE5MTizdqb+pMzfrv3yJu42mPWyh3GJBkahF2NSXP2GoMIpSl860zlBCaojeUMq50saTFofJTyJT/TsW9gMh0vDBHaw/5RqtCgOPP5poIvIhCX2wjCz3qTbUThBWHE5EWPtf/Bqx8XVnhlaB4L5waoW9T2l/lSqaGL37gnytXiGkLiR0iTMng/rcbA4T0lY3Q11p8wrWPQBV8Wk4sIrSkEeVovK6AlJL508epFE22dJ+dtMnX/H1bIsHzvnt/K4UtHQx//QuLN37ZR+AXdjHb+58ambQenitRcT1aZAlLDyYVrvM2oEkNpM37bl170df8rFGvZ9tkQBRl7FFak4HyMVTf5mBZEhUeRWOQitaBi0aLNk40AaGuppBhWSZrGj53Xa3CMg54ayWHqBp49GVUFU3qpNQItlUjHF8ZVWV7KiDNhAzunePlcZuyj4Xjvrphwg3aSM2trHq6vYghpUQuIt2CrNqRmP/8HjrlK2HMcgJpKy9qX7fsVJk2u8hYoos+bYR3q/cA4AmduYgfsWE488iOFKJO9r8QlW7Vpsylk7bHb2hfafyfq0VxZJxpMjwWFeyr34eok2GtavLqg/28+pEuXv54e6O/M2YeJS9zjWPU4i7lYoHp06N4jn1ZEmNdCqTnNaI9ip5PoGhohCoWVRG0uYVZn+QWSDrw372800Ws48J9oVtaQrgYSFXDQCNm+fV6IWyywS6xx/NN71Vhoox+DxaScE1OPid83dy8hSpmGv8P1yeDWtw0AKkl8C9+JmjheGMCItaUwVTUI6+8uQrS9hA3n26kf3o424Kc2oN571eZ+84pVFn3o1NUuO3XMLtvodR2G2ZyJ0JALacxMt5HV07BMsI8dN0rsUI9fl947F/50aMZ9hwu48wujuxSzBzaji707DGEdFGFb2vhoTIj+8iGA2K3t2UrbQnjvJOmiqaidCb9MZgE5+AE7rTfj1cVlXdufiebWjZRcrM8Yv0EADPh3x/PjRBt70KiMNL7QcqhtSRkgV9Uv8twNcIGcR1jqcDmY+rogRe1LcEqIDMa2A/Y8aDP6f7g45ejOM8aSzZifM1rXsPXv/718263ZcsWqtWl8ciRUvLBD36Qb37zm9x7772sW7fYX+naa69F13XuueeexrojR44wOjrKzTff/PTDLR/OE15qlotEdT/EIlvPWBezQlSM5VFUnA2LSTe/wWy3AgLzFFN0JdeSt2ZBSkKZI+zPVThWrFHZcRMAsdEcp0Z/hLXlNTBz0N/xsc9dQqGavfD8MpXsEj01l2E3zmPhECOaTlpGcC2PZExHLCHpdrnDSwU0lGjgP+/K5MTixqY5vHTuaH3HcyvdwvljKEjawlWOxP17pXsproi1NhSOS4kF4tLzPNqMTvYWHmN6TTc1JEkvmIl1XAPDOka72okwOlBlUEeYKZ2wGqMjPQhAwswTNv2O57+tv41HJl6CU1Mwq21QeQjyB9nYFex/+ujFh5iWzRqRurG9pSSZavJzaw8NElqBzMLNMOqkW78MZnJOe2PU3Fzjf9WpMh7ua/yfnx7mwIMjZJ+aYm3i3HXKf3npOkKOP/h56kiKYlnlUF8BJ/u0+9fRSb5nAwkrh2JXuWvS71ht1WpYWtDZjhICKZjxwnQmltfPDYC6MqyDgHQbLu4iHQlmeSN1BdxRESOheFhakqgzi4pDu3YKPWyixdKN7aVXxvEUSo4O3T0+6VZZnux3lWKNeJNyclZVibr+wMCyaysSXgrQnjDoTBm0xHU8OxiY2G4etyl834hHCXkOOYLJIc2roq1mL33xwnXJaUX+vPhRfr/wIb4y4A+uBALbMvFcl/GZDK7n4LoG7nzrizqDaXaqQqtZZDTZzn9Nfpw9oTBzWpi9na9nJnJlY7vq0BC7r/8tjg+9EWd6Gnt6+hmO+vxDbrqEgYm+70FUay8ugoPeIKVUHyNtG1BnxznpHgfg8aaM61OZWa6odtGTCbNmNkbS9tuZWWVxmNF0wu+/jR07Cghy02e3l3nOwgwmRIue3/5ERAy1ZmLVM0pLKSnM+CRTe9RCw2/LZ+yNpDovPCt9S1ynpiVRdb/Ob7X9er4W8ugyR/lH91WNbYesb+N21hXxtg2zs5edFHELJpoI/OWm6hNGKc/vO3WmlzlBnRZGrfcPo02kG+n6JJUHkVOSlIgw0OE/n6PVEBO1EOPFgyQH9nHwZB+um8LzOnFDVxN671eJvPMfSL3kTuyqSv5klMRD06yd9J+B4aHtmMIFbIR9kgH1KWans4Rtvw8k64S1sC20h+9DrWSxIjZ6xO+Ll2LbKGRnqWkunRmD/kqalD6I9yx/S22gFW1Ld+N5tQ9O4Nn+8ivWvIKj2aN4uOxxHgPAiah4ClBSCHX1oWZnKcW2EDX98NFf1b7OgJim+vgWZlI1Yh0avV1RstmCH0a7ihctMmNNpFuTX7QzOQpTz13f0yXT9H/ta197Vp5sf/Inf8JHPvIR/vf//t/s3LkTXV/s83MhyrIPfOAD/PM//zPf/va3SSQSDZ+2VCpFJBIhlUrxC7/wC3z4wx+mtbWVZDLJf/2v/5Wbb76Zm2666YKur/TQLpI/9eoL2qeBZ/DYAqgVskRUv9ItKCE66Cdt60SjK0i6LQov9QfOITNOPBanJErMx2vUYh7tUwPMlEeI2FVSlWkGetchY5uR4SiiViH9+DEOX/0arujeCVNP+Wq38d1+2OMFQpxFIVixK2ywHNarJdbX4P+2pBlSOxGeQksyvKThpRvSG7i191amKlP8+WN/zsnCSba1buPg/EG2tfrqvoXls627lO/74/0cWL8ftdKUXUl6iEoZikVYeE/Sg6CGwDWDrEXPQLpFysON5Sdj/runWD1satVBXfpO0gJx6XguD409jOlYPGE9xWOhx1mntXIT/x0FBcfR6I8t/HYCtzoNaithVaGaMghRpTe0nlw8xwknRk91kpye5mrV5hupbWzf/yg919VVQsVv03d6A/0tA1jJdnLTF0+SOG4VpU7U1ESCKS9QurWF1mCssNJNrWeA7Wsi3ca9U1TMMcLRNJ5VgeIMc6H2xveFmWFs08U2XV7Sm2TkiB9eo7s2dj38QQCvjld5fGw3u3q2Y6cjfPnrA7zl9YL0yLd4afq9jUy0rusxX/CQRhrLthithwatUbI8qQSkWwQDpEDi8ertZ1cWLynq9UVHk9KtX0sRi/aC6RODra7fuRw3EhhqhpIWlKtNO0VWFFBjgT+NrIfy5PQ2ElN11c7hQ3DNhddn50NxLktcCQYJs6pKwvMHOpZVo3WFSLeQriAEZEs2Kk1KNzeP2zSpYURV4maFvB4o8DRZRTeCNr26FImIVvG8gWvZVAyT466feVOk4cEdHmkzQosRo/eAwHFdpmsj9EY3YBZTaC9ipZtdtYmaBQ5tmeSPa/OkPI8S8C1iXD8+x/b669emHGW3di3V3pu5omsaa3Q0CPt/nsM2HbLTJSQhxIYrWLf/K1yhjABwZPObEfcVELMTjLT4fZdHI2F+tgS21kKtPE8oHLSFg3YfWCVmtDJ2xCAv83i45OMOnoCWllbKhTyTRw/S0n12P7jnImQz6Ybfn4mKKKppYoY1jtcMnHwGx6onUehLMyV2ELIzTNsb2dl74RE7LTGdGT2FqptgQ7uXYgx/Ak6NzHPMuZKH3G3sELM4SivzM0fpSLb5Weq/9x3QdXjFq+AcUUXLDT+8NGhPTStBSyVMHL883fGWc+26NBAKan0SLSYDUkAmg0kqeyZPbYNK72CBE7M+CfinR9fyndl23tM3yT+c7uIXCik+dM0GlKkSuS8PgxAYAz/Nsal7SR45jkGNztEJdm/pJG05DO+4lase9yOM1onv0t/9ZsqWQNF1alorLSLrjx+yWXCyiEOfxhEqpoyT77qW0sQYuaTNTJsFWKT1LqLPkETh6VAHWvGmCnjZMiKi4x6fQdnay0BigE0tmziaPcop5zhZb54WpRUrphEqSMSWNtRjJyiv38Fkx9vomf0Khxji97V/5Eveh9FFD+VZhzIOybgO2RMQf2HUgau4cBTGT9AKON0D8Ipfptr2MNrkCO6+78Mdb4PuHZe7iGfFBY8Yr776aq655prG5+qrr6anp4ff+Z3f4Xd+53fOu/9P/dRPsWvXLl7xilfQ2dlJS0sLLS0tpNNpWlourBL8zGc+Qz6f52Uvexk9PT2Nz5e//OXGNp/4xCd43etex1ve8hZuv/12uru7+cY3vvEMRz07ct84v4rvXDhfIgVZzjUyLs6qHiZlOsMh4rEV9HRrChtaCC91bI9e1c88KCzJk8WHGIgG4YzHT+71v1MUsjtuxTVUIqM5nsrtQV7/i/5G0TZ4+K8vslBn3reSXaLfCQb245pGmjjCU0i2p5Y0vPTdW9/NX7/qr7lzzZ240mWmMkPJLjX+Ni+fbd2lfH94/jCmZlFJPIWsx0w0CNuJJqNaRYU2X+bP/LCvGjhXeKnnEamMAFDwdKbrqhWr2s26qI5YBludBdLNkx57Tx/ix8cf5d7RBykKk33aJDNxP4uxbQvkzvrMvhavJ1NwMdEpRlRcXdCtrcEu5RmoTbChcgJD2uz2Qnx3zY3sn1pDdb6ePcn1ENn76GwX5MZynNgzSyl7kUpFr4Lp+vfJ1loXZS7tjgygrGCyEwBFUcHz6CSFJv1yjTunkOYcO145QLR4hGMP/hNbCweZM/zBSDk7gWP5yr9NTYqzgUKgllgf04kdP8TPH/wuN08eoFzTqXg6Tx1P88VHBR+7J/DKLM1XG9mpTpWD+9ou5xaFl0YJIYDBiIuxEorAOunW3qS86lRVqjLwgEwTmLbPKYKS7MbDv49t+gms8izZJv8Vu+7fl401DdAOHliW8JnC2OlGKDPAnKbSIuukm22uWHgpwFCXT1yGleBeWl4JT1Ea9VAoohJ3LHI0kW5uFaEoKPX33rZevITKixFOxcRRg3fsKqvGXyjHifWO8UHlYTqiPgl7unwMcDGzbS+q8FIpJcO5YUpWidH8KDMHZijJPOujU6TqdcpPYlGOFw4yPhZ4j7V6vordUiKUdz2Cdfz4ZSn/cmD6VK7Rnnh77udWzQ+fLRFltH8IknHUuUlGXJ90e9IwCHtVUuYpNlv7kE1KyXfZb+N3H97ObSci3GrcwRWab8zuKZJ8zCI7O8PU6ClmTwzzfMIC6eZJj4r0J44iIoZqmXhCsCFskTbnGxMeg2mTbrmfFm2SOXs9id70BZ8zHdOpqgmMkP/bdOIfw7AEJeFPPn7JvpOkMku7sp/Kkbuovf7tkG4B04RSCX5yP7iXJ1GKtFyUpvDSg0mLbLSKpvi2OQPJi0/c92yxEEDUHF7qxoL+Reoxv/+4pscnUg0kd8904ErBF0/34iF4LB/n9nvH+YVvHuRkpowzXaHy+DSzN/jXYcdDVB48xVDJZC6s88SmDXiKgUQQsfeQLH+KWO3fyEw/hHH0Q9jyuzD1OTj9P6nOfg1FlNEMl2kxxFjPL1LKnKYSDn6zpNZG5AI8kYUQaNt7ESENma3gjmTw8v71vWLwFY3t9tqPIfGTKaAKak4Nvd5PHe35JQqhIa4WR3iluof1lXu4efbWxlhoPm/6pNsqXpTwpIc14YdEm7f8NN7AVmqv/3kqb3g/jqmAvTzRKEuBCx5mv/GNb1wU260oCh0dHbzsZS9jy5Ytz7Cnj/vuu+9CT3lOPBtfhnA4zKc//Wk+/elPX9K5nPFD59/omaAInzg6C+mmWbnG8ryqEJXttEbCJFeSdFPP9HRzLY/NoSs4WTxEJery2JEH+c9Dv87u2e8D4M0eAt4EQOamn6Jlzz103zPMiV+eZWbTO+i68l2w/xvw1Fdg59tg050XWKgzE1CU7TLrpL9sCsioCmnilKRNKKwjlmFwH9NjxPU4ndHORX+BZ1x3Kd+bTp3MEBJXAc3zn/dM3KVtdBS2bA0K2L4RZg6A50B2BFJNWYSd+gyplDB/As3zG7XjMtJQxKXcXgxFgLb0BFKzL95MyVeiGarRSExxsn0f3aV1eKYHSoyKMktErQ/0zVmIrkEKgb0jQb8ZITIfp1otscGeRutK8M0ZvwP6vWvfysZ9n6dj6xSxrhlk8Qdcu/GnGehcTyQWofboCTQdlJQvHfDy1TOWz7ZO10OEVBfbE1SNfqZdP4NlTES4vapSu/fQBR/zbOsuZB9V1UG6dHutnFZnmXUnuantGpx9p9g0dBWDb1vDq+an2D2sMT+SASnJTx2jbfAKNoU0Hrx9kGPf+icKB/YiHJuht/0atd40iuWx/j0f5L90rOXoyRq/N5Tm48M6+3Pw45NF7nD2cm1HisxM0KDdN+ff/6QmUCpZrHhQv0WlgZCwIb18ZsWLMLQeTpygoxgo3fRElJHyY/Tim+62RAyoh92MOQ69ToiK3kXcniCtTlKZGedrJ9rrtRpMKgWGgKwThTVr4NQpKJfh6FF4Fu3dhaA8OdUg3Rwgqyhcq/sDA9NaufBSgK60QSykEmoi3UyvCELgeKCrYERUoq5DTjaHl/rPRiiSoFrKkJscR0q5/Ek0VvGcgFuzsJuSQv1SrsA62+HjM3PoQLVzlB+c2srpymES2RbWutuIzJWILLPo5LmCqfIUb/r2mwCIqlE+av8u920L8XJ9P9QdEe6NRpirZam43RTsEEndJGUdQqWGq4SxjGQja9sLAZmJuhpWeljj95PY6N+IE+EtHNJcjq8p8fp7vs3oNTYokNb7KUbbSZWfpFPOYrhN9gHJTuTMKDEtg0KIddoGnqyHss206bSUoFzI89R4mRttl7C+Qm3TJUKa/jtVkTVkfYI+KmJojgV1T7fM9CS2ZaNEE3RIP+rBkwpVZQAleeFth6YKiKYJVaawgHVKF2FToRbymAln6Z+f4fuJa5mVrXSIeQbUxzh43252DLb6E2Ce56uppqagr++851tqOJkasSal23R9jGNKvyxDLcuvktLqyQeaw0udSDDWMufzDJnXofaO8/NvOUH51Ha+8niVDR0xOsI6suawRlV5cirPnONghi3+byiOY1pMvayP2JGNdP3wOKXHDrBubyfD1/TiqgoH1ZtYN72bWEcZ7FNgn8K1biBmzDN3epoIFjGvgFM0qM2EibTZ7F7zbrodh3J2nErYHzcYUiekxIicJ3Pp06HEQqgDrThH/YldZ3gG/ao13DF4B5/Z+xkA9tl7eVno1VTaQyQna1i1GiFVUAE8Ncp462tJTf4/AN4b+g6Hhm/i4bhHvKoynzOR88MIz20k0FrFiwcZaxZ9pog0wlhX3hp8IQSuqYBVOvfOlxkXTLr9wR/8wSWd8KUvfekl7X+50H3FOPb4KHrf4MUd4BlIN90JQnDmVRXNbaU9FiUVW7nwUiFEo51c8HRzTY9upQe77tM0Ha8wl5hmILqFkpPDq2XI5DO0pdpI9AzwaPcObhzfR9e+SQ52HKRr3Uth77/4J/jOR2DNLghdgFpjkadbPbzUKtOq+gPTCU1DIkjJMBXF8wd2S6h0W8B7t7+X926/uCQfF4sP3PMBfnz6xwA4modmqUjP49+uLHL7yeOEiuvpia9DFaofups/DbU8ZIYhvT440OQk/P1PIB6HDYE657AWIl3QCcX6GNT8GTOxDB3Q921/H6pQ2TW5q7FuZ+8m9owdwEMy0rqPm0begDRtUuUQp7Y8yZb99TqiNoGMDCKEIGtodHoefV1DHB/Zh+OY3Kbl+Y4IYUn4j9b1/GxGJz5vEOuyENJGG/u/xNb8GZFInPmSDVGBtOszeKZz5vJZ1hmu32nTFYkdbkdhlLVWF5sSQ3436mzHOc8xL3UfRdFwXZc+2cZpZpF4nPDGWVtbSzScJh5LEStmWNPZT7Q2z0x+lnKddHM9iKmwtaeN+R+PAJA8uZu27T+DOSFQIlE2dnfwTwmHdEwjOVZE1gXRv/XYBJ+7WWeuFnR09uWrvKxb8IpkEeOAAKM5vDSE7QnaUyuUECaVgmqF9iZPt4zMUXZGkdHrCFckiZY2+iIm41WbH5dV3hYWlPVu4vYEipAUZ4aZ9YIBgi3LnFZd+uYdeOUV/sqZGdj9GKxf74fQLBEqhTyxVr9uy6gqUgh6w35WQ9s2MSIX7stzsRBCsKk3yvFqCur2R8VsDtrBQaADmqGQEmKx0q1O6it1Fa1jW9TKJSIrSBiu4vLBqZjYdQ/MX5vPkXZdfxAFVIWgO2ry5q3zPHj6So4WH+do8XF+6oe/yPqNOy9ruVcKR7NHG8sVt0KbN8/3rkjxL+URACwEP4lG8DT/Hj48O8Cm5Bxr4zmuiv0bT1TfTjXSjjM7d7bDP+9gVm0kkkhYYO97ilA68FqbatvI1578D7KyxGPvxPd+Atap6ykkDFLlJwFokdOcxLcECCc7EOU8r99lUb75ana3Nnl6pVU2n/Lbp0G3yLf3nOYdN6xZmQu9RCwo3WbcedplC3G1jbXqEJrroCgSKSWVoq/o1lWXVMVXAc07g8TD2kVn3I62dWBlnsICBvV2avX2fSKeR/ccXFT+wXkFH9G/iiI8rJ98lvLvfoZYTy/c/V2IxXwf1MtAunk1B7VOus0rCpYiiNkh5qoqqnDpTCx/e6qpAofF4aU11SLZtRElW6DmVdhwYpATW4fp7oCnpmfoTnbwjusH+MXb1+N5kr/84hMoU3k84PGaxT/fnuZn5rK4MYPymjSiPjZyv7iX9UfmaP/eYWpdUaxWSaQF7OSNGPZ+pJrC0btQQ2kKJRvsFDJfpOz1kjnWz/xVO4jNjSAUjUrY/51TIoEQgugFKN0WoK7rwJkpIgBvuoh7ao7Nazdza++tjBdmOVk+giUtiOm4msApmRAL+lPZxM2cmNvFqarKy7VH6Nn2XY5P30GtWsNxJMV8keT88cXJ5FbxokDezhKftjCveSmEg/dYRpPYpgbWc1fpdsEMhaqqzMycaWCYyWRQ1Wf3Yv7kJz/hZ3/2Z7nlllsYH/fDtf7xH/+RBx544Dx7Xj6EmcP+7h9e/AEW/MmeFpbkeR66F7Cy86qCa7XQFouQXgnz8SYo9TIGSjeXITUgcEp9OidH9mDEkmStKRTPZt+Jgxwr1jhVsSls8dUkoYMznCofx7vi7bDupdA6BEYUfvSxCytQM4FWb1is0hRGfWZvQtOIyxiqdBubLmUihcuJmNbk+6DViVopueojd/GjtVm+k/kmD2Z+yE+mv8eT7kkYfxwyx/wQ02ZLNwTUapDJwOnHGut3x3VySZtp5RRXRuoJM/Sljy9Nh9I8PPnwonW/uvM3uDLtD7LyoTmykUlcSxIRLTi6RTVeBiUEXg3sOUK4qFKSQ9DbFaj4yplTXJ002BjT2BbXOPCyd5E50YNdMajOG4jqMMmRD1Mp5igVLDA0hK765GLozOUz1mkKYRl02ucjaWblFCPGNC4g1bMf5xmPeY51F7LPwhO+RfYxmN1Ki+jga9UfUnYrKIZGzaxgWjXaIyEmZ09hVQvMnT6IrCtES4pK/MZgdqh66DFc00OKKNIVOMU8YVPilMr8hT7LUAw2xTQmqx5vvG8Ep16CmZrNvOVyvGDztr59zGRqlBYlUjCIIjFSgUfaskLXYdNm2ps83eZknjVGKyUhMBEIReEXhtoRwD1uK49bGqMySBhTKU9TU8K49WtscaqMah7Z6Yo/cHAcP4tpqQSPP7b4/JkMfOcu+P73YM8TF1x82yxTsMIcs+McMFpY73XTp/mkmydWXi3W3x7Bc4PBml1X4blNXpsdkQh5eSbpZjQN8krzQUbWVbywYdcs7HoW7O2myQ7LJgq8ta8bDWiVFXrEKcpunppbpuaWGT94GNdZ+nDt5yKaSTeAvZExOtJTTKsqe/UQjxgJyopCNezihBWmagkGYzkArk98jWturFBLdL1glG612SyVvEm1JlHnJrBCGrvcLYx6HdwfKzNUzzRZCoNhSa6ciLFVv4J8PPDU7A1naWnrJ9W9EVUzEOX6JHY5T7oUhBDOJAIFZqU4yxMP7Xv+ZDGtk24T3ixzIsuIdxwJGJ6Lrkgss4Zbj2ro7YiiSH+CbtreQOoS5ju0eAyjrgxvVRLETJ8UmY6V2Vn3EP4X9w5M4kxb2+lQj3LwJ6ehs9OPpJibgwUv1BWGrJio+Ak1Jutxnu104FUl61tq6CtgeaGH/PMmCbPeHmCDuhkXFykdctY0eWsWdW+N7pBPSu7cMca//uoafvF2f9ylKIIPv/9a/ubWQXQBVyYMPv3jE3ypo24t8qbtWL3diEQPXs2m666DaGWL6IkcU4+nOXF3J1OHehG/8iBrfu+raL91lFM7P8UTbX/C44+/mvEH2ijuNkn+1A3MWYLhE/swZbUhtEhpvgQ5cgGebgsQikDf0o3M+QSIc3QKr1ijK9bFSOkoFVnihHMUhKDaYiDLko62geAAaoQj8XegCn//vXITP9uxB7U+/pvPVuH0rjPOu4oXPgpOFm02j9fSgTZ8sMEPyFiCqhcBq3yeI1w+XPAo+1yNlGmaGMb5wyG//vWv8573vId3v/vdPPHEE5imH0aXz+f54z/+Y7773e9eaJFWBLaSRGZOQWESkhdhwFpXbcmnKd3K2TwGFpNeCFW3mVNUKrUUbYZKIrZ0KopnVURVAcdDqBI1piMMhRaRJq6mKbk5TmvzTB4/QtvLr4d6lHBp5gQbr34JAAc3bod7IL13kpOKy1RlhN7X/SX8zW3+SzB3DK54O/Rcee5CNOFsXngiP9ZYNa5ppEiCZwX8nLb0aq3LgageEAdO/TGQ0qOaMtjwqYc48usv5VBpH4oHHWGPqxY2nj+xOJHCAqTEnj+No7YScuZ5LOnfMMNrY1vMP5cwlv5529mxk3dufif/cuRf0BWdjmgHV7Vfzas3vZZ9jx6gtdbJidanaB3vRa2moOU0hdQ04ak4wjKhOo5pdIAKc55CbKazcezHTx3lYFsXRd0ndSLR7dzS+3JG/uNbDN6RReAiaxa5Jz/Gk9H/gbMpxbZre5912WVxmqgIMndORqJ+3B/gGb1MDnbRNXThBsWXCvlYEXSDq1nLvyZ2YcoK3zfnCNei/K9rP86BA7u4995/AqClu4/s1DhmrUhhbpRw11oqHSn6r91G6K83YR49ij0xTObHx/GKOWq7v4iaGiBy469QnNiHfPTT/I+hbfz5prdghZNc3aozWrHoiWjsz9fY2Zbht6O7ELkEpukuyl4awUAIMC4gOc4lY/t2Ovbvbvw7V51jW/wKToYrtOQcHC1GsVxmnSE5YQlOC4VIvL0R2tWbUKEoqKgREm4Z1SuzJ+Rwc96k8P2DhNu3gpXCM+IoeRd+8AQeBkprHC9TRKn5BJTnSBRvxF8+R9iwSISR+Spqbwp9Wx9hZZbeqK9WOKZ4DCtTJFV/xCQvw1yCpgquHOiCunVKbr4A68DTVaiTJG2RCE+4wQSBKv32PBRZTLp1DK5dsXKv4vLBrZrYik9uDNWz1s0rCuOGwU+iEV5drqB7Va5fH+OH+/yO8fHCE3TcNczWN20853FfKDg8uW/R///WfoA3VEtcWfc+/GsRkETtN17J7P172D3fy/VtE5Sjm0iKSSovuRNn31dXtNzLherkLI1ZwmqGm1v9BBxPeBt5SBtlzs4hEPyXp9rp2DfJ5mqMwm/cTkmr4QkNRTp0qbNkM6dJ9WwCz0PRkkilRkRz6U72Ey3GCYswZTUM+M9mIZfhZT0Z9ozluGbwuR/bvBBeOuYGSsBOpRtdZAkrbkPlBtCbsBYcFMi660mlL34yNRExqMrAc7GrkuJEaA5b9+i1DwEvZY4Uw+5mthl+u7vvwXtxX7MONd3iZ/qu1fyJqkjkHGdZHojaNEL126mFzKVdxgCP2C4pa2XGCSFDpyIFKRFjWB/Dt5QVbItuB3yrkuzUOFu1nUyZ4yS0FPdn7iasvpnupgz0L9/RzSdyZT54wJ/Aqjgmpycj9PdUqb76zRhf/Bsc6TXm2+duXUP8ZBYmCti7HsHMeoRa/W+veuUgO69PceyzjyMBJRYls2Mnm6dCTM4codzs56b6vsAXGl66ALUlhjfYijs6j4gY2I+PcF3HlXwD31f9qHOQLfoOqq0G8TFBaGO80cdGjRCLOPzP6n/n49GPcp3qWzxtTLRxuNDJfM5k7dxRqMxDdPn9+Vbx3EF+fpKuchXrhlcho3FwPUCAomLr3WA/d8NLn/Wb9MlPfpJPfvKTCCH4/Oc/3/j/k5/8JJ/4xCf4wAc+8Kw83f7oj/6Iv/7rv+Zzn/vcosylt956K088ceHqgJWC6lVI1R5FPvq3F7V/g0B6Guk2NXaSlGHSo5h0uh7zmkq+kiKtiRVXbQVKNw+3bGNm/AHUgLEJAMvwKEYdxGQer345ifwYNbcu2e/rQwqF+HAGtWxxYuYhZHot3PZhf2Mp4aFPwf/P3nuHSXKV1/+fW6lznBx3NmdJq9WuchYCkWWMwSbZ4IwxtsE2/Px1JjgRbWPZBozISYBBCAllaZW1Wm3OM7OTY+dU8f7+qJ7pXmlRXO1Kst7nmWeqq7urb1dX3fvec897jvcMhVVPALpphYaQ/YSmkhAp8OyGaenLhemmn5jplto1RfvdQ5z/3wc4/4BBoizIx5uSxszg8UYKCwCcdFAHbyXkZpi1w2Trg2ir28H5qTqjMvDCaAh+cPMH+dSln+KRdzzC9a+5HiEErxl4DR2RDmaDk+zr3IYrHLyKD84U4lO4gTpQY2dxF9xDoxrBYAvBuuZbqzlHSW2wbB5SJHLVayC9hYmH2zDzGhpjLDPuozvzbfbeM86zCS87SVTzO29PwmgToJTUuwicYufShVCEnzAGhc7mMV8nUSLZXziElJLejWctvlZXG33skaM7CXgwP57HqtrErrpy4YDYgw+gtazCWHoZet8SlIjOgehyjJWvYUlsE/+vkGNzq8v7NhosiwYIKIKD+Xk2VA/RYbioSYHryUUjhYDUUVFRpCSUSp6K0+JHMkWks5+Q9Ccac5UZ+uNpbD1PpHgQhMKWrhY+UdrNxvIUE5ZBRW+4q0VqPsJUrTNNw26VqvAoCsn8bA2Jgky3gmogTQdZqoAjkZYDLkhFQyoaKAbSdo8vDa7/X9zOlsF2cY9lcHI5EkaDQT5UHxtTSv0+OE392pImR/J80m+LF2hcU/FYgnyTcYVWF/kOBBt9yStMt/874VZr2MIi6nm01wXUS5UoSMEd4caku80YJxb2AeWKVWT4tvupll7+hgr7hx4+7vHRVJ4rKz6Tw5NwoNIYyzOhElogyIOzvqRJvLKXvqmvoHR0Ys+9PO4pK++DRZY0GWtrgEMylSRT9Rlr3Uofa2tp1o2CKPjMJU8Jkg/5urYxzWRDYopwvB1RKUJxEhmJEVfvh2PX8/+yVa7ID2NGjiCT/gJjpVLhUr3Ap36wndniczRZOoWxUF465jbMj9plGl1VCKvecaBbh9a4Nuac5Sxf9tzzulhIw/Aa92WP1Vj0dLsLiDp7/iZ3y+L+Pu7n2O55aDbGy+eecxueS0jHQ3Ea4+kC6Napd1N2Be2nSLknGArgeipBDGKef+3NetO0phvEjYIzT8dgistaXkPZKVLzqjyy6za+duwL3HjgW9w+cyP3Bx/lspYgv9sfRxPwnfuKPLzbB8QCkaXoyy4/7nMn3riOidfX5+OaRuZrXzvu+czXv9HQdL5wFbsPzRIoTWFV84t6bgAxrQ1dFc+LFait6kRd3o6sWGA6nK039KgPuHsBMMMqihWg6hZRK3XARA2hqpKrzurk4/Y7Ft+zKeWbeGRyNTj2ENz3GRjeBtN7n3MbX4mXVpSHB5GJFh9wA4TThKsY7Ui7dppa9vTxjO+kz3zmM3zmM59BSsl11123+Pgzn/kM1113HZVKheuue3qXyoMHD3LJJZc8aX8ikSCXyz2rxp/a8AcX+ciXwXkOyaE4Meg2OTpEtMmxbkZV6c57CEU55eVEC2YKilgAecCxPPr1xgr0XNJi/uAR5hJ1RoNTYOdhf/U2auhUlq1HeJLEnimG7UlqI3m44A9h5ashvdQ3VXj4v55hg55spBAoNFb6xjWNlNoK0mJhHviyKS9tAt2cOujmO/f458S4ZQcD986w9geD1AJhLL2eRWQGEa7rA5wAmn9ixmPjKLKeuHmNsuWk24ZWv87Ec9T9eCbf5eqBq1EVlc6ID3C0hFpY37oegIpRYLhtN2bV70DNYJlauAGm2TSowqXOIP2RdehKkIhXpd1qlNnUJOxoMQid+z4c2cXEw8nF07A5egOV0aNMDzX0E58uvPwUcc2fEJW9EDNe47MSgS6M0wS6qU2mJ2fOXsgSuZ4WpZ2D9jEemnqI9PIBlvSuJhyKMT89jhB+OysTe/E8Dylh6liW+BvfSPzK8xGKwDp6B14tjz5wMfryy/DKNhtTUUj2o/ZvJdjdzacnQ7RX/URPxeMr1ffxu7d/m9RwDsvy788F0C2Mn+gLJLFk8hSeHRDdPYslprOVWfSIgqvlMaoTi69Repbyz/dex8WVWWw1ykz4TMoixiblCGFqEIrX2+8Db1OaZL4s/RLfWMQv91VAeA44pi/oKx2E5zT2acpTlg03A2nmgUOktMb1NVQv9U7XQTfxHMo7TkY090PlevfgGY3rLx4OUyKEU6fiNYwUGn3MK6Db/51wa1VsxWbAbpTyFewkAa+Fe8IhFva2VvbQtXQpyXQrpldlPHcXP//vXTj2M1yQewlGdud2xgLHl70s146xvM4InHFaaEmdvfjciMwQjCWoaHGqrj+O6/YcaipBtXsV8jS5Qp7MsIp+f/HV8nXsTjSAgVIqglfPuXvUfrLXXsGOT72O3JntSM8/X0Mdv8lPKptRFcmVnUdIR9R6aakksUHQN/NVLs5/kTfkhvjL+QznV6pkuqIEw2Fcx2GymOWc2gx/9OUH2bFv6kltezHFIugmG2NERyWMFtKIqR6VUgN0a7WGAbClgaN2Eul47kzzcEAh6DRAyT63IcUw1AdL837p6Dfdsxa1X/u1B9h52wg0j/vZRsXAqQhfz61xrhrlpSkkgp7wqUHdDEPHrReUteH/DnmZRYknF19TsDNYOzP0hZfRrnXRP9VDeESnIssUCxmOlg6w39zD7tAwv2EEiNXJEYMjUWxHEC4GCKx9E6HNl9P3gSuIvHk9+TM6mX7VSnKXrUWNRsl957tUH38cAGtsnPkvfhGA2JWXkj6vlcetBOWJfQDHOZfGjLbnVFraHEJX0frTEAmAodIy7NBfl7QZdo5QETZeQEEGw1RrJeLZSSjnEIoBaoT17QaIlRz2/NLT7nCRtkCBYGUMRh+F+z4PX3kd/PgDz5zQ8Uq8pENOz+B2NfQ4D1qNfMMhhGu9eK+DZzxrHBoaYmhoiEsvvZSdO3cuPh4aGuLgwYPccsstnHvuuU97nM7OTo6cwO5827ZtLFu27ATveHFELn4BAIo5h/foc6D2/wKmW3ZmgqjeGNRmNQ3PTWGfBq0JpT4wCeFB3Zq56goGtBWLr6n0h2gfWIZmNGn97Pgu++74b/LTRymc91qsgTa6ts8iPMHs2F7QDLj4Q77eGMDtf+8L/z/dd2zSDlooy00WGhpbE5pGWmsHzyK8YAJwCnQaTkUcD7r5/6X0YM1VBM86C6lpjN/wA7Rv3cmmP/wxdr5+feVG4KbPsfD7oWqYhmA8fHTxeIeUxoT46sSChoIHxila/qvH21e/fXF7R8dtVGpB2ud1gpUYtWgLZqQdK5iiWh2kolgE4wGsrjAxI43t+SsZvdXj2Wt3lmsgDQIb341dTVCcbKOW1fE8jUvj/8WjPxt6xu2rTA4Srgtal2WceZlZfC4eOH1MN7Xpd9IV2ORdxbznr+p+Y/83UGJBgrEYlWoR17HpW78Rr2MpNcelXPBXyqeHc+j9SxDBGNLxwK5i7v4OQg8hayHURIDx4AR/vuVmfn3V3/LBgU9SiLs4daAo7pVRvQqOHUQJ65j1QW6hvDS04NbluUSjp84AAIDubtrq7KuCU8IRPuhm2R6a50963YE1EO7kTXd+AxwXVwSJyCIBYfOB9kMk0i2Lhwu7FSZVjxlpIHrbUAY6CFyyGn1FEmNuP8GJRzBCJYLzuzHm9jf2rW7F2DxA8Iq1x/1f2FZaG2I7pYPHSOkNcGqoXuqdrINuygtQ+v1MImY02mjWATW3CSxMBDWgYaag119jBF4B3f4vhlcpYysWS5uS4AItRL1OSorCd2JRHlNWockaa+KjWJZJ2iiTt2eY2XU7P/n8zpeOztazjO1f+BiyngcurGteWWmAcCNWNxuXvXbx8aSYohK1UJwKJdu//w1nHjWg44VjuC/qRepnFlbVX3Ce82ZYZTcWnw94DaZCr9pPoHUJxfUdWD2t4Pn5cjl2NnHpn7+pWozLzc9jh4MEruynu38/xdDqxRxzZ8DgC9OzJMPz1OrMwh3ZAheFTHbNlvmVr23n4d3+osxTXX/SchZLPZ/utScrpJSwUF7q+OBggACJkkstoBFVPSpFfzFR1yQlt40Jcw0j5ibWr9ARqedeeieEwHAbv8sSpWEkN5K22Tq1j/Vzg7TWJHOez2BKqpPUhndTcJo0qU/xterV3ONAt6m63njKSwIwkDo15k66YVDz4pSKIdJOg/lXijWum6I1jzmYR5uVnHvjWjbetwzD0wmWDJACiSSWj7Cvb5AD6SHOraf6tqNg7x0gWAwgtCCx1/wB0Usvof+qlfSXLdqSPRRWpf1+Qkom/+qvkbbN1N//HbJaRVaraHoFoz3KuAxRyowTax3ATjQYyVG9g1Dg+ee5Iqijb+wBywUJm4P+gruLwzFrv++KHtKoVWsEky0QSfpvNFox7BJXrqjyJfdqHvVWMmNGuLBthLMDuyHUdG2Pb4dHvvi82/pKvLhDSomYzeIuPWtx32S10SdPhTtRXiACycmIZ3033XnnnaRSz10D4bd+67f44Ac/yEMPPYQQgomJCb7xjW/w4Q9/mN/7vd97zsd9oWOq9c146FQDK+CBzz17ttsC6CblcQN1KTO/yHSzgZpood9zsDm1LDcApc6KEgLEQlZYsVnGAHEtzbrkWgqlLDNDR4mZOqWAgydAlQ75qcMcmxikoAUwhmcx9o1RCsGI9DU66D8XznkfqAb0nw//dRl8fhPsv/EXtudEmm5txfzirpIZIq22gWcRWbDhfpkw3Zo13Wy9UV66Y/UbCKxchSyXUdt9qn/s8DzuAhYpPZjONQDNgMEj6wV9exsCzvtiDWH7FYEF3QgLoZ9azY0tnVvo0ftJljvIhqf4TuUfKQbAMiReoAW9lsWoZYlXiyh6lFrBxEKSbF26eIw15jBJTBSgw1B4DJdpPJTkcmLr1jF5v4oacIloWQaC29EO/Zi7vnEA7wQuwk8Mc+bw4nZZpJhvZrrpnQROE8DbDLopimS5tdkvswbuHr2bqfIUPf0NdqoiVJTpIaJOkcHh3VSlJJoKUcpVaf+Lv0IJ66jJiJ/4zB8FKTD6YgxeUONQYpw5I09OL/PV7p8vHjNhRPC0JE5FoKTSWLaHK+QiK3OB6aZISSh48g06njI6OmlpcjDNuVUcrYATjBOvA1tSM3ACHm5+HnU+w3x43eLr36Y+wJJkgx0QqYNuY7vmmPr0dqY+vZ35bx0gc1cTa3J0FCrHs1hoKvk5UTS7BTtFk5TuswE8YFjTURDEhT85UIOnJ4kwVAND8X9Lsw5YeoqCIyXlrIle76Pz0m+n7vqvMZraW8q+Arr9XwlZqWILa1HPDaCkdtCCz3C+ORrhbO8QCg5L87dw1fI871n2GK/pmuCtXV+kp7PA9PAzZyO/VKK6Zy+HMgcXH2+qKFxbLHFGrUZNCGwpUNa9hxa9l16ln16xhINigq+s2cm2jXMMRf1+VZE2mlvAC8deFmYKTs1BSsm0nGS11cipd5nVxe0edQlq3h9DrI7UIuimqhr/O7uJo8U0veECAa9AR/bH9LXtRBEesepB/tr+db6nX84m00ID3mE9uijE7lUzbAnWCEmbgajBDx8bI/PAEexHh/HchpSErOfsbr6Kdf8RrMdGsAdnqN22F/POA3iVF7gsug5UONJlol4y2e6m0WbGsY0InutSLfv9bkuLQZfcTXfgAFLorBQjEHl+i14KOjU3TLkUJKq10poxSOd0kILeygR7W5dxKJRgu7sVW21l3FxHn/E4e/Y0fsNTDbrJqoMmmpxr64SCqOvnvsueB/vv2YQeCKJpLtFYle4mKZR8oIJSl/4o2P74mPvfozjDJZi1WTG4hNfveTUX/3gjm+5eTTFWxtFcDp4xQvfZjbLZx6Z01LqTvDVTgdQyCLWw0g4z6c4x/KaVWCu7UVtaCKxZw5GrXoWby6MkE2gtCdqubMcO9mDXID91mOLcMGWjQQKJGp3Pm+m2EEoiDPWcZzOr6Y5002usYpfty0o5IRW7ZJNONH4bGexEsatcsCzCPucCVosx2gNllkazhFUbqhlor7uXdp0Jc4eenszxSryko5LLoNd6KJ3VKGkfbeqDh9tX+vPgF6mZwnOaNY6NjfGFL3yBj3zkI/zJn/zJcX9PFx/5yEf4tV/7Na688kpKpRKXXHIJv/mbv8nv/M7v8IEPfOC5NOeUxFCwi7n0qwiZR1DyB/Hu+Jdnd4BmAKmpUzALeaKa38nNqiqa10Kv5uGd4tJSAKVJY2/BwdQxPeJeGIHCvtx+Rnp9i3c9b3PzeVPcfVYj8QtVZmlbewZSD/i6biWT8XQeadcTmKv+Gn7vfkgNQHkWskNw059C7Rck2ScoL43XX1sTgsG4S0iEQTrEowFQxPFA3Us4wloT6KbWy0ulx2eFjbz6PbT83u8y8J1vE7nUL9W2Sk3ARi3PAtPNkSZ7W/MkCn4ZgIfCdr3RQa3Q+/A9Ti3QTq1brhCCjy39FxSh4CoOZS/H48N70c0OEAI73AaA4lpYSmMlQ+nrJlRPYFLVGWquX4gybXlM2S6fpoZEErzgHSjBONPb/UTL8XT6jB2YhRLHds89qT1PDCvbcN2qqu2LoFtcpNAV47Qx3bRg43dSVA/hKFwcuMpvmxHn5uGb6WvSdTObwJ+54d2EhCA7VSQ3U0JLt5C68izcXBln7BFq2/+VyNY06bevZibW5DomYVgb5e7KLWwzb2dwYhc3ux/G8wKoiTi1moOtN5koyED9bR76qQbCNY22UNviw1w5j1RMKsIgqjQAILnRP2fqfJZCYCmO8M9rKnsvvYFjXNg2TEi1CLtlpjUPU0oKLuBKanvnqR6zcL16nznT0NpZjOJTgweiqUyzMlsgpfuvn1A1LEUQJ4xSLw3WQqdv5S5q+Pdarc5iQwjQVCKpAO1tQaKassh007wqQroIJchCKXzxFabb/5mQ5SqWsFjaVF5a1no5w24FYIeW5Me6rxHrCY2l9iMoAtYnB0kaM3Ts/hv2PUvtzZdCZL/5TQ53C8I1f1y+rGTzd3MZrqzWCErJQf0yrPSFqIrOb0X+iCk5AQI8RTLYW2Ey2OhDdXseJ9bykgfdpOth25KczFD1SqyssyPHNJUDSkMIu1ftRy36k3UnHV8E3QBSdo5tswOLj5fPfwW33o8fTZ7P17yr+evqu3m8znwoqNAW8ll0s/k8Ukp+pU1yuGjxrf2z3H1oDm+uhHXXAewDk9Tu2I/18BDW/Uexd4wgbQ+Zq+COZsD2wHRw9o6/oIw3afkA9pQ3h+sr8dMa7APPw4x61CoVAkF/wTSZbIwTrppCUyQkn6dRhBbCUKpEojUiUZ1U2SCTtJkMFVBWNYC1H1sb0N05egL7WBW6h9FjVWQd7CJ36stLBTXcurbrlKYS9oJIx7+PVveeGuF9IxDCU/3rcaG8FGDWmyEY93OUkp3FVTzcnLk450n98ipSb1xOxx+fw5lXXMbaqs8i1KRK2/o5DN1FVTzmZkJ8xC3zZgr82ew8d9+qk9vbz8DsHGHHA1Vh55+fT8dfX4Whz+NMTyPMOVKvuYC+j/wKakjn8YwkXZhhYc5gRRsgW9xoJ3wSmG7g5/tK2l+cu1TdRMkqMWYd4gHrbkxZwwyrUBYIYaNnfEanooYxKlkyehu/2VLif51L/f31aZ5FGFZc5gNukzt9ptvM/pPS3lfixRfSk4wensDr3Ips8XURbU9yrAl0O9qzlp3TBjOTx05XM58ynvXddPvtt7N69Wr+4z/+g0996lPceeed/M///A9f/vKXebxeM/5UIYTgL/7iL8hkMuzZs4cHH3yQ2dlZ/v7v//65tP+Uxc/MHzPR9rZF3QKx+7vPiu0mmkolm0tMRSG3WMI2o6lgp+k3BFI9HUy3huCqUPwJtG35jjgthl+GWFNMrLA/0eyfCTPaUcGrTwzLuSmEELgdfQgJid3T5KIec6N1x9FgAlpX+qCbWk8OihPw/d8Aq3KCBj3hnHkeQdtnuk1oKghBSPptiUXiLxuWGzzRSKGuJ+h5zCD58O0HiP3eH2B0ddH7uc8hYxGsYhPoZmdZ0CC0PJvYsTlCIT9RzdHGXKxeAuiE0JEoYg+G9rNTDroBdLV0cv7wm4iYSWbEMW6df5AjM/6ky4o0gBOs+bqmHZjtIdqjfj2/ADbndhx3zMdwGMajPBWj8zWXYTtLyB8LIlyXdeHbEQdv5Pbr92M/Vd2/lFBtrChWjA7y0k8cU5rPMDxt5aVNguSK4uFZHhcaV9CrDZC38nxl71eILO0mGvbBxtmxYdoH/NL9cGUas+x/j1LWT5iTv/LWpuM5JN+0BqEpHM41mH5dpRAHlAN8x7qer1X/i/cH/pF/b/0e0iqjhoNkdk4e51za0HRr7DuV0ZZouNRm5/3JaT4RJ6rO4Ur/d9+9MoAE1EwWKTQyIV94WOBxSe5LnNc6ymUdg0ScCld2x6m26cyHVGKv8Y0mQFCr1MFx7wTfs1iE0RHYvcu/npqACACaVpCFYmMofrsWTBQSorEyrj1PtsLziahe11p0y4j62GXrjf5mTTxITjbaqrhVdN1PmAFKM7P+5HX7MNb24cXtE+17uucX/jtDL23A4eUaXrWKTQN0sz2BFehimbIKrBiKVuWfY/1UzTPJRbagSYuMHcN0/Xuh29iPVn5xJsvPNaRlMX/f3Ty4VlAJCpYXV9HfpF03L1SCqYaER7vSxasib2Gzt5wLZpcQsBTm1EZfYdhzuLEWnJmX9j3gZcu4msGYO0KP4xCuA1eHDIPZgH/9RESMhEiRnknx6i9tYXXb+Yugm2ubhJ0Sc2aEibrAv4qDJivQfQZ3BH1x+YoT4BupfipCsNYscW6Hv0BSsyyKZo13Lm/kPbfO1UEky8Udy/iGN5kyslCFqoUI6YhECKWJKeVlyjgHp14w4E3W/HMx7jbykTalE6VSoqIIquUSZq0KCGKhRk7iqkkIh+H5lloZMST+9aeoLr3FBoh35CxI1Bkl22QrlufnGe36UWrjw40S00IBHIdTFV7VQVNGUYVDBZhTFFpkCwXbJiBhoLvlaY9xMkIPhvDqesttslFhMutNEaqDbhKJeHs74bM7iJzbSeL1ywiuSKKEdfTWEIElcc5fezXnJC5kdXEAJeDxB2fn+f4FAS5tTZCVHnPAvTj83YFJcoOd3PXIVvqn4Pb7OxiLtnFvr4HQPbRkEFVzUc1RgqFZCCT4Sq6V1tLoYtsqIf93EkBMazlpTDdgEXQLKgEub7kQgCoVHrK2YUc0dDPIntLjBGqNhTrNMyjINi5fcww6Nhx3vN2FjThSh+5NjZ3D205ae1+JUxvyCZWAT4zMdJHMpIoMxFHrmqbjVYuc1WT+Yehce+gCrvjiM5cSOpXxrGeNH/3oR/nwhz/M7t27CQaD3HDDDYyOjnLppZfy1re+9Wnf/973vpdisYhhGKxbt46tW7cSjUYpl8u8973vfU5f4lTEsHOUSngV06lr8IJLkJaJ99CXnvkBTlAqCRA0c4vbM6qKaydZEtZPiyHAE8vWwAfdPEWhzWhoOdSW+yWJazNtLE0vx6q7kNUKM3iuw+CqrQAkd/lMmcG5fXjSw6kL4HLhB+APHoGec/xO9MhtvgjmE4G3pnMmPQlju/GAwwS5NexP6EL4E9SgHnzZ6LnBiUE3pGSFgAdqko9+50EAlGCQ4JuvId+8munMLTqYOkKw8t6Diz4eU24L1bpQaovZhsRCETZCuKcFdAvHDfrya7lw6JdwhZ9c/nzsW0w7e6nEG0CGUZmlVge5bClJRRsimmcU9rBUKfIby1LENIEC/ANVpCVRVlyMnoyRPRJBrTOxNoZvwqw4HH7kBOykhajlwGwwxObDycXtVN3t0tBOD6tSazKZUFQPabsktFbSug80ZWoZbstto6d7OQCOY9O+dPnieyaO7QGglK0hpWRPi4a1zJ9EuCULZ2YGKSWHMn5JcrgWRCg+0Lew0g4wEs1ysAe8conM9vFFEwVo0nQ7Tbdka1ujBHkq5/dDxbYQIXuaj+Z/nz/OvY9Pxv+D716mUSjPcFCMMxI5i53LXkU5vGRxcWVdYpZfb53knUvSXLC5hemWEPFL+2j9nTNQUwFqWhfFSgcnTBPm5uCmn8L998HXrof7j08GRRNwpQQazI6jdQZcvM4eOzS4EyNyajRoThTrW9ezNLaKiJZaFCq2mljR6+NBck0Opob0J65avVy9WiniVmpP7+b6DJ7HdPCyZZzheZzBlzbo8HIMp1LBo0Zfvbw0Y4fQQgm6gv2g+GBJNjJBzVuHLsJYapwj5gB3Tw9QdnRqXjdtxdtO51c46VF57DEe2KBRCvnjRcaLsrxeSmlKwT/VrmSmt5H7KkLh6viv8hveq7k8u4KrHm6j4Db6Ct2exwtHX/JMN+fIDF4gzLBzhFVNGoDj0QSyPrT2Kv0IIZCKimareBiLoFu12Pj++8UFjHb8OjNiI1W9Hat9Pd+YXkZUtfm1nknmossx6pO5RLBRdjRVyNGamyNel0C4O1fDWZKGoO4zkXUFFIHSmwJVQYmH0LcuxVjTjX52P6IlCqqCOzSHO9LQfD2ZIW0XIgHGmlxJ25VOlFqVqgSzusA2k4TVxhjsKYnjzQyeYyiRVAN0kyZrgmcuPrcvWmBVZgSAgqYzIxslX0uDDzOVaUoA8g1pmBc6vJqDgs8cd4RCohigjyXkLYuU9AhHT814ahgBpOGPg200QLcZdwovlFx8vO2RR1CCKlo6SOyiniceBl0x2Jy6gJARIWwHuLArwbr4ANGwQSqosdA7HMXjY1T5g6LOB366gYd3tfD1Hw5w10yKHW/fSPcnr6Hvd8+j5coVeBI+P7GRn+6LEy7WQTchKGk+EzRGmJZokJBx8pK4BdAN4K3RVy9u323egqsJgk4czRQonSqiNIt0K4hgG1g17Egrv7q2wg/ty7l7eoDd2Q4eKnRz5/a1EG840DN8z0lr7ytxasMr1jBv2UPt1n2YDxzxy/qbSv2nhrJgW8h4y6IAV75W5WM9w4uvSdbniSUbai9CY6ZnfTft37+fd7/73QBomka1WiUajfJ3f/d3/OM//uPTvv/666+nWq0+aX+1WuWrX/3qs23OKYs5pqjKCjNtv4RSO4ZiTsCh+5/5AU4Eutm+PsdCmHobVq2VJbEQqnbq3eoWNAbAZ9DAAugmaG0C3azlXXSvXkvRqzA8P0gm4SdMUnpUCzMcWHsRNVWnZccUvXMKe5P7+ebYf/JwrqkzTC2B130KssNgxCAzBD/54BMa9IRzduh2NGmzkhqVBRaca1CuhNHFy8e5FI7XdFt0L5Ue00AcQXBunI1/cwuv+ew9aBddjXagCbAMzUH9+hFSMFupcMTqYg9r2OtE6ZgP0J4J0FddSsF7GE09AIoGTb//qYpQzGdELcueyYrymbTqPQih8D/Df8UxbRS3XlqrV2axgmGiqRChqEF4w3rSRhcg0HC5dvR7/ElXENOVlIHDeNSQ5A9H6LjkUsx8FKvsg4pdxkFa1SPsvmvsF6+qlCbR7EZyPt0EdCWMTgxNnHJ34YVQmxJGRfHwbP8evSj8msX93z74bfpXb6CjrZ/Otn4UqdDSu4TpUBfTx3YC4NguP9z/I37j3o/wF2+w+Ke3KBzthOKtP2e+Nk/W9BlxPcpy3l16LSoaS9RlqLLRN9281WD+fx/FiwePA90WNd1OExC+qn8z13gr6fcS3FzcQe+eBxDBGkO5KfLkqOCDXDecB/9wdYV/U27iI5HtHEhsZvf6d7F92R9jSo1Rq5MzlPsRQnCoWENNK3iuh9EeRu+MUJ3UwHb8BCCVgt6GuxvjY9De4W9XqzA8fBwjrtmRVDiNkroFE4UIUearVWbmxgjGGtffqY5cLcdQ8RBz1ghWXbPNMnRkncW4PhEi38R0U73jQTeAsls9zrn1RG6uz+R5dNUv66rZyJLJK/HiCq9mkrIy7AwabA8EGK3G0YNRjECQQMEvBxFaiWMBEzd6MY90f4QD7npGKykimk1MGyRmDp7mb3Fywxwa4sa+hpzBm+Ovpp8629hNsCV+2aIj50J4ikCTGpqi0VYIUnIbVQg1axBCL23QTboefzX0Kf5NfJGfmT+i03F5OBDgcKiT3QooHpxfOZMz9M0AePWJlFWugOcDltV8g/mViZ7LaPfvcH/877mp9Qt8YeYMhqthSq7OjkqMVCrGWL3UMUmRhVK6qUIOrVLk7Lo7aNn2eFTVCZy3DOPiVQSvWk/gklXoG3owLlqJtrEHpZ5bqR0J1O4E2C4iHsSrWViPDGHef2TR+OukhOVA2WSkPLa4q13pQDGrmKIZdIMwTX2iEn/+paWAkW6HejWLQpWEFydW9s/lpJljudq4th+tnrW4vTz0MLVomqxIQHu7vwh1ikJWHVThz60yqkImYaNrATKmQ0q6pyx3U1QFUdc3jRAg5Plj4qw3TUfnCuIdKygEW9mz5yCxi3uJXeznD9W6NEX1CRIVG2Ob+ZWZa9hgr0HpSvAH79nE1//mVdzw/gsxFMFGFG7DoQYU6pdgKmHx/Zv7+ebeVr7f38ZUJEJO7+Q395zFp3fAsvQ8asm/l0KpLgr4Y3xKRMmVHYInkekmYkFEKoxIh1lt93BGy1kM6KvxkBx29+MpOqIAu5aO4Gk6Qg2DliQ8O8JgcCnZgIKy4SK25Zbz86lVZMtlpjNxUFUIJv0PGb7vxJUHr8SLPmS2AhLmTY+j8ybbbzvMnXcd5cpP3cXvXv8IP9k7hchOQyiCqWtMWS5hShjC8Y0GgTVhjw93TfPn3VPMFmtP84mnPp61wnUkEsGqr9J1dXVx9OhR1q/3nUjmnqJTLRQKi9TBYrFIsEmXyHVdbrrpJtrrwvAv1jjmDBIOrcJDRcGF6Z14uQpK8hmU/jyBtSUAN58nHWx0DoeVAnY1Qkd7nOppKF1TmoC+Zk03T1FoNfoWn8uETCYOH6LbC5As6kzGpunGZ7tVspMsiy/lcOcqtto5rEmbsVYV2y2xp/AYKyPraAvUVyW6z4L33gzXvwEmtvt/Z74dVlwJPNFIwYNj9y0+fLiucZQSgkCgbjvxMgLdIloz060Bun1BRMhKyX/lXIqmw4GpIvuTZ9Dr6DimwHFVjFaJVATChftnilwc2EdKlHCY5Zvu2Uy3+InZltkYcaO+EnAaWG4AgbCGogk8R3LZ+Lt5uOsmdhVuJ633cOfst+kNX0xHOY5rxLCpYlYV7JoDLW14mgDLPzfxlnYmp4e5trOF70yWsICHcehzVdojLQz86tvJPPhFOjfVqNXCvCn1V5TdZWTv+RDpS9/y5IYVp/Bch4wdJKQ5TAT1RUPYeLCFSPDUg+ILoYUa/Y2ieEjLQwrBQPAsYkoCqbjUnBoTAx7TP/VXoe0DHlo4SEf1GLIKxbkRSCeplmooQuFY2OHYKoUlVZ31P7qBicsbTtLr48vojlzDP4QuJk4Cbcch/rj/Y2CaKHqEuQMT1FJJrKZrKFzXdFNPUwnu2rYNHNYLjLh5IM9fzk9zVXIXt1tHoemnU4TKeN3AQHEF/5r9EUlFJSM0rtcFK4WvLTJR3MuauD/O/eCuQd561UpC61uo7c+Qz3SiLO0m8uZzQdfhK18G0/TLaWamIRiEWs3/m56Crnrpa5Omm7CmmbdDRHSLoToDLldW+eg9P+DM4h7W/eqbX/Bz9osiEWis0NfcIjoJPE1F8SaQSi+9YYMdouFyqtdBNz0QhDpZ1F6Twlg98LzbIqs25l2+OY90XnyrmP/XQ1ardLp5zqn5OeJ9jo4ejKIGNKLZdsy0Xzr6ULzE8kWDbY2S11Q+6ZaedNyXcoxPHqQtL5lKQVrp4Rwrj1I3qpqrBenYdCHURvGCS1Dqi4meIlA8DaVeVqrnIiyQh4vWfkiFcE4hiHGyY3Z2nJusexcfn2mabDVNYIpzBt7AOXs3csWKNzCUULFNF0cpUYkUKBeySKGAa5KdHccJtaBYJUJxf+5QmNcplTSyaY1WwyJrG1xw1TRmLc0xI8CA46DjENNMLKOFkmWRqWr8W98Yd1UDfN7r56sPHOOy1Y25iAjVpRLCBk8MrTeNMDSUWBDzkSEo+9e9N1NA7Uw86fXPKepsDRubTqWbrJehVelAtUxsqJeW+hHxGguFqho7KUw3NZb2QTfp5xuheCed80GKkRIeHoG1VahfiveVArwh3g6eg65Kxo5lOXNlHmaA9ASsXv282/NMwivXUIR/LnL1eUFSTVL2FJLy1I4bapORVKubYlSpkpXzGMk2CtNHiSPJzrqUTYdIQOPQg9u45brPcd4vvZ0Hbvg2l73rfZxxlb+gOu8pmOk4Qgh0VaOrftwz+5Jcf+0Z/OoN/oKqLiCpKlzsqPxgJoxAsudImLGJPgY3zXDL/UtJ1RdJ5XiRYKoXuzSL7GqnnQS2dGlXfMD2ZMqoCCFQYsFFVujb2l7LX8x/AoC7rZ9zfuh9hEsJAvk8+dQMyWoSIQSqFiRnhjEUeH3rPPeFWgmWJwh6VUbLNrKaRfSfB4du9s0VZvZB54anasor8SIML+OP/RM42K4BFYeglMiKzc37Z1iTULkoWkF3XAK2Q6ehkvfm2KkMYZoSUHnr3OPookJG5Pjv7TPck7mFi3ou4s+3/jkxI/bUDTgF8azvpvPOO49t2/wymde+9rV86EMf4uMf/zjvfe97Oe+8837h+5LJJOl0GiEEq1atIpVKLf61trby3ve+l/e///3P/Zucghh2jyAVg4zqs76U2jHcsWco+nsCplt1dhrFyS3untFUkjkFNZbAMJ41Hvq8Q1GbJoF1pptrOkghaAs0mG5z9jiBbt8dMV00mI83WFbl3CSJZIKfdp1FdXycyOAcepOU0e2zN3Lz9A8YLB3kaPkApdYBeNXfNV7w6JcbZabNmm6uh5x+1P8MFPYbfgIU8hS8OvNGvFzLS9V6kiAlfULlbDQG7MYk5cFjBZxV7ZSnAgTDDsrcYbzqMGXXY3r4VlLC78gmlTMZ1RsJWqcdJ67WV9i10yPULoQgXGe7GeUAr21/P0tCG8nb0wxlh/mucg+q52JUMxiVWbyOxveOndMYVOdnxhg8toerWhvsmu9gsgwVsxQmkE4R2/AWjt7SSXkYglqVFm8voXs+CuYJJnnZITq1adKBGhkzzKzWWHFMaUtQT6Nhh6o1GImqKvEsF1dR0DzJ5cm3+ays3CE+N3M96U6/VGF+aoyVWy9YfN/04Qc45OzjH/Z/Akc6i4Digz0OtX2HefznX1t87YbYAIGIRlxJYhQtuq1WNpXWUYgKti0vMtwBjqpgnqC8VA+devYk+NfVH/f86uJjG8nPjv6YbWqjBOjtwXfzgcifc55+CZunU5zh9ZEXFY7JIkUvyzcSjQE6Pf71xe3xoSyb/+oWrr3nIPdjA4LisWBDNDr6hIH9zLMa20MNnYlmpluSPbQEqgjhsb9eulm1Y4Rdvy8MPvGYpzCaQbeq2yi5DlpHAV/IVml6jVY3XDACDRC2dLLMFJonAK+Abi+6kLUanVajjCxrhjGCMYQiaMt3LO7fESmwAGGomobZVD4Zki8v0G1H6QAPr1GoBgVLtTPQsrsXn3MSa1GER6lg4JiN69kTAsVVF0G3yEzj/i+Zh5g18tTmGkyvl1rcOXh8CfFAXQPQE4KQ2cUF1gXonWG0eh7supPMdg9jyyoCC6EGqMweQqvOI4B4+wAAjuUxmK1w/WgPc5bBZd0xNhfXcVnml8g0mevoHRXMSpm9UxO4QhBVPV4frRIr5bjjwAy37J16xt9FbY8jQsZxpXPuseP7O69sYj08iFe28Oaf3fUt66Db49YhprwJLCySIo3umHgCzKrf3wpFIdRUOWOo4ZPCdCMcPU6TOhDvoCtT79slVPsDBOr50BAS09iMSoZ2ZTdhdy+uV8+VJiaef1ueYchy4/xn6/dQQolRcRXS4tRpywFoTfOSlrp7qkTyNe/LPLbZpmK4iMA037tjO5VCnv07HseqVrnnG/+DXauy6/77OPjgfWy/6UYOPXqUHT+7mbGDcxzbN02tSUD+vE3dvAGdVSi8JxhmZTLCAILfI8BGoTKbDTI2a/Dg3iRTeY/9czDQU+Kq9sPUsmO4tkm2RTAlcsyLIr1aL4oA/STri6v9DT29y2tnEFP9c/KY/TBTsTLhUpxQQWGuu8Hk1aRBVbTyUDqEKqC3vZFbTLlTmLbumykACBVGHzqpbX4lXviQUuLNl/EkWE2LcJ6EpVF/PmE7VRw81KaSU1s9yn+ot/Dl2n8ylPksvbPf5sLMj3nD/D3cPvp15mvz/O/R/2XP3J5T/p1OFM8apfj0pz/NueeeC8Df/u3fcuWVV/Kd73yHgYEBvvSlX6xxduedd3L77bcjpeT73/8+d9xxx+Lftm3bGBkZ4S/+4i+e+zc5BTHkHgFgONCY7Ms92/DKT1/m8iTWFpCbHiOmNd47rwbpzlRQgmGMwGkA3bTGZ6p1QVbH9HA1lZjaQkDxGTaz9ijRVecAkCrqZGMNVK2SmySqqUx1+kyZrp0Z3v2woPNoO21GJ3kny7HqUW6b+wm3zf6E+zK3w6Z3wfproW01HLgR7q6XKTefs/wgwsoBsEsP4op6+YX0EAuDunr62EcnO05opCA9Mq6Pjvy+F0XUkZIH9x7CWNVCLdO0Ejt/N58fyrPJbCS3U8FLKIYbCUeXCBMUNgTikBh4Ab/NU8dCialnOmy1HuOfQ1cSwh9UD5SPMVpfRjUqs4wps6hpB9uo0tV5KSJY/84SBmcOsDVhEK0nCfvwKGgmu5eYSCSR/mUYHQM4VXVBmoqQO41552ee3KixRxYvv6xsY9KbIECQPjFAm9F32kwUANRmLTDF13TzFAXF8zgr/QbiAV+fbaw8xt0bp/HqrAqvZBKI+GWAcyM7mbMb7qRdGf81462C8TTsO9JIWrq8BstVnfQnI+vzXYv7Js+Io/QmT1heGoicHgYlwCWrr+E3nLP4lHU1cY5nKUSFxjWhc1inn8lvRN7PH+TfQnK2SkwGiWDwVvd8bglHKdQvgqXVewgW/MnyxmSQjOVwaKbE34saX8fEmqtgDtXBhia9Mzo7Yc1aFkUVDx2ERx6GfXvBrifMdpakUmfUeSFq9X6sZMWI1Vk/wejpKy+NGw3R8GrTpE6zOnCECwJaoo1EWqsz3YxgA8gvzp8kVo6qLOpVLrpivxIvnrBteqwGMJsxw+gh/9rtqaaRrt8f7ArOoeKBBFXV8FCwPb9PVSk/+bgv4Ri2G9qh64Jr8CYbsiRqogOZeYCJQxb2kUkwbObScayAgeYoi8w3WW6wm9Ouxd/U/pxfvnI3tvcEc5aXSNwxdffi9lnKOayod4WFWIpozS+x07si6IF6Tmfn/P9SYtdsKrlpqnn/vIpoG5rhnx/Xlgw3nZPzfvTvtD48TThrU2ltgL52Z53djIcbb+SZ59edTT976yHMZ6kHpK/vWWTDeZkytdv3Yx+cxKuY2HvG8ebLWPcewnp4CO9ZlD0tMHqnPR9ISistqIpKQFOQeIvlpXo4SNj1X1Nx44Q16UsePN8IBI+bv9RKITrmgrTkDHRP4ZA1yG+nPZJmiZ2xVszgwOJrVwQfYarcZKbQ5KT+gkYz6Fa/h+KejnAU2tVTe89E9cZ19OraeVxuXAPADucRdnWM870rxnhwfYbhe+7lW//+Hxy6++eY6JS0OLYWZnLfLn782X/iruuv49Eb/p6jD32P7MRBPFdy57YhRjMVvvXQMf7h5we4CZtDeHypWuH+uSJfxGYTKmdKlRjwW8vL9IQ8VkYdOlqrvP68GcJTjTF9JNwAurqMFQQN9aSX4iqxIKIOUOsVj8tT/vnwcPlx5OfodpDkRIRgrYD0/PtEaHE8VcMqLmEorLNlWaNNeTnFdiXBjYkilfYVoBlw9I6T2uZX4oUPWTLBdskLB1En0tiOTclxeceSNAKYrKlYgQBKkynLPI3Fp7cWcscdc73VwFcOZQ+9oO1/pvGsZo6u6zI2NkZ/v896ikQiXHfddezatYsbbriBJUuW/ML3XnrppVx22WUMDQ3x5je/mUsvvXTx7/zzz6e7u/sXvvfFEketQxwp1rBjDdBNlPbjTRee4l0LL2zquOo6UsW5GSJNoFtVa6fPKiCEwDiJdfTPNIxwhFhYEAgIFoxMHUviSYkQYrHENG9PYyxdBwhSBYNqwMXs68GK92JV8kjpEWrtJG+EKU/MQjXEWY9HcVwHHZ02o3PRiXK4cpjh6lG47P/zdd0A7v9XmNp9HOgmZh5c3H607sYUlAZ4NdQF1d2XEdMtpIUQC9J/agN0y3oeU7ZLQrdZrfvXyP68gVjSSXGsqWR7+l7umzhAFxkedVeSmY8xbaw6DnRr10L+ZWkWFjU7TkeE4wvAmaCnvJfVcojfKF5IUqToiXRzo7odAL08h+UIBmM70a0QqqaTWL0GpSuK6AhjrwqTnR/jl7sibOkJYwQd/vPcYXZumWHbWh94i65aS+ZgjMGfteM4BhPWGowHPwMTTQ6oroWc3rf4cKyW5ph3FJMa83KWuNZG8DSCbkoT001RffdST/VBN00NsSV9JW2hNs4KdrBdP8q2M3zAY2jHI6y75ApEez9WuI3DTYPQxuEGgPHY1giTSY812SAXdF1Au9dBCA+raGLNDlGc3E3n/bcuvn445qB0J45zL11guoUTpw8soqODP5EXc7W3gu/bb0Fr0u8700jRrR1Fwb8frDXn8OavHuQHj/fxGfVXuFKeyWut1/ONeIyfRUKA5IzBPySZu5eQobGmvvLWnwxxHSaf1Cwm7xjxNQLPOAPWb4CODtiw0S8v3bARzjsfli33gbd770HceRt4Dkqhce3tazIkmDPjLO1uZckZmwiET5+RQjPTzbTzGKaF6ri4di+aVNGFQGiN16j1RDkSj+LqSzDCHUweOfj0HyTl4tj4i0IIsahXiePC9N5n/4VeiRcuPEmv7TNvPCDnRFHr2n5JXcPObcIpL0VD44CYQ8dnugGY9dVtjfLJ1cQ6zTGi5ha326wYKb0BKhYCbeQyMSrlEGk3TzUYwtV1BBLVURaZbrZUqdXVYFpdDw8XV4Wpor9w8mxAnNMZXrFG0SzycPFxAFKihQ8G3oGBD4SUlBhxy59H6J0RdENDujWo9ynFXJ69O9cwM9i47wNdaxe3HctjVGuAHBtnj6BOHoNECy0d5y/u75Emcwk/9z50009xa/72FSGLJUGDQs3hu482HB2fSQghUJe2ovakED1JsBzcwTmsh4Z8B1JFLPZv7sizYP7aLlVZo1BngKaEv8ChuWVcx8SrL+KHIgbhOjBX9loIBQWcDAOeQOA4Zr9ne7QEOrA1D1v1GHaP0NESpKO1BVvVuX+yA+r3fLfxOJOlprnM5Klhu4lq4/wulJfGiTCDQpdxahdrZCCCV5+jdCgxrLoRyFmqbzgnFZhqMTGs3ZQP70eRHjoOW9/wJ3T1rUWRLkq9JHZBt2rwkR9wJFdAK1r8yVcf5aM/3MN/3jPEGXH/vAvgXFQqSP4LkzACExja30Lf0U7OboXfvGqc+SNxzDkfgDbCCY4qPrFEkQqd4bNfsDxXW9KCaI+BofFm9VKWaKvoU5dxl7yN0fg8nbkBPFWlFBhDVuZAuoSLORx1KbtSQTZ2aORCHUwGOgg5ebZn4oynUij5cbCrvoPpK7puL6lYYABPZhralZOmR9LQCKoK0a4fwpLP8ZeBT7Kr9gAAluswhX+v99k2F1ePHwcvqjXmSi8W0O1Z0alUVeXqq69m//79JJ+jVkAzMLdx40Zuuukm+vr6nuIdL47oEW0kRBsdEZOgfgbUFy+V0l6c6TzasranPkBzqWQ9oSzPz9EWaIBultJDn1sv/zsdrC0hKFbqwvX1Kj0p/dVDgDajn/HaQSSSvFEi0DlAat7vpKVWIlDIUwUOjB9jaSTB4WQf6ZlRFFsQSWY458DlRC+JEtMSHCzt5sHs3XQGepmuTTDQdglc/CG4+5+g/zy46U8Rv/xdvxGuiTL4XcqRLpxKnofCPrgUEhGQLqrnUlUhFg/xcgkhBAYaJs4i6IaUhAIqcVMibZUz8TiAv0R8OL6a/uADVKpFwqEq8eohfj98Pz3uPD3MM84WarU8hbSf3EasMIlw00pu5Gmu3xcwQvEGC6lqBgjHS7wlsIavy4cZL08wJRSqmIQ80CtVit05POGiSJW+tgvYvXOX/+bOCLu9/VzccSVf2T4JaOwYjLNuXZaCIbh/mce51X6mhMAuaWQG43Sv8vWhyl//XSIfug9UDUrTeNnxRemvwUAXJfk4AD3qUoQQBPTTx6pUm5hUPtPNw1EEIcfFrUwSlgP86xX/yjt/+nZUKYkqYWZXKrTlLNojHciZEXSg1sQIOOO8j3Cv/W/0aj3sTw5yuBOgxobxI5gtAaoIjFgAvVciH3uI/vkaC8PHxOow9mPe8Uw3aSAlBOINltQpD1WF7h6oVujy4lwx63JfOERYVdhitBBTZogr05huANNx4erXYk9sJ9+lERsJsSV6MX8euJHPzc6gIZkyk6wb+jOGE7/Kx7rex52jef49WyEA7HIs3n1knA98skwkGSHV0cUFb7m40ZYLLvT/33UnlEpgGBCJIso2SuGxxZftUht9WM2OUR66n/mWlkVg4nREM+hW8UpYAf9+rRhRJH6CH14QMQY0TIR0icZCKPYElm1z9NEinusuggi4bmOMO3QQCnkYHYV1G55W90coHlK6qPs+Dnf9BDb/Ohy82S8vmdzZKDM50fYz3fd8n38ptKNjA4w/Ci3L4V0/gsDzB8ilFCyx/MR3StGQenSRKRGLB/GsToyWB8gCPwpmeZXb2wDdXI2oZqOKMrblYgRP3zV/ssKrVBiP+iXomqeSyXqkAz4oKSU4aiuZOf/+agmZTNQZWyG7iubRuF+AkhclqOToaBq2R47toUNR8UYzqMvaEGEDrS/9C9sjPXl81cUpCiklzoFJ3OF5DiWmudA4i73Vw6wKbSRsjiy+bq63m+hUAq0zjNYSQp9UGyw3wJHtIAS5iQbolu7ztTal61LxPGbq5ksr7FkSVgWvOI0JOHqjX+mQJWaTJq35ANlsjqFvf5e+N76ejUnBZM3Eqgmuf+AY7zxvybNi+mj9LdAP1u6xhqN1rT7OhnUwHXAl7ngObVWnbw7zdOfOdpl2GyBSWmlBVMt4rXGE1QBw0zHpa00DZTdNZ3fr8Yv9zzUCARSVhm+5tAknu+jMHKQQLeHiUovNsTTSw8GiycN5weuWLoWpfajCRFOGgVb/vRMTsOqF13WT1Wamm3+OY56O4yikIqc2dwuHAmQ8HUW10HWXtyjv4/zoJSxXVvO92vXcYd0MwM62MbaO+eN/om2ARFQjsvkN5CYO+C6OVhU9nKBYrVJRwrQM3kvk7NdxZtjgYFCjWHPYV6rx8WSCjqrHUhMO4bIhFaYKfC0/T0aAEdQpzkT5wbdXM2PN8WsLeWB7GzP4ufQAbaihFoIn0bm0OdTOBLJs4swUWRVsY8BYxd2VGwH4t+7v8YkDv03HgSiZvlli9goAQrUqJW85FTuPG3+AhDNC0q5iCZ2Hp8/nYpFjsqOfpSMHoZaD6T3QdcYL0v5X4uSHV6ghwyrVXGDRmXSyatMf8Re4ReQQqp6lAuw1t7NF20rZtjjqFUCBs2om94aCnFUzidUXN7aaAgUFD4/D2cOn54s9IZ71HbVhwwYGB0+Ou9Tw8DC2/dKgx4/LWQ5ykGlvkmqgH5MgLjpK4VHE8B3+StZTxROMFABqhQIR3QdNCorAk110Kv7QdjqcODUj0LTdVDNt+dsLTLeYmmbOHiey4myCtkrYVJlpbSDMydIYW1oiHEz141YquOUS8WiWyuNZ2gKdBNUQZ8S3kNBSTJlj7Cw8jOnW4KI/hqWX+IYJIw/Af5yJMn8nxo5rUYqHiZQnmZZJdoX8ZDykhMGziagqlWgAbWnrqThNpywC0gdXLLWxyhUScKTmP960kEwENP5xdD2j526ifNTfN+61cIF95+KxZla/i3x5ilrA/y0TZopYtMnx9DSCbguabgCVmgGOSjqY59x6CaOLxx7hrzpHcwqXtb2eUIv/PcMt/YtahO7RHDP9NVYVSrTUV7FHJiNMzIQY67TZu7xKrt0gvNQH/ouTaVwtCYDt6oz+5Jt+I6b3oFR9dthMLcJ4qpGkdet+AnBay0u140E3ANeTKFKiBTtYET6flkAX/1TVcYVgV9ccD7WOMzs7xtS+/aj18zUv/RVOIWFp+CxalQ4OO0d4dGnj3l/12BzVenmLgU13fhqlOkzYhLZ6NeVhp0jNco8D3UIEkJ7ASJwkMennGj09vmtapsDfBK7gRudd3NH1Kt4bW05EKzJgPEKVFF66g+LWt1A4XKJsViDUQzw+QG82zp+2t/KdSJSk4a+0RGu72TD5Nj7o/jpf58esKM4xjqQsPR7JFDm6a5adt49Szp1AduCyy+FVV8OVr4J4HFx7kenmScFOvcFWDZmgIEm0dTz5OKcwmstLa25Dr6u2KoVXH9fiIb+MyUSjo/Agm6Y+x8rqzyDgjxmuXWH7TfWyurk5+N534NgxGBqEHY/B9u0wMwMP3O87vZ4oPA/u/AT6rj9Anfw26uwtID3Y8XUoTsD8ocb/X7T9TPc93+dfCu0Ye9AXnR57BI7cduJz/ixD1WtE62yMEdVAMRogcqgtgVNch6yzPu6R+3G0WBPTzf+viipW2eLlENXxUSbrGFha6WIJOWKaheMJysSQQl8sq01EHJy6g3jIrqIiUJTG2JOvOx+GPZtgncUx/OhdyJKfe7mDszj7J0/oyC09iX1gEuuRIdxCFS9fedJrXshwj80v5sgHpnZzt7WdObXAMmUVodrw4uuyiVaW/eYFdP7RZoQi0AMa2NnF53OZLqSXw7FNhFAIJTqIxduxPA/XMhlTPRYKH87IDSPCYVo2rADXRbe7KQX8c7jUsplN+tfYlBHGNW2KRwdRPZv3aT77+chMiQcGn5sWpbGxF6Xj+AUn48x+1J56uWdIf+a/ge0y7TW0SNNKK6KUx2xNH2eikI42qhjKXppA7CRJO6jqcVKaSIdIsovO+cbxDzn76K7rtz4mIsikLy/jkkAr7cLxBC7iF/ftJzlOyHTzNHRHJRQ5tfrFwUgYty5voWkutuOxUluLoii8MfQ2DE9HuFCiiFPP5+IdyxiuHePn5k85tjXN964c46HXG+S3XEFA1wkXx5k8eC/l7ASXdcT54js383dvWs8N77+Q12/uY40pCCDYiEb6VQOs/NOt3HLRGv7RDZESglnHZT8u15iN8zTb2WjzKtmNp4Ve0IoOdVkb6kALgZrFVe2/TkL498YEE3yq9+u0Hm6hFptD2n4lmaKF0B2X3pku7tffS7jVL0M3pM30hIPiBhnvGmh8wPC2F6ztr8TJDel4eJM5asdG0SeySMemUK0yVXeVdqXDWc40SyyLTsfhkLUdT3oYskpR9a/ha8oVLq7WiElJub7YsMTM0Rv0L+wjuSM4T3AJPx3xrO+oj33sY3z4wx/mxhtvZHJykkKhcNzfyz1m3CkQCjf1/huzThLh1dDGv4q79+6nfuMJjBSscomE4g/8M6qG6rTSaSzok5361Ugt0AS6NekQ2KY/ELQbA+giQNHNMGMOEepfB0CqoLM/2hCezU8fZSASYKpnFQDVqWlkJUzEamibCCHoC/kDs0QyaY75Yv6X/GnjNdUM+pG/RmnSEXrE7EPWz2VIiYK00TwPNfTyYbktxALo1igvlbgC2qI6R02XMz2NvydIzXIYy1b5ctc1fNW9gm3WBnqUeTqVHADVcpRq11lMWw3abtpqJx5tAgXCp885ONzEdKvYMdBdRKTKG2WDAfu48EuPjco8bjVKb68PyCmqRjI1AIAsWFgJyZ2bHmPT+kaifvc2v9OVChzocEmsWYMWjWJNlshNdOMFEiTN3XQf+BvMHd/HefRriystY5UEM7FGotgT2wicXtCtWXtRqV8bjitRJERLFTShs/PYGK+aHmaV6fcvcymLSsDhwNHtdLb58gDVgP9c1AmhlcucqZz1pM9aMxHGq4N0YnyI3Pd/hMzOwobL6DeWA1CRLjOidlx5aRgDKQXGyRByfj4xMLC4GYudT1j4TJIF9oJOGSx/0JbhGNami4nun4GAf31dNrORgZE4H2tL8flkkj21JJO1BAFnHl0tsoUb+Mvdn6fDsagI+J5mM2q4eJ5k772/wGRn2XLo7/fZbrUxlJrv6DhVi5ILNq6raB13SLSdXlfvJzLd1LqeRt5TcOtMHDXSz5n217nOfQMaNiFnjq7Sg5yZKLLg0pG55zt4N3wNfvBdyOfh5pvg57dALtf4MLMGt/3cd39tjmoOfvjb8NB1KLkdqJk7EV4NGYhBegkYEX/8WPj/i7af6b7n+/xLoR1NuqHs//FJuVY0vSESP6roDco8EOpIId0Ysub3P5NMMi0Ki6Cb5TYAJrvY6L9fynHs2E7cei7Xq/eypvR9orqF6ans0y4BwK4GaQ3WUJrcMUNWBR2J2sR0y7sNkKPV9fOz8cJRZLbScG53PZ9N1RTScrB3jfjAV6aMfd8RnIPTnKrwClWcA5N4UwUIaOSCjQXahJokVO//AMx0H3qTFiRuDSxfZ0pKQTEfxLP2YldnUI0QXasuoiWgoQrB/MwEB8KNMWj91BDp97ybyMZ1qONHCVWS5JP+4mKL5+FGfZZYMZHEsyxmt91H8dBhfjPeGO9v3//czSr0dd1oa7vQL1qJtr4bJRlGtMf93L5k4k3mn/4gPJnpllJaEOUClWR80UQBINlUuVAVLYj0yRt7tab5iJAu4dTxoNtBZy8DAf81+6PtFLR+SPWjUGBt6A7G8h5CShg5BpUXHvAVTUBtVlUIugaqdAjaKtHUqdWZDYbCuErdAVeAtBrfPyhCnKOdh4JgpKvKTMof94x4C1+r/jf/636f+2OPUxBF9nuH2BG/mb41dUMs6XHkwe9ilTKYjz3MO87tY0NPguh5XRhLE6TfvZb2959FaEMrQhEkYwZq3CBqaMQMjTYESbPRD0xEG/OsVbIbqRovGNPNPxcCbU0XSjpCDwF+ueWDXGRcxZyY457oI4zJLF3H2hFmI4+Kj43QVipQ0yLEuxrmfmplhuLEUiY7mySuhu/llXhphDdXBE9SMLM4KzYiNJ2jNY+S7Y9lU94En52Z4cbxKW4dnWBldYZB9xCmkyMjSiAlZ9Qd0wtSZbAO4Ia8Mstz/mfYns2xwrETffwpjWfN33/ta18LwBvf+MbjaNeyrvvlus9cfPTiiy8m9BIDSybwqfCdqSUMH+2kPVBFmOOot/wmrNkOkZYTvk+cAHSjmqUYVJnSBTuDAaTVQlegvqJ1GphuepPbnNaki+FYLirQYvRgS39QyJjDKJFrEEaQdNFgd1sBNdyLWylTmBlEeh6x5WuQd0BtahpjyXpausYpTZSJdvvJfnewjz1FX69rojbCQHgFDFwIW38HAlHkru9COY+nRHBbL+dA4giD9zcl8XWmW0nqxPteXiw3AIMF0M1FIhHSwzGgx5Q8ZEv6DegTKm1S0JoK8dg8PLbqbaSVr3IRDaeWXPpipO0wKxvAaJvTTqQOuqBoEEqeyq92XITiDeZWteZPMrxQmfODA8RkkKKosUcZpaKG0J0aOyeO8sa151Doq5CfqxDtWUFmzi9zdo/mqJ4bYrNaYvagyVw2wLH5EPsPxtnS4rB/oMLa9f14t/rX8ex9ZdLvDIAJam0e9cgPYWQbLhoHcyn25duYDOUW29cb9+nqp1PTTdUbkzNVWQDdFCQQqppUwkGKxQiO0LmiUuVQvRxwpKNKeETDdR1cRVIN+vd4LOeR+pf3suVtb+HGZY3P0TxYGVzJAudEy80SvfxySnfeSeu1F9OpHYKa72A5adSw9AbDIoSBJxUCz1GG4KRFIumLSWezkC0SFAI8AYrf1qlSGFk+jKpGYH6e6uveQ+KRn+Kt8IfGjS1noETHOShL/FhL87XVFp/aPcvaeAAFCzfWzpaLB/mz7d/kQ2f9OgCPBVwGLI1dd46x/pIeIolfsLJ+xpnw0Ffw0BmtJjiYS1Lt9ZMMVSpE64BpvP30Mt0SRgN0K4oKquuxYDbpaCqG7YBQSAeDFGphLC2ELqvUtDSvavkB1eo6DhdbODYzhZPLYkgdhAvyCWU+4bD/NzHhl+FecSkM3QOrXg0/+G04fAt0noGc3ofU00i9DTrXQt8G0EKQXOIzuGJ1fdgTbT/Tfc/3+ZdCOzwP7vksuBYcvhVcG9Tn5zasBRqT3Qk1jBpulDquivTz5a2Sr+fP5RH85HePu4/zNB9UXmC6ATi5DNDzvNryYoijU/sXt7fWBMu9RwDQhaQS7EP1BK6rEA47VAMNs4SwXUUTHkpTHpi3g9SlMllpWYzpOpPePAR1lGTIB7XwnTLVYON3tHaMIDNliAeh4ANeXqaEV7VQQsZi7v5ChXNgctEdW+1Nkc9KqOu1x0SckNk0EWpdtbgpPY/JnXeCdDHtBJnZMEKVOKZvaONYVZI9a/zjCsFUzeOQ4hBHsMwU9GeLxF9zDUokjPqT69H6VzHScwbZ4jzLqxWWq2VMzfPHcsfvazOP72bJmvW8rpTgaDrKHQdm+H+vW/uczo8I6mgD9by0zjpTk2GcuhnWMzFg87+oy5TbMKJJKa0o5TzltuCiiQJALNAAW6tKC5zEsVdTm6aK0iGc7KIltpRYeZZixGTYPUpLHfB0VI2vTYb5g3AakR1BFQ6G+RCKOM9//+wMLBk4aW07UQg3z4I+SE5RiXoRoEbY1oilTjHTLRTCU4O+yCUgzAoVI0mwMIES7GZtYA33ez5ANNVSozsT4WDHPGP1+0JBRUiBFJLD7n4eWrqMdTMrQSjkJw+y/7b/5MyL3sNDP/o+5137K6gxg7bf3ogQgsHHHqGv4wwUVGIX9xK7uJc/qrfLydX46od+SL3egSFjlA6ZJiGDrFS6yZ4CGRUhBNqGHtKPTzCQugBZmecB6y7aRTsfXfI5Prv/z3HW5FCtDCgGWjCKqE4QtKoYXZ0LKk90mTPsP3wmkcvbqAZChMy6rttJGNNeiRc+3LoufqXJhClruWTqVXblynbSTRp9LZ7HDvthznJ94LXXcUnUGfZDXpgRz2Bj/dJdMTLBnfVh5e7Ru1meXP5Cf52njGcNut15551P/6JnGDfddNNJO9apill3jOFiGQuNe9J/x4b5PyQarAuu3vqX8OYvnPiNTwTdpER3sqSFQ9qGncEAopYkFvN1VU5LeWkz063J4ccp2wSAFq0LBRUPl2l7HD3ZjrFyKf0eaB3LSaxoJ7PrAK5do5yb4NyWGIWBVcTzeVRAb59g5KERotf6wrddwd7Fz5isNYnWvvaf/P/nvA9z2xQ4BRzF4P6N92Pd1XClCRECPIqWeZzQ68slgnXQTQpwFYnmCaTlayitDansr3qsj6j8T2sbfz/rg7VLjQyfst/KtWwjWDSRQmN6y1uxPJOM2ljJanHThI06KyHcenqNFJrLS0UHMIiigwhYXCHXcVRMMy+r7HF3ssVexUymDc1Q0Q0Vq2oTb290os7BeYy1bagJwdmdMf5n3k+mb3+gk9XvPoSiwNFeg97V68nveRxp2pRKfcREfUV78D6o+ddrKlBjyowyoftgZYtoIar5Kyinm+kWjcYpzJRwHH9kkbaHi4ungF2YwI7HGOx/B1dOfJXrUj5oMtJrcmF5FVOzI1RCjQQ9XvSPsXzHEZLL0+Skfy0NaH14v/zBxdcFagVCmzbR8ZE/J+9F6HmgwViYClWxNZeufJi+SK+voyAF6mk0AFiMgaU+6AYoUkIhjCOLEHTZmbZJzlfwrDno8FdJvU1XI60cqAHSLQofWrIBJa/zZeUwIPhSXMdL/Dubxbdpy90GOlzcM8kSq8YxI8hR1UMsj+IcK/ODf97Oa3/3DFp6T6CX5bnoMzeiYLMkNMdt4wOYddAiLEPEHZ+JEX8xMd1kiWDNXNR1c5uYOJ1BnS+VX0df/4VcnP8Zy3M/AeCKzmGq6gB5y2EiN0s02kVreAZZ7kTQ1G+vWwo7D4GmQWUa/vUSKByGs98N44+BakB+DPvC/8SzfV0go3APYtIENwmd7TAnoLVeKn+i7We67/k+/1Joh+6BsRaqO30zneF7YfkVv/hCeAah640yuDFXY0nT7yuEIKgKXhU9n13zd9FiRhgO7OdC1QcCTbeRjtqzz51h9GKKwdwgxECXkrdP3cG000GceR6Y64fONjxLAwQJvUpBbQCUIauKobjHlZcerHTQF+lhqXIvfzOXZVg3mBQljAuW400XFkE3WTKhxe9vnJF5REBDCgE1G6UzgTeVBwnWPYdQ0hGk62Gcu+xZA0vSdBCBp55CePkqUlEQ0QB4Em15O9ltDWB2uhRArwwDUA5FCUcaQOvIYw8TSqSxK0UUUWVuqgOrvAfp+UyhdO96AuFG33RHTccFCkg0qeKsuYzg6lVIzyM4sh/vyHKsFb1sqPj96hXVGvckTLozOWrJToK5KWrTU5gzk/xxIsxVU3WGbtmiJXpygBqhqxDQwHT83+lpQnoeuJKp48pLW8AdxVOU40C3UFPObiotcBJZ5s3SM0K6WKJCLTdFz4zOfFqhtWUFGXWKLdUpxtQIN0528/7z18P44wgg5d0DcgsI1ZcReAFBN2l7qDRy3YyqEJURPM8lbqsk20+t5EXQUPH0INR/blGrUEwkCWaOUJYFNrVsgHoRymwHpKvrud85zEqxhiGO8vfrPsrPvvJZbt88S5fbxq38FGXr61l6h29KEe9ayY57/wctYHDkofuoFPK0L13OxMH91EpFOpat4G1/8w/HkSoAZmaGKFoZ4h0rMKMaM9wCAqJ0ElYCZDk1i8tKJEB7axiZhbPDlzLhjnKz+SMQ8Iixk3NCK1ErRUTYz8/k0XEum5xFSY9zoH6MNnOGnw7bXO7FmVh1AS35LMnZIXjsq7DlfS/4d3glnntIT+LN+Per6TT6xKLtka87SLfmjy8V3ui18Xnzbh6sK02ub6qMKGdS1CoxhluqBFWHi9Qy/103KPvC419gqjLF1Uuu5pzOc17Q7/WL4lmDbpdeeunz/tCJiQm2bdvGzMzMovPOQvzhH/7h8z7+CxELTpK5SoaBVv8HrDhxbrltCdeeN4PQDJg9jBi6x9cle2IcB7p5UK1i0KCXj+sGRlZHTdQTr9MCujUx3RQbNaojHY/iwRzGQIpgVCOtdzNnjzJvjeFJF6Wsos0V2LH0IBd0vxn2GejhNBPH9uIsu4RDMkZycAddooxVjBOo7AF80C2ohmgx2pm3ZpizZqi5VYJNQuIi0QNqBpRWXIp4NQc71khCg/Vl34pmHEd/f7lEgMYKja1JNAvsJDANDpJgWGVf1aMvpPBnvS1cXq4RPWeWfXfuYOonMaTXRvWya6lF11Ia2U0x0gBalhJDEfVVhdOo5wZPMFLwmkSgwxXelO/jvcZjIOBeZT9JN8r149+ksn0nx/LHuEp7My1tvSiagaJqOPvmKU4+yhv/+q/of+s67t17G8N4dNkah4ajrFlWYrjF48xNPuimp9LM7kkQ2dqKYzkYqo5UA0jH4tbJFeQiDt10kxcFlogGnf30arppVKpllLBHWNSZC5aLF9IxHI82EWNeS3Fg5R9yxfQt9NgOjlCYTZn8vGUfZ2fTVMINVlqyVC+1PLqXdfqlPGjdi0ChT1uPozTux74P/A6RtihSSqbuP8by+AoCFY1uNcB4skYu5pDDocUzwQPpidNjCPPEWLrM1w0Lh/3SlvkWsgezzN78M5aEdaoblmLE91G54gM++BwMIwgja5M4qk1NwK/FlvPV4iCOcDnSW2H/I/fSdfmbfdANiLcO84bBR/i35RezUqj8rFDgNY5CMKLz/X/ezuXvXM2qLZ3Ht+vwrSi2Dy4MlVJk7CAhL0BEhjGcBFHHB8VPu6ZboKFNVPFKWLoOUqJ6Hm7TONVjCDrK8+yYU1mZOo9U7RDJ2kFGvFaWG49zd245X9pdYK5L53OB/8RouwZqFliDYI3BbRr0XQxzrTD+HdA7AAl7bgCrBBvfBlf8BWJSh2P1cqtKAqwiYFI+NEskUKZcn5+eaPuZ7nu+z78U2uG4KlpgA1R3Y2utuF99D7mAXz4fMw9QDKxZ/P90+xa2EyrY+KSOCRlgQH8y2LzE6EZXVSaSQ0wAb5L+wkgz082bn3vS+16Kcczy3UXfmyvQYuVBg5FSnMez3Ww1ApTLdT27gkLGbCdq13CkJGyX0XXrOCOFfZVurmYQVZrMaQHeWizy1YCOoivQpFMlmxhU7kQemfVBJmPLUnA8rKl63ulJvDm/j/EyZdSWZ26k4YxlcfaNo29aglesIrMVRDSIvvr4Ps6bKyJn/TxDXdOJUBUytQaAtDWk4Oop5j1BNZkgrif97yAlUwf34tRqgMLIsRVY1aM41bsJRFswS/N0rrpg8Ti267Gn7KIqGhEXLqxpzCTX+yw+RSEa8FD/+28Z/6V11EIaQdfhskqVHyVNuudDDG46n3V3/pBAewf5g4fp2DrAq8IVbq2EOTpbPmmgG4ASDeCZDtgu0nIQxlNMw+qTzslmIwXRimSQiCtBUXCCURzHxahNknW60UUNR0/DSdRT1YONuYEQHvFIL9FUF6nSPAeWZph1dnOWuwUt2sekG2LSgx8UV/CW1BK87DQFp51Q7SCE1vlMtxcwvJqD0gS65RSVpV6UsqfQgiAYCz/Fu09+BA0FaTRAN9UrodVyOBT5YvY/+Mh5Hyd1JEg2WGM6UmTGGudB19d53di6kSvPeR3TP7wDd/sObtsyBRKyMkP0gl42z1xAxaliVfOoegfZqUnsWpVEewe1kn/fhRNJbvmPz/G6P/xTRN3Qz3Ucbv2vf8OxTArTRyit3rDY3tWyexHsfyHLS5sjurKN8ENTWIbOBcalPugGPBo8yAX5zVAbh1A/CEF+yRq03B50O4amJ3HsHK3WPFXT5oFDAYyBpfzyT273D3z738Ka10Ps9OZQr8QvDi9bRsSCyKKJLRsVdgXHRaVGtTDLytzu496zxA1SoTGObDQbGrBT1RgT1QRdoQMEVJcWr0LKDJI3NEzP5FsHvkU6mD5toNtzuqPuvfde3vnOd3LBBRcwPu7XW3/ta19j27anFy78yle+wtKlS3nf+97Hv/zLv/CZz3xm8e+zn/3sc2nOKYmY5QMgs2KOiuevLm1IhNie3MDskQE8y0SMPww/+SOwT2Df3sQkkp6EcpkAucV9eaONQHYONVofKE8D6KZo2mKnrKs2sTPb8Gqu/1exUTyPtrqZgiMt8vYMWixNoqyjuDDaYxIMh7ALUxSPbWdtLEBtw3lI16MyMYk710I8dgzpNsCf7qB/PBWN0eoJDDrqlFFXEXhjRaxy08reAugWjqO9LJluDTDKrutleT1BREihRVVYDuRCCvnuIKW+MGvXpImVuul5dwyx9RI6PvB3yIv8cvDS/AiFcGMldAlNiUf49IJuzZpupVpwsfrapcQ5XhfLPH/F9rCY5Ablfspega/s/Qp3jt3Jd9wvowd0Eh0rcMwKSFCKHsXHjhEI6vxxTxoDOOTCvQ93ICVkW2sUOztp2boFO5vB3HuAefeXKLxrO1OBS3DO/h3uHj2TWTPKbNLkmDhGTmbp9XxGhq6K086s1IM+GLagvehZLi7+76u6LsLzcKXHWOcb+NLkFDHPxZYOpWVhikGbUqAxSEVr9UTM83h38NV8PvFV/i3xNa4NvX3xNQKPUNq/ZmZH8xTmKiSqLWwMdjPklplONyZ6m+SAv/FkPe/TE62tcM1rjxNxtgtFhCdRSxaxBw8iR2ZQhxsl2XguVIaQrsKxkEGHorE5srX+nMfh8C72hKYpRHyQQgnBtbkbuMCFw9Jlt22SXx4iO13BMV3GD2aZHy9xXAzdjawPwY9nu8hHbeZCJWZEHuFGiS2Abqe5vDSgBghp/vVWdYvUQgHaqxVcRTmO6fa2uT1cNf4Yc5YGQjCYfANjop91xgib0xO8Y2AHrwrfxT/p/45BDW/uRnDmwK2CLEI1C6PbIP9t8MpgDkHHVt+dNNbtO5GlliyWBgPI+uTA8xRcV8FxNFz3F28/033P9/mXRDscDYJroOMvcYzNBEUB1SmiOkUiYv64/0+3b2G7poTRgS8lYlRdDS2QWDSOao7VbF7c3mP4NA+zSdPNK2Se9J6XUriOh5SSYTlPxHVZY/n9rScFd80sRwsEEYqCXc8rO40w1ViEkh6kZoSImiUCqn0c6KZJhx94v0s5sIxVtsm7CiU2yzJWfsRnktVjgUElPYks1PWjQjpKPIRIhUF7cm7pHmuAOu5kHrdUw3xsGOvxEez9EzhHprF2HMN6dAj76AzO3nFwJfbjI7jD83gzRdzBWbzc8XpdXqbhrqm2++D9AuimY9BR3EHMHKTFzjDSs4xE3dioks3UATdAT1HKZvCcEcDBruZZetU7CXWtWDx2IVegKlQuXNrCL4XiGAhKFUFmwv/8wBqfGRs9MMdg91IAEp5HT106It/di5pqx5yZJrdzJyEyfKwlS1R4HJl5Qr/9PENEnvxb/aKQddBtqg66GQQIiwheyKCkCArzc2i1EromSWX2k9ImqHgpaoGlJ3XBSw81AFkhJFJKwskuEuXGwvCUO8G1TaXC35lso9h2FkJ4dOgHcMt1I52ZGd+69wUKr+agKj6w7ABFRRAXMSquQlKTBMKnFnTTVQFNoKXrSJxwC3akjTYS3Dl2F2ckfAdeT5HsjTbmQZvaNwFw1qtfR+9smPN2pwhaCg+79/Nj7Wbk6tWoqoYRShCIppBSJRhNEIhECcUThBMJhnY8ysEH7mXX7b5Lql2r8eNPfYJyPgdAJNXDZKpxny7oucGpk1ERikJbKoit63So3XQpfhXU/tAgYkTQE+lGWv5CjDR0ho442GaAcMiXc/IQtJhzHDyYZjbVyaHlfl6GlLD7e6fkO7wSzy28qbyvS+q4NKuTFW2PmChRGbqTtHv8uJJ2q4RpVNFsaAbdalEcqbIn7+fNuiL5ux06b7+90e9OlCZeoG/z9PGsmW433HAD73rXu3jHO97BY489hlmn9eXzeT7xiU88bcnoX/7lX/JXf/VXfPSjH0VRTh9b5NlGrKJRTlqU1SrF6hThyFI0RVDaeD7Z7/yMWFL62EXmKOz5AWz6tePe/yRNt3KZgNZYjdED64nMjaNv9lfvxGlgbgkh0IwAdq0Kro3RHUEJqkhXkrljFOPKHtq1XhZUSmatEdqiaRQpSJZ1DpvDbF6+jqEdj2JVcmQn9hNd4bPaauPjJLuWoyUyFB69lcS51wCwLLyaWXOaaXOcI+UDrIyubzSoWATXBVXBUxS8Q7njxNpDGH5ime5BfRky3YLieKYbgKrqZFYaJHcVkIbCkjWx42zhk1YHG7rfTvp9JpOzDqanEMSjnDnGXJ+JYQnWKH10xJvc4U4z0y0Y1ulakWB+vEwhY1MKdBKaHkJPh6Ds8HZ3A59QfM2LY8ocfdpyppxRbCx2ZXcyOnCUWOsSsuP7AJCuy87bfsama97AVW9ay9IvPsBey2EuF2B8OkRvZ5Uftnm8Z/1aMtsfQ7ouc9/8Od0bL6V18yaqe49yeD4AQZhLNYDKTnyA+HSy3BZCD0cwyyU0zUVo4JkuQnPBUREIMqWjhMNt7F/1Qa6aupE3F3P8W3sn01qBO85xWDbeSDyNOsPEUnV+OhLij5Yr1Kw5MmqKhaHOEGWU2hwy3MbYIT/5EUKwNdrLo7URFqrIhISNddBNvFhANyGgoxP6+/GEwh3aANGhLMHeYaYuaaH1gQmqK87BOLyHwM4H6b7sEmYUKHn+2HbUCbJEsXhV6gKGZ48yG5phz7IC6+7aydHNb2NgOkyq+BC9Z5lcmT3K/a1+ufO9us3vrk8xfyjP/vsnyU1XufZDZ/ttqmbh4f/CkwaH3G6GSmnmehuJr6x1EXWzCKEQTZ9+vcq4EafqVKm6RRACLaARxcNqWkBRVy4lvGcv1PzzZuppDqrn0O+MIAR0hkroiktMqXHU62JK9rElGkSzFJRyGBQF1l8Lj34JtC5QotD6Tnj1e+DVH/c/xDERxWGgzr5T6k688+0cqYRpcQPMq/7nn2j7me57vs+/FNrhhQqs6TJB6KhekLJswdViAJRNf3vh/9PtW9g2FYNpRaWsqqieih6KsX/bHIoiSK01SKdi6Irg8sT5bK/eCMAu5RjnKtpxTDdl7z3A7z31RfkijpEDMwzu2ceRtMWbCy5XVarU9A4OzcKsGSUS9yfhtq0hvQJJPc1o3J8UqE4Vo5JDavpxJZ+a53BAhhnq+xAbjrwfgLcVixzZfx9rz38H6CrY7qJWmCybUNcPUxINAxn9zD7QVZzxLHK6AJaLN1PAq9ngSexdo4u6wyfqwoXp+M8HddS2GF7NQs76wJS9exxjywAiqPtlQ3WWHQENUTeKWADdYiJOS75hQDbd0c9q3V9gK0w1xNPHj+zFLBbw7KMINUKyswe5+nyUQmMiVi6WaAlIUuEgKwZi5Kd9SYh92ya4+G2rCK6ug25H55kY2My60cMAnG9kOSCWEvCqlNvPIpj9OdJ1ye/ZR8eWzXymbZ6HZ06uQVwzQOqVTZT0U0gw2C5SSmY9H3RLKy0IIZBBFce2/fJT4Kz0FKr0++JxawOB8LOe2j1lGLHk4raqeriOJJzqIjHSBLp5EyxLrePq3Q9xMNXPw3TxSfUSPm7cDaaFah8BewZoh0LhpDLxmsOrOmjCB91yqgJCkBAxLE9BVV0Cp1jyQgiBFmgiXQj/N7Mi7bRnEtw+cju/dcb7uPsRX996rK2xOLix1QePVp1/Mbm5Ca557At8fCrIriUVbCxuNW/kV9f+Ot3rLgOhLOozauo0V73v93nwh99h160/A+Deb32VB2/4DoFIhPmxETQjQOvSzXStvpDvur6kjyYVlskOnLrJzqnMdfu6ohTLNjIPZ+lbmDTHkELyuH2ARGgTZCeRahgCYXK9cYozCuloG4XSPJqXZ5k3z0NTHWzfmya85Sr6yw7B3CTc9jdwxq9A9PTKdLzcQpoO7kQOdaAFPPmcJLGklIt6bgiBdBvHKDouvRRIlW6iLexyUFNZ7fioXFfN4WOR/+EnxX+gfyrAxtr/goCSkqJn67sJxFrZffh/2cw3AdiYnObI6ErAX8h5SYFuH/vYx7juuut497vfzbe//e3F/RdeeCEf+9jHnvb9lUqFt7/97S8pwA0gXGy0d3IqS8dyf7VsSVc3N/Wdw2sHD7Eivg/Sy9C2fQrOfBs06XE8SdOtWiZSd/rygKLRSrIwi5aqAyCngekGoAWDddDNRYsZhJYnKe+tr4KaLh1Nmhuz1ihdcd/lL1UwOJI7whlXf4ihHY8CMHnwPlZd9ptII0h5dIy2Cyyc6Xai4j6ongehFO2BLkpOAYlkpDpIwc4tlhiw/VGQfkKvoOAcyy0yvgCCUkdYLkZb78uT6SaamG51l8qZWgk1msZbFaGWDIAqUCQ4UqIoAiVk0BseIFM6yKznn5OaJxlyB3E1cJEotTCxdBGphhF950Ki/4Sff6pCKALXkVhVB6vqYCeWEbfqpg+RCm/MruYn+ihBT+MR5QjLlSVck3wn38x/hm69lzvMn3Ft7xsZ2eknF1JKMuOjjO7dRf+GM3lbS4y/mvR1ZB5+sIPQpRMEV5TYN9pO5zkXUR05iJXNM/Fnf8b47/4hwR/todbiJ5OZpA+6CQQdmg+mvChAt2Cj7FPFQZouKBbU2ZHV2iSp+EoAhvt/jfcc/EduXr6VPbnDVKKQjzSSZeEGKAQNPE/jm5MmF6crXB6zCSmCSVkkqo4TUTKwbweFJe8kWH9vIKzzK8oa/mvufhagl85KmnjAb5vyokHdgEAAXn0NiutS3ZGh+Ob3ob/x7Yx3fZ/ca36fgOcrraq4JOeOwNT+RSAxqwS5tcNj43waJRTHU2bIxm1GatNE5mZY6vlJQyBicW3hq/xc/Tg11+HIXJkdy9KsHNWoFm0mDueYHy/R0hOFQz8Hz0EVDrNOEolgLtFgPeTK/cScUaItLYvujqczEoEE05Vpqp5fsuIiuOiMFh677ejia5xoG285to3XyCFqA68HwDSuYKqym4zdwarQ/WiKQsEO8H0u5r+cN3HDjMoZ5z0AAQkX/CnmI19BjXRRjV5CLX01bZ4N+ZxviAFw9BbIZaDOlJLCH2M/13oD4wM6j04/yjkdftnAibaf6b7n+/xLoR0r48u5Yfo1CCFRoheh/cpn6VyWXPw9I0/4/3T7AL73Dx/nU11+XrhhTqCH2imU/UTZyVV5qObRHtA4t2U56WorGeY4KMbZEhg4TtNNndhF7dAhgqtW8VKMatFiz8j/Ijtgi+X3D0F7mr0534jHqOvn2paGKjN4eitmxO+746UjqNLBdYIITaKoKp7rokmHXa5DIbqJyUCaLjPDJtPiA/c8wr9e8E5EJIDMVaBmIx33ONaZkmgaL+qMMzUVwTam8OZL4Hh4kzm/3LSJmbioAQcoHTG8ad9ljoCG2p9GX96O9CTWg0fB0JCzRcz7jxC4eBWyVGuAfi1RhBB40iNn5gBoI0yy+DDg67nNtHYT13wgJj/ZAN0ycxU822f/CCFYc/nbmDKClCKC9vE5VEuwKtrK9RvGORzpxC3b1MZLuCWbAw9McvZrlhBYs4bQli1I0yQTHuDBWJKYWeaqaomhSIFqZozvXnw57zr4cwSQ2bmb6voLeFWkSvvETigvhcjJAWtEpMF6eiZMt4IsY9ZrE1OKvwAjQxpWwQdnBB5b6uwoKQV7Kq+mL3pyxeP1hf4XUFQXz/GZbkFLwbAULMNjyh1HdC7jnd//T37nij8F4JtTXfzewNn0TdW1mCsPQOJNfonpCwS6yZqLgj9OZetzsKQaRToqUpgYoVPLdANQFEGpHEF4Ho7n5492uJU2EowU76cn1cclvZdwbPIw44mG4dmGVr/sc7g0zAeL/0zrgElZqrSUIeUlOBrZTW3/zwhufh3QcGWvVqLc+PlP0bN6DVogiGPWiKZbmB89RrS1nUR7J+Vcjtb+M8l4CrOeb0kwQAcGOqaWIKgrL6jByhMjHdMpo2AEDTZyAUPuYcq1OW5PP8iV9nl0BmBaDYFQsJetZezGb5Bq62TYyyGAeHkSwuu4+6F2Vg0UmO1eTd+Ckc326+HSPz1l3+XlHm6+gr1jBKo27lgGPIlxyapnrwuarzbctlsiqFZocS5RtF0GglnWhfwcc4XjUvJUooqLbs8yWirxNu8i5rMPkBEhHKlgdq2nbam/sP146WIylUeo5aZRcYl0JQl7NSpKjfHi2Mk6Fc86nvXs8eDBg1xyyZM1yxKJBLlc7mnf/773vY/vfe+lR/eMVhuDWMmZpuZYHCrU6AjqfHHTW/ibtjdwqNqFVj4M80dg7JHjD9AMCkmJLJVIqz7qOqWqRJU+WoWDWKCEnybQbVFsU0rwXJRAAziUlkuf0QDd5qwRtKivwZUq6tieDQNpkh1duNFOasU5KnODVNdspjo1RbWkIsshcrNJrKP3AaAIhXWxMxePubvwmL/x8ENw8MAiQ9C1HLzR4hMcEnWE46AYodNe7vdCRFA0VkQXwMa0HkAAgbiOV6foaxLaev0ExnMlgx/7NKNll6gAkIRK04wlGq4wq+kiapgItwLBBISadNROU7T2NBLakt7Ql5DhChEMPu+8kfd6V/Jnzpt5Y/AalsfPISIiHLL2cd/kNvSWVhRtwZa9XrJ3y08BuPbiHpKKYBUK0lKJhB0iYZdvLHNp3XoGkb4+vFoVPZFEXvd5KlPj2KqCo3jMR/17tEvpJVhnBL4oQLcm12dNd3BrLorRuFd1y8L1fDbjsZ634ChBzk00JrDZWIPp2J2Hg11pLFXnnBh8aiiHvf8jJGa+xSpdZ2ngAO3BGXAtKuOHyc2UqZUtWrrjtKCwhVYMSxA0FQZKTY6D8vSfp+NCCNA0OpMG6aiGrUSI5S/C8PwyJeFZ9FUO0XnZVtJN3cnSIyoTEYO8ZrEl+obF/fv782Qe3smB9PvxhEbO2IgszfGf8q/5iP5xKo7DV+8/RqtwMOrH23lnfbA/8JPF44xU/YWLuaT/mwgJmWI3Ac887XpuC7FgpuBIC9szsaQgGDbQNP+LBckR1Ct0/fZFBMdmF98XiAl+kPkkdxY/xM8mX8+Xjmziv49s5bb8elwh+F9To5ZJYzkuQ+PjvOHRM7nM+3d+rfDLvGGXzp7pMozXVyXzozD6IEI2lRrUmW4HQlNE9Sjt4XaievQXbj/Tfc/3+ZdCO4pOGVPxU1xNt8l8aw9z1+9l7vq9TH7ioeP+P92+he1K0/isuQIRbrA0A9UA3x/NsiwaQAhBn3smMa+DHqebyZSJ6TX6L9XNYw0Nn9Rr+FRGtWSyw9sOUrK1zvx0RICpqr+IaNTzLNOsEDByFJo07yP5WWozNzFRWAGeQK3nhAEcZiRUPcnjqfPJCsEjgQCb7cc5OpVDOU7XzfInNPVoBt2aQ+1JIXNVZMnEGcv6zLaQDgENfcsA+ll9GOctxzh/OfpZS/zti1YSvGIt+nKfOSIUgb51GVSsxc+y903gzjfKMhfYXHkzj1eXDLmwYqLU9fyG+1cT1mLoiu+mmp/073nHtqgUCixw7pLd51CJ+ifLDBokRyrEx6tIXSWvpdEAPaqjhjScnIlVc9n23cMEVqyg+sgj1HbtIjRWZT7ewnrLNwi7uvMopflREvFOPn3hb+NFO5BGK7GJAzgSIo4JP/g+zExzMkJpLgV+OgdT22WiWc9N8cvppCox6+W3ZyYncdApaN0cM8+m4HYRSgRPeLjnGs0u5KriYZsm4aRvhLNQYpqV81gxg7Zqnnfv/xlCelzYkuVO9XwkAWyWY1tZMrYB99wNP/upX81yksOrlBB1z/VcfR7luTEKpo6kihE8uefmmUTA0IlGykRiVfSAjVatIlWdcKSP87rOY7w0ju3aHHMncdT6tR5I0hPtAc/j2ze/nxoeY7pOBcHWfXAkVmRUmWC0ug/KPrBv18pI6VHOjNG17pdwGUAoAYxQmEoujx6MYlYErQOb2fCqPyDVs4b5+Cj9ldW008Eqz89FaoH4KdNzWwhVEQy0h3A1jWWyj6JXYFSb4lBghNHDE3TEe9Acf+wXWhirI0FHMMKCTe0SexZDgc7WKrfd18njKzeyuHL66JehiZX/Sjz3cCdy2A8OIuoO2bJkIisW3uyzv5cXWW5A1tBAb+AsRcdjRe0O0sL/3e4Mhynaft8ZliVkXf8tbE/TGSrTGy5ixhv5hiVC5IMr6A4V6AiVSYtJ0qo/Zk2WJnC9plrWUxjPegm9s7OTI0eOMDAwcNz+bdu2sWzZsqd9/yc/+Ule//rXc/PNN7Nx40Z0/fgVmU9/+tPPtkmnJGKVJpFfZZaAq7CqrkV1cVuMW9wNfF2+ik/wPwDkH/sBif7zGgd4gpGCmZ0mKvwffUTXiLgdpI1Diy85He6lcLyDqeLax03kpeXSIrsWH89aI2ixBdDNPxeH80e44r2/ww2f/Bss4MhDN2BsfjXRob04U4cIrVhOyrBh6kFYdTkYEdbYvTzqgaKoHCrspO3gNKsO+GUJjrRRMZibGvM1RJrLS6WO5/qPX45GCiERWKzvcOrlpZ85MM3/d+0yjCkdWfEI5C1aj5ZR2mAhNcsEOnAQICEuPKZmR5hua3QwA+YSotF5SK2B3nNP8bc6cTS7OxbnDIpTRWKdMUTQQWoWUo0hXItldGLaVQ4zSmugjenqJC4uh6sHibctJTd5EOm5CEWhUshRmJ0hnI5wTUeEb02WIBNg3WCMtavzrFpucEdiFf8/e/8dZtlRnfvjn9rx5Ng5d0/OoxnNKGeBQIBAIgeBjeHaGDDmOt7L9QVj+zpgGxvbGDDBYIJJIggQklAejaSRRpqcp7unczjdJ4edf3/s0316QGmUZsT3t56nn1NdO9XZZ++qVW+9613ny0maNZXsnn1InkdZr7PcYiZe/bHqV5Yj6iEWL5XOxdPZUqabojjYNRtbDqC6NkJSGJD6uL94L+fFX4lsTDCbvphtoU6+VD+mGLJRLYEje5hozMZ00lXBY0UAm3+WL+Bj5hfxbvwDBG+FPf8JpSJW7gTgh4DvGyuTtMp8xF3Fbb8YRSAILV8P/rwA6SVcJT0T29gX4849fohs0GnGq79kWu4ElclDiC0bmVyRguO+4HOXqTB6aiVVo4uNLRHuOP4fGHKZqm5T0ODh+37MdNsbkbqu4pUdv4euHeYi4K3uvfzCuZpvGRU+GA6wu+ZycvcMbV0qa0/4Qr8lJ8B0SceWXObrQGgHSaZN21+9PcuZSxcsrjVYCVWniCklAAjHgxTmKtRI+JTt/lVUlx9d3FcOSXh1p3hMuRKPHwCwsXCAicgKDuHwwRM9DJ/opPTQIHogyFi2xhiQFIL7qwF6R8eIrl0LU3tBj0K1EfLt1UG3Gza/g3dveu+Leg9+3exL+7/E3N5ROss+sKvYBdyaDwo5BRM5bS9+PlPdQrnQcA/QPAWhB4F65mBLYHvw8QOT/MWGDi6PbmNv5S6KEkRbUxjZJUw3zcUcXpLR/GVkjuNSzM6xvylPt23TWheqmVcGcOvr3Fqgrkeb/QUtrZ1k2xoTwkhxkprWgpzXkFPyoqi5cP19SpbDVOwqLpi5jW2GwXr285m7d/IHF27zT6DJONkybr4BTounAN2ksI6I6D7jqmQsMq+UdR3ITf6zIJINZtDS8mnnUSS0CwYwHzqBO+NPvkREXwx5lepJGrK1RubSLdUcppJGs+cY6V2zqOdWzWVBlvFcl/zcHEKW8SwVcOjpXksh6PdF0XKRQMHDEw5uxGFe7UbTJCqmS3RrK7WRIq7hYNZs5uZc1K4urLExIk+McNdrt7N5ephO20FRLH6r916KM6P8Wfp9fLtjPW8/dhfTu1RG2tdwbbiGZ2uIoSE4dWpRquA5m674i+qO67MBn8Y822HSzpEUSfJenpTj/ya4FmatRlgxuLTlFLrsYNtlbi3+LwBCTxey+hxMCzWAKkl28YoFlEQbejhFvJRhNuk/N0PyHOtamrl+5GH+a+2reXAuyZFCmLfHVqGW94ENduk4qL0wMgJTkxCNvqBt9XKNRA3ZekRVr6z4qj6ysahb/VKaHghjeQIhPFTVRsnmKAWDtOur2Tvxn0S1KG9f/XYemnxo8Zj1TesRQlC6/2+51WwAvv3TsGLC47b6/yPzj7D9kw9TeO9HYdWlAKS6VuI6Aghz4U3vY3jvTpoGrsBzLYKxhYU83+85UDzASMgfs5fjM6GdQPSsLC73tQQ5PqoTKVe4Ur+Ob1T/A4CfBR5kQPTQpDczVZ8CGuvXo+07hJCb8ZwpgkaWtqDEyJT/7M+nW7BbL0OZvh9XxLC+/2XEslcCflblhYWIhfKzrXu+21+qY16Ic4qAimc7UDZhAQsw/fHMy1ZAkaEe8mntH8MS4ozaAfi4qAfyZB5Uf9uIPURRGgdlgown0eS6nIheTf/MTtArSMLFrU6DDmGnof8a1zYtKuU7Qqek9y1uawsWSTjLGZPAER5jD++mXW95we5XbaKx2Px0dsag2/vf/34+8pGP8OUvfxkhBBMTEzz00EP84R/+IX/2Z3/2jMf/9V//Nbfffjur6hoLS+mILyWV9UxtKeg2Hj5FqORQradLv6kvylThCOPDKexuCUW4cOSn4P1tQ29rCejmuR7WxEEWhrExVeHIbJg14SWO0VkD3ZZkKXJMxJLVDs90iLghonKaojPHrDGC0uGDbqmCD7odyx7jVZuvQ27tw50exqrkqMVD1HpWkTt0mOjyZXhzSeREAXf8MaTeywieHOWV4zq7V9jMxmz2JWdoUWUSkSaqIYmIARMTQwC/pOkmY9fv768j0y0oadQzIi+Glx4vVvnPkw/wsdZXohTKBLMWsuFS++9fwCuuBcBeuRnwwywfzVZwJg4zvaYuyu4GafXiyHIGup8ky+5ZsnRnA3SbPJEjnK8Rbo36r02oSlOhwLH6KyhZFWJqMwer+xaPOWofZHvrMnKTvvMgKSrjRw6x767bufhVb+S65pAPugGTj7dyfqdBOTZLrtclsuINGI5DTVlL6NAdzF25DY7uYTbRYIP1ycvw6mGT5wTTbSnoptqYNZuaFCZoT4CWJCQnOZbbwbLwFoiuZbj7zZynOChCwfZsLNVDsQUXHkgh6quB83G9Tr8OcItzKSsDFm9JNQFN0LIepvZgOY1FEsMTSE4N2RSL55ClJRO0c7Q/11WJjX1RxuZqGLJLbk6mGjiOLPmLHnPDg8w210j4sj9UhUf3kYPMNaVoCsOW+evYnfoZ0+kqo805YiMxTpyqokz9kFxTP634z+Afyj9i3Gtlp7uS3wt8hc2xNxApfR/9Lhtkf0K8w9sMlRzzMWuRGDggWpBqPtMjdo4x3QCqbgFTTmFULAIRjcJcY3JfdNLIm9rwHBchSyhemZa2GWamWhBuKzoaBiZtxiz/aZp8SQvx82pjoac7AGvaolRMh5lsib/LJgkfzvKeC0Zg9EFAQKx3AccBSaZiWWz54NcY3fAYtUOHCKxdC/Ck5Wdb93y3vxzasaW/hdC6VqhPwtIto1iSD5goPUVsKbr4+Ux1C+Xykmz0mtARS0X7bV8KIW85/Gg8xzv71yAh4+IwES9juI3Jt6R61E69PEG3Wslk5Oj3MXtge6HBZBqXW1kY0BciCmzDJBpNUEk0pCTIXs58uM3XOnTkxWQKumvyCltmbrhC77KN3Btt5qb8NEEc5CO38sSWrWwMa3hlE2ciC0Uf0BERHaE8tai+1BrDKS2ZMOgKclfyKfd/KhO6gry8BXu/HxrqlQwQIC9rQQT9cWOu5i8Npm2HS/InUXA51TrAeGsvWwK9ABSmJ7ErZTzPIzM5gVubASQkbQ1N6cBiXsrYrN/v1GIqilZFKDrdzQGOjleQAwrR81oo7p1l5OA8qq6wbtWqRdAt+Z41/FlTGhl4U6bKgKgRtY/wpvBP+cDa97N+bogN00e5ZQj0ZQF6LriI3kOP+cwsTYN3/8ZzTlQghPCBznwVr2ot9pVPapbDqJsh6/kdXlxrA9sEz8SoVVkbm0GX/WdqULucnOML0IdbX9jQTUWWcT2BJDxk2cUrzwNthJLtJEpDi/tNueOs2vYKtHu/y9q5YR5rXc2cpTEb2ERH2ffXVPMA4P/WzL/wCVO8/BLQrf4bxVyFkqUgS9WnOuxFtWg6xSwqCiaKYkOuCB3tmOEWerPN7M/s51OXf4qkniRr+L/1yuRKGN3F7Y9+hlpTCoQgKYdYPlFi+USDUXyiQwIc1Lu/j7lqOzKanzm+brYVom3ZdpRwCqtWpjw/QTDRiiTJ1EoWJ2rHFjUCej0/msNWAqSiL2yI8rOxkC7T1xEmU65wgXspt1S/QZUKjyYOMzNUgZYxUOqAt5rANGaRlFYcxw/JvSZt8ZWy/5t/7ZhJKP1K3qAeQy0cQRn7FnbPNf6xhr2YpGSx/Gzrnu/2l+qYF+KcxhJ2oNMY2xcWDYhokK/6+O0CGHcG7TjNajW8esKWW2vfI9D7KK86NUbQ8xiUNFa3/iHlk78J9aylSm0UR5ZJSA22nKwvWyzHtACl+FV4M59D4NEeLBI1dKhPnQaP7qRtzeteuPtlPjsm5RnPHv/0T/+Ud7zjHVxzzTWUSiUuv/xy3ve+9/Hbv/3bfPjDH37G4//hH/6BL3/5yxw+fJh7772Xe+65Z/Hv7rvvPtPmvGQWqSpsLMbpkkMcDg0SmKnhWf5Njgqdm6+Jc13iBLvc1QDEa2MwfXDx+NNWV1wPKz+8+O+UFGS0pJJaqnFwDjDdeox9yEqjcxeWjWJbrIleQpu+DNszKZJHCkYJmjIBQ+Lo/FGEJLH2ze/D0KLo4SSnHv8J1df+BsXhEaxCEVl4OPNxnKGdsG8vHD9GVzlCqqajuBI1xeOn2wzKq/upSr7TOjJ2FC2YxFyiqxFwFYjESEbUc3aC/3wsIC0NL61ro3gu9xydILYlxfqmAC24oIJ7aBfBH38ZbdcvQJKQho7y08k8mvA4Udm/yJRbRSeKAGwJ4h1n42s9qS0F3Y7tmubnx97C52+5muIsiEgVgUDUWS2yVSGsJNFEA3h63HqESMdyZtYmkPUQjuUDZvvu+jlOQOb8RIB4fQK4r6jg1QfmrDXHUW2I8P94O92vvZHU9b/DRJ+/XybRmDD1yctx6+/wOQe6KQ5UDTwhI+xZPCsPbo3AkkFyJn0pmlllVWrVYp0je6QKKs35MrFKjVld5nfN7/M6aScFwvxx9g185q7jWI4LK18DiX6qotFHecJDxcI0G9eRJIVaVaVS0ZCUl95pe7bW0xzkolUJEnoMRypjqzkqCZ9dOz12gkl1mqxaRPM88gLOs1Wm7/oSbq3K5s5XYCr+hPbQshJuva+2jTJ3eleQHUyQHw3TJM3yRfVv+bjyVbYot3G+8wesD93BMvluLE/lpPMqvm5dAa512rM2QAtJyaRzzXraV5wbmlYxPbZYrjhFLEni0EiRk1nrtP1KbhNNmkItP0G+6wI8SaW1PUtP6wk8T6Et7xIv10ASHCntJ44gCryueZaOgMH69gjf+Z2L+NzNW6jWUcivzumcGv4FAFUJToX8hR7HdTg6cRInl0fO5HBKJezpaZxS6SnLz7bu+W5/ObQjMJHFGZ/CiUxCrIgkueitOnqrjixbp30+U91CuSIaCxWapJ+2rGtboNXdiR2zJVxHo0/2neRsyCC/ZF9ZdbFGG7peLyerZPIcyN1LrKRwSbUBzJxa0ncuhLhtfO2fEO7Ygh1obAsWDKrhdoyYguTKSPX+RfEcrrdV1LJLTI3y83jv4jFvET/nvd98lLn6xId8zc/knY4gDzx9oiS5NXb6/92p58wGktsTp2dH9UBKhxf9swWm25uKJRT8cWO+pQ1HFsQ1nyJdmvVBE0mWKeXz9RO5KHofXrQBToam/b6nmtZwZUF3SqdpSSb00IrEYqTA4J4Z3AEfcA6fyrEqE+JYKM3DwQBDQWkxmearvXt4l3QHn93wekxJ5soTD3PzVDP3Tsu+LiiAacLE83s2RSzgg6FhHa9mPeV+nuUw6+QW/49LCR90A1Rjjktbhpk1QmTlJh6xfgslLBNp0Ui3vbBMNyEEXv1lliQXpeJPdOMty0iZjednyhlHa9mEUrZYmR1ZrL9n/Ho8z/9tgvYBqIcYe3OZF7SdAFKhoddUtRVaC2GiroRsyyiK+TRHvngWjIZw6nIxiuqgzY8h1wpYkRZWKMuZKk+RNbJ8YMPv8751H+BPtnycq5quJHvb3/PVeIy047A10M77N3+QG7PLac1BpOo/tMc7BB4gT4xTLuzHM2bwvIZP5skR5GArnlMjP5VjdkRdZM8WCjVmg/79aiaJrqUJqRKurBPWnxuo/HytIxmgHAxghxNcGXkty+SVlChxW3I/ImNCvd9ATWB3NBOUE4vHdpmzXN4W5mOro7QEPf7fRB9jZn1BuPA4Um0Iocp+YhdVPq38bOue7/aX6pjnfc5fJrLIUgOXCCigK0iagogEYEmkmWc6PgPuma6pLomikyWsfB43HMX0DA7b+1hmWgTrHfOcG0eTdUylMZaFSoPUKmXSur/44gFmuLFI3RuN4QW7KSq+5E2TXiZeaABjJw7c/cLeL+3ZcdjOmOkmhOBjH/sYf/RHf8SJEycolUqsXbuWSCTyzAcDuq5zySWXnOllz7oprqDk2ozVU9cWkveTGLycmbYgalShPbOOzCtL7LhTRQ3ZBIRJ17f/nORH6vp1S0Eh16Ncm2RBSSsv4kwWawSbWjEBPRU+PdvpS2hLmW5VLwj6EjF/00PyBJoIMmX44obj1aO0dy8jP3WM64zzeCR3nIpV4fzz1vCQHqFWnATAnhzE3HgJmScO0XTJpTCXoqAXSNeGoVJBBq7sexNF5x4mjFFQ4cHUFCuzCfLFeeZzPr3akhqDZtCTqCU7cI2zE5v9YltQWvJbaP531AIjVMr93HLsR7x73U3Y0yWqkzXcuWMEJnZTu+wGRH4O/eBD5CKbsdosxpIlmrIaATXAumAPYc3EqwUQmvZUl37JLRBWiSR1SlkffHC9elZCu4loIAOyg+661ADJMcF12BC9ioPlu6k5NWbcKb4gf4ETfUfpDYS48vEmBIJqIc+JR3eyrG2Aq9sj/GC0QBUo/KIP/eYjtOgdHCrtYXV0A4nXDmBd2k7m+/dixpqwAln67G6EHqBTaiNTfyfPCdDtlzTd7IKvGaQEXGzJn8BdIFZzpLiT7ckbcGWdaSPMawZeQ0JPcCRzgOVTgjYjxYrpY+xc6a+QxwyTziYHu6SwtdnhH+88xkMn5/j6+y6A1TfiTB5GoYZNgOtqPvXfcVw620IMVkKoSoBAsB6iJF56weIzMSEEG7tbeNz7F2zPwtZkPDympGkcxUOKBzEz/m8+LtlsSsfJndpHS8cV9B3ewFBqH+WghXnpJci7dhKNtTM7c5K9hfPY2uqHiQyFtvDKyuOUvTBBfKbliL2MHuUko1mPCa2Fy5t6cRLD9FZV0D06vGZGSuOMz46S/t2PnrX7s9R+ObwUYDRnIS0yaDxAUDQSrFjZjFaFR0QIxSqDAkosiDutoYo+8qHjSK7NdPkYH05dxdtVhVDYJbr2GK3LIrjVEitaIwy01RicCjBoqXyuVOOmZICjMR2reIC3uu38+KefZ2JulGYcCuv6CJuzlOufwJOWn23d893+cmiHrkB5rIR6ahdv27aSdMcG0OrAQjjslxc+n6muXq4t0RHTpeBpHqZje6iynz/McD12z5XoDa5iEJ9hOhJvOMSS5mGPT+GZNuJZOrPniuW//B+cSNUoRMAtlxjT1xMTFUZtCSnQRjjooAeCeEJFVgNIRBdBN61ioVguRjiOK0AtBFFojNOxYJ6JGYFRcWgJX8E9of2EXJfltSp/FLub39oT5rtr0yh1f9PNllHWdz5pOxdMxIKIRAgEeBUTpfu5a7wKWULuSePOl/BqNlI6jJxuzA0ylTkUz+PNRb8v9BAcWuULX3cE/DGoOOv7eq7rYln1sVZIrOlopqKHSZdmMbwAkYyBB1SSGrYs0ZcIEA00nhVdl0msSzG/ewbPhRFpBU2AcD1cw6RTayJvlPm3pjgdp1Jcm5jA0Nv4pPdV/il6E9/d9CbeeOxuljuv4YFHxnn3O7cgfnGHf/KhIeh+7iGmQgjchSQKtvvUO1ouc15u8d+4SILjL/gsV44hCWjWKxyLnU9pOIpbtalYHrHUk4cTPx/zJBk8C1l1kc0yVcnGdgwi2cZ7O+1OUO3qw93UycqpBlP1ACo1dzNBeRcBKYtpTKAFunCmM2c+CX0GE6VJHLmfJ6RJjoclCrqJioxjy6j62dH1CmgyrqKDXUQIcE0bJ+CDlWuS13Hr3H08MT5IuHwJqxQJq+pyKl8jH3gVW+wE53vLyFsW604GUQanEMCyKcHefiiGYCIJnVkHPTeKl44h9BZwTZA0H/AWCqom45Rmaelft9iuo9MncPr9e9LnplHsMqaigiSTCJ+dRdOmmEooqlNUFDY6V3Nb6TsA3G/ezivSr0JyXVwrj1CCOK29RJ8YYUE90pgY4n3XXYARu4ORHd1kzRBfk6/l4+p/AaCWb4Mr/+GsfK+Xk3mWg3HXIf+fgIp+5aqnJbZYB8ZwRrOIZAgvW0FEdLSrVj/DMeM4oz5rzVjeyuiR43id/Ry0nsDCZL3ZmOt7NX9xzgt3LkZ/NdsTFEsxUprvcxTkGPviI6TmfE3wlqCG59QoR9YTy40hCVhWzi+e84BaRO4LoaX7zvj+PJkFVjy7cfM5zx41TSMajdLe3v6sATeAj3zkI/zLv/zLc73sWbXuycYk8j79ME3eIMpsAUmScIVLwjmPno2vYZM0yAZpmNDc/WDVndBfyl5adOY4pqrMyhIVL0m7aVBLtqDB06cQf5FN0ZaE+tQOIi1hurmmi0DQo61YrBuvHaXmCGJrr6XZWU1SLOOnQz8lHdHJRLsX98tGQxjbrqYyPIgw86iyQ8oycafrVHBFgaZmNsa3LR4zVDmGkCSGRhqMQSvYaJ9ednEjTb+Wem4AMSlMohQmaCmc6C6RjZpItU48s5kv3n83DH6H2ZOv5ouRf8Az6iKW+3cQ/psPMnRgL/1KESk7yEhbhUzSZCxSYKXXQTxcRViR04Hgc8BSHb/63E/Px/yY/1CVsNtYEZatCv2hzXRoawhKfv9zwqlrSXku3756jHs3z6Iva+fk448igirXxjQUoB3BF8pgj/UxaYySs+Y5XvazHM0F5jDHc3jVacZSBYYVX6tMxSGquYR0meASncOzZb/MdHNrDp7rIYUDi6ucq5S1DJYeXtxvknZuXnszn3vF57h985/whoGPIjyPRNXw2UfA7HyNd73p3fzdmzZwtOC/a4mQyp9+fx9ZQ6Fb28u6wJ20KMfR62LFhbLF+FQFvZBBXpKxWV3Cmj1XTRYy7fXJnqU6mFFBvhsiVpBsdwPMn1Z1Wrt6CbpVWid+wSvryV8SRpof6j/g1ksz3NL/GEW5zMGmKEf3dzG6p4Xw5DTNIsdOZRtvMj/O75q/x7vEx7hf+wQ/DLyGTjdPMXOKU6EpTgVnGBGzhK1mWo0ZYs2txFvOjfDSpUw318kjPA9XCBxZqZNJ/L7EUmKMiu1MBF7n9++yBpHVBNNN9J+XwF59GcmKP9kUdo5RcZg9bzrAqTVVZgMF9vyfv2bPO2/gob/6CG+86wfgebTGKzz8RJqyBXPfPkLui4/w+P57mZnz2SYznoyhyAwp6cXPpyo/27rnu/3l0I5ZEcSRZWqawmf3Glgdo9A24//1jp/++Ux19bK5JMmFrgRPi8BzHI8l7gQjhsvG4MbF/4eT1iLjSFZd7Ozcoj7Yy8Gmh/Icvu8Ux4pphtoEAdflFZUqXcYBHFXCOpnHrU1RLmRBiiFkf7xzlABKLY9klggVfCDJCurUYiqe5MCSua8i+f10ZqTCJnUb/5yIc0HNIE2VGwvfJJsZ5a656iLzQFneihR6+sU1IQT6RcvQL1yGftXqRYHs52rKylb0i5ajX7EKde3pbPrp7AyXlSuMKgqGFGBCWUcpkiCpNhGUwziWRSXrh6CW5ovg+f6zrHSzqc9iOt7BXKQZXAkhXMyIDJpDQU2QjCgENGkxk70kBGo9G68a16iq8QXiG+k9M7SFmogSIF5R+U5zit2lDSStU1TQeHPwPi5bdj/zqsOKkV0cKlQ5Pq03QkqHh1h8WJ+LLWV5WE+9aOxZDvNubvH/uJQALIRnsTo4DIDjCUabrsGt+uBJpCX4okR+eKLOdBMujuWhuzKtA9uJVBU0Q5Cshph359jvGhhvvoKVuQbodsizqboX4XkqBssxSr6/pZhVqD29rt2ZmlQ5hewMcb5VoyRJROvi644jE9CemlX4YlpAFaeFIxuuBHUh90h6G5el3sb4fAFZElRNF9sFxcxT7DifrdJakkToVlupjJxCzvssw2Wlxrz7C68VfPUqwT9Jt/Kv6le5R3yHHcZ9fLb0KUZtP/zX9SSaVm9AD8lYhkOlYHHKa2Qf7/N8/VhXT6DKgkjg7Pi5QggGWv25dkfnatbFtwOQ8TLs9/aBpCDpSYQcgGAnqYgL6CAlcWo1soE4a4c0Xn2FT/j4vnM5VQJ48V4YfhCyp87K93o5mTtbXGQJy62xZ+xPlHWdKGvb8XILOm0C+/Dk019jIdGOEJiSjFQpgKKyx/KTUG4wGtEfWaUfAC/av1jX4mSgMoNWD6/PRhLIVqLRJkkBSaOsNMCw7nyjTzoS1sn+8FtP28YXw854kcG2bf78z/+cz3zmM5RK/k2LRCJ8+MMf5uMf//ivJEb4Zdu1axd33303P/nJT1i3bt2v7H/LLbecaZNeMmuf0MGPHuVh9Rgf7DiPvoMlssHzKXQpqHaARLKLPfplbDfvQZdqeHu/izj/3b+SSKHJGaXFtTCBqtNE3CwzF+7AlCVCytlj0pym6eaa9Izfwixb/Yp66MKA07a4z1jtCOd3XkNi63UkgS7P5VtHfo83rXgT/Rs2wYSfEj4/fZL0ea/FKJeYvvcBOq+/DqcQRVlY5WtqBkmiO9hPVIlTtH1E2sJicOTQ4vXs+kAgEAQDCoaio/6agm7LtU7Wn+pmx7ojCA+O9BTxtAeRzRXMZs7jg7v/H/lUlMTJkxgK6Dbc19vCVfvzrMmOEAkJHs8Oko35jkaf20KSCKnoHJjdz3D1l95i6V9dnZ2ZrzNswhUCpUbnKVkVekPrWR29GM1T2T32ZWzPxvRqHFLvoRZwGe6osH/fMYydk6zfchnnBz3+siPOn074z9bQ4TSx0ChNKZODhSdYE9nIUPk47miRTPyX9NyETdH0tTNCZ4l2v9ROZ7r576VrOj5jolAENU5A62W6METVKRGUI+RECttxUWSJasnAar2M+MohePQAvXN59oUDyIrKHZ/7Z978Z3/F8t/azv/89h4eODxGxZF5W+oYm6QZFGGzXH64zm2Caq0xaZBlHfAn3kvFl89l6wh0M1r1HdO55R6lekKDFieMFgphVsogYFT2fOfDc9gsQnzCfhu/KE2xI30vNaAak7j7/AwXH9PYc95Wtj2ym3Q0TyUdYr45zt7RFTzuSOiSy0dKq5ECNlfnT+LhkQ/772iaKLmqIOAadK/dcJbuyK/aUqabpVTxhPCzcEviNDFdgAnHX2mUbQsnvhUhBdACoAF6eDnKTBtZOwfA+PQvWPaPOaIn57A74mjHMsg1GzX3KJdnKzwWW8k9YivkYZctUMZLePM1Dpu7sXGZ0pqZ0ltZXhnCkHVKXhhD9idZT1Z+tnXPd/vLoR22UNDroWoTwSAX/Ww1q1x/5fmo3MsqZ37x85nqFsprBxpJNHQliOouWbRzPLwl7p4a1lmmrERGxsEhG7Ux52V02UFSPZxiDjtbfE76YmfDfva5/VTyJplQGFvxWGbYi6vamVAIr+y/47FkkmDQAdnvwy01gBX2xzbdzGIHJDxZ4EgS0NB0A5DrCx2ZsQprV3ZRDPbyvWiRNxXLOAhukB/kv0vLed071+LNlpCaz0yk/oUAaxbOISQB0ulj5VRumncVS5xvGNioDGk+66Yj4Psj5bmGttzEqWn8zIQOWzpTmKHGondkxkC2IN59BCuRZC50MSFdRghBJCiTK9vULJeWtiDZ9jDmZJnjeZN0optQbpT4XYfYcvE1HGrycaoAAQAASURBVJw/yXQox4HODHcNttHc9gbC5l667SEELgc39vL6PQ9ye++F7Ht0hmXLOpHHR8CyYNfDsP3C57R4eZrG3jOAbtk66CYQREUczxsnUT2BU3+19pU6mXcbC+Hprhc2McGCCVkBFyTJw1IDeKqKRpRAMEn/1DxHe0tknROc8A6x/sKLqVy2i5bKPDOhFEfdGvliJ7FYGF05gWJNgHsFSBqlkxNE1g3497RUhEAQcjlob3/GNj2ZSebUYnlcUYhWA6CD4ypogbMzVwjpCk4wBobP4qy5Ei2z+5lp3QxCcE3Te5ms7WGTu4e8E6VIDDPUAkKQaVuFPHGQ3mQv0nDG1xQ0TTY2b+QWdoLncbhLZjbikYmUoHKcg5Xji9culKf5zcgf8LXi53hL4Dc47hxia/FKwtMPIrc0+uv+OuhWCbWedcmenuYAUzmD6ZzJpsjrOJjfhYzMt6v/SbvcRbPUghAS6K0Eox5SrQvXOok5ncUoZAlXE1zhjnBHe5mRyTB/7b2Tjxe+iuzZ8LM/hHd855wjHZxL5lXMxQQH0i/JDzyZCSFQepsgpGMfHMed8udYUmvsNKaz57hg2jiZkn8NQCSC1KoWwqjieA7Trg/WbaiH3bselAIriAIivpyFTAmqXSBgz0B9bT+fbCWca8PFQ6rjLZXSKCXZH1s9D9aqWcD3ZWfjMPPzu2n6rY88jzt15nbGoNuHP/xhbrnlFv7u7/6Oiy66CICHHnqIT3ziE8zNzfHv//7vT3t8IpHgpptuem6tPYsmhxOotTKrzDRHtTmO20VmU8MExXqiI1m8hEohmiCERqDvnXDsHgDcnZ9H3nrzaaCbW8nR5PoP5XFNI+w20VvL8cGjee6/YQux9NkLy1qq6WY7Em3WINRBN8f28DyPjqmDxOUQeVFhonqEcH/joZWERKZU5PD8Ya654gLuvP2LSHgUpk+ComKt3kJh30Mktl1KuHkJs6mlZfH4S1LXoAiFR3MPYhccpmb8lQk50Yot++WgCCE8B0eP/doy3SRZpmMuQUs5TM+IxlhzBTv1IEGxg/KJP+H2sb9ECo7w0SO7EM5hMpEod0avZGUkT39hEkMxOBpqrOps9vxVglA+CrEXxzF7PnbedT2su7yTfKbCXV89hFV1mZ6L4XkgQjU00QCjZasKqoam+sDO1W03E60ZWDWbr0SnGGc3AFNpg5VjUb7/r3/F5nWXccGya1g3USSHx7dPluiv9PHWG44xb83ytdHPYswV8AommeWNVZZ+ZTlOXZ8soErnRnjpaUw3f4XbrdpU43FC9jCO6g8s5we2sHP+u5wXvw60DibmDXqagxw32kCB2MrtwBdpz5XJJCoU+rrJTo7zwLe+ymXveA9/eN0qqnu+zQ2ts5RNhazoJC2PIInGZLpyGujWGFICkbPH2D0T6wg0woTmk43wuPCIjVmtgAdBScKLhHFqJaIYzNsabSSIqtMEzDCO5JAwkszGJ9mxeoLkAy57Nq5jxfBJio/Oo/9rDx+4+AQP70ujKB4P72liIGERm81S1R0s1b+f7cSZzdcQQPe6cwh0W5JIQdErBCTYkMtRVhSsphDzM2WUJSL6EiYKBp50ej8TjKpUr7oJ7vwyAHOGQV/RRc9UMONJKhf0oh+YpLamheiOQa4Z2c093VtJmlnkh3dRlTQUSSXpKUxLAY5HVrAnvond7mWkPZd5IZGqMz2frPxs657v9pdDO9rdMq8e/RoAPfYUtwXidBR9FkUm5JcXPp+pbqHseo33J6iFUZYEU3jOohoPADHZQfXCXKJdxe7qDmZSNapzMjoOsuqC52EeGkRb3/2y0GyV6n7IVGQYgH6rwaqZXZKAJpaqp3dW/cmMpTaYaFIpjxWq96FC4Kgy0lJ9tYCvO+laHjVXYpOylS+lSqwwjjNgOvyx8h0uOXUpT4yuZmvvcw8TfTHMsV3U2WNsr/lja01vYaYzAUCH1wSWRfYxf5G2UiySmxsEJOLhlWzpSXIy0tDziWb850xPZRhWLycZ1RafkWhQIVf2x8T2ZIDhjgjmpH/fsv0XEXpiFGlwnCZHZ53XzbTI4cgeD2ycZ85q4u0tNxAf/xJBLK7reIIDmW62TR/isapOTyzN9s0p2LMH9u6FllboHzjzm7GU6WY/Hehmk3N9HbyoiCELGc8zaS08TEi2mK2FuK+8mnQ5Afj3taPvmSfJz8WEqkL9kTaVELIsoVkQSXfTkZngaK9Pwjgm3c3syd+k9IoVrPreKDOhFDVZY9fuW0kuM0gMgEwFansgtJ2ZJ4Z90G14GO72tTufT7IKyWkkUphQFFZYvo/oySrBs7QQqCkCsWRuZXoS/TO7qBkVzEgbw1qZwdoBrpwvoBlJ4lqM+eXX4ckaqfgmvO52lMRyvO/dhmeasG4DF1z+Lr468Nvs/cn/5PvzGdrmXDKJX71fQ94onyz+ITY2f1P6GK5wmC1mufm2Oxj6LX98lpDoogmAcrSd9sjZ1eNVZInupgDTOZOV4e1c3/p+9pdvZ7Q0wneqX+VtwffQJLchhIyydgPSg8dxLZ+1Vx09Qq4zyOpslMu3zXBiJMoP9lzE7+q30CayeMfvQBz5Cax53Vn9jueyOTMFX79NEkjJZ+/HK81RGGjGPugnArOPTyMlQouJYty5Etbu05mGUipMrWAiTIMRZ4gh5zgxJ8pyy9eEzBhh5nIhWl0PdwnTLejlCFqN99kKrcUqugztzSIkaOkJIktjVPRWjomt9Dh76A/nubwc4f6wjBGs8C1nFR86MkHr6pdO3/yMQbdvfvOb/Pd//zevfvWrF+s2btxId3c3b3/7258RdPvKV75y5q08B8wp51BVlc35FvRWmbwoc489xk1tW3Amvw5DN5K7Mkc6s4JSaC1TkYsZy8+xJXscxncj0o0wCmt6/wI4ywkvSMhN0yQqyJKgI3F22SFLmW62KxEPeCA88ASO7YJTQcKj12thnxim5lXIh+16d+3blqZLuWP4Dj6y5SN8N9RKqjJFtTCDWS2ibLqM4MgY2UfuI/za6xsHNbcsFntDfvx2q97Jjr1fQY2mkWIpak3LseqZAQMEEI6DqwR+fUE3SSJS03n7sY3kJscZb67iSQ4CCLR9n+rYe8EJ0lqqoHkuTaU8PQNxds6up9erMTF1mMFVpcXzLYBuWk2HpnOPhbTAdGvqirDv/lNMHCpi2BrzowrpVkFANQlaNoVwJ8IxCaIxWH2YoJQioAwQqPmO9buaf5/dud/Akhym0wYeHgLB2PRJLtr8Kv6REO/F33doUuHAnrW85TKFw6V96Ad9Z/50pttyHNUHwmOhc0NfSJJlZFXDsUw/kQLg1hyKiTiqWUCqY3KXRC/ji4VvcU3zbwIwOFUhElQYk5eTzD6BXeeQy55HwrDJ2jaRZIpT+/dQ/myWN/7vTzI0ZqHLHrpsMWykMNwIXdpBFt66TKkBwMlSw1nToy8P0K1Ja2Vd9Dwqdomh6nGCVZWEGyecqyIkiUAyRjWfQ6pWGGiOk8qP86it4iF4jb6BldPvJD8+zG1rvonkSgQsmSfOM9n6RJZsexOXzec5//v72PbOTbRu9nhofzPRkIUcNQjW5pmKNCbnrV6K+bksac4t0K0n2sOr+l7FidwJRqvH+F8bYzg7Z2hyLOZ1iXwdcPM8cCmxfOY7jLXdiOfaYGRA0rGcMLYpSDWvJrpsOVUrQ2U0R02EiAQSmO4aukPzpP5wM+gwk6+wdf8xrh7dTXfIZ8AEXJMdyQv5udTOULPPuO53XN5UDFPUKkTNIEXNZ1o+WfnZ1j3f7S+HdtRUgZCb8JwMqlWivTJL0PXBiqZanqBrL34+U91C2V4CuumBMIrU6Bs81+OymspUWBBPz7Dx2CD2eVfSIrVRlv0Qs6IkkQAk1X+enNkZvKqFeIYQyXPBFnDB0Zg/WVgKumXmG+NGPFUHw1SfwecsZbJZRcxwYvF/R7aRl2x/cCbJAm+gYAg61R7ulIo8FAqwySyAgPcF7+VTty/nW++/8JwBKz3P49BDp7h0vhG1MBy/AdpVOvUe2nccgepBcpU8nucxePgAfnyTQ0tEJairzEbqXqbrEZ2r4koOE+leqlKU3iX6U9Fg434FNIn2FXGKu32G0VTTBtJrj6PNTdEyo/E6bxuH3FF6jgmm4jUeSxzmRCDPB9O/y2vn/w6AgXXT/O5Dt/D9pg08+kiFVZ2az5VoboY7bodXXQ+9jaQWz8aeLdOtZljkPX+BPiYSAEhukaQ1iCQgqFjsdZZxWVFnAXRr731xQDdJ1xdI7BhCI2AZgCCS7qZ77z5CVZlK0OG49wQ7j72OV77+FWy77w5M4zj7pW5+tOwSth8/TGKg3keUHoTA+VgT01img3pquHEx04STJ2HlmScSEq4fnlyQBEVZImbXQTdFRQueHUKDEAIt1PCHbE+QrmRpM+5l3FiGKs3wuPFj3uLcRA2DKXuMiZkf05TaQlTvwCy2c+zUEMt23IcA7LFxhkIrubSlhfO2vJ9LP/aPGEMVPtjhMR+vM009aMl5rJoQ3L/OJuAq1ITfV++I/4zVLQaTkssqfR1thoKGghDgBGIkw2ffz+1KBxjN1BACVtlX8Gj2dmJqgjH7FF+o/DN/ov0RkqxB03LUoIld3QGAM7qH8qqL6Jmu8upmg++pKg+T5l/DN/Pe0ndpjgWJ/uR/Qt+lEHx5sKhfcrMcX2tSlc9YX17uTmGP5xACvHwV++Qs6kpfJsWdLzd2DKjIHQnklhi1ySmwLY7ZvpTUgJVhoYecqkaRpAie6+HJAfaXl9MkTdGiF8gaDb+gluuG+RpG2e9P23ODNK3OUDQ0zEgbgaJf/39mM/xO+GL02jTfWn4Z533pW9z0qT94jjfqzO2M3yxd1+nr6/uV+v7+frRzSJj9xbLOaZ1vN/srKffUpvnNrlPI9hXsGKmQsFUK0Wm0XJrH1Yu5Xv5732/Y9QV4zb8tnsOd379Y3h1TiJbTpI1ROuJBlLOUtXTBluow2a5EMKiC5oCh4FguWP6qW5/XzD6GARgrPk6T3nA6qgbsGN/B72/9fSLL1jN/wqVNVzh8fDebm/uxq7OUhkxcy0KqhxcboRCNK/smIzM0ewyzkIFChtqyyzHqo35QBNFcB4RAPcv37MUyP8OQRzyaBtPkioMS37l8GFdAJDRETCvR27GO7rIvNFoLhNhyySVccOFqxr44x63du5mPWrTkI6iRIG0kwKu/9Oe43lZbX4KJQ76ez7xIk9anUXWTqhNBrWaxAklUqZPvjHyKD/d/mZqsoAYDhIwa8XiU5ZW1HLb3Uw7YFCMusZJMJjOJ5RpEFJk/soP8PhU2dyf4ySM5QqisW6lhj5Xw8JitZ5MMiTDNUitV2X9O4+cI6AagBgI+6KbWmW41G0eECal5qk4NnBod8U5Gpg8yWTtBe2A52bLN3QdHkEWEbPI8uocaiyByrUbfpq2M7N9DJZdlJJflyI57WROqgg05J8yEvZ6IlKGLhs5isepPkG0lgLyEAadHX3gx5xfDJCFxafpa9uUfZcacZEP7VjbEz6fckkENBjm54x6quSzpvmXMJTWOp3PET9QoGAEU2aT58maCO/K89vAH+Mr2P2UyVaVWha3ohJt7eWSVw6WPnmLta7fRHa1QuWiKTRdN4ZkO5Xvz5Fsa4s5dUgxH9WgdWE6sqeVpWv3SWmu4ld3Tu5mtzjJSGMEMuihBDa9qkiiWKUejhIsVbFlGcXQKTZvYFLyNQ5W1FEr+mJHL99M80IvjOkSbeyk+fAKA6c7NZAeuZqTqMuk4WPdneP2rDqJvX03lRIY/mr+LO4wwtixhCYVDkTVcMHWE8UgrrhCsr+nomqCnLU1m1qCn2WcSPVn52dY93+0vh3ZElTBO53LmRzII4OOrw3S0+qHBhhJAt2uLn89Ut1D+2+GvLT4zKaWVPsVlaMlztNZSOC8U5p3rLCZHQgyqKpulbXyv9nUAsip0OyApICQPOzeH9cQpPMNGivv9iZuv/kr52da9GMcslL1qXeMy6WcDHLAa73V+pJ55W1EIRWM4aMTicdqqVY6r0gKWQW9nE8ISNMkOIQmmYqHTwksv7giyr04UMAyXjmAfAN+NRnh/roAMvMG9k78bvIH//v4e3tifPCful1m1GCjMI9dy7NU1+i2b4+4FXG63Uz5uIDsexaBGrbqP2nwegQpSFIHCtguvppySKNaTTcRsi8SqIEJTcM11XECe6HiZ2vFRpHgQvWSD7jN4soemuDjgMagIbNujJlIsf9P7MceGELVeBpUR/q/1Fk6U9/L53scoBx1K3ghS55v58eylXC49Tl5EuPj8ozRVf0jiyg+AKWMuvwi3YiM1pWHPKO7JyhndGxFsgIT26Dz2cOZJjylaBdy6cnhc8gGCZOkJ5HrdyWIaU4tDtqGLFpnOYM7Pv+C/q4S8qIlneDG2ugaKrJJq7WTEE6wciXB8WY2+wGr6g+OsPHYh0etfxZfvc6hYHjs7NnLfqU20zT2A2taBRBVDmadnzQUU7zlKyEohNa3xr6lFkI7NQXH4zNoZ01Dr4bjjiv/OxZ161tBomNWJVdTuPvyc3/Hn8x7onrLI9JUVl2rLq+mOJEhZJbZrYc6zzqPDSxHWosyb80iqTkgkKRdrxJ0i1dlJtN/4n+jdAxRti+7JDPlyiZC3kc73forq4DBvkB7mu+xFdQTrlAH+XLqeH18+xZHsrVzmnMeRaYMjLY/QXevgltfnMclx1DjIBsePWgsoMtGQQvIsM93AByovXBlnx+EcSbWNP1r7Wf764PvJepNknTnusm7nlfrbAVi+uoUDOxU8bApjw8xxI575BBdmqqxvGqF8oczXH76Ay9SdDJQe8y9wx5/B6//1LH7Dc9e8Bdmn5yB1JYRAXd+J9eBx8MAZnEVujyNFA7hzDdBN29aHFPEB8VrZxNKCHLX3ALDGMJgigVSzmKhGqXo6U67OdmuQkqTQHvTJJCujGaaqEQgGGc9rNE01+sGkZiE5MgUjAPGLmMo8SFiqsF8P8NVT95FwXe5QPs1t41fy0Nd3c/OVy9jYlXhuN+wM7IxnkB/60If4i7/4C77yla+g1yfuhmHwV3/1V3zoQx962mN/9rOfccstt5BKpfjN3/xN1qxZs7gtm83yxje+kbvvvvtMm/SSmKiHTbmzBnE5Rd6ZZ4+ZJZOYJ7Xa5Ma2KFatxv5wE458BaGe11DNf56gW8Q7+AO4+pOL55IKjQnrkBtkvRJlMhSm7yyGlS7YLzPdtKgGug+6uZYLVg6APvwJYYgAd2e/RW/sQpKar8HQLvWyI/NtcrUcF1xzDU/s/wVmFRQB7oYrMLZcQWDnbZRHRogMLAPJJfPo7XS+/jdPa8vw8Wnmp3xtAjmSxBUlAoSRMQgRRFPrYsFnKdPri22yqiJUjXAsxcix/QSAvkyMweYCnake3rKtwttWXcrRT/uaOonlA7x5TTu7Dw/zl5ccRrdVkKAUdvmE+QZQQfYEAnHOg27t/UlgFMUuc+/uNUxkEmzqbghzylYF2fNQHcHts5/jpvY/wYwFCU3XqOQNVinrOGz74PZUskKsFAU8JmaGSYa6Ob/g8bcE+dhoDoDasEZx13oSE8coBxxquj/o9MnLEEJgSf6CwrnCdANQgyFqxQKK4iKEh1vzJ3mBoKDqWAgtgZP3aHVVHs3+iBva/4CSnSUghUGCeOkYPWO3Mlc/nyMEowf2cO37fpcf/f1fokeijOx9jJUrKiiKhKn4E/aSm6ZsKwRlG0mAbZoogKepCK8x0VTDLw+m24JtjG87LZFLtM6+XXPt9Yzvf4L29Zt4/LvfYGJdiZ6A4w/mgFaeJdiTQh0pkKq0k4mMkQvWCLf1U5gaBBkO9PfT9os9XPi6VQyHNQwZ3Fl/qp1bwnTrlWKcGj9I+ytf9RJ+82c2SUhc3XM13z76bUzX5MGJB7mqbQPOUAYppKGFg8xpGsFqDbXiMCNvocWdpVM+QQH/uRFegZOPZenfnKCz63KmlAdwbZNT2QME4xcBOqOmDLTy8I5O2k0X+YYbOXbwG+jWJLas0Vq1+b2xBzguWtA0mQ+1pxiQZZLtQYLCpM2LERQ++PFk5Wdb93y3vxzaYVUMMrMrmB95GEULcfSh7zCV9rW1irlpoonWxc9nqlso19Y3Eh9E9SaiS0D4BdN1CUloxJwSblCjudpGm9PClDzDvAYs5J5SXexsBs+wwbAbgvNPVn62dS/GMfUyrkdNK+FINioaK616BlFkTK0FIeaJJVMIIajpzcyHInTUqtTqoJrwXKKyTKWug6cJUOTTNd0kpdG/urZHc3QAqSAxoyjsDCS4rJaj4AV5SP8wx49fQKXlkwTOgftllU3C0z9lrelPur4Xa8HNl4l4YaSyhScLRstj2J7D8NARijl/VGpqex1DUhKLCAHHoSZJNLkWkiIwAkEirgcyaHh49WuFaybooOAyogTopEp7WmV02sQwoawk0IMhhFEjpIYxrAqpllbOO5Zgxyb/uj8zHyAd/R/MFL7F+5TbqCoq6dIupNlr0eOrMeUQimLg2TWQ1TO/N0sz8toOmM6THpOx5hd385MoQKr8+GLdsWITTjJONe+PIaGIgoJ3+rleoN9VkpSFxIHYjoPuWCCrdDR1AoJlmSR7Vg1z0N6LLmzeVr0GWzP538tU/vjIHEnX5EB6gKtOTtCTOoIQHoHpL2K0XY1asiAUwZMUX4pH0fFcByq1M2tncR5Rb+VEHXRLOkFc1w+hVGTteb3jz+c9CATVRXBdD9jkayqtiQCGUyMgB2mxE0hCRpN15qUya+V2jBPHiUdiBKIpvFIeIlGURBoPCHgu2bKFFAighZuRgjO8TVzG+5t/F/PkYRhYjqLmeFfTRbxTvo7jGZe7RiaYiYwwFG2E+KlobFe24lk2shJAVyQC50CyMPCjfS5eneDASInhabip7Y/50uhH0Qhwu307ei3BZdp16O1NBJN9VLIncCoFMtMVHApoqMQtlw93jjHaH+ETQ+/hMvkAGiaFfT/DMP+I9pv+GuRzx68/J6we8i6eI6FFjgZwB5pxTs5CQMWZzCECzXgFf3AX0cAi4GaZDrblMm07nLCPAHB51aaNEgRgshpFbU+jdMdoOzDLj7yLWYe/X1BxCColDmorMNM9FEca/kauvYN0xQKqICT2cCnHBucYWDVIAp89HNcKvKfnZ3z7boOfpH7rJQHdzviOPvHEE/zkJz+hq6uLa6+9lmuvvZauri5uvfVW9u7dy0033bT4t9S++c1vcsMNNzA1NcVDDz3Eli1b+MY3vrG43TRN7rvvvuf/jV4kU5t8ZzRXrbA54sf/esA95hSSbqG2zBOSK6w1J3BxcaUAI4nX+gc7Jjz2hcVzKSUfdCsLQc6KgKvySLyb/uazP0mVNW0xTsJyJdSQhgj4L6BjN0C3FV4nH3BeTc0zybnzjIz+dPEcbYqvkbR7ejeXb19HJug75ZXsBMXMKYyLXo0HzO6fZnx4NUU3QEI6ReZgA4ysmQ6PPLgL6qErrX3rmbdMiuSoUSXuRdBC/mrMr2t4aXN7Gr1jGYFQlGQdAFh/JExLIcjJ/En+cdc/87W/+WMOtiY51JHG6erlwR//nO/t+Cy5iMVstEKH08w1mfcQrYczLEJt5zjo1rUqSfyjg0TsYUxb5cDJHkayDV0pya7hahFeH7uBPYU72Ve4E0sSGJr/TKxUGmnRsx2NVbsxdxo56QNoF6PwATRaEPx4Os9nnApz1jQTTY0QqT55OQBufeJzrjHdFkxWbJy6tpqtx8BeCCsWfEas51MH/4vvnfoDHs3diiJpRGbv4Lx9f0rIbaw8uZKglJ0nnEiy+pIrcEyDgzvu59iQP0BVvPjiOf/m5AWsueciXvvYdhTHd/hFQEV4jVAZaUmyh5ezSYpC93nbUFSNREc36cNBInoDKItP70f0toKAdGVhbPAIXXgZsubfg4wqc+iwgbFrhIv2G9w4VmDFvcMA5JeAbv0iDp7N8vMvfOm+4LO0q7uvXizfNXIXckfCD/srm8QNA0eRcSXJV75FMGhcQNFr6OUFYlDMmMwMl1G0IM19WwDwXBOkA7T3h+jfkmDdVc3UeiLMbk0z2alyQs5SDmikKhZXr76EtwSy1JrX8p6eFBu7okTag1gI8pK++PlU5Wdb93y3vxzaYek6sY5lrLnuDxjeFOKblxznB327+UHfbr5+4cHTPp+pbqE8nWhkLw0GEsjSr4JuQQ2EsJCqJZQ6KLfe8/vr0hL9Mkn1sHMZcFzQFYQqI1T5ScvPtu7FOGah7Dguw32PU5CmkT3oMn22dNFJkZvL4HkukUQCACvagicEZSFRqScb0G0LyzGxJB82sGwPT7h1xrtvNbvRV3i2ixWI0Cb5fc7fp8MMTd2Ap8ZpEnkuMu7gkeHHz/r9QpExHQdv+ruLbT+cvISYlaWs1NANm7JRoGjmqJZL5Od84EtIcfqXbaTiSuSiCWqyTKxm0Fko49oeSlTHlGUCIfW0a0ZUwYVyDReBJUlMSRptrQ1/Z2Q0j1ut4M5lCMi+LxBPN7Eq14xu+M/fPvMoV7dG+ZHyRg44fSAL2roH8Z74FJWKTT5ngiYjNBlhVME2EK5zZvdmwYR48mM0hVknt7hbXCTBtYjXfIaw4ciMlOM4eoyFrArpxIv3u0pLgAnHdcCsYkkSKDrtHSuI5F3CVf97HbCOM1OpEtJjXNMhszktyEsa31t5FfvmwpTn6mF9dgFp5jZUjPo9tBHBIDgmolZFVEpn1s7q+GIbF0E3L4zjyMiKwJN4Xu/48zkmssTnloTNfNHGs4rYro3pGCiuhOmaFJwirnCxC1nszCzO8Ens3BxuuYjtWVTdEtVAhZokMBGULA9XcpClIlrFgnwOr1pFK5TJqiaODJ4uMzg7jerqnD92HUttq3Y+sTortxRop6f53PLbFFliU1+UtT0RtrRu4bUtv0dLoI8SVe6p/YSJ6h5UXSXd3UgmkpseYvKOYTK3H6V0cIoVBYN3bBnhvCsMvtr1O9zhnE/KmSN06FsYU4ee5urnrrmFKm7FxLMcPOOFy8rruV7dh8NPkvUcTVnWgkiEoGrinJzFmcwtbpNSDayjVjLAcTiaqGJQQ/Y8thg+Y61sq8ybMQI9TUSK8+iOSVVfzUSlkZzB8QSHYlcjR1NUmuvEJQGnlq1l38Ali/uVV63EFkmqNYW8EIzLEuczymZ5kKvDj7N35y6855OR+lnaGc8gE4kEb3zjG0+r6+5+5kyIn/rUp/jHf/xHfu/3fg+A73znO7z3ve+lVqvxW7/1W2fajJfc9NY+rHk/bGB7pZf7OADAN4qnuMFcjRo1ELKL8CAkz1Nzmii1vZn7pg9zqXIM6eHPItZtxxMSASsDwEFdI2FHkFyZw0oT16fPPugmhEDRdGyjhuP6Dois2tiAFjDB81/uYLiNVssg6gTwPLjbuRMt08+apmtIBP3nYdfULq7pvQZl/WXw6PcAmDq2k9gl78BavhFp9DDaZpvC8ErSySzyyR9hL1/O0LzNoZESueE9i+3a3LGSn5cbWYliIoyi/3qDblLbepTwMIgKfWvW4jgeKwf6OFC8jZkYGIrDXcEDbE3HcGSJ2eI8ew79K4+unidkqiguvLntw0jHo4gmXwtPX8g5eY6DboomE4kFyXUZ4L8uTGSSpDvmMBFItg+MrQ9u57zAfh4f/xbro1chxk9Ccw998gBrlA3MubNMpGt46AgEQ3t3c8nNr0OPC8w5i5vdAFNTeb7rmQScIjXXYbTVQHMkVqqr2aD6wIArSQjhizSfK6YGGsxYRXHQKgVCjk5ZbyVQO4UR8Jmn6c0fpemK9/Pa236He4PLyVuzVEsHSRYOUJbXsaAF49bB9l0//C7nv+4mjjzoL4I8cXCOtSuSVGiAnt29A2yQcxw8Oc5V9To5qCLRAN1k/dzTDXy+tuKKa+B+CHl76DVzTJfC1GyITe1hNhQhVWkIsk7Lsyzf/BpmTzxCOT/NwbY46W8eoPUai/R1KzFP+s/wQubSsBegGRU1EKRr7fqz8v2ezra1bSOqRilaRe4ZuYfM1j8gXnfK4pUaRHQq4SDNVRNTlAjs3Im8sRdBCQ+BrvnP2fRgmWiLQrzjfMxaieLsEEb+YYKhTahqM1pAxig7OJrEiaO349aDclJtF4B6HiUny3YtyepWP4TMQ+BKAmQHPAXkOhvoycrPtu75bn8ZtMMVLodLR/ii+DShuEJFczDr2UwrQb+88PlMdQvl1mKImmqzqdDB/ECQR+JpkKcXQYHO9bC56zE0ZYTZb/4UN9EGzX1sUy5hdGY/w3KBo6pNc1VFCTjYsxPgeehXrj5jbZmX2nJf/hd2r32YV5QrnFBMNPx7PWs1koloeopKJYAd95MCnJT1xX43EPAYNjxKZf+dKkSCGMEepCVsg/vLRVrwtQw928VSFHrNdiaUMQY1mf2xNJcFXOqSpUyM7EC/4hJEb9+L/fWf0syqRfbgT2k1fHHtXQEdI7SCWvcQd3VYvHlHiGHJwcVj9EhjAizrm/jP8Xne27SMYn3Rq5rLUXukgLEsRMcVK0AST6pb59ZsgodzWI7LqKTTcWk/nbUR5ifLjAxPEr3zUwBE/+eHQQZV01CDGqtGIow31ygmKhwXtyHXruGD4sPcp/uaP8nUCQ78cAePxNfzrk9eRHT4IDy6x79oLQU3vOFZ+VaeaWPcdRgAKRZEO7/vV79DtszwXY3In7iUIJ7fheoUmLUSDBdCgOQnTVIEeirAsit60LZ2PuP1n4up1Wmseo4CSXLJTzzK4eRr0HIFnFAKgaBtLsDJrjImJv8wvp9Pr34V3+n8Ea2WivuA74881L6e1Q+O0vuaTiTdRhn9HAenBtjQZEBHB1y6Hb79LV/XbV6Ca18B/b96f57M3F/cs1geV2SEC3HCOLZMIT9KLtVO07Y1T3OGF88SeYPpQwKBh6I6TM/Ns9G9hcHI2kWiQ54yn5D+m8//u8d0shVzdBQpHCb66ldRvude5rZ2su8VG3EVjUTpQjjUTHQgjkOcCyfvZO57+0+75m9/SOZysYIpySMxeyX9bKQ3t552rZNmyeG8/DytgS2AjQDMRAdd56DesxCClR1hEiGFbPk1FN0JpmsnqXlV/tn6V/6f8++EUytJdA5TnBmmcngXRqQb4xf34NQMej96Odevlqithodq3UwPr+UV3mPMuWE6/+Nq/mHrz7luywrWd8afuTHngHmui/nECFRMEAKpI4G2seuFObnTSHcknkN46eKxsoTcFsPO+Qtx9slGZmppCdZRKRoE5kYYivkTvdWmSahOthmrxBFSlKbkLJHpeRxHEJeTPDzXS6pQJqRYGK5KZWA1eihObjYHgBzVELKEI6ILM16ioQQI2JXr4JNrZFbVDP5lqkjRSfKK9G66Z6b4uz/p45JtHay5uJ10ZwPYeyHtjGeQzzURwvHjx3nd6xrZQt7ylrfQ3NzMDTfcgGVZ3Hjjjc/pvC+VxYS6GIaVHDXpXtOO53mczE3x6swT3JW7mkzrKE1Bj4TIMEUTht6OLVLIogI2KIN/jRNcSUkKsivgsTMYpKkYQXckyp5KX9PZDy8FSHR2Uzm2B1lT8DxQVcsH3TSLqCOwdJWW1QNEpgO8Znwr35QfAK/CXHUYAFULE5GSPDr9KACXvfJadjz+c0Qwjl4pUhg/hXrVTYR+9jXsmWGU5tXkjqxDvvgUdz46TrwpiVWtUBs/TrBjBRGrRk9bP+apk4ttTHohZMVfpTzbOngvloUiUdZcegXmgdvQA0FWbb2Q8akZrpwaYLz1MPGySlY1qGoqqZJBdPkA+cQ4pu5hYvHniVdD80XkzN2L51xUXTzHQTeAkBwm96ojqF/vxyLA+GyS9s4MpieQbAM8F1tvJrZ3ht//yimyXe+ieaZG/v98EVkoSEJixvWBWjGwEX26SCk7z0x4nva+GE4piwz87w9uY+fXH2ejNUMtU2WspYwnYNQbp1f2k084skQ0qCymoj4XTA02nCNFtamZChU5jhOQ6TIfZiH/as6M09q3me35DP8v/H12Zr/P5ZUq7wBcNQ74mltyool07wAnHnuYZEcnzb39zJ4aYmq2yvBYgUpHwyG5bG0Ln3pomKjT0FBQAjKSaAzY8q+hxqcQgpVXXAsH5oiXDzKai6HgESlM0drbQnqsAboNlg9wsXYds0LgOia1qsmR87ej3PYA5VGZjOdi6S6VoA9UtpFAsRy61m9GVs4dcHfBVFnl9ctfz2RpknvH7uXm227ma+f9G/ECJByLtGVgC0EuEWLLqSqFwRFitUn0lb3UFAXFqSCHFZyyzeCjOVZe1EFWDWAbPkIwvf979FzyHixDAcciM3yQ3PQJYqkeatU83VfciHygxHTza0h2BsnP1IikdcrxMLUwiGAF2wig6HUn70nKz7bu+W5/ObRDeLDryCNYrSZ5zSTk6TRFfZH/kufRFE0tfj5T3UK5OdSC4c3Qqy4nFEmRTuiUNjZRmyhjTlcoVjRixgiuZhPd2I528iA099EdXolhVzA0WGWZoJjYHc3MHTqGNTODVlqGiJ1bDIzTzPPoaXuEPy9O8IpKlUmpMb7OVxrtjqeDyKpJqa45ZmkNFna6OYVXtllYBDECOsIKncZ0c71Ggh/P8vvaZeVuHor7vtZwT5TN020kZV+WY8A4wOM/vIutr7gQ1jbY3y+llXMllk39CyfkKKZc479jUbpzLYS6LPrGZMq45CQ4eWA/83NzCLkDvAq50BquDkQpJQKE56pUoyrJ8TGkWBPR1a1PG/oUDiis743wyLE84CFSQXIzVapFC0OkseUAilNDKVeg/lyFmhP0jofZt8LPxvuAdIS3NL2W/51p515nE1fKe9EiDtFjXyfU9Q889rMhtl+/hvDJE6DpMD0Ft3wPXvkqSKef/qYsYZAshiL+knmmTcbNL/4fF0lS2TuR8GhWczxcbcNFILwI2B7GTJVk24s3h1ACIcpmFM+wEcJFQUIEYkR1MNtXMnPi4UXQDWCPdRhvcBurN61huu8Jbq+Dbjvb13PzkTuo5pqJN+0BIGLspGxfSKinFxEKwarVsH8fuC7ceQf09UNrK2za/LRt9OYaCpLjikLIkFEVFduWEYpAD529OVY0qOAqOrJdQ1FtRrIxpASkK3spyWEKeg8P6fvpK4UJFDKYhVOELr6Yzr//FHIshv2hD/FA5Zu4roXzn6uYC83AsEHh4BzJK7s5dt3HaP7xm3FN/9maToCVSPOj4gnSFlxfvpmZ2CnSqTjv6Lua37j3M5xa/maGa0GgCELQ1N+NfA75uL9sLQmdi1el8bzfYbo8xJGqP7fZMfFFtjX/FmYph2NVceZGGFt7LW1VAwFMfuNx+v74CrZnKjStVxjs28xPfjjEjZK/sDy1+ye88ZEL+OJ7zueyFc1P04Jzw5zBjA+4AXge7mQOb0376Qza52pLsyk/D6YbgNyZxD427TPnahYiGkDoymkZUatFg/DECfLtJl2s4crqkcVto+U4elAjJOaRalkyikszgl3VPoZKfj+tBEI0R9oRUgSnHo6vxTQ/q5ck46phZKtMoCIjN60mlvXnO0cDOp/sWMGnRn2Nv9Ut4+ye/BqHd76bgw+Mc+27VrFse/vz+v5PZi+ZZx+LxZienqa/v5Hy9aqrruInP/kJr33taxkbG3upmvLcbP1FcHwnsWAYI2PwitWX8rVHfgDApKNxZeDrmFmLy2rNfDDSDawG4OfNH+DCyQcJRRSk6iBScQ8acGkF/iKd5pXFBCHX7+R6zwGmG4BtGFSUMJh+iKkuWVSBYLhGUfbANgmnUjiWSddYw7nI241U3ecFtnHSPMDBzEEuX7OaHwTbWV46jlECOahgta/FLBeQMvtQmlfheRKHK1dSi4ap5UwK++/HKWWplrIsX30hCAlXbejFJN0AQvYdW/XXlOkW0mUGOiIcPtD4folwkMS7/5FtJ/6GHcpdQJUbYik2jZmMRpuYS9RD/RCsiy5nX9lCXaIDswiDaC8H0C2C0RUjrk4yZ/VTMzUWlHwFIFk17GCSd90rCJoQHKwzIXOzuJE468ObOJjbC0C2L0xy0NexuO2z/8x17/oYHd0+aCWbFj/84CX8yf9+kKO9Rbz67b5cuRLHtgioJqFA0zkVWgqghiLIukZxXqDIDla1LmguRYhYQywEmJayZRCCgUALKcdhXpbZHdCxAU9ZwsIY2MzcqScQkkQxM0uirYPMyDCJqMrP7hmj75ocibg/wR5oi/OBK5bxvZ82wjkkLXAa6CYpZ1+M90WzcAtRfQ9rWzMcmG4GTBKhaZqqDdBt0htH9KxkWTzB3ts+jaKFKGNTTjfDwT04523BaNVoyWVwE0HavSTCslh10RVn73s9g/3xtj/mrT95K47n0BXt4iele3mnchEhDywhUaj/5uaqJMGhVYQiFmFJwUGmokdI9tjMnwTh2hzdOUcodgmKfAAJh0JximPSt1F/eilVPYxR+CF4NQrzI6y6/DeQHf/FnLM9Ul0hVE3C8aBFOYbXXWVr5+vP4p15+dnR0RKfT5xY/P//8lZk1e/jArZCTbEXP5+pbqFcrUQJCIPZqRThLTGmcgaRTS2EN3jUThVYGd1PKgCg0PL6dUx9ey+Fba9Bdh0uGexidsPcYntORiwStkfme18hcOlGpHMYdHPKFbaEphio+OxVy1KwJRfb08nU/ImLoqqomk7NCS8yW9wloJts2+TzPuBmKTKuLCM5ymmablvjJbzQFKViGMv2F0F67Eakyakml+JdCtUtUYJOke3yUb5oBNg6OuovtC1bfuZfzvMaqVmfg8kP/RNqdZLlwB5F475Qgn+aVTm+MsRl96tMSh4z42OIemix50ygRt9NLiCzuj3OSMr/3dXgLJd86DXP+rqJJRlNS4bDwKYm9t83jusJ5lo20hPNIc/OQbQLBCQSzaQODxOuyJRDDnudEf4oX6YJwY+dV3K5tJdyLkBH1yDBwb0cyq5hcE+GrVeex/LJh4l4HgRD8MNb4IorYfmKp2ybkATIks8qsZ8CdDNs5tzs4v8xESVdegjw9ZaHykkqcgi96gIykiLR2vfiMXVUTSWsFUGDYj4CsoylKnhArGUAgLb5JZrQweNMShLLjkR5YsClp9VkZFpjON7BRChN4KhKvJ6QNuXez3/ufxtvfu2Arxa9bp0PuqkqWBYMDUKp+Iygm8iNLJYnVIVwSUGSFRxbxnNrZy17KYCuSnhKAOwaimJTM1Xm1I2sznwMYq3YuTJX/cYPmN51giwfByC87XyUerbjUkKmc6aMeyLO4Ezje8TIkr+1hHztcsIXXoH+wAMIGZTeZfxe/7/w4Ox/0ju7jZAZJmwmWdHh8cqdX4ZYF+XIGuSCP6+SFZ3+theH3fNCWnNcZ2VHmEuKb+HIuA+6PaQfJPXElwm3nk8lfysAY9UsyZv/AO3b/4pnuYz884OsfN927GWCmZRN/2uugZ/5oNulziPsCF/G7QemWN4SoT1+7o41btnAmS5AUIVqPazU9XDG5lH6nz9guJhEgefHdAMQmoLckcCZyIHr4RVrKGv6EUs0LcsFA336FLN9x5hllHW1BiNutJIgklbQq7PYwJwAzZVQtThG1Qfd1GgKHAfVaIxRciKwOGbZehTZKiM7Ar2rn+DUbhRHYMsex3STv/du5hP8B8fdTt7S+gO+Xm5DEq/gF189wsTeaS56z3oU7YWb+53xHZ2bm+ODH/wga9eupampiVQqddrfU9n27du57bbbfqX+iiuu4NZbb+Wf/umfzrQpL6kp8WYC7QMUCvOcGjnFSqOfGzZcw3ld6wjoHvNShRIWx8wCFW908biuWJKvjV2HKXUj7AI+XABfTMTIKDLtcooYPuW4K3luvOiBWCPleM1WFsWXVXUJeBOKEE6laVoScpb1/JfFcxzi5SgT5Qk++fAnUWSPpoGGA1KaGwVJxrjglVSkDJWIxuDKXjJxjerIIapHHyb34A8W91+/+kKmDQfUhgPSbEo40gLT7dcTdAP8jmMxzNzDmBnBrZisUFcv7jIxEEfvWEbz6guZ1nykv1NL4irN2MVGdksAbQFRepkw3QDsvtJinWE1Oj/J9gUySftAfi7oh4GGfv4NJFml326kmx+P5hcdQ9u0eeyBO8g7YHrgDGVIC4+roxVKAf9eyZ7EZcHr0dQgKiZl0yMeOjfEZRdMCwRwDJNQ2EDTLbxq43eWIhFfKwswa+B5HiLSwrY6MKd6HsdVFU9uOFlyUwcDr/8tAuEIR3bez+DuXVxzeR/Zgkm15lDKzGDV/FVsVZf54NXL+Z3VjSFEyAEkeQnT7Rxka71gFvKdm3jAJF0HHRRh0Rb1CJl+/znpjeN5HsF4C619W7BqRebKM4z0dGELyDo5ZrwpZhJVMszT7MWwaw7Lt257ysuebRNC8JmrP0NTsIldU7v4pz3/TGZTGP0Va+lvbywaDQuV8MaLKY1NEvYEFg5qLU9kWYjAQArbVnFtl9K8zAV9mxB4WK6LffcgXXM/xa49xsJYmepcR6prLaYiqIVlCgEJVfOfO0tVWGk+hgid+6vT55p5dpEpzQ/5a/eS5Ht1SqsjlFZHOHp57bTPZ6pbKI/l+zm0dwWz02li4dDiQoWQBMH+OJarM5fz6zzPpXPApuCApAVJ6e1EJxu+x1Sf/2mODTP0ttcz+oHfZfZzn6d29NhLep+ejRnzeRSl3t8Co9kkirDYV34lh/O+jxSKxhBCYMpRH8gC7CWAWmZoDqnuyxi679t4soq8ZB+7NEdLW5a2ztlFpluH1MgcP2oPUV22BVz/mkEMHstPYQ8NwYM7wDB41uZ5sPsx2PEATE7A6MgzH/PLtve/CR31M9q6wN+mkyxXVyOsDOsnm8BTKbkuYyeOMTM2iouMHL4eWWni5oBMrr0xPl2ybNUZXTqoSSyQ4YpVh/7zGn1EbvXVGMeOUbz/gUWd23QoiRASvdM+oOHgctvm+3kbGj90N/E953KiyRrhFpOt0n8BUCtZPPiTMb6/r5VKqgMys2DbkMlAofD0DayzUp6K6YZhk61n4gTorc2hOb5/d6qcwHIVikoE3fSfpdaBGLL64kV9qIHG/ERRbEx8UNNSFVQ9RCjRTrSqEKn473dNG+Ufh+8lZGisspYx0Of770G7xkPt6zHmTarWRgAkLFbq9zO4pz7hjifgbe+Ad7wLFhjzmcwzPr9esUHemFAUwjUZWZFxHBmcCnro7BEbhBAIzQclJQlk2WW8FgClCQoTKG/5IqJ9MxxqLIQENmxcLM8YE2zJVrGeaGQ1TyfzzM0GMGoy5qFhDq59Hw++/gs8ctN/MH7jp7CPVNk6dCPhfY3F1Q3RO6E4BZljVOVWFmZPQgsROYfkU57OVnWGefXqy+jwfNJHQa4xWDxKXksh1ckYpflRyu3d1D78NxhuCGO6yOQXHiG9d5KVBYPJSBVP9/uXVyh7yORLfP2REb75yHPo514i8zwP+8C4n5CgaiH1Nkgvbq7ywmiSLV0EeAGiyJSVrejXrEFZ14GyoQs5fTqwWynUmMrmKZBBcl0669OYkq0ybwZR9BBe/Sk1BSiejBpozF/lcAw1FKGcNxdcRpR4I8rG0RvPfiLchKJvWuyj5twZWvsu5GPmb9IlZlElh+3Bn9Mc+DyWY5IZLzPy06N4ZmNu9XztjO/ozTffzJ133sl73vMe/v7v/55Pf/rTp/09lX30ox8lEHjyWPErr7ySW2+9lXe/+91n2pyXzIQQhPo2LP6f+frDtAfSXBhaxfJOBc8OInsSE26V983dsRgGsCyic4+6icxuD1dvZWz5p/hBKM0XE3GEC616EwFFkNYF+vOkcr5QFog1gLSqIRGR66Cb1hBr1DSNcCpNlAABzx98551p7MIcCOhVfAfp0NwhHp58mLUbG6ENhTkflKydfxXT19zIwWv7mR1IUjy0k8nv/wOTP/sPvHoWxLZ4H6lEK2NVC0fOLZ6jxzVx+PXWdAP/uVvoRgXg1WqoheyiwD/AySYTu28Vo87wYnr585QwFRHFKZg+IOMBrkRgoVN+WYBufudcurjRTRWrSzpby2cVGB3LKfS28LUbY5zoktGOPA6WQY88QED4juIx+yD9224k1roMyygzuu8O9mVmmBIymDbW4UmmC0MMdVbQTMEqadVitjBR15RKRs6tcEkt3BhMVM3GrjUG3FJ8FZLtr2B6yJhVC6JtXFit0W7Z5GSZx4M6ntxwQj1FQ1lxCasvvRKAeFSwojtAcypAIKAy+sgtzA7tRlYkJFlCV2Q6RIN9qiphJMm/V54nFpkLv5YWbkzgmsONxBvpltyirltFMcl7/kSja80FPkAMjEsmuZD/HBdDjT61Q45ieEH0czwBRVu4jbeueuvi//fNPYgQgp6+xCLreLBWJRcKcTShEl3iCOpGhtDyBHJEoeXKZnovUEicdwHNSZ/yYFRgNFnAMR4Fz0QoPazqOQ/JsrAiKnPLIpBc8h7qLp6oEVTODZb4y8n2Dt+NW2emrvQ6cAohVFdDdTUCldM/n6luoYzTGIsDusLAL4W7aW6NwekwpcPTSJpC69X9tM/vxHMcApE0ifHk4r4xPYdx1auRui7Eyc1TevgxMp/5DGO/+8GXRPD4TKw6NU+0ruE2IytYjkrRjmAsmcCEIn5/7egx5Hq9u+QcwrBxHY9aIkI16PcPnqQiLelHXcc/LhQyUOvCbRUlxXX5SwkQ5KhzkNllyyjsb4ATl7OLR2s6VKuw54nTG14s+tpZ+/bC178GD+306w0DHrgPHnsUDh2EH/8I7r3n6UGP8hzc93fw4L/AP6yB/7oJfvA7KMY8P5OW88/JBAd0nVXKOlDKbD5iUXYthudmMOvnVdQ+HG0lSd0hJUUo1pOLBRVBInxmgIAQgkjAP6ZSc2hdFkevg8AzUieukDDm5om7oHggywpqaws9041ndqd6kLUrckhIfMe5crG+u/Mor71wdPF8JUvl9qF23K4e37fau8cHLJ+ufQsskqdgujmGdRro1lds6HWdLNUziSsRgvWHqGd1khfT9PAS0E11MD2NgFXFrLM1463LALhsT4o19ko8YXKv8i2m5BL94ynWLMvT017GVDR+uuwSnHKG7MR6jNAFRJV5Lop9nZEnhhsXjMdh/giER8AYhMo+mJrk6UxU/WiHvCRRkiTCVQVZUbBtGdcpo53F8FIAZSlwqdpMFEOw8q2w8jro2gaSRG3fvsV9gusb86Zq9iihnMLYtP/bR8NVLrpiL53Nc2xdPUiLNk35VA0zZ1OesZjbOYudM6icyC4C9FpaZ2jVjezb9hnmz/8IhtnoWwKpl4eeGYAsCfrbwrxOvYoVbjtZucwja+ZoVg4j6Zeg6C1U8zOcOHAnRksP5bf9Hvb6CzDG8pj//jBd/+MW9FsPkGn2WcIhr8I1st83fmvXyGn99rlkbq6CO18X7AyqqCvbkNrjoMq4UwW8Yu3pT/AsbCnT7fmGlwIIXUUoMkpPGqXr9D7KrNlI5RLHHRuDKsttmwGrSs0LcKLQBAicSBeinvDGACRXoa1nNRsvvpRNF19K+vI3owZDaHXSgRRSkGMNH9HWGvOkmF5DDa4iVvb7bUe4DCRlxo0V/My6gD3OAOuUE1yv/Yw1qX/jG6URXv/QKX7z8w9xwV/dyc1feoTK8wTgzhjWfuCBB9ixYwebNm06o+OuuOIKrrjiqcNmrrrqKq666qqn3H62TZ6bIrruErIP/gDPscgMn0L+9AxOrsqV717H0elX05n4ISPhY1RxqMq7Gc9voknTyLT2k3+oSOK3v8RsNcFfNMWwhEO0ohAORiiUbba1nzvilcEloJvhakTrTClN8z+FB2qlitLSjCTJNBNnlAzz7iwiGkcImXiom9ZaMy3xNj7z+Gf490u/zJe/LpDwmJoeJjQxQWdLM17rVgA816G0+67F68aUJtKBDga6ffBuuGRTDvqrfBIyraEQpvj/AugGi/GOeEiyTMSxCEltBAhSo8qQPAYr3ske65HF4zapcaoihl000XXLP49w0dwFptu5BSA9mS0w3WirkU4XUDyXWlUjEPNBjsDsScRcEaOzj/j+MI/05ImvcFg5YqE9fj/mRdexXF7NAfsJCl4eo6VKONVJYdrXBhzc9X3Cr/wgXWEZez7PtO0LeZqaR5vaB4DwTJz6as/ScJVzwfRIY8UoEqxSVi08x0XIEtnoGsLzeWr4Dtrc2DQdkVbWmBaT9RCyA7rOq52GE+ipGrbjsf41b6N6ag/XbIsR0ARXvuZSvvtfvwBgfuIQ217fyExdXbKar0ihJaDbrzHgBhBKQ3IZbq1Eqpwj4oJjGhiqSld2AFsykaRpxtQTJMLbQYuT6lzF/NhhTLvGWDoBQCHcGMC75RB26MWdOL1Qdk3PNfzbnn8D/Eym71zzThRZsKIjzFh+hj969C38qxIj3z3Lp09dSKhjE54QBOZGSBtFVlyf4lRoFUFHMOhFCbz6tzG+/Q/MiyAYC+EFNrK6HLl0N47iL3g5YYXm3sbEKajkyQmZoPz/B93O1B4e/sXisutKp5N1gWvZ8iSC7mdiX/n+Lsx6YLumS3Q3BRiZrRIPK+iKRGXMwFSCzM0H6A34/enAQJFHjkyih6NkjAAOIAPtjslfroE/DKTQJ1JgW0iuizU+RnXfYUKb1j6vtr6QVprK0OX6fV9RyOytnscTozaC9cD9AISivvPvxlNoto1T74eF5xKo1AiENayiQRVBOhnA9WCuaMGSrJHuEpHrZGgKmzWEQhpN8zFq+OPivclj9M+3UKzFULQSNyo7+A/jlWzvaULe8wT09EJ7u89ku+27UM5DIgrFPOwrg5uB8SzMHIeOjTBbD/mtVOC+e+HCC/021WoQkKE4Bs2r4Suvgswx6LsMihN4yX4WlgyLMvwktpE+WWGZvBLP3ofmuWQlj+mRU4vfSdY3oSHRmnbJtYfx6vpS7U2BJ02Y8EwWDSrkKzYeULM8VmxrJTNWopKvUWjfQGJiL05mDrvVHyebujYQHoN98yWkWIypQobRS05yxfh67qqs5pv2VWw3D9OnTZN68E9424fu4K57fLB0erjIIwP9XOTW2Vanhn1NsqdafFrQX3I8PNf9lUUqs2JR8HIABL0A4bkjFNR+sEucKPrjhKzGidd9us6VL+7YEQw3+lhFcag6MonyFHPhbihXibWtIDtxlB4hGKxNIyISthXhXZP/i9uaP01/WxBJ8nCQmAyleLxlJRcMzZEa8J/piDzH6up/Mn18Pa3RGcicgB/+DtgmCB28KjzeB71//OQNNMvgOUwEu3iCMi1zOvGSgtws49gSrlU8q5puAKFUE7niPG6+RjpVomoo0Hc9nP8JkCQ8y6J22E+wofb2ICcSuJ6LhKBt/AgTmQSt6SxVKUFheY6frw5zfewYcamDHz6+Go88IiijRTTskkVUlzAUGS2hkuiOUI3pmLJFJdZP3DiKUfAWJWeaB545IeK5ZJoicVX7dm4buReAbNTivuo+ti77IIVD/lxobvwIheHHSPRuptC7hmg2S7i5RuGUQ8e39zH4nh7SqT6kSpb3K/fy89I2MiWTnx+Y4vWbX5yEJE9ntuOiyBJPjGTZ1JX4FQ1p59g0Ih7AM2yUtR0IRUJKhnEnfe1HZ7rw/GUYXsDw0meySqFGvDbHyYS/yLTe8Ak+AVGjTIx4ugl5YBOyPYYD2AKEJxFNSOh6FMeTkVPdSHaFqFci44FbsVEiGiFdwnY8AkuklGJMsn6LxEOzUUbq4+XR7Ahv7XH5wOQHeKu4h3XSKVB7uIb7WKUc4Trzr5mdU5iuWUwXM7z/a4/xjfdduPhbnamdMei2evVqqtXqM+/4a2bBwSO4PSuIrLkQMfgExWoZJ+ffh9oPjrH1ql4en+yFsB/6MGENsjJ6EQBdzU3MBJOkHt7JzIZLsWQfRY9VNSa0MIrrEAmfO+yG05hulkJU99u7EKaoyTIil0W0tRFKpGjOxRgVGVxc5kvDNEeXo6U7WX2omfssf3WuKGWoRVsIFaeRyxma0klQVEJVg1owgHj0EYySP9lK6x1c3v1agnqE6GZ/kByvOmQDvvOXEHFiUcGkWNB0+/Wd4J/uaHpEm1vxRBBJCPrVZRy2DpAnz5dC/87D9exgAOu1BONSDKdQRI82xJcXod2Xhaab7+QJAUY0zNywTMRSSbT6A4wna9T61yCMKpmW3+U3QjWs10h4936cwEO3YW69kpXaJnLuPLFwlHxfjjXKNrJjh3FdG1nVyU4cJrtiPdbUOOVgY3Ur5YXxnCphbwZDbyYWUs45cFcLhurhxx6e7JGr6MSKOexEilygn1Z1B4ZbRkgSuSmHjmgbK00T1fOwhOCApuHVGmC/p9bdr6nHuP7iOGOTJbo7IsSZQ4+3YORnKE4PYVaK4CuvUC01mG6SCDfCS3/dQTdJAbOIVJ3BC0EUmAzo6FgkRYiHY4MATM7vZn14O2owTltzitx0gHCinVkxCp5NMdQA3fqVEHJT61n6QmdmyxPL6Yn2MFIcYff0brK1LMlAklWdYf7zyA+wMMjbfn/+1ytG+FPvCkLVPEL2aPuvT1N813sInL8MQ4S5K38rOWeakVfMMrDfoXM0gqqomG4aWd/IuGqRMAcJ6MuolWwCkXr4kmvy8+yXmc+eZP+xH9LttjAmZunyfBbik5Wfbd3z3f5yaEfcDqCFFDQU+uxenrhzlMmTft86O1KiuSey+PlMdQtlC0AWKHEdXZORJcHl6xqyIyc7/Axr2fseojltoyZDpOLTVPJdBMIxPARFWyOhmHTYUEyM8eMVN/DKK1+P/uBPCf34ywBkPv89ej77f8/giX1xbW70CAtBnhVPxq76z74Uagi7L4BuUiSG6jhYlg+8eUKiGgoyDsQiIUxHkC3bbFse56GjOcQSbUzHdfA8KJeCREM5hvNHOESU12Qv4b+bfo4jXB6o3cHmG65noPwFLrD8RZFV4i/45tyruJlNePffi3jTW+ChH8GR/wsiCGMWIEH4CvjFTyDYB9VTUGiDV/87PH7ID/kbGvTBpGQSLzeBmP0CSFXY+l4o1TV9J/fghlvZOWZwnhxjl3wef522caRhcKDLbqW1aTmeV+Lk3CzVSplwLE6lJCEpvcjA+s397E2HiOsSFtCRfG6L0tFgg6lRrNq09cc4cJ+vQ1rd9hqaHp1FW5Koojmgsm9qmnAzHE9NggPz07Ns7yrx8LEIP7bfyav030eRPaKdVSb+8je46A//i+//1wyu7fHE3RNseVUH+uQpnxU4OQmdTz55F4rcUA6xXNBPHzONmk1aNBOVY4QIEffuQbWLVAlTdXz/bVQKMpAKEXIELX0xXkwLBHQ8JAQuimpTrWikS2McC8qEXRWBoFb0n/urD3RSvDDARPAYeeDe2hOsqS3nwrXDDI/7/cWtA5dw/q6vMV/4E9qi+xmtrsFwVILffR1YJ8BzoPtCGH3YB9zkNJz8EUxdD21Pkt17ci+Sm6WjmmVnNMxM2mDDYAxZVnAcGeFWkM+yzqyq66jVPGhg2oLMXAJzbgKtDrjWjh3DM31/PbhhI5Zj8rPp73Lx5Bxt5TIHS91Mzfn9afQVUAXua5bZNNVEdEs74Y2tOCWT7nY/0+eaFQnKeQPP9Ziq1Dg+bRGzh9hQvoNHA9fDbEOTN90x8JLfj+drybYu3pt9A58ofpFOI8UTsZNsFHMog1dilX9KINjB0N47WNexjrhjY6y/kOl1m7FCzYS++280PXISd0MGyShxHnvpV+Zo7ujl1r0TLznoVjUdbvjXHZzXk+B7u8e4dk0r//qOLWh14MszrAbLLayhtPjvu9wawz7kz/3c6QKseH4+pOcsTaTw4vrx5YJBMjvKdJM/99iwhEk9WtDJVzPE23rRxsZZQJ1cyUPX/QgRwwmCEAhFo5StHytACipYjodle1iBJlrjzVhzM8iKQFFcesOt7MUfr0bzB3jTyku5dN9hbotuo2bKfKLl2ySBiJrmMfXPeFPxbxCSDAL60mG2fPJOZEnwlzeu57p1bWf0nc/4jn72s5/lYx/7GPfddx9zc3MUCoXT/n5dLTjsg2npK9/ONa9+N1evP4+mHt/NEprMmofvxyk1Le5/ymnE5a+NBTiW7Ca/7wCz5iSxkoLsCFJWiO6QQcmT2NDz1Hp4L7UFIqdrugU0P1uRqvovo+Y4fqYmIJRK07JU183yX35JD7G23OjE7x69m1SvHxIp8Lj9uH8/HUCrVJl/6NuEZP+6q+Lb0ZwkoYuXEdjiM93KjkHZ81fQU8QJaTbW/yc03RblX/y0x6lmjHIW8NgkNVbtdpij2DjICFQEy9U4FRHDLhrouj+I65KMFAj6q9Qvg8ySoSXsFafFz7pnLdF0U4s+COvpQYqd2+hOXsZA6hJGL9mGmJ9CufNbbJDXM+ae4lDxAHcO/4LWgY10b3wFZjlLfuo4k0d2kNMk5rJTlAMNACSldoGk02IOYssqyci5xXIDEJK0qFGywELV8xmEZxPwSthJBU8K4xKkmLMg0ooKrKmvJg1rKtUl42sw5LLOeoTkzP0IAd0dEQYzMb7z01FSXQthDh6l2fq769mUjCVMN9EIL10Ipfy1tog/2AoBEblxI3tEg3FwXC8yPlajkp+i4gQJRtIUZ4ew6uHzxTrTLe6FiAoVaQl78Vw2IQRX91yNQNAebucNP3oDH77rw3z0no9y2/jXTttXkXQ+bn2Wz0u3k6OM1d2J/h+f49KH/pLLK9/iwblvsyv3I6a8GZ5YX+LCq9t4503r0SKvQwiJqWofD1gP4joeWn0S7bkew/IYtxV28og8TUWzKdoVyrpF0a48ZfnZ1j3f7S+HdggUTGFzhbcOXW6hVrIwqzZm1aacM077fKa6hbIclMHxCHRH0fVf7QOWXXwFW970TtZ/7guc+u+9nPjkLygemCIgmQQkH8Avmz7AknAtJp2DKJGTDJb+f+yddZgld5X+P+V1Xdt1pmemxyUzkYkbUaJIggdfWNhd7LcLywqLrS8sLCy7sLhrIEhIQlzGMu7T7nZdS39/1J2+PUkgkxCZBM7z9NPVVXWr6lZXfb/nvOc976lirDxj/jjlA49gjBced/zny9KZ/vnlMvWEllMaRaglB/2BIIapEvA5NC5J1plu4AUOgkDOFmiNa1y4Ok7DcV0aaYE+jWXRv38fkjjDzMhRhLt/it/az96ywNn59QCEpBjfSu7gr5pD5EQBE2h0SrTP/QRr6uO4w5+FTyyCh/8FXAPsabDToKhgToBrQukIuFWgCD+/GdL/BwfeC6mvwuyX4cD7EKa/hVudgHIK96H/g0oGQkug54P8tfkRXlt6L6uK/81nhZuRNA+MiQpxArNzdMsV5mybY4f2Y1arFHNZQoGLvO7QGxvJn95CURLJVh1CukQy/PTm39ACjapCxaJ1ARssHejGGh/H3P7o/Lp4yI/i859QYro/O4F8zgidiDyCn7+13wiAWRLx6eP4vnMz16zzmOChmMbBiQUA4WAddH2cLeg06D5BOVumnOegvZc++wiaXUCxvfcj69T9bUMKos1UiDb5kZ7lAFlTJJzasyjLNuWqQjQ/S1jvQpA1Ym3L8cc8aYVyaoLr1HrTi//M3073RIKlHQXCQRPZtZjxRTkaaqI6OUvp7B9xR/UjxOVRwsZh3ONw5NgO2PxuCJ8B9hwU9sED//XEFzhaL+fdW5NPCS4oL5VE44k/9xxaJFGP83SfBxKkp2fn1xl9fajdXcQu6sFa3cSje/+VtYOHiGS8slojVx8Lets8neyirNCneCCkKLkoUY3Jss1YyfMtAhGNIOP09P83HYEKGSFJv7KBabEdXBtHVBBEnle9u6dr/miU5ozM1c4mxvQURd3i59JXEbRliOpKKuVxSsUMmW3fY2V2D8KaczCj7V4Z76WvINNxFU7S08cWcXirdjtbhwvceXCafWPZJzn7M2ufuusIR6cLfG/7KI4LtuvyH3fW9Uvt6XqCW2qujwGCriDUGj+4+QpO6fd8zk9guj27kleVVB5tepBcwhunjzPdHBemKkFUfwQ5EMHn1K/J8dVJX5War4AoUUh7pbWiT0YQBdriNYkGWSN8xpWUbYvp8SkA2rUOcMFXlhjLH2HKaufd2RFUx+LW8PlcVvk4BamNqH0Anz3GF0M/5p1VH68Jhhk5nCJVMpgpVPm7W/eTr9QlYk7GnvIoHY1GyeVyXHzxxTQ2NhKLxYjFYkSjUWKxF0ZpzNOx1JyO67qIikbWH2N1QzPtnd00L1qEm6ogTRdYLtSZRkfMCeyavtaKiI9D0U4qosp4qZ9c0MKWXKKuN7GnHYn1ixqf8LzPh4myjFLLCFUsCVW2Tmyi4ALTHkociCdocOsDQNaanF/WqhGEmi9x1/BdrDutLgo6PnoYQ5GRgPKBh5gRi5TsHIuj61jztmvQVyYInds2L+Q4K9WbKMQI4lMsjJoz+2IG3TyiW728dFGngx6MEhDG2fCYt7ddSvC/8qV8uriR8kg3DiJusYwkewOW7rpeSYiv3tnlVDZd8iPUvns14QFsplF3omX7iRm3o2eeBZZJ8P7bSJaDNIhe5ufR6R2MTk2Q6FyLHvTKSbJTx9h5x/c5NL6Pom8B6CYmwZgl7hYxJYXYU9STea5MrekEyYqNIDr40jOIOBSkJPvCQcp6jXbu6pQVr/316qqBVgsMJ2uMNEGVOKd7D8uqD6O4VXJ2A8PGOiZ917L47DeRaKtri2y/7QeUshlmSpPk1NL8ekEMIElubfnUvF/PqIXq7cRDSn3i7VSDiI53X0fMcab3ZrCFJIIWpi1aD65MyaFcYxE3EEFzXZTQ81v+8lTs9Stfz29e+Ruu7bmWVCXFZGmSu4bvwna973R60+n85fp/oi2wmDx5dooD3C8eILOoA59pMfn93ew/soeiU3duKxh8rzGELySja55DVZ2OsFc8QH62ysj+HKnxMkcHqhyR6oLHqimhuRr+qoLmar91+WTX/b7bXwjX4Rd8RN0APlfFFAP4IyqqT0b1yQSi2gm/n2zd8WVBkRD9MqIqov4Oh10Oh9n3ppfwV6+BravPxa8a6Lq3f96sg1ZNts1u8R4aNRktlsDs8AJNe2aUwVu3YFSeOYHj38fyZt3vqaCjzusXu4gyrN18LqIkUbX9NDbG6G0L8tJNDZy3MsYZSyOc1hPmjGURWuMap/WECflkJFEg5JMQlHqgXcxlmRkfYfeDDzA20MfswGGEB27l4bWz3Dx5MT3WIsadEQbtPmZlib9NNvPqtg526RpB10Z28hwtGmBnsa0q1egmzPAKqvFV3Lfio9yjLaLaegEpfQ2O2oWrrAArB9UyODlct4LrlsDJeZqLOCBGEXxrcMUwiEvYNiNyX9n7/kHJYl14BkPwAqJmqRVjZoBMOsU9Rw5TrVXNqHozVamLlp4IK67sYmS2Prf3tgefVmkpQPAEpptNKK4TbvAC1OlpC7FrMebhowi1zKZrV4guXkHLrA/Z8s55LNuPodqc1+GBvLc5Z/EPxhvY+eBKfHGTUGSYtrH/YsOaOQqZKtt22zjHfbaBfk8vz348qCYsAN14gmYKU9V6J99lZv37Z6x6YkYVvDZsS0979hvJSCI4cs3nli3KpkSUErZjYtUqJ47ruoFL+1wAv+Nd16RzjKtm/oz9Rw5w8eZJgprJQKSVz6x/OdXJXRhzSVac08aksYwJYxmTvR+GtTfB1f8Gl38Mrv2UV2IKcOAHUE7zOBveNr+4ryafEqwoCKKIg4IiPf86kPHGuvC9pnsAQ7poz2fWS48+iuhmaX7ZGjraZunKl9AcF9WFkuYjZR0ndrisDbTz+qO9nO1cglPz51rtPuK2B9DlyzaFvkcwdn4LZ+fXOOT0cjQlk7UDjOhrwaiillOIjone8OyyJJ8tCze3IqkaL3HXEXM90HDKHWNk6WFkfTPHi/mmp/qZyc4QM0uIY4OI0wM4TR1U157LtHUubm18ucG9m1WCB5R/7eHB5+x7fH/7MD9+1GMdyqJAS1jjroPTfP6ePu4+7MXazlTdT5KaTvx/Lfzbmfk9yU8naLo9u0C+PDmKOTdHwVdGdxyWGJ4fPVsNYLkS/kaP2BS06/61o9TvQ7lWqWNbUM57+0g1gsTiJv98mDs+V2HTDTcT7ewimwnQozbis2TKPpuJSIHp6RzaNW281vQA8BmifDZ9w3wDhyZhO+vUCRZN2wgTZY4PJamSwbaB1FP7zk9pb+A1r3kNiqLwrW99i6ampqc9Gb7QzFnRifPQXgLrOkkF4sgIxHx+7OZW0tPT5Clz+qFBhluDlNUCh8wsCDPgNtOgyQwvWY9VPspcdRxqlaQNUgzTFpixJJa1nFoilnogiJlNYzkSkmyhqAtAN4B0GkwTXyRGg1t/4TPVevcgfDE2Wj1sl/rYM7OHlgs/xGxiGcH0EK2FAWYRSFYKDO+qd7Vt15bizFRJvt7Taym7Nh+/5w7sRfVzJGwfsuhiiN4L9+IG3YQ6002AgJylSTpEl7qTrHYFL4tcTNFKMVUd5OJdcbaMHsKp5FhxZQy7YqGH686cbjt4JSQvDDaNKIj4JD8lu4jQ6DnhjiPhOh6RSv4tFSf+nnMQ+BSC6yIf3cn65WdwR/VnODg8MPEAZ8nn07L8bAa2e63Fp44+TKRlMUW9fq9iYgInP4QqyJiSQvwUZLoBaIEgx/NfqmpC2sYWPIdTNzrJRY7hq3hjy2Q+yiJgtWGzOfK/ABhRDb3pIbR5HS2wXYk5q5MJy3sHfeEkllWl88xrKIztIzU6wHc/8lcUcmkcapOhCJJQB4xE8dnNkJ0SFqzTynXNQKrq2AKEA1Wi5SZSgQkyvilswWJ6pExDYzOThzOIkoxjn1ha2uiG0R0BJ/DCyTY31DqGBpQAjf5GImqEhC/B+uR61jetZ3VyNRubNpJx+tk25+l13i8c5LLul2GKIuM9q3hQLM4fLy63IOJyZ/ZOFvv/En88CFNVVEelMHcue8emCaRVUmNl4pd0MlY9PP/Zt/Z8mjX+pWRtgUjNI3qi5ZNd9/tufyFcRyh1FHHKk3/ItTWSXNNNvMauEosW0YA8//vJ1h1frprO/HylyL97Xj7/hnezvHQTQ4f3kVDyZMsRJFkhb9VBt2bLZqu1i5QwTJBFKNe9Bekn/4cwfozirrvZ8esWNl3Ri6I+v+NNWcjOdxm3XB+dS3uxbZup4SFU3QPhSlIDleZFxGNBtFqXyWT4RMZ5a/zESa23NcAhrS49UsovKOeXdGyrgF2tsL5vB/ZIC93RAH0L87fx63m79jKOlt9KyZ1hUrIZMVXCQpxpI8iU08jewCvJGQLffkTndaLAw0Ib33bezJ1tEwjlewkLESbsAD43RtYOsViykcQIlh1CFqI4vnMRw+cghK+k6sJfjTUzbcmcGc1wddMs1Z4hqBG+msRWjg3vYEc5SyAcBUDVQ0j6ZbiCVyI5WLTIFC0SIYWIXyYRevqs/OONFAByJW+ualsWJTdTxrFcjLOvQf72p9ENi7KmUHUd4q1dzOzfQduMj6GWEkWnwNxUkdbzhgl+azkFBL7iXM6DK5fxfetf0Ukj4LKp8kkOOH9L1Q3z4GQzG1+5Fv/erfDoDq8k95rrTry4BQHtYzuYurbDtFUHlhZb9blirlp/HvxCCAToWf/sg26CIICqQzWLIELFVPBpDtX8USxlEVQg3NjDxKH7AchP9XP9uldzdybLSHkHmfBe7ph7mJevjyP7G8CAo7EOPhMf5S93DbH8nWexZ/9ruaN4E1qfxk1//b76ybuWeWy37P3gGPCrf4YbPnnC9bljOxCAsiDSpyjoVREdBUEQcAQF5RRo7OQP+HFkDdGqouse0y1TUT09xXCU6uEjxM73KoREQaCsKMTlKFU7jb/zIqp5F7AIKha+X/7Sa4JiNuAPlrGo0GodIl3USSVbQBAYLygUjCWM+87BRwkEEQGXoApM1Ukiestzr1/2TJgoSsQ7urD7jnCzcy4/rW5hWs1xT/wb3KR9EEk/G9vqI1ed4FcH9/GGMyLEMnGGDj9C6ZouxEqJ4dabiKgHCVQG8M0c4bvqRyngY9+eRdgD40iLzoUbvnCCtuYzZabt8Lm7j/Efdx4F4IYNrfQ2h2moDvK+33j7fOhHe/nem06nYbbmK+kKwmN024SmCMJMHrdoYE9kkbuSPF1byLoVnmXppkh2gmIqQ0WD5YY5D0hNVbwYVV+8GrFqIuQCEKkRCLR6CWqprBEBzGIdlJP8CoIAYb/MslY/szmTubzJaNVP+/IVbP/ZKJ3RIiFXp0yBuYjB+OA+ms/ayHkXj3D37X3kfCH+O3A2L8vdy+LoHJI1wUsab2On8QqqQxF6TZnvR0xCmsTHfrCb825chRM7uXnqKT9F+/btY+fOnfT2PrX23S90CwQKZAoKSEEqusis4xASBcqhMItXr+PgFq/rU6IYZFQtUMWhYh4gIHuBWbCpDdOwSJu3z4NucTGEbUvkLAtdObWCVF88QT7rTfqC5D6G6VareZydwReN0kAdEEsbddBNTbaxfryL6ho/mqTR547RIFVxnSq6UWXH0YMsH9+OKKv4wo1ER4dpak6Q+80wvrUNKEkfR351Hw8aCVYodVCgwfYGgqrkQxK9yenFal6VXv375Y0Y3epOMnITc77zWLfgu1fcQ2hkiFgNlNQAbtVBcesZY9/xhgyhejeXU938UpCSXYRkGS+qEbAs2evW6bie7odQe3dcFwQBXU9SWbwCX98B9KN7Wb/mcu6oegDbXnc7L4lfTvici5g69jCyGiE33YdZqcxruomIhCwRp5JHUBTwW4T8pyZzS1sAoCqqRbkgErFnyEoN2E4judAOmjxGNamcyiJgmdTDnFAPbCubr8S/5dvzf8/ai5iwVuICZrWAWcrhjzTTvGId+488iBYI0LKkl/331hufWAqIC3TcJPnUvF/PqAXrTDdBMwi6kBVAUR0aijFSTOCIDhnfFNKoQkd3A3O5KromovmDDIcAvKx00g2jCWAHXzig23F7w6o38IZVbwCgZHrMR79SB2DfteFd9Gf7uWPoDnJCiT3+CXyn9VJyCjwSKIDjUe5f4+vhM/kHAPjRzP/w6vg/Q+3ZZWglShVagiVmlBhaS4Dx4QMASILC6844nUDghcMSPBXs2AOHmKrdX0sNYzlgWh5yVDEcTM2d//1k644vSyLYNfBJfZJkWFOgiaZAE33Dxwj7ZzFdC83nI2/WndclRZ19WgM/q3yfPw3+P6z2HtxqAdGxUXfcSfmyV5CeytPYEX0G78xTN1MsUCtswHL9BJY2o5ZF4o1NyIoX+AtCjmJzM0HfyY+N0aCCo/poW9xDPpMml0ohqzqusIJQooXU+C+8c47PkYmbvHryarbHBmmQ42R8WV6qnUbCLnJv9Bo+F/kJAMbsOlYW30OXZrGtEmBs0hu31wRLfKlQLwl830yCXcbN2O6rOcsv85uqjVx1+SA650sug8osyyqtRJQUEXcSW7H456kkfbX/X8WWOGNZhs85deZFYGiKdCkDQLlURNE0IokefI3tlHPQcU4rjw57jLJCxeas3ujT+XfMmyQKdDXoFCs2ubIHCrcti3HwQW/czbasJQEomSzlpiQIUDkaRpBaWZxVKfiHCEVbyE5laVgXYkNvhurhOHtwOJxYxLf3X8kb5O9hGyJ+t5/XtP0Vv87+HcPOIvL3FLhKL3rAyMzM45oqnMB0e2x5qWExu4AB3GnU/bjZkjd3W4JE1A0Qbgvi+z2AyadioloHhU1HRNQNGlNHqdZKHcONi+a356b7udh3A78enMTV6qWfQ2MjvPrcFfzPz0S6U+P8fNFmfJkB3v/DBEtLJgnb4YGRArnZMuFkLVhSFLj4vfCzw6AGYe9X4fw/hYSnEUlxFqHgMYUOqgq2IBCrlZYCOKKCXz01fBLBF4H8NIpqI0k26aIfJvtwgxswxwYIv/48AKqiQHLpGwklOgEwxyYpF7w5L6TbYJogCOQjDZiGSWzgfiYVE8MwCFW2UGjdyHhepShHMAUNCxVdEelu8tFmzTC+fT9ztcexo/MJNPJeIJboXsxM3xHWuYu4X9zPmJzBJM/W5T/nkrk3UDh8CNd1SJdyPNh/mHN7VhILr8K97SuUb3g7AAf1d3J6xlse8q9iVXkH40ILUnES9v0Aqjl49feeXoVQdhTCbZAbh0gd3JzJV/iL7+ziwb45NncFOTo0RiKf4U/WBnDTI/yooZmyLXEgL3L95x/m06uTnNEVR4z6H0d2koIalmGDYeEaFm7VRNCeJlHgGe5e+tvMnpwiVJpjf8nFkNKsKdbBtImyF6NqPadRzRsYmcY66CabHIeuClkIzAyiSXUdOymg4FclBEGgq8HPsQmPvdY/WeaC1acTfKSC687QK3QwzUFcEQ4Wt7OseiMTSya5zJD4l71e5upT+Qv4r/BnvQM7RzgtPkVSKfJovhN/2WS4BvalBmYRjp5c59inPApt2rSJkZGRPzjQTfNZFAct9LyB5PNDqIEGp8i0WaLhwS0crN3JzskqVkInIqkcsh5ljXgBoyWLFREfJauZTHl6/piNWgLXkXCdU68xhS/ZAAOeLp0jgKLWkeT56X16Gn3NWqJiiIQbQhc0RBeOU5HUZDvCfbPsbd4Lgie+ffblV/Po1z8HgLvnl8wWRgCQRIWeUDvm4H0EX/Jqpj+/GymicHjfg6TD5xLw9XOcVNMqSrguVCXtRd1EAU5kugFM+zqYEHuQXBMRCwcFp1LEdV2cUoEL3/FXNE8McnQoi1O15ynssKCJwgsIdFNrrC1BcSFehZROMe+jtWmOkqUQG99GuvUM73kzMxhSgDlrDP/m8+jsO4B+cDuLpHcTIoxfClGoFJmdS9PT284t//EFdvzqCOnxA8TaVvGVtAccxMQEojmH6UhgOZiSesoCuws7mKqqSTYnscrsJyt5mW/JieE4JQTH6/xjSGH8+lrmFhzDOO18GLhz/m/LVXGBqq4yNLCX3KO/xh9p5vSXXsY1f/YBpo4dYXDf7hOuoyrZCCwE3U5NZuAzaloYZB9YZRzdRJFdb7AEVgZDHOdhGa1HUMvLKJVltECUhDDBrLWGYswB9gPQSATVERCCL5x384lsIdi20G7uvZk7hu6g00lyl7CbGxt7OFTto2JUaVXiNNsab51Zw336MPsYpVVu5kh0O914bMs3xvPMDjUxYajobSK+sTuYrpX0tQsNHPjp9wgkGijOzRBIeM/+Ey2f7Lrfd/sL4TokVa2VXomIgTC4UCjXk2vHl092HTDP9lIk4aQ7e12++qXMHvkUk7MxgpEIpWL9HYiRpyTCHmuGncZWzg+ciXjJdfCdzyEWsih7HyHVHn/eQTek4jzoJhAg22hTSDr0bFW9piuORaF5PcgqQe3kA5mQTyYaixJcsoyJwQEqxSKtvRuYGN5EsSSjBLYgWEUqpSJD1Qqz5k94fWolYGO/5QyWGoOM51ZwbuhqbsvdhoVFKPIQ7711D19d+XLGokuRbAtHFNlb8PPqw7/mtmXno+gipZiLlLHJlyV2mRVAwULg41T4VmORdFYn1jLFG5fnUfwWt/ZH2ZoP0ukrM17R+LvVR+nX/ZhbB6A2LFjDk0S0RrLVHEvXrScST3DkQDelrMsN/28jO0aLRPxex9F13aF5EfHfx1RZZCjvBUSD02XalkWRFZFIo4/hCZdEYzNyoQhNHjvElEUkdTGNoyPMLTeYc4dw8gJLaOdly7J8KaNSmfITBv5lxRUsf2AfZ551BEFwcfMOlxT+nF8ffRcDU+dSuLiBoDHmASSZDMQXaDcvCGhdc0GgC7hVi1knM/93s1EH4KaLtYBTCtAoybSvSfBc2ULQLRws4ygG7akS+2sMWln14Qs34joWkuKjXMjy8SuX8+pvvAI1eAxXrLB79iBrlyznlZs1vvbIKgTHxshP8MuJNC8RNIoOLNVEBnbPsu6SBR01110MD62BqVqy73vvgnf8xFse2zG/297jpaVlGUSFSkXBESUijU9N8PzZMiUUwcp7caCmG6QzAezRvdj+JuLnd1Adz6G2hnFoIPSre2H5Cjh4gLyS5LgXH4rIcOPLoVSkNAah8a0Iro1heO+LYuZIHPk5guugxJcQygwj+YMsXr2S5rbVTP94C5naqyVIIsHE02dGPd8WbetElGUC8SSvy17F35r/h+IqZBpmmdaHCY+8BCP/TQQxwo6RQWxb5Yzu9URTjRw+vBNz8SrEUpaD0rvpXvUIi3NpJodj5BwJV6zhbIFGeOTzsPmdv/tiaol/AGwT7vg72PFl2HgL7PyGx5hbfhU7h9O84xuP0hH30UCaD0z+PYuSDjEpCT/cjWBX+XLTWt6ceSMVU2OJJnHLjkk+kK7w1tee/oSnFpvC2P0eOcWeziN3PD2d+BP0JZ+t8lLHQbj/PkRcBqsuJWaJ2zaHVD/dZZOU24geiCAFY6Rn55Csejzhii6VooIriGDKyA3d5I9l5rdLQQWf6l13QJdY3h5k/3CBWEBm/3CeaEs7hbEhlkfauR+vU/Bkooo5t4tmbSnJi8sk96WZdYP8PHE2/5T/EsFQGYp9EMjT1BzjIvUo94438mO8MXxftsraxpNLfDzlO/rud7+bP//zP+crX/kKO3bsYM+ePSf8vFhNFMHnr2LXKOppf4yQbaMc7Se4/wjhkjept4/5yTomh80ctxsHMe0ii4MaZyeD6C0dZOW6BlKjnsA2RfQFgNapYr7jHUxdFwdOKC+d58hMTyOIIoFIDD8aY8yy196LU/ZCeiWcRGleQiKr0q4vpz81TqVpPRXJy14FyrM4tUewa9O1CJteAgwgN8u4RZPKaJZHqzmSmooh1MuQugJ+HGQc6dTrKPmMmwC49e/Yp26gX93AgLoOR1AIPHIHqS0/Q/IF8S/dxFxVRZqbI6+HcCvWfJcXAP04ePcCAt1Eoe6YSo0egDg00IplqICAUski1/Q9EtY4omOT0BZRPPcaHFVHKpUQBNikns2UPcYhex8HzD0Uv/sNlGoJX1Al0bEGSzAoSd7xY0ICqjO4jheQyj7ncdd1qpgaqP8vFdWk4PhpznpANq5NsLSWqpZHkP3Yrp9Uw5XkQhtPPIhRwbqwznCwXQW5IcjGzR1svuRcrGqR3HQfR7c9THqon/LMJE1NTSi9yQWfceZ1cQBk9Q8AdBOE+RJTUbJJ2PXv3+7WA6FSYgB7Kkt61mRxS4CxgoZNnKxeF1BuFiMIjoj6AhQzPhk7vfl0rmu/imFxlkFxhp1dc2xZlWZGzpFyC7zHPgcBgQ8ZZyMgsKdykC3C93Hw3j0zF50/VqylzGjxwPzf3UIjRqmIbRrzv3/b8smu+323vxCuQ9F9uI5D57oNLG715vugT55nYi38/WTrji9Ha2X4Pc1+RPHk5mafphBrAtcSWbxyNW1rz5nftmbOO67rijxQvZtpo0hx7fm4gCvJyAMHSE/lsa3nd4yWxXriVHBDXHfBn/KSpTfSeNHLmVl+HZmuc6mG2wlo0knfl+PWkPT+Ny3dizjtgosJLd+MIHjsOb3ztcjBKK7jYJsmOSrkS1OUyzn40jHurKYI+g8SEsNsUs6sXavA/52X5s3DP+Avdn6X9+z6Hm/feysf3vJlXnfw13yy7zt849B/06HnWLYkz4aVKd56wSiL2z0GmgP0TQRJlVQqGYmBYYufbomx/XAEyxWxHIEvrD1IarHATCVHulr3QSIFmaJVoWeVB7iVijpqMMJ1f7GB/oxBpmiRLVksavTRGn9mOqwvaqonAgamSvijGusu6WBurEh6osTURe9kqt/zyx0HFMVgUWs3ESJE897zPGINIc06TLUVecnVw6wMWOQBS5T5yzP/jL8R/5FyIYbfN0WwqcoZoe+x9NgPOHRsgaj59PTCy/qdTDe3apFy6uWliZq+myWoFGrNpApykI7lSTZc2P5736OTNWlBqXO+rFMWIIDMA3PfpCaBR6R5KZVCivxMP/mZQZaGffzJ+SuoZk4DwLZl7tj/AA2rLd6cugPJdflp++l8VcriahIdqkivLjKyY+rxF/CyfwehBvzlB2HfL6GShbs+ilsLgOdBt5KMqohomokjiqeMFJIeidaX9SrZkh+3OIx5aBvx8xfj64pRMV2UXAIKBTh8CIpFcvn6GBdevQiSSdyOTsxCCqGmo6q4oCgOcjmH4FgIroMv1Y9kVyA/y+CWB7j/of8mOGMczxEQaWlHOAVKb5+uSYrC6a+6hZWXX0PEkLjZOZeqaDBeOcyd/i9jnZfkl+dWmQnn2dud4bMdj3Bl9NP8VecObpd/yCcLH2QgoZHpupB0cRH6otP4Rdf7uMX8IK+zP0xZ9MOub8A9n4Rq/okvYt+PYHQbfO918PB/eZ2cv34DDD8EZgke+ZzHltvzXUr/uBTjGzfx0fLH+M+J1/Dl6JdYp44RKxyDmaNglcF1UPNj/J/6L9zUNM1g2cJy4c6Cxft+eoCy8XgNyBN03aZ+D103e2EjhWfpuZicxLUsHNNkTzCCIVS5sFRhuVFCEU0mshDt9nSk8+UqoiMh1BLaqAp6wCSTCnldnwH7MeWlvgWJrSUtflrjGumixWzORO0IkU2HWOa2zu8z4p9h6MhhRCOBNKCxbqN3/4LVEvdXvMSvgItlD6MV04Q0k3WyQUDwzr9PlFDXdp7UV3/Kd/Smm27i4MGDvOlNb+L0009n/fr1bNiwYf73i9n8gTJ2rSNM2hdDMkxifUMAJAoe6OY3ZBaZXuA05BSYKnq0akkQcF2HglwTjjVFdFHFtiQSCwTcTxXTQhEk0wJcyiXw++rUSVGsBZfT3qToi8Rocz1U3cWlOPkgRnqCKWuY5AU3c3b1DN7c+Smuiv01FVvCOesm7ux9A3tDqzgQXkls2Xk09pyOtWQN1aEBind9E2SB6coQBwOLaQ3rzDrTXtkfQdo0Fdv1HA/lRQ66CYLAAqIbTs2x0Eb6UXJzONNDFPY/gGt7z9BEqoIzPc1cIIlTNX8L0+2FI5p6ccNVvLb9Hby06ZXE2zzn2XVFlIKO6IJQydM4fBcXFL/JWvdhfCWvbETQg+Q2XwqAU06zWlk/f8yHjXsobrmbA1/5NJF2F0WTSDl1McyYEAWnjOsKWJKCfgqDbgvLS1XVpGTJhNIGG8u/xO/mcV0/lXjz/DM0HX0J+cAaAGS3ABMHIRCBjnpG2ZF0hq1d2GoRp8Um0uhRt0f27WGmxn6VNA31xiXI57dhvmclfW3FExiZin7qd8d9RixUz56rvip+FwQXOtx6lnGMOYKhEpWyw8o2H0uCc4T1IDm9XjLfJgXAEUF7ZgLNU80EQeBVa16HUEsgPBDpn+/c2mbFWdPuZW9XOnHWSl6JUtpNMb3sCIgC2czx++ISU8bZy9D8sbv1FlR/AElR53//tuWTXff7bn+hXYcsC+iqiCILKAuWT3bdY7fLT6Ln9lgz1RgNIS+xZsjR+fWthkk8ewaYUfbZj/KT8ncwJQX1vCtAUtC3/Brf7DCZqZwnWL97F8zOPvFJnkVThTroJhJFFhVa9Q66OhqQJQEj2AyCgP8psNyOm/KYMcHyBeaDISevEz7rerRAkEWrVqPqOhoSQcFHqZim8JMBCnNTJMQjXOm7jGu0V1CSbLYvE9l6zQVs3riCdZefyUt8s1ygjaM2Bek5dAB2D9Oy4zBd+0b4i0fvYnO+yPVnj/LypRN8bMUxerQsl+Qe5PMr9yEP9tE2sINFuT4SisGrF08STTrMmB10fWono7r3f1UsgbiUpLm7i2RrM9OTMcZGGum5oocJw2FgyruHkgjL2gLPGEgS0CWaa3o7ZcNheKbM0tOb5sHPQ6kER5JXYxgyAhBrqnLpxmlW9q6ms+zNi67gMrM9h+u4aKrDtVcME65d3qTm5/tyIz8ZuxSnFhi2dIyykp+T27kLtzYxTty7h+mhHMzWxv0TmG72/H6uaWOVDTI1ppvmOIRMD3QrCDEcx8WQdKa1Lpp6E0TCz91cK2t1ppss2xQrGhHV5MxqGrMGIkZbls3vk5vqo2/3OFfHAixzX0J1+jIswWA4N85vDj9E7OoKSyteHDHo6Oxf5N0/URDQxgr0TQxwML+HsfIQxwoHobEb1rwTtC4oDcBt74afvBNq2pQ/b72Wh30eMBgsy4iS17kU0SFwijT6Cy1gO2o+A8cVyZsCUmEXQu2Z9JUTyHnLK6tta4dAgLxRT2SGGrwYs2o6+Kf2IlVzuGqAJaLC2rKELLnk2nqxtBBGsAmnlrx2HIfQIYchse6sxdpODiw4lU1WNWRVRQuGOJNeOvASwnPmGF/jL5kOT3L3ximKmkDWrZCWK6SEDL+KDjMkjPKT0ncoCxXGrHMY+dUQVx95hKsapjkqL+VWo9Y1uwaaPc6yo/DTd8MXXwIHfwZ3/C3853oYvB9mj0GsG1rWY2+4hXvTcfyVadxKllbdpEVIsSypIS2+APQIRFpB1sAXg0oWJTfKJ/xf4W1tR1gRMnh0usCPd47x/36wm5FU6YTLECI+0Grl1LN57Ezp8dd6MvZclJfu2I6Yy5DLlDjcHEF1XLpNDzibqwZwkAisOAOxWmSolOLVFJm2TryWXDaEgITruieCbgEF3wKNV1EQWNpaT2anZJFiJYJUjNLieGPCbMRgdHIHZqWAPBPmwu4i6zpTGIrC50I3zH/WGf0RRtVEUFRu6ZjhUr83Z+2tOgi+kyMaPOXy0oGB39EC+0Vu/kCFSo2mnvZ7A2cgGmUumSCi1h2jTaNhDizykNJ7nLvpci9CEgSqxQxFzQs0QqYGKjiOSE/s1AOO9GBovqW9KWlIch1ZP9pm0ZWVSORLMD2NLxqjfajO7Jh0Z0kZd/Hz6a8QFuNo7UFOF44/ai6XXn4xP/7uDjRRxRBV0t0XIggiSCJm7waK9/yUzq/ezH1fHeRAcAOvCGnsdbM4OBTdIi2aiI0CgoD8FLPGLzR7rN8ZLmZAlljy7c9QOniAw60JkueegVScwQm3UDIcxqQIZdWPY5RQNQ90E5GRaqyRFxLTzSd5g2VADrJ8WYXiwDDWnMWQE2WpME0aB8sWkStZ/JpBp7qDg3hCtKlLrid8720oUyP0dq1Gx0eFMrutHbzrejDkQS65cxs3r/gUKaceqMUdz7EUHAFDkvGfyqDbgvLS42zUQjaE4k7hCjayW8GWNPJBl3ChSkHvhdq7GJMmKVarlEQRWahPWg8qD/KPA7/i85MNzJRneN+GV9A51szE0UPMTU7S0tVNYsMqhEAa/eoljM8O469KCG79Psm+39Ll4sVm8SVQnMUpTjHTUcI6puO6AiECrHI6KApV8kKZYKhEIW2S6rqOa4u/4P8GEhhykS6ngQgBEqqIXZFf1Fp4qxpXc6X/bFLFGUL4uEPYjVYVWbdVpvjmyLwy6C32Jh7FA3d36ndypbN8/hiBSBVLTLGNoyQJ0pZczZoN53F66zXPwzd6cdnSluePZen6Eyxr28Gj4y1YYoCjlU5CbooGrciZE5v5xbKdANxr/Jpz1AtpOO1MuP9XHGqH87b/jIA0By1JLxG4bSu84iaIPHfNqXzU9Whc6mOypois6goxNFWmNaER8T91BrCknAiqqAE/eiOUx4vYRROtYwOnvbEV98jDNLS0YRaKHNvZj1At4Eu77LttO0uvbqQ12EGHPYVSlUiKzXzDfzv+097OKuUc5PgZdHf8kurBEca+vB3f8k7e4DtC5v4p3NkMwbEhXveqDcS6vHlS37OFobk8R3fEEY0oDakhLnOOIgeX8IpyjNLPl5EQjrJDsMjWEn+RokZ371I0vQMo44oyUnsHE4KIXfDmn4AusbjJ97TAyd9lPc1+HBfyJYvDY0UuWZtk/WWd5OcqBCIqu+4cRpZtBBE0O0NKaeaSsya4Z8tS9tAPwN7J+7l8+zUEenxkwwbXrEmz81CAA4aCi8AHu24g49i81thNQO6n7ZwM1j3fIrP3SmJrV9PCHMWffRcUC156LUKwDr64pkX13sPguGBYVJsiZN0MAF2mxfHUa9r0ni3VrhCPNdDaEXpOGVyKz8fxNK4sWxTLGlHVoCuXZ5+6n9UsJ9S4iFqJBrnpfhzbJT9V4K96VvKvEymOOfchWa0cmx1iVJzgesvmIJ7W1Rf2H+JTUg8SAk2NVe4q/Qi36qAKGoZbRRREFr/kPXDwh95FVGbg0G24TesRpg8zJkOuVtYerGm62ZaEIFgEok+v3O6ZtnhDsqbkynwzhXQhQLRlmuLROeSAjlbuAGxYsgQuuBCA3A+PAV7H7nDC869mR0aQa+wrUdOJl8qAwOlVkYlSlp2LzqSxMIFPCWHNHaLodyiVRUoiiAI0r1pPtP2FD7odt5YVaxjc+iCvsS/gv7md1tgZ7M7fgZ8IiqMiiQlUawh/WaJYLqJEZIIITFiDfCP7r7y14W8Z195K6F/+nFecAbcnb+brwmXcLN/jneDBz8D614JS829tE378DjAK9YtYdiUc+hlEOsE24Mb/od+/mI/depBFw99hlZYgb/uJ+vy4eguqCBhZOO1VOC0bECMdzJZnSPzoz3CVKOLUQf4sUWTJkjfy/j0drIy7/GzPBA8NDvDlN68jqInE9BgxPYbc04CTreCMpTG3DiCevwxBf2pzznx5qYD3kDzTVqnAxDgCYKTnGGkIcKYdR8ar0JmpBIg1NELLMhxZw62mGcFHzhE53i4mU9Qol2qNFHkM6BZU8Gsn8sniQYXuRp10wdP1DHY2gjPMOe5ythcOMqZlGWoosPLY3XSuuYgzJpdS1gbYLcbZyyJ+VD6bS8sHCMczlI7+K7S+DTWe4FX+MrcWAzw6mJ5PmjyZPWWmW1dX1+/8eTGbP1CGGY8RU9ICVCWVQCiEPDtHoKeHgKoRK5RpHZJpFDVWKREsRWcyO022ajCa7sep+RLhWmDvuiKdp2C7ZlnT5nWsKoY030jBskRyAYdEVvK4+Pv34Y/GaKMOuvUxzp2ZbwKQc1LMmMPMGt4LZfgPsrk3zj+9fA17ouuQVl/AXVP1Aau69hwCmzeT/eF3uKe5C1tQWBLUyNdEZYP40GUXx/Vu5Iu9vNTTdFvQLEHTOafvASJdXklBVleZPnyE1kSd9t/fXMs0VssYVYVC3ofuLhh4FwA1LyRb0tNNqV/EyGqM5lTcRfVnbq7go2TLLC9NEyzOopZTOKEImStuRB0eQhGUE9huRR1MGX4VGSZtPUB6AegWs71nS3TAkmQC+qn7jMmajljrqqTWytTzhkK4WuCC4g+wUbCdAFXN02lDkJGsHKHCLqLSDNH990MuhVzNzB/zYG4ATdKYKXsZ+R8YdzO8bzdmtcrM+BiSqiK317PG6VKWcElBXNDWW/Gf2F3pRWuhNkgdRazmiAsWci0+FhCwsBkUphkR5nAjM9gFk2l/F0Y+T1qUmQ1MMCTOUMVAl00M4cVfkvuu5W/j3clXkxAjRJ0A6wZjrGhdw+2/vBU3EMAJRDm/EqVTSLCaLlLqKGPhI/OfDzS6fNe6hwJVZilQYIKOYMfvOOMf7YVgSjCJLttIgg2CgCo5NPsKBBWTC+0h5KnLwFFYLa/nv4r/zCf8P+HfbhD529fJ/Ed4O1IljTsxAcUi2Dbce4/nnzwHZmez+Kkzyk3pRPByUaOPC9fE6W0L0hx76kxWST0RdFu3tIGlK+oAgjlbJudvp9qoYKmAqtB29jp8DuQpkTPnKD6wl22dv6GhB16beCXjzigVqtxZvQeJCtW4wp7yVUjLl7D7rRfTcstaMCyGXIc9nY1sL7p865sH+MGPj/CjX48yNeOxKEZGcnT4VUTHxh+JYA/08YufP8Te/V9m7/hWKjE/TSmN5lyQ3sA6oskkuq/K8PAiio2r6KxpdmWKpify3qjT0/zMN0RpCKu4jsd0K1UdDo4WOOvaxVz25lUEohp+H7g16RhBgFHFC+82yCvnjzEeK2I+PEEhbGNpNu2bJzi/pYSLgFIDxW61Xs7P5F5E2aWSkWk9I0PuwF2YBY/tF6j50c4998ACtpFbMaFsQtUCF6pTebI1ptu6qkXet5ys0MJwvn5v5Jalj+t++2ybqtfndVmxKeaCyIpFtKJSDkxScCs4tkkg7oFopcwkZsXz74NRnRtiZ1IZfBdG7d1sjCR5+OIBkuUUq/Mj7BIb+LCUYty1OHbGKOqE930Nt0pEjnEwv5s5rQJtrwMkkGuteg0DN/EuHtHrYG2wJCNJEpYpg2AQiJ0aoFs4FsYJJKjIISTVoTGeYTrlgaf+ngTF/QbzzdPa6qXD+bk6mzZU8/enD++bXxdYvBp6l4OmIagabTPTXGWMEQ9OMrz8GMMbbKixhVRFxXHBH4vjj54aDMBnwhLdXsK9jTgfyF5BouQjLCXYFLuaVw78JWePv5VLdy7nLQ+v4PJtLbz6kU5wRGaEOR7lIGknhTg2SOHdn6R1/xFuHHuEIaGdg/JKjsjLcQsTuF+5inJ2jkohg/vVa2H4YZymNbjBJnjjr6DzLAi1wobXwtvv5T4rybWffZjdU2m+IVzNWdVPc8cFr6HxT/4H4fKPQOcGiHaAKDIwu4fbtn2XHypHuPvcNyHYZQSnCjNHuUp6mJ+cvotsyUDUxnFa/oPX3fZ23n7Hn3DTbTdxcPYgUmcCt+TNRULMj9U/87tu1xPbcaabLD07gP7wEMfLYvrzLoTLxCoj85vnzBDxtqW4soZgVYm53lyzu+gjLfgpOwJH5+oJtZAkzoNugiTQ0uQj/ASN71a0B8mXLSqmAy0BcqUoS90WBoMZTMXlWE+JkaM7KZQhZXfyuvZZlkaKxEImn5NvRIxWcBw8pvHgZ8n397PRX0YTXFIVk6ncyTVSeFoFu1//+tc555xzaG1tZWjIK/P41Kc+xa233vp0DveCMLsmWCAU82AaBEsZZiQfocWLCPcuQ2hIoGo66aCPyZLLJjHBfjPLDnsPJecu/nznCN8e2Dt/vOjxbKgjEDxFJoPHmqZ7E17VlhAEME0J01A4FoGqXHsx+47h0320LdAwOmwfosGNnnCsA/kHKFoZ9uQ8EdSXrGzm7vdfyIauGIdyFfKmTcG0sZatJ+WEyNx6K9tnVVTXYVFAJe96oFsUDRMdy/Gc15MVa37B2mPGvHMP3IluG0SW9xJZs4pNm86ktaObVau8yUa1DVKaNyCpVo5AsEIwVEa1a9mLQACkU6tT7smaP6gRaatlmKb8ZJsC88LdqZIfn2iBZrI6fTuGL44Va2D2ujd5LW6A9YpHExeo39YWR2Pfdz9FYfdP588TdzzwQ7YFDElEP0W6Xj2RCYKAFgxhC2LtVrjkDAW5oOKjTKPtZUYdWcWSJXAdbDlMuLiXhsAclPKEP/9hAtt+OX/MnFDlyt5LeNvZr+L6VS/hlsBl+JKeY1bK54gvWU6eOlCeLmWJlFWcBRO0GvgDAd30CIS9wDFWNZnoqDNeFiYiUr5JZMmiUnKYvPhbzPnHT9hPkyws6cUPurWuWEM5m+ZCayX/6L6eq/znMnb4AMOHD3AoHEAoZZEQ+X8Nr2AfQ+SVMvct/R6WaGALNrdHfsQhYQzZldBElfOWnD7Phv2jvXDNH23EdVx8kgG4jLnd89sW6VvZOH4B5YH30CYuJuOmmRNKbFvmzf1HAkXeJN/Kkc6V9YRSPgd33uEJ2D/Llus7TNipVwKY4omgkde59OkHL7J6IlAXiYZoWezN8VJIwcobuAho61ZQbHDQdB1Jg/KCMr+R0S088uhW/rf/R/yseAcR1Uv0HrD2kHOPYAk+cB1GjLV8NXMa/zm2mKYbVzPa28JoLER/KEhFlsmN5EmNl6lUbQRBZNnZLye+4hoS59+EWbFxcSlHowxEvbFswpdmKlFlMlwgKcm4SjPW2isIX7uJ4KokqYJFd6OPl6xPcuXGBpa1Bp+VQE8QBNYvCiEKHnmjXLUpGZ4Pu/7STm7+xHnIx1WuZBnpm1/DdaE7YNJCB4olUFVthjP7CGzzgC5fUWH9sjznL85i1jyKcdnkQ9ZreChwFb6YhRqwadmUZnbLwwAYtrdfJufAwX1eLa0q4y7o3AdgWO480+3iskmofIiIO8F41nvms0qEnp4OkuHnds7Q/AtAP9mmaEmIwTJVtYOrO7sZFsZQ9RDhxsXz++Wm+9GDKsVMhSW6wvpQJ87w21DNRobT4wyVprhh0S8YVuO4gkAmM8V75SKHkgWq7QXkjJ8e3wqyVprRyhC7jj2I4V8JDe+F5F/AGe+n2vFhqmI7KafulwTLEpLslZe6rkEgGn0O79RvN1EUEUQJ3coTDJRIFwIMTnjgYXrbKEq03uGSlrruVH7OC+oFAYJxjUo+h1Wt4IgStqwT61wEm8+Gm1+NcOXVcOXViBddTPfml3PV8rdxxfq3sfral7HkvItZdc2NLLvoMpqWrXhOv/uzbXooTCCeAEEgEAhx4YjKe1r+l0sb30RsWQeCICPHb6RghTBsi2pRpKffe6YdHH7j3Ia1YiN2YwfFM67lDeP30m5nuKHwfmyjiGBVmZyepvyfp3P4v27GHN4OjsnUzCyf6fo0Xxxu4i1Hz+Ss6md5y9DFnPmZvfzjLw9g2gJzWZmzoin+5tLD/IPYh77tC7hzR2sXHqYvk+au7ihjGztAFJguGWzZ4EnkuKE23GKaZYES/73hEZJN92LYLo48zWRpAgGBt9/5dn7W/zPU07vBp+DOFrCH5jxA/ymYexx0e7Zi6wXVknsqCgFfmmVG/Rqnyz7Udi/ZIVeyNCkWEi73lhP89Ugbb+/r5HC6TlQKysI86Cb6FSqGSzz4+HFRVyXaagxRqTlALhuii0YWud67N+OvMKrPMvjobbhIzNlL+PLqAyTCVY7Zrbxe+msmSRBsyBFsKVM4+DMyWx7hPK1E2BW4ddf44875RPaU7+rnP/953vve93LVVVeRyWSwa8F8NBrlU5/61FM93O9l9913H9dccw2tra0IgsBPfvKTE7bfcsst8w7P8Z8rrrjiaZ1LEEH3GYQiBRBECv4oKX8cUVGIn7aBjsZmos0t8/tH0/V/+o9LFlc3zaCLC0rYRK/ET3DdU4b2/FjTj2dABBFJsVEUm3JJxaooHGqr6dA5Dr58gTA+wq43eM2504wKMzQq9QnjUOFBpqd3s3+2npnpSgRojujIosDH908wW7VA1ahsuoiJDReR8sXoCOnYYgkL73xxSUcVKrg1J+cPg+lW/9s6dmh+fcslF7OqrZMr1m3Cryuc24qX3a85rb4FQryh46DbC6i09Imsu7eW2URg99gYwdq/v+qIZCsqVUui2ZemKTcKgKPpFLp7AFirnMYnQ//G7U2X8I/RDbRLfibEKl8932GmOjZ/jrjrBW4SAoYCyinOQEp0L0Z0HXw+g0CoRK6qoJQ90KvF6pvfr+LO4mZ3EYrJtN3yMTj/A7hVAyk1hbig7Onc5WfT3pBEVRTaky3oCT/tbd3z2w89dD8Zs66Bl83n8JXEeTFf+ANppHDcGutsiIivrqOxMBExyhy+QJly2eXYXBtzgfET9lNFB0t7kScQ8ESP29bUtF9dl2Ubz5jf9sCvf066tQUkifOGBdbLHnO+pOa46/xvcvdF32afso+sUGKl286V3ecQ1Pz4pGeeGfNHe25Nii+iXBBY2ZxmU+c4RxvbsWsM7w7hIKsNhSWFBvKGQlSIE5JinJNqZOWQw6FOgV3SJB8Z+nd2dMWgdzm5nbtw+vuY++sPMfLWt3L0ggsZecc7GXnHO+eXT3bdk20/8G8fJVxj7pQRmKe7PlP35jFjqaL7SLQFEESw8ybGVImK6RCwV3PxBbcgNoUJnLOMNZtWodQAO0NVufxrBh/+WJZXfEWlfU/9Gv8q8698q/AlBu0Us/ZirmoN8d0hH7/YZ5Ipen6XzwHNdlEMAzWbR7FsmvUkasc6rLZuIhsvI3nB6wjEWtCbl2CJAsFEO+6SevVLXO8mtfRMhFAY03JpCCssaw2wftEz06X0ySzok1na4kcQBMZSVQam6mP1RNak1FEvY1dmJrFzNolonrNHr0MRdAp+m0dWp5l9YDc9g23cFD4Hyydy1iVjBP01lrklIwLvzr2OGb8HekpqhUDofqbTcP90O5NFnbhYQNj1KGIQMCwonRgYFx2LopvH5zicXvbKByv4GS95/tu43kZPa5jAM1yG+2Sm+xcy3SwKFQ1km4As0TYzzqPKXRTMItmZwfn9slP9ROJ1uYk3rmklrAbITl4+v+7hxWn+dPw2Vs4NsD/QwqgtcGQwSKkssXxrC40/akLBew/61X7mBkyQE15g1nA50twsFZ/AnOMxe/SqiOyISDVNN9cpn1Jxlq+hHisGQ0XmsiFyQ81Uj7oE47UiunDkhKqUXA10C8Q0prIGE4f2Y6amwIVSYhkBn+ppwuo6NDdDp1c2Kouyl5yVdKLRJpqWrcAfS9CweOlz94WfQ1t28eVEW9uRZJlYLEKy/3YCk3sId0Di6kVEV/cg+y9DUduxxaUsG9Ko6eGzPfMI5RqzyjjzYmJvu4k3zN5PBZ33m+9gu9XLT8vriNtzlItpVAym5RbeWf4T/n2Hw7ZDA6SLBSZzFabzKaZyBnmzzFkMcKY8xt9M/oJrH3wU3QG/aSKYRVIYHCnPcdf6blxBANMmMpkjtzTK7hUrmWxZCYUJhIEHIDPKfxX3Ug7sRhCr2OVWKC9iPFMhXU3zxd1f4ZPb/xGnuf7cOKniE92m3261WPFZaaJQLsOkV1xtSiqHXR1NT50AuhWkJpykBzzL1Syr/WXODBWZLTtkyyY2Au6CJjRixZrv/iwFFXrbf7se6HEWtSiJqF3NVCsKFzqr57cf7MyTne4nM3mUWbuLZs3kL3qm6WgucETo5CPW6+b3jXTN4vPdwX857+Wd8jd44MF7T+oWPGUKx2c+8xn+93//l+uvv55//Md/nF+/adMm3v/+9z/Vw/1eViwWWbduHW9605u48cYbn3CfK664gi9/+cvzf2tPU6haEDzkI9pYJC0KCEBKDmHk8qixKK2ySm9LGwNHa6DIqAu1JMKskOXdTbN8Y6ZO9UzWxIJF5xQG3eIJmBg9YZ1hqMh5iUPtFVZl48iGg3TkME29K+job2S/Ozi/7zp9NbttgWlnjNHKIYrbf0G6Y5jxwjitQQ+Qe8t5i1kW83HLNx5lf65Coy7jjzehvvxPaN47wemJAFmn3i49KXnOol0rl3zxN1KAhXS3uWPHKB85RmztGvxtrSAIxEpl+OpXiCoqyfhyClqA6PRB5sR6p51o7fl9ITVReCJrXRZl9288KrI7HMKnzyGWBfKCwEAqSslSEICg+Ahl1mIqITIXXEFitoCGTrPq0iL7aJHbuKc6xWi5hCVBf5dOrOoS1TpJ1NSlJBeqskVIPLWbAviisfknJBFJkZrREKreNbfY/eyqtTGvBJsITO0iEsoi14RGXcOjosuB+rhYfUyGa6y9ROOYj7kOgXBW4ujWh9CX5FHXNjJVmKLNbECghCgt7F56at+zZ9QaVsGx2wHYYPvYpSm4VZP2Bc0URtw0a0JlSnmDyUyFuWAd5G134+iCS1V7cY9lx611zXrmBvuxTYPc+Aibrr6eQibNoQfv5avf/jLvuOBydAQ+nD+TTytwUE4xUN0FQLMQx3JM1rrdNLcspSPQQ0xJ/u4T/tFOfZNVDEshIHnOty+mMToaoSuYIShkeXvDm1hSuYxvTb+WW5quYFlAR9ZHqQ5+kb+LH6Ip5bC3az9/dvhjfObwSzF+8wuSD8T55XkquzrzHFtbYUl2KwDHVnrLx38/2bon255f5PDZquf0F5GRnmEdHEmpj82CJCGIIpEGX63JkouV9VhSIzMGqzsbSW68kWMTJTRytPcsYW5qklxqjkJIIDGR59zBIpsmHD6orma6MYgR3M695q8ZdI/yV8FPsD62jH87u8qxO7fOnzcSjNArNyOE5rDamrGTMWwlhJvaipsKoRWLNGglhNPXM9w/SdEXItG5nmJ0G8cJZMGWi1FUDU0R0VWRppj2nOsI9rQEODrhBdWDM2VWdASRRIGJtIGt1K+lePrZVEZHSC72E59cjdbup0SZiWSFI/1Hcb9lsOmjFxNQx9DNIps7itxxOIqLwCUNKe6eiXFL+ha+aPwfDXI/4Y4q7tFP0HP6f5Ix4zQzjuC6iCOHcEJL6+K9ooC4uIGZ4T5Iw+ZyBa2mlTpitXPcF7T8nXQkfc95R07Np+EKIoLreEy3jHfPonqFwtgUm1au5Td9W2kop5AUHVFWSY8fxM6MI0ohHNsl6UI8rDM9vQLHjCIqGYbSY+Su7eZtt97BP+s3YAkS925twjRkrh+NIVXLtB5KMrR8Akd26Oss01Jr0Ogc60NxSkzrPopGgaQdJzLjvROSLHmNFJzyKcN0A2jo7GCkfzcAwVCJ9FyU/vEmlvX01r391jppwazaOI5DpNFHtC3IlkMpkkf2IwKC61CNdDxOx+oP1XzhKNG2DnJTk1QLBYJBBXnuCOLYPkoN6xHURuRQI27T62DqIQJ5H2v6Ikwky8zE5vj68D/zijVvJEYXQ1zC+hU21+x6hA5ljh+lN7OyY4TJWIyS66Ng+tlZXY/SuZGWuQLJwZ2U7ADJaoTgYIqor4X4xBzL9u7nxv77MF2YBIT2CBMrGmmpWNzZnKQ658eVJVoLVdqzZVoHMtwX8aEAe3pXcNmE1629OPAQjyZ1YkBZVDjHfh+iovPzwteQAwcYzI4ykD9Ky4okr2IzAE6qgNQaPal75zou2DU//tloorB1i6fp1tJC35zKZNikIv6GZbU4pGgpGGojVthr3tbS1kjbyivYuGOKh7bXSSRNMR/U2MH5YW8giLQFaFjXQNvv6HodCyq0xFTyZRt7aZzUg2FWxlawKTBMnzHCYFuJoYkp5C3fJ3T1+xllPVco+5g7N8QPtolsSa3lO9WLuN9aw1XOw5wv70MTy7xN+AWnWbv56W89c92e8ls6MDDwhF1KNU2jWHyKiOrvaVdeeSUf+9jHuOGGG37rPpqm0dzcPP8Te5odbAw7CoCq2egTnshzLpRk5pEtiIpCGZdWWSNac5CckXoAqgYmuftQHuR6G9+E5AX2rmUTTDZwKpr+BKyockmneVYgE3RxjQqUSjA1hShKNNsnAjoXmkvZmLyO7ko7vorEQw37uWR7I3fs//kJ+527spk1CR9HihW2zBUhEEaSZf6kp4GLGkMU3Dro1ijXsr7zZecv7kBVEAUWti/NNSZJZ7OMDg5STjZ65aI9PVApo/h1zrBGOXt6F9X8GJrmZcZsSyR0XD/kBc50a10anccg3eEQo50mOdHFFaBkKXiNnQVKrkMy20/Z14IjqpR93nsZkept6BfJC5p/hC3SmkmOLD48wEgBKmoF+RRnusU7uued9mC8Sk4IIzgKjiWhuyXarIMk/AKu5kfoWEMpNTf/WbfqTVxioA6SGaKAUhEIlGuTV1hmR2+G2NpelJzHfKj87CBWtkDYF2JydBCf5gOr3oVZfBE3BHicBRo84C3Wg7+Uoa2zjYisssKJI9bYOhPSLLpexcoZFCZKpPRal11XoIU4muAi6y9MrcWnaqIokVy8lHI2A8DitetxatnV5p5lHBj2yg96hSSvt9dRdCu0ilE0WaXsVnmPfQ1nC8upSBXKdhFNenF2fP1DM9OtdwLucR0O5BrZn2lk2OnGL2W5yv8jVpYfZGlIRxIEyo2tlKbW8skv26B6DJy26Srv6Pku73qHxOfOzJCWDUq6QCosUNKgpDG/fLLrnmy7I0KkVl5qWDKSfHKCyidrklKff8SaNIQoiUQavay9lTNwHRfLgd/snWPbtw4z+tM+Dj4UJRBfSrnml5d9EgPxGJLrUPC38KGfjdOQ8nSFEWDIHuBW8zu4wTR2rkxhZpJQpAV/tIXOl7yB8rJmKuvOwpUl3FAQMxxDsis4mQKCYyEI4EoROk9/Jadd+5c0LT2bScebb0VEYmorS1r9bO6NceVpDc9L4w5NEedLjEzLpW+ihGk5zOQMbLV+PaVVG8hlLfx6lYAAF4/fjOZqtMz5Oby4hFUp8qNP/h0Xbrqel+mv4ZyWColohe54hfvSEd61YgjX18uH1ZchqFAt6IRa8rQPvZnZfIZMRWY874PMHFKx7pOI8QDq0iZmDK8q5pJSnY03YrUTisUR/CHCyaWEfM/9HKspEk5tvJUVi2LZu5dBn0khnefilnPYX32YpkvfiG1bmOUcRjHN5OAw0UZvfrMMm3+4ZBlBVaGpfB6NxeUEbB/fsrdwbG2Zjz74Reb0CK4rsPtADMuQEAWBrl0N+HIqyVSMVHOZYj5CpRRAyGUAOKLkMTGYlVKg+AnF4iiahm1JiKKJJJ86flxLRyuu4IXfobD3Pz6SCuFrbPDYbd2LvJ+aFdIVjJJNdrpMqmDiS/Uh2p7vVg23gepDU/4IuoFXBdS2ZgObbno9Ky+8FBcvZPDpKoHsEIEVMRpf1kPzVYuIXX8jnW/5N3pnmkmFPf/10fBBtt72ZVzXJSxOkl56GW97xblcXDlMXFMYYD1DP06QGF7CyA+jbN8TYcXWn/I/Bz7La3/4JT665xt8/Zcf5a+3/YBv/eBved9v/pPXOPvm4zi9K8bY7WM8HFK4p8FPVpYwfApavkpXxWZD2SHm83P9cJZgrspQ5zLKPu/dCZTm+N74DLeNTvBfQiuvaGnDJ+lYUzdQnb0CV6jiGFF+MvQgO8yDjFUsRkczOI7LaPokupnadR3UZ4zp5rqQz0NfHxw66K2amWVmNsfing4ka4ZEjSk+WwmgR8O4NXJN19JFiMlOzlq1gvaoj65YgNXNEVZ213Gc4T1ePJMdK7JuTeJJExHxkEqhYiMFFKxQkpDfZiXtpH3e+/TQyhlylRSDj/6cCWcFhujjon6Z6y+a4ozVGT5ovoXd0bXsjC5jZ3AxjgOi4LJcHPmd5z1uT/muLlq0iF27dj1u/a9+9StWrDj16sPvueceGhsb6e3t5R3veAdzc3O/c/9qtUoulzvhB0BQ23FdKOR11KlBAOxwlNmpFOnZWXwIxBDoamhGtm1aQz5ilvfg5IVxCtNpcnKdQhl1vQlesB384VOTfaQFH39dlbJGPC0guC6FUL3ENBGM0OrGCLgaMjKLpaV06gk2Jy5nwp+irNuMNlXI+U0O/OaOE44pigLXrmlh22yJrw2mKFo2OdOm3a8SUiRyC0C3plrphsUfhqabIDBfSgtQPWsTude/ksL1V+F/+cvhpldBY5MHvuk+hM4u5lYsxRU8oVuASklDkGSIJ+AUyvY9HdMDCg0dQaSkAYrD4QSkWo+XNdbvk+2KtFoT83+XfTouEBY9B9d1wVdoqu9fQ3E7nLqehipARSuf8uWlsqbhb/aAe1UzqQoOjgtixXtXuq2DzJVcXEFixt/F7NgYTg0gc4xaRthXY5AClgC+rEhkwAEHmtQ2bjntjTSctppSuw9bcBFUmfL/7iE/PMOamUaaOxYhCvXyUukZLrE65a15LaT7wLXpkvazevVaNjgqXa6nvTROmkn/MN/W/4FHQj9lNuAx3RqFGCEZXEHCCfzhlEkeFzwGSA0N8NI//39c+Ia3Mn74AMdmp+e3neW2823jZXzitL/kpasv4YPOjXTTiKG7IMCq8OMTgH+0F6ZpscVUJwqYtkhcFjmQbeJXE70YtgcuSILNnztfYlft+dBVCeWG65lY+2d86Kc66/scDrZalHSoqgJ3nCbSt6yZaHIxjU6QeKKTeKJzfvlk1z3Z9rZoB1otoLKqKpr0zINukqohqSp6qC4gHW+pjReOi10wEATIZ6ukj2YwJkuAQMpYxKIVXvm7HggxsLyDwvU30ZyaoKWU4sszEb5yxZcA6A538+vSz/jVtk8zuf9uTKtCPjtBvGMVohpFXHwBhXAr2UQvhilTzdkYhtcd0qoImE4Ix78EU60gSCqGUmLG9sro42obsqDQ+jQaSTzTtrjJA2jDPomDowX2jxRwXbCV+vgriQYTvWdgTOZoDKZYnm4mQSMTiRIjyQJpIUt6YowdP/8Jke5GrhrZxPqoxWBKx7AkfpFKsjQ0zF3uOt5c/XtsS0OUXYxygI3pv2XLsExrqIyMjZQeAMcEWUSIetcwVZqjybLYUKkyoSaxbJkjMwr5dAqnXGRRW8tz3kQBQJVFTD1CqaJjVBSKZc830vUKBdtHt1FFym7DaAsjh+qB8fjIMNGkH1ES0PwKwniOa3ob6R87hwkjQlEq02zE+WbHNL+8pMCZM57+daEqcR8WtuuipnxIlsRsPM3kohQFx4/uL857fQNk5s8XTZvk0ykEQcSyZNTn/7E7wRRVgZDH0FY1k0TcYK6icc9wE3auAKk56Kg3CMqn6iLtiWiW4NQ+TC2MC5TjPfjUZ0n0/gVsiq7TsW4j6697JQDlYgG9MEHu7q8z/u2PIVZy6IkgcsDP5hv+hvMsr1ounlX5xbLDfCz9Xm4tPwqAJDk4N/8Tm1/1Ws47azVqQkMR8yDADX338YrKo6iHPNClPJDCWLmB9Ns/wRffupy/+BOF/7t6DX//4TVk3/Y+Jl7/b2Re8XFOf7SFi46luXDbNOd/ehs37xxnbcb7P2dppO+L2zhrzyTNFYe9bWdhIGMCjZZB2HHYMPAA/ffs5Y0NU/zk8kYu8V1EZeYSRDVDf+lRPj65lcu2jHPFfUP8/Y/38pJ/v4+/+ck+TMt+/M06bgu3PRHoNjkB27fBzkdhoP93/wMcB/bshocfhm9/E+66AxIe0WEsupT9M2nygTLrylX2qwojqExVgghtS+YPEfLJzOYNprMG7zp3OR+4eCX/cdMGTl/dQNOiEIomkU95MUxDZ4im7ifHUhbOQfKKxbgubHZ7WWK1IVmQyGrMtgnM9G9jZPu3Ga9006oNsvTIZjYvr3Dz1UMULJkv2lfzmYnr+Y+BG3FdmDW7n/Tc8BTKS//hH/6B97///bz3ve/lT//0T6lUKriuy9atW/n2t7/NJz/5Sb74xS+e7OGeE7viiiu48cYbWbRoEX19fXzoQx/iyiuv5OGHH0b6LWLyn/zkJ/nIRz7yuPVapAkjM0wwVMF1KxRsE1dSqCxewUQ+R7zR05o6bfEyjg4cZS5dJTgnkW6CilsiUT7GYb3+QEeoZdVcG0E8NYEj/TGliI4jUK2olCsqbSWTOX+eGB5zKlypcoGynnOMFdgCFEJrKaYO0dilcmnyzfx8+jNIFjywfo4z9rvMFmZIBusMv5df0MO/3T9AyXb5xP5JbuqMsDYWxHXd+SYKAA3yieWlL3qmm3Ai080fS1BKzVLJZrAMA1nTYO0676dmhbt+Ra2iEACrooK/6mk8LF3GC90WrU0yc1sBUOFYhNTiFPFxGRcXYQHwZjo2jbMPMZ08GxeXqiYiCh7YVLRU/L4QPCb50+nUtTYUXHKKjSye2qAbQHP3cvonprEsEd1fJVdVCFcUxGCZiDNCo55nuhICx6LiayA/M0WkpQ236tG6pVrW3BAFEAT8OZFoMcC4mGHKGMNX9HHL6lvIffAqfvKdzzBz/05QBKTvDtKUBau1ihZcALopf0BMN4DGNRB9BDIDIEhQizeWugkGyGAJNt/x3cGEmGa88+j8x9qdGJLkologqJHfcvAXnx0XPC6m5ijMTmOUS2y86jriLW2kJ8ZwJ6bBshCAnkWnY6y4kF19h4g6XsBs6S4hOUKnb/HvPtEf7QVjcizO6Me20vnBywmpdf/sodJGfEEfbdJeVNfklrE3YObXUNC6iWcepn/V+5hZ+de85djP+X+dD1KqdYiME+Wzr/4KIe3ZZXdPb9sFoxcAULHlZ1zyQgsEOet1b3nc+lhzAPAkS6ysgRzWqC7QKVMSOqbmR1O6CEb6KdSYpRNxkWgyiT07S+HXv8anBHhfYD3/074PR3MYzR0gXZpkMREEQaSxqxdBCWJbNkpwMbbiMDdRBhkmp6ooJZvzFocYbQLB9eOaDmV1ltjWuzG6vURzUu0g5JMIPg/srMdaLKhwVm+ELUeyXrCU8+bAhUw3gDl9Gfv/9wesuTrCL49ezOL0esbjXmA93FRi1UicXXfeT0N3D8nNrbznO3Ns9eXJl2Vm8irFeAVw2acu4x3iJ/hc6oME4l4S/4zif3E4/R56YznKloDeDOJpK8EFy7RJ2zk+NJemw7JxmWWwuIFq1XuubVmns1EjoD+3em4AiuxpY/v1CujgIGJaIpIDht6I238v55YqPJD+KReuvYiZ+78HQGp0H+rMo3St3MjA3kkEAa7pjGGkS5Sd1zCRlUn592FhM7a4hTWj9/IQ61Etg18LsNENEBBFQuNhCvEyLi7HloWJDqXRdA+oGDPq8j2RQi0+UBSsvITuO/XiBH9DK+XcNI6gIPgMnJRKtqowXdJpufpcWBAXFtIesBAMFxAEB8F1UKp5Mh2bMf1JgvKp9/1OFQsmG+g87UyGH90CQKM5y9zMCOn9jxBbcw6K5KMQbeZC3+tpvMNmv3gX+3tyjDLOj8vf5Vy1m4BgkqELQQBfqIPRv/gbvlT8LC+76kMMGv0M5O6l72yH7qKO29jGoDxMu/MFDiYGsHD5cehBsOED8TFep/4pPyx8A79p88p0D90xk8iZCYqGjb29QNpXZXpVO5Hrr8Qer7D4kTEeNl/KZ/wBQqGH+JN0lrWGgWkrXB36GEcOvJHGjmFe33Q68Xs1bqvJXg/ah7C5CNuBr23zxq2B0Rn2faePDTdc6hE1HmPzTRTwpAweZ3v3Qn9NJzoWg0W/w/9Kp+Hhh05cl0rBOedy960Fdpsya+JFGoYrrKppum0pRZHaeud3dxyXdMHbpskS56+Ke51JWwJM9GWZGqhLKK25sP2kgOegTybkk8iXbaSon8pwCJ+U5xo28h/SGEMtJar6DC3DjaRm5/jNrx/gZRcm6XaPUh1Zh7HkYV790iG+eWs325pXsY1VnLuvH7HhbGDvk57/pNGej3zkIxQKBd7ylrfwT//0T3z4wx+mVCrx6le/ms9//vN8+tOf5uabbz7Zwz0ndvPNN3PttdeyZs0arr/+em677Ta2bdvGPffc81s/88EPfpBsNjv/MzLiPazBqE4u61E8BQHUwiQAlUXLOTYxSqWGjERVlbas5/jE8vVgfS5kkKuJrYquSAgveBDc56at/dMxLXiis1opa4CAU1ZZk60y6c/MbxMmxonXSmslFyIWIAXxFSe5sOk6zo69nIgdpOiz2bU0wyd+/te4CzoERHwq16/3NAwGSgY/Hs2RLRY5uGOCbKUuBp8QvXNYyMiSi/5ip1SfiLkRTNRLIgsLGCELrTAzdULzBdQ4xOOwfPkT7v9Cs45V9XvgHolihEQaN5/Gkc1lphcZ89uygkZvfgsNsw/hyDJVv40iVjCBvqRAapOM/hi9tk6nzn7TBAdDdk/58lKAaFsHtiAjSQ7ReJ6x/lncggyGjOZCr7sNXbRxFT/F5rVkxj2m1Xx5qV4D3WoBY5O/neWnXzR//IrjtasPJxs567obEVoCiM1BlIwFLui+MKJYf+jEU6iU4zkxQYDea0GPQ2kOph6i3BBh6YJmChNC+nEfa3Vj+BQTbBHlD6S89LjFu+oOW3rE64K+aMMmTrvqOoQrrkK4+dWwfgOccy6qqHJJ8Mr5/QPBGOclXoIovMjH/z8gk2MxjJkcTiaMGaqPH5ZpsVt6FVsLN3HIuZIwWUrlNC2p2wiZfSwrfZrVvr2UNryRW8bO4j2/1HnD0TO4fOo1yIezGDsGqfzmIMaOwROWT3bdk24/UgfRK7bCc5VviDbVmVnHdd2MibrEy/JLOmhsDjA7Gye5oAti366dFM86B/DEGMSf/4gzvredax+sEs+5PLpU5IG1GTIBk3hTE6o9gWVUMCzQNZFAWKZlWZDWnhBdqyO0ywIZvwCu59MaapmOfVlmlJ3z52zzd7Gi/dQY3wRBoDGi0dXgoyOp01rTAGppCM8HmpJZxAg0UuxtJFIdJR4u0DpSb5gz3gmSrJAZP8w9X/sGBwd34LRFeGdE4KzuPJmSyp2jSS4PlSm6LvcS4wvi32Kb3vwa1o9iFB5mqqijCTbC9q24xRKCKFApGjRnd3BOyZtzK67GbGQDllkDB2U/icTzM+6JgoCr1p87RbUoFn2IqkPQB6WhfZxZqTA+/GtO/+wnCTve/SxnpxnY+hCJRpVQ3Ef3mmbiqsR1bTFe29VEoHITr8hcQdD2c9A3xc8unOal/Xej2wZbJPh1yMYnCrSM14kAw6E5pmbayKaamBhZyrhVb1QXKdZAN1nBFhV8/ucf7H2sdfR0IflDiK5JpN1EVgQmSgF+OdqN095JcW6W8X27sS2T/PQMoujQ2T1BxB3DUfzEFy1h7bplXLWxgTN7o8/31zmlrXX1OlS/BzKFY3GSHV2kHvgBM4/8glDcj1iocMb4Xs5YfhV+w4dkee9plQpfyP+A/y7cxa8rP+LH5a/yQPXb/H32b+izhvl8+QvMiSUywRipsECxuZ2C6iftZjGdLBYmAerMqoyQ43Olf2HcHeGYPM4nuJ+3pR/hR6MHmf7X+xj+yp0Uv7KNxpESAXsxdrgTfpUhfVTmQOIA9/t9/EWiid2FRYiCQ1wZITz3EDse0Wn88cd5/T0/oXXO88MlfYRLAxleH62wVrMICA6PjBb5k4Pg7HzUk4Z6rC0A3R7HdHMcGK9rEZNOP/Exjtt0vWyeRAJ6l8PSZWTiXRwslpmJtTFrj3NR7RiGKzBWCqPF62XVUxmDTA10k0SBkK8OBK48p4VYS4Ar/2QNF79+OUs3NXKy1jrf2EXATnpEi2W0EDM9HeapSBkr6aecmyE/M8jtD08iFrcRLFk0jffS7sbYvLEO8v+fcgGB/u0nde6THrkXAiSvec1rOHr0KIVCgcnJSUZHR3nzm998sod63mzx4sUkk0mOHTv2W/fRNI1wOHzCD4A/opFN10EoLec9fOXFyxnPp5m1vAlRBFarAZKqwMZoPeA6utQhF7Roq0Z5qXsRYo2RIz7DpQjPpMmqirRAm6lc8gaPUkWls2RSVQyI1NgZk5PE8wV0FJD8YM4hSEHsqX4qBlyQeA0hfwuqKVD2OdxReZgfHP3BCed7w3k9XN8ZYbPPoD+X51f3PoJqFElX650SE9Jx0E3FsgV09cUddHlMtzp6H4g3EGpsxh+LU0w9vlTaKJeoFgsIAlQrCrPTUaRQE7zsFRCJPodX/uxZU1cYf6QWlA1F2eA/h6alKzD9ML3IQqiNy7mqRswnIFS8QKSiJnlUuxQZyMkSqtFMIlgvgRCRaHfq4veFiEVBd5CFU89he6zp4QiSR1JD91eZy7hITgBkLzseKfQRDiggiDiKj+lZjz06D7rVuqBVaxqCLeFuGrqXoAoeKFmxy/PncmMKvndsQEz6ECSJTS+9gWhTF6JYn7AX6hD9wVioGbQQ4EJxGjEoc5HdzTvM89js9IIAAStI59xKluZW8jL7LNa53fgUCxzJ6zz2B2Sx9k4C8STBZMPjx7K2Nm9uOfMs8HtBXtisB3taMESHbxF/tBePSXFv7JXmJA766g60aRrYgSjbCjdTsoIYagBDkHBEjaqcRHbHaZ79OOcL3+XM5S9j+WV/z1kb38sFy85j5+4UrmlD1cI17ROWT3bdk26vZOavtWLLqM8R6yTWXH8fzEwVAahO1oIgAZasStB+RhPqhaehhboXfNLP1tkxsqdfSOWCK3BECQSBDf1RNh8AV/SGo4c2ZvA39VDOOwzlwIrAEXs/+fDYvJKDHlYIrwtSbPZhKGVKvgxmxwwtwt9xuLEwf8ak2klT9NSRHJBEgQ2Lw5zWE0aRvcYO8bCKXks0S0YJ0xenuLSZzG+OcsGGg7Q5MRK2VxI4GkwzJ3tzaCWfpW/XEcpxlcszCRaHbUTRoSlZ5va8H1kW6I74+B+9lQdmzqU4FwJXZo38dYTK3cjOHKI1w+D378euVqim57hh6g4ykkq/EmDfRBdTwXqzGFfy0/g83ktRqzNkFNWkaHjXElZNCtk8GypVAkWPfdYxnSLStARZC3B0WkDZ/nlWn9NNc3cMSZGQa01HXrs4yVT1XM6srMIWHAq6TbxxNznNA2q/XMgzW5wmvgB0qyTT7LP8TJSbyMc1plwPdBNdgVCpVpKuyFimRDBc77p6qliitQWn4r2vASmH2hrAcaBcdhndP8qe237IwJYH2PHdr2OmttLRPY6qef6cFAjTe+GldDQF0VQJn/rcsx5fSCYpCj3nXoikqCAIdPUsQVYUigceZCZVQNMlwuMFogmFTe7LePW284jlVC7cs4JkPsIdlV38sPJdflX9BQ+Y+zGoEhXC+AQfsiCiqSJRIY5f8hNyXKJCnIir0mD7ednYcl6RW8q15lJaqzqKYeHDx3Kp3jXzF21F+ptgMgbTcoX83Xvoj6xg9LZfkB+c44D+Y3AMmtIhWkaiPDoVp2Ja5I0oPb6H2Rz8MofzveidMVYN1TAF0eHa1A/5m+gst7aMc4ZexUJgypbZs7sPHrj/cffJ/V3lpZMTXhOEhTY48Ntv+vQCUsjms+H8C+DCi+jfm2ZQLJMIhwgU95Gs6cgdrURx/WHEBY2DRubKlAxvezQgn8BkizUHuPnDp7N4fQMrzm6dbw53Mtae0GlPaCgiWAEPpxEQWGV4HX1dEUZ6TGRVxx9tZWJsjO/ffoTm3MM0zCxCtjRW9WTRaxJOd3ecxuTYzG8930J7StHkY6l7fr8fv/+Fo0MzOjrK3NwcLS0tT77zYywQUSnk/ViWhCzbaLlx9P79OOU84eUrODo+SntnDwDRlSu4dPYA5speds9kmHBdhiNeUDGmZTjPqj/Mp3oVlqTp2JbnPFVq2aNyrTNiq6NBSxKCIRgfI+I4VEQTbBMQUH2dVNPDxJdJuIUQb1j8Gb5/x00c7M7iL0tsH3iYdQ3rWBbzSh57m0P869UruO2/7+CMYp6gchq6z6Ak1523RI2ZZNUYby/2yeYx1aXo4Qj5aY9lWZh7PNMtOz6GpGrYRhVNNynkXbRA4ASq+gvdBFFg8bpG9t03hmtBdGQRerI2DglQbdZoSWVwcTlQSEI1S0DdhxrSGfct4xFBYs4xiaWX0yhvZQwvIxNTmvDV5hTXhbaiQJ8qvyC0MgRBwBdOUM5MoaoW0xUBx7AQqxr4qijVIu1RgekaGztlaliGgWuaiLrsNewALEekWW6la80mAHTJh2EZ80w3gLyVRdQktJuWc/bLzmbt0nMZuGM7h/bum9/nVBItfk6tcSVkPdaWHLTodZMknAQz4i6iboBNubNYMfdyGhrnaHQ9FrVPnoOy/gcHugUSDRTTc+C6XtesJ7FqoT4PdCZe+GXyf7QTTaol8FzDwNYV0CSo2liGiap52e6duWv489jZNNs2f750CStmvkTb9Dep0oZ//ItsmPgShq+NqeoVNM39iILeS37CJWQcIa96z8zx5ZNd92Tbg1YBw5GZq+pMVkO089wkUh/LdHMNCyvtTWBqXGfLQB4BiCYDWJ09BA5HKOayuHaWsr2RA6e10XreNfhWdHLo7l8SXb+BxoO7CRWnkCxIBSt8NXA7N9nvQ10Z4DNjf81w8QjL/T3Igs6fun9NIXgMyRzHEs9GNX1MN00j53p5ZNP/cnTsY2B5c+s5i1ackvq7oiCwtCUw39RhfyhMOZtBcG0E18JYsobqxB10x7IEdJNFs6cRax1izB7h12fNcvkjDZAao3P9ldi6xOSqMK8baKFwTh8/vd9jFzqORabqUgHeEn4z9w+8h0DCoppTaQjfhjvzMwQxQlfmR0x+4SwiMZug5YEx9ykCbp9EfsmCZhpKiJbG50+KwB8OYnlSfaiqSbHWcCmkmEzaQZpcl9UZE5BomktzYLoP13WZGtpPLn8aEQEQBJae1oZp2AyPZpmpmmgNPlTxImAbAAfPqnL5r7byYOMq1lSm+eXoIV5V3kAw5aPky2FGclzy8U2ookbpzl8wPe4FvdGKf76BkawoOIgEg899044nM1GSCDe3kB0fRTRL+NsVSkMgKyYj224n3NREbnIMs1JGAGIJg0LeRyBcpfOM8xFfRD79c2Hxjm6CyQayE2MoqkpX73L69u2lsPd+wmdfzsO+Ni4d2E7uvDPY9+17ufaBZgRK3NtcphqoEhcaSLkzjJhzRIQQG5Ul9K7oYdWkSOfcpcyEN6CXpohWq4SMHKphoCsuo+UpcqNDiPvGWZE4je4wzJ2+iXD7Rv6n+Cn2WTvJBwQ+erNEuAJFv8QrBoqcNXyYygU3MGVXOBj+FIbqMqXmOWd3CylD5Y4jy7mq9yCaaNCu7WWwcw2VYR/nd4a5A48UtK10mNMfitB4/mlcHihxd9kDn2/Pqawf6IfBQejurt+k440UHBtBlsA04XgCva9ecTZv/X2wctUT3/CZWnwqCJ7ueO153bJjgkolw3miQlv+wPzufbkEUjJxwiGmM/XKpVjw8TGF+DTnlLBfxnLAdEAINmFqYaysxUa3nQfwypAH5Cmuuvr9TDx0L6WMSzzZyJatOznn0hj67LnER32s6c0yvF8ikUlxT+t6OLD7Sc/9lK542bJlxOPx3/nzXFqhUGDXrl3zjR0GBgbYtWsXw8PDFAoFPvCBD/DII48wODjIXXfdxXXXXceSJUu4/PLLn/K5AhENURYplTzxSkcNYjU3U11/LlMjIxwdGQSgguuVSUzl6VaC3BTtZoLMvNbUUqmbsxzvIbUtEcV/6mT/nsgUn89DIFwXp+hlWUoVlbIAIcPEMbeAbYPrIosygeP+pl3EFWodI/GCJVmUWRU5hyUjAUo+m19M3sFDYyfWfFtBiaHhvTiz/VSrPgJ+g5zgOSACEK2BbqagIQo8Z1nl58sey3TTgiGEWknVCV0oXZeRXdsZ3rkV26jiumCaEuMjTWiBFx8Asni9pwcYafQxNZBFERREPAB2bo3M8qiILLrkqh6NuHv425RcL2tqomJbHksmLizGy3EIJNQOJLzgzrYkNMmlegpo0JyshRrr2XArESc3NIxbqgM5zc4Ix+uOjUg70wf3AyD66s9HWROI6PVxXBe9wK7ilHFqpfB5q9ZcRhBo6/IC0GrJPIHpJp7q2YRnyxrqJUiS6wUBPhcuddfxj/breKm2hhVnxWlM1Du9+hXLa4H4Bwa6iZKEHvaCx3I2cwKb/omsWqyDblrghd2F+Y/2eBNkGTOgY1cqdE/LCH5vXLJMA02rOd+2SykTYG82yAOpCkNt72JH0/upilUEwcZFQisP0Tx1F5o1g+IUkN0imjWD7BZPWD7ZdU+2XcBBFS0GCnH6y21o8nOTCFR1meBxUeiCQVOuSjipI0gCSnOtUZcA+bKNtmgFscam2ud82OYBSgceoP8LH2D7I7/BjEUYO3IQLRjl8q1NiIKIJTmUHYcv6P/G90f/ldHiAC4uB6eOsTe9j4c6f0wpuR1Lc8mFx5lomUQ0VyNX8+xxZnnQGiYoxRAQ2dT+wgDJ9WAYQVax1CBStQB6J/n2CNXZEm0NaTb2X0XADlOmhC4GGG0oo/rDHL7/W+y743PMTe5h1m9w80yMtb2enEAsUuXGrhqjSdb4eWYz41sjiJKFgA1I4KSRzH5aU99CHfgFFUGkJAh8PJkgbks4ZnX+Gn2BKMlk9Hm4O565C7TvVNWkUPR8LJ9iUBZCuMDqrDe/6ZZNg1jrWlotsm3nOCxghvasaybsU+gJ6lzcFOK08Fo6xC5kZFRR5pqrypQUPw+HF/HzrjOwpg/S+2/3cPpbf0RzX5Xh8gCCIHBsug8L75zhUp3VJooqgu4jFIs+uzflaVqkud64KxQtgQDtnVPgVslNjhFqakGQpHm5GJ+/SnbxRbS2JX/LEf9ov8uWXvASEARc10XVfSRa20g99EOmDjyKtXEZD7iLOHPmAI2XvsqL2YUAF2xXuOzopbxX+wBvU17Px/z/xD9Hvsgr/X/Jpr6XcnZ/HOGe/YQ+/GYaD23Dn58hSpWsofLDwTj/2XU/v752FXev/EuyTTfhJE+jbbyIJuhcrl8LgOwIFP0CE3EBQY/wvZVT/LrxGJXuXrYU76To9xhVvSMyL9syiia4DMthbp/0mFkFJ0lLW5rmixwuNUfpNE1iRpCRpiRblNP58a4o53WNINYSQreX/F6X3IlxFmoRuSUDwSmgTWxHGOuDb30DDhyAY0fhyGHw+bxJJRAAVYWpKa+pwmN9N9P09NsAYvF54G56OM99hQIzrkQwnqTBLDAjyVjAaL4JNdnKb7P4E4Buv4+t6w4hiQKuKGFrIXx6iV5fkoAVRDP9ZCSLfdN3svT8NxJKdjE7M83YVImxvgMs41fEzWbeOBVjyo1wILGIX/ScfVLnfUqR0Uc+8hEikecvw/JY2759OxddVNcdeu973wvAG97wBj7/+c+zZ88evvrVr5LJZGhtbeWyyy7jox/9KNrTCG70kILrQGZOIxwGycihFqex/AkkX4h8fo5spUxE96E2JJmY9gKEy3wt7KwaWNpFyM1ZVk51I5czANi2RDCs/46zPv+27pqXk/7615n853+mb8P7IAhlQ0V1oN2UqAzfjX7d2+GRrXDBhUS3PkhxwCvfNdwqOCJyahhUTxyxe+VLKX//UY51eCV/9x69kysD5yErCkalzMTRw1iWgew7H0GKISlD5PFYNhE05BrgZIg6Pk18QbCQfi8TThzPBFHEF41RSs9RzmRwbBtRksiMDTO8Y8v8foahMjLYhG1L6C9C0K1lWYR4a4DUeJEDD05w1vU96JKPkl3wWFmRJfjKewlpFfJVjRnfBjqm76XctgGfm2LO7cCSU5zWuomzky9FTO0mE+hCSHl1+ZYtIckWtv7CAY9CDQ1MH/GWhWSEzJa9RFZeBrXkkZY7RszfRrrsYokqA3v3EgekBaCbIQo06vWJT5fqDmzVqeCT/OTNemOTkOzNB0bFQZI80M11BUTxxc1A/a3mT0KgCYpTUJ3FifrRTQWqOiAQb/FTxca269pLPsUC+w8PdAPwR6JUshkc26JayD+uec9CMxaAbmrg1NCH+qM9syZEw1ilMp0zDQh+GTcNlmkiiQYe51vgzKjBYbXK7dPQ6ddZ3voy+kK9SP3/jRm+gpVzd2I4S5DkNJKlIFoClptArjH0jy+f7Lon214VoGDpGI6EKMkoynPn08Wa/RTSVcyyzd47RrCqNsEmH+E1ScJ+iVWdIUZmKixtjbH10Ok0tbczMTTM+MAxZMGPaRjguqiaTrVcRlEUekI9tFaW86vgMCvb1vOTye8TU1qxMQhKEQq2N/4fTQ/wjtV/wb7UQVQzhCMFsCSVBzI/5VBpKyYGkqvw75u/Rkh9YYDk/ngC1zKQMZCNPJXQEvb//XUsfnSAtoYUu492cXHqlYwmBplTZ5hbBUsHNqIcPEp+pkglP0u8YzXrmi7n2nWPMj7tY3TWx9fTDv++0mLXAT/3tqzm7O27qGYUAuf7CN78byg//wsU06OPqU6e7XqEr4UVZhU/oeYwil0v6woFn99SSV8oxPGRWFEtCgXveiTFoeTrJq92sbhszu+/aGyC6WZvvB7N6bipIYQ2T9ZD86ksWtHIwF6veiOmKVzGdXyr/MX/z95/x0lynee9+PdU7uqcJufNGbvYXSQiEIEEGEExi6JIyqQkS3KQJcuyfXVlXfte6SfJkiUrmYo2FSkxiAHMBAESOS0W2JzD5Onp3F1d8fdH9UzPIBBLEGFDP/jgs9WVurqm6pzzPud5n5f9zjw5/Qw7+yM8MWNxPprlXEym98lDiMAn96ffYvpUlXUf/w2eLZyGdmiaaGfkCEnCDzSEArFUx0bkYkJyYBDCApnorUWSwyYRM/xbS4rOptvfQnl6ks///nH6+ucoW1luuHsEWbrM455XCXo0ysjOPcwcPkBSCPRIhMWZaaqPfpFg4TTWrrdw9okaGwey2De9n+IDXyHw6gydrFA58SXeuHEjIjFNfTSLK2s4ikHJzJNfU0OMf5BINo0bwGRT58TCMJ+hxe7JnyFSMrg/6rCnrjAT28im1oPYwDp5E/95/7XoO9/K3/APCARFf57ZYIZvNL7APc7fIfV1AsC3qWuZ/0APA9oYp566j1P1DN9Y2IG08xcZOfZfSHknEAL+22yMZyM16mmJeP0oPdJ59EMzfDAWsKv1ML/ufZQTi03W1J6G9RuWq4oGk9PIxWmE5yAdbHty7mv7v3leOEZ9592ganDfvWEK6dEjUCiE6aNaW0RUWOgErj2hQML3A775N4doSi6TSowRcZjr6qEa7l45RtOR6BkIU24VWTCc1Tk112n3Xkjp9sPA1GW2jUR55nQFKz2OUZlEQnB38yb+MXIvlViTexeeZH3mDOO77+aLT/06MxmLk5UGh+ce4u7ISX7U3Mu2eIpnqipzkQtrY36giPIDH/gAPT0Xblb3auOWW275vrPjX/va116x75JlCTOh0ah1JP2KFQ4+1l7/Rmb2fY+FWoWkEUGSJGQtglNzUWMKv5TayHe4g+nIAXqivfgiDOw9TyLa89Ilbl9PCEnC2LYd4florRrEgEDQammYho2f6IXHfhfe+usAJNdtZLJNuuGUMWMZKqcPo/cYuGaWRGI96lAPmj2Hrfk8vfgM/+c//mtkJGK5PL7jgIgh6zsB0HSbSpt0y0idwWxLMi771FJgOe1vGUFANJOlUSwQBD7NUpFoNsf0wdVVUyQ1Sa0SDnQuR9JNUWRyQzEWp+rYTZfJo0WMZJt085oEQ1sZmt9Hf6bEI9O9BIDd8tnbuoenIlfjSXVc8yxNcz9N4F984zeQjSwPZv4NAL4r0Yz5KNLFTYqvRDTTkWZrpkN5tgItHXwBUkCweJyhibtonJ6nJXSaSthJrFS6tSTBkNa3/NmQOgN8y2uGpJsbtnu6ZKC107xbLbdd3VhFjlw69+xVwdo3g6TA9FPgPo0s+ehn+2kFMlalTHqNTaE9KaPJLrIUgHfleboBRFIZOHsagGa5+H1Jt1atU6lKj3VJt8sRaiaLV28QcwURVWOJmvY9F1VzcWyVX9gY8ETPUf7xqRFONtJsTERoxrdyYuK/87uHp5HcLdymavzYdR/FrAdULZmWqqO31UJLyxe67qW214Tg8Xt+Hc+xMGIqkdewIMo171xDIjfFge9O4bZCNcTAWII7bukoaPpSejhOHrsKazKFPDmFputomoyqxgh8D0VV0XQdSdbwyLEmOsxv7/0F7ufb9FR6SOlxSm6OqxNv54Hi39HyLZ6YfJrJHRGa+XXUa4OofoMj1W/whco/IoAN6Q3kzBx7Rsdes/vxwyKywvfWdMpYyjiGejsLkb9gLFdCEMC0yVsGf4RPNf8XAAfVaa5qT446Vo3K7FFqO+/mmifG+G68zH1FcDyJ+yNzrL/TIWsquB+TsRY1Jr9i8tU9vfza+/4Z/zP/gqqymWjzc9wbM7nXVMgEUWYmxhFOJ/jM9L++wodYIk6VMPNEM2xKUx1CNac6TMevo9d9kmqbmsvMzhJbM4YduBTOHeSZo0W2dx5P+sbTVBYbPDBdYcT2GWcnS6aB97eOcofh8kR73wcH1vLuw2mq/TLpfdOw7585W0pw2jrTId2qYVygqCquIyOUgOhFSrrFcj1IioLvuqi1OfoGTDTXpVHXsf0BFE3Hj/XTap7hzMlBjIEo/ekrfHz1Q2Loqt2UJs9hN+oYEZP1O3ZxdN8TNKZPkapXOXXtOzFPnGNifDOHz5ygNnUM31lkDodDc4KN5h4mZp7i6OA1AExHBticWESSfGqVNIVGg7MFcJz9vKH8GKbeSzo5zAe1BI9s38XIxj6aZzrZImPrfgQ/Psq/41fwA5//fer/oWLOMzDtcXDcobemU426TLCG3X0/TTmVRvcUzh96AseqsX8+gfTt/00s3aKhqCzaJjvNMjvbvLcf+0skAfjwq/5RNLlFPwV6C1Og98M3T8FbfoFAzyAfexLhNPFlDWG044LxCdj/NBgGDA1DNgeyDMMjUC6DbcOJ4+H2PXvDcez5850bng8V1ocfmuaRqTI7otPMRAYwy/cs73LaC/tMPR8q95KmQm9K59yCxZaRGJoiE3kV/NvHek1OTNWoRnvxFBPZbbA70svnfRkbOJ+r8939f81VQ3dy384FfClgutKk5Lv8Rf0BbhyS+FlzLT99aN0Ff+cF/4rLXlF0AYimdKyWhu+3/QJaYfC5/uY3UZqdYX5lUJDL0ZoNOx1VtND8JkYzhyvJSCIkCj1Xxsxc/DOAxuZNRK+7jki8kwpbbc/2aolBePiP4NE/BSDeu8Ivzy3h+1F8x0FpVfG08MXas/5d9C2GAaaj+BQSNkEQUJ2fo14qkh56F7rRIJaU8fU6rggHk5kVBEBLjmBeCaSbgGbdoFI2cT0Tx7IwV5Ar9cUCVqW8XP1v+bjImuVl4xWeIbhYsJRiCnBy38KyKsvDw+3rhWgWWXOJtVOTLFel5UqYyjMUej6DlOh0DM1IlJZl0WpIVCsmjVqEesRHkS6de2emO2mh0bhNYeBqWnMFqJoEDZ3Ac8jLRVqyCZKMnxsBQDY7v9GRJNJaJ3VhpdJtKcW07oXt3JLKDcCxAzTdQTec5RTdKxb5TZBdBwTLKbeZWIO44aALi4F0BQjXm2o7zdSXQLsCSbcVQW6j9Pzqrish2h446eGRK9cz8DJHJNeD267amAo64w3XsdG0sF1pRLcw5szw1jtnWcxPMdmweabUZE1c51e2DTKQNLhzZz/3TMJcIOErEp4u4yurly903UttdwnwlwppSQI9lnrN7lfPSJx6Ofzu8R05zKTGG97z/ABACEGmf4AgkWJgbJwdt7yL9TuvZuOuq7n65lvZsPNqdtxwO778PpruG9ny9h9hfMswH9nyEb713m/xR7f/Ab+45u+5JfchdiXfyvV9txAQ8NGvfpRnFuYxNXim8QT/NPM7bNXzBMCtI7fyh7f+IUn94smOeSlE0ys8hZplZAlEoHBk6/vRNZdsqkqz4jJW3Ipo235MDhVYP3gXuqIwmEthVUtMn36ciufzbrczSf/g4Qw98TpGj8T8m9dT2DVA3LcofvrTPKVmsd71V8Tj2/nM2/8Vfx3XQQjigcmpnhGcVsfbaGLz61tAJhpR8ZWQ+FFVl1K5029lVYdCZAu+1WmfBaADdqMEBBw/vECj1bFXEEKwYfcQP/H2zTgTaX7l2XnkSugp6+Lixh5e3vf+/vWYb/qvSPmw8nVpWx/1P/sUNavMWnkja+WNJMphfKUoKp6rIGsQTb221kcXCkmW6du4FS03iOS1iHiLCBEgyz6nD+s8e/8kh451MgtyvSa62vVy+2EghGDNG25B0Q3ivf2k83nWbN1OLJmitO9eTv3Db2BtGGeRCPl3/TSRgVsADyHlObtwhvsOfIWTszpK1UErO1hEaQidmbkhzk5H+PzhL/PE3BdYsAu0vBo2NmcbBzl25gv0zH0P2VQprL9q+Xr8vmHUqdD3UHnyMBsfbnD3/f1ELQXTUtA8g7hrssu4nkqqH9/XEbJE7/rrSI1sQtIj+J7N9+Yn+MtTb6bhhlqq+9uT3wI4W+8lCEAJHA77QzwZrCVGCbwKHPsH+Ot34z/wIJIT+gdiROD9H4T3vj9MJY1GYdt2uPkWUJQwMN29h+CNt4HrQjSGf/IU/oMPhqmlRw5DKgVr1kJ/P7Vii+99+ij+kM7C3BwjpsZAuZOZdbycQ46YqMkw9kiaCv0ZgzfvyjPRF2UoZ7wqHJQQgl3rUkBAI7MGx0ihNXXeWnoTkVaCfHWY+7Rj/Hbp9xjxQ27DbQ9LXHzOBmXuGJhlhwQ/zoVZhV2w0u2l/FauBESTGgQCq6lhRlvIrSr4Hlo8zdCmrSwUOh5bei6HPVmENSkAku4C5XISV/WXb7rnScTyqdf8d/ygkAyDgAB5+hS0PZzOYtJLLSQlMhPge1A+j5IcwjQTYacqaXhK6P+gVyep94bSUatnnMGZHs4SEkUzWYvemokRjdOoOjRrWUDCiLaWVW4AGbnTuTdlkx79SiDdBEKCRDL0BLGqpVWKpnpxASEJUoPDlKbOoxoRPMdBKFEg7KwvR6UbwMiWLLIq4Tk+p56eZ/DWDkHUlBzUG94PD/53kkaLait8diotnVL7dphKlJIb+g7UIzF0J4Ju+ug08CyVeiRAFZfOvZNVDSUSx21W0VSL8+vuoLH4LYzWMCJZR7iQmH8ITbkF2w1o6CkCIVall2p6Ell03qslTzcAy2tQcysEbV+IuNJWJQUBthMsp5ciXTopua8qtryPVuEcWquAKvlU24FI4dDjQPisRtQ2QRko4WDmCoO5QoHQ/D6km+95lKdCkjyWu3jU9l28sjA3bWHh2JNkgbynt+2gwbEdNN2mXjN5+tTT3PTWd3Oo9Tg7dp7mzNNrWS+H71bVdvj3m/qQheDGXIxCs0LRdshIMoutUC20tHyh615qe8v1Cdp+l7IEWvK1U9UISfCWn97G2YOLjG7N4tge6otMRuYSGvO9a2hEk3iRFNIzx5EbR9ANG4REoZDCcVRu/7EN9A6vJikSpsL6gShHJuu8f+xf8QdHfwHHd+jR1vBnZ36JmzM/xjONe7ADl2db8/zcVT/HT+34qdfiFryiUCMRVNPEaTTQ7Uqo5nJ6cclSkCL05irUGjqlAwZr927gmHeYOWaYXzfMSCvPsflpAGaPPkDfXf+WjUeq7FIWOe8FDKgen30yR01SeO8d69j9818A4CePfpnf+8x1fPC6TVjbPBoFB789KRN3NE6JPInm6eVrHJpY89zLfk1h6jK+aiK7FqrqUfNNPE8gywGa1iLuFrEaqwNQbeYExEPytTF5lGdPltm7Kfu8c9+1c5BEXONTX7V5iO8yKI2wP3iQ941ez1MNlVOLDX49ZfJvUx/l4I0G63//ewCc6HE57h0GYE9tGGgr3VwZ37fQIhdf9dIlZEbGmHp2HysphYX5NAPr0hTnGxx+qlMVsW/g4isIcSnCTGXYcufbefoL/wRAPJ0hmc3huS7z8wuUPvs/uPXNH+eY1cC7805mPh3FqX4N/IDAzPPA0b/nOrGXHYP9NOwosi2IJk/x1eNPEVGyVO0pZpxJhBSjYTkEjTmQFcyoTmvmNPSNkWxUwEyAkHAG1kDdYXryKZLaEGX7PNunbmVnYQdCijG+O03KMAkIKy8/VLIY2n472ZSPsJ7CcDdgPztN7ZjKNxtv4WT8cX659xtc37SI1FVGj4wxmr4LTR/mz/QMO5XHmQ7S9HoFpMCC2RKF4qdIpK9FEw7fOtdP+hvn2f2Wcdi+I/z/OZg7U+F7n15gYngHW4pPoEo+HD2MY9moS0WvYnFIp7n/j/djtTxGW/PcE+vjDqPE4GKYWvqspqGUYmjDHflrwgzHwtpzK6i+CsjEdfrSEWa9UWJzzyAicJOf4bHaOKeyncIIp5UpNs3mGDgr+Nae8J086VSRTfir/gLnzib4fy/g+y54lO/7/kvvdJkjlgoDd6tpYEbDEu1Kq0LLTbLzzrfxwP/6g+V9jZ48jZlDnWMpoTeSePHOQ+R7Embu0jDEjN92O9pfPQCAwOfx+zbjr4ly1eaT6JEkfPU/4EQz+JvfQTyboXHuNHgNXGMQEMitKqrXxJEjqOYgd6Ru5CHOoEka+rXreN9HfpHeibV89je/wPz58B6tvSrO4WoDLVCwhUuuncrmBTItNfR0u+whoLnCDL9eKJAaHF3+3Ggr3UqTYSVEp9kgOTDE7JwfVj4NwIhensG8qssMb8pwev8CmiEjLZrQ5ogsv0nC7If0WpLNcyxp2sqWTkkLZ1ljcieVrRGJ4VqdYN5rqdSMAEVc3IVOnotEb57F01VcT6KOyvS0TaZmQrYEso+Y209u8FamSh6BatAaXoMU6bTtEX31QPi5SreCs4AqNJzA7ijdWi0cD1QtJOMk+dIhKl9VCEFj6Ab07zxOUu2o/0pNDUkC32/7uQWAZoSzh1cYIisIima59KL7WdXK8vJS8YUuLj/kfu5nWfyZjwIQUZ6jdGtXMKUueLo6BxoEdZnkvmkKowP4ZYs1+cjyjPhCy+Hes8c51lB41oqz1QgVukvLF7rupba33IA729cpKwpq6rUd0wlJMLo1bLdfjHADGM0bWLbHISeLjGDolh2ceDiGJzQUK2BhcoYN1/axfm/fCx6/YTCKIgkOnKvxvv5f4VvFP+apxfsI8Jl0n6DUCknzm4Zu4ie3/+Qr/0NfI0TTOUqNs3h2i5EknCyCQOGguZ2bdjzCLVcdolI2sYu9HFMPEyPOyfQzbBjczbH5LwLQKE1TnDqMPLaeX91nkwrgp8qwrxT2p2+Qt1N48wmyXzuAG1F4i/UZ9jnXkhyySXz6PLRtVZOSSd3R6PEslkopvN6pkqYu46kmajOcsFR1n1LNJJuoE1F8Ksowydp3WfkkpislptukW3n2BIXpKtN9MfrTz1d3b02Z3DWyjmzj3Xyh9Y8AlJL/zI9EP8b/KDSYNQSfmbG5W3onz/x6hsRTp5lKnYYAosTQ3TAukBUF15WRVO9VvR8/LJL9g2TH11I4dTyczhQSe979BkY39/JX//lB3BUVHOOZbmrpK4VYroctd76DRrFA8dwZSpPnUDWNTCbFs0cf5IlHPk12bBzfj3G6Z4AJ3otduxe7cAzwOTJ9imp5ihsmdmIaLl8+8CyLrZCMEcoQcuSdKGb4fPvOd7Frj1F5/MuIwEPvG0PLZ7HrYZ/mux5icpKTtZDkEXIPSuQNy0Xzqo6LMD1kXyDbFltTVbygSuzkSWKRGFrjWdzhBCUjR1pJsFhfS598hO+Z5xAGfFBA5cwx4v1jGMEgfx7p5c+9t/JHqSe5y/rvCCDm7Ofw7E5OVkeZrgdIk6dZs6uHdN/ziV7f87n3rw+zcK7G9Ako53LcPDyH7QuaJyZJqoAk4V17Hd/72yPMn6tS1gL2HH+Yzya2cZN+mgVZIee53G+YxBsK+potSAL8AJLmaxtDbBiKMlNq4ZhZtEYBJapw68E7+d+pQ7hy+P6l/AgfT93IgwcfXT7u2aYLSdBSZVqFCxu/XwGsxSuHaLuDWEmCKFaZluOzdu91KNkMrh828EZvD62ZTrqpKZVRHQ836NxyEQj0i9Rr4LmI334b/dMPctN3f4GYvYBvqzx+aC1uS4O+TQDs88/xV+f+Jwf0o8vHBW6dNbe8g21vuZvBXJsREYJkYhvbglGEEDxUehx/MI6QFVx3aGkXesdUSqKOLVzkQDCshMd7gYovpCvD001As7mCdCsW0EwTxQg731phYVUVU4DUwBDVxbCCaSSurkoLvtwwvCmNHlUozTaxTnV+p+W1FZLr7iTux0MvFqDU1Cmp4XOTUFPL+zfMGHV1RWq0rVIzfNRLKL0UINk7gJBUNM0jEm1xUl4LgQTVdscZeOScTipyY+NVq5RuUX21imilp1vTazLXmgoJNznBUKSd5tJs4qyYkxFXoGLrxWD0bgBXIdY0lmeym7aE70NMa5HSmjCXAf3KHEwruo4aCdv1lUq3IAgIgoDTjz2EVa1gVTopNl3S7fKFkCRm94TtiqGu8JpsNpfTS/Vamr899PeYzQz+o73YMzqNRwtMPVViYdrivuky//PoHH92osCj9SjnHR1BwHlHX7V8oeteanvF7mSBSLKMmr44J1KFEIzmI6SjCrvWJIhoMmN7J+jZ2s9wfxwjbpIbir1oGo8sCcb7IgxkdK4a6eXnt//f3JB5H5sTe3nj6BvwAo+9fXv5z9f850vajmZlJkFeqUN77DAvr1tuwxPJBu8dUtjAEHVq3N/6JlbPZnIrqiqfe/oeak4RJmLYvRE2BJ3n+fHzKj0ffje19X1oZYtNf/8YY406Ur2JdKbUuRY9Tl51ceyQchNCRo++vmonRRYIvaOA1zSHhTMRCAQi0iIqeYha241RDsdambqLaBdXsipz6IV5jk5WcbzVYo4gCDj59DT5AHbLN2EQ9otPOo9gmqe4oTfBgYU6n6TFM4sa/aUdlG7bQzkIJ2XSQedvt6R0W5oMvJgxcd2NqGPbKay9k/LQNWgDaSRZIvIcwiPe9XN7RZEaGGJgyw6SA8PLk55mLM7Elm2cOnGIxZkzDPlzZAeLJPIp1OidyPp2hDrIQmmW/VNn+dRTJ/i7Jx7n8GxYCAWho0XfhmREEJqE0GVk7erl72zNngJAG8lx9ZvWEY+oCMln+uRDy/vI2laEkNg9ViH3tglS6XmSZ+8ndv4+jLlHiC0cJF44guw2kdwysmeh1+eIDTdY3DVMLQMTbATC4f/ZEZf5uIRVeJZ1ToeD+P3SLs4Hd2GLPGZwhDH+lnknfOZ8N+Abf3mAJ756mqljJYozdayag+/5fPtThylMhmo2M6FxwsqxbzHHl2Y3c2QhxslmltOpTXzr89Mc+N4kjcUWjUSLY/OLkBtg1PoOOc9lTpY4YscRCBKDNxAEsK7fJPkaC0UyMZWoLtGKd9R2E6bDTSffx1sP/BR3P2DyxqO93Db7V2wf2Irshc/KsfoCDS+KkS4Qsc0XO/0qdEm3HwDRttJtJQmitMrYjo8kyaT7Bii0ZZVqPI6UHaFWUql5aTQaBFj4vkezqVGvGviOjGxcGo2o2tdHbPN6FM9CNDtkYq0RgUgKzDSOU0EEAcXcipklt4Lj6iT7BxkbTNGTVPGdCuV0P+N+Dy2vRUDAp498mqljJerlFr3jCdbt7SNwGxQIv8sTAbm2j48XqCBJRK6Q9FLPVXDssBFqLC4A0LN2I/GePjzHXqUCgXDmrFYMU2Bc20c3L18SpGc0QaseKtfs2U5zZvlt0i0xiBzJ0RerEZcdWp6CsahiWoKU2hmgNSJxam3SLQggIfltpdulRbpFUmkCPwxOs30e5xM7qDc8KMdxGzpEsuQL31vev7L3FuztI8ufY8ZzSLdVSrcGp+vHAKh5VXJa21Ov2cBbYT8gq5cvyfuDwjBT2EqAhCDWjtiCdugWBAJD88FVrsgiCkuItCeeHKuJY4Xt1jNf+ixPfPpTTO5/kme+/DmapcXO/l3S7bKGvD20oRhKZdB6IyiqSrW4SDzTQtJKlCerbFzIsPiFKMETPQSxeWCRIIC5M3WSh2wKrsXH37KR97xhMxtG+ggQbBjpW7V8oeteavvW/s4YTpZllPjF69Mb0WVu3pphKGugKIJUTOWN2zJcc9cYH/2NG7jq9pHve7wqS+xdl2TjUBRNlblr4KP82jW/S0KP02P2cNPQTQzEBr7vOS52rPTM9WslUgkPR1nADwz2a4OcVtO4sk6vEiGn2QQELAYLHDCPsWZsG0PJDBFNpV6apVUrUO8xaGmCX8BguK1cebQWxT9zkpFde1A8H8nx6b33EGv/cj+1FYbhfhBlRLOXPd0088VJ0dcSSqRDBqmaS6FogBSAgLzRQLJCklBqxzeJJrjLWj2oz5ygXmhy6Fx91XnLC3WatfC39tpl8tUbGJNG0YTOp5qf5P3DJrn2pOlv0iS+v4eRr/YuH58POmnRQRDBbiloxut/v14KWsRk9Oq9+HoMOzHIdLGF5/lErx9AG4gSXZ/i5g9tIDvULSD0amBo+062v/09RLN5fN8nPzBI/+goR556gtnJ89weLzE2dhopbRDb9E5kdSsIGcW4gaYXY7YRxgmqmkSJ3IyQTOLb8vR/cCP9t/SjKDGEFPYLrZnTBL5PzQ1QinUWJyt4889yrrQfAElSkPVQyOJuGEZPK0StyeVrXX6afY+m41O0XZZG32bhGGrTIbF5jC35O9itXYMZGBwYKuCLgKqYYndqhg0tmT5XcIyAfyx8AC8IY/YUz/ITH5mjZyzByOYM82dqPPz5k3zxD57m7//ro9z/D0f59qcOc+ThGaIZncqgzl3/chs/8ds34777jTQTJoGiUjgzw9e+WmHuGw/SPxIh0OHqI/fwYH4DV2dMjMYRANKeT8POE+sZR4lnCAiVtK9Hdd4Ng1HsRKfvSg0HrF/Yw3BlM7c/k2HrExW8qz/GW6KfI9n+exe1Ot88OgS6e8HuMF3S7QfAEulmNTqDLMUq03LD2ZqN19/IfD0kiYQQuCfPEzFbxOQiMbmALJtILYtIxCYat5BFcEmlFMXvuB190yYGjE4AVKm3g/LMBAP1Fu89W+a6ShWlXSxCuGWsRlueGVWx7ABJTaCYA1yrXYfSVv599thnOfLkeeymx+ypCmPbskzPnWJBdAil4banmx+ET7f5KlQzudiw9HgsEb1uq4XdqKNFo1TnZgi81dJ5SVUxszlqxXCAE8u8OgaUFwsyKzwuGtMd4mdZ6QaQ3UK0FqXqqYBg/QGDtz0SoefJM6Sr4TPUjCSx1FChYDV1HE+mfgmSbrF8hzSTggo+Mk+fhMbpWfyWgGaBuDtDqnaGZPE01tqtnB14Ky0Bc7qMGR1cdb6VSreKU1r2wOvVB4nI7XvfaOL5nXuvqJfWPXs1ISSJejQMEtLu6m3ZZB1RjYJlXNGkW7ynj3hvP/GePurFAm7Lojo3s1ytNJ7vZf7k8eX9u0q3yxs9mZD4SZsxKDi4jsPi/ByL06dpzH4Ku/QFBp9Yh7//QayFP6U1+Tms2l8TyZ6nVbTxLYtf3DyK4soUKi6OG5CKqDhusGr5Qte91Pao6KSOC0lBusjf5aXxwLr+KOv6oz/w+EAIgRCCdf1R7tqVZ+NAYrngwke2fOTVuOTXFM/1zB1IJVDdHLIf4+nMAH927jj/eSFMMfpQfGx53+/636Seu4m5WpWmHT4TC6f3AVAZMpnflOAdgUoPgr0KfP3Z7STftHc5is5/bT+9XzlAdUXhq5odo0d1cJxwDB3PXhwFAbRoh/zRNIfFhc41Z2Idck2sUOXVIk1k1SCWHaFw7hki9SYnZhoUa533Z+ZUR+28fv6v2DEtUGhQDcrM+tPca3+B2/tVRiMWLvDTUpXPJeaWj4nbnesyTIHvy0QuEXuVfEJDlcOHYXrR4vh0HVWWWP8ja9l+91q23jiImehOaL5aiOd7GN19LYqi4gcB8XSGjXuv49SBZzj4yIP47gJvfofPrqt7MLNXEV37U8iRvQihI0dMhBSD6DaivduQDJn0qMFA6Tx3Lj7I8EYDSQnH5oHbQjv8DcqLFVpfvYdd9j7mz+3DjMeJxGKk8iMIoaOrLlM9A0QWTyC1M+h8wFEiBEKm6Ko88Z1v8qvPppkvJggAy4yg1kNfyZ5kP+fFHA1hUUw4HBivUNVk4s2n6PEFM0qAh6C2yUKs+XkCoRCMXo9636/xto+PUJgKCfFYxsBtefhewLHHZjn19DxqQuXPrQp/XZ7h9586y57/9k0+8teP80d2hbqziPnVP+WqQ3/CVfv/gKHP/Re8yS+x5uB3eaJ3I9ekVVKtWQDOSxqJGQmRTODLdVJRhfHe18d/cSgXIdBj2GaOlplDUlxiifAeeHofmWqDybKM4SywUYScTyDB04e/xNn59eh69fudfhmXRmt0kSCabBMfroKPRqBISHaNVqMJpMmNTnBMEtiui9Woo8TjtBaamANRdFFDUiWE3SEDJO/SIkPit93G/O/8LnI+Alv2AFBdIt3yaxlxQMIn7dgc0FuULIMg8CicnWPtVQMIIZjoi7DvVPhwKtlt7JxfyxPBcfqj/XzmyD+ylTciKYLhzWkOHiswS2n5+weX0kt9mUA4KPKVQLqFz0izoZNIhg1AY7FAdnSC04888Lz9E7392A0fr53vF38Bz4zLCZqhkMhHqMw3qc26GEEETdVo+VZnp0yWnCtzWg5wBSwCsg31I8foT6mUdrawtF5i7QICVlMnqfiXZHqpqhsYiSRWpUzEtEAEHLFHuHZQRir5ePEpBC5XW1/k3t6fBkCPysx5G1iITtJjrk6NisgdyXTJ6ZDt4+aKCnmOzcoEDkXvDgxXohXTodwkFQjO0p5okeCRUZ3hx9r39wqsXLoEIxZncjYcKNYX5vHsFUGbJFE4fWLV5FSXdLu8MZAZB55ElWW29Q/zxLlTBL7P2SP7QagE3ixuXSUQAVAHH4QcpXT2ywSOjJDyHP68h9qX4tb3/DRv2thPoeqQjbcLmbSXL3TdS22fPLhAO7EISVZAuvzHJZczIsk0SBJaxMR3XfIxHQgLWSl+jkw0wd9UJrFSW7lBzzMgmRR8H5MoQU5GaFuh+RQAsdr08nlbKY2tmzL84aFp5lyouyofO9citqWP2qF5hBolsBtUo53nR/FNXM8O5fdAPPv84gOvB4xYnKqQsZsCWXYpWVFwZVA8jEgLyVDwLRfP0JFSKUQygacu4Nbj1ApnqRcnGa2WyBgqh86pXLsxTaNsYdVtZFVCxiNTuo//pDzE/5x7N6dyBXQiHHEP8LHcWmZrHl9tGvTnosxEOvYqKacTsCuqSqspE71EiCpJEvSmdKYWw7HrofMNAqDl+Oxem3pdr+1KQXpohE13vIXD3/oKsWSSwPcxY3GcVouDjz2CkUiz+bYN5IfSfOuefWy7eRunju6lbsnUjtnIKZDSgt4bN9Azc5jd84eRCBhX5pnLR1loC9ac84cIxq9B9puUsZg5fwarEbYxE5t3ceJYgJ2KolXOY84fwhEKauBy+MnHqSzMs+b6W0nnUtz58Z/mNsdn8zXX88Rn/5ZIo0m8dJQZM4Ua6eedvb/A/zr7c0T8sBiioRo0546yPXkXDxrgCfjMrMkvXj+BiL8P9v0tADNf+I8MffC/MdSEgXUpHv/yaQ49OM0xw2c2cMhENW7a/w3uOv49vnnyWn7n5KMcSw0S187x4OY48e0+xcQp3v9dn7pwufH4d3m8Zz2qpoN1CKVdKOaQrtBTNIje+EYkL8pEn/m6iURkSdCb0ijkNpA6G8bWw6PTHH52glp0gKHCY5x1Bxm/9VfY/uTv8yDhOHReXuSRg0d5Q++FFfjqkm4/AJYKKQBU66MkYicRgYd9Zh/sGiCW60GKx9AUBS2RpJUPK5iaA1GEAEWzkeodMkAKLi3STZuYQBsbI1JYWF4312p3cpHkquo7cd2mZIWKQK9VwqrbRGI6wzmD/Wcq+L6gEUlyl7eXaVHgSPEIJ7KnGD23g63r1/H4/ENkGhplOWyITF8i2SZAfF9GKCtIlcsZ7ZtqNTvqyvpigfTwKNFMlvpz/NzC1NJO0Bq7zEk3gNxgjMp8E88OsIo+rUx5mSAKggCRDY2je4OAyfb9nG+Pa6WKxPoHDQJjnCXvlmZDJ6u62CqXVPXSJcRyPViVMpIUEIm0sGsKR4sJNmYqNB6u4htFkruH2Gl9jaeN2zijbmNamWBA/sLzzqVJOgJBQEDT66SCjJlrOzvVavh+R8alXuRKj9caXjwKNIkBE9ddRe+Ga/nuqS8h146D334Qr+B7tlKdWVuYo1WvrdjWS3V2ejnolFQV1bh4K9F18cMjGu+oeXYMjvLEudADx/c8zFiUfDZJTQxRrhTw6gnkhIkIFJyFsFxO4FdwXHDPGcw++EWa81NUJ09THBwDWF6+0HUvtb1enF2+XqlbufmShyTLRDM56gtzFBsN1twkCMcGAsXJMRLrZ4wJSAwjVae4xsjyucY5nnAf5kb9Nsz8XlpnQ9JtrlxAPfM02dGw+l8qbTCkKZy3XQ7jMXcsSv/730JkejPlb30H+8iXKKc67VvLiuD4nfGcmUy9hnfixRHLpKkFPoYR4MYsZvQBgloEkaoBAclrRyh+5yS2aaCdOw+lEjvGs5yUfFRfIvA95o8/Qp95O63TLkcjMvbZRRqVFrIqMdZXQsIjLpr8m8o/Mpn5II/Lj3LcO8xfNHz+ZPMe3Egfv/K+a/ilz35m+bqGHcHSKEVRVZyKQiJ76VT83DYaQ5EFp+c64oyxnghR4/K30rlYkB4eZXD7Ls499RhCkti0+xoOPPogVqPBkUcf5NCjD1ItLmI3m3zv6e+w5q6PYRRraP0GmumSTNtoR49TcyRCbZqgz5skmYktk271cplsc5F5zeTA9Lllwi2RyRJPRdF0h0ReEKvOIwUenuNy+Jl9tNQkvdftYXC8DyEJdtx+1/J1V1xBSg1w1RZjn3uCU++/g8HIRob1DZxrHeHJjRbj01EcS2fNaIMNszoHNQ/LhW8cOMyNez+M9tTniIkmxulvsfPct8lm8zD2F7zxx7YQG4nyF/cdptB0uevU41xzfj+ZVpW3nXsc0ypTpIdvbK3znR1N2ClBACO1CXTW0vvUV3l03Q2sieuYwbeWr7nYjKHLBpHRLQQEDLzO8erm4TjfWuzDbhdUkBWPZLpCbXGQiONx8onH4MN/wsS5e8E9C0A55lBamKHcd2Gp390puR8AWkRBbfuIVUrG8oymuniK+mIBRdcx+jpm7Go8jj3dSY9UZAfJ6ZBF8qXFuSGEIH7H7RhWR/Ey1Ypyzl6A809xOKqw0C5uENM7FXdwqtSKYSeiyBLr+qLMtU4hGRlS6Z1MBKEngyvbPDn4NSauyvP1AyEBsEgYgPXQ8bLwfQnNuDJINyHE8yuYFkPSMzM6sWrf4V3XkBtfS3Wxc29iV0C1o+xgZ1Al5kLlUMkJyciHF+/jk4U/xZEC+nzBqCfIy6AGIAdgagLVltAqHa1Ws2kgjJBEUi4xpRuE6XhLGF4v4ck6D0/lsD2BFh3EEX34riBnC/JKCQBbRDkXvep555KEhC6Fz5Ad2MTkBGvMjauKUGA1CfxOmrNmXLkE0gtBagdKAkFQLyHJMq2oh+6s6ACuYNLNTGdChRBQm5+lMn1+eVtubHUbF4knL+t0+S4ARYF3vRvueDPprdu57l3vY92OnSiqSt9AP7df1cfgxFZ6r34HI//yv5J5z0eJbd6DFIljbLwRJB2ERnzje7HkOs1GCbdWpNkorVq+0HUvtT1oE209QyNk+8de33vXxSuCJXIrCHycaplYJBzXKm6aRl7mk7t+ByO/GYDNakd5u+gXGFmfRzZuRFLGqNstjj/8OZ75xj3MHL2XeMZgUzok1TzgqZpB8Znrcb0+hBpBGCmqZmcskkdeLqIAEL1ISLd4LIKvhr8jEmnho1KdS0DVhACyd6xDMhTcTHp5wmRzMYodXZFKeuxhfN9Dtx3mnplejhE0XSGjzS/vFxUtfq32BFERBrUnvKO8dfrzDG68Hys4T0PrTDznW53CDIqi4PoK6czF67H4XBiaTF9aR5UFOyfiDGZ0No90fdxeawztuJrs+Fpi+V5UTWXj1XvZcPVeNCOC3WhgN5uMbd7G4MbNpK3zpI0CQ/1n6c8UyOYUZK+FElTZ17ZdmVc9UtlO1khxYQ65Mst5t8G5M6eX1/cNh9YKsXid/uhx9OoULjLlUolqtc66W+7ijo/+C/a840fY/bZ3rbrm0dG2NYyAfxAn0I8fJzVVYcDYuLxPU/fxAp+mqLCzJTPkSPi+4E/ODrF44lF+3f1R/l/nR/m0fzPZYBEWjhD8n7sRv7uJs0/+FvVmjTWlSX72kb+lt1HEiUTJbd2M0tPDxJYeHtyyglIS8A9vcckNxilnBvhOei3rYxpO47HlXfy5NLHcGEKSQKugKq8vJZUwFfrSOo3Bq3H0JCAYHJmjHhsgAPxnDzJ/9jTjN/7y8jH1lESjPM/T52Zf9Lwr0SXdfkAs+bqVCwHB0DY8JYIbyXDq0VCOqPd0Al41HsdeUcE0kHwkr0OImJdgIYD47bejOjUkLxwINGsR5pJpXN+jaGh8vT/sIOKaTUKzQUmAW6Za7Pzu4XyEHj2sUNbIrOFu/xribpJhZx1n8gc4nzvE/Ow5ytTx2rnTvSKxfLzvSSCtrnp0OUMALUvHspKh71GhQBAEZEYnVgWgRiyOEU8sF1EAiF0B1Y5WmstqhVAlUXaK+IGP5TcJhM++cZupAUFOhkPbLXb5Ers9QdyXcBUfApBaMvOzaZp1g9m+kDS+JJVuK33dqBIEgrqj8sh0Dj2RIPPxX0a6/f/GfPPHyE/0Le8rasMveL6VxRRqXoWU9hxfGcsCOu+jalwa6RyvFdRUfnm5d99Z+PTfc92359G6pBsAkiQTzYX3yKpWltW70WyO9PDYqn27qaVXCHp6YGIC7ngT13/gxxnftJWrbryZnrEJDlt9JLWz7E09yY0bZKLsx37TAuYvXU3kqnH0xMfRk5/AC3IIXUHoEeRYGqFHVi1f6LqX2i6pETRdJ2KaaFdwmvjlhJXFFOqLC2RjYZ8mkPD0JIUzJyC7HrLr6VtROKJUPIrZk2Bs5xsw5LZiV2RolM4xc6zCwunH2TuWXt7/SVyCIMCdbaCtvQP97l+npnVU44MytKwm0XiCWGaA7PDoq/zLLwxRXUaOpQCQFR+9Z5G5GQGSj5BATUbIv2Mz6vgYQbuYgnxykTW9mzonCWxqkwcJZAnHCMdZQhaMb++nabVWfV+udIQPRT9BSqS5WrkWW6rzuTNf5sNf+TEWRThJYxBBr3cm+2VFJZA1Utk0lxL60zpv3pljrMdk7/oU2utMRFyJkGSZietuxHNshKKQzOVJZ7MkMhn0aJTxTZvpGxpi855rSA8OLx8jpADfDYllWVYoNCvUJY2CAFVT6R0ZI5nNYVsWp+79DDNTU5QLC8RTGTKJFOn22L2nr4CMgyCgVq1x/KnHyNz2YXq2X0dv6oX7mNRgZ/y+VS8zd/BeRGATVTrPv6WFk+NW+QRDER1HBDgIDlVizFYs1m/dyd+rd9MKVOxAxkPmu9JuqE7z9uo/8BvyZ/n5ff+EHPjEnQbqmmuRtv8E0bt+k2+tG6Zd74+EF2OzvJ1pf5L/tv0+PvfR/4QtJIicYaLVWL4e3x1Gb6uAhVF6Zf54PyQ2DcWwtQSeHkdRPFTVI9oX0NISZGtN9n3tS4z0X81VyXXssMFxWwS+x9Tk1EufnG566Q+MaEqnNNvAbXlIPWvwpo6gNhcpTy7SLJeI9g3gHjuJIgRKPEZrdgXpJktIXtgpeJ5AkS+94NTYtg2lr4+IX6Mu61DWsCIJqtWzPNOewSuoEpoEnieBFyr9KvMFIAzw4xEFX1lEcjP4WgwpOsqOI7fwvbF/BuBvnv4NbpS3U/A7965XSi0v+55AVVcXELicIYTAD1XKVOdmAKgXFggCHyOZQkgyqhGhZ90GAGqLK9JLM5d/EJAd7JBuYiGKfyiNV9K45+v7cHfbkIEn1zoIPCTPx5NBxGLI1RpjjmD/1Ta3PxLh0Hyayekw+K+PRslpMrp86aWyRbN51IiJZkaJ+AGSAqreoukqNBwZc7EAbW8YxajjKmGbpMsKjx8rIckSO8fjy4TuymIK8Bw/NwDLQqwwdVO7SrdVMNOdoEz2gWKRONBbXjGYvoJJN4B4ridMIwU0M4qsaST7hzASSRRdx22FbZoeT3y/03RxmaL/qqupfPtrSAF4SHgBTJclxv/qj7lBHmDqqwvcJ01jbzyHFL8TajrejE/kHVsxd92E5KTw1RLA8vKFrnup7f5kjeHZZwDwrStnMvByRjTT8TatLxZIj41wZj6czJT9HLMzp1h3wy2I+jx9K3yaC/EAXIdBMUXP236Wx7/8uzjWeUDQslI8ec89XPeJzcv7P4ULTqfztGMRqkFn3Ou5EWZKTRrVClAhmrw4CKSoIdNUEkTaboa6rTHnqaxdyEBkGnuxhpoxacg28niO2KHzUK0xaKaYaZ/DsZqUJx+l/+Zbqc3UCGQJsy/B03Mtqs717M7dRN/C/eHOns2e9HbWSL/Pfa2v85TzBL5w0N1+SlJIuvVIfYigE9AjGUi6QjKdeu1uzCuE11vx00VYUXbHO97DmccfZvrgM+jRGGvXbSR57PDyPsVzZ9CiUUJpRIDve4gVRktClphvlPBiIfEcT29n/vyXAQh8nxPPPAJAtbSIq0RY386e0w0HVzKQAodTTz/G+mtvYO8730RP8sU5g9TgCGceewiAWDLJVKmFJsHEWfh2Oxmo7fhE89jjJO54N7sOtPhKe/z/tzO9/NbGwwRv2MLvfvc9PJB+P4P1Q2wqPs6NCui0eIfyJc7Er8JqRBFGHHPiXfwJf4ekSzSDFqqv4AqPX7b+HX8o/wUBAWvia/h29SvAGylpTzNqh5MRNV9moWwxuuNaACSj/PL/WK8gUjGVjYNRTtTXYlTabUtuntPDN5Kb/TZP3X8vN7zlbk4vnKGkQSwfkqytRumCzt8l3X5ArPR1k1oB1cwE8faAa/rQM4ztuZ7Wgw+i+EGodFuoE3g+QpZwfAk5CIMH11FIJy+9gF5IEun3vx/j21PUs1nwJKakBCPRTjA0E1HZUmmRjdepl0JlQmNhEt/fjNQuBby2P8bJc+C5DRpaH+tnr+eRoa/iKC32Nae51ruKiugMPvqljsLB8ySuKK/2tjVA00ph6GHDVDhzEtdq0iyF1Z7W3/Km5d1XKt3iV4DSLZmLoGhSWDyiruJ/ZxDKOmcoYTgC3hruFxASbqpQkVJpqNZQ3IDBRZkEgpbbaQ4r6jzCblySSjdZUUgNDDF/4igAm/b0c+AhOFbX6Us02D41BevWA9DwaxTT9xFIFpHFH+VcPWyfRvMG2Xj4kqlS52WLyXEyan71F1oWgs596irdViMSz+GKAOU5Hp6DhRVK5yucdFupzrQbdRTPY2jHLoQQRFKZZUKu6xd4ZSIzOs6eD/0Es//pP1JaP0xFNZBEwNnEAOLMFJIi2HPXu3ji4LfxCseR9S3gSUx+/dsEldOImQZBX5jes7R8oeteantPKwcb1r3AVXdxqWJlBdPGYoHBrW0/YRwUJ4cTn6U0PUV66Br6j3bSihamH8V8ykXsvhFHj5If38nUofuAAEnOoWgGC09/idH4bs5UW1QIWMAni4QAbFOh1ibdDEz2xmwONkvL58+Pjr0Gv/6lIYRAT2agnQUaibSYq8XArUAphpYL0HJR0q7MqcVsSLoBZrmKEjVw297WM8cPc0eshr4uy5pek/1nqiwutgCFQ+v+LaXkVjac+GMEAUm9Sk1EucN4G+u9m/kef8+jTqeYWF7uxbE7vrMEBkITKGo3zO3i5UFWNcavvREtGiM1MMTi2dNEUhmapUUiyTTNchEjniShpKnU5rG9Fs1yERFIBMJHN00mK1UgjMPqtTxD6+6guvgkxflO1V3y4+RG303LOoKmu2HdKEni8JP72HzTG7nmXe9fzrJ7MUTTmbDgVBAQz+ap7/8Gze0LxIzU8j5BNglnHSTbRvWPszFIc69vYwl49ljAs3Pz/PgdX+btt8S457TE/zM7wT3BGhxU/p36T/gtQWbwEFNzA2h7fowj0fN8MX1fWNTINUFy2bRwC39pZ5iZ+xgM/w+eqDwGMVDUnRTtB5eLrhWsKHo0jmTGCPBRIrUX/F2vB9YPRjk1m8fREqh2BReFhaEbGT/3PXqFwvlPfpJMpEWpX1BXbfyVqoOXQJdO/wERTXUCSr/pYqXGCUR4GxdOHsNzbIiHHgKSoiBrBvZC2BHYiolMKB13XYVo4tIkRJJvuWuVr1uxIlONrfC1aKfNZiOdGcDAmqde6nze1j9I0T8Bkkpd9KH5Bhvm9wLgC8EJMUuBFUo30VEz+a4gol05vj5LiqOGlVpeVzh9nLnjR4DwOUu3vQAAqotXViEFIQnW7OxBkgX1s0C5845ah0yC5uo07rzeh1iRptZfDLe33BX7GaGScmX1zksJ2fE1y8vJZMfz5GwxRnD8GLSVQw2vRiBbICC6wkvm1GznXfWCjqq03xh+nqdWYFkIOvvIapd0WwkhSdgr2qtACYOAZH1F93uFp6XFVvgQAuQm1i4XTFh3021c/f6PsPdD/4K+Tdtej8vr4nWGJMloRoTsBz9E33ydQaVBX7SOJxTcsRHs8VGSJ8sMyn0MjNcR7UGwX87gWw5Bxca3nFXLF7rupbbrKzIWLrXiWF28MNSIidJOi6wXF0hEFOKJJgIZwxqlKtvMHj0IA7tJyBEi7crns0YN/fF7UeYmIfDJDG2hGLdpKT6HJu7j1LU1vpad5hPDDm/tTzBJwJdNHwFU+g1qPfoy6RYhRhAEbZVb6DN3sRRSAEjkO2pAw7RYFO0xVSVB4IWKz3EtoL6hM0mnz57jibECstwhwg7d/222jsSJ6DLJqELClMk65yklt3J0/ONM9YYTyqlHf2X5mNFonB81P847I+9nvbyZ30n8OR8I3o3V6oxDAhHhErTk7eIigxCCoe27iOV6kFUNI55AM6MYiWSoylc1IrEEg4nx5WP8tsexJEnYSwqRACrlGK7fx5qt20hmc4xu3MzZ8VsZuONjOHMKJ4+NcHD/Wlw1gUjm8O0miXwv0dRLK1yFJKFHwzhZUxUUTaMyewIj3plACLJpzEicpq7hn7mfxEiCm5sqGV9wJtbLb8xs4vh/+CzNP/syb198iv++5Sg9Wou/b95GeSaLkAKSYxa9bx2g9aHt/P7A37SriIPTHAUngS8S1D2fkhWlVdy7/N17h/axsTlJr+dRQuJYOU8kPwQEWMZJlIvIbUuWBBN9Jna8jyAQxBNNzGzAM5s/hl1bz8K3niTZCPuHQEBDv/DMu+4UwA+IzGCUvjVJmlUbt2oTZE3quQ1kgzKtwjRnn3iUib4BKIcdpRqPYc/U0HvjBG7nD+M6Mlri0lO6AWijoyT7E7QLsRB5qkZhfUepUFLDtyeiuuhSQMsX4JYozRaJZ0ISQ5IkdN1GdlSscjjI2DJzI07qIEeNRe6TDrA16OSo98tRIJTBup5E1LhyHt0ljsP3VOI9fVTnZmiWSsvbe9ZuQFkRtC8p3YyYiqJdRC3Zq4h41sBzl0ijFYGPK+F/ZxD5rrPLq/JaHyQ6ysxsNSQ/LG/FvYqE5HhEvnQqX61EZngMPRqjVa/RKEwSyWg0Fw3OVU2clod25DBs30Hd7RDbm8ZUnjggsN2A8wsWa/oipGMa16RuYs6epmDPsz62ZfUXBQGu7SJ1Sbfvi8ndozRLMyTmm2TyI9SmjtJbklme9rvCFVxGPMHonuvwXZfFs6cZ3X3t8rZI18etizbMPXto7NtHcv8jNK4fR5E8PF9gHjuKKwz6t64jGHQwjEkmz/Ui1Xupqz4iEhC0/WGXli903UttV+ROZN+l3C4PCCGIprOUpydxmk3cVpOYrlFt6xSc6ASLR07RuuYN6EPX0Dt3H6ftEo2YzJ/d4fORZ7/GlrUDHIv38+3dC7jCJ1/UaMol5v1ZZuU5fn7sV1i0Pb5SsXh3ysDTQn/ZRhBO0keI4dgtXCdMX8qPjr/o9b4eyOazVIWECHwikRbNmkExGyVRaOBO++hDEprvs26oM9aKLJSZvWYBz+uMq/Z948tc++73o5tRNg7G2DAQ5ejX76GgDhJtnOPRnf+TG87/LpmDf4nqFHDUkEQQQnCrfhe3aG9GEhJydYqZNukmJAnf15C7pFsXryAGt13F4LarnrfeL9TwLJvyYzVaVp1arSNKkVUVw/WQXB3Pk6lVYhSaYwzfsZVAksn7gzBbJfB9PCOOljcZu/MNjPZEuenut/9A1xfN5GjVqniyTjTXT3nuJJmJTjEqR/Ox255zc6dPMLKmzEZH5sF2vPNkfj1/1XcjH37qm1SfmOSGd9X457UznPyL/RQlSN4WDlhT0af4F6d/kdPaIkptA44ByP4iAABrUUlEQVRwGD9xA15mjLGUyQlFwpAETnUz5MNqpafUB/l4OZzMT+Ez34qh9a9FoOApZeSLjI4a7zU5ZSSXJ/Bi3gznU+uBdezPXIMTuQf4LgD5baNsU1Lwua+/5Hkvrl95CcBM6MycCFP8ckULsiZWapzWya9DEDBz+Fny6zaz1M0osTi1Q7N46zbQjEdYotkcR0HXL12hYf7GXfBA+DBGnm1Q3NuZzSq1iR4hIKtbTNm9gM/CyWMMbxpc3u/2Ddu5f38dtxyqbtJWL4psEIgAC5vDy7QeDMgxIGzIHA8iypUT2C8pi4IAcuNrkVUVhKAyM4UQYpX6w/d86uWQnLwSVG5LGFifgntWrxO6T5BpEjydx487SG8IU9R69H5Idu6N2Qrfw8bK5lAPvRme62d2qUBIEn2btjJ77DCqbtBHiVOLffiBxNlKlLXPPgtbt1H3OpLuhBplNB8wX7FptDwePFzihk1peqL99Bj9L/xFto2H9BzSrTvSfS6skV4eih2AIdijKew4KCOvVMVc4aTb0mwywPDOPd0KpV28KHKf+ATOs9eRPvzPDPbP0mhJ6P0mzz7mE1gOiq6TTFuksmex5atoNv4v5qUa+XYVwKXlC133Utv94kloe1uZqksXlwfMTI7ydDgGbSwWWNeXZmq+hkAg5HX4wQlmjxxgZO0u+oXCacDG5+RtG/juVILtTpnv1r5KNRIGuYWUTTOYRUIiJ/VwT+k+MtpW7trQw2K8rarzOsG68Awa1c6kWG5k7LX66ReETELnuJ5AtUroho0A/PMOciRAzm4H7Rwl4bDNsjj94Z0Un14k4+nc3KpCjwJz7ayfVosD932bXXeFBIMQgg0LX4TZZzi4/hcBeKr3w9xy+G+Q/AaQXXUdEVHHrh0mMjuzrHRTFBXXUZAj3X6ki1cfUjaGBAyXtvHs498Kq3G2q/bKioIF5NvVfm1b4/xRjZiTREkbrNkYo3GgjF938YE1bx1nJP/yMmwi6TScPYXstUiv28HciWMkVvihl+U6PRN7mDryXXzPp1o/STS/mTd7Ep/z64zKDf5205tRAp+fcJ9m7nMHQBwkk++lsWBSPOMQHYcnNIm3zZb4Hxmw1UWuenwXu8rfIO+n8Yp53nnDR1AUmcriSX5DJFkIyriixPXNMNavuSpTzTgDI1sBaBlnkcXIC/2k1w26KpHJxHHbNIQfT0DRQXXqOFqSmN0pKDe6rsEOLkygcemyPq8T0r2dG9tYsNAUQSQRx1x7FQCRVJr5WmV5HzURwzpXxo9FkNyO15brKOixSzfQyr9hJ5JnEWnMop9vYlc7gXZTlmi1vdt6YrWwmIJXozF/inNH51g4X2bubIneWIYSJ3DKnftynTOOFiiogYwqFFJKgqyRJbFiysoJAgz50kzNfTlYij8DP2Bg6w623PkO4vlefNelf8uOVf4j9bJN0C5THc9cOfeobyKJpKweYEm3nofpKBBAWSd4KiSG83o/rFDP+CLAUgKafpssNjyEFBYQkMSl20T2rt9Mq1qhOjdDQq4gJJ+4aTHTiIBjw9e/RqsVDuolJCJylM0jMRKmgu0GKJLg8Pk6Tfv7SKctC0fISKJLun0/DBgd1e45Mcup3ucE51c46bYSXcKti5eCumULOMNQjWJGXQLLZqB8nLW1g5h+CUlyMOUqevExDPtRRkefxbAfXbV8oeteans0MRcWOvIhZ9ovee1dXBqIZrIIRSGSTFNbmCMbjeHqMwS4eHIDu3cjZ2sq5+wMMWNs+TilPsfnIoc5IhbYJ82QcFUkX/CmR3u5/ckN+Ph8z/k2j5QeYMTUWBs38IOAIAioBXX6pSHSIovq6KtIt/xFRrpFNInATOEGCs2GjmFYTHntScq5Jqx/O6mWhQ/kN/aw7po+WidO8oZpeHSstOpcj3/xMwTBCl+kZon1Jz9JdvFRAISR4IE9/5t47alVx8mKRIs4QWwPRmMBRZHRjQi6GcETKpp56Y7furj0ENsywVXveh/DO3c/b1v+ztuXl+UAmifLNA4vkjRUWrNhARDJkLnm6p6XPQZK9PQtL8f7x+h9zy8QtFrobU+5alCmd/314faoinP+WYyJBOOLAW+r6Zz0ohDA5OhVfFZsDE+kyDA3g73jBk7f8JsofoXr6iVuakyiNYd488PD9Fuht/j8TJHFyaPUZg8Rl2bZlVnkmuZalEDm+oaFEYQq8RPVLAgJrWcMVynhKVVkcfFlZQ0PpJaXUxMGWw7+JTuf/gP6Zh8hZndSfqfqdXwuTKDRbZF+QERTGqoRPhzV+Sa2G1C3PJye9ST6BmiWisxMn6fWzhtS43GsM0UKZR3J7Xhtua6MFr90A61EzsSXDZpmL7X4CKlvhel7qt3CVGKU1PDRikZaKFKbtfcanH36KEefmOTUMzN4ns/1I8O4ZYt8b4HNO46yXpvgx/1b+FXv/dwob+N9G9/PN9/1NSS50yFb+OhXEOnGCqXbEmRVQzOjq9JKAaqFjhdX7AooorAEVZPpHVtR2VD2CbbMI249C1EH/5ks0nfGeV/sp4nJ8VXppXIgONXj0vTa91m/tFNLl6BGIuQmQoNv4XmkhwpUGwYHF1N4DYtgZhp1IVTtmnIUIQSSEGwbjZOJqViOz3Sxxf7T1Rf/EquJLRQkuVO1T9auHBXqhSKj5pdVkwv2HM+OOJ2NQoDSFZ130cUFQwgYWwvFJEE1ijsVTjzFNJsNvUVSUo3NvYtIio+seGiai6x4q5YvdN1LbZdEgCSB2lIYGtrxOt+YLl4pJAeGkISgWS5SPHcGADU5TSB8VK+HcnKCeW2Qx49X8JSNy8et1zMUhcV/Ub/Dk9I0vgh4b+tGko0kfQtNpHZX2dJmadXKPLlY53DFQghBLagy7Z+nGBQwA4lGbQXpdpGllwoh0FI5FOFiRluY0RbnlnxxXQ+Ufp7KpZg1FGLJCJG1WdJvGGdDqY+F5CyZ7R3f2VqxyJd//7c7xJtVRgA7j/x/rOmLUPc0yvH1zPbsWXUNnhveTM+ZxVs8Trli0bKaRMwoTlMiNRB/LW5FF10sw0gk6Vm7cdU6SVVJ9fWhRVYTS17doXqmQuCEz3F+IkncfPmT1ma6I8BQWhWEEJwrHCcehOrsil/GiGeZGJ+gWneonDkGwSkA1rkSNwtIy/CtaD9/uvXtVG+8heqP/zKtvbdj3/1RzvVGOGyEsdM6x2HP4QH66kX6W7OYyQ7hVzh3gH7xBBnF58Pnf4R/OP2r/F/lToxwvJolksohKSotPeQOZHHxjYGzmU6cGMgBiV/7GY7lPNTFe4jZHeHGkYePMP/IhRVT6JJuPyCEEKR7QxKptmgRtBt9ywnIr92wvN+0FP4BlL4+bFliYUqsUro5joIWv3RJESOmomrh49M0svR86wSJwhzXP/p1oujLKaYIyK9UINWPEwQenutTmKwQm11k68aD5PsKaJpHQpjsDtaSI0EqmiFhJHEtCyGB7etYXpQmDpp06d67HxTLSrcVrNvgtqvY88GPPs9foLrYQlYFyZ4ImYFLmzT6QdE7voJIS3pICsh75xHrQ2LJaXns/0aYkosswzveCbfdQUuF0z0uvtVuDtv+BuYlWkRhJfo3d1KPc7kiEOC4EqfrJg2avPUxjWhTYCqdQiWaInHthhSKHD54U4st7nl8jmPT9dWz0QCWhYWKJK0g3bpKt+dBCEG/MQSAGzjMpnwen2hx5tYt8O73dl7yLrro4sKwcRPsuQ6xkMdQsyR37EQfHEFuOayJVpGbDfpji2TNCqpwyZqVVcsXuu6ltueiVTTJYzBZ75LnlxGMWBzNbAers9PYzQbpuIQvtcfxamd8kFA7hWAm5Ai28HlWCqsTGkY/m3s+jKxvRQoEiXrYP5aNecpHzvDbR+b4/GSJiuPywPy55fP00lG6CUkiM9hRS18sSPV0vJzNaJP52opx+fwcT6Y19qUNAk8gaxF67t6COrCW9wYR5nMO0UQSSVYIfI8jD97Hge98MxxjWOGYLR6UGc1HMHWZbP0ohcyWZRvUlUkItdp3WZA6fagZj+M6Mj0TnWIPXXTxWkGPxlaN6ZK9AwhJ4h3/Zid3/7udpPs7bUftRGl5ef32H+55XSqkAKC02u/QztuI6WFs1KSBE9hkB7Z2vv/Q/ag9EQSCvcUIG9KhOKgpZP7L8LuoTWyn8e5/Sa92nD8r/gH3rFCPfrD1BD3xFmNRh7v6BD+59lHeOXSA652/I/nYH2M/9gg97gl61D8kby9S8+PcOzPOojJK5qqbMA2flh62edJFqHTTjAhLTq2S26KRX890Os6x/hQxp3O9CwmJ+uNPXNA5uyOEl4F0X5S5M9XQBLvuQFLHsn3yG9Zx+tEH8ewW8wLGCNAMA83zWbBjSF5H6SY8gWRcusSREIJ4LsLiVB0rkqUxkEQ5bhGvlelxFbxIBqozAPTLNaaVdNgIOUUo7ydIXsXksQVEfRpJCtA0jyBYHXt+Yu/Pkhocpjo3g6K4aFILaFGTdfQrinRbYt1eet/yfBPPCSjPNTETV5biaHx7ntJsk0BxOZvez1KTKN08iXayn0TW5OyBAtVFK0y97R8A4H5jH2dqZ8MyNITppXDpK90A4vle0iNjuI5NMDNNJldmcSHFU57Je1qhpH1sTqGaWS2N1lWJ7WNxDp+vk4goTBVbHJ9qYGoyg9kV755lYQcKclvpFgQCSbr4Os+LAQPGCKcaxwCQhUywezfx6AbQsi9xZBdddPE8pNMwNxsur1mLltgFJ45DpYK8aTNcdz1jr8UEwPQ0fOHzYKtd0u0yQ2Z0nMn9YerU4tnTDA4OU0nM4xUTq/ZLKB3y6U+rx4ghU8NDk0ze0ffvQB1kMlujbxKSdZVS3MGXPO6/+s/I+hEmrSy/uO9jWNEKkXY8nkEhCAJiyRSDm7ehXISTWcmePEUEgoBoqsm5M/0sZHRyZgt/bgZ31GXK0BAzERicByC1Z4D3Pv0dfj93juv2vomnv3c/LS+c6Pzan/weqhFhg1WmofRgGilUu8obt6Z57MHQ7zkQLUSgE/gQTRqI+QOctY5QX+HYkMhkaRQkRkdSr8Nd6eJKh5AkFN3AtcLMo0Q71ljKxrnpAxv4598NU6Xt6fryccMbX7pK6Ut9r6zpeHYLyW2R0T1soREzc2CfBKAaVBgc3Eoq8VVKFZvm2YNkrr+L1vQiCJO92iKnRD+jgcyjdZvfePI8f6RG+bJ5glO9s7hmhF9cLAGwNTnDjfppPBI0vT7iaouSrQMuiqig8CCG/iCeG6EhZcGtcK6Rou41yY5sp2UL3GToY3kxppcKSUI1DByrieK3WGgIEmu2UzmxH73WQAQSgfCZSyk4p05d0Dm7SreXgZUsNbXQw6Npe0iyQs+6DSiGQVKSKIsANRm+ZE6ub5XSTXgSXOJpWInsUslcBeO0zdi9zzA4c5qgVeGc1DFoN5Qqanw9uKHXnWJEUYNZWk2H2kI4G+h5EiWvnwAIhMCIJ0gOhMoQx2qiSGGP6gUK9YiHKi6+AcirhaUZveepjF4A5fnG8nIyf2kWAXi5GFiX4q0/s523/eQuRm7s/HbJCNhy/SCzJytUFixOPT2/6ri4mQfrhSqXXvpKN4CBLTuoTk8hgoCB4VkUxWV+NrGcrrx23qBXH3jecUNZg1u3Z9HUkIy0HJ+pxdbqnZpNWoGyrHQLuPg6zosFA8YwEclEk3Q8PPzAI6PlX/rALrro4oWxYSO84264+RawLKhUQhXz+fPw+c9CtfJSZ/jh4a6I9ruk22WF7Fin8t/imZNktTwz6mP4uPiiCYGPbJXpi3Ta8XrgYuGTkFLcnPkQY+Y2hKpRGjqEJwKStc4zYmkNbKOAFztNzRVElU4Arjk2zXqNWrn0PBuRiwXpuIFrpADQFRtJ+Nx7rhc/gGAuHNvHLAFWBMox8ME6VyWe3kWPdRJJkth49e5VZX+/9ed/yFH1Wp7q+9ec0K/nqc/+HbMHnuL66DH65u+lYaZw5XBQXC9bTMz/KS5xZpqhZYOiqpixOHI+SyLSfR+7eH0Qz/WgRkwkRSHes7oQWd9EYpl98S2PaK9JMh8h1fvDxxx6NBQLCAIqNYua5WHSmRSo+CWacoLtm3IYukysb5zS43+CXfk/2JVPwiPf40d5iO1n/oyPnfs/JPQH+DXjO5xRZxlq9XBOVTnrxjnRzFO0DRxMVFGG+BksktgYeFIUvy1isOUcStBkpq7zueJdzLdijGzYhEgNEI160K4OejGSbgDq0iyIYxEEAbnbf5zs2DpktUW0nWK6GL+w1FLoKt1eFlYWUwgqNmIQ/AAcLyA7tobpA/spAbKAdLvSpN0ziFZ8Zvk4GXHJk27xXIfYsIwM+aePQR9E62Um4+ELFPggZI891Wepve1u9n/ps7i1SYRcIIinEEEYxDfqBtXsWoKRLRjWLLkNm5cVXnazSUyE5KYXqATRK8xs+wU83V4MlfmOp1viCiPdVmJLfCeTVugVYEgR1u7u5fGvhL4sJ/fNs/2NnVSNlJqB5oqm0Lg8PN2WkBoYIrdmHQsnjuEKQTxZoyg0JoXBEBZ9i9Bn7HzecUIIZAE7xhJMFlo4XsBMqYXvB0hLqRyWRSuQO0q3i9CX4WJBWs3x4eGfoeqWOVY/yM7kta/3JXXRxaWP3nZq3003w/AIPLMfpqcgFoOjR2F+HhbmIdcmRpaWL3TdS21vdia6kC/OwKGLl4dYrgfNjGI3GjiWRTyIE9dMCj2fIRAt1j+QRNYyNAd3rTruw/ENjPf/HqwIJG+sbOB46hmStedPGAvZ4UfNeSY9myfb66R6x/ezb826V+X3/bAwdRnPTKNaRYQAM2oRSFC0VJKei+JCvNlmFxaTEGtgrk3hu3E+9vjDfDNaIhtNMbR2PeePHQWgVa/zzSMGG69uMdMuUNEsl5iPDrDrmY/zzTd8lXosQ9Z3Ge4ziR16mkDfTss7D0A8nUEIQaYvQFW6upIuXh9sfvPbgBcWSyiqzODaFJNHSwA4lRbv/S/XviJxbSSZplEM1WOp1iwL6gRRuVNpsxKUEQTE17yJT2x6nC/si1Gbaau0Agi8Bbwpi4gfioSm09+kkqizD3ijtJer9u3iM+cP4CNx3eA8E9E0hcgoR4Z/Ds8POPTtT1KdP01EHuGOHWmKa36G2LO/ydfPBHhBkWxfP+nxzZQkiVi0M4l/MXq6QeiNTRFE4CN8By1i4GbGcCdPEmulqOlF6oZH6wIvv9sivQyk+jpstFPuPDRN2yPR04fcnpUqC5AIkPI9eMkMkhPu6/sCTQSXPOmWWJFm1jRy2EUFtyURLc1SVgRFVQpVWpEWwrKIJ9Ok2r4UgWcheR3FUaMeIWafxZc1asl1HJr1WKiERFur1kBZIt08Bcm8cFb5csALebq9GMpt0i2a1FC1KzcAGDXXcnv+7fzEyL/hvYMfJTMQXSYhp46VsWqdAW1KzRCsUrqF6aWXg6fbEsb23oART6LLHoMjc7AQYXqpRHcQwOFDL3qsJAn60mGb5noB85UVFfosi5a/opDCRdpxXgwQQiCEIKGmuDp1/SVdGbeLLi5KjI/DjTdBNgdvujNs2+wW1OvhvyuXL3TdS21fItp2XQ1XPX/yootLF0IIetZvQlZVavOzlCfPMW6uI5BaICC6dxSpNkesUeE/rPknfnH873hT9sPsyv/7VYQbQG90I2t6hkjWn0+6+SLgZuFi0+lbg0ontuhbu/7V+5E/BIQQqKmOyi8SbzBfjvLsYgalXKW3LBNvtgewvgy1cEwlKTJafBPpZpjyNjA6ht5WlPi+T7PeYPL0YVRnAS0aY/74EU4cOElw9SfYfuT/I1k+QEFSOFJysT1wS517mkhnCALYcePFVXiiiysTS+O+5+KWD23kY795A4Mb0lz3rrWvmB1QNNvxhdPKofAgpnTSVit+mUDIlFiPKyWI6y0kI4YcTREb/xEkpRfhbwQEtuJTjYfqW4UodraJOTeFj0QA9PRuphgZ58jwvwYhI5BID+0FoOlpfON4jP3f/We+cljCCySEEAxNrMWPpACIrCLdLs54VYt04sCM7tESETI3vBvJZFUF08ULrNnSHfW/DCTzEURb6dEqdh4ay/YRkkSyL5SSugIaQDCxHnwP2WnQqOssLiTQFS75WdH4CtLNMkImvTGnYRbOEkgSrbYEHM0FyYNKhexoR64veYXl5UbNINk8jrlwZDmfct+pCp7nU6mHsnUA35M6cs8rBBfq6dZqujSrIZmU7Lmy7tFzIQmJNdGNqJJGRDYRQjCxI+yMAj/g9DMLy/um1ewqpZu4zJRuALoZxcxkEYCieERjTRbtFKxdB4YBzz4Dtv2ix/dnOuktq1JMLYumUJHahWOE1CXduuiii9cR6TS8+z2Qz4cTm5oO0Wj478rlC113odt1HaTukPpyQ7JvAM8J+8bCmVOMmR3V2ZyxiGYYjBs1ehSD9f4ib8h9hKIy0jlBe7LUHdvEDjnPOl7Yw/OBssCNdFSTfimcQJUkmfzo2Cv8q145xHKd1LVoJBwblBohCTawKHeUbgDlTmQaDOxkhzzPk87X+Y58kDVbtmGYnXHr7NkZHjr2JJnhMQB81+VUo5fBqS+gO6HPXtP2eWDnH1OfPIVpqCSzvaRyeTxfJtfbtW7o4uJFqtfETOi8899cxdabBl+x7K1opkO6uaUCvQmFvNlpcyp+CYIATTQ4YL2Za7YlGfuXv8fIJ36LkbtuRU9+CC16E2rmncxPaEtW12Snskx8Q0W3q0wZ/WTXXs/cxn/PmcEPgxA0yg6Th2s0yyOkB7eRX3Mnsfwm6qUmBAFmIsvgxBoisRiukUSVQdU7McfFSrqpkU7GWFwJY0OhqGRueivRVqeCqfjln72g83UjpJcBWZEY2ZzBaXlYjk8QBAghaNohMZTsH2Lx7GkgVLv567egNheRAhcz6mI1DfRLW+QGQCLbeRibRvhSN+Y0onPHgRuY12X6rLbfSX8MqlUyI2OceCBc5Vkdv5VGPUKSKaqLKlZylEgmh+/DsekGditY9nzwPAnZuLIIpWXOzf/+rNvK1NIrzc/tQjC+I8/pZwtEExpzZytsvC4kx3XZQG1FWKaSlgopSJfXc5YdnWDxTDiznExXmZvOwEQr9EICeOxRuOENL3hsb1InasgYqkSl4S63eVgWDRFjyVZaVq4cr8UuuujiIsVSp7l9R/h/F128TCT6B5bNyYvnzrD2xltJKRkM2USRDHa88+2oRgTjsYeYaVSQNBtf0oi4i5iWj61oVI0E9sA4vfskiuUami2wtdXjuZpWphF0xnBBtQXIZAYGL+p+NZnLUDazgEBr1ICAYisMcAYWZWpGp7I5joq7KHCdFmrawH3Y4o5vnqGQPIe0fhOltI/R5h0F4J73qdsWyArRdJrFYoH50Q+yafKvKWSvIVXaz6SVpFUNJ1ENuYXr5bBbyhXl+9zFpQshvbJWSZFkasWnAK2xgOR11lXsMwTSApYektKSJ/BdC0kxcGSFZI9OaaaFHEzQinZI8o3TFvJsKJTpp8bItjsAaGASODaLUxYLZxtM9BU423gzqudQ5ShIKkKO0TvcS+/gaHiNqkM+rRHgLZ9fvkjpqJUin4F4wJwvIQUuXv8YvUeHGCptwFLqnF57YRNuF+evvAQgyYKpYyUAeq52UOIalh0+QEuVSgDKIkD09BKZPrq8rloxSV0GnMgqpVski5pWceoKmVJYUWzOUGAp/bY+A6Ui2sQE8Z4+rEqZIAiw6mG6bSBUov4sNUaJTz1GyXwzAXBkss6Q77Hkzx40XdREgisKy+ml33+30tyKIgo9l8ED9gqjb02SRtmmNNNgcbrOje9bvzy7ZDiJDukWufyUbgCZkdEwGA0CkqkqU+eaNHddS2R6KlTd1utQLkMy+bxjFVmQiChMt5W9izWHbFwDq4kllA7pdhFWWOuiiy666KKLlwNJkskMjzJ/4iieY1OZmSKppjnTPAGAnb0VXZaZuPYNZKfOYez/E2aN9fS7J1GnkjyZvYG6kFAaTWrrdqGdOki0qeDKLr7UmVCu6Ys4RkdFrjthENczPvG8a7qYkIppnJF19OoUmglmrEm9ZmJ7gnxZQvJX7y9L61B6w3goeetVFL47R2auiVx9go2f/I/M/vEXqTcaSIGEI3t845N/iKYbZHt7mZ88z5OyzOCGbeQf/C2eOFBYVYRhcGyYeKJJ3TOvLN/nLrpoQ4/FEbJC0K4IbJ89QCw7TkxKE0HBDTxwitAm3RadPGrxPF5+LZ4sEe8NSTeAo5mwGAoB9C9qCFkj8GwGd72dSCRK0JpH1A7huz7zpzciRVrkrjlPySoR9DWI7buGYOwmNqzzCRbuJ3AUfMenaK5hOK5TW0m6XaRKt5XppX6ryVUTIzx4uIQcTZI3Jzif+hQAD04+dEHn62rhXybSK3zd3DaxtKR0i2ZyKG2/tpIAa3AQSe5UuKpVo+j6xfmA/SDQTQXNCH9HKz2EU3SoTRlQ9FCRmdNXmtPbYUAPbLztTvZ88KP0bdzKwlyaQ/vXoOoyhhOaP6qtKgNGqL7xA9D8jgTVb7posdRr8wMvEiwNHl7K0a28Sul2eam0XglIkmBgXQqAZtVhcUWp7pTbSUXopJdeXvdQ0Q2S/YPhsuIRi9eZWwB2XAWOA6dOwoFnX/T4/nQnxXS6nWLqWy3sFd2I0iXduuiiiy66uIyQWWGLUpmdCosvtVFqj1sBkgPDLKrrGHEPowQ2RBtsmD2ILiTsdJ7jE7tJR2O844F+fvxrI7zl4MeXj21EithtjyPVk5HaeV1Dm7e92j/vh0IiotCKd4QGqVQVgKKlIweCRCMcH/jtEaxoCOgPC08ISSKxN/R59pqC2x8/wdvfvpdMPMyCUTwJfB+72WD69Clcx8G2LE49/STTU0W8egm/HsYViqqTXbL2US/9+KqLLl4OJFnGTKWWPweVOVJKmppfZN6f57x/FtxOllnZzZOqTIUfhOAziU8RCB9bWJTl8N3KNGMM9F3Frnf+EsPXfoD+8QSe3wKnDIGHLAfIisva9SbTconKzhLVPhs3dgrfrDAydwLXEgS2iy/r+LJOf1rHCzq8iHSRkm4r00vtZpPelM5g226n1xwjYYXpvPsL+y/ofF3S7WUi3ddRwSyRbktKNyEE626+nXQg8AU0Zg6jNkL5c8tScWwV3bj0b70Qgng7xdQSUYL2lFP1vEHUE1RUidaSdFZvQSV8gTUzipAkAmQ8VyIIJFRDBi21fO6cPcVIzmCiN4LWrqIC4Dda6OrlRYa8FJYn7F5C6tZNL31pDK5PLS9PtSsHAQSVDqFExMOQIpel0f3g1qtQY73Iis/A8Dwzp8qwdVvnITtyOCTgXgB9aX15Unmq2CLwPBqBDG6n41Q0/QWP7aKLLrroootLEanBYWL5HmRNY+HEMVJqxyNpJekGYG6+g8WGjuPKkKxjaosk2lYqlhZBy/Qj2j1pst7pLxtmmZYIsxU0JzRfz/YPMH7V7lf75/1QUBWJzMjY8vg/ma4CAaV2iqnhhuvdpZi62YTxN0F8EMmM0vPOrSiJ8D4sfvqfGYrWuDExhVBciIcHBe3/JE1lbMtWVF3HkkNFfhAEaJ5N/7prkdo+2V7k8hu7ddHFhWKlrxueh1EvEm9XMC1QRXKmCYJQJNQkS16qLu8uogZzIwcoZ07TlBvEvSjXjt7Jhhs/jGYkuDafJqsdxz3/OFjnlo974+4D7Bo/QmSySsSC/qKEc+N53Jse4UjvGSSv3Q5EUqTdGQxNxgsufqWbusLOymlXKt82GsNQJWIbsqyXwvY5EP4LHv9cdFuml4nUKqVbqMRaUroBJPsH8WR5WZ4k2gu1anicHrk4H7AfFEsppn4gaOlhJ1idyxG1XRCCuSVFn+JDrbDq2GjPBuZnw8GLoXs0et5ImmmimSz1+RmuXpvE1GW0oEO6uY0munRlBfbLSreXeKdXKt0SXdLtBTG4vlNtZvJI24y3ajNzuIKa8xDXTkPMvmjLV/+wSA4MIYlwksCMWlTOHwkLKaxtm0PbNhw/9oLH6qpENhEq2eqWR3W+RDXVg3A7JJ2sd5VuXXTRRRddXD5QNA1JVvBsG6taIWZ3rFVKzupxbaJvgKo+gaa2J+ETVXac34fqtsjWFvB7Rpf3NS2HJafyeryG5YfBr2YLgiBAUhRimRcuvHAxQTUMnGgY6OuGgxFpcVJRKJqdoNrVVoSbDpBdB04DISD/9vWYoxGsmRaVz/4D6wd0/tX7txO9eg2uFCDa/1WyAX2DwyTTWebPnFqu6hqYMma6U61UjXf+Pl10caVhZXETgGhQIyOFsU9FNPDVs4i22s0XURJ6J+tnbXwH79h9C/PyIoiAqlzHbHWUvYveeUaqC3jBavoonmiQVU5x84a93PWn59GKYdxu1Fxmox3BiBPJ0GuHVVVXk24XZ8y10tNtiXSL6AqaKqEkTdYH1/5A5+uSbi8TK5VufjUk3Synw4rIqsaW3iGGfcC3CYSEHUSoVcPjNPPyCE6zQ1HyI3H6JhK445sBaE47xM5PAzBjKASeAU0dvPIqFU291PGvkAyDRW0bDc+kvligMjuN02wynlPRvNryfk69ji5dWR3qktFm8BJKN0kW9I4l6B1PoEcuzgbs9UZ2KIZuhvdm8liJwA944J+OY1sezoIMVY14NEa/MfQ6X+mrA0mWWXfTGwGwHRNFXsR1bNiyNay819cXeru9CAbSBhFNIh1TODddoRoosIJ004wrixDvoosuuuji8seSNQOAVOhMBBft1Uo3IQSJzTdhOe0xmNnClKtk64sUYjnc3jXL+2osEHVjAJSlRdwg7Eu1tp/blptvf1V+yyuNXEKjFR/AlQzqNYNUukK1rpFudMQFVa2jiKdWg6FrWDJkS+xdR+OcBYFg9qEAb2EadfoR/uVP/w4/+0efQokYVFIBZ/RFntn3KMXCPEIIZk8eZ+jdt9Oj++B34i83uaLCehddXGGI5TukmxFPwMIZcl5HiDGTttCd0HsdIfAVDRoFXKnI7UN3MjSiUYlNLe/f74X2O0Hgsd0KiEVkZGXF+wzUbRWyG1CzUcxt8OaCxBsO6DRiArPcoZoCI0afPwOwKr30olW6RTp8g93sCFvibWut9duuJxFk2Zy4MEVyl3R7mdAjCmYylE87bfKo5fj4KypMSqkUI4GE3bON0ugbOGddTbEQWo4vBf6XOqIJnfmzVWZOVvCuuhkAJeqS+O5hAAqGgpAtiLTC/yudXPJ6udMxqoaML0eJGG0T9yBg8dxpHKuBLHfY8FajhnalkW4XUEihVmxx/nCR2dMV1MvAL/DVwkpfN82QOfzIDM16ONDVIwof/NCb+dDwT3Fb/m2v41W+ukj2DdByc2hqA00ucX7/IcjnQ8XbzMz39XUbyunYrk+x5nLaCquyCa9DuunmlfVudtFFF110cfljJelWn51frm7+XKUbQHp4jLIaKtpankqjBzKNtmdxpuN/NtxznIlYWz3uF5fXa66EphtsvfVNr/wPeRWQT2hYyRHkwCEas8j2lCjYKi25M2itrqxiWq+BkYJ8OFEvxbP0vWsjALLuUT5rwtv/BwhBLJ3hR3/tt/iZ3/5zdDPKnFPAcxxSuR6uv/s9+Nt7GRBxhL/CHyrTLaLQxZWLaCaHkNpeip6HbJXJBrHl7WfjEvHK4+EHr0XFSWIEEoqfZqbk0Go2qSUml/cfkkMRguTMIeGz2NDQ9PB9WxKDNLRB2P5jiMnHiA6Z+IkK2SmZ2x8xyE+t9Hc3ibY1R5dCeqkkySiGgZBk/BVWOrG2sEUSEj+/4W95X/+vXtj5XpWrvEKwVEzBa7r4VvjHWKl2IxESSM3UKE60B2yPpZkdPaq9ptf6amFlmm1reDN6VsKtKxjfOQdBwPyLFFMAqK1Qui0RRU6kIxEvnDmJVakgSZ0Xs2m3rjil2xLr9v2UbnOnO2Rmz9gVVt31B8SmG/qJpXUqCxZP3HOas88WMJMau982RjpzZdw7M79ueXn2yLPhs5Vqp95aVui78gLQVZm+VKhms4VCwcwivE5HpEWvsHeziy666KKLyx7xfC+i7RlWnp5c9nVr+g1anvW8/VO776YexNBlB0OeIt0MyTk12QmIC6UWfak1zzs2LkfZsOca9GjsedsuRkR0GTNm0oqHhQxU1SMptfj2VouvXwvH3n8Dp3ufo3QDGH8jJEehMU/qtm1E1vVhVzTmD+bxk+uXd8+PjtMb72P38DUU1SaqrpNIp1FlmYXaPBk5giQ6k39KvKu47+LKhSTLy75udqOOBOTdDucw5cfpLX4N4TVB1qkEA6TmTwIQ+AGzczKLeuhDr/sRkiKMDTKtEoEUMFdd0S61OY9Gpcp8zeVQ9FYCYL4V54QEMzUJ32/7uWkxMhQQkZAbuRRIN4Bk3yCB79EoFnDtkLeIr7AIk4WM479UqcMQXdLth0C6t5NiatgehiZRa67oWJIJAsCR27Su03nAtOjl0SmsvAfVpopkhiScmHNJPjNDQ5FwlzzYdBvKndm8lemlPa2HiNYP0lBHkWN9ABTPn6Vw7gyy6NzTeuBegZ5u4b/fT+k2u4J06+2Sbt8Xg+vStBrhM7Xkg+e7AVtvHPx+h11W6Fs3Qr0WEmRus0R1bgZWVDyiVHrRYydWEO0N3USmRctSqdcimMn4q3TFXXTRRRdddPH6QFIU4j3h2LRVrZCqdtK1nltMAUBP5SAa7i9LAUIP07mErKAnQ8JusWSRUPqed2xcijCyefsr/hteTeQSGs1Mh0DM9RY5LavMZQTJSJ7FmM90yqURU6DaHq8mBqGd3SJ8m/x7rgPAb9rM/uZvEgTBqsnmD374l3j4ugbJmzfRPzaOVS5BoYosq6hKSLoFgUDRr6wYoYsunotYvnfV5xyduPBr57/Jm3ub/Hz15/ADH19OEW+ehyAgUanRaPgU28UV+pUBXCfAtaYoOGUelgJKjRWT6/VwwsH3PB7ed47DwSa+on6YE9V2u7ZCdOoaKdL+DFIi9IjzLwFPN1jt61ZbmAMg/jItnLqk2w+BdH/nD1GcaWDZPvVW5yEimcLrG8SX2hV4VmzTL5OZmGhKCyuPAsWZOunbdyxvG/jCIQBqRpuYkwKozCxvX0m69Vrfox7dDEKgpdaQ7B9C1Q3mjh5Bkezl/YRmXrHppd+PdZs7s0LpNtol3b4ftIjChmtXD3Q33dCPol28My2vNHpGEyzMpbCaKrValIf+8WG+9ohEudWeICgVX/TYbFwlLTuMFE6Tq86jyS10wyEaa67qnLrooosuuujickFubILMyDiSoqI8OoNeDwdnxRdIMQUwt961vByLzaMTjmXNjdexZixB4MPsPQ8xUIyRqHd8nnuSfUSzF38BhZXoTaoke/uxiVGrGuALcvO9rI9tJqVmqUYC+ksKZs2FxUX42lfhi1+Agw4oERjYjbZuPaM/fyNDP3UNpX/4NGc//glOveMd+G2fWVM1edvE2yiYndghWQyw1QyqGk6ker6CIl0emURddPFykRocJjM2gaSG7Uo26EyIBwTUJYk6NcpBCSEpOIpGolJDdj2mvWmCdvHHPnkQVZOQhUbgN/ERWF6HcNIqVaL5PhwzR9KeJT75OLHTD0ErFDQIzyNAohXrpRUfIO3NIpKhR5y70tONizf+iq/wyKvNh6RbzOiSbq850r1R9KhCotfEq4edabW5gnSLxbBLnXRK3156wAK0y4R0E0KQ7g0D7UrBwnzjbUi6h2T4SJIgY0UpRleoX+rTncU26SbJAf3Vr6I68wBYlkZlvoDTbBD4Ekp7oOIHgrJqY8hXWGXO5fTSF94c+MFyemk0qRFLXx7P1quJrTeHqjZZDZvArTddOSo3ADOh4ZFH011isTq6Msvx4y3mG+1np1QK/d2+8XU4chie2R+uP3YU8eAD3Fw+xNVT+8g2F9GU8P0MAjBiXcK3iy666KKLyw/9m7cjJIHvOshGhNykQVrOUnFLL7i/SAzgxYZwffC8AKN2HoDknrcyuxD2m6nAZCpdoxLtpEea6MuquksFPUmdYsOjrvUTi1tEYxaD5TR70zehSRq6Huv4uhWLcPoUTE1CqQ6D74ZNP4LqnMNckyW+rR+9P07jgQdoHTtO+YtfWv6eu9fezYPWM8ufM02dppFFaVeL9VFQpcujUF0XXbxcZEfH0aMxfMcJ43RiCJ7vdTjfLmrgaH1ELBvN9Zj1zi1v7xODeK4P9aPL61zAamp4riAmBdTnZ1AbC7iFaSKl08iuRdD+rl57koq5mfLojbSSQ6T8OaR2eql/iaSXrixMUW2TboosMFdUZI7qF0andUm3HwK54RithktltoE9E5aSra5ML5UknHR++aPfCjscXfYRl5H8ebmSawBldR3xAQvfksjef4rgwFFOGisqCbkdGX6jEg46ohEPWXj0Lvwz0K7WmdoLyasR0XUoIjze9xS8qI4qrqwOtZNe+sKsW2mugW2FjVfXz+3CkB2I8YFf2ctP/t5NfOD/3ksid4URuUB+NEO1HL67quoRjTUptdozxMVFuP87cPIEfOdeePjhkIh78AF49hnE2TPg+0g9eTS9TYr7GpJy8UrEu+iiiy666OKHwZobbsFMZ3DLVdLnBP75EucbpynYc/i+j+Wt9kOVN74dZJ2Y5jAoh8GskAS73vYm0rvX8Imf+f/Bc4Z2JhpmOvNa/aRXBKoiMZwzsLMjy+ucWmeSPaVmKEXbpJvjrD748IlwoJsaW17V+5Fbl5fnfuu3qD3wAIW//Ct6P/8Q8YaDSzjmTToaTT21vG8gSShXWIzQRRcvhNGrr6Vn3UYmbrgFFZm4FH3ePvPeLEEQMKMquJ5LwZ9nZgWp3ToYZfLgLPidON6MWhgRG2G7BH1jy+tVu7a8XO3bgTq+nqG1Kq2RtQAk/EUUHNDafvhcGumlkWQaua0YrM3PLq+PrUgxvX5j+oLO1SXdfghE4h1VkVOwCPxgNekG2KnOH8JzPAzZJW20QLuMSLeVabatHqK9nXTQ+JF5zqitzphCqkOphN10aVYdInGVvmyoBuxb+DzjPQsMTGQACaEmQM+iiPb5Wg4iaiLElVWZaPn3+i+8fep4aXm5d7xLul0osoMxJEkiO3BpmBW/0siPxCkXOyrUZKpK0W6nbs/NhbPRS/A9+Oo9YZEFgHgColEGggaKsjTDfOURl1100UUXXVw5UI0Ia66/eflz9rzCvDPDP039b/707O/wd+c/ufqA5DByZgyAQf8EefcMAij2XUv/O6+lb2QjeX101SEmBqpx6fWnE30RSKdoNsP4RpGqtNqpof//9u48vq66Tvz/65x77r7mZrnZ07RNF9rSVmRpgRa0wCCjxcFRVBB9OMOgOIJ+HWcYtwfOOOIygutDZgZRUWAc4YczzveHKIuigCxtoS10S9MtzZ7c5N6bu5/P94+T3IUmbVpDkybv5+ORR2/u+ZxPTk7fSc55n/fn8wnZK4tJt9c72gkjI7DiL8FmPfjzNhlEPrABADORoPPWTxB9+GH6v/VtbvnhIHerR2mnGyOWIOMoXsNphi6VbkIANrudtg1vpXphGyuu3EyV49jEUL95mG6zk8/EPsHHYtdx+8j/oauk0i0QqyEbj5ftM7YODPaeHnqWXoSpj63kmSsuKJMOLaDLvZwO91qwWdsrxqrqsFvJv9KFFPRZXOmmaRq+KqvaLTOaIJ2wzkfpvG5HB9MT7vt6knT7E41PWq9yJrnhNMmMSS5ffGyV8Yes7UqRSytSeYOcqYNj7sw5ULqYwlB/HveC4lwUvj39ZHWNnFELSSfY8tCxtzCBfTKWxVBWlaAjN0Bdoxu700C3WYmmqkqjsJCCSubQ/Mdm6ue6E1W6tW/pIxRx07q6ioalU8u2C9GyspKGlW2FYcvBipFi0i2dhqoqcBcv/NVwFOrrUT4fvO0quO4DxCuLk7VqNpnPTQghxNzmj9ThCVvXuZ4RG66RwsS7ZFSGZH602FjT0JZfjXIGyWZMspoLpdlIaBFSPSa9XX00upaV9R9w+M/Ih8tBj536sIvRbLFKr3ffPsCqdBvyTZB0C1VAbR10HQXDBU0XQstGqFxC8Nwm2r62GdeyJWg2GyqVQmUyOGMpbF1d6GjkhwdRjuLNr+Y0pdJNiBI2u51QfSNe+7HX6APqCD25JwBrrrc0aTq0HlqoZZlzPYF0VeHB+usZR7sZdleQc1rDRVHWz7fu9tNQ5cTU7LzmuBBdZWkZeI6G3F4It8HYceRL53SbxUk3KF+YYnxet/qwk8W1bnQNXj0Sn2zXMpJ0+xOVTlqf7bcSSfFUMZCyY/OZqZxZuLl12vJzKukWKlnNMNqdwH72xehO64IhsLsPlGLU5wR3Gux5OLyjkHQDCBq9xc581dQvruSCP1/OqosX0FZZvHjJx1Povvm3OqKmTz6n20h/kiOvDRLtSdJ3KEZN8/w7P+LUVDX62PDeVVQ0NJFKudE0yNlHyY8HWn8/5uLF0NhIyuvjJZtif+9RttohO/aoK15SDac75mfFoBBCiPlD0zRql61EsxvEKvJ4h8pvGAczfeU7uEJoF/4dwaUX0my+WuxHLaK7e5DFweVlzUPuM/fhaWOVi7heQzarE4+56dvfAUCFvQoVeN1IDIfDWrSpu8uaQxZg8eXQ9meQiWHTEhhujaav3caCn/+c6r/9WGHXdR0Gzzb183zmFXJmMUGpubPYtblzfyXEdDmv5SL8Th8u3V+Y361b9dPOlrJ2Q1qCg3Rj5KPYNFthvsRSSsHoeX8GQG5sBeJxoZoqYmmrf1c2hqnZyZp2qpKHoLINxhaXHK9009DQtdmdjvJWVuIKBAnUNZBNWfmLqoCDTF5hKqjyTy3RP7u/yzNApGQOrcxY0q10iGnGaVVmmSUrl7oMc04l3YI1bnRdw+7USY/m0KrbcIesc+EYSuLsT3A0VHJDnu5muDNa+DSgHy1u8xYnLPSHPWg9xTLXfDyNbT4m3UoeeL6+2m3n052FZNyKi+vRbfIjLU5Oy7kX4HQmcThzNC7o4jUNOjWT5w2T59tfo2/xIvbXVJDWoAuTZGyEjj/+HoDUcHGhGMMlSTchhBBzX+WChahcHv+QjYqu8vmIBl6fdAPQbegLLyG2sg1TS6PIAx4G0gZhva2saTgQOXb/M0R9hRNbuJJM2oHPnyQ52ElisJ+wo4qDrtetih4umbfu9SumtxbndDOynTgaG/Bt3Ahj88ZefijEdy77Lsv1WnR7jlzOuvY1fUkMGV4qxDFuedMtfPiCd/M3F3yQCru1UEtXdoAXUhOvvrzafjY2nwPDKJ82CwU+LUE+r9B1UO5Q2WZvuIqLzqpgWYOXS89rYXmjl3OvuhL9in+ClosL7caTbrN5PrdxnlCY1MgwI12dxErmdVvbGmB5o5c3LQoeZ+8iuUP/E1W3+BlfECRbSLoVE2yZseytyhTLqp12yjMpZzibTadhaYhs2uTIriFyC6/EVVmcKNW/u5+DzpJMuTvF4M5DhU9D5n7rhcNXmGARANOErmK7dF8Uwz8f5ywrxkppzi2fNzm4w/plqds0zrpofq3AKaaHt7IazW4NldF1xbChGKyuIgvkMxk6XvojQ4cPlu0zeOgAh19+iXS8mHRzysqlQggh5gGH24Ov0loozZXQsRWnMmYwO0HSbUyGURLeHSgth3JEyDiCRJwLy9pEqprekGM+HXRdo6UtxNBA8Sa069XtuG0e7B4/Gb3kIraqGjxjU8ZEo+UdhRcX5nejexuMHMGW78e37lwAskePkt69G99AEq8njmGYxONuBsPJebfYmhBToWkaPnuAvDFMwG393GVIMaSsX162kntNTcEF2XocHr2s0u3wvjo8GY3K7BDRczZimuANly/64g1X4jB0ljf5cLkcLGv0oesamq28Inh8eOlsH1oKYHcXcxPZ0UThta5rLGv04TBk9dLTwuEyCNdZwZsdTKFyZlmlWzZn/YEprXRzLmpmrvFWWHNBmaaiP1WPu6U4r5t/dx9dZpR83ppcVTkz5ZVuuV1jnRRXegWgpxvMUcjp5IZMkoej2ANTyybPJWVVtyVZt+59wwz3Jalq9LHk3AiewNypnhSnj6ZpBJrPITbioedoJWg2HKEKdJuBbtipWmg9hfdUVFK7bCXhBYtQpsmhF58jEysODXfPw59NIYQQ81Owrvigc2W6OC/bhJVuY1L5JGnXQTQ1dr2maRianb+wvZX35i7ixvzlhOvO3KQbwIoVlWiNi8nnrYvX3n17yKZSVLvqSTtKkm6hkPUB1iJNyZKVX212qFxivTZz8OLdsOU/qL56Ne61a9G9XmK//g1hb0Nhzqm8chANaFLpJsQkfLYAaOD3HZvoqqeYWGqgkoZYL+dFenHVFCvRrrnkJdYuOUw2U9zfX1VV1s/4fJcnYhYq3c6ApJvLjTZ2M55Jjp6g9eRmf03fGaBhaQUOt0Eslceby5cvpJCzKtzMTEnSLTT3JhyPtPjZ9Yy1PHjPwRhnrb8M1/MPEw1X4+oaIaMyJA4ME1jkQtMgrllD0dw+O87M2FwOvpryTjs6wJEDw8So0DETGexjC1PMJ6UT6pZWuh3ZM0QuY9J/JM7qTWf2RZqYWVVN1fzuP1sARdWi5Sy9dDVKKTKjCfr378Ph8VLTtoyGVWvo3L6VwQPteKuqSfRbNxfZjA2XzzWz34QQQghxmgTq6uncvhWA6liQYDBEPB1lSBvAVOaE8xSlzCSmESfj7MSZbiy8vyl7FnY76DYDf1XNMfudSfx+B4ZhZ7A7gMebwnDo9Ox5jZqWWtoj+4kM6wRtITzVNTA4aK1eCla1W8niTUTOhlwKYkcha93oOp09mL3tmLEYsccfJ3bRuYXmsdEwOaNLKt2EmITPsKZoCrqLUzWFTScrVS1L7V5esHUxmLFxjrmIUa+LJbV++ntHIQUKyHZHSQ8nGR5dUNj/1cwWaqsd5LMZDM3Ob0cfp3+4lyqHNUy+P9NDlSNS+Hf8PYfupMHeQoNr9hciaZqG3e0mM5ogMypJtxkVqHSx/ckjAPR3Jhh12cnmTOyGXki6qdKkW3juzX1UUzK3Xe+BEVZf9m7y6V/g2juCoyNOdRRGfv8q/pa15NJOElnrKZ8/AIyPvC2tdFMKYjHwFrNMqc4RnP4zd4LZUzXZnG5H90QLrxuWzL/zIqZPRa0Xu8uGL+QkPrYSW3wozd4XBvAEIlQuv4qGVdbPZ8OqtTh8PvY/8zQA2ayNZNKF0yMXukIIIeaHQKTeukBTimjnIep7IZ11Eq3N0556gZGIid8I4NRdtHgWAValG0DSs8tKupk59GwSzcySN0E37OjGmX9rtn7zQv7/bxylOrIHgP1/3EJT/Vt5bJk1lG2Zr4aNVTXQW5wfiegQ1NUVP4+ssj7iPXDoD3D0BbRAE6G3rqbnx08TSyXIO51kszZyWQOFNZpGVi8VYmLeQtItQMgZIpaJMain2ZRdyDtHl0PlEFuyHrCB5g7guHQD+v0/AUDZHHgaAtAQIHq4OO9kiiFGzvXRlT5CnbMRVIZEPk7ADAEUXh/znhGi1tnA2tAFp/UcnCqHx0tmNEE2lUSZJpp+8oNFz/zf7LNAKFKsXMtF0wBEEzmqg47C8NKypJtn7p32ygYfNkMnnzPpOTACDefjXXcR0V8/h54zcf9yK7Eth0lfuoxEsJh09JmDxU5KK90GB+BAB7RYGeX8aIZMPI3DPf8WUmCCSrdcJk93hzWfVqDKhT8sVUbi1Ll8dsJ1Xno6Roj2jJKMZ9j7QjfP/n/WfIvugIOFa4pJ8erWNjzBMC898lt2bgsCGufNwd9rQgghxEQMhwNfVTXxvl7SowlsZg6PacMzYqP76DZePW8ENHDbvHzA81EAUqZ1TWs6+9iwxM2e/3mQnKkKsylVNLXM0HczvSJhF9WXLiOxtxuvYwSbnmJ46wAs1kBT9KatkTGESh4Yv35et3G+CCx7Bwzug5FDVLy5it6HXIxedgl4XGg5k85DNfgj1n2WXYaXCjEhn80qkGmtbOS6thvoiw6z65Vfs7lzrOp2xIffk6I34YXhURL9veg5K69hGi7SuLANR4lVF5PjDrvCoTvx2nw4dCvxPdHrid5z6GfOtEh2z1iuRymyqSSO8fkoT4LcJU2Ditriic8NW8E5GM9SHXQUKt3IliykMAdvTm2GTlWTj56OEYZ7k6SSeTyX/BnRXz8HQPWT7ZBXxLYdIXZO8aLCk+iA8dNXsnIpHR2g52FsroZU5wh5jx2/be4NzT2Rsko308q6de8fxhxL6DYslSo38aerXxyip2MEpeDAKwMc2F5c0Sg5kiERTeMNOQvvecOVJDJtgDXEVCrdhBBCzCcLL7gYm8NJX/sehod7GTlwCE2BHs/hHdJJhE2S+QQZM4NDdxQq3Vw2N5XhAIvWb2DwUAcDB6wHXMHa+pn8dqaNpmmsWFnJrpE2GHoJgKOvbMfvayBWd4TBbB/pfBLn+JxugBoaYrIl5pRmg8olHH1tJ0dHfKjrrsEcm0c2NeomHvMSbrbOrVS6CTGx8eGlAIlcjEubL+XSWDV0WiNXyNpxDvSAy7oxj+57GW1s7jXTcDJiq8LY/hrVV7+Z7pS1y+bGd+F1zf552f5UjpLFFDKjo6eUdJOFFKaBv9KFbWzlitywVTo9FLf+TY8l3bSypNvc/IMQKRli2ncwhueiSwqfezpHGFlSRTQfpqunuNJJhaMTdAds+DtYckWxs44OcBRXQE0fHSHndeCyzb+KLk0vzbpZ/3TK0FIxzRauLVay7X2hh6724bLtR3YPopSyKlnHpEeLP6NO79x7mCCEEEJMxl9TiydUgeFwEq5upP+s4vVadYdRuGbrT3ejlCJlFpNuADVty8r681Wf2fO5laqvdJGqa2GUMPGYm2AogfflAI2uBTh0JweT+8HrJTt2v57oPchwZnDCvpLRIV7Y0k9f3EMmb+AIWjfAptI5fLAW0NDcVhZAKt2EmJjPKN6nx/Mx64W3fMor24GuwuvB17YXXps2J8N6FYm9I6SN4gN4l2N+pJIcnpKkWzJxnJaTmx9n6g2m6xqhiPUHNDeSRpmK7miGLe1RzLFc21wfXgpQuyhIZaOP2tYAXfuj2CMR7M3WBIkaENjTz8HqFrYfaMLvGaWhepDa1SGoeS8MH4WGN1kdRaPW8FJnSdKtc5icx4FTn4dJt5LX43O6DR5NULsoiD/somFJaEaOS8wtkQWBwgq4R/YMFW4Wxv32gT088ePX+PkdL/L8/1hP5VOj1krNuqFh2OXPiRBCiPmnYdUaGletpWXpWrJOk9FAHm/URtMOB5jQm+kiY6ZRY39YXXpxwYBYn7UKuM1uxx2cOw9RnXadyoCTbN1CfH4r2RgwOznceZSMmebV2DayKseB6ixHQzm8aTAff4zCjVOJgYP7yabSJLIObJqJw2XNsRTPVZNOjSUAvKNoaOjM/aobIU6F11asdIvnxh6g+8uTbrHHXsKuWfffo3ox0WQaTqLZCkxvA6mM9TPqMDRs+mT1qXOL3V2sbMue4mIKcpc0TQpDTBXkYxmUgoN91lBTTStPurnmaKVbfVuIgSNxujtG2L/VGnLmOeecwva+1mV0eWoARWzUQ1tTNzX+UVjgh7NusBolk/D4b8DlBkemsO/48NL5mHR7/ZxuiWia/dv66G4fxuE28FXMw3Mipp2ma7SurgINHE5bMezG/s2m8ux61lppWAGxwVSh0s3psZetsiuEEELMN8sCq9n/5jSOpI6GhpaHmg47r8Zepj2xq9BuvNItnUiQScQB8FXVzLm/o3VhJ+mKFkZNayioqQxqnqpCxQ160kdpT+zi6RVpKhI2NDQSuVhxNdMSgwc7Cq/X1PdyVnOOc+uPMDBaXAE2F0hg1+RaRIjJ2HU7Lt2NQ3OSHxs2WlrppjQdlc7gGrDu4VVpmshm54hrGV1Xvr+QdHM75k+Cu6zSTZJuMytUW/zPyI7N6wYQ9tl5+7k1uEv+CDjmaKWbN+gk0mqVrg50JhjuG6X6E7ey5DcP0f3xVby66gZG9i/Grg1TM/wyzemDVgQaJhx8FkaHoPMI9PdBKglhq+pGmYp0lzW8dHwSxvmkbNV5BR2v9Bc+bV1ddfoPSMxZ51y5gA/ecSFnX9qIUnDWRXVUNxWfjNkcOmjw4v8eYNuvD5Eeq3RzzdHfaUIIIcRUuW0ermj5S5ZdfDmG10NgwKDmgB2zJ8bTg78utHONVZDEB3oL7/mqI8f0d6arr3CBphFvOoe0FsLlSlITjOLc50XlYU98B1kDfndWioxN0Xg0h/nkEzA0ZD2Ef+Jx0v29xPut8+StqMD1lr+HujehsgkyqeIFciaUxZChpUIcV52rkYxK05fptuaYdDrhw38NN96Edv0HiHzus1Ru+LNj9gvRjzKcHK1bXhgIM1+GlgJlc7id6vBSuVOaJhUlSbdam0ZVrRunobOkwYumaaST1s2pw2VDn8OlmAvXVNPTYZWs7t/Wz9rLmoEaEpVvI/+KlZCzu9Kcl/0FXfcN4/3Hq9BdOui9sPU/4VUNAgHIjkIuimkPMfzkNlQmj/K50LX58wM+TiurdFPs39ZX+Lx0RUkh/lTjq+A63AbekJOKWi8L19aQjmc5sGOAxmUVPHmf9bQ+2jtKNmU9KZurQ+aFEEKIk9HgboFWUOks7X94CoC6vQ72hVN4DB8bK/8M/9jcSvG+XhweL3aPB/8cTLp5XTba6jz0egxS0RqciSiaBnUHDHoCdXQvtKraDtTm6e7M09xvoI+Ows8eBLsdslkG+3sK/YVb28DhA8NJxllDLlUcRZQMZXFo7mOOQQhRVDrEtC/TTZO7FYyxa3i3m/D73086kUCl+jncfgRTWffdRiIOyiyrBJlXlW4lCylkk1LpNqMqIsUMqIplOHtBgKWNvkLCpHQY1lxWWnnVUZIcSva1QfMIGCaN11XhPv8q8iMp+h85iNIAXcHoQdCyMDICK+oAhZ6NYqbH5nbzzs8/pqWV8qnRHJ27hgArQVLV5JtkLyFO3ZpNzXzwjgtZs6mZlhWVLDm/lss/vILl6+swxp5sDXWPUtXoo2FpiLrFoZk9YCGEEGIWiSw9C73CR95rI+/SWZlcyjX1H6DZ00qFoxKA0aFBMqMJEv19eMLhE/R4ZqoOOhgezZFuXkkGD4mYC5crg7sjU5jjTsfGQIO/fMdsFlODaC6LPxDCG64i3NxqbWu5mNG1N6ONWtPQGHZIeUzssnKpEMdV46wrvO5Ld0/Yxun14m5ehak0DC1LNf2E920h2HOwrN18qnSzu2V46awRqvXg8hmEG7xkS+ZvA6s6aXwY1lxf4a+i1ktFrQd/pQtN10gMpxnpT9K7Iw2HAlAXZ7Quin3BAgCiL++EkbHEkQYEYlbGXS+uYNTXFSOxoAKzfn5WdZVWuh3dO0SkNYDTa9C6pkrmrhCnlaZpBKvHhsUMpeg/EqdzdxTTVCfYUwghhJg/NE1j8ep12BJ5vAMQiQbx2LxlbUYHrelCdMPA5Q/OxGG+4SIhJ42VLtB19CUX4PWnsNvz1Jop7CnrGrbaGWGozldIwgHkUOSVYnA0TmwkSj6bwRuuhGwW/veXJPcdIJuy2tsdCjSw644Z+R6FOFOUJt16013HbD80up9dse287N1N9zl5dp6X4VWjj/rbvkHjeavK2rrnUdJNt9kwnNZooMyorF46o+wOG26fg8HOBB2v9JPPFVffyWVMzLz1h2E+DMNqe3OE2ECKo3ujHHiln849Q4Vt+oIYfelu7E1NAOSTSdJ9TmtmdgUE4tDogaF91vasjvrjIbwHhqBmbj4FPJHSvFrHtn662odJJ3IsWjt3lpYXZ45gtVVxqkoWGKtqkIpLIYQQolRFY0vhIi7WU36Dm89mSMWs6Vg8FZVz+iHq8kYvug6D9jCDw1aVn8prBI5Y90Qhe5g31b+FAV/xwmJ/bY4BXRUWcwq3LLTO0ZaX4Mhh4rs7UGP3Wg6n9a8hlW5CHFfACBXmR+9Nd6FU+UPz3/T9D78deJS9o6/SH8qQ9Wl4rrwMu+GkOlCe1HbZ58/wUiguppBJjh5z3qbijE66/e53v+Ptb3879fX1aJrGI488UrZdKcXnP/956urqcLvdbNq0ib17975hx1PdYpVGmznFQGe88P740FKY+8NLAZpXVhZed7zcT+fuaOFzrTlGRqVJNxSf6EX3Hoa+Ckg6rUUVjF1gWucssX+Y8QdfalXbaTn+WafkOmw8geny2qldGJihAxLz2XjSrVRloyTdhBBCiFKG04m30pp2ZXRwgGwqWdiWGCyO6PCGK4/Zdy7xuQ3CPuv+Z8i2mETchaZD3UE7Vwffw5uC6wjZwwyvW8WRK89n1wV1bF2Uocco3thWNi+A9n2wcwcAI6arsM3htEYTyUIKQhyfpmnUOKxqt6Q5SjwfK2zLmlmyKnPMPq0e6/476DXKCkFc9rn7oGAiDrdVqazyefKZY8/TiZzRSbdEIsHq1av57ne/O+H2r371q3zrW9/i+9//Pn/84x/xer1cccUVpFKpN+R4alqKSZDeAyOF1+NDS2F+VLrVtPjxVVhZ9EOvDXBkt5Uo0u1AnTUOuj+YI/iud+FasYLhp3+PqlgOvgCgQ/XZACh/I4OPWX9ck3V+jLq5N8nsVJQ+/cyNLdO8YHUVuu2M/vEVZ6hgTXnSTdM1wrXeSVoLIYQQ81ewrqHwunffbgCUaTI6VFyJfq4n3WBsJVPAqA0SG/Zhs1nXsyPb9+K3BYj1drOwdQONzW9i6dmbSTudxMcK3+wK/MMj8JuxFWAbGojix+az44h4yDVbiQOZ002IE6t21hZe95UMMY3lose01dBodi8EQNc0FtV6aK1xsbTBg8c1vyrdAnUNBGrrcfoDjEaHTrzD65zRGaArr7ySK6+8csJtSinuuusuPvvZz7J582YAfvzjHxOJRHjkkUe49tprp/14IguKSbeeAyOs3Gi9nm+Vbpqm0bq6mu1PHUHlIRFNA1DZ6sbmqUFDozN9iGXKJLVzJwDR4VEq3nMrxLthsB2GA2TSQZK7rVWLMmsXETIqZupbmlETjTiQVUvFTHl9pVtFrQebXRLAQgghxOsFaxs4un0bAAdfeI5Ybw8ohd1d/FvqqaiaZO+5oy7s5JWDMZy1HkZeriGiBtA0Re/eXeQyGQYPdVDZspCll15OZjTBgi120HL4TPApGN7xLP5QEFt0GCqrGB5wk49Hycez5M8ZRUOGlwoxFbXORqodEUDj0Oh+FnqXAjCcjRba6NjwGX78RhCnrVhVuqrldQuezCM2u52R7qMAJAb6CERqT7BHuTl7p9TR0UF3dzebNm0qvBcMBjn//PN59tlnJ90vnU4zMjJS9jFVVU0+dN3KkPQcKJZrphLzq9INoHWNdQHhcNkKqwu3LqslkYvRl+lmf2I3nmv/otB+6P77UWjgr4eWi+Hi2xjeOlDY3rUyiH1sDPq8U5J1c7hsGE4bTcvmZwJSzLxgjafs80qZz00IIYSYUKC2vvBamXkGOvYxcKCd4a7OwvveObpyaSmP00bIa2C4DCo3LCI65GN8WqTBg/tBKUwzz4EXn+PQS89biyIoDUPBQlMjNJC2Em4NjXDBOmJdJZOZ11v3anYZXirECTW4mxjORenLdNM+upt03hoBOJIrVm9tqLyM9zb+NVdF/nKmDnPW8VcX51KP9/ee9P5zNunW3W0tgxuJlA9JjEQihW0T+fKXv0wwGCx8NI1N+D8Vht1WmNtoqDtBJmUl20qHl7rmSdKtvi3EtZ87j7Pf2oQyYe3lTaza2EibbwUAefJ0NOVwr1kDQObIEZJbthT2V0oRf/KpwufRs2sJ2ef+RclEtJKf0kwqz9LzIxiO+VXSK2YPX8iJphcTwZUNMrRUCCGEmIjhcHDOX17Hm959Pe5AqPB+cjgKgMPrK6yKN9ed1eTDadfJBR2kAkvZt7eN7s4qkukwTp+foUMHOLp9K737dqESGVw+HwtNDa10cuPzzgdNI9VrTVej2XWotEbUSKWbECdm0wzavGcBkFNZdsetqZxKK90qHFbxzFxe4OVkecNVaLp1Ux7r6znp/eds0u1U3XbbbQwPDxc+Dh8+fFL7F4aYKug7aFW7zbfhpQA2m05lgw+n28AbcuIJOHF57azwrym0eTW2jYoPXI/7nHNAKQZ/8pPCtpH/+39J79pFurmKg+9dTabKS4V97s95MZHX/8KrWxSamQMRAmsON4e7mPStrJdKNyGEEGIyrkAQtz/A2ne9j5q2ZSy99HLqV66hZslyFl24caYP77SpDjgwbBqapqGf3YLuCtB9tJrdr0QINa8sb6wUy9/6NtwlCbeEC1RVFdGBJPmxggZXxFUYECKVbkJMzevvx5VSjJTM6RYwQqf9mGY73TDwhq1kZDI6RO4kF1OYs2VXtbXWONuenh7q6uoK7/f09LBmrLpqIk6nE6fz1IcxNiytYKhnlEwyx5HdQzQsrSA9mqO2NYDdZcNbMb+GSK7Z1MyaTc2FzwP2EM2uRaTMJCZ54hcuIfOlA6hkktivf0O2pxeVSdPzpX8BwHmon/gHV+PWPWVjyueX4upNmq7RsnJ+Jh/F7LHs/DoGu+PkMibhRql0E0IIIU5E0zTaNrwVgHQigcPtIdy0YGYP6jTSdY01rQGe3TVEyOsgv7SCWI9VsXZoj4uqSB1mPk8unaJm8VI8VdXgdELaqmTrqM7QnB+hs724IJ6n1sHw2GupdBNiaiocVTS4FpBTGfIqR2+6q5B0c+hOXDb38TuYp3xVNYWhpfH+XkL1jVPed84m3VpbW6mtreXxxx8vJNlGRkb44x//yEc+8pE37OvWLgzyq3+3yjTNvOL8dyxkoDNOd4c138DG9y17w772mWKxbzlP9P8SgJf1bTS9Yz3Gvf8DuRzPfe1vqdnajxEKkR8Zof+8egbWt1A3T6vcADLJfOF1ZIEfl1cuKsTMuujdbTN9CEIIIcQZq2HVmpk+hBlRFXBQFXDQHc2gNwUwXN14Aw4624dJNKwlXB8g5LHhCo4VKVRUkBvoRc/mOVidx0gdpmu/o9Cfp94oJN3smuPYLyiEmNBi7zJ+O/AoAO2JXcRzVq4iOE8XLpwKX3UN7LJez6ukWzweZ9++fYXPOzo62LZtG+FwmObmZm699Vb++Z//mba2NlpbW/nc5z5HfX09V1999Rt2TL4KJzULAvQeGGGgM85wX5Lo2FMcm6Hjr5yv1VpFLZ6F6OiYmHSmDtL7Fjfn/ciqDXdtP0S+ewQzb+L6wLvZd7n1/nydzw0ozA0IViWlEEIIIYQQZ6LFdV4r6WbXCZxby9AfjqJMRfyXhxhaWYnNbSfkNVjS6MO/6lKO9HXxcuUvMXUd25EjHH6+WGHvbSzOlGTI8FIhpmyBZzG/G9BQKPaP7kGNjawK2EMze2CzmL96fK0AzVqJ+iSc0Um3F198kUsvvbTw+Sc/+UkAbrjhBn74wx/y6U9/mkQiwY033kg0GuWiiy7i0UcfxeV6YxNfC9dU0XvAyha3b+1luDcJQCjiLqxuOp85dCcN7hYOJzswMUlX++j41Cb6V4aJ/Go3qfYBQkOQetdGMo6XAKhwzN9Ktz//2Gqy6Tzd+4eJtARm+nCEEEIIIYQ4JVUBO363jVgyj6M5gG1rL7l4FjOVJ/aiNXQrqsMB02pvOHV856wi5uyj/Wk75HLoXoPQunrsoTiMtbPL8FIhpsxlc1PnauRo6jCJfKzwvlS6Tc4dDFG9eAkDB/YzdPgAmeTolPc9o5Nul1xyCUqpSbdrmsYXv/hFvvjFL57Go4KFa6p57pH9AOx7sQfTtI6xolbmPhq3wNPG4WRH4fNFf/nXnG342PfM10mtCfDsny8k7D4MY2tQzOdKN8Nuw7DbaD27eqYPRQghhBBCiFOmaRpt9V6iiSx9wxn0ixsZ2dqDK+igf0/UmsrYLLbPpU2izziw1y4in0uhO3V0uw0j6ARbf6GtVLoJcXIWeNo4mrIWjdTQWBu8gAWexTN8VLOXpus4PD7MnDUKrWfXqwQXLZnSvmd00m22qqj1UtXsx2ZopBPFlUtDtZ4ZPKrZZYF7ES/qHuy6g7SZYrF3GYZuJ/NXf8tv+v8Ht+5lKNtfaD+fk25CCCGEEELMFS3Vblqq3Yym8xgrwtjfvoB83mTXCz389se7cIQcZKIZbE4bdq+d1GCK3GAG3W3gbvPhX1WLbreBLUONVo+hGbg0mcJHiJOxwNPGy9Hn0TSdeH6EtJmi2lk704c1q9UuW0Hn9q2gFN27dhBonVqSUpJub5Dm5RVs+dWhsvcqJOlW4DF8XN/0UTRNI2fmMHQrFBf5rOTbS9FnSGYS6Ojomo7PJsMqhRBCCCGEmCs8TlvhtaHbWLm+nvpFIY4kc+zeYy2R4A07Gdzej2tBEN1tQ9MzYOpoQFR105s5avVl+GbiWxDijOU3Ary/6SYyZpo9iZ2s9L9ppg9p1nP5A4SbFjB4qAOH18vQ4YNT2k+Sbm+QhWtqJki6yfDSUppmzW83nnAb1+JZRMge5ncDj3Fp1dtw6s5CWyGEEEIIIcTcFI54GOhKYA84UEA6p/Aut+Z2Hg49jpGtwptYzZJ6Dy/lrFExLt2Dy+aewaMW4sykaRpOm4tVgXNm+lDOGHVnnU2sr4d4Xy+jmeyJdwD0EzcRp6KmxY835Cx7LxSRSrepCtoreHvte/AZfuy6LAEuhBBCCCHEfNBW56WlpjyJ5nJopF2dmHoGZUuh2UxG8wlApqERQpw+wfoGDIeVn4h1H53SPpJ0e4NousaCs4srbrp8duwO23H2EEIIIYQQQghRFShfGCHscxC2V5H0vkZ/9X/hD0cL2yTpJoQ4XTRNo3b5ypPaR5Jub6AFq6rQdA2nx6CyQYaWCiGEEEIIIcSJVAXKR7pU+OzUu5oBUCgOjbYXt9krEUKI06WmbRm6YeCtrJ5Se5nT7Q3UfFaYG+/agCEVbkIIIYQQQggxJW6HDYehkckpAEJeA8NoYkdsCwDd6c5CW6l0E0KcTobDyZuueR9pUwEfPHH7N/yI5jHdpqNLvk0IIYQQQgghTsr6ZRW4HDrprInfbRBQTYVtQ9mBwmtJugkhTjenz096ZGRKbWV4qRBCCCGEEEKIWaXCZ8ftsBHy2rHpGi6bmzWB84g4G8gpa9VAm2bgN4IzfKRCCDE5SboJIYQQQgghhJj1apx19JQMLQ0YITRNm8EjEkKI45OkmxBCCCGEEEKIWW+Bp41G1wIAdHQCRmhGj0cIIU5E5nQTQgghhBBCCDHraZrGxqor6Ev3sMCzmLzKz/QhCSHEcUnSTQghhBBCCCHEGcFnBPAZAQAMTW5nhRCzmwwvFUIIIYQQQgghhBBimknSTQghhBBCCCGEEEKIaSZJNyGEEEIIIYQQQgghppkk3YQQQgghhBBCCCGEmGaSdBNCCCGEEEIIIYQQYppJ0k0IIYQQQgghhBBCiGkmSTchhBBCCCGEEEIIIaaZJN2EEEIIIYQQQgghhJhmknQTQgghhBBCCCGEEGKaSdJNCCGEEEIIIYQQQohpJkk3IYQQQgghhBBCCCGmmSTdhBBCCCGEEEIIIYSYZsZMH8Bsp5QCYGRkZIaPRAghhBBCCCGEEELMtPEc0XjOaDKSdDuBgYEBAJqammb4SIQQQgghhBBCCCHEbBGLxQgGg5Nul6TbCYTDYQAOHTp03BMpxJ9qZGSEpqYmDh8+TCAQmOnDEXOcxJs4XSTWxOkisSZOF4k1cbpIrInTSeLt5CiliMVi1NfXH7edJN1OQNetae+CwaAEnjgtAoGAxJo4bSTexOkisSZOF4k1cbpIrInTRWJNnE4Sb1M3lcIsWUhBCCGEEEIIIYQQQohpJkk3IYQQQgghhBBCCCGmmSTdTsDpdPKFL3wBp9M504ci5jiJNXE6SbyJ00ViTZwuEmvidJFYE6eLxJo4nSTe3hiaOtH6pkIIIYQQQgghhBBCiJMilW5CCCGEEEIIIYQQQkwzSboJIYQQQgghhBBCCDHNJOkmhBBCCCGEEEIIIcQ0k6SbEEIIIYQQQgghhBDTTJJuQgghhBBCCCGEEEJMs1mTdPvyl7/Mueeei9/vp6amhquvvprdu3eXtUmlUtx8881UVlbi8/m45ppr6OnpKWx/+eWXee9730tTUxNut5vly5fzzW9+s6yPhx9+mMsuu4zq6moCgQDr1q3jV7/61QmPTynF5z//eerq6nC73WzatIm9e/eWtdmyZQuXXXYZoVCIyspKbrzxRuLx+An7fuWVV7j44otxuVw0NTXx1a9+tWz7zp07ueaaa1iwYAGapnHXXXedsE8xOYm1yWPt4Ycf5s1vfjOhUAiv18uaNWu47777TtivmJzE2+Tx9sMf/hBN08o+XC7XCfsVE5NYmzzWLrnkkmNiTdM0rrrqqhP2LY4lsTZ5rGWzWb74xS+yaNEiXC4Xq1ev5tFHHz1hv2Ji8zXWUqkUH/zgB1m1ahWGYXD11Vcf06arq4v3ve99LFmyBF3XufXWW094vGJyEmuTx9rvf/97LrzwQiorK3G73Sxbtow777zzhMcsJifxNnm8PfXUUxNes3V3d5/wuGctNUtcccUV6t5771U7duxQ27ZtU29729tUc3OzisfjhTY33XSTampqUo8//rh68cUX1QUXXKDWr19f2H7PPfeoj3/84+qpp55S7e3t6r777lNut1t9+9vfLrS55ZZb1Fe+8hX1/PPPqz179qjbbrtN2e12tWXLluMe3x133KGCwaB65JFH1Msvv6ze8Y53qNbWVpVMJpVSSnV2dqqKigp10003qV27dqnnn39erV+/Xl1zzTXH7Xd4eFhFIhH1/ve/X+3YsUM98MADyu12q7vvvrvQ5vnnn1ef+tSn1AMPPKBqa2vVnXfeeTKnVryOxNrksfbkk0+qhx9+WL366qtq37596q677lI2m009+uijJ3WORZHE2+Txdu+996pAIKC6uroKH93d3Sd1fkWRxNrksTYwMFAWZzt27FA2m03de++9J3OKxRiJtclj7dOf/rSqr69X//u//6va29vV9773PeVyuU54zGJi8zXW4vG4uummm9S//du/qSuuuEJt3rz5mDYdHR3q4x//uPrRj36k1qxZo2655ZYpnFExGYm1yWNty5Yt6v7771c7duxQHR0d6r777lMej6fsd584ORJvk8fbk08+qQC1e/fusmu3fD4/lVM7K82apNvr9fb2KkD99re/VUopFY1Gld1uV//1X/9VaPPaa68pQD377LOT9vPRj35UXXrppcf9WmeddZa6/fbbJ91umqaqra1VX/va1wrvRaNR5XQ61QMPPKCUUuruu+9WNTU1ZcHwyiuvKEDt3bt30r6/973vqYqKCpVOpwvv/f3f/71aunTphO1bWlok6TbNJNYmjrVxa9euVZ/97GeP20ZMncRbMd7uvfdeFQwGj/s9iFMnsTb577Y777xT+f3+sotbceok1oqxVldXp77zne+U7fcXf/EX6v3vf/9xvy8xNfMl1krdcMMNE96Yltq4caMk3aaZxNrxvfOd71TXXXfdlNqKE5N4KxpPug0NDU2pnzPBrBle+nrDw8MAhMNhAF566SWy2SybNm0qtFm2bBnNzc08++yzx+1nvI+JmKZJLBY7bpuOjg66u7vLvnYwGOT8888vfO10Oo3D4UDXi6fU7XYDVknuZJ599lk2bNiAw+EovHfFFVewe/duhoaGJt1PTB+JtYljTSnF448/zu7du9mwYcOk/YqTI/FWHm/xeJyWlhaamprYvHkzO3funLRPcXIk1ib/O3rPPfdw7bXX4vV6J+1XTJ3EWjHW0un0McPk3W73cfsVUzdfYk3MPIm1yW3dupVnnnmGjRs3Tmu/85nE27HWrFlDXV0dl112GX/4wx+mpc+ZMiuTbqZpcuutt3LhhReycuVKALq7u3E4HIRCobK2kUhk0vG9zzzzDP/5n//JjTfeOOnX+vrXv048Hufd7373pG3G+49EIpN+7be85S10d3fzta99jUwmw9DQEP/wD/8AWHMuHK/vifot/brijSOxdmysDQ8P4/P5cDgcXHXVVXz729/msssum7RfMXUSb+XxtnTpUn7wgx/wi1/8gp/85CeYpsn69es5cuTIpP2KqZFYm/zv6PPPP8+OHTv4q7/6q0n7FFMnsVYea1dccQXf+MY32Lt3L6Zp8utf/5qHH374uP2KqZlPsSZmlsTaxBobG3E6nbz5zW/m5ptvlr+j00TirVxdXR3f//73eeihh3jooYdoamrikksuYcuWLX9SvzNpVibdbr75Znbs2MGDDz54yn3s2LGDzZs384UvfIHLL798wjb3338/t99+Oz/72c+oqakB4Kc//Sk+n6/w8fTTT0/p661YsYIf/ehH/Ou//isej4fa2lpaW1uJRCKFDPCKFSsK/V555ZWn/L2J6SOxdiy/38+2bdt44YUX+NKXvsQnP/lJnnrqqZPqQ0xM4q3cunXr+MAHPsCaNWvYuHEjDz/8MNXV1dx9991T7kNMTGJtcvfccw+rVq3ivPPOO6X9RTmJtXLf/OY3aWtrY9myZTgcDj72sY/xoQ99qKwaQJwaiTVxukisTezpp5/mxRdf5Pvf/z533XUXDzzwwEn3IY4l8VZu6dKl/M3f/A3nnHMO69ev5wc/+AHr168/sxfvmOnxra938803q8bGRrV///6y9x9//PEJx/Y2Nzerb3zjG2Xv7dy5U9XU1Kh//Md/nPTrjE9++8tf/rLs/ZGREbV3797Cx+joqGpvb1eA2rp1a1nbDRs2qI9//OPH9N3d3a1isZiKx+NK13X1s5/9TCml1IEDBwr9HjlyRCml1PXXX3/MWOYnnnhCAWpwcPCYvmVOt+kjsXb8WBv34Q9/WF1++eWTbhdTI/E2tXh717vepa699tpJt4sTk1ibPNbi8bgKBALqrrvumvT7ElMnsTZ5rCWTSXXkyBFlmqb69Kc/rc4666xJvz9xYvMt1krJnG6nl8Ta5kmPudQ//dM/qSVLlkyprZicxNvmSY+51Kc+9Sl1wQUXTKntbDRrkm6maaqbb75Z1dfXqz179hyzfXwywZ///OeF93bt2nXMZII7duxQNTU16u/+7u8m/Vr333+/crlc6pFHHpnysdXW1qqvf/3rhfeGh4fLJhOcyD333KM8Hs9xJwEcn5Q3k8kU3rvttttkIYU3kMTa1GJt3Ic+9CG1cePGKR2/OJbE29TjLZfLqaVLl6pPfOITUzp+UU5i7cSxdu+99yqn06n6+/undNxiYhJrU/+9lslk1KJFi9Rtt902peMX5eZrrJWSpNvpIbF2ckmQ22+/XbW0tEyprTiWxNvJxdumTZvUO9/5zim1nY1mTdLtIx/5iAoGg+qpp54qWxp2dHS00Oamm25Szc3N6oknnlAvvviiWrdunVq3bl1h+/bt21V1dbW67rrryvro7e0ttPnpT3+qDMNQ3/3ud8vaRKPR4x7fHXfcoUKhkPrFL36hXnnlFbV58+ayZXOVUurb3/62eumll9Tu3bvVd77zHeV2u9U3v/nN4/YbjUZVJBJR119/vdqxY4d68MEHj1mCOZ1Oq61bt6qtW7equro69alPfUpt3bp1yiuDiHISa5PH2r/8y7+oxx57TLW3t6tXX31Vff3rX1eGYah///d/n/L5FeUk3iaPt9tvv1396le/Uu3t7eqll15S1157rXK5XGrnzp1TPr+iSGJt8lgbd9FFF6n3vOc9JzyX4vgk1iaPteeee0499NBDqr29Xf3ud79Tb3nLW1Rra+ucWoXtdJqvsaaUVb2ydetW9fa3v11dcsklhXuBUuPvnXPOOep973uf2rp1q/wNPUUSa5PH2ne+8x313//932rPnj1qz5496j/+4z+U3+9Xn/nMZ6ZyasUEJN4mj7c777xTPfLII2rv3r1q+/bt6pZbblG6rqvf/OY3Uzm1s9KsSboBE37ce++9hTbJZFJ99KMfVRUVFcrj8ah3vvOdqqurq7D9C1/4woR9lGbhN27cOGGbG2644bjHZ5qm+tznPqcikYhyOp3qrW99q9q9e3dZm+uvv16Fw2HlcDjU2WefrX784x9P6Xt/+eWX1UUXXaScTqdqaGhQd9xxR9n2jo6OCY9Zqo9OjcTa5LH2mc98Ri1evFi5XC5VUVGh1q1bpx588MEp9S0mJvE2ebzdeuutqrm5WTkcDhWJRNTb3vY2tWXLlin1LY4lsTZ5rClVfEL82GOPTalPMTmJtclj7amnnlLLly9XTqdTVVZWquuvv151dnZOqW9xrPkcay0tLRMe04nOj1QfnRqJtclj7Vvf+pZasWKF8ng8KhAIqLVr16rvfe97Kp/PT6l/cSyJt8nj7Stf+YpatGiRcrlcKhwOq0suuUQ98cQTU+p7ttKUUgohhBBCCCGEEEIIIcS0kaWUhBBCCCGEEEIIIYSYZpJ0E0IIIYQQQgghhBBimknSTQghhBBCCCGEEEKIaSZJNyGEEEIIIYQQQgghppkk3YQQQgghhBBCCCGEmGaSdBNCCCGEEEIIIYQQYppJ0k0IIYQQQgghhBBCiGkmSTchhBBCCCGEEEIIIaaZJN2EEEIIIYQQQgghhJhmknQTQgghhBBCCCGEEGKaSdJNCCGEEEIIIYQQQohp9v8A2cOo02sprhUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# make a plot of the temperature timeseries, including all stations\n", + "dataset.make_plot(obstype='temp',colorby='name')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 271 + }, + "id": "WVefkBS6G7hy", + "outputId": "9674a508-5dad-4454-aa04-9a17f93015d0" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Make humidity-timeseries plot for all stations\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOYAAAGUCAYAAACRLi1HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hb9f39j7Ys7z0zbGc5i0BYCQkjCYQdIF9GG0rYlFmgwK+0hE1paaFAoVA2lEIpZW+Ik0AIIUBCtrNsZ3hP7S3d3x/SvfpcT8la98rv1/Pkia15JUt3nHve5yg4juNAEARBEARBEARBEARBEERCUSZ7AQiCIAiCIAiCIAiCIAhiNELCHEEQBEEQBEEQBEEQBEEkARLmCIIgCIIgCIIgCIIgCCIJkDBHEARBEARBEARBEARBEEmAhDmCIAiCIAiCIAiCIAiCSAIkzBEEQRAEQRAEQRAEQRBEEiBhjiAIgiAIgiAIgiAIgiCSAAlzBEEQBEEQBEEQBEEQBJEESJgjCIIgCIIgCIIgCIIgiCRAwhxBEARBEESE7N+/HwqFAn/961+jehyFQoF77713xPe94YYbonp+Fv41vfLKK8Pe9tJLL8X48eNj9twA8K9//QtTpkyBRqNBTk5O1I830DJG834PRjwekyAIgiCI0QMJcwRBEARByJazzz4bBoMBFotl0NssW7YMWq0W3d3dCVyyEJ9++ikJN8Owa9cuXHrppaiursbzzz+P5557LtmLlHT8fj8eeeQRVFZWQq/XY+bMmXjzzTf73eaVV17B2WefjTFjxiA9PR3Tp0/Hgw8+CKfTmaQlJwiCIAgiEtTJXgCCIAiCIIiRsmzZMnz00Ud47733cMkll/S73m6344MPPsCpp56K/Pz8JCxhQJh7+umnBxTnHA4H1Gpp7I6NGzcODocDGo0m4c+9Zs0a+P1+PPHEE5gwYULcnkdK7/dw/OEPf8Cf/vQnXHXVVTjqqKPwwQcf4Je//CUUCgUuuugiAIHP92WXXYZjjz0Wv/71r1FUVIT169fjnnvuQW1tLVatWgWFQpHkV0IQBEEQxFDIY8+EIAiCIAhiAM4++2xkZmbijTfeGFCY++CDD2Cz2bBs2bIkLN3w6PX6ZC+CgEKhSNrydHR0AEBMRliHQkrv90A4nU5otVq0trbi0UcfxfXXX4+nnnoKAHDllVfihBNOwO23347zzz8fKpUKWq0W69atw9y5c4XHuOqqqzB+/HhBnFu0aFGyXg5BEARBEGFAo6wEQRAEQciWtLQ0nHfeeaitrRXEHZY33ngDmZmZOPvsswEADQ0NOP/885GXlweDwYBjjz0Wn3zySb/7OZ1O3HvvvZg0aRL0ej1KS0tx3nnnob6+vt9tn3vuOVRXV0On0+Goo47Cjz/+KFx36aWX4umnnwYQEL74fzwD5ZOtWbMGRx55JPR6Paqrq/HPf/4T995776DOp/fffx/Tp0+HTqfDtGnT8Pnnn/e7TXNzMy6//HIUFxcLt3vppZdEtxksY45/fL1ej+nTp+O9994bcDkG4x//+AemTZsGnU6HsrIyXH/99TAajcL1vIgEAIWFhUNmtv31r3+FQqHAgQMH+l135513QqvVore3d9Bl6fvY/Pu6b98+XHrppcjJyUF2djYuu+wy2O120X1dLhduueUWFBYWCp+ppqamAZ8nnPd7zZo1UCgU+M9//oO77roL5eXlMBgMMJvN+OCDD+DxeHDdddeJlv3aa69FU1MT1q9fDwDQarUiUY7n3HPPBQDU1dUN+l4QBEEQBCENyDFHEARBEISsWbZsGV599VX897//FZUh9PT04IsvvsAvfvELpKWlob29HXPnzoXdbsdNN92E/Px8vPrqqzj77LPxv//9TxAzfD4fzjzzTNTW1uKiiy7Cb37zG1gsFnz11VfYvn07qqurhed44403YLFYcM0110ChUOCRRx7Beeedh4aGBmg0GlxzzTVoaWnBV199hX/961/Dvpaff/4Zp556KkpLS3HffffB5/Ph/vvvR2Fh4YC3//bbb/Huu+/iuuuuQ2ZmJp588kksXboUBw8eFEZ329vbceyxxwplEYWFhfjss89wxRVXwGw24+abbx50eb788kssXboUU6dOxcMPP4zu7m5cdtllqKioCOdPg3vvvRf33XcfFi1ahGuvvRa7d+/GM888gx9//BHr1q2DRqPB448/jtdeew3vvfcennnmGWRkZGDmzJkDPt4FF1yAO+64A//9739x++23i67773//i1NOOQW5ublhLVvfx62srMTDDz+MTZs24YUXXkBRURH+/Oc/C7e58sor8frrr+OXv/wl5s6di1WrVuGMM87o91iRvt8PPPAAtFotbrvtNrhcLmi1Wvz8889IT09HTU2N6LZHH300gMDnZN68eYO+nra2NgBAQUFBxO8FQRAEQRAJhiMIgiAIgpAxXq+XKy0t5ebMmSO6/Nlnn+UAcF988QXHcRx38803cwC4tWvXCrexWCxcZWUlN378eM7n83Ecx3EvvfQSB4B77LHH+j2X3+/nOI7jGhsbOQBcfn4+19PTI1z/wQcfcAC4jz76SLjs+uuv5wbb5QLA3XPPPcLvZ511FmcwGLjm5mbhsr1793JqtbrfYwDgtFott2/fPuGyLVu2cAC4v//978JlV1xxBVdaWsp1dXWJ7n/RRRdx2dnZnN1uF72ml19+WbjNrFmzuNLSUs5oNAqXffnllxwAbty4cQO+Jp6Ojg5Oq9Vyp5xyivDechzHPfXUUxwA7qWXXhIuu+eeezgAXGdn55CPyXEcN2fOHG727Nmiy3744QcOAPfaa68Jly1fvrzfMvZ9v/nnvfzyy0W3O/fcc7n8/Hzh982bN3MAuOuuu050u1/+8pf9HjPc93v16tUcAK6qqkq4jOeMM87gqqqq+r12m83GAeB+97vf9buOZdGiRVxWVhbX29s75O0IgiAIgkg+NMpKEARBEISsUalUuOiii7B+/Xrs379fuPyNN95AcXExFi5cCCBQwnD00UeLnEYZGRm4+uqrsX//fuzcuRMA8M4776CgoAA33nhjv+fqO0564YUXihxa8+fPBxAYmY0Un8+HlStX4pxzzkFZWZlw+YQJE3DaaacNeJ9FixaJHHwzZ85EVlaW8Pwcx+Gdd97BWWedBY7j0NXVJfxbvHgxTCYTNm3aNOBjt7a2YvPmzVi+fDmys7OFy08++WRMnTp12NezcuVKuN1u3HzzzVAqQ7ucV111FbKysgYcIQ6HCy+8EBs3bhSNFb/11lvQ6XRYsmTJiB7z17/+tej3+fPno7u7G2azGUDgswMAN910k+h2fd1vI3m/ly9fjrS0NNFlDocDOp2u33LyGXkOh2PQ1/LHP/4RK1euxJ/+9Ke4Z/YRBEEQBBE9JMwRBEEQBCF7+HKHN954AwDQ1NSEtWvX4qKLLoJKpQIAHDhwAJMnT+53X35ckM8tq6+vx+TJk8Nq7xw7dqzod16kGyrnbDA6OjrgcDgGbCUdrKm07/Pzy8A/f2dnJ4xGI5577jkUFhaK/l122WXC8w4E/35MnDix33UDvY+D3b/vbbVaLaqqqgbMiQuH888/H0qlEm+99RaAgBj29ttv47TTTkNWVtaIHnO4v+OBAwegVCpFIijQ/7WN5P2urKzstzxpaWlwuVz9Lnc6ncL1A/HWW2/hrrvuwhVXXIFrr7120NdLEARBEIR0oIw5giAIgiBkz+zZszFlyhS8+eab+P3vf48333wTHMfFvY2VF/36wnFcXJ833Of3+/0AgIsvvhjLly8f8LaD5blJlbKyMsyfPx///e9/8fvf/x7ff/89Dh48KMqDi5RY/R1H8n4PJLKVlpZi9erV4DhO5NJsbW0FAJGjkuerr77CJZdcgjPOOAPPPvtsRMtNEARBEETyIGGOIAiCIIiUYNmyZVixYgW2bt2KN954AxMnTsRRRx0lXD9u3Djs3r273/127dolXA8A1dXV2LBhAzweDzQaTdTLNVibal+Kioqg1+uxb9++ftcNdFk48A2iPp8PixYtiui+/Puxd+/eftcN9D4Odv/du3ejqqpKuNztdqOxsTHi5WG58MILcd1112H37t146623YDAYcNZZZ4348YZj3Lhx8Pv9gpuSp+/7EM37zTJr1iy88MILqKurE40Nb9iwQbieZcOGDTj33HNx5JFH4r///W9Ybk+CIAiCIKQBjbISBEEQBJES8O64u+++G5s3b+7nljv99NPxww8/YP369cJlNpsNzz33HMaPHy8IIEuXLkVXVxeeeuqpfs8xEidceno6AMBoNA55O5VKhUWLFuH9999HS0uLcPm+ffvw2WefRfy8/GMuXboU77zzDrZv397v+s7OzkHvW1pailmzZuHVV1+FyWQSLv/qq6+EPL6hWLRoEbRaLZ588knR+/biiy/CZDIN2GgaLkuXLoVKpcKbb76Jt99+G2eeeabwPscDPuPvySefFF3++OOPi36P5v1mWbJkCTQaDf7xj38Il3Ech2effRbl5eWYO3eucHldXR3OOOMMjB8/Hh9//PGgY64EQRAEQUgTOp1GEARBEERKUFlZiblz5+KDDz4AgH7C3O9+9zu8+eabOO2003DTTTchLy8Pr776KhobG/HOO+8IBQWXXHIJXnvtNdx666344YcfMH/+fNhsNqxcuRLXXXddxAUDs2fPBhAoDli8eLFQVjEQ9957L7788kscd9xxuPbaa+Hz+fDUU09h+vTp2Lx5c4TvSIA//elPWL16NY455hhcddVVmDp1Knp6erBp0yasXLkSPT09g9734YcfxhlnnIF58+bh8ssvR09PD/7+979j2rRpsFqtQz5vYWEh7rzzTtx333049dRTcfbZZ2P37t34xz/+gaOOOgoXX3zxiF4PEHAXnnTSSXjsscdgsVhw4YUXjvixwmHWrFn4xS9+gX/84x8wmUyYO3cuamtrB3QyRvN+81RUVODmm2/GX/7yF3g8Hhx11FF4//33sXbtWvz73/8WRm8tFgsWL16M3t5e3H777f0KNaqrqzFnzpzYvAkEQRAEQcQFEuYIgiAIgkgZli1bhu+++w5HH310v8KE4uJifPfdd/h//+//4e9//zucTidmzpyJjz76SOTeUqlU+PTTT/HQQw/hjTfewDvvvIP8/HzMmzcPM2bMiHiZzjvvPNx44434z3/+g9dffx0cxw0qzM2ePRufffYZbrvtNqxYsQJjxozB/fffj7q6OmHkNlKKi4vxww8/4P7778e7776Lf/zjH8jPz8e0adOGzWU79dRT8fbbb+Ouu+7CnXfeierqarz88sv44IMPsGbNmmGf+95770VhYSGeeuop3HLLLcjLy8PVV1+NP/7xj1GPCV944YVYuXIlMjMzcfrpp0f1WOHw0ksvobCwEP/+97/x/vvvY8GCBfjkk08wZswY0e2ieb9Z/vSnPyE3Nxf//Oc/8corr2DixIl4/fXX8ctf/lK4TXd3Nw4dOgQgIDz3Zfny5STMEQRBEITEUXCJSicmCIIgCIIgRsQ555yDHTt2DJj3RhAEQRAEQcgXypgjCIIgCIKQEA6HQ/T73r178emnn+LEE09MzgIRBEEQBEEQcYMccwRBEARBEBKitLQUl156KaqqqnDgwAE888wzcLlc+PnnnzFx4sRkLx5BEARBEAQRQyhjjiAIgiAIQkKceuqpePPNN9HW1gadToc5c+bgj3/8I4lyBEEQBEEQKQg55giCIAiCIAiCIAiCIAgiCVDGHEEQBEEQBEEQBEEQBEEkARpljQF+vx8tLS3IzMyEQqFI9uIQBEEQBEEQBEEQBEEQSYLjOFgsFpSVlUGpHNoTR8JcDGhpacGYMWOSvRgEQRAEQRAEQRAEQRCERDh06BAqKiqGvI2shblvvvkGf/nLX7Bx40a0trbivffewznnnCNcz3Ec7rnnHjz//PMwGo047rjj8Mwzz4jCk3t6enDjjTfio48+glKpxNKlS/HEE08gIyMj7OXIzMwEEHjDs7KyYvb6CIIgCIIgCIIgCIIgCHlhNpsxZswYQS8aClkLczabDYcddhguv/xynHfeef2uf+SRR/Dkk0/i1VdfRWVlJVasWIHFixdj586d0Ov1AIBly5ahtbUVX331FTweDy677DJcffXVeOONN8JeDn58NSsri4Q5giAIgiAIgiAIgiAIIqy4s5RpZVUoFCLHHMdxKCsrw29/+1vcdtttAACTyYTi4mK88soruOiii1BXV4epU6fixx9/xJFHHgkA+Pzzz3H66aejqakJZWVlYT232WxGdnY2TCYTCXMEQRAEQRAEQRAEQRCjmEh0opRtZW1sbERbWxsWLVokXJadnY1jjjkG69evBwCsX78eOTk5gigHAIsWLYJSqcSGDRsGfWyXywWz2Sz6RxAEQRAEQRAEQRAEQRCRkLLCXFtbGwCguLhYdHlxcbFwXVtbG4qKikTXq9Vq5OXlCbcZiIcffhjZ2dnCPyp+IAiCIAiCIAiCIAiCICIlZYW5eHLnnXfCZDIJ/w4dOpTsRSIIgiAIgiAIgiAIgiBkRsoKcyUlJQCA9vZ20eXt7e3CdSUlJejo6BBd7/V60dPTI9xmIHQ6nVD0QIUPBEEQBEEQBEEQBEEQxEhIWWGusrISJSUlqK2tFS4zm83YsGED5syZAwCYM2cOjEYjNm7cKNxm1apV8Pv9OOaYYxK+zARBEARBEARBEARBEMToQZ3sBYgGq9WKffv2Cb83NjZi8+bNyMvLw9ixY3HzzTfjwQcfxMSJE1FZWYkVK1agrKxMaG6tqanBqaeeiquuugrPPvssPB4PbrjhBlx00UVhN7ISBEEQBEEQBEEQBEEQxEiQtTD3008/4aSTThJ+v/XWWwEAy5cvxyuvvII77rgDNpsNV199NYxGI+bNm4fPP/8cer1euM+///1v3HDDDVi4cCGUSiWWLl2KJ598MuGvhSAIgiAIgiAIgiAIghhdKDiO45K9EHLHbDYjOzsbJpOJ8uYIgiAIgiAIgiAIgiBGMZHoRCmbMUcQBEEQBEEQBEEQBEEQUoaEOYIgCIIgCIIgCIIgCIJIAiTMEQRBEARBEARBEARBEEQSkHX5A0EQBEEQBEEQxGiB4zjc//FOzK0uwKpdHbhhwQSU56Qle7EIgiCiwuPz4673tuOK+ZX4Zk8nnv+mAX4OOHNmKX67eDIydKktXaX2qyMIgiAIgiAIgkgRvtjRjpfX7cfL6/YDAIx2N565eHZyF4ogCCJKXl7XiLd+OoT/bWrC8RML0G5xBS7/bj9OnlaMudUFSV7C+EKjrARBEARBEARBEBLH4fbhgY93ii77bHsbvtnTmaQlIgiCiJ42kxNPrNwLAPBzHKoKMpCpD3nImnsdyVq0hEHCHEEQBEEQBEEQhMR5evU+NBsDB6iTijOEy+/9cAdcXl+yFosgCCIqHvq0DjZ3YB32y6PHYsVZU/HYBbOE61uMziQtWeIgYY4gCIIgCIIgCELCNHbZ8Nw3DQAAjUqBp5cdgdnjcgEADV02vPhtYzIXjyAIYkR8V9+Fj7a0AAByDRrcvngyAKAsRy/cptloT8qyJRLKmCMIgiAIgiAIgkgC25tNmFScidfW78cLawPi2vTyLGxvNot+tjg9cPv8AIAr51dhYlEm7l8yDWf9/Vv4OeB/G5tw9fwqqFXkuyAIIjF0Wlxwenz4YkfbgOuvvr8P9LPR4RZu+/9OnYIcgxYAUJFjEC7nncKpDAlzBEEQBEEQBEEQCabT4sIvnvsexdl6zCzPRps5MK41Lt8w4M9nzChFh8WJGxdMAABMK8vGyTXF2NVuQU6aBt839GDexNQOSCcIQjo89MlOfLa9DYePzRlwndX398F+XjClCH6OwwVHjhHul5WmRoZODavLOypGWUmYIwiCIAiCIAiCSDB/+mwXLC4vLB1WpGtVKMkKjG5l6tUD/nz42BxcOb9K9BgnTC7CFzvbcaDbPirGvQiCkAYbGrrx/ubACOrmQ0YUZeqgVChE6yxg8PUZ+/Pc6vx+6zaFQoGyHD32tFvRbHTA7+egVCoS8dKSAglzBEEQBEEQBEEQCeSn/T14Z1MTACBLr8ZLlx6F/AxdxI+TnaYRfjY5PDFbPoIgiMHw+Py4+4Mdwu8rzpyKZceMi/nzlOekYU+7FW6vH102F4oy9cPfSaZQCAFBEARBEARBEESC8Pr8WMEc1N62ePKIRDmAhDmCIBLPa+sPYHe7BQAwozwbFx01Ni7PU56bJvzc3JvaOXMkzBEEQQwBx3HgOC7Zi0EQowb6vhEEkQqw67K+67XXvz+AutZAAPq0sqyonCYkzA0O7cMRiSSZn7V4PPdgj9lhceLxr/YAABQK4IFzpkMVpxHTspyQMJfqOXM0ykoQBDEEX+xow+vfH8T08iy8/3MgR4FvEfL6/PD6OcypzsffLpwFvUaV5KUlCHlT32nFTW/+jMPH5GJlXbtw+XCNXn1/TtR9kvGcibiP2+eH38/h+EmFePIXh4MgiMh5onYv6jusUCoVGJtnwG9PmQwgUPjw+vcHMbMiG1ubTLh/SXQHtawwZ7STMMfyzsYm/PuHgzh1WgmmlGbhhEmFyV4kIkWxu734xXPf41dzxqPH5sJL3+4HkJj9D4/PjzStCo+efxiOqcqPyetp7LLhhjc2YdaYHNTWdYiWc1uTCRwAjUqBpUdUYNaYnJg850CUM8JcqmdokjBHEAQxCHa3Fw98XIdmowPf1XfBHzxx1Ldt6LPtbbjjVCcqC9KTtKQEIX84jsO9H+7AjhYzdrSYRdeF0+g1khawaO+TjOdM5H0+2tqCJy6aBYUidcOWCSIeHOy24+nV++DxBXYcNCoFzj28HFWFGfjz57uwr9MKALjq+CrMHpcb1XORY25gLE4P/vjZLvTY3Pj5oBHzJhSQMEfEjadX78OWJhO2vL0FswdpKI3n/gdswN0f7MDHN82DRhXdUCTHcbjvo8H3x9otLgDA5ceNx40LJkb1XMNRMYpGWUmYIwiCGISnV+9DszGwERiXnw6H2wcg1CJkdnpgD17WbiZhjiCi4fPtbVi7twtAIAg9TauCAgFBKJxGr5G0gEV7n2Q8ZyLu02Nzw+3zg+MAs9MrOvAnCGJ47vtohyDKAYDHx+Hej3bipgUT8L+NocKHa46vGuwhwiZTr4ZCgcD3lYQ5gcdX7kWPzS383s6KGAQRQxo6rXjumwYAARH+6Mo8NAfHLuO9/8FxHLptbnj9HHa3W/Da+gO4Yl5lVK/ny53tWLO7U3gewyD7Y2U5achN10b1XMNRJnLMpfZ3mIQ5giCIAWjotOL5bxoBBDayLy4/ElWFGaLbPP9NAx76tA4A0BE8e0QQROQE3Kk7hd8f+b/DcOr0kiQu0ejmhjc24eOtrQAAo91NwhxBRMDKne2o3RUY/SrK1EKpVKLN5MQ3ezrRGHTKAYHCh4IRFj6wKJUKZOk1MDk85JgLsrvNgle+2w8AUADgABzotsPn5+KWhUWMTjiOwz0fhoT4q4+vwu2Lp+D/nVaTsGXYfMiIc/+xDhwHPP7VHpw1sxRFjOgXCQ63D/d/FNof+/PSmTh9RmmsFjViijL1UCsV8Po5wSyRqlD5A0EQRB84LnBm2+3zAwCuml/VT5QDgKKs0A51B52JJYgR89SqfWgxBb5Dx08qxOJpxUleotFNriF0BryXMqsIImycHh/u+zjUtnrXmdNwz5lThd8PBUexppZGV/jQF148J2EusA+34oPt8AXzR6qLAvtvbp8/5UfhiMTzxY6Q278sW4/rT5qQ8GWYNSYHFx45BgBgcXnx8Ge7RvxY/1gTmhaaN6EApyX5JKlKqUBpTkBkbO6ljDmCIIiU54PNzZhTlY8Pt7TguW8ahPGHsmw9blgw8Ea2KDN0NooccwQxMho6rfi+oRsAoFUpcd/Z0yjTLMnkGkIOuV67e4hbSofVuzowJs+AA902jC9IR/UAJ1OI+LLxQC8ADj8fNOKFtQHHebhh5784egx+ccxY0XZVLuxpt6C6MAMvr2vEM2vqhe/MnKp8nDUz4DSZP7FAOHgHgAfOmRZT5xYvzJmdXnAcl5Lr0BajA5sO9qLV6MCLAwTr879vOWQS/gbj8g04aXIh9nUEnIoNXVaMzTckfNmJ1GFPuwUtRgf2dVjxwtpGWF1ewZV591lTYdAmR16549Qp+Gx7G0wOD37a34Nj/rgSCigiKpzY1mQSxH2NSoF7JbI/VpadhkM9DpidXlicHmTqU9PFT8IcQRCjnt1tFtz63y1I06hw5PhcQWQ7cXIhLj5m3KAbWdYxR9klBBE5/AjIpoNGzCzPxsnTiimrUQKwmTFGGQhzPTY3fvPWz7A4vOAAHDchH69fcYwkDihGC26vH//vna3Y12FFTUlmxGHnf1u5F3aPD3cmcPwrFpgcHpz+xFpkp2lQVZiO7uBJvSPH5eL+JaGD2vvOnoa3fjqEuVX52NJkwuxxeTFdDl6Y8/k5WF3elDxwfeiTOnyyrRVjctOG/Ex1WgP7cMdPLMAV86vQbgpd39Bpw4mTE7vcROrAcRzuen87fmjsQVVBuvDZ+8XRY5Cl12DxtOS5y/LStbjv7Gnw+Tkc7LHhidp9ACIrnOBLHc4+rAyHjcnBhCJpnOAqz00DAud60GJ0YnJJ6q3fABLmCIIY5bAjD1aXFxwHIdR03oQCLJo6+EhdMZPfQMIcQUQOOwLSZXVFHVhMxAbRKKtN+qNxf/liF8wOr/D7un3d+HRbG86YmbxcnNHGy+saBVeSyekJO+y8KEOHjqCQUlvXITth7us9nfD6A+HrVYXpwus7dXoJJhZnCrerKswQXtsJk4tivhx9m1lTTZj7dm8XPtkWyL3strlRlKmDUqEYMkD/+EmFOGFSIX7a3yNc39hlS+yCEynFB5tb8ENj4PPUa3ejOEsHBRSoLszAlfOjL3KJlnMOLwcAvLC2IarCiZkV2ZLaH6sQFUDYMbkkc4hbyxcS5giCGNV8uCW0kR2Xb8A/fzUbeo0qrPtm6NRI16pgc/tolJUgIiRQ+FAn/J7MERBCTI6MRlk3HzLiPz8eAgDo1Uo4vYFs0Ac/2YkTJxciXUefqXjTanLgidq9AACFAnjuV0dienl22Pdf+sx32HigF/s6rDjQbcO4fPm4ZlfVtQs//2bhJMybWJCU5cjqI8xV5CZlMeKC2+vH3R9uF36/7+xpOD+YpxUOrAubhDlipFicHqHwDQAeu3AWToqDyB4LrpxfJQmhMFaMlmZWKn8gCGLUYnF68OAnoY3svWdNC1uU4+FbjzrMJMwRRCQ8vToUMDx/YkFSR0AIMeLyB+kKcz4/h7s/2A4ukPGO354yCSdOLgQAtJqceGr1viQu3ejhoU/qYHf7AADLjhkbkSgHAAtrQge3tXUdMV22eOL1+bF6dycAIFOnxtGVsR1PjYS+jrlU4sVvG9HQGRDUjhibg6VHVER0/7x0rfD+NDCtuAQRCY+v3IvO4En4k6cWS1aUS0XKcxlhLoULXOg0IkEQo5YXv20UNrKLaopx0pTIN7JFmTo0dtlgdXlhc3nJnUEQYdDYacXz3wQCQzQqBRU+SAypt7K+sLYBL6xthMPjE0SIScUZuPS4Spw8tQSn7PsGbp8f//y6Hu9sbIJSoegXen3xsWNxw4KJyXoJssbs9CBLr8ELaxvwzJp6IVct16DBbadEHuC1qKYYj3y+GwBQu6sdl0tohGooNh7oFT5/x08qhFadPL8DK8yZU0iYazU58NSqgBtTqQDuXzIdyghLMxQKBSoL0rH5kBEtJiccbh/StJGdhCVSB4vTgwydGi9+2xh2Sc2WQyYhu1CnVuJupmmZiD/lIsccCXMEQRAphdPjwze7O3F0ZR52tJhwz1kj28gWZYmbWStJmCNixO1vb8bOVgsKM3W49eRJmFmRk+xFigkcx+Gej3aiqjAddrcPZ84sRRU1aEqK3PTQQb6Uyh96bG5c9dpP0KmVogBrnVqJ+5dMh0alxPiCdFxzQhU+296GmRXZeHdTM4D+oddP1u7DvImFmDUmJ9EvQ9Yc6rHj9CfWYtmx46BUQBDlMnRq/O60KchhRN1wmViUgTF5gda9DQ09gvAndWp3hdx9rOsvGaSqY+7Bj+tQlpMGH8dh3oSCiN2YPFVBYQ4A9nfbUFOaFcOlJOQCx3G46c2fYXV5Mak4/JIaXpTLMWhw+XGVGJNHzb6JhB1lbSFhjiAIIrX4vqEbm4I7aWcfVjbijWxxZqiZtcPspEZJIiZwHIfPt7fD4goE2p82vSRlhLkvdrTjmz2B8a+KXD1uOGlCkpeI6EuGTg21UgGvn5NU+cPqXR3YeKAXAJCuVQkB97+aMxbHVuULt7v+pAm4ccFEvLZ+P77L6gYQCra2u70wO71w+/y4+4PteO+646CK0IEzmrnvo52wuLx49ut6zJtYIISFXzJnHM6fHX7uF4tCocDCKcV45bv98Po5rN3TJYvijtpgvpxSAZyY5LG2VBTm2MKH/HQtblk0acSPVVUY2jdr6CRhbrSysq5DGD/f3WYRyhvCLUi47LjxuPS48Qlf7tGOXqNCQYYWXVY3jbISBEGkGquYM92nTR95tlVRVkiYa6cCCCJG7GgxC6IcABglOE44EhxuHx74eKfw+x9OnwoDuUwlh0KhQI5Biy6rS1KOOXa9/crlR+Oo8QNnevFZoQMFYHt8fpz55LfY3W7B1iYT/vPjQSw7Zlz8FjqFWLWrHSuDYlRRpg7PLDsiZu2fC2uK8Mp3+wEEBC+pC3P7u2yoF3LPcpGXHrlTMJakmjDXt/Dh/502BblRvMeVBSFXdmMX5cyNRpweH+77aIfw+x/Pm4EzZ5YlcYmISCjPSUOX1Y12ixNurz+p0QHxIvVeEUEQxDBwHCcETGtUiqha1IrZUVZz6jYFEYmlbwB6qrT+9i18ODUKUZyIL7nBZtYeiQhzbq8fXwedljkGDQ4f4QiqRqXE/UumCb//5Yvd6LVJ4zVKGafHh3s/ZET1M2piJsoBwDGV+cgIivSrd3fA5+di9tjxYCXTxrqwpjiJSxIg1YS5l9aFCh8OH5uD/4uw8KEv7DRDAzWzjkr+saYeTUG31dzqfJwxQ9riPyGGL4DgOKA9RY+3SJgjCGLUsavNIogDx1blR3VwUZQpzpgjiFhQu6td9Hsq7IQ0dtnw3DcNAAKC+L1U+CBp+AIIp8cPp8eX5KUBfmjsgTXoIj1pchHUqpHvwh5TlY9zZgWcEka7B498sTsmy5jKPPdNAw722AEAx1Tm4ezDYus00aqVOH5S4CRZr92Dnw/2xvTxYw3r3lyU5Hw5oK8w5x3iltKn1eTAk7WhwocHRlD40BeRMNdJwtxo40C3Dc9+XQ8AUCsVuH8J7X/IjbLsUM5cU4qOs9L8CEEQo45a9kz3CJpYWUSjrCkgnhDJp93sxNYmk+iyVBB993VYUF2UjrpWC66cX4VqKnyQNDmG0IF+r92NUmanOBmIHUrRCyG/P70GK+s64PX70Wpy4Ng/1gIYvp1voOuG+5njOHAccNasUty+eIowaisXDvXYsb6+C5l6NexuH+5fMj0uB7ULphTj021tmFiUgQM9dhw5yKhysjnYbUObyYkMnRq56RpMKEr+uiyVHHNf7+5EVWE6tjebseyYcSMufGBJ06pQlq1Hi8mJhk4rOI4jYSbF+XF/D77d24W3fjwEr88Pjgu4cK+YV4kJRZlJXjoiUoqzdNCpFSjO0sPsTE2XOwlzBEGMOsRNatGNoIhHWeUvnhDJZzXz+dSqlXB7/SkxJv1E7V7UtVqgUihw3YnVyV4cYhjYzKxemyepwhzHcYKLVK1U4PhJhVE/ZlGWHo9fOAuTSzLxv41NWBMMBB+unW+4Fr+h7v/it/tx7uEVMREaEsn9H+/E+oYe5Bg0+M3CiZhcEp+D2mllgUD+vR1WrN7VgaVRji/Giwc+qUNDlw25Bg3uPK1GEgJPpl4NhSIw5iVnYc7v5/DoV3vQaXGhOCvQSB4rKgvT0WJywuz0otfuSXouIBE/LE4Pzn92fb/LT5lajBsXTkzCEhHRkpeuhcvL4WCPA61G+e8TDwQJcwRBjCq6rC5sDraxTirOiLryPEOnhkGrgt3tQ7slNTcURGJZyeTLFWXq0NTrQIfFJfsz/HyTVkm2PqbZVER8yDGEDlqTXQCxr8OKQz2Bz8/RlXnIitHnZ9HUwImZwRr5hmrni+Rnq8srjOE2Gx2yEuZW7+rAVzsDoqhGpcRlcWwkHJ8fGjeUqkuYfT/UKiXmR5FRG0uUSgUydWqYnV6YZSzMbWs2oTP4t59Rnh1V4UNfqgoysG5foKW5odOKvHRpOjKJ6GlkcgTTNCrBUXp0ZZ6QZUnIizRt6O/m9vmTuCTxgz6ZBEGMKlbt6kDQzR6zwObiLD0au2zoJMccESVOjw/f7gs4dwoydBibZ0BTrwN2tw9Wl1e2gpbdHXAoAIFmLUL65IpGWZN7oM+K1fEI2h+ovTWWvLOxCb99ewuAkEAtB5weH+5lWgz/cHpsCx/6kqZVIVOvhsXplaRLONHvR6RkGzQwO72ydsyxEw0LpsT2u963AEKqo9JE9LDC3M2LJuKaE8ilL3d0TAury5OawhyVPxAEMaqIZb4cT2FmIGfO4vLC7pZ36DKRXL6r74IzuMOxYEqhaFS6XcbCLytG8M1ahLTJZRxzvUl2zMVjvZ1I2M88XzwkB57/pgEHugOFD0dX5mHJrNgWPgwEv87jXcJSIhnvRyTwriCTwyO59y5camOcJclSWUgFEKOFeubvW0V5timBTh3KZnV5U1OYI8ccQRApjcfnh1qpwIvfNuL5bxqE8Zi8dC0OH5sbk+fomzM3voBWranA9mYTppVlYUeLOW6jZxzHYUeLGd83dOOFtY2iEaSFNcXYxDQTdlickggZHwmsGFGWox/iloRUEJU/2JInzJkcHvwcjB+oLkzHeMb1IhdYl2iLhIU5j88PjUqJF9Y24PlvGtBlDfzdVUoFHohT4UNfijJ12NdhlZxL2Oby4q2fDgFI7PsRCbww5/NzknrvwqXV5MCOlkBxyozybNG+VSyoLghtPxu7rDF9bEJasI65ShluM4j+aBnHHI2yEgRByJAna/fioy0tyDVo0R4U5RbVFGHehAKolLHZqS7OFDezyvHAkRDz7d4uXPziBuSna9Ftc+Oda+di9rjYCLksH2xuwc1vbcaUkkxRSPysMTmYN6FAVAkv53IRVpgrz4ku15FIDGy2UzJHWfe2WzC1NAscx+GoSnmOnpVk66FUAH5O2o65a1/fhDazA+latbC9nDUmB0dX5sWt8KEvfV3CUhGXXv/+APwch5rSTBxWkZOw9yMS+jazSuW9C5dVomKu2Dtjy3PTMDN4kk2tpKGxVIYXXpUKYGyUWdKENBCPsvqSuCTxg4Q5giBSmpV1Hdjfbcf+bjuKMnVQKhQ4tioflx5XGbPnKMpihDmJBlYT4eP2+nHPh9sBAN1Bp9CK97fjoxvnxUzMBQKtYQ99WgcA2NVmQa5BI1j1z5xZinSdGsXMZ6tDxuUiNMoqP3IlUv5woNuObc0mAMD/zZZmS+dwaFRKFGfp0WpySjZjjs+3dHr8SNephAKLM2eW4op5sdteDkdRn3WeVFzCtbs60GJ0osXoxFO/ODzZizMgfYW5itifS4ortWyWZIzz5YCA0/FAjx0mhwcmp3xz+Iih4TgOjcFR1jF5BpHTipAvOg0jzNEoK0EQhLxoMTpQ1xoYi5hZkY0Pb5gXl+cRj7LKVzwhAry0rlHIJ0nTKOHw+LGz1Yx/bziAS+aMj9nzPL5yr9A+d8rUYjx3yZH9blOUmRoZcy0ixxyNssoBcflD8oQ5tu061qNtiaQsJw2tJie6bW44PT7oNarh75RA2HzLM2eU4c//NzMpy8Gu86TiEjba3dh4IBArUFmQjuoi6bnlACA7LSSmy60AwuH2Yd2+LgBAcZYO08uz4vI8WWlqmBweWJyUB5yqdFhcsLkDjqoqmmBJGbQqZpQ1RYU5kpAJgkhZ2HaveJx95SnMZM/wS+NAghgZrSYHnqzdCyAwAnHf2dOF6/76xW50WWPz993dZsEr3+0HELDnrzhz6oC3Ezvm5PvZEmfMkWNODrDum2SOsrLiTJGMhTk2Z06K46zi5tvkFWxI0SW8ZncnfP5AmYKUy0fY76xZZsLcun1dggtmwZTiuOX3ZeoC75HFKd+CDGJo6jtD+YGVBdJw3BLRo9OkfvkDCXMEQaQs8Wz3YiHHXOrw4Cd1sAfPtC47ZhwuOGoMlh4RGJ8zO73482e7on4Ov9+PFR9sFw70rj9pAsYMkoEidszJ97PFj+/lpWth0JJZXw6oVUpk6QN/q2SOsrLiTBFzEkRuiJpZJTbOynEcVgWFOa1aiXkTC5K2LFJ0CYtO8tXE7yRftPQdZZUTtbsS07ycGVyneXyc4BAlUgtR8UMhOeZSBVHGnDc1M+ZImCMIIiWxu734rr4bAFCSpce0sviMRQDig0WpHEgQkWNxelBdmI7SbD2y0zS47ZTJAIDfnTYFGToVxualweX1o80UnUD24ZYWuDw+FGfpMC7fgKuPrxr0tmlalXAgIVfR1+vzC8UW1MgqL/gCiJ4ktrKKHXPyFebKJNzMuqPFLHxH51bnJ1U8j6VL+KudbXh85R5c+/pGWEaYKebx+bFmd0CYy9SrceR46Qa3yVWY8/s5tJmcmFGejew0DY6bED9hOIt5j0b6mSCkDZ8vBwDVNMqaMmjVqZ8xR8IcQRApybd7u4QMggU1RXEbiwCADJ0aBm3AYi2V0Rsicg71OPBk7T60mpyYU52H7GDGVmGmDucdUYGDPQ58uKUFKxknZqQECh92YUuTCb02Nx5YMn3YrCnekdlhccly9KbN7ETQHCga5yOkD18AYXZ64fUlZ0eYz5jLYcpR5EiFhEdZRaH7SXaExdIlfMf/tuLxlXvx2fY2Ib8sUn7c3yPkkZ04uQgalXQPneQqzG1vMWH17k5sazbhqPG5SNPG73vOn+gCAus1IvVoIMdcSqIjYU7+WCwW3HzzzRg3bhzS0tIwd+5c/Pjjj8L1HMfh7rvvRmlpKdLS0rBo0SLs3bs3iUtMEEQsYA80FsU5L0ehUITEE3LMyRYnY40vyRILSOfPHiP8vIoZa4qUJ5jCh+MnFeH4SYXD3od3ZNrdPlhd8juQEDWy5gw8sktIE7YAIhkH+hzHCevU4kx5uy2lPMqaqDHCcIiXS5jdJ4iEVQncl4gWuQpz7N/mpDh//rL0TA4fOeZSEn6UNU2jkv12gwjBlj+QMCdTrrzySnz11Vf417/+hW3btuGUU07BokWL0NzcDAB45JFH8OSTT+LZZ5/Fhg0bkJ6ejsWLF8PpJNcLQcgVv58TMmH0GiXmVsc/L4cvgLC4vLC75SeeEIDTExLm+rrYppdnCSNW6/Z1weGOPN9id5sFLzOFD/ecNXDhQ19EGYYyLIBoMbHFD7STLCd4xxyQnAIIs8Mr7IDLeYwVEI+ySskx1252YmuTCQAwtTRLEuUssXIJs+v01bs74PdH/lj8voRKqcAJYZxISSZiYU4++yFiYTi+js0sxjFHzayph8fnx8EeO4BAg7JSGb9pGSKxKBQKYZyVWllliMPhwDvvvINHHnkExx9/PCZMmIB7770XEyZMwDPPPAOO4/D444/jrrvuwpIlSzBz5ky89tpraGlpwfvvv5/sxScIYoRsazYJ7ZnzJhQMOyoYC8QFEPITTwjAxQRB6zXizaNCocCC4AGDy+vHtxGORXEch7uZwofrThy88KEv4gxD+Z00Yt1BFbnJP+gnwieHEeaSUQDRLip+kLeom6FTC8KJlIS51buk0cbKEguXsMfnh4NZp3dZ3djcZIzoMRo6rYL7Zva4XNH3QYrI0THXZnJie7MZQOAEWEl2fL/nmXrKmEtlDvbYhf0sGmNNPfhx1lQtf0jpajSv1wufzwe9XryST0tLw7fffovGxka0tbVh0aJFwnXZ2dk45phjsH79elx00UUDPq7L5YLLFTrwNpvN8XkBBEGMiB0tJmhUCnh8XMLycljxpMPiwngKnJUdQznmgMAY05s/HAQArNrVjpOnhv/Z2tFiFkZYx+YZcM0Jgxc+9KWIEX07ZeiYY0UIGmWVF+woazIcc+xJjmKZO+aAQMaiyeFBm8kJn5+DSgJujp2tZigUAMclP1+Op69LmBVTwmUgYWpVXQeOGBt+ecPPB43QqpVwe/2SH2MFAvlp/N9SLsIcGw0Rb7cc0CdjTkauwkTw7qYmLJxSjLc3HsILaxsBAMvnjsOlcyvjmvs3EG6vHy6vD2/9GFqW6eVZgogLABcfOxbXnFAtyn1kix+qaD885dCpVbDAKzqRnkqktGMuMzMTc+bMwQMPPICWlhb4fD68/vrrWL9+PVpbW9HW1gYAKC4WbwiKi4uF6wbi4YcfRnZ2tvBvzJgxg96WIIjEs7KuAzq1EuPyDTimKi8hz1mQoUVxpg45Bg2dhZUpbMacXt1/8zi3ukA4W1dbF9lY1DNr6nGox47KgnT89pRJEbk4WUFClo45Y2iZy8kxJyty0tlR1iQ45sysYy4FhLng59/r5yRRFMRxHD7e2oqcNA1mj83FzPLsZC8SgNi4hAcSpiIt7vlyZxtUCmBCUTqOS0AkRrQolQpk6gLCk1kmwlwt8zdJhGOTWlkH5qf9Pbj1v1uw4NE1+OlAL9rMTrSZnXjk8934dFtrwpdn08FezLj3Szy1ap+wLBanV/i5zezEX7/cg619XLCNTPFDFTnmUg5+H9ydpDKqeJPSwhwA/Otf/wLHcSgvL4dOp8OTTz6JX/ziF1AqR/7S77zzTphMJuHfoUOHYrjEBEFES2OXDVaXDx1mFyrzE7Nh1mtUaLe4YLR7ZBnQTwBO0Shrf+EsTavCvAmBg7MOiwvbW0xhPa7b68c3ezrh8XPotbtxxozSiJZL3FIoQ8dcbyDvRa9RihxYhPTJYzPmbIkX5thMRdZFJVfYVmIpFEC0mJzosbnRa/cgXa+WTB5TLFzCrDBXkBH4HO9qs6ApuD4Kh+3NZjg8frQYnZhSmjWi5Ug0fJu4HBxzDrdPiIUoytRheln8heFMypjrh9fnx4oPdgAAum1ugOOEbTWHQDxMotkefE6jw4MsvRolWXpkBv9ncwK3NYmXraHLKvxcWZCRmIUlEoYwyupJzVHWlBfmqqur8fXXX8NqteLQoUP44Ycf4PF4UFVVhZKSEgBAe7v4DFp7e7tw3UDodDpkZWWJ/hEEIQ36Br8qFIk50EhjhJyRFAMQyWe4UVZAPOq1MsyWvx/398ASFGtPnFQItSqyTS/rmJNb+QPHccIoa3lOWsK+j0RsSPYoq8gxlyKjrDxSyJljD2ql4pYDYu+Ym1CUKfwcbqt2t9Ul/I2ml2VLYuw4HPicOZPDE1VxRiJYt69LKHdZWFOUEGE4k1pZ+/H69wdQ1xoYEZ1WloWnl83G6ttOFK7fngRhjhUD37jqWHz/+4V4YflR+P73C/HaFccwtxPHSTUwo6yJOjFPJA6tkDFHjjlZk56ejtLSUvT29uKLL77AkiVLUFlZiZKSEtTW1gq3M5vN2LBhA+bMmZPEpSUIYqSwwa+JtLGz+RuOFD2Tk+o4hyh/4FkwJTRqs2pXeGNRK0WjOpFn6Igdc8kff4uEXrtHeF/LcylfTm4ku/yBdUvJvfwBEI9yS0KYazYKP0+XkDDHuiNH6hJmRzlnVIReW22YJ1RYYUBK781w8MKcz8/BJvGThLUJzpcDqJW1L50WFx79ao/w+/1LpkOlVCDHoMWYvMD6akeLWdivThT8SQOtSolJxZmi66aUZEIdFHHZdRgQGmXNT9cK7lEidWBHWaV+4mEkpLww98UXX+Dzzz9HY2MjvvrqK5x00kmYMmUKLrvsMigUCtx888148MEH8eGHH2Lbtm245JJLUFZWhnPOOSfZi04QxAhIVvCryDFHwpwsYR1zukEccyXZekwvD7iktzeb0WYaWijjOE44EFQrFTh+UmHEy5WmVQnjN3Irf2DH9cpz5C+sjDZy01nHXHIz5gpTIGOuTGKjrKzbhBWvkk0sXMKsY25SUQbKgm2f6+u7YQsjboJ1Cc2okM9kjFyaWTmOE05u6dRKHDchMRl+1Moq5m9f7REEyvNnV2D2uFA5yoygIO3w+FDfaR3w/vHA4vSgISiwTSnNFFxSPHqNChODYt2+Divsbq9wP359QflyqYlOHdg35zjA40s9YS6lW1kBwGQy4c4770RTUxPy8vKwdOlSPPTQQ9BoAivmO+64AzabDVdffTWMRiPmzZuHzz//vF+TK0HIHY7jcNN/NsPs8GBbswkqhQJOjw8FmTo8f8ls0aiHnGGDXxNZlc465pwSP0tNDIy4/GHwcoaFU4qgUiiQrlPj50O9OC178My4+k6rMFp91Pg80UFTJBRl6mBxemXnmGs2hvKc2DE+Qh7kshlzyRhlDRYk5Bg0ERWmSJVEjrL+54eD+HR7K3ptHtywYAIWTxNHtHAcJ4hPeelaQbiSArFwCZuYz2uuQYv5Ewuws9WC4iw9GrusmF6eM+T9WcfcDBk65oDAeyDV9W6z0YFpZVkoy/EgP12XsNZPamUNsfFADz7a0oyjxudiX4cV/++0KaLrp5dn49NtgTLEbU2mfs61eLGjJXTCYDC36ozyLNS1muHngLpWM2aPy8PmQ0ZMKs5AYYYOx1bnJ2RZicSiY6ZZXF5fP9FW7qTWqxmACy64APX19XC5XGhtbcVTTz2F7OzQl1yhUOD+++9HW1sbnE4nVq5ciUmTJiVxiQkiPhzotuOjLS34ek8nemxudFpdsLi8aOyyhZ2VJQfY4NeqBAa/so45OwlzssQVxigrABw1Ph9bmkz4rr4bGxp6hnxM9rsVTeMcP9pld/tkVS7SxDrmqJFVdug1KuG7kOhRVo7j0BEcYyxOgTFWIFBCwB9IxNsx9/HWFnyzpwvbmk1Yu7ez3/V88QMQOPiVUv5jLFzCrFss26DBxOJMbGs2YWVdOxq6hi+A2B50Exq0KlmFyGfJxDHX2GXDql2d+PmgEROKEvf+6jUq4Ts4mjPmvD4/Vry/AxaXDz/u78Vtp0xGQYbYlcwK0oksgNgehiguWrbg2Os3ezqxp92KdfXdGEPRGSmJlslodqdgzlzKC3MEQQTYymzoMnRqFKSHnBCrUkmYY0ZZxydwlFVPo6yyJ5zyBwDCKCsw/M5qLZMvt2gE+XI8sQhDTwYtxtCylmWTMCdH+GbWHltiD2LNDq8Q8JwKxQ9A4GQw72BqMTrimpHDnixineQ8bPHDjHLpjWry67xYlD9kp2mQnxHa5+m2Di329djcgqNxWlmWbIofAPmMsjYn8aQNnzM3mjPm/r3hIHYGCx+mlmbhoqPH9rsN25KbyAKIcNyq00WiYeB18JmFSgVwwghiQwjpI3bMkTBHEIRMYTeqT/5iFn5acbKQwfDTgR702hKfHxQP+FyKggztiMcGR4KByh9kT7jCHBuKvHOIUORemxsbD/QCCOSdRCMUi8PQ5SPMiUZZyTEnS/gCCKPdndCw5Q4L08iaIo45IDTOanP74iqcsH+pfR3986HCcaUkk2hdwv2EufSQuNttHXp/R67FD4BYmDNLWZhjRrkrEjxuy+fMjVbHXJfVhb9+uVv4/YFzpg0oPuema1GRm/gCCP77N1DxA09NaUgw395sQmOXTTgxf+S4POQy5gMiddAxMTMkzBEEIVvYs+P8jibv4PFzwJo98nfNWZweYewlkWOsQJ+MORLmZEk4raw84YQir9nTAX4/Nhq3HAAUMcKcnAog+IMvpQIoyUodcWU0wRdAeP1cQseo2TbOVHHMAeKcuaY4jrPaXKHtULvZ1c8lJnKlVOTEbTlGSrQuYeNQjjnb0OtQVrScKaFSjHCQjWPOmHzHnNXlhT/BbaNS4M+f7RLcgv83uwKzx+UNelv+8+/w+NCQgAIIazBiBxi4+IFHr1EJot3eDgs+39YqXBdNbAghbVJ9lDXlyx8IggiGPLcEdjSLs3SC+2DBlCI8900DAKC2rgPnHl6RtGWMBfuZ3JjKBI6xAn1aWSljTpaEW/4AhBeK/OHmVpRk6dFmdmLhlOh2FIsyddAoFcjP0MKYhBD+kaJXq5CdpoFBq4JaRecC5Uheug5ZejVUSgUWPPo1VAoFppdnCRlcg/082HUcx+G8I8px1mHlmFo2+Agl65grToFGVp6ynDRoVQrkp+uwt90SN0dWXxF1W7MJJ04OrIekXPzAw7qEO8wuVBdGdrKNd4tp1UroNSpRflbXcI65Jmm7CYciU6+GXq1Epl4Dt1e6+yLsKGtZkhxzHAfY3F5RU2uq09Rrh8Pjg0algF6jwu/6FD70RbSv02wS2lDjxY5mE3hj9nDrRrYA4hMS5kYFfcsfUg3aSyaIUcCBbrtwdmwG00R25Lhc4ezq13s64fHJ++wDW/yQyEZWQDz6SOUP8iTcUVYAmMl8jwbKmVu5sx2rd3egzezEsmPGYva43KiWrShLB4+fQ5vZhUM9wweXSwGO47DpYC9MDo/IrULIiycvmoWt9y7GJXPGo9PiQpvZCYvTizazc8ifB7uu3eLCM1834I+f1g35vGLHnPSEo5Fy3IR86DUqtJqd2HiwN27P01eYY11gLSYnuiVa/MDD/s1ZkTZceLcYv4/DNgz3DBPdwa/T5Vb8AACZOg2cXj86rS50DiNAJhPeMZedpkGGLrE+EVEz6yjLmftwSws+3toKpUKBS+eO71f40BdWmN7aFP+cuUjakNnr+by8cfmGiEV8Qj7o1JQxRxCEzBlsQ6dWKXHi5EBAqsXpxY+NQzdMSh22+KEqwY45nVoJPqKDRlnlCTvKqhumgp0tgOgbiuz0+HDvRzuE34+tyo/aLca2UrbLZJTV6fELo7yZutHjSEg1eNEmU69GSZYeJVn6sH4e6LriTJ2wntzWbBoys07kmEuhUdaa0ixhXbOqriNuuX19g+3Z/QCpFz8A0Y+y9hXmtGql8PNQ5Q9yLn4AgHRG5LK7pSk6+fwc2kyBv2l5gt1yAJDFOOQsoyxnrjZY9uby+nH+7DHD3j7RBRCRCHOso47f11g4pViSJxqI2MCONtMoK0EQskQU8lwh3glfWFOMDza3AAg0Gs2dUJDQZYslbPNcVYIdcwqFAmkaFWxuH5U/yBReUNWqlVAOczDGF0Ac6nEIocj8Adwza+qF7Ki51fk4c2Zp1MvGZmx1yKT8gXXspOuGdiAS0ufK+VW4cn5V1I9z+Ss/YtWuDpgcHjT1OjAmzzDg7TpYx1wKlT+k69SYU52Pr/d0osXkxM5WM6aVxX5c0uoKCA5KReCglR0xlnrxA9B/lDUSPD6/4FxnM9fyM7QwOTxDlj/IufgBEBdRSdW932FxwhtUUhI9xgqIHXOjqZm12+rCpqBLd2JRBsbmD7zuZeELIJp6++/rxINwih94+AIItpRiEY2xpjTi8gdprt+igRxzBDEK2DpA8QPPCRMLhY1sbV17Qlv3Yg0/yqpUYNCDvXjCF0CQMCdPeFu8fhi3HM9ABRAHum145ut6AIBaqcD9S6bF5OytQatGZtAJ0SETx5xNJMzReUAiALsNGmgMnId1SRWmUMYcIM5A4h0sscTj8wuuPIM28N1rNjoEp5gcxCeRYy7CdV7fRlaegmAzq8XlHdTZLgfRcijYIiqp5t2y+XIVSWjrzpJJc22sWb27U8hvWxhBIRW7rxPPAgi2+GFyyeDFDzx6jQoTmJPwGTo1jhw/eJEFIX9Eo6ye1HPMkTBHECnOYMUPPNkGDY4aH8i/2t9tx/5ueeRX9YXjODQGR1nH5BlEZ1USBZ9LJtWdYWJo+AO14fLleEQCQ1D8/sfqesFef/m8Skwoil1QMu+aG8lYVzKwuUmYI/ozI0xhjhegcwyasL+TcmEBUwZTuyv2whwriucYQiLEtmYTfD4/Nh8yAgByDZqkjBKGQzQu4cGEOTbrcrCcOTkXPwDycMyJGlnJMZcwVu1qF36OpCAh3JMp0fLNno6wix94WMflzIrsYcU8Qt6IRlllnos+ELSnTBApjrj4YeAN3aKaYrg8ftjcgZy5RDeaxoJOiwu24E5ospaf3yEmYU6eRCrM9RUYstM0eOunQzhibA7sbh9uWjgxpstXnKVHfacNdrcPVpc34YHZkWJzhb4HUl9WInHMGEDQ7gvHcYIAXZRibjkAqMg1YEpJJna1WbDlkBEdFmdMx3VZsaEgQyuM1m9vNqHV6IDJ4cFx1fk4aUqRZPOYDFo15k8sgNnhgTrC0blwhLluq3vAMcpDvXbMLM9GVpoGVTIMkWcbxe0Sde+zwlxyRllHX8ac2+vHN3u6AAQE+SPGhl9INak4AzPKs6FUDF+cMlI4jsMbGw4hQ6fCginFODvMCJAr51dialk2jHY3TppSGJdlI6SDaJSVHHMEQciNcEZWZo3Jwc+HjNjTbsXPh+LXEhdP6kXFD8nZmU7ThEZZ5TwSPFrhR7/0mvA2jWwo8tZDRtz3caDwYdNBI649sTrmYlS0YeiJhnXtsC4OYnRTnKUTmgAHK4AwO73CaHlxCjWysrCOldUxds2x+Y6s8LHxQC8e+WI3AGBdfTemlkqz+IGnxejAliaT4PALF1aYY8cW89ND69AuW//x2F6bGztazNjabILL65Nd8QMAKJWK0L6IRMsf2FHW8mSMso7CVtYNjd3CeuGkyUURfbbLcwzY1mzCliYT9nXEZ5T1ix3t+HZfF6wuH37a34PDxuaEdb/jJhTi9sWT8dC5M7CopiQuy0ZIB3ErqzRPPEQDCXMEkeKEk5cytSxLaMpLRB16PGCLHyoTXPzAwzut/FxqWqxTGY7j4PRG5pjjQ5EBYGuzCYd6Agcbc6rycfZhZTFfxmjC0JMBKw6QY47gUSgUQhMoXwDRl44UzpfjYTOeYp0zx373SrP1gjD+Q2MPeu0B0eqsw8okX/bEr/NsQZdwuJgHy5jr45jrixyy98KB/3tLdZS1JemjrEzG3ChxzLHrmEjy5QDx96ZriOKUkeJw+/DAxzuF31ecOVXIxiQIFq1ImEu94ywS5ggixQmnetygVaM6OLKxp90iy7MQjV2hs3hVSRpllUPoMjEwbp9fyDbRR5BPOLMi8J3iG+ZiWfjQF1ag6LDIyzFHGXMEy3A5c2zBSao65mZV5CA/PXDAu3Zv16BlBCPByriAsvRawd3Lxz2ka1X4w+k1MXu+eDFSl/Bgo6x5jGOOL8JgCWd/SQ5IPe+WH2XVqpXCdyCRjLaMOY7jUBvMl1MrFZg/KTJBPpf5G3UP4DSNlqdX7xM+E/MnFuDU6eR8IwZGR8IcQRByheM4YUezOEuHoiEOcPidUI+Pw+42S0KWL5Y0sKOsSXLMpTFOK2pmlRdOJqtCF+YoK9DfVXH5vEpMLI5d4QOL3BxzNuagkIQ5gmW4MHFWhClOUcecUqnAScESCIfHh/UN3TF7bItIFFdhWpl4ZPU3iyaiJFv6gudI13kmexgZcwNkZcm9+IFHyo45juOEUdbynDQokzAunD3KWln3dlgFR/8xVXnIYhyD4aBRKYUSmYGcptHQ2GXDc980BJ9HgXvPjs+JTSI10DHHWakozNGeMkGkANubTei0uPDlzjas2tUBBRSYXp6FbU0m+HwcKnLSMGuYvIbp5dl49+dmAIEDpZkVQ99eamjUSswoz4bF6UFxDEO0I4Ecc/LFxQipkTRAzizPQWGmFlanD3qNMuaFDyxyzpjL0FHGHBGC3b5sH0CYa+i0YWppIGJhnAzLiMLlpMmF+HJnG2pKsnAwho3orGMuU6/GYWOyUZSpg8nhQWGmDpcdVxmz54onI3UJD+aYE4/kDe6YM2hVsix+4BGKqDw++P1cUsSvwTA5PMJJm2Q1Ao82x9y2JhPmVOVjb4cFJ00Ov42VJS9dC6PdM6DTNBr2dVgwf2IBVu/uwOXHVQrTOwQxEFoV08pKwhxBEFLk+bUN+GBzi+iycfkGtAfHga6aXYFbTp405GPMqAidHR7oQEnKeHx+rNzZDq+fQ01pVtJ2QskxJ19Yx1wkwty8iQX48Q8nw+nxobHLFtcsNdY90m6RgWNOVP5AuxtECL4AosvqEgogWJfEd/Vd2NlqBgBMKYmPA1UKHDE2F2aHFxsae6DTqLB87viYPK7VFRKmMnQanDGzFOccXgGL04N2sxMalTwGZkbsmBuslVU0yip2/vTa3MI43dTSLFkWP/CwJwmdXp+k1r/iRtbknERlt9OjoZV19e4OwZF7dGXeiB6jIF2Hhk4bbG4fHG6f6DMWDf/6/iC+2dMJAPjVseNi8phE6sJOtMgxdmk45LFlJghiSHz+UKtdYYYOJVl6ZOrVKMnSCz8Px9TSLPDHRQONFkmZQz12IeMrWWOsgFiYi2VeEBF/nMwGXq+OfNOo16hQE+eGw6Isxj0iA8cclT8Qg8EWQBjt4gKILqsLPwdbOCcVZ6A0OzmumkRQkq1HZvC70dAZu7ZD1jGXwWz/M/UaTCiSj9AZ64y57DSNILj19BllTZXiB0B8IkRq46yiRtYcQ1KWQa1SIj0oLI2GVlb+ZLtOrRxxE7N4DDx2JwabewNOYb1GmZSGXkJepHrGHO0pE0QKwApzH9543IgOZNJ1akwozMDeDit2twUKIHQRhOAnE7aRNVnFD4D4LLXUdoaJoXGOcJQ1kRi0amTq1LC4vKJwfKlip4w5YghmlGdj9e6AU2Jbswlj8gIH6at3dQhFLJG2B8oNhUKBysJ0bG0yodnogNPji8n6x+oKfffkLIqLHHMRrPMGE+aUSgXy0rXotLj6jeSxwtzMCnkLc1KO1WAdc8kUYjL1GtjcvpR3zJmdHuwPjsnXlGZBPUK3LCvM9djcqMiNXlTlOA4txoDgXpaTRtlyxLCwwlwqjrKSY44gUgBWmItm/EKuBRBs8UOlRIQ5qe0ME0PDjrLGakQjHvCuObk55tIpY47ow2AFEKt2dQg/L6oZWR6SnOC3WRwHHIhRzhw7yhqOY16qsC7hkTjmtCol9H3KfPgW0C6bGxwX2nfaniKNrABgkHCsRosERlmB0PfC7Ehtx1ysPtdDjYGPlF67R/h8JitvkJAXrGEkFR1zJMwRRAogEuaiOOM0XFOeVGlgHXNJDI6ljDn5InLMjWCUNVEUBYtNbG6fSPiSIjYaZSWGgM01XbevC0AgM4bPG8pL12LWmNykLFsiqSoIbbMau2IzzpoqY+S8SxiIzDHHN21mGzT9XDgFGQGBwe31i96nVCl+AELlD4D03PusY64iSaOsAJAVdFI6PD54fNI+wOedQS1GR8S5WiJhLgon6HDFKSOBHWuuoDFWIgxEo6wpeJwl3aMPgiDCxsec9VUrR/61lmsBBHswU5lPGXNE5LB/L51ER1mBQGg+j9Rdc7wwp1CIvxsEAQAlWXr8ZuEElGTpsLXJhDW7O7ChoUdobDxxcqGsA/jDpZLJRWVPMkWDZZCMOTkyEpcw75hjx1h5RFlZQedPr80t5BzKvfgBANJEGXPSOoHDizEKRSBjMVmwTlKrxHPmzn7qW1T//lPM/dMqrAmO/4fLtmaz8HNUjrkMxjFni41jTlQEksJZokTsYB1zbokL6iOBhDmCSAFYx1wUupxsCyD4Udb8dC2yDf13xBMFZczJF6d3ZK2siaaIbWaNoKUwGfBulHStmrJjiH4oFAqML0hHW/BzfO+HO/Dlzjbh+kUpni/Hw+aisrEM0SAaI5dQI+dIiNQl7PH5BXF3QGGOHckLhthvb0md4gdA7JiTWqxGczBTrDhTD20S3emZ+tBnwyzxnLl2s1PYz+cdxeHCFj9MLBq5E5QfAQfQL59xpEglb5CQD1qRY46EOYIgJIjXFxvHXLpOjergCAdfACF1rEwQfjIbWQGxoEOjrPJCXP4g3U0j21LYYZG2Y44XpylfjhiMc2aV4+jxeQCA/d12fLi5BQCgUSkwf2JBMhctYbC5qI0xcszxDqB0rUr27q9IXcLmQYofePJFI3kB58+2FMqXA6Q7yur0+IQxyGTmywFAFuOYs0jYMWd3e9FrD32mV+3qEGUjDoXZ6RHWKdEUPwB9HHMxypgTN/SSMEcMj0iYk8ExaqRI9+iDIIiwYUdZo90JZwsg9rTFJu8mnuzvkkbxAyDeGXZKaGeYGB5xxpx0hSRRS6FcHHMyzrgi4otCocB9S6YJ2y1z8AD5mMp8kaMllUnXqQXxKWbCXPC7J/cxViByl/Bgjaw8BQOMssYqh0sqSLWIqkXkkEpevhwgH8fc/i5xIUyryYmdreZBbi0mloUmooy5GI2yiotASJgjhkelVECjCuwv0CgrQRCSJFatrIB44y2Hcdb6zpB4mOzAZip/kC9ix5x0hTnWMRdJS2Gi4ThOyJiT+ygdEV9qSrNwyZxxossWjoI2Vha+AKLH5obRHv1BL++Yk3PxA0+kLuHhhLk8UbtkQOjj93XSNCphakDOiB1z0nGDtRhDf79kO6TYjDkpN7MOJNbX1gWaq31+Tth3GejvHEthLkuvgTp4fBHrUVZlkvMGCXmhDTo/aZSVIAhJIsqYi3JqZXpZNg6ryMaxVfnolPioHCDeaUm2Y44VdKQ0PkIMj9PDZsxJd9MocsxF0FKYaJweP/jVEo2yEsNxy8mTkJuuwdTSLMwoz8bCKaMjX44nlgUQfj8Hq5t3zMnfdRipS5gV5rKGK3+wudFmcsCgUeGYyjycNqNE9qO/AJCmYcofJHSSsMfmxrFVeThyXC7G5yfXMcd+NiwSdsw1dPafXKmtawcAvPXjIZz06Bpc8Ox6XPDP9aJjAUBc/BBtdqJSqUBeMGcuZqOsQWGuJEsPTRRjtsTogi9oc3lTT5iT/6k0giCEjbFKqYg6ZH1SSQa2NAXOsslh/5QV5qqSLMyJxkcktDNMDI9sHHNZ8nDMsSHtqeDaIeJLll6D1b89ETkG7fA3TkHYbVdjpw1HjM0d8WPZPT7w6RaZKfDdi9QlPOwoK+OY67K6sGpXJ3a3B8SPm6omRrOokkGq5Q8He2z4vqEHAHD18VVJXRa5ZMz13cdt6LJhS5MJe9oseOSLXTDaPWgNOhHf+OEgfnVsyH0sKn4ojt4Jmp+hQ4fFhW6bCxzHRXW84XD70BMciaXiByISdMGcOXcKCnMkTxNECsAKc9GSY9AiN9hsGqu8m3jCt9gpFcDYJJ+BFWXMkTAnK+TimDNo1cLBdqeEHXPsWA1lzBHhMFpFOUBcXNTQFV22q9WZWqJ4pC7hSMofuq1uwX0EAItSZIRaquUPbEYgmx2YDESjrFJ2zAX3wxUK4JRpISfxXR9sh9EuXu6/frFbELv6Fj/EwpHGN7N6fJyQBzpSmilfjhghfAEElT8QBCFJBGEuSrccDz8S2mpySiqfpC8cxwk7HhW5BuiSHNovypiT0M4wMTxOZgOf7M/RcBQGXXNyccyRMEcQQ1NZEHKzRHtCzOoKHaynRvlDbB1zBq1KOPnSZXXh231dgefJ1GF6mfyLHwCxe19KwhybEci27SaDLD07yirN/VyO44RR1rLsNCyeViJc90NjwHmYoVPjtOmBy00ODx75fBcAYAczxhqrpmGxqB3diUFWmEt23iAhL3SCMEeOOYIgJIjXH1g5qWM0e8qWKEjZNddpdQkCQLLz5QDxCCSNssoLuYyyAkBxZsBpYHP7RAKYlLC5Qu9nulba7ydBJJuK3DRh+827wEeKJcUcc5G6hIcT5hQKBfLTQyc3+IO7BVOKoJRDfkcYGJjCHYeETq7yjjmFAijISK4wl6mXfsZcj80tONOqCtNxWEWO4FrjuXnRRNy3ZJrwHXnrp0P4+WAvtjUbhdvETJhjxsB7omxmFTf0kjBHhA9/8pxGWQmCkCR83qtKFVvHHCBtYY49gGFHgZKFTq0Eb1okx5y8cMlklBUQOw06JOqas5FjjiDCRqNSClEM+7tt8PcJcY8EVqzPTAHHHBCZS3g4YQ4ACoLOH3Ycb2FN6hSOSHWUlRdW89O1SQ/7l0Mra0OfcjOlUoHjJxWILls+dzyKMvW45eRJAIBsvQZXvPoT/l67T8iJjrb4gYd1zHVFWQDR3EujrMTI4EdZvX4OXp/0xLlDPXZ8t68L//y6Hsf+sRYL/rom7PumxhabIEY5vGMuVqOsbBB1tGfv44mUih+AwJl4g0YFm9tHjjmZISfHHJvN0252iRyuUsHmTi3XDkHEm6qCdDR02uD0+NFqdo54vCvVMuaAgEu4odMmuISHel3hCHP5fdxaOrUS8yYUDHhbOSLFIiq/nxNGWYsyk5svB/RpZXVJ0zHX2Nl/H/e2xVNw1xlTsafdCq1aKQicl8wZB5VSgQ6LE0+vrhfud+W8SkyKQfEDEBK0AaDbFrtR1goS5ogI4EdZAcDt80MtsUbft386hCdX7YNWpYDbx8HvCv+7Iq1XQhDEiAjqcjEpfwDkM8raKDqbKA1xgt8hlsrOMBEebMac5IU5pqWQzeyREuSYI4jIqOzTzDpSLCn43YvEJRyWMNdnHHBudb5IzJI7Bo30HHO9djc8voATtCjJ+XJAIGKB32WWasacyDEX3C8vz0lDfoYOc6rzMXtcqL1ZrVJi+dzxyDVoUZKlD/3L1sdMuGBHWbvJMUckCVaYY6ddpMLKug4AgNvHoShTJ9pnH47U2GITxChHcMzFSJgbl2+AQgFwnHjHQGrwobiANEZZgZCo43BLb2NBDI6olVUt7XNWrGOuwyzNZlYrmzGXIuIAQcQT9oRYQ5cV8yaOzMHFOuZSZZQ1EpewKTiWqFUpB40l6OuYS6UxViAg0mhVSrh9fskIc2yjbrEEHHMKhQIZOjXMTq+oyVdKiPZxw5wKuXJ+Fa6cXxWX5YlH+UOOQUP7CEREaPs45qREi9GBna2B4pWZFdn48IZ5MJvNyH4gvPtL++iDIIiw8MXYMafXqIQxmoZOKzhu5Hk38YQXDfUaJUqykr+jB4SaWaUUuEwMDz/KqlYqJGeL70ux3BxzKeREIYh4URmjCAk2Yy5VRlkjcQnzIktWmgaKQeI92JE8AFhYUxTlEkoPwb0vkX0RNh9QCo45IDTOKlXHHD8VolUrJeEqYws7uqIof/D6/GgLfh6okZWIFL78AZCeY27Vrg7h5wVTIt+uSPvogyCIsPDF2DEHhA4SLE4vuqNsX4oHHp8fB7vtAIDx+emSaVNjR1mlKmgS/eGFOamPsQL93SNShEZZCSIyWEfMtmbTiB8nJYW5CFzC/Chrdtrgr13DFGWVZOlRmp164gBfACFFx1yRRE6k8s2sFqdXcvtrPj+HA8I+riGm+/cjJVaOuXaLC75gwQ0Jc0SkiEZZvdJYv/HU1rULPy8agRM7NbbYBDHK4TdwsdxwVxWkY+3eLgCBs3bJrrbvS4vRgQlFGTBoVZhRkZPsxRHgHXN+LmCxZs/sENKFH2WVeiMrEHDMHTchHxanVySASQkqfyCIyCjM1OGa46uwbl8Xfj7Yi11tZkwpyYr4cUTCXIqMsobrEnZ5fSjPSUO6ToWJRYOPu540uRiWU7w40G3HpOLMmC6rVAi596Vx4MpmA0aSuRRPDh+TgzSNEjaXDzaXFxn6gTMJk0Fzr0MY06uSSIayQatGmkYFh8cXVcZci5Hy5YiRoxUJc9JxzNndXqyr7wYQOOEzrSzy7XdqbLEJYpQjCHMxamUF+uTddFpx1Pi8mD12LGjudWBXmwUAcKSElo0NkHa6SZiTC/xZNzn8vQw6NfZ1WNFudvULMZcKNsqYI4iIUCgUyNSrsb0lkE9z9wc78NbVxw46jjkYoow5nXSEhmgI1yXcYXZhd3tgv6Ake3BX1th8A25YMDF2CyhB+H0Re9C9H+nnKNaIMuYk4pizurzYdNAIAOi0uiUlzDV0hfLlKiWSoQwEXHNNvY6oJmnY4oeKXBLmiMgQjbJKSJhbt68b7uDyLKgpGtE6V/rWAIIghsUbB8ecKO9GggUQbNW6lKzwacwoJDWzygc5OeaA0Bn0bpsbJrv0gqutlDFHEBFz5fwqjMs3AAB+aOzBB5tbIn6MVHTMhZsxx15XJIGCgWTCj7L6/JwkAtLbJeiYY5ejfZi230TTyDayhln8kAj44pReuxveEX6upLr/TsgDnUaao6zsGOvCEeTLASTMEURK4A9mY6hVcRLmogiijhfNErXCs8KcXSKhy8TwyCljDhCfQWfPrEsFypgjiMjRa1S496xpwu8PfVoHizMy4Z11zKXr5LE+G450nRqZwfXIUBlz7HVSKRhIFmna0HpXCuOsrNOxUCLCHOvcYx19UoDd766WkmMu6NLnOKB3hCcFpbr/TsgDLVPQ5paIY87v51AbLH7Qa5Q4bsLIWtVJmCOIFMAbh1HW8pw0YY6/UYqOuV5pnnFjR1nJMScPvD6/8B2SizDHBsVL8fvJC3MKRci5QRDE8Jw0pQgnTw2ERndaXHhi5d6I7m8Jfve0aqUsRvPDpTAotA3lbBK7ska5Y050kjD5+yKdQeGrIEMLjUSaz1nxtkPSjjlpZMwBEMVndNtGJmaK9t9plJWIELFjThrC3PYWk7COmzehYMTHEnQamyBkjt/PgS+TiuUoq1KpQGV+Ona3W3Cg2wafn5NEKxRPi0maG3bWMeckYU4WOJkNu2xGWQul7Wi1BQ8E07XqpGcbEYTcuPvMqfh6dweKs/XotrlhtLuRYwgvT9LqCrhYMlPMqTq9LAs6tRJKhQK9djdyB3g/xDlm0nBlJQv2hEiihbmPtjSj2ehAr82D3502BUBozLhQQoIpK95KzTGXqVdjWlkW7G4fcg3Syb7LZ4rgekZYAJFr0GBaWRasTq9kc3IJ6SLFjLkXv23E1NIstJocWDAl8jZWntTaahPEKMTHVLzHWjirLAgIcx4fh6ZeO8blS8dOz59xy9CpkSWhHB2RY84tjQ0GMTSsgKqXicOEPYMuZcdcqozSEUQiGZNnwNmzyvG/jU041NOMEyYV4pzDy8O6Lz/Kmir5cjyZeg3qWgPFDrvbLDi2Kr/fbdhxydHumBMVUSX4JOEtb20RXOiXHVcJrVoJjy/wu5QEU9YxJ6WMOb+fw1c72+H1c5hamiWpk1sFGSEhrWuEBRDrG7rRbnahNFsvqddGyAO2lVUKo6w/H+zFh1tawHHA1NJMnHt42YgfSx7WgCjw+XxYsWIFKisrkZaWhurqajzwwAPgGDGD4zjcfffdKC0tRVpaGhYtWoS9eyMbHSCIZME3sgKxF+ZErhwJHfz7/RxajIGdqPKcNElt2PWUMSc7RMKcTEZZK3LToA5+36X03eThA+jTtaklDhBEolh6RIXw80omVHooOI4TvnsZKeaYm1GeLfy8vdk04G3Y8gcpCUDJIFmOOb+fE0Q5ANjWbJJk8QPQJ2NuiOzCRNNrdwvvodQ+x/mMMNdtHdl7Jpw8SLF1FJEYdGrplD/4/Bzu/mCHMLm2dPYYUb5npCRcmGtoaEjo8/35z3/GM888g6eeegp1dXX485//jEceeQR///vfhds88sgjePLJJ/Hss89iw4YNSE9Px+LFi+F0SufsCUEMRjyFObYAolFC43JdNpfQMialMVaAWlnlCN/ICoizK6SMRqXE2GB7Y2OXFX5mPZBsOI5jHHO0400QI+HI8bnIDLrevt7TCU8YDYgur19wJqXaQe+MipAwt20wYS4ormjVSmSnSWf8LxmwB4eJPElocYqfa1uzqc+IsXScjBk6tdAa3j5E22+ikbLzMz89JBR2j2CU1efnhKiLVHP1EolBJMx5kuuY+8+PB4Xt0eTiTCyfMy6qx0v4EciECRNw0kkn4fXXX0+I8PXdd99hyZIlOOOMMzB+/Hj83//9H0455RT88MMPAAIHEI8//jjuuusuLFmyBDNnzsRrr72GlpYWvP/++3FfPoKIFq9ImIvtV7pKos2PbHBsWY60dloMSRwfIUaGHB1zQKgAwunxo01CYzgurx/8aolGWQliZGhUSpw4uQhAQOz4cX/PsPexMm3ImSl20DupOFMYYRpUmAuKK0WZOkk56ZOBQRSrkbh9kV67WKzZLmHHHAAUBYVCKTnmpOz8FDnmRlD+YGNE4lQ7eUAkBlaYc4dxwipe9NjceOTz3cLv9y+ZBnWUxTYJF+Y2bdqEmTNn4tZbb0VJSQmuueYaQSSLB3PnzkVtbS327NkDANiyZQu+/fZbnHbaaQCAxsZGtLW1YdGiRcJ9srOzccwxx2D9+vUDPqbL5YLZbBb9I4hkwTpl1LEeZWVyrHa3WWL62NHAVq2X5xiSuCT9SUvSzjAxclgrvFwy5oA+jlYJjbOy4gDteBPEyFlUUyT8XFvXMeztrc7U/e5pVErUlGQCCKzvLE6P6HqX14dee+AyKbmykkWyRln7CnP9Rlkl9rfhhUKryys4vZMNKxJK7f0qYMofRlKYwa6jUu3kAZEYROUPSXTMrdndITjZz5lVhmMGyD2NlIQLc7NmzcITTzyBlpYWvPTSS2htbcW8efMwffp0PPbYY+js7Izp8/3ud7/DRRddhClTpkCj0eDwww/HzTffjGXLlgEA2traAADFxeIGjeLiYuG6vjz88MPIzs4W/o0ZMyamy0wQkcA65pQxPkOcm67FklllKMrUYXuzWTIOMClXrYsy5iTyfhFDw46yyqWVFQCqCkPCeUOndByt7MGNgTLmCGLEnDCpUIioqK1rF+UjD4RIFE/Bg97pwZw5jgN2tIhPinda2PE/abmMkkFakvZFjHaxYNppceFAl134XWqiKSt8SaWZVcoOwzyDBkeMzUFRpg6txsid+nTijogWKWTM+fwcHvqkDmkaFSYUZeD3p9fE5HGTdgSiVqtx3nnn4e2338af//xn7Nu3D7fddhvGjBmDSy65BK2trTF5nv/+97/497//jTfeeAObNm3Cq6++ir/+9a949dVXR/yYd955J0wmk/Dv0KFDMVlWghgJfi5+jjkA0KqU6LC44PD4sL6hO+aPPxJaRI45ae3ksTvDTnLMyQK5jrKyjjkpFUCwO96UMUcQIyfHoMXscbkAgP3d9mG/5xaRYy71MtaGKoBgc7mkJv4kA/akiCOBGXM9AzR11jNRKFITmoqZ5emQSCSEVDP5AECjVqHX7kGHxYX93bZhTxb0JdXXUUT8kUIr6+ZDRnTb3Oi2uVFdmB4zZ2vShLmffvoJ1113HUpLS/HYY4/htttuQ319Pb766iu0tLRgyZIlMXme22+/XXDNzZgxA7/61a9wyy234OGHHwYAlJSUAADa28WNV+3t7cJ1fdHpdMjKyhL9I4hk4Y1j+QMALKwJuUlXhTFKkwikPMoqynUhx5wskK1jjhXmJFTOYnOFPvcZlDFHEFEhHmcdup01lTPmgJBjDuifM8eKKoUSE3+SgVRGWQGInFVS+9sUMRlu7VJ0zEksYw4InRS0u30iQTwcUt3VS8Qf0ShrkoS5VbtC22L2ODlaEn4E8thjj2HGjBmYO3cuWlpa8Nprr+HAgQN48MEHUVlZifnz5+OVV17Bpk2bYvJ8drsdyj6B+CqVCn5/4A9ZWVmJkpIS1NbWCtebzWZs2LABc+bMickyEEQ88cdZmJs/sQDaYJhlOKM0iaApOMqqUSkkd/ZVT62sskOujrnCTJ0wCiKljDk23JkccwQRHexO/8phTo5ZXaExwlQcE5tUnCnsj/QT5iTsMkoGycq77TvKCoTEuvx0LTRRhqPHGvazIjXHnEIhznSTCmK3fmQxGqKMuRRcRxHxR6dJ/igrn/mqUAAnTS4a5tbhk/C14zPPPINf/vKXOHDgAN5//32ceeaZ/YSzoqIivPjiizF5vrPOOgsPPfQQPvnkE+zfvx/vvfceHnvsMZx77rkAAIVCgZtvvhkPPvggPvzwQ2zbtg2XXHIJysrKcM4558RkGQginsTbMZeuU+PY6kCgZYvJibrW5JdA8KOsJdl6KOPwmqNBvDOc3BpvIjycMi1/UCgUwg5yU689aTsofbFRhgxBxIzqwgzhe77xQC+MAziSeNiD3lQUxbVqJaaUhgogWPcN6zKSWpNlMpCCY45f//OuFqkVGQBAUab0MuZ4gVCKQiYAVBWO3K0vOnlAjjliBGhVyR1lbeq1Y1ewEPGwipyYuoAT/o346quvMHbs2H5iHMdxOHToEMaOHQutVovly5fH5Pn+/ve/Y8WKFbjuuuvQ0dGBsrIyXHPNNbj77ruF29xxxx2w2Wy4+uqrYTQaMW/ePHz++efQ66W3ASGIvvj8oZVSPIQ5IDBK882eQDHLql3tmFqWvPFti9MDc/DgozxHWsUPgDhjzuGRRsMXMTTsKKtORqOsQGAHeVuzCX4OONhtx8TizGQvEpU/EESMOeuwMtR3WKFSKnDK376G28thalkWzphZimXHjBNuZxkFoviM8mxsbTIFCiCaTUITXoeo/IH235MlzLGOuSklmfjpQK/wu9QmHIA+o6wScMz5/Rw6rYHPslQ/x9E0wltSuDmaSAxix1zihblVu0LOdTZqIhYk/AikuroaXV1d/S7v6elBZWVlzJ8vMzMTjz/+OA4cOACHw4H6+no8+OCD0Gq1wm0UCgXuv/9+tLW1wel0YuXKlZg0aVLMl4Ug4oGPWSfFo/wBABZMCa14hhuliTdSzpcD+mTMUfmDLJDrKCsgzQIIK5Mxl04ZcwQRNbeePAlPLzsClQXp6LC4YXR48F19N97/uVl0O9GYWIq6UWYMkjNHjjkxaWz5QwJPErKOucPG5Iiuk+LfRTzKmnzHXK/dDY8vMAkjxfcLAKoKQo3wkQpz1MpKREuyM+bY4+AFU2KXLwdE6Jjz+/34+uuvsXbtWhw4cAB2ux2FhYU4/PDDsWjRIowZM2bYxxgsn8pqtZJDjSBGgJdxzMVrrLMi14ApJZnY1WbBliYjOi2upAX4ihpZc6XnmKOMOfnhShFhTio5czTKShDxIVOvRkmWHh0WJ/wcsKPFDJ+fE9zyo+Ggd7ACiM6gY06rViI7jdoeDZrkOOb4VlatSonDx+aIrpNi9l+GTg2DVhUoMrAk3zHHlilI1TFXnKUT3rOGzpFnzNEoKzESktnKanV58X19NwCgLFuPmtLYTqmE9Y1wOBx49NFH8cwzz6CnpwezZs1CWVkZ0tLSsG/fPrz//vu46qqrcMopp+Duu+/Gscce2+8xbr31VgABd9rdd98NgyHkdPH5fNiwYQNmzZoVm1dFEKMIfwIccwCwsKYIu9os4Dhg9a4OXHDU8EJ8PGjuZR1z0ttp0amVUCgAjgMcHsqYkwNOZsOuV8trlLW6MHTmOtId5HhB5Q8EER+unF+FK+dX4Zp//YQvdrTD7vahscuKCUWBg4PR0HjIF0C4ff4BHXNFmTooFNLKnk0GaUkeZc0xaDCzPEd0nRRHWYGAYNjYZUOnBBxzHRbpOz/5fNsdLWYc6nXA7fWLxJKhGA0nD4j4olMnr/zh272dcAdH1RbWFMd8WxPWN2LSpEmYM2cOnn/+eZx88snQaPqfiTpw4ADeeOMNXHTRRfjDH/6Aq666SnT9zz//DCDgmNu2bZtolFSr1eKwww7DbbfdFs1rIYhRicgxF8ed0QVTivH06noAQO2u9qQJc00SH2VVKBRI0wTOJDrclDEnB+Q8yjqeHHMEMeqYUZ6NL3a0Awi4xgRhbhQ0HvIFEFubTEIBhEalQG9QEJKq+JNodGollArAzyU2VoMfZc01aDEmLw06tVLS5Q9AoOG8scsGi8sLu9ub1GxUdpy2UKLvFwBBmPP5ORzssWNCUcbwdwIJc0T0qJUKYd2W6FHWWnaMNcb5ckCYwtyXX36JmpqaIW8zbtw43Hnnnbjttttw8ODBftevXr0aAHDZZZfhiSeeQFZW8sLjCSKV8DPj4fF0zM0ak4M8gwZWlxc+LhBQm4xG1BZj6GyiFEdZAYSEORpllQVyFuYydGoUZmhhcXoxSFJEwrExGXNs5iJBELFhRkWO8PO2JjPOPTzws8nhQYZODZvbm7KOOSAwzrqtyYTy7DT8fLBXNNIvxXHJZKBQKGDQqmENik2JwOH2CQfKOQYNFAoFirN0ONgTOKEq1dzDvjlz4wuSKMyxjjkJi8xVheKcuZEIc1L9PBDSRqFQQKtWwunxDzjKum5fFwoytMhL1yHXoIE6Rs3GFqcH25pNSNOooFAAc4LFQ7EkrG/EcKIci0ajQXV19aDXv/zyy2E/FkEQw+P1hY7G49XKyj/2pJIsfN/QjZU729FtcyclZ6651y78XJotzR3wNK0KsAEON42yygG2lTVNZsIcAJTnGrD5kBE/HeiF1+eP2U7ISKEz4gQRX9gChO3BcU6nx4ctTUY4PX6cNLlQluuycFkwuQifbWtFk9GBdfu6RSPzJMyFSNOqYHV5E+aYY4sf8tIDk1Fv/3oucgyBSSuVREeMWQGs3ewUOdETjShjTsKf5SqRW98KILwQfNbVS1EXxEjRqVVwevz9HHMcx+HKV38UooRW3nq84CiPlsdX7sWuNgty0tS49eTJcTmRP+JvhNfrxT//+U+sWbMGPp8Pxx13HK6//voBCxzOO+88vPLKK8jKysJ555035OO+++67I10kghiV+PyJEeaAQNAlj8XpSY4wFxxlLcjQSdbdxB8QOckxJwvEjjl5ZcwBoQMgADA6PCjISO5ZdjtlzBFEXMlL16I8Jw3NRgd2tJjg83NYX98tnGQoTPGctcPH5sDoCIyurtrVjlljQkJlsoqppAjvWLYnaF+EL34AgBxDYLskB6G0iMlya7ckN2dODhlzQJ9G+M7wYzT4E3d6jRKaJJ9EJOQLnzPn6rNuq2u1iPK9nTHK+t7dZsEr3+0HEMgPP2lK7MdYgSiEuZtuugl79uzBeeedB4/Hg9deew0//fQT3nzzzX63zc7OFnYQsrOz+11PEMTI8SVolBUQ284tzsTnp7m9fnQEd5qkOsYKhEKXHR4fOI5L6QOkVIAtf9BJVOwdCt6NAABGuzvpwpw1OMqqUMjTgUgQcmB6eRaajQ7YggUQK+vahesWTAnPvSJX8jN0OHxMDjYdNGJPuxW72yzCdXIQghIFv/5NVPkDX/wAALkG+TTjikdZk9vMyjvmFAokfVs+FJWFjDAXQb4tf+yQoZPP54OQHnzZCF/EwFPLbAcBxCRSiOM4rPhgu2CEuf6kCRiTF5+M87CFuffeew/nnnuu8PuXX36J3bt3Q6UKrPQXL148YBsrIB5fpVFWgogtXsYxF+/Mt0x9aENqdnqGuGV8aDM5hRwtKTay8vBOPp+fg9vnh05N4oSUkbtjLtcQcsz12hP/vewLX/5g0KiSkkNJEKMBtgBia5MRq3YFQqm1KiXmTyxI5qIlhIU1xdh00AgA+HF/r3A5lT+E4E8Sur1++Pxc3Kcq2FFWdrskdViXZUeyHXNBYTA/XStpR1mWXoOCDB26rK6Iiqd4xxzlyxHREHLMiYW5lbs6RL/H4qTEh1ta8ENjDwBgXL4BVx9fFfVjDkbY3/iXXnoJ55xzDlpaWgAARxxxBH7961/j888/x0cffYQ77rgDRx11VNwWlCCIgfH7E+eYy0pLrmOuyRjKlyvPka5jjg28d1LOnOThrfAKReCgVm6wzoReZpQoWfDCHI2xEkT8mM7kzH29uwutpsAB/Zzq/FHx3VtUE3IF7mknx9xAsPsiiSiAMNrZUVb5OKKk4pjz+zl0WgPCYFGm9D/HVUHXXKfFBUsYJ+s5jhOEOcqfJaKBNzywGXMdFie2HDKKbueIcr3HcRyeX9sg/H7vWdPiGqMU9rfio48+wltvvYUTTzwRN954I5577jk88MAD+MMf/iBkzN17770D3vfwww8Pe5Rr06ZN4S4SQRBInmMunI1wrKnvsGJiUQYKMrSYXi7dZmd2fM/h8SEb8tlBHY3wGRR6tUqWY8e5bMacBBxztONNEPGHLYD46UDIMbawJj7ZN1JjUnGGkLPXybicyDEXIk0TWgc73D7RPlw86BWNssrHMVckKn9InmOu1+6GJ1joViThfDmeqoJ0wUnU2GXDTKYteiCcHr8wDkj7B0Q0sKOsfGTQml2d/W4X7Sjr5kNGZOjUmFScgew0Tdyy5XgisgZceOGF+OGHH7Bt2zYsXrwYF198MTZu3IjNmzfj6aefRmFh4YD3O+ecc7BkyRIsWbIEixcvRn19PXQ6HU488USceOKJ0Ov1qK+vx+LFi2PyoghiNJFIxxxrPTc7Eu+Y29lqxt4OK9Y39KAsJz7z/bGgrzBHSBv+byTHMVZAfADUY0+uY47jOGF0YDS4dggiWeRn6ATneKvJIVy+IM4HDlJBoVBgUVCE5PeCtCqlrJxa8UbsmIv/voholDVdPsJchk4tvFds+UKiYcdoi2XgmKsUNbMOP85qcYWE2wwaZSWigB9lBUKuuZV98uWA6Nd7ezus+L6hB3varTh9RmlUjxUOEX8rcnJy8Nxzz+Gbb77BJZdcglNPPRUPPPDAgG2sPPfcc4/w85VXXombbroJDzzwQL/bHDp0KNLFIYhRj8gxF2e3T1aSHXPbmk0AAiOHU0ul65jTJ3h8hIgOpyDMyTMLkD0Q7U2yMOfyhs6Ip+vk+X4ShFzgCyD43YApJZmoyJXuSatYs7CmGK+uPyD8nupttJGScGHOxmbMyUcgVSgUKMrUYX+3HR1JdMy1M2O0snDMFWYIP9eH0cxqZSJwMunEHREFbFEbL8yt3dsFAMjUqWAJlpA5olzvNfeGTnqNScC2NWx7wMGDB3HBBRdgxowZWLZsGSZOnIiNGzfCYDDgsMMOw2effRbW47z99tu45JJL+l1+8cUX45133gl/yQmCAADhIBhIsGMuwRlzLq9PaF6rLsyQtBuHdcw5yTEneeQuzLGOOaMtuaOs/BgrAKRrpfsdJYhUgB1nBcS5a6OBY6ryYGCcznIQMxJJmjax7n25jrICQFEwZ87i8ibthCrrmCuSQVZipI45dv+AHHNENLB50G6vH+sbuoV1HDtSHe0JiRZjSJgrz41/tnnYwtwll1wCpVKJv/zlLygqKsI111wDrVaL++67D++//z4efvhhXHDBBcM+TlpaGtatW9fv8nXr1g3puiMIYmBYYU4V5+D6ZLay7mmzCtkbfQ9GpAZ7ltpB5Q+Sxxk828Za4+WEuJU1uY45GyvMSVg8J4hUYHqfbeGCUZIvx6NTq3DU+Hzmd3muw+OFeF8k/sIcX/6gUABZafJxzAF9CyCS45pjiyfkkJU4Ns8gNP02dlmHvT3rmKOMOSIadBp2lNWHVXWhNtajK/OEn6MV5poZYa4sAaWDYX8rfvrpJ2zZsgXV1dVYvHgxKisrhetqamrwzTff4Lnnnhv2cW6++WZce+212LRpE44++mgAwIYNG/DSSy9hxYoVI3gJBDG6EQlz8R5lTWIrKz/GCvQ/GJEaesqYkw1+Pwd3UJiTq2OOHWVNdvmD1eXFtNIseDkOpdl0so0g4smM8mzo1UqoVUooAMwaJnw9FZk7IR/r6ruQoVOjMj99+DuMIgyMazkRLjDeMZedphEEG7lQkZOGCYXpSNdp0G11YXxB4j9LbPGEHNqFtWolZpRnwenxQwkF3F6/EMo/EBZyzBExom/GnNXlwZSSTBzotomEuWhbWXlhLlOnRnYCTjaE/a2YPXs27r77bixfvhwrV67EjBkz+t3m6quvHvZxfve736GqqgpPPPEEXn/9dQABYe/ll18Oy3FHEIQYH5e4UdZkZsyxwtzMCmkLc+woK2XMSRu2al2u5Q96jQoGrQp2ty/pjjmT3YMdrWYAwImTBy6EIggiNuRn6FD3wKlQKBSwu71xb2aXIpceNx6Xz6uEJs4TA3Ik0UVU/PYnT2ZjrACQbdBgXzAnjR0pTSRs8USxTMaya0qz8eYPBwEAP+7vwXETCga9LWXMEbGCFea6LC6893MLAOCIsTnIzwh9d6JxzPn9HFqNge9kIsZYgQhGWV977TW4XC7ccsstaG5uxj//+c8RP+kFF1yAdevWoaenBz09PVi3bh2JcgQxQkTlD3HeKdepldCoAs+R6FbW7TIpfgDEuS6UMSdt2L+PXB1zQGicNdnCHJsxJMeDM4KQG3zZgWGUZjrq1CoS5QYhkeUPHp9fmKSQYzNuPtMi22VLznaUd8wpFEBBhjyEubnVoVHyWmaccCAoY46IFTp1aN22M3gyGAAOG5MjNkdEcQzWZXXB7QucvE/EGCsQgWNu3Lhx+N///hfPZSEIYgT4E1j+oFAokKXXoNvmFtWexxuX14ddbYEVr9SLH4DE57oQI8fpZYQ5tXyFuRyDBs1GB4x2DziOS1ozYY+dbeUjYY4gCCJZpCVQmDPKuPgBEAth3dbkOOY6g069/HStbMTm4ycVQq1UwOvnULurHSvOrBl0/0MkzOnkJ94S0oF1zPHFgEBgoipWx2BNbPFDgoS5sL71NtvwTStD3T4vLw9dXYEK29zcXOTl5Q36jyCIyEikYw4INbMmMmNOTsUPQN+MOSp/kDJOj/xHWYHQgZDXz4lyXBKNkXEayNE1QRAEkSqwLspos5aGw2hn1/3yE+byM0LL3G1NvGOO4zhhlLUwU/r5cjzZaRocNT5w/H6g2476zsFLINjjhnSdfE+EEsmHzTJkP3MzyrNjlq3Z3JvY4gcgTMfchAkT8Jvf/AbLly9HaWnpgLfhOA4rV67EY489huOPPx533nmncN3f/vY3ZGZmAgAef/zx6JeaIAgBnz8kLMTbMQeEmlktTm/CnDlyKn4AEp/rQoycVBllFRVA2DyiPMhEwo6y5qbL7+CMIAgiVUjkKKto3S/DkzJsLlW3LfGOuV67RzgBLZd8OZ6FNUVY39ANIDDOOqEoc8DbWZlJm0xyzBFRwDrmGrsChjCDVoXKggwoFYFxcI6LzjHXwjrmEpQxF5Ywt2bNGvz+97/Hvffei8MOOwxHHnkkysrKoNfr0dvbi507d2L9+vVQq9W48847cc0114juv3z58gF/JggienyMISsRLVh8M6vPz8Hu9iVkrJQV5uTgmAtsHNLh8vrg9ZFjTsqkijCXx4hgvXY3xuYbkrIcRtEoK+14EwRBJItEjrKy+aZyPCkjyphLgmOu1+ZCUaYOerUSY/OSs/0eKQtrivHgJ3UAAsLcNSdUD3g7tvyBMuaIaGAz5vjv67SyLOE4OE0TKESLZr3XnIRR1rC+FZMnT8Y777yDgwcP4u2338batWvx3XffweFwoKCgAIcffjief/55nHbaaVCpwjuw6ejoQEdHB/x+8UHrzJkzI38VBDGKYR1zqgS419izXBanNyHCHFv8MK1M2sUPQEDg4c/gmBPcXktEBjvKqpPxKCs7OpTMAohemY8zEQRBpAqJzLs1yjxfVK9RIUOnhtXlTUrGnMXlE9pglUnKiB0plQXpqCpMR0OnDT8d6EGvzT2gOGt1hT6DGRLPiiakDTvKysNOVBm0MRDmeiUqzPGMHTsWv/3tb/Hb3/52xE+4ceNGLF++HHV1deA4TnSdQqGAz0djXwQRCSLHnCpxjjkgIDqVZMc3C8Pt9QvBnlUF6ZIvfgDEZ6kdbnLMSZlUKX9g3WnJFeZCQnROGjnmCIIgkoVBw2QtxTlWo8cm71FWIJAzZ3V50Z2EVlaRm0wG+7l9WVRTjOc6G+DngDV7OnDu4RX9biMaZSXHHBEFugGEOXaiij8OiyZOiHfMaVQKFGUmZrw84faAyy+/HJMmTcJ3332HhoYGNDY2Cv8aGhoSvTgEIXsS7pjTs465+LvB9rRbhLrqmRU5cX++WMBmzDkpY07SuFJklJV1KPTakufS5EXBLL0aapm0yhEEQaQi4pOEVP4wHHwkhNHugSfBMSSsaCXHMc8FU4qEn2vrOga8Dd/KqlYqBhRWCCJcBppwYYU5/qREVOUPQWGuNDstIeWKQISOuVjQ0NCAd955BxMmTEj0UxNESuJjnKeJKX9gHXPxb3/c2iSv4gdALMxFs1Eg4k+qtLKKyh+S6ZgLOg3kmDFEEASRSiS2/IHNmJOpYy495IrptblRlJW4dlSLzB1zR47LRXaaBiaHB1/v6YTH54emz8k53hWYoVcnpDiOSF20faLTDFoVqgozhN/5kxJOjx9+PxexsGZ2eoTvZFlO4tYDCf/mL1y4EFu2bCFhjiBihNcfEuYSoeizbY9mR/ydOXa3F8dV56Pb5sbk4oGbnqSG6Cw1OeakjQI4pjIPfo5DtoxHL0WOOXtyHHNen18Q6+XqmCAIgkgV0jQqLJhSCLPDG/cTt+JWVnmu/wsyxAUQiRTmeDcZIM8xT7VKicXTirG3wwoFgB8ae3DchALRbfjXKEfhkZAWfR2XbPED0Cdf0xN5UaGokTUncWUsCf9mvPDCC1i+fDm2b9+O6dOnQ6MRHwidffbZiV4kgpA1fn/yHHOWBDjmNh8yYl19oIZdLk1VOrUyVNXtoYw5KWN2eLChsQcA8MtjxiZ5aUZO31bWZGByyD9jiCAIIlVQKhU40G1HfacNWpUSbq9/wND0WCAeZZXn+j+fEea6bYktgJB7xhwAHDehAP/9qQkAsGpXRz9hjj9mkOvrI6RD31HWvhNVfd3CkQpzouKH3MQUPwBJEObWr1+PdevW4bPPPut3HZU/EETkJNoxJ86Yi78wZ2TD5GUyHqFQKISqbmecx0eI6GAzAHUyLn/IkUD5A+uYyJOpY4IgCCKVmFGejfpOG9w+P/a0W+IWCcKv/9O1KtluS9lR1p4EF0Cwjjm5ClcnTiqCSqmAz8+htq4dd51RI4ysur1+uLyBE9VydAQS0kLbZ0x6Rp/1GpsZPZJG6maRY05io6xbt24N+wFnzpw55PU33ngjLr74YqxYsQLFxcVhPy5BEAPjS7Bjrm8ra7zhRQa1UoFMGe2s8MKc3UMZc1LGxTga5RxGnKFTQ61UwOvnklb+kArh3wRBEKnE9PJsvL+5BQCwrdkUP2EuKGTJed2f32eUNZFYWGFOpsJVtkGDo8bn4vuGHuwPOjUnFAVyv2wpIDwS0kHXp6ytrzAncsyN4DisWcqjrLNmzYJCoQDHccOGNQ7neOvu7sYtt9xCohxBxAhWmFMlOGMuEa2svGMux6CVVVgsf7bG4aZRVinDn8EF5O2YUygUyDFo0WV1Ja38gXUY0CgrQRBE8mEPWLc1m/CLODwHx3EwBqMM5Fr8AAAFGSHHXLc1eaOsmTr5voeLaorxfUMgHqS2rl0Q5kSOQL18Xx8hDdgT6WqlQlT8AAAGbUjiGknxjaRHWRsbG4Wff/75Z9x22224/fbbMWfOHACB8dRHH30UjzzyyLCPdd5552H16tWorq4e4SIThJgvd7TB5fWhqiADOo1K2AiMFhItzCU6Y44/2Jfbgb5BaARKrVHWLqsL+zqs2HLIiJfX7QcAXHzsWJw4uUg2rbksLi8zyirjVlYg8B3psrqSVv4gHjuXr2uCIAgiVZhWni1k3m5vNg1/hxHQZXUhQ6eGzeWVbfED0CdjLsGOOWsKOOYAYMGUIjz4SR0AoHZXB645IXC8L/fWWUK65Bq0/Y5/RSV8gwhzWw4Z8d2+Lry6/gAAwM9xmFScib9dOEvkmCvNltgo67hx44Sfzz//fDz55JM4/fTThctmzpyJMWPGYMWKFTjnnHOGfKxJkybhzjvvxLfffosZM2b0K3+46aabIlh8YrRjcXrwu3e2oid4QPh/s8vx1/NnJXehEkzCR1kT2Mrq9PiEVlO57ezxGwWHxxeW21gufLqtFXd/sANalQJuX+Cz99cv9+DZrxuw9Z5TEpJzGEvEjjm5C3OB74jD44PT4xNlbCQCNttObkI6QRBEKpKhU6OqIB31nTbsarXEpQBi00EjTA4P0jRKLKwpiuljJxI2Yy6Z5Q/pOvm696sKM1BVkI6GLhs2HuiF0e5GjkEr+9ZZQlpMKcnE/j+dAafHh+4B8iANGnH5Q196bG4seXpdv8s7LC786bNdgmOuIEOX0H3piL8Z27ZtQ2VlZb/LKysrsXPnzmHv/8ILLyAjIwNff/01vv76a9F1CoWChDkiIp6s3SuIcgDw9Z4u+P2c7MSBaGCFOWUCxJ+MBDrmRA4cmR3o8ytyn5+Dx8dBq06Nz+TKug4AgNvHIT89sLPl8vphdXnR2G1DdaG8HKvijDn57gwD4hEio92DkuxEC3NsK6u8hHSCIIhUJd4FELV17QACLfTj8tJj+tiJJNegEdyFycqY06qVst8XWVhThIa1jfD5OazZ3YlzDi+H1RXaPyDHHBEtvNlBr1GhPKf/qGmaqJW1/7HqNsY9bNCqkKFVo9PqAgfgnU1NwnWJHGMFgIhPmdTU1ODhhx+G2x1aYbndbjz88MOoqakZ9v6NjY2D/mtoaIh0cYhRzJ52izBKx+twnRaX6Ms2GvBxrGMu/o4fjUqJtKDoFO/yB7EDR14H+mlRNgJJEavLi+/ruwEAZdl6/HTXIty4YIJwfbzGZOKJaJQ1RRxzQOIb5QBx+YPcvq8EQRCpyvQ+OXOxxO/nsGpXJ4DAfs+c6vyYPn4iUauUwrYr4Y65oHCVCqLVgimhHPnaXYGTuTTKSiQSNmNuoEgh9njlj+fOwA93LcL9S6b1u10iG1mBEQhzzz77LL744gtUVFRg0aJFWLRoESoqKvDFF1/g2WefjccyEkQ/OI7D3R9shzfoFjtpSsg6z5+5Gy14WcdcgnQFvpk13o45kTAns8wqkTCXIjlz3+7thNsXcJgtrCmGQqEQ7fBvbZKjMMc45mSeMce24SWjAEJU/iDjAHCCIIhUom8BRCzZ0mREV7AoYd7EgoRHKMSa/OC+ZsIz5oL706kgWh05PhdZwemaNbs74PH5UyZDj5AHolbWAcwRW5uMws/8ccwvjxmHaWVZotsN5MaLJxF/M44++mg0NDTg3//+N3bt2gUAuPDCC/HLX/4S6enD25cvv/zyIa9/6aWXIl0kYhTyxY42ofVnTF4a7j5zKmqDI3a1uzpw6ymTk7l4CcXnS6xjDgAy9Rq0m10JHWWVW2YVu1GQozB3sNuOMXlpaOp1oCwnDSqlQviOAcCCYI5MPHf4E0GqtLIC4u9IMgogjDTKShAEITniWQCxaldov2DhFPnmy/HkZ2ixtyNwMG93e0XOm3jBcZwgXKWCMKdRKXHi5CJ8uKUFFqcXPzR292mdlf9rJKRN2jDC3PZmMwAgXatCVUFAv1IpFbh/yXQsfeY74XYlWYl1zI3om5Geno6rr756RE/Y29sr+t3j8WD79u0wGo1YsGDBiB6TGF1YXV7c8+EOTCzKgI/j8IfTazAuPx0zyrOxrdmEHS1mtJocKM1OrMqdLNhR1kS0sgKh4Farywufn4vb84ocODI70NeH0QgkVYx2N5Y8/S3SNCp0Wl24+6xpWHb0WKzeHdgBN2hVmFMVGFfJz9ChLFuPFpMTO1vMsst4TNVR1t4kOOb459RrlLJ3TRAEQaQK8SyAWMmesEsFYY4tgLC6YciLv4jk8vrhCZ5kTxU32SnTitFudsLo8GD1rk6RUJIqr5GQLoYhjsF6bG6hdXVaWbbomGX2uFycObMU3VY3jq3Ox3ETCxKzwEHC+mZ8+OGHOO2006DRaPDhhx8Oeduzzz57yOvfe++9fpf5/X5ce+21qK6uDmdxiFHOk7V70W52od3swsIpRVhYE8gyWFhTJDh2aus6cPGx44Z6mJSBLX9IlDDHNrNanV5kx8nNxo7jya38QTzKGl9nYaz565e70Wv3oBcBB9RfPt+FMTlpQhjyvAnicZXp5dloMTllWQAhLn+QuTCXntxRVt6lJzcRnSAIItWJRwFEs9GButaA8+SwimwUJdhdEg/yM0Lbr26bG2PyDHF/Tpsr9dxk8ycU4jf/2Qyfn4Pb68cJkwqF69JT5DUS0mWoUVZ2umeg9eCTFx2eNINBWN+Mc845B21tbSgqKsI555wz6O0UCgV8vsidIUqlErfeeitOPPFE3HHHHRHfnxg97G234KVvGwEEmovuOSsU1LiophiPr9wLIGCtJ2EufrBV52anJ27CnKjlUc4Zc27/ELeUFtuaTPj3hoMAAp8nn5+D2enFI1/sFm6zqKZYdJ8Z5dn4cmcg23F7s0lewlxwlFWtVECtkrkwl8RRVo7jBDEwh4Q5giAISTG9PBvvb24BEDgwjYUwJxpj7bNfIFfEjrnEFECkYv5atkGDI8flYkNjDxq7bJhUHNovTBXxkZAuaZrQZ6yvOYId559RIc6UA5DUqZ+wjkL8fj+KioqEnwf7NxJRjqe+vh5er7xcJURiCRQ+7BDKDq49oRpj80NnsqaVZaE4K7BBXbevS3bjgyMlOcJcSACIZzOruJVVZo45GWbM+f0cVnywHfx09PUnVgs7UDuDZ8UB4MQphaL7zahgcuZkVgDBj7LK3S0HiAWx3gS3slpdXmHdnEfFDwRBEJIiHnmwbNlaKoyxAv0dc4kgVRtL2ZO4+7tsws+pIj4S0mVIxxxznDKjPCdRixQWUX0znE4n9PrIbMu33nqr6HeO49Da2opPPvkEy5cvj2ZxiBTn462tWN/QDSBQ+HDtieLRZ4VCgQVTivHmDwfh8vrx7b4unDw1Nc7gDQUrzKkTNcqaFlp1xLMAQs5h8nJsZf3fxiZsPmQEAFQXpuOGBRORY9Di/o93Crc5rCIbRZni9b6cCyCcwVFWXQpkookdc4kV5nptoe8qOeYIgiCkRawLIOxuL76rD+yTl2br+7UZypUCVphLUDNrKjrmgEBJ2EOf1gEAWk1O4fJUEh8JaRLOKCtb/CAVIrYI+Hw+PPDAAygvL0dGRgYaGhoAACtWrMCLL7447P1//vln0b+tW7cCAB599FE8/vjjkS4OMYpo6LJiSkkmAOCeM6cNGC6+YHIhtGoFDh+bg5ZgsGOqwwpzSkXiM+biKcyx5Q/ZafJy4bCOOacM3Jsmuwdv/nAQE4sC4wb3L5kOrVqJS+aMQ1VBOtRKBdI0qgHPivMFEACwI1gAIRdSyTHHfkcSPcoqZ3crQRBEqpOhU2NSUQYmFGZApVCENVXi8vrwqxc34IW1DXh3UxM4pmysrtWMo8bnIc+gxQmTC6FI0P5nvMnPSMIoa4o2llYXZqAyKHyYmdeYnoCmW2J0kzZI+cNQxQ9SIOJvxkMPPYRXX30VjzzyCK666irh8unTp+Pxxx/HFVdcMeT9V69eHflSEqMeq8uLx1fuBccBVQUGLBrECTdjTDbcXg4/HzQiU6/B8rnjE7ugScDrD+WXJcoxJ8qYc8RPAOAzq7L0atnlf7GOObtb+mP6f/1yN34OuuUuP64Sx00INBGpVUo8c/Fs5Bg0yE/Xwu0bOC9PrgUQfMZcKghzapUSWXo1zE5vwssfxMIcOeYIgiCkxryJhXgxmNP8XX3XsLlwL6xtxNq9XVi7tyt4/wLBMb/xQC/W7QtcPqsiJ34LnWDy0xM/yipyzKWQMAcAC6cU4YXgZw4IvD6piSFE6mFgxF/2GGy44odkE/GRyGuvvYbnnnsOy5Ytg0oVOvA87LDDsGvXrpguHEHw7Gg2CblXc6oHry4uztRDrwl8rJt77YlYtKQTbFiHQpG4wEqxYy6eGXPBlkeZFT8AfTPmpF3+sL3ZhH9vOAAgYP++6vhK0fWTSzJRnKWHWqUUbexY2HHWWIzJJAq+lVWnlv8oKwDkBb8riXbMsWPnNMpKEAQhPY6tyhd+XlnXMcQtA42rT63aJ7qsodM24M9TU2SMFRA75roS5JiziEZZU8tx3lf8TTXhkZAmKqUC2uAJd3aUdbjih2QTsTDX3NyMCRMm9Lvc7/fD4xn+QKC9vR2/+tWvUFZWBrVaDZVKJfoXa8aPHw+FQtHv3/XXXw8gkJN3/fXXIz8/HxkZGVi6dCna29uHeVQi0bAK94whFG6FQoHynDQAgZ0K1nafqviCjjlVAscIWMdcvEZZA22ggXWKHA/05ZIxxxc+8NOnNy2ciNLstIgfZ7oMCyA4jguNsmrk75gDQt8Vk8MD7yDuxnjAOuao/IEgCEJ6zJtQILjDV+1qH3If+cGPd/bbd2lkAvwbmJ/HSyynKRqy9GpoVIH96YRlzKVo+QMAHDk+V3TMkK5LjZOghPThc+bY9Zi4+EF6jrmIv/1Tp07F2rVrMW7cONHl//vf/3D44YcPe/9LL70UBw8exIoVK1BaWhr3TIIff/xR1Ba7fft2nHzyyTj//PMBALfccgs++eQTvP3228jOzsYNN9yA8847D+vWrYvrchGRsT0C62lZThrqO21wevzotXsEB0mqwh97J6qRFUhMK6vJ4RFcknLMrBJlzElYmPvfpib8fNAIIFD4cPlxlUPfYRDkWADh9XOCIJkKo6yA+LticnhEZ//jCdsCK0chnSAIItVJ06owtzofq3d3ot3swo4W84D71N/s6cRn29sAQIhHAICGTqtwG94xV5ChE01RyB2FQoH8dB3azE502xKUMecK7UdnplD5AwBoVEqcMKkQH29tBYCUySIkpI9Bo4IRHpFjjj8+MWhVqCyQXuROxN/+u+++G8uXL0dzczP8fj/effdd7N69G6+99ho+/vjjYe//7bffYu3atZg1a9ZIljdiCgsLRb//6U9/QnV1NU444QSYTCa8+OKLeOONN7BgwQIAwMsvv4yamhp8//33OPbYYwd8TJfLBZcrtLI2m80xWVaby4sf9vfgpMlFcHl9KTNaFQu2Br9IWpUSk4ozh7xtRW7I7dPc6xgFwlzQMZdAYS4RrawiB44MD/TlkjH3bTA7BgDuO3u6YP2OlIJgAUSLyYndbWb4/X4oldIWu/h8OSB1RlnZfLdeewKFORk3KBMEQYwWFtYUY/XuTgDAyrr2fsKc38/hq7rQ5NBNCyfiwU8CzZq8Y87s9AhjnlWFqeOW48nP0AaEOasbHMfFXUxKZcccAMyfWCAIc4l08hOjG94gwZc/mBwetJoCxQ/Ty7ITetwcLhEfNS1ZsgQfffQRVq5cifT0dNx9992oq6vDRx99hJNPPnnY+48ZMyZp44Vutxuvv/46Lr/8cigUCmzcuBEejweLFi0SbjNlyhSMHTsW69evH/RxHn74YWRnZwv/xowZE5Pl+9vKPbjs5R8xZcVnOP/ZwZ9/tGF1eYWdgSmlmcMKB/woKwA0G1M/Z45vZU2WYy5uwpzMHThsa7DDLc0dkZ0tZnxX34UxeWk4pjIP8yYOnt8YDsdPKkR1YTrcPg4tJmeMljJ+uBgnY6o45ioL0zGhMAMFGVp0WhL3N6BWVoIgCOmzsCbUrF47QM7c9hYTXv/+AKoL03FMZR4unTNeyG7mx1f3M2OsVSk0xsrDn9Dy+jmYHfE/sSrOmEs9Ye7kmhLcsmgiXr7sKLyw/MhkLw4xSuAzse1uLziOQ2OXDXnpWlQVpGPmGOmNsQIjEOYAYP78+fjqq6/Q0dEBu92Ob7/9FqecckpY93388cfxu9/9Dvv37x/JU0fF+++/D6PRiEsvvRQA0NbWBq1Wi5ycHNHtiouL0dbWNujj3HnnnTCZTMK/Q4cORb1s+zoseGXdfgCA0+PHnnaLILiMdtjih3AaVMpZx5xR+uJAtCRHmGNaWeM0yip24MjvQN8gg1HWdrMTXVY3DvU4RKHQIyU7TYP6Thvsbp8oi0aqiBxzKZIxp1ersK/Tii6rG10JyscBqPyBIAhCDpRmp2FasKxhW7MJ7WbxfvLKug5wHFDfacOSWeVQq5UYnx8Q3w522+Hx+UXFD5WpKMwxkzZdCRhnZR1zmSnomMvL0OI3iybhpMlFmFA09NQTQcQK3jHn5wL7+20mB7qsbjQEBTopMuJvv9vtRkdHB/x+sRNk7Nix/W6bm5srsgHbbDZUV1fDYDBAoxEfcPf09Ix0kYblxRdfxGmnnYaysrKoHken00Gni914EMdxuOfDHfAyQpzT40dDpxUThxnbHA2EW/zAU5YtHmVNdfjPjTqBwlyGVg2FAuA4CNkjsYZ14ORIdAU6FHIof2B3yIuyol+nsSMtDZ02zJ9YOMStk08qjrKyf8e+B1zxhP++qpQKZKXgGX+CIIhUYeGUIuxoCcTwrNrVgV8cHTp2q2XGWHl3XXVhBna1WeD1c2jqdYiKH6oKpZfTFC2sMNdtdaM6zrsy1hR3zBFEMmANEg63D+3mkMhelKlPxiINS8Tf/r179+Lyyy/Hd999J7qcn8FnixZ4Hn/88REvYKw4cOAAVq5ciXfffVe4rKSkBG63G0ajUeSaa29vR0lJScKW7dNtbVi3rxuAOGR1W7OJhDn0qTaO2DGX+qOs/iQ45pRKBTJ0alicXlji5Jgzynw0ji1/kGrGXIcltJEqjsFGig1SlYdjLvVGWdmdjU5LYoKrgZBjLtegoXBngiAICbOwphhPrtoHICDE8cJcm8kpCHYzyrNRnBXYnrCuuMYuq2j7npKOOSabtduaAMdcUJhTKsQndQmCGDmsMGf3+NDBxLsUx8CMEA8iFuYuvfRSqNVqfPzxx2G3qi5fvnxECxdLXn75ZRQVFeGMM84QLps9ezY0Gg1qa2uxdOlSAMDu3btx8OBBzJkzJyHL5fL68OAnO4XfLztuPJ6oDWwstzWbcN4RFQlZDimzLYLiBwAoydJDqQhYV1tGwSgr75hTJfhgOEuvgcXpjVv+BjvKKsfyB51aKbgKHR5pZszF2jHH7qA3yEGYY/4u+hTZGU6WY64nmAlJY6wEQRDSZkZ5Ngozdei0uLB2byesTg8y9BrU7gq55RZMCWXR9XXD8+2sKqUCY/MMiVvwBJGfwTjmbPGPhOBHWTN0ajqxRRAxQpz17U1Nx9zmzZuxceNGTJkyJR7LExf8fj9efvllLF++HGp16CVnZ2fjiiuuwK233oq8vDxkZWXhxhtvxJw5cwZtZI0125pMOLYqH9/Vd6G6MAOXzAkJc6xTbLRidXmFA/xwih8AQK1SoiQr0A7ZbEz9UVZ/MIBPpUrsxpzPmUuEY06OB/sKhQJpGhXsbh+c7uSOsj7/TT02HzLC5fXj96fXCKMnIsdcVvQbqYIMLTL1ASclv+MuZcSjrKnhmGP/jh0Jcsw5PT5hXFuO7laCIIjRhFKpwJkzS7GjxYwWowP/+v4grj2xWlQGsaimWPiZPelW3xlyzI3JTRtxk7uUKctJw9GVefBzHEyO+AtzfPlDKjayEkSyEDnm3L4+xzzSdMxFvDadOnUqurq64rEscWPlypU4ePAgLr/88n7X/e1vf8OZZ56JpUuX4vjjj0dJSYlo3DXerN3bhfd+bka72YWlR1QgP0MntIruaDGP+gKISIsfePhx1h6bW7JjhLEimY45ICBusCOBsaKHOUuZmy7Pg31+JCHZGXP/+v4gPtnWhpV1HdgZHFMBgI6go0qhEGeqjBSFQiE0tDUbHZItveBJxVHWDJ1a2BlJlGOOih8IgiDkxZXzq7DxQC+aeh14evU+HOy2Yd2+wPFdcZYO08uzhNtWMTEVe9qssAdPNqbiGCsAlGTp8ENjD37a34tdbfE/ySg45ihfjiBiBt/KCgSFueA+sVatRHaaNI8rwzoSMZvNwr8///nPuOOOO7BmzRp0d3eLrjObzcM/WBI45ZRTwHEcJk2a1O86vV6Pp59+Gj09PbDZbHj33XcTmi/H5jQcFqzu5XPUAs2G0nedxJNIix94eHETSP1x1mS0sgLiZlZLHAogxK2s8jzY10tEmONdlQBgdITeV/7sUUGGDmpVbIQpfked44CDPdLOeHR62FbW1BhlBUKuuUQ55nplngdJEAQx2ijPScMFRwbicqwuL27/31bBRb5gSpFopDLboBFO3jUwxyWpWPwAAGPyDOB3qeN9HOb1+YV9RHLMEUTsEJXwMY65okydZEfGw1oD5OTkiF4Ax3FYuHCh6DZDlT8Qg8Nv4JSKwIYAAGZUZOPzHW0AgK1NplFdLR1p8QNPWQ5bAOHAhKLU3HkAkifMZTFnGyxOLwoyYmsL5kdZ9RqlbPO/+AIIR5JHWT2+kADFu6j8fk7YSMXS0s3uqDd0WsPKhUwWqeiYAwI7HY1dNlicXtjdXtFZw3ggFubkKaITBEGMNm5fPAWfbW+D0e7BhsYe4fKFU4r73bayIB3dNrfopGmqOuZ0ahUqcg042GNHY6dNOMaNBzZm/zBDTye2CCJWsKOsJodHmMSKRXRPvAhrb3316tUxf+J9+/ahvr4exx9/PNLS0uK60pMqHMehsTOY05BngE4d+ACxI5ujvQAi0uIHHlEza29q58wJo6zKxAoLYsdc7HPmeoWWR/ke6PMbBYfHl9R1nJ3Z8eO/D902tyDqxjIEVU4FEGz5Q0oJc2zOnNmF8QXxFebYUdbcGIxEEwRBEPEnL12L2xdPxh/e2y5cplMrcdyEgn63rSxIx08HekWXVaWoMAcECi8O9thhCzpt4nUwzzeyAkAmOeYIImawwlwHW3aXKc18OSBMYe6EE06I2RN2d3fjwgsvxKpVq6BQKLB3715UVVXhiiuuQG5uLh599NGYPZfU6bS4hDMl7MEs6wwbzQUQRrsbHh8HpSL84geecpFjTtrjdNHiD4or6iSNshq0KnRbYxuOy3Gc4JiTszDHO/18fg4eHwetOvHCnM/PiUaNm4KFKPGqDRcJc50SF+ZE5Q/ydGUORDGz09FhcWF8nA+e2kxOGLSBohMaZSUIgpAPFx01Fq9/fwB1rRYAwFHj8wS3P8tAY6upOsoKBPZl1uzuBBDYl4mbMMfsn9EoK0HEjjRmWqTLGtuyu3gR8Rpg69atA16uUCig1+sxduxY6HSDH+TdcsstUKvVOHjwIGpqaoTLL7zwQtx6662jSpirZw5a2WDVvHQtynPS0Gx0CAUQiR5TlALr67txsMeOTJ0Kp88ojei+oyljjnfMKRP8GaksSBdaRztjnGVldXnh8QVel1yLH4A++QYeX1Lay8wOsZuxhRfmmNrwwjg55hql7phjR1k1qeSYC22DE1EAcbDHDrvbhzyDRtKjywRBEIQYlVKBPy+dif3ddhw1Lhe2QQrT+o6tpmlUkm02jAWiWI4uK+ZU58fleayu0D4alT8QROxgHXNdjIGkUO6OOZZZs2YNOY6l0Whw4YUX4p///Cf0+v4He19++SW++OILVFSIxzMnTpyIAwcORLo4soY9aK0sFG/wppdnodnoEAogRmPO3MpgbbvF5UNNadYwtxYzWkZZ/Uxrb6Idc0WZeiGwtj7G4bip0vLYN3g0GS1APXaxm7HN5ITPz8XNMZeuU6MkS482s1MGwlxqjrKyZwMTUQDBO7t77B6Mz0/d0SaCIIhUZGZFDmZW5Ax5m6o+xymVBekpHUHEjuk2xtH9byHHHEHEBdb5y+fLAdJ2zEV8JPLee+9h4sSJeO6557B582Zs3rwZzz33HCZPnow33ngDL774IlatWoW77rprwPvbbDYYDIZ+l/f09AzptEtF2KafvjkNM/rkzI02fH4Oa3YHhDmDVoVjq/Iiur9BqxZGqpqNqSvMeRlhTpXgHaTKOO60pErLI7tRSFYzq7GPMOf1c2g3O9HOOOZimTEHhD4bPTZ3v+eXEuKMudQZZWXPBnbE2THn83PY0RJoZK/ITaOMOYIgiBRkXL742K2vUJdqJMr9L8qYI8ccQcQMA2OOMDLTQ1LOmItYmHvooYfwxBNP4IorrsCMGTMwY8YMXHHFFfjb3/6GRx99FMuWLcPf//53vPfeewPef/78+XjttdeE3xUKBfx+Px555BGcdNJJI38lMoTNX+q7gZvBnLna1mRO1CJJhs2HjOgOqtvzJxaM6KCZb2ZtMzvhZVopUwk/xwhzCXbMleWkCaOZsd5pYVu/5JwxJxLmktTM2mvrX8zRYnTEzTEHiNdnUi6ASNVW1kQ65uo7rYLoHElzNkEQBCEfdGoVCjJC+2Op2sjKU5KlF6Ye4rkfQxlzBBEfDNqBSwql7JiLeA2wbds2jBs3rt/l48aNw7Zt2wAExl1bW1sHvP8jjzyChQsX4qeffoLb7cYdd9yBHTt2oKenB+vWrYt0cSSJ2+tHr9097B+eFzPSNCoU93GssAc4W5vELUijgdq6duHnhTX9a9vDoTwnTcjoa7e4RLlzqYLIMZdgYU6lVKAyPx272y040G2PaRbi/2/v3uPbquv/gb9yaS5N2/R+v6zdrbvKGLgLl8E2nIIyYIIgMJjy84tOuSioKIobysULQxAEFYegXET4IuJXEAaM28ZgG2wdu9F2dO3W+/2SNE0+vz/SpJ+z3pI2l5OT1/Px6OORJScnp9knac4774ucZaWZUtYoZcy1jZCxVtfep8iYC/UfqROzKU8uTgvp/kNFUcqqoR5z8v9nuHvM7a0dyuiey8AcEZFmJVsS/L2a5CCdFun1OkzJtGH/8U7UtPbC5fYgwRD6zwlyxhx7zBGFjpwc0SW9ztTcGzPod5jy8nLcdddd6O8fOtlzuVy46667UF5eDgCoq6tDTs7IwZS5c+fi0KFDOP3007F69Wr09PTgoosuwu7duzF16tQJ/hrq8F5lCy568B2c+otXsfaRHYr+XydyuT2oafVOC52SaRvWuD/dZsJ58/JwSkkaatscUcu2iZYtg/3ldDrg7JnZE9pHPPSZc0cxMAcMBWD63Z6QPsdtUi+AdI0Mf3BErZR1eMZcbVufv8RRpwMyQlx+OPWEpslqpcyY004pa5LZ6G96G/bAnNRqgRlzRETate60KVhzcgEuXFCARaXhGYagJr42Q26PwNHBc7ZQY485ovCQhz/0Ob2f901GfVT6fQcq6HeABx54AOeffz4KCwsxf/58AN4sOrfbjRdffBEAUFVVhW9961uj7sNut+PHP/7xBA9ZvT6u78CumnYAQEefC8/uqsXFpxSNuO3R1l5/ttNofRpSrAn4915v5uHbnzTjnNkTyxyLNUdbe3GwwTu2/TOFqROenqKczMrAXDjIQ0sqm7tRnDG8f+REtGpl+IP0R6E3WqWsI2TMeUtZvRlzmUlmGEP8LXCsTGaVe8xZNJQxB3iz5qqbe8JeylrBwBwRUVxYu2QKsCTaRxE5irYcTT2KSa2hwh5zROEhB+Ycg1/EZyebVT20JugzkaVLl6K6uhobN27E/PnzMX/+fGzcuBHV1dVYvHgxAODKK6/EzTffPOL9p02bhp/97Gc4fPjw5I5cheo7lCdAd/3nADpGyFYBlCerJw5+8Fk5ayhTTC7t1LrXDjT6L8vPQbDkwJxWB0AMeIYCC9EIzIVralW7YvhDDAfmVFrKWtvWi6bBgE04mqAWplmRYPCux6owTjObLOVUVu1kzAFDAyC6HANhy7jm4AciItKqSHzJqOwxp95MHqJYIydHuNzeRBY1D34AJpAxBwDJycm49tprJ/SA69evxxNPPIGNGzdi4cKFuOKKK/CVr3wFubm5E9qfmhzvUAZ/Wnr6cc8rB7Fh9dxh28pv8KM1UF06NRNmox7OAQ9eO9AIj0cMK3nVoldD0F8OUJay1mq0lFWKy8EYjcBcVng+tCiHP8TuBxX5j4JDBcMfTAY9+t0eHG0bytgNRxNUo0GP4vREVDb14EhLj2rfu7Q6/AE4cQCEAyUZoW/UXcXBD0REpFHy+Vm4BkCwxxxReJgMehj0OkV1mZoHPwABZsy98MILcLlc/stj/YznxhtvxPvvv48DBw7g3HPPxQMPPICioiJ87nOfU0xrjUXHOry9fPS6oUyZx7d/in3HOoZtW6mYyDpyarTVZMDp0zIBeCfrVYywH63pdg7gvapWAN6Mt/Lc5AnvKz8OSlnljLloBD5KM8PTS4zDH0JHzpjLS/X+QTrWNtR3LFzfHvnWhsPlwfEw9zmbKIdLuxlz8v+rPOgjlPZw8AMREWlUmfwZtyk8/XLlpvTsMUcUOjqdDokJys/2msiYu+CCC1BfX4/s7GxccMEFo26n0+ngdgd28jljxgxs2LABGzZswPbt2/HNb34T69atw9q1awO6vxodb+8DYEKe3YrLFxfjly8dxLwCOza9cgh/uPIUReCkWgpilI6RybB8Vja2DJZ2vrq/EfMLU8N1+Kqwt7YdJ5ek4sDxLpxdnjWpOvAMmwl5KRbYzAYYDerL1gmFaGfMpdtMSE1MQHuvK6SlrHqdDtOzk+Bye5ASw98gWhKi32PON/zBbNSjKC0Rn7b0wiGVcGaH6dujGTlJONjQCZvJiIq6DlVORVZkzGmux9zQh4/GrvAERjn4gYiItMqemIAMmwktPf1hLGUdqmpgYI4otKwmgyL4Ha5znlAJ6EzE4/EgOzvbf3m0n0CDcj47duzADTfcgAsvvBCHDh3CxRdfHPxvoCIdfd7/+II0K645vQznzMrBR7UdeHV/I57bXafY1td3KcNmgn2MUr0V5UOlnK8d0H6fuXc+acH2qla097lwakn6pPal0+mQYk3AJ009eOtQsyKVVSsUPeai1MzSl+p/rCM004Ndbg+2VbXgcGM3jAa9qpt0jkcuZY12xly6zYT81OF/kMI1NnxxWQaOtvbhQH0XtlW2hOUxJkvuMWcK8QCMaJPT9cOVMcfBD0REpGW+z7iNXU50OUbuGz4ZvlLWRJMhKr2iibRMHgABaKSUVfbYY4/B6Rz+Ib+/vz+gUtRDhw7htttuw4wZM3Daaadh//79uPvuu9HQ0ICnnnoq2MNRpYJUK0xGPdYuLfFfd+f/7UdHn/cNvds54J+UN9pEVp9cuwVzC1IAABV1najvUGdJWKjIGRinlE4uMAcM/UHtd3tQp8E+cx4R3amsQOib4x5q6EL/YMBkTn7KpPcXTYqJQFEIzAkh/IG51EQTClKHT83NTg7PH6kFxan+ARCv7m+AEOoLjPumspoMelX2wJsMeZp1YxhKieXBDwWpHPxARETaI5+nHWnuDfn+fcMfmC1HFHpWk/J1pfZS1qADc+vWrUNHx/BeZ11dXVi3bt249y8vL8dLL72E9evXo7a2Fi+//DLWrl2LpKTQj6COFl/J1hnTs3DuPO9Qi5aefmx65RAA4EgAgx9ky6WsuS0azpoTQvgzMNJtJuTbJx8wKJVHnYewB5paDHiiH5ibKvVIDEVgTktZOIoec1EoZe3pd/snEaUlJigGoviEK2Mu2ZKARaUZALzDVw43qu/15ytl1drgB+DE4Q+hz5jj4AciItK6cPVS9vGV2TEwRxR6ms+YE0KMWFpWW1sLu338D+cHDx7Ee++9h+uvvx45OROfuKlm8snvrefN9p+cP7btCD4+1olKqYHoaIMfZCtnZfsvb9nfGMIjVZfjHQ609Hize+YW2ENSwlgmT1QKYQ80tRhwRz8wp8yYm/yHFjlrMtYbyke7x1xbz9Dgh7TEkUtZw5UxBwDLy4feu+Rpy2rhK2XVWn854MThD6HPmFP0lyuM7dcpERHRSOSMuVCfRwgh/KWsnMhKFHonBubUnjEX8LvAggULoNPpoNPpsGLFChiNQ3d1u92orq7G5z//+XH3M3369IkdaQyRp4Hmp1rx7eXT8KuXD8IjgF+9fADvH2nz3x5IxtzcfDuyks1o6nLio6NtcLrcMCdoa4IgoJzwN68gNCWM8h/UcDVujSa5lDUawx+A0H9o2Sutg1gvZbVGuZTVN/gBAFITE1B4QimrTgdkJoWvBHHlrBxsfPFjAN4vFb511rSwPdZE+ANzGpvICni/fU80GdDb7w5Lxtz+453+y8yYIyIiLVJ8wR/i84jefjd8H+OZMUcUenLlUoJBh9Qx+vqrQcDvAr5prB9++CFWrVqlKD01mUyYMmUK1qxZM+J909PTcejQIWRmZiItLW3MTKjW1tZAD0m1Tpw+eM0Zpaio68C600rxzifNeP1gEwDgS5/JwyklaePuT6/X4bx5udhW2Yratl7sqevAqVMm339NbcJRwhjuFPRok0tZo9Uja0pG6D60uNwe7K/vAuD9MJRsUfcb6HjkMd3RGP7g6y8HeDPmcu0W6HTwfxDMsJlhDOPQg+KMREzPTsLhxm7sqmlDa08/0lXUi8zp0m4pq06nQ3ayGUdaesOSMXe8w4GS9ERYEgyYkaOdVhREREQ+RWmJmFdgR6fDheYQf8nVI02LZGCOKPTkjLl0m0n1AwUDfhe47bbbAABTpkzBV77yFVgsgZc/bdq0CcnJyf7Lan9SJuvEwJzZaMDvr1gIANhT247cwfrmzxSmIiMpsJTK6TnJePTdTwf3oc3AXDhKGNNtJqQmJqC914VqDZayejzRz5izJBhQkGpFXXsfqpq6Ry13D4Q8+CHWy1iBE6ayRqOUVQ7M2UwwGfXISjKhsct7fbj6y8mWz8rG4cZuCAG8fqARaxYWhv0xA+XLmDNpMDAHeMfCH2npRZdjAH39bsV6nKzKph582toLo14X1nJoIiKiaLGYDGjodKCxyxnyliRdcmCOpaxEISd/vk9LVE9iwGiCfhe46qqrAHinsDY2NsLj8ShuLy4uHvU+AHD11VcH+5AxJd1mGvPk55ozynDNGWVB71fOIJMzy7RCHvyQlpgwLLg5GaWZNuyuacexDkfIT06jTQ0Zc4C3nLWuvQ+djgG09vQHHHA+kZYGPwDKTKyoZMwpesx5sw9zUiz+wFzmBP+fgrFyVg4e3loFwDu8Ri2BOSGE1GNOO+8JMuUACAdKMsZvnRCopi5vFl52sllzE22JiIh8CtKsaOxyoqnLCYfLregfPBm+iawAkMyMOaIwGPp8qvYyVmACwx8OHz6MM844A1arFSUlJSgtLUVpaSmmTJmC0tLSce9vMBjQ2Dh8gEFLSwsMhtg/OQplQEk2MzcZCQbv4tqrwcCcPPhhXmFqSLMqlcMJtJU1p4aMOSB0z7HWGsrrdDp/f4PoZMwN9ZjzfVOUZhsKxtnM4X/PPbk4zf/H8M1Dzf6MyGjrdw8dhxZLWYETB0CErgTH5fagudv7fp2l8glXREREkyGf29V3hK41RDcz5ojCSj5PjoVy8aCP8Oqrr4bRaMSLL76IvLy8oAMoQmpWL3M6nTCZ1J9iOJ5wBebMRgNm5CRj3+BU1x7nAGwxsMACpQjIhGjwg89UafJtdXMPZsf4QAGZnDFniGKJeOkJ029PmWCp9d66oYbysT74wSfRZECfyx2VjLl2qZTVFxyzSRmjkRh6YNDrcPbMbPzv7jp0OwewrbIFy2Zmhf1xx+OUAoSh+vZbbeRS5cau0J1MNHcPBflyVD7hioiIaDLkc7u69j5MCWBwXyC6HHKPOfVn8xDFGpdU2anJwNyHH36InTt3ory8PKj73XfffQC8GSR/+tOfFMMj3G433nzzzaD3qUYFaeEJzAHA/EI79h3rhBDAx8c7NdVnLpwljMpsLm0NgHDLgTl99LJ+5uSn4NQpaRjwCByo7xz/DiNwuT3+SY9aGPzg4wv6RGf4w/CMuVOmpONgfRf0Oh0WFKVG5DjOmZ2Dg/Wd0EGHh9+sxJkzMqPea9Tp0n7GXJ7digXFqTAZ9IqSmcmSs++yI9CnkIiIKFrkc7u6tr6Q7dc14MFnp6TDIwQykrTxmZdITU4uTsP+Y51wuT1YUDz+wM1oCzowN3v2bDQ3Nwf9QJs2bQLgzZh76KGHFGWrvqmuDz30UND7VZv8MGXMAb5m+EcBAHs1NgBiT23oBz/4lGUps7m0RA7MGQ3RC3TMzE3B7pp2DHgEWrr78ZMvzg468KK1wQ8+vp6GDhUMfwCAr59eiq+fPn7bgVD6wtxc/PbVwzjY4A28vrq/EefMzonoMZzIOTD0/6HVwFxaogm7a9oBAAsDmAAeKHnKaw4HPxARkYadmDEXKi09Tuw40goAuGJxScj2S0ReVy2dgquWTon2YQQsoMBcZ+dQBszdd9+N73//+7jjjjswb948JCQoI/wpKSOXn1VXVwMAzj77bDz33HNIS1N/1HIiwlXKCmh3AEQ4Bz8AwBSp4XmVxnrMKYY/RDEDyW5NwKlT0rGtqgU1rb2obOrGtOzkoPahtcEPPr4ec70u96Qm1k6ELzBn0OuQEsX+JTqdDt9ePg3feXI3AGDDv/bhjOmZUS0hdSgy5rRZypqRNNQeoqW7f4wtg9PYJZWyssccERFpWH6YAnOKHnMxUGZHROEV0LtAaqqyGb8QAitWrFBs4zvhdLvHzgp5/fXXJ3CYsaMwjKWsvgEQLrfAHg0F5uTBD3ML7CEPXFgSDChItaKuvQ9VTd0RD46Ek0eoY/gDAKyYlY1tVS0AvBlRwQbm5D6DmsqYGww+uT0CLreAyRjBwFyPt5Q11ZoQ9TX/xfl5eHJHDd6tbEFtWx8efKMS3z1nRtSOR5Exl6DNjDlFYK4ndMMfGqWMuSyWshIRkYaFq5S1i8MfiEgS0LtAqINptbW1eOGFF1BTU4P+fuW3+Pfcc09IHyvSwlnKqtUBEHsjkClVlmVDXXsfOh0DaO3pR0aSNk4mFRlzUQ7MrZyVg5//ez8AYMv+Bly7bGpQ91cMfgjxAJBoskrDFvpcbpgiWDbpG/6ghhHhOp0OG1fPwefvfQsDHoGHtlZizckFKMkITRPlYMnDH7RcyurTHMqMuU55+AMz5oiISLtSLAlIthjR5RjAsY4QZsw5mDFHREMCehdYtmxZyB5wy5YtOP/881FWVoYDBw5g7ty5OHLkCIQQOPnkk0P2ONFgSdAjLcwnwPMKtDcA4mhrr/8P3vzC8ATmSjNteOuwtzdidXOPZgJz8hjoaGfMTcm0YWqWDZVNPdj5aRvaevr9fc3GM+D2oK9/ADodUJphQ4pGBj8AQxlzAOBwuWG3RuZ36x/woGewr50coImmadnJ+PrppXj4zSqkJyZgX11n9AJzcVDKmmDQIzUxAe29rpBmzDVIE145/IGIiLSuINWKA/VdON7ugMcjQvJluFzKmsyMOaK4F3SawObNm/HMM88Mu/6ZZ57BX/7yl3Hvf8stt+Cmm27C3r17YbFY8Oyzz+Lo0aNYtmwZLr744mAPR1XyU61hLxeTS/z21mqjnPWDI23ocgwg3WbCzJzgyh8DJU9m1VKfOTVlzAHAilnehv4eAbxxqDHg+9W09uJQQzeMeh1ODmGTejVQZMxFcABEuzT4IVUlgTkA+M6K6chKMqOhy4m7XjoQteOIh+EPAJAxGBxvDUPGnFGvQ7qK1hYREVE4+Ppf97s9aOoOzRddzJgjIlnQZyN33nknMjMzh12fnZ2NO+64Y9z779+/H2vXrgUAGI1G9PX1ISkpCRs3bsTdd98d7OGoSq49/CU9ckaZVgZAVA8GyrocLhSHKXumLCvJf1lLk1ndnqGsn2hnzAHAivJs/+VX9wcemPOtAZdbIC8Cr6NIkgcc9EYwMNfW6/JfTrepJwMxyWxErt0CIYDatl5FgCySFKWsGu0xB8CfHdzT7w5ZYLhxMGMuK9msii8EiIiIwknuM1cboj5z7DFHRLKgz0ZqampQWlo67PqSkhLU1NSMe3+bzebvK5eXl4fKykr/bc3NzcEejqrk28PXX87HNwACUPZmi1Uej0B1izcoU5JhgyFMJ3llUsZcdXN3WB4jGtxDsYWwPXfBWFiS5i/VfPNgE/ql4MdYqqUsRjm7UQsST+gxFymtPUMZUmopZfXx/R97hLeUPRqUPea0WcoKAJkhHgDhcnv8/eqyOZGViIjigNxD/FiIJrP6MuZMBr2mP4cQUWCCDsxlZ2djz549w67/6KOPkJGRMe79Fy9ejLfffhsAcO655+J73/sefvGLX+BrX/saFi9eHOzhqEp+avhPUnwDIAD4B0DEsrr2Pn/wpiyMAZn8VKu/6b5WM+YMKpg0azTocdbMLADebwI/ONIa0P0qpf8TObtRC07sMRcpai1lBZTB18oovR6drngpZR3qAdcSgnLW5m558AP7yxERkfYVSIG5ulAF5gbP4ZgtR0TABAJzl112Ga677jq8/vrrcLvdcLvdeO2113D99dfj0ksvHff+99xzDxYtWgQA2LBhA1asWIGnn34aU6ZMwSOPPBL8b6AikSrB800u9QwOgIhlikyprPAF5gx6HaZkJAIAPm3phVvqzRbL5N/DaIh+YA4Y6jMHBF7OKmcxlkZpGEC4RKvHnFzKGu6hNMEqy5IzWKMUmIuDqawAkBHijLkGaSIrBz8QEVE8kEtZ60JUyuoPzLG/HBEhwKmssttvvx1HjhzBihUrYDR67+7xeLB27dqAesyVlZX5L9tsNjz00EPBHoJqyYMZwumkolR80tgNjwCONPfE9GTWqqahgEw4M+YAYFFpBuzWBLjcAsfb+1CYnhjWx4sExfAHFWTMAcCyGVk4uTgVOuiw40grhBDjDkXxZTFm2EywqyyINFmKHnMRzJhrU3HGXFmm3PMxOqXlyh5z2i0hkSdQN4cgY66xc2gia04yS1mJiEj7CsJYympjYI6IMIHAnMlkwtNPP43bb78dH330EaxWK+bNm4eSkpJwHF9MKc2MTAleSYYNH3zaBsA7DCKWZ9nK2TLhLmFMMOjx/hHv81ankcCcR0gZcyroMQcAdmsCTEY9tld5y1grm7oxLXv0abvdzgE0dnmzcMrCmDUZLXKPOUeUprKm29QVmJuSOfTai17G3ND/hUXDGXOZ0v99KEpZG7qYMUdERPElK8kMk0GPfrcnJKWszgE3+gcbRSczMEdEmEBgzmfGjBmYPn06AIybDZOWljbuNj6trYH1pIpnU1VQBhYqVRFs+i/3ADzWEZpvu6JNkTGnksAcAKycleMPzG3Z3zhmYO6Ihgc/AMoec5Ec/qDmUtZkSwKyk81o7HJGLzDnir+MuZbuyZeyNkkZcxz+QERE8UCv1yEv1YJPW3pDUsrqy5YD2GOOiLwm9E7w2GOP4Ve/+hUOHz4MwBuku/nmm3HllVeOuP2999474QOk4bKSzbCZDOjpd8d+YG6whDHZYkRGmLN6CsPQHyLa3G71ZcwB3j5zP//3fgDewNz/LJs66raVUiljpLJOI8kSrcBcj3pLWQFvELaxy4nm7n509Ln803wjJT57zIUgY07uMcfhD0REFCcKUq34tKUXXc4BdDpcSLFM/HNLj3Po8yB7zBERMIHA3D333IOf/OQn+Pa3v43TTjsNAPD222/j2muvRXNzM2688cZh97nqqqsmf6Tkp9PpUJaVhL11Haht64VzwB2TY7YdLrc/c60sKyngrMqJKkgdKp8L1USlaHNLpawGFQXmSjNtKMuyoaqpBx982oq2nn6kjRJ4VZYzazBjTipl7Y3o8Ac5MKeujDnA+3/9XrU3q7K6uQcnFaVG9PEdcTKVNdMm95ibfMZcY5fUY44Zc0REFCfyU5Vf8KfkTfyzVZdzqKqBGXNEBExgKuv999+P3//+97j77rtx/vnn4/zzz8cvf/lLPPjgg7jvvvsC2kdlZSVuvfVWXHbZZWhs9E5t/M9//oN9+/YFezhxy1fy5xFATUtvlI9mYj5t6YUvrhTuwQ+AspS1rt0xxpaxQ57KqqbAHACsKM8G4F2jWw81jbqdIjCn8VJWRwQz5tJsJkzNsmFKRiISDOoLPMkDIOSpvJGizJiLvS82ApViNfqzaUPSY24wY86o1yFdhZmYRERE4VCQGrrKG7mUlT3miAiYQGDu+PHjWLp06bDrly5diuPHj497/61bt2LevHl477338Nxzz6G723tC9tFHH+G2224L9nDiltyLqypGy1mrFCWM4Q/IpNtMsCR4l3xdW2wGM0+k6sDcrBz/5Vf3N4y6na+cWa8DijNifyDHieThD30RzJjbU9uByqYe9EsBKDVRvIc1Rf49TB7+YE5QX+AyVHQ6nX/4R0tP6DLmspLNquprSUREFE4FUkucyfaq7nZKPeYYmCMiTCAwN23aNPz9738fdv3TTz/tHwYxlh/+8If4+c9/jldeeQUm09C37cuXL8f27duDPZy4JZf8ReOkNhSqIlzCqNPp/N921bX3QUhloLFKEZgLcylwsE4pSfP3Ddt6qAku9/AAkRDCnzFXmJaoycylaPWY8wUBE1X6ga80K7pfLsRLjzlgaABEa0//pN73XG6Pv08dBz8QEVE8CWnGnJPDH4hIKeizkQ0bNuCnP/0pPv/5z+P222/H7bffjs9//vPYsGEDNm7cOO799+7diwsvvHDY9dnZ2Whubg72cAJSV1eHK664AhkZGbBarZg3bx4++OAD/+1CCPz0pz9FXl4erFYrVq5c6R9soVbRLgMLheooTOP09YdwuDyKqZWxSg7MGQ3qCswZDXqcNTMLANDlGMD7R4ZPXG7qdvo/nGhxIiug7DEXqcCcEAI9/d7nVc7YU5Pi9ER/lmd1NDLmXPFRygoAmYMDIFxugU6pfCZYzd1Of/sBDn4gIqJ4IgfmaifZq7rLwYw5IlIKODBXUVEBAFizZg3ee+89ZGZm4vnnn8fzzz+PzMxM7NixY8SA24lSU1NHLHndvXs3CgoKgjj0wLS1teG0005DQkIC/vOf/+Djjz/Gb37zG6Slpfm3+eUvf4n77rsPDz30EN577z3YbDasWrUKDod6+5BNyRwq+YvVyayRLmUFtDeZdUAKzOlVljEHAMsH+8wB3umsJ5KzPbU4+AFQ9piLVCmrw+XxB1DUGphLMOhRnO59H6tu7oHHE9kM1ngpZQWgmHjdMokBEI3SRNacFAbmiIgofuRJvaqPTTIwJ2fMJTNjjogQxFTW+fPn49RTT8U111yDSy+9FH/9618n9ICXXnopfvCDH+CZZ56BTqeDx+PBO++8g5tuuglr166d0D7Hcvfdd6OoqAibN2/2X1daWuq/LITAvffei1tvvRWrV68GADz22GPIycnB888/j0svvXTYPp1OJ5zOoROUzs7OkB/3eJItCchONqOxyxmzpay+gGKe3YJEU2T+KCnS0Nt7Ma/QHpHHDRdFxpxefcGFs2Zkw6DXwe0RI2bMaX3wAxCdHnO+bDkAsEXotTURpZk2VDf3oM/lRkOXA3l26/h3CpF4LGUFgJaefpRlTWw/DZ1DX1ZlJ7OUlYiI4ofZaEBWshlNXU5UNXXD4xET7rXarciYm/h0VyLSjoDPRrZu3Yo5c+bge9/7HvLy8nD11VfjrbfeCvoB77jjDpSXl6OoqAjd3d2YPXs2zjzzTCxduhS33npr0PsbzwsvvIBTTjkFF198MbKzs7FgwQL88Y9/9N9eXV2N+vp6rFy50n+d3W7HokWLsG3bthH3eeedd8Jut/t/ioqKQn7cgfBlmbX09KMjxsoy23r6/aWkkSxhlBu3amEyq1uod/gDANgTE7BsRiamZyehvsOh+IYQOLGcOenEu2uC2ajHycWpmJplg0BkssJ6nUMBQLX2mAOUwdhIl7PKgTmTCqfWhlJGUogy5rqYMUdERPHrps/NwLwCOzr6BvCPXbUT3g97zBHRiQI+GznjjDPw5z//GcePH8f999+P6upqLFu2DDNmzMDdd9+N+vr6cfchhEB9fT3uu+8+VFVV4cUXX8Rf//pXHDhwAI8//jgMhtCXXFVVVeH3v/89pk+fjpdffhnf/OY3cd111+Evf/kLAPiPOycnR3G/nJycUX+nW265BR0dHf6fo0ePhvy4AyGX/lW3xFbWXKQHP/jk27VVyup2qzswBwCpiSYcbuxGY5dzWOq/XM6s1VJWnU6Ho219qGzqQU1LZKYB97rkjDl1lrICygEQlREuyXcO9vszG/XQqbAMPJQybUNBtObu/gnvp1HOmOPwByIiijMFqYnYW9cBALj7PwcmnBjBHnNEdKKg0wRsNhvWrVuHrVu34tChQ7j44ovxwAMPoLi4GOeff/6Y9xVCYNq0aaitrUVRURHOPfdcXHLJJQFNc50oj8eDk08+GXfccQcWLFiAb3zjG/h//+//4aGHHprwPs1mM1JSUhQ/0SAPgJADHLEgWplSyoy5yARJwkntGXPA2FOsfAFaS4IeuRo+0ff1+Gqe5FTMQPVIGXNWNQfmopgx1z+YMaf1MlbgxIy5iQfmGqQecxz+QERE8eb06Zk4b14eAG/F0j2vHJzQfrqdQwE99pgjImACgTnZtGnT8KMf/Qi33norkpOT8e9//3vsB9PrMX36dLS0tEzmYYOSl5eH2bNnK66bNWsWampqAAC5ubkAgIaGBsU2DQ0N/tvUSnFSG2MDIORJspHsLZabYoEvfnVMC6WsntgKzMlTrAbcHn8G2ZQM24T7dMSCzMEeX/0DnmHlvOHQGyM95qI5XdpXympJUG/gMlSUPeYmU8o69J6Zo+FAOhER0Wh+fN4s/2Cvx7d/in3HOoLeh6KUlRlzRIRJBObefPNNXH311cjNzcXNN9+Miy66CO+8886497vrrrtw8803+6e8httpp52GgweV32YcOnQIJSUlALyDIHJzc7Flyxb/7Z2dnXjvvfewZMmSiBzjRMllYLE2ACJa0ziNhqHMrLpJTlRSA+XwB3UGtuQsRbmU9Whbn3+q7NQsbfaX8wlVxlKgehQ95tQbeMpJMfuHY1RFupR1cCqr1ieyAidOZZ18xpxRr0N6ommcrYmIiLQnP9WK61Z4q708Arjtn/uCrobwDX/Q6ZRDwogofgUVoj927BgeffRRPProo/jkk0+wdOlS3HfffbjkkktgswUWXFm7di16e3vxmc98BiaTCVarcgpfa+vwyY2TceONN2Lp0qW44447cMkll2DHjh34wx/+gD/84Q8AvP2fbrjhBvz85z/H9OnTUVpaip/85CfIz8/HBRdcENJjCbXi9ET/xMtIn9ROlkGvwyklaehzuRUZVZFQkGbFsQ4HWnv60ds/ELGJsOEgB+bUmnGWP0opa01LDxaVpsM54MGsvORoHFrEZNiUGUtTwpwlGisZczqdDsvLs9EwOBiko88FuzUy08mcLl8pq/Y/EMuB4eYJDn8QQiDJbMApJWlIsSao9v2GiIgo3L5+eimefL8GQggUZySisqkb07ID/yzbNZgxl2Q2ar7PLREFJuAzti984Qt49dVXkZmZibVr1+JrX/saZs6cGfQD3nvvvUHfZzJOPfVU/O///i9uueUWbNy4EaWlpbj33ntx+eWX+7f5/ve/j56eHnzjG99Ae3s7Tj/9dLz00kuwWNRdqpNg0KM4PRHVzT040twzqbHdkeTxCLzycQOcAx5MzbLBGOGJiAWpVryPNgDectZp2bGbrRUTGXNyYE7KmDvc2I33qr2B+CsXl0T8uCJJGRgJf8Zcb7+UMafyb2Kzks14cc9xAMBbh5vwxfn5EXlcx8DQ8AetSzQZYU0woM/lRkvPxNbfsQ4Hdhzxvm+eMT0zlIdHREQUU0xGPb58ciHueeUQjrbWYUFRalCBOV/GXDLLWIloUMDvBgkJCfjHP/6BL37xi5OannrVVVdN+L4T9cUvfhFf/OIXR71dp9Nh48aN2LhxYwSPKjTKMm2obu5Bn8uN+k6HIjtJrY519Pn7O5VFoYQx/4RAUSwH5gbkjDmVfuNmSTAgM8mE5u5+RcZctCbzRkNmhEtZ5Yw5tWeErijPweZ3jgAAtuxvjEhgzu0RcA1ONI6HwBzgDQ7XtvWhZYIZc3trh3rozC+0h+qwiIiIYtLp0zNxzyuHAMA/qTVQvh5zSRz8QESDAn43eOGFF8J5HDRBJw6AiIXAnDyoIpKDH3wUk1nbYrvPnNvj8V9Wa8Yc4A2GNnf3o6HLAZfbgwSDXjGFszQK6yCSFKWsEwyMBCNWeswBwGdL05FkNqLbOYDXDzZiwO0JexatbyIrEB+lrIB3AERtWx/a+1wTeo4rpJOOeQUMzBERUXybnZfibym0t64z4Pu5PcJf2WBjxhwRDYqPVAENUwyAiJE+c1VRDsgoSyt7I/74oeSWes0aDOoNzPmecyGA+g7vZMeqwSmc6TYTUjXeSD5dzpibYClhMGKlxxzgLQc5c4a3NLK914VdNe1hf0zf4AcgPoY/AEDm4AAIIYC2XlfQ95ezAeYyMEdERHHOkmDA9MGqm8MNXXC43OPcw4sTWYloJPFxRqJhZZnePwgJBh2au8KfiRMKioy5KJSyyoG5Y+2OiD9+KMkZcwaVlrICyue8tq0PPc4B/4THaGRNRlqmlDE30eb7weiJoR5zgLec1WfLgYawP55TkTEXH38GFZOBe4Jbg0IIf2AuLTEh4gN7iIiI1Mj3RdWAR2D/8cCy5uTAXDJLWYloUHyckWhYfqoFdmsCXG6Bw41d0T6cgMiZfVHJmNNUKetQypxB5aWsPsfa+xTBWa2XsQInBEUi0GOuTwrMxUKZxNnl2fDFlbfsbwz74/kmsgLxVcrqE+wa9E2xBrwnIZwgR0REpGztUBFgn7keZswR0QgYmItx2ckWdPR5y5IiMe0xFKqavCWMyRajoil+pCSajEhLTACgnBIai2IlMKcIhrb3nTD4IXaHbwQq0WSAZbBksjUCpazyh75YyJhLt5lwcnEaAOCTxm582hLesnxFKWu8ZMzZ5MnAwWXMyYMf2F+OiIjIS27tEOgAiC6HHJhLCPkxEVFsio8zEg2zmgywDZ54R6Kp/GQ5XG5/MKws0xa1zAtfBld9pwMDbs84W6uXIjCn4iwWRV+/tr64GvwAeCc/+wZABFtGOBG9MVbKCgArZmX7L4c7a05RyhovPeYmkTHHwQ9ERETDzc5Lge978UAHQCh6zLGUlYgGxccZicb5SpQikYkzWTWtvRCDsaRoBmR8gSK3R6AhRnrzjcQXmNPpAL2KM+YKpYy5Yx19qB4c/AAAZVnaD8wB8GeHtvb0KwKq4dDTL2fMxcaHvkj2mVNmzMVG4HKyJtNjTs4CmFfIwBwRERHgTZCYkZMMIPABEN1SxlwyS1mJaBADcxrgO+Fq63WpPvvLV8YKRLeEUSt95gYGAzxGFQflAMBuTfBnbtW1DZWy6nRASUZiNA8tYnwBdI8A2nvDG0TvdXo/GFoS9KoucZbNyEnyB3Dfq2pFpyP4yaGBUvaYi48/gxm2iWXMCSH8GXMc/EBERKQkD4A4UD9+v+9u59DnG2bMEZFPfJyRaJx8wtUa5hP+yYr24Aef6dlJWFSajpOLU9HQGbuTWX2ZV2oPvuh0Ov8JfW1br7+UtTDNGj8ZSzY5YynMgTmX99tYW4xkywHeNXL+Z/KxqDQdZVk2vHWoKWyPpZzKGh/rLzPJhKVTM3BKSVpQGZvHOxz+9crBD0RERErzguwzp+wxFzuf04govBiY04DMCE98nAy19BZLSzThvepW7KppR01rb9SOY7L8gbkYOFn2ZSn2uwW6BvtrlGZqf/CDjzwVM9jm+8HyZcxZY6S/nM/isgy8V92KQw3dYe0zJ5eyWuKox9z7R1rxwadtATeoBoA9HPxAREQ0KsUAiNr2cbdnjzkiGkl8nJFoXEYMBebUkjEnl7LWxnApq1vERsYcMDRwQ1YWB4MffCIZQPf1mIuljDkAWFSW7h9m8/rBxrD14lNmzMXHn0G9Xoc8u/c1GMw0ag5+ICIiGl2wAyDYY46IRhIfZyQap+gdFIGJj5NRPRiYy02xwBbFP0Zyn6RjQZykqk2slLICGLE3VbwMfgBODKCH73Xq9gg4BnuoJZpjK2PObDTgzBlZALw9M3fVtIXlcRQ95hJi6zmaDN9rsMsxEHAPPzm7bi4Dc0RERApWkwHTswMfAMGMOSIaCQNzGiCf8DerOGOuvbffPzk2mtlyAJBuM/lL2ILJHlGbocCc+l/K8mRWn2ivg0hSBtDD9zrtlSayxlrGHAAsL8/2Xw5XOatDMZVV/a+dUMkP8gsJefBDamLCiK9hIiKieBfMAIguJ3vMEdFw8XNGomGZSfK0PfVmzMllrNHOlNLpdP6T1Lq2PggRnpK5cBsKzEX5QAIwYilrFCfzRlq6LTIB9L7+oaBTYoz1mAOAs8uz4WuZuGV/Q1geQzmVNfaeo4kKdhp1Q5cTJRmJyEkxY24+Bz8QERGNZH6hHclmA2bnJeNww9iBOWUpa0K4D42IYkQMnM7TeGKlx5xaBj/4+Mq6+lxutPcGVtalNgODgTljDGTMnVjKajbqkZdiidLRRF6kAug9MR6Yy0wyY0FRKgDgcGM3alpCP5zFGacZc4VBZsxVNnZjV007GjqdmJmbHM5DIyIiillzC+zocrrx8fEufHBk7DYccimrLcZajhBR+MTPGYmGyZk4au4xV9Xc7b8c7Yw5QBkoitVyVk8M9ZjLSbFAPszSTBv0MXDcoaJ8nYYvgN4jfeBLjNESiRWzcvyXXw1D1pxi+EOcTGUFlFmrtQG851U1Db1nT8uOn+xWIiKiYCgHQIw9+dyXMWdNMMAYCyUvRBQRfDfQgPTE2OgxVy2XsmZG/yRPDszF6mTWgRgKzBn0OmRJWWNqCM5GksmoR8pgk9/WsPaYG8oGs8VgxhwArJg11GfutQOh7zOnnMoam8/RRARbyqqWKdpERERqJg+AODTOAAhfxhwHPxCRjIE5DTAa9EhL9PYoUHXG3GApa4JBp4om4vJJaqxOZo2ljDkAsCcO9dIoTE2M4pFEh6+ctTmspaxSxlwMDn8AgJk5yf7A+XvVLegKcIJooJyu+CxlzbMPlY4H8p6n/DKFgTkiIqLRBDoAwveZJjlGqxqIKDzi54xE4zIGT/hbVZox5/EIHGnxnuQVpyeqInU7XwOlrP6MuRhpyi5nJ8lBunjh6wfZ5RiAc8CNLocLQgj0D3jG/HY1GPLwh1jtXaLT6bByMGvO5RY485evY/EdW/Cnt6pCsv94LWW1JBj8weFA3vN8X6YkmY3ISjaPszUREVH8mleQ4r88WjmrEIIZc0Q0Ir4jaESGzYRP4G383tfvhlVlJWzHOvpgMxkxJcOMU6ekRftwAJzQYy5GS1ndIrYy5n72pTk42NAJ54AHK8qzx7+DxmTYhoIbrT39+N7TH2HX0Ta4PQK3njcLVy0tnfRjyD3mrDGaMQcAX15YhOk5yahu7sYjbx8B4MIf3qzCGweb8NdrFk1q392OAUzJSERGkhl2S3wFiAvSrGjudqKxy4n+AQ9Mo2QMOgfcqG3zDt4ozbRxIisREdEY5hXa/ZcrakcOzPW53Bj8Th1JzJgjIkn8pAponGLiowrLWY8096Klpx8H6rtUEyzItQ8NI4jVjDl3jJWyLpyShq8uKsG600pRnBF/pXHyBOX6Dgd21bTB4fLA5RZ463BLSB5DCz3mAO8H3CsWlyDPbkXu4OCQxi4n9tS2QwwGpCfqaFsvjrT0YldNmz/bOF74JrMKARzvGP19r6al13/ywP5yREREY5udZx93AIRv8AMA2BiYIyIJA3MaIZ/wt6iwnFUxkVUlJ3kJBj1yUrw9l2Kxx5wQIuYCc/FODgK9/UkzHFJJ5TufNIeknFULPeZk15xRhu0/WoGlUzMBAJ2OgUkPz/AF4nOSLaNmjGlVfupQn7mxvpCQBz/E26AWIiKiYAUyAKJLqmpgjzkiksXXGYmGySVyasyY8/UqAtSVfeErZ23p6Vf05ooFHilpyMjAXEzIlALo26uUGXJ9Lje2VU0+a67XGfs95kYiv2/IQwmC5XC5/dOr5SBVvAi0hL+aE1mJiIiCIg+AODjCAAi53Qh7zBGRjIE5jZAz5ppVmDGnOMlTUfaFPJk11spZBzxD2VZ6BuZighxArxgsc5DnoGzZ3zDpx5BLWbWQMecjB4eqJhGYk7NjC9LibzKw/DuPmTHXNJTlPDUrKazHREREpAXyAIg9g5/zPIPfpHs8QlHKyh5zRCRjYE4jMmOklDXZbESWino6yZNZY62cVYrLMWMuRsgB9I4+74ezRaUZMA1G517b3zjp/mm9ilJW7WTMyeWUcgZusORglJw9Fi/kLMGx3vPkL1OmMGOOiIhoXCcOgGjt6ceK37yBHz67B2f/5g0caRn628qMOSKS8R1BI+TeVS3d6ipl9U73854Almapa7qfoqwrxgJzcsYce8zFhgybadh1n5udgwSDHlsPNeFYhwMfH+/EnHz7CPcOTI9i+IN23uLLMoeytqqlnpXBUmbMxV9grjA1sIw5X2AuO9nMb/WJiIgC4BsA4RHeARC/fOkAqlt6Ud3inXL+xI4a/7bsMUdEMmbMaYR8wt8yycbooVbT0guh0ul+ilLWMfotqZGcMcfAXGwYaQLoilk5WDEr2//v1/Y3TuoxeqX+JYka6jFXkGb1ZxZOpsec/DoviMMecylWoz/QNtp7Xkefy98SgYMfiIiIAmM1GTAt2/tF4sH6Tjz9wVEAgO9TekVdp39bZswRkYyBOY2Qe1c1qyxjrlIqO5OzXtSgIIZLWRUZcyrKQqTRpVoTIP9PzchJQlF6IpaXDwXmXj0wucCcPJVVSxlzBr0OJRnebK8jLb3+icTBqlWUssZfjzmdTucvZz3W4fD3vpEpBz+o6z2biIhIzXwDINwC/sSE80/KH7ZdkjkhkodFRCrHwJxGpFiN/j5jausxp9bBD4AyMFcbY4E5OTDBjLnYoNfrYJNKF1bMygEAFKYlojw3GQDw0dF2NHY5JvwYvunCOh1gSdDWW7wv47Z/wDPhQLp8v3icygoMve/1D3jQPMIUb7lUuExlWc5ERERqNr9A2Y5kZk4yfv3l+Th1SprieraJICKZts7a4phOp/M3lm8Z4UQrmuTpfmo7ybOZjUhN9H5jFWulrG5pSIDRwMBcrLBKwbIVUqbcysEgXYbNpCh1CJavx1xigkFV/RxDQQ7sVzZNrM+cr69aisWIZEt8fls9Xgm/PFyDpaxERESBkwdAAMDG1XOQYDRgw/lzFdcns5SViCR8R9CQDJsZDZ1OtPb0QwihmpNyZVmU+k7yClKtaO91ob7TAbdHxEz22YB7KDCnV8n/NY3v39efAYNOhw+PtmNB8dC3p6dMSUNWkglN3f1481CTorw1GL4ec4ka/CZ2qmIARA/Omhnc/d0egePt3mzEgrT4K2P1kUt4j7U7sKBYeXuVyt+ziYiI1GpOvh0vfud0AMBbh5uxqCwDADA7PwW3fWk25hbYMS0riT3miEiB7wga4suYc7kFOh0DsFvVkQ3iC8zlpJgVZXxqkZ9qxb5jnXB7BBo6HchPjY1JjR45Yy5GgokEZCd7yyd9Zaw+c/LtaBosQ6+axHADX8aczaSdwQ8+csbcRAZANHU5MTBYAl4QI6/zcJBLeOvae4fdXj2YMWfU61CUHr8BTCIiomBZEgz+PnNzTyhrXXdaaTQOiYhiAEtZNSRTmvjYopIBEB29Lv+UWLVmXsgn6HUx1GduQOoxp2dgLuZlJpmQPBi4lnt8Bat3cPhDooYGP/jI7yFyuWWg5CBUPE5k9Skco5TV4xH+oGdxeiISDPyYQEREREQUTvzErSEZNpP/si8YFm1VchPxLHVO95NPUmNpMqs8TZEZc7FPp9P5M8Jq2/rgHHAHvY/+AQ9cgyXONrP2MuYybCakWHzBy+ADc7VSEErusxZv5FLWunbloJGGLgf6XN61p9YvU4iIiIiItISBOQ3JUGHGnHzyrLbBDz5y6WptDA2AGOBUVs3xvUaEAD5tGV5iOB7fRFYAsGowY84bvPQG+Ova++BwBRe8PCYFoeTgVLzJSjb7g/mftigDnHuPdvgvMzBHRERERBR+DMxpiK/HHAA0d6skYy4GpvuVZibi9GmZWFCciuMxlDHnZmBOc0ql4QYTKdXsGSxjBbTZYw4ApmZOvM+cXMqaH8elrAa9Dt84swyLS9NR3dyDirqhYNwzu2qRnWzC6pPycdbMiQ0gISIiIiKiwDEwpyGZUmCuRSWBOeVEVnWWspZmJmFbVQt217Tjg0/bon04AVME5jiVVRPk4QZVE+gz1ysF5rTYYw5QZnEFHZhjKatfVrIZ26tbMeAR+Mk/K+DxCLxb2YxXPm5AY1c/3jrcjJNLUqN9mEREREREmsfAnIZk2KRS1h51lLL6pksa9TpFLzc1sSQYMD3bGzQ83NgddHlctChLWflS1gK53Lt6IhlzzqG1q8Uec8DkJrP6hruYjHpkSu+X8ejyRSWYOvhc7q5px9MfHMVP/7nPf/sPPj9Ts8FdIiIiIiI14dm8hmSoLGPOO93Pm/VTnKHu6X7zBseZuz0C+493RvloAuMR0vAHAzPmtGAy2WAA0Cv1mNNqUKVMyrytbAo8q1AI4c+Yy7db4n6Sscmox8bVc/3/3vjix/ik0ft8nlSUiosXFkXr0IiIiIiI4op6IyUUNDljrlkFwx/qOx1wuDwA1Dv4wWdeod1/We63pGYD7qHAnJ6lrJpgMxuRk+J9HVdNKDAnl7JqM2NuSubQ0IZggpedfQPoGQxcxnsZq89p0zJx3vw8AEODQ3Q64PbVc+M+cElEREREFCkMzGmI1WRAvt2ConQrIhmnef1gI14/0IjN71Sjf8Djv37fsU5My05CZpJJ9dP95hYMBeb21MZGYE6RMceTaM3wZYS19vSjvTe4zNceRcacNgNziSYjCtMsKEyzwqjTQUivg7HUSoMfClIZmPO59bxZsCTokTCYdfvVzxYrvqggIiIiIqLw0matUxzLTrHgw6PtONbuQF+/G9Ywn5wLIfA/j32A/sHsrRk5yThtWiYAYFtlCz5p7IZRr8OZM7LCehyTNTsvBQa9Dm6PwN5YyZiTeswxu0U7SrNs2FbVAsCbEbag2DTOPYb0OqWprGbtvr3PzrPjvx83oLatD3XtfShMSxz3PsfaHf7L+QzM+eXZrXj4ylMwv8COj2rbcVJRarQPiYiIiIgorjBjTmN8QwzcHoGPI9Arraa11x+UA4BX9zcA8AbsthwYvAxgfmFq2I9lMmJxAITHw4w5LZLLvquCHAARDxlzgPcLAJ+9AWa41rUxY240y2ZkIc1mwlkzs5GaGHggmIiIiIiIJk/zgbmf/exn0Ol0ip/y8nL/7Q6HA+vXr0dGRgaSkpKwZs0aNDQ0RPGIJyfSvdJOzC7bsr8RQghUNvXg0xbvifCpU9JgtyaE/Vgma26MDYBQTmVlYE4ryiYxdbRP6jFn0+jwB0BZeh5ohqtvIivAHnNERERERKQemg/MAcCcOXNw/Phx/8/bb7/tv+3GG2/Ev/71LzzzzDPYunUrjh07hosuuiiKRzs5EzlhnYwTH6OmtReVTd3Ysn8ouLlyVk7YjyMU5sfYAAi3Z6ifHwNz2lEqTR0NNjCnyJgzazdjTv4CItD3ObmUtTB1/NJXIiIiIiKiSNBuSoXEaDQiNzd32PUdHR145JFH8MQTT2D58uUAgM2bN2PWrFnYvn07Fi9ePOL+nE4nnM6hqaednerJrpJ7pUUiuDTSY7y6vxGv7W/0/3tFjATmIh3UnCz3UFyOpawaUpRmhVGvw4BHoLKpO6j7yj3mEjWcMZdvtyDdZkJrTz8q6joghIBunIk3Na3eDF6dDsi1WyJxmEREREREROOKi4y5w4cPIz8/H2VlZbj88stRU1MDANi5cydcLhdWrlzp37a8vBzFxcXYtm3bqPu78847Ybfb/T9FRUVh/x0CFcleaUIIVNR5g5LptqG+RP+tqMcHn7YC8JblqX0iq48vqAkAe+vUE2wdzYCUMaeP5BheCiujQY/iDG9G15GWHkUvwfHIGXM2DfeY0+l0mDcYSG/rdSnKVEfS1+/G4cYuzMxJwqWnFsNkjIs/fUREREREFAM0f3ayaNEiPProo3jppZfw+9//HtXV1TjjjDPQ1dWF+vp6mEwmpKamKu6Tk5OD+vr6Ufd5yy23oKOjw/9z9OjRMP8WwZkn9UoL5wCIo6196OhzAQAWFKX6e2PtPtoOXyxhRXl22B4/1OSg5qGGLtUPgPAIafiDgYE5LfENgHC4PKjvdIyz9ZBeqcdcooansgJD73PA+KXnb3/SDIfLg4MNwWUgEhERERERhZvmA3Nf+MIXcPHFF2P+/PlYtWoV/u///g/t7e34+9//PuF9ms1mpKSkKH7UJFIDIORyz7kFdn8vOTm/J1bKWH1iaQDEgDQNlxlz2lKWNdRnLpjJrL1xkjEHBFd6/tqBoZ6XsfRlARERERERaZ/mA3MnSk1NxYwZM/DJJ58gNzcX/f39aG9vV2zT0NAwYk+6WCGfsO6pDV9gbk9du//yvAL7sBPeFIsRp5Skhe3xwyGYLJxoU2TMscecpsjl39XNgWd59Tql4Q8a7jEHKL+AGOt9zuMR2DLY89Js1OO0aZlhPzYiIiIiIqJAxV1grru7G5WVlcjLy8PChQuRkJCALVu2+G8/ePAgampqsGTJkige5eTIvdLCGVyS9z2v0I6FJWmKLJ0zZ2TBaIitJRZLAyAGpN5jegbmNEUOzFUFMZm1Z7CU1ajXab6Pmm8ABAD/AIiRVBzrQGOXd1jP6dMyYdV4JiEREREREcUWbZ+5AbjpppuwdetWHDlyBO+++y4uvPBCGAwGXHbZZbDb7fj617+O7373u3j99dexc+dOrFu3DkuWLBl1ImssiMQACHnwQ1ayGTkpFhgN3myU3MET5mUzskL+uOE2Oy8FxemJWFiSBncQTfejQT4+ZsxpS2mmDTNykrCwJA39A57x7zDIV8qaGAfBJ51O5w+kjzUAYos0IXr5LJaxEhERERGRumi71glAbW0tLrvsMrS0tCArKwunn346tm/fjqwsb9Bo06ZN0Ov1WLNmDZxOJ1atWoUHH3wwykc9eXML7DhQ3+UfAHFycWhLSuXBD3L550NXLPRnbwUzTVItrCYDDHoddn7aho+PdeLXFwvoVNq/TQ7MGRiY05TsZDOOtTvQ7exG02C2VyB6nN6MOZvGBz/4zCtIwZuHmgB4s+YK0xKHbbNF0V8utnpeEhERERGR9mn+7O2pp54a83aLxYIHHngADzzwQISOKDLmF9rxj521ALwnrKEOzMllnnJgTi6pjNXyytJMG6qbe9DncqOh04lcuyXahzQiBua0S6fToTTThr11Haht64VzwA2zcfwsuL44ypgDgHkFqf7Le+s68Pm5eYrb6zsc/szeOfkpqn0tExERERFR/NJ8KWu8UvRKC8MAiNECc1pQJvf3agq88X6ksZRV28qyvOvQI4Calt5xtxdC+HvMxU3GXKHcE3L4FOXXDgyVscbahGgiIiIiIooPDMxplDwAIhxDDE4c/KAlpVkTa7wfaYrhDyott6WJC3YAhHPAA9+SsCbER8bceAMgtuwfKmNdyf5yRERERESkQgzMaZQ8AKK914Xewd5ToSCEQFOXA8DQ4ActUQREmtQbmJN7+BkNDMxpTbDrsHOw5yMQPxlz8gCIfpcbe2rb/be1dDtxsKELgPd9am6+tr5AICIiIiIibWBgTsPOnJ6FdFsC6jsdODB4ghoKTV1OHGzoRrLFiCVlGSHbr1pMzUryX65uVm8pKzPmtC3Yddg+GJhLsRoV5dha9z9nluIzhXZ097tx35ZP/Nf/+r8HUdvWh2lZSbh51cyY7XlJRERERETaxsCchhWkWdHa4z1ZrwhhOauvrK7LMYCMJFPI9qsW2clm2Aab51eruJRV2WOOL2WtmSIF1wJZh3XtfQCAzr4BWOKklBUAPlOUhvpObwbvlgONePXjBnx4tB1PvX8UAFDf6cBZM7KieYhERERERESj4tm8hoVrAIQcJNBiZo5Op/P3mTva1of+AU+Uj2hkbsGprFqWZDYiJ8UMILBS1rq2Pv/lgjRr2I5LbZLMRvz4vNn+f//sXxW49fm98L08blg5HdkaK7cnIiIiIiLtYGBOw2bnpcAXrwnlAAh5UmmZVG6nJaWZ3t/L7RGoaR1/ImY0yBlzDMxpk6/PXEtPPzp6XWNu68uYA4CC1PgJzAHAl+bn+cvqa9scqBic0DojJwlXLZ0SxSMjIiIiIiIaGwNzGmY1GTAjJxkAcLixGw6XOyT7lTPmSjWYMQcofy+1lrMyMKd9vgAxAFS3jL0Oj7XHZ8Yc4M1y3bB6Dk6cgbJx9VwkGPhnjoiIiIiI1ItnLBrnK2d1ewT2H+8MyT59PeYsCXrkarREbGqWPBFTnQMgGJjTvmDWoVzKmm+Pr8AcAMzIScbXTi9FeW4yTipKxeqT8rFYg8NpiIiIiIhIW4zRPgAKr3kFdvxjZy0AbznrguK0Se3P5fagpsVb2lmamaTZSYexljFn1Oj/Q7wLZh36SlkzbCZYTfEz/EF206qZuOULs6DTAU6V9oYkIiIiIiKSMTCncaEeAFHb1oeBwYCQFgc/+MgBkSqVBuYGpMCcXsfAnBYFug5dbg8aBieTxlsZq8xsHApIxtNkWiIiIiIiil0sZdW4UA+AkMvptNpfDgCSLQnISg58ImY0uD1DGUHGE5trkSYUpSf6syHHWof1HQ744rTxWMZKREREREQUqxiY0ziryYDp2aEbACGX05VlaTcwBwwFHpu7neh0jD0RMxrcUqUee8xpU4JBj+L0RADAkeYeeKQsSVldHA9+ICIiIiIiimUMzMWBUA6AqIqDiaw+cqnuERWWs8oZcwaWsmqW73XW53Kjocsx4jaKiaypDMwRERERERHFCgbm4sD8wqE+cxWTLGeVS1nLMpMmtS+1K1NMxFRhYE5KnmLGnHYFsg4VE1kZmCMiIiIiIooZDMzFAcUAiEkG5nylrBk2E+yJCZPal9qVSoFHNQ6AUGTMMTCnWYGsQ7mUtZClrERERERERDGDgbk4oBwAMfFS1h7nABo6nQC0X8YKnDARU8oUVAu31G/MyMCcZgWyDutYykpERERERBSTGJiLA/IAiEMNXRMeABFPgx8AoDg90Z+JVq3KjLmhwJyegTnNmiq91kZbh77AnDXBgFSNZ7ISERERERFpCQNzcUIeAPHxsYmVsyoHP2i7vxwAmIx6FA2WBR5q6MLiO7Zg8R1b8Ic3K+EcmNx021AYYMZcXMhKNsNmMgAAKkfImBNC+Ic/FKRZoeMgECIiIiIiophhjPYBUGQsKktHdXM3Grqc2HesEyeXpAe9j+qm+JnI6nPLubNgMuqx9WAjHn33UwDAplcOw2TQ4+rTSqN6bHLGHHvMaZdOp8MlpxbhgyNtONjQhYZOB3JSLP7bW3r64XB5+w2yjJWIiIiIiCi2MGMuTkzNsmFXTTvq2vomPACiqnkoW2dqHJSyAsCqObk4e2Y2CtMSkWEzAQD6XG5sOdAY5SNjYC6eJJmN2FvXgf4BD14/Ye0da+dEViIiIiIioljFwFycmJ1nn/QACF9/K50OKM5IDNWhxYRrzijDB7eu9GckvVfVim7nQFSPiYG5+LFiVo7/8qv7lYG5ujZOZCUiIiIiIopVDMzFCXkAxOEJDIAQQvhLWQvTrDAbDSE/RrXT6XRYMSsbANDv9uCtQ01RPR5FYI59xTRtfoEdmUlmAMDbnzQpXr+cyEpERERERBS7GJiLI74BEAMegQP1XUHdt6nbia7BDLGyOBj8MJrl5dn+y9EuZ3ULZszFC71eh+XlWQAAh8uDbZUt/tsUgTlmzBEREREREcUUBubiyLyCFP/lvbXt426/ZX8DHtt2BD97YR/O/e1bSDQZUJZlwyklaWE8SnVbXJaBxMEJma8faFRkrUWa77H1OnASZxxQlrM2+C/LpazsMUdERERERBRbOJU1jswrtPsvBzIA4un3j+K/HzcorvvS/Hx8Z8X0kB9brLAkGHDG9Ey8vK8BLT39+PBoOxZGKVDpC8wZ9Yyvx4MzpmfCZNSjf8CD1w40QggBnU7nz5gz6HXISTZH+SiJiIiIiIgoGDyjjyPBDoDwBe9MBj1yUyzITbEg2cJYrpy5tGV/wxhbhpc/Y46v4riQaDJi6dQMAMDxDgf2HfO+hn1TWXNTLDAauBiIiIiIiIhiCc/i4ojVZMC0bG9/uPEGQDR3O3G8wwEAWFCciu0/WoHtP1qBa84oi8ixqtnZM7Phqxx9LYp95gaYMRd3Vkg9Dl870Ije/gG09boAcPADERERERFRLOIZfZyZV5AKYPwBEHKp67wC+6jbxaOsZDM+U5gKADhQ34Xatt6oHIdnMDDHwQ/xY/kJ2ZpyfzkOfiAiIiIiIoo9rEuMM/MKUvDsLu/lvXUdmJOfgr9t/xRrFhaitq0Ps/K8AyIqaqXAXCEDcydaOSsbHx5th9mgx5fufxtmowFzC1JQIZUIy/8O5HKw92nqcgIAXG5PmH9bUouCVCtm5aVg//FO1LT24pKHtyluIyIiIiIiotjCwFyckYNsFbUd2Nw/gDv+7wA2vPgxjHod9ty2ClaTgRlz47jw5EIsKE7DtsoW/O71TwC4UJKRiPpOh38b+d+BXJ7ofa5YVBK+X5RUZ8P5c5CWmIAX9xzDb7d8AgBYt3QK1i7lOiAiIiIiIoo1DMzFGd8ACI8Adta04V97jgEAhABcboF3PmnGytk5qBgMzCWZjZiSYYvmIatSQaoVBalW7D/eidwUCwAg2WL0Xz7x34Fcnuh9slM4iTOefLY0HQCQbEnwr4OCNCuyky1j3Y2IiIiIiIhUiIG5OOMbAHGooRuVjd0QJ9y+5UADTipOxbHBwQ9z8lOgZw+zUV1zRhkHYlBUcO0RERERERHFPg5/iENzB0tTfUG5VKsRZqN3KWzZ34i9te3+bVnGSkREREREREQUHgzMxaG5+SmKf//wC7Nw2rRMAEBjlxNb9jf6b+PgByIiIiIiIiKi8GApaxxaVJaBL87PRXVzLzxC4JJTiuAWAq8d8AbktlW1+Ledy4w5IiIiIiIiIqKwYGAuDs3Jt+N3X10IAOjtH4Ber8OK8hz8GBUAgJrWXgDewQ+lHPxARERERERERBQWLGWNc4kmb2w2127BnMESV5fb231uNgc/EBERERERERGFDQNz5LdiVo7i3/NZxkpEREREREREFDYMzJHfylnZin9z8AMRERERERERUfgwMEd+c/PtSDIb4Kte5eAHIiIiIiIiIqLw4fAH8tPrdfi/685EQZoVvf0DsJm4PIiIiIiIiIiIwoWRF1IozkgEACRbEqJ8JERERERERERE2hZXpax33XUXdDodbrjhBv91DocD69evR0ZGBpKSkrBmzRo0NDRE7yCJiIiIiIiIiCguxE1g7v3338fDDz+M+fPnK66/8cYb8a9//QvPPPMMtm7dimPHjuGiiy6K0lESEREREREREVG8iIvAXHd3Ny6//HL88Y9/RFpamv/6jo4OPPLII7jnnnuwfPlyLFy4EJs3b8a7776L7du3j7o/p9OJzs5OxQ8REREREREREVEw4iIwt379epx33nlYuXKl4vqdO3fC5XIpri8vL0dxcTG2bds26v7uvPNO2O12/09RUVHYjp2IiIiIiIiIiLRJ84G5p556Crt27cKdd9457Lb6+nqYTCakpqYqrs/JyUF9ff2o+7zlllvQ0dHh/zl69GioD5uIiIiIiIiIiDRO01NZjx49iuuvvx6vvPIKLBZLyPZrNpthNptDtj8iIiIiIiIiIoo/ms6Y27lzJxobG3HyySfDaDTCaDRi69atuO+++2A0GpGTk4P+/n60t7cr7tfQ0IDc3NzoHDQREREREREREcUFTWfMrVixAnv37lVct27dOpSXl+MHP/gBioqKkJCQgC1btmDNmjUAgIMHD6KmpgZLliyJxiETEREREREREVGc0HRgLjk5GXPnzlVcZ7PZkJGR4b/+61//Or773e8iPT0dKSkp+M53voMlS5Zg8eLF0ThkIiIiIiIiIiKKE5oOzAVi06ZN0Ov1WLNmDZxOJ1atWoUHH3ww2odFREREREREREQapxNCiGgfRKzr7OyE3W5HR0cHUlJSon04REREREREREQUJcHEiTQ9/IGIiIiIiIiIiEit4r6UNRR8SYednZ1RPhIiIiIiIiIiIoomX3wokCJVBuZCoKWlBQBQVFQU5SMhIiIiIiIiIiI16Orqgt1uH3MbBuZCID09HQBQU1Mz7hNONBmdnZ0oKirC0aNH2c+Qwo7rjSKFa40iieuNIoVrjSKFa40iiestMEIIdHV1IT8/f9xtGZgLAb3e26rPbrdzYVJEpKSkcK1RxHC9UaRwrVEkcb1RpHCtUaRwrVEkcb2NL9DELQ5/ICIiIiIiIiIiigIG5oiIiIiIiIiIiKKAgbkQMJvNuO2222A2m6N9KKRxXGsUSVxvFClcaxRJXG8UKVxrFClcaxRJXG+hpxOBzG4lIiIiIiIiIiKikGLGHBERERERERERURQwMEdERERERERERBQFDMwRERERERERERFFAQNzREREREREREREUcDAHBERERERERERURTEVGDuzjvvxKmnnork5GRkZ2fjggsuwMGDBxXbOBwOrF+/HhkZGUhKSsKaNWvQ0NDgv/2jjz7CZZddhqKiIlitVsyaNQu//e1vFft47rnncM455yArKwspKSlYsmQJXn755XGPTwiBn/70p8jLy4PVasXKlStx+PBhxTa7du3COeecg9TUVGRkZOAb3/gGuru7x933nj17cMYZZ8BisaCoqAi//OUvFbfv27cPa9aswZQpU6DT6XDvvfeOu08aHdfa6GvtueeewymnnILU1FTYbDacdNJJePzxx8fdL42O62309fboo49Cp9MpfiwWy7j7pZFxrY2+1s4666xha02n0+G8884bd980Mq630deby+XCxo0bMXXqVFgsFnzmM5/BSy+9NO5+aWTxutYcDgeuvvpqzJs3D0ajERdccMGwbY4fP46vfvWrmDFjBvR6PW644YZxj5dGx7U2+lp7++23cdpppyEjIwNWqxXl5eXYtGnTuMdMo+N6G329vfHGGyN+bquvrx/3uFVJxJBVq1aJzZs3i4qKCvHhhx+Kc889VxQXF4vu7m7/Ntdee60oKioSW7ZsER988IFYvHixWLp0qf/2Rx55RFx33XXijTfeEJWVleLxxx8XVqtV3H///f5trr/+enH33XeLHTt2iEOHDolbbrlFJCQkiF27do15fHfddZew2+3i+eefFx999JE4//zzRWlpqejr6xNCCFFXVyfS0tLEtddeKw4cOCB27Nghli5dKtasWTPmfjs6OkROTo64/PLLRUVFhXjyySeF1WoVDz/8sH+bHTt2iJtuukk8+eSTIjc3V2zatCmYp5ZOwLU2+lp7/fXXxXPPPSc+/vhj8cknn4h7771XGAwG8dJLLwX1HNMQrrfR19vmzZtFSkqKOH78uP+nvr4+qOeXhnCtjb7WWlpaFOusoqJCGAwGsXnz5mCeYpJwvY2+3r7//e+L/Px88e9//1tUVlaKBx98UFgslnGPmUYWr2utu7tbXHvtteIPf/iDWLVqlVi9evWwbaqrq8V1110n/vKXv4iTTjpJXH/99QE8ozQarrXR19quXbvEE088ISoqKkR1dbV4/PHHRWJiouK9j4LD9Tb6env99dcFAHHw4EHF5ze32x3IU6s6MRWYO1FjY6MAILZu3SqEEKK9vV0kJCSIZ555xr/N/v37BQCxbdu2UffzrW99S5x99tljPtbs2bPFhg0bRr3d4/GI3Nxc8atf/cp/XXt7uzCbzeLJJ58UQgjx8MMPi+zsbMVi2bNnjwAgDh8+POq+H3zwQZGWliacTqf/uh/84Adi5syZI25fUlLCwFyIca2NvNZ8FixYIG699dYxt6HAcb0NrbfNmzcLu90+5u9AE8e1Nvp726ZNm0RycrLiwy9NDtfb0HrLy8sTv/vd7xT3u+iii8Tll18+5u9FgYmXtSa76qqrRjx5lS1btoyBuRDjWhvbhRdeKK644oqAtqXxcb0N8QXm2traAtqP2sVUKeuJOjo6AADp6ekAgJ07d8LlcmHlypX+bcrLy1FcXIxt27aNuR/fPkbi8XjQ1dU15jbV1dWor69XPLbdbseiRYv8j+10OmEymaDXDz3tVqsVgDf1dzTbtm3DmWeeCZPJ5L9u1apVOHjwINra2ka9H4UO19rIa00IgS1btuDgwYM488wzR90vBYfrTbneuru7UVJSgqKiIqxevRr79u0bdZ8UHK610f+OPvLII7j00kths9lG3S8Fh+ttaL05nc5hZflWq3XM/VLg4mWtUfRxrY1u9+7dePfdd7Fs2bKQ7jeecb0Nd9JJJyEvLw/nnHMO3nnnnZDsMxpiNjDn8Xhwww034LTTTsPcuXMBAPX19TCZTEhNTVVsm5OTM2qt8bvvvounn34a3/jGN0Z9rF//+tfo7u7GJZdcMuo2vv3n5OSM+tjLly9HfX09fvWrX6G/vx9tbW344Q9/CMDb/2GsfY+0X/lxKXy41oavtY6ODiQlJcFkMuG8887D/fffj3POOWfU/VLguN6U623mzJn485//jH/+85/461//Co/Hg6VLl6K2tnbU/VJguNZG/zu6Y8cOVFRU4Jprrhl1nxQcrjflelu1ahXuueceHD58GB6PB6+88gqee+65MfdLgYmntUbRxbU2ssLCQpjNZpxyyilYv349/5aGCNebUl5eHh566CE8++yzePbZZ1FUVISzzjoLu3btmtR+oyVmA3Pr169HRUUFnnrqqQnvo6KiAqtXr8Ztt92Gz33ucyNu88QTT2DDhg34+9//juzsbADA3/72NyQlJfl/3nrrrYAeb86cOfjLX/6C3/zmN0hMTERubi5KS0uRk5PjjyLPmTPHv98vfOELE/7dKHS41oZLTk7Ghx9+iPfffx+/+MUv8N3vfhdvvPFGUPugkXG9KS1ZsgRr167FSSedhGXLluG5555DVlYWHn744YD3QSPjWhvdI488gnnz5uGzn/3shO5Pw3G9Kf32t7/F9OnTUV5eDpPJhG9/+9tYt26dIquAJoZrjSKFa21kb731Fj744AM89NBDuPfee/Hkk08GvQ8ajutNaebMmfif//kfLFy4EEuXLsWf//xnLF26NHYHjkS7lnYi1q9fLwoLC0VVVZXi+i1btoxYZ1xcXCzuuecexXX79u0T2dnZ4kc/+tGoj+Nr1vviiy8qru/s7BSHDx/2//T29orKykoBQOzevVux7Zlnnimuu+66Yfuur68XXV1doru7W+j1evH3v/9dCCHEkSNH/Putra0VQghx5ZVXDqurfu211wQA0draOmzf7DEXOlxrY681n69//evic5/73Ki3U2C43gJbb1/+8pfFpZdeOurtND6utdHXWnd3t0hJSRH33nvvqL8XBYfrbfT11tfXJ2pra4XH4xHf//73xezZs0f9/Wh88bbWZOwxF1lca6tHPWbZ7bffLmbMmBHQtjQ6rrfVox6z7KabbhKLFy8OaFu1ianAnMfjEevXrxf5+fni0KFDw273NT/8xz/+4b/uwIEDw5ofVlRUiOzsbHHzzTeP+lhPPPGEsFgs4vnnnw/42HJzc8Wvf/1r/3UdHR2K5ocjeeSRR0RiYuKYTQt9TYT7+/v9191yyy0c/hBGXGuBrTWfdevWiWXLlgV0/DQc11vg621gYEDMnDlT3HjjjQEdPylxrY2/1jZv3izMZrNobm4O6LhpdFxvgb+39ff3i6lTp4pbbrkloOMnpXhdazIG5iKDay24QMmGDRtESUlJQNvScFxvwa23lStXigsvvDCgbdUmpgJz3/zmN4XdbhdvvPGGYiRub2+vf5trr71WFBcXi9dee0188MEHYsmSJWLJkiX+2/fu3SuysrLEFVdcodhHY2Ojf5u//e1vwmg0igceeECxTXt7+5jHd9ddd4nU1FTxz3/+U+zZs0esXr1aMS5YCCHuv/9+sXPnTnHw4EHxu9/9TlitVvHb3/52zP22t7eLnJwcceWVV4qKigrxy5qIcgAAAwhJREFU1FNPDRs97XQ6xe7du8Xu3btFXl6euOmmm8Tu3bsDnnZCSlxro6+1O+64Q/z3v/8VlZWV4uOPPxa//vWvhdFoFH/84x8Dfn5Jiett9PW2YcMG8fLLL4vKykqxc+dOcemllwqLxSL27dsX8PNLQ7jWRl9rPqeffrr4yle+Mu5zSePjeht9vW3fvl08++yzorKyUrz55pti+fLlorS0VDPT5SItXteaEN4smN27d4svfelL4qyzzvKfD8h81y1cuFB89atfFbt37+bf0QniWht9rf3ud78TL7zwgjh06JA4dOiQ+NOf/iSSk5PFj3/840CeWhoB19vo623Tpk3i+eefF4cPHxZ79+4V119/vdDr9eLVV18N5KlVnZgKzAEY8Wfz5s3+bfr6+sS3vvUtkZaWJhITE8WFF14ojh8/7r/9tttuG3EfciR/2bJlI25z1VVXjXl8Ho9H/OQnPxE5OTnCbDaLFStWiIMHDyq2ufLKK0V6erowmUxi/vz54rHHHgvod//oo4/E6aefLsxmsygoKBB33XWX4vbq6uoRj5lZTBPDtTb6Wvvxj38spk2bJiwWi0hLSxNLliwRTz31VED7ppFxvY2+3m644QZRXFwsTCaTyMnJEeeee67YtWtXQPum4bjWRl9rQgx9y/zf//43oH3S2LjeRl9vb7zxhpg1a5Ywm80iIyNDXHnllaKuri6gfdNw8bzWSkpKRjym8Z4fZjFNDNfa6GvtvvvuE3PmzBGJiYkiJSVFLFiwQDz44IPC7XYHtH8ajutt9PV29913i6lTpwqLxSLS09PFWWedJV577bWA9q1GOiGEABEREREREREREUUURz8RERERERERERFFAQNzREREREREREREUcDAHBERERERERERURQwMEdERERERERERBQFDMwRERERERERERFFAQNzREREREREREREUcDAHBERERERERERURQwMEdERERERERERBQFDMwRERERERERERFFAQNzREREREREREREUcDAHBERERERERERURT8f4mcXvTSbcAOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# A plot as above but for the humidity of one station\n", + "vlinderstation.make_plot(obstype='humidity')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SpI_Xq9LHda4" + }, + "source": [ + "- Plotting temperature on a map\n", + "\n", + "The `make_geo_plot()` function creates a geospatial plot for a field (observations or attributes) of all stations in the dataset. In this way you obtain a spatial visualisation of the data. You can change several things in the visualisation such as the presented variable, the title, the time for which you visualize the data, ... More information on all aspects that can be changed can be found [here](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_geo_plot).\n", + "For other functions used above and later during the summer school you can also define several settings. You can look them up on the same website." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 655 + }, + "id": "Yy2ct04SHTgQ", + "outputId": "e0137af4-7d4d-4874-a29f-9c47b4267e93" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Make temp-geo plot at 2022-09-01 00:00:00+00:00\n", + "/usr/local/lib/python3.10/dist-packages/geopandas/plotting.py:48: ShapelyDeprecationWarning: The 'type' attribute is deprecated, and will be removed in the future. You can use the 'geom_type' attribute instead.\n", + " if geom is not None and geom.type.startswith(prefix) and not geom.is_empty:\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAKLCAYAAACgz61ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADI10lEQVR4nOzdd3hU1dYH4N+Z3mfSeyOUQOhVpCtSrChYseu1oV6u7Yr6KRbkXvu1YgUsqICgKIgCUqV3QglJSO91aqbv74+YyJA6k2lJ1sszj+bMOfusmUxm1uyz99ocY4yBEEIIIYQQElR4gQ6AEEIIIYQQ0hwl6oQQQgghhAQhStQJIYQQQggJQpSoE0IIIYQQEoQoUSeEEEIIISQIUaJOCCGEEEJIEKJEnRBCCCGEkCBEiTohhBBCCCFBiBJ1QgghhBBCghAl6oQQQgghhAQhStS7mN27d2PhwoWoq6sLdChBZ8WKFXjnnXcCHUanbNiwAQsXLnTrmNOnT2PGjBlQKBQIDQ3FbbfdhsrKymb7LVq0CFdffTWioqLAcVy75zlx4gQ4jsP+/fubtq1btw7Dhw+HRCJBYmIiXnjhBdjt9mbHbtq0CePHj4dMJkNISAjmzJmDvLy8Vs/1+OOPY8CAAQCAAwcO4OGHH0Z6ejrkcjkSExNxww034OzZsx4//jNnzuCpp57C0KFDoVQqERMTgyuuuAIHDx5s1t6aNWtw4403olevXpDJZOjXrx8ef/xxt/7mOvo7cTqdeO2115CSkgKJRILBgwfj22+/7fB5gI7/Turq6nDfffchIiICcrkcU6ZMweHDhzt8Hndi7ejjv1BeXh44jsMbb7zR4v1vvPEGOI5DXl4eli1bBo7j2r0lJyc3HX/06FHceuutSEhIgFgsRmhoKKZOnYqlS5fC4XB0+LkghBC/YaRLef311xkAlpubG+hQgs4VV1zBkpKSAh1Gp8ybN4+582dZWFjIwsPDWWpqKvvf//7HFi1axEJCQtiQIUOYxWJx2RcAi46OZtOnT2cA2AsvvNBm24sXL2aRkZHM6XQyxhjbsGED4ziOTZkyhX3yySfskUceYTwejz3wwAMux/3888+Mx+OxkSNHsv/973/s5ZdfZuHh4SwuLo5VVFS0eK5+/fqxJ554gjHG2OzZs1l0dDR75JFH2KeffspefvllFhUVxeRyOTtx4oRHj//xxx9nGo2G3XPPPezjjz9mr732GktNTWV8Pp9t2rTJpc2wsDA2aNAg9n//93/s008/ZY8++igTiUQsLS2NmUymNp8zd2JijLGnn36aAWD/+Mc/2CeffMKuuOIKBoB9++237Z6HsY7/ThwOB7v44ouZXC5nCxcuZO+//z4bMGAAUyqV7OzZsx06V0djdefxXyg3N5cBYK+//nqL95///peTk8O++uorl5tYLGYTJkxw2bZ27VrGGGOffvop4/P5LDY2lv373/9mn332GXv77bfZlVdeyTiOY4sWLerQ80AIIf5EiXoX05MSdaPR6Nb+vkrU3Y2jM9xN1B988EEmlUpZfn5+07ZNmzYxAOzjjz922bfxNVNZWdmhRH3ChAnsjjvuaPp5wIABbMiQIcxmszVte/bZZxnHcez06dMu+/Xu3dslKTt69Cjj8Xjssccea3aenJwcBoBt3bqVMcbYn3/+2SyhO3v2LBOLxWzu3LkePf6DBw8yvV7vcmxVVRWLiIhg48aNc9neGMf5li9fzgCwTz/9tNl9F+poTEVFRUwoFLJ58+Y1bXM6nWzChAksPj6e2e32ds/V0d/J999/zwCwVatWNW2rqKhgGo2G3Xzzze2ex51Y3XlNXsidRL0lcrnc5TXbaM+ePYzP57Px48cznU7X7P4DBw6wpUuXthkbIYQEAiXqXcgLL7zAADS7nf+h9dVXX7Hhw4cziUTCQkJC2I033sgKCgpc2pk0aRJLT09nx44dYxMnTmRSqZSlpqY2fYhv27aNjR49mkkkEta3b99mPY6NcZw+fZpdf/31TKlUstDQUPboo4+y+vr6ZnG7E9PBgwfZhAkTmFQqZf/85z8ZY4z9+OOP7PLLL2cxMTFMJBKxXr16sZdeesklOZg0aVKz56UxaV+6dGmLH+5bt251SRDbi8NsNrPnn3+epaamMpFIxOLj49mTTz7JzGZze786tmPHDjZnzhyWkJDQdOz8+fNdemjvuOOOFn+/bYmMjGTXX399s+19+/Zll156aYvHdCRRr62tZXw+n61cuZIxxtjJkycZAPbBBx+47FdcXMwAsJdffpkxxlh1dTUDwJ588slmbaanp7PY2Nhm2999912mVqtdks2WDB8+nA0fPtxlmyeP/3zXXXcdCw0NbXc/nU7HALT4ReNCHY3pgw8+YADYyZMnXfZbsWIFA8B27tzZtK2uro6dPn2a1dXVNW3r6O+EMcauv/56FhUVxRwOh8u+9913H5PJZC6v4ZKSEnb69GlmtVo9irUzvxNfJeozZsxgAoHA5csDIYR0BTRGvQu57rrrcPPNNwMA3n77bXz11Vf46quvEBERAaBhDPLtt9+OPn364K233sL8+fOxZcsWTJw4sdn42traWlx55ZUYM2YMXnvtNYjFYtx00034/vvvcdNNN+Hyyy/Hf/7zHxiNRsyZMwd6vb5ZPDfccAPMZjMWL16Myy+/HO+++y7uu+8+l33ciam6uhozZ87E0KFD8c4772DKlCkAgGXLlkGhUOCxxx7D//73P4wYMQLPP/88nn766aZjn332WQwdOhTh4eFNz4un49VbisPpdOLqq6/GG2+8gauuugrvvfceZs2ahbfffhs33nhju22uWrUKJpMJDz74IN577z1Mnz4d7733Hm6//famfe6//35cdtllAND0GL766qtW2ywuLkZFRQVGjhzZ7L7Ro0fjyJEjHjz6Br/99hs4jsO0adMAoKmtC88VGxuL+Pj4pvstFgsAQCqVNmtTJpOhpKQEZWVlLts3bNiAyy67DAKBoNV4GGMoLy9HeHh40zZvPP6ysjKXNtvaD0C7+7oT05EjRyCXy9G/f/9m+zXe32jt2rXo378/1q5d63I80P7vpHHf4cOHg8dzfcsfPXo0TCaTy/j/BQsWoH///iguLnY7Vl++Jj1lMpma3nMSExP9fn5CCOmM1j8ZSdAZPHgwhg8fjm+//RazZs1ymSSVn5+PF154Aa+88gqeeeaZpu3XXXcdhg0bhg8//NBle0lJCVasWNGU+F922WVIS0vDLbfcgt27d2PMmDEAgP79+2P69On44YcfcOedd7rEk5KSgp9++gkAMG/ePKhUKnz44Yd44oknMHjwYLdjKisrw5IlS3D//fe7nGfFihUuid8DDzyABx54AB9++CFeeeUViMViXHbZZYiLi0NtbS1uvfVWD5/h1uP4+uuvsXnzZmzfvh3jx49v2j5w4EA88MAD2L17Ny6++OJW2/zvf//r8hjuu+8+9O7dG8888wwKCgqQmJiIsWPHom/fvti0aVOHHkNpaSkAICYmptl9MTExqKmpgcVigVgs7tDjPt/69esxbtw4qNXqDp2rpKQEABAVFQWNRoM///zTZZ/q6mqcOnUKQEMyFx0dDaAhidq2bRs++uijNuP55ptvUFxcjJdeeqlpW2cf/86dO7Fnzx4899xzbZ4baPj98fl8zJkzp8393ImptLS0aWLvhfsBaHpOPT3X+ceXlpZi4sSJLe7XeK5Bgwa1ea6OxOrL16SnsrOzYbPZ2nx8hBASrKhHvZtYs2YNnE4nbrjhBlRVVTXdoqOj0adPH2zdutVlf4VCgZtuuqnp5379+kGj0aB///5NSTqApv8/d+5cs3POmzfP5edHHnkEQEMPqScxicVi3HXXXc3Oc36Cq9frUVVVhQkTJsBkMuHMmTMden7c0VIcq1atQv/+/ZGWlubyWC655BIAaPZY2noMRqMRVVVVuPjii8EY87iXsb6+vineC0kkEpd93OF0OrFx40ZcccUVHT5X4/08Hg/3338/tmzZggULFiArKwuHDh3CDTfcAKvV2iymP/74AxaLBTNnzmw1njNnzmDevHkYO3Ys7rjjjg7HdOG5zldRUYFbbrkFKSkpeOqpp1o9N9DwRfHzzz/H448/jj59+rS5rzsx1dfXdzj2O++8E4wxly/LHf2duHuuZcuWgTHm0hHQ0eN99ZrsDJ1OBwBQKpV+PS8hhHgD9ah3E1lZWWCMtZpICIVCl5/j4+Ob9Y6p1WokJCQ02wY0DJW50IXnSk1NBY/HayrD525McXFxEIlEzfY7efIknnvuOfzxxx9NH7qNtFpti213RktxZGVl4fTp003DjC5UUVHRZpsFBQV4/vnnsW7dumbPpaePoTH5bxxucj6z2eyyjzsOHDiAyspKl0S9vXOdf56XXnoJVVVVeO211/Cf//wHADBt2jTcc889WLJkCRQKRdO+69evx8iRIxEVFdViLGVlZbjiiiugVquxevVq8Pn8Dsd0/j7nMxqNuPLKK6HX67Fr1y6XeC60c+dO3HPPPZg+fToWLVrU6n6exCSVSjv1u3Pnd+KNc3X0MbUVU0fO1REXvne1RaVSAUCLw/cIISTYUaLeTTidTnAch19//dUlmWl0YTLS0j5tbWeMtRvDhR+e7sbU0gd4XV0dJk2aBJVKhZdeegmpqamQSCQ4fPgw/v3vf8PpdLodV6PW6ia3FIfT6cSgQYPw1ltvtXjMhV9wLjzPZZddhpqaGvz73/9GWloa5HI5iouLceedd3boMbSkcXhB43CD85WWliI0NNSjIQYbNmxAcnJyU13zC8914WMtLS1tGqsMACKRCJ999hkWLVqEs2fPIioqCn379sUtt9wCHo+H3r17u5yrpasoQMMXmJkzZ6Kurg47d+5EbGysy/2ePH6r1YrrrrsOx48fx2+//YaBAwe2+jwcO3YMV199NQYOHIjVq1e3OYbek5hiYmKwdetWMMZcXqONx174eNs6V3u/k5iYmFZj6ui5OhJrZ1+T7fW6m0wml/06onfv3hAIBDhx4kSHjyGEkGBBiXoX01rSmZqaCsYYUlJS0LdvX7/EkpWVhZSUlKafs7Oz4XQ6my6ZeyOmbdu2obq6GmvWrHEZY5ubm9ts39aem5CQEABoNnk1Pz+/w3Gkpqbi2LFjuPTSS93qzQMaFg46e/Ysli9f7jJ5dNOmTc32daftuLg4REREtLhoz/79+zF06FC34my0fv16XH755S7bGts6ePCgSwJYUlKCoqKiZpOIgYbx6o095Q6HA9u2bcOYMWOavqBlZGSgoKDApee+kdlsxlVXXYWzZ89i8+bNLl8aGrn7+J1OJ26//XZs2bIFK1euxKRJk1p9DnJycjBjxgxERkZiw4YNbfa6exrT0KFD8dlnn+H06dMuj2/fvn1N97fFnd/J0KFDsXPnTjidTpcJpfv27YNMJmv377OjsXb2NRkREQGZTIbMzMwW78/MzIRMJuvQBOBGMpkMl1xyCf744w8UFha2+aWaEEKCDY1R72LkcjmA5knnddddBz6fjxdffLFZ7zdjDNXV1V6P5YMPPnD5+b333gOApvHG3oipsSf+/OOtVis+/PDDZvvK5fIWh5GkpqYCAHbs2NG0zeFw4JNPPmn3/I1uuOEGFBcX49NPP212X319PYxGo1uPgTGG//3vfy0+BqD577c1s2fPxi+//ILCwsKmbVu2bMHZs2dx/fXXd6iN85WXl+Pw4cPNkuf09HSkpaXhk08+cbkS8dFHH4HjuHYnWb7xxhsoLS3F448/3rRtw4YNiIqKalYhxOFw4MYbb8SePXuwatUqjB07ttV23Xn8jzzyCL7//nt8+OGHuO6661pts6ysDNOmTQOPx8Nvv/3W6nCnzsZ0zTXXQCgUuryWGWNYsmQJ4uLiXCYna7VanDlzxuX17c7vZM6cOSgvL8eaNWuatlVVVWHVqlW46qqrXHq5S0tLcebMGdhsNo9i7cxrks/nY9q0afj5559RUFDgcl9BQQF+/vlnTJs2rdUrf6154YUXwBjDbbfdBoPB0Oz+Q4cOYfny5W61SQgh/kA96l3MiBEjADSUI7zpppsgFApx1VVXITU1Fa+88goWLFiAvLw8zJo1C0qlErm5uVi7di3uu+8+PPHEE16NJTc3F1dffTVmzJiBPXv24Ouvv8Ytt9yCIUOGAIBXYrr44osREhKCO+64A48++ig4jsNXX33V4lCcESNG4Pvvv8djjz2GUaNGQaFQ4KqrrkJ6ejouuugiLFiwADU1NQgNDcV3333X4jLrrbntttuwcuVKPPDAA9i6dSvGjRsHh8OBM2fOYOXKlfjtt99aLEkHAGlpaUhNTcUTTzyB4uJiqFQq/PDDDy2O+2/8/T766KOYPn06+Hy+y6TfCz3zzDNYtWoVpkyZgn/+858wGAx4/fXXMWjQoGZDSr766ivk5+c3DR/YsWMHXnnllabHl5SUhA0bNkAikTSVxjzf66+/jquvvhrTpk3DTTfdhIyMDLz//vu49957Xcr2ff311/jhhx8wceJEKBQKbN68GStXrsS9996L2bNnN+23fv16zJw5s9lVhMcffxzr1q3DVVddhZqaGnz99dcu959fEaejj/+dd97Bhx9+iLFjx0ImkzVr89prr236kjRjxgycO3cOTz31FHbt2oVdu3Y17RcVFdVUQrM1HY0pPj4e8+fPx+uvvw6bzYZRo0bhxx9/xM6dO/HNN9+4JKNr167FXXfdhaVLl7pMKO3o72TOnDm46KKLcNddd+HUqVMIDw/Hhx9+CIfDgRdffNEl/gULFmD58uXIzc1tujrmTqzuvCZb8uqrr+Kiiy7C8OHDcd999yE5ORl5eXn45JNPwHEcXn311XbbuNDFF1+MDz74AA899BDS0tJw2223oU+fPtDr9di2bRvWrVvX9LdACCFBxZ9F24l3vPzyyywuLo7xeLxmi3/88MMPbPz48UwulzO5XM7S0tLYvHnzWGZmZtM+jYv6XCgpKYldccUVzbYDcFmRsHHBo1OnTrE5c+YwpVLJQkJC2MMPP9zigkediYmxhpUqL7roIiaVSllsbCx76qmn2G+//dZssSKDwcBuueUWptFoXBY8Yqxh9cupU6cysVjMoqKi2DPPPNO0WmJLCx61xGq1sv/+978sPT2dicViFhISwkaMGMFefPFFptVqWzym0alTp9jUqVOZQqFg4eHh7B//+Ac7duwYA+CyIqLdbmePPPIIi4iIYBzHdWiV0oyMDDZt2jQmk8mYRqNhc+fOZWVlZc32a2lRqMZb43MwZ84cdvnll7d6rrVr17KhQ4cysVjM4uPj2XPPPeeyMA5jjO3bt49NnDiRhYSEMIlEwoYMGcKWLFnCnE5n0z51dXVMIBA0LajU0Thbej468vhbW0yq8Xb+31Bb+02aNKnV58bdmBhjzOFwsFdffZUlJSUxkUjE0tPT2ddff91sv8ZFu1paPbMjvxPGGKupqWH33HMPCwsLYzKZjE2aNIkdOHCg2X6Nz9WFiwp1NFZ3Hn9rTp8+zW688UYWGRnJBAIBi4yMZDfddJPLaqstaW3Bo0aHDh1it9xyC4uNjWVCoZCFhISwSy+9lC1fvrzZYlCEEBIMOMY6MEuQkPMsXLgQL774IiorK90aK0qCm91uR1hYGBYvXoyHHnrIp+dauXIl5s6di6qqqqbKQoQQQghxRWPUCSEAgJqaGvzrX//Ctdde6/NzaTQavPvuu5SkE0IIIW2gMeqEEABAZGQkFi5c6JdzTZs2zS/nIYQQQroy6lEnhBBCCCEkCNEYdUIIIYQQQoIQ9agTQgghhBAShChRJ4QQQgghJAh1i8mkTqcTJSUlUCqVbi/vTgghhHR3jDHo9XrExsaCx6M+OuI5s9kMq9Ua6DCaiEQiSCSSQIfhM90iUS8pKUFCQkKgwyCEEEKCWmFhIeLj4wMdBumizGYzpFJpoMNwER0djdzc3G6brHeLRF2pVAJoeANSqVQBjoYQEsyeWnUMGzLKAh0GIX7ltJhQ/NGdTZ+XhHji7550fkDjOF9ZWRmsVisl6sGscbiLSqWiRJ0Q0qpqgwXb84zgiWWBDoWQgKDhocQ7OHAI/GuJofsXLqSBaoSQHuOdzVmotzkCHQYhhBDSId2iR50QQtqTVa7Hiv0FgQ6DEEK6AQ4Ihqsz3b9DnXrUCSE9w6sbTsPh7AHv6oQQQroNStQJId3ejrOV2JpZGegwCCGEELdQok4I6dbsDicWrT8d6DAIIaQb4QXRreMWL16MUaNGQalUIjIyErNmzUJmZqbLPp988gkmT54MlUoFjuNQV1fn1jm8jRJ1Qki3tvJgETLL9YEOgxBCSIBt374d8+bNw969e7Fp0ybYbDZMmzYNRqOxaR+TyYQZM2bgmWeeCWCkf6PJpISQbktvtuGtTZnt70gIIaTDOPCCojyjuwUaN27c6PLzsmXLEBkZiUOHDmHixIkAgPnz5wMAtm3b5p0QO4kSdUJIt/XRthxUGYJnqWtCCCHep9PpXH4Wi8UQi8XtHqfVagEAoaGhPonLG2joCyGkWyqqNeGzXbmBDoMQQrofjhc8NwAJCQlQq9VNt8WLF7f7EJxOJ+bPn49x48Zh4MCBvn7GPEY96oSQbum1jZmw2p2BDoMQQoiPFRYWuqxM35He9Hnz5iEjIwO7du3yZWidRok6IaTbOVxQi3XHSgIdBiGEdFM8IEjGqAOASqVySdTb8/DDD+OXX37Bjh07EB8f76vgvIISdUJIt8IYwyu/nAp0GIQQQoIMYwyPPPII1q5di23btiElJSXQIbWLEnVCSLfyy/FSHC6oC3QYhBBCgsy8efOwYsUK/PTTT1AqlSgrKwMAqNVqSKVSAEBZWRnKysqQnZ0NADhx4gSUSiUSExMDMumUJpMSQroNs82B//x6JtBhEEJIt9ZQnjE4bu746KOPoNVqMXnyZMTExDTdvv/++6Z9lixZgmHDhuEf//gHAGDixIkYNmwY1q1b59XnsKOoR50Q0m0s/TMPxXX1gQ6DEEJIEGKs/arrCxcuxMKFC30fTAdRok4I6RaqDBZ8sDU70GEQQki3x3E8cFyQTCZ1Z8WjLoiGvhBCuoW3N52FwWIPdBiEEEKI11CPOiGkyztbrse3+wsCHQYhhPQQHIKjr7f7r5URDM8yIYR0yqL1p+Hs5pc/CSGE9DyUqBNCurRtmRXYfrYy0GEQQgghXkdDXwghXZbN4cSrG04HOgxCCOlROI4PjguGvt5gmNDqW8HwLBNCiEfe25KFs+WGQIdBCCGE+AT1qBNCuqTDBbV4n8oxEkKI33my2BDxDD3LhJAux2ix47Hvj9IEUkIIId0a9agTQrqcRRtOI6/aFOgwCCGkR2pY8Ij6ev2BnmVCSJfyx5lyrNhHNdMJIYR0f9SjTgjpMmqMVjy1+kSgwyCEkB6Nxqj7Dz3LhJAugTGGBWuOo8pgCXQohBBCiF9Qok4I6RJ+OFyM306WBzoMQgghxG9o6AshJOgV1piwcN3JQIdBCCEENJnUn+hZJoQENYeT4fGVx2Cw2AMdCiGEEOJX1KNOCAlqn+08h/15NYEOgxBCyF84jh8kPepcoAPwuWB4lgkhpEWnS3V48/ezgQ6DEEIICQjqUSeEBCWL3YF/fX8UVocz0KEQQgg5D5Vn9B96lgkhQemt38/iTJk+0GEQQgghAUOJOiEk6Ow9V41Pdp4LdBiEEEJIQNHQF0JIUNGZbXh85TEwFuhICCGEtITjuCCZTNr9PyiC4VkmhJAmL647heK6+kCHQQghhAQc9agTQoLGrydK8cPhokCHQQghpA0c+ODAD3QYPQL1qBNCgkKFzoxn1p4IdBiEEEJI0KAedUJIwDHG8O8fjqPWZAt0KIQQQtrBcTwao+4nwfAsE0J6uK/35mNrZmWgwyCEEEKCCvWoE0ICak9ONV78+VSgwyCEENJBvCBZ8IhRjzohhPhOXpURD35zCHZn93+zJYQQQtxFiTohJCC09Tbcs/wA6mhcOiGEENIiGvpCCPE7u8OJh1ccRk6lMdChEEIIcRPH8cFxVJ7RH6hHnRDid6+sP42dWVWBDoMQQggJatSjTgjxq6/25mPZ7rxAh0EIIcRDXJBMJqXyjIQQ4kV/Zldh4bqTgQ6DEEII6RKoR50Q4hfnKg146JvDcFCFF0II6dI4jgdeECx45KQedUII6TytyYZ7lx+Etp4qvBBCCCEdRYk6IcSnbA4nHlpxCOeqqMILIYQQ4g4a+kII8amXfj6FP7OrAx0GIYQQL2mYTBr48owcDX0hhBDPfbknD1/tzQ90GIQQQkiXRD3qhBCf2HG2Ei/+fCrQYRBCCPGyYCnPGAwx+Fr3f4SEEL/LrjBg3gqq8EIIIYR0BvWoE0K8qtZoxT3LD0Bvtgc6FEIIIT7A4/jgcYEfo04LHhFCiBusdice/OYQ8qtNgQ6FEEII6fKoR50Q4hWMMbywLgN7z9UEOhRCCCE+RGPU/cetR7hw4UJwHOdyS0tLAwDU1NTgkUceQb9+/SCVSpGYmIhHH30UWq22zTYZY3j++ecRExMDqVSKqVOnIisry/NHRAgJiKV/5uHb/YWBDoMQQgjpNtz+KpKeno7S0tKm265duwAAJSUlKCkpwRtvvIGMjAwsW7YMGzduxD333NNme6+99hreffddLFmyBPv27YNcLsf06dNhNps9e0SEEL/bmlmBV9ZThRdCCCHEm9we+iIQCBAdHd1s+8CBA/HDDz80/ZyamopFixbh1ltvhd1uh0DQ/FSMMbzzzjt47rnncM011wAAvvzyS0RFReHHH3/ETTfd5G54hBA/yyzT49EVR0AFXgghpGfggQ9eECx4RJNJW5CVlYXY2Fj06tULc+fORUFBQav7arVaqFSqFpN0AMjNzUVZWRmmTp3atE2tVmPMmDHYs2dPq+1aLBbodDqXGyHEv+wOJz7beQ6zPvgTegtVeCGEEEK8za0e9TFjxmDZsmXo168fSktL8eKLL2LChAnIyMiAUql02beqqgovv/wy7rvvvlbbKysrAwBERUW5bI+Kimq6ryWLFy/Giy++6E7ohJB2MMbAcVyH9j1VosPTa47jeFHbc1AIIYR0PzSZ1H/cStRnzpzZ9P+DBw/GmDFjkJSUhJUrV7qMRdfpdLjiiiswYMAALFy40GvBNlqwYAEee+wxl/MlJCR4/TyE9BT1VgeufG8n5GIBhiVoMDwpBMMSQpAQKgXHcdDW25BdYUB2hR5HC7VYebCQFjMihBBCfKxT5Rk1Gg369u2L7Ozspm16vR4zZsyAUqnE2rVrIRQKWz2+cax7eXk5YmJimraXl5dj6NChrR4nFoshFos7Ezoh5Dyf7DiHnEojAOB4kRbL9+QDAMIVIvA4DhV6SyDDI4QQEkR4f/0LvGCIwbc69QgNBgNycnKakmydTodp06ZBJBJh3bp1kEgkbR6fkpKC6OhobNmypWmbTqfDvn37MHbs2M6ERgjpIMYYvtqb1+J9VQYrJemEEEJIgLiVqD/xxBPYvn078vLysHv3blx77bXg8/m4+eabm5J0o9GIzz//HDqdDmVlZSgrK4PD4WhqIy0tDWvXrgUAcByH+fPn45VXXsG6detw4sQJ3H777YiNjcWsWbO8+kAJIS3jOA5DE0ICHQYhhBBCLuDW0JeioiLcfPPNqK6uRkREBMaPH4+9e/ciIiIC27Ztw759+wAAvXv3djkuNzcXycnJAIDMzEyXRZCeeuopGI1G3Hfffairq8P48eOxcePGdnvjCSHec9vYJGw+XR7oMAghhHQBHPjggqA8I9cDyjNyjLEu/yh1Oh3UanVTOUhCiHucToZL3tyGvGpToEMhhPiA02JC4Ts30Ock6ZTGfCtBPhU8rlPTHL3CyewoNG7u1q/r7j8KnxDSLh6Pw5WDYwMdBiGEkC6goThjMPzrWEnhrowSdUIIAGDqgKj2dyKEEEKI3wT+ugUhJCgMjlMjQilGJVV5IYQQ0gYqz+g/3f8REkI6hMfjMLV/ZKDDIIQQQshfKFEnhDSZ2p+GvxBCCGlbY9WXYLh1d5SoE0KajOsdDomQ3hYIIYSQYECfyISQJhIhHxP6RAQ6DEIIIYSAEnVCyAUuTg0LdAiEEEKCWPAUZ+z+aWz3f4SEELckhckCHQIhhBBCQOUZCSEXSAylRJ0QQkjreCw4yjMyFvgYfK37P0JCiFtqTbZAh0AIIYQQUI86IeQ8NocTz6w5EegwCCGEBDEuSMaHB0MMvtb9HyEhpMN+OlqCrApDoMMghBBCCKhHnRBynkP5NYEOgRDiZX0iFWBWHgoDHQghxG2UqBNCmvB5XKBDIIR40ejkUOzPq4HTYgp0KKQbaSyPGGgsCGLwte7/CAkhHXbz6ETIRN1/SWZCeorTpToMilMFOgxCiIcoUSeENEmPVeP7+8YiRCYMdCiEEC/QW+w4XapHegwl68R7Ar3Q0fn/urvu/wgJIW4ZFK/GmzcMCXQYhBAvsTsZzlboAx0GIcQDlKgTQpq5JC0K94xPCXQYhBAvsTlYoEMg3QiP8YLm1t11/0dICPHIUzP6YVCcOtBhEEIIIT0WJeqEkBaJBXy8d/MwSIU0uZSQrkQlEWBoggaD49WQ0+Rw4gM84K8ljwJ96/6oPCMhPcjRwjrkVxuhN9uRGqHAkAQ1ZKLW3waSw+W4Z3wK3t+a7ccoCSHu4Digf7QKSokAVQYLciqNOFpYBwDgcUDfKAUUnJjqqBPSBVGiTkgPsT+3Bjd9sgfO84aq8nkc+scoMSYlDPeMT0GsRtrsuPF9wilRJyRIDYpTQVdvw6lSXYv3OxlwttxAddQJ6aIoUSekG9OabNh2tgKbT1fgj9PlLkk6ADicDBnFOmQU6/DV3nzceXEyHpqcCo1MBIeT4ZfjJViw5kRggieEtEok4GFIvBoH8moDHQrpgYJl4EkwxOBrlKgT0s3kVhmx5XQ5Np8ux4G8WjguzM5bYbU78cmOc/h2fwGGJ4Ygp9KAotp6H0dLCHFXeqwKBrOdknRCegBK1AnpBhhj+P5AIT7deQ45lcZOtaU327H9bKWXIiOEdFakUowolQQyER/FdfU4WdLyMBdC/KVxMmegsSCIwdcoUSekiyuuq8fTPxzHzqyqQIdCCPGSUckh0NXbUVxrQoXeggq9JdAhEUICgBJ1QrqwrZkVeGTFERgs9kCHQgjxApmIj14RchrWQoIaj/HAC4Lx4YwWPCKEBLNKvcWjJF0hpu/ohASjflFKZBTT0BZCSANK1AnpwoYmaNw+5pYxiTjw7FS8eHU6JEJ6CyAkmDjBwOv+w24JIR1E3WqEdGGpEQrIRHyYrI429xPxebi4dxhuHp2I6enRAIA7Lk7GxL4ReHzlURwuqPNDtISQ9hwr1KJvlAK1RhsqDTQunQQnLkgmkzqDIAZfo0SdkC6Mz+MwKE6Nfbk1AIDEUBkm9Y3AoDg1uL/ev9RSIS7uHd7icJeUcDlWPXAxnv8pA9/sK/Bn6ISQVpwtN0AtFSJeI0VRHZVIJaQno0SdkC7uol5hyCzXY0Z6NP4ze7Dbx/N5HF6ZNRBRKgne2nTWBxESQtylrbehT5SCEnUSlLi//gVaMMTga5SoE9LF/euyvvjXZX071QbHcXj00j4IkQnxfz+d9FJkhJDOOFGkhVIigN5MVZ0I6aloJhkhpMmtFyVheKIm0GEQQgBY7E70j1EFOgxCmmlc8CgYbt0dJeqEkCYcx+Gxy/oFOgxCyF/qrdSbTkhPRok6IcTFuN5hGJ0SGugwCCEAhHz6mCbBJ9C96NSjTgjpsTiOw7wpvQMdBiEEDZO9CSE9FyXqhJBm+scoAx0CIQQNX5wJIT0XVX0hhDQTLhdDJODBancGOhRCeqyEECmyKwyBDoOQZqg8o/9Qok5IkHI6Gcp0ZuRVG3GqRAerw4lYtRQzBkZDIuT79Nw8Hoc4jRS5VUafnocQ0rLEUBkMZhtqTLZAh0IICSBK1AkJIKeToVxvRm6VEXlVJuRXG5FbZUR+tQl51UZYWujRjtkowaxhcZAJ+RAJeE03seCvn/k8iM/bLhXy0TtS4XZyT4k6IYGhFAugM9tQR0k6CVI8jgMvCIZl9YTJpJSoExIAdocTy3bn4Z3NWTBY3Cu/Vqo146NtOW4dI+RzGBCjwpwR8bj1oqQOjXuN00jdOgchxDs0ciEKa2hFUkIIJeqE+N3pUh3+/cNxHC/S+u2cNgfDsSItjhVpsfdcDV6bMxhycdt//vEhlKgTEggWmxMJoVIU1tSDQ8MXbSdjoCkjJFgES2nEYIjB16jqCyF+4nAyvP7bGVz13i6/JukXWn+iFI9+ewQOJ2tzv5vHJCJMLvJTVISQRhV6S0OSzgEMgNXBIBLwMTolFCJ+909MCCF/o0SdED+pNlrwwdYc2NtJkP1hy5kKvPl7Zpv7hCvEePW6QX6KiBByIXbeW4XJ6sD+3BrEaKR0tYuQHoQSdUL8xGhxBDoEFx9uy8FPR4vb3Gd6ejTeumEILkmLhEhAbxeEBFp+tQnVBiuGJmgCHQrpwXhBdOvuesJjJCQoGMzuTRr1h6dWH8exwro297lueDy+uHMUjj5/GT65bQRuGBmPcAUNiSEkUOptDhwvqsPgeHWgQyGkS1m8eDFGjRoFpVKJyMhIzJo1C5mZrleXzWYz5s2bh7CwMCgUCsyePRvl5eUBipgSdUL8Rm8JvlJrFrsT9311EBU6c7v7ykQCTEuPxmtzhmD/M1Ox5qGL8dDkVCSHyfwQKSHkfE4GCPn0EU4Cgwuif+7Yvn075s2bh71792LTpk2w2WyYNm0ajMa/SxH/61//ws8//4xVq1Zh+/btKCkpwXXXXeftp7DDqOoLIX7iSY/6hD7hiFFL8Gd2NYrrfFOurVxnwT+/O4oV/xjT4eXKeTwOwxNDMDwxBPOn9sVbm87i4x05LmNqCSG+da6SVi0lxB0bN250+XnZsmWIjIzEoUOHMHHiRGi1Wnz++edYsWIFLrnkEgDA0qVL0b9/f+zduxcXXXSR32Omr+OE+InR6l6iPrZXGD6/YxRemzMEPz8yHv1jVD6KDNhzrhqrDhV5dKxIwMPTM9Ow4t6LEKOWeDkyQkhL+kQqUEsLIpEAaVzwKBhuAKDT6VxuFoulQ49Dq22owBYaGgoAOHToEGw2G6ZOndq0T1paGhITE7Fnzx4vP4sdQ4k6IX4yvncEQjtY7rBXuBwf3Tq8aQJnqFyED24Z5tNyiS/8dBJbz1R4fPzY1DCsfWgckmgoDCE+19H3EkJ6goSEBKjV6qbb4sWL2z3G6XRi/vz5GDduHAYOHAgAKCsrg0gkgkajcdk3KioKZWVlvgi9XTT0hRA/iVCK8eq1g/DA14fa3E8jE+LzO0dBI3P9IO4VocCP88bh8125WHO4CDovT06ttzlwz/IDmDkoBpP6RmBinwhEt9NDbrU7sfl0OTLL9Kg1WVFttEIi4Hs1LkJIcxX6jvUYEtITFBYWQqX6+6qzWCxu95h58+YhIyMDu3bt8mVonUaJOiF+NGNgND67fSR+O1mGXdlVcDgZFBIBlBIhlGIBlBIB5k3pjZRweYvHJ4TKsPDqdDw9Mw0bTpTiu/2F2J9X47X4nAxYf7wU64+XAgD6RSkxsW84br0oCUlhrjH9cKgIi389gyoDJQyE+JtSQh/fJHA4BMeQjMZZVSqVyiVRb8/DDz+MX375BTt27EB8fHzT9ujoaFitVtTV1bn0qpeXlyM6OtpLUbuH/tIJ8bOpA6IwdUBUp9qQCPm4bng8rhsej73nqvHIt0dQ6YMetsxyPTLL9VixrwAvXJWO60fGg+M4/HK8BE+sPkaTRwkJkJwKA+I0Up9NMiekO2KM4ZFHHsHatWuxbds2pKSkuNw/YsQICIVCbNmyBbNnzwYAZGZmoqCgAGPHjg1EyJSoE9LVXdQrDOsfGY/rP96D/GqTT85htDrw1A/HoZIKcNmAaDz9wwlK0gkJIKPVgTAFB6mQh3qbM9DhkB6G47gOVwnzaRxulmecN28eVqxYgZ9++glKpbJp3LlarYZUKoVarcY999yDxx57DKGhoVCpVHjkkUcwduzYgFR8AYLjygUhpJMiVRJcMzTO5+cp11mQXWGAwRJ8izcR0tMU1JjQO1KJSGX743EJIcBHH30ErVaLyZMnIyYmpun2/fffN+3z9ttv48orr8Ts2bMxceJEREdHY82aNQGLmXrUCekmpg2Iwrtbsnx6jmqjFSY3y0wSQnznRLEWfB6HYQkamKwOZJbrAx0S6QF4CI6eXndjYB24FCyRSPDBBx/ggw8+8CwoLwuG55kQ4gXpsSqf1loHgIQQKQQ8etsgJJg4nAxHCuuQWa5HaoQcIxI14Ad+VAIhxAvoE5eQboLjOPxjQkr7O3rool6hmDMiHjEaWtSIkGCVU2nEoYI6aGQijEkJhUYmDHRIpBtqHKMeDLfujhJ1QrqRKwfHYkiCxuvtTuwbgXdvGgaO4xCuEPt04SVCSOdVG63Yl1uD3hGKQIdCCOkEStQJ6UZEAh5WPzAWj1zSGzwvdDT0jVLgv7MHYfldoxCp+rsn/eLe4Z1vnBDic2abI9AhEEI6gSaTEtLNCPk8PD6tHy7tH4Xlu/OwMaMM9R34sOZxDaufDoxVYWCcGqOSQzE4Xt3ipcWbRiXg52MlvgifEOIlKokAp0p1gQ6DdENddTJpV0SJOiHd1NAEDYbeOBQvz7Lj1xOlWHO4GAfza2BzMAj5HPpGKTEwVo2BcSoMiFWjf4wSMlHH3hLG9Q7Hw1N64/2t2T5+FIQQT/WNUuJgfm2gwyCEdAIl6oR0cwqxANePTMD1IxMAABa7Axw4iASd64t4Yno/DIhV4e1NZ5FVYfBGqIQQL7I5aCEk4hs8Dl4ZXtnpOAIdgB9Qok5IDyMW8L3W1uWDYjBzYDQq9RaYrA6YrA7U2+wwWR3YlV2Fj7ef89q5CCHuyas2BjoEQkgnUaJOSJBwOhmqjBaUay0o1dajXGdGqdaMMp256f/rTDbEqCVICpPhsgFRuGZIHHg+6NZwOhlOleqwM6sKerMNcrEAchG/4b9/3RRiPmQiARR//RyrEbn00k/oEwGVRIjXf8v0enyEkLbFh0hRVFsf6DBIN8X99S/QgiEGX6NEnRA/sNqdKNc1JN1l2r9uOtf/VujNsDnaXzWtxmjFyRIdNpwow/Ld+fhg7nDEaaReiTO3yohPdpzDplNlqDJY3TpWJOBhXGoYLu0fhWkDohCpkuCW0YmUqBMSAN0/fSGkZ6BEnZBOMljsKNPWo+yCnvDz/+tu0ttRRwvrMOej3fjqntHoHan0uJ2MYi0+2paDDRml6MAKyy2y2p3YmlmJrZmV+M+vZ/DezcMwJS0SITIhak02j2MjhLivsLYeSjEfeguVZySkK6NEnZAOsjmc+G5/AY4VaV16wg0We0DjKtWacePHe7H+0QmIVnd81VDGGPbn1uCDbTnYcbbSqzEZLHbcs/wAnrtiAHpFKHCIKk8Q4ndpMSocyKO/PeJ9NJnUfyhRJ6QDDubV4LkfM3CmTB/oUFpUbbRi/vdH8M29F4HfwXfPbWcrcdfSAz6LycmAl345BanQe5NXCSEdd6JYi4QQKQpprDohXVZP+DJCiMdqjFY8tfoY5izZE7RJeqO952rwxa7cDu8/pV8k3r5xSIcTe091ZLElQoj3mW1O8HkchPwg6Pok3QoXRLfujhJ1QlrgdDJ8f6AAl7y5DSsPFgU6nA5b+mcuHM6ODzK/dlg8Pr51RKdrqhNCglNetQnDEjSBDoMQ4iH6dCbkAqdLdbj+4z349w8nUNfFJkGWaM3YfrbCrWOmDojC8rtGQyGmkXCEdEf782oxME4V6DBIN9IwRp0Lglugnwnfo0SdkL8YLHa88sspXPneri47+XFCn3CopSK3jxubGoYV/xiDEJnQB1ERQgKNFj8ipGuiLjTS4zHG8GtGGV76+RTKdOZAh+MRjUyIl68ZiCsHx4DjPOtiGByvwaoHxuK2z/ejVNs1nwdCSMsMZporQryHh+Do6Q2GGHyNEnXSo+VXG/H8Tyex3cvlCf0pNUKOr+8dgxh15xc96h2pbErWc6uoB44QQggJpJ7wZYSQFtUYrbh+yZ4unaQDwCVpkV5J0hvFh8iw8v6xGBBDY1oJIYSQQKIeddJjvfjzSVToLYEOo9O++DMP64+XIlIlQbRKgmi1BJEqccP/qyQN29UStyaLRijF+Pa+i3Dv8gO0YAohhBAXHNdwC7QgCMHnKFEnPVa9tXuM2XQ4GUq0ZpS0M65cIRYgSiXGpL6RuGVMInpHKtrcXy0V4ut7x+Cznbl4/49sqodOCCGE+Bkl6qTHSo1UAKfKAx2G3xgsdhgq7cipzMUXf+ZidEoo5o5JxIyB0RALWl49VCzgY96U3rh2WBze+D0TB/JqUFpnRqRSjLgQKWI1UkiFfNQYrdifV9PlylkSQghxH8chKEojBkEIPkeJOumx+kUpAx1CQO3PrcH+3BqEyIS4ZUwi5k/tCyG/5WkrsRop3rphKICGKjktVZaptzqw5kgRPt+Vi3OVNBGVEEII6SyaTEp6rMsHxfT4ZB0Aak02fLA1B3ctPQCduf0e8dbKP0pFfMwdk4TN/5qEpXeOwvje4RAEQ5cLIYQQr+KC6NbduZWoL1y4EBzHudzS0tKa7v/kk08wefJkqFQqcByHurq6TrdJiK+IBDwsnj0IQn5P+FNv367sKsz5aDeK6+o71Q6Px2FKWiS+vncMTr40HRsenYC3bhiC+yf2woQ+4ZCLWh5mQwghhBBXbg99SU9Px+bNm/9uQPB3EyaTCTNmzMCMGTOwYMECr7RJiC8NTwzBsrtG44GvDkFvsQc6nIA7W27ArA/+xNI7R2FgnLrT7YkFfAyIVWFA7N+lHqsMFrz5eya+O1AIxjp9CkIIIaTbcjsjFggEiI6ObvG++fPnAwC2bdvmtTYJ8bVxvcOx+sGLcedSWpETACr1Ftzw8R58OHc4JveL9Hr74QoxFl83GHPHJOHZHzNwrLDO6+cghBDiOzwEx2RSXg/o7HF7jHpWVhZiY2PRq1cvzJ07FwUFBZ0Owt02LRYLdDqdy42QzugXrcTah8ahPy3yAwAwWR14cvVxmKy+u8owME6Nr+8Z3W6ZSEIIIaSncitRHzNmDJYtW4aNGzfio48+Qm5uLiZMmAC9Xu9xAJ60uXjxYqjV6qZbQkKCx+cnpFG0WoLv778IsWpJoEMJCpV6C5b+mefTcyglQnx6+0ioJDTcjRBCugpeEN26O7ce48yZM3H99ddj8ODBmD59OjZs2IC6ujqsXLnS4wA8aXPBggXQarVNt8LCQo/PT8j5VBIhXr1uUKDDCBpLtudAW+/b2ugp4XK8d8twn54jkKQiPsakhCJSKUZ8iBQjEkMwgK7cEEII6YBOfRnRaDTo27cvsrOzvRVPh9oUi8VQqVQuN0K8ZXK/SFw1JDbQYQQFvdmO9cdLfX6eSX0jkBoh9/l5/Eks4GF0SgjEAh725dagQm9BUW09DhXU4lSpDr3C5UgJlwU6TEIIcRvHBc+tu+tUom4wGJCTk4OYmBhvxeOTNglx1+OX9aUa4H/58WixX84zKjnUL+fxB6mQj1iNFPtza1tdrfVclREF1SaMSArxc3SEEEK6CrcS9SeeeALbt29HXl4edu/ejWuvvRZ8Ph8333wzAKCsrAxHjx5t6g0/ceIEjh49ipqamqY2Lr30Urz//vsdbpOQQEgOl+OGUTT3AWhYwbSo1uTz8/g6UZeK+OgdqcCwRA36RCp82hPTL1qJ3Kr2V2d1MOB4UR1Swn13NUHI5xAXIvVZ+4SQnofHBc+tu3MrUS8qKsLNN9+Mfv364YYbbkBYWBj27t2LiIgIAMCSJUswbNgw/OMf/wAATJw4EcOGDcO6deua2sjJyUFVVVWH2yQkUP55aR8oxTTJEQB+Olri83P4IlHvF63EqOQQRCrFqLc6kF1hwJGCOmRVGDAqyTdfDMakhOKoGyUnbQ6GCIXYJ7EMT9SAxwEltfUYkxIKfk/4VCOEkG6EY6zrLzmi0+mgVquh1WppvDrxqlUHC/Hk6uOBDiPgekcqsOlfE8H5sBt6d04Vbvl0X6fbiVFLkBgqQ0GNqc26+AoRHwaro9PnO9+QeDWOFWndPm54ogaHC+q8GgsAhMpEqDFZm37uFS6HkzHkVfv+CgkJLk6LCYXv3ECfk6RTGvOt28Puh4jnmw4Gd1idFnxZ/XG3fl33hMo2hHhszoh4XJrm/UV/uprsCgNOlvh2vYIfDnVuLPywRA36RSlRqjVjX25Nu4tXWR3OTp3vQklhMpwt96xUrcXu3VgAIDFU6pKkAw3j4gtrTBiZTOPiCSGe44Lo1t1Rok5IGziOw7s3D8O/pvaFXMT3qA2ZiI+0aCU0MqGXo3NPn0gFhidqEKeRQsh3/+3to2058NUFOKPFjl8zPKsukxohR98oBY4U1CHTjURZ7sVhTWqpEBabA/U2zxJuudiz11ZbolUtrwfgYEBGkRah8sC+HgkhhLSPBuAS0g65WIB/Tu2DWy9KxM6sKhzKr8Wh/FqcKdPB2UbeenFqGGYPj8eMgdFNSeH7f2Thjd/P+inyBjwOeP7KAbhtbHLTGGWnk6HWZEVRbT1+PlaCVYeK2q2Xvv5EKcYfCMfNoxO9HuPGjDKY3ByGEiITIjVCgYP5tR6dUyERoLaViizu4PM4xGokOF3q+cJv9V4eggMA1UZrq/eZ7U4MTtBgf25Nq/sQQkhrgmUiZzDE4GuUqBPSQWEKMWYNi8OsYXEAAIPFjmOFdTiUX4sTxVrwOQ4yMR+9wuWYNSwO8SHNa2Q/fEkfSIR8vLL+tN/injMiHneOS3HZxuNxCFOIEaYQY0iCBg9N6Y37vjzYbtK7cN1JyMUCTOkXAaXEtUdWW29DQbUJ+TVGKCVCTOwT3uaY9nqrA/vzarArqxLrjnV8sqqAx2F4kgYni3UeJ+kAEKuWorCm3uPjG41I1GB/nudxcACyK9qvEOOOXuFy5FS23ebh/BpEqcQo11m8em5CCCHeQ4k6IR5SiAUY1zsc43qHu3XcvRN6QSri47kfM+DrqdwiAQ//nNq33f1C5SJ8fe8YPLHqGH5pY4Eji92JR789AiGfw6jkUEQoxcivNiG/2tisd3pYogZ3XpyMkyU6bMwoQ7nODIVYAJmYD5lQgNxqI6wejM1OCJXiRJHW42EmACDkcW4Nk2nNyKSQTiXpABAf6p0vDOfjd2Bok90JxIfIKFEnhLiNh+AYOx0MMfgaJeqEBMDcMUmQCvl4YtWxNofPdNbtFyUhTtOxGtoSIR/v3jQMCaEyfLQtp819bQ6G3TnVbe5zpKAORwqOumyz2K2o7mTncW6VCYPiVDhR7Pnk1qQwGbLb6XFuT79oJY4UdC5JB4BwhdirifrIpJAOX2nQ1bc+PIYQQkjg9YQvI4QEpeuGx+PzO0ahV4RvFrtRiAV4aEpvt47h8Tj8e0YaFl83KKhrbnemNx0AZJ2cSBqpFKNCZ4bDC1+yhDzvvQ2HyoXIquj4lQKFhCaUEkJIMKNEnZAAmpIWiU3/moR3bx6GvlEKr7Z938ReCJWLPDr25tGJ+OLOUVAE6YJPna1YcrxIi9HJoR5Vv4kPkUIs5Lk9ETVGLcGwRA1GJocg/ryrHDVG7ww94biGc2jr7R0+RsSnjwBCiPs4Lnhu3V1wfgoT0oPweRyuHhKLKwfF4LeTZfjfliycKevc+OkwuQj3jE9pf8c2TOobgVUPjMWDXx/y2gI5CV4Yjy0V8XHEC4sD7c+rQXKYDFEqCRgYnE6gzmRFYa0JaqkICSEycBxQqjWDgUElEUIpEeBEkRZmj8bWy5qqrHAcMCRBDaPFgZwKAxRiAQyWjifYLRmdHIp9blZx0Zs7d05CCCG+RYk6Ia0wWOxYuO4kjhXWQSLk46Vr0jEs0XcLxfB4HGYOisH09GhsPl2O/23J8niRoSem9/NKnfD+MSpsnD8RS7bn4MNtOR5N/mwUp5Fi3bzx2J1TjXkrDnvcjloiRJmu7cWMOiqv2tTil5AKvQUVetee7hJ07py28xZYYgw4VtiwgmlatBI6s61TiXq/aKXbpRaTQmU4VerbRawIId0TlWf0H0rUCbkAYwwZxTo8vuoozpYbmrZf99Fu3HVxCp6Y3hcyke/+dHg8DtPSozElLRIPfXMYm06Vu3X85H4RuGlUQpv77MyqxKc7cyEX8RGpFOPqobEYnhjSYjlFiZCP+VP74qZRidhwohQbTpQiq8IAq90Ji93R7mRYpUSASX0jMG9Kb4TIRbi0fyQ4Dh5XvLE6HOBx8OkkXF84UlCHgbEq8HkcdGYbrA4Gu8OJMp0ZFrvT48eUECpFpc4Cdw+NUImRX+OdKyWEEEJ8gxJ1QtCwANDRojpszCjDxowyFLSQwDAGfPFnLn4/VYZXrx2EiX0jfBqTkM/D+7cMw73LD2JnVlWHjrl6SCyev2pAm/XLdWYbnlx13KVXevmefKRGyHH/xFTMGREPXgvdFNFqCe4en4K7LxhSY3c4YXU4YbGd/18HzH9N+OwXrYTwvLHQEiEfQj7P4975GqMNo5JDcKCTZREDIaOdKyQ8DpAIeIgNkSJMLkaF3ozcqtaT6eQwGbT1No8WbsquMLS/EyGEtID76xZowRCDr1GiTnosu8OJA3m12JhRit9Olnd4OEVRbT1u/2I/Zg+Px/9d2R8amWcTNjtCLODj49tG4I4v9rskphIhDxP7RCBWI0WUSoIYtQTpsSr0iVK22+aOs5UtPtacSiOe+uE4Vh8ucmsiqYDPg4DPQ0efBsZYp4bQAMCZMj1iNRKU1HlnCEywcDLAZHMiu8KIbDSUj0yPVQFAs2FQvcLlqDJaoHNj8mgjAQ+o88KqrIQQQnyLEnXSo1jtTvyZU4XfMsrw+6ly1LSxzHp7fjhchO1nK7Dw6nRcPjCmxV5ob5CJBPj8zlF46/ez2JZZgYFxajw1PQ2JYc1XPu2I84fztGR/bg1e33gGL14z0KP228NxHDQyYacSRb3ZDrVUCIWYD4PF4cXogk9jgp4SLkeoXAQ+x8FktSOzXA+bh/Uhw+RilOtpoSNCiGe4IBmjTlVfCOkG6q0ObD9biY0ZpdhypsKrlS6qDFY8vOIIwhWnMKlvBCb3i8DEPhFQy7xbn1olEWLh1ekA0jvdVlYHVuRcsb8AD07ujWi1pNPna0lSqAx1Jm2n2iiqrUd6rAqnS3Vdbry6J3KrjMit6uRqUX9Ry4SUqBNCSBdAiTrplvRmG/44U4GNGWXYllmJeptve12rDBb8cLgIPxwuAo8DhiWGYHLfCEzuF4n0WJXPetvd5XCyDlWSsTkYlu3Ow9Mz03wSx4ikUBwr6lyiDjT0No9OCXW74klP5+u/B0IIId5BiTrpNmqNFmw63ZCc78qqgtXRuXHQnnIy4FB+LQ7l1+LNTWcRrhBh4l9J+8Q+4T4d096eV9afanGibEu+2Zfv0aJJVQYLVh8qQrRKgrQYJdKiVc32uX1sEpbuzm1W+cVpM8NSkgnYbRBG9YJAEdru+fKrvdPL3JMU1tQjLVrZ6Xr9hJCeiYfgWDEzGGLwNUrUSZdWoTPjt5Nl2HiyDCaLHUcKO99L621VBivWHC7GmsPF4HHA1P5ReOvGoX5d9VNvtuHTHeew9M88N46x465lB/DZ7SMRoRR36Bir3YnbP9/vUp/7umFx+PfMNESp/h5GkxwuxzVDYvHj0RIAAHM6oN21AqajP8NW3/BFguPxIOs7FiFTHwRfrmn1nOU6C5RiPvTdfKy6t9VbHV5ZaIkQQojvUKJOupzCGlNDcp5RhkMFtU29somhnk2u9CcnA34/VY4bluzBsrtGIVLlmzHgjXKrjFi+Ow+rDxV5lJAdK6zDmFc3Y3hiCHpFyJEUJsfEPhEYFK9ucf8PtmY3W0RnzZFi/HayDK/NGYwrBsc2bX9l1kDkVBqRW2VA2bp3oD++BY/cmYxbr4uDQibAr9sqsOj9Q6j67imEz30LfImixXOGK0SoMng+Kbinyq8xIS1aiXNVxk5X4SGE9CwcFxwTOYMhBl+jRJ10CTmVhqYa5yeKW+41L62r79RCOv50qlSHaz/cjeV3j0LvyPZLKrrD6WTYmV2FZX/mYmtmZefbY8DB/FoczG8oD/m/zVl4akY/XDssDiEyUdP4+5MlWnywNbvFNqQiPh7+9gj0ZjtuGp0IAFBIhPjgluG4dMFnqD66GUsWD8Jt18U3HXP/3CRcOi4co6/ZDf2hn6EZd3OLbceopT0qUWcOO+rPHYK9rhQ8iQLSPhe1+iWmPWfK9BgSr8bxYm2X+LshhJCehhJ1EpQYYzhTpsevGWXYmFHabklBALA5GaJUYpTrukY1i+K6esz+aA9evXYQpqdHQcDv3Gg7g8WONYeLsGx3Hs5V+m7cttXhxCvrT+OV9afB53EIkQkRIhOh1mSDvZXyK7GahmT66TUnIBHyMWtYHAAgMUyG3rUHYI6VY+6suGbH9U6W45arY7Di99+BFhL1EJkwKEqE+Yspax+0mz+AVVcDiVQMi9kK3uYPoRhxLdQT5oLj3H8NHSvSYmRyCA52wQWkCCGBQWPU/YcSdRI0GGM4VqTFrxml+C2jDHnV7i9vHibvOok6AGjrbZi34jDiNFLcMiYRCRcM3xHxOYxMDkW4ovUx4nlVRizfk4fVB4ug9/N4Y4eTocpgbbdHWyrkN/3/axvPYOagaIgFf20zVGFof3mrlXGG9Fdi2epiDE/UgM/jwOM4MDSsSHe8qM4r1WO6gvq8o6j6cRFmXj4Eryx6AoMHJ6K8XIv33/sd/3l1JZx2K0Ivucejtg/m1WJ0Sgj251KyTgghwYQSdRJQDifDwbwa/JpRht9OlqFU27mVJuVifvs7BaHiunq8/ltmq/cPjldjct8ITOoXiRi1BHlVRuRWG7HldAW2ZlYE/bAFk/XvLxAlWjM2ZpThmqENPehRUVHYs9MMxhi4FgYcns01QihX4XBBnb/CDUr6P7/GmDG9sWbtfAj++pITFaXGy69cD4GAh0Uv/whwPIRMvsOjnvWcCiN4HHpETXpCCOkqKFEnfmdzOLEnpxq/ZpRh06kyr44v5nXTmSXHi7Q4XqTFu3+0PAY8mHEcmpWE3HuuuilRv+2227B8+XJs3FaJmVMiXfYrq7Tgq7WlkAy4ym/xBiNbXRnqi87gX28/2pSkn+/hR6Zh8aKfoN//AzgOCJl8l9vnqDZaMSBG1WwyMCGEXIgmk/oPJerEL8w2B3ZmVeHXjFJsPlUOnRdXBz2fM9i7lnugATGqZoss7Tv39wJFl1xyCUaNn4Rb5/+Jlx/vg7nXxkEu5WPjtkoseD0LFsgQMeJqf4cdVJz1Dc9fau+oFu8PC1MiLESG9Agjth5YA+WIqyBQhrt9Hn+WDCWEENI+elcmPpVRrMWS7TnYeqYCRqvv61y3NHSCBBa/hd/JuSojSurqEauRguM4PP3m57jjnvvw1OJteHLR6abqPdK4vgi/6XEIlGEBiDx48JXhAMfh4IFzGDo0qdn9eXmVqKgyYOHlfOzOZjCe2g71mNlun6dEW++NcAkh3RyPA3hc4DvGekIxAUrUiU9Y7A68tyUbH23PgcOPg16dNMA2qIxODsH+VqqJzP/+KL6+ZwxEAh74IgnCrngM6ol3wJx3FMxhgyi6N8TRvf0ccXASKEIhTx2J115bj+tvGAO1+u9Jx4wxvPziGqhkPNwylo/XNjJUGT2bFFpUW48YtaTTc0UIIYR4R0+obEP87EhBLa58dxfe35rt1yQdACy0cEvQSA6T4UhhXav378+twQvrToIx1jRkSaAMg2LQpVAOnUFJ+gVUk+5CQbEeF416Hl9/tQvZ2WXYsiUDs656A8uX7cSbN/JgtQPFNXYIFJ5fgbiw8hAhhFyIC6Jbd0c96sRrzDYH3tp0Fp/tPBewyhEGiy0wJyYuJEIe7E4Gm6PtF8K3+wugkggwZ0R8m/sRQBSeiIibX0Peymdx5+1LmranxfLx3UMCzBnFx/Nr7LA7OcgHTPb4PDkVBupVJ4SQIEGJOvGKA3k1eGr1ceRW+W6hnY4w26hHPRgMjFU3rWTano93nENxXT3G9w7HruwqH0fWtYkikhBx02JUfDkfsSob5l3C4fZxPJTUAQ8us+HT7U6ox90CviLE43NUG60Q8BqGLVkdTgj5/L/mDDDYnQwCHgeO43Awr4ZKORLSQzWMUQ90FMERg69Rok46xWS147WNmVi+Jy8oann7e6gNaW54oqbDSXqjX46X4opBMfjfTUOxbHcejvTwmultEYYlIGLuG6ja9D7+vTIT/17ZMElbJFci5NKboPRChRy7E63OLWg0JiUU+3Jr2tyHEEJI51CiTjy2O7sK/15zHIU1wVMporUl7Il/JIRIkVmm9+jY9SdKMTI5BGsfGoejhXVY9mcufjxa4uUIuwdRZAoi5r4Ja2U+7LXF4EQySOLTwQmEfothX24NhiVo2pyHQAghpHMoUSdu05ttWPzrGazYVxDoUJoJRI+6kM9BwOeh3g/lJ4PZ4Hg1zlUY3C7D6bSZUZ+1F3ZdJZ4/HYKZnz6LoQnhuHpoLCXq7RBFJEEU0bxco7+U62kcOyE9EQ/BUY0kGGLwNUrUSavsdjsOHz6M+vp6pKWlISoqCtsyK/DMmhMoCdKJZiqJANp630woFfI5pITLIWNmlJ87hRqjDbbQFNggg83hQIhMiGiVBAqJAAaLHWfK9EExHMjXOA4YnezZMAjDic3QbvkEdosJCpEYJTYrkhM+xIJnnsGJyKk+iJZ4k72dycK+khathFIiAI/j4HAynC7V+WWdBkII8TdK1EkzjDG8//77WPzqYpSWlQIA+Hw+eo++FIbht0KgCA1whK2L1UhRWOudoTgjkkIAxqC32FFvc6C4ogZ7lr8LU8YfcDoavgzwBSLIBk+DZvJdqDUBtaa/vySEyoRIjVTA+FfS3h1H5agkAiSGyTxK0o1ndqF6wzu4IiYGD6QMR7xMhhqrBSsKCrBw4UKoJ2RDc/FNPoiaeIu/v4j2CpdDJOBw5oLhVeEKEfpEKXC0UOvfgLqQpDAZCgMdBOk2OK7hFmjBEIOvUaJOmnnuuefw6quvYoi8P6ZHjYOUJ8E5cwF2HdgN66ljiLr9LfBl6kCH2aIiLyXpI5NCXCZEMrsNld89D1aehfl9YzEzLhwMwC9FlVhy7FdUVxci/IaXwPH4TcfUmGyo+WtCXohMiN6RChgtDpwp03WLpL1XuBwmqx0ZxTq3j2XMCf2O5ZgQHoGXBwxsWlE2VCTGw737wM4Yvt6zCqoRV4Mnprrewcrhp0yd44BRyaE4lFeDljrxqwxWVBmsGJaowdHCuh5xJctdMhG//Z0IIUGnJwzvIW7IycnBq6++isnqi3B12FQkiGMQLgzBaOUQ3B05G5xBC93e1YEOs1XFdfVIjZB3qo2kMFmzqiXG09tRX3way8f2x4P9EpCskCJFIcUjaYn4ZEwaTPnHYDq7p9U2a002HMirxalSHdRSIUYmh2BAjKpLlpaSifgYkxKKoloTynQWj9qwlp+DpbYUtyYmNiXp57slIREOuwWm7H2dDZf4kh8y4kilGP2ilNif23KSfr4jBXUYnRy8V/wCJT1WhdOlnk3yJqQlPLCguXV3lKgTF0uXLoVMKMVFyqHN7tMIVBgu6w/j8U1gLHjrlYfJxZ06XilpfqGp/vjvGBcZguFhqmb3jYvUYGiYGqbjv3eo/VqTDQf/StpVUiFGJYcgPTb4k3bpXwm6gM9hX24NrJ0Yn+ysb0ga4qTSFu+PlEgg4PHgNBs8PgfxPV+/CwxP1MBktTcb6tKWfbk1SI9t/nfak/X0ie6EdGU09IW4yMw+hzBBKIS8lsu8xYoi4dAfAbPWgxN3rufaV44V1aJvlAJnyz1L8ngt9PA6dZUYGNX6EIxBahkytRVun6vur552AFBLBegXrcKBvJqgunQvFfIxKF6NzDKd1+pmCzRRAIATWi3ipM2f1zM6HexOJwSaaK+cj/iG3eH8azGkv7clh8kQqZI03AcOPB7AgWvYDw1zYBhrGDbjcDDYnU7YHAxWhxMWuxMcgMRQGSr0Fhz2sJ5+pd6zKz3d0fBEjcfPIyEk8ChRJwAaPjx/PFqMbfn1MNt0cDIneFzzCy61di04nhCcUBKAKDvGYmcoratHYqgMBTUmt4/Xm5tXjeFkapwztL4AzDmDGZw8zu1znU9bb8f+3Br0i1Ki0mBBjdHaqfY66/wEfb+XF7YRhsRCGp+OT/PyMDE8AjLB329FDsbw4bkciBQhkKYM9+p5iXcZLA4oxHz0ilCA44DcKiPyqk3Iq3b/7+58pZ2sKlWhtyBWLQna6lT+EquWIKuCrkoRHwiSyaQIhhh8jIa+EJRpzbh3+UH86/tjEPSdCINdj1Om7Gb7WZxWHDSdgmzABJdJk8FIb3HAZLUjUun+MJgaY/NEXTLwUvxRVoMcffME5FSdAbsraiFNv9SjWC+UWa5H70iFV9ryhETIw+iUUIiFPOzPrYG23u6T82im3o98iw23HDyAdSXFyDbo8UdFOe49dBC7qquhnvZwi68zp8UEp9kAFkyXHXowg8WB40VaHCvUQuej14onYjQtD6vqKWQiPgR8Dnpz8PxOCCHuox71HszucOLrvfl4c9PZpjdzcUxfyPqMxbrsLTA56zFE3h8iTohCSwl+1+6GETZEX3R9gCPvmCqDFREKMUYlh+BEsRZmW8dG1EYoxc1qsSsGXgrT4V8wd/dpPDMgEdNjw8DAsKG4Gq+ezIc4MhnyAZO8FrvF7v8xpWIBD0PiNciu0Hu9B70loqheiLz1NVRuXYoXTh1p2i6J7o2IaY9BmjKsaRtjDKbT22HYtxbmipyGeEPjIB95DRRDZ4Br4eoP6dl6QEdbm3pHKnC8iMpVEt/gcQiKeVXBEIOvcawbdEvpdDqo1WpotVqoVDSJqCP2nqvGwnUnW5ykxexW1Pz2AQwnt4JjAI/Hg8Nph0gTi9Crn4A4pm8AIu4clVSA/tEqFNXWo0Jvhu2CiZBRKjEilGLIhIKGkoMlzUsOOgy1qFn/Jkx5R8EBTXPN5amjEHL5fK+WrEwJlyO3yui19toiEvAwNF6N7AojakyBGW5j11XCrqsCX6aCMLT5EKLa7cuh27sK6YoEjFX1AhiHvfpsZBiKwFeEAdaGKx3ihIFQjLwG0uShfn4EJNikRSvdmoTanVxYXhZouBJV+M4N9DlJOqUx33om8T5IeKJAhwOz04pXCz7p1q9r6lHvYUq19Vi0/jR+OV7a6j6cQISwK/4F9YTbUH/uAJjNCmFEEiRJg7tsz6Wu3u4yETJUJkKoXAgHA0rqTCjXWVDeTqlBviIEETe+AltVIcxFJwGOgyRhYIuJZWfJ/VDzmOMaPtBzKo3Yn9f6+Ht/EKgiIFBFtHifpSQTur2rcH3kaEwLHYjfazKwueYkau0NX2R4xjoMUkShnzwCu0pzUPj9c9BMvgvqMbP9+RBIkDFYeuaQD4VYgJxKGpdOfCtYSiMGQwy+Rol6D2G2OfD5rly8/0c26m0dG1YhUIVDOXSmjyMLjBqT1ePeY2F4AoThCV6OyBXfx9fz1FIhEkKkTRVngpn+yAaEilSYGpKOT0u246DuHAbJ0zAzpA8YgFOmsziiz4RSIMFbvWfi2/JjWLNtKSSJg7rk1R/iHdoAXR0KtP4xyi7xd00I6RhK1HuALafL8dIvp5DfyUoMxH86+mXKE70i5DCaWx7eE4wcFXlIl8XghLEI+3U5mB0+AwNkfZru7y1NQrIkAT9Vb8L4kGTcFD0E2+vyoT/8C8RXPBbAyEkg6S0OCHgc7N1hGWA3WB3Bu8YF6T64IKn6Egwx+FrXHMdAOiS3yoi7lu7HPcsPUpLexRTX1iNG7f0SmCOTQlBYY0J5F6ozzYnE0DvM2F57BnGiKJckvdEgWT9EC8Pxe1UW+BwPY5SxcBRnBiBaEkyGJWoCHYJf8Tggh8oxEtKtUKLeDRktdvx34xlMf3sHtmZWBjoc4gGjtaE3UCH2zkUvIZ/DyOSGCWYXTqQNdpK+43DcUIgSax0SxS3PB+A4DomSOJRYGq4SWJwOgE8XDHu6A3m1GJ0c2iN63QAgNUIBg4VWISWkO6FPsm6EMYZ1x0qweMMZlOl69kIf3UFhbT16Ryog4vNwukwHAY8Dj+PA43Hgcxx4XMNY9sZtDeWyOPB5DatA8jgOaqkQQj4PWRV6HOyi41YVgy6FYd9q6E0G6B2t9xbq7AbI+EKYHTbs1hVCNOIqP0ZJgtX+vBoMjlPDYnfibIU+qFb99TalhD7SiX/wEBw9vcEQg6/RX3U3capEh4XrTmJ/nu/rXxP/yT7vMnZDT3g3zjJawZMoEH7TIlR8/SROm7Ix1T4OSoHrglBaux5Z9bm4PnoQ3sjfCQsYQod1z4nQxH3HixvqiWtkQqRGyOFwNiwsVm/tXr3Pgp5QVJqQHoYS9S6uzmTFm7+fxTf78tHD5kyRHkQUnojoez9C2WcP4avKH3F16FTEiaIAAEXWUqyr3gwBx8Oq8gwwvgDh1z4LgToqwFGTYFNnsuFQfh0AQMjjkB6rgkTIx6H8rnm16UJcTxnjQwKO4xg4LvBJRzDE4GuUqHdRDifDdwcK8MZvmag1NV/ynngfc9hgytwNc8EJAAzihIGQ9xsHThD4RR96AoEiFFG3vY6q1S9jafkqKIRKMMZgtBvAF0ohiO0DZeooKAZPA1+uCXS4JMjZnAwn/6p8NDBWhYIaE3Tmrl173dmdx/UQ0kXYbDaUlZXBZDIhIiICoaGhnWqPEvUu6FB+DV5YdxIZxV2jvF53YK04h+rVL8Kqr0aKUgUeOOQc+w26rZ8jbPbzVK/bT4RhCYi+bwnM5w7DXJQBgENk4iBIkod22cW4vIk5HajP3of6c4fBnA6IY/tBPmASeCJpoEMLahklOvSLUqDeZmxzsrVUxIfZ5gjace7Uo078hcaou9Lr9fj666/x3XffYf/+/bBarWCMgeM4xMfHY9q0abjvvvswatQot9umRL0LqdCZ8Z9fz2DNkeJAh9KjOExaVH33HFKEHF696GKkKhrGR+cZjXju1Elkrvw/RN39IQTKsHbbYnYbLMWnwewWCMOTIFBH+jr8bofjeJCmjoQ0dWSgQwkqtppiVK9+AZbaMvRSyyHh83A6YzN0275A6DULIE0ZFugQg1pmuQF9IhUw2xyoNdkg4HOIVUuhkAhgtTtRWlePcr0FPA4YkqBBSV09KoKszKnJ2rWvCBDSFb311ltYtGgRUlNTcdVVV+GZZ55BbGwspFIpampqkJGRgZ07d2LatGkYM2YM3nvvPfTp07zMcGsoUe8CrHYnlv6Zi3e3ZMHYzSY/dQWG478DFiM+HDkeYWJx0/ZkuRwfDB2GGX/uhOHoRmgmzG21DcYYdPt+gGHfD7Cb9X9t5SDrNQIh0x6ihJ10itNmRvX3zyGaGfHBZQMwKEQOACg2WvDvQ/nYveYlRN35LoRhvl1Rt6vLuqAGeV0LwwqdDDhaWAeJgIfekQqXCd+Bdq7SCA4tTzkfGq9Gob8DIqQHOHDgAHbs2IH09PQW7x89ejTuvvtuLFmyBEuXLsXOnTspUe9O/syuwv/9lIFzlcZAh9JjWTL/xJSICJckvZFaKMT0iEj8dnYX0EaiXvvHZ9Af/AlTQvpjUkwa5HwJThqL8FPRUVR8/SQib3+rQz3yhLTEeGoHrLpKLJ85CCnKvxfKipOL8dnFvTHu1wzoDv6EsOkPBzDK7sVsd8JosUEm4sMUJB0oJqsDo5JDcOC8UqwamRBJYTIcyS4NYGSku+FxDLwgmMgZDDF8++23HdpPLBbjgQcecLv9YBneQy5gdzjx2sYzmPvZPkrSA81mQYhQ2OrdISIRYGv9Eritphj6gz/h+sjRuDV6HBIkYQgVyjFB0w/PJl4JodkI3b7Vvoic9BDmrD24KErlkqQ3kgh4uD4pBNazuwMQWfdWqrUgLVoZ6DBcHMirRZ9IBfpGKTA4Xg0OwLFCbaDDIqRH0ul0+PHHH3H69GmP26Ae9SBUrjPjkW+PYH8u1UQPBryIZOwuPNI0MeR8jDHsqqkFL6pfq8cbTmyGVCDBpSEDmt0XIpRjsroffju+GSGX3AuOx/d6/KT7YzYzwkWtv52HiARw2qx+jKhrcVpMMGRsgeXsLsBuBqeJh2LoTIjj09udoHm4oA4jkxpW/Q0WFw7hIcTbuL9ugRYMMZzvhhtuwMSJE/Hwww+jvr4eI0eORF5eHhhj+O677zB79my326Qe9SDzZ3YVrnh3JyXpQUQx7HIUGg34rrD5CM8fS4qRrddCMfTyVo936KsQI9JAyGs5kUqUhMFhqwez1nstZtKzCCJSsKvSAKvD2eL928r1EEYk+jmqrsFWU4yKZfOg2/YZLhkixtwrExFlPYvyFU+jdvMSsA6UeDmYX4sxKaGIUokxIikEIxJDEKUUI0opxqA4lR8eBSEkGOzYsQMTJkwAAKxduxaMMdTV1eHdd9/FK6+84lGb1KMeJJxOhve3ZuPtzWeDtvRXTyVOGAjlyGvw2sGfsLumGjOjosFxwG/l5dheWQHFkBmQ9BrR6vE8mRqVNj0czAl+CyUEyyxa8PgicFRCj3hIMXQGSg+tw/9OleCJgXEuvcC/Fddid7kWYVfcE8AIgxNjTtT8+AriIwT47cgbSE6O+Gs7w8dLtuDhh5ZBGJEM5dD2V7nd91fnSrnOdRhcud6CgXEqKqdLuhUe13ALtGCI4XxarbapbvrGjRsxe/ZsyGQyXHHFFXjyySc9apMS9SBQbbBg/vdHsTOrKtChkBZwHIeQS+6FKKoXDu5fi10nTwAAJOGJCJ3xKBSDL2vz8rgi/RKUHvgRe7TZGK9xrbducljwhzYT0gGTaNgL8ZgoPBGaSXfi/e3LsL/aiOuTQiHh8/BbcR3WF9VC3m8c5AMmBTrMoGM+dxjmykIsX7ewKUkHGv7mH3hwKv744xQ2bP8JiiEzOlejnDpfCOkREhISsGfPHoSGhmLjxo347rvvAAC1tbWQSJrPIeoIStQD7EBeDR5ZcQRlOnOgQyFt4DgOioGXQjHwUjgtRoAxcGJ5hz68RVG9IO8/CcvP7ITWbsJETRrkfBFOGouxuvIQjDyGqLHX++FRkO5MfdEcCEPjcGL/Guw/0DBxSRwSA82l90E57HL6ItgCc8FxxCVEYMyY1Bbvnzv3YqxZ/Q4chmoIlOEen6ekzgyOA10tJd0GBwYuCCqucEH2LXj+/PmYO3cuFAoFkpKSMHnyZAANQ2IGDRrkUZuUqAcIYwyf7jyH/27MhMMZXC800jaeWO72MWFXzEetVIm1RzdiTeXBpu3iiBREXvk8hCGx3gyR9FCyvmMh6zsWTqsZYA5wIhmtVtkGxpwQCHitPkd8Ab9xR4/PoZYKoJIKUGMK3GReIZ/DwKQQqqNOiI899NBDGD16NAoLC3HZZZeBx2sY7tqrVy8ao96VaE02PL7qGDafLg90KMRPOL4QoZc9APW4m1GfexjMZoEoIhmi2H6USBGv44k8u8Ta04jj+iP/wI84diwfQ4YkNbv/h1X7IQ6JBL8Taxz0jlDiUEHgKsIMT9SguLYeh4KoKg0h3dnIkSMxcqTrytlXXHGFx+1Rou5nxwrrMG/FYRTVUoWPnogvU0ORPiXQYRBCAMh6j4FYE4l77v4cv/3+JMLC/q6JvuaH/fjmmz+hnngnuBYmgXdUlbH1NRZ8KT1WhXqrA4cL6gJyftK9cQiOsoHB1s119913t3n/F1984XabwfA89wiMMXy5Jw/XL9lDSTohhAQBji9A6KxncTKzEilJ/8J9936KF55fjXEXv4Qb5rwLad9xUI68plPnkAj8OzdAJOBhRFIITpbocK6KFssj5Hw7duzAVVddhdjYWHAchx9//NHl/vLyctx5552IjY2FTCbDjBkzkJWV1eH2a2trXW4VFRX4448/sGbNGtTV1XkUM/Wo+4HebMPTa05g/XFawpkQQoKJKCoVkXe8D8ORDfh23Z9gtnrwQhIQfs3TkPW7uFO96QBQoq1HYqgMBTUmL0XcuiiVGAqxgIa5EJ/juCCZTOpmDEajEUOGDMHdd9+N6667zuU+xhhmzZoFoVCIn376CSqVCm+99RamTp2KU6dOQS5vf37a2rVrm21zOp148MEHkZra8qT19lCi7mOnS3V46JvDyKWeDUIICUoCZRg0E28DJt7m9bb1ZjtEfB6i1RKUaX1X3Ss9VoXCWlOzOu6EkL/NnDkTM2e2vC5CVlYW9u7di4yMDKSnpwMAPvroI0RHR+Pbb7/Fvffe69E5eTweHnvsMUyePBlPPfWU28dTou4DVQYLNmaUYf3xUuzLrQYVdSGEkJ6r3mpHQqjKZ4n6mJTQpgWXCPEHHoJj7HRjDDqd64JiYrEYYrHYrbYsloYvuefXO+fxeBCLxdi1a5fHiToA5OTkwG63e3QsJepetDOrEh9uzaHknBBCejCJgIeB8WqAARwHnCnT42hhndfPIxPx0SdSQUk66fESEhJcfn7hhRewcOFCt9pIS0tDYmIiFixYgI8//hhyuRxvv/02ioqKUFrasaHLjz32mMvPjDGUlpZi/fr1uOOOO9yKpxEl6l5gczjx5u9nsWR7TqBDIYQQ0g67oQbmvCNgDjvE0b0hivJs7GhrzHYnMsv00Js960HriIRQKZgTOFak9dk5COkqCgsLoVKpmn52tzcdAIRCIdasWYN77rkHoaGh4PP5mDp1KmbOnAnWwbUUjhw54vIzj8dDREQE3nzzzXYrwrSGEvVOyq824n+bs7DmSHGgQyFdDGNOMJsFnFDc6QlrhJD2OW1m1G76CMaTW8Gczqbtsrg+0Fz+BIShcV47V59Ihc9KIw5N0CCzTId6m7P9nQnxAR7HwAuCyaSNMahUKpdE3VMjRozA0aNHodVqYbVaERERgTFjxjSri96arVu3djqGC1Gi7iGzzYGVBwvx31/PgOMAiZAHM71pkhYwxgDmbFrC3a6vhm7fahhPbIHTagJPIIFs0CVQXzQHAlVkgKMlpHtijKH6x1fhLDyK16/m47ZRIihEwK+nnfj3z7ko/PYpRNz+LgSdWNzofAKe97988zhgZHIo9tNQF0J8Sq1WA2iYYHrw4EG8/PLLAYuFEnU36cw2fL03H1/sykOV4e/Z9SOTQnCQSmKR81jKsqHb9wNMZ/cATjsE6mjIBkyC6djv4FnMGCQagFBlOOocNTh9fDvKzuxC1Nz/QhiW0H7jhBC3mAuOw3TuMFbfLcJVA/+ubX7VQD5GJ/Ew8D8G6A/+hJApnl2evlBdvdUr7TRSiAVIDJVRkk6CAofgWGzI3RgMBgOys7Obfs7NzcXRo0cRGhqKxMRErFq1ChEREUhMTMSJEyfwz3/+E7NmzcK0adNabXP48OHYsmULQkJCMGzYsDZXGz98+LCbEVOi3mEF1SZ8e6AAX+/Jh97SfNxhtdG7b8qkazNl70fl2kUAA8AYAB7s2gro9qyEgqfANZpbIOP/XZN1oHQo1ml/QM36/yHq9jcCFjch3ZXx5FakRgpwZXrznu4oJYc7RgEfH9oEeCFRj1SKcbbc0Ol2Ggl4HBJDpThVqmt/Z0JIqw4ePIgpU/5eHbxx8ucdd9yBZcuWobS0FI899hjKy8sRExOD22+/Hf/3f//XZpvXXHNN05j4WbNmeT1mStRbUWWwYHdONf7MqsKfOVXtriaaW2VEaoQcOZVUL72nc1pMqFr3GhpK/5y/0DID4MRI+ViXJB0AJDwpRsnGYnPpelgrzkEU2cvPURPSvTmNdegf4Wy1t6tvJA9WowGMsTZ7xDoiOVyGCr336pkPT9Rgfx5dsSXBI9jGqHfU5MmT25wY+uijj+LRRx91q80XXnihxf/3lm6fqJfU1WP98VKYbQ7EhUgRp5EiLkSKaJUEAv7fPSsGix37c6uxK6sau3OqcKZM7/a5QmQiAJSo93TG09vBbGYAfLhemGt4c0gQJTU7hjHWtGfNutcgiO4D+aCpkCQO7nTSQAgB+KpwHM3nweFk4POa/00dLXJCrArx6O9NxOcwJEEDk9UObb0dx71YiSVSKaaVRgnpIg4cOACn04kxY8a4bN+3bx/4fH6HJ6Wer1sm6naHE3vP1WD9iRKsOVwMi735JE8+j0O0SoI4jRR2pxPHi7Swd7L4eUtv/qTnsZafA3gCoJW5xWanGRKetOlnO7Nhs+4XFFoL0VctRprCgBNFe5F7civkfcci7OqnwPGFfoq+e3BazdAf2QDTkZ/hqNeDJ1FBPvxyKAZdBoexIekRhsbR89qDKAZdhqKjG/HNQQ63j3b96MuudOKbwwySUTM8antgnBoH8mrB53EIV4i8WlggOcy7vfOEeAPHMXBB0KMeDDGcb968eXjqqaeaJerFxcX473//i3379rndZrdK1HdmVWJHbh5+P1WGWpOtzX0dTobiunoU17U9pMUdFqr6QoC/kr/GN4/zv7xx4MAh03wSYxTjm7b+qd+GKkcxvr4kBVNileA4Dowx/FKgxbxd+1C3/UuEXHKPHx9B12Y3aVH+xcNwGuvg/Ov34LCaodu2HLrty+H867KnUKaEbNiVUI+9ERy/W70VkhaIYvpCMXAK7l+5DafLGW4bxYdCDGw45cTLvzsBRSSUI6/2qO3GK+kOJ0O5ru2kmuOAYQkalGrrEaWSolRb3+oxITKhTxZKIoT4xqlTpzB8+PBm24cNG4ZTp0551Ga3+nR68OvD4IllATu/t2f5k65J2ns09IfWoWFsumuizgAcrz8MJV+FfpJ0WJxmZFvO4IWRMbgk7u8asBzH4aokDU7X1uP9oxugHndzQF/bXUnld8/CbqzFKGU6xquHIlSgQpGlAn/U7UdWfSH6qkV4Y0IMfjqnw7I938NekYuwWQuaymeS7onjOITOnA++MhLv7VmHt7bWN22X9R2L8MseBF+i8KjtWlPH3vt7Rypgszua6quXai2IUoqhlAhaXBypb5SSVh0lpAsRi8UoLy9Hr16u88xKS0shEHiWcnerRD3QyrTmQIdAgoAkaQiEkb1gq8z/q6utMVlnaOxp/9OwDYeM+yDmieEEw5xeIS22dX2vULxzogKW4tOQ9hrhl/i7Mmt1EWyV+RirGoQrwyY2bU+UROO2qCvxeelaZGnLES0T4D8XR2NynBy3bdoLadZeyPuNC2DkxB84Hh+aibdBNfZ6WIrPAA4bhJG9Ol07vaNVvzRSIQ7mu1aDKddbMChOhZMlOpw/+jI+RIqMYlp1lAQnHv4ukxBIwRDD+aZNm4YFCxbgp59+aqrFXldXh2eeeQaXXXaZR20G22Ps0sx2J8IVokCHQQKM4zhEXr8QwrA4AA6AYw3/hQMcOFyqnoQ7I+dikLw/JLyG14uE3/KfolTQsJ05fbcUeXdiOLIBDAzj1cOa3cfneBivHgYGhl9yG8rczUhSYkSUHKZjv/o7VBJAPKEE0uShkKaO8soCR0mhHbva1VJpXwA4UazDwDg1RH/9vUepxLDZnTBaHZ2OjRDiP2+88QYKCwuRlJSEKVOmYMqUKUhJSUFZWRnefPNNj9qkHnUvC1eIUWWgITA9nUARipi73kN9zgFo966CtSQTI+TDMFIxFCqBEgAwWT0eVbZqLK34Br8XaXFNcvNe9Y2FWnAcB1Fkqr8fQpfktJog5ATQ/PUcXyhC2PAcG8+bTzI2UoxThSV+iY90TyV19QiVC1FjbHtuVFtXXY8XaREiE4LPod1x7oQEWlctz+hrcXFxOH78OL755hscO3YMUqkUd911F26++WYIhZ4VL6BE3csUYnpKSQOOx4esz0WwluVAUFGCSzQTmu0TLgxDjCgSLx0qxYgIOeLlf1+Rydaa8caJSsj6XASBKtyfoXdZ4rg0GE9sRrVNizChutn9ZdYqAMAl8X/XsS8w2AGJxl8hkm6oxmTDmJTQdseTa+ttrY5HB9BuEQRCSPCTy+W47777vNaeW1nlwoUL8eKLL7ps69evH86cOQMA+OSTT7BixQocPnwYer0etbW10Gg07bb7wQcf4PXXX0dZWRmGDBmC9957D6NHj3YntKDRRh39gHCaDWBOB3hSJTiORjoFAl+uht5hQr2jHlK+tNn9adJ+2KHbiYnrzmJ2shp91BKcrK3Hj/k68NXRCJ82LwBRd03yAZNRt+ljbK09gNkRl7rUxLY57dimPYQIiQCjoxsS9SKDDRvyDVBMnBOokEk3kV9j6tB+yWEynCimFUZJ18bBtVRCoARDDOvWrevwvldf7X5lKbe7f9PT07F58+a/GzhvFqvJZMKMGTMwY8YMLFiwoEPtff/993jsscewZMkSjBkzBu+88w6mT5+OzMxMREZGuhtewGWW6yDgcZ2uyd5Zxsw/Ydi7GuayLACASBUJ2fAroRp5NZWi8zNZv/Go3fIZDhmPYrxqrMt9dmbHyfpMCGL7Q5w8FKszNsOeVwWhMhTy8bdCOexy8MTyVlomF+IJJVBfci+ObPoIFmbDePVQhAnVDVVfag+gwlqDlTPiwBjDzhITHttdAb4iFIoh0wIdOunCBsapOzzxUySg6kKEdCezZs3q0H4cx8HhcH/eidsZm0AgQHR0dIv3zZ8/HwCwbdu2Drf31ltv4R//+AfuuusuAMCSJUuwfv16fPHFF3j66afdDS/gDBYHBsapkBHAHhPtnpWo2/ElBihiMTFuPMQ8AQ7pC7F7+zJYi04i/NpnqBSdH/HlGqgumoM9u7+D1WnDCMVQqPhKFFtLsVO/F5X2GkROfhKS+P7A+LnNjrdVF8FSmglwPEgSB3tl8lt3php+BXgiKc7+8TlOla5p2s7jC+EEw91bywGuHDqzDZLIZITNetbjsnyEAADfjW69zDI9hDwOtgB35hBCvMPp9O0aOm4n6llZWYiNjYVEIsHYsWOxePFiJCYmenRyq9WKQ4cOufS+83g8TJ06FXv27Gn1OIvFAovl78k2Ol1wXUYUBnCFUltVIep2fIlZEYMxJ3JY06X/0epkXKROxhvZf8CYsQWKwdSD6E/q8XPBCUQ4smclDpUfbdouVEcj8tqXGpL0C9j11ajZ8Dbq8/7en+N4kPWfiNBpD1Fd9TYoBl4C+YBJsJScgbNeD4E6EsKIFFiKT8FccAJgDFEJAyFOGOjRkvGENApXiHDCjTKKBosdQ+LVOFZEpRdJ10WTSdtnNpshkUg63Y5bifqYMWOwbNky9OvXD6WlpXjxxRcxYcIEZGRkQKlsucpCW6qqquBwOBAVFeWyPSoqqmnce0sWL17cbKx8MDlSqO3QxCJf0B/bCIVQilkRQ5olIMOUCRisjMPZwxsoUfczjuOgHnsDlCOuQv25Q3BajBBqYiBOHNji3AGn2YDKFU9DZtLjrvgJGKlKgp05sKvuHL7P3I0qXSUibn6Vroy0gePxIYlPd9kmiU9vto2QzkgKk7td6UvgThc8IaTLcDgcePXVV7FkyRKUl5fj7Nmz6NWrF/7v//4PycnJuOce91cZd2t24cyZM3H99ddj8ODBmD59OjZs2IC6ujqsXLnS7RN3xoIFC6DVaptuhYWFfj1/R+zLrcGIpJYXsfEle2U+BkgjIWwlgRssj4G1usDPUZFGPJEU8rTxUA6ZDknS4FYn+OqPboRTV4nnk6ZhnCYVYp4Acr4Y08P64/GEKagvOon6nAN+jp4Qcr60aCUO5de6fdzpUr0PoiHEfziOBc0tmCxatAjLli3Da6+9BpHo7ypuAwcOxGeffeZRm50qA6LRaNC3b19kZ2d7dHx4eDj4fD7Ky8tdtpeXl7c6Dh5oWKJVpVK53ILRkYJaDIzzb2ycSAKto/UavDq7GTyB2I8REU/Un9iMi1RJiBI3f/2kK2KQIouA8cTmFo4khPiDgNcwjMUTJqsDARwhSQjxkS+//BKffPIJ5s6dCz7/7w7TIUOGtDlSpC2dStQNBgNycnIQExPj0fEikQgjRozAli1bmrY5nU5s2bIFY8eObePIrsHJgOxyA3pH+m+imrTvWGQay1Bsrmt2n9Vpx3btOUjSaKn0YOcw1iJO3LwOeKN4kQrM4H5PHiHEO0YkhaKott7j40WtrEZMSFfAgYEXBDcOwdWjXlxcjN69ezfb7nQ6YbN5tk6CW+8UTzzxBLZv3468vDzs3r0b1157Lfh8Pm6++WYAQFlZGY4ePdrUw37ixAkcPXoUNTV/j9W+9NJL8f777zf9/Nhjj+HTTz/F8uXLcfr0aTz44IMwGo1NVWC6OrPdiWqDBSEyz1akcpc8bQJEmhi8VvgHskwVYH8Vdq+w6vFmwVbomQ2qkdf4JRbiOYEyHPnmlhNxxhjyLHXgaBEkQgIiTiPB4YLOfVEWnjdOnc8BI5NCMCBGCYmQh1i1BCMSQzA4Xu1SnEDE5xCvkSJCQVdFCQlGAwYMwM6dO5ttX716NYYNG+ZRm25NJi0qKsLNN9+M6upqREREYPz48di7dy8iIiIANJRWPH+S58SJEwEAS5cuxZ133gkAyMnJQVVVVdM+N954IyorK/H888+jrKwMQ4cOxcaNG5tNMO3Kak02DEvQoNZU5/NzcQIRIm56BVWrFmLhuQ2IEKsh5glQVF8NgViB8NnPQxiW4PM4SOdIB1+G/Vu/QJG5FvES17kOR/RFKKyvRuSgywIUHSE9m1oqQnGduVNtCPl88DkHhieFoKDGhIPnjXUv0ZpRom1oXy7iI1EtQY3RilqTDUV19RiVHIJKQ+tDHAnxNY5ruAVaMMRwvueffx533HEHiouL4XQ6sWbNGmRmZuLLL7/EL7/84lGbHGPBtpam+3Q6HdRqNRLmrwzqknVDE9Q4WuifklzM6UB97mGYzx0Cc9ohiu4L+YCJ4Ak7XyqI+J7TWo+Kr56AoK4CcyIGY6QqEXbmxJ915/Bj1QmIkocifM7ztNosIX42IlGDo0Va9AqXQ8jncLbc4NECd6kRcpTUmVFvc38BFE/KOzotJhS+cwO0Wm3Qzusiwa8x3/pswC2Q8UXtH+BjJocV955aEVSv6507d+Kll17CsWPHYDAYMHz4cDz//POYNs2zanu0RKUf1Vvdf0P2FMfjQ5Y6CrLUUX47J/EenkiKiFsWo/b3j/Bl5p9YXrqvYTtfBPnQGQiZcrdXk3TmdMB4egdMR36FvaYYnFgOaf8JUAy/AgJFqFvtmDJ3w3R8I5iuFJxYCfGAS6AYdFlQf4kmpKMMFgekAh6yKgwAGiq/nClzv4pLTqXRo/OHK0RUg52QIDZhwgRs2rTJa+1Rou5HOrNnEwlIz8SXqhB+zb9h11fDWpYNjseDKK6/11fRZA4bqta+ClPOAfSWxaOXpA+0diMO71sL4+H1UI67CcLwREgSBoITtN6Dwuw2VP34Mkw5hzG2Dx9jRwPnKqvx89bPUH94HcJuWgyBKtKrsRPib5nlrkm5XOzfj9FkD+q2E+JttOCRq9raWnz99de44447mvXsa7VafPnlly3e1xGUqPsRvbkSTwiUYRAow3zWvnbvapjPHca90ZejvzypafvljjH4qGQdKv74HE4wCCUKyMfMhmrMnBZX86zb9Q1s+Uew/jEhpg/6u7c/p4Lh0teqULPuP4i49S2fPQ5C/K13pMKjOuqdwaO6joQEnffffx/Hjx/HI4880uw+tVqNnTt3QqfT4dlnn3W7bRrg6kc2B4PSz70vhLSFOewwHvoFFynTXJJ0AFDwpbghYjKcYHhxcC/cFKtE3fblqNv6RbN2nDYz6o+tx6OX8VySdABIjeTw3q0cTMVnYSnN8unjIcSfpEL/rwzcDaaVkW6A+6s0YjDcgsEPP/yABx54oNX777//fqxevdqjtilR96OBcSroPVwggxBfsNeVwV6vxWB5rxbvTxRHQiOQocxsxfODe+HJ9CToDvwIW12Zy362ynzYzPW4flTLbymXD+ZBKuLBXHDC64+BkEBIDpPhRLH/x4rbHMGRmBBC/paTk4M+ffq0en+fPn2Qk5PjUduUqPtJYqi0U4tjEOITvIa3AAecre7ihLNpFcXbUmIgEwpgzNjiulMHamSxju1GSJcQKg9MxYsqKstIggCPC55bMODz+SgpKWn1/pKSEvB4nqXclKj7QUKoFHqzHXUmmkxKgotAHQWhMgKH9S0PScmqL4bObsbYCA0AQCrgI0khhUNf7bKfMDwJQokMK/e3nPBvOOaE2eqEOHGwV+MnJBCiVWIcLawLyLmLausxLKH1VYsJIf43bNgw/Pjjj63ev3btWo8XPKJE3cdiNRIYLXbUUpJOghDH40MxehYOGbKwV3fKZfxrhbUWq6u2YYBagdFhDTPVLQ4nioxm8OWuizDxhGJIh16Odzc5seGYaxnSrDIn5n3NIItPgzi6+dLKhHQ1sRopPCid7jUninUYkxIKAX2CExIUHn74Ybz55pt4//334XD8/RnocDjw3nvv4e2338a8efM8aptmNvpYrFrqsuIcIcFGOeIq2KoKsOrYb9iqPY5UcTRq7QZk1RchQSbBR2PSm6q8rMwvh95qRezAS5q1oxk/F46qfFz9zgGMSmUYmwqcqwQ2HHNApIlG2FVP+/uhEeJ1g+PVOFxQF9AY7E6Gfbk1SAiVQi4SeFTHnZDOoPKMrmbPno2nnnoKjz76KJ599ln06tUw7+vcuXMwGAx48sknMWfOHI/apkTdx86W0xsoCW4cx0Po9IchHzAZhmO/4Wh5LmzGEkRKRXgqPRHhEiFK6y34LrcMS7KKoRgyA8LQuObt8IUIu/Y5yLL24eTxX5FxqBScRAXNpZdAnn4JLXhEurz4kOCaa1RY0xBLYqgMMWoJCmqMKNXSGHZCAmHRokW45ppr8M033yA7OxuMMUyaNAm33HILRo8e7XG7lKj7WGKoDBklukCHQUibOI6DJHEQJImDAADW8nOo+/UdPHwgs2kfvlAExZjZ0Ey4rfV2eHzI+l0MWb+LfR4zIf7A54DB8RpYHU6cKtUhGKsjFtSYUFBjAgCMTAqhq7jE54KlNGIwxHC+0aNHdyopbwkl6j4mE9FTTLoeUVQvRNzxP1jLsmGrKgAnFEOaMgw8sTzQoRHiNzwOGBCrwpEATRx1l0oiQFYFXcUlxJ8KCgqQmJjY4f2Li4sRF9f8qnRraCqKj5Vqg+cyKSHu4DgO4pg+UAy6FPK08ZSkkx5neGIIThR3nSuifaOU0NbTWh3E9xpKI7IguAX6mQBGjRqF+++/HwcOHGh1H61Wi08//RQDBw7EDz/84Fb71N3rY4W19YhSiVGuo3GDhBDSVYxJCcW+3JpAh+EWD8s0E0I64dSpU1i0aBEuu+wySCQSjBgxArGxsZBIJKitrcWpU6dw8uRJDB8+HK+99houv/xyt9qnP2s/SAylSXSEENJVjEwK6XJJOgDUGqkMMPEPjmNBcwu0sLAwvPXWWygtLcX777+PPn36oKqqCllZDeuTzJ07F4cOHcKePXvcTtIB6lH3C6u99VUfCSGEBI9BcV1nTPqFcioNUIj4MFgd7e9MCPEqqVSKOXPmeFyGsTXUo+4HWeV6CIJhIBUhXRBjDLbaElgrcuG0mAIdDunGekfKkV1hhCOQqxl1gpMBqZGKQIdBCPEi6lH3A5PNibRoJS1KQYibjKe2Q7f7e1irCwAAPL4IsoFToJl0B/hSVYCjI91JjFqCKoMV9bau3RstEfIDHQLpAXgIjp7eYIjB1yhR9xOOOtQJcYvuwE+o/eNTpIiTMTT0Ssj4UuSZC3Hw+DaUZe9H1N0fQCCjZJ10nkYmBMcBdaauP8bbGYyF3gkhHqNE3Q+UYj7yquiSPSEdZTfUoG7rFxghH4op6gng/vqmGyuKQZq0D76s/BaVqxci5va3Ahwp6erEAg7hCjGyKwyBDsUrCqrps4b4XrBM5AyGGHytJ1w1CLgBseoufzmVEH8yntgMHjhcrBrTlKQ3ChWGYIh8EGylWTCXZLbSAiEdkx6r7jZJ+sA4Fcr1VAqYkECw2Wy4++67kZub69V2KVH3gxqjNdAhENKl2GpLESYIhYQnbvH+OFEsGBgMh9f7OTLS3Zi6SYWUSKUYxbW0wB7xj8AvdPT3LVgIhUK3FzPqCErU/SBEJqKqL4S4gSeRw+AwwMlaLm2qd+jBAXDUlfg3MNLtiAVd82NwaIIGUUoxRHwOUUoxbA4narvBGHtCurJZs2bhxx9/9GqbNEbdD/bn1SBaJYZQwENhDfV4ENIeedoElB34EVnmHPST9nG5z87sOGY8AQVfAruYStGRzhHwu16inhatxNHzar3TcBdCgkOfPn3w0ksv4c8//8SIESMgl8td7n/00UfdbpMSdT8p01mQHqsMdBiEdAmimL4QqKOwoXYTbE4b0mR9IeAEqLJVY5t2J7QOLezMibC08YEOlXRx/C54tbOr1nkn3UiQTCZFMMRwns8//xwajQaHDh3CoUOHXO7jOI4S9WB3skSPhBApCmkcISFt4jgO4bP/D+VL/4lf6zZji3Y7xDwR9A4j5HwxpAIxLHINZGkTAh0q6eIKa0yQCHkw27rOCtLVBupBJyQYeXsiKUBj1P0uSiUJdAiEdAniiGREzf0vBFI1rMwGB+yQC8QwOiywaaIQcdMi8IQtTzYlpKNKtWYMjtMEOgy3KCXUx0YCiwcWNLfujv7a/exgfi1GJYfgbLkB2vq/J/4I+Q2XX22O7v+iI6SjxHFpiJ23DKaze2EpOQOOx0dkynBIkoY0K9tIiKf259UgPVaFkyW6QIfSIRqZCPk034mQoHP33Xe3ef8XX3zhdpuUqAfAgbxaAECMWgy5WAh9va1pMlB6rApGix15tGgFIQAAji+EvP8EyPvTMBfiO6dKdBiTEoqD+bU0BpyQdtCCRy2rra11+dlmsyEjIwN1dXW45JJLPGqTEvUAKtVaALiONTxZokOITAiZiN9t6vsSQkiwYwD25dagd6QCTifDuSpjoENqEZ/HdZsFmgjpbtauXdtsm9PpxIMPPojU1FSP2qQx6kGo1mRD/xhVoMMghJAeJ7vCgHNVRgyKUyEtOvgqdQ1N0MBInTgkwHgI/EJHPK5rjFHn8Xh47LHH8Pbbb3t0PPWoB6l6qz3QIRBCSI91orhhvHqoXIR4jRTHi7UBi6VvlAI6sx3xGikO5de2fwAhJKjk5OTAbvcsr6NEPUidKtVjSLwax4oC9+FACCE9XY3RipQwefs7+pBGJsLZcgPKtOaAxkEIadtjjz3m8jNjDKWlpVi/fj3uuOMOj9qkRD2InS7VdalKBI0SQqSIVElQWGNCBa2YRwjp4owBvsJpsdFQFxJcaDJpy44cOeLyM4/HQ0REBN588812K8K0hhL1IGZ1MJwt02NwvBrHg7xnvXekAqFyEUrq6lFYW9+0qFNKuBzhClFTpRtCCOlKRHwOuQGeWHqmTI9IpZg6PggJclu3bvV6m5SoBzmbk+FksRZDEzQ4WlgX6HCa8Hkc+kUpIRfzkVdlarUKQW6VEblVRoxOCcX+3Bo/R0kIIZ3TN1qJjOKWr2oOiFGhymDxeQJtsTsRpZKgzmSFldbaIEGgcTJnoAVDDL5GiXoX4GDAscI6DE/U4HBBXcDiEAl4SItWQsjnIatCj1OlHR+Ssz+3BmNSQrGPknVCSBciE7b8MdnY+cDn4JchiieKtUgMlaHaYKGqL4QEqZSUlDYX4zt37pzbbVKi3kUwACeKtIhSiVGu89/lT4VYgL5RCjidwJkyXaeG4BzOr0W0SoIyHU2IIoR0DSXa5iuApoTLcSivodPBwYDcSgN6hct9Xnu9oMZEVydJUKAx6i2bP3++y882mw1HjhzBxo0b8eSTT3rUJiXqXYjNyZAYKvNLoj44Xg2Hk+FMqc5rvfg2J0OMhhJ1QkjXIRXx0TtS0TS8j89r6C07fwSKyeZEncmK+BApimqbJ/aEkJ7hn//8Z4vbP/jgAxw8eNCjNilR72IyirWQi/g+u/QZrhAhTiP1WVnIIwV1Lh96hBASzLLKG96r0qKVUEgEqDNZkV3RvOe8xmRDvc2B0SmhAAM4ruFKKAeAMQBgYACcDHAyBjBAKOAhr8ro5hj34OpBJIS0b+bMmViwYAGWLl3q9rGUqHcx9TYnRiWH+KSKSr8oJYpqTT6v3S7gtT5+ixBCgtGZMn27+9TbnB4NS4nTSCER8iDgcRDweeBzHPg8DjwO4DX24DtZw8RVPw59JKQ1HBi4IPjSGAwxdMTq1asRGhrq0bGUqHdBpXXeHzqSHCZDcZ3JL5OUznSRkpOEEOIPxXUdHy4zOjkElXqaUEpIMBo2bJjLZFLGGMrKylBZWYkPP/zQozYpUe+CiurqvVquMUwugs5sh8Hivzf+WqMVfB4Hh7NrfBsmhJBgsD+vFmqpEEmhYuTXmAIdDumhqDxjy6655hqXRL1xwaPJkycjLS3NozYpUe+iCmpMXqsykBwmwyE/l30srK3HsAQNjgRRbXhCCOkKtPU2JIXJACr+QkhQWbhwodfb5Hm9ReIXNUYrSurqMThe3al2ekcq/J6kN7LY6dItIYR4gq5GkkBqLM8YDLdgwufzUVFR0Wx7dXU1+Hy+R21Sot6Fme1OHC/SYnC8Gn2jFB61Ech5nadK9YjTSAMXACGEdFH51b6t2U4IcR9jLX9xsFgsEIlEHrVJQ1+6gcZJmf2ilBALeR2epBnolU4BIFYjcWsiFSGE9HRiAQ9mW/MrkkIeh9RIOZwMqNJbUWOyBiA60hPQGHVX7777LgCA4zh89tlnUCj+7jx1OBzYsWMHjVEnQGZ5Q/mwhFApIpUSHCusg72Vy6MiAe//27vz6Kjqu3/g7zv7ZDJLhuxkZQ1bUhZBFHcrogerctrKQ619tPXRH1iVYitV61Lb2D6t2vax0GNbsa0+Pnqq1tYWa1WwqIBsglskMSvZILMvmUxm7u+PSGTIOuu9M/N+nXPPYe7c+eZz50L4zGc+9/uVxcIc77bYsbTaih5XPzodfgRD8vhHR0QkV4HBMBZWWPBxlwtTcrUoMevQHwzjaK8bH3cPzfuuUytQU2yc1LSSRBSfRx55BMBQRX3r1q0RbS4ajQZVVVXYunVrTGMzUc9A7TY/2m1+FORqUV2Qg/ePueA7bSqvheUW7JHJMtQn5x02aJSoKzNhX2vi54gnIsokBz/7NrTD7h+16NIfDKO1z4ea4tzh5J2IkqO5uRkAcMEFF+D5559HXl5ewsZmop7BjnsCOO4JIFerxNJqK2zeAbTZfLJK0k/lHQhhX6tdFi05RETpzh8Moc3mR5FRi64Ap3KkxJHLjZxyiOFUb7zxRsLHZKKeBTyB0HDVWgBkmaSfyuZlXyURUSL4BkKYlm9A1wmpIyHKDh0dHXjppZfQ1taGgYHIfObhhx+Oejwm6llGXp89R9fS50OhUYteN5fKJiKK1/udLnyh3Ix2qQOhjMGK+uhee+01XHHFFZg2bRo+/vhjzJ8/Hy0tLRBFEYsWLYppTE7PSLJUOSVH6hCIiDJG03H2qRMl2+bNm7Fp0yYcOXIEOp0Of/7zn9He3o7zzjsPX/7yl2Mak4k6ydLpN78SEVHs3P38nUqJI3w2PaPUm9wq6h999BG+/vWvAwBUKhX8fj9yc3PxwAMP4Cc/+UlMYzJRJ1n6pMcNpZSrMRERERFFwWAwDPell5SUoKmpafi5Eydiu1GEPeokS/OnmoenHyMiIiKSuzPPPBO7du3CnDlzcNlll+E73/kOjhw5gueffx5nnnlmTGMyUSfZUQjgjaREREQyxZtJR/fwww/D4xm6H+T++++Hx+PB//3f/2HmzJkxzfgCMFEnGVpUkcdFj4iIiChthEIhdHR0oLa2FsBQG0ysq5Geij3qJDvsTSciIpIvQfi8qi7tJvU78TmlUolLLrkEdntiC41M1El2vIFBqUMgIiIiisr8+fPx6aefJnRMJuokOz0u9qcTERHJldTTMp66ycmDDz6ITZs24W9/+xu6urrgcrkitliwR51k57gnAKNWBTcr60RERJQmLrvsMgDAFVdcAeGUvhxRFCEIAkKh6NczYKJOslSap0dDt1vqMIiIiIgm5Y033kj4mEzUSZbMOv7VJCIikiNOzzi68847L+FjskedZMk7wOWuiYiIKL38+9//xte+9jWcddZZOHbsGADgj3/8I3bt2hXTeEzUSZYaul3Qa5RSh0FERESnkX5axs83Ofnzn/+MlStXQq/X48CBAwgEhibHcDqd+PGPfxzTmEzUSZYGw8DsolypwyAiIiKalAcffBBbt27F448/DrVaPbz/7LPPxoEDB2Iak43AJFsqBT9HEhERyY1cpkaUQwynamhowLnnnjtiv9lshsPhiGlMZkIkW58e90odAhEREdGkFBcXo7GxccT+Xbt2Ydq0aTGNyUSdZMvmG8D0AoPUYRAREdEppO5Ll2uP+re+9S3ceuut2LNnDwRBQGdnJ5566ils2rQJN998c0xjsvWFZC0/V4smVtaJiIhI5u68806Ew2FcdNFF8Pl8OPfcc6HVarFp0ybccsstMY3JRJ1k7YQnIHUIRERERBMSBAF33XUX7rjjDjQ2NsLj8WDu3LnIzY19cgwm6iRrTce9sBo0sHkHpA6FiIiIwAWPJqLRaGA0GmE0GuNK0gH2qFMamJbPPnUiIiKSt8HBQdxzzz0wm82oqqpCVVUVzGYz7r77bgSDwZjGZEWdZE+pEKQOgYiIiD4jCCIEhfTVbLlV1G+55RY8//zz+OlPf4rly5cDAN555x3cd9996Ovrw5YtW6Iek4k6yZ4or3+HRERERCM8/fTTeOaZZ7Bq1arhfbW1tSgvL8fatWuZqFNmCoOZOhERkVwohDAUQljqMGQRw6m0Wi2qqqpG7K+uroZGo4lpTPaok+yxok5ERERyt2HDBvzwhz9EIPD5jHWBQAA/+tGPsGHDhpjGZEWdZC/MTJ2IiIhk7uDBg3jttddQVlaGuro6AMB7772HgYEBXHTRRbj66quHj33++ecnNSYTdZK9UJiJOhERkVxwesbRWSwWrFmzJmJfeXl5XGMyUSfZ6+OiR0RERCRzTzzxRMLHZKJOsnfM0Y9Ssw6dzn6pQyEiIsp6rKinDm8mpbRQatFLHQIRERHRmPr6+rB+/XrMnTsX+fn5sFqtEVssokrU77vvPgiCELHV1NQMP9/f34/169djypQpyM3NxZo1a9DT0zPumN/4xjdGjHnppZfGdDKUufa12rG4Mi/h404xaLC02opl1VZ8odwMnZqfXYmIiMZzsqIuhy0ab775JlavXo3S0lIIgoAXX3wx4nmPx4MNGzagrKwMer0ec+fOxdatWyc9/rXXXotXX30V1113HX72s5/hkUceidhiEXXry7x58/Cvf/3r8wFUnw9x++234+WXX8Zzzz0Hs9mMDRs24Oqrr8Zbb7017piXXnppRF+PVquNNizKAkc6HJhdZERDjzsh480rNaGtz4u9zbbhfZVWPXrdA/AHQwn5GURERCQPXq8XdXV1uP766yNmYDlp48aNeP311/GnP/0JVVVV+Oc//4n/9//+H0pLS3HFFVdMOP6///1v7Nq1a3jGl0SIOlFXqVQoLi4esd/pdOJ3v/sdnn76aVx44YUAhprq58yZg927d+PMM88cc0ytVjvqmESnGgiJaDruxhlVeXi3xR7XWAummtHQ7cJAKPLTeKvNj0prDlptvrjGJyIiylgKEYJCBv3hUcawatWqiFVDT/f222/juuuuw/nnnw8AuPHGG/Gb3/wGe/funVSiXlNTA7/fH1VME4n6e/6jR4+itLQU06ZNw7p169DW1gYA2L9/P4LBIC6++OLhY2tqalBRUYF33nln3DF37NiBwsJCzJ49GzfffDP6+vrGPT4QCMDlckVslB0Gw8C7LXZMLzBgXqkp6tcrFQKWVVtx5JhzRJIOAHq1Aj1u3rRKRESULk7PCU9dcCgaZ511Fl566SUcO3YMoijijTfewCeffIJLLrlkUq//9a9/jbvuugs7d+5EX19fQnLVqBL1ZcuWYdu2bdi+fTu2bNmC5uZmnHPOOXC73eju7oZGo4HFYol4TVFREbq7u8cc89JLL8Uf/vAHvPbaa/jJT36CnTt3YtWqVQiFxm49qK+vh9lsHt7inaOS0k/TcS8+6HRhTokRMwtzJzx+Wr4BS6vzYNKpsOeUVpfT1ZZZ0B+U15LERERENLby8vKIvLC+vj6mcX71q19h7ty5KCsrg0ajwaWXXorHHnsM55577qReb7FY4HK5cOGFF6KwsBB5eXnIy8uDxWJBXl5s99lF1fpy6tcFtbW1WLZsGSorK/Hss89Cr49tVo5rrrlm+M8LFixAbW0tpk+fjh07duCiiy4a9TWbN2/Gxo0bhx+7XC4m61nqo66hfvW6MjNEAJ/0uNEfDCNHo0SBUYsikxY9zgA+PeHFpye8444lAGie4BgiIqJspxBEKGQwNeLJGNrb22Eyff4te6z3Ov7qV7/C7t278dJLL6GyshJvvvkm1q9fj9LS0oiOkbGsW7cOarUaTz/9NIqKiiAIQkxxnCquedQtFgtmzZqFxsZGfPGLX8TAwAAcDkdEVb2npyeq/vNp06YhPz8fjY2NYybqWq2WN5xShPc6nAAAtVKAUauEOxBCa58PrX2T7zU/+StnUYUFg2ERogiIn+0VP3tSFAFXfxAd9sT2oBEREVFsTCZTRKIeC7/fj+9///t44YUXcPnllwMYKkofOnQIP/vZzyaVqL///vs4ePAgZs+eHVcsp4orUfd4PGhqasK1116LxYsXQ61W47XXXhtePrWhoQFtbW1Yvnz5pMfs6OhAX18fSkpK4gmNslQwJCI4TtvURHrdAfS6J+5ty9UqUTXFAAjA+8d4jwQREWUPQQhDEKRvE01kDMFgEMFgEApFZFe4UqlEODy5n7NkyRK0t7dLl6hv2rQJq1evRmVlJTo7O3HvvfdCqVRi7dq1MJvNuOGGG7Bx40ZYrVaYTCbccsstWL58ecSMLzU1Naivr8dVV10Fj8eD+++/H2vWrEFxcTGamprw3e9+FzNmzMDKlSsTdpJEieYJhPB+51CCPqsoF6GwiKbjbJshIiKSK4/Hg8bGxuHHzc3NOHToEKxWKyoqKnDeeefhjjvugF6vR2VlJXbu3Ik//OEPePjhhyc1/i233IJbb70Vd9xxBxYsWAC1Wh3xfG1tbdQxR5Wod3R0YO3atejr60NBQQFWrFiB3bt3o6CgAADwyCOPQKFQYM2aNQgEAli5ciV+/etfR4zR0NAAp3OoTUGpVOLw4cN48skn4XA4UFpaiksuuQQ//OEP2dpCaeOTHg/0agVqio34uDsxc7wTERHJVSyLDSUrjmjs27cPF1xwwfDjk/c7Xnfdddi2bRueeeYZbN68GevWrYPNZkNlZSV+9KMf4aabbprU+F/96lcBANdff/0pMQoQRRGCIIw7UcpYBFEUpX+n4+RyuYZmf7ntWSi0OVKHQ1lKqxIwvcCID7vYCkNE8hIO+ND+6FfgdDrj7uWl7HUy3zp8xWIY1XF1TyeEOziI2pf2y+bvdWtr67jPV1ZWRj2m9O8yUYYIDIo45vDBoFHCO8CVTYmIiLJJLIn4RKJe8IiIxub0D2L+VLPUYRARESWNoACEz1YnlXaT+p0Y6Y9//CPOPvtslJaWDlfYH330UfzlL3+JaTwZniJRenuv3QGrQSN1GERERJRCW7ZswcaNG3HZZZfB4XAM96RbLBY8+uijMY3JRJ0owfoHw5hRaJA6DCIioqQ4eTOpHDY5+dWvfoXHH38cd911F5RK5fD+JUuW4MiRIzGNyUSdKAm8AfaoExERZZPm5mYsXLhwxH6tVguvN7YpnHkzKVES2LwTL5pERESUjuRSzZZDDKeqrq7GoUOHRtxUun37dsyZMyemMZmoEyVBtzMAlULAYFhev0SIiIgosR544AFs2rQJGzduxPr169Hf3w9RFLF371787//+L+rr6/Hb3/42prGZqBMlgQig0KRFp6Nf6lCIiIgS6uSsK1KTQwwAcP/99+Omm27CN7/5Tej1etx9993w+Xz4j//4D5SWluIXv/gFrrnmmpjGZqJOlCTWHA0TdSIiogx36tqh69atw7p16+Dz+eDxeFBYWBjX2EzUiZJEr1FOfBARERGlPUEQIh7n5OQgJycn7nGZqBMliQBh4oOIiIjSjCCERySmUsUhF7NmzZrwPbHZbFGPy0SdKElEyKN3joiIiJLr/vvvh9mc+JXJmagTERER0aQJgkxuJpXR9IzXXHNN3P3oo+GCR0REREREMUpmGxAr6kREREQ0aVzwKNKps74kGhN1oiRJ4r9bIiIikolwOHk3tbL1hShJZHBDPBEREaUxVtSJkoQVdSIiykRsfUkdVtSJiIiIiGSIFXWiJMn8z/lERJSNBIVMpmeUQQzJxoo6UZL0B0NSh0BERERpjBV1oiSxeQNxvd6kU8GoUyMwGMIJz0CCoiIiIoqPIISTOnd4NHFkOibqREnS4wpAqRAQCk/81VxdmRkQALs3CHd/EA5fEK7+Qbj6BwEAaoWAIrMOFr0aOo0SDl8Qjb2emGPTqhQoMulg0qngCQyipc8X81hERESUHEzUiZIkLAIlJi26nP3jHre02oq9zbZxjwmGRXTY/eiw+4f31ZWZYfMOoP2UfRMpy9Oj1KzDkWNOtNk+T87rysxw+oNM2ImIaELsUU8d9qgTJZHVoBn3+aopOXh3giR9LO91ONHj6scZVXkTHrtgqhnzp5rRYfdjb4sd/mDk14XvdThxwh1A5ZScmGIhIiKixGNFnSiJ9BrluM/naFRxzQ4zEBLxbosdNcVGKAQBH3a5ThlbiflTzThm9+HIMeeEY3kGQtAHQsjP1bAnnoiISAaYqBMlkXKcm23qyi14r92RkJ/zcbcbADDVoodaKUCEiOOuwIQtNac77gmg0poDvyYE7wBnrSEiopG44FHqMFEnSqJuZz9ytUM3bJ5KIQC9rsn3lk/WMUf8Y7bafJhbYsInPW4MTuJGWCIiIkoO9qgTJVGrzYcikxZmvTpif02xEV3O+KZvTKYPu1yYVWTE1Dy91KEQEZHcKET5bBmOiTpRkjUd98KiV0XcWKpRjd+7LgcfdrnQ4/RjWbUVaqX08+USERFlG7a+EKVAq82PqRYdikxaaFUKHEpQb3qyDYaBPc02zC0xornPBz/71omIsh4XPEodVtSJUuSYox++wCDabInvTU+2D7vcKDXrYMlRT3wwERERJQQTdaIUcgfStyLddNyL6QUGqcMgIiLKGmx9IaJJO9Tm4DzrRETZTiYrk/JmUiKiU4REYFpBrtRhEBERZQVW1IkoKh8cc8KgUXJBJCKiLCUI8lhsSAb3syYdK+pEFBXvQAjzppoj9k216LGw3IzZRbmoPe05IiIiig0r6kQUtebjXqgUwvDKpVMtOuxtsQ8/v7DCgo+6XOgPZv7UWURE2UaQSY+6HGJINlbUiShqxz0B1JVbhh+fno4fbHOgPC8HRh1rAURERLFiok5EMWnocmFZtXVobvVRihpHez2YXWRMfWBERJRcQhhQyGDLggWPWO4ioph4BkLY02yDUgD2tdpHPabD7ktxVERERJmDFXUiiktonBbB/Fxt6gIhIiLKMKyoE1FSKAUgnPn3+RARZR1BEGUyPaP0MSQbK+pElHBqpYDacgs+7HJJHQoREVHaYkWdiBKq0KiFUafCwTaH1KEQEVEScHrG1GFFnYgSZnqBAcFQGE3HvVKHQkRElPZYUSeihNCpFPAPhGD3BaUOhYiIkkkRlkepV5H50zPK4W0mogxQW25Bp7Nf6jCIiIgyBhN1IoqbQgCO9rilDoOIiCijsPWFiOJWNcWAT0+wL52IKBtwesbUYUWdiOJmNWikDoGIiCjjsKJORHETBKkjICKiVOH0jKnDijoRxc3p50wvREREicaKOhHFxaRXobHXI3UYRESUKpyeMWXk8DYTURqbWWBEOPO/fSSShQprDhRsNSPKGkzUiSguYZFZOlEqLKqwoMvpx5Iqq9ShUJY7OeuLHLZMx9YXIoqZUgA+4fzpREmztNoKl38ADl8QB9ocAAC7d0DaoIgoZVhRJ6KY1ZQY4R0ISR1GWlIqBCyuzMMZVXlSh0IyNasoF3ubbfi424NuV2B4f/MJD/Jzx54SVaNSYEllHqdNJcoArKgTUcwMGrXUIaSlJVV5aO/zYX+rHTXFuVKHQzKVqx39v+jBMFBuzYEnMIj+YOTNdCadClVTDNjXakdZnh4CNOhjBZ4SjNMzpg4TdSKKWZvdJ3UIaWdptRV7m23Dj9v6Rr6HhUYtXP3BEUkYZZfjnsCYzx1sc8CSo0btVDMAAYIA+AYG0dLnw+FjTgBAh92PxRV56PMOIC9HjfYUxU1EicNEnYhikqtVotvZL3UYaeX0JB0AfMEwKq16FJn16A+G0GH3o9cdwKIKy3BPMmUfvVqJDpt/3GMcviD2ttjHPebo8aF7SAbD/NBHCcTpGVNGDm8zEaUhs579r9FYWjUyST+p1ebH3mYbDnc4YfusTeFAmwNT8/SpDJFkpKbEiER8qe8PDN1D4u7nvSRE6YgVdSKKyVj9szTSkso87G0ZPUkfTyiU+f2XNLpQghYnyNEq4fQPJmQsopPkMjWiHGJINlbUiSgmnsAgKqw5AIDZRUbUlZlh1KlQU2wcd0aKbLO4Ig/7WsdvTxiLP8gqaDaqsObgo05XQsZy+gdh0CgTMhYRpR5LYkQUk2OOof7ZCqseDafMpf5xtxtnVOXhhIczTSwst+BAW2xJOgB4A6yEZpsSsw7ewCCCCVzutzRPD7VJ4M2kRGmIFXUiikvbKDe8DbJlA7VlZhzucMTcZ1xs0mIwgckayZsgDK08GgqLCZ9O8WiPB0H+m6REEkRAIYMtC1pfWFEnooRrs2X3tI3zSk34qNOFeHKjAqM2YpEbykyCAHyh3IIT7kBSZ/lh+wtRemKiTkQJ1+cdQKlFh05H9k3fOKfEiKM97rhbF3I0/PWc6WYXGeELDuJgCqbh7HSOP9UjUTQEhTwWGxKyoC8kC06RiKRQas6+qQVnFeWi5YQXAwloM0jUrB8kTwummtF8woP2CeZKTwSrQYNuJ7+dIUpHLNkQUVKIWZZnTi8woNPuhz9Bq4kOhDJ/IY9sVTUlBx92OuNqjYpGuTUHJ2yO1Pwwyg6KMKAQpI5iqE89w7GiTkRJ0eHInj71qik56HUH4BmIfzrFpdVWFORq4U/AWCRPhSZdypJ0ANCp+F89UbpiRZ2IkqLHFUCxSYduV2b3qU+16OH0B+Huj38qxbpyM/Y221BhzYHdx+ktM9Vgir8t4bczlGhDCx5JHQUXPCIiikvllBypQ0i6fKMGdl8wIWP1f9Y202bzcR76DBYYTG3i7PIn5u8nEaUeE3UiSprmE16o5NDHmCQmnQrvtTsTMtaMAgMaut0TH0hpz5fitqaeDP9WiyiTMVEnoqTpdQewqMIidRhJMzUvcTPbGPXqhI1F8qVVKdBu86bs55n1angCvN+BEkzqhY5O3TIcE3UiSip/MHOThER9V2DUqXC4IzGVeZK3L5RbkMrOF61Kgboyc+p+IBElFBN1IkqaErMOghzuOEqSxuNemPXx35Ofn6vlvOlZYGmVFXuabSn9mb3uANSc9YUSTRGWz5bh+K+XiBJuikGDJZV56HUHMrpSPDAYxsxCY9zjKPmbOOMtq7Zib0tqk3QAKDbpcLDVnvKfS0SJwekZiSihaqea0WrzYV+WJAeKBNwsa/NyVo5MVmLW4V0JknQAKDRpYfMGwL9hlEiCQoQggwKDwB51IqLJUQjA0qo8HD7mhDOLpoMLpniqPUo/Bq0KUnU2He5wotSSuJueiSi1mKgTUdxUCqC2zIy9LdlRRT9VIj6U5GiUCYiE5ErqG6pb+nyo5Q2lRGmJrS9EFBe1QkBNiQmHEjSfeLrpcvrjHqPUrEeHPf5xSJ5CIem/nldm8E3dJAFBTNy0V/HgyqREROOrK7fgyLHsTNILcrXwB+Nvfel1c0GaTCaHNb8cfq50S5SOmKgTUcyq8w1Zc9PoaAqMmrjHmFGYi5Y+XwKiIbnKN2qlDoHf2FBiSb3IERc8Gt19990HQRAitpqamuHn+/v7sX79ekyZMgW5ublYs2YNenp6xh1TFEX84Ac/QElJCfR6PS6++GIcPXo0trMhopQqyJU+AZGSQRt/96CFK5JmNLVSwKAMWl+CMoiBiKIXdUV93rx56OrqGt527do1/Nztt9+Ov/71r3juueewc+dOdHZ24uqrrx53vJ/+9Kf45S9/ia1bt2LPnj0wGAxYuXIl+vv5VTCR3Nm8AalDkFQwFF/bi16twAddrgRFQ3KiVgpYUpmHErMOH/IaU4YZmp5RHlumi7ocpFKpUFxcPGK/0+nE7373Ozz99NO48MILAQBPPPEE5syZg927d+PMM88c8RpRFPHoo4/i7rvvxpe+9CUAwB/+8AcUFRXhxRdfxDXXXBNteESUQpn/K3JsSoWAoz2euMaYV2rO6tahTJWrVcGsV8vq2uZo2OlKlI6i/pd79OhRlJaWYtq0aVi3bh3a2toAAPv370cwGMTFF188fGxNTQ0qKirwzjvvjDpWc3Mzuru7I15jNpuxbNmyMV8DAIFAAC6XK2IjotQzaLJ34qjZRUZ4B+Kbds/Znz3zzWeTOSVGHHPIqyfcN8D5/imBBBn0pitEzvpyumXLlmHbtm3Yvn07tmzZgubmZpxzzjlwu93o7u6GRqOBxWKJeE1RURG6u7tHHe/k/qKiokm/BgDq6+thNpuHt/Ly8mhOg4gSpNXmlToECcX3H0SlVR93RZ7kScGpEIkoQaIqh61atWr4z7W1tVi2bBkqKyvx7LPPQq9P3cpnmzdvxsaNG4cfu1wuJutEEnD6B1Fq1qHTmV33lCyYao57Ssoisx6tNnlVXYmISF7ialqzWCyYNWsWGhsbUVxcjIGBATgcjohjenp6Ru1pBzC8//SZYcZ7DQBotVqYTKaIjYikYdRlx6wlJWYdasvMWFplxftxJulqhYCGbneCIiO5+aTHjfzc+KfuJJIthYy2DBfXKXo8HjQ1NaGkpASLFy+GWq3Ga6+9Nvx8Q0MD2trasHz58lFfX11djeLi4ojXuFwu7NmzZ8zXEJG8qFWZ+TV/hTUHSyrzMC3fAK1KQJezH4c7nNjbYov7Jtr5ZWY4/exPz1R2XxDV+QapwyCiDBBV68umTZuwevVqVFZWorOzE/feey+USiXWrl0Ls9mMG264ARs3boTVaoXJZMItt9yC5cuXR8z4UlNTg/r6elx11VUQBAG33XYbHnzwQcycORPV1dW45557UFpaiiuvvDLR50pECWbJUSOQgJU55WRqnh5FRi0OtDnQZkvOQkRymFebkktgnzplsKGpEaWOApye8XQdHR1Yu3Yt+vr6UFBQgBUrVmD37t0oKCgAADzyyCNQKBRYs2YNAoEAVq5ciV//+tcRYzQ0NMDp/Pxr4+9+97vwer248cYb4XA4sGLFCmzfvh06nS4Bp0dEyeTwBREcDGNZtRWH2h0IDKZv0l5i1qHUoseBVjuOJXkVR7nNCEKJZTVocKhNPlMzElH6EkRRTPuPIy6Xa2j2l9uehUKbI3U4RFmpIFeLiik52C+juaMno9CoRYU1Bwfa7Ain4LehSa+Cyz+Y/B9EkllcYcH+NofUYUQIB3xof/QrcDqdvK+LYnYy3+p7WA2TXvpvjVx+EVM2BjP673X2ToJMRAl13BPAcU8A1fkG6NXKUVdjNOlUKDLrYNKpoVIIGBgMwx0IwqLXIBQW0djrgTuQmiQ2P1eD6nwDDrbZ0etO3QqrJq2aiXoGMuvVmFGQi2A4LLsknYjSFxN1Ikqo5hNDc6tXWPUoMukQFkW4+gfR4+qHyz8IV/9oc4cPvUbA0EJClhw1TngCaDqe+HnarQYNZhTm4mCrHe+2pL763+HwY2GFBQeZzGWMaQUG9HkC2M92FyJKMCbqRJQUbTY/2qKcJ1wE0NDz+bSFlhw1pucbAAFoOu6Fwxf7TCmWHDVmFRpxqN2Ovc22mMdJhHabD3qNEv44VzYl6WlVCvQHQ3DyWxLKJnKZGlEOMSQZE3Uiki2HLxjRRjC9wID8XC0cviCO9ron1VNu1qsxu9iIw+0O7G2RNkE/6YRnANMLDDDr1Tjc4cRgKprjKSkWTDVjX5rdl0FE6YOJOhGljabj3uF2mFytEjOLjFAKAlr6vDjhGYg4ttSsQ7k1B0c6HJJX0Edz8jysORrMLMpF03HPiHMg+fMHWUmnLMSKesowUSeitOQJhCL6vKum5GBKrgbu/kF02HzodPaj09kvXYCTZPMNYE+zDQoBWFhuwYddrrSe5jKbFJm0+KCTK8wSUfIwUSeijNDS50NLX3IWKEqFsAgcbHdgabVVlt8A0EjleTnocaVuxiAi2VAIQ5vUsqCingWnSESUPj7qdMKoYw1F7qrzDexNJ0ozb775JlavXo3S0lIIgoAXX3wx4nlBEEbd/vu//1uagMFEnYhIVtyBEOaUZObCHZlEr1ZKHQKRZASFfLZoeL1e1NXV4bHHHhv1+a6urojt97//PQRBwJo1axLwrsWGZRsiIpnpdEQ3rSWlVm2ZGYc7nFKHQUSfcbkiF9jTarXQarUjjlu1ahVWrVo15jjFxcURj//yl7/gggsuwLRp0xITaAxYUScikhlXf+zzxVNyKRUCbJydh0hWysvLYTabh7f6+vq4x+zp6cHLL7+MG264IQERxo4VdSIimfEHuBCSXC2uyJPNfPxEkpHZzaTt7e0wmT5vGRytmh6tJ598EkajEVdffXXcY8WDiToRkcyUWXPQfMIrdRh0mlytCg09rokPJKKUMplMEYl6Ivz+97/HunXroNPpEjputNj6QkQkMwVGjdQh0Cjmlpjg9HOBI6LhiroctiT497//jYaGBnzzm99MyvjRYKJORCQz3U7OzS1H/UG2JBFlg9/97ndYvHgx6urqpA6FrS9ERHJSbNKizZa+Czdlsl53AIsrLdjf6pA6FCJpCTLpUY8yBI/Hg8bGxuHHzc3NOHToEKxWKyoqKgAMzSDz3HPP4ec//3kiI40ZK+pERDJSZs2ROgQaQ7erH/tbHVhckQeNUgZJChFFZd++fVi4cCEWLlwIANi4cSMWLlyIH/zgB8PHPPPMMxBFEWvXrpUqzAisqBMRyYiPM77I3v42O6rzc+DyD6LPy6kaidLF+eefD1EUxz3mxhtvxI033piiiCbGRJ2ISCbYVpE+mk/4sGCqmYk6ZSdBMdT+IjVh/KQ7EzBRJyKSAa1K4GqXaWLBVBP6g2EoBQG5WiU8/BaEiJKEiToRkQxMydWi09EvdRg0AUEAjjn6YWMlnbKZzBY8ymRZcIpERPLX6ehHuVUvdRg0gbklJibpRJQyrKgTEcmEWadGO/xSh0HjONrrwYKpJhw5xhVKKYspFDKpqGd+jzor6kREMvF+pwuzi41Sh0HjKM/Tw+4LSh0GEWUJVtSJiGTEoldLHQKNY2AwjA47v/WgLMeKesqwok5ERDQJhUYt2pmkE1EKMVEnIiKaBBVXIyWiFGPrCxER0SS4/YNSh0AkD5yeMWWy4BSJiIji5w4MosiolToMIsoirKgTERFNUuUUA3rcAanDIJKWQhi6oVRqirDUESSdDN5lIiKKl1IOX0NnAZuPix0RUeqwok5EJCNhcXLTjU0vMGCKQYuWPi/svgEEQyLmlZrg7h9Em82X5CizV2OvB4sqLDjQ5pA6FCLpKBQyqahLHUDyZcEpEhGlj/2tdtSMsehRoVGLZdVWlOXp0XTci70tNvS6AwiGhpL7Dzpd6LD7sKQyL5UhZ502mw8zCgxSh0FEWYAVdSIiGQmLwMfdblhy1Cg0apGrVcEfDKHH2Y9edwC9E/RHh0VgX6sdSyrzsK/VnqKos8sJzwBOeAZQOSUHhUYtPu5ywR0ISR0WEWUgJupERDLk8AXhiGOp+n2tdiyuyMP+NibrydLa50Nrnw9WgxqFGtWEH6KIMgZbX1ImC06RiCg7HWizY1GFReowMp7NG0SxWSd1GESUgZioExFlKBHAwTYHFrNnPekOdzgxo5B965QdRIVCNlumy/wzJCLKYiKGblCdX2pCeZ5e6nAymkHDblIiSiz+ViEiygLvd7qgEIC5JSbk6lTosPvQ6eiXOqyM8l6HE9X5BjSf8EodClFyCUp59KgLmb9+BBN1IqIsERaBD7tcw4/LLHrkGTQ4cswpYVSZxaxXSx0CEWUQJupERFmqw+FHt8uPBVPNTNYT5FC7A5VWPVptfqlDIUoezvqSMllwikRENJbBMNBq88JqYCU4UYpMvBeAiBKDiToRUZZz+QdRnpcjdRgZwzswKHUIRJQh2PpCRER4r8OJRRUWHGhzSB1K2nP3M1GnDMfWl5TJglMkIqLJONrrgdWgkTqMtOf0x76iLBHRqZioExERgKFKcBnnWo+bJzCIxZUWKDJ/5jjKVicr6nLYMlzmnyEREU3a4c9aYCh2obCI/a0O5GpVOKMqDzMKDFhcYUGhUSt1aESUZtijTkREEY72uDHFoEGfd0DqUNKaq38Q77bYhx/PKzWh1x2QMCKixBAVCogKpdRhQMyCcnMWnCIREUXDHQihwKiFVsX/IhLp42631CEQUZrhb2EiIhrh4243ZhQamKwnUEGuln3rRBQVtr4QEdGoPuh0Y0aBAa7+wUm1bGhUCmiUCvgGBhEWUxBgmjHpVeh2SR0FUQLI5UZOReb/opHBu0xERHLVeNyL/sEQFpZboFZGloOLTFqcUWVF7VQzdCoFBgbD8AQGUTvVAiVLxxGsBjU+6fFIHQYRpRlW1ImIaFwu/yAOtjugVyswr9QEjVKBLlc/2m1+9LhGVtoPdTiwsMKCQ+0OiJlf8JoUo04Nm5fzq1OGYEU9ZWTwLhMRUTrwB8M41O7E3hY72m3+cY892ObA4oq8FEUmf8UmndQhEFEaYkWdiIiSYl+rHUur8rD3lCkKs9Ugm/YpkyiUQ5vUsqDcnAWnSEREUtnfasesolypw5BcfzDEGV+IKGqsqBMRUdKERMDuDUIQkNX96h90ulBhzUFBrhYqpYCPu11w+gelDouIZI6JOhERJdVxTwCzinKzftaTNpsPbTYfAGB2sRFOPxdAovQkCgqIgvRNGaKQ+Z/+pX+XiYgo4+XlaKQOQVaO9rhh0Migx5eIZI0VdSIiSrrMr3tFJywC1fkGvN/JFZAoDQkyuZk0C+77YEWdiIiS6oyqPOxttkkdhux4AuxRJ6LxsaJORERJ1dib3b3po5lXasIHrKZTuuL0jCmTBadIRERSyVErYPdxRc5T1RQb8elxfnghoomxok5EREmjUyvhC4Yj9pWadSi16HHCE0BLn0+iyKRRYtbhmMMP/2nvCVE6ERUCRIX0tV5Rkfn/jqR/l4mIKGPZfEGYdJE1oUKjDvta7Wiz+bCkMg+zi4wSRZd6ZXl6uPvZm05Ek8NEnYiIkmpmkRGV1hwoBOAL5WYc6nAAGJr5ZF+rHQ09bky16LG02gq1MnOncVApBHzczbnTiWjy2PpCRERJtb/VDgBQCsChdueoxxxz+HHM4ce8UhOajnvQn4GtIXNLTTjcMfr5E6UV2dxMmvkTv7KiTkREKRGaxP+pH3S6UGHNgV4tgyQgwVSKzP22gIiSgxV1IiKSlU96PFhWbcWeDJp73axX44NOVtMpM4gKJUQZVNRFVtSJiIhS7/1jTpj1aqnDSJiaYiMCg5mfVBBRYrGiTkREsuMdCGFptTkjVjSdV2rCgTa71GEQJQ571FOGFXUiIpKlg612FBq1UocRF7VSwEAojOBkGvSJiE7DRJ2IiGQpGBZRbs2ROoy4BEMiGnuHeu6JiKLF1hciIpKt/a12VFhz0GZL3xVMRRbTKcPwZtLUYUWdiIhkzZKT3jeVKgSg6bhH6jCIKA2xok5ERLJ2uMOJWUW5+KQnPZPdunILDrY5pA6DKHF4M2nKsKJORESyl65rBc0szMWHnD+diGLEijoREcnex90eLJhqwpFjLqlDAQBYDRqY9Sq02/wYDI9e1SvP06PH3c/50ynjiAqFTHrUw1KHkHSsqBMRUVrwB5P3n7JJp0KudnK1q8WVefAFBtF8wodikw41xcYRx8wszMXAYBgu/2CiQyWiLMKKOhERpYXGXg+sBjVs3mDCxszRKDF/qhnvdzjgC4ZRNSUHhSYtPj3uxQnPwIjjq/NzcLjdgeBnVfQOhx8AsKQyD+7AIAQASoWADzrlUfknSgpBJj3qAivqREREslFs0idsrFlFuVArBexttsH3WbW+pc+Hvc12OP1BLK2yojrfALVyqEF+eoEBwUFxOEk/1b5WOxq63TDpVEzSiShhWFEnIqI0kph+b4NGCacvCOcYrSnBkIi9LTYAQzeyFhm1aDrunXDcvS121E414/Ax3kBKRPFjok5ERGnDEwhN6ji9RomKvBw09LhHfX7eVDP2NtsmNVZYBHrcgUnH2GrzIj9XM2rrDFEmkM+CR2x9GddDDz0EQRBw2223De9ramrCVVddhYKCAphMJnzlK19BT0/PuOPcd999EAQhYqupqYknNCIiyjA5agXa7eOvUKpVKbCs2gqVADT0uDG9wIC6csuI45y+5CXRTv8gCo06CGk6pSQRyUfMFfV3330Xv/nNb1BbWzu8z+v14pJLLkFdXR1ef/11AMA999yD1atXY/fu3VAoxv5cMG/ePPzrX//6PDAVi/1ERPS5AqMWrTb/mM8XGrXI1aqw55RK+cl2lUqrHkVmPQZDYaiViohjkuHDLheWVlsnXbUnSisK1dAmtSxY8Cimd9nj8WDdunV4/PHH8eCDDw7vf+utt9DS0oKDBw/CZDIBAJ588knk5eXh9ddfx8UXXzx2ICoViouLYwmHiIiygEo5drFndrERva5+fHpi9D7yVpt/3CQ/Gfa12LCwgquSElHsYmp9Wb9+PS6//PIRiXcgEIAgCNBqtcP7dDodFAoFdu3aNe6YR48eRWlpKaZNm4Z169ahra1tzGMDgQBcLlfERkREma3puBdleZGzvujUCiyttqKxxw27L3HTNiZCWAQOtTmwuDJP6lCIEkuhlM+W4aJO1J955hkcOHAA9fX1I54788wzYTAY8L3vfQ8+nw9erxebNm1CKBRCV1fXmGMuW7YM27Ztw/bt27FlyxY0NzfjnHPOgds9+k1A9fX1MJvNw1t5eXm0p0FERGlIpRCwrHpo2sS6MjPMOjX2NtsQkuk34CKA/a12LCy3oMKaI3U4RJRmokrU29vbceutt+Kpp56CTqcb8XxBQQGee+45/PWvf0Vubi7MZjMcDgcWLVo0bn/6qlWr8OUvfxm1tbVYuXIl/v73v8PhcODZZ58d9fjNmzfD6XQOb+3t7dGcBhERpamWPh/2NNvQfMKL9zqcUc3GIqWD7Q602XyoKzfjC+UWmPVqqUMiojQQVY/6/v370dvbi0WLFg3vC4VCePPNN/E///M/CAQCuOSSS9DU1IQTJ05ApVLBYrGguLgY06ZNm/TPsVgsmDVrFhobG0d9XqvVRrTXEBERpYP32j+fX71yih5FRh0GQiJa+rxwyKx1h2gsokIFUQY3k4q8mTTSRRddhCNHjkTs+8///E/U1NTge9/7HpTKz3uF8vPzAQCvv/46ent7ccUVV0z653g8HjQ1NeHaa6+NJjwiIqK00drnR2vf5ze4llv1KDHrEz5TTF2ZGUePpcc3D0QUKapE3Wg0Yv78+RH7DAYDpkyZMrz/iSeewJw5c1BQUIB33nkHt956K26//XbMnj17+DUXXXQRrrrqKmzYsAEAsGnTJqxevRqVlZXo7OzEvffeC6VSibVr18Z7fkRERGmh3eZHu82PZdXWhE4f2ecdgKd/cgtFEU2KQiGPGzkVmf/3OuHfWzQ0NGDz5s2w2WyoqqrCXXfdhdtvvz3imJOtMSd1dHRg7dq16OvrQ0FBAVasWIHdu3ejoKAg0eERERHJ2p5mG5ZWWbG3JTHJuicwmJBxiCj1BFEU077Bx+VyDc3+ctuzUGh5Vz0REaU3S44aTn8Q8f4PXZ2fg+YTPoQDPrQ/+hU4nc7hdU6IonUy3+poWAeTUSN1OHC5B1A2+6mM/nsd0zzqRERElDwOXxAzC3PjGmNRhQXNJ3wJioiIpCD9LbtEREQ0giUn9orl4so87G+1JzAaolMoVEOb1BRhqSNIOhm8y0RERHS6bqd/4oMAKBUCjFoVcrRKmHRqGHUqHOlwTvxCIpI9JupEREQy1Gbzo9SiQ16OBgaNCoPhMAbDIgLBMPoHB+ELhOEJBOEPhuHwB+HwB9GJfqnDJqIEYqJOREQkU8fdAXQ6mHyTzLD1JWV4MykREZFMBUNpPzEbEcVBBh+HiIiIiChdiAoVRBlU1EVW1ImIiIiISArSfxwiIiIiojSiBAQ5pJAhqQNIOlbUiYiIiIhkiIk6EREREZEMyeF7CyIiIiJKF7KZnpGtL0REREREJAEZfBwiIiIiorTBinrKsKJORERERCRDMvg4RERERETpQhBUEGQwPaMgsKJOREREREQSkP7jEBERERGlD4UKUKiljoI96kREREREJA0m6kREREREMsTWFyIiIiKaNPncTCp9DMnGijoRERERkQxl/kcRIiIiIkocQTW0SU0OMSQZK+pERERERDKU+R9FiIiIiChhBIUKgkL6FFIOMSQbK+pERERElPHefPNNrF69GqWlpRAEAS+++OKIYz766CNcccUVMJvNMBgMOOOMM9DW1pb6YD/DRJ2IiIiIMp7X60VdXR0ee+yxUZ9vamrCihUrUFNTgx07duDw4cO45557oNPpUhzp5zL/OwMiIiIiShhBUMpiakRBUEZ1/KpVq7Bq1aoxn7/rrrtw2WWX4ac//enwvunTp8ccXyKwok5EREREacvlckVsgUAg6jHC4TBefvllzJo1CytXrkRhYSGWLVs2antMKjFRJyIiIqJJO7ngkRw2ACgvL4fZbB7e6uvroz6n3t5eeDwePPTQQ7j00kvxz3/+E1dddRWuvvpq7Ny5M9Fv4aRJ/70FEREREVGM2tvbYTKZhh9rtdqoxwiHwwCAL33pS7j99tsBAF/4whfw9ttvY+vWrTjvvPMSE2yUmKgTERER0aQpBBUUMuhRPxmDyWSKSNRjkZ+fD5VKhblz50bsnzNnDnbt2hXX2PFg6wsRERERZTWNRoMzzjgDDQ0NEfs/+eQTVFZWShQVK+pEREREFIWhWV+im3ElWXFEw+PxoLGxcfhxc3MzDh06BKvVioqKCtxxxx346le/inPPPRcXXHABtm/fjr/+9a/YsWNHgiOfPCbqRERERJTx9u3bhwsuuGD48caNGwEA1113HbZt24arrroKW7duRX19Pb797W9j9uzZ+POf/4wVK1ZIFTITdSIiIiLKfOeffz5EURz3mOuvvx7XX399iiKaGBN1IiIiIpq0U6dGlDqOTMebSYmIiIiIZCjzP4oQERERUcIoFAooFNLfTKpQZH69OSMS9ZP9RuGAT+JIiIiI5Ofk/48T9ecSTYbL5Zc6BADyiSOZMiJRd7vdAIBjW74hbSBEREQy5na7YTabpQ6D0pRGo0FxcTGqym+VOpRhxcXF0Gg0UoeRNIKYAR+vw+EwOjs7YTQaIQhCSn6my+VCeXn5iGVrMxHPNXNl0/nyXDNXNp1vrOcqiiLcbjdKS0uzol2Akqe/vx8DAwNShzFMo9FAp9NJHUbSZERFXaFQoKysTJKfnYhla9MFzzVzZdP58lwzVzadbyznyko6JYJOp8voxFhu+LGaiIiIiEiGmKgTEREREckQE/UYabVa3HvvvdBqtVKHknQ818yVTefLc81c2XS+2XSuRJQhN5MSEREREWUaVtSJiIiIiGSIiToRERERkQwxUSciIiIikiEm6kREREREMsREnYiIiIhIhpioj6K+vh5nnHEGjEYjCgsLceWVV6KhoWHc12zbtg2CIERs6bBy15YtW1BbWzu8yt3y5cvxj3/8Y9zXPPfcc6ipqYFOp8OCBQvw97//PUXRxi/a803X6zqahx56CIIg4Lbbbhv3uHS+vidN5lzT+dred999I2KvqakZ9zXpel2jPdd0vq4AcOzYMXzta1/DlClToNfrsWDBAuzbt2/c1+zYsQOLFi2CVqvFjBkzsG3bttQES0RJx0R9FDt37sT69euxe/duvPrqqwgGg7jkkkvg9XrHfZ3JZEJXV9fw1tramqKIY1dWVoaHHnoI+/fvx759+3DhhRfiS1/6Ej744INRj3/77bexdu1a3HDDDTh48CCuvPJKXHnllXj//fdTHHlsoj1fID2v6+neffdd/OY3v0Ftbe24x6X79QUmf65Ael/befPmRcS+a9euMY9N9+sazbkC6Xtd7XY7zj77bKjVavzjH//Ahx9+iJ///OfIy8sb8zXNzc24/PLLccEFF+DQoUO47bbb8M1vfhOvvPJKCiMnoqQRaUK9vb0iAHHnzp1jHvPEE0+IZrM5dUElUV5envjb3/521Oe+8pWviJdffnnEvmXLlon/9V//lYrQkmK8882E6+p2u8WZM2eKr776qnjeeeeJt95665jHpvv1jeZc0/na3nvvvWJdXd2kj0/n6xrtuabzdf3e974nrlixIqrXfPe73xXnzZsXse+rX/2quHLlykSGRkQSYUV9EpxOJwDAarWOe5zH40FlZSXKy8snrNLKUSgUwjPPPAOv14vly5ePesw777yDiy++OGLfypUr8c4776QixISazPkC6X9d169fj8svv3zEdRtNul/faM4VSO9re/ToUZSWlmLatGlYt24d2traxjw23a9rNOcKpO91femll7BkyRJ8+ctfRmFhIRYuXIjHH3983Nek+7UlovExUZ9AOBzGbbfdhrPPPhvz588f87jZs2fj97//Pf7yl7/gT3/6E8LhMM466yx0dHSkMNrYHDlyBLm5udBqtbjpppvwwgsvYO7cuaMe293djaKiooh9RUVF6O7uTkWoCRHN+abzdQWAZ555BgcOHEB9ff2kjk/n6xvtuabztV22bBm2bduG7du3Y8uWLWhubsY555wDt9s96vHpfF2jPdd0vq6ffvoptmzZgpkzZ+KVV17BzTffjG9/+9t48sknx3zNWNfW5XLB7/cnO2QiSjapS/pyd9NNN4mVlZVie3t7VK8bGBgQp0+fLt59991JiixxAoGAePToUXHfvn3inXfeKebn54sffPDBqMeq1Wrx6aefjtj32GOPiYWFhakINSGiOd/TpdN1bWtrEwsLC8X33ntveN9E7SDpen1jOdfTpdO1PZ3dbhdNJtOYLVzpel1HM9G5ni6drqtarRaXL18ese+WW24RzzzzzDFfM3PmTPHHP/5xxL6XX35ZBCD6fL6kxElEqcOK+jg2bNiAv/3tb3jjjTdQVlYW1WvVajUWLlyIxsbGJEWXOBqNBjNmzMDixYtRX1+Puro6/OIXvxj12OLiYvT09ETs6+npQXFxcSpCTYhozvd06XRd9+/fj97eXixatAgqlQoqlQo7d+7EL3/5S6hUKoRCoRGvSdfrG8u5ni6dru3pLBYLZs2aNWbs6XpdRzPRuZ4una5rSUnJiG/35syZM26rz1jX1mQyQa/XJyVOIkodJuqjEEURGzZswAsvvIDXX38d1dXVUY8RCoVw5MgRlJSUJCHC5AqHwwgEAqM+t3z5crz22msR+1599dVxe7zlbrzzPV06XdeLLroIR44cwaFDh4a3JUuWYN26dTh06BCUSuWI16Tr9Y3lXE+XTtf2dB6PB01NTWPGnq7XdTQTnevp0um6nn322SOmAv7kk09QWVk55msy6doS0SikLunL0c033yyazWZxx44dYldX1/B26teI1157rXjnnXcOP77//vvFV155RWxqahL3798vXnPNNaJOp5t0S4VU7rzzTnHnzp1ic3OzePjwYfHOO+8UBUEQ//nPf4qiOPI833rrLVGlUok/+9nPxI8++ki89957RbVaLR45ckSqU4hKtOebrtd1LKe3g2Ta9T3VROeaztf2O9/5jrhjxw6xublZfOutt8SLL75YzM/PF3t7e0VRzKzrGu25pvN13bt3r6hSqcQf/ehH4tGjR8WnnnpKzMnJEf/0pz8NH3PnnXeK11577fDjTz/9VMzJyRHvuOMO8aOPPhIfe+wxUalUitu3b5fiFIgowVRSf1CQoy1btgAAzj///Ij9TzzxBL7xjW8AANra2qBQfP6FhN1ux7e+9S10d3cjLy8Pixcvxttvvz3mTYpy0dvbi69//evo6uqC2WxGbW0tXnnlFXzxi18EMPI8zzrrLDz99NO4++678f3vfx8zZ87Eiy++OO6NtnIS7fmm63WdrEy7vuPJpGvb0dGBtWvXoq+vDwUFBVixYgV2796NgoICAJl1XaM913S+rmeccQZeeOEFbN68GQ888ACqq6vx6KOPYt26dcPHdHV1RbTCVFdX4+WXX8btt9+OX/ziFygrK8Nvf/tbrFy5UopTIKIEE0RRFKUOgoiIiIiIIrFHnYiIiIhIhpioExERERHJEBN1IiIiIiIZYqJORERERCRDTNSJiIiIiGSIiToRERERkQwxUSciIiIikiEm6kREREREMsREnYiIiIhIhpioExERERHJEBN1IiIiIiIZ+v8GLFwYycigpAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Spatial visualisation of the data, show the data on a map\n", + "dataset.make_geo_plot(variable='temp', title=None, timeinstance=None, vmin = None, vmax = None)\n", + "# You can change:\n", + "# the variable e.g. obstype='humidity', obstype='precip' or another variable. If\n", + "# LCZ information is available (using the dataset.get_lcz() method) one can use\n", + "# variable='lcz'.\n", + "#The title e.g. title='Temperature Vlinder stations 01/09/2022 00:00'),\n", + "# the moment of the day for which the data is visualized e.g. timeinstance=,\n", + "# the minimum and maximum value in the legend e.g. vmin = 15, vmax = 30" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cBGLZ0T6-mr-" + }, + "source": [ + "### **0.6 Using your own dataset**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zkhsLW-UadUQ" + }, + "source": [ + "**0.6.1 Creating a standardized data set**\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NjSSrJEGceal" + }, + "source": [ + "In order to use your dataset with the Metobs-toolkit, you need to standardize your data set. This is done by specifying which column or row of your dataset represents which type of observations, which column or row indicates the locations, etc. By doing so you create the template.\n", + "\n", + "This process is also explained on the [Mapping to the toolkit](https://vergauwenthomas.github.io/MetObs_toolkit/template_mapping.html) page.\n", + "\n", + "The easiest way to create the template is to make use of the `metobs_toolkit.build_template_prompt()`. When running this code, the prompts will guide you through all the steps that are needed to build your own template file.\n", + "\n", + "To be able to build the template file, you will have to look in to your own data (and metadata) file to answer the prompted questions. First, you have to fill in the path in your Google Drive that leads to the data file e.g. /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv. Everytime after you answer the question you have to press 'Enter'. Next, you will have to answer how your dataset is structured. You can choose from the following options:\n", + "\n", + " 1. Long format: When your data has the station observations stacked as rows. The column headers contain the name of the variable.\n", + " 2. Wide format: When each column contains the data of a different station. Every row contains the data of a particular variable.\n", + " 3. Single station format: When the file contains observation(s) of only one station.\n", + "\n", + "In the following steps you have to map the variables of your data set to the variables that will be used in the Metobs-toolkit. You can map the following variables: name, datetime, _date, _time, temp, humidity, pressure (air pressure), precip (precipitation intensity), precip_sum (cummulated precipitation), wind_direction, wind_speed, wind_gust, pressure_at_sea_level, radiation_temp, _ID, lat, lon, location, call_name, network.\n", + "If there is a variable in your data set that is not in the above list, then answer 'n' (no) when the prompt asks you if you want to map this variable. In this way the variable isn't used for the template.\n", + "When everything has been answered, the code will generate a template file for you.\n", + "\n", + "The `metobs_toolkit.build_template_prompt()` will also ask you if you want help to import your datafiles. Here it is best to answer 'yes'. When you do so, code will be provided by the prompt. All the code under ========= RUN THIS CODE ========= needs to be copy pasted by you in the next coding block. By running this code, your data is imported in this environment, which makes it possible to investigate your data.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 470 + }, + "collapsed": true, + "id": "h2SQUkIldai9", + "jupyter": { + "outputs_hidden": true + }, + "outputId": "73271a07-be7a-4958-c967-e66d15fa59a8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This prompt will help to build a template for your data and metadata. Answer the prompt and hit Enter. \n", + " \n", + "\n", + " ******* File locations *********** \n", + "\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "ignored", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Run this code to start the prompt that will guide you through all the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m# steps that are needed to build your template file.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmetobs_toolkit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuild_template_prompt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_build_prompt.py\u001b[0m in \u001b[0;36mbuild_template_prompt\u001b[0;34m(debug)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' ******* File locations *********** \\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 110\u001b[0;31m \u001b[0mdatafilepath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0musr_input_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Give the full path to your data file'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 111\u001b[0m \u001b[0mmeta_avail\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0myes_no_ques\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Do you have a file with the metadata?'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmeta_avail\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_build_prompt.py\u001b[0m in \u001b[0;36musr_input_file\u001b[0;34m(text)\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0mis_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mis_file\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 94\u001b[0;31m \u001b[0minp_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'{text} : '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 95\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minp_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 96\u001b[0m \u001b[0mis_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36mraw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 849\u001b[0m \u001b[0;34m\"raw_input was called, but this frontend does not support input requests.\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 850\u001b[0m )\n\u001b[0;32m--> 851\u001b[0;31m return self._input_request(str(prompt),\n\u001b[0m\u001b[1;32m 852\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_ident\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 853\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_parent_header\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/ipykernel/kernelbase.py\u001b[0m in \u001b[0;36m_input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 893\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 894\u001b[0m \u001b[0;31m# re-raise KeyboardInterrupt, to truncate traceback\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 895\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyboardInterrupt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Interrupted by user\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 896\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlog\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Invalid Message:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mexc_info\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user" + ] + } + ], + "source": [ + "# Run this code to start the prompt that will guide you through all the\n", + "# steps that are needed to build your template file.\n", + "metobs_toolkit.build_template_prompt()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EOyJEy9Ua04L", + "outputId": "dcf1b4b9-7ed3-4418-867d-d7a2fc9c6454" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Initialise dataset\n", + "INFO:metobs_toolkit.settings:Initialising settings\n", + "DEBUG:metobs_toolkit.settings:Updating Database settings.\n", + "DEBUG:metobs_toolkit.settings:Updating time resolution settings.\n", + "DEBUG:metobs_toolkit.settings:Updating app settings.\n", + "DEBUG:metobs_toolkit.settings:Updating QC settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gap settings.\n", + "DEBUG:metobs_toolkit.settings:Updating data templates settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", + "INFO:metobs_toolkit.settings:Updating settings with input: \n", + "INFO:metobs_toolkit.settings:Update output_folder: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23\n", + "INFO:metobs_toolkit.settings:Update input_data_file: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n", + "INFO:metobs_toolkit.settings:Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /content/drive/MyDrive/FAIRNESS_summerschool_23/template.csv\n", + "INFO:metobs_toolkit.dataset:Importing data from file: /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Update output_folder: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23\n", + "Update input_data_file: None --> /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n", + "Update data template file: /usr/local/lib/python3.10/dist-packages/metobs_toolkit/data_templates/template_defaults/default_template.csv --> /content/drive/MyDrive/FAIRNESS_summerschool_23/template.csv\n", + "Settings input data file: /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "DEBUG:metobs_toolkit.dataset:Data from /content/drive/MyDrive/FAIRNESS_summerschool_23/Vlinder_2022_Ghent.csv imported to dataframe.\n", + "WARNING:metobs_toolkit.dataset:No metadata file is defined, no metadata attributes can be set!\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "WARNING! The following columns in the data cannot be mapped with the template: ['precip_sum', 'pressure_at_sea_level', 'radiation_temp', 'call_name', 'location', 'lat', 'lon'].\n", + "WARNING: No metadata file is defined. Add your settings object.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Updating dataset by dataframe with shape: (627330, 7).\n" + ] + } + ], + "source": [ + "# PASTE HERE THE OUTCOME YOU OBTAINED WITH THE metobs_toolkit.build_template_prompt()\n", + "# It starts with '1. Define the paths to your files: '\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g9vyS2dcgdJb" + }, + "source": [ + "You will have to run the above code every time when you start a new Google Colab / exercise. It is recommended that you save this code somewhere e.g. in a text file (or that you do not change the above code and copy paste it every time from this Google Colab)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPA5T886rk49" + }, + "source": [ + "To save the work you have done, you can use the method\n", + "`save_dataset()` see [this page](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.save_dataset) more information." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "21FmrhDesKLr", + "outputId": "dc1db5c0-ed56-429a-eefa-c3eab35695f1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Dataset saved in /content/drive/MyDrive/FAIRNESS_summerschool_23/dataset_after_introduction.pkl\n" + ] + } + ], + "source": [ + "# Save the work you have done to a .json file.\n", + "your_dataset.save_dataset(outputfolder='/content/drive/MyDrive/FAIRNESS_summerschool_23/',\n", + " filename='dataset_after_introduction.pkl')\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "S3VjyG9WWe2l", + "outputId": "46a4ba6d-5de9-4bb2-d69a-b6e84b9f22b3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Initialise dataset\n", + "INFO:metobs_toolkit.settings:Initialising settings\n", + "DEBUG:metobs_toolkit.settings:Updating Database settings.\n", + "DEBUG:metobs_toolkit.settings:Updating time resolution settings.\n", + "DEBUG:metobs_toolkit.settings:Updating app settings.\n", + "DEBUG:metobs_toolkit.settings:Updating QC settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gap settings.\n", + "DEBUG:metobs_toolkit.settings:Updating data templates settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gee settings.\n", + "DEBUG:metobs_toolkit.settings:Updating gee settings.\n" + ] + } + ], + "source": [ + "# If you want to work further on your dataset, you can import it using:\n", + "\n", + "dataset = metobs_toolkit.Dataset() #initiate an empty dataset\n", + "\n", + "dataset = dataset.import_dataset(folder_path='/content/drive/MyDrive/FAIRNESS_summerschool_23/',\n", + " filename='dataset_after_introduction.pkl')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CVA435w0_Jte" + }, + "source": [ + "**0.6.2 Using MetObs-toolkit for your own dataset**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PeXFg_tLg-nq" + }, + "source": [ + "Now you have loaded your data, you can start making plots. You can try some of the above functions of the section **0.5.3 Frequently used functions** to check whether your data was loaded correctly." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 438 + }, + "id": "PmFjDKiig-EF", + "outputId": "e7b8872a-04b5-49cb-c326-c1fad8d9c2e4" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:metobs_toolkit.dataset:Make temp-timeseries plot for all stations\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAH0CAYAAAAnhe8sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZRlWV3nf7/3PufcOebIoXKorKqsCbSRtkRAgeIHJUirqNAij/rYoLatIq24tJV2/ZSyRfzpanECHB7EAREbW34u2gHRFrTBhGKGAooaMivnjDnufM+w9/PHPufccyMjMiIyIzMyq76vtRJu3Lj33H3POfdW5nd/z2cra61FCCGEEEIIIYQQQgghhBBXRO/2AIQQQgghhBBCCCGEEEKIJwIpuAshhBBCCCGEEEIIIYQQO0AK7kIIIYQQQgghhBBCCCHEDpCCuxBCCCGEEEIIIYQQQgixA6TgLoQQQgghhBBCCCGEEELsACm4CyGEEEIIIYQQQgghhBA7QAruQgghhBBCXCV/8id/wt13300QBExOTu72cAD4wz/8Q5RSnDhxIr/v+c9/Ps9//vN3bUxbpZTiDW94w24PQwghhBBCiA1JwV0IIYQQQlx3PvKRj/CGN7yBlZWV3R7KZfvSl77Eq171Ko4ePcrv//7v83u/93u7PaSr7uzZs7zhDW/g05/+9GVv42/+5m+kqC6EEEIIIW5Y/m4PQAghhBBCiLU+8pGPcP/99/OqV73quukM364PfvCDGGP4jd/4DW6//fbdHs41cfbsWe6//35uueUWnv70p1/WNv7mb/6Gt7zlLesW3Xu9Hr4v/4QRQgghhBDXL+lwF0IIIYQQ4iqYm5sD2NEJg263u2PbuhFVKhUpuAshhBBCiOuaFNyFEEIIIcR15Q1veAM/9VM/BcCtt96KUuqizPF3vvOd3HPPPVSrVaanp3nlK1/JqVOnRrbz/Oc/n6/8yq/ks5/9LPfeey+1Wo3bb7+dv/iLvwDgQx/6EM985jOpVqvcdddd/MM//MNF41BK8aUvfYlXvOIVjI+PMzMzw4/92I/R7/cv+R5uueUWfv7nfx6APXv2XJQ9/ta3vpWv+IqvoFwuc+DAAV7zmtdcFJ+Tjf8Tn/gEz3ve86jVavzX//pfN3zNz372s7zqVa/itttuo1KpsH//fr7v+76PxcXFS451Oz7wgQ/wnOc8h8nJSRqNBnfddVc+pg9+8IM84xnPAODVr351ftz+8A//EIB/+Zd/4Tu+4zu4+eabKZfLHD58mNe97nX0er18+6961at4y1veApA/XymV/369DPdPfepTvOQlL2F8fJxGo8ELX/hCjh07NvKYLLf+wx/+MD/xEz/Bnj17qNfrfPu3fzvz8/Mjj/34xz/Oi1/8YmZnZ6lWq9x666183/d9347sPyGEEEII8cQn7SFCCCGEEOK68rKXvYwvf/nL/Nmf/RlvfvObmZ2dBVzhGuCNb3wj//f//X/zile8gh/4gR9gfn6e3/qt3+J5z3sen/rUp0Y6ypeXl/nmb/5mXvnKV/Id3/EdvO1tb+OVr3wlf/qnf8qP//iP80M/9EN813d9F7/6q7/Kv//3/55Tp04xNjY2Mp5XvOIV3HLLLbzpTW/i2LFj/OZv/ibLy8v88R//8Ybv4dd//df54z/+Y9773vfytre9jUajwdOe9jTAFfLvv/9+7rvvPn74h3+Yhx56iLe97W088MADfPjDHyYIgnw7i4uLvOQlL+GVr3wl3/M938O+ffs2fM0PfOADPPbYY7z61a9m//79PPjgg/ze7/0eDz74IMeOHRspXF+OBx98kG/+5m/maU97Gr/wC79AuVzmkUce4cMf/jAAT3nKU/iFX/gFfu7nfo4f/MEf5LnPfS4AX/d1XwfAe97zHrrdLj/8wz/MzMwMH/vYx/it3/otTp8+zXve8x4A/tN/+k+cPXuWD3zgA/zJn/zJlsb03Oc+l/Hxcf7Lf/kvBEHA7/7u7/L85z8/n1Apeu1rX8vU1BQ///M/z4kTJ/j1X/91fvRHf5Q///M/B9xVCS960YvYs2cPP/MzP8Pk5CQnTpzgL//yL69o3wkhhBBCiCcRK4QQQgghxHXmV3/1Vy1gjx8/PnL/iRMnrOd59o1vfOPI/Z/73Oes7/sj9997770WsO9617vy+770pS9ZwGqt7bFjx/L73//+91vAvuMd78jv+/mf/3kL2Je+9KUjr/UjP/IjFrCf+cxnLvkesufPz8/n983NzdlSqWRf9KIX2SRJ8vt/+7d/2wL2D/7gDy4a/+/8zu9c8nUy3W73ovv+7M/+zAL2n//5n/P73vGOd1y0b++991577733XnL7b37zmy96P2s98MADF+3HS43vTW96k1VK2ccffzy/7zWveY3d6J8pgP35n//5/Odv+7Zvs6VSyT766KP5fWfPnrVjY2P2ec97Xn5f9p7vu+8+a4zJ73/d615nPc+zKysr1lpr3/ve91rAPvDAAxu+RyGEEEIIIS5FImWEEEIIIcQN4y//8i8xxvCKV7yChYWF/M/+/fu54447+Kd/+qeRxzcaDV75ylfmP991111MTk7ylKc8ZaT7Obv92GOPXfSar3nNa0Z+fu1rXwu4xT236x/+4R8Iw5Af//EfR+vhX8X/43/8j4yPj/PXf/3XI48vl8u8+tWv3tK2q9Vqfrvf77OwsMCznvUsAD75yU9ue6xrZVcO/NVf/RXGmG0/vzi+TqfDwsICX/d1X4e1lk996lPb3l6SJPz93/893/Zt38Ztt92W33/TTTfxXd/1Xfyf//N/aDabI8/5wR/8wZFO/+c+97kkScLjjz8ODN/j//pf/4soirY9JiGEEEIIIaTgLoQQQgghbhgPP/ww1lruuOMO9uzZM/Lni1/8Yr5QaebQoUMXRalMTExw+PDhi+4DF0Gz1h133DHy89GjR9Faj2TKb1VW2L3rrrtG7i+VStx222357zMHDx6kVCptadtLS0v82I/9GPv27aNarbJnzx5uvfVWAFZXV7c91rW+8zu/k6//+q/nB37gB9i3bx+vfOUr+R//439sufh+8uRJXvWqVzE9PU2j0WDPnj3ce++9lz2++fl5ut3uRfsSXLyNMeaiXP+bb7555OepqSlgeNzvvfdeXv7yl3P//fczOzvLt37rt/KOd7yDwWCw7fEJIYQQQognJ8lwF0IIIYQQNwxjDEop/vZv/xbP8y76faPRGPl5vcdc6n5r7aZjuNIs9O0odoVv5hWveAUf+chH+Kmf+ime/vSn02g0MMbwjd/4jZfVkb7eWP75n/+Zf/qnf+Kv//qv+bu/+zv+/M//nBe84AX8/d///Yb7FFw3+jd8wzewtLTET//0T3P33XdTr9c5c+YMr3rVq3ZkfFux2XFXSvEXf/EXHDt2jPe97328//3v5/u+7/v47//9v3Ps2LGLzi8hhBBCCCHWkoK7EEIIIYS47mxU1D569CjWWm699VbuvPPOazKWhx9+OO8UB3jkkUcwxnDLLbdse1tHjhwB4KGHHhqJQQnDkOPHj3Pfffdd1hiXl5f5x3/8R+6//35+7ud+bmTsO0lrzQtf+EJe+MIX8mu/9mv80i/9Ej/7sz/LP/3TP3HfffdteNw+97nP8eUvf5k/+qM/4nu/93vz+z/wgQ9c9NitTmjs2bOHWq3GQw89dNHvvvSlL6G1vuhKhq161rOexbOe9Sze+MY38q53vYvv/u7v5t3vfjc/8AM/cFnbE0IIIYQQTx4SKSOEEEIIIa479XodgJWVlZH7X/ayl+F5Hvfff/9F3ejWWhYXF3d8LG95y1tGfv6t3/otAF7ykpdse1v33XcfpVKJ3/zN3xwZ/9vf/nZWV1f5pm/6pssaY9a5vXaf/Pqv//plbW89S0tLF9339Kc/HSCPXNnouK03Pmstv/Ebv3HRNjfaxlqe5/GiF72Iv/qrvxqJ97lw4QLvete7eM5znsP4+Pglt7HW8vLyRftw7XsEePTRR3n00Ue3tW0hhBBCCPHkIB3uQgghhBDiunPPPfcA8LM/+7O88pWvJAgCvuVbvoWjR4/yi7/4i7z+9a/nxIkTfNu3fRtjY2McP36c9773vfzgD/4gP/mTP7mjYzl+/DgvfelL+cZv/Eb+9V//lXe+851813d9F1/1VV+17W3t2bOH17/+9dx///184zd+Iy996Ut56KGHeOtb38oznvEMvud7vueyxjg+Ps7znvc8fuVXfoUoijh48CB///d/z/Hjxy9re+v5hV/4Bf75n/+Zb/qmb+LIkSPMzc3x1re+lUOHDvGc5zwHcFcgTE5O8ju/8zuMjY1Rr9d55jOfyd13383Ro0f5yZ/8Sc6cOcP4+Dj/83/+z3Uz87Nj/5//83/mxS9+MZ7njSx8W/SLv/iLfOADH+A5z3kOP/IjP4Lv+/zu7/4ug8GAX/mVX9n2e/yjP/oj3vrWt/Lt3/7tHD16lFarxe///u8zPj7Ov/t3/y5/3Atf+EKAy8rxF0IIIYQQT2xScBdCCCGEENedZzzjGfy3//bf+J3f+R3+7u/+DmMMx48fp16v8zM/8zPceeedvPnNb+b+++8H4PDhw7zoRS/ipS996Y6P5c///M/5uZ/7OX7mZ34G3/f50R/9UX71V3/1srf3hje8gT179vDbv/3bvO51r2N6epof/MEf5Jd+6ZcIguCyt/uud72L1772tbzlLW/BWsuLXvQi/vZv/5YDBw5c9jaLXvrSl3LixAn+4A/+gIWFBWZnZ7n33nu5//7780VngyDgj/7oj3j961/PD/3QDxHHMe94xzt41atexfve9z7+83/+z7zpTW+iUqnw7d/+7fzoj/7oRRMXL3vZy3jta1/Lu9/9bt75zndird2w4P4VX/EV/Mu//Auvf/3redOb3oQxhmc+85m8853v5JnPfOa23+O9997Lxz72Md797ndz4cIFJiYm+Nqv/Vr+9E//dCRWSAghhBBCiI0ou5WVoYQQQgghhHiSecMb3sD999/P/Pw8s7Ozuz0cIYQQQgghxA1AMtyFEEIIIYQQQgghhBBCiB0gBXchhBBCCCGEEEIIIYQQYgdIwV0IIYQQQgghhBBCCCGE2AGS4S6EEEIIIYQQQgghhBBC7ADpcBdCCCGEEEIIIYQQQgghdoAU3IUQQgghhBBCCCGEEEKIHeDv9gCEuFaMMZw9e5axsTGUUrs9HCGEEEIIIYQQQgixS6y1tFotDhw4gNbSkyx2jhTcxZPG2bNnOXz48G4PQwghhBBCCCGEEEJcJ06dOsWhQ4d2exjiCUQK7uJJY2xsDHBfpOPj47s8GiGEEEIIIYQQQgixW5rNJocPH87rRULsFCm4iyeNLEZmfHxcCu5CCCGEEEIIIYQQQmKHxY6TgCIhhBBCCCGEEEIIIYQQYgdIwV0IIYQQQgghhBBCCCGE2AFScBdCCCGEEEIIIYQQQgghdoAU3IUQQgghhBBCCCGEEEKIHSAFdyGEEEIIIYQQQgghhBBiB0jBXQghhBBCCCGEEEIIIYTYAVJwF0IIIYQQQgghhBBCCCF2gBTchRBCCCGEEEIIIYQQQogdIAV3IYQQQgghhBBCCCGEEGIHSMFdCCGEEEIIIYQQQgghhNgBUnAXQgghhBBCCCGEEEIIIXaAFNyFEEIIIYQQQgghhBBCiB3g7/YAhBBCCCGEEOJKPfLII1hrKZVKHDlyZLeHI4QQQgghnqSk4C6EEEIIIYS4ocVxzMLCQv6zFNyFEEIIIcRukUgZIYQQQgghxA3NWrvbQxBCCCGEEAKQgrsQQgghhBDiBhfH8W4PQQghhBBCCEAK7uI69Mu//MsopfjxH//x/L5+v89rXvMaZmZmaDQavPzlL+fChQu7N0ghhBBCCHHdKHa4+76kZgohhBBCiN0jBXdxXXnggQf43d/9XZ72tKeN3P+6172O973vfbznPe/hQx/6EGfPnuVlL3vZLo1SCCGEEEJcr5RSuz0EIYQQQgjxJCYFd3HdaLfbfPd3fze///u/z9TUVH7/6uoqb3/72/m1X/s1XvCCF3DPPffwjne8g4985CMcO3ZsF0cshBBCCCGuB9ZatNYopTDG7PZwhBBCCCHEk5gU3MV14zWveQ3f9E3fxH333Tdy/yc+8QmiKBq5/+677+bmm2/mX//1Xzfc3mAwoNlsjvwRQgghhBBPPK1WC2OMLJ4qhBBCCCF2nQQciuvCu9/9bj75yU/ywAMPXPS78+fPUyqVmJycHLl/3759nD9/fsNtvulNb+L+++/f6aEKIYQQQojrTLvdzm8nSbKLIxFCCCGEEE920uEudt2pU6f4sR/7Mf70T/+USqWyY9t9/etfz+rqav7n1KlTO7ZtIYQQQghx/Zidnd3tIQghhBBCCAFIwV1cBz7xiU8wNzfHV3/1V+P7Pr7v86EPfYjf/M3fxPd99u3bRxiGrKysjDzvwoUL7N+/f8PtlstlxsfHR/4IIYQQQognnizDXQghhBBCiN0mkTJi173whS/kc5/73Mh9r371q7n77rv56Z/+aQ4fPkwQBPzjP/4jL3/5ywF46KGHOHnyJM9+9rN3Y8hCCCGEEOI6UsxuD4JgF0cihBBCCCGe7KTgLnbd2NgYX/mVXzlyX71eZ2ZmJr//+7//+/mJn/gJpqenGR8f57WvfS3PfvazedaznrUbQxZCCCGEENcRay3GGACiKMJai1Jql0clhBBCCCGejKTgLm4Ib37zm9Fa8/KXv5zBYMCLX/xi3vrWt+72sIQQQgghxHWgH8Z0QkMtUFiQgrsQQgghhNg1yhavvxTiCazZbDIxMcHq6qrkuQshhBBCPIF8/tGTLJw7ja8VK33DS+59Fp7n7fawhBBCCHEdkzqRuFpkZSEhhBBCCCHEDS2MLIkFXytma550twshhBBCiF0jBXchhBBCCCHEDe38ShsNhInhTCvO89yFEEIIIYS41qTgLoQQQgghhLihha1FKr4i0IqbGp4U3IUQQgghxK6RRVOFEEIIIYQQN7QDY5oojFFa0291SYwsUyWEEEIIIXaHdLgLIYQQQgghbmgnVw1e4KM9Ta3iE8fS4S6EEEIIIXaHFNyFEEIIIYQQN7SH5yNQCpRCLSwSIx3uQgghhBBid0jBXQghhBBCCHFDm2guwOoqxDF2Zoa4F+72kIQQQgghxJOUFNyFEEIIIYQQN7RavQzGQhjCwgK9Zm+3hySEEEIIIZ6kpOAuhBBCCCGEuKHN1spY62JkjNKYnhTchRBCCCHE7vB3ewBCCCGEEEIIsV0LCws88sgjAExOl1EmAc9Dm4Sw3drl0QkhhBBCiCcr6XAXQgghhBBC3HCWl5fz27paQSUJlMtw5GaQRVOFEEIIIcQukYK7EEIIIYQQ4oZjjMlvK8AmCfR6mJOniMLB7g1MCCGEEEI8qUnBXQghhBBCCHHDqVQq+W0LWM8DpdBaYyOz8ROFEEIIIYS4iqTgLoQQQgghhLjh+H5hOSoLNk7AGJIkkYK7EEIIIYTYNbJoqhBCCCGEEOKGUyy4KwUq8CEI8MolTBLv4siEEEIIIcSTmXS4CyGEEEIIIW44pVIJrTVaa0yn5xZNDQLYvx9ZNFUIIYQQQuwW6XAXQgghhBBC3HCMMfnCqapWwXp194skIYmlw10IIYQQQuwO6XAXQgghhBBC3HCWlpZGfrbdLsQxydw81kqHuxBCCCGE2B1ScBdCCCGEEELccLrd7vAHpTCdLgxCbG8AUnAXQgghhBC7RCJlhBBCCCGEEDccrQu9Q9aiSwGUS3jTk5husnsDu0E8+OCDtNttAO68806mpqZ2eURCCCGEEE8MUnAXQgghhBDiMoWxQeGW6Cz5cvHotdRoNOh0Ou6HJEENBlAq4S0sYMtSPF7PF77wBfr9PgBKqTx6J8vCF0IIIYQQV04K7kIIIYQQQlymr33jPxAnhlrZ52M/e99uD+dJ5aKc9r17AQi1jx9LpMx6ms1mfrtUKuW3l5eXWV5eBuDQoUNUKpVrPjYhhBBCiCcKKbgLIYQQQghxGeLEsNKLAAgT6RC+1s7PL6HSortVCtvtomo1/NuOYI8v7PLork+e55EkLm4nDMP8/oWF4f4KgoAjR45c87EJIYQQQjxRyHWvQgghhBBCXIZWP85vh4l0VF9rjz02h1IKpRReGKFqNQC8L39ZIlKuQNbpLoQQQgghLo8U3IUQQgghhLgMsRR1d9VULYAoGv65MAe9HmGlhkx/rE8mIoQQQgghrj6JlBFCCCGEEOIy/fY3TIKC5Z4UMq+1icXzUL8JtIbAh0YdfB/v5kO0vniOJDF4nvQXFRUXStVar1uAzyJnhBBCCCHE5ZG/gQohhBBCCHEZFIqZmma25nF0SvpYrjXV7UC5DLUaBAHJ0hJ0u3gPPUS7a/j0/350t4d43SkW2Dfqdr9oMVohhBBCCLEtUnAXQgghhBDiMlggMhAlllYoRcprTd95GwSB+8EYVNUV3qPJKbTa3bHdSLTWKDXcYWNjY7s4GiGEEEKIG58U3IUQQgghhLgMxhpKniLwFJVAKrzXXKk0vJ0YvF4XggC9by/I4dhUkE5WGGNGutrb7fZuDUkIIYQQ4glBrn0VQgghhBDiMsRxQpgYFBDFuz2aJ5/QKsppodhWytjARxkDgwFKYlEusry8vKXHSYe7EEIIIcSVkYK7EEIIIYQQl6mULsqplBR4r7XBwjLl/bPgaUgSbLOFmpqEJGG7S9g2m02+/OUvA1Cr1XjqU5+64+PdDWEY8slPfnLd38WxmyXyPG9kodRut5s/Z//+/Rw4cODqD1QIIYQQ4glECu5CCCGEEEJcBqWG6YzdSAru15p34nGYqIHvo+IEncRYz4NGA0+tbGtbnU4nL0A3m82rMNpLm5ub4+TJkwA0Gg3uvvvuHdluGIYjPwdBQBRFwHBx1CRJRu6P4zjfFxIvI4QQQgixfVJwF0IIIYQQ4jIcn18FY/G0ouRJaPi11tl/kPr4uPthMMBaA2GIWlkhMdvrcdd6d5e2OnXqVF7kXllZ2bHt9nq9kZ+zojq492yMQWs9cn82DoClpaUdG4sQQgghxJOFLJoqhBBCCCHEZdg/UcfTrtAebzfDRFyxchLD6ip0uxDFmEEEpRJ27160521rW41GY7jdcnmnh7ope5Uy55XaeCLI913vlbnE5MRu7AshhBBCiBuddLgLIYQQQghxGYy1dMIEpRT9WCJlrrXavmmYSDvcu11QFoxxee52ezMgxQVFB4PBTg5zS65Wwf1SBfONXtP3/bzLfWpq6qqMSwghhBDiiUwK7kIIIYQQQlyGbqtJLdAopaj4UnC/1qJ+RDAYgOdBuYyu1SCK4Nx5V3jfhmq1epVGuTWX6jK/EtZalFJ5cb2Y1V6MkSna7Xidol6vly/oWrwKQQghhBDieiYFdyGEEEIIIS5DkkR5ZIckuF97frUEWWRKr4dpddCNGl63g7XbK6D7vo+XxtAEQbDTQ91U3B/glUsA2A0K4Zdjfn5+pJNdKYXneXkRez3XU8H985//fD7Wr/3ar72uxiaEEEIIsRH5G4sQQgghhBCXw7oOYmstiWS4X3ODXuhuKAW1GvqmfVCpYGs19DZnQKy1GGNIkmTDzu+rSUXDhUp3cvJmPFtUNhXHcV7Azs5dY0avzkjiYTH+Uhnw10I+oVXo0hdCCCGEuN5Jh7sQQgghhBBbZK3lc5/7HHEcE0ZxXhDUWoqB11qiNZRKYCxkme1BgLn5ZuzymW1vT2uNtXZXOtx12Adq7ocdzJAvlUojPxeja/JidhJjlZf/HBUK7lcr6martNZ4nifFdiGEEELcUKTgLoQQQgghxDZ0u92L7pN64LXXMGknulaAi4PBWlAKZTeOTFlPp9PJO793Y9FU+v3h7R1+/WKEjB4MMGsXUvV9kuVl/HIZwogwtgTTkwB0VvrspuyqA9j9bnshhBBCiK2SSBkhhBBCCCG2qNfrrXv/diNMxJXrL6zA8gr0esNFUuMYe/ossL0ZkHa7nd/elcJuseC+g13lYRgOi+1aY4rZ7YWJI69Wg1oNJidcpk32Z5f/tVjMmpcudyGEEELcKKTgLoQQQgghxOWQAuCu8m/aC1OTLlam20OdPQu9Hn67iTXbOzZTU1P57fLaDvBrwH7mwfy2ajZ3bLtnz57NbxtjUK0WdDqwsEDS6UCni11cRGXveTDASyKUctH4Z1q70O0vhBBCCHGDk0gZIYQQQgghtsj3h399NhZ0koBW2EG4i6N6crIlH6IoXTS1im3UIQyx5Qq6t70u9eXl5fx2v3/tY1QsBtXrufeygwX3OI5HfrZag9YQBHgTEwAoT7urBIIAwhCvXsMYiwXOLK/u2Fguh3S1CyGEEOJGJB3uQgghhBBCbFGn08lvK4XLktEaVS5t/CSRC8OQXq9Hr9e7qBi8XVVfg+e5A2EtxDEYQ89AbLdXcJ+cnERrjVKKSqVyReO6HD2vDNUqVCrYickd2+7aRVOZmoJy2e2rhQUXK5N1vXse1GrYahWtFZ5W3Dq5u/1ZOlvYVbGjUTtCCCGEEFeTFNyFEEIIIYTYonK5TBAEaK2xceI6rEGKgVv0+c9/ns985jN85jOf4fjx41e2sSRx3dpJ4iqyvg+VCuWjtxAE2yu4J0mCMWbXOqrDsYnhD62d63Dfs2fP6B2+7/bZzMwwEklpmJ11+7CQZQ9gHr7CY3SFjHEZ7taCjSXeRgghhBA3BomUEUIIIYQQYouWlpYI0yK71QoMEMeoZmt3B3aDKJfLhKGL36nVale0rf5Km0pWaM/v7OMdP4GJqiStkIU/ctno5dsmGHvuoQ23ZaylGxq0gjOtFl91RSPbvqn20vCHsfEd225xAsFECbrXgXIFWk1sUEIFAZQTWG1CxXW+K2PSlnKohN2NNn3VfP7zn88XJ7ZxDNoDazCDAVQb13w8QgghhBDbJR3uQgghhBBCbFEYhihAAcYqGIQQhiSS4b4lnuehtcbzvCvuJvdnpqDRcMXhXo/kwhxUKiRPuRtVDsBCdKFDeKZN7/OLl9zWw+db1EqaSqAx1i0wek0Vol+U2l53/lbpwMOEEZRLMDuLmpzIc9sZ9F3UzMyMu1pDKRc7swsd/4PBgCRJSJIEPB/leSg/IDx37pqPRQghhBDickiHuxBCCCGEEFvUGBvnocfPUfEVSRwT+J6L6PC93R7aDaHT6eTF7MHgyiJC+hcWaEyNQeBDtYpXr0O/jz7xODaqgALTibGDhLATXXJbD51d4qlTaWa4tdc+WqbYiZ7sXLF/6dQCSRyjlCLuDSjNzrhfrKwMJyu89Nzt9VymO0ClAtYyKFd3bCxb5XmeK7YDJlsU1xiWV1eQ/nYhhBBC3Aik4C6EEEIIIcQWGWNJDBib1kjTWBSvVCJJDJ4nF5BeShQNC98rKytXtC2bJFhAlct5BAqlEsnRo4x3BnheCX+qTHS+i9KX7hpvrbQpTVZBaQ63Llz7gvtzvz6/aaendmyzrdUm3pj7J1+pUYO5OVdopxDFU6+7//d98H1sYlC+B0lC5Jd3bCxbleXp52NKJwUe6w44fM1HI4QQQgixfVJwF0IIIYQQYotiAxO2T1CquxiQVst1uDdbu5G+ccPRWufF1CstajduO4zShQmOhQUXlaI1QdXCNlJ+vq5zHFqHoVxGW3vtI2UKOfSm29+xzQ48n/LSoouLAez4OMr3MVEM8wvoeg3T6aH3uM531W672aRSAIB3leJtLmWjSJ25ZnyNRyKEEEIIcXmkBUcIIYQQQogt+vsHzxA00o7g1VVXyCyXMeNj+WKqYmPl8rBjenx8+4uDDgYD5ufnmZ+fJ1lehWbTTXpYC7Oz+eO2W8y3E2meuedhUcRppMk1EwTDsQQ71xP16LlVmJ52XexKQeLy2VXgo/fMuis0FDA/D50ONk5cRI/nopIa/V1eDPgqRe0IIYQQQlxNUnAXu+5tb3sbT3va0xgfH2d8fJxnP/vZ/O3f/m3++36/z2te8xpmZmZoNBq8/OUv58KFC7s4YiGEEEI8WUXGuk7qLOu6VALfR9frxOYaF2lvQMVImX5/+53cc3NzHD9+nOPHj7tFU8fHYWxsGCmTJNBswbnt/V3RO3jAbadSwdaqtHvXePKkWFju9nZss92w0BWeJKh6DTwPVdj3SmvYswfqdazvu30Yx2AMnrr2l22MTJZkt5ME072yzH8hhBBCiGtFCu5i1x06dIhf/uVf5hOf+AQf//jHecELXsC3fuu38uCDDwLwute9jve973285z3v4UMf+hBnz57lZS972S6PWgghhBBPRjqJXRHQWjDGFd6NwcYx1zqF5EbkecPFZfv9PsePH+fEiRNbLr4vLS1hjMEY4wqzUQydDnS7qLNnXWf2+Bi029sa13IrzIvMxDGd1Wvb2T1odYbnVXnnctP3t84P35e1cOFCfs4Sx64Ibw02SfLbaO3+KEXUGOfYsWMcO3aMj3/84zs2rksZiZTJCu6ex0p75yYihBBCCCGuJslwF7vuW77lW0Z+fuMb38jb3vY2jh07xqFDh3j729/Ou971Ll7wghcA8I53vIOnPOUpHDt2jGc961m7MWQhhBDiqhgMBnz+858HoFqt8tSnPnWXRyTWOpA0YWoqL0hmi6aq/gBPSy/LZrqDGJ0WUaPY5FctNhoNKpXKps+P40LHtgVMkl9lYNNjAdCrjlPdxrgWF9tM1X2U75P0BoStzjaefeUGpy9QLpfAGgYr25ssuJR986egfcAtlFqpuCsCAKs1qtWCWg2jfXQ2EVKvQxS5Lncg9AOyozKy73dAp+P2sVKKWuHYhWEhfD/LtreWW/fVEEIIIYS4EUjBXVxXkiThPe95D51Oh2c/+9l84hOfIIoi7rvvvvwxd999NzfffDP/+q//esmC+2AwYDAYXnrabDav6tiFEEKIK5UkSR65sdPFLbEzViKPyaUVvHoNBn1XdK9WoVYlNrJq6mYWQ9hbch3M7UHCdL0EbD1zfWZmhvPnzwOgtHLd4N3uyKKjAH57BfZtfVy+r1GFgr9Nru3nL1HKTR4Ygx7s3KKp52cPc3hy0v2wskKyvIzXaKD7feyMWyhVN5uoxUVsuQy9HszMuAkloNxo7NhY1vrc5z4HuIL7oUOH1v+7ehzDYICKIgar3as2FiGEEEKInSQFd3Fd+NznPsezn/1s+v0+jUaD9773vTz1qU/l05/+NKVSicnsHwqpffv25f/Y2sib3vQm7r///qs4aiGEEGJnFYuO2130UVwbZxZbHD3ggacB5QrucQy9HtEWFnU0xjA3NwdAEAQcP34cYwxKKZ7xjGdc5dHvvpVWn9lp90+QaqCIYtdJ3erH7NnC81utdaJePA+iCLvaRNVr6MVFqssL2xrXbDnB9vqowEfVqkStq1/cfeyxx/JzYerw3nQBU0Vp78yOvUb15puwiXGTE7UanjFQLmOVcrE7pRKJ8vBmpgGwYYTq9fLIpGRpFf+Wwzs2niKlFNZatNYsLS3lHe/Wuo+VtaB83129ADQ+86WrMg4hhBBCiJ0mBXdxXbjrrrv49Kc/zerqKn/xF3/Bf/gP/4EPfehDV7TN17/+9fzET/xE/nOz2eTw4avzDwYhhBBiJySJLLp5vTPGwLQrDdv+AAWuu3psDLOFSRJjDCdOnLiqY7yerfYTjPFBgbUKncZ1Pzbf5rYt/DUtK8oCJIMQr9OB6SkA1J5ZAEythr2wvYJ7qVTCKlCACSNsdPU73BcXF4c/NBquyhxFmMWVHXuN+dOL7CkZbLUKYQRh6P50u66irTWeTVDLy9jxcdT0FAxCd/UGkHj+Vf8Ho7V2JLd9+LOF/gCMQUUR5cXtHVMhhBBCiN0iBXdxXSiVStx+++0A3HPPPTzwwAP8xm/8Bt/5nd9JGIasrKyMdLlfuHCB/fv3X3Kb5XKZ8g4uOiWEEEJcbVmcjLi+/MH/Oc4v/K8vAPDfj6xAdwxKJZTvuVxsY+DCBZI7Ns/cLxaMn4xCAxYLdrhGqFKKKNx+gdsrl6Bccoum1usjv9MYl/G+5XEpykqB7+MfOoBtXf3Jr6TdxVZcpA7GoPp9dy6pSz9vO44sn8Yy5Yr52XarVahUyWc7eulipNa6K2sKDy2bq/OdZLPXwk1CFRfNVdaA1W4MacyPBaKpqasyFiGEEEKInSYrO4nrkjGGwWDAPffcQxAE/OM//mP+u4ceeoiTJ0/y7Gc/exdHKIQQQuw86XC//lW7LVcUNcZFyXS7Ls7ED4jN5pEyq6urG/6u233iZ1SPqwRPKbRS+JphZ3PY29LzG8VM8cFgmN+eJC4iJdULtrNkKoRx4orSxsDZc5go3PxJVypyV0hkf6jVoFrFjI3t2EuYPbNuu0Hg/uzfD0phlxZheQXCEOv5rgM+SVALi6hSyS2u6vvEhVPa931WV1dZXV2l3b6yhV3Nms9KqVQa/lC8UiSO8xx3vYXIpqtp0FqiefpLNE9/iXB1flfHIoQQQojrm3S4i133+te/npe85CXcfPPNtFot3vWud/HBD36Q97///UxMTPD93//9/MRP/ATT09OMj4/z2te+lmc/+9mXXDBVCCGEuBHVC126xYgFgJMnT9JqtbDWctttt1Gr1a718J60VKFVutVLmFldxU5Nubbb9DioPWW2UG8fLRiv0Ww2n/DH9a75x9CTtwIuroSq62CObbCl55fL5WGxN72S0Xa6qHIZGg1st8fg3BzLfcN2ytbjYQ9KaYr8gZuwc9fgSoR63RX5wRWZkwQ8D12/snOg2Wxy6tQpAIKbD7uOdoB2G9VsYvfvR83O5o+3rU6+YKzRnWFHVq2Gf+vNI9v+4he/CIDneVe05sDaLP5ebzjhojxvOPmRLYbr+4TVq7eA61Y8+i//RHP6IADj85/lqd/yil0djxBCCCGuX1JwF7tubm6O7/3e7+XcuXNMTEzwtKc9jfe///18wzd8AwBvfvOb0Vrz8pe/nMFgwItf/GLe+ta37vKohRBCiJ1XXChV69ELERcWFghD13Xb7Xaf8IXZ60liwE/jN9oz+7AHXdGNfh9abdCKeLWFOXLnptta29lb9GSIFCrvncY2GpAk6HgYI9MabC1SJi48xxrjusPLw+5oVatSOXqEsf7D2xrXagQzzSZqfNy9TvcaHIuzZ+HAgeHPngdhSDS/dEWbXV1dzQvaXqUM8/NuYsjzsGkko5lfAN9HjzVQteHVANorfO90u0RRTDCR7pPCvr/Sq3HWRiuNLBJdmGw03R46HV9Y3bnO/8vRbkYw5cbZmX9yR0MJIYQQ4tKk4C523dvf/vZL/r5SqfCWt7yFt7zlLddoREIIIcTuUUphrb2oMJsV2wEGg8G1HtaTWmQSPOUKbXFi4Nw5mJhwv1SA1ljYUqTM2omUovqaHPInIpvF8YCLOEmdXt1anI7neWitXYE23Ze220XV6267ngeAr7YXhD5GlBfbIc2Zv8qMscPzodmEUgmsHS16X4bid4WuBNjKNEpr9xoXLsDYGFormJoEQK2sQDiAatUtnBpFLq6nViMo50H7Ltol7Ti/1Hm8FeOFfb0hpfJiO4B3Ra94aZ/5zGcwxuB5Hk972tPWfYwpZMib6vYii4QQQgjx5CIFdyGEEEKI60RxIcFLKcYviKvv5GKLt77YFdv8uI5aXcbWanmcDEBpfmFLi3ReqlB5pUXMG4Epld37TJLh2qDWsvfMI8DXb/r8KIqGk1HLy6g4hj1pFIznQbdLeH6esLe9DvWu8fAXFvFqNZJzF/Ds1Y8vWWn2mU4/yyYx6GwV2Ss00n2ulCu2g5skyiaKilfIKJXfr8BNZASBy8dPEsgy5aMoL7hv5XvqUnx/m/8M7XSJoqu3xsVG36mtVovz588DkFSqeOlETq9UuWpjEUIIIcSNTwruQgghhBDXiXPnzuW31xa0tNZ5oXFycvJaDutJ79xCj/JNGgUYPGxQcnEy/b4rXJZK2JsPk8Sbx6IEwdayyp+orEqLv4UOdZRib9za+EkFI1d+TE25OY5m0y3yCVCrUbrtCOaLj2xrXNoYPAXUqnhHb4FHrv6imMrX+T7Q1kKlAkpRufUQ//LhfwVgKdR86//1zG1tt7igqQLodFwBPSsqV6tun1WqUApGJ4oWFiDLd7fW5SllHe6FIvmVFtyLz/c8DxNF2LUTTtZCGLqs/nqN4DLmox599FEWFxcBuPnmm9mfRuoUXSrmqdls5s+ncOWBusKcfSGEEEI8sUnBXQghhBDiOtHtbhyrUSwKed7VDFcQa33NoQBfp/vf80jCEC+pAMrFgADq8cdJ9h3ZdFtrF4t8slmZW2FmasIVgI3J87rL5a39syQJL77PKj3slu908E6dwqz24ODWx+UrV5zOysA70Gi+qXKv6/aBtTAz7YrvvR4GRVByEzMzpe13dRcjZVDKLc4K2MEAlXWrFxZNHTE7C0mCXV0F7WG1QmfxPIWYniv9DipOClhrsWHoJhyK4jhfGBfAXEbMT5Y7r5QayaAHePDBB/MYmUvRWqOUIgnD/JxVi1eWsy+EEEKIJzYpuAshhBBCXCcu1WmZZbsDnD9/nlarhVKKqakpGo2rH39xLfR6PRYWFgAYGxvb1U7+drvN0tKS28e+yfe9UmlRtlyBIHFd7pUK9sgRTLJ5hnv2/i5iLWqbueNrfeITn8gXXr3nnnuuy276xr5pV2yP42GHO7DVdx7HhaiYdht6fdTEhCta9/tQr5PcfTf24ZObbmthYYFHH30UgOqBPdh4WKg216Diro11EzZKueiWJAFjCMIIqpcfWeL7fl5ctsbCyrLryNaFwvLiIszMuNvjY/lrm5UmqlGDIECtLYArRZy4/bLQXWfmYxuKi6YaY/KJKwD6A/BdPFDxfq223+I+GAzy79V+v7/uGC71vRuG4fD3enhFAtNTHDt2DIBSqcRXf/VXb3tsQgghhHjikoK7EEIIIcR1olKp5N2pxTxvYww2SfIO0+7qKqurq4Dr4HyiFNyXl5c5e/YsSina7fauFtxPnz7NysoKAPsrCeC6XLEWbY1bZDIModEAY1DnztEfuziuYq2LFrzNCrvGEIXbyx1fS2t93efA+xcuQCVw53IhR9xuYcFZgNgWCr2NhvvTbEJp3EWlJAmEIUHU33gjqSRJ8okUU62gdLVQ+L/6BffK9NgwpiXr9tcaWwrycejLmIOp1Wo0m818u2qsAb6ParVgbg7GxzFao+IYpRSm1UbPTIPnoSfTaJ5uF+LY5b+ncT02Seij0Aqi5Mr2T/VSi442V11uvDFuHFpDGBJH2/98RIXnFK8garfblyy0Z4rRNyaM8gz3wXKT0pTLva+snZgQQgghxJPe9f03ciGEEEKIJ5GNcpFtlnedFnuKNbiLCrg3sGzRWGPMFWdEX6ms2A5QDdSw+1wpOHjQFYsbrpCJ1phyGaU2H/NFi0Uq5SIqmk2+8LHPX9GYs25eY8xIofF60te+m2RYc3yTmamtbWC9XZwWhJP5BbdwarVKVL5EQTe1vLyc3/Z8D+X7kCR4X3roGp1/hU9yELhzyULiF65MuIyrHorfCUqnsUdZd/bevVCp4Bnj3q/nuWJ7ZmXFTSRZ99qJ5+fnKL5Po6SpBZo99SuLlCkVOtdLpXRNBGPcn7173eSJ57nPWaUC4+N4l3HFRj2N0wGYyBaMZevRTsViujXWjcnzqMRhPsF1pVemCCGEEOKJRwruQgghhBDXiWLhpth9abKcZ/cgiknEN3rBfXFxkYWFBZaWlrBprEr2ZzclDOvCxbFYa+Hxx91ClN2u66i2FiYnMd3OxhtMbRTzYsfG8L74qcse79oC8fnz5y97W1dTteS5wrLnuViZKIIwpNfb2vHOjom1uP2/tARp4dzbMwv9PurcOfxWc9NtFSdVAGy77TL6777rivvbl5aWWFhYGC64mWq1WiwsLLhooX17h2+m23VFZ5UWyQvvd7tGurITg2m2II6xhXPPBiUXydPvw/yCW1C123WFdt+HShnKZXQx31xd2bg2cma5514/nRSwq013XhRfezDAxtufRCp+nxT3y+V8v6gkgcEA+n3icjmf3NrtyUEhhBBCXH8kUkYIIYQQ4jox6PWGP3SHt5MkXTgxi78IIyi7DtHrMad7Ox5++OH8dr1ez4tXaxc4vNZsYlCe600prO2JQhFrb/iX6LQoqHyfJL6ywpsXXv57Xlv020pcxm6IwphyFLniaqnkirvGUN279Q73PMq7VnN/mk1XLG42Yf9+7E03Efe2t9ioAtRggE3jma50uufhhx/Oj8lMlpWOW6gzF4buxDLGXS2RKvaOX84ZtXfvXs6cOZNPYOlxt1CqarVJVlbxxhqoKMSm4zKdHjqLeOl23UKl5TK0WqgwdMV3pUb2ib+FqzkuxZjh8y0M44WSBDVRiLXJYmDCEMP2u+qVUmit832RqdVqFxXh3WAsJ06cYHV1FaUUY9kis+CipNLvYl0afu+uzYYXQgghhJCCuxBCCCHE9SJOhtXdUoAxZpjL7VqtAYgGA4K04P5E6q4sLqS460WsQnVxpBnWWvy9e1yheDUt9FYqEMck7c2LvBcdrwsXXF51pwNcfgzMjVJw928+CI266xTOdqzWVGpbmzjS8wvYiTQmJAzdfqtWXaxMrQadDvrcOfRyB2Y32VhiIJ1UQSnMxER+2JNr8bkqvkYyPHdMWiS+/M3a4g9uP3ke+B7e1D53d7lcfMbwptbunO503cKlhWgiC6j0e+hKJyQsljCxeMrdNsais4Vj00ksqxQqK8TXavj63LZfxxgznLAsyK6ouUiS0G638yuHyoX9ZLU3PGc9XXjK9iZ31nPy5EmMMfi+z6FDh654e0IIIYTYXVJwF0IIIYS4TlQSwyAttKnTp/OCO+AKlEHgCoqF51xy8cEb2EVZ59cLrWBuHmamXUEyKwhGEcrbvAO3Uq7m+dHWgtrnCqB0u+h6+RLPvLS1BfbdjuTZiCqX0qLq6PHVW7xSIzp9En/sLlf4nJhwf1ZXXSRJpwPjE8T7b8KauU231e5HNGpplngYYpst1OQkpj/AbnP3rbS7nFvukFjLZLVMlBh8vU4HdVG16v7EMbQ7YBJQGlut5lewXM5RXDx1AZN2oJsoRnkKFQRQrkCvD4EPyytQClyGu0lcgd0YV+zPrhxotVzB3RhAobpdqFbcZFOSjFwF0uv1MMaglKJWWAx3I3FsKHnu3XkmQZVcNjpKweIiVCqo4joExlC59aZt74vixN3y8jJHjhwB1slwb7bc++q0ScbG8s9TMedflQLX7Q9wYR6bFuW7c4vwjGdse2xF586dy7vwpeAuhBBC3Piu03/JCCGEEEI8+UTahzSh3d5yS140Ncagmk3svn0wMUHSC/NwhZ3orrxeVCoVwjBEKTWy2OFusIZ8taPCxQXO4bQgtrTkirz1OtTr2NUtLJpaKDSbCLzh2pGYiS3Gqqxj7RUB1yJqyBjDQw89BLhO4Ntuu23T5yjPc13USTKyU80W43RMVoI2FlZWUK2Wi4HJitftDuGFeaLO5ldItBeaNI7scT9ojd7jWuJ14KPM6pbGk/nIp7/ItO8KxKf7MFlx49xSo7y16QmX3i58pi+n4N7vG1RW89YalRaJ1aCPTSNSlFbYdBFR1e9j6+4JemHBdbi32yjfd4/PJpLCEMbS6BtjRhrjP/vZz+aTC8961rM2HeP8cje/PdtrQml8ON4kcduy1k2kVKugNV6tssHWNlaceCp+Vx48eJAvf/nLQNq5n8bu4OnRdTGMcecraYxMmnOvrHWZ7hboX/k6Gtm+u14nyoQQQgixPVJwF0IIIYS4TrTiEM9Pc8MvzJEkCZ7njS6aCvTDmFL1xs9wX9v9W6lU8sLxrme4FxeILN5vLSwtoxp11xGbTgyo8+cx5T2bbnfQHRYatW9gteUiaYzhzML2J08+/elPE4bhReeIDcNtb+tyrK66wrTWeksF9/5jp6hONdy+q9XyovtKd2txOuHNt1Cq111XuF/HTk66Dvd+3/2ZnKTSqKMeP7PptjpJGrcCrpAaxzCb5tBcQd3TV7a4xvHolSoF0SAi8AM3eTA5mb7BEBVFxInBWljeZhY9gDZ9kiTtkC+eE37gOtvrdbdoasrUai6rPY6x1SqqVIJSCWuMu6om20alPIyn6XSLL4nnecRxvOWCcRJGroO+WnUd99nnwhjs3r1uvLFBFa7g8crb/67b6AqDi2J3snGni6Hmigs49Af5FS1aa3cOM7rI7eUYWeT2Oo2CEkIIIcT2SMFdCCGEEOK6MZqlHHZ7lEoljDHuN90udHuUSsPIhm7ryrsrd4u1llKpRJgWPa21eWFytycSijU0YyyezjqWLUmrQ1CtYBlmWUdhjFWbF7n73c6wa1YpVLuNDQIUMH4ZVd4kSYZFukKxs7S8su1tbVexOLiVzHFrLZXbDrv33u/n+4DBgLOnly75vGyBy97SKo1G2RVJu13Uygq2MeYmLSoVaLfxzpyFVg82uWAgSCK3cCu4SKAkyT+B241wTyx0Q7c/lgaaRnk49o2q936t4orNcQzNpnt9pdCJcbEuSrFHb9ypX9wvMOyONl4JlTalqyBAnTuHnZjAGouamnS/WF2B5QR8Dz0YYGdnoVRCLSy6YxKGrsPdK+SWW4b7a80VKNkEmbU2nyi8FBPFbu0CgKkpF5lVdgV9NTeHrVRQZs2k22V0f5fL5ZGrPz760Y8CjIxPKYX+8sPY8THs/v0Xv2b6uqp45UHg5/tCXWGs1xPpKiUhhBBCOFJwF0IIIYS4Tni44pkC1Mw0cd91/VprIe36ZDBA+cNiUXcL0RnXsyQeFpuiMMqLuLvd6dmPLI1yWmgrVN+11ujDBy5aONK/+RDR+fam29WWYQFPKZLJSXRQIilVsMHmGfBrjeynQqeuja/+RMzKykp+eytXJFhrGZw6R6WeFpqDII0mscOomHVkRVKAif0zw/c5Po4dH3cd7t2ui/cJAqxWW+pQb0V22FkdxZjEoFotvPPnsXbzHPKicTWgHLhJh716mEekjHELgqbnUOCXiOIIBSRRgue5898qlRb7FQrrJiQAdeLEhq9Z3C+NRiM/BpGX4CUKpRVKg73JZZ+rldXhIr1aQ1p8L14NYfQww92uro52fzfqw58vsX+NMZsW3B+dX+TmCZ3HteSF/FJp2OG+uorKCvGA6W//qo1izT6KYrJJzeL5aq11M2zrFPSjdns4+TfoQxq9o8zw3NEryxc9bzueSAtfCyGEEMKRgrsQQgghxHUij55QCs6do7XnIJP7Z11R9dx5mJyAKIbA5JHPce/GLbhn3bAWwEIcDovHu931+eBCxNP3ZbEbFj8tmJo4gbkLeNPTrjM9K3B3ugw6nU23Gy53oF6Mo9Cu2GcTUNubZMgWqcxlhbsk4fHHTnHo6y9+zvz8PCdPngRgcnKSo0ePbus1iy6nUFg5ctDdyCJcymWoVKiUt/bPEr8cuIU749gV2JtNtxjoRLrQZxgS79mLYfMiqF8qDRe9rRh3LIBkbAz1xXPbel+jsSA27z53XfzDx0VRCMqlyOhaxX3WrUVl3d6ttls8NfseuMTiwVrrfMKl2+3mtz1l0daCUW4fKeW6/30PJrNFenuuqxxc53uvB1GMTrvbaTZB6dEidKfjtrNuMV3l59/ZRxY48pRLL3DqdbtuEYOJCbcwa9Ylbi12YRFVClBRDBOFhYS3GN3S6/WI4xhrLa3lDjatlytrGVlxOj1kxljU3r3Doj/DeQWv0RidFMjy3H0vf7wXXNk/qddeqSCEEEKIG58U3IUQQgghrhP2k5+BO26BSgXd7RKHriB2ZrmDsi5WRmHx2i1Uwy0g6Hk3bpEmSRJIm2WtgTDp50Wwfmd3o3LuuamUF9k7oSFIu5SVp4kGMZ6x0Ovni0iqRh21tPmYe1rjpUVUO7+AShfqJErQ24yUiaJotLM8jl0R0PdZ+cSD8L0XPyeOY6LIXTnR7XYvfsA2bHeBx36/j+323BUaWo8UOLe6KdvuQBK7J6SL1bKy4uJlOh3wPIK5OZLOAPZdeltHwhUgvXKk2cSGEapcxjt3Fmsa23pvxamSsqeG+8ZaEmPJLkopNoyP7L9mE2VtvpBpJilkrV/0moWrG4rFWu0XYmCKBePCYqBGa3TaOW51x8WiVIGFBXdcZmdhZc3CscZsUGyHxJg8dumLJ1Y2LbjPVGowk/5TtDipoFT+mbArqyOfiGiL3wkPPfTQMEZG6eG5tearMkv7UQDj4yO/y5+TRcpYi/W84Xiqlfz3iX/l8VfZ8dvsygAhhBBC3Bik4C6EEEIIcZ3w4jCvyClrGbR7AHRXlrAHXIyJ1RplTF6g+ZdzPZ6xm4O+AtZa16mfVbGGSRyEvd1dNNUrVPoqvkprbhaiiGB6EnwPNYhdd67nkbQ7EG3eld8f9KlnRfqs2A5oa0i2maJzUUes77vzJ44Z+OX1n1Sw3YL5WhcuXMgLyFtpzo3j2C28mT1pELpomSRxLd8bKHZy62rZFZGLEw1KuQiUWg06HeJ6HRtv/t68pLCNsTFUWuxMJsbhC5svulqkisMv7pBej263R3nCHfO5bsJUVZMklmq36Tq7E+PiccB1uJdLLm5HKbzZ6S29fvFcyFPjrYV2x3WGV9IC8dISVGuuAz6la8MMcqMUOopcl3vxWIGLoun2XKf84mjmfrH5vG17m463FYZULyxi9+3L3kA6AOO2XQpQcfr5SiNduourG2zNxetk+6BazFS3ZriAbeH7xV1RE+IFPkmSoBfm3T7KJjysdVceDGdHUMW1EirVfKIgiq8s/ipbu8IY4674Kb6uEEIIIW5Im69uJIQQQgghrgk9MQbT01CtYoEoDSC2STSMmKhU8Mpll/MOTJ/68m4O+YoYY1yR3QIobKSwxnW7Y3e34NQJ3aSGtRad5rUrQAcB/oULEMdYnUbDKIWu14nizQvurZNnXVxHrwdzc0RnzkKv5zqkt/mWL4rdybpxg4BKeeOCu9YarfUVd9P2er1CZ/rmFfdSqQTW5ZXT77vCstaQJEziio0ji8CmRn6uVFxRVilot13GeZLkBVKqVThwEDu9yYqpQFyrDgu9cYy6cAFaLbyHH0Zt4f2MbCu2+flSzGCnUmH17Fz+3gaJITaWyOI6zuMYohBaLdTqqstJT88pAH3q1LbGAbj3lO2zJCFptlzhGtLvlwoJFtNqwWoT0+m683FpyRXifd/tx0E43F62zVrVdcDPXDwRkL3//RObZ60vdPuuQN7ruSsUsnPX82DvHpicxHpBXmzHWvrRxpNwxQmH4lUfpvCvXVNMX8ISxCHa0wSlAPbtGxbbIR/P8PS2w3Mly3xP7/NrlU3f76UYY4ZxQJ636+tXCCGEEOLKSYe7EEIIIcQVaLVaaaevZXJykj179lz2tvqlCqU0/sHeeSe27wo8ttcZxi6ki0xmXbS3LV5GQe46ErY7+BUfO4hQ1RpeFn+xy0k5jYe+ALcfhSTBGgsTaeREq0XfL1Ei7RDPFkD1FN4WBj37FUfyRSCpVgkefxysy9zW22yFuahgnlW/222ajdmLn4ArkmcFvcHgymJ7YuUD27sSQXmF49vvu4J7GDJ+/jgPPPAA4N7XM56x/nUbJk7wKr4rIDca2EYjzRtP33urhX/uHKYzgNufcsmxDPwK1UIncYzGs9DRJeLtnn96GCNjjC2EgHucX53j/ANz+foMtXRxVaUUtlx2sTjpLrGtNqoUDBcKvfnmbQ6EYfEaYGoSL10clfZwUV9fKWyaG68XF12BvVrFLC27HPfs+VlMUbbd4mtc9LLuvsEWLtW4tREAcf66676NYlCPUuy/6/DI70+ePMlgMLioGzyLTAKw2k2YAfSNoeoVPmSNNDZoeRmmNp+gGdmvSeKuAlCK0tLi5s/dRPZZ1lpLlrsQQgjxBCAFdyGEEEKIK7C4uMjCwgIAnU7nigruyeIyzM1BrYY5d4F4z63AmugQY2B5BaYmwVpMY3tZ09cTay2638GrTYKv6HU6VAJXBFRqd4tOycQkXqkExqCaLWi18gU+g4kxCAKsMS72QinU0hKEm3e428IFprbdJjHgW0sC6CuZZcg6cLV2hcQNFiHNs60Z7QS+HCcWQo6MuzGvTYQpRnzcfvvtzM6umQDIOqZ9HzyfWqFwf6k4DdvuukVFYdj9bCyEITZOUJ5HPDOL8dsbbiMzcXj/8IdSCW/fHogiquM1uv3tLUZ8uhVzd9kdWxPHeOAmBdrtvJirlKLmK8LYECaWRrXqCtrdrnsvUYwK/JFs+3i1ueFrBkFAFEUXL7hpjJuESLcZd9r4U1MQJy4XvVwmsRY9GECSFJOc0Gty4VV/4I5VNkmURbxc4lRtDTb/HKg4xIxV0XHsutyzRWONYWTmaTDIX9uuOV/Pnz+/eTe4SbDKFbNtp4OdcK+TJAa/13WvOzWFOnMWW624KwAKbKuNqpRdgT0xLmbH990Y05gec+cdm77ftQaDAb1eLz9uy92IsqcIjVtI2r/EYrlCCCGEuP7Jf8mFEEIIIa7AyspKfru/zSLdWgHGFc+0JkgiwBWuVLePnUiLi3HiFurUGqwlCDePbwA4fvw47bTD9Y477qBSubIYhJ1grSXYny5a2emgksICh+raJx8+8MADeUyLPniAfKXLqUkXdZFmuKvZGVd4VDq/8sDu2YOd2zz3eyTqu9HATydMVLuz9ZVDs+cXH2+MW/CyMYZeWKCk199WrVaj2XRFXL2mpf4LX/gCxhg8z+MpT7l0dzjAl+cSrI2pB5rmwPD1hd8VC8BZJ70xhsFjJymXfbfoZHbVwGDAICiTnZGXKrjrsQaUg2FECi6iRpVKqBKolRW8hXlMP4RN5r4sljw0JIpQi4vYWg29uIihtun7X1hY4Ny5c/mYs3HHnR6BcleiqNVVbFpwT5KEsdVFSjftpeRD0gzx0n2VL1rabGHVAFVycTv6EtE4WSf32o5oay2qXIaaew9Bq+nOO99HNVw3va4OP/+603Gfv14vnfhJKdxxCgqLgvZ6EIaoxY27uoNk8+8kG3bQ4zPuh6zYDqA1ZnnFxfKY9H2k4mi0uF7M9t+I6vRQaZG9FIf5R0yrwusuLqK6Lut+7TyCymKPwBXYC4vhuu8A5Trdt+nMmTPMzc0BMDY2RphYPAX9SLrbhRBCiCcCKbgLIYQQQlyBKy2yF2nPw6bdk2Glih+6gprp9yEtGlEKhp3MQGd235a2vbq6mo+13+9fNwV3ul3Xwao0lYULUHfdvd5nPgrPu+eajqeYiZ5Hn6SLohbzm027g9baPSYr+HW7VObPbvoaxcVYbZKg0pgRvW8vwdzKtsZrrcX3fZcB3e+n3eIeNvDx7PqFyKWl4WKXYaFQ2O/380L8Vj00P2C8pthTTaP4N1jsMVvE0loo35ZGpKysuO5uz4N6neDrn5k/Pgqji7aRMVHkTn1j8u5wlS4Ua41bgTepVLFm8wkbE8Xo0jAj3Hrus9fzy5jOyqbPbzabdDodAO6cCfLCd0kDaNAaxegkS3n/nvxc8va4grPqdNIs9xhrzUiXt+ltLfYn63YH3P4IgnQxWuO+UzwP+gPM8jK6XMZ0e67onl6hQb2OrddhobAYqrXDYnJWdK9UoFTCFrrwYXT5gQm7eQFatzrDH6JoGJkF6CwCZ3l55DHRwsroNtK1CIANC++xglLPLeLa74bUs49xp+u61bV2UTpHj44+MY3usqtN1FjD7Uul8olOwtA9JghgfmHT97uWUiofu1KKaS9GaY9Kv8VKN2TfJdZgEEIIIcT1TwruQgghhBC76Pz585w96wq16s7bXTc14CcxNnZFpCiKCLKCbxi6jl7fhzCkqUrrbfYixbzuK40S2VHZApFJDPV0QUalhrEhuykrfCaJK6wZA2GEPz+HmZnB+lVXMAfwffqT6+emFxULk2uL00ZrwjDMC+mbLWra7XaHx7KcFg99fzgJsI5yuTxSaM+sd99mytqQGI/sSFljUd7FBfesGBrHMYPHzxBoi6rX3TkMrrCphnMaAJ/+9KeJ4/iiLnxdShfSDEP3XsfHXXyK1u7qEGMIY0uMZv1k8KHe42cZO3rYFaPLZbdYZ69HJQmJ9eb/TCoWTW1hssaiwLqFXLMifN6NnU0yRJGLKcoWgfV914EehW7NgGxh2DXnQHacLjp3Cpk+Ubvriv6eB54PBw64nRsE6HR7ajAYZsfHcX5eKk9Br0fc7qA9jfIDd15FkYuySq9KsIXXX1vsVn7AZmwUw4ULkEVw9XruuPZ6eWc+qOF+0PqifRHH8bqF9lKpNNxPnp9nxKtSx80MKdy5l+0D3yc6ewGvUkLPpl33UQS9Hiq7uqXXGy5c7Xnueyot5EeeTxzH24qBsdbmY0+SxJ1HWuNhOLXQYt/U2CZbEEIIIcT1TAruQgghhBC7aGVlJS8O2XotL3z18SilvbFePMijDMxKE512xlIqMau3Vpguxk4UFxXcTdZa1Pw89uBBmJkhsSovMvfKm0d6XFXZAonGjBbcga4OqFiL7fZQiQFriM4vuM7izRQfUywmt9oEh/bxyU9+EoDJyUnuvvvuS26qUqnQHhgCDX4c4jVXYWwMFcd4G0TK1Ot1Wq1W+hbVyLa261Szz10HaiTGxbMYW0yoHzp//jxxHDO/2qLiK+j3sbWaK1hWq67D3/MKaR12C1eODMduUfnEh7utqBzaT1xpsnhzzPj59bfQOLTPFU/X5IYrC2yx4L7ez76J8yxwe+ut+e+19jBZLbpcRrVarivfGBfp0kkXR9YGkhIEgcsPL/jMZz4zciVGJgljSOvR2iRgFWgPwpB4cQl/etK9Tr7mw3Ds2cSHXVjEAqpaxa9WsSur4KWFbs9zExLpxF3xXB+JtLGW+KFH4Rvuu+S+S6p12Lcv2zGolRXsnj0j8TWmMKGB5+GvmcwpRsoUc+yLxyVYWgA1A9ZS6XdJ49wxng+1dEqm0yE4dNPoAMvlYV49uMsUigV/rWFyMv3VksuXv8zc9TCx+esoa4nj62CyUQghhBBXRAruQgghhBBXoBjlAPDxj38ccLm8d91116bPv6izuNmCaoWgUcP0XeFl8dGz7KnVYWICbWKs57lymbW02H70wPUQJwOwMLeI3bcvz0M22stqhsTe5l2y27G8vJx3kk6vWRjxkpRyXcntdtpB7uGPNbDaQ/mey7gGSrUS9S8+vOnmwsUVKgdcbr1Nu3eVUjDWQBWiVNYrqq73nmoll0JudZAXMJOxcZL5pXWfs7ZjPGPSCI18kmELpr0Bh6OYKa9OgiaJY3z/4q78PXv2sLCwQBRG2IMH3J2rq25/GgNRRGLsSK74RlTgp93avjsui4uoxpgrjkYRWoFfr6JqVayO6EzB+EbbKsYzRRG23UZ5PpHnY73191PRhfMXsOmkmMr2HbjttVoQlDDnz6NvOYIxhn5sqHTbrqs6SbDZQrJR5KJfKhU3uVNYLyBZWhl5zY2iU6waltDV+LjbP1EESYI/4TrcbRgOH2MS6PfdY8IQZmZQszOo+QUYDLC9vos8yr7bClcjEEWowtoVgDue9TpEEcHchU333aATUV1eRTVq7qqdrNO93R6d6Mr0eoSDkI9+9KOA+97daF/o9GoHABsErhvdWjAJ7TChnE5Gee0OlN3EhplfRAU+anIi29EQlNzVE5WKC30fDNyx8X1XgE8nSLSJCQchwWV+r0b9LiwtuVifIKBk+iwsLFAulxkbk053IYQQ4kYkBXchhBBCiCtQq9VYXV3Nf84iPrbaRT4+Pk632wUg6YUw6KM9TdLu4h+c4rOf/SzVr3k6TLj4h0T7eFlhTylKjc2CMy4WBDtbzL5c5Uo1L+SpVouwGxFMNMDzKN+0d8deZzAY8NBDD+U/P+tZz1r3ccUu2cKdruDmpwVewJ+pYvt9F8sxGEC5jN2/H9M4telYSr7Kc7Oz/PZcoSv9onGsI0kSdHblA7irBfbsQc1MM/bpL6/7nGLsRWlNDnee573FeJmfOvmP2INfQzKVHav1i9Tlcjnvqh9SrosYYDBA1+pbes28ezmLYdm3D9tsooKa6xLWGj01mea5g73Ev3ZsVphN41bU1BS21yPRPnYL69faYjp7GOaZ6arZhIkJbKXsiu2dLiiFF8cuAse9keFzs89juYxdbYIfuEVTgWBmcvQ11zkvlFJYNbw/i43B84ZFa2tRvZ7rqi+V3IRRpeLO7QKjPXS57BYrXVl1Yxvp3FYQBPlCsJB+16Xd3ihFvIWrU7xBDzU1MXz/8/NQq6H6/XwiQi2vDJ8QRfi+n7//MAwplUr5xJQtxPf0+/38dk8FVMMQrGWgfRoa8LU7VVs9dxyieHjVUOH16HYhe59hWIi6ccdep/FeJZNgtnJ1S0HxOFpcHJNOEqzShK1FHmkt4vs+X/M1X7Ot7QohhBDi+iAFdyGEEEKIK5AsLg4LUoVYga10KMNo4UUHHqo2Cb5PcHA/tuTT7XapNipw8hTsmcUzcfHJJFss9KyNX7gedFs9kjPn8KZdgdSrVfLYBrPF/bcVK2u7cTdg18RkqOLttAsZpTGDEJUk2KDkCpOA7Q/oj2+hcz7LqM8KvZkoGmaas7WCu18eTrYkUQLax0sMNonpNqbWfc6Dj56i4bttr3SGuf7W2uEikFs8P+oPPkDnq/+Ni4ZRChNFULl4MscYw9jYGL1en3jQT2NJRt+fSQw67SqPjSVYJwu+2ERepCyuQ9wYt/AoA1TZFazNJWLwTRTjZR3zAGGIMoZSPKBvtvkZCQJXvI4iqFSwE2kx+cTj6Jv2u05oreD0GZiZdo+rVoeLcCqNXVxEeZ5rVfc9NwmwhZd254rN30bS7eLH6UKkWrtOdt/HBqVhYbxQzDaLS+iZ7Nw1LsO9lWa45w9K8+ez2J/CgVhZWRl+XqylM7b55yCp10nm5vHGxrBRiEo73JNBODptkyTuPdRq1NvtkW1slOHu+/5wwlOTf9YqJoJedzh5ll1hMOi7z7Qin+jIP6NRNIwbarfdaWsSVJy4qyCUwihFt9NjLOuO34Li51uBy4rXGmUMJrEoFHEo0TLi8i0vL+cLYc/MzNDI46SEEEJcC1JwF0IIIYS4AnG3D+PpP2QLxZ+tLky6tDSM/tClEmp5GWpVonNz+EdvcfdrTez5+KWSy4ZutVxhOgyZOL95V3WxKLVuF/cu0UmMnppIO3zVSDG1v9jcsdfJig7AaJF7jXK5nC8um09KWIvq9gDrIjO0RvcHYMGaBMIISmnWtt28QBYHJUpZMa/fzxd0pFQaOX82WzAVII4NzV5ExffQgNeoARY1v4DeIG6jGXmMBW4fRMmafZEVaLd6BYQPanER/fjjoBTRnV9Fdcx1ARd3s0kX/03i2L3H7E+v5953peKKu1kG+ppGeZsudDkim7DodPPtKWuxvR7xwhL+4QMo7aMudUiyxTizGJdqFTpdkolJxibG+ej730/5U5/m6T/z0xtuIn+f1qLSDncbJ7C8DNUqSamMZ60r8IYhHDroHp/tC2tdNMnYGGqsgR2EUCqh0mOQnN0ggL64X6z7/2z/6XIZGnU3sZEkaT1f55MQACqJoduDcDAsyrfbZB3s/ngD2+vlme34vjtWcZJ3y7uFjd1xyz8v2cK9KdPtEl24gDWGqFLjQtBAobBYvPExl2XvaegPwPfQxrgu/yhyi0Nnn4NeD3rDCSK3ywtF6/R7TSk1cnWRu9LBfd6M56OzAn6SuBiXSgVQ6PKaqz2CwH3eu133mOLVIKXSyORqpAPiwfbWxShe8WGtdVdFVKtuPzTGRq52EeJyzM3N5VffKaWk4C6EENeYFNyFEEIIIa7A+U89yOS9z3Q/XEbneKVSyQtEViu0tdh6neD24WKLSin8g25RP7u8gjqQLvBnLckWCrOdTicvumdFqd10+vRp2u02zfk5VBrToLDYXj8vZNWOHt6x1xvJLb9EwT0rto9ot11Oe6nkul2tdYstdrouEqbkCqO9R08QJ5vv1+5Dj1E6sj/tho5dDMzNN7uhGZMv/rlR1nrR0sIc49W0OO75eSeuHvTzSJW1vjzf4eAR15XfKXTQWmuHi0JeFP+yvtZrfwqzd5/rzJ2bY9BtAa6zvniKzc8tobRCKe0ytYPAFaTTDHtKJbzCFQ2d0NIoFxb1XG9XxLHbTqMOKyt58dMqDdpDZ1FFcV6Pvlg2SM9zVxicOYOdnEKXAqhWsNUKg9uPXmIPaJRy+9lYXKZ/kmCmp9BpVItt1IexLWsmMlSrhfXTDnvfd13ohZx1AH3oAF/60pcAF1818vxsv6y5WEL3utB0C35aC0mrjT85kXbOp/tFa2yt6s7lxbTwXKm42+lY6PVd7E8xUiaOwK+4eJXeKpRmL96thcGs/L//Lxd+4b8B0Lv73/Cyu/8DAK+fTZjO9kuxmD07g2o2UVFIUrhfGePGW7D2ipS19wGU6jU3MWCMuxol6/BfWcknPNRoOFD6ggp6PVQUYavV0TG6F4LFRahUqESDrS57kCtOqFnAxgZtjPueTvP4tSf/VBdXbmRCTAghxDUj/xUXQgghhLgCNiwUaQs5wovNNseOHQNc5/S//bf/dt3nj4+P592OJu2W1r0e8emzeLffNvyH8uIiTEy4rsvl5bzbuj+zb9Mxru2W3u0O94WFBfr9PlRKbgJhrIGp1vBKZhjJ0+nu2OuVYZhHconCw0hkSa+XFh4D1w27uup+9jyXGZ7mfmcTBNWjt9BfWT833RiTL6Zbf+pR15XteW5bpgFxjF1eganJ/DmPzre5++5Lvy8zcIti5gu7hiFUKsSNMfDX77j9+gPDHOxG0s/vPz7fGnbtjo1hjNm06G+mpvMistWaXnoer41TWl1tcbIbUTYheysWtdqEifFhfE277WJY0smgekm5RVTTQrKyykWDGFDZqTwYDAvYxuTd3GBQtbJb8FN5KOvy7dd7J97Dj8Aht6AoExPYW25x+7BwdUq+mOd6BmDTIWhP54VzZW1eAdfJaASUXVxENRquE75aBaWw/QEqDF2nuwUVx/kYzGqL1bTY2+/3WU+YWEr9HlTKw2x73wfPR3kaf2Lc7Zt2272GUiRK5/tEZ/uv13PjHgyw3Z7bh9mLxHEeTQNpskq6yLEprleRxttkTGHMdqzMf7vDfa7HEx8WFlwBPAzzc9eEEbrRwDYa6DB0k1xKYbPFSrdAaw9jEjdR6aULG4chWnvDq0hKJWwYoYDEgl5edp/JLGM/iiAxJOUKOo7dfqtW3WOy83bG5b73/BJhb3vfV5VKJV+7A2PQNTepp4EYSKzlfLvH125rq0IMLc8vYdMP+dzZ8xw+vHOT2EIIITYnBXchhBBCiCtQuev24Q++nxfIG4UK37qd06nl5eX8tlcKsO02TFbx71jTWZsWd1SnDeVKXmA18eYxJlvplr6Wsv1hrXXZxYDtN9H+cGLA38EM9/AD/wBP/yrARaBsxBiLl2WHZ1Ev/b7rjg0jV/RLErxmE1upuIJpoQi40bUG1tr8CgPf81xHbZJAkqDabez0NGrPrLsvFW+hY3a1E1Otpq+aJJBGBvidNipZv+CurStEA4wlw8VRtVbD9+L7hGFIZc2CmhdvrPCOlSZKO+bX5morG5DYEJTFxDFqZRXd77kM7UrFjduY/LNjAS+N1BjEhkowvH9Et4s+dw4zMTFcgLXVdlns6SRTyxr2bTTH8tR1ZjTWLnZ8qXgdm84C5G9UuWNaWAxXD4ZFY/p99OqqO28A1e+7SRdwn+d2G1WrDwvm1qLGGyOLga7Xrq8A2i13I4rcZBy44ndi3L/4PM9N2GXP6fVdXEq3i9HaxdCUyy5mJVs0dXklncgwEA5QcYxNzzEFnDqzyC13T2GLEwFKoU3Efb/2QayF//p//oED6a/i5zyXO77CFf1sFA33re/nC5J63S42/b6y3R5q2l0xYY0lrlZZ72gUJ8qscRFGVqffLysrYN2EQxIl+PVavj21102m6DAcLo6aCQKs76HH0hiONVcX5B3u1SpKK8w289Y7nc5wl8FwbYfE4KdrGay3joEQW9V/5DEqd7u/RzQ//xA88xm7PCIhhHhyub7+9SWEEEIIcYMpHyx0mGedrdaitlAIB0byho0xaeuoccXXwcAV0LKOV2NIlAeedoXK8XGCxiZF0XWst9DgtVTssE9Wm67Dc2rCFZzSPO6w1bnEFranf/Jk3nFs1xbWCorRJVlBnCDAao1VuG1Uq5gjR7DVmuvKLUymxBtcObA2+sL95LrtrdbQ7eI9/DA2TtzvrSVMNj9Ghnh4zvm+G7MxbrwbPMeGw+fos2fz+x987Owwl8Rauu3epq+vLPm2TGIIB/2L3m9sLMfOtl1Z2oJXr6PvvH1Y3E/P9/x9MBpJojUkJr3fKyzumhZpzdGjrpic3j/cv44XD/Iuz5F9ZwzqoYeg2XJXL2Q569Wq+2wVPssb+fxKj25s6MZm+J59f3Tf23QhWt934zt0KI9vsTMz2MnJfFFQDh92VzlkGeF2tLpurB0ptmevGXgK9u512yiVoN3BrDRdx3o4gFOnXId2t9CF7aWvOTub5sDbYWe/dRNC1uQB9e5cLS70qzWDnjtHmr3hxA2A2jfL/3UAXnhIESzMXTRewE1MnD3rjmWSwPw8dLskqHyBVmutew/p1Qt6TYd7tjmlwEZppr1lGBCjIPI8N5FQr7vIn5WVdD/Y4eelWs0/d7kwhCRdiDe7wqXbdfdnLzo5mZ8rcWdrMUyZarUQj6O1+x7QGluv5WO5TpbaEDeo0mC4vkV5YeO1IIQQQlwd0uEuhBBCCHElikWRQqul6nagXlv/OQXF7nOtFKrm4g84dRpuvcUV44zB9Proes3Fr2DRUQxJQu3Wgxw7doxSqcRXf/VXr/sacRwTG4vCxU8cn2/xVVl0wi5SgBf4LgC72cQGw4VDPWNcF+oOLB5o7rzD3UiLis1mE6UUnuddlIvtHmaHdU1rXQHYGHcswoi42UR7Hnp8zBV7jYFm072PzWgP43luTUTPc0W7Wo3kjjtQnW6+sGX9kS/DCy4dKFHWjETkqHbbRaMcOYK39Mi6z0keO0Hwb57injcxPAe8JBxuSynCOFz3+UXdxFJNF6H0eh3i1fTYeR4X2jGTFU2YwEJ3wMFyQuAZaEVw+gxMjKXRHLh9Vy7nVxWoc+eI9h8g8BQlT+cFyMRY1/2b5r5jjItJSZL0SgTrrvpA5RNVwaCPVesvFmj27UdVK8PPre9Dp4OxFr3JAoP9fp+7Zj08rTBAEkb4xrhFdCtll8evFHZs3MXFlEouruThh+HgQbc4ZlZRNQn0epjVJirwXYd6enWBLmlMWnyNYkullHb729GFfTFmuPBrteq6qro9V1g/fNgV0zsdN8Fg089WFGPjyO23LJLIWOj3UWmkDJTceZ/tjyh227QWrCvQx8XzXinGZid5YZBe/fBt/47Vr3t2+j7NSJXcHkh731dWIY3uUYN0EdfsezHt9lflMiosRtcUutot7vKS7PTV5Ln2ifII+n1XPE/MMLap2cwXPCaKUWuv5iiV3FUA7bY7T8vl0asdCou0GjRxuL1JzOKkp7UWnV6RoZpNbK0GxtJYXd7o6UJsKun10P0+WEsYrn/FkxBCiKtHCu5CCCGEEFdig3qwOnd+mP98iVbFUqk0jFgBVL0OUYROYreIqHad0Hp+DvQ+vJVl1yUL0OlgjcEPSviXyDdeXV3FTwvXFWtZXGjBpdaCvFaUyqMaVBTiTU2m7aoW4/suykJvFNRyaVEU8fDDDwMQ3nzzMOs8ivjCF74AQBAE3HPPPesMS7mFQ7VGhaHrQi6X8+fbMMZ6ww54wBXO9YV1x2KtzXP0zSDEiyK3WGaplHcze488AtMzZDM4/tz62xrR70G5ng06jwzRjz7q4krWUbr7jnVz7I/smSJsL+S/i3ubFxCDSgBpDJC97TbM+Th/v/sa7nyMjKFqQ2459TBmzx7M7BF4yl1w7lwe36Li2HUSa51OQkyx1EtolDQaS7XkXsMvRmxEkTsm4+MuCzzt5CQxaC9dmDUI0IMBVtt18mhATaYRK52OWzT13Dns7CxmMECn5+VGkU1JkhD4aVHYWFQpcOOPE6xSbiLNWkyni0fNjbc/gDvc5I+Nh0Xe7P91teqy/DPGwOISek/ahV74iI8cwqzYnt1ebWLjCJ1encH58y6Syg/ySUC1sgKBjwp8bLeX7688QimJXfG9VhsuIDoYuM9C6gtzPe7CxSQNx5JmuGefi1uODAdbiNqxQYB36jTm8CHIjgNp1MvqKqrVgkp1uEbAyiqmUnFXVeC62bOvBqUYfg9nuf/p/eWpCXeO9gfYVgvbaqHGxlCFCUc16BM1W2jPw9u/1905GEASw/S0+7nZHC5+22pDHKHDCNuoo5JkJPd/K4qLWCoUydw8Xr3uiv/p1TXV7va65oUosvVG/t/XqFzd5NFCCCF2mhTchRBCCCE2kC16CnDnnXcynRVfiorFrjjOC7u2vbVIlJFCeRRju12U52M8HzU27LKNtE/gedhS2XVd+r6LWcCSdDqEJ0/C05627msY46IRFKCSmPENFtS85qzF9vqocgnbGHOd5GnBXVmDMQZvw2T0S4uiKF+MVqWLUwJ5vrXKiqLF4Rg7jB/RHqoUYLM4EN93xUitKZU8TOyKu/lCo26rG44nW0hUBb6biIljiCJMq4UeGyO5+25X5EuzyIvxNouLi5w+fRprLWNjYxw9ms6WxOsfR3P0KGywgKvKcvKtxfQKRfm3/Tp87//X3R4MGLQ3P0eWF1rs2T8JgH7oIaKxWwGIBsPiYyPs8uzjn4DZhqt5h6Hrss4iU7TGzs66z02WdW4SSoHC127xVLpdNzHRarn/h+Hzl5aHhXqtsZ7nrhJIF70ERURCKT2PTpw4Qb/fH4lyolJxWeq33w7tDr5SeYe18jc//zSus95lcMfoMN2mMagoSi/lcIvk8tCX4dBBV1RN2eUVVKMO3W5ebM0mI5JyOf8ErE24Uf2eO1/Scwnfd+OYmnQpMVHk3sf4uHtMt4ttd1BJjE2sm5Tp99EmvUKg03GfwXodW6/DhTm33WzywPPdgq7pVR2Li+7z1R8M96VVoIrfafvWLOqcLSarlCu2A/T6WGtQ2WetFGCz4xxGoBXKJHiBP5xo0KObzO83BtPp4VXK7vslDN1VA0mMCkqosTH3uGbLFeLTxWWDg7Oj48zingYDt0+KEU9jDYgikuVV15leKRP3N78ipGh1YZU8kF6BFwRQLrkJ1rSwH1S3HxcmRKaTKErpZH40tvtXtAkhxJONZLgLIYQQQmxBs9lc936zJk6BctkVBRujUSX9DTqOlws52qoUuIJQ4BP7Jdd52+tBv49/5LArxEShi3eoVIaF4EqFwSU62KrVqlvIUWuIIvyVhW2886tIKRfp4XnYbheTXfZuDFZ7JFvIMd940yqPIjHFSmVhwda1i9nafh+lFCqKUHHkio2djitEzs25Yqa1RIklsdZ1wMYx9Hroh76MXrvgZmplZWXkPdssTsLz0FkB0JiRyIqgsBjnyZMn6fV69Pt95ufn8/uT83OuCJ3FgSwvQ69HdPI0YbR+Z7bqdFxB1xhU4ZxOstZggFKJhc45PvWpT/HFL35xw30cZXnwQHLHHcSJK7S3mm2374yBUonqoIM5eBB75Ah4Ht7S4vCKA2thcckVfNPCN2NjGAtlX1EredDpuvN8ctLFnWSfpUoFDtzkCqd5JI1CldNu7UoZAp/EDicAFhYWWFlZGVm0MitG8+ij7pgW45bWuRrg4p2qXPd6Fr0SBHk0EoGf58Jba/IrVgDsahOTLZocBC4OyPfc1Q9px7nXqOcvk6Xp5EOqVt1rZhM16SQcq03M/IL77uj2SM6ed48JAlfYn5hA+ek6EJOTGM99hzAzg1VuTQEW0mOUHadyGVWruuOjFHS77O24BYhLDM97Be45mbULNhffwOkz7rV6XXQ7Xew2SdxY9u5131lxlG/vkoFNSZJmyCTocOD2e+CjB4N8/QsVR25R2G7PjatSgVLJZdOv5fuuE75Uco+bmnTbz74zPA89Ow2VCqV2E/uFT19qdBcP1675rpiadMdvMIwainrr/zdDiK2oVdOrqMplJgJZgFcIIa41KbgLIYQQQmxBtEExdaTltNDZ2e4XisVKEbXb6z496Q+LviqK4fRpGAzw9sy4buyqi1WwJ0+5Bx08OHxyMX/8EguhlkolFyvR7aK6XQbJ9bEany20pmprRnLTd1JsCi2wa4rsRX7hdRW4YsXsrOv43bvXHV+lKJkYL4mHxcNqFXPXndhg/YtHw3C0+1WlHcMMBqgzZ9ydhbgNAFPIrt9okdveUtMtApltf2oKqlWCmw8RBOv/NV89+pgrbvd6I/34KosOATcpgJuQaG9w3gJ4heKxOX5imGGv00iRtPM80SX06dOokyehPyBS3rAoqxTMTLtzPV2YUj32GDNV19cd9d0kB90uLC66ovDMTF70NY+fdF3X2dhN7Dqas32n9Mj79Lx1OtbLZfdZOnrUFbuL+2WDgrtde44q3H5dXXU551mhuVYddstn50utBlNTqIlx9NSUe3K3C6dOoePYZb6nReJ1i8HpbrPpYyiVXKxOt+smOibGXQyN70O5hHdgv3uPYeSiURbTYnq3CwsLaLtm0rBWg9kZ9zG0QJJgO11spzPczwuLqHRf6sL3iVptblIZz3cgkXbFe+N57vNVr2Mr5eGExOjDR9ZI6IbxcDHd7AqCNApKZWtnFM+ter1wrUyaOZMeF2sMyfk5zNxwMit/0ez9NpvDCdVMur6Gh0WtLOV3nz59mkceeYRHHnlkw89uMpJHb0nmFtxEAMPPlNrlxa3FjS3pRfm5FK2s3zAghBDi6pFIGSGEEEKILdio8DZybyHHV1fKI4+LVldd8XaNwvKcGAW2XMEDt2BhvqiicZnDcYxdWXW3dbowZLbQpFm/oxlccdAGAUq7BSgHnd6l3+w1opRyxb+xMUxQKuQwu+70OE4oXea2O2fPDuMrknjYWXyJrPt4cRnfd3EZtpIuprmwCNWKK7ilncphpYrt9lwihDEulmN+frSztziWzpp4oaVlt1hjpYIdG4MwJDp5muDorflDknC4rWSD7bZ1wOThw+kPbdftXi5jlpaxG0yqxCgXXwEk+/fn99t9N7mCcak0zEeHi2J3imbTOBkAqjWSvjv/H5svnF9hyEJlnINJgrIWW6+h7ziK/uAH0R/+CMnznoupVGFsDFUuu31y220uJ7tcIohD18GeLR7c7aKzxTdrNfSRm7Hnz7srEQDTD9FmeEWDCnwi28/PreK+jOcX8SsuQ596A9otF4cyklEy6vz587TbbTcBZ8ywS9/z3TiVcoXi1SaqXEaXy8PHodzt7MqVRsM9t1Jy51athl1cdMcg61aH0YkYY13qjrF4zabrxjfGHS/Pdcbbbg876KPTgrZttlxcSynIvy9YWnaZ7tUa9Lru2He7kLhFUxkMXCRNLft+MSPfb6H2selHyWCxp8+gZqYxxqC8wjlT3I9rJimCA+780+D2SfbZTBJss+m+03zfraWgXAE+W6i0GnjobFKq2x1OPlarJMbghRGEA2ytNvzuDvw8xohB6D4zpRJaKciy2zNJAu2Oe/+JSRfmHbjLDLIrGFabMDVJctdd+F8+PnKOxOm+OnLkyLqfod7cCqV6NTuoeDZJ10MI8itQkrJEyojLZ2yST8aGjYlNHi2EEGKnScFdCCGEEFuyuLjIo48+CkClUuFpG+SFP1E1Go1179fFrmal8jz38i2HhvevrECcQJa9XdA/cZrGlPvHsO31sX0XD2GLHc9BgGm28EoBqt9HedplHBcK7lqvXyDMxGFEUHWZ1jrZXt7wTsvjXoxBzcwAblFE27F4SQKeRzUesPzRs9S+4fbLeo1HTp3Ks5B1FqcDrpiY5rgXC4DWWrw908OFETPZz/W6KwomCaV+jyjrKlfKHZ+ZGcpq/QJZschrrcVEEV7gQ3/gir4H9hPcftvIeFRpGC9TKpXWjSSqD/pw4gTs2ePeX1p0TPoD7EZtxrfemueg2wM38bGPfQyA+Cl34vV6bqKhXF7/uWsUr0gIWqtEvntec2mV8WympFSi5CmUMW5EnS7mzBkq585T/t//m+aRI/j79pKMjw339SOPwO23ZztvuHBlu50vZsrqKnS66Pk54lIZjcJmC2YWYktUUAzncWsmGGMw1uLvcecerbYrRk9PY6NodBJtzdUJJ06cGP5QLKQWol9UVgCPY4y1ecHVeB76zjvdgwaD/P1mr5ecOu2yx9fbx/lLunu8sD+yX8gWM+33UDZC9/vYahXr+24NgyjKO+BVr4ctV9x7LgWYXg+dpMW5II1QqVSwzXaen2/TBX5Vs+niVICKcns2aXdQh9Irb3prriApTl4U42SMQZ06hZ2eRkVRvhir6nbB81BTU24yLjtX06sudHZFzOqKW2y3VnPjzjLy4xgvi2kqBW5iIXALMCdYVJygk8Rl/WfHbO2EGLiiugIThug4nfzMjk2z6X4/NTl8m4x+l2ymZIdXZSjPG2bdt9ruc+x57qoTIS6TNbirbRQbXikjhBDi6pGCuxBCCCG2pNfr5ZfHb5RH/kSTdVMCLLUGZA3Bx48fZ25uzv1QLLoVMrh1vVAsmZykXRtjnSVXXRdlnIAC3aijJsZhMMDvFbqEjXEF2DTb2QbBmjBnXA7zBvrtLsFN6eCVwpsp8dGPfpTJyUnuuuuureyKHaW1JkkSF63S7br9ZtNef2NBW/p+maWPnmXfvz2IP7txPv2G0m0CrhCX3d6giGWMQWVd7TDct4tLUK+5IlupBOUKUblKHCZ4WXdzFMHcAlF7/U70YqSMVsptL83f99MFGO3Zc6ibDxcGNLy5UQGvVC7BzIwb12CAHQxQ5TLBLTfjrTyy7nO8E8fh6G2u87nfx6QTHmpiwhUNk2RkUmLDKCVA6WEhNT54iOSs+14YmNHneOMN7GDZ7dN6DX3nHZgvfIEITWTA+GVKWQe177tie6/nbhvjCq+NxuhnLe0ot+UyOjFQLrmFQj2N7feHBfBeD0uhqz2O8++xpNt1ETOF6A6VRZOk+9y0u/nvFhcXh69v8/9xi3PGsTt/w9Cdw8vLMD01MnlhlUKdPIU9cJM7D9P1GTA2PScCQKXbcF38tlweLbr3eu7c7veH3eqTk66An14FYIMSxg/QKFSSuEmELComCLDj49jFJVSvDwO3EHAWu6IWF92VNEnizqv0O011u8NM9yDAT2KyaHwzSKD4sdqoq73fd++tXHZd7OnVGSYM8/eYraPA3LzbJ2mnuMqy5Uvp1QATE25SEtznu9Nx7yGKhldqxAlqeso9ptOBMHYLoKIgjjCLy+h61a3DsbDkvoNnprMTBWC4xsLqqrtPqeFVBb1efgya0fbiX0pz5+HIgWEG/+oqTEy4Lvd0rYi4tXGckxCbUdlCvNa6q7yEEEJcU1JwF0IIIcSWFLNoN4pXeSIrFk1XVlaGRdCN4ieMybvdSRLOLre4eZ3tlu4+6mIKADsIMefO401MkHg+XiFSxkQx2hiM76OzQptSrgAWhq4zcgNRp+MKUZ6L5siiZS6Vz3212LTjN0kS1+3d6uCNNYZRD+EAbIACQsyWukUzJ0+eZGHBLQhrlMq7YYHhMSpGhqzd9vHjcOCAO3ZxAtrFg+RxGqWSy8QOfFeoVGnBr1yGmw9RbQ2Ls48//nheoC1+dixp8TArtM3Pw759qP37sh0EQP15z+TYsWNAmsG/jsHsPmrlsisSa50XqNXjJzH94YTNhQsXOJNmxav9+/JFW5Uu5Jl7hSsq1kxKtDsdonCAASbqdfzSOh3w585jjCtO7hkfw3bnXLRIv+/eb5ZH3u0SXVhghTKfvO3reObENLUjh9z4Ox13tcAgRE+kC5caM/wTJ27RS2Nd13Kjjr3pJjhzJu9EV1HkiktZ5MviEpHxsemhmm/HVH2DMVDL3ucghF6P5MI8nqfcOglZ7nph8eORaB/FSMi4yq5IyT6b6USKLpxnSitsNqnSbLoO9WoVu7KCKpXwZqexrRaqVHaFsmzB0qLqMIYkt7IynJDQGtWou+7tdsf97PlgkuHCoktLqGrNvUbgo5dXoNvFtjtYT6PC0P0pRjBp7fb/+DhoTVwuE4aGj/zVF1ie7zFT99PvOzP8jMHo+LUeLkjbbhOfv4A/Po4aDFDNVroGgstJtzfd5Lrps+71KMTzfXdcrXVd/dPTw/PGWrdPEuMmUkol8DSm2XSxPpUKumzzyCDVtahJNymjez23/kFRHKexMm3XJWwSd574/vB7PY398Y4fp1yME0u/39xhWr8Q73tq2HXc72NnZtznOF3cFmspVbd2pYm48Xz2s58ljmO01jz96U+/om197nOfI0on1Z7+9Kfnfz8zceTOY2svOSEvhBDi6pBvXiGEEEJsSbnQqflkK7hba/H9YdEzLhRXrC2ksBeK7CN7yPOYVRt0QPbDPKtZBz4cOuiKlKXSSLFKaVe40+HAFdezTshq1RXt6vX1t09aF866743Jj99GMTlXk7U275pWSuHt2+N+0W6jxhpu/6ULyUabxOSs1el08okRa8ywI7p4272w+//usEDe7XaHkT9prA0UjmOt5gqY/T5qdRXT7uBlkRLp1QaqsCDn0tLSRYulpjsA1Vx1xyv7AxfFuFg1fO3idjrh8DyqzTbceQIugiJ9/VB5rgM8de7cueE2pqYhLcYnpPnZ6bjyiYhe33UXA4PY8Lz/5x9YCt32/n/foLjvhf8u3U/D/RorjbVubKXAJ/TdWGwYufUDrOvuN7Uawa03s3JmhT/4qmfwFd2T+KfOUr5pb16MzSeUwBU1Jyfd+Vu8Pwyh20UvLhIX34dJI1yy8/3QQeyD8xC54ud4yeKlY+6fvUC5WnKfh+oY3i03w4ULI9nsJk6wxg67+YuKC2pmC+EmxnXXF8eQ0muvrmg2XYHV86DfJ15aQZfLozX24nfA2u/duTnYu3cYJwOu8zsMXfd2tYKqlN0+HCRZCDoqSVBY1yGutYu6qdVQtRp2admd67UayWOP4+8drjuhtMoXlfVu2sfMPguL4JV1Hv2Sda/n7704qdXtueJ4pQJRhB+FgMVqBVPuSgu9vOwmCUoao3W+z5TW2Go1XxxVwXCB2+wljAVr8KZn8/2rswI/QGKw8wtuUdUocl30jY2/N1HKTWSA60Cvrzl+2VoIt9+O//mHNt7OOky5Mvy+UMp1I4PbX6H7b0LYuj7W2hA7r9/vbzgZcznbWm+djyAO84m5J9lf2YQQ4rogBXchhBBPaIPBIO/irVQq1C9RlHyiO3XqFBcuXABgz549HDlyZFvP11rn2dteobD4ZHF8ucNXpreL/7hVhUKuTcywiFIs8FqL6bfW3W5pcmzYMdkfYJpL6Hp1tACjNV6akWzCEJ1eJj5SjLvE2M8urgyH4nmQGLTv7d7ESQJWu6K4Xl1xi18micuvj+O049+SqI3jTNbT/qcPwr9xR8kMQrx64VgUsqPzfVevE0URQRDQahWOT/GYttsuaqbZShdMrGCqNZJmhyB7XBhillYYNIeF8XWL7aT59TfdlMdr2P4AVQqIz13Av/XISOFW+T5KKQaxIUhfKjHDAuaZE3PcurqEPnTAPSeNG/HqVdT88P2MjMX3XKEwSfB6/WH3NQzPw0JhMUygorPHWL60BPdl7yUrQluLtoY4Le50Om28C3PoiYnhYr6lAFNzESHxaou+VQQKxm6/mdLsxLBT2fPc1QnZBIS1w+JtrzfMeU8jUkythj51On8fcWIp5wuOKlhdySNljDHExmKxxAlUDuwbbjeKMMur6EF0UVyTizlSI58Xa8FGETpb2NPzXCd02V1lYOcWUPVqmouexkH1em5c9bo7D9NJNRVF4Pt4tSomi/CJonR7pdHzd3nFFYmDdMHTJHFxQqRXLHS7qOkpvJv2Ydsdd4612+4qA0+DLmFrNTeJMBgM42sGAze+7HYWzdLpugWHrUspt4tLqFoV0+7SDaHuTxGcfhT23A7VqttmdYMIqEY9L5ijFAaF9n1Uf+AmH5TKX9+srIBOo2K0JjEWXYjSssa459Rqbrvp4qqYBJsuWEuSYNpttNLY2F3ho8plN4YgyCcqbK+Pbjbd7axAr/ToOZDF+CTJ8AqLMMwniUauYimuxbDBd2w8CAmy2CTPIzl7Hm9izE0epN9RpWSw7nPFje9Si1Fvl1LD7yZjTP73s4EOqHpeek5tvKi6EEKIq0MK7kIIIZ7Qzp49mxeZgyDgnnvu2eUR7Z4oivLO7GKH9lYppfJ/JAZBwOc//3mMMQRBwFOe8pQdHev1aIIBn/3sZy/+RRoJDKAKC6harYdF8CShE9Ty5x89ejSf/DFz8+gx10VpK2V0teK6qIuRDIlBnzmNmZ5ynbzrFLTW7cBNtfoxtXK2OYWxFmV28UoFL03ksDZf+NFo7XKdw0FabFVEdpsdgFkxGQh8f1gwy6I5ios3pv+fFcdGIpitRa2uuqsXEuO6XKenoNWCOMFEEYm1w7gNa4m7PYofq2KsRDF/pHC6QJK4bGzdIEgibLebxupEqInxfA2Bbi9kou46iL3mav4aR/bV0bNTroCYmOECuntm4dxK/rhqtUonWxgyiz3p911Bs3gOJEn6+mHecd8oKQ6Pa872QWOJTaHonHYaoxTlJCZKg+cfOT7HU27d6x7U7biicreL7nQw09P4M1NUS3M8ZaLG6pc+j394L6XZKbd3rEWvndCbm3NF6uyKDnAF4TBELy1jErcYsNvNxmVhZwWtbg9rh8WtdmipBooosVSyBvQ4BmOJen2CwB++vlJ41fUXwlWKdGHbtBBbqUDFTdCQGJJeD7+WLkCbdmlbpVzBF/Iiv+r1sH4AUYzXamK9wtoDJhlG1WSyqyrCEGrpvggCdLPpFjY1LgYlXm3h1aow1nCLb/Z6WKVR5ZKbPGi18jiqLLvfRGlGeZxgEoOxDCdfrB1Z08JeWCAyAfjgtQqLtrZao13t2eOtdQXv9LjYxKCzfHXdG0bNLC65hU/bbZKJqfwKENV1+yufcMkW1ABUu50vukq3i/F8F/sE6LRDXbXbbu2LcjmNJypEwHh6WGjPlEvu89jtpp9RPVykNt0fVCpu4uqRR7DRcHujEzPrR2INjCYYDNx24tjtl+yKl34fUAQbLXwsbnhZkXwn/hucxbOt1ei5/16BHbn6SgghxLWxc1OrQgghxHWouODf5RSZn0iu9PJlpRRJkpAkCXEc0+l06Ha7l5UDHscxjz/+OI8//ng+IXK9yRZXtMaSxAm+HdDtdl30SEHxH7rFf/Kq4iXevs/A9/PnF/fZwChX/IljVKcDJ0/mi+blf7TCHD7kijFZPrJNIyHSRS7tJTLcV89dGHZ2W4v2PYyyLJ5vXvF+2i5rLTZyddG1GepKpX85rdXwD+4nYXsd7slGC8AqNdolPBxMXhR/9NyyO5ZpFrSdnHS5zmkOOWfOuuOkXXRMstRE/defQ9//i+gzZyhh0BsWyOxwwUlj3KKeacyNKZdBa/q1hisGlkquGzxy+b5aa5a/8JiLv+n1GFscfl7sY8fdgqJxzMjZ1+vhx8N91zl7dnQ4UQRJgi4XIk+UGnYfr4m3OTKRRmegme8Ov0ei5bT4nyT0KzVMejyPHqjn+9LW6u5gJ8aV43s94tPnqBnDT969jwkTUVIJVCuuUJ7FhuTnvnaxKfV6vn3AfUa0JixXXFG/24FOh3hxefhcY9Js+nQBVGOYaC9T05YJ32LDEBtGgAJP4/te2tXdGWakp+sduNOl8Fm3uGPSahUy5mNUpYJq1PGPHE6Lu3aYna406vx5lwsOUKthxycwyg1h4Jcw2WOzFyl+b4dhnslMqeTy7AcD6HSwMzMwNuYWXm008A/eNDIBCKCsGX5feL7LSh8bc53xtRp6z6wrzNVrLkNfefnEBta6ScA07sS/5TCl6QY/8LHH+dJq3+2LKMoWKWBdhe80Za37HMSx269RBIPQ7QvtEZVr7r13XIyTLX6fGoO9MJePy9ZqmPmFvNiuJ8bdvk+ja7IufhtGmMVFd4ytO/7E8fqf2tgtsKpqNZidTSe1ktHjAa47/a67SBrDgn2criMBEC8vr7sr+nv3uUmKdDJGW+PGv7LiHqAVRnuYJ/nfW240jzzyCMeOHePYsWM8/vjjGz4uiqL871JXyrba7nthMCAaDK+K6AcVNwmp1HC9ESGEENeMdLgLIYR4QttKp9mTRfH9X84/8ooF+zAM8+1dqpBf7KovlUr5pc69Xo9z587l9+/bt2/b47nakiTJx+tfopSqC53lqhDzMtLhHsfDuA7c/u/1XD6vv7oM4d60I1eRKI3nNjzSoa3PnsNMT2E8j7Q+NyySeh5qfIw4jvHTrmtjDK1WC2MMs42SG0MWtRHH2CSh9fhpeO61vepjeXk5/xuo8j3ihSX8ahmqFVSt7gqJUURw9iwdJra38bWLi67zmR/pMAf+P7/7UU63I+49oPiOp6Z5zUrlHbC2XkcFAXZ62kV/lEpoz8Mv++ilJVTgERtL5AUYO4xuuShTN8uELxZUgwA95o5f4BUyv5VCex7GGEySMNtdAXMoPyeyTuMAOyzAGoONIpTvY6wlVoWOxn5/2EFsrSvSrimqjxRJo9hFZuC+Q29qBMAAjaU5GO7T1mKTSZPgNepYpfLvgub8IrOHXCa3W3bWunz39H2XkhCd7p9BUMbHIwhDFy3iaZKghLdO0VbV69hWG9XrumNdreJXqyQf/gjV//5mjNIsHriLyX9zJ3bfPlCKxGRjcBFj3uz08Pga62Z4rHFRPNOTML/g9o12C73S7ebjttamN9N9kGWyr66621q7YnqphI1dd7o1Carfd13+icHMzqK0di+dFsvxXfE7mJ0mOT83UuwfiaYqnt/dLrbRcOemUth2272V7KqJ5RU3JjVALS9jjXUFftwCy7ZaQQ0G2CxWqNuDfi9/voljEgrf7dkkUZJAuYwZhJhBTC8xnGvM8FXpWhb5IsPZuLMCO2DSqyqU7wrJutWEyUl3fDpdMAnauhz2UtQnDvTwe1ApVziPIpfxbk2aq16HwcBd1QFo3x9eeVIuu0gZk040Vt2ixyjlri5I96e1FkK3GKsqp/s4SbCNuvu8rq4CajjxMBi4bvlOBxoN9KnTtGeGHfe2sBixWSdbG2Dy3EmYbYDvu5ivqSlU4LtzIt2TSlkG3R7V8bF1t7FTkiQhiqJ0rRKfYM3aA2LrskXBs9ub2ZFomUHfXd1lDM3HjlP5yq8A0gm2fAw7kxcvhBBi66TgLoQQ4gmtWHB/si30uVa/389vr66uXuKRm9sor3at48ePs7S0BMD+/fu55ZZbgNFjsVHW9W5TWYGnVBrmaqel2izLHhjNUl8TpWCjyBXX+gN0IRd7cXGRM2fOABDs3zPsgK3X8Bp1t2hlURhi0gx3er18/42srTg9xalTp7j11lvz+774xS8C4E9PuhxmcIVf30f5PnYw2q1/reSH31j82TSmodVx3cieKwQnR49iH5/fmRfq9/OMZ2sL+00pTq30WOwbYrMmOiQt2qmlJZieRlUrELtca9XpYLIrCkyCFw7wGFBaWtx8TFq7Lu4svkUpF/fRHwyjR7pdl+Gfdv6WVVJY+FVBYsF3ZWSdTp4Aee6/rtVQ/rCQo5XCFL//lLpoQc8iY+3IZbATVfeTQfHQyrCYWAn7+GGATSqoOCabYvLCwTDGx1qU1ijjJgmssXTxCNOipFcuU7otXU9idRWswvMKrx5FmGYLXatiez03GRVFGD9AdbtErQ70B1QT19EfVxrYqan86d7BmzBfcB3+QRCQLCzi790DQYDKdkG/D/0B4dIK5UF/OLmmNTQamCRB46cRELDeigm220WFIcoYd1wuzGH37nGTcPmxK3SsZ4XoKHJd5f0BSTpB5lUq63eJnz+PihPs1GS6sKgrDqv/P3v/HW5bdpZ3or8xxgwr7bxPrnBOJZVUCkhCiSAwNha2STbp6e7bGAxOLQljcd3G0BcMj7Es32tj32vAdpuGftwP4DYYY7IxyQhlCQnlkirXiTuuveIMY4z7xzdmWLvOqTpVKlVJsF4eUfvsvdaac4455phrvt/7vW+eo/McH0VCXjuPDedQpR0J6J1M8FYIOFf5ofd6Ekq6swN4IcqVlt8D2l9pVOtVtkIo8ulOh0Fk+N/veQx94FGV9cuJ7cV9rjzXg02WChY92lkKp4h9GAtcc014zyxKiVDN2FVra9t6pUJ1DL0ejMc4pdGDPsxm6C0p/HA0kkJKmJN+MsWPr4nljNLBHqiFspRCydYWbG7ih0MZnyjCb2xI0SvY1bh7X8DwHR9tDllMeuTnG1h5RBtrdRFMjUbQkXXP9ftopaCw0kmTf/a9t3d3d2s1dr/f57777vusb/NPKrz39fejmyHcJ7l00n1GxHtp62LYg+/8ECcD4Z5srDeWTEuF+xJLLLHEc44l4b7EEkssscSfaLQfYpLj6tc/ZWg//D0Te5mdnadPfh5W7fGwEEp53JblcxHj/f1GUXpMob7wIN3+uU2uONcQoMdUjtba5hzEibyvHdSJbzzcj0G3t+kWX9Me73w4bO2bbxxH2rub3viauHjxYl0U2N7e5o477rjha58xvIfDQxlnZ0VZnc3FMx3w7mkWY44FydbHX4VDpim6LMEnrddX3uo3IEeSVDoCDg9RUQxaU2jDYdTnJ1/+Lbxs/0G+YkUUqH54/WBc5gX4Us5xNacq4i/LUOMJPopqVb2KIrHDUAqsJRusEVdzRCn29vdweLLzd9DphkDOVteK290TxW71709/WojDytIDhNweDBbnbAihPM719uP2L1q2KoMV7Ma6BF86i3PyWZ0kbj5XKRQeZYM/eBzR6XeI/SEAen8P8/FPYO+5WyxRqvNSQSn0diBN53N85aN9OARjSJIY5z0FGqc1+4NN3GyGDuPsHr+0sN5FJ0/ID7M5HOzL9dftQL9H0u/hH7/YEL/hmjx817vY/jNfFhTuwce8vYamqQTr9nr4oyMwhmJllUhrPErI3Ioc914I/iKHZIDrdkUVHhlUpyNBp7MZoCQgeW21nit0Oo1X+WTSeNvPZvhur1lHBn3pOhiNoMjxkwKVZai+vEYnkRQDJ1P8fBYCVQ0+TdGzebCNcdjxOKi6kePt9BeU+Xp1lcE956G8pZlre3vo9fVmPStLGA5RUXAkH40gTnDKYPpdiAw+V1I80BpXOjRggg0RQbFeE/lFIeMzHEpxYGNdfhfWUae1nPuKpJ/OZG1xEi5bFZvU2mpT+C2uU4BWCtKO7H+VqdEi+RXI9RJI82nRui7a1+KN7rW33doUpbTBDYfolRVR6AN4yNc3efzhS9y7vX79z3iW8Ke9+++5hveefJahtcaUJVle0O2kT/3GG33e2qqsP1lG5+f/Pff/1I8R33Yb+Wu/hDhkd3ymloJLLLHEEks8fSwJ9yWWWGKJJf5Eo+2V/af9gePSKGNNBxuYZ6B2qixQng5WVlZqNf16RRRBHRgKfM62r08efrj5x5N1R9xAmbbwjrXVBRIxa/msuk4qatNK0Vy9dyHM0mGvXsNsrOPTtCGKjgU6tuf46NFH689Y+LzWx+onOa7Kwx4WsxCeVShVhy2aS5fxa6sQD2A6pbiyg366zkfHA0CDlQRJ0th/gJB1cYza20cr+f21ljd5bV1R+a4P+qjtbbEL6feJ+n3i1X3eee5WEpvzFaOxjOsN7CPUbIrfCPY4WQaPX4TtLVgVosQXBapSKZalEIrV/hpDLzU12eeiiAcffgjnHOmtpxdV/OG4ooN9VLtz5MKFhgCvig/HxwtQEyH+1TEFfOlaxaDWPFZFLurKKBJP8LC+lKVvyMhOh3hzDR5ytZVLMc9xSh5D8rTPLO2SgFxLbcsd2SDs7kKvh/Et5bBCPMjTFJskZFGMR+GiBD3PqNyI9C1ncZ94HAooSguXLsP6mhQkzp4N8+EIplP0zg5FVoiVVOu6Pnz0Ybb5ssWQwxACWp2j1ihCkhCd7EJQvJOm8vqdHeksMQYD+E6K6qRi/2LFY9yjmus2WJ/UyuzWGkpZirc94OcZvizRzuLLsnWJy76objcQ3UL8q5UVVJYhObMKfJjnRQlW8iSwFv/w4/T+9Y+hvGP6d/4O/sX3NdfTYCA/VxYuQeFfFwFb4+S1FqG7MXUxTc1m6PEInyYor1BlKUWQRCxfEg1FOMcA7O6JHUxFpqvQMVCWMM+EUE9iGde1cPKnU1xRyGdrLWGw0wmmF4oTIYDXlxZ/cAh5gT51ojm/2RwGfRgM8MMjserxXoJu01SCWLXGXLzICbMw6otdEteDc62sAocO++ydkwDVRKN7XY6uXgZedP3PeJZggn0VXMcKa4mnhSp3A568qzLphnltCw4OJ3RP3zzhnuc5H/qt35Ishf19/Oa2rDPWEZUFdn8flCJ6TVOA1k8Sqr7EEkssscRnB0vCfYklllhiiT/RqPysl4BP7BS8MnAJw+zpe7hHdMh9IF4tqGNDW3mynzlzpv5d27rm8PCQW2+9FThG2j1HVj97e3scHUlI6MmTJxdI/+uhyEpIK7PxG+/jcU/w9u/Z3UP1uuKhXJF7x+CUEd9i52pv4YXAVIA4wpwSck1Vv89zIYA3N+v9K1u2QbtXrkgI5XEshDLemFyxBwf164orV+BGgaQ3wEMPPVQH4p44cYI777wTEELCFQXaiOesD/7Opdbo6RQ/m6O3NonvuJ35p28cOnddHLf3mc9kXFNRqaMU/nCI2goq6f394BXuGWZeyEpjan9wAH9w2Jxf74XEm82ZDyfAJg4dPMIV2lyfXPOzqSjpq8+98w4h1b3HBysANx5Lx0HlV906FvWCu5tzFplFS6dgW0SwCAFw589jpg82O9AfNO9PQkdFFXKZNGr/+qqcTOTztKbc3ed3H0/4i3emvHA7ZnfcEPkKmqKG1hBCbqNHH4Hzr5IXVfOtFU6ZlAWqlM/x1bHM543FTpvALgoJrQTsLJNukWDboqqwUmcZlFLESooMqzUmXE/28lVsIIEv7ezjz5yW/e50cOMJfjYVhb6KyeMO0Wy+aGECHAXSd3zU6swJ3Qd4L+O1utqo3rOMcveAaGO1njNCmuuaZPXV76dT6T4gWFUNmyBjXwWV3qijJhQilHcoJUUZFfbdF4V4OM/nqPlcvNrXVuU62Nlp1gbfzCWlFRYtXTRak3slSnNknknYKeLHX1pUZJpz3Ovhez3Y219cu5IEtbkpx5llEvLb7Yq905kzoqzvdPBKQbcHY1Hk5lGCKgt5n9YNEV1BG7mmOh0pvITxs5Mp7O6jux28c+ioOkaF76Ri2dW2A3NOrtt2MaP6W7UuOwf4xvKp32/U84MB9gUvQO1/4vrnqHWtfuC+l9IJ1kf80A9JEc2LBRBFIUr+ajyzDLe7x2z+2e/Ma9+nP2vF1T8lcM5d11LGOcd73vMeIHRetiy3bD4FNm96G9Zayo0NqfFqI/kM4S7lIinmWefRWxtyfVA3ci2xxBJLLPEcYslCLLHEEkss8Scag8GgJlmt/dOtcH/BIx8iPvkyUIqN+dP3cLfF9cdPKcUHPvABiqJAKcXh4SGT0MbcRpvgfvihR2oJYJ7lvO997wNgdXWVe+6552nv283gwQcfrNV73vuntEjJ2hYj1jZBfDeDKrgwkFXWB1uZ6jOsrUnFyKhGSd3tCtFp3WJoahQJQRu3rDp0IIlaBLNtPeCXh4cLhHv+6YdJzpwQYieQyU+Wo3Zw7VqtRp0+A8//G1kYJUkilhS9nhCn0ylKBY/vJBEirTqG+OZZAh/Ia9W2sjCmIUanU+h2hRwPAbL+llu4b2fEHeueWwdaPJu7XbHoSFPZPxXUt/N5CNn0EhAajs95JwGKxsh/n7BjUHqIqvFoFwSyDJUXoizudGs1r7dW6JNA+KlqLni/2AnhPTz4INxyixB7eS4WLA89hJ+2OlIG/eb9RSAxnavPLyC/q4pls1ldAIqM4qvu6hFpxUZHM14zPPTQQ1y4cIHeoAORkEfWWkorxzbrD0gfeQx9YgsOD3H7h4EUkuMvu12IZI0orXiK0+m0FL+t8x7HdVFGrfSbkGDnZD/HE8x0SonGKSiSDroqWgHGluRKrvvVTsxB6FIA0N2OZBvkuXQGrK3AeLhY9PCe/Nd+nY/+q59g+o/fColuzmPVKVBdr1rjjUZ1OkS3nQvWMUWdH+BWG8sQdzSSDhMr6mrV7cA8a851sOKp9yUUGurOgySR+ZIkeK2bMSkK6HTkWprNxYam36+7H4gi3MoqoNA+dDsp0EmCi6JaZe49+DhmbmKMbSngFagsB7tY7KPq2jmucC8K/GwmlhdRVCu7VZ7j81zsk8LaqA4O5N/eY7wTG6K2FVwriNUrpOsEYH9frHu6HSHeYwNa4dEyFnEihYcsE+uWbk8uTK3BROKhfXQkXQ+VfVGaNkGxRSlzcD6X+RfHUszRRubaZCIK++qSN829omzZfplWcWM2K+hU49JJpdgXRc24hXmfl599xflgMGB3dxdYWu99pqgtpwDX+s75BNueUcgUKAqK2dMrcqhqTQDY2sQcjSTkWkFx6+04HeOTLsV4QjybQet+tcQSSyyxxHOHJeG+xPOOt771rfyn//Sf+MQnPkG32+WLvuiLeNvb3sYLWkq6+XzO93zP9/BzP/dzZFnGG97wBn78x3+cU6dOPY97vsQSS3w+YP9y46ns/pS3Sq+e3KgJpHjn2tN+f9ESDw8Lx1oIZex0OrXdjPeeoiiu6wk7aJF7s/m0kYU7sS+Bmw9z/ehHP1r7wF+4cIHtinh5ErT36Wba5lW7BTuOr6tivy6GQ9AaO5uj+hJKqNt2JtNprToDhFCKYyHKKjgLPmrUkXkBve7xA1pU3iu1MMf9xqJiLrnrvPxw1PIZb1nbHIff3a39iblOAeXpoN3F4L1viN6KbI4MGl+HuVbQN2EDtffv/y/Gv/M7QnR853c027EOZS3KlvjBABfHaGPwSdJs49oO3/EF20+01jGm9t9X47EQhYMBfjxBAZF3pEGhfWX1JG6eoSJDSdvnP3C2wKQIDifBv7u4fI14c10Ux90uriiJdEvZXRE1ldo7yxqitVJGVqi+L00mNTk5jVKKpDXHXauAk+d46wOhS/NZzqEefxy/sYHrD2oPdKKISNh/EgNbvYiDh3c4yyZ+bQ3V60KW0S/mFOH4ddonnk2wfhPtPcZ7UWEjinZXWKoFoFPM6Jdz6r3N86ZYEojNOiQ4yxsCthWe6dIuEQ48xLZAra/VY6m9k7BPoHQOde0a/vRp2c7GhhR+8lyKHwcHkGX4SpEOkOV0tEbvXmM6mpJutYoU1XU8ncr4FwXaWlkH9w6IN9YlG8D5MJ9CL8TBgcztJIa8QCVS3DFlQRaCTaXjQM6/CnNyQflvnXjVn9gW0rbCaCRz5OpVWN+A+RyXSTeMPnNa5nIco50FPOIyTwhcBe19/bPRCqcMSnupGvZ78to4rq8Pju+bnjTFgVAoUGUpYxSuIwCvDSqsi7Xli0K6E1DYKCaaBVW8iWBrs+k8KIqFa0AphQ5BuWoyre1Z1GxeB8v6PA9EvX7CWmqckyJXkTdl1nkmczRY5ug8q8+3OzhExxHeWZmj6+sU6mL9ee2up3KyD0jgtUPVv4+21iV01VopPFRronNNB5PnOSdKl37unxlG+zN8kJNPjpqOM+dcfU+YFI5udY34MDefBhasrZzDzueYyEBZkn/TN0rnidL0IlOvl7F3PPLt3w4oBq//Ura+/dufleNdYokllljixlgS7ks87/j93/993vjGN/KqV72Ksiz5vu/7Pv78n//zfOxjH6vVkH/37/5dfvVXf5X/+B//I2tra7zpTW/ir/yVv8If/uEfPs97v8QSS3yuYzKdozuiOPLA/fffj/eeOI45PDysid5Xv/rVz++OPgcoHnwEs70FSYKrwgmfBh4+nHJmxQUC0bHRj2qCXSmF9x6tNfP5vFY0a61xzqGUWlA5LxDeLe7wZv1jy7KsX5vf5MNqe/s34+c/nmSwHlUbxBtTP+RGUVTPneNEvO92UR5UaaV1vLIkqJTlvZ6QcxUJP5kIoWSETFKjEb5SoNfWIgsH0pBNbYsF77HznE9+8pMopZjmLZsa7/GXLqM2N0QJVyG9sW9s2ek2xN8zKFZVpMCTEzgeHUfBHqJ1kHmOqojDp8Dk7W9n+v73y7H+9e9stj+Q7xB+NBLbCO/F0qNdSOn3F4a2HB4RdYKyNdig4IQk5/BQvLCjCK8UhZd3PrBxG/m2wyQJxbDJjKhYN6Wgf2676W5QivjCbUJA5jneedyhFGmik1I4aqskGY1qCw68xyktxyIvxD5+EXNiW/Z1PIZOh2RjjWLWDm70zXviRD47L+S4qnmYpvhbJPxS7x9I0SdNwRish+HMcbIv5K/PLNmDQ8rxmLjIodsjP3UG//i+bOLkGuX2LWLxYQwupykUGIPqpGIhAmRRh1ncIcnzxqKl8hJfWRHCtVK/21L+XYUuTybY6Rw3n1Og8QrOrCXy92CJ4warsDGDKXz68iHdylKnGtssqwlj1+2h9vaacMwsg/09si99PfkrXoHVx+ZyVSBsBWq6LEMlCfFgAGUZvJUtzOboyNQEristOhQM/P4hClFM45pOGB2OoeqGcEqjklD8U6CrINGdXSGRnZcmDGNwPSHHldaoOJJ5H8ZXTyb4Tid8jsYXQsi7okRvbdaFvrlTzE1M4mX91vO5KMmrDoI26X54KB0hIYfABXsrvbUl56+yKSpK2RfnZPy1kc6UNIGoVdhUCls6TFX4qsY5ENK+24HRGJUmkuk6nqCT0P1xdCTbcq7JLHAWFUdilzObyXXtpKvIDVZkTrbPrdHSoTSfw2yGUwqd5xI6u7EuL5lLwKwfLxYkVUvt/sFLQ3p775Rp8rVfhxodgNK4yQwGs6agsrcnBaBw7JgI7R1FK4yV/QdhfFn+vv1C6G7wbKAdaL70cP/MUMxLCPWv2aj5bpJlWW1tNS8saRQKwNqSz55eiLzL84V7e70gKBWu0VTuGVVxMs+JypzpO98FgD08XBLuSyyxxBLPAZaE+xLPO37jN35j4d8//dM/zcmTJ3n/+9/P61//eobDIT/5kz/Jz/zMz/AVX/EVAPzUT/0UL3zhC3nXu97Fa1/72udjt5dYYonPE3zisODuk6CVZ5Q51P7+dV+3QHD9CUW8vSUEFkD89NvGB52YwlnhArSvSevs8lWS0yeFkAmBYRUJXo2p937hQb7XHTCdBXKyLQe8SbR9Zp9JmGtFlj8Z4iimflWWo/rBv9f7RcL+ePCk1qKITBNRma6s4Pf2UbcKmcl02lidgDwYt4hvv7WFn84a9XGlEr12TcIAq9ceb/1XirSTcHBwAMBRblktikBUWtS54CHfUrUrnoQM39yot+/PnXuK0XoiDg8Pa7K9HRLrWxYLtS0OYGfzRh+eJPitLZS6/vXahi+Kxtojzxu7nPEYZW3jET6dCinaVgOni2MYrQVFf4uIdvsH6E4HTp/GT6ZSPDIG56CjpaAQra6gux3sdewfvKOxCTmOskSVJcpZzOmT9bZVy3oC5ygefkyCRyvLndZnmWpetY4r2t1FTVokjm5ZpJSlKPK1FkuaCtMpdncfs7Eu12NFxI/HnDs94NzKE9W20doqdFIhgw+G+KDMz64esHp4FXvuHPrwED06QtkQEtnpEHU6mAf20EZhKrVmRYRnmZCyedF0eFRWO6VFpakUB45GqH4f0+9jNMQ4nIcojWWdC0St76aYdeAiDLTDhhwJskxet7IiBG2nI0rxa1dr33Ccg7Nn8bcaPNA9XjyqLJv2D2pPfOXE37zY2ydeX5Px6XbFU902imhVlPL5R0coo6HfQ/d7+L1DCaLF40Zj9MkTcu7SFB1yCACZywcHMhZaowLhrw4PodNBnz6NPxLbCtXtSsGvtKA9ZVFiekqIX6VQSYoaDNAgXQ6h8GJP3cq/+9Z/ysve+Z/5UptjnXQpUIQuhEA8Yy1+ZRXwqOksdCXoel5VVkdy/oPi3DlcXhB5C4kUdnyVKaAgUh7KQrYDwf4lhNnO5zDPhKiPDA4VMgAUIpO3weJHxo00RR0dyX/b3UYBajqV89SGtTht5NrvdFDDoYxfWUrxoNvDlhaT5US7O4vdRdrUt7RupKR7BeBr/yLzUCRNr+3IWlWWUsQIPv4NkeqIXUmsmq6G933kEqWWx/e7Dj/O9ku+6AnH8kzQLlp/Lincy7Lkwx/+MN57Op0OL3rRZzc89tmAiQzWy5yN06YgPs9ysY8DNqo8BQDrKFv3x996+7vpaln3ZtGAr3z1S56wjWJ3T4p9wfbIbG/LfJ/NKcYTtC7RaeseYi1qa52jt/0T8ND99Kee7cNeYokllljiOlgS7kt8zqGyE9jclFb497///RRFwZ/7c3+ufs29997Lbbfdxjvf+c4bEu5Zli084FcezkssscSfLtyy1QWmRFqRRtcPNIRFwv2RRx5hPxDzp0+fXggB/XyGOjysiSX3DIoLj+7PuPuEtMRvtB4kTachLbXWC8T6jdRy06M5BHHkM+DbP+PQVa1vPBfqz21/Teo3JI1Sik6nU1vaPGHfpjMhMotWuKRzsL8vpGhRQBQ3ZKK1wT7At4j3EKSnXGMxUBGmCxtr2cq0igBKKXYfusTq2fvkF+0ugNZHLBC7x3HxItx5Z6P0fppo34Pbnv5lYeGRR+DECSECdnfxcYw5deJpbwNYtOJpz4XBAA/48ViI1JWVxXEAOScnrrPdG5FOqvqfxhYyJs5Tk/oL1jSq9V8bzmXYX335Mm51Vew1jIFRSyHb6Sxuf22N8nBC5AiWH61z5hEP9zOn5d81mbhYQKw/TikRQsrILBYf1tcxG2GOZY0VQm0rdB1ML14lTWOic6eJ77iN6KMPAZChmZqUFLBoyjjF22YOee9FrGw9LrcyJWtve0KB4NjGgi0NR0eNGng2w84yitITmRTwZF7Te+ObsCdPUnzbXwUgz9aAFaY7VzC7O0RnTi1cLwtrUMvu5jhU+xpsX3vtAkX4Hpu6Ete62FT7OnLVyQwFp+FQcgOyvPmbD6+rsh+UaqynjMGNx2JD7v1C4WyxIcaLJ3uRw+4+3HkBjCEqBkK0hzqMLkux0SlLLAodzlHPwN+84wSPTF6Ot4814+I9rB3rkqrI7nYxUSkZl9DV4/McPx6je33U+hpaa5kLo1HgmJ0o9Y0RspurzZEMj5qwY+fQa2t4I4Us7Xy9RuvZrFGKHxw2++dEre6zDLURionTGQsLYmW9BFLgcMeutXCyFeBV5cnu6ylwPTzhVtMK1mU4hLU11KB1r6mKfZ0Oc5NQtIKty+DTDXB5pnhqI7Wbw/r6eq1yT5+k6+m5RlEU9X3k8yXMtX3nqItOCOFeo20N5X1dqASxPowiuS72R9cXE7jKjgYkY6TqyrEWpTR2JLZOur2+9wf4kE+Q6RvN1iWWWGKJJZ5NLAn3JT6n4Jzju7/7u/niL/5iXvziFwNw5coVkiRhPSjgKpw6dYorV67c8LPe+ta38kM/9EOfzd1dYoklPg/w4Qcf57V3reOsIpvO6a09Ud12HAcHB/VD3nA4/BNDuB+snWCr8rO9Sa/0hx9+mJ2dHQBODIK62ytM+xtECHerVOw305Je+LIOkXTeY3hqAryNNuH+TELesifxLq9gyGHiaiKnvc0FVX0rAJVSwvUIftVVWCIeCRgEIVQODhpFZTsQczZD7+zg1tbk96Wv7TFcf4AyplFAVkrLtbXAmlWfIyry9auPwei2msR3ly6jV1fx3qHCtm15YzVjdmWHNKiB1aVLTz2oT4I2+ZvlpXh/B2sNX1lx7B+iV/pCKDpPOTy6oX/xdDqtVZk2TRbCGCv4ssTP5lAWKA9uOkV3u9BtEdpaLxZsqmDJykM5F09u5nPKozF6awOlNboDW3efw31c2M1yNIa8wLZU5e2P9aWVcY8iSFPc+fNCHFd/tw5XFHWgplKqsSKazTDdjpwzo8XLug5gBe68oyZ/fZahvGdmEmzSkDi6Ghfv5ZhN1KiAW2Psh0NRkFsr9jRJIjY2zsl1X+XRdjS7s5xupCXjdjQiu3ZAUYRr/9pluufWpOulLPD4xlplPofRuCaMytLL9ZHlYhnjvZzPs6EjY29P9qWy5FldhdVV1PAIul1Mt4vSELkShUd3ezjrMfM5hXPkJuKT3vK/lId8yR9N+fY7TMOCjschvLAD8zl2nmGyubQlONXMgzSlCh6si3WjUWNx0g7kjiLodXHnz0tYaJVTUOQ4QE+nsH8gHuhrq42aPoqEoItMY9VShd1WgbjWNoGvzstcNkYCcqdTUbqvDMA53NER2joJTTUa1+lgZjNQmnI4IlqXNUYliSjLQ41PZ3OYSFaBWDopLvuIC0VJFQLtur0ndEhUYcWuLKWQFMeyz5Wy3lp5Tacjx0godPswN5xDO4cPKnYVK7I/fB+9D3wQ7z3l616HHvRlrIoS32tt01n0wYEoxq1trGqsRc1mcp6VhpUV6QSoQmCr/cgy1GQivu0Vqa+UnNf5HKYzKWpUr1ehOyBO0ECBPsasN+Nijq1L9cJw+lRjsTOd4GdzCc71vn69SROMv35hN7efGWn64IMPsre3Byzmq3wudfqZ9nr+OaS8fzLkztaX77RoiowPXR0TT6cyD4dH+LxA9XuS/dEqBD+0n/OCbflOM57MeP/73w/Ic+8tofPk2rV9sa6LIinSdXt12LAe9NBpsmgDp7V014SC33z+9Dzjl1hiiSWWeGZYEu5LfE7hjW98Ix/5yEd4+9vf/hl/1j/4B/+At7zlLfW/j46OuLVqI15iiSX+1ODFj3yE6N4vA2BjOoSVzqL6LqAoilrZ1bYL+XxRVd0M+jG1olV7aguYJ8NsNqsJ9E2V0TMJRGbxYS7PceFzbeEwsWlI9xYPNRs1JLe1BXESnkqLHEwgn2/ymbrX69UK805bxXWTaD/I3wh7Dz5C8tIQSFkUCyGBShl8aBtfIFOiCL22Kt7S1uHzgqjjKLVuvnR1Oosk/bHPcLfdJkR6FajmQRkj4ZRtFMWi8rzyNg5j2B8fovIcH86xPhsKR6PGZ1wXN37wPigVp0shQH3rPTcLB3UZZWabE6sBVRXRp9PaGkdvht+FcY4GffTHr7/dhx56qFbNRy9/Bfb1r5c/tMZROYcqJHiQXhe9IqTSAp0UCkU1yVRZhJgQNpck+DxDBRsUwngAFNcOMGpFCPfDESqe4a5DZCgFyoj39o2gCH7d1W6hhEzUQhIm1x5AuT6+1xMys1aDe/QDD+JOnZR9q4hbf0xt7x0QlMfBIsMPjxZDU0HI4apIVJFwWSZWUTSkl088O/oAtXa2tvjolTMyJ5+lTbD5ICwBSoWODbH7EFL72MXubENgt88jiGWJqtoLWsc0maDmc2xhSYMSeDS3vOfcSzhfHrKqNFZFnDm3xt87m3CuvwLdVoEuL7Bey9zQGrOQLaFaHQP1iWnQVv7v7dWhqd7Kketr13Dr66EY5MM1H9UfU5PPnU7jOR6DL10dmGkuX8HfdWewR9GoLGt2wdraPkl1UtAafXCAixPY3kKvr0sBJUkkALXObvBEITC1krgr5yTcVWtKNFHIPJFr0XHu7hdycHGfoBsXr/SFcfFi15bn0r1jNAqNPxzCdk8+x1qwpRDgKyuy+TRZ6DpRiIWTWl8DFPaxx+DS47IvL3+FkJVVf8ZohMsLzGAglkZeQpal6CDqez2fS/EhL1GdVObKdIZJUwms7XQkLNjL+VHZvBnfOG5878vQlRTWKgV4J/PYxxFxKPZcD+11sCp41X/b20OlKcpEqNOn5JfDIXW4+WiI8i3S2UHlMJM+7b6wRRRFUd+nh5PmHFw+GPNcGLdc/Wf/nNn73gdKcfoHf4BOFf7cws2S7JcvX66LB+fOnWMjdDgURcEnP/lJQL4z3HHHHc/S3t8Y77wy5pVnJFfgvZeGfHH4/WRnl3VCGLQClc2lgJPnON10Fdw7vkLnpDyvnu/a+jtoWySQj3PUaggcns1R0wmooHAP65Lfa9mxhdyRqmhZFq11boklllhiic8aloT7Ep8zeNOb3sSv/Mqv8N//+3+vK/ggdg55nnN4eLigcr969SqnT5++4eelafo51Ra5xBJLPE/I80Yd2ek0ntjH0FZ1JUlSq2d71/F7/XyF9Ura2INv780Q7u1xMWUBLhJSyXtRWwOsrra4M1/byiilcNaDATyMDhulnoGacFNRtCDYvZn9auOZKN9u5v5w+eIet18YiaLUOfKswBvDtPSsJR6t1YKrBCBjM8+knVuBMgq0QkWmIRjrENVSDng0kvnpfUPiLVjIePF/3t0TRWsV6AiLqkqtcVqHcEHIXv5q0pZnuX/oYdT6uhBS1XsGrc86hpMvuacm9Nzq2lOO13Ho4bA+nviRh+C1TTBx+fAjROfOCamVZTIeBwfSBRBCMtV8Tn/n0+z/Xz9F5+7zrH31XwJgd3eX0dGoprfc+fOw/sT989rgtXQE6CwTpWpQbFdZBrY/wCwQ0+FTo2jhV2o+F1J0e7s+L5fe8zHcnbcB0FMWYwxW2fCeFpHvPSrLAuGq5fqbz9FZLoSu97g4QpdlfU2pPBOyT2vxLT95UgongYhrk9Xu5AmZE1XXg/c47+tQ0iq0uD6YLAsKZrVoi+K9zIcowlkrZOUNrkOvPJgcbz1+PEEbzSTu4oyQQ3p1HdvrYLQEvMZeSEsfOjFcpwNKCia6yEhsvjj+ZYna2cH3elJkqHz5250lUSSBo/0+cRJjAxl733rK93zpt/HiT/4h32yEbN7a6LJVFQB299C9rnxWp4PxZb2GOA/j/jqrVZfDbCZztO48aA3C3n5QKIeiTu2hPpRj7Hbl93EsvvuoBRsbCYct8GUpxbMsow4oDvPUKyP7EEVi92IdXNuRAoGzUjSJjFzTxuCjSIjfspTciUrVaq2o91dXAIVVCvUvfgz9mlfhAPWaL6wVslEoXCjv0aoENDqo+0lTOSbrnlAwdL2w1kxEbe+mcwkqnc/l+KyT+V/Z47jQ7VCFqSYJbmMdfeky9HsoFGY4InJSbCm2NmqFOUkinSZ1yCjoKnNhMkNneWObpLWs1QCdLias5wvnofKXT1r3hSpLIE2brpeqAGkk/NbHCSjNLO7goxvch9rXa9uSyBgJlC0tzGdw6bJ0PbXWnqq7pMJoPGN1Ta6FD35qnxe/7vqbvBm0c0yGkxndSLZzefjciAxG//U3KR55FIDxu979GRHuw+GwLsCPx+OacM/znPF4XP/8bOJd73pX/XPb3tTh61zudl7Jox9/gPUXnZR5FkV4pVFa45WmjDQf+9jH5D22Gf8blVSyPMMd5OhOKl0ccSzz1Hnc3j52OkcnrXlkbbC5C/eHbKlwX2KJJZZ4LrAk3Jd43uG9581vfjO/+Iu/yO/93u9x4cKFhb+/8pWvJI5jfvu3f5tv+IZvAOCTn/wkjz76KK973WfwTXOJJZb4U4HRrXewHsWQxLjgTbvw8BtwdHTE9rY4ora9uT/f8x92dnZ49NFHUUphTm5Jy3wS46IYX7jrfhOosjNg0a5FVWQJoEehRT8yougMRMhRZtnuJHV4qlNl7XttW7YLxXhOrFMhFb2v33+z3Pln2l5eFAUf+MAHALhw4UL9gN7GeOtUY8cynZNsCKk7zi3eq4oLX3wq9l7CIX3wAt7YAGMwFelSES79vpBPQVlZ28FMp+hLl3Db2yEgU7ajK0JVtUi7SjVcoSJWldicqF63JvXIMkoTEyuFrmTz3ova9AZQadJcI6srNcGglOI1r3nNUw/y0VGtGFdBfQgwyzO8iUQ16lxNVNqjESZJ8HEsxRqlGew+wP5v/t9Ep0/XhLuoMn0z7FXYJgghVu2zVmKvMZ6IUj1NUWUpqvoQNmkODvDds80xV+doMhGFdzWmlSr8cBiG3TOxqt6H8uQpGPQpD4/CbpT1fAC5dnwSC8ltNDoWVS55Hqy63aK1i0dIFKVQUYTa3RGSr9dv5ko4Xnt4JB0bpQQaow1aq5ort9YuMsXHFe6Vav1ohMszTH8gIZsV8ddSfVefogJBqbMp7O/B5iZaKapSjjWG0jqMc1hlRHVd+WOnKSQJOgTiKpOSm4Sk25XLaR5UxpXIwjbWOjgH47GQ5rfeIv+eTKRYEYKgV1LDV22u8tijK/L3eJEs91UYanUd9vswFIW5zjOIWuNbXa/t9eby5aYTYlUKN37/ADWd4osSZUvorklQ6ngscw6Ly7M6rFopJcrnoqCczoireacU3vpa9V06SxTG1Csp3KlNWavcbC7dNAATsZ3ixAn8gXS2lKMx2mh0nuOtxY4ndU6C04buo4/QffB+AEavfZUQ095T6khuC0qhvUKTY7Cy5lak5Sfvh7vvWiz+xRH4qFlTtAKv5fqMY7nuCAVVH15fKd/LEooSNRpR/OiP052P2elvsa48qQs2GFVAK+C9g7zETaaYE1viVT2dgQKDa4j5EDbL9hZqPIb5TKxbogiMljEFfBTJ+ep0pEgROkW8UmKxlCTiM18UUgRbXQ2dFyUM+iSdlGjvgWYs2rensmwCrtvXoXNClnon5GvdgTSqX5d1eviW+nz12uMQS4B1/2MfAP4CzxRtW7R+5DCBJb4weG6sW/Ze8zp405sAKD7+iev60bfv83H05LTF9b4TqCqQmefOKucl82t049sBuCUf1r/vZ5kUWEN2gHeBBPce20nqDDMfJXWhs9O7vjCgmGfo0yuh6yXHD/rSMZPLmqBXV3CHre+ucYw6sV3btd30F60lllhiiSU+IywJ9yWed7zxjW/kZ37mZ/ilX/olVlZWal/2tbU1ut0ua2trfMd3fAdvectb2NzcZHV1lTe/+c287nWvu2Fg6hJLLLFEhbVeXHtlK6MXH3hbaKufoiiq//1sq6Kea2RZVpPnHaOFCPYeZS2uFCLNOcenP/1pQJTfbRudtroO5xvyoNsRZWfcq8lygNWOoSxL8Xx2jlHpWA1htQ+N5nxh9cJrV+DE3QCi9A242Wfip/vwvHAcyHmtzu18Pr/eW7jt7GpjdxI3x7jVM+yNHYNUsjB7yRNS8cI2PfraNdjYwCnVqPajSMhfrYVsCoUeZjPodnF33YWvPJSDxzGzOaosJFSwer3WsDJYGDRVBbCWJd1Lj8KdgcSJY9KdnRDiqGpyz6rFfb98+XIdnrd3+YDtu4RQK5SmjnO92Yf1c+ea/QqfCbDz2OPEZ0/X9iIVzKmT8trqPYnGRTGq10evNAGN6niXSqVar8ZEKSksTaeyrypY8lQq1lZ3g9rZXfgsfemShJkGYo0Q6qimUzmG9/8RejTC6gitmk6BCI+KI6Iw1y9evNjM0aIQIq/ayHRKsX9IrBEiEIjbHvwQlPCBaD04gKrzryKda3Wxwtx6rinmzOfSXbG2QtJ3Txyv1rF6QE2nMl/iGO2dzB+8BP9WZG5RBGXzoh0GIATS+fNBee7rj+/1YtILt4T9HwpxqTWcPNm8V8sxRNXuVZ0XvZ7U6K5ewweP8kph7LRBDwbowUAKOqur0q0QReg8XMfO8hUnu1y96xY6d9wmCvDQbeCcQwfC2s8zGE+wO7uY9TXAY5Xm6NOPsflP/yn+9Cnst/4/4ML5xS6AKtNjPofDQ9RshktSVNhvDg+lcLa7i+t0ZYy0ksUiVfXYV0i8W7imvGp+jqytLwh17LpbqPPN56hWsDO9HlGvh68KXcE2poLxjlxH+AgKHaGyTAo83qMuXkKnsexkYXEkxEZhVUvR7hx6OJROhdB5oY5GqPkMX62Z3uN88EDPMtljoyUToer6mE4lTPXUqbDeDVjLjjC2ZJCNSVdW8WkHFCRvfgudYkbxpV9K+SVfjDt5ktJZmM1w0xnGaHya4pSuMwucksIvWotNU9C9a3wY81Dwra4/gN1dOWezmYzZfA7zTKZAsDzye/tCYJ45IxkLjz6KKVv3sda6pls+3sdboupMjjYqKyfnZM60zrRaWZGOD2ArevpB1m2076EqjA4gPv/PBS6cx4fAavvYxeu/pjXny93dG37UjYj1KpQXbhzg/kxRNWwIZ97YkvUOd2Eqx3XqcKd+fe/syXrddkaHoFSFx6NHo2CjBIlp5ohuHX+WZXzqU58CwPcS9P4+fjCQjpjDIarXk+9nVVdme4GYTmWtD+MdR08vM2eJJZZYYolnhiXhvsTzjp/4iZ8A4Mu//MsXfv9TP/VTfNu3fRsAP/qjP4rWmm/4hm8gyzLe8IY38OM//uPP8Z4uscQSn49weSkPzFrj9/ZQnY48kFiL7/ZoOLGGZE7TtCZjV9s+vZ+HODg4qH+2K31MIEOiO27Hzmaw0sV7z/6+qE2Pe5u3285VmjThfeNxQwwsvgHf8qJe7YQHu6Jg8uFPwFeJrUg5zxqrhOtZszwFKkL/ZnGcoG/7oe7t7S0E4x4cHOC9p7fRHJ+LY3RFwpYlUVGQhuP31jb2OkpRhZaCkq4KY4TMqqyNqiDFividzRbJVlggGmoSVBnUlUuigl1ZkddU/vXtro2wL8UL7yWqAlatxVUdZK2ujeiYF/POzk7d4RFpakXrM9YGVn7nZUN22MkRrLfI3LEEaHrvJdBwNpN9PjqifOUrmNxyVkIhr/O5EFr4q3/MZqJGDeSvKi1O6dq6QwHkRa2u9Wm6YGHkqiJBS5Gv8VIk6fVJjKL767/GzCSYF7yeouow2D9A5dkT9xNEOVyR3t5Dr0fc68GVq/X42v1D4hNbDZFe2VdEEWpjAx57HAhWOAsFBoV34hnuJxN5vZEIYhcSTouiaNTlIOTndCoEblqRMwpXWiEjvReVdjVfs6wOwPQrKwvXkpvP4eAQ3e/VRCoAZbtQ6cWSJMvhyhVYX8fPs5oIS1ywqypL2c9SfI59KMBQeRE7JwWnLBOf6ySpCwzYUjoAkGvdYzBJQv7Qo+i1FdTGOi4ouJmO0drIsQ76RIO+eI17j/GOSdTlX7/k6zifZLxeRSTt7oPjC9X6On59vfFwD0ptej3K1TUoy9BRAr6aZ1rjdZgPUYTr9fH7++jZDK/kfNZdB/haBVvPicNDuYc5ix9PJC85KP3ZP5B73HyOn8/FjkiLdQWqCcgtlZbQag+RLfDTqRDlSqP+w8/TmQyx2pB93XewqhWpUoxso4zVZcHg+/83sle+kuxv/U05lsEAO5+jOh0JYrUOrKlV/T4vZN9CQau2wUGhjkbiqT6dMfeKLgrjLNHRrtgrAWXaZ2ZSfFEy1wlROB3VOXFpKnO/IsmdQ1e2NUcjvDHSIdDt4JWGJBale1nKOFa2UYMVKdInieRdRBF0wGUZWos/mk7ECssdHKC7XTId43TLiqV9H606jar5cx2oshSiP00bFbRzaFuK9U51Jc0zWTOB2fbWdT/rZtHtdht/8GlGrysdTa74zIj8m4Wfz6Qwqlg4xjZsWcprQjfCjeBcU7RqF6/KsqzX9pvJbXkylHt7XP3jPwYgPnEilG4UILY/1efHWteF+k7WFJpXjZEujCRGmQjtMvASFMzGWnOvzEu5b9eDIOvqpfd/iMHdcg93/Rh10OpUqwJ9FfjDIXY6R+nWeHW7MreCvdTSUmaJJZZY4rnBknBf4nnHzSjlOp0OP/ZjP8aP/diPPQd7tMQSS/xJgouTmpRUJ07CdFITne3Ht7b6yebNulRkn9/hUlGrDdsVFjU9RCcJxZUdilvk4W2cFcxLOeY8t6wm1/0oQV6IjUyv35DMbSw8+La4KWM4MW3I/2Q+Dd7dHmZThv0N4kgxmvubui+0VekXL17kRFBu3QhP9plV+GaF+++/H+89upvWdi9a6zrME2NYrSwCSrug8Md7nFJC9hJcFdIUdSJtSM9Op/EtbhEKFSGrL17EbZ+AVLbhglWH0h7tHLbqNCgK3GQqit2K0NUaMlG4T8ZTutvB+qIoUI89hj97VgolwWomnzaFB1jsBBhsrck+KkW0tfGk43tDhAlQ9lb48Ic/LL/rtMJfnasLN+riRYhjbF6ggTIr4ZWvwHqPm2etj2wptitf2qp4EcgqReicr3SbSSIk4HQqnS7BCqPsdIgCIWOtwwSSmq2GzHJodFFi53PcPMOiUN4zjjvEgdQoNjdJNtawR+IXPDpqzalKxXpcIa6oyTPsYvGo9lcPyHVE4sqFgko1vnUnREsZ68bT+u3z417saQppK3Jx/wAig0oTVLDtUEXZFNSqok63u9CRAIiVx5nT+OmMUmt8LJ8a0bahUSjlK2cpIZ7nszpQOYoTitKRevGdV0FxX59T3ZzvCI9PU1HKHx01a7s2jarYexSWKOnidi6jtMJsbdaFAl3Nt+kEP5lir1zFhGvIaYPu9PjDC3dxWOzypXqx80BVtiqV6r4+DeIf77RGn5AOFJ0kuMPKUkJhgk85SslcRDXz8t/+H6x96P0APP6Vf5ktL4TY7GhKfPvtzfaNwQc7G68NOmQwuPlcijreBQJTcgtsZcfjPLrI6nkfV/kRCnKdUv6Tf8mgnHGU9NFKE3tHbJ0owZ2nG2nGKrxBybatUqTvfz/24x/HnjuH39pCnzmN29uXokfotGF9DeIIVR5BlqH29qVzIXStqCSu1xnimJ4tUEBqC4xrSOxhb4Or6QrnjFx3KkmJghWYygtR+IKcg2rOVh0hs6kU85JELGKmU/lfKEZWoalMJmIDFv6tihyfrMv78lyIYRPVtkz6zBnppNFm4br0qvX9ovKsB5k71bwuCtTuLr4vuQnU9kCTurvGaQO6WRtKHRGFeae7N87fuBm0c1L0eAK+lGs8iuq1emVlhfPnz39G27khev26+xB/fTLdWgt5JoXELLvuayAU2a5DuENzT/tMFe5Hv/GbPHbhvJybo6O6AKCU4tO//MtU1Lra3qztuGzcfJlKO1qKL4Aqx/UEqe9R4f5vZqGIGMcL3UyDTvNZuizFighZHp1XsmaXJWp9jWh9DbdzrCOgtHVGQHyDAscSSyyxxBLPLpaE+xILsNbyi7/4i3z84x8H4IUvfCFf//Vfv0DYLLHEEkt8ruP+T36K/QNRqPbObIiqKE3Eb7Uomjb2rRP1Q89Ky7JiMpxQ+WdMD69vN/L5gm63W1uEuHlG3IlFYXvH7VgvD6L/v9/6BH82iElT44njhLIsawuGCqPhlM2+kAeqIsG8F+VwdZ/wHm+phF/yEB+sU+IWedLpRMFqQcN8xqoq0XFKP36iGv16aL/mZgj69mu01gvHdfz9VRt6WZZCsiQJNs+FMKu2X5GYld1G+29BOapig9/YkIfna9eE7IoimX9bW0LqGCOKz4p87fVwd9+NH40RZ4mgYktivJcwTCHKhHhVFbEkBxKqHPLz5qmNhrQNKns/Ggnptyp2Oabfej+iAqzV3rv7MOhJIGKWoUzwwqYJjNNa8+pXv5rrok0Ym6gpbCRG1NOdjihdo0jILSX+3rpSAhoVPOolNLYe30opHuCms5p49GH8PWqBhMFaUfvKTjf72LKXMUbX3TCMxkIUzueAEz94YyiVYa5jchNTKi3nAzAPP4S+2sUE4nwybZSNC+rWivSpyMjqJZUivKVcr19vLfHJUACoAndbdjV27wCztdEovIsCNxzhlMzjBfOAYIlBUeBnM9RgBd/vLVhgyDhKQUYpJYS80eidXexdd3E9qCtXOPjpn8fecy/8NTC/8Gt0rjxI+c3fgD99FhdVIaBhzdC6tlVJIkNekWntgkKWLVrhaI1F18fjvXR/eOdxeFwic1l7j0fTSQwDPHZjte6iAd/q2lDQ7xHdeUEU88H2ph8Z/vELTrG/l6HIm+uqQlVsM0bOYZ7L52qFth6/u4eq1Meuqjp68vGYJI0hScUCoyiEXJ3NKYuSsUlxWrP/4U9z4bd/FRTEX/Il8MqX1cWahZUqFM0I1ig+TWF7Gz+boT0UyohCWim8URTKYIJPdH5lhxVbktgCoyyjtC/j6R14hUU85itS0WjNpfd/glt/8z/LtJuV7HbW2JodSmeEtfjRGHd0JGuSUiEMu5nDsgGNS2JZI8tShnY4Qp/Yqs99RVsbPNnWGdLDXVDwobtfw/9xy+v42/lHeY0tIM9woxF6dUWsX4pCjtV7Gdf5HOcVWilspyvL5nyOy3L5OY6arhMdinAXLtT5DpQW6z06dC6o1dVaec7+UP47HMH2JubMSTh89LrXBmXZ3B+q9SZcw06bUDBzYgtUho68KJL51boHOycFkApPp8PrenhCILoOhVDVFKHLsvysEe66LOr1c+iub3FS5mVdfOBJFOo3+g7Q/v3x7xXtrJqXv/zlTx2kbssmb6UocLOQh2MdkyyjrOxx8j1MKOZMo+Yz8+kccwgqSXDVulzNv4MDKXZU9++qUAT1cVtjRD0P5B75fqBUKAC7qpoZwn6LRauiSqAQCr+u9X13iSWWWGKJzx6WLOoSNT760Y/ytV/7tVy5coUXhKT4t73tbZw4cYJf/uVf5sUvfvHzvIdLLLHEEjeH/YO9+kEr7nXkIQSkbX1jXR5gjGGUlax25VY4L5qHk0+PM+5K5QH5o8MZn89pEW3rFa2pyQ+f5+S5EH6qnNcPo977+iH0+ENsL9bCaDoPZSbjqLXYpVRIU2pOQAFFIAezTLyxA+YYOtNpbY+h223zN0GgL/jP3gRBL6GU4WfrFtob2sGwzrlaCaeMkTA7pST09DgqUuSYr/WCurFSPp4505B2FblZkTcVgd5+4PfV/iohjzY3ZKxVIA4D8erHY7EcgaalwAeS+uIlOH9b7bHsKh/ww8OmFf1YRsHsgQdwp0/LuHTj+mFfxXFLVO4xWnyxtb4+UQLU1iAAedI6tqDc1EExW5HgZRwTFYV4zXpPHFrkqWwjAoqKZKw6AoqiHtOq60JFBtZWMUWBG02k4GAMflKKnU8upJpqedg752plrF9dQWkdSOxAEjuHdS40I3jKtBfmnmfiIjpRShnBq//Rb/H3Xtnl1o3ma3Z9SYRroRyOiFqEsnc0KvgK1by0Vghxj+QmmJaaNoowZ06BdaJ4tBZmc/Fj956j97wXf+akjE/1nvB+P5uHxohQPMtzuLYDg74E/87noubVCra2cFtbT1C4M5nC1auoK1cx83nto37t7D3M9vZZLyylNljvZd/CubZRTJxqzt65xeyTBVfmvvbN99bJeayuh8mkLhRoL57d6tJlWcvzXKxLStd4uOc5oElP30rWizGDQLYSig3Bq5xY7J24fEWKK87VPuen1ru4WQc4Zr2glLzHGNlOryfq22BhglKiVLYWu3eAzzJ0Z6OZk1oHSWqraFLXFMQ+ZtVAGoqTh2mfQfU65/BFgbu2gwnZDb7yrvbiiW4rSxk8kQoe6kmCAiKlMN/z91HA1ZXTbMUxymiSKAbnq7oA3igyE2OVxhqDNgpnPUVWws4OeMVHT9/Lj3z5/4y2Jf/WXaWnNVorjHM4Xc1phy+btc6jZB1JEznXZSnWLt5hf+lXMS95kdybwlDHzlLg0FbG4p6T6/z50wM6l2JykxAbA1HcXEOh20NcvQLxHroTxAgmjBNSqKHXlWusKPCTqXjBX7mGWQt2Xd5JCHCns1h0cQ5XWjQKG0cYpdDeYYqc4W88zNpXnRc1cYWrVyV3o7oG07RW86sT29I1Npuix2PUZELvH7+V4p57yL7+6/GmsY+y1uErT3yQefQZYHTYhMOzMqg7Wvw8h9AY5VqFzmcDeZ7X30d8ZSEFXDOd675+b38s46W1FOl845X+vve9r7a806b5DjLLr/9dwjvH5H3vk0v/xDY63E+PCwtuCG0WOtNiuTFhnGU0yUlDtEpitJDnQHdrlfe85z0opYi3e6g1Ibp1Nm/uwe1cFWslkLmyFTo6qtXy6sol3Fm5NyutsFGEOaaORyncZEZ5NMakLZonjhc6gtwNcmuWWGKJJZZ4drEk3Jeo8Z3f+Z3cd999vO9972MjPLwfHBzwbd/2bfyNv/E3eMc73vE87+ESSyyxxM3BAqbV7ksuymFCqz8I+b4a/l0MR3zq0pBbz54CYHfuuDu8/6hFxM9mMx59VFRsg8GAc61QyM9VtB8ktfUQi1JMdbv1g+v2pz+KP/ui+nWVMvi4EtzMptDfaCmx5P328hVMtyMPdeMxbJ4iMBxwcCgEXp5T9tbrz0rSGNbDvyvi6mmg2+0ymUxQSj2lnQwEz/aaMAYdwsqOo912rpSScFjARTFPoJZvoLjTgRz1Wmw6atTqZS2+2xVZX5HW4wlUSu2Ll4n+2b/AO4/9H78FbhWyXGld2cRTeUDX768sZcID+mxnyKDqPGgr+lUIUCxLIRBacC0rlbxwJOOxEEOtTrc2QdH2+H8CWoWYtRcuKqN1r1JTqvp1qrSNghuF296uww/bvtmmTfK7kFx3/FxYi5tMUbPp9YsCVQHGNJ+78KrRGDY3UJ1O48uuFB2b0ytzLAW3qZx58HAvrCMJBYThLGdmE+qv2RUpCqI+7HaJul3Kq6r5Iu6EGK3PpbVCSgYbEnvxMjgrRGub/CsKyp09otVgkxKIl6QU1fXjf/tvk37bt8ErX9GM42yGHQ5RcVLPFz+fS+Es2JW4WYZyHmU8zoPZP0Bfu0Z+990sjHS/B3dcgKII1gayX7OswGvDunOIXl5hinyh66CXaM6/+BRX3lFweazrsFT/BHudhjhz2qC7Xfydd+D3DyQMV2vxnK8QlNR42H3vRzj1xS+Ta6Kygwn2Ja4o0WtrcMcF/NGR7JtW9b1Dq6Qp+LQtjLrN3PXW4h+/KB0Wwa7F7x+gNjcwJ7exO7vUfJppKapn88ZOQxshp71YUV3avo3V8R6gKMYZq9eu4XrSaUKSYKoC22zeui4D6ax13X1UakPUKnrZNA30nEebQPApDdpggj2FUbA2PSTxLijcDc6GuRanVMTgeqQ4348pS8P6/lXs7WfwKMo4RrmKSAydElWBSM3kWo1jKSLFsZDf3qF/7deJM1mLhsmA9XwsK3Sc4tIe4Hn5C9b5+r/+Zfz6D36wPhWEDiCvdT0WOoRKq35POmO0xqUplGJVo30grrNM5kOeo5IUul3MhdvF8iacX2VLfJY1+QLBEkjbEvBE1kqHThThkg7ZQ9JBsLAenTzZFM/aqMlgL3kSa2t1hoLJMox3KNWEbY8zK+crkKYmejLvt6dG6Zp7oun3YHgkPuDWyvEqRTGdPvmHPE18/OMfr/NT/IUL9TjN3PWLB9l42twfgHf/l99lfnAZD3TuuSDZBMC1yztsrMi4vOcPPsgL7rrwhM8qs4xHv/Ovy2cNBvh/+2/w3i+Q+E+Go0cuQds3vy6QeplP1UeUZQiRhuTkVn2vNIOe+PR3u+0KrAgYNPU9ug4Trr4fhDHyp07Xc6EoHLFzkntgtHRGdDr4MF+SzXXctSawlWoEw/uz9Ol931piiSWWWOKZYUm4L1Hjgx/84ALZDrCxscGP/MiP8KpXvep53LMlllhiiaeHo6OSjdXG4gTnYJ4JqdLtQJxgQVrF+33itRVMvl/bZLx8fhnKWwG47/GPAV8GSBGyCiE9Ojr6vCDcjTHNw2S86DtcPfPdeyKuX1MWJSr4MB9Xffm1NSGuKouAQCKYM6dFddfpQL+PG43RXbELIQQfemPAt4IoJ1MYjRqf0tBGr4bDGyrcZ7MZ47F4ZBdFgXNCSNyMN6sxBm9BmYrz8vUD8uBY+Gv1AO69Rz3wAJw5I8Fmtd9sKDbM50LaDAYNwaIkKBUfAu+GQykmhAdiQI5zOm08sSu7BSOt6urgAH14SGRLvHdk3Z5sPyiDF1TQuglCrMnqMJ69gx2YbAsR2O3i9vbRWtUkBVrjjhFB3hixewAhu5NEznlFLtwEMVF/lnX1tvwxz1h3dQe9tSEEz2yGz3IcYKIIn3bweb5IgLfm4vDaBB57TFSjo5H4n1fEf9QiueMYXAdXFOgshyKXIkevu+CjvICgKFRxJMrXw8OaMFRJglMaKQd4OuNDooqHdb6eU1FQ2NawVop+gZwhz3HTGe7iZaJ3/iEA+eEYvvctzblsk7wA/Z6Qf1EkY1qdwygiuuWsHEfVueF9IO7ARxHTvHXego2RTlLZVJ7LnKvo0eGReLlHBlV5Ss9m+M0N7OYGk+GU1ZVOs/2ylHl1NKLwSpTxQFTkbMyPRJHvxcPdWScWJcag06R2eY82N+FgGJTpSjz2QdYRpfDayHErhZ/JNacODupikwKciXBR8LZujf3okw+zfddZotMn6332kynKhbDCLMeNRyhtoJdAHOMUGIKK3fl6TKvx86MxKk3kcohj1O234fYPZE2zZW0z42Zz3HSG6XWl7WV/n84v/Dzgme8d4t70v6CjSGZTsJ7xwLvvfDX/7s4/A8Bf+9R/4/wP/wj2RS+k+OqvhtMn63Oky0LWl6KQYzZGQpCtFJOUYqGo5g+HdebAiVijvEO5Em8VSWFJbIlTmRDShOXRW4IInXfe9Tr+qH8KDZw7dSs/9fIhhdN8+oNdNrWWHIBOKoUzH4h021hcVHYp9nCIHo/h3DlQYKMYozTRb/0OY5OijSbTEYWO0Em3vmfpfvC/Dl0pWit8mtQFTGYzmQvjCXp1RWypnIXBQMj70Cnjqy6tNASj5nld4PL7+xLyGuaWL1vrXru4Ge79vtPBD4fku4cUswwqHrO93g2HUlyu7Eiqe7D30m0UJ/L6w0PUbEbpPWWeY4P2uZp748ND9C1n63+X5c1ZyjzywEXKvEAZxfm7bq1J2/ocI4rpykNeHR013UlP4pv+TFDdt4GFIrv2nnf80scAWNns8JIvvUP20YYw4CjCO8fB5cfY+ALpwm7fE7bzMUR9UIpTVx++/sajSO5vQHzmzML3m5sh3K898Ch88atqq5+6e82Goq+WjixrYglQ9ZDvjYhXBlKknuV1MYiyBJ0GQl033XLe4zqd+r7rUXXXjR2sYKp9TgzlXBGF9a86l4rQWXJwuFi4LEvpiAjfNfSzXEhZYoklllji+lgS7kvUuOeee7h69Sr33Xffwu+vXbvGXTfw7FxiiSWW+FzE/No1WD0r/3DhIbeTojqNElqPx7UiUe3vo9c3679VijUAPWgeCruVspFFG5LPZVRKde89Oo4WbEsu7l3h6miP+Laz9e/UMZI9TdNakRav9BribjIRki+MIfMQ9DUei/1KII/bJIVraWPLoiQqivohE+fkAXNr64YPv1evXuXKlStPOL7p6Knbo7XWYIX3woPSbbphEdX26/2oWr0rjMfYeY4JBNCCmtH74CEdQjutFe/3tu3OdCpK4soDviIexmPodvEnT+J29ymNAW/Qd5xvQi7XVsXqJKipdVDgU9mCVJ7JzotHdBUMqBR6S+a4Gx4Jme09vlKvLg6AHFZs6qKKn80aBa91NSn6ZFCtDoLj51SfCtfifC6EWLdLPJuKzUSWNV7r1blYXeFDH/qQbP/yqN5PBfi00xDtFYoC9fhFykEfHceS4ZAmQrZGYdxbxYUaLdsjAHXihHiYW4vJM0xQyYIE4sVh/wbZhH6Z4pUm0isc5cfIsOo8jUbQ66GTREjbP/oQCsiTFZI8b9TTvS6NX/QBZLkUIc4OFon4tk1MmGPeGLj3BVhAeU/W6y52QSQJajOR7pM0lULQXCwOVNi+ms5adgbN9nZ2J6yutdSRUYQ+dRKzt8e9Ow/wWPCa90az31mlj0Jp6TjSlX1R5acfjiM6/xL0A28PpFAI/U1i9EoohB0eigVIWQKiKs+nGdFaHAhrmG2dofvCLwQgufPu5nROh0S4xkfbe3Qh/vkewJZERyOxu3Jiw+MLi6VLFOXUfspV8KX3qNUQ9llt5NMPoDY3QElgZzXGOknkuqnmsLWUH5Qwyg/e+jJeGq5VHwIQVSjTXFhfAWS+rCQxpQ7zVCkwEaoal+ms6UjYP0SHMFx3cIhW8pBXFy+VwmhNkovyVhczVJGjbIl2HmcSknJOUsxCQak6vZqNUyvks4zh6jYf0CtoFF+90ePCbRex1z7FQ2og1kNpignbRyEZAlpjwn5VPvkojSpKUZ8rpBiuNFYbsk6PfjYldSWpK3n46/8Wa+duA2D7vBTHqpBjnEMXch6V0fXc9eOpdB5Mp9DpotJUglJ392UN6/fx1krxzXvpZjFSuDTDIW5zs9lPQpFIKblOqoJzhTBnlBLP+Rrtjq2NDXlf+x4Qzgnr60L4zwrUbIY6OmIc90hCJ4FS4MJaWw6PZB5UKuX8xp7mbVy++ljdvnOuON3yKm/ugV4p1HAoBScdiU1Xu7D3LOFGHVGr3eZ7yWQ0q9f6jLmMT7j2TMsCbGEdbOWomBbRXLSsfWo1u3MUuXtyO7Tr4H1bF3hF6HBAaymWGKlGKe+bIkvSfM8y4bi893g8bncf3es0nWhVd4QNBcDqu1AmRSCVF9JFRLCBCZY0JopwkymshEyCKKz/gYC3SYJqBY3X98dwv3BPs6NwiSWWWGKJZ4Yl4b5Ejbe+9a1813d9F//wH/5DXvtacSx+17vexQ//8A/ztre9jaOjo/q1q8ceSJdYYoklPpfgbLmgfqqDUsdjeeDoiK+7Gg6ljXtzM7xeHsC6GiEz8HXIHDTkNdycIupzARevDYmDlrTMSiI3RgVFd2FLilkpREUgZkwcYYzBOYcxhvEsI1LBNmM8I+mmEkCIEsXibNYo1asH0criZTxeeCheG12rfx7212g1ZwucEyuQsO3jqLoLgECSGPCOyScfgfvuedJx8N6j9y7jz5wJv2j+Np/Peeihh0RB2yIXnXWNpUm1f0qJ9cU8o/IW965Rcjcf7lFxjF4PZrjXromSMYlxs7nkcPZCF0BNsjYPwcaWJKUQTHlZ1FYhaE3vB34QFLxz+wW89AfeWB1gY3mQJOL3/AUvQ1XWLW2v9lrWqIhsyYc+9CFmoQVete1Kjo7EOz6O0a19axPpT4q2grD1uR5QjzwiVgstwrvUhqjTEYL8aETbOkVFUb2PH/vEo7zotA5q1aAat7aZfyCEx+mTMk+87It3DuUsEIsFBSx2CABqZwcfx1JU6HUpd/eJAmlilSIqLdVRnf/Kr+FHV0/Ifjz4SezqKpw6xY/frbDWN8df7VtlSzGdYkcj7N5BreK/tHmWF3zwg/jXvEZ+YSJqQ+rtLfzla8GKZLZYXAihoaosahsIP8+EFI5jRv/yX8DeYfP6akxLscRgNguElhZ7guplUVQTy8xmQmCW9ok2THlOcfEK0d4euYnrv/eyMffuPcSseBlTD+CgLJr1QKk6ANL0V9EhZ6OxaPBQWvGlrwhr71FaoXo9kjtuF2/syRTwHG3fRvrF3whAsl5CWLYP+9ucalt6ONccQSCx550ukXP1uSiDTZCKY8zJ7drmqX7P7q6cg9KKxcRdd+IPDpvLamM9FLMstigx4wkoGO6O+N4/972gFB1n+ZebGzIeqWOoO9hYLHVestHn607I6viRDwbLlKIiDkNItVK4JEFlGepoLOrV6VTWmRVZc6w2ooIP41cYUwfL+u4APx7iTYRPOriiZGoSZlHKRjYKWwIde+599a1cfHAP5R6QZQaPVhZe+j/h85L1X/hufHkvTKe40bghlqtOonbnjTEYHGRz1ESuTb+7S2QLujYjHu1Q6pgcTamNzJtqPa0GuLLvUAqrNdr5WgmtylIKF4Ek98j1xmgkeRyB1FTjsXQmVWR69b8oau4NKvxYNTccjVCdtLb2kckramdVWfnUZ0k1d5Jx8CEvS/n8ivBuh2kniXwXOXWKtXxCmfVwQZVfqZon73kvvOB8vV5t3NsUyp8M7WM42Blx+hbZ/mTuGXRVdah18SZKEtm3OH7CSv9Tf/gQj+5P0cDf/cp7GHSOFRGeDlr3hyjWMJjLjppmrfeFFZsUJK9gcN+dzXrdzqUYjmrf8042rj/38v540cc9dEO0s1oAbiY3JmsVBQD82pp8Z6iDkQVmOlv8/hkg3y/Ca52X++tgANMZOmTZ4D1xrytrTnXPD11YIpwI2wZR1svOh24U33Q3dbv4o1Zwt2utr94T3ew9fIklllhiic8IS8J9iRpf/dVfDcA3f/M310RS9QXka77ma+p/32z7/hJLLPGnC0VRkOc53nvSNCU+ruZ6DmHmGRRBSZXNw8NQeCDq94UQyDIJ7ZpOYTzBb2/XD8guSdCJqCGTtDmOT91/uW7jnn+etOQ+fGXMuS1pozZGib/ubAbjcXPMFdkQUK3xZVkyy0t6saa0DjuZkriiDuEjioQs7naFtIsivNK4q9cwW5syzhU5OJkwW20o9tV+IufCGDkHZQlZjtrbveGxZO329m6jai6mDzIJtgnGGDqVdUsL3vuGbK98nAPm8znTcD5V6AaQf7BoxVGp/o6O0FUeQBEfI9vBooJdg5WW/DiGlRV5fyAa/eZ6INtSKVhUyr9Ol/JgSHRwKMQU4Hb3MLeck9d3u2RZiffwmydfyhf+3/+R/Ju+sfFJrvYxjvFXr0JyRv6dF7B/KLYqa2v1g3epTU1uyDE3Snm1utoETFr7BJXcU6EcjohOCkkhHQY22DSUqPPn5UVHR7LPRSEkxGwG02ngQltFLevErsM5XnT4ANzyopai/1jYKAjB0O0SRZGcg6BsFKLCBrsZtzDvKQp8KBap/X0pNGys47IM7WVCPH7nKznxtr+JpmQFT+zk3O8qg4lTYq3RgDI05P9kIgTdaCz/7SeotTVUv1eT96oKda325WhYq+39cEhU5pA3RZ4a3qOKvCaPpSsAOebQQXGwe8jG5lpz3pzDF6UQ9d2uEFXTaW29hdF4W6ImEyHiUa39O1ZoTBLiC7dRzKdc3rwN2wmhgKmpz1tSyHWrtKmtiXTwdQfQKyt0piNcax1SLhQFFKhuFx/mj1iHzHG7e+hIU6l0/cI12OzjO06/hBe0uno8wU/feZxS6DgmWVsRq5pgt6C8fFZUkWAL88rLefGBMJvN4No1dL8PPkZ7j9s/QK2u4CZT7OOXiH7yJ/HA7ukX0vnib0UpOIHH7+/L+FvHz7z0a3jfC1dAwQ+nTSdRGhkpOARPfjz1daSq9ck78BqUxqZdKYiFTpvSa6LaCkpJYQZQRc78y76+JsLj//7L9GxOz+ZYGs7ZB0VxZAxKCemtgM5KKEoYjZ7NpKRbkX06dFFEEWoyF7Vunsl1Wi278zm9//UfoPBc7m1gjGFOwjDucmo+lPtVlc+AIyJHKZlTnWsXic+vyraqYls1v5SV38Uxam1Vzqv3WBOJz3+e40oLk6l0BEQRJEIsqzjGnjyFHh3JPCOMNR6nNOY97yGaTChecA+88IXN9W2C/cwNO3qUrKPGNMRnsFbi9Gm5VrMMJlPU8DDMf4c7cwajNGYuhWrdiZtteo+Ob24dlo4umbJ7j484fYvcu2xZ4n3re1qeg9YUB4fE/Z6M1cFw4aP+ze8/wJUjuZ7/x1ff9rQJd2NM8wy5vw8hMyTpxuieFIWtLepeOG+UnKc4hplC40CF+1DVIQewulJfM9c2Ttfb+/S1I061T0WcgNL4tPu0Cfd0a73ehldKAsfjWIqCJqrX4EJr4sqnPivq0ou3jqjygC9LWUfiGOtHGB2+CzhHeTgmnkylk6Xfr797uBByDZBnBUmaNPvjqbu1FKDKAnvsPlEXWssSPW6R8UssscQSS3zWsCTcl6jxu7/7u8/3LiyxxBKfx7h48SI7OxLStLGx8bxaUXmtxUICYBJIrl5X/le9JqiXfa8HvR4uK0l6QsyMs5JBnoPzDFVD3l6ZzDkVxI5W3Zx/6vONiS3xXoi8tCwhbkjyWpFZectCY70ARFFEX+UYExGVBbabiM+r93iVoVrEts8yVJKguh3M/Z9ERQZf2sbDvdslPdOE1ppbzsoDpvdyfqrOqSy7qYdfnBOCwHtyBR/+sFg1pGnKy1/+8ie8fIFUThIpINcf1WpBd56obSlTEcPTmTzgDwZCElThZ1mGX1kRArcaTwjyUNOoGavCBNThkPXYOSdEnjGoboeo24G93eqTMFeviTobIMtJz97OQV7yqnvu4uA//wr9N7yhUeGGMFQ1neF2D8XOofKYPyOhwGp4VD+ox94uePm2FcjFLCM6Gol9TNtCKcsWrIluhOhkc76dtejgga9KC9XHqeBpHMdErW6SOjCu2iejIQrbfMOfw09nqCTBdzriX33cUgbAOsr9Q6JzZxqCKy+EKAn2PbrbXSTdK3gPWYbd2cVUSm+j64xVR4RWTpTFgPctQrhSze/vy9hvbODLEncoVj4qyzBHR7jRiF4gjLYSzSztk7ZDU2v/e4/xHoXH6sXiGFrCRpnN5Nr1Xnyn0+Z1dtwqDgYVr4oiCYOczvCBaFNJ3MopkO0qLZ0B/mhEdm2Pnj5mRTCdkl++RrS7F5ToxwJPnWMepTil6AYLn8qioyIlu2dOM7/1NpLqGqoKAvM5xll8msr1ZW0QwDuxpIkqjbxfCPVtE+6lSdEf/TjunruCGllIZKVAVwWxvX3J9gjrQLX+JEZhfvbn4Nv/amMB0eoCwKt6X5XWLXutDKwlKnIy63hs9TQKuHbmHt7zQ38BgP/8c+8Hf7kucOVe16c18Q5Vig/7q+65gL1yG9NOD+MdtixQ2RyfpngToYJ8WXshzqNshk2T2l4iips1yJw9FTo8QDlL9hXfID/vX0X/wa/UhzWPUjplLiGqYQ52+jGoiESJurwz2KhHepL26SRSQDX9vhQcsjwoc71YbTixzPFKoVCi3I5jnLOkJgKrpFjbCgJVQBoBGEq6+HDPze98IS5KSdIOrIoHuz46CoUHj/MKnWWws4MO3VwGJPzVyjh5a4UojyKIYhmXKEINIlb+zt9BWctB0if6+39XLHYU5J98AP3hDxP98q/j3vS3cF/4StnRXhfT6dDf3IBPhX3f2YFbQsZLnkG0tnBd1PZJ9Vzyos4Pdlo6y9CXLpHHXXwQD6hTZxpvdSDaPR6KeQPU9mme0bTpdOr7HKWCZZjz9RqvQneG8tTbrjCdNf++zqr5lFi4t7dssKwyzQdqX4u3J/OS1fC9zbfzaKDpqgO5/4UurLU7b6tfUuzvo7aba3b2pv9F5uLV/YVQ+CzLFiwDr4ek1Q2lynIhPFnHwTLIQ4xq1pJWIcZaSC5dxq+tyveD+v00FnOzGfGgK91FVXdIuHc55xnn8j3AlZYky8A5sTJSNN7ygDvendAq1OAcmVpSQEssscQSzwWWq+0SNb7sy77s+d6FJZZY4vMYo2lR+2XujjOez+SHUe44U6mXTCQPj3mBz3PUfC4PZ8bgfSBt8xydpLXiSUeRPHx6T9xtCABPUT8wRvqZPG4+95gUEAXRqxoMFgmjQLTV7f5KhTbtCLSiLEvUaAS+LyRuUQhBVfmyZ5m8dj4Tr9HJlHI8Jt7clEJGnotyttdDxTHJ5qD2YM8vXqWz2pNz0QpNpdvF2qcuZvjQxl+ptKuzdD0rGggK66tX4ZSQzlXHVvgrFVGo8gLfUg6q/X1Rp/e6MieKQryvk7h+wG6T7ZUa3DsvisrRWNT480zIWWPEk/u07AfOi+IcxEalIoPH41rxPP3kp+m/Rvyp51f3cG98KxHwehzfXXw//+Zf/xvKP/Pl2FvOiZ2P1rgkJuv1pdMkKN/90REqz/FJKmOnFG51jVpIujDAnrjfFQJWa7lunBPy7ibIdu89bjRCrwTFsw/hd/1+Y3MDi6xNmgoJkaZyrVbK3EphX51b7ymORiQba9isQOEx87nMyXZhQIGZTMS2YW1NiJY8l2OqOgJGI+h05dyMx6ELoVKuGuJOpXL2KA9VTmGsZqB7ELzae64Un/Kwj15r2Ay5EDs7sg2QMFZjKHREWVpUPgMPJya77DhF2vI5r7oVdBLjul38bCaWGG1Svyxx4yloJV05WqNMi5SvChctdTtFgTsayQD1e6h+ULhXJyNcGyoKdhkAUSSZBfNjE6XXI7nzPG4+EyuPsgqhDXRPWRIlGpRhfvcLmxBIpWpfaW006soVeMFdzfaDb7EPhTUfRWLxsroqBNf6inh0Ux1We83w9ebjwQB3bqUm9lTSASUksM8LlDGU/QHK2kZVG96cKMUj2+e5vZp/RSFzpCo0KimS2cEA7SWE21kpUBDH2MEKk9VNvu/L3wzAi9eax66YLOynbCv3qg7gRRt8FIJB73gZw5e8jsf+6B2cijsk2uCiGG20kMrGSAi4tRjvcTqSAorv4YwRAjdYGpXDMS6VeWi7raBopVHek+uIuYkZ99eJj4TMHYRBObg6EpFsGNs0MuGtik+cuIeXFqUc/zRYHhkNodBbEau+yunoddGdBFVkGGBztMssTohtQW/WKG8VFW/p0JQoqm3Kuks2x08mqFkIoK5CdLO8sY4L+Q4+TfDzDCKDNga3siL76KrOGS/zbDypi5vWg/MqeOFDbDSpBgxM77m76X7IMvxkSjGaQ2WUNm/liqSprH1lWdt9kWXiJT/P5DpLU7GUCTkbfjoN08PjlWb3//wo451d+JKg3h5P0B/4ALuTe3lKtNzWph/6CI/+0q+gvCd6/QVYCTk2tsQfTcTrnlBsNgadxOz+nx+t3/+yh97Paj7F49n7pbOsps16m96xxsqX3vKku1IeDqXwWpZSuK6U15Gpv1tpW8qcBbp7u5AN5B7qnFx/1f0yFE0Biv1DYi+FhezxS/X2zkYZTKUrj7LEhgJ6nnRJWmtGdhPhsGvziQgLjMEeDjFJAp0UX9radk+6IaqlTfImGrcsR6FkPuG97H8cy5o+GsmxKEU5mROnk9oip1K4J5EiMmHtjBVuc0PmfHVvbhcz5tmirY21CzZHcVnwrl/5OP/hd/4AdelRUPDav/xVfPM3f8lTjsMSSyyxxBI3jyXhvsQC5vM5f/zHf8y1a9eOPbzA137t1z5Pe7XEEkt8PuCB3SGriGXDI4cjXvsFz9++nIiQB1qENFJV2OPRkaiIO51FdfZojO82quN4bVArZk2LHJwVNO+5CRH25wLuGV0kjYTI8ocjmHiIIvLhEcn2ljwZtlTNtO1YvJfgwjSFLBNv7So8sLKsCApqV0hQn1IaX9mQKIWv7GcApTUPP/wwAObEJr7M5REwiurt+rNnmU3ndLtPtIVpQ1VEYpY1XqbcuDVca12T7XKoLabXuZr8M9MJBN91733d8l4rqIMPMWUptkWVd3b1d10/aqOiuOmqGLS+cvmWlUlkYD7Hj6cQGVSSwOYmutdF2RIFnP6j96L/6D0AHJx9AcnfeVX1QeDB3H8/7r4X4U6ewFeESZqiuIYrSwlji6I6VLAO/VOK5NwpCmsx2tS/q2DTVCgu70UZPp+LMjRJrq8ob8F7j55OpVgB4lFbkeFt8lxp/HgcVMZdmIcQOBuUlKmQ41WBoLrwEluIoteWuP5gcd7Wx6HI4wST50TV350D63B5LsSPMU03THWuAV/kskacOYM/OEDFsdiqhO9Ghe8Soagk704bHApd2ea0Czpao1YGmJUBDI/qa2N/ZZvkn/w8AD19hLn8ycZaqBW063s91GCAOrGNH42bsQhqdb25Lh0YSbg+bfC9Dq/bPr3ejHkosLm8QKeJEO1FEaxWgNlUFL/VWFXXk7Ni5aJafubhXOaPXCTa20d5j2lnBYS/67U1SBLsl7+e+H3vg9U1Cm2IT95avyz74EfodhJcmlDedjs6juVayDIhQ0sL2RxdFPiTJ1EbG8R//MdgDLmOyOebi9sVQS//w723Yaf3YzbWw7kgZCkk+J1dsa7Jc9zFy0TzKV4pZuNOOG2ah7OI20MIaEWISSixk8JMp0N0uoPfPxDiulpPyxIzn2GmU2ZO9u3RaaMO1qYHunqPY+aMZGN4iBWicA/z2BMRoeiWOS6O6vuZy3KxSSpK6ULRGhcZOf9ai/rd2rpAFlUEv1JNUSnMz5VCOoASV9JJt0ic7OvtayGIMlJo1dgAed90A9hq+0pDFAOuzuNQrXuKLy3KOikITJpiSZF26WYTNND1ive95muw164AihcNOjg0jgSCwl13Oygt9lzKaLRzuNouw+K1kut0PhfLljAdFE2hKrp6RcZK60CiRnLODg/qOW8U9N75DuyF88xMQvexR4lyIdLNRz6C/YIvkANIU7SJiDtd/GG4Xo4ruavrtQp2tU4sd9ZSfJajsgw3mVLuHkjHkZNOAq0VkVG4eYkrHeqhh/CnTgXVfISbXz+E9EZQ7/0tJh/4ffnHq76vWe+1Rm1I14KeSZA1gNnNF7bxpj/+T6zmU6xSjL/0L+O8xpcOe5Bhhxm6E9F/1WluhKro0e7gAehvriysl9XaF588Uc9flWVyTivCvSoAgxRPwvu1b2zhtEmgF9b31j1LHQu9v9H3hkd+5me4EpTzt66Dms3wnY6swYO+jJvW2OksBJGDj0zd7aKmOVULmVKa6EwYm6MRbjaX7yXVcZclFAVmrWUlA/V9T41GTdfEfI49mqDTFNfrSacWLSFBmtRFRxkfIxkDYR7aKKYsLX/hTMbq618FeGaTy1y6dImzZ28uG2CJJZZYYomnxpJwX6LGb/zGb/Ct3/qt7O4+0T936du+xBJLPBVcUdLtyYPDXavPr91Kn3n9YKvmmQTadYKqNyhd3f4hGI1eX0NtbS6ogZSn8TRuBXV28wKlglLyOqFYn4vYuvuWpg1aK7E5GQxIVgYwHIKrFHdhzCaTJvRUKfLDEcmKhbLEd7t1GJ1aWYHxpCZwdEVo5TkkPXlgthZ1eChKrcmUXEV0tuV1Jk1Q66sNART2sXzkccrbLjzlcfmiEBWcdbiWaj8/TvhVrz/ue93KKimdJ64e/qOoGa/Wfrk8r33IXSDYdbcjhHqbvK+2U5Gex38PlFGMyTKZj3kuqu9ORxRvAM4xS/uUP/jvuZzlzH7yn/CKnU+hgBP7F2mO0HGiE/Etf/GH+X93H+REe1tKkeAwgD9mm6K++/8J/99/Lj93Urw/1q1RkRWBUMB72Nw45mt8E6gKHNOp+Di3gwYrRAaV9qRos7uL7vUkoHW3sdS5bnUrkAKuMpWulJLVeQzKVeXBlQghrWSd0lXR6NjxcnAoIbHV76Yzit09ojOnpCMGFrzCVWzqYs+GKXD9TiBIj32u9xKUun+A7vdRXuZWqkGHs5lGGZdO3E4cJyS2IGqNkdIanxfYRx8jOnt6cd/LEjeUUHvtuqAL1NGRWD+BvHZ97Tq++60im1IyVStrp2AhgwqZDzSv8cc7IYwhueM29HgohOaxuSE+8BWRpoh//heCEhWK7/9Hzeu8Jv6pn8b1evDmN+H6PbENGo1gbbU+xU4bNKJ8N3/0QZIPfpAu4L7xLVwPsVZ8/wc7PP6uK/zY3Yes3nWbfNDeXiCHPZErmX3oI/Te+XbZl6/6jvr9Dx7BF/2//hHrdsrs7/993NamBO46hwPxL7+6ixl0AbH9qYIRrYlwccK/e+U5vPKsdZqxSbSG3X1YF3X1m+85w+baAO/h1sOS6CMHoCB7abD8SGPKCxfQJhQZ2+PqHT6ov7VSKCuZCArIlSEJ3QuFdfi+dAi4Ew2p5stC7GlCkcsUrTXUVJYyKVGwx1AeVFDgK6VIDo4qGh6lPGjpVFLdLkwkk4E8x6cd6fBQillnQD/tgbNYE1OVy1JXcu9f+RZs+I1hCuQYSlSwd4u6CZainrvO2jAvKsJVxr/UEfrgEL2xjk8S9NZWfR0UzmO63bBeKOlwSVPcbbdx1FkhKTKUs7jf/QPi3/4dMtMhsY0tmbOuuW9ZizKGqJty8e6M3Y9+FG69jtI7zHtZRz1kGe5oJN0caYJeGZB0O3zL17yVeD7iX9uceNAlTgr0JILIL9zHpt1VdOepH+VV67+61+rGunCh2S/v6+9J7fXLnTkt2yao7f/Vv2AYziHvGqE7p3CZxY0L3Lgge2j4pIS7CYWc45md0/0j1s6daPZnMpFzc3go2wq5Cc6Y+vxW6yreY9p+7Ebz7l/9BAAPPXKJO155vvmeET6/DvGuLFgOj+riTBuzpIuvCX6P39wM25033xVmc/muEAo+Cl13DJV5RogeYFRaOleuSGE3TevQaJSqrZYc4EZjcSrrt4qbSmF13BTAq/tyJQAAUbHv7cHKKnWYeOtcEodCeRTRf+EdTDli8LqX1/fMDvDYY48tCfclllhiiWcRS8J9iRpvfvOb+aZv+iZ+4Ad+gFMtFeASSyyxxM1gnAHB3ndWeI6OjvDekyTJU3pjPuv7QsRmWQbyy6MqMth51OEBDFbQnQSX59IOPp3hVldrWw0VR6LCco5Oi6eyh/uwsSk2D/v7z+kxPVPk1/bonD7R/MI5IR9HR/IQawwUrgmTdU4sMHo9ODoiPnmq7u13B4cYo5sAuDgSci7LxG4mSTFVkCrU6uRKWRavNA+QKk0kPFNrsQ9RCrTGxAbXau8ej8fYSinZRhzXyvuo9acbFYeddfDQw3DyBEwmlCtrRN0UFeZIhbIs65BB71wTiFoRkiB+wd2uPGBPp7C+3mzIBxWoUvLQO5ujjMYpJYpGwKyu1K37AH4ygWoM5nPs0YhsXhJv9FAq4mD1BEeHF4m8ZW/rFlaaUeT77zvDb1/tUe48Tq4N8XxeExF+dRV/Ujz0OToSe4nZjCIriD/8YVycMHUR3btvA5LmAb4ikar5EI6rJizcIluS5znJdRSD9tJlzMkTzRxoE9DVZxUFvigor+6iV/qiYMzy6vBk3Ofz2uKpxqOPwokTeOfx85nYqRjTvE78L/Ba4Z1tKbV9TW5RlDCdNNZKtpQilBdSkTgiWV/F7h+gQteDDR9jyIj6XZhL28u48HScQ2sdsnabSemQcE69uloHcxrvMNaKchdwussHL4143+6UE5MDvuqUbUKFQawwtrZwcYxuFYLQGt3riR+7GK/jTIRp2xxZtxgw6D3eBx/ryh4qF5LWl1KkqAmp4IutvAdnWUuPXYdFgZ1MGfqYX/uCr+XUiR5/CfjYl3w1/y65m/+BR7gjXNukcU22D+Meg6hh77fSLrFSlNaS1Spq2X5F5srFI0UqdzSm9BChKEyEpV0JWNzHH3nFbUxKi7/2XvG673SkyBTmiNWREF3Vu22j6L39i76c/3K0w7d97NdF5V+NSxXAqxS+k+C8FzshreWzlUIbTYTn7K2bKDzrJ5srN9Gen/1vD/Kahz+AUor1v/2DREqjrcMoXatltQfDnOJoFtavbVz4u1IKFUeoQR87k/PvUBiPWLigSLJ53TXhi5Kj7/0JaslthbRfhz56E+HSLipOq6kiY6I1f+nsGi+dyk3+tSekoKOUIjdBTRssPeikYY55PK6+Xyjv6/wAvb4WGGCN07reIzkPBileyDrgSHAk9Sodb8SU+2U9d12nJyQsLZIxiojWV+XazjIpkD/2OJwTMlGVVuaCUmKXFdYvdzBkzWY4bzG2JAmzYtXOgyWHfP6YiH676yncJ/Kew432n9ApVtk/cXiIm2fSMRPH0jVWBUqPJ5Q7u6hkjTxOGPkdOibBdyK2v/E+Lv/6VSYuWPagsEnK9l+9j6fCp9/xjvpn/dqXwzt/V477oYfwd9wh+5bnwZbHoHTWEN57+2z/1S8G4Ggyh3e+vbalW9ncYftbv4JiZ8rVf/b+p9wPQGy2qs6V1npuokaVrqq8hJD0WnqI5FKVtbQu4DXWfzp0eOAcg0EM5mEAbo8ncp6NkWMK301K55swYe8pH3kM7r2H45jO8nqdcGUJe/voTkfuFVevSidAkUshobp/asI0dJCXzAqZQ9aBjROxvTNAKteQHx5BNbesk86ruAlEBSBJMJ0wbuH3yllwFu1C4f7Bh/Dr62HNPiYyCNku1VpgRxMGWxuAXjgPN5Wfs8QSSyyxxE1jSbgvUePq1au85S1vWZLtSyyxxDNC3EmYFtJuPco9H/vYxwAYDAa8+MUvfk73RTkjpJ2qGDuBzuaiUAJ5aNzfF+IkL3DW1f7f5WyOSSKxSyib9+dRE/L1BAL4cxVXd2BrXX52HuccGkVRWJLQHo2nfhgtZ3NipfD9viivq8+Zz8WPu5MKeTedBvIyRfV6otaMgsK1GpuWjYhXulZFyr5IS31NWmuxIyjzEt9SWN5///3XVa2r/f2a9L6ZZ8T5JEN5V8+GvLBkxpFbz0rS7JdOk8YWpnWO9XgkhBtgUajpTB6MnV+0lKk6ANZWmrb1OBYCbTxu/NCrv3kvFhH9Pv5oJMrZopQQO0ArizZROA8K1bKCSFTOF37tF/JFwH/5Fx8lPn97fa4ciuhgXx7sT52C1dWajtJa4S9cgJUVert7DVUZfHsBmQ8VGdRGsDpoYzwes1ldVy2Ys2fkhyhCXb2GXwm+0Xku8ySE3ql+n3gwwO7syvXonOQNVKRV1G3mVUVcBS9etX+IQTWkVqXYHo8DIWfAFgQWHL0lCnY3HIpFjIlqWwJvotpP3+8foIqCYjiSeRoKOd4J2R4zx1a2H8DUGnpV8K+XEk41f7R3kBfY4VAU7pUSum2F1D/J8GjIe0YFnj5/tnORuOW7roqCcndPCl5V5wFIYWQ0kv1bCwU0D348qYsELk3EVqhlXxB7iyNq1rOyBBNJp4UNYaLBSoFsF68UXms6xxXucYxZXyO9eJUHTt8NW/KCoxNn+fAJy/90+dNyjVgr/vkBSoGJm8eQNCpwUYxHi9qz25VOhGAV4ZFODR3mhEljkjLH4DG2oFhYA/wxBa0jUgp97gysrggpPpogyn3pWvBBya/wtEoVxFrTL8QuQjmHUgqnxK7FeFnvkvmMstevlaoV8eacxzvFi157G8exls54+/nX0J1PMcDrjaisXWJQUbPzm2XOnau/ztBHlNE2idYY72Ut916KJONJKGghBPRggA7BsO7ggJXv+m4AHjv/BfT/9uuesC/0JVRZ5XOUs/j5FF1I0VObKPxX8ZL1Hi9Zl7dsDZoC25XeRrMmaE323f+A7lf9GRnfl76ksUbaPwjrW8F877C+XpVSzKIOkSsZpQOqRA5PB6XG9bmsridT+XknslbrjgS2iqVNJF0swZLJ7eyilZLAzZZFh3at+1RVLLCWKJsJgQqoWjMPB901+hrSbCJ1QN1cO3Y8FssskI6QOTg/QbcVysg8q+ayBjmHRYFaXa0tgSKj+bedk3ijya5dozYAR8opte2VnuJXV7geLu2PeccHJETc6pjb00YRrZKY8f/69+SF1foe1NkqBCb7ohTP9E4Hdcu52qbkE5dHCxkZ02Ttutu/EbKHH5bOpbV1IayrorP3GNcqqrdskNCauCzxSoqASiHdQqMxRinIonp9qYqZqtuFYI9jhxPpZICFfddJK3AVGCUJH/3oR/Hec+utt7IW7gOjfpe0I51L6G3MZIIPDRG4pnCslZLrEaRzJmRQxCtFXZ9OjMLbVrHZStFH9XuoNBHVe6+HvboDxzOCQmG6HpfpDKeMFIFCXoDG41wzxxfWQK3r4imAsXbR9gzw1pI8x+KYJZZYYok/6VgS7kvU+MZv/EZ+7/d+jzvvvPP53pUlllji8xD9xz5F/07xlzSzA+yKqKoPJ08dRvWsI47kgbFSr2WZPHz3ejCfo6IIN5JQSqJIAujSQAo4SAaNJYrf3ODd7343AOdO9WsvZL/69B42ny/EL7639qj25QitRYEYK/BRLEr+PK+92ZXzEho6m0k795lAmnY6on49OJTPixcfWJ13aMAWJWZ3VwiQyURCVVcGqH43qD+rd1QqNS0qsUBemK1NxgeT5nPbVj+VahwWfNuT1VYA4DG8973vbVTvd9wh/53NSCOFUZa+LykOZ7WViK5U3UrhncdNJpg0EcuCar5o3fihHxaLfubGoFf6FA8/TnL+llpR54K1ASBWGUWwRJg3rekqTcUGBbClRVOgcUysUOXee1zrKdr0WoTLZELx8KPEZ07JPvZ7qLUV8fuFWhXsZjNMadEPPIDvdMkspOutuVwR2lWwHwQyw0nBIYRWtpVwBwcHzMND/2QyYW9vrzp58t8yFFH29oTE9R4OhzLmgcz2R6NaOV+Ru7raRuWVr4OKsSjqAEKlFVZpIV9AQmrjqPYg1qsDysvj+tj8/j6q25Ox9l78k4Oas637VQqIY6K1FSHvg8BaabCkGFUu2KckwwP8xUuoM2L5okD20yP7kqbiZR7mllUaW3kNIBv+/pfdwUPvusjlu/pk+Q5xUTSZCXGMPrEl3s1l2pBHWuPTBDuZYSrF7mgk4xx8tPMru3TWB/WaJiHAPfzVa7WHu/NeiMksQ5VWyB2mQsRrhUoSko1V8uxYdWs+h91dRrMCTYnz8cKfr6ke542EtrokZapjImdxqIUA55xUHkpcKUW9av5NZxLsihQR7HSK6XZxkylTFZHohGmcUrTHEt10RwAb+hJDv8Xh41eJ0widxEI2hSJN5D3OikLVKx+OPXxS1SkRrgPf6UiRJpvjlEEnCXZzS4I7fXA4D3NHGQNxe78adMwEvOO/3PV6Yq348lZhS7cKEfS24eV/Df/2/4LzomBHKbQvQcv2aouSat7u7InCXSnGl3dZDZO61AaFxXOsahI6ELw2Etgax/Iz1N0/0bHjMKZZ+1+zcz9qegK/toZyjpVsjJqM8UBRFW+8Fx/+OEYbg14ZMP6O/w2P5sH7P8p9/+1nQMEoSllvbUfWGRvMNsI9wsS4KsTWg7+2i7qrKnYpWasmE9T+fugGWZE1FZp1om0J51wYvlBMqc4DjgxFjGd9dsgfffP3cNcrv0jG8v7fke0D5uFHoPLmvniFT//cr3PX7Arlj/5/qsGi8s1XhHus8yit0FG414LY61y8itqUriSXl7jhCKc01lqs9fDxj8Ntt8n6d7wYGvCx+y9yy0COIhsewsFQurCKEnXuLLYqpDkn26787ucZpIkorcsSZjPs/iHOiRhhsxuz2+pUmjxNFmH/D94uVjtxDDaStSeOcXlOnDV2PUxn8h0j2AJFLg8dE0jBudfD9HoimJDThuv2pOhhrVjVVdhYk66lXk8yBMKao1cWvzOMvast3UajUU24D3cOOHlKwl2981gUWupdsj2lIIpxVa6JiaS4OZHvMN3hPqzLtvrFhLIqDFfjr1RzNU4m8v20Kvq3O8FCcYnxOBTFPUkxr9XsMg7ynaWJRm2t1dW9vLq/j0aok9sLY6Cdo6ju3UssscQSSzwrWBLuS9T4V//qX/FN3/RN/MEf/AEveclLiOPFh6bv+q7vep72bIkllvh8wOHhlJNFIQRGp/GnLIfPrvXKu9/97lqZ84Vf+IU18WeMaRSleQjXCsSgqpS01cPKxob4ulbE6uYG5TwnShNRPB4OxVfVWuxsXm8jaj8IjUfP6nF9tmDHU0wkZImqyMosqx9C6XRaVgAdeYislLVJAtd2xIYlhIOxsd58RqXm9B69udGot9fWanuPypvUT4aimKtEhQrc1WvoMM5oIeWiq5dxg416/8sqRBLopB1m8/BgfipYpcxmmONqsADn3KLFzP6+KN82NjCVKj2KiNvnsrK/AJS3mEpFOJnKeCiF2z9Ep8GOZnV1UfBtLWo8kfbzPBCuWon/6/BIHviNbojUSIgHN55I0GmaEGtIfAl4jFIUBHUfND7qwK0vOtPsdmXbElTqXmvsdI65cqUmyfX2pjzcK4W99TZYW0UPx835DvtfE+7zJc3oQAABAABJREFUuTALcRQUd7omcYmi+nrb2dmp377g/1pIsCl5jspzvDH1fFP5NQlPtBafphT7h2IB0RHv57YamjgCvMzZbk8I2aDMVHEsnu+VGr76byDDtHP4rCFQxX/bSgDf+rqEzFbnO0nw4wl+PkOZCFUU5KMJiVZ1Aa+yrch9l5Nbfda25b3pLzxEEb2i2Wfv6yKS2xuhOx1RMlY+/dX1VL8e7v6Ld3L3X7yTD/7KuznYa0JTyTIhxXf30e96F+pVr8C/4AXyN2PEY9hRk3pOGwnIDPvhbbnoB+yczDfvZbw6XdRkLHM3zFtVkb6hCEdRoPb2oH+sk8E5VJZTWE/pDaX1C3/ObCCEnEPZkp6TczH3TpTJAerxR1DZjAhQs1lTVJlO6uIJ3qOsjJUzEb0iI3Y5nohbBo1Fk/gBLa4JWimmB0NW/Vn5HK1lTiuNjSIeWruVj9xWoJRicMtd9ftiY3ho81b5tCwUJtMUkhi9tw9FQTGeEhvV2AUVuYxXWUoR5DrIfQ9UDkqU6t00ajxtFnY8gvXb0FFKlXnoq46O6hiNlmsxKG87/+FnSR58EIDRmbtEEQ+cTngi2R5QK7arbpqKxA+nc3WzhzYKF86va9lKucEaq9/3/cy//uuwKP7a1/9jMi8PmT+hRs0907u6uGgijb1d5vDHH93lbhODgkJHxEywxMSMcXRA+hjq45VAadfqkOk2ti5ay+Xc7eLOnZNiWriOdLvAE6ckSgozTmnpbEpTOHUSryOUK7Go2sjGgHSEyGhJd0pRAIpZbln7e99L7Cy5julv38ooHVBrhcOapIqy7oJQwXbEOY/yTtZvZdDK1V0Sdp4Rs4LGMzrcx3sHd90VbOCKG3bZDcYH0JPJlOZz6XDSGnT4XlStBdOpfAcIpDFB4a4qIlkpjLdNcXU+bTqIvH9Cp9NT4crWmUahrRR2/xCztgJFKcXsWiFumoK+0ZRJh6jbRaUpvixF3T2eyHkOBVw/mzf3rdbzq+l1ZM1XOnTxVYHIUsypqemkKSRUxWOAo5nnZFinTRLX9x7dScV6r9ORz6yOqyikshOs2ayOxGYP8Bvr+EtXm/EzRgry43G9dksROJDj3U5j+aWUFBnqTiUd7PDAaik4+yjCIAukDyWqGkkiwopw/rxSNeFfI3TmzLOCTrrIASyxxJ9U2FB0tJPJU794iSWeAZaE+xI1fvZnf5b/+l//K51Oh9/7vd9b+CKnlFoS7kssscST4mQxrtW8endPSBMgfujhZ3U71cOf954//uM/pgjE2ste9jLS8NDjtJYHoCgSdWxFbG1vw+6ePGhOp/Ig1ungjkawutF0+uoQzOU9SdmQdco5IYCiqCHOPseRPPow9AI5V/sye8puD7MSWtmLEvIxzGb4yRR1Iiif9vag8gC3Vh5ynZMCRidtHmyVwu7uYaoA0UrxfXgopN7WFmp7a9EfVGtp6/dCirrgfT03CatlsO845hUzm86o+KJiOCKODRQlk06fik5s37uKllIVEP9YkAfdNsnc7TUPnm0StPK4DsdY/c20lGELpEdlc3BiG3/pmih4q2ui5emrjo5gNJLPnmeifvath1/vcV68i5XSnBnv0rG5eGvPplwfrcfrYNPg19ch7KufzVrheR7z6CP4Xg89z3AbL262HYoQtFvLZ7NGURmIeNX2KG7BtMe1IiGqMN7K614pfLCE4eAw7FOADvq82awhXUahIGID2zoKCtrNTcrJFF0V24K/N/v7ogJVCr2+inrg4Wafgn1ERZ23SW81HMLmJmrQh+ER9HokvZ540c/norz3Bk1BouZ0B6c5d5eM7+9s30rv5MmFIhTDoSget2TeqRC8qsIRW+/RwWbJtBTEU9urvXaB4Gnv6di8tnOqy0jhumnUkJWCstoPiPHNPB4ORf08zxpfX+/ReY4PSnzyXIg5kNfGseQPGHNdkq2eOqrEq0WiZup16z2K3c4q3TKj0BFRaw6Zy49JBwFiweOqD253xHgnFkFCOaOdOLd3tGKr12nG5Aakcke31Mve4Vqq+Ec2z/GLL38FWin+5smt+vev3Ozx6pfeAe8RWynrhGj1wyO8FtMRragLi+Lj0tg6HKs/NGO2cgYYhvd4orqYc30Yo+jOp1i2gnrfN64TSqNCUQ2tsarRuPZjjUvlWt5c6TG5AUuqyhydyTkvN7bxaSCJW9fH6laPo/2Z3BfT5hHy8EWvZfLffxGXFUxNAlEgDsP/6uuhIqm9xx6OUKtyxs++8D7+5/hHKD30jeJfk+KJyNgkZoQmR2PRRgovcWokfyCMsUehDocSYF1ZpIRzbf7N/87gI2KvMvz276iDnBMnBU3xybd1cVDthu6AEog7uPmYapaktioCqtb16bFpF6cNNpDQZbfP7OzJhnBXStY/WwqxXSvqPYZWEKoHZa2QoYDe3iQ6uYUHLj38mLyluud6MNc/lfBLvwDf8nXycycVr/GNDVRRoKLW9dkP1lTzecgRyYK9TXNdWGUo8oIoilCt70LVPebpIBvlsN4O8Pb1GsVs3oxVS0UfxREc7MPqADXP5PtKvw8r/ca2q9oX3/q8AFMR24BaX5f7ivcwPML3B7XNnc1yIieF3TiEUAMkzkk4fCeFvMBNpyISGI+fkGUihxR+VwWVr+V1wLEdB0IvrLl1l9JsHs6rZIcYPObqFWwcy3wNRREfR1IM6Yilkr7iZT2qulGMqTs3VOv/AzK/lZJtRpEUAtoB4+GeoYC9K7ucu70p5i+xxJ9kPPiGN2AnUyZPs4C4xBI3iyXhvkSN7//+7+eHfuiH+N7v/V70DdoUl1hiiSVuhN502Ch15nPxygXmZvFW84EPfADvPcYYvuALvuBpbaNNwCqlyFrhmu2/eRPVZJLKM7FhSFMhN7eFTPGTae3zqrtdVGqEIHCeKM+g1wEUttcQjw7EDzSOcbfc8rT2/fmCH6yIB3XwqK3sKaIQdkoSQ1mIVUKSoK0TK5lOpwlzC2ooFUXyrFyd49lMxrUo5EEwjlFFKcr1QT88VKZBUX+EqlTpIH/r9cBofLDYJoqIV/uUhZAZk+OKk9YXYp3Eonw2BtOyLfI3YrgAt78vaujRSI5vMBBiqNtZaMJWw2EdyKomEyGm4ygojUvceCQBmK0gNjccoVfl85jPKfMQUFZ1WozG0JUx9p2OWJpU5FC/DysDUcBHEW5lFTojwBMpzy2jq0TBy3fdzppwx9ax5U6L+j2okcky/OFQyNP1NfGvPzgUpb73+DjG9Qdk/VWSLGuU4VWAaJaJzURQkqo4FsU+BJ91sUQ4jqOD66iE5nP89nZDRuR5Pa5VS7wLnTGUpcynX/01kiwj/6o34Dtd6HawKIz3yP9p8YP2YNZWm0JJlqHnc9z992N2d/GHR+TpgG6teLfghfj2ozEqMjVB53xD1XpnUZMJ5eERytuGpFdSCCmPETt7L3wJXaQToeoyINgSsLsLq6vYyVTCEpMErTWxAhd84G3RItjx+LZNkZdzkA1W6StHUVlChLG0RyPKoxFmEH5vVDPWgVQsdvfRkRGiOoowvS7lQaO+9sH6w+UFulK+VlZHhXSD+PV11HFLmRah2o0ieoHAOjFIufNEnxe991Pg/6yMR6dDp5gTeYvWUU0UAdhuDzWTIqYvSlk38LhORwIRVaDjnWzLO0dJhDEG75ys+a3xu15lIC+d1CW8x3pQVlTXHk/pFKUXwqt9hEqppnA0Gtehqy5EaBIZTL+Hn4pFDEAJEsgIC6R+G0k3YlxYyrCnGnBK8hWuR7z7OGZiNKn3Qu5bC1qKyiqOZc0aDMA5ojyrP2E1DTZCCihyFEVQi7e/53vpjIhT0Ib8K/8y/kjmxta997bGopmvedbM10Rp+uUcfv3XKDorzP/Cl1D4EIDaItl9WYpljQLb64fh8kGtK59ljDqmwlchNJU62yOKNHlh6U5Fce0vX8W+9/3E3RR99jT2pS+RdXk0wllHjgSzTpSmX9mh6Lj+2TlfF9gtBKu1GLt9huSRT9Zjmcyl2Bkzpb9zCQoJLDXTiTh1mIiD3jp/+Tf/A3/wi7/WHl3pEgmEvCoLuXdFEb7XFyJeaXkqb4VpF7McW8q5O9rfw5QF5aceJDq1jSutjNnv/iAAP334lbz1vUco4J8/+iiblRK9IlmDZZZrn/lK8WwtPopEZZ7n2MMhJkkgjvDOkc8zur0u8z/6I7ituYfPy2MF7RvgHe96jxT5T/ZJLl2SwmuWyRIVOh+8Vk3XXKXqBlwUwdo6OopwKpMCiTGNIn4ygdLKGlUVMmwJNBkp7O3JNVvl0IBspyylSAvgLD6R73qPf+xT3P5K6VZajQ3eu2A/5cL9Q6ydPIHQD4VoD9h5TpSE7wrW4kZjTK8KrVeYTtoU+50LuS3NGuqQjgu8FyFEUJ1TWlwIYFfBrz7TMZF1ot6v7kcVea6OCRYefhgmc7jnTkhT6ZYIVov1xRdHeDNg7/BgSbgv8acCF3/99ymuSYdm2bKpXGKJZxNLwn2JGnme8y3f8i1Lsn2JJZa4aTzyyCMcHYkaqLzjDpLqIUkpdFDxGLf4JaYKwGxbhdws2uGZx9XPbbVVbHQT1lkUtd+2mh/i8hy1udGouAE12fn/s/fecZolZ33vt6pOeGPn6cm7O7urXUkraZWzRJAQsjCSyRjwNSBMMMbYAmOMbBxwAPkS9Lm2sY1tMBiuuYBtMMGSkQQKBEloFVHaODt5pvObTqiq+8dTJ3RPz+6MduWVoJ/PR9qe7vc9oU6dCr/n9/x+qCKHSsriyGHZhEynNcAAiN5quEd7/uINX/8TEcXSMknaAJnOe1ReYKczorikEqZWIbHgI4Oq9E2dazaHo5Hs/coCXYHGcSzHtFb0qQFfbgt4EZ6HKwphhLXBdsCPxrjJBDMYyLHC+aO1NVzQPJ1M9mdzew9+mommeFHgtib4hbmrMLa985muGO5tdnZZigxOv18nFmqgtNOpwRa3ti7H0wH0rUDPAJDobjdIsDisjigLK8zgSk6gBaSoLG/OMRo1Jf4K0SVPElycAJ7EKIqWrvC1WIX9YkrHW1yQBSCOiRZncCgA3dvbmNkUdrb41PIt3DmZok1E4oGjq82muzIQnUwEMChL0aQ1QQPBe9BmX7BdmrP1vlfAbacj/a91Dt8qwVf9Huntp5rv5TmbNiW650P0X/UlovVuLRVrWyVpbYrHpTVhIEaRJI/6fdzNNxP/7tvo/NqvAXBh9Tbmf/FnccMhO9/93XDyhIAaIH04aP9iHWpzU0DVXg/6faJ+H3vmnJzLCyMVoCSlPQQN3Czod7fA7hrIkHOYJBEZnXAslTeAlW5XBqAEDBuPGwCuLEm3twRcajd4kmBWloUVG/qatq7Rl1caHxniFen7fnu7NjP2W5vU2tVeqjB0kkg7VgxMawVoVqA2N1GdOXZFv4+77Ta6xUP848MDllblet/wqjt5w6vu5L//4X+tJRC81mRxCmWBU5qk3yQzR//oPwMwnc7or7+3TsToChSC2iS5ei6Ry9HWgp2i9P7AdhOeWeGodFmUVq2ftSR8lEIrFdjmTbib7uDWN38D7/njmI42NatWRMpLzGgHe/osUVekOGw/+BwovcfMtYnxVsZ/fpH0eU3eSLVcI2EYJRHWWlRI2hHFMJuGBOAYvXoIFRl8FFEMl4jSoMUc6aAhLmx1hdtHVsYJAOwE+M3ufDFoTU+tEbWMOXe9820WsfGMIxkrR1GnLq4AGtY/yDMNSR/TSerx+kgv4Y6hSDbd2k9pJwMKWsmlqQAjSRqLHnx4DtNun8GHPkxsC+ydd+Kf+9zaiDrBkyBGzEab5rmpxkAYhfStOEYrxfYP/2w434jkH/3V+n3bLB1HgZKEM5cK7vi+HwQ85w8/iWL5FAq4ODzElwD59pj4aKhsUUoICIX4UDhlREu+MhXfCYbcSjGzNVTMYGOd+HbxxSkurxOlPUqlpX+qcNzAul8b52SBcd29/dQuWTi1sSHzlXP47TFU83scy+fSVJKiWYbq9zGrh6QSJjRNmck5smwENPP4w7NrJ7fb4Z3FaIXVomHvqwqEvb4F1by8vVMTNphO0WGtpsfjcEEhmR208b0CX8kqhWqd2vDZe3wUo/p9MbENawqrDFGVbGX30qFozWHbs4yFAH67vMC3/EJMVZWWZfi8QA0HRP3AbM/zYKqq63Y21jE7f4lua32kFDitaqk37ayYdwfNIV+tS6zF2/bYr3DG4LzDBxKEiox8DkIfb316lsHxo/ilJWHHd1JZn+yp7POzGfed3eYZd8uv22v8U6dOMajkvQ7iIP4MxPZDFxl/79/Ez88z2d6G7/quJ/qSDuLPYBwA7gdRx1/9q3+VX/7lX+aHfuiHnuhLOYiDOIjPk9ja2qpB0ZpFrZSAINXPvtm8OPc4Mgj2kBjbAHyZB43xSmd6c0sYxPPzArCBsE4rDc0oDoZXQWpkfT2AhBbVqtv2pUUp0RuPlNzP53qSMppNwM7LhipJJRES0BKHCqZyTswjjcaPxtJmcSzAY9UmbcACJDExnUobo/DBjBa0tHMS47NcGJtZBtvbdTk/IAz4uaGwnaczGIl8i01TrBUgcm9SRUoMAgluKQDW4zG9fCybzj2xq+rBe9HtTpIa+EBruYcK2DdGNKyD/jx5AX3ZuCs5iIDFi4u1wRpZDstL7ZMGVQknEkRBisWXZQ0wWBRmZ4dd8hPV8cP1qPEYVsSgLZ2Nanyrt73GTv3x5ruTqENfR8RZVoO0bjwWrfr5ucBgTfCdLv/gRd/Gz3UvknY6WOtEZ7ofKhLyXECawUBAAgL4DnJtStWM1aovtF/F0WyzRttUBXqMRtKe1fXOZqitLQGByhLGY/Lzl4iOH5GqE2Byy5M5/KXfwvaF99KZPUBy682YI6swm+FmGe78RaJBn+im4w24VAYj07V1/nt5hPj2LyQymj942isZbayzZEf8rSghVUpY0841WvXWQhLjF+ZhYQG3uYUuLa4ocNvbAhACZWGRN8fukr9140yecaWjXz3P0K8oLT6b4YtSTPHKUqSv6mffHhvFVJWQFKDbBW2Y9ofEOkZPZ03lSTDAs+cvSYUAYDe3UMMB1dNRbZimqnQpSyi9mNGC9MPAcGd7B93vCniTF0FzWuPSDu7yNncvf4I/WruDpN/BDPq4LMMXlknRY97uTqSeueXpHP3Rn0C9+PnkGGJn0d6h97L4A7E7ShLGKhKJKIW8m2He8C4wTSdT0Vstbf1eePYZAHYdHOIsC+9x+F1glSrknSTIe+irkloK88xvgHf9kvSbJMVojRuNQCuKtIN/7/uJPvQhnIfob34n/sghKZy4BiYp80ozDkeJxtown/ir50lvNLgcP8vweY7f2EQNBmh8kH9ugO1dw2ZvgO/Ie+jmF3Gke49MRBGY//LvWE8oGDDxy7uGpyJvRHva4Hscp2RRInm9dMibn3Wcd12RMcOVG/UFudJhQtXSdGvE3KI8/yNY/u5TD4fn1PLcCK0jv3dBhgfi2TqjacF8eH/SSNO3GbooyMdbFKVUpzCZYE2Eq5Ixv/kWzO/8Fh7YuPOZ9G8RMFtbJ7IeeQ5r65AeqW4ytJDEYqJDe83Io6jWAE80rH3LD6JQHI0FnNaHr2YI++kMFUeoyuiyAlGtrZnGHVvUFUw7Zczw4hXwsLlTkqwEbxwnbGZvDA9ld6PwnHrX7/Bbv/+bAIxe85pdNRK+NVZXPgP1z07GfKUUKpg6u80tMRXV4jUyDc/M6Ug+Hypo1rf3Z7jfc3qDt33iElrB3fNdqvS2VpLQr/03QgLXe+Hdq0pT3GhZL0QxznnsQ2eIVxZlXtMaP53itnYwi7KuUc7JPF0TC/LmHr2XioLJpEmkBqmjdvLae1fLBGUbGRf/1T3ER/qkURzGPyX9sBlwmuj1UIPQV4pS3m2tJbGgkPlFa9R4RNfQVB4AOC9jRHhGLgDlHiVJmMrfRuvmnQvH7RQZzsYi1RQqX/TmJr4/kGO0xmI/GML58yKN0+3KXFW1B8gYW5SoLGP49t+D17wQgO3t7brScDqd3jDg/pbf/l0G85JY/ei5nO/4mi+6oe+z9inYfBBQsPo0GB4w7w/i8Yv8t38R+3d/QN69zxOZ0IP4/IsDwP0g6rDW8qY3vYm3vOUtPOMZz7jKNPUnfuInnqArO4iDOIjP1SjKZnPsWmX/enGhXsibFkOuzWq/Cky9jlBK7QITtFJXbZzkcwTzKmH/qAXZSLK1LUyobldYRIN+kEoI7ChjoCzFCFOLHnRkVC2PrRSyKe90YWmRe+65B4AkSXj6059+w/fzfyTW1mAhgNO9HgyHoJToJwfmEt7L5iuRzSUmbIoHA2Hfzc9Df4DXqi5nriQiUAoVNwkWj4fRCNXv463FK4OOY/zScvOcvBfA8dIVkWGJAstOKQoLqpB+dVUywzRfdzs7GKMDeF6xFtnfeLCKKvEymYhO7dKSGIq2EkS1ri3IJv3MWej3atCRosRub6OXl1BaCzu/KOD0aTh2TI6hlRCMK61WYwTsD6x2szAvUjqAz3Nh7m1sQH9Qa6yq5AqgiEzE6cEhlrdEw3fabxjGu/TqK1mCtmGcdbJpB+nn3Q6+1+O/vmieWVnilhcE3AvPsZIbqvXH41jA/04H+n18FAm4sddsrRV5CYnZkw8LUhe7GO5HAqi1tQVak3gruulzQyhLKk6/sIm1PIsgm1EZRLZB//BhkXs6dIh42fIlf+2LgJK3ffACZ+YSpvl2DT57oQU2LMuiQLnGMFYjALTe3mLyO79L5+MfBRTZ674L0FexhN3GliShWvrDbbkVFCgTCTM3ivCB6VqF3cVs1ux88BMMzzwEz3t2MA31JGUuuu/dbpNkiCJJcI2mVE6MCqSiwpj6d9z/gPx7bk6ktaYTAdsrVmgAeSUH5Gv2rYpjYbg7B7ZEpQt0v+AbcL/0a9CJIc9xmzv40uK8x7s9gKnLGJ55APX/PUCsIqZxWktsJO2+ajS2dBgFpfNNRUQLNDLe47yTZ2+kL1awtb8qeXE14z3PfQD7kHmhJbthfQPaJ1fj7ejFY2C9gFt5BlkumtDGYNIUB3StaO1vOYQF26DYV8V4c0bzhkSUhYCw1rqahN0OE0Uo61rAejAD73RRqwnu8mX0/LxI4lRSani4/Q5GX/s9cgwKNAVul6SMoiSmfNErcNMczLXNEqNYS8IBXxtxA8wtLPBNr/7h+pp/Rim+7JiMdbPLrmaVK2frsTWJY5736jsAOPeBe3jw4eq87cZ3NFtVg58LAPn8UQFVKxPr+YXQfz06L2Q+6XTEjHnpCMnRHRSQlZ7BxUsoFPqmac2odqOxmGCaCLe4CFVh1Z4qnigRmTmlFEfn54mCHMlqL+LY0gBQxFq0yJ//tBU+cmZz1/dVSN7qbkeeTTCTpiggloSe9U3qSHd70ie1x2mPxxGdOCb3V26D1pwvbwcM6YmzjH5S9mn+0qXmpHHc+DdAY5YJIrFiIrx3+NLB+hSVdtC2lPE2ivBlyeaVLeZWdnDDRXkfTQLOcefGg+wX//Q3PsSDnzqLAn4pjvh/vvomeYJG4xcWUXGELwoZYwHjvLTHJCR0SysAulLo6RS9uiz3URSNDJX3jZkyClWZqbd8KQCZU9Kge95qi3gQfCoCAK9MVI+pyS0rFO8dUZwZkRzXQUNdy7gJ9eTmtGkkyMI4X164RHx4Reb8yEkXquYAbaR6skp6Ki1yacOBrEe8R+2M8EqRx1KbkVZjlAnSVb56QxRZ3BEddq0lSag1nf/vV4jOnaMwMbPv+d7mofR7cPK43Iu11RDSzMtOqlz8cEjxlLtqucb7L24zn8ol33dmjUOHDnEjMV9OILgZ3PLgh4EbBNxP/wGsfbL59wHgfhCPZ1SSSuH9OYiD+GzEAeB+EHV85CMf4VnPehYAH/3oR3f97UaNcQ7iIA7iz0dsjTN6YZ+czs/Xmxw/maKCVmZetKzstKZ0ThjRN46345zbF+fz3jOdTumEDXRZa2IGfUs5uei3r62BtVK6GwAfVZlXycEaFrz3IqdRnR8wRQnMKNY36w37Veacn0NRmqQuUWc6hcCyYzYTky2QtgkyLqatD52mjaTF1paA9UkiG89KGmMw2LVQVcbUJpFiUIYwZ0djzJHAcA/Mbl2h4xUzOYoEtAudYzptNKahwVcFv6m2nTBLepSFwxghpe9XeeABFc7vp7PAlJ2gJlPRsO92m016q5NpW8rxQDal/T6m2wmmaU7A9uVluO22WrdVKSWYRn2xHhU0XgHc9jZ6ZVmA0Urmpt+X5EaoKDCta5h0B/gtuduiN2z05lsvUa8sSHyJL4qWDrBDlVY+Z4xoPXuPQzRydScVvex2IqTqE+F3rtsV3XtjQgJLSxXAzg5og754AXvrrfV1GCUJMFUdr9K4bb+40yl6fR3XH9T6t5Iz8a1HoNFGEa8uYwZdYeZVVQFQV2EE3mHz7LRGpwnTGgqJeNbygHJ9Qo8IVDUeOWGXttpQQQNOzTIBKfotQ13JpWDIiFSGjo409/2xj6CefYdIAFTXM5k07PnhMDxbfbVpL1evs37u+Cv48NaMX3v3H1B84cuh20UrhXMeZcsGkC1L9GgkbXN0VfpaEjeJF6OJjh4mP3MeAQS1AH/9Hn5rp37WVmlMkNlQ1TMLIJBXAjLmUUrcl+NOT18kNavQSUlKYV07EvZmvKzqtKBdT+otfZuDzXeBtp1+wnhrhtYaXyVyvUdPpgy//TsA2LntDtxf/3bwnsgW4llQHVsr9jzJq8N5AdrDJ1QAggUUUzUItd++W0UpeCtyaYhUlt/cwvS62CynA6i0I8aZs0bSIh32rj4YkHQM+bTqi63xxii081fxvFEGN8vks0qJf6xWYDTKaLS1zXjQ6eCTtG7DitUurbX75gRun1F88etq+ZaYFtOv1S9n40I02YHJzqz+fScyPGexx70jqSDoJZq65KjRlsFXWtN7jitzdHVdYopLrWx/daRJTLy9KeMt4Ec7+N4ANRnJ70LVis4y1p/xUvyXfTsAx37pR9GbIgW3dPEs86//NgC27nwqfM93gS7R29u46Fi4lKS6dDlP8AlQSjP8kq9i+iVfDcB8vMUsrAEiFRju3SGwueu6q/dILczjL12pk9ZqOg0sb4XKmwST0gnJbTcDMLe2DVs7xA8+gD10CG0taZnxTz70MOeKhH84P5DKKxC2fjsZubIi83avh5nl9dijQ/JdTacC+HbnRBJtNkWj6vdjo5yw/fGPwuqwnlfVaERntj8jdP7CGf7LW/8ZAGt3PRPP36wrS1SowqnmCB+LXj6DflO1o1U9DnvnMQ8/jL355jopr0wfs7ZWm5GS53K7zjcJ43CdejrFp4kk5NovdprUkjRS1dVomedt5ntpxesjTQT3dmUt4dKuhKkTfyDH63bl2S4tSZLCyzudPPQQdmVFkuvGw2SMsyUmVJSVKCIF3XxG7hycPQfHj9XztyQTwrVp1cjWSIdBz0TaLNrvfqtkRFFA0KCv7yC0t9Ka4a2H+dCHPgTA6uYF1AlJdGUf/Sg8q/F0uJ5QD58RM27vWbh8/oa+C0iSwoSxTB/AVgfx+Mb0O7+jWacfxEF8luJg5DqIOt7xjnc80ZdwEAdxEJ9nIbi2rP6djiAJm6SK0VuVyobY2NiogcSiXat+nWGtZZw5kkgAzbRFxjt//jyLYcMZxy15mOo8FcAaBbMy7wWkShLc2gY6DuxPaMwUrSU3cYsrqWQjlSbE/f2BlM+5mBvKZiqAxQwG+NFIhCaSsOms9KJNhN3ZwaQJJCluYxMVGWE4h3Lj2lSzAiazTEAd68TI1FoB5zsCtPlUWIja+4ZN5cPWtNsVlpcCFYBIBdjrMGOL5iRB4Ecj1OI8/bTaXDre9773AZCmKdNZQZqIsWJ1zTpNBAAFkTWZTuVaKuZZdZ1JIgBqpS2bprK5X9+owXvaxq7eC/O2Ag2rPqi1AAvBQFVZB5OpAMzTWZOgsC7oweZkhaVSuH7bi76ePzjzKQCe8eTbeW7rdFVMTEKhjWy0rYXxGBXHuG5fWNxlgd/OsDsj4mgOs76G8oUY2LW0bHdFkqBGY/x4Ihr7tmxA6cp87qr3uLWNbyUcdl1wHONOnpSfNzcByHWEUVreO61JjKM312Hn/m0MDhNFlOjapM4DxNEuHeAqceO2tnnafBeBGEu+6uQiX3VykfOXY/DnQz9TeDtr2JCV7nklMWSMPItZhit9fflKGxyRAKKtW9/0huWyaO6x1ded9+gsw+2MpEJgaVHgxBYb3LUMu7rDBA3ECsrZTJI7UUSWpHTziRicVqE1rtOhzEuG3/k3ADgzd4RDb/ybon0PuJ0R3gk10jsnchvTDJ83TFDlrCQDdEgKZJlU+0xnAsYZQ9qJ8dMAuHVifDeFOMbOL6DXMjpmZ5d8DUCcxGQ6InUlXmsKFTHTEU5r8dqoulonYrKj8M7jrKUWIvZNosoUmciSeY9rMXXrvvYoUcxKMVdUqjaMVlEERnPXfIebl1YAz029vbIrAkTZnVEAuUN1TybApvLhmqtnWeS1dMouT4NWCFO8+o6vAWrn/L63oozGTmWsVSh0kYvBrZ/AeEzyi7+IGgzJTMzObc9BP+2lKDydJx1GI8C0I2YviO2JyOkQq/xqWv2e8C22ftLdbVL7hic3cmHPu3vK5eIWnHV8aq3xPVG4+rm61sl0S14HQClJvGnl0VFg/0Pdt3RkGBPXfVcbzU0/+Ndw0xl/+q5PSgIlinAoYrWORkBsdfoBVCZJ3N7aZdGbB3LrSYLEkG35ZWDMbpNRL8+r8DHtca4oDJYYUJRVn+wtAQ/vbsDZTExjixw3y2rdbm/D3KQU5dxcvTlXM0tx4ZIkPBX4jfspTjxZKsaswx07yj94kiT4su3AAFcK1+/LsauEZwVMZwFsnwVA3iPvulIyLmzviJY/CjEKlWellfQ5D6KvniZ4a+lF+3cY6xyzAI76F7+gbk+joXj4LPHSAr4ssdpgsqw2LwdEJqosUesbAhJrsHdIJURl5I1zFA7iag0Skq8+MrsqlvAe1wuSgS0DcwB3ZR3T68j8V8374XjjS2vAXH1oHdaTynlyFHHFDO90mqrIomR2ZZPO0ZUmUbm9gx1P0NUaLHFkJsI4j8pmkjB2VnyOqufhHE6J10W2MeKX3/EpvvU1TubfkATVQYrHWIu2Ctd6L32W7f8at/146veRZtwMfYcsQ2lTr+vVeFyvcWyRc6ORRTFJWD/5V79q34rURwxbgM2aeziIg3g8o002OYiD+CzFAeB+EFfFvffey3333cfLX/5yut3ujU+OB3EQB/HnJvKypB/LIt56J2CsUvjK1EqpYLYoYUxUjyemzG98fPGqAVYNVLwipRTzlQkloKeT2gzMB9kB0fIs8eFzbjwRhhdyib4qlc0yVEsGJzVxTSByucPMJsJYWl+HEyeAz+0qIHNoWcDkLMOPx3LfSYwzBlUU6GrTmueQIJvsLJONnVZiuglitOYDSD6dCmOuAiWLUjRfQdhp1bNIU1Rggvu2fIf3Al5XhqJQG0Qmt5/C3Scl8QsLC5w/f77F5G4zoJs2b4NdWeHpBCDAWku3E7Iys5lUNwyH8vOwecbkOWo2wyfJ7hL8ssSvyP2rzc2aveyUwmxuCrOskD5fnrtAYhQ+SQRI8DTGldaK/n8ogfdKNUCvc5IIungRFhalzdqVBcDmYJ4PnHw2ALetLta/b/c648NvKpb63Bw+jtEXLwow6hx6lqE3N7ErCWOrSKcFyQK7Nau3t4OBqPzPzjJML0j3VJr+1jZs/Er/IhzC5YVkwtqsoVpeI/w7SSgvXCJKIrnPfp/o1j720hVMrWscvmoi0eqNIqJepQYs7Evn9wi7KAVpil49xOraRbpqCzBMfTC2TTrU2sllKdIFaWAM+5BMKEvUeIwfDqUSZjpBVLYBPFaBx1B6s2uTNviy1+GN333PShHUyqUtpzNMEqPyXFTgVbMMty3A/VlffDvuD+6n8BDv7FAEPeAEh7IOnwdN4kp+KIqIuymlFnbwJO6g/94P4//h35PKDetIb79F7mBrS5I+WoRxakkZvCRYjEF1G4khH8civWWMGN1eFMDSdDuYYOhnrSO3npkd4vxuo2OlNJlJKLVhuzPP6uiyGM86iKImY/qUF4rsRLG5xu/dW/UnhWoDoM5LMjewS1V4vxTsZj+6ksZ6svVrr/A/+A+IbcE06ZO+8fvkHrVhJY15+sr++sQ6SIvMlTPRnU9TdJpirwhI5ZWuKyVUpb2vRIfZXcPMtWzpoYMi7kSUWUll/Lg3TBpTTme1zImqy30ArYk//gkMkAJb3/6llLfdgcZCtAVl1YIlsvWrOP7V2Ql9IMfwCKCaU/XXoridht5txKqU4tjty7jSce89acOeTTr1c01aci1N0kzmc+8DIGgMcRrVnh7VKaKky2kGnArvmgaGX/mt0k7v+OsiiWQtushZNqd5Vv9joBM+rBoJkK6CqBSWflTMyAJr2eB31Wj4wydxkxFEMYdvvhUHOB/RThB4ZR41WSHt19QYuJYBvHIy5qEURVHWm/OFhQHTtQ10kqC1wWEEwEV8BlS3W8+DOk3qqhaZCkL7zmaNwfRohF5ZqgFXt7WNLkWWjzSBOZEbifK8Xiep9XVMnsu85JwkmYz09/gapIkyd3ScJDnsuYcpleiBKyA+KWxpZR1RWcr71E7M2lLOEwywTb9P8dDDuMLS+63/iTq8in3uc9DKNHNkUQpzPoqgCBUC1TF7PZnbqyRiJZ9mjIDtcagGunQZVmV+iVtm7U4pSWxpjY8i4pDE1JNxI9WX5+As/v4HKLIZyfHDECcovBAJnJXcWllSajEqNZHcH/0+XL5cM/ur91op8RnZfvqLMTv3YbIZdm6Iirq16WwZRfL612NPSJxWjd1+xzzN+qZamyuaeVkpsA6XFxhVNp44R4/U67RrJQ8fKTqjbVxZ1gml7Xfcz/wX3/aI3znzvd9L/uBDANz8/a9sCC+fu8vsg/h8jWoI+xzewx3E538cAO4HUcfa2hpf+7Vfyzve8Q6UUnz605/m1ltv5fWvfz2Li4v8+I//+BN9iQdxEAfxORbzUaOVmxgNXlidNbtK7eY7bo1molWdppjxmHPnztVyLCdPnsSY/cGJKmbTjPWJZb6r8R7yyZTeQBKDl65sc/y4bOZ8nMhGszKqDMCg916AwyhCzw3F4EorSqUxV66IDEBR4NY30UkE1lJsjjALQ4gjYqVkkwbQ6wUgRl3lefG5FL60tUa5UpXxlmzsKoYdxjQA9CyH5cCMHU9RZdD73N7Gxwl+PBYN2rq8OaxYsxwiI6as6+vQ7YpGbNjs++msSX6AAIZra7XuufceNZlQnL8MpbSnc+4qrf8KHPJB6xjvicq8Lkefz3aguwAEqZ8zZ0Sr3VoxK1UCgukKDN/ZEfZ5xUavmF57JWmcE8BZa6nSCP3Ab2ygej2i229Fv/s96IdPUyQ9GB4T4C2A0cpaYSprjddKJFSCXAe9Hv7UKfz2NmoyES3b0QhWZYP7fXcuMnMGrRxzaVxvEtomxGWLFFxHklBoLYs9pfDG4API2S1zUiIxRG3LCIUqD7exKf3DChdVRZEkAspSnn3VXyKDdR4TNvfahFJ276VPxPuYiGYZ0ZFV+XlrCyYT8isbRN0Ammhd+0bG4220OtL007IMeKGCC5fgyGq9mQ+NAnnOfM/wrC+4hTNnFac/vRUuVSEmAQLk+koPPLCUMUaeRRwHr4YOLo5RPowdKErnUeTEqkBHTR+569QCF9bXMEH7mNksjDvhoaiQcArjogYi24BuSWf3kvyfP8tzfrJM+esz6SMeiijhUjxkNWr8E8gL/HRCfnmdxTJD4THAKOnS63Rgfl4AmU9+SjKLKysBZNZYD0FUSxj+lSnu5Su11rCuGOZVYihAlu6++9HzHbjpONGwTyeCQbwlsjSt0FrTsTmJK9HTTWkDZ3FRjDdXb3K9Du9a6MxtM+TC2ub9R4lHRPW9dr+Pe8Bu81aA/vYV+vmE2DviMmP84/8PyUufJ4mR5edf9fkqarPCPK+TZN7aivMr+Ho+RRU5Gk+aTUTpAUds96/W6c932brcVMcUszLch98Xu1W2YG6609xsI+YcWO/SZDMTY1WCI8YRs2g+we3pHwNwvnwaF7KbgoZ7/WXAU9AFNI5kl6TMridUsXCB2U7W/HrXpzy+qlBScOFn/xunds4AiuJlL8V86SsBKKP2nLmnH4SbqcY3H4BdFwA/E8XMm1bVTAss0bffRjkYoJME3+lgqzWFy4mfdTf2/R+Q79x8SoB0wHq961hP/4JbwMPH3n0fO2/4KfaLYXfCzlQSsJ04oyy7KMB0+1d/2HvURz8qTOuVZXCOcjojqmRTWm1RExIixbO+/ov4w/e8B704TwLM7ng25vJFGZMjU/sEePbIzVe68KGarzYJb1caeS/fSWJUHMuv8kJw78o4NZHfS/VbSLQGYoIvCvLe/gmq57qLTL/+66VioNdtnpFz8PAZWD2E9w6nDX40xgQtfjmwpDdVaVHTKXY0EemySPHA07+IPyoP8cq1iyws9WW8AvGi2M5rtv6u+XsywaUdqdKrDNOloSkvXSZaWsJZix+NRdbGe0yr8kgp3zDBnaM8f5FofijJ3osXg+9KDEqTzCakW2vYm48HoklIbDkvZu/QrI2DTr7b2kYfWqmfjwOi0P+Nc/zC3e/kA2dvFhlAFSr1vIckJl5dEUZ8UaCrtUQZ7J/3+Kx47+o1MdU6rJJ6q+Y+rWV81rpO3pSX1oiCTI/qNv4xjxRv+U//hbmbjwIKe+ImoslE1oOjMWfeeS/F6RmDFyds/dqvgVJ0n/sc5l75yvr7s098Eru2hveeYlbuktc7iIN4XGMfg/KDOIjHOw4A94Oo42//7b9NHMecPn2apzzlKfXvv+7rvo43vOENB4D7QRzEQVwVZn1dABzA7GyLlnXFigx6m6Zlevfguct0Kz3o6ZRz585hA/C5srLCYLD/Bq4KpWFpvA6+B9MZkZeNDGVJfnkL7paxyywMa5a1n05lExtFUro8mwmoPpmJYaeKxdg1sLgwBl0xp8qSGAXzYaNRGTfGMXZjE3X8OCi/C/j8XAtXlAKmOSdJgl4XRiO81Y1Jp7P4PBcpFG9x6xvobgfvnehDR0Y2csM0/FwG7VCEYasUbKwLWKvCcY0W2ZSdHZT30g+qTXCWCVt2eQU1y4TZFdrce3+1SkkINZ0GAzOFGgc977JspDmUEsZYO0IVApMJZm5OAGA/acqrq5LyauOZ5w0z3TmR1NCq2YQagx8ORMfcObzzopM+m2HLEv+236dIB/i/9PUNkdQJQFIx3NV0CkPRYldX1gU4WFuDwVDur9cjOn2ZFw9/haKM+DCvpENPwFQt4DqAaxltXhjnhHTTrtuPXADJogiS4H5mPf7wIfzq8tXMHmvxk6n0E2MEFJ4/SlW2z2gk7RMSE6IB38a7fQPspEndjrsY787hZ7PmvUwSzKEl9M5OeIyKJJbPbvzuH3CkG8tzLAqqchPjHayvwXQMt9yyC+S36xvE0RzMn8BfuFzfWr9T4Ge2YTXm2e5n76y841euSL+YzVCjEa4yFwVKbXaX4oc4+fRTXH7nWgNiVGz7KIK1dXACvnqM3L9SECWcuFPGz7ml3RJVTzt2nqetvZPfHhxiSWkqJvO7jj+DVyYD5rJM3t0K7vSOmRFN+0IbvuvVb+Snzl9mMM3El+H48fC+FALIaC0yNtXYZctaI7l+h5SS9tBaEhFJip7I5/trl4A7hTU6njArPLOyi7XZrvvophmZjiiVZjMdcFiVuCIT6aV9EqxaR9hKDVlJYrDu0WVd3oLVGhslRNVzaCfI4g60dchDZOlAqgC8YhR1sZMJ9rffytSkuL/ywqs+vzc2j9zCfJCmUKORMJvlgsiWjxHdrCicw77vHpKR9OXN2XDfY0VxixGuH2HfH27P2BnJeEv450pRGtNIj+CZ6YiOK4mcJWVGpdgekZMi1+JQ4t+w5wQeiMkC6A4FKWBJmaDUSv3JtJeQh8TA/Oq15molTPZw7TkGtT2WZ3h4tWYlx0tNRZpv32hLXsc7mE2apNTWlTErx+dJ0pSNjQnxW94KSjHdmsLXfy0ASa/P7PRZ9PEjWC+Mf9GA9nS+/EVcetU3A9D70O+jPvIBwBNtbVK+7R0o7xnNSoZf8ZfaF7ZvmN4cBA1+Gy/ggyJPxc7fFWVJ/NBDfPSdH8Xg8c5x9LVfLD4qIFJtWtrDRIYTd67QG6bES/OMHzgfqvcUmbX0jMY7h/aN14YCmY+q8dY6MYJdXJBxbjqV/1ZjczU+VRJ644kMZwFsdc6jtXzWV1VYRSFzYwBPKUuI9rlX4EVPPUR+V9hHhooaCMe/WSpZyAsBnzc2ybOCZHlB+oZWUm1jLbgIpTzxolzn/AMbvGGyxCfnzslnAijsyhLVTaULFWW99gQCM9/KtU9n4slhDGrQx2xvAaG6p9epE89xq8ZB+2Y+U9X/heSr01qSFsZAR8ua5tKl+tzi9xDGMu/RRhMdXkFFBp/lcjxrg2F6XyRm+n1IE7mC0pOojHJpGQa9YFxt0WEO9CD3ViWgtfir1EnIdvJT6XrtRFHIZ6ZTWQ+HSikAVRbUGRylpEqm8jraM7ZfK/oUTeVFktT9R69dYevCeZYWC7bfdob1X/gFALof/9NdgLufzXAjGb9F1KmmIV/X+Q/iIK47sqwlj/i5u487iM/vOADcD6KOt771rbzlLW/hRAVOhHjSk57EQw899ARd1UEcxEF8LkdmEtKgD55Pc5LAANaKepFemGaquf9T57jrjgWg2hvZmpl14comtz8K4L65NcMpjVYKjxc2TldAgocurfGC8Llo0KsBQVUBpdaKVEQldzKrACtQW1v4I8EAcWdHNqtxJKzk7W3ZYMWBjRbYhA6FtT7sX65mU36uRNTvCAPLO2GqbW4KeOY8brSD7nalncJmUymDDmXTptuV+3ey6fGzDL8zQndT0T6vQK6KRRcYWnq0I89Fq9o8l8mkZldV5l3l2gbR/BDvRB5CaU23mDFyJlyLIk1TsmCOVzOx19YCyyslyDw3APojLZq7nfpHv7mFiiPUZIJfWqp1V2t95gASq+o7s1mzKe126+MIaCwb+EhremXGOO5hKzCu2qxXRqOIXi47O9IelZb9iROorS3RXp/NsJOg966hoEMQAKFsSY+MtxvjwrwMhnPtTakKVDnvpdojG8P5i/jVU0Qri410TtVm4f7VsPUeOg8XLkglAuDTFDWb1e+3xovESSdpDtXo/sh/i0I+3wJeVKfVrkB0+TJ2MKwlH+bD8f/j7a/mjZVMSVzpFEc4E+HykvjiQ/jjJ0IiRcCheDZFhyqHNuZgjA5Ad7jvamwKEhQ+TaS/Doe4zU20lzFGBYBFPhrhSPDe1lIjAMnqLeDeJwBK0BkmywJgLc9FWPUNI1cbzU1PXmXfUBqUYXtugXljhJOsFRNnSOdDoqyVxNDeixkp0C+mOO+x1lPmJbrjMAMB0X3wYFBaM/nje5h785sFwPv6r6JYDdeysyPeDwFsUmUJWYYtSjqR9I1Zf540sDe9czgPPbWOYXe1T9LpkrqCxFnIx+gyR0bvHB3t/iyAikxQhRBWv0sSZsG88vdvfykvUxqNvHc6VOoAYiB4rTh0J2zMmCyukroS4z2L+Yi1rgCZkQrSD48ShY9FGguEnVtftGLr6S+F1z6DUWGZvvkHuePXfwOA7O7X7HusNiPfe3jx655a/3vtFz/OdM/n01tPUb777a0vKzHhRJJAXS/Gzto7urGmBql80fxsS/YDrRS6BtsBEpWR+wEZQ9p8exWAPYXfc5h24sTXL53Wmv/68m/mgXGO854f/ehbOH74EAqYnd2G13xJ/bkGdt+f4V8dGkAbw8PbOb33/DoA23ONfny3n7LxU/+K+AtegosSOncM6ns+Fb2XU9EfAnB6fomdMH8YEzH8X28B6+gtN+9jFIkJ936hki5VUifq9hjEMob25jpXf3Yyofurv8a9d7yCn3/qXwDgZ9yn6soEWhreVu0eE47+7L9l9tP/BoCFOMIPO5TnL17VSq60zVPwDlMWzSeq+WplWeRa9iQLlQJvIlSaSDZXK7zRqH6fuN/HXVlHE5LOlTxNluGSLvvGlcugpD+r8RhfVQU6B/ffD7fcEjxBLObyJSqfBmkLLw0fvqNHE/SFi6iyIJoEXwQVUZqIKMuE1FGWYsyppOqlAosBSY4ZI7+3lcyhQXdS1FYYu6yjyEoqETdzZBVCntYkkbSZc6jq+2mKNi22efCemSweIZ7s1M2gq/ekehDWUV65jBn0MJ2OsOkJzPRwHN3voqKIzm03k40+iY4SVJqgB31J/ucZ+Bgs+FkO44nM1z54O1TrDaOhXUFUJZcDk10GDosa7eDn5oSMoo1UFwz7krRwDtftoXPJJil3fevc6OSJWoZGl7Y+twF6Z3+XzQ/9KvpLX8Hob32vjKXbO7u+76rKBWPwtmzQqv3crA/iIB5DaOuEJIJDzx714wdxEJ9RHADuB1HHeDym1+td9fv19XXSlpbs53vc+4pXsnDzzdz6q7/yRF/KQRzE5334WVaX2asW4OGtFVBONRsAgDvSomZbeROhi7wG7jbf/nb41v/rEc832pjIQj6KQGlctyPSIEXB4YXWOGVdfVyKUhimc0ORihiPxdAzTcQctdvB9fqwtiYgYFkKK8eIcZTVsUjdGGGmqrBh0RUlUQkh78qVK1hrUUqxunoNEO0JiMnDFxkcWZL2CJqhfkd01VUUNzIq2zuQxMIWD3rqbmeMxjUmW3EE/W4jzRMYV5QlvtNBmaCRmyQiveJa1nhRy8hWa5TzRF3RK6+MbHGO/PAR3EUBMsajMVnW0hQOyYIavK3K3NsAwl7APdzLLtmBOKorIJwO2q7Oy0bdeflOi/VVHzeA7nZnhO51BewLMivu0mXceExeAe2m/V3fMMS9R3tVy6D4cgZ5jhtNwCi0iXBpKs/GlSgPTgRgEdZq1Dps826NsgDeVImDEL7bk3dTKXzaoewP0DjytXU6q4ckYVAlKypjOaiZqP6Wm5ne9xC9oDmsKrmCnR3QGgvELfdiHand8gVQA7dA0Ia/OiniUfT/3b+DjoBgC6/+arYQYHeiS3pxLABAaWtQPsmnuJMnhLUItfdAubREMpNPxakhTuX+4mSenUtB2gcEDA/VKxYwRSF/u3ABdWhVzF2V4tdveTEXV16AB1546Ki8DnGXONnN0HaHV9HVuNP2K3DCciyNmOmaGmh7BArt7a+G4+sUv/XL9We1UkysZnzmAmknqSUQQOGcp0CAFBcnpFrR05Z+J8JFmuy+B/HOkxxeFrNka/nk0il+6fknifIZf8MHTSIFWcUMhsZsL46JtEZl8h5dPHwbfWOI4gjV7xHrdQrVw+2haiulKZVIek1NSkeBd6Uw3Pe7b2UYTTNWw8ix2Vvgb73uX2DxvPbih2vzZY3HGoOPhb1cl31cI2xp2Vk6ysQkRM6RmYSozEnKTCoPrqG13g5XabV7j3YWhwZXyREpFCValZh8Ri6W0czvrO17rPbr0eldhyRZtyvXXiGTRSnnjSJMJ0V5V3NBkyglq8aJuA9hTNJxFBiwmsYK1Ip2u3KUPsVTkvsuwvwtUaqZV2+56wizqYBvg8VrgK0o1OKp5l/KUQQj2PF9p1HvfScAZ5/2qtY3PAph5nbMhKltpCsWVvqMtmRMWjjSJAKPp01/L+IG5E4Sg/Ke5K1vxUYp5iV/D55+l7TMQ++BLSEQeVfSJC4MWIdyVgDN1rEawL1Jusl9Nf9M0og7XrKbrLRfHO5EPHmYMClLfEu2pLSOqJKG2ZP4iSKZX6sxWoWqqj1Ka5hu85xMFOEr75WdnYbBubMj82cFFIckuS+tVJJMxqi0g3Ierzwqz/GzGXphLjCjtSSqO6mQlpN99oYefGFrfwU/HDaseq3h9tvl93keqnEiXOlaSVwv88N4DFGMM4pybh7vHPnSAC5K8tpU45JS4rCRZbLulDKD+gWz2qCSFB0nOBvmjlDF5ZWuq2wafxBJXoxuloerUuG7a2OwSQLTbZnvp1O0NlJVEM7VO7rEha1VjgTZGrltVZevuIoi77wQRsL11TIzZYkbTVGDLrOHz+O2x3DX11C+4xMo59CRwbsgBWgiDBlqYx03DMnU9oCaZZiKwQ4y11QeLL5KGyJJg6ryQSsxIp/N6jlcBzlCvMf5Rx5jAc4/fAm7M5aEgpLj2aLApCn2yBGKFzyf+L//D0ajHextouU+PX161zF0r4ObzVBG7VlHPOrpD+Igrjucc5jNbVySgFcsnx8/+pcO4iA+gzgA3A+ijpe97GX8/M//PD/yIz8CyCLBOceb3vQmvuiLvugJvrrHL4ppxuTcJe77C8I6Su+8kxM/9ZNP8FUdxEH8n4vKqLTSxn4shp/d0SZ+eV7YK1oJGB7HsokpigZgDZGuHqKcCXPUFQXaDGog1C8vPer5Oh3PaDYlCGCjZzPZQBoD5xvpiOLyOmlqhNltIlgWDW9lrWwAEXNHvbgg584y0dEE0XUPpdaMxsRaiWEoyIbFWgHjo6i+tc3ccu+999bn/1wC3Pu3nZTN02xW66arwRCtDaqSyglyMxAYaUFSQi/Oyya9BZbq8RjfFXM173wjkxLO50YTsA5tHBYFOztoa3E6asw5K6b4oUMwmeADo0lpjd3cruUVJpMJu3ZZFVMuaRkiOocrLNH6Or7T2dXfpAGCPIbWuCtrIpXSoi3q2Uzut9J3nc2k+gEgzym3RyijMWlSs7ZM6DcAbGxCv4c+dhQ+/WkSbzk83WAjajG6EfailMk7YQ8G1qHKCkgS9FIiSY9OiiIVhpqOUF4hBpAGMBjta7w6bhkXTosAatgSTGA/e4+aBgmAbloD/iv5g1z6uf8X9bf/xu72Uqq+x/pXBOmassWOrXReK7Z4awyJ2kzjopBy+UrvXy4aigJ18aIw+0KFRR4lDB4+h5oJm73/V76BLeAfP+Mk+daafN+6wNDUYDS5iogqxmV1/WVJtL2F6Uh/PnzTEodvkrFl/coVPnifEjYfSDIuIGequi+lwvgoVRh6NuNyf4V7BktoBV+zvCwYNAYdPwJIG4WqEudFWkApjNZY1TBM9SMhCINVGKziKsBTi1TXUxd7XP5v/43Vy5+m/Ik3wfw8PorIvSI3MSiYoBlZT3zbKdxA2iFNUszZs5RFMLDzYq56z9GbiGZTPB+thaAtKjDsQw8ISTXnvIAgBFay0nWSxhclkfZ7xKQhTRS9wLwvlaZ89kvweYHv9K9i2gKoKCa+coXogx9Eocgeusy091IANp2WttQaZyKy25+NPryBwooc0yOEB8rhQg1wWWOYm02I8OAturwGlbkVcZzt0ok23uG1wqMxCjwRRmlWx2tEQZZifvPcvsdqy5DFnUffjkWRIc6nNZM/0jTvoNaUOqbj5B5Ui9mqfImkk5Ck21VbP4MjRvsiyM20Enp7qhV6cym9uatBVhWBb5Nf4xZbXntio/AeTm5doFtmKKAz2Wg+r3V9XdbHmFhjC2mfJz33xC6D1iqsNuShQmJqmuuMBj1iZ+nYgo4t6M4twcqd8seLH4HtAGjXCVFHKJnAB2PMKuYODRiNK2mi3X3VV1JdcFWfv1asdgq++ti93LuzjJqYZuypqvGAeI+vwW2//hY+dPrBcNNWkorq6joF3R7H5+dQly+LEXzbHHw4lLm+SgZWIL4X3wnV70slVJ7JrZUlantbztnvC1t8ScZSkYJrZG3aoZYXmnllbq71h1a/DOz0Morx1okZsjFynrKUqsOuQmkj1ViAOi3vklMGF0UCugfZKYoCnWXi35PnMv4qMNaiygKfzKGTGMYTab/JWPLrnY6MB7pJ3seHltgaihGu2VqQxk5TVJJI1V+eQ2lxqZE1TVgfxbYgrozEtZZ9tAnrHiVjqjLNHCOfM7xzIyFKNc9NtqAsMJ0EHRkZhw89hWTzD0iyMXZpSQgCKozJoxGMRnVCXe0u56I3GVNW48xwHhvFckob2i2M4V4hfSKK0HNzIqkWkjG1zw9cl9z1Qx+/HzPoNWQFrXGzTEgrgwHFq1/NzvOeh7vvvvq4dk+y1E9HkOd44PKvvofZvefBew5/360MTn3ho1/EQRzEdYTPMlwUKj48BxUUB/FZiwPA/SDqeNOb3sQrXvEK3v/+95PnOT/wAz/Axz72MdbX13nPe97zRF/e4xbT0jIeZxybhUX0dZQRH8RB/FmKe952L7NxAQpuesohTjzp0Gd8rKlJ6IAsVoZzQSfUwc5ImKpK7WK+u63zou+qrt4xrmePXq76wMUd5gNzSika/W2gGDX1gOl8TyQRQEC1wNLxnt0M6GrDtrxUm7lSlsLi0ip81gmo2kl3S2VU8hBAN959M865UCb/xIZzjvyhs6SLc9LeSUKJxgwGcn/VBt5aueckbgwSq6SM0ihvRa+01xMpmdEIut3A3grF7RVrNwpAfpUQqTb8l6+IGah3NcjK2XNw9EjY+AlYShKRLg65//77saXDlwoVhXa/ckV8AryXawjMK6MRWZjq2qvwiGnqCVE31yvL8pHpDOWFmWoD0IFzKOcFeO/3g/SNrwFd71zNbuXKFTGPq5iCkwn6/HnY3mFsEsbpAPfJe+n8/E+C98y+9VvhyXcIQFlp4IwnuCyXn6dT7OU19NwANZngipIyd/CyH0KNL8PvNSzZtOMpvSzf2izTzIcbbhvQKYWNklpqQCoTLHf038+DD51jrmJOVjq9m5tiMOscbG7B0qJUKgy6DRBf2qC129Iqr9vb7/5vHMPqqiRtOp1GaiWO8QtSYUDQbU9sIfudMDYkdz0Tzu0+HFr0plW3g+qkFIcO0X/jPyDWitmrvoTyFa+ATpciTkn3AXONBufsbrZ91VFa77YYVwooYk3E1x6b568fPYkvPb1BhPVQZPYq0Gvyxn/K6niNyTd9I7z4xXLkTgd/8XINLrkr6wL8ANPpo4O8uj3uaMVtHcO//8Jv5b5xxr87e5FurxcMkD1VYiepOMydhn3p+z0mSYe40nxXCldavPbMopTzvVWCqJYkdMLNOaVQVUJCIdISgPNNH1NKCbxsc7zd3SqREpkphSQYZl/5eiyBlb4PTqlQTM+t0Xu7SLJsrzwJXiqAe2oM2jkBhoxn9MIvxS8fvvoge6LuPiZCe1Be0lff+eU/wks+/ftoB89YvelRj4NOdv87MMy198RbV+AkGDx/73X/hI1sRuwVr16ZZz/KSjZpnr26DsBWK4/Pmu+UUUzn+/8u+ou/AIdiLR2ykI/YpaEEcrMhpkUHAd/ladS3cc3Ej9v3Ge2NE7ct8/AnW0z+Pd+ZBq+Jd938XF5y+gMAjFaa9t5cK6hkaQqXMFhIycK7ofcx1gWInK3B+6jFFnedDoMkIrcpRZJyuJ3MeMpXwpNfB0D31Bbnj78C5xTRvX/C4Od/ErxD72zVH+8vDICdq28Ief+ryK/jPQa4+8g8d/xfr+cDH7rA6Dd+IfzW4/ICszMCPJPRbl0DHWk4d07G5arSzPur0U+9G2ytmdPQyFxVsVfyy7PvPQLY4Ry610MZ0XZnbV38XayVhOl+EZjL+56rkrTp98O6DJy1qDjMW86Jx0z1Ne9qGToTxhznWj3WS92XHgzwvR4+yySBEQ7gogi9vNw6t1yLUwblm7nAb2zCwhygiPtdfDDl7aws7m6ZIClT68TPMqCQe7kwEh+Q+r49Korw/Z4cI89FsqUt66PgNz824hIJT+1/gv5TpQIALZJRBNlEe3hFpGzyquLP49tyZ1GE76T1Gjx5ylNw73w3/Ox/kuTq678Tf/dTK1675FG1xuqIuO4HYR6sqtq9x2otb6bn6rFln4jimOnZNTlmRbjZ2QnrDCF2uIVF7HBOWPCAP3XLnoNoVGpAK2YPXiEPFY/FhUuPev6DOIjrDT+dVotCGUTUdVSaHcRBfAZxALgfRB1zc3N8/OMf56d/+qcZDoeMRiO+8iu/ku/+7u+mKK5vMfn5EPZH/hFd59kMrC938Qq3Pcp3DuIg2rH9wANka+t4PPO33kpaAX2fJ5EF0zM8jNb3KsXeWKhKr9k77CwTxqcJzPIgK9KuCL33suO229LAsERA08EQ8PhP33uNszRx8f6Hmb9FzKUYT2B9XdiqeY5vbSjLwhJXDHtCKW0UyWYolC5rK7rERBF2YwOdpmgtbB+tA3M3MCmNb22QUrl+VxZEYeOUKI9SUQ3Afy6FWZwXdnMAOqO5geiZYhqtU2NqrXU3nggrvdNBTSa1ZqtaX6/NrIyJpB1LYWyrKoGSdmTjOZnIptaDHo8liQGBLu1lA9bv44dDOUfr2eluBzPf5/LlyyRRgs/GKBIYj/EBXCTLGubc9jba5mLOliQ4FLrSXVfAyVDqPx43zGaoGWZaa0EYC/EfIM9Ft35+vjGhA/z2tmyytcZ6jxmPA0gvpmLlyiGi9H4BuYHto7fz4SWZXW7CkCD6ygKUKGHF93u4K2vQ7WJuOoHf3g4VIhHEBqIElfSABsxaXtacfPYdVz/nKEK3tder9lw9hFegZjMp8z93Dk5luC98Ee6DH0E/9U6pbhiJzBCTKZw7D72usNxA2qcCJqwV482KyWdb7DSlmt/vlZSZThvDPeclwWUtdLohMRDx1Pf9IbTYqpx7QL7eBjFCgkOVJeXlDZR18r9ZVo9FxlrM/NWbp8hoisLKtVRVNkrWAh6EFdnrwe23ozY2RbrEOeJYk6QRpGCr54cYOg5bZqfxaASzDHPPPdi7ngZ41MYmJlRkGAX5ez/A8N2/h0ex+fJvuOoa94aKYuxvvwXTSSlNjDv2XIa9DmbmKbO8bmetqAEwh+buhQ7llXXMYUmoKu9RcQx5CYkATdaCM/K9opUsUbOM+Nd/Q27zygbF13+NJNCcQ4Xk4idmcGt4qV0Ui6a+7uLVbiDQ0xFJGTxOm8CiDszefWRclDEUUcI4EtCn7PSIlSh7T5XC/ubvYJ7zTEkEmFvC3ZY4kquOtTfun1peikg7lMBW0uG/PflLibXi7kdIkFbyC1or6SghIVP5iQBkKydJsRjtKJOEbWfQKIqF/bdavbmU2UjAs27/0a89NppMJ6SVxMN0ireO6HfeyjRKMVFCGjSW08mD9OMtwDCX7EARmMw4duutAzgickoSBHUoiSmwJBgKtL5aanJvpP3drPd21VyiPZ2QUPjvz3gNP/fUv4ACXj3X8sHYBfh7nv6yU496ztwkNaA8LBuQWg/6oBWR0Rit0HHr2rRUCQHMH17g5DMUtrScf/iTuLSD8h43mK8/btu6MXuinTApHoUs4IEzSyd50qu/BkzCwnyXTaVIQpLUz3J6P/hDeOCTx++Cb/2m+rsmipj/oTcy/p6/QXnsGAyHeOcxe6XU2qHEE6WWfasA1DzfXZE0HjeVat7jtrfRva7oucexgFHbI9xshhkO8JMJZjgQNvx0hlaO9z+4jtvKUDiOVk8kz3eP/9AA4NOpmNKHai+QqkJf5CJZVyWBg7G1G01QZ87CNAPVQ8+Fd0UF2bI4QvW6+OkMt7MjEnWqOR/OyTqx28NNJlLhFkXoQU/GEGvxWd5ULHjbVLGAgONVm7bbt04gBNNSa0FH1IJngeDhywK2tkUf30s9iWqZvKso4qsXEzbiDsWFCcaJvI8yEQvz4d07cbTxr6mqR7XGJylF2iUuS1lzA4vf8JfJHzpNeuspsnf/oSQfAHIrb79z0OlgYjHc9pvbkrBo3Zus46T6S4WqVazF2pLttTEoRdqNSbtXz7HlaCISP85BlkMnJS5K8A4XxWIibgx+ZUXmYaUwW1u7juFnucgcGYNODCpIt/l9pOgO4iA+09hZ34HZFJ3NUAXQMgg/iIN4POMAcD+IOk6dOsX58+d54xvfuOv3a2trnDhxAtveVH8+x6AvGqthIa2D9t1BHMT1xkfe80eYo4eFVPK/f4/nft1XPtGXdEOhFneomWvJo2+mHyniIyvCVCoK9GjcmGK2WDLtzfeRrsePJ2LQ6X2QZxGGQXc2u9Zp6lg6sggDWeR7o9Hei4xIp4PWLeOlblfOXxl0DgZybdo0G5eW4apCo4Omt25JavjRGDeaYI42EjFqfV2MIwlyCpHo4kadTi0T8EQD7w8//DDb29t474kWAjA9kbJx5udR4wk+Mrs3kSGUMahK33x7B72x0WzgOx1MpyPa95VG597vd7tiiAZSNl5JugRgGZANcBSh5ufw43GzqQVIEpSW6oHSWfTWFhw7KtddfaZlWsrcnPxvexu6Xdqwmfce/eCD+NVVeVZXrgjAa50A9MagZhm+24W4I0BBBbxlmUifVAmaQ6ESxDnM4YZV69Y30HGMno/rMmqvFDvHbuOnX/JtAPzL+BzLcbK7LUKYvfzSOBY4MqpMYHcbHSo7uarNAZ5/eFHeqz3PxF28JED8oC96z0UJ5mGOvCTl9Nkeh2YZamFBGJSXRZYpi1MiFCZo766f3eDvf7jHcLzFjz0jp3PbzU1Fwh7W2y6Jqokkb1QU49Ok7m8+iZv3MCStzOJCI1FwVejq4PL50I5mZYkiSigQHecK/FTKiwTQnogjg1a6xehUDeOyKGn5RgZDSpGZMLt8AZr73SvBvjjbJsYRv/9PsO//EzSQP/nJjL/5mzFepICc9RRaKkniR5KkCZH2Uvij96OLGT7pob7lZfyt246wNtuGK+dCUqQCr+X+iyjm7zzlKN2/+1XY7/wOyqc+VSoMspzyN3+L7kc+TKkNk+f/ZaJDCqu8jFle2rhMUv6vwatwHv7K+H/xhQiw7LQhDcmDpy0HOTBnUWWJLku0Ltk7ophsLOx77+nnE4qw9ejo7Wuyp49cOUOnFDB6ONuhDFU0mUqI3v0HpIk8A//cmwF9XWA7QK41C4W8P15pUmMYW4sN+viPFipO66oOpWgSUd4jl2RQyqC1JtaOSCn63f2Pu7g6qIHa+ZVHX4dqrRl86AP0vkcqTjfSIcY5Ym9R5YwrnTlmRubQQ4w4kpyXL5oVyGX97vZl8GkcKZEqKHwMJJQYfJCauZ5YPbnA6T+9RFnaJvkawpgYpUSia7vwVNB00WrvQ0ciLl6Rn2N9fQQfZQyjKAUUW2mTaNT5ushw2RLtHaqzvwdV2o05/qQVysJy3sSh3/pdw6d5hArYueU+a+e2getImKRdll70xeijUmnVSxJmcZcehP4kslMecMnVpqt6OMRbL/Ncp0N8LKVcW9+9ibe2kfHwYsSp4j3PL0maCjDv63FUjccyxw364g2Qj6EswlzcAJ0amjWTUuRO8dX/Vkxov/nOLq9diTHDbdxHH27myyDBV51TV3NgZbSOGJfWEivV38J5jFH4m04C4N53Gbed45dbfaws8ZOpJMOrCMfyFcvcWny3I4n4XHyDvNboM2fwKyv4vMDMD8ULxIY1R1nKGjLPUWtrRH/6cYoXvkDA54q5HUUwGKB/7v+l89AZiq/9dtRoowb7FYhfRjCsJivwSuOVlrnVe3xZ8tXLx7CR4r77NkSdKDKYQY/uWMYqU7WN9836xDlcIfc+933fT/4lr5Dfn3w1vRe9Vj5S/HGdXrNHVqVaKszbbnMTs3qI5NabGxP6ql+Ik7C00SQYaMcxvoz46LsfAmD52Bx3Pm8f3wJX0Ctn2KoPKk1hIkmz5sE8vciJrlyGhXl5TuXuhJXLSinE0R7QqKqy7TrG6IM4iOuNe+85j+/2pebP57Xy2kEcxOMdB4D7QdRxLYBoNBrR6Vy9APx8Dqd0s/A48ujlyAdxEO0onMcENsnlzf3Br8/lsNh6zf7g1hpz52SzuLi4SLcNZF5HlLOMJC+EDVMZXxoDRYnb3BJzShqJlSKnJX0QSmFDFK3N7c7ODp/4xCcASJKEWQDjF+cVnD8vG8/S4jqpmMBZ25TyAm5zC4ZdkYHZpVHdunjnBKTt9dD9rgCnaYqbTFHDPkppVBwRDXoCzoYkgQ8gZNxNG7ZYUWCtxVUbxyc4Hjh3GeMEsNIXLqKSsEms8itbm6jhEB/MYclzYaxrLeyr2UzAT0/NcK90Pf0sk89kWWC4C+PSZTm63wOlxbysLIU5l+dQlCIFUUVoMzedSX+on5ESdlPwGbCFbWRuAD+ZiMHq9jYkQZbCWmxRCjgyHgvzc3m5fg7+VGBLjka1Brwqy8Y01fnaBFQlibCc+7KZ9iYSIBpEbiUkGezGllQOVGzT2Qy7vkk8HhGVBSqRPl9B6bY6x3gi70rQnCXPsR50UUh5q3XSxs6hqNjlHsiomJmHFvYHpAYDi59ORYe3FV4hfb20YC3laAzdGc+cn3HvQ4tYFFFRNBrrCozyOO8wlYRBmtJ3nlhpdClGrgGfIjdRA3f6JnmgvJd3ptfDb23XUjdeGh0/nYlcQAWUWHvtknVX1ibIejKpmZvZrODNL3k9EfBNiwVHTQRJgl9Y2Be7N6FvVlJy7qHTmJ/5j6Cg/KZvhGffLccejUOpfjC2M0EKSIQ+6+PtBcynSQedT3YLdhQi30Uco/tBYsv7gFU/+g7vLB0OO0tkC7r5hCRVaAo8wvoWIAY2kwE/+aLXg4fh4hJ/03liwE6ntVmeV6LfOygFAH3BoYyX3mk5548wiCcQKkM6R1ZwD4gUTIGCn/4ZIqPYSXvw/X9HHrXRRHODxlxXa3AlPtudOI2OHKJUBqU8uYkxlDgiZm5ut+ZwKy7PH+bkBal4yoIkkigaKJwC9dbfpTAx+rmvuyEfPY2iRJ5Nt5iyldvW30KlgFHiWbBP2G5at6WbzqR6p5rjauNPh0GMQsvq+ewTh29e5PDNi9d97Up5NrrzJPkMrxQZmjlb4IBcR3z3K75fPgf8yZEziBTKnvv3Fpo3NPxXxhrvQVPiKfB15mn3HP1IYa3DleGdad3ztz3jBA9dHIFX/JcHLnPfRMaZpLXnMAvHiZOzKKA3mOO6whgBLfGkZWOsvVPOo7fXm3t+1P2LF/3wIgc8ZM2azj+CqbHbO5/tCaUUCkkce90he/lr679NNsYMf/M36PzB2+UXa9vEoTrh8Mb53eexFjca4W3ZmIVrtTtJvV+0wfa2hNZ4XFfvEUUwmdYGntV6yIV70kpVfxHpFu9rANcBnTLjf/zGDwKw9Y//MfmhY4CFJ7XqhiuguJqPx2MBxyuZP4DNDVAnQvIKWVOEJIB3nvLsefxkSjkLEiRVZWUlaedDsV5l/hnFjbyhMkIuKMtAupAqNhWSy2iDMg6/tRWu0UuVXGVqDtjRVKRcKpmUisGfptgLl7j4nFdy+C/ezs13rXL6V+5t7lWBLwoIa0uUb5LGWlj8ajhg6ZVPJb9ykeTTq3DkiMi4xTFckn5sd0aiHQ8BcFcQx5j5IcVggOv0id/++/juELf6KlxVxXrx4foxrL/1bcyd/Aa096HSDnxe4EZjFKr2APBeEhQYI/N8ZGrvIpfnsh7RCqX2fzem04KONmK86+tlQkjaqLqaZRZ16FQVa3vm0e0f/VF88OTo/MkfUgwWUR6G6YTrHzEP4vM9sknBlbNboKA/12Fh9eoKzscS8X/4EfKv/xqxN58UqPQ6556DOIgbjAPA/SB4wxveAMji8Id/+Ifp9RrGq7WWP/7jP+aZz3zmE3R1n8UIQIK3Dl9Y1HUwzQ7iIACiIq+lFqKzD+Od3bc0/nM1Su9IlVxv12ScPn0agOl0xm233XpDx/LjCRw+JGW9IOCLlw2sHgRTPLXGbDKhNxhgIiWbmQrxb+1Tld69gK82tNPptPUZjTPCIPRRJIxerZvy6RDJsCeSGHIA2UgeOSKMrs1NMRpcWhLtcIS1roLRqc6yRq96NMJOpkRBloE8Fw1xoNweEY1GkCTY0aSWK/He45wTk6jPMD78ZV+FPv1pQBF9yWt48k/8ixv6/mQ6ZT4NbdztNNql0ynq/AWUd7iFhUY7PeiSAnhthL0OYggYtM69NgJ2940A31Ub1ZIW4WGORO6DoDXqSytyJu0LVLJh1HEsQHiSNGaaedGA5dMJrIQyT+caVn1Lz9bv7MhGe3EBlMLNst3n2qtfC5IQqECI0sr+ODDfatmhNK213SFAT86DlrJwkkTaJsuF+X/sCO5jXQoT4RQNUAHEgy6qZbSqBqG8PssEZA5MOba26vassdi5VSIexmJQOFK/ue8zN6nBr29K3231PaV1XU3inCOf5FQvXk8HRmdRBDM+Db0e0c09ynMXBKDw0PUF/4M5/qSvMDctNFI7zu0GPPdWTEynYgSbBNPU6VSetff4vMSvr6GPHBbTx+KRwGdVX4v1CEvfWWZ5ySeXT6GVIkvP4L1DFQVuMpWKg71HMVrQmvBMtXONtLCX+6EoURvr+IVFAXyiiIaXq3ap5Swe3r0BjF/+Osrty8zu+UMGxRgFjFQi/bko8NOMyDkiLdjLTdcxRLzmjjmybITGE5eOeHBImMfK4yvAWim80dx3SMbvJ3VleX/vwgmOPPvZ4qOgFOniHJn3jE2C05q0F/GMwwWLsy7rZ3dq00BJOPRQeLSC5KEH6Zcz+kAUzCZtWVCOdogikTjwQY/Z70kixHMD3nnyOSKz1J3jNWSAI2EalOavjqzTIzMJCk+hIzEIBeIoQjtP7B1xmTE2CkuOwgdd+Pop7Xvc567OM0u6pEWONRErqeFK0OKPwxhx6hlHue+e/Y1OVX9I5wd/iMSV5GjGnT5pkZGbhPw7fphe2FZpGjzw8VoZJEqz1VtgYbyBU5rtwSKHsi25rhYQupyYPWoeutae78QFXJWvEyNVW0v9tLeGvp4jHy20VnijwnTSYq93EjpDmYuvtBIcWUuDvL88z/P+wvx1naeK5e01OsGMd3nrYv37Y/PrfPjHfpX0nf8TgGj5kWUClNKQdMUs1Xtc1GZKX/t7JmraRe+jwd/pdDi2eAuXH94Sz5xWzB8a8PGZZSkYrevWqZZHa7s+mxw6xFM+/qe87Wd+jn4wri7PnifJJnh1tPlgG4CfBoC4AjSrZzid1mMB06nMd/OxMNwr75IiANMOaukUYyQR66yspaIInCNSniQkCqLF1vNLGu+Ien1RNWnl35Jloe00nY215hoVkhxMU/GG0Eqk/aKIdqWTahm2mgBka9+SdyEkfSODn5uTfry9LeucSnrrxAn5fSdFR6YmVahuy1i228VeuIi95WZpn+pednZgOETfdAL9sTV84SjefQHlVHONKCE7VP4l2wXKBJlFH5Lr4wlJp0OhFZ1uRN5is6sw1npopHaslexCWWJ2tslHY0kYWQUaVDdBB98C35qfZw+cYfB9f4/l6RY73/md2FOnoCyxm1vEC0NJyEeRPO/qXAqsDWOLD7NgpZhzjZfjvrURty8kJKFyQ56nlm6Ar71fdCTHr71gWuG7vXoNM3vOi+p9xfa5Bzi+71kP4s9ibFzc4aE/Fd3+/sLjC7hf/Jn/gFm/HHyBlCSWDuIgPktxALgfBPfccw8gINFHPvIRkqQpjUyShLvvvpvv//7vf6Iu7/GPMjAt+yGxkOfYaUYUPzZpjYP48xMZuh48Fzcu8NZfez9f+jUveEKv6YbCNRUtQn6Vn//oE5duHHB3wHQm5ds6uL2XpayfWxv1fCSAe7y5hr7jGQDonRHFeEqcdmQxvdhUm6yPc2alLOm9ggo7VlqFzYoXNvD2jrDYp9PdKrBJMHW0VjZ/R8PGVKma5czmloC0iDEgQcfdOYfa2kY5V7OD/cZGKFlWuPFmYCupZkNLIC0FbNM9GvvsUeLK13wlvZuOglKc/+D9PPkGv9+JGo1RmySYKmnR7eJvPQUPP4wqihpkaG+KvXOozU1Ikka7XinRAa824EFHG+frcml99ixuOJTd4aAnBl9rawg1zgpgPZngswysQ00mlBtbmF5Htm5hA+69w5UWrQ1umhNtb+KPHt0Nmu/doHmP29xEBz3w6t6d95gHH5Tnb63IAc3Po5cb3wW1tIAvCvxkuhv+88GUrErK1FwthdUGU50n9CH94IOY0Q5dm+Ozcf1egWK2NRZ2e2grf2UN1e+hvUgJVNcsRR9yJm2bMuvn9f4bDxdPk7+n+5s7JmuXmPt3P8X02/8aLhh2CpNayzONIgFQvQeThGftRXM9MNFZW4PJlGJjswa4AXRghButifIZ+EH9DNJOS06hxWSs/+2D7Ea3K+eYTqEoMFiULXF/+wcwznFm/hi85tX73lvrgHKskEwbDFLhzHmP8+FZRRG62yGtTFlbobTBO0UFb230F/k7r/3n4D0/wadZqmUlFGp9XRKJzqF9I9eitYAN+4FsN91yF8Wkx+mP/gm6GAPQH20wqQxGtSIxhkRrcJ5Dkb/qGHujd+wwf+sbfpJnfOTt4Byv7TTyDp7mXiJgFvrcjhWgY+Xv/iSz0X10KpBtcRGPom+lfHpNuKxESnHfOz7Enf/qX6KA86u3w8u+C7wi95pMR2BSLvSXeHoAQkyS1MC2UgqjNDt2hUTv3lp0YsNPPuurAVHseRXhHVD5NQsaYm8ZWBkPEnzNi/TeMVfKWLaWDkm1uU45GbnOpy/0KP7JL6Df9RvETAUQC8NZfI1r6fQTuoOgwW903eIeYWn3bU7f5kyj5r5NJTkDn5F59vI3PuWq3+ngt+FDW2yalFHcI3KWaZzy8y+8BaUU0TQnTj7VfLHYhlDtpPxueaqqbRyaiIySzlV/uR6jRJB2KjJ7tWdr6z25e77Lezem4X5uvF3asTDbqH9um6b24hngyF7+5QAUeckj1u0p8FGMyqbSMpNR/adHkobbxX6/BjA/3pqRZwICDxe73PQUSeoXWcnZlZu59bSwrKdEmJDUG6X770WSW0/WMisxThjDFTC6N4oCFxjqu8bjKAqVaSEh3qv8K5R4YFy6FKTblIC6aSpJ8VykX2zwLKjIzcY3t27Ksp7z/LkLcNupVmO15gXdgOa1L8jKcuP5E45fJ4qrMcbDUq2m4vGtMiunNBoxuDZzc816piwhD34jIMbvlRTM/Dz68mX8kSNyhtGoAeO1ln/nBdG73kny679J8Q//fnPtUSQkhOkUt7lNb6y5NczXtTxKoHeropA1T0ViUCqsD5UcJ1QV5TMPWyXqodP4I0fCrQUyA83PdVLUeUoTUcQJ2pXobAbZjKWveTLpSZHgufBmXT+fTj5lJ+riE0fqWu3aXGrTbkEmkryQZEYlm+UfwTcgxE09h1FQe9WgmgRkr9dUwlY+Tt7vSpB6J2tDX1UCgPQNqKs2D+LPR/h8XP+s8qsrth5LrHdWUMbg7rwTAP3xTx1IyhzEZy0OAPeD4B3veAcA3/It38Kb3/xm5iojuj+rIWgYrG9AmuCLgsnGBnNzB4D7QVxfaHy9eC6/8i/R/Xf/Bj6PAPfLWzMOL3bAw+VxyXxPNKM/fDnjG2/wWHrYF2aAd8EAiWYDuLYGnQ7ewXhnxMKRVbL7HqB74hDMzwlDZ2FewDPn6EcNC+z82TVcngftRgVpo01KkgiolgSDrfBOu9bmWK2tQSdqJF8mU2F6F0XN5vZJipqIS71HYdIgP6MUal7GQbW9IwZWlaxKUYjpFog+eaVX75zgivW+4ZE3JY8WypX1Jie1jUSDHY+ZvO99oDXx6mE6T75z3+9vzhyrfbkG0+tKG++MIMvwG5uo6RRfJR68b7RfCUz18DdfFMGM0slGtSylqsG72mSViZTgu+PCPfJr69I2VcVBFEFHTM1UryebrvUN0RMf9iVx0u3Wpdomy4X9BBRRhFkJyZIrV2TDGww+fX8g27koQmtdlz875+SZVSXxp26VPaKJREcccFfW0CtSqVBJyahKZkxpMNJv1C7ApWELmqVFefZ5jhuN0XND7PwCJorJlCE3Md7omjXrnMcVOXoc9s1dSUh45+W9yTKRXZEPy3Nos9SjhKgMzLbVp+77zKuS886v/wZ5WVI++cnCwHMWV7rAMlOYbgK2Sm54YSSPx8Lqd04MB9M4GHKGMnAFC19xO51Pf5qNez7I4suf35gKK7XbcK0NrkSRPK8yGBRXUkXa4LoxLC6FjT50zLXfGe+qdlECNIXqiWkmEhlaKSyqBgctit7c1VISSkHpGuNa7z02POOyKKV9owi7uIT7h/+U5MXPo1AR6rYvro8h5EmPs7ulMwBWXngf5CM2734DG8i7+cD73s0tStpCB4kCD8KsegRAr75mPP/gKcf4zeXXBXp/H/AYBet/9CEWP3IPaMX6rE/3sAA13QDOaqUYfehekmEPnSbYnTHWWXIdiXKDikBJv7BKMzEpKJjEndBenkhD6koSV7CSjVDVUDxcAS/vpI8iShTDeU083C3Tp5QjUnLPqXFUSavMD1Bqf1aZjWLyANx7T63hnqMYRymJLejYYq/7wSNHnf9SZC9/LSUT0g9u0A3JpGSfBIrWime/8vbmXnp9ch1hlWIadVlINL6MQWsWYkeOrUWH4oDMG/XIhprXG3Gk6E136JUzNHBkskHqCiJnUVaRhb5YdhOSbgucOPliSIeAYvzxa7WXR2HRFGgyUDHWS4IOf33Xf02j09Yp/2RtQjWbfXD06J4tjxSfetoXcusDHwYUawuHuTv8XncGGDI8EQpLf/6R9fEV4CODT7tC6u41n9ePNI/rJplwLemZ409aYeHQjM3L4zppAzAdZSxvX67rZra6Q/pTSSC4vbrrIWYPnSe+4xZh4c9yjLWSMK+vp52Q1uhecz53+mH0ieP4JJE7ynMZT2czMbb0XkhIw+MCrudZqN7KJFGsFczNoZdDVeBkAp0Uf2SVXEkystiZEIck584sZ7iz05jbVwlu78Usezhs5oWiQL37Xcz/h59h8k3fSH7yJjh6BGZT6PdRcYxJE3QSoy7Y0N7VPcvAIvI6HjMaiS54Vf2WZVLNtrEhWuvVGk9rWZtOp9IGeS5GsS0dfOc9+soV1pN5piefypG3vBVe/63yt+lUiFveY4wSv5PAKt++9yzHzn4K/7Sn4g8dkoR8WLOSF9LfCitrsgrcB0ykYLJD51d+BXf4MKBIn/Yc6S//47fpP+9uqNZ7Yf+h04Th+ct4FeHiBJJ015xkjh6Bh2agoDQRx0dXiGzOLM/weCE3ALFzUtnXJooYA4MET1+uuSyxUSwki3aZ155weY5PTFM56B2RtzhbivxWRVIJZBa5/+ZYbjrDe1uvq9VkJNKHQOoOENE/TzF5+zuY+4//FvD4E7fDl/zC43bsvMyZvunHGsJUpwPjR/nSQRzEZxgHgPtB1PGzP/uzT/Ql/J8NVf8fm+tbzN18UKh2ENcXpttpNjedDtF3fMsTe0E3GMujdeL+MjjPwFoGiZRQp/sADo8W0cKcbCaSRADWogBrhRkcpFdgjYsba1z8wCZzr/2Sprqk3290vZUiasnyFJ/6JN2VDmiDdQ5apmg+m0Ga4AoBICud0fby360si867DZuIbleuzfvGKCyf1frkSu3UbC89GgnD2zlhI6FQ6xvi+wCwtQ3dDj4vRHtSKSLv8NNxkNrwOPvYGO5JzQ7yRLZ5Lg/+k3/C2tOfIRIIH/gAz7wG4L7cNbXES7G2IfqwcQzpAHXkMGo6Ec3loEmvvG+Yb+3NT1Fi5uW+3XSGroxOt3cEpHVONs+APX8R0xVd9UrDXSklm6UkkY1tHZI4UUmC39yiTlAohW/1A2VbpfiVlAzAeFwzw/z2Nt66WrJFa91I0jhfs7PZU3XgRyOU9yJB0+9LBcNsBlGEi4ywssYT/KUruLIkqvptpX2764HJvagoIvUWVUx59Uqf19wkwPADn9boULLfcJJl465Akk+zKWWSisEbe4hkK3dwrJyKNER3ce/jlst6xjMxgLp4Ef+Rj2CPH8f3+1gjpr5VMinqpmDCM63aVSmc1uBEZsVmBa6qbkBw7MELjjKw50k/tEZWadcrhev3d1cGVBfuvZSsT2eYKJJ3Mc+DmbGYxfm1DdJQer+YPlJJb2DkqXD8StJrMuZJwxNyCz6FBx+ElWX8ZMbcfoboOsL7hvVpjCZS4bjOS6Kl6pfOw/9+O0XUQd/xqvo65uY1Kumh90sQKAPKsMFxqtr7eRMJSBVAg+nyEfo33YlXkBy7BkjZCjO5iPJ9/uKROQFq5EQkOmJyaRN95iMyUtzxIjgc7iuycj9akV/ekHaPjMh52UYGwvSW4OSL4N41YRyHdqnYxwrF/GyHjs0w3jOf7RCHcdD0unjn5LlaS+QcRB18vNukMlYJnXC8xaTNsK5TD1ffs/HkOqrB0CJ8bDgb03XCto2VJ9caQwZ4LFcnWNqxGyNSWDr8i7uPPypjc9d1DXo4JQCRNTJ+KluABaU9lbBLZJo+Zv3js9WKlGE+G9XvWqQ1mYkplSaL0muI8wCDY3D4LgCGp9/DXtsZRUlEgUfjxPKXmBk+GKdeS2f/ekMbhYk0zjlec6LH75wXAPCuxRvzi9kb06O38Pq/+COg4OnzEV9e/eGur+QF5X+B0XnQEXSf84jHUVqhun3szXdKAuzQkeYck+ya95SkcQ20XytvNlzsMVzsceTU0q7fK6X4xdf9HT64JXPiXzj3Qb7lA7+KB4p9TFMBNv/oHoYuQ3vP6JMPMrz1uIyDbYB+HBCjbIabyQikL15k+3+/i7kXPAt/y83Q7aJQwctKDOfr70FDeS5KWStV0nFFKfKJcQzDIWoyRfV7ZG/8QZRSxK3ERmpL6f/V8euG09iiRE+nqJBA1nMDTs71BOvyyGSTJPK9MMeoOEYNQLERLjFUl1U68KEqTJUFbjwRGZc4FhY6nrIoiIpCfGbIROJsc1PmxMp8tCwxZ8/BTSdDyUuMO/0wq5vwv07exYk//DV6fygGsdMTJym+93vk2ZuIuWcus/IF8o7Fv73N3B/9HlkSMR0M8fMOnxfobkeGBKVQ3uK/63tRr/wiXJSgXvISUdU7fgj9tv+B+vjH5T7npN+4j34Cs9DH3n5bQ2gJ9xwNuuhIg43k2bQS9Yde9xeZ/PF7JaF9eUryqQtEePI8r6sVlda7jXT3VCLUo6Mxov1e7ROu0eeVEt18qaSTa7E6gnL3+ktHYXyv1h/B5wlnYWFJ+kCeQZHXc6f/DPYoB/H5G35nhCoCOWT6+KLhObbxxABZ/x8A7gfxWYoDwP0g/vxFFMkiMshNaO8Ynd+AZz3RF/ZnI9Z+9udw4xGq02Xl217/RF/OZye0anShvSc7d/HRv/M5FOmRQwIMe48up+SlgDgnBzc+JfhZ2Lz4YDQFYrbkHD7LRGczjuQczuLTFM5fgPk57PYIU2mjAz6KOHPmjGx604opCz7PAAHcXVZglAat0Ti8FnahMgZXNDuAaDqBrL9bH3JPeXW7kFUrhd/ekY2a1jX72+/soFQuBlqVxrkxKGNQO+PW8YN0hi3BWrLiUcrYH61ddbAJVIqyxVxb39rCBdkfe8vN1/x+S16W2Chq4c1QSu7KxoSyMhLzxsiiM4rwwRhTBZ1RXNC9ns5w2zvo2EDclWe0tS2b3sD4UpW2fq+HXVsTY8GiQC8tyuesxXuFHo8pd8ZSfjzoC3vXWkxZ1JUD8XgEnUYD1c9mqDgWNlp1g1rYVO7KFXRXQMBZbkX+oSjQD5+Hw4eFRR5Y3rqla2uMSK5Qye5Yi55OYW4ONRwIgx4ElKgMPlsIi8YHBneOy3NKFNM45USacaL/LgDu5wi+KFHjsfiGZBl6MEAbjS89pCluZUU0ZgM7n3bS5ul/+VH7TDcOSQZA5YVsZBG9eVcZximFneXw3O8EPOUf/go1c19pvCCH6DjCTqg34DYAS1ppMhU1zDylaqZf/W5NJvLvAPBXxquSqAgbnCiSd2p5gV4hoFO3d23AXZjgArp7V9bGcVEc84O3CkD2iftHqDf/ONp7djpD4q//un0OFIxKq+utjuuRNipyGHupkLEW7T2pt4xqgzjFsRMRS7df49171jeDzXnG5Q22Pv7HeAXWbOCLVek/pWVz9VY6r/9L4GFwHZtIbz0uDnq3tVK3J9Ken7vry9C3vhzjPTcdOUzPSjpnOTU1MFI4XbMKlQZdFpRKo/CULQZvqYwk3wDjypp9vzheQweGuUXV/SpJNIxDAkBpMg/ZOJd3qRXzHcN/esER8HCydx8PTELyBK7yVqiiu7VNr5R+MTfZohs+1lOuNouMnSVT8S7t9hsLAYZuJGIFSSkeET7PoNuSs1FiZuvw3LtTMA3NcP/2/ibHNxpKe7biHkO1jVOKc70l7hxvoPBBwz3DIqa0uxHgR64C8EQtWXcPFPioC0Vgofb2T/Bdb4y3ZtgAtn3FySW+4qR4URy5ZeExHbdrskqRgnLvLd79TfDQu67rOFVSePT6vw9AJ2kY/Wl/f7kiFySbtK6k1m7w4j1815NWWS9K8JatLeiH/n75Gsl6ffoM5j1vA+Cek8/mZV/84iDLEW6+RSYgz9FFAf0+7tZbSU49BL2qakUJ0N3S0Ffey7pgbR09HDTj4641k4fLlyXpbYWMoNMUd1swSA2JN4DYe0mCz2a40QS9tFCPt5EOSfg6UaCg0s0vi+CV4hqD9MkE3+lii4LqG9753d3ae9CGWW9IXN1PJcdSS+voWianTpiH+9NaiBWEqkUV1kKT4zfx4hf9KeP157P+0IfpnvlTudUSWZOkqax3oqYDrF58UPplWaK9kyqEwKz3RREMuz3+h/8jPo6JExPGWsfOXa+g95QPEN/3MWnH54s03EZ3jmEW5FSiSKoSrMyD0UMXiGKNy0HtkXxZ+fZvh2//dgD+8Gu/k0UTo0vwRYGp5m2tsYSZpb1Wbv0dQJUlyfFl8qUtAE6Pp9zJyav6qS8tEFN6h+r0xfy138NPWoQL79FIogStsc7zvve8R+aespQqiIUFqah0tjZ0d9dIK26NM17+f/8+4Dk87PDWN3zBvp87iM+vGPe7TH/8xwDQpx+W9ckND7b7R3e6SS0e5j2+zOFRkvYHcRCfaRwA7gfx5y/iuM6WAzgUtnh8Sn4PAs696V9ivMOh/swC7mo8FXCu2xXt8M3tJ/qSbij0dCoguXPo1gIm/kzKNY2RjU8uzPZqA+icw49GmF5PZEOUbJCMVrCyLHIi0e7SabO0xJkzZ+TnlQWYTa46nfIeDosOKuOJsOWNEbmS1jrMJh0xLfVeWMs7I/lemgqzKUnkesPP1nmRitFaGFI7O6hqXFDgvUPluWw+QkmyqcwXAxhFvycbFWsZTXP2kZC+7tD9HnS6gdHbTNV2scWUuw5TVu89ajBo2kFrfByHZy7MXuUF6FYVmLy9jaqY5EpJtYJSAiwnMWpxAT+doqpxdDYDY4gW5oPe/SZqOpVNv0farChxs5mwvPMcgixTlKQCclb3YgxOm0bfNzIyZmsNg4EwuAiJAGtloxqSX3opVCvkBZ0kaLZ6A7fcIscqy/qandZSXg64LEflhVxXJbPT64mBKYiZ2HQqMkiZMIXrzXuSSKIpz2FtDT2bEeExzjJ8UgSXBGRw1qHiSNiF3uNnM8DjnBez4Dyn3NyW7aTWIkuR7A/2XCuMahAIVxQ1IG51hHLTxsR2PIahgNTeBN1zrQV0UArSBB0tsPXgRbK1BwBY89JW2ihUmYsMi/N4JeDTLo3Zynh9NqvHAq0Qk9lYWGvKWlxR4K+s1+Xi9K9tiKUqgL/C3Z0H5YUlGeL4iWO897YXAlDMLfPK/TZmSklpO+E4qqmM8SHpgNbkSUeeU6hwEXkf3/rfNaInVT2D4VEGt4r0z4UH/jNZSJ45rcW4FeTdvg4daz23AjsBpNb1hRNrzVY6YBKLtNLzF4d8x83y3q70NljbsniluLw95qYALEUKsAVRANtM6/QfP3EXbrQJHjaO3Vbf5ZSIqt4m1xFRR96tpWWD7FgVKI9BUeblVTIvsZ/RpQQFo9mebcc1mlIbhw3MalWNrygePnIbvtNDZVPwLhht1/oS12zDq7tCC/R/hFB7GJVxNxEdY8CUM3w0wCWdkHDo48O26mgn5oGJwNiPoJR0g6HY6S+gt84ReVgZr9ML0lCljurEg8MEj4YqmeNbR9jvYiwKi8EGDXeZ37Rxwv5+jIbwJjYUWfWeivyIRz9aHuBRo/QJmZM2Hhf7gNQ3v+y6jxXrksKFOaN1qDTZf5vcHSaiZa7FXWBvP3m0GCz16MeGfmyAnCyAngqu2S29dVSCVJkyu6usWtIkAAyHMvc7h19fp3PXHSIvNp2JrEdlbDydSiIwmHbrfh/yHOWqc7UvwMs4WHnjTGdSZaZa5unhmkwnwQVZPm2iXddWm7WHBHDRxs6rZEMpyWnm5sF51HhEvLGJ1kLQ8M7L4NUNSf+ZVLl0ygznOzIHhTWOLy1qbk700iNTa7VbZTCLi0IwyAv0XAfmh7tJGefPw02w0onYfuVrye69FQVcfsoLWez2ZCzXGjNcqL/z8TtfwnSSs4QBE4m2/WiCGfaFUW4iWReFtUyZW7TWaJ0Amsk3/1B9rLmniOHv//2Ff51vmH6EF1YSidMxwx98I8wvEr/si6RabDYTQsI15hQfJyIjE/xDqvYRTx6uHiQrsL2SuHvgAYpkKGQF4P7NJll8+aHLPPS++8F78lFGb6ErLPcgc6f6Pfz2SJ55WHvrisThXCDW5DLfTqdSeZokck1la33Y2jNcvHiRs2fPAjCYW6AIEjZZabn88AVsUeBRHL31xL7t8VjDZRl2Z0f2Ub0eZvD4GXoehIT1lYeIx13HfudGQulWVQegHltR8kEcxCPGAeB+EH/uQ5gFB7pwj1dYFBFQPsZN2udylF7BlQ3iQ4rZxTWmQfLj8r/5N2Sf+CQez5G///eJV1ef4CvdP2ySCBjtHB1XYALqcuIT7wGuf5MKiMyK0YIFDQehDDSwqwKTVJdlY/SU58KAXV4W0H+WNbqOefMeutKi4wTiwIQNobop9twFzMIcDi+GXoByVjScQ0RGWLSUpYDsg0FY2KsGVM0agDUajWs9VKVUrU+utndEGmU+oOd5LqwrwBojLCFoNic1q/ixoQna6BoN021U7KUvaTZG12HMqgKbGBD2VmUCagyUhWy0JhNpn303auoqwzFljGzUqwWwl2PbzS1MHNfAMt2u6PgHsF9bC3NDVGllMz+boXZ28FXb1my6FnAcxQ3wvL0t/QaC/IdpSpLLEndlHd3rSEly1Y6jUfO8nRcQvWI2z2bC1CtLkaPpdYP0huhbozTKuwDul/hK0qTFtqYoJBHR68FNPdyHPsQ4ShnHPfSRu+Cpz5Nb+8C/3WXAWl9DvaGABCeM4yDxo/2NzUvx7DwTHdNxBarIqZEbpaSUPoAQptKuB4gTQkap0RMPAPzaTPGmLdHPf92dh8LHDa4ssd2u9KuiqA0Z6345naI2N/HdHsSxsPxUqAoBCB/XCGuuuk7deQR2UUVlJTzvIO8Tt7xXVlcWWPq67wLAZNd4N5Tiyh99jJt+6ecAuHTTszj0AqkesFnQkvWetMwpwvul8GgTh+tsVYtcZ8wPO1zyCOBjvNQBhedvouvY5a0+Fc5daNiYRgnDFlBGi+QWsFnY+tqUt0S59NNjZz6J4ovkWNrsKpwwphlbP9Y/zDuf/jo08PT5FDXKJUkaxfKsgJ4rMKk8p8SEUS6ghCoveeGX7+MvUE5AyTvci3Ygb8ZpdY1N9Ki/RG5kbN/uzdegUBGqamoGq4641vMwRtfM6tvuPsafvLVlJBqepWaG24fV9uLX7e+TECWar/vqH8c66Eean/3dH5VrU4o0mjILffl4T3M2k2sWUPWxh1KKxa2L9SyXGMUk6qDw5FFCh4ySVGRg4g4Nbb1p717P01PrzPwQV/OFDcL2V+AbGQlnvVQdPcaIE0PDba2eVfUufeZhQmISqKsuPtPo6hGFCxJljRELC6vDXZ978vNPsnS0+d3NT93tV3Dd5xvsTqYuJnFduzJ0+xOAltfO0rM5Hnja2gMt0BSZw9tyIlrjLl3BzA0AYXi7Sje7Cu/redqPxqjZDLu5jZ4fSmKmJekCyLx45Ejd3ymKZo1VSUuF9ZhPE1hbF9+cyVR01QNYXCXNscJcLta26ktSthS9b4IiFtQVHLos6t6jvZZrrOdTuZ9MxUSlFS12Y6AQH6CaTT9rZATZ3q715HWR43pdVByjz50j/v3fB6B813vhBV+II6F8yvMonyLzec9avvE3T/MD8wL4/sXv+Kb6Hj7x1Jfy44vP4geiT3OXiTBpipkXMoIajTEa4mxKubtrSSKfZgwHxck7ZA+hFNwbLfLC1rNTeQbrl/EPPyTkgWBIqq7hATDX70o1hzZCsFCI55CuLKlb/SLI5kXv/xPU5UuUz3kOM50QOVt7ZyzNGp+I0e/8Dt2f/ilAsfqSl5KfeLEYn25FQuTIc3Q+a/pMnuOiCONdnUyt5YMANjfx8/PyHJVuvd/NdW7ffz9FkJabrW8wCUm3NLN89LVfwbCYCuD+0Xv2bY/HGme///sZ/e/fBaBz992c+uX/+lk5z5/n6CwsklfeSqduoSws8TWSoDca5X0Pwclb6j3FVQnGgziIxzEOAPeD+PMdYdO2sTl69M8exHXFKO5RuIJC/9kdXowrRbfVeaKlORZPHuP9738/s1tuJbrzTvCeh95zDy/9ii991GOt/ef/zNq//xkAhl/6Ko7+8A9/ti8fd2VNWHfWYicZpjMBPNbc+DOzV9aIlhagKHBFIczk6n+drrBayxLVWmiTJJBllGsbRIeWZWM0m+2WIvAeiixs7HJ8tZHzHmVL8KI1zdqagMVxHHiYEuVoTJJEzQZwPBaZE+fqTaluLbBKFGYyEUA6jmVjMJ2K/Id1DQvMOdjegTQR8LRiXxvTGLLmOdnGBTjSAjZvNLa3ZJMajKPqaAsRl/tvzK21jYa596jt7VrPuQpXWnQuWsjMZnIflQxIFNfsZO89TGfCQrdOZFnGE1mcVqaxRkPUEYM5pVBlIX8LmyWMsOe81oFhHsrwTUQRp0Tnz8PRo1RlzL5tFur3bAS3tgUYT5Pdv1dKTHSNEWB/NquP5y5dRs/NyTnnAri/thYAAIuaBYbcxroca3k54BIe4kTkhQ4dEuBAK7m3qsKlKIUBnWXYyZR0NqVTSU60nonqpaKFXBQwE8MyvMdYhwvk6VwbeU/CPc9awM/1RNoZ8u6jd3H35XsxFkqliQJe4oqiNrctthtmWjwcoBbm5Tkpjc8KkcaZzXAoOomA5IdXhb2lUOx0hyROpIZUWTbvUfWsjMH1euBV3Q7eiQGfK2QsUMFEznUb4aWJvra5oa1kYJC+y1jGrGxWUPcED0c/svUozFnFTmeOzIhRdNLv82PPPAE4Lv3xB+r7yLXBeamA895jTIEwqVsA1HWGSjtigkzAu1oJIRVfB8s6SPNUMZjvsLM5wzvPk/uGe7YC0ND6TO47HP2wAFkffsYrOBbeba81JYoiJHnKFqA6DdUCDkKyQf5mdf02UCpTM7a1QqoFwnOx7H8vqr8Msx3wUKoubXa5Uvs/LIWiXwp7OymFveqBmYlxwdCVILulgvWkv+EtjdoXbH+kMDqWnEwD9Yb/eDIzV3/uy48NeNqCR+F46anHi3ygWJk04GTpPP/+mV8h71enx7cFhnusgj9HHU0bL3EfS72P85Hpq9hxh+u/exTEKeSNp4oMCeoxl/DffNdhsnHOeDTj3KeuENBRtH5sAEdX51SvT/IYjxXHLmhM66ve77Qbkc9CH/OP7Tx1KEh7clzvEo70UnxYMy8O9heji2mepAYyD2l1PS0tYjm+wgTjdVWBmhWbWG6kTpQzm4nheJoQ9Tr4KJI52Bh8pasNeGuxV9aJlpdCOyhZy1Xz9XTaJEVXhJlNVRkU1jHee1RlphqqIb21RIcOodIUnxciG5Km6Lk5kRTJc1wnJV9cpr8h1+KcVI3pcXAhDwn4tJ9iA5u9vk9r8ZtbqG5H2O4bG3LdHkkqGEOpNGxsYdbX0FubpG95KwAPHHuyHIaI9riVhDb5sS3x/npt6zkZ5ekaKLzHO4/PcuzGJtFwgI9jfBwz0wm7Uy6E8czU52jHt56a471nDvP2d93LkdEaz/rkH8n12JJiZ0wSKrVUtYbbJ6xK6im6KCXRb6rhy/lm/g5rTD8akeUl/vQG+vYdDIiXR9ArXCmadcRHr2xz9O67AchXlsJkUdZyc9p5JoWlVz0TL+fxpYXEN8kjY/BpR9b4xog2/2RUe7Y0kmqQPfyw9DPv2bjvNC87ex68Zyfpkf7Q91EGaaTJeEqv/9j8IvaLzXsfqK8mW1t73I9/EKDLvEn6GUN+/jzxzVfLGH0mYfNS9jRVlXLpQmXYQRzE4x9/dhGxgziIR4oqg58koDVb06ulKw7iMwvz0z+JVQrlRDe4zU7+sxLeRFKOqhCGnRZQRnU7wtYGsguXrutYH9/Oib73ewG4ePocRz9bF90KbXSt9akdNVvUp71H+Nb+EW1vwdHDomU5nojJEYD32DzHREZYKmlgKWiNKx16mBIdOyJgPMJQ27WXVQS2cYzKy12bfnVSSkRdAFW1tbhZthvgXFyU8uBCpAxUryeL9jZIXTGdgEh5fCWF4QJbLI4FrNZ6lzYqAST0eRE2nFo2SxUTO8vw0/yG23J3qIYF294/VWW2IKXR+8SsZU4qjOJC2OydDownqI0Nyvse5NA/+2cAbHzDN6Jf9pK6PFuNJ/i5wPAfT4Wl1u2gr1yR55ym+K1tkfNwQbe120XNywaZsW/07osClSZicnvxEiaOIMtQ3S5EBt1N0Wd2cKurAfRV6EEDvBpboE8/jLvpJFSbeICtLelXZVkD5G5tXUrelWmM2soS3Y+E+eWs6PR7L6hikKJRq4fAOczWFrbflw166KuqLFBXruC3t+HkTdKg1qK2d/BJ6NNefudnOWXpGEUp46S3a9vcP3kEgtmkjyJUJskkq4JpWb9H1O9Rnj0Xnj0iG3ADMThyC//6hX8F5+GF/iLfaiJq2ZLSNv2plZjS9z2IOjovz88J6400QacJJ7ox9/zA7qShiQxzow1meS4b5lqaqHW3lenoaAz9Hqrfg/UNKC0mz2Rz75wkzXYaOa79QDMT0N22oaeqcQ+1q3zeXQ8bVyneefeX8h9ufwUoePWReU6FP41L6nPE3lFoRVIWRN5SJjG72bnXH747wBcClHoIrOxwruswpPR4dKRR3tOd67B0dI4oiShHWxiC6SuiJ11FomZU4MTgxO3CFgxz8dxkizhIyqQbjf/IU+d7fGxLfAwirQP9EayK6rG1VLrW5DfG4KrEl1LY2TUMJrN1lK9Yra3KC/ZU77Ti0olb+KOzT0Ph+fiJu5iFHMWlmQ3yHXKMQndpgzA3GoYxlmsnevZGoj2j0M9S7/FPuZtyYwOlFJ2eIyPH47mlrzjWFwD+2GD/drnhUAqMxku+mQvDQ7z9xHNwQN9ovjMw3Avfq3Xur4rOAnvZ5ZqCiBleddDGE6eRAIWO2hT0scTcUg+Weiw7x+Z9DzKxc4DC3WBCcW/EKqHw0raTx6gKadwUVaVR9oDq2uhdWOTjEUZrsvZFK9Uk5fz+z+6Bm58G938QgI+eeBq3jiw3D62MgVlWr0sI96C0wff7sna5KO+51QbTZgunKaSpGIgnCb7bFTmXSrc7VHwBzGZBQ91WFYvNuXBuN+jf7dbArxqPa8KEW9tA2QKNDsdV4B3Hf+zH4Md+jF/78X/PoTghyTJJis/NSWcvCvxojKmSsg4xCq3WZVkO1pLPctTsisjLhbU4zok8YBKLbrjWqH4f0++LJv3CPCZN5Z5WV3CnH8anXba/7Ye5+aZDwG8SJR6y5uHf8rQj/LVY88DaGAXM9xtW+dmpZWYh14GA0EmJwtpIWUlLdovpVXXVKu3RHsvaU8MzFzsU/gj/+tOGF164wvM+9enqU0yf9QUs+4uUly+hogjT238d31/o1kQCc/MJIXRoLXIo0wn1A62SJnnBVmeR7NlfyIoO2vrKN9UCUeta51LKb/4rAJitEXYyFYPTqhpCa7JJTq/qH1p+pxU4pVCRauQBy0LGncp3ptNtiDOt989Xko+dDultJ/nu206i19bg8hXKQPbBeYosh88C4H5ufcJN4eeN8WNd7x/EvqGDBFSvB7MZZ//3e7jj277+8Tl2ZMLeLYx1RkP6uVmVfhCf//FnDwk7iIN4lHBr6/g0bUqZ54bMzR9Iyjwe4XaZ5yny0YhOJefweRS3/tBv4QNx995//mW7/jbe3JbFYmBpKCUMxKK0suj3AiS50e5N9lv/y28xd++fADDaGPPKN4sRzLqNWA0SD2VmeeihhwCYn59n4bPUdmZxURa2eY4bTyCJAuPkxqQSvPcCHk4mspnYw5AxlW5xUTaAWShlZTqF9XXRCldKNiJZAxTboiAyBjppoy0ewp05i15cENOvubBpGI1RLeaoyWaQBTColj4Ji/hKw302w8/NoZQSIKkURphzXpg5ZSnMXO9wG5voClza2YFeD59luCxD97qURUk0GkkbFgVFfg3A4zrC5Tn+jiehtJh5+haQ5vv9Zp873FuT3ERlfhj+1YAIWuEjg1O63vCpQoxUcR4I5qfjcf3v+rqUlnYpAjM+JGoYjSDPsTsj0bWPY+lfAVTFOnwlceLBWQfjiWjml5bCCQBR9ZtdmIbWuJuOyc9XrkhJdK8nOudBisZvbYsu/cJ8qDAQFjkmaM2aIFlUCGsK50Q5odMB63CXr6AHfQEFgvRRfZ7QlqIJS8PCUrTaRuQYIg0fXb6Ff/3F34dREb+rdj2BJrI9m7MKgC5L/NaOSC0BQ3djZotGx/zzZxxDoXnovhHx0VV5NzodyrKsL8K1QOrLJ25hSetGg90j7VPafQExpRSXOgvMVQkJj5iYVgDfZCJttLUtQPt4LGNM0Dv2xoAtQldQjNIe/vt+EuVh9a6rmUsuAH6X/+c7mNs8LaTM17yGdHVZAPv2Bnwv+/Qa4FiwrJPdew1Marwta48Xv7iIRQVpH0dsSlSlheNvjBW9bYcotqQiwHt0rSHftm2+digvn/XhHo/dvsyx25fZ+dgZDI6pk3dmWjZjzqyI6YbEikkTYXUuLqI8FC1z6ez4TfXP3ru6DW/qxnzbrYdAwT0LX8X4Fz5C5Cy5ifFhnjAKNv/Vf+RosYVHkT3rdfvfQJnhg3yJ3iWXcW329IeW7uC9L7gVgNt7mh++ZRnQzMUa3lqNZx5D3jJNvbH5CzyBc3ndoYC+EaWVRHme/K9/XMBpFB//3ffivMwRec2I9cBnPhfsPrniw6eex/M+LeaCx3Yu19ek8ZQ0oB+9FciCCXTSSijUlQtNHzjxpGWGiymfvGcdZz3ZZM+48ziBzFprfG8FPSlQRhE9koTUdUSvU9AJA0D6GIsIvEnRlDjA6N3PS0ci4wTXpeJ2fefzclwX3F7d/CJ2YQVQqOO37Pud33vZV/LPniLv2LPmOmyO4Ejp6URO5pD2+KcU3ss8S5HjFxdlXN7Y3P25aj53Lnjd7MgcWcm83fMh7v6u7+CX3/YeFn/rf/H/s/ffYZZlV3k//tl7n3BD5aquqs49PVGaJGmUNUqgSBQYjC0DMsGAjb4YjMlZj2yS/TU/bMA2mGj5y2OiANuyQQYkpJGEwiiMNKPJM93TqXLddMLe+/fH2ufcW9VVPZ1mNEi1nmekrqp7T9jnnH3Wfte73nfhtS+DRkPytaDBLoOkqTqG6xOszlVpfJ6LpJjyGKUq5aJwCMPP6sGApGwMgdpaYk4hYlyBbV9tILD2fSVHYkwgYjBci2iNRdWFBuUc9HrY9XXxEer3sZ2eKPgtLdPrZdjv+bf4iRkSzobdbH0IvPf88Jc+a8fr9B3XT3OyA+ljj8nRZjl2bQOTJvhGQ9LgnYrpZmueq0fMHzSeWyeb/OztBzky+SDqY7H09hw4Bne8lP1fdtuOxzIajbmJet7kk5+Ca49Do4EvCk4UMS2rmak6IZVCt1tYD+N2FXP4BtmIHVkrj8zd0VhjCMSnEfTE4NQqjQHJYbNiy3e0Ct1qhMJe9adqHVmVBzpdkb7zCPM9RHXNUUoKR1rjFhdh/34Z99DhePb0EpMzk086PpcaSW+zntlPx7vn4ntx+eGcr6WoMIb+asHSb92Dyyw+s8QLLSZffwwzeWHj9Hu/+HX41VXAc917/5q43cZXJLAQPsv2UNG9eMpi79baiy+48IBaX5eEMopQHly5V52+GpH1+vjNDiqJoSxZO7PC4g6gcV6UfPbkBsp72o2YY/snzt/Y5zB+6e7fYOyFt4uBIFsB943llcAUVOCs8FGcEzBPK0hSwKO2McP6g5yJ170GgFavP/yDrYAwj5ka49SpUwB0NzaeMsC92OwQB3mUoVyBv2Qd1DwvxIg0SagNs5QSUFtraQ2NIsmdg1GVRwljOooECK2+E8e1GRNAXMmCTE6Cd/UCy/vAXk8TMVfqdNGNVAx1RnwDnFIoFwxhswxWVmBmRuRnAmPLZ0M9dsGkvYBbg4EcYzAOM0L1k53Hca35F3W7eBMNk7ZGOK92i3Jj5BpfYvQ2OuSPniBd2AdlgRrR8vZlWR/zKIvROcfffvRjAsxZtxUjieLQsStyOX56Gpem+Grxap3I6FTXMcuHzLHRjgCPGGU6XxutyoLX4+MInSQC1keRMOSslWPMM9T6uoDqaYKOI9xmpwYRR2VUzos4FvC/0QAUvtJwH2Hxe8WQzQbyHJog85Om6JMnhUGPF7a9D8y9wUC0RZ1oz5aLi+i1tRo4UN2ubKOS21lbAxR0NocdGwSQOo5hchKbNumPz7HY2JpedU+cpTUeCgWjhSHvBNjOMlxvgPro3Yy/W9rZF77l0kynTfcU+xr7AcXS1Czu7Fn0vn3hj7pmhVszBOZOFDE3Mlzseu9hMMB1ujh7fiHaaEXfIYA7gX2dZdRdY+sbcOig3D+bmyMLGiXyPFEEVtiUaEMyPYUzcoy6vTvT+CPXvJDPPjaO83CbbjARNjk6ZUXpxaW0XkGtWhu+HyWGZjmQOcQYfJLyx9e9kuef/gxOwbPiOICoOwD7TxKFqwqaUoj2WwoZT47gZVles/f7m8NCrh7bhzbrNAP2ZKLhdksfA/LZ9uIC5Z//FvHkGF4pBtYzqCXfhnOmDubIHmG4zzVExOJc3GYUpq0Y7lGkKQcFdmNDCqu7tGM7DD0ngMf+9L7qsIAw5+7w3mlFQ4EarSNunGwTUDSyl38Fqt/Ba4MlqX9/6VGd0db9X+gtaAz0w2NReEXSGD5Lfovox5BFHF0hGFwfl4KikdZmsoWJSLRcr9RoIvJgegrq2tfAzA5svWe/Sf5778OwEt5RUYOClHLEeHQUDL5KeDsA/c2QawdJkCsJbRV5yLMGV8iZsaWq76W83HrGB66do7+R4ZVnfObqMGWVph5fAHvDc9n4of8EwNj4ziP+UMcyCEN2rrCsn3bM91a480CQumu3hu/RinHeSKWAG8BQE0DKUMOTuTvkMapiw3e7UvwFujqh0Wjwj7/sNfzBn/wvyYMGQYt7VN99ewuA9wLuN0UHXq2tw1gb7T1+fCIA9GKWOaqdvOE00yalEfIUpbWQAbSYtiuVABbnE5mHw7tHBVmZpMgYlNtAYa0xofvUh84sVZU6AzBvnMWbmCJKyWNFMi3PzmIsvg/9cqsh5oVeARNJTHsy4lz1zk1iTJpIPlmKmbn3wxyt4rlsl9dqtIfzqUMRG82cUSwuzLCaJHggmZnipi/eGfjfHotzk6xrOXObFTjvQ/EZ/vyTK/x1qfj1V2r0iKdOoi0333k7933yXszcDCqJ0E2ZY8qRNU6UDP0DTJLgnKVOK4J80JYx8x60QTEs8lbrIJwT3504Bu9QzaZ0XgCsDydTnyZbuyoqOR1jhsUfaxn0BjwVYV77ajZf/QrAE//tJ3nwrHScTjZj5sYvDAB/oUfWzbGB0NNoJ7Vs1XmhvBRbatNchRuU2LUMu5pRnOzQfPYszQsA7q7Xo9zsyjrDaOzGJnG7jTt8VPK9qlO2uMI2qb3YiwvEHuC+F19woSqWYmAURivLPPHEyuf6sD4vIu+L1mols9A/twE3nv+5e+47x5v/28cAmEsj3vsTr3t6D/QCkZWWye/6J2Iw6B1uRMMSYPPx06EFTZjAqt0WpmcSSytwWF2rbRl5d/kM6CAYM8LSUL7KSpW0tYbvbaw8dfdkXORB3iJFdXpDgDG6RIag0qixsBCJoiF4UrGEg4SGWdiHW1mV5F4hBk8AZYFdXsVMjOGzfKtpp9G1oabKMgHLCc9vxazWGj09Jf/e7OJGQZdmQyR+AEhlIZnlIq0SAGvth9+IvKvbnis2BcaI/qaJMDoYPo4wuCwaZR2qWvBVuuFZhj25dmljORLlIBPgWsn9MTailalGUMbB0vAesc5T5jlGKwaFoxGHsbQi+aKLXBbeUYSKImKta817bUOyWd0HtsR3OnV7L92uSOvECUQGFRmRDqoWN4NMFk9pIiyR/gAmxgOAvxkM1Vw9NmowqFlMBo8qsmEr/3bwbWpqmGyP/qksYWMD1ethokj8CFxYnA1yAXQD+8kdF6YsG5tDFtYIA856hckyohMncBW4XgHKle58kqC+5/tpFBl4S/+n/3V9XN57Yfh3++xPY371hUfPO9xsM5P7LzKosqyLW1bp4X3lHRFyX8KlsynFA0G2G09M45+4X56bekEq/zNaWHvlgfbw74GFTquFabUwj2+wPYwBU7EpR8HS0UXvZge1vCSsSmNqEJfIoBAdcfIcpRT6zFnMEXlJ6AsU/B46+Cw+M34Nznuuj0/Vvx9VoYmj3b8/Gkpp+gEs6IX/V0qxVigOmqpQZPl7/+gb6rnfqFWMF+av0mM7b3iXMInG5fJO9AowI/PMRXQVJSMmeFuktSb2ofWDBNRqiyfFKDtydjnnwU8+TDvvUZiY6zsrxKGIl4xIytSCOduAn67TOKVxymOVwgRWcRIZjPKkXsAV43ZBPZNxbFfm4iiOtgDuuy20rxmPef+SdEJIHUWAcYUje8VQMTmmT0GTy4OFKyvYi492rGkakT+Lt42TV4qh5kH1/wbnL/G9ulsojdcxJoB1kbPSbEf1+I2cy24Axm6xDUDcIs90tXRURkJrhblCM9nrpiKOBVDy2VNXNsZOV4UbSOKtwMu+Q1efHXuhUNHOzP/NkcaD3HlOdyz/Yb3FC45HxM10i+wWWsP4+HnIsItjdKuFarXwZ87W72Y1OpGOvP90mL8BThy4joNKD7dZgaChM21LRBGE3Ex1OvhSDt56iNbX8Y20ln0b3bWrvDryHN3phC4+MRv3qKCdbkGHObFiuCuRZXPto/DI49KRBrW03ZZTC4U2h0IHQoFVGlXNxR40JW29yr7kBACTjXUG/SGL+UIGi1Xur5AOMPICNRADT1oi2+ejuH5aW+OhSLbtXdAcAW2j9jhkMr/OvvnrWPzH/2jX/e8WrXOnGARymRv0KAgFT61485GY71gYI2Mor+oHGS6K2H/rTXzm4/eQaKQAErxgbH/ECnk0f08S4sVQ6A/diAogGskVGg3JqdZWRae9yhEqEsPaOkxOSBdFPCS1jOYupihqWcAtc9Ro8cdEJOoqtaUAP/O/PsO9pzdRwFcdOMp8KHKV84u86ZfeBwruODLFb37zi67aPj8f4zPf/cOos5LH3fBb/5Hm1C4dAt7Xfk2q28Pg0I0IF1989+djv/V7ZF/+Rtw+6diz4Zn3C7PyPIbunF3sZPZiL65K7AHue/GFF6Ntj1GE27ePQzsw+fbi0qO/0ZWMOozx0tnVWh93NHxuKcM1yK+Q5TQaa/fdx72PPipA3voG07/+65Rnz4L33PChD6JHgIvd4omVXmAzO7zzvPfjj/HK5x6r/97pDqhYrb50Q3Omuv1VYuyxT27Z7nSqagRNj4hy64o5DVsXLVdxXLaHGxsTZlNeELmyTjjMvmn+6m/uAuBsFvH3v/gFO35/Y2ODfr9Pt59hV9cwraa0DEdBkiNoofrNDjqJYWMT3UjF0DIwqogiYaE30mCyum0Jo4JesDH4JIGyxDmH6w+IygLGxoQR3+sJqOfcVu3TtQ3RF49iYffmeTBXHb72fDxkEJVa1VxPvWXx6FEmEpA5iqR1e3NT2qobiSxGk0SYXJVZbBRR7qJNfDFx5vd+n8aUGD7hHL32VP23/KFHSQ8tCjNjRDN5vV/UC7hoBGyjKEPCGpjYWYbv9ykHOWX4hh0fxyTB/LUssVqL94I2Agi226IFO2IM5Z0Tlrj3AqR6jz23jMozVKspzLM8xystjPxGGlhxgVca7m+njSx6K6LpCGgM7LyQAlnItdv4iQlYXwfCc6W1FL0quYJuF06fEb3S0sLGhkjOQA0yaRy027gbb4QTJ4ZMK5Qs+DY30Rsb/P+e93W88IlPERcZt+tIWtQDsw5j0I1UiFtkxGrrgmBgA5fMS/dLZZrqXSh0RZEUiJTGpQJkqFG9lIsI3RwfHrd3rEdNZsoSUNhBHvwVFOUI4ytOHPghiFLJCbleX1hq2yLSBj3oD4sNbqSbopIgiiKR4/EyPp5Q1Ol2oSjxvR5qekpa/VttjJXiktvWFTQaYUYR0loN8CjcSPeHiS8upY1wNSu8VT8rgVnX60MjxWU5Rpd4DBGZTJE2MLuTS3u2k2ZC7zd+j3aqpGvqOSMWe/uefFuzh6aIGxHeK5IR7QydNBEswQeQaGQsRkCGxMPbXvpPKD1EGt7xzh8mCjmPawy7Ck7187oQ8eCIJNqr9qUMopQk6xI5V9+XaaTJVEQnEmBImZ0B1CjVTOjTcgUvUibJKEWF+ZYOFA6FxW1hs2eIZW647y5JUsbRNB36tgk8eV5QRRJFJFrj8DS3UdcNFuprUP2tRKurk18qwCtNrsSbIUtb/LPrZgBNy8jYKCyxyi7IwN0pxqcaVFiq1oooMeT9yuj36iERSdNQZGLqfaU4/sFWxNtvmwZgqrF5RdtKdRfFBB6Dc1epQHKB2N7VEaWGMrvwfbLYUKwHOag7ppu88wk5596JM4zvn0MnIx0mzg3zkaobrdOV3+e5aKI7L12GjVQ60YpCzOWzHCbGUWwtKl0z05KCm5zAeWD2lnBu2NWoFK7dFvBea3yQUBR2OtiRvE0pXb/+LQrtHCqV3KSZ92uTT+uDuWgs3bSGTIr5/T5+MJB3TWVkXwhbX7Waweg+GoLDDcnbDA6SiKiZYrJQWB2ZT897ni7wSEw1N1nqzuB87QogY5Bl6IlxKfKPj9ezVW9T3sfba69pczgvRbHBlW5LV9alxsbDj8vaBlD50PNIO8/8vpwbXjzHe/6fnyH5lq+HsTFUkkjhLR2T5Yi1UkwIxYy4Obz+a72CVh66VyLpXPVA/J9/DZ51Ix5Fd9BiOhNpIUqRoXO+yoO2mfk2BZD3WkO3I7mLR3LOEMXGJlwzIhsZOmvr7YT1Qm6v3vNcfuQD3K4seEf72Yfl/vGeZiPiP//xj+A9nDx0I3zzO67aPj/f4uHf/Z9EH/sbVL8na6X1ddgFcPfOS9dkI8V7j73nvZyY/TTETeb4oovan0sNxa23SAHSOQbrG7QPQ7S0TN5o1KQeb/QVuMHsxV5cOPYA9734wgttxIinakVTCqZnPtdH9XkRvnQY72rGgttl1RdtrPLv//znADg1fQB4w1XZ/8lHT9UAuFWa4rHHapC7XF4mWVx80m30O11hWlqLzguit34TvO8v67/n6x1hYyjE3HEXJpl95Su3/NyMh+YsbGEsDo2fzMZmrZHolpYu6pxPnTrFmWCItX//fhYWFi74ee89tjcQU6k0FcC6cmmPDdaLHvDZtd0lUU6ePMnm5ibOOUzFMA9saJVl+ESAaBd0tJ3W6DyXpAYFhZigeh1hpoQ9pspySyFCKY01KSaOg9a2RZelsDgrWZFOR8DTJBALRwBK289QRmPGRQeeRqNeaFbjrbKBFFZMWLxtbqKKAgvoXh+32UHFkciQVEaeRRHkZjzknSGrPw/bbTTCIm7toq7fTjHwEUYH+Mx59AiQqGemZT/WboGX7nligyScfqQVPPwwLCzI8U5OSrK5sVmbnuo0JotkseIrKZxw3xut5XeAObeEJxiojq70PEOT2E4HsDXLUnnqNk0PYm6aF8GgSMkCt+o0QhZ8bhRc3m1BOTeHWl8XWZJ+fyh7U7VAV9HtCrAeRXLNjwRt8I0NmftBNK3DNfV5jur1GZxZonnuFObxx3FRTHHkCHpyAtVoYNtjfGJ/zEcO3MLEYJ1/85GPYZ59IxgjjN+qLVVRQ4KjgHkUh2KA0sGQVYoZYhrpg+lqhrIlutJeLi8NqNPtWUDAgvE4ovPp+5ntr+FR2A9+hMav/RooePTYHfAtXw/Aofmcx9eaMg9VDLZ2G91uo06cD2LFOrCyg6SOyqRFvwZ2tJZCV68nz0H1jvVuaNRsy3qRnRUlsa+GYHcU4wUzbZpGUzrL6uNLKN0FPO7xJdj/EgCuuXWRc3/0yJOOk9IGVFnXSkDAfoUO0jsKrRSGEgtE2nJD6wM0XZiTJ/+fi7kcdUzORKw+8ijkXbwymDveVP+tVzw5ehJFmpnF82XXtFYUpKACw1x7dNCZj9QQmDDG0A/nWTj4rq/9OZZymT/+7e2H6s993dEZ3neui6LkxXPDZ2qhAf/8S36Ur/7Uu4g1PN/IfJQYjTXS+aOAxO4szafbc3ieAMBHY5hIuPhRvDsQ4kqHCbeUUR6PDhJYowW5xiUx3Kfmx1g9I23/Tb3Bcxc/yftPXhoT0WjFrzz/AI4ItU0OSCmLxuKAhB6WRAoFV4shrhRaG8rwnuyalOfNDO+L6mhy37rkYp1JIqLYYK1Ha1WD7QD9bs7Y9KUbqu8U+cCG+pDfYvJ7OVGWmqqwUborg0oK38KHbbXSp15icvu5x8kI4L7LsLxisclEeMm/aG6cj64NOJuVNDfXSROPnZoYsn0rsD0wwEXybAJ/blneNUFaRXKjVMzErcMNcrQVc0+PYmBGCApq6MsjFZ9civney7t19D3s/fDnbhfd7dbSbGppSaT4Ws36nq7HxWgpZLda6IkJAeW1hjjGPusmko8YoKCpEhmnMuQWoahQWoctyq1jEEeo4Hfjs1zM3o2XdDHLIEnEnya896LscRwxNGfr45purrHij9bX6EIlqEERJP98dS0UzkQ4n4sHDiqYuFaXu+om2DofqhHpsdtfefwCe7y4WBs/QlsbQHyKJAdRGOUZ238jLNwM9z8gnZrtNhhNHo5BA359Y4tsoxohqrWacch/FPR65CvrDDLP4Y98GP+BD4CC5373z7CWT3Pyvk8yMz9OPD8LC7ImM50NbNUtm2eoIpe8rChQ1uISAfftCEnGLof38WiXnXNbPJuUs7hzD8BdH5Df3fDlMHv9ZY/ha549CQfEUyi/77MwJcfcLAboH/8hUIr9H7/nsrf/hRC9n/kxOj/7r+vCjR3x7jovvJWO2bAG6v/jt9TrFP7nRe6wWIXZY1QJxfKJNWZvQeb7kXlC64hxvQeL7sVTE3t31l58wYV2dgguQWipLMnX+iRTV9/J/Asp1lfXsErVpnSDjZ1ZR0Vng6mf/XFAMRnYqVcjOh//GLz4+fJDM2X9V/9znYS5wQVe6iOxcWZJWLmNBr7RwH/3W7f8Pev10WHt6dbWhVVZaQZWmtYgifxI+BNPwLOulR9OPjH8Pb5u0aTbETCX3Vvtt8ejjzxWs2juv/9h/u+nHkOhGJ8Y50tfMNTz+cD7JOn1IGztXg+KQliP4VlozkzWOsD7mhe3GK4Zrt7D2JgwW6tnqz8A79FKiTSMUiIPU7XcOgdnz0pynxfCMqpCNjocT62lhbnRqJksDl2DPcZZebZDpDYDXzG7Pd5aYVpHUd2B4aNoCMAOBjA+LjzJpSVoNdGtphhyZplopyexIHTr65IsRhEqgLbGr8ri0zl8UVAklw8AnErHaEYJqfc471EjjPXszBLRWBOVpsTHDmOzDJOmlNmAZHQj14Tekk4nzHFWigP9PnQ6uF4vtD4r+PR98Jxbh4ai1fV0Tp7ncG97Qru0c0ELvUIrvTD+Wy3o9vC23Co1ohRWS8u2Dgmum5xEJwkKWFMtJjqi6U4ybDWvwlthRPrVNZgNxdFBhu908Z0uOjIQGZy16GZzWFQF0UY/eQo9XnUMeLyzct8Gs1+ch1aTxjWHWc1KvueTCTd2T/E9M33SCWHFSCFGEvZMJ7R+//dJXEnebpH/yI+glRIQJQAVsJXBueLhWGiX9lqhxicEbEhi3No6NBqigR/FuKQhoP0lErP02DQEk7d9zZgPPLbO7HukWNhJWxz00knQ6AyliNLDz0epk9RG0J0O9Hq4QSYdPNv3YeCxsQVm+qEoUMkPKCVdOVEkhZipKWFPhnvAlg6T53jv8b2BXCe/1SDX7yZJArxqYYIvWkgpbc43Lt3Ef3xc+jNed+BWvi58xl5kp5p3rjZp89aRtmIa7YT1TgY/8COoV72SzaTF+Iu+AkfCwCWoqAlleMIucJw7xeRkhPGWVimswlU/fBdVt/PlhMdzqO25b1PmwflU4cIsUOaWGoyMFcdbMRuFxShw3jMIlYbRLobnTrd57nTFeK9YngIte+/oRymlGT72caRIy4xmKe86u8P9AqB0BD4IOZQFd7wuAB4XeMV85f6CF+87jEfRUAMMJeDwaAHDwpcLgmcKrgZMd4vJ+XYNuBtKWDt5wc/vFF5pXL2frbBb6ZJwbJCPzMbd3tZc4LJDBdZt3RFXKeuPdGlcLv0VH9imwS9lpJHAXS3TV0a26fxF5zi7hWbUX+TKWPiJHoR7SNPPL77j4XJj+1zlvUcbeYekrZ33/6Xznjvn5qie65+4ZT/OQ3nmlDCBR7ssq46lUsBzrMWvb4RusyDnsbQsc323C6GLL1K+ln9ReNojnTL9+QM4PQhGoAP++K/u51mNghtf/Kyt41+9E5aWhtIuI1I3fnJKcpJuFwYZxdpQuizPnWxqMJAcNRSA8R4eeQTnbsQApgyF6lC4d0qjm010owGnlkbGICS9QeZQVwkj8nUCyK1DToBz5F4RAzNTGazJR2eby5zSKRvZUHJlt8jNNGCH/qJBotDja7KNHmtveRbkY9ue3asohQLgF47gJ6WIUGDqcSh0RFLKNZjct4/+8gpMT4eiuHymLEpsu4EZyUVVWfLwww8DkM5OyS+DlFHSbFKudUlvuInsvgdBKWbG9nHdzF/x2funmfQQlSXq7FkYCwz6Tke+b6XzD4Th7EsxucV78kf7LP3mp2D5fpFme+ghmJ+Xaz0qoTQio7fxoGPpsaPy892nSW9pMv7yYaH5UqIsHVEwhrcjnTCu2aqNiYtjRy9r218o0fnhH5RuY62hKIIU7c7h8DA3I5/typq16mbwxBf1tuulbSojYIC1v3oP7rUvhmIwJO6UBt2+5vJfn3uxF08Se4D7XnzBhfUM2y29FybxRofO2XPMTB35XB/e3+koBn28DQwm57GVdMO28I/cD886DPir+n4bjE+TBoDWliWmYtUUBYXS7KyMuW0bSx0ajeHL2exf4F3/4y94w5eK4al1Nmi9KUnQ83wLCFyx2LezVfrTMzRrEHL4N1WZMgIuadSL0OwitH0BypV1opnA3ikyFgPr+LEzZ9gioG/L4eJirC37dE4kX6p/a13rKCcXeDuUQd4FwOcFSisBzzc3ReYkEQNOM9aW5KjXQ62sDBdOdVswwmLSGopStNKrcVEqrJdksYK1MtaDAc6IcZPCowJD3m52cNHwoItmGxPFAskrJePc7wdzsaBbPSJhoa2ThC7PcR50vy8LwmAkWEvGOC/MaOdgbR2/sopqNSlRRGUZ2mljXPti7radoyg9zRHJkcb8DB/4X/8LgPahBVSzCWVJ/ugJujfdxESa4s4+gRobRXhXoBXGuyiGLLAoEl3UOKEVGKlFd0POp2IIOS/MMWeFkTUY4DtdeVZLiy8KfFnW0js+Mijv8B1p5VYz03LN8lw+E0WY8TFs1dLuPebUKfzcHAoYnFlm+nd+A1yJ/edvhdtu3TIetVRFe5Rl6VFjbdRYG7+2LrI2aQMig+/1UZ2OHINS6KkJkRbq9SAbQH8grLI4kfHoiQmc7w8gy+jHE2yapoDDzoucUX/Amw7P4DyM64zUFWggyXOyqnarDU5XHg6OUcS9kWj4H+9CaYU7fBjzgjvkLAIDjsEAl2Vi7FTpmV5AYmWn8NvMv//7rW/gF2+U7qHv+9A7OLJxBpSi3x4yEadnJsn/3S/R0hbrPf4Vr6DSZt+JgKqVEQZhHBiGtTxPoKlXci/eCzCtpavFWyvST7IRiGOUUjTajVpvPL7QpAMc2p8zOVay72MR5wKLsHCKI8+aF4WD5lbTzt2YxTYUj7wHNSi447UCAL//VzVJv0/8P/4Mn7axL/p7gEeTgc3BXaapVtAfHuhYun1GDutK2M9Ka77q4CxfcVCjcMQ6r00k+2aeo182Sf8zy9hJw9vnDsqXPPzQJ0+SagFrd5LRVpQYBgFo9cEkVfEnN7yKhlH8VKV1rTWDqEEvSkVTfBcZLRVFOBU6z0xDuj2eJOLGOM1BYIqSYDEoPDE9CkwNrkfaUrr4ScH282LiELzybfDOT1zS15RWGHIcmlhvfd7EqLaKYcGj279aDHfNkZP31vP2kY3TWwoNW4oOF5k/VGGMxuYBXbOOsZlmbdCbpjub4V5pjPoMXE6kbg0IFasrBNylwafAo0iip948L0njLdLnSmuc9TjryXo7582Rzkhcj5w24GgYeS4Lo4IpOJIjZVnN3FSE/CkWcoDv9WEwkCd4dkbm5CiW92UU4cbGxRvlf/5vnFKsdoaFAeVz6SQMgHrXNLn7E49w3ctvR7fjIfECBDCfmwOQTseJCZF07A1gswOrazzwgXu498Qm1zz/QL0P1+1Jp4xH8ryylNwvimBxkWa3QU6OwQBlyCdCztLroYoSm2fD4oNCct+lZZgYFzJN8HfxIMBfFOGUQfd6sLKK6nRRY+d7iox2JVzobhufbbN8YkOKjMHvROOxlZcNHjPo44MiS6Mt84ZSSmSdKo5JdHUhGnv9rWz84K8AcPqPfpUDyA0Y4UgiIZuVb/1RekufoVXIPXiuG4qpVsxNvVJSwPEeUxSceeghUJrG9IQU2iut9ThGTU9y6Bf+C2d/6W45n/F5ePkP0P7bX5Xc3TNsyxnNdbyXfK26hs1GLd3ioxg3KFj+Lz+OevPXoYsCV5Zy31fri6rbDimuL+mY/z17GO/h5qWCxbtO4UvHxKsvY70f1rdCJBp2e3il6nWcMnvQ2oXCb5N2vZB2uvLAqdMyV4W1A0UJ/T6lMcQXIRfkBiPzuVK4W54tx5E00XkBT5xm5u5ZGiT4F17OGe3FXjx57M0Ke/EFFyZNWHv3+5i44xZ0u4XOcpT39E88ATfsAe5XEmV3yNxT3ks72A6h5hfrpN3pS1woXyDuXyu5JbS56kYTFyfoJMbHMY8vb/DsiyAe6DyDBnXiqKKIqZF26tESga/AzCSRhG8kQXYjC96//i9/xExLDyUW5oa0Ro2X76IEoArgYjp2cS3cgyJnrJLmiCOawfh0YXzbuC6dg8lJlHe4zQ6MLQroNcjkuItCQLFwDtEF2r03N7u1Oo4OxqjkBYy3YQIBNstS/n9sDKuMrP+glgUIxCRcf4CODMqW2xjuwWipP0D1uvipqbpQpieCxIlzwjaPIqKyJBrRAnVFKcxn7wNg3BMt0NFkrzp2wBmDbrcE1F1eETZ9s4lfWxdwud+X70bbksXw/x5EEsQEjerVy9eUbSmLIhQc8DA+VreKq85WA9WsM4BZiD/wN/CaO4cbCSazVNrzaRqMT2NUHIt0SDUMvQ6DEUa6NwYVR0BUM91daVGR/F7FEer0et0yrgIjXRmDXVtD9/pioFpaWejHMu5Rtyta8ED6B39I8t734oHHjj+fMStzx0Zg4g9PUmFPncFMjuN7fXy4X6xnK880ALgoJd8PjDacx25sYoJZGc6JLrtCdEHL8LkwLjZtyp8qwZ6ylOLGuRW+7KBI0zQ5h33eKxh89lPYIsd7KVQoZ4lKK5rHSm9ZoB+Z0pj/8xdySe64A573HAE7rMXlJTSkEOWUXFkqYOMSQremgPX67jjUNqyX8qyZRowNc2020qoeNZp899ir+OLP/CXNYsAbXqmGYM0OC8ckUpTB9BRCh0scC3ABsjgqCnmG5mblHHW4l0sr01yeY/ICryAfFJiWnGdRPAlzfPpamGuT85dUkEcbx6Eb5i5pnNYs5GFoz43I2LhIo/FE3tEoMnrhHnA00FEMFbP6Et9ZWWaZzTZRzoIDW9haHXiQX/77TylI44Je0ZR5VZfVDYR1mvE7D0rxZG2zBjSUGiC9QYEcugN05InQKEpkfkwN9K30UVnvpUMKSJOIZpkxVjHcdwF5+13LwI3hgfV8jvmLOLeNfNSYVhPelPgRsL2lVijiOVReyjN4WeX7S2ORiiqzwhNRuK37a0Yd+mUbwZFG9K0v1f14t33rCF11GiHFOoPFhvHYUnS4RPxZKUXSiLClQym49c5jV08KZ5dYemKDfYenLvv7ebpA7fF4hSCXdiWWGNDk+VPv6aSNlnkxzD+DzpN3Qfh4DFumKDxp4hjkcs6Dfk7aDOZ/aTossldEjrKUqSF0UlVmpxVwqmyJ8x4dx6hEoY1h/M/+hG6UUhy8od5/3BpHma4Am+02Si/zR9e9ktd95B5mbjqKn5kZyiamKerUafzEuPgUra1J11MAwE2/y4Hbb+Drf2Gr+eeKNQx0TKPVRI+P4TsdeQ/F8Rb5xogYfDn8fTHyb0aKvp5g4Dot57y+LsUAExF7h6uMX7WSd9jYGKZ4FBMbtN763E7Nj2GD38j4BbqhG60YE2lykwgYHMcCFK+dYPynf1aOa34R9+O/BAqm9g3nupd8+bOf9D643GiNp/Q25D7rekLxV2GVJgpdFXd8xQv5q9+4LxTO4dCUFNusU1K88b5eo9ixsZCTK5Tz0tGaylqoXN/k1V/1leSPn58HtzaXaMym+CSujXX1+jpudP6u7k3n8GkyIsdp0Kmm9+3/RHS5jcH1+oAaSlKOdI9oPPf0B7zj/iXw8G3tNl+76ShOP3mnwk7hq+NQYRUTuoJQ1B5FT5371udJBM10IBgeX2C+1R4Oh26Eblj71F0tGdB80jS5/MSn4ZZn1/m/XpVuDmWGjVxGmUt+Z+7FXlxK7AHue/GFF0rx+OD5bL7P85wjD9A6uIBvNvjM37yfg1/04s/10f2djqw3gMiHfNfTzXZmChWlBR/Yp97ymf/4uzzrO/7BFe8/xuOcq2Ur6HbAtVB5XrfaP1kM1jdJJtLzWmS7WUk7jXCFlYWt9yS9DkyOD1nYVQUetrBbz338bg694tZ6W7XcBQTGECGRTIY6iN3dNdRHI3n4EZgOhjNlGfTIYWKbsZ8zWtjsXvQbTbeHLypTSyNa4RXtE2gsn911n1lpSYP+ruoP5PsK6HaxnS4mTSBNxZw1ilAqrxc/NcATwGQdgEWPMJqGkEEwlmw28ONjdQJOUWDXNzDNBk4JKKiMkcXDCMPXJLGcrwKaTVS7LQz3ME4Ep3pKC7YcdivkhVzHohATrsD8dihhy5cFrt9Dp6mwt72DJCFeWJB9DTI0nrLc+d5/srjvW7+TGTegePmdOD8lQNnIAsKx1Rqw35NzsnPTw1ZukAVumg4LQaurslAeDCDPsVlOrgIzcmV1pAU3yO8MBrLf0NJt2m04t1SPC0Uh24ItfhjeBsDZe2G91+OaUzow3S6+LMXYDPDaMNNK5Fi8FZB+G9Bj9osvgSpLVPXs5CvSjdDrgfMo66SDwwVN/ShIPRmNGRcWG/2B/C4y0sUQTFZ11aJ6bgnV7dDQY9jwPKvQtZKkMVVGrjBkX/dtxO95F0+ceII5hRh8RRFFHGMRg8vR84jGDT/3km/C4nnu8v18+c//G+wLX0CZ5/A8kcHSwOmjt5Jc/yIiCqZfeAOXEqOFCqWgbVIaZgAKpnsbjJUy5gudoT+EMjHjkeZPb3gladbnDb66dh63g4Z8EmmK3AbJLDExVfhgiFrUc6FttVBWgF0iEzqf3MiixotG7ahh3kWco1IC+lbfOpdf+vL2x24Z48FuAihumx2ySXMX0dMxhdKcas0yV+uFO3zURCSqAH1pkhOlBT8xA5trslCfGhYI/BWAsUpBXlYFTB8koqo/yv+Nv/wQ5i8fgI1QICEhc75mwqsdV6sOGWExwE605euPTWE9jBlbXzKlNV0T16ap0S6v2OZ4UrOvc3tx7+HCjfic4EKh26OVw/gcS0LPz0C2fUa81Lg0cFW4qjuvzJ3X2HpZZevjUvHldzttCUWA+yUiG2SucChKlPQ5hM9eOlhuS4stPUpfWefFxcbU/JVJODZUh3WCD4e9Qla6NkGiRpFETw9k5kaKfdoorBvNjc6PIlnAVka2SUxcdMF7WtceGhIJvKd0Q5lAQJjlxqDn92HXN+R9XJZiED0xLmA1iKF6lsPyCrkK3gzFaBeHEtmvbhcGA0rrSRRs6pi2VyRV7uqcbCvsV76qqi1Aq005v4A/u3reOc7mXWJXQn8g+WlvAGNtlHNk55YBeSdGaCiECY/WuCyX/FVreifOMPVL/wH1ojsoX/lKWFyU7ss0Hea7WlOgUUvL6EYDbx0+y3C9PkVWBm+ercd24LpZDlw3u/2Qzw8v8loLU5OQnUUK6B7nFZ23fB/KO6LxlOe9/Jon39ZVjHLkfZ44huuWJBleJxgWK4AoPFfR5Bhm/z7Jo0rxYHFFLjliVexB3udea8oLaGGfVBM0dEScF9A7B+22yOcl1dwVfAdCiZV+v15fJVMFM196kAf+5tqaUa+qfKDKk0cvnPfsm0p5bTsBD9HaFb4vajkvL90KFZM+HCpcXtn3CyWcc7C8JDr44TqtPLHJ/O3Dz3RPnObk296Oe/Qhyltuhv3zQjoKBseVdKv1FzfnF3fcNvxhMIB1Wdv6vMDHhXAo9uxS9+Ipjj3AfS++8OLRx3kjzwXgM8euwU+2AU/nwED0Dq9yG98XUuSDjGRMsg7tHYufuQv4R+d9znsnrNgoglaLlY3H6Q1ytNY0nkRWACrNQx+6B1W9OJxLzZaESFdUMCD/+MfhzifvF/vkySVedvTw1qRNax49tcSzjy3ivUWpCKUVPWtojS6OzIg3wMj3m4cX4ODB834PELkC8EM5mkEABbudJz1WAD3o14mmiqIgxXL+ik1XrCdrifYvCIO141C9wNx2VhhPoX28PbY7SJAYMRX03mP7faI0EaB1YgLTbuO7PTGm6vfF/Ko6ZQXEEX5sTNpn1zfw2tQQho5Gkh6tabhcEumKVWMM9AdEq8v4hQXJ8dtBM15Bqz/UAo0OLMh5DYJOX78vGo9pYB5GkTDwjYYoRemefL7qVgisbNbXA1saYUHpCN0WSRmfZbKA7PVwSqHTNNxvCn+JLf1VnDp6HY0X3Tw8zm5f7otENNPt6XO1FJBSMOgJiOr62RbQnDyvv0OrJWD7xsbQ1DVNKQJTN8n6QwaR93IdgikmvZ6M3epaLc+kuj2RlgnMdp9lMm96Yd1X5qBOSWuvKktsPwtjqIPEhnxGRTEz4y2iOAZn0FpJUj7CZquNaUtbFxV0YKXrqSmRlClLVFaKBjyBeR2Oo5YQynM5r0ZDziecoz+7hGq3UPsXMRsZL55roeM+6bX76+MwZg63HkCDJGbePYR99c08/uGDzFoHRRm04UFjiVSxRdUhntrPPfsmccBkv0P5sb8huv9B1tNxGs9/gdwzkaFsTlAevQFFhplocymRb2ud/eGbenTtNB7NE39lKcIB5Wlry+fe84b7+bVPR/ztynFQAxkzo9E7sEYjE+FW14i+7wdlW9/wj+CO58o9phScOQvOEQ/62LlZ8TkAPEtDpm9dVFFYZWppidGui11DwQvmxnj36TA/Ni79OZtIWzw7knt3fmo4zyba0rY5iSs52FsmqxfmBnXz34OJyUveF8DMTMp6maNt0EY2UY2pZVfAcNdKUwZdAg/kDAHM3acfTawNcWBvuh0Af6McOmqiw+1kjOJL9rexoWhdSzwZw4eveT6PnX0MFOx71nU77nFqpgHJR1kpD5HoiwVGh+9JFxjuAKVqYb30SjXVGn0/fZHb2y0urXiilB6BvLe+yxebJ9nsJyjlOVuOFMuiqwW4a04eejbzSycA6KVjNPE4NJ5kC07rLtLPYDS00ZKbXaG2+sWGutLuxmKEpeqvDCS3pa1JGXlxheD95ey/GOm02aUIF7ebsC6M4fbUGDccOwHZOh94z4pILlRyHpGGcvg+F7Z7Ap1N9ORELdHnrAuSLeKHQZqiGg3czAy5kY6oMhnOKV55yWuUvMPnGzEva40xvbFEstqEqYkh8B9F+DEl91K3VxfkVeg4jJaXdpSBGj/xEAnXYLV8t5ZmU9Bww+Ko0cFPJ+Rbqm5wURQm5f2HnsOzknFaJsY4jx1kRNrUHjQASit0GDfT74kMYpoSL63jrENdJnRaabI3k4Q8dHWBxhmDPX6zXEtzeQzrK4liJD9QGpTRQXYIIadUEQoXwx+gtbGCyaeHxCJrUWWJT9Ph+6DacNVhuEt8Jk+5xhjQkicrglZ8ZfCrVDhAjdcK0hHvptJi81w6QKsiTrXAcG7YZRykZRyKw0dnuX5Gcp4zD2awfPljWHVRSueErl+0ZkTC6OmaP/8uxuZqd9jpDRBF9P7bb8AbX1Z/5syf/xWDj36Qsizxt94MkxNDLweQNZ1zFGUX6y/cCe6sRccJdpDJWrHRwN0onaoqScTLAnVBWZu92IurEXvI4l48I+I973kPP//zP89HPvIRTp06xR/90R/xpje9qf67956f+Imf4Fd/9VdZW1vjZS97Gb/yK7/C9ddfutv4Y7//bm5+00uw3YIH7n6U5x4fg+lpDugun/yxn+C2n/5XV/HMvrDCZTm0g2me1vhbdm6PVKNMXEAdnOHfv/P9nB0o/u1bXvmk+/nYn91bM/RufslhJhaE4W08wjooLbY/QGthJXtgs3VxC/Nbj7bwjcbWY1SK9cdOwbFF8JVJKESzM/ISrwyrvKuTeT3a1thItrKPR8LGDWpB4cD6xnuK3eiC22I9HaPi3GTnVmkcmBfm4cb2hH5kvEcTwskJAR6LAnXuXC0TYs6d23Wfyvsa1I9tifdBv7NmMQGNVIwqiwJXFMKWStM6wScvROYjTWq2s9NmyxJMxnnbuCnITUzs/RAUDmHj4ZjpBx/CjY/Bvn3yubbol6oKiAYBYGtTr+Hx4x30+sKeVgqSRM6l+k4IH8Bl5Ty1SocS0YHL1ZTNo5hGo1EvbJwLFn2BPRwfCiBwYJNlgeE+Xm693qrS3GSErTiik5mUOe2gBVx2cia+863SyfHqL6L8qq/cynD0MiZOKXSrJca4jz5am/2qzY60BivxNVBJAk0xnXWrwp5XWqFa46LHWRQ4E+GTFLRBNZr1+Hu7FWxn5PhHz0UI5BWNVwo4NfulMiz2SCHpzBn8RLjPrRW2vw6a/oGtRb+PPnuWeG2Nb7/2Rs6ezRh85BM0b78ZrxX5iVPEE/PgobVwkGv0vdA9x6QSM2BaTZHpCDrW3qst94CLJ0D1wcOHDt3OXx28DY/CuJLfcU406HUwliQW9t0lLtziZGiEFiWGGxsfhaJH7lI+Oruf/cuPCUN8mywSL3or37r4Xibfr8EPRkCM8+crBezbWKnvHd/r4soS3+/LsxG+kpkE85n7UAvzVMy3agtOqVoEIwldKUpxUc+MUorIGBpaQJb25KUVJQBKN0x9R4uTh+7/BJErcUChhjNRrLpX1m2sFOs/+l9AKSLfw7MN3LjczRrF2HSTzmplYDv8mx1h/pfbzEwPt4Tl7r1notJ2HwnrI0wUOjyUwnof5DZgXJ8FL94gysP7r38Z5468BIXnh+d3fsemzZiFxgls1rwE8Hl0YIb3ofeeiAElDfp+GmWGshyXExOz42wsX1w3GYBSHk2JI2L7xVtMH2bRC2t3FHCfPzJ12ce3dd+KtcPXkH8yQeHJo5h0t4LBBRimu8XzX3/DrgX7pyLKK5ZuGb2vr5BXOurP8HRRVKUSeV4Uu4yLQpjwSiE+CNeKrxD/30/Arc+u85dBNyNOIylsVjIzSsHGBt46VLsV/FUqRrAGRBfZFQXq9Nm6S21UJqrslqjx4eA8ZzLldUf2cc8np3gO/rxeEXvmLNHkJF6rkNsFc9O6uH/+OeaTs1slOSqyA9QAK4icnK3+7j3Gu7prcWBSfuWOv88/yz/F7VoTKU/sLd478d8JLHzj3XCbI3mmMwZtNFF0efdnVUD2xhDdeKPI1SEduI12A+9h+uC+y9r2lcSRm/bx6Kclr2+eO8vkd76V7HWvBRTqn39j/TlZhlTjIe/BtUeeYHFqHL8wL8SVKKJ13THJpebnt+ZseU5xZndUu6hA8QqkLktZPmkduoSVyGuGTrvR604S48tcOsPCPOUqksdIl8co+WSqv4YupTC9/9QngDsubwAh+DQJ+ad57PDw+DXQkuKUGbv0nOQLJVY+9PF6jUnoRC1f/qItn0kOH6L3739x+IvtJLY0hV4P+7Ffp3/sq4Bbdt3f/f/5v+FmU8k/q87X/ft54pd/FcYbEPCBvRLJXjzVsQe478UzIrrdLrfffjvf/M3fzFd/9Vef9/ef+7mf4xd/8Rf5rd/6La655hp+7Md+jNe//vV8+tOfFnDqEqLxkrew+C9fwOZ7T7Dwwc/Wun3uuuvoFTubFe3FxYUtSiHTBIPLfrJz9dk6h/IeHQBB32hyx37Fmc2LYykV/+GHaS6fBuDhH/x5bv9a0a52vsSVBdo3BBhXUZAx8JS9i2OM236O7fWIxoNMi/dQlrTKkESHxN2j8A88CDffOGyprIB3kCp+CG81xfIq8ex0/fe//uxZjNJY54RVVpS4wUDY05FBXWzS1khrVkfqy9p0ceyJx7eeF2CqVtHNTQGaoxg3yERSw3spNIRFi97Y2L6n4fl0O+ixMflOZdbV74sOfJYL48Ra7PomptUQnXelhhIlIEZWjDDXsww92hauNcXsvuHirAqliY+MaPplGZQlpYNec0p+7xzF7Bw6jqRwUhSQ5zI2Nrz2rJX/BgORE6lMWbMssMIFMPara7iiwK+uoZJY6iG9nhQPvBPtSmXx/RzfbArY3GqhzMXdb9tDE/RUCQvMqm01GIBuuQ7Okq+ty+ns3y/XF2ShUsiiREUR5Dn+zFloNWUMvCcrLLkW0Eg5W0tLmKxPaYMMjPcCskcGPzGJGvTrsXTWB1MvJV0C1uEVIrlQlCglBqRKaWlnbzbEyHVqUmR6igxdBFb+oWNkX/INOOfJdUQUgD45R4daWpJ52lp8MHzTZSna/OeW8K0mxAneezEr9l6ui3Yi25imYv4KYIwUDLLgXaC1GMlFEeX0DOVGLsy7KCU6sIiPw/3SaPDi19+ATqu06S0AlO/7b7gsx+S5dHxYVzNyRwHzZiMYQCppu4mUwgKxiVFTInkjBZIKitaXLP08vTDOS79ipMj54UXYeBzlFGdLTexlEavzwflfPvpyWnd/uO4iqM3xtoc23PWcL+YTrXmc0rwuakvBzwMorJN5JrU5+fvuIv7oRylMjP+mt8CBRcBLUcXLODhjhBHoh8zAC4UCfB5ki1AU28DW6a+5gd4nzu5Y3KwiSiPsIHRiTQwVxc8dfxZHzjxYSxNQ7cO3r0xiw3u0KnHElKrFFhmTK9isUopBd6j9vBvJ10Rbd/LPb9lPkckx3DA/zsZyb9vnNXm/OkaP0QUGhyVl083XjEKljbBAlUehzjMKryNpwXWv5wBAOn6pp7klvIeSBHlCSq655RDOw8qpDuvnuk/6/e1x88uOcdeffOaiP68u4G1C1AS9w7x/tQBcpdmYP85v3/xG2ejcIl/PAIfB4/AjuvGXw86t7vGnUk5GRxoXCkCzByee5NMXjkJPoMKztF1v+1IjPvYiuC+QDNIrO66LjRtfcIi8XwCKhz95+kk/n/WLWobGjhTRzJ/8Ge3f++/1Ff/zl38tr/2aO0GBS5JhDlUUoqce3nsMQq6Dr3MFrTU0UyJXopTHjTzT43NtdKspc2uzgbXCtl+cajJojUneXzHIi4IoG4AfRzm5Q3FW9p+mlHP7MEur553j/Qdu5FhzjCSK8cZg3RpRYNTbZJhTKysmpFHodkWbwIoG0pi4EIke74TpbMfG0XEkpp8B6C29wmx2aik6ej300jJ2bQMm/Y6m4RcT1Tzs0wbF++8ifYlIxpVpyvNec+kksasVayPz4+PpJFNxm/Tdf83p8XluGWGp+ziq83QX/r939FoGWoguOlznwfIqjV5H3slxIrIfRroIvNu9WPHKa2dRvlsD6uRFbS4rxZBAgvBeJAaraS38bLNsKN8Z7jdfWpFIqnywqnzZWUodk4Q5LZ+ag92XNk8a1jpMkCKUzmA5DoeSTg48dvPycv8vhFj+nf8M3/4tW8ko1x7f8pmsN4BOD2am6m4cOh2RYq3GfnaW3o/+KOr/PHTB/W1g8QsL8r1qn8Zw1hV43wwkpD16+1489bEHuO/FMyLe+MY38sY3vnHHv3nv+YVf+AV+9Ed/lK/8yq8E4Ld/+7dZWFjgj//4j/kH/+DStL+fFxKL8ZcfYvNPn4CX3iAvZq3hmmuu7ES+wEM5C1ZDaXGDjKzY+UVmHnsIbliU7xQFlUGmvUiEyb7uFRQL+wDP6vr6cLveCkCJl8mtSuAqSYqLiHKjhzu7LIuSZlhcxDG5c3z0ox9l7Lbj2JNnUEBPN2jAEGyvXuhKDfUIw7j4jY6wa5oN8J63/PrfAvBL1zeHutTZILB05Lg/9alPAbCwsMC+fTszYiY2V0WDU0lLeCVFIszSnUIJQwWg18cXBWQ5OCtgeSYg6IWkkc3qmoyNc9jlVcz0pIxXMJ5kcxOsyEq4sVbNPFFLS/jAjsFaPErA19LilN7KcPeefHWdxsTYMOkaZDjn8I8+jpkcl+2mKaQpeqNTm1Q6Z9GzMzXwD+CiSPTVU1Mz3FWnI0C7dfLZ0GKoBwNhb3e7cm9GRhZqKEgiKYZYK4bLOuiUKwG5KRV0ukNd1EsM3WhQnjhFNDWB39gkVmwp3my/llnQpdejxZ5StGjlYsn5qsOH8Msr9SJFlSVJYPWNHmnZy4YSNiDnkiSoJMHlWW2Aqs3y8DNpA+JIGN5RaAN3Due8jJXWOGuDyR94pYnzvO4GaV13HeXhG3HWsvnxdxONMpS0xhnZtvGulrFx3R7aWqJuhyJJoJ3IGZeFgOhay/Xyshjz1gn73HtsbyDrySADA6GLIUmI9Gk8BpNOkj38CeLFfaAUaSsdjulImIkG2tjQmoosxjA4DFE0BCsmxqtVoyIyskDzztOIFG55GbNvboTNJf9dMfA1WAUncgEmjuvr3Sx3NuibnzLk53yYfjRmJyNCrdmcnON9178cgFeo+/BaTJEtUPX2Z1GKqsDwEU1YgKTu3xWdfxNAnYs5X6VUYHkGZtK2r7TvWMD1Llw4b060yQYCPjg1lExYn9qPU5rIW4wrt5i4qcuUiAJCa/t2TfLgn3A1sU2R8wYgaY6w+LfN5QLA7Q6I2G2M+NLF9fGP6zPgb5I/RBFns5KBE55YtBvgbmI4/JJLORO2Pmuj10HhfQCDiJlZHCduJBQDe1mA+6WGjiI0fRSWSOVb/6gC6Ld9nrhKF1lpzV/2Eh46LgSDqUjxDyQDwdDbckX9DnPV7ht+uijdIgFY313+yvablVH9HJXllcnTWDu859PWpckMXW7M7h8C+4/dd7buStG7IL2D7nBeWzk9NKN861e8jR/4i1/kWauPAdA9s4r53h8AwL7x9fCG1wHgNzZRk5NSNC8KrFY16xzP8H3eFOPwGpwPkfqBdDOGnNoEoCpuNjAz03VeV0kXFkoTo0TOZlb6MN0gQ2cZ0dkzeHV+F2ermWImxoR04rWAu86BBZMNC8WpUnQ/+zDNnjzzeZISjY+hgJkYfu2l1/DAn/8t7XKANUaILCD5pvfQ6QjBuizw3lB1pw4Kh1OReIHqywPiNpfDPNQaR2WFrEnU7qbST1f4kYJ2oY3IOhKuZTJyLQb5cE0RcobJhshoKm3kfGyJygpKZYjWN4nvej/FN/1j2U+SXvDZzuM2US7rNqUDQ9yEeaGSkwmzmTIK3+sOgXUCCYNhx0Oo9YN36OVlXKMh4Gwco70XuZxENNzT+Ql47PLH0EZmSGypQgmBgrYQzKLJKysqfz5H+Q1vHno+BTKbPn0W1+uhQ7fxmkKuVxTV2IwaDIQoA0NiWxxRTF0YxowosSNymfV+0yjIY7HncrsXT0vsAe578YyPhx9+mNOnT/Oa17ym/t3k5CQvetGLuOuuu3YF3LMsI8uGwMJGYOzu++YhA3Dhhc/estjIO0+/rt7nU5S2IPIyrQiBceekayNu03joUZL98zgneu4N4znYvDiQ0hw5jA1s8Yn/+JvwrV8qv6/YyXEsyU8F9HhHfpEibcKYUgIoj4SNHDbL0EmCizS+tJRlMdSVq046gIh2bUijcFUF3dmaOfw1NzTwSuH6Z3Gra+gklrY2LQlGFEd01tYEIHzf+9n37d+24/EOkhZx0F0v45RocxO0JlsesoeyLEPPzQ4lN86eFdC9LASk1wq8wjeCvrX39Ju7J41+elrYu85hjKrPaQtrKk1wM9PCfPceogibJOgKiNYanxjRf9xpgakUcRrXBjkiC9NCFTk6FpaD6w/CokEKc1WOb8sS8+gjOKVgbh+0W+hGQxYRztWmqT6O6+unz54TkH1tHRfFkvy1WvjVVSFQyZnL8fT7YsA1PibJ/8bG0HywSuguYm3lnOOJJ54AIEkS5ufncZEBFNbDo92I4wuJsLNr7cgRMBolBsSAyreCqC5NhvejtQGgLsFEeDwm0tgAygirXBbz3X5Jsxoj52QhWpbD61qWYcGeD01ol5fgkHQd6BGmlC4KXL+PSlOUtTInGAMe1p/9Qo4fOwrAgTe9Ep2meOf4y4+GzoMRLU49MQ5lifWgNzdrVh5pit1/QJhN1ZCE6yBD5FHGYGZmZEzW1tDGDAENrVHeY5yFssTlBaVTgCdKFGN3fxhe9FxQCqd2BnRcO8EXG7W8zlA72W/B3SYSkUFBwWys+dbjArasDTaF8R06S0ovZpUKB+oKgZ9b/yH0lsBqZtPfomtSPNBNx3b8+PHZnI/+699mQsm94L70W877jAKsj+nbAgcMCk9lhGziSAyOlUJPTYhxsAft7RBvV8I8NNW/TVQDvLuZUW4/AA21XFJRnA8cj7/80AU34b2vmcp6pChyol+Sq4hSG1abU4yNHM9FHdsFIqKHJSKiIGWTPtJWPTV9ZcaR241yq59GQbvtt+6oZMVOr2ilt4P0DoMYlW66hS3z9VyiOJtV77enfuWqDVJAq0qzTzM5TSmFJcZjcH7bwN76D6DsAwr+cq3+dbGLefzlxHRsIUy7WnkMAzymnsslrvRuferi1pcfC8+7Im1e2RJ0qtGh25kGqs6hy484GXpJXEynzdWORiumG97hZbHzczQqwTOK3R5vR5xozzHbX8ejeGDyEN9/5z8F4Cvu/RAv/eS/RQGrPcvkv/iOIcO9L8bX2jt5b2UZ3nvcmXNVAxLFiDSRabbxZR8fK3Ce0oT30/v/lkjfhjt8aOh9U7HlkfybQOQQdnyTcv8B1NKwaFCFTiJ8lSMqhZsYR4duT7cwD4FfE3vPyfd8lKOrj+OtozQR03mXQkf0X/tV3PytR7n/Lw39uEFinXQyVkAfBAa0xk/L/cMgg7ExkrExinsfChLil3cfjM+12FwfAJFIsDSlKJZMPz2dE7vF5tpQOqu9uUqzGGC8Iy5zkXMJ8auPtFm7+yG8hy953lFeD0CVeyIdASbBTI5Trm1Qxpoz+69j4dFHYW5OcqnwXtpJnspP7kOTw/i4zFMbG5D1a3ITM7NyvUDkwipWczgO5+yQEQ8Y5+r5zxEA+8BwtzrCD4KHU5LQKHfo7rvI8N4TVUSRimAV3nleVV4FUGxsZbj/7U/+CnrlLHjPNd/7HcwcW7zsY/i7HA99+omtaz3vw7UfcP83/ROO/MLb+fhnHoWpFFRD5IomRL/dj41R34PVd63FzbU59QtvI7/r3QBE19/A9e/8o3oXtuq6qdZO4ftlbtFNH+Q/9xD3vXjqYw9w34tnfJw+La2WCwsLW36/sLBQ/22n+Omf/ml+6qd+6rzfR4vD7dzxshfw7999L18yJYlIsnyOh3/xP3DNd731ahz6521472XR7mVhHyWy8KwXKhXYtcsiSBlf6wTqoEWN9zQudpk4MzXU3v6aL6t/PYhjGia0+lWs6LIUttdu7LvtkUTo6cACAlAKtbaGn5oSZjCBZacU7dmJYQLvvQDP1kJRYlfWtp00NdsY5/iaa+Ql33lQAEip5JuaVe/zApWLoeoTNuH2kU2VZSmFCqWIWs06GfVFAc20ZolUZpOPPfbYFqM7pgMbKUnELCYSSRffHy6KhNG7S6yvQxxY6lNTwniq9c5jGASW00aH0nthf3iPti6YJCHs+PUOemaylk3ZcvW1Ri/My3UbTdq1EYd7EOPLiv2tN2sQrXTgqm6Vfh8GA1xRorIMlQZT1MFAttvrybFW7Pjqevb7uH5f2A+xwePrVuSKyaW6vbBQCeZgVOxkLso0Nc9zTpw4Uf88MzMjLGwFfqPD7zyY8uOzrjaf3RLGEB/eT+/jT+BLJ/f8yDj52Vm5Tzc3Ue22gNaDPuQZynv60/N0fvYdgOLML/8Mh06IrELfKRrei9Y9oJ3c13ajg4qM6K/3M7R1dTdFaSKiopD7uMhBjdcdIhopgKkogtX1YUFqeoFDP/W9W05JaU1pbTA7HUnMq0V8t4d3fshSKwqK1XUhvFR054ohNVKg8GVZccbFcNZZnInEINh7bLeHyXP06ir0uhDgvP7SOs2KRbUL6zCPm5Cv1Ul9rD2tNEOZCnCQ2DcW8fsvEYCjofscaHwIXMl7zh6geN+DxHNTAYy4HjDhCK7QVHDyMEweFkaWAeG9Khw7A4Dp3CGKtQ10dwWFwuwEPGlDxIBEh0JX1c6PtJ9Xo2S0oigDS24rwR03NoYJxlnpzBT7r5nBe8/sgScHJKwTwZ5QViG/DB1opVTN9htlc+cYEm+JnGVisLmV4X4FBo/WO0rk+S1IuLn5F7R0KMjOffNlbxe2mi1qrWumbqM9ZCweuGaOB+8+BQijUEfBm26XbXonMjS2DICGcjgPmpym2iC8sFBxg1hHKCX30xat3SuOnXMBuZUzHBGx6j+t7GyQOURT4nFEehvDvTUz8sNa/a/u+sVrxF8wXMkLZiM+siG5SeGojWy3j1fSuDgPmKc7mmMXyCsuNdr7UJ0cBSTxlenBK61quZZRc8mnK0ZB/t3KJY1WzCB07+iR/OJrjiT84PPfTMV/bynoS6MSRz76CO2NkyjgzMQB3OQkutK6VvI/XgcjzNClFU1NEHmLxdD3w/1EcYPv/N9LrBcyM/7EzccA6By9ianqXacD2Amhc1MNdeTl5KAoKFfX0eb8grJ1kH3sU0RffKewmbOi9qvxo10IKH7hZd/MaiF0ll/+i5+jYQtSW9AgZ2yqSTe30kkW1gR1/gayvUpe0Xshw/T6FGfPkfcLmqXHu8ubW449e5Fjz15k7VyH9/yrdzB/o+SiRfdzS+hqjsf01uQuOb52ojahHS/6mHh4LVaa4zzsW9LFG/xelBY2fJ3nKlCRkS4HpWBiRO5nJA/eEuFXR6+Zx59d3TJ3ex0PGc1brpOWHD9NoSzpFTGP3NcZrmFAOoc3NwVgD8UeE5jRet8s2lrpeFQKf3A//mNPvs4ssjK85RA/BKAsLWWc1vI0W05NQ/VeTEb8IJxzNP70N6j6euzXvly8wL4AY/NP/wBe+pwtzyAmwrfadG67jfv++M/h+FGIW0MCV3WN2+2t9wWAMZTHpjj3IU107BjNs2fon9qKCXm/dS1QzU1u0EW1mhBp1OfAJHsvvvBiD3Dfi8/b+KEf+iH+xb/4F/XPGxsbHD58eMtn9s3N8rbF/8td+otRzSbMznJmY4Nrnu6DvcQ4t9rje//rR/HA8dkWP/Xm5z2t+/fO87G/uB8PxEnEHa8VXcKhJIBQ7fRurFCtBIhrNIaO5WWJGVzkwtTa+sVr+0Nmb7OVYHsZUb+PWl7GHz4sAHeWkV4k3j713JvEMA5q13s/Nyf6041G3c6mgMmlAXb8DG52WhLCVksq9kqJhEkIvVPyGRj06dwU1WLZK1UD45URI4DbVoH/1Kc+RR4A0bSzUQPuUbM5RLZGEpN+T2NPn8VMTuD7fdSsAAO+15P7HkSWpWVrZkm/uzsTRO1fFAB0MEAvLeErU65KWidsQymPjiMZF60F+HSjx+drpgIoTHsEVLYW89jjuPl9wo4OLGU1MY594jSmAhQGAyrmQyX7UBQ55r77cErhjx8Xxm0UBZCdsM8Rlkqa4ttt0TBttXDnlkKBwIqGpZKrWC8eo0hYPGkq16nIhwx4PNpZzAUkG+px3Ja4O+cwkSYKDJ7/18+zOWF3lpRRCpUk2LWM1T+4H7W+LgWXKBLt9DFhMSvnoNulOLNE1EhrJr7oL8sRx66kFUwwGeRybQPA73q9AHAGVrD3Ad1WQ9ZR0OAGj1NiOFYVpVTQWifPh3k2YJKdH0ittEgcBTaaArlWeVY/975aCoUCGEUpngBhgawmhgxuVY3J1oFGT7Tq49fTU1IoarVQ6zmgiHTEvUWTO//Jtwk7sDEJH/zi847XVKCBUngUzfGU57zh/PnYZKscTz44/EXI8eMIBnd9GNNbBRTuG34YTY6hROudmeiXGkop2r1NUisA+Gx3bcfPRUmDn3z997EaAJX/dPjA+dvSmns2YBCe47HehnQTKSWdGIH95Z3D+RFhi8q0CrAPPETzJ9+GR/GpY8/h5X/2pRd/Mk5xqJ0yl8occ93kpTPER587NVIJuG1/i8xEFNrQbYxxZdzzYRQ7K/iEuDI27b7Dk5x7XGifs/snuO6551+zhaPTLBydrn9+/zs/Xe/Z7WI4mrZiehvBGNdrbBDS7fo5RrW+jR6WJa6QZLwl9o13OLc5GX5yVMUnrTXORjgSMp+cZ7D8VIfKVnCkeKLQDXMR37lakjLJGF96ZIxXLzbRiGxYUbdSbQUvTfz5v7wTJZQED+T2ygoMxWAo17JdUunpiAPHZ+uiWLzbtdvlPrppJuJZkymf3pCJ5oaJmM92SryH1fY0bJzEA8YWuLs/iX7WDUAAsCssqihrkolf26AfpXgUZTQc19gYjFI0tKIVaRqpvO+mX3Ib2dlHSZUa+vQohZ6cELnAziZsbIpETcj50qzHxrkGS791z9ZTpC3v8uDVotZWYXoClMZkGa5fYKZTJiYS9KlePXs6bWRNAbVhsK+AYaVqoM0H/yjKkkh5kTgEbFZgWk3iY0doDIIudHMa2oGgNb1VZ/piQinFhAVWVuWwdtCsfzpj/uAMj26cAeAjN97JnR9/F7Er2UjHYGZ4fueKnDwUWrIkeCRERjpI67xdPltJLcbtKUqTCLlGqQvymxammpw+WQw7DpotKNalsFLJEjknevCAD+sJrHhnWctQ/qgsRfqxegspRXlmCQYZZmaa4uwSUbsp0obG4FfX8a61lQGwQ/yzX34/G6UjVvBf/+Wr5JdFSZr38JU+fHVfVVKa4fksR7pCXGnp/tAPwvwcAO/8yGkefvhvL7jvz9e4c2Kem0Y6YM8+cIrJyKLxdGbmaDxwP+bwgVoGVG1siIxMFIH3vO/PP81zzSqtmTbcfvuwkPcNX0cJbPb7dO9/hG/9reH4fmnm2F9dr9Hu4NufQ/eJsxgVYRX8AEFi8J7zu272Yi+uRnz+Z2R78Xc+FhelGnzmzBn2799f//7MmTM85znP2fV7aZqSpk/CpokbMHcT//B3+7zjxZvoifGr2v77VMUT5zq876Qssu9b7vJTT/P++6fPkP7hvwMURDG89j8AiB5ykHDxlezDThHF0io4GMjLNCQtTE/z4d/+bzz/G998wf37ymwHMNdeg81LvC2JXUlcivRF6cGsrQt7u7ACPD5JFEVB5Cx4vdUAFSTBC+wOjxQdZqf2cWziLv7ik8dpTrUx+8WcxaHQYy2KXs7d732EksBgGk3ywuKm7A8E4PceZUPyaAyVkSp4km3rrMFgCIYP9u+nFX62WUbUFNa98p6PfvSjeO/p9WVsxOTT4tc3UM2GJLD9PiqKZZHjfa3vbi7QZmfXNkRn01psuy1yLaNjFWR9XLuN3eyhcwE9lXWCMNZmQ+GznQ7lfQ9gZ2Zo3nBc/hbHlFpYwl6bWheULJNjjyN0loER40/dbJLMVYsqj73xRjmWTgfiOORaShjzcQwNMfYijoW1vdnBtJpSMIkiKbQ0m6hBFrYpY8egqD+jG03J84McCFEMCko0LnpyJt/2dltrrUiyWIfLcw7eeC+/fc8Et+xv0jy0GAhpqr5/7PJqDeurEyfxzwtA79gYnDo1ZMW328TH23DqdC3p4mtGU8XjCTHoCkjdHdFDjiJMq4kvCzARKmXYJu49trRE1f1SCGCNC9r2jQYqiqQTYCD68B6IpnaWS7FVx0XVrquUMNejCO29AON6WOBRSYzvDFDVuXqPGgyG7Hbr8BsbAvwbI9e11RLGfQCI7fIy0eyMSMpkOWPqHFYV9OIGfZMCnk/MXc9Ld8A7ktTjz3ZDQUGh/S7vj7nrYP/z5biWHoBcFt+xKujGTcZ0B5THa4MjwZHgr1DjeDRWx+YoAgO93KUQSpSglcgZKfnx/PCaYmQuPVUkLMKwcLa2Bu02Kst5z/zNPNZ4FsrDWzY2pLNEKeJOh3bQkV/or13SeWijeMX8OK+Yl3mqOX7pQFsZ9GnlsIfPYBG3iJxDhzZ7TYFHo65Q5HNypsHQqc2jGjNQ9qofryiUBh2pK97OaGij6HWG7O1yZKmgKOvOKaWUNKwoAWAa0dW7X322CUF2J6ZPoaT4FKmCDFBYDNIB9nSGR6GxoQSweyUlbcdkQXN7cu4iDdCfJJRW5GWCJcGSiixDHZYr7oj5OxZ55qkEeLW6Mob76rmhDES5g0zVUx56Z5mr0XAjc9VouhWNzfKDz3ZUOnb3rK1z330rAHx65ji3n3sAvGe5OcHkb/4OSTEQdbi3/6S8j5XG57nkBQpcs4kI23ka8QjDXSO5fSh5X3O8wXOffy0f/FiX3nLo3gz5XEVKIIrQStUdkRQW4phiZg53tovb1k3g4gb5apd2OFerQ/ec0tjCotuSN6THp4jOnMIgd36hNJkSUFg102pIUQ4oLb7TRW1ukPyP/4l2jvzld+KmplH9vnQrhty7eOIM3Y0+6Qw0D90Ex57N5YbHM97Paf7k2wDPxPU3wXd+62Vv70rjwHWzHLhOtPTv+mMhm3g/0tUZ4qPf+1zongUUzFwLIDr3TrqaKUvpiB1Ix573YjDrXVnLv1yoxjjRjHjk//t9Gt/8DfKLCp2v8ui1dcn5Gg2505I0kCZKFF5qJ5XciPdY56XY4j3Gi7Hq5P4GK/efJPYWNTMpx20txWaX0knOYEvH6plNUJCkMROzQ8LP9Mr97A/FZDt4Mfe//BX4bg//vd8j93FlwlmWUJQYrYZkg5F8+sw9D+GCvxHO4bOMzc9BB80zIc6uZRx/4jQqjllaGfC7j7f4tiNrxLFBxRFucQGT57XklT94EB5+OBRhHOdWO6zMp7Qfexx/441b5VyVEsLM4gKbp4fj63GU6+tEjaasWQJ5qRgMcM6jncc5TzcUk3aSQNqLvbgasQe478UzPq655hoWFxd597vfXQPsGxsbfPCDH+Sf/tN/euU70IaGLgWYca7Wo30mRxRpkqAHnFysVMpVjGJtncGbv06A3f6Qla6cpTINU1AvILaHL0faxarqM4BSbOyy2HnX2/895l1/CijGf+x76+94rSk3c/qnTpBqAfm993gT1W2E4CkvgmVWdPsiMRLHtZY53sPpM8I2D+2yFXt3MpUXfjI9gbn2qBxPlqFiRRQZ7rnv05StnPHj+9HbWBiVkWhS5Bha+MCQpbByzB4xgHROdOi2DOBwU94KQxulUK1CQK0AcBYB1I8jsGiiinU8WZm0ZgLKGoPPMnynW7MAGvMz7BTee+xggGk1hClcGbCur8s5bWygkgQ/NoZqNNCDXMD86l4YMb5RlQSI93BuGZeXqCMHJPEZG0dfe0wA9vV1fCwAqdcaXZkSZZmMUbgPKiZzWZSYe+8FwM7NwZiYadHv1TJD9PpyjYNRquoPqhOUpL02Ci3QWqN8KCY1m5LoB71TEB1wpZUA0girfHARdE+9jZ1Z9vrQSPDOYrOCqX/8Fu7+xXcz8dApbjy4KDi29ww6AxJvKbv9uobTLzyNEyfw0zOoQR9fFSeXl6HbZXD6HI3E1Iaq2rmatTqK6/qS4IEQktleXySSen0xn0oTFAmFiYir+zKJ60RWz87A/Q8AHre0in7+c+R+KEq5vxriXaD1bulHWLhUoHnF7o8ieT7KEt/vy/0zO4s5sIh7sD/Uk88yuT5GZJLAS2Emz/ETk7UBrHdO2qO1JsILS34wQOcFt7X+N1Y1WfrH/5C///G/D0AL+I4djnapb5n/jXdwpHNOrsM37yJH1piAm/+e/Psjv1ED7mPG8/Yv/i6WgzTKDy+MtBtfPfySYmoaqwVGyeKdix0qbqCVIkgZM3ZsB4kXE3G4rblvU4Cu/Ow51Pq6PLObm9AInRFac6K9j/87JV1lX/KXv8zRP/wDQKE8tebq2cbk+fvYJRTQGn/yQtaTxahGcjkiU5CrMazSOKUZ6JgosIY9JrTSX26MflehlIOq7fwK9UOn9o1RDOTemVq4eh0RaovE1/BG9IxIJSm4fXqcyV4OeI5MXk0Zk+E+tfZDY7MoQeUDHIYSc9XY4xcb2ph63uQCgHscRxSRXJckvUpLLa3IXGuXP1Zge2Cgfo4NGp+OKJ2meraKK2S4x0kEVQHjc7AE0NrUMlfO7jwnpA1D3pccozkyD5rxKVheQcpBTnx5wvOjdfDYUIrIRIxnPUx4mLJmWwriBDJCWUjXSjEs5HRHujgioyhRDJxnkFtMKLC94PZbef/K8rCTLEgrqiyXvDaQVZRSqKmGFPD3zRI90EU3tj4bSRQL2UPJSswaA9//oxjvODsxz43f/v/KeTXMSOlryGYHxWwwvdVayTLBObQtUevrmLs+iLEF+W23Sa7knByv1kJMuP44jc8+wku/4vKB9nrsNgbQaOEDKcTvVuj+HMQLFqJaDibaPocGKbrRUCaCWA2nZWuJAOu9mMFGRlZ9gfkdXaDDZryV8rZrv5KfzEtMZIh9jtcB7FRKiEE6RrJrh6s8hayl0XAcPp5yz2ro2PJiND/suoL+mVVu+5KXsGnHhu/t8H0UuFCcG3RzPvvhkwCkzZg7Xnd9fYxf/UXHJdcvS4pOH9vry/r22muFwFMUqKrTWjHstPKexA27ZfIzp+u52HvPWKIYb3xhQm+tWImJcFbQPbNJalsEoSKM1tipaRIYStMphbn/fqJ1IRdOdSf52KkJmp/4JEff+U400Pu2f0L5nOfU68pyaZXxxjwASb/Lgc4S6mwbPz3N2iOnmXrhrQAUZ1YwSVxjFOONGN2O8WOfg2LrXnxBxBfmU78Xz7jodDo88MAD9c8PP/wwd999NzMzMxw5coTv/u7v5u1vfzvXX38911xzDT/2Yz/GgQMHeNOb3nTlOx+b5y9e8l7uOX2cxiC/KCb05zo2Onml4PA5qciunlur/12O7L6xuUw83wY8zjn8LqCj91ZYcZUMSRXWopxl870nGLvzIB96z3vxCrR1TP7hOxjPOuRf/dXkjeFiw/f7OOdYO7dMfvgwZqyFjmNh3CoCi8MTXQRg0uv1KVbWMc6iDywKkB1FcOggPs8lefMe026hkwLVEzBwsNZBPfo48dwsFIUApoOcQRyjvKcx0QId2mllAIYGc4FRWhkBKm+BSJLXIPditgFkhYXIyLbimclaakN5L2wRrVHGYDc76DjCuyDtAuA8dmkF02oKkzmYyijnUJU0DFDuYhzmvSeprp33YsCqhIFMMBp1G5uofh/X65OvrtFYnEd5cEVO+6d/hvJFL6Q4fBgmAvNEKbwt6f/l+5gmp7z+BnyzCSeWYWwMa4ywpAjnmG0DOpQSNrX3eOfJswx7003yt42N2rhVdbv42dkhE6s6/1L0GlEKpw0ejbHBvNN5nNKAFYa1C8z4QjoGSFJotsRQN9xjynvaxw/zgQ98AICjR49u6c4ZHcvhv2H98ScARakiNnQKOubXb38fP/upl7F69yr/9ObPwou+g7/4z/8VMyNFhMkvuo7PqlXixTcIGyhN8e1WzSb22qDabRrXtuGEbB+8LGRDWB3RMwJYFB58mqCcq8eERoox07jNjuj2O0dcFHXHRnluhcZ//W+goF/A+KMPY5xlkDRp3PEc8MJAKn7xV0i6mzgTob//B3e8v1ylDa9ULU1UXWOngjyTCwa51kJeyPVsNMKtpGpT3Oo+8dUAIyxsX5b4bhc1ORmKavIp7b0sqkyCGV/kFZ0P8ru8ElDsBudMJlLMqt4a/mLccg+/FLqnwOakjTG09zQ0pFoTuwxNhKZE6d2Niy81HjtyB3/4RQuA4vq5NjuJuOSZdNSYsIZMt7fWIGvHF86mfHZTChwf0zO85nv+BQrIFhbIvu9fyueAno7rf0eocLt4zrbnuG5DFrr7B2uXfC5RqikzGfEovnRg0dUSSFvZrD4RHwQhbQ+NQsNfL3k/dWwZRo/vrwwx+PUTsO+my9703MFJ5g5efNECIGlG5H0B/HcCrG3ptpk+j/4wzI8U8DVHpuuf949dPfDbqAIdVKlHFT76PY/Ip1ygg+4pDDVxEMUZxKj0QsWfYUfb1UzRxpN1NvNxQkWeoZSMqxn3KU+/tv3nIib0GVY4AoD2+ZN8+sJx6IZZNpal6yS+WgWSS4qd2eujMT7TIgvP7cz+YTG00YoJ+jp4DMZGVOWy/3XsJdy1eAveQ9Ru87N/9naaNsMBxcknSFO5f1xZSjchooMd0kvGR+ZXE/x0FJXAXgXqK/wHPwR3vkQ+GIr1fnwc1tcFrA3+L3V35bklkkMpc19785ZzPPUrZ7h5vQO9HspLbqG8GLvGtmDuLcPP63d/qv73fG+V2Mlcbp8QHedaikQrrIrxjRbWJERoGB9HTU/LceW5yKFZi8sLinwImF5JKAX69AlUFrqZzp25Ktu9GmEeP0Wr6KOAvL/+pJ+PmjFUnVQKVFnK2kwprPdDjyiQNVKygwxiiDg2nNywvOVdm3zJtQ2eFa9xx/5xWX9oLUUarVEmwjXbQgApRXby0TXLO959ki9bLFAL8yJnWFpcEqMRE/aDr3kJ4wvXkL33EzT2z8vaZDAIHZkwCKbwZbfD2C//sOTx03Pwul8fHmSvV0tOPvBT/xqssN31Qw/jkgS1b5+QiJJEBqTymtKaPBqu1x5+9AHS40cD89/w2pvn+O7Xv+CSrtXnS9z7B6dZzyVvvMVEfPlNnvutw5kIHxtIIwHbq/y908FuRug1BTi+6Q1HONm6gcFr30jvw/+X1h//JtH776J87nPrl+yMsvzaW2R8H/hHX8/yl30pft8+cJ7JxiL6vvsAxcTqEvbgQVDQwPPvji2SHp/E3z7B71wFHude7MX22APc9+IZER/+8Id59atfXf9caa+/5S1v4Td/8zf5/u//frrdLt/2bd/G2toad955J+9617to7KRtfKlx/DUcSif5zJ/eI0yPSHP6E5/GaMXkNUdIRtuWniFhH7iPX/+zn8ADJ6cPwI+/7mndf3+zD40aJRYjQ63QqbASVNDI3lG7HAAltNper5YwwXt45BGKfkb3g6fR1zelzVUrbH+A/fZvoXPzs2otxtqhfjDg0ZUOn3r4FAduWAjscAeNtG5rVc6jzZMvQLsbXbxSlCYWmKWSSTh7LujNp8JwDxrFVZTOBYZN+A8l8ilFId+LgoxKOdJKGFZVZmoCV2EHgZyGB68RBgXgreVP7j5JVlrGEkPLWyoQRI2amw76+FYb5WS5Zfo90O3AxKAG4k3QcK+AZhXOVWVZbTxZbO5s8GSthemZGrT2U1OBPd6vwWvlHaRNKXwM8poF4tF8eO42+nef5XjPM/38W0ArVBIT21KGJBjFohR5nErhZMS4q1qWKuR8Kga0X13D9nIBzEoH3R613EvQV/Qg18Q52NgUYDfIoujJSdAK3Srlvsxz+Zuz4ZIG5nVeyOI0y1FjreG5eagupFOyCK3vj3LnFtKysCPyDHDm/sdRkbA2NUrkcvbdzA8875OyoH7+t0OjgfGOlpYCQxEeJaVAbWyKnn517yolAHK/T3FuBeOdNBp4RVxpcQL33XwnH09mAM/hziqL55Zgn2g1eycFDru2ThQWp6ooYHysZpUkBxdpfVY6Cvqt6fox0CMguVcaStFrNN6LkdkO4UqRDUIpeOQRks98hvLW23AL83I+SsBQ5zTkOcVmF5Xl6MFANKR7XZiZke/bUDQYGwcrprlkGarXE/3aLMM7h9WaqNHAJwk+XQJbgLMYrTlYaUe3IzG03RbNJA4t2eF5vpiOo/kbYf6HAWifOIt930fIHRTeyZgR44jx5dVj25QRnBkTHdGF5s7H2GwnfMn+NmczmRXm2+eXGZQ24BskeoDC45IG/SglciWdAuJgWKu0otQxLaNYSDXvvfFOps4+hlKKY2sn6XdkUbqSXjor+9rbDtBZGwCe+cNTl/z98elmbYyYNoeL4+a4PMsaiPHY0RT5ChjDWwFXhYra4ML8Ovb0G6ipkffyTliw1oq4GdWSKFtj+N7z9f/KXHI1MV7nFK4G+ndaqoT37NMNLGsdpIZKInYHecWH0Qs4tUun36WGUtDJ27BlXKpta17U/oORT7/8quzzmRy6NQMrcj9e6RiPTbU5cK3IbYzOCU9XGG3qnGG3czl28yLHbj5/vjh0/T6WT27SXReA+ehkwusWpQj3oeVNTprhPP7O61/J887eRzMfMFEzikPO7j3KOwGfFSgCezlEpRjlERmX0Rynd/Q6JitiiB+ZGeIEbInHo9aDXF+a4hYXYPn8HDNShsEn7yW5669x2tDUMeOlgHSHNrYC1pHWNLXDOs/Z1jRpN5ij3yhMZeMhKQYQx+hmE8bHMK4kdgX50jJ+3xxqdhbGxnD5KjrPic6dIx7p2r2SmJ4f58wLXop/8OOSl07PX5XtXo0Y3HoH8cfuQntPN3nyNW6ZtEl0N0y7SnKTOJKpyCkhBRlVG9wm6YWfoe988TR/cc9ZPnrCspIOeN7yo6ibboSJCZH/S5IgYeNlzWck9/QKstJKl27FLsfJM6MVxBHTYwoVJfRXN0jnZ6UYoHQwQfdkWvKq1cceovfWbwFAnzy59QBHupA7L7qd+JF7Kb7t22ByMhB4wrqkklBVul5Hjb5Vo6gBmx1Ze/V6JBc2dPm8juyDd6FuvhFQkJ1j8qXXwl+tgHF4Yyo4oV67oA28+MvJUpm/0saHGC+WGbg5yud/McWRl6HPPbKFtDdKeEm+8ivwrbb8vd/HT83hFuS+cQcPyDV3GmVz5r5JCnkbGxvsxV48FbEHuO/FMyJe9apXXZCprZTibW97G29729uemgM4+AK8E7ZEfOgAj2yI/mH7PSe59Y2veWr2eQWRfPYzjOeiOZmsPP607z8fiPRFtcJ2/RLTjsknp0m0MA28tbT2z/Kx//57KAXP+dqvHW6gAvuqZD6wpa0y6DSlfKJPd32z/psHomTbdFVJyszOUnzdG7nu2DHyr/xK3OwMzM3BrCyeKEvY7BArz6Pf+Z1o61j8yZ8gXjx/4ZJtbFIvYNO0TrjYv4hfXpHuhygCZ9G9HqRtGD/A5GQDs7hP5CoaKSrLcb0LsMy0rjWyy0GBaiRIU6waAuAVYG8t3jq+63fvrr/+O69tgQk6lUUJzVB4ao9JctlsEB/aL4WCENYrjHV4a9FnzuDHxvBlCVFISMpSmEcBRPW7dHp4D5w7C/Pz0pFQFaT6/S2JcdVerEf0HBWer/26aT6VvZlHPv0+ZiqWPNAedIjXz6HyXM6/2SQZG4PNDi4YxFbJvqpA5W53yHb31FI8vizFyBHkWERoWMxXYZioV4auCGCvpqdgYgI3yNDeB/zcDeWFggGnjiIB9CsTMOcwsan3qZdXtoxZp9h5bjtx39IWwKjnLGZhHwCNirl4+9fDo++Vfzen5FqmKfZ4MLmqrlMci7lvFWGMnNJoJ4uCeiGvYCrVFJWsx5Fb+b34GAD/4uN/xOSP/AjZ619H79i1cN01svmw+Nahk4DNTRlboDy7TGYSWVRHCWPZBsoWNEpYr68bov2qNE4p9I4C4WDKUVa7Jv2z/4EqCooXvQg3MSnsuXYbzi2BcyRlTu5dvcZR3uND14YvS5TSInlDXN8raoThTLVQyjJ8P6PMheUdetFHDkyjdijafdn1Y7zf6NqwzYwyvS4imokUgxwju60Oreju9rVLjiVbkofTOTfYeV6KYsPfPzpgIxfW8tT4DgtxpUgCKI1SrIzPcXpsH+B5ZPY4z1Mq/E3zpYdm+O4jx0hVlx/Rz+Gx+dtQyvMf3vUzJEFSRW+Xy7qImD0wweyBHeRuLjK8G5qFjpqG+qTNmXAua+Oz3MAAT4TCDp+zy4nt3VUTB8GKvA9Thy5/u1chdroTnPPgPO1Jea9UQJ7ECAAXGxpqk4GfAJQUWq9SRKoIxtOelC69YGHbbBv64bFI6F4ax/0qMM2VloKYMNx3B3lvf9Wlmyw+6b6Voh336BRy7xvtRm7LkYp9dBWIKH8HQu+7IXRtgW/tu6JtmUhz9NkLV+OwLiuUCc8d4MpLv1FH10/TkzH/4KiQKqy3vOtUh6q/8ndvei1ZlHDtymO84MEHUeNBimFdgCavNC6SQo4HVovhPZ7EMUZB0ygaWovBeQi9uSnyc9VLLEjV0O1AmgZTSWQezTKilRXK6Pxi6/ExxbUbJyT7cQWPzCySbJZo71lNx7h15LPGaCmQavjszFGRhgOun5H3lk0b5Doizgt8aXFPnGKszFF4yrIQMsFgIFJyXvxc+kT0r5L0S7OdcujNX81Dt7wMvKc1+cx5LtXYFB6NU37nl8C22L9/gk4RD7XLZ6YDAULDRpekkaISXxOiovjCY/hdLx6ntfRRPrAqhrj87u8Rv/RFlK9+lZAzpqbkOM+cEePM4KnVdJZWrIeSh85JPlexXpwnnj8GQNZz2NV1omnpZNTOkpQFauMMcBN3n1hncboNCtzccP7w3kOrPUzGjh1Dz8/X8ptEkXS41kQLNfysUqiRd6R1HlNN0t5j/w500D9lkfVr7zWdF3D05ejTd+H3L8L4BG5ysiaG4RxKKY4vP45blbEdf8kaJ/KDgAOvKFNN06u6wxtAjUhVDvp9TK+Hm55BrWwyPuXYtG2536zFXXedXM+RdTa62fgAAQAASURBVPJe7MVTFXuA+17sRYiyWvhXL0Tn6G5endbCqx1Ol6z/Rmh/24U9+1TGoNuFybhOYkAA2vHuGr4V470jGmvD1CTZlCQ71toajPIB8MrOLJG6oZGmmpyg0SxwD1rOPLEibXpRhE5iypm5rbIw1QJjc5P8la/Az+3DNxvkGz3cE/fQuOVZtYGP3jcHC/OcuuYolCX3v/fjfGj9UbxXvPiGWV79SjEG6vf7aCca1/R6ktRpDb0eupGG9kGw3T4fuXeNF/zLZ8PEc1CP/8GQeS8HJwl85Vx/oWISHhMMS5VSqLhqv82H2zQRd5y5l+nBBk4plH5VzaawKyuYIPHi+wORoRkMsEvLaKMJPleYRiL6297hx8JCpyyHGvze442pc+9oF8Phjd5ATDlDMcIvLQdGygijxXsBY4uCotfFTLTBI2BtCKsiHKCDBmPXR/SSNnNFXoPbttNBFWWtwylfdLj1DbQN9/1ox4NSfOJ9DzHINqHC40KRxFefNcHcq93eYv6ky2BY2+1Jwh2J0ZGrtBpBAPeylPbWLMdPiWmT6/YwSSzfryRKRpDTd3/6DM86fuS8sRxlvnvvyU6dIym6oDzd1ZG55+hWtmJROIoz5yCOZTGBdJlQZLKw7fel5dcYtAfaLeJ2Cx58WK6LB9XvoYJkQxpsERVw3cojOCD93/8HdfvtdK87LkbArbYYyFaGRnd/kqmf+zkcikdnjjIdANQccHGKMhF2bAL1W+8g0iI9NR4ZoqwkcY7ZiV3kGMbatZRSeeQwP/Wib8KsWr75xFnGb2xDt4dbWxf5DyA3MaXvE4fFtnWgg9yNcqL/qZdXYGMDPzODiiJsq4VeX6Nqj3dBtx882nopZilDORgeo9vcjc2qKdBkOhp291xKaE2Cl/FXgKrkMoD2zj4KlxNvPjzPi6blel8/tTsz94YXXQtFYB62d5C00ZpYCbscD49PLPI9r/5urIcJSn5lalLmomYTq5YAyHwbrZZrmYNPLdzAyx/5EAAN9fQvQPNs+GwVIwZmcaz4vi/6Hiwwkyh+IXQaACKLcJmxVZ3Lw9GXwb4Dl729Kw61y79HwjMEjd//zk9v+8swBr4VNmMhv4rssNkb8MH8LJ2a4/D1h6SjZ2OVh+/bwBOR0+Zyic2Xi72rZAxNCViMeprzQwV5aVBYFBbjMooga6NwcFswm4+aT+9xfY5CR1s5G3+nw/vhuVxGM83o6U/NTzHorALSZdYwCuc9YwrOWfij617JFz/8AV7xzt8neucfUQLuK94Et90c8srqfxSH2yOSMlpRekXfOvpV12QVRS7/eWBlGQ4dqj2PaDTk380mZJLXlu0x1A6voV7W5f7ZY1y//DheQdFoB79pT+K3Fme7RUnuPNbDr93+VTgg0fDXN0jB2CuFKy0qSVDNBur6a/lXL/xGXnzqHp7rVS2bA2CVxkQRjUZEdoUm2aMxtTDBdc81cvzNq+lxcWUxN6ZRTrpJE7tzN+toRHGCfeIkenpimEODdP1udFCRofX2txF15B2w7+f/9YU3OHM93/rlim9FOke7Uy/m3Dv/lqWbn0V59Jjk2nkuy6cgj0hZMh2XfLt7lBP3r0KjiTl1Cu67D//Vfy8cV1zrxxtlUVFgoQcpSO0tpZVnY7EVGPqhQFR1mw4G0tlahzFk3zo0u/WAajUlFw7kMZ9Tr8mqPOfD//MeevfeT+MFN8u3nMe7q9e1+Hct+i99CRwQac2iK+tON3dAcvkkluJc6WBC1qcez+xL1tH9czLOznJd+UG6dpZi6mWoaIx116TuRPdeiFAhfKOBcwrVH+DsNDePv58Pn7hRJIGKEr+yBkiX/F7sxVMde4D7XuxFiHhhH9HitLy0gzRG3H9mVqNVluN7PWFGrqw+7fvv9UtaEKr5YPMcypLyjjsgidFKofN8iyHqKOBetf8pr3Baiz530L/TjZRBvIrvJxBLcuLyguLRx4gmxob6ztUKa2KC4qu/Wv6d5/izKzyUNZj87AnmxxO0LbHWkxw5UAPw7zmxzG+ekcX8Rza6NeBePvBZoptvqLdVsSpkoZANW92M4ZbZRcyEJJ13nS552bwbMhkHAzmnykRqJxCu3R663dcrl8C40Vr04uNY2mEjzU984NeJA4NwnVdSGbpGY+1alkdHUS2xEunAmg0yHExM1Mem+n3RSLcOP9ES6ZDBYAsKEfd3ZtcaQHU6wjopLWpudusHTp2CtCG6illOOSilNVCFcYhakIGJEjH3UgplDAMU3aTJvtLKOFpL3OlIG2izMWx9xkt3QVni22MyhkDiSpwr2FjpsbHRZXzpJMZZTDMdsq3aYhJWa84HnXaVZzgtOvG10kppcaUVtk3V6ZBlci8YI6B2BfY7F76vQXms1sJqqf6ud2b7dH1ny8+qVghQ4Yedw3qZr6p9h8s8NBgdG6svpVtZRff65KvrxB/5OBPv/j9ySK9/PfroQQBS1SAKyNW5sX0c2jiN9hZVlhgvXRG+KDC4WrKm32gxBWg8sXOU4Rwj79ADuXdMB6Y+9mH5fHOcuNVERaI326g6ELZFaV19Tnkv50P7pdXz69VDgkSoYKSllZictdsUDz2OWl2Rc56akoRdKbxyqCQREH92RgoiSYJOElS3gw8sKb3ZAaVEPMZbmLsRpo6hqs4CgN20wo08q9X5X2r5U+SEVD0FiA9A+KF/9QDMmTRhJly7sfQCzPnpCzNzlVIkqqifR6Mg1Uq8PFSE7/dRaYpyDqMUmpyYfu3BICQ0TxHGy8VPPwhx653X7Ph77yH3AuB0SoVj5Lm9EkmZLWmE2g3j/pzEbpIsux2j2jaXNXSfgRtHjGWv3rX0zSkwq4DCtMeYDZrVm2qApxeO8eknG+jIYFUq7wjz9DJWtVIksSXPTWDYB3IA4DEwf/OFN/B5FlmvrJ+trPf03wtXM7TRdQfa5cgkzR+ZYmNVvGpaE42aLa+p+rSUpKeho+eDB27h8Yfey3x/jUIZrHVBZg5io2iWgoaPrwzZn7HtYhQ0tCI1gd0c4qOfWWb6j/8Sj+eW7/mGoe+Q0gLOVjlXlgtpoiiIzfmFIRs1sWjpbvGKmcFGxSEORfFhLDYTCpfjnCMLTW5No/FTMr/rJB6aotoSdeIkdx24lbsO3Mq/t/ewLzLDjrkz58A6ssKRX4wPy0VGnJgr6sZ6qkKZFFN1mQ2eXEKnNd5ko7MOk5JbkRdCDCqFXZw/PGCsNS05M+A/pVk6dw+uv8tzGTdg/hb5d5nRPtpg48DUkDleSVyC5INBKtT2clb+6q/QX/EV0OvRKtdYvuUW4liIICpJaKRyX0VxHNYeGt9IURPj8iy0J6AArTyuGfJQ7/FZhmo06Pcz6aA8eGAbkYr6s1vWoM4N5ZWUEi8E7zn909/H/luvoQiEKF3muOKpKdI+8qkzrJ7tgPdcc9siU/uujoH6VY2KwAboaSmKydpIgdKoQU+6k8ekk0ApjV5/CKqu1+YsDd2joXtwXQIvuY7uPQ1YfYyq03j0emUPP4w6IMQG1SPsWzo6nA5eZ96PSNftxV48dbEHuO/FXoR4/LOnuc5lJPsX69Vm5Wb+TItz47PMhZeLuwLm3eWGdaWwARDJimyzSxSV2DPnUFOTkMQ4r4isDYxaz8rv/i6L3/iNgFSuK0TwD//mYf46m+atcytcf5MAgGu6h1s9DSFp0N7hdDIEFGGYhLkA0FXguNbYtQE/dGqSHM1b20u84PhkrS2ItTQfewhSSfZOjejUPnRihcM3BDPId/4pvPTFsLAg26915TSm1WTmhmES/Y6TY7yMT8GN18uiYm2dMkmIsmwI1m6HMMI2jdHy2VZrS9InA+Wh3yfdXGHwkz9OXyn08jI+SQSQB7w2Q0C/YnIoJUYxK6siNVK16IEA2FqL7A9DgYAKZ6625fbvrC1c5Bn+2DH5odcLxqJOwMypKdi/X+RGFHKMpYUf+BESVzLQCfzZn8AHz2B1LHInCBNpan2Jic1zeBuY4EqRR4mwUsLn6oPUIuDhjZax8p7cxDijKL3odifHj8qQLC2jlMKh0FUBqCrwVOOmtRiiVmPgLEQGbTS205XzBDmvRkPkdvoD1GYH8JiyhOmp4f3oxai32v74Llq/buT3npAEhvOML7Dmbqea7OHH0GkqprkV26gsh0We6rqEBy3FoooBqtKQzPrc2L5b/qafwyAAF5/ady3POnMvprS4fh+npevBaIXPXX3NG5vr9XGfnD7A2+/8VvCKb37or1n4zF/IxvIBtj2JKnLSUMhUWb++vjvG6jqsiCTP6r2PA8fkdEqRBaqSczzQ61H2BwweP8nc//xjAPrf8k34I6MyHV6uV1kK+9w5vPfYwmKq66rkeKwxYGK49R/Krz/8nnorOt25aKIQCZtmKeN6svPkbLEt3x+RXAICY1euWXkZ0gK7h4UAIOfl5bfMq/Ds9ANwYxRkTsx2nYLye36I9Itfjlcaf92rAPAqYimz5NXcojRjYbyi7jNHMzM2pn4vGTwK8ebQVwjsxo0GFWMUYH0tZ/7KFDCuKPwWyv3O95jZpcC0XTUmc83hNnYpLF5OOGuDtIbfcrxJO6nNbD3R7vPIUxQq+BMoPCZ6ehfqSiu8fyaVaz630RyPiVK5BpOzzzyvpUuJ8ZkWd7z2BsBfFuC+/9pZKlv2ficjaUoe4EOujod9iabvYaOUfEl5wn8O+5fvIfnrvyaLUvpW0UtFJuqTN7yALwnbjVuzrBWP4oGB8/RGSBm/P3Mb515wGwA/dvcj3PySwGrvdSUvaQnBQ4U8KYoMqnN+XnTT/gVag/WQl3pSW/DP3vBDOBTtSDFSAudHbj9ImVmcc3z9Bx8FIHcWIiksd62izAtSrfDGkKVNYqAAXBa8fHo9IaGEskSKJbXPzM7mqxnx/Az16nbE5HO3SJIG+tQpkfUzokfuW6268E4Ok1/2XWDDNR1bwA1Euz8+Ok56zSSTrzm688ZNAu39zL/JcfpxRamQdcvEBKwGecZwD3utcZH0M+pmjJmY5saj+3no5BMi6VhakpAPm0aMGmtvNU2dmIBD+3mi28UNhFhHIDd96G/+BpIEn+XYvCQ6eRImp2BifOt7pijJzq2SHlyQtYi8pras8Ab9jNkfeivF1NSQdBYnkF9afnixsbnSo78pOVW/kz0jAffoxBnKwEBvVZ5HZx6TtaaeqEQZa1Kd9x7ai4CHqWvg7CfP2+bB6/bhP3CCpTMn5BcjLW+DhYUgFeSBBrgSv7wKM1P4mRmYnZV9djrnbXcv9uJqxx7gvhd7EcIqhP3hHBgB9Lo8MwH3lQLmKi20S5UwuAphcWLGSIQuS5Y/cS/J/nkxT7UWXyrKtQ2iqYlgfuMo82ES65XHBQD7hqZlaaxPXliKzS7EEXYqQuuo5hc6FJnWtPO8NusEarZ5pVeNUmhbsqg1937JA3TvH+M3Hy9JqiQwjkFrVifnIBTNi2IIpiQzE/hTp1Ae7p86zsN/cR9f9JI+ShvMvllIKxYD7Lt+KBESRaB/+T/Rcjn5y19O+bKXSlvjqIGlDmDs2pqwpEuRkcFooo0NiIycVrIt+dUaNT2FOyL7s4cOoU6chH1zwvLu9yGV87LdHlGWi3TM6lrQhQ6AY6eLigx4hw56hWpVnOClGKFFjiTInKjTp3e89vnqGjz0ECwuSkdBXoiJplai476xKRJBjSZKa6JmgsoyChSddhMfN8JpKfTkRK2JuByNUbYm2V+EBWIcE42P4TY2hmaVSuGVwk9IAcWXhUjiKDGpVc7iQusm6xuARxU5xJOygCuL4fUoilCkEdki324L0z+K8WfP1vuqzMSkpTUw4ssS7n8Afu03SW1B9vVvhqPD+8FHMcqYeuG8f2cyt7B5KiIYDL1hvWeidaFFkBQPjEGul3PgvGjPz4kMidvYRJeFMKaTGDc9LS3ZlTTPagde/Qvy74f+ilTL4vnm5c/SKgdyPGWBD8aEVhvRKa+ev8AkccBGY5z1WE7yvsXr+aIAuAvAbVFlDs7iZvdBYB9ZtfP5ZQ8+ivnj38MrOLH/ZrjjGKkGtMbFEdpoXPWMxAmRMbSMqtdDvjLFJYDhRYna2IClJdi3D7IclQ1k3IL2ox6fkE6S0uK3IIoXMf+riEYzZdCTZ/3A2CWyfLWhCMUwBUF/RE4m11ebGSfbLeyVpX5eN2jonhRilDDWNdA2EClP813/G6/A//M34IgpvGKz8BW5kgxNT8eAokifOfIXSeRIjFyCsVhhyHFEaBxXgnPqbYBGOnG1r+ulxWjK4NzO+UNzYljc1hEEMuR55uONKGNQyme3s9+v7Bh9aGhRuBEpMtFodWhydK1M/TSC0FoFNqNCP92AuxKgX4V5SRvqKUo9Q3PVpzJmFiZ54RsmP9eHcVVCa83VahBpjqU8/3XSqflr99xfF9Mf6blQLBIJFa08XoHzChw0+x1S1eWeQ7fzb573D1HANx4fzgNRsvUASzt87m5fSPnrJwTwy/MwWThH2c/RP/XTmNe8SnLYF78QAB9FKLVTIVPz8MwR5nrSubvWnmIQjLXTZOtzHkWaMrNorfn7h6cBz0QyzLtaqaxP0AYVxzSmxjHao5ynyEdywYobEfIke2b9Ekb772aopBUmED9CCto92q2Uzjv+kH3ZBuX8Prrf+m3otpCcHB4TG/TMwV2/b9qxyLvseDAKXvJdmI/8KvqhjkiLaOkixdmwJhK2jTdGZDe9XEeFp8hy2j/1U8P7+qu/CpBuyyEBBul2CP+deeA+Wov75f4wRsg0lUym1hTaYDHE1g7X2BWhRmuwpSQKQQNfcjchwXnnuOeeB4frBxB5nLU13KhH0dWMlbPok2cBT3ndM6+jAqQbVsZSkf7/2XvvMNmWs7z3V1UrdJy8Z2bndHLSOUoncBSQECIjQIDJGWNyMMGEawPG4TFwMZh7McEGDCZYmItJkpAEAoEkhLJ0cto5Te6ZDmutqrp/fNWre2bPzvsESf0+z+w9oXvlXuurt97vfYMwKL3nbvLlVRl/RjE+7w3Ec8ZIJwRAsv0gKk1TpucnWTzxjPxi2CO/OQESHsXUUgy7DXbvbskfCwp3WfYLx+pphE9ejAj3EUYI2D8Ty806kWAYlSR0l1+YieK7GqGl2Z+fx/acIHeiGPZgUZhaQrsrx8qttjCVJDhjqDJEcynL6OtODcFGBrh9IuZbX7rBn76/SrRrHp3EsAvcRkfsHQA8pEUmKoU4Pt+ipX8Q8gKvNFo7cJbm/qfZd2YPkbUyHC2KEPQ4OGh7JyL+8K/eI1YVExP0sgyPYjJVvHViD680EdpEmPFQxDiHSxJ23zDw4N2RrvMVX/DvcMB3V0/wkrhKspXH0FoU+v2wn9BaqIwh1xFRsykK9KVlOXZRJF+VCq5fEIRj1nWKivOh6ByQqNqDsw7tPUUUEQUZpd5oy0E0ouS2i0uYJMY7i2qGAWu7XSo9cI4s3r5dXkcGysBOL+2o3uGnZ+V31SqsrgrpToSKY+y//R0AdkUL5XIK3YTFRVGcOEfXg9cR2lqURwrUtTX8+gZ6ZnpwjnuZhLuCkPvheBp/VoJLJ3skYxoaY+Xr6fWEQD9xCrVnt1TH6xuiuuofv9C90C/k8V4COIP62XswtpBzoRRq5zwGKSLN77+J/EV3oSsVfJoQzQ2FlwLvO9njM7c5li4v0MFvUgj3Qb9BJbmwz3a8vEgldTjdGHQlaFWS7WphAd0PUF1ahihCRWJ4Ww5Z88G9bbHo0At16gfmbuLeY6IkiTtd2gwU+xbxOQU23Xh0ZEoy9cz4jnIdrjEu2xen+CTB3HE3/pmnAajt2r6Dorm2RCVMkO1uBQ9wB9HkOKoeQqt0sP3Keqhuj0qnLYMrwDiH7X/GNtrSx1Gvw8QEbmUV7RzOQ+u//DrTK+fw9SrFv/tpMfpIk7LlHoB7vwve+6ELngfZd818JRKyUUGzfoVllVJsFOJxL/s6RC5eR/XumDrHmhcNZKKvbdB3qmPpukFHSNUorJcuCIMn9hY8JEYGV56YOyZqfGRVLA/SNKbmQn5A99lRfF0N4mKdng2TSH3XHK+x6EHL+NVAGzQ5LpTc6djzq8a1Q0G1rtieqB3eWxOZ8nV+C0Gf6zF8n+yduoCC8SqwvtJFspA9G6uDe5UxOqhRValKfS5hjObez7nlOV9vH1oH+xhA+6EMkFFb/AjbwJkGClFwNlPDqa58Vq2OwFN2Gp1NEnomJjeGvNrkcDPFe7hzbEDGJvGWZ1s8mCz99e/6DACWz67zu7/01OA1ChpFF/WXf4nVhs5NN4jFX1EQxeercCebKe+uTfMiIzVvllT51ZfLfSWtbiGGh56Pb9gzcd6yvDFiURGJqMPV62ha0gE5N4ObGBcbRu9F/BDqpMh88n+WTBrT23dYhgXTlyZoa8bRGpuhudzD58GlPNjhaRSN+/cwc981Wlo1d6Hdw2ilccHqR509g+9PWOc5SmuZrOnvB7D7Va/gRKWBLgpyM7hGKqaCDvkBuq9yDzlO2cQkVWdxnS46TWQ8W77TYxQDcr3/f8gkUEaLJWfaH5dpsdjpW+EAem1RComha9R4R3H6WQro/NX/SPOkdHnk6Q/C7f/s2VnPtWBoYicKdUQSusXQwhWYbhfX7eG1QmU53P11g/cff++2i42qVfqWfyoyLJ5c4/TTS7DRRnfbqNzSWE7DGHxs0LEevN8r7ZHCfYRnHyPCfYQRAnbfew+ry2sl6UaeY68ivfrtD5/h6FIbpeCL79nN2LMQlNN49MNw8NMhWLM454L373MD74rSO9t7z8riOmpKof0gQNU4UQOT52Atf3+8w1399ysJllGAGZuHl30ej73z93l5p4uOpZgy9Uo5062qVVhYwSstKoX1dVSrhd+7VxYYVM79WYjCRVCZgM4GSmvyuTmxEwlE/ae9dA+fO9EABWfWC3bW5fftuUkqYzKIyM6u8sXjfYLSD8j+PGf18aPw6sHxUEpRCUq7W1ZOkeYpPqkNiFw5UJsPYrVaqqijWk2O0/qGhIG2WjA5WVrEFOsdiUYLy0gmxySsyEZolHi4OweFFdU4QGsde/QYZnpKSGMjqmunNCYKYbL44KlZlH7mYYeItirtA3qdLnZlFRPIap+I7QuLi9Bs4no9UZt3RUVcbHTpj6vmk8eBl8ixbk5h9SmhDpSivrSA6a5Dnsv2xjG2OUbRzdG9TFQtgLKFBJv2/R03NgYWMdUUHbvNfix+4OunjJIgXhX+16b09VedDiSJXF9DPuID+ZNMZpTX/VqLqgacoqPCPSMyQtJDGaAEsH5mcdtj6WK1mSZRavC5qE5s+x6AqNfG3nL/YP+NEauU9Q1Uo46fmZHfF1b2P8vwWcbC/CGmP+drAUfzvrvL5S1uDF2b3R5dFRHh6HTzcj+0EpsHQsBQ319TA9PKkZb+sxFMia+/HhvDnluUSaGi4Maf/5kLhvH2saIqzIbi+XRtkr6orffIU6hd0zDWRMUx3jqIY5wx2EoVl1RBQeY1JhPC3jsrOQPFGv7MGfTOeYgjtFZ4K/cg3+2iw2cRo3FXqNJ1zrP+xd+KarXQ3jLz4luv6P1RYviJO3bSyh3gONAYhKZeQHx8VfBpo+zqqcYXnsy5HHTt5mPkw3WugEJpMiXWTU4PzrVBJjo8ivGN5VKPG231KLkYnuVmLp3UiFQb56GqPc7U6HOa1zr5cXvz3VjrQGmS9LbrsLVXj+FdSWopG2ubr4c9t+xgds9AOSy1RV9VvbnOiBJNkdnS7el6Ia1EdMJ2xUP2NkorCkKXTLltn0JQCiiEpPAWnsfJhxFe+HhqtVfeNutaDTzdg7XeepSSq4hCGVKbE7uCHTH8mzt2Aop6ZTDZpRRUNXSdEJ037Z09b33NySrT6eBG4L3H9O/xrhAxBWCNEfHGVuSO1aRBx8QoFL3G5OBvW+4vqv/PVv1N/x5lYnzRC5PzGWppGaMTvHdsHD/DzJ03Sh3tggVgluF7GXn+yd8t4lRC61/8ewDGhoQwF0RtPGQWeXyRlaeiP+2ur0cWi0lwXfHkJxOhjMuDSEopsIXwpEOT/WgNq6fwX/eD/M3pVawxhMqYk415Zt/yNpJbb8ZaxyMfOcrtr7kbgPWT50gP76Ie7GK0tcHvXQW7TumU1c3GgBPoi5LyHN/L5GdjoNvDKRE8gQLnydoboMM4wlroC9KuZ1E3BOe8jB2BIt+uc+T5h9MqCISGhsV47M55sRCqVODESaY/kISuAQOfdenlliIgL7ac5979DjbOtXBzDVSeo7o9CRKvTDD21OOst2ZwtQoojW63qb5ArYNH+OTCiHAfYYSAvXvm+Nib3sr+1z8QVNk53c7l34i9EwLn+//gQ6x15YFXixRf9vID131bs6kZkokJANxGG2vtczvwDKrf0psu76KLBjaQVQZpGRWvFQ1ZRjGkqlNKScAkHhNJobZjp0UXeQgQHCZMPX5xibReQY0Jsfzen/9dHnjdi7B9wt17WZeRQUOlZ+HF3wiJgX/8VSlG+rPrUcRY4ogjWcdEZaD6zXNL7ykJYCkKz4Edx2mpQxgNdDqYI0dYf/o4b8pezGcPHY437GvzyNI67VO76UweoJdUiEy8+ZwMk+9QkqTkOZw5A2PjYpuhDdlGh0raEe9AYwatvH0FRd+2pShwGx1MJRWyuFpBra7ix8eJ5mZxx0+E86RRzcB6r2/AuJApPi/EHqXXRRkjBU8gRJOdM3zwgx/Ee8/MzAz7gqVN0c0wE4GMKQqohVa/lZUykJLV1dJvP64NKeVve2P5rVYK+08fIhprYFzB/MIJlLXkzuKUDnY5XezqOvGxZygOHhSPeGOgXkPVa/jlFfpBmqJwGAo9XV/HnDyJjVPx4QdsWsGkonTw1SrEsXjAVyoyaRXOj4rMIC/g+EnME0/h8fQmZ4gDmavWW6ieqHMbJmJ9rFn6p6stn8U93e0Jd7/lexNpuWa8pzI9ve17QGykzGOPYcfGBpMtIH6VAa7TlSK/VkEXFtvpkdUnye54HQBmajCQfvWehHctyH7dvnyUSmAZG+0WK16OrY/iQV4ChDwAwaGlZ+iFgcRys8mt//AuADY+8Gae+YYfReU9VN4bBKldBCduvZuTuSQMvHP33aUlo/FWjlJRSGhvHENhRcFmw998UMv0bZGsk2DUJEaNj+FX11CFxeUZibcyQMpysvV1dLD5iBoX8v/ZHtYZ3NxBmBOrLdO49D5uen9u2V8fnoQYBCFeX3vqQbnnr5EZ/cpDM3zlISFb3nRskTefXJOPXOHJMOTa4JUm1YN7vg7dFRpPtdcu7cKSvqf/CwDaFhgtnVuJMWhjsNYOgm2vAc3X/IvrtJXXDjdU1kTR+fu158aZCyr6nd1M7BZZ+Pk68wi33X9g298LsVMQqozru9JPAMhnyKHw1NMeWeb6znQjjHAeJhMDIaeobT3TqeFcL4gGUMRFTqQtadHDeIvxUDiPJieiR3VIMKRMzIOzTR5Z6xIrRXWr4h2IYoPf6KA+8CEA7OPPlH/TQPz+f8JXaxReYR549Xnv3ztT55l7XsHXHn4QgPum63x3+Fu1uZnUtYW76C3AVGOUbYN1eGXJezm/dv/NtLsF7d//X+giBxeLzaJWUkMnCTr95LeYiJN+oazI3KXDn3WUsPPTXkv8zCN8dHGZ/cZIro/SOKWIx6+DZ7iKoHBCfCeJfG1sDHzWrcMnsdR+SuwgtUmgMcu9d/4v3lW/h2iotjm0c4Luv/9zotUVjFY8Yg5xsxVRljcRSd4FNSGFVt+PXgdrzTA+Jc/Lrt9yrFMUuCiiMJHU61pU/oOIIUWvkxE3kkHnLB6vNf5ZulFHSQiI9Z7IXNfC8fpiS/h8nldQTz2Cv/VWGccXOZVg2x9mMC6JdFI6e72W8XHr3CLu5kNC4rc7sNYOtkXfR+XRn2Vdy5gYo1FKYbYLxh1hhOuMEeE+wggBY9M7+aniDr7/997MLQ/cTqENteTybsS2sHzku/8vjp8+w4+dPsnJ+jQKOHfb18OzQLifi5vsWl1FxQnee87+519ELS2Cidj10z913de3FdrogWLbOdYzR8O5cvZaF7nMtvfbtuKYm+4dtGELqS6vjYPn8ZffFvHQ9/wnev/6/xKyswyQVOiZaTonH8U9dQTrPL9771fwAA8NNsgjRKxS+MOH8E88Wf7JIsn1JYqCKBCj3nvW2jmNyQreeyrtFrXgsddWmvjgvXD6HF5pmJzETk7i2p5f/5bXbToe33zDKmyc4/ipG/hwIdvMVvXOsG3JFhRRgglvM3gqebaJbdMMhbYqhVWKKIQVeRBitSjw3Z54ULfb4lttQ9Ck9/hWC2UihlPvlHcSNFSvnTducSaiF1TMZ04uloS79x6eeAJ27YK8QC0v49ttOWftNra1IV0K7bYo3JdWiZrn7TJ3TNT4fv8S1hYdv/8nP4rq2wf1MrRSuFoNU6uh1zZIf+E/Ec3PkX3jN2J37pJLx7lAgsmgoVAGr0xJ5NFoYG+6CU6dgraQeqbXLUljVRSynLYom2o//COoomAtaaK/69ug05HW44cfov7Xf40D9Nd/PcUNB4bOhQbvsM0J6t/+HXRf+xrszp3kew8QH9xXnuvaUAhXt9vlxIkTciyHjofyfuBV72Fs/MK2E258QvZNFrjZtxBQS0tiw9PPDMCLqnvommp3Bmt/bfMkh+59qSz7cY+TzSO3bvA511rOfVhGnHcJQxKK5hiVUOxWh4rkatIRf/zc4LW5LLflzs0v4reT28B7mpFmLHjOLpsZZpRBo3Bai3o9bBfl/cQNPmchu0D11VJPP4PaKQFMGvjJV30Hx3zMzPoCv/zkk7h77pH9v2AmxvZb7lVfM6gJLpWX2MPNiJLNZVhVb9BxMqF1gSaTq0LNrNIKymDtr03hrozBD4Wm+hBwpT2cbkxjN/qDGVBkaLKyTd95SNxAgTW+sXxN23I9oSspmc3wwFpe4KwPDS6fXMSuMZoifH6i+MoGmzffu2fTz2k1FrsZ9RwdJx1RBl98KhLu2uOQeib3Kc5H4Rb9AiZZRnjecN9Mg6NtycV56Uyd9y22SUWEy+71c8TIMzOH8nke+wEhvxmKrz84zZ+fXMNs678uKBbWMf/nTwDP0cn9rI/tpJL3SGxG9L//jNTmdJrTTL/qddsvwG8jWwdWzmxs/sUFLvnlsy127BmXrtZesG70ENtcCEkNR4uYKaXlaa315tVl1/Z8/ERAZhOUku4H3Zi69BuUxz3wOrr3v44//JsP8AOo0lLGAOYCFpRXhNZJtHaDpoW+9Uef6HZOxCz1mgjJeznZ08dgfDe85t/yA6/ZvLi7XnKYh+Z2Yd75d+QoVl99mHRRutYjbwdDrL716VAdHTUb2LV1bGsd02jIFkUhpLteZ/nhY/zEhyp87/QZbr9zL7qahiwsRTw9QffcMppExCC9DNXryeVqtqfd1pc7nH5GmObxHXV2bGORdDFk+3bjHnypHLjTR6/ovc8FvHPyIdwyCogij5+fL+1m7KFDEMYfqMvr2lKVVDp8J8flWvnwh+Gmg/01D7K7YCAk0HLtekDZF47oY4RPXowI9xFG6EMpXrcn4f1nbuJGD8payC+v8PqLH/xJdnzlZ7NDa7CWO77tX6Cs5eNvG4evfe1131SjkNlsLRYUZ//p/WjrQCumuxlp5eoVGv/0lsdwzmEiw0ted+O2r/F4acHzjijrwqMfJZv49DIQRecZyjlRnwJYx/rpdf7xzY/y8s+6OWTPSGEVV0Tdmd71xfzBK7q8IUm2JaW1zTCFQTvPL750F+qD/4Q+ehTXaGwOPfGe2PmymFJKYbodSEKxdOIk+sD+0mtvPFuHrpQAFVeURKZefpTUL0vngvOwsoI7u0DeycUPexhKhQAiMEhojndD5F/Yri1pdSF0RxE1amV7pKvWcCbCbFLH+03L0WNN2Wdj5JgnsUxMxJEongFfqaCyTIjSnkM5BdrJeWu1xPLBOfTGhljyBGsVoliuq8KKkgSwtsd7/v69gCfPLKrWIOqrNiYnxf5meRkCSc7KiqgLjKFbq7FdKa6U4itumqcbadxfxPjMhuKnEOuSjQ1od7ALy7z9Db+EOvs+HnAOVeTQagnR32iWlifKWVS9UpKvvpfBubOoXg7jQpw5G65bgCyX/QuhWeskNH1BtbtOT1Gq1YukQiHmO7SdInFhEqNP8AK620MVBbW3vJXOTTeTf9n+Tdfj/G2Dn1utFufOhaJfbb4e+p8LnGd2/4UHQS5JB4ODKBKPeufwG21R/k9N4VdWUd2OFLKxtGcL4S7bn5hBEWom5mkunAYUlZffxNpDjxA5h0WF9YRCud9JApuUOpX2OrFSeK2oDE006chgVIH3DuX8ZXXh+KDe9Ar2JRG/9JUvBuCv/8dTEEk3g44iXJaLPYz3dKbnqH3OKwDF6bhKvf9ZcxJ2qYzBzc6i+6FWStHCoLRhtTZJlp8k2pDBvM7zi2zd+WiMpUDfh9yj1ZWVVUkaEVcMefDW1arA0Atkx8Xtd64Eq/kUfVYh89cWVOqHfO6dtXT65DvwHz/9O1gvHBWt+Im4iSfGElHV3fIaqXfWSn7j+Qj9viC8Ka1uuhYO3jlHkfcn9kYAzjsWWku+BR5s9ty0Zqe1iLxnJXfhOuDgXfMc+fgZmWB5gSO3Yu+jgMh4dKTx1mOe4wDXET4x8GnzTe6fkZrQJJr3LRxBhwnSVpQynsuzq0+FAWSFRcJ5/WarImOI6fC5u8YvvlKjQ8i0kLLf+ZofAODLH307b3z87SRFzsTa4qCLcBhKsZpLSoFWMB5f+Lream/VR5lxqQ0uD8/8OMKOT6ALT6Q19WEvGh8IwW4X2+1RfAq4M62vdMvj1N24dM2jtcbZ4N1uYry1QXficR4q9esQft46JePucC5otUQ0lOdB/Vxg9+7F7tkDcUx88jiNl7041PznTxybtEL323+c+G/fTO4d3kFHSXaB117GVX7LV39/x5sUq2tB2OHLa0QFNbRzjkjB8npP7C3jSCwc0wTqdSrNJn2P8Nb7P8bE/ASlIm0bLJ5e4+zxVfDQbmVXTri/6gH8bgmttY89dkXvfS7gskw6rb2XYVMgvqf2zrLw+Bjx+z4AKNzOFwFCgF9u2aWUQq0uw1gDXIEbG98kCGQoJyiu1yDvjw1ke3Rj4rrt5wgjXAgjwn2EEYbwC2+c5x1/+AToKVFqb+cxuA3iu+4sCR7abUlSt5Zo49kJ40h1sAPRGuUV2Ze+Eb9DQhJPf+hjnH3mSSGzNzJe9E1fdUXLznvik3exwac2GqsURilyk+B3HyQdsozxPgyF+6Rg1mP3Y++n8ra/hM/6bZRWqDBcTmuhUDMxX3l4iba5sb8QePyJ0v8xxRO7Alc4GnqRdq2KC6prWq3BA9ZDVB0MCJQyYs0SSxguhw6ilpclrBOob6xBsyZEtivInjwib7TQ2HkIdfpRlFYwMYGemMC1B+r5ElM3gBFyTGFk3zwD252+MniYcPReSNtICFFa6xLIU61ialUJ1AwvdcPXoVJSgPZ6kOXoTpidj4zYbZw5g280UBsbksYOqMLKPjiHUwZTFHgVzkAIJ2J9fdDGWRToYlgBAighQaNUo/qBl5UKrG+gFhfEumNjA9vuSNt7HMvuDXl26y2tjg/Oj9GYqFIoVVoAuyxDm0FoUrrc4o2nUt7T9432HmcdNrNEerCBDo020UDBkCawZw8cO15eG9oWmCeewCtFcfwU3PdytFIUWjPdawGwEddFqZLnKO8hitGpBIjVOi2KcJH1khqzX/HrxB3H8hN/gPnY2+U0aIhv6Ksr5Hw1xgaDkbW1taEjsPl4CAGvcc4RVy6scC8aY4Nrqf8ZU0pCRQN8XqDaHRhPhHCPY2IF4/oMHti3ayCf1nEVRU7PV8nm7qVn3oJTBU4p/ONPwvQkTpkyAFmOpS/3YPrgfv5rCDYbS1Y37Xvzlmk6R5YlVPQycNtUwqFz8tp7GhG7DgdrHaNRzabsd7WKP3EKshznPUWtwcEHpgDFY++Lh8fRqG4PH1vsuUXitWXcvn3ooqBiYpYdZFFCz+uyY8SlV6bUimwLoZrDAP4qOMA+2S4bLQtQeK7QTv7i0An9A2PVdRgcBywM+d3q8BVrRTM2YUwln+xvuGkHX3/jLDrS/EX0ray+/Q9ESb7vcEh1eP5x984qv3d/E0+EURmz+yaf7016VjC9e4zOunQvXTFRu6UscM4NxrbPEV/9ktfddN2WpZRi58Epjj+6gLMvTO/bYXTzFOmDg3ZW4d7Pff4CXEd44WPX4RmOPyoe3crDnRNVTnSFwDTebXpc9T++3hgsMQ7D+vpmdWjOoMa40ERkcWAPT35c7B6fnL+h/P1ipUmtkPqhZntE/WD7IWitmE0Vi7k8OeKLsG4m0phIi7XMMMKNSKsieGgXKO/Qq6tEkwatFTaIg8o6HMA5oiL/lFC4D4/vLmfOWynF/V8g2SNffvIYxi+g0xSqFZJGk+h62HJM7CWqPYYySsjtPINYl8If8rzsZO7Xv1H1wqIEFdTk2Ss/F4cl+ut/JLnxEADpQ8/gV9dgr5DUW7tE+8KSMs0ecL0eplIFPM3I8F9ffoAn3/qPxEs1qCRDMz19FbVso+9nPCkl471tYK0rPRrz3pU/h8yJkxRTItKJFre3sHxeEcRfAMM6Iz+2G/wJ9JFwj5q8ukl0ldTKDoKoklCo/ogSsU0Ni61Mz8BpCcEV60+FSa5Dd8YII1wCI8J9hBGGkdTouJzxRNp0MxTHHj0HCmZ2jVFtbP9wzxeXYd+0tLqNjw+K2N6zU7iZPBPyUgvJ42ZmRHXtPWePn8LukAdvYa68Xb+vmLqQhysg4ZN+0G6v5qfwExFGzVIsLNMtLCaKKHXnSYJ68D66CyGcR4mawKEwQ2E77dYqyU/+FP7++6HI6d1yG9wgBVJ+7DR+vI7tZNxbfRvv1UOBTWkqxUyWsfLxJzD2cFn0KGcHD3vvyY4cJ6lXpHgDIa77BV2ckOyRAqyz8Dj1HTvBPyIq99U1egtL4o29FTd9DmTr8EcfQLtQZPUVwcNwgwBPeZGX4J2lJVStBs7gOx26yy3efMzxRa8OxK2JykY8771MBCUJRJGo1I34GWIifDOFKMb7dYoTp4iaddm/vs2G97goFq9r64RczrJBuI+1on6PI+lSAFrtjLFGKEoUuPUN8bkMIUJSEEsRHEVGOhuKAu88rtuDMK5S4e9RUC1V60n4/ZDdSC4kKu02rtujuyLqBOMVHZOQxAm62UBPjAe7FDnase2VqonyWK+uwnoLqqJ814uL1P/bf0MhgXvrd9wK4+Obghtj5cnQgxbHWg1fqWI9FBNToRBXFPUhn5zaVDlYtdZj11qYRn1QeLcHCotzTy3jg92lOOKEd66vE3uHsjk2K7ZV7PSxntZoZPlA4RXHcrzOLaAnJyDPJcBY5P+QF3hbYIHb638j76kM2rknqys00w9xMr+V9bhClLeJvKNA0fmd/0mt1yGLYvIf+L6BhYvW5T67uZ0oihDtMHTNK8PurxerGiaGJiEugnubi+y9XSbSZhqD+9dTbcehoEKS7hEbvDNDBkOUQgiskg+KCl0Dcg6MzWn8l1+m9/rPlO2uv5ZUK7zzqDNn4IYweTd0ri6LPa9MAgv0SfcrtZQBaExW6K6Llcne9FHiYgU8VKe/5IqXdSHEtSrdrkzO+ejKfOq3YuehKU49Je3PS52hTgmEtHEesjITQa4Hj6gqvXUsTe3hJx78NkDx0hnDt17T1lw/yNl2gCXihU++Xi0Ov2jn870JLzjEqbkqouO5hnU5/aFbtxip2ke4OPwwkagVX39opv8X/nH+Dl608DgAZyrj3Lh2EoDYWuRZZqimw3YLnog2Bal0oV1gnSdn9vGbn/ZtAFSHhOS3n350wG0DurLNxK/3rOa+7JpauMhn8uaX7ibPHI/849FNk9b97VKVptTrWoM2uEoFm1sKD45IOkPTVGqKNRGcOK2vr5fbCxRJNSILWWNbhTCXgosr+MhIcESe406eJr7j7mvfqM4qttUR7lspGVdYK2OUoBYnGfiiO6UwyUW6uZUiSmLJXA3dFp0nnhHNUifHtVfEcjIIk7Z2VjuQOjogO7tIOiefn14UA44TU3s4aGIRbFi7ecwXRHiqGuOaTXySoGo1GTNvmUhKKnF5Hiq1K7/+XNYra3M3fokOlOcBrtfDh2644TtHkeeAp/eKzwegubRylStwqJVVUFCoSD7XWsP4OMWLXgz/KC+r7rsBTj8KZcevv2CnzAgjXE+MCPcRRhjG1GHMjoNEe3cAYM+u8fm/JXfqf37fPv7FF9y5/fv63mTBRqRPHq5ULsMb7yrg0lRUzEpCa9TqigRKOkd3YYF4StQlhQ+z5UphInVZlg42lwLdOb9tYQAMlhMIw3h2AuIIQ4yqdehtbKD7CgGlIE3x8/P46Wme+k+/gGqMi4caUBtS5e5sRqwcPY458vtkOqL7E3dTLQppV19rQd7D5ha+8N/TWf7jgVWJtUJke+jkjumDFVRQ7hnZ4AH52ffqc/39HLaR8PSePgbeYz0klRQfCG3VbJDWa/Raz1z0+CmlqbgezmwZTGxnKRNFUK3CzAy+00WF0KZKvcHcw0eG3hu8qPuKiXpdZue7XXS1IssoCvzGBmq9CyEg1YdJBrwXRbvWkjVUqyFE7KqQ7e32wFKm1xOLlnYHNSNZBHXtSoEGgD5zBg4dhEZD3tdsiqVMtSphpIuLkImtEBubfTfr4xVe/jkDVd4j/3gMhjzO6Q2UEFopYid/i72l4nJRIa6uoc6ewc/MlAS4Cj71TA5Uqb7RhM4zJD/8Y3SjBOUsDoXG09Mx+l//W6LP/UwcitWkTjPboJZ1KIwuJ0aKfbey9iNfwlI3Z4ZHSyI+HRtct9UbX0/vo28Bm1EojV1cLoNsAfy5geLERcVgXmD481iroQ7LzIRZXITowqqL5eUeU/Ykyc4dEgasFEQROgQpE0X4JIGpKTlWeYbqdtGugNI/ezCQMEsPY3SbVLfpas1qVCF2BRbFeKLJXAyVGip4oPZVYeVuKPBBdekYmigYTmd0l2fVsit9nF36/fJDMgm8HoA0d/heDxUGyAR/eQeQVOAV/woA9a5fkPcqcVT3YTuLMGmVvOWt8ucvea10MABjf/zHVP/3HwCweNsr4Xu/4bK2FYAoJaJHgSifNk04XCbueuWhwQ/v/Stot8Kyr99AYHymxsaqTBbWxq7Nqiau6HJweMt4wkPrQspUIii8p+c8vcyXIcQANpfj4qxMmOgwGWSu4ng9W5BrVwOG4lOoPL4yy5wtrx1679Vp00a4MgzImGsNPx7hkx/FkPrbaLVpGvH3HvgKfimXKeJv+cD/4vaVY4AnzruAQmlFdeeBoXeo8JxDvLYvcPm1s2zYiIZKeIylQ0RbZhLGtiG6rHU81R687lSnd95ryuXWUyp1yLdYWe27WcZvH1/3jK+2GItjiCLMWBMfytFK1pbnU1+Y473UrL0e0WVaiX4iY3hysT/mu1wok6Lq9bIW9lOTJJcxtrwkVk8OdSp7yHIh9bOQadW36OxfeFGESS8uHnjxZ7+Io4+cle1+p6V6YA94T6V3nCyaRPUKku0u5CAYUGXblqedNvBRBQ8szuxhFk07aRLZXhA0sdkHxVo4exb70GP4l75IJhGAPM9JkoQnn3yS5WURldSjibLr4GqyUFQ+qM19r+Bj978KFJiXP8itv/AzV7y86w3X6ZTjcDX05JrbN83THz5TFg+37v8Apx+7+zKWuPmc2fU1fG1a1B5dyQ8jiqDTofreM6AOA1DdeRjvH5NBiw49meaTPyR5hOcfnzojihFGuExMpAnmkUdAKeJGha95cR284p9OXLhNywyTuEXB+g//ECwsMn302bGUUd0OanUVKhUhNY2WB0xRcLbQhCY5HPD+t4mCZdfhKTot6dOc2T3G9M7z2zkBaHaCAl3IEROdX4wYLWrFsn5utYTkjSJ0rUpVs5ls814ITGM4e9et6GdOBQMGxdj0dPmy/d/44+y/MeIP/5sUIfPeln7pya5ZoslxijU5pma4lbCvUFfQMIZ7Duwt/ySdAH3imcCwh9c7D416GcrjV1bLQEGjFGma4qwT3+52m+LsIq53cZ9ag9gJKefwWTZQZGwt6uJYFNhxjAvhpCov8L0evaU1HpgfqHvTmwdtuXi/2UO+tS4e7H2lhw9BQ40GUd/nv9OV8qTfZme2tPYFb0KfpuWx1NVquc3tU+dIdkxLwKO1RIcDQdhuy3uXlvBjY/JzpyPXYjimUfPC1ih9rP70/wRg9zt/kaWPHcdpgwacVuQ6qOBd39nG45VHO0dxbkE8FbUh0wmx0ptIbKU1HkXNZtRsxunaFNUiw3hR8Svv0Z2O2GAUXfq9CZXf+G3S1bN4pTFf/G0UU5AozfL7H2JybhZQdNcHyq/KhiPvdcAVVLIuPu9tyhUoVgb3ATUkXpH6PFwXeT4g6BuNC4YrATydZxxWZuBtGWyG1OIiPnyeSq/JIbseKS77n5uhAdLkQTi9zK74YeaqGe9Vov5wTqE6GyTOU8ktZyt14nBeh6/BNOpyZ/135IfqNHCvfN8eumcWFx44b8Idb4TH/lS2eGYwMTObxAPPCqUk8Bch1SM12Bc7NEB32pSkr9XR5hJdG5RVeOV5ZP4Gbjn3pNg0NGbKl1zWuMfEJKpH4WuAuna/73u/69refwGocA8K9MI1LSuKo3JweNtYnT89JfeX1GgyB1XtqEdmaC0OhiZilnLohjH+yfYLxzB3cakfeuvRn8QK963Yf9ssJ59clKySK0RzqhbCZT21sVFr9rONetymncuE+u70SeCe53eDRnhhww/uwps/3YpT2eA38701+j1rY+0Veb3zdNcH5LN0vYbnqTO4C9wvbNREK5k0rsSavBCC7VxtsnwmdExCvM2EslKa+dRwKtTZ+WXckoxW2OFtCSu5d1eV9KEMsgxfWIqNTvkUWhnbQfGDP07jlffilaLzeZ8vqtgkucwH/yc6rr4GMEkqQdmh9lQo0isM394WaZ046aHjGFeriQjlzOlBx0K/u3FISJSOT1xysVGw5MyVpnv0hAg1ejmJy6j2FHZd7DypVDaJs/pjVPlB8cyjJ/j5f5Jx5GvmE24/kJGjyGuhLq6xWVi11mLlPR/iZW98FU+cPSsCIaCzskIyO8viwhIuKOhXzz7F2L/7KQD8jXfAg79yZcducjCO9lpjlmWSIfvYRzj+fd8PCmoveQlTX3VlFrPXC7bVEhsX2HRP0kO2oODgKgNM/c03iOgQUEdPyDWjFCQJsTNl+aniitwI01QsXBWY9JO/o2WE5x8jwn2EEbYgSiM2ejJwTMcmuHtcSLBe3uPGH/tz8HB4R4M3f9+rht7lxdJDixWF378fdu2m0v7os7KNNgm+38GKo2yfQpH4QRgnUAbcPXTiccZr8tQ58bjjNTs/bftlpxlKiYDUWbetx6v3XjiUPrkLA2+9JBFC19pB8TJMQo2NQbIgdYlzxPGW2eVX/AgvXXivbGfnmcE6l5ZxnQ6+K4Sa2+hAnxsrFe6ewkPzFXsG7ytC6E5RgNboogCCStZZdC+E82iDM4b40H4A1OKTKG1I9u1CpRLkaqYsLJy5+LnRik6cEqE2BwJ6D+3OYHKg3cEVVjoBnJfXai9Km/x8sscXhZCo3sPqmtgXaY0fG5OU9kxUzPRDZ8MEB4Bud8rz5J2T7bAW5x1aG+lA8F6OUwgtUmtrMDcnp+zAbthohwpUiO5oekq830EmFkAUBZWKbF9X1LTd7rDr58Whkgh0FK4tKXVdUGQ7HdG1irhSESudyUmSn/oZ1Kc9QL5nN35+D85adLcr+xBF6JUVWF8rA8HGuy10IGqV98S+IA2K5340qEMKVgkCdHhE5aK8Z8qu45MU8FQmG5s33iRhMkfJJE4hnSX0erC4UL7MbbQwY/JeBYPPSRSVLanZybMXPU71aiRhTv1z7ZxM3GgjfoXdLmpjA7+2BlPTonivVmXyyQZC+vRH4GC4hyWDffEKGqZAeYhcryThXLfA5hlx6FjY5HdsYlCB/K9MDH7fGew39jJVY9M3wv3ff96vM6XRb/9r9OSY5GfN7yyv6eEpsN5Tx4lOPQVA96ab0C+5Rz73lZQNk5K44E2P3Cushz+99XW8a/4OjIK7brn78rZzGMphfC8U+S9MtYyJjFhjAeYKW8i3wgf1I8j1kodrpHAeh6fwno4tGOqB2PT+TjE4Y70hj9TnG5Njlk5XARrHaBB2OTh05/zzvQmfUnjRncBjfwh4aO6+1MtH+BSHjhT9+egi21xX7q8aTnQkgHe1MR1M4RDP6YCoMqAJtt6p3QXSRb/04CxfGKw3/ubsGr9/RMQj/+em13BibB5w+IkZfnobUxptFO0hxfrqZQQxn7eU/rx8WsMWss/KB0FUP/ominEo+Kt3UKBxr/50dEWyerpXYQv3CYdr4Me1Z9Ap6T3GFcTXw5bj8Gfg/vzXcVkOGxuotTURkMRxUG73SjuZvl1L1Li0oGfXDUGEohCPfhTKOrIkgSglTVOpv4fHqVqLBZ4f2MTMVOCLDu9GKfjcmVUO9j6AoyaT9O02vpeh4qgUG1FJ6R46TDQzTfzXbyZ/+ctlO4LAynk7uHjH69iDIhRTy6eu+NB558oJEKeg/WVfJoKeVofW294MQH7y1PNGuGetddlX78+zXbxh11n8whNoZaF6EVcAPURZ+i33HjvgIrwKbgPhGnGnjsKeA/I6E6Nba9i5HXK+rUWZUa03wrOPEeE+wghbYGIzmFEf8oTecfoIP/e238GjeOuNnwYMCPfUhYSf4bAUrYmuR5vdFvg8Z/7Iw+S37cdrjYpjfEMsRrwx1PfMiGc1ECdJaP1XVN/zD6j7XgJKUXn4UT46KQr3Wq3G4cOHy+VHWtSQF2v1V8E7Pvw08M4OPnvdTkHlhgNSxAxZofRn/+OpMdhoi/945fzK79CLhZw7+feD3yUb6+i8iw8FuEmGbl/hePskJd+52Z+22+phfuCHYec89qu/EhclMDSgcPUGuhn8uNfXpbsB0MqAiTFD9iJ6rIkrjl/wuAAkHV2StmVgan9dzg5sFuo1CQUK3oL4voRbUwR/7PLqKwrUuQWYnpKirteFOIIsRxUFqrWGr1RkXb1e6e+u+sdcq3Liw3jpwlB5Fgpn8bhXxuADUU2lIkVj3//TOaik5aSG76zhrRMf+DiGHTvEUqYfurq2VhY8/grac2uvewUn99UpzAZJaDxU4VzF3hPv3VlOLvnZWapFhnrLm9H33IN+/Qx2au/gWlMKNzdHdPSoWIooTSepEPc2SoudjahCbnPOVCc43DoNBCdupdCBUI7znB3vX6FVgY985Dh3/cU3A/DMzAF2ve4nym0f/9JfovuRv2Rl3JL3cpKiKI9jZUj9YyrJ4D7hnITcjo/LeQrqqnhm4qLH6ctfew/H/va9pWqZWCbgStV5oyEq+bk5WF4ZqO2HPe6HEzmHQoZ1fZJUixVLUq+ilMWGgMW+D6b8MPR+zaAAzoa6eobX4S89cL4YkkhR+8P/jzgsp/3Zn4PvCPmvNwbKWlVk1P/ubwHoNcfL6zDtrFOzvb4LFkpHRMphlOep6f2sT+wj1oo7rlSlaxLwYNmmc+AFhF03TJcDz2uFwpcTMbOVmDsnqihgPFZ8eLlLpKBmFNXYhGeF2qSe/oHbdtI/TjP1peuyTdcDlbRABWsktXVAN8IILwTsvV++rideOHNeI1xnaKXKR7OOlcwwB/zcPTNkXsjBj53aQe+ZBFB0k1o/dod6czj0fsuz7QLztlEckyE1w6tnx3j1rCztBz94lLemL5NlAT+zzcRvFBumqgmrbakbbxkfsma8wPriJKJXDCzr+l1mZ2zEjo7YkXilcFqXPLOPIjSe1BWkQLayCpMTKKVIPwXu/eZCB/MykEauDCQFhU0r23YrXDF23YOrVGFGSHZfr6OPH8XNzouS3rnQWS1fynuiiZlLLzfghw6dZdnJ9Z5oRzI9TbpbREXnhaYqsWD1fRsbYLKa8LNfdvfQi15F+sHfRdXGpds8TdEf+CDu1ltk/BTH7D28B3wOhUUvLwNKxoaAxuCG5CKdb/0WAMyJKyfcda83sHFqNMg/M2Q0tdvwl38q3xfPX9ee749vAWUdRIOxwex4G1ZFJFNweLu3C4a75rdcvnpxWboi8GKdevwEfnwM808fxOx7XRlIi1JEEzXsEF8T1bbJkhhhhOuMEeE+wghboI0hmZ8Vwq7dkfA0Y7jzRXtJn7qF9G1vZ98H3gT8m/I9RZxsbiULcFsf4peB5Tf9Efmxo6AUU9/0TUR9Mjhg6c//AvBlIeBUoC7CbG6NAcGpvOPL/04eZL8402A2+MzlO3exsdYCPBsLSyXh3utmm/zjzh4/x+7D2wSs6S1Esmfgh6g1pxa77J1YFBV0CNah2wXv0QsLaBOjihydZ+jKNreh/a8AIP/TXyXxTwKKbPcudKWCbQUTRjv08M1zOHuW3zqWMq0rfMHQoqZOfJx60cOur9Hpn6O+Gh+wWouHe9j+brUhBXpb1BSdR56ketuNAwWyvvhts1Fo1lGoajV0IYRCtF+89RXN3a4ENuLReFylKn7sxlCLIlgbUtJHkbTL9a2LtPite6VEZd4nUrNs077BkG1J33qkVoNGHZ8nsL4hP9dqEnTaP65FIevp9WR5Cwvl68gy4n2irPNrLVS3BydPwPR0qY6nl5XHc/oyLGVKZC28GZONrqQon0h3AeCUhiefhltvkcmGdrv056bXpRtViO2gOKbTgdNnKNZaFIG8X02a1HttQBE5y0SvhQYardOsRlUaRQeHxmmDS6qhyzFYlxjFzmUJFXNAFp9PzCY3vI6OfobajqDKCedbD3vUt1qb7GZ8/7xkmXjfb2yQ/5+/gNe//oKHKU5SyTLoo9sTNX6lgup3UGTZIAx3Y0MsZwoHUU2O7/6hDpfhFk9l8XmBzx2eAtOooFIJyNr4nTdRdW3wEC8P7GL80L+b/BCHB67XSOr4vfO04ipj2QZOKTp//S4m//Iv8MDCP/ue8nWNVLMRbHOybpcKMlHQias0CHMD/WV6j1JQEKIy/VU0WnuwPmbLUfikhtaq9HCfSg0/dOscoDi+0eWDy208YL3ihtubmELI+BNPDK6XiIyin8BxifvpcwlVm8KzDjgU1zZB9MmE2phYqwFEyXWwDhhhhBGeEwz7cxtjsJu6JwdPK61cKOk9bui5bYfGMGrL083Z7e+RU/NN2qvnW8i9dq7JHx5ZwQITCTSSbe79Cg43E9ZCF9T900P14wUerv3wzz7SutRAd1TXSI4/jm13pAJcWYWJsO06kk45FBaFz4uy1iviF84z6dlCVNEQomKGhWWXg8R42v/990m/95shTdHu+j0ra8snWVtbg1oVslwI+H521fALtcY1Gqjq5QfAm6RHJxZytYhy3OIKdNrEe3aik2TTuAnv8Vrj8qEgVHs+YV2YcVQUhEgeTj59hrQN9Z2TtNfavPob/hm9h/8e8ry0eO93XbijR2B+VsZYRSFiIsBeLAj2ArDNZvn+vogKQC2vDHYpz7d553ODPC/wIS716uezLlxdV1fbdJqr5at8HKPWWiRnoT5hoTmYENK9rhwfDy6KzgvLHWGEZwOf/E+VEUa4QhgToY8+LcLtMNMOQK1GdtPNpG97O8o7Hn7DF4FSpDvn4faXYH3o0isVoBJS2ceRD3yMo9/yz/F4lub384Y//71t17/wX/8rxYkTANQ/67OIbhEfY+ccxalTnP5P/wn/GZ8xIGDX2/JQrVZQ6+sUK2tEtZqQtBvr/M4j/wevYG36wfC88phGtZ90CBre//73Y61FKY1yrtzupdOr2xLuSil5qDtHkneA5qCF68hR/LlzRHubkIYiJlheEMe4NEX3evgzZzepbbaDmpnGHRBy1z76JC6KKHr9FtEtdi3rbR5ar/JAfXPxaCd3hNa6lhRMUSKEbX9+RA1sb4wCs2MKlCJfEpXB//jbE3xTGmFuvhGMuSQ/NK6rZK2TMD9zXgGnUENq//D7SgWfpjJpEuxBuifOsHXO3S6vYMbHcBttVBL3m3/xvR7OFui0IgrnoG6nKPDO4dY3UFGENtGgHTPPYW1NAkTbbVhfl/ekqRyPLMd1u1KE6kAIj42VhWFx8jRRsyHnoF6DffvEpibLZL1D50cbzWXXV6YKOkK5Ano9vLXYtljTaG3o9QrSbgdcgj5zBlWN0b7Ao4htBllPltGfWDh0EBYW5fTicVqH76ETpRgc1aJHrmO6JqHiMhwab6JwgpR4j0egveL4+C7q3RZeKbLa9hkIymvyhSXi+dmSWHdDJLQ+exY3M6TKCS2zvpdhraco4G9v/cyh/pnzUTMKa62cR2NkW61DbbSlE6Hdxnlwa+voibHyGiNdg1f/xPkL1GqQa2AtuhJjXY5Wmqkv/hzs8iLK5TzxzmPo1XOgFDZJiemfm/59Tm0m3IdV8Nfoba5mp8i1oWfEOieP0tAJotFDLaG7qgZnNB7PRi+XzxyeFMfv3vl5NLrrGK0xehAibbxDIZOG0RUOPjERET3yoHBX6vIHgJ+oEOuc/nFS9KcpFns5q/15O+9o1CPm9oiCLK5EJTGy+MyJgdjKPX+qq61YWbKEHpehjoURbr133/O9CSOMMMJVwMTDZNLmejvzQmYb2nxo/hZOHBTC6sz8Yb6636w71A26VeGuLmAjsp0NJUBqFDq4IkY6kuyrLVAavvHQju135oKP5s371X+uOyZpkTL7gz+IR/P03jvY/50vBqAXJYBMuOvQmdtHO7+2WuUTAcNj0ystzUwU0zjyJMk73oE9fAPkGbzmNddnu06dC4KfcE572WYhmzFDXaz6ijJz4nqNZG4WvMeePIftOZTSuJU1VBrEPdXByEtpRe8jH6fy+KPgoVDni4fSaiQWoH3fd2vpPP0UnWc0X/wrPwdAPn8buLeKkMsPjr1ZXMLWKrLOTkfEU87JWPVK0emKQAqQwW34vyhE/AWo2vNXm7o8K2vx87Ji5l4Uxgoe3ARcTX6O1qVozBuNRoGJ2DF/P7a7+aUqy4LdLShjMJVR9swIzz5GhPsII2xBtWJYSmSwHXW64vkdRTKDfecdrP3f/zf58irdOSFU/VoLfXIRlxeIizqllYgbKjyXnzlJpSfq7GRp4fwV99H3GgTMUDChXVnh6S98Axv//Ftxt91WrkOe8wMDkqxSw4QgGw4dIvoR8UOefuqp/saJ1U3wPffGYK3Fe49zRRnGSp4TbxNIU6ytkdoc/BCxNqSqds6xEtUG9iZ9b7wsKxXfqlJBtN0XJ9z1UJtoLe+Aj+kG5YvLi4ENYb0ON99IdmSZhc7mp2vrFZ/Jd9buxVvL/8MylbEGjIuFhup0MGstabszRqr9foBqIN4+dPhl9NQSteBJrrbxVx9GGqUDP7l+ER+U6X59A8aa8nNfLdHrybFZWYWd8yX5T7RNEaBkssMHT3HvParRQMdxmLH3QpqHAF/V6ZB+9CPkd99TDlasB5OmYgOztFwq19XqauhuEDdzjS+3JUtrxKGFE2Nw1uG8kz8bIwXjxkbZZTHsRqTUFagHshZ0asS7J6FSQQPR/CRx0sAsKckj8Mg6rHx5wGQ9DF5I6L53eiC7I1dgvBejCKXke+/RyHYa7zE2YyNKSZ0FLG011CUQ1N9x7jFa4ZTY/XS2jv7CjwZIvJUrO1gdqSEll0/Fbx+t5dwHH/yyQUTB6/dd/Jg1UgmDVajBvSnst6pUoFLBnFsg7rYpkOtNQRmKti1c+Kyl49z07z6bc3/+MCjNzL/8afn90hNU//67y/Optw50+mGsw+d7z33whPhHUp+96D5dCjXfwYfWcI9iul4l6sgd4OaxAeEueQuAV/h2l77VVx4n/PnNryH3nqrR/Pydu0jCZMU3vfcZMgeFc5grVbtoQ5cxXCBoi+KTf7CulRry7x2QJvvrMWORIvdQ1VAfGrzuOjyws1k6cuK52tQrgjxa+lOZI3xKYXTCR/gkxHDH6jBjndYMurtCxzWx1Pj6+28lu188prW2pcPG8GNeKelsclbGHRPTW3JsLoGTnYJ2KIk3LmBv0VnfrIxXeqCIndm9vcih1qywsSr1eaUxGJfMTyve19zB5LqMtzpDz6rWxgbNbCPUhuBDze5Q1BtXrjD+RMOhO3bxwTNPABeeILkQYh2zXh9n8n//MQpoVRrwbd92XbYrmZ1BK3BxDHFEdOIIxeSkXIiNoevNOVRxZYrtWmzJTp1FAVknA60kzt27Td7rvihC2ahYPruBf+SjoKD5tV993jKtNyz/+19g7uV3YLWhd2yBL/vhF0F1cvCi+g789Axu1y4AllotJgE9PiZ9dEoF+0UZBOjqlRPAOoqxfeJ4927oj9+cxXckiLS93L7i5V4vWFt6unCeW+34HvkCOHUUOHLpBW5xEzAmGSxXGbAZ6gIOA1Fl6DrSmigdiStGePYxItxHGGEL4jgtvQW01qgTJ/C7d4uaNI6hqoKFg5DczlrxJ1tcRFUSIav7GCKf1lY3aDgJKLpYC15XG+z996PwrHVz1o6tyIT1yjmWf+bfBguR4QJJ4ZQSWxIPRmshxYZ91YFuZqn0H1J9crZaRXW75FmOiiKKTpckScGIQnp5C3kN0H3mCEr5MqTFRbEEf4YJgF6UUsdCnwzsq6rTyoBVBAplyNUlbkHrG6iTJ1He00nqYBRZv1AfVsf0ehQra7zGp7x2avND1ltHZj0WTZYVVLWW/c9zfF7gtEK70J5gHcVjTyKz8LL8/+vT9sHppXJ9Tp+vyjlvs3WFWrcnRPjqKuZv/hYWFrGtNnzlG2FqCrIQMhlOiSpysYhRSlLTza5N/vfKFUKs4jHBekahxNKltS7dBN6LdU+zKddhklCst4Wc7SvON8Jrez1ZfpZBpyP+7f0QzrwIQZ4GtEHhUH0rnKLA1Kqips9z6PVQy8uy7WHixXmxZpINvzImw49P43W7dML2yjD3nfdQ/Y9/i8s6kMRQq2FvujFYtnjodOiYlGQ4pDfPsUsr+HYvhIEpnPf0tEF7jXaO6lCQZ1fH9FSEU8i+9KEdU3e+n5yEqb9apFHIZ2LHxgW8py3kyhB5UZdImNJgEOkPHNhkM8TSUkm6g3yGzCVUO+nYNM5t9j9RSm+2qmk2ydc30IUtz/VWYUmJHbeL1YxSsPQ0nHg3uhJDPNRn4R07IoUJVhsuTkInQBAj9Y9lPlzU+0FIa35txb5O69iwwxoPRV464eQry+Xr1MwOiBJpKy3CNnkfwnJ9af0lfRdyHrqOMjC3Hg8OajxTZeorpcNIj114EC76+NCO/jz6ZD5XEBsk+lL38vdaRcFjFTyKKNo+jCrWOb0QShqZFw7TOb13mrWVM+A98WgQNsIII3yCY/XcRvl9nhflfVsHwYumQFFgh0KilXcoZYabl0r0CXx1ieDtfgkTVTR5R56NwzRi124vWPdbSLIoNuS9kNt0AUX9wbvmyTq5NGLODFTItYkZMgb1XJIPxjM32nUiJ8IIC1JLhpr6ugSAvtChfTk8vVCnwoUQaegNTUxn0fWboCgWVlBnz0FTJlecZUCuDgnQcA6zcOb8BVwEqWtjnHTgai/qdo3HORFS6Y0NyDKRryUJzsPUg6+g+UVfhwIOHjr/ijVJxNzSKep/KSTx2OxBuO83Nr3GK8hrVREmKcW51VXO/f3fw+S4cAr9ut3LNeiCIOxysPY37+Tk938/+gu/ELtxUMZgi4swOSXlrdL4fh32PFqnFJ1Oqbr3lzGGBi7S0bINtBrUpEUmKvZtLIAAvO2royJ8baRuH+G5wYhwH2GELWjMzcIjD4lHXBzjnCcKdigAxDExK+HVHuMkQMbpaKCuDQWeHmrnfHphndu0KE3tRZ4k3c/7POwdtwPwjo+f4JcfOQbAN8wV3HZDsvmhqRSRD23wIRDTGi22Ev3ipN/q1vfVhpI4xVqs9UKi5Z5kYQEOH5Q9swXZNgGAUaNBVqnjo5hIaWlTC4UExpBUYqrzszJj3+8OUErI23YbfeIEbn4etLp0jmK9ht+1S57TTx0Z3p3NSFOiuR180/hJdt+4meRRrkOiFYXzWOc3zXorPFr3BxYKl8REN4mfvf6IrO8Nn3U77/ytDw61nF6aIBJvdsSeY3kF9dDDcPwEnX030tQaH8eyI+0OxBHKaKkpg/LZbGyIUrl/rotC2l6VhIi6rCdts97jqxVUs4Hv9VBZhutm6JqltPJprW8KTVXBV9x2M2ltLMS+RRmDT5LBxEJPhe4O2WW3sYGu18F5zPRkuV1ojWq38bWaHCNrJXCwT1jFV1CMVyagPk71938X+9K78EqzcykPi7HEaxtkeS7X0cmTkg9gFNrKYKssXp2DbpdkeQm6bSKhX5koOlhl8MqzUBlnprtKvQiBoApyIyqT7Ka7iMcnZKC2bz+1uQ+Tu4SZ1TOlPc5CbXKbHRB/6+jAkAXD2BidiaEW6ZVVmJ6S762VyReAbrcMmEyT7YnKEiZMrvRHTN5LsW77kzKi9DaNGg5fhqteMCgrbcL8XfL92Y8DMP3aG8BsLkaViWQyDlA2Q/WDZVVO+bnoLA6/4eL7cQWIkwrv2vMidq0vERvFSyoKn8u5i8cH5yJ+9atZvuuzKZzjibf8CXcqcW13uuw/wqEwfUURsL8acSYM6seGJkN1aqjddYH29iHsqz7OeiaqmcnpO6/D3r6woUoP92GlO6RG0/OKzHly78XGahsUPsYHtaH1Fy9DZ/dNkKTymrGZZ7kl2lO2O+fZJ//EyQgjjPDJDWcH92etFOPzDRETKdg4pXBEQETMOp6MRLVxpo5Hl6KiYRijcRrMxQh3FUhc7zflHL54usYfnxK7jFRT5oBsWn60+XkQpxFj0zU8MLWzed7rAcamtn8uRLYLWmOVdAS2hgQEH5zYz73h+0IZlA+1K4TJ+U9u6CHL0/O6FS+BSCkcinYkNf4vvuhLecV12q5oTDP+a79M+75XApAfODAY9PW7pJWIuYqZ+StadlytYTMjF78JonKUjFdCjez6x0UplFbsns4wkRD7jdrcectUUUzTi7BD/MnPv3YUCuMcts8N9Lu/PfKztdJeF5lyHH25OPVv/g2+3RabVMLy+scojvHTU2UngM+ziyzp2YW3/ck+Fewrr6+ffJClyTdJgi9s/wQHDF3jJvi298WAI4zwHGBEuI8wwhaMzY5T+q9rLfJN5/DWikq4KPAqKIa1DqpRIVidZ2BB4xxuqO1p2neoBnIvvsDMa4lArp5pZ5zsyDIePrvGbQcmy79tfj2lbZvxbtuHSNSvfLXGV6vykE8S8emGYENixRoEUFmOXTkJ3L1pORutlqzLerx3YrGyskK22uLssXP8+eosr7jlBuDoYF/6JG+nQ5ZUSZQWEveCkltBbmL6dK0U8AwU4VlPCN9QnPhexsShx6js3by9qshLitx5L36D/aLEOrwxAwWF94OgyeHD6yiPubtIMT7/yrcBio8/vluKp0oFd2A/2Vd+Eze++n52ri9xbHlFzk8c49da9NsIu16VCiDXLwb6CNeTbKInUqpU96qgUlfOQZKIX5/34n0IFCutTdMm1kToSgUdRbj19c1FR98Gx3sh+MNh0Qr0xIS8LsvEvkTrsoRxpbJaluXyAtOWcE3faUN/PHSpuYqg8Ijf/x7S9/wtAPGe2+AnvpuoGbPSblCLYzmue/eCTsVjPtj8+P7xcE5U8LfcTLSwUK5Wa9F14YPw3osuuVCGU7WpsgvAvvR+oqk3oJVjR/RU2DPHB/fewf1HPwTA1Pr2CnflkGMfR2UxXQx1vRRPPEXknHjfe4/P88HAxzsSm6HGJi5+nJTGBYsjmThzlAWl96WvpbdO7lUgraqXIxlp7IIzH5bv60Ne88rgJnag1lcAj4sSVFDu93wVCAr22pB1zJC3+jUkJcnqrec3b/88AHbEmv/84r3lZ6SZDpEK5EAVrTVW5FHyfuSz6yGEpQ5uJtb145y4pM3VdtitPzCQ79VffBV794mFPLM4G46fpi/up1bxpQJyOJx2Kypxj04mB8xf4lk4t3+Suf3bT25dfwx7YT1HqxxhhBFGeJYQVWJYF3LLObjl5XsBOPnEAuunBq8riPEkdH2CsTleO7Gs2/Lc9t7jCn/Rx/n8gSlmd4/jleLpj55i8YSQ7PvrFX75JftQeIxR24Z1RvHm31XqCTe/bO/V7Douz6itLpfjroMrx8u/HR3fSUfHVF1OxVvWGQilrsgG8RMUcRrx4tceBrY/DxeD0fCvH/gWci+tgb3k+qmElY7xzpG+5a0AZN/7PYOu8VOnYC6Q3tYSrV6gy/RCSOukWQdMRO4tSsVhyKLQlVQyulxod4wiolqFWz/9teF68BBtTdaChIKh6pv5tbPnvSbr5iR/8Zf0ds7jdu6U/Ylj6Ubuj1fSZCCSu8xa2VlLr1an+69+BDc7O3j/+HjI41KQpqz+xq9L/X/85JUdr+uIItTYHrj8UK8tuMjEkO93XHjwzkpHuFbbWrMmvXVoy/hLnT1H9OJ7rnKDRhjh8jEi3EcYYQuiJMUHkjbqJyx2u6iNDXmQRTG+UReLDWMGXsowsOgI6mXrBg+IJKmz/rM/CwqqC8vbrls2YGhW1ntKgYgtSk9okJl05b3MGDfqwcsZ6fcrLCSbi0bfnxGINMqD7WaYZ56Bm24KxKDDTU8LAZ9lgMf3zp8RP3J6lchmoCzU58uQGbe8RstqlkydSqyDFbgfHBdrMXmBybv0mXN3AY+1Psx6C06fhuDdTGHL96S2wPYtV6zFHjtOPOPYmmpqjCIPFgjWMwj/BDByTL3Wcg6dIzu7KMGxQw93sTYXFYS6CBMTJTKwsV7hrUP1MuzSMo3JCeb27QS3g8f/4I+o7N4ZyO1gc8EWK4qthYVzZMqQ9CdWjAnuGEKsu9Y6ptkAX6C6XahWEP0+RMNWGmFZqtcTu57+xEO9Lj5/wW4DJxMRqlKR6tqti31MUI+b06eFZE8S8VWcnIS1NbF7QVqSS3XUReyTzsP4XmjrcFz6x0L+S5MErwtRoGY5xfIqk1/99Rhyznzsg4CXNkLv5TrPc/S5c6jWWnnGtLPSkYIn9gVJ8C3PTcRPPPAtZavj/1ddYyqWz+i+ysPltVyJIro6BjztxvZtn9pripVVoolwna2tkQ/dB+z0DNFYU457nqPOnoWJCXwUSbhptUZl6tIDzKI3dFy9l/tGmgqJ3yfdjZHzFlBPLkM5YxKGeo03rSP74m8nDy2Y8Uf+AX3uhByXPTcAYfAzTLJfKmH4CpAkQ8dQKZJ2j6wasjbUUNeKNkE9rXDLKyR/+WZpnl/dwM58Hrn3OOuIyCmC73pkFKaQfU7iS3QXbAdToUxmutRk6icBdh2aZtch8WR/+mOnOfO0fFaSxJBohfaeVOsLtg53uoNnk/NXNth/NjG+o4E2MmCO01F5PMIII3xiox9UDWwKK1w+u07XDexXPINORK1FTIQfsgYM2HPzDpZPty5K0hqjS/uXyflmSbhrrRkPq6mPV7ZdxvTOCY48vFCScldKBg9DN6eZ3VgoBSez60v0TWXu3DUn4eve4nwY61iLCxadn+zQWpNUrm5iQSG5Tq1wOdWv4RxthXWhDzPWUDWiBO90BsrwMP7TR48y9thDV7Rs/dKvp7vwDlQc46NCiG3v8XG0STmPtYPJl8r2uQF91JtN/uLQg7zk9MdxKP7wNV/Lr255jYm0CPGKYrO4S2vJD0srYcwGOIdeu7zQVNvt0v7RHxmMZ62VsXu7Lf9Xq2EsH1Z5ifH2swkRKQZS/FlYvkoiofO9hyiFOJHJk6gCbM6FmJqcovihH5YfoojqV33ls7BFI4ywGaMRxQgjbIU28ixUCq9DYo+1qKII3rWqJHnxHq08yewUya5ZeaD1ladKbSJtk6oqH6p6fPvWSECIfADvmW7E/Oj9FfEZPJdjl1cxUYxL4tCNpnBaEXW6kMRo77BRiu+0US4dKAO8FwsSRWnxYqIm1R//ZdwrHqS4+WbsHXegJ8ZL9TXW4ZPND+hieZno93+T7NWvwhcWt7wCUYSppuCh8IZX7D1DNZqCvC/BHihvUUqsS+QPl5zpjm/YX+5D4hydZ45jQ8FS+63fpfv615Df9SKopNIY64vNlhaAq8yQqAVKm+Xhtr6wGf3JE+0slXYL5RwdMxiMiBpWDVoAtz9zm3+U/kK8tei+V72O0OhSkU2zESZQFKpPTvbDSYfRV5OrQKP3/dQrFbzW6F4PGuLB7bUmfuJJ6v/5P+OALK7Q48vlvGstvpUu2I9EQVURRahuV7zG+y2ORovqAkQp0A8UUprcxDLNpLR4uUcRamWl9CrXWX9Y4zGdjcsXNOhA2Lsh0jKQdmZllfrsjGyT1iRYJr7qa6iMV9j477/CMkjhmiallZHbtw995Gi5qFq3RRpI9kbWJjcxcdGjXvQ2kYNRlBKp1fBDBaxGOYeLUyrh/dWN1W13wSiN7nXwTs6tynJiOyDHVbMxsNtJ0xBwBKyu4bs9ipUWZvbgJQ+VV8EENVxnpDX53HqPcuGzVuRy3sIkXVS9DHsf5QcKm+HzoMp/5E+3v5jc3AdAo7YIn/HvtlmYHtjSmGvzxE6Nphp8GhtGs/PEKqup3EfH7xkMiuQlomwfP3Oc6GOPo7xnYXwn8es+jyKMpYzKKbxs23+8dY4idGns665d+cb1yXaAonPV+/iJCAnblvuVs9CxPnzewzNnG/TsQHVks+vbWnwtUKGNfLhLZIQRRhjhExXjUxXOrgvpVjkvDLTf5VXAkIf7RK3Dja+5e9vl7b5h5qKik62Y3TPB7J4JAB569xHWFtt4f+Ggzko9oVpP6bSklvSX6IK9GHRaY6k5zcyKPJOfmDnAnvJvFTpxhXrI5HG//ybGf0Oo0tXP+dKrXuenAqJIk0aaVh5ya67jsrOjp7AbeRDNOFTpbx7GPUFAEj3xJLW1c1e0bJ1UiWamUNUKxkN+7CTgyRdX0EkqwalZLsIhd2lBGMCHzrZ5+11v4IuCxeSJyfPFMkkaw113Q6U6sJ01BhoNseN0dkDyWyt2q5dRg3TOLqCPn8TtnJNxUrCUpFYbTCD0ejAxIW+oPH+5NANdhYdtrGqvFVYnQWIWJjKUHozxt2Dqi76I1v96E1mrhZp8rronR/hUx4hwH2GEbWCtI7Y5WondgKhGCbPSiAo8ScSj23tct0extIKOTWkPAZsfmEfWc24OwTzeef7k3Q8BnulGlQfvPDRYef8ZoRQTsWVvENKu5BFZtwsnT+Pn5lBJTGpEbeBDQ1WuDF4rWGvBuBoQ7kqhpzfb0Thr+bk7vowfestvkrzlraz/4L/E33yzvL4oIM+w2WZ18vGHHqf9FV8uYat5DqstdBILWT3WpDaW8S13d/nfzygyk5AM27UAvlrFViqYWFTClxI/m6E2T7Qm8pY8FEFKm0Bcy/npxCnR3vtg/x2bllHRijR4RdpNyumgYDAakhQiI4qXsUnwDrcyeK0v92GIjLwIXGFluVGEGhtD+wGZ6/3A5sKsrkpx572ElvZXsdX7uijKkFpjc0gaIcw0bH8goYUoEiVDmCLAoUl/47+TP3A/bs9uCbo0oob2RZgg6nZl/eMy4eK7XfxGG7+6KsGv3sP6uljWeCe2Rc4PLIiWl+X9pdICKfRQUsBeLqZvhhOn8CZG2dAtsC7qWbVrFt7xQdi3F+IYG8WoVD5rcbGC0nXodeX8FBYSh9toQ6c9+EgN2QulRReJg4WNobZDBezgOHPJKYhrEgZqexgNkbJk4dxkyfntpf3z5yrV0gfSpwnFkEosXVrAN2sQxYEolyJYaek2MNWUuHJplXXU7VKG7vbbUotCzkelIhMOzTHiP/ojdLUqBfmN915yufQ6A2X7cL3q3aY5pdh1scGjO7qQH6O3AzK6t3LpdV8EifJl00zmPTppMnYqLPu+PeXrvPg/4VHs6SwSeYk03bWxyHffNMNfn2ljVNifMFScXT1BsTiOR1G/5RoHA0PBbJ8K2H3DDFOzTTye9TNnmEg0PeupRYrkAtfxzNgG59YmADDx9fP5v1Z4FQge9eyosEYYYYQRnkvsvWWO6V0TAFQag/uxdPD0n3UKRTZQufcurrDddcP0VW3L2mI7WJGJLdmFJmSjRJdNdknlWmgKjYoT+hKff9x5e0m4r+UWXEEusZlMbSxJ2WpievEoSPFi6LWLQG4KapcI0L0SNO/eS77cwW70AE/1D/4ANz0D3tN93WtwM2Jz6J3D9a5QsV2pwCOPow/tk870IFgpsoK07O614CMocrLV9Usu8iVjKe84AX98w6sA+Bcz51cOSkF+roXqdGBifJAHZgx+eloU/F66csky8AprLVF08Wt/7dRpShvU/jitUhkIyvIwcdGH9yz81scvukzvPb5TEO9qUH/5TpKd9Yu+vo9H3neMtQWxldx/2w7m9k9t+rsDUIFHudhp08M14+VfV3nmcTftGtijrrVK7/qtUEpx4Pf+52Uve4QRrgdGhPsII2wDrZQEyWgtbUlKSbCl1sG6JTzEsgyvwHQ38CsONTM1CBBtNKjffVO5zIOLx0DtFkV4o86MX0UBxeoaMCDclRnYxjSLDqmT4q+Zd9BaiKTls6ssEHPbjgoKhzJJUG4LEa3iCJrNTWpsV6kO/NrDJMHEbS8ie19E6guSv3knvUoF9uwJy9JgN7diLZ5ahem4tLbx3gtRqBRJGjGbAC/7VuLj78EUCAloTBlQorpdTLcLyUyYjLgErdFak66AUEBUnCUPlg21L/oSVuan0OPjoBRpsgYHHxSl9xDunq3x/7x0PwBLTxwtiel+taWdE6KWdKAIsBYVbwli6hP0l5OwbqRwUYXFrW+gJwYKXDU0idDLLWmYQHCooOb2WD2kwAch7pUZdFc0JKBRtTtSaO3aie92UWVo7+CtOk6In34Gu28vqtnETU/hncMWhexLpQKVCmp5Gd/tgg+K/75KoN+psbFRnkdrohA4q6Fel68jR8p2z41MU80PyH7dsP/Sx2sLsgc/l+iJj6BQTH+BtP7FY2O0VEIztJWafnAsUJk9iF+z5fYS7IeKjQ5JlpeHYxCTCSiDCam99aJLTTk8mtkIZiY6QhZnrUC69w+mIQ8kcxFtrxZRymALKz7tSQITE0zcMdS63e4IMR7HeBRuYRFTq+LjGFWpYMaaRBci84dgrCvPtVNaPPedg6VlmJuV89TLaH74w5ilJTyQf+9LL33wGzOQjsmRag6FRPXaWz6uXu49gN9ynxgcjKEBtbs2HdSOyZheGDx0rUMzOC2bVqlM2Db4yMwNvKa1INuoDXeOJzy9Ie8qiOmXQDv2fIT6gaBsv/WLrnzjTCITM8DVG1R+YiKtxqRVGSRlKwv8l5cIpXHBSRhgeBzk7QtH4d4fnCrYRCiMMMIII3wiYvj+PAxfqtsVoDFkFH3C3V+BDeAVIIoNWajf+wr2C72ur2vJs2vZFkdPR2yE7jozVFN/dHWDr8m7xOF5faY2RaO3ThZXiEZBihfF2EwFo1T5jLx74vqFmXeePodd65a1pjl9BnP6DCjovOIVYQykSPaMs+ebv+OKlq0jIdL7wiSlQ+dqlpfjHYei/cQxUIruxqVruRsm6sBAaZ9uY0Xn8aS2TXs4X62f0xXHA3V7GJc6zWWp67tLIYOrWt2c29YfJxpzXke26168Dvfekx9pkR1pkZ9YZ/bb777kdgD0NnKK8FndTpPmOh0orMgDVePCC6oNEfXb+K9fCFF3Bdz8YH9jc0HCfYQRng+MCPcRRtgG1XYLFTXF29taqFYlaHRrenilAvPzmGgR2+lhV1eJ+l7K3R7+iafhlZLf3p3dW7ok9j24URBpT7vdphYsO4qNjZJsVUNqaDEekT+dPHKWPzvmuenBSeJmXf5QrWKqVXxrHZbapee4LEiFMJhAynU6vO93/4qxu17FV37Bv+VzHv9bHogyduto4Os9NQlnNqs13UPvg894Nf0wFj05Id7RWsO5c2QnJM1dK0RpD6Kgfts7WH/HP9D82i/Fz8tDMS6yTaGy26HyI/+K7Ae+H1+t4g8fprjxBvyTJwA48J3fzEd/9pfZ0WxIQKV1pUfcJliPKmQ9Nu8T0gM/QKXUkIKd8DOYoQJmfblDOiNqB+cvXYx7KJldrcAOM+BD63LaiF+kh65WjCnAK4z3+DwTAj1sR6z7Nh+D/12vhwaKU2cwO6bBaCkihw6r9aJbqr7tHXS1wd5/L/1BVlnVOifHIEwW+U5Xgmf6qo/hoF6lMHM7RHG/vj7YpuFOhmtoAwbofs7XyLHLHGpRCsSofUq2K5y/Ih4Q3kmtil9eG3xAkO2t+GLTsNKiMWGA1VOaxFsRiCsNyqFxpHEX0/cj37pdpT0SIZBzG3i/+T7hPa4oePLJJ+XnGw+XKhSVZZiZoBZrtXC9jOzcEmb3TecvdwuyyoDE1301S1iv62XlxI4fUvWTXMbAaP4u+dqKtZMo5ssfe6qORyYNlns7tl/Wjtvg038yTIRc2yDWKlXq8S7mRanzFlDDA9XxCXk9yCALy+fvqhKrruQ5BMreJ+OguqLs15fuLjgP6Ti0w6Br60TdpxBqzRRNC0e0+Z63BVGaQggDR1+GzdFzBBNp4lQs5Sr1F852jTDCCCNcT1RqMYMaUKGVG+qufXYI5+wSZF8f6gL18hUjrvDw2C52tOTZvJAOhC/fdGiK2BXlLjd7LWJn0Xl3ZCd2Cdz80r20//LR8ix9/q4LW6ReKbKVjU3CDjNZxW5k4Dz+tlvKzLBibAp6l1agb0VXJ1RXW/goki5UB76wYrdiDCoyfNreJzF4VHTpWjDWm3UolYmd572m08oofDKwAh3KYgOChacZ2ISaiE6nQ5JcvAYp2h0ZD621oF4bLKM/Zut2B2NdELeVS3SM+Kv8vJlIoUOnw3bjepVW8JGTTSmu8vM1vm+QCTb0WQaYvv0ONp54DH9gHyQJ3hiucRg6wgjXFSPCfYQRtsOunfgdM2KV0qjDyoo8FKemzp811ho9M01x5CTeBouHQPpF+cDP1/fJ7hBqWDhHEmk8iiefPsKdt98qr4vSMmHc7JwXIs0DXkhRBTTxvKyhZba+UhHCud2GpSVUrX7+FLO1KFuIQj/grbteyg/OWR7r1Hj3Ha/jtQ//nhD8IfjVra9j882hqfbGGzb9rM+ehVpVFNfG0OeEYx3hisGD/oMTB/jF17+SXzdHMYmo8Z2JUO7iD973vfoN3Ln/gHidZzn50RPkrcEkwMTpE3DHYfAejUdF56vPo0mNOhPCMYnOn/HXRpQafcVGmoAxuN7gWP3W0h4e/gf5/ocO77roNgO4OEUFP3EzNUGsB+Rw8fa/ptqs4b3nvc0bObY2AQrut4rZUGDpmUn82XXxR+9jzx4hb8cm0FkGIeQJrTCJKM6JIik0xgfFSOoKTNXgcovPc6w2mDjC1KuiOuh2paXR2tJfUKUJJLHYBhEI3TlRO/teD3X6DMoWUKtDp4tab+EnJkt7FD12daTj8acXz/9lOF+mcxrnfWnZFA0piXVSRTcKUdqD7AdgJybx9bFyYODjpLT86LuxKMB4x/cdOobWjl1VJ6SrC9e+iiT801mqqSd2BcpDs9jADAWXqkoE7QKDxjRC8escvtvFttqcOyeDPlepoPuKlv6kRZLINnqPLnL0ZQx4N84to//kzwBPccMN6FtukoFyHKOD9VHkCnwyFIIab6/KvywoI8V9QOK79O8OM+mZ7d+jNXB9iMtbd4/x1Ge+p1TKn/nYF2/7up5NcMGPdmb1dHnuI1vQRsKEez7hvtrvCskAoGtQhL25GnXfjZ8F7UWkK+D8AdenChxiYSX9Ohc+jjqOGMxIvnDUhEkl5iWvu/Rk1wgjjDDCJzL23DTLiceW6N+HrR96TqfXj0C9Glhnh3Lbr5781lqz70veyC+f/hKUUtw5Pqh/YqN424H7aHbWcB5uXzlCxW6gbX7RZ9cIoCPDr7zsyjtXLwfFFpsYu9IpGW39+JO4e+6W7727quvU9XJyRACiAhntsww++jEZ9/cyqjuQmnns0rVc3tt8rdwzP37ea5QBn1axldpA2d4XKR05Ip2wU1MDq5msh7WXvgbzdheV+gG30PeAt7bM7OpntgGgFTNfd/tFl+m958S/etcl133+Tg5109vzBTHOaPzYmFAZ7atkwm+/cLZCphK8j6QTO47FHnWpjV2XMay/pk6ZEUa4dowI9xFG2A7Blxyl8FEkhCNCNuKcEMzhAeOdC2pSNk91RzH5nkFR4vshQdZCltM2KZGBwnmyIeLZJYmsTymMMfLwAIwxMhMPjNeqHLAKFbzCvRJNSGFitNY49KAtMgS0+CQZPJSV4uWTHV5z+DSvmT/Nf/jop2GyfOjBLCppv0Wl6CYnNsWd+EYdVa/LQz1N6dfGlakq6qST3xuDVSEY9MbDEMhgNTEOJzcuehoOff6LRHngvUwqRBo7pGI/vvcGDtbrYm/TbG7rCakrBmUywFNbOgv+psGMfyDZVZaJ4gHEJijLqTUHhdOmo3AZ6pex3ROovhVOtUrkB0qJQ0WX3j98EICFu+Z4q5PW2rlzT3BzItvZPrlEvHPf4Fg7hzp1Cr9jB6pWkUKqyOU6sRbdbuObjfJ4U62Wl2P0yq/ilm+a5qnffDendUqlH4obx9DugHU460RVH641b2XixXmP9tJ8rM6ckZAfgPlgNbKyIoqDPKdYXiOKQ3HXu/xWvpndY9THKqwubFBkBaZrcRpM7okyVx79ysQsSq9JcapUGeIKiAd/0h2cG2Og00GvrOA6gwmaYcLYKV2S7oUyfNO+U+hyxmgcCg1xBW74bFF8byzQ/e0fJwkKi4rNygkmgLnvugddifAf/DAnn3kKPzYmnSXLy1QIqmylUHEsCoyiEB/+egij7WV4LSYtepuJo6148s4H+amnc7zz/HT3GHv7/pO9rqhdAGtiCSk2JhD612B3Um0w/EnQWguxj8I0r87T9cqgLsuW5tBtkxw6/vfYwvFnygzZCQ2uJVlcUPcpDSEI96oV7jtuu/L3fBLCuoEnsLtIMJaqz8K5Zflh7PyQsRGee1yGwdsII4zwSQJjNt+fbZgYV1oRzx9+VtZZbSZ0WtklX9da7JSlSnf96m0hlFK8fMZw2+Q0frijE0i145fufmNJrf+vP/ux8MTy6K0ZSiNswrOp/zd6iymfVoR2RKIzZyTHTCkZu1xFJ4Lr9MQuNhDRnoKiV6D+x28TvfZVOK3h53/2spdXrW2m0eaa59ugNCdqqLwHe/cItwCoI0ep/s7/xjUMvTd8gVyZzonAbnycxx57DK01L3vZyy7YceGLHFIjmVUg7+31xJo0jDP6/IG84dl7wmedvMxnMFudABBhmx+TCRIVXXzcfzUYq3pO2xg/Pi7jv1oNpRRmLAYH0cylbTpHGOHZxIhwH2GE7dDuwrjMEnvv5UExnPqd5yFcsife2c0GHqkLWiplSouHmpmZLBe5njvGPSgPyjsmzxyHHTtgtcV6ZfC63EO6sCAe7J2OkPvW4fUgHNV5RaW7SnXd4+xOqVIQ1a/zngJN9MgjsGsXjI3Jg3Z8HE6eFCX8m/6YL//Gz4d9D8Djf8l3jJ3gr2+9Fz9EUHmPpKeXP3uyxRUqQb3rreXcuRazWQaTkyhjiFvLYTt6ZLYgDoXCuDH82KEZKBZL0t+juNQk/n037+ejRzsDD3ilN/kwdlc25HwYg8q3L+SVB0sEeFYaU0wN261Yh9EKH4kvvVPSceCBVA+KnL3TixxdFt+5malLFwunfuePOfQdX18G66rxgRLjwG//Vvn9n/+rPycP23N6tYf+uV9AAe3pvTS+/J8RdzqlP18ep5iVVfH6btSlqChEKd1LUiIUutMVIv7Y8cHQwuZw99cyvudReKpdTh4BQphqhTZawibzXMj9PMdbK56HWmMRb2wDcmEsL0sYaiWFeh1fr+MefxL6aYPDHvRDxeLq245gt+FMq0A3Bas9cbugOx5TxJqiZji34ZgF0shjn3xaFPlJIjYwAd2jx4midLDOfutmJcVrjQ+++0UUQyZdJ14ZespgvCfXBqIUXOhI6a2G5XQHimelMMdPl8c1aa1ue+6V0qKk77eNhsJ3uGguzi5gKgnKOTi1Bo06qlJBKYVqNiQX4RIwzoPzWB8K72EEZYtSGh1pfL0phya+BrV50sAODVgn3CIHJ0Lbx45Pu/rlXi6UgrgOeUc6Di6E+bth/m5Ue4XxlTcNttg5NBmuH5XrLGgv51f13f1HlOO1wOddBsPxC1/DS2cHoXzrK50Lvm6EEa4nRk4RI4xwcXjnKXrPjhq00kgvi3BXw56I1/CZzfOCHs0h4VC/pxGqJtmkY18zVWqFiF/izsVDYz/l8SzeR+s3zbFycmAVM/O5t9A9usz6o+dEtKKNrD+OwFxeoOcw7Ilj6EM7gRgfp7iOx+cFxjuiN7+V/DJsZIbhnS17OGuR2l7dbR1MzwSv9jCxZR2z3/mZrD96nO70jHQH91XvwRbGFQXHjh1j375926678AWgRUjTt/2sVstOY1m5G1hcPosPwDiNxDJqi0VriY0N9DPHhE/Jd2DiC0ykXWUJXjiHT4Oivw9niefkGkkPnd95MMIIzyVeOL28I4zwQsJb3yatXoCemcZqM/D+TgOxl+cUK6v4lVUhVRW41Rb/8q0r+Pf+E2phAbW4RLYmYXzLeREeiqBD0ChKYVzBx08Ieeecw5uhB0Z/neE9KoShKBSdXYdo60QCX5yDWg0/N4eKY7TRfPRIi9ZKCFXpk3+7dsHMDt5TTDFx6G7Y/VKIEpr7n2Z+amUQFBcCRdVQ7dBeX0crj336KBvveBdf8WerHHv8NKI8dWAdeVUeaipuSqhjQBPPTTsa6Dwf+MtpRVddnACs775106x8gsW4wYN6fWIWi8J56F1AmVrZMcvc+Bpz4y16UUWKE2shy4hOnxJCdKwppKhW4oGuFWMzM+Uyfv4lx3jvq97He1/1Pj73xZduM3zl9DmZ2Ahe09Wd89u+7oZmQkVDRUPdFVRsRsVmxL0Odr2L+uhHZVudI2rWUd6h11algGo0yomWxFu0QgJmx8Zw8/PiTQ7U67Lu6e/5cc5VJ4NnvLQgOm0greDHx3EmEsI9y+V69oB1wQ5dY5QvCzZlrdgZOSf7efoMPPok8XveTfye99A7vojaxkDPZwWuu/3X+GrB/FLBznNdKajDtd8LH4dqGomNTj/MeKh2rN/9IjlOw37zlQpueprO5Ay9l72G3ss/gw8efFnp6b6e1ki9JcKRuCIE1gYkfUue4QJVcebwTbRNQtuktJqbPQTLV6ngDB4KZz8zs7kIBCJXyGdZKVwc/ubkunTL2xP5WxFF4ENjTW4ZtKpqU3bnaDzJl72O1o/+Cms/9mswt/uyln1B9CdSfJiWcoV8+WsLRL0sKA35BuAGdj8X3VTNuz7jq2hHKW2Tcq7Z95nXeKLNYw8fyHbvBh6RI1wxGrOzoR3foS8SmppnxdD3o+M9wggjjPCCwbPEy7WWLs9zWw+p74treD50WhmZHZCPkbbMHZhg/sAkc/Uewzrcuh10QlaPH7nqdX4qYLtO4usFU9msjq7umWDvN99HvLMpQb/eiSjIGJi6club2YUTGBzGGGQYrlAK3rX3Hp6a2sMTMweuaHmR0RijMFoRa4PbzjhcK5w38NgTIqLrdGB5lfnkGWJjxJbVGCnqo4hhJdqZMxewawwou3aH/x/+OntWLDY7HVT7+oobrHUUhaPILfrbv4ixf/nFjP3AF7H2//7cea/Nu1buK1pRbVka7vpOajWMgtUCNtrgpPPb65yZr7udma+7neYr9lzX9Y0wwpVipHAfYYRt8K6D9/LyKCXpdnHrG6hKOkgCz3MIgYS6Ucfs3V2Gb2rveff97+cfTu6jud4FPDb4Sc9VotKDfTjIRDnPzScfAe4D5zBJjHWhAVJpdLD/0DMz+BOn8d6jjSaOUyrNcWgES5duF7W+AXFEWmSMLZ7h7//sDJ/1zTMDG46Tp1hb7/HfX/KFfOOOoLp+8IfhyN9xuPt3PNI2mEpoidN6k6XM8hNPC7lnIo5rUXtnhZNgWSCPYk7c+FL5fcdi5neURKNqiL2KIwQfhiJn41L+zpVx9J/8Ke7el8H8vBRZQ5YyT1VneFlDZrBlu88fKaRjkxx+9QMAfOid7x0ce+fQSmGD5U6/yFFabQodBcRaJA+DheEU9Qtg55e8iEcqk9SCx04SbX+rPdBIWQy2Kbf1FsJ0h6KRd2hHXs7bkDrBOo83SWkX5JVG1Wpw6BCsi9rfFxZ/5iynx+Zo7djLvXMHw/s1sfIDYjZMqqAVCoXq9/AqJd0QEEJRPR4fAkeDFYtWoLS0DtZqMtlz6hS1v/8bAIpXvBHjFcVAUCSLTqJLWjabasywzKEXKx5+z1F89z7a6s+Y+54fwHzGqym0gQdfCYCemgX98MAPOuyfUgobJXS++NvkeP3J75WbU887bEQVUpuLwn34nJfb7DcVskoF73XPtkp9gDjp+1MrsJbi5Bkib2ViYipcO/1goyRBj4+XE3gAcbd98QPU38TEoCgAT3t4TOqsTAKONSl6ObHpDf52LQJupYnznCxcj3G2Nvjb6rFrWPDlrl9JIGl+eccHX+BU/54g0yw6aNoilbPpYPihY/QC8hT/RENaTdEUeDSGC0/CTM40WDot99MkHZWhI4wwwgjPNbRRpQ1EXI3IO3LPfrZ0sEXv8gqQKInIezKp7oqrt8Gb3TdO69hRWr0qoIiM4/CLJIPpkbVlDtSXOdcT8YDxfqRAvEokW0jya0F85wPw5sfKn10YjM1+5s2sf/wcbmVFXrewBMmVK9w/fOO93HrggNR51qJaG/hezq+9+I14D80IvuIKlnfLPXv5jUw+Md57bHH+BFGcROizxzHtubKrQvU6YGJQlVKYBWxWpyuFHbLE3ApXq8BYEF71hWlPH4Fd8wNLmWazJPJ97fraqvzTmx/Dhs/nWK2BWs1EHOi3u4PI6xSg/VXYNl4C1eklKntn6T79DBw+CHix7xxhhBcIRiOdEUbYBuOJGyg5vadzbonagb0Di4hMlNp2tUWxuEK6cwc+eF43bvt07JHH8N6hANsTMifFopNYHn69nsw6Vyr4+TnSCSkulXNUexsU8TTEsbTQFYWQcRsbmEIUvgaNqjXptE+SFoV40oWgVoci0zHvnTzER+OYz+pb4SBBM5VeB2iQpkMP3/2vYHpsL+4t/4hpt4Xgz/NNAYInFlcxe3ZigEbHcmvRZq42DlOTYumC4thpeahOTTdZ/tgi7AohoK7gxnv38nu/9k5efF8V4hhXWE60Lu3PuDi+i0klCv2iWiOPB5Yun37XLla6S1QixXp26WJer6zIsQxfvXqTyDlYXZVCJ4rQOoMip5IMFT63vAE6IdBz4tKqChPH/ODbVulaT6QUf3vX9g/+rznQ5Cv2Cwn7rpU76Tz9AVCwWh3j8HjM8uqanP9A0Jo8R4UgTrIMXxSojQ2KhWV0o4ZuNlBak4+NU/3RX6YK8MRKub4droO2BXS7uF4mSoCwLGzw3Pce2m08wW9cyQSECseHLENXKhLA65wsqytEvw1DNZN1MWMJRXvz+R3/jP1MzjUuefwe+5OHyu+9UhSFxfmYNNLkymDf/rcsNAcdCMmOHVjrB3ZDwRrHWUee9zXtML08sIRp5huspw2Md2RGuhvwEZhqkI5HoX11QOLfPBtjvBPbocr2AaQmSiQ0NRw77x3MzIj9Tr9VtNZA2VyyAzbaEvbbLw67vW2Xe956+iSyAjNWlwlBpWBujsp3fS8RjlbahO/4jKF3XQPj7j2TZ5bJvCiNGvsJVizA2DUq5y8LoZNG6cvzWTcxUWRlklOBxwRrKU3hQZlE7m86grgK3X5nwWjYfdVQOnjlajwXHoTrZPC3auP6hOqOMMIII4xw+bj9gQO017p4PE99+HT5+wt5Rl8zJE/7kvBDdcq1aASsc6wHsh0sFb9c/k35nP9w1wy/d6xHOy8olC7X5UZE3SVx3+fewrkTq3jvr+uk+dg9+zkdLj9di6ntl85EbTTp3/0d6d/9HQBTn//AVS1/zzMfwTw5i9+7B28iGWNHBh+U6UZf2eRBc2qQJaWUEluVbaCXz4n1Y3+MMjMDtAZq9n7gabc7yOJaXka1O6GGPf8z6TdW8eNVwA+I+iii8vt/gI8jep/1WWJb28+gy68+D2E7uKGJgvyW21C2h8ITHTxw/rYqJeNNYOysgtnruilge9zd+BveYx6QsRaQq1EtP8ILByPCfYQRtsFcYok0QjYCBLMVVdqbePAQTU1KCEocSTihV0Q3vgL/548CouLuP+R8nEBdZuR9t4uLEky7g19cpJcFxbL3ZLfchkpkeRrkwZsXooRtiio9WTklriLHnsHu2jFQLGsj/ylY6jiK3MHiYni4gxsfh6VVXjKxTpJuIQxrU0GYKwpo17eiCYje/H/Qd9wOHna+9W180Tf/OCf/6q0cCq8xacKtU/J9s1Gl9zP/gXohs/MLN7yUye/6Bo7oKe5JU5TW6EaD+5NLq1W7jQkJ6YxjdCUl6g3sJA7snOFr/t+neM3hChUUn3MJK+nHJvbS+plfATwHvvrziQ4fxKcpqlotve48CtvqEA+Hck4dBq4sSCr30HEAnjTZnlSaPbSTdqsHKM5M7Obh6YN4POd2HORlSZdWL6PoK9LTFOs93sQySZDlZbeENyEQqijw1tLOHI1QoNXv7p9nhUuqODTaWnQWiF1rUXmOdQ4dttP3CynvodcTVcLGOkQG7Tyq24W1NQmosRaT9RhrrwQSGGaPPdxf5VWNmIbHZdp7osjgUoPTEakvqNicuHV203v8iZOwf+9gu61FW0tUDK6XlV0H2Xj8nwA4ObObH/20b6fnPLFSPMQHg0VKC9IxsUkZlrHriN0P3sgvjP8gAA/u1vCR87fdpLEEH4fjHzXqUkgvLMD0tEzqNGr4joQ+qXAM6fWCb+PltVDfMVvl5uOAh/bppYGdjrWkXqY+Jrtrm23bzTUMJBtz1NonSNbluolecgO8+p9d/fKuFEqJpz6A3TIpsR0/kDZpUZfPB6C1xxNCgQFe85OD1773v0B3Rb6/lmDZT3Uoxfj8FN554osMwodVi1nvObAjGmGEEUYYYROaU1WaUyK8GSbcs+zZuSdP7KizcubSGUj1sSrdIMaJoqsnzar1CgqLJwIMPTsQGem8BVSoGo32hr849AA3rJxA4Vl78PN58KrX+qkBHWnm9k9e9+WaznFu/aU3bLPCzUWeXVu5quXfvgeOH9gPaSp2MmlCZcNAtT/Sh4Xf+viVLXSMsgbdONs+7/0eGdOYwsq4RimUMyx89F6yIx+D24IALwtjlTCe1ysrKA9n/sfHiPzmz4HzDt8cQykj479+F3W9SvyBD4FSFHffjZ2dHViBXueJpOGhXfb61+DnhUU3Tz99/oujYMtrHWZbBfw1Yu2E/L+xIeMsQI01L/KGEUZ4bjEi3EcYYRtYHWHrdVHyJgntbJHa6ipUqtDrwm/+DnphAT7rM+DwYZiYRAHZsviSiUetx3slqeqA6/UkbDJYtngUeIdq1KmPjfGed78bAJ3GQsAVhZBw9boUG32luvdgKkSRYrk6xlh/5juKYEq2I242eerdD4sS/4kn5AEUSNvEO379zsdQ5nM273Q6RpQXJeHkgdr+HbznPe+R7f/8z4Mjx8B7Tu69mW+6/xC/8d+eBl5SFghpJNsSG01HJ1SRfffBhiLPe6h+AGpkqKvzE923wu2eK48ZlQq9IQWC0QoHvPnJLuOX0Qh7z3zE9z3wzXjgZx55LzP1OvGuedlbrVFRBLUqZtcslea1td8lSsp8rc6rFUscuGPg7Z7/49P8+wdl2+6sxnxL8gyVN72J9Ttul/PnPcZaWViaSldBaz34aSPqASUe9NXgc5+wRuO2MHGgApE+9H7XWkdrjY8idLc78EEHmXhx4uHuNViTYnSwk6nX5XoM6nsfx6ih468O314uwl+jRXNSwK337SM/+RAfcw6LIleadrpZKe8+/BF44N7wgwtqcihUmIxAcfzGu/hNP4cC9kzE9KzHAlp5fN4b3gMwiSip+ypu57g7eoLfvCe8ZPIQx7cj3LVCP/II7N8PtRpqSgYlvlKR5VuLLwrpKHAWOsGzPhTDvctUZdw5E/Mjt8ox+Idf/hC84hbwHr0sKi4PtKIKU5XrVHQ25pi5/zFcS+5x0aHPvz7LvVx45Fx4B9HlfTZrkSo/H972Uw22mQVqLw2+712ez+wI2+PWe7cP+BpGfbzC0km5ji5GzI8wwggjjPDsQ+mhuebtQg+vA7az29gOO3aNsbYgYpzG5DXU4d7jGCIZh7wiTbUJ6zmfu2sc5xzfcNtnl6kjX1u5cquSEa4TzAU63rbUxbo+cVWLn/ziL+f4MyfEhhMwczuY6HyIn37xHA5P3YPrXOGE03hUktrOO1z3/Ovct1ZwtarYvACuUccVu/D+sWCXGIu4rq9w1xoXLCifnpZJKuXh0Efl89AqOviKglYLVjcg3Q0ozIc/ik9kvKzWNwZCHO/x0fWz/gEY+8lvRK+LteTaj/2r8vdOn1/TuX7N/SzdW3jRV8LaCW566BnaJ55BpzUad9767KxrhBGuAqORzggjbANVnRBLlW4XNjoceeIcM68WEpFqhejkCaLVFVrdAuMc2nu8gqWOKC973uG1kUbGvsJda5zzaB8mw0MwkNWRWGH0H0SdDtnZJaJ9u9B9otkYcE4SvgtLsmu3+Hg3mqXqnaFiVvV6FF6z2hhj/aPvp3HLLfK6PEdnmbCg2xB7mdak/dlwL9vuLIGs9RKsiaLYsRudRvzT7G3c/dfvxL0ksJBeyMU00vzPe7+MfaceRyvF2N33AfDhM12+bGlJPMK9Z9fr7rjkuTjVcuzOcukkUIrIDYohozVKWZSXUE91CTVMtWpLqq1wXiY9bCGz4n0SGUApqnPjl9y2i6HwiiJ0QpgLMe5DaBeObhjwOKOp3n4rHzx8OzeOjw86DebnArlNaWtEpYKZTfDrrbKYK8YnMHgilaFVf8CiUHkm78kybLsjbYpJgo8TVKslEzzOo9ptsUyJIsCjlEaPNWU72h1cu4NbXkFPjqOTBB/H5I0JkkoNPOS3vpgYxCN/iNy8pk5lHbF77SwVK8p+vcVEvYLFdUIoUD84FY9xlp2RKO5n6+usTYn64ebJNvGiIgLqkQSMggZTk5GnzeSr/7nc6hdZmdj8c9i3OElo/9Kv0czb2J/6N/j5OVHS9LpyjYVjLmoWJe9zrpxMK8z2VjVboQAXHuFTG6uM/UtR3g/rs+s2w9z+hfA0ZTvntSAya9AIXSl29eIvvt5QKjACHoo2l+M025jwvOXgfeChOzaJTDFuCRYAsENhUp2F67bJI2yPqbkGRSZdGGPTtUu+foQRRhhhhGcPtbEKGyt9v+hnx1Imrae0FmUdcXph8m9q1xhTu7YPpb9y9J/3niqDmkU3puDcaTQZWjtqkWK9kBrpVXuvr9f1CFeA7vZhmmrL5eKvkrit3/liOn/xq1QD4a6MoVEZY3ctFp2NtWh/ldSY9xiv0JVtCOfJHdiZmTKTy4010N2IqFYnfvvbsbffDkVB9OijFLffjpuehomJsNyhBVU0Go3qZaHvHiIsvUkJBXWvfiP5q78UgPgDfzQkoFKD5V0nqPWhMYAdjDzUdl2i/cHfs0W4V8ahMs7U7G1cOmVthBGee4wI9xFG2Aa92iTGL0tmolHUlKK3tELSbACexs/+IrfMr/KmP3qYXdoAntRZbmxJovjE3DTxLmmvamUZswQ7Ghf8pJUKkpKgOh5+CEURHnCnTqNnpiWUUinodrG9nMXlNje8dDcbj5ylYnuDUM08eL17T/Zrv83Xvf47OFBP+Z/vPM23jo3J6xoNXKOBis5t64Oc2qIkKz1QyzbQG0YU5nGE2S2K7KUnn0bFmmLPDfj/8V+JFhbwSqEfFIuJahzxsV138DeztxIrxdftElKlmRjGf/CH6L3+M8l0TPOHf/yS5+Kx7hov/egJuOtOALQbTCyksaaDIkeBcihz8YHC/jv3sP/oipyjc8tUiy42+PT3CzgFMgFyjf5vzahN1yYoJUn2l0ItiqiE7TcokjtfwT+++jSTZ1aY3iM+hi6K0FFQUzQbuDxH93rY1RZaq9KWxK5tQF1R+CrUhWBGaZxT0tpXq2FqNbE5MWFiSBkM4LXCszlAynsPKysSjhrci0wICu6//9zdr6J4w/dccP+qjYSJ2Uv7t8NmS5nIDgrGczv2Mn78IYx3xHazH2GsFb1qGCh1OkGd71HOcbAmLZ7ffucU334wBDLFNT79b+/DepiMNfRDHu06RONgUvH37ndUaCOfmdA9IJ7fgw6FPqI0ZWdnBYBVLR0HwIBUJwz/TBQsa5R8xsNkybAn5MUwt3+CuewvATi9czft1WOAQnlLLRwb4x0mToDswgu6EszdAatH5fsdN1+fZV4ugtXVlRTsKmny63eIEn821XweFodGbTWSnTgIK6ENtn69zSVH2Ir6eJWD4yNSY4QRRhjhhQA9JAopsmtsS7wAduwapx1I/an5y6sFrwVRbBhMHii6amCB0lrNyBmIKAo/cI6fHj2anj8kY1AMdRkqA96iky101dXytmO76CxvUD1+Epp1sqVV5r7ilSyfluXreoWZL73pihb5xJ89LOHDWrH3xXPMHJo+7zUnfjcmef8HKNIUlKZ6+hQz3/U6qquHOf03j0FNPnPV3/0jiCvYiXP4mRlcpYLauROiGFBMf/VtGGNY+/v3wzEAhS8chgzwWAYdAm7/gfO240J+8FcDv+cgnBMrKtVs4vs2rBewpPJjjSFifmTdOMKnFkaE+wgjbIOk3sBNRujIQJqwbE/xc48YvmL8JArP3Mt2wv670P4hHAoNFNqwPiUe0t2jJ1A37AbvWWq3OYwEjHhng+BCYepViCM4fQaSQKI6B84RN6oUnR7+/2/vzuPkqqv8/78+997ae+/0kn2FEEJC2A2IgITFEQVRHEQE/OIwOIiD+HNXFhVlREUUHUQUYUTFUUcccVBkERwgjBBAEEIIWSDp7Om9a7v38/vjVlV3J91JJ1TS2/v5ePQjXVW3bn2q+t7UveeezzmF+tpAGEjt7GLD6k1MXDAPLxInnQ2IZgpBd9cpZUIH1lLphVnfsc7WfrXY/YoU5pB3Q2Tnci45DJFitn0srE1POh02ZHTd8Mf3OfTQSQC4gc/th7+HI599GsfzaHxzscGkxTjgB2Hmv1+oCf6WSRV0ejHsA4/Qmqgi8rnd15SbPesAWtc8T40FsOHfpPh3cl2Sbh7fGuqiu58GOK2pkf9Z/BewlntXOmQdDzcex1ZWhsHqIs99w0k+Xz7oVTpyLo4ZWhOqjJ8jX8hC7iwclDQkXD7ytAtPh2VCbm5cTf3Rh5bq+uOHdefdeIwgmy1dfIniA5YcEaiaUngFQyTdhVOYthjkclhrcTNZCHzcbBpsVVjGP5eHlFuaWYHjEMRjOK6LEwRh8NnPhyVlurrCz84v3wFUxHPJF2ZsJAp/72zWJ1LIavcxbOvTNBXAd5zwglMxKFtoAGv7TlHd4e9w3cLJhU9mh23Hz4Z1wv1M/5reNTNg24rCugYZvOuxIV5NRT4Tlovx/cIVCje8aNGnTr6JRMCz5NIZcMOv49XxRnY/7wOoPzD8AYLER8kU6rO7viEoTI5ui1XSXM4GaPPeVb517TGHPa2vHnV8EoX/kuojljelfs7a7ELCP96hfZYMCilUxWqbIiIi40M8FaVje2Gm1z76CqxtqqC2ad8H2vsxFC7SG4j1zlrN9Cn7YcjzjkmVbMtaDIbamBp5D5uaqdC9vvd2oSalu2Nz9T1sblpiDFOe/l/ch+7FALlIjOjv7sFs6iq0Ztu7SL5xwHVdJg0QbAcgGiN+331w333YZIrYGWcUnkjYZ6A73Ok6L/8SlgjeE7+CxsbwPCabgVwW09ZGNruQRCJBvquLcMAWN8iRLQXae4+RbdOk3truAEFAkMvhDtJTbI/fc3srTqYHS9iXrngOHQww09wm4uGs6WIwPlDAXcYXBdxFBlBdF8FfvwanMaydHXEcXtyc43ObK0h5Dv/z5vDLPmINxnUKjStd/EKTDrtxY2+D1UIX8kg8ittUyJ7s7sG4YXDd6duc1FpsLkeuswebz2P6Zr8X6qTnLVQlI3RFItDdGZamcN0wkFcIkHrpbhrjEVxj+J+mw/nH1g7iteEUTQPQ3DfY1FchfdlxcOIJrIEg74dZ1QBBQO65F5h5SBMAHoa/Tl1EVdd2aj2HqcVjIM+hJZ0nZ8P35BcCZdObG3ih8UACYGtVIydGd3/QdPkJ0/jDT/7e28CyTwA1FTGEh8gGO5RGLDYIm2EC6ZyP73q4mQz5zm48grDsjjHQ3Y0ZQhmYXTlpQisDlq8YxKa8CT8vYH06DJhe9bZZ/OjltUD4Oa1//G/UTJ+EVxvWnXQIwuY/sRhm85bSttbjGyrDwiu9L+A4eD1d4WwFzwPjYLp7wM9j8z6BcXH7BmeDIFxf8cAoW7jwk0yGF2Cqq6C9PSyTkkqRM+UrMeJWRmB7+F6Sh4XbWiTq0hMLM5JcLDWd2/o/KZ7sLQmUy4V16insWsUmm36fTG+vN5Pc4hJ+VhYiiXAbs4ULC30P7Dtawn+NC/HebKm+nGiUhnRbeBHuJ/9B9xe+ED6QTIafZaExklPMeDcG1rzGJWsmEXcd5lcn2dPq6KtPOpVPTj6NADioex1XPXwbUT9LYBzisSiQ2d0qRr4dLxAOYbda1uoUGhfD2kIswTO5AZ5s+jQb0ImAiIiMH/FUpJQ1bN5otslIYqH4fZ+o7g32O31msFo83jmlN4EjFlEj72Fz8FnhOVo+DV4MWp4GIFqbJD6jhkxLJ8Zz8Kr2fhpC8oiFZB98BIBILoM3oRnjvIrB4A5hNvKOjONggmCXk6Izi0/DtG/DbdsKyRQm4haeazBhAVDCIpFZfAzO1Bnkp03tDZhnMhhryWbyJBLQ09pO6Xw92PGFw+3d+l7/PdkY/Gy2bAF3khXQvj0808zlCQo9wMwOs1CttdCTwSQykAuARL9+CiLjgQLuIgOIpVxMn26PzdvWkYw1kwksEcfgFjKJs5lCSQgIs6ILX45rOiJM2bQJ4nGcqiry+Tzp7jQVGzbhVlVALIaNRjDWYqZOKdUnJxLBxGI4W1vxXYNNJsNGntZCPk8kyBPzfQ6aWMvalzqo6ukKX7/weLGkSDqTJ+4YgsIX34sbuzmsJrwYEFQOnmFiCwFbgoCgvR2nYQImSrj+dBpyeTa8uoE3v/t4AAyWvA34xey3EAOOKHwUAQETYx5r0/mwREth/U7U5euLLyLtWxIu/H8Vu69X7eQzbN/aRXVXWDs63ae+XipiqI4EWAuNQ6nEMfFQqJ8DGMz3riwcGBQumuR9yGTDv+Pr64awsvJK07u9uYXms0xcxERvNS358BOc2LYRr1CSyBiHwDg43d34nV1hEDyRAGuJTgpL0Ngd/ouPv/g8mfZ2bGMjjgdBEGaCm2ImO/Qp22FKJyumMCuj1Iw0k4HVq6G5uTQrI5sLGwUPFgl9o4dXkfQWAtcjbxwcG5CL9t92gmeeo/Kpv0IQ0PGRy2DKlPBiTzYHb/5MOIKlN/c+Ids7bdUhRynQmusGJ0oxe6SfXKF+ufUh3QoMUH7E83AjBnIWP+/jvvQS/tSp4WeWTod1FK3FBjbct42BCROwayyFrgJ7zCUg7rhYoDriU5nrwrEW3/WIVOx+Fsmo4A2ttn1fJzRmeWRT+HtDNPxkJ0Ve3HlBJ9LnQp5OBEREZPwIrC3kFph+5WVGuwmTK9myLqwL3t3Zm3DhRvq+x4AoXWRJ7VxuTva/+e/p/X3aWyDIw8o/ktnwO2wmj82A396916uvO/V4Nj7+v2GlxYokjusS5IvlXvd8fYedNCss1bKr/cZ1cTe9Hq4+00PuhbDM5c4TUMNx+Ns7cf6+nGDuAaX4gLWQ6eqCmkrw04WxWpxBGs9bW4vdanFq2ksz1Jc99xwLFi0imXzjvXMsAUE0DoawIWwhycm6/RPpgiAAB0x7O3TngcH7MxjPwakKj8W9CartJGOHAu4iA4hE3N4iE8bguy7t+bDPdjbrEy1Mb3M2bMR9ywJwHNxal8jasIa7g8XW1EIiTg7YsGEDyaZaTE1VmIXrOGGw1/fJrWsh2tzQm1HseUTyOXw/6L2vMA4XmORaSNZRX7uBzbEKagy939qFYKntTuM4Dg7wj1MivLRiHYdNrQxjiNsGz0S22Vz4eoVAY5DPQzaPG/VKsdSXK6dhCpnCXdahMx/W+54aj+AVDjgcxxAYiDlhPfJE4fs3FekphbMsZmhZ5DVT+Q8zm5f/N7x50dSGUgZwJJHi0avP3v06ihwvbK4CxDq3E8lnw9r0jgPbe4g+/AcwkHvu7/Chi4e+3jK49V2H8vqLm7FARU1vNu/jJz8DfoaOrMcr960mY214YcZabE8PRKM41S5BrrjFGqzrlFoF9OV2tGFz+TDLOgiwNijU6ze4Qb5Q7sQQeG7YRLQwHdcpltwoBqAjEZg8OVxPTxryOQIbsC+abZUqcEZiOIGPb8JSQK2Jmn6vV+1BsLU1LArSkw4vNhkDkRjECwd4fTPc+304BrwE5Atp0JnW3oeyfQ/s+5yM7djFqcBxHCacfghdL7awKtZIzZSpYfPjSKRUV77Y0JWeHqxx6NnahmECWEjkAlLVO5d72qVYJQHhOK1x6fFiJPIZYvkMxh0jAfedDKFpqsmQtzEskNlVHN2N9fl7jp1gg4iIyO40TKouZbYPtY/MaOB4bnhaBLh9ejzVNFb0aRJryZIiPHNzwOybGvayFyrDGa7keog2pMi8Vjh/fQOlEuuOPZK6G9/L1vtfADcengdRXO2erzea2P0xtvU8ML2JfF5zc+n1TCSKE1gCPyBHEjBEWjbizz8cEoVzAdeFwCfd1gqTm8PSN5EwhOd7fZPo+p6HORAYzPOrsAtng+NggY6tW8sScA9iMUxDfZgm1NUF6QxgwwB73/deKjdqdsp+35GbjDDps8e84bGJjDQKuIsMIEmG5Zs6aSgEYTbXTccWKlgEQCwRBtzXr9/KpC1bsHVh6Rk3GZaZmNryCrQdAdEGcF1ef/11KmZPxaR7woB2NgutbXS091A5dyYAtr0DqsIa2sGM6eRffpWY61I6WrThlW+38GVWkcyRb98SBrCLQbzCv9mAUjug9T0BHS0duFd8AoCtVQ1w/vsGfN8dP/opja3r6L7kn/AnTsJUVJDbuBm3qT7MbHZcsr4LjfMAqI14OGEyL6+kc2RtOLUtUREngiETAFiyhe/Y2IQpdPmrgT0Ia7kRNucd/EKws9UpTwZKT7yKTC4gVrwAgiH+298CsH3qwWV5jT3Sp3pQv1LVEw6CzS8Scy2b3YowN6A4zdAxYYa654UZ+lD4YMNPd4ckcPKV1WGgHsAYvHQ6rCVuDCaw4UEh4BSnKkI42yGZxLgepqcn3HaTSaioCGuSpwoNcePby/hhDLB11Exn5vqXSBSC5sV67kWxSY30bNwU1qBPp0vjd2N9DobdGASFoHu/DzkANxLeF02F2evFxwerG54bPMOm4fQDcDzLutdqaXj9NfwpU8Ixbd0a/q2AIJkKSxgBkYY6el6FniCgI+sTGSRjZTCRfAdO4f8qPxLBsQFe4cdExu/XfN6miDk+Foi7wJKvwppHd17w0Pfv76GJiIiMCMmqONOq9vBC/yhgCpnBUJjRWeA6haSH8IiRKB34xImabhxn8AxcGSZTjsS4/4ET98B1cKtTu3/OYBoPgsarqD8xvJktlPCENxTH3yW3qxVj/VLCWfSwsKyrcQw2sGHT1WJZSxyCmYdQ/cUvYXt66P7gRfgHz8fkfNZv38b6x5+A6ZNLg01lXiVdeiVD8fzJ4LM49TOe2RAjfdDUMOknn8d/7m8wdeqA49yTCw7pD5xHMLEZMJjW7djCuaAT6X8BIp/LYxwnLC2zm4C7yFg1fs/ERXahLunxiZaJBC3hV9f/m95DfFuePIaUE5Ao1B5PH30UAabwvedgImEgfsqGV4j98Y9k3vY2bE0NWdfDxRJYS8TzwoBpZQU9qzYQW7WGaOMErA0KsVIDnovt7MYUa7s7YbkZm0qVGjx68RROIo5f/HLbtInEL34BhHXait+b1jj0uFEybgQL9CR2cTBpHLqMh83mwtg9hLXW+pQLmeUmwhIMgGd6644bwhl6EGb5GmtJOOEXeLKQye4ZSk0Ma7yBM4QHMq/K8Net4WtURcoTcI/mc3htreD72MCGweOCKm///9fYt/5fv35AC84NH+/pZF3Ta1Tk8zjZbJh5Xmxa2pPGX70Gd97c8Dk9PRCHRKJ/bb/MrFmQ7z24zAXg5cPtyYbTN4BwZoNTvNOGMxisMRAUGoBmswQdnTh+IVveQr1jCfagZv0eMw7Lp85n/itP4dgA4+f6PVx98pGkX3yJwDfY9vawfIsx2K6e3oWaFsK6J8Lf3d6TS4uBTHt4oycDJqynSPEzKKo7ALatBCxEKwcf68nXUX8yNN5wMxkniue6BPE4Nh9Q829fgSCg/bOfheYmDBCpSuHQgwvMCfb8gHR9BxR7gLX4FfjGkDUeOddh+bJN4fY9Fhx4BuR6wp3lhd1vZ9bGydMFQDYoLD/9+H05QhERERkBBosfOm7fHkcGnzg+MXpsDBsow33EMR7p9R2QDf826VfKV/bTYktllJy9qOE+FKnq3m3KAn5VmJznGLPD8Xl4IcifczCVJy2g409PYzZuxB54ILYmPHcP8+oKG3Y+T029w9Z037UXfyss09DY7zwmn+9/7rS3gtJnZbHFc1FjMJn+PaNyHa2lUZmxci4isocUcBcZwKQp0zmgYjVrexyMhZm1WU7PdoINOKiiC9cLA86HzcyRfeZ5YgfNCatSxMKazrl4iljex2ltxU8kiMTCoLzJ53vLShQafRrHDRtYum7vRDBjMOlMmA1fbKrqeVBbixMLA4UViTib4/FwqlmB97fnAXCrJ5W+Xz3H8PKEWZz/tquJGjiiJkGfCnn9BT4pm6cnn8M4BsdAPPDhfx/j6aUrCRyXhpMvKDV59TynX8XjeE1vSvX6TJ50mH5PrpCV75qg1MSwwx964LyxMoO7LTwwMm55vrDXOzESvqHSWixBeJEhlgAssar9n+GS6eotd5Lu83uR5zikct14fj4s9RPYMGug0LSUlWvwnnkWA6S3dhM/Zh7d3f0/4/SBh5I0Tvh8KF3gsRh818ErNNMxntvb0NMWgu19Sxfl83itrTirVxPMCmdoYB2CfVmOwzjUtG/Cs2FfgFKppeLDxsEWegZU3nUX3HUXXW6MjhPP6l0oUdPbHDPfVbrbssOU0FQD9GwrzEPu81jnBkqB+GKAfhemzzyIjuxWCMID0nw6i41Ew/UWppQCmHw4fyMAOp30YKsb1JqePAEOYGj1DalcBoPF+A75wBBLRUhUxGiaVrPH6x5Rph3X+7t5ereLT6/Oc1RdAgPMSOlAX0REZLzoG0DtmzvR09U/6OiRAQwRenBsmZpKSvk4LsU5CQBBrjxBY4BIxKNuUiUGQyy5b8JiHRMPI5VI4fR0YYBcLCxtGk4mNmH2N9D3IlDlkQswmzfAn/9Md3UtuWOOJgyjF8rGBAHeAw8SPf0welPc+57zuVA9EycaliHF88BxSr3dgiDAKZzL9/29uzpC68wkxnPo+tsGZi5oZiCOMQTFc8KqqvA8NAj6xSQA8h0dYSC++IZFxiEF3EUGEq8mFnNxun0w0Ng4gW9N+itkw+Y7xWBf5cGn8cLNlzPlt/8DQMWXwqaMfz7mbE6eF4EDDuj9orEWE49jHYcgsARehLrJtUQmNoZlQXK5fukYnW6Cz/1yNR+q3c6Cty7qrQGdDq8ep5w0G7anaS5kJZueHgyQB76+5ApuSIS7d4Rs6SAla6Ezv4vsDcehCxeTyZQanaYjcdYlG7jpyGNwDfxgwbbS4i4QJ/yur3bhuNm9teT6HtwWDwE8Y4kXjicq3KF/8V5/bJ4vT38qXMekw4b8vF2xGIhFw8/eGJg8qfSY4+4c8N7X0j29B5D+QBcjjCGSyxJMnAiJBBYIclkca7HWEm3fTvKunwCwdebR1ByzU0yaTG0zDV/6UiHIDt2Xf4SAJgxhE0+6u8PDuUwWt6o4RcJi01lM3PTriZqOJah+9C9E/uMn4DikL72K/kVeys1Q2afRlWv9HR/GxDx86+Fkw6PPSJAn1rdUYb5P5oUT47DILxiw0WvnBkqH9ltfgYmLwt8nzIMNy8KH4jW7HXGkPkZ0bQZrwsPoSD6HsYU1r18Pcw8svRevMIoJ1bvInB/EN07yeM/vMvg2QmPcpW+Wixdx8KIRqiekqJ80vqZKT6tO89EDJmOBZGTvm2yJiIjI6NI/w733uGjClGo2rm4t3Q5w8IniE8Wmt+y38ckQ5XPYbJ8s8V2dx+4hx3U48IgpZVvfQKw1mJ7eJJ+m+uL4DbZf2lrv+UjilHOpntcAN/2MdHtreEIXBGHCmw1nZSfu+Q2c3vecuHeDjyY8MJZ8MhUG24slZzvDWb9P/uUvYVwBiBvDoje9CYBs93oi9z6MAdqnzoUFlw34noLqGojHw/Vu3hw2TbXs1Ha4WNI9ANw9SLQTGUsUcBcZhElUYTq7MBhM8wKobSgE3A1Ew+7ZvolwzbH/FC4P/GFuWBctqKqEzq19GiTSG3jv6uKlDocMHk0t7TTFIng1NeG3kueFy+fzRDNpplXPotPthmwOrCXo6CRXGb6GYwyv1c+guZBFjoUuL0bW8ch5EY48NQzm/WTF3wjD4qH2XRyoBMbFGgfTkw7L2FiLcQ1+PiBqLMbA1KresGo+CCgW7OjwIVJRU3psVirKqz2FiwG58DOwkVShMZPdo+vcEfJEipntZSr3krI5YtWFCwQ2HI/JhIFas3VrWV5jT8STUdoKjS8TFbGdHjeuS13HRujuhlgs/BQLQXKTz+O2tZaWTaWL2df9P2WbzoWzLAqCmtpSZ3mTTIaNVgkIfItbzILo0zwVG4DrQTJJNJnET1UTKTQANaZ8B1LTDmqgsy38W9ROrCy9lS2HHEGyZR0OAblI/3qjTjyGzfrh+Avv3LM+vu2TbWGc3s/E+iSihQC8G4W+u8XB74FcZ/iemxb2eSCAoHBhJNfF7iTiUdqmT8eJRbGJBMGBc7DFGvvZLBSydPLPv4hjZmOwtDXseZPT5rlH8ZcJKwDL6m1Z2u92iVgfbMC8IydCZOzVZh2KoKedgKmAJcgrw11ERGS8cBxTOgVz+2S7V9f3rwGeJwr4ROkp9dmREWTLq2HEqnD6YvZR6Zd9JZ4Ijz9LpVUKJWyKrdcK99L3ohCOC4suoPljNWz6wZ+gox2SiVJMwfgBc758Lj21szEbi7OWfYLCjN3qCSnAw8/1SYWylkx34RzmtddhymQAcn97EQoB92DtM0SfeQSw5De9BgwccKetDaKRPs3HLAS2VJq0KOjp7m2WqpIyMk7pW0VkUCbMfLaEzUsn7pxZ3VAZwzPhd4hjoK4QHIwGlsrf/IbOmTOw9fXhVWDHgWgUrOXmP6+jK1nD1+dW49TWhvXZe9JhMNTzCpeEDTdmE9zj5MPvYd8n19aJVxFmYucDJyxHA2HGsuPSEU2Rcz0ifQ5GnFiKvtHEjvwuAqOOG04Hy/vkXQ+v8BnUu4bn/uHF8D3MPqW0eFsQFrIIgIRrcPp0PrdOsWkq5INiwD1WOKYwe9YNvu4ASLcBFmpnDf15u1DduY3UyhXk5szEGEPOGg7+938MX2Pe2WV5jT0RS0RwPQeLJRIbKOhqqMh0Eqxfj59MFg5ugnAaH9BV1wReHIOlM1nIZN7hM46bXCkEb4Cqq64q3d50/kV4i48MH7OFkLUBx4Z9AIrNWE0+j+3uJrd1O1EbhMv2rSlYBjWNFdQ0VvS/03jEsj3EghzGWqrSHf0erjr+aKq+t43Xu2fS9vHrey819J1JseXvlA5orR/2IghyYW16p09D1drZkKjeeWDdW9mTKZFVDXW89uAjxA46AAD/heWUmhrZAPJ5sBZvzWqyqXCZJ9buPpC/k8qJ4Q/Q0fYkTqHRa9qN7rsuUKNAxqktXNpzyJudL2KJiIjI2NS+vbsUD8xm+s/BdBxTaqRqcLAYcsQx0X07V1P2Qq4Dx/NK5TCDTPlKyuwPsZpK/KpanPbtADiZTQCF0q2GwNpC8L1wfoAtNfZyF74Td/YKjBfB+j5m8xacDS1461uIffA4uqMpbCFZy9lxnvHhF5P46efpnDEdEmGw3okU1tuTxi/EHOxBB/DCCy8wadIkvK3rCr2+LG7P4DNDjeuG5UathQkTSueiNp9n9Qc+AEDte/8Rv6mh+AyM4u0yTingLjKIb7z3UFq7c1gs8ycOEHwDmqri1EYcOvIBjjEkI4UAeOATBAG2WGO9qyv8iURwX3wRx04KA5ntHZhYYSpbIlEI/DkQixGfOw3zXJZcUJhiZi02CDjgoPBLzcfgdndRzG73XRf/8BNwgCvn9palOPOQJn79yvrS7Z5dZHpGbJ6KfJpMR3uYiW4Ax4NctveCQ5+M3625fGn6WH3U9Ls4b7C4FOPr4Rf87NoKPnlgEwB7VDhj0uHhTxm52R68J54gd+IJ4R3pNBQznrOdZX2tIelTx2/AJpfGpTVZR0WfTu/WD8IsaWvx8z4xP4vFUJVP43hQ39w/aF3n9TYaCoC2WAXVmU4sEMt2Uwwm+4HFKyZbBD7GC+8PDDiEPQWcWAy3s733T75mBUxdULaPYyeOS8u2HmYWgsmJzA6B6WgK3Bit+XosBlMYWaTvRtm+qff3INenU62Fo/65t+RMbJCts2szpY08u/vAeM2kJmLZdGkGBZksxZoyxg966zYaQ6UbHij/vyMn73a9u3JgQ5yXknHIZIg5xVz/8ckEWXq36fH7OYiIiIw3fUs1FhtjFh1y/Aw2rmkl3Z2jbVN4zG9xoH76fh2jDEG8CpOIQLoQUB5lGe7b2qM4F30Okw1nj0dmh+dKA+fDFC4CZduBsC+ciSWxbjhD1zqGyLJnSL70HFz9KWjZisPOFyCK5xe52onEf3wHmbPfFZ5nZsNl/fr6cIaz6xJEo3R0dLBy5Urcww4nf8bRYQur1zYP+p5sMtFbUmbDhtLsc7+1g67nXgCgu/Jhqs87s3DKapXhLuOWAu4ig5jTuPuQcGADTmyuYlvGx/Uc4oWA+9NUckYQQL5Qc833cVethniM7Vs6aE3WEHeg9bUWmg6dDZEIxs/Dtm1QWQnW0v3cCiafuJ3EX2eG08isxToOk2fXAFDRPIWXvSoOLWQf57woddVhZnOkovdL7cCaoZeoyDsuXW4Up6enNGXPeA4eDng7Z4i2pHu/5LdmgjDNv8DBEClOm/PCJkTJ2hhzq8NyPM4wx7/aKycQ+FtKRzy+cWHJV4ZtPAYI/EIg3Q5wUOI4WC8aNtgxYRaEoTfgnupswysEo+fYHg55+8E7rSLimFKFQAfoiiaJ5sMgfcbxiJmwQWrpT1Msf1JooOoYE15AisVwG2K9DUiBfPs+vkjhuDQle5v02h2PVJsWhD/3PUZHrILqTAeBcbB9pwc3L4QNfy2usHBca8BLlDLEd6liImxfUXj67g/4vWhhZkuhmH6GCMGhR+PbGNHHHydobQ0/4+Uv87dPJCBWC8eftftx7EIsGmPi8TPo/HtLODXaGb9f89X2NTYwDYCo6dnN0iIiIjJWTJxRx9q/h4kWkVj/Y6GKmgQVNQm2b+ooBdxhkONvGV4Nc4lNSNG9PTyOC9r3YiboMDIGgskzSrfdVC0ATqGnW7iM7ZPhHhCprCst77huWM7TgHEcnHQPjmcgXg1sJiiE80zfBKNibtAhi4mufQHa2jDWEuQL5+2JeP8Gp9aSz+XInzQfEuH5fjCvfyD/6T+twFqIxj1Mdw82EcYmcJzCmwzw58yk48vXgrUkXlxJkEn3myUtMh6N3zNxkTJwcHjX5PCLMxLzShkUuUQq/BKqrAivAMdimI4OkrfeimM8ku9eTI1ryf7tZXjzIVBfH2YNP/ggyT/eT96N0HXk22HJV5n86k9KATsnESfSGGbEexGXztQULv5TDxZYWFnFFW95ZzgWWktjrHRzpIDi4UlddBdfeIUa105XVxhchULAMIDpx++0+B3vWsDmlevBiRCnrV8QvT3nkw3CzN4NhfvcuFf6vnVj7o6r26+q0h3ENq0j9i9hfbrVkxbAu84o4wtMhnwavKHVz05URolXRMGGJwIDqe7Y3OdwyoZZA4UyPjaZpPjhBoNkEaQnH1Sq5t/lxajOp0n5YVPdbmtKFx+CTBba28OEhEwGU1sb1uArFSAMl+uZcTBuT1jyKL9o5+2jrIxLQ3p7sSAL0WDgab8T582ms9Ck1LEBnt9nueqpfQLuUGrvM4R67OFyfYK2ufTul3cjpFNVxAtTRDM4+O++gG5by48feZKP3flvAGxO1haGU4Zpsjag8R1zcZOF/WsIFwbGKqeiHkp9cnWgLyIiMl5k09lSIktPV3bAZXYsh2h0rDDyNC8kfshMeta2goHIlObhHtEeiUYh01Pcrmy/2RbF0kZhsD1ksBDrnaFsfRuWfAWsFyHxpoOYvTicnW36BbL7bLuFX30MdHbiFKtpFvt2bd2KTRXKwHZ2hhnqPT2QsTA1nIlu1m0orc5aS65QlikIAmxtTXj+GQRhnMMY6O7GplKQqgADfmUF5PMYE6Z6GWW4yzilgLvIG+A4Bi8afgnGkr2Z5EfWBVhbDOblIJ3BvvQKZtIkOPREfnhUIzXuelbWHQPZfKEhpSUwLj1ujL/XTed3M9/MPwJ+Jl8KuNtsDgrZ4sYY4sZSbEDq5HyKAcSM3xuwdaIxqmIuXZlwHSc29dZZ31FdXQ1uxyb8TA7fmLBxpu2tJbejjavawAlL3HRT1++xU5qrebEjDFCeeGjh4KjPscBwJ5FU9rT1u51Ktw2y5F46epBGM4Ooa66irrlql8vkcfDSmVKzTZvNhqWKgG43QrUbZm2bVGrA50fdLD5hMDqRzxBEvFIMPdrVAdlsmEG/rZXkN74OWLpPPAnOPKO3aWouCMvvdHay/fizCM64BCgc9O3Lv6kxJA85Gp7+a/gyA8y4ADCeYUuyBjefJcCQi/W5eJGoDRukWguRKsgUmuOaIV786RsQ94cQHDeF5qiF/wuqOzeWHkpFHDrdsKdBxovD3DMhXjO0cezyNV1wo9QvmQuRwff18cCpaMDZGv6/F3FUl1VERGS8iKdiOIU+PrHEwLN9I9H+oRBluI9MTq4zTP4CyAwh4WUEqZlYzcZXWwu3fJw+M2+N09s5NUI3FgePbL/zkogpNIqzYeA63jQTc1RYJz3IZil2k43RzaSFcwGoqA3PfVwC6OrBBuFnZ40NA+ZTp4bnKLkcVR+7kq6PfYyguQlbnYJ0MVOld1/wc354YQAwPtDVEQbpI5HSLOiwB53tncLuOeTyud5SMsW/n8g4o4C7yBuQrI5z9NvmDvCIxQlsWB4GwPPomjOPoy6eBnQDv4TEBOa8dQ6PrYngFb6sjOeCMbjG8OWJYWA90toWNlc0hkhP/0zcqClUSS9817mFL91UpLehZHJCAwnvdRL5AAPMTA0eXIxd/DF6ggQv/8/PmFOYImYcQ8Qdyn8VptR5HeD06bUsyVWBhVlTaoofC64XBu+9yPBm3m6rnEB9x1aKn0Z1ehjqtu+hfLKSmu99r3R76xUfh+lhyQw3FsMULszgDXxi4bgxfEptOwmqaksnF4n/uQ/vd/9NYAztVY29UxO7u7GxOCYRD/sMbNsGvo/1AyL0HvS6EYd8dt8eTAVz5pau2dj4wLMAaupTuFgqCvXYt/bNhJ9wAJx0bfh7Rwss/XZhZUMcd7QSugtB8yFmjsdLDYsNHROaqKxshvYM+YpaXqqfAVja6iZzytQ3DW0Mu9OxDvxCJle2Y9fLjnGVtXGO3vrr8EasGjhhWMcjIiIi+0fz9Dqap9ftchl3h3ORdNfoasg5bpiwxCkw6mq4z14wmdkbby7cMhDvLV9a05iiszWN8dMc7v2690nO4tKvxhAGsY3BOJBsbuxdzM8CYbzAGo/mmf23dyeaIHPye3EShdI1gY+1FrdlA+QyOC0bMHWVmHQa60XCzzZeyIJ3euMFvl+Y5WzBx8dUVYWZ7UHQW4w+nw970RWC+8RiBPmgkGxncdRLScYpBdxlVPnud7/LDTfcwIYNGzj00EP5zne+w9FHHz3cw9rJ+p4IW5wY0a1bIZHA5vL0xCshHoH09rCucqoBx2RIfvnf8FJJwGI2b8HmcyTzGSq2hIHCdZ0uVTd8C4yhJVYHH7yw9DoWn2LTVIcAWwiS9svPSDUUvussAZDzB//Cc034JVmZ98PpZ9biOA5u164Cd6U6I/2nZtqg9FB3RyEAaOyuG4PuR/eccC6X/Owr1BSazcSzI7/G87ZYigmF3y1g87kww90YggCsU8hwH+T5sUSUvnkLxs+GB0cYPD9bKMNiaauoY2JPa/ictjYygQ/5PDaXxzhOWP7I8zB9Zj7E4h757MBTdsslEgkIomFRnCASHXghY4nks+SMG25+nYNsu/m+Yx3itti8AFpfCX+PD9xIeUdb7/kjjen28PdZh1E3N3zdrnglVx37TxhgXmWUjwxtBLvXt4SOM/T+DWPS9OPCHxEREZGd2LDVjYFoLErT9JrhHpAMoO6EuVQeEs6Wdufu4xKW+8KCDwD+Tsflc4+ayvpXtsLKBwd9qhMrFAO1FmsMkfre84+qCZUc+vp/gQUvUQEc1e+5xhBmlueyhb6lPq1bNuFPagZr8auqmHP1qTz7UrisDXzo7g5fjj7JSBYc18H3A8KpuekwMN83+cgNkwaJFi4ABJZ8Jlt4uikm4ouMOwq4y6hx9913c+WVV3LLLbdwzDHH8K1vfYvTTjuN5cuX09jYuPsV7Ed/aXVY9uYP8/XqaowxmCAgFk3CwndBy7JwobrZUDWVRyvvYWb7BmrbNlNXCP42dG7Bi4ZfYhumHcI33JmAYWbc45w+r5PBxRRykStwaPJWAlCZ7J+xu2RiNWs7w1rdM6oqGIxjwgC+CSjVmDOOIbrhtYGfYIBS3bn+QctkdYLO7WF9+UikmNXu0TQ9rFcdSwzvfz+ZeIrNFfXUdIY16tKRgUuUjCTPznoTB256FYAAQ6RPZkHKC7czAJPLDPj8xrlzWEVYUgYgd+RbsJ3pMOP9mUeJdYZldaZm23CzYfZ6Pp8LSxplMph0IaM9CLBBQJ44xb97Jr1vg+0AzbXb2VC8qOAOPFPDcTwa2zcTKYwr8cLfBl5ZagKFDXjoJWW6Nvf+nhliCaJsGrOhJdxPZjmleqJuoYGtBTLlnBjQcBCsLhy4D1LnXkRERGS8iydjvOntBw/3MGQ33Ooa3GITqujIT5DaSdPg29ikOfXQmYEthTt2OCcx0UhY2rVwvhev7i0X6VQ1kZp2UHgjtXMspHFmHeuf97GRKBaDH2TwO7bhrGvBGnA3bcU7yMds2ICprg5rs1dV7TSOwAYYx+BYg+s5+Ns7wlnPsVhvhrvrhsl2heQra22Y4e44hcD/0D8ukbFEAXcZNb75zW/yT//0T3zwgx8E4JZbbuHee+/lRz/6EZ/+9KeHeXT9zakzrF4fwXZ1YSIRrB8QTcTCRppVk/ste+qV/0R7tobtN13DhPXLAajK9dD07vAKsY8hHQBY7A6py++fUcv7Z4U5z3XrtjEz9nD4QGJav+WWTK0hlw6/6WLJwXf7YmMTvEJz00gEPI9czcQBl4/EPHLpgYN6NijWQjSl2WWO4zBzwchodnNIVZ5MIgmFSjJ17siv21isRVnkrXiZYGJ4gOW+3ntRZLAalF62g62VDVT2hFnfmcOXQHW4/VT95d7SJZOka/Cbw20ok6igVLMIA9EIpFKQShFr76CYTx9LRPd9hnsySee1t+Gzi4sjjtNbDgewuUGCztEUpYtEzhC/CpsWwLYV4VuunT2kpxx1zGQ6/3cTORvjyIOns71wv8GSKFzUqo+VcXqsccBLgvXHfQ13ERERERnlcn1KqvZsG75x7CuzToSerWAs1Mzs91Ak4oYlZTwP4nG8SJ9zllgFzD1j0NVOmtXAlo1r8Gsa8WfPIh+J8OqWDpyIh8nn8YyPOe7/I1j+G4gnezPWbf/p0kE+IPnlSyCXh3iCrssuCc+g+ma45/P0fZIxPh2VNdhkoffcK6PwQolIGSjgLqNCNpvlqaee4jOf+UzpPsdxWLJkCY8//viAz8lkMmQyvZm+7e3t+3ycRZfMzPLxFgfHWnBdjDFE2wc+QJhas5Ge1pd5pKoGuz68z3dcmHUSAMZaEi5gYacCEX1qppto3yBr/4Br3wBsv7IvOwisweBT/fIyTPdCbCKBBdoOPnLg5YNCSZsBipgsOH7GoK8zEnxgdoR17/sg6aWPggE7bc5wD2m31mX6pgdYtm5J03jvI2ANQXtr6a9ue7oHXkGimsr3XoTt7MI1Pm4yHnawJwwAF/+KjufScfm/AdB973+QKjTP9a3FyeUxXV2QyWBtb+B72tx6Vv5tM9mefZdV7TjFLS3ANQEDbsrWho1RC3XMG2ZOGnyFxttlU+Cd1EyDxVf0uePR3T6l8X2n0fjWpvDGhCoeX2Ww1pLH0FMoq7QtW8a0D+MAQRhw9/f9rAMRERERkX0m6FNbPzvye27tsaopsPhfB3zI8xzI5cKAu+8PtYVU+NyIS+MZp9Dy8rP97g8AxxZmSWd7CExhxq+lVIPdAqtWrQqfkLf4M6aSO+wwyGWxES/MaO9bw91xwHNLTWDxfcym9VBbAxYS61pIHuQRr9809DcgMgYo4C6jwpYtW/B9n6ampn73NzU18dJLLw34nK9+9atce+21+2N4OzmovoLA5LCVlRjHCUu+HH74gMtWxLqpiKyibfIBbFv1dwywoX46xaWN55XKthj6f8sa1y31e6w8zIPWwgM7NIFMVSdo2xRmB3iRwctnOFgsLt3RBBM//wWyp50KQPzQdwz8Po+axgv/u7owtpGfId6X4xqcyVNJn/3P4W3vDTZzcaPQuCAMdMaqyjDCnU2dNRH+Wng5oGv6QfQsPg2A1A2XlwLmZsuGAZ9vvBj+gYcS4GLJkTJtdNkYFoudOA278fVw3Y0TqPE2hXX/ezpKF3ZcW6jdV6jXH5hCYx3yGMdlwqQqNr8ellqpn1xJLuPTujE8MG6Y8sY/k4q2Jzk69QRrswsh2YAXWTjAm3Tg5NPJvt4CxqHxvPcOvsKGeYVM8NRejSd5ZBOZ1W0Yz8EM2sSpz77oxmicVk02kye9fF3p79WRL2NNGeMWpp664I7dGu7JI5rI1ITbWnTy4GWyRGT3GqfVkEnnwhJ4o7CvWU1TBY7nsGlNK9G4R+P0GmKpCOmuLIawWXtFbZLa5vD/ipoJ/f/Pb5hWTfvW8EJ1qjq+4+rHnIYp1XjR8Fiwqn7gBuQiIiPGhINhy9/D35MNwzuW/SxakaLyk1eRfesJEI3Doeft0fNjk6cQdGwKa6s7Dlgb9uPCwQkCSFTh5PywzKUpzGi2FuJxNm7cCBQKcF50YdgotZjJHov1BtehN9vd9JakdZwoQSYPNqB61kIitdtx68fX309EAXcZsz7zmc9w5ZVXlm63t7czderU/fLaPSTx2U7+298lcvhhWOMQOfqEgRe2YXbra7PncF3l1QBMjhneXXh4SkMFqfVh0HLOtP6NGo889UACP8BaiK69vzfgvkMN75qGJB2Fk0nHG/zSuMXikGFCRXgCFv3DH/GB+cedNeDy1RNSxCvCLuS7CuSPTH6/iwSx+Bv879CNwMI9OwjaUzOnT2BTooaKbDcZL0bgepQCupFo6d14qYEDyNaLkSdNeOjkgXHwbaG5Taant7P8yhXMS/wFDPx+UhN1AJ6HjScwuRxEPKxj8EwxCyJc14xDmplxyD4sGVQxETrW4ZkcZLcOulj65HeRoxIAv24X2eNv8O9V954D6Xg0vEhhBtuvDvwHmHVyeFAaiTPbC4M5nQ+8WPp7tZYzw93PQD4DWMiNwsjZEFUeN5nK4ybvfkER2a1Zhw5cNm60qKpLUlWXxCmc6Nc1V1LXXNlvmcraBPOOmTbQ05k8ZwKTR/4kt7JpnllH88y64R6GiMjQHPJeyHWHCSXuyO+5VU5O40SwAdH7H8Qmk3Dlnp27tLZl8B7/X3KnnBKWigVsLofJ9GBeWwuxKmK57aRNdf8J68W66wZsPggD7UE445lcNiwxWgyyBwEU+3xRvMsSRFyC6krI52n819Mw6x8DBv4eFhmrFHCXUWHChAm4rlu60lq0ceNGmpsHDvDFYjFiseH5Us75HkfUpaj9/TKcZ5cRAI1vG6TGmhMBHLrdeCmzLOr1Bq//37sX8f/ePfBTI7E+u3C6TwAy13+63ZaWtlKzxo5tg5QbIfxuDYjA7AXw9yeBMJM64Q3+X8XhJ4/Os1Q/MORJUiy/Ey/UmBvJntoEB6U78axP3jgEnotTaPseTJ6FaVkNgNswYcDnu5UNQDjTIcAFm8chLDvS/Z4PE3nlBbBQdehkYANYS3MF5B94EHvQQWHtvomF/c1xiJEBsmE5mv2RFtkZbuOTIi9CrGbgZYwhR+8Fh02bDFP24ZAqj9/N2r14+LMjv7f0TqScH102XbqIh5/e9bIiImPIpDn1wz0EEREpNy8W/oxDkboJWMcJ+6w5zk5NVXfHOA6mu3A+YAwEASYaBRsQmxkmrji5bvCD/hnr1vampZlCLD6fh2wG2tqgsrLfsiSSkEwWAvNBeF7oeYWgvMFEXJh+/F5+CiKjlwLuMipEo1GOOOIIHnjgAc466ywAgiDggQce4CMf+cjwDm4A3dkKzpvp0hFN4QU+WS/CwVOaBl74sAsB+FfvHs6aMQUDJL3Bg+KD6/MluUNN6uapdbzatjFcd+UuDlgMgAPzj4T//mH/u8eY7ekawssJ4bvL5UZ++/QDa6LhdD8LsSCPF4mU/jZ+XSNBLAkG3MaBt7VI1KPK2YiPh2eyGBv25wGLP/sQ/NmHAmDYCkHYhNVGG4j97EfYnm6yjofN52DaVAgCXC9JrlCIiD2oKbjXElXQXZi9kRz4osKOW2siWcZyLWVUEQdT6AFVGyvjV3F1n6zvPTwoFxERERGRkSFS30z7NXeABdfxYcLcPXp+bVM1rRMKyVLWgjHYVBIiHsntYezAbNmGmZLFkArPMyGsx15goNSyzQDWi9Cv/pzj9N4OAggCgkgUjMHkc5geNUyV8UsBdxk1rrzySi688EKOPPJIjj76aL71rW/R1dXFBz/4weEe2k5M1MGNOET9PJ6fw7EBTvWu6wxPcl9lUuqJ8EasDli8Zy9afwBsXRH+Hu9feqZpRh1NM4Ywfdj6OGQKzVALjIOT3LOhjAYN7mrWBDUUI8X7JUP7DTpylkckyOEAJsjjpZJh7XjAvnkJXRNngrE0nnLEwCswhkMS95dudvvVpG24Xb6UeQvFizaGoFTXvLG6k42Oh/unh8jEKqh99C84mTQ4Ll2fvRFb/Pz2Rwn/WCV0F5rtZFoHXSzBdrKksBimTR2ZdcwdenseH1ZTxqwdp0+Q3Y78i0giIiIiIrIzxzW4rsEGPp6750lEiYooppB1Xspgj0Sw6TReJJxtGz1kEV3RGNaENd6xFvwA09EalqHp7ILKCnDdMCCf7oHt2yGfx33+Bfw3H1cqV1OsAe87Lo4NMNtbcde1lOnTEBl9FHCXUeMf//Ef2bx5M1dddRUbNmxg0aJF3HfffTs1Uh0J4sk4XnuemB+W23D9HDi72d1iSSiWXre5XS46oLo50HRI+Hv13tWqd4wJr2KnKske+mYwhqC+mYp5Iz8YvacyQZww7Bm+t8Duj4jxG+NGew+0DNAwMcExZxwMwOsvb6F71nQwUHXwIPuEGw2znguB2KTbRpKw8WQs00mGmnDdXgRO+BwAqXVfI2nzGD9PzE9jrYPJhWVoHNdQSm3fHxcstq/s/T07SLaE43JYw/9B95bwdnLf1tXfW54DUcdgLbjl/Oi8GCz5ahlXKCIiIiIi+5tbzDR3vL0qq+NGHGw0GpZ7gTDw7rqYnh7cqnB9uYwLcQvJRNhcNZsNz+uKP64D2RxECZuuxuI4mzfjbNlC8s476fJc8osWha8RiUAkgnHd8LmOA/mROdtYZH9QwF1GlY985CMjsoTMjuYdNYWt//0UF572WU5ftRTXMRyyuydNeROsbA1/n3DQnr9oRSMsOHfPn9eXG8XmHIjH6T73isK8MTBm+xtb7wjU4fdP26+qHaDO9ggzOb2SFnqLpjhubzbzlAMHK7Gyg0gybKzpB0BvHfE6dw0bC59JzOtTX9zNl+r4WcfBehGsG9bkM9Yv1IC3+ynF3aHUJDbIDL5YMdgO/TO+R5DmGFS4BoNhUmJkZuGLiIiIiMjwcBzDEaceGN7YiwSdaDyCDfww0F4KoLuY7m5qTwhnRKeDKLR3wMS+CVu2NyM+CMAWzr9sWEveOi7WOPg1EwgiSUgkwnXn85DN9pamcT1MRc1evXeRsUABd5F9wIt6HFWzlDkNs3ip7h+YwBCCkZMODX+GkVPdhPF7INebYe/kxuZV6ebIOlbmZlAso9I8a+Q3W0uYbjZUNFCTbsdicKN78V94rqv3oKmP8LCouJ32bq9edS0m5oF1cVMRchnCg60gIG1SFL9GMp1ZqEuxT9XPg60vFIY4xAB/dmQ2Dr3kAMOZUydj8fCcvZjRIiIiIiIiY5YxBi+y98lDxhjwfejp6c1yN4agfkJpvUm3jY6uTG85GUyYmOX0ifBbSud/troaUklsT9hzLnb//WQmVBNMnBgG3mMxqK3GbAtnUTujoGyryL6igLvIPpJ607ncbW+kY81MiCSGezhDcvCbpgPwf/csJWfC2t52ZCYIv2FN/3AJK+/5+3APY4/EnE7qetpJ+mF2d7pnL4LJ0QrIZ8DPA/1r9QcUpyr2Hhg5DTNxCsu5Jk/guFjHAIZkTQ3ptA8GYqn9kKXd0acG4FDrk3eOzLqBxu1ba33klzMSEREREZHRxW9ugni8N8s9n8dkemcK20glJtsJmSy4bhhoNwCm0GjVCcvKmPD8z9m6BdPTg9PaitO+nfyMAyASK8yeJlwumYRCwN0YZ7+/Z5GRQgF3kX3FArEqKg/YAqnG4R7NHonFIZcmfA/OGA4GFkrmAASjoL6cqT8ArF8sqsLWzdv2fCXHfyb8N9cDj30Tcp0ATIosp8ZtwWCJ1zaUFvcmz8WJeuGmUBEjls2Rx8U4hoOXHPjG3tCeOuB0eOGnhYHtopOvcXqz+J2ReZBn8n1K4ijgLiIiIiIiZRb/xd3YuQcQeC7BnDk4be24r7fAm84HoKE+Q/f6wmzbYlC+mN1uCsH34rmKtQReBIcebD4PgU8QFAPthLPkjQnrwOfSGD/AjNDZxiL7gwLuIvtKRWNvcHOUqa0K6EyH0WhnqJnEo9D0eY1sXd8OQDQRHebR7J4Tq+SF495NtmUtWMvJ85r3fmWRBEQTpYB71MkSdTaGj3k1pcXcumYO+Ob7wxvRCmhbU3hkGKYHNhwIE48ID+QSuygB1LdkTqHB60hjggylhr2M0WkkIiIiIiIybCIbN2FeXxvGzf/wRwDMIfMpnoek5i/GefRH4c1inXdLb1Z7sfkp4VNM4Ie9vHrSBKkqIutWke8bVM/70JPGJlJYP4BoHpHxSgF3EdlJovjFaAy4Yzf7dvIBE5h8wBCbjY4AJt/JnDPeTdg8FGpif3uja+zz+yB/52gCjvv/wt/zGXj4mvD3yC4yzPcVLwbz37P75YzbW3JmhGa4T4v+nWmRp3kttxDcGLBwuIckIiIiIiJjSO7gI4g9+7873NkbBHdqarHpdCHQbnuz2n2/UNe9T8C9+DiAn8dkM2SnzyWYOjUsW2Mt5HIYx8FOnRw+ZVvHfniXIiOTAu4ispOtrRGKAVifGNAzrOORAjcBBBQD5X7NGyzpkul7ANS3pM4gwXfHg7lnho9H93GD1DfCDnpjxDCJFPSk8UwOnP1Q/15ERERERMYVP5YkiCWxmW4MBjwvbKZaEKmsDGu6l5qmAoEFY3vvcwrZ7q6LjcUx3WmCqgl0ve8KIv/3IHiFc5lCNrwNfNiyDZPP46h0poxjIzP1T0SG1YQJeQrzyhipActxae7bcMNq6oCDW/kGs/OdQa65uoMEgB0Xpr4Jpi6GphGckd23IWm2c/jGsSvRCnBjTEqsYtK8acM9GhERERERGWPcTBdOpjssYOk64Hr9ZgA7sQQmn+vNXAfwPKivh1QqPO00BmIxqKmBmmpMkIdUNfn5R+O4Dvj5/j2pfB+nox1n+zZMdmSW9xTZH5ThLiI7qUrmcciF5dvIDfdwpMg4xE0HPbYCAGsTb2x9R18Gua7wAOmvt0JQOCDKj/IDo2QDdKwLf694A3Xu9ykDfrbPvyIiIiIiIuUTS7kE0RgEluzcw8ic/G4iFX3zbg3ulIl9bpowgL51G0S8MNDuur0Bec/DnzgJk24Jb778LNHf/w/ZM94eBuqtBdcjaKoBP8CmX99v71VkpFHAXUR2EmlZSrM3kwCXiMkA04d7SAJgXJojL9Md1GCBVOWb3tj64tXhD/SfyOCM8iae0RS40cIB3wgt15LpJPzQLZgROkYRERERERm1vC2vkc9mwkS6rlaCybNIuWt6FzAGLxXvn+HuOBCJFCa871y/3XR2YrKFpLxsBtPSEj4eBGHtd4DOTkw6iwk0W17GLwXcRWRn1VOZkV3W5w4F3EcE16Mp8krv7dixZVy3C8X+OanG8q13OFROhnQbYMNs95Eo16d+vlWGu4iIiIiIlNcBX/1/sOkF8DOFe35S+Pes0jKBqcRpbQXHIaipKdxrwQ/CsjLFYHxgwyB8LFpK1soc/w5MZjvO5s0EyRTGMVjCEvAm8DGOqljL+KWAu4jsrHIibP7bcI9CdmTC2u1hVrQT/p3K5ZB/DOudGwca55dvvcNhzqnhz0iWmACdG8KDVmV+iIiIiIhI2ZndLhFpnk7qy1+CbJruj16OP2UqRA20tkFlZW/APZMGx8W6kdJ91nXwNm8m+qXryB59FLnjjsPW1mKNwdihvb7IWKWAu4jsbOLh8Oofh3sUMpCmQ8Ka35Fkedc7YW551ye71rMF8MPskK4twz0aEREREREZayYcGPbs2vLS4Ms4LiYXZsCbXK5USsZN9xD9t28QzJmFjUfJHXEEtqYGE+Rxsnl8wBQSwkw+j9PTE8bhjQkz243BMQq4y/ilgLuI7CxRHZbiyHSENbAnHz3cI5KiBe8b7hFIOVQ0Q9va8PdkzbAORURERERExqCmheHPnz7Te9/U48IEu6K5BxNU1UJPN0FlZVhGJhLBj8Yw7duJ/f5e/GiU7JIlEItho1GCSNjzyzouWB8biWIzWWyh5rt1nELdd5WUkfFLAXcRGdixV8LKP4W/j9TGkyKjVd99SgeiIiIiIiKyr7ix3jru8ep+5yJOLE77Z2/Fe/5JbCbf2xw1HgsboQJOLte7LmOwNig8OTyPMfkczratYAMIfDARjAHHVchRxi9t/SIyOC823CMQGZuqp0OuB7BQNWW4RyMiIiIiImNV7WzItAIGph/f7yE3EoYFbSSGt/pVcjOmQCwWNj71fQAcayESCQPs1uJ0pQkAvAjGGAh8nK6ucP19ary7KcUTZPxSwF1EBrfDl7GIlMnsJeGPiIiIiIjIvrToA4M+NP2gRras2YbvOZDtzWQPXJfAiWAAB4j+7OfYuloIAmw67CfmvfI3nNUrwAYE6Wz4RGvDgHsQYGIKOcr4pXnsIiIiIiIiIiIi44zjuhz1D/NJVriY7u4wWG4MJhql65+/SOdH/g1cj8SDD5L85a9I/vq/cHJh5nvusOOhkCHv5jIYANcJS2Y6Dl5CGe4yfingLiIiIiIiIiIiMk65boCzcVMYcLcWawzG8QimziY35xAsBgvkph5IEE8BELgeFMq54/vY4srCVYRlaETGKQXcRURERERERERExql4dhvRFX8PG6VaC57HjHnV1KR6wIKNRAFwt67H+IXSM46HsX6p7Ax+PnyutYWmqQq4y/ilgLuIiIiIiIiIiMg45U1swkaieKvXYLq7MZ0dTJhcTX1VN5F1r+AUSsY43Z1QyGU32zZCobEqhE1Wwzx4i0l348Wjw/JeREYCBdxFRERERERERETGKae+FtJdJG+6icj//i+Rp58hsBBYg+3uLi1njYONhLXZ/UnTsa7TW0omCLCFGvDWjdBbb0Zk/FHLYBERERERERERkXHKiycwEGax9/RATw+RZBLX8zC2N3BubIDJF0rKVNdjMGGz1PBRcF1wXIhEcb34/n0TIiOIMtxFRERERERERETGqeYJGYJoAgvE/vBHon/4I9a4GMf0W84CNpYo3DJh3faiYnkZU1huh+eKjCcKuIuIiIiIiIiIiIxTxnHIHroYKFRoNw7GcTD5nt6SMUVBGFi33g5NUbPZsGlqYDHW4sWU4S7jlwLuIiIiIiIiIiIi41XXZnJvOgXruGGwPeJCNI7T9TqkKkqLGSiVmCnWci895vvhEibMbI9WpfbX6EVGHAXcRURERERERERExqtsJ3bKTGyqAus4gI9xXaiZgz/n4NJi1hisU2gHGYnusI4sOIWmqQ6Y6sr9N36REUZNU0VERERERERERMarVFP4r1sIEwZgjME3MfLpXCl4aOlTSmaHkjL5+QdDRUWY4e65RJMJRMYrBdxFRERERERERETGq/o5pLwN5D7/Dby/3E/z3Cnh/W2rcZJVlNqfOi7GKVR19yL0bYsaXfok2RNPANfDWHCNmqbK+KWAu4iIiIiIiIiIyHhVN5sFb58d/n7GMaW7baqZzJEnEHn2L5jABz9PdPlTZA8/CQwE9NaqNh3tYdNU1yWorMC4CrjL+KWAu4iIiIiIiIiIiPST6+7Gr5+ENaY3m33CBMJQu+mX4R6kUv1KyjiO2kbK+KWtX0RERERERERERPrJ5QzYPMbPl+6LuAFR0jjk8GsbehfeshXa2qCnB9avH4bRiowcynAXERERERERERGRfowBvHi/+2I1lcw78yie/e0jBBXV2O2bw/uf+zvxxx7HBAFBw0Q455xhGLHIyKCAu4iIiIiIiIiIiPQTq4xDRWX/+058CwCBV4E9YCGOnwccbDyB19UOrovfOHUYRisycijgLiIiIiIiIiIiIv00zF/Eq+tWkT7lH4m89BS4HiYZZrxXVWTYetqZpE87F/BJ/vS7WC8C1mIdd3gHLjLMFHAXERERERERERGRftxECkOGzJJzIBoG2l3bA0Au65EnARjABeuDtQDYRGqYRiwyMijgLiIiIiIiIiIiIjtxyOATJ/OWdxbu2QBA4+QU2172CQPuYNu3YzJhMN5d9fdhGKnIyOEM9wBERERERERERERk5InR0+eWxQnj65i6qRSD7RDgrl9TWsopNFIVGa8UcBcREREREREREZGdVDQ20xtYNwRh1Rh6OjOF+w3gYNzeuu1udfX+HaTICKOAu4iIiIiIiIiIiOwkUl3f55Yl54eB9ar6JGGw3QIWG4uXlkotmL8/hygy4ijgLiIiIiIiIiIiIjupaaokDKoDGFpzDQBEEpHSfWDwD1iEjSWwsQSRSZOGYaQiI4eapoqIiIiIiIiIiMhOKmsT9JaUASeRBCAa9UjVxunang7v/+BHmLv4a1gMXjQy0KpExg0F3EVERERERERERGQnjuPgRRzyuQCACRPD+uzGGHo606Xl0j0BXiIxLGMUGWkUcBcREREREREREZEBHf0PBw14f5Dr/d3P2wGXERmPVMNdRERERERERERERKQMFHAXERERERERERGRPVJRFy/9bhRhFCnR7iAiIiIiIiIiIiJ7ZPKceuIVURIVUZpn1g33cERGDNVwFxERERERERERkT1SP7Ga+kITVRHppQx3EREREREREREREZEyUMBdRERERERERERERKQMFHAXERERERERERERESkDBdxFRERERERERERERMpAAXcZdtdddx3HHnssyWSSmpqaAZdZu3Ytb3/720kmkzQ2NvKJT3yCfD6/fwcqIiIiIiIiIiIisgvecA9AJJvNcs4557B48WJ++MMf7vS47/u8/e1vp7m5mccee4yWlhYuuOACIpEIX/nKV4ZhxCIiIiIiIiIiIiI7M9ZaO9yDEAH48Y9/zBVXXEFra2u/+//nf/6HM844g/Xr19PU1ATALbfcwqc+9Sk2b95MNBod0vrb29uprq6mra2Nqqqqcg9fRERERERERERGCcWJZF9RSRkZ8R5//HEWLFhQCrYDnHbaabS3t/PCCy8M48hEREREREREREREeqmkjIx4GzZs6BdsB0q3N2zYMOjzMpkMmUymdLu9vX3fDFBEREREREREREQEZbjLPvLpT38aY8wuf1566aV9OoavfvWrVFdXl36mTp26T19PRERERERERERExjdluMs+8fGPf5yLLrpol8vMmjVrSOtqbm7mySef7Hffxo0bS48N5jOf+QxXXnll6XZ7e7uC7iIiIiIiIiIiIrLPKOAu+0RDQwMNDQ1lWdfixYu57rrr2LRpE42NjQDcf//9VFVVcfDBBw/6vFgsRiwWK8sYRERERERERERERHZHAXcZdmvXrmXbtm2sXbsW3/d55plnAJgzZw4VFRWceuqpHHzwwXzgAx/ga1/7Ghs2bODzn/88l112mQLqIiIiIiIiIiIiMmIYa60d7kHI+HbRRRdxxx137HT/Qw89xIknngjAmjVr+PCHP8zDDz9MKpXiwgsv5Prrr8fzhn7NqK2tjZqaGl577TWqqqrKNXwRERERERERERlliqWHW1tbqa6uHu7hyBiigLuMG6+++iqzZ88e7mGIiIiIiIiIiMgIsXLlyiH3GRQZCpWUkXGjrq4OCEvY6MqljGXFq/SazSHjnfYFEe0HIjvSPiES0r4gElZCmDZtWileJFIuCrjLuOE4DgDV1dU6oJBxoaqqStu6CNoXRED7gciOtE+IhLQviPTGi0TKRVuUiIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCrjLuBGLxbj66quJxWLDPRSRfUrbukhI+4KI9gORHWmfEAlpXxDRfiD7jrHW2uEehIiIiIiIiIiIiIjIaKcMdxERERERERERERGRMlDAXURERERERERERESkDBRwFxEREREREREREREpAwXcRURERERERERERETKQAF3GVZf/epXOeqoo6isrKSxsZGzzjqL5cuX91smnU5z2WWXUV9fT0VFBe9+97vZuHFj6fFnn32W973vfUydOpVEIsG8efO46aab+q3j17/+NaeccgoNDQ1UVVWxePFi/vCHP+x2fNZarrrqKiZOnEgikWDJkiWsWLGi3zLXXXcdxx57LMlkkpqamr3/MGTMGwvb+zvf+U6mTZtGPB5n4sSJfOADH2D9+vVv4FOR8WYs7AczZszAGNPv5/rrr38Dn4qMN6N9P3j44Yd32geKP//3f//3Bj8dGa9G+34B8PTTT3PKKadQU1NDfX09l1xyCZ2dnW/gU5HxZqTvB7/+9a859dRTqa+vxxjDM888s9Myt956KyeeeCJVVVUYY2htbd2rz0LGr/21H/zlL3/huOOOo76+nkQiwUEHHcSNN9642/EpTiRDoYC7DKs///nPXHbZZTzxxBPcf//95HI5Tj31VLq6ukrLfOxjH+O///u/+c///E/+/Oc/s379es4+++zS40899RSNjY385Cc/4YUXXuBzn/scn/nMZ7j55ptLyzzyyCOccsop/P73v+epp57ipJNO4h3veAfLli3b5fi+9rWv8e1vf5tbbrmFpUuXkkqlOO2000in06Vlstks55xzDh/+8IfL+MnIWDQWtveTTjqJX/ziFyxfvpxf/epXrFy5kve85z1l/JRkrBsL+wHAF7/4RVpaWko/l19+eZk+IRkPRvt+cOyxx/bb/ltaWvjQhz7EzJkzOfLII8v8acl4Mdr3i/Xr17NkyRLmzJnD0qVLue+++3jhhRe46KKLyvtByZg20veDrq4u3vzmN/Nv//Zvgy7T3d3N6aefzmc/+9k38EnIeLa/9oNUKsVHPvIRHnnkEV588UU+//nP8/nPf55bb711l+NTnEiGxIqMIJs2bbKA/fOf/2yttba1tdVGIhH7n//5n6VlXnzxRQvYxx9/fND1/Mu//Is96aSTdvlaBx98sL322msHfTwIAtvc3GxvuOGG0n2tra02FovZn/3sZzstf/vtt9vq6updvqZIX6N5ey+65557rDHGZrPZXb6+yGBG434wffp0e+ONN+7urYkM2WjcD/rKZrO2oaHBfvGLX9zla4vsidG2X3z/+9+3jY2N1vf90jLPPfecBeyKFSt2/WZFBjGS9oO+Vq1aZQG7bNmyQZd56KGHLGC3b98+pHWKDGZ/7gfvete77Pnnnz/o44oTyVApw11GlLa2NgDq6uqA8KpkLpdjyZIlpWUOOuggpk2bxuOPP77L9RTXMZAgCOjo6NjlMqtWrWLDhg39Xru6uppjjjlml68tMlSjfXvftm0bd911F8ceeyyRSGTQdYvsymjdD66//nrq6+s57LDDuOGGG8jn87t+oyK7MFr3g6Lf/va3bN26lQ9+8IODrldkT422/SKTyRCNRnGc3lPsRCIBhGULRPbGSNoPRIbL/toPli1bxmOPPcYJJ5ww6DKKE8lQecM9AJGiIAi44oorOO644zjkkEMA2LBhA9FodKeaV01NTWzYsGHA9Tz22GPcfffd3HvvvYO+1te//nU6Ozt573vfO+gyxfU3NTUN+bVFhmo0b++f+tSnuPnmm+nu7uZNb3oTv/vd7wZdr8iujNb94KMf/SiHH344dXV1PPbYY3zmM5+hpaWFb37zm7t8vyIDGa37QV8//OEPOe2005gyZcqg6xXZE6Nxv3jrW9/KlVdeyQ033MC//uu/0tXVxac//WkAWlpadv2GRQYw0vYDkeGwP/aDKVOmsHnzZvL5PNdccw0f+tCHBh2P4kQyVMpwlxHjsssu4/nnn+fnP//5Xq/j+eef58wzz+Tqq6/m1FNPHXCZn/70p1x77bX84he/oLGxEYC77rqLioqK0s+jjz6612MQGYrRvL1/4hOfYNmyZfzxj3/EdV0uuOACrLV7/T5k/Bqt+8GVV17JiSeeyMKFC7n00kv5xje+wXe+8x0ymcxevw8Zv0brflD0+uuv84c//IGLL754r8cvsqPRuF/Mnz+fO+64g2984xskk0mam5uZOXMmTU1N/bLeRYZqNO4HIuW2P/aDRx99lL/+9a/ccsstfOtb3+JnP/sZoP1A3hhluMuI8JGPfITf/e53PPLII/2yo5qbm8lms7S2tva7erlx40aam5v7rePvf/87J598Mpdccgmf//znB3ydn//853zoQx/iP//zP/tNAXrnO9/JMcccU7o9efLkUibKxo0bmThxYr/XXrRo0Rt5uzLOjfbtfcKECUyYMIEDDzyQefPmMXXqVJ544gkWL168x5+FjF+jfT/o65hjjiGfz7N69Wrmzp07pPcvAmNjP7j99tupr6/nne985x69d5HBjOb94rzzzuO8885j48aNpFIpjDF885vfZNasWXv1Wcj4NRL3A5H9bX/tBzNnzgRgwYIFbNy4kWuuuYb3ve99ihPJGzPcReRlfAuCwF522WV20qRJ9uWXX97p8WIzjF/+8pel+1566aWdmmE8//zztrGx0X7iE58Y9LV++tOf2ng8bn/zm98MeWzNzc3261//eum+trY2NcOQvTaWtveiNWvWWMA+9NBDQ3odkbG4H/zkJz+xjuPYbdu2Del1RMbKfhAEgZ05c6b9+Mc/PqR1i+zKWNkv+vrhD39ok8mkmkbKkI3k/aAvNU2VfWl/7gc7uvbaa+306dN3OTbFiWQoFHCXYfXhD3/YVldX24cffti2tLSUfrq7u0vLXHrppXbatGn2wQcftH/961/t4sWL7eLFi0uP/+1vf7MNDQ32/PPP77eOTZs2lZa56667rOd59rvf/W6/ZVpbW3c5vuuvv97W1NTYe+65xz733HP2zDPPtDNnzrQ9PT2lZdasWWOXLVtmr732WltRUWGXLVtmly1bZjs6Osr4SclYMNq39yeeeMJ+5zvfscuWLbOrV6+2DzzwgD322GPt7NmzbTqdLvOnJWPVaN8PHnvsMXvjjTfaZ555xq5cudL+5Cc/sQ0NDfaCCy4o8yclY9lo3w+K/vSnP1nAvvjii2X6ZGQ8Gwv7xXe+8x371FNP2eXLl9ubb77ZJhIJe9NNN5XxU5KxbqTvB1u3brXLli2z9957rwXsz3/+c7ts2TLb0tJSWqalpcUuW7bM/uAHP7CAfeSRR+yyZcvs1q1by/hJyVi2v/aDm2++2f72t7+1L7/8sn355ZftbbfdZisrK+3nPve5XY5PcSIZCgXcZVgBA/7cfvvtpWV6enrsv/zLv9ja2lqbTCbtu971rn5f6FdfffWA6+h7VfKEE04YcJkLL7xwl+MLgsB+4QtfsE1NTTYWi9mTTz7ZLl++vN8yF1544YDrVsav7Gi0b+/PPfecPemkk2xdXZ2NxWJ2xowZ9tJLL7Wvv/56uT4iGQdG+37w1FNP2WOOOcZWV1fbeDxu582bZ7/yla/oopPskdG+HxS9733vs8cee+wb/ThErLVjY7/4wAc+YOvq6mw0GrULFy60d955Zzk+GhlHRvp+cPvttw/4vKuvvnq3r9/3PYjsyv7aD7797W/b+fPn22Qyaauqquxhhx1mv/e971nf93c5PsWJZCiMtep0JyIiIiIiIiIiIiLyRqlduoiIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiIiIiIiIiIiIlIGCriLiIiIiIiIiIiIiJSBAu4iIiIiIiIiIiIiImWggLuIiIiIiIiIiIiISBko4C4iIiIiIiIiIiIiUgYKuIuIiIiIiIiIiIiIlIEC7iIiIiIiIiIiIiIiZaCAu4iIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJl4A33AERERIZDEAT09PSQyWSw1g73cERERERkHzPGEIvFSCQSOI7yD0VEZN9QwF1ERMadjo4OVq5cie/7wz0UEREREdnPXNdl9uzZVFZWDvdQRERkDDJWaX0iIjKO5PN5nn32WSKRCFOmTCEWi2GMGe5hiYiIiMg+Zq0lk8nw+uuvk8vlWLBgAdFodLiHJSIiY4wC7iIiMq5s27aNVatWMXfuXCoqKoZ7OCIiIiKyn3V2drJ8+XKeffZZzj//fAXdRUSkrFS0TERExpXidWbV7RQREREZn4rHgStWrOD73/8+QRAM84hERGQsUbRBRERERERERMadWCzGiy++SGdn53APRURExhAF3EVERMaAa665hkWLFpVuX3TRRZx11llveL3GGH7zm9+84fXI/qXtQfrS9iB9aXuQvsb79hCJRMjn82zbtm24hyIiImOIAu4iIiJj0E033cSPf/zj4R5GibWWq666iokTJ5JIJFiyZAkrVqzot8x1113HscceSzKZpKamZngGOkaNxu1hxowZGGP6/Vx//fXDNOKxZSRtD7lcjk996lMsWLCAVCrFpEmTuOCCC1i/fn1pmYcffninbaH483//93/DOPqxYbRtDwAvv/wyZ555JhMmTKCqqoo3v/nNPPTQQ8M06rFlNG4PTz/9NKeccgo1NTXU19dzySWXKGNdRESGlQLuIiIiY1B1dfWICFpns1kAvva1r/Htb3+bW265haVLl5JKpTjttNNIp9P9lj3nnHP48Ic/PFzDHbNG4/YA8MUvfpGWlpbSz+WXXz4cwx5zRtL20N3dzdNPP80XvvAFnn76aX7961+zfPly3vnOd5aWO/bYY/ttBy0tLXzoQx9i5syZHHnkkcP4DsaG0bY9AJxxxhnk83kefPBBnnrqKQ499FDOOOMMNmzYMEyjHztG2/awfv16lixZwpw5c1i6dCn33XcfL7zwAhdddNHwDV5ERMY9b7gHICIiMmz+/mvoGuaT81QzHHz2bhe79dZbueaaa3j99df7NXw988wzqa+vZ9q0af2Wv+iii2htbS1N5z7xxBNZuHAh8Xic2267jWg0yqWXXso111xTes6KFSu4+OKLefLJJ5k1axY33XTTTuN47bXX+PjHP84f//hHHMfh+OOP56abbmLGjBn9Xveoo47iu9/9LrFYjFdffZVvfetbfP7zn+fMM88E4M4776SpqYnf/OY3nHvuuQBce+21AMOaWbf9VyvIbewattePNKWoffcBu11uPGwPAJWVlTQ3Nw/14yu7V199le7u7mF7/WQyyaxZs3a73GjeHlatWsX999/fbz0333wzRx99NGvXrmXatGlEo9F+20Eul+Oee+7h8ssvxxiz28+nXF55Zj3d7Zn99no7SlbFmLNo0m6XG+vbw5YtW1ixYgU//OEPWbhwIQDXX3893/ve93j++ef32/8ZLV/4ApmXV+x+wX0oduABTPzSl3a5zFjfHn73u98RiUT47ne/W3p/t9xyCwsXLuSVV15hzpw5Q/04RUREykYBdxERGb+6NkDba8M9iiE555xzuPzyy3nooYc4+eSTAdi2bRv33Xcfv//973n00Ud3u4477riDK6+8kqVLl/L4449z0UUXcdxxx3HKKacQBAFnn302TU1NLF26lLa2Nq644op+z8/lcpx22mksXryYRx99FM/z+PKXv8zpp5/Oc889RzQaBeCBBx6gqqqqdJK8atUqNmzYwJIlS0rrqq6u5phjjuHxxx/vF2AdbrmNXWTXdgz3MHZrvGwP119/PV/60peYNm0a5513Hh/72MfwvP13+Nrd3T0qyhKM5u1hIG1tbRhjBs2y/e1vf8vWrVv54Ac/OLQPqEy62zN0bu/Zr6+5N8b69lBfX8/cuXO58847Ofzww4nFYnz/+9+nsbGRI444Yu8+tL2QeXkFPc8+u99eb2+N9e0hk8kQjUb7XUxIJBIA/OUvf1HAXUREhoVKyoiIiIwCtbW1vO1tb+OnP/1p6b5f/vKXTJgwgZNOOmlI61i4cCFXX301BxxwABdccAFHHnkkDzzwAAB/+tOfeOmll7jzzjs59NBDectb3sJXvvKVfs+/++67CYKA2267jQULFjBv3jxuv/121q5dy8MPP1xaLpVKcdtttzF//nzmz59fmuLf1NTUb31NTU2a/r+XxsP28NGPfpSf//znPPTQQ/zzP/8zX/nKV/jkJz+5R5/TeDGat4cdpdNpPvWpT/G+972PqqqqAcf6wx/+kNNOO40pU6YM6b2NN2N9ezDG8Kc//Ylly5ZRWVlJPB7nm9/8Jvfddx+1tbV7+nGNeWN9e3jrW9/Khg0buOGGG8hms2zfvp1Pf/rTALS0tOzRZyUiIlIuCriLiIiMEu9///v51a9+RSYTljS46667OPfcc/tlde1Kcep90cSJE9m0aRMAL774IlOnTmXSpN5yBYsXL+63/LPPPssrr7xCZWUlFRUVVFRUUFdXRzqdZuXKlaXlFixYUMpWk31nrG8PV155ZamUwaWXXso3vvENvvOd75Ter/Q3FraHXC7He9/7Xqy1/Pu///uAy7z++uv84Q9/4OKLLx7S+xqvxvL2YK3lsssuo7GxkUcffZQnn3ySs846i3e84x0KsA5iLG8P8+fP54477uAb3/gGyWSS5uZmZs6cSVNT05Dfn4iISLmppIyIiMgo8Y53vANrLffeey9HHXUUjz76KDfeeOOQnx+JRPrdNsYQBMGQn9/Z2ckRRxzBXXfdtdNjDQ0Npd9TqVS/x4r1dDdu3MjEiRNL92/cuJFFixYN+fWlv/G2PRxzzDHk83lWr17N3LlzhzzO8WK0bg9FxWDamjVrePDBBwfNbr/99tupr6/fqYmm9DeWt4cHH3yQ3/3ud2zfvr10//e+9z3uv/9+7rjjjlJ2s/Qay9sDwHnnncd5553Hxo0bSaVSGGP45je/OaQeGCIiIvuCAu4iIjJ+pYavGePejCEej3P22Wdz11138corrzB37lwOP/zwsgxj3rx5vPbaa7S0tJSCoE888US/ZQ4//HDuvvtuGhsbBw2GDWTmzJk0NzfzwAMPlAKq7e3tLF26lA9/+MNlGX+5RJoGPtkfia8/3raHZ555BsdxaGxs3PM3tJeSyeR+e603+vqjdXuA3mDaihUreOihh6ivrx9wOWstt99+OxdccMFOAcD9IVkV2++vubevP5a3h2Ij4x2zlx3H2aMg8BsVO3D3Da5HyhjG8vbQV7FU2Y9+9CPi8TinnHLKHr4bERGR8lDAXURExq+Dzx7uEeyx97///Zxxxhm88MILnH/++WVb75IlSzjwwAO58MILueGGG2hvb+dzn/vcTq99ww03cOaZZ/LFL36RKVOmsGbNGn7961/zyU9+ctB6ysYYrrjiCr785S9zwAEHMHPmTL7whS8wadIkzjrrrNJya9euZdu2baxduxbf93nmmWcAmDNnDhUVFWV7r7tS++7hD6DsibG6PTz++OMsXbqUk046icrKSh5//HE+9rGPcf755+/XGs2jLTtyNG4PuVyO97znPTz99NP87ne/w/f9Ui3/urq6fuUlHnzwQVatWsWHPvShsr23PTFn0aTdLzSCjNXtYfHixdTW1nLhhRdy1VVXkUgk+MEPfsCqVat4+9vfXrb3uTsTv/Sl/fZa5TBWtweAm2++mWOPPZaKigruv/9+PvGJT3D99dcP2nhZRERkX1NRMxERkVHkrW99K3V1dSxfvpzzzjuvbOt1HIf/+q//oqenh6OPPpoPfehDXHfddf2WSSaTPPLII0ybNo2zzz6befPmcfHFF5NOp3ebsfbJT36Syy+/nEsuuYSjjjqKzs5O7rvvPuLxeGmZq666isMOO4yrr76azs5ODjvsMA477DD++te/lu19jjVjdXuIxWL8/Oc/54QTTmD+/Plcd911fOxjH+PWW28t23sci0bj9rBu3Tp++9vf8vrrr7No0SImTpxY+nnsscf6LfvDH/6QY489loMOOqhs720sG6vbw4QJE7jvvvvo7OzkrW99K0ceeSR/+ctfuOeeezj00EPL9j7HmrG6PQA8+eSTnHLKKSxYsIBbb72V73//+3z0ox8t23sUERHZU8Zaa4d7ECIiIvvL1q1bWb16NfPmzRv2chEiIiIisv91d3fz4osvct9997FmzRo++9nPMmPGjOEeloiIjBHKcBcRERERERERERERKQMF3EVEREREREREREREykABdxERERERERERERGRMlDAXURERERERERERESkDBRwFxEREREREREREREpAwXcRURERERERERERETKQAF3EREREREREREREZEyUMBdRERERERERERERKQMFHAXERERERERERERESkDBdxFRETGgGuuuYZFixaVbl900UWcddZZb3i9xhh+85vfvOH1iIiIiIiIiIwHCriLiIiMQTfddBM//vGPh3sYJdZarrrqKiZOnEgikWDJkiWsWLGi9Pjq1au5+OKLmTlzJolEgtmzZ3P11VeTzWaHcdQiIiIiIiIie0YBdxERkTGourqampqa4R5GKWD+ta99jW9/+9vccsstLF26lFQqxWmnnUY6nQbgpZdeIggCvv/97/PCCy9w4403csstt/DZz352OIcvIiIiIiIiske84R6AiIjIcPn0r55j+caOYR3D3KZKrn/3wt0ud+utt3LNNdfw+uuv4zi918vPPPNM6uvrmTZtWr/lL7roIlpbW0vlYE488UQWLlxIPB7ntttuIxqNcumll3LNNdeUnrNixQouvvhinnzySWbNmsVNN9200zhee+01Pv7xj/PHP/4Rx3E4/vjjuemmm5gxY0a/1z3qqKP47ne/SywW49VXX+Vb3/oWn//85znzzDMBuPPOO2lqauI3v/kN5557Lqeffjqnn3566XVmzZrF8uXL+fd//3e+/vWvD/XjFBERERERERlWCriLiMi4tXxjB8vWtg73MIbknHPO4fLLL+ehhx7i5JNPBmDbtm3cd999/P73v+fRRx/d7TruuOMOrrzySpYuXcrjjz/ORRddxHHHHccpp5xCEAScffbZNDU1sXTpUtra2rjiiiv6PT+Xy3HaaaexePFiHn30UTzP48tf/jKnn346zz33HNFoFIAHHniAqqoq7r//fgBWrVrFhg0bWLJkSWld1dXVHHPMMTz++OOce+65A463ra2Nurq6vfm4RERERERERIaFSsqIiIiMArW1tbztbW/jpz/9aem+X/7yl0yYMIGTTjppSOtYuHAhV199NQcccAAXXHABRx55JA888AAAf/rTn3jppZe48847OfTQQ3nLW97CV77ylX7Pv/vuuwmCgNtuu40FCxYwb948br/9dtauXcvDDz9cWi6VSnHbbbcxf/585s+fz4YNGwBoamrqt76mpqbSYzuC1F0TAAAE70lEQVR65ZVX+M53vsM///M/D+m9iYiIiIiIiIwECriLiIiMEu9///v51a9+RSaTAeCuu+7i3HPP7VdiZlcWLuxfumbixIls2rQJgBdffJGpU6cyadKk0uOLFy/ut/yzzz7LK6+8QmVlJRUVFVRUVFBXV0c6nWblypWl5RYsWFDKdt8b69at4/TTT+ecc87hn/7pn/Z6PSIiIiIiIiL7m0rKiIiIjBLveMc7sNZy7733ctRRR/Hoo49y4403Dvn5kUik321jDEEQDPn5nZ2dHHHEEdx11107PdbQ0FD6PZVK9XusubkZgI0bNzJx4sTS/Rs3bmTRokX9ll2/fj0nnXQSxx57LLfeeuuQxyYiIiIiIiIyEijgLiIi49bcpsrhHsIejSEej3P22Wdz11138corrzB37lwOP/zwsoxj3rx5vPbaa7S0tJSC4k888US/ZQ4//HDuvvtuGhsbqaqqGvK6Z86cSXNzMw888EApwN7e3s7SpUv58Ic/XFpu3bp1nHTSSRxxxBHcfvvtQ87cFxERERERERkpFHAXEZFx6/p3L9z9QiPM+9//fs444wxeeOEFzj///LKtd8mSJRx44IFceOGF3HDDDbS3t/O5z31up9e+4YYbOPPMM/niF7/IlClTWLNmDb/+9a/55Cc/yZQpUwZctzGGK664gi9/+csccMABzJw5ky984QtMmjSJs846CwiD7SeeeCLTp0/n61//Ops3by49v5ghLyIiIiIiIjLSKeAuIiIyirz1rW+lrq6O5cuXc95555VtvY7j8F//9V9cfPHFHH300cyYMYNvf/vbnH766aVlkskkjzzyCJ/61Kc4++yz6ejoYPLkyZx88sm7zXj/5Cc/SVdXF5dccgmtra28+c1v5r777iMejwNw//3388orr/DKK6/sFLi31pbtfYqIiIiIiIjsS8bqLFZERMaRrVu3snr1aubNm0cymRzu4YiIiIjIftbd3c2LL77Ifffdx5o1a/jsZz/LjBkzhntYIiIyRqg4qoiIiIiIiIiIiIhIGSjgLiIiIiIiIiIiIiJSBgq4i4iIiIiIiIiIiIiUgQLuIiIiIiIiIiIiIiJloIC7iIiIiIiIiIiIiEgZKOAuIiLjijEGgCAIhnkkIiIiIjIciseB1tphHomIiIxFCriLiMi4kkwmAejs7BzmkYiIiIjIcCgeB7a3tw/zSEREZCzyhnsAIiIi+1M8HicWi7Fu3ToAKioqcBxdfxYREREZ64IgoLOzk3Xr1vHaa6+RyWSGe0giIjIGKeAuIiLjzsEHH8zzzz9fCrqLiIiIyPjx2muvsXTpUnK5HJ7nUVNTM9xDEhGRMUQBdxERGXccx2HhwoX84Ac/YOXKlaWsdxEREREZu6y1tLe3k8lkyGQydHd3s2jRIqqqqoZ7aCIiMoYYqy4hIiIyTmWzWW677Tb+9re/kcvlhns4IiIiIrKfeJ7HQQcdxKWXXko8Hh/u4YiIyBiigLuIiIxrQRCwdetWtm3bhr4SRURERMY+Yww1NTXU19fjeZr4LyIi5aWAu4iIiIiIiIiIiIhIGTjDPQARERERERERERERkbFAAXcRERERERERERERkTJQwF1EREREREREREREpAwUcBcRERERERERERERKQMF3EVEREREREREREREykABdxERERERERERERGRMvj/AfbEdbitcKcuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Making temperature plot\n", + "dataset.make_plot(obstype='temp',colorby='name',legend=True)\n", + "# Try some other functions yourself" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4rxgNmTUYzor" + }, + "source": [ + "**0.6.3 Send file for model data extraction**\n", + "\n", + "\n", + "\n", + "Use the `fairness_coordinates_for_alaro_25_csv_creator()` method to generate a file. More detailed documentation can be found [here](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.fairness_coordinates_for_alaro_25_csv_creator).\n", + "\n", + "Send the file created by this function by email to mivieijra@meteo.be. In this way you will recieve the ALARO model data (spatial resolution 2.5 km x 2.5 km) that will be needed to complete the exercises where you will analyse model data for the region of your meteorological measurement network.\n", + "\n", + "The model data that will be send back to you will contain:\n", + "\n", + "\n", + "* Timeseries of climate model data of the nearest grid points with respect to the locations of your stations. If your measurement network is a micro-meteorological network within the spatial extend of 2.5 km by 2.5 km, then it is likely that you will recieve the same timeseries for each location.\n", + "* Spatial plots of the model data that contains the locations of your stations. By default the spatial plot extend will be a tight-fit around the locations of your stations. If you prefer **a larger extend** of the spatial plot e.g. to represent the complete city, then you can specify it with the `*_min, *_max` arguments as shown below.\n", + "For example for the city of Ghent and some of its surroundings this could be:\n", + "\n", + "\n", + "```\n", + " lat_min= 50.984024,\n", + " lon_min = 3.626097,\n", + " lat_max = 51.143149,\n", + " lon_max = 3.872475\n", + "```\n", + "\n", + "You can define the coordinates of a larger extend with the help of Google Maps.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WysmPNh2nYya" + }, + "outputs": [], + "source": [ + "@your_dataset.fairness_coordinates_for_alaro_25_csv_creator(outputfolder = ' .... ', #folder to save your metadata\n", + " filename = ' ...... .csv', #filename ('YOUR_NAME_metadata.csv' for example )\n", + " #Define the extend of the spatial model plot that will be prepared for you.\n", + " #If None, a tight-fit will be use.\n", + " lat_min= None, # minimum latitude of the extend\n", + " lon_min = None, # minimum longitude of the extend\n", + " lat_max = None, # maximum latitude of the extend\n", + " lon_max = None) # maximum longitude of the extend" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RD72JDXhziOQ" + }, + "source": [ + "**Well done! You are ready to for the next step: performing a quality control on your data.**" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/fairness_demo_exercises/Quality_control_excercise_02.ipynb b/fairness_demo_exercises/Quality_control_excercise_02.ipynb new file mode 100644 index 00000000..d91c9dd3 --- /dev/null +++ b/fairness_demo_exercises/Quality_control_excercise_02.ipynb @@ -0,0 +1,816 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "0fEU-Sn_haHV" + }, + "source": [ + "Welcome to the second exercise of this summer school! During this exercise you will learn to apply different quality control procedures to (your) observational datasets. This exercise consists of three parts. Firstly, the necessary packages are again installed and imported, in the same way as the previous exercise. Secondly, the different functions from the toolkit concerning quality control are explained and applied to a demo dataset. Thirdly, you will apply the quality control capabilities from the toolkit to your own dataset." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hjqkbB-pOSeA" + }, + "source": [ + "# 1. Import and initialisation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GtWdGonvSESQ" + }, + "source": [ + "## 1.1 Import the toolkit and additional packages" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gFI6DFHXgKBs" + }, + "source": [ + "As each exercise is a separate Google Colab notebook, some initial steps from the previous exercise will have to be repeated in this new notebook. Firstly, the toolkit will have to be re-installed in the same way as before." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LyDl5HeisFto" + }, + "outputs": [], + "source": [ + "!pip3 install MetObs-toolkit==0.1.1\n", + "%config InlineBackend.print_figure_kwargs = {'bbox_inches':None}" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_wD5Hbt_f0jX" + }, + "source": [ + "Next, we will again import the toolkit and other additional modules, which are necessary for this exercise." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "z9OHrlihUyO2" + }, + "outputs": [], + "source": [ + "import metobs_toolkit\n", + "import pandas as pd\n", + "import datetime" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0b__D3f5f7tU" + }, + "source": [ + "Finally, you will also have to link your Google Drive to this notebook again." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "FkW_zmVpKzbp" + }, + "outputs": [], + "source": [ + "# Loading your Google Drive\n", + "from google.colab import drive\n", + "drive.mount('/content/drive', force_remount=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IpxEiCvcRrw2" + }, + "source": [ + "# 2. Quality control\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "y-EhZHSklMCk" + }, + "source": [ + "## 2.1 Initial quality control" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yOhgucXZhQbu" + }, + "source": [ + "In this second part of the exercise we will work with a demo dataset. We will first load in this dataset in largely the same way as in the previous exercise, with one notable addition. Firstly, we create an empty dataset and we update the settings to link to the files from this demo dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "doAr70nxRrGD" + }, + "outputs": [], + "source": [ + "# Make an empty dataset\n", + "dataset = metobs_toolkit.Dataset()\n", + "\n", + "# Add the demo data files to the dataset settings\n", + "dataset.update_settings(input_data_file = metobs_toolkit.demo_datafile,\n", + " input_metadata_file = metobs_toolkit.demo_metadatafile,\n", + " data_template_file = metobs_toolkit.demo_template,\n", + " metadata_template_file = metobs_toolkit.demo_template # Contains also the metadata mapping\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uwTaud1hTk4w" + }, + "source": [ + "When you import the dataset some initial quality control steps are already exectuted:\n", + "\n", + "1. The toolkit looks for **duplicated timestamps**. As there is no way to know which of these timestamps are the correct ones, all of the duplicates are eliminated.\n", + "2. **Invalid observations** are removed. For instance, when the dataset contains some text instead of a number, this is an invalid observation.\n", + "3. Based on the observations, a time resolution is estimated for the dataset. With this time resolution, the toolkit searches for **missing observations**.\n", + "4. When a series of consecutive missing observations is present, this is labeled as a **gap**. The minimum number of observations needed to define a gap is a number you can choose yourself, based on your preferences. This value can be modified in the quality control settings with the parameter ```gapsize_in_records```.\n", + "\n", + "It is important to note that the toolkit looks for gaps at the moment the dataset is imported. Therefore, if you want to use a specific number of observations to define a gap, this needs to be defined before importing the data.\n", + "\n", + "In this exercise we define a gap as a series of missing observations which lasts longer than 1 hour. As the time resolution of the demo dataset is 5 minutes, we hence set the parameter ```gapsize_in_records``` to 12, as there are 12 observations in 1 hour. We use the function ```update_qc_settings``` to perform this step:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "fjr7Dr8lll6z" + }, + "outputs": [], + "source": [ + "# Update the gap definition\n", + "dataset.update_qc_settings(gapsize_in_records=12)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yvqHF7tVnVIa" + }, + "source": [ + "Now we are ready to load in the dataset and take a look at what is inside:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "N01q1Zuqlh1Q" + }, + "outputs": [], + "source": [ + "# Load the data from the demo data files\n", + "dataset.import_data_from_file()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JwVf_sKSU_1j" + }, + "outputs": [], + "source": [ + "# Look at what is inside the dataset\n", + "dataset.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IkWnaXr9nQpm" + }, + "source": [ + "Observations that pass these intitial quality control steps are contained in the ```df``` object. Any observation that does not pass one of the initial quality control steps is not stored in this ```df```, but it is stored elsewhere depending on which check it failed. labeled as an outlier. Observations with duplicated timestamps or invalid input are labeled as outliers and can be found in the ```outliersdf``` object:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "uQJh2TXlXUU7" + }, + "outputs": [], + "source": [ + "# The outliers are stored in the outliersdf object of the dataset:\n", + "outliers = dataset.outliersdf\n", + "\n", + "# Print this object to see what is stored in this data frame:\n", + "print(outliers)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Y5VL-gCpybWb" + }, + "source": [ + "Each row denotes an observation that was flagged as an outlier. The observation is characterized by the name of the station, the timestamp and the observation type. Two columns then declare why this observation is an outlier. The first column ```\"value\"``` gives the value of this observation. If it is ```NaN```, then the observation is not a number. The second column ```\"label\"``` explains which quality control check this observation failed. Here, the label ```invalid input``` was given, because the observation was not numeric.\n", + "\n", + "Missing observations are stored in the ```missing_obs``` object, while gaps are contained in a different object, aptly named ```gaps```. In the next exercise you will learn about gaps and how to handle them.\n", + "\n", + "**For more information about the structure of a Dataset in this toolkit, you can consult the documentation [here](https://vergauwenthomas.github.io/MetObs_toolkit/intro.html#dataset).**" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HP0ui42tkm86" + }, + "source": [ + "## 2.2 Additional quality control checks\n", + "\n", + "Five additional quality control checks can be performed with the function ```apply_quality_control``` ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control)). Each of the five available checks will be explained in the following exercises.\n", + "\n", + "The quality control is performed based on settings that are associated with the dataset. The following code shows how these settings can be accessed. Take a quick look at the structure of this dictionary. It will become more clear when we will tackle the individual checks.\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "g2e4xh2_leXf" + }, + "outputs": [], + "source": [ + "# All settings, labels, replacement values are defined in the default settings in /settings_files/qc_settings.py\n", + "# To inspect (and change) these quality control settings, you can extract them:\n", + "qc_settings = dataset.settings.qc[\"qc_check_settings\"]\n", + "\n", + "# These settings are in a dictionary which contains multiple levels.\n", + "# The first level concerns the specific quality control check which the settings are for.\n", + "# You can print the keys of the dictionary to get an idea of the different available checks:\n", + "print(qc_settings.keys())\n", + "\n", + "# All of these checks will be explained in the following parts of the exercise." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WYistOconmJZ" + }, + "source": [ + "### 2.2.1 Gross value check\n", + "\n", + "The [**gross value check**](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.gross_value_check.html#metobs_toolkit.qc_checks.gross_value_check) tests your dataset to see if the observations are between certain thresholds. The settings for this check can be found in the settings dictionary with the key ```\"gross_value\"```. For temperature these settings already have some default values. In the following code we will show how you can access these values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GDK-Xy7ApA2Y" + }, + "outputs": [], + "source": [ + "# The settings for the gross value check can be found in the qc_settings dictionary\n", + "# by using the key \"gross_value\"\n", + "print(qc_settings[\"gross_value\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vGDLKYOFvFXp" + }, + "outputs": [], + "source": [ + "# You can see that this dictionary only has one key: \"temp\".\n", + "# This is because default values are currently only given for temperature.\n", + "# The settings for temperature can be accessed in the following way:\n", + "print(qc_settings[\"gross_value\"][\"temp\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nDhgEas9vJVG" + }, + "source": [ + "These variables determine the minimum and maximum threshold used by the gross value check. What values would you choose for your own dataset?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YbpcTYFqvYKV" + }, + "source": [ + "**Extra information**: In this exercise we will only work with temperature. However, if you want to apply quality control to another variable, you can add this variable with the correct settings in the dictionary. For example, let us consider the relative humidity. This variable is expressed in % and needs to lie between 0 % and 100 %. The gross value check could then be applied to check this in the data." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Tq1k-lNTqaOq" + }, + "source": [ + "### 2.2.2 Persistence check\n", + "\n", + "The [**persistence check**](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.persistance_check.html#metobs_toolkit.qc_checks.persistance_check) searches for a consecutive series of repetitive observation values in your dataset. The check functions by looking at a certain time window to see if the observations are constant in this window. The length of this time window is defined in the settings by ``` \"time_window_to_check\" ```. This time windows should reflect a time interval during which you expect some variation in the observed variable. For the check to be executed, this time window should contain a minimum number of observations, which is determined by ``` \"min_num_obs\" ```. If all observations in the time window are identical, they are all labeled as a persistence outlier.\n", + "\n", + "For temperature some default values are already set. Look for these values in the settings with the key ```\"persistance\"```. What values would you choose for your dataset?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Dhh_TFatqxyx" + }, + "outputs": [], + "source": [ + "# Print the settings for the persistence check and find the default settings for the temperature" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aGYFnBDe9Npr" + }, + "source": [ + "### 2.2.3 Repetitions check\n", + "\n", + "The **[repetitions check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.repetitions_check.html#metobs_toolkit.qc_checks.repetitions_check)** is very similar to the persistence check but works in a slightly different way. With the persistance check you define a certain time window during which you expect some variation in the observed variable. This time window is absent for the repetitions check: it simply checks the series of observations and looks for a series of consecutive constant values. A series of such constant values could indicate a connection error. In many cases the persistence check and the repetitions check will give the same results. However, in some cases, one of the checks will be more suitable, for example when the time resolution of your data is very coarse.\n", + "\n", + "Can you find the default values for temperature (analogously to the two previous checks)?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "lqWJdDPp_yKS" + }, + "outputs": [], + "source": [ + "# Print the settings for the repetitions check and find the default settings for the temperature" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XMAlHg5vr2-C" + }, + "source": [ + "### 2.2.4 Spike check\n", + "\n", + "The **[spike check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.step_check.html#metobs_toolkit.qc_checks.step_check)** inspects your dataset for abrupt changes in the observations between consecutive timestamps. If an observation varies too much from the previous observation, it is labeled as an outlier. You can find the settings for this check with the key ```\"step\"``` in the settings dictionary. The change between consecutive timestamps is expressed per second and is defined by the variables ```\"max_increase_per_second\"``` and ```\"min_increase_per_second\"``` in the settings.\n", + "\n", + "Take a look at the default values for this check." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "tlAgZAFssKJw" + }, + "outputs": [], + "source": [ + "# Print the settings for the spike check and find the default settings for the temperature" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2Tbxsvknv05v" + }, + "source": [ + "### 2.2.5 Window variation check\n", + "\n", + "Lastly, while the spike check looks at the variation between two consecutive variations, the **[window variation check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.qc_checks.window_variation_check.html#metobs_toolkit.qc_checks.window_variation_check)** investigates the variation of the data in a certain time window. This variation needs to be between a certain minimum and maximum threshold which can be found in the settings as respectively ```max_increase_per_second``` and ```min_increase_per_second```. The length of the time window is controlled by the variable ```time_window_to_check```, while ```min_window_members``` determines how many observations need to be inside of this window before performing this check. All of these settings can be found in the quality control settings dictionary under the key ```\"window_variation\"```.\n", + "\n", + "Take a look at the default values for this check." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "sG1bpCSkv7Dr" + }, + "outputs": [], + "source": [ + "# Print the settings for the window variation check and find the default settings for the temperature" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kePsuwgCwq69" + }, + "source": [ + "## 2.3 Applying quality control\n", + "\n", + "The five quality control checks can be applied to the dataset with the the function ```apply_quality_control``` ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_quality_control)). Before applying the quality control, we will first coarsen the data to a time resolution of 1 hour." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "OAsCrwCcxHk8" + }, + "outputs": [], + "source": [ + "# Coarsen the time resolution to 1 hour\n", + "dataset.coarsen_time_resolution(freq='1H')\n", + "\n", + "# Apply quality control\n", + "dataset.apply_quality_control(\n", + " obstype=\"temp\", # choose which observations you want to check\n", + " gross_value=True, # set True if you want to perform the gross value check\n", + " persistance=True, # set True if you want to perform the persistence check\n", + " repetitions=True, # set True if you want to perform the repetitions check\n", + " step=True, # set True if you want to perform the spike check\n", + " window_variation=True, # set True if you want to perform the window variation check\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3oXjxGNowQNf" + }, + "source": [ + "This function updates the outliers data frame (```outliers_df```) in the dataset if some observations do not pass the previous quality control checks. Take a look at the outliers dataframe:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ll7lpJ4Awgxw" + }, + "outputs": [], + "source": [ + "# Print the outliers dataframe. Are there more outliers than before?\n", + "dataset.outliersdf.xs('temp', level='obstype') # Select only the temperature outliers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7f_pGiNn2dnf" + }, + "source": [ + "## 2.4 Plotting quality control results\n", + "You can plot the results of the full quality control nicely with the function below ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.get_qc_stats)). This function generates pie charts to display the quality control statistics. There is a general pie chart with the overall label of the observations: ok, outlier or missing. Next, there is also a general pie chart, specifying how the different types of outliers are distributed. Finally, each quality control check also has its own chart, denoting how many observations pass this check by labelling them as ok, outlier or not checked. Observations which are already labeled as an outlier are not checked again by the following checks, which results in the \"not checked\" label.\n", + "\n", + "Inspect the code to generate the plot and look at the overview plot itself. Can you recognize all the features as decribed above?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7nfcyA0Cy0FC" + }, + "outputs": [], + "source": [ + "qc_statistics = dataset.get_qc_stats(\n", + " obstype=\"temp\", # Specify which observation variable you want to get the statistics for; here we choose temperature\n", + " stationname=None, # None means all stations are plotted. You can also plot a specific station by specifying the station name, e.g. 'vlinder01'\n", + " make_plot=True, # Set True to make a plot\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lxP70rzPI_AG" + }, + "source": [ + "If you are interested in a specific station, you can do the quality control on a specific station rather than the full dataset. The following code gives an example of how this can be done. However, if you run this code right now, it will give an error because all quality control checks have already been performed for this dataset. If you want to do a new quality control procedure, you will have to start again from an empty dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "c8pE4YfAJMzN" + }, + "outputs": [], + "source": [ + "specific_station = 'vlinder01' #the name of the station\n", + "\n", + "station = dataset.get_station(specific_station)\n", + "\n", + "station.apply_quality_control(\n", + " obstype=\"temp\", # choose which observations you want to check\n", + " gross_value=True, # set True if you want to perform the gross value check\n", + " persistance=True, # set True if you want to perform the persistence check\n", + " repetitions=True, # set True if you want to perform the repetitions check\n", + " step=True, # set True if you want to perform the spike check\n", + " window_variation=True, # set True if you want to perform the window variation check\n", + ")\n", + "\n", + "qc_statistics = station.get_qc_stats(\n", + " obstype=\"temp\", # Specify which observation variable you want to get the statistics for; here we choose temperature\n", + " make_plot=True, # Set True to make a plot\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pw6VqefCIKve" + }, + "source": [ + "When plotting a time series, the quality control outliers will also be present in the form of scatters on the time series. To visualise this use the `colorby='label'` attribute in the plotting function ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.make_plot))." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "67c0SboWuFI_" + }, + "outputs": [], + "source": [ + "dataset.make_plot(colorby=\"label\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FXmzHLRzVDco" + }, + "source": [ + "You can also plot just the observations of one or more station of you choice. You can specify which station by using the ```stationnames``` argument of the plotting function:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Ii_Ww0MtVZ3T" + }, + "outputs": [], + "source": [ + "dataset.make_plot(colorby=\"label\", stationnames=[\"vlinder05\"]) # Here we plot only the observations of station 'vlinder05'" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LfXNOBQvKoH_" + }, + "source": [ + "## 2.5 Changing the quality control settings" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_Zxl_762LE90" + }, + "source": [ + "To change the settings used by the quality control you can use the [`update_qc_settings`](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings)function. You need to execute this function before applying the quality control." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "y0xK4wq-zyIN" + }, + "outputs": [], + "source": [ + "# Make an empty dataset\n", + "dataset = metobs_toolkit.Dataset()\n", + "\n", + "# Add the demo data files to the dataset settings\n", + "dataset.update_settings(input_data_file = metobs_toolkit.demo_datafile,\n", + " input_metadata_file = metobs_toolkit.demo_metadatafile,\n", + " data_template_file = metobs_toolkit.demo_template,\n", + " metadata_template_file = metobs_toolkit.demo_template # Contains also the metadata mapping\n", + " )\n", + "\n", + "# Update the settings\n", + "dataset.update_qc_settings(obstype='temp',\n", + " gross_value_max_value=27.2,\n", + " win_var_time_win_to_check='3H', # 3 hours\n", + " step_max_decrease_per_sec=3.6/3600,\n", + " gapsize_in_records=15)\n", + "\n", + "# Load the data from the demo data files\n", + "dataset.import_data_from_file()\n", + "\n", + "# Coarsen time resolution\n", + "dataset.coarsen_time_resolution(freq='1H')\n", + "\n", + "# Apply quality control\n", + "dataset.apply_quality_control(obstype=\"temp\")\n", + "\n", + "# Visualise the effect\n", + "dataset.make_plot(obstype='temp', colorby='label')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2aKk_6DiSU-Z" + }, + "source": [ + "# 3. Apply quality control to your our own dataset\n", + "\n", + "After going through this exercise, you should now have a good idea of what quality control entails and how you can apply it using this toolkit. It is now up to you to use what you have learned and perform a quality control on your own dataset. Copy (parts of) the code from section 2 from this exercise to perform the following steps:\n", + "\n", + "1. Import your own dataset following the steps shown in the previous part of this exercise.\n", + "2. Change the settings to improve the quality control for your data.\n", + "3. Apply quality control to your own dataset\n", + "4. Visualise the result\n", + "\n", + "After performing these steps, you will save the quality controlled dataset for further use in the following exercises. This will be explained below." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nNbi1oCa5Exg" + }, + "source": [ + "**Step 1: Import your own dataset**\n", + "\n", + "Copy (parts of) the code from section 2.1 to read in your own dataset. Do not forget to modify the length of a gap with ```gapsize_in_records``` in the quality control settings before importing the dataset. A recommended gap length is 3 hours. Remember that ```gapsize_in_records``` defines the length of a gap in terms of the number of missing observations, so you should define this value based on the time resolution of your dataset. If you are unsure what this time resolution is or if the time resolutions is variable, you can load in the dataset first and check the time resolution value in the ```metadf``` object under ```assumed_import_frequency```. Based on this value you can define an appropriate number for ```gapsize_in_records```." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "rrvAtyDAECrR" + }, + "outputs": [], + "source": [ + "# Step 1: Import your own dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1KdyB1jDEewh" + }, + "source": [ + "**Step 2: Update the QC settings**\n", + "\n", + "Use the [`update_qc_settings`](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset_settings_updater.Dataset.html#metobs_toolkit.dataset_settings_updater.Dataset.update_qc_settings) function (as in section 2.5) to update the QC settings of the different checks. Information about the checks can be found in section 2.2 of this exercise." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KPTm0lX6Ev_T" + }, + "outputs": [], + "source": [ + "# Step 2: Update the QC settings" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s2cNcKA-Eykt" + }, + "source": [ + "**Step 3: Apply quality control**\n", + "\n", + "Copy (parts of) the code from section 2.3 to apply quality control to your own dataset. For the following exercises it is important the dataset is coarsened to a time resolution of 1 hour! Make sure to **coarsen your dataset before applying quality control**." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Mgl9yPbzFQfG" + }, + "outputs": [], + "source": [ + "# Step 3: Apply quality control" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7tjgBLI9FW2R" + }, + "source": [ + "**Step 4: Visualise the results**\n", + "\n", + "Copy (parts of) the code from section 2.4 to visualise the results from the quality control. Use this step to verify if the quality controlled dataset matches your expectations. If not, you can repeat the steps above (starting from a new dataset in step 1) with some new settings until you acquire the desired result." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LN49YXNQFeoM" + }, + "outputs": [], + "source": [ + "# Step 4: Visualise the results" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "REHyXQBQFgq3" + }, + "source": [ + "**Final step: save the quality controlled dataset**\n", + "\n", + "As each exercise builds on the results from the previous exercises, it is important to save your dataset, so that you do not have to repeat all the previous steps when you continue working. Saving your dataset to a file can be easily done with the function ```save_dataset``` ([documentation](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.save_dataset)). The dataset is save in a pickle file, with the extension ```.pkl```. In the next exercise you will import this dataset from this file and simply continue working where you left off." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Lm7-mSChxnj3" + }, + "outputs": [], + "source": [ + "save_directory = # provide a directory where this dataset needs to be saved\n", + "filename = 'qc_controlled_dataset.pkl' # name of the file in which the dataset is saved\n", + "dataset.save_dataset(outputfolder = save_directory, filename=filename)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4q-AOy3ZrvWu" + }, + "source": [ + "# 4. Extension\n", + "\n", + "The quality control checks that are implemented in the toolkit are applied on each station, using only the observations of that station. Each of these checks looks for certain patterns in time to determine if observations pass the quality control check. If you are interested in using more advanced quality control, and if you have a dense network of observations, then **spatial quality control** checks can be applied.\n", + "\n", + "Spatial quality control checks test the quality of observations by making use of observations at other locations. Sophisticated software exists that includes this type of quality control checks. An example of such software is [TITAN](https://asr.copernicus.org/articles/17/153/2020/).\n", + "\n", + "It is possible in the MetObs-toolkit to apply one important spatial check from the TITAN framework to your Dataset: the [TITAN buddy check](https://vergauwenthomas.github.io/MetObs_toolkit/_autosummary/metobs_toolkit.dataset.Dataset.html#metobs_toolkit.dataset.Dataset.apply_titan_buddy_check).\n", + "\n", + "Go through the documentation provided and try to apply the TITAN buddy check to your own dataset (or the demo dataset)." + ] + } + ], + "metadata": { + "colab": { + "provenance": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/Urban_analysis_excercise_04.ipynb b/fairness_demo_exercises/Urban_analysis_excercise_04.ipynb similarity index 99% rename from examples/Urban_analysis_excercise_04.ipynb rename to fairness_demo_exercises/Urban_analysis_excercise_04.ipynb index c599b82f..13200041 100644 --- a/examples/Urban_analysis_excercise_04.ipynb +++ b/fairness_demo_exercises/Urban_analysis_excercise_04.ipynb @@ -189,7 +189,7 @@ ], "source": [ "#!pip3 install metobs-toolkit==0.0.2a5\n", - "!pip3 install git+https://github.com/vergauwenthomas/MetObs_toolkit\n", + "!pip3 install MetObs-toolkit==0.1.1\n", "%config InlineBackend.print_figure_kwargs = {'bbox_inches':None}" ] }, @@ -7782,4 +7782,4 @@ "outputs": [] } ] -} \ No newline at end of file +} diff --git a/metobs_toolkit/__init__.py b/metobs_toolkit/__init__.py index 484e20f7..cc1821a8 100644 --- a/metobs_toolkit/__init__.py +++ b/metobs_toolkit/__init__.py @@ -46,23 +46,6 @@ ) -# ============================================================================= -# Static variables to be reached by users -# ============================================================================= -observation_types = [ - "temp", - "radiation_temp", - "humidity", - "precip", - "precip_sum", - "wind_speed", - "wind_gust", - "wind_direction", - "pressure", - "pressure_at_sea_level", -] - - # ============================================================================= # Import classes and function to be used by the user # ============================================================================= @@ -70,6 +53,9 @@ from metobs_toolkit.dataset import Dataset from metobs_toolkit.station import Station from metobs_toolkit.modeldata import Modeldata +from metobs_toolkit.obstypes import Obstype +from metobs_toolkit.obstype_modeldata import ModelObstype, ModelObstype_Vectorfield + # import GUI from metobs_toolkit.data_templates.template_build_prompt import build_template_prompt @@ -84,5 +70,5 @@ # ============================================================================= # DO not change this manually! -__version__ = "0.1.2beta" +__version__ = "0.1.3a" diff --git a/metobs_toolkit/analysis.py b/metobs_toolkit/analysis.py index 33257cf9..a184b1af 100644 --- a/metobs_toolkit/analysis.py +++ b/metobs_toolkit/analysis.py @@ -12,18 +12,22 @@ import copy from scipy.stats import pearsonr -from metobs_toolkit.plotting_functions import (cycle_plot, - heatmap_plot, - correlation_scatter) - -from metobs_toolkit.df_helpers import (datetime_subsetting, - subset_stations, - fmt_datetime_argument) +from metobs_toolkit.plotting_functions import ( + cycle_plot, + heatmap_plot, + correlation_scatter, +) + +from metobs_toolkit.df_helpers import ( + datetime_subsetting, + subset_stations, + fmt_datetime_argument, +) logger = logging.getLogger(__name__) -class Analysis(): +class Analysis: """The Analysis class contains methods for analysing observations.""" def __init__(self, obsdf, metadf, settings, data_template): @@ -38,36 +42,40 @@ def __init__(self, obsdf, metadf, settings, data_template): self._lc_cor_obstype = None self._lc_groupby_labels = None - #add empty lcz column to metadf if it is not present - if 'lcz' not in self.metadf.columns: - self.metadf['lcz'] = np.nan + # add empty lcz column to metadf if it is not present + if "lcz" not in self.metadf.columns: + self.metadf["lcz"] = np.nan def __str__(self): """Print a overview of the analysis.""" if self.df.empty: return "Empty Analysis instance." - add_info = '' - n_stations = self.df.index.get_level_values('name').unique().shape[0] + add_info = "" + n_stations = self.df.index.get_level_values("name").unique().shape[0] n_obs_tot = self.df.shape[0] - startdt = self.df.index.get_level_values('datetime').min() - enddt = self.df.index.get_level_values('datetime').max() + startdt = self.df.index.get_level_values("datetime").min() + enddt = self.df.index.get_level_values("datetime").max() - if ((not self.metadf['lat'].isnull().all()) & - (not self.metadf['lon'].isnull().all())): - add_info += ' *Coordinates are available for all stations. \n' + if (not self.metadf["lat"].isnull().all()) & ( + not self.metadf["lon"].isnull().all() + ): + add_info += " *Coordinates are available for all stations. \n" - if (not self.metadf['lcz'].isnull().all()): + if not self.metadf["lcz"].isnull().all(): add_info += " *LCZ's are available for all stations. \n" if bool(self.lc_cor_dict): add_info += f" *landcover correlations are computed on group: {self._lc_groupby_labels} \n" - return (f"Analysis instance containing: \n \ + return ( + f"Analysis instance containing: \n \ *{n_stations} stations \n \ *{self.df.columns.to_list()} observation types \n \ *{n_obs_tot} observation records \n{add_info} \n \ - *records range: {startdt} --> {enddt} (total duration: {enddt - startdt})" + add_info) + *records range: {startdt} --> {enddt} (total duration: {enddt - startdt})" + + add_info + ) def __repr__(self): """Print a overview of the analysis.""" @@ -99,14 +107,16 @@ def subset_period(self, startdt, enddt): as if it has the same timezone as the observations. """ if not isinstance(startdt, type(datetime(2020, 1, 1))): - logger.info(f' {startdt} not a datetime type. Ignore subsetting!') + logger.info(f" {startdt} not a datetime type. Ignore subsetting!") return if not isinstance(enddt, type(datetime(2020, 1, 1))): - logger.info(f' {enddt} not a datetime type. Ignore subsetting!') + logger.info(f" {enddt} not a datetime type. Ignore subsetting!") return - startdt = fmt_datetime_argument(startdt, self.settings.time_settings['timezone']) - enddt = fmt_datetime_argument(enddt, self.settings.time_settings['timezone']) + startdt = fmt_datetime_argument( + startdt, self.settings.time_settings["timezone"] + ) + enddt = fmt_datetime_argument(enddt, self.settings.time_settings["timezone"]) self.df = datetime_subsetting(self.df, startdt, enddt) @@ -151,16 +161,18 @@ def apply_filter(self, expression): needed. """ - child_df, child_metadf = filter_data(df=self.df, - metadf=self.metadf, - quarry_str=expression) - - return Analysis(obsdf=child_df, - metadf=child_metadf, - settings=self.settings, - data_template=self.data_template) - - def aggregate_df(self, df=None, agg=['lcz', 'hour'], method='mean'): + child_df, child_metadf = filter_data( + df=self.df, metadf=self.metadf, quarry_str=expression + ) + + return Analysis( + obsdf=child_df, + metadf=child_metadf, + settings=self.settings, + data_template=self.data_template, + ) + + def aggregate_df(self, df=None, agg=["lcz", "hour"], method="mean"): """Aggregate observations to a (list of) categories. The output will be a dataframe that is aggregated to one, or more @@ -196,40 +208,53 @@ def aggregate_df(self, df=None, agg=['lcz', 'hour'], method='mean'): df = copy.deepcopy(self.df) df = df.reset_index() - time_agg_keys = ['minute', 'hour', 'month', 'year', 'day_of_year', - 'week_of_year', 'season'] + time_agg_keys = [ + "minute", + "hour", + "month", + "year", + "day_of_year", + "week_of_year", + "season", + ] # scan trough the metadf for aggregation keys for agg_key in agg: if agg_key not in df.columns: # look in metadf if agg_key in self.metadf.columns: - df = pd.merge(df, self.metadf[[agg_key]], - how='left', left_on='name', - right_index=True) + df = pd.merge( + df, + self.metadf[[agg_key]], + how="left", + left_on="name", + right_index=True, + ) # Check if all agg keys are present or defined: possible_agg_keys = time_agg_keys possible_agg_keys.extend(list(df.columns)) unmapped = [agg_key for agg_key in agg if agg_key not in possible_agg_keys] - assert len(unmapped) == 0, f'cannot aggregate to unknown labels: {unmapped}.' + assert len(unmapped) == 0, f"cannot aggregate to unknown labels: {unmapped}." # make time-derivate columns if required df = _make_time_derivatives(df, agg) # check if not all values are Nan for agg_name in agg: - assert not df[agg_name].isnull().all(), f'Aggregation to {agg_name} not possible because no valid values found for {agg_name}.' + assert ( + not df[agg_name].isnull().all() + ), f"Aggregation to {agg_name} not possible because no valid values found for {agg_name}." # remove datetime column if present, because no aggregation can be done on # datetime and it gives a descrepation warning - if 'datetime' in df.columns: - df = df.drop(columns=['datetime']) + if "datetime" in df.columns: + df = df.drop(columns=["datetime"]) # Remove name column if present and not in the aggregation scheme, # this happens because name was in the index - if 'name' not in agg: - df = df.drop(columns=['name'], errors='ignore') + if "name" not in agg: + df = df.drop(columns=["name"], errors="ignore") # Aggregate the df agg_df = df.groupby(agg).agg(method, numeric_only=True) # descrepation warning @@ -241,11 +266,21 @@ def aggregate_df(self, df=None, agg=['lcz', 'hour'], method='mean'): # ============================================================================= # Analyse method # ============================================================================= - def get_anual_statistics(self, groupby=['name'], obstype='temp', - agg_method='mean', stations=None, - startdt=None, enddt=None, plot=True, - errorbands=False, title=None, y_label=None, - legend=True, _return_all_stats=False): + def get_anual_statistics( + self, + groupby=["name"], + obstype="temp", + agg_method="mean", + stations=None, + startdt=None, + enddt=None, + plot=True, + errorbands=False, + title=None, + y_label=None, + legend=True, + _return_all_stats=False, + ): """ Create an anual cycle for aggregated groups. @@ -294,10 +329,10 @@ def get_anual_statistics(self, groupby=['name'], obstype='temp', # title desc_dict = self.data_template[obstype].to_dict() - if 'description' not in desc_dict: - desc_dict['description'] = obstype - if not isinstance(desc_dict['description'], str): - desc_dict['description'] = obstype + if "description" not in desc_dict: + desc_dict["description"] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype if title is None: title = f'Anual {desc_dict["description"]} cycle plot per {groupby}.' @@ -306,35 +341,44 @@ def get_anual_statistics(self, groupby=['name'], obstype='temp', # ylabel if y_label is None: - if 'units' not in desc_dict: + if "units" not in desc_dict: y_label = f'{desc_dict["description"]} (units unknown)' else: y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' else: y_label = str(y_label) - stats = self.get_aggregated_cycle_statistics(obstype=obstype, - stations=stations, - aggregation=groupby, - aggregation_method=agg_method, - horizontal_axis='month', - startdt=startdt, - enddt=enddt, - plot=plot, - title=title, - y_label=y_label, - legend=legend, - errorbands=errorbands, - verbose=_return_all_stats, - ) + stats = self.get_aggregated_cycle_statistics( + obstype=obstype, + stations=stations, + aggregation=groupby, + aggregation_method=agg_method, + horizontal_axis="month", + startdt=startdt, + enddt=enddt, + plot=plot, + title=title, + y_label=y_label, + legend=legend, + errorbands=errorbands, + verbose=_return_all_stats, + ) return stats - def get_diurnal_statistics(self, colorby='name', obstype='temp', - stations=None, startdt=None, - enddt=None, plot=True, - title=None, y_label=None, legend=True, - errorbands=False, - _return_all_stats=False): + def get_diurnal_statistics( + self, + colorby="name", + obstype="temp", + stations=None, + startdt=None, + enddt=None, + plot=True, + title=None, + y_label=None, + legend=True, + errorbands=False, + _return_all_stats=False, + ): """ Create an average diurnal cycle for the observations. @@ -378,60 +422,69 @@ def get_diurnal_statistics(self, colorby='name', obstype='temp', # title desc_dict = self.data_template[obstype].to_dict() - if 'description' not in desc_dict: - desc_dict['description'] = obstype - if not isinstance(desc_dict['description'], str): - desc_dict['description'] = obstype + if "description" not in desc_dict: + desc_dict["description"] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype if title is None: if startdt is None: if enddt is None: - title = f'Hourly average {obstype} diurnal cycle' + title = f"Hourly average {obstype} diurnal cycle" else: - title = f'Hourly average {obstype} diurnal cycle until {enddt}' + title = f"Hourly average {obstype} diurnal cycle until {enddt}" else: if enddt is None: - title = f'Hourly average {obstype} diurnal cycle from {startdt}' + title = f"Hourly average {obstype} diurnal cycle from {startdt}" else: - title = f'Hourly average {obstype} diurnal cycle for period {startdt} - {enddt}' + title = f"Hourly average {obstype} diurnal cycle for period {startdt} - {enddt}" else: title = str(title) # ylabel if y_label is None: - if 'units' not in desc_dict: + if "units" not in desc_dict: y_label = f'{desc_dict["description"]} (units unknown)' else: y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' else: y_label = str(y_label) - stats = self.get_aggregated_cycle_statistics(obstype=obstype, - stations=stations, - aggregation=[colorby], - aggregation_method='mean', - horizontal_axis='hour', - startdt=startdt, - enddt=enddt, - plot=plot, - title=title, - y_label=y_label, - legend=legend, - errorbands=errorbands, - verbose=_return_all_stats, - ) + stats = self.get_aggregated_cycle_statistics( + obstype=obstype, + stations=stations, + aggregation=[colorby], + aggregation_method="mean", + horizontal_axis="hour", + startdt=startdt, + enddt=enddt, + plot=plot, + title=title, + y_label=y_label, + legend=legend, + errorbands=errorbands, + verbose=_return_all_stats, + ) return stats - def get_diurnal_statistics_with_reference(self, refstation, colorby='name', - obstype='temp', - tollerance='30T', stations=None, - startdt=None, enddt=None, - plot=True, title=None, - y_label=None, legend=True, - errorbands=False, - show_zero_horizontal=True, - _return_all_stats=False): + def get_diurnal_statistics_with_reference( + self, + refstation, + colorby="name", + obstype="temp", + tollerance="30T", + stations=None, + startdt=None, + enddt=None, + plot=True, + title=None, + y_label=None, + legend=True, + errorbands=False, + show_zero_horizontal=True, + _return_all_stats=False, + ): """ Create an average diurnal cycle for the observation differences of a reference station. @@ -486,88 +539,103 @@ def get_diurnal_statistics_with_reference(self, refstation, colorby='name', obsdf = obsdf[obstype].reset_index() # extract refernce from observations - refdf = obsdf[obsdf['name'] == refstation] - obsdf = obsdf[obsdf['name'] != refstation] + refdf = obsdf[obsdf["name"] == refstation] + obsdf = obsdf[obsdf["name"] != refstation] - assert not refdf.empty, f'Error: No reference observation found (after filtering) for {refstation}' - assert not obsdf.empty, 'Error: No observation found (after filtering)' + assert ( + not refdf.empty + ), f"Error: No reference observation found (after filtering) for {refstation}" + assert not obsdf.empty, "Error: No observation found (after filtering)" # Syncronize observations with the reference observations - refdf = refdf.rename(columns={obstype: 'ref_' + obstype, 'datetime': 'ref_datetime'}) - mergedf = pd.merge_asof(left=obsdf.sort_values('datetime'), - right=refdf[['ref_datetime', 'ref_' + obstype]].sort_values('ref_datetime'), - right_on="ref_datetime", - left_on="datetime", - direction="nearest", - tolerance=pd.Timedelta(tollerance), - ) + refdf = refdf.rename( + columns={obstype: "ref_" + obstype, "datetime": "ref_datetime"} + ) + mergedf = pd.merge_asof( + left=obsdf.sort_values("datetime"), + right=refdf[["ref_datetime", "ref_" + obstype]].sort_values("ref_datetime"), + right_on="ref_datetime", + left_on="datetime", + direction="nearest", + tolerance=pd.Timedelta(tollerance), + ) # Get differnces - mergedf['temp'] = mergedf['temp'] - mergedf['ref_temp'] + mergedf["temp"] = mergedf["temp"] - mergedf["ref_temp"] # Subset to relavent columns mergedf = mergedf.reset_index() - mergedf = mergedf[['name', 'datetime', obstype]] - mergedf = mergedf.set_index(['name', 'datetime']) + mergedf = mergedf[["name", "datetime", obstype]] + mergedf = mergedf.set_index(["name", "datetime"]) # title desc_dict = self.data_template[obstype].to_dict() - if 'description' not in desc_dict: - desc_dict['description'] = obstype - if not isinstance(desc_dict['description'], str): - desc_dict['description'] = obstype + if "description" not in desc_dict: + desc_dict["description"] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype if title is None: if startdt is None: if enddt is None: - title = f'Hourly average {obstype} diurnal cycle, with {refstation} as reference,' + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference," else: - title = f'Hourly average {obstype} diurnal cycle, with {refstation} as reference, until {enddt}' + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference, until {enddt}" else: if enddt is None: - title = f'Hourly average {obstype} diurnal cycle, with {refstation} as reference, from {startdt}' + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference, from {startdt}" else: - title = f'Hourly average {obstype} diurnal cycle, with {refstation} as reference, for period {startdt} - {enddt}' + title = f"Hourly average {obstype} diurnal cycle, with {refstation} as reference, for period {startdt} - {enddt}" else: title = str(title) # ylabel if y_label is None: - if 'units' not in desc_dict: + if "units" not in desc_dict: y_label = f'{desc_dict["description"]} (units unknown)' else: y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' else: y_label = str(y_label) - stats = self.get_aggregated_cycle_statistics(obstype=obstype, - stations=stations, - aggregation=[colorby], - aggregation_method='mean', - horizontal_axis='hour', - startdt=startdt, - enddt=enddt, - plot=plot, - title=title, - y_label=y_label, - legend=legend, - errorbands=errorbands, - verbose=_return_all_stats, - _obsdf=mergedf, - _show_zero_line=show_zero_horizontal - ) + stats = self.get_aggregated_cycle_statistics( + obstype=obstype, + stations=stations, + aggregation=[colorby], + aggregation_method="mean", + horizontal_axis="hour", + startdt=startdt, + enddt=enddt, + plot=plot, + title=title, + y_label=y_label, + legend=legend, + errorbands=errorbands, + verbose=_return_all_stats, + _obsdf=mergedf, + _show_zero_line=show_zero_horizontal, + ) return stats - def get_aggregated_cycle_statistics(self, obstype='temp', - aggregation=['lcz', 'datetime'], - aggregation_method='mean', - horizontal_axis='hour', - stations=None, - startdt=None, enddt=None, plot=True, - title=None, y_label=None, legend=True, - errorbands=False, verbose=False, - _obsdf=None, _show_zero_line=False): + def get_aggregated_cycle_statistics( + self, + obstype="temp", + aggregation=["lcz", "datetime"], + aggregation_method="mean", + horizontal_axis="hour", + stations=None, + startdt=None, + enddt=None, + plot=True, + title=None, + y_label=None, + legend=True, + errorbands=False, + verbose=False, + _obsdf=None, + _show_zero_line=False, + ): """Create an average cycle for an aggregated categorie. A commen example is to aggregate to the LCZ's, so to get the diurnal @@ -625,41 +693,41 @@ def get_aggregated_cycle_statistics(self, obstype='temp', else: obsdf = _obsdf - assert not obsdf.empty, f'Error: No observations in the analysis.df: {self.df}' + assert not obsdf.empty, f"Error: No observations in the analysis.df: {self.df}" # Filter stations if stations is not None: if isinstance(stations, str): stations = [stations] obsdf = subset_stations(obsdf, stations) - assert not obsdf.empty, f'Error: No more observations after subsetting to {stations}' + assert ( + not obsdf.empty + ), f"Error: No more observations after subsetting to {stations}" # Filter datetimes - obsdf = datetime_subsetting(df=obsdf, - starttime=startdt, - endtime=enddt) - assert not obsdf.empty, f'Error: No more observations after subsetting to {startdt} and {enddt}' + obsdf = datetime_subsetting(df=obsdf, starttime=startdt, endtime=enddt) + assert ( + not obsdf.empty + ), f"Error: No more observations after subsetting to {startdt} and {enddt}" - startdt = obsdf.index.get_level_values('datetime').min() - enddt = obsdf.index.get_level_values('datetime').max() + startdt = obsdf.index.get_level_values("datetime").min() + enddt = obsdf.index.get_level_values("datetime").max() # add hour to aggregation (will be the x-axis) if horizontal_axis not in aggregation: aggregation.insert(0, horizontal_axis) # add other methods for errorbands and stats - methods = ['mean', 'std', 'median'] + methods = ["mean", "std", "median"] methods.append(aggregation_method) methods = list(set(methods)) # compute the aggregation statistics - aggdf = self.aggregate_df(df=obsdf, - agg=aggregation, - method=methods) + aggdf = self.aggregate_df(df=obsdf, agg=aggregation, method=methods) # since only one observation type is in the stats, drop the column # level with the obstye, this is not relevant - aggdf = aggdf.droplevel(0, axis='columns') + aggdf = aggdf.droplevel(0, axis="columns") # format dataframe for plotting # Categories to string format @@ -672,10 +740,21 @@ def get_aggregated_cycle_statistics(self, obstype='temp', # sorting cateigories (months and seisons) - seasons = ['winter', 'spring', 'summer', 'autumn'] - months = ['January', 'February', 'March', 'April', 'May', 'June', - 'July', 'August', 'September', 'October', 'November', - 'December'] + seasons = ["winter", "spring", "summer", "autumn"] + months = [ + "January", + "February", + "March", + "April", + "May", + "June", + "July", + "August", + "September", + "October", + "November", + "December", + ] season_order_dict = {} months_order_dict = {} @@ -687,16 +766,16 @@ def get_aggregated_cycle_statistics(self, obstype='temp', # Sort columns aggdf = aggdf.reset_index() sort_list = aggregation.copy() - if 'season' in aggdf.columns: - aggdf['season_num'] = aggdf['season'].map(season_order_dict) - sort_list = ['season_num' if x == 'season' else x for x in sort_list] - if 'month' in aggdf.columns: - aggdf['month_num'] = aggdf['month'].map(months_order_dict) - sort_list = ['month_num' if x == 'month' else x for x in sort_list] + if "season" in aggdf.columns: + aggdf["season_num"] = aggdf["season"].map(season_order_dict) + sort_list = ["season_num" if x == "season" else x for x in sort_list] + if "month" in aggdf.columns: + aggdf["month_num"] = aggdf["month"].map(months_order_dict) + sort_list = ["month_num" if x == "month" else x for x in sort_list] # sort dataframe aggdf = aggdf.sort_values(sort_list, axis=0) # drop dummy num coluns (if they are present) - aggdf = aggdf.drop(columns=['season_num', 'month_num'], errors='ignore') + aggdf = aggdf.drop(columns=["season_num", "month_num"], errors="ignore") # reset the index aggdf = aggdf.set_index(aggregation) @@ -705,14 +784,14 @@ def get_aggregated_cycle_statistics(self, obstype='temp', all_stats = aggdf.unstack(aggregation) # return on verbose # Sort index if categorical - if all_stats.index.name == 'season': + if all_stats.index.name == "season": all_stats = all_stats.reindex(seasons) - if all_stats.index.name == 'month': + if all_stats.index.name == "month": all_stats = all_stats.reindex(months) # split in values and std values_df = all_stats[aggregation_method] - std_df = all_stats['std'] + std_df = all_stats["std"] # make shure all data is numeric values_df = values_df.astype(float) @@ -720,29 +799,35 @@ def get_aggregated_cycle_statistics(self, obstype='temp', # squize all column levels to one category for plotting if len(aggregation) > 1: # more than one level for the columns - values_df.columns = [' ,'.join(col).strip() for col in values_df.columns.values] - std_df.columns = [' ,'.join(col).strip() for col in std_df.columns.values] + values_df.columns = [ + " ,".join(col).strip() for col in values_df.columns.values + ] + std_df.columns = [" ,".join(col).strip() for col in std_df.columns.values] if plot: # description of the obstype desc_dict = self.data_template[obstype].to_dict() - if 'description' not in desc_dict: - desc_dict['description'] = obstype + if "description" not in desc_dict: + desc_dict["description"] = obstype - if not isinstance(desc_dict['description'], str): - desc_dict['description'] = obstype + if not isinstance(desc_dict["description"], str): + desc_dict["description"] = obstype - description = desc_dict['description'] + description = desc_dict["description"] # generate title if title is None: - startdtstr = datetime.strftime(startdt, format=self.settings.app["print_fmt_datetime"]) - enddtstr = datetime.strftime(enddt, format=self.settings.app["print_fmt_datetime"]) - title = f'{aggregation_method} - {horizontal_axis } {obstype} cycle for period {startdtstr} - {enddtstr} grouped by {aggregation}' + startdtstr = datetime.strftime( + startdt, format=self.settings.app["print_fmt_datetime"] + ) + enddtstr = datetime.strftime( + enddt, format=self.settings.app["print_fmt_datetime"] + ) + title = f"{aggregation_method} - {horizontal_axis } {obstype} cycle for period {startdtstr} - {enddtstr} grouped by {aggregation}" # ylabel if y_label is None: - if 'units' not in desc_dict: + if "units" not in desc_dict: y_label = f'{desc_dict["description"]} (units unknown)' else: y_label = f'{desc_dict["description"]} ({desc_dict["units"]})' @@ -756,24 +841,26 @@ def get_aggregated_cycle_statistics(self, obstype='temp', stddf = None # Make plot - ax = cycle_plot(cycledf=values_df, - errorbandsdf=stddf, - title=title, - plot_settings=self.settings.app['plot_settings']['diurnal'], - aggregation=aggregation, - data_template=self.data_template, - obstype=obstype, - y_label=y_label, - legend=legend, - show_zero_horizontal=_show_zero_line) + ax = cycle_plot( + cycledf=values_df, + errorbandsdf=stddf, + title=title, + plot_settings=self.settings.app["plot_settings"]["diurnal"], + aggregation=aggregation, + data_template=self.data_template, + obstype=obstype, + y_label=y_label, + legend=legend, + show_zero_horizontal=_show_zero_line, + ) ax.set_ylabel(y_label) - if horizontal_axis == 'hour': + if horizontal_axis == "hour": # extract timezone - tzstring = str(self.df.index.get_level_values('datetime').tz) + tzstring = str(self.df.index.get_level_values("datetime").tz) - ax.xaxis.set_major_formatter('{x:.0f} h') - ax.set_xlabel(f'Hours (timezone: {tzstring})') + ax.xaxis.set_major_formatter("{x:.0f} h") + ax.set_xlabel(f"Hours (timezone: {tzstring})") if verbose: if plot: @@ -786,7 +873,7 @@ def get_aggregated_cycle_statistics(self, obstype='temp', # Correlations analysis # ============================================================================= - def get_lc_correlation_matrices(self, obstype=['temp'], groupby_labels=['hour']): + def get_lc_correlation_matrices(self, obstype=["temp"], groupby_labels=["hour"]): """Compute pearson correlation coeficients. A method to compute the Pearson correlation between an obervation type @@ -831,36 +918,44 @@ def get_lc_correlation_matrices(self, obstype=['temp'], groupby_labels=['hour']) for group_lab in groupby_labels: if group_lab in self.metadf.columns: - df = df.merge(self.metadf[[group_lab]], - how='left', - left_on='name', - right_index=True) + df = df.merge( + self.metadf[[group_lab]], + how="left", + left_on="name", + right_index=True, + ) for group_lab in groupby_labels: - assert group_lab in df.columns, f'"{group_lab}" is found in the observations of possible groupby_labels.' + assert ( + group_lab in df.columns + ), f'"{group_lab}" is found in the observations of possible groupby_labels.' # subset columns relev_columns = [label for label in groupby_labels] # to avoid deep copy import - relev_columns.append('name') + relev_columns.append("name") relev_columns.extend(obstype) df = df[relev_columns] # find landcover columnnames in the metadf - lc_columns = [col for col in self.metadf.columns if (('_' in col) & (col.endswith('m')))] + lc_columns = [ + col for col in self.metadf.columns if (("_" in col) & (col.endswith("m"))) + ] # get landcover data lc_df = self.metadf[lc_columns] if lc_df.empty: - logger.warning('No landcover columns found in the metadf. Landcover correlations cannot be computed.') + logger.warning( + "No landcover columns found in the metadf. Landcover correlations cannot be computed." + ) return None # merge together - df = df.merge(lc_df, how='left', left_on='name', right_index=True) + df = df.merge(lc_df, how="left", left_on="name", right_index=True) # remove name column if it is not explicit in the groupby labels - if 'name' not in groupby_labels: - df = df.drop(columns=['name']) + if "name" not in groupby_labels: + df = df.drop(columns=["name"]) # create return cor_dict = {} @@ -876,24 +971,34 @@ def get_lc_correlation_matrices(self, obstype=['temp'], groupby_labels=['hour']) for group_lab, groupdf in groups: # No correlations can be computed when no variance is found if groupdf.shape[0] <= 1: - logger.warning(f'No variance found in correlationd group {group_lab}. Correlation thus not be computed for this group: {groupdf}.') + logger.warning( + f"No variance found in correlationd group {group_lab}. Correlation thus not be computed for this group: {groupdf}." + ) continue # drop groupby labels - groupdf = groupdf.drop(columns=groupby_labels, errors='ignore') + groupdf = groupdf.drop(columns=groupby_labels, errors="ignore") - rho = groupdf.corr(method='pearson') - pval = groupdf.corr(method=lambda x, y: pearsonr(x, y)[1]) - np.eye(*rho.shape) + rho = groupdf.corr(method="pearson") + pval = groupdf.corr(method=lambda x, y: pearsonr(x, y)[1]) - np.eye( + *rho.shape + ) # represent p values by stars - p_stars = pval.applymap(lambda x: ''.join(['*' for t in [.05, .01, .001] if x <= t])) + p_stars = pval.applymap( + lambda x: "".join(["*" for t in [0.05, 0.01, 0.001] if x <= t]) + ) # combined human readable df comb_df = pd.DataFrame(index=rho.index) for col in rho.columns: - comb_df[col] = rho[col].apply(lambda x: f"{x:.02f}") + ' ' + p_stars[col] + comb_df[col] = ( + rho[col].apply(lambda x: f"{x:.02f}") + " " + p_stars[col] + ) - cor_dict[group_lab] = {'cor matrix': rho, - 'significance matrix': pval, - 'combined matrix': comb_df} + cor_dict[group_lab] = { + "cor matrix": rho, + "significance matrix": pval, + "combined matrix": comb_df, + } # Update attribute self.lc_cor_dict = cor_dict @@ -902,7 +1007,9 @@ def get_lc_correlation_matrices(self, obstype=['temp'], groupby_labels=['hour']) return cor_dict - def plot_correlation_heatmap(self, groupby_value=None, title=None, _return_ax=False): + def plot_correlation_heatmap( + self, groupby_value=None, title=None, _return_ax=False + ): """Make a heatmap plot af a correaltion matrix. To specify which correlation matrix to plot, specify the group value @@ -931,27 +1038,36 @@ def plot_correlation_heatmap(self, groupby_value=None, title=None, _return_ax=Fa """ # check if there are correlation matrices - assert bool(self.lc_cor_dict), 'No correlation matrices found, use the metod get_lc_correlation_matrices first.' + assert bool( + self.lc_cor_dict + ), "No correlation matrices found, use the metod get_lc_correlation_matrices first." if groupby_value is None: groupby_value = list(self.lc_cor_dict.keys())[0] - logger.warning('No groupby_value is given, so the first groupby value (={groupby_value}) will be used!') - logger.info(f'The correlations are computed over {self._lc_groupby_labels} with the following unique values: {list(self.lc_cor_dict.keys())}') + logger.warning( + "No groupby_value is given, so the first groupby value (={groupby_value}) will be used!" + ) + logger.info( + f"The correlations are computed over {self._lc_groupby_labels} with the following unique values: {list(self.lc_cor_dict.keys())}" + ) # check if groupby value exists - assert groupby_value in self.lc_cor_dict.keys(), f'{groupby_value} not found as a groupby value. These are all the possible values: {self.lc_cor_dict.keys()}' + assert ( + groupby_value in self.lc_cor_dict.keys() + ), f"{groupby_value} not found as a groupby value. These are all the possible values: {self.lc_cor_dict.keys()}" if title is None: - title = f'Correlation heatmap for group: {self._lc_groupby_labels} = {groupby_value}' + title = f"Correlation heatmap for group: {self._lc_groupby_labels} = {groupby_value}" - ax = heatmap_plot(cor_dict=self.lc_cor_dict[groupby_value], - title=title, - heatmap_settings=self.settings.app['plot_settings']['correlation_heatmap']) + ax = heatmap_plot( + cor_dict=self.lc_cor_dict[groupby_value], + title=title, + heatmap_settings=self.settings.app["plot_settings"]["correlation_heatmap"], + ) if _return_ax: return ax - def plot_correlation_variation(self, title=None): """Create correlation scatter plot. @@ -982,22 +1098,30 @@ def plot_correlation_variation(self, title=None): method to reduce the group values. """ # check if there are correlation matrices - assert bool(self.lc_cor_dict), 'No correlation matrices found, use the metod get_lc_correlation_matrices first.' + assert bool( + self.lc_cor_dict + ), "No correlation matrices found, use the metod get_lc_correlation_matrices first." # check if correlation evolution information is available if len(self.lc_cor_dict.keys()) <= 1: - logger.warning(f'Only one correlation group is found: {self.lc_cor_dict.keys()}') - logger.warning('The variance plot can not be made.') + logger.warning( + f"Only one correlation group is found: {self.lc_cor_dict.keys()}" + ) + logger.warning("The variance plot can not be made.") return if title is None: - title = f'Correlation scatter for group: {self._lc_groupby_labels}' - - ax = correlation_scatter(full_cor_dict=self.lc_cor_dict, - groupby_labels=self._lc_groupby_labels, - obstypes=self._lc_cor_obstype, - title=title, - cor_scatter_settings=self.settings.app['plot_settings']['correlation_scatter']) + title = f"Correlation scatter for group: {self._lc_groupby_labels}" + + ax = correlation_scatter( + full_cor_dict=self.lc_cor_dict, + groupby_labels=self._lc_groupby_labels, + obstypes=self._lc_cor_obstype, + title=title, + cor_scatter_settings=self.settings.app["plot_settings"][ + "correlation_scatter" + ], + ) return ax @@ -1006,29 +1130,31 @@ def _make_time_derivatives(df, required, get_all=False): datetime must be a column. """ - if ('minute' in required) | (get_all): - df['minute'] = df['datetime'].dt.minute - if ('hour' in required) | (get_all): - df['hour'] = df['datetime'].dt.hour - if ('month' in required) | (get_all): - df['month'] = df['datetime'].dt.month_name() - if ('year' in required) | (get_all): - df['year'] = df['datetime'].dt.year - if ('day_of_year' in required) | (get_all): - df['day_of_year'] = df['datetime'].dt.day_of_year - if ('week_of_year' in required) | (get_all): - df['week_of_year'] = df['datetime'].dt.isocalendar()['week'] - if ('season' in required) | (get_all): - df['season'] = get_seasons(df['datetime']) + if ("minute" in required) | (get_all): + df["minute"] = df["datetime"].dt.minute + if ("hour" in required) | (get_all): + df["hour"] = df["datetime"].dt.hour + if ("month" in required) | (get_all): + df["month"] = df["datetime"].dt.month_name() + if ("year" in required) | (get_all): + df["year"] = df["datetime"].dt.year + if ("day_of_year" in required) | (get_all): + df["day_of_year"] = df["datetime"].dt.day_of_year + if ("week_of_year" in required) | (get_all): + df["week_of_year"] = df["datetime"].dt.isocalendar()["week"] + if ("season" in required) | (get_all): + df["season"] = get_seasons(df["datetime"]) return df -def get_seasons(datetimeseries, - start_day_spring='01/03', - start_day_summer='01/06', - start_day_autumn='01/09', - start_day_winter='01/12'): +def get_seasons( + datetimeseries, + start_day_spring="01/03", + start_day_summer="01/06", + start_day_autumn="01/09", + start_day_winter="01/12", +): """Convert a datetimeseries to a season label (i.g. categorical). Parameters @@ -1053,27 +1179,30 @@ def get_seasons(datetimeseries, output : dataframe A obtained dataframe that has where a label for the seasons has been added. """ - spring_startday = datetime.strptime(start_day_spring, '%d/%m') - summer_startday = datetime.strptime(start_day_summer, '%d/%m') - autumn_startday = datetime.strptime(start_day_autumn, '%d/%m') - winter_startday = datetime.strptime(start_day_winter, '%d/%m') - - seasons = pd.Series(index=['spring', 'summer', 'autumn', 'winter'], - data=[spring_startday, summer_startday, autumn_startday, winter_startday], - name='startdt').to_frame() - seasons['day_of_year'] = seasons['startdt'].dt.day_of_year - 1 + spring_startday = datetime.strptime(start_day_spring, "%d/%m") + summer_startday = datetime.strptime(start_day_summer, "%d/%m") + autumn_startday = datetime.strptime(start_day_autumn, "%d/%m") + winter_startday = datetime.strptime(start_day_winter, "%d/%m") + + seasons = pd.Series( + index=["spring", "summer", "autumn", "winter"], + data=[spring_startday, summer_startday, autumn_startday, winter_startday], + name="startdt", + ).to_frame() + seasons["day_of_year"] = seasons["startdt"].dt.day_of_year - 1 bins = [0] - bins.extend(seasons['day_of_year'].to_list()) + bins.extend(seasons["day_of_year"].to_list()) bins.append(366) - labels = ['winter', 'spring', 'summer', 'autumn', 'winter'] + labels = ["winter", "spring", "summer", "autumn", "winter"] - return pd.cut(x=datetimeseries.dt.day_of_year, - bins=bins, - labels=labels, - ordered=False, - ) + return pd.cut( + x=datetimeseries.dt.day_of_year, + bins=bins, + labels=labels, + ordered=False, + ) def filter_data(df, metadf, quarry_str): @@ -1121,10 +1250,10 @@ def filter_data(df, metadf, quarry_str): metadf_init_cols = metadf.columns # create time derivative columns - df = _make_time_derivatives(df, required=' ', get_all=True) + df = _make_time_derivatives(df, required=" ", get_all=True) # merge together on name - mergedf = df.merge(metadf, how='left', on='name') + mergedf = df.merge(metadf, how="left", on="name") # apply filter filtered = mergedf.query(expr=quarry_str) diff --git a/metobs_toolkit/convertors.py b/metobs_toolkit/convertors.py deleted file mode 100644 index 5d063e47..00000000 --- a/metobs_toolkit/convertors.py +++ /dev/null @@ -1,117 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Fri Feb 24 09:34:00 2023 - -@author: thoverga -""" - -import sys -import logging -import numpy as np -from collections.abc import Iterable - -logger = logging.getLogger(__name__) - - -# ============================================================================= -# Unit defenitions and coversions -# ============================================================================= -# Keys are the toolkit-units!! (not persee SI) -# values expresions are of the form x $ val, where x is the numeric value, -# $ an operator (+-*/) and val a concersion value -unit_convertors = { - "Celsius": {"K": "x - 273.15"}, - 'pa': {'pa': 'x'} -} - -# ============================================================================= -# Standard units -# ============================================================================= -standard_tlk_units = { - "temp": 'Celsius', - "radiation_temp": 'Celcius', - "humidity": '%', - "precip": 'mm/m² per hour', - "precip_sum": 'mm/m² from midnight', - "wind_speed": 'm/s', - "wind_gust": 'm/s', - "wind_direction": '° from north (CW)', - "pressure": 'pa', - "pressure_at_sea_level": 'pa', - -} - - -# ============================================================================= -# Convert functions -# ============================================================================= - - -def expression_calculator(equation, x): - """Convert array by equation.""" - if isinstance(x, Iterable): - x = np.array(x) - - if "+" in equation: - y = equation.split("+") - return x + float(y[1]) - elif "-" in equation: - y = equation.split("-") - return x - float(y[1]) - elif "/" in equation: - y = equation.split("/") - return x / float(y[1]) - elif "*" in equation: - y = equation.split("*") - return x * float(y[1]) - else: - sys.exit(f"expression {equation}, can not be converted to mathematical.") - - -def convert_to_toolkit_units(data, data_unit, new_units={}): - """Convert the data to the toolkit perfered unit. - - Data can be a numeric value or an iterable. - Data_unit is the unit of the input data. - - The converted data AND the corresponding toolkit unit is returned. - - Parameters - ---------- - data : numeric, iterable - numeric data to be converted. - data_unit : String - unit name of the data. - - Returns - ------- - numeric, numpy.array - The data in toolkit units. - String - Corresponding toolkit unit name. - - """ - # update the units - unit_convertors.update(new_units) - - # check if unit is already a toolkit unit - if data_unit in unit_convertors.keys(): - logger.info(f'Current unit ({data_unit}) is already the default, no coversion needed!') - return data, data_unit - - # scan the units to find conversion - expr = { - toolk_unit: other_unit[data_unit] - for toolk_unit, other_unit in unit_convertors.items() - if data_unit in other_unit.keys() - } - - if len(expr) == 1: # unique conversion found - conv_data = expression_calculator(next(iter(expr.values())), data) - return conv_data, next(iter(expr.keys())) - - elif len(expr) > 1: - sys.exit(f" Multiple possible conversions found for {data_unit}") - else: - sys.exit(f"No conversion found for {data_unit}") diff --git a/metobs_toolkit/data_import.py b/metobs_toolkit/data_import.py index 1b6bc1d3..47db68c1 100644 --- a/metobs_toolkit/data_import.py +++ b/metobs_toolkit/data_import.py @@ -14,8 +14,6 @@ # from mysql.connector import errorcode from pytz import all_timezones -from metobs_toolkit import observation_types - logger = logging.getLogger(__name__) @@ -23,6 +21,7 @@ # Helpers # ============================================================================= + def _remove_keys_from_dict(dictionary, keys): for key in keys: dictionary.pop(key, None) @@ -105,6 +104,7 @@ def _read_csv_to_df(filepath, kwargsdict): # Template # ============================================================================= + def check_template_compatibility(template, df_columns, filetype): """Log template compatiblity with dataframe columns. @@ -123,11 +123,13 @@ def check_template_compatibility(template, df_columns, filetype): """ # ignore datetime because this is already mapped - present_cols = [col for col in df_columns if col != 'datetime'] - assumed_cols = [key for key in template.keys() if key != 'datetime'] + present_cols = [col for col in df_columns if col != "datetime"] + assumed_cols = [key for key in template.keys() if key != "datetime"] # in mapper but not in df - unmapped_assumed = [templ_var for templ_var in assumed_cols if templ_var not in present_cols] + unmapped_assumed = [ + templ_var for templ_var in assumed_cols if templ_var not in present_cols + ] if len(unmapped_assumed) > 0: logger.info( @@ -139,7 +141,8 @@ def check_template_compatibility(template, df_columns, filetype): unmapped_appearing = [col for col in present_cols if col not in assumed_cols] if len(unmapped_appearing) > 0: logger.info( - f"The following columns in the {filetype} cannot be mapped with the template: {unmapped_appearing}.") + f"The following columns in the {filetype} cannot be mapped with the template: {unmapped_appearing}." + ) # check if at least one column is mapped if len(list(set(present_cols) - set(assumed_cols))) == len(present_cols): @@ -148,13 +151,16 @@ def check_template_compatibility(template, df_columns, filetype): ) -def extract_options_from_template(templ): +def extract_options_from_template(templ, known_obstypes): """Filter out options settings from the template dataframe. Parameters ---------- templ : pandas.DataFrame() Template in a dataframe structure + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. Returns ------- @@ -165,68 +171,77 @@ def extract_options_from_template(templ): """ opt_kwargs = {} - if 'options' in templ.columns: - if 'options_values' in templ.columns: - opt = templ[['options', 'options_values']] + if "options" in templ.columns: + if "options_values" in templ.columns: + opt = templ[["options", "options_values"]] # drop nan columns - opt = opt[opt['options'].notna()] + opt = opt[opt["options"].notna()] # convert to dict - opt = opt.set_index('options')['options_values'].to_dict() + opt = opt.set_index("options")["options_values"].to_dict() # check options if valid - possible_options = {'data_structure': ['long', 'wide', 'single_station'], - 'stationname': '_any_', - 'obstype': observation_types, - 'obstype_unit': '_any_', - 'obstype_description': '_any_', - 'timezone': all_timezones - } + possible_options = { + "data_structure": ["long", "wide", "single_station"], + "stationname": "_any_", + "obstype": known_obstypes, + "obstype_unit": "_any_", + "obstype_description": "_any_", + "timezone": all_timezones, + } for key, val in opt.items(): key, val = str(key), str(val) if key not in possible_options: - sys.exit(f'{key} is not a known option in the template. These are the possible options: {list(possible_options.keys())}') + sys.exit( + f"{key} is not a known option in the template. These are the possible options: {list(possible_options.keys())}" + ) - if possible_options[key] == '_any_': + if possible_options[key] == "_any_": pass # value can be any string else: if val not in possible_options[key]: - sys.exit(f'{val} is not a possible value for {key}. These values are possible for {key}: {possible_options[key]}') + sys.exit( + f"{val} is not a possible value for {key}. These values are possible for {key}: {possible_options[key]}" + ) # overload to kwargs: - if key == 'data_structure': - if val == 'long': - opt_kwargs['long_format'] = True - elif val == 'wide': - opt_kwargs['long_format'] = False + if key == "data_structure": + if val == "long": + opt_kwargs["long_format"] = True + elif val == "wide": + opt_kwargs["long_format"] = False else: # single station - opt_kwargs['long_format'] = True - if key == 'stationname': - if not opt['data_structure'] == 'single_station': - logger.warning(f'{val} as {key} in the template options will be ignored because the datastructure is not "single_station" (but {opt["data_structure"]})') + opt_kwargs["long_format"] = True + if key == "stationname": + if not opt["data_structure"] == "single_station": + logger.warning( + f'{val} as {key} in the template options will be ignored because the datastructure is not "single_station" (but {opt["data_structure"]})' + ) else: - opt_kwargs['single'] = val - if key == 'obstype': - opt_kwargs['obstype'] = val - if key == 'obstype_unit': - opt_kwargs['obstype_unit'] = val - if key == 'obstype_description': - opt_kwargs['obstype_description'] = val - if key == 'timezone': - opt_kwargs['timezone'] = val + opt_kwargs["single"] = val + if key == "obstype": + opt_kwargs["obstype"] = val + if key == "obstype_unit": + opt_kwargs["obstype_unit"] = val + if key == "obstype_description": + opt_kwargs["obstype_description"] = val + if key == "timezone": + opt_kwargs["timezone"] = val else: - sys.exit('"options" column found in the template, but no "options_values" found!') + sys.exit( + '"options" column found in the template, but no "options_values" found!' + ) # remove the options from the template - new_templ = templ.drop(columns=['options', 'options_values'], errors='ignore') + new_templ = templ.drop(columns=["options", "options_values"], errors="ignore") return new_templ, opt_kwargs -def read_csv_template(file, data_long_format=True): - """ Import a template from a csv file. +def read_csv_template(file, known_obstypes, data_long_format=True): + """Import a template from a csv file. Format options will be stored in a seperate dictionary. (Because these do not relate to any of the data columns.) @@ -235,6 +250,9 @@ def read_csv_template(file, data_long_format=True): ---------- file : str Path to the csv template file. + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. data_long_format : bool, optional If True, this format structure has priority over the format structure in the template file. The default is True. @@ -247,17 +265,16 @@ def read_csv_template(file, data_long_format=True): Options and settings present in the template. """ - templ = _read_csv_to_df(filepath=file, - kwargsdict={}) + templ = _read_csv_to_df(filepath=file, kwargsdict={}) # Extract structure options from template - templ, opt_kwargs = extract_options_from_template(templ) + templ, opt_kwargs = extract_options_from_template(templ, known_obstypes) # Drop emty rows templ = templ.dropna(axis="index", how="all") - if 'long_format' in opt_kwargs.keys(): - data_long_format = opt_kwargs['long_format'] + if "long_format" in opt_kwargs.keys(): + data_long_format = opt_kwargs["long_format"] if data_long_format: # Drop variables that are not present in templ @@ -281,6 +298,7 @@ def read_csv_template(file, data_long_format=True): # Metadata # ============================================================================= + def import_metadata_from_csv(input_file, template, kwargs_metadata_read): """Import metadata as a dataframe. @@ -306,10 +324,10 @@ def import_metadata_from_csv(input_file, template, kwargs_metadata_read): # validate template # template = read_csv_template(template_file) - check_template_compatibility(template, df.columns, filetype='metadata') + check_template_compatibility(template, df.columns, filetype="metadata") # rename columns to toolkit attriute names - column_mapper = {val['orig_name']: key for key, val in template.items()} + column_mapper = {val["orig_name"]: key for key, val in template.items()} df = df.rename(columns=column_mapper) return df @@ -319,6 +337,7 @@ def import_metadata_from_csv(input_file, template, kwargs_metadata_read): # Data # ============================================================================= + def wide_to_long(df, template, obstype): """Convert a wide dataframe to a long format. @@ -346,7 +365,7 @@ def wide_to_long(df, template, obstype): # stations with their obstype values stationnames = df.columns.to_list() - stationnames.remove('datetime') + stationnames.remove("datetime") longdf = pd.melt( df, @@ -366,10 +385,16 @@ def wide_to_long(df, template, obstype): return longdf, template -def import_data_from_csv(input_file, template, - long_format, obstype, - obstype_units, obstype_description, - kwargs_data_read): +def import_data_from_csv( + input_file, + template, + long_format, + obstype, + obstype_units, + obstype_description, + known_obstypes, + kwargs_data_read, +): """Import data as a dataframe. Parameters @@ -386,6 +411,9 @@ def import_data_from_csv(input_file, template, If format is wide, this is the observation unit. obstype_description : str If format is wide, this is the observation description. + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. kwargs_data_read : dict Kwargs passed to the pd.read_csv() function. @@ -398,36 +426,48 @@ def import_data_from_csv(input_file, template, """ # 1. Read data into df - df = _read_csv_to_df(filepath=input_file, - kwargsdict=kwargs_data_read) + df = _read_csv_to_df(filepath=input_file, kwargsdict=kwargs_data_read) # 2. Read template invtemplate = template_to_package_space(template) # 3. Make datetime column (needed for wide to long conversion) - if ('datetime' in invtemplate.keys()): + if "datetime" in invtemplate.keys(): - df = df.rename(columns={invtemplate['datetime']['orig_name']: 'datetime'}) - df['datetime'] = pd.to_datetime(df["datetime"], - format=invtemplate["datetime"]["format"]) + df = df.rename(columns={invtemplate["datetime"]["orig_name"]: "datetime"}) + df["datetime"] = pd.to_datetime( + df["datetime"], format=invtemplate["datetime"]["format"] + ) - inv_temp_remove_keys = ['datetime'] - temp_remove_keys = [invtemplate['datetime']['orig_name']] - elif (('_date' in invtemplate.keys()) & ('_time' in invtemplate.keys())): + inv_temp_remove_keys = ["datetime"] + temp_remove_keys = [invtemplate["datetime"]["orig_name"]] + elif ("_date" in invtemplate.keys()) & ("_time" in invtemplate.keys()): datetime_fmt = ( invtemplate["_date"]["format"] + " " + invtemplate["_time"]["format"] ) df["datetime"] = pd.to_datetime( - df[invtemplate['_date']['orig_name']] + " " + df[invtemplate['_time']['orig_name']], format=datetime_fmt + df[invtemplate["_date"]["orig_name"]] + + " " + + df[invtemplate["_time"]["orig_name"]], + format=datetime_fmt, + ) + df = df.drop( + columns=[ + invtemplate["_date"]["orig_name"], + invtemplate["_time"]["orig_name"], + ] ) - df = df.drop(columns=[invtemplate['_date']['orig_name'], invtemplate['_time']['orig_name']]) - inv_temp_remove_keys = ['_time', '_date'] - temp_remove_keys = [invtemplate['_date']['orig_name'], - invtemplate['_time']['orig_name']] + inv_temp_remove_keys = ["_time", "_date"] + temp_remove_keys = [ + invtemplate["_date"]["orig_name"], + invtemplate["_time"]["orig_name"], + ] else: - sys.exit('Impossible to map the dataset to a datetime column, verify your template please.') + sys.exit( + "Impossible to map the dataset to a datetime column, verify your template please." + ) # 3.b Remove the datetime keys from the template @@ -438,200 +478,41 @@ def import_data_from_csv(input_file, template, if not long_format: template[obstype] = {} invtemplate[obstype] = {} - template[obstype]['varname'] = obstype - invtemplate[obstype]['orig_name'] = obstype # use default as orig name + template[obstype]["varname"] = obstype + invtemplate[obstype]["orig_name"] = obstype # use default as orig name if obstype_units is not None: - template[obstype]['units'] = obstype_units - invtemplate[obstype]['units'] = obstype_units + template[obstype]["units"] = obstype_units + invtemplate[obstype]["units"] = obstype_units if obstype_description is not None: - template[obstype]['description'] = obstype_description - invtemplate[obstype]['description'] = obstype_description + template[obstype]["description"] = obstype_description + invtemplate[obstype]["description"] = obstype_description df, template = wide_to_long(df, template, obstype) # 5. check compatibility - check_template_compatibility(template, df.columns, filetype='data') + check_template_compatibility(template, df.columns, filetype="data") # 6. map to default name space df = df.rename(columns=compress_dict(template, "varname")) # 7. Keep only columns as defined in the template cols_to_keep = list(invtemplate.keys()) - cols_to_keep.append('datetime') - cols_to_keep.append('name') + cols_to_keep.append("datetime") + cols_to_keep.append("name") cols_to_keep = list(set(cols_to_keep)) df = df.loc[:, df.columns.isin(cols_to_keep)] # 8. Set index df = df.reset_index() - df = df.drop(columns=['index'], errors='ignore') - df = df.set_index('datetime') + df = df.drop(columns=["index"], errors="ignore") + df = df.set_index("datetime") # 8. map to numeric dtypes for col in df.columns: - if col in observation_types: - df[col] = pd.to_numeric(df[col], errors='coerce') - if col in ['lon', 'lat']: - df[col] = pd.to_numeric(df[col], errors='coerce') + if col in known_obstypes: + df[col] = pd.to_numeric(df[col], errors="coerce") + if col in ["lon", "lat"]: + df[col] = pd.to_numeric(df[col], errors="coerce") # add template to the return return df, invtemplate - - -# def import_data_from_db(db_settings, start_datetime, end_datetime): -# # ============================================================================= -# # Make connection to database -# # ============================================================================= - -# # Make connection with database (needs ugent VPN active) - -# try: -# connection = mysql.connector.connect( -# host=db_settings["db_host"], -# database=db_settings["db_database"], -# user=db_settings["db_user"], -# password=db_settings["db_passw"], -# connection_timeout=1, -# ) -# except mysql.connector.Error as err: -# if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: -# print("Something is wrong with your user name or password!") -# print("Make shure the following envrionment variables are defind:") -# print(" VLINDER_DB_USER_NAME") -# print(" VLINDER_DB_USER_PASW") -# print("or update the Settings.db_user and Settings.db_passw") - -# # TODO use default return -# return init_multiindexdf() -# elif err.errno == 2003: -# print( -# "Can't connect to ", -# db_settings["db_host"], -# " host. Make shure your Ugent VPN is on!", -# ) -# # sys.exit() -# # TODO use default return -# return init_multiindexdf() - -# # ============================================================================= -# # Read all meta data from database -# # ============================================================================= - -# metadata_Query = "select * from " + db_settings["db_meta_table"] -# cursor = connection.cursor() -# cursor.execute(metadata_Query) -# metadata = cursor.fetchall() -# metadata = pd.DataFrame(metadata) -# # metadata_columns = list(cursor.column_names) - -# metadata.columns = list(cursor.column_names) - -# # subset relevent columns -# metadata = metadata[list(db_settings["vlinder_db_meta_template"].keys())] - -# # rename columns to standards -# metadata = metadata.rename( -# columns=compress_dict(db_settings["vlinder_db_meta_template"], "varname") -# ) - -# # COnvert template to package-space -# template = template_to_package_space(db_settings["vlinder_db_meta_template"]) - -# # format columns -# metadata = metadata.astype(dtype=compress_dict(template, "dtype")) - -# # ============================================================================= -# # Read observations data -# # ============================================================================= - -# assert ( -# start_datetime < end_datetime -# ), "start_datetime is not earlier thand end_datetime!" - -# observation_types = ["all"] - -# # observation types to strig -# if observation_types[0] == "all": -# obs_type_query_str = "*" -# else: # TODO -# print("NOT IMPLEMENTED YET") -# obs_type_query_str = "*" - -# # format datetime - -# datetime_db_info = [ -# item -# for item in db_settings["vlinder_db_obs_template"].values() -# if item["varname"] == "datetime" -# ][0] - -# startstring = start_datetime.strftime( -# format=datetime_db_info["fmt"] -# ) # datetime to string -# endstring = end_datetime.strftime( -# format=datetime_db_info["fmt"] -# ) # datetime to string -# _inverted_template = template_to_package_space( -# db_settings["vlinder_db_obs_template"] -# ) -# datetime_column_name = _inverted_template["datetime"]["orig_name"] - -# # select all stations -# obsdata_Query = ( -# str(r"SELECT ") -# + obs_type_query_str -# + " " -# + str(r"FROM ") -# + db_settings["db_obs_table"] -# + str(" ") -# + str(r"WHERE ") -# + datetime_column_name -# + str(r">='") -# + startstring -# + str(r"' AND ") -# + datetime_column_name -# + str(r"<='") -# + endstring -# + str(r"' ") -# + str(r"ORDER BY ") -# + datetime_column_name -# ) - -# print(obsdata_Query) - -# cursor.execute(obsdata_Query) -# obsdata = cursor.fetchall() -# obsdata = pd.DataFrame(obsdata) - -# obsdata.columns = list(cursor.column_names) - -# # subset relevent columns -# obsdata = obsdata[list(db_settings["vlinder_db_obs_template"])] - -# # format columns -# obsdata = obsdata.astype( -# dtype=compress_dict(db_settings["vlinder_db_obs_template"], "dtype") -# ) - -# # rename columns to standards -# obsdata = obsdata.rename( -# columns=compress_dict(db_settings["vlinder_db_obs_template"], "varname") -# ) - -# connection.close() - -# # ============================================================================= -# # merge Observatios and metadata -# # ============================================================================= - -# combdata = obsdata.merge(metadata, how="left", on="id") -# combdata = combdata.drop(columns=["id"]) -# combdata["datetime"] = pd.to_datetime( -# combdata["datetime"], format=datetime_db_info["fmt"] -# ) -# # TODO implement timezone settings - -# # Set datetime index -# combdata = combdata.set_index("datetime", drop=True, verify_integrity=False) - -# return combdata diff --git a/metobs_toolkit/data_templates/db_templates.py b/metobs_toolkit/data_templates/db_templates.py deleted file mode 100644 index 54c6ff16..00000000 --- a/metobs_toolkit/data_templates/db_templates.py +++ /dev/null @@ -1,87 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Tue Oct 4 14:03:58 2022 - -@author: thoverga -""" - -vlinder_metadata_db_template = { - "VLINDER": {"varname": "name", "dtype": "object"}, - "ID": {"varname": "id", "dtype": "object"}, # for merging - "Location": {"varname": "call_name", "dtype": "object"}, - "stad": {"varname": "location", "dtype": "object"}, - "Latitude": {"varname": "lat", "dtype": "float"}, - "Longitude": {"varname": "lon", "dtype": "float"}, -} - - -vlinder_observations_db_template = { - "StationID": {"varname": "id", "dtype": "object"}, # for merging - "datetime": { - "varname": "datetime", - "fmt": "%Y-%m-%d %H:%M:%S", - "dtype": "object", - "timezone": "UTC", - }, - "temperature": { - "varname": "temp", - "units": r"$^o$C", - "dtype": "float64", - "description": "temperature", - }, - "humidity": { - "varname": "humidity", - "units": "%", - "dtype": "float64", - "description": "relative humidity", - }, - "pressure": { - "varname": "pressure", - "units": "pa", - "dtype": "float64", - "description": "airpressure", - }, - "RainIntensity": { - "varname": "precip", - "units": r"l/m$^2 per ?? tijdseenheid$", - "dtype": "float64", - "description": "precipitation intensity", - }, - "RainVolume": { - "varname": "precip_sum", - "units": r"l/m^2", - "dtype": "float64", - "description": "precipitation cumulated from midnight", - }, - "WindDirection": { - "varname": "wind_direction", - "units": r"° from North (CW)", - "dtype": "float64", - "description": "Wind direction", - }, - "WindSpeed": { - "varname": "wind_speed", - "units": r"m/s", - "dtype": "float64", - "description": "windspeed", - }, - "WindGust": { - "varname": "wind_gust", - "units": r"m/s", - "dtype": "float64", - "description": "windgust", - }, - "pressure_0": { - "varname": "pressure_at_sea_level", - "units": "pa", - "dtype": "float64", - "description": "pressure at sea level", - }, - "BlackGlobeTemp": { - "varname": "radiation_temp", - "units": r"celscius denk ik??", - "dtype": "float64", - "description": "Radiative temperature", - }, -} diff --git a/metobs_toolkit/data_templates/import_templates.py b/metobs_toolkit/data_templates/import_templates.py index 793db413..d41c553e 100644 --- a/metobs_toolkit/data_templates/import_templates.py +++ b/metobs_toolkit/data_templates/import_templates.py @@ -48,4 +48,4 @@ # for idx, row in templ.iterrows(): # template[idx] = row[~row.isnull()].to_dict() - # return template +# return template diff --git a/metobs_toolkit/data_templates/template_build_prompt.py b/metobs_toolkit/data_templates/template_build_prompt.py index 6f0f68ba..1d1f23f1 100644 --- a/metobs_toolkit/data_templates/template_build_prompt.py +++ b/metobs_toolkit/data_templates/template_build_prompt.py @@ -10,11 +10,104 @@ import sys import pandas as pd import numpy as np +import copy from datetime import datetime import pytz +from metobs_toolkit.obstypes import Obstype, tlk_obstypes from metobs_toolkit.data_import import _read_csv_to_df -from metobs_toolkit import observation_types + + +def add_new_obstype(): + + print("\n --- Adding a new observation type --- \n") + + # get obsname + name_ok = False + while not name_ok: + obsname = str(input("Give the name of your observation type: ")) + if obsname in tlk_obstypes.keys(): + print( + f"!! {obsname} is already a knonw observation type. This cannot be added." + ) + else: + name_ok = True + + # get std unit + std_unit = str( + input( + "Give the standard unit (how the toolkit should store/present the data): " + ) + ) + + # Get input data unit + is_std_unit = yes_no_ques(f" Are the {obsname} values in your data in {std_unit}") + if is_std_unit: + cur_unit = std_unit + unit_conv = {std_unit: ["x"]} + else: + cur_unit = str(input("Give the unit your data is in: ")) + print( + f"Give the expression on how to convert {cur_unit} values to {std_unit}. " + ) + print(" * Example: Kelvin (= new unit) to °C : x - 273.15 ") + print( + " * Example: Farenheit to °C : x-32.0; x/1.8 (executed left to right)" + ) + + conv_str = str(input(" : ")) + # cleanup and make list if needend + conv_str = list(conv_str.replace(" ", "").split(";")) + + unit_conv = {cur_unit: conv_str} + # Description + description = str( + input(f"Give a detailed description of the {obsname} type (optional): ") + ) + + # Aliases and coversions + + # Do not add this in the prompt, the prompt should not check the more advanced + # settigns. If the prompt could cover 95% of all user needs, that would be great. + # The others should help themself with the documentation to create aliases + # and conversions + + unit_aliases = {} + + # create obstype: + new_obstype = Obstype( + obsname=obsname, + std_unit=std_unit, + description=description, + unit_aliases=unit_aliases, + unit_conversions=unit_conv, + ) + return new_obstype, cur_unit + + +def get_unit(obstype): + + available_units = obstype.get_all_units() + available_units.append("ADD A NEW UNIT") + + print(f"\n Select the unit your {obstype.name} data is in: \n") + conv_str = None + unit = col_option_input(available_units) + if unit == "ADD A NEW UNIT": + unit = str(input("Give the unit your data is in: ")) + print( + f"Give the expression on how to convert {unit} values to {obstype.get_standard_unit()}. " + ) + print(" * Example: Kelvin (= new unit) to °C : x - 273.15 ") + print( + " * Example: Farenheit to °C : x-32.0; x/1.8 (executed left to right)" + ) + + conv_str = str(input(" : ")) + # cleanup and make list if needend + conv_str = list(conv_str.replace(" ", "").split(";")) + + return unit, conv_str def col_option_input(columns): @@ -22,25 +115,25 @@ def col_option_input(columns): mapper = {} i = 1 for col in columns: - print(f' {i}. {col}') + print(f" {i}. {col}") mapper[i] = col i += 1 - print(' x. -- not valid --') + print(" x. -- not valid --") valid_input = False while valid_input is False: if i <= 3: - repr_str = '(' + repr_str = "(" for i in np.arange(1, i): - repr_str += str(i) + ', ' + repr_str += str(i) + ", " # remove last comma - repr_str = repr_str[:-2] + ') : ' - num_ans = (input(f'{repr_str}')) + repr_str = repr_str[:-2] + ") : " + num_ans = input(f"{repr_str}") else: - num_ans = (input(f'(1 - {i-1}) : ')) + num_ans = input(f"(1 - {i-1}) : ") - if num_ans == 'x': - print(' ... This setting is not provided! ...') + if num_ans == "x": + print(" ... This setting is not provided! ...") return None try: @@ -48,9 +141,9 @@ def col_option_input(columns): valid_input = True except KeyError: valid_input = False - print(f'{num_ans} is not a valid input.') + print(f"{num_ans} is not a valid input.") - print(f' ... {mapper[int(num_ans)]} selected ... \n') + print(f" ... {mapper[int(num_ans)]} selected ... \n") return mapper[int(num_ans)] @@ -59,16 +152,16 @@ def yes_no_ques(text): valid_input = False while valid_input is False: - prompt = input(f' {text}. (y/n) : ') + prompt = input(f" {text}. (y/n) : ") - if (prompt == 'y') | (prompt == 'Y'): + if (prompt == "y") | (prompt == "Y"): valid_input = True return True - elif (prompt == 'n') | (prompt == 'N'): + elif (prompt == "n") | (prompt == "N"): valid_input = True return False else: - print(f' {prompt} is not y or n, give a suitable answer.') + print(f" {prompt} is not y or n, give a suitable answer.") def usr_input_dir(text): @@ -79,11 +172,11 @@ def usr_input_dir(text): """ is_dir = False while is_dir is False: - inp_dir = input(f'{text} : ') + inp_dir = input(f"{text} : ") if os.path.isdir(inp_dir): is_dir = True else: - print(f'{inp_dir} is not a directory, try again.') + print(f"{inp_dir} is not a directory, try again.") return inp_dir @@ -95,11 +188,11 @@ def usr_input_file(text): """ is_file = False while is_file is False: - inp_file = input(f'{text} : ') + inp_file = input(f"{text} : ") if os.path.isfile(inp_file): is_file = True else: - print(f'{inp_file} is not found, try again.') + print(f"{inp_file} is not found, try again.") return inp_file @@ -107,437 +200,528 @@ def build_template_prompt(debug=False): """Launch the prompt to help make a template.""" template_dict = {} options_dict = {} - print('This prompt will help to build a template for your data and metadata. Answer the prompt and hit Enter. \n \n') - print(' ******* File locations *********** \n') - datafilepath = usr_input_file('Give the full path to your data file') - meta_avail = yes_no_ques('Do you have a file with the metadata?') + known_obstypes = copy.copy(tlk_obstypes) + new_units = {} + + print( + "This prompt will help to build a template for your data and metadata. Answer the prompt and hit Enter. \n \n" + ) + + print(" ******* File locations *********** \n") + datafilepath = usr_input_file("Give the full path to your data file") + meta_avail = yes_no_ques("Do you have a file with the metadata?") if meta_avail: - metadatafilepath = usr_input_file('Give the full path to your metadata file') + metadatafilepath = usr_input_file("Give the full path to your metadata file") # ============================================================================= # Map data file # ============================================================================= - print('\n\n ******* Data File ***********') + print("\n\n ******* Data File ***********") # datafilepath = usr_input_file('Give the full path to your data file') - print(' ... opening the data file ...') + print(" ... opening the data file ...") data = _read_csv_to_df(datafilepath, {}) columnnames = data.columns.to_list() - format_dict = {'Long format (station observations are stacked as rows)': 1, - 'Wide format (columns represent different stations)': 2, - 'Single station format (columns represent observation(s) of one station)': 3} + format_dict = { + "Long format (station observations are stacked as rows)": 1, + "Wide format (columns represent different stations)": 2, + "Single station format (columns represent observation(s) of one station)": 3, + } - print('How is your dataset structured : \n') + print("How is your dataset structured : \n") format_option = col_option_input(format_dict.keys()) - print(f' \n... oke, {format_option} selected ...\n') + print(f" \n... oke, {format_option} selected ...\n") format_option = format_dict[format_option] if debug: - print(f'format numeric option: {format_option}') + print(f"format numeric option: {format_option}") if format_option == 1: - options_dict['data_structure'] = 'long' + options_dict["data_structure"] = "long" if format_option == 2: - options_dict['data_structure'] = 'wide' + options_dict["data_structure"] = "wide" if format_option == 3: - options_dict['data_structure'] = 'single_station' + options_dict["data_structure"] = "single_station" # Datatime mapping - dt_dict = {'In a single column (ex: 2023/06/07 16:12:30)': 1, - 'By a column with dates, and another column with times': 2} - print('How are the timestamps present in your data file : \n') + dt_dict = { + "In a single column (ex: 2023/06/07 16:12:30)": 1, + "By a column with dates, and another column with times": 2, + } + print("How are the timestamps present in your data file : \n") datetime_option = col_option_input(dt_dict.keys()) datetime_option = dt_dict[datetime_option] if datetime_option == 1: # Datetime mapping - template_dict['datetime'] = {} - print('\n Which is your timestamp columnname: ') - template_dict['datetime']['orig_name'] = col_option_input(columnnames) - columnnames.remove(template_dict['datetime']['orig_name']) + template_dict["datetime"] = {} + print("\n Which is your timestamp columnname: ") + template_dict["datetime"]["orig_name"] = col_option_input(columnnames) + columnnames.remove(template_dict["datetime"]["orig_name"]) - example = data[template_dict['datetime']['orig_name']].iloc[0] - template_dict['datetime']['format'] = input(f'Type your datetime format (ex. %Y-%m-%d %H:%M:%S), (your first timestamp: {example}) : ') + example = data[template_dict["datetime"]["orig_name"]].iloc[0] + template_dict["datetime"]["format"] = input( + f"Type your datetime format (ex. %Y-%m-%d %H:%M:%S), (your first timestamp: {example}) : " + ) else: # Date mapping - template_dict['_date'] = {} - print('Which column represents the DATES : ') - template_dict['_date']['orig_name'] = col_option_input(columnnames) - columnnames.remove(template_dict['_date']['orig_name']) + template_dict["_date"] = {} + print("Which column represents the DATES : ") + template_dict["_date"]["orig_name"] = col_option_input(columnnames) + columnnames.remove(template_dict["_date"]["orig_name"]) - example = data[template_dict['_date']['orig_name']].iloc[0] - template_dict['_date']['format'] = input(f'Type your date format (ex. %Y-%m-%d), (your first timestamp: {example}) : ') + example = data[template_dict["_date"]["orig_name"]].iloc[0] + template_dict["_date"]["format"] = input( + f"Type your date format (ex. %Y-%m-%d), (your first timestamp: {example}) : " + ) - print(' \n') + print(" \n") # Time mapping - template_dict['_time'] = {} - print('Which column represents the TIMES : ') - template_dict['_time']['orig_name'] = col_option_input(columnnames) + template_dict["_time"] = {} + print("Which column represents the TIMES : ") + template_dict["_time"]["orig_name"] = col_option_input(columnnames) - columnnames.remove(template_dict['_time']['orig_name']) - example = data[template_dict['_time']['orig_name']].iloc[0] - template_dict['_time']['format'] = input(f'Type your time format (ex. %H:%M:%S), (your first timestamp: {example}) : ') + columnnames.remove(template_dict["_time"]["orig_name"]) + example = data[template_dict["_time"]["orig_name"]].iloc[0] + template_dict["_time"]["format"] = input( + f"Type your time format (ex. %H:%M:%S), (your first timestamp: {example}) : " + ) # Obstype mapping in long format: - obstype_desc = { - 'name': 'name (name of the stations represented by strings)', - 'temp': "temp (temperature)", - 'radiation_temp': "radiation_temp (radiation temperature)", - 'humidity': "humidity (humidity)", - 'precip': "precip (precipitation intensity)", - 'precip_sum': "precip_sum (precipitation cumulated)", - 'wind_speed': "wind_speed (wind speed)", - 'wind_gust': "wind_gust (wind gust)", - 'wind_direction': "wind_direction (wind direction in degrees)", - 'pressure': "pressure (measured pressure)", - 'pressure_at_sea_level': "pressure_at_sea_level (altitude corrected pressure)"} + obstype_desc = {"name": "name (name of the stations represented by strings)"} + obstype_desc.update( + {ob.name: ob.get_description() for ob in known_obstypes.values()} + ) + obstype_desc.update( + { + "ADD NEW OBSERVATION TYPE": "add a new observation type if it is not present in this list." + } + ) + inv_obstype_desc = {val: key for key, val in obstype_desc.items()} obstype_options = list(obstype_desc.values()) if (format_option == 1) | (format_option == 3): # long format - print('What do the following columns represent: \n') + print("What do the following columns represent: \n") for col in columnnames: - contin = yes_no_ques(f'\n add column {col} to the template?') + contin = yes_no_ques(f"\n add column {col} to the template?") if contin is False: continue - print(f'\n {col} : ') + print(f"\n {col} : ") desc_return = col_option_input(obstype_options) if desc_return is None: continue # when enter x - obstype = inv_obstype_desc[desc_return] - if obstype == 'temp': - _unit_num = input(' In Celcius (1), or Kelvin (2) : ') - units = {1: 'Celcius', 2: 'Kelvin'}[int(_unit_num)] - - print(units) - elif obstype == 'name': - template_dict['name'] = {'orig_name': col} + # 1) add a new obstype + if inv_obstype_desc[desc_return] == "ADD NEW OBSERVATION TYPE": + new_obstype, cur_unit = add_new_obstype() + + known_obstypes[new_obstype.name] = new_obstype # add to knonw obstypes + obstype = new_obstype.name + units = cur_unit + description = new_obstype.get_description() + # 2) name column is mapped + elif inv_obstype_desc[desc_return] == "name": + template_dict["name"] = {"orig_name": col} + obstype_options.remove( + "name (name of the stations represented by strings)" + ) continue + # 3) existing obstype else: - units = input(' What are the units : ') + obstype = inv_obstype_desc[desc_return] + + # add unit + units, conv_str = get_unit(known_obstypes[obstype]) + if conv_str is not None: + # add new units to the dict + new_units[obstype] = {"unit": units, "conv": conv_str} - description = input('Some more details on the observation : ') + description = input("Some more details on the observation (optional): ") + + obstype_options.remove(obstype_desc[obstype]) # update template - template_dict[obstype] = {'orig_name': col, - 'units': units, - 'description': description - } - obstype_options.remove(obstype_desc[obstype]) + template_dict[obstype] = { + "orig_name": col, + "units": units, + "description": description, + } if format_option == 2: - print('\n Does these columns represent stations: ') + print("\n Does these columns represent stations: ") for col in columnnames: - print(f' {col} ') + print(f" {col} ") - cont = yes_no_ques('') + cont = yes_no_ques("") if cont is False: - print('\n In a Wide-format, REMOVE THE COLUMNS that do not represent different satations, before proceding! \n') + print( + "\n In a Wide-format, REMOVE THE COLUMNS that do not represent different satations, before proceding! \n" + ) else: stationnames = columnnames - print('\n What observation type does you data represent : ') - obstype_options.remove(obstype_desc['name']) + print("\n What observation type does you data represent : ") + obstype_options.remove(obstype_desc["name"]) desc_return = col_option_input(obstype_options) if desc_return is None: - print('This is not an option, select an observation type.') - sys.exit('invalid obstype for wide dataset, see last message. ') + print("This is not an option, select an observation type.") + sys.exit("invalid obstype for wide dataset, see last message. ") wide_obstype = inv_obstype_desc[desc_return] - if wide_obstype == 'temp': - _unit_num = input(' In Celcius (1), or Kelvin (2) : ') - units = {1: 'Celcius', 2: 'Kelvin'}[int(_unit_num)] - - print(units) + # 1) add a new obstype + if wide_obstype == "ADD NEW OBSERVATION TYPE": + new_obstype, cur_unit = add_new_obstype() + wide_obstype = new_obstype.name + known_obstypes[new_obstype.name] = new_obstype # add to knonw obstypes + units = cur_unit + description = new_obstype.get_description() + # 2) Knonw obstype else: - units = input(' What are the units : ') + # add unit + units, conv_str = get_unit(known_obstypes[wide_obstype]) + if conv_str is not None: + # add new units to the dict + new_units[wide_obstype] = {"unit": units, "conv": conv_str} - description = input('Some more details on the observation : ') + description = input("Some more details on the observation (optional): ") # update template - template_dict[wide_obstype] = {'units': units, - 'description': description - } + template_dict[wide_obstype] = {"units": units, "description": description} # update options - options_dict['obstype'] = wide_obstype - options_dict['obstype_unit'] = units - options_dict['obstype_description'] = description + options_dict["obstype"] = wide_obstype + options_dict["obstype_unit"] = units + options_dict["obstype_description"] = description if debug: - print(f'format option: {format_option}') - print(f'template_dict: {template_dict}') + print(f"format option: {format_option}") + print(f"template_dict: {template_dict}") # ============================================================================= # Map metadatafile # ============================================================================= - print('\n \n ******* Meta Data ***********') + print("\n \n ******* Meta Data ***********") metatemplate_dict = {} if meta_avail: - print(' ... opening the metadata file ...') + print(" ... opening the metadata file ...") metadata = _read_csv_to_df(metadatafilepath, {}) metacolumnnames = metadata.columns.to_list() meta_desc = { - 'name': 'name (the column with the stationnames, must be unique for each station)', - 'lat': 'lat (the latitudes of the stations as a numeric values)', - 'lon': 'lon (The longtitudes of the stations as a numeric values)', - 'location': 'location (the city/region of the stations) (OPTIONAL)', - 'call_name': 'call_name (an informal name of the stations) (OPTIONAL)', - 'network': 'network (the name of the network the stations belong to) (OPTIONAL)', - } + "name": "name (the column with the stationnames, must be unique for each station)", + "lat": "lat (the latitudes of the stations as a numeric values)", + "lon": "lon (The longtitudes of the stations as a numeric values)", + "location": "location (the city/region of the stations) (OPTIONAL)", + "call_name": "call_name (an informal name of the stations) (OPTIONAL)", + "network": "network (the name of the network the stations belong to) (OPTIONAL)", + } inv_meta_desc = {val: key for key, val in meta_desc.items()} - print('What do the following columns represent: \n') - meta_options=list(meta_desc.values()) + print("What do the following columns represent: \n") + meta_options = list(meta_desc.values()) for col in metacolumnnames: - contin = yes_no_ques(f'add {col} to the template?') + contin = yes_no_ques(f"add {col} to the template?") if contin is False: continue - print(f'\n {col} : ') + print(f"\n {col} : ") desc_return = col_option_input(meta_options) if desc_return is None: - continue #when enter x + continue # when enter x metatype = inv_meta_desc[desc_return] # check if the name column is equalt in the data template to avoid creating # two templates - if metatype == 'name': - if 'name' in template_dict: - if not col == template_dict['name']['orig_name']: - print(f'WARNING, the "name" column in the datafile is different than in the metadatafile! \ - Rename in your metadatafile : {col} ---> {template_dict["name"]["orig_name"]}') - cont = yes_no_ques('Renaming done?') + if metatype == "name": + if "name" in template_dict: + if not col == template_dict["name"]["orig_name"]: + print( + f'WARNING, the "name" column in the datafile is different than in the metadatafile! \ + Rename in your metadatafile : {col} ---> {template_dict["name"]["orig_name"]}' + ) + cont = yes_no_ques("Renaming done?") if cont is False: - sys.exit(f'Please rename {col} ---> {template_dict["name"]["orig_name"]} in your metadata file.') + sys.exit( + f'Please rename {col} ---> {template_dict["name"]["orig_name"]} in your metadata file.' + ) - metatemplate_dict[metatype] = {'orig_name': col} + metatemplate_dict[metatype] = {"orig_name": col} meta_options.remove(meta_desc[metatype]) if debug: - print(f'metatemplate_dict : {metatemplate_dict}') - + print(f"metatemplate_dict : {metatemplate_dict}") # ============================================================================= # Apply tests # ============================================================================= - print('\n \n ******* Testing template compatibility ***********') - print('\n ... Oke, that is all the info for the mapping. Now i will do some basic tests to see if the mapping works.') - + print("\n \n ******* Testing template compatibility ***********") + print( + "\n ... Oke, that is all the info for the mapping. Now i will do some basic tests to see if the mapping works." + ) # ------- tests on data --------- # apply tests the first row data_test = data.iloc[0].to_dict() # test if a stationname column is available in a long format - print (' * ... checking data columns ... ') - if ((format_option == 1) & (not 'name' in template_dict)): - print(' \n WARNING: There is no information which column in the data file represents the names of the stations. The toolkit will assume that the observations are from ONE station! \n') + print(" * ... checking data columns ... ") + if (format_option == 1) & (not "name" in template_dict): + print( + " \n WARNING: There is no information which column in the data file represents the names of the stations. The toolkit will assume that the observations are from ONE station! \n" + ) format_option = 3 # check if a least one mapped observation type exist - if (format_option != 2): - present_obs = [key for key in template_dict.keys() if key in observation_types] + if format_option != 2: + present_obs = [ + key for key in template_dict.keys() if key in known_obstypes.keys() + ] if not bool(present_obs): - print('ERROR! There is no observation type included in the template! Add at least one observation type when mapping the data file.') - sys.exit('Template invalid, see last message. ') - + print( + "ERROR! There is no observation type included in the template! Add at least one observation type when mapping the data file." + ) + sys.exit("Template invalid, see last message. ") # test datetime format - print (' * ... checking timestamps formats ... ') - if 'datetime' in template_dict: + print(" * ... checking timestamps formats ... ") + if "datetime" in template_dict: escape = False while not escape: - test_dt = data_test[template_dict['datetime']['orig_name']] + test_dt = data_test[template_dict["datetime"]["orig_name"]] try: - _ = datetime.strptime(test_dt, - template_dict['datetime']['format']) - print (' ... testing datetime format is ... OK!') - escape=True + _ = datetime.strptime(test_dt, template_dict["datetime"]["format"]) + print(" ... testing datetime format is ... OK!") + escape = True except: - print(f'ERROR: the {template_dict["datetime"]["format"]} does not work for {test_dt}') - template_dict['datetime']['format'] = input('\n Try new timestamp format (ex. %Y-%m-%d %H:%M:%S) : ') - - if '_date' in template_dict: + print( + f'ERROR: the {template_dict["datetime"]["format"]} does not work for {test_dt}' + ) + template_dict["datetime"]["format"] = input( + "\n Try new timestamp format (ex. %Y-%m-%d %H:%M:%S) : " + ) + + if "_date" in template_dict: escape = False while not escape: - test_dt = data_test[template_dict['_date']['orig_name']] + test_dt = data_test[template_dict["_date"]["orig_name"]] try: - _ = datetime.strptime(test_dt, - template_dict['_date']['format']) - print (' ... testing date format is OK!') - escape=True + _ = datetime.strptime(test_dt, template_dict["_date"]["format"]) + print(" ... testing date format is OK!") + escape = True except: - print(f'ERROR: the {template_dict["_date"]["format"]} does not work for {test_dt}') - template_dict['_date']['format'] = input('\n Try new date format (ex. %Y-%m-%d) : ') - if '_time' in template_dict: + print( + f'ERROR: the {template_dict["_date"]["format"]} does not work for {test_dt}' + ) + template_dict["_date"]["format"] = input( + "\n Try new date format (ex. %Y-%m-%d) : " + ) + if "_time" in template_dict: escape = False while not escape: - test_dt = data_test[template_dict['_time']['orig_name']] + test_dt = data_test[template_dict["_time"]["orig_name"]] try: - _ = datetime.strptime(test_dt, - template_dict['_time']['format']) - print (' ... testing time format is OK!') - escape=True + _ = datetime.strptime(test_dt, template_dict["_time"]["format"]) + print(" ... testing time format is OK!") + escape = True except: - print(f'ERROR: the {template_dict["_time"]["format"]} does not work for {test_dt}') - template_dict['_time']['format'] = input('\n Try new time format (ex. %H:%M:%S) : ') - + print( + f'ERROR: the {template_dict["_time"]["format"]} does not work for {test_dt}' + ) + template_dict["_time"]["format"] = input( + "\n Try new time format (ex. %H:%M:%S) : " + ) # check if all data columns are mapped - print (' * ... checking for unmapped data columns ... ') + print(" * ... checking for unmapped data columns ... ") if (format_option == 1) | (format_option == 3): present_columns = list(data_test.keys()) - mapped_cols = [val['orig_name'] for val in template_dict.values()] + mapped_cols = [val["orig_name"] for val in template_dict.values()] for col in present_columns: if not col in mapped_cols: - print(f' Warning! {col} in the datafile is not present in the template, and thus it will not be used.') - - + print( + f" Warning! {col} in the datafile is not present in the template, and thus it will not be used." + ) # -------- tests on metadata ---------- if bool(metatemplate_dict): # apply tests the first row metadata_test = metadata.iloc[0].to_dict() - # test if name is in the metadat in a long format - print (' * ... checking metadata columns ... ') - if ((not 'name' in metatemplate_dict) & ((format_option in [1, 2]))): - print(f'Error! There is no metadata column containing the station names in the template! Add this column to the metadatafile of the template.') - sys.exit('Template invalid, see last message. ') - - - print (' * ... checking metadata name duplicates... ') - if (format_option in [1, 2]): - stanames_metadata = metadata[metatemplate_dict['name']['orig_name']] + print(" * ... checking metadata columns ... ") + if (not "name" in metatemplate_dict) & ((format_option in [1, 2])): + print( + f"Error! There is no metadata column containing the station names in the template! Add this column to the metadatafile of the template." + ) + sys.exit("Template invalid, see last message. ") + + print(" * ... checking metadata name duplicates... ") + if format_option in [1, 2]: + stanames_metadata = metadata[metatemplate_dict["name"]["orig_name"]] if stanames_metadata.duplicated().any(): dubs = stanames_metadata[stanames_metadata.duplicated()] - print(f'Error! There are duplicated names present in the metadatafile {dubs}. Remove the duplicates manually.') - sys.exit('Template invalid, see last message. ') + print( + f"Error! There are duplicated names present in the metadatafile {dubs}. Remove the duplicates manually." + ) + sys.exit("Template invalid, see last message. ") # test if all stationnames are present in the metadata - print (' * ... checking compatible station names ... ') - if ((format_option == 1) & ('name' in template_dict)): - stanames_data = data[template_dict['name']['orig_name']].unique() - stanames_metadata = metadata[metatemplate_dict['name']['orig_name']].unique() + print(" * ... checking compatible station names ... ") + if (format_option == 1) & ("name" in template_dict): + stanames_data = data[template_dict["name"]["orig_name"]].unique() + stanames_metadata = metadata[ + metatemplate_dict["name"]["orig_name"] + ].unique() unmapped = [sta for sta in stanames_data if not sta in stanames_metadata] if bool(unmapped): - print(f'Warning! The following stations are found in the data, but not in the metadata: {unmapped}') - + print( + f"Warning! The following stations are found in the data, but not in the metadata: {unmapped}" + ) - if ((format_option == 2)): + if format_option == 2: # 1. no duplicates in stationnames if not (len(stationnames) == len(set(stationnames))): - print(f'Error! Duplicated station names found in the columns of the dataset: {stationnames}') - sys.exit('Template invalid, see last message. ') - + print( + f"Error! Duplicated station names found in the columns of the dataset: {stationnames}" + ) + sys.exit("Template invalid, see last message. ") # 2. check if all stationname in the data are defined in the metadata, # If there are no mapped stationnames give error, else give warning - stanames_metadata = metadata[metatemplate_dict['name']['orig_name']].to_list() - unmapped = [staname for staname in stationnames if not staname in stanames_metadata] - - if (len(unmapped) == len(stationnames)): - print(f'Error! None of the stationnames in the dataset ({stationnames}), are found in the metadataset ({stanames_metadata}).') - sys.exit('Template invalid, see last message. ') - - if (len(unmapped) < len(stationnames)): - print(f' unmapped: {unmapped}') - print(f' stationnames: {stationnames}') - print(f' stationnames metadta: {stanames_metadata}') - print(f'Warning! The following stations are present in the data but not in the metadata: {unmapped}') - - - + stanames_metadata = metadata[ + metatemplate_dict["name"]["orig_name"] + ].to_list() + unmapped = [ + staname for staname in stationnames if not staname in stanames_metadata + ] + + if len(unmapped) == len(stationnames): + print( + f"Error! None of the stationnames in the dataset ({stationnames}), are found in the metadataset ({stanames_metadata})." + ) + sys.exit("Template invalid, see last message. ") + + if len(unmapped) < len(stationnames): + print(f" unmapped: {unmapped}") + print(f" stationnames: {stationnames}") + print(f" stationnames metadta: {stanames_metadata}") + print( + f"Warning! The following stations are present in the data but not in the metadata: {unmapped}" + ) # check if all metadata columns are mapped - print (' * ... checking for unmapped metadata columns ... ') + print(" * ... checking for unmapped metadata columns ... ") present_columns = list(metadata_test.keys()) - mapped_cols = [val['orig_name'] for val in metatemplate_dict.values()] + mapped_cols = [val["orig_name"] for val in metatemplate_dict.values()] for col in present_columns: if not col in mapped_cols: - print(f' Warning! {col} in the metadatafile is not present in the template, and thus it will not be used.') - + print( + f" Warning! {col} in the metadatafile is not present in the template, and thus it will not be used." + ) -# make shure the stationname is unique in single station datafile - if ((format_option == 3)): - print (' * ... checking if stationname is unique ... ') + # make shure the stationname is unique in single station datafile + if format_option == 3: + print(" * ... checking if stationname is unique ... ") if bool(metatemplate_dict): - if 'name' in metatemplate_dict: - names = metadata[metatemplate_dict['name']['orig_name']].unique() - if len(names) > 1 : - print(f"Error! multiple station names found in the {metatemplate_dict['name']['orig_name']} metadata column.") - sys.exit('Template invalid, see last message. ') + if "name" in metatemplate_dict: + names = metadata[metatemplate_dict["name"]["orig_name"]].unique() + if len(names) > 1: + print( + f"Error! multiple station names found in the {metatemplate_dict['name']['orig_name']} metadata column." + ) + sys.exit("Template invalid, see last message. ") else: - if 'name' in template_dict: - names = data[template_dict['name']['orig_name']].unique() - if len(names) > 1 : - print(f"Error! multiple station names found in the {template_dict['name']['orig_name']} data column.") - sys.exit('Template invalid, see last message. ') + if "name" in template_dict: + names = data[template_dict["name"]["orig_name"]].unique() + if len(names) > 1: + print( + f"Error! multiple station names found in the {template_dict['name']['orig_name']} data column." + ) + sys.exit("Template invalid, see last message. ") + + # ============================================================================= + # Some extra options + # ============================================================================= + template_dict.update( + metatemplate_dict + ) # this is why name in data and metadata should have the same mapping !! -# ============================================================================= -# Some extra options -# ============================================================================= + print("\n \n ******* Extra options ***********") - template_dict.update(metatemplate_dict) #this is why name in data and metadata should have the same mapping !! + if (format_option == 3) & ( + not "name" in template_dict + ): # single station with no name information + staname = input("\n What is the name of your station : ") + options_dict["stationname"] = staname + tzchange = yes_no_ques("\n Are the timestamps in UTC?") + if tzchange is False: + print("\n Select a timezone: ") + tzstring = col_option_input(pytz.all_timezones) + options_dict["timezone"] = tzstring + else: + options_dict["timezone"] = "UTC" - print('\n \n ******* Extra options ***********') + print("\n \n ******* Extra options ***********") - if ((format_option == 3) & (not 'name' in template_dict)):#single station with no name information - staname = input('\n What is the name of your station : ') - options_dict['stationname'] = staname + if (format_option == 3) & ( + not "name" in template_dict + ): # single station with no name information + staname = input("\n What is the name of your station : ") + options_dict["stationname"] = staname - tzchange = yes_no_ques('\n Are the timestamps in UTC?') + tzchange = yes_no_ques("\n Are the timestamps in UTC?") if tzchange is False: - print('\n Select a timezone: ') + print("\n Select a timezone: ") tzstring = col_option_input(pytz.all_timezones) - options_dict['timezone'] = tzstring + options_dict["timezone"] = tzstring else: - options_dict['timezone'] = 'UTC' + options_dict["timezone"] = "UTC" # ============================================================================= # Saving the template # ============================================================================= - print('\n ------ Saving the template ----- \n') - save_dir = usr_input_dir("Give a directory where to save the template (as template.csv)") + print("\n ------ Saving the template ----- \n") + save_dir = usr_input_dir( + "Give a directory where to save the template (as template.csv)" + ) # Convert to dataframe df = pd.DataFrame(template_dict).transpose() - df.index.name = 'varname' - df = df.rename(columns={'orig_name' : 'template column name'}) + df.index.name = "varname" + df = df.rename(columns={"orig_name": "template column name"}) df = df.reset_index() # add options - options_df = pd.DataFrame().from_dict(options_dict, orient='index', - columns=['options_values']).reset_index().rename(columns={'index': 'options'}) + options_df = ( + pd.DataFrame() + .from_dict(options_dict, orient="index", columns=["options_values"]) + .reset_index() + .rename(columns={"index": "options"}) + ) - df = pd.concat([df,options_df], ignore_index=False, axis=1) #add optionscolumns + df = pd.concat([df, options_df], ignore_index=False, axis=1) # add optionscolumns # write to csv - templatefilepath = os.path.join(save_dir, 'template.csv') - df.to_csv(templatefilepath, na_rep = '', index=False) - print(f' DONE! The template is writen here: {templatefilepath}') - - + templatefilepath = os.path.join(save_dir, "template.csv") + df.to_csv(templatefilepath, na_rep="", index=False) + print(f" DONE! The template is writen here: {templatefilepath}") # ============================================================================= # Tips for the user @@ -546,59 +730,97 @@ def build_template_prompt(debug=False): apply_tips = yes_no_ques("Do you want some help creating your Dataset?") if apply_tips is True: - print('\n ------ How to use the template ----- ') - - print('(Some questions will be asked that are case-specific) \n') + print("\n ------ How to use the template ----- ") + print("(Some questions will be asked that are case-specific) \n") - output_change = yes_no_ques('Do you plan to save images to a direcory?') + output_change = yes_no_ques("Do you plan to save images to a direcory?") output_update = False if output_change is True: - output_folder = input(' Give the path of your output direcory : ') + output_folder = input(" Give the path of your output direcory : ") output_update = True - - gaps_change = yes_no_ques('Do you want to use the default gaps defenition?') + gaps_change = yes_no_ques("Do you want to use the default gaps defenition?") gaps_update = False if gaps_change is False: - gapsize = int(input(' What is the minimum number of consecutive missing records to define as a gap? (default=40) : ')) + gapsize = int( + input( + " What is the minimum number of consecutive missing records to define as a gap? (default=40) : " + ) + ) gaps_update = True - print('\n\n ========= RUN THIS CODE ========= \n\n') - + print("\n\n ========= RUN THIS CODE ========= \n\n") - print('\n#1. Define the paths to your files: \n') + print("\n#1. Define the paths to your files: \n") print(f'data_file = "{datafilepath}"') if bool(metatemplate_dict): print(f'meta_data_file = "{metadatafilepath}"') print(f'template = "{templatefilepath}"') + print("\n#2. initiate a dataset: \n") + print("your_dataset = metobs_toolkit.Dataset()") - print('\n#2. initiate a dataset: \n') - print('your_dataset = metobs_toolkit.Dataset()') - - print('\n#3. Update the paths to your files: \n') - print('your_dataset.update_settings(') - print(' input_data_file = data_file,') + print("\n#3. Update the paths to your files: \n") + print("your_dataset.update_settings(") + print(" input_data_file = data_file,") if bool(metatemplate_dict): - print(' input_metadata_file = meta_data_file,') - print(' template_file = template,') + print(" input_metadata_file = meta_data_file,") + print(" template_file = template,") if output_update: print(f' output_folder = "{output_folder}",') - print(' )') + print(" )") # extra case specific options - if ((gaps_update)): - print('\n#3B. Update specific settings (optional): \n') - - if gaps_update: - print(f'your_dataset.update_qc_settings(gapsize_in_records = {gapsize})') - + print("\n#3B. Update specific settings (optional): \n") - print('\n#4. Import your data : \n') - - print('your_dataset.import_data_from_file()') - - return df \ No newline at end of file + if gaps_update: + print(f"your_dataset.update_qc_settings(gapsize_in_records = {gapsize})") + + # add new obstypes if needed + to_add_obstypes = [ + newobsname + for newobsname in known_obstypes.keys() + if newobsname not in tlk_obstypes.keys() + ] + if bool(to_add_obstypes): + print( + "\n# Define non-standard observation types, and add them to the dataset: \n" + ) + for newob in to_add_obstypes: + new_obstype = known_obstypes[newob] + print("new_obstype = metobs_toolkit.Obstype(") + print(f' obsname="{new_obstype.name}",') + print(f' std_unit="{new_obstype.get_standard_unit()}",') + print( + f' description="{new_obstype.get_description()}",' + ) + print(f" unit_aliases={new_obstype.units_aliases},") + print(f" unit_conversions={new_obstype.conv_table})") + print("\n\n #add the new obstype to your dataset. \n") + print("your_dataset.add_new_observationtype(Obstype=new_obstype)") + print("\n\n") + + # add new units if needed + + if bool(new_units): + print( + "\n# Define non-standard units, and add them to the corresponding units: \n" + ) + for obstype, unit_info in new_units.items(): + print("your_dataset.add_new_unit(") + print(f' obstype="{obstype}",') + print(f' new_unit="{unit_info["unit"]}",') + print( + f' conversion_expression={unit_info["conv"]})' + ) + + print("\n\n") + + print("\n#4. Import your data : \n") + + print("your_dataset.import_data_from_file()") + + return df diff --git a/metobs_toolkit/data_templates/template_defaults/default_template.csv b/metobs_toolkit/data_templates/template_defaults/default_template.csv index 0d32fa41..08d4a827 100644 --- a/metobs_toolkit/data_templates/template_defaults/default_template.csv +++ b/metobs_toolkit/data_templates/template_defaults/default_template.csv @@ -5,7 +5,7 @@ "_date","Datum",,,"%Y-%m-%d","timezone","UTC" "_time","Tijd (UTC)",,,"%H:%M:%S",, ,,,,,, -"temp","Temperatuur","Celcius","2m-temperature",,, +"temp","Temperatuur","Celsius","2m-temperature",,, "humidity","Vochtigheid","%","relative humidity",,, "pressure","Luchtdruk","pa","air pressure",,, "precip","Neerslagintensiteit","l/m²","precipitation intensity",,, @@ -14,7 +14,7 @@ "wind_speed","Windsnelheid","m/s","windspeed",,, "wind_gust","Rukwind","m/s","windgust",,, "pressure_at_sea_level","Luchtdruk_Zeeniveau","pa","pressure at sea level",,, -"radiation_temp","Globe Temperatuur","Celcius","Radiative blackglobe temperature",,, +"radiation_temp","Globe Temperatuur","Celsius","Radiative blackglobe temperature",,, ,,,,,, ,,,,,, "_ID","ID",,,,, diff --git a/metobs_toolkit/datafiles/demo_templatefile.csv b/metobs_toolkit/datafiles/demo_templatefile.csv index 2c0ed6de..bfffe68d 100644 --- a/metobs_toolkit/datafiles/demo_templatefile.csv +++ b/metobs_toolkit/datafiles/demo_templatefile.csv @@ -1,25 +1,25 @@ -varname,template column name,units,description,dtype,format -name,Vlinder,,,object, +"varname","template column name","units","description","dtype","format" +"name","Vlinder",,,"object", ,,,,, -datetime,,,,object,%Y-%m-%d %H:%M:%S -_date,Datum,,,object,%Y-%m-%d -_time,Tijd (UTC),,,object,%H:%M:%S +"datetime",,,,"object","%Y-%m-%d %H:%M:%S" +"_date","Datum",,,"object","%Y-%m-%d" +"_time","Tijd (UTC)",,,"object","%H:%M:%S" ,,,,, -temp,Temperatuur,Celcius,2m-temperature,float64, -humidity,Vochtigheid,%,relative humidity,float64, -pressure,Luchtdruk,pa,air pressure,float64, -precip,Neerslagintensiteit,l/m²,precipitation intensity,float64, -precip_sum,Neerslagsom,l/m²,Precipitation cumulated from midnight,float64, -wind_direction,Windrichting,°,° from North (CW),float64, -wind_speed,Windsnelheid,m/s,windspeed,float64, -wind_gust,Rukwind,m/s,windgust,float64, -pressure_at_sea_level,Luchtdruk_Zeeniveau,pa,pressure at sea level,float64, -radiation_temp,Globe Temperatuur,Celcius,Radiative blackglobe temperature,float64, +"temp","Temperatuur","Celsius","2m-temperature","float64", +"humidity","Vochtigheid","%","relative humidity","float64", +"pressure","Luchtdruk","pa","air pressure","float64", +"precip","Neerslagintensiteit","l/m²","precipitation intensity","float64", +"precip_sum","Neerslagsom","l/m²","Precipitation cumulated from midnight","float64", +"wind_direction","Windrichting","°","° from North (CW)","float64", +"wind_speed","Windsnelheid","m/s","windspeed","float64", +"wind_gust","Rukwind","m/s","windgust","float64", +"pressure_at_sea_level","Luchtdruk_Zeeniveau","pa","pressure at sea level","float64", +"radiation_temp","Globe Temperatuur","Celsius","Radiative blackglobe temperature","float64", ,,,,, ,,,,, -_ID,ID,,,object, -lat,lat,,,object, -lon,lon,,,object, -location,stad,,,object, -call_name,benaming,,,object, -network,Network,,,object, +"_ID","ID",,,"object", +"lat","lat",,,"object", +"lon","lon",,,"object", +"location","stad",,,"object", +"call_name","benaming",,,"object", +"network","Network",,,"object", diff --git a/metobs_toolkit/dataset.py b/metobs_toolkit/dataset.py index 1eaeb693..283b266f 100644 --- a/metobs_toolkit/dataset.py +++ b/metobs_toolkit/dataset.py @@ -21,7 +21,7 @@ from metobs_toolkit.data_import import ( import_data_from_csv, import_metadata_from_csv, - read_csv_template + read_csv_template, ) from metobs_toolkit.printing import print_dataset_info @@ -30,7 +30,7 @@ lcz_extractor, height_extractor, lc_fractions_extractor, - _validate_metadf + _validate_metadf, ) from metobs_toolkit.plotting_functions import ( @@ -39,6 +39,7 @@ qc_stats_pie, folium_plot, add_stations_to_folium_map, + make_folium_html_plot, ) from metobs_toolkit.qc_checks import ( @@ -51,7 +52,7 @@ invalid_input_check, toolkit_buddy_check, titan_buddy_check, - titan_sct_resistant_check + titan_sct_resistant_check, ) @@ -85,14 +86,16 @@ get_freqency_series, value_labeled_doubleidxdf_to_triple_idxdf, xs_save, - concat_save + concat_save, ) +from metobs_toolkit.obstypes import tlk_obstypes +from metobs_toolkit.obstypes import Obstype as Obstype_class + + from metobs_toolkit.analysis import Analysis from metobs_toolkit.modeldata import Modeldata -from metobs_toolkit import observation_types - logger = logging.getLogger(__name__) @@ -123,6 +126,10 @@ def __init__(self): # Dataset with metadata (static) self.metadf = pd.DataFrame() + + # dictionary storing present observationtypes + self.obstypes = tlk_obstypes # init with all tlk obstypes + # dataframe containing all information on the description and mapping self.data_template = pd.DataFrame() @@ -137,22 +144,24 @@ def __init__(self): def __str__(self): """Represent as text.""" if self.df.empty: - if self._istype == 'Dataset': + if self._istype == "Dataset": return "Empty instance of a Dataset." else: return "Empty instance of a Station." - add_info = '' - n_stations = self.df.index.get_level_values('name').unique().shape[0] + add_info = "" + n_stations = self.df.index.get_level_values("name").unique().shape[0] n_obs_tot = self.df.shape[0] n_outl = self.outliersdf.shape[0] - startdt = self.df.index.get_level_values('datetime').min() - enddt = self.df.index.get_level_values('datetime').max() + startdt = self.df.index.get_level_values("datetime").min() + enddt = self.df.index.get_level_values("datetime").max() - if ((not self.metadf['lat'].isnull().all()) & - (not self.metadf['lon'].isnull().all())): - add_info += ' *Coordinates are available for all stations. \n' + if (not self.metadf["lat"].isnull().all()) & ( + not self.metadf["lon"].isnull().all() + ): + add_info += " *Coordinates are available for all stations. \n" - return (f"Dataset instance containing: \n \ + return ( + f"Dataset instance containing: \n \ *{n_stations} stations \n \ *{self.df.columns.to_list()} observation types \n \ *{n_obs_tot} observation records \n \ @@ -160,7 +169,9 @@ def __str__(self): *{len(self.gaps)} gaps \n \ *{self.missing_obs.series.shape[0]} missing observations \n \ *records range: {startdt} --> {enddt} (total duration: {enddt - startdt}) \n \ - *time zone of the records: {self.settings.time_settings['timezone']} \n " + add_info) + *time zone of the records: {self.settings.time_settings['timezone']} \n " + + add_info + ) def __repr__(self): """Info representation.""" @@ -196,8 +207,8 @@ def __add__(self, other, gapsize=None): # ----- outliers df --------- other_outliers = other.outliersdf.reset_index() - other_outliers = other_outliers[other_outliers['obstype'].isin(self_obstypes)] - other_outliers = other_outliers.set_index(['name', 'datetime', 'obstype']) + other_outliers = other_outliers[other_outliers["obstype"].isin(self_obstypes)] + other_outliers = other_outliers.set_index(["name", "datetime", "obstype"]) new.outliersdf = concat_save([self.outliersdf, other_outliers]) new.outliersdf = new.outliersdf.sort_index() @@ -216,7 +227,7 @@ def __add__(self, other, gapsize=None): # ---------- metadf ----------- # Use the metadf from self and add new rows if they are present in other new.metadf = concat_save([self.metadf, other.metadf]) - new.metadf = new.metadf.drop_duplicates(keep='first') + new.metadf = new.metadf.drop_duplicates(keep="first") new.metadf = new.metadf.sort_index() # ------- specific attributes ---------- @@ -265,7 +276,7 @@ def __add__(self, other, gapsize=None): new.update_outliersdf(add_to_outliersdf=dup_outl_df) # update the order and which qc is applied on which obstype - checked_obstypes = [obs for obs in new.df.columns if obs in observation_types] + checked_obstypes = list(self.obstypes.keys()) checknames = ["duplicated_timestamp"] # KEEP order @@ -320,7 +331,7 @@ def get_info(self, show_all_settings=False, max_disp_n_gaps=5): """ self.show(show_all_settings, max_disp_n_gaps) - def save_dataset(self, outputfolder=None, filename='saved_dataset.pkl'): + def save_dataset(self, outputfolder=None, filename="saved_dataset.pkl"): """Save a Dataset instance to a (pickle) file. Parameters @@ -338,27 +349,29 @@ def save_dataset(self, outputfolder=None, filename='saved_dataset.pkl'): """ # check if outputfolder is known and exists if outputfolder is None: - outputfolder = self.settings.IO['output_folder'] - assert outputfolder is not None, 'No outputfolder is given, and no outputfolder is found in the settings.' + outputfolder = self.settings.IO["output_folder"] + assert ( + outputfolder is not None + ), "No outputfolder is given, and no outputfolder is found in the settings." - assert os.path.isdir(outputfolder), f'{outputfolder} is not a directory!' + assert os.path.isdir(outputfolder), f"{outputfolder} is not a directory!" # check file extension in the filename: - if filename[-4:] != '.pkl': - filename += '.pkl' + if filename[-4:] != ".pkl": + filename += ".pkl" full_path = os.path.join(outputfolder, filename) # check if file exists - assert not os.path.isfile(full_path), f'{full_path} is already a file!' + assert not os.path.isfile(full_path), f"{full_path} is already a file!" - with open(full_path, 'wb') as outp: + with open(full_path, "wb") as outp: pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL) - print(f'Dataset saved in {full_path}') - logger.info(f'Dataset saved in {full_path}') + print(f"Dataset saved in {full_path}") + logger.info(f"Dataset saved in {full_path}") - def import_dataset(self, folder_path=None, filename='saved_dataset.pkl'): + def import_dataset(self, folder_path=None, filename="saved_dataset.pkl"): """Import a Dataset instance from a (pickle) file. Parameters @@ -377,21 +390,102 @@ def import_dataset(self, folder_path=None, filename='saved_dataset.pkl'): """ # check if folder_path is known and exists if folder_path is None: - folder_path = self.settings.IO['output_folder'] - assert folder_path is not None, 'No folder_path is given, and no outputfolder is found in the settings.' + folder_path = self.settings.IO["output_folder"] + assert ( + folder_path is not None + ), "No folder_path is given, and no outputfolder is found in the settings." - assert os.path.isdir(folder_path), f'{folder_path} is not a directory!' + assert os.path.isdir(folder_path), f"{folder_path} is not a directory!" full_path = os.path.join(folder_path, filename) # check if file exists - assert os.path.isfile(full_path), f'{full_path} does not exist.' + assert os.path.isfile(full_path), f"{full_path} does not exist." - with open(full_path, 'rb') as inp: + with open(full_path, "rb") as inp: dataset = pickle.load(inp) + # convert metadf to a geodataframe (if coordinates are available) + dataset.metadf = metadf_to_gdf(dataset.metadf) + return dataset + def add_new_observationtype(self, Obstype): + """Add a new observation type to the known observation types. + + The observation can only be added if it is not already present in the + knonw observation types. If that is the case that you probably need to + use use the Dataset.add_new_unit() method. + + Parameters + ---------- + Obstype : metobs_toolkit.obstype.Obstype + The new Obstype to add. + Returns + ------- + None. + + """ + # Test if the obstype is of the correct class. + if not isinstance(Obstype, Obstype_class): + sys.exit( + f"{Obstype} is not an instance of metobs_toolkit.obstypes.Obstype." + ) + + # Test if the obsname is already in use + if Obstype.name in self.obstypes.keys(): + logger.warning( + f"{Obstype.name} is already a known observation type: {self.obstypes[Obstype.name]}" + ) + return + + # Update the known obstypes + logger.info(f"Adding {Obstype} to the list of knonw observation types.") + self.obstypes[Obstype.name] = Obstype + + def add_new_unit(self, obstype, new_unit, conversion_expression=[]): + """Add a new unit to a known observation type. + + Parameters + ---------- + obstype : str + The observation type to add the new unit to. + new_unit : str + The new unit name. + conversion_expression : list or str, optional + The conversion expression to the standard unit of the observation + type. The expression is a (list of) strings with simple algebraic + operations, where x represent the value in the new unit, and the + result is the value in the standard unit. Two examples for + temperature (with a standard unit in Celcius): + + ["x - 273.15"] #if the new_unit is Kelvin + ["x-32.0", "x/1.8"] #if the new unit is Farenheit + + The default is []. + + Returns + ------- + None. + + """ + # test if observation is present + if not obstype in self.obstypes.keys(): + logger.warning(f"{obstype} is not a known obstype! No unit can be added.") + return + + # check if the unit is already present + is_present = self.obstypes[obstype].test_if_unit_is_known(new_unit) + if is_present: + logger.info( + f"{new_unit} is already a known unit of {self.obstypes[obstype]}" + ) + return + + self.obstypes[obstype].add_unit( + unit_name=new_unit, conversion=conversion_expression + ) + def show_settings(self): """Show detailed information of the stored Settings. @@ -430,13 +524,11 @@ def get_station(self, stationname): try: sta_df = self.df.xs(stationname, level="name", drop_level=False) sta_metadf = self.metadf.loc[stationname].to_frame().transpose() - sta_metadf.index.name = 'name' + sta_metadf.index.name = "name" except KeyError: logger.warning(f"{stationname} not found in the dataset.") return None - - try: sta_outliers = self.outliersdf.xs( stationname, level="name", drop_level=False @@ -453,7 +545,9 @@ def get_station(self, stationname): sta_gapfill = init_multiindexdf() try: - sta_missingfill = self.missing_fill_df.xs(stationname, level="name", drop_level=False) + sta_missingfill = self.missing_fill_df.xs( + stationname, level="name", drop_level=False + ) except KeyError: sta_missingfill = init_multiindexdf() @@ -464,16 +558,15 @@ def get_station(self, stationname): gaps=sta_gaps, missing_obs=sta_missingobs, gapfilldf=sta_gapfill, - missing_fill_df = sta_missingfill, + missing_fill_df=sta_missingfill, metadf=sta_metadf, + obstypes=self.obstypes, data_template=self.data_template, settings=self.settings, _qc_checked_obstypes=self._qc_checked_obstypes, _applied_qc=self._applied_qc, ) - - def make_plot( self, stationnames=None, @@ -485,8 +578,8 @@ def make_plot( y_label=None, legend=True, show_outliers=True, - show_filled = True, - _ax=None, #needed for GUI, not recommended use + show_filled=True, + _ax=None, # needed for GUI, not recommended use ): """ This function creates a timeseries plot for the dataset. The variable observation type @@ -545,15 +638,19 @@ def make_plot( mergedf = self.combine_all_to_obsspace() # subset to obstype - mergedf = xs_save(mergedf, obstype, level='obstype') + mergedf = xs_save(mergedf, obstype, level="obstype") # Subset on stationnames if stationnames is not None: - mergedf = mergedf[mergedf.index.get_level_values('name').isin(stationnames)] + mergedf = mergedf[mergedf.index.get_level_values("name").isin(stationnames)] # Subset on start and endtime - starttime = fmt_datetime_argument(starttime, self.settings.time_settings['timezone']) - endtime = fmt_datetime_argument(endtime, self.settings.time_settings['timezone']) + starttime = fmt_datetime_argument( + starttime, self.settings.time_settings["timezone"] + ) + endtime = fmt_datetime_argument( + endtime, self.settings.time_settings["timezone"] + ) mergedf = multiindexdf_datetime_subsetting(mergedf, starttime, endtime) @@ -562,34 +659,20 @@ def make_plot( if stationnames is None: if self._istype == "Dataset": title = ( - self.data_template[obstype]["orig_name"] - + " for all stations. " + self.obstypes[obstype].get_orig_name() + " for all stations. " ) elif self._istype == "Station": - title = ( - self.data_template[obstype]["orig_name"] - + " of " - + self.name - ) + title = self.obstypes[obstype].get_orig_name() + " of " + self.name else: title = ( - self.data_template[obstype]["orig_name"] + self.obstypes[obstype].get_orig_name() + " for stations: " + str(stationnames) ) # create y label if y_label is None: - try: - if isinstance(self.data_template[obstype]["description"], str): - description = self.data_template[obstype]["description"] - else: - description = '' - - y_label = f'{self.data_template[obstype]["orig_name"]} ({self.data_template[obstype]["units"]}) \n {description}' - except KeyError: - y_label = obstype - + y_label = self.obstypes[obstype].get_plot_y_label() # Make plot ax, _colmap = timeseries_plot( mergedf=mergedf, @@ -600,11 +683,200 @@ def make_plot( show_outliers=show_outliers, show_filled=show_filled, settings=self.settings, - _ax=_ax + _ax=_ax, ) return ax + def make_interactive_plot( + self, + obstype="temp", + save=True, + outputfile=None, + starttime=None, + endtime=None, + vmin=None, + vmax=None, + mpl_cmap_name="viridis", + radius=13, + fill_alpha=0.6, + max_fps=4, + outlier_col="red", + ok_col="black", + gap_col="orange", + fill_col="yellow", + ): + """Make interactive geospatial plot with time evolution. + + This function uses the folium package to make an interactive geospatial + plot to illustrate the time evolution. + + + + Parameters + ---------- + obstype : str or metobs_toolkit.Obstype, optional + The observation type to plot. The default is 'temp'. + save : bool, optional + If true, the figure will be saved as an html-file. The default is True. + outputfile : str, optional + The path of the output html-file. The figure will be saved here, if + save is True. If outputfile is not given, and save is True, than + the figure will be saved in the default outputfolder (if given). + The default is None. + starttime : datetime.datetime, optional + Specifiy the start datetime for the plot. If None is given it will + use the start datetime of the dataset, defaults to None. + endtime : datetime.datetime, optional + Specifiy the end datetime for the plot. If None is given it will + use the end datetime of the dataset, defaults to None. + vmin : numeric, optional + The value corresponding with the minimum color. If None, the + minimum of the presented observations is used. The default is None. + vmax : numeric, optional + The value corresponding with the maximum color. If None, the + maximum of the presented observations is used. The default is None. + mpl_cmap_name : str, optional + The name of the matplotlib colormap to use. The default is 'viridis'. + radius : int, optional + The radius (in pixels) of the scatters. The default is 13. + fill_alpha : float ([0;1]), optional + The alpha of the fill color for the scatters. The default is 0.6. + max_fps : int (>0), optional + The maximum allowd frames per second for the time evolution. The + default is 4. + outlier_col : str, optional + The edge color of the scatters to identify an outliers. The default is 'red'. + ok_col : str, optional + The edge color of the scatters to identify an ok observation. The default is 'black'. + gap_col : str, optional + The edge color of the scatters to identify an missing/gap + observation. The default is 'orange'. + fill_col : str, optional + The edge color of the scatters to identify a fillded observation. + The default is 'yellow'. + + Returns + ------- + m : folium.folium.map + The interactive folium map. + + Note + ------- + The figure will only appear when this is runned in notebooks. If you do + not run this in a notebook, make shure to save the html file, and open it + with a browser. + + """ + # Check if obstype is known + if isinstance(obstype, str): + if obstype not in self.obstypes.keys(): + logger.error( + f"{obstype} is not found in the knonw observation types: {list(self.obstypes.keys())}" + ) + return None + else: + obstype = self.obstypes[obstype] + + if save: + if outputfile is None: + if self.settings.IO["output_folder"] is None: + logger.error( + "No outputfile is given, and there is no default outputfolder specified." + ) + return None + else: + outputfile = os.path.join( + self.output_folder, "interactive_figure.html" + ) + else: + # Check if outputfile has .html extension + if not outputfile.endswith(".html"): + outputfile = outputfile + ".html" + logger.warning( + f"The .hmtl extension is added to the outputfile: {outputfile}" + ) + + # Check if the obstype is present in the data + if obstype.name not in self.df.columns: + logger.error(f"{obstype.name} is not found in your the Dataset.") + return None + + # Check if geospatial data is available + if self.metadf["lat"].isnull().any(): + _sta = self.metadf[self.metadf["lat"].isnull()]["lat"] + logger.error(f"Stations without coordinates detected: {_sta}") + return None + if self.metadf["lon"].isnull().any(): + _sta = self.metadf[self.metadf["lon"].isnull()]["lon"] + logger.error(f"Stations without coordinates detected: {_sta}") + return None + + # Construct dataframe + combdf = self.combine_all_to_obsspace() + combdf = xs_save(combdf, obstype.name, level="obstype") + # Merge geospatial info + combgdf = combdf.merge( + self.metadf, how="left", left_on="name", right_index=True + ) + + # Subset on start and endtime + starttime = fmt_datetime_argument( + starttime, self.settings.time_settings["timezone"] + ) + endtime = fmt_datetime_argument( + endtime, self.settings.time_settings["timezone"] + ) + combgdf = multiindexdf_datetime_subsetting(combgdf, starttime, endtime) + combgdf = combgdf.reset_index() + + # to gdf + combgdf = metadf_to_gdf(combgdf, crs=4326) + + # Make label color mapper + label_col_map = {} + # Ok label + label_col_map["ok"] = ok_col + # outlier labels + for val in self.settings.qc["qc_checks_info"].values(): + label_col_map[val["outlier_flag"]] = outlier_col + + # missing labels (gaps and missing values) + for val in self.settings.gap["gaps_info"].values(): + label_col_map[val["outlier_flag"]] = gap_col + + # fill labels + for val in self.settings.missing_obs["missing_obs_fill_info"]["label"].values(): + label_col_map[val] = fill_col + for val in self.settings.gap["gaps_fill_info"]["label"].values(): + label_col_map[val] = fill_col + + # make time estimation + est_seconds = combgdf.shape[0] / 2411.5 # normal laptop + logger.info( + f'The figure will take approximatly (laptop) {"{:.1f}".format(est_seconds)} seconds to make.' + ) + + # Making the figure + m = make_folium_html_plot( + gdf=combgdf, + variable_column="value", + var_display_name=obstype.name, + var_unit=obstype.get_standard_unit(), + label_column="label", + label_col_map=label_col_map, + vmin=vmin, + vmax=vmax, + radius=radius, + fill_alpha=fill_alpha, + mpl_cmap_name=mpl_cmap_name, + max_fps=int(max_fps), + ) + if save: + logger.info(f"Saving the htlm figure at {outputfile}") + m.save(outputfile) + return m + def make_geo_plot( self, variable="temp", @@ -613,7 +885,8 @@ def make_geo_plot( legend=True, vmin=None, vmax=None, - boundbox=[] + legend_title=None, + boundbox=[], ): """Make geospatial plot. @@ -643,6 +916,8 @@ def make_geo_plot( The value corresponding with the minimum color. If None, the minimum of the presented observations is used. The default is None. vmax : numeric, optional The value corresponding with the maximum color. If None, the maximum of the presented observations is used. The default is None. + legend_title : string, optional + Title of the legend, if None a default title is generated. The default is None. boundbox : [lon-west, lat-south, lon-east, lat-north], optional The boundbox to indicate the domain to plot. The elemenst are numeric. If the list is empty, a boundbox is created automatically. The default @@ -662,33 +937,39 @@ def make_geo_plot( # default_settings=Settings.plot_settings['spatial_geo'] # get first (Not Nan) timeinstance of the dataset if not given - timeinstance = fmt_datetime_argument(timeinstance, self.settings.time_settings['timezone']) + timeinstance = fmt_datetime_argument( + timeinstance, self.settings.time_settings["timezone"] + ) if timeinstance is None: - timeinstance = self.df.dropna(subset=['temp']).index[0][1] + timeinstance = self.df.dropna(subset=["temp"]).index[0][1] logger.info(f"Make {variable}-geo plot at {timeinstance}") # check coordinates if available - if self.metadf['lat'].isnull().any(): - _sta = self.metadf[self.metadf['lat'].isnull()]['lat'] - logger.warning(f'Stations without coordinates detected: {_sta}') + if self.metadf["lat"].isnull().any(): + _sta = self.metadf[self.metadf["lat"].isnull()]["lat"] + logger.error(f"Stations without coordinates detected: {_sta}") return None - if self.metadf['lon'].isnull().any(): - _sta = self.metadf[self.metadf['lon'].isnull()]['lon'] - logger.warning(f'Stations without coordinates detected: {_sta}') + if self.metadf["lon"].isnull().any(): + _sta = self.metadf[self.metadf["lon"].isnull()]["lon"] + logger.error(f"Stations without coordinates detected: {_sta}") return None if bool(boundbox): if len(boundbox) != 4: - logger.warning(f'The boundbox ({boundbox}) does not contain 4 elements! The default boundbox is used!') + logger.warning( + f"The boundbox ({boundbox}) does not contain 4 elements! The default boundbox is used!" + ) boundbox = [] # Check if LCZ if available - if variable == 'lcz': - if self.metadf['lcz'].isnull().any(): - _sta = self.metadf[self.metadf['lcz'].isnull()]['lcz'] - logger.warning(f'Stations without lcz detected: {_sta}') + if variable == "lcz": + if self.metadf["lcz"].isnull().any(): + _sta = self.metadf[self.metadf["lcz"].isnull()]["lcz"] + logger.warning(f"Stations without lcz detected: {_sta}") return None + title = f"Local climate zones at {timeinstance}." + legend_title = "" # subset to timeinstance plotdf = xs_save(self.df, timeinstance, level="datetime") @@ -698,21 +979,32 @@ def make_geo_plot( self.metadf, how="left", left_index=True, right_index=True ) + # titles + if title is None: + try: + title = f"{self.obstypes[variable].get_orig_name()} at {timeinstance}." + except KeyError: + title = f"{variable} at {timeinstance}." + + if legend: + if legend_title is None: + legend_title = f"{self.obstypes[variable].get_standard_unit()}" + axis = geospatial_plot( plotdf=plotdf, variable=variable, timeinstance=timeinstance, title=title, legend=legend, + legend_title=legend_title, vmin=vmin, vmax=vmax, plotsettings=self.settings.app["plot_settings"], categorical_fields=self.settings.app["categorical_fields"], static_fields=self.settings.app["static_fields"], display_name_mapper=self.settings.app["display_name_mapper"], - world_boundaries_map=self.settings.app["world_boundary_map"], data_template=self.data_template, - boundbox=boundbox + boundbox=boundbox, ) return axis @@ -721,7 +1013,13 @@ def make_geo_plot( # Gap Filling # ============================================================================= def get_modeldata( - self, modelname="ERA5_hourly", modeldata=None, obstype='temp', stations=None, startdt=None, enddt=None + self, + modelname="ERA5_hourly", + modeldata=None, + obstype="temp", + stations=None, + startdt=None, + enddt=None, ): """Make Modeldata for the Dataset. @@ -774,20 +1072,31 @@ def get_modeldata( """ if modeldata is None: Modl = Modeldata(modelname) + else: Modl = modeldata modelname = Modl.modelname # Filters + if startdt is None: startdt = self.df.index.get_level_values("datetime").min() else: - startdt = fmt_datetime_argument(startdt, self.settings.time_settings['timezone']) + startdt = fmt_datetime_argument( + startdt, self.settings.time_settings["timezone"] + ) if enddt is None: enddt = self.df.index.get_level_values("datetime").max() else: - enddt = fmt_datetime_argument(enddt, self.settings.time_settings['timezone']) + enddt = fmt_datetime_argument( + enddt, self.settings.time_settings["timezone"] + ) + + # make shure bounds include required range + Model_time_res = Modl.mapinfo[Modl.modelname]["time_res"] + startdt = startdt.floor(Model_time_res) + enddt = enddt.ceil(Model_time_res) if stations is not None: if isinstance(stations, str): @@ -804,22 +1113,31 @@ def get_modeldata( # fill modell with data if modelname == "ERA5_hourly": - Modl.get_ERA5_data(metadf=metadf, - startdt_utc=startdt_utc, - enddt_utc=enddt_utc, - obstype=obstype) + Modl.get_ERA5_data( + metadf=metadf, + startdt_utc=startdt_utc, + enddt_utc=enddt_utc, + obstypes=obstype, + ) else: - Modl.get_gee_dataset_data(mapname=modelname, - metadf=metadf, - startdt_utc=startdt_utc, - enddt_utc=enddt_utc, - obstype=obstype) - print(f'(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is {modelname})') - logger.info(f'(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is {modelname})') + Modl.get_gee_dataset_data( + mapname=modelname, + metadf=metadf, + startdt_utc=startdt_utc, + enddt_utc=enddt_utc, + obstypes=obstype, + ) + + print( + f"(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is {modelname})" + ) + logger.info( + f"(When using the .set_model_from_csv() method, make shure the modelname of your Modeldata is {modelname})" + ) return Modl - def update_gaps_and_missing_from_outliers(self, obstype='temp', n_gapsize=None): + def update_gaps_and_missing_from_outliers(self, obstype="temp", n_gapsize=None): """Interpret the outliers as missing observations. If there is a sequence @@ -832,8 +1150,7 @@ def update_gaps_and_missing_from_outliers(self, obstype='temp', n_gapsize=None): ---------- obstype : str, optional Use the outliers on this observation type to update the gaps and - missing timestamps.The obstype should be an element of - metobs_toolkit.observation_types. The default is 'temp'. + missing timestamps. The default is 'temp'. n_gapsize : int, optional The minimum number of consecutive missing observations to define as a gap. If None, n_gapsize is taken from the settings defenition @@ -856,23 +1173,31 @@ def update_gaps_and_missing_from_outliers(self, obstype='temp', n_gapsize=None): """ if n_gapsize is None: - n_gapsize = self.settings.gap['gaps_settings']['gaps_finder']['gapsize_n'] - if not self.metadf["assumed_import_frequency"].eq(self.metadf['dataset_resolution']).all(): - logger.info(f'The defenition of the gapsize (n_gapsize = {n_gapsize}) \ + n_gapsize = self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"] + if ( + not self.metadf["assumed_import_frequency"] + .eq(self.metadf["dataset_resolution"]) + .all() + ): + logger.info( + f"The defenition of the gapsize (n_gapsize = {n_gapsize}) \ will have another effect on the update of the gaps and missing \ timestamps because coarsening is applied and the defenition \ - of the gapsize is not changed.') + of the gapsize is not changed." + ) # combine to one dataframe mergedf = self.combine_all_to_obsspace() - mergedf = xs_save(mergedf, obstype, level='obstype') + mergedf = xs_save(mergedf, obstype, level="obstype") # ignore labels - possible_outlier_labels = [vals['outlier_flag'] for vals in self.settings.qc['qc_checks_info'].values()] + possible_outlier_labels = [ + vals["outlier_flag"] for vals in self.settings.qc["qc_checks_info"].values() + ] # create groups when the final label changes - persistance_filter = ((mergedf['label'].shift() != mergedf['label'])).cumsum() - grouped = mergedf.groupby(['name', persistance_filter]) + persistance_filter = ((mergedf["label"].shift() != mergedf["label"])).cumsum() + grouped = mergedf.groupby(["name", persistance_filter]) # locate new gaps by size of consecutive the same final label per station group_sizes = grouped.size() @@ -884,24 +1209,30 @@ def update_gaps_and_missing_from_outliers(self, obstype='temp', n_gapsize=None): new_gaps_idx = init_multiindex() for group_idx in large_groups.index: groupdf = grouped.get_group(group_idx) - group_final_label = groupdf['label'].iloc[0] + group_final_label = groupdf["label"].iloc[0] if group_final_label not in possible_outlier_labels: # no gap candidates continue else: - gap = Gap(name=groupdf.index.get_level_values('name')[0], - startdt=groupdf.index.get_level_values('datetime').min(), - enddt=groupdf.index.get_level_values('datetime').max()) + gap = Gap( + name=groupdf.index.get_level_values("name")[0], + startdt=groupdf.index.get_level_values("datetime").min(), + enddt=groupdf.index.get_level_values("datetime").max(), + ) gaps.append(gap) new_gaps_idx = new_gaps_idx.union(groupdf.index, sort=False) # add all the outliers, that are not in the new gaps to the new missing obs - new_missing_obs = mergedf[mergedf['label'].isin(possible_outlier_labels)].index - new_missing_obs = new_missing_obs.drop(new_gaps_idx.to_numpy(), errors='ignore') + new_missing_obs = mergedf[mergedf["label"].isin(possible_outlier_labels)].index + new_missing_obs = new_missing_obs.drop(new_gaps_idx.to_numpy(), errors="ignore") # to series - missing_obs_series = new_missing_obs.to_frame().reset_index(drop=True).set_index('name')['datetime'] + missing_obs_series = ( + new_missing_obs.to_frame() + .reset_index(drop=True) + .set_index("name")["datetime"] + ) # Create missing obs new_missing_collection = Missingob_collection(missing_obs_series) @@ -910,8 +1241,9 @@ def update_gaps_and_missing_from_outliers(self, obstype='temp', n_gapsize=None): self.missing_obs = self.missing_obs + new_missing_collection # remove outliers that are converted to gaps - self.outliersdf = remove_gaps_from_outliers(gaplist=gaps, - outldf=self.outliersdf) + self.outliersdf = remove_gaps_from_outliers( + gaplist=gaps, outldf=self.outliersdf + ) # remove outliers that are converted to missing obs self.outliersdf = self.missing_obs.remove_missing_from_outliers(self.outliersdf) @@ -920,9 +1252,13 @@ def update_gaps_and_missing_from_outliers(self, obstype='temp', n_gapsize=None): # Gap Filling # ============================================================================= - def fill_gaps_automatic(self, modeldata, obstype='temp', - max_interpolate_duration_str=None, - overwrite_fill=False): + def fill_gaps_automatic( + self, + modeldata, + obstype="temp", + max_interpolate_duration_str=None, + overwrite_fill=False, + ): """Fill the gaps by using linear interpolation or debiased modeldata. The method that is applied to perform the gapfill will be determined by @@ -980,7 +1316,9 @@ def fill_gaps_automatic(self, modeldata, obstype='temp', ), "Not all stations with gaps are in the modeldata!" if max_interpolate_duration_str is None: - max_interpolate_duration_str = self.settings.gap["gaps_fill_settings"]["automatic"]["max_interpolation_duration_str"] + max_interpolate_duration_str = self.settings.gap["gaps_fill_settings"][ + "automatic" + ]["max_interpolation_duration_str"] # ------------select the method to apply gapfill per gap ---------- interpolate_gaps = [] @@ -996,16 +1334,17 @@ def fill_gaps_automatic(self, modeldata, obstype='temp', fill_settings_interp = self.settings.gap["gaps_fill_settings"]["linear"] - apply_interpolate_gaps(gapslist=interpolate_gaps, - obsdf=self.df, - outliersdf=self.outliersdf, - dataset_res=self.metadf["dataset_resolution"], - gapfill_settings=self.settings.gap['gaps_fill_info'], - obstype=obstype, - method=fill_settings_interp["method"], - max_consec_fill=fill_settings_interp["max_consec_fill"], - overwrite_fill=overwrite_fill, - ) + apply_interpolate_gaps( + gapslist=interpolate_gaps, + obsdf=self.df, + outliersdf=self.outliersdf, + dataset_res=self.metadf["dataset_resolution"], + gapfill_settings=self.settings.gap["gaps_fill_info"], + obstype=obstype, + method=fill_settings_interp["method"], + max_consec_fill=fill_settings_interp["max_consec_fill"], + overwrite_fill=overwrite_fill, + ) filldf_interp = make_gapfill_df(interpolate_gaps) @@ -1013,12 +1352,14 @@ def fill_gaps_automatic(self, modeldata, obstype='temp', fill_settings_debias = self.settings.gap["gaps_fill_settings"]["model_debias"] - apply_debias_era5_gapfill(gapslist=debias_gaps, - dataset=self, - eraModelData=modeldata, - obstype=obstype, - debias_settings=fill_settings_debias, - overwrite_fill=overwrite_fill) + apply_debias_era5_gapfill( + gapslist=debias_gaps, + dataset=self, + eraModelData=modeldata, + obstype=obstype, + debias_settings=fill_settings_debias, + overwrite_fill=overwrite_fill, + ) # add label column filldf_debias = make_gapfill_df(debias_gaps) @@ -1058,16 +1399,17 @@ def fill_gaps_linear(self, obstype="temp", overwrite_fill=False): fill_settings = self.settings.gap["gaps_fill_settings"]["linear"] # fill gaps - apply_interpolate_gaps(gapslist=self.gaps, - obsdf=self.df, - outliersdf=self.outliersdf, - dataset_res=self.metadf["dataset_resolution"], - gapfill_settings=self.settings.gap['gaps_fill_info'], - obstype=obstype, - method=fill_settings["method"], - max_consec_fill=fill_settings["max_consec_fill"], - overwrite_fill=overwrite_fill, - ) + apply_interpolate_gaps( + gapslist=self.gaps, + obsdf=self.df, + outliersdf=self.outliersdf, + dataset_res=self.metadf["dataset_resolution"], + gapfill_settings=self.settings.gap["gaps_fill_info"], + obstype=obstype, + method=fill_settings["method"], + max_consec_fill=fill_settings["max_consec_fill"], + overwrite_fill=overwrite_fill, + ) # get gapfilldf gapfilldf = make_gapfill_df(self.gaps) @@ -1077,7 +1419,7 @@ def fill_gaps_linear(self, obstype="temp", overwrite_fill=False): return gapfilldf - def fill_missing_obs_linear(self, obstype='temp'): + def fill_missing_obs_linear(self, obstype="temp"): """Interpolate missing observations. Fill in the missing observation rectords using interpolation. The @@ -1095,19 +1437,22 @@ def fill_missing_obs_linear(self, obstype='temp'): """ # TODO logging - fill_settings = self.settings.missing_obs['missing_obs_fill_settings']['linear'] - fill_info = self.settings.missing_obs['missing_obs_fill_info'] + fill_settings = self.settings.missing_obs["missing_obs_fill_settings"]["linear"] + fill_info = self.settings.missing_obs["missing_obs_fill_info"] # fill missing obs - self.missing_obs.interpolate_missing(obsdf=self.df, - resolutionseries=self.metadf["dataset_resolution"], - obstype=obstype, - method=fill_settings["method"], - ) + self.missing_obs.interpolate_missing( + obsdf=self.df, + resolutionseries=self.metadf["dataset_resolution"], + obstype=obstype, + method=fill_settings["method"], + ) missing_fill_df = self.missing_obs.fill_df - missing_fill_df[obstype + '_' + fill_info["label_columnname"]] = fill_info["label"]["linear"] + missing_fill_df[obstype + "_" + fill_info["label_columnname"]] = fill_info[ + "label" + ]["linear"] # Update attribute @@ -1140,7 +1485,7 @@ def get_gaps_info(self): gap.get_info() else: # no gaps - print('There are no gaps.') + print("There are no gaps.") def get_missing_obs_info(self): """Print out detailed information of the missing observations. @@ -1173,32 +1518,35 @@ def get_analysis(self, add_gapfilled_values=False): mergedf = self.combine_all_to_obsspace() # gapsfilled labels - gapfill_settings = self.settings.gap['gaps_fill_info'] - gapfilllabels = [val for val in gapfill_settings['label'].values()] + gapfill_settings = self.settings.gap["gaps_fill_info"] + gapfilllabels = [val for val in gapfill_settings["label"].values()] # missingfilled labels - missingfill_settings = self.settings.missing_obs['missing_obs_fill_info'] - missingfilllabels = [val for val in missingfill_settings['label'].values()] + missingfill_settings = self.settings.missing_obs["missing_obs_fill_info"] + missingfilllabels = [val for val in missingfill_settings["label"].values()] # get all labels fill_labels = gapfilllabels.copy() fill_labels.extend(missingfilllabels) - fill_labels.append('ok') + fill_labels.append("ok") - df = mergedf[mergedf['label'].isin(fill_labels)] - df = df[['value']] - df = df.unstack(level='obstype') + df = mergedf[mergedf["label"].isin(fill_labels)] + df = df[["value"]] + df = df.unstack(level="obstype") df = df.droplevel(level=0, axis=1) else: df = self.df - return Analysis(obsdf=df, - metadf=self.metadf, - settings=self.settings, - data_template=self.data_template) + return Analysis( + obsdf=df, + metadf=self.metadf, + settings=self.settings, + data_template=self.data_template, + ) - def fill_gaps_era5(self, modeldata, method="debias", - obstype="temp", overwrite_fill=False): + def fill_gaps_era5( + self, modeldata, method="debias", obstype="temp", overwrite_fill=False + ): """Fill the gaps using a Modeldata object. Parameters @@ -1242,14 +1590,18 @@ def fill_gaps_era5(self, modeldata, method="debias", if method == "debias": - fill_settings_debias = self.settings.gap["gaps_fill_settings"]["model_debias"] + fill_settings_debias = self.settings.gap["gaps_fill_settings"][ + "model_debias" + ] - apply_debias_era5_gapfill(gapslist=self.gaps, - dataset=self, - eraModelData=modeldata, - obstype=obstype, - debias_settings=fill_settings_debias, - overwrite_fill=overwrite_fill) + apply_debias_era5_gapfill( + gapslist=self.gaps, + dataset=self, + eraModelData=modeldata, + obstype=obstype, + debias_settings=fill_settings_debias, + overwrite_fill=overwrite_fill, + ) # get fill df filldf = make_gapfill_df(self.gaps) @@ -1270,7 +1622,7 @@ def write_to_csv( add_final_labels=True, use_tlk_obsnames=True, overwrite_outliers_by_gaps_and_missing=True, - seperate_metadata_file=True + seperate_metadata_file=True, ): """Write Dataset to a csv file. @@ -1327,37 +1679,45 @@ def write_to_csv( # combine all dataframes mergedf = self.combine_all_to_obsspace( - overwrite_outliers_by_gaps_and_missing=overwrite_outliers_by_gaps_and_missing) # with outliers + overwrite_outliers_by_gaps_and_missing=overwrite_outliers_by_gaps_and_missing + ) # with outliers # Unstack mergedf # remove duplicates - mergedf = mergedf[~mergedf.index.duplicated(keep='first')] + mergedf = mergedf[~mergedf.index.duplicated(keep="first")] # drop outliers if required if not include_outliers: - outlier_labels = [var['outlier_flag'] for var in self.settings.qc['qc_checks_info']] - mergedf = mergedf[~mergedf['label'].isin(outlier_labels)] + outlier_labels = [ + var["outlier_flag"] for var in self.settings.qc["qc_checks_info"] + ] + mergedf = mergedf[~mergedf["label"].isin(outlier_labels)] # drop fill values if required if not include_fill_values: - fill_labels = ['gap fill', 'missing observation fill'] # toolkit representation labels - mergedf = mergedf[~mergedf['toolkit_representation'].isin(fill_labels)] + fill_labels = [ + "gap fill", + "missing observation fill", + ] # toolkit representation labels + mergedf = mergedf[~mergedf["toolkit_representation"].isin(fill_labels)] if obstype is not None: - mergedf = xs_save(mergedf, obstype, level='obstype', drop_level=False) + mergedf = xs_save(mergedf, obstype, level="obstype", drop_level=False) # Map obstypes columns if not use_tlk_obsnames: - mapper = self.data_template.transpose()['orig_name'].to_dict() + mapper = { + col: self.obstypes[col].get_orig_name() for col in self.obstypes.keys() + } mergedf = mergedf.reset_index() - mergedf['new_names'] = mergedf['obstype'].map(mapper) - mergedf = mergedf.drop(columns=['obstype']) - mergedf = mergedf.rename(columns={'new_names': 'obstype'}) - mergedf = mergedf.set_index(['name', 'datetime', 'obstype']) + mergedf["new_names"] = mergedf["obstype"].map(mapper) + mergedf = mergedf.drop(columns=["obstype"]) + mergedf = mergedf.rename(columns={"new_names": "obstype"}) + mergedf = mergedf.set_index(["name", "datetime", "obstype"]) - mergedf = mergedf.unstack('obstype') + mergedf = mergedf.unstack("obstype") # to one level for the columns - mergedf.columns = [' : '.join(col).strip() for col in mergedf.columns.values] + mergedf.columns = [" : ".join(col).strip() for col in mergedf.columns.values] # columns to write write_dataset_to_csv( @@ -1372,12 +1732,15 @@ def write_to_csv( # ============================================================================= # Quality control # ============================================================================= - def apply_quality_control(self, obstype="temp", - gross_value=True, - persistance=True, - repetitions=True, - step=True, - window_variation=True): + def apply_quality_control( + self, + obstype="temp", + gross_value=True, + persistance=True, + repetitions=True, + step=True, + window_variation=True, + ): """Apply quality control methods to the dataset. The default settings are used, and can be changed in the @@ -1521,7 +1884,9 @@ def apply_quality_control(self, obstype="temp", self._applied_qc = concat_save( [ self._applied_qc, - conv_applied_qc_to_df(obstypes=obstype, ordered_checknames="step"), + conv_applied_qc_to_df( + obstypes=obstype, ordered_checknames="step" + ), ], ignore_index=True, ) @@ -1558,9 +1923,13 @@ def apply_quality_control(self, obstype="temp", self._qc_checked_obstypes = list(set(self._qc_checked_obstypes)) self.outliersdf = self.outliersdf.sort_index() - - def apply_buddy_check(self, obstype='temp', use_constant_altitude=False, - haversine_approx=True, metric_epsg='31370'): + def apply_buddy_check( + self, + obstype="temp", + use_constant_altitude=False, + haversine_approx=True, + metric_epsg="31370", + ): """Apply the buddy check on the observations. The buddy check compares an observation against its neighbours (i.e. @@ -1601,54 +1970,67 @@ def apply_buddy_check(self, obstype='temp', use_constant_altitude=False, logger.info("Applying the toolkit buddy check") - checkname = 'buddy_check' + checkname = "buddy_check" # 1. coordinates are available? - if self.metadf['lat'].isnull().any(): - logger.warning(f'Not all coordinates are available, the {checkname} cannot be executed!') + if self.metadf["lat"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) return - if self.metadf['lon'].isnull().any(): - logger.warning(f'Not all coordinates are available, the {checkname} cannot be executed!') + if self.metadf["lon"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) return # set constant altitude if needed: # if altitude is already available, save it to restore it after this check restore_altitude = False - if (use_constant_altitude): - if ('altitulde' in self.metadf.columns): - self.metadf['altitude_backup'] = self.metadf['altitude'] + if use_constant_altitude: + if "altitulde" in self.metadf.columns: + self.metadf["altitude_backup"] = self.metadf["altitude"] restore_altitude = True - self.metadf['altitude'] = 2. # absolut value does not matter + self.metadf["altitude"] = 2.0 # absolut value does not matter # 2. altitude available? - if ((not use_constant_altitude) & ('altitude' not in self.metadf.columns)): - logger.warning(f'The altitude is not known for all stations. The {checkname} cannot be executed!') - logger.info('(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.') + if (not use_constant_altitude) & ("altitude" not in self.metadf.columns): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.' + ) return - if ((not use_constant_altitude) & (self.metadf['altitude'].isnull().any())): - logger.warning(f'The altitude is not known for all stations. The {checkname} cannot be executed!') - logger.info('(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)') + if (not use_constant_altitude) & (self.metadf["altitude"].isnull().any()): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)' + ) return apliable = _can_qc_be_applied(self, obstype, checkname) if apliable: - buddy_set = self.settings.qc['qc_check_settings'][checkname][obstype] - outl_flag = self.settings.qc['qc_checks_info'][checkname]['outlier_flag'] - obsdf, outliersdf = toolkit_buddy_check(obsdf=self.df, - metadf=self.metadf, - obstype=obstype, - buddy_radius=buddy_set['radius'], - min_sample_size=buddy_set['num_min'], - max_alt_diff=buddy_set['max_elev_diff'], - min_std=buddy_set['min_std'], - std_threshold=buddy_set['threshold'], - metric_epsg=metric_epsg, - lapserate=buddy_set['elev_gradient'], - outl_flag=outl_flag, - haversine_approx=haversine_approx, - ) + buddy_set = self.settings.qc["qc_check_settings"][checkname][obstype] + outl_flag = self.settings.qc["qc_checks_info"][checkname]["outlier_flag"] + obsdf, outliersdf = toolkit_buddy_check( + obsdf=self.df, + metadf=self.metadf, + obstype=obstype, + buddy_radius=buddy_set["radius"], + min_sample_size=buddy_set["num_min"], + max_alt_diff=buddy_set["max_elev_diff"], + min_std=buddy_set["min_std"], + std_threshold=buddy_set["threshold"], + metric_epsg=metric_epsg, + lapserate=buddy_set["elev_gradient"], + outl_flag=outl_flag, + haversine_approx=haversine_approx, + ) # update the dataset and outliers self.df = obsdf @@ -1667,19 +2049,20 @@ def apply_buddy_check(self, obstype='temp', use_constant_altitude=False, ) else: - logger.warning(f'The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!') + logger.warning( + f"The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!" + ) # Revert artificial data that has been added if needed if restore_altitude: # altitude was overwritten, thus revert it - self.metadf['altitude'] = self.metadf["altitude_backup"] - self.metadf = self.metadf.drop(columns=['altitude_backup']) + self.metadf["altitude"] = self.metadf["altitude_backup"] + self.metadf = self.metadf.drop(columns=["altitude_backup"]) - elif (use_constant_altitude): + elif use_constant_altitude: # when no alitude was available apriori, remove the fake constant altitude column - self.metadf = self.metadf.drop(columns=['altitude']) - + self.metadf = self.metadf.drop(columns=["altitude"]) - def apply_titan_buddy_check(self, obstype='temp', use_constant_altitude=False): + def apply_titan_buddy_check(self, obstype="temp", use_constant_altitude=False): """Apply the TITAN buddy check on the observations. The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for @@ -1719,50 +2102,71 @@ def apply_titan_buddy_check(self, obstype='temp', use_constant_altitude=False): try: import titanlib + # Add version restrictions?? except ModuleNotFoundError: - logger.warning("Titanlib is not installed, install it manually if you want to use this functionallity.") + logger.warning( + "Titanlib is not installed, install it manually if you want to use this functionallity." + ) return - checkname = 'titan_buddy_check' + checkname = "titan_buddy_check" # 1. coordinates are available? - if self.metadf['lat'].isnull().any(): - logger.warning(f'Not all coordinates are available, the {checkname} cannot be executed!') + if self.metadf["lat"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) return - if self.metadf['lon'].isnull().any(): - logger.warning(f'Not all coordinates are available, the {checkname} cannot be executed!') + if self.metadf["lon"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) return # set constant altitude if needed: # if altitude is already available, save it to restore it after this check restore_altitude = False - if (use_constant_altitude): - if ('altitulde' in self.metadf.columns): - self.metadf['altitude_backup'] = self.metadf['altitude'] + if use_constant_altitude: + if "altitulde" in self.metadf.columns: + self.metadf["altitude_backup"] = self.metadf["altitude"] restore_altitude = True - self.metadf['altitude'] = 2. # absolut value does not matter + self.metadf["altitude"] = 2.0 # absolut value does not matter # 2. altitude available? - if ((not use_constant_altitude) & ('altitude' not in self.metadf.columns)): - logger.warning(f'The altitude is not known for all stations. The {checkname} cannot be executed!') - logger.info('(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.') + if (not use_constant_altitude) & ("altitude" not in self.metadf.columns): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.' + ) return - if ((not use_constant_altitude) & (self.metadf['altitude'].isnull().any())): - logger.warning(f'The altitude is not known for all stations. The {checkname} cannot be executed!') - logger.info('(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)') + if (not use_constant_altitude) & (self.metadf["altitude"].isnull().any()): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)' + ) return apliable = _can_qc_be_applied(self, obstype, checkname) if apliable: - obsdf, outliersdf = titan_buddy_check(obsdf=self.df, - metadf=self.metadf, - obstype=obstype, - checks_info=self.settings.qc["qc_checks_info"], - checks_settings=self.settings.qc['titan_check_settings'][checkname][obstype], - titan_specific_labeler=self.settings.qc['titan_specific_labeler'][checkname]) + obsdf, outliersdf = titan_buddy_check( + obsdf=self.df, + metadf=self.metadf, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["titan_check_settings"][checkname][ + obstype + ], + titan_specific_labeler=self.settings.qc["titan_specific_labeler"][ + checkname + ], + ) # update the dataset and outliers self.df = obsdf @@ -1781,18 +2185,20 @@ def apply_titan_buddy_check(self, obstype='temp', use_constant_altitude=False): ) else: - logger.warning(f'The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!') + logger.warning( + f"The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!" + ) # Revert artificial data that has been added if needed if restore_altitude: # altitude was overwritten, thus revert it - self.metadf['altitude'] = self.metadf["altitude_backup"] - self.metadf = self.metadf.drop(columns=['altitude_backup']) + self.metadf["altitude"] = self.metadf["altitude_backup"] + self.metadf = self.metadf.drop(columns=["altitude_backup"]) - elif (use_constant_altitude): + elif use_constant_altitude: # when no alitude was available apriori, remove the fake constant altitude column - self.metadf = self.metadf.drop(columns=['altitude']) + self.metadf = self.metadf.drop(columns=["altitude"]) - def apply_titan_sct_resistant_check(self, obstype='temp'): + def apply_titan_sct_resistant_check(self, obstype="temp"): """Apply the TITAN spatial consistency test (resistant). The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the @@ -1837,40 +2243,61 @@ def apply_titan_sct_resistant_check(self, obstype='temp'): try: import titanlib + # Add version restrictions?? except ModuleNotFoundError: - logger.warning("Titanlib is not installed, install it manually if you want to use this functionallity.") + logger.warning( + "Titanlib is not installed, install it manually if you want to use this functionallity." + ) return - checkname = 'titan_sct_resistant_check' + checkname = "titan_sct_resistant_check" # check if required metadata is available: # 1. coordinates are available? - if self.metadf['lat'].isnull().any(): - logger.warning(f'Not all coordinates are available, the {checkname} cannot be executed!') + if self.metadf["lat"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) return - if self.metadf['lon'].isnull().any(): - logger.warning(f'Not all coordinates are available, the {checkname} cannot be executed!') + if self.metadf["lon"].isnull().any(): + logger.warning( + f"Not all coordinates are available, the {checkname} cannot be executed!" + ) return # 2. altitude available? - if ('altitude' not in self.metadf.columns): - logger.warning(f'The altitude is not known for all stations. The {checkname} cannot be executed!') - logger.info('(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.') + if "altitude" not in self.metadf.columns: + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n update the "altitude" column in the metadf attribute of your Dataset.' + ) return - if (self.metadf['altitude'].isnull().any()): - logger.warning(f'The altitude is not known for all stations. The {checkname} cannot be executed!') - logger.info('(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)') + if self.metadf["altitude"].isnull().any(): + logger.warning( + f"The altitude is not known for all stations. The {checkname} cannot be executed!" + ) + logger.info( + '(To resolve this error you can: \n *Use the Dataset.get_altitude() method \n *Set use_constant_altitude to True \n *Update the "altitude" column in the metadf attribute of your Dataset.)' + ) return apliable = _can_qc_be_applied(self, obstype, checkname) if apliable: - obsdf, outliersdf = titan_sct_resistant_check(obsdf=self.df, - metadf=self.metadf, - obstype=obstype, - checks_info=self.settings.qc["qc_checks_info"], - checks_settings=self.settings.qc['titan_check_settings'][checkname][obstype], - titan_specific_labeler=self.settings.qc['titan_specific_labeler'][checkname]) + obsdf, outliersdf = titan_sct_resistant_check( + obsdf=self.df, + metadf=self.metadf, + obstype=obstype, + checks_info=self.settings.qc["qc_checks_info"], + checks_settings=self.settings.qc["titan_check_settings"][checkname][ + obstype + ], + titan_specific_labeler=self.settings.qc["titan_specific_labeler"][ + checkname + ], + ) # update the dataset and outliers self.df = obsdf @@ -1889,10 +2316,13 @@ def apply_titan_sct_resistant_check(self, obstype='temp'): ) else: - logger.warning(f'The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!') + logger.warning( + f"The {checkname} can NOT be applied on {obstype} because it was already applied on this observation type!" + ) - def combine_all_to_obsspace(self, repr_outl_as_nan=False, - overwrite_outliers_by_gaps_and_missing=True): + def combine_all_to_obsspace( + self, repr_outl_as_nan=False, overwrite_outliers_by_gaps_and_missing=True + ): """Make one dataframe with all observations and their labels. Combine all observations, outliers, missing observations and gaps into @@ -1932,18 +2362,23 @@ def combine_all_to_obsspace(self, repr_outl_as_nan=False, # ============================================================================= df = self.df # better save than sorry - present_obstypes = [col for col in df if col in observation_types] + present_obstypes = list(self.obstypes.keys()) df = df[present_obstypes] # to tripple index - df = df.stack(dropna=False).reset_index().rename(columns={'level_2': 'obstype', 0: 'value'}).set_index(['name', 'datetime', 'obstype']) + df = ( + df.stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: "value"}) + .set_index(["name", "datetime", "obstype"]) + ) - df['label'] = 'ok' - df['toolkit_representation'] = 'observation' + df["label"] = "ok" + df["toolkit_representation"] = "observation" # outliers outliersdf = self.outliersdf.copy() - outliersdf['toolkit_representation'] = 'outlier' + outliersdf["toolkit_representation"] = "outlier" # Careful! Some outliers exist on inport frequency (duplicated, invalid) # So only use the outliers for which station-datetime-obstype are present in the @@ -1951,7 +2386,7 @@ def combine_all_to_obsspace(self, repr_outl_as_nan=False, outliersdf = outliersdf[outliersdf.index.isin(df.index)] # remove outliers from the observations - df = df[~ df.index.isin(outliersdf.index)] + df = df[~df.index.isin(outliersdf.index)] # ============================================================================= # Stack gaps @@ -1960,25 +2395,34 @@ def combine_all_to_obsspace(self, repr_outl_as_nan=False, gapsfilldf = self.gapfilldf.copy() # to triple index - gapsfilldf = value_labeled_doubleidxdf_to_triple_idxdf(gapsfilldf) - gapsfilldf['toolkit_representation'] = 'gap fill' + gapsfilldf = value_labeled_doubleidxdf_to_triple_idxdf( + gapsfilldf, known_obstypes=list(self.obstypes.keys()) + ) + gapsfilldf["toolkit_representation"] = "gap fill" - gapsidx = get_gaps_indx_in_obs_space(gapslist=self.gaps, - obsdf=self.df, - outliersdf=self.outliersdf, - resolutionseries=self.metadf["dataset_resolution"]) + gapsidx = get_gaps_indx_in_obs_space( + gapslist=self.gaps, + obsdf=self.df, + outliersdf=self.outliersdf, + resolutionseries=self.metadf["dataset_resolution"], + ) gapsdf = pd.DataFrame(index=gapsidx, columns=present_obstypes) - gapsdf = gapsdf.stack(dropna=False).reset_index().rename(columns={'level_2': 'obstype', 0: 'value'}).set_index(['name', 'datetime', 'obstype']) + gapsdf = ( + gapsdf.stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: "value"}) + .set_index(["name", "datetime", "obstype"]) + ) - gapsdf['label'] = self.settings.gap['gaps_info']['gap']['outlier_flag'] - gapsdf['toolkit_representation'] = 'gap' + gapsdf["label"] = self.settings.gap["gaps_info"]["gap"]["outlier_flag"] + gapsdf["toolkit_representation"] = "gap" # Remove gaps from df - df = df[~ df.index.isin(gapsdf.index)] + df = df[~df.index.isin(gapsdf.index)] if overwrite_outliers_by_gaps_and_missing: - outliersdf = outliersdf.drop(index=gapsdf.index, errors='ignore') + outliersdf = outliersdf.drop(index=gapsdf.index, errors="ignore") # Remove gapfill values records from the gaps gapsdf = gapsdf.drop(index=gapsfilldf.index) @@ -1987,8 +2431,10 @@ def combine_all_to_obsspace(self, repr_outl_as_nan=False, # Stack missing # ============================================================================= missingfilldf = self.missing_fill_df.copy() - missingfilldf = value_labeled_doubleidxdf_to_triple_idxdf(missingfilldf) - missingfilldf['toolkit_representation'] = 'missing observation fill' + missingfilldf = value_labeled_doubleidxdf_to_triple_idxdf( + missingfilldf, known_obstypes=list(self.obstypes.keys()) + ) + missingfilldf["toolkit_representation"] = "missing observation fill" # add missing observations if they occure in observation space missingidx = self.missing_obs.get_missing_indx_in_obs_space( @@ -1997,16 +2443,23 @@ def combine_all_to_obsspace(self, repr_outl_as_nan=False, missingdf = pd.DataFrame(index=missingidx, columns=present_obstypes) - missingdf = missingdf.stack(dropna=False).reset_index().rename(columns={'level_2': 'obstype', 0: 'value'}).set_index(['name', 'datetime', 'obstype']) + missingdf = ( + missingdf.stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: "value"}) + .set_index(["name", "datetime", "obstype"]) + ) - missingdf['label'] = self.settings.gap['gaps_info']['missing_timestamp']['outlier_flag'] - missingdf['toolkit_representation'] = 'missing observation' + missingdf["label"] = self.settings.gap["gaps_info"]["missing_timestamp"][ + "outlier_flag" + ] + missingdf["toolkit_representation"] = "missing observation" # Remove missing from df - df = df[~ df.index.isin(missingdf.index)] + df = df[~df.index.isin(missingdf.index)] if overwrite_outliers_by_gaps_and_missing: - outliersdf = outliersdf.drop(index=missingdf.index, errors='ignore') + outliersdf = outliersdf.drop(index=missingdf.index, errors="ignore") # Remove missingfill values records from the missing missingdf = missingdf.drop(index=missingfilldf.index) @@ -2015,10 +2468,12 @@ def combine_all_to_obsspace(self, repr_outl_as_nan=False, # combine all # ============================================================================= - combdf = concat_save([df, outliersdf, gapsdf, gapsfilldf, missingdf, missingfilldf]).sort_index() - combdf.index.names = ['name', 'datetime', 'obstype'] + combdf = concat_save( + [df, outliersdf, gapsdf, gapsfilldf, missingdf, missingfilldf] + ).sort_index() + combdf.index.names = ["name", "datetime", "obstype"] # To be shure? - combdf = combdf[~combdf.index.duplicated(keep='first')] + combdf = combdf[~combdf.index.duplicated(keep="first")] return combdf def get_qc_stats(self, obstype="temp", stationname=None, make_plot=True): @@ -2054,11 +2509,13 @@ def get_qc_stats(self, obstype="temp", stationname=None, make_plot=True): comb_df = self.combine_all_to_obsspace() # subset to relevant columnt - comb_df = xs_save(comb_df, obstype, level='obstype')[['label']] + comb_df = xs_save(comb_df, obstype, level="obstype")[["label"]] # subset to stationnames if stationname is not None: - assert stationname in comb_df.index.get_level_values('name'), f' stationnames: {stationname} is not a list.' + assert stationname in comb_df.index.get_level_values( + "name" + ), f" stationnames: {stationname} is not a list." comb_df = comb_df.loc[stationname] @@ -2075,11 +2532,12 @@ def get_qc_stats(self, obstype="temp", stationname=None, make_plot=True): return None # make title - orig_obstype = self.data_template[obstype].to_dict()['orig_name'] + orig_obstype = self.obstypes[obstype].get_orig_name() + if stationname is None: - title = f'Label frequency statistics on all stations for {orig_obstype}.' + title = f"Label frequency statistics on all stations for {orig_obstype}." else: - title = f'Label frequency statistics for {stationname} for {orig_obstype}.' + title = f"Label frequency statistics for {stationname} for {orig_obstype}." if make_plot: # make pie plots @@ -2151,11 +2609,20 @@ def coarsen_time_resolution( # test if coarsening the resolution is valid for the dataset # 1. If resolution-dep-qc is applied --> coarsening is not valid and will result in a broken dataset - if self._applied_qc[~self._applied_qc['checkname'] - .isin(["duplicated_timestamp", "invalid_input"]) - ].shape[0] > 0: - logger.warning('Coarsening time resolution is not possible because quality control checks that are resolution depening are already performed on the Dataset.') - logger.info('(Apply coarsening_time_resolution BEFORE applying quality control.)') + if ( + self._applied_qc[ + ~self._applied_qc["checkname"].isin( + ["duplicated_timestamp", "invalid_input"] + ) + ].shape[0] + > 0 + ): + logger.warning( + "Coarsening time resolution is not possible because quality control checks that are resolution depening are already performed on the Dataset." + ) + logger.info( + "(Apply coarsening_time_resolution BEFORE applying quality control.)" + ) return # TODO: implement buffer method @@ -2210,7 +2677,13 @@ def coarsen_time_resolution( self.df = remove_gaps_from_obs(gaplist=self.gaps, obsdf=self.df) self.df = self.missing_obs.remove_missing_from_obs(obsdf=self.df) - def sync_observations(self, tollerance, verbose=True, _force_resolution_minutes=None, _drop_target_nan_dt=False): + def sync_observations( + self, + tollerance, + verbose=True, + _force_resolution_minutes=None, + _drop_target_nan_dt=False, + ): """Simplify and syncronize the observation timestamps. To simplify the resolution (per station), a tollerance is use to shift timestamps. The tollerance indicates the @@ -2253,7 +2726,9 @@ def sync_observations(self, tollerance, verbose=True, _force_resolution_minutes= # get columns pressent in metadf, because the input df can have columns # that does not have to be mapped to the toolkit - assert not self.input_df.empty, 'To syncronize a dataset, the (pure) input dataframe cannot be empty.' + assert ( + not self.input_df.empty + ), "To syncronize a dataset, the (pure) input dataframe cannot be empty." init_meta_cols = self.metadf.columns.copy() df = self.input_df @@ -2272,14 +2747,19 @@ def sync_observations(self, tollerance, verbose=True, _force_resolution_minutes= else: if isinstance(_force_resolution_minutes, list): # TODO - print('foce resolution minutes as a list is not implemented yet, sorry.') + print( + "foce resolution minutes as a list is not implemented yet, sorry." + ) else: stations = self.metadf.index - freq_series = pd.Series(index=stations, - data=[timedelta(minutes=float(_force_resolution_minutes))] * len(stations)) + freq_series = pd.Series( + index=stations, + data=[timedelta(minutes=float(_force_resolution_minutes))] + * len(stations), + ) simplified_resolution = freq_series - logger.debug(f'Syncronizing to these resolutions: {simplified_resolution}') + logger.debug(f"Syncronizing to these resolutions: {simplified_resolution}") occuring_resolutions = simplified_resolution.unique() @@ -2339,8 +2819,9 @@ def find_simple_origin(tstart, tollerance): stadf = stadf.set_index(["name", "datetime"]) # drop all records per statiotion for which there are no obsecvations - present_obs = [col for col in stadf.columns if col in observation_types] - stadf = stadf.loc[stadf[present_obs].dropna(axis=0, how='all').index] + present_obs = list(self.obstypes.keys()) + + stadf = stadf.loc[stadf[present_obs].dropna(axis=0, how="all").index] stadf = stadf.reset_index() @@ -2353,7 +2834,7 @@ def find_simple_origin(tstart, tollerance): tolerance=pd.Timedelta(tollerance), ) if _drop_target_nan_dt: - mergedstadf = mergedstadf.dropna(subset='target_datetime') + mergedstadf = mergedstadf.dropna(subset="target_datetime") # possibility 1: record is mapped crrectly correct_mapped = mergedstadf[~mergedstadf["target_datetime"].isnull()] @@ -2365,6 +2846,7 @@ def find_simple_origin(tstart, tollerance): # no_record_candidates = target_records[~target_records.isin(mergedstadf['target_datetime'])].values merged_df = concat_save([merged_df, correct_mapped]) + if verbose: _total_verbose_df = concat_save([_total_verbose_df, mergedstadf]) @@ -2389,7 +2871,9 @@ def find_simple_origin(tstart, tollerance): update_full_metadf=False, ) # Do not overwrite full metadf, only the frequencies - self.metadf = self.metadf[[col for col in self.metadf.columns if col in init_meta_cols]] + self.metadf = self.metadf[ + [col for col in self.metadf.columns if col in init_meta_cols] + ] if verbose: _total_verbose_df = _total_verbose_df.rename( @@ -2505,34 +2989,43 @@ def import_data_from_file( # check if obstype is valid if obstype is not None: - assert ( - obstype in observation_types - ), f'{obstype} is not a default obstype. Use one of: {self.settings.app["observation_types"]}' + assert obstype in list( + self.obstypes.keys() + ), f"{obstype} is not a known observation type. Use one of the default, or add a new to the defaults: {tlk_obstypes.keys()}." # Read template - template, options_kwargs = read_csv_template(file=self.settings.templates["template_file"], - data_long_format=long_format) + template, options_kwargs = read_csv_template( + file=self.settings.templates["template_file"], + known_obstypes=list(self.obstypes.keys()), + data_long_format=long_format, + ) # update the kwargs using the option kwargs (i.g. arguments from in the template) - logger.debug(f'Options found in the template: {options_kwargs}') - if 'long_format' in options_kwargs: - long_format = options_kwargs['long_format'] - logger.info(f'Set long_format = {long_format} from options in template.') - if 'obstype' in options_kwargs: - obstype = options_kwargs['obstype'] - logger.info(f'Set obstype = {obstype} from options in template.') - if 'obstype_unit' in options_kwargs: - obstype_unit = options_kwargs['obstype'] - logger.info(f'Set obstype_unit = {obstype_unit} from options in template.') - if 'obstype_description' in options_kwargs: - obstype_description = options_kwargs['obstype_description'] - logger.info(f'Set obstype description = {obstype_description} from options in template.') - if 'single' in options_kwargs: - self.update_default_name(options_kwargs['single']) - logger.info(f'Set single station name = {options_kwargs["single"]} from options in template.') - if 'timezone' in options_kwargs: - self.update_timezone(options_kwargs['timezone']) - logger.info(f'Set timezone = {options_kwargs["timezone"]} from options in template.') + logger.debug(f"Options found in the template: {options_kwargs}") + if "long_format" in options_kwargs: + long_format = options_kwargs["long_format"] + logger.info(f"Set long_format = {long_format} from options in template.") + if "obstype" in options_kwargs: + obstype = options_kwargs["obstype"] + logger.info(f"Set obstype = {obstype} from options in template.") + if "obstype_unit" in options_kwargs: + obstype_unit = options_kwargs["obstype_unit"] + logger.info(f"Set obstype_unit = {obstype_unit} from options in template.") + if "obstype_description" in options_kwargs: + obstype_description = options_kwargs["obstype_description"] + logger.info( + f"Set obstype description = {obstype_description} from options in template." + ) + if "single" in options_kwargs: + self.update_default_name(options_kwargs["single"]) + logger.info( + f'Set single station name = {options_kwargs["single"]} from options in template.' + ) + if "timezone" in options_kwargs: + self.update_timezone(options_kwargs["timezone"]) + logger.info( + f'Set timezone = {options_kwargs["timezone"]} from options in template.' + ) # Read observations into pandas dataframe df, template = import_data_from_csv( @@ -2542,7 +3035,8 @@ def import_data_from_file( obstype=obstype, # only relevant in wide format obstype_units=obstype_unit, # only relevant in wide format obstype_description=obstype_description, # only relevant in wide format - kwargs_data_read=kwargs_data_read + known_obstypes=list(self.obstypes.keys()), + kwargs_data_read=kwargs_data_read, ) # Set timezone information @@ -2587,22 +3081,25 @@ def import_data_from_file( # in dataset of one station, the name is most often not present! if "name" not in df.columns: - logger.warning('No station names find in the observations!') + logger.warning("No station names find in the observations!") # If there is ONE name in the metadf, than we use that name for # the df, else we use the default name - if (('name' in meta_df.columns) & (meta_df.shape[0] == 1)): - name = meta_df['name'].iloc[0] - df['name'] = name - logger.warning(f'One stationname found in the metadata: {name}, this name is used for the data.') + if ("name" in meta_df.columns) & (meta_df.shape[0] == 1): + name = meta_df["name"].iloc[0] + df["name"] = name + logger.warning( + f"One stationname found in the metadata: {name}, this name is used for the data." + ) else: df["name"] = str(self.settings.app["default_name"]) # for later merging, we add the name column with the default # also in the metadf - meta_df['name'] = str(self.settings.app["default_name"]) + meta_df["name"] = str(self.settings.app["default_name"]) logger.warning( f'Assume the dataset is for ONE station with the \ - default name: {self.settings.app["default_name"]}.') + default name: {self.settings.app["default_name"]}.' + ) # make shure name column in metadata and data have the same type for merging df["name"] = df["name"].astype(str) @@ -2633,20 +3130,22 @@ def import_data_from_file( self.data_template = pd.DataFrame().from_dict(template) # Remove stations whith only one observation (no freq estimation) - station_counts = df['name'].value_counts() + station_counts = df["name"].value_counts() issue_station = station_counts[station_counts < 2].index.to_list() - logger.warning(f'These stations will be removed because of only having one record: {issue_station}') + logger.warning( + f"These stations will be removed because of only having one record: {issue_station}" + ) df = df[~df["name"].isin(issue_station)] # convert dataframe to multiindex (datetime - name) df = df.set_index(["name", df.index]) # Sort by name and then by datetime (to avoid negative freq) - df = df.sort_index(level=['name', 'datetime']) + df = df.sort_index(level=["name", "datetime"]) # dataframe with all data of input file - self.input_df = df.sort_index(level=['name', 'datetime']) - + self.input_df = df.sort_index(level=["name", "datetime"]) + # Construct all attributes of the Dataset self._construct_dataset( df=df, freq_estimation_method=freq_estimation_method, @@ -2654,73 +3153,6 @@ def import_data_from_file( freq_estimation_simplify_error=freq_estimation_simplify_error, ) - # def import_data_from_database( - # self, start_datetime=None, end_datetime=None, coarsen_timeres=False - # ): - # """ - # Function to import data directly from the framboos database and - # updating the network and station objects. - - # Parameters - # ---------- - - # start_datetime : datetime, optional - # Start datetime of the observations. The default is None and using - # yesterday's midnight. - # end_datetime : datetime, optional - # End datetime of the observations. The default is None and using - # todays midnight. - # coarsen_timeres : Bool, optional - # If True, the observations will be interpolated to a coarser - # time resolution as is defined in the Settings. The default - # is False. - - # Returns - # ---------- - - # None. - - # Note - # ---------- - # A Ugent VPN connection must be present, as well as the username and password - # stored in the settings. - - # """ - # if start_datetime is None: - # start_datetime = datetime.date.today() - datetime.timedelta(days=1) - # if end_datetime is None: - # end_datetime = datetime.date.today() - - # # Read observations into pandas dataframe - # df = import_data_from_db( - # self.settings.db, start_datetime=start_datetime, end_datetime=end_datetime - # ) - - # if df.empty: # No data has, probably connection error - # return - - # # Make data template - # self.data_template = pd.DataFrame().from_dict( - # template_to_package_space(self.settings.db["vlinder_db_obs_template"]) - # ) - - # # convert dataframe to multiindex (datetime - name) - # df = df.set_index(["name", df.index]) - # df = df.sort_index() - - # # If an ID has changed or not present in the metadatafile, - # # the stationname and metadata is Nan - # # These observations will be removed - # unknown_obs = df[df.index.get_level_values("name").isnull()] - # if not unknown_obs.empty: - # logger.warning( - # "There is an unknown station in the dataset \ - # (probaply due to an ID that is not present in \ - # the metadata file). This will be removed from the dataset." - # ) - # df = df[~df.index.get_level_values("name").isnull()] - # self._construct_dataset(df) - def _construct_dataset( self, df, @@ -2732,7 +3164,10 @@ def _construct_dataset( ): """Construct the Dataset class from a IO dataframe. - The df, metadf, outliersdf, gaps and missing timestamps attributes are set. + The df, metadf, outliersdf, gaps, missing timestamps and observationtypes attributes are set. + + + The observations are converted to the toolkit standard units if possible. Qc on IO is applied (duplicated check and invalid check) + gaps and missing values are defined by assuming a frequency per station. @@ -2767,6 +3202,9 @@ def _construct_dataset( # Convert dataframe to dataset attributes self._initiate_df_attribute(dataframe=df, update_metadf=update_full_metadf) + # Check observation types and convert units if needed. + self._setup_of_obstypes_and_units() + # Apply quality control on Import resolution self._apply_qc_on_import() @@ -2800,11 +3238,12 @@ def _construct_dataset( def _initiate_df_attribute(self, dataframe, update_metadf=True): """Initialize dataframe attributes.""" - logger.info( - f"Updating dataset by dataframe with shape: {dataframe.shape}.") + logger.info(f"Updating dataset by dataframe with shape: {dataframe.shape}.") # Create dataframe with fixed order of observational columns - obs_col_order = [col for col in observation_types if col in dataframe.columns] + obs_col_order = [ + col for col in list(self.obstypes.keys()) if col in dataframe.columns + ] self.df = dataframe[obs_col_order].sort_index() @@ -2820,11 +3259,15 @@ def _initiate_df_attribute(self, dataframe, update_metadf=True): def _apply_qc_on_import(self): # if the name is Nan, remove these records from df, and metadf (before) # they end up in the gaps and missing obs - if np.nan in self.df.index.get_level_values('name'): - logger.warning(f'Following observations are not linked to a station name and will be removed: {xs_save(self.df, np.nan, "name")}') - self.df = self.df[~self.df.index.get_level_values('name').isna()] + if np.nan in self.df.index.get_level_values("name"): + logger.warning( + f'Following observations are not linked to a station name and will be removed: {xs_save(self.df, np.nan, "name")}' + ) + self.df = self.df[~self.df.index.get_level_values("name").isna()] if np.nan in self.metadf.index: - logger.warning(f'Following station will be removed from the Dataset {self.metadf[self.metadf.index.isna()]}') + logger.warning( + f"Following station will be removed from the Dataset {self.metadf[self.metadf.index.isna()]}" + ) self.metadf = self.metadf[~self.metadf.index.isna()] # find missing obs and gaps, and remove them from the df @@ -2855,7 +3298,9 @@ def _apply_qc_on_import(self): self.outliersdf = self.outliersdf.sort_index() # update the order and which qc is applied on which obstype - checked_obstypes = [obs for obs in self.df.columns if obs in observation_types] + checked_obstypes = [ + obs for obs in self.df.columns if obs in self.obstypes.keys() + ] checknames = ["duplicated_timestamp", "invalid_input"] # KEEP order @@ -2869,6 +3314,45 @@ def _apply_qc_on_import(self): ignore_index=True, ) + def _setup_of_obstypes_and_units(self): + """Function to setup all attributes related to observation types and + convert to standard units.""" + + # Check if all present observation types are known. + unknown_obs_cols = [ + obs_col + for obs_col in self.df.columns + if obs_col not in self.obstypes.keys() + ] + if len(unknown_obs_cols) > 0: + sys.exit(f"The following observation types are unknown: {unknown_obs_cols}") + + for obs_col in self.df.columns: + # Convert the units to the toolkit standards (if unit is known) + input_unit = self.data_template.loc["units", obs_col] + self.df[obs_col] = self.obstypes[obs_col].convert_to_standard_units( + input_data=self.df[obs_col], input_unit=input_unit + ) + + # Update the description of the obstype + description = self.data_template.loc["description", obs_col] + if pd.isna(description): + description = None + self.obstypes[obs_col].set_description(desc=description) + + # Update the original column name and original units + self.obstypes[obs_col].set_original_name( + self.data_template.loc["orig_name", obs_col] + ) + self.obstypes[obs_col].set_original_unit( + self.data_template.loc["units", obs_col] + ) + + # subset the obstypes attribute + self.obstypes = { + name: obj for name, obj in self.obstypes.items() if name in self.df.columns + } + # ============================================================================= # Physiography extractions # ============================================================================= @@ -2937,8 +3421,9 @@ def get_altitude(self): ) return altitude_series - def get_landcover(self, buffers=[100], aggregate=True, overwrite=True, - gee_map='worldcover'): + def get_landcover( + self, buffers=[100], aggregate=True, overwrite=True, gee_map="worldcover" + ): """Extract landcover for all stations. Extract the landcover fractions in a buffer with a specific radius for @@ -2978,7 +3463,9 @@ def get_landcover(self, buffers=[100], aggregate=True, overwrite=True, df_list = [] for buffer in buffers: - logger.info(f'Extracting landcover from {gee_map} with buffer radius = {buffer}') + logger.info( + f"Extracting landcover from {gee_map} with buffer radius = {buffer}" + ) # Extract landcover fractions for all stations lc_frac_df, buffer = lc_fractions_extractor( metadf=self.metadf, @@ -2988,8 +3475,8 @@ def get_landcover(self, buffers=[100], aggregate=True, overwrite=True, ) # add buffer to the index - lc_frac_df['buffer_radius'] = buffer - lc_frac_df = lc_frac_df.reset_index().set_index(['name', 'buffer_radius']) + lc_frac_df["buffer_radius"] = buffer + lc_frac_df = lc_frac_df.reset_index().set_index(["name", "buffer_radius"]) lc_frac_df = lc_frac_df.sort_index() # add to the list @@ -3001,113 +3488,15 @@ def get_landcover(self, buffers=[100], aggregate=True, overwrite=True, if overwrite: - for buf in frac_df.index.get_level_values('buffer_radius').unique(): - buf_df = xs_save(frac_df, buf, level='buffer_radius') - buf_df.columns = [col + f'_{int(buf)}m' for col in buf_df.columns] + for buf in frac_df.index.get_level_values("buffer_radius").unique(): + buf_df = xs_save(frac_df, buf, level="buffer_radius") + buf_df.columns = [col + f"_{int(buf)}m" for col in buf_df.columns] # overwrite the columns or add them if they did not exist self.metadf[buf_df.columns] = buf_df return frac_df - # def fairness_coordinates_for_alaro_25_csv_creator(self, outputfolder=None, - # filename='summerschool_modeldata_metadata.csv', - # lat_min=None, lon_min=None, - # lat_max=None, lon_max=None): - # """ - # This is for the participants of the Cost FAIRNESS Summerschool in Ghent. - # It will create a small csv file with the locations and names of your stations. - # This information is needed to extract timeseries of Alaro 2.5km modeldata. - - # A spatial plot will be provided aswell. If no bounding box coordinates are given, - # a boundingboux is create to encapsulate your stations. - - # A csv file will be saved in the outputfolder. Email this file to mivieijra@meteo.be. - - # Parameters - # ---------- - # outputfolder : string, optional - # The autput folder to store the csv file. If None, the default - # autputfolder will be used. The default is None. - # filename : string, optional - # Name of the csv file. The default is - # 'summerschool_modeldata_metadata.csv'. - # lat_min : num, optional - # Minimum latitude of the bounding box. If None, a boundingbox will - # be computed that fits your stations. The default is None. - # lon_min : num, optional - # Minimum longitude of the bounding box. If None, a boundingbox will - # be computed that fits your stations. The default is None. - # lat_max : num, optional - # Maximum latitude of the bounding box. If None, a boundingbox will - # be computed that fits your stations. The default is None. - # lon_max : num, optional - # Maximum longitude of the bounding box. If None, a boundingbox will - # be computed that fits your stations. The default is None. - - # Returns - # ------- - # None. - - # """ - - # # checks - # # check if metadata is available - # if self.metadf['lat'].isnull().all(): - # logger.warning('No coordinates are found in the metadata. A csv cannot be created.') - # return - - # if self.metadf['lon'].isnull().all(): - # logger.warning('No coordinates are found in the metadata. A csv cannot be created.') - # return - - # if ((outputfolder is None) & (self.settings.IO['output_folder'] is None)): - # logger.warning('No outputfolder is specified.') - # return - - # if outputfolder is None: - # outputfolder =self. settings.IO['output_folder'] - - # user_bounds = [lat_min, lon_min, lat_max, lon_max] - # if any([x is None for x in user_bounds]): - # # use default bounds - # make_bounds=True - # logger.info('Since not (all) bounds are given, the bounds are the total bounds of the present stations.') - # else: - # make_bounds=False - - # metadf = self.metadf.copy() - # metadf= metadf[metadf['lat'].notna()] - # metadf= metadf[metadf['lon'].notna()] - - # if make_bounds: - # # lonmin, latmin, lonmax, latmax - # bounds = tuple(metadf.total_bounds) - # else: - # bounds = tuple([float(lon_min), float(lat_min), - # float(lon_max), float(lat_max)]) - - # # add bounds as a column (avoid creating two files with data, and readin in problems in R) - # metadf['bbox'] = [bounds for _ in range(len(metadf))] - # # reset index so no problems in R - # metadf = metadf.reset_index() - # # subset to relevant columns - # savedf = metadf[['name', 'lat', 'lon', 'bbox']] - - # # Write to a csv file - # if not filename.endswith('.csv'): - # filename += '.csv' - - # filepath = os.path.join(outputfolder, filename) - # savedf.to_csv(filepath, - # sep=',', - # index=False, - # decimal='.') - # print(f'\n File is writen to : {filepath}. \n') - # print('Download the file (as a .csv), and send it by email to: mivieijra@meteo.be.') - - # return - def make_gee_plot(self, gee_map, show_stations=True, save=False, outputfile=None): """Make an interactive plot of a google earth dataset. @@ -3150,60 +3539,64 @@ def make_gee_plot(self, gee_map, show_stations=True, save=False, outputfile=None mapinfo = self.settings.gee["gee_dataset_info"][gee_map] # Read in covers, numbers and labels - covernum = list(mapinfo['colorscheme'].keys()) - colors = list(mapinfo['colorscheme'].values()) - covername = [mapinfo['categorical_mapper'][covnum] for covnum in covernum] + covernum = list(mapinfo["colorscheme"].keys()) + colors = list(mapinfo["colorscheme"].values()) + covername = [mapinfo["categorical_mapper"][covnum] for covnum in covernum] # create visparams vis_params = { - 'min': min(covernum), - 'max': max(covernum), - 'palette': colors # hex colors! + "min": min(covernum), + "max": max(covernum), + "palette": colors, # hex colors! } - if 'band_of_use' in mapinfo: - band = mapinfo['band_of_use'] + if "band_of_use" in mapinfo: + band = mapinfo["band_of_use"] else: band = None - Map = folium_plot(mapinfo=mapinfo, - band=band, - vis_params=vis_params, - labelnames=covername, - layername=gee_map, - legendname=f'{gee_map} covers', - # showmap = show, - ) + Map = folium_plot( + mapinfo=mapinfo, + band=band, + vis_params=vis_params, + labelnames=covername, + layername=gee_map, + legendname=f"{gee_map} covers", + # showmap = show, + ) if show_stations: if not _validate_metadf(self.metadf): - logger.warning('Not enough coordinates information is provided to plot the stations.') + logger.warning( + "Not enough coordinates information is provided to plot the stations." + ) else: - Map = add_stations_to_folium_map(Map=Map, - metadf=self.metadf) + Map = add_stations_to_folium_map(Map=Map, metadf=self.metadf) # Save if needed if save: if outputfile is None: # Try to save in the output folder - if self.settings.IO['output_folder'] is None: - logger.warning('The outputfolder is not set up, use the update_settings to specify the output_folder.') + if self.settings.IO["output_folder"] is None: + logger.warning( + "The outputfolder is not set up, use the update_settings to specify the output_folder." + ) else: - filename = f'gee_{gee_map}_figure.html' - filepath = os.path.join(self.settings.IO['output_folder'], - filename) + filename = f"gee_{gee_map}_figure.html" + filepath = os.path.join(self.settings.IO["output_folder"], filename) else: # outputfile is specified # 1. check extension - if not outputfile.endswith('.html'): - outputfile = outputfile + '.html' + if not outputfile.endswith(".html"): + outputfile = outputfile + ".html" filepath = outputfile - print(f'Gee Map will be save at {filepath}') - logger.info(f'Gee Map will be save at {filepath}') + print(f"Gee Map will be save at {filepath}") + logger.info(f"Gee Map will be save at {filepath}") Map.save(filepath) + return Map @@ -3211,23 +3604,53 @@ def _can_qc_be_applied(dataset, obstype, checkname): """Test if a qc check can be applied.""" # test if check is already applied on the obstype applied_df = dataset._applied_qc - can_be_applied = not applied_df[(applied_df['obstype'] == obstype) & (applied_df['checkname'] == checkname)].shape[0] > 0 + can_be_applied = ( + not applied_df[ + (applied_df["obstype"] == obstype) & (applied_df["checkname"] == checkname) + ].shape[0] + > 0 + ) if not can_be_applied: - logger.warning(f'The {checkname} check can NOT be applied on {obstype} because it was already applied on this observation type!') + logger.warning( + f"The {checkname} check can NOT be applied on {obstype} because it was already applied on this observation type!" + ) return False # test of all settings are present for the check on the obstype - if checkname not in ['duplicated_timestamp', 'titan_buddy_check', 'titan_sct_resistant_check']: + if checkname not in [ + "duplicated_timestamp", + "titan_buddy_check", + "titan_sct_resistant_check", + ]: # these checks are obstype depending, - required_keys = list(dataset.settings.qc['qc_check_settings'][checkname]['temp'].keys()) # use temp to find all required settings - if obstype not in dataset.settings.qc['qc_check_settings'][checkname].keys(): - logger.warning(f'The {checkname} check can NOT be applied on {obstype} because none of the required check settings are found. The following are missing: {required_keys}') + required_keys = list( + dataset.settings.qc["qc_check_settings"][checkname]["temp"].keys() + ) # use temp to find all required settings + if obstype not in dataset.settings.qc["qc_check_settings"][checkname].keys(): + logger.warning( + f"The {checkname} check can NOT be applied on {obstype} because none of the required check settings are found. The following are missing: {required_keys}" + ) return False - if not all([req_key in dataset.settings.qc['qc_check_settings'][checkname][obstype].keys() for req_key in required_keys]): + if not all( + [ + req_key + in dataset.settings.qc["qc_check_settings"][checkname][obstype].keys() + for req_key in required_keys + ] + ): # not all required settings are available - missing_settings = [req_key for req_key in required_keys if req_key not in dataset.settings.qc['qc_check_settings'][checkname][obstype].keys()] - logger.warning(f'The {checkname} check can NOT be applied on {obstype} because not all required check settings ar found. The following are missing: {missing_settings}') + missing_settings = [ + req_key + for req_key in required_keys + if req_key + not in dataset.settings.qc["qc_check_settings"][checkname][ + obstype + ].keys() + ] + logger.warning( + f"The {checkname} check can NOT be applied on {obstype} because not all required check settings ar found. The following are missing: {missing_settings}" + ) return False return True diff --git a/metobs_toolkit/dataset_settings_updater.py b/metobs_toolkit/dataset_settings_updater.py index f15b352c..1079255e 100644 --- a/metobs_toolkit/dataset_settings_updater.py +++ b/metobs_toolkit/dataset_settings_updater.py @@ -10,7 +10,6 @@ import metobs_toolkit.dataset as dataset -from metobs_toolkit import observation_types logger = logging.getLogger(__name__) @@ -18,12 +17,13 @@ class Dataset(dataset.Dataset): """Extension on the metobs_toolkit.Dataset class with updaters.""" - def update_settings(self, - output_folder=None, - input_data_file=None, - input_metadata_file=None, - template_file=None - ): + def update_settings( + self, + output_folder=None, + input_data_file=None, + input_metadata_file=None, + template_file=None, + ): """Update the most common input-output (IO) settings. (This should be applied before importing the observations.) @@ -91,10 +91,17 @@ def update_default_name(self, default_name): """ self.settings.app["default_name"] = str(default_name) - def update_gap_and_missing_fill_settings(self, gap_interpolation_method=None, gap_interpolation_max_consec_fill=None, - gap_debias_prefered_leading_period_hours=None, gap_debias_prefered_trailing_period_hours=None, - gap_debias_minimum_leading_period_hours=None, gap_debias_minimum_trailing_period_hours=None, - automatic_max_interpolation_duration_str=None, missing_obs_interpolation_method=None): + def update_gap_and_missing_fill_settings( + self, + gap_interpolation_method=None, + gap_interpolation_max_consec_fill=None, + gap_debias_prefered_leading_period_hours=None, + gap_debias_prefered_trailing_period_hours=None, + gap_debias_minimum_leading_period_hours=None, + gap_debias_minimum_trailing_period_hours=None, + automatic_max_interpolation_duration_str=None, + missing_obs_interpolation_method=None, + ): """Update fill settings for gaps and missing observations. If None, the current setting is not updated. @@ -133,71 +140,108 @@ def update_gap_and_missing_fill_settings(self, gap_interpolation_method=None, ga """ # Gap linear interpolation if gap_interpolation_method is not None: - logger.info(f' The gap interpolation method is updated: \ - {self.settings.gap["gaps_fill_settings"]["linear"]["method"]} --> {str(gap_interpolation_method)}') - self.settings.gap["gaps_fill_settings"]["linear"]["method"] = str(gap_interpolation_method) + logger.info( + f' The gap interpolation method is updated: \ + {self.settings.gap["gaps_fill_settings"]["linear"]["method"]} --> {str(gap_interpolation_method)}' + ) + self.settings.gap["gaps_fill_settings"]["linear"]["method"] = str( + gap_interpolation_method + ) if gap_interpolation_max_consec_fill is not None: - logger.info(f' The gap max number of consecutive interpolations is updated: \ - {self.settings.gap["gaps_fill_settings"]["linear"]["max_consec_fill"]} --> {abs(int(gap_interpolation_max_consec_fill))}') - self.settings.gap["gaps_fill_settings"]["linear"]["max_consec_fill"] = abs(int(gap_interpolation_max_consec_fill)) + logger.info( + f' The gap max number of consecutive interpolations is updated: \ + {self.settings.gap["gaps_fill_settings"]["linear"]["max_consec_fill"]} --> {abs(int(gap_interpolation_max_consec_fill))}' + ) + self.settings.gap["gaps_fill_settings"]["linear"]["max_consec_fill"] = abs( + int(gap_interpolation_max_consec_fill) + ) # Gap debias fill if gap_debias_prefered_leading_period_hours is not None: - logger.info(f' The size of the prefered leading period for debias gapfill is updated: \ - {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_leading_sample_duration_hours"]} --> {abs(int(gap_debias_prefered_leading_period_hours))}') - self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_leading_sample_duration_hours"] = abs(int(gap_debias_prefered_leading_period_hours)) + logger.info( + f' The size of the prefered leading period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_leading_sample_duration_hours"]} --> {abs(int(gap_debias_prefered_leading_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "prefered_leading_sample_duration_hours" + ] = abs(int(gap_debias_prefered_leading_period_hours)) if gap_debias_prefered_trailing_period_hours is not None: - logger.info(f' The size of the prefered trailing period for debias gapfill is updated: \ - {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_trailing_sample_duration_hours"]} --> {abs(int(gap_debias_prefered_trailing_period_hours))}') - self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_trailing_sample_duration_hours"] = abs(int(gap_debias_prefered_trailing_period_hours)) + logger.info( + f' The size of the prefered trailing period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["prefered_trailing_sample_duration_hours"]} --> {abs(int(gap_debias_prefered_trailing_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "prefered_trailing_sample_duration_hours" + ] = abs(int(gap_debias_prefered_trailing_period_hours)) if gap_debias_minimum_leading_period_hours is not None: - logger.info(f' The minimum size of the leading period for debias gapfill is updated: \ - {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_leading_sample_duration_hours"]} --> {abs(int(gap_debias_minimum_leading_period_hours))}') - self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_leading_sample_duration_hours"] = abs(int(gap_debias_minimum_leading_period_hours)) + logger.info( + f' The minimum size of the leading period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_leading_sample_duration_hours"]} --> {abs(int(gap_debias_minimum_leading_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "minimum_leading_sample_duration_hours" + ] = abs(int(gap_debias_minimum_leading_period_hours)) if gap_debias_minimum_trailing_period_hours is not None: - logger.info(f' The minimum size of the trailing period for debias gapfill is updated: \ - {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_trailing_sample_duration_hours"]} --> {abs(int(gap_debias_minimum_trailing_period_hours))}') - self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_trailing_sample_duration_hours"] = abs(int(gap_debias_minimum_trailing_period_hours)) + logger.info( + f' The minimum size of the trailing period for debias gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"]["minimum_trailing_sample_duration_hours"]} --> {abs(int(gap_debias_minimum_trailing_period_hours))}' + ) + self.settings.gap["gaps_fill_settings"]["model_debias"]["debias_period"][ + "minimum_trailing_sample_duration_hours" + ] = abs(int(gap_debias_minimum_trailing_period_hours)) # Gapfill automatic if automatic_max_interpolation_duration_str is not None: if is_timedelta(str(automatic_max_interpolation_duration_str)): - logger.info(f' The maximum interpolation duration for automatic gapfill is updated: \ - {self.settings.gap["gaps_fill_settings"]["automatic"]["max_interpolation_duration_str"]} --> {str(automatic_max_interpolation_duration_str)}') - self.settings.gap["gaps_fill_settings"]["automatic"]["max_interpolation_duration_str"] = str(automatic_max_interpolation_duration_str) + logger.info( + f' The maximum interpolation duration for automatic gapfill is updated: \ + {self.settings.gap["gaps_fill_settings"]["automatic"]["max_interpolation_duration_str"]} --> {str(automatic_max_interpolation_duration_str)}' + ) + self.settings.gap["gaps_fill_settings"]["automatic"][ + "max_interpolation_duration_str" + ] = str(automatic_max_interpolation_duration_str) else: - logger.warning(f' {str(automatic_max_interpolation_duration_str)} is not a valid timedelta string. No update on this setting.') + logger.warning( + f" {str(automatic_max_interpolation_duration_str)} is not a valid timedelta string. No update on this setting." + ) # Missing obs interpolation if missing_obs_interpolation_method is not None: - logger.info(f' The missing observations interpolation method is updated: \ - {self.settings.missing_obs["missing_obs_fill_settings"]["linear"]["method"]} --> {str(missing_obs_interpolation_method)}') - self.settings.missing_obs['missing_obs_fill_settings']['linear']['method'] = str(missing_obs_interpolation_method) - - def update_qc_settings(self, obstype='temp', - gapsize_in_records=None, - dupl_timestamp_keep=None, - persis_time_win_to_check=None, - persis_min_num_obs=None, - rep_max_valid_repetitions=None, - gross_value_min_value=None, - gross_value_max_value=None, - win_var_max_increase_per_sec=None, - win_var_max_decrease_per_sec=None, - win_var_time_win_to_check=None, - win_var_min_num_obs=None, - step_max_increase_per_sec=None, - step_max_decrease_per_sec=None, - buddy_radius=None, - buddy_min_sample_size=None, - buddy_max_elev_diff=None, - buddy_min_std=None, - buddy_threshold=None, - buddy_elev_gradient=None): + logger.info( + f' The missing observations interpolation method is updated: \ + {self.settings.missing_obs["missing_obs_fill_settings"]["linear"]["method"]} --> {str(missing_obs_interpolation_method)}' + ) + self.settings.missing_obs["missing_obs_fill_settings"]["linear"][ + "method" + ] = str(missing_obs_interpolation_method) + + def update_qc_settings( + self, + obstype="temp", + gapsize_in_records=None, + dupl_timestamp_keep=None, + persis_time_win_to_check=None, + persis_min_num_obs=None, + rep_max_valid_repetitions=None, + gross_value_min_value=None, + gross_value_max_value=None, + win_var_max_increase_per_sec=None, + win_var_max_decrease_per_sec=None, + win_var_time_win_to_check=None, + win_var_min_num_obs=None, + step_max_increase_per_sec=None, + step_max_decrease_per_sec=None, + buddy_radius=None, + buddy_min_sample_size=None, + buddy_max_elev_diff=None, + buddy_min_std=None, + buddy_threshold=None, + buddy_elev_gradient=None, + ): """Update the QC settings for the specified observation type. If a argument value is None, the default settings will not be updated. @@ -262,223 +306,301 @@ def update_qc_settings(self, obstype='temp', all the observation types. """ - assert obstype in observation_types, f'{obstype} is not a known observation type' + assert ( + obstype in self.obstypes.keys() + ), f"{obstype} is not a known observation type" def _updater(dictionary, obstype, argname, value): """Update nested dictionaries.""" if obstype not in dictionary.keys(): dictionary[obstype] = {} - printstr = f'{obstype} : unexisting --> {value}' + printstr = f"{obstype} : unexisting --> {value}" elif argname not in dictionary[obstype]: - printstr = f'{obstype} : unexisting --> {value}' + printstr = f"{obstype} : unexisting --> {value}" else: - printstr = f'{obstype} : {dictionary[obstype][argname]} --> {value}' + printstr = f"{obstype} : {dictionary[obstype][argname]} --> {value}" dictionary[obstype][argname] = value return dictionary, printstr # Gap defenition if gapsize_in_records is not None: - logger.info(f' The defenition of a gap (=gapsize) is updated: \ - {self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"]} --> {abs(int(gapsize_in_records))}') - self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"] = abs(int(gapsize_in_records)) + logger.info( + f' The defenition of a gap (=gapsize) is updated: \ + {self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"]} --> {abs(int(gapsize_in_records))}' + ) + self.settings.gap["gaps_settings"]["gaps_finder"]["gapsize_n"] = abs( + int(gapsize_in_records) + ) # Gross value check if gross_value_max_value is not None: - self.settings.qc['qc_check_settings']["gross_value"], updatestr = _updater( - self.settings.qc['qc_check_settings']["gross_value"], + self.settings.qc["qc_check_settings"]["gross_value"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["gross_value"], obstype=obstype, argname="max_value", - value=float(gross_value_max_value)) - logger.info(f'Maximal value for gross value check updated: {updatestr}') + value=float(gross_value_max_value), + ) + logger.info(f"Maximal value for gross value check updated: {updatestr}") if gross_value_min_value is not None: - self.settings.qc['qc_check_settings']["gross_value"], updatestr = _updater( - self.settings.qc['qc_check_settings']["gross_value"], + self.settings.qc["qc_check_settings"]["gross_value"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["gross_value"], obstype=obstype, argname="min_value", - value=float(gross_value_min_value)) - logger.info(f'Minimal value for gross value check updated: {updatestr}') + value=float(gross_value_min_value), + ) + logger.info(f"Minimal value for gross value check updated: {updatestr}") # Duplicate check if dupl_timestamp_keep is not None: - logger.info(f'Setting to keep (True) are remove (False) duplicate timestamps updated: \ - {self.settings.qc["qc_check_settings"]["duplicated_timestamp"]["keep"]} --> {bool(dupl_timestamp_keep)}') - self.settings.qc['qc_check_settings']["duplicated_timestamp"]['keep'] = bool(dupl_timestamp_keep) + logger.info( + f'Setting to keep (True) are remove (False) duplicate timestamps updated: \ + {self.settings.qc["qc_check_settings"]["duplicated_timestamp"]["keep"]} --> {bool(dupl_timestamp_keep)}' + ) + self.settings.qc["qc_check_settings"]["duplicated_timestamp"][ + "keep" + ] = bool(dupl_timestamp_keep) # Persistance check if persis_time_win_to_check is not None: if is_timedelta(str(persis_time_win_to_check)): - self.settings.qc['qc_check_settings']["persistance"], updatestr = _updater( - self.settings.qc['qc_check_settings']["persistance"], + ( + self.settings.qc["qc_check_settings"]["persistance"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["persistance"], obstype=obstype, argname="time_window_to_check", - value=str(persis_time_win_to_check)) + value=str(persis_time_win_to_check), + ) - logger.info(f'Time window size for persistance check updated: {updatestr}') + logger.info( + f"Time window size for persistance check updated: {updatestr}" + ) else: - logger.warning(f' {str(persis_time_win_to_check)} is not a valid timedelta string. No update on this setting.') + logger.warning( + f" {str(persis_time_win_to_check)} is not a valid timedelta string. No update on this setting." + ) if persis_min_num_obs is not None: - self.settings.qc['qc_check_settings']["persistance"], updatestr = _updater( - self.settings.qc['qc_check_settings']["persistance"], + self.settings.qc["qc_check_settings"]["persistance"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["persistance"], obstype=obstype, argname="min_num_obs", - value=abs(int(persis_min_num_obs))) + value=abs(int(persis_min_num_obs)), + ) - logger.info(f'Minimal window members for persistance check updated: {updatestr}') + logger.info( + f"Minimal window members for persistance check updated: {updatestr}" + ) # Repetitions check if rep_max_valid_repetitions is not None: - self.settings.qc['qc_check_settings']["repetitions"], updatestr = _updater( - self.settings.qc['qc_check_settings']["repetitions"], + self.settings.qc["qc_check_settings"]["repetitions"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["repetitions"], obstype=obstype, argname="max_valid_repetitions", - value=abs(int(rep_max_valid_repetitions))) - logger.info(f'Maximal valid repetitions for repetitions check updated: {updatestr}') + value=abs(int(rep_max_valid_repetitions)), + ) + logger.info( + f"Maximal valid repetitions for repetitions check updated: {updatestr}" + ) # Window variation check if win_var_max_increase_per_sec is not None: - self.settings.qc['qc_check_settings']["window_variation"], updatestr = _updater( - self.settings.qc['qc_check_settings']["window_variation"], + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], obstype=obstype, argname="max_increase_per_second", - value=abs(float(win_var_max_increase_per_sec))) + value=abs(float(win_var_max_increase_per_sec)), + ) - logger.info(f'Maximal increase per second for window variation check updated: {updatestr}') + logger.info( + f"Maximal increase per second for window variation check updated: {updatestr}" + ) if win_var_max_decrease_per_sec is not None: - self.settings.qc['qc_check_settings']["window_variation"], updatestr = _updater( - self.settings.qc['qc_check_settings']["window_variation"], + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], obstype=obstype, argname="max_decrease_per_second", - value=abs(float(win_var_max_decrease_per_sec))) - logger.info(f'Maximal decrease per second for window variation check updated: {updatestr}') + value=abs(float(win_var_max_decrease_per_sec)), + ) + logger.info( + f"Maximal decrease per second for window variation check updated: {updatestr}" + ) if win_var_time_win_to_check is not None: if is_timedelta(str(win_var_time_win_to_check)): - self.settings.qc['qc_check_settings']["window_variation"], updatestr = _updater( - self.settings.qc['qc_check_settings']["window_variation"], + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], obstype=obstype, argname="time_window_to_check", - value=str(win_var_time_win_to_check)) - logger.info(f'Time window for window variation check updated: {updatestr}') + value=str(win_var_time_win_to_check), + ) + logger.info( + f"Time window for window variation check updated: {updatestr}" + ) else: - logger.warning(f' {str(persis_time_win_to_check)} is not a valid timedelta string. No update on this setting.') + logger.warning( + f" {str(persis_time_win_to_check)} is not a valid timedelta string. No update on this setting." + ) if win_var_min_num_obs is not None: - self.settings.qc['qc_check_settings']["window_variation"], updatestr = _updater( - self.settings.qc['qc_check_settings']["window_variation"], + ( + self.settings.qc["qc_check_settings"]["window_variation"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["window_variation"], obstype=obstype, argname="min_window_members", - value=abs(int(win_var_min_num_obs))) - logger.info(f'Minimal window members for window variation check updated: {updatestr}') + value=abs(int(win_var_min_num_obs)), + ) + logger.info( + f"Minimal window members for window variation check updated: {updatestr}" + ) # Step check if step_max_increase_per_sec is not None: - self.settings.qc['qc_check_settings']["step"], updatestr = _updater( - self.settings.qc['qc_check_settings']["step"], + self.settings.qc["qc_check_settings"]["step"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["step"], obstype=obstype, argname="max_increase_per_second", - value=abs(float(step_max_increase_per_sec))) + value=abs(float(step_max_increase_per_sec)), + ) - logger.info(f'Maximal increase per second for step check updated: {updatestr}') + logger.info( + f"Maximal increase per second for step check updated: {updatestr}" + ) if step_max_decrease_per_sec is not None: - self.settings.qc['qc_check_settings']["step"], updatestr = _updater( - self.settings.qc['qc_check_settings']["step"], + self.settings.qc["qc_check_settings"]["step"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["step"], obstype=obstype, argname="max_decrease_per_second", - value=-1.0 * abs(float(step_max_decrease_per_sec))) + value=-1.0 * abs(float(step_max_decrease_per_sec)), + ) - logger.info(f'Maximal decrease per second for step check updated: {updatestr}') + logger.info( + f"Maximal decrease per second for step check updated: {updatestr}" + ) # Buddy check - buddy_elev_gradient=None + buddy_elev_gradient = None if buddy_radius is not None: - self.settings.qc['qc_check_settings']["buddy_check"], updatestr = _updater( - self.settings.qc['qc_check_settings']["buddy_check"], + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], obstype=obstype, argname="radius", - value=abs(float(buddy_radius))) - logger.info(f'Buddy radius for buddy check updated: {updatestr}') + value=abs(float(buddy_radius)), + ) + logger.info(f"Buddy radius for buddy check updated: {updatestr}") if buddy_min_sample_size is not None: value = abs(int(buddy_min_sample_size)) if value >= 2: - self.settings.qc['qc_check_settings']["buddy_check"], updatestr = _updater( - self.settings.qc['qc_check_settings']["buddy_check"], + ( + self.settings.qc["qc_check_settings"]["buddy_check"], + updatestr, + ) = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], obstype=obstype, argname="num_min", - value=value) - logger.info(f'Minimum number of buddies for buddy check updated: {updatestr}') + value=value, + ) + logger.info( + f"Minimum number of buddies for buddy check updated: {updatestr}" + ) else: - logger.warning(f'Minimum number of buddies must be >= 2, but {value} is given. Not updated.') + logger.warning( + f"Minimum number of buddies must be >= 2, but {value} is given. Not updated." + ) if buddy_max_elev_diff is not None: - self.settings.qc['qc_check_settings']["buddy_check"], updatestr = _updater( - self.settings.qc['qc_check_settings']["buddy_check"], + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], obstype=obstype, argname="max_elev_diff", - value=abs(float(buddy_max_elev_diff))) - logger.info(f'Max elevation differences for buddy check updated: {updatestr}') + value=abs(float(buddy_max_elev_diff)), + ) + logger.info( + f"Max elevation differences for buddy check updated: {updatestr}" + ) if buddy_min_std is not None: - self.settings.qc['qc_check_settings']["buddy_check"], updatestr = _updater( - self.settings.qc['qc_check_settings']["buddy_check"], + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], obstype=obstype, argname="min_std", - value=abs(float(buddy_min_std))) - logger.info(f'Minimum std in sample for buddy check updated: {updatestr}') + value=abs(float(buddy_min_std)), + ) + logger.info(f"Minimum std in sample for buddy check updated: {updatestr}") if buddy_threshold is not None: - self.settings.qc['qc_check_settings']["buddy_check"], updatestr = _updater( - self.settings.qc['qc_check_settings']["buddy_check"], + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], obstype=obstype, argname="threshold", - value=abs(float(buddy_threshold))) - logger.info(f'Outlier threshold (in sigma) for buddy check updated: {updatestr}') + value=abs(float(buddy_threshold)), + ) + logger.info( + f"Outlier threshold (in sigma) for buddy check updated: {updatestr}" + ) if buddy_elev_gradient is not None: - self.settings.qc['qc_check_settings']["buddy_check"], updatestr = _updater( - self.settings.qc['qc_check_settings']["buddy_check"], + self.settings.qc["qc_check_settings"]["buddy_check"], updatestr = _updater( + self.settings.qc["qc_check_settings"]["buddy_check"], obstype=obstype, argname="elev_gradient", - value=float(buddy_max_elev_diff)) - logger.info(f'Elevation gradient for buddy check updated: {updatestr}') - - - def update_titan_qc_settings(self, obstype='temp', - # buddy settings - buddy_radius=None, - buddy_num_min=None, - buddy_threshold=None, - buddy_max_elev_diff=None, - buddy_elev_gradient=None, - buddy_min_std=None, - buddy_num_iterations=None, - buddy_debug=None, - # sct settings - sct_num_min_outer=None, sct_num_max_outer=None, - sct_inner_radius=None, - sct_outer_radius=None, - sct_num_iterations=None, - sct_num_min_prof=None, - sct_min_elev_diff=None, - sct_min_horizontal_scale=None, - sct_max_horizontal_scale=None, - sct_kth_closest_obs_horizontal_scale=None, - sct_vertical_scale=None, - sct_mina_deviation=None, # vec Minimum admissible value - sct_maxa_deviation=None, # vec Maximum admissible value - sct_minv_deviation=None, # vec Minimum valid value - sct_maxv_deviation=None, # vec Maximum valid value - sct_eps2=None, # Ratio of observation error variance to background variance - sct_tpos=None, # vec Positive deviation allowed - sct_tneg=None, # vec Negative deviation allowed - sct_basic=None, - sct_debug=None): + value=float(buddy_max_elev_diff), + ) + logger.info(f"Elevation gradient for buddy check updated: {updatestr}") + + def update_titan_qc_settings( + self, + obstype="temp", + # buddy settings + buddy_radius=None, + buddy_num_min=None, + buddy_threshold=None, + buddy_max_elev_diff=None, + buddy_elev_gradient=None, + buddy_min_std=None, + buddy_num_iterations=None, + buddy_debug=None, + # sct settings + sct_num_min_outer=None, + sct_num_max_outer=None, + sct_inner_radius=None, + sct_outer_radius=None, + sct_num_iterations=None, + sct_num_min_prof=None, + sct_min_elev_diff=None, + sct_min_horizontal_scale=None, + sct_max_horizontal_scale=None, + sct_kth_closest_obs_horizontal_scale=None, + sct_vertical_scale=None, + sct_mina_deviation=None, # vec Minimum admissible value + sct_maxa_deviation=None, # vec Maximum admissible value + sct_minv_deviation=None, # vec Minimum valid value + sct_maxv_deviation=None, # vec Maximum valid value + sct_eps2=None, # Ratio of observation error variance to background variance + sct_tpos=None, # vec Positive deviation allowed + sct_tneg=None, # vec Negative deviation allowed + sct_basic=None, + sct_debug=None, + ): """Update the TITAN QC settings for the specified observation type. If a argument value is None, the default settings will not be updated. @@ -553,66 +675,95 @@ def update_titan_qc_settings(self, obstype='temp', None. """ - assert obstype in observation_types, f'{obstype} is not a known observation type' + assert ( + obstype in self.obstypes.keys() + ), f"{obstype} is not a known observation type" # check buddy settings for updates - buddy_attrs = {'buddy_radius': {'new_value': buddy_radius, 'dtype': 'numeric'}, - 'buddy_num_min': {'new_value': buddy_num_min, 'dtype': 'int'}, - 'buddy_threshold': {'new_value': buddy_threshold, 'dtype': 'numeric'}, - 'buddy_max_elev_diff': {'new_value': buddy_max_elev_diff, 'dtype': 'numeric'}, - 'buddy_elev_gradient': {'new_value': buddy_elev_gradient, 'dtype': 'numeric'}, - 'buddy_min_std': {'new_value': buddy_min_std, 'dtype': 'numeric'}, - 'buddy_num_iterations': {'new_value': buddy_num_iterations, 'dtype': 'int'}, - 'buddy_debug': {'new_value': buddy_debug, 'dtype': 'bool'}} + buddy_attrs = { + "buddy_radius": {"new_value": buddy_radius, "dtype": "numeric"}, + "buddy_num_min": {"new_value": buddy_num_min, "dtype": "int"}, + "buddy_threshold": {"new_value": buddy_threshold, "dtype": "numeric"}, + "buddy_max_elev_diff": { + "new_value": buddy_max_elev_diff, + "dtype": "numeric", + }, + "buddy_elev_gradient": { + "new_value": buddy_elev_gradient, + "dtype": "numeric", + }, + "buddy_min_std": {"new_value": buddy_min_std, "dtype": "numeric"}, + "buddy_num_iterations": {"new_value": buddy_num_iterations, "dtype": "int"}, + "buddy_debug": {"new_value": buddy_debug, "dtype": "bool"}, + } sct_attrs = { - 'sct_num_min_outer': {'new_value': sct_num_min_outer, 'dtype': 'int'}, - 'sct_num_max_outer': {'new_value': sct_num_max_outer, 'dtype': 'int'}, - 'sct_inner_radius': {'new_value': sct_inner_radius, 'dtype': 'numeric'}, - 'sct_outer_radius': {'new_value': sct_outer_radius, 'dtype': 'numeric'}, - 'sct_num_iterations': {'new_value': sct_num_iterations, 'dtype': 'int'}, - 'sct_num_min_prof': {'new_value': sct_num_min_prof, 'dtype': 'int'}, - 'sct_min_elev_diff': {'new_value': sct_min_elev_diff, 'dtype': 'numeric'}, - 'sct_min_horizontal_scale': {'new_value': sct_min_horizontal_scale, 'dtype': 'numeric'}, - 'sct_max_horizontal_scale': {'new_value': sct_max_horizontal_scale, 'dtype': 'numeric'}, - 'sct_kth_closest_obs_horizontal_scale': {'new_value': sct_kth_closest_obs_horizontal_scale, 'dtype': 'int'}, - 'sct_vertical_scale': {'new_value': sct_vertical_scale, 'dtype': 'numeric'}, - 'sct_mina_deviation': {'new_value': sct_mina_deviation, 'dtype': 'numeric'}, - 'sct_minv_deviation': {'new_value': sct_minv_deviation, 'dtype': 'numeric'}, - 'sct_maxv_deviation': {'new_value': sct_maxv_deviation, 'dtype': 'numeric'}, - 'sct_eps2': {'new_value': sct_eps2, 'dtype': 'numeric'}, - 'sct_tpos': {'new_value': sct_tpos, 'dtype': 'numeric'}, - 'sct_tneg': {'new_value': sct_tneg, 'dtype': 'numeric'}, - 'sct_basic': {'new_value': sct_basic, 'dtype': 'bool'}, - 'sct_debug': {'new_value': sct_debug, 'dtype': 'bool'}} + "sct_num_min_outer": {"new_value": sct_num_min_outer, "dtype": "int"}, + "sct_num_max_outer": {"new_value": sct_num_max_outer, "dtype": "int"}, + "sct_inner_radius": {"new_value": sct_inner_radius, "dtype": "numeric"}, + "sct_outer_radius": {"new_value": sct_outer_radius, "dtype": "numeric"}, + "sct_num_iterations": {"new_value": sct_num_iterations, "dtype": "int"}, + "sct_num_min_prof": {"new_value": sct_num_min_prof, "dtype": "int"}, + "sct_min_elev_diff": {"new_value": sct_min_elev_diff, "dtype": "numeric"}, + "sct_min_horizontal_scale": { + "new_value": sct_min_horizontal_scale, + "dtype": "numeric", + }, + "sct_max_horizontal_scale": { + "new_value": sct_max_horizontal_scale, + "dtype": "numeric", + }, + "sct_kth_closest_obs_horizontal_scale": { + "new_value": sct_kth_closest_obs_horizontal_scale, + "dtype": "int", + }, + "sct_vertical_scale": {"new_value": sct_vertical_scale, "dtype": "numeric"}, + "sct_mina_deviation": {"new_value": sct_mina_deviation, "dtype": "numeric"}, + "sct_minv_deviation": {"new_value": sct_minv_deviation, "dtype": "numeric"}, + "sct_maxv_deviation": {"new_value": sct_maxv_deviation, "dtype": "numeric"}, + "sct_eps2": {"new_value": sct_eps2, "dtype": "numeric"}, + "sct_tpos": {"new_value": sct_tpos, "dtype": "numeric"}, + "sct_tneg": {"new_value": sct_tneg, "dtype": "numeric"}, + "sct_basic": {"new_value": sct_basic, "dtype": "bool"}, + "sct_debug": {"new_value": sct_debug, "dtype": "bool"}, + } def _iterate_attributes(obstype, attr_dict, attr_prefix, checkname): - if obstype not in self.settings.qc['titan_check_settings'][checkname]: - self.settings.qc['titan_check_settings'][checkname][obstype] = {} + if obstype not in self.settings.qc["titan_check_settings"][checkname]: + self.settings.qc["titan_check_settings"][checkname][obstype] = {} for key, val in attr_dict.items(): - if not val['new_value'] is None: + if not val["new_value"] is None: settings_key = key.split(attr_prefix)[1] # remove 'buddy_' - if val['dtype'] == 'numeric': - new_val = float(val['new_value']) - elif val['dtype'] == 'int': - new_val = int(val['new_value']) - elif val['dtype'] == 'bool': - new_val = bool(val['new_value']) + if val["dtype"] == "numeric": + new_val = float(val["new_value"]) + elif val["dtype"] == "int": + new_val = int(val["new_value"]) + elif val["dtype"] == "bool": + new_val = bool(val["new_value"]) else: # val['dtype'] == 'str': - new_val = str(val['new_value']) + new_val = str(val["new_value"]) try: - old_value = self.settings.qc['titan_check_settings'][checkname][obstype][settings_key] - print(f'{key.replace("_", " ")} for the TITAN buddy check updated: {old_value}--> {new_val}') + old_value = self.settings.qc["titan_check_settings"][checkname][ + obstype + ][settings_key] + print( + f'{key.replace("_", " ")} for the TITAN buddy check updated: {old_value}--> {new_val}' + ) except KeyError: - print(f'{key.replace("_", " ")} for the TITAN buddy check added: --> {new_val}') + print( + f'{key.replace("_", " ")} for the TITAN buddy check added: --> {new_val}' + ) - self.settings.qc['titan_check_settings'][checkname][obstype][settings_key] = new_val + self.settings.qc["titan_check_settings"][checkname][obstype][ + settings_key + ] = new_val + + _iterate_attributes(obstype, buddy_attrs, "buddy_", "titan_buddy_check") + _iterate_attributes(obstype, sct_attrs, "sct_", "titan_sct_resistant_check") - _iterate_attributes(obstype, buddy_attrs, 'buddy_', 'titan_buddy_check') - _iterate_attributes(obstype, sct_attrs, 'sct_', 'titan_sct_resistant_check') # ============================================================================= # dtype check functions diff --git a/metobs_toolkit/df_helpers.py b/metobs_toolkit/df_helpers.py index ad08f210..62703904 100644 --- a/metobs_toolkit/df_helpers.py +++ b/metobs_toolkit/df_helpers.py @@ -13,7 +13,6 @@ import numpy as np import geopandas as gpd import itertools -from metobs_toolkit import observation_types import pytz import logging @@ -47,14 +46,14 @@ def fmt_datetime_argument(dt, target_tz_str): return None # check if datime is timezone aware - if (dt.tzinfo is not None and dt.tzinfo.utcoffset(dt) is not None): + if dt.tzinfo is not None and dt.tzinfo.utcoffset(dt) is not None: # timezone aware dt = dt.astimezone(pytz.timezone(target_tz_str)) else: # timezon unaware # assume timezone is the timezone of the data! dt = pytz.timezone(target_tz_str).localize(dt) - return dt + return pd.to_datetime(dt) def xs_save(df, key, level, drop_level=True): @@ -70,10 +69,11 @@ def xs_save(df, key, level, drop_level=True): levels = [[name] for name in names] codes = [[] for name in names] - idx = pd.MultiIndex(levels=levels, - codes=codes, - names=names, - ) + idx = pd.MultiIndex( + levels=levels, + codes=codes, + names=names, + ) return pd.DataFrame(index=idx, columns=columns) @@ -83,11 +83,12 @@ def concat_save(df_list, **kwargs): if all([isinstance(df, pd.DataFrame) for df in df_list]): # This line will filter columns with all NAN values (so empty dfs + all NA entries are filtered out) - return pd.concat([df.dropna(axis=1, how='all') for df in df_list], **kwargs) + return pd.concat([df.dropna(axis=1, how="all") for df in df_list], **kwargs) if all([isinstance(df, pd.Series) for df in df_list]): # This line will filter out empty series return pd.concat([ser for ser in df_list if not ser.empty], **kwargs) - sys.exit('Cannot concat Dataframes and Series together') + sys.exit("Cannot concat Dataframes and Series together") + def init_multiindex(): """Construct a name-datetime pandas multiindex.""" @@ -139,8 +140,9 @@ def format_outliersdf_to_doubleidx(outliersdf): return outliersdf -def value_labeled_doubleidxdf_to_triple_idxdf(df ,value_col_name='value', - label_col_name='label'): +def value_labeled_doubleidxdf_to_triple_idxdf( + df, known_obstypes, value_col_name="value", label_col_name="label" +): """Convert double to triple index based on obstype column. This function converts a double index dataframe with an 'obstype' column, @@ -152,6 +154,9 @@ def value_labeled_doubleidxdf_to_triple_idxdf(df ,value_col_name='value', df : pd.DataFrame Dataframe with ['name', 'datetime'] as index and two columns: [obstype, obstype_final_label]. Where obstype is an observation type. + known_obstypes : list + A list of known observation types. These consist of the default + obstypes and the ones added by the user. value_col_name : str, optional Name of the column for the values. The default is 'value'. label_col_name : str, optional @@ -167,22 +172,25 @@ def value_labeled_doubleidxdf_to_triple_idxdf(df ,value_col_name='value', if df.empty: return df - present_obstypes = [col for col in df.columns if col in observation_types] + present_obstypes = [col for col in df.columns if col in known_obstypes] # get all values in triple index form - values = (df[present_obstypes].stack(dropna=False) - .reset_index() - .rename(columns={'level_2': 'obstype', 0: value_col_name}) - .set_index(['name', 'datetime', 'obstype'])) + values = ( + df[present_obstypes] + .stack(dropna=False) + .reset_index() + .rename(columns={"level_2": "obstype", 0: value_col_name}) + .set_index(["name", "datetime", "obstype"]) + ) # make a triple label dataframe labelsdf = pd.DataFrame() for obstype in present_obstypes: - subdf = df.loc[:, [obstype + '_final_label']] - subdf['obstype'] = obstype + subdf = df.loc[:, [obstype + "_final_label"]] + subdf["obstype"] = obstype subdf = subdf.reset_index() - subdf = subdf.set_index(['name', 'datetime', 'obstype']) - subdf = subdf.rename(columns={obstype + '_final_label': label_col_name}) + subdf = subdf.set_index(["name", "datetime", "obstype"]) + subdf = subdf.rename(columns={obstype + "_final_label": label_col_name}) labelsdf = concat_save([labelsdf, subdf]) @@ -256,7 +264,6 @@ def metadf_to_gdf(df, crs=4326): if col not in geodf: geodf[col] = np.nan - geodf = geodf.sort_index() return geodf @@ -286,13 +293,14 @@ def multiindexdf_datetime_subsetting(df, starttime, endtime): # ============================================================================= def subset_stations(df, stationslist): """Subset stations by name from a dataframe.""" - df = df.loc[df.index.get_level_values( - 'name').isin(stationslist)] + df = df.loc[df.index.get_level_values("name").isin(stationslist)] - present_stations = df.index.get_level_values('name') + present_stations = df.index.get_level_values("name") not_present_stations = list(set(stationslist) - set(present_stations)) if len(not_present_stations) != 0: - logger.warning(f'The stations: {not_present_stations} not found in the dataframe.') + logger.warning( + f"The stations: {not_present_stations} not found in the dataframe." + ) return df @@ -320,7 +328,7 @@ def datetime_subsetting(df, starttime, endtime): """ idx_names = list(df.index.names) df = df.reset_index() - df = df.set_index('datetime') + df = df.set_index("datetime") if isinstance(starttime, type(None)): starttime = df.index.min() # will select from the beginning of the df @@ -369,8 +377,9 @@ def conv_applied_qc_to_df(obstypes, ordered_checknames): # ============================================================================= # Records frequencies # ============================================================================= -def get_likely_frequency(timestamps, method="highest", - simplify=True, max_simplify_error="2T"): +def get_likely_frequency( + timestamps, method="highest", simplify=True, max_simplify_error="2T" +): """Find the most likely observation frequency of a datetimeindex. Parameters @@ -462,8 +471,7 @@ def get_likely_frequency(timestamps, method="highest", return assume_freq -def get_freqency_series(df, method="highest", simplify=True, - max_simplify_error="2T"): +def get_freqency_series(df, method="highest", simplify=True, max_simplify_error="2T"): """Get the most likely frequencies of all stations. Find the most likely observation frequency for all stations individually diff --git a/metobs_toolkit/gap.py b/metobs_toolkit/gap.py index 84ff9b03..363efdca 100644 --- a/metobs_toolkit/gap.py +++ b/metobs_toolkit/gap.py @@ -23,10 +23,10 @@ format_outliersdf_to_doubleidx, concat_save, get_likely_frequency, - _find_closes_occuring_date + _find_closes_occuring_date, ) -from metobs_toolkit import observation_types + from metobs_toolkit.df_helpers import init_multiindex, xs_save from metobs_toolkit.missingobs import Missingob_collection @@ -77,9 +77,13 @@ def __init__(self, name, startdt, enddt): self.exp_gap_idx = None # gap fill (only for conventional saving) - self.gapfill_df = pd.DataFrame() # index: datetime, columns: obstypes, values: fill_values + self.gapfill_df = ( + pd.DataFrame() + ) # index: datetime, columns: obstypes, values: fill_values self.gapfill_technique = None # will become a string - self.gapfill_info = None # detailed infomation on the gapfill technique (only for the user) + self.gapfill_info = ( + None # detailed infomation on the gapfill technique (only for the user) + ) self.gapfill_errormessage = {} # keys are obstypes def __str__(self): @@ -92,53 +96,66 @@ def __repr__(self): def get_info(self): """Print detailed information of a gap.""" - print(f'Gap for {self.name} with: \n') - print('\n ---- Gap info ----- \n') - print('(Note: gaps are defined on the frequency estimation of the native dataset.)') - print(f' * Start gap: {self.startgap} \n') - print(f' * End gap: {self.endgap} \n') - print(f' * Duration gap: {self.duration} \n') - print('\n ---- Gap fill info ----- \n') + print(f"Gap for {self.name} with: \n") + print("\n ---- Gap info ----- \n") + print( + "(Note: gaps are defined on the frequency estimation of the native dataset.)" + ) + print(f" * Start gap: {self.startgap} \n") + print(f" * End gap: {self.endgap} \n") + print(f" * Duration gap: {self.duration} \n") + print("\n ---- Gap fill info ----- \n") obstypes = self.gapfill_df.columns.to_list() - obstypes = [obs for obs in obstypes if obs in observation_types] if self.gapfill_df.empty: - print('(No gapfill applied)') - elif self.gapfill_technique == 'gap_interpolation': + print("(No gapfill applied)") + elif self.gapfill_technique == "gap_interpolation": for obstype in obstypes: - print(f' * On observation type: {obstype}') - print(f' * Technique: {self.gapfill_technique} \n') + print(f" * On observation type: {obstype}") + print(f" * Technique: {self.gapfill_technique} \n") if bool(self.leading_val): leading_val = self.leading_val[obstype] else: - leading_val = 'No leading observation value' - print(f' * Leading timestamp: {self.leading_timestamp} with {obstype} = {leading_val}\n') + leading_val = "No leading observation value" + print( + f" * Leading timestamp: {self.leading_timestamp} with {obstype} = {leading_val}\n" + ) if bool(self.trailing_val): trailing_val = self.trailing_val[obstype] else: - trailing_val = 'No trailing observation value' - print(f' * Trailing timestamp: {self.trailing_timestamp} with {obstype} = {trailing_val}\n') - print(f' * Filled values: {self.gapfill_df[obstype]} \n') + trailing_val = "No trailing observation value" + print( + f" * Trailing timestamp: {self.trailing_timestamp} with {obstype} = {trailing_val}\n" + ) + print(f" * Filled values: {self.gapfill_df[obstype]} \n") if obstype in self.gapfill_errormessage: - print(f' * Gapfill message: {self.gapfill_errormessage[obstype]} \n') + print( + f" * Gapfill message: {self.gapfill_errormessage[obstype]} \n" + ) if self.gapfill_info is not None: - print(f' * Gapfill info: {self.gapfill_info.head()} \n') - print(' (Extract the gapfill info dataframe by using the .gapfill_info attribute) \n') + print(f" * Gapfill info: {self.gapfill_info.head()} \n") + print( + " (Extract the gapfill info dataframe by using the .gapfill_info attribute) \n" + ) elif self.gapfill_technique == "gap_debiased_era5": for obstype in obstypes: - print(f' * On observation type: {obstype}') - print(f' * Technique: {self.gapfill_technique} \n') + print(f" * On observation type: {obstype}") + print(f" * Technique: {self.gapfill_technique} \n") # print(f' * Leading timestamp: {self.leading_timestamp} with {obstype} = {self.leading_val[obstype]}\n') # print(f' * Trailing timestamp: {self.trailing_timestamp} with {obstype} = {self.trailing_val[obstype]}\n') - print(f' * Filled values: {self.gapfill_df[obstype]} \n') + print(f" * Filled values: {self.gapfill_df[obstype]} \n") if obstype in self.gapfill_errormessage: - print(f' * Gapfill message: {self.gapfill_errormessage[obstype]} \n') + print( + f" * Gapfill message: {self.gapfill_errormessage[obstype]} \n" + ) if self.gapfill_info is not None: - print(f' * Gapfill info: {self.gapfill_info.head()} \n') - print(' (Extract the gapfill info dataframe by using the .gapfill_info attribute) \n') + print(f" * Gapfill info: {self.gapfill_info.head()} \n") + print( + " (Extract the gapfill info dataframe by using the .gapfill_info attribute) \n" + ) else: - print('technique not implemented in yet in show') + print("technique not implemented in yet in show") def to_df(self): """Convert a Gap object to a dataframe (with one row). @@ -154,11 +171,13 @@ def to_df(self): """ returndf = pd.DataFrame( index=[self.name], - data={"start_gap": self.startgap, - "end_gap": self.endgap, - "duration": self.duration} + data={ + "start_gap": self.startgap, + "end_gap": self.endgap, + "duration": self.duration, + }, ) - returndf.index.name = 'name' + returndf.index.name = "name" return returndf def update_leading_trailing_obs(self, obsdf, outliersdf, obs_only=False): @@ -227,12 +246,14 @@ def update_leading_trailing_obs(self, obsdf, outliersdf, obs_only=False): try: self.leading_val = obsdf.loc[(self.name, self.leading_timestamp)].to_dict() except KeyError: - logger.warning('Leading value not found in the observations') + logger.warning("Leading value not found in the observations") self.leading_val = {} try: - self.trailing_val = obsdf.loc[(self.name, self.trailing_timestamp)].to_dict() + self.trailing_val = obsdf.loc[ + (self.name, self.trailing_timestamp) + ].to_dict() except KeyError: - logger.warning('Trailing value not found in the observations') + logger.warning("Trailing value not found in the observations") self.trailing_val = {} def update_gaps_indx_in_obs_space(self, obsdf, outliersdf, dataset_res): @@ -317,19 +338,21 @@ def apply_interpolate_gap( Multiindex Series with filled gap values in dataset space. """ - logger.info(f' interpolate on {self}') + logger.info(f" interpolate on {self}") outliersdf = format_outliersdf_to_doubleidx(outliersdf) - gapfill_series = interpolate_gap(gap=self, - obsdf=obsdf, - outliersdf=outliersdf, - dataset_res=dataset_res, - obstype=obstype, - method=method, - max_consec_fill=max_consec_fill) + gapfill_series = interpolate_gap( + gap=self, + obsdf=obsdf, + outliersdf=outliersdf, + dataset_res=dataset_res, + obstype=obstype, + method=method, + max_consec_fill=max_consec_fill, + ) # update self - self.gapfill_technique = 'interpolation' + self.gapfill_technique = "interpolation" self.gapfill_df[obstype] = gapfill_series @@ -390,9 +413,7 @@ def get_gaps_indx_in_obs_space(gapslist, obsdf, outliersdf, resolutionseries): gap.update_gaps_indx_in_obs_space( obsdf, outliersdf, resolutionseries.loc[gap.name] ) - expanded_gabsidx_obsspace = expanded_gabsidx_obsspace.append( - gap.exp_gap_idx - ) + expanded_gabsidx_obsspace = expanded_gabsidx_obsspace.append(gap.exp_gap_idx) return expanded_gabsidx_obsspace @@ -418,10 +439,8 @@ def gaps_to_df(gapslist): if not bool(gapdflist): # when no gaps, make default return - default_df = pd.DataFrame(data={'start_gap': [], - 'end_gap': [], - 'duration': []}) - default_df.index.name = 'name' + default_df = pd.DataFrame(data={"start_gap": [], "end_gap": [], "duration": []}) + default_df.index.name = "name" return default_df return concat_save(gapdflist) @@ -452,9 +471,7 @@ def remove_gaps_from_obs(gaplist, obsdf): gaps_dt = sta_records[ (sta_records >= gap.startgap) - & ( # filter if the observations are within a gap - sta_records <= gap.endgap - ) + & (sta_records <= gap.endgap) # filter if the observations are within a gap ] gaps_multiidx = pd.MultiIndex.from_arrays( @@ -486,14 +503,13 @@ def remove_gaps_from_outliers(gaplist, outldf): """ # to multiindex - outldf = outldf.reset_index().set_index(['name', 'datetime']) + outldf = outldf.reset_index().set_index(["name", "datetime"]) # remove records inside the gaps - suboutldf = remove_gaps_from_obs(gaplist=gaplist, - obsdf=outldf) + suboutldf = remove_gaps_from_obs(gaplist=gaplist, obsdf=outldf) # restet to triple index - outldf = suboutldf.reset_index().set_index(['name', 'datetime', 'obstype']) + outldf = suboutldf.reset_index().set_index(["name", "datetime", "obstype"]) return outldf @@ -502,8 +518,13 @@ def remove_gaps_from_outliers(gaplist, outldf): # Helpers # ============================================================================= def apply_debias_era5_gapfill( - gapslist, dataset, eraModelData, debias_settings, obstype="temp", - overwrite_fill=False): + gapslist, + dataset, + eraModelData, + debias_settings, + obstype="temp", + overwrite_fill=False, +): """Fill all gaps using ERA5 debiaset modeldata. Parameters @@ -526,19 +547,21 @@ def apply_debias_era5_gapfill( None. """ - gapfill_settings = dataset.settings.gap['gaps_fill_info'] + gapfill_settings = dataset.settings.gap["gaps_fill_info"] # Convert modeldata to the same timzone as the data - targettz =str(dataset.df.index.get_level_values('datetime').tz) + targettz = str(dataset.df.index.get_level_values("datetime").tz) eraModelData._conv_to_timezone(targettz) for gap in gapslist: if (not overwrite_fill) & (not gap.gapfill_df.empty): - logger.warning(f'Gap {gap.name} is already filled with {gap.gapfill_technique} and will not be overwirtten. Set overwrite_fill to True to overwrite.') + logger.warning( + f"Gap {gap.name} is already filled with {gap.gapfill_technique} and will not be overwirtten. Set overwrite_fill to True to overwrite." + ) continue - logger.info(f' Era5 gapfill for {gap}') - gap.gapfill_technique = gapfill_settings['label']['model_debias'] + logger.info(f" Era5 gapfill for {gap}") + gap.gapfill_technique = gapfill_settings["label"]["model_debias"] # avoid passing full dataset around station = dataset.get_station(gap.name) @@ -563,15 +586,22 @@ def apply_debias_era5_gapfill( logger.info( "No suitable leading or trailing period found. Gapfill not possible" ) - gap.gapfill_errormessage[obstype] = 'gapfill not possible: no leading/trailing period' + gap.gapfill_errormessage[ + obstype + ] = "gapfill not possible: no leading/trailing period" default_return = pd.Series( index=gap.exp_gap_idx, name=obstype, dtype="object" ) + gap.gapfill_errormessage[ + obstype + ] = "gapfill not possible: no leading/trailing period" default_return.name = obstype gapfill_df = default_return.to_frame() - gapfill_df[obstype + "_" + gapfill_settings["label_columnname"]] = gapfill_settings["label"]["model_debias"] + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["model_debias"] # update the gaps attributes gap.gapfill_df = gapfill_df @@ -589,14 +619,18 @@ def apply_debias_era5_gapfill( logger.info( "No modeldata for the full leading/trailing period found. Gapfill not possible" ) - gap.gapfill_errormessage[obstype] = 'gapfill not possible: not enough modeldata' + gap.gapfill_errormessage[ + obstype + ] = "gapfill not possible: not enough modeldata" default_return = pd.Series( index=gap.exp_gap_idx, name=obstype, dtype="object" ) default_return.name = obstype gapfill_df = default_return.to_frame() - gapfill_df[obstype + "_" + gapfill_settings["label_columnname"]] = gapfill_settings["label"]["model_debias"] + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["model_debias"] # update the gaps attributes gap.gapfill_df = gapfill_df @@ -617,7 +651,9 @@ def apply_debias_era5_gapfill( filled_gap_series.name = obstype gapfill_df = filled_gap_series.to_frame() - gapfill_df[obstype + "_" + gapfill_settings["label_columnname"]] = gapfill_settings["label"]["model_debias"] + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["model_debias"] # update the gaps attributes gap.gapfill_df = gapfill_df @@ -627,9 +663,17 @@ def apply_debias_era5_gapfill( gap.gapfill_errormessage = err_message -def apply_interpolate_gaps(gapslist, obsdf, outliersdf, dataset_res, gapfill_settings, - obstype="temp", method="time", max_consec_fill=100, - overwrite_fill=False): +def apply_interpolate_gaps( + gapslist, + obsdf, + outliersdf, + dataset_res, + gapfill_settings, + obstype="temp", + method="time", + max_consec_fill=100, + overwrite_fill=False, +): """Fill all gaps with interpolation and update attributes. Parameters @@ -660,19 +704,25 @@ def apply_interpolate_gaps(gapslist, obsdf, outliersdf, dataset_res, gapfill_set """ for gap in gapslist: if (not overwrite_fill) & (not gap.gapfill_df.empty): - logger.warning(f'Gap {gap.name} is already filled with {gap.gapfill_technique} and will not be overwirtten. Set overwrite_fill to True to overwrite.') + logger.warning( + f"Gap {gap.name} is already filled with {gap.gapfill_technique} and will not be overwirtten. Set overwrite_fill to True to overwrite." + ) continue - gapfill_series = interpolate_gap(gap=gap, - obsdf=xs_save(obsdf, gap.name, level='name', drop_level=False), - outliersdf=xs_save(outliersdf, gap.name, level='name', drop_level=False), - dataset_res=dataset_res.loc[gap.name], - obstype=obstype, - method=method, - max_consec_fill=max_consec_fill) + gapfill_series = interpolate_gap( + gap=gap, + obsdf=xs_save(obsdf, gap.name, level="name", drop_level=False), + outliersdf=xs_save(outliersdf, gap.name, level="name", drop_level=False), + dataset_res=dataset_res.loc[gap.name], + obstype=obstype, + method=method, + max_consec_fill=max_consec_fill, + ) gapfill_series.name = obstype gapfill_df = gapfill_series.to_frame() - gapfill_df[obstype + "_" + gapfill_settings["label_columnname"]] = gapfill_settings["label"]["linear"] + gapfill_df[ + obstype + "_" + gapfill_settings["label_columnname"] + ] = gapfill_settings["label"]["linear"] # update the gaps attributes gap.gapfill_df = gapfill_df @@ -687,8 +737,8 @@ def make_gapfill_df(gapslist): concatlist = [] for gap in gapslist: subgapfill = gap.gapfill_df.reset_index() - subgapfill['name'] = gap.name - subgapfill = subgapfill.set_index(['name', 'datetime']) + subgapfill["name"] = gap.name + subgapfill = subgapfill.set_index(["name", "datetime"]) concatlist.append(subgapfill) @@ -746,12 +796,14 @@ def missing_timestamp_and_gap_check(df, gapsize_n): station_freqs[station] = likely_freq - missing_datetimeseries = (pd.date_range(start=timestamps.min(), - end=timestamps.max(), - freq=likely_freq) - .difference(timestamps) - .to_series() - .diff()) + missing_datetimeseries = ( + pd.date_range( + start=timestamps.min(), end=timestamps.max(), freq=likely_freq + ) + .difference(timestamps) + .to_series() + .diff() + ) if missing_datetimeseries.empty: continue @@ -766,9 +818,11 @@ def missing_timestamp_and_gap_check(df, gapsize_n): # iterate over the gabs and fill the gapsdf for gap_idx in gap_groups.index: datetime_of_gap_records = consec_missing_groups.get_group(gap_idx).index - gap = Gap(name=station, - startdt=datetime_of_gap_records.min(), - enddt=datetime_of_gap_records.max()) + gap = Gap( + name=station, + startdt=datetime_of_gap_records.min(), + enddt=datetime_of_gap_records.max(), + ) gap_list.append(gap) # combine the missing timestams values @@ -779,12 +833,14 @@ def missing_timestamp_and_gap_check(df, gapsize_n): ).index.to_list() missing_timestamp_series = concat_save( - [missing_timestamp_series, - pd.Series( - index=[station] * len(datetime_of_missing_records), - data=datetime_of_missing_records), - ] - ) + [ + missing_timestamp_series, + pd.Series( + index=[station] * len(datetime_of_missing_records), + data=datetime_of_missing_records, + ), + ] + ) missing_obs_collection = Missingob_collection(missing_timestamp_series) df = df.sort_index() diff --git a/metobs_toolkit/gap_filling.py b/metobs_toolkit/gap_filling.py index cbf8ced1..7adff9bd 100644 --- a/metobs_toolkit/gap_filling.py +++ b/metobs_toolkit/gap_filling.py @@ -24,8 +24,9 @@ # ============================================================================= -def interpolate_gap(gap, obsdf, outliersdf, dataset_res, obstype, - method, max_consec_fill): +def interpolate_gap( + gap, obsdf, outliersdf, dataset_res, obstype, method, max_consec_fill +): """Interpolate a specific gap.""" outliersdf = format_outliersdf_to_doubleidx(outliersdf) @@ -72,12 +73,14 @@ def interpolate_gap(gap, obsdf, outliersdf, dataset_res, obstype, # Make interpolation series gaps_series = pd.Series(data=np.nan, index=gap.exp_gap_idx.droplevel("name")) - gaps_series = pd.concat([gaps_series, - pd.Series( - index=[leading_dt, trailing_dt], data=[leading_val, trailing_val] - ), - ] - ) + gaps_series = pd.concat( + [ + gaps_series, + pd.Series( + index=[leading_dt, trailing_dt], data=[leading_val, trailing_val] + ), + ] + ) gaps_series = gaps_series.sort_index() # Interpolate series @@ -95,17 +98,16 @@ def interpolate_gap(gap, obsdf, outliersdf, dataset_res, obstype, # update gapfill info (for the user) gapfill_df = gaps_series.to_frame() gapfill_df = gapfill_df.reset_index() - gapfill_df = gapfill_df.rename(columns={0: obstype, - 'index': 'datetime'}) - gapfill_df = gapfill_df.set_index('datetime') + gapfill_df = gapfill_df.rename(columns={0: obstype, "index": "datetime"}) + gapfill_df = gapfill_df.set_index("datetime") - gapfill_df['label'] = 'interpolation' - gapfill_df.loc[leading_dt, 'label'] = 'leading observation' - gapfill_df.loc[trailing_dt, 'label'] = 'trailing observation' - gapfill_df['name'] = gap.name + gapfill_df["label"] = "interpolation" + gapfill_df.loc[leading_dt, "label"] = "leading observation" + gapfill_df.loc[trailing_dt, "label"] = "trailing observation" + gapfill_df["name"] = gap.name gapfill_df = gapfill_df.reset_index() - gapfill_df = gapfill_df.set_index(['name', 'datetime']) + gapfill_df = gapfill_df.set_index(["name", "datetime"]) gap.gapfill_info = gapfill_df @@ -124,8 +126,9 @@ def get_sample_size(sample_duration_hours, sta): return int(sample_size) -def create_leading_trailing_debias_periods(station, gap, - debias_period_settings, obstype): +def create_leading_trailing_debias_periods( + station, gap, debias_period_settings, obstype +): """Get the leading and trailing periods of a gap.""" # Get samplesizes debias_pref_sample_size_leading = get_sample_size( @@ -160,7 +163,9 @@ def create_leading_trailing_debias_periods(station, gap, # Select all leading and all trailing obs leading_period = obs[obs["datetime"] < gap.startgap] trailing_period = obs[obs["datetime"] > gap.endgap] - logger.debug(f' {leading_period.shape[0]} leading records, {trailing_period.shape[0]} trailing records.') + logger.debug( + f" {leading_period.shape[0]} leading records, {trailing_period.shape[0]} trailing records." + ) # some derived integers poss_shrinkage_leading = leading_period.shape[0] - debias_min_sample_size_leading @@ -205,7 +210,9 @@ def create_leading_trailing_debias_periods(station, gap, translation_trailing = missing_records leading_df = leading_period - trailing_df = trailing_period[0: (debias_pref_sample_size_trailing + translation_trailing)] + trailing_df = trailing_period[ + 0 : (debias_pref_sample_size_trailing + translation_trailing) + ] logger.debug( f"A translation of {translation_trailing} records is done towards the trailing period. (n_leading + n_trailing is conserved: {leading_df.shape[0] + trailing_df.shape[0]}" @@ -216,7 +223,9 @@ def create_leading_trailing_debias_periods(station, gap, translation_trailing = poss_extention_trailing leading_df = leading_period - trailing_df = trailing_period[0: debias_pref_sample_size_trailing + translation_trailing] + trailing_df = trailing_period[ + 0 : debias_pref_sample_size_trailing + translation_trailing + ] logger.debug( f"A translation of {translation_trailing} records is done towards the trailing period. Since there was not engough translation space for the trailing obs, the condition n_leading + n_trailing is NOT conserved: {leading_df.shape[0] + trailing_df.shape[0]}. \ Both leading and trailing sizes still achieves minimal size restrictions." @@ -253,7 +262,9 @@ def create_leading_trailing_debias_periods(station, gap, # translation without shrinkage is possible translation_leading = missing_records - leading_df = leading_period[-(debias_pref_sample_size_leading + translation_leading):] + leading_df = leading_period[ + -(debias_pref_sample_size_leading + translation_leading) : + ] trailing_df = trailing_period logger.debug( f"A translation of {translation_leading} records is done towards the leading period. (n_leading + n_trailing is conserved: {leading_df.shape[0] + trailing_df.shape[0]}" @@ -323,11 +334,11 @@ def get_time_specific_biases(model, obs, obstype, period): return biases -def make_era_bias_correction(leading_model, trailing_model, - gap_model, leading_obs, trailing_obs, - obstype): +def make_era_bias_correction( + leading_model, trailing_model, gap_model, leading_obs, trailing_obs, obstype +): """Make debias correction of the modeldata for a gap.""" - error_message = '' + error_message = "" # 1. get lead timestamp biases lead_biases = get_time_specific_biases( model=leading_model, obs=leading_obs, obstype=obstype, period="lead" @@ -358,24 +369,27 @@ def make_era_bias_correction(leading_model, trailing_model, ) gap_model = gap_model.merge( - right=trail_biases[["hours", "minutes", "seconds", obstype + "_bias_trail"]], - how="left", - on=["hours", "minutes", "seconds"]) + right=trail_biases[["hours", "minutes", "seconds", obstype + "_bias_trail"]], + how="left", + on=["hours", "minutes", "seconds"], + ) - gap_model = gap_model.set_index(['name', 'datetime']) + gap_model = gap_model.set_index(["name", "datetime"]) # Idea: if BOTH leadin and trailing (hourly) biases is available, than use # use the debias corection (even if it is for a part of the gap!). # If either one or both are missing, than no bias correction is applied - no_debias = gap_model[(gap_model[obstype + '_bias_lead'].isnull()) | - (gap_model[obstype + '_bias_trail'].isnull())].index + no_debias = gap_model[ + (gap_model[obstype + "_bias_lead"].isnull()) + | (gap_model[obstype + "_bias_trail"].isnull()) + ].index if not no_debias.empty: - error_message = f'No debias possible for these gap records: {no_debias},the gap will be filled by model data without bias correction. ' + error_message = f"No debias possible for these gap records: {no_debias},the gap will be filled by model data without bias correction. " logger.warning(error_message) # set weights to zero if not debias correction can be applied on that record - gap_model.loc[no_debias, obstype + '_bias_trail'] = 0. - gap_model.loc[no_debias, obstype + '_bias_lead'] = 0. + gap_model.loc[no_debias, obstype + "_bias_trail"] = 0.0 + gap_model.loc[no_debias, obstype + "_bias_lead"] = 0.0 # 5. compute the debiased fill value # leave this dataframe for debugging @@ -385,10 +399,14 @@ def make_era_bias_correction(leading_model, trailing_model, ) # 7. format gapmodel - gap_model['time'] = (gap_model['hours'].astype(str).str.zfill(2) + ':' + - gap_model['minutes'].astype(str).str.zfill(2) + ':' + - gap_model['seconds'].astype(str).str.zfill(2)) - gap_model = gap_model.rename(columns={obstype: f'{obstype}_model_value'}) + gap_model["time"] = ( + gap_model["hours"].astype(str).str.zfill(2) + + ":" + + gap_model["minutes"].astype(str).str.zfill(2) + + ":" + + gap_model["seconds"].astype(str).str.zfill(2) + ) + gap_model = gap_model.rename(columns={obstype: f"{obstype}_model_value"}) # 6. make returen returnseries = gap_model[obstype + "_debiased_value"] diff --git a/metobs_toolkit/geometry_functions.py b/metobs_toolkit/geometry_functions.py index 1e5c3eda..020b4a66 100644 --- a/metobs_toolkit/geometry_functions.py +++ b/metobs_toolkit/geometry_functions.py @@ -24,7 +24,7 @@ def box_to_extent_list(bbox): return list(bbox.bounds) -def find_extend_of_geodf(geodf, lat_size=1., lon_size=1.): +def find_extend_of_geodf(geodf, lat_size=1.0, lon_size=1.0): """Construct a bounding box for the plot. If the geodf contains more than one point, the bounding box is @@ -42,10 +42,12 @@ def find_extend_of_geodf(geodf, lat_size=1., lon_size=1.): # else: on station center_x, center_y = geodf_extent_box.centroid.x, geodf_extent_box.centroid.y - minx, maxx = center_x - (lon_size / 2.), center_x + (lon_size / 2.) - miny, maxy = center_y - (lat_size / 2.), center_y + (lat_size / 2.) + minx, maxx = center_x - (lon_size / 2.0), center_x + (lon_size / 2.0) + miny, maxy = center_y - (lat_size / 2.0), center_y + (lat_size / 2.0) - return box(min([minx, maxx]), min([miny, maxy]), max([minx, maxx]), max([miny, maxy])) + return box( + min([minx, maxx]), min([miny, maxy]), max([minx, maxx]), max([miny, maxy]) + ) def find_plot_extent(geodf, user_bounds, default_extentlist): diff --git a/metobs_toolkit/landcover_functions.py b/metobs_toolkit/landcover_functions.py index d43bee30..032c035b 100644 --- a/metobs_toolkit/landcover_functions.py +++ b/metobs_toolkit/landcover_functions.py @@ -29,6 +29,7 @@ def connect_to_gee(): ee.Initialize() return + # ============================================================================= # Top level functions (can be called by dataset) # ============================================================================= @@ -85,7 +86,9 @@ def lc_fractions_extractor(metadf, mapinfo, buffer, agg): else: # map numeric classes to human - mapper = {str(num): human for num, human in mapinfo["categorical_mapper"].items()} + mapper = { + str(num): human for num, human in mapinfo["categorical_mapper"].items() + } freqs_df = freqs_df.rename(columns=mapper) return freqs_df, buffer @@ -227,10 +230,10 @@ def coordinates_available(metadf, latcol="lat", loncol="lon"): return True -def _estimate_data_size(metadf, startdt, enddt, mapinfo): - datatimerange = pd.date_range(start=startdt, end=enddt, freq=mapinfo["time_res"]) +def _estimate_data_size(metadf, startdt, enddt, time_res, n_bands=1): + datatimerange = pd.date_range(start=startdt, end=enddt, freq=time_res) - return metadf.shape[0] * len(datatimerange) + return metadf.shape[0] * len(datatimerange) * n_bands # ============================================================================= @@ -303,10 +306,12 @@ def rasterExtraction(image): ) # extract properties - if not bool(results['features']): + if not bool(results["features"]): # no data retrieved - logger.warning(f'Something went wrong, gee did not return any data: {results}') - logger.info(f'(Could it be that (one) these coordinates are not on the map: {metadf}?)') + logger.warning(f"Something went wrong, gee did not return any data: {results}") + logger.info( + f"(Could it be that (one) these coordinates are not on the map: {metadf}?)" + ) return pd.DataFrame() # ============================================================================= @@ -411,7 +416,7 @@ def rasterExtraction(image): def gee_extract_timeseries( - metadf, mapinfo, startdt, enddt, obstype="temp", latcolname="lat", loncolname="lon" + metadf, band_mapper, mapinfo, startdt, enddt, latcolname="lat", loncolname="lon" ): """Extract timeseries data at the stations location from a GEE dataset. @@ -427,14 +432,15 @@ def gee_extract_timeseries( ---------- metadf : pd.DataFrame dataframe containing coordinates and a column "name", representing the name for each location. + band_mapper : dict + the name of the band to extract data from as keys, the default name of + the corresponding obstype as values. mapinfo : Dict The information about the GEE dataset. startdt : datetime obj Start datetime for timeseries (included). enddt : datetime obj End datetime for timeseries (excluded). - obstype : String, optional - toolkit observation type. The default is 'temp'. latcolname : String, optional Columnname of latitude values. The default is 'lat'. loncolname : String, optional @@ -444,18 +450,24 @@ def gee_extract_timeseries( ------- pd.DataFrame A dataframe with name - datetime multiindex, all columns from the metadf + extracted timeseries - column with the same name as the obstype. + column with the same name as the obstypes. """ scale = mapinfo["scale"] - bandname = mapinfo["band_of_use"][obstype]["name"] + bandnames = list(band_mapper.keys()) # test if coordiantes are available if not coordinates_available(metadf, latcolname, loncolname): return pd.DataFrame() use_drive = False - _est_data_size = _estimate_data_size(metadf, startdt, enddt, mapinfo) + _est_data_size = _estimate_data_size( + metadf=metadf, + startdt=startdt, + enddt=enddt, + time_res=mapinfo["time_res"], + n_bands=len(bandnames), + ) if _est_data_size > 4000: print( "THE DATA AMOUT IS TO LAREGE FOR INTERACTIVE SESSION, THE DATA WILL BE EXPORTED TO YOUR GOOGLE DRIVE!" @@ -482,7 +494,10 @@ def rasterExtraction(image): ) return feature - raster = get_ee_obj(mapinfo, bandname) # dataset + # Because the daterange is maxdate exclusive, add the time resolution to the enddt + enddt = enddt + pd.Timedelta(mapinfo["time_res"]) + + raster = get_ee_obj(mapinfo, bandnames) # dataset results = ( raster.filter( ee.Filter.date( @@ -494,7 +509,7 @@ def rasterExtraction(image): .flatten() ) - def format_df(df, obstype, bandname): + def format_df(df, band_mapper): # format datetime df["datetime"] = pd.to_datetime(df["datetime"], format="%Y%m%d%H%M%S") # set timezone @@ -505,9 +520,8 @@ def format_df(df, obstype, bandname): df = df.sort_index() # rename to values to toolkit space - df = df.rename(columns={bandname: obstype}) - - return df[obstype].to_frame() + df = df.rename(columns=band_mapper) + return df if not use_drive: results = results.getInfo() @@ -520,7 +534,10 @@ def format_df(df, obstype, bandname): properties = [x["properties"] for x in results["features"]] df = pd.DataFrame(properties) - df = format_df(df, obstype, bandname) + if df.empty: + sys.exit("ERROR: the returned timeseries from GEE are empty.") + + df = format_df(df, band_mapper) return df else: @@ -534,13 +551,16 @@ def format_df(df, obstype, bandname): f"The timeseries will be writen to your Drive in {_drivefolder}/{_filename} " ) + data_columns = ["datetime", "name"] + data_columns.extend(bandnames) + task = ee.batch.Export.table.toDrive( collection=results, description="extracting_era5", folder=_drivefolder, fileNamePrefix=_filename, fileFormat="CSV", - selectors=["datetime", "name", bandname], + selectors=data_columns, ) task.start() diff --git a/metobs_toolkit/missingobs.py b/metobs_toolkit/missingobs.py index 9df5ea00..5d7b6cf7 100644 --- a/metobs_toolkit/missingobs.py +++ b/metobs_toolkit/missingobs.py @@ -13,11 +13,7 @@ from datetime import timedelta import logging -from metobs_toolkit.df_helpers import ( - _find_closes_occuring_date, - xs_save, - concat_save -) +from metobs_toolkit.df_helpers import _find_closes_occuring_date, xs_save, concat_save logger = logging.getLogger(__name__) @@ -33,16 +29,16 @@ class Missingob_collection: def __init__(self, missing_obs_series): """Init missing observations.""" - missing_obs_series.name = 'datetime' - missing_obs_series.index.name = 'name' + missing_obs_series.name = "datetime" + missing_obs_series.index.name = "name" missing_obs_df = missing_obs_series.reset_index() # needed to find duplicates missing_obs_df = missing_obs_df.drop_duplicates() - missing_obs_series = missing_obs_df.set_index('name')['datetime'] + missing_obs_series = missing_obs_df.set_index("name")["datetime"] missing_obs_series = missing_obs_series.sort_index() missing_idx = missing_obs_series.reset_index() - missing_idx = missing_idx.set_index(['name', 'datetime']) + missing_idx = missing_idx.set_index(["name", "datetime"]) self.series = missing_obs_series self.idx = missing_idx.index @@ -53,17 +49,17 @@ def __init__(self, missing_obs_series): def __add__(self, other): """Append two collections of missing observations.""" - comb_series = concat_save([self.series, other.series]) + comb_series = concat_save([self.series, other.series]) # drop duplicates and sort comb_df = comb_series.reset_index() # needed to find duplicates comb_df = comb_df.drop_duplicates() - comb_series = comb_df.set_index('name')['datetime'] + comb_series = comb_df.set_index("name")["datetime"] comb_series = comb_series.sort_index() self.series = comb_series comb_idx = comb_series.reset_index() - comb_idx = comb_idx.set_index(['name', 'datetime']) + comb_idx = comb_idx.set_index(["name", "datetime"]) self.idx = comb_idx.index return self @@ -74,13 +70,13 @@ def __len__(self): def __str__(self): """Print overview info of missing observations.""" if self.series.empty: - return 'Empty missing observations.' + return "Empty missing observations." if not self.fill_df.empty: - return f'Missing observations with filled ({self.fill_technique}) \ - values: \n {self.fill_df} \n Original missing observations on import: \n {self.idx}' + return f"Missing observations with filled ({self.fill_technique}) \ + values: \n {self.fill_df} \n Original missing observations on import: \n {self.idx}" - return f'Missing observations: \n {self.series}' + return f"Missing observations: \n {self.series}" def __repr__(self): """Print overview info of missing observations.""" @@ -100,39 +96,49 @@ def get_info(self, max_disp_list=7): None. """ - print('\n -------- Missing observations info -------- \n') + print("\n -------- Missing observations info -------- \n") if self.series.empty: - print('Empty missing observations.') + print("Empty missing observations.") return - print('(Note: missing observations are defined on the frequency estimation of the native dataset.)') + print( + "(Note: missing observations are defined on the frequency estimation of the native dataset.)" + ) n_missing = len(self) stations = self.series.index.unique().to_list() - print(f' * {n_missing} missing observations') + print(f" * {n_missing} missing observations") if n_missing <= max_disp_list: - print(f'\n {self.series} \n') + print(f"\n {self.series} \n") if len(stations) <= max_disp_list: - print(f' * For these stations: {stations}') + print(f" * For these stations: {stations}") else: - print(f' * For {len(stations)} stations') + print(f" * For {len(stations)} stations") if self.fill_df.empty: - print(' * The missing observations are not filled.') + print(" * The missing observations are not filled.") else: - filled_obstypes = [obs for obs in self.fill_df.columns if not obs.endswith('_final_label')] - print(f' * Missing observations are filled with {self.fill_technique} for: ') + filled_obstypes = [ + obs for obs in self.fill_df.columns if not obs.endswith("_final_label") + ] + print( + f" * Missing observations are filled with {self.fill_technique} for: " + ) for obstype in filled_obstypes: - print(f' {obstype}: \n {self.fill_df[[obstype]]}') + print(f" {obstype}: \n {self.fill_df[[obstype]]}") # print missing obs that could not be filled - print(' * Missing observations that could NOT be filled for: ') + print(" * Missing observations that could NOT be filled for: ") for obstype in filled_obstypes: - unfilled = self.idx[~self.idx.isin(self.fill_df[[obstype]].dropna().index)] - print(f' {obstype}: \n {unfilled}') + unfilled = self.idx[ + ~self.idx.isin(self.fill_df[[obstype]].dropna().index) + ] + print(f" {obstype}: \n {unfilled}") - print('(More details on the missing observation can be found in the .series and .fill_df attributes.)') + print( + "(More details on the missing observation can be found in the .series and .fill_df attributes.)" + ) return def get_station_missingobs(self, name): @@ -201,16 +207,18 @@ def remove_missing_from_outliers(self, outldf): """ # to multiindex - outldf = outldf.reset_index().set_index(['name', 'datetime']) + outldf = outldf.reset_index().set_index(["name", "datetime"]) # remove records inside the gaps suboutldf = self.remove_missing_from_obs(obsdf=outldf) # reset to triple index - outldf = suboutldf.reset_index().set_index(['name', 'datetime', 'obstype']) + outldf = suboutldf.reset_index().set_index(["name", "datetime", "obstype"]) return outldf - def interpolate_missing(self, obsdf, resolutionseries, obstype='temp', method='time'): + def interpolate_missing( + self, obsdf, resolutionseries, obstype="temp", method="time" + ): """Fill the missing observations using an interpolation method. The "fill_df" and "fill_technique" attributes will be updated. @@ -233,7 +241,7 @@ def interpolate_missing(self, obsdf, resolutionseries, obstype='temp', method='t """ # create fill column for the obstype self.fill_df[obstype] = np.nan - self.fill_technique = 'interpolate' + self.fill_technique = "interpolate" # locate the missing observation in observation space missing_obsspace = self.get_missing_indx_in_obs_space(obsdf, resolutionseries) @@ -241,27 +249,31 @@ def interpolate_missing(self, obsdf, resolutionseries, obstype='temp', method='t self.fill_df = pd.DataFrame(index=missing_obsspace) for staname, missingdt in missing_obsspace: - staobs = xs_save(obsdf, staname, level='name')[obstype] + staobs = xs_save(obsdf, staname, level="name")[obstype] # exclude nan values because they are no good leading/trailing staobs = staobs[~staobs.isnull()] # find leading and trailing datetimes - leading_seconds = _find_closes_occuring_date(refdt=missingdt, - series_of_dt=staobs.index, - where='before') + leading_seconds = _find_closes_occuring_date( + refdt=missingdt, series_of_dt=staobs.index, where="before" + ) if np.isnan(leading_seconds): - logger.warn(f'missing obs: {staname}, at {missingdt} does not have a leading timestamp.') + logger.warn( + f"missing obs: {staname}, at {missingdt} does not have a leading timestamp." + ) continue leading_dt = missingdt - timedelta(seconds=leading_seconds) - trailing_seconds = _find_closes_occuring_date(refdt=missingdt, - series_of_dt=staobs.index, - where='after') + trailing_seconds = _find_closes_occuring_date( + refdt=missingdt, series_of_dt=staobs.index, where="after" + ) if np.isnan(trailing_seconds): - logger.warn(f'missing obs: {staname}, at {missingdt} does not have a trailing timestamp.') + logger.warn( + f"missing obs: {staname}, at {missingdt} does not have a trailing timestamp." + ) continue trailing_dt = missingdt + timedelta(seconds=trailing_seconds) @@ -271,13 +283,15 @@ def interpolate_missing(self, obsdf, resolutionseries, obstype='temp', method='t stadf = pd.DataFrame( index=[leading_dt, missingdt, trailing_dt], - data={obstype: [leading_val, np.nan, trailing_val]} + data={obstype: [leading_val, np.nan, trailing_val]}, ) # interpolate the missing obs - stadf['interp'] = stadf[obstype].interpolate(method=method) + stadf["interp"] = stadf[obstype].interpolate(method=method) - self.fill_df.loc[(staname, missingdt), obstype] = stadf.loc[missingdt, 'interp'] + self.fill_df.loc[(staname, missingdt), obstype] = stadf.loc[ + missingdt, "interp" + ] # if no fill is applied (no leading/trailing), remove them from fill to keep them as missing if not self.fill_df.empty: @@ -304,8 +318,7 @@ def get_missing_indx_in_obs_space(self, obsdf, resolutionseries): The multiindex (name - datetime) is returned with the missing timestamps that are expexted in the observation space. """ - missing_obsspace_df = pd.DataFrame(data={'name': [], - 'datetime': []}) + missing_obsspace_df = pd.DataFrame(data={"name": [], "datetime": []}) # per stationtion because stations can have different resolutions/timerange for sta in self.series.index.unique(): @@ -330,13 +343,13 @@ def get_missing_indx_in_obs_space(self, obsdf, resolutionseries): # Convert to multiindex if sta_missing.empty: continue - sta_missing_df = pd.DataFrame(data={'name': sta, - 'datetime': sta_missing}, - index=None).reset_index(drop=True) + sta_missing_df = pd.DataFrame( + data={"name": sta, "datetime": sta_missing}, index=None + ).reset_index(drop=True) missing_obsspace_df = concat_save([missing_obsspace_df, sta_missing_df]) # convert to mulittindex - missing_obsspace_df = missing_obsspace_df.set_index(['name', 'datetime']) + missing_obsspace_df = missing_obsspace_df.set_index(["name", "datetime"]) return missing_obsspace_df.index diff --git a/metobs_toolkit/modeldata.py b/metobs_toolkit/modeldata.py index 94403794..108b3198 100644 --- a/metobs_toolkit/modeldata.py +++ b/metobs_toolkit/modeldata.py @@ -6,24 +6,31 @@ A Modeldata holds all timeseries coming from a model and methods to use them. """ import os +import copy +import sys import pickle import pandas as pd import logging -from metobs_toolkit.df_helpers import (init_multiindexdf, - conv_tz_multiidxdf, - xs_save, - multiindexdf_datetime_subsetting) - -from metobs_toolkit.landcover_functions import (connect_to_gee, - gee_extract_timeseries) - -from metobs_toolkit.plotting_functions import (model_timeseries_plot, - timeseries_plot) - -from metobs_toolkit.convertors import (convert_to_toolkit_units, - standard_tlk_units) - +from metobs_toolkit.df_helpers import ( + init_multiindexdf, + conv_tz_multiidxdf, + xs_save, + multiindexdf_datetime_subsetting, +) + +from metobs_toolkit.landcover_functions import connect_to_gee, gee_extract_timeseries + +from metobs_toolkit.plotting_functions import model_timeseries_plot, timeseries_plot + +# from metobs_toolkit.obstypes import tlk_obstypes +from metobs_toolkit.obstypes import Obstype as Obstype_class +from metobs_toolkit.obstype_modeldata import ( + model_obstypes, + ModelObstype, + ModelObstype_Vectorfield, +) +from metobs_toolkit.obstype_modeldata import compute_amplitude, compute_angle from metobs_toolkit.settings import Settings logger = logging.getLogger(__name__) @@ -43,35 +50,102 @@ def __init__(self, modelname): self._settings = Settings() self.mapinfo = self._settings.gee["gee_dataset_info"] - self.mapinfo.update(self._settings.alaro['info']) - self._df_units = {} # the units of the data stored in the df - self.df_tz = 'UTC' # the timezone of the datetimes stored in the df + self.df_tz = "UTC" # the timezone of the datetimes stored in the df - self._is_alaro25 = False + self.obstypes = model_obstypes # Dict name: Obstype-instance def __str__(self): """Print overview information of the modeldata.""" if self.df.empty: - return 'Empty Modeldata instance.' - n_stations = self.df.index.get_level_values('name').unique().shape[0] + return "Empty Modeldata instance." + n_stations = self.df.index.get_level_values("name").unique().shape[0] obstypes = self.df.columns.to_list() - startdt = self.df.index.get_level_values('datetime').min() - enddt = self.df.index.get_level_values('datetime').max() + startdt = self.df.index.get_level_values("datetime").min() + enddt = self.df.index.get_level_values("datetime").max() + data_units = [self.obstypes[col].get_standard_unit() for col in self.df.columns] - return (f"Modeldata instance containing: \n \ + return f"Modeldata instance containing: \n \ * Modelname: {self.modelname} \n \ * {n_stations} timeseries \n \ * The following obstypes are available: {obstypes} \n \ - * Data has these units: {self._df_units} \n \ - * From {startdt} --> {enddt} (with tz={self.df_tz}) \n \n (Data is stored in the .df attribute)") + * Data has these units: {data_units} \n \ + * From {startdt} --> {enddt} (with tz={self.df_tz}) \n \n (Data is stored in the .df attribute)" def __repr__(self): """Print overview information of the modeldata.""" return self.__str__() - def add_gee_dataset(self, mapname, gee_location, obstype, bandname, units, - scale, time_res='1H', is_image=False, is_numeric=True, credentials=''): + def get_info(self): + """Print out detailed information on the Modeldata.""" + print(str(self)) + + print("\n ------ Known gee datasets -----------") + self.list_gee_datasets() + + def add_obstype(self, Obstype, bandname, band_units, band_description=None): + """Add a new Observation type for the current Modeldata. + + + Parameters + ---------- + Obstype : metobs_toolkit.obstype.Obstype + The new Obstype to add. + bandname : str + The name of the band that represents the obstype. + band_units : str + The unit the band is in. This unit must be a knonw-unit in the + Obstype. + band_description : str, optional + A detailed description of the band. The default is None. + + Returns + ------- + None. + + """ + if not isinstance(Obstype, Obstype_class): + sys.exit( + f"{Obstype} is not an instance of metobs_toolkit.obstypes.Obstype." + ) + + obs = Obstype + + # Test if the band unit is a knonw unit + if not obs.test_if_unit_is_known(band_units): + sys.exit( + f"The {bandname} unit: {band_units} is not a knonw unit for {obs.name}" + ) + + # Make the modeldata extension + equiv_dict = { + self.modelname: { + "name": str(bandname), + "units": str(band_units), + "band_desc": str(band_description), + } + } + + modeldata_obstype = ModelObstype(obstype=obs, model_equivalent_dict=equiv_dict) + + # add Obstype + self.obstypes[obs.name] = modeldata_obstype + logger.info(f"{obs.name} added to the known observation types.") + + def add_gee_dataset( + self, + mapname, + gee_location, + obstype, + bandname, + units, + scale, + band_desc=None, + time_res="1H", + is_image=False, + is_numeric=True, + credentials="", + ): """Add a new gee dataset to the available gee datasets. Parameters @@ -81,7 +155,7 @@ def add_gee_dataset(self, mapname, gee_location, obstype, bandname, units, gee_location : str Location of the gee dataset (like "ECMWF/ERA5_LAND/HOURLY" for ERA5). obstype : str - The observation type the band corresponds to. + The observation type name the band corresponds to. bandname : str Name of the dataset band as stored on the GEE. units : str @@ -89,6 +163,8 @@ def add_gee_dataset(self, mapname, gee_location, obstype, bandname, units, scale : int The scale to represent the dataset in. (This is a GEE concept that is similar to the resolution in meters). + band_desc : str or None, optional + Add a descrition to of the band. The default is None. time_res : timedelta string, optional Time reoslution of the dataset, if is_image == False. The default is '1H'. is_image : bool, optional @@ -116,92 +192,50 @@ def add_gee_dataset(self, mapname, gee_location, obstype, bandname, units, """ # check if mapname exists if mapname in self.mapinfo.keys(): - logger.warning(f'{mapname} is found in the list of known gee datasets: {list(self.mapinfo.keys())}, choose a different mapname.') + logger.warning( + f"{mapname} is found in the list of known gee datasets: {list(self.mapinfo.keys())}, choose a different mapname." + ) return if is_numeric: - val_typ = 'numeric' + val_typ = "numeric" else: - val_typ = 'categorical' + val_typ = "categorical" + # Dataset defenition new_info = { mapname: { - 'location': f'{gee_location}', - 'usage': 'user defined addition', - 'band_of_use': - {f'{obstype}': - {'name': f'{bandname}', - 'units': f'{units}'} - }, - 'value_type': val_typ, - 'dynamical': not bool(is_image), - 'scale': int(scale), - 'is_image': bool(is_image), - 'is_imagecollection': not bool(is_image), - 'credentials': f'{credentials}', + "location": f"{gee_location}", + "usage": "user defined addition", + "value_type": val_typ, + "dynamical": not bool(is_image), + "scale": int(scale), + "is_image": bool(is_image), + "is_imagecollection": not bool(is_image), + "credentials": f"{credentials}", } } if not is_image: - new_info[mapname]['time_res'] = f'{time_res}' - - self.mapinfo.update(new_info) - logger.info(f'{mapname} is added to the list of available gee dataset with: {new_info}') - return - - def add_band_to_gee_dataset(self, bandname, obstype, units, overwrite=False): - """Add a new band to the current gee dataset (by .modelname attribute). + new_info[mapname]["time_res"] = f"{time_res}" - Parameters - ---------- - bandname : str - Name of the dataset band as stored on the GEE. - obstype : str - The observation type the band corresponds to. - units : str - The units of the band. - overwrite : bool, optional - If True, verwrite the exising bandname when the corresponding - obstype is already mapped to a bandname. The default is False. - - Returns - ------- - None. - - Note - ------- - To list all available gee dataset, use the .list_gee_dataset() method. - - Note - ------- - Currently no unit conversion is perfomed automatically other than K --> - Celcius. This will be implemented in the futur. - - """ - mapname = self.modelname - - # check if mapname exists - if mapname not in self.mapinfo.keys(): - logger.warning(f'{mapname} is not found in the list of known gee datasets: {list(self.mapinfo.keys())}') - return - - if self.mapinfo[mapname]['is_image']: - logger.warning(f'{mapname} is found as a Image. No bandnames can be added to it.') - return - - # check if obstype is already mapped if multiple bands exist - if not isinstance(self.mapinfo[mapname]['band_of_use'], str): - if obstype in self.mapinfo[mapname]['band_of_use'].keys(): - if not overwrite: - logger.warning(f'{obstype} already mapped to a bandname for dataset: {mapname}.') - return + # obstype defenition + # 1. if obstype exists, update the obstype + if obstype in self.obstypes: + self.obstypes[obstype].add_new_band( + mapname=mapname, bandname=bandname, bandunit=units, band_desc=band_desc + ) - # update the dict - new_info = {obstype: {'name': bandname, - 'units': units}} - self.mapinfo[mapname]['band_of_use'].update(new_info) + # 2. if obstype does not exist, create the obstype + else: + sys.exit( + f"{obstype} is an unknown obstype. First add this obstype to the Modeldata, and than add a gee dataset." + ) - logger.info(f'{new_info} is added to the {mapname} bands of use.') + self.mapinfo.update(new_info) + logger.info( + f"{mapname} is added to the list of available gee dataset with: {new_info}" + ) return def list_gee_datasets(self): @@ -212,11 +246,23 @@ def list_gee_datasets(self): None. """ - print('The following datasets are found: ') + print("The following datasets are found: ") for geename, info in self.mapinfo.items(): - print('\n --------------------------------') - print(f'{geename} : \n') - print(f'{info}') + print("\n --------------------------------") + print(f"{geename} : \n") + # find which observations that are mappd + mapped_obs = [ + obstype + for obstype in self.obstypes.values() + if obstype.has_mapped_band(geename) + ] + if len(mapped_obs) == 0: + print(f" No mapped observation types for {geename}.") + else: + for obs in mapped_obs: + obs.get_info() + print("\n INFO: \n") + print(f"{info}") def _conv_to_timezone(self, tzstr): """Convert the timezone of the datetime index of the df attribute. @@ -234,20 +280,16 @@ def _conv_to_timezone(self, tzstr): # get tzstr by datetimindex.tz.zone df = self.df - df['datetime_utc'] = df.index.get_level_values('datetime').tz_convert(tzstr) + df["datetime_utc"] = df.index.get_level_values("datetime").tz_convert(tzstr) df = df.reset_index() - df = df.drop(columns=['datetime']) - df = df.rename(columns={'datetime_utc': 'datetime'}) - df = df.set_index(['name', 'datetime']) + df = df.drop(columns=["datetime"]) + df = df.rename(columns={"datetime_utc": "datetime"}) + df = df.set_index(["name", "datetime"]) self.df = df self.df_tz = tzstr - def convert_units_to_tlk(self, obstype, target_unit_name='Celsius', - conv_expr=None): - """ - Convert the model data of one observation to the standard units as used by the metobs_toolkit. - - If No standard unit is present, you can give a conversion expression. + def convert_units_to_tlk(self, obstype): + """Convert the model data of one observation to the standard units. The data attributes will be updated. @@ -255,55 +297,127 @@ def convert_units_to_tlk(self, obstype, target_unit_name='Celsius', ---------- obstype : str Observation type to convert to standard units. - target_unit_name : str, optional - Target unit name to convert to. The default is 'Celsius'. - conv_expr : str, optional - If the target_unit_name is not a default, you can add the - conversion expression here (i.g. "x - 273.15"). The default is None. Returns ------- None. - Note - ------- - All possible mathematical operations for the conv_expr are [+, -, \*, /]. - x represent the value in the current units. So "x - 273.15" represents - the conversion from Kelvin to Celcius. - """ # chech if data is available if self.df.empty: - logger.warning('No data to set units for.') + logger.warning("No data to set units for.") return - if obstype not in self.df.columns: - logger.warning('{obstype} not found as observationtype in the Modeldata.') + + if obstype not in self.obstypes: + logger.warning( + f"{obstype} not found as a known observationtype in the Modeldata." + ) return - if conv_expr is not None: - new_unit_def = {target_unit_name: { - self._df_units[obstype]: f'{conv_expr}'}} - else: - new_unit_def = {} + if isinstance(self.obstypes[obstype], ModelObstype): + # scalar obstype + if obstype not in self.df.columns: + logger.warning( + f"{obstype} not found as observationtype in the Modeldata." + ) + return + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + # vector obstype + if self.obstypes[obstype].get_u_column() not in self.df.columns: + logger.warning( + f"{self.obstypes[obstype].get_u_column()} not found as observationtype in the Modeldata." + ) + return + if self.obstypes[obstype].get_v_column() not in self.df.columns: + logger.warning( + f"{self.obstypes[obstype].get_v_column()} not found as observationtype in the Modeldata." + ) + return + + cur_unit = self.obstypes[obstype].get_modelunit(self.modelname) - new_data, new_unit = convert_to_toolkit_units(data=self.df[obstype], - data_unit=self._df_units[obstype], - new_units=new_unit_def) + if isinstance(self.obstypes[obstype], ModelObstype): + converted_data = self.obstypes[obstype].convert_to_standard_units( + input_data=self.df[obstype], input_unit=cur_unit + ) + # Update the data and the current unit + self.df[obstype] = converted_data + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + u_comp_name = self.obstypes[obstype].get_u_column() + v_comp_name = self.obstypes[obstype].get_v_column() + u_comp, v_comp = self.obstypes[obstype].convert_to_standard_units( + input_df=self.df, input_unit=cur_unit + ) + + self.df[u_comp_name] = u_comp + self.df[v_comp_name] = v_comp + logger.info( + f"{obstype} are converted from {cur_unit} --> {self.obstypes[obstype].get_standard_unit()}." + ) + + def exploid_2d_vector_field(self, obstype): + """Compute amplitude and direction of 2D vector field components. + + The amplitude and directions are added to the data attribute, and their + equivalent observationtypes are added to the known ModelObstypes. - logger.info(f'{obstype} are converted from {self._df_units[obstype]} --> {new_unit}.') + (The vector components are not saved.) + Parameters + ---------- + obstype : str + The name of the observationtype that is a ModelObstype_Vectorfield. + + Returns + ------- + None. - self.df[obstype] = new_data - self._df_units[obstype] = new_unit + """ + # check if the obstype is a vector field + if not isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + logger.warning( + f"{obstype} is not a 2D vector field, so it can not be exploided." + ) + return - def get_gee_dataset_data(self, mapname, metadf, - startdt_utc, enddt_utc, obstype='temp', - target_unit_name='new unit', conv_expr=None): + # get amplitude of 2D vectors + logger.info(f"Computing the amplited of the 2D vector field of {obstype}") + amp_data, amp_obstype = compute_amplitude( + modelobs_vectorfield=copy.deepcopy(self.obstypes[obstype]), df=self.df + ) + + # # get direction of 2D vectors + logger.info(f"Computing the direction of the 2D vector field of {obstype}") + dir_data, dir_obstype = compute_angle( + modelobs_vectorfield=copy.deepcopy(self.obstypes[obstype]), df=self.df + ) + + # ------ update the attributes --------- + + # add new columns to the df + self.df[amp_obstype.name] = amp_data + self.df[dir_obstype.name] = dir_data + + # remove components from the df (Needed because they are not linked to an obstype) + self.df = self.df.drop( + columns=[ + self.obstypes[obstype].get_u_column(), + self.obstypes[obstype].get_v_column(), + ] + ) + + # add the aggregated obstypes to the known obsytpes + self.obstypes[amp_obstype.name] = amp_obstype + self.obstypes[dir_obstype.name] = dir_obstype + + def get_gee_dataset_data( + self, mapname, metadf, startdt_utc, enddt_utc, obstypes=["temp"] + ): """Extract timeseries of a gee dataset. The extraction can only be done if the gee dataset bandname (and units) corresponding to the obstype is known. - The units are converted to the toolkit standard units. + The units are converted to the toolkit standard units!! Parameters ---------- @@ -316,19 +430,10 @@ def get_gee_dataset_data(self, mapname, metadf, Start datetime of the timeseries in UTC. enddt_utc : datetime.datetime Last datetime of the timeseries in UTC. - obstype : str, optional + obstypes : str or list of strings, optional Toolkit observation type to extract data from. There should be a - bandname mapped to this obstype for the gee map. The default is - 'temp'. - target_unit_name : str, optional - If there is on standard unit for your obstype, or if you do not - want to convert to the standard unit, you can specify the name of - the unit you whant to convert to. This will only be used when a - conversion expression is provided using the conv_expr argument. The - default is 'new unit'. - conv_expr : str, optional - If the target_unit_name is not a default, you can add the - conversion expression here (i.g. "x - 273.15"). The default is None. + bandname mapped to this obstype for the gee map. Multiple obstypes + can be given in a list. The default is 'temp'. Returns @@ -342,52 +447,52 @@ def get_gee_dataset_data(self, mapname, metadf, to provide the Modeldata with the data using the .set_model_from_csv() method. - Note - ------- - All possible mathematical operations for the conv_expr are [+, -, \*, /]. - x represent the value in the current units. So "x - 273.15" represents - the conversion from Kelvin to Celcius. - """ # ==================================================================== # Test input # ==================================================================== if metadf.empty: - logger.warning('The metadf is empty!') + logger.warning("The metadf is empty!") return # Subset metadf to stations with coordinates - no_coord_meta = metadf[metadf[['lat', 'lon']].isna().any(axis=1)] + no_coord_meta = metadf[metadf[["lat", "lon"]].isna().any(axis=1)] if not no_coord_meta.empty: - logger.warning(f'Following stations do not have coordinates, and thus no modeldata extraction is possible: {no_coord_meta.index.to_list()}') - metadf = metadf[~metadf[['lat', 'lon']].isna().any(axis=1)] + logger.warning( + f"Following stations do not have coordinates, and thus no modeldata extraction is possible: {no_coord_meta.index.to_list()}" + ) + metadf = metadf[~metadf[["lat", "lon"]].isna().any(axis=1)] # is mapinfo available if mapname not in self.mapinfo.keys(): - logger.warning(f'{mapname} is not a known gee dataset.') + logger.warning(f"{mapname} is not a known gee dataset.") return geeinfo = self.mapinfo[mapname] # does dataset contain time evolution - if not geeinfo['dynamical']: - logger.warning(f'{mapname} is a static dataset, this method does not work on static datasets') + if not geeinfo["dynamical"]: + logger.warning( + f"{mapname} is a static dataset, this method does not work on static datasets" + ) return - # is obstype mapped? - if obstype not in geeinfo['band_of_use'].keys(): - logger.warning(f'{obstype} is not yet mapped to a bandname in the {mapname} dataset.') - return + # Check obstypes + if isinstance(obstypes, str): + obstypes = [obstypes] # convert to list - # can observation be converted to standaard units? - try: - convert_to_toolkit_units(data=[10, 20, 30], - data_unit=geeinfo['band_of_use'][obstype]['units']) - except: - logger.warning(f"The {geeinfo['band_of_use'][obstype]['units']} cannot be converted to standard toolkit units: ") - # this prints more details - convert_to_toolkit_units(data=[10, 20, 30], - data_unit=geeinfo['band_of_use'][obstype]['units']) + for obstype in obstypes: + # is obstype mapped? + if obstype not in self.obstypes.keys(): + logger.warning( + f"{obstype} is an unknown observation type of the modeldata." + ) + return + if not self.obstypes[obstype].has_mapped_band(mapname): + logger.warning( + f"{obstype} is not yet mapped to a bandname in the {mapname} dataset." + ) + return # ==================================================================== # GEE api extraction @@ -396,38 +501,37 @@ def get_gee_dataset_data(self, mapname, metadf, # Connect to Gee connect_to_gee() + # Get bandname mapper ({bandname1: obstypename1, ...}) + band_mapper = {} + for obstype in obstypes: + band_mapper.update(self.obstypes[obstype].get_bandname_mapper(mapname)) + + logger.info(f"{band_mapper} are extracted from {mapname}.") # Get data using GEE - df = gee_extract_timeseries(metadf=metadf, - mapinfo=geeinfo, - startdt=startdt_utc, - enddt=enddt_utc, - obstype=obstype, - latcolname="lat", - loncolname="lon", - ) - - if not df.empty: - self.df = df - self.modelname = mapname - - self._df_units[obstype] = geeinfo['band_of_use'][obstype]['units'] - if conv_expr is None: - # use standard units - self.convert_units_to_tlk(obstype=obstype, - target_unit_name=standard_tlk_units[obstype], - ) - else: - self.convert_units_to_tlk(obstype=obstype, - target_unit_name=target_unit_name, - conv_expr=conv_expr - ) + df = gee_extract_timeseries( + metadf=metadf, + band_mapper=band_mapper, + mapinfo=geeinfo, + startdt=startdt_utc, + enddt=enddt_utc, + latcolname="lat", + loncolname="lon", + ) - self.df_tz = 'UTC' + self.df = df + self.modelname = mapname + + if not self.df.empty: + self.df_tz = "UTC" + # convert to standard units + for obstype in obstypes: + self.convert_units_to_tlk(obstype) + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + self.exploid_2d_vector_field(obstype) else: self._data_stored_at_drive = True - - def get_ERA5_data(self, metadf, startdt_utc, enddt_utc, obstype='temp'): + def get_ERA5_data(self, metadf, startdt_utc, enddt_utc, obstypes="temp"): """Extract timeseries of the ERA5_hourly dataset. The units are converted to the toolkit standard units. @@ -444,9 +548,10 @@ def get_ERA5_data(self, metadf, startdt_utc, enddt_utc, obstype='temp'): Start datetime of the timeseries in UTC. enddt_utc : datetime.datetime Last datetime of the timeseries in UTC. - obstype : str, optional + obstypes : str or list of str, optional Toolkit observation type to extract data from. There should be a - bandname mapped to this obstype for the gee map. The default is + bandname mapped to this obstype for the gee map. Multiple + observation types can be extracted if given as a list. The default is 'temp'. @@ -462,77 +567,34 @@ def get_ERA5_data(self, metadf, startdt_utc, enddt_utc, obstype='temp'): method. """ - self.get_gee_dataset_data(mapname='ERA5_hourly', - metadf=metadf, - startdt_utc=startdt_utc, - enddt_utc=enddt_utc, - obstype=obstype) - - def set_alaro_25_model_from_csv(self, csvpath): - """Set Alaro 2.5km model as modeldata. - - (This is for the participants of the Cost FAIRNESS Summerschool in Ghent.) - - This method will import the data from the ALARO model, that was send - to you. - - - Parameters - ---------- - csvpath : str - Path to the datafile with ALARO timeseries. (This file was send - to you by email). - - Returns - ------- - None. - - """ - # update name - if self.modelname != 'ALARO_2.5': - logger.info(f'Converting modelname: {self.modelname} --> ALARO_2.5') - self.modelname = 'ALARO_2.5' - - info = self.mapinfo['ALARO_2.5'] - - # read in file - df = pd.read_csv(csvpath, sep=",") - - # Subset to columns in the template - keep_cols = [val['name'] for val in info['band_of_use'].values()] - keep_cols.append(info['other_mapping']['datetime']['name']) - keep_cols.append(info['other_mapping']['name']['name']) - df = df[keep_cols] - - # rename columns to 'defaults' - rename_dict = {val['name']: key for key, val in info['band_of_use'].items()} - rename_dict[info['other_mapping']['datetime']['name']] = 'datetime' - rename_dict[info['other_mapping']['name']['name']] = 'name' - df = df.rename(columns=rename_dict) - - # unit conversion - for col in info['conversions'].keys(): - df[col] = df[col] * info['conversions'][col] - - # format datatime - df["datetime"] = pd.to_datetime(df["datetime"], - format=info['other_mapping']['datetime']['fmt']) - - df["datetime"] = df["datetime"].dt.tz_localize(info['other_mapping']['datetime']['tz']) - - # Make multiidx structure: - df = df.set_index(['name', 'datetime']) - - # 3. update attributes - self.df = df - self.df_tz = info['other_mapping']['datetime']['tz'] - - unit_dict = {key: val['units'] for key, val in info['band_of_use'].items() if 'units' in val} - self._df_units.update(unit_dict) - - self._is_alaro25 = True - - def save_modeldata(self, outputfolder=None, filename='saved_modeldata.pkl', ): + # Check obstypes + if isinstance(obstypes, str): + obstypes = [obstypes] # convert to list + + # test if obstype is known + for obstype in obstypes: + if obstype not in self.obstypes: + sys.exit(f"{obstype} is not a known obstype of the Modeldata instance.") + + # test if the obstype is mapped in the era5 hourly dataset + if "ERA5_hourly" not in self.obstypes[obstype].get_mapped_datasets(): + sys.exit( + f"{obstype} has no equivalent mapped band for the ERA5_hourly dataset." + ) + + self.get_gee_dataset_data( + mapname="ERA5_hourly", + metadf=metadf, + startdt_utc=startdt_utc, + enddt_utc=enddt_utc, + obstypes=obstypes, + ) + + def save_modeldata( + self, + outputfolder=None, + filename="saved_modeldata.pkl", + ): """Save a Modeldata instance to a (pickle) file. Parameters @@ -550,27 +612,29 @@ def save_modeldata(self, outputfolder=None, filename='saved_modeldata.pkl', ): """ # check if outputfolder is known and exists if outputfolder is None: - outputfolder = self.settings.IO['output_folder'] - assert outputfolder is not None, 'No outputfolder is given, and no outputfolder is found in the settings.' + outputfolder = self.settings.IO["output_folder"] + assert ( + outputfolder is not None + ), "No outputfolder is given, and no outputfolder is found in the settings." - assert os.path.isdir(outputfolder), f'{outputfolder} is not a directory!' + assert os.path.isdir(outputfolder), f"{outputfolder} is not a directory!" # check file extension in the filename: - if filename[-4:] != '.pkl': - filename += '.pkl' + if filename[-4:] != ".pkl": + filename += ".pkl" full_path = os.path.join(outputfolder, filename) # check if file exists - assert not os.path.isfile(full_path), f'{full_path} is already a file!' + assert not os.path.isfile(full_path), f"{full_path} is already a file!" - with open(full_path, 'wb') as outp: + with open(full_path, "wb") as outp: pickle.dump(self, outp, pickle.HIGHEST_PROTOCOL) - print(f'Modeldata saved in {full_path}') - logger.info(f'Modeldata saved in {full_path}') + print(f"Modeldata saved in {full_path}") + logger.info(f"Modeldata saved in {full_path}") - def import_modeldata(self, folder_path=None, filename='saved_modeldata.pkl'): + def import_modeldata(self, folder_path=None, filename="saved_modeldata.pkl"): """Import a modeldata instance from a (pickle) file. Parameters @@ -589,17 +653,19 @@ def import_modeldata(self, folder_path=None, filename='saved_modeldata.pkl'): """ # check if folder_path is known and exists if folder_path is None: - folder_path = self.settings.IO['output_folder'] - assert folder_path is not None, 'No folder_path is given, and no outputfolder is found in the settings.' + folder_path = self.settings.IO["output_folder"] + assert ( + folder_path is not None + ), "No folder_path is given, and no outputfolder is found in the settings." - assert os.path.isdir(folder_path), f'{folder_path} is not a directory!' + assert os.path.isdir(folder_path), f"{folder_path} is not a directory!" full_path = os.path.join(folder_path, filename) # check if file exists - assert os.path.isfile(full_path), f'{full_path} does not exist.' + assert os.path.isfile(full_path), f"{full_path} does not exist." - with open(full_path, 'rb') as inp: + with open(full_path, "rb") as inp: modeldata = pickle.load(inp) return modeldata @@ -626,7 +692,7 @@ def set_model_from_csv(self, csvpath): """ # tests ---- if self.modelname not in self.mapinfo.keys(): - logger.warning(f'{self.modelname} is not found in the gee datasets.') + logger.warning(f"{self.modelname} is not found in the gee datasets.") return # 1. Read csv and set timezone @@ -634,38 +700,52 @@ def set_model_from_csv(self, csvpath): # format datetime df["datetime"] = pd.to_datetime(df["datetime"], format="%Y%m%d%H%M%S") # (assume all gee dataset are in UTC) - df["datetime"] = df["datetime"].dt.tz_localize('UTC') - # self.df_tz='UTC' + df["datetime"] = df["datetime"].dt.tz_localize("UTC") # 2. Format dataframe # format index df = df.set_index(["name", "datetime"]) df = df.sort_index() - # rename to values to toolkit space - - bandname = df.columns[0] # assume only one column - # scan to the geeinfo to found which obstype and unit the bandname represents - geeinfo = self.mapinfo[self.modelname] - obstype = [obs for obs, val in geeinfo['band_of_use'].items() if val['name'] == bandname][0] - cur_unit = [val['units'] for obs, val in geeinfo['band_of_use'].items() if val['name'] == bandname][0] + # make a bandname --> tlk name mapper + bandname_mapper = {} + for known_obstype in self.obstypes.values(): + bandname_mapper.update(known_obstype.get_bandname_mapper(self.modelname)) - df = df.rename(columns={bandname: obstype}) + # rename to values to toolkit space + df = df.rename(columns=bandname_mapper) # 3. update attributes - self.df = df[[obstype]] - self.df_tz = 'UTC' - self._df_units[obstype] = cur_unit - - # 4. Convert units - self.convert_units_to_tlk(obstype=obstype, - target_unit_name=standard_tlk_units[obstype]) - - def interpolate_modeldata(self, to_multiidx, obstype="temp"): + self.df = df + self.df_tz = "UTC" + + # 4. Find which obstypes are present + data_present_obstypes = [] + for col in self.df.columns: + if col in self.obstypes.keys(): + # column is a regular obstype + data_present_obstypes.append(col) + else: + # check if column represents a vector component + for known_obs in self.obstypes.values(): + if isinstance(known_obs, ModelObstype_Vectorfield): + comps = [known_obs.get_u_column(), known_obs.get_v_column()] + if col in comps: + data_present_obstypes.append(known_obs.name) + data_present_obstypes = list(set(data_present_obstypes)) + # A. scalar obstypes (same name as column) + + # 5. Convert units + for obstype in data_present_obstypes: + self.convert_units_to_tlk(obstype) + if isinstance(self.obstypes[obstype], ModelObstype_Vectorfield): + self.exploid_2d_vector_field(obstype) + + def interpolate_modeldata(self, to_multiidx): """Interpolate modeldata in time. - Interpolate the modeldata timeseries, of an obstype, to a - given name-datetime multiindex. + Interpolate the modeldata timeseries, to a given name-datetime + multiindex. The modeldata will be converted to the timezone of the multiindex. @@ -676,14 +756,11 @@ def interpolate_modeldata(self, to_multiidx, obstype="temp"): to_multiidx : pandas.MultiIndex A name - datetime (tz-aware) multiindex to interpolate the modeldata timeseries to. - obstype : str, optional - Observation type of the timeseries. obstype must be a column in the - Modeldata.df. The default is "temp". Returns ------- returndf : pandas.DataFrame - A dataframe with to_multiidx as an index and obstype as a column. + A dataframe with to_multiidx as an index. The values are the interpolated values. """ @@ -721,9 +798,9 @@ def interpolate_modeldata(self, to_multiidx, obstype="temp"): mergedf = mergedf.reset_index().set_index("datetime").sort_index() # interpolate missing modeldata - mergedf[obstype].interpolate( - method="time", limit_area="inside", inplace=True - ) + mergedf = mergedf.drop(columns=["name"]) + mergedf.interpolate(method="time", limit_area="inside", inplace=True) + mergedf["name"] = sta # convert back to multiindex mergedf = mergedf.reset_index().set_index(["name", "datetime"]).sort_index() # filter only records @@ -732,12 +809,20 @@ def interpolate_modeldata(self, to_multiidx, obstype="temp"): returndf = pd.concat([returndf, mergedf]) return returndf - def make_plot(self, obstype_model="temp", dataset=None, - obstype_dataset=None, stationnames=None, - starttime=None, endtime=None, title=None, show_outliers=True, - show_filled=True, legend=True, - _ax=None, # needed for GUI, not recommended use - ): + def make_plot( + self, + obstype_model="temp", + dataset=None, + obstype_dataset=None, + stationnames=None, + starttime=None, + endtime=None, + title=None, + show_outliers=True, + show_filled=True, + legend=True, + _ax=None, # needed for GUI, not recommended use + ): """Plot timeseries of the modeldata. This function creates a timeseries plot for the Modeldata. When a @@ -793,17 +878,19 @@ def make_plot(self, obstype_model="temp", dataset=None, # Basic test if obstype_model not in self.df.columns: - logger.warning(f'{obstype_model} is not foud in the modeldata df.') + logger.warning( + f"{obstype_model} is not foud in the modeldata df (columns = {self.df.columns})." + ) return if self.df.empty: - logger.warning('The modeldata is empty.') + logger.warning("The modeldata is empty.") return if obstype_dataset is None: obstype_dataset = obstype_model if dataset is not None: - if (obstype_dataset not in dataset.df.columns): - logger.warning(f'{obstype_dataset} is not foud in the Dataframe df.') + if obstype_dataset not in dataset.df.columns: + logger.warning(f"{obstype_dataset} is not foud in the Dataframe df.") return model_df = self.df @@ -815,7 +902,9 @@ def make_plot(self, obstype_model="temp", dataset=None, # Subset on stationnames if stationnames is not None: - model_df = model_df[model_df.index.get_level_values('name').isin(stationnames)] + model_df = model_df[ + model_df.index.get_level_values("name").isin(stationnames) + ] # Subset on start and endtime model_df = multiindexdf_datetime_subsetting(model_df, starttime, endtime) @@ -826,72 +915,64 @@ def make_plot(self, obstype_model="temp", dataset=None, mergedf = dataset.combine_all_to_obsspace() # subset to obstype - mergedf = xs_save(mergedf, obstype_dataset, level='obstype') + mergedf = xs_save(mergedf, obstype_dataset, level="obstype") # Subset on stationnames if stationnames is not None: - mergedf = mergedf[mergedf.index.get_level_values('name').isin(stationnames)] + mergedf = mergedf[ + mergedf.index.get_level_values("name").isin(stationnames) + ] # Subset on start and endtime mergedf = multiindexdf_datetime_subsetting(mergedf, starttime, endtime) # Generate ylabel - - try: - model_true_field_name = self.mapinfo[self.modelname]['band_of_use'][obstype_model]['name'] - except KeyError: - logger.info(f'No model field name found for {obstype_model} in {self}.') - model_true_field_name = 'Unknown fieldname' - - fieldname = f'{model_true_field_name}' - - if dataset is not None: - dataset_obs_orig_name = dataset.data_template[obstype_dataset]['orig_name'] - units = dataset.data_template[obstype_dataset]['units'] - y_label = f'{fieldname} \n {dataset_obs_orig_name} ({units})' - - else: - - y_label = f'{fieldname} \n ({self._df_units[obstype_model]})' + y_label = self.obstypes[obstype_model].get_plot_y_label(mapname=self.modelname) # Generate title - title = f'{self.modelname} : {model_true_field_name}' + title = f"{self.modelname}" if dataset is not None: - title = f'{title} and {dataset_obs_orig_name} observations.' + title = f"{title} and {self.obstypes[obstype_dataset].name} observations." # make plot of the observations if dataset is not None: # make plot of the observations - _ax, col_map = timeseries_plot(mergedf=mergedf, - title=title, - ylabel=y_label, - colorby='name', - show_legend=legend, - show_outliers=show_outliers, - show_filled=show_filled, - settings=dataset.settings, - _ax=_ax) + _ax, col_map = timeseries_plot( + mergedf=mergedf, + title=title, + ylabel=y_label, + colorby="name", + show_legend=legend, + show_outliers=show_outliers, + show_filled=show_filled, + settings=dataset.settings, + _ax=_ax, + ) # Make plot of the model on the previous axes - ax, col_map = model_timeseries_plot(df=model_df, - obstype=obstype_model, - title=title, - ylabel=y_label, - settings=self._settings, - show_primary_legend=False, - add_second_legend=True, - _ax=_ax, - colorby_name_colordict=col_map) + ax, col_map = model_timeseries_plot( + df=model_df, + obstype=obstype_model, + title=title, + ylabel=y_label, + settings=self._settings, + show_primary_legend=False, + add_second_legend=True, + _ax=_ax, + colorby_name_colordict=col_map, + ) else: # Make plot of model on empty axes - ax, _colmap = model_timeseries_plot(df=model_df, - obstype=obstype_model, - title=title, - ylabel=y_label, - settings=self._settings, - show_primary_legend=legend, - add_second_legend=False, - _ax=_ax) + ax, _colmap = model_timeseries_plot( + df=model_df, + obstype=obstype_model, + title=title, + ylabel=y_label, + settings=self._settings, + show_primary_legend=legend, + add_second_legend=False, + _ax=_ax, + ) return ax diff --git a/metobs_toolkit/obstype_modeldata.py b/metobs_toolkit/obstype_modeldata.py new file mode 100644 index 00000000..46f1ab79 --- /dev/null +++ b/metobs_toolkit/obstype_modeldata.py @@ -0,0 +1,597 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Class defenition of model observationtypes. These are regular observationtypes +witht extra attributes and methods for interacting with the google earht engine. +""" +import sys +import copy +import math +import numpy as np +import logging +from metobs_toolkit.obstypes import Obstype + +from metobs_toolkit.obstypes import temperature, pressure, wind, direction_aliases + +logger = logging.getLogger(__name__) + +# ============================================================================= +# Standard modeldata equivalents +# ============================================================================= +tlk_std_modeldata_obstypes = { + "temp": { + "ERA5_hourly": { + "name": "temperature_2m", + "units": "Kelvin", + "band_desc": "Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.", + } + }, + "pressure": { + "ERA5_hourly": { + "name": "surface_pressure", + "units": "pa", + "band_desc": "Pressure (force per unit area) of the atmosphere on the surface of land, sea and in-land water. It is a measure of the weight of all the air in a column vertically above the area of the Earth's surface represented at a fixed point. Surface pressure is often used in combination with temperature to calculate air density. The strong variation of pressure with altitude makes it difficult to see the low and high pressure systems over mountainous areas, so mean sea level pressure, rather than surface pressure, is normally used for this purpose. The units of this variable are Pascals (Pa). Surface pressure is often measured in hPa and sometimes is presented in the old units of millibars, mb (1 hPa = 1 mb = 100 Pa).", + } + }, + "u_wind": { + "ERA5_hourly": { + "name": "u_component_of_wind_10m", + "units": "m/s", + "band_desc": "Eastward component of the 10m wind. It is the horizontal speed of air moving towards the east, at a height of ten meters above the surface of the Earth, in meters per second. Care should be taken when comparing this variable with observations, because wind observations vary on small space and time scales and are affected by the local terrain, vegetation and buildings that are represented only on average in the ECMWF Integrated Forecasting System. This variable can be combined with the V component of 10m wind to give the speed and direction of the horizontal 10m wind.", + } + }, + "v_wind": { + "ERA5_hourly": { + "name": "v_component_of_wind_10m", + "units": "m/s", + "band_desc": "Northward component of the 10m wind. It is the horizontal speed of air moving towards the north, at a height of ten meters above the surface of the Earth, in meters per second. Care should be taken when comparing this variable with observations, because wind observations vary on small space and time scales and are affected by the local terrain, vegetation and buildings that are represented only on average in the ECMWF Integrated Forecasting System. This variable can be combined with the U component of 10m wind to give the speed and direction of the horizontal 10m wind.", + } + }, +} + + +class ModelObstype(Obstype): + """Extension of the Obstype class specific for the obstypes of Modeldata.""" + + def __init__(self, obstype, model_equivalent_dict={}): + """Initiate an Modelobservation type. + + A ModelObstype has the same properties as an Obstype but with some + extra attributes and methods. + + Parameters + ---------- + obsname : str + The name of the new observation type (i.g. 'sensible_heat_flux'). + std_unit : str + The standard unit for the observation type (i.g. 'J/m²') + obstype_description : str, ptional + A more detailed description of the obstype (i.g. '2m SE inside + canopy'). The default is None. + unit_aliases : dict, optional + A dictionary containing unit alias names. Keys represent a unit and + values are lists with aliases for the units at the keys. The default is {}. + unit_conversions : dict, optional + A dictionary containing the conversion information to map to the + standard units. Here an example of for temperatures (with Celcius + as standard unit): + + {'Kelvin': ["x - 273.15"], #result is in tlk_std_units + 'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write = (x-32)/1.8 + + The default is {}. + + model_equiv_dict : dict + A dictionary with information of how the observation type is found in + modeldata. A example for pressure is: + + {'ERA5_hourly': {'name': 'surface_pressure', 'units': 'pa', + 'band_desc': "Pressure (force per .... + + Returns + ------- + None. + + """ + super().__init__( + obsname=obstype.name, + std_unit=obstype.std_unit, + description=obstype.description, + unit_aliases=obstype.units_aliases, + unit_conversions=obstype.conv_table, + ) + + self.modl_equi_dict = model_equivalent_dict + self._is_valid() + + def __repr__(self): + """Instance representation.""" + return f"ModelObstype instance of {self.name}" + + def __str__(self): + """Text representation.""" + return f"ModelObstype instance of {self.name}" + + def get_info(self): + """Print out detailed information of the observation type. + + Returns + ------- + None. + + """ + databands = {key: item["name"] for key, item in self.modl_equi_dict.items()} + info_str = f"{self.name} observation with: \n \ + * Known datasetsbands: {databands} \n \ + * standard unit: {self.std_unit} \n \ + * description: {self.description} \n \ + * conversions to known units: {self.conv_table} \n" + print(info_str) + + def get_mapped_datasets(self): + """Return all gee datasets with a representing band for this obstype.""" + return list(self.modl_equi_dict.keys()) + + def get_bandname(self, mapname): + """Return the representing bandname of the obstype from a given gee dataset.""" + return str(self.modl_equi_dict[mapname]["name"]) + + def get_bandname_mapper(self, mapname): + """Return the representing bandname with tlk standard name as a dict.""" + return {str(self.modl_equi_dict[mapname]["name"]): self.name} + + def get_plot_y_label(self, mapname): + """Return a string to represent the vertical axes of a plot.""" + return f'{self.name} ({self.std_unit}) \n {mapname}: {self.modl_equi_dict[mapname]["name"]}' + + def get_modelunit(self, mapname): + """Return the units of the representing bandname of the obstype from a given gee dataset.""" + return str(self.modl_equi_dict[mapname]["units"]) + + def has_mapped_band(self, mapname): + """Test is a gee dataset has a representing band.""" + try: + self.get_bandname(mapname) + return True + except KeyError: + return False + + def add_new_band(self, mapname, bandname, bandunit, band_desc=None): + """Add a new representing dataset/bandname to the obstype. + + Parameters + ---------- + mapname : str + name of the known gee dataset. + bandname : str + the name of the representing band. + bandunit : str + the unit of the representing band. + band_desc : str, optional + A detailed description of the band. + + Returns + ------- + None. + + """ + # test if banunit is valid + if not self.test_if_unit_is_known(bandunit): + sys.exit(f"{bandunit} is an unknown unit for the {self.name} obstype.") + + if mapname in self.modl_equi_dict.keys(): + # check if band is already knonw + logger.debug(f"Update {bandname} of (known) map: {mapname}") + else: + logger.debug(f"Add new map: {mapname} with band: {bandname}.") + self.modl_equi_dict[mapname] = { + "name": str(bandname), + "units": str(bandunit), + "band_desc": str(band_desc), + } + + def _is_valid(self): + """Test if all attributes are valid among each other.""" + for datasetname in self.modl_equi_dict.keys(): + # Check if unit is available + if "units" not in self.modl_equi_dict[datasetname].keys(): + sys.exit( + f"No units information is provided for {self.name} for modeldata: {datasetname}" + ) + # check if the unit is known + if not self.test_if_unit_is_known( + unit_name=self.modl_equi_dict[datasetname]["units"] + ): + sys.exit( + f'Cannot create {self.name} ModelObstype because {self.modl_equi_dict[datasetname]["units"]} is a unknown unit.' + ) + + +class ModelObstype_Vectorfield(Obstype): + def __init__( + self, obstype, u_comp_model_equivalent_dict={}, v_comp_model_equivalent_dict={} + ): + + super().__init__( + obsname=obstype.name, + std_unit=obstype.std_unit, + description=obstype.description, + unit_aliases=obstype.units_aliases, + unit_conversions=obstype.conv_table, + ) + + if set(u_comp_model_equivalent_dict.keys()) != set( + v_comp_model_equivalent_dict.keys() + ): + sys.exit( + f"The mapped gee dataset are not equal for the vector components of {obstype.name}." + ) + + mod_comp_dict = {} + for geedataset in u_comp_model_equivalent_dict.keys(): + mod_comp_dict[geedataset] = { + "u_comp": u_comp_model_equivalent_dict[geedataset], + "v_comp": v_comp_model_equivalent_dict[geedataset], + } + + self.modl_comp_dict = mod_comp_dict + self._is_valid() + + def __repr__(self): + """Instance representation.""" + return f"ModelObstype_Vectorfield instance of {self.name}" + + def __str__(self): + """Text representation.""" + return f"ModelObstype_Vectorfield instance of {self.name}" + + def get_info(self): + """Print out detailed information of the observation type. + + Returns + ------- + None. + + """ + u_databands = { + key: item["u_comp"]["name"] for key, item in self.modl_comp_dict.items() + } + v_databands = { + key: item["v_comp"]["name"] for key, item in self.modl_comp_dict.items() + } + info_str = f"{self.name} observation with: \n \ + * Known Vector-East-component datasetsbands: {u_databands} \n \ + * Known Vector-North-component datasetsbands: {v_databands} \n \ + * standard unit: {self.std_unit} \n \ + * description: {self.description} \n \ + * conversions to known units: {self.conv_table} \n" + print(info_str) + + def get_mapped_datasets(self): + """Return all gee datasets with a representing band for this obstype.""" + return list(self.modl_comp_dict.keys()) + + # def get_bandname(self, mapname): + # """Return the representing bandname of the obstype from a given gee dataset.""" + # return str(self.modl_equi_dict[mapname]['name']) + + def get_bandname_mapper(self, mapname): + """Return the representing bandname with tlk standard name as a dict.""" + mapper = { + str(self.modl_comp_dict[mapname]["u_comp"]["name"]): f"u_comp_{self.name}", + str(self.modl_comp_dict[mapname]["v_comp"]["name"]): f"v_comp_{self.name}", + } + + return mapper + + def get_modelunit(self, mapname): + """Return the units of the representing bandname of the obstype from a given gee dataset.""" + # u and v comp must have the same units, this is tested in the _is_valid() + return str(self.modl_comp_dict[mapname]["u_comp"]["units"]) + + def has_mapped_band(self, mapname): + """Test is a gee dataset has a representing band.""" + if mapname in self.modl_comp_dict.keys(): + return True + else: + return False + + def get_plot_y_label(self, mapname): + """Return a string to represent the vertical axes of a plot.""" + return f'{self.name} ({self.std_unit}) \n {mapname}: {self.modl_equi_dict[mapname]["u_comp"]["name"]} and {self.modl_equi_dict[mapname]["v_comp"]["name"]}' + + def get_u_column(self): + return f"u_comp_{self.name}" + + def get_v_column(self): + return f"v_comp_{self.name}" + + def add_new_band( + self, + mapname, + bandname_u_comp, + bandname_v_comp, + bandunit, + band_desc_u_comp=None, + band_desc_v_comp=None, + ): + """Add a new representing dataset/bandname to the obstype. + + Parameters + ---------- + mapname : str + name of the known gee dataset. + bandname_u_comp : str + the name of the representing the Eastwards component band. + bandname_v_comp : str + the name of the representing the Northwards component band. + bandunit : str + the unit of the representing bands. + band_desc_u_comp : str, optional + A detailed description of the Eastwards component of the band. + band_desc_v_comp : str, optional + A detailed description of the Northwards component of the band. + + Returns + ------- + None. + + """ + # test if banunit is valid + if not self.test_if_unit_is_known(bandunit): + sys.exit(f"{bandunit} is an unknown unit for the {self.name} obstype.") + + if mapname in self.modl_comp_dict.keys(): + # check if band is already knonw + logger.debug(f"Update {bandname} of (known) map: {mapname}") + else: + logger.debug(f"Add new map: {mapname} with band: {bandname}.") + + self.modl_comp_dict[mapname] = {} + self.modl_comp_dict[mapname]["u_comp"] = { + "name": str(bandname_u_comp), + "units": str(bandunit), + "band_desc": str(band_desc_u_comp), + } + self.modl_comp_dict[mapname]["v_comp"] = { + "name": str(bandname_v_comp), + "units": str(bandunit), + "band_desc": str(band_desc_v_comp), + } + + def _is_valid(self): + """Test if all attributes are valid among each other.""" + for datasetname in self.modl_comp_dict.keys(): + for comp_str, comp in self.modl_comp_dict[datasetname].items(): + # Check if unit is available + if "units" not in comp.keys(): + sys.exit( + f"No units information is provided for {self.name} for {comp_str} modeldata_vectorfield: {datasetname}" + ) + # check if the unit is known + if not self.test_if_unit_is_known(unit_name=comp["units"]): + sys.exit( + f'Cannot create {self.name} ModelObstype_Vectorfield because {comp["units"]} is a unknown unit in the {comp_str}.' + ) + + # check if the units of the u and v comp are equal + if ( + len( + set( + [ + comp["units"] + for comp in self.modl_comp_dict[datasetname].values() + ] + ) + ) + > 1 + ): + sys.exit( + f"The units of the u and v component for {self.name} in the {datasetname} dataset are not equal." + ) + + def convert_to_standard_units(self, input_df, input_unit): + """Convert data from a known unit to the standard unit. + + The data c must be a pandas dataframe with both the u and v component + prensent as columns. + + Parameters + ---------- + input_data : (collection of) numeric + The data to convert to the standard unit. + input_unit : str + The known unit the inputdata is in. + + Returns + ------- + data_u_component : numeric/numpy.array + The u component of the data in standard units. + data_v_component : + The v component of the data in standard units. + + """ + # check if input unit is known + known = self.test_if_unit_is_known(input_unit) + + # error when unit is not know + if not known: + sys.exit( + f"{input_unit} is an unknown unit for {self.name}. No coversion possible!" + ) + + # Get conversion + std_unit_name = self._get_std_unit_name(input_unit) + if std_unit_name == self.std_unit: + # No conversion needed because already the standard unit + return input_df[self.get_u_column()], input_df[self.get_v_column()] + + conv_expr_list = self.conv_table[std_unit_name] + + # covert data u component + data_u = input_df[self.get_u_column()] + data_v = input_df[self.get_v_column()] + for conv in conv_expr_list: + data_u = expression_calculator(conv, data_u) + data_v = expression_calculator(conv, data_v) + + return data_u, data_v + + +#%% New obs creator functions +def compute_amplitude(modelobs_vectorfield, df): + """Compute amplitude of 2D vectorfield components. + + The amplitude column is added to the dataframe and a new ModelObstype, + representing the amplitude is returned. All attributes wrt the units are + inherited from the ModelObstype_vectorfield. + + Parameters + ---------- + modelobs_vectorfield : ModelObstype_Vectorfield + The vectorfield observation type to compute the vector amplitudes for. + df : pandas.DataFrame + The dataframe with the vector components present as columns. + + Returns + ------- + data : pandas.DataFrame + The df with an extra column representing the amplitudes. + amplitude_obstype : ModelObstype + The (scalar) Modelobstype representation of the amplitudes. + + """ + # Compute the data + data = ( + (df[modelobs_vectorfield.get_u_column()].pow(2)) + + (df[modelobs_vectorfield.get_v_column()].pow(2)) + ).pow(1.0 / 2) + # Create a new obstype for the amplitude + amplitude_obstype = Obstype( + obsname=f"{modelobs_vectorfield.name}_amplitude", + std_unit=modelobs_vectorfield.std_unit, + description=f"2D-vector amplitde of {modelobs_vectorfield.name} components.", + unit_aliases=modelobs_vectorfield.units_aliases, + unit_conversions=modelobs_vectorfield.conv_table, + ) + # convert to model obstype + new_mod_equi = {} + for key, val in modelobs_vectorfield.modl_comp_dict.items(): + new_mod_equi[key] = val["u_comp"] + new_mod_equi[key][ + "name" + ] = f"{val['u_comp']['name']} and {val['v_comp']['name']}" + + amplitude_obstype = ModelObstype( + amplitude_obstype, model_equivalent_dict=new_mod_equi + ) + + return data, amplitude_obstype + + +def compute_angle(modelobs_vectorfield, df): + """Compute vector direction of 2D vectorfield components. + + The direction column is added to the dataframe and a new ModelObstype, + representing the angle is returned. The values represents the angles in + degrees, from north in clock-wise rotation. + + Parameters + ---------- + modelobs_vectorfield : ModelObstype_Vectorfield + The vectorfield observation type to compute the vector directions for. + df : pandas.DataFrame + The dataframe with the vector components present as columns. + + Returns + ------- + data : pandas.DataFrame + The df with an extra column representing the directions. + amplitude_obstype : ModelObstype + The (scalar) Modelobstype representation of the angles. + + """ + + def unit_vector(vector): + """Returns the unit vector of the vector.""" + return vector / np.linalg.norm(vector) + + def angle_between(u_comp, v_comp): + """Returns the angle in ° from North (CW) from 2D Vector components.""" + + v2 = (u_comp, v_comp) + v1_u = unit_vector((0, 1)) # North unit arrow + v2_u = unit_vector(v2) + + angle_rad = np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) + angle_degrees = angle_rad * ((180.0 / math.pi)) + # return angle_degrees + # fix the quadrants + if (v2[0] >= 0) & (v2[1] >= 0): + # N-E quadrant + return angle_degrees + if (v2[0] >= 0) & (v2[1] < 0): + # S-E quadrant + return angle_degrees + if (v2[0] < 0) & (v2[1] < 0): + # S-W quadrant + return 180.0 + (180.0 - angle_degrees) + if (v2[0] < 0) & (v2[1] >= 0): + # N-W quadrant + return 360.0 - angle_degrees + + u_column = modelobs_vectorfield.get_u_column() + v_column = modelobs_vectorfield.get_v_column() + + data = df.apply(lambda x: angle_between(x[u_column], x[v_column]), axis=1) + # Create a new obstype for the amplitude + direction_obstype = Obstype( + obsname=f"{modelobs_vectorfield.name}_direction", + std_unit="° from north (CW)", + description=f"Direction of 2D-vector of {modelobs_vectorfield.name} components.", + unit_aliases=direction_aliases, + unit_conversions={}, + ) + # convert to model obstype + new_mod_equi = {} + for key, val in modelobs_vectorfield.modl_comp_dict.items(): + new_mod_equi[key] = val["u_comp"] + new_mod_equi[key][ + "name" + ] = f"{val['u_comp']['name']} and {val['v_comp']['name']}" + new_mod_equi[key]["units"] = "° from north (CW)" + + direction_obstype = ModelObstype( + direction_obstype, model_equivalent_dict=new_mod_equi + ) + return data, direction_obstype + + +# ============================================================================= +# Define obstypes +# ============================================================================= + +temp_model = ModelObstype( + temperature, model_equivalent_dict=tlk_std_modeldata_obstypes["temp"] +) +pressure_model = ModelObstype( + pressure, model_equivalent_dict=tlk_std_modeldata_obstypes["pressure"] +) + +# Special obstypes +wind.name = "wind" # otherwise it is windspeed, which is confusing for vectorfield +wind_model = ModelObstype_Vectorfield( + wind, + u_comp_model_equivalent_dict=tlk_std_modeldata_obstypes["u_wind"], + v_comp_model_equivalent_dict=tlk_std_modeldata_obstypes["v_wind"], +) + + +# ============================================================================= +# Create obstype dict +# ============================================================================= +model_obstypes = { + "temp": temp_model, + "pressure": pressure_model, + "wind": wind_model, +} diff --git a/metobs_toolkit/obstypes.py b/metobs_toolkit/obstypes.py new file mode 100644 index 00000000..5a298e26 --- /dev/null +++ b/metobs_toolkit/obstypes.py @@ -0,0 +1,477 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Class defenition for regular observation types. The default observationtypes +are define here aswell. +""" + +import sys +import logging +from collections.abc import Iterable + +import numpy as np + +logger = logging.getLogger(__name__) + + +# ============================================================================= +# Standard toolkit units for each observation type +# ============================================================================= + +tlk_std_units = { + "temp": "Celsius", + "radiation_temp": "Celsius", + "humidity": "%", + "precip": "mm/m²", + "precip_sum": "mm/m² from midnight", + "wind_speed": "m/s", + "wind_gust": "m/s", + "wind_direction": "° from north (CW)", + "pressure": "pa", + "pressure_at_sea_level": "pa", +} + + +# ============================================================================= +# Aliases for units +# ============================================================================= + +temp_aliases = { + "Celsius": [ + "celsius", + "°C", + "°c", + "celcius", + "Celcius", + ], # for the dyselectic developper.. + "Kelvin": ["K", "kelvin"], + "Farenheit": ["farenheit"], +} +pressure_aliases = { + "pa": ["Pascal", "pascal", "Pa"], + "hpa": ["hecto pascal", "hPa"], + "psi": ["Psi"], + "bar": ["Bar"], +} + +precip_aliases = {"mm/m²": ["mm", "liter", "liters", "l/m²", "milimeter"]} + +wind_aliases = { + "m/s": ["meters/second", "m/sec"], + "km/h": ["kilometers/hour", "kph"], + "mph": ["miles/hour"], +} +direction_aliases = {"° from north (CW)": ["°", "degrees"]} + + +# conversion between standard-NAMES and aliases +all_units_aliases = { + "temp": temp_aliases, + "radiation_temp": temp_aliases, + "humidity": {"%": ["percent", "percentage"]}, + "pressure": pressure_aliases, + "pressure_at_sea_level": pressure_aliases, + "precip": precip_aliases, + "precip_sum": precip_aliases, + "wind_speed": wind_aliases, + "wind_gust": wind_aliases, + "wind_direction": direction_aliases, +} + +# ============================================================================= +# Unit conversion expressions +# ============================================================================= + +all_conversion_table = { + "temp": { + "Kelvin": ["x - 273.15"], # result is in tlk_std_units + "Farenheit": ["x-32.0", "x/1.8"], + }, # -->execute from left to write = (x-32)/1.8 + "radiation_temp": { + "Kelvin": ["x - 273.15"], # result is in tlk_std_units + "Farenheit": ["x-32.0", "x/1.8"], + }, + "humidity": {}, + "pressure": {"hpa": ["x * 100"], "psi": ["x * 6894.7573"], "bar": ["x * 100000."]}, + "pressure_at_sea_level": { + "hpa": ["x * 100"], + "psi": ["x * 6894.7573"], + "bar": ["x * 100000."], + }, + "precip": {}, + "precip_sum": {}, + "wind_speed": {"km/h": ["x / 3.6"], "mph": ["x * 0.44704"]}, + "wind_gust": {"km/h": ["x / 3.6"], "mph": ["x * 0.44704"]}, + "wind_direction": {}, +} + +# ============================================================================= +# Observation type class +# ============================================================================= + + +class Obstype: + """Object with all info and methods for a specific observation type.""" + + def __init__( + self, obsname, std_unit, description=None, unit_aliases={}, unit_conversions={} + ): + """Initiate an observation type. + + Parameters + ---------- + obsname : str + The name of the new observation type (i.g. 'sensible_heat_flux'). + std_unit : str + The standard unit for the observation type (i.g. 'J/m²') + obstype_description : str, ptional + A more detailed description of the obstype (i.g. '2m SE inside + canopy'). The default is None. + unit_aliases : dict, optional + A dictionary containing unit alias names. Keys represent a unit and + values are lists with aliases for the units at the keys. The default is {}. + unit_conversions : dict, optional + A dictionary containing the conversion information to map to the + standard units. Here an example of for temperatures (with Celcius + as standard unit): + + {'Kelvin': ["x - 273.15"], #result is in tlk_std_units + 'Farenheit' : ["x-32.0", "x/1.8"]}, # -->execute from left to write = (x-32)/1.8 + + The default is {}. + + Returns + ------- + None. + + """ + self.name = str(obsname) # Standard name for the observation type + self.std_unit = str(std_unit) # standard unit fot the observation type + self.description = str(description) + + # Conversion info and mappers + self.units_aliases = unit_aliases + self.conv_table = unit_conversions + + # Original column name and units in the data + self.original_name = None # Updated on IO + self.original_unit = None # updated on IO + + self._check_attributes() + + def __repr__(self): + """Instance representation.""" + return f"Obstype instance of {self.name}" + + def __str__(self): + """Text representation.""" + return f"Obstype instance of {self.name}" + + # ----- Setters ------- + + def set_description(self, desc): + """Set the description of the observation type.""" + self.description = str(desc) + + def set_original_name(self, columnname): + """Set the original name of the observation type.""" + self.original_name = str(columnname) + + def set_original_unit(self, original_unit): + """Set the original unit of the observation type.""" + self.original_unit = str(original_unit) + + # ------ Getters -------- + + def get_info(self): + """Print out detailed information of the observation type. + + Returns + ------- + None. + + """ + info_str = f"{self.name} observation with: \n \ + * standard unit: {self.std_unit} \n \ + * data column as {self.original_name} in {self.original_unit} \n \ + * known units and aliases: {self.units_aliases} \n \ + * description: {self.description} \n \ + * conversions to known units: {self.conv_table} \n\n \ + * originates from data column: {self.original_name} with {self.original_unit} as native unit." + print(info_str) + + def get_orig_name(self): + """Return the original name of the observation type.""" + return self.original_name + + def get_description(self): + """Return the descrition of the observation type.""" + if self.description == str(None): + return "No description available" + else: + return str(self.description) + + def get_all_units(self): + """Return a list with all the known unit (in standard naming).""" + units = list(self.units_aliases.keys()) + units.append(self.get_standard_unit()) + return list(set(units)) + + def get_standard_unit(self): + """Return the standard unit of the observation type.""" + return self.std_unit + + def get_plot_y_label(self, mapname=None): + """Return a string to represent the vertical axes of a plot.""" + return f"{self.name} ({self.std_unit})" + + def add_unit(self, unit_name, conversion=["x"]): + """Add a new unit to an observation type. + + Parameters + ---------- + unit_name : str + The name of the new unit. + conversion : list, optional + The conversion description to the standard unit. The default is + ["x"]. + + Returns + ------- + None. + + """ + # check if unit name is already known + known = self.test_if_unit_is_known(unit_name) + if known: + return + + # convert expression to list if it is a string + if isinstance(conversion, str): + conversion = [conversion] + + # add converstion to the table + self.conv_table[str(unit_name)] = conversion + + # add to alias table (without aliasses) + self.units_aliases[unit_name] = [] + + logger.info( + f"{unit_name} is added as a {self.name} unit with coversion: {conversion} to {self.std_unit}" + ) + + def convert_to_standard_units(self, input_data, input_unit): + """Convert data from a knonw unit to the standard unit. + + The data can be a collection of numeric values or a single numeric + value. + + Parameters + ---------- + input_data : (collection of) numeric + The data to convert to the standard unit. + input_unit : str + The known unit the inputdata is in. + + Returns + ------- + data numeric/numpy.array + The data in standard units. + + """ + # check if input unit is known + known = self.test_if_unit_is_known(input_unit) + + # error when unit is not know + if not known: + sys.exit( + f"{input_unit} is an unknown unit for {self.name}. No coversion possible!" + ) + + # Get conversion + std_unit_name = self._get_std_unit_name(input_unit) + if std_unit_name == self.std_unit: + # No conversion needed because already the standard unit + return input_data + + conv_expr_list = self.conv_table[std_unit_name] + + # covert data + data = input_data + for conv in conv_expr_list: + data = expression_calculator(conv, data) + + return data + + # ------------- Helpers ---------------------------------- + + def _check_attributes(self): + """Add units from the conv_table to the aliases if needed.""" + add_to_aliases = {} + all_std_unit_names = [] + all_aliases = [] + for std_unit, alias_units in self.units_aliases.items(): + all_std_unit_names.append(std_unit) + all_aliases.extend(alias_units) + + # add empty alias for all obstype present in conv table if no aliases are given + for unit in self.conv_table.keys(): + if unit not in all_std_unit_names: + if unit not in all_aliases: + add_to_aliases[unit] = [] + # add std unit to aliases if it is not already present + if self.get_standard_unit() not in all_std_unit_names: + add_to_aliases[self.get_standard_unit()] = [] + + self.units_aliases.update(add_to_aliases) + + def _get_std_unit_name(self, unit_name): + """Get standard name for a unit name by scanning trough the aliases.""" + for std_unit_name, aliases in self.units_aliases.items(): + if unit_name == std_unit_name: + return unit_name + if unit_name in aliases: + return std_unit_name + sys.exit(f"No standard unit name is found for {unit_name} for {self.name}") + + def test_if_unit_is_known(self, unit_name): + """Test is the unit is known. + + Parameters + ---------- + unit_name : str + The unit name to test. + + Returns + ------- + bool + True if knonw, False else. + + """ + if unit_name == self.std_unit: + return True + for std_unit_name, aliases in self.units_aliases.items(): + if unit_name == std_unit_name: + return True + if unit_name in aliases: + return True + return False + + +def expression_calculator(equation, x): + """Convert array by equation.""" + if isinstance(x, Iterable): + x = np.array(x) + + if "+" in equation: + y = equation.split("+") + return x + float(y[1]) + elif "-" in equation: + y = equation.split("-") + return x - float(y[1]) + elif "/" in equation: + y = equation.split("/") + return x / float(y[1]) + elif "*" in equation: + y = equation.split("*") + return x * float(y[1]) + else: + sys.exit(f"expression {equation}, can not be converted to mathematical.") + + +# ============================================================================= +# Create observation types +# ============================================================================= + +temperature = Obstype( + obsname="temp", + std_unit=tlk_std_units["temp"], + description="2m - temperature", + unit_aliases=all_units_aliases["temp"], + unit_conversions=all_conversion_table["temp"], +) + +humidity = Obstype( + obsname="humidity", + std_unit=tlk_std_units["humidity"], + description="2m - relative humidity", + unit_aliases=all_units_aliases["humidity"], + unit_conversions=all_conversion_table["humidity"], +) + +radiation_temp = Obstype( + obsname="radiation_temp", + std_unit=tlk_std_units["radiation_temp"], + description="2m - Black globe", + unit_aliases=all_units_aliases["radiation_temp"], + unit_conversions=all_conversion_table["radiation_temp"], +) + +pressure = Obstype( + obsname="pressure", + std_unit=tlk_std_units["pressure"], + description="atmospheric pressure (at station)", + unit_aliases=all_units_aliases["pressure"], + unit_conversions=all_conversion_table["pressure"], +) + +pressure_at_sea_level = Obstype( + obsname="pressure_at_sea_level", + std_unit=tlk_std_units["pressure_at_sea_level"], + description="atmospheric pressure (at sea level)", + unit_aliases=all_units_aliases["pressure_at_sea_level"], + unit_conversions=all_conversion_table["pressure_at_sea_level"], +) + +precip = Obstype( + obsname="precip", + std_unit=tlk_std_units["precip"], + description="precipitation intensity", + unit_aliases=all_units_aliases["precip"], + unit_conversions=all_conversion_table["precip"], +) + +precip_sum = Obstype( + obsname="precip_sum", + std_unit=tlk_std_units["precip"], + description="Cummulated precipitation", + unit_aliases=all_units_aliases["precip_sum"], + unit_conversions=all_conversion_table["precip_sum"], +) +wind = Obstype( + obsname="wind_speed", + std_unit=tlk_std_units["wind_speed"], + description="wind speed", + unit_aliases=all_units_aliases["wind_speed"], + unit_conversions=all_conversion_table["wind_speed"], +) + +windgust = Obstype( + obsname="wind_gust", + std_unit=tlk_std_units["wind_gust"], + description="wind gust", + unit_aliases=all_units_aliases["wind_gust"], + unit_conversions=all_conversion_table["wind_gust"], +) + +wind_direction = Obstype( + obsname="wind_direction", + std_unit=tlk_std_units["wind_direction"], + description="wind direction", + unit_aliases=all_units_aliases["wind_direction"], + unit_conversions=all_conversion_table["wind_direction"], +) + +# The order of the dictionary is also the order on how columns in dataset are presetnted +tlk_obstypes = { + "temp": temperature, + "humidity": humidity, + "radiation_temp": radiation_temp, + "pressure": pressure, + "pressure_at_sea_level": pressure_at_sea_level, + "precip": precip, + "precip_sum": precip_sum, + "wind_speed": wind, + "wind_gust": windgust, + "wind_direction": wind_direction, +} diff --git a/metobs_toolkit/plotting_functions.py b/metobs_toolkit/plotting_functions.py index 39c4a870..ee502834 100644 --- a/metobs_toolkit/plotting_functions.py +++ b/metobs_toolkit/plotting_functions.py @@ -6,7 +6,7 @@ @author: thoverga """ - +import sys import pandas as pd import math import numpy as np @@ -20,8 +20,15 @@ import matplotlib.dates as mdates from matplotlib.collections import LineCollection +import branca +import branca.colormap as brcm + +import cartopy.crs as ccrs +import cartopy.feature as cfeature + import geemap.foliumap as foliumap import folium +from folium import plugins as folium_plugins from metobs_toolkit.geometry_functions import find_plot_extent from mpl_toolkits.axes_grid1 import make_axes_locatable @@ -32,9 +39,16 @@ logger = logging.getLogger(__name__) -def folium_plot(mapinfo, band, vis_params, labelnames, layername, - basemap='SATELLITE', legendname=None, - legendpos='bottomleft'): +def folium_plot( + mapinfo, + band, + vis_params, + labelnames, + layername, + basemap="SATELLITE", + legendname=None, + legendpos="bottomleft", +): """Make an interactive folium plot of an Image.""" # get the ee.Image im = get_ee_obj(mapinfo, band) @@ -45,22 +59,23 @@ def folium_plot(mapinfo, band, vis_params, labelnames, layername, MAP.add_basemap(basemap) MAP.add_layer(im, vis_params, layername) if legendname: - MAP.add_legend(title=legendname, - labels=labelnames, - colors=vis_params.get('palette'), - position=legendpos) + MAP.add_legend( + title=legendname, + labels=labelnames, + colors=vis_params.get("palette"), + position=legendpos, + ) return MAP def add_stations_to_folium_map(Map, metadf): """Add stations as markers to the folium map.""" - points = metadf['geometry'].to_crs("epsg:4326") + points = metadf["geometry"].to_crs("epsg:4326") for station, point in points.items(): - folium.Marker(location=[point.y, point.x], - fill_color='#43d9de', - popup=station, - radius=8).add_to(Map) + folium.Marker( + location=[point.y, point.x], fill_color="#43d9de", popup=station, radius=8 + ).add_to(Map) return Map @@ -68,6 +83,9 @@ def add_stations_to_folium_map(Map, metadf): # ============================================================================= # Helpers # ============================================================================= +def _get_init_mapcenter(gdf): + center = gdf.dissolve().centroid.iloc[0] + return [center.y, center.x] def map_obstype(obstype, template): @@ -100,7 +118,9 @@ def make_cat_colormapper(catlist, cmapname): # check number of colors in the cmap if cmap.N < len(catlist): - logger.warning(f'colormap: {cmapname}, is not well suited to color {len(catlist)} categories.') + logger.warning( + f"colormap: {cmapname}, is not well suited to color {len(catlist)} categories." + ) same_col_n_groups = np.ceil(len(catlist) / cmap.N) # group cateogries and color them by group @@ -130,10 +150,156 @@ def make_cat_colormapper(catlist, cmapname): # ============================================================================= -def geospatial_plot(plotdf, variable, timeinstance, title, legend, vmin, vmax, - plotsettings, categorical_fields, static_fields, - display_name_mapper, world_boundaries_map, data_template, - boundbox): +def make_folium_html_plot( + gdf, + variable_column, + var_display_name, + var_unit, + label_column, + label_col_map, + vmin=None, + vmax=None, + radius=13, + fill_alpha=0.6, + mpl_cmap_name="viridis", + max_fps=4, + dt_disp_fmt="%Y-%m-%d %H:%M", +): + + # create a map + m = folium.Map( + location=_get_init_mapcenter(gdf), + tiles="cartodbpositron", + zoom_start=10, + attr="", + ) + + # add extra tiles + folium.TileLayer("OpenStreetMap", overlay=False, name="OSM").add_to(m) + # RIP free Stamen tiles + # folium.TileLayer("Stamen Terrain", overlay=False, name='Terrain', show=False).add_to(m) + # folium.TileLayer("stamentoner", overlay=False, name='Toner', show=False).add_to(m) + + # Coloring + if vmin is None: + vmin = gdf[variable_column].min() + if vmax is None: + vmax = gdf[variable_column].max() + + # Create colormap to display on the map + norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True) + mapper = matplotlib.cm.ScalarMappable( + norm=norm, cmap=matplotlib.colormaps[mpl_cmap_name] + ) + colormap = brcm.LinearColormap( + colors=mapper.cmap.colors, + index=None, + vmin=vmin, + vmax=vmax, + caption=f"{var_display_name} ({var_unit}) colorbar", + ) + + # linear colorscale for values + def map_value_to_hex(series, vmin, vmax, cmapname="viridis"): + norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=True) + mapper = matplotlib.cm.ScalarMappable( + norm=norm, cmap=matplotlib.colormaps[cmapname] + ) + + return series.apply(lambda x: str(matplotlib.colors.to_hex(mapper.to_rgba(x)))) + + gdf["value_color"] = map_value_to_hex( + gdf[variable_column], vmin, vmax, cmapname=mpl_cmap_name + ) + + # check if all labels are defined + if ( + len( + [ + lab + for lab in gdf[label_column].unique() + if lab not in label_col_map.keys() + ] + ) + > 0 + ): + sys.exit( + f'Unmapped labels found: {[lab for lab in gdf["label"].unique() if lab not in label_col_map.keys()]}' + ) + + gdf["label_color"] = gdf[label_column].map(label_col_map) + + # Serialize Data to Features + def make_scater_feature(row): + dtstring = pd.to_datetime([row["datetime"]]).strftime(dt_disp_fmt)[0] + coords = [[row["geometry"].x, row["geometry"].y]] + popup_str = f" {row['name']}
{'{:.1f}'.format(row[variable_column])} {var_unit}
{row[label_column]}" + + features_instance = { + "type": "Feature", + "geometry": { + "type": "MultiPoint", + "coordinates": coords, + }, + "properties": { + "times": [dtstring], + "popup": popup_str, + "tooltip": f'{row["name"]}', + "id": "geenidee", + "icon": "circle", + "iconstyle": { + "fillColor": row["value_color"], + "fillOpacity": fill_alpha, + "stroke": "false", + "radius": radius, + "color": row["label_color"], + }, + }, + } + return features_instance + + features = gdf.apply(make_scater_feature, axis=1).to_list() + + # Add data to the map + folium_plugins.TimestampedGeoJson( + { + "type": "FeatureCollection", + "features": features, + }, + period="PT1H", + duration="PT1H", + add_last_point=False, + auto_play=False, + loop=False, + max_speed=max_fps, # fps + loop_button=True, + date_options="YYYY/MM/DD HH:mm:ss", + time_slider_drag_update=True, + ).add_to(m) + + m.add_child(colormap) + # add control + folium.LayerControl().add_to(m) + + return m + + +def geospatial_plot( + plotdf, + variable, + timeinstance, + title, + legend, + legend_title, + vmin, + vmax, + plotsettings, + categorical_fields, + static_fields, + display_name_mapper, + data_template, + boundbox, +): """Make geospatial plot of a variable (matplotlib). Parameters @@ -164,8 +330,6 @@ def geospatial_plot(plotdf, variable, timeinstance, title, legend, vmin, vmax, display_name_mapper : dict Must contain at least {varname: varname_str_rep}, where the varname_str_rep is the string representation of the variable to plot. - world_boundaries_map : str - Location of the world boundaries shape file. data_template : dict The dataset template for string representations. boundbox : shapely.box @@ -187,7 +351,9 @@ def geospatial_plot(plotdf, variable, timeinstance, title, legend, vmin, vmax, ignored_stations = plotdf[plotdf["geometry"].isnull()] plotdf = plotdf[~plotdf["geometry"].isnull()] if plotdf.empty: - logger.warning(f"No coordinate data found, geoplot can not be made. Plotdf: {plotdf}") + logger.warning( + f"No coordinate data found, geoplot can not be made. Plotdf: {plotdf}" + ) return if not ignored_stations.empty: @@ -196,18 +362,10 @@ def geospatial_plot(plotdf, variable, timeinstance, title, legend, vmin, vmax, f"No coordinate found for following stations: {ignored_stations.index.to_list()}, these will be ignored in the geo-plot!" ) - # make legend/colorbar title - try: - templ_map = map_obstype(variable, data_template) - legend_title = f'{templ_map["orig_name"]} ({templ_map["units"]})' - except KeyError: - legend_title = variable - # make color scheme for field if variable in categorical_fields: is_categorical = True if variable == "lcz": - legend_title = 'LCZ' # use all available LCZ categories use_quantiles = False else: @@ -217,18 +375,11 @@ def geospatial_plot(plotdf, variable, timeinstance, title, legend, vmin, vmax, use_quantiles = False # if observations extend is contained by default exten, use default else use obs extend - use_extent = find_plot_extent(geodf=gpd.GeoDataFrame(plotdf), - user_bounds=boundbox, - default_extentlist=default_settings["extent"] - ) - - # Style attributes - if isinstance(title, type(None)): - if variable in static_fields: - title = display_name_mapper[variable] - else: - dtstring = datetime.strftime(timeinstance, default_settings["fmt"]) - title = display_name_mapper[variable] + " at " + dtstring + use_extent = find_plot_extent( + geodf=gpd.GeoDataFrame(plotdf), + user_bounds=boundbox, + default_extentlist=default_settings["extent"], + ) ax = _spatial_plot( gdf=plotdf, @@ -238,7 +389,6 @@ def geospatial_plot(plotdf, variable, timeinstance, title, legend, vmin, vmax, is_categorical=is_categorical, k_quantiles=default_settings["n_for_categorical"], cmap=default_settings["cmap"], - world_boundaries_map=world_boundaries_map, figsize=default_settings["figsize"], extent=use_extent, title=title, @@ -257,7 +407,6 @@ def _spatial_plot( is_categorical, k_quantiles, cmap, - world_boundaries_map, figsize, extent, title, @@ -267,7 +416,11 @@ def _spatial_plot( ): # TODO: docstring + beter positionion of the lengends gdf = gpd.GeoDataFrame(gdf) - fig, ax = plt.subplots(1, 1, figsize=figsize) + gdf = gdf.to_crs("epsg:4326") + + fig, ax = plt.subplots( + 1, 1, figsize=figsize, subplot_kw={"projection": ccrs.PlateCarree()} + ) # Make color scheme if use_quantiles: @@ -281,20 +434,18 @@ def _spatial_plot( if is_categorical: # categorical legend - legend_kwds = {"loc": "best", 'title': legend_title} + legend_kwds = {"loc": "best", "title": legend_title} vmin = None vmax = None cax = None else: # colorbar - legend_kwds = {'label': legend_title} + legend_kwds = {"label": legend_title} divider = make_axes_locatable(ax) - cax = divider.append_axes("right", size="5%", pad=0.1) - - # world map as underlayer - world_boundaries = gpd.read_file(world_boundaries_map) - world_boundaries.plot(ax=ax) + cax = divider.append_axes( + "right", size="5%", pad=0.1, axes_class=matplotlib.axes._axes.Axes + ) # add observations as scatters gdf.plot( @@ -304,7 +455,7 @@ def _spatial_plot( vmin=vmin, vmax=vmax, # color='black', - edgecolor='black', + edgecolor="black", # linewidth=0.5, # scale='NUMBER OF PERSONS KILLED', # limits=(8, 24), @@ -322,6 +473,10 @@ def _spatial_plot( ax.set_xlim(left=extent[0], right=extent[2]) ax.set_ylim(bottom=extent[1], top=extent[3]) + ax.add_feature(cfeature.LAND) + ax.add_feature(cfeature.BORDERS) + ax.add_feature(cfeature.COASTLINE) + ax.set_title(title) return ax @@ -354,17 +509,22 @@ def _format_datetime_axis(axes): return axes -def _create_linecollection(linedf, colormapper, linestylemapper, - plotsettings, const_color=None, - value_col_name='value', - label_col_name='label'): +def _create_linecollection( + linedf, + colormapper, + linestylemapper, + plotsettings, + const_color=None, + value_col_name="value", + label_col_name="label", +): # 1. convert datetime to numerics values - if linedf.index.name == 'datetime': + if linedf.index.name == "datetime": inxval = mdates.date2num(linedf.index.to_pydatetime()) else: linedf = linedf.reset_index() - linedf = linedf.set_index('datetime') + linedf = linedf.set_index("datetime") inxval = mdates.date2num(linedf.index.to_pydatetime()) # 2. convert df to segments @@ -376,23 +536,33 @@ def _create_linecollection(linedf, colormapper, linestylemapper, color = linedf[label_col_name].map(colormapper).to_list() else: color = [const_color] * linedf.shape[0] - linewidth = [plotsettings['time_series']['linewidth']] * linedf.shape[0] - zorder = plotsettings['time_series']['linezorder'] - linestyle = linedf[label_col_name].map(linestylemapper).fillna('-').to_list() + linewidth = [plotsettings["time_series"]["linewidth"]] * linedf.shape[0] + zorder = plotsettings["time_series"]["linezorder"] + linestyle = linedf[label_col_name].map(linestylemapper).fillna("-").to_list() # 4. Make line collection - lc = LineCollection(segments=segments, - colors=color, - linewidths=linewidth, - zorder=zorder, - linestyle=linestyle) + lc = LineCollection( + segments=segments, + colors=color, + linewidths=linewidth, + zorder=zorder, + linestyle=linestyle, + ) return lc -def timeseries_plot(mergedf, title, ylabel, colorby, show_legend, - show_outliers, show_filled, settings, - _ax=None, # needed for GUI, not recommended use - colorby_name_colordict=None): # when colorscheme will be reused +def timeseries_plot( + mergedf, + title, + ylabel, + colorby, + show_legend, + show_outliers, + show_filled, + settings, + _ax=None, # needed for GUI, not recommended use + colorby_name_colordict=None, +): # when colorscheme will be reused """Make a timeseries plot. Parameters @@ -424,7 +594,6 @@ def timeseries_plot(mergedf, title, ylabel, colorby, show_legend, ------- ax : matplotlib.pyplot.axes The plotted axes. - colormapper : dict The use colormap. @@ -441,27 +610,37 @@ def timeseries_plot(mergedf, title, ylabel, colorby, show_legend, mergedf = mergedf[~mergedf.index.duplicated()] # get min max datetime to set xrange - dt_min = mergedf.index.get_level_values('datetime').min() - dt_max = mergedf.index.get_level_values('datetime').max() + dt_min = mergedf.index.get_level_values("datetime").min() + dt_max = mergedf.index.get_level_values("datetime").max() # define different groups (different plotting styles) # ok group - ok_labels = ['ok'] + ok_labels = ["ok"] # filled value groups - fill_labels = [val for val in settings.gap['gaps_fill_info']['label'].values()] - missing_fill_labels = [val for val in settings.missing_obs['missing_obs_fill_info']['label'].values()] + fill_labels = [val for val in settings.gap["gaps_fill_info"]["label"].values()] + missing_fill_labels = [ + val for val in settings.missing_obs["missing_obs_fill_info"]["label"].values() + ] fill_labels.extend(missing_fill_labels) # qc outlier labels - qc_labels = [val['outlier_flag'] for key, val in settings.qc['qc_checks_info'].items()] + qc_labels = [ + val["outlier_flag"] for key, val in settings.qc["qc_checks_info"].items() + ] # no value group - no_vals_labels = [settings.gap['gaps_info']['gap']['outlier_flag'], - settings.gap['gaps_info']['missing_timestamp']['outlier_flag']] + no_vals_labels = [ + settings.gap["gaps_info"]["gap"]["outlier_flag"], + settings.gap["gaps_info"]["missing_timestamp"]["outlier_flag"], + ] # duplicated timestamp and invalid input outliers do not have a known value, so add them to this group - no_vals_labels.append(settings.qc['qc_checks_info']['duplicated_timestamp']['outlier_flag']) - no_vals_labels.append(settings.qc['qc_checks_info']['invalid_input']['outlier_flag']) + no_vals_labels.append( + settings.qc["qc_checks_info"]["duplicated_timestamp"]["outlier_flag"] + ) + no_vals_labels.append( + settings.qc["qc_checks_info"]["invalid_input"]["outlier_flag"] + ) # no_vals_df = mergedf[mergedf['label'].isin(no_vals_labels)] @@ -472,60 +651,70 @@ def timeseries_plot(mergedf, title, ylabel, colorby, show_legend, col_mapper = _all_possible_labels_colormapper(settings) # get color mapper # linestyle mapper - line_mapper = {lab: plot_settings['time_series']['linestyle_ok'] for lab in ok_labels} - line_mapper.update({lab: plot_settings['time_series']['linestyle_fill'] for lab in fill_labels}) + line_mapper = { + lab: plot_settings["time_series"]["linestyle_ok"] for lab in ok_labels + } + line_mapper.update( + {lab: plot_settings["time_series"]["linestyle_fill"] for lab in fill_labels} + ) # set hight of the vertical lines for no vals - vlin_min = mergedf[mergedf['label'] == 'ok']['value'].min() - vlin_max = mergedf[mergedf['label'] == 'ok']['value'].max() + vlin_min = mergedf[mergedf["label"] == "ok"]["value"].min() + vlin_max = mergedf[mergedf["label"] == "ok"]["value"].max() # line labels - line_labels = ['ok'] + line_labels = ["ok"] line_labels.extend(fill_labels) # ------ missing obs ------ (vertical lines) - missing_df = mergedf[mergedf['label'].isin(no_vals_labels)] + missing_df = mergedf[mergedf["label"].isin(no_vals_labels)] missing_df = missing_df.reset_index() - ax.vlines(x=missing_df['datetime'].to_numpy(), - ymin=vlin_min, - ymax=vlin_max, - linestyle="--", - color=missing_df['label'].map(col_mapper), - zorder=plot_settings['time_series']["dashedzorder"], - linewidth=plot_settings['time_series']["linewidth"]) + ax.vlines( + x=missing_df["datetime"].to_numpy(), + ymin=vlin_min, + ymax=vlin_max, + linestyle="--", + color=missing_df["label"].map(col_mapper), + zorder=plot_settings["time_series"]["dashedzorder"], + linewidth=plot_settings["time_series"]["linewidth"], + ) # ------ outliers ------ (scatters) - outlier_df = mergedf[mergedf['label'].isin(qc_labels)] + outlier_df = mergedf[mergedf["label"].isin(qc_labels)] outlier_df = outlier_df.reset_index() outlier_df.plot( kind="scatter", x="datetime", - y='value', + y="value", ax=ax, - color=outlier_df['label'].map(col_mapper), + color=outlier_df["label"].map(col_mapper), legend=False, zorder=plot_settings["time_series"]["scatterzorder"], s=plot_settings["time_series"]["scattersize"], ) # -------- Ok and filled observation -------- (lines) - for sta in mergedf.index.get_level_values('name').unique(): - stadf = xs_save(mergedf, sta, 'name') # subset to one station - linedf = stadf[stadf['label'].isin(line_labels)] # subset all obs that are repr by lines + for sta in mergedf.index.get_level_values("name").unique(): + stadf = xs_save(mergedf, sta, "name") # subset to one station + linedf = stadf[ + stadf["label"].isin(line_labels) + ] # subset all obs that are repr by lines # now add the other records, and convert the value to nan to avoid # interpolation in the plot - stadf.loc[~stadf.index.isin(linedf.index), 'value'] = np.nan + stadf.loc[~stadf.index.isin(linedf.index), "value"] = np.nan # (WARNING): The above line converts all values in the mergedf, to # Nan's if the label is not in 'line_labels' !!! Thus plot all other # categories in advance and the line plot at the end. The zorder, # takes care of what is displayed on top. # make line collection - sta_line_lc = _create_linecollection(linedf=stadf, - colormapper=col_mapper, - linestylemapper=line_mapper, - plotsettings=plot_settings) + sta_line_lc = _create_linecollection( + linedf=stadf, + colormapper=col_mapper, + linestylemapper=line_mapper, + plotsettings=plot_settings, + ) ax.add_collection(sta_line_lc) # create legend @@ -533,108 +722,135 @@ def timeseries_plot(mergedf, title, ylabel, colorby, show_legend, custom_handles = [] # add legend items to it label_vec = [] # add type of label - for label in mergedf['label'].unique(): + for label in mergedf["label"].unique(): outl_color = col_mapper[label] if label in ok_labels: custom_handles.append( - Line2D([0], [0], color=outl_color, label="ok", lw=4)) + Line2D([0], [0], color=outl_color, label="ok", lw=4) + ) label_vec.append(1) elif label in fill_labels: - custom_handles.append(Line2D([0], [0], - color=outl_color, - label=f"filled value ({label})", - lw=1, - linestyle="--",) - ) + custom_handles.append( + Line2D( + [0], + [0], + color=outl_color, + label=f"filled value ({label})", + lw=1, + linestyle="--", + ) + ) label_vec.append(2) elif label in no_vals_labels: - custom_handles.append(Line2D([0], [0], - color=outl_color, - label=f"{label}", - lw=1, - linestyle='--', - linewidth=2, - ) - ) + custom_handles.append( + Line2D( + [0], + [0], + color=outl_color, + label=f"{label}", + lw=1, + linestyle="--", + linewidth=2, + ) + ) label_vec.append(3) else: - custom_handles.append(Line2D([0], [0], - marker="o", - color="w", - markerfacecolor=outl_color, - label=label, - lw=1,) - ) + custom_handles.append( + Line2D( + [0], + [0], + marker="o", + color="w", + markerfacecolor=outl_color, + label=label, + lw=1, + ) + ) label_vec.append(4) custom_handles = _sorting_function(label_vec, custom_handles) box = ax.get_position() - ax.set_position([box.x0, box.y0 + box.height * 0.2, - box.width, box.height * 0.85]) - ax.legend(handles=custom_handles, loc='upper center', - bbox_to_anchor=(0.5, -0.25), - fancybox=True, shadow=True, - ncol=plot_settings["time_series"]["legend_n_columns"]) + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.85] + ) + ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.25), + fancybox=True, + shadow=True, + ncol=plot_settings["time_series"]["legend_n_columns"], + ) elif colorby == "name": # subset obs to plot - line_labels = ['ok'] + line_labels = ["ok"] if show_outliers: line_labels.extend(qc_labels) if show_filled: line_labels.extend(fill_labels) # all lines are solid lines - line_style_mapper = {lab: '-' for lab in line_labels} + line_style_mapper = {lab: "-" for lab in line_labels} # create color mapper if none is given if colorby_name_colordict is None: - col_mapper = make_cat_colormapper(mergedf.index.get_level_values('name').unique(), - plot_settings['time_series']['colormap']) + col_mapper = make_cat_colormapper( + mergedf.index.get_level_values("name").unique(), + plot_settings["time_series"]["colormap"], + ) else: col_mapper = colorby_name_colordict # iterate over station and make line collection to avoid interpolation - for sta in mergedf.index.get_level_values('name').unique(): - stadf = xs_save(mergedf, sta, 'name') # subset to one station - linedf = stadf[stadf['label'].isin(line_labels)] # subset all obs that are repr by lines + for sta in mergedf.index.get_level_values("name").unique(): + stadf = xs_save(mergedf, sta, "name") # subset to one station + linedf = stadf[ + stadf["label"].isin(line_labels) + ] # subset all obs that are repr by lines # now add the other records, and convert the value to nan to avoid # interpolation in the plot - stadf.loc[~stadf.index.isin(linedf.index), 'value'] = np.nan + stadf.loc[~stadf.index.isin(linedf.index), "value"] = np.nan # make line collection - sta_line_lc = _create_linecollection(linedf=stadf, - colormapper=None, - const_color=col_mapper[sta], - linestylemapper=line_style_mapper, - plotsettings=plot_settings) + sta_line_lc = _create_linecollection( + linedf=stadf, + colormapper=None, + const_color=col_mapper[sta], + linestylemapper=line_style_mapper, + plotsettings=plot_settings, + ) ax.add_collection(sta_line_lc) if show_legend is True: # create a legend item for each station custom_handles = [] # add legend items to it - names = mergedf.index.get_level_values('name').unique().to_list() + names = mergedf.index.get_level_values("name").unique().to_list() # sort legend items alphabetically names.sort() for sta in names: - custom_handles.append(Line2D([0], [0], - color=col_mapper[sta], - label=sta, - lw=4)) + custom_handles.append( + Line2D([0], [0], color=col_mapper[sta], label=sta, lw=4) + ) box = ax.get_position() - ax.set_position([box.x0, box.y0 + box.height * 0.2, - box.width, box.height * 0.88]) - primary_legend = ax.legend(handles=custom_handles, loc='upper center', - bbox_to_anchor=(0.5, -0.2), - fancybox=True, shadow=True, - ncol=plot_settings["time_series"]["legend_n_columns"]) + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.88] + ) + primary_legend = ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.2), + fancybox=True, + shadow=True, + ncol=plot_settings["time_series"]["legend_n_columns"], + ) ax.add_artist(primary_legend) # Set title @@ -648,15 +864,22 @@ def timeseries_plot(mergedf, title, ylabel, colorby, show_legend, # set x,y limits ax.set_xlim(mdates.date2num(dt_min), mdates.date2num(dt_max)) - ax.autoscale(axis='y') + ax.autoscale(axis="y") return ax, col_mapper -def model_timeseries_plot(df, obstype, title, ylabel, settings, - show_primary_legend, add_second_legend=True, - _ax=None, # needed for GUI, not recommended use - colorby_name_colordict=None): +def model_timeseries_plot( + df, + obstype, + title, + ylabel, + settings, + show_primary_legend, + add_second_legend=True, + _ax=None, # needed for GUI, not recommended use + colorby_name_colordict=None, +): """Make a timeseries plot for modeldata. The timeseries are plotted as dashed lines. @@ -690,10 +913,8 @@ def model_timeseries_plot(df, obstype, title, ylabel, settings, ------- ax : matplotlib.pyplot.axes The plotted axes. - colormapper : dict The use colormap. - """ plot_settings = settings.app["plot_settings"] @@ -707,56 +928,70 @@ def model_timeseries_plot(df, obstype, title, ylabel, settings, df = df[~df.index.duplicated()] # rename and create dummy columns so that linecollection can be used - df = df.rename(columns={obstype: 'value'}) - df['label'] = 'modeldata' + df = df.rename(columns={obstype: "value"}) + df["label"] = "modeldata" # all lines are dashed lines - line_style_mapper = {'modeldata': '--'} + line_style_mapper = {"modeldata": "--"} # create color mapper if none is given if colorby_name_colordict is None: - col_mapper = make_cat_colormapper(df.index.get_level_values('name').unique(), - plot_settings['time_series']['colormap']) + col_mapper = make_cat_colormapper( + df.index.get_level_values("name").unique(), + plot_settings["time_series"]["colormap"], + ) else: col_mapper = colorby_name_colordict # iterate over station and make line collection to avoid interpolation - for sta in df.index.get_level_values('name').unique(): - stadf = xs_save(df, sta, 'name') # subset to one station + for sta in df.index.get_level_values("name").unique(): + stadf = xs_save(df, sta, "name") # subset to one station # make line collection - sta_line_lc = _create_linecollection(linedf=stadf, - colormapper=None, - const_color=col_mapper[sta], - linestylemapper=line_style_mapper, - plotsettings=plot_settings) + sta_line_lc = _create_linecollection( + linedf=stadf, + colormapper=None, + const_color=col_mapper[sta], + linestylemapper=line_style_mapper, + plotsettings=plot_settings, + ) ax.add_collection(sta_line_lc) if show_primary_legend is True: # create a legend item for each station custom_handles = [] # add legend items to it - names = df.index.get_level_values('name').unique().to_list() + names = df.index.get_level_values("name").unique().to_list() # sort legend items alphabetically names.sort() for sta in names: - custom_handles.append(Line2D([0], [0], - color=col_mapper[sta], - label=f'modeldata at {sta}', - lw=4)) + custom_handles.append( + Line2D( + [0], [0], color=col_mapper[sta], label=f"modeldata at {sta}", lw=4 + ) + ) box = ax.get_position() - ax.set_position([box.x0, box.y0 + box.height * 0.2, - box.width, box.height * 0.88]) - primary_legend = ax.legend(handles=custom_handles, loc='upper center', - bbox_to_anchor=(0.5, -0.2), - fancybox=True, shadow=True, - ncol=plot_settings["time_series"]["legend_n_columns"]) + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.88] + ) + primary_legend = ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.2), + fancybox=True, + shadow=True, + ncol=plot_settings["time_series"]["legend_n_columns"], + ) ax.add_artist(primary_legend) if add_second_legend: - line_solid = Line2D([], [], color='black', linestyle='--', linewidth=1.5, label=r'model') - line_dashed = Line2D([], [], color='black', linestyle='-', linewidth=1.5, label=r'observations') - secondary_legend = ax.legend(handles=[line_solid, line_dashed], loc='best') + line_solid = Line2D( + [], [], color="black", linestyle="--", linewidth=1.5, label=r"model" + ) + line_dashed = Line2D( + [], [], color="black", linestyle="-", linewidth=1.5, label=r"observations" + ) + secondary_legend = ax.legend(handles=[line_solid, line_dashed], loc="best") ax.add_artist(secondary_legend) # Set title @@ -776,10 +1011,19 @@ def model_timeseries_plot(df, obstype, title, ylabel, settings, return ax, col_mapper -def cycle_plot(cycledf, errorbandsdf, title, plot_settings, - aggregation, data_template, obstype, y_label, - legend, show_zero_horizontal=False): - """ Plot a cycle as a lineplot. +def cycle_plot( + cycledf, + errorbandsdf, + title, + plot_settings, + aggregation, + data_template, + obstype, + y_label, + legend, + show_zero_horizontal=False, +): + """Plot a cycle as a lineplot. Parameters @@ -815,35 +1059,41 @@ def cycle_plot(cycledf, errorbandsdf, title, plot_settings, fig, ax = plt.subplots(figsize=plot_settings["figsize"]) # which colormap to use: - if cycledf.shape[1] <= plot_settings['n_cat_max']: - cmap = plot_settings['cmap_categorical'] + if cycledf.shape[1] <= plot_settings["n_cat_max"]: + cmap = plot_settings["cmap_categorical"] else: - cmap = plot_settings['cmap_continious'] + cmap = plot_settings["cmap_continious"] cycledf.plot(ax=ax, title=title, legend=False, cmap=cmap) if legend: box = ax.get_position() - ax.set_position([box.x0, box.y0 + box.height * 0.2, - box.width, box.height * 0.88]) - ax.legend(cycledf.columns.values.tolist(), loc='upper center', - bbox_to_anchor=(0.5, -0.2), - fancybox=True, shadow=True, - ncol=plot_settings["legend_n_columns"]) + ax.set_position( + [box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.88] + ) + ax.legend( + cycledf.columns.values.tolist(), + loc="upper center", + bbox_to_anchor=(0.5, -0.2), + fancybox=True, + shadow=True, + ncol=plot_settings["legend_n_columns"], + ) if errorbandsdf is not None: # Extract colorscheme from the plot col_sheme = {line.get_label(): line.get_color() for line in ax.get_lines()} for sta in errorbandsdf.columns: - ax.fill_between(errorbandsdf.index, - cycledf[sta] - errorbandsdf[sta], - cycledf[sta] + errorbandsdf[sta], - alpha=plot_settings['alpha_error_bands'], - color=col_sheme[sta], - ) + ax.fill_between( + errorbandsdf.index, + cycledf[sta] - errorbandsdf[sta], + cycledf[sta] + errorbandsdf[sta], + alpha=plot_settings["alpha_error_bands"], + color=col_sheme[sta], + ) if show_zero_horizontal: - ax.axhline(y=0., color='black', linestyle='--') + ax.axhline(y=0.0, color="black", linestyle="--") return ax @@ -867,39 +1117,51 @@ def heatmap_plot(cor_dict, title, heatmap_settings): """ # make heatmap of cor - fig, ax = plt.subplots(figsize=heatmap_settings['figsize']) - im = ax.imshow(cor_dict['cor matrix'], - interpolation='nearest', - vmin=heatmap_settings['vmin'], - vmax=heatmap_settings['vmax'], - cmap=heatmap_settings['cmap']) + fig, ax = plt.subplots(figsize=heatmap_settings["figsize"]) + im = ax.imshow( + cor_dict["cor matrix"], + interpolation="nearest", + vmin=heatmap_settings["vmin"], + vmax=heatmap_settings["vmax"], + cmap=heatmap_settings["cmap"], + ) - fig.colorbar(im, orientation='vertical', fraction=0.05) + fig.colorbar(im, orientation="vertical", fraction=0.05) # Loop over data dimensions and create text annotations - for i in range(len(cor_dict['cor matrix'].columns)): - for j in range(len(cor_dict['cor matrix'].index)): - ax.text(j, i, - cor_dict["combined matrix"].to_numpy()[i, j], - ha="center", va="center", color="black") + for i in range(len(cor_dict["cor matrix"].columns)): + for j in range(len(cor_dict["cor matrix"].index)): + ax.text( + j, + i, + cor_dict["combined matrix"].to_numpy()[i, j], + ha="center", + va="center", + color="black", + ) # styling # Show all ticks and label them with the dataframe column name - ax.set_xticks(ticks=list(range(cor_dict['cor matrix'].shape[1])), - labels=cor_dict['cor matrix'].columns.to_list(), - rotation=heatmap_settings['x_tick_rot']) + ax.set_xticks( + ticks=list(range(cor_dict["cor matrix"].shape[1])), + labels=cor_dict["cor matrix"].columns.to_list(), + rotation=heatmap_settings["x_tick_rot"], + ) - ax.set_yticks(ticks=list(range(cor_dict['cor matrix'].shape[0])), - labels=cor_dict['cor matrix'].index.to_list(), - rotation=heatmap_settings['y_tick_rot']) + ax.set_yticks( + ticks=list(range(cor_dict["cor matrix"].shape[0])), + labels=cor_dict["cor matrix"].index.to_list(), + rotation=heatmap_settings["y_tick_rot"], + ) ax.set_title(title) return ax -def correlation_scatter(full_cor_dict, groupby_labels, obstypes, title, - cor_scatter_settings): +def correlation_scatter( + full_cor_dict, groupby_labels, obstypes, title, cor_scatter_settings +): """Plot the correlation variation as a scatterplot. The statistical significance is indicate by the scattertype. @@ -933,50 +1195,53 @@ def correlation_scatter(full_cor_dict, groupby_labels, obstypes, title, if isinstance(key, tuple): key = str(key) # corelations - subdf_cor = subcordict['cor matrix'] + subdf_cor = subcordict["cor matrix"] # make multi index df - subdf_cor['group'] = key - subdf_cor.index.name = 'categories' + subdf_cor["group"] = key + subdf_cor.index.name = "categories" subdf_cor = subdf_cor[subdf_cor.index.isin(obstypes)] - subdf_cor = subdf_cor.reset_index().set_index(['group', 'categories']) + subdf_cor = subdf_cor.reset_index().set_index(["group", "categories"]) comb_cor_df = pd.concat([comb_cor_df, subdf_cor]) # p values - subdf_p = subcordict['significance matrix'] + subdf_p = subcordict["significance matrix"] # make multi index df - subdf_p['group'] = key - subdf_p.index.name = 'categories' + subdf_p["group"] = key + subdf_p.index.name = "categories" subdf_p = subdf_p[subdf_p.index.isin(obstypes)] - subdf_p = subdf_p.reset_index().set_index(['group', 'categories']) + subdf_p = subdf_p.reset_index().set_index(["group", "categories"]) comb_p_df = pd.concat([comb_p_df, subdf_p]) # create plotdf structure plot_cor_df = comb_cor_df.unstack() - plot_cor_df.columns = [f'{col[0]} - {col[1]}' for col in plot_cor_df.columns] + plot_cor_df.columns = [f"{col[0]} - {col[1]}" for col in plot_cor_df.columns] plot_p_df = comb_p_df.unstack() - plot_p_df.columns = [f'{col[0]} - {col[1]}' for col in plot_p_df.columns] + plot_p_df.columns = [f"{col[0]} - {col[1]}" for col in plot_p_df.columns] # Get columns without variation (these will not be plotted) const_cols = plot_cor_df.columns[plot_cor_df.nunique() <= 1] - logger.warning(f' The following correlations are constant for all groups and will not be included in the plot: {const_cols}') + logger.warning( + f" The following correlations are constant for all groups and will not be included in the plot: {const_cols}" + ) # Subset to the columns that has to be plotted plot_cor_df = plot_cor_df.drop(columns=const_cols) plot_p_df = plot_p_df.drop(columns=const_cols) # make a colormap for the left over correlations - col_mapper = make_cat_colormapper(catlist=plot_cor_df.columns.to_list(), - cmapname=cor_scatter_settings['cmap']) + col_mapper = make_cat_colormapper( + catlist=plot_cor_df.columns.to_list(), cmapname=cor_scatter_settings["cmap"] + ) # make figure - fig, ax = plt.subplots(figsize=cor_scatter_settings['figsize']) + fig, ax = plt.subplots(figsize=cor_scatter_settings["figsize"]) # add the zero line - ax.axhline(y=0.0, linestyle='--', linewidth=1, color='black') + ax.axhline(y=0.0, linestyle="--", linewidth=1, color="black") # Define p value bins - p_bins = cor_scatter_settings['p_bins'] # [0, .001, 0.01, 0.05, 999] - bins_markers = cor_scatter_settings['bins_markers'] # ['*', 's', '^', 'x'] + p_bins = cor_scatter_settings["p_bins"] # [0, .001, 0.01, 0.05, 999] + bins_markers = cor_scatter_settings["bins_markers"] # ['*', 's', '^', 'x'] # # iterate over the different corelations to plot custom_handles = [] @@ -984,66 +1249,72 @@ def correlation_scatter(full_cor_dict, groupby_labels, obstypes, title, to_scatter = plot_cor_df[[cor_name]] # convert p values to markers - to_scatter['p-value'] = plot_p_df[cor_name] - to_scatter['markers'] = pd.cut(x=to_scatter['p-value'], - bins=p_bins, - labels=bins_markers) + to_scatter["p-value"] = plot_p_df[cor_name] + to_scatter["markers"] = pd.cut( + x=to_scatter["p-value"], bins=p_bins, labels=bins_markers + ) to_scatter = to_scatter.reset_index() # plot per scatter group - scatter_groups = to_scatter.groupby('markers') + scatter_groups = to_scatter.groupby("markers") for marker, markergroup in scatter_groups: - markergroup.plot(x='group', - y=cor_name, - kind='scatter', - ax=ax, - s=cor_scatter_settings['scatter_size'], - edgecolors=cor_scatter_settings['scatter_edge_col'], - linewidth=cor_scatter_settings['scatter_edge_line_width'], - color=col_mapper[cor_name], - marker=marker, - ylim=(cor_scatter_settings['ymin'], - cor_scatter_settings['ymax'])) + markergroup.plot( + x="group", + y=cor_name, + kind="scatter", + ax=ax, + s=cor_scatter_settings["scatter_size"], + edgecolors=cor_scatter_settings["scatter_edge_col"], + linewidth=cor_scatter_settings["scatter_edge_line_width"], + color=col_mapper[cor_name], + marker=marker, + ylim=(cor_scatter_settings["ymin"], cor_scatter_settings["ymax"]), + ) # add legend handl for the colors - custom_handles.append(Line2D([0], [0], - color=col_mapper[cor_name], - label=cor_name, - lw=4)) + custom_handles.append( + Line2D([0], [0], color=col_mapper[cor_name], label=cor_name, lw=4) + ) # add legend handl for the scatter types marker_def = list(zip(p_bins[1:], bins_markers)) for p_edge, mark in marker_def: - custom_handles.append(Line2D([0], [0], - marker=mark, - color="black", - markerfacecolor='w', - label=f'p < {p_edge}', - lw=1) - ) + custom_handles.append( + Line2D( + [0], + [0], + marker=mark, + color="black", + markerfacecolor="w", + label=f"p < {p_edge}", + lw=1, + ) + ) # format legend box = ax.get_position() - ax.set_position([box.x0, box.y0 + box.height * 0.2, - box.width, box.height * 0.85]) - ax.legend(handles=custom_handles, - loc='upper center', - bbox_to_anchor=(0.5, -0.1), - fancybox=True, shadow=True, - prop={'size': cor_scatter_settings['legend_text_size']}, - ncol=cor_scatter_settings['legend_ncols'], - ) + ax.set_position([box.x0, box.y0 + box.height * 0.2, box.width, box.height * 0.85]) + ax.legend( + handles=custom_handles, + loc="upper center", + bbox_to_anchor=(0.5, -0.1), + fancybox=True, + shadow=True, + prop={"size": cor_scatter_settings["legend_text_size"]}, + ncol=cor_scatter_settings["legend_ncols"], + ) # styling attributes - ax.set_ylabel('Pearson correlation') - ax.set_xlabel(f'Groups of {groupby_labels}') + ax.set_ylabel("Pearson correlation") + ax.set_xlabel(f"Groups of {groupby_labels}") ax.set_title(title) return ax -def _make_pie_from_freqs(freq_dict, colormapper, ax, plot_settings, - radius, labelsize=10): +def _make_pie_from_freqs( + freq_dict, colormapper, ax, plot_settings, radius, labelsize=10 +): """Make one pie for a dict of frequencies.""" # To dataframe stats = pd.Series(freq_dict, name="freq").to_frame() @@ -1060,7 +1331,7 @@ def _make_pie_from_freqs(freq_dict, colormapper, ax, plot_settings, stats = pd.concat([stats, no_oc_df]) # Remove zero occurence labels (they clutter up the lables in the pies) - stats = stats[stats['freq'] != 0] + stats = stats[stats["freq"] != 0] # Make pie patches, text = ax.pie( stats["freq"], @@ -1092,7 +1363,7 @@ def _all_possible_labels_colormapper(settings): plot_settings = settings.app["plot_settings"] gap_settings = settings.gap qc_info_settings = settings.qc["qc_checks_info"] - missing_obs_settings = settings.missing_obs['missing_obs_fill_info'] + missing_obs_settings = settings.missing_obs["missing_obs_fill_info"] color_defenitions = plot_settings["color_mapper"] @@ -1120,14 +1391,15 @@ def _all_possible_labels_colormapper(settings): mapper[label] = color_defenitions[method] # add fill for missing - for method, label in missing_obs_settings['label'].items(): + for method, label in missing_obs_settings["label"].items(): mapper[label] = color_defenitions[method] return mapper -def qc_stats_pie(final_stats, outlier_stats, specific_stats, plot_settings, - qc_check_info, title): +def qc_stats_pie( + final_stats, outlier_stats, specific_stats, plot_settings, qc_check_info, title +): """Make overview Pie-plots for the frequency statistics of labels. Parameters @@ -1241,8 +1513,8 @@ def qc_stats_pie(final_stats, outlier_stats, specific_stats, plot_settings, for checkname in specific_stats: ax = fig.add_subplot( spec[ - math.floor(i / ncol) + 1: math.floor(i / ncol) + 2, - i % nrow: i % nrow + 1, + math.floor(i / ncol) + 1 : math.floor(i / ncol) + 2, + i % nrow : i % nrow + 1, ] ) @@ -1267,7 +1539,7 @@ def qc_stats_pie(final_stats, outlier_stats, specific_stats, plot_settings, radius=plot_settings["pie_charts"]["radius_small"], textprops={"fontsize": textsize_small_pies}, ax=axlist, - colors=[spec_col_mapper[col] for col in specific_df.index] + colors=[spec_col_mapper[col] for col in specific_df.index], ) # Specific styling setings per pie @@ -1276,9 +1548,10 @@ def qc_stats_pie(final_stats, outlier_stats, specific_stats, plot_settings, ax.yaxis.set_visible(False) # ignore the default pandas title fig.subplots_adjust(hspace=0.7) - fig.suptitle(title, - # fontsize=30, - ) + fig.suptitle( + title, + # fontsize=30, + ) plt.show() return diff --git a/metobs_toolkit/printing.py b/metobs_toolkit/printing.py index 7b80df59..e62bdd1f 100644 --- a/metobs_toolkit/printing.py +++ b/metobs_toolkit/printing.py @@ -29,30 +29,38 @@ def print_dataset_info(dataset, show_all_settings=False, max_disp_n_gaps=5): print("\n", "-------- General ---------", "\n") print(dataset) + print("\n", "-------- Observation types ---------", "\n") + for obstype in dataset.obstypes.values(): + obstype.get_info() + print("\n", "-------- Settings ---------", "\n") if show_all_settings: dataset.show_settings() else: - print('(to show all settings use the .show_settings() method, or set show_all_settings = True)') + print( + "(to show all settings use the .show_settings() method, or set show_all_settings = True)" + ) print("\n", "-------- Outliers ---------", "\n") if dataset.outliersdf.empty: - print('No outliers.') + print("No outliers.") else: - print(f'A total of {dataset.outliersdf.shape[0]} found with these occurrences: \n') + print( + f"A total of {dataset.outliersdf.shape[0]} found with these occurrences: \n" + ) print(f'{dataset.outliersdf["label"].value_counts().to_dict()}') print("\n", "-------- Meta data ---------", "\n") if dataset.metadf.empty: - print('No metadata is found.') + print("No metadata is found.") else: relev_columns = [] for col in dataset.metadf.columns: if not dataset.metadf[col].isna().all(): relev_columns.append(col) - print(f'The following metadata is found: {relev_columns}') - print('\n The first rows of the metadf looks like:') - print(f'{dataset.metadf[relev_columns].head()}') + print(f"The following metadata is found: {relev_columns}") + print("\n The first rows of the metadf looks like:") + print(f"{dataset.metadf[relev_columns].head()}") # "-------- Missing observations ---------") if dataset.missing_obs is not None: @@ -63,4 +71,6 @@ def print_dataset_info(dataset, show_all_settings=False, max_disp_n_gaps=5): if len(dataset.gaps) <= max_disp_n_gaps: print(dataset.get_gaps_info()) else: - print(f'The info on {len(dataset.gaps)} is to long to print. Use the .get_gaps_info() to print out the details of all gaps.') + print( + f"The info on {len(dataset.gaps)} is to long to print. Use the .get_gaps_info() to print out the details of all gaps." + ) diff --git a/metobs_toolkit/qc_checks.py b/metobs_toolkit/qc_checks.py index 203ef9d3..b78c0265 100644 --- a/metobs_toolkit/qc_checks.py +++ b/metobs_toolkit/qc_checks.py @@ -12,11 +12,7 @@ import logging -from metobs_toolkit.df_helpers import ( - init_multiindex, - init_multiindexdf, - xs_save -) +from metobs_toolkit.df_helpers import init_multiindex, init_multiindexdf, xs_save logger = logging.getLogger(__name__) @@ -25,15 +21,18 @@ try: import titanlib except ModuleNotFoundError: - logger.warning("Titanlib is not installed, install it manually if you want to use this functionallity.") + logger.warning( + "Titanlib is not installed, install it manually if you want to use this functionallity." + ) # ============================================================================= # Helper functions # ============================================================================= -def make_outlier_df_for_check(station_dt_list, obsdf, obstype, flag, - stationname=None, datetimelist=None): +def make_outlier_df_for_check( + station_dt_list, obsdf, obstype, flag, stationname=None, datetimelist=None +): """Construct obsdf and outliersdf from a list of outlier timestamps. Helper function to create an outlier dataframe for the given station(s) and @@ -307,7 +306,9 @@ def gross_value_check(obsdf, obstype, checks_info, checks_settings): return obsdf, outlier_df -def persistance_check(station_frequencies, obsdf, obstype, checks_info, checks_settings): +def persistance_check( + station_frequencies, obsdf, obstype, checks_info, checks_settings +): """Test observations to change over a specific period. Looking for values of an observation type that do not change during a timewindow. These are flagged as outliers. @@ -428,6 +429,7 @@ def repetitions_check(obsdf, obstype, checks_info, checks_settings): Looking for values of an observation type that are repeated at least with the frequency specified in the qc_settings. These values are labeled. + Parameters ------------ obsdf : pandas.DataFrame @@ -579,8 +581,9 @@ def step_check(obsdf, obstype, checks_info, checks_settings): return obsdf, outlier_df -def window_variation_check(station_frequencies, obsdf, obstype, - checks_info, checks_settings): +def window_variation_check( + station_frequencies, obsdf, obstype, checks_info, checks_settings +): """Test if the variation exeeds threshold in moving time windows. Looking for jumps of the values of an observation type that are larger than @@ -632,9 +635,7 @@ def window_variation_check(station_frequencies, obsdf, obstype, pd.to_timedelta(specific_settings["time_window_to_check"]) / station_frequencies < specific_settings["min_window_members"] ) - invalid_stations = list( - invalid_windows_check_df[invalid_windows_check_df].index - ) + invalid_stations = list(invalid_windows_check_df[invalid_windows_check_df].index) if bool(invalid_stations): logger.warning( f"The windows are too small for stations {invalid_stations} to perform window variation check" @@ -722,6 +723,7 @@ def variation_test(window): # Toolkit buddy check # ============================================================================= + def _calculate_distance_matrix_with_haverine(metadf): from math import radians, cos, sin, asin, sqrt @@ -733,7 +735,7 @@ def haversine(lon1, lat1, lon2, lat2): # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 - a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 + a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * asin(sqrt(a)) r = 6367000 # Radius of earth in meter. return c * r @@ -742,14 +744,13 @@ def haversine(lon1, lat1, lon2, lat2): for sta1, row1 in metadf.iterrows(): distance_matrix[sta1] = {} for sta2, row2 in metadf.iterrows(): - distance_matrix[sta1][sta2] = haversine(row1.geometry.x, - row1.geometry.y, - row2.geometry.x, - row2.geometry.y) + distance_matrix[sta1][sta2] = haversine( + row1.geometry.x, row1.geometry.y, row2.geometry.x, row2.geometry.y + ) return pd.DataFrame(distance_matrix) -def _calculate_distance_matrix(metadf, metric_epsg='31370'): +def _calculate_distance_matrix(metadf, metric_epsg="31370"): metric_metadf = metadf.to_crs(epsg=metric_epsg) return metric_metadf.geometry.apply(lambda g: metric_metadf.geometry.distance(g)) @@ -770,7 +771,9 @@ def _filter_to_altitude_buddies(spatial_buddies, metadf, max_altitude_diff): """Filter neighbours by maximum altitude difference.""" alt_buddies_dict = {} for refstation, buddylist in spatial_buddies.items(): - alt_diff = abs((metadf.loc[buddylist, 'altitude']) - metadf.loc[refstation, 'altitude']) + alt_diff = abs( + (metadf.loc[buddylist, "altitude"]) - metadf.loc[refstation, "altitude"] + ) alt_buddies = alt_diff[alt_diff <= max_altitude_diff].index.to_list() alt_buddies_dict[refstation] = alt_buddies return alt_buddies_dict @@ -788,8 +791,20 @@ def _filter_to_samplesize(buddydict, min_sample_size): return to_check_stations -def toolkit_buddy_check(obsdf, metadf, obstype, buddy_radius, min_sample_size, max_alt_diff, - min_std, std_threshold, outl_flag, haversine_approx=True, metric_epsg='31370', lapserate=-0.0065): +def toolkit_buddy_check( + obsdf, + metadf, + obstype, + buddy_radius, + min_sample_size, + max_alt_diff, + min_std, + std_threshold, + outl_flag, + haversine_approx=True, + metric_epsg="31370", + lapserate=-0.0065, +): """Spatial buddy check. The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for @@ -843,41 +858,42 @@ def toolkit_buddy_check(obsdf, metadf, obstype, buddy_radius, min_sample_size, m if haversine_approx: distance_df = _calculate_distance_matrix_with_haverine(metadf=metadf) else: - distance_df = _calculate_distance_matrix(metadf=metadf, - metric_epsg=metric_epsg) - buddies = _find_spatial_buddies(distance_df=distance_df, - buddy_radius=buddy_radius) + distance_df = _calculate_distance_matrix(metadf=metadf, metric_epsg=metric_epsg) + buddies = _find_spatial_buddies(distance_df=distance_df, buddy_radius=buddy_radius) # Filter by altitude difference - buddies = _filter_to_altitude_buddies(spatial_buddies=buddies, - metadf=metadf, - max_altitude_diff=max_alt_diff) + buddies = _filter_to_altitude_buddies( + spatial_buddies=buddies, metadf=metadf, max_altitude_diff=max_alt_diff + ) # Filter by samplesize - buddydict = _filter_to_samplesize(buddydict=buddies, - min_sample_size=min_sample_size) + buddydict = _filter_to_samplesize( + buddydict=buddies, min_sample_size=min_sample_size + ) # Apply buddy check station per station for refstation, buddies in buddydict.items(): if len(buddies) == 0: - logger.debug(f'{refstation} has not enough suitable buddies.') + logger.debug(f"{refstation} has not enough suitable buddies.") continue # Get observations - buddies_obs = obsdf[obsdf.index.get_level_values('name').isin(buddies)][obstype] + buddies_obs = obsdf[obsdf.index.get_level_values("name").isin(buddies)][obstype] # Unstack - buddies_obs = buddies_obs.unstack(level='name') + buddies_obs = buddies_obs.unstack(level="name") # Make lapsrate correction: - ref_alt = metadf.loc[refstation, 'altitude'] - buddy_correction = ((metadf.loc[buddies, 'altitude'] - ref_alt) * (-1. * lapserate)).to_dict() + ref_alt = metadf.loc[refstation, "altitude"] + buddy_correction = ( + (metadf.loc[buddies, "altitude"] - ref_alt) * (-1.0 * lapserate) + ).to_dict() for bud in buddies_obs.columns: buddies_obs[bud] = buddies_obs[bud] - buddy_correction[bud] # calucalate std and mean row wise - buddies_obs['mean'] = buddies_obs[buddies].mean(axis=1) - buddies_obs['std'] = buddies_obs[buddies].std(axis=1) - buddies_obs['samplesize'] = buddies_obs[buddies].count(axis=1) + buddies_obs["mean"] = buddies_obs[buddies].mean(axis=1) + buddies_obs["std"] = buddies_obs[buddies].std(axis=1) + buddies_obs["samplesize"] = buddies_obs[buddies].count(axis=1) # from titan they use std adjust which is float std_adjusted = sqrt(variance + variance / n_buddies); # This is not used @@ -885,26 +901,36 @@ def toolkit_buddy_check(obsdf, metadf, obstype, buddy_radius, min_sample_size, m # buddies_obs['std_adj'] =np.sqrt(buddies_obs['var'] + buddies_obs['var']/buddies_obs['samplesize']) # replace where needed with min std - buddies_obs['std'] = buddies_obs['std'].where(cond=buddies_obs['std'] >= min_std, - other=min_std) + buddies_obs["std"] = buddies_obs["std"].where( + cond=buddies_obs["std"] >= min_std, other=min_std + ) # Get refstation observations and merge - ref_obs = obsdf[obsdf.index.get_level_values('name') == refstation][obstype].unstack(level='name') - buddies_obs = buddies_obs.merge(ref_obs, - how='left', # both not needed because if right, than there is no buddy sample per definition. - left_index=True, - right_index=True) + ref_obs = obsdf[obsdf.index.get_level_values("name") == refstation][ + obstype + ].unstack(level="name") + buddies_obs = buddies_obs.merge( + ref_obs, + how="left", # both not needed because if right, than there is no buddy sample per definition. + left_index=True, + right_index=True, + ) # Calculate sigma - buddies_obs['chi'] = (abs(buddies_obs['mean'] - buddies_obs[refstation])) / buddies_obs['std'] + buddies_obs["chi"] = ( + abs(buddies_obs["mean"] - buddies_obs[refstation]) + ) / buddies_obs["std"] - outliers = buddies_obs[(buddies_obs['chi'] > std_threshold) & (buddies_obs['samplesize'] >= min_sample_size)] + outliers = buddies_obs[ + (buddies_obs["chi"] > std_threshold) + & (buddies_obs["samplesize"] >= min_sample_size) + ] - logger.debug(f' Buddy outlier details for {refstation}: \n {buddies}') + logger.debug(f" Buddy outlier details for {refstation}: \n {buddies}") # NOTE: the outliers (above) can be interesting to pass back to the dataset?? # to multiindex - outliers['name'] = refstation - outliers = outliers.reset_index().set_index(['name', 'datetime']).index + outliers["name"] = refstation + outliers = outliers.reset_index().set_index(["name", "datetime"]).index outliers_idx = outliers_idx.append(outliers) # Update the outliers and replace the obsdf @@ -922,8 +948,9 @@ def toolkit_buddy_check(obsdf, metadf, obstype, buddy_radius, min_sample_size, m # Titan bindings # ============================================================================= + def create_titanlib_points_dict(obsdf, metadf, obstype): - """ Create a dictionary of titanlib-points. + """Create a dictionary of titanlib-points. Titanlib uses point as dataformats. This method converts the dataframes to a dictionnary of points. @@ -947,12 +974,14 @@ def create_titanlib_points_dict(obsdf, metadf, obstype): obs = obs.reset_index() # merge metadata - obs = obs.merge(right=metadf[['lat', 'lon', 'altitude']], - how='left', - left_on='name', - right_index=True) + obs = obs.merge( + right=metadf[["lat", "lon", "altitude"]], + how="left", + left_on="name", + right_index=True, + ) - dt_grouper = obs.groupby('datetime') + dt_grouper = obs.groupby("datetime") points_dict = {} for dt, group in dt_grouper: @@ -960,18 +989,20 @@ def create_titanlib_points_dict(obsdf, metadf, obstype): check_group = group[~group[obstype].isnull()] points_dict[dt] = { - 'values': check_group[obstype].to_numpy(), - 'names': check_group['name'].to_numpy(), - 'lats': check_group['lat'].to_numpy(), - 'lons': check_group['lon'].to_numpy(), - 'elev': check_group['altitude'].to_numpy(), - 'ignore_names': group[group[obstype].isnull()]['name'].to_numpy() + "values": check_group[obstype].to_numpy(), + "names": check_group["name"].to_numpy(), + "lats": check_group["lat"].to_numpy(), + "lons": check_group["lon"].to_numpy(), + "elev": check_group["altitude"].to_numpy(), + "ignore_names": group[group[obstype].isnull()]["name"].to_numpy(), } return points_dict -def titan_buddy_check(obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler): +def titan_buddy_check( + obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler +): """Apply the Titanlib buddy check. The buddy check compares an observation against its neighbours (i.e. buddies). The check looks for @@ -1004,57 +1035,64 @@ def titan_buddy_check(obsdf, metadf, obstype, checks_info, checks_settings, tita """ try: - _ = metadf['altitude'] + _ = metadf["altitude"] except: - logger.warning( - "Cannot find altitude of weather stations. Check is skipped!" - ) + logger.warning("Cannot find altitude of weather stations. Check is skipped!") # Create points_dict pointsdict = create_titanlib_points_dict(obsdf, metadf, obstype) df_list = [] for dt, point in pointsdict.items(): - obs = list(point['values']) - titan_points = titanlib.Points(np.asarray(point['lats']), - np.asarray(point['lons']), - np.asarray(point['elev'])) + obs = list(point["values"]) + titan_points = titanlib.Points( + np.asarray(point["lats"]), + np.asarray(point["lons"]), + np.asarray(point["elev"]), + ) num_labels = titanlib.buddy_check( - titan_points, - np.asarray(obs), - np.asarray([checks_settings['radius']] * len(obs)), # same radius for all stations - np.asarray([checks_settings['num_min']] * len(obs)), # same min neighbours for all stations - checks_settings['threshold'], - checks_settings['max_elev_diff'], - checks_settings['elev_gradient'], - checks_settings['min_std'], - checks_settings['num_iterations'], - np.full(len(obs), 1)) # check all - - labels = pd.Series(num_labels, name='num_label').to_frame() - labels['name'] = point['names'] - labels['datetime'] = dt + titan_points, + np.asarray(obs), + np.asarray( + [checks_settings["radius"]] * len(obs) + ), # same radius for all stations + np.asarray( + [checks_settings["num_min"]] * len(obs) + ), # same min neighbours for all stations + checks_settings["threshold"], + checks_settings["max_elev_diff"], + checks_settings["elev_gradient"], + checks_settings["min_std"], + checks_settings["num_iterations"], + np.full(len(obs), 1), + ) # check all + + labels = pd.Series(num_labels, name="num_label").to_frame() + labels["name"] = point["names"] + labels["datetime"] = dt df_list.append(labels) checkeddf = pd.concat(df_list) # Convert to toolkit format - outliersdf = checkeddf[checkeddf['num_label'].isin(titan_specific_labeler['outl'])] + outliersdf = checkeddf[checkeddf["num_label"].isin(titan_specific_labeler["outl"])] - outliersdf = outliersdf.set_index(['name', 'datetime']) + outliersdf = outliersdf.set_index(["name", "datetime"]) - obsdf, outliersdf = make_outlier_df_for_check(station_dt_list=outliersdf.index, - obsdf=obsdf, - obstype=obstype, - flag=checks_info["titan_buddy_check"]['outlier_flag']) + obsdf, outliersdf = make_outlier_df_for_check( + station_dt_list=outliersdf.index, + obsdf=obsdf, + obstype=obstype, + flag=checks_info["titan_buddy_check"]["outlier_flag"], + ) return obsdf, outliersdf -def titan_sct_resistant_check(obsdf, metadf, obstype, - checks_info, checks_settings, - titan_specific_labeler): +def titan_sct_resistant_check( + obsdf, metadf, obstype, checks_info, checks_settings, titan_specific_labeler +): """Apply the Titanlib (robust) Spatial-Consistency-Test (SCT). The SCT resistant check is a spatial consistency check which compares each observations to what is expected given the other observations in the @@ -1087,69 +1125,86 @@ def titan_sct_resistant_check(obsdf, metadf, obstype, import time try: - _ = metadf['altitude'] + _ = metadf["altitude"] except: - logger.warning( - "Cannot find altitude of weather stations. Check is skipped!" - ) + logger.warning("Cannot find altitude of weather stations. Check is skipped!") # Create points_dict pointsdict = create_titanlib_points_dict(obsdf, metadf, obstype) df_list = [] for dt, point in pointsdict.items(): - logger.debug(f'sct on observations at {dt}') - obs = list(point['values']) - titan_points = titanlib.Points(np.asarray(point['lats']), - np.asarray(point['lons']), - np.asarray(point['elev'])) + logger.debug(f"sct on observations at {dt}") + obs = list(point["values"]) + titan_points = titanlib.Points( + np.asarray(point["lats"]), + np.asarray(point["lons"]), + np.asarray(point["elev"]), + ) flags, scores = titanlib.sct_resistant( - points=titan_points, # points - values=np.asarray(obs), # vlues - obs_to_check=np.full(len(obs), 1), # obs to check (check all) - background_values=np.full(len(obs), 0), # background values - background_elab_type=titanlib.MedianOuterCircle, # background elab type - num_min_outer=checks_settings['num_min_outer'], # num min outer - num_max_outer=checks_settings['num_max_outer'], # num mac outer - inner_radius=checks_settings['inner_radius'], # inner radius - outer_radius=checks_settings['outer_radius'], # outer radius - num_iterations=checks_settings['num_iterations'], # num iterations - num_min_prof=checks_settings['num_min_prof'], # num min prof - min_elev_diff=checks_settings['min_elev_diff'], # min elev diff - min_horizontal_scale=checks_settings['min_horizontal_scale'], # min horizontal scale - max_horizontal_scale=checks_settings['max_horizontal_scale'], # max horizontal scale - kth_closest_obs_horizontal_scale=checks_settings['kth_closest_obs_horizontal_scale'], # kth closest obs horizontal scale - vertical_scale=checks_settings['vertical_scale'], # vertical scale - value_mina=[x - checks_settings['mina_deviation'] for x in obs], # values mina - value_maxa=[x + checks_settings['maxa_deviation'] for x in obs], # values maxa - value_minv=[x - checks_settings['minv_deviation'] for x in obs], # values minv - value_maxv=[x + checks_settings['maxv_deviation'] for x in obs], # values maxv - eps2=np.full(len(obs), checks_settings['eps2']), # eps2 - tpos=np.full(len(obs), checks_settings['tpos']), # tpos - tneg=np.full(len(obs), checks_settings['tneg']), # tneg - debug=checks_settings['debug'], # debug - basic=checks_settings['basic']) # basic - - logger.debug('Sleeping ... (to avoid segmentaton errors)') + points=titan_points, # points + values=np.asarray(obs), # vlues + obs_to_check=np.full(len(obs), 1), # obs to check (check all) + background_values=np.full(len(obs), 0), # background values + background_elab_type=titanlib.MedianOuterCircle, # background elab type + num_min_outer=checks_settings["num_min_outer"], # num min outer + num_max_outer=checks_settings["num_max_outer"], # num mac outer + inner_radius=checks_settings["inner_radius"], # inner radius + outer_radius=checks_settings["outer_radius"], # outer radius + num_iterations=checks_settings["num_iterations"], # num iterations + num_min_prof=checks_settings["num_min_prof"], # num min prof + min_elev_diff=checks_settings["min_elev_diff"], # min elev diff + min_horizontal_scale=checks_settings[ + "min_horizontal_scale" + ], # min horizontal scale + max_horizontal_scale=checks_settings[ + "max_horizontal_scale" + ], # max horizontal scale + kth_closest_obs_horizontal_scale=checks_settings[ + "kth_closest_obs_horizontal_scale" + ], # kth closest obs horizontal scale + vertical_scale=checks_settings["vertical_scale"], # vertical scale + value_mina=[ + x - checks_settings["mina_deviation"] for x in obs + ], # values mina + value_maxa=[ + x + checks_settings["maxa_deviation"] for x in obs + ], # values maxa + value_minv=[ + x - checks_settings["minv_deviation"] for x in obs + ], # values minv + value_maxv=[ + x + checks_settings["maxv_deviation"] for x in obs + ], # values maxv + eps2=np.full(len(obs), checks_settings["eps2"]), # eps2 + tpos=np.full(len(obs), checks_settings["tpos"]), # tpos + tneg=np.full(len(obs), checks_settings["tneg"]), # tneg + debug=checks_settings["debug"], # debug + basic=checks_settings["basic"], + ) # basic + + logger.debug("Sleeping ... (to avoid segmentaton errors)") time.sleep(1) - labels = pd.Series(flags, name='num_label').to_frame() - labels['name'] = point['names'] - labels['datetime'] = dt + labels = pd.Series(flags, name="num_label").to_frame() + labels["name"] = point["names"] + labels["datetime"] = dt df_list.append(labels) checkeddf = pd.concat(df_list) # Convert to toolkit format - outliersdf = checkeddf[checkeddf['num_label'].isin(titan_specific_labeler['outl'])] + outliersdf = checkeddf[checkeddf["num_label"].isin(titan_specific_labeler["outl"])] - outliersdf = outliersdf.set_index(['name', 'datetime']) + outliersdf = outliersdf.set_index(["name", "datetime"]) - obsdf, outliersdf = make_outlier_df_for_check(station_dt_list=outliersdf.index, - obsdf=obsdf, - obstype=obstype, - flag=checks_info["titan_sct_resistant_check"]['outlier_flag']) + obsdf, outliersdf = make_outlier_df_for_check( + station_dt_list=outliersdf.index, + obsdf=obsdf, + obstype=obstype, + flag=checks_info["titan_sct_resistant_check"]["outlier_flag"], + ) return obsdf, outliersdf @@ -1160,7 +1215,7 @@ def titan_sct_resistant_check(obsdf, metadf, obstype, def get_outliers_in_daterange(input_data, date, name, time_window, station_freq): - """ Find all outliers in a window of a specific station. + """Find all outliers in a window of a specific station. Parameters ---------- diff --git a/metobs_toolkit/qc_statistics.py b/metobs_toolkit/qc_statistics.py index 9115c358..b6c7ae57 100644 --- a/metobs_toolkit/qc_statistics.py +++ b/metobs_toolkit/qc_statistics.py @@ -45,7 +45,7 @@ def get_freq_statistics(comb_df, obstype, checks_info, gaps_info, applied_qc_ord """ outlier_labels = [qc["outlier_flag"] for qc in checks_info.values()] - final_counts = comb_df['label'].value_counts() + final_counts = comb_df["label"].value_counts() # add missing labels # QC labels diff --git a/metobs_toolkit/settings.py b/metobs_toolkit/settings.py index 21dd1538..a6ea2745 100644 --- a/metobs_toolkit/settings.py +++ b/metobs_toolkit/settings.py @@ -27,7 +27,6 @@ def __init__(self): logger.info("Initialising settings") # define thematics in settings. Corresponds to settings files. - self.db = {} self.time_settings = {} self.app = {} self.qc = {} @@ -35,7 +34,6 @@ def __init__(self): self.missing_obs = {} self.templates = {} self.gee = {} - self.alaro = {} self.IO = { "output_folder": None, "input_data_file": None, @@ -43,49 +41,17 @@ def __init__(self): } # Update (instance and class variables) what can be updated by setingsfiles - # self._update_db_settings() self._update_time_res_settings() self._update_app_settings() self._update_qc_settings() self._update_gap_settings() self._update_templates() self._update_gee_settings() - self._update_alaro_settings() + # ============================================================================= # Update settings from files in initialisation # ============================================================================= - # def _update_db_settings(self): - # """ - # Update the database settings of self using the default settings templates - # and the 'db_user' and 'db_passw' envrionment variables if available. - # :return: No return - # :rtype: No return - # """ - # logger.debug("Updating Database settings.") - # f = open(os.path.join(Settings._settings_files_path, "server_login.json")) - # login_data = json.load(f) - # f.close() - - # self.db["db_host"] = login_data["host"] - - # # self.db_host = Settings.db_host - # self.db["db_database"] = login_data["database"] - # self.db["db_obs_table"] = login_data["obs_table"] - # self.db["db_meta_table"] = login_data["meta_table"] - - # self.db["db_user"] = os.getenv("VLINDER_DB_USER_NAME") - # self.db["db_passw"] = os.getenv("VLINDER_DB_USER_PASW") - - # # import db templates - # from .data_templates.db_templates import ( - # vlinder_metadata_db_template, - # vlinder_observations_db_template, - # ) - - # self.db["vlinder_db_meta_template"] = vlinder_metadata_db_template - # self.db["vlinder_db_obs_template"] = vlinder_observations_db_template - def _update_time_res_settings(self): """ Update settings on time resolutions of self using the default settings templates. @@ -109,9 +75,15 @@ def _update_time_res_settings(self): self.time_settings["timezone"] = res_settings["timezone"] # Freq estimation - self.time_settings['freq_estimation_method'] = res_settings["freq_estimation_method"] - self.time_settings['freq_estimation_simplify'] = bool(res_settings["freq_estimation_simplify"]) - self.time_settings['freq_estimation_simplify_error'] = res_settings["freq_estimation_simplify_error"] + self.time_settings["freq_estimation_method"] = res_settings[ + "freq_estimation_method" + ] + self.time_settings["freq_estimation_simplify"] = bool( + res_settings["freq_estimation_simplify"] + ) + self.time_settings["freq_estimation_simplify_error"] = res_settings[ + "freq_estimation_simplify_error" + ] def _update_app_settings(self): """ @@ -139,11 +111,6 @@ def _update_app_settings(self): self.app["print_max_n"] = int(print_settings["max_print_per_line"]) # 2. Plot settings self.app["plot_settings"] = plot_settings - self.app["world_boundary_map"] = os.path.join( - Settings._settings_files_path, - "world_boundaries", - "WB_countries_Admin0_10m.shp", - ) # 3. display name mappers self.app["display_name_mapper"] = vars_display @@ -166,14 +133,17 @@ def _update_qc_settings(self): None. """ logger.debug("Updating QC settings.") - from .settings_files.qc_settings import (check_settings, checks_info, - titan_check_settings, - titan_specific_labeler) + from .settings_files.qc_settings import ( + check_settings, + checks_info, + titan_check_settings, + titan_specific_labeler, + ) self.qc["qc_check_settings"] = check_settings self.qc["qc_checks_info"] = checks_info - self.qc['titan_check_settings'] = titan_check_settings - self.qc['titan_specific_labeler'] = titan_specific_labeler + self.qc["titan_check_settings"] = titan_check_settings + self.qc["titan_specific_labeler"] = titan_specific_labeler def _update_gap_settings(self): """ @@ -190,7 +160,7 @@ def _update_gap_settings(self): gaps_fill_settings, gaps_fill_info, missing_obs_fill_settings, - missing_obs_fill_info + missing_obs_fill_info, ) self.gap["gaps_settings"] = gaps_settings @@ -198,8 +168,8 @@ def _update_gap_settings(self): self.gap["gaps_fill_settings"] = gaps_fill_settings self.gap["gaps_fill_info"] = gaps_fill_info - self.missing_obs['missing_obs_fill_settings'] = missing_obs_fill_settings - self.missing_obs['missing_obs_fill_info'] = missing_obs_fill_info + self.missing_obs["missing_obs_fill_settings"] = missing_obs_fill_settings + self.missing_obs["missing_obs_fill_info"] = missing_obs_fill_info def _update_templates(self): """ @@ -229,18 +199,6 @@ def _update_gee_settings(self): self.gee["gee_dataset_info"] = gee_datasets - def _update_alaro_settings(self): - """ - Update the Alaro settings using the default settings templates. - - Returns - ------- - None. - """ - logger.debug("Updating gee settings.") - from .settings_files.alaro_25_settings import al25_mapinfo - self.alaro["info"] = al25_mapinfo - def update_timezone(self, timezonestr): """ Change the timezone of the input data. @@ -266,8 +224,13 @@ def update_timezone(self, timezonestr): ) self.time_settings["timezone"] = timezonestr - def update_IO(self, output_folder=None, input_data_file=None, - input_metadata_file=None, template_file=None): + def update_IO( + self, + output_folder=None, + input_data_file=None, + input_metadata_file=None, + template_file=None, + ): """ Update some settings that are relevent before data is imported. @@ -366,7 +329,6 @@ def show(self): attr_list = [ "IO", - "db", "time_settings", "app", "qc", diff --git a/metobs_toolkit/settings_files/alaro_25_settings.py b/metobs_toolkit/settings_files/alaro_25_settings.py deleted file mode 100644 index 184ae296..00000000 --- a/metobs_toolkit/settings_files/alaro_25_settings.py +++ /dev/null @@ -1,39 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Tue Jun 27 10:56:38 2023 - -@author: thoverga -""" - -al25_mapinfo = { - 'ALARO_2.5' : { - "band_of_use":{ - # Temperatures - "temp": {"name": "SFX.T2M", "units": "Celcius"}, - # "temp_ISBA": {"name": "T2M_ISBA", "units": "Celcius"}, - # "temp_TEB": {"name": "T2M_TEB", "units": "Celcius"}, - - # Humidity - "humidity": {"name": "SFX.HU2M", "units": "percentage"}, #?? - - # Wind - "windspeed": {"name": "SFX.W10M", "units": "m/s"}, #?? - - # radiation - "net_radiation": {"name": "SFX.RN", "units": "W/m²"}, #?? - - # Fluxes - "heat_flux": {"name": "SFX.H", "units": "W/m²"}, #??" - "lat_heat_flux": {"name": "SFX.LE", "units": "W/m²"}, #??" - "ground_heat_flux": {"name": "SFX.GFLUX", "units": "W/m²"}}, - "dynamical": True, # time evolution? To be used for timeseries - 'other_mapping': {'datetime' : {'name' : 'date', - 'fmt': '%m/%d/%Y %H:%M:%S', - 'tz': 'UTC'}, - 'name': {'name': 'name'}}, - - 'conversions': {'humidity' : 100.0} #multiply by - - } -} diff --git a/metobs_toolkit/settings_files/app_print_settings.json b/metobs_toolkit/settings_files/app_print_settings.json index 63c8148b..871c09af 100644 --- a/metobs_toolkit/settings_files/app_print_settings.json +++ b/metobs_toolkit/settings_files/app_print_settings.json @@ -1,4 +1,4 @@ { "fmt_datetime":"%d/%m/%Y %H:%M:%S", "max_print_per_line":"40" -} \ No newline at end of file +} diff --git a/metobs_toolkit/settings_files/dataset_resolution_settings.json b/metobs_toolkit/settings_files/dataset_resolution_settings.json index 0b38b3d1..09cfea42 100644 --- a/metobs_toolkit/settings_files/dataset_resolution_settings.json +++ b/metobs_toolkit/settings_files/dataset_resolution_settings.json @@ -6,4 +6,4 @@ "freq_estimation_method": "highest", "freq_estimation_simplify": true, "freq_estimation_simplify_error": "2T" -} \ No newline at end of file +} diff --git a/metobs_toolkit/settings_files/default_formats_settings.py b/metobs_toolkit/settings_files/default_formats_settings.py index 798bf60a..a2691b97 100644 --- a/metobs_toolkit/settings_files/default_formats_settings.py +++ b/metobs_toolkit/settings_files/default_formats_settings.py @@ -42,15 +42,15 @@ plot_settings["time_series"] = { # shape "figsize": (15, 5), - "colormap": 'tab20', #when colorby='name' is used + "colormap": "tab20", # when colorby='name' is used "linewidth": 2, # - "linestyle_ok": '-', #solid line - "linestyle_fill": '--', #dashedline + "linestyle_ok": "-", # solid line + "linestyle_fill": "--", # dashedline "linezorder": 1, # for ok obs "scattersize": 4, # for outliers "scatterzorder": 3, # for outliers "dashedzorder": 2, # for gapfills - "legend_n_columns": 5, # for the number of columns in the plot + "legend_n_columns": 5, # for the number of columns in the plot } # ============================================================================= # Spatial plot settings @@ -97,9 +97,9 @@ "repetitions": "#056ff0", "step": "#05d4f0", "window_variation": "#05f0c9", - 'buddy_check': '#8300c4', - "titan_buddy_check": '#8300c4', - "titan_sct_resistant_check": '#c17fe1', + "buddy_check": "#8300c4", + "titan_buddy_check": "#8300c4", + "titan_sct_resistant_check": "#c17fe1", # missing and gap "gap": "#f00592", "missing_timestamp": "#f78e0c", @@ -119,23 +119,21 @@ # ============================================================================= plot_settings["diurnal"] = { - "figsize": (10,10), - 'alpha_error_bands': 0.3, - 'cmap_continious' : "viridis", #if many stations are present, best to use continious rather than categorical - 'n_cat_max': 20, #when less or equal categories are detected, use the categorical col mapping - 'cmap_categorical': "tab20", + "figsize": (10, 10), + "alpha_error_bands": 0.3, + "cmap_continious": "viridis", # if many stations are present, best to use continious rather than categorical + "n_cat_max": 20, # when less or equal categories are detected, use the categorical col mapping + "cmap_categorical": "tab20", "legend_n_columns": 5, - } plot_settings["anual"] = { - "figsize": (10,10), - 'alpha_error_bands': 0.3, - 'cmap_continious' : "viridis", #if many stations are present, best to use continious rather than categorical - 'n_cat_max': 20, #when less or equal categories are detected, use the categorical col mapping - 'cmap_categorical': "tab20", + "figsize": (10, 10), + "alpha_error_bands": 0.3, + "cmap_continious": "viridis", # if many stations are present, best to use continious rather than categorical + "n_cat_max": 20, # when less or equal categories are detected, use the categorical col mapping + "cmap_categorical": "tab20", "legend_n_columns": 5, - } @@ -144,27 +142,26 @@ # ============================================================================= plot_settings["correlation_heatmap"] = { - "figsize": (10,10), - 'vmin': -1, - 'vmax': 1, - 'cmap': 'cool', - 'x_tick_rot': 65, - 'y_tick_rot': 0, + "figsize": (10, 10), + "vmin": -1, + "vmax": 1, + "cmap": "cool", + "x_tick_rot": 65, + "y_tick_rot": 0, } plot_settings["correlation_scatter"] = { - "figsize": (10,10), - "p_bins": [0, .001, 0.01, 0.05, 999], #do not change the 0.001,0.01 or 0.05 - "bins_markers":['*', 's', '^', 'X'], - 'scatter_size': 40, - 'scatter_edge_col': 'black', - 'scatter_edge_line_width': 0.1, - 'ymin': -1.1, - 'ymax': 1.1, - 'cmap': 'tab20', - 'legend_ncols': 3, - 'legend_text_size': 7, - + "figsize": (10, 10), + "p_bins": [0, 0.001, 0.01, 0.05, 999], # do not change the 0.001,0.01 or 0.05 + "bins_markers": ["*", "s", "^", "X"], + "scatter_size": 40, + "scatter_edge_col": "black", + "scatter_edge_line_width": 0.1, + "ymin": -1.1, + "ymax": 1.1, + "cmap": "tab20", + "legend_ncols": 3, + "legend_text_size": 7, } diff --git a/metobs_toolkit/settings_files/gaps_and_missing_settings.py b/metobs_toolkit/settings_files/gaps_and_missing_settings.py index 3cf19236..1230c01b 100644 --- a/metobs_toolkit/settings_files/gaps_and_missing_settings.py +++ b/metobs_toolkit/settings_files/gaps_and_missing_settings.py @@ -47,7 +47,7 @@ "minimum_trailing_sample_duration_hours": 24, } }, - "automatic":{'max_interpolation_duration_str': '5H'} + "automatic": {"max_interpolation_duration_str": "5H"}, } @@ -60,14 +60,10 @@ # ============================================================================= # Missing obs filling settings # ============================================================================= -missing_obs_fill_settings={ - 'linear': {'method': 'time'} - -} +missing_obs_fill_settings = {"linear": {"method": "time"}} missing_obs_fill_info = { "label_columnname": "final_label", "label": {"linear": "missing_obs_interpolation"}, "numeric_flag": 23, - -} \ No newline at end of file +} diff --git a/metobs_toolkit/settings_files/gee_settings.py b/metobs_toolkit/settings_files/gee_settings.py index 07ffd376..3dc4c715 100644 --- a/metobs_toolkit/settings_files/gee_settings.py +++ b/metobs_toolkit/settings_files/gee_settings.py @@ -52,8 +52,6 @@ "ERA5_hourly": { "location": "ECMWF/ERA5_LAND/HOURLY", # GEE location "usage": "ERA5", # Human readable application domain - "band_of_use": {"temp": {"name": "temperature_2m", "units": "K"}}, - # band mapper to use for imagecollections (or None if no band available) "value_type": "numeric", # categorical or numeric "dynamical": True, # time evolution? To be used for timeseries "scale": 2500, @@ -89,20 +87,19 @@ "pervious": [10, 20, 30, 40, 60, 100], "impervious": [50], }, - 'colorscheme': { - 10: '006400', - 20: 'ffbb22', - 30: 'ffff4c', - 40: 'f096ff', - 50: 'fa0000', - 60: 'b4b4b4', - 70: 'f0f0f0', - 80: '0064c8', - 90: '0096a0', - 95: '00cf75', - 100:'fae6a0', - }, - + "colorscheme": { + 10: "006400", + 20: "ffbb22", + 30: "ffff4c", + 40: "f096ff", + 50: "fa0000", + 60: "b4b4b4", + 70: "f0f0f0", + 80: "0064c8", + 90: "0096a0", + 95: "00cf75", + 100: "fae6a0", + }, "credentials": "https://spdx.org/licenses/CC-BY-4.0.html", }, } diff --git a/metobs_toolkit/settings_files/qc_settings.py b/metobs_toolkit/settings_files/qc_settings.py index d52588f8..4eb9fe7e 100644 --- a/metobs_toolkit/settings_files/qc_settings.py +++ b/metobs_toolkit/settings_files/qc_settings.py @@ -40,75 +40,65 @@ } }, "buddy_check": { - "temp":{ - 'radius': 15000, #Search radius in meter - 'num_min': 2, # int The minimum number of buddies a station can have - 'threshold': 1.5, # σ the variance threshold for flagging a station - 'max_elev_diff': 200, # m the maximum difference in elevation for a buddy (if negative will not check for heigh difference) - 'elev_gradient': -0.0065, # linear elevation gradient with height - 'min_std': 1.0, # If the standard deviation of values in a neighborhood are less than min_std, min_std will be used instead - - } - - - } + "temp": { + "radius": 15000, # Search radius in meter + "num_min": 2, # int The minimum number of buddies a station can have + "threshold": 1.5, # σ the variance threshold for flagging a station + "max_elev_diff": 200, # m the maximum difference in elevation for a buddy (if negative will not check for heigh difference) + "elev_gradient": -0.0065, # linear elevation gradient with height + "min_std": 1.0, # If the standard deviation of values in a neighborhood are less than min_std, min_std will be used instead + } + }, } titan_check_settings = { - 'titan_buddy_check': { - 'temp':{ + "titan_buddy_check": { + "temp": { # 'radius': 5000, # vec m Search radius # 'num_min': 5, # int The minimum number of buddies a station can have - 'radius': 50000, # vec m Search radius - 'num_min': 2, # int The minimum number of buddies a station can have + "radius": 50000, # vec m Search radius + "num_min": 2, # int The minimum number of buddies a station can have # 'threshold': 2.5, # float σ the variance threshold for flagging a station - 'threshold': 1.5, # float σ the variance threshold for flagging a station - 'max_elev_diff': 200, # float m the maximum difference in elevation for a buddy (if negative will not check for heigh difference) - 'elev_gradient': -0.0065, # float ou/m linear elevation gradient with height - 'min_std': 1.0, # float If the standard deviation of values in a neighborhood are less than min_std, min_std will be used instead - 'num_iterations': 1 #int The number of iterations to perform - }, + "threshold": 1.5, # float σ the variance threshold for flagging a station + "max_elev_diff": 200, # float m the maximum difference in elevation for a buddy (if negative will not check for heigh difference) + "elev_gradient": -0.0065, # float ou/m linear elevation gradient with height + "min_std": 1.0, # float If the standard deviation of values in a neighborhood are less than min_std, min_std will be used instead + "num_iterations": 1, # int The number of iterations to perform }, - - 'titan_sct_resistant_check': { - 'temp':{ - 'num_min_outer':3, # int Minimal points in outer circle - 'num_max_outer':10, # int Maximal points in outer circle - 'inner_radius':20000, # int Radius of inner circle - 'outer_radius':50000, # int Radius of outer circle - 'num_iterations':10, # int Number of iterations - 'num_min_prof':5, # int Minimum number of observations to compute vertical profile - 'min_elev_diff':100, # int Minimal elevation difference - 'min_horizontal_scale':250, # int Minimal horizontal scale - 'max_horizontal_scale':100000, # int Maximal horizontal scale - 'kth_closest_obs_horizontal_scale':2, # int Number of closest observations to consider in the adaptive estimation of the horizontal decorrelation length - 'vertical_scale':200, # int The vertical scale - 'mina_deviation': 10, # vec Minimum admissible value - 'maxa_deviation': 10, # vec Maximum admissible value - 'minv_deviation': 1, # vec Minimum valid value - 'maxv_deviation': 1, # vec Maximum valid value - 'eps2': 0.5, #Ratio of observation error variance to background variance - 'tpos': 5, #vec Positive deviation allowed - 'tneg': 8, #vec Negative deviation allowed - 'basic':True, # bool Basic mode - 'debug':False # bool Debug mode - } + }, + "titan_sct_resistant_check": { + "temp": { + "num_min_outer": 3, # int Minimal points in outer circle + "num_max_outer": 10, # int Maximal points in outer circle + "inner_radius": 20000, # int Radius of inner circle + "outer_radius": 50000, # int Radius of outer circle + "num_iterations": 10, # int Number of iterations + "num_min_prof": 5, # int Minimum number of observations to compute vertical profile + "min_elev_diff": 100, # int Minimal elevation difference + "min_horizontal_scale": 250, # int Minimal horizontal scale + "max_horizontal_scale": 100000, # int Maximal horizontal scale + "kth_closest_obs_horizontal_scale": 2, # int Number of closest observations to consider in the adaptive estimation of the horizontal decorrelation length + "vertical_scale": 200, # int The vertical scale + "mina_deviation": 10, # vec Minimum admissible value + "maxa_deviation": 10, # vec Maximum admissible value + "minv_deviation": 1, # vec Minimum valid value + "maxv_deviation": 1, # vec Maximum valid value + "eps2": 0.5, # Ratio of observation error variance to background variance + "tpos": 5, # vec Positive deviation allowed + "tneg": 8, # vec Negative deviation allowed + "basic": True, # bool Basic mode + "debug": False, # bool Debug mode } - - } + }, +} # how to map the numeric output of titan to a 'ok' or outlier label titan_specific_labeler = { - 'titan_buddy_check': { - 'ok' : [0], - 'outl': [1] - }, - - 'titan_sct_resistant_check': { - 'ok' : [0, -999,11,12], #if obs not checked, or cannot be checked assume ok - 'outl': [1] - } - + "titan_buddy_check": {"ok": [0], "outl": [1]}, + "titan_sct_resistant_check": { + "ok": [0, -999, 11, 12], # if obs not checked, or cannot be checked assume ok + "outl": [1], + }, } # Information on the sequence of checks and if they are applied on all observations seperatly. @@ -162,7 +152,8 @@ "buddy_check": { "outlier_flag": "buddy check outlier", "numeric_flag": 11, - "apply_on": "obstype"}, + "apply_on": "obstype", + }, "titan_buddy_check": { "outlier_flag": "titan buddy check outlier", "numeric_flag": 9, @@ -172,5 +163,5 @@ "outlier_flag": "sct resistant check outlier", "numeric_flag": 10, "apply_on": "obstype", - } + }, } diff --git a/metobs_toolkit/settings_files/server_login.json b/metobs_toolkit/settings_files/server_login.json index d1da9266..fb880da8 100644 --- a/metobs_toolkit/settings_files/server_login.json +++ b/metobs_toolkit/settings_files/server_login.json @@ -4,4 +4,3 @@ "obs_table":"Vlinder", "meta_table":"Vlinder_Identification" } - diff --git a/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp b/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp deleted file mode 100644 index eefb75ef..00000000 Binary files a/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shp and /dev/null differ diff --git a/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shx b/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shx deleted file mode 100644 index a04287a0..00000000 Binary files a/metobs_toolkit/settings_files/world_boundaries/WB_countries_Admin0_10m.shx and /dev/null differ diff --git a/metobs_toolkit/station.py b/metobs_toolkit/station.py index 9bd2f5ed..73ffab7b 100644 --- a/metobs_toolkit/station.py +++ b/metobs_toolkit/station.py @@ -13,9 +13,22 @@ class Station(dataset.Dataset): """A class holding all information of one station. Inherit all from Dataset.""" - def __init__(self, name, df, outliersdf, gaps, missing_obs, gapfilldf, - missing_fill_df, metadf, data_template, settings, - _qc_checked_obstypes, _applied_qc): + def __init__( + self, + name, + df, + outliersdf, + gaps, + missing_obs, + gapfilldf, + missing_fill_df, + metadf, + obstypes, + data_template, + settings, + _qc_checked_obstypes, + _applied_qc, + ): """Initiate the Station object.""" self.name = name self.df = df @@ -25,6 +38,7 @@ def __init__(self, name, df, outliersdf, gaps, missing_obs, gapfilldf, self.gapfilldf = gapfilldf self.missing_fill_df = missing_fill_df self.metadf = metadf + self.obstypes = obstypes self.data_template = data_template self.settings = settings self._qc_checked_obstypes = _qc_checked_obstypes @@ -35,8 +49,8 @@ def __init__(self, name, df, outliersdf, gaps, missing_obs, gapfilldf, def setup_metadata_dtyes(self): """Make sure the dtypes are not lost when subsetting.""" - numeric_columns = ['lat', 'lon'] - timedelta_columns = ['assumed_import_frequency', 'dataset_resolution'] + numeric_columns = ["lat", "lon"] + timedelta_columns = ["assumed_import_frequency", "dataset_resolution"] for col in numeric_columns: if col in self.metadf.columns: diff --git a/metobs_toolkit/writing_files.py b/metobs_toolkit/writing_files.py index 456d699f..ac1faa24 100644 --- a/metobs_toolkit/writing_files.py +++ b/metobs_toolkit/writing_files.py @@ -12,8 +12,9 @@ logger = logging.getLogger(__name__) -def write_dataset_to_csv(df, metadf, filename, outputfolder, - location_info, seperate_metadata_file): +def write_dataset_to_csv( + df, metadf, filename, outputfolder, location_info, seperate_metadata_file +): """Write a dataset to a csv files. Write the dataset to a file where the observations, metadata and (if available) diff --git a/pyproject.toml b/pyproject.toml index 8fbf05e8..dbafd082 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,48 +1,51 @@ +[build-system] +build-backend = "poetry.core.masonry.api" +requires = ["poetry-core"] + [tool.poetry] -name = "MetObs-toolkit" -version = "0.1.2beta" -description = "A Meteorological observations toolkit for scientists" authors = ["Thomas Vergauwen "] -maintainers = ["Thomas Vergauwen "] -license = "LICENSE" -readme = "README.md" +description = "A Meteorological observations toolkit for scientists" documentation = "https://vergauwenthomas.github.io/MetObs_toolkit/" -packages = [{include = "metobs_toolkit"}] keywords = ["meteorology", "observations", "urban climate"] +license = "LICENSE" +maintainers = ["Thomas Vergauwen "] +name = "MetObs-toolkit" +packages = [{include = "metobs_toolkit"}] +readme = "README.md" +version = "0.1.3a" [tool.poetry.dependencies] -python = "^3.9" -pandas = "^1.3.0" -#numpy = "^1.17.3" #in pandas -matplotlib = "^3.0.0" -geopandas = "^0.9.0" -pyproj = "~3.4" -mapclassify = "^2.4.0" +cartopy = "^0.22.0" +# cartopy = '^0.21.1' earthengine-api = "^0.1.340" geemap = '^0.20.0' +geopandas = "^0.9.0" +geos = "^0.2.3" +# geos = '^3.7' +mapclassify = "^2.4.0" +# numpy = "^1.17.3" #in pandas +matplotlib = "^3.0.0" +pandas = "^1.3.0" +# pygeos = "^0.14" +# pyproj = "~3.4" +python = "^3.9" +shapely = "^2.0.2" - - -[tool.poetry.group.titan.dependencies] -#titanlib requires C-compilers, which are not by default present on windows. -#Make a seperate group for titan -titanlib = '^0.3' - +[tool.poetry.group.dev.dependencies] +# To run poetry tests +poetry = "^1.7" +pre-commit = "^3.6" [tool.poetry.group.documentation.dependencies] -#Group of dep packages for building the documentation -sphinx = '^7.2' +myst_parser = '^2.0.0' nbsphinx = '^0.9' +pandoc = '^2.1' # Check on PyPi (not in local conda env) + with system wide install +# Group of dep packages for building the documentation +sphinx = '^7.2' sphinx-copybutton = '^0.5.1' sphinx-rtd-theme = '^1.3.0' -myst_parser = '^2.0.0' -pandoc = '^2.1' #Check on PyPi (not in local conda env) + with system wide install - - -[tool.poetry.group.dev.dependencies] -#To run poetry tests -poetry = "^1.7" -[build-system] -requires = ["poetry-core"] -build-backend = "poetry.core.masonry.api" +[tool.poetry.group.titan.dependencies] +# titanlib requires C-compilers, which are not by default present on windows. +# Make a seperate group for titan +titanlib = '^0.3' diff --git a/setup.cfg b/setup.cfg new file mode 100644 index 00000000..762e484f --- /dev/null +++ b/setup.cfg @@ -0,0 +1,41 @@ +[flake8] +exclude = + .git, + docs, + build, + .eggs, + tests +#ignore = +# AZ100, +# AZ200, +# AZ300, +# C, +# D, +# E, +# F, +# W503 +#per-file-ignores = +# xclim/core/locales.py:RST399 +#rst-directives = +# bibliography, +# autolink-skip +extend-ignore = E265 +rst-roles = + doc, + mod, + py:attr, + py:attribute, + py:class, + py:const, + py:data, + py:func, + py:indicator, + py:meth, + py:mod, + py:obj, + py:ref, + ref, + cite:cts, + cite:p, + cite:t, + cite:ts diff --git a/static_data/vlinder_metadata.csv b/static_data/vlinder_metadata.csv index 1fa8eeba..f2197043 100644 --- a/static_data/vlinder_metadata.csv +++ b/static_data/vlinder_metadata.csv @@ -74,4 +74,4 @@ iKfze02i1OhV7zTnTYTbMCQQ;vlinder75;51.022379;3.709695;Gent;Sterre;UGent;Meetcamp Eqd0GZvukV8sLpF44lvfBiH8;vlinder76;51.022379;3.709695;Gent;Sterre;UGent;Meetcampagne hittebestendige steden;Vlinder yhk8Jaxl2UAnbKTplKK9zhx6;vlinder77;51.022379;3.709695;Gent;Sterre;UGent;Meetcampagne hittebestendige steden;Vlinder 3d5VCChSwK3ebGFqkbII9MRw;vlinder78;51.022379;3.709695;Gent;Sterre;UGent;Meetcampagne hittebestendige steden;Vlinder -6M4Qz8B5farfKJjVtiKReZmQ;vlinder74;51.022379;3.709695;Gent;Sterre;UGent;Universiteit Gent;Vlinder \ No newline at end of file +6M4Qz8B5farfKJjVtiKReZmQ;vlinder74;51.022379;3.709695;Gent;Sterre;UGent;Universiteit Gent;Vlinder diff --git a/tests/extreme_test.py b/tests/extreme_test.py index 41f8e260..cea1a451 100644 --- a/tests/extreme_test.py +++ b/tests/extreme_test.py @@ -10,6 +10,7 @@ import sys, os from pathlib import Path + lib_folder = Path(__file__).resolve().parents[1] # print(str(lib_folder)) @@ -18,36 +19,33 @@ import metobs_toolkit # %% -testfolder=os.path.join(str(lib_folder), 'tests', 'push_test') +testfolder = os.path.join(str(lib_folder), "tests", "push_test") from tests.push_test.test_data_paths import testdata - - # %% def read_in_the_dataset(dataname, testdatadict): - print(f'\n ------ read dataset ({dataname}) ---------\n') - datafile = testdatadict[dataname]['datafile'] - metafile =testdatadict[dataname]['metadatafile'] - template = testdatadict[dataname]['template'] - kwargsdict = testdatadict[dataname]['kwargs'] - - - + print(f"\n ------ read dataset ({dataname}) ---------\n") + datafile = testdatadict[dataname]["datafile"] + metafile = testdatadict[dataname]["metadatafile"] + template = testdatadict[dataname]["template"] + kwargsdict = testdatadict[dataname]["kwargs"] dataset = metobs_toolkit.Dataset() - dataset.update_settings(input_data_file=datafile, - input_metadata_file=metafile, - template_file=template, - ) + dataset.update_settings( + input_data_file=datafile, + input_metadata_file=metafile, + template_file=template, + ) dataset.import_data_from_file(**kwargsdict) return dataset def IO_test(dataset, name): - print(f'\n ------ IO tests ({name}) ---------\n') + print(f"\n ------ IO tests ({name}) ---------\n") + def del_file(file_path): if os.path.isfile(file_path): os.remove(file_path) @@ -55,68 +53,62 @@ def del_file(file_path): else: print(f"{file_path} not found.") - # Sycnronize data - test = dataset.sync_observations(tollerance='5T') + test = dataset.sync_observations(tollerance="5T") # pickel test - outfolder =os.path.join(str(lib_folder), 'tests', 'test_data') - file='dataset_IO_test' - - - del_file(os.path.join(outfolder, file+'.pkl')) + outfolder = os.path.join(str(lib_folder), "tests", "test_data") + file = "dataset_IO_test" + del_file(os.path.join(outfolder, file + ".pkl")) # save dataset as pickle - dataset.update_default_name('this_is_a_test_name') - - dataset.save_dataset(outputfolder=outfolder, - filename=file) - + dataset.update_default_name("this_is_a_test_name") - del dataset #remove from kernel + dataset.save_dataset(outputfolder=outfolder, filename=file) + del dataset # remove from kernel # read dataset new_dataset = metobs_toolkit.Dataset() - new_dataset = new_dataset.import_dataset(folder_path=outfolder, - filename=file +'.pkl') - - del_file(os.path.join(outfolder, file+'.pkl')) - - assert new_dataset.settings.app["default_name"] == 'this_is_a_test_name', 'some attributes are not correctly saved when pickled.' + new_dataset = new_dataset.import_dataset( + folder_path=outfolder, filename=file + ".pkl" + ) + del_file(os.path.join(outfolder, file + ".pkl")) + assert ( + new_dataset.settings.app["default_name"] == "this_is_a_test_name" + ), "some attributes are not correctly saved when pickled." def qc_testing(dataset, name): - print(f'\n ------ QC tests ({name}) ---------\n') - + print(f"\n ------ QC tests ({name}) ---------\n") # on get station stationname = dataset.metadf.index[0] station = dataset.get_station(stationname) - station.apply_quality_control(obstype='temp') + station.apply_quality_control(obstype="temp") station.get_qc_stats(make_plot=False) - - #on dataset + # on dataset dataset.get_qc_stats(make_plot=False) dataset.apply_quality_control(obstype="temp") dataset.get_qc_stats(make_plot=True) - # titan test - dataset.update_titan_qc_settings(obstype='temp', - buddy_radius=50000, - buddy_num_min=3, - buddy_max_elev_diff=200, - buddy_threshold=3) + dataset.update_titan_qc_settings( + obstype="temp", + buddy_radius=50000, + buddy_num_min=3, + buddy_max_elev_diff=200, + buddy_threshold=3, + ) def gapfill_testing(dataset, name): - print(f'\n ------ gaps missing tests ({name})---------\n') + print(f"\n ------ gaps missing tests ({name})---------\n") # testing conversion to df + update from outliers _ = dataset.get_gaps_df() @@ -125,8 +117,9 @@ def gapfill_testing(dataset, name): dataset.update_gaps_and_missing_from_outliers(n_gapsize=3) if init_outl_shape[0] > 0: - assert init_outl_shape!=dataset.outliersdf.shape, 'outliers still the same as before updateing to gaps' - + assert ( + init_outl_shape != dataset.outliersdf.shape + ), "outliers still the same as before updateing to gaps" _ = dataset.get_gaps_df() @@ -143,44 +136,44 @@ def gapfill_testing(dataset, name): # dataset.make_plot(colorby='label', title='AFTER GAP AND MISSING FILL') - - def plot_testing(dataset, name): - print(f'\n ------ plot tests ({name})---------\n') + print(f"\n ------ plot tests ({name})---------\n") - dataset.make_plot(colorby='name', title=name) - dataset.make_plot(colorby='label', title=name) + dataset.make_plot(colorby="name", title=name) + dataset.make_plot(colorby="label", title=name) if not dataset.metadf.empty: - dataset.make_geo_plot(variable='temp', title=name) + dataset.make_geo_plot(variable="temp", title=name) def analysis_test(dataset, name): - print(f'\n ------ Analysis testing({name})---------\n') + print(f"\n ------ Analysis testing({name})---------\n") an = dataset.get_analysis() # Test plotting and functions - temp_diurnal = an.get_diurnal_statistics(colorby='lcz',title=name) - an.get_anual_statistics(agg_method='median', plot=False) - test3 = an.get_aggregated_cycle_statistics(aggregation=['lcz'],title=name) + temp_diurnal = an.get_diurnal_statistics(colorby="lcz", title=name) + an.get_anual_statistics(agg_method="median", plot=False) + test3 = an.get_aggregated_cycle_statistics(aggregation=["lcz"], title=name) print(an) - filter_an = an.apply_filter('temp < 15.5 & hour <= 19') - + filter_an = an.apply_filter("temp < 15.5 & hour <= 19") - agg_df = an.aggregate_df( agg=['lcz', 'hour']) + agg_df = an.aggregate_df(agg=["lcz", "hour"]) - if 'humidity' in dataset.df.columns: - an.get_lc_correlation_matrices(obstype=['temp', 'humidity'], groupby_labels=['lcz', 'season']) + if "humidity" in dataset.df.columns: + an.get_lc_correlation_matrices( + obstype=["temp", "humidity"], groupby_labels=["lcz", "season"] + ) else: - an.get_lc_correlation_matrices(obstype=['temp'], groupby_labels=['lcz', 'season']) - + an.get_lc_correlation_matrices( + obstype=["temp"], groupby_labels=["lcz", "season"] + ) def get_lcz_and_lc(name, dataset): - print(f'\n ------ gee lcz and lc extraction ({name})---------\n') + print(f"\n ------ gee lcz and lc extraction ({name})---------\n") dataset.get_lcz() dataset.get_landcover(buffers=[50, 100]) @@ -189,38 +182,36 @@ def get_lcz_and_lc(name, dataset): metadf = dataset.metadf.copy() # relevant columns: - rel_columns = [col for col in metadf.columns if (col.endswith('50m') | col.endswith('100m'))] - rel_columns.append('lcz') + rel_columns = [ + col for col in metadf.columns if (col.endswith("50m") | col.endswith("100m")) + ] + rel_columns.append("lcz") metadf = metadf[rel_columns] metadf = metadf.reset_index() - filename =meta_path_generator(name) + filename = meta_path_generator(name) metadf.to_csv(filename) - def meta_path_generator(name): - metafolder=os.path.join(str(lib_folder), 'tests', 'test_data/meta_data_extreme_test') - - filename =name.replace(' ', '_' ) + '_lc_info.csv' + metafolder = os.path.join( + str(lib_folder), "tests", "test_data/meta_data_extreme_test" + ) + filename = name.replace(" ", "_") + "_lc_info.csv" return os.path.join(metafolder, filename) - - - - # %% for name in testdata: - print(f'\n ************ {name} *************\n') + print(f"\n ************ {name} *************\n") dataset = read_in_the_dataset(name, testdata) - print(f'Initial df shape: {dataset.df.shape}') - dataset.coarsen_time_resolution(freq=testdata[name]['coarsen']) - print(f'after coarsening df shape: {dataset.df.shape}') + print(f"Initial df shape: {dataset.df.shape}") + dataset.coarsen_time_resolution(freq=testdata[name]["coarsen"]) + print(f"after coarsening df shape: {dataset.df.shape}") qc_testing(dataset, name) plot_testing(dataset, name) gapfill_testing(dataset, name) @@ -236,5 +227,4 @@ def meta_path_generator(name): # an.get_lc_correlation_matrices(obstype=['temp', 'humidity'], groupby_labels=['lcz', 'hour']) - # an.plot_correlation_variation() diff --git a/tests/push_test/IO_test.py b/tests/push_test/IO_test.py index f6eb1f88..a98274be 100755 --- a/tests/push_test/IO_test.py +++ b/tests/push_test/IO_test.py @@ -14,9 +14,10 @@ lib_folder = Path(__file__).resolve().parents[2] import metobs_toolkit -# print(metobs_toolkit.__version__) +# print(metobs_toolkit.__version__) +#%% # %% import data from file (long standard format) testdatafile = os.path.join( @@ -25,8 +26,9 @@ dataset = metobs_toolkit.Dataset() -dataset.update_settings(input_data_file=testdatafile, - template_file=metobs_toolkit.demo_template) +dataset.update_settings( + input_data_file=testdatafile, template_file=metobs_toolkit.demo_template +) dataset.show_settings() dataset.import_data_from_file() @@ -52,114 +54,146 @@ dataset.import_data_from_file() -assert dataset.df.shape == (120957, 10), 'Shape of demo data is not correct.' - - +assert dataset.df.shape == (120957, 10), "Shape of demo data is not correct." #%% Import wide dataset (Multiple stations) + syncronize -widedatafile = os.path.join(str(lib_folder), 'tests', 'test_data', 'wide_test_data.csv') -widetemplate = os.path.join(str(lib_folder), 'tests', 'test_data', 'wide_test_template.csv') - - +widedatafile = os.path.join(str(lib_folder), "tests", "test_data", "wide_test_data.csv") +widetemplate = os.path.join( + str(lib_folder), "tests", "test_data", "wide_test_template.csv" +) # #% Setup dataset dataset = metobs_toolkit.Dataset() -dataset.update_settings(input_data_file=widedatafile, - # input_metadata_file=static_data, - template_file= widetemplate, - ) - - +dataset.update_settings( + input_data_file=widedatafile, + # input_metadata_file=static_data, + template_file=widetemplate, +) -dataset.import_data_from_file(long_format=False, - obstype='temp', obstype_description='2mT', obstype_unit='Celcius') -assert dataset.df.shape == (597, 1), 'Shape of unsynced widedata is not correct.' +dataset.import_data_from_file( + long_format=False, obstype="temp", obstype_description="2mT", obstype_unit="Celcius" +) +assert dataset.df.shape == (597, 1), "Shape of unsynced widedata is not correct." #%% Import wide dataset with all options in the template -widetemplate_with_options = os.path.join(str(lib_folder), 'tests', 'test_data', 'wide_test_template_with_options.csv') +widetemplate_with_options = os.path.join( + str(lib_folder), "tests", "test_data", "wide_test_template_with_options.csv" +) dataset2 = metobs_toolkit.Dataset() -dataset2.update_settings(input_data_file=widedatafile, - # input_metadata_file=static_data, - template_file= widetemplate_with_options, - ) +dataset2.update_settings( + input_data_file=widedatafile, + # input_metadata_file=static_data, + template_file=widetemplate_with_options, +) dataset2.import_data_from_file() -assert dataset2.df.shape == dataset.df.shape, 'Opening with options in template does not give same results' -assert dataset2.df.columns.to_list() == dataset.df.columns.to_list(), 'Opening with options in template does not give same results' +assert ( + dataset2.df.shape == dataset.df.shape +), "Opening with options in template does not give same results" +assert ( + dataset2.df.columns.to_list() == dataset.df.columns.to_list() +), "Opening with options in template does not give same results" #%% Test syncronizing wide # Sycnronize data -test = dataset.sync_observations(tollerance='5T', verbose=True) +test = dataset.sync_observations(tollerance="5T", verbose=True) -assert dataset.df.shape == (182, 1), 'Shape after syncronizing widedata is not correct.' +assert dataset.df.shape == (182, 1), "Shape after syncronizing widedata is not correct." -assert dataset.missing_obs.series.shape == (15,), 'Number of missing obs after sync wide data not correct' +assert dataset.missing_obs.series.shape == ( + 15, +), "Number of missing obs after sync wide data not correct" #%% import wide dataset (One station) -singlestationdatafile = os.path.join(str(lib_folder), 'tests', 'test_data', 'single_station.csv') -singlestationtemplate = os.path.join(str(lib_folder), 'tests', 'test_data', 'single_station_template.csv') -singlestationmetadata = os.path.join(str(lib_folder), 'tests', 'test_data', 'single_station_metadata.csv') - - +singlestationdatafile = os.path.join( + str(lib_folder), "tests", "test_data", "single_station.csv" +) +singlestationtemplate = os.path.join( + str(lib_folder), "tests", "test_data", "single_station_template.csv" +) +singlestationmetadata = os.path.join( + str(lib_folder), "tests", "test_data", "single_station_metadata.csv" +) # #% Setup dataset dataset_single = metobs_toolkit.Dataset() -dataset_single.update_settings(input_data_file=singlestationdatafile, - input_metadata_file=singlestationmetadata, - template_file= singlestationtemplate, - ) - +dataset_single.update_settings( + input_data_file=singlestationdatafile, + input_metadata_file=singlestationmetadata, + template_file=singlestationtemplate, +) dataset_single.import_data_from_file(long_format=True) -assert dataset_single.df.shape == (13, 2), 'Shape singlestation dataset is not correct.' +assert dataset_single.df.shape == (13, 2), "Shape singlestation dataset is not correct." + +assert ( + dataset_single.df.index.get_level_values("name")[0] == "whats_the_name" +), "The single station name in the metadata is not set for the data." + +assert dataset_single.metadf.shape == ( + 1, + 9, +), "Shape metadf for single station is not correct" -assert dataset_single.df.index.get_level_values('name')[0] == 'whats_the_name', 'The single station name in the metadata is not set for the data.' -assert dataset_single.metadf.shape == (1,9), 'Shape metadf for single station is not correct' +assert ( + dataset_single.metadf["lat"].iloc[0] == 51.558 +), "Metadf latitde is not merged correct." -assert dataset_single.metadf['lat'].iloc[0] ==2.51558, 'Metadf latitde is not merged correct.' -assert dataset_single.df.index.get_level_values('name').unique()[0] == 'whats_the_name', 'single station name not represented correctly.' +assert ( + dataset_single.df.index.get_level_values("name").unique()[0] == "whats_the_name" +), "single station name not represented correctly." # import wide dataset (One station) with options in the template -singlestationtemplate_with_options = os.path.join(str(lib_folder), 'tests', 'test_data', 'single_station_template_with_options.csv') +singlestationtemplate_with_options = os.path.join( + str(lib_folder), "tests", "test_data", "single_station_template_with_options.csv" +) dataset_single2 = metobs_toolkit.Dataset() -dataset_single2.update_settings(input_data_file=singlestationdatafile, - input_metadata_file=singlestationmetadata, - template_file= singlestationtemplate_with_options, - ) +dataset_single2.update_settings( + input_data_file=singlestationdatafile, + input_metadata_file=singlestationmetadata, + template_file=singlestationtemplate_with_options, +) dataset_single2.import_data_from_file() -assert dataset_single2.df.shape == dataset_single.df.shape, 'Opening with options in template does not give same results' -assert dataset_single2.df.columns.to_list() == dataset_single.df.columns.to_list(), 'Opening with options in template does not give same results' +assert ( + dataset_single2.df.shape == dataset_single.df.shape +), "Opening with options in template does not give same results" +assert ( + dataset_single2.df.columns.to_list() == dataset_single.df.columns.to_list() +), "Opening with options in template does not give same results" -assert dataset_single2.df.index.get_level_values('name').unique()[0] == 'whats_the_name_2', 'Opening with options in template does not give same results' +assert ( + dataset_single2.df.index.get_level_values("name").unique()[0] == "whats_the_name_2" +), "Opening with options in template does not give same results" #%% # helper + def del_file(file_path): if os.path.isfile(file_path): os.remove(file_path) @@ -168,39 +202,110 @@ def del_file(file_path): print(f"{file_path} not found.") - #%% Pickle save and read dataset -outfolder =os.path.join(str(lib_folder), 'tests', 'test_data') -file='dataset_IO_test' +outfolder = os.path.join(str(lib_folder), "tests", "test_data") +file = "dataset_IO_test" + +del_file(os.path.join(outfolder, file + ".pkl")) -del_file(os.path.join(outfolder, file+'.pkl')) +# save dataset as pickle +dataset.update_default_name("this_is_a_test_name") -# save dataset as pickle +dataset.save_dataset(outputfolder=outfolder, filename=file) -dataset.update_default_name('this_is_a_test_name') +del dataset # remove from kernel -dataset.save_dataset(outputfolder=outfolder, - filename=file) +# read dataset +new_dataset = metobs_toolkit.Dataset() +new_dataset = new_dataset.import_dataset(folder_path=outfolder, filename=file + ".pkl") +del_file(os.path.join(outfolder, file + ".pkl")) +assert ( + new_dataset.settings.app["default_name"] == "this_is_a_test_name" +), "some attributes are not correctly saved when pickled." -del dataset #remove from kernel +# ============================================================================= +# Testing the IO properties for new observation types and units +# ============================================================================= -# read dataset -new_dataset = metobs_toolkit.Dataset() -new_dataset = new_dataset.import_dataset(folder_path=outfolder, - filename=file +'.pkl') +dataset = metobs_toolkit.Dataset() + +n_obstypes = len(dataset.obstypes) +# add unit to unexisting obstype +dataset.add_new_unit( + obstype="wetbulptem", new_unit="fake_wbtemp", conversion_expression=["x+100"] +) + +new_n_obstypes = len(dataset.obstypes) + +assert ( + n_obstypes == new_n_obstypes +), "Adding a new unit to unexisting obstype creates and obstype!" + + +# test addition of obstype and unit +dataset.add_new_unit( + obstype="temp", new_unit="fake_temp", conversion_expression=["x+100"] +) + +wetbulp_obstype = metobs_toolkit.Obstype( + obsname="wetbulptemp", + std_unit="Celcius", + description="THe wet bulb temperature", + unit_aliases={"Celcius": ["°C"], "Kelvin": ["K"]}, + unit_conversions={"Kelvin": ["x-273"]}, +) +dataset.add_new_observationtype(wetbulp_obstype) +new_n_obstypes = len(dataset.obstypes) + +assert n_obstypes == new_n_obstypes - 1, "Adding a new obstype not stored in dataset!" + + +# test if data can be imported with the new obstype and the new unit + +testdata = os.path.join( + str(lib_folder), "tests", "test_data", "single_station_new_obstypes.csv" +) +testmetadata = os.path.join( + str(lib_folder), "tests", "test_data", "single_station_metadata.csv" +) +testtemplate = os.path.join( + str(lib_folder), "tests", "test_data", "single_station_new_obstype_template.csv" +) + +dataset.update_settings( + input_data_file=testdata, + input_metadata_file=testmetadata, + template_file=testtemplate, +) + +dataset.import_data_from_file(long_format=True) -del_file(os.path.join(outfolder, file+'.pkl')) -assert new_dataset.settings.app["default_name"] == 'this_is_a_test_name', 'some attributes are not correctly saved when pickled.' +# test if all obstypes are present in the dataset +assert list(dataset.df.columns) == [ + "temp", + "wetbulptemp", +], "New obstype not use when importing data" +# check if the unist of the obstypes are correct (the default) +assert ( + dataset.obstypes["temp"].get_standard_unit() == "Celsius" +), "Standard unit not correct" +assert ( + dataset.obstypes["wetbulptemp"].get_standard_unit() == "Celcius" +), "Standard unit not correct" +# Check if unit conversion is done +assert ( + dataset.df["temp"].mean() > 100.0 +), "THe units of the temperature observations are not converted to std units" diff --git a/tests/push_test/analysis_test.py b/tests/push_test/analysis_test.py index ccd848cd..747f35e0 100644 --- a/tests/push_test/analysis_test.py +++ b/tests/push_test/analysis_test.py @@ -24,11 +24,10 @@ dataset = metobs_toolkit.Dataset() -dataset = dataset.import_dataset(folder_path=os.path.join(str(lib_folder), "tests", "test_data"), - filename='tests_dataset.pkl') - - - +dataset = dataset.import_dataset( + folder_path=os.path.join(str(lib_folder), "tests", "test_data"), + filename="tests_dataset.pkl", +) an = dataset.get_analysis() @@ -38,19 +37,23 @@ # test diurnal methods # ============================================================================= -teststa = ['vlinder01', 'vlinder02', 'vlinder03'] +teststa = ["vlinder01", "vlinder02", "vlinder03"] from datetime import datetime -startdt = datetime(2022,9,4) + +startdt = datetime(2022, 9, 4) # Test plotting and functions -temp_diurnal = an.get_diurnal_statistics(colorby='lcz', stations=teststa, startdt=startdt) +temp_diurnal = an.get_diurnal_statistics( + colorby="lcz", stations=teststa, startdt=startdt +) -test2 = an.get_diurnal_statistics_with_reference(refstation='vlinder08',colorby='name', - errorbands=True) +test2 = an.get_diurnal_statistics_with_reference( + refstation="vlinder08", colorby="name", errorbands=True +) -test3 = an.get_aggregated_cycle_statistics(aggregation=['lcz']) +test3 = an.get_aggregated_cycle_statistics(aggregation=["lcz"]) # ============================================================================= # test anual cycle @@ -61,57 +64,65 @@ # Test values -temp_diurnal_test = {'Low plants (LCZ D)': {0: 15.539583333333333, - 1: 15.297222222222224, - 2: 15.162500000000001, - 3: 15.288888888888888, - 4: 15.211111111111112, - 5: 14.987499999999999, - 6: 15.601388888888888, - 7: 16.759027777777778, - 8: 17.994444444444444, - 9: 19.257638888888888, - 10: 20.078472222222224, - 11: 20.533333333333335, - 12: 20.994444444444444, - 13: 21.1875, - 14: 20.979166666666668, - 15: 20.907638888888886, - 16: 20.69027777777778, - 17: 20.085416666666667, - 18: 18.210416666666667, - 19: 17.056944444444444, - 20: 16.257638888888888, - 21: 15.902777777777779, - 22: 15.697222222222223, - 23: 15.400694444444444}, - 'Open midrise': {0: 15.75, - 1: 15.56076388888889, - 2: 15.36840277777778, - 3: 15.242708333333333, - 4: 15.108333333333333, - 5: 15.036458333333334, - 6: 15.344791666666667, - 7: 16.242708333333333, - 8: 17.484027777777776, - 9: 19.08090277777778, - 10: 19.8375, - 11: 20.325694444444444, - 12: 20.853819444444444, - 13: 21.334375, - 14: 21.483333333333334, - 15: 21.468402777777776, - 16: 21.009722222222223, - 17: 20.249122807017542, - 18: 18.803472222222222, - 19: 17.847569444444446, - 20: 17.038888888888888, - 21: 16.404166666666665, - 22: 15.93263888888889, - 23: 15.580208333333335}} - - -assert temp_diurnal.eq(pd.DataFrame(temp_diurnal_test)).all().all(), f'Maybe something wrong with the verbose output, since it is not equal to hardcoded df.' +temp_diurnal_test = { + "Low plants (LCZ D)": { + 0: 15.539583333333333, + 1: 15.297222222222224, + 2: 15.162500000000001, + 3: 15.288888888888888, + 4: 15.211111111111112, + 5: 14.987499999999999, + 6: 15.601388888888888, + 7: 16.759027777777778, + 8: 17.994444444444444, + 9: 19.257638888888888, + 10: 20.078472222222224, + 11: 20.533333333333335, + 12: 20.994444444444444, + 13: 21.1875, + 14: 20.979166666666668, + 15: 20.907638888888886, + 16: 20.69027777777778, + 17: 20.085416666666667, + 18: 18.210416666666667, + 19: 17.056944444444444, + 20: 16.257638888888888, + 21: 15.902777777777779, + 22: 15.697222222222223, + 23: 15.400694444444444, + }, + "Open midrise": { + 0: 15.75, + 1: 15.56076388888889, + 2: 15.36840277777778, + 3: 15.242708333333333, + 4: 15.108333333333333, + 5: 15.036458333333334, + 6: 15.344791666666667, + 7: 16.242708333333333, + 8: 17.484027777777776, + 9: 19.08090277777778, + 10: 19.8375, + 11: 20.325694444444444, + 12: 20.853819444444444, + 13: 21.334375, + 14: 21.483333333333334, + 15: 21.468402777777776, + 16: 21.009722222222223, + 17: 20.249122807017542, + 18: 18.803472222222222, + 19: 17.847569444444446, + 20: 17.038888888888888, + 21: 16.404166666666665, + 22: 15.93263888888889, + 23: 15.580208333333335, + }, +} + + +assert ( + temp_diurnal.eq(pd.DataFrame(temp_diurnal_test)).all().all() +), f"Maybe something wrong with the verbose output, since it is not equal to hardcoded df." # assert stats.eq(pd.DataFrame(stats_test)).all().all(), f'Maybe something wrong with the verbose output, since it is not equal to hardcoded df.' @@ -127,58 +138,75 @@ filter_an = an.apply_filter('temp < 15.5 & hour <= 19 & lcz == "Open midrise"') -assert filter_an.df.shape == (2481, 10), 'filter on analysis problem' +assert filter_an.df.shape == (2481, 10), "filter on analysis problem" # ============================================================================= # aggregate method # ============================================================================= -agg_df = an.aggregate_df( agg=['lcz', 'hour']) -assert agg_df.shape == (216,10), 'aggregate on analysis problem' - - +agg_df = an.aggregate_df(agg=["lcz", "hour"]) +assert agg_df.shape == (216, 10), "aggregate on analysis problem" # ============================================================================= # Correlation check # ============================================================================= import numpy as np -an.get_lc_correlation_matrices(obstype=['temp', 'humidity'], groupby_labels=['lcz', 'season']) + +an.get_lc_correlation_matrices( + obstype=["temp", "humidity"], groupby_labels=["lcz", "season"] +) # plot test -an.plot_correlation_heatmap(groupby_value=('Open lowrise', 'autumn')) +an.plot_correlation_heatmap(groupby_value=("Open lowrise", "autumn")) # value test -cor_vals = {'temp': {'temp': 1.0, - 'humidity': -0.8530694150916298, - 'water_100m': np.nan, - 'pervious_100m': -0.16467165943725465, - 'impervious_100m': 0.16467165943725534}, - 'humidity': {'temp': -0.8530694150916298, - 'humidity': 1.0, - 'water_100m': np.nan, - 'pervious_100m': 0.20280562151890283, - 'impervious_100m': -0.2028056215189032}, - 'water_100m': {'temp': np.nan, - 'humidity': np.nan, - 'water_100m': np.nan, - 'pervious_100m': np.nan, - 'impervious_100m': np.nan}, - 'pervious_100m': {'temp': -0.16467165943725465, - 'humidity': 0.20280562151890283, - 'water_100m': np.nan, - 'pervious_100m': 1.0, - 'impervious_100m': -1.0}, - 'impervious_100m': {'temp': 0.16467165943725534, - 'humidity': -0.2028056215189032, - 'water_100m': np.nan, - 'pervious_100m': -1.0, - 'impervious_100m': 1.0}} - -assert an.lc_cor_dict[('Open lowrise', 'autumn')]['cor matrix'].fillna(0).eq(pd.DataFrame(cor_vals).fillna(0)).all().all(), 'Something wrong with the lc correlations matrices' - - +cor_vals = { + "temp": { + "temp": 1.0, + "humidity": -0.8530694150916298, + "water_100m": np.nan, + "pervious_100m": -0.16467165943725465, + "impervious_100m": 0.16467165943725534, + }, + "humidity": { + "temp": -0.8530694150916298, + "humidity": 1.0, + "water_100m": np.nan, + "pervious_100m": 0.20280562151890283, + "impervious_100m": -0.2028056215189032, + }, + "water_100m": { + "temp": np.nan, + "humidity": np.nan, + "water_100m": np.nan, + "pervious_100m": np.nan, + "impervious_100m": np.nan, + }, + "pervious_100m": { + "temp": -0.16467165943725465, + "humidity": 0.20280562151890283, + "water_100m": np.nan, + "pervious_100m": 1.0, + "impervious_100m": -1.0, + }, + "impervious_100m": { + "temp": 0.16467165943725534, + "humidity": -0.2028056215189032, + "water_100m": np.nan, + "pervious_100m": -1.0, + "impervious_100m": 1.0, + }, +} + +assert ( + an.lc_cor_dict[("Open lowrise", "autumn")]["cor matrix"] + .fillna(0) + .eq(pd.DataFrame(cor_vals).fillna(0)) + .all() + .all() +), "Something wrong with the lc correlations matrices" # scatter plot test diff --git a/tests/push_test/breaking_test.py b/tests/push_test/breaking_test.py index 0ab83848..84826e4a 100755 --- a/tests/push_test/breaking_test.py +++ b/tests/push_test/breaking_test.py @@ -30,9 +30,7 @@ ) dataset_coarsened = metobs_toolkit.Dataset() -dataset_coarsened.update_settings( - input_data_file=testdata, template_file=template_file -) +dataset_coarsened.update_settings(input_data_file=testdata, template_file=template_file) ##################################################################### @@ -48,65 +46,85 @@ min_value = -15.0 # Minimal allowed value max_value = 29.0 # Maximal allowed value -max_increase_per_second = 8.0 / 3600.0 # Maximal allowed increase per second (for window variation check) -max_decrease_per_second = 10.0 / 3600.0 # Maximal allowed decrease per second (for window variation check) +max_increase_per_second = ( + 8.0 / 3600.0 +) # Maximal allowed increase per second (for window variation check) +max_decrease_per_second = ( + 10.0 / 3600.0 +) # Maximal allowed decrease per second (for window variation check) time_window_to_check = "1h" # Use this format as example: "1h20min50s" min_window_members = 3 # Minimal number of records in window to perform check -max_increase_per_second_step = 8.0 / 3600.0 # Maximal allowed increase per second (for step check) -max_decrease_per_second_step = -10.0 / 3600.0 # Maximal allowed increase per second (for step check) - -dataset_coarsened.update_qc_settings(obstype='temp',gapsize_in_records=minimal_gapsize, dupl_timestamp_keep=dupl_dropping, persis_time_win_to_check=persistance_time_window_to_check, persis_min_num_obs=min_num_obs, - rep_max_valid_repetitions=max_valid_repetitions, gross_value_min_value=min_value, gross_value_max_value=max_value, - win_var_max_increase_per_sec=max_increase_per_second, win_var_max_decrease_per_sec=max_decrease_per_second, win_var_time_win_to_check=time_window_to_check, - win_var_min_num_obs=min_window_members, step_max_increase_per_sec=max_increase_per_second_step, step_max_decrease_per_sec=max_decrease_per_second_step) +max_increase_per_second_step = ( + 8.0 / 3600.0 +) # Maximal allowed increase per second (for step check) +max_decrease_per_second_step = ( + -10.0 / 3600.0 +) # Maximal allowed increase per second (for step check) + +dataset_coarsened.update_qc_settings( + obstype="temp", + gapsize_in_records=minimal_gapsize, + dupl_timestamp_keep=dupl_dropping, + persis_time_win_to_check=persistance_time_window_to_check, + persis_min_num_obs=min_num_obs, + rep_max_valid_repetitions=max_valid_repetitions, + gross_value_min_value=min_value, + gross_value_max_value=max_value, + win_var_max_increase_per_sec=max_increase_per_second, + win_var_max_decrease_per_sec=max_decrease_per_second, + win_var_time_win_to_check=time_window_to_check, + win_var_min_num_obs=min_window_members, + step_max_increase_per_sec=max_increase_per_second_step, + step_max_decrease_per_sec=max_decrease_per_second_step, +) -#dataset_coarsened.settings.gap["gaps_settings"]["gaps_finder"][ +# dataset_coarsened.settings.gap["gaps_settings"]["gaps_finder"][ # "gapsize_n" -#] = minimal_gapsize +# ] = minimal_gapsize # -#dataset_coarsened.settings.qc["qc_check_settings"]["duplicated_timestamp"][ +# dataset_coarsened.settings.qc["qc_check_settings"]["duplicated_timestamp"][ # "keep" -#] = dupl_dropping# +# ] = dupl_dropping# -#dataset_coarsened.settings.qc["qc_check_settings"]["persistance"]["temp"][ +# dataset_coarsened.settings.qc["qc_check_settings"]["persistance"]["temp"][ # "time_window_to_check" -#] = persistance_time_window_to_check -#dataset_coarsened.settings.qc["qc_check_settings"]["persistance"]["temp"][ +# ] = persistance_time_window_to_check +# dataset_coarsened.settings.qc["qc_check_settings"]["persistance"]["temp"][ # "min_num_obs" -#] = min_num_obs +# ] = min_num_obs -#dataset_coarsened.settings.qc["qc_check_settings"]["repetitions"]["temp"][ +# dataset_coarsened.settings.qc["qc_check_settings"]["repetitions"]["temp"][ # "max_valid_repetitions" -#] = max_valid_repetitions +# ] = max_valid_repetitions -#dataset_coarsened.settings.qc["qc_check_settings"]["gross_value"]["temp"][ +# dataset_coarsened.settings.qc["qc_check_settings"]["gross_value"]["temp"][ # "min_value" -#] = min_value -#dataset_coarsened.settings.qc["qc_check_settings"]["gross_value"]["temp"][ +# ] = min_value +# dataset_coarsened.settings.qc["qc_check_settings"]["gross_value"]["temp"][ # "max_value" -#] = max_value +# ] = max_value -#dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ +# dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ # "max_increase_per_second" -#] = max_increase_per_second -#dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ +# ] = max_increase_per_second +# dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ # "max_decrease_per_second" -#] = max_decrease_per_second -#dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ +# ] = max_decrease_per_second +# dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ # "time_window_to_check" -#] = time_window_to_check -#dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ +# ] = time_window_to_check +# dataset_coarsened.settings.qc["qc_check_settings"]["window_variation"]["temp"][ # "min_window_members" -#] = min_window_members +# ] = min_window_members -#dataset_coarsened.settings.qc["qc_check_settings"]["step"]["temp"][ +# dataset_coarsened.settings.qc["qc_check_settings"]["step"]["temp"][ # "max_increase_per_second" -#] = max_increase_per_second_step -#dataset_coarsened.settings.qc["qc_check_settings"]["step"]["temp"][ +# ] = max_increase_per_second_step +# dataset_coarsened.settings.qc["qc_check_settings"]["step"]["temp"][ # "max_decrease_per_second" -#] = max_decrease_per_second_step +# ] = max_decrease_per_second_step ##################################################################### @@ -118,10 +136,21 @@ # %% dataset = metobs_toolkit.Dataset() dataset.update_settings(input_data_file=testdata, template_file=template_file) -dataset.update_qc_settings(obstype='temp', gapsize_in_records=minimal_gapsize, dupl_timestamp_keep=dupl_dropping, persis_time_win_to_check=persistance_time_window_to_check, persis_min_num_obs=min_num_obs, - rep_max_valid_repetitions=max_valid_repetitions, gross_value_min_value=min_value, - win_var_max_increase_per_sec=max_increase_per_second, win_var_max_decrease_per_sec=max_decrease_per_second, win_var_time_win_to_check=time_window_to_check, - win_var_min_num_obs=min_window_members, step_max_increase_per_sec=max_increase_per_second_step, step_max_decrease_per_sec=max_decrease_per_second_step) +dataset.update_qc_settings( + obstype="temp", + gapsize_in_records=minimal_gapsize, + dupl_timestamp_keep=dupl_dropping, + persis_time_win_to_check=persistance_time_window_to_check, + persis_min_num_obs=min_num_obs, + rep_max_valid_repetitions=max_valid_repetitions, + gross_value_min_value=min_value, + win_var_max_increase_per_sec=max_increase_per_second, + win_var_max_decrease_per_sec=max_decrease_per_second, + win_var_time_win_to_check=time_window_to_check, + win_var_min_num_obs=min_window_members, + step_max_increase_per_sec=max_increase_per_second_step, + step_max_decrease_per_sec=max_decrease_per_second_step, +) dataset.import_data_from_file() dataset.apply_quality_control() @@ -136,7 +165,6 @@ combdf = dataset.combine_all_to_obsspace() - # %% Compare manual and toolkit labeling @@ -197,7 +225,11 @@ ) man_idx = man_df[man_df["flags"] == man_label].index.sort_values() - tlk_idx = tlk_df[tlk_df["label"] == tlk_label].xs('temp', level='obstype').index.sort_values() + tlk_idx = ( + tlk_df[tlk_df["label"] == tlk_label] + .xs("temp", level="obstype") + .index.sort_values() + ) if not tlk_idx.equals(man_idx): print(f"ERROR: wrong labels for {tlk_label}") @@ -223,7 +255,9 @@ man_df_no_duplic = man_df[~man_df.index.duplicated(keep="first")] man_idx = man_df_no_duplic[man_df_no_duplic["flags"] == man_label].index.sort_values() -tlk_idx = tlk_df[tlk_df["label"] == tlk_label].xs('temp', level='obstype').index.sort_values() +tlk_idx = ( + tlk_df[tlk_df["label"] == tlk_label].xs("temp", level="obstype").index.sort_values() +) if not tlk_idx.equals(man_idx): print(f"ERROR: wrong labels for {tlk_label}") @@ -260,9 +294,7 @@ man_gapsdf["start_gap"] = pd.to_datetime(man_gapsdf["start_gap"]).dt.tz_localize( tz="UTC" ) -man_gapsdf["end_gap"] = pd.to_datetime(man_gapsdf["end_gap"]).dt.tz_localize( - tz="UTC" -) +man_gapsdf["end_gap"] = pd.to_datetime(man_gapsdf["end_gap"]).dt.tz_localize(tz="UTC") # %% diff --git a/tests/push_test/gap_and_fill_test.py b/tests/push_test/gap_and_fill_test.py index 0ae5e219..d395deb1 100755 --- a/tests/push_test/gap_and_fill_test.py +++ b/tests/push_test/gap_and_fill_test.py @@ -72,35 +72,50 @@ #%% Test linear interpolation on missing obs dataset.fill_missing_obs_linear() -solution = {'temp': {('vlinder03', - pd.Timestamp('2022-10-07 11:00:00+0000', tz='UTC')): 15.333333333333334, - ('vlinder03', - pd.Timestamp('2022-10-07 12:00:00+0000', tz='UTC')): 16.566666666666666}, - 'temp_final_label': {('vlinder03', - pd.Timestamp('2022-10-07 11:00:00+0000', tz='UTC')): 'missing_obs_interpolation', - ('vlinder03', - pd.Timestamp('2022-10-07 12:00:00+0000', tz='UTC')): 'missing_obs_interpolation'}} - - - - - -assert dataset.missing_fill_df.equals(pd.DataFrame(solution)), 'something wrong with the missing obs fill!' +solution = { + "temp": { + ( + "vlinder03", + pd.Timestamp("2022-10-07 11:00:00+0000", tz="UTC"), + ): 15.333333333333334, + ( + "vlinder03", + pd.Timestamp("2022-10-07 12:00:00+0000", tz="UTC"), + ): 16.566666666666666, + }, + "temp_final_label": { + ( + "vlinder03", + pd.Timestamp("2022-10-07 11:00:00+0000", tz="UTC"), + ): "missing_obs_interpolation", + ( + "vlinder03", + pd.Timestamp("2022-10-07 12:00:00+0000", tz="UTC"), + ): "missing_obs_interpolation", + }, +} + + +assert dataset.missing_fill_df.equals( + pd.DataFrame(solution) +), "something wrong with the missing obs fill!" # %% Test functions on gaps -from metobs_toolkit.gap import (get_station_gaps, - get_gaps_indx_in_obs_space, - remove_gaps_from_obs) +from metobs_toolkit.gap import ( + get_station_gaps, + get_gaps_indx_in_obs_space, + remove_gaps_from_obs, +) -get_station_gaps(dataset.gaps,'vlinder01') +get_station_gaps(dataset.gaps, "vlinder01") dataset.gaps[0].get_info() remove_gaps_from_obs(dataset.gaps, dataset.df) -get_gaps_indx_in_obs_space(dataset.gaps, - dataset.df, dataset.outliersdf, dataset.metadf["dataset_resolution"] +get_gaps_indx_in_obs_space( + dataset.gaps, dataset.df, dataset.outliersdf, dataset.metadf["dataset_resolution"] ) @@ -143,14 +158,18 @@ #%% Test if filled values are present in the combined df comb_df = dataset.combine_all_to_obsspace() -comb_df = comb_df.xs('temp', level='obstype') +comb_df = comb_df.xs("temp", level="obstype") comb_gaps = comb_df.loc[dataset.gapfilldf.index] comb_missing = comb_df.loc[dataset.missing_fill_df.index] -assert comb_gaps['value'].eq(dataset.gapfilldf['temp']).all(), 'Something wrong with the filled gaps in the combined df' -assert comb_missing['value'].eq(dataset.missing_fill_df['temp']).all(), 'Something wrong with the filled missing in the combined df' +assert ( + comb_gaps["value"].eq(dataset.gapfilldf["temp"]).all() +), "Something wrong with the filled gaps in the combined df" +assert ( + comb_missing["value"].eq(dataset.missing_fill_df["temp"]).all() +), "Something wrong with the filled missing in the combined df" #%% Test the update of outliers to gaps nobs_orig = len(dataset.missing_obs.idx) @@ -158,22 +177,28 @@ dataset2 = copy.deepcopy(dataset) dataset2.apply_quality_control() -outliersbefore = copy.deepcopy(dataset2.outliersdf.xs('temp', level='obstype')) -missingbefore =copy.deepcopy(dataset2.missing_obs.series) -dataset2.update_gaps_and_missing_from_outliers(obstype='temp', n_gapsize = 10) -missingafter =copy.deepcopy(dataset2.missing_obs.series) +outliersbefore = copy.deepcopy(dataset2.outliersdf.xs("temp", level="obstype")) +missingbefore = copy.deepcopy(dataset2.missing_obs.series) +dataset2.update_gaps_and_missing_from_outliers(obstype="temp", n_gapsize=10) +missingafter = copy.deepcopy(dataset2.missing_obs.series) nobs = len(dataset2.missing_obs.idx) ngaps = len(dataset2.gaps) -assert (nobs == 28) & (nobs_orig == 26), 'Something wrong with the update gaps and missing from outliers' -assert (ngaps == 5) & (ngaps_orig == 2), 'Something wrong with the update gaps and missing from outliers' +assert (nobs == 28) & ( + nobs_orig == 26 +), "Something wrong with the update gaps and missing from outliers" +assert (ngaps == 5) & ( + ngaps_orig == 2 +), "Something wrong with the update gaps and missing from outliers" # check if the mergedf does not contain them as duplicates comb2 = dataset2.combine_all_to_obsspace() -assert comb2[comb2.index.duplicated()].shape[0] == 0, 'duplicated indexes in comb df after the outliers updated to gaps/missing' +assert ( + comb2[comb2.index.duplicated()].shape[0] == 0 +), "duplicated indexes in comb df after the outliers updated to gaps/missing" # %% @@ -204,132 +229,230 @@ assert era.df.shape[0] == 5348, "Something wrong with importing era data from csv." #%% -output = dataset.fill_gaps_automatic(era, max_interpolate_duration_str='5H', overwrite_fill=True) - - -checked = {'temp': {('vlinder01', - pd.Timestamp('2022-10-06 17:00:00+0000', tz='UTC')): 15.760000000000002, - ('vlinder01', pd.Timestamp('2022-10-06 17:30:00+0000', tz='UTC')): 15.22, - ('vlinder01', pd.Timestamp('2022-10-06 18:00:00+0000', tz='UTC')): 14.68, - ('vlinder01', pd.Timestamp('2022-10-06 18:30:00+0000', tz='UTC')): 14.14, - ('vlinder01', - pd.Timestamp('2022-10-06 19:00:00+0000', tz='UTC')): 13.600000000000001, - ('vlinder01', pd.Timestamp('2022-10-06 19:30:00+0000', tz='UTC')): 13.06, - ('vlinder01', pd.Timestamp('2022-10-06 20:00:00+0000', tz='UTC')): 12.52, - ('vlinder01', pd.Timestamp('2022-10-06 20:30:00+0000', tz='UTC')): 11.98, - ('vlinder01', - pd.Timestamp('2022-10-06 21:00:00+0000', tz='UTC')): 11.440000000000001, - ('vlinder01', pd.Timestamp('2022-10-04 02:00:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 02:30:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 03:00:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 03:30:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 04:00:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 04:30:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 05:00:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 05:30:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 06:00:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 06:30:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 07:00:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 07:30:00+0000', tz='UTC')): np.nan, - ('vlinder01', pd.Timestamp('2022-10-04 08:00:00+0000', tz='UTC')): np.nan}, - 'temp_final_label': {('vlinder01', - pd.Timestamp('2022-10-06 17:00:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 17:30:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 18:00:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 18:30:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 19:00:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 19:30:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 20:00:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 20:30:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-06 21:00:00+0000', tz='UTC')): 'gap_interpolation', - ('vlinder01', - pd.Timestamp('2022-10-04 02:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 02:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 03:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 03:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 04:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 04:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 05:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 05:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 06:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 06:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 07:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 07:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-04 08:00:00+0000', tz='UTC')): 'gap_debiased_era5'}} +output = dataset.fill_gaps_automatic( + era, max_interpolate_duration_str="5H", overwrite_fill=True +) + + +checked = { + "temp": { + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:00:00+0000", tz="UTC"), + ): 15.760000000000002, + ("vlinder01", pd.Timestamp("2022-10-06 17:30:00+0000", tz="UTC")): 15.22, + ("vlinder01", pd.Timestamp("2022-10-06 18:00:00+0000", tz="UTC")): 14.68, + ("vlinder01", pd.Timestamp("2022-10-06 18:30:00+0000", tz="UTC")): 14.14, + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:00:00+0000", tz="UTC"), + ): 13.600000000000001, + ("vlinder01", pd.Timestamp("2022-10-06 19:30:00+0000", tz="UTC")): 13.06, + ("vlinder01", pd.Timestamp("2022-10-06 20:00:00+0000", tz="UTC")): 12.52, + ("vlinder01", pd.Timestamp("2022-10-06 20:30:00+0000", tz="UTC")): 11.98, + ( + "vlinder01", + pd.Timestamp("2022-10-06 21:00:00+0000", tz="UTC"), + ): 11.440000000000001, + ("vlinder01", pd.Timestamp("2022-10-04 02:00:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 02:30:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 03:00:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 03:30:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 04:00:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 04:30:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 05:00:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 05:30:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 06:00:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 06:30:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 07:00:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 07:30:00+0000", tz="UTC")): np.nan, + ("vlinder01", pd.Timestamp("2022-10-04 08:00:00+0000", tz="UTC")): np.nan, + }, + "temp_final_label": { + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:00:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:30:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 18:00:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 18:30:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:00:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:30:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 20:00:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 20:30:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-06 21:00:00+0000", tz="UTC"), + ): "gap_interpolation", + ( + "vlinder01", + pd.Timestamp("2022-10-04 02:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 02:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 03:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 03:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 04:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 04:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 05:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 05:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 06:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 06:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 07:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 07:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-04 08:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + }, +} checkeddf = pd.DataFrame(checked) -assert checkeddf.equals(output), 'something wrong with the automatic gapfill' +assert checkeddf.equals(output), "something wrong with the automatic gapfill" #%% # # Fill gaps using era5 data: -dataset.fill_gaps_era5(modeldata=era, method="debias", obstype="temp", overwrite_fill=True) - +dataset.fill_gaps_era5( + modeldata=era, method="debias", obstype="temp", overwrite_fill=True +) # validate -checked = {'temp': { - ('vlinder01', - pd.Timestamp('2022-10-06 17:00:00+0000', tz='UTC')): 14.719558715820341, - ('vlinder01', - pd.Timestamp('2022-10-06 17:30:00+0000', tz='UTC')): 14.105651664733898, - ('vlinder01', - pd.Timestamp('2022-10-06 18:00:00+0000', tz='UTC')): 13.523644638061523, - ('vlinder01', - pd.Timestamp('2022-10-06 18:30:00+0000', tz='UTC')): 13.272471523284917, - ('vlinder01', - pd.Timestamp('2022-10-06 19:00:00+0000', tz='UTC')): 12.417074584960952, - ('vlinder01', - pd.Timestamp('2022-10-06 19:30:00+0000', tz='UTC')): 12.083017063140879, - ('vlinder01', - pd.Timestamp('2022-10-06 20:00:00+0000', tz='UTC')): 12.194173049926757, - ('vlinder01', - pd.Timestamp('2022-10-06 20:30:00+0000', tz='UTC')): 11.708401107788086, - ('vlinder01', - pd.Timestamp('2022-10-06 21:00:00+0000', tz='UTC')): 11.562461853027344}, - 'temp_final_label': { - ('vlinder01', - pd.Timestamp('2022-10-06 17:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 17:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 18:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 18:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 19:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 19:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 20:00:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 20:30:00+0000', tz='UTC')): 'gap_debiased_era5', - ('vlinder01', - pd.Timestamp('2022-10-06 21:00:00+0000', tz='UTC')): 'gap_debiased_era5'}} - +checked = { + "temp": { + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:00:00+0000", tz="UTC"), + ): 14.719558715820341, + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:30:00+0000", tz="UTC"), + ): 14.105651664733898, + ( + "vlinder01", + pd.Timestamp("2022-10-06 18:00:00+0000", tz="UTC"), + ): 13.523644638061523, + ( + "vlinder01", + pd.Timestamp("2022-10-06 18:30:00+0000", tz="UTC"), + ): 13.272471523284917, + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:00:00+0000", tz="UTC"), + ): 12.417074584960952, + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:30:00+0000", tz="UTC"), + ): 12.083017063140879, + ( + "vlinder01", + pd.Timestamp("2022-10-06 20:00:00+0000", tz="UTC"), + ): 12.194173049926757, + ( + "vlinder01", + pd.Timestamp("2022-10-06 20:30:00+0000", tz="UTC"), + ): 11.708401107788086, + ( + "vlinder01", + pd.Timestamp("2022-10-06 21:00:00+0000", tz="UTC"), + ): 11.562461853027344, + }, + "temp_final_label": { + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 17:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 18:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 18:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 19:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 20:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 20:30:00+0000", tz="UTC"), + ): "gap_debiased_era5", + ( + "vlinder01", + pd.Timestamp("2022-10-06 21:00:00+0000", tz="UTC"), + ): "gap_debiased_era5", + }, +} checkeddf = pd.DataFrame(checked) @@ -343,7 +466,6 @@ checkeddf = checkeddf.set_index(["name", "datetime"]) - test = dataset.gapfilldf[obstype].astype(float).eq(checkeddf[obstype]) if not test.all(): print("Gapfill for era debias not equal to manual labels! Here is the difference") diff --git a/tests/push_test/import_test.py b/tests/push_test/import_test.py index 5abb58b4..6bb49020 100644 --- a/tests/push_test/import_test.py +++ b/tests/push_test/import_test.py @@ -16,4 +16,4 @@ import metobs_toolkit -print(f'Succesfull import of the metobs_toolkit version: {metobs_toolkit.__version__}') \ No newline at end of file +print(f"Succesfull import of the metobs_toolkit version: {metobs_toolkit.__version__}") diff --git a/tests/push_test/modeldata_test.py b/tests/push_test/modeldata_test.py index 912fd00e..29c7f559 100644 --- a/tests/push_test/modeldata_test.py +++ b/tests/push_test/modeldata_test.py @@ -15,17 +15,19 @@ lib_folder = Path(__file__).resolve().parents[2] import metobs_toolkit + # print(metobs_toolkit.__version__) #%% Import dataset dataset = metobs_toolkit.Dataset() -dataset.update_settings(output_folder=None, - input_data_file=metobs_toolkit.demo_datafile, - template_file=metobs_toolkit.demo_template, - input_metadata_file=metobs_toolkit.demo_metadatafile - ) +dataset.update_settings( + output_folder=None, + input_data_file=metobs_toolkit.demo_datafile, + template_file=metobs_toolkit.demo_template, + input_metadata_file=metobs_toolkit.demo_metadatafile, +) dataset.import_data_from_file() @@ -35,64 +37,145 @@ #%% test adding gee information model_data = metobs_toolkit.Modeldata("ERA5_hourly") -model_data.add_band_to_gee_dataset(bandname='surface_pressure', - obstype='pressure', - units='pa') - -model_data.add_gee_dataset(mapname='new dataset name', - gee_location='location/loc/dfmijfe', - obstype='temp', - bandname='temp 2m passive field', - units ='C', - scale = 100, - time_res='1H', - is_image=False, - is_numeric=True, - credentials='bladiblie') + +# Define a regular obstype +new_obstype = metobs_toolkit.Obstype( + obsname="special_pressure", + std_unit="pa", + description="just for testing", + unit_aliases={ + "pa": ["Pascal", "Pa", "N/m²"], + }, + unit_conversions={"hpa": ["x * 100"]}, +) + +# add new obstype to model_data +model_data.add_obstype( + Obstype=new_obstype, + bandname="surface_pressure", + band_units="hpa", +) + + +model_data.get_info() +from datetime import datetime + +tstart = datetime(2022, 10, 3, 23) +tend = datetime(2022, 10, 4, 4) +model_data = dataset.get_modeldata( + modeldata=model_data, obstype="special_pressure", startdt=tstart, enddt=tend +) + +assert ( + model_data.df.shape[0] == 168 +), "No modeldata extracted from gee for new unit and obstype!" +assert model_data.df.columns.to_list() == [ + "special_pressure" +], "Something is wrong with column names" + +model_data.make_plot(obstype_model="special_pressure") +#%% Test 2D vector fields + +model_data = dataset.get_modeldata( + modeldata=model_data, obstype="wind", startdt=tstart, enddt=tend +) + +print(model_data) + +assert model_data.df.columns.to_list() == [ + "wind_amplitude", + "wind_direction", +], "Something is wrong with column names" + + +#%% Testing multiple field extraction +model_data.get_gee_dataset_data( + mapname=model_data.modelname, + metadf=dataset.metadf, + obstypes=["temp", "wind"], + startdt_utc=tstart, + enddt_utc=tend, +) + +assert model_data.df.columns.to_list() == [ + "temp", + "wind_amplitude", + "wind_direction", +], "Something is wrong with column names" + + #%% Import modeldata model_data = metobs_toolkit.Modeldata("ERA5_hourly") - -csv_file = os.path.join(lib_folder, 'tests', 'test_data', 'era5_modeldata_test.csv') +# mutliple observations and vector components +csv_file = os.path.join(lib_folder, "tests", "test_data", "era5_modeldata_test.csv") model_data.set_model_from_csv(csv_file) +assert model_data.df.columns.to_list() == [ + "temp", + "wind_amplitude", + "wind_direction", +], "something wrong with reading modeldata from csv (drive)." +model_data.make_plot(obstype_model="wind_amplitude") #%% Test repr print(model_data) #%% test saving and importing -outfolder = os.path.join(lib_folder, 'tests', 'test_data') -pkl_file = 'delete_me_if_you_see_me' +outfolder = os.path.join(lib_folder, "tests", "test_data") +pkl_file = "delete_me_if_you_see_me" # save model_data.save_modeldata(outputfolder=outfolder, filename=pkl_file) # read it again -newmod = metobs_toolkit.Modeldata('ERA5_hourly') -newmod2 = newmod.import_modeldata(folder_path=outfolder, filename=pkl_file+'.pkl') +newmod = metobs_toolkit.Modeldata("ERA5_hourly") +newmod2 = newmod.import_modeldata(folder_path=outfolder, filename=pkl_file + ".pkl") # delete file -fullpath = os.path.join(outfolder, pkl_file+'.pkl') +fullpath = os.path.join(outfolder, pkl_file + ".pkl") if os.path.exists(fullpath): os.remove(fullpath) #%% test interpolation + +dataset = metobs_toolkit.Dataset() +dataset.update_settings( + input_data_file=metobs_toolkit.demo_datafile, + input_metadata_file=metobs_toolkit.demo_metadatafile, + template_file=metobs_toolkit.demo_template, +) + +dataset.import_data_from_file() + interpdf = model_data.interpolate_modeldata(dataset.df.index) -assert interpdf[interpdf['temp'].isnull()].shape == (28, 1), 'Error in modeldata interpolation' + +# test that there are no nan values +if not interpdf[interpdf["temp"].isnull()].empty: + sys.exit("Error in modeldata interpolation") +assert interpdf.shape == (120957, 3), "Error in modeldata interpolation" + +# check if other obstypes are interpolated as well +assert interpdf["wind_amplitude"].shape[0] == 120957, "Error in modeldata interpolation" +assert ( + interpdf["wind_amplitude"][interpdf["wind_amplitude"].isnull()].shape[0] == 0 +), "Error in modeldata interpolation" #%% Test plotting a = model_data.df.shape -model_data.make_plot(stationnames=['vlinder01', 'vlinder02']) +model_data.make_plot(stationnames=["vlinder01", "vlinder02"]) -assert model_data.df.shape == (10052, 1), 'Shape of modeldata df changed after plotting.' +assert model_data.df.shape == ( + 10108, + 3, +), "Shape of modeldata df changed after plotting." model_data.make_plot(dataset=dataset, show_outliers=False) - diff --git a/tests/push_test/plot_test.py b/tests/push_test/plot_test.py index 5ed1b53d..d873d0c6 100755 --- a/tests/push_test/plot_test.py +++ b/tests/push_test/plot_test.py @@ -55,3 +55,14 @@ dataset.make_geo_plot( variable="wind_direction", timeinstance=datetime(2022, 9, 5, 12, 0) ) + +dataset.make_geo_plot(variable="temp", timeinstance=datetime(2022, 9, 5, 12, 0)) + +#%% Interactive spatial plot + +outfile = os.path.join(str(lib_folder), "development", "delete_me") + + +dataset.make_interactive_plot(outputfile=outfile, obstype="humidity", radius=11) + +assert os.path.exists(outfile + ".html"), "interactive html is not saved!" diff --git a/tests/push_test/qc_test.py b/tests/push_test/qc_test.py index 7b982861..66fcdee4 100755 --- a/tests/push_test/qc_test.py +++ b/tests/push_test/qc_test.py @@ -20,10 +20,11 @@ # %% IO testdata - dataset = metobs_toolkit.Dataset() -dataset.update_settings(input_data_file=metobs_toolkit.demo_datafile, - input_metadata_file=metobs_toolkit.demo_metadatafile) +dataset.update_settings( + input_data_file=metobs_toolkit.demo_datafile, + input_metadata_file=metobs_toolkit.demo_metadatafile, +) dataset.import_data_from_file() dataset.coarsen_time_resolution() @@ -38,15 +39,19 @@ dataset.get_qc_stats(obstype="humidity", make_plot=False) #%% Apply buddy check -dataset.update_qc_settings(buddy_radius=17000, - buddy_min_sample_size=3, - buddy_max_elev_diff=150, - buddy_min_std=1.2, - buddy_threshold=2.4, - buddy_elev_gradient=None) +dataset.update_qc_settings( + buddy_radius=17000, + buddy_min_sample_size=3, + buddy_max_elev_diff=150, + buddy_min_std=1.2, + buddy_threshold=2.4, + buddy_elev_gradient=None, +) dataset.apply_buddy_check(use_constant_altitude=True) -assert dataset.outliersdf['label'].value_counts()['buddy check outlier'] == 125, 'The buddy check did not perfom good.' +assert ( + dataset.outliersdf["label"].value_counts()["buddy check outlier"] == 125 +), "The buddy check did not perfom good." # %% Apply Qc on obstype not specified in settings @@ -62,35 +67,39 @@ test = sta.get_qc_stats(make_plot=True) - - - #%% Apply titan checks # ------ Buddy check -------------- -dataset.update_titan_qc_settings(obstype='temp', - buddy_radius=50000, - buddy_num_min=3, - buddy_max_elev_diff=200, - buddy_threshold=2) - +dataset.update_titan_qc_settings( + obstype="temp", + buddy_radius=50000, + buddy_num_min=3, + buddy_max_elev_diff=200, + buddy_threshold=2, +) dataset.apply_titan_buddy_check(use_constant_altitude=True) # count test -assert dataset.outliersdf['label'].value_counts()['titan buddy check outlier'] == 277, 'The TITAN buddy check did not perfom good.' +assert ( + dataset.outliersdf["label"].value_counts()["titan buddy check outlier"] == 277 +), "The TITAN buddy check did not perfom good." # test if a check does not overwrite itself -dataset.update_titan_qc_settings(obstype='temp', - buddy_radius=80000, - buddy_num_min=3, - buddy_max_elev_diff=200, - buddy_threshold=0.5) +dataset.update_titan_qc_settings( + obstype="temp", + buddy_radius=80000, + buddy_num_min=3, + buddy_max_elev_diff=200, + buddy_threshold=0.5, +) dataset.apply_titan_buddy_check(use_constant_altitude=True) -assert dataset.outliersdf['label'].value_counts()['titan buddy check outlier'] == 277, 'The buddy check did overwrite itself!' +assert ( + dataset.outliersdf["label"].value_counts()["titan buddy check outlier"] == 277 +), "The buddy check did overwrite itself!" #%% @@ -99,7 +108,6 @@ # import numpy as np - # # ------------- SCT check --------------- # dataset.update_titan_qc_settings(obstype='temp', # sct_basic=True, @@ -129,4 +137,3 @@ # dataset.apply_titan_sct_resistant_check() - diff --git a/tests/push_test/test_data_paths.py b/tests/push_test/test_data_paths.py index ccb78e70..170a8eac 100644 --- a/tests/push_test/test_data_paths.py +++ b/tests/push_test/test_data_paths.py @@ -19,91 +19,106 @@ sys.path.insert(0, str(lib_folder)) import metobs_toolkit -test_data_dir = os.path.join(str(lib_folder), 'tests', 'test_data') +test_data_dir = os.path.join(str(lib_folder), "tests", "test_data") testdata = { # demo - 'demo' : { - 'datafile': metobs_toolkit.demo_datafile, - 'metadatafile':metobs_toolkit.demo_metadatafile, - 'template': metobs_toolkit.demo_template, - 'kwargs':{}, - 'coarsen': '20T', - }, + "demo": { + "datafile": metobs_toolkit.demo_datafile, + "metadatafile": metobs_toolkit.demo_metadatafile, + "template": metobs_toolkit.demo_template, + "kwargs": {}, + "coarsen": "20T", + }, # paper dataset (based on the demo dataset) - 'paper_dataset' : { - 'datafile': join(test_data_dir, 'paper_dataset', 'datafile.csv'), - 'metadatafile':join(test_data_dir, 'paper_dataset', 'metadatafile.csv'), - 'template': join(test_data_dir, 'paper_dataset', 'templatefile.csv'), - 'kwargs':{}, - 'coarsen': '20T', - }, - + "paper_dataset": { + "datafile": join(test_data_dir, "paper_dataset", "datafile.csv"), + "metadatafile": join(test_data_dir, "paper_dataset", "metadatafile.csv"), + "template": join(test_data_dir, "paper_dataset", "templatefile.csv"), + "kwargs": {}, + "coarsen": "20T", + }, # wide test dataset - 'debug_wide' : { - 'datafile': join(test_data_dir, 'debug_wide.csv'), - 'metadatafile':join(test_data_dir, 'debug_wide_metadata.csv'), - 'template': join(test_data_dir, 'debug_wide_template.csv'), - 'kwargs':{'long_format' : False, - 'obstype' : 'temp'}, - 'coarsen': '20T', - }, - - # Single station dataset - 'single_station' : { - 'datafile': join(test_data_dir, 'single_station.csv'), - 'metadatafile':join(test_data_dir, 'single_station_metadata.csv'), - 'template': join(test_data_dir, 'single_station_template.csv'), - 'kwargs':{'long_format' : False, - 'obstype' : 'temp'}, - 'coarsen': '20T', - }, - - + "debug_wide": { + "datafile": join(test_data_dir, "debug_wide.csv"), + "metadatafile": join(test_data_dir, "debug_wide_metadata.csv"), + "template": join(test_data_dir, "debug_wide_template.csv"), + "kwargs": {"long_format": False, "obstype": "temp"}, + "coarsen": "20T", + }, + # Single station dataset + "single_station": { + "datafile": join(test_data_dir, "single_station.csv"), + "metadatafile": join(test_data_dir, "single_station_metadata.csv"), + "template": join(test_data_dir, "single_station_template.csv"), + "kwargs": {"long_format": False, "obstype": "temp"}, + "coarsen": "20T", + }, # breaking - 'breaking data' : { - 'datafile': join(test_data_dir, 'testdata_breaking.csv'), - 'metadatafile': None, - 'template': join(test_data_dir, 'template_breaking.csv'), - 'kwargs':{}, - 'coarsen': '60T', - }, - + "breaking data": { + "datafile": join(test_data_dir, "testdata_breaking.csv"), + "metadatafile": None, + "template": join(test_data_dir, "template_breaking.csv"), + "kwargs": {}, + "coarsen": "60T", + }, # Kobe congo (single station) - 'Congo_single_station' : { - 'datafile': join(test_data_dir,'testdata_testday', 'Kobe','meteo_soil_clean_2023-01-19.csv'), - 'metadatafile':join(test_data_dir,'testdata_testday', 'Kobe','CONGO_meta.csv'), - 'template': join(test_data_dir,'testdata_testday', 'Kobe','CONGO_template.csv'), - 'kwargs':{}, - 'coarsen': '60T', - }, - - # Single Netatmo station Sara - 'single_netatmo_sara_station' : { - 'datafile': join(test_data_dir,'testdata_testday', 'Sara','Outdoor_module_Netatmo_Sara_small.csv'), - 'metadatafile': join(test_data_dir,'testdata_testday', 'Sara','metadata_Outdoor_module_Netatmo_Sara_new.csv'), - 'template': join(test_data_dir,'testdata_testday', 'Sara','template_sara.csv'), - 'kwargs':{'freq_estimation_method' : 'median'}, - 'coarsen': '60T', - }, - # Vlinders 2022 - 'vlindergent2022':{ - 'datafile': join(test_data_dir,'testdata_testday', 'Sara','Vlinder_gent_2022.csv'), - 'metadatafile': join(test_data_dir,'testdata_testday', 'Sara','all_vlinders_metadata.csv'), - 'template': join(test_data_dir,'testdata_testday', 'Sara','bigvlinder_templatefile.csv'), - 'kwargs':{'freq_estimation_method' : 'median'}, - 'coarsen': '60T', - - }, - # Siebe stations (6 vlinders for 15 days) - 'siebevlinder':{ - 'datafile': join(test_data_dir,'testdata_testday', 'Siebe','vlindersdata.csv'), - 'metadatafile': None, - 'template': metobs_toolkit.demo_template, - 'kwargs':{}, - 'coarsen': '60T', - } - - } - + "Congo_single_station": { + "datafile": join( + test_data_dir, "testdata_testday", "Kobe", "meteo_soil_clean_2023-01-19.csv" + ), + "metadatafile": join( + test_data_dir, "testdata_testday", "Kobe", "CONGO_meta.csv" + ), + "template": join( + test_data_dir, "testdata_testday", "Kobe", "CONGO_template.csv" + ), + "kwargs": {}, + "coarsen": "60T", + }, + # Single Netatmo station Sara + "single_netatmo_sara_station": { + "datafile": join( + test_data_dir, + "testdata_testday", + "Sara", + "Outdoor_module_Netatmo_Sara_small.csv", + ), + "metadatafile": join( + test_data_dir, + "testdata_testday", + "Sara", + "metadata_Outdoor_module_Netatmo_Sara_new.csv", + ), + "template": join( + test_data_dir, "testdata_testday", "Sara", "template_sara.csv" + ), + "kwargs": {"freq_estimation_method": "median"}, + "coarsen": "60T", + }, + # Vlinders 2022 + "vlindergent2022": { + "datafile": join( + test_data_dir, "testdata_testday", "Sara", "Vlinder_gent_2022.csv" + ), + "metadatafile": join( + test_data_dir, "testdata_testday", "Sara", "all_vlinders_metadata.csv" + ), + "template": join( + test_data_dir, "testdata_testday", "Sara", "bigvlinder_templatefile.csv" + ), + "kwargs": {"freq_estimation_method": "median"}, + "coarsen": "60T", + }, + # Siebe stations (6 vlinders for 15 days) + "siebevlinder": { + "datafile": join( + test_data_dir, "testdata_testday", "Siebe", "vlindersdata.csv" + ), + "metadatafile": None, + "template": metobs_toolkit.demo_template, + "kwargs": {}, + "coarsen": "60T", + }, +} diff --git a/tests/test_data/delete_me.csv b/tests/test_data/delete_me.csv new file mode 100644 index 00000000..4fca9245 --- /dev/null +++ b/tests/test_data/delete_me.csv @@ -0,0 +1,26 @@ +"Datum_dummy","Tijd (UTC)","temperature air","windspeed air" +"2022-10-04","00:00:00",9.3,9.3 +"2022-10-04","00:05:00",9.3,9.3 +"2022-10-04","00:10:00",9.3,9.3 +"2022-10-04","00:15:00",9.4,9.4 +"2022-10-04","00:20:00",9.5,9.5 +"2022-10-04","00:25:00",9.3,9.3 +"2022-10-04","00:30:00",9.1,9.1 +"2022-10-04","00:35:00",9,9 +"2022-10-04","00:40:00",8.9,8.9 +"2022-10-04","00:45:00",8.9,8.9 +"2022-10-04","00:50:00",9,9 +"2022-10-04","00:55:00",9.1,9.1 +"2022-10-04","01:00:00",9.1,9.1 +"2022-10-04","01:05:00",9.3,9.3 +"2022-10-04","01:10:00",9.3,9.3 +"2022-10-04","01:15:00",9.4,9.4 +"2022-10-04","01:20:00",9.5,9.5 +"2022-10-04","01:25:00",9.3,9.3 +"2022-10-04","01:30:00",9.1,9.1 +"2022-10-04","01:35:00",9,9 +"2022-10-04","01:40:00",8.9,8.9 +"2022-10-04","01:45:00",8.9,8.9 +"2022-10-04","01:50:00",9,9 +"2022-10-04","01:55:00",9.1,9.1 +"2022-10-04","02:00:00",9.1,9.1 diff --git a/tests/test_data/era5_modeldata_test.csv b/tests/test_data/era5_modeldata_test.csv index e2ffb288..24f70f68 100644 --- a/tests/test_data/era5_modeldata_test.csv +++ b/tests/test_data/era5_modeldata_test.csv @@ -1,10053 +1,10109 @@ -datetime,name,temperature_2m -20220901000000,vlinder01,291.5445251464844 -20220901000000,vlinder02,291.6011657714844 -20220901000000,vlinder03,291.0816345214844 -20220901000000,vlinder04,291.0816345214844 -20220901000000,vlinder05,291.3726501464844 -20220901000000,vlinder06,291.5738220214844 -20220901000000,vlinder07,291.5738220214844 -20220901000000,vlinder08,291.5738220214844 -20220901000000,vlinder09,291.5191345214844 -20220901000000,vlinder10,291.5328063964844 -20220901000000,vlinder11,290.9585876464844 -20220901000000,vlinder12,290.9585876464844 -20220901000000,vlinder13,290.9585876464844 -20220901000000,vlinder14,290.6636657714844 -20220901000000,vlinder15,291.4917907714844 -20220901000000,vlinder16,290.6636657714844 -20220901000000,vlinder17,291.5621032714844 -20220901000000,vlinder18,291.6831970214844 -20220901000000,vlinder19,291.2710876464844 -20220901000000,vlinder20,291.2710876464844 -20220901000000,vlinder21,291.9917907714844 -20220901000000,vlinder22,292.0640563964844 -20220901000000,vlinder23,290.8960876464844 -20220901000000,vlinder24,291.1480407714844 -20220901000000,vlinder25,290.9800720214844 -20220901000000,vlinder26,291.2730407714844 -20220901000000,vlinder27,291.3726501464844 -20220901000000,vlinder28,291.5445251464844 -20220901010000,vlinder01,290.9497528076172 -20220901010000,vlinder02,291.0181121826172 -20220901010000,vlinder03,290.6040496826172 -20220901010000,vlinder04,290.6040496826172 -20220901010000,vlinder05,290.8306121826172 -20220901010000,vlinder06,291.0552215576172 -20220901010000,vlinder07,291.0552215576172 -20220901010000,vlinder08,291.0552215576172 -20220901010000,vlinder09,290.8774871826172 -20220901010000,vlinder10,290.8931121826172 -20220901010000,vlinder11,290.4770965576172 -20220901010000,vlinder12,290.4770965576172 -20220901010000,vlinder13,290.4770965576172 -20220901010000,vlinder14,290.2114715576172 -20220901010000,vlinder15,290.8481903076172 -20220901010000,vlinder16,290.2114715576172 -20220901010000,vlinder17,291.0884246826172 -20220901010000,vlinder18,291.2485809326172 -20220901010000,vlinder19,290.6020965576172 -20220901010000,vlinder20,290.6020965576172 -20220901010000,vlinder21,291.5044403076172 -20220901010000,vlinder22,291.6157684326172 -20220901010000,vlinder23,290.4321746826172 -20220901010000,vlinder24,290.6352996826172 -20220901010000,vlinder25,290.4751434326172 -20220901010000,vlinder26,290.7895965576172 -20220901010000,vlinder27,290.8306121826172 -20220901010000,vlinder28,290.9497528076172 -20220901020000,vlinder01,290.5653533935547 -20220901020000,vlinder02,290.6161346435547 -20220901020000,vlinder03,290.4774627685547 -20220901020000,vlinder04,290.4774627685547 -20220901020000,vlinder05,290.4559783935547 -20220901020000,vlinder06,290.7235565185547 -20220901020000,vlinder07,290.7235565185547 -20220901020000,vlinder08,290.7235565185547 -20220901020000,vlinder09,290.5223846435547 -20220901020000,vlinder10,290.5204315185547 -20220901020000,vlinder11,290.2430877685547 -20220901020000,vlinder12,290.2430877685547 -20220901020000,vlinder13,290.2430877685547 -20220901020000,vlinder14,290.0341033935547 -20220901020000,vlinder15,290.5048065185547 -20220901020000,vlinder16,290.0341033935547 -20220901020000,vlinder17,290.6825408935547 -20220901020000,vlinder18,290.8368377685547 -20220901020000,vlinder19,290.1962127685547 -20220901020000,vlinder20,290.1962127685547 -20220901020000,vlinder21,291.2196502685547 -20220901020000,vlinder22,291.1454315185547 -20220901020000,vlinder23,290.0887908935547 -20220901020000,vlinder24,290.2684783935547 -20220901020000,vlinder25,290.1161346435547 -20220901020000,vlinder26,290.5673065185547 -20220901020000,vlinder27,290.4559783935547 -20220901020000,vlinder28,290.5653533935547 -20220901030000,vlinder01,289.9707336425781 -20220901030000,vlinder02,290.0137023925781 -20220901030000,vlinder03,290.1679992675781 -20220901030000,vlinder04,290.1679992675781 -20220901030000,vlinder05,289.8945617675781 -20220901030000,vlinder06,290.2090148925781 -20220901030000,vlinder07,290.2090148925781 -20220901030000,vlinder08,290.2090148925781 -20220901030000,vlinder09,289.9648742675781 -20220901030000,vlinder10,289.9472961425781 -20220901030000,vlinder11,289.8730773925781 -20220901030000,vlinder12,289.8730773925781 -20220901030000,vlinder13,289.8730773925781 -20220901030000,vlinder14,289.7324523925781 -20220901030000,vlinder15,289.9590148925781 -20220901030000,vlinder16,289.7324523925781 -20220901030000,vlinder17,290.1699523925781 -20220901030000,vlinder18,290.3183898925781 -20220901030000,vlinder19,289.6172180175781 -20220901030000,vlinder20,289.6172180175781 -20220901030000,vlinder21,290.7871398925781 -20220901030000,vlinder22,290.5449523925781 -20220901030000,vlinder23,289.6054992675781 -20220901030000,vlinder24,289.7304992675781 -20220901030000,vlinder25,289.5937805175781 -20220901030000,vlinder26,290.1758117675781 -20220901030000,vlinder27,289.8945617675781 -20220901030000,vlinder28,289.9707336425781 -20220901040000,vlinder01,289.60028076171875 -20220901040000,vlinder02,289.62762451171875 -20220901040000,vlinder03,289.79949951171875 -20220901040000,vlinder04,289.79949951171875 -20220901040000,vlinder05,289.57293701171875 -20220901040000,vlinder06,289.92254638671875 -20220901040000,vlinder07,289.92254638671875 -20220901040000,vlinder08,289.92254638671875 -20220901040000,vlinder09,289.60418701171875 -20220901040000,vlinder10,289.56317138671875 -20220901040000,vlinder11,289.68231201171875 -20220901040000,vlinder12,289.68231201171875 -20220901040000,vlinder13,289.68231201171875 -20220901040000,vlinder14,289.59832763671875 -20220901040000,vlinder15,289.61199951171875 -20220901040000,vlinder16,289.59832763671875 -20220901040000,vlinder17,289.69207763671875 -20220901040000,vlinder18,289.83074951171875 -20220901040000,vlinder19,289.20184326171875 -20220901040000,vlinder20,289.20184326171875 -20220901040000,vlinder21,290.48504638671875 -20220901040000,vlinder22,290.00457763671875 -20220901040000,vlinder23,289.38739013671875 -20220901040000,vlinder24,289.43817138671875 -20220901040000,vlinder25,289.33856201171875 -20220901040000,vlinder26,289.77606201171875 -20220901040000,vlinder27,289.57293701171875 -20220901040000,vlinder28,289.60028076171875 -20220901050000,vlinder01,289.2610778808594 -20220901050000,vlinder02,289.3216247558594 -20220901050000,vlinder03,289.3645935058594 -20220901050000,vlinder04,289.3645935058594 -20220901050000,vlinder05,289.3352966308594 -20220901050000,vlinder06,289.4622497558594 -20220901050000,vlinder07,289.4622497558594 -20220901050000,vlinder08,289.4622497558594 -20220901050000,vlinder09,289.1497497558594 -20220901050000,vlinder10,289.1321716308594 -20220901050000,vlinder11,289.3274841308594 -20220901050000,vlinder12,289.3274841308594 -20220901050000,vlinder13,289.3274841308594 -20220901050000,vlinder14,289.3059997558594 -20220901050000,vlinder15,289.1360778808594 -20220901050000,vlinder16,289.3059997558594 -20220901050000,vlinder17,289.3802185058594 -20220901050000,vlinder18,289.5481872558594 -20220901050000,vlinder19,288.6477966308594 -20220901050000,vlinder20,288.6477966308594 -20220901050000,vlinder21,290.4153747558594 -20220901050000,vlinder22,289.8548278808594 -20220901050000,vlinder23,289.3079528808594 -20220901050000,vlinder24,289.2903747558594 -20220901050000,vlinder25,289.1731872558594 -20220901050000,vlinder26,289.3255310058594 -20220901050000,vlinder27,289.3352966308594 -20220901050000,vlinder28,289.2610778808594 -20220901060000,vlinder01,289.73033142089844 -20220901060000,vlinder02,289.74400329589844 -20220901060000,vlinder03,289.64634704589844 -20220901060000,vlinder04,289.64634704589844 -20220901060000,vlinder05,289.77330017089844 -20220901060000,vlinder06,289.94322204589844 -20220901060000,vlinder07,289.94322204589844 -20220901060000,vlinder08,289.94322204589844 -20220901060000,vlinder09,289.66587829589844 -20220901060000,vlinder10,289.62876892089844 -20220901060000,vlinder11,289.81040954589844 -20220901060000,vlinder12,289.81040954589844 -20220901060000,vlinder13,289.81040954589844 -20220901060000,vlinder14,289.79869079589844 -20220901060000,vlinder15,289.66392517089844 -20220901060000,vlinder16,289.79869079589844 -20220901060000,vlinder17,289.65806579589844 -20220901060000,vlinder18,289.83580017089844 -20220901060000,vlinder19,289.17369079589844 -20220901060000,vlinder20,289.17369079589844 -20220901060000,vlinder21,290.50181579589844 -20220901060000,vlinder22,289.80064392089844 -20220901060000,vlinder23,289.68931579589844 -20220901060000,vlinder24,289.68736267089844 -20220901060000,vlinder25,289.62290954589844 -20220901060000,vlinder26,289.62681579589844 -20220901060000,vlinder27,289.77330017089844 -20220901060000,vlinder28,289.73033142089844 -20220901070000,vlinder01,290.5062255859375 -20220901070000,vlinder02,290.4886474609375 -20220901070000,vlinder03,290.6370849609375 -20220901070000,vlinder04,290.6370849609375 -20220901070000,vlinder05,290.4847412109375 -20220901070000,vlinder06,290.8948974609375 -20220901070000,vlinder07,290.8948974609375 -20220901070000,vlinder08,290.8948974609375 -20220901070000,vlinder09,290.5765380859375 -20220901070000,vlinder10,290.5159912109375 -20220901070000,vlinder11,290.7601318359375 -20220901070000,vlinder12,290.7601318359375 -20220901070000,vlinder13,290.7601318359375 -20220901070000,vlinder14,290.7269287109375 -20220901070000,vlinder15,290.6058349609375 -20220901070000,vlinder16,290.7269287109375 -20220901070000,vlinder17,290.2503662109375 -20220901070000,vlinder18,290.3773193359375 -20220901070000,vlinder19,290.3421630859375 -20220901070000,vlinder20,290.3421630859375 -20220901070000,vlinder21,290.9105224609375 -20220901070000,vlinder22,290.6331787109375 -20220901070000,vlinder23,290.3499755859375 -20220901070000,vlinder24,290.3851318359375 -20220901070000,vlinder25,290.3480224609375 -20220901070000,vlinder26,290.6702880859375 -20220901070000,vlinder27,290.4847412109375 -20220901070000,vlinder28,290.5062255859375 -20220901080000,vlinder01,292.1163024902344 -20220901080000,vlinder02,292.0870056152344 -20220901080000,vlinder03,292.0733337402344 -20220901080000,vlinder04,292.0733337402344 -20220901080000,vlinder05,292.0830993652344 -20220901080000,vlinder06,292.5362243652344 -20220901080000,vlinder07,292.5362243652344 -20220901080000,vlinder08,292.5362243652344 -20220901080000,vlinder09,292.1709899902344 -20220901080000,vlinder10,292.1260681152344 -20220901080000,vlinder11,292.3702087402344 -20220901080000,vlinder12,292.3702087402344 -20220901080000,vlinder13,292.3702087402344 -20220901080000,vlinder14,292.2823181152344 -20220901080000,vlinder15,292.1983337402344 -20220901080000,vlinder16,292.2823181152344 -20220901080000,vlinder17,291.8760681152344 -20220901080000,vlinder18,291.9932556152344 -20220901080000,vlinder19,292.0694274902344 -20220901080000,vlinder20,292.0694274902344 -20220901080000,vlinder21,291.8389587402344 -20220901080000,vlinder22,291.7354431152344 -20220901080000,vlinder23,291.9014587402344 -20220901080000,vlinder24,291.9541931152344 -20220901080000,vlinder25,291.9932556152344 -20220901080000,vlinder26,292.2549743652344 -20220901080000,vlinder27,292.0830993652344 -20220901080000,vlinder28,292.1163024902344 -20220901090000,vlinder01,294.0714111328125 -20220901090000,vlinder02,294.0264892578125 -20220901090000,vlinder03,293.7940673828125 -20220901090000,vlinder04,293.7940673828125 -20220901090000,vlinder05,293.8917236328125 -20220901090000,vlinder06,294.4014892578125 -20220901090000,vlinder07,294.4014892578125 -20220901090000,vlinder08,294.4014892578125 -20220901090000,vlinder09,294.2139892578125 -20220901090000,vlinder10,294.1729736328125 -20220901090000,vlinder11,294.0499267578125 -20220901090000,vlinder12,294.0499267578125 -20220901090000,vlinder13,294.0499267578125 -20220901090000,vlinder14,293.8448486328125 -20220901090000,vlinder15,294.2335205078125 -20220901090000,vlinder16,293.8448486328125 -20220901090000,vlinder17,293.6729736328125 -20220901090000,vlinder18,293.7901611328125 -20220901090000,vlinder19,294.1729736328125 -20220901090000,vlinder20,294.1729736328125 -20220901090000,vlinder21,293.0382080078125 -20220901090000,vlinder22,293.1964111328125 -20220901090000,vlinder23,293.3956298828125 -20220901090000,vlinder24,293.6124267578125 -20220901090000,vlinder25,293.6495361328125 -20220901090000,vlinder26,294.0343017578125 -20220901090000,vlinder27,293.8917236328125 -20220901090000,vlinder28,294.0714111328125 -20220901100000,vlinder01,295.71482849121094 -20220901100000,vlinder02,295.69725036621094 -20220901100000,vlinder03,295.51756286621094 -20220901100000,vlinder04,295.51756286621094 -20220901100000,vlinder05,295.48240661621094 -20220901100000,vlinder06,295.99021911621094 -20220901100000,vlinder07,295.99021911621094 -20220901100000,vlinder08,295.99021911621094 -20220901100000,vlinder09,295.84568786621094 -20220901100000,vlinder10,295.82420349121094 -20220901100000,vlinder11,295.60154724121094 -20220901100000,vlinder12,295.60154724121094 -20220901100000,vlinder13,295.60154724121094 -20220901100000,vlinder14,295.35350036621094 -20220901100000,vlinder15,295.85545349121094 -20220901100000,vlinder16,295.35350036621094 -20220901100000,vlinder17,295.29685974121094 -20220901100000,vlinder18,295.39451599121094 -20220901100000,vlinder19,295.83592224121094 -20220901100000,vlinder20,295.83592224121094 -20220901100000,vlinder21,294.31834411621094 -20220901100000,vlinder22,294.94725036621094 -20220901100000,vlinder23,294.86326599121094 -20220901100000,vlinder24,295.14451599121094 -20220901100000,vlinder25,295.18162536621094 -20220901100000,vlinder26,295.77146911621094 -20220901100000,vlinder27,295.48240661621094 -20220901100000,vlinder28,295.71482849121094 -20220901110000,vlinder01,297.1011047363281 -20220901110000,vlinder02,297.0835266113281 -20220901110000,vlinder03,296.7964172363281 -20220901110000,vlinder04,296.7964172363281 -20220901110000,vlinder05,296.8569641113281 -20220901110000,vlinder06,297.3042297363281 -20220901110000,vlinder07,297.3042297363281 -20220901110000,vlinder08,297.3042297363281 -20220901110000,vlinder09,297.1362609863281 -20220901110000,vlinder10,297.1186828613281 -20220901110000,vlinder11,297.0288391113281 -20220901110000,vlinder12,297.0288391113281 -20220901110000,vlinder13,297.0288391113281 -20220901110000,vlinder14,296.8179016113281 -20220901110000,vlinder15,297.1401672363281 -20220901110000,vlinder16,296.8179016113281 -20220901110000,vlinder17,296.4507141113281 -20220901110000,vlinder18,296.5307922363281 -20220901110000,vlinder19,297.0620422363281 -20220901110000,vlinder20,297.0620422363281 -20220901110000,vlinder21,295.4702453613281 -20220901110000,vlinder22,296.3315734863281 -20220901110000,vlinder23,296.1987609863281 -20220901110000,vlinder24,296.4975891113281 -20220901110000,vlinder25,296.5483703613281 -20220901110000,vlinder26,297.0425109863281 -20220901110000,vlinder27,296.8569641113281 -20220901110000,vlinder28,297.1011047363281 -20220901120000,vlinder01,298.0928497314453 -20220901120000,vlinder02,298.0987091064453 -20220901120000,vlinder03,297.5635528564453 -20220901120000,vlinder04,297.5635528564453 -20220901120000,vlinder05,297.8858184814453 -20220901120000,vlinder06,298.0576934814453 -20220901120000,vlinder07,298.0576934814453 -20220901120000,vlinder08,298.0576934814453 -20220901120000,vlinder09,297.9502716064453 -20220901120000,vlinder10,297.9658966064453 -20220901120000,vlinder11,297.8877716064453 -20220901120000,vlinder12,297.8877716064453 -20220901120000,vlinder13,297.8877716064453 -20220901120000,vlinder14,297.7178497314453 -20220901120000,vlinder15,297.9190216064453 -20220901120000,vlinder16,297.7178497314453 -20220901120000,vlinder17,297.1084747314453 -20220901120000,vlinder18,297.2061309814453 -20220901120000,vlinder19,297.7237091064453 -20220901120000,vlinder20,297.7237091064453 -20220901120000,vlinder21,296.3819122314453 -20220901120000,vlinder22,297.3760528564453 -20220901120000,vlinder23,297.2354278564453 -20220901120000,vlinder24,297.5303497314453 -20220901120000,vlinder25,297.6045684814453 -20220901120000,vlinder26,297.7725372314453 -20220901120000,vlinder27,297.8858184814453 -20220901120000,vlinder28,298.0928497314453 -20220901130000,vlinder01,298.7009735107422 -20220901130000,vlinder02,298.7810516357422 -20220901130000,vlinder03,298.0896453857422 -20220901130000,vlinder04,298.0896453857422 -20220901130000,vlinder05,298.5876922607422 -20220901130000,vlinder06,298.4353485107422 -20220901130000,vlinder07,298.4353485107422 -20220901130000,vlinder08,298.4353485107422 -20220901130000,vlinder09,298.3201141357422 -20220901130000,vlinder10,298.4080047607422 -20220901130000,vlinder11,298.3513641357422 -20220901130000,vlinder12,298.3513641357422 -20220901130000,vlinder13,298.3513641357422 -20220901130000,vlinder14,298.2029266357422 -20220901130000,vlinder15,298.2419891357422 -20220901130000,vlinder16,298.2029266357422 -20220901130000,vlinder17,297.7029266357422 -20220901130000,vlinder18,297.8396453857422 -20220901130000,vlinder19,298.0583953857422 -20220901130000,vlinder20,298.0583953857422 -20220901130000,vlinder21,297.2498016357422 -20220901130000,vlinder22,298.4080047607422 -20220901130000,vlinder23,298.0388641357422 -20220901130000,vlinder24,298.3142547607422 -20220901130000,vlinder25,298.3455047607422 -20220901130000,vlinder26,298.2830047607422 -20220901130000,vlinder27,298.5876922607422 -20220901130000,vlinder28,298.7009735107422 -20220901140000,vlinder01,298.80450439453125 -20220901140000,vlinder02,298.87091064453125 -20220901140000,vlinder03,298.35723876953125 -20220901140000,vlinder04,298.35723876953125 -20220901140000,vlinder05,298.74005126953125 -20220901140000,vlinder06,298.67559814453125 -20220901140000,vlinder07,298.67559814453125 -20220901140000,vlinder08,298.67559814453125 -20220901140000,vlinder09,298.47247314453125 -20220901140000,vlinder10,298.53106689453125 -20220901140000,vlinder11,298.57989501953125 -20220901140000,vlinder12,298.57989501953125 -20220901140000,vlinder13,298.57989501953125 -20220901140000,vlinder14,298.40020751953125 -20220901140000,vlinder15,298.41387939453125 -20220901140000,vlinder16,298.40020751953125 -20220901140000,vlinder17,298.14044189453125 -20220901140000,vlinder18,298.26544189453125 -20220901140000,vlinder19,298.25567626953125 -20220901140000,vlinder20,298.25567626953125 -20220901140000,vlinder21,297.50372314453125 -20220901140000,vlinder22,298.80255126953125 -20220901140000,vlinder23,298.32208251953125 -20220901140000,vlinder24,298.55059814453125 -20220901140000,vlinder25,298.56622314453125 -20220901140000,vlinder26,298.57208251953125 -20220901140000,vlinder27,298.74005126953125 -20220901140000,vlinder28,298.80450439453125 -20220901150000,vlinder01,298.5973663330078 -20220901150000,vlinder02,298.6208038330078 -20220901150000,vlinder03,298.4001007080078 -20220901150000,vlinder04,298.4001007080078 -20220901150000,vlinder05,298.5700225830078 -20220901150000,vlinder06,298.7047882080078 -20220901150000,vlinder07,298.7047882080078 -20220901150000,vlinder08,298.7047882080078 -20220901150000,vlinder09,298.3571319580078 -20220901150000,vlinder10,298.3766632080078 -20220901150000,vlinder11,298.6325225830078 -20220901150000,vlinder12,298.6325225830078 -20220901150000,vlinder13,298.6325225830078 -20220901150000,vlinder14,298.4450225830078 -20220901150000,vlinder15,298.3356475830078 -20220901150000,vlinder16,298.4450225830078 -20220901150000,vlinder17,298.0895538330078 -20220901150000,vlinder18,298.1481475830078 -20220901150000,vlinder19,298.2028350830078 -20220901150000,vlinder20,298.2028350830078 -20220901150000,vlinder21,297.4528350830078 -20220901150000,vlinder22,298.4606475830078 -20220901150000,vlinder23,298.2633819580078 -20220901150000,vlinder24,298.4430694580078 -20220901150000,vlinder25,298.4704132080078 -20220901150000,vlinder26,298.6461944580078 -20220901150000,vlinder27,298.5700225830078 -20220901150000,vlinder28,298.5973663330078 -20220901160000,vlinder01,298.28074645996094 -20220901160000,vlinder02,298.28465270996094 -20220901160000,vlinder03,298.28465270996094 -20220901160000,vlinder04,298.28465270996094 -20220901160000,vlinder05,298.24363708496094 -20220901160000,vlinder06,298.45848083496094 -20220901160000,vlinder07,298.45848083496094 -20220901160000,vlinder08,298.45848083496094 -20220901160000,vlinder09,298.11277770996094 -20220901160000,vlinder10,298.11277770996094 -20220901160000,vlinder11,298.38621520996094 -20220901160000,vlinder12,298.38621520996094 -20220901160000,vlinder13,298.38621520996094 -20220901160000,vlinder14,298.19676208496094 -20220901160000,vlinder15,298.10691833496094 -20220901160000,vlinder16,298.19676208496094 -20220901160000,vlinder17,297.67527770996094 -20220901160000,vlinder18,297.68894958496094 -20220901160000,vlinder19,297.99754333496094 -20220901160000,vlinder20,297.99754333496094 -20220901160000,vlinder21,297.33152770996094 -20220901160000,vlinder22,298.09129333496094 -20220901160000,vlinder23,297.93894958496094 -20220901160000,vlinder24,298.13230895996094 -20220901160000,vlinder25,298.14207458496094 -20220901160000,vlinder26,298.53465270996094 -20220901160000,vlinder27,298.24363708496094 -20220901160000,vlinder28,298.28074645996094 -20220901170000,vlinder01,297.83631896972656 -20220901170000,vlinder02,297.82460021972656 -20220901170000,vlinder03,297.95155334472656 -20220901170000,vlinder04,297.95155334472656 -20220901170000,vlinder05,297.74647521972656 -20220901170000,vlinder06,298.13124084472656 -20220901170000,vlinder07,298.13124084472656 -20220901170000,vlinder08,298.13124084472656 -20220901170000,vlinder09,297.71327209472656 -20220901170000,vlinder10,297.70155334472656 -20220901170000,vlinder11,297.89881896972656 -20220901170000,vlinder12,297.89881896972656 -20220901170000,vlinder13,297.89881896972656 -20220901170000,vlinder14,297.62147521972656 -20220901170000,vlinder15,297.72108459472656 -20220901170000,vlinder16,297.62147521972656 -20220901170000,vlinder17,297.13319396972656 -20220901170000,vlinder18,297.15467834472656 -20220901170000,vlinder19,297.61170959472656 -20220901170000,vlinder20,297.61170959472656 -20220901170000,vlinder21,297.08631896972656 -20220901170000,vlinder22,297.49647521972656 -20220901170000,vlinder23,297.35585021972656 -20220901170000,vlinder24,297.60585021972656 -20220901170000,vlinder25,297.56092834472656 -20220901170000,vlinder26,298.17811584472656 -20220901170000,vlinder27,297.74647521972656 -20220901170000,vlinder28,297.83631896972656 -20220901180000,vlinder01,296.4874725341797 -20220901180000,vlinder02,296.4894256591797 -20220901180000,vlinder03,296.7179412841797 -20220901180000,vlinder04,296.7179412841797 -20220901180000,vlinder05,296.3253631591797 -20220901180000,vlinder06,296.7999725341797 -20220901180000,vlinder07,296.7999725341797 -20220901180000,vlinder08,296.7999725341797 -20220901180000,vlinder09,296.3624725341797 -20220901180000,vlinder10,296.3624725341797 -20220901180000,vlinder11,296.5499725341797 -20220901180000,vlinder12,296.5499725341797 -20220901180000,vlinder13,296.5499725341797 -20220901180000,vlinder14,296.2257537841797 -20220901180000,vlinder15,296.3663787841797 -20220901180000,vlinder16,296.2257537841797 -20220901180000,vlinder17,296.1515350341797 -20220901180000,vlinder18,296.1613006591797 -20220901180000,vlinder19,296.2823944091797 -20220901180000,vlinder20,296.2823944091797 -20220901180000,vlinder21,296.1359100341797 -20220901180000,vlinder22,296.3019256591797 -20220901180000,vlinder23,295.8214569091797 -20220901180000,vlinder24,296.1320037841797 -20220901180000,vlinder25,296.0109100341797 -20220901180000,vlinder26,296.9698944091797 -20220901180000,vlinder27,296.3253631591797 -20220901180000,vlinder28,296.4874725341797 -20220901190000,vlinder01,294.5366668701172 -20220901190000,vlinder02,294.5190887451172 -20220901190000,vlinder03,295.0952606201172 -20220901190000,vlinder04,295.0952606201172 -20220901190000,vlinder05,294.4292449951172 -20220901190000,vlinder06,295.1460418701172 -20220901190000,vlinder07,295.1460418701172 -20220901190000,vlinder08,295.1460418701172 -20220901190000,vlinder09,294.5171356201172 -20220901190000,vlinder10,294.4780731201172 -20220901190000,vlinder11,294.7827606201172 -20220901190000,vlinder12,294.7827606201172 -20220901190000,vlinder13,294.7827606201172 -20220901190000,vlinder14,294.4136199951172 -20220901190000,vlinder15,294.5659637451172 -20220901190000,vlinder16,294.4136199951172 -20220901190000,vlinder17,295.4644012451172 -20220901190000,vlinder18,295.4624481201172 -20220901190000,vlinder19,294.5796356201172 -20220901190000,vlinder20,294.5796356201172 -20220901190000,vlinder21,294.8452606201172 -20220901190000,vlinder22,294.4995574951172 -20220901190000,vlinder23,294.1265106201172 -20220901190000,vlinder24,294.3315887451172 -20220901190000,vlinder25,294.1733856201172 -20220901190000,vlinder26,295.4839324951172 -20220901190000,vlinder27,294.4292449951172 -20220901190000,vlinder28,294.5366668701172 -20220901200000,vlinder01,293.4129333496094 -20220901200000,vlinder02,293.3758239746094 -20220901200000,vlinder03,294.2625427246094 -20220901200000,vlinder04,294.2625427246094 -20220901200000,vlinder05,293.3504333496094 -20220901200000,vlinder06,294.2547302246094 -20220901200000,vlinder07,294.2547302246094 -20220901200000,vlinder08,294.2547302246094 -20220901200000,vlinder09,293.5418395996094 -20220901200000,vlinder10,293.4559020996094 -20220901200000,vlinder11,293.8387145996094 -20220901200000,vlinder12,293.8387145996094 -20220901200000,vlinder13,293.8387145996094 -20220901200000,vlinder14,293.4676208496094 -20220901200000,vlinder15,293.6277770996094 -20220901200000,vlinder16,293.4676208496094 -20220901200000,vlinder17,294.5594177246094 -20220901200000,vlinder18,294.5476989746094 -20220901200000,vlinder19,293.6824645996094 -20220901200000,vlinder20,293.6824645996094 -20220901200000,vlinder21,294.1824645996094 -20220901200000,vlinder22,293.5633239746094 -20220901200000,vlinder23,293.1883239746094 -20220901200000,vlinder24,293.2957458496094 -20220901200000,vlinder25,293.1258239746094 -20220901200000,vlinder26,294.5945739746094 -20220901200000,vlinder27,293.3504333496094 -20220901200000,vlinder28,293.4129333496094 -20220901210000,vlinder01,292.65391540527344 -20220901210000,vlinder02,292.59727478027344 -20220901210000,vlinder03,293.63047790527344 -20220901210000,vlinder04,293.63047790527344 -20220901210000,vlinder05,292.62266540527344 -20220901210000,vlinder06,293.63829040527344 -20220901210000,vlinder07,293.63829040527344 -20220901210000,vlinder08,293.63829040527344 -20220901210000,vlinder09,292.89805603027344 -20220901210000,vlinder10,292.77500915527344 -20220901210000,vlinder11,293.24375915527344 -20220901210000,vlinder12,293.24375915527344 -20220901210000,vlinder13,293.24375915527344 -20220901210000,vlinder14,292.90977478027344 -20220901210000,vlinder15,293.00743103027344 -20220901210000,vlinder16,292.90977478027344 -20220901210000,vlinder17,293.69297790527344 -20220901210000,vlinder18,293.69883728027344 -20220901210000,vlinder19,293.03086853027344 -20220901210000,vlinder20,293.03086853027344 -20220901210000,vlinder21,293.57188415527344 -20220901210000,vlinder22,292.76914978027344 -20220901210000,vlinder23,292.54258728027344 -20220901210000,vlinder24,292.57969665527344 -20220901210000,vlinder25,292.43125915527344 -20220901210000,vlinder26,293.87852478027344 -20220901210000,vlinder27,292.62266540527344 -20220901210000,vlinder28,292.65391540527344 -20220901220000,vlinder01,291.9024963378906 -20220901220000,vlinder02,291.8360900878906 -20220901220000,vlinder03,293.0821838378906 -20220901220000,vlinder04,293.0821838378906 -20220901220000,vlinder05,291.9259338378906 -20220901220000,vlinder06,293.1173400878906 -20220901220000,vlinder07,293.1173400878906 -20220901220000,vlinder08,293.1173400878906 -20220901220000,vlinder09,292.2091369628906 -20220901220000,vlinder10,292.0489807128906 -20220901220000,vlinder11,292.8028869628906 -20220901220000,vlinder12,292.8028869628906 -20220901220000,vlinder13,292.8028869628906 -20220901220000,vlinder14,292.5235900878906 -20220901220000,vlinder15,292.3478088378906 -20220901220000,vlinder16,292.5235900878906 -20220901220000,vlinder17,293.2267150878906 -20220901220000,vlinder18,293.2755432128906 -20220901220000,vlinder19,292.3575744628906 -20220901220000,vlinder20,292.3575744628906 -20220901220000,vlinder21,293.0392150878906 -20220901220000,vlinder22,292.1192932128906 -20220901220000,vlinder23,291.9728088378906 -20220901220000,vlinder24,291.9200744628906 -20220901220000,vlinder25,291.7970275878906 -20220901220000,vlinder26,293.3146057128906 -20220901220000,vlinder27,291.9259338378906 -20220901220000,vlinder28,291.9024963378906 -20220901230000,vlinder01,291.32191467285156 -20220901230000,vlinder02,291.23988342285156 -20220901230000,vlinder03,292.56019592285156 -20220901230000,vlinder04,292.56019592285156 -20220901230000,vlinder05,291.38050842285156 -20220901230000,vlinder06,292.74183654785156 -20220901230000,vlinder07,292.74183654785156 -20220901230000,vlinder08,292.74183654785156 -20220901230000,vlinder09,291.68910217285156 -20220901230000,vlinder10,291.49183654785156 -20220901230000,vlinder11,292.33949279785156 -20220901230000,vlinder12,292.33949279785156 -20220901230000,vlinder13,292.33949279785156 -20220901230000,vlinder14,292.03480529785156 -20220901230000,vlinder15,291.85707092285156 -20220901230000,vlinder16,292.03480529785156 -20220901230000,vlinder17,292.95082092285156 -20220901230000,vlinder18,293.03675842285156 -20220901230000,vlinder19,291.83363342285156 -20220901230000,vlinder20,291.83363342285156 -20220901230000,vlinder21,292.57582092285156 -20220901230000,vlinder22,291.45668029785156 -20220901230000,vlinder23,291.49378967285156 -20220901230000,vlinder24,291.38636779785156 -20220901230000,vlinder25,291.28285217285156 -20220901230000,vlinder26,292.83949279785156 -20220901230000,vlinder27,291.38050842285156 -20220901230000,vlinder28,291.32191467285156 -20220902000000,vlinder01,290.8556365966797 -20220902000000,vlinder02,290.7814178466797 -20220902000000,vlinder03,292.2404022216797 -20220902000000,vlinder04,292.2404022216797 -20220902000000,vlinder05,290.9318084716797 -20220902000000,vlinder06,292.3165740966797 -20220902000000,vlinder07,292.3165740966797 -20220902000000,vlinder08,292.3165740966797 -20220902000000,vlinder09,291.2638397216797 -20220902000000,vlinder10,291.0587615966797 -20220902000000,vlinder11,291.8888397216797 -20220902000000,vlinder12,291.8888397216797 -20220902000000,vlinder13,291.8888397216797 -20220902000000,vlinder14,291.5841522216797 -20220902000000,vlinder15,291.4357147216797 -20220902000000,vlinder16,291.5841522216797 -20220902000000,vlinder17,292.6544647216797 -20220902000000,vlinder18,292.7423553466797 -20220902000000,vlinder19,291.3556365966797 -20220902000000,vlinder20,291.3556365966797 -20220902000000,vlinder21,292.1368865966797 -20220902000000,vlinder22,290.9103240966797 -20220902000000,vlinder23,291.0353240966797 -20220902000000,vlinder24,290.9142303466797 -20220902000000,vlinder25,290.8165740966797 -20220902000000,vlinder26,292.5099334716797 -20220902000000,vlinder27,290.9318084716797 -20220902000000,vlinder28,290.8556365966797 -20220902010000,vlinder01,290.38067626953125 -20220902010000,vlinder02,290.33184814453125 -20220902010000,vlinder03,292.06622314453125 -20220902010000,vlinder04,292.06622314453125 -20220902010000,vlinder05,290.48419189453125 -20220902010000,vlinder06,291.95880126953125 -20220902010000,vlinder07,291.95880126953125 -20220902010000,vlinder08,291.95880126953125 -20220902010000,vlinder09,290.85333251953125 -20220902010000,vlinder10,290.64434814453125 -20220902010000,vlinder11,291.53497314453125 -20220902010000,vlinder12,291.53497314453125 -20220902010000,vlinder13,291.53497314453125 -20220902010000,vlinder14,291.24005126953125 -20220902010000,vlinder15,291.03302001953125 -20220902010000,vlinder16,291.24005126953125 -20220902010000,vlinder17,292.27130126953125 -20220902010000,vlinder18,292.33575439453125 -20220902010000,vlinder19,290.97442626953125 -20220902010000,vlinder20,290.97442626953125 -20220902010000,vlinder21,291.75372314453125 -20220902010000,vlinder22,290.55450439453125 -20220902010000,vlinder23,290.60528564453125 -20220902010000,vlinder24,290.46270751953125 -20220902010000,vlinder25,290.35528564453125 -20220902010000,vlinder26,292.29864501953125 -20220902010000,vlinder27,290.48419189453125 -20220902010000,vlinder28,290.38067626953125 -20220902020000,vlinder01,289.8893127441406 -20220902020000,vlinder02,289.8561096191406 -20220902020000,vlinder03,291.7838439941406 -20220902020000,vlinder04,291.7838439941406 -20220902020000,vlinder05,290.0494689941406 -20220902020000,vlinder06,291.4811096191406 -20220902020000,vlinder07,291.4811096191406 -20220902020000,vlinder08,291.4811096191406 -20220902020000,vlinder09,290.4107971191406 -20220902020000,vlinder10,290.1940002441406 -20220902020000,vlinder11,291.2252502441406 -20220902020000,vlinder12,291.2252502441406 -20220902020000,vlinder13,291.2252502441406 -20220902020000,vlinder14,291.0279846191406 -20220902020000,vlinder15,290.5904846191406 -20220902020000,vlinder16,291.0279846191406 -20220902020000,vlinder17,291.7916564941406 -20220902020000,vlinder18,291.8639221191406 -20220902020000,vlinder19,290.4869689941406 -20220902020000,vlinder20,290.4869689941406 -20220902020000,vlinder21,291.3365783691406 -20220902020000,vlinder22,289.9537658691406 -20220902020000,vlinder23,290.2428283691406 -20220902020000,vlinder24,290.0338439941406 -20220902020000,vlinder25,289.9518127441406 -20220902020000,vlinder26,291.9010314941406 -20220902020000,vlinder27,290.0494689941406 -20220902020000,vlinder28,289.8893127441406 -20220902030000,vlinder01,289.6437683105469 -20220902030000,vlinder02,289.6027526855469 -20220902030000,vlinder03,291.4621276855469 -20220902030000,vlinder04,291.4621276855469 -20220902030000,vlinder05,289.8371276855469 -20220902030000,vlinder06,291.3527526855469 -20220902030000,vlinder07,291.3527526855469 -20220902030000,vlinder08,291.3527526855469 -20220902030000,vlinder09,290.3468933105469 -20220902030000,vlinder10,290.1125183105469 -20220902030000,vlinder11,291.0461120605469 -20220902030000,vlinder12,291.0461120605469 -20220902030000,vlinder13,291.0461120605469 -20220902030000,vlinder14,290.8468933105469 -20220902030000,vlinder15,290.5422058105469 -20220902030000,vlinder16,290.8468933105469 -20220902030000,vlinder17,291.3996276855469 -20220902030000,vlinder18,291.4543151855469 -20220902030000,vlinder19,290.5343933105469 -20220902030000,vlinder20,290.5343933105469 -20220902030000,vlinder21,291.0871276855469 -20220902030000,vlinder22,289.5109558105469 -20220902030000,vlinder23,290.0890808105469 -20220902030000,vlinder24,289.8312683105469 -20220902030000,vlinder25,289.7648620605469 -20220902030000,vlinder26,291.5812683105469 -20220902030000,vlinder27,289.8371276855469 -20220902030000,vlinder28,289.6437683105469 -20220902040000,vlinder01,289.4191436767578 -20220902040000,vlinder02,289.3761749267578 -20220902040000,vlinder03,291.2101593017578 -20220902040000,vlinder04,291.2101593017578 -20220902040000,vlinder05,289.6007843017578 -20220902040000,vlinder06,291.1320343017578 -20220902040000,vlinder07,291.1320343017578 -20220902040000,vlinder08,291.1320343017578 -20220902040000,vlinder09,290.2257843017578 -20220902040000,vlinder10,289.9855499267578 -20220902040000,vlinder11,290.7980499267578 -20220902040000,vlinder12,290.7980499267578 -20220902040000,vlinder13,290.7980499267578 -20220902040000,vlinder14,290.6066436767578 -20220902040000,vlinder15,290.4210968017578 -20220902040000,vlinder16,290.6066436767578 -20220902040000,vlinder17,290.9933624267578 -20220902040000,vlinder18,291.0441436767578 -20220902040000,vlinder19,290.4289093017578 -20220902040000,vlinder20,290.4289093017578 -20220902040000,vlinder21,290.8078155517578 -20220902040000,vlinder22,289.1046905517578 -20220902040000,vlinder23,289.8214874267578 -20220902040000,vlinder24,289.5617218017578 -20220902040000,vlinder25,289.5011749267578 -20220902040000,vlinder26,291.2902374267578 -20220902040000,vlinder27,289.6007843017578 -20220902040000,vlinder28,289.4191436767578 -20220902050000,vlinder01,289.14808654785156 -20220902050000,vlinder02,289.11293029785156 -20220902050000,vlinder03,291.01527404785156 -20220902050000,vlinder04,291.01527404785156 -20220902050000,vlinder05,289.34339904785156 -20220902050000,vlinder06,290.91566467285156 -20220902050000,vlinder07,290.91566467285156 -20220902050000,vlinder08,290.91566467285156 -20220902050000,vlinder09,290.09925842285156 -20220902050000,vlinder10,289.85511779785156 -20220902050000,vlinder11,290.55433654785156 -20220902050000,vlinder12,290.55433654785156 -20220902050000,vlinder13,290.55433654785156 -20220902050000,vlinder14,290.36488342285156 -20220902050000,vlinder15,290.29847717285156 -20220902050000,vlinder16,290.36488342285156 -20220902050000,vlinder17,290.71839904785156 -20220902050000,vlinder18,290.76332092285156 -20220902050000,vlinder19,290.40589904785156 -20220902050000,vlinder20,290.40589904785156 -20220902050000,vlinder21,290.57386779785156 -20220902050000,vlinder22,288.86097717285156 -20220902050000,vlinder23,289.58363342285156 -20220902050000,vlinder24,289.30628967285156 -20220902050000,vlinder25,289.23597717285156 -20220902050000,vlinder26,291.08363342285156 -20220902050000,vlinder27,289.34339904785156 -20220902050000,vlinder28,289.14808654785156 -20220902060000,vlinder01,289.4496612548828 -20220902060000,vlinder02,289.4457550048828 -20220902060000,vlinder03,291.0707550048828 -20220902060000,vlinder04,291.0707550048828 -20220902060000,vlinder05,289.6430206298828 -20220902060000,vlinder06,291.0219268798828 -20220902060000,vlinder07,291.0219268798828 -20220902060000,vlinder08,291.0219268798828 -20220902060000,vlinder09,290.3969268798828 -20220902060000,vlinder10,290.1859893798828 -20220902060000,vlinder11,290.7172393798828 -20220902060000,vlinder12,290.7172393798828 -20220902060000,vlinder13,290.7172393798828 -20220902060000,vlinder14,290.5785675048828 -20220902060000,vlinder15,290.5668487548828 -20220902060000,vlinder16,290.5785675048828 -20220902060000,vlinder17,290.6547393798828 -20220902060000,vlinder18,290.7133331298828 -20220902060000,vlinder19,290.6781768798828 -20220902060000,vlinder20,290.6781768798828 -20220902060000,vlinder21,290.6391143798828 -20220902060000,vlinder22,289.3090362548828 -20220902060000,vlinder23,289.8441925048828 -20220902060000,vlinder24,289.5941925048828 -20220902060000,vlinder25,289.5355987548828 -20220902060000,vlinder26,291.1020050048828 -20220902060000,vlinder27,289.6430206298828 -20220902060000,vlinder28,289.4496612548828 -20220902070000,vlinder01,290.8203430175781 -20220902070000,vlinder02,290.7070617675781 -20220902070000,vlinder03,291.5859680175781 -20220902070000,vlinder04,291.5859680175781 -20220902070000,vlinder05,290.7929992675781 -20220902070000,vlinder06,292.0508117675781 -20220902070000,vlinder07,292.0508117675781 -20220902070000,vlinder08,292.0508117675781 -20220902070000,vlinder09,291.4883117675781 -20220902070000,vlinder10,291.2988586425781 -20220902070000,vlinder11,291.7207336425781 -20220902070000,vlinder12,291.7207336425781 -20220902070000,vlinder13,291.7207336425781 -20220902070000,vlinder14,291.5605773925781 -20220902070000,vlinder15,291.6347961425781 -20220902070000,vlinder16,291.5605773925781 -20220902070000,vlinder17,291.1445617675781 -20220902070000,vlinder18,291.2109680175781 -20220902070000,vlinder19,291.6465148925781 -20220902070000,vlinder20,291.6465148925781 -20220902070000,vlinder21,291.0644836425781 -20220902070000,vlinder22,290.0762023925781 -20220902070000,vlinder23,290.7148742675781 -20220902070000,vlinder24,290.6640930175781 -20220902070000,vlinder25,290.6777648925781 -20220902070000,vlinder26,291.7246398925781 -20220902070000,vlinder27,290.7929992675781 -20220902070000,vlinder28,290.8203430175781 -20220902080000,vlinder01,292.8801727294922 -20220902080000,vlinder02,292.8332977294922 -20220902080000,vlinder03,292.7004852294922 -20220902080000,vlinder04,292.7004852294922 -20220902080000,vlinder05,292.7903289794922 -20220902080000,vlinder06,293.3918914794922 -20220902080000,vlinder07,293.3918914794922 -20220902080000,vlinder08,293.3918914794922 -20220902080000,vlinder09,293.0520477294922 -20220902080000,vlinder10,292.9875946044922 -20220902080000,vlinder11,293.1204071044922 -20220902080000,vlinder12,293.1204071044922 -20220902080000,vlinder13,293.1204071044922 -20220902080000,vlinder14,292.9817352294922 -20220902080000,vlinder15,293.0930633544922 -20220902080000,vlinder16,292.9817352294922 -20220902080000,vlinder17,292.6262664794922 -20220902080000,vlinder18,292.7473602294922 -20220902080000,vlinder19,292.9993133544922 -20220902080000,vlinder20,292.9993133544922 -20220902080000,vlinder21,292.3020477294922 -20220902080000,vlinder22,292.2180633544922 -20220902080000,vlinder23,292.4993133544922 -20220902080000,vlinder24,292.5852508544922 -20220902080000,vlinder25,292.6399383544922 -20220902080000,vlinder26,292.9290008544922 -20220902080000,vlinder27,292.7903289794922 -20220902080000,vlinder28,292.8801727294922 -20220902090000,vlinder01,294.91319274902344 -20220902090000,vlinder02,294.92881774902344 -20220902090000,vlinder03,294.34483337402344 -20220902090000,vlinder04,294.34483337402344 -20220902090000,vlinder05,294.78623962402344 -20220902090000,vlinder06,294.97764587402344 -20220902090000,vlinder07,294.97764587402344 -20220902090000,vlinder08,294.97764587402344 -20220902090000,vlinder09,294.86241149902344 -20220902090000,vlinder10,294.87413024902344 -20220902090000,vlinder11,294.68272399902344 -20220902090000,vlinder12,294.68272399902344 -20220902090000,vlinder13,294.68272399902344 -20220902090000,vlinder14,294.51280212402344 -20220902090000,vlinder15,294.83506774902344 -20220902090000,vlinder16,294.51280212402344 -20220902090000,vlinder17,294.49327087402344 -20220902090000,vlinder18,294.63780212402344 -20220902090000,vlinder19,294.67686462402344 -20220902090000,vlinder20,294.67686462402344 -20220902090000,vlinder21,293.87413024902344 -20220902090000,vlinder22,294.47569274902344 -20220902090000,vlinder23,294.31553649902344 -20220902090000,vlinder24,294.52842712402344 -20220902090000,vlinder25,294.54991149902344 -20220902090000,vlinder26,294.61045837402344 -20220902090000,vlinder27,294.78623962402344 -20220902090000,vlinder28,294.91319274902344 -20220902100000,vlinder01,296.6089782714844 -20220902100000,vlinder02,296.6421813964844 -20220902100000,vlinder03,296.2847595214844 -20220902100000,vlinder04,296.2847595214844 -20220902100000,vlinder05,296.4605407714844 -20220902100000,vlinder06,296.7613220214844 -20220902100000,vlinder07,296.7613220214844 -20220902100000,vlinder08,296.7613220214844 -20220902100000,vlinder09,296.4624938964844 -20220902100000,vlinder10,296.4820251464844 -20220902100000,vlinder11,296.4410095214844 -20220902100000,vlinder12,296.4410095214844 -20220902100000,vlinder13,296.4410095214844 -20220902100000,vlinder14,296.2046813964844 -20220902100000,vlinder15,296.4410095214844 -20220902100000,vlinder16,296.2046813964844 -20220902100000,vlinder17,296.4234313964844 -20220902100000,vlinder18,296.5269470214844 -20220902100000,vlinder19,296.3316345214844 -20220902100000,vlinder20,296.3316345214844 -20220902100000,vlinder21,295.3374938964844 -20220902100000,vlinder22,296.4136657714844 -20220902100000,vlinder23,295.9234313964844 -20220902100000,vlinder24,296.1773376464844 -20220902100000,vlinder25,296.1949157714844 -20220902100000,vlinder26,296.6324157714844 -20220902100000,vlinder27,296.4605407714844 -20220902100000,vlinder28,296.6089782714844 -20220902110000,vlinder01,297.9154510498047 -20220902110000,vlinder02,297.9349822998047 -20220902110000,vlinder03,297.9095916748047 -20220902110000,vlinder04,297.9095916748047 -20220902110000,vlinder05,297.7845916748047 -20220902110000,vlinder06,298.1791229248047 -20220902110000,vlinder07,298.1791229248047 -20220902110000,vlinder08,298.1791229248047 -20220902110000,vlinder09,297.7318572998047 -20220902110000,vlinder10,297.7338104248047 -20220902110000,vlinder11,297.9838104248047 -20220902110000,vlinder12,297.9838104248047 -20220902110000,vlinder13,297.9838104248047 -20220902110000,vlinder14,297.7572479248047 -20220902110000,vlinder15,297.7318572998047 -20220902110000,vlinder16,297.7572479248047 -20220902110000,vlinder17,297.8002166748047 -20220902110000,vlinder18,297.8920135498047 -20220902110000,vlinder19,297.6068572998047 -20220902110000,vlinder20,297.6068572998047 -20220902110000,vlinder21,296.5677947998047 -20220902110000,vlinder22,297.8041229248047 -20220902110000,vlinder23,297.2904510498047 -20220902110000,vlinder24,297.5326385498047 -20220902110000,vlinder25,297.5677947998047 -20220902110000,vlinder26,298.2396697998047 -20220902110000,vlinder27,297.7845916748047 -20220902110000,vlinder28,297.9154510498047 -20220902120000,vlinder01,298.20562744140625 -20220902120000,vlinder02,298.22125244140625 -20220902120000,vlinder03,298.89117431640625 -20220902120000,vlinder04,298.89117431640625 -20220902120000,vlinder05,298.19000244140625 -20220902120000,vlinder06,298.66851806640625 -20220902120000,vlinder07,298.66851806640625 -20220902120000,vlinder08,298.66851806640625 -20220902120000,vlinder09,298.05328369140625 -20220902120000,vlinder10,298.03765869140625 -20220902120000,vlinder11,298.70172119140625 -20220902120000,vlinder12,298.70172119140625 -20220902120000,vlinder13,298.70172119140625 -20220902120000,vlinder14,298.55523681640625 -20220902120000,vlinder15,298.07672119140625 -20220902120000,vlinder16,298.55523681640625 -20220902120000,vlinder17,298.54547119140625 -20220902120000,vlinder18,298.63140869140625 -20220902120000,vlinder19,298.02984619140625 -20220902120000,vlinder20,298.02984619140625 -20220902120000,vlinder21,297.35211181640625 -20220902120000,vlinder22,298.39117431640625 -20220902120000,vlinder23,297.98101806640625 -20220902120000,vlinder24,298.10797119140625 -20220902120000,vlinder25,298.11578369140625 -20220902120000,vlinder26,299.14898681640625 -20220902120000,vlinder27,298.19000244140625 -20220902120000,vlinder28,298.20562744140625 -20220902130000,vlinder01,298.6369323730469 -20220902130000,vlinder02,298.6076354980469 -20220902130000,vlinder03,299.6408386230469 -20220902130000,vlinder04,299.6408386230469 -20220902130000,vlinder05,298.6252136230469 -20220902130000,vlinder06,299.1564636230469 -20220902130000,vlinder07,299.1564636230469 -20220902130000,vlinder08,299.1564636230469 -20220902130000,vlinder09,298.5998229980469 -20220902130000,vlinder10,298.5412292480469 -20220902130000,vlinder11,299.2853698730469 -20220902130000,vlinder12,299.2853698730469 -20220902130000,vlinder13,299.2853698730469 -20220902130000,vlinder14,299.1857604980469 -20220902130000,vlinder15,298.6466979980469 -20220902130000,vlinder16,299.1857604980469 -20220902130000,vlinder17,299.0568542480469 -20220902130000,vlinder18,299.1330261230469 -20220902130000,vlinder19,298.5646667480469 -20220902130000,vlinder20,298.5646667480469 -20220902130000,vlinder21,297.8478698730469 -20220902130000,vlinder22,298.6623229980469 -20220902130000,vlinder23,298.4806823730469 -20220902130000,vlinder24,298.5822448730469 -20220902130000,vlinder25,298.5802917480469 -20220902130000,vlinder26,299.7951354980469 -20220902130000,vlinder27,298.6252136230469 -20220902130000,vlinder28,298.6369323730469 -20220902140000,vlinder01,298.8973693847656 -20220902140000,vlinder02,298.8680725097656 -20220902140000,vlinder03,299.7997131347656 -20220902140000,vlinder04,299.7997131347656 -20220902140000,vlinder05,298.9051818847656 -20220902140000,vlinder06,299.3153381347656 -20220902140000,vlinder07,299.3153381347656 -20220902140000,vlinder08,299.3153381347656 -20220902140000,vlinder09,298.8407287597656 -20220902140000,vlinder10,298.7879943847656 -20220902140000,vlinder11,299.4618225097656 -20220902140000,vlinder12,299.4618225097656 -20220902140000,vlinder13,299.4618225097656 -20220902140000,vlinder14,299.3973693847656 -20220902140000,vlinder15,298.8758850097656 -20220902140000,vlinder16,299.3973693847656 -20220902140000,vlinder17,299.1942443847656 -20220902140000,vlinder18,299.2274475097656 -20220902140000,vlinder19,298.7840881347656 -20220902140000,vlinder20,298.7840881347656 -20220902140000,vlinder21,298.1571350097656 -20220902140000,vlinder22,298.7098693847656 -20220902140000,vlinder23,298.7977600097656 -20220902140000,vlinder24,298.8758850097656 -20220902140000,vlinder25,298.8778381347656 -20220902140000,vlinder26,299.9696350097656 -20220902140000,vlinder27,298.9051818847656 -20220902140000,vlinder28,298.8973693847656 -20220902150000,vlinder01,298.75164794921875 -20220902150000,vlinder02,298.73406982421875 -20220902150000,vlinder03,299.44891357421875 -20220902150000,vlinder04,299.44891357421875 -20220902150000,vlinder05,298.71844482421875 -20220902150000,vlinder06,299.18328857421875 -20220902150000,vlinder07,299.18328857421875 -20220902150000,vlinder08,299.18328857421875 -20220902150000,vlinder09,298.74578857421875 -20220902150000,vlinder10,298.71258544921875 -20220902150000,vlinder11,299.11102294921875 -20220902150000,vlinder12,299.11102294921875 -20220902150000,vlinder13,299.11102294921875 -20220902150000,vlinder14,298.94305419921875 -20220902150000,vlinder15,298.77313232421875 -20220902150000,vlinder16,298.94305419921875 -20220902150000,vlinder17,298.95867919921875 -20220902150000,vlinder18,298.96844482421875 -20220902150000,vlinder19,298.79656982421875 -20220902150000,vlinder20,298.79656982421875 -20220902150000,vlinder21,298.00360107421875 -20220902150000,vlinder22,298.55828857421875 -20220902150000,vlinder23,298.51922607421875 -20220902150000,vlinder24,298.64422607421875 -20220902150000,vlinder25,298.62274169921875 -20220902150000,vlinder26,299.71844482421875 -20220902150000,vlinder27,298.71844482421875 -20220902150000,vlinder28,298.75164794921875 -20220902160000,vlinder01,298.8364715576172 -20220902160000,vlinder02,298.8032684326172 -20220902160000,vlinder03,299.2134246826172 -20220902160000,vlinder04,299.2134246826172 -20220902160000,vlinder05,298.7739715576172 -20220902160000,vlinder06,299.1528778076172 -20220902160000,vlinder07,299.1528778076172 -20220902160000,vlinder08,299.1528778076172 -20220902160000,vlinder09,298.8208465576172 -20220902160000,vlinder10,298.7798309326172 -20220902160000,vlinder11,299.0552215576172 -20220902160000,vlinder12,299.0552215576172 -20220902160000,vlinder13,299.0552215576172 -20220902160000,vlinder14,298.8852996826172 -20220902160000,vlinder15,298.8423309326172 -20220902160000,vlinder16,298.8852996826172 -20220902160000,vlinder17,298.4399871826172 -20220902160000,vlinder18,298.4399871826172 -20220902160000,vlinder19,298.7583465576172 -20220902160000,vlinder20,298.7583465576172 -20220902160000,vlinder21,298.0083465576172 -20220902160000,vlinder22,298.4165496826172 -20220902160000,vlinder23,298.5083465576172 -20220902160000,vlinder24,298.6645965576172 -20220902160000,vlinder25,298.6470184326172 -20220902160000,vlinder26,299.4634246826172 -20220902160000,vlinder27,298.7739715576172 -20220902160000,vlinder28,298.8364715576172 -20220902170000,vlinder01,298.31593322753906 -20220902170000,vlinder02,298.31593322753906 -20220902170000,vlinder03,298.68507385253906 -20220902170000,vlinder04,298.68507385253906 -20220902170000,vlinder05,298.18898010253906 -20220902170000,vlinder06,298.58155822753906 -20220902170000,vlinder07,298.58155822753906 -20220902170000,vlinder08,298.58155822753906 -20220902170000,vlinder09,298.21046447753906 -20220902170000,vlinder10,298.21827697753906 -20220902170000,vlinder11,298.48390197753906 -20220902170000,vlinder12,298.48390197753906 -20220902170000,vlinder13,298.48390197753906 -20220902170000,vlinder14,298.27491760253906 -20220902170000,vlinder15,298.20851135253906 -20220902170000,vlinder16,298.27491760253906 -20220902170000,vlinder17,297.81202697753906 -20220902170000,vlinder18,297.83741760253906 -20220902170000,vlinder19,298.14796447753906 -20220902170000,vlinder20,298.14796447753906 -20220902170000,vlinder21,297.61280822753906 -20220902170000,vlinder22,297.61280822753906 -20220902170000,vlinder23,297.76710510253906 -20220902170000,vlinder24,298.01515197753906 -20220902170000,vlinder25,297.90577697753906 -20220902170000,vlinder26,298.85304260253906 -20220902170000,vlinder27,298.18898010253906 -20220902170000,vlinder28,298.31593322753906 -20220902180000,vlinder01,297.0653839111328 -20220902180000,vlinder02,297.0790557861328 -20220902180000,vlinder03,297.6728057861328 -20220902180000,vlinder04,297.6728057861328 -20220902180000,vlinder05,296.9813995361328 -20220902180000,vlinder06,297.2802276611328 -20220902180000,vlinder07,297.2802276611328 -20220902180000,vlinder08,297.2802276611328 -20220902180000,vlinder09,296.8622589111328 -20220902180000,vlinder10,296.8720245361328 -20220902180000,vlinder11,297.3153839111328 -20220902180000,vlinder12,297.3153839111328 -20220902180000,vlinder13,297.3153839111328 -20220902180000,vlinder14,297.1474151611328 -20220902180000,vlinder15,296.8544464111328 -20220902180000,vlinder16,297.1474151611328 -20220902180000,vlinder17,296.9091339111328 -20220902180000,vlinder18,296.9247589111328 -20220902180000,vlinder19,296.6728057861328 -20220902180000,vlinder20,296.6728057861328 -20220902180000,vlinder21,296.8817901611328 -20220902180000,vlinder22,296.4442901611328 -20220902180000,vlinder23,296.6552276611328 -20220902180000,vlinder24,296.8603057861328 -20220902180000,vlinder25,296.7353057861328 -20220902180000,vlinder26,297.7411651611328 -20220902180000,vlinder27,296.9813995361328 -20220902180000,vlinder28,297.0653839111328 -20220902190000,vlinder01,295.1079864501953 -20220902190000,vlinder02,295.0240020751953 -20220902190000,vlinder03,296.3950958251953 -20220902190000,vlinder04,296.3950958251953 -20220902190000,vlinder05,295.1372833251953 -20220902190000,vlinder06,295.9400177001953 -20220902190000,vlinder07,295.9400177001953 -20220902190000,vlinder08,295.9400177001953 -20220902190000,vlinder09,295.3267364501953 -20220902190000,vlinder10,295.2134552001953 -20220902190000,vlinder11,295.9654083251953 -20220902190000,vlinder12,295.9654083251953 -20220902190000,vlinder13,295.9654083251953 -20220902190000,vlinder14,295.7583770751953 -20220902190000,vlinder15,295.4204864501953 -20220902190000,vlinder16,295.7583770751953 -20220902190000,vlinder17,295.7349395751953 -20220902190000,vlinder18,295.7193145751953 -20220902190000,vlinder19,295.3325958251953 -20220902190000,vlinder20,295.3325958251953 -20220902190000,vlinder21,295.2368927001953 -20220902190000,vlinder22,294.4126739501953 -20220902190000,vlinder23,295.1919708251953 -20220902190000,vlinder24,295.1958770751953 -20220902190000,vlinder25,295.1157989501953 -20220902190000,vlinder26,296.4419708251953 -20220902190000,vlinder27,295.1372833251953 -20220902190000,vlinder28,295.1079864501953 -20220902200000,vlinder01,294.5014953613281 -20220902200000,vlinder02,294.3804016113281 -20220902200000,vlinder03,296.2221984863281 -20220902200000,vlinder04,296.2221984863281 -20220902200000,vlinder05,294.3901672363281 -20220902200000,vlinder06,295.8804016113281 -20220902200000,vlinder07,295.8804016113281 -20220902200000,vlinder08,295.8804016113281 -20220902200000,vlinder09,294.9331359863281 -20220902200000,vlinder10,294.7124328613281 -20220902200000,vlinder11,295.7475891113281 -20220902200000,vlinder12,295.7475891113281 -20220902200000,vlinder13,295.7475891113281 -20220902200000,vlinder14,295.5171203613281 -20220902200000,vlinder15,295.1206359863281 -20220902200000,vlinder16,295.5171203613281 -20220902200000,vlinder17,295.0386047363281 -20220902200000,vlinder18,294.9682922363281 -20220902200000,vlinder19,295.0249328613281 -20220902200000,vlinder20,295.0249328613281 -20220902200000,vlinder21,294.5835266113281 -20220902200000,vlinder22,293.9077453613281 -20220902200000,vlinder23,294.2886047363281 -20220902200000,vlinder24,294.3139953613281 -20220902200000,vlinder25,294.2593078613281 -20220902200000,vlinder26,296.1870422363281 -20220902200000,vlinder27,294.3901672363281 -20220902200000,vlinder28,294.5014953613281 -20220902210000,vlinder01,294.0086364746094 -20220902210000,vlinder02,293.8914489746094 -20220902210000,vlinder03,295.5203552246094 -20220902210000,vlinder04,295.5203552246094 -20220902210000,vlinder05,293.9070739746094 -20220902210000,vlinder06,295.2059020996094 -20220902210000,vlinder07,295.2059020996094 -20220902210000,vlinder08,295.2059020996094 -20220902210000,vlinder09,294.2488708496094 -20220902210000,vlinder10,294.0223083496094 -20220902210000,vlinder11,295.2371520996094 -20220902210000,vlinder12,295.2371520996094 -20220902210000,vlinder13,295.2371520996094 -20220902210000,vlinder14,295.1492614746094 -20220902210000,vlinder15,294.4187927246094 -20220902210000,vlinder16,295.1492614746094 -20220902210000,vlinder17,294.2586364746094 -20220902210000,vlinder18,294.1844177246094 -20220902210000,vlinder19,294.0769958496094 -20220902210000,vlinder20,294.0769958496094 -20220902210000,vlinder21,294.0828552246094 -20220902210000,vlinder22,293.4812927246094 -20220902210000,vlinder23,293.7976989746094 -20220902210000,vlinder24,293.7605895996094 -20220902210000,vlinder25,293.7723083496094 -20220902210000,vlinder26,295.4324645996094 -20220902210000,vlinder27,293.9070739746094 -20220902210000,vlinder28,294.0086364746094 -20220902220000,vlinder01,293.3350372314453 -20220902220000,vlinder02,293.2393341064453 -20220902220000,vlinder03,294.9268341064453 -20220902220000,vlinder04,294.9268341064453 -20220902220000,vlinder05,293.4502716064453 -20220902220000,vlinder06,294.5088653564453 -20220902220000,vlinder07,294.5088653564453 -20220902220000,vlinder08,294.5088653564453 -20220902220000,vlinder09,293.4365997314453 -20220902220000,vlinder10,293.2393341064453 -20220902220000,vlinder11,294.7315216064453 -20220902220000,vlinder12,294.7315216064453 -20220902220000,vlinder13,294.7315216064453 -20220902220000,vlinder14,294.7490997314453 -20220902220000,vlinder15,293.5869903564453 -20220902220000,vlinder16,294.7490997314453 -20220902220000,vlinder17,293.6084747314453 -20220902220000,vlinder18,293.5264434814453 -20220902220000,vlinder19,293.2451934814453 -20220902220000,vlinder20,293.2451934814453 -20220902220000,vlinder21,293.9834747314453 -20220902220000,vlinder22,293.3408966064453 -20220902220000,vlinder23,293.7451934814453 -20220902220000,vlinder24,293.4951934814453 -20220902220000,vlinder25,293.5264434814453 -20220902220000,vlinder26,294.8408966064453 -20220902220000,vlinder27,293.4502716064453 -20220902220000,vlinder28,293.3350372314453 -20220902230000,vlinder01,292.4656677246094 -20220902230000,vlinder02,292.4285583496094 -20220902230000,vlinder03,294.1453552246094 -20220902230000,vlinder04,294.1453552246094 -20220902230000,vlinder05,292.7273864746094 -20220902230000,vlinder06,293.2566833496094 -20220902230000,vlinder07,293.2566833496094 -20220902230000,vlinder08,293.2566833496094 -20220902230000,vlinder09,292.4207458496094 -20220902230000,vlinder10,292.2957458496094 -20220902230000,vlinder11,293.8172302246094 -20220902230000,vlinder12,293.8172302246094 -20220902230000,vlinder13,293.8172302246094 -20220902230000,vlinder14,294.0340270996094 -20220902230000,vlinder15,292.5086364746094 -20220902230000,vlinder16,294.0340270996094 -20220902230000,vlinder17,292.6980895996094 -20220902230000,vlinder18,292.6590270996094 -20220902230000,vlinder19,292.0359802246094 -20220902230000,vlinder20,292.0359802246094 -20220902230000,vlinder21,293.6531677246094 -20220902230000,vlinder22,292.7605895996094 -20220902230000,vlinder23,293.2566833496094 -20220902230000,vlinder24,292.9129333496094 -20220902230000,vlinder25,292.8894958496094 -20220902230000,vlinder26,293.8855895996094 -20220902230000,vlinder27,292.7273864746094 -20220902230000,vlinder28,292.4656677246094 -20220903000000,vlinder01,291.71234130859375 -20220903000000,vlinder02,291.67523193359375 -20220903000000,vlinder03,293.29241943359375 -20220903000000,vlinder04,293.29241943359375 -20220903000000,vlinder05,291.99359130859375 -20220903000000,vlinder06,292.35101318359375 -20220903000000,vlinder07,292.35101318359375 -20220903000000,vlinder08,292.35101318359375 -20220903000000,vlinder09,291.69476318359375 -20220903000000,vlinder10,291.58929443359375 -20220903000000,vlinder11,292.94476318359375 -20220903000000,vlinder12,292.94476318359375 -20220903000000,vlinder13,292.94476318359375 -20220903000000,vlinder14,293.20648193359375 -20220903000000,vlinder15,291.75921630859375 -20220903000000,vlinder16,293.20648193359375 -20220903000000,vlinder17,292.02874755859375 -20220903000000,vlinder18,292.04437255859375 -20220903000000,vlinder19,291.27874755859375 -20220903000000,vlinder20,291.27874755859375 -20220903000000,vlinder21,292.99749755859375 -20220903000000,vlinder22,292.08929443359375 -20220903000000,vlinder23,292.52874755859375 -20220903000000,vlinder24,292.18499755859375 -20220903000000,vlinder25,292.14984130859375 -20220903000000,vlinder26,292.98577880859375 -20220903000000,vlinder27,291.99359130859375 -20220903000000,vlinder28,291.71234130859375 -20220903010000,vlinder01,291.1178436279297 -20220903010000,vlinder02,291.0826873779297 -20220903010000,vlinder03,292.7584686279297 -20220903010000,vlinder04,292.7584686279297 -20220903010000,vlinder05,291.3658905029297 -20220903010000,vlinder06,291.7272186279297 -20220903010000,vlinder07,291.7272186279297 -20220903010000,vlinder08,291.7272186279297 -20220903010000,vlinder09,291.1315155029297 -20220903010000,vlinder10,291.0436248779297 -20220903010000,vlinder11,292.3112030029297 -20220903010000,vlinder12,292.3112030029297 -20220903010000,vlinder13,292.3112030029297 -20220903010000,vlinder14,292.5729217529297 -20220903010000,vlinder15,291.1862030029297 -20220903010000,vlinder16,292.5729217529297 -20220903010000,vlinder17,291.5084686279297 -20220903010000,vlinder18,291.5260467529297 -20220903010000,vlinder19,290.7975311279297 -20220903010000,vlinder20,290.7975311279297 -20220903010000,vlinder21,292.2701873779297 -20220903010000,vlinder22,289.8092498779297 -20220903010000,vlinder23,291.8151092529297 -20220903010000,vlinder24,291.4987030029297 -20220903010000,vlinder25,291.4928436279297 -20220903010000,vlinder26,292.4205780029297 -20220903010000,vlinder27,291.3658905029297 -20220903010000,vlinder28,291.1178436279297 -20220903020000,vlinder01,290.6810302734375 -20220903020000,vlinder02,290.6439208984375 -20220903020000,vlinder03,292.2103271484375 -20220903020000,vlinder04,292.2103271484375 -20220903020000,vlinder05,290.8822021484375 -20220903020000,vlinder06,291.3255615234375 -20220903020000,vlinder07,291.3255615234375 -20220903020000,vlinder08,291.3255615234375 -20220903020000,vlinder09,290.7962646484375 -20220903020000,vlinder10,290.7083740234375 -20220903020000,vlinder11,291.7669677734375 -20220903020000,vlinder12,291.7669677734375 -20220903020000,vlinder13,291.7669677734375 -20220903020000,vlinder14,291.9759521484375 -20220903020000,vlinder15,290.8509521484375 -20220903020000,vlinder16,291.9759521484375 -20220903020000,vlinder17,291.0618896484375 -20220903020000,vlinder18,291.0911865234375 -20220903020000,vlinder19,290.5579833984375 -20220903020000,vlinder20,290.5579833984375 -20220903020000,vlinder21,291.6986083984375 -20220903020000,vlinder22,289.4818115234375 -20220903020000,vlinder23,291.2200927734375 -20220903020000,vlinder24,290.9447021484375 -20220903020000,vlinder25,290.9466552734375 -20220903020000,vlinder26,291.8978271484375 -20220903020000,vlinder27,290.8822021484375 -20220903020000,vlinder28,290.6810302734375 -20220903030000,vlinder01,290.3131408691406 -20220903030000,vlinder02,290.2897033691406 -20220903030000,vlinder03,291.7096252441406 -20220903030000,vlinder04,291.7096252441406 -20220903030000,vlinder05,290.4811096191406 -20220903030000,vlinder06,290.9322814941406 -20220903030000,vlinder07,290.9322814941406 -20220903030000,vlinder08,290.9322814941406 -20220903030000,vlinder09,290.5025939941406 -20220903030000,vlinder10,290.4068908691406 -20220903030000,vlinder11,291.2994689941406 -20220903030000,vlinder12,291.2994689941406 -20220903030000,vlinder13,291.2994689941406 -20220903030000,vlinder14,291.4908752441406 -20220903030000,vlinder15,290.5533752441406 -20220903030000,vlinder16,291.4908752441406 -20220903030000,vlinder17,290.4869689941406 -20220903030000,vlinder18,290.5162658691406 -20220903030000,vlinder19,290.2643127441406 -20220903030000,vlinder20,290.2643127441406 -20220903030000,vlinder21,291.2955627441406 -20220903030000,vlinder22,289.4420471191406 -20220903030000,vlinder23,290.7584533691406 -20220903030000,vlinder24,290.5123596191406 -20220903030000,vlinder25,290.5006408691406 -20220903030000,vlinder26,291.3834533691406 -20220903030000,vlinder27,290.4811096191406 -20220903030000,vlinder28,290.3131408691406 -20220903040000,vlinder01,289.913818359375 -20220903040000,vlinder02,289.894287109375 -20220903040000,vlinder03,291.146240234375 -20220903040000,vlinder04,291.146240234375 -20220903040000,vlinder05,290.081787109375 -20220903040000,vlinder06,290.620849609375 -20220903040000,vlinder07,290.620849609375 -20220903040000,vlinder08,290.620849609375 -20220903040000,vlinder09,290.185302734375 -20220903040000,vlinder10,290.073974609375 -20220903040000,vlinder11,290.904052734375 -20220903040000,vlinder12,290.904052734375 -20220903040000,vlinder13,290.904052734375 -20220903040000,vlinder14,291.066162109375 -20220903040000,vlinder15,290.243896484375 -20220903040000,vlinder16,291.066162109375 -20220903040000,vlinder17,289.991943359375 -20220903040000,vlinder18,290.021240234375 -20220903040000,vlinder19,289.962646484375 -20220903040000,vlinder20,289.962646484375 -20220903040000,vlinder21,290.907958984375 -20220903040000,vlinder22,289.243896484375 -20220903040000,vlinder23,290.343505859375 -20220903040000,vlinder24,290.091552734375 -20220903040000,vlinder25,290.079833984375 -20220903040000,vlinder26,290.859130859375 -20220903040000,vlinder27,290.081787109375 -20220903040000,vlinder28,289.913818359375 -20220903050000,vlinder01,289.3201141357422 -20220903050000,vlinder02,289.3337860107422 -20220903050000,vlinder03,290.3845672607422 -20220903050000,vlinder04,290.3845672607422 -20220903050000,vlinder05,289.5486297607422 -20220903050000,vlinder06,290.0740203857422 -20220903050000,vlinder07,290.0740203857422 -20220903050000,vlinder08,290.0740203857422 -20220903050000,vlinder09,289.6208953857422 -20220903050000,vlinder10,289.5115203857422 -20220903050000,vlinder11,290.3005828857422 -20220903050000,vlinder12,290.3005828857422 -20220903050000,vlinder13,290.3005828857422 -20220903050000,vlinder14,290.4470672607422 -20220903050000,vlinder15,289.6755828857422 -20220903050000,vlinder16,290.4470672607422 -20220903050000,vlinder17,289.5037078857422 -20220903050000,vlinder18,289.5583953857422 -20220903050000,vlinder19,289.3923797607422 -20220903050000,vlinder20,289.3923797607422 -20220903050000,vlinder21,290.5466766357422 -20220903050000,vlinder22,288.9724578857422 -20220903050000,vlinder23,289.8767547607422 -20220903050000,vlinder24,289.5857391357422 -20220903050000,vlinder25,289.5564422607422 -20220903050000,vlinder26,290.1423797607422 -20220903050000,vlinder27,289.5486297607422 -20220903050000,vlinder28,289.3201141357422 -20220903060000,vlinder01,289.2379913330078 -20220903060000,vlinder02,289.2790069580078 -20220903060000,vlinder03,290.3043975830078 -20220903060000,vlinder04,290.3043975830078 -20220903060000,vlinder05,289.5172882080078 -20220903060000,vlinder06,290.1559600830078 -20220903060000,vlinder07,290.1559600830078 -20220903060000,vlinder08,290.1559600830078 -20220903060000,vlinder09,289.6579132080078 -20220903060000,vlinder10,289.5387725830078 -20220903060000,vlinder11,290.2751007080078 -20220903060000,vlinder12,290.2751007080078 -20220903060000,vlinder13,290.2751007080078 -20220903060000,vlinder14,290.3649444580078 -20220903060000,vlinder15,289.7282257080078 -20220903060000,vlinder16,290.3649444580078 -20220903060000,vlinder17,289.7047882080078 -20220903060000,vlinder18,289.7926788330078 -20220903060000,vlinder19,289.5290069580078 -20220903060000,vlinder20,289.5290069580078 -20220903060000,vlinder21,290.5075225830078 -20220903060000,vlinder22,289.1442413330078 -20220903060000,vlinder23,289.8610382080078 -20220903060000,vlinder24,289.5583038330078 -20220903060000,vlinder25,289.5231475830078 -20220903060000,vlinder26,290.1325225830078 -20220903060000,vlinder27,289.5172882080078 -20220903060000,vlinder28,289.2379913330078 -20220903070000,vlinder01,290.45704650878906 -20220903070000,vlinder02,290.34767150878906 -20220903070000,vlinder03,291.61720275878906 -20220903070000,vlinder04,291.61720275878906 -20220903070000,vlinder05,290.42970275878906 -20220903070000,vlinder06,291.75587463378906 -20220903070000,vlinder07,291.75587463378906 -20220903070000,vlinder08,291.75587463378906 -20220903070000,vlinder09,291.01954650878906 -20220903070000,vlinder10,290.85939025878906 -20220903070000,vlinder11,291.41407775878906 -20220903070000,vlinder12,291.41407775878906 -20220903070000,vlinder13,291.41407775878906 -20220903070000,vlinder14,291.21095275878906 -20220903070000,vlinder15,291.17189025878906 -20220903070000,vlinder16,291.21095275878906 -20220903070000,vlinder17,291.24220275878906 -20220903070000,vlinder18,291.32032775878906 -20220903070000,vlinder19,291.39649963378906 -20220903070000,vlinder20,291.39649963378906 -20220903070000,vlinder21,290.72462463378906 -20220903070000,vlinder22,289.91407775878906 -20220903070000,vlinder23,290.48243713378906 -20220903070000,vlinder24,290.40040588378906 -20220903070000,vlinder25,290.37892150878906 -20220903070000,vlinder26,291.74024963378906 -20220903070000,vlinder27,290.42970275878906 -20220903070000,vlinder28,290.45704650878906 -20220903080000,vlinder01,292.10011291503906 -20220903080000,vlinder02,292.04151916503906 -20220903080000,vlinder03,293.12940979003906 -20220903080000,vlinder04,293.12940979003906 -20220903080000,vlinder05,292.05519104003906 -20220903080000,vlinder06,292.98292541503906 -20220903080000,vlinder07,292.98292541503906 -20220903080000,vlinder08,292.98292541503906 -20220903080000,vlinder09,292.34230041503906 -20220903080000,vlinder10,292.26222229003906 -20220903080000,vlinder11,292.72511291503906 -20220903080000,vlinder12,292.72511291503906 -20220903080000,vlinder13,292.72511291503906 -20220903080000,vlinder14,292.54933166503906 -20220903080000,vlinder15,292.42628479003906 -20220903080000,vlinder16,292.54933166503906 -20220903080000,vlinder17,292.84425354003906 -20220903080000,vlinder18,292.93019104003906 -20220903080000,vlinder19,292.52980041503906 -20220903080000,vlinder20,292.52980041503906 -20220903080000,vlinder21,291.74464416503906 -20220903080000,vlinder22,291.38526916503906 -20220903080000,vlinder23,291.94776916503906 -20220903080000,vlinder24,291.96925354003906 -20220903080000,vlinder25,291.94581604003906 -20220903080000,vlinder26,293.25245666503906 -20220903080000,vlinder27,292.05519104003906 -20220903080000,vlinder28,292.10011291503906 -20220903090000,vlinder01,294.1371154785156 -20220903090000,vlinder02,294.0804748535156 -20220903090000,vlinder03,295.1898498535156 -20220903090000,vlinder04,295.1898498535156 -20220903090000,vlinder05,294.0589904785156 -20220903090000,vlinder06,295.0101623535156 -20220903090000,vlinder07,295.0101623535156 -20220903090000,vlinder08,295.0101623535156 -20220903090000,vlinder09,294.2074279785156 -20220903090000,vlinder10,294.1488342285156 -20220903090000,vlinder11,294.7289123535156 -20220903090000,vlinder12,294.7289123535156 -20220903090000,vlinder13,294.7289123535156 -20220903090000,vlinder14,294.4925842285156 -20220903090000,vlinder15,294.2796936035156 -20220903090000,vlinder16,294.4925842285156 -20220903090000,vlinder17,294.7328186035156 -20220903090000,vlinder18,294.7503967285156 -20220903090000,vlinder19,294.3617248535156 -20220903090000,vlinder20,294.3617248535156 -20220903090000,vlinder21,293.1039123535156 -20220903090000,vlinder22,292.9027404785156 -20220903090000,vlinder23,293.7777404785156 -20220903090000,vlinder24,293.8617248535156 -20220903090000,vlinder25,293.8988342285156 -20220903090000,vlinder26,295.3304748535156 -20220903090000,vlinder27,294.0589904785156 -20220903090000,vlinder28,294.1371154785156 -20220903100000,vlinder01,295.3787841796875 -20220903100000,vlinder02,295.3299560546875 -20220903100000,vlinder03,296.7030029296875 -20220903100000,vlinder04,296.7030029296875 -20220903100000,vlinder05,295.3494873046875 -20220903100000,vlinder06,296.3065185546875 -20220903100000,vlinder07,296.3065185546875 -20220903100000,vlinder08,296.3065185546875 -20220903100000,vlinder09,295.5389404296875 -20220903100000,vlinder10,295.4744873046875 -20220903100000,vlinder11,296.1658935546875 -20220903100000,vlinder12,296.1658935546875 -20220903100000,vlinder13,296.1658935546875 -20220903100000,vlinder14,295.9647216796875 -20220903100000,vlinder15,295.6170654296875 -20220903100000,vlinder16,295.9647216796875 -20220903100000,vlinder17,296.0643310546875 -20220903100000,vlinder18,296.0545654296875 -20220903100000,vlinder19,295.7772216796875 -20220903100000,vlinder20,295.7772216796875 -20220903100000,vlinder21,294.2830810546875 -20220903100000,vlinder22,294.3377685546875 -20220903100000,vlinder23,295.1756591796875 -20220903100000,vlinder24,295.2030029296875 -20220903100000,vlinder25,295.2635498046875 -20220903100000,vlinder26,296.8084716796875 -20220903100000,vlinder27,295.3494873046875 -20220903100000,vlinder28,295.3787841796875 -20220903110000,vlinder01,296.3583526611328 -20220903110000,vlinder02,296.3114776611328 -20220903110000,vlinder03,298.0419464111328 -20220903110000,vlinder04,298.0419464111328 -20220903110000,vlinder05,296.3407745361328 -20220903110000,vlinder06,297.4130401611328 -20220903110000,vlinder07,297.4130401611328 -20220903110000,vlinder08,297.4130401611328 -20220903110000,vlinder09,296.5263214111328 -20220903110000,vlinder10,296.4501495361328 -20220903110000,vlinder11,297.3681182861328 -20220903110000,vlinder12,297.3681182861328 -20220903110000,vlinder13,297.3681182861328 -20220903110000,vlinder14,297.1669464111328 -20220903110000,vlinder15,296.6239776611328 -20220903110000,vlinder16,297.1669464111328 -20220903110000,vlinder17,297.1786651611328 -20220903110000,vlinder18,297.1298370361328 -20220903110000,vlinder19,296.8563995361328 -20220903110000,vlinder20,296.8563995361328 -20220903110000,vlinder21,295.2665557861328 -20220903110000,vlinder22,295.5888214111328 -20220903110000,vlinder23,296.1962432861328 -20220903110000,vlinder24,296.2118682861328 -20220903110000,vlinder25,296.2860870361328 -20220903110000,vlinder26,298.1571807861328 -20220903110000,vlinder27,296.3407745361328 -20220903110000,vlinder28,296.3583526611328 -20220903120000,vlinder01,297.5061492919922 -20220903120000,vlinder02,297.4905242919922 -20220903120000,vlinder03,298.9905242919922 -20220903120000,vlinder04,298.9905242919922 -20220903120000,vlinder05,297.4827117919922 -20220903120000,vlinder06,298.4202117919922 -20220903120000,vlinder07,298.4202117919922 -20220903120000,vlinder08,298.4202117919922 -20220903120000,vlinder09,297.5237274169922 -20220903120000,vlinder10,297.4788055419922 -20220903120000,vlinder11,298.3362274169922 -20220903120000,vlinder12,298.3362274169922 -20220903120000,vlinder13,298.3362274169922 -20220903120000,vlinder14,298.0998992919922 -20220903120000,vlinder15,297.5979461669922 -20220903120000,vlinder16,298.0998992919922 -20220903120000,vlinder17,298.1389617919922 -20220903120000,vlinder18,298.0959930419922 -20220903120000,vlinder19,297.7717742919922 -20220903120000,vlinder20,297.7717742919922 -20220903120000,vlinder21,296.2229461669922 -20220903120000,vlinder22,296.9592742919922 -20220903120000,vlinder23,297.2541961669922 -20220903120000,vlinder24,297.3088836669922 -20220903120000,vlinder25,297.4104461669922 -20220903120000,vlinder26,299.1116180419922 -20220903120000,vlinder27,297.4827117919922 -20220903120000,vlinder28,297.5061492919922 -20220903130000,vlinder01,298.3153076171875 -20220903130000,vlinder02,298.3211669921875 -20220903130000,vlinder03,299.5614013671875 -20220903130000,vlinder04,299.5614013671875 -20220903130000,vlinder05,298.2059326171875 -20220903130000,vlinder06,299.0028076171875 -20220903130000,vlinder07,299.0028076171875 -20220903130000,vlinder08,299.0028076171875 -20220903130000,vlinder09,298.2977294921875 -20220903130000,vlinder10,298.2723388671875 -20220903130000,vlinder11,298.8270263671875 -20220903130000,vlinder12,298.8270263671875 -20220903130000,vlinder13,298.8270263671875 -20220903130000,vlinder14,298.5535888671875 -20220903130000,vlinder15,298.3426513671875 -20220903130000,vlinder16,298.5535888671875 -20220903130000,vlinder17,298.7664794921875 -20220903130000,vlinder18,298.7137451171875 -20220903130000,vlinder19,298.4305419921875 -20220903130000,vlinder20,298.4305419921875 -20220903130000,vlinder21,296.8094482421875 -20220903130000,vlinder22,297.9754638671875 -20220903130000,vlinder23,297.7938232421875 -20220903130000,vlinder24,297.9520263671875 -20220903130000,vlinder25,298.0360107421875 -20220903130000,vlinder26,299.6688232421875 -20220903130000,vlinder27,298.2059326171875 -20220903130000,vlinder28,298.3153076171875 -20220903140000,vlinder01,298.84521484375 -20220903140000,vlinder02,298.86083984375 -20220903140000,vlinder03,299.84912109375 -20220903140000,vlinder04,299.84912109375 -20220903140000,vlinder05,298.67529296875 -20220903140000,vlinder06,299.32568359375 -20220903140000,vlinder07,299.32568359375 -20220903140000,vlinder08,299.32568359375 -20220903140000,vlinder09,298.82177734375 -20220903140000,vlinder10,298.81982421875 -20220903140000,vlinder11,299.10498046875 -20220903140000,vlinder12,299.10498046875 -20220903140000,vlinder13,299.10498046875 -20220903140000,vlinder14,298.81591796875 -20220903140000,vlinder15,298.83935546875 -20220903140000,vlinder16,298.81591796875 -20220903140000,vlinder17,298.94287109375 -20220903140000,vlinder18,298.90771484375 -20220903140000,vlinder19,298.88623046875 -20220903140000,vlinder20,298.88623046875 -20220903140000,vlinder21,296.92333984375 -20220903140000,vlinder22,298.53271484375 -20220903140000,vlinder23,298.10888671875 -20220903140000,vlinder24,298.33349609375 -20220903140000,vlinder25,298.44287109375 -20220903140000,vlinder26,299.91552734375 -20220903140000,vlinder27,298.67529296875 -20220903140000,vlinder28,298.84521484375 -20220903150000,vlinder01,299.111083984375 -20220903150000,vlinder02,299.120849609375 -20220903150000,vlinder03,299.734130859375 -20220903150000,vlinder04,299.734130859375 -20220903150000,vlinder05,298.939208984375 -20220903150000,vlinder06,299.363037109375 -20220903150000,vlinder07,299.363037109375 -20220903150000,vlinder08,299.363037109375 -20220903150000,vlinder09,299.021240234375 -20220903150000,vlinder10,299.023193359375 -20220903150000,vlinder11,299.267333984375 -20220903150000,vlinder12,299.267333984375 -20220903150000,vlinder13,299.267333984375 -20220903150000,vlinder14,299.077880859375 -20220903150000,vlinder15,299.017333984375 -20220903150000,vlinder16,299.077880859375 -20220903150000,vlinder17,298.954833984375 -20220903150000,vlinder18,298.972412109375 -20220903150000,vlinder19,298.943115234375 -20220903150000,vlinder20,298.943115234375 -20220903150000,vlinder21,296.909912109375 -20220903150000,vlinder22,298.718505859375 -20220903150000,vlinder23,298.339599609375 -20220903150000,vlinder24,298.546630859375 -20220903150000,vlinder25,298.741943359375 -20220903150000,vlinder26,299.724365234375 -20220903150000,vlinder27,298.939208984375 -20220903150000,vlinder28,299.111083984375 -20220903160000,vlinder01,298.90525817871094 -20220903160000,vlinder02,298.92088317871094 -20220903160000,vlinder03,299.11814880371094 -20220903160000,vlinder04,299.11814880371094 -20220903160000,vlinder05,298.70799255371094 -20220903160000,vlinder06,298.52635192871094 -20220903160000,vlinder07,298.52635192871094 -20220903160000,vlinder08,298.52635192871094 -20220903160000,vlinder09,298.72166442871094 -20220903160000,vlinder10,298.75291442871094 -20220903160000,vlinder11,298.87010192871094 -20220903160000,vlinder12,298.87010192871094 -20220903160000,vlinder13,298.87010192871094 -20220903160000,vlinder14,298.94822692871094 -20220903160000,vlinder15,298.64744567871094 -20220903160000,vlinder16,298.94822692871094 -20220903160000,vlinder17,297.78025817871094 -20220903160000,vlinder18,297.78611755371094 -20220903160000,vlinder19,298.42478942871094 -20220903160000,vlinder20,298.42478942871094 -20220903160000,vlinder21,296.57127380371094 -20220903160000,vlinder22,298.41893005371094 -20220903160000,vlinder23,298.00486755371094 -20220903160000,vlinder24,298.24510192871094 -20220903160000,vlinder25,298.47361755371094 -20220903160000,vlinder26,298.73338317871094 -20220903160000,vlinder27,298.70799255371094 -20220903160000,vlinder28,298.90525817871094 -20220903170000,vlinder01,297.7604064941406 -20220903170000,vlinder02,297.7877502441406 -20220903170000,vlinder03,296.9322814941406 -20220903170000,vlinder04,296.9322814941406 -20220903170000,vlinder05,297.7193908691406 -20220903170000,vlinder06,297.7525939941406 -20220903170000,vlinder07,297.7525939941406 -20220903170000,vlinder08,297.7525939941406 -20220903170000,vlinder09,297.4166564941406 -20220903170000,vlinder10,297.4068908691406 -20220903170000,vlinder11,297.8600158691406 -20220903170000,vlinder12,297.8600158691406 -20220903170000,vlinder13,297.8600158691406 -20220903170000,vlinder14,297.8951721191406 -20220903170000,vlinder15,297.3951721191406 -20220903170000,vlinder16,297.8951721191406 -20220903170000,vlinder17,295.3268127441406 -20220903170000,vlinder18,295.3561096191406 -20220903170000,vlinder19,297.1920471191406 -20220903170000,vlinder20,297.1920471191406 -20220903170000,vlinder21,296.1959533691406 -20220903170000,vlinder22,297.6295471191406 -20220903170000,vlinder23,297.4303283691406 -20220903170000,vlinder24,297.5318908691406 -20220903170000,vlinder25,297.6490783691406 -20220903170000,vlinder26,296.5397033691406 -20220903170000,vlinder27,297.7193908691406 -20220903170000,vlinder28,297.7604064941406 -20220903180000,vlinder01,296.70391845703125 -20220903180000,vlinder02,296.71173095703125 -20220903180000,vlinder03,295.42266845703125 -20220903180000,vlinder04,295.42266845703125 -20220903180000,vlinder05,296.68048095703125 -20220903180000,vlinder06,296.92266845703125 -20220903180000,vlinder07,296.92266845703125 -20220903180000,vlinder08,296.92266845703125 -20220903180000,vlinder09,295.97149658203125 -20220903180000,vlinder10,295.94415283203125 -20220903180000,vlinder11,297.04962158203125 -20220903180000,vlinder12,297.04962158203125 -20220903180000,vlinder13,297.04962158203125 -20220903180000,vlinder14,297.06915283203125 -20220903180000,vlinder15,295.97930908203125 -20220903180000,vlinder16,297.06915283203125 -20220903180000,vlinder17,293.85235595703125 -20220903180000,vlinder18,293.96173095703125 -20220903180000,vlinder19,295.36407470703125 -20220903180000,vlinder20,295.36407470703125 -20220903180000,vlinder21,295.43634033203125 -20220903180000,vlinder22,296.27032470703125 -20220903180000,vlinder23,296.49102783203125 -20220903180000,vlinder24,296.53009033203125 -20220903180000,vlinder25,296.65313720703125 -20220903180000,vlinder26,295.07501220703125 -20220903180000,vlinder27,296.68048095703125 -20220903180000,vlinder28,296.70391845703125 -20220903190000,vlinder01,295.69053649902344 -20220903190000,vlinder02,295.65538024902344 -20220903190000,vlinder03,295.25108337402344 -20220903190000,vlinder04,295.25108337402344 -20220903190000,vlinder05,295.35655212402344 -20220903190000,vlinder06,295.55772399902344 -20220903190000,vlinder07,295.55772399902344 -20220903190000,vlinder08,295.55772399902344 -20220903190000,vlinder09,294.98741149902344 -20220903190000,vlinder10,294.95420837402344 -20220903190000,vlinder11,294.97959899902344 -20220903190000,vlinder12,294.97959899902344 -20220903190000,vlinder13,294.97959899902344 -20220903190000,vlinder14,294.67295837402344 -20220903190000,vlinder15,294.96592712402344 -20220903190000,vlinder16,294.67295837402344 -20220903190000,vlinder17,294.83506774902344 -20220903190000,vlinder18,294.80381774902344 -20220903190000,vlinder19,294.67295837402344 -20220903190000,vlinder20,294.67295837402344 -20220903190000,vlinder21,294.98741149902344 -20220903190000,vlinder22,295.57334899902344 -20220903190000,vlinder23,294.52647399902344 -20220903190000,vlinder24,294.96983337402344 -20220903190000,vlinder25,294.83702087402344 -20220903190000,vlinder26,295.39952087402344 -20220903190000,vlinder27,295.35655212402344 -20220903190000,vlinder28,295.69053649902344 -20220903200000,vlinder01,293.32557678222656 -20220903200000,vlinder02,293.30213928222656 -20220903200000,vlinder03,294.10487365722656 -20220903200000,vlinder04,294.10487365722656 -20220903200000,vlinder05,293.32362365722656 -20220903200000,vlinder06,294.33534240722656 -20220903200000,vlinder07,294.33534240722656 -20220903200000,vlinder08,294.33534240722656 -20220903200000,vlinder09,293.05995178222656 -20220903200000,vlinder10,292.95057678222656 -20220903200000,vlinder11,294.02674865722656 -20220903200000,vlinder12,294.02674865722656 -20220903200000,vlinder13,294.02674865722656 -20220903200000,vlinder14,293.89393615722656 -20220903200000,vlinder15,293.17713928222656 -20220903200000,vlinder16,293.89393615722656 -20220903200000,vlinder17,293.75721740722656 -20220903200000,vlinder18,293.74354553222656 -20220903200000,vlinder19,293.22206115722656 -20220903200000,vlinder20,293.22206115722656 -20220903200000,vlinder21,294.30213928222656 -20220903200000,vlinder22,294.41542053222656 -20220903200000,vlinder23,293.35682678222656 -20220903200000,vlinder24,293.44667053222656 -20220903200000,vlinder25,293.22987365722656 -20220903200000,vlinder26,294.38807678222656 -20220903200000,vlinder27,293.32362365722656 -20220903200000,vlinder28,293.32557678222656 -20220903210000,vlinder01,292.4217224121094 -20220903210000,vlinder02,292.4041442871094 -20220903210000,vlinder03,293.6170349121094 -20220903210000,vlinder04,293.6170349121094 -20220903210000,vlinder05,292.4549255371094 -20220903210000,vlinder06,293.4646911621094 -20220903210000,vlinder07,293.4646911621094 -20220903210000,vlinder08,293.4646911621094 -20220903210000,vlinder09,292.3084411621094 -20220903210000,vlinder10,292.1932067871094 -20220903210000,vlinder11,293.1541442871094 -20220903210000,vlinder12,293.1541442871094 -20220903210000,vlinder13,293.1541442871094 -20220903210000,vlinder14,293.0057067871094 -20220903210000,vlinder15,292.4295349121094 -20220903210000,vlinder16,293.0057067871094 -20220903210000,vlinder17,293.0057067871094 -20220903210000,vlinder18,292.9744567871094 -20220903210000,vlinder19,292.4490661621094 -20220903210000,vlinder20,292.4490661621094 -20220903210000,vlinder21,293.5428161621094 -20220903210000,vlinder22,293.5310974121094 -20220903210000,vlinder23,292.5799255371094 -20220903210000,vlinder24,292.5857849121094 -20220903210000,vlinder25,292.4275817871094 -20220903210000,vlinder26,293.7146911621094 -20220903210000,vlinder27,292.4549255371094 -20220903210000,vlinder28,292.4217224121094 -20220903220000,vlinder01,291.58619689941406 -20220903220000,vlinder02,291.56666564941406 -20220903220000,vlinder03,292.85768127441406 -20220903220000,vlinder04,292.85768127441406 -20220903220000,vlinder05,291.68971252441406 -20220903220000,vlinder06,292.49440002441406 -20220903220000,vlinder07,292.49440002441406 -20220903220000,vlinder08,292.49440002441406 -20220903220000,vlinder09,291.54322814941406 -20220903220000,vlinder10,291.42604064941406 -20220903220000,vlinder11,292.31275939941406 -20220903220000,vlinder12,292.31275939941406 -20220903220000,vlinder13,292.31275939941406 -20220903220000,vlinder14,292.13893127441406 -20220903220000,vlinder15,291.65260314941406 -20220903220000,vlinder16,292.13893127441406 -20220903220000,vlinder17,292.23854064941406 -20220903220000,vlinder18,292.13502502441406 -20220903220000,vlinder19,291.58033752441406 -20220903220000,vlinder20,291.58033752441406 -20220903220000,vlinder21,292.98268127441406 -20220903220000,vlinder22,292.76588439941406 -20220903220000,vlinder23,291.99049377441406 -20220903220000,vlinder24,291.88111877441406 -20220903220000,vlinder25,291.74049377441406 -20220903220000,vlinder26,292.78932189941406 -20220903220000,vlinder27,291.68971252441406 -20220903220000,vlinder28,291.58619689941406 -20220903230000,vlinder01,291.24916076660156 -20220903230000,vlinder02,291.23548889160156 -20220903230000,vlinder03,292.07533264160156 -20220903230000,vlinder04,292.07533264160156 -20220903230000,vlinder05,291.34877014160156 -20220903230000,vlinder06,291.88783264160156 -20220903230000,vlinder07,291.88783264160156 -20220903230000,vlinder08,291.88783264160156 -20220903230000,vlinder09,291.26283264160156 -20220903230000,vlinder10,291.17689514160156 -20220903230000,vlinder11,291.72572326660156 -20220903230000,vlinder12,291.72572326660156 -20220903230000,vlinder13,291.72572326660156 -20220903230000,vlinder14,291.63978576660156 -20220903230000,vlinder15,291.33119201660156 -20220903230000,vlinder16,291.63978576660156 -20220903230000,vlinder17,291.48744201660156 -20220903230000,vlinder18,291.36634826660156 -20220903230000,vlinder19,291.21009826660156 -20220903230000,vlinder20,291.21009826660156 -20220903230000,vlinder21,292.61439514160156 -20220903230000,vlinder22,291.94837951660156 -20220903230000,vlinder23,291.60853576660156 -20220903230000,vlinder24,291.49720764160156 -20220903230000,vlinder25,291.35462951660156 -20220903230000,vlinder26,291.89564514160156 -20220903230000,vlinder27,291.34877014160156 -20220903230000,vlinder28,291.24916076660156 -20220904000000,vlinder01,290.8604278564453 -20220904000000,vlinder02,290.8623809814453 -20220904000000,vlinder03,291.2237091064453 -20220904000000,vlinder04,291.2237091064453 -20220904000000,vlinder05,290.9365997314453 -20220904000000,vlinder06,291.2686309814453 -20220904000000,vlinder07,291.2686309814453 -20220904000000,vlinder08,291.2686309814453 -20220904000000,vlinder09,290.8701934814453 -20220904000000,vlinder10,290.8213653564453 -20220904000000,vlinder11,291.1045684814453 -20220904000000,vlinder12,291.1045684814453 -20220904000000,vlinder13,291.1045684814453 -20220904000000,vlinder14,291.1123809814453 -20220904000000,vlinder15,290.9014434814453 -20220904000000,vlinder16,291.1123809814453 -20220904000000,vlinder17,290.8369903564453 -20220904000000,vlinder18,290.6787872314453 -20220904000000,vlinder19,290.7490997314453 -20220904000000,vlinder20,290.7490997314453 -20220904000000,vlinder21,292.1592559814453 -20220904000000,vlinder22,291.2256622314453 -20220904000000,vlinder23,291.1026153564453 -20220904000000,vlinder24,291.0147247314453 -20220904000000,vlinder25,290.8721466064453 -20220904000000,vlinder26,290.9326934814453 -20220904000000,vlinder27,290.9365997314453 -20220904000000,vlinder28,290.8604278564453 -20220904010000,vlinder01,290.7088165283203 -20220904010000,vlinder02,290.6990509033203 -20220904010000,vlinder03,290.5877227783203 -20220904010000,vlinder04,290.5877227783203 -20220904010000,vlinder05,290.7967071533203 -20220904010000,vlinder06,291.0447540283203 -20220904010000,vlinder07,291.0447540283203 -20220904010000,vlinder08,291.0447540283203 -20220904010000,vlinder09,290.7830352783203 -20220904010000,vlinder10,290.7322540283203 -20220904010000,vlinder11,290.8611602783203 -20220904010000,vlinder12,290.8611602783203 -20220904010000,vlinder13,290.8611602783203 -20220904010000,vlinder14,290.9275665283203 -20220904010000,vlinder15,290.8006134033203 -20220904010000,vlinder16,290.9275665283203 -20220904010000,vlinder17,290.4002227783203 -20220904010000,vlinder18,290.2908477783203 -20220904010000,vlinder19,290.6248321533203 -20220904010000,vlinder20,290.6248321533203 -20220904010000,vlinder21,291.8689727783203 -20220904010000,vlinder22,290.7146759033203 -20220904010000,vlinder23,290.9490509033203 -20220904010000,vlinder24,290.8338165283203 -20220904010000,vlinder25,290.7303009033203 -20220904010000,vlinder26,290.2537384033203 -20220904010000,vlinder27,290.7967071533203 -20220904010000,vlinder28,290.7088165283203 -20220904020000,vlinder01,290.3877716064453 -20220904020000,vlinder02,290.3740997314453 -20220904020000,vlinder03,289.9776153564453 -20220904020000,vlinder04,289.9776153564453 -20220904020000,vlinder05,290.5205841064453 -20220904020000,vlinder06,290.6592559814453 -20220904020000,vlinder07,290.6592559814453 -20220904020000,vlinder08,290.6592559814453 -20220904020000,vlinder09,290.4854278564453 -20220904020000,vlinder10,290.4346466064453 -20220904020000,vlinder11,290.4698028564453 -20220904020000,vlinder12,290.4698028564453 -20220904020000,vlinder13,290.4698028564453 -20220904020000,vlinder14,290.5694122314453 -20220904020000,vlinder15,290.4951934814453 -20220904020000,vlinder16,290.5694122314453 -20220904020000,vlinder17,289.8604278564453 -20220904020000,vlinder18,289.7823028564453 -20220904020000,vlinder19,290.2764434814453 -20220904020000,vlinder20,290.2764434814453 -20220904020000,vlinder21,291.6397247314453 -20220904020000,vlinder22,290.2901153564453 -20220904020000,vlinder23,290.7412872314453 -20220904020000,vlinder24,290.5811309814453 -20220904020000,vlinder25,290.4815216064453 -20220904020000,vlinder26,289.5752716064453 -20220904020000,vlinder27,290.5205841064453 -20220904020000,vlinder28,290.3877716064453 -20220904030000,vlinder01,289.8961639404297 -20220904030000,vlinder02,289.8590545654297 -20220904030000,vlinder03,289.8434295654297 -20220904030000,vlinder04,289.8434295654297 -20220904030000,vlinder05,290.0778045654297 -20220904030000,vlinder06,290.4039764404297 -20220904030000,vlinder07,290.4039764404297 -20220904030000,vlinder08,290.4039764404297 -20220904030000,vlinder09,290.0934295654297 -20220904030000,vlinder10,290.0016326904297 -20220904030000,vlinder11,290.2301483154297 -20220904030000,vlinder12,290.2301483154297 -20220904030000,vlinder13,290.2301483154297 -20220904030000,vlinder14,290.3238983154297 -20220904030000,vlinder15,290.1363983154297 -20220904030000,vlinder16,290.3238983154297 -20220904030000,vlinder17,289.4781951904297 -20220904030000,vlinder18,289.3863983154297 -20220904030000,vlinder19,289.9410858154297 -20220904030000,vlinder20,289.9410858154297 -20220904030000,vlinder21,291.3629608154297 -20220904030000,vlinder22,289.7711639404297 -20220904030000,vlinder23,290.4332733154297 -20220904030000,vlinder24,290.1969451904297 -20220904030000,vlinder25,290.1246795654297 -20220904030000,vlinder26,289.3805389404297 -20220904030000,vlinder27,290.0778045654297 -20220904030000,vlinder28,289.8961639404297 -20220904040000,vlinder01,289.4844970703125 -20220904040000,vlinder02,289.4239501953125 -20220904040000,vlinder03,289.6192626953125 -20220904040000,vlinder04,289.6192626953125 -20220904040000,vlinder05,289.7052001953125 -20220904040000,vlinder06,290.1563720703125 -20220904040000,vlinder07,290.1563720703125 -20220904040000,vlinder08,290.1563720703125 -20220904040000,vlinder09,289.7110595703125 -20220904040000,vlinder10,289.6094970703125 -20220904040000,vlinder11,290.0098876953125 -20220904040000,vlinder12,290.0098876953125 -20220904040000,vlinder13,290.0098876953125 -20220904040000,vlinder14,290.0704345703125 -20220904040000,vlinder15,289.7852783203125 -20220904040000,vlinder16,290.0704345703125 -20220904040000,vlinder17,289.2364501953125 -20220904040000,vlinder18,289.0958251953125 -20220904040000,vlinder19,289.6661376953125 -20220904040000,vlinder20,289.6661376953125 -20220904040000,vlinder21,291.0762939453125 -20220904040000,vlinder22,289.3087158203125 -20220904040000,vlinder23,290.1348876953125 -20220904040000,vlinder24,289.8751220703125 -20220904040000,vlinder25,289.7969970703125 -20220904040000,vlinder26,289.1192626953125 -20220904040000,vlinder27,289.7052001953125 -20220904040000,vlinder28,289.4844970703125 -20220904050000,vlinder01,289.07965087890625 -20220904050000,vlinder02,289.00543212890625 -20220904050000,vlinder03,289.35504150390625 -20220904050000,vlinder04,289.35504150390625 -20220904050000,vlinder05,289.31207275390625 -20220904050000,vlinder06,289.81402587890625 -20220904050000,vlinder07,289.81402587890625 -20220904050000,vlinder08,289.81402587890625 -20220904050000,vlinder09,289.39019775390625 -20220904050000,vlinder10,289.26324462890625 -20220904050000,vlinder11,289.70465087890625 -20220904050000,vlinder12,289.70465087890625 -20220904050000,vlinder13,289.70465087890625 -20220904050000,vlinder14,289.77496337890625 -20220904050000,vlinder15,289.47418212890625 -20220904050000,vlinder16,289.77496337890625 -20220904050000,vlinder17,289.09332275390625 -20220904050000,vlinder18,288.94879150390625 -20220904050000,vlinder19,289.38433837890625 -20220904050000,vlinder20,289.38433837890625 -20220904050000,vlinder21,290.75347900390625 -20220904050000,vlinder22,288.88238525390625 -20220904050000,vlinder23,289.80230712890625 -20220904050000,vlinder24,289.50347900390625 -20220904050000,vlinder25,289.41363525390625 -20220904050000,vlinder26,288.82574462890625 -20220904050000,vlinder27,289.31207275390625 -20220904050000,vlinder28,289.07965087890625 -20220904060000,vlinder01,289.1771697998047 -20220904060000,vlinder02,289.0970916748047 -20220904060000,vlinder03,289.6634979248047 -20220904060000,vlinder04,289.6634979248047 -20220904060000,vlinder05,289.3549041748047 -20220904060000,vlinder06,289.9935760498047 -20220904060000,vlinder07,289.9935760498047 -20220904060000,vlinder08,289.9935760498047 -20220904060000,vlinder09,289.5443572998047 -20220904060000,vlinder10,289.4037322998047 -20220904060000,vlinder11,289.8529510498047 -20220904060000,vlinder12,289.8529510498047 -20220904060000,vlinder13,289.8529510498047 -20220904060000,vlinder14,289.9349822998047 -20220904060000,vlinder15,289.6400604248047 -20220904060000,vlinder16,289.9349822998047 -20220904060000,vlinder17,289.4681854248047 -20220904060000,vlinder18,289.4017791748047 -20220904060000,vlinder19,289.5892791748047 -20220904060000,vlinder20,289.5892791748047 -20220904060000,vlinder21,290.6224822998047 -20220904060000,vlinder22,288.9681854248047 -20220904060000,vlinder23,289.7689666748047 -20220904060000,vlinder24,289.4935760498047 -20220904060000,vlinder25,289.4134979248047 -20220904060000,vlinder26,289.2943572998047 -20220904060000,vlinder27,289.3549041748047 -20220904060000,vlinder28,289.1771697998047 -20220904070000,vlinder01,291.0567321777344 -20220904070000,vlinder02,290.9414978027344 -20220904070000,vlinder03,291.4454040527344 -20220904070000,vlinder04,291.4454040527344 -20220904070000,vlinder05,291.0430603027344 -20220904070000,vlinder06,292.0957946777344 -20220904070000,vlinder07,292.0957946777344 -20220904070000,vlinder08,292.0957946777344 -20220904070000,vlinder09,291.4981384277344 -20220904070000,vlinder10,291.2754821777344 -20220904070000,vlinder11,291.5489196777344 -20220904070000,vlinder12,291.5489196777344 -20220904070000,vlinder13,291.5489196777344 -20220904070000,vlinder14,291.4180603027344 -20220904070000,vlinder15,291.6778259277344 -20220904070000,vlinder16,291.4180603027344 -20220904070000,vlinder17,291.6387634277344 -20220904070000,vlinder18,291.8497009277344 -20220904070000,vlinder19,291.7188415527344 -20220904070000,vlinder20,291.7188415527344 -20220904070000,vlinder21,291.3164978027344 -20220904070000,vlinder22,290.2266540527344 -20220904070000,vlinder23,291.0567321777344 -20220904070000,vlinder24,290.9903259277344 -20220904070000,vlinder25,291.0098571777344 -20220904070000,vlinder26,291.5957946777344 -20220904070000,vlinder27,291.0430603027344 -20220904070000,vlinder28,291.0567321777344 -20220904080000,vlinder01,293.01678466796875 -20220904080000,vlinder02,292.89764404296875 -20220904080000,vlinder03,293.14764404296875 -20220904080000,vlinder04,293.14764404296875 -20220904080000,vlinder05,292.91522216796875 -20220904080000,vlinder06,293.95819091796875 -20220904080000,vlinder07,293.95819091796875 -20220904080000,vlinder08,293.95819091796875 -20220904080000,vlinder09,293.41522216796875 -20220904080000,vlinder10,293.26873779296875 -20220904080000,vlinder11,293.32928466796875 -20220904080000,vlinder12,293.32928466796875 -20220904080000,vlinder13,293.32928466796875 -20220904080000,vlinder14,293.05780029296875 -20220904080000,vlinder15,293.52655029296875 -20220904080000,vlinder16,293.05780029296875 -20220904080000,vlinder17,293.57342529296875 -20220904080000,vlinder18,293.83905029296875 -20220904080000,vlinder19,293.65936279296875 -20220904080000,vlinder20,293.65936279296875 -20220904080000,vlinder21,292.36834716796875 -20220904080000,vlinder22,291.84881591796875 -20220904080000,vlinder23,292.71405029296875 -20220904080000,vlinder24,292.76483154296875 -20220904080000,vlinder25,292.79022216796875 -20220904080000,vlinder26,293.35662841796875 -20220904080000,vlinder27,292.91522216796875 -20220904080000,vlinder28,293.01678466796875 -20220904090000,vlinder01,294.8894805908203 -20220904090000,vlinder02,294.7664337158203 -20220904090000,vlinder03,295.2840118408203 -20220904090000,vlinder04,295.2840118408203 -20220904090000,vlinder05,294.7273712158203 -20220904090000,vlinder06,296.0203399658203 -20220904090000,vlinder07,296.0203399658203 -20220904090000,vlinder08,296.0203399658203 -20220904090000,vlinder09,295.3172149658203 -20220904090000,vlinder10,295.1648712158203 -20220904090000,vlinder11,295.3015899658203 -20220904090000,vlinder12,295.3015899658203 -20220904090000,vlinder13,295.3015899658203 -20220904090000,vlinder14,294.9363555908203 -20220904090000,vlinder15,295.4480743408203 -20220904090000,vlinder16,294.9363555908203 -20220904090000,vlinder17,295.6433868408203 -20220904090000,vlinder18,295.8640899658203 -20220904090000,vlinder19,295.6961212158203 -20220904090000,vlinder20,295.6961212158203 -20220904090000,vlinder21,293.6179962158203 -20220904090000,vlinder22,293.6941680908203 -20220904090000,vlinder23,294.3933868408203 -20220904090000,vlinder24,294.4969024658203 -20220904090000,vlinder25,294.5633087158203 -20220904090000,vlinder26,295.5261993408203 -20220904090000,vlinder27,294.7273712158203 -20220904090000,vlinder28,294.8894805908203 -20220904100000,vlinder01,296.6770782470703 -20220904100000,vlinder02,296.5442657470703 -20220904100000,vlinder03,297.1731719970703 -20220904100000,vlinder04,297.1731719970703 -20220904100000,vlinder05,296.4329376220703 -20220904100000,vlinder06,297.8528594970703 -20220904100000,vlinder07,297.8528594970703 -20220904100000,vlinder08,297.8528594970703 -20220904100000,vlinder09,297.0501251220703 -20220904100000,vlinder10,296.8938751220703 -20220904100000,vlinder11,297.1848907470703 -20220904100000,vlinder12,297.1848907470703 -20220904100000,vlinder13,297.1848907470703 -20220904100000,vlinder14,296.7825469970703 -20220904100000,vlinder15,297.1887969970703 -20220904100000,vlinder16,296.7825469970703 -20220904100000,vlinder17,297.1673126220703 -20220904100000,vlinder18,297.2981719970703 -20220904100000,vlinder19,297.4075469970703 -20220904100000,vlinder20,297.4075469970703 -20220904100000,vlinder21,294.7825469970703 -20220904100000,vlinder22,295.3137969970703 -20220904100000,vlinder23,295.9016876220703 -20220904100000,vlinder24,296.0813751220703 -20220904100000,vlinder25,296.2141876220703 -20220904100000,vlinder26,297.4134063720703 -20220904100000,vlinder27,296.4329376220703 -20220904100000,vlinder28,296.6770782470703 -20220904110000,vlinder01,297.4977569580078 -20220904110000,vlinder02,297.4235382080078 -20220904110000,vlinder03,298.2946319580078 -20220904110000,vlinder04,298.2946319580078 -20220904110000,vlinder05,297.3473663330078 -20220904110000,vlinder06,298.4626007080078 -20220904110000,vlinder07,298.4626007080078 -20220904110000,vlinder08,298.4626007080078 -20220904110000,vlinder09,297.6676788330078 -20220904110000,vlinder10,297.5700225830078 -20220904110000,vlinder11,298.1208038330078 -20220904110000,vlinder12,298.1208038330078 -20220904110000,vlinder13,298.1208038330078 -20220904110000,vlinder14,297.8395538330078 -20220904110000,vlinder15,297.7672882080078 -20220904110000,vlinder16,297.8395538330078 -20220904110000,vlinder17,298.1891632080078 -20220904110000,vlinder18,298.3141632080078 -20220904110000,vlinder19,297.9333038330078 -20220904110000,vlinder20,297.9333038330078 -20220904110000,vlinder21,295.7770538330078 -20220904110000,vlinder22,296.6676788330078 -20220904110000,vlinder23,296.9293975830078 -20220904110000,vlinder24,297.0661163330078 -20220904110000,vlinder25,297.2106475830078 -20220904110000,vlinder26,298.5211944580078 -20220904110000,vlinder27,297.3473663330078 -20220904110000,vlinder28,297.4977569580078 -20220904120000,vlinder01,298.53204345703125 -20220904120000,vlinder02,298.50079345703125 -20220904120000,vlinder03,298.97540283203125 -20220904120000,vlinder04,298.97540283203125 -20220904120000,vlinder05,298.35821533203125 -20220904120000,vlinder06,299.05548095703125 -20220904120000,vlinder07,299.05548095703125 -20220904120000,vlinder08,299.05548095703125 -20220904120000,vlinder09,298.59649658203125 -20220904120000,vlinder10,298.55938720703125 -20220904120000,vlinder11,298.75274658203125 -20220904120000,vlinder12,298.75274658203125 -20220904120000,vlinder13,298.75274658203125 -20220904120000,vlinder14,298.49298095703125 -20220904120000,vlinder15,298.63555908203125 -20220904120000,vlinder16,298.49298095703125 -20220904120000,vlinder17,298.89923095703125 -20220904120000,vlinder18,299.05157470703125 -20220904120000,vlinder19,298.73907470703125 -20220904120000,vlinder20,298.73907470703125 -20220904120000,vlinder21,296.69805908203125 -20220904120000,vlinder22,297.73321533203125 -20220904120000,vlinder23,297.79376220703125 -20220904120000,vlinder24,298.03399658203125 -20220904120000,vlinder25,298.15118408203125 -20220904120000,vlinder26,299.18048095703125 -20220904120000,vlinder27,298.35821533203125 -20220904120000,vlinder28,298.53204345703125 -20220904130000,vlinder01,299.2754211425781 -20220904130000,vlinder02,299.2441711425781 -20220904130000,vlinder03,299.6211242675781 -20220904130000,vlinder04,299.6211242675781 -20220904130000,vlinder05,299.0703430175781 -20220904130000,vlinder06,299.7734680175781 -20220904130000,vlinder07,299.7734680175781 -20220904130000,vlinder08,299.7734680175781 -20220904130000,vlinder09,299.3418273925781 -20220904130000,vlinder10,299.3066711425781 -20220904130000,vlinder11,299.3554992675781 -20220904130000,vlinder12,299.3554992675781 -20220904130000,vlinder13,299.3554992675781 -20220904130000,vlinder14,299.0371398925781 -20220904130000,vlinder15,299.3750305175781 -20220904130000,vlinder16,299.0371398925781 -20220904130000,vlinder17,299.5547180175781 -20220904130000,vlinder18,299.7051086425781 -20220904130000,vlinder19,299.4824523925781 -20220904130000,vlinder20,299.4824523925781 -20220904130000,vlinder21,297.2890930175781 -20220904130000,vlinder22,298.3535461425781 -20220904130000,vlinder23,298.4219055175781 -20220904130000,vlinder24,298.7129211425781 -20220904130000,vlinder25,298.8379211425781 -20220904130000,vlinder26,299.8750305175781 -20220904130000,vlinder27,299.0703430175781 -20220904130000,vlinder28,299.2754211425781 -20220904140000,vlinder01,299.7938995361328 -20220904140000,vlinder02,299.7587432861328 -20220904140000,vlinder03,299.8798370361328 -20220904140000,vlinder04,299.8798370361328 -20220904140000,vlinder05,299.5868682861328 -20220904140000,vlinder06,300.2763214111328 -20220904140000,vlinder07,300.2763214111328 -20220904140000,vlinder08,300.2763214111328 -20220904140000,vlinder09,299.8544464111328 -20220904140000,vlinder10,299.8134307861328 -20220904140000,vlinder11,299.8153839111328 -20220904140000,vlinder12,299.8153839111328 -20220904140000,vlinder13,299.8153839111328 -20220904140000,vlinder14,299.4716339111328 -20220904140000,vlinder15,299.8896026611328 -20220904140000,vlinder16,299.4716339111328 -20220904140000,vlinder17,299.7880401611328 -20220904140000,vlinder18,299.9540557861328 -20220904140000,vlinder19,299.9735870361328 -20220904140000,vlinder20,299.9735870361328 -20220904140000,vlinder21,297.4794464111328 -20220904140000,vlinder22,298.8212432861328 -20220904140000,vlinder23,298.9130401611328 -20220904140000,vlinder24,299.2157745361328 -20220904140000,vlinder25,299.3661651611328 -20220904140000,vlinder26,300.1493682861328 -20220904140000,vlinder27,299.5868682861328 -20220904140000,vlinder28,299.7938995361328 -20220904150000,vlinder01,299.9725341796875 -20220904150000,vlinder02,299.9373779296875 -20220904150000,vlinder03,300.0115966796875 -20220904150000,vlinder04,300.0115966796875 -20220904150000,vlinder05,299.7498779296875 -20220904150000,vlinder06,300.3944091796875 -20220904150000,vlinder07,300.3944091796875 -20220904150000,vlinder08,300.3944091796875 -20220904150000,vlinder09,299.9979248046875 -20220904150000,vlinder10,299.9608154296875 -20220904150000,vlinder11,299.9959716796875 -20220904150000,vlinder12,299.9959716796875 -20220904150000,vlinder13,299.9959716796875 -20220904150000,vlinder14,299.6756591796875 -20220904150000,vlinder15,300.0252685546875 -20220904150000,vlinder16,299.6756591796875 -20220904150000,vlinder17,299.8045654296875 -20220904150000,vlinder18,299.9666748046875 -20220904150000,vlinder19,300.0623779296875 -20220904150000,vlinder20,300.0623779296875 -20220904150000,vlinder21,297.3221435546875 -20220904150000,vlinder22,298.9100341796875 -20220904150000,vlinder23,299.0252685546875 -20220904150000,vlinder24,299.3280029296875 -20220904150000,vlinder25,299.5369873046875 -20220904150000,vlinder26,300.2576904296875 -20220904150000,vlinder27,299.7498779296875 -20220904150000,vlinder28,299.9725341796875 -20220904160000,vlinder01,299.76861572265625 -20220904160000,vlinder02,299.74322509765625 -20220904160000,vlinder03,299.76861572265625 -20220904160000,vlinder04,299.76861572265625 -20220904160000,vlinder05,299.49322509765625 -20220904160000,vlinder06,300.13189697265625 -20220904160000,vlinder07,300.13189697265625 -20220904160000,vlinder08,300.13189697265625 -20220904160000,vlinder09,299.75885009765625 -20220904160000,vlinder10,299.73736572265625 -20220904160000,vlinder11,299.79010009765625 -20220904160000,vlinder12,299.79010009765625 -20220904160000,vlinder13,299.79010009765625 -20220904160000,vlinder14,299.50299072265625 -20220904160000,vlinder15,299.77252197265625 -20220904160000,vlinder16,299.50299072265625 -20220904160000,vlinder17,299.54205322265625 -20220904160000,vlinder18,299.69049072265625 -20220904160000,vlinder19,299.84283447265625 -20220904160000,vlinder20,299.84283447265625 -20220904160000,vlinder21,296.92877197265625 -20220904160000,vlinder22,298.74517822265625 -20220904160000,vlinder23,298.64166259765625 -20220904160000,vlinder24,298.97564697265625 -20220904160000,vlinder25,299.24322509765625 -20220904160000,vlinder26,300.03033447265625 -20220904160000,vlinder27,299.49322509765625 -20220904160000,vlinder28,299.76861572265625 -20220904170000,vlinder01,299.2932434082031 -20220904170000,vlinder02,299.2893371582031 -20220904170000,vlinder03,299.3166809082031 -20220904170000,vlinder04,299.3166809082031 -20220904170000,vlinder05,298.9573059082031 -20220904170000,vlinder06,299.6311340332031 -20220904170000,vlinder07,299.6311340332031 -20220904170000,vlinder08,299.6311340332031 -20220904170000,vlinder09,299.2268371582031 -20220904170000,vlinder10,299.2366027832031 -20220904170000,vlinder11,299.2971496582031 -20220904170000,vlinder12,299.2971496582031 -20220904170000,vlinder13,299.2971496582031 -20220904170000,vlinder14,299.0080871582031 -20220904170000,vlinder15,299.2268371582031 -20220904170000,vlinder16,299.0080871582031 -20220904170000,vlinder17,299.0061340332031 -20220904170000,vlinder18,299.1213684082031 -20220904170000,vlinder19,299.3225402832031 -20220904170000,vlinder20,299.3225402832031 -20220904170000,vlinder21,296.3928527832031 -20220904170000,vlinder22,298.1252746582031 -20220904170000,vlinder23,297.9885559082031 -20220904170000,vlinder24,298.3694152832031 -20220904170000,vlinder25,298.6174621582031 -20220904170000,vlinder26,299.5764465332031 -20220904170000,vlinder27,298.9573059082031 -20220904170000,vlinder28,299.2932434082031 -20220904180000,vlinder01,298.2421112060547 -20220904180000,vlinder02,298.2147674560547 -20220904180000,vlinder03,297.8300018310547 -20220904180000,vlinder04,297.8300018310547 -20220904180000,vlinder05,297.8925018310547 -20220904180000,vlinder06,298.0917205810547 -20220904180000,vlinder07,298.0917205810547 -20220904180000,vlinder08,298.0917205810547 -20220904180000,vlinder09,297.8710174560547 -20220904180000,vlinder10,297.8651580810547 -20220904180000,vlinder11,298.2362518310547 -20220904180000,vlinder12,298.2362518310547 -20220904180000,vlinder13,298.2362518310547 -20220904180000,vlinder14,297.8417205810547 -20220904180000,vlinder15,297.8788299560547 -20220904180000,vlinder16,297.8417205810547 -20220904180000,vlinder17,297.7089080810547 -20220904180000,vlinder18,297.7714080810547 -20220904180000,vlinder19,298.2518768310547 -20220904180000,vlinder20,298.2518768310547 -20220904180000,vlinder21,295.4842987060547 -20220904180000,vlinder22,296.7948455810547 -20220904180000,vlinder23,296.6385955810547 -20220904180000,vlinder24,297.2538299560547 -20220904180000,vlinder25,297.4413299560547 -20220904180000,vlinder26,298.2733612060547 -20220904180000,vlinder27,297.8925018310547 -20220904180000,vlinder28,298.2421112060547 -20220904190000,vlinder01,295.66712951660156 -20220904190000,vlinder02,295.57142639160156 -20220904190000,vlinder03,296.18470764160156 -20220904190000,vlinder04,296.18470764160156 -20220904190000,vlinder05,295.54798889160156 -20220904190000,vlinder06,295.58509826660156 -20220904190000,vlinder07,295.58509826660156 -20220904190000,vlinder08,295.58509826660156 -20220904190000,vlinder09,295.62025451660156 -20220904190000,vlinder10,295.56166076660156 -20220904190000,vlinder11,297.28041076660156 -20220904190000,vlinder12,297.28041076660156 -20220904190000,vlinder13,297.28041076660156 -20220904190000,vlinder14,297.04603576660156 -20220904190000,vlinder15,295.62611389160156 -20220904190000,vlinder16,297.04603576660156 -20220904190000,vlinder17,295.81556701660156 -20220904190000,vlinder18,295.76673889160156 -20220904190000,vlinder19,295.83509826660156 -20220904190000,vlinder20,295.83509826660156 -20220904190000,vlinder21,295.05970764160156 -20220904190000,vlinder22,294.80775451660156 -20220904190000,vlinder23,295.18080139160156 -20220904190000,vlinder24,295.45619201660156 -20220904190000,vlinder25,295.38392639160156 -20220904190000,vlinder26,296.77064514160156 -20220904190000,vlinder27,295.54798889160156 -20220904190000,vlinder28,295.66712951660156 -20220904200000,vlinder01,294.54852294921875 -20220904200000,vlinder02,294.60125732421875 -20220904200000,vlinder03,295.84539794921875 -20220904200000,vlinder04,295.84539794921875 -20220904200000,vlinder05,294.44110107421875 -20220904200000,vlinder06,294.24578857421875 -20220904200000,vlinder07,294.24578857421875 -20220904200000,vlinder08,294.24578857421875 -20220904200000,vlinder09,294.27313232421875 -20220904200000,vlinder10,294.28875732421875 -20220904200000,vlinder11,293.91571044921875 -20220904200000,vlinder12,293.91571044921875 -20220904200000,vlinder13,293.91571044921875 -20220904200000,vlinder14,293.56610107421875 -20220904200000,vlinder15,294.22235107421875 -20220904200000,vlinder16,293.56610107421875 -20220904200000,vlinder17,294.06805419921875 -20220904200000,vlinder18,293.96258544921875 -20220904200000,vlinder19,294.22235107421875 -20220904200000,vlinder20,294.22235107421875 -20220904200000,vlinder21,294.66180419921875 -20220904200000,vlinder22,294.49383544921875 -20220904200000,vlinder23,293.98602294921875 -20220904200000,vlinder24,294.29071044921875 -20220904200000,vlinder25,294.07196044921875 -20220904200000,vlinder26,294.70477294921875 -20220904200000,vlinder27,294.44110107421875 -20220904200000,vlinder28,294.54852294921875 -20220904210000,vlinder01,294.0596160888672 -20220904210000,vlinder02,294.1338348388672 -20220904210000,vlinder03,292.7393035888672 -20220904210000,vlinder04,292.7393035888672 -20220904210000,vlinder05,293.9600067138672 -20220904210000,vlinder06,293.6943817138672 -20220904210000,vlinder07,293.6943817138672 -20220904210000,vlinder08,293.6943817138672 -20220904210000,vlinder09,293.9307098388672 -20220904210000,vlinder10,293.9365692138672 -20220904210000,vlinder11,293.0967254638672 -20220904210000,vlinder12,293.0967254638672 -20220904210000,vlinder13,293.0967254638672 -20220904210000,vlinder14,292.7412567138672 -20220904210000,vlinder15,293.8760223388672 -20220904210000,vlinder16,292.7412567138672 -20220904210000,vlinder17,292.8662567138672 -20220904210000,vlinder18,292.7471160888672 -20220904210000,vlinder19,293.7451629638672 -20220904210000,vlinder20,293.7451629638672 -20220904210000,vlinder21,294.3447723388672 -20220904210000,vlinder22,294.0303192138672 -20220904210000,vlinder23,293.5107879638672 -20220904210000,vlinder24,293.7568817138672 -20220904210000,vlinder25,293.5303192138672 -20220904210000,vlinder26,292.8623504638672 -20220904210000,vlinder27,293.9600067138672 -20220904210000,vlinder28,294.0596160888672 -20220904220000,vlinder01,293.66265869140625 -20220904220000,vlinder02,293.73687744140625 -20220904220000,vlinder03,291.99664306640625 -20220904220000,vlinder04,291.99664306640625 -20220904220000,vlinder05,293.60601806640625 -20220904220000,vlinder06,293.46148681640625 -20220904220000,vlinder07,293.46148681640625 -20220904220000,vlinder08,293.46148681640625 -20220904220000,vlinder09,293.71734619140625 -20220904220000,vlinder10,293.68609619140625 -20220904220000,vlinder11,292.82867431640625 -20220904220000,vlinder12,292.82867431640625 -20220904220000,vlinder13,292.82867431640625 -20220904220000,vlinder14,292.56500244140625 -20220904220000,vlinder15,293.68804931640625 -20220904220000,vlinder16,292.56500244140625 -20220904220000,vlinder17,292.40679931640625 -20220904220000,vlinder18,292.29937744140625 -20220904220000,vlinder19,293.43804931640625 -20220904220000,vlinder20,293.43804931640625 -20220904220000,vlinder21,294.17437744140625 -20220904220000,vlinder22,293.92047119140625 -20220904220000,vlinder23,293.30914306640625 -20220904220000,vlinder24,293.42242431640625 -20220904220000,vlinder25,293.22125244140625 -20220904220000,vlinder26,291.99468994140625 -20220904220000,vlinder27,293.60601806640625 -20220904220000,vlinder28,293.66265869140625 -20220904230000,vlinder01,293.42747497558594 -20220904230000,vlinder02,293.52317810058594 -20220904230000,vlinder03,291.73216247558594 -20220904230000,vlinder04,291.73216247558594 -20220904230000,vlinder05,293.41184997558594 -20220904230000,vlinder06,293.11302185058594 -20220904230000,vlinder07,293.11302185058594 -20220904230000,vlinder08,293.11302185058594 -20220904230000,vlinder09,293.47239685058594 -20220904230000,vlinder10,293.46653747558594 -20220904230000,vlinder11,292.66184997558594 -20220904230000,vlinder12,292.66184997558594 -20220904230000,vlinder13,292.66184997558594 -20220904230000,vlinder14,292.55833435058594 -20220904230000,vlinder15,293.41575622558594 -20220904230000,vlinder16,292.55833435058594 -20220904230000,vlinder17,291.98802185058594 -20220904230000,vlinder18,291.81809997558594 -20220904230000,vlinder19,293.04075622558594 -20220904230000,vlinder20,293.04075622558594 -20220904230000,vlinder21,294.14231872558594 -20220904230000,vlinder22,293.72630310058594 -20220904230000,vlinder23,293.19895935058594 -20220904230000,vlinder24,293.25364685058594 -20220904230000,vlinder25,293.04856872558594 -20220904230000,vlinder26,291.51927185058594 -20220904230000,vlinder27,293.41184997558594 -20220904230000,vlinder28,293.42747497558594 -20220905000000,vlinder01,293.28321838378906 -20220905000000,vlinder02,293.41603088378906 -20220905000000,vlinder03,291.54884338378906 -20220905000000,vlinder04,291.54884338378906 -20220905000000,vlinder05,293.30665588378906 -20220905000000,vlinder06,292.66212463378906 -20220905000000,vlinder07,292.66212463378906 -20220905000000,vlinder08,292.66212463378906 -20220905000000,vlinder09,293.18751525878906 -20220905000000,vlinder10,293.23243713378906 -20220905000000,vlinder11,292.39454650878906 -20220905000000,vlinder12,292.39454650878906 -20220905000000,vlinder13,292.39454650878906 -20220905000000,vlinder14,292.44337463378906 -20220905000000,vlinder15,293.08204650878906 -20220905000000,vlinder16,292.44337463378906 -20220905000000,vlinder17,291.43360900878906 -20220905000000,vlinder18,291.20509338378906 -20220905000000,vlinder19,292.53907775878906 -20220905000000,vlinder20,292.53907775878906 -20220905000000,vlinder21,294.03517150878906 -20220905000000,vlinder22,293.62306213378906 -20220905000000,vlinder23,293.10939025878906 -20220905000000,vlinder24,293.14649963378906 -20220905000000,vlinder25,292.96095275878906 -20220905000000,vlinder26,291.02149963378906 -20220905000000,vlinder27,293.30665588378906 -20220905000000,vlinder28,293.28321838378906 -20220905010000,vlinder01,293.08056640625 -20220905010000,vlinder02,293.25634765625 -20220905010000,vlinder03,291.38916015625 -20220905010000,vlinder04,291.38916015625 -20220905010000,vlinder05,293.19384765625 -20220905010000,vlinder06,292.26220703125 -20220905010000,vlinder07,292.26220703125 -20220905010000,vlinder08,292.26220703125 -20220905010000,vlinder09,292.85009765625 -20220905010000,vlinder10,292.93994140625 -20220905010000,vlinder11,292.20556640625 -20220905010000,vlinder12,292.20556640625 -20220905010000,vlinder13,292.20556640625 -20220905010000,vlinder14,292.39306640625 -20220905010000,vlinder15,292.70556640625 -20220905010000,vlinder16,292.39306640625 -20220905010000,vlinder17,290.80126953125 -20220905010000,vlinder18,290.56298828125 -20220905010000,vlinder19,292.11572265625 -20220905010000,vlinder20,292.11572265625 -20220905010000,vlinder21,294.01611328125 -20220905010000,vlinder22,293.68603515625 -20220905010000,vlinder23,293.11962890625 -20220905010000,vlinder24,293.09228515625 -20220905010000,vlinder25,292.93212890625 -20220905010000,vlinder26,290.61376953125 -20220905010000,vlinder27,293.19384765625 -20220905010000,vlinder28,293.08056640625 -20220905020000,vlinder01,292.7074279785156 -20220905020000,vlinder02,292.8949279785156 -20220905020000,vlinder03,291.0160217285156 -20220905020000,vlinder04,291.0160217285156 -20220905020000,vlinder05,292.8793029785156 -20220905020000,vlinder06,291.8500061035156 -20220905020000,vlinder07,291.8500061035156 -20220905020000,vlinder08,291.8500061035156 -20220905020000,vlinder09,292.4769592285156 -20220905020000,vlinder10,292.5804748535156 -20220905020000,vlinder11,291.8812561035156 -20220905020000,vlinder12,291.8812561035156 -20220905020000,vlinder13,291.8812561035156 -20220905020000,vlinder14,292.1214904785156 -20220905020000,vlinder15,292.3226623535156 -20220905020000,vlinder16,292.1214904785156 -20220905020000,vlinder17,290.1117248535156 -20220905020000,vlinder18,289.8695373535156 -20220905020000,vlinder19,291.7562561035156 -20220905020000,vlinder20,291.7562561035156 -20220905020000,vlinder21,293.8480529785156 -20220905020000,vlinder22,293.3226623535156 -20220905020000,vlinder23,292.9085998535156 -20220905020000,vlinder24,292.8265686035156 -20220905020000,vlinder25,292.6703186035156 -20220905020000,vlinder26,290.0746154785156 -20220905020000,vlinder27,292.8793029785156 -20220905020000,vlinder28,292.7074279785156 -20220905030000,vlinder01,292.50213623046875 -20220905030000,vlinder02,292.69354248046875 -20220905030000,vlinder03,290.57440185546875 -20220905030000,vlinder04,290.57440185546875 -20220905030000,vlinder05,292.70526123046875 -20220905030000,vlinder06,291.52557373046875 -20220905030000,vlinder07,291.52557373046875 -20220905030000,vlinder08,291.52557373046875 -20220905030000,vlinder09,292.24627685546875 -20220905030000,vlinder10,292.36737060546875 -20220905030000,vlinder11,291.63885498046875 -20220905030000,vlinder12,291.63885498046875 -20220905030000,vlinder13,291.63885498046875 -20220905030000,vlinder14,291.93572998046875 -20220905030000,vlinder15,292.07440185546875 -20220905030000,vlinder16,291.93572998046875 -20220905030000,vlinder17,289.51776123046875 -20220905030000,vlinder18,289.26190185546875 -20220905030000,vlinder19,291.51385498046875 -20220905030000,vlinder20,291.51385498046875 -20220905030000,vlinder21,293.66619873046875 -20220905030000,vlinder22,292.92401123046875 -20220905030000,vlinder23,292.78729248046875 -20220905030000,vlinder24,292.67987060546875 -20220905030000,vlinder25,292.53143310546875 -20220905030000,vlinder26,289.52166748046875 -20220905030000,vlinder27,292.70526123046875 -20220905030000,vlinder28,292.50213623046875 -20220905040000,vlinder01,291.9674835205078 -20220905040000,vlinder02,292.1549835205078 -20220905040000,vlinder03,290.3268585205078 -20220905040000,vlinder04,290.3268585205078 -20220905040000,vlinder05,292.1764678955078 -20220905040000,vlinder06,291.1842803955078 -20220905040000,vlinder07,291.1842803955078 -20220905040000,vlinder08,291.1842803955078 -20220905040000,vlinder09,291.8151397705078 -20220905040000,vlinder10,291.9342803955078 -20220905040000,vlinder11,291.2428741455078 -20220905040000,vlinder12,291.2428741455078 -20220905040000,vlinder13,291.2428741455078 -20220905040000,vlinder14,291.4987335205078 -20220905040000,vlinder15,291.6549835205078 -20220905040000,vlinder16,291.4987335205078 -20220905040000,vlinder17,289.2545928955078 -20220905040000,vlinder18,288.9870147705078 -20220905040000,vlinder19,291.2194366455078 -20220905040000,vlinder20,291.2194366455078 -20220905040000,vlinder21,293.0631866455078 -20220905040000,vlinder22,291.9479522705078 -20220905040000,vlinder23,292.2506866455078 -20220905040000,vlinder24,292.1022491455078 -20220905040000,vlinder25,291.9792022705078 -20220905040000,vlinder26,289.3112335205078 -20220905040000,vlinder27,292.1764678955078 -20220905040000,vlinder28,291.9674835205078 -20220905050000,vlinder01,291.3289489746094 -20220905050000,vlinder02,291.5125427246094 -20220905050000,vlinder03,290.1394958496094 -20220905050000,vlinder04,290.1394958496094 -20220905050000,vlinder05,291.6531677246094 -20220905050000,vlinder06,291.0496520996094 -20220905050000,vlinder07,291.0496520996094 -20220905050000,vlinder08,291.0496520996094 -20220905050000,vlinder09,291.4559020996094 -20220905050000,vlinder10,291.5144958496094 -20220905050000,vlinder11,291.0535583496094 -20220905050000,vlinder12,291.0535583496094 -20220905050000,vlinder13,291.0535583496094 -20220905050000,vlinder14,291.2664489746094 -20220905050000,vlinder15,291.3582458496094 -20220905050000,vlinder16,291.2664489746094 -20220905050000,vlinder17,289.1141052246094 -20220905050000,vlinder18,288.7801208496094 -20220905050000,vlinder19,291.0320739746094 -20220905050000,vlinder20,291.0320739746094 -20220905050000,vlinder21,292.7625427246094 -20220905050000,vlinder22,291.3230895996094 -20220905050000,vlinder23,291.8797302246094 -20220905050000,vlinder24,291.6512145996094 -20220905050000,vlinder25,291.5008239746094 -20220905050000,vlinder26,289.2059020996094 -20220905050000,vlinder27,291.6531677246094 -20220905050000,vlinder28,291.3289489746094 -20220905060000,vlinder01,291.49452209472656 -20220905060000,vlinder02,291.62147521972656 -20220905060000,vlinder03,290.57460021972656 -20220905060000,vlinder04,290.57460021972656 -20220905060000,vlinder05,291.75428771972656 -20220905060000,vlinder06,291.53944396972656 -20220905060000,vlinder07,291.53944396972656 -20220905060000,vlinder08,291.53944396972656 -20220905060000,vlinder09,291.69764709472656 -20220905060000,vlinder10,291.71327209472656 -20220905060000,vlinder11,291.34217834472656 -20220905060000,vlinder12,291.34217834472656 -20220905060000,vlinder13,291.34217834472656 -20220905060000,vlinder14,291.42420959472656 -20220905060000,vlinder15,291.64491271972656 -20220905060000,vlinder16,291.42420959472656 -20220905060000,vlinder17,289.68202209472656 -20220905060000,vlinder18,289.42420959472656 -20220905060000,vlinder19,291.52967834472656 -20220905060000,vlinder20,291.52967834472656 -20220905060000,vlinder21,292.80506896972656 -20220905060000,vlinder22,291.43788146972656 -20220905060000,vlinder23,291.94178771972656 -20220905060000,vlinder24,291.78749084472656 -20220905060000,vlinder25,291.62342834472656 -20220905060000,vlinder26,289.82655334472656 -20220905060000,vlinder27,291.75428771972656 -20220905060000,vlinder28,291.49452209472656 -20220905070000,vlinder01,293.6820068359375 -20220905070000,vlinder02,293.6722412109375 -20220905070000,vlinder03,292.9827880859375 -20220905070000,vlinder04,292.9827880859375 -20220905070000,vlinder05,293.6136474609375 -20220905070000,vlinder06,294.1546630859375 -20220905070000,vlinder07,294.1546630859375 -20220905070000,vlinder08,294.1546630859375 -20220905070000,vlinder09,294.1488037109375 -20220905070000,vlinder10,294.0550537109375 -20220905070000,vlinder11,293.7308349609375 -20220905070000,vlinder12,293.7308349609375 -20220905070000,vlinder13,293.7308349609375 -20220905070000,vlinder14,293.6077880859375 -20220905070000,vlinder15,294.1898193359375 -20220905070000,vlinder16,293.6077880859375 -20220905070000,vlinder17,292.1761474609375 -20220905070000,vlinder18,292.2738037109375 -20220905070000,vlinder19,294.1253662109375 -20220905070000,vlinder20,294.1253662109375 -20220905070000,vlinder21,293.6156005859375 -20220905070000,vlinder22,293.3636474609375 -20220905070000,vlinder23,293.2796630859375 -20220905070000,vlinder24,293.3695068359375 -20220905070000,vlinder25,293.3558349609375 -20220905070000,vlinder26,292.9320068359375 -20220905070000,vlinder27,293.6136474609375 -20220905070000,vlinder28,293.6820068359375 -20220905080000,vlinder01,295.3935089111328 -20220905080000,vlinder02,295.2938995361328 -20220905080000,vlinder03,295.5614776611328 -20220905080000,vlinder04,295.5614776611328 -20220905080000,vlinder05,295.0673370361328 -20220905080000,vlinder06,296.4774932861328 -20220905080000,vlinder07,296.4774932861328 -20220905080000,vlinder08,296.4774932861328 -20220905080000,vlinder09,296.0028839111328 -20220905080000,vlinder10,295.8446807861328 -20220905080000,vlinder11,295.7685089111328 -20220905080000,vlinder12,295.7685089111328 -20220905080000,vlinder13,295.7685089111328 -20220905080000,vlinder14,295.3778839111328 -20220905080000,vlinder15,296.1356964111328 -20220905080000,vlinder16,295.3778839111328 -20220905080000,vlinder17,295.4579620361328 -20220905080000,vlinder18,295.6396026611328 -20220905080000,vlinder19,296.4540557861328 -20220905080000,vlinder20,296.4540557861328 -20220905080000,vlinder21,294.5478057861328 -20220905080000,vlinder22,294.9521026611328 -20220905080000,vlinder23,294.5146026611328 -20220905080000,vlinder24,294.7548370361328 -20220905080000,vlinder25,294.7411651611328 -20220905080000,vlinder26,295.8114776611328 -20220905080000,vlinder27,295.0673370361328 -20220905080000,vlinder28,295.3935089111328 -20220905090000,vlinder01,297.0407257080078 -20220905090000,vlinder02,296.9235382080078 -20220905090000,vlinder03,298.1715850830078 -20220905090000,vlinder04,298.1715850830078 -20220905090000,vlinder05,296.7106475830078 -20220905090000,vlinder06,298.6540069580078 -20220905090000,vlinder07,298.6540069580078 -20220905090000,vlinder08,298.6540069580078 -20220905090000,vlinder09,297.6579132080078 -20220905090000,vlinder10,297.4743194580078 -20220905090000,vlinder11,297.6442413330078 -20220905090000,vlinder12,297.6442413330078 -20220905090000,vlinder13,297.6442413330078 -20220905090000,vlinder14,296.9977569580078 -20220905090000,vlinder15,297.8512725830078 -20220905090000,vlinder16,296.9977569580078 -20220905090000,vlinder17,298.3336944580078 -20220905090000,vlinder18,298.5192413330078 -20220905090000,vlinder19,298.4118194580078 -20220905090000,vlinder20,298.4118194580078 -20220905090000,vlinder21,295.8903350830078 -20220905090000,vlinder22,296.5915069580078 -20220905090000,vlinder23,296.1247100830078 -20220905090000,vlinder24,296.4215850830078 -20220905090000,vlinder25,296.3903350830078 -20220905090000,vlinder26,298.6208038330078 -20220905090000,vlinder27,296.7106475830078 -20220905090000,vlinder28,297.0407257080078 -20220905100000,vlinder01,298.6764221191406 -20220905100000,vlinder02,298.5338439941406 -20220905100000,vlinder03,300.2916564941406 -20220905100000,vlinder04,300.2916564941406 -20220905100000,vlinder05,298.3424377441406 -20220905100000,vlinder06,300.5045471191406 -20220905100000,vlinder07,300.5045471191406 -20220905100000,vlinder08,300.5045471191406 -20220905100000,vlinder09,299.2877502441406 -20220905100000,vlinder10,299.0846252441406 -20220905100000,vlinder11,299.4850158691406 -20220905100000,vlinder12,299.4850158691406 -20220905100000,vlinder13,299.4850158691406 -20220905100000,vlinder14,298.7643127441406 -20220905100000,vlinder15,299.5045471191406 -20220905100000,vlinder16,298.7643127441406 -20220905100000,vlinder17,300.4869689941406 -20220905100000,vlinder18,300.6178283691406 -20220905100000,vlinder19,300.1139221191406 -20220905100000,vlinder20,300.1139221191406 -20220905100000,vlinder21,297.1393127441406 -20220905100000,vlinder22,297.8834533691406 -20220905100000,vlinder23,297.7330627441406 -20220905100000,vlinder24,298.0455627441406 -20220905100000,vlinder25,298.0455627441406 -20220905100000,vlinder26,300.7857971191406 -20220905100000,vlinder27,298.3424377441406 -20220905100000,vlinder28,298.6764221191406 -20220905110000,vlinder01,299.90858459472656 -20220905110000,vlinder02,299.76210021972656 -20220905110000,vlinder03,301.76405334472656 -20220905110000,vlinder04,301.76405334472656 -20220905110000,vlinder05,299.62147521972656 -20220905110000,vlinder06,301.69374084472656 -20220905110000,vlinder07,301.69374084472656 -20220905110000,vlinder08,301.69374084472656 -20220905110000,vlinder09,300.41835021972656 -20220905110000,vlinder10,300.22108459472656 -20220905110000,vlinder11,300.93788146972656 -20220905110000,vlinder12,300.93788146972656 -20220905110000,vlinder13,300.93788146972656 -20220905110000,vlinder14,300.30506896972656 -20220905110000,vlinder15,300.62928771972656 -20220905110000,vlinder16,300.30506896972656 -20220905110000,vlinder17,301.55116271972656 -20220905110000,vlinder18,301.65858459472656 -20220905110000,vlinder19,301.13710021972656 -20220905110000,vlinder20,301.13710021972656 -20220905110000,vlinder21,298.01210021972656 -20220905110000,vlinder22,298.63905334472656 -20220905110000,vlinder23,299.05897521972656 -20220905110000,vlinder24,299.33631896972656 -20220905110000,vlinder25,299.38905334472656 -20220905110000,vlinder26,302.18788146972656 -20220905110000,vlinder27,299.62147521972656 -20220905110000,vlinder28,299.90858459472656 -20220905120000,vlinder01,300.34600830078125 -20220905120000,vlinder02,300.11749267578125 -20220905120000,vlinder03,302.23468017578125 -20220905120000,vlinder04,302.23468017578125 -20220905120000,vlinder05,300.00811767578125 -20220905120000,vlinder06,302.15655517578125 -20220905120000,vlinder07,302.15655517578125 -20220905120000,vlinder08,302.15655517578125 -20220905120000,vlinder09,301.00421142578125 -20220905120000,vlinder10,300.76788330078125 -20220905120000,vlinder11,301.53936767578125 -20220905120000,vlinder12,301.53936767578125 -20220905120000,vlinder13,301.53936767578125 -20220905120000,vlinder14,300.98468017578125 -20220905120000,vlinder15,301.23272705078125 -20220905120000,vlinder16,300.98468017578125 -20220905120000,vlinder17,302.09796142578125 -20220905120000,vlinder18,302.23468017578125 -20220905120000,vlinder19,301.64483642578125 -20220905120000,vlinder20,301.64483642578125 -20220905120000,vlinder21,297.62921142578125 -20220905120000,vlinder22,297.87139892578125 -20220905120000,vlinder23,299.34014892578125 -20220905120000,vlinder24,299.59600830078125 -20220905120000,vlinder25,299.79718017578125 -20220905120000,vlinder26,302.54913330078125 -20220905120000,vlinder27,300.00811767578125 -20220905120000,vlinder28,300.34600830078125 -20220905130000,vlinder01,300.5500183105469 -20220905130000,vlinder02,300.3488464355469 -20220905130000,vlinder03,302.6047058105469 -20220905130000,vlinder04,302.6047058105469 -20220905130000,vlinder05,300.0109558105469 -20220905130000,vlinder06,302.5265808105469 -20220905130000,vlinder07,302.5265808105469 -20220905130000,vlinder08,302.5265808105469 -20220905130000,vlinder09,301.1828308105469 -20220905130000,vlinder10,301.0031433105469 -20220905130000,vlinder11,300.9465026855469 -20220905130000,vlinder12,300.9465026855469 -20220905130000,vlinder13,300.9465026855469 -20220905130000,vlinder14,299.9054870605469 -20220905130000,vlinder15,301.3976745605469 -20220905130000,vlinder16,299.9054870605469 -20220905130000,vlinder17,302.4894714355469 -20220905130000,vlinder18,302.6711120605469 -20220905130000,vlinder19,302.0500183105469 -20220905130000,vlinder20,302.0500183105469 -20220905130000,vlinder21,296.7648620605469 -20220905130000,vlinder22,297.5851745605469 -20220905130000,vlinder23,298.8175964355469 -20220905130000,vlinder24,299.3058776855469 -20220905130000,vlinder25,299.5129089355469 -20220905130000,vlinder26,303.0285339355469 -20220905130000,vlinder27,300.0109558105469 -20220905130000,vlinder28,300.5500183105469 -20220905140000,vlinder01,300.1451416015625 -20220905140000,vlinder02,299.9869384765625 -20220905140000,vlinder03,302.6744384765625 -20220905140000,vlinder04,302.6744384765625 -20220905140000,vlinder05,299.4361572265625 -20220905140000,vlinder06,302.1842041015625 -20220905140000,vlinder07,302.1842041015625 -20220905140000,vlinder08,302.1842041015625 -20220905140000,vlinder09,300.7037353515625 -20220905140000,vlinder10,300.5357666015625 -20220905140000,vlinder11,301.0396728515625 -20220905140000,vlinder12,301.0396728515625 -20220905140000,vlinder13,301.0396728515625 -20220905140000,vlinder14,300.1666259765625 -20220905140000,vlinder15,300.9205322265625 -20220905140000,vlinder16,300.1666259765625 -20220905140000,vlinder17,302.6373291015625 -20220905140000,vlinder18,302.8013916015625 -20220905140000,vlinder19,301.6724853515625 -20220905140000,vlinder20,301.6724853515625 -20220905140000,vlinder21,295.7154541015625 -20220905140000,vlinder22,297.3736572265625 -20220905140000,vlinder23,297.9205322265625 -20220905140000,vlinder24,298.5006103515625 -20220905140000,vlinder25,298.8658447265625 -20220905140000,vlinder26,303.2154541015625 -20220905140000,vlinder27,299.4361572265625 -20220905140000,vlinder28,300.1451416015625 -20220905150000,vlinder01,300.1639404296875 -20220905150000,vlinder02,299.9764404296875 -20220905150000,vlinder03,302.5447998046875 -20220905150000,vlinder04,302.5447998046875 -20220905150000,vlinder05,299.2420654296875 -20220905150000,vlinder06,302.1600341796875 -20220905150000,vlinder07,302.1600341796875 -20220905150000,vlinder08,302.1600341796875 -20220905150000,vlinder09,300.8572998046875 -20220905150000,vlinder10,300.6717529296875 -20220905150000,vlinder11,300.8201904296875 -20220905150000,vlinder12,300.8201904296875 -20220905150000,vlinder13,300.8201904296875 -20220905150000,vlinder14,299.8612060546875 -20220905150000,vlinder15,301.0760498046875 -20220905150000,vlinder16,299.8612060546875 -20220905150000,vlinder17,302.5350341796875 -20220905150000,vlinder18,302.6795654296875 -20220905150000,vlinder19,301.8006591796875 -20220905150000,vlinder20,301.8006591796875 -20220905150000,vlinder21,295.3612060546875 -20220905150000,vlinder22,297.2498779296875 -20220905150000,vlinder23,297.3416748046875 -20220905150000,vlinder24,298.1131591796875 -20220905150000,vlinder25,298.4686279296875 -20220905150000,vlinder26,303.1190185546875 -20220905150000,vlinder27,299.2420654296875 -20220905150000,vlinder28,300.1639404296875 -20220905160000,vlinder01,299.6858825683594 -20220905160000,vlinder02,299.4671325683594 -20220905160000,vlinder03,301.8518981933594 -20220905160000,vlinder04,301.8518981933594 -20220905160000,vlinder05,298.6819763183594 -20220905160000,vlinder06,301.9124450683594 -20220905160000,vlinder07,301.9124450683594 -20220905160000,vlinder08,301.9124450683594 -20220905160000,vlinder09,300.5491638183594 -20220905160000,vlinder10,300.3128356933594 -20220905160000,vlinder11,300.3401794433594 -20220905160000,vlinder12,300.3401794433594 -20220905160000,vlinder13,300.3401794433594 -20220905160000,vlinder14,299.2268981933594 -20220905160000,vlinder15,300.8108825683594 -20220905160000,vlinder16,299.2268981933594 -20220905160000,vlinder17,302.3343200683594 -20220905160000,vlinder18,302.4710388183594 -20220905160000,vlinder19,301.3108825683594 -20220905160000,vlinder20,301.3108825683594 -20220905160000,vlinder21,295.1741638183594 -20220905160000,vlinder22,296.8851013183594 -20220905160000,vlinder23,296.7308044433594 -20220905160000,vlinder24,297.5530700683594 -20220905160000,vlinder25,297.8265075683594 -20220905160000,vlinder26,302.7288513183594 -20220905160000,vlinder27,298.6819763183594 -20220905160000,vlinder28,299.6858825683594 -20220905170000,vlinder01,298.9026184082031 -20220905170000,vlinder02,298.6369934082031 -20220905170000,vlinder03,301.3030090332031 -20220905170000,vlinder04,301.3030090332031 -20220905170000,vlinder05,297.9162902832031 -20220905170000,vlinder06,301.0959777832031 -20220905170000,vlinder07,301.0959777832031 -20220905170000,vlinder08,301.0959777832031 -20220905170000,vlinder09,299.8908996582031 -20220905170000,vlinder10,299.5744934082031 -20220905170000,vlinder11,299.6428527832031 -20220905170000,vlinder12,299.6428527832031 -20220905170000,vlinder13,299.6428527832031 -20220905170000,vlinder14,298.6037902832031 -20220905170000,vlinder15,300.1897277832031 -20220905170000,vlinder16,298.6037902832031 -20220905170000,vlinder17,301.3948059082031 -20220905170000,vlinder18,301.5022277832031 -20220905170000,vlinder19,300.1389465332031 -20220905170000,vlinder20,300.1389465332031 -20220905170000,vlinder21,294.8752746582031 -20220905170000,vlinder22,295.7151184082031 -20220905170000,vlinder23,296.1428527832031 -20220905170000,vlinder24,296.9221496582031 -20220905170000,vlinder25,297.0783996582031 -20220905170000,vlinder26,301.8283996582031 -20220905170000,vlinder27,297.9162902832031 -20220905170000,vlinder28,298.9026184082031 -20220905180000,vlinder01,297.6101989746094 -20220905180000,vlinder02,297.3582458496094 -20220905180000,vlinder03,299.8133239746094 -20220905180000,vlinder04,299.8133239746094 -20220905180000,vlinder05,296.7234802246094 -20220905180000,vlinder06,299.3543395996094 -20220905180000,vlinder07,299.3543395996094 -20220905180000,vlinder08,299.3543395996094 -20220905180000,vlinder09,298.2781677246094 -20220905180000,vlinder10,297.9949645996094 -20220905180000,vlinder11,298.4090270996094 -20220905180000,vlinder12,298.4090270996094 -20220905180000,vlinder13,298.4090270996094 -20220905180000,vlinder14,297.6082458496094 -20220905180000,vlinder15,298.5223083496094 -20220905180000,vlinder16,297.6082458496094 -20220905180000,vlinder17,299.9832458496094 -20220905180000,vlinder18,300.0184020996094 -20220905180000,vlinder19,298.1297302246094 -20220905180000,vlinder20,298.1297302246094 -20220905180000,vlinder21,293.9461364746094 -20220905180000,vlinder22,294.1394958496094 -20220905180000,vlinder23,295.1023864746094 -20220905180000,vlinder24,295.7996520996094 -20220905180000,vlinder25,295.9441833496094 -20220905180000,vlinder26,300.1101989746094 -20220905180000,vlinder27,296.7234802246094 -20220905180000,vlinder28,297.6101989746094 -20220905190000,vlinder01,295.21246337890625 -20220905190000,vlinder02,295.07965087890625 -20220905190000,vlinder03,297.73004150390625 -20220905190000,vlinder04,297.73004150390625 -20220905190000,vlinder05,295.07183837890625 -20220905190000,vlinder06,297.58746337890625 -20220905190000,vlinder07,297.58746337890625 -20220905190000,vlinder08,297.58746337890625 -20220905190000,vlinder09,295.69488525390625 -20220905190000,vlinder10,295.49957275390625 -20220905190000,vlinder11,296.57183837890625 -20220905190000,vlinder12,296.57183837890625 -20220905190000,vlinder13,296.57183837890625 -20220905190000,vlinder14,295.74176025390625 -20220905190000,vlinder15,295.96246337890625 -20220905190000,vlinder16,295.74176025390625 -20220905190000,vlinder17,298.44488525390625 -20220905190000,vlinder18,298.44293212890625 -20220905190000,vlinder19,296.70855712890625 -20220905190000,vlinder20,296.70855712890625 -20220905190000,vlinder21,294.37261962890625 -20220905190000,vlinder22,294.23199462890625 -20220905190000,vlinder23,294.87847900390625 -20220905190000,vlinder24,294.96832275390625 -20220905190000,vlinder25,294.96832275390625 -20220905190000,vlinder26,298.14801025390625 -20220905190000,vlinder27,295.07183837890625 -20220905190000,vlinder28,295.21246337890625 -20220905200000,vlinder01,294.2678680419922 -20220905200000,vlinder02,293.9963836669922 -20220905200000,vlinder03,297.2131805419922 -20220905200000,vlinder04,297.2131805419922 -20220905200000,vlinder05,294.0530242919922 -20220905200000,vlinder06,296.7737274169922 -20220905200000,vlinder07,296.7737274169922 -20220905200000,vlinder08,296.7737274169922 -20220905200000,vlinder09,295.0959930419922 -20220905200000,vlinder10,294.7307586669922 -20220905200000,vlinder11,296.2561492919922 -20220905200000,vlinder12,296.2561492919922 -20220905200000,vlinder13,296.2561492919922 -20220905200000,vlinder14,295.6936492919922 -20220905200000,vlinder15,295.4358367919922 -20220905200000,vlinder16,295.6936492919922 -20220905200000,vlinder17,297.4045867919922 -20220905200000,vlinder18,297.1897430419922 -20220905200000,vlinder19,295.8166961669922 -20220905200000,vlinder20,295.8166961669922 -20220905200000,vlinder21,293.4827117919922 -20220905200000,vlinder22,293.3088836669922 -20220905200000,vlinder23,293.9065399169922 -20220905200000,vlinder24,293.9397430419922 -20220905200000,vlinder25,294.0354461669922 -20220905200000,vlinder26,297.3596649169922 -20220905200000,vlinder27,294.0530242919922 -20220905200000,vlinder28,294.2678680419922 -20220905210000,vlinder01,292.8954620361328 -20220905210000,vlinder02,292.6942901611328 -20220905210000,vlinder03,295.9638214111328 -20220905210000,vlinder04,295.9638214111328 -20220905210000,vlinder05,292.7978057861328 -20220905210000,vlinder06,295.6063995361328 -20220905210000,vlinder07,295.6063995361328 -20220905210000,vlinder08,295.6063995361328 -20220905210000,vlinder09,293.5634307861328 -20220905210000,vlinder10,293.2450714111328 -20220905210000,vlinder11,295.4716339111328 -20220905210000,vlinder12,295.4716339111328 -20220905210000,vlinder13,295.4716339111328 -20220905210000,vlinder14,295.0341339111328 -20220905210000,vlinder15,293.9130401611328 -20220905210000,vlinder16,295.0341339111328 -20220905210000,vlinder17,296.4013214111328 -20220905210000,vlinder18,295.9989776611328 -20220905210000,vlinder19,294.4774932861328 -20220905210000,vlinder20,294.4774932861328 -20220905210000,vlinder21,292.6415557861328 -20220905210000,vlinder22,292.5478057861328 -20220905210000,vlinder23,292.8642120361328 -20220905210000,vlinder24,292.7548370361328 -20220905210000,vlinder25,292.9052276611328 -20220905210000,vlinder26,296.2099151611328 -20220905210000,vlinder27,292.7978057861328 -20220905210000,vlinder28,292.8954620361328 -20220905220000,vlinder01,292.08750915527344 -20220905220000,vlinder02,291.94688415527344 -20220905220000,vlinder03,295.20860290527344 -20220905220000,vlinder04,295.20860290527344 -20220905220000,vlinder05,292.03672790527344 -20220905220000,vlinder06,293.69883728027344 -20220905220000,vlinder07,293.69883728027344 -20220905220000,vlinder08,293.69883728027344 -20220905220000,vlinder09,292.50938415527344 -20220905220000,vlinder10,292.26914978027344 -20220905220000,vlinder11,294.37852478027344 -20220905220000,vlinder12,294.37852478027344 -20220905220000,vlinder13,294.37852478027344 -20220905220000,vlinder14,293.96641540527344 -20220905220000,vlinder15,292.76133728027344 -20220905220000,vlinder16,293.96641540527344 -20220905220000,vlinder17,295.36485290527344 -20220905220000,vlinder18,294.90977478027344 -20220905220000,vlinder19,293.14805603027344 -20220905220000,vlinder20,293.14805603027344 -20220905220000,vlinder21,292.15391540527344 -20220905220000,vlinder22,291.99571228027344 -20220905220000,vlinder23,292.12852478027344 -20220905220000,vlinder24,292.04063415527344 -20220905220000,vlinder25,292.08360290527344 -20220905220000,vlinder26,295.48204040527344 -20220905220000,vlinder27,292.03672790527344 -20220905220000,vlinder28,292.08750915527344 -20220905230000,vlinder01,291.6038055419922 -20220905230000,vlinder02,291.5881805419922 -20220905230000,vlinder03,294.6956024169922 -20220905230000,vlinder04,294.6956024169922 -20220905230000,vlinder05,291.6819305419922 -20220905230000,vlinder06,292.4553680419922 -20220905230000,vlinder07,292.4553680419922 -20220905230000,vlinder08,292.4553680419922 -20220905230000,vlinder09,291.5745086669922 -20220905230000,vlinder10,291.5276336669922 -20220905230000,vlinder11,292.9963836669922 -20220905230000,vlinder12,292.9963836669922 -20220905230000,vlinder13,292.9963836669922 -20220905230000,vlinder14,292.9202117919922 -20220905230000,vlinder15,291.6370086669922 -20220905230000,vlinder16,292.9202117919922 -20220905230000,vlinder17,294.6858367919922 -20220905230000,vlinder18,294.0881805419922 -20220905230000,vlinder19,291.5471649169922 -20220905230000,vlinder20,291.5471649169922 -20220905230000,vlinder21,292.0666961669922 -20220905230000,vlinder22,291.6702117919922 -20220905230000,vlinder23,291.7659149169922 -20220905230000,vlinder24,291.6975555419922 -20220905230000,vlinder25,291.6819305419922 -20220905230000,vlinder26,294.6448211669922 -20220905230000,vlinder27,291.6819305419922 -20220905230000,vlinder28,291.6038055419922 -20220906000000,vlinder01,291.3618621826172 -20220906000000,vlinder02,291.3306121826172 -20220906000000,vlinder03,292.9419403076172 -20220906000000,vlinder04,292.9419403076172 -20220906000000,vlinder05,291.4712371826172 -20220906000000,vlinder06,291.6216278076172 -20220906000000,vlinder07,291.6216278076172 -20220906000000,vlinder08,291.6216278076172 -20220906000000,vlinder09,291.3638153076172 -20220906000000,vlinder10,291.2974090576172 -20220906000000,vlinder11,291.6489715576172 -20220906000000,vlinder12,291.6489715576172 -20220906000000,vlinder13,291.6489715576172 -20220906000000,vlinder14,291.9927215576172 -20220906000000,vlinder15,291.3852996826172 -20220906000000,vlinder16,291.9927215576172 -20220906000000,vlinder17,294.3462371826172 -20220906000000,vlinder18,294.1177215576172 -20220906000000,vlinder19,290.9028778076172 -20220906000000,vlinder20,290.9028778076172 -20220906000000,vlinder21,291.8364715576172 -20220906000000,vlinder22,291.2310028076172 -20220906000000,vlinder23,291.6216278076172 -20220906000000,vlinder24,291.5278778076172 -20220906000000,vlinder25,291.5181121826172 -20220906000000,vlinder26,292.8774871826172 -20220906000000,vlinder27,291.4712371826172 -20220906000000,vlinder28,291.3618621826172 -20220906010000,vlinder01,291.23387145996094 -20220906010000,vlinder02,291.21043395996094 -20220906010000,vlinder03,291.78660583496094 -20220906010000,vlinder04,291.78660583496094 -20220906010000,vlinder05,291.37254333496094 -20220906010000,vlinder06,291.28074645996094 -20220906010000,vlinder07,291.28074645996094 -20220906010000,vlinder08,291.28074645996094 -20220906010000,vlinder09,291.12840270996094 -20220906010000,vlinder10,291.07762145996094 -20220906010000,vlinder11,291.48191833496094 -20220906010000,vlinder12,291.48191833496094 -20220906010000,vlinder13,291.48191833496094 -20220906010000,vlinder14,291.72996520996094 -20220906010000,vlinder15,291.13426208496094 -20220906010000,vlinder16,291.72996520996094 -20220906010000,vlinder17,291.89012145996094 -20220906010000,vlinder18,292.01316833496094 -20220906010000,vlinder19,290.56394958496094 -20220906010000,vlinder20,290.56394958496094 -20220906010000,vlinder21,291.99363708496094 -20220906010000,vlinder22,291.19285583496094 -20220906010000,vlinder23,291.56004333496094 -20220906010000,vlinder24,291.45457458496094 -20220906010000,vlinder25,291.43504333496094 -20220906010000,vlinder26,291.60496520996094 -20220906010000,vlinder27,291.37254333496094 -20220906010000,vlinder28,291.23387145996094 -20220906020000,vlinder01,290.90411376953125 -20220906020000,vlinder02,290.90216064453125 -20220906020000,vlinder03,291.08966064453125 -20220906020000,vlinder04,291.08966064453125 -20220906020000,vlinder05,291.05841064453125 -20220906020000,vlinder06,290.89630126953125 -20220906020000,vlinder07,290.89630126953125 -20220906020000,vlinder08,290.89630126953125 -20220906020000,vlinder09,290.71466064453125 -20220906020000,vlinder10,290.68145751953125 -20220906020000,vlinder11,290.99200439453125 -20220906020000,vlinder12,290.99200439453125 -20220906020000,vlinder13,290.99200439453125 -20220906020000,vlinder14,291.26153564453125 -20220906020000,vlinder15,290.70684814453125 -20220906020000,vlinder16,291.26153564453125 -20220906020000,vlinder17,290.80059814453125 -20220906020000,vlinder18,290.76934814453125 -20220906020000,vlinder19,290.11895751953125 -20220906020000,vlinder20,290.11895751953125 -20220906020000,vlinder21,291.86309814453125 -20220906020000,vlinder22,290.93731689453125 -20220906020000,vlinder23,291.27130126953125 -20220906020000,vlinder24,291.15411376953125 -20220906020000,vlinder25,291.09552001953125 -20220906020000,vlinder26,290.88458251953125 -20220906020000,vlinder27,291.05841064453125 -20220906020000,vlinder28,290.90411376953125 -20220906030000,vlinder01,290.4039306640625 -20220906030000,vlinder02,290.4176025390625 -20220906030000,vlinder03,290.5797119140625 -20220906030000,vlinder04,290.5797119140625 -20220906030000,vlinder05,290.5875244140625 -20220906030000,vlinder06,290.4547119140625 -20220906030000,vlinder07,290.4547119140625 -20220906030000,vlinder08,290.4547119140625 -20220906030000,vlinder09,290.2457275390625 -20220906030000,vlinder10,290.2320556640625 -20220906030000,vlinder11,290.5992431640625 -20220906030000,vlinder12,290.5992431640625 -20220906030000,vlinder13,290.5992431640625 -20220906030000,vlinder14,290.8082275390625 -20220906030000,vlinder15,290.2301025390625 -20220906030000,vlinder16,290.8082275390625 -20220906030000,vlinder17,290.3023681640625 -20220906030000,vlinder18,290.3199462890625 -20220906030000,vlinder19,289.8258056640625 -20220906030000,vlinder20,289.8258056640625 -20220906030000,vlinder21,291.5738525390625 -20220906030000,vlinder22,290.5562744140625 -20220906030000,vlinder23,290.8629150390625 -20220906030000,vlinder24,290.7008056640625 -20220906030000,vlinder25,290.6343994140625 -20220906030000,vlinder26,290.4117431640625 -20220906030000,vlinder27,290.5875244140625 -20220906030000,vlinder28,290.4039306640625 -20220906040000,vlinder01,290.0499725341797 -20220906040000,vlinder02,290.0773162841797 -20220906040000,vlinder03,290.1593475341797 -20220906040000,vlinder04,290.1593475341797 -20220906040000,vlinder05,290.2257537841797 -20220906040000,vlinder06,290.0343475341797 -20220906040000,vlinder07,290.0343475341797 -20220906040000,vlinder08,290.0343475341797 -20220906040000,vlinder09,289.9952850341797 -20220906040000,vlinder10,290.0011444091797 -20220906040000,vlinder11,290.1788787841797 -20220906040000,vlinder12,290.1788787841797 -20220906040000,vlinder13,290.1788787841797 -20220906040000,vlinder14,290.3780975341797 -20220906040000,vlinder15,289.9659881591797 -20220906040000,vlinder16,290.3780975341797 -20220906040000,vlinder17,290.0988006591797 -20220906040000,vlinder18,290.2023162841797 -20220906040000,vlinder19,289.7179412841797 -20220906040000,vlinder20,289.7179412841797 -20220906040000,vlinder21,291.2902069091797 -20220906040000,vlinder22,290.2902069091797 -20220906040000,vlinder23,290.4777069091797 -20220906040000,vlinder24,290.3155975341797 -20220906040000,vlinder25,290.2394256591797 -20220906040000,vlinder26,290.0030975341797 -20220906040000,vlinder27,290.2257537841797 -20220906040000,vlinder28,290.0499725341797 -20220906050000,vlinder01,289.9785614013672 -20220906050000,vlinder02,290.0176239013672 -20220906050000,vlinder03,289.7695770263672 -20220906050000,vlinder04,289.7695770263672 -20220906050000,vlinder05,290.0918426513672 -20220906050000,vlinder06,289.9082489013672 -20220906050000,vlinder07,289.9082489013672 -20220906050000,vlinder08,289.9082489013672 -20220906050000,vlinder09,290.0527801513672 -20220906050000,vlinder10,290.0762176513672 -20220906050000,vlinder11,289.8809051513672 -20220906050000,vlinder12,289.8809051513672 -20220906050000,vlinder13,289.8809051513672 -20220906050000,vlinder14,290.0117645263672 -20220906050000,vlinder15,290.0078582763672 -20220906050000,vlinder16,290.0117645263672 -20220906050000,vlinder17,290.0098114013672 -20220906050000,vlinder18,290.1562957763672 -20220906050000,vlinder19,289.9316864013672 -20220906050000,vlinder20,289.9316864013672 -20220906050000,vlinder21,291.1523895263672 -20220906050000,vlinder22,290.2109832763672 -20220906050000,vlinder23,290.2109832763672 -20220906050000,vlinder24,290.1074676513672 -20220906050000,vlinder25,290.0078582763672 -20220906050000,vlinder26,289.6602020263672 -20220906050000,vlinder27,290.0918426513672 -20220906050000,vlinder28,289.9785614013672 -20220906060000,vlinder01,290.4132843017578 -20220906060000,vlinder02,290.4132843017578 -20220906060000,vlinder03,290.0500030517578 -20220906060000,vlinder04,290.0500030517578 -20220906060000,vlinder05,290.4347686767578 -20220906060000,vlinder06,290.5265655517578 -20220906060000,vlinder07,290.5265655517578 -20220906060000,vlinder08,290.5265655517578 -20220906060000,vlinder09,290.6515655517578 -20220906060000,vlinder10,290.6359405517578 -20220906060000,vlinder11,290.2492218017578 -20220906060000,vlinder12,290.2492218017578 -20220906060000,vlinder13,290.2492218017578 -20220906060000,vlinder14,290.2648468017578 -20220906060000,vlinder15,290.6359405517578 -20220906060000,vlinder16,290.2648468017578 -20220906060000,vlinder17,290.5285186767578 -20220906060000,vlinder18,290.7023468017578 -20220906060000,vlinder19,290.6554718017578 -20220906060000,vlinder20,290.6554718017578 -20220906060000,vlinder21,291.2570343017578 -20220906060000,vlinder22,290.3449249267578 -20220906060000,vlinder23,290.4074249267578 -20220906060000,vlinder24,290.3664093017578 -20220906060000,vlinder25,290.2765655517578 -20220906060000,vlinder26,290.0265655517578 -20220906060000,vlinder27,290.4347686767578 -20220906060000,vlinder28,290.4132843017578 -20220906070000,vlinder01,290.9313659667969 -20220906070000,vlinder02,290.9430847167969 -20220906070000,vlinder03,290.6559753417969 -20220906070000,vlinder04,290.6559753417969 -20220906070000,vlinder05,290.9137878417969 -20220906070000,vlinder06,291.1423034667969 -20220906070000,vlinder07,291.1423034667969 -20220906070000,vlinder08,291.1423034667969 -20220906070000,vlinder09,291.0212097167969 -20220906070000,vlinder10,291.0153503417969 -20220906070000,vlinder11,290.8493347167969 -20220906070000,vlinder12,290.8493347167969 -20220906070000,vlinder13,290.8493347167969 -20220906070000,vlinder14,290.7770690917969 -20220906070000,vlinder15,291.0192565917969 -20220906070000,vlinder16,290.7770690917969 -20220906070000,vlinder17,291.5055847167969 -20220906070000,vlinder18,291.7282409667969 -20220906070000,vlinder19,291.0231628417969 -20220906070000,vlinder20,291.0231628417969 -20220906070000,vlinder21,291.2770690917969 -20220906070000,vlinder22,291.1833190917969 -20220906070000,vlinder23,290.7946472167969 -20220906070000,vlinder24,290.8395690917969 -20220906070000,vlinder25,290.8005065917969 -20220906070000,vlinder26,290.9372253417969 -20220906070000,vlinder27,290.9137878417969 -20220906070000,vlinder28,290.9313659667969 -20220906080000,vlinder01,292.5133819580078 -20220906080000,vlinder02,292.4958038330078 -20220906080000,vlinder03,292.5055694580078 -20220906080000,vlinder04,292.5055694580078 -20220906080000,vlinder05,292.4626007080078 -20220906080000,vlinder06,293.0231475830078 -20220906080000,vlinder07,293.0231475830078 -20220906080000,vlinder08,293.0231475830078 -20220906080000,vlinder09,292.6501007080078 -20220906080000,vlinder10,292.6168975830078 -20220906080000,vlinder11,292.5856475830078 -20220906080000,vlinder12,292.5856475830078 -20220906080000,vlinder13,292.5856475830078 -20220906080000,vlinder14,292.3883819580078 -20220906080000,vlinder15,292.6872100830078 -20220906080000,vlinder16,292.3883819580078 -20220906080000,vlinder17,293.5524444580078 -20220906080000,vlinder18,293.8024444580078 -20220906080000,vlinder19,292.8141632080078 -20220906080000,vlinder20,292.8141632080078 -20220906080000,vlinder21,292.3571319580078 -20220906080000,vlinder22,292.4313507080078 -20220906080000,vlinder23,292.2653350830078 -20220906080000,vlinder24,292.3473663330078 -20220906080000,vlinder25,292.3708038330078 -20220906080000,vlinder26,292.8825225830078 -20220906080000,vlinder27,292.4626007080078 -20220906080000,vlinder28,292.5133819580078 -20220906090000,vlinder01,294.1761779785156 -20220906090000,vlinder02,294.1019592285156 -20220906090000,vlinder03,294.5589904785156 -20220906090000,vlinder04,294.5589904785156 -20220906090000,vlinder05,294.0199279785156 -20220906090000,vlinder06,295.1742248535156 -20220906090000,vlinder07,295.1742248535156 -20220906090000,vlinder08,295.1742248535156 -20220906090000,vlinder09,294.4496154785156 -20220906090000,vlinder10,294.3441467285156 -20220906090000,vlinder11,294.6214904785156 -20220906090000,vlinder12,294.6214904785156 -20220906090000,vlinder13,294.6214904785156 -20220906090000,vlinder14,294.3109436035156 -20220906090000,vlinder15,294.5609436035156 -20220906090000,vlinder16,294.3109436035156 -20220906090000,vlinder17,295.7093811035156 -20220906090000,vlinder18,295.9593811035156 -20220906090000,vlinder19,294.7621154785156 -20220906090000,vlinder20,294.7621154785156 -20220906090000,vlinder21,293.3500061035156 -20220906090000,vlinder22,293.5902404785156 -20220906090000,vlinder23,293.6839904785156 -20220906090000,vlinder24,293.8187561035156 -20220906090000,vlinder25,293.8851623535156 -20220906090000,vlinder26,295.0199279785156 -20220906090000,vlinder27,294.0199279785156 -20220906090000,vlinder28,294.1761779785156 -20220906100000,vlinder01,295.4547119140625 -20220906100000,vlinder02,295.4254150390625 -20220906100000,vlinder03,296.7476806640625 -20220906100000,vlinder04,296.7476806640625 -20220906100000,vlinder05,295.2261962890625 -20220906100000,vlinder06,296.7633056640625 -20220906100000,vlinder07,296.7633056640625 -20220906100000,vlinder08,296.7633056640625 -20220906100000,vlinder09,295.7105712890625 -20220906100000,vlinder10,295.6324462890625 -20220906100000,vlinder11,296.4156494140625 -20220906100000,vlinder12,296.4156494140625 -20220906100000,vlinder13,296.4156494140625 -20220906100000,vlinder14,296.0875244140625 -20220906100000,vlinder15,295.8414306640625 -20220906100000,vlinder16,296.0875244140625 -20220906100000,vlinder17,297.7593994140625 -20220906100000,vlinder18,298.0015869140625 -20220906100000,vlinder19,296.2789306640625 -20220906100000,vlinder20,296.2789306640625 -20220906100000,vlinder21,294.1148681640625 -20220906100000,vlinder22,295.0875244140625 -20220906100000,vlinder23,294.7183837890625 -20220906100000,vlinder24,294.9156494140625 -20220906100000,vlinder25,295.0386962890625 -20220906100000,vlinder26,297.1578369140625 -20220906100000,vlinder27,295.2261962890625 -20220906100000,vlinder28,295.4547119140625 -20220906110000,vlinder01,296.79901123046875 -20220906110000,vlinder02,296.81268310546875 -20220906110000,vlinder03,297.96893310546875 -20220906110000,vlinder04,297.96893310546875 -20220906110000,vlinder05,296.48455810546875 -20220906110000,vlinder06,297.78924560546875 -20220906110000,vlinder07,297.78924560546875 -20220906110000,vlinder08,297.78924560546875 -20220906110000,vlinder09,296.92791748046875 -20220906110000,vlinder10,296.90643310546875 -20220906110000,vlinder11,297.21307373046875 -20220906110000,vlinder12,297.21307373046875 -20220906110000,vlinder13,297.21307373046875 -20220906110000,vlinder14,296.79315185546875 -20220906110000,vlinder15,297.00994873046875 -20220906110000,vlinder16,296.79315185546875 -20220906110000,vlinder17,299.25018310546875 -20220906110000,vlinder18,299.53143310546875 -20220906110000,vlinder19,297.40252685546875 -20220906110000,vlinder20,297.40252685546875 -20220906110000,vlinder21,295.19549560546875 -20220906110000,vlinder22,296.41424560546875 -20220906110000,vlinder23,295.68377685546875 -20220906110000,vlinder24,296.04705810546875 -20220906110000,vlinder25,296.13690185546875 -20220906110000,vlinder26,298.45135498046875 -20220906110000,vlinder27,296.48455810546875 -20220906110000,vlinder28,296.79901123046875 -20220906120000,vlinder01,297.8671569824219 -20220906120000,vlinder02,297.8671569824219 -20220906120000,vlinder03,298.9882507324219 -20220906120000,vlinder04,298.9882507324219 -20220906120000,vlinder05,297.5839538574219 -20220906120000,vlinder06,298.7831726074219 -20220906120000,vlinder07,298.7831726074219 -20220906120000,vlinder08,298.7831726074219 -20220906120000,vlinder09,297.9765319824219 -20220906120000,vlinder10,297.9511413574219 -20220906120000,vlinder11,298.2460632324219 -20220906120000,vlinder12,298.2460632324219 -20220906120000,vlinder13,298.2460632324219 -20220906120000,vlinder14,297.8183288574219 -20220906120000,vlinder15,298.0487976074219 -20220906120000,vlinder16,297.8183288574219 -20220906120000,vlinder17,300.1952819824219 -20220906120000,vlinder18,300.4784851074219 -20220906120000,vlinder19,298.3573913574219 -20220906120000,vlinder20,298.3573913574219 -20220906120000,vlinder21,296.1093444824219 -20220906120000,vlinder22,297.3124694824219 -20220906120000,vlinder23,296.7948913574219 -20220906120000,vlinder24,297.1562194824219 -20220906120000,vlinder25,297.2753601074219 -20220906120000,vlinder26,299.4628601074219 -20220906120000,vlinder27,297.5839538574219 -20220906120000,vlinder28,297.8671569824219 -20220906130000,vlinder01,298.4978485107422 -20220906130000,vlinder02,298.5017547607422 -20220906130000,vlinder03,299.5388641357422 -20220906130000,vlinder04,299.5388641357422 -20220906130000,vlinder05,298.2537078857422 -20220906130000,vlinder06,299.3884735107422 -20220906130000,vlinder07,299.3884735107422 -20220906130000,vlinder08,299.3884735107422 -20220906130000,vlinder09,298.5466766357422 -20220906130000,vlinder10,298.5290985107422 -20220906130000,vlinder11,298.8806610107422 -20220906130000,vlinder12,298.8806610107422 -20220906130000,vlinder13,298.8806610107422 -20220906130000,vlinder14,298.4412078857422 -20220906130000,vlinder15,298.6111297607422 -20220906130000,vlinder16,298.4412078857422 -20220906130000,vlinder17,300.5212860107422 -20220906130000,vlinder18,300.7048797607422 -20220906130000,vlinder19,298.8884735107422 -20220906130000,vlinder20,298.8884735107422 -20220906130000,vlinder21,296.7400360107422 -20220906130000,vlinder22,298.0564422607422 -20220906130000,vlinder23,297.5212860107422 -20220906130000,vlinder24,297.8533172607422 -20220906130000,vlinder25,297.9783172607422 -20220906130000,vlinder26,299.9802703857422 -20220906130000,vlinder27,298.2537078857422 -20220906130000,vlinder28,298.4978485107422 -20220906140000,vlinder01,298.69549560546875 -20220906140000,vlinder02,298.65447998046875 -20220906140000,vlinder03,299.83026123046875 -20220906140000,vlinder04,299.83026123046875 -20220906140000,vlinder05,298.49237060546875 -20220906140000,vlinder06,299.69354248046875 -20220906140000,vlinder07,299.69354248046875 -20220906140000,vlinder08,299.69354248046875 -20220906140000,vlinder09,298.86151123046875 -20220906140000,vlinder10,298.79705810546875 -20220906140000,vlinder11,299.21697998046875 -20220906140000,vlinder12,299.21697998046875 -20220906140000,vlinder13,299.21697998046875 -20220906140000,vlinder14,298.79705810546875 -20220906140000,vlinder15,298.95721435546875 -20220906140000,vlinder16,298.79705810546875 -20220906140000,vlinder17,300.76776123046875 -20220906140000,vlinder18,301.01190185546875 -20220906140000,vlinder19,299.16815185546875 -20220906140000,vlinder20,299.16815185546875 -20220906140000,vlinder21,296.94940185546875 -20220906140000,vlinder22,298.19549560546875 -20220906140000,vlinder23,297.88299560546875 -20220906140000,vlinder24,298.15643310546875 -20220906140000,vlinder25,298.28924560546875 -20220906140000,vlinder26,300.24627685546875 -20220906140000,vlinder27,298.49237060546875 -20220906140000,vlinder28,298.69549560546875 -20220906150000,vlinder01,298.459716796875 -20220906150000,vlinder02,298.391357421875 -20220906150000,vlinder03,299.778076171875 -20220906150000,vlinder04,299.778076171875 -20220906150000,vlinder05,298.375732421875 -20220906150000,vlinder06,299.379638671875 -20220906150000,vlinder07,299.379638671875 -20220906150000,vlinder08,299.379638671875 -20220906150000,vlinder09,298.694091796875 -20220906150000,vlinder10,298.615966796875 -20220906150000,vlinder11,299.215576171875 -20220906150000,vlinder12,299.215576171875 -20220906150000,vlinder13,299.215576171875 -20220906150000,vlinder14,298.955810546875 -20220906150000,vlinder15,298.783935546875 -20220906150000,vlinder16,298.955810546875 -20220906150000,vlinder17,300.844482421875 -20220906150000,vlinder18,301.051513671875 -20220906150000,vlinder19,298.998779296875 -20220906150000,vlinder20,298.998779296875 -20220906150000,vlinder21,296.908935546875 -20220906150000,vlinder22,298.119873046875 -20220906150000,vlinder23,298.002685546875 -20220906150000,vlinder24,298.151123046875 -20220906150000,vlinder25,298.319091796875 -20220906150000,vlinder26,300.133544921875 -20220906150000,vlinder27,298.375732421875 -20220906150000,vlinder28,298.459716796875 -20220906160000,vlinder01,298.0599670410156 -20220906160000,vlinder02,298.0150451660156 -20220906160000,vlinder03,297.9154357910156 -20220906160000,vlinder04,297.9154357910156 -20220906160000,vlinder05,298.0072326660156 -20220906160000,vlinder06,298.9232482910156 -20220906160000,vlinder07,298.9232482910156 -20220906160000,vlinder08,298.9232482910156 -20220906160000,vlinder09,298.3080139160156 -20220906160000,vlinder10,298.2377014160156 -20220906160000,vlinder11,298.2181701660156 -20220906160000,vlinder12,298.2181701660156 -20220906160000,vlinder13,298.2181701660156 -20220906160000,vlinder14,297.7943420410156 -20220906160000,vlinder15,298.3919982910156 -20220906160000,vlinder16,297.7943420410156 -20220906160000,vlinder17,300.2044982910156 -20220906160000,vlinder18,300.5853576660156 -20220906160000,vlinder19,298.6595764160156 -20220906160000,vlinder20,298.6595764160156 -20220906160000,vlinder21,296.9505920410156 -20220906160000,vlinder22,297.9212951660156 -20220906160000,vlinder23,297.7494201660156 -20220906160000,vlinder24,297.8822326660156 -20220906160000,vlinder25,297.9408264160156 -20220906160000,vlinder26,298.4857482910156 -20220906160000,vlinder27,298.0072326660156 -20220906160000,vlinder28,298.0599670410156 -20220906170000,vlinder01,297.5189971923828 -20220906170000,vlinder02,297.4369659423828 -20220906170000,vlinder03,297.6479034423828 -20220906170000,vlinder04,297.6479034423828 -20220906170000,vlinder05,297.4330596923828 -20220906170000,vlinder06,298.5912628173828 -20220906170000,vlinder07,298.5912628173828 -20220906170000,vlinder08,298.5912628173828 -20220906170000,vlinder09,297.8998565673828 -20220906170000,vlinder10,297.7748565673828 -20220906170000,vlinder11,297.9545440673828 -20220906170000,vlinder12,297.9545440673828 -20220906170000,vlinder13,297.9545440673828 -20220906170000,vlinder14,297.5697784423828 -20220906170000,vlinder15,298.0170440673828 -20220906170000,vlinder16,297.5697784423828 -20220906170000,vlinder17,299.3686065673828 -20220906170000,vlinder18,299.6752471923828 -20220906170000,vlinder19,298.2572784423828 -20220906170000,vlinder20,298.2572784423828 -20220906170000,vlinder21,296.6947784423828 -20220906170000,vlinder22,297.2182159423828 -20220906170000,vlinder23,297.1928253173828 -20220906170000,vlinder24,297.3178253173828 -20220906170000,vlinder25,297.3510284423828 -20220906170000,vlinder26,298.1732940673828 -20220906170000,vlinder27,297.4330596923828 -20220906170000,vlinder28,297.5189971923828 -20220906180000,vlinder01,296.2914733886719 -20220906180000,vlinder02,296.3012390136719 -20220906180000,vlinder03,296.8891296386719 -20220906180000,vlinder04,296.8891296386719 -20220906180000,vlinder05,296.3285827636719 -20220906180000,vlinder06,297.3754577636719 -20220906180000,vlinder07,297.3754577636719 -20220906180000,vlinder08,297.3754577636719 -20220906180000,vlinder09,296.6918640136719 -20220906180000,vlinder10,296.5082702636719 -20220906180000,vlinder11,296.9965515136719 -20220906180000,vlinder12,296.9965515136719 -20220906180000,vlinder13,296.9965515136719 -20220906180000,vlinder14,296.6742858886719 -20220906180000,vlinder15,296.8559265136719 -20220906180000,vlinder16,296.6742858886719 -20220906180000,vlinder17,298.2367858886719 -20220906180000,vlinder18,298.4457702636719 -20220906180000,vlinder19,297.1215515136719 -20220906180000,vlinder20,297.1215515136719 -20220906180000,vlinder21,295.8637390136719 -20220906180000,vlinder22,296.0297546386719 -20220906180000,vlinder23,295.9047546386719 -20220906180000,vlinder24,296.1235046386719 -20220906180000,vlinder25,296.1469421386719 -20220906180000,vlinder26,297.3285827636719 -20220906180000,vlinder27,296.3285827636719 -20220906180000,vlinder28,296.2914733886719 -20220906190000,vlinder01,294.55360412597656 -20220906190000,vlinder02,294.59071350097656 -20220906190000,vlinder03,296.47352600097656 -20220906190000,vlinder04,296.47352600097656 -20220906190000,vlinder05,294.58680725097656 -20220906190000,vlinder06,296.55946350097656 -20220906190000,vlinder07,296.55946350097656 -20220906190000,vlinder08,296.55946350097656 -20220906190000,vlinder09,294.97352600097656 -20220906190000,vlinder10,294.69618225097656 -20220906190000,vlinder11,296.28993225097656 -20220906190000,vlinder12,296.28993225097656 -20220906190000,vlinder13,296.28993225097656 -20220906190000,vlinder14,295.83290100097656 -20220906190000,vlinder15,295.26844787597656 -20220906190000,vlinder16,295.83290100097656 -20220906190000,vlinder17,297.44032287597656 -20220906190000,vlinder18,297.51063537597656 -20220906190000,vlinder19,295.65907287597656 -20220906190000,vlinder20,295.65907287597656 -20220906190000,vlinder21,294.59071350097656 -20220906190000,vlinder22,293.75868225097656 -20220906190000,vlinder23,294.67469787597656 -20220906190000,vlinder24,294.61219787597656 -20220906190000,vlinder25,294.46571350097656 -20220906190000,vlinder26,296.84657287597656 -20220906190000,vlinder27,294.58680725097656 -20220906190000,vlinder28,294.55360412597656 -20220906200000,vlinder01,292.82196044921875 -20220906200000,vlinder02,292.80242919921875 -20220906200000,vlinder03,295.75750732421875 -20220906200000,vlinder04,295.75750732421875 -20220906200000,vlinder05,292.94891357421875 -20220906200000,vlinder06,294.65008544921875 -20220906200000,vlinder07,294.65008544921875 -20220906200000,vlinder08,294.65008544921875 -20220906200000,vlinder09,293.15789794921875 -20220906200000,vlinder10,293.03094482421875 -20220906200000,vlinder11,294.75750732421875 -20220906200000,vlinder12,294.75750732421875 -20220906200000,vlinder13,294.75750732421875 -20220906200000,vlinder14,294.52313232421875 -20220906200000,vlinder15,293.35516357421875 -20220906200000,vlinder16,294.52313232421875 -20220906200000,vlinder17,296.61688232421875 -20220906200000,vlinder18,296.66766357421875 -20220906200000,vlinder19,293.93914794921875 -20220906200000,vlinder20,293.93914794921875 -20220906200000,vlinder21,292.81219482421875 -20220906200000,vlinder22,292.17938232421875 -20220906200000,vlinder23,293.19305419921875 -20220906200000,vlinder24,293.05047607421875 -20220906200000,vlinder25,293.04852294921875 -20220906200000,vlinder26,296.08758544921875 -20220906200000,vlinder27,292.94891357421875 -20220906200000,vlinder28,292.82196044921875 -20220906210000,vlinder01,291.588134765625 -20220906210000,vlinder02,291.633056640625 -20220906210000,vlinder03,294.228759765625 -20220906210000,vlinder04,294.228759765625 -20220906210000,vlinder05,291.775634765625 -20220906210000,vlinder06,292.308837890625 -20220906210000,vlinder07,292.308837890625 -20220906210000,vlinder08,292.308837890625 -20220906210000,vlinder09,291.457275390625 -20220906210000,vlinder10,291.467041015625 -20220906210000,vlinder11,292.664306640625 -20220906210000,vlinder12,292.664306640625 -20220906210000,vlinder13,292.664306640625 -20220906210000,vlinder14,292.748291015625 -20220906210000,vlinder15,291.494384765625 -20220906210000,vlinder16,292.748291015625 -20220906210000,vlinder17,295.463134765625 -20220906210000,vlinder18,295.595947265625 -20220906210000,vlinder19,291.802978515625 -20220906210000,vlinder20,291.802978515625 -20220906210000,vlinder21,291.414306640625 -20220906210000,vlinder22,291.459228515625 -20220906210000,vlinder23,291.922119140625 -20220906210000,vlinder24,291.853759765625 -20220906210000,vlinder25,291.859619140625 -20220906210000,vlinder26,294.234619140625 -20220906210000,vlinder27,291.775634765625 -20220906210000,vlinder28,291.588134765625 -20220906220000,vlinder01,290.968994140625 -20220906220000,vlinder02,290.941650390625 -20220906220000,vlinder03,292.728759765625 -20220906220000,vlinder04,292.728759765625 -20220906220000,vlinder05,291.103759765625 -20220906220000,vlinder06,291.588134765625 -20220906220000,vlinder07,291.588134765625 -20220906220000,vlinder08,291.588134765625 -20220906220000,vlinder09,290.996337890625 -20220906220000,vlinder10,290.945556640625 -20220906220000,vlinder11,291.726806640625 -20220906220000,vlinder12,291.726806640625 -20220906220000,vlinder13,291.726806640625 -20220906220000,vlinder14,291.802978515625 -20220906220000,vlinder15,291.047119140625 -20220906220000,vlinder16,291.802978515625 -20220906220000,vlinder17,293.654541015625 -20220906220000,vlinder18,293.988525390625 -20220906220000,vlinder19,291.047119140625 -20220906220000,vlinder20,291.047119140625 -20220906220000,vlinder21,290.570556640625 -20220906220000,vlinder22,290.732666015625 -20220906220000,vlinder23,291.158447265625 -20220906220000,vlinder24,291.051025390625 -20220906220000,vlinder25,291.109619140625 -20220906220000,vlinder26,292.697509765625 -20220906220000,vlinder27,291.103759765625 -20220906220000,vlinder28,290.968994140625 -20220906230000,vlinder01,290.38671875 -20220906230000,vlinder02,290.283203125 -20220906230000,vlinder03,291.708984375 -20220906230000,vlinder04,291.708984375 -20220906230000,vlinder05,290.384765625 -20220906230000,vlinder06,291.265625 -20220906230000,vlinder07,291.265625 -20220906230000,vlinder08,291.265625 -20220906230000,vlinder09,290.64453125 -20220906230000,vlinder10,290.5234375 -20220906230000,vlinder11,291.2109375 -20220906230000,vlinder12,291.2109375 -20220906230000,vlinder13,291.2109375 -20220906230000,vlinder14,291.25390625 -20220906230000,vlinder15,290.6875 -20220906230000,vlinder16,291.25390625 -20220906230000,vlinder17,292.10546875 -20220906230000,vlinder18,292.291015625 -20220906230000,vlinder19,290.701171875 -20220906230000,vlinder20,290.701171875 -20220906230000,vlinder21,290.439453125 -20220906230000,vlinder22,289.72265625 -20220906230000,vlinder23,290.546875 -20220906230000,vlinder24,290.416015625 -20220906230000,vlinder25,290.4765625 -20220906230000,vlinder26,291.599609375 -20220906230000,vlinder27,290.384765625 -20220906230000,vlinder28,290.38671875 -20220907000000,vlinder01,289.8556823730469 -20220907000000,vlinder02,289.7209167480469 -20220907000000,vlinder03,291.1857604980469 -20220907000000,vlinder04,291.1857604980469 -20220907000000,vlinder05,289.8908386230469 -20220907000000,vlinder06,290.9787292480469 -20220907000000,vlinder07,290.9787292480469 -20220907000000,vlinder08,290.9787292480469 -20220907000000,vlinder09,290.1623229980469 -20220907000000,vlinder10,290.0021667480469 -20220907000000,vlinder11,290.9201354980469 -20220907000000,vlinder12,290.9201354980469 -20220907000000,vlinder13,290.9201354980469 -20220907000000,vlinder14,290.9435729980469 -20220907000000,vlinder15,290.2970886230469 -20220907000000,vlinder16,290.9435729980469 -20220907000000,vlinder17,291.2580261230469 -20220907000000,vlinder18,291.4435729980469 -20220907000000,vlinder19,290.3302917480469 -20220907000000,vlinder20,290.3302917480469 -20220907000000,vlinder21,290.4670104980469 -20220907000000,vlinder22,289.1506042480469 -20220907000000,vlinder23,290.0724792480469 -20220907000000,vlinder24,289.9220886230469 -20220907000000,vlinder25,289.9552917480469 -20220907000000,vlinder26,291.3400573730469 -20220907000000,vlinder27,289.8908386230469 -20220907000000,vlinder28,289.8556823730469 -20220907010000,vlinder01,289.51173400878906 -20220907010000,vlinder02,289.38282775878906 -20220907010000,vlinder03,290.52345275878906 -20220907010000,vlinder04,290.52345275878906 -20220907010000,vlinder05,289.61329650878906 -20220907010000,vlinder06,290.51368713378906 -20220907010000,vlinder07,290.51368713378906 -20220907010000,vlinder08,290.51368713378906 -20220907010000,vlinder09,289.85939025878906 -20220907010000,vlinder10,289.66603088378906 -20220907010000,vlinder11,290.48829650878906 -20220907010000,vlinder12,290.48829650878906 -20220907010000,vlinder13,290.48829650878906 -20220907010000,vlinder14,290.52540588378906 -20220907010000,vlinder15,289.99220275878906 -20220907010000,vlinder16,290.52540588378906 -20220907010000,vlinder17,290.99610900878906 -20220907010000,vlinder18,291.14649963378906 -20220907010000,vlinder19,289.83399963378906 -20220907010000,vlinder20,289.83399963378906 -20220907010000,vlinder21,290.29689025878906 -20220907010000,vlinder22,288.50978088378906 -20220907010000,vlinder23,289.75978088378906 -20220907010000,vlinder24,289.59376525878906 -20220907010000,vlinder25,289.64845275878906 -20220907010000,vlinder26,290.96485900878906 -20220907010000,vlinder27,289.61329650878906 -20220907010000,vlinder28,289.51173400878906 -20220907020000,vlinder01,288.9608917236328 -20220907020000,vlinder02,288.9608917236328 -20220907020000,vlinder03,290.1933135986328 -20220907020000,vlinder04,290.1933135986328 -20220907020000,vlinder05,289.2597198486328 -20220907020000,vlinder06,289.9218292236328 -20220907020000,vlinder07,289.9218292236328 -20220907020000,vlinder08,289.9218292236328 -20220907020000,vlinder09,289.3163604736328 -20220907020000,vlinder10,289.2284698486328 -20220907020000,vlinder11,290.0194854736328 -20220907020000,vlinder12,290.0194854736328 -20220907020000,vlinder13,290.0194854736328 -20220907020000,vlinder14,290.1698760986328 -20220907020000,vlinder15,289.4647979736328 -20220907020000,vlinder16,290.1698760986328 -20220907020000,vlinder17,290.8710479736328 -20220907020000,vlinder18,291.0116729736328 -20220907020000,vlinder19,289.2753448486328 -20220907020000,vlinder20,289.2753448486328 -20220907020000,vlinder21,290.1562042236328 -20220907020000,vlinder22,288.4589385986328 -20220907020000,vlinder23,289.5565948486328 -20220907020000,vlinder24,289.2655792236328 -20220907020000,vlinder25,289.3065948486328 -20220907020000,vlinder26,290.6249542236328 -20220907020000,vlinder27,289.2597198486328 -20220907020000,vlinder28,288.9608917236328 -20220907030000,vlinder01,288.4165954589844 -20220907030000,vlinder02,288.5728454589844 -20220907030000,vlinder03,289.8970642089844 -20220907030000,vlinder04,289.8970642089844 -20220907030000,vlinder05,288.8247985839844 -20220907030000,vlinder06,289.3052673339844 -20220907030000,vlinder07,289.3052673339844 -20220907030000,vlinder08,289.3052673339844 -20220907030000,vlinder09,288.5357360839844 -20220907030000,vlinder10,288.4068298339844 -20220907030000,vlinder11,289.9263610839844 -20220907030000,vlinder12,289.9263610839844 -20220907030000,vlinder13,289.9263610839844 -20220907030000,vlinder14,290.3872985839844 -20220907030000,vlinder15,288.6861267089844 -20220907030000,vlinder16,290.3872985839844 -20220907030000,vlinder17,290.5474548339844 -20220907030000,vlinder18,290.7505798339844 -20220907030000,vlinder19,288.7037048339844 -20220907030000,vlinder20,288.7037048339844 -20220907030000,vlinder21,290.0005798339844 -20220907030000,vlinder22,288.6626892089844 -20220907030000,vlinder23,289.2017517089844 -20220907030000,vlinder24,288.8521423339844 -20220907030000,vlinder25,288.7154235839844 -20220907030000,vlinder26,289.2369079589844 -20220907030000,vlinder27,288.8247985839844 -20220907030000,vlinder28,288.4165954589844 -20220907040000,vlinder01,288.21192932128906 -20220907040000,vlinder02,288.36817932128906 -20220907040000,vlinder03,288.15138244628906 -20220907040000,vlinder04,288.15138244628906 -20220907040000,vlinder05,288.60450744628906 -20220907040000,vlinder06,288.85060119628906 -20220907040000,vlinder07,288.85060119628906 -20220907040000,vlinder08,288.85060119628906 -20220907040000,vlinder09,288.44435119628906 -20220907040000,vlinder10,288.37403869628906 -20220907040000,vlinder11,288.35646057128906 -20220907040000,vlinder12,288.35646057128906 -20220907040000,vlinder13,288.35646057128906 -20220907040000,vlinder14,288.51466369628906 -20220907040000,vlinder15,288.52442932128906 -20220907040000,vlinder16,288.51466369628906 -20220907040000,vlinder17,290.22560119628906 -20220907040000,vlinder18,290.46388244628906 -20220907040000,vlinder19,288.65138244628906 -20220907040000,vlinder20,288.65138244628906 -20220907040000,vlinder21,289.92481994628906 -20220907040000,vlinder22,288.80567932128906 -20220907040000,vlinder23,289.05567932128906 -20220907040000,vlinder24,288.74903869628906 -20220907040000,vlinder25,288.46192932128906 -20220907040000,vlinder26,288.49317932128906 -20220907040000,vlinder27,288.60450744628906 -20220907040000,vlinder28,288.21192932128906 -20220907050000,vlinder01,288.4187316894531 -20220907050000,vlinder02,288.4773254394531 -20220907050000,vlinder03,288.0534973144531 -20220907050000,vlinder04,288.0534973144531 -20220907050000,vlinder05,288.6726379394531 -20220907050000,vlinder06,289.0105285644531 -20220907050000,vlinder07,289.0105285644531 -20220907050000,vlinder08,289.0105285644531 -20220907050000,vlinder09,288.6941223144531 -20220907050000,vlinder10,288.6179504394531 -20220907050000,vlinder11,288.3152160644531 -20220907050000,vlinder12,288.3152160644531 -20220907050000,vlinder13,288.3152160644531 -20220907050000,vlinder14,288.3171691894531 -20220907050000,vlinder15,288.7566223144531 -20220907050000,vlinder16,288.3171691894531 -20220907050000,vlinder17,290.0632629394531 -20220907050000,vlinder18,290.3034973144531 -20220907050000,vlinder19,288.8269348144531 -20220907050000,vlinder20,288.8269348144531 -20220907050000,vlinder21,289.8796691894531 -20220907050000,vlinder22,288.7292785644531 -20220907050000,vlinder23,288.9929504394531 -20220907050000,vlinder24,288.7761535644531 -20220907050000,vlinder25,288.5613098144531 -20220907050000,vlinder26,288.5456848144531 -20220907050000,vlinder27,288.6726379394531 -20220907050000,vlinder28,288.4187316894531 -20220907060000,vlinder01,288.6818389892578 -20220907060000,vlinder02,288.6701202392578 -20220907060000,vlinder03,288.7638702392578 -20220907060000,vlinder04,288.7638702392578 -20220907060000,vlinder05,288.8791046142578 -20220907060000,vlinder06,289.3341827392578 -20220907060000,vlinder07,289.3341827392578 -20220907060000,vlinder08,289.3341827392578 -20220907060000,vlinder09,288.9396514892578 -20220907060000,vlinder10,288.8556671142578 -20220907060000,vlinder11,288.9845733642578 -20220907060000,vlinder12,288.9845733642578 -20220907060000,vlinder13,288.9845733642578 -20220907060000,vlinder14,289.0099639892578 -20220907060000,vlinder15,289.0041046142578 -20220907060000,vlinder16,289.0099639892578 -20220907060000,vlinder17,290.1330108642578 -20220907060000,vlinder18,290.3634796142578 -20220907060000,vlinder19,289.0236358642578 -20220907060000,vlinder20,289.0236358642578 -20220907060000,vlinder21,290.0080108642578 -20220907060000,vlinder22,288.8654327392578 -20220907060000,vlinder23,289.2072296142578 -20220907060000,vlinder24,289.0021514892578 -20220907060000,vlinder25,288.8927764892578 -20220907060000,vlinder26,289.1603546142578 -20220907060000,vlinder27,288.8791046142578 -20220907060000,vlinder28,288.6818389892578 -20220907070000,vlinder01,290.1764221191406 -20220907070000,vlinder02,290.1158752441406 -20220907070000,vlinder03,291.4596252441406 -20220907070000,vlinder04,291.4596252441406 -20220907070000,vlinder05,290.2525939941406 -20220907070000,vlinder06,291.1627502441406 -20220907070000,vlinder07,291.1627502441406 -20220907070000,vlinder08,291.1627502441406 -20220907070000,vlinder09,290.4752502441406 -20220907070000,vlinder10,290.3697814941406 -20220907070000,vlinder11,290.8463439941406 -20220907070000,vlinder12,290.8463439941406 -20220907070000,vlinder13,290.8463439941406 -20220907070000,vlinder14,290.7291564941406 -20220907070000,vlinder15,290.5787658691406 -20220907070000,vlinder16,290.7291564941406 -20220907070000,vlinder17,291.8756408691406 -20220907070000,vlinder18,291.9752502441406 -20220907070000,vlinder19,290.8580627441406 -20220907070000,vlinder20,290.8580627441406 -20220907070000,vlinder21,291.3443908691406 -20220907070000,vlinder22,290.8619689941406 -20220907070000,vlinder23,290.3619689941406 -20220907070000,vlinder24,290.2818908691406 -20220907070000,vlinder25,290.2272033691406 -20220907070000,vlinder26,291.6822814941406 -20220907070000,vlinder27,290.2525939941406 -20220907070000,vlinder28,290.1764221191406 -20220907080000,vlinder01,291.51548767089844 -20220907080000,vlinder02,291.55064392089844 -20220907080000,vlinder03,292.41587829589844 -20220907080000,vlinder04,292.41587829589844 -20220907080000,vlinder05,291.64634704589844 -20220907080000,vlinder06,291.93931579589844 -20220907080000,vlinder07,291.93931579589844 -20220907080000,vlinder08,291.93931579589844 -20220907080000,vlinder09,291.44908142089844 -20220907080000,vlinder10,291.42955017089844 -20220907080000,vlinder11,291.97056579589844 -20220907080000,vlinder12,291.97056579589844 -20220907080000,vlinder13,291.97056579589844 -20220907080000,vlinder14,292.02525329589844 -20220907080000,vlinder15,291.47251892089844 -20220907080000,vlinder16,292.02525329589844 -20220907080000,vlinder17,292.58384704589844 -20220907080000,vlinder18,292.75572204589844 -20220907080000,vlinder19,291.42759704589844 -20220907080000,vlinder20,291.42759704589844 -20220907080000,vlinder21,292.15025329589844 -20220907080000,vlinder22,292.17369079589844 -20220907080000,vlinder23,291.82017517089844 -20220907080000,vlinder24,291.75962829589844 -20220907080000,vlinder25,291.69517517089844 -20220907080000,vlinder26,292.42369079589844 -20220907080000,vlinder27,291.64634704589844 -20220907080000,vlinder28,291.51548767089844 -20220907090000,vlinder01,292.79486083984375 -20220907090000,vlinder02,292.83001708984375 -20220907090000,vlinder03,293.48626708984375 -20220907090000,vlinder04,293.48626708984375 -20220907090000,vlinder05,292.88079833984375 -20220907090000,vlinder06,293.06243896484375 -20220907090000,vlinder07,293.06243896484375 -20220907090000,vlinder08,293.06243896484375 -20220907090000,vlinder09,292.69329833984375 -20220907090000,vlinder10,292.69915771484375 -20220907090000,vlinder11,293.07220458984375 -20220907090000,vlinder12,293.07220458984375 -20220907090000,vlinder13,293.07220458984375 -20220907090000,vlinder14,293.14642333984375 -20220907090000,vlinder15,292.69329833984375 -20220907090000,vlinder16,293.14642333984375 -20220907090000,vlinder17,293.60736083984375 -20220907090000,vlinder18,293.85736083984375 -20220907090000,vlinder19,292.61322021484375 -20220907090000,vlinder20,292.61322021484375 -20220907090000,vlinder21,292.87689208984375 -20220907090000,vlinder22,293.20501708984375 -20220907090000,vlinder23,292.91204833984375 -20220907090000,vlinder24,292.90032958984375 -20220907090000,vlinder25,292.87689208984375 -20220907090000,vlinder26,293.45892333984375 -20220907090000,vlinder27,292.88079833984375 -20220907090000,vlinder28,292.79486083984375 -20220907100000,vlinder01,293.2789001464844 -20220907100000,vlinder02,293.3121032714844 -20220907100000,vlinder03,294.4292907714844 -20220907100000,vlinder04,294.4292907714844 -20220907100000,vlinder05,293.3394470214844 -20220907100000,vlinder06,293.8999938964844 -20220907100000,vlinder07,293.8999938964844 -20220907100000,vlinder08,293.8999938964844 -20220907100000,vlinder09,293.2105407714844 -20220907100000,vlinder10,293.2007751464844 -20220907100000,vlinder11,293.7261657714844 -20220907100000,vlinder12,293.7261657714844 -20220907100000,vlinder13,293.7261657714844 -20220907100000,vlinder14,293.6539001464844 -20220907100000,vlinder15,293.2496032714844 -20220907100000,vlinder16,293.6539001464844 -20220907100000,vlinder17,294.6597595214844 -20220907100000,vlinder18,294.8609313964844 -20220907100000,vlinder19,293.3843688964844 -20220907100000,vlinder20,293.3843688964844 -20220907100000,vlinder21,293.2906188964844 -20220907100000,vlinder22,293.8433532714844 -20220907100000,vlinder23,293.3394470214844 -20220907100000,vlinder24,293.3472595214844 -20220907100000,vlinder25,293.3218688964844 -20220907100000,vlinder26,294.5406188964844 -20220907100000,vlinder27,293.3394470214844 -20220907100000,vlinder28,293.2789001464844 -20220907110000,vlinder01,293.98292541503906 -20220907110000,vlinder02,293.97901916503906 -20220907110000,vlinder03,295.10792541503906 -20220907110000,vlinder04,295.10792541503906 -20220907110000,vlinder05,293.93605041503906 -20220907110000,vlinder06,294.69776916503906 -20220907110000,vlinder07,294.69776916503906 -20220907110000,vlinder08,294.69776916503906 -20220907110000,vlinder09,294.07862854003906 -20220907110000,vlinder10,294.03175354003906 -20220907110000,vlinder11,294.33253479003906 -20220907110000,vlinder12,294.33253479003906 -20220907110000,vlinder13,294.33253479003906 -20220907110000,vlinder14,294.16261291503906 -20220907110000,vlinder15,294.13917541503906 -20220907110000,vlinder16,294.16261291503906 -20220907110000,vlinder17,295.56886291503906 -20220907110000,vlinder18,295.77589416503906 -20220907110000,vlinder19,294.28956604003906 -20220907110000,vlinder20,294.28956604003906 -20220907110000,vlinder21,293.69972229003906 -20220907110000,vlinder22,294.55128479003906 -20220907110000,vlinder23,293.74073791503906 -20220907110000,vlinder24,293.83448791503906 -20220907110000,vlinder25,293.82667541503906 -20220907110000,vlinder26,295.34425354003906 -20220907110000,vlinder27,293.93605041503906 -20220907110000,vlinder28,293.98292541503906 -20220907120000,vlinder01,294.9109191894531 -20220907120000,vlinder02,294.9324035644531 -20220907120000,vlinder03,296.0554504394531 -20220907120000,vlinder04,296.0554504394531 -20220907120000,vlinder05,294.8601379394531 -20220907120000,vlinder06,295.6355285644531 -20220907120000,vlinder07,295.6355285644531 -20220907120000,vlinder08,295.6355285644531 -20220907120000,vlinder09,294.9187316894531 -20220907120000,vlinder10,294.8894348144531 -20220907120000,vlinder11,295.3269348144531 -20220907120000,vlinder12,295.3269348144531 -20220907120000,vlinder13,295.3269348144531 -20220907120000,vlinder14,295.1609191894531 -20220907120000,vlinder15,294.9773254394531 -20220907120000,vlinder16,295.1609191894531 -20220907120000,vlinder17,296.7292785644531 -20220907120000,vlinder18,296.9226379394531 -20220907120000,vlinder19,295.0847473144531 -20220907120000,vlinder20,295.0847473144531 -20220907120000,vlinder21,294.4968566894531 -20220907120000,vlinder22,295.5788879394531 -20220907120000,vlinder23,294.6218566894531 -20220907120000,vlinder24,294.7292785644531 -20220907120000,vlinder25,294.7566223144531 -20220907120000,vlinder26,296.3445129394531 -20220907120000,vlinder27,294.8601379394531 -20220907120000,vlinder28,294.9109191894531 -20220907130000,vlinder01,295.6728820800781 -20220907130000,vlinder02,295.7099914550781 -20220907130000,vlinder03,296.4971008300781 -20220907130000,vlinder04,296.4971008300781 -20220907130000,vlinder05,295.5596008300781 -20220907130000,vlinder06,296.1943664550781 -20220907130000,vlinder07,296.1943664550781 -20220907130000,vlinder08,296.1943664550781 -20220907130000,vlinder09,295.7763977050781 -20220907130000,vlinder10,295.7549133300781 -20220907130000,vlinder11,295.9267883300781 -20220907130000,vlinder12,295.9267883300781 -20220907130000,vlinder13,295.9267883300781 -20220907130000,vlinder14,295.8232727050781 -20220907130000,vlinder15,295.8135070800781 -20220907130000,vlinder16,295.8232727050781 -20220907130000,vlinder17,297.0517883300781 -20220907130000,vlinder18,297.2763977050781 -20220907130000,vlinder19,295.9736633300781 -20220907130000,vlinder20,295.9736633300781 -20220907130000,vlinder21,295.0693664550781 -20220907130000,vlinder22,296.2588195800781 -20220907130000,vlinder23,295.1963195800781 -20220907130000,vlinder24,295.3681945800781 -20220907130000,vlinder25,295.4033508300781 -20220907130000,vlinder26,296.7021789550781 -20220907130000,vlinder27,295.5596008300781 -20220907130000,vlinder28,295.6728820800781 -20220907140000,vlinder01,296.09547424316406 -20220907140000,vlinder02,296.09938049316406 -20220907140000,vlinder03,296.62281799316406 -20220907140000,vlinder04,296.62281799316406 -20220907140000,vlinder05,295.90797424316406 -20220907140000,vlinder06,296.56422424316406 -20220907140000,vlinder07,296.56422424316406 -20220907140000,vlinder08,296.56422424316406 -20220907140000,vlinder09,296.25758361816406 -20220907140000,vlinder10,296.23609924316406 -20220907140000,vlinder11,296.14430236816406 -20220907140000,vlinder12,296.14430236816406 -20220907140000,vlinder13,296.14430236816406 -20220907140000,vlinder14,295.93922424316406 -20220907140000,vlinder15,296.29078674316406 -20220907140000,vlinder16,295.93922424316406 -20220907140000,vlinder17,297.12086486816406 -20220907140000,vlinder18,297.37086486816406 -20220907140000,vlinder19,296.52516174316406 -20220907140000,vlinder20,296.52516174316406 -20220907140000,vlinder21,295.24000549316406 -20220907140000,vlinder22,295.99391174316406 -20220907140000,vlinder23,295.32984924316406 -20220907140000,vlinder24,295.61695861816406 -20220907140000,vlinder25,295.64625549316406 -20220907140000,vlinder26,296.85133361816406 -20220907140000,vlinder27,295.90797424316406 -20220907140000,vlinder28,296.09547424316406 -20220907150000,vlinder01,296.05555725097656 -20220907150000,vlinder02,296.02626037597656 -20220907150000,vlinder03,296.25477600097656 -20220907150000,vlinder04,296.25477600097656 -20220907150000,vlinder05,295.91688537597656 -20220907150000,vlinder06,296.80751037597656 -20220907150000,vlinder07,296.80751037597656 -20220907150000,vlinder08,296.80751037597656 -20220907150000,vlinder09,296.21961975097656 -20220907150000,vlinder10,296.15711975097656 -20220907150000,vlinder11,296.26258850097656 -20220907150000,vlinder12,296.26258850097656 -20220907150000,vlinder13,296.26258850097656 -20220907150000,vlinder14,295.96961975097656 -20220907150000,vlinder15,296.29383850097656 -20220907150000,vlinder16,295.96961975097656 -20220907150000,vlinder17,296.80360412597656 -20220907150000,vlinder18,296.98719787597656 -20220907150000,vlinder19,296.48915100097656 -20220907150000,vlinder20,296.48915100097656 -20220907150000,vlinder21,295.29383850097656 -20220907150000,vlinder22,295.57899475097656 -20220907150000,vlinder23,295.46571350097656 -20220907150000,vlinder24,295.69618225097656 -20220907150000,vlinder25,295.73329162597656 -20220907150000,vlinder26,296.63368225097656 -20220907150000,vlinder27,295.91688537597656 -20220907150000,vlinder28,296.05555725097656 -20220907160000,vlinder01,295.68199157714844 -20220907160000,vlinder02,295.66050720214844 -20220907160000,vlinder03,296.22105407714844 -20220907160000,vlinder04,296.22105407714844 -20220907160000,vlinder05,295.56089782714844 -20220907160000,vlinder06,296.43199157714844 -20220907160000,vlinder07,296.43199157714844 -20220907160000,vlinder08,296.43199157714844 -20220907160000,vlinder09,295.82456970214844 -20220907160000,vlinder10,295.76597595214844 -20220907160000,vlinder11,295.95152282714844 -20220907160000,vlinder12,295.95152282714844 -20220907160000,vlinder13,295.95152282714844 -20220907160000,vlinder14,295.68199157714844 -20220907160000,vlinder15,295.89488220214844 -20220907160000,vlinder16,295.68199157714844 -20220907160000,vlinder17,296.82066345214844 -20220907160000,vlinder18,297.01206970214844 -20220907160000,vlinder19,296.03941345214844 -20220907160000,vlinder20,296.03941345214844 -20220907160000,vlinder21,295.10777282714844 -20220907160000,vlinder22,295.31480407714844 -20220907160000,vlinder23,295.14488220214844 -20220907160000,vlinder24,295.35581970214844 -20220907160000,vlinder25,295.37925720214844 -20220907160000,vlinder26,296.57261657714844 -20220907160000,vlinder27,295.56089782714844 -20220907160000,vlinder28,295.68199157714844 -20220907170000,vlinder01,295.1669464111328 -20220907170000,vlinder02,295.1649932861328 -20220907170000,vlinder03,295.8153839111328 -20220907170000,vlinder04,295.8153839111328 -20220907170000,vlinder05,295.0829620361328 -20220907170000,vlinder06,295.8661651611328 -20220907170000,vlinder07,295.8661651611328 -20220907170000,vlinder08,295.8661651611328 -20220907170000,vlinder09,295.2919464111328 -20220907170000,vlinder10,295.2392120361328 -20220907170000,vlinder11,295.4677276611328 -20220907170000,vlinder12,295.4677276611328 -20220907170000,vlinder13,295.4677276611328 -20220907170000,vlinder14,295.2353057861328 -20220907170000,vlinder15,295.3524932861328 -20220907170000,vlinder16,295.2353057861328 -20220907170000,vlinder17,296.5204620361328 -20220907170000,vlinder18,296.6942901611328 -20220907170000,vlinder19,295.4755401611328 -20220907170000,vlinder20,295.4755401611328 -20220907170000,vlinder21,294.7899932861328 -20220907170000,vlinder22,295.0048370361328 -20220907170000,vlinder23,294.7392120361328 -20220907170000,vlinder24,294.9208526611328 -20220907170000,vlinder25,294.9188995361328 -20220907170000,vlinder26,296.1532745361328 -20220907170000,vlinder27,295.0829620361328 -20220907170000,vlinder28,295.1669464111328 -20220907180000,vlinder01,294.16770935058594 -20220907180000,vlinder02,294.20481872558594 -20220907180000,vlinder03,294.84544372558594 -20220907180000,vlinder04,294.84544372558594 -20220907180000,vlinder05,294.19114685058594 -20220907180000,vlinder06,294.76927185058594 -20220907180000,vlinder07,294.76927185058594 -20220907180000,vlinder08,294.76927185058594 -20220907180000,vlinder09,294.31419372558594 -20220907180000,vlinder10,294.25950622558594 -20220907180000,vlinder11,294.58763122558594 -20220907180000,vlinder12,294.58763122558594 -20220907180000,vlinder13,294.58763122558594 -20220907180000,vlinder14,294.41575622558594 -20220907180000,vlinder15,294.37278747558594 -20220907180000,vlinder16,294.41575622558594 -20220907180000,vlinder17,295.54466247558594 -20220907180000,vlinder18,295.73411560058594 -20220907180000,vlinder19,294.42942810058594 -20220907180000,vlinder20,294.42942810058594 -20220907180000,vlinder21,294.27122497558594 -20220907180000,vlinder22,294.22044372558594 -20220907180000,vlinder23,294.01341247558594 -20220907180000,vlinder24,294.11497497558594 -20220907180000,vlinder25,294.09349060058594 -20220907180000,vlinder26,295.09153747558594 -20220907180000,vlinder27,294.19114685058594 -20220907180000,vlinder28,294.16770935058594 -20220907190000,vlinder01,292.53965759277344 -20220907190000,vlinder02,292.57676696777344 -20220907190000,vlinder03,293.76426696777344 -20220907190000,vlinder04,293.76426696777344 -20220907190000,vlinder05,292.67637634277344 -20220907190000,vlinder06,293.40684509277344 -20220907190000,vlinder07,293.40684509277344 -20220907190000,vlinder08,293.40684509277344 -20220907190000,vlinder09,292.56309509277344 -20220907190000,vlinder10,292.45372009277344 -20220907190000,vlinder11,293.31309509277344 -20220907190000,vlinder12,293.31309509277344 -20220907190000,vlinder13,293.31309509277344 -20220907190000,vlinder14,293.16075134277344 -20220907190000,vlinder15,292.66661071777344 -20220907190000,vlinder16,293.16075134277344 -20220907190000,vlinder17,294.29942321777344 -20220907190000,vlinder18,294.34043884277344 -20220907190000,vlinder19,292.37364196777344 -20220907190000,vlinder20,292.37364196777344 -20220907190000,vlinder21,293.49668884277344 -20220907190000,vlinder22,292.96739196777344 -20220907190000,vlinder23,292.79356384277344 -20220907190000,vlinder24,292.72520446777344 -20220907190000,vlinder25,292.68418884277344 -20220907190000,vlinder26,293.90489196777344 -20220907190000,vlinder27,292.67637634277344 -20220907190000,vlinder28,292.53965759277344 -20220907200000,vlinder01,291.84381103515625 -20220907200000,vlinder02,291.90045166015625 -20220907200000,vlinder03,293.27740478515625 -20220907200000,vlinder04,293.27740478515625 -20220907200000,vlinder05,292.06256103515625 -20220907200000,vlinder06,292.26177978515625 -20220907200000,vlinder07,292.26177978515625 -20220907200000,vlinder08,292.26177978515625 -20220907200000,vlinder09,291.68560791015625 -20220907200000,vlinder10,291.64068603515625 -20220907200000,vlinder11,292.63677978515625 -20220907200000,vlinder12,292.63677978515625 -20220907200000,vlinder13,292.63677978515625 -20220907200000,vlinder14,292.75592041015625 -20220907200000,vlinder15,291.71685791015625 -20220907200000,vlinder16,292.75592041015625 -20220907200000,vlinder17,293.60552978515625 -20220907200000,vlinder18,293.70123291015625 -20220907200000,vlinder19,291.31646728515625 -20220907200000,vlinder20,291.31646728515625 -20220907200000,vlinder21,293.00592041015625 -20220907200000,vlinder22,292.44146728515625 -20220907200000,vlinder23,292.32232666015625 -20220907200000,vlinder24,292.15435791015625 -20220907200000,vlinder25,292.12701416015625 -20220907200000,vlinder26,293.21881103515625 -20220907200000,vlinder27,292.06256103515625 -20220907200000,vlinder28,291.84381103515625 -20220907210000,vlinder01,291.0135955810547 -20220907210000,vlinder02,291.1210174560547 -20220907210000,vlinder03,292.1464080810547 -20220907210000,vlinder04,292.1464080810547 -20220907210000,vlinder05,291.3007049560547 -20220907210000,vlinder06,291.1210174560547 -20220907210000,vlinder07,291.1210174560547 -20220907210000,vlinder08,291.1210174560547 -20220907210000,vlinder09,290.6405487060547 -20220907210000,vlinder10,290.8358612060547 -20220907210000,vlinder11,291.6405487060547 -20220907210000,vlinder12,291.6405487060547 -20220907210000,vlinder13,291.6405487060547 -20220907210000,vlinder14,291.8866424560547 -20220907210000,vlinder15,290.6171112060547 -20220907210000,vlinder16,291.8866424560547 -20220907210000,vlinder17,292.7147674560547 -20220907210000,vlinder18,292.8983612060547 -20220907210000,vlinder19,290.3729705810547 -20220907210000,vlinder20,290.3729705810547 -20220907210000,vlinder21,292.5096893310547 -20220907210000,vlinder22,291.6796112060547 -20220907210000,vlinder23,291.6639862060547 -20220907210000,vlinder24,291.4569549560547 -20220907210000,vlinder25,291.3905487060547 -20220907210000,vlinder26,292.0995330810547 -20220907210000,vlinder27,291.3007049560547 -20220907210000,vlinder28,291.0135955810547 -20220907220000,vlinder01,290.44427490234375 -20220907220000,vlinder02,290.51263427734375 -20220907220000,vlinder03,290.71771240234375 -20220907220000,vlinder04,290.71771240234375 -20220907220000,vlinder05,290.75482177734375 -20220907220000,vlinder06,290.47747802734375 -20220907220000,vlinder07,290.47747802734375 -20220907220000,vlinder08,290.47747802734375 -20220907220000,vlinder09,290.16497802734375 -20220907220000,vlinder10,290.16693115234375 -20220907220000,vlinder11,290.60443115234375 -20220907220000,vlinder12,290.60443115234375 -20220907220000,vlinder13,290.60443115234375 -20220907220000,vlinder14,291.06732177734375 -20220907220000,vlinder15,290.18450927734375 -20220907220000,vlinder16,291.06732177734375 -20220907220000,vlinder17,291.85247802734375 -20220907220000,vlinder18,292.05364990234375 -20220907220000,vlinder19,290.12982177734375 -20220907220000,vlinder20,290.12982177734375 -20220907220000,vlinder21,291.73529052734375 -20220907220000,vlinder22,290.88177490234375 -20220907220000,vlinder23,291.30950927734375 -20220907220000,vlinder24,291.04193115234375 -20220907220000,vlinder25,290.92083740234375 -20220907220000,vlinder26,290.82513427734375 -20220907220000,vlinder27,290.75482177734375 -20220907220000,vlinder28,290.44427490234375 -20220907230000,vlinder01,289.8962860107422 -20220907230000,vlinder02,289.9060516357422 -20220907230000,vlinder03,290.2458953857422 -20220907230000,vlinder04,290.2458953857422 -20220907230000,vlinder05,290.1951141357422 -20220907230000,vlinder06,290.0876922607422 -20220907230000,vlinder07,290.0876922607422 -20220907230000,vlinder08,290.0876922607422 -20220907230000,vlinder09,289.9412078857422 -20220907230000,vlinder10,289.9255828857422 -20220907230000,vlinder11,290.1521453857422 -20220907230000,vlinder12,290.1521453857422 -20220907230000,vlinder13,290.1521453857422 -20220907230000,vlinder14,290.2595672607422 -20220907230000,vlinder15,289.9392547607422 -20220907230000,vlinder16,290.2595672607422 -20220907230000,vlinder17,291.0388641357422 -20220907230000,vlinder18,291.1423797607422 -20220907230000,vlinder19,289.8083953857422 -20220907230000,vlinder20,289.8083953857422 -20220907230000,vlinder21,290.7498016357422 -20220907230000,vlinder22,289.7302703857422 -20220907230000,vlinder23,290.7576141357422 -20220907230000,vlinder24,290.5427703857422 -20220907230000,vlinder25,290.4841766357422 -20220907230000,vlinder26,290.3337860107422 -20220907230000,vlinder27,290.1951141357422 -20220907230000,vlinder28,289.8962860107422 -20220908000000,vlinder01,289.6813049316406 -20220908000000,vlinder02,289.6813049316406 -20220908000000,vlinder03,289.8141174316406 -20220908000000,vlinder04,289.8141174316406 -20220908000000,vlinder05,289.8824768066406 -20220908000000,vlinder06,289.6578674316406 -20220908000000,vlinder07,289.6578674316406 -20220908000000,vlinder08,289.6578674316406 -20220908000000,vlinder09,289.6051330566406 -20220908000000,vlinder10,289.6129455566406 -20220908000000,vlinder11,289.7750549316406 -20220908000000,vlinder12,289.7750549316406 -20220908000000,vlinder13,289.7750549316406 -20220908000000,vlinder14,289.9273986816406 -20220908000000,vlinder15,289.5758361816406 -20220908000000,vlinder16,289.9273986816406 -20220908000000,vlinder17,290.7066955566406 -20220908000000,vlinder18,290.8141174316406 -20220908000000,vlinder19,289.3551330566406 -20220908000000,vlinder20,289.3551330566406 -20220908000000,vlinder21,290.0777893066406 -20220908000000,vlinder22,289.1402893066406 -20220908000000,vlinder23,290.4313049316406 -20220908000000,vlinder24,290.1773986816406 -20220908000000,vlinder25,290.0348205566406 -20220908000000,vlinder26,289.8981018066406 -20220908000000,vlinder27,289.8824768066406 -20220908000000,vlinder28,289.6813049316406 -20220908010000,vlinder01,289.3358459472656 -20220908010000,vlinder02,289.3124084472656 -20220908010000,vlinder03,289.2225646972656 -20220908010000,vlinder04,289.2225646972656 -20220908010000,vlinder05,289.4881896972656 -20220908010000,vlinder06,289.2499084472656 -20220908010000,vlinder07,289.2499084472656 -20220908010000,vlinder08,289.2499084472656 -20220908010000,vlinder09,289.2655334472656 -20220908010000,vlinder10,289.2792053222656 -20220908010000,vlinder11,289.3631896972656 -20220908010000,vlinder12,289.3631896972656 -20220908010000,vlinder13,289.3631896972656 -20220908010000,vlinder14,289.5272521972656 -20220908010000,vlinder15,289.2323303222656 -20220908010000,vlinder16,289.5272521972656 -20220908010000,vlinder17,290.3124084472656 -20220908010000,vlinder18,290.5018615722656 -20220908010000,vlinder19,289.0702209472656 -20220908010000,vlinder20,289.0702209472656 -20220908010000,vlinder21,289.5702209472656 -20220908010000,vlinder22,288.7049865722656 -20220908010000,vlinder23,289.6502990722656 -20220908010000,vlinder24,289.5135803222656 -20220908010000,vlinder25,289.5975646972656 -20220908010000,vlinder26,289.4335021972656 -20220908010000,vlinder27,289.4881896972656 -20220908010000,vlinder28,289.3358459472656 -20220908020000,vlinder01,289.13775634765625 -20220908020000,vlinder02,289.09478759765625 -20220908020000,vlinder03,288.75103759765625 -20220908020000,vlinder04,288.75103759765625 -20220908020000,vlinder05,289.23345947265625 -20220908020000,vlinder06,289.12994384765625 -20220908020000,vlinder07,289.12994384765625 -20220908020000,vlinder08,289.12994384765625 -20220908020000,vlinder09,289.21588134765625 -20220908020000,vlinder10,289.20220947265625 -20220908020000,vlinder11,289.08697509765625 -20220908020000,vlinder12,289.08697509765625 -20220908020000,vlinder13,289.08697509765625 -20220908020000,vlinder14,289.17095947265625 -20220908020000,vlinder15,289.20025634765625 -20220908020000,vlinder16,289.17095947265625 -20220908020000,vlinder17,289.83697509765625 -20220908020000,vlinder18,290.10650634765625 -20220908020000,vlinder19,289.11431884765625 -20220908020000,vlinder20,289.11431884765625 -20220908020000,vlinder21,289.37994384765625 -20220908020000,vlinder22,288.80377197265625 -20220908020000,vlinder23,289.33306884765625 -20220908020000,vlinder24,289.25103759765625 -20220908020000,vlinder25,289.29010009765625 -20220908020000,vlinder26,288.92095947265625 -20220908020000,vlinder27,289.23345947265625 -20220908020000,vlinder28,289.13775634765625 -20220908030000,vlinder01,289.0142517089844 -20220908030000,vlinder02,288.9634704589844 -20220908030000,vlinder03,288.6568298339844 -20220908030000,vlinder04,288.6568298339844 -20220908030000,vlinder05,289.0728454589844 -20220908030000,vlinder06,289.1431579589844 -20220908030000,vlinder07,289.1431579589844 -20220908030000,vlinder08,289.1431579589844 -20220908030000,vlinder09,289.0611267089844 -20220908030000,vlinder10,289.0201110839844 -20220908030000,vlinder11,289.0103454589844 -20220908030000,vlinder12,289.0103454589844 -20220908030000,vlinder13,289.0103454589844 -20220908030000,vlinder14,289.0552673339844 -20220908030000,vlinder15,289.0689392089844 -20220908030000,vlinder16,289.0552673339844 -20220908030000,vlinder17,289.4087829589844 -20220908030000,vlinder18,289.6861267089844 -20220908030000,vlinder19,288.9146423339844 -20220908030000,vlinder20,288.9146423339844 -20220908030000,vlinder21,289.2779235839844 -20220908030000,vlinder22,288.8150329589844 -20220908030000,vlinder23,289.1333923339844 -20220908030000,vlinder24,289.0689392089844 -20220908030000,vlinder25,289.1099548339844 -20220908030000,vlinder26,288.8833923339844 -20220908030000,vlinder27,289.0728454589844 -20220908030000,vlinder28,289.0142517089844 -20220908040000,vlinder01,288.76922607421875 -20220908040000,vlinder02,288.73211669921875 -20220908040000,vlinder03,288.64227294921875 -20220908040000,vlinder04,288.64227294921875 -20220908040000,vlinder05,288.85711669921875 -20220908040000,vlinder06,289.14227294921875 -20220908040000,vlinder07,289.14227294921875 -20220908040000,vlinder08,289.14227294921875 -20220908040000,vlinder09,288.76141357421875 -20220908040000,vlinder10,288.71063232421875 -20220908040000,vlinder11,289.05047607421875 -20220908040000,vlinder12,289.05047607421875 -20220908040000,vlinder13,289.05047607421875 -20220908040000,vlinder14,289.06805419921875 -20220908040000,vlinder15,288.79656982421875 -20220908040000,vlinder16,289.06805419921875 -20220908040000,vlinder17,289.22821044921875 -20220908040000,vlinder18,289.39813232421875 -20220908040000,vlinder19,288.62664794921875 -20220908040000,vlinder20,288.62664794921875 -20220908040000,vlinder21,289.28289794921875 -20220908040000,vlinder22,288.74969482421875 -20220908040000,vlinder23,289.01336669921875 -20220908040000,vlinder24,288.91961669921875 -20220908040000,vlinder25,288.93328857421875 -20220908040000,vlinder26,288.88055419921875 -20220908040000,vlinder27,288.85711669921875 -20220908040000,vlinder28,288.76922607421875 -20220908050000,vlinder01,288.1888885498047 -20220908050000,vlinder02,288.1791229248047 -20220908050000,vlinder03,288.7142791748047 -20220908050000,vlinder04,288.7142791748047 -20220908050000,vlinder05,288.4271697998047 -20220908050000,vlinder06,288.6810760498047 -20220908050000,vlinder07,288.6810760498047 -20220908050000,vlinder08,288.6810760498047 -20220908050000,vlinder09,288.1420135498047 -20220908050000,vlinder10,288.1049041748047 -20220908050000,vlinder11,288.8236541748047 -20220908050000,vlinder12,288.8236541748047 -20220908050000,vlinder13,288.8236541748047 -20220908050000,vlinder14,288.9330291748047 -20220908050000,vlinder15,288.1830291748047 -20220908050000,vlinder16,288.9330291748047 -20220908050000,vlinder17,288.9681854248047 -20220908050000,vlinder18,289.1342010498047 -20220908050000,vlinder19,288.0482635498047 -20220908050000,vlinder20,288.0482635498047 -20220908050000,vlinder21,289.1381072998047 -20220908050000,vlinder22,288.3842010498047 -20220908050000,vlinder23,288.8470916748047 -20220908050000,vlinder24,288.6224822998047 -20220908050000,vlinder25,288.6263885498047 -20220908050000,vlinder26,288.8314666748047 -20220908050000,vlinder27,288.4271697998047 -20220908050000,vlinder28,288.1888885498047 -20220908060000,vlinder01,287.9246520996094 -20220908060000,vlinder02,287.9012145996094 -20220908060000,vlinder03,288.6668395996094 -20220908060000,vlinder04,288.6668395996094 -20220908060000,vlinder05,288.1883239746094 -20220908060000,vlinder06,288.4031677246094 -20220908060000,vlinder07,288.4031677246094 -20220908060000,vlinder08,288.4031677246094 -20220908060000,vlinder09,287.9598083496094 -20220908060000,vlinder10,287.9109802246094 -20220908060000,vlinder11,288.5496520996094 -20220908060000,vlinder12,288.5496520996094 -20220908060000,vlinder13,288.5496520996094 -20220908060000,vlinder14,288.6805114746094 -20220908060000,vlinder15,288.0008239746094 -20220908060000,vlinder16,288.6805114746094 -20220908060000,vlinder17,288.8035583496094 -20220908060000,vlinder18,288.9930114746094 -20220908060000,vlinder19,287.8875427246094 -20220908060000,vlinder20,287.8875427246094 -20220908060000,vlinder21,289.0379333496094 -20220908060000,vlinder22,288.0086364746094 -20220908060000,vlinder23,288.6687927246094 -20220908060000,vlinder24,288.4207458496094 -20220908060000,vlinder25,288.3875427246094 -20220908060000,vlinder26,288.6941833496094 -20220908060000,vlinder27,288.1883239746094 -20220908060000,vlinder28,287.9246520996094 -20220908070000,vlinder01,289.0707244873047 -20220908070000,vlinder02,289.0785369873047 -20220908070000,vlinder03,289.4027557373047 -20220908070000,vlinder04,289.4027557373047 -20220908070000,vlinder05,289.1937713623047 -20220908070000,vlinder06,289.3851776123047 -20220908070000,vlinder07,289.3851776123047 -20220908070000,vlinder08,289.3851776123047 -20220908070000,vlinder09,288.9047088623047 -20220908070000,vlinder10,288.9125213623047 -20220908070000,vlinder11,289.4008026123047 -20220908070000,vlinder12,289.4008026123047 -20220908070000,vlinder13,289.4008026123047 -20220908070000,vlinder14,289.4496307373047 -20220908070000,vlinder15,288.9086151123047 -20220908070000,vlinder16,289.4496307373047 -20220908070000,vlinder17,289.3422088623047 -20220908070000,vlinder18,289.4711151123047 -20220908070000,vlinder19,288.8578338623047 -20220908070000,vlinder20,288.8578338623047 -20220908070000,vlinder21,289.2894744873047 -20220908070000,vlinder22,288.7074432373047 -20220908070000,vlinder23,289.3031463623047 -20220908070000,vlinder24,289.1937713623047 -20220908070000,vlinder25,289.2562713623047 -20220908070000,vlinder26,289.5316619873047 -20220908070000,vlinder27,289.1937713623047 -20220908070000,vlinder28,289.0707244873047 -20220908080000,vlinder01,289.7432403564453 -20220908080000,vlinder02,289.7862091064453 -20220908080000,vlinder03,290.2432403564453 -20220908080000,vlinder04,290.2432403564453 -20220908080000,vlinder05,289.8448028564453 -20220908080000,vlinder06,289.9658966064453 -20220908080000,vlinder07,289.9658966064453 -20220908080000,vlinder08,289.9658966064453 -20220908080000,vlinder09,289.5108184814453 -20220908080000,vlinder10,289.5420684814453 -20220908080000,vlinder11,290.0244903564453 -20220908080000,vlinder12,290.0244903564453 -20220908080000,vlinder13,290.0244903564453 -20220908080000,vlinder14,290.0967559814453 -20220908080000,vlinder15,289.4971466064453 -20220908080000,vlinder16,290.0967559814453 -20220908080000,vlinder17,290.2080841064453 -20220908080000,vlinder18,290.3018341064453 -20220908080000,vlinder19,289.4092559814453 -20220908080000,vlinder20,289.4092559814453 -20220908080000,vlinder21,289.9365997314453 -20220908080000,vlinder22,289.9151153564453 -20220908080000,vlinder23,289.8975372314453 -20220908080000,vlinder24,289.8428497314453 -20220908080000,vlinder25,289.8682403564453 -20220908080000,vlinder26,290.3487091064453 -20220908080000,vlinder27,289.8448028564453 -20220908080000,vlinder28,289.7432403564453 -20220908090000,vlinder01,290.84986877441406 -20220908090000,vlinder02,290.90260314941406 -20220908090000,vlinder03,291.17213439941406 -20220908090000,vlinder04,291.17213439941406 -20220908090000,vlinder05,290.92799377441406 -20220908090000,vlinder06,290.93385314941406 -20220908090000,vlinder07,290.93385314941406 -20220908090000,vlinder08,290.93385314941406 -20220908090000,vlinder09,290.62916564941406 -20220908090000,vlinder10,290.67018127441406 -20220908090000,vlinder11,290.95143127441406 -20220908090000,vlinder12,290.95143127441406 -20220908090000,vlinder13,290.95143127441406 -20220908090000,vlinder14,291.01979064941406 -20220908090000,vlinder15,290.60182189941406 -20220908090000,vlinder16,291.01979064941406 -20220908090000,vlinder17,291.41432189941406 -20220908090000,vlinder18,291.57252502441406 -20220908090000,vlinder19,290.48658752441406 -20220908090000,vlinder20,290.48658752441406 -20220908090000,vlinder21,290.85963439941406 -20220908090000,vlinder22,291.12916564941406 -20220908090000,vlinder23,290.90846252441406 -20220908090000,vlinder24,290.89869689941406 -20220908090000,vlinder25,290.93580627441406 -20220908090000,vlinder26,291.27174377441406 -20220908090000,vlinder27,290.92799377441406 -20220908090000,vlinder28,290.84986877441406 -20220908100000,vlinder01,292.1182403564453 -20220908100000,vlinder02,292.2041778564453 -20220908100000,vlinder03,292.1397247314453 -20220908100000,vlinder04,292.1397247314453 -20220908100000,vlinder05,292.0537872314453 -20220908100000,vlinder06,292.0088653564453 -20220908100000,vlinder07,292.0088653564453 -20220908100000,vlinder08,292.0088653564453 -20220908100000,vlinder09,291.9268341064453 -20220908100000,vlinder10,291.9951934814453 -20220908100000,vlinder11,291.8252716064453 -20220908100000,vlinder12,291.8252716064453 -20220908100000,vlinder13,291.8252716064453 -20220908100000,vlinder14,291.8018341064453 -20220908100000,vlinder15,291.8721466064453 -20220908100000,vlinder16,291.8018341064453 -20220908100000,vlinder17,292.5342559814453 -20220908100000,vlinder18,292.7119903564453 -20220908100000,vlinder19,291.7998809814453 -20220908100000,vlinder20,291.7998809814453 -20220908100000,vlinder21,291.8408966064453 -20220908100000,vlinder22,292.5030059814453 -20220908100000,vlinder23,291.7041778564453 -20220908100000,vlinder24,291.9014434814453 -20220908100000,vlinder25,291.8584747314453 -20220908100000,vlinder26,292.2725372314453 -20220908100000,vlinder27,292.0537872314453 -20220908100000,vlinder28,292.1182403564453 -20220908110000,vlinder01,293.1538391113281 -20220908110000,vlinder02,293.2046203613281 -20220908110000,vlinder03,293.0815734863281 -20220908110000,vlinder04,293.0815734863281 -20220908110000,vlinder05,293.1128234863281 -20220908110000,vlinder06,293.4096984863281 -20220908110000,vlinder07,293.4096984863281 -20220908110000,vlinder08,293.4096984863281 -20220908110000,vlinder09,292.9995422363281 -20220908110000,vlinder10,293.0268859863281 -20220908110000,vlinder11,293.0503234863281 -20220908110000,vlinder12,293.0503234863281 -20220908110000,vlinder13,293.0503234863281 -20220908110000,vlinder14,292.9175109863281 -20220908110000,vlinder15,292.9975891113281 -20220908110000,vlinder16,292.9175109863281 -20220908110000,vlinder17,293.3159484863281 -20220908110000,vlinder18,293.4761047363281 -20220908110000,vlinder19,292.9878234863281 -20220908110000,vlinder20,292.9878234863281 -20220908110000,vlinder21,292.6636047363281 -20220908110000,vlinder22,293.1929016113281 -20220908110000,vlinder23,292.8100891113281 -20220908110000,vlinder24,292.9741516113281 -20220908110000,vlinder25,292.9878234863281 -20220908110000,vlinder26,293.3120422363281 -20220908110000,vlinder27,293.1128234863281 -20220908110000,vlinder28,293.1538391113281 -20220908120000,vlinder01,294.06060791015625 -20220908120000,vlinder02,294.08795166015625 -20220908120000,vlinder03,294.09576416015625 -20220908120000,vlinder04,294.09576416015625 -20220908120000,vlinder05,294.00592041015625 -20220908120000,vlinder06,294.32037353515625 -20220908120000,vlinder07,294.32037353515625 -20220908120000,vlinder08,294.32037353515625 -20220908120000,vlinder09,293.91802978515625 -20220908120000,vlinder10,293.93560791015625 -20220908120000,vlinder11,294.06060791015625 -20220908120000,vlinder12,294.06060791015625 -20220908120000,vlinder13,294.06060791015625 -20220908120000,vlinder14,293.96490478515625 -20220908120000,vlinder15,293.91998291015625 -20220908120000,vlinder16,293.96490478515625 -20220908120000,vlinder17,294.14068603515625 -20220908120000,vlinder18,294.27154541015625 -20220908120000,vlinder19,293.86138916015625 -20220908120000,vlinder20,293.86138916015625 -20220908120000,vlinder21,293.20904541015625 -20220908120000,vlinder22,293.72271728515625 -20220908120000,vlinder23,293.64459228515625 -20220908120000,vlinder24,293.82427978515625 -20220908120000,vlinder25,293.89068603515625 -20220908120000,vlinder26,294.27935791015625 -20220908120000,vlinder27,294.00592041015625 -20220908120000,vlinder28,294.06060791015625 -20220908130000,vlinder01,294.1498718261719 -20220908130000,vlinder02,294.2279968261719 -20220908130000,vlinder03,294.5229187011719 -20220908130000,vlinder04,294.5229187011719 -20220908130000,vlinder05,294.1264343261719 -20220908130000,vlinder06,294.3627624511719 -20220908130000,vlinder07,294.3627624511719 -20220908130000,vlinder08,294.3627624511719 -20220908130000,vlinder09,293.9350280761719 -20220908130000,vlinder10,293.9799499511719 -20220908130000,vlinder11,294.2631530761719 -20220908130000,vlinder12,294.2631530761719 -20220908130000,vlinder13,294.2631530761719 -20220908130000,vlinder14,294.2338562011719 -20220908130000,vlinder15,293.9213562011719 -20220908130000,vlinder16,294.2338562011719 -20220908130000,vlinder17,294.5561218261719 -20220908130000,vlinder18,294.6498718261719 -20220908130000,vlinder19,293.9076843261719 -20220908130000,vlinder20,293.9076843261719 -20220908130000,vlinder21,293.4975280761719 -20220908130000,vlinder22,294.3686218261719 -20220908130000,vlinder23,293.8217468261719 -20220908130000,vlinder24,293.9701843261719 -20220908130000,vlinder25,294.0404968261719 -20220908130000,vlinder26,294.7104187011719 -20220908130000,vlinder27,294.1264343261719 -20220908130000,vlinder28,294.1498718261719 -20220908140000,vlinder01,294.5083465576172 -20220908140000,vlinder02,294.5786590576172 -20220908140000,vlinder03,294.5884246826172 -20220908140000,vlinder04,294.5884246826172 -20220908140000,vlinder05,294.4497528076172 -20220908140000,vlinder06,294.6528778076172 -20220908140000,vlinder07,294.6528778076172 -20220908140000,vlinder08,294.6528778076172 -20220908140000,vlinder09,294.2895965576172 -20220908140000,vlinder10,294.3345184326172 -20220908140000,vlinder11,294.5142059326172 -20220908140000,vlinder12,294.5142059326172 -20220908140000,vlinder13,294.5142059326172 -20220908140000,vlinder14,294.4829559326172 -20220908140000,vlinder15,294.2720184326172 -20220908140000,vlinder16,294.4829559326172 -20220908140000,vlinder17,294.6587371826172 -20220908140000,vlinder18,294.7622528076172 -20220908140000,vlinder19,294.2251434326172 -20220908140000,vlinder20,294.2251434326172 -20220908140000,vlinder21,293.8286590576172 -20220908140000,vlinder22,294.6333465576172 -20220908140000,vlinder23,294.0708465576172 -20220908140000,vlinder24,294.2563934326172 -20220908140000,vlinder25,294.3169403076172 -20220908140000,vlinder26,294.7583465576172 -20220908140000,vlinder27,294.4497528076172 -20220908140000,vlinder28,294.5083465576172 -20220908150000,vlinder01,294.5538635253906 -20220908150000,vlinder02,294.6261291503906 -20220908150000,vlinder03,293.9679260253906 -20220908150000,vlinder04,293.9679260253906 -20220908150000,vlinder05,294.4913635253906 -20220908150000,vlinder06,294.3429260253906 -20220908150000,vlinder07,294.3429260253906 -20220908150000,vlinder08,294.3429260253906 -20220908150000,vlinder09,294.3253479003906 -20220908150000,vlinder10,294.3878479003906 -20220908150000,vlinder11,294.2237854003906 -20220908150000,vlinder12,294.2237854003906 -20220908150000,vlinder13,294.2237854003906 -20220908150000,vlinder14,294.2452697753906 -20220908150000,vlinder15,294.2648010253906 -20220908150000,vlinder16,294.2452697753906 -20220908150000,vlinder17,294.1105041503906 -20220908150000,vlinder18,294.2980041503906 -20220908150000,vlinder19,294.1632385253906 -20220908150000,vlinder20,294.1632385253906 -20220908150000,vlinder21,293.8976135253906 -20220908150000,vlinder22,294.6515197753906 -20220908150000,vlinder23,294.0753479003906 -20220908150000,vlinder24,294.2706604003906 -20220908150000,vlinder25,294.3390197753906 -20220908150000,vlinder26,294.0968322753906 -20220908150000,vlinder27,294.4913635253906 -20220908150000,vlinder28,294.5538635253906 -20220908160000,vlinder01,293.9060516357422 -20220908160000,vlinder02,293.7673797607422 -20220908160000,vlinder03,293.9822235107422 -20220908160000,vlinder04,293.9822235107422 -20220908160000,vlinder05,293.8181610107422 -20220908160000,vlinder06,294.4529266357422 -20220908160000,vlinder07,294.4529266357422 -20220908160000,vlinder08,294.4529266357422 -20220908160000,vlinder09,294.0876922607422 -20220908160000,vlinder10,293.9568328857422 -20220908160000,vlinder11,294.2830047607422 -20220908160000,vlinder12,294.2830047607422 -20220908160000,vlinder13,294.2830047607422 -20220908160000,vlinder14,294.2771453857422 -20220908160000,vlinder15,294.1677703857422 -20220908160000,vlinder16,294.2771453857422 -20220908160000,vlinder17,294.0115203857422 -20220908160000,vlinder18,294.1658172607422 -20220908160000,vlinder19,293.9822235107422 -20220908160000,vlinder20,293.9822235107422 -20220908160000,vlinder21,292.7869110107422 -20220908160000,vlinder22,292.6794891357422 -20220908160000,vlinder23,293.5271453857422 -20220908160000,vlinder24,293.5447235107422 -20220908160000,vlinder25,293.8415985107422 -20220908160000,vlinder26,294.1931610107422 -20220908160000,vlinder27,293.8181610107422 -20220908160000,vlinder28,293.9060516357422 -20220908170000,vlinder01,291.671630859375 -20220908170000,vlinder02,291.646240234375 -20220908170000,vlinder03,293.685302734375 -20220908170000,vlinder04,293.685302734375 -20220908170000,vlinder05,291.687255859375 -20220908170000,vlinder06,292.896240234375 -20220908170000,vlinder07,292.896240234375 -20220908170000,vlinder08,292.896240234375 -20220908170000,vlinder09,291.741943359375 -20220908170000,vlinder10,291.648193359375 -20220908170000,vlinder11,293.296630859375 -20220908170000,vlinder12,293.296630859375 -20220908170000,vlinder13,293.296630859375 -20220908170000,vlinder14,293.396240234375 -20220908170000,vlinder15,291.868896484375 -20220908170000,vlinder16,293.396240234375 -20220908170000,vlinder17,293.652099609375 -20220908170000,vlinder18,293.781005859375 -20220908170000,vlinder19,291.956787109375 -20220908170000,vlinder20,291.956787109375 -20220908170000,vlinder21,291.939208984375 -20220908170000,vlinder22,292.238037109375 -20220908170000,vlinder23,291.732177734375 -20220908170000,vlinder24,291.642333984375 -20220908170000,vlinder25,291.745849609375 -20220908170000,vlinder26,293.816162109375 -20220908170000,vlinder27,291.687255859375 -20220908170000,vlinder28,291.671630859375 -20220908180000,vlinder01,290.4748840332031 -20220908180000,vlinder02,290.4651184082031 -20220908180000,vlinder03,291.7912902832031 -20220908180000,vlinder04,291.7912902832031 -20220908180000,vlinder05,290.5823059082031 -20220908180000,vlinder06,291.0510559082031 -20220908180000,vlinder07,291.0510559082031 -20220908180000,vlinder08,291.0510559082031 -20220908180000,vlinder09,290.4455871582031 -20220908180000,vlinder10,290.3752746582031 -20220908180000,vlinder11,291.0451965332031 -20220908180000,vlinder12,291.0451965332031 -20220908180000,vlinder13,291.0451965332031 -20220908180000,vlinder14,291.0569152832031 -20220908180000,vlinder15,290.5061340332031 -20220908180000,vlinder16,291.0569152832031 -20220908180000,vlinder17,292.5569152832031 -20220908180000,vlinder18,292.8225402832031 -20220908180000,vlinder19,290.3576965332031 -20220908180000,vlinder20,290.3576965332031 -20220908180000,vlinder21,291.5022277832031 -20220908180000,vlinder22,291.5823059082031 -20220908180000,vlinder23,290.7834777832031 -20220908180000,vlinder24,290.7033996582031 -20220908180000,vlinder25,290.6291809082031 -20220908180000,vlinder26,291.8830871582031 -20220908180000,vlinder27,290.5823059082031 -20220908180000,vlinder28,290.4748840332031 -20220908190000,vlinder01,289.77513122558594 -20220908190000,vlinder02,289.76927185058594 -20220908190000,vlinder03,289.92552185058594 -20220908190000,vlinder04,289.92552185058594 -20220908190000,vlinder05,289.86106872558594 -20220908190000,vlinder06,290.07981872558594 -20220908190000,vlinder07,290.07981872558594 -20220908190000,vlinder08,290.07981872558594 -20220908190000,vlinder09,289.70872497558594 -20220908190000,vlinder10,289.66575622558594 -20220908190000,vlinder11,290.02317810058594 -20220908190000,vlinder12,290.02317810058594 -20220908190000,vlinder13,290.02317810058594 -20220908190000,vlinder14,290.07200622558594 -20220908190000,vlinder15,289.73020935058594 -20220908190000,vlinder16,290.07200622558594 -20220908190000,vlinder17,290.22825622558594 -20220908190000,vlinder18,290.41770935058594 -20220908190000,vlinder19,289.65989685058594 -20220908190000,vlinder20,289.65989685058594 -20220908190000,vlinder21,290.41966247558594 -20220908190000,vlinder22,289.72044372558594 -20220908190000,vlinder23,289.97434997558594 -20220908190000,vlinder24,289.91184997558594 -20220908190000,vlinder25,289.88645935058594 -20220908190000,vlinder26,289.91575622558594 -20220908190000,vlinder27,289.86106872558594 -20220908190000,vlinder28,289.77513122558594 -20220908200000,vlinder01,289.2615509033203 -20220908200000,vlinder02,289.2967071533203 -20220908200000,vlinder03,289.5799102783203 -20220908200000,vlinder04,289.5799102783203 -20220908200000,vlinder05,289.3357696533203 -20220908200000,vlinder06,289.4998321533203 -20220908200000,vlinder07,289.4998321533203 -20220908200000,vlinder08,289.4998321533203 -20220908200000,vlinder09,289.1345977783203 -20220908200000,vlinder10,289.1482696533203 -20220908200000,vlinder11,289.5213165283203 -20220908200000,vlinder12,289.5213165283203 -20220908200000,vlinder13,289.5213165283203 -20220908200000,vlinder14,289.5857696533203 -20220908200000,vlinder15,289.1306915283203 -20220908200000,vlinder16,289.5857696533203 -20220908200000,vlinder17,289.7713165283203 -20220908200000,vlinder18,289.9744415283203 -20220908200000,vlinder19,289.0076446533203 -20220908200000,vlinder20,289.0076446533203 -20220908200000,vlinder21,290.2049102783203 -20220908200000,vlinder22,289.3162384033203 -20220908200000,vlinder23,289.3865509033203 -20220908200000,vlinder24,289.3318634033203 -20220908200000,vlinder25,289.2517852783203 -20220908200000,vlinder26,289.5818634033203 -20220908200000,vlinder27,289.3357696533203 -20220908200000,vlinder28,289.2615509033203 -20220908210000,vlinder01,288.7602081298828 -20220908210000,vlinder02,288.7641143798828 -20220908210000,vlinder03,289.2426300048828 -20220908210000,vlinder04,289.2426300048828 -20220908210000,vlinder05,288.8988800048828 -20220908210000,vlinder06,288.9691925048828 -20220908210000,vlinder07,288.9691925048828 -20220908210000,vlinder08,288.9691925048828 -20220908210000,vlinder09,288.7602081298828 -20220908210000,vlinder10,288.7484893798828 -20220908210000,vlinder11,289.0863800048828 -20220908210000,vlinder12,289.0863800048828 -20220908210000,vlinder13,289.0863800048828 -20220908210000,vlinder14,289.2133331298828 -20220908210000,vlinder15,288.7621612548828 -20220908210000,vlinder16,289.2133331298828 -20220908210000,vlinder17,289.3676300048828 -20220908210000,vlinder18,289.5355987548828 -20220908210000,vlinder19,288.6117706298828 -20220908210000,vlinder20,288.6117706298828 -20220908210000,vlinder21,289.7836456298828 -20220908210000,vlinder22,288.7875518798828 -20220908210000,vlinder23,289.0863800048828 -20220908210000,vlinder24,288.9594268798828 -20220908210000,vlinder25,288.8930206298828 -20220908210000,vlinder26,289.2250518798828 -20220908210000,vlinder27,288.8988800048828 -20220908210000,vlinder28,288.7602081298828 -20220908220000,vlinder01,288.4790496826172 -20220908220000,vlinder02,288.4810028076172 -20220908220000,vlinder03,288.8970184326172 -20220908220000,vlinder04,288.8970184326172 -20220908220000,vlinder05,288.6196746826172 -20220908220000,vlinder06,288.7642059326172 -20220908220000,vlinder07,288.7642059326172 -20220908220000,vlinder08,288.7642059326172 -20220908220000,vlinder09,288.5356903076172 -20220908220000,vlinder10,288.5122528076172 -20220908220000,vlinder11,288.7837371826172 -20220908220000,vlinder12,288.7837371826172 -20220908220000,vlinder13,288.7837371826172 -20220908220000,vlinder14,288.8560028076172 -20220908220000,vlinder15,288.5474090576172 -20220908220000,vlinder16,288.8560028076172 -20220908220000,vlinder17,289.1450653076172 -20220908220000,vlinder18,289.2954559326172 -20220908220000,vlinder19,288.4790496826172 -20220908220000,vlinder20,288.4790496826172 -20220908220000,vlinder21,289.5513153076172 -20220908220000,vlinder22,288.6743621826172 -20220908220000,vlinder23,288.8345184326172 -20220908220000,vlinder24,288.7075653076172 -20220908220000,vlinder25,288.6392059326172 -20220908220000,vlinder26,288.9438934326172 -20220908220000,vlinder27,288.6196746826172 -20220908220000,vlinder28,288.4790496826172 -20220908230000,vlinder01,288.39085388183594 -20220908230000,vlinder02,288.39671325683594 -20220908230000,vlinder03,288.55101013183594 -20220908230000,vlinder04,288.55101013183594 -20220908230000,vlinder05,288.54905700683594 -20220908230000,vlinder06,288.60374450683594 -20220908230000,vlinder07,288.60374450683594 -20220908230000,vlinder08,288.60374450683594 -20220908230000,vlinder09,288.43577575683594 -20220908230000,vlinder10,288.41624450683594 -20220908230000,vlinder11,288.60960388183594 -20220908230000,vlinder12,288.60960388183594 -20220908230000,vlinder13,288.60960388183594 -20220908230000,vlinder14,288.67796325683594 -20220908230000,vlinder15,288.43772888183594 -20220908230000,vlinder16,288.67796325683594 -20220908230000,vlinder17,288.80686950683594 -20220908230000,vlinder18,288.96897888183594 -20220908230000,vlinder19,288.33811950683594 -20220908230000,vlinder20,288.33811950683594 -20220908230000,vlinder21,289.49436950683594 -20220908230000,vlinder22,288.64866638183594 -20220908230000,vlinder23,288.79319763183594 -20220908230000,vlinder24,288.65843200683594 -20220908230000,vlinder25,288.58226013183594 -20220908230000,vlinder26,288.60765075683594 -20220908230000,vlinder27,288.54905700683594 -20220908230000,vlinder28,288.39085388183594 -20220909000000,vlinder01,288.1691436767578 -20220909000000,vlinder02,288.1847686767578 -20220909000000,vlinder03,288.2707061767578 -20220909000000,vlinder04,288.2707061767578 -20220909000000,vlinder05,288.3351593017578 -20220909000000,vlinder06,288.3605499267578 -20220909000000,vlinder07,288.3605499267578 -20220909000000,vlinder08,288.3605499267578 -20220909000000,vlinder09,288.2003936767578 -20220909000000,vlinder10,288.1769561767578 -20220909000000,vlinder11,288.3781280517578 -20220909000000,vlinder12,288.3781280517578 -20220909000000,vlinder13,288.3781280517578 -20220909000000,vlinder14,288.4503936767578 -20220909000000,vlinder15,288.2042999267578 -20220909000000,vlinder16,288.4503936767578 -20220909000000,vlinder17,288.6242218017578 -20220909000000,vlinder18,288.7980499267578 -20220909000000,vlinder19,288.0792999267578 -20220909000000,vlinder20,288.0792999267578 -20220909000000,vlinder21,289.3195343017578 -20220909000000,vlinder22,288.5519561767578 -20220909000000,vlinder23,288.6027374267578 -20220909000000,vlinder24,288.4582061767578 -20220909000000,vlinder25,288.3761749267578 -20220909000000,vlinder26,288.3195343017578 -20220909000000,vlinder27,288.3351593017578 -20220909000000,vlinder28,288.1691436767578 -20220909010000,vlinder01,288.1522216796875 -20220909010000,vlinder02,288.1776123046875 -20220909010000,vlinder03,288.1893310546875 -20220909010000,vlinder04,288.1893310546875 -20220909010000,vlinder05,288.3162841796875 -20220909010000,vlinder06,288.3280029296875 -20220909010000,vlinder07,288.3280029296875 -20220909010000,vlinder08,288.3280029296875 -20220909010000,vlinder09,288.1365966796875 -20220909010000,vlinder10,288.1268310546875 -20220909010000,vlinder11,288.3416748046875 -20220909010000,vlinder12,288.3416748046875 -20220909010000,vlinder13,288.3416748046875 -20220909010000,vlinder14,288.4061279296875 -20220909010000,vlinder15,288.1326904296875 -20220909010000,vlinder16,288.4061279296875 -20220909010000,vlinder17,288.6092529296875 -20220909010000,vlinder18,288.7772216796875 -20220909010000,vlinder19,288.0194091796875 -20220909010000,vlinder20,288.0194091796875 -20220909010000,vlinder21,289.2166748046875 -20220909010000,vlinder22,288.5545654296875 -20220909010000,vlinder23,288.5662841796875 -20220909010000,vlinder24,288.4276123046875 -20220909010000,vlinder25,288.3533935546875 -20220909010000,vlinder26,288.2440185546875 -20220909010000,vlinder27,288.3162841796875 -20220909010000,vlinder28,288.1522216796875 -20220909020000,vlinder01,288.1587371826172 -20220909020000,vlinder02,288.1997528076172 -20220909020000,vlinder03,288.1587371826172 -20220909020000,vlinder04,288.1587371826172 -20220909020000,vlinder05,288.3169403076172 -20220909020000,vlinder06,288.2349090576172 -20220909020000,vlinder07,288.2349090576172 -20220909020000,vlinder08,288.2349090576172 -20220909020000,vlinder09,288.0845184326172 -20220909020000,vlinder10,288.0903778076172 -20220909020000,vlinder11,288.2700653076172 -20220909020000,vlinder12,288.2700653076172 -20220909020000,vlinder13,288.2700653076172 -20220909020000,vlinder14,288.3520965576172 -20220909020000,vlinder15,288.0649871826172 -20220909020000,vlinder16,288.3520965576172 -20220909020000,vlinder17,288.5356903076172 -20220909020000,vlinder18,288.7095184326172 -20220909020000,vlinder19,287.9067840576172 -20220909020000,vlinder20,287.9067840576172 -20220909020000,vlinder21,289.2173309326172 -20220909020000,vlinder22,288.5806121826172 -20220909020000,vlinder23,288.5376434326172 -20220909020000,vlinder24,288.4145965576172 -20220909020000,vlinder25,288.3384246826172 -20220909020000,vlinder26,288.1938934326172 -20220909020000,vlinder27,288.3169403076172 -20220909020000,vlinder28,288.1587371826172 -20220909030000,vlinder01,288.26922607421875 -20220909030000,vlinder02,288.31024169921875 -20220909030000,vlinder03,288.03485107421875 -20220909030000,vlinder04,288.03485107421875 -20220909030000,vlinder05,288.41571044921875 -20220909030000,vlinder06,288.20672607421875 -20220909030000,vlinder07,288.20672607421875 -20220909030000,vlinder08,288.20672607421875 -20220909030000,vlinder09,288.15789794921875 -20220909030000,vlinder10,288.17547607421875 -20220909030000,vlinder11,288.24188232421875 -20220909030000,vlinder12,288.24188232421875 -20220909030000,vlinder13,288.24188232421875 -20220909030000,vlinder14,288.33172607421875 -20220909030000,vlinder15,288.12274169921875 -20220909030000,vlinder16,288.33172607421875 -20220909030000,vlinder17,288.29266357421875 -20220909030000,vlinder18,288.46453857421875 -20220909030000,vlinder19,287.89422607421875 -20220909030000,vlinder20,287.89422607421875 -20220909030000,vlinder21,289.24578857421875 -20220909030000,vlinder22,288.65789794921875 -20220909030000,vlinder23,288.59149169921875 -20220909030000,vlinder24,288.49578857421875 -20220909030000,vlinder25,288.41766357421875 -20220909030000,vlinder26,288.03289794921875 -20220909030000,vlinder27,288.41571044921875 -20220909030000,vlinder28,288.26922607421875 -20220909040000,vlinder01,288.405517578125 -20220909040000,vlinder02,288.479736328125 -20220909040000,vlinder03,288.026611328125 -20220909040000,vlinder04,288.026611328125 -20220909040000,vlinder05,288.548095703125 -20220909040000,vlinder06,288.221923828125 -20220909040000,vlinder07,288.221923828125 -20220909040000,vlinder08,288.221923828125 -20220909040000,vlinder09,288.210205078125 -20220909040000,vlinder10,288.257080078125 -20220909040000,vlinder11,288.241455078125 -20220909040000,vlinder12,288.241455078125 -20220909040000,vlinder13,288.241455078125 -20220909040000,vlinder14,288.329345703125 -20220909040000,vlinder15,288.153564453125 -20220909040000,vlinder16,288.329345703125 -20220909040000,vlinder17,288.180908203125 -20220909040000,vlinder18,288.341064453125 -20220909040000,vlinder19,287.909423828125 -20220909040000,vlinder20,287.909423828125 -20220909040000,vlinder21,289.268798828125 -20220909040000,vlinder22,288.796142578125 -20220909040000,vlinder23,288.688720703125 -20220909040000,vlinder24,288.616455078125 -20220909040000,vlinder25,288.534423828125 -20220909040000,vlinder26,288.020751953125 -20220909040000,vlinder27,288.548095703125 -20220909040000,vlinder28,288.405517578125 -20220909050000,vlinder01,288.58827209472656 -20220909050000,vlinder02,288.66835021972656 -20220909050000,vlinder03,288.06483459472656 -20220909050000,vlinder04,288.06483459472656 -20220909050000,vlinder05,288.70936584472656 -20220909050000,vlinder06,288.25233459472656 -20220909050000,vlinder07,288.25233459472656 -20220909050000,vlinder08,288.25233459472656 -20220909050000,vlinder09,288.34999084472656 -20220909050000,vlinder10,288.41249084472656 -20220909050000,vlinder11,288.32460021972656 -20220909050000,vlinder12,288.32460021972656 -20220909050000,vlinder13,288.32460021972656 -20220909050000,vlinder14,288.45155334472656 -20220909050000,vlinder15,288.27381896972656 -20220909050000,vlinder16,288.45155334472656 -20220909050000,vlinder17,288.08241271972656 -20220909050000,vlinder18,288.23475646972656 -20220909050000,vlinder19,287.97694396972656 -20220909050000,vlinder20,287.97694396972656 -20220909050000,vlinder21,289.24647521972656 -20220909050000,vlinder22,288.75233459472656 -20220909050000,vlinder23,288.77577209472656 -20220909050000,vlinder24,288.73085021972656 -20220909050000,vlinder25,288.67225646972656 -20220909050000,vlinder26,288.02186584472656 -20220909050000,vlinder27,288.70936584472656 -20220909050000,vlinder28,288.58827209472656 -20220909060000,vlinder01,288.83453369140625 -20220909060000,vlinder02,288.88336181640625 -20220909060000,vlinder03,288.31500244140625 -20220909060000,vlinder04,288.31500244140625 -20220909060000,vlinder05,288.88726806640625 -20220909060000,vlinder06,288.63531494140625 -20220909060000,vlinder07,288.63531494140625 -20220909060000,vlinder08,288.63531494140625 -20220909060000,vlinder09,288.65875244140625 -20220909060000,vlinder10,288.68804931640625 -20220909060000,vlinder11,288.68023681640625 -20220909060000,vlinder12,288.68023681640625 -20220909060000,vlinder13,288.68023681640625 -20220909060000,vlinder14,288.79156494140625 -20220909060000,vlinder15,288.60797119140625 -20220909060000,vlinder16,288.79156494140625 -20220909060000,vlinder17,288.31890869140625 -20220909060000,vlinder18,288.46343994140625 -20220909060000,vlinder19,288.30133056640625 -20220909060000,vlinder20,288.30133056640625 -20220909060000,vlinder21,289.17633056640625 -20220909060000,vlinder22,288.71929931640625 -20220909060000,vlinder23,288.85992431640625 -20220909060000,vlinder24,288.84625244140625 -20220909060000,vlinder25,288.81890869140625 -20220909060000,vlinder26,288.29156494140625 -20220909060000,vlinder27,288.88726806640625 -20220909060000,vlinder28,288.83453369140625 -20220909070000,vlinder01,288.89501953125 -20220909070000,vlinder02,288.88720703125 -20220909070000,vlinder03,288.99072265625 -20220909070000,vlinder04,288.99072265625 -20220909070000,vlinder05,288.93798828125 -20220909070000,vlinder06,289.16455078125 -20220909070000,vlinder07,289.16455078125 -20220909070000,vlinder08,289.16455078125 -20220909070000,vlinder09,288.92626953125 -20220909070000,vlinder10,288.89501953125 -20220909070000,vlinder11,289.08837890625 -20220909070000,vlinder12,289.08837890625 -20220909070000,vlinder13,289.08837890625 -20220909070000,vlinder14,289.10791015625 -20220909070000,vlinder15,288.94189453125 -20220909070000,vlinder16,289.10791015625 -20220909070000,vlinder17,289.13134765625 -20220909070000,vlinder18,289.30712890625 -20220909070000,vlinder19,288.80126953125 -20220909070000,vlinder20,288.80126953125 -20220909070000,vlinder21,289.14111328125 -20220909070000,vlinder22,288.83447265625 -20220909070000,vlinder23,288.95361328125 -20220909070000,vlinder24,288.91064453125 -20220909070000,vlinder25,288.92431640625 -20220909070000,vlinder26,289.06884765625 -20220909070000,vlinder27,288.93798828125 -20220909070000,vlinder28,288.89501953125 -20220909080000,vlinder01,289.2922058105469 -20220909080000,vlinder02,289.2746276855469 -20220909080000,vlinder03,289.5910339355469 -20220909080000,vlinder04,289.5910339355469 -20220909080000,vlinder05,289.2785339355469 -20220909080000,vlinder06,289.6945495605469 -20220909080000,vlinder07,289.6945495605469 -20220909080000,vlinder08,289.6945495605469 -20220909080000,vlinder09,289.3371276855469 -20220909080000,vlinder10,289.2980651855469 -20220909080000,vlinder11,289.5519714355469 -20220909080000,vlinder12,289.5519714355469 -20220909080000,vlinder13,289.5519714355469 -20220909080000,vlinder14,289.5285339355469 -20220909080000,vlinder15,289.3703308105469 -20220909080000,vlinder16,289.5285339355469 -20220909080000,vlinder17,289.8918151855469 -20220909080000,vlinder18,290.0793151855469 -20220909080000,vlinder19,289.2882995605469 -20220909080000,vlinder20,289.2882995605469 -20220909080000,vlinder21,289.6203308105469 -20220909080000,vlinder22,289.4172058105469 -20220909080000,vlinder23,289.1828308105469 -20220909080000,vlinder24,289.2121276855469 -20220909080000,vlinder25,289.1965026855469 -20220909080000,vlinder26,289.7394714355469 -20220909080000,vlinder27,289.2785339355469 -20220909080000,vlinder28,289.2922058105469 -20220909090000,vlinder01,289.9774932861328 -20220909090000,vlinder02,289.9931182861328 -20220909090000,vlinder03,290.3349151611328 -20220909090000,vlinder04,290.3349151611328 -20220909090000,vlinder05,290.0224151611328 -20220909090000,vlinder06,290.3544464111328 -20220909090000,vlinder07,290.3544464111328 -20220909090000,vlinder08,290.3544464111328 -20220909090000,vlinder09,289.9345245361328 -20220909090000,vlinder10,289.9169464111328 -20220909090000,vlinder11,290.2235870361328 -20220909090000,vlinder12,290.2235870361328 -20220909090000,vlinder13,290.2235870361328 -20220909090000,vlinder14,290.1923370361328 -20220909090000,vlinder15,289.9599151611328 -20220909090000,vlinder16,290.1923370361328 -20220909090000,vlinder17,290.7567901611328 -20220909090000,vlinder18,290.9462432861328 -20220909090000,vlinder19,289.8974151611328 -20220909090000,vlinder20,289.8974151611328 -20220909090000,vlinder21,290.4696807861328 -20220909090000,vlinder22,290.5067901611328 -20220909090000,vlinder23,290.0146026611328 -20220909090000,vlinder24,290.0478057861328 -20220909090000,vlinder25,289.9774932861328 -20220909090000,vlinder26,290.4950714111328 -20220909090000,vlinder27,290.0224151611328 -20220909090000,vlinder28,289.9774932861328 -20220909100000,vlinder01,291.1991424560547 -20220909100000,vlinder02,291.2753143310547 -20220909100000,vlinder03,291.0389862060547 -20220909100000,vlinder04,291.0389862060547 -20220909100000,vlinder05,291.2714080810547 -20220909100000,vlinder06,291.2010955810547 -20220909100000,vlinder07,291.2010955810547 -20220909100000,vlinder08,291.2010955810547 -20220909100000,vlinder09,290.9628143310547 -20220909100000,vlinder10,291.0057830810547 -20220909100000,vlinder11,291.0917205810547 -20220909100000,vlinder12,291.0917205810547 -20220909100000,vlinder13,291.0917205810547 -20220909100000,vlinder14,291.0936737060547 -20220909100000,vlinder15,290.9335174560547 -20220909100000,vlinder16,291.0936737060547 -20220909100000,vlinder17,291.4569549560547 -20220909100000,vlinder18,291.6717987060547 -20220909100000,vlinder19,290.8065643310547 -20220909100000,vlinder20,290.8065643310547 -20220909100000,vlinder21,291.3710174560547 -20220909100000,vlinder22,291.9217987060547 -20220909100000,vlinder23,291.2303924560547 -20220909100000,vlinder24,291.2967987060547 -20220909100000,vlinder25,291.2323455810547 -20220909100000,vlinder26,291.1639862060547 -20220909100000,vlinder27,291.2714080810547 -20220909100000,vlinder28,291.1991424560547 -20220909110000,vlinder01,292.1045837402344 -20220909110000,vlinder02,292.2061462402344 -20220909110000,vlinder03,291.8467712402344 -20220909110000,vlinder04,291.8467712402344 -20220909110000,vlinder05,292.1690368652344 -20220909110000,vlinder06,291.8799743652344 -20220909110000,vlinder07,291.8799743652344 -20220909110000,vlinder08,291.8799743652344 -20220909110000,vlinder09,291.7080993652344 -20220909110000,vlinder10,291.7881774902344 -20220909110000,vlinder11,291.9053649902344 -20220909110000,vlinder12,291.9053649902344 -20220909110000,vlinder13,291.9053649902344 -20220909110000,vlinder14,291.9952087402344 -20220909110000,vlinder15,291.6436462402344 -20220909110000,vlinder16,291.9952087402344 -20220909110000,vlinder17,291.7608337402344 -20220909110000,vlinder18,291.9170837402344 -20220909110000,vlinder19,291.3643493652344 -20220909110000,vlinder20,291.3643493652344 -20220909110000,vlinder21,291.5655212402344 -20220909110000,vlinder22,292.5811462402344 -20220909110000,vlinder23,292.0420837402344 -20220909110000,vlinder24,292.1065368652344 -20220909110000,vlinder25,292.1514587402344 -20220909110000,vlinder26,291.8897399902344 -20220909110000,vlinder27,292.1690368652344 -20220909110000,vlinder28,292.1045837402344 -20220909120000,vlinder01,292.7295379638672 -20220909120000,vlinder02,292.7529754638672 -20220909120000,vlinder03,292.5869598388672 -20220909120000,vlinder04,292.5869598388672 -20220909120000,vlinder05,292.5791473388672 -20220909120000,vlinder06,292.5732879638672 -20220909120000,vlinder07,292.5732879638672 -20220909120000,vlinder08,292.5732879638672 -20220909120000,vlinder09,292.3701629638672 -20220909120000,vlinder10,292.4424285888672 -20220909120000,vlinder11,292.6689910888672 -20220909120000,vlinder12,292.6689910888672 -20220909120000,vlinder13,292.6689910888672 -20220909120000,vlinder14,292.7920379638672 -20220909120000,vlinder15,292.3115692138672 -20220909120000,vlinder16,292.7920379638672 -20220909120000,vlinder17,292.3936004638672 -20220909120000,vlinder18,292.5264129638672 -20220909120000,vlinder19,292.1436004638672 -20220909120000,vlinder20,292.1436004638672 -20220909120000,vlinder21,291.2393035888672 -20220909120000,vlinder22,292.6279754638672 -20220909120000,vlinder23,291.8936004638672 -20220909120000,vlinder24,292.1709442138672 -20220909120000,vlinder25,292.3662567138672 -20220909120000,vlinder26,292.6611785888672 -20220909120000,vlinder27,292.5791473388672 -20220909120000,vlinder28,292.7295379638672 -20220909130000,vlinder01,291.55828857421875 -20220909130000,vlinder02,291.68328857421875 -20220909130000,vlinder03,292.84344482421875 -20220909130000,vlinder04,292.84344482421875 -20220909130000,vlinder05,291.48211669921875 -20220909130000,vlinder06,291.46063232421875 -20220909130000,vlinder07,291.46063232421875 -20220909130000,vlinder08,291.46063232421875 -20220909130000,vlinder09,291.16961669921875 -20220909130000,vlinder10,291.29852294921875 -20220909130000,vlinder11,291.45672607421875 -20220909130000,vlinder12,291.45672607421875 -20220909130000,vlinder13,291.45672607421875 -20220909130000,vlinder14,291.47235107421875 -20220909130000,vlinder15,291.09735107421875 -20220909130000,vlinder16,291.47235107421875 -20220909130000,vlinder17,293.07781982421875 -20220909130000,vlinder18,293.17938232421875 -20220909130000,vlinder19,291.32781982421875 -20220909130000,vlinder20,291.32781982421875 -20220909130000,vlinder21,290.85125732421875 -20220909130000,vlinder22,291.13055419921875 -20220909130000,vlinder23,291.00946044921875 -20220909130000,vlinder24,291.27313232421875 -20220909130000,vlinder25,291.22821044921875 -20220909130000,vlinder26,293.12469482421875 -20220909130000,vlinder27,291.48211669921875 -20220909130000,vlinder28,291.55828857421875 -20220909140000,vlinder01,289.9701385498047 -20220909140000,vlinder02,289.8353729248047 -20220909140000,vlinder03,290.4056854248047 -20220909140000,vlinder04,290.4056854248047 -20220909140000,vlinder05,289.8490447998047 -20220909140000,vlinder06,291.1732635498047 -20220909140000,vlinder07,291.1732635498047 -20220909140000,vlinder08,291.1732635498047 -20220909140000,vlinder09,290.7592010498047 -20220909140000,vlinder10,290.5228729248047 -20220909140000,vlinder11,290.8978729248047 -20220909140000,vlinder12,290.8978729248047 -20220909140000,vlinder13,290.8978729248047 -20220909140000,vlinder14,290.8197479248047 -20220909140000,vlinder15,290.9467010498047 -20220909140000,vlinder16,290.8197479248047 -20220909140000,vlinder17,292.0599822998047 -20220909140000,vlinder18,292.4095916748047 -20220909140000,vlinder19,291.1127166748047 -20220909140000,vlinder20,291.1127166748047 -20220909140000,vlinder21,289.9017791748047 -20220909140000,vlinder22,290.7338104248047 -20220909140000,vlinder23,289.8881072998047 -20220909140000,vlinder24,289.8275604248047 -20220909140000,vlinder25,289.8842010498047 -20220909140000,vlinder26,290.6283416748047 -20220909140000,vlinder27,289.8490447998047 -20220909140000,vlinder28,289.9701385498047 -20220909150000,vlinder01,290.6858825683594 -20220909150000,vlinder02,290.6976013183594 -20220909150000,vlinder03,290.8831481933594 -20220909150000,vlinder04,290.8831481933594 -20220909150000,vlinder05,290.4593200683594 -20220909150000,vlinder06,291.3226013183594 -20220909150000,vlinder07,291.3226013183594 -20220909150000,vlinder08,291.3226013183594 -20220909150000,vlinder09,290.8499450683594 -20220909150000,vlinder10,290.8167419433594 -20220909150000,vlinder11,290.5823669433594 -20220909150000,vlinder12,290.5823669433594 -20220909150000,vlinder13,290.5823669433594 -20220909150000,vlinder14,290.2854919433594 -20220909150000,vlinder15,290.9065856933594 -20220909150000,vlinder16,290.2854919433594 -20220909150000,vlinder17,291.5433044433594 -20220909150000,vlinder18,291.6546325683594 -20220909150000,vlinder19,291.0550231933594 -20220909150000,vlinder20,291.0550231933594 -20220909150000,vlinder21,289.9534606933594 -20220909150000,vlinder22,290.7737731933594 -20220909150000,vlinder23,289.9964294433594 -20220909150000,vlinder24,290.1936950683594 -20220909150000,vlinder25,290.1839294433594 -20220909150000,vlinder26,291.2327575683594 -20220909150000,vlinder27,290.4593200683594 -20220909150000,vlinder28,290.6858825683594 -20220909160000,vlinder01,290.5747528076172 -20220909160000,vlinder02,290.4731903076172 -20220909160000,vlinder03,290.7837371826172 -20220909160000,vlinder04,290.7837371826172 -20220909160000,vlinder05,290.4360809326172 -20220909160000,vlinder06,291.3618621826172 -20220909160000,vlinder07,291.3618621826172 -20220909160000,vlinder08,291.3618621826172 -20220909160000,vlinder09,290.7856903076172 -20220909160000,vlinder10,290.6841278076172 -20220909160000,vlinder11,290.8110809326172 -20220909160000,vlinder12,290.8110809326172 -20220909160000,vlinder13,290.8110809326172 -20220909160000,vlinder14,290.6001434326172 -20220909160000,vlinder15,290.8794403076172 -20220909160000,vlinder16,290.6001434326172 -20220909160000,vlinder17,291.0493621826172 -20220909160000,vlinder18,291.2114715576172 -20220909160000,vlinder19,290.8091278076172 -20220909160000,vlinder20,290.8091278076172 -20220909160000,vlinder21,289.9009246826172 -20220909160000,vlinder22,289.8677215576172 -20220909160000,vlinder23,290.1020965576172 -20220909160000,vlinder24,290.1958465576172 -20220909160000,vlinder25,290.3149871826172 -20220909160000,vlinder26,291.0337371826172 -20220909160000,vlinder27,290.4360809326172 -20220909160000,vlinder28,290.5747528076172 -20220909170000,vlinder01,289.3843078613281 -20220909170000,vlinder02,289.3784484863281 -20220909170000,vlinder03,290.3843078613281 -20220909170000,vlinder04,290.3843078613281 -20220909170000,vlinder05,289.4429016113281 -20220909170000,vlinder06,290.3335266113281 -20220909170000,vlinder07,290.3335266113281 -20220909170000,vlinder08,290.3335266113281 -20220909170000,vlinder09,289.7534484863281 -20220909170000,vlinder10,289.7085266113281 -20220909170000,vlinder11,289.9663391113281 -20220909170000,vlinder12,289.9663391113281 -20220909170000,vlinder13,289.9663391113281 -20220909170000,vlinder14,289.7983703613281 -20220909170000,vlinder15,289.8413391113281 -20220909170000,vlinder16,289.7983703613281 -20220909170000,vlinder17,290.5210266113281 -20220909170000,vlinder18,290.5952453613281 -20220909170000,vlinder19,290.2710266113281 -20220909170000,vlinder20,290.2710266113281 -20220909170000,vlinder21,289.7085266113281 -20220909170000,vlinder22,289.8061828613281 -20220909170000,vlinder23,289.5718078613281 -20220909170000,vlinder24,289.4995422363281 -20220909170000,vlinder25,289.4819641113281 -20220909170000,vlinder26,290.6538391113281 -20220909170000,vlinder27,289.4429016113281 -20220909170000,vlinder28,289.3843078613281 -20220909180000,vlinder01,289.16278076171875 -20220909180000,vlinder02,289.16473388671875 -20220909180000,vlinder03,289.64324951171875 -20220909180000,vlinder04,289.64324951171875 -20220909180000,vlinder05,289.19207763671875 -20220909180000,vlinder06,289.62567138671875 -20220909180000,vlinder07,289.62567138671875 -20220909180000,vlinder08,289.62567138671875 -20220909180000,vlinder09,289.34442138671875 -20220909180000,vlinder10,289.33660888671875 -20220909180000,vlinder11,289.36004638671875 -20220909180000,vlinder12,289.36004638671875 -20220909180000,vlinder13,289.36004638671875 -20220909180000,vlinder14,289.27020263671875 -20220909180000,vlinder15,289.37176513671875 -20220909180000,vlinder16,289.27020263671875 -20220909180000,vlinder17,290.02215576171875 -20220909180000,vlinder18,290.15496826171875 -20220909180000,vlinder19,289.60223388671875 -20220909180000,vlinder20,289.60223388671875 -20220909180000,vlinder21,289.45379638671875 -20220909180000,vlinder22,289.24090576171875 -20220909180000,vlinder23,289.18231201171875 -20220909180000,vlinder24,289.17254638671875 -20220909180000,vlinder25,289.15301513671875 -20220909180000,vlinder26,289.83270263671875 -20220909180000,vlinder27,289.19207763671875 -20220909180000,vlinder28,289.16278076171875 -20220909190000,vlinder01,288.9925231933594 -20220909190000,vlinder02,289.1194763183594 -20220909190000,vlinder03,289.1683044433594 -20220909190000,vlinder04,289.1683044433594 -20220909190000,vlinder05,289.1956481933594 -20220909190000,vlinder06,288.6800231933594 -20220909190000,vlinder07,288.6800231933594 -20220909190000,vlinder08,288.6800231933594 -20220909190000,vlinder09,288.5550231933594 -20220909190000,vlinder10,288.6468200683594 -20220909190000,vlinder11,289.1018981933594 -20220909190000,vlinder12,289.1018981933594 -20220909190000,vlinder13,289.1018981933594 -20220909190000,vlinder14,289.3421325683594 -20220909190000,vlinder15,288.4749450683594 -20220909190000,vlinder16,289.3421325683594 -20220909190000,vlinder17,288.9300231933594 -20220909190000,vlinder18,289.0061950683594 -20220909190000,vlinder19,288.1897888183594 -20220909190000,vlinder20,288.1897888183594 -20220909190000,vlinder21,290.5882263183594 -20220909190000,vlinder22,289.9007263183594 -20220909190000,vlinder23,289.4495544433594 -20220909190000,vlinder24,289.3577575683594 -20220909190000,vlinder25,289.1956481933594 -20220909190000,vlinder26,289.0433044433594 -20220909190000,vlinder27,289.1956481933594 -20220909190000,vlinder28,288.9925231933594 -20220909200000,vlinder01,288.85064697265625 -20220909200000,vlinder02,288.93658447265625 -20220909200000,vlinder03,288.45220947265625 -20220909200000,vlinder04,288.45220947265625 -20220909200000,vlinder05,289.04400634765625 -20220909200000,vlinder06,288.29400634765625 -20220909200000,vlinder07,288.29400634765625 -20220909200000,vlinder08,288.29400634765625 -20220909200000,vlinder09,288.57916259765625 -20220909200000,vlinder10,288.65924072265625 -20220909200000,vlinder11,288.57916259765625 -20220909200000,vlinder12,288.57916259765625 -20220909200000,vlinder13,288.57916259765625 -20220909200000,vlinder14,288.80963134765625 -20220909200000,vlinder15,288.47955322265625 -20220909200000,vlinder16,288.80963134765625 -20220909200000,vlinder17,288.32720947265625 -20220909200000,vlinder18,288.46392822265625 -20220909200000,vlinder19,288.10650634765625 -20220909200000,vlinder20,288.10650634765625 -20220909200000,vlinder21,290.38775634765625 -20220909200000,vlinder22,289.30767822265625 -20220909200000,vlinder23,289.27252197265625 -20220909200000,vlinder24,289.18853759765625 -20220909200000,vlinder25,289.01275634765625 -20220909200000,vlinder26,288.31939697265625 -20220909200000,vlinder27,289.04400634765625 -20220909200000,vlinder28,288.85064697265625 -20220909210000,vlinder01,288.4645080566406 -20220909210000,vlinder02,288.4977111816406 -20220909210000,vlinder03,287.9273986816406 -20220909210000,vlinder04,287.9273986816406 -20220909210000,vlinder05,288.7047424316406 -20220909210000,vlinder06,288.1266174316406 -20220909210000,vlinder07,288.1266174316406 -20220909210000,vlinder08,288.1266174316406 -20220909210000,vlinder09,288.3434143066406 -20220909210000,vlinder10,288.3629455566406 -20220909210000,vlinder11,288.3375549316406 -20220909210000,vlinder12,288.3375549316406 -20220909210000,vlinder13,288.3375549316406 -20220909210000,vlinder14,288.5484924316406 -20220909210000,vlinder15,288.2848205566406 -20220909210000,vlinder16,288.5484924316406 -20220909210000,vlinder17,287.7027893066406 -20220909210000,vlinder18,287.8219299316406 -20220909210000,vlinder19,287.9098205566406 -20220909210000,vlinder20,287.9098205566406 -20220909210000,vlinder21,290.2457580566406 -20220909210000,vlinder22,288.8160705566406 -20220909210000,vlinder23,289.0973205566406 -20220909210000,vlinder24,288.9234924316406 -20220909210000,vlinder25,288.7535705566406 -20220909210000,vlinder26,287.8121643066406 -20220909210000,vlinder27,288.7047424316406 -20220909210000,vlinder28,288.4645080566406 -20220909220000,vlinder01,288.33197021484375 -20220909220000,vlinder02,288.34954833984375 -20220909220000,vlinder03,287.68939208984375 -20220909220000,vlinder04,287.68939208984375 -20220909220000,vlinder05,288.60931396484375 -20220909220000,vlinder06,288.07415771484375 -20220909220000,vlinder07,288.07415771484375 -20220909220000,vlinder08,288.07415771484375 -20220909220000,vlinder09,288.24603271484375 -20220909220000,vlinder10,288.24798583984375 -20220909220000,vlinder11,288.30072021484375 -20220909220000,vlinder12,288.30072021484375 -20220909220000,vlinder13,288.30072021484375 -20220909220000,vlinder14,288.50970458984375 -20220909220000,vlinder15,288.20111083984375 -20220909220000,vlinder16,288.50970458984375 -20220909220000,vlinder17,287.34368896484375 -20220909220000,vlinder18,287.43743896484375 -20220909220000,vlinder19,287.84759521484375 -20220909220000,vlinder20,287.84759521484375 -20220909220000,vlinder21,290.37689208984375 -20220909220000,vlinder22,288.80072021484375 -20220909220000,vlinder23,289.08782958984375 -20220909220000,vlinder24,288.90032958984375 -20220909220000,vlinder25,288.68743896484375 -20220909220000,vlinder26,287.54876708984375 -20220909220000,vlinder27,288.60931396484375 -20220909220000,vlinder28,288.33197021484375 -20220909230000,vlinder01,288.13832092285156 -20220909230000,vlinder02,288.16761779785156 -20220909230000,vlinder03,287.73402404785156 -20220909230000,vlinder04,287.73402404785156 -20220909230000,vlinder05,288.48988342285156 -20220909230000,vlinder06,288.03089904785156 -20220909230000,vlinder07,288.03089904785156 -20220909230000,vlinder08,288.03089904785156 -20220909230000,vlinder09,288.03480529785156 -20220909230000,vlinder10,288.03480529785156 -20220909230000,vlinder11,288.25746154785156 -20220909230000,vlinder12,288.25746154785156 -20220909230000,vlinder13,288.25746154785156 -20220909230000,vlinder14,288.45277404785156 -20220909230000,vlinder15,288.00355529785156 -20220909230000,vlinder16,288.45277404785156 -20220909230000,vlinder17,287.31800842285156 -20220909230000,vlinder18,287.38636779785156 -20220909230000,vlinder19,287.70472717285156 -20220909230000,vlinder20,287.70472717285156 -20220909230000,vlinder21,290.46839904785156 -20220909230000,vlinder22,288.82777404785156 -20220909230000,vlinder23,289.12855529785156 -20220909230000,vlinder24,288.86488342285156 -20220909230000,vlinder25,288.64418029785156 -20220909230000,vlinder26,287.62074279785156 -20220909230000,vlinder27,288.48988342285156 -20220909230000,vlinder28,288.13832092285156 -20220910000000,vlinder01,287.9730682373047 -20220910000000,vlinder02,288.0140838623047 -20220910000000,vlinder03,287.5531463623047 -20220910000000,vlinder04,287.5531463623047 -20220910000000,vlinder05,288.3226776123047 -20220910000000,vlinder06,287.8324432373047 -20220910000000,vlinder07,287.8324432373047 -20220910000000,vlinder08,287.8324432373047 -20220910000000,vlinder09,287.8207244873047 -20220910000000,vlinder10,287.8265838623047 -20220910000000,vlinder11,288.0199432373047 -20220910000000,vlinder12,288.0199432373047 -20220910000000,vlinder13,288.0199432373047 -20220910000000,vlinder14,288.2054901123047 -20220910000000,vlinder15,287.7836151123047 -20220910000000,vlinder16,288.2054901123047 -20220910000000,vlinder17,287.2054901123047 -20220910000000,vlinder18,287.2933807373047 -20220910000000,vlinder19,287.4574432373047 -20220910000000,vlinder20,287.4574432373047 -20220910000000,vlinder21,290.3402557373047 -20220910000000,vlinder22,288.7758026123047 -20220910000000,vlinder23,288.9554901123047 -20220910000000,vlinder24,288.7074432373047 -20220910000000,vlinder25,288.4711151123047 -20220910000000,vlinder26,287.4359588623047 -20220910000000,vlinder27,288.3226776123047 -20220910000000,vlinder28,287.9730682373047 -20220910010000,vlinder01,288.09149169921875 -20220910010000,vlinder02,288.15008544921875 -20220910010000,vlinder03,287.49383544921875 -20220910010000,vlinder04,287.49383544921875 -20220910010000,vlinder05,288.42156982421875 -20220910010000,vlinder06,287.79266357421875 -20220910010000,vlinder07,287.79266357421875 -20220910010000,vlinder08,287.79266357421875 -20220910010000,vlinder09,287.84149169921875 -20220910010000,vlinder10,287.87469482421875 -20220910010000,vlinder11,288.03289794921875 -20220910010000,vlinder12,288.03289794921875 -20220910010000,vlinder13,288.03289794921875 -20220910010000,vlinder14,288.23602294921875 -20220910010000,vlinder15,287.78289794921875 -20220910010000,vlinder16,288.23602294921875 -20220910010000,vlinder17,287.15789794921875 -20220910010000,vlinder18,287.24774169921875 -20220910010000,vlinder19,287.42352294921875 -20220910010000,vlinder20,287.42352294921875 -20220910010000,vlinder21,290.06414794921875 -20220910010000,vlinder22,288.76922607421875 -20220910010000,vlinder23,288.96453857421875 -20220910010000,vlinder24,288.74969482421875 -20220910010000,vlinder25,288.57196044921875 -20220910010000,vlinder26,287.37469482421875 -20220910010000,vlinder27,288.42156982421875 -20220910010000,vlinder28,288.09149169921875 -20220910020000,vlinder01,287.988525390625 -20220910020000,vlinder02,288.043212890625 -20220910020000,vlinder03,287.677978515625 -20220910020000,vlinder04,287.677978515625 -20220910020000,vlinder05,288.273681640625 -20220910020000,vlinder06,287.834228515625 -20220910020000,vlinder07,287.834228515625 -20220910020000,vlinder08,287.834228515625 -20220910020000,vlinder09,287.750244140625 -20220910020000,vlinder10,287.773681640625 -20220910020000,vlinder11,287.978759765625 -20220910020000,vlinder12,287.978759765625 -20220910020000,vlinder13,287.978759765625 -20220910020000,vlinder14,288.131103515625 -20220910020000,vlinder15,287.709228515625 -20220910020000,vlinder16,288.131103515625 -20220910020000,vlinder17,287.365478515625 -20220910020000,vlinder18,287.437744140625 -20220910020000,vlinder19,287.416259765625 -20220910020000,vlinder20,287.416259765625 -20220910020000,vlinder21,289.918212890625 -20220910020000,vlinder22,288.498291015625 -20220910020000,vlinder23,288.761962890625 -20220910020000,vlinder24,288.570556640625 -20220910020000,vlinder25,288.373291015625 -20220910020000,vlinder26,287.617431640625 -20220910020000,vlinder27,288.273681640625 -20220910020000,vlinder28,287.988525390625 -20220910030000,vlinder01,287.962890625 -20220910030000,vlinder02,287.994140625 -20220910030000,vlinder03,287.66796875 -20220910030000,vlinder04,287.66796875 -20220910030000,vlinder05,288.1796875 -20220910030000,vlinder06,287.84375 -20220910030000,vlinder07,287.84375 -20220910030000,vlinder08,287.84375 -20220910030000,vlinder09,287.771484375 -20220910030000,vlinder10,287.783203125 -20220910030000,vlinder11,287.974609375 -20220910030000,vlinder12,287.974609375 -20220910030000,vlinder13,287.974609375 -20220910030000,vlinder14,288.125 -20220910030000,vlinder15,287.736328125 -20220910030000,vlinder16,288.125 -20220910030000,vlinder17,287.4921875 -20220910030000,vlinder18,287.580078125 -20220910030000,vlinder19,287.41796875 -20220910030000,vlinder20,287.41796875 -20220910030000,vlinder21,289.23046875 -20220910030000,vlinder22,288.13671875 -20220910030000,vlinder23,288.521484375 -20220910030000,vlinder24,288.296875 -20220910030000,vlinder25,288.25390625 -20220910030000,vlinder26,287.650390625 -20220910030000,vlinder27,288.1796875 -20220910030000,vlinder28,287.962890625 -20220910040000,vlinder01,288.20021057128906 -20220910040000,vlinder02,288.21192932128906 -20220910040000,vlinder03,287.67091369628906 -20220910040000,vlinder04,287.67091369628906 -20220910040000,vlinder05,288.32130432128906 -20220910040000,vlinder06,288.09669494628906 -20220910040000,vlinder07,288.09669494628906 -20220910040000,vlinder08,288.09669494628906 -20220910040000,vlinder09,288.14747619628906 -20220910040000,vlinder10,288.14356994628906 -20220910040000,vlinder11,288.08302307128906 -20220910040000,vlinder12,288.08302307128906 -20220910040000,vlinder13,288.08302307128906 -20220910040000,vlinder14,288.17286682128906 -20220910040000,vlinder15,288.12403869628906 -20220910040000,vlinder16,288.17286682128906 -20220910040000,vlinder17,287.33106994628906 -20220910040000,vlinder18,287.41896057128906 -20220910040000,vlinder19,287.77638244628906 -20220910040000,vlinder20,287.77638244628906 -20220910040000,vlinder21,289.08106994628906 -20220910040000,vlinder22,288.20216369628906 -20220910040000,vlinder23,288.53614807128906 -20220910040000,vlinder24,288.41505432128906 -20220910040000,vlinder25,288.33106994628906 -20220910040000,vlinder26,287.63966369628906 -20220910040000,vlinder27,288.32130432128906 -20220910040000,vlinder28,288.20021057128906 -20220910050000,vlinder01,288.1540222167969 -20220910050000,vlinder02,288.1520690917969 -20220910050000,vlinder03,287.7145690917969 -20220910050000,vlinder04,287.7145690917969 -20220910050000,vlinder05,288.2829284667969 -20220910050000,vlinder06,288.2204284667969 -20220910050000,vlinder07,288.2204284667969 -20220910050000,vlinder08,288.2204284667969 -20220910050000,vlinder09,288.1676940917969 -20220910050000,vlinder10,288.1540222167969 -20220910050000,vlinder11,288.1481628417969 -20220910050000,vlinder12,288.1481628417969 -20220910050000,vlinder13,288.1481628417969 -20220910050000,vlinder14,288.1696472167969 -20220910050000,vlinder15,288.1598815917969 -20220910050000,vlinder16,288.1696472167969 -20220910050000,vlinder17,287.2106628417969 -20220910050000,vlinder18,287.2712097167969 -20220910050000,vlinder19,287.9372253417969 -20220910050000,vlinder20,287.9372253417969 -20220910050000,vlinder21,289.1149597167969 -20220910050000,vlinder22,288.0251159667969 -20220910050000,vlinder23,288.5173034667969 -20220910050000,vlinder24,288.3962097167969 -20220910050000,vlinder25,288.3024597167969 -20220910050000,vlinder26,287.6911315917969 -20220910050000,vlinder27,288.2829284667969 -20220910050000,vlinder28,288.1540222167969 -20220910060000,vlinder01,288.303466796875 -20220910060000,vlinder02,288.283935546875 -20220910060000,vlinder03,287.856201171875 -20220910060000,vlinder04,287.856201171875 -20220910060000,vlinder05,288.453857421875 -20220910060000,vlinder06,288.516357421875 -20220910060000,vlinder07,288.516357421875 -20220910060000,vlinder08,288.516357421875 -20220910060000,vlinder09,288.354248046875 -20220910060000,vlinder10,288.319091796875 -20220910060000,vlinder11,288.459716796875 -20220910060000,vlinder12,288.459716796875 -20220910060000,vlinder13,288.459716796875 -20220910060000,vlinder14,288.473388671875 -20220910060000,vlinder15,288.367919921875 -20220910060000,vlinder16,288.473388671875 -20220910060000,vlinder17,287.166748046875 -20220910060000,vlinder18,287.186279296875 -20220910060000,vlinder19,288.176513671875 -20220910060000,vlinder20,288.176513671875 -20220910060000,vlinder21,289.360107421875 -20220910060000,vlinder22,288.299560546875 -20220910060000,vlinder23,288.742919921875 -20220910060000,vlinder24,288.604248046875 -20220910060000,vlinder25,288.490966796875 -20220910060000,vlinder26,287.838623046875 -20220910060000,vlinder27,288.453857421875 -20220910060000,vlinder28,288.303466796875 -20220910070000,vlinder01,289.137451171875 -20220910070000,vlinder02,289.182373046875 -20220910070000,vlinder03,288.656982421875 -20220910070000,vlinder04,288.656982421875 -20220910070000,vlinder05,289.481201171875 -20220910070000,vlinder06,289.012451171875 -20220910070000,vlinder07,289.012451171875 -20220910070000,vlinder08,289.012451171875 -20220910070000,vlinder09,288.975341796875 -20220910070000,vlinder10,289.002685546875 -20220910070000,vlinder11,289.158935546875 -20220910070000,vlinder12,289.158935546875 -20220910070000,vlinder13,289.158935546875 -20220910070000,vlinder14,289.321044921875 -20220910070000,vlinder15,288.936279296875 -20220910070000,vlinder16,289.321044921875 -20220910070000,vlinder17,288.358154296875 -20220910070000,vlinder18,288.438232421875 -20220910070000,vlinder19,288.717529296875 -20220910070000,vlinder20,288.717529296875 -20220910070000,vlinder21,290.619873046875 -20220910070000,vlinder22,289.641357421875 -20220910070000,vlinder23,290.088623046875 -20220910070000,vlinder24,289.785888671875 -20220910070000,vlinder25,289.656982421875 -20220910070000,vlinder26,288.614013671875 -20220910070000,vlinder27,289.481201171875 -20220910070000,vlinder28,289.137451171875 -20220910080000,vlinder01,289.9396667480469 -20220910080000,vlinder02,290.0216979980469 -20220910080000,vlinder03,289.4884948730469 -20220910080000,vlinder04,289.4884948730469 -20220910080000,vlinder05,290.3615417480469 -20220910080000,vlinder06,289.6330261230469 -20220910080000,vlinder07,289.6330261230469 -20220910080000,vlinder08,289.6330261230469 -20220910080000,vlinder09,289.5802917480469 -20220910080000,vlinder10,289.6486511230469 -20220910080000,vlinder11,290.1134948730469 -20220910080000,vlinder12,290.1134948730469 -20220910080000,vlinder13,290.1134948730469 -20220910080000,vlinder14,290.4611511230469 -20220910080000,vlinder15,289.5099792480469 -20220910080000,vlinder16,290.4611511230469 -20220910080000,vlinder17,288.8381042480469 -20220910080000,vlinder18,288.8595886230469 -20220910080000,vlinder19,289.2560729980469 -20220910080000,vlinder20,289.2560729980469 -20220910080000,vlinder21,291.2189636230469 -20220910080000,vlinder22,290.6740417480469 -20220910080000,vlinder23,291.0470886230469 -20220910080000,vlinder24,290.7131042480469 -20220910080000,vlinder25,290.6681823730469 -20220910080000,vlinder26,289.3537292480469 -20220910080000,vlinder27,290.3615417480469 -20220910080000,vlinder28,289.9396667480469 -20220910090000,vlinder01,291.0840301513672 -20220910090000,vlinder02,291.1504364013672 -20220910090000,vlinder03,290.5840301513672 -20220910090000,vlinder04,290.5840301513672 -20220910090000,vlinder05,291.3418426513672 -20220910090000,vlinder06,290.7031707763672 -20220910090000,vlinder07,290.7031707763672 -20220910090000,vlinder08,290.7031707763672 -20220910090000,vlinder09,290.6953582763672 -20220910090000,vlinder10,290.7598114013672 -20220910090000,vlinder11,291.1426239013672 -20220910090000,vlinder12,291.1426239013672 -20220910090000,vlinder13,291.1426239013672 -20220910090000,vlinder14,291.4629364013672 -20220910090000,vlinder15,290.6230926513672 -20220910090000,vlinder16,291.4629364013672 -20220910090000,vlinder17,289.5879364013672 -20220910090000,vlinder18,289.5742645263672 -20220910090000,vlinder19,290.2812957763672 -20220910090000,vlinder20,290.2812957763672 -20220910090000,vlinder21,291.3184051513672 -20220910090000,vlinder22,291.3516082763672 -20220910090000,vlinder23,291.6602020263672 -20220910090000,vlinder24,291.4844207763672 -20220910090000,vlinder25,291.5293426513672 -20220910090000,vlinder26,290.3926239013672 -20220910090000,vlinder27,291.3418426513672 -20220910090000,vlinder28,291.0840301513672 -20220910100000,vlinder01,292.09568786621094 -20220910100000,vlinder02,292.06248474121094 -20220910100000,vlinder03,291.83006286621094 -20220910100000,vlinder04,291.83006286621094 -20220910100000,vlinder05,292.16209411621094 -20220910100000,vlinder06,292.08201599121094 -20220910100000,vlinder07,292.08201599121094 -20220910100000,vlinder08,292.08201599121094 -20220910100000,vlinder09,291.93943786621094 -20220910100000,vlinder10,291.89842224121094 -20220910100000,vlinder11,292.22654724121094 -20220910100000,vlinder12,292.22654724121094 -20220910100000,vlinder13,292.22654724121094 -20220910100000,vlinder14,292.40232849121094 -20220910100000,vlinder15,291.94139099121094 -20220910100000,vlinder16,292.40232849121094 -20220910100000,vlinder17,290.51756286621094 -20220910100000,vlinder18,290.47654724121094 -20220910100000,vlinder19,291.46678161621094 -20220910100000,vlinder20,291.46678161621094 -20220910100000,vlinder21,291.66014099121094 -20220910100000,vlinder22,291.93357849121094 -20220910100000,vlinder23,292.17771911621094 -20220910100000,vlinder24,292.12693786621094 -20220910100000,vlinder25,292.23240661621094 -20220910100000,vlinder26,291.66209411621094 -20220910100000,vlinder27,292.16209411621094 -20220910100000,vlinder28,292.09568786621094 -20220910110000,vlinder01,292.2890319824219 -20220910110000,vlinder02,292.2909851074219 -20220910110000,vlinder03,292.9511413574219 -20220910110000,vlinder04,292.9511413574219 -20220910110000,vlinder05,292.4159851074219 -20220910110000,vlinder06,292.7851257324219 -20220910110000,vlinder07,292.7851257324219 -20220910110000,vlinder08,292.7851257324219 -20220910110000,vlinder09,292.2167663574219 -20220910110000,vlinder10,292.1874694824219 -20220910110000,vlinder11,292.9687194824219 -20220910110000,vlinder12,292.9687194824219 -20220910110000,vlinder13,292.9687194824219 -20220910110000,vlinder14,293.0800476074219 -20220910110000,vlinder15,292.2597351074219 -20220910110000,vlinder16,293.0800476074219 -20220910110000,vlinder17,291.8671569824219 -20220910110000,vlinder18,291.7773132324219 -20220910110000,vlinder19,292.1112976074219 -20220910110000,vlinder20,292.1112976074219 -20220910110000,vlinder21,292.0546569824219 -20220910110000,vlinder22,292.3144226074219 -20220910110000,vlinder23,292.5898132324219 -20220910110000,vlinder24,292.4745788574219 -20220910110000,vlinder25,292.5683288574219 -20220910110000,vlinder26,292.9120788574219 -20220910110000,vlinder27,292.4159851074219 -20220910110000,vlinder28,292.2890319824219 -20220910120000,vlinder01,292.6289825439453 -20220910120000,vlinder02,292.6094512939453 -20220910120000,vlinder03,293.3809356689453 -20220910120000,vlinder04,293.3809356689453 -20220910120000,vlinder05,292.7051544189453 -20220910120000,vlinder06,292.9239044189453 -20220910120000,vlinder07,292.9239044189453 -20220910120000,vlinder08,292.9239044189453 -20220910120000,vlinder09,292.6192169189453 -20220910120000,vlinder10,292.5860137939453 -20220910120000,vlinder11,293.2578887939453 -20220910120000,vlinder12,293.2578887939453 -20220910120000,vlinder13,293.2578887939453 -20220910120000,vlinder14,293.4512481689453 -20220910120000,vlinder15,292.6465606689453 -20220910120000,vlinder16,293.4512481689453 -20220910120000,vlinder17,292.2676544189453 -20220910120000,vlinder18,292.2676544189453 -20220910120000,vlinder19,292.5235137939453 -20220910120000,vlinder20,292.5235137939453 -20220910120000,vlinder21,292.2715606689453 -20220910120000,vlinder22,292.3282012939453 -20220910120000,vlinder23,292.7657012939453 -20220910120000,vlinder24,292.6973419189453 -20220910120000,vlinder25,292.8047637939453 -20220910120000,vlinder26,293.1797637939453 -20220910120000,vlinder27,292.7051544189453 -20220910120000,vlinder28,292.6289825439453 -20220910130000,vlinder01,292.98374938964844 -20220910130000,vlinder02,292.97984313964844 -20220910130000,vlinder03,293.37828063964844 -20220910130000,vlinder04,293.37828063964844 -20220910130000,vlinder05,293.01695251464844 -20220910130000,vlinder06,293.22203063964844 -20220910130000,vlinder07,293.22203063964844 -20220910130000,vlinder08,293.22203063964844 -20220910130000,vlinder09,292.90757751464844 -20220910130000,vlinder10,292.88999938964844 -20220910130000,vlinder11,293.46226501464844 -20220910130000,vlinder12,293.46226501464844 -20220910130000,vlinder13,293.46226501464844 -20220910130000,vlinder14,293.61265563964844 -20220910130000,vlinder15,292.92515563964844 -20220910130000,vlinder16,293.61265563964844 -20220910130000,vlinder17,292.32554626464844 -20220910130000,vlinder18,292.30992126464844 -20220910130000,vlinder19,292.79039001464844 -20220910130000,vlinder20,292.79039001464844 -20220910130000,vlinder21,292.61656188964844 -20220910130000,vlinder22,292.76890563964844 -20220910130000,vlinder23,292.96031188964844 -20220910130000,vlinder24,292.97203063964844 -20220910130000,vlinder25,293.03453063964844 -20220910130000,vlinder26,293.21226501464844 -20220910130000,vlinder27,293.01695251464844 -20220910130000,vlinder28,292.98374938964844 -20220910140000,vlinder01,293.250244140625 -20220910140000,vlinder02,293.242431640625 -20220910140000,vlinder03,293.052978515625 -20220910140000,vlinder04,293.052978515625 -20220910140000,vlinder05,293.207275390625 -20220910140000,vlinder06,293.484619140625 -20220910140000,vlinder07,293.484619140625 -20220910140000,vlinder08,293.484619140625 -20220910140000,vlinder09,293.183837890625 -20220910140000,vlinder10,293.170166015625 -20220910140000,vlinder11,293.718994140625 -20220910140000,vlinder12,293.718994140625 -20220910140000,vlinder13,293.718994140625 -20220910140000,vlinder14,293.865478515625 -20220910140000,vlinder15,293.199462890625 -20220910140000,vlinder16,293.865478515625 -20220910140000,vlinder17,290.922119140625 -20220910140000,vlinder18,290.740478515625 -20220910140000,vlinder19,293.084228515625 -20220910140000,vlinder20,293.084228515625 -20220910140000,vlinder21,292.654541015625 -20220910140000,vlinder22,292.902587890625 -20220910140000,vlinder23,292.988525390625 -20220910140000,vlinder24,293.064697265625 -20220910140000,vlinder25,293.158447265625 -20220910140000,vlinder26,292.881103515625 -20220910140000,vlinder27,293.207275390625 -20220910140000,vlinder28,293.250244140625 -20220910150000,vlinder01,293.0426788330078 -20220910150000,vlinder02,292.9743194580078 -20220910150000,vlinder03,293.5094757080078 -20220910150000,vlinder04,293.5094757080078 -20220910150000,vlinder05,292.9977569580078 -20220910150000,vlinder06,293.5114288330078 -20220910150000,vlinder07,293.5114288330078 -20220910150000,vlinder08,293.5114288330078 -20220910150000,vlinder09,293.1657257080078 -20220910150000,vlinder10,293.0739288330078 -20220910150000,vlinder11,293.6286163330078 -20220910150000,vlinder12,293.6286163330078 -20220910150000,vlinder13,293.6286163330078 -20220910150000,vlinder14,293.6969757080078 -20220910150000,vlinder15,293.2301788330078 -20220910150000,vlinder16,293.6969757080078 -20220910150000,vlinder17,291.2243194580078 -20220910150000,vlinder18,291.1540069580078 -20220910150000,vlinder19,292.8903350830078 -20220910150000,vlinder20,292.8903350830078 -20220910150000,vlinder21,292.6891632080078 -20220910150000,vlinder22,292.7790069580078 -20220910150000,vlinder23,292.8649444580078 -20220910150000,vlinder24,292.9059600830078 -20220910150000,vlinder25,292.9821319580078 -20220910150000,vlinder26,293.2047882080078 -20220910150000,vlinder27,292.9977569580078 -20220910150000,vlinder28,293.0426788330078 -20220910160000,vlinder01,291.8588409423828 -20220910160000,vlinder02,291.9623565673828 -20220910160000,vlinder03,292.6420440673828 -20220910160000,vlinder04,292.6420440673828 -20220910160000,vlinder05,292.1772003173828 -20220910160000,vlinder06,291.7416534423828 -20220910160000,vlinder07,291.7416534423828 -20220910160000,vlinder08,291.7416534423828 -20220910160000,vlinder09,291.3725128173828 -20220910160000,vlinder10,291.4311065673828 -20220910160000,vlinder11,292.5893096923828 -20220910160000,vlinder12,292.5893096923828 -20220910160000,vlinder13,292.5893096923828 -20220910160000,vlinder14,292.9897003173828 -20220910160000,vlinder15,291.3256378173828 -20220910160000,vlinder16,292.9897003173828 -20220910160000,vlinder17,291.0268096923828 -20220910160000,vlinder18,290.9096221923828 -20220910160000,vlinder19,290.9330596923828 -20220910160000,vlinder20,290.9330596923828 -20220910160000,vlinder21,292.6791534423828 -20220910160000,vlinder22,292.6518096923828 -20220910160000,vlinder23,292.6147003173828 -20220910160000,vlinder24,292.4193878173828 -20220910160000,vlinder25,292.4369659423828 -20220910160000,vlinder26,292.2729034423828 -20220910160000,vlinder27,292.1772003173828 -20220910160000,vlinder28,291.8588409423828 -20220910170000,vlinder01,291.8576202392578 -20220910170000,vlinder02,291.9396514892578 -20220910170000,vlinder03,292.0841827392578 -20220910170000,vlinder04,292.0841827392578 -20220910170000,vlinder05,292.0373077392578 -20220910170000,vlinder06,291.6662139892578 -20220910170000,vlinder07,291.6662139892578 -20220910170000,vlinder08,291.6662139892578 -20220910170000,vlinder09,291.4103546142578 -20220910170000,vlinder10,291.4630889892578 -20220910170000,vlinder11,292.2521514892578 -20220910170000,vlinder12,292.2521514892578 -20220910170000,vlinder13,292.2521514892578 -20220910170000,vlinder14,292.5392608642578 -20220910170000,vlinder15,291.3595733642578 -20220910170000,vlinder16,292.5392608642578 -20220910170000,vlinder17,290.8693389892578 -20220910170000,vlinder18,290.8400421142578 -20220910170000,vlinder19,290.8908233642578 -20220910170000,vlinder20,290.8908233642578 -20220910170000,vlinder21,292.4689483642578 -20220910170000,vlinder22,292.3478546142578 -20220910170000,vlinder23,292.2033233642578 -20220910170000,vlinder24,292.1388702392578 -20220910170000,vlinder25,292.1173858642578 -20220910170000,vlinder26,291.8107452392578 -20220910170000,vlinder27,292.0373077392578 -20220910170000,vlinder28,291.8576202392578 -20220910180000,vlinder01,291.19390869140625 -20220910180000,vlinder02,291.24664306640625 -20220910180000,vlinder03,291.10015869140625 -20220910180000,vlinder04,291.10015869140625 -20220910180000,vlinder05,291.32867431640625 -20220910180000,vlinder06,291.29547119140625 -20220910180000,vlinder07,291.29547119140625 -20220910180000,vlinder08,291.29547119140625 -20220910180000,vlinder09,290.89117431640625 -20220910180000,vlinder10,290.90679931640625 -20220910180000,vlinder11,291.54937744140625 -20220910180000,vlinder12,291.54937744140625 -20220910180000,vlinder13,291.54937744140625 -20220910180000,vlinder14,291.66656494140625 -20220910180000,vlinder15,290.87945556640625 -20220910180000,vlinder16,291.66656494140625 -20220910180000,vlinder17,289.71734619140625 -20220910180000,vlinder18,289.71929931640625 -20220910180000,vlinder19,290.53375244140625 -20220910180000,vlinder20,290.53375244140625 -20220910180000,vlinder21,292.05328369140625 -20220910180000,vlinder22,291.64117431640625 -20220910180000,vlinder23,291.45758056640625 -20220910180000,vlinder24,291.41656494140625 -20220910180000,vlinder25,291.34234619140625 -20220910180000,vlinder26,290.86578369140625 -20220910180000,vlinder27,291.32867431640625 -20220910180000,vlinder28,291.19390869140625 -20220910190000,vlinder01,289.71607971191406 -20220910190000,vlinder02,289.76881408691406 -20220910190000,vlinder03,289.61842346191406 -20220910190000,vlinder04,289.61842346191406 -20220910190000,vlinder05,290.07154846191406 -20220910190000,vlinder06,289.72584533691406 -20220910190000,vlinder07,289.72584533691406 -20220910190000,vlinder08,289.72584533691406 -20220910190000,vlinder09,289.49147033691406 -20220910190000,vlinder10,289.50514221191406 -20220910190000,vlinder11,290.00514221191406 -20220910190000,vlinder12,290.00514221191406 -20220910190000,vlinder13,290.00514221191406 -20220910190000,vlinder14,290.19068908691406 -20220910190000,vlinder15,289.47389221191406 -20220910190000,vlinder16,290.19068908691406 -20220910190000,vlinder17,289.01490783691406 -20220910190000,vlinder18,289.04615783691406 -20220910190000,vlinder19,289.19654846191406 -20220910190000,vlinder20,289.19654846191406 -20220910190000,vlinder21,291.37818908691406 -20220910190000,vlinder22,290.65357971191406 -20220910190000,vlinder23,290.70826721191406 -20220910190000,vlinder24,290.43482971191406 -20220910190000,vlinder25,290.30787658691406 -20220910190000,vlinder26,289.54420471191406 -20220910190000,vlinder27,290.07154846191406 -20220910190000,vlinder28,289.71607971191406 -20220910200000,vlinder01,289.275390625 -20220910200000,vlinder02,289.3203125 -20220910200000,vlinder03,289.13671875 -20220910200000,vlinder04,289.13671875 -20220910200000,vlinder05,289.6640625 -20220910200000,vlinder06,289.38671875 -20220910200000,vlinder07,289.38671875 -20220910200000,vlinder08,289.38671875 -20220910200000,vlinder09,289.095703125 -20220910200000,vlinder10,289.095703125 -20220910200000,vlinder11,289.623046875 -20220910200000,vlinder12,289.623046875 -20220910200000,vlinder13,289.623046875 -20220910200000,vlinder14,289.787109375 -20220910200000,vlinder15,289.087890625 -20220910200000,vlinder16,289.787109375 -20220910200000,vlinder17,288.63671875 -20220910200000,vlinder18,288.658203125 -20220910200000,vlinder19,288.841796875 -20220910200000,vlinder20,288.841796875 -20220910200000,vlinder21,291.30859375 -20220910200000,vlinder22,290.267578125 -20220910200000,vlinder23,290.3828125 -20220910200000,vlinder24,290.05859375 -20220910200000,vlinder25,289.904296875 -20220910200000,vlinder26,289.10546875 -20220910200000,vlinder27,289.6640625 -20220910200000,vlinder28,289.275390625 -20220910210000,vlinder01,288.76158142089844 -20220910210000,vlinder02,288.81626892089844 -20220910210000,vlinder03,288.38462829589844 -20220910210000,vlinder04,288.38462829589844 -20220910210000,vlinder05,289.13853454589844 -20220910210000,vlinder06,288.70494079589844 -20220910210000,vlinder07,288.70494079589844 -20220910210000,vlinder08,288.70494079589844 -20220910210000,vlinder09,288.58970642089844 -20220910210000,vlinder10,288.59947204589844 -20220910210000,vlinder11,288.98423767089844 -20220910210000,vlinder12,288.98423767089844 -20220910210000,vlinder13,288.98423767089844 -20220910210000,vlinder14,289.19322204589844 -20220910210000,vlinder15,288.56040954589844 -20220910210000,vlinder16,289.19322204589844 -20220910210000,vlinder17,288.01939392089844 -20220910210000,vlinder18,288.07603454589844 -20220910210000,vlinder19,288.25767517089844 -20220910210000,vlinder20,288.25767517089844 -20220910210000,vlinder21,290.98619079589844 -20220910210000,vlinder22,289.70298767089844 -20220910210000,vlinder23,289.86314392089844 -20220910210000,vlinder24,289.47056579589844 -20220910210000,vlinder25,289.31431579589844 -20220910210000,vlinder26,288.27134704589844 -20220910210000,vlinder27,289.13853454589844 -20220910210000,vlinder28,288.76158142089844 -20220910220000,vlinder01,288.36793518066406 -20220910220000,vlinder02,288.43629455566406 -20220910220000,vlinder03,287.90699768066406 -20220910220000,vlinder04,287.90699768066406 -20220910220000,vlinder05,288.73512268066406 -20220910220000,vlinder06,288.40309143066406 -20220910220000,vlinder07,288.40309143066406 -20220910220000,vlinder08,288.40309143066406 -20220910220000,vlinder09,288.27418518066406 -20220910220000,vlinder10,288.27418518066406 -20220910220000,vlinder11,288.57887268066406 -20220910220000,vlinder12,288.57887268066406 -20220910220000,vlinder13,288.57887268066406 -20220910220000,vlinder14,288.75074768066406 -20220910220000,vlinder15,288.25660705566406 -20220910220000,vlinder16,288.75074768066406 -20220910220000,vlinder17,287.61988830566406 -20220910220000,vlinder18,287.65504455566406 -20220910220000,vlinder19,288.02613830566406 -20220910220000,vlinder20,288.02613830566406 -20220910220000,vlinder21,290.96754455566406 -20220910220000,vlinder22,289.43238830566406 -20220910220000,vlinder23,289.49879455566406 -20220910220000,vlinder24,288.98316955566406 -20220910220000,vlinder25,288.80152893066406 -20220910220000,vlinder26,287.85816955566406 -20220910220000,vlinder27,288.73512268066406 -20220910220000,vlinder28,288.36793518066406 -20220910230000,vlinder01,287.84124755859375 -20220910230000,vlinder02,287.89202880859375 -20220910230000,vlinder03,287.63226318359375 -20220910230000,vlinder04,287.63226318359375 -20220910230000,vlinder05,288.12835693359375 -20220910230000,vlinder06,287.82952880859375 -20220910230000,vlinder07,287.82952880859375 -20220910230000,vlinder08,287.82952880859375 -20220910230000,vlinder09,287.74554443359375 -20220910230000,vlinder10,287.74749755859375 -20220910230000,vlinder11,288.09320068359375 -20220910230000,vlinder12,288.09320068359375 -20220910230000,vlinder13,288.09320068359375 -20220910230000,vlinder14,288.29632568359375 -20220910230000,vlinder15,287.72210693359375 -20220910230000,vlinder16,288.29632568359375 -20220910230000,vlinder17,287.46429443359375 -20220910230000,vlinder18,287.54437255859375 -20220910230000,vlinder19,287.50140380859375 -20220910230000,vlinder20,287.50140380859375 -20220910230000,vlinder21,290.92132568359375 -20220910230000,vlinder22,288.99945068359375 -20220910230000,vlinder23,288.88616943359375 -20220910230000,vlinder24,288.21429443359375 -20220910230000,vlinder25,288.11273193359375 -20220910230000,vlinder26,287.47601318359375 -20220910230000,vlinder27,288.12835693359375 -20220910230000,vlinder28,287.84124755859375 -20220911000000,vlinder01,287.3220672607422 -20220911000000,vlinder02,287.3845672607422 -20220911000000,vlinder03,287.3337860107422 -20220911000000,vlinder04,287.3337860107422 -20220911000000,vlinder05,287.5251922607422 -20220911000000,vlinder06,287.5056610107422 -20220911000000,vlinder07,287.5056610107422 -20220911000000,vlinder08,287.5056610107422 -20220911000000,vlinder09,287.3552703857422 -20220911000000,vlinder10,287.3318328857422 -20220911000000,vlinder11,287.7966766357422 -20220911000000,vlinder12,287.7966766357422 -20220911000000,vlinder13,287.7966766357422 -20220911000000,vlinder14,288.0154266357422 -20220911000000,vlinder15,287.3552703857422 -20220911000000,vlinder16,288.0154266357422 -20220911000000,vlinder17,287.2693328857422 -20220911000000,vlinder18,287.3630828857422 -20220911000000,vlinder19,287.2009735107422 -20220911000000,vlinder20,287.2009735107422 -20220911000000,vlinder21,290.6638641357422 -20220911000000,vlinder22,288.2830047607422 -20220911000000,vlinder23,288.2283172607422 -20220911000000,vlinder24,287.6326141357422 -20220911000000,vlinder25,287.4412078857422 -20220911000000,vlinder26,287.1150360107422 -20220911000000,vlinder27,287.5251922607422 -20220911000000,vlinder28,287.3220672607422 -20220911010000,vlinder01,286.8310546875 -20220911010000,vlinder02,286.9169921875 -20220911010000,vlinder03,286.9599609375 -20220911010000,vlinder04,286.9599609375 -20220911010000,vlinder05,286.9736328125 -20220911010000,vlinder06,287.0791015625 -20220911010000,vlinder07,287.0791015625 -20220911010000,vlinder08,287.0791015625 -20220911010000,vlinder09,286.9423828125 -20220911010000,vlinder10,286.9072265625 -20220911010000,vlinder11,287.2626953125 -20220911010000,vlinder12,287.2626953125 -20220911010000,vlinder13,287.2626953125 -20220911010000,vlinder14,287.4619140625 -20220911010000,vlinder15,286.9443359375 -20220911010000,vlinder16,287.4619140625 -20220911010000,vlinder17,286.8955078125 -20220911010000,vlinder18,287.0185546875 -20220911010000,vlinder19,286.8037109375 -20220911010000,vlinder20,286.8037109375 -20220911010000,vlinder21,290.3642578125 -20220911010000,vlinder22,287.6845703125 -20220911010000,vlinder23,288.4580078125 -20220911010000,vlinder24,287.6787109375 -20220911010000,vlinder25,287.4326171875 -20220911010000,vlinder26,286.5966796875 -20220911010000,vlinder27,286.9736328125 -20220911010000,vlinder28,286.8310546875 -20220911020000,vlinder01,286.6076965332031 -20220911020000,vlinder02,286.7190246582031 -20220911020000,vlinder03,286.6272277832031 -20220911020000,vlinder04,286.6272277832031 -20220911020000,vlinder05,286.9924621582031 -20220911020000,vlinder06,286.8576965332031 -20220911020000,vlinder07,286.8576965332031 -20220911020000,vlinder08,286.8576965332031 -20220911020000,vlinder09,286.7795715332031 -20220911020000,vlinder10,286.7366027832031 -20220911020000,vlinder11,286.8850402832031 -20220911020000,vlinder12,286.8850402832031 -20220911020000,vlinder13,286.8850402832031 -20220911020000,vlinder14,287.2307434082031 -20220911020000,vlinder15,286.7795715332031 -20220911020000,vlinder16,287.2307434082031 -20220911020000,vlinder17,286.5842590332031 -20220911020000,vlinder18,286.7326965332031 -20220911020000,vlinder19,286.5901184082031 -20220911020000,vlinder20,286.5901184082031 -20220911020000,vlinder21,289.8049621582031 -20220911020000,vlinder22,287.0412902832031 -20220911020000,vlinder23,289.9631652832031 -20220911020000,vlinder24,289.0725402832031 -20220911020000,vlinder25,288.6487121582031 -20220911020000,vlinder26,286.1135559082031 -20220911020000,vlinder27,286.9924621582031 -20220911020000,vlinder28,286.6076965332031 -20220911030000,vlinder01,286.06858825683594 -20220911030000,vlinder02,286.22093200683594 -20220911030000,vlinder03,286.25804138183594 -20220911030000,vlinder04,286.25804138183594 -20220911030000,vlinder05,286.46897888183594 -20220911030000,vlinder06,286.41429138183594 -20220911030000,vlinder07,286.41429138183594 -20220911030000,vlinder08,286.41429138183594 -20220911030000,vlinder09,286.30882263183594 -20220911030000,vlinder10,286.24436950683594 -20220911030000,vlinder11,286.40647888183594 -20220911030000,vlinder12,286.40647888183594 -20220911030000,vlinder13,286.40647888183594 -20220911030000,vlinder14,287.10569763183594 -20220911030000,vlinder15,286.32054138183594 -20220911030000,vlinder16,287.10569763183594 -20220911030000,vlinder17,286.29515075683594 -20220911030000,vlinder18,286.46311950683594 -20220911030000,vlinder19,286.12132263183594 -20220911030000,vlinder20,286.12132263183594 -20220911030000,vlinder21,289.65647888183594 -20220911030000,vlinder22,286.65647888183594 -20220911030000,vlinder23,289.74632263183594 -20220911030000,vlinder24,288.73460388183594 -20220911030000,vlinder25,288.42601013183594 -20220911030000,vlinder26,285.58030700683594 -20220911030000,vlinder27,286.46897888183594 -20220911030000,vlinder28,286.06858825683594 -20220911040000,vlinder01,285.85333251953125 -20220911040000,vlinder02,286.04473876953125 -20220911040000,vlinder03,285.69903564453125 -20220911040000,vlinder04,285.69903564453125 -20220911040000,vlinder05,286.01348876953125 -20220911040000,vlinder06,286.00958251953125 -20220911040000,vlinder07,286.00958251953125 -20220911040000,vlinder08,286.00958251953125 -20220911040000,vlinder09,286.09552001953125 -20220911040000,vlinder10,286.05645751953125 -20220911040000,vlinder11,286.37286376953125 -20220911040000,vlinder12,286.37286376953125 -20220911040000,vlinder13,286.37286376953125 -20220911040000,vlinder14,287.62872314453125 -20220911040000,vlinder15,286.07598876953125 -20220911040000,vlinder16,287.62872314453125 -20220911040000,vlinder17,286.15802001953125 -20220911040000,vlinder18,286.37481689453125 -20220911040000,vlinder19,285.87481689453125 -20220911040000,vlinder20,285.87481689453125 -20220911040000,vlinder21,291.20880126953125 -20220911040000,vlinder22,286.80255126953125 -20220911040000,vlinder23,289.31231689453125 -20220911040000,vlinder24,288.23419189453125 -20220911040000,vlinder25,287.36895751953125 -20220911040000,vlinder26,285.29864501953125 -20220911040000,vlinder27,286.01348876953125 -20220911040000,vlinder28,285.85333251953125 -20220911050000,vlinder01,285.8701934814453 -20220911050000,vlinder02,286.1104278564453 -20220911050000,vlinder03,286.3877716064453 -20220911050000,vlinder04,286.3877716064453 -20220911050000,vlinder05,285.8252716064453 -20220911050000,vlinder06,285.7549591064453 -20220911050000,vlinder07,285.7549591064453 -20220911050000,vlinder08,285.7549591064453 -20220911050000,vlinder09,286.0830841064453 -20220911050000,vlinder10,286.0889434814453 -20220911050000,vlinder11,286.0733184814453 -20220911050000,vlinder12,286.0733184814453 -20220911050000,vlinder13,286.0733184814453 -20220911050000,vlinder14,287.5186309814453 -20220911050000,vlinder15,286.0225372314453 -20220911050000,vlinder16,287.5186309814453 -20220911050000,vlinder17,286.0283966064453 -20220911050000,vlinder18,286.2588653564453 -20220911050000,vlinder19,285.8174591064453 -20220911050000,vlinder20,285.8174591064453 -20220911050000,vlinder21,291.0401153564453 -20220911050000,vlinder22,287.0225372314453 -20220911050000,vlinder23,287.9014434814453 -20220911050000,vlinder24,286.9678497314453 -20220911050000,vlinder25,286.5010528564453 -20220911050000,vlinder26,286.0225372314453 -20220911050000,vlinder27,285.8252716064453 -20220911050000,vlinder28,285.8701934814453 -20220911060000,vlinder01,286.1609191894531 -20220911060000,vlinder02,286.4148254394531 -20220911060000,vlinder03,285.6941223144531 -20220911060000,vlinder04,285.6941223144531 -20220911060000,vlinder05,286.1765441894531 -20220911060000,vlinder06,285.7917785644531 -20220911060000,vlinder07,285.7917785644531 -20220911060000,vlinder08,285.7917785644531 -20220911060000,vlinder09,286.3699035644531 -20220911060000,vlinder10,286.3972473144531 -20220911060000,vlinder11,286.0456848144531 -20220911060000,vlinder12,286.0456848144531 -20220911060000,vlinder13,286.0456848144531 -20220911060000,vlinder14,286.9812316894531 -20220911060000,vlinder15,286.2761535644531 -20220911060000,vlinder16,286.9812316894531 -20220911060000,vlinder17,286.0710754394531 -20220911060000,vlinder18,286.3230285644531 -20220911060000,vlinder19,286.0495910644531 -20220911060000,vlinder20,286.0495910644531 -20220911060000,vlinder21,290.1140441894531 -20220911060000,vlinder22,287.3288879394531 -20220911060000,vlinder23,287.6394348144531 -20220911060000,vlinder24,287.0085754394531 -20220911060000,vlinder25,286.7312316894531 -20220911060000,vlinder26,285.2702941894531 -20220911060000,vlinder27,286.1765441894531 -20220911060000,vlinder28,286.1609191894531 -20220911070000,vlinder01,287.44970703125 -20220911070000,vlinder02,287.44775390625 -20220911070000,vlinder03,287.53173828125 -20220911070000,vlinder04,287.53173828125 -20220911070000,vlinder05,287.92041015625 -20220911070000,vlinder06,287.46923828125 -20220911070000,vlinder07,287.46923828125 -20220911070000,vlinder08,287.46923828125 -20220911070000,vlinder09,287.48486328125 -20220911070000,vlinder10,287.45361328125 -20220911070000,vlinder11,287.86572265625 -20220911070000,vlinder12,287.86572265625 -20220911070000,vlinder13,287.86572265625 -20220911070000,vlinder14,288.31103515625 -20220911070000,vlinder15,287.47705078125 -20220911070000,vlinder16,288.31103515625 -20220911070000,vlinder17,287.50439453125 -20220911070000,vlinder18,287.67626953125 -20220911070000,vlinder19,287.29150390625 -20220911070000,vlinder20,287.29150390625 -20220911070000,vlinder21,289.79345703125 -20220911070000,vlinder22,288.12353515625 -20220911070000,vlinder23,288.77587890625 -20220911070000,vlinder24,288.32666015625 -20220911070000,vlinder25,288.19189453125 -20220911070000,vlinder26,287.37158203125 -20220911070000,vlinder27,287.92041015625 -20220911070000,vlinder28,287.44970703125 -20220911080000,vlinder01,289.7681579589844 -20220911080000,vlinder02,289.8111267089844 -20220911080000,vlinder03,289.1294860839844 -20220911080000,vlinder04,289.1294860839844 -20220911080000,vlinder05,290.1353454589844 -20220911080000,vlinder06,289.3169860839844 -20220911080000,vlinder07,289.3169860839844 -20220911080000,vlinder08,289.3169860839844 -20220911080000,vlinder09,289.3033142089844 -20220911080000,vlinder10,289.3540954589844 -20220911080000,vlinder11,289.7974548339844 -20220911080000,vlinder12,289.7974548339844 -20220911080000,vlinder13,289.7974548339844 -20220911080000,vlinder14,290.0806579589844 -20220911080000,vlinder15,289.2193298339844 -20220911080000,vlinder16,290.0806579589844 -20220911080000,vlinder17,288.6783142089844 -20220911080000,vlinder18,288.8599548339844 -20220911080000,vlinder19,288.7447204589844 -20220911080000,vlinder20,288.7447204589844 -20220911080000,vlinder21,290.6509704589844 -20220911080000,vlinder22,289.6490173339844 -20220911080000,vlinder23,290.6294860839844 -20220911080000,vlinder24,290.3580017089844 -20220911080000,vlinder25,290.3287048339844 -20220911080000,vlinder26,288.8716735839844 -20220911080000,vlinder27,290.1353454589844 -20220911080000,vlinder28,289.7681579589844 -20220911090000,vlinder01,291.53627014160156 -20220911090000,vlinder02,291.60462951660156 -20220911090000,vlinder03,290.84486389160156 -20220911090000,vlinder04,290.84486389160156 -20220911090000,vlinder05,291.76283264160156 -20220911090000,vlinder06,291.04017639160156 -20220911090000,vlinder07,291.04017639160156 -20220911090000,vlinder08,291.04017639160156 -20220911090000,vlinder09,291.08509826660156 -20220911090000,vlinder10,291.16712951660156 -20220911090000,vlinder11,291.34681701660156 -20220911090000,vlinder12,291.34681701660156 -20220911090000,vlinder13,291.34681701660156 -20220911090000,vlinder14,291.53431701660156 -20220911090000,vlinder15,290.98548889160156 -20220911090000,vlinder16,291.53431701660156 -20220911090000,vlinder17,290.34877014160156 -20220911090000,vlinder18,290.45033264160156 -20220911090000,vlinder19,290.54798889160156 -20220911090000,vlinder20,290.54798889160156 -20220911090000,vlinder21,291.44447326660156 -20220911090000,vlinder22,291.23548889160156 -20220911090000,vlinder23,291.92298889160156 -20220911090000,vlinder24,291.79603576660156 -20220911090000,vlinder25,291.84486389160156 -20220911090000,vlinder26,290.68666076660156 -20220911090000,vlinder27,291.76283264160156 -20220911090000,vlinder28,291.53627014160156 -20220911100000,vlinder01,292.74171447753906 -20220911100000,vlinder02,292.80812072753906 -20220911100000,vlinder03,292.25538635253906 -20220911100000,vlinder04,292.25538635253906 -20220911100000,vlinder05,292.81983947753906 -20220911100000,vlinder06,292.48194885253906 -20220911100000,vlinder07,292.48194885253906 -20220911100000,vlinder08,292.48194885253906 -20220911100000,vlinder09,292.39405822753906 -20220911100000,vlinder10,292.45851135253906 -20220911100000,vlinder11,292.52882385253906 -20220911100000,vlinder12,292.52882385253906 -20220911100000,vlinder13,292.52882385253906 -20220911100000,vlinder14,292.58741760253906 -20220911100000,vlinder15,292.32179260253906 -20220911100000,vlinder16,292.58741760253906 -20220911100000,vlinder17,291.93116760253906 -20220911100000,vlinder18,291.99171447753906 -20220911100000,vlinder19,292.00148010253906 -20220911100000,vlinder20,292.00148010253906 -20220911100000,vlinder21,292.03273010253906 -20220911100000,vlinder22,292.39015197753906 -20220911100000,vlinder23,292.69288635253906 -20220911100000,vlinder24,292.68898010253906 -20220911100000,vlinder25,292.77882385253906 -20220911100000,vlinder26,292.21241760253906 -20220911100000,vlinder27,292.81983947753906 -20220911100000,vlinder28,292.74171447753906 -20220911110000,vlinder01,293.73460388183594 -20220911110000,vlinder02,293.82640075683594 -20220911110000,vlinder03,293.08030700683594 -20220911110000,vlinder04,293.08030700683594 -20220911110000,vlinder05,293.75413513183594 -20220911110000,vlinder06,293.33811950683594 -20220911110000,vlinder07,293.33811950683594 -20220911110000,vlinder08,293.33811950683594 -20220911110000,vlinder09,293.39866638183594 -20220911110000,vlinder10,293.48265075683594 -20220911110000,vlinder11,293.31272888183594 -20220911110000,vlinder12,293.31272888183594 -20220911110000,vlinder13,293.31272888183594 -20220911110000,vlinder14,293.34788513183594 -20220911110000,vlinder15,293.30686950683594 -20220911110000,vlinder16,293.34788513183594 -20220911110000,vlinder17,292.79124450683594 -20220911110000,vlinder18,292.85569763183594 -20220911110000,vlinder19,293.00804138183594 -20220911110000,vlinder20,293.00804138183594 -20220911110000,vlinder21,292.84202575683594 -20220911110000,vlinder22,293.59788513183594 -20220911110000,vlinder23,293.48265075683594 -20220911110000,vlinder24,293.55491638183594 -20220911110000,vlinder25,293.63890075683594 -20220911110000,vlinder26,293.06858825683594 -20220911110000,vlinder27,293.75413513183594 -20220911110000,vlinder28,293.73460388183594 -20220911120000,vlinder01,294.50225830078125 -20220911120000,vlinder02,294.60577392578125 -20220911120000,vlinder03,293.68389892578125 -20220911120000,vlinder04,293.68389892578125 -20220911120000,vlinder05,294.46319580078125 -20220911120000,vlinder06,294.09600830078125 -20220911120000,vlinder07,294.09600830078125 -20220911120000,vlinder08,294.09600830078125 -20220911120000,vlinder09,294.23468017578125 -20220911120000,vlinder10,294.32647705078125 -20220911120000,vlinder11,293.94366455078125 -20220911120000,vlinder12,293.94366455078125 -20220911120000,vlinder13,293.94366455078125 -20220911120000,vlinder14,293.91632080078125 -20220911120000,vlinder15,294.14093017578125 -20220911120000,vlinder16,293.91632080078125 -20220911120000,vlinder17,293.50421142578125 -20220911120000,vlinder18,293.58428955078125 -20220911120000,vlinder19,293.91436767578125 -20220911120000,vlinder20,293.91436767578125 -20220911120000,vlinder21,293.35968017578125 -20220911120000,vlinder22,294.45538330078125 -20220911120000,vlinder23,294.07061767578125 -20220911120000,vlinder24,294.20343017578125 -20220911120000,vlinder25,294.29522705078125 -20220911120000,vlinder26,293.69952392578125 -20220911120000,vlinder27,294.46319580078125 -20220911120000,vlinder28,294.50225830078125 -20220911130000,vlinder01,295.00975036621094 -20220911130000,vlinder02,295.08396911621094 -20220911130000,vlinder03,294.34764099121094 -20220911130000,vlinder04,294.34764099121094 -20220911130000,vlinder05,294.91795349121094 -20220911130000,vlinder06,294.86326599121094 -20220911130000,vlinder07,294.86326599121094 -20220911130000,vlinder08,294.86326599121094 -20220911130000,vlinder09,294.82810974121094 -20220911130000,vlinder10,294.88279724121094 -20220911130000,vlinder11,294.65037536621094 -20220911130000,vlinder12,294.65037536621094 -20220911130000,vlinder13,294.65037536621094 -20220911130000,vlinder14,294.58592224121094 -20220911130000,vlinder15,294.77342224121094 -20220911130000,vlinder16,294.58592224121094 -20220911130000,vlinder17,294.05662536621094 -20220911130000,vlinder18,294.12889099121094 -20220911130000,vlinder19,294.58982849121094 -20220911130000,vlinder20,294.58982849121094 -20220911130000,vlinder21,293.60740661621094 -20220911130000,vlinder22,294.87107849121094 -20220911130000,vlinder23,294.47264099121094 -20220911130000,vlinder24,294.60935974121094 -20220911130000,vlinder25,294.74021911621094 -20220911130000,vlinder26,294.37693786621094 -20220911130000,vlinder27,294.91795349121094 -20220911130000,vlinder28,295.00975036621094 -20220911140000,vlinder01,294.9568786621094 -20220911140000,vlinder02,295.0213317871094 -20220911140000,vlinder03,294.6658630371094 -20220911140000,vlinder04,294.6658630371094 -20220911140000,vlinder05,294.8533630371094 -20220911140000,vlinder06,294.9353942871094 -20220911140000,vlinder07,294.9353942871094 -20220911140000,vlinder08,294.9353942871094 -20220911140000,vlinder09,294.8103942871094 -20220911140000,vlinder10,294.8475036621094 -20220911140000,vlinder11,294.7869567871094 -20220911140000,vlinder12,294.7869567871094 -20220911140000,vlinder13,294.7869567871094 -20220911140000,vlinder14,294.7459411621094 -20220911140000,vlinder15,294.7732849121094 -20220911140000,vlinder16,294.7459411621094 -20220911140000,vlinder17,294.3143005371094 -20220911140000,vlinder18,294.3709411621094 -20220911140000,vlinder19,294.6209411621094 -20220911140000,vlinder20,294.6209411621094 -20220911140000,vlinder21,293.6697692871094 -20220911140000,vlinder22,295.0779724121094 -20220911140000,vlinder23,294.4412536621094 -20220911140000,vlinder24,294.5740661621094 -20220911140000,vlinder25,294.6853942871094 -20220911140000,vlinder26,294.6717224121094 -20220911140000,vlinder27,294.8533630371094 -20220911140000,vlinder28,294.9568786621094 -20220911150000,vlinder01,294.9564971923828 -20220911150000,vlinder02,295.0229034423828 -20220911150000,vlinder03,294.8217315673828 -20220911150000,vlinder04,294.8217315673828 -20220911150000,vlinder05,294.8764190673828 -20220911150000,vlinder06,294.9057159423828 -20220911150000,vlinder07,294.9057159423828 -20220911150000,vlinder08,294.9057159423828 -20220911150000,vlinder09,294.7787628173828 -20220911150000,vlinder10,294.8178253173828 -20220911150000,vlinder11,294.8881378173828 -20220911150000,vlinder12,294.8881378173828 -20220911150000,vlinder13,294.8881378173828 -20220911150000,vlinder14,294.9213409423828 -20220911150000,vlinder15,294.7397003173828 -20220911150000,vlinder16,294.9213409423828 -20220911150000,vlinder17,294.3666534423828 -20220911150000,vlinder18,294.4291534423828 -20220911150000,vlinder19,294.5561065673828 -20220911150000,vlinder20,294.5561065673828 -20220911150000,vlinder21,293.7865753173828 -20220911150000,vlinder22,295.2436065673828 -20220911150000,vlinder23,294.5150909423828 -20220911150000,vlinder24,294.6322784423828 -20220911150000,vlinder25,294.7416534423828 -20220911150000,vlinder26,294.7924346923828 -20220911150000,vlinder27,294.8764190673828 -20220911150000,vlinder28,294.9564971923828 -20220911160000,vlinder01,294.84837341308594 -20220911160000,vlinder02,294.89915466308594 -20220911160000,vlinder03,294.70774841308594 -20220911160000,vlinder04,294.70774841308594 -20220911160000,vlinder05,294.75657653808594 -20220911160000,vlinder06,294.80735778808594 -20220911160000,vlinder07,294.80735778808594 -20220911160000,vlinder08,294.80735778808594 -20220911160000,vlinder09,294.71165466308594 -20220911160000,vlinder10,294.74095153808594 -20220911160000,vlinder11,294.73899841308594 -20220911160000,vlinder12,294.73899841308594 -20220911160000,vlinder13,294.73899841308594 -20220911160000,vlinder14,294.74876403808594 -20220911160000,vlinder15,294.67845153808594 -20220911160000,vlinder16,294.74876403808594 -20220911160000,vlinder17,294.32493591308594 -20220911160000,vlinder18,294.38938903808594 -20220911160000,vlinder19,294.49095153808594 -20220911160000,vlinder20,294.49095153808594 -20220911160000,vlinder21,293.82298278808594 -20220911160000,vlinder22,295.11595153808594 -20220911160000,vlinder23,294.36790466308594 -20220911160000,vlinder24,294.51438903808594 -20220911160000,vlinder25,294.60423278808594 -20220911160000,vlinder26,294.72337341308594 -20220911160000,vlinder27,294.75657653808594 -20220911160000,vlinder28,294.84837341308594 -20220911170000,vlinder01,294.4211120605469 -20220911170000,vlinder02,294.4601745605469 -20220911170000,vlinder03,294.3488464355469 -20220911170000,vlinder04,294.3488464355469 -20220911170000,vlinder05,294.3840026855469 -20220911170000,vlinder06,294.4328308105469 -20220911170000,vlinder07,294.4328308105469 -20220911170000,vlinder08,294.4328308105469 -20220911170000,vlinder09,294.3019714355469 -20220911170000,vlinder10,294.3195495605469 -20220911170000,vlinder11,294.3781433105469 -20220911170000,vlinder12,294.3781433105469 -20220911170000,vlinder13,294.3781433105469 -20220911170000,vlinder14,294.3937683105469 -20220911170000,vlinder15,294.2765808105469 -20220911170000,vlinder16,294.3937683105469 -20220911170000,vlinder17,293.9113464355469 -20220911170000,vlinder18,294.0304870605469 -20220911170000,vlinder19,294.0871276855469 -20220911170000,vlinder20,294.0871276855469 -20220911170000,vlinder21,293.7980651855469 -20220911170000,vlinder22,294.6672058105469 -20220911170000,vlinder23,294.1242370605469 -20220911170000,vlinder24,294.2297058105469 -20220911170000,vlinder25,294.2726745605469 -20220911170000,vlinder26,294.3957214355469 -20220911170000,vlinder27,294.3840026855469 -20220911170000,vlinder28,294.4211120605469 -20220911180000,vlinder01,293.17124938964844 -20220911180000,vlinder02,293.20640563964844 -20220911180000,vlinder03,293.20445251464844 -20220911180000,vlinder04,293.20445251464844 -20220911180000,vlinder05,293.24351501464844 -20220911180000,vlinder06,293.36656188964844 -20220911180000,vlinder07,293.36656188964844 -20220911180000,vlinder08,293.36656188964844 -20220911180000,vlinder09,293.12828063964844 -20220911180000,vlinder10,293.12242126464844 -20220911180000,vlinder11,293.43882751464844 -20220911180000,vlinder12,293.43882751464844 -20220911180000,vlinder13,293.43882751464844 -20220911180000,vlinder14,293.50132751464844 -20220911180000,vlinder15,293.13414001464844 -20220911180000,vlinder16,293.50132751464844 -20220911180000,vlinder17,292.71226501464844 -20220911180000,vlinder18,292.70054626464844 -20220911180000,vlinder19,292.99156188964844 -20220911180000,vlinder20,292.99156188964844 -20220911180000,vlinder21,293.27867126464844 -20220911180000,vlinder22,293.46617126464844 -20220911180000,vlinder23,293.20445251464844 -20220911180000,vlinder24,293.22398376464844 -20220911180000,vlinder25,293.22593688964844 -20220911180000,vlinder26,293.13804626464844 -20220911180000,vlinder27,293.24351501464844 -20220911180000,vlinder28,293.17124938964844 -20220911190000,vlinder01,291.3652801513672 -20220911190000,vlinder02,291.4590301513672 -20220911190000,vlinder03,291.1328582763672 -20220911190000,vlinder04,291.1328582763672 -20220911190000,vlinder05,291.6230926513672 -20220911190000,vlinder06,291.4238739013672 -20220911190000,vlinder07,291.4238739013672 -20220911190000,vlinder08,291.4238739013672 -20220911190000,vlinder09,291.1269989013672 -20220911190000,vlinder10,291.1504364013672 -20220911190000,vlinder11,291.6152801513672 -20220911190000,vlinder12,291.6152801513672 -20220911190000,vlinder13,291.6152801513672 -20220911190000,vlinder14,291.7519989013672 -20220911190000,vlinder15,291.1016082763672 -20220911190000,vlinder16,291.7519989013672 -20220911190000,vlinder17,290.7168426513672 -20220911190000,vlinder18,290.7090301513672 -20220911190000,vlinder19,290.8535614013672 -20220911190000,vlinder20,290.8535614013672 -20220911190000,vlinder21,292.5684051513672 -20220911190000,vlinder22,291.9277801513672 -20220911190000,vlinder23,291.9004364013672 -20220911190000,vlinder24,291.7519989013672 -20220911190000,vlinder25,291.6914520263672 -20220911190000,vlinder26,290.9180145263672 -20220911190000,vlinder27,291.6230926513672 -20220911190000,vlinder28,291.3652801513672 -20220911200000,vlinder01,290.3824768066406 -20220911200000,vlinder02,290.4996643066406 -20220911200000,vlinder03,290.0895080566406 -20220911200000,vlinder04,290.0895080566406 -20220911200000,vlinder05,290.7555236816406 -20220911200000,vlinder06,290.4586486816406 -20220911200000,vlinder07,290.4586486816406 -20220911200000,vlinder08,290.4586486816406 -20220911200000,vlinder09,290.1988830566406 -20220911200000,vlinder10,290.2008361816406 -20220911200000,vlinder11,290.8199768066406 -20220911200000,vlinder12,290.8199768066406 -20220911200000,vlinder13,290.8199768066406 -20220911200000,vlinder14,291.0621643066406 -20220911200000,vlinder15,290.1773986816406 -20220911200000,vlinder16,291.0621643066406 -20220911200000,vlinder17,289.6031799316406 -20220911200000,vlinder18,289.6402893066406 -20220911200000,vlinder19,289.7770080566406 -20220911200000,vlinder20,289.7770080566406 -20220911200000,vlinder21,291.9820861816406 -20220911200000,vlinder22,291.0465393066406 -20220911200000,vlinder23,291.2359924316406 -20220911200000,vlinder24,290.9371643066406 -20220911200000,vlinder25,290.8844299316406 -20220911200000,vlinder26,289.5289611816406 -20220911200000,vlinder27,290.7555236816406 -20220911200000,vlinder28,290.3824768066406 -20220911210000,vlinder01,289.58123779296875 -20220911210000,vlinder02,289.73162841796875 -20220911210000,vlinder03,289.15740966796875 -20220911210000,vlinder04,289.15740966796875 -20220911210000,vlinder05,290.04803466796875 -20220911210000,vlinder06,289.54412841796875 -20220911210000,vlinder07,289.54412841796875 -20220911210000,vlinder08,289.54412841796875 -20220911210000,vlinder09,289.40155029296875 -20220911210000,vlinder10,289.40155029296875 -20220911210000,vlinder11,290.04998779296875 -20220911210000,vlinder12,290.04998779296875 -20220911210000,vlinder13,290.04998779296875 -20220911210000,vlinder14,290.39178466796875 -20220911210000,vlinder15,289.36053466796875 -20220911210000,vlinder16,290.39178466796875 -20220911210000,vlinder17,288.85858154296875 -20220911210000,vlinder18,288.94842529296875 -20220911210000,vlinder19,288.82733154296875 -20220911210000,vlinder20,288.82733154296875 -20220911210000,vlinder21,291.46600341796875 -20220911210000,vlinder22,290.38787841796875 -20220911210000,vlinder23,290.64373779296875 -20220911210000,vlinder24,290.26873779296875 -20220911210000,vlinder25,290.21795654296875 -20220911210000,vlinder26,288.35662841796875 -20220911210000,vlinder27,290.04803466796875 -20220911210000,vlinder28,289.58123779296875 -20220911220000,vlinder01,289.03187561035156 -20220911220000,vlinder02,289.21937561035156 -20220911220000,vlinder03,288.54554748535156 -20220911220000,vlinder04,288.54554748535156 -20220911220000,vlinder05,289.54359436035156 -20220911220000,vlinder06,288.75257873535156 -20220911220000,vlinder07,288.75257873535156 -20220911220000,vlinder08,288.75257873535156 -20220911220000,vlinder09,288.74867248535156 -20220911220000,vlinder10,288.78187561035156 -20220911220000,vlinder11,289.36976623535156 -20220911220000,vlinder12,289.36976623535156 -20220911220000,vlinder13,289.36976623535156 -20220911220000,vlinder14,289.79945373535156 -20220911220000,vlinder15,288.66859436035156 -20220911220000,vlinder16,289.79945373535156 -20220911220000,vlinder17,288.16468811035156 -20220911220000,vlinder18,288.25062561035156 -20220911220000,vlinder19,288.07289123535156 -20220911220000,vlinder20,288.07289123535156 -20220911220000,vlinder21,291.08851623535156 -20220911220000,vlinder22,290.11000061035156 -20220911220000,vlinder23,290.18031311035156 -20220911220000,vlinder24,289.78578186035156 -20220911220000,vlinder25,289.71937561035156 -20220911220000,vlinder26,287.63148498535156 -20220911220000,vlinder27,289.54359436035156 -20220911220000,vlinder28,289.03187561035156 -20220911230000,vlinder01,288.5934143066406 -20220911230000,vlinder02,288.7535705566406 -20220911230000,vlinder03,288.0523986816406 -20220911230000,vlinder04,288.0523986816406 -20220911230000,vlinder05,289.0973205566406 -20220911230000,vlinder06,288.2379455566406 -20220911230000,vlinder07,288.2379455566406 -20220911230000,vlinder08,288.2379455566406 -20220911230000,vlinder09,288.3102111816406 -20220911230000,vlinder10,288.3492736816406 -20220911230000,vlinder11,288.7867736816406 -20220911230000,vlinder12,288.7867736816406 -20220911230000,vlinder13,288.7867736816406 -20220911230000,vlinder14,289.2086486816406 -20220911230000,vlinder15,288.2184143066406 -20220911230000,vlinder16,289.2086486816406 -20220911230000,vlinder17,287.7926330566406 -20220911230000,vlinder18,287.8981018066406 -20220911230000,vlinder19,287.6930236816406 -20220911230000,vlinder20,287.6930236816406 -20220911230000,vlinder21,290.8102111816406 -20220911230000,vlinder22,289.6949768066406 -20220911230000,vlinder23,289.7809143066406 -20220911230000,vlinder24,289.3727111816406 -20220911230000,vlinder25,289.2691955566406 -20220911230000,vlinder26,287.1324768066406 -20220911230000,vlinder27,289.0973205566406 -20220911230000,vlinder28,288.5934143066406 -20220912000000,vlinder01,288.19134521484375 -20220912000000,vlinder02,288.31829833984375 -20220912000000,vlinder03,287.88861083984375 -20220912000000,vlinder04,287.88861083984375 -20220912000000,vlinder05,288.68548583984375 -20220912000000,vlinder06,287.92376708984375 -20220912000000,vlinder07,287.92376708984375 -20220912000000,vlinder08,287.92376708984375 -20220912000000,vlinder09,287.97064208984375 -20220912000000,vlinder10,288.00970458984375 -20220912000000,vlinder11,288.40618896484375 -20220912000000,vlinder12,288.40618896484375 -20220912000000,vlinder13,288.40618896484375 -20220912000000,vlinder14,288.78118896484375 -20220912000000,vlinder15,287.88275146484375 -20220912000000,vlinder16,288.78118896484375 -20220912000000,vlinder17,287.57611083984375 -20220912000000,vlinder18,287.69525146484375 -20220912000000,vlinder19,287.42962646484375 -20220912000000,vlinder20,287.42962646484375 -20220912000000,vlinder21,290.58001708984375 -20220912000000,vlinder22,289.28118896484375 -20220912000000,vlinder23,289.42181396484375 -20220912000000,vlinder24,288.99603271484375 -20220912000000,vlinder25,288.84564208984375 -20220912000000,vlinder26,286.98431396484375 -20220912000000,vlinder27,288.68548583984375 -20220912000000,vlinder28,288.19134521484375 -20220912010000,vlinder01,287.80381774902344 -20220912010000,vlinder02,287.94248962402344 -20220912010000,vlinder03,287.47764587402344 -20220912010000,vlinder04,287.47764587402344 -20220912010000,vlinder05,288.31358337402344 -20220912010000,vlinder06,287.51866149902344 -20220912010000,vlinder07,287.51866149902344 -20220912010000,vlinder08,287.51866149902344 -20220912010000,vlinder09,287.61827087402344 -20220912010000,vlinder10,287.64561462402344 -20220912010000,vlinder11,288.01866149902344 -20220912010000,vlinder12,288.01866149902344 -20220912010000,vlinder13,288.01866149902344 -20220912010000,vlinder14,288.40538024902344 -20220912010000,vlinder15,287.53233337402344 -20220912010000,vlinder16,288.40538024902344 -20220912010000,vlinder17,287.21983337402344 -20220912010000,vlinder18,287.38975524902344 -20220912010000,vlinder19,287.06944274902344 -20220912010000,vlinder20,287.06944274902344 -20220912010000,vlinder21,290.29405212402344 -20220912010000,vlinder22,288.84678649902344 -20220912010000,vlinder23,289.10850524902344 -20220912010000,vlinder24,288.65147399902344 -20220912010000,vlinder25,288.51280212402344 -20220912010000,vlinder26,286.54600524902344 -20220912010000,vlinder27,288.31358337402344 -20220912010000,vlinder28,287.80381774902344 -20220912020000,vlinder01,287.3822021484375 -20220912020000,vlinder02,287.5501708984375 -20220912020000,vlinder03,286.9056396484375 -20220912020000,vlinder04,286.9056396484375 -20220912020000,vlinder05,287.9212646484375 -20220912020000,vlinder06,286.9056396484375 -20220912020000,vlinder07,286.9056396484375 -20220912020000,vlinder08,286.9056396484375 -20220912020000,vlinder09,287.2005615234375 -20220912020000,vlinder10,287.2337646484375 -20220912020000,vlinder11,287.4818115234375 -20220912020000,vlinder12,287.4818115234375 -20220912020000,vlinder13,287.4818115234375 -20220912020000,vlinder14,287.9271240234375 -20220912020000,vlinder15,287.0950927734375 -20220912020000,vlinder16,287.9271240234375 -20220912020000,vlinder17,286.8646240234375 -20220912020000,vlinder18,287.1048583984375 -20220912020000,vlinder19,286.5599365234375 -20220912020000,vlinder20,286.5599365234375 -20220912020000,vlinder21,289.8978271484375 -20220912020000,vlinder22,288.3939208984375 -20220912020000,vlinder23,288.6829833984375 -20220912020000,vlinder24,288.2552490234375 -20220912020000,vlinder25,288.1107177734375 -20220912020000,vlinder26,285.9876708984375 -20220912020000,vlinder27,287.9212646484375 -20220912020000,vlinder28,287.3822021484375 -20220912030000,vlinder01,287.0187530517578 -20220912030000,vlinder02,287.2179718017578 -20220912030000,vlinder03,286.4210968017578 -20220912030000,vlinder04,286.4210968017578 -20220912030000,vlinder05,287.5851593017578 -20220912030000,vlinder06,286.3332061767578 -20220912030000,vlinder07,286.3332061767578 -20220912030000,vlinder08,286.3332061767578 -20220912030000,vlinder09,286.8527374267578 -20220912030000,vlinder10,286.8878936767578 -20220912030000,vlinder11,287.0343780517578 -20220912030000,vlinder12,287.0343780517578 -20220912030000,vlinder13,287.0343780517578 -20220912030000,vlinder14,287.5109405517578 -20220912030000,vlinder15,286.7257843017578 -20220912030000,vlinder16,287.5109405517578 -20220912030000,vlinder17,286.5695343017578 -20220912030000,vlinder18,286.8410186767578 -20220912030000,vlinder19,286.1496124267578 -20220912030000,vlinder20,286.1496124267578 -20220912030000,vlinder21,289.5519561767578 -20220912030000,vlinder22,288.0421905517578 -20220912030000,vlinder23,288.3000030517578 -20220912030000,vlinder24,287.9132843017578 -20220912030000,vlinder25,287.7550811767578 -20220912030000,vlinder26,285.6164093017578 -20220912030000,vlinder27,287.5851593017578 -20220912030000,vlinder28,287.0187530517578 -20220912040000,vlinder01,286.72276306152344 -20220912040000,vlinder02,286.94151306152344 -20220912040000,vlinder03,285.96104431152344 -20220912040000,vlinder04,285.96104431152344 -20220912040000,vlinder05,287.32432556152344 -20220912040000,vlinder06,285.93760681152344 -20220912040000,vlinder07,285.93760681152344 -20220912040000,vlinder08,285.93760681152344 -20220912040000,vlinder09,286.60362243652344 -20220912040000,vlinder10,286.64659118652344 -20220912040000,vlinder11,286.73838806152344 -20220912040000,vlinder12,286.73838806152344 -20220912040000,vlinder13,286.73838806152344 -20220912040000,vlinder14,287.25791931152344 -20220912040000,vlinder15,286.47080993652344 -20220912040000,vlinder16,287.25791931152344 -20220912040000,vlinder17,285.86338806152344 -20220912040000,vlinder18,286.06260681152344 -20220912040000,vlinder19,285.90635681152344 -20220912040000,vlinder20,285.90635681152344 -20220912040000,vlinder21,289.21299743652344 -20220912040000,vlinder22,287.67588806152344 -20220912040000,vlinder23,288.06260681152344 -20220912040000,vlinder24,287.65245056152344 -20220912040000,vlinder25,287.51182556152344 -20220912040000,vlinder26,285.08409118652344 -20220912040000,vlinder27,287.32432556152344 -20220912040000,vlinder28,286.72276306152344 -20220912050000,vlinder01,286.4893035888672 -20220912050000,vlinder02,286.7080535888672 -20220912050000,vlinder03,285.7412567138672 -20220912050000,vlinder04,285.7412567138672 -20220912050000,vlinder05,287.0889129638672 -20220912050000,vlinder06,285.7412567138672 -20220912050000,vlinder07,285.7412567138672 -20220912050000,vlinder08,285.7412567138672 -20220912050000,vlinder09,286.4287567138672 -20220912050000,vlinder10,286.4697723388672 -20220912050000,vlinder11,286.5127410888672 -20220912050000,vlinder12,286.5127410888672 -20220912050000,vlinder13,286.5127410888672 -20220912050000,vlinder14,287.0381317138672 -20220912050000,vlinder15,286.2998504638672 -20220912050000,vlinder16,287.0381317138672 -20220912050000,vlinder17,285.3330535888672 -20220912050000,vlinder18,285.5107879638672 -20220912050000,vlinder19,285.7920379638672 -20220912050000,vlinder20,285.7920379638672 -20220912050000,vlinder21,288.9346160888672 -20220912050000,vlinder22,287.4209442138672 -20220912050000,vlinder23,287.8291473388672 -20220912050000,vlinder24,287.4111785888672 -20220912050000,vlinder25,287.2686004638672 -20220912050000,vlinder26,284.7275848388672 -20220912050000,vlinder27,287.0889129638672 -20220912050000,vlinder28,286.4893035888672 -20220912060000,vlinder01,286.5871887207031 -20220912060000,vlinder02,286.7883605957031 -20220912060000,vlinder03,285.8430480957031 -20220912060000,vlinder04,285.8430480957031 -20220912060000,vlinder05,287.1379699707031 -20220912060000,vlinder06,285.9797668457031 -20220912060000,vlinder07,285.9797668457031 -20220912060000,vlinder08,285.9797668457031 -20220912060000,vlinder09,286.6203918457031 -20220912060000,vlinder10,286.6477355957031 -20220912060000,vlinder11,286.6086730957031 -20220912060000,vlinder12,286.6086730957031 -20220912060000,vlinder13,286.6086730957031 -20220912060000,vlinder14,287.0696105957031 -20220912060000,vlinder15,286.5149230957031 -20220912060000,vlinder16,287.0696105957031 -20220912060000,vlinder17,285.3996887207031 -20220912060000,vlinder18,285.5715637207031 -20220912060000,vlinder19,286.1184387207031 -20220912060000,vlinder20,286.1184387207031 -20220912060000,vlinder21,288.8625793457031 -20220912060000,vlinder22,287.4543762207031 -20220912060000,vlinder23,287.8098449707031 -20220912060000,vlinder24,287.4250793457031 -20220912060000,vlinder25,287.2785949707031 -20220912060000,vlinder26,285.0969543457031 -20220912060000,vlinder27,287.1379699707031 -20220912060000,vlinder28,286.5871887207031 -20220912070000,vlinder01,288.3594055175781 -20220912070000,vlinder02,288.4023742675781 -20220912070000,vlinder03,288.0019836425781 -20220912070000,vlinder04,288.0019836425781 -20220912070000,vlinder05,288.5918273925781 -20220912070000,vlinder06,288.2793273925781 -20220912070000,vlinder07,288.2793273925781 -20220912070000,vlinder08,288.2793273925781 -20220912070000,vlinder09,288.2480773925781 -20220912070000,vlinder10,288.2637023925781 -20220912070000,vlinder11,288.3887023925781 -20220912070000,vlinder12,288.3887023925781 -20220912070000,vlinder13,288.3887023925781 -20220912070000,vlinder14,288.5840148925781 -20220912070000,vlinder15,288.2168273925781 -20220912070000,vlinder16,288.5840148925781 -20220912070000,vlinder17,287.8027648925781 -20220912070000,vlinder18,287.9687805175781 -20220912070000,vlinder19,288.0058898925781 -20220912070000,vlinder20,288.0058898925781 -20220912070000,vlinder21,289.7617492675781 -20220912070000,vlinder22,289.0019836425781 -20220912070000,vlinder23,288.9668273925781 -20220912070000,vlinder24,288.7871398925781 -20220912070000,vlinder25,288.7148742675781 -20220912070000,vlinder26,287.8535461425781 -20220912070000,vlinder27,288.5918273925781 -20220912070000,vlinder28,288.3594055175781 -20220912080000,vlinder01,290.39683532714844 -20220912080000,vlinder02,290.39878845214844 -20220912080000,vlinder03,290.59996032714844 -20220912080000,vlinder04,290.59996032714844 -20220912080000,vlinder05,290.43003845214844 -20220912080000,vlinder06,290.75035095214844 -20220912080000,vlinder07,290.75035095214844 -20220912080000,vlinder08,290.75035095214844 -20220912080000,vlinder09,290.45152282714844 -20220912080000,vlinder10,290.42808532714844 -20220912080000,vlinder11,290.63902282714844 -20220912080000,vlinder12,290.63902282714844 -20220912080000,vlinder13,290.63902282714844 -20220912080000,vlinder14,290.61949157714844 -20220912080000,vlinder15,290.47691345214844 -20220912080000,vlinder16,290.61949157714844 -20220912080000,vlinder17,290.50816345214844 -20220912080000,vlinder18,290.68003845214844 -20220912080000,vlinder19,290.50621032714844 -20220912080000,vlinder20,290.50621032714844 -20220912080000,vlinder21,290.66246032714844 -20220912080000,vlinder22,290.74449157714844 -20220912080000,vlinder23,290.45933532714844 -20220912080000,vlinder24,290.44175720214844 -20220912080000,vlinder25,290.42808532714844 -20220912080000,vlinder26,290.69371032714844 -20220912080000,vlinder27,290.43003845214844 -20220912080000,vlinder28,290.39683532714844 -20220912090000,vlinder01,292.3015594482422 -20220912090000,vlinder02,292.3093719482422 -20220912090000,vlinder03,292.7507781982422 -20220912090000,vlinder04,292.7507781982422 -20220912090000,vlinder05,292.2468719482422 -20220912090000,vlinder06,292.7742156982422 -20220912090000,vlinder07,292.7742156982422 -20220912090000,vlinder08,292.7742156982422 -20220912090000,vlinder09,292.4011688232422 -20220912090000,vlinder10,292.3718719482422 -20220912090000,vlinder11,292.5183563232422 -20220912090000,vlinder12,292.5183563232422 -20220912090000,vlinder13,292.5183563232422 -20220912090000,vlinder14,292.4011688232422 -20220912090000,vlinder15,292.4402313232422 -20220912090000,vlinder16,292.4011688232422 -20220912090000,vlinder17,292.8601531982422 -20220912090000,vlinder18,293.0144500732422 -20220912090000,vlinder19,292.5339813232422 -20220912090000,vlinder20,292.5339813232422 -20220912090000,vlinder21,291.9714813232422 -20220912090000,vlinder22,292.6101531982422 -20220912090000,vlinder23,292.0789031982422 -20220912090000,vlinder24,292.1531219482422 -20220912090000,vlinder25,292.1570281982422 -20220912090000,vlinder26,292.8796844482422 -20220912090000,vlinder27,292.2468719482422 -20220912090000,vlinder28,292.3015594482422 -20220912100000,vlinder01,293.8675231933594 -20220912100000,vlinder02,293.8792419433594 -20220912100000,vlinder03,294.2268981933594 -20220912100000,vlinder04,294.2268981933594 -20220912100000,vlinder05,293.7679138183594 -20220912100000,vlinder06,294.2776794433594 -20220912100000,vlinder07,294.2776794433594 -20220912100000,vlinder08,294.2776794433594 -20220912100000,vlinder09,293.9690856933594 -20220912100000,vlinder10,293.9436950683594 -20220912100000,vlinder11,293.9983825683594 -20220912100000,vlinder12,293.9983825683594 -20220912100000,vlinder13,293.9983825683594 -20220912100000,vlinder14,293.8733825683594 -20220912100000,vlinder15,294.0003356933594 -20220912100000,vlinder16,293.8733825683594 -20220912100000,vlinder17,294.4476013183594 -20220912100000,vlinder18,294.6097106933594 -20220912100000,vlinder19,294.0608825683594 -20220912100000,vlinder20,294.0608825683594 -20220912100000,vlinder21,293.1370544433594 -20220912100000,vlinder22,294.0940856933594 -20220912100000,vlinder23,293.4847106933594 -20220912100000,vlinder24,293.5999450683594 -20220912100000,vlinder25,293.6272888183594 -20220912100000,vlinder26,294.3479919433594 -20220912100000,vlinder27,293.7679138183594 -20220912100000,vlinder28,293.8675231933594 -20220912110000,vlinder01,295.1840515136719 -20220912110000,vlinder02,295.2270202636719 -20220912110000,vlinder03,295.3656921386719 -20220912110000,vlinder04,295.3656921386719 -20220912110000,vlinder05,295.0883483886719 -20220912110000,vlinder06,295.4340515136719 -20220912110000,vlinder07,295.4340515136719 -20220912110000,vlinder08,295.4340515136719 -20220912110000,vlinder09,295.1938171386719 -20220912110000,vlinder10,295.1957702636719 -20220912110000,vlinder11,295.2074890136719 -20220912110000,vlinder12,295.2074890136719 -20220912110000,vlinder13,295.2074890136719 -20220912110000,vlinder14,295.1156921386719 -20220912110000,vlinder15,295.1996765136719 -20220912110000,vlinder16,295.1156921386719 -20220912110000,vlinder17,295.5492858886719 -20220912110000,vlinder18,295.7055358886719 -20220912110000,vlinder19,295.2309265136719 -20220912110000,vlinder20,295.2309265136719 -20220912110000,vlinder21,294.3422546386719 -20220912110000,vlinder22,295.5492858886719 -20220912110000,vlinder23,294.7660827636719 -20220912110000,vlinder24,294.9047546386719 -20220912110000,vlinder25,294.9360046386719 -20220912110000,vlinder26,295.4594421386719 -20220912110000,vlinder27,295.0883483886719 -20220912110000,vlinder28,295.1840515136719 -20220912120000,vlinder01,296.16505432128906 -20220912120000,vlinder02,296.20997619628906 -20220912120000,vlinder03,296.25880432128906 -20220912120000,vlinder04,296.25880432128906 -20220912120000,vlinder05,296.08497619628906 -20220912120000,vlinder06,296.36427307128906 -20220912120000,vlinder07,296.36427307128906 -20220912120000,vlinder08,296.36427307128906 -20220912120000,vlinder09,296.13380432128906 -20220912120000,vlinder10,296.14552307128906 -20220912120000,vlinder11,296.16505432128906 -20220912120000,vlinder12,296.16505432128906 -20220912120000,vlinder13,296.16505432128906 -20220912120000,vlinder14,296.08497619628906 -20220912120000,vlinder15,296.13380432128906 -20220912120000,vlinder16,296.08497619628906 -20220912120000,vlinder17,296.36622619628906 -20220912120000,vlinder18,296.51856994628906 -20220912120000,vlinder19,296.12989807128906 -20220912120000,vlinder20,296.12989807128906 -20220912120000,vlinder21,295.22560119628906 -20220912120000,vlinder22,296.44825744628906 -20220912120000,vlinder23,295.75489807128906 -20220912120000,vlinder24,295.89942932128906 -20220912120000,vlinder25,295.94825744628906 -20220912120000,vlinder26,296.34474182128906 -20220912120000,vlinder27,296.08497619628906 -20220912120000,vlinder28,296.16505432128906 -20220912130000,vlinder01,296.8381805419922 -20220912130000,vlinder02,296.9006805419922 -20220912130000,vlinder03,296.8928680419922 -20220912130000,vlinder04,296.8928680419922 -20220912130000,vlinder05,296.7698211669922 -20220912130000,vlinder06,296.9768524169922 -20220912130000,vlinder07,296.9768524169922 -20220912130000,vlinder08,296.9768524169922 -20220912130000,vlinder09,296.7502899169922 -20220912130000,vlinder10,296.7795867919922 -20220912130000,vlinder11,296.7522430419922 -20220912130000,vlinder12,296.7522430419922 -20220912130000,vlinder13,296.7522430419922 -20220912130000,vlinder14,296.6604461669922 -20220912130000,vlinder15,296.7385711669922 -20220912130000,vlinder16,296.6604461669922 -20220912130000,vlinder17,296.9944305419922 -20220912130000,vlinder18,297.1448211669922 -20220912130000,vlinder19,296.7483367919922 -20220912130000,vlinder20,296.7483367919922 -20220912130000,vlinder21,295.9905242919922 -20220912130000,vlinder22,297.3069305419922 -20220912130000,vlinder23,296.4475555419922 -20220912130000,vlinder24,296.6116180419922 -20220912130000,vlinder25,296.6331024169922 -20220912130000,vlinder26,297.0022430419922 -20220912130000,vlinder27,296.7698211669922 -20220912130000,vlinder28,296.8381805419922 -20220912140000,vlinder01,297.2695007324219 -20220912140000,vlinder02,297.3241882324219 -20220912140000,vlinder03,297.1913757324219 -20220912140000,vlinder04,297.1913757324219 -20220912140000,vlinder05,297.1952819824219 -20220912140000,vlinder06,297.4316101074219 -20220912140000,vlinder07,297.4316101074219 -20220912140000,vlinder08,297.4316101074219 -20220912140000,vlinder09,297.2187194824219 -20220912140000,vlinder10,297.2343444824219 -20220912140000,vlinder11,297.1405944824219 -20220912140000,vlinder12,297.1405944824219 -20220912140000,vlinder13,297.1405944824219 -20220912140000,vlinder14,297.0214538574219 -20220912140000,vlinder15,297.2167663574219 -20220912140000,vlinder16,297.0214538574219 -20220912140000,vlinder17,297.3241882324219 -20220912140000,vlinder18,297.4726257324219 -20220912140000,vlinder19,297.2167663574219 -20220912140000,vlinder20,297.2167663574219 -20220912140000,vlinder21,296.4628601074219 -20220912140000,vlinder22,297.7402038574219 -20220912140000,vlinder23,296.8827819824219 -20220912140000,vlinder24,297.0585632324219 -20220912140000,vlinder25,297.0605163574219 -20220912140000,vlinder26,297.3339538574219 -20220912140000,vlinder27,297.1952819824219 -20220912140000,vlinder28,297.2695007324219 -20220912150000,vlinder01,297.5311737060547 -20220912150000,vlinder02,297.5956268310547 -20220912150000,vlinder03,297.2811737060547 -20220912150000,vlinder04,297.2811737060547 -20220912150000,vlinder05,297.4628143310547 -20220912150000,vlinder06,297.6073455810547 -20220912150000,vlinder07,297.6073455810547 -20220912150000,vlinder08,297.6073455810547 -20220912150000,vlinder09,297.4413299560547 -20220912150000,vlinder10,297.4647674560547 -20220912150000,vlinder11,297.3339080810547 -20220912150000,vlinder12,297.3339080810547 -20220912150000,vlinder13,297.3339080810547 -20220912150000,vlinder14,297.2264862060547 -20220912150000,vlinder15,297.4276580810547 -20220912150000,vlinder16,297.2264862060547 -20220912150000,vlinder17,297.3612518310547 -20220912150000,vlinder18,297.5096893310547 -20220912150000,vlinder19,297.3905487060547 -20220912150000,vlinder20,297.3905487060547 -20220912150000,vlinder21,296.7928924560547 -20220912150000,vlinder22,298.0780487060547 -20220912150000,vlinder23,297.1405487060547 -20220912150000,vlinder24,297.3319549560547 -20220912150000,vlinder25,297.3221893310547 -20220912150000,vlinder26,297.4139862060547 -20220912150000,vlinder27,297.4628143310547 -20220912150000,vlinder28,297.5311737060547 -20220912160000,vlinder01,297.4274444580078 -20220912160000,vlinder02,297.4958038330078 -20220912160000,vlinder03,297.0524444580078 -20220912160000,vlinder04,297.0524444580078 -20220912160000,vlinder05,297.3825225830078 -20220912160000,vlinder06,297.4743194580078 -20220912160000,vlinder07,297.4743194580078 -20220912160000,vlinder08,297.4743194580078 -20220912160000,vlinder09,297.3278350830078 -20220912160000,vlinder10,297.3532257080078 -20220912160000,vlinder11,297.2008819580078 -20220912160000,vlinder12,297.2008819580078 -20220912160000,vlinder13,297.2008819580078 -20220912160000,vlinder14,297.0934600830078 -20220912160000,vlinder15,297.3122100830078 -20220912160000,vlinder16,297.0934600830078 -20220912160000,vlinder17,297.0543975830078 -20220912160000,vlinder18,297.1930694580078 -20220912160000,vlinder19,297.2516632080078 -20220912160000,vlinder20,297.2516632080078 -20220912160000,vlinder21,296.8883819580078 -20220912160000,vlinder22,298.0211944580078 -20220912160000,vlinder23,297.1090850830078 -20220912160000,vlinder24,297.2868194580078 -20220912160000,vlinder25,297.2536163330078 -20220912160000,vlinder26,297.1911163330078 -20220912160000,vlinder27,297.3825225830078 -20220912160000,vlinder28,297.4274444580078 -20220912170000,vlinder01,296.68565368652344 -20220912170000,vlinder02,296.75205993652344 -20220912170000,vlinder03,296.31455993652344 -20220912170000,vlinder04,296.31455993652344 -20220912170000,vlinder05,296.66416931152344 -20220912170000,vlinder06,296.69151306152344 -20220912170000,vlinder07,296.69151306152344 -20220912170000,vlinder08,296.69151306152344 -20220912170000,vlinder09,296.56846618652344 -20220912170000,vlinder10,296.59190368652344 -20220912170000,vlinder11,296.49620056152344 -20220912170000,vlinder12,296.49620056152344 -20220912170000,vlinder13,296.49620056152344 -20220912170000,vlinder14,296.42002868652344 -20220912170000,vlinder15,296.54698181152344 -20220912170000,vlinder16,296.42002868652344 -20220912170000,vlinder17,296.18760681152344 -20220912170000,vlinder18,296.29893493652344 -20220912170000,vlinder19,296.43565368652344 -20220912170000,vlinder20,296.43565368652344 -20220912170000,vlinder21,296.49229431152344 -20220912170000,vlinder22,297.25401306152344 -20220912170000,vlinder23,296.43955993652344 -20220912170000,vlinder24,296.59385681152344 -20220912170000,vlinder25,296.53330993652344 -20220912170000,vlinder26,296.40245056152344 -20220912170000,vlinder27,296.66416931152344 -20220912170000,vlinder28,296.68565368652344 -20220912180000,vlinder01,295.3258514404297 -20220912180000,vlinder02,295.4078826904297 -20220912180000,vlinder03,295.0133514404297 -20220912180000,vlinder04,295.0133514404297 -20220912180000,vlinder05,295.3629608154297 -20220912180000,vlinder06,295.2750701904297 -20220912180000,vlinder07,295.2750701904297 -20220912180000,vlinder08,295.2750701904297 -20220912180000,vlinder09,295.1813201904297 -20220912180000,vlinder10,295.1969451904297 -20220912180000,vlinder11,295.2535858154297 -20220912180000,vlinder12,295.2535858154297 -20220912180000,vlinder13,295.2535858154297 -20220912180000,vlinder14,295.2535858154297 -20220912180000,vlinder15,295.1578826904297 -20220912180000,vlinder16,295.2535858154297 -20220912180000,vlinder17,294.7321014404297 -20220912180000,vlinder18,294.8063201904297 -20220912180000,vlinder19,294.8805389404297 -20220912180000,vlinder20,294.8805389404297 -20220912180000,vlinder21,295.6461639404297 -20220912180000,vlinder22,295.9645233154297 -20220912180000,vlinder23,295.2067108154297 -20220912180000,vlinder24,295.3199920654297 -20220912180000,vlinder25,295.2438201904297 -20220912180000,vlinder26,294.9235076904297 -20220912180000,vlinder27,295.3629608154297 -20220912180000,vlinder28,295.3258514404297 -20220912190000,vlinder01,293.35302734375 -20220912190000,vlinder02,293.50341796875 -20220912190000,vlinder03,293.33349609375 -20220912190000,vlinder04,293.33349609375 -20220912190000,vlinder05,293.46630859375 -20220912190000,vlinder06,293.66357421875 -20220912190000,vlinder07,293.66357421875 -20220912190000,vlinder08,293.66357421875 -20220912190000,vlinder09,293.44677734375 -20220912190000,vlinder10,293.44091796875 -20220912190000,vlinder11,293.62646484375 -20220912190000,vlinder12,293.62646484375 -20220912190000,vlinder13,293.62646484375 -20220912190000,vlinder14,293.49951171875 -20220912190000,vlinder15,293.44482421875 -20220912190000,vlinder16,293.49951171875 -20220912190000,vlinder17,293.68896484375 -20220912190000,vlinder18,293.65380859375 -20220912190000,vlinder19,293.38232421875 -20220912190000,vlinder20,293.38232421875 -20220912190000,vlinder21,293.91552734375 -20220912190000,vlinder22,294.16748046875 -20220912190000,vlinder23,293.30810546875 -20220912190000,vlinder24,293.34326171875 -20220912190000,vlinder25,293.32763671875 -20220912190000,vlinder26,293.27490234375 -20220912190000,vlinder27,293.46630859375 -20220912190000,vlinder28,293.35302734375 -20220912200000,vlinder01,291.98329162597656 -20220912200000,vlinder02,292.24501037597656 -20220912200000,vlinder03,291.76649475097656 -20220912200000,vlinder04,291.76649475097656 -20220912200000,vlinder05,292.28797912597656 -20220912200000,vlinder06,292.32508850097656 -20220912200000,vlinder07,292.32508850097656 -20220912200000,vlinder08,292.32508850097656 -20220912200000,vlinder09,292.19618225097656 -20220912200000,vlinder10,292.22547912597656 -20220912200000,vlinder11,292.33485412597656 -20220912200000,vlinder12,292.33485412597656 -20220912200000,vlinder13,292.33485412597656 -20220912200000,vlinder14,292.20204162597656 -20220912200000,vlinder15,292.17079162597656 -20220912200000,vlinder16,292.20204162597656 -20220912200000,vlinder17,292.23133850097656 -20220912200000,vlinder18,292.11219787597656 -20220912200000,vlinder19,292.20790100097656 -20220912200000,vlinder20,292.20790100097656 -20220912200000,vlinder21,292.62586975097656 -20220912200000,vlinder22,292.83680725097656 -20220912200000,vlinder23,292.32508850097656 -20220912200000,vlinder24,292.10829162597656 -20220912200000,vlinder25,292.14930725097656 -20220912200000,vlinder26,291.55751037597656 -20220912200000,vlinder27,292.28797912597656 -20220912200000,vlinder28,291.98329162597656 -20220912210000,vlinder01,290.81040954589844 -20220912210000,vlinder02,291.02720642089844 -20220912210000,vlinder03,290.71080017089844 -20220912210000,vlinder04,290.71080017089844 -20220912210000,vlinder05,291.11509704589844 -20220912210000,vlinder06,291.34947204589844 -20220912210000,vlinder07,291.34947204589844 -20220912210000,vlinder08,291.34947204589844 -20220912210000,vlinder09,291.20689392089844 -20220912210000,vlinder10,291.23033142089844 -20220912210000,vlinder11,291.09751892089844 -20220912210000,vlinder12,291.09751892089844 -20220912210000,vlinder13,291.09751892089844 -20220912210000,vlinder14,291.32994079589844 -20220912210000,vlinder15,291.19126892089844 -20220912210000,vlinder16,291.32994079589844 -20220912210000,vlinder17,291.44908142089844 -20220912210000,vlinder18,291.30064392089844 -20220912210000,vlinder19,291.42564392089844 -20220912210000,vlinder20,291.42564392089844 -20220912210000,vlinder21,291.92955017089844 -20220912210000,vlinder22,291.50376892089844 -20220912210000,vlinder23,291.28306579589844 -20220912210000,vlinder24,291.12876892089844 -20220912210000,vlinder25,291.11900329589844 -20220912210000,vlinder26,290.56626892089844 -20220912210000,vlinder27,291.11509704589844 -20220912210000,vlinder28,290.81040954589844 -20220912220000,vlinder01,290.4150085449219 -20220912220000,vlinder02,290.7196960449219 -20220912220000,vlinder03,290.0068054199219 -20220912220000,vlinder04,290.0068054199219 -20220912220000,vlinder05,290.6103210449219 -20220912220000,vlinder06,290.7821960449219 -20220912220000,vlinder07,290.7821960449219 -20220912220000,vlinder08,290.7821960449219 -20220912220000,vlinder09,290.7470397949219 -20220912220000,vlinder10,290.7685241699219 -20220912220000,vlinder11,290.4443054199219 -20220912220000,vlinder12,290.4443054199219 -20220912220000,vlinder13,290.4443054199219 -20220912220000,vlinder14,290.6474304199219 -20220912220000,vlinder15,290.7157897949219 -20220912220000,vlinder16,290.6474304199219 -20220912220000,vlinder17,290.8915710449219 -20220912220000,vlinder18,290.7763366699219 -20220912220000,vlinder19,290.8915710449219 -20220912220000,vlinder20,290.8915710449219 -20220912220000,vlinder21,291.4228210449219 -20220912220000,vlinder22,291.3857116699219 -20220912220000,vlinder23,291.0282897949219 -20220912220000,vlinder24,290.5653991699219 -20220912220000,vlinder25,290.5556335449219 -20220912220000,vlinder26,289.7997741699219 -20220912220000,vlinder27,290.6103210449219 -20220912220000,vlinder28,290.4150085449219 -20220912230000,vlinder01,290.235595703125 -20220912230000,vlinder02,290.563720703125 -20220912230000,vlinder03,289.704345703125 -20220912230000,vlinder04,289.704345703125 -20220912230000,vlinder05,290.462158203125 -20220912230000,vlinder06,290.544189453125 -20220912230000,vlinder07,290.544189453125 -20220912230000,vlinder08,290.544189453125 -20220912230000,vlinder09,290.641845703125 -20220912230000,vlinder10,290.704345703125 -20220912230000,vlinder11,289.952392578125 -20220912230000,vlinder12,289.952392578125 -20220912230000,vlinder13,289.952392578125 -20220912230000,vlinder14,290.260986328125 -20220912230000,vlinder15,290.591064453125 -20220912230000,vlinder16,290.260986328125 -20220912230000,vlinder17,290.528564453125 -20220912230000,vlinder18,290.389892578125 -20220912230000,vlinder19,290.757080078125 -20220912230000,vlinder20,290.757080078125 -20220912230000,vlinder21,291.604736328125 -20220912230000,vlinder22,291.858642578125 -20220912230000,vlinder23,291.450439453125 -20220912230000,vlinder24,290.946533203125 -20220912230000,vlinder25,290.923095703125 -20220912230000,vlinder26,289.468017578125 -20220912230000,vlinder27,290.462158203125 -20220912230000,vlinder28,290.235595703125 -20220913000000,vlinder01,290.6445617675781 -20220913000000,vlinder02,290.9648742675781 -20220913000000,vlinder03,289.8984680175781 -20220913000000,vlinder04,289.8984680175781 -20220913000000,vlinder05,290.7812805175781 -20220913000000,vlinder06,290.6875305175781 -20220913000000,vlinder07,290.6875305175781 -20220913000000,vlinder08,290.6875305175781 -20220913000000,vlinder09,290.9101867675781 -20220913000000,vlinder10,290.9648742675781 -20220913000000,vlinder11,290.2383117675781 -20220913000000,vlinder12,290.2383117675781 -20220913000000,vlinder13,290.2383117675781 -20220913000000,vlinder14,290.4746398925781 -20220913000000,vlinder15,290.8476867675781 -20220913000000,vlinder16,290.4746398925781 -20220913000000,vlinder17,290.3906555175781 -20220913000000,vlinder18,290.2851867675781 -20220913000000,vlinder19,290.9101867675781 -20220913000000,vlinder20,290.9101867675781 -20220913000000,vlinder21,292.1777648925781 -20220913000000,vlinder22,292.0469055175781 -20220913000000,vlinder23,290.8496398925781 -20220913000000,vlinder24,290.6465148925781 -20220913000000,vlinder25,290.5293273925781 -20220913000000,vlinder26,289.5898742675781 -20220913000000,vlinder27,290.7812805175781 -20220913000000,vlinder28,290.6445617675781 -20220913010000,vlinder01,291.07000732421875 -20220913010000,vlinder02,291.30828857421875 -20220913010000,vlinder03,289.96258544921875 -20220913010000,vlinder04,289.96258544921875 -20220913010000,vlinder05,291.17938232421875 -20220913010000,vlinder06,291.04266357421875 -20220913010000,vlinder07,291.04266357421875 -20220913010000,vlinder08,291.04266357421875 -20220913010000,vlinder09,291.08953857421875 -20220913010000,vlinder10,291.15399169921875 -20220913010000,vlinder11,290.46063232421875 -20220913010000,vlinder12,290.46063232421875 -20220913010000,vlinder13,290.46063232421875 -20220913010000,vlinder14,290.51531982421875 -20220913010000,vlinder15,291.03289794921875 -20220913010000,vlinder16,290.51531982421875 -20220913010000,vlinder17,290.65594482421875 -20220913010000,vlinder18,290.60906982421875 -20220913010000,vlinder19,291.04461669921875 -20220913010000,vlinder20,291.04461669921875 -20220913010000,vlinder21,292.48016357421875 -20220913010000,vlinder22,291.95672607421875 -20220913010000,vlinder23,291.16961669921875 -20220913010000,vlinder24,291.06414794921875 -20220913010000,vlinder25,290.85321044921875 -20220913010000,vlinder26,289.79852294921875 -20220913010000,vlinder27,291.17938232421875 -20220913010000,vlinder28,291.07000732421875 -20220913020000,vlinder01,291.11936950683594 -20220913020000,vlinder02,291.29515075683594 -20220913020000,vlinder03,289.99827575683594 -20220913020000,vlinder04,289.99827575683594 -20220913020000,vlinder05,291.30882263183594 -20220913020000,vlinder06,290.80491638183594 -20220913020000,vlinder07,290.80491638183594 -20220913020000,vlinder08,290.80491638183594 -20220913020000,vlinder09,290.89280700683594 -20220913020000,vlinder10,290.76780700683594 -20220913020000,vlinder11,290.64476013183594 -20220913020000,vlinder12,290.64476013183594 -20220913020000,vlinder13,290.64476013183594 -20220913020000,vlinder14,290.63499450683594 -20220913020000,vlinder15,290.81272888183594 -20220913020000,vlinder16,290.63499450683594 -20220913020000,vlinder17,290.74827575683594 -20220913020000,vlinder18,290.77366638183594 -20220913020000,vlinder19,290.61155700683594 -20220913020000,vlinder20,290.61155700683594 -20220913020000,vlinder21,292.50413513183594 -20220913020000,vlinder22,291.49827575683594 -20220913020000,vlinder23,291.45921325683594 -20220913020000,vlinder24,291.34397888183594 -20220913020000,vlinder25,291.12913513183594 -20220913020000,vlinder26,289.91819763183594 -20220913020000,vlinder27,291.30882263183594 -20220913020000,vlinder28,291.11936950683594 -20220913030000,vlinder01,290.9359893798828 -20220913030000,vlinder02,291.0805206298828 -20220913030000,vlinder03,289.9574737548828 -20220913030000,vlinder04,289.9574737548828 -20220913030000,vlinder05,291.2133331298828 -20220913030000,vlinder06,290.4906768798828 -20220913030000,vlinder07,290.4906768798828 -20220913030000,vlinder08,290.4906768798828 -20220913030000,vlinder09,290.7152862548828 -20220913030000,vlinder10,290.5434112548828 -20220913030000,vlinder11,290.4516143798828 -20220913030000,vlinder12,290.4516143798828 -20220913030000,vlinder13,290.4516143798828 -20220913030000,vlinder14,290.5121612548828 -20220913030000,vlinder15,290.6254425048828 -20220913030000,vlinder16,290.5121612548828 -20220913030000,vlinder17,290.2777862548828 -20220913030000,vlinder18,290.3793487548828 -20220913030000,vlinder19,290.3676300048828 -20220913030000,vlinder20,290.3676300048828 -20220913030000,vlinder21,292.5434112548828 -20220913030000,vlinder22,291.2680206298828 -20220913030000,vlinder23,291.5336456298828 -20220913030000,vlinder24,291.3773956298828 -20220913030000,vlinder25,291.1273956298828 -20220913030000,vlinder26,289.7016143798828 -20220913030000,vlinder27,291.2133331298828 -20220913030000,vlinder28,290.9359893798828 -20220913040000,vlinder01,290.7850799560547 -20220913040000,vlinder02,290.8925018310547 -20220913040000,vlinder03,289.7206268310547 -20220913040000,vlinder04,289.7206268310547 -20220913040000,vlinder05,291.1151580810547 -20220913040000,vlinder06,290.3964080810547 -20220913040000,vlinder07,290.3964080810547 -20220913040000,vlinder08,290.3964080810547 -20220913040000,vlinder09,290.1874237060547 -20220913040000,vlinder10,290.2284393310547 -20220913040000,vlinder11,290.3768768310547 -20220913040000,vlinder12,290.3768768310547 -20220913040000,vlinder13,290.3768768310547 -20220913040000,vlinder14,290.4100799560547 -20220913040000,vlinder15,290.1229705810547 -20220913040000,vlinder16,290.4100799560547 -20220913040000,vlinder17,289.9471893310547 -20220913040000,vlinder18,290.0702362060547 -20220913040000,vlinder19,289.8280487060547 -20220913040000,vlinder20,289.8280487060547 -20220913040000,vlinder21,292.5370330810547 -20220913040000,vlinder22,291.0897674560547 -20220913040000,vlinder23,291.5565643310547 -20220913040000,vlinder24,291.3436737060547 -20220913040000,vlinder25,291.1073455810547 -20220913040000,vlinder26,289.4081268310547 -20220913040000,vlinder27,291.1151580810547 -20220913040000,vlinder28,290.7850799560547 -20220913050000,vlinder01,290.48252868652344 -20220913050000,vlinder02,290.60948181152344 -20220913050000,vlinder03,289.48252868652344 -20220913050000,vlinder04,289.48252868652344 -20220913050000,vlinder05,290.82432556152344 -20220913050000,vlinder06,290.17588806152344 -20220913050000,vlinder07,290.17588806152344 -20220913050000,vlinder08,290.17588806152344 -20220913050000,vlinder09,289.91026306152344 -20220913050000,vlinder10,289.93370056152344 -20220913050000,vlinder11,290.13096618652344 -20220913050000,vlinder12,290.13096618652344 -20220913050000,vlinder13,290.13096618652344 -20220913050000,vlinder14,290.09971618652344 -20220913050000,vlinder15,289.87705993652344 -20220913050000,vlinder16,290.09971618652344 -20220913050000,vlinder17,289.61143493652344 -20220913050000,vlinder18,289.73448181152344 -20220913050000,vlinder19,289.65635681152344 -20220913050000,vlinder20,289.65635681152344 -20220913050000,vlinder21,292.49620056152344 -20220913050000,vlinder22,290.89463806152344 -20220913050000,vlinder23,291.43760681152344 -20220913050000,vlinder24,291.06651306152344 -20220913050000,vlinder25,290.77745056152344 -20220913050000,vlinder26,289.18370056152344 -20220913050000,vlinder27,290.82432556152344 -20220913050000,vlinder28,290.48252868652344 -20220913060000,vlinder01,290.1944885253906 -20220913060000,vlinder02,290.3077697753906 -20220913060000,vlinder03,289.2023010253906 -20220913060000,vlinder04,289.2023010253906 -20220913060000,vlinder05,290.4308166503906 -20220913060000,vlinder06,289.9698791503906 -20220913060000,vlinder07,289.9698791503906 -20220913060000,vlinder08,289.9698791503906 -20220913060000,vlinder09,289.7765197753906 -20220913060000,vlinder10,289.8097229003906 -20220913060000,vlinder11,289.8058166503906 -20220913060000,vlinder12,289.8058166503906 -20220913060000,vlinder13,289.8058166503906 -20220913060000,vlinder14,289.7589416503906 -20220913060000,vlinder15,289.7355041503906 -20220913060000,vlinder16,289.7589416503906 -20220913060000,vlinder17,289.4698791503906 -20220913060000,vlinder18,289.6026916503906 -20220913060000,vlinder19,289.5460510253906 -20220913060000,vlinder20,289.5460510253906 -20220913060000,vlinder21,292.2257385253906 -20220913060000,vlinder22,290.5597229003906 -20220913060000,vlinder23,290.9542541503906 -20220913060000,vlinder24,290.5343322753906 -20220913060000,vlinder25,290.3038635253906 -20220913060000,vlinder26,288.9464416503906 -20220913060000,vlinder27,290.4308166503906 -20220913060000,vlinder28,290.1944885253906 -20220913070000,vlinder01,292.17059326171875 -20220913070000,vlinder02,291.84246826171875 -20220913070000,vlinder03,291.48114013671875 -20220913070000,vlinder04,291.48114013671875 -20220913070000,vlinder05,292.02606201171875 -20220913070000,vlinder06,292.62762451171875 -20220913070000,vlinder07,292.62762451171875 -20220913070000,vlinder08,292.62762451171875 -20220913070000,vlinder09,292.30145263671875 -20220913070000,vlinder10,292.11785888671875 -20220913070000,vlinder11,292.73114013671875 -20220913070000,vlinder12,292.73114013671875 -20220913070000,vlinder13,292.73114013671875 -20220913070000,vlinder14,292.08074951171875 -20220913070000,vlinder15,292.43231201171875 -20220913070000,vlinder16,292.08074951171875 -20220913070000,vlinder17,291.45184326171875 -20220913070000,vlinder18,291.53582763671875 -20220913070000,vlinder19,292.35614013671875 -20220913070000,vlinder20,292.35614013671875 -20220913070000,vlinder21,292.94403076171875 -20220913070000,vlinder22,292.34832763671875 -20220913070000,vlinder23,292.61199951171875 -20220913070000,vlinder24,292.30731201171875 -20220913070000,vlinder25,292.13348388671875 -20220913070000,vlinder26,291.77996826171875 -20220913070000,vlinder27,292.02606201171875 -20220913070000,vlinder28,292.17059326171875 -20220913080000,vlinder01,293.6512756347656 -20220913080000,vlinder02,293.6122131347656 -20220913080000,vlinder03,293.9481506347656 -20220913080000,vlinder04,293.9481506347656 -20220913080000,vlinder05,293.6708068847656 -20220913080000,vlinder06,294.1688537597656 -20220913080000,vlinder07,294.1688537597656 -20220913080000,vlinder08,294.1688537597656 -20220913080000,vlinder09,293.7860412597656 -20220913080000,vlinder10,293.7079162597656 -20220913080000,vlinder11,294.0516662597656 -20220913080000,vlinder12,294.0516662597656 -20220913080000,vlinder13,294.0516662597656 -20220913080000,vlinder14,293.9501037597656 -20220913080000,vlinder15,293.8446350097656 -20220913080000,vlinder16,293.9501037597656 -20220913080000,vlinder17,293.7450256347656 -20220913080000,vlinder18,293.7958068847656 -20220913080000,vlinder19,293.8583068847656 -20220913080000,vlinder20,293.8583068847656 -20220913080000,vlinder21,293.1376037597656 -20220913080000,vlinder22,293.0672912597656 -20220913080000,vlinder23,293.5477600097656 -20220913080000,vlinder24,293.5790100097656 -20220913080000,vlinder25,293.6844787597656 -20220913080000,vlinder26,293.9891662597656 -20220913080000,vlinder27,293.6708068847656 -20220913080000,vlinder28,293.6512756347656 -20220913090000,vlinder01,294.8528594970703 -20220913090000,vlinder02,294.7903594970703 -20220913090000,vlinder03,295.1087188720703 -20220913090000,vlinder04,295.1087188720703 -20220913090000,vlinder05,294.6887969970703 -20220913090000,vlinder06,295.4798126220703 -20220913090000,vlinder07,295.4798126220703 -20220913090000,vlinder08,295.4798126220703 -20220913090000,vlinder09,294.9134063720703 -20220913090000,vlinder10,294.8313751220703 -20220913090000,vlinder11,295.1516876220703 -20220913090000,vlinder12,295.1516876220703 -20220913090000,vlinder13,295.1516876220703 -20220913090000,vlinder14,294.9075469970703 -20220913090000,vlinder15,295.0579376220703 -20220913090000,vlinder16,294.9075469970703 -20220913090000,vlinder17,295.2376251220703 -20220913090000,vlinder18,295.3040313720703 -20220913090000,vlinder19,295.0071563720703 -20220913090000,vlinder20,295.0071563720703 -20220913090000,vlinder21,293.5735626220703 -20220913090000,vlinder22,294.0950469970703 -20220913090000,vlinder23,294.2903594970703 -20220913090000,vlinder24,294.4466094970703 -20220913090000,vlinder25,294.5755157470703 -20220913090000,vlinder26,295.2884063720703 -20220913090000,vlinder27,294.6887969970703 -20220913090000,vlinder28,294.8528594970703 -20220913100000,vlinder01,294.90814208984375 -20220913100000,vlinder02,294.85345458984375 -20220913100000,vlinder03,295.59954833984375 -20220913100000,vlinder04,295.59954833984375 -20220913100000,vlinder05,294.75775146484375 -20220913100000,vlinder06,295.81439208984375 -20220913100000,vlinder07,295.81439208984375 -20220913100000,vlinder08,295.81439208984375 -20220913100000,vlinder09,295.05267333984375 -20220913100000,vlinder10,294.96282958984375 -20220913100000,vlinder11,295.27923583984375 -20220913100000,vlinder12,295.27923583984375 -20220913100000,vlinder13,295.27923583984375 -20220913100000,vlinder14,294.93353271484375 -20220913100000,vlinder15,295.17572021484375 -20220913100000,vlinder16,294.93353271484375 -20220913100000,vlinder17,296.28118896484375 -20220913100000,vlinder18,296.37493896484375 -20220913100000,vlinder19,295.28704833984375 -20220913100000,vlinder20,295.28704833984375 -20220913100000,vlinder21,293.83197021484375 -20220913100000,vlinder22,294.49407958984375 -20220913100000,vlinder23,294.41790771484375 -20220913100000,vlinder24,294.57025146484375 -20220913100000,vlinder25,294.65228271484375 -20220913100000,vlinder26,295.96087646484375 -20220913100000,vlinder27,294.75775146484375 -20220913100000,vlinder28,294.90814208984375 -20220913110000,vlinder01,295.4077911376953 -20220913110000,vlinder02,295.3706817626953 -20220913110000,vlinder03,296.1402130126953 -20220913110000,vlinder04,296.1402130126953 -20220913110000,vlinder05,295.2574005126953 -20220913110000,vlinder06,295.9195098876953 -20220913110000,vlinder07,295.9195098876953 -20220913110000,vlinder08,295.9195098876953 -20220913110000,vlinder09,295.3159942626953 -20220913110000,vlinder10,295.2574005126953 -20220913110000,vlinder11,295.7534942626953 -20220913110000,vlinder12,295.7534942626953 -20220913110000,vlinder13,295.7534942626953 -20220913110000,vlinder14,295.6109161376953 -20220913110000,vlinder15,295.3765411376953 -20220913110000,vlinder16,295.6109161376953 -20220913110000,vlinder17,296.4273223876953 -20220913110000,vlinder18,296.5835723876953 -20220913110000,vlinder19,295.1343536376953 -20220913110000,vlinder20,295.1343536376953 -20220913110000,vlinder21,293.9292755126953 -20220913110000,vlinder22,294.6441192626953 -20220913110000,vlinder23,294.8394317626953 -20220913110000,vlinder24,294.9956817626953 -20220913110000,vlinder25,295.1441192626953 -20220913110000,vlinder26,296.2417755126953 -20220913110000,vlinder27,295.2574005126953 -20220913110000,vlinder28,295.4077911376953 -20220913120000,vlinder01,295.33367919921875 -20220913120000,vlinder02,295.29461669921875 -20220913120000,vlinder03,296.42547607421875 -20220913120000,vlinder04,296.42547607421875 -20220913120000,vlinder05,295.16571044921875 -20220913120000,vlinder06,296.10125732421875 -20220913120000,vlinder07,296.10125732421875 -20220913120000,vlinder08,296.10125732421875 -20220913120000,vlinder09,295.19110107421875 -20220913120000,vlinder10,295.11492919921875 -20220913120000,vlinder11,295.90203857421875 -20220913120000,vlinder12,295.90203857421875 -20220913120000,vlinder13,295.90203857421875 -20220913120000,vlinder14,295.72430419921875 -20220913120000,vlinder15,295.27899169921875 -20220913120000,vlinder16,295.72430419921875 -20220913120000,vlinder17,296.90008544921875 -20220913120000,vlinder18,297.02703857421875 -20220913120000,vlinder19,295.07781982421875 -20220913120000,vlinder20,295.07781982421875 -20220913120000,vlinder21,293.75360107421875 -20220913120000,vlinder22,294.58367919921875 -20220913120000,vlinder23,294.73016357421875 -20220913120000,vlinder24,294.89422607421875 -20220913120000,vlinder25,295.06024169921875 -20220913120000,vlinder26,296.60906982421875 -20220913120000,vlinder27,295.16571044921875 -20220913120000,vlinder28,295.33367919921875 -20220913130000,vlinder01,295.5916442871094 -20220913130000,vlinder02,295.5193786621094 -20220913130000,vlinder03,296.6502380371094 -20220913130000,vlinder04,296.6502380371094 -20220913130000,vlinder05,295.3768005371094 -20220913130000,vlinder06,296.4002380371094 -20220913130000,vlinder07,296.4002380371094 -20220913130000,vlinder08,296.4002380371094 -20220913130000,vlinder09,295.4861755371094 -20220913130000,vlinder10,295.3943786621094 -20220913130000,vlinder11,296.2283630371094 -20220913130000,vlinder12,296.2283630371094 -20220913130000,vlinder13,296.2283630371094 -20220913130000,vlinder14,296.0623474121094 -20220913130000,vlinder15,295.5838317871094 -20220913130000,vlinder16,296.0623474121094 -20220913130000,vlinder17,296.9822692871094 -20220913130000,vlinder18,297.0935974121094 -20220913130000,vlinder19,295.2654724121094 -20220913130000,vlinder20,295.2654724121094 -20220913130000,vlinder21,293.7010192871094 -20220913130000,vlinder22,294.4021911621094 -20220913130000,vlinder23,294.8728942871094 -20220913130000,vlinder24,295.0369567871094 -20220913130000,vlinder25,295.2576599121094 -20220913130000,vlinder26,296.7986755371094 -20220913130000,vlinder27,295.3768005371094 -20220913130000,vlinder28,295.5916442871094 -20220913140000,vlinder01,294.93531799316406 -20220913140000,vlinder02,294.86695861816406 -20220913140000,vlinder03,296.66578674316406 -20220913140000,vlinder04,296.66578674316406 -20220913140000,vlinder05,294.83570861816406 -20220913140000,vlinder06,295.86305236816406 -20220913140000,vlinder07,295.86305236816406 -20220913140000,vlinder08,295.86305236816406 -20220913140000,vlinder09,294.83570861816406 -20220913140000,vlinder10,294.73023986816406 -20220913140000,vlinder11,296.01148986816406 -20220913140000,vlinder12,296.01148986816406 -20220913140000,vlinder13,296.01148986816406 -20220913140000,vlinder14,295.95680236816406 -20220913140000,vlinder15,294.94313049316406 -20220913140000,vlinder16,295.95680236816406 -20220913140000,vlinder17,297.02711486816406 -20220913140000,vlinder18,297.12086486816406 -20220913140000,vlinder19,294.66773986816406 -20220913140000,vlinder20,294.66773986816406 -20220913140000,vlinder21,293.33961486816406 -20220913140000,vlinder22,293.52906799316406 -20220913140000,vlinder23,294.51539611816406 -20220913140000,vlinder24,294.59156799316406 -20220913140000,vlinder25,294.83570861816406 -20220913140000,vlinder26,296.76539611816406 -20220913140000,vlinder27,294.83570861816406 -20220913140000,vlinder28,294.93531799316406 -20220913150000,vlinder01,294.2227478027344 -20220913150000,vlinder02,294.1289978027344 -20220913150000,vlinder03,296.4336853027344 -20220913150000,vlinder04,296.4336853027344 -20220913150000,vlinder05,294.1485290527344 -20220913150000,vlinder06,295.0313415527344 -20220913150000,vlinder07,295.0313415527344 -20220913150000,vlinder08,295.0313415527344 -20220913150000,vlinder09,294.3594665527344 -20220913150000,vlinder10,294.2891540527344 -20220913150000,vlinder11,295.5411071777344 -20220913150000,vlinder12,295.5411071777344 -20220913150000,vlinder13,295.5411071777344 -20220913150000,vlinder14,295.6524353027344 -20220913150000,vlinder15,294.4336853027344 -20220913150000,vlinder16,295.6524353027344 -20220913150000,vlinder17,296.3965759277344 -20220913150000,vlinder18,296.5157165527344 -20220913150000,vlinder19,294.3379821777344 -20220913150000,vlinder20,294.3379821777344 -20220913150000,vlinder21,292.9297790527344 -20220913150000,vlinder22,292.9825134277344 -20220913150000,vlinder23,294.0196228027344 -20220913150000,vlinder24,294.0625915527344 -20220913150000,vlinder25,294.3106384277344 -20220913150000,vlinder26,296.3243103027344 -20220913150000,vlinder27,294.1485290527344 -20220913150000,vlinder28,294.2227478027344 -20220913160000,vlinder01,293.7826232910156 -20220913160000,vlinder02,293.6830139160156 -20220913160000,vlinder03,295.7943420410156 -20220913160000,vlinder04,295.7943420410156 -20220913160000,vlinder05,293.4974670410156 -20220913160000,vlinder06,294.5228576660156 -20220913160000,vlinder07,294.5228576660156 -20220913160000,vlinder08,294.5228576660156 -20220913160000,vlinder09,294.0169982910156 -20220913160000,vlinder10,293.9252014160156 -20220913160000,vlinder11,294.8607482910156 -20220913160000,vlinder12,294.8607482910156 -20220913160000,vlinder13,294.8607482910156 -20220913160000,vlinder14,294.8334045410156 -20220913160000,vlinder15,294.1068420410156 -20220913160000,vlinder16,294.8334045410156 -20220913160000,vlinder17,295.6771545410156 -20220913160000,vlinder18,295.8119201660156 -20220913160000,vlinder19,294.1283264160156 -20220913160000,vlinder20,294.1283264160156 -20220913160000,vlinder21,292.5013732910156 -20220913160000,vlinder22,292.6146545410156 -20220913160000,vlinder23,293.2728576660156 -20220913160000,vlinder24,293.1673889160156 -20220913160000,vlinder25,293.5345764160156 -20220913160000,vlinder26,295.7142639160156 -20220913160000,vlinder27,293.4974670410156 -20220913160000,vlinder28,293.7826232910156 -20220913170000,vlinder01,293.11708068847656 -20220913170000,vlinder02,293.01551818847656 -20220913170000,vlinder03,294.70887756347656 -20220913170000,vlinder04,294.70887756347656 -20220913170000,vlinder05,292.76747131347656 -20220913170000,vlinder06,293.93348693847656 -20220913170000,vlinder07,293.93348693847656 -20220913170000,vlinder08,293.93348693847656 -20220913170000,vlinder09,293.40614318847656 -20220913170000,vlinder10,293.30067443847656 -20220913170000,vlinder11,293.67958068847656 -20220913170000,vlinder12,293.67958068847656 -20220913170000,vlinder13,293.67958068847656 -20220913170000,vlinder14,293.81825256347656 -20220913170000,vlinder15,293.51161193847656 -20220913170000,vlinder16,293.81825256347656 -20220913170000,vlinder17,294.72450256347656 -20220913170000,vlinder18,294.95106506347656 -20220913170000,vlinder19,293.54872131347656 -20220913170000,vlinder20,293.54872131347656 -20220913170000,vlinder21,291.63075256347656 -20220913170000,vlinder22,292.13270568847656 -20220913170000,vlinder23,292.19325256347656 -20220913170000,vlinder24,292.38075256347656 -20220913170000,vlinder25,292.52919006347656 -20220913170000,vlinder26,294.75770568847656 -20220913170000,vlinder27,292.76747131347656 -20220913170000,vlinder28,293.11708068847656 -20220913180000,vlinder01,292.417724609375 -20220913180000,vlinder02,292.306396484375 -20220913180000,vlinder03,293.355224609375 -20220913180000,vlinder04,293.355224609375 -20220913180000,vlinder05,292.034912109375 -20220913180000,vlinder06,293.234130859375 -20220913180000,vlinder07,293.234130859375 -20220913180000,vlinder08,293.234130859375 -20220913180000,vlinder09,292.786865234375 -20220913180000,vlinder10,292.667724609375 -20220913180000,vlinder11,292.661865234375 -20220913180000,vlinder12,292.661865234375 -20220913180000,vlinder13,292.661865234375 -20220913180000,vlinder14,292.421630859375 -20220913180000,vlinder15,292.892333984375 -20220913180000,vlinder16,292.421630859375 -20220913180000,vlinder17,293.710693359375 -20220913180000,vlinder18,293.736083984375 -20220913180000,vlinder19,292.937255859375 -20220913180000,vlinder20,292.937255859375 -20220913180000,vlinder21,291.226318359375 -20220913180000,vlinder22,291.511474609375 -20220913180000,vlinder23,291.329833984375 -20220913180000,vlinder24,291.644287109375 -20220913180000,vlinder25,291.718505859375 -20220913180000,vlinder26,293.353271484375 -20220913180000,vlinder27,292.034912109375 -20220913180000,vlinder28,292.417724609375 -20220913190000,vlinder01,291.2035217285156 -20220913190000,vlinder02,291.0960998535156 -20220913190000,vlinder03,291.5218811035156 -20220913190000,vlinder04,291.5218811035156 -20220913190000,vlinder05,290.9125061035156 -20220913190000,vlinder06,292.1078186035156 -20220913190000,vlinder07,292.1078186035156 -20220913190000,vlinder08,292.1078186035156 -20220913190000,vlinder09,291.7933654785156 -20220913190000,vlinder10,291.6742248535156 -20220913190000,vlinder11,291.3597717285156 -20220913190000,vlinder12,291.3597717285156 -20220913190000,vlinder13,291.3597717285156 -20220913190000,vlinder14,290.9613342285156 -20220913190000,vlinder15,291.9085998535156 -20220913190000,vlinder16,290.9613342285156 -20220913190000,vlinder17,292.8539123535156 -20220913190000,vlinder18,292.9847717285156 -20220913190000,vlinder19,292.2367248535156 -20220913190000,vlinder20,292.2367248535156 -20220913190000,vlinder21,290.4867248535156 -20220913190000,vlinder22,290.5687561035156 -20220913190000,vlinder23,290.4339904785156 -20220913190000,vlinder24,290.6605529785156 -20220913190000,vlinder25,290.6898498535156 -20220913190000,vlinder26,292.0316467285156 -20220913190000,vlinder27,290.9125061035156 -20220913190000,vlinder28,291.2035217285156 -20220913200000,vlinder01,290.4480895996094 -20220913200000,vlinder02,290.3484802246094 -20220913200000,vlinder03,290.6141052246094 -20220913200000,vlinder04,290.6141052246094 -20220913200000,vlinder05,290.2195739746094 -20220913200000,vlinder06,291.3035583496094 -20220913200000,vlinder07,291.3035583496094 -20220913200000,vlinder08,291.3035583496094 -20220913200000,vlinder09,291.0613708496094 -20220913200000,vlinder10,290.9500427246094 -20220913200000,vlinder11,290.5437927246094 -20220913200000,vlinder12,290.5437927246094 -20220913200000,vlinder13,290.5437927246094 -20220913200000,vlinder14,290.1609802246094 -20220913200000,vlinder15,291.1707458496094 -20220913200000,vlinder16,290.1609802246094 -20220913200000,vlinder17,291.9598083496094 -20220913200000,vlinder18,292.0945739746094 -20220913200000,vlinder19,291.5789489746094 -20220913200000,vlinder20,291.5789489746094 -20220913200000,vlinder21,290.1473083496094 -20220913200000,vlinder22,290.0769958496094 -20220913200000,vlinder23,289.8816833496094 -20220913200000,vlinder24,290.0652770996094 -20220913200000,vlinder25,290.0340270996094 -20220913200000,vlinder26,291.1375427246094 -20220913200000,vlinder27,290.2195739746094 -20220913200000,vlinder28,290.4480895996094 -20220913210000,vlinder01,289.78663635253906 -20220913210000,vlinder02,289.70655822753906 -20220913210000,vlinder03,289.83155822753906 -20220913210000,vlinder04,289.83155822753906 -20220913210000,vlinder05,289.63624572753906 -20220913210000,vlinder06,290.51319885253906 -20220913210000,vlinder07,290.51319885253906 -20220913210000,vlinder08,290.51319885253906 -20220913210000,vlinder09,290.33155822753906 -20220913210000,vlinder10,290.24366760253906 -20220913210000,vlinder11,289.87648010253906 -20220913210000,vlinder12,289.87648010253906 -20220913210000,vlinder13,289.87648010253906 -20220913210000,vlinder14,289.56593322753906 -20220913210000,vlinder15,290.41944885253906 -20220913210000,vlinder16,289.56593322753906 -20220913210000,vlinder17,291.08155822753906 -20220913210000,vlinder18,291.21437072753906 -20220913210000,vlinder19,290.86671447753906 -20220913210000,vlinder20,290.86671447753906 -20220913210000,vlinder21,289.82960510253906 -20220913210000,vlinder22,289.62452697753906 -20220913210000,vlinder23,289.42921447753906 -20220913210000,vlinder24,289.55812072753906 -20220913210000,vlinder25,289.50929260253906 -20220913210000,vlinder26,290.31593322753906 -20220913210000,vlinder27,289.63624572753906 -20220913210000,vlinder28,289.78663635253906 -20220913220000,vlinder01,289.32212829589844 -20220913220000,vlinder02,289.24790954589844 -20220913220000,vlinder03,289.23619079589844 -20220913220000,vlinder04,289.23619079589844 -20220913220000,vlinder05,289.20103454589844 -20220913220000,vlinder06,289.96275329589844 -20220913220000,vlinder07,289.96275329589844 -20220913220000,vlinder08,289.96275329589844 -20220913220000,vlinder09,289.81040954589844 -20220913220000,vlinder10,289.73033142089844 -20220913220000,vlinder11,289.40611267089844 -20220913220000,vlinder12,289.40611267089844 -20220913220000,vlinder13,289.40611267089844 -20220913220000,vlinder14,289.14830017089844 -20220913220000,vlinder15,289.88658142089844 -20220913220000,vlinder16,289.14830017089844 -20220913220000,vlinder17,290.34751892089844 -20220913220000,vlinder18,290.48423767089844 -20220913220000,vlinder19,290.29869079589844 -20220913220000,vlinder20,290.29869079589844 -20220913220000,vlinder21,289.33580017089844 -20220913220000,vlinder22,289.24009704589844 -20220913220000,vlinder23,289.05064392089844 -20220913220000,vlinder24,289.14439392089844 -20220913220000,vlinder25,289.11119079589844 -20220913220000,vlinder26,289.68540954589844 -20220913220000,vlinder27,289.20103454589844 -20220913220000,vlinder28,289.32212829589844 -20220913230000,vlinder01,289.0602569580078 -20220913230000,vlinder02,288.9918975830078 -20220913230000,vlinder03,288.7633819580078 -20220913230000,vlinder04,288.7633819580078 -20220913230000,vlinder05,288.9450225830078 -20220913230000,vlinder06,289.6051788330078 -20220913230000,vlinder07,289.6051788330078 -20220913230000,vlinder08,289.6051788330078 -20220913230000,vlinder09,289.5192413330078 -20220913230000,vlinder10,289.4528350830078 -20220913230000,vlinder11,289.0661163330078 -20220913230000,vlinder12,289.0661163330078 -20220913230000,vlinder13,289.0661163330078 -20220913230000,vlinder14,288.8200225830078 -20220913230000,vlinder15,289.5856475830078 -20220913230000,vlinder16,288.8200225830078 -20220913230000,vlinder17,289.7301788330078 -20220913230000,vlinder18,289.8610382080078 -20220913230000,vlinder19,289.9782257080078 -20220913230000,vlinder20,289.9782257080078 -20220913230000,vlinder21,289.0094757080078 -20220913230000,vlinder22,288.9254913330078 -20220913230000,vlinder23,288.7965850830078 -20220913230000,vlinder24,288.8883819580078 -20220913230000,vlinder25,288.8668975830078 -20220913230000,vlinder26,289.1911163330078 -20220913230000,vlinder27,288.9450225830078 -20220913230000,vlinder28,289.0602569580078 -20220914000000,vlinder01,288.85975646972656 -20220914000000,vlinder02,288.80897521972656 -20220914000000,vlinder03,288.33631896972656 -20220914000000,vlinder04,288.33631896972656 -20220914000000,vlinder05,288.66639709472656 -20220914000000,vlinder06,289.18983459472656 -20220914000000,vlinder07,289.18983459472656 -20220914000000,vlinder08,289.18983459472656 -20220914000000,vlinder09,289.17811584472656 -20220914000000,vlinder10,289.13905334472656 -20220914000000,vlinder11,288.70350646972656 -20220914000000,vlinder12,288.70350646972656 -20220914000000,vlinder13,288.70350646972656 -20220914000000,vlinder14,288.50624084472656 -20220914000000,vlinder15,289.22499084472656 -20220914000000,vlinder16,288.50624084472656 -20220914000000,vlinder17,289.17030334472656 -20220914000000,vlinder18,289.29335021972656 -20220914000000,vlinder19,289.60780334472656 -20220914000000,vlinder20,289.60780334472656 -20220914000000,vlinder21,288.92030334472656 -20220914000000,vlinder22,288.75819396972656 -20220914000000,vlinder23,288.54530334472656 -20220914000000,vlinder24,288.62928771972656 -20220914000000,vlinder25,288.59022521972656 -20220914000000,vlinder26,288.72499084472656 -20220914000000,vlinder27,288.66639709472656 -20220914000000,vlinder28,288.85975646972656 -20220914010000,vlinder01,288.57020568847656 -20220914010000,vlinder02,288.52333068847656 -20220914010000,vlinder03,287.99989318847656 -20220914010000,vlinder04,287.99989318847656 -20220914010000,vlinder05,288.38465881347656 -20220914010000,vlinder06,288.88270568847656 -20220914010000,vlinder07,288.88270568847656 -20220914010000,vlinder08,288.88270568847656 -20220914010000,vlinder09,288.83778381347656 -20220914010000,vlinder10,288.79481506347656 -20220914010000,vlinder11,288.39833068847656 -20220914010000,vlinder12,288.39833068847656 -20220914010000,vlinder13,288.39833068847656 -20220914010000,vlinder14,288.24012756347656 -20220914010000,vlinder15,288.87684631347656 -20220914010000,vlinder16,288.24012756347656 -20220914010000,vlinder17,288.75965881347656 -20220914010000,vlinder18,288.84364318847656 -20220914010000,vlinder19,289.24989318847656 -20220914010000,vlinder20,289.24989318847656 -20220914010000,vlinder21,288.80848693847656 -20220914010000,vlinder22,288.59950256347656 -20220914010000,vlinder23,288.33778381347656 -20220914010000,vlinder24,288.40419006347656 -20220914010000,vlinder25,288.34364318847656 -20220914010000,vlinder26,288.32020568847656 -20220914010000,vlinder27,288.38465881347656 -20220914010000,vlinder28,288.57020568847656 -20220914020000,vlinder01,288.1450653076172 -20220914020000,vlinder02,288.0962371826172 -20220914020000,vlinder03,287.6899871826172 -20220914020000,vlinder04,287.6899871826172 -20220914020000,vlinder05,288.1255340576172 -20220914020000,vlinder06,288.4185028076172 -20220914020000,vlinder07,288.4185028076172 -20220914020000,vlinder08,288.4185028076172 -20220914020000,vlinder09,288.5220184326172 -20220914020000,vlinder10,288.4849090576172 -20220914020000,vlinder11,288.1001434326172 -20220914020000,vlinder12,288.1001434326172 -20220914020000,vlinder13,288.1001434326172 -20220914020000,vlinder14,287.9790496826172 -20220914020000,vlinder15,288.5552215576172 -20220914020000,vlinder16,287.9790496826172 -20220914020000,vlinder17,288.3931121826172 -20220914020000,vlinder18,288.4849090576172 -20220914020000,vlinder19,288.8892059326172 -20220914020000,vlinder20,288.8892059326172 -20220914020000,vlinder21,288.6255340576172 -20220914020000,vlinder22,288.4477996826172 -20220914020000,vlinder23,288.1294403076172 -20220914020000,vlinder24,288.1704559326172 -20220914020000,vlinder25,288.1118621826172 -20220914020000,vlinder26,287.9712371826172 -20220914020000,vlinder27,288.1255340576172 -20220914020000,vlinder28,288.1450653076172 -20220914030000,vlinder01,287.9630432128906 -20220914030000,vlinder02,287.9317932128906 -20220914030000,vlinder03,287.4591369628906 -20220914030000,vlinder04,287.4591369628906 -20220914030000,vlinder05,287.9767150878906 -20220914030000,vlinder06,288.1466369628906 -20220914030000,vlinder07,288.1466369628906 -20220914030000,vlinder08,288.1466369628906 -20220914030000,vlinder09,288.2735900878906 -20220914030000,vlinder10,288.2501525878906 -20220914030000,vlinder11,287.8907775878906 -20220914030000,vlinder12,287.8907775878906 -20220914030000,vlinder13,287.8907775878906 -20220914030000,vlinder14,287.8048400878906 -20220914030000,vlinder15,288.2931213378906 -20220914030000,vlinder16,287.8048400878906 -20220914030000,vlinder17,288.1466369628906 -20220914030000,vlinder18,288.2501525878906 -20220914030000,vlinder19,288.5821838378906 -20220914030000,vlinder20,288.5821838378906 -20220914030000,vlinder21,288.5548400878906 -20220914030000,vlinder22,288.3810119628906 -20220914030000,vlinder23,288.0294494628906 -20220914030000,vlinder24,288.0528869628906 -20220914030000,vlinder25,287.9903869628906 -20220914030000,vlinder26,287.7071838378906 -20220914030000,vlinder27,287.9767150878906 -20220914030000,vlinder28,287.9630432128906 -20220914040000,vlinder01,287.7644348144531 -20220914040000,vlinder02,287.7449035644531 -20220914040000,vlinder03,287.3015441894531 -20220914040000,vlinder04,287.3015441894531 -20220914040000,vlinder05,287.8054504394531 -20220914040000,vlinder06,287.8620910644531 -20220914040000,vlinder07,287.8620910644531 -20220914040000,vlinder08,287.8620910644531 -20220914040000,vlinder09,288.0281066894531 -20220914040000,vlinder10,288.0163879394531 -20220914040000,vlinder11,287.6882629394531 -20220914040000,vlinder12,287.6882629394531 -20220914040000,vlinder13,287.6882629394531 -20220914040000,vlinder14,287.6511535644531 -20220914040000,vlinder15,288.0339660644531 -20220914040000,vlinder16,287.6511535644531 -20220914040000,vlinder17,287.8835754394531 -20220914040000,vlinder18,287.9851379394531 -20220914040000,vlinder19,288.2761535644531 -20220914040000,vlinder20,288.2761535644531 -20220914040000,vlinder21,288.4792785644531 -20220914040000,vlinder22,288.0886535644531 -20220914040000,vlinder23,287.9031066894531 -20220914040000,vlinder24,287.9089660644531 -20220914040000,vlinder25,287.8386535644531 -20220914040000,vlinder26,287.4968566894531 -20220914040000,vlinder27,287.8054504394531 -20220914040000,vlinder28,287.7644348144531 -20220914050000,vlinder01,287.58555603027344 -20220914050000,vlinder02,287.57188415527344 -20220914050000,vlinder03,287.21250915527344 -20220914050000,vlinder04,287.21250915527344 -20220914050000,vlinder05,287.64024353027344 -20220914050000,vlinder06,287.64219665527344 -20220914050000,vlinder07,287.64219665527344 -20220914050000,vlinder08,287.64219665527344 -20220914050000,vlinder09,287.81797790527344 -20220914050000,vlinder10,287.81407165527344 -20220914050000,vlinder11,287.54063415527344 -20220914050000,vlinder12,287.54063415527344 -20220914050000,vlinder13,287.54063415527344 -20220914050000,vlinder14,287.54063415527344 -20220914050000,vlinder15,287.81797790527344 -20220914050000,vlinder16,287.54063415527344 -20220914050000,vlinder17,287.67539978027344 -20220914050000,vlinder18,287.77696228027344 -20220914050000,vlinder19,288.03477478027344 -20220914050000,vlinder20,288.03477478027344 -20220914050000,vlinder21,288.36289978027344 -20220914050000,vlinder22,287.99375915527344 -20220914050000,vlinder23,287.75743103027344 -20220914050000,vlinder24,287.75547790527344 -20220914050000,vlinder25,287.68321228027344 -20220914050000,vlinder26,287.36485290527344 -20220914050000,vlinder27,287.64024353027344 -20220914050000,vlinder28,287.58555603027344 -20220914060000,vlinder01,287.47068786621094 -20220914060000,vlinder02,287.44920349121094 -20220914060000,vlinder03,287.14256286621094 -20220914060000,vlinder04,287.14256286621094 -20220914060000,vlinder05,287.53514099121094 -20220914060000,vlinder06,287.50389099121094 -20220914060000,vlinder07,287.50389099121094 -20220914060000,vlinder08,287.50389099121094 -20220914060000,vlinder09,287.68162536621094 -20220914060000,vlinder10,287.67185974121094 -20220914060000,vlinder11,287.46092224121094 -20220914060000,vlinder12,287.46092224121094 -20220914060000,vlinder13,287.46092224121094 -20220914060000,vlinder14,287.48826599121094 -20220914060000,vlinder15,287.68162536621094 -20220914060000,vlinder16,287.48826599121094 -20220914060000,vlinder17,287.50779724121094 -20220914060000,vlinder18,287.60350036621094 -20220914060000,vlinder19,287.83982849121094 -20220914060000,vlinder20,287.83982849121094 -20220914060000,vlinder21,288.25389099121094 -20220914060000,vlinder22,287.85935974121094 -20220914060000,vlinder23,287.67185974121094 -20220914060000,vlinder24,287.65818786621094 -20220914060000,vlinder25,287.59178161621094 -20220914060000,vlinder26,287.25584411621094 -20220914060000,vlinder27,287.53514099121094 -20220914060000,vlinder28,287.47068786621094 -20220914070000,vlinder01,288.8878479003906 -20220914070000,vlinder02,288.8448791503906 -20220914070000,vlinder03,287.9015197753906 -20220914070000,vlinder04,287.9015197753906 -20220914070000,vlinder05,288.5831604003906 -20220914070000,vlinder06,289.1124572753906 -20220914070000,vlinder07,289.1124572753906 -20220914070000,vlinder08,289.1124572753906 -20220914070000,vlinder09,289.1515197753906 -20220914070000,vlinder10,289.1124572753906 -20220914070000,vlinder11,288.3175354003906 -20220914070000,vlinder12,288.3175354003906 -20220914070000,vlinder13,288.3175354003906 -20220914070000,vlinder14,287.9601135253906 -20220914070000,vlinder15,289.1788635253906 -20220914070000,vlinder16,287.9601135253906 -20220914070000,vlinder17,288.4776916503906 -20220914070000,vlinder18,288.5206604003906 -20220914070000,vlinder19,289.2550354003906 -20220914070000,vlinder20,289.2550354003906 -20220914070000,vlinder21,288.4581604003906 -20220914070000,vlinder22,288.5929260253906 -20220914070000,vlinder23,287.9757385253906 -20220914070000,vlinder24,288.2862854003906 -20220914070000,vlinder25,288.2413635253906 -20220914070000,vlinder26,288.2726135253906 -20220914070000,vlinder27,288.5831604003906 -20220914070000,vlinder28,288.8878479003906 -20220914080000,vlinder01,289.27685546875 -20220914080000,vlinder02,289.21435546875 -20220914080000,vlinder03,288.22802734375 -20220914080000,vlinder04,288.22802734375 -20220914080000,vlinder05,288.88232421875 -20220914080000,vlinder06,289.59521484375 -20220914080000,vlinder07,289.59521484375 -20220914080000,vlinder08,289.59521484375 -20220914080000,vlinder09,289.62451171875 -20220914080000,vlinder10,289.56591796875 -20220914080000,vlinder11,288.64599609375 -20220914080000,vlinder12,288.64599609375 -20220914080000,vlinder13,288.64599609375 -20220914080000,vlinder14,288.20458984375 -20220914080000,vlinder15,289.66943359375 -20220914080000,vlinder16,288.20458984375 -20220914080000,vlinder17,288.76904296875 -20220914080000,vlinder18,288.77685546875 -20220914080000,vlinder19,289.86083984375 -20220914080000,vlinder20,289.86083984375 -20220914080000,vlinder21,288.67529296875 -20220914080000,vlinder22,288.97216796875 -20220914080000,vlinder23,288.14599609375 -20220914080000,vlinder24,288.56982421875 -20220914080000,vlinder25,288.49365234375 -20220914080000,vlinder26,288.63427734375 -20220914080000,vlinder27,288.88232421875 -20220914080000,vlinder28,289.27685546875 -20220914090000,vlinder01,289.01805114746094 -20220914090000,vlinder02,288.96531677246094 -20220914090000,vlinder03,288.37351989746094 -20220914090000,vlinder04,288.37351989746094 -20220914090000,vlinder05,288.69773864746094 -20220914090000,vlinder06,289.38328552246094 -20220914090000,vlinder07,289.38328552246094 -20220914090000,vlinder08,289.38328552246094 -20220914090000,vlinder09,289.44578552246094 -20220914090000,vlinder10,289.39891052246094 -20220914090000,vlinder11,288.58641052246094 -20220914090000,vlinder12,288.58641052246094 -20220914090000,vlinder13,288.58641052246094 -20220914090000,vlinder14,288.21531677246094 -20220914090000,vlinder15,289.49070739746094 -20220914090000,vlinder16,288.21531677246094 -20220914090000,vlinder17,289.20945739746094 -20220914090000,vlinder18,289.21922302246094 -20220914090000,vlinder19,289.82078552246094 -20220914090000,vlinder20,289.82078552246094 -20220914090000,vlinder21,288.61766052246094 -20220914090000,vlinder22,288.77781677246094 -20220914090000,vlinder23,288.01805114746094 -20220914090000,vlinder24,288.35398864746094 -20220914090000,vlinder25,288.35984802246094 -20220914090000,vlinder26,288.76805114746094 -20220914090000,vlinder27,288.69773864746094 -20220914090000,vlinder28,289.01805114746094 -20220914100000,vlinder01,288.7667541503906 -20220914100000,vlinder02,288.6925354003906 -20220914100000,vlinder03,288.7726135253906 -20220914100000,vlinder04,288.7726135253906 -20220914100000,vlinder05,288.3976135253906 -20220914100000,vlinder06,289.3819885253906 -20220914100000,vlinder07,289.3819885253906 -20220914100000,vlinder08,289.3819885253906 -20220914100000,vlinder09,289.2452697753906 -20220914100000,vlinder10,289.1612854003906 -20220914100000,vlinder11,288.6105041503906 -20220914100000,vlinder12,288.6105041503906 -20220914100000,vlinder13,288.6105041503906 -20220914100000,vlinder14,288.3702697753906 -20220914100000,vlinder15,289.3253479003906 -20220914100000,vlinder16,288.3702697753906 -20220914100000,vlinder17,289.2120666503906 -20220914100000,vlinder18,289.1866760253906 -20220914100000,vlinder19,289.5909729003906 -20220914100000,vlinder20,289.5909729003906 -20220914100000,vlinder21,288.5812072753906 -20220914100000,vlinder22,288.6222229003906 -20220914100000,vlinder23,287.9933166503906 -20220914100000,vlinder24,288.2237854003906 -20220914100000,vlinder25,288.1632385253906 -20220914100000,vlinder26,289.0948791503906 -20220914100000,vlinder27,288.3976135253906 -20220914100000,vlinder28,288.7667541503906 -20220914110000,vlinder01,288.90357971191406 -20220914110000,vlinder02,288.75514221191406 -20220914110000,vlinder03,288.85475158691406 -20220914110000,vlinder04,288.85475158691406 -20220914110000,vlinder05,288.62428283691406 -20220914110000,vlinder06,289.56373596191406 -20220914110000,vlinder07,289.56373596191406 -20220914110000,vlinder08,289.56373596191406 -20220914110000,vlinder09,289.23951721191406 -20220914110000,vlinder10,289.08131408691406 -20220914110000,vlinder11,288.75904846191406 -20220914110000,vlinder12,288.75904846191406 -20220914110000,vlinder13,288.75904846191406 -20220914110000,vlinder14,288.45240783691406 -20220914110000,vlinder15,289.39967346191406 -20220914110000,vlinder16,288.45240783691406 -20220914110000,vlinder17,289.03639221191406 -20220914110000,vlinder18,289.00318908691406 -20220914110000,vlinder19,289.57350158691406 -20220914110000,vlinder20,289.57350158691406 -20220914110000,vlinder21,288.62232971191406 -20220914110000,vlinder22,288.97584533691406 -20220914110000,vlinder23,288.33131408691406 -20220914110000,vlinder24,288.52467346191406 -20220914110000,vlinder25,288.47584533691406 -20220914110000,vlinder26,289.15553283691406 -20220914110000,vlinder27,288.62428283691406 -20220914110000,vlinder28,288.90357971191406 -20220914120000,vlinder01,288.52447509765625 -20220914120000,vlinder02,288.48150634765625 -20220914120000,vlinder03,288.60455322265625 -20220914120000,vlinder04,288.60455322265625 -20220914120000,vlinder05,288.36041259765625 -20220914120000,vlinder06,289.33306884765625 -20220914120000,vlinder07,289.33306884765625 -20220914120000,vlinder08,289.33306884765625 -20220914120000,vlinder09,288.93072509765625 -20220914120000,vlinder10,288.73345947265625 -20220914120000,vlinder11,288.54986572265625 -20220914120000,vlinder12,288.54986572265625 -20220914120000,vlinder13,288.54986572265625 -20220914120000,vlinder14,288.29791259765625 -20220914120000,vlinder15,289.12408447265625 -20220914120000,vlinder16,288.29791259765625 -20220914120000,vlinder17,288.84869384765625 -20220914120000,vlinder18,288.85845947265625 -20220914120000,vlinder19,289.30572509765625 -20220914120000,vlinder20,289.30572509765625 -20220914120000,vlinder21,288.41119384765625 -20220914120000,vlinder22,288.75689697265625 -20220914120000,vlinder23,288.09283447265625 -20220914120000,vlinder24,288.26275634765625 -20220914120000,vlinder25,288.22564697265625 -20220914120000,vlinder26,288.91900634765625 -20220914120000,vlinder27,288.36041259765625 -20220914120000,vlinder28,288.52447509765625 -20220914130000,vlinder01,288.27394104003906 -20220914130000,vlinder02,288.25050354003906 -20220914130000,vlinder03,288.42433166503906 -20220914130000,vlinder04,288.42433166503906 -20220914130000,vlinder05,288.19386291503906 -20220914130000,vlinder06,288.83448791503906 -20220914130000,vlinder07,288.83448791503906 -20220914130000,vlinder08,288.83448791503906 -20220914130000,vlinder09,288.42042541503906 -20220914130000,vlinder10,288.39112854003906 -20220914130000,vlinder11,288.28565979003906 -20220914130000,vlinder12,288.28565979003906 -20220914130000,vlinder13,288.28565979003906 -20220914130000,vlinder14,288.19972229003906 -20220914130000,vlinder15,288.49269104003906 -20220914130000,vlinder16,288.19972229003906 -20220914130000,vlinder17,288.40284729003906 -20220914130000,vlinder18,288.43019104003906 -20220914130000,vlinder19,288.79542541503906 -20220914130000,vlinder20,288.79542541503906 -20220914130000,vlinder21,288.46339416503906 -20220914130000,vlinder22,288.72706604003906 -20220914130000,vlinder23,288.08839416503906 -20220914130000,vlinder24,288.18019104003906 -20220914130000,vlinder25,288.13722229003906 -20220914130000,vlinder26,288.60401916503906 -20220914130000,vlinder27,288.19386291503906 -20220914130000,vlinder28,288.27394104003906 -20220914140000,vlinder01,288.2962646484375 -20220914140000,vlinder02,288.3079833984375 -20220914140000,vlinder03,288.1146240234375 -20220914140000,vlinder04,288.1146240234375 -20220914140000,vlinder05,288.2669677734375 -20220914140000,vlinder06,288.6419677734375 -20220914140000,vlinder07,288.6419677734375 -20220914140000,vlinder08,288.6419677734375 -20220914140000,vlinder09,288.4056396484375 -20220914140000,vlinder10,288.4075927734375 -20220914140000,vlinder11,288.1204833984375 -20220914140000,vlinder12,288.1204833984375 -20220914140000,vlinder13,288.1204833984375 -20220914140000,vlinder14,288.0443115234375 -20220914140000,vlinder15,288.4114990234375 -20220914140000,vlinder16,288.0443115234375 -20220914140000,vlinder17,287.8978271484375 -20220914140000,vlinder18,287.8587646484375 -20220914140000,vlinder19,288.6126708984375 -20220914140000,vlinder20,288.6126708984375 -20220914140000,vlinder21,288.9739990234375 -20220914140000,vlinder22,289.1224365234375 -20220914140000,vlinder23,288.2415771484375 -20220914140000,vlinder24,288.3060302734375 -20220914140000,vlinder25,288.2181396484375 -20220914140000,vlinder26,288.2884521484375 -20220914140000,vlinder27,288.2669677734375 -20220914140000,vlinder28,288.2962646484375 -20220914150000,vlinder01,288.5669860839844 -20220914150000,vlinder02,288.5904235839844 -20220914150000,vlinder03,287.9869079589844 -20220914150000,vlinder04,287.9869079589844 -20220914150000,vlinder05,288.5962829589844 -20220914150000,vlinder06,288.6275329589844 -20220914150000,vlinder07,288.6275329589844 -20220914150000,vlinder08,288.6275329589844 -20220914150000,vlinder09,288.3912048339844 -20220914150000,vlinder10,288.3990173339844 -20220914150000,vlinder11,288.2544860839844 -20220914150000,vlinder12,288.2544860839844 -20220914150000,vlinder13,288.2544860839844 -20220914150000,vlinder14,288.2798767089844 -20220914150000,vlinder15,288.3833923339844 -20220914150000,vlinder16,288.2798767089844 -20220914150000,vlinder17,287.5787048339844 -20220914150000,vlinder18,287.6177673339844 -20220914150000,vlinder19,288.4615173339844 -20220914150000,vlinder20,288.4615173339844 -20220914150000,vlinder21,289.3540954589844 -20220914150000,vlinder22,289.2212829589844 -20220914150000,vlinder23,288.8033142089844 -20220914150000,vlinder24,288.7232360839844 -20220914150000,vlinder25,288.5494079589844 -20220914150000,vlinder26,288.0904235839844 -20220914150000,vlinder27,288.5962829589844 -20220914150000,vlinder28,288.5669860839844 -20220914160000,vlinder01,288.3993377685547 -20220914160000,vlinder02,288.4442596435547 -20220914160000,vlinder03,287.6512908935547 -20220914160000,vlinder04,287.6512908935547 -20220914160000,vlinder05,288.5770721435547 -20220914160000,vlinder06,288.3348846435547 -20220914160000,vlinder07,288.3348846435547 -20220914160000,vlinder08,288.3348846435547 -20220914160000,vlinder09,288.0673065185547 -20220914160000,vlinder10,288.0887908935547 -20220914160000,vlinder11,288.2235565185547 -20220914160000,vlinder12,288.2235565185547 -20220914160000,vlinder13,288.2235565185547 -20220914160000,vlinder14,288.2801971435547 -20220914160000,vlinder15,288.0419158935547 -20220914160000,vlinder16,288.2801971435547 -20220914160000,vlinder17,287.2782440185547 -20220914160000,vlinder18,287.3153533935547 -20220914160000,vlinder19,287.9051971435547 -20220914160000,vlinder20,287.9051971435547 -20220914160000,vlinder21,289.6356658935547 -20220914160000,vlinder22,289.2216033935547 -20220914160000,vlinder23,288.9423065185547 -20220914160000,vlinder24,288.8134002685547 -20220914160000,vlinder25,288.6669158935547 -20220914160000,vlinder26,287.7411346435547 -20220914160000,vlinder27,288.5770721435547 -20220914160000,vlinder28,288.3993377685547 -20220914170000,vlinder01,288.0879364013672 -20220914170000,vlinder02,288.1328582763672 -20220914170000,vlinder03,287.5195770263672 -20220914170000,vlinder04,287.5195770263672 -20220914170000,vlinder05,288.3535614013672 -20220914170000,vlinder06,288.0156707763672 -20220914170000,vlinder07,288.0156707763672 -20220914170000,vlinder08,288.0156707763672 -20220914170000,vlinder09,287.7285614013672 -20220914170000,vlinder10,287.7461395263672 -20220914170000,vlinder11,288.1504364013672 -20220914170000,vlinder12,288.1504364013672 -20220914170000,vlinder13,288.1504364013672 -20220914170000,vlinder14,288.3008270263672 -20220914170000,vlinder15,287.7070770263672 -20220914170000,vlinder16,288.3008270263672 -20220914170000,vlinder17,286.9375457763672 -20220914170000,vlinder18,286.9668426513672 -20220914170000,vlinder19,287.5234832763672 -20220914170000,vlinder20,287.5234832763672 -20220914170000,vlinder21,289.6621551513672 -20220914170000,vlinder22,289.0820770263672 -20220914170000,vlinder23,288.8711395263672 -20220914170000,vlinder24,288.6777801513672 -20220914170000,vlinder25,288.5352020263672 -20220914170000,vlinder26,287.3398895263672 -20220914170000,vlinder27,288.3535614013672 -20220914170000,vlinder28,288.0879364013672 -20220914180000,vlinder01,287.719482421875 -20220914180000,vlinder02,287.754638671875 -20220914180000,vlinder03,287.229248046875 -20220914180000,vlinder04,287.229248046875 -20220914180000,vlinder05,288.014404296875 -20220914180000,vlinder06,287.633544921875 -20220914180000,vlinder07,287.633544921875 -20220914180000,vlinder08,287.633544921875 -20220914180000,vlinder09,287.383544921875 -20220914180000,vlinder10,287.395263671875 -20220914180000,vlinder11,287.821044921875 -20220914180000,vlinder12,287.821044921875 -20220914180000,vlinder13,287.821044921875 -20220914180000,vlinder14,287.975341796875 -20220914180000,vlinder15,287.365966796875 -20220914180000,vlinder16,287.975341796875 -20220914180000,vlinder17,286.672607421875 -20220914180000,vlinder18,286.719482421875 -20220914180000,vlinder19,287.156982421875 -20220914180000,vlinder20,287.156982421875 -20220914180000,vlinder21,289.623779296875 -20220914180000,vlinder22,288.664794921875 -20220914180000,vlinder23,288.545654296875 -20220914180000,vlinder24,288.358154296875 -20220914180000,vlinder25,288.178466796875 -20220914180000,vlinder26,286.998779296875 -20220914180000,vlinder27,288.014404296875 -20220914180000,vlinder28,287.719482421875 -20220914190000,vlinder01,288.5635986328125 -20220914190000,vlinder02,288.5128173828125 -20220914190000,vlinder03,288.3194580078125 -20220914190000,vlinder04,288.3194580078125 -20220914190000,vlinder05,288.6026611328125 -20220914190000,vlinder06,288.7686767578125 -20220914190000,vlinder07,288.7686767578125 -20220914190000,vlinder08,288.7686767578125 -20220914190000,vlinder09,288.4346923828125 -20220914190000,vlinder10,288.3839111328125 -20220914190000,vlinder11,288.4561767578125 -20220914190000,vlinder12,288.4561767578125 -20220914190000,vlinder13,288.4561767578125 -20220914190000,vlinder14,288.5362548828125 -20220914190000,vlinder15,288.4385986328125 -20220914190000,vlinder16,288.5362548828125 -20220914190000,vlinder17,288.1964111328125 -20220914190000,vlinder18,288.2374267578125 -20220914190000,vlinder19,287.9112548828125 -20220914190000,vlinder20,287.9112548828125 -20220914190000,vlinder21,290.6085205078125 -20220914190000,vlinder22,288.8546142578125 -20220914190000,vlinder23,288.7999267578125 -20220914190000,vlinder24,288.6729736328125 -20220914190000,vlinder25,288.4229736328125 -20220914190000,vlinder26,288.0557861328125 -20220914190000,vlinder27,288.6026611328125 -20220914190000,vlinder28,288.5635986328125 -20220914200000,vlinder01,288.2486114501953 -20220914200000,vlinder02,288.1919708251953 -20220914200000,vlinder03,287.7154083251953 -20220914200000,vlinder04,287.7154083251953 -20220914200000,vlinder05,288.3130645751953 -20220914200000,vlinder06,288.5279083251953 -20220914200000,vlinder07,288.5279083251953 -20220914200000,vlinder08,288.5279083251953 -20220914200000,vlinder09,288.3501739501953 -20220914200000,vlinder10,288.2466583251953 -20220914200000,vlinder11,288.0806427001953 -20220914200000,vlinder12,288.0806427001953 -20220914200000,vlinder13,288.0806427001953 -20220914200000,vlinder14,288.1157989501953 -20220914200000,vlinder15,288.3892364501953 -20220914200000,vlinder16,288.1157989501953 -20220914200000,vlinder17,287.9771270751953 -20220914200000,vlinder18,288.0142364501953 -20220914200000,vlinder19,287.9282989501953 -20220914200000,vlinder20,287.9282989501953 -20220914200000,vlinder21,290.5435333251953 -20220914200000,vlinder22,288.5025177001953 -20220914200000,vlinder23,288.6743927001953 -20220914200000,vlinder24,288.4497833251953 -20220914200000,vlinder25,287.9868927001953 -20220914200000,vlinder26,287.7642364501953 -20220914200000,vlinder27,288.3130645751953 -20220914200000,vlinder28,288.2486114501953 -20220914210000,vlinder01,287.6204376220703 -20220914210000,vlinder02,287.6555938720703 -20220914210000,vlinder03,287.3430938720703 -20220914210000,vlinder04,287.3430938720703 -20220914210000,vlinder05,287.8665313720703 -20220914210000,vlinder06,287.6770782470703 -20220914210000,vlinder07,287.6770782470703 -20220914210000,vlinder08,287.6770782470703 -20220914210000,vlinder09,287.5364532470703 -20220914210000,vlinder10,287.5032501220703 -20220914210000,vlinder11,287.6477813720703 -20220914210000,vlinder12,287.6477813720703 -20220914210000,vlinder13,287.6477813720703 -20220914210000,vlinder14,287.7942657470703 -20220914210000,vlinder15,287.5384063720703 -20220914210000,vlinder16,287.7942657470703 -20220914210000,vlinder17,287.5970001220703 -20220914210000,vlinder18,287.6458282470703 -20220914210000,vlinder19,287.2747344970703 -20220914210000,vlinder20,287.2747344970703 -20220914210000,vlinder21,290.4993438720703 -20220914210000,vlinder22,288.5520782470703 -20220914210000,vlinder23,288.5657501220703 -20220914210000,vlinder24,288.1536407470703 -20220914210000,vlinder25,287.6262969970703 -20220914210000,vlinder26,287.2512969970703 -20220914210000,vlinder27,287.8665313720703 -20220914210000,vlinder28,287.6204376220703 -20220914220000,vlinder01,287.36842346191406 -20220914220000,vlinder02,287.47193908691406 -20220914220000,vlinder03,286.84693908691406 -20220914220000,vlinder04,286.84693908691406 -20220914220000,vlinder05,287.71022033691406 -20220914220000,vlinder06,287.03834533691406 -20220914220000,vlinder07,287.03834533691406 -20220914220000,vlinder08,287.03834533691406 -20220914220000,vlinder09,287.16725158691406 -20220914220000,vlinder10,287.19264221191406 -20220914220000,vlinder11,287.31178283691406 -20220914220000,vlinder12,287.31178283691406 -20220914220000,vlinder13,287.31178283691406 -20220914220000,vlinder14,287.57350158691406 -20220914220000,vlinder15,287.09303283691406 -20220914220000,vlinder16,287.57350158691406 -20220914220000,vlinder17,286.97584533691406 -20220914220000,vlinder18,287.00904846191406 -20220914220000,vlinder19,286.77662658691406 -20220914220000,vlinder20,286.77662658691406 -20220914220000,vlinder21,290.52857971191406 -20220914220000,vlinder22,288.68873596191406 -20220914220000,vlinder23,288.56764221191406 -20220914220000,vlinder24,288.06178283691406 -20220914220000,vlinder25,287.45826721191406 -20220914220000,vlinder26,286.48365783691406 -20220914220000,vlinder27,287.71022033691406 -20220914220000,vlinder28,287.36842346191406 -20220914230000,vlinder01,286.8717346191406 -20220914230000,vlinder02,286.9615783691406 -20220914230000,vlinder03,286.9264221191406 -20220914230000,vlinder04,286.9264221191406 -20220914230000,vlinder05,287.2662658691406 -20220914230000,vlinder06,286.6197814941406 -20220914230000,vlinder07,286.6197814941406 -20220914230000,vlinder08,286.6197814941406 -20220914230000,vlinder09,286.8912658691406 -20220914230000,vlinder10,286.8951721191406 -20220914230000,vlinder11,287.0260314941406 -20220914230000,vlinder12,287.0260314941406 -20220914230000,vlinder13,287.0260314941406 -20220914230000,vlinder14,287.3463439941406 -20220914230000,vlinder15,286.8346252441406 -20220914230000,vlinder16,287.3463439941406 -20220914230000,vlinder17,286.4127502441406 -20220914230000,vlinder18,286.3482971191406 -20220914230000,vlinder19,286.3131408691406 -20220914230000,vlinder20,286.3131408691406 -20220914230000,vlinder21,290.3111877441406 -20220914230000,vlinder22,288.2936096191406 -20220914230000,vlinder23,288.3502502441406 -20220914230000,vlinder24,287.7193908691406 -20220914230000,vlinder25,286.9576721191406 -20220914230000,vlinder26,286.3365783691406 -20220914230000,vlinder27,287.2662658691406 -20220914230000,vlinder28,286.8717346191406 -20220915000000,vlinder01,286.697509765625 -20220915000000,vlinder02,286.865478515625 -20220915000000,vlinder03,286.679931640625 -20220915000000,vlinder04,286.679931640625 -20220915000000,vlinder05,287.242431640625 -20220915000000,vlinder06,286.263916015625 -20220915000000,vlinder07,286.263916015625 -20220915000000,vlinder08,286.263916015625 -20220915000000,vlinder09,286.652587890625 -20220915000000,vlinder10,286.711181640625 -20220915000000,vlinder11,286.771728515625 -20220915000000,vlinder12,286.771728515625 -20220915000000,vlinder13,286.771728515625 -20220915000000,vlinder14,287.185791015625 -20220915000000,vlinder15,286.558837890625 -20220915000000,vlinder16,287.185791015625 -20220915000000,vlinder17,286.025634765625 -20220915000000,vlinder18,285.906494140625 -20220915000000,vlinder19,286.084228515625 -20220915000000,vlinder20,286.084228515625 -20220915000000,vlinder21,290.213134765625 -20220915000000,vlinder22,288.510009765625 -20220915000000,vlinder23,288.523681640625 -20220915000000,vlinder24,287.847900390625 -20220915000000,vlinder25,287.041259765625 -20220915000000,vlinder26,285.949462890625 -20220915000000,vlinder27,287.242431640625 -20220915000000,vlinder28,286.697509765625 -20220915010000,vlinder01,286.49253845214844 -20220915010000,vlinder02,286.67027282714844 -20220915010000,vlinder03,286.54136657714844 -20220915010000,vlinder04,286.54136657714844 -20220915010000,vlinder05,287.19371032714844 -20220915010000,vlinder06,286.44761657714844 -20220915010000,vlinder07,286.44761657714844 -20220915010000,vlinder08,286.44761657714844 -20220915010000,vlinder09,286.42027282714844 -20220915010000,vlinder10,286.43003845214844 -20220915010000,vlinder11,286.95152282714844 -20220915010000,vlinder12,286.95152282714844 -20220915010000,vlinder13,286.95152282714844 -20220915010000,vlinder14,287.39292907714844 -20220915010000,vlinder15,286.36949157714844 -20220915010000,vlinder16,287.39292907714844 -20220915010000,vlinder17,285.95933532714844 -20220915010000,vlinder18,285.84019470214844 -20220915010000,vlinder19,285.96128845214844 -20220915010000,vlinder20,285.96128845214844 -20220915010000,vlinder21,289.99253845214844 -20220915010000,vlinder22,288.15855407714844 -20220915010000,vlinder23,288.60777282714844 -20220915010000,vlinder24,287.85386657714844 -20220915010000,vlinder25,287.25035095214844 -20220915010000,vlinder26,285.88121032714844 -20220915010000,vlinder27,287.19371032714844 -20220915010000,vlinder28,286.49253845214844 -20220915020000,vlinder01,286.9750671386719 -20220915020000,vlinder02,287.1606140136719 -20220915020000,vlinder03,286.7797546386719 -20220915020000,vlinder04,286.7797546386719 -20220915020000,vlinder05,287.5570983886719 -20220915020000,vlinder06,286.7543640136719 -20220915020000,vlinder07,286.7543640136719 -20220915020000,vlinder08,286.7543640136719 -20220915020000,vlinder09,286.6860046386719 -20220915020000,vlinder10,286.7289733886719 -20220915020000,vlinder11,287.1410827636719 -20220915020000,vlinder12,287.1410827636719 -20220915020000,vlinder13,287.1410827636719 -20220915020000,vlinder14,287.5258483886719 -20220915020000,vlinder15,286.6117858886719 -20220915020000,vlinder16,287.5258483886719 -20220915020000,vlinder17,286.2211608886719 -20220915020000,vlinder18,286.1781921386719 -20220915020000,vlinder19,286.1313171386719 -20220915020000,vlinder20,286.1313171386719 -20220915020000,vlinder21,289.9750671386719 -20220915020000,vlinder22,288.5961608886719 -20220915020000,vlinder23,288.6215515136719 -20220915020000,vlinder24,288.0414733886719 -20220915020000,vlinder25,287.5883483886719 -20220915020000,vlinder26,286.2797546386719 -20220915020000,vlinder27,287.5570983886719 -20220915020000,vlinder28,286.9750671386719 -20220915030000,vlinder01,286.6886291503906 -20220915030000,vlinder02,286.8702697753906 -20220915030000,vlinder03,286.9855041503906 -20220915030000,vlinder04,286.9855041503906 -20220915030000,vlinder05,287.3077697753906 -20220915030000,vlinder06,286.5401916503906 -20220915030000,vlinder07,286.5401916503906 -20220915030000,vlinder08,286.5401916503906 -20220915030000,vlinder09,286.3800354003906 -20220915030000,vlinder10,286.3976135253906 -20220915030000,vlinder11,287.0226135253906 -20220915030000,vlinder12,287.0226135253906 -20220915030000,vlinder13,287.0226135253906 -20220915030000,vlinder14,287.4503479003906 -20220915030000,vlinder15,286.3175354003906 -20220915030000,vlinder16,287.4503479003906 -20220915030000,vlinder17,286.3273010253906 -20220915030000,vlinder18,286.3898010253906 -20220915030000,vlinder19,285.7687072753906 -20220915030000,vlinder20,285.7687072753906 -20220915030000,vlinder21,289.8546447753906 -20220915030000,vlinder22,288.2843322753906 -20220915030000,vlinder23,288.4210510253906 -20220915030000,vlinder24,287.8312072753906 -20220915030000,vlinder25,287.3937072753906 -20220915030000,vlinder26,286.4991760253906 -20220915030000,vlinder27,287.3077697753906 -20220915030000,vlinder28,286.6886291503906 -20220915040000,vlinder01,286.6728210449219 -20220915040000,vlinder02,286.8232116699219 -20220915040000,vlinder03,287.1630554199219 -20220915040000,vlinder04,287.1630554199219 -20220915040000,vlinder05,287.2275085449219 -20220915040000,vlinder06,286.7528991699219 -20220915040000,vlinder07,286.7528991699219 -20220915040000,vlinder08,286.7528991699219 -20220915040000,vlinder09,286.4657897949219 -20220915040000,vlinder10,286.4560241699219 -20220915040000,vlinder11,287.0946960449219 -20220915040000,vlinder12,287.0946960449219 -20220915040000,vlinder13,287.0946960449219 -20220915040000,vlinder14,287.4736022949219 -20220915040000,vlinder15,286.4423522949219 -20220915040000,vlinder16,287.4736022949219 -20220915040000,vlinder17,286.5556335449219 -20220915040000,vlinder18,286.6220397949219 -20220915040000,vlinder19,286.0087585449219 -20220915040000,vlinder20,286.0087585449219 -20220915040000,vlinder21,289.6005554199219 -20220915040000,vlinder22,287.9638366699219 -20220915040000,vlinder23,288.3075866699219 -20220915040000,vlinder24,287.7255554199219 -20220915040000,vlinder25,287.2880554199219 -20220915040000,vlinder26,286.8427429199219 -20220915040000,vlinder27,287.2275085449219 -20220915040000,vlinder28,286.6728210449219 -20220915050000,vlinder01,286.52403259277344 -20220915050000,vlinder02,286.67247009277344 -20220915050000,vlinder03,287.14903259277344 -20220915050000,vlinder04,287.14903259277344 -20220915050000,vlinder05,287.05137634277344 -20220915050000,vlinder06,286.69200134277344 -20220915050000,vlinder07,286.69200134277344 -20220915050000,vlinder08,286.69200134277344 -20220915050000,vlinder09,286.39317321777344 -20220915050000,vlinder10,286.37559509277344 -20220915050000,vlinder11,287.10606384277344 -20220915050000,vlinder12,287.10606384277344 -20220915050000,vlinder13,287.10606384277344 -20220915050000,vlinder14,287.51426696777344 -20220915050000,vlinder15,286.38145446777344 -20220915050000,vlinder16,287.51426696777344 -20220915050000,vlinder17,286.73497009277344 -20220915050000,vlinder18,286.85020446777344 -20220915050000,vlinder19,286.00450134277344 -20220915050000,vlinder20,286.00450134277344 -20220915050000,vlinder21,289.41661071777344 -20220915050000,vlinder22,287.82872009277344 -20220915050000,vlinder23,288.25450134277344 -20220915050000,vlinder24,287.58262634277344 -20220915050000,vlinder25,287.09629821777344 -20220915050000,vlinder26,286.81895446777344 -20220915050000,vlinder27,287.05137634277344 -20220915050000,vlinder28,286.52403259277344 -20220915060000,vlinder01,286.5066375732422 -20220915060000,vlinder02,286.6042938232422 -20220915060000,vlinder03,287.1511688232422 -20220915060000,vlinder04,287.1511688232422 -20220915060000,vlinder05,287.0261688232422 -20220915060000,vlinder06,286.7429656982422 -20220915060000,vlinder07,286.7429656982422 -20220915060000,vlinder08,286.7429656982422 -20220915060000,vlinder09,286.5749969482422 -20220915060000,vlinder10,286.5203094482422 -20220915060000,vlinder11,287.1550750732422 -20220915060000,vlinder12,287.1550750732422 -20220915060000,vlinder13,287.1550750732422 -20220915060000,vlinder14,287.5828094482422 -20220915060000,vlinder15,286.5691375732422 -20220915060000,vlinder16,287.5828094482422 -20220915060000,vlinder17,286.8152313232422 -20220915060000,vlinder18,286.9499969482422 -20220915060000,vlinder19,286.1882781982422 -20220915060000,vlinder20,286.1882781982422 -20220915060000,vlinder21,289.4617156982422 -20220915060000,vlinder22,287.7917938232422 -20220915060000,vlinder23,288.3406219482422 -20220915060000,vlinder24,287.6160125732422 -20220915060000,vlinder25,287.1394500732422 -20220915060000,vlinder26,286.8132781982422 -20220915060000,vlinder27,287.0261688232422 -20220915060000,vlinder28,286.5066375732422 -20220915070000,vlinder01,287.98980712890625 -20220915070000,vlinder02,288.06793212890625 -20220915070000,vlinder03,287.67730712890625 -20220915070000,vlinder04,287.67730712890625 -20220915070000,vlinder05,288.38629150390625 -20220915070000,vlinder06,287.89410400390625 -20220915070000,vlinder07,287.89410400390625 -20220915070000,vlinder08,287.89410400390625 -20220915070000,vlinder09,287.66949462890625 -20220915070000,vlinder10,287.70269775390625 -20220915070000,vlinder11,288.10308837890625 -20220915070000,vlinder12,288.10308837890625 -20220915070000,vlinder13,288.10308837890625 -20220915070000,vlinder14,288.33941650390625 -20220915070000,vlinder15,287.63238525390625 -20220915070000,vlinder16,288.33941650390625 -20220915070000,vlinder17,287.13629150390625 -20220915070000,vlinder18,287.20074462890625 -20220915070000,vlinder19,287.25543212890625 -20220915070000,vlinder20,287.25543212890625 -20220915070000,vlinder21,289.89215087890625 -20220915070000,vlinder22,288.98394775390625 -20220915070000,vlinder23,289.06988525390625 -20220915070000,vlinder24,288.73004150390625 -20220915070000,vlinder25,288.53863525390625 -20220915070000,vlinder26,287.62066650390625 -20220915070000,vlinder27,288.38629150390625 -20220915070000,vlinder28,287.98980712890625 -20220915080000,vlinder01,288.7881774902344 -20220915080000,vlinder02,288.9073181152344 -20220915080000,vlinder03,288.7178649902344 -20220915080000,vlinder04,288.7178649902344 -20220915080000,vlinder05,289.1163024902344 -20220915080000,vlinder06,288.5498962402344 -20220915080000,vlinder07,288.5498962402344 -20220915080000,vlinder08,288.5498962402344 -20220915080000,vlinder09,288.3604431152344 -20220915080000,vlinder10,288.3995056152344 -20220915080000,vlinder11,288.7569274902344 -20220915080000,vlinder12,288.7569274902344 -20220915080000,vlinder13,288.7569274902344 -20220915080000,vlinder14,288.9424743652344 -20220915080000,vlinder15,288.2881774902344 -20220915080000,vlinder16,288.9424743652344 -20220915080000,vlinder17,288.1045837402344 -20220915080000,vlinder18,288.1573181152344 -20220915080000,vlinder19,287.9834899902344 -20220915080000,vlinder20,287.9834899902344 -20220915080000,vlinder21,289.9248962402344 -20220915080000,vlinder22,289.9346618652344 -20220915080000,vlinder23,289.5733337402344 -20220915080000,vlinder24,289.3702087402344 -20220915080000,vlinder25,289.2803649902344 -20220915080000,vlinder26,288.6241149902344 -20220915080000,vlinder27,289.1163024902344 -20220915080000,vlinder28,288.7881774902344 -20220915090000,vlinder01,289.3746032714844 -20220915090000,vlinder02,289.5308532714844 -20220915090000,vlinder03,289.5816345214844 -20220915090000,vlinder04,289.5816345214844 -20220915090000,vlinder05,289.5367126464844 -20220915090000,vlinder06,289.1929626464844 -20220915090000,vlinder07,289.1929626464844 -20220915090000,vlinder08,289.1929626464844 -20220915090000,vlinder09,288.8882751464844 -20220915090000,vlinder10,288.9917907714844 -20220915090000,vlinder11,289.3472595214844 -20220915090000,vlinder12,289.3472595214844 -20220915090000,vlinder13,289.3472595214844 -20220915090000,vlinder14,289.4742126464844 -20220915090000,vlinder15,288.8081970214844 -20220915090000,vlinder16,289.4742126464844 -20220915090000,vlinder17,289.0757751464844 -20220915090000,vlinder18,289.1246032714844 -20220915090000,vlinder19,288.6246032714844 -20220915090000,vlinder20,288.6246032714844 -20220915090000,vlinder21,289.9214782714844 -20220915090000,vlinder22,290.5464782714844 -20220915090000,vlinder23,289.6324157714844 -20220915090000,vlinder24,289.5953063964844 -20220915090000,vlinder25,289.5289001464844 -20220915090000,vlinder26,289.5289001464844 -20220915090000,vlinder27,289.5367126464844 -20220915090000,vlinder28,289.3746032714844 -20220915100000,vlinder01,289.8987579345703 -20220915100000,vlinder02,290.0159454345703 -20220915100000,vlinder03,290.1878204345703 -20220915100000,vlinder04,290.1878204345703 -20220915100000,vlinder05,290.0003204345703 -20220915100000,vlinder06,289.8948516845703 -20220915100000,vlinder07,289.8948516845703 -20220915100000,vlinder08,289.8948516845703 -20220915100000,vlinder09,289.5745391845703 -20220915100000,vlinder10,289.6487579345703 -20220915100000,vlinder11,289.8421173095703 -20220915100000,vlinder12,289.8421173095703 -20220915100000,vlinder13,289.8421173095703 -20220915100000,vlinder14,289.8772735595703 -20220915100000,vlinder15,289.5237579345703 -20220915100000,vlinder16,289.8772735595703 -20220915100000,vlinder17,290.1389923095703 -20220915100000,vlinder18,290.2444610595703 -20220915100000,vlinder19,289.3811798095703 -20220915100000,vlinder20,289.3811798095703 -20220915100000,vlinder21,290.2327423095703 -20220915100000,vlinder22,290.8362579345703 -20220915100000,vlinder23,289.9983673095703 -20220915100000,vlinder24,290.0081329345703 -20220915100000,vlinder25,289.9495391845703 -20220915100000,vlinder26,290.2620391845703 -20220915100000,vlinder27,290.0003204345703 -20220915100000,vlinder28,289.8987579345703 -20220915110000,vlinder01,290.1815643310547 -20220915110000,vlinder02,290.3007049560547 -20220915110000,vlinder03,289.9608612060547 -20220915110000,vlinder04,289.9608612060547 -20220915110000,vlinder05,290.2479705810547 -20220915110000,vlinder06,289.9960174560547 -20220915110000,vlinder07,289.9960174560547 -20220915110000,vlinder08,289.9960174560547 -20220915110000,vlinder09,289.9784393310547 -20220915110000,vlinder10,290.0702362060547 -20220915110000,vlinder11,289.8436737060547 -20220915110000,vlinder12,289.8436737060547 -20220915110000,vlinder13,289.8436737060547 -20220915110000,vlinder14,289.8749237060547 -20220915110000,vlinder15,289.9042205810547 -20220915110000,vlinder16,289.8749237060547 -20220915110000,vlinder17,290.6678924560547 -20220915110000,vlinder18,290.8104705810547 -20220915110000,vlinder19,289.8983612060547 -20220915110000,vlinder20,289.8983612060547 -20220915110000,vlinder21,290.4315643310547 -20220915110000,vlinder22,291.0507049560547 -20220915110000,vlinder23,290.1600799560547 -20220915110000,vlinder24,290.2284393310547 -20220915110000,vlinder25,290.1542205810547 -20220915110000,vlinder26,290.1932830810547 -20220915110000,vlinder27,290.2479705810547 -20220915110000,vlinder28,290.1815643310547 -20220915120000,vlinder01,290.6063690185547 -20220915120000,vlinder02,290.7294158935547 -20220915120000,vlinder03,290.2352752685547 -20220915120000,vlinder04,290.2352752685547 -20220915120000,vlinder05,290.6962127685547 -20220915120000,vlinder06,290.0712127685547 -20220915120000,vlinder07,290.0712127685547 -20220915120000,vlinder08,290.0712127685547 -20220915120000,vlinder09,290.2665252685547 -20220915120000,vlinder10,290.3973846435547 -20220915120000,vlinder11,290.3446502685547 -20220915120000,vlinder12,290.3446502685547 -20220915120000,vlinder13,290.3446502685547 -20220915120000,vlinder14,290.5926971435547 -20220915120000,vlinder15,290.1454315185547 -20220915120000,vlinder16,290.5926971435547 -20220915120000,vlinder17,290.6669158935547 -20220915120000,vlinder18,290.8876190185547 -20220915120000,vlinder19,289.9794158935547 -20220915120000,vlinder20,289.9794158935547 -20220915120000,vlinder21,290.4266815185547 -20220915120000,vlinder22,290.8426971435547 -20220915120000,vlinder23,290.5555877685547 -20220915120000,vlinder24,290.6102752685547 -20220915120000,vlinder25,290.6512908935547 -20220915120000,vlinder26,290.2606658935547 -20220915120000,vlinder27,290.6962127685547 -20220915120000,vlinder28,290.6063690185547 -20220915130000,vlinder01,290.6864318847656 -20220915130000,vlinder02,290.7469787597656 -20220915130000,vlinder03,290.4813537597656 -20220915130000,vlinder04,290.4813537597656 -20220915130000,vlinder05,290.7215881347656 -20220915130000,vlinder06,290.4247131347656 -20220915130000,vlinder07,290.4247131347656 -20220915130000,vlinder08,290.4247131347656 -20220915130000,vlinder09,290.5106506347656 -20220915130000,vlinder10,290.5731506347656 -20220915130000,vlinder11,290.6356506347656 -20220915130000,vlinder12,290.6356506347656 -20220915130000,vlinder13,290.6356506347656 -20220915130000,vlinder14,290.8407287597656 -20220915130000,vlinder15,290.4422912597656 -20220915130000,vlinder16,290.8407287597656 -20220915130000,vlinder17,290.1649475097656 -20220915130000,vlinder18,290.2919006347656 -20220915130000,vlinder19,290.2079162597656 -20220915130000,vlinder20,290.2079162597656 -20220915130000,vlinder21,290.3329162597656 -20220915130000,vlinder22,290.6356506347656 -20220915130000,vlinder23,290.5301818847656 -20220915130000,vlinder24,290.6024475097656 -20220915130000,vlinder25,290.6688537597656 -20220915130000,vlinder26,290.4501037597656 -20220915130000,vlinder27,290.7215881347656 -20220915130000,vlinder28,290.6864318847656 -20220915140000,vlinder01,290.6155090332031 -20220915140000,vlinder02,290.6584777832031 -20220915140000,vlinder03,290.6975402832031 -20220915140000,vlinder04,290.6975402832031 -20220915140000,vlinder05,290.6701965332031 -20220915140000,vlinder06,290.6135559082031 -20220915140000,vlinder07,290.6135559082031 -20220915140000,vlinder08,290.6135559082031 -20220915140000,vlinder09,290.4475402832031 -20220915140000,vlinder10,290.4807434082031 -20220915140000,vlinder11,290.7834777832031 -20220915140000,vlinder12,290.7834777832031 -20220915140000,vlinder13,290.7834777832031 -20220915140000,vlinder14,290.9494934082031 -20220915140000,vlinder15,290.4104309082031 -20220915140000,vlinder16,290.9494934082031 -20220915140000,vlinder17,290.4065246582031 -20220915140000,vlinder18,290.5158996582031 -20220915140000,vlinder19,290.1623840332031 -20220915140000,vlinder20,290.1623840332031 -20220915140000,vlinder21,290.2541809082031 -20220915140000,vlinder22,290.6252746582031 -20220915140000,vlinder23,290.5412902832031 -20220915140000,vlinder24,290.5764465332031 -20220915140000,vlinder25,290.6623840332031 -20220915140000,vlinder26,290.6936340332031 -20220915140000,vlinder27,290.6701965332031 -20220915140000,vlinder28,290.6155090332031 -20220915150000,vlinder01,290.34339904785156 -20220915150000,vlinder02,290.36488342285156 -20220915150000,vlinder03,290.36097717285156 -20220915150000,vlinder04,290.36097717285156 -20220915150000,vlinder05,290.31019592285156 -20220915150000,vlinder06,290.40980529785156 -20220915150000,vlinder07,290.40980529785156 -20220915150000,vlinder08,290.40980529785156 -20220915150000,vlinder09,290.28285217285156 -20220915150000,vlinder10,290.28871154785156 -20220915150000,vlinder11,290.30433654785156 -20220915150000,vlinder12,290.30433654785156 -20220915150000,vlinder13,290.30433654785156 -20220915150000,vlinder14,290.33363342285156 -20220915150000,vlinder15,290.26918029785156 -20220915150000,vlinder16,290.33363342285156 -20220915150000,vlinder17,290.24574279785156 -20220915150000,vlinder18,290.37660217285156 -20220915150000,vlinder19,290.05433654785156 -20220915150000,vlinder20,290.05433654785156 -20220915150000,vlinder21,290.00355529785156 -20220915150000,vlinder22,290.35511779785156 -20220915150000,vlinder23,290.05238342285156 -20220915150000,vlinder24,290.17933654785156 -20220915150000,vlinder25,290.19300842285156 -20220915150000,vlinder26,290.40980529785156 -20220915150000,vlinder27,290.31019592285156 -20220915150000,vlinder28,290.34339904785156 -20220915160000,vlinder01,290.0414276123047 -20220915160000,vlinder02,290.0453338623047 -20220915160000,vlinder03,290.1136932373047 -20220915160000,vlinder04,290.1136932373047 -20220915160000,vlinder05,290.0238494873047 -20220915160000,vlinder06,290.3695526123047 -20220915160000,vlinder07,290.3695526123047 -20220915160000,vlinder08,290.3695526123047 -20220915160000,vlinder09,290.0550994873047 -20220915160000,vlinder10,290.0375213623047 -20220915160000,vlinder11,290.1683807373047 -20220915160000,vlinder12,290.1683807373047 -20220915160000,vlinder13,290.1683807373047 -20220915160000,vlinder14,290.1410369873047 -20220915160000,vlinder15,290.0726776123047 -20220915160000,vlinder16,290.1410369873047 -20220915160000,vlinder17,290.1293182373047 -20220915160000,vlinder18,290.2367401123047 -20220915160000,vlinder19,289.9672088623047 -20220915160000,vlinder20,289.9672088623047 -20220915160000,vlinder21,289.7035369873047 -20220915160000,vlinder22,289.8265838623047 -20220915160000,vlinder23,289.8343963623047 -20220915160000,vlinder24,289.9164276123047 -20220915160000,vlinder25,289.9535369873047 -20220915160000,vlinder26,290.2738494873047 -20220915160000,vlinder27,290.0238494873047 -20220915160000,vlinder28,290.0414276123047 -20220915170000,vlinder01,289.2641296386719 -20220915170000,vlinder02,289.2817077636719 -20220915170000,vlinder03,289.4555358886719 -20220915170000,vlinder04,289.4555358886719 -20220915170000,vlinder05,289.3031921386719 -20220915170000,vlinder06,289.5981140136719 -20220915170000,vlinder07,289.5981140136719 -20220915170000,vlinder08,289.5981140136719 -20220915170000,vlinder09,289.2465515136719 -20220915170000,vlinder10,289.2309265136719 -20220915170000,vlinder11,289.4360046386719 -20220915170000,vlinder12,289.4360046386719 -20220915170000,vlinder13,289.4360046386719 -20220915170000,vlinder14,289.4047546386719 -20220915170000,vlinder15,289.2621765136719 -20220915170000,vlinder16,289.4047546386719 -20220915170000,vlinder17,289.5356140136719 -20220915170000,vlinder18,289.6371765136719 -20220915170000,vlinder19,289.1528015136719 -20220915170000,vlinder20,289.1528015136719 -20220915170000,vlinder21,289.4203796386719 -20220915170000,vlinder22,289.2074890136719 -20220915170000,vlinder23,289.2270202636719 -20220915170000,vlinder24,289.2719421386719 -20220915170000,vlinder25,289.2524108886719 -20220915170000,vlinder26,289.6254577636719 -20220915170000,vlinder27,289.3031921386719 -20220915170000,vlinder28,289.2641296386719 -20220915180000,vlinder01,288.6591491699219 -20220915180000,vlinder02,288.7216491699219 -20220915180000,vlinder03,288.2880554199219 -20220915180000,vlinder04,288.2880554199219 -20220915180000,vlinder05,288.7528991699219 -20220915180000,vlinder06,288.5986022949219 -20220915180000,vlinder07,288.5986022949219 -20220915180000,vlinder08,288.5986022949219 -20220915180000,vlinder09,288.4814147949219 -20220915180000,vlinder10,288.5126647949219 -20220915180000,vlinder11,288.4521179199219 -20220915180000,vlinder12,288.4521179199219 -20220915180000,vlinder13,288.4521179199219 -20220915180000,vlinder14,288.4364929199219 -20220915180000,vlinder15,288.4423522949219 -20220915180000,vlinder16,288.4364929199219 -20220915180000,vlinder17,288.6083679199219 -20220915180000,vlinder18,288.7509460449219 -20220915180000,vlinder19,288.1845397949219 -20220915180000,vlinder20,288.1845397949219 -20220915180000,vlinder21,289.2997741699219 -20220915180000,vlinder22,288.8193054199219 -20220915180000,vlinder23,288.7157897949219 -20220915180000,vlinder24,288.7685241699219 -20220915180000,vlinder25,288.6728210449219 -20220915180000,vlinder26,288.4306335449219 -20220915180000,vlinder27,288.7528991699219 -20220915180000,vlinder28,288.6591491699219 -20220915190000,vlinder01,288.2201385498047 -20220915190000,vlinder02,288.3177947998047 -20220915190000,vlinder03,287.6263885498047 -20220915190000,vlinder04,287.6263885498047 -20220915190000,vlinder05,288.3490447998047 -20220915190000,vlinder06,287.9857635498047 -20220915190000,vlinder07,287.9857635498047 -20220915190000,vlinder08,287.9857635498047 -20220915190000,vlinder09,287.9408416748047 -20220915190000,vlinder10,287.9974822998047 -20220915190000,vlinder11,287.8549041748047 -20220915190000,vlinder12,287.8549041748047 -20220915190000,vlinder13,287.8549041748047 -20220915190000,vlinder14,287.8588104248047 -20220915190000,vlinder15,287.8744354248047 -20220915190000,vlinder16,287.8588104248047 -20220915190000,vlinder17,287.5912322998047 -20220915190000,vlinder18,287.6752166748047 -20220915190000,vlinder19,287.5228729248047 -20220915190000,vlinder20,287.5228729248047 -20220915190000,vlinder21,289.1674041748047 -20220915190000,vlinder22,289.0072479248047 -20220915190000,vlinder23,288.3646697998047 -20220915190000,vlinder24,288.3920135498047 -20220915190000,vlinder25,288.2533416748047 -20220915190000,vlinder26,287.7240447998047 -20220915190000,vlinder27,288.3490447998047 -20220915190000,vlinder28,288.2201385498047 -20220915200000,vlinder01,287.5581512451172 -20220915200000,vlinder02,287.6597137451172 -20220915200000,vlinder03,287.0796356201172 -20220915200000,vlinder04,287.0796356201172 -20220915200000,vlinder05,287.7300262451172 -20220915200000,vlinder06,287.3979949951172 -20220915200000,vlinder07,287.3979949951172 -20220915200000,vlinder08,287.3979949951172 -20220915200000,vlinder09,287.3706512451172 -20220915200000,vlinder10,287.4233856201172 -20220915200000,vlinder11,287.2710418701172 -20220915200000,vlinder12,287.2710418701172 -20220915200000,vlinder13,287.2710418701172 -20220915200000,vlinder14,287.2886199951172 -20220915200000,vlinder15,287.3120574951172 -20220915200000,vlinder16,287.2886199951172 -20220915200000,vlinder17,287.2085418701172 -20220915200000,vlinder18,287.2964324951172 -20220915200000,vlinder19,287.0542449951172 -20220915200000,vlinder20,287.0542449951172 -20220915200000,vlinder21,288.5405731201172 -20220915200000,vlinder22,288.3823699951172 -20220915200000,vlinder23,287.8237762451172 -20220915200000,vlinder24,287.7944793701172 -20220915200000,vlinder25,287.6636199951172 -20220915200000,vlinder26,287.1948699951172 -20220915200000,vlinder27,287.7300262451172 -20220915200000,vlinder28,287.5581512451172 -20220915210000,vlinder01,286.9811706542969 -20220915210000,vlinder02,287.0456237792969 -20220915210000,vlinder03,286.3659362792969 -20220915210000,vlinder04,286.3659362792969 -20220915210000,vlinder05,287.1745300292969 -20220915210000,vlinder06,286.8073425292969 -20220915210000,vlinder07,286.8073425292969 -20220915210000,vlinder08,286.8073425292969 -20220915210000,vlinder09,286.9108581542969 -20220915210000,vlinder10,286.9284362792969 -20220915210000,vlinder11,286.6862487792969 -20220915210000,vlinder12,286.6862487792969 -20220915210000,vlinder13,286.6862487792969 -20220915210000,vlinder14,286.7389831542969 -20220915210000,vlinder15,286.8639831542969 -20220915210000,vlinder16,286.7389831542969 -20220915210000,vlinder17,286.5690612792969 -20220915210000,vlinder18,286.6803894042969 -20220915210000,vlinder19,286.5456237792969 -20220915210000,vlinder20,286.5456237792969 -20220915210000,vlinder21,287.9362487792969 -20220915210000,vlinder22,287.4069519042969 -20220915210000,vlinder23,287.3444519042969 -20220915210000,vlinder24,287.2663269042969 -20220915210000,vlinder25,287.1393737792969 -20220915210000,vlinder26,286.4303894042969 -20220915210000,vlinder27,287.1745300292969 -20220915210000,vlinder28,286.9811706542969 -20220915220000,vlinder01,286.3246612548828 -20220915220000,vlinder02,286.4105987548828 -20220915220000,vlinder03,285.7699737548828 -20220915220000,vlinder04,285.7699737548828 -20220915220000,vlinder05,286.6254425048828 -20220915220000,vlinder06,286.0863800048828 -20220915220000,vlinder07,286.0863800048828 -20220915220000,vlinder08,286.0863800048828 -20220915220000,vlinder09,286.1605987548828 -20220915220000,vlinder10,286.1820831298828 -20220915220000,vlinder11,286.2563018798828 -20220915220000,vlinder12,286.2563018798828 -20220915220000,vlinder13,286.2563018798828 -20220915220000,vlinder14,286.4691925048828 -20220915220000,vlinder15,286.1039581298828 -20220915220000,vlinder16,286.4691925048828 -20220915220000,vlinder17,285.8188018798828 -20220915220000,vlinder18,285.9398956298828 -20220915220000,vlinder19,285.7113800048828 -20220915220000,vlinder20,285.7113800048828 -20220915220000,vlinder21,287.6488800048828 -20220915220000,vlinder22,287.0199737548828 -20220915220000,vlinder23,286.9633331298828 -20220915220000,vlinder24,286.7641143798828 -20220915220000,vlinder25,286.6879425048828 -20220915220000,vlinder26,285.7230987548828 -20220915220000,vlinder27,286.6254425048828 -20220915220000,vlinder28,286.3246612548828 +datetime,name,temperature_2m,u_component_of_wind_10m,v_component_of_wind_10m +20220901000000,vlinder01,291.5445251464844,-3.03594970703125,-2.01904296875 +20220901000000,vlinder02,291.6011657714844,-3.07891845703125,-1.99853515625 +20220901000000,vlinder03,291.0816345214844,-2.41192626953125,-2.09521484375 +20220901000000,vlinder04,291.0816345214844,-2.41192626953125,-2.09521484375 +20220901000000,vlinder05,291.3726501464844,-3.37188720703125,-2.19189453125 +20220901000000,vlinder06,291.5738220214844,-2.62579345703125,-1.91943359375 +20220901000000,vlinder07,291.5738220214844,-2.62579345703125,-1.91943359375 +20220901000000,vlinder08,291.5738220214844,-2.62579345703125,-1.91943359375 +20220901000000,vlinder09,291.5191345214844,-2.90020751953125,-1.88232421875 +20220901000000,vlinder10,291.5328063964844,-2.95489501953125,-1.85302734375 +20220901000000,vlinder11,290.9585876464844,-2.86016845703125,-2.34326171875 +20220901000000,vlinder12,290.9585876464844,-2.86016845703125,-2.34326171875 +20220901000000,vlinder13,290.9585876464844,-2.86016845703125,-2.34326171875 +20220901000000,vlinder14,290.6636657714844,-3.02423095703125,-2.56396484375 +20220901000000,vlinder15,291.4917907714844,-2.84259033203125,-1.88623046875 +20220901000000,vlinder16,290.6636657714844,-3.02423095703125,-2.56396484375 +20220901000000,vlinder17,291.5621032714844,-2.49981689453125,-1.31787109375 +20220901000000,vlinder18,291.6831970214844,-2.51348876953125,-1.23681640625 +20220901000000,vlinder19,291.2710876464844,-2.76446533203125,-1.52978515625 +20220901000000,vlinder20,291.2710876464844,-2.76446533203125,-1.52978515625 +20220901000000,vlinder21,291.9917907714844,-6.57110595703125,-3.29736328125 +20220901000000,vlinder22,292.0640563964844,-4.03692626953125,-2.24560546875 +20220901000000,vlinder23,290.8960876464844,-4.05548095703125,-2.57666015625 +20220901000000,vlinder24,291.1480407714844,-3.86993408203125,-2.42333984375 +20220901000000,vlinder25,290.9800720214844,-3.50177001953125,-2.33935546875 +20220901000000,vlinder26,291.2730407714844,-2.38848876953125,-1.89990234375 +20220901000000,vlinder27,291.3726501464844,-3.37188720703125,-2.19189453125 +20220901000000,vlinder28,291.5445251464844,-3.03594970703125,-2.01904296875 +20220901010000,vlinder01,290.9497528076172,-2.8575592041015625,-1.835784912109375 +20220901010000,vlinder02,291.0181121826172,-2.8849029541015625,-1.819183349609375 +20220901010000,vlinder03,290.6040496826172,-2.4718170166015625,-1.757659912109375 +20220901010000,vlinder04,290.6040496826172,-2.4718170166015625,-1.757659912109375 +20220901010000,vlinder05,290.8306121826172,-3.1671295166015625,-1.991058349609375 +20220901010000,vlinder06,291.0552215576172,-2.5987701416015625,-1.664886474609375 +20220901010000,vlinder07,291.0552215576172,-2.5987701416015625,-1.664886474609375 +20220901010000,vlinder08,291.0552215576172,-2.5987701416015625,-1.664886474609375 +20220901010000,vlinder09,290.8774871826172,-2.7843170166015625,-1.754730224609375 +20220901010000,vlinder10,290.8931121826172,-2.8126373291015625,-1.734222412109375 +20220901010000,vlinder11,290.4770965576172,-2.8038482666015625,-2.064300537109375 +20220901010000,vlinder12,290.4770965576172,-2.8038482666015625,-2.064300537109375 +20220901010000,vlinder13,290.4770965576172,-2.8038482666015625,-2.064300537109375 +20220901010000,vlinder14,290.2114715576172,-2.9405670166015625,-2.290863037109375 +20220901010000,vlinder15,290.8481903076172,-2.7501373291015625,-1.747894287109375 +20220901010000,vlinder16,290.2114715576172,-2.9405670166015625,-2.290863037109375 +20220901010000,vlinder17,291.0884246826172,-2.5177154541015625,-1.009613037109375 +20220901010000,vlinder18,291.2485809326172,-2.5186920166015625,-0.936370849609375 +20220901010000,vlinder19,290.6020965576172,-2.6876373291015625,-1.452972412109375 +20220901010000,vlinder20,290.6020965576172,-2.6876373291015625,-1.452972412109375 +20220901010000,vlinder21,291.5044403076172,-6.1475982666015625,-2.931488037109375 +20220901010000,vlinder22,291.6157684326172,-3.7140045166015625,-2.078948974609375 +20220901010000,vlinder23,290.4321746826172,-3.8243560791015625,-2.338714599609375 +20220901010000,vlinder24,290.6352996826172,-3.6417388916015625,-2.197113037109375 +20220901010000,vlinder25,290.4751434326172,-3.2989654541015625,-2.121917724609375 +20220901010000,vlinder26,290.7895965576172,-2.4610748291015625,-1.567230224609375 +20220901010000,vlinder27,290.8306121826172,-3.1671295166015625,-1.991058349609375 +20220901010000,vlinder28,290.9497528076172,-2.8575592041015625,-1.835784912109375 +20220901020000,vlinder01,290.5653533935547,-2.71563720703125,-1.5836944580078125 +20220901020000,vlinder02,290.6161346435547,-2.73321533203125,-1.5876007080078125 +20220901020000,vlinder03,290.4774627685547,-2.50958251953125,-1.4499053955078125 +20220901020000,vlinder04,290.4774627685547,-2.50958251953125,-1.4499053955078125 +20220901020000,vlinder05,290.4559783935547,-2.96856689453125,-1.7233428955078125 +20220901020000,vlinder06,290.7235565185547,-2.53594970703125,-1.3014678955078125 +20220901020000,vlinder07,290.7235565185547,-2.53594970703125,-1.3014678955078125 +20220901020000,vlinder08,290.7235565185547,-2.53594970703125,-1.3014678955078125 +20220901020000,vlinder09,290.5223846435547,-2.68536376953125,-1.4752960205078125 +20220901020000,vlinder10,290.5204315185547,-2.70489501953125,-1.4743194580078125 +20220901020000,vlinder11,290.2430877685547,-2.71856689453125,-1.7213897705078125 +20220901020000,vlinder12,290.2430877685547,-2.71856689453125,-1.7213897705078125 +20220901020000,vlinder13,290.2430877685547,-2.71856689453125,-1.7213897705078125 +20220901020000,vlinder14,290.0341033935547,-2.84259033203125,-1.9645538330078125 +20220901020000,vlinder15,290.5048065185547,-2.66192626953125,-1.4518585205078125 +20220901020000,vlinder16,290.0341033935547,-2.84259033203125,-1.9645538330078125 +20220901020000,vlinder17,290.6825408935547,-2.48907470703125,-0.8327178955078125 +20220901020000,vlinder18,290.8368377685547,-2.48321533203125,-0.7897491455078125 +20220901020000,vlinder19,290.1962127685547,-2.63848876953125,-1.1520538330078125 +20220901020000,vlinder20,290.1962127685547,-2.63848876953125,-1.1520538330078125 +20220901020000,vlinder21,291.2196502685547,-5.69512939453125,-2.6627960205078125 +20220901020000,vlinder22,291.1454315185547,-3.46954345703125,-2.0436553955078125 +20220901020000,vlinder23,290.0887908935547,-3.52618408203125,-2.0319366455078125 +20220901020000,vlinder24,290.2684783935547,-3.37286376953125,-1.9098663330078125 +20220901020000,vlinder25,290.1161346435547,-3.06427001953125,-1.8278350830078125 +20220901020000,vlinder26,290.5673065185547,-2.48614501953125,-1.2506866455078125 +20220901020000,vlinder27,290.4559783935547,-2.96856689453125,-1.7233428955078125 +20220901020000,vlinder28,290.5653533935547,-2.71563720703125,-1.5836944580078125 +20220901030000,vlinder01,289.9707336425781,-2.575775146484375,-1.482452392578125 +20220901030000,vlinder02,290.0137023925781,-2.575775146484375,-1.495147705078125 +20220901030000,vlinder03,290.1679992675781,-2.572845458984375,-1.317413330078125 +20220901030000,vlinder04,290.1679992675781,-2.572845458984375,-1.317413330078125 +20220901030000,vlinder05,289.8945617675781,-2.809173583984375,-1.609405517578125 +20220901030000,vlinder06,290.2090148925781,-2.486907958984375,-1.130889892578125 +20220901030000,vlinder07,290.2090148925781,-2.486907958984375,-1.130889892578125 +20220901030000,vlinder08,290.2090148925781,-2.486907958984375,-1.130889892578125 +20220901030000,vlinder09,289.9648742675781,-2.591400146484375,-1.269561767578125 +20220901030000,vlinder10,289.9472961425781,-2.591400146484375,-1.279327392578125 +20220901030000,vlinder11,289.8730773925781,-2.694915771484375,-1.534210205078125 +20220901030000,vlinder12,289.8730773925781,-2.694915771484375,-1.534210205078125 +20220901030000,vlinder13,289.8730773925781,-2.694915771484375,-1.534210205078125 +20220901030000,vlinder14,289.7324523925781,-2.828704833984375,-1.762725830078125 +20220901030000,vlinder15,289.9590148925781,-2.582611083984375,-1.235382080078125 +20220901030000,vlinder16,289.7324523925781,-2.828704833984375,-1.762725830078125 +20220901030000,vlinder17,290.1699523925781,-2.465423583984375,-0.801788330078125 +20220901030000,vlinder18,290.3183898925781,-2.459564208984375,-0.775421142578125 +20220901030000,vlinder19,289.6172180175781,-2.572845458984375,-0.859405517578125 +20220901030000,vlinder20,289.6172180175781,-2.572845458984375,-0.859405517578125 +20220901030000,vlinder21,290.7871398925781,-5.534759521484375,-2.483428955078125 +20220901030000,vlinder22,290.5449523925781,-3.397064208984375,-1.847686767578125 +20220901030000,vlinder23,289.6054992675781,-3.352142333984375,-1.858428955078125 +20220901030000,vlinder24,289.7304992675781,-3.199798583984375,-1.764678955078125 +20220901030000,vlinder25,289.5937805175781,-2.901947021484375,-1.689483642578125 +20220901030000,vlinder26,290.1758117675781,-2.524017333984375,-1.122100830078125 +20220901030000,vlinder27,289.8945617675781,-2.809173583984375,-1.609405517578125 +20220901030000,vlinder28,289.9707336425781,-2.575775146484375,-1.482452392578125 +20220901040000,vlinder01,289.60028076171875,-2.512969970703125,-1.3565673828125 +20220901040000,vlinder02,289.62762451171875,-2.501251220703125,-1.3682861328125 +20220901040000,vlinder03,289.79949951171875,-2.709259033203125,-1.2569580078125 +20220901040000,vlinder04,289.79949951171875,-2.709259033203125,-1.2569580078125 +20220901040000,vlinder05,289.57293701171875,-2.766876220703125,-1.4913330078125 +20220901040000,vlinder06,289.92254638671875,-2.492462158203125,-1.0567626953125 +20220901040000,vlinder07,289.92254638671875,-2.492462158203125,-1.0567626953125 +20220901040000,vlinder08,289.92254638671875,-2.492462158203125,-1.0567626953125 +20220901040000,vlinder09,289.60418701171875,-2.530548095703125,-1.0909423828125 +20220901040000,vlinder10,289.56317138671875,-2.517852783203125,-1.1016845703125 +20220901040000,vlinder11,289.68231201171875,-2.787384033203125,-1.4415283203125 +20220901040000,vlinder12,289.68231201171875,-2.787384033203125,-1.4415283203125 +20220901040000,vlinder13,289.68231201171875,-2.787384033203125,-1.4415283203125 +20220901040000,vlinder14,289.59832763671875,-2.957305908203125,-1.6475830078125 +20220901040000,vlinder15,289.61199951171875,-2.533477783203125,-1.0616455078125 +20220901040000,vlinder16,289.59832763671875,-2.957305908203125,-1.6475830078125 +20220901040000,vlinder17,289.69207763671875,-2.477813720703125,-0.8458251953125 +20220901040000,vlinder18,289.83074951171875,-2.465118408203125,-0.8214111328125 +20220901040000,vlinder19,289.20184326171875,-2.490509033203125,-0.6593017578125 +20220901040000,vlinder20,289.20184326171875,-2.490509033203125,-0.6593017578125 +20220901040000,vlinder21,290.48504638671875,-5.530548095703125,-2.2315673828125 +20220901040000,vlinder22,290.00457763671875,-3.148712158203125,-1.4971923828125 +20220901040000,vlinder23,289.38739013671875,-3.361602783203125,-1.7344970703125 +20220901040000,vlinder24,289.43817138671875,-3.178985595703125,-1.6427001953125 +20220901040000,vlinder25,289.33856201171875,-2.891876220703125,-1.5811767578125 +20220901040000,vlinder26,289.77606201171875,-2.622344970703125,-1.0938720703125 +20220901040000,vlinder27,289.57293701171875,-2.766876220703125,-1.4913330078125 +20220901040000,vlinder28,289.60028076171875,-2.512969970703125,-1.3565673828125 +20220901050000,vlinder01,289.2610778808594,-2.5400543212890625,-1.1660003662109375 +20220901050000,vlinder02,289.3216247558594,-2.5136871337890625,-1.1777191162109375 +20220901050000,vlinder03,289.3645935058594,-2.8613433837890625,-1.2167816162109375 +20220901050000,vlinder04,289.3645935058594,-2.8613433837890625,-1.2167816162109375 +20220901050000,vlinder05,289.3352966308594,-2.8173980712890625,-1.3056488037109375 +20220901050000,vlinder06,289.4622497558594,-2.6035308837890625,-0.9208831787109375 +20220901050000,vlinder07,289.4622497558594,-2.6035308837890625,-0.9208831787109375 +20220901050000,vlinder08,289.4622497558594,-2.6035308837890625,-0.9208831787109375 +20220901050000,vlinder09,289.1497497558594,-2.5439605712890625,-0.9169769287109375 +20220901050000,vlinder10,289.1321716308594,-2.5185699462890625,-0.9257659912109375 +20220901050000,vlinder11,289.3274841308594,-2.9697418212890625,-1.3232269287109375 +20220901050000,vlinder12,289.3274841308594,-2.9697418212890625,-1.3232269287109375 +20220901050000,vlinder13,289.3274841308594,-2.9697418212890625,-1.3232269287109375 +20220901050000,vlinder14,289.3059997558594,-3.1670074462890625,-1.5312347412109375 +20220901050000,vlinder15,289.1360778808594,-2.5595855712890625,-0.8915863037109375 +20220901050000,vlinder16,289.3059997558594,-3.1670074462890625,-1.5312347412109375 +20220901050000,vlinder17,289.3802185058594,-2.5146636962890625,-0.8652191162109375 +20220901050000,vlinder18,289.5481872558594,-2.4882965087890625,-0.8417816162109375 +20220901050000,vlinder19,288.6477966308594,-2.4814605712890625,-0.5263519287109375 +20220901050000,vlinder20,288.6477966308594,-2.4814605712890625,-0.5263519287109375 +20220901050000,vlinder21,290.4153747558594,-5.4834136962890625,-1.8896331787109375 +20220901050000,vlinder22,289.8548278808594,-2.9589996337890625,-1.2294769287109375 +20220901050000,vlinder23,289.3079528808594,-3.4677886962890625,-1.5615081787109375 +20220901050000,vlinder24,289.2903747558594,-3.2480621337890625,-1.4570159912109375 +20220901050000,vlinder25,289.1731872558594,-2.9804840087890625,-1.4130706787109375 +20220901050000,vlinder26,289.3255310058594,-2.7509918212890625,-1.0654144287109375 +20220901050000,vlinder27,289.3352966308594,-2.8173980712890625,-1.3056488037109375 +20220901050000,vlinder28,289.2610778808594,-2.5400543212890625,-1.1660003662109375 +20220901060000,vlinder01,289.73033142089844,-2.6197509765625,-0.9564361572265625 +20220901060000,vlinder02,289.74400329589844,-2.6051025390625,-0.9847564697265625 +20220901060000,vlinder03,289.64634704589844,-2.9390869140625,-1.0589752197265625 +20220901060000,vlinder04,289.64634704589844,-2.9390869140625,-1.0589752197265625 +20220901060000,vlinder05,289.77330017089844,-2.9322509765625,-1.0746002197265625 +20220901060000,vlinder06,289.94322204589844,-2.5885009765625,-0.6615142822265625 +20220901060000,vlinder07,289.94322204589844,-2.5885009765625,-0.6615142822265625 +20220901060000,vlinder08,289.94322204589844,-2.5885009765625,-0.6615142822265625 +20220901060000,vlinder09,289.66587829589844,-2.5142822265625,-0.7220611572265625 +20220901060000,vlinder10,289.62876892089844,-2.5064697265625,-0.7464752197265625 +20220901060000,vlinder11,289.81040954589844,-3.1011962890625,-1.0521392822265625 +20220901060000,vlinder12,289.81040954589844,-3.1011962890625,-1.0521392822265625 +20220901060000,vlinder13,289.81040954589844,-3.1011962890625,-1.0521392822265625 +20220901060000,vlinder14,289.79869079589844,-3.3570556640625,-1.2581939697265625 +20220901060000,vlinder15,289.66392517089844,-2.5152587890625,-0.6869049072265625 +20220901060000,vlinder16,289.79869079589844,-3.3570556640625,-1.2581939697265625 +20220901060000,vlinder17,289.65806579589844,-2.4713134765625,-0.7064361572265625 +20220901060000,vlinder18,289.83580017089844,-2.4263916015625,-0.6908111572265625 +20220901060000,vlinder19,289.17369079589844,-2.3717041015625,-0.3978424072265625 +20220901060000,vlinder20,289.17369079589844,-2.3717041015625,-0.3978424072265625 +20220901060000,vlinder21,290.50181579589844,-5.5054931640625,-1.5384674072265625 +20220901060000,vlinder22,289.80064392089844,-2.9400634765625,-1.2132720947265625 +20220901060000,vlinder23,289.68931579589844,-3.6158447265625,-1.2816314697265625 +20220901060000,vlinder24,289.68736267089844,-3.3726806640625,-1.1937408447265625 +20220901060000,vlinder25,289.62290954589844,-3.1265869140625,-1.1605377197265625 +20220901060000,vlinder26,289.62681579589844,-2.7760009765625,-0.8968658447265625 +20220901060000,vlinder27,289.77330017089844,-2.9322509765625,-1.0746002197265625 +20220901060000,vlinder28,289.73033142089844,-2.6197509765625,-0.9564361572265625 +20220901070000,vlinder01,290.5062255859375,-2.54364013671875,-0.92352294921875 +20220901070000,vlinder02,290.4886474609375,-2.52410888671875,-0.97723388671875 +20220901070000,vlinder03,290.6370849609375,-2.81317138671875,-0.59149169921875 +20220901070000,vlinder04,290.6370849609375,-2.81317138671875,-0.59149169921875 +20220901070000,vlinder05,290.4847412109375,-2.83758544921875,-1.05926513671875 +20220901070000,vlinder06,290.8948974609375,-2.75653076171875,-0.38739013671875 +20220901070000,vlinder07,290.8948974609375,-2.75653076171875,-0.38739013671875 +20220901070000,vlinder08,290.8948974609375,-2.75653076171875,-0.38739013671875 +20220901070000,vlinder09,290.5765380859375,-2.62176513671875,-0.62371826171875 +20220901070000,vlinder10,290.5159912109375,-2.57879638671875,-0.68621826171875 +20220901070000,vlinder11,290.7601318359375,-2.91864013671875,-0.69598388671875 +20220901070000,vlinder12,290.7601318359375,-2.91864013671875,-0.69598388671875 +20220901070000,vlinder13,290.7601318359375,-2.91864013671875,-0.69598388671875 +20220901070000,vlinder14,290.7269287109375,-3.01043701171875,-0.90203857421875 +20220901070000,vlinder15,290.6058349609375,-2.65887451171875,-0.55242919921875 +20220901070000,vlinder16,290.7269287109375,-3.01043701171875,-0.90203857421875 +20220901070000,vlinder17,290.2503662109375,-2.41864013671875,-0.75164794921875 +20220901070000,vlinder18,290.3773193359375,-2.38250732421875,-0.79168701171875 +20220901070000,vlinder19,290.3421630859375,-2.65789794921875,-0.25653076171875 +20220901070000,vlinder20,290.3421630859375,-2.65789794921875,-0.25653076171875 +20220901070000,vlinder21,290.9105224609375,-5.86297607421875,-1.71356201171875 +20220901070000,vlinder22,290.6331787109375,-3.56707763671875,-1.17742919921875 +20220901070000,vlinder23,290.3499755859375,-3.57000732421875,-1.26824951171875 +20220901070000,vlinder24,290.3851318359375,-3.34442138671875,-1.18914794921875 +20220901070000,vlinder25,290.3480224609375,-3.00555419921875,-1.12078857421875 +20220901070000,vlinder26,290.6702880859375,-2.73211669921875,-0.50164794921875 +20220901070000,vlinder27,290.4847412109375,-2.83758544921875,-1.05926513671875 +20220901070000,vlinder28,290.5062255859375,-2.54364013671875,-0.92352294921875 +20220901080000,vlinder01,292.1163024902344,-2.9224090576171875,-0.4719085693359375 +20220901080000,vlinder02,292.0870056152344,-2.8804168701171875,-0.5187835693359375 +20220901080000,vlinder03,292.0733337402344,-3.3862762451171875,-0.5275726318359375 +20220901080000,vlinder04,292.0733337402344,-3.3862762451171875,-0.5275726318359375 +20220901080000,vlinder05,292.0830993652344,-3.2349090576171875,-0.5187835693359375 +20220901080000,vlinder06,292.5362243652344,-3.2798309326171875,-0.1320648193359375 +20220901080000,vlinder07,292.5362243652344,-3.2798309326171875,-0.1320648193359375 +20220901080000,vlinder08,292.5362243652344,-3.2798309326171875,-0.1320648193359375 +20220901080000,vlinder09,292.1709899902344,-2.9770965576171875,-0.2541351318359375 +20220901080000,vlinder10,292.1260681152344,-2.9155731201171875,-0.3029632568359375 +20220901080000,vlinder11,292.3702087402344,-3.6245574951171875,-0.3859710693359375 +20220901080000,vlinder12,292.3702087402344,-3.6245574951171875,-0.3859710693359375 +20220901080000,vlinder13,292.3702087402344,-3.6245574951171875,-0.3859710693359375 +20220901080000,vlinder14,292.2823181152344,-3.7964324951171875,-0.5373382568359375 +20220901080000,vlinder15,292.1983337402344,-3.0337371826171875,-0.2043304443359375 +20220901080000,vlinder16,292.2823181152344,-3.7964324951171875,-0.5373382568359375 +20220901080000,vlinder17,291.8760681152344,-2.9761199951171875,-0.6545257568359375 +20220901080000,vlinder18,291.9932556152344,-2.9155731201171875,-0.6847991943359375 +20220901080000,vlinder19,292.0694274902344,-3.0171356201171875,-0.0890960693359375 +20220901080000,vlinder20,292.0694274902344,-3.0171356201171875,-0.0890960693359375 +20220901080000,vlinder21,291.8389587402344,-5.4936981201171875,-0.8137054443359375 +20220901080000,vlinder22,291.7354431152344,-3.4116668701171875,-0.7736663818359375 +20220901080000,vlinder23,291.9014587402344,-3.9985809326171875,-0.5695648193359375 +20220901080000,vlinder24,291.9541931152344,-3.6899871826171875,-0.5471038818359375 +20220901080000,vlinder25,291.9932556152344,-3.5073699951171875,-0.5187835693359375 +20220901080000,vlinder26,292.2549743652344,-3.2876434326171875,-0.4660491943359375 +20220901080000,vlinder27,292.0830993652344,-3.2349090576171875,-0.5187835693359375 +20220901080000,vlinder28,292.1163024902344,-2.9224090576171875,-0.4719085693359375 +20220901090000,vlinder01,294.0714111328125,-2.9741058349609375,-0.387176513671875 +20220901090000,vlinder02,294.0264892578125,-2.9028167724609375,-0.418426513671875 +20220901090000,vlinder03,293.7940673828125,-3.6010589599609375,-0.566864013671875 +20220901090000,vlinder04,293.7940673828125,-3.6010589599609375,-0.566864013671875 +20220901090000,vlinder05,293.8917236328125,-3.2368011474609375,-0.355926513671875 +20220901090000,vlinder06,294.4014892578125,-3.5395355224609375,-0.188934326171875 +20220901090000,vlinder07,294.4014892578125,-3.5395355224609375,-0.188934326171875 +20220901090000,vlinder08,294.4014892578125,-3.5395355224609375,-0.188934326171875 +20220901090000,vlinder09,294.2139892578125,-3.1225433349609375,-0.276824951171875 +20220901090000,vlinder10,294.1729736328125,-3.0366058349609375,-0.312957763671875 +20220901090000,vlinder11,294.0499267578125,-3.8295745849609375,-0.305145263671875 +20220901090000,vlinder12,294.0499267578125,-3.8295745849609375,-0.305145263671875 +20220901090000,vlinder13,294.0499267578125,-3.8295745849609375,-0.305145263671875 +20220901090000,vlinder14,293.8448486328125,-3.9633636474609375,-0.380340576171875 +20220901090000,vlinder15,294.2335205078125,-3.2075042724609375,-0.243621826171875 +20220901090000,vlinder16,293.8448486328125,-3.9633636474609375,-0.380340576171875 +20220901090000,vlinder17,293.6729736328125,-3.2250823974609375,-0.698699951171875 +20220901090000,vlinder18,293.7901611328125,-3.1703948974609375,-0.713348388671875 +20220901090000,vlinder19,294.1729736328125,-3.3139495849609375,-0.268035888671875 +20220901090000,vlinder20,294.1729736328125,-3.3139495849609375,-0.268035888671875 +20220901090000,vlinder21,293.0382080078125,-4.9008636474609375,-0.642059326171875 +20220901090000,vlinder22,293.1964111328125,-3.1645355224609375,-0.672332763671875 +20220901090000,vlinder23,293.3956298828125,-3.9174652099609375,-0.265106201171875 +20220901090000,vlinder24,293.6124267578125,-3.6157073974609375,-0.311981201171875 +20220901090000,vlinder25,293.6495361328125,-3.5131683349609375,-0.281707763671875 +20220901090000,vlinder26,294.0343017578125,-3.5141448974609375,-0.547332763671875 +20220901090000,vlinder27,293.8917236328125,-3.2368011474609375,-0.355926513671875 +20220901090000,vlinder28,294.0714111328125,-2.9741058349609375,-0.387176513671875 +20220901100000,vlinder01,295.71482849121094,-3.1322174072265625,-0.4161376953125 +20220901100000,vlinder02,295.69725036621094,-3.0540924072265625,-0.4483642578125 +20220901100000,vlinder03,295.51756286621094,-3.8558502197265625,-0.5694580078125 +20220901100000,vlinder04,295.51756286621094,-3.8558502197265625,-0.5694580078125 +20220901100000,vlinder05,295.48240661621094,-3.3353424072265625,-0.3507080078125 +20220901100000,vlinder06,295.99021911621094,-3.7054595947265625,-0.2305908203125 +20220901100000,vlinder07,295.99021911621094,-3.7054595947265625,-0.2305908203125 +20220901100000,vlinder08,295.99021911621094,-3.7054595947265625,-0.2305908203125 +20220901100000,vlinder09,295.84568786621094,-3.4349517822265625,-0.3165283203125 +20220901100000,vlinder10,295.82420349121094,-3.3480377197265625,-0.3555908203125 +20220901100000,vlinder11,295.60154724121094,-3.8753814697265625,-0.2862548828125 +20220901100000,vlinder12,295.60154724121094,-3.8753814697265625,-0.2862548828125 +20220901100000,vlinder13,295.60154724121094,-3.8753814697265625,-0.2862548828125 +20220901100000,vlinder14,295.35350036621094,-3.9632720947265625,-0.3233642578125 +20220901100000,vlinder15,295.85545349121094,-3.5189361572265625,-0.2833251953125 +20220901100000,vlinder16,295.35350036621094,-3.9632720947265625,-0.3233642578125 +20220901100000,vlinder17,295.29685974121094,-3.5794830322265625,-0.6612548828125 +20220901100000,vlinder18,295.39451599121094,-3.5413970947265625,-0.6700439453125 +20220901100000,vlinder19,295.83592224121094,-3.7660064697265625,-0.3399658203125 +20220901100000,vlinder20,295.83592224121094,-3.7660064697265625,-0.3399658203125 +20220901100000,vlinder21,294.31834411621094,-4.7044830322265625,-0.8311767578125 +20220901100000,vlinder22,294.94725036621094,-3.0550689697265625,-0.8282470703125 +20220901100000,vlinder23,294.86326599121094,-3.8997955322265625,-0.1856689453125 +20220901100000,vlinder24,295.14451599121094,-3.6478424072265625,-0.2852783203125 +20220901100000,vlinder25,295.18162536621094,-3.5628814697265625,-0.2198486328125 +20220901100000,vlinder26,295.77146911621094,-3.7718658447265625,-0.5567626953125 +20220901100000,vlinder27,295.48240661621094,-3.3353424072265625,-0.3507080078125 +20220901100000,vlinder28,295.71482849121094,-3.1322174072265625,-0.4161376953125 +20220901110000,vlinder01,297.1011047363281,-3.427978515625,-0.1613006591796875 +20220901110000,vlinder02,297.0835266113281,-3.325439453125,-0.2189178466796875 +20220901110000,vlinder03,296.7964172363281,-4.069580078125,-0.0577850341796875 +20220901110000,vlinder04,296.7964172363281,-4.069580078125,-0.0577850341796875 +20220901110000,vlinder05,296.8569641113281,-3.527587890625,-0.1241912841796875 +20220901110000,vlinder06,297.3042297363281,-4.071533203125,0.2625274658203125 +20220901110000,vlinder07,297.3042297363281,-4.071533203125,0.2625274658203125 +20220901110000,vlinder08,297.3042297363281,-4.071533203125,0.2625274658203125 +20220901110000,vlinder09,297.1362609863281,-3.903564453125,0.0633087158203125 +20220901110000,vlinder10,297.1186828613281,-3.798095703125,-0.0118865966796875 +20220901110000,vlinder11,297.0288391113281,-4.117431640625,0.2205352783203125 +20220901110000,vlinder12,297.0288391113281,-4.117431640625,0.2205352783203125 +20220901110000,vlinder13,297.0288391113281,-4.117431640625,0.2205352783203125 +20220901110000,vlinder14,296.8179016113281,-4.163330078125,0.1658477783203125 +20220901110000,vlinder15,297.1401672363281,-4.001220703125,0.1306915283203125 +20220901110000,vlinder16,296.8179016113281,-4.163330078125,0.1658477783203125 +20220901110000,vlinder17,296.4507141113281,-3.759033203125,-0.2540740966796875 +20220901110000,vlinder18,296.5307922363281,-3.728759765625,-0.2570037841796875 +20220901110000,vlinder19,297.0620422363281,-4.305908203125,0.0984649658203125 +20220901110000,vlinder20,297.0620422363281,-4.305908203125,0.0984649658203125 +20220901110000,vlinder21,295.4702453613281,-4.580322265625,-0.8517303466796875 +20220901110000,vlinder22,296.3315734863281,-3.126220703125,-0.7452850341796875 +20220901110000,vlinder23,296.1987609863281,-3.920166015625,0.0340118408203125 +20220901110000,vlinder24,296.4975891113281,-3.735595703125,-0.0792694091796875 +20220901110000,vlinder25,296.5483703613281,-3.676025390625,0.0213165283203125 +20220901110000,vlinder26,297.0425109863281,-3.982666015625,-0.0763397216796875 +20220901110000,vlinder27,296.8569641113281,-3.527587890625,-0.1241912841796875 +20220901110000,vlinder28,297.1011047363281,-3.427978515625,-0.1613006591796875 +20220901120000,vlinder01,298.0928497314453,-3.64630126953125,0.172821044921875 +20220901120000,vlinder02,298.0987091064453,-3.59063720703125,0.169891357421875 +20220901120000,vlinder03,297.5635528564453,-3.67755126953125,-0.239288330078125 +20220901120000,vlinder04,297.5635528564453,-3.67755126953125,-0.239288330078125 +20220901120000,vlinder05,297.8858184814453,-3.74493408203125,0.258758544921875 +20220901120000,vlinder06,298.0576934814453,-3.87188720703125,0.184539794921875 +20220901120000,vlinder07,298.0576934814453,-3.87188720703125,0.184539794921875 +20220901120000,vlinder08,298.0576934814453,-3.87188720703125,0.184539794921875 +20220901120000,vlinder09,297.9502716064453,-3.91387939453125,0.138641357421875 +20220901120000,vlinder10,297.9658966064453,-3.87091064453125,0.130828857421875 +20220901120000,vlinder11,297.8877716064453,-3.88751220703125,0.249969482421875 +20220901120000,vlinder12,297.8877716064453,-3.88751220703125,0.249969482421875 +20220901120000,vlinder13,297.8877716064453,-3.88751220703125,0.249969482421875 +20220901120000,vlinder14,297.7178497314453,-3.94317626953125,0.285125732421875 +20220901120000,vlinder15,297.9190216064453,-3.95001220703125,0.142547607421875 +20220901120000,vlinder16,297.7178497314453,-3.94317626953125,0.285125732421875 +20220901120000,vlinder17,297.1084747314453,-3.44122314453125,-0.046905517578125 +20220901120000,vlinder18,297.2061309814453,-3.40704345703125,-0.001007080078125 +20220901120000,vlinder19,297.7237091064453,-4.10333251953125,-0.011749267578125 +20220901120000,vlinder20,297.7237091064453,-4.10333251953125,-0.011749267578125 +20220901120000,vlinder21,296.3819122314453,-4.49102783203125,-1.028350830078125 +20220901120000,vlinder22,297.3760528564453,-3.35040283203125,-0.629913330078125 +20220901120000,vlinder23,297.2354278564453,-4.03790283203125,0.417938232421875 +20220901120000,vlinder24,297.5303497314453,-3.90118408203125,0.278289794921875 +20220901120000,vlinder25,297.6045684814453,-3.85235595703125,0.444305419921875 +20220901120000,vlinder26,297.7725372314453,-3.60626220703125,-0.221710205078125 +20220901120000,vlinder27,297.8858184814453,-3.74493408203125,0.258758544921875 +20220901120000,vlinder28,298.0928497314453,-3.64630126953125,0.172821044921875 +20220901130000,vlinder01,298.7009735107422,-3.5940704345703125,-0.10699462890625 +20220901130000,vlinder02,298.7810516357422,-3.5896759033203125,-0.05035400390625 +20220901130000,vlinder03,298.0896453857422,-3.4134063720703125,-0.54156494140625 +20220901130000,vlinder04,298.0896453857422,-3.4134063720703125,-0.54156494140625 +20220901130000,vlinder05,298.5876922607422,-3.6839141845703125,0.08441162109375 +20220901130000,vlinder06,298.4353485107422,-3.5921173095703125,-0.12457275390625 +20220901130000,vlinder07,298.4353485107422,-3.5921173095703125,-0.12457275390625 +20220901130000,vlinder08,298.4353485107422,-3.5921173095703125,-0.12457275390625 +20220901130000,vlinder09,298.3201141357422,-3.6717071533203125,-0.24371337890625 +20220901130000,vlinder10,298.4080047607422,-3.6848907470703125,-0.20855712890625 +20220901130000,vlinder11,298.3513641357422,-3.6199493408203125,-0.17144775390625 +20220901130000,vlinder12,298.3513641357422,-3.6199493408203125,-0.17144775390625 +20220901130000,vlinder13,298.3513641357422,-3.6199493408203125,-0.17144775390625 +20220901130000,vlinder14,298.2029266357422,-3.6756134033203125,-0.21148681640625 +20220901130000,vlinder15,298.2419891357422,-3.6653594970703125,-0.25738525390625 +20220901130000,vlinder16,298.2029266357422,-3.6756134033203125,-0.21148681640625 +20220901130000,vlinder17,297.7029266357422,-3.2019805908203125,-0.00250244140625 +20220901130000,vlinder18,297.8396453857422,-3.1712188720703125,0.05609130859375 +20220901130000,vlinder19,298.0583953857422,-3.7825469970703125,-0.29254150390625 +20220901130000,vlinder20,298.0583953857422,-3.7825469970703125,-0.29254150390625 +20220901130000,vlinder21,297.2498016357422,-4.3079376220703125,-1.06304931640625 +20220901130000,vlinder22,298.4080047607422,-3.4749298095703125,-0.31890869140625 +20220901130000,vlinder23,298.0388641357422,-3.8811798095703125,0.42034912109375 +20220901130000,vlinder24,298.3142547607422,-3.7928009033203125,0.24359130859375 +20220901130000,vlinder25,298.3455047607422,-3.7429962158203125,0.32952880859375 +20220901130000,vlinder26,298.2830047607422,-3.3538360595703125,-0.40679931640625 +20220901130000,vlinder27,298.5876922607422,-3.6839141845703125,0.08441162109375 +20220901130000,vlinder28,298.7009735107422,-3.5940704345703125,-0.10699462890625 +20220901140000,vlinder01,298.80450439453125,-3.5212860107421875,-0.4623565673828125 +20220901140000,vlinder02,298.87091064453125,-3.5525360107421875,-0.4301300048828125 +20220901140000,vlinder03,298.35723876953125,-3.2366180419921875,-0.6186065673828125 +20220901140000,vlinder04,298.35723876953125,-3.2366180419921875,-0.6186065673828125 +20220901140000,vlinder05,298.74005126953125,-3.6238250732421875,-0.3373565673828125 +20220901140000,vlinder06,298.67559814453125,-3.4031219482421875,-0.1986846923828125 +20220901140000,vlinder07,298.67559814453125,-3.4031219482421875,-0.1986846923828125 +20220901140000,vlinder08,298.67559814453125,-3.4031219482421875,-0.1986846923828125 +20220901140000,vlinder09,298.47247314453125,-3.4944305419921875,-0.4926300048828125 +20220901140000,vlinder10,298.53106689453125,-3.5398406982421875,-0.4867706298828125 +20220901140000,vlinder11,298.57989501953125,-3.4421844482421875,-0.4457550048828125 +20220901140000,vlinder12,298.57989501953125,-3.4421844482421875,-0.4457550048828125 +20220901140000,vlinder13,298.57989501953125,-3.4421844482421875,-0.4457550048828125 +20220901140000,vlinder14,298.40020751953125,-3.4973602294921875,-0.6176300048828125 +20220901140000,vlinder15,298.41387939453125,-3.4651336669921875,-0.4691925048828125 +20220901140000,vlinder16,298.40020751953125,-3.4973602294921875,-0.6176300048828125 +20220901140000,vlinder17,298.14044189453125,-3.0828094482421875,0.1645965576171875 +20220901140000,vlinder18,298.26544189453125,-3.1008758544921875,0.2466278076171875 +20220901140000,vlinder19,298.25567626953125,-3.5549774169921875,-0.4311065673828125 +20220901140000,vlinder20,298.25567626953125,-3.5549774169921875,-0.4311065673828125 +20220901140000,vlinder21,297.50372314453125,-3.9036102294921875,-1.6996612548828125 +20220901140000,vlinder22,298.80255126953125,-3.5437469482421875,-0.5951690673828125 +20220901140000,vlinder23,298.32208251953125,-3.8147430419921875,-0.1107940673828125 +20220901140000,vlinder24,298.55059814453125,-3.7209930419921875,-0.2357940673828125 +20220901140000,vlinder25,298.56622314453125,-3.6902313232421875,-0.1381378173828125 +20220901140000,vlinder26,298.57208251953125,-3.1433563232421875,-0.4027862548828125 +20220901140000,vlinder27,298.74005126953125,-3.6238250732421875,-0.3373565673828125 +20220901140000,vlinder28,298.80450439453125,-3.5212860107421875,-0.4623565673828125 +20220901150000,vlinder01,298.5973663330078,-3.4849700927734375,-0.701019287109375 +20220901150000,vlinder02,298.6208038330078,-3.5254974365234375,-0.700042724609375 +20220901150000,vlinder03,298.4001007080078,-3.0933685302734375,-0.700042724609375 +20220901150000,vlinder04,298.4001007080078,-3.0933685302734375,-0.700042724609375 +20220901150000,vlinder05,298.5700225830078,-3.6153411865234375,-0.680511474609375 +20220901150000,vlinder06,298.7047882080078,-3.2691497802734375,-0.268402099609375 +20220901150000,vlinder07,298.7047882080078,-3.2691497802734375,-0.268402099609375 +20220901150000,vlinder08,298.7047882080078,-3.2691497802734375,-0.268402099609375 +20220901150000,vlinder09,298.3571319580078,-3.4420013427734375,-0.659027099609375 +20220901150000,vlinder10,298.3766632080078,-3.4839935302734375,-0.679534912109375 +20220901150000,vlinder11,298.6325225830078,-3.3936614990234375,-0.678558349609375 +20220901150000,vlinder12,298.6325225830078,-3.3936614990234375,-0.678558349609375 +20220901150000,vlinder13,298.6325225830078,-3.3936614990234375,-0.678558349609375 +20220901150000,vlinder14,298.4450225830078,-3.4996185302734375,-0.946136474609375 +20220901150000,vlinder15,298.3356475830078,-3.4063568115234375,-0.611175537109375 +20220901150000,vlinder16,298.4450225830078,-3.4996185302734375,-0.946136474609375 +20220901150000,vlinder17,298.0895538330078,-3.1617279052734375,0.375152587890625 +20220901150000,vlinder18,298.1481475830078,-3.2203216552734375,0.496246337890625 +20220901150000,vlinder19,298.2028350830078,-3.4454193115234375,-0.545745849609375 +20220901150000,vlinder20,298.2028350830078,-3.4454193115234375,-0.545745849609375 +20220901150000,vlinder21,297.4528350830078,-4.3091888427734375,-2.195159912109375 +20220901150000,vlinder22,298.4606475830078,-4.0020599365234375,-1.200042724609375 +20220901150000,vlinder23,298.2633819580078,-3.8926849365234375,-0.655120849609375 +20220901150000,vlinder24,298.4430694580078,-3.7779388427734375,-0.683441162109375 +20220901150000,vlinder25,298.4704132080078,-3.6929779052734375,-0.582855224609375 +20220901150000,vlinder26,298.6461944580078,-2.9947357177734375,-0.430511474609375 +20220901150000,vlinder27,298.5700225830078,-3.6153411865234375,-0.680511474609375 +20220901150000,vlinder28,298.5973663330078,-3.4849700927734375,-0.701019287109375 +20220901160000,vlinder01,298.28074645996094,-3.3428831100463867,-0.70806884765625 +20220901160000,vlinder02,298.28465270996094,-3.3946409225463867,-0.72857666015625 +20220901160000,vlinder03,298.28465270996094,-2.9195432662963867,-0.63482666015625 +20220901160000,vlinder04,298.28465270996094,-2.9195432662963867,-0.63482666015625 +20220901160000,vlinder05,298.24363708496094,-3.4771604537963867,-0.77056884765625 +20220901160000,vlinder06,298.45848083496094,-3.0508909225463867,-0.12799072265625 +20220901160000,vlinder07,298.45848083496094,-3.0508909225463867,-0.12799072265625 +20220901160000,vlinder08,298.45848083496094,-3.0508909225463867,-0.12799072265625 +20220901160000,vlinder09,298.11277770996094,-3.2906370162963867,-0.61920166015625 +20220901160000,vlinder10,298.11277770996094,-3.3277463912963867,-0.66510009765625 +20220901160000,vlinder11,298.38621520996094,-3.1675901412963867,-0.68756103515625 +20220901160000,vlinder12,298.38621520996094,-3.1675901412963867,-0.68756103515625 +20220901160000,vlinder13,298.38621520996094,-3.1675901412963867,-0.68756103515625 +20220901160000,vlinder14,298.19676208496094,-3.2857542037963867,-1.03814697265625 +20220901160000,vlinder15,298.10691833496094,-3.2510862350463867,-0.54888916015625 +20220901160000,vlinder16,298.19676208496094,-3.2857542037963867,-1.03814697265625 +20220901160000,vlinder17,297.67527770996094,-3.2794065475463867,0.77239990234375 +20220901160000,vlinder18,297.68894958496094,-3.3067502975463867,0.88177490234375 +20220901160000,vlinder19,297.99754333496094,-3.2886838912963867,-0.45806884765625 +20220901160000,vlinder20,297.99754333496094,-3.2886838912963867,-0.45806884765625 +20220901160000,vlinder21,297.33152770996094,-4.872179985046387,-2.12701416015625 +20220901160000,vlinder22,298.09129333496094,-4.351183891296387,-1.22662353515625 +20220901160000,vlinder23,297.93894958496094,-3.8023557662963867,-0.89752197265625 +20220901160000,vlinder24,298.13230895996094,-3.7061643600463867,-0.83892822265625 +20220901160000,vlinder25,298.14207458496094,-3.5132932662963867,-0.76373291015625 +20220901160000,vlinder26,298.53465270996094,-2.8819456100463867,-0.26470947265625 +20220901160000,vlinder27,298.24363708496094,-3.4771604537963867,-0.77056884765625 +20220901160000,vlinder28,298.28074645996094,-3.3428831100463867,-0.70806884765625 +20220901170000,vlinder01,297.83631896972656,-2.9086217880249023,-0.6716766357421875 +20220901170000,vlinder02,297.82460021972656,-2.9808874130249023,-0.7068328857421875 +20220901170000,vlinder03,297.95155334472656,-2.6185827255249023,-0.4314422607421875 +20220901170000,vlinder04,297.95155334472656,-2.6185827255249023,-0.4314422607421875 +20220901170000,vlinder05,297.74647521972656,-2.9906530380249023,-0.8972625732421875 +20220901170000,vlinder06,298.13124084472656,-2.7201452255249023,0.0753936767578125 +20220901170000,vlinder07,298.13124084472656,-2.7201452255249023,0.0753936767578125 +20220901170000,vlinder08,298.13124084472656,-2.7201452255249023,0.0753936767578125 +20220901170000,vlinder09,297.71327209472656,-2.8949499130249023,-0.5408172607421875 +20220901170000,vlinder10,297.70155334472656,-2.9584264755249023,-0.6052703857421875 +20220901170000,vlinder11,297.89881896972656,-2.6322546005249023,-0.7380828857421875 +20220901170000,vlinder12,297.89881896972656,-2.6322546005249023,-0.7380828857421875 +20220901170000,vlinder13,297.89881896972656,-2.6322546005249023,-0.7380828857421875 +20220901170000,vlinder14,297.62147521972656,-2.6322546005249023,-1.2332000732421875 +20220901170000,vlinder15,297.72108459472656,-2.8539342880249023,-0.4499969482421875 +20220901170000,vlinder16,297.62147521972656,-2.6322546005249023,-1.2332000732421875 +20220901170000,vlinder17,297.13319396972656,-3.1859655380249023,1.0587921142578125 +20220901170000,vlinder18,297.15467834472656,-3.1703405380249023,1.0490264892578125 +20220901170000,vlinder19,297.61170959472656,-3.0511999130249023,-0.3230438232421875 +20220901170000,vlinder20,297.61170959472656,-3.0511999130249023,-0.3230438232421875 +20220901170000,vlinder21,297.08631896972656,-5.097098350524902,-2.1365203857421875 +20220901170000,vlinder22,297.49647521972656,-3.9974889755249023,-1.2253875732421875 +20220901170000,vlinder23,297.35585021972656,-3.2191686630249023,-1.3181610107421875 +20220901170000,vlinder24,297.60585021972656,-3.2064733505249023,-1.1130828857421875 +20220901170000,vlinder25,297.56092834472656,-2.8881139755249023,-1.0701141357421875 +20220901170000,vlinder26,298.17811584472656,-2.6469030380249023,0.0724639892578125 +20220901170000,vlinder27,297.74647521972656,-2.9906530380249023,-0.8972625732421875 +20220901170000,vlinder28,297.83631896972656,-2.9086217880249023,-0.6716766357421875 +20220901180000,vlinder01,296.4874725341797,-2.0322046279907227,-1.1157073974609375 +20220901180000,vlinder02,296.4894256591797,-2.0702905654907227,-1.1557464599609375 +20220901180000,vlinder03,296.7179412841797,-2.0439233779907227,-0.6762542724609375 +20220901180000,vlinder04,296.7179412841797,-2.0439233779907227,-0.6762542724609375 +20220901180000,vlinder05,296.3253631591797,-2.1855249404907227,-1.4555511474609375 +20220901180000,vlinder06,296.7999725341797,-2.0634546279907227,0.0825347900390625 +20220901180000,vlinder07,296.7999725341797,-2.0634546279907227,0.0825347900390625 +20220901180000,vlinder08,296.7999725341797,-2.0634546279907227,0.0825347900390625 +20220901180000,vlinder09,296.3624725341797,-2.1249780654907227,-0.9086761474609375 +20220901180000,vlinder10,296.3624725341797,-2.1357202529907227,-0.9994964599609375 +20220901180000,vlinder11,296.5499725341797,-1.8964624404907227,-1.1401214599609375 +20220901180000,vlinder12,296.5499725341797,-1.8964624404907227,-1.1401214599609375 +20220901180000,vlinder13,296.5499725341797,-1.8964624404907227,-1.1401214599609375 +20220901180000,vlinder14,296.2257537841797,-1.8505640029907227,-1.8715667724609375 +20220901180000,vlinder15,296.3663787841797,-2.1249780654907227,-0.7660980224609375 +20220901180000,vlinder16,296.2257537841797,-1.8505640029907227,-1.8715667724609375 +20220901180000,vlinder17,296.1515350341797,-2.5986108779907227,0.8462066650390625 +20220901180000,vlinder18,296.1613006591797,-2.5409936904907227,0.7631988525390625 +20220901180000,vlinder19,296.2823944091797,-2.4531030654907227,-0.4877777099609375 +20220901180000,vlinder20,296.2823944091797,-2.4531030654907227,-0.4877777099609375 +20220901180000,vlinder21,296.1359100341797,-4.948220252990723,-2.3989105224609375 +20220901180000,vlinder22,296.3019256591797,-3.4404077529907227,-1.2075042724609375 +20220901180000,vlinder23,295.8214569091797,-2.6132593154907227,-2.0444183349609375 +20220901180000,vlinder24,296.1320037841797,-2.5351343154907227,-1.7534027099609375 +20220901180000,vlinder25,296.0109100341797,-2.1786890029907227,-1.7446136474609375 +20220901180000,vlinder26,296.9698944091797,-2.2001733779907227,0.0112457275390625 +20220901180000,vlinder27,296.3253631591797,-2.1855249404907227,-1.4555511474609375 +20220901180000,vlinder28,296.4874725341797,-2.0322046279907227,-1.1157073974609375 +20220901190000,vlinder01,294.5366668701172,-1.977203369140625,-2.0332489013671875 +20220901190000,vlinder02,294.5190887451172,-1.999664306640625,-2.0293426513671875 +20220901190000,vlinder03,295.0952606201172,-1.937164306640625,-1.8975067138671875 +20220901190000,vlinder04,295.0952606201172,-1.937164306640625,-1.8975067138671875 +20220901190000,vlinder05,294.4292449951172,-2.230133056640625,-2.2715301513671875 +20220901190000,vlinder06,295.1460418701172,-1.854156494140625,-1.6348114013671875 +20220901190000,vlinder07,295.1460418701172,-1.854156494140625,-1.6348114013671875 +20220901190000,vlinder08,295.1460418701172,-1.854156494140625,-1.6348114013671875 +20220901190000,vlinder09,294.5171356201172,-2.035797119140625,-1.8066864013671875 +20220901190000,vlinder10,294.4780731201172,-2.051422119140625,-1.8144989013671875 +20220901190000,vlinder11,294.7827606201172,-1.941070556640625,-2.2344207763671875 +20220901190000,vlinder12,294.7827606201172,-1.941070556640625,-2.2344207763671875 +20220901190000,vlinder13,294.7827606201172,-1.941070556640625,-2.2344207763671875 +20220901190000,vlinder14,294.4136199951172,-2.020172119140625,-2.5664520263671875 +20220901190000,vlinder15,294.5659637451172,-2.020172119140625,-1.7686004638671875 +20220901190000,vlinder16,294.4136199951172,-2.020172119140625,-2.5664520263671875 +20220901190000,vlinder17,295.4644012451172,-2.448883056640625,-0.7988739013671875 +20220901190000,vlinder18,295.4624481201172,-2.480133056640625,-0.8594207763671875 +20220901190000,vlinder19,294.5796356201172,-2.157867431640625,-1.3291473388671875 +20220901190000,vlinder20,294.5796356201172,-2.157867431640625,-1.3291473388671875 +20220901190000,vlinder21,294.8452606201172,-5.254547119140625,-3.4678192138671875 +20220901190000,vlinder22,294.4995574951172,-3.076812744140625,-1.9951629638671875 +20220901190000,vlinder23,294.1265106201172,-2.803375244140625,-2.7324676513671875 +20220901190000,vlinder24,294.3315887451172,-2.670562744140625,-2.5488739013671875 +20220901190000,vlinder25,294.1733856201172,-2.318023681640625,-2.4453582763671875 +20220901190000,vlinder26,295.4839324951172,-1.984039306640625,-1.4873504638671875 +20220901190000,vlinder27,294.4292449951172,-2.230133056640625,-2.2715301513671875 +20220901190000,vlinder28,294.5366668701172,-1.977203369140625,-2.0332489013671875 +20220901200000,vlinder01,293.4129333496094,-2.1329803466796875,-2.1339111328125 +20220901200000,vlinder02,293.3758239746094,-2.1549530029296875,-2.1485595703125 +20220901200000,vlinder03,294.2625427246094,-2.5973358154296875,-1.8594970703125 +20220901200000,vlinder04,294.2625427246094,-2.5973358154296875,-1.8594970703125 +20220901200000,vlinder05,293.3504333496094,-2.4405975341796875,-2.3985595703125 +20220901200000,vlinder06,294.2547302246094,-2.0812225341796875,-1.5899658203125 +20220901200000,vlinder07,294.2547302246094,-2.0812225341796875,-1.5899658203125 +20220901200000,vlinder08,294.2547302246094,-2.0812225341796875,-1.5899658203125 +20220901200000,vlinder09,293.5418395996094,-2.1837615966796875,-1.7354736328125 +20220901200000,vlinder10,293.4559020996094,-2.1969451904296875,-1.7608642578125 +20220901200000,vlinder11,293.8387145996094,-2.3419647216796875,-2.2960205078125 +20220901200000,vlinder12,293.8387145996094,-2.3419647216796875,-2.2960205078125 +20220901200000,vlinder13,293.8387145996094,-2.3419647216796875,-2.2960205078125 +20220901200000,vlinder14,293.4676208496094,-2.4899139404296875,-2.6700439453125 +20220901200000,vlinder15,293.6277770996094,-2.1749725341796875,-1.6778564453125 +20220901200000,vlinder16,293.4676208496094,-2.4899139404296875,-2.6700439453125 +20220901200000,vlinder17,294.5594177246094,-2.7106170654296875,-0.9708251953125 +20220901200000,vlinder18,294.5476989746094,-2.7096405029296875,-1.0098876953125 +20220901200000,vlinder19,293.6824645996094,-2.3229217529296875,-1.0509033203125 +20220901200000,vlinder20,293.6824645996094,-2.3229217529296875,-1.0509033203125 +20220901200000,vlinder21,294.1824645996094,-5.5363006591796875,-3.4766845703125 +20220901200000,vlinder22,293.5633239746094,-3.1881561279296875,-2.0469970703125 +20220901200000,vlinder23,293.1883239746094,-3.1183319091796875,-2.8692626953125 +20220901200000,vlinder24,293.2957458496094,-2.9322967529296875,-2.6807861328125 +20220901200000,vlinder25,293.1258239746094,-2.5973358154296875,-2.5909423828125 +20220901200000,vlinder26,294.5945739746094,-2.5338592529296875,-1.4835205078125 +20220901200000,vlinder27,293.3504333496094,-2.4405975341796875,-2.3985595703125 +20220901200000,vlinder28,293.4129333496094,-2.1329803466796875,-2.1339111328125 +20220901210000,vlinder01,292.65391540527344,-2.159605026245117,-1.93798828125 +20220901210000,vlinder02,292.59727478027344,-2.157651901245117,-1.97705078125 +20220901210000,vlinder03,293.63047790527344,-3.176206588745117,-1.38525390625 +20220901210000,vlinder04,293.63047790527344,-3.176206588745117,-1.38525390625 +20220901210000,vlinder05,292.62266540527344,-2.501890182495117,-2.15185546875 +20220901210000,vlinder06,293.63829040527344,-2.368589401245117,-1.30322265625 +20220901210000,vlinder07,293.63829040527344,-2.368589401245117,-1.30322265625 +20220901210000,vlinder08,293.63829040527344,-2.368589401245117,-1.30322265625 +20220901210000,vlinder09,292.89805603027344,-2.233335494995117,-1.43212890625 +20220901210000,vlinder10,292.77500915527344,-2.212339401245117,-1.47607421875 +20220901210000,vlinder11,293.24375915527344,-2.856870651245117,-1.91552734375 +20220901210000,vlinder12,293.24375915527344,-2.856870651245117,-1.91552734375 +20220901210000,vlinder13,293.24375915527344,-2.856870651245117,-1.91552734375 +20220901210000,vlinder14,292.90977478027344,-3.076108932495117,-2.24072265625 +20220901210000,vlinder15,293.00743103027344,-2.260190963745117,-1.35888671875 +20220901210000,vlinder16,292.90977478027344,-3.076108932495117,-2.24072265625 +20220901210000,vlinder17,293.69297790527344,-2.878843307495117,-0.81689453125 +20220901210000,vlinder18,293.69883728027344,-2.876401901245117,-0.80908203125 +20220901210000,vlinder19,293.03086853027344,-2.372983932495117,-0.66259765625 +20220901210000,vlinder20,293.03086853027344,-2.372983932495117,-0.66259765625 +20220901210000,vlinder21,293.57188415527344,-5.063901901245117,-2.92333984375 +20220901210000,vlinder22,292.76914978027344,-3.071226119995117,-1.94873046875 +20220901210000,vlinder23,292.54258728027344,-3.286558151245117,-2.49169921875 +20220901210000,vlinder24,292.57969665527344,-3.002866744995117,-2.35888671875 +20220901210000,vlinder25,292.43125915527344,-2.768003463745117,-2.29150390625 +20220901210000,vlinder26,293.87852478027344,-3.012632369995117,-1.14990234375 +20220901210000,vlinder27,292.62266540527344,-2.501890182495117,-2.15185546875 +20220901210000,vlinder28,292.65391540527344,-2.159605026245117,-1.93798828125 +20220901220000,vlinder01,291.9024963378906,-2.3431243896484375,-1.7840423583984375 +20220901220000,vlinder02,291.8360900878906,-2.3021087646484375,-1.8494720458984375 +20220901220000,vlinder03,293.0821838378906,-3.2142181396484375,-0.9949798583984375 +20220901220000,vlinder04,293.0821838378906,-3.2142181396484375,-0.9949798583984375 +20220901220000,vlinder05,291.9259338378906,-2.6697845458984375,-1.9373626708984375 +20220901220000,vlinder06,293.1173400878906,-2.7230072021484375,-1.0848236083984375 +20220901220000,vlinder07,293.1173400878906,-2.7230072021484375,-1.0848236083984375 +20220901220000,vlinder08,293.1173400878906,-2.7230072021484375,-1.0848236083984375 +20220901220000,vlinder09,292.2091369628906,-2.4319915771484375,-1.3162689208984375 +20220901220000,vlinder10,292.0489807128906,-2.3646087646484375,-1.3904876708984375 +20220901220000,vlinder11,292.8028869628906,-3.2327728271484375,-1.4422454833984375 +20220901220000,vlinder12,292.8028869628906,-3.2327728271484375,-1.4422454833984375 +20220901220000,vlinder13,292.8028869628906,-3.2327728271484375,-1.4422454833984375 +20220901220000,vlinder14,292.5235900878906,-3.4642181396484375,-1.6561126708984375 +20220901220000,vlinder15,292.3478088378906,-2.4935150146484375,-1.2254486083984375 +20220901220000,vlinder16,292.5235900878906,-3.4642181396484375,-1.6561126708984375 +20220901220000,vlinder17,293.2267150878906,-2.9969329833984375,-0.4520111083984375 +20220901220000,vlinder18,293.2755432128906,-3.0193939208984375,-0.3787689208984375 +20220901220000,vlinder19,292.3575744628906,-2.5057220458984375,-0.6717376708984375 +20220901220000,vlinder20,292.3575744628906,-2.5057220458984375,-0.6717376708984375 +20220901220000,vlinder21,293.0392150878906,-5.1233978271484375,-2.7313079833984375 +20220901220000,vlinder22,292.1192932128906,-3.0970306396484375,-2.0193939208984375 +20220901220000,vlinder23,291.9728088378906,-3.4734954833984375,-2.1229095458984375 +20220901220000,vlinder24,291.9200744628906,-3.1570892333984375,-2.0838470458984375 +20220901220000,vlinder25,291.7970275878906,-2.9637298583984375,-1.9842376708984375 +20220901220000,vlinder26,293.3146057128906,-3.0696868896484375,-0.8826751708984375 +20220901220000,vlinder27,291.9259338378906,-2.6697845458984375,-1.9373626708984375 +20220901220000,vlinder28,291.9024963378906,-2.3431243896484375,-1.7840423583984375 +20220901230000,vlinder01,291.32191467285156,-2.6555328369140625,-1.302581787109375 +20220901230000,vlinder02,291.23988342285156,-2.6032867431640625,-1.366058349609375 +20220901230000,vlinder03,292.56019592285156,-3.1228179931640625,-0.751800537109375 +20220901230000,vlinder04,292.56019592285156,-3.1228179931640625,-0.751800537109375 +20220901230000,vlinder05,291.38050842285156,-2.9641265869140625,-1.391448974609375 +20220901230000,vlinder06,292.74183654785156,-2.9226226806640625,-0.725433349609375 +20220901230000,vlinder07,292.74183654785156,-2.9226226806640625,-0.725433349609375 +20220901230000,vlinder08,292.74183654785156,-2.9226226806640625,-0.725433349609375 +20220901230000,vlinder09,291.68910217285156,-2.6828765869140625,-0.929534912109375 +20220901230000,vlinder10,291.49183654785156,-2.6150054931640625,-0.998870849609375 +20220901230000,vlinder11,292.33949279785156,-3.2912750244140625,-0.998870849609375 +20220901230000,vlinder12,292.33949279785156,-3.2912750244140625,-0.998870849609375 +20220901230000,vlinder13,292.33949279785156,-3.2912750244140625,-0.998870849609375 +20220901230000,vlinder14,292.03480529785156,-3.4797515869140625,-1.169769287109375 +20220901230000,vlinder15,291.85707092285156,-2.7336578369140625,-0.852386474609375 +20220901230000,vlinder16,292.03480529785156,-3.4797515869140625,-1.169769287109375 +20220901230000,vlinder17,292.95082092285156,-3.1135406494140625,0.101715087890625 +20220901230000,vlinder18,293.03675842285156,-3.1423492431640625,0.222808837890625 +20220901230000,vlinder19,291.83363342285156,-2.6272125244140625,-0.432464599609375 +20220901230000,vlinder20,291.83363342285156,-2.6272125244140625,-0.432464599609375 +20220901230000,vlinder21,292.57582092285156,-5.3967437744140625,-2.032073974609375 +20220901230000,vlinder22,291.45668029785156,-3.1560211181640625,-1.568206787109375 +20220901230000,vlinder23,291.49378967285156,-3.7136383056640625,-1.467620849609375 +20220901230000,vlinder24,291.38636779785156,-3.4314117431640625,-1.472503662109375 +20220901230000,vlinder25,291.28285217285156,-3.2131500244140625,-1.387542724609375 +20220901230000,vlinder26,292.83949279785156,-3.0368804931640625,-0.616058349609375 +20220901230000,vlinder27,291.38050842285156,-2.9641265869140625,-1.391448974609375 +20220901230000,vlinder28,291.32191467285156,-2.6555328369140625,-1.302581787109375 +20220902000000,vlinder01,290.8556365966797,-2.745941162109375,-0.7225341796875 +20220902000000,vlinder02,290.7814178466797,-2.710296630859375,-0.7899169921875 +20220902000000,vlinder03,292.2404022216797,-3.076019287109375,-0.3074951171875 +20220902000000,vlinder04,292.2404022216797,-3.076019287109375,-0.3074951171875 +20220902000000,vlinder05,290.9318084716797,-3.004730224609375,-0.7928466796875 +20220902000000,vlinder06,292.3165740966797,-2.892913818359375,-0.1824951171875 +20220902000000,vlinder07,292.3165740966797,-2.892913818359375,-0.1824951171875 +20220902000000,vlinder08,292.3165740966797,-2.892913818359375,-0.1824951171875 +20220902000000,vlinder09,291.2638397216797,-2.746917724609375,-0.3807373046875 +20220902000000,vlinder10,291.0587615966797,-2.701019287109375,-0.4490966796875 +20220902000000,vlinder11,291.8888397216797,-3.183441162109375,-0.5770263671875 +20220902000000,vlinder12,291.8888397216797,-3.183441162109375,-0.5770263671875 +20220902000000,vlinder13,291.8888397216797,-3.183441162109375,-0.5770263671875 +20220902000000,vlinder14,291.5841522216797,-3.344085693359375,-0.8026123046875 +20220902000000,vlinder15,291.4357147216797,-2.777679443359375,-0.3074951171875 +20220902000000,vlinder16,291.5841522216797,-3.344085693359375,-0.8026123046875 +20220902000000,vlinder17,292.6544647216797,-3.005706787109375,0.6339111328125 +20220902000000,vlinder18,292.7423553466797,-3.000823974609375,0.7305908203125 +20220902000000,vlinder19,291.3556365966797,-2.661956787109375,0.0733642578125 +20220902000000,vlinder20,291.3556365966797,-2.661956787109375,0.0733642578125 +20220902000000,vlinder21,292.1368865966797,-5.343597412109375,-0.9822998046875 +20220902000000,vlinder22,290.9103240966797,-3.132659912109375,-1.0203857421875 +20220902000000,vlinder23,291.0353240966797,-3.632659912109375,-0.8426513671875 +20220902000000,vlinder24,290.9142303466797,-3.405120849609375,-0.8240966796875 +20220902000000,vlinder25,290.8165740966797,-3.187347412109375,-0.8162841796875 +20220902000000,vlinder26,292.5099334716797,-3.007659912109375,-0.1151123046875 +20220902000000,vlinder27,290.9318084716797,-3.004730224609375,-0.7928466796875 +20220902000000,vlinder28,290.8556365966797,-2.745941162109375,-0.7225341796875 +20220902010000,vlinder01,290.38067626953125,-2.6676177978515625,-0.440277099609375 +20220902010000,vlinder02,290.33184814453125,-2.6461334228515625,-0.510589599609375 +20220902010000,vlinder03,292.06622314453125,-2.8892974853515625,0.060699462890625 +20220902010000,vlinder04,292.06622314453125,-2.8892974853515625,0.060699462890625 +20220902010000,vlinder05,290.48419189453125,-2.9068756103515625,-0.535003662109375 +20220902010000,vlinder06,291.95880126953125,-2.7369537353515625,0.195465087890625 +20220902010000,vlinder07,291.95880126953125,-2.7369537353515625,0.195465087890625 +20220902010000,vlinder08,291.95880126953125,-2.7369537353515625,0.195465087890625 +20220902010000,vlinder09,290.85333251953125,-2.6602935791015625,-0.064300537109375 +20220902010000,vlinder10,290.64434814453125,-2.6329498291015625,-0.138519287109375 +20220902010000,vlinder11,291.53497314453125,-3.0308990478515625,-0.263519287109375 +20220902010000,vlinder12,291.53497314453125,-3.0308990478515625,-0.263519287109375 +20220902010000,vlinder13,291.53497314453125,-3.0308990478515625,-0.263519287109375 +20220902010000,vlinder14,291.24005126953125,-3.1944732666015625,-0.527191162109375 +20220902010000,vlinder15,291.03302001953125,-2.6773834228515625,0.020660400390625 +20220902010000,vlinder16,291.24005126953125,-3.1944732666015625,-0.527191162109375 +20220902010000,vlinder17,292.27130126953125,-2.7262115478515625,0.831207275390625 +20220902010000,vlinder18,292.33575439453125,-2.7120513916015625,0.902496337890625 +20220902010000,vlinder19,290.97442626953125,-2.5870513916015625,0.408355712890625 +20220902010000,vlinder20,290.97442626953125,-2.5870513916015625,0.408355712890625 +20220902010000,vlinder21,291.75372314453125,-5.1266021728515625,-0.439300537109375 +20220902010000,vlinder22,290.55450439453125,-3.0645904541015625,-0.666839599609375 +20220902010000,vlinder23,290.60528564453125,-3.4766998291015625,-0.615081787109375 +20220902010000,vlinder24,290.46270751953125,-3.2721099853515625,-0.574066162109375 +20220902010000,vlinder25,290.35528564453125,-3.0650787353515625,-0.592620849609375 +20220902010000,vlinder26,292.29864501953125,-2.8111724853515625,0.253082275390625 +20220902010000,vlinder27,290.48419189453125,-2.9068756103515625,-0.535003662109375 +20220902010000,vlinder28,290.38067626953125,-2.6676177978515625,-0.440277099609375 +20220902020000,vlinder01,289.8893127441406,-2.595550537109375,-0.127166748046875 +20220902020000,vlinder02,289.8561096191406,-2.584808349609375,-0.200408935546875 +20220902020000,vlinder03,291.7838439941406,-2.683929443359375,0.203887939453125 +20220902020000,vlinder04,291.7838439941406,-2.683929443359375,0.203887939453125 +20220902020000,vlinder05,290.0494689941406,-2.828948974609375,-0.232635498046875 +20220902020000,vlinder06,291.4811096191406,-2.573089599609375,0.476348876953125 +20220902020000,vlinder07,291.4811096191406,-2.573089599609375,0.476348876953125 +20220902020000,vlinder08,291.4811096191406,-2.573089599609375,0.476348876953125 +20220902020000,vlinder09,290.4107971191406,-2.570648193359375,0.270294189453125 +20220902020000,vlinder10,290.1940002441406,-2.555999755859375,0.192169189453125 +20220902020000,vlinder11,291.2252502441406,-2.865570068359375,0.064239501953125 +20220902020000,vlinder12,291.2252502441406,-2.865570068359375,0.064239501953125 +20220902020000,vlinder13,291.2252502441406,-2.865570068359375,0.064239501953125 +20220902020000,vlinder14,291.0279846191406,-3.035003662109375,-0.177947998046875 +20220902020000,vlinder15,290.5904846191406,-2.575042724609375,0.354278564453125 +20220902020000,vlinder16,291.0279846191406,-3.035003662109375,-0.177947998046875 +20220902020000,vlinder17,291.7916564941406,-2.490081787109375,0.772247314453125 +20220902020000,vlinder18,291.8639221191406,-2.486663818359375,0.827911376953125 +20220902020000,vlinder19,290.4869689941406,-2.467620849609375,0.714630126953125 +20220902020000,vlinder20,290.4869689941406,-2.467620849609375,0.714630126953125 +20220902020000,vlinder21,291.3365783691406,-4.907562255859375,-0.076385498046875 +20220902020000,vlinder22,289.9537658691406,-2.934417724609375,-0.256072998046875 +20220902020000,vlinder23,290.2428283691406,-3.370452880859375,-0.327362060546875 +20220902020000,vlinder24,290.0338439941406,-3.182464599609375,-0.280487060546875 +20220902020000,vlinder25,289.9518127441406,-2.975433349609375,-0.293182373046875 +20220902020000,vlinder26,291.9010314941406,-2.592132568359375,0.367950439453125 +20220902020000,vlinder27,290.0494689941406,-2.828948974609375,-0.232635498046875 +20220902020000,vlinder28,289.8893127441406,-2.595550537109375,-0.127166748046875 +20220902030000,vlinder01,289.6437683105469,-2.52435302734375,0.2113189697265625 +20220902030000,vlinder02,289.6027526855469,-2.52239990234375,0.1390533447265625 +20220902030000,vlinder03,291.4621276855469,-2.55462646484375,0.3177642822265625 +20220902030000,vlinder04,291.4621276855469,-2.55462646484375,0.3177642822265625 +20220902030000,vlinder05,289.8371276855469,-2.74945068359375,0.1117095947265625 +20220902030000,vlinder06,291.3527526855469,-2.43841552734375,0.7230377197265625 +20220902030000,vlinder07,291.3527526855469,-2.43841552734375,0.7230377197265625 +20220902030000,vlinder08,291.3527526855469,-2.43841552734375,0.7230377197265625 +20220902030000,vlinder09,290.3468933105469,-2.47698974609375,0.5462799072265625 +20220902030000,vlinder10,290.1125183105469,-2.47015380859375,0.4710845947265625 +20220902030000,vlinder11,291.0461120605469,-2.73773193359375,0.3490142822265625 +20220902030000,vlinder12,291.0461120605469,-2.73773193359375,0.3490142822265625 +20220902030000,vlinder13,291.0461120605469,-2.73773193359375,0.3490142822265625 +20220902030000,vlinder14,290.8468933105469,-2.91839599609375,0.1263580322265625 +20220902030000,vlinder15,290.5422058105469,-2.47259521484375,0.6204986572265625 +20220902030000,vlinder16,290.8468933105469,-2.91839599609375,0.1263580322265625 +20220902030000,vlinder17,291.3996276855469,-2.29974365234375,0.7913970947265625 +20220902030000,vlinder18,291.4543151855469,-2.30023193359375,0.8285064697265625 +20220902030000,vlinder19,290.5343933105469,-2.36663818359375,0.9017486572265625 +20220902030000,vlinder20,290.5343933105469,-2.36663818359375,0.9017486572265625 +20220902030000,vlinder21,291.0871276855469,-4.72357177734375,0.2494049072265625 +20220902030000,vlinder22,289.5109558105469,-2.85101318359375,-0.0162200927734375 +20220902030000,vlinder23,290.0890808105469,-3.26409912109375,0.0081939697265625 +20220902030000,vlinder24,289.8312683105469,-3.09124755859375,0.0609283447265625 +20220902030000,vlinder25,289.7648620605469,-2.88275146484375,0.0472564697265625 +20220902030000,vlinder26,291.5812683105469,-2.44232177734375,0.4749908447265625 +20220902030000,vlinder27,289.8371276855469,-2.74945068359375,0.1117095947265625 +20220902030000,vlinder28,289.6437683105469,-2.52435302734375,0.2113189697265625 +20220902040000,vlinder01,289.4191436767578,-2.4471588134765625,0.45207977294921875 +20220902040000,vlinder02,289.3761749267578,-2.4325103759765625,0.39641571044921875 +20220902040000,vlinder03,291.2101593017578,-2.4549713134765625,0.38274383544921875 +20220902040000,vlinder04,291.2101593017578,-2.4549713134765625,0.38274383544921875 +20220902040000,vlinder05,289.6007843017578,-2.6746978759765625,0.36516571044921875 +20220902040000,vlinder06,291.1320343017578,-2.3939361572265625,0.8524703979492188 +20220902040000,vlinder07,291.1320343017578,-2.3939361572265625,0.8524703979492188 +20220902040000,vlinder08,291.1320343017578,-2.3939361572265625,0.8524703979492188 +20220902040000,vlinder09,290.2257843017578,-2.4652252197265625,0.7313766479492188 +20220902040000,vlinder10,289.9855499267578,-2.4486236572265625,0.6737594604492188 +20220902040000,vlinder11,290.7980499267578,-2.6805572509765625,0.48332977294921875 +20220902040000,vlinder12,290.7980499267578,-2.6805572509765625,0.48332977294921875 +20220902040000,vlinder13,290.7980499267578,-2.6805572509765625,0.48332977294921875 +20220902040000,vlinder14,290.6066436767578,-2.8602447509765625,0.27336883544921875 +20220902040000,vlinder15,290.4210968017578,-2.4676666259765625,0.7889938354492188 +20220902040000,vlinder16,290.6066436767578,-2.8602447509765625,0.27336883544921875 +20220902040000,vlinder17,290.9933624267578,-2.2030181884765625,0.7909469604492188 +20220902040000,vlinder18,291.0441436767578,-2.2044830322265625,0.8241500854492188 +20220902040000,vlinder19,290.4289093017578,-2.3836822509765625,1.0516891479492188 +20220902040000,vlinder20,290.4289093017578,-2.3836822509765625,1.0516891479492188 +20220902040000,vlinder21,290.8078155517578,-4.4852447509765625,0.6903610229492188 +20220902040000,vlinder22,289.1046905517578,-2.7220611572265625,0.34270477294921875 +20220902040000,vlinder23,289.8214874267578,-3.2025299072265625,0.26750946044921875 +20220902040000,vlinder24,289.5617218017578,-3.0145416259765625,0.33293914794921875 +20220902040000,vlinder25,289.5011749267578,-2.8275299072265625,0.28997039794921875 +20220902040000,vlinder26,291.2902374267578,-2.3382720947265625,0.5302047729492188 +20220902040000,vlinder27,289.6007843017578,-2.6746978759765625,0.36516571044921875 +20220902040000,vlinder28,289.4191436767578,-2.4471588134765625,0.45207977294921875 +20220902050000,vlinder01,289.14808654785156,-2.3896484375,0.6568927764892578 +20220902050000,vlinder02,289.11293029785156,-2.373046875,0.6236896514892578 +20220902050000,vlinder03,291.01527404785156,-2.41162109375,0.4479084014892578 +20220902050000,vlinder04,291.01527404785156,-2.41162109375,0.4479084014892578 +20220902050000,vlinder05,289.34339904785156,-2.6162109375,0.5992755889892578 +20220902050000,vlinder06,290.91566467285156,-2.3564453125,0.8746662139892578 +20220902050000,vlinder07,290.91566467285156,-2.3564453125,0.8746662139892578 +20220902050000,vlinder08,290.91566467285156,-2.3564453125,0.8746662139892578 +20220902050000,vlinder09,290.09925842285156,-2.4140625,0.8863849639892578 +20220902050000,vlinder10,289.85511779785156,-2.39208984375,0.8580646514892578 +20220902050000,vlinder11,290.55433654785156,-2.64111328125,0.5992755889892578 +20220902050000,vlinder12,290.55433654785156,-2.64111328125,0.5992755889892578 +20220902050000,vlinder13,290.55433654785156,-2.64111328125,0.5992755889892578 +20220902050000,vlinder14,290.36488342285156,-2.81982421875,0.4469318389892578 +20220902050000,vlinder15,290.29847717285156,-2.419921875,0.9156818389892578 +20220902050000,vlinder16,290.36488342285156,-2.81982421875,0.4469318389892578 +20220902050000,vlinder17,290.71839904785156,-2.16064453125,0.7330646514892578 +20220902050000,vlinder18,290.76332092285156,-2.1611328125,0.7643146514892578 +20220902050000,vlinder19,290.40589904785156,-2.33544921875,1.1783771514892578 +20220902050000,vlinder20,290.40589904785156,-2.33544921875,1.1783771514892578 +20220902050000,vlinder21,290.57386779785156,-4.306640625,1.1500568389892578 +20220902050000,vlinder22,288.86097717285156,-2.638671875,0.6588459014892578 +20220902050000,vlinder23,289.58363342285156,-3.150390625,0.5318927764892578 +20220902050000,vlinder24,289.30628967285156,-2.95556640625,0.5992755889892578 +20220902050000,vlinder25,289.23597717285156,-2.7783203125,0.5201740264892578 +20220902050000,vlinder26,291.08363342285156,-2.30126953125,0.5494709014892578 +20220902050000,vlinder27,289.34339904785156,-2.6162109375,0.5992755889892578 +20220902050000,vlinder28,289.14808654785156,-2.3896484375,0.6568927764892578 +20220902060000,vlinder01,289.4496612548828,-2.2299652099609375,0.7576808929443359 +20220902060000,vlinder02,289.4457550048828,-2.2006683349609375,0.7371730804443359 +20220902060000,vlinder03,291.0707550048828,-2.3950042724609375,0.49889183044433594 +20220902060000,vlinder04,291.0707550048828,-2.3950042724609375,0.49889183044433594 +20220902060000,vlinder05,289.6430206298828,-2.4594573974609375,0.7342433929443359 +20220902060000,vlinder06,291.0219268798828,-2.3285980224609375,0.8563137054443359 +20220902060000,vlinder07,291.0219268798828,-2.3285980224609375,0.8563137054443359 +20220902060000,vlinder08,291.0219268798828,-2.3285980224609375,0.8563137054443359 +20220902060000,vlinder09,290.3969268798828,-2.2963714599609375,0.9471340179443359 +20220902060000,vlinder10,290.1859893798828,-2.2573089599609375,0.9324855804443359 +20220902060000,vlinder11,290.7172393798828,-2.5805511474609375,0.6570949554443359 +20220902060000,vlinder12,290.7172393798828,-2.5805511474609375,0.6570949554443359 +20220902060000,vlinder13,290.7172393798828,-2.5805511474609375,0.6570949554443359 +20220902060000,vlinder14,290.5785675048828,-2.7299652099609375,0.5555324554443359 +20220902060000,vlinder15,290.5668487548828,-2.3207855224609375,0.9608058929443359 +20220902060000,vlinder16,290.5785675048828,-2.7299652099609375,0.5555324554443359 +20220902060000,vlinder17,290.6547393798828,-2.1616058349609375,0.6815090179443359 +20220902060000,vlinder18,290.7133331298828,-2.1616058349609375,0.7088527679443359 +20220902060000,vlinder19,290.6781768798828,-2.2739105224609375,1.191274642944336 +20220902060000,vlinder20,290.6781768798828,-2.2739105224609375,1.191274642944336 +20220902060000,vlinder21,290.6391143798828,-4.1078948974609375,1.459829330444336 +20220902060000,vlinder22,289.3090362548828,-2.4457855224609375,0.8045558929443359 +20220902060000,vlinder23,289.8441925048828,-3.0239105224609375,0.7244777679443359 +20220902060000,vlinder24,289.5941925048828,-2.8071136474609375,0.7703762054443359 +20220902060000,vlinder25,289.5355987548828,-2.6420745849609375,0.6697902679443359 +20220902060000,vlinder26,291.1020050048828,-2.3002777099609375,0.5613918304443359 +20220902060000,vlinder27,289.6430206298828,-2.4594573974609375,0.7342433929443359 +20220902060000,vlinder28,289.4496612548828,-2.2299652099609375,0.7576808929443359 +20220902070000,vlinder01,290.8203430175781,-1.97161865234375,0.4848308563232422 +20220902070000,vlinder02,290.7070617675781,-1.94232177734375,0.3949871063232422 +20220902070000,vlinder03,291.5859680175781,-2.29388427734375,0.3666667938232422 +20220902070000,vlinder04,291.5859680175781,-2.29388427734375,0.3666667938232422 +20220902070000,vlinder05,290.7929992675781,-2.15521240234375,0.3598308563232422 +20220902070000,vlinder06,292.0508117675781,-2.17279052734375,0.9936199188232422 +20220902070000,vlinder07,292.0508117675781,-2.17279052734375,0.9936199188232422 +20220902070000,vlinder08,292.0508117675781,-2.17279052734375,0.9936199188232422 +20220902070000,vlinder09,291.4883117675781,-2.12103271484375,0.8656902313232422 +20220902070000,vlinder10,291.2988586425781,-2.08294677734375,0.7777996063232422 +20220902070000,vlinder11,291.7207336425781,-2.25384521484375,0.6078777313232422 +20220902070000,vlinder12,291.7207336425781,-2.25384521484375,0.6078777313232422 +20220902070000,vlinder13,291.7207336425781,-2.25384521484375,0.6078777313232422 +20220902070000,vlinder14,291.5605773925781,-2.30950927734375,0.3940105438232422 +20220902070000,vlinder15,291.6347961425781,-2.15325927734375,0.9447917938232422 +20220902070000,vlinder16,291.5605773925781,-2.30950927734375,0.3940105438232422 +20220902070000,vlinder17,291.1445617675781,-2.40716552734375,0.6098308563232422 +20220902070000,vlinder18,291.2109680175781,-2.41204833984375,0.6332683563232422 +20220902070000,vlinder19,291.6465148925781,-2.24407958984375,1.2358074188232422 +20220902070000,vlinder20,291.6465148925781,-2.24407958984375,1.2358074188232422 +20220902070000,vlinder21,291.0644836425781,-3.78704833984375,0.5492839813232422 +20220902070000,vlinder22,290.0762023925781,-2.18841552734375,0.08541679382324219 +20220902070000,vlinder23,290.7148742675781,-2.62982177734375,0.2211589813232422 +20220902070000,vlinder24,290.6640930175781,-2.46868896484375,0.2934246063232422 +20220902070000,vlinder25,290.6777648925781,-2.27728271484375,0.2699871063232422 +20220902070000,vlinder26,291.7246398925781,-2.29095458984375,0.4897136688232422 +20220902070000,vlinder27,290.7929992675781,-2.15521240234375,0.3598308563232422 +20220902070000,vlinder28,290.8203430175781,-1.97161865234375,0.4848308563232422 +20220902080000,vlinder01,292.8801727294922,-2.6061553955078125,0.7375469207763672 +20220902080000,vlinder02,292.8332977294922,-2.5876007080078125,0.6223125457763672 +20220902080000,vlinder03,292.7004852294922,-2.8473663330078125,0.4816875457763672 +20220902080000,vlinder04,292.7004852294922,-2.8473663330078125,0.4816875457763672 +20220902080000,vlinder05,292.7903289794922,-2.7946319580078125,0.6018047332763672 +20220902080000,vlinder06,293.3918914794922,-2.6872100830078125,1.2590312957763672 +20220902080000,vlinder07,293.3918914794922,-2.6872100830078125,1.2590312957763672 +20220902080000,vlinder08,293.3918914794922,-2.6872100830078125,1.2590312957763672 +20220902080000,vlinder09,293.0520477294922,-2.7106475830078125,1.2346172332763672 +20220902080000,vlinder10,292.9875946044922,-2.6901397705078125,1.1262187957763672 +20220902080000,vlinder11,293.1204071044922,-2.8512725830078125,0.8195781707763672 +20220902080000,vlinder12,293.1204071044922,-2.8512725830078125,0.8195781707763672 +20220902080000,vlinder13,293.1204071044922,-2.8512725830078125,0.8195781707763672 +20220902080000,vlinder14,292.9817352294922,-2.9616241455078125,0.6018047332763672 +20220902080000,vlinder15,293.0930633544922,-2.7262725830078125,1.3225078582763672 +20220902080000,vlinder16,292.9817352294922,-2.9616241455078125,0.6018047332763672 +20220902080000,vlinder17,292.6262664794922,-2.9254913330078125,0.7668437957763672 +20220902080000,vlinder18,292.7473602294922,-2.9420928955078125,0.8225078582763672 +20220902080000,vlinder19,292.9993133544922,-2.7604522705078125,1.6027812957763672 +20220902080000,vlinder20,292.9993133544922,-2.7604522705078125,1.6027812957763672 +20220902080000,vlinder21,292.3020477294922,-4.1647491455078125,0.3410625457763672 +20220902080000,vlinder22,292.2180633544922,-2.8043975830078125,-0.1345233917236328 +20220902080000,vlinder23,292.4993133544922,-3.2516632080078125,0.4611797332763672 +20220902080000,vlinder24,292.5852508544922,-3.0817413330078125,0.5197734832763672 +20220902080000,vlinder25,292.6399383544922,-2.9381866455078125,0.5334453582763672 +20220902080000,vlinder26,292.9290008544922,-2.8053741455078125,0.5764141082763672 +20220902080000,vlinder27,292.7903289794922,-2.7946319580078125,0.6018047332763672 +20220902080000,vlinder28,292.8801727294922,-2.6061553955078125,0.7375469207763672 +20220902090000,vlinder01,294.91319274902344,-3.036224365234375,0.7617340087890625 +20220902090000,vlinder02,294.92881774902344,-3.000091552734375,0.7138824462890625 +20220902090000,vlinder03,294.34483337402344,-3.215911865234375,0.5058746337890625 +20220902090000,vlinder04,294.34483337402344,-3.215911865234375,0.5058746337890625 +20220902090000,vlinder05,294.78623962402344,-3.271575927734375,0.6963043212890625 +20220902090000,vlinder06,294.97764587402344,-3.188568115234375,0.9912261962890625 +20220902090000,vlinder07,294.97764587402344,-3.188568115234375,0.9912261962890625 +20220902090000,vlinder08,294.97764587402344,-3.188568115234375,0.9912261962890625 +20220902090000,vlinder09,294.86241149902344,-3.097747802734375,1.1621246337890625 +20220902090000,vlinder10,294.87413024902344,-3.061614990234375,1.1201324462890625 +20220902090000,vlinder11,294.68272399902344,-3.393646240234375,0.7363433837890625 +20220902090000,vlinder12,294.68272399902344,-3.393646240234375,0.7363433837890625 +20220902090000,vlinder13,294.68272399902344,-3.393646240234375,0.7363433837890625 +20220902090000,vlinder14,294.51280212402344,-3.520599365234375,0.6220855712890625 +20220902090000,vlinder15,294.83506774902344,-3.126068115234375,1.1982574462890625 +20220902090000,vlinder16,294.51280212402344,-3.520599365234375,0.6220855712890625 +20220902090000,vlinder17,294.49327087402344,-3.334075927734375,0.7675933837890625 +20220902090000,vlinder18,294.63780212402344,-3.365325927734375,0.8506011962890625 +20220902090000,vlinder19,294.67686462402344,-3.110443115234375,1.4863433837890625 +20220902090000,vlinder20,294.67686462402344,-3.110443115234375,1.4863433837890625 +20220902090000,vlinder21,293.87413024902344,-4.592864990234375,0.3213043212890625 +20220902090000,vlinder22,294.47569274902344,-3.017669677734375,0.1943511962890625 +20220902090000,vlinder23,294.31553649902344,-3.818450927734375,0.6396636962890625 +20220902090000,vlinder24,294.52842712402344,-3.591888427734375,0.6533355712890625 +20220902090000,vlinder25,294.54991149902344,-3.484466552734375,0.6806793212890625 +20220902090000,vlinder26,294.61045837402344,-3.157318115234375,0.5371246337890625 +20220902090000,vlinder27,294.78623962402344,-3.271575927734375,0.6963043212890625 +20220902090000,vlinder28,294.91319274902344,-3.036224365234375,0.7617340087890625 +20220902100000,vlinder01,296.6089782714844,-3.0567474365234375,1.1916227340698242 +20220902100000,vlinder02,296.6421813964844,-3.0098724365234375,1.1418180465698242 +20220902100000,vlinder03,296.2847595214844,-3.5147552490234375,0.9211149215698242 +20220902100000,vlinder04,296.2847595214844,-3.5147552490234375,0.9211149215698242 +20220902100000,vlinder05,296.4605407714844,-3.2823333740234375,1.1320524215698242 +20220902100000,vlinder06,296.7613220214844,-3.3526458740234375,1.4933805465698242 +20220902100000,vlinder07,296.7613220214844,-3.3526458740234375,1.4933805465698242 +20220902100000,vlinder08,296.7613220214844,-3.3526458740234375,1.4933805465698242 +20220902100000,vlinder09,296.4624938964844,-3.0518646240234375,1.6857633590698242 +20220902100000,vlinder10,296.4820251464844,-3.0010833740234375,1.6320524215698242 +20220902100000,vlinder11,296.4410095214844,-3.5840911865234375,1.2189664840698242 +20220902100000,vlinder12,296.4410095214844,-3.5840911865234375,1.2189664840698242 +20220902100000,vlinder13,296.4410095214844,-3.5840911865234375,1.2189664840698242 +20220902100000,vlinder14,296.2046813964844,-3.7051849365234375,1.0842008590698242 +20220902100000,vlinder15,296.4410095214844,-3.0967864990234375,1.7326383590698242 +20220902100000,vlinder16,296.2046813964844,-3.7051849365234375,1.0842008590698242 +20220902100000,vlinder17,296.4234313964844,-3.6651458740234375,1.3117399215698242 +20220902100000,vlinder18,296.5269470214844,-3.6768646240234375,1.3898649215698242 +20220902100000,vlinder19,296.3316345214844,-3.0518646240234375,2.084200859069824 +20220902100000,vlinder20,296.3316345214844,-3.0518646240234375,2.084200859069824 +20220902100000,vlinder21,295.3374938964844,-4.2481536865234375,0.8195524215698242 +20220902100000,vlinder22,296.4136657714844,-3.0958099365234375,0.7482633590698242 +20220902100000,vlinder23,295.9234313964844,-3.8047943115234375,1.1213102340698242 +20220902100000,vlinder24,296.1773376464844,-3.5655364990234375,1.1183805465698242 +20220902100000,vlinder25,296.1949157714844,-3.5157318115234375,1.1369352340698242 +20220902100000,vlinder26,296.6324157714844,-3.4590911865234375,1.0099821090698242 +20220902100000,vlinder27,296.4605407714844,-3.2823333740234375,1.1320524215698242 +20220902100000,vlinder28,296.6089782714844,-3.0567474365234375,1.1916227340698242 +20220902110000,vlinder01,297.9154510498047,-3.5780029296875,1.832789421081543 +20220902110000,vlinder02,297.9349822998047,-3.5750732421875,1.768336296081543 +20220902110000,vlinder03,297.9095916748047,-3.7635498046875,1.751734733581543 +20220902110000,vlinder04,297.9095916748047,-3.7635498046875,1.751734733581543 +20220902110000,vlinder05,297.7845916748047,-3.7576904296875,1.699000358581543 +20220902110000,vlinder06,298.1791229248047,-3.5203857421875,2.264430046081543 +20220902110000,vlinder07,298.1791229248047,-3.5203857421875,2.264430046081543 +20220902110000,vlinder08,298.1791229248047,-3.5203857421875,2.264430046081543 +20220902110000,vlinder09,297.7318572998047,-3.4139404296875,2.311305046081543 +20220902110000,vlinder10,297.7338104248047,-3.4256591796875,2.240992546081543 +20220902110000,vlinder11,297.9838104248047,-3.7821044921875,1.981226921081543 +20220902110000,vlinder12,297.9838104248047,-3.7821044921875,1.981226921081543 +20220902110000,vlinder13,297.9838104248047,-3.7821044921875,1.981226921081543 +20220902110000,vlinder14,297.7572479248047,-3.9305419921875,1.821070671081543 +20220902110000,vlinder15,297.7318572998047,-3.4031982421875,2.375758171081543 +20220902110000,vlinder16,297.7572479248047,-3.9305419921875,1.821070671081543 +20220902110000,vlinder17,297.8002166748047,-3.5682373046875,2.234156608581543 +20220902110000,vlinder18,297.8920135498047,-3.5555419921875,2.262476921081543 +20220902110000,vlinder19,297.6068572998047,-3.2508544921875,2.691187858581543 +20220902110000,vlinder20,297.6068572998047,-3.2508544921875,2.691187858581543 +20220902110000,vlinder21,296.5677947998047,-4.4276123046875,0.579859733581543 +20220902110000,vlinder22,297.8041229248047,-3.7000732421875,0.944117546081543 +20220902110000,vlinder23,297.2904510498047,-4.1014404296875,1.550562858581543 +20220902110000,vlinder24,297.5326385498047,-3.9481201171875,1.578883171081543 +20220902110000,vlinder25,297.5677947998047,-3.8983154296875,1.661890983581543 +20220902110000,vlinder26,298.2396697998047,-3.6278076171875,1.907984733581543 +20220902110000,vlinder27,297.7845916748047,-3.7576904296875,1.699000358581543 +20220902110000,vlinder28,297.9154510498047,-3.5780029296875,1.832789421081543 +20220902120000,vlinder01,298.20562744140625,-3.5939788818359375,2.2433090209960938 +20220902120000,vlinder02,298.22125244140625,-3.5930023193359375,2.1681137084960938 +20220902120000,vlinder03,298.89117431640625,-3.4972991943359375,2.5382308959960938 +20220902120000,vlinder04,298.89117431640625,-3.4972991943359375,2.5382308959960938 +20220902120000,vlinder05,298.19000244140625,-3.8713226318359375,2.1983871459960938 +20220902120000,vlinder06,298.66851806640625,-3.4172210693359375,2.8595199584960938 +20220902120000,vlinder07,298.66851806640625,-3.4172210693359375,2.8595199584960938 +20220902120000,vlinder08,298.66851806640625,-3.4172210693359375,2.8595199584960938 +20220902120000,vlinder09,298.05328369140625,-3.4387054443359375,2.7149887084960938 +20220902120000,vlinder10,298.03765869140625,-3.4621429443359375,2.6192855834960938 +20220902120000,vlinder11,298.70172119140625,-3.7765960693359375,2.6935043334960938 +20220902120000,vlinder12,298.70172119140625,-3.7765960693359375,2.6935043334960938 +20220902120000,vlinder13,298.70172119140625,-3.7765960693359375,2.6935043334960938 +20220902120000,vlinder14,298.55523681640625,-4.0060882568359375,2.5626449584960938 +20220902120000,vlinder15,298.07672119140625,-3.4133148193359375,2.8067855834960938 +20220902120000,vlinder16,298.55523681640625,-4.0060882568359375,2.5626449584960938 +20220902120000,vlinder17,298.54547119140625,-3.1359710693359375,2.5294418334960938 +20220902120000,vlinder18,298.63140869140625,-3.1662445068359375,2.5118637084960938 +20220902120000,vlinder19,298.02984619140625,-3.2717132568359375,3.0909652709960938 +20220902120000,vlinder20,298.02984619140625,-3.2717132568359375,3.0909652709960938 +20220902120000,vlinder21,297.35211181640625,-4.7121429443359375,0.7101058959960938 +20220902120000,vlinder22,298.39117431640625,-3.3625335693359375,1.5616683959960938 +20220902120000,vlinder23,297.98101806640625,-4.4015960693359375,2.2569808959960938 +20220902120000,vlinder24,298.10797119140625,-4.1721038818359375,2.1876449584960938 +20220902120000,vlinder25,298.11578369140625,-4.0890960693359375,2.2823715209960938 +20220902120000,vlinder26,299.14898681640625,-3.2678070068359375,2.6280746459960938 +20220902120000,vlinder27,298.19000244140625,-3.8713226318359375,2.1983871459960938 +20220902120000,vlinder28,298.20562744140625,-3.5939788818359375,2.2433090209960938 +20220902130000,vlinder01,298.6369323730469,-3.0950775146484375,2.7947998046875 +20220902130000,vlinder02,298.6076354980469,-3.0628509521484375,2.6844482421875 +20220902130000,vlinder03,299.6408386230469,-2.8255462646484375,3.0565185546875 +20220902130000,vlinder04,299.6408386230469,-2.8255462646484375,3.0565185546875 +20220902130000,vlinder05,298.6252136230469,-3.3704681396484375,2.8162841796875 +20220902130000,vlinder06,299.1564636230469,-3.0618743896484375,3.3787841796875 +20220902130000,vlinder07,299.1564636230469,-3.0618743896484375,3.3787841796875 +20220902130000,vlinder08,299.1564636230469,-3.0618743896484375,3.3787841796875 +20220902130000,vlinder09,298.5998229980469,-3.0989837646484375,3.2537841796875 +20220902130000,vlinder10,298.5412292480469,-3.0921478271484375,3.1102294921875 +20220902130000,vlinder11,299.2853698730469,-3.1663665771484375,3.3660888671875 +20220902130000,vlinder12,299.2853698730469,-3.1663665771484375,3.3660888671875 +20220902130000,vlinder13,299.2853698730469,-3.1663665771484375,3.3660888671875 +20220902130000,vlinder14,299.1857604980469,-3.2767181396484375,3.3221435546875 +20220902130000,vlinder15,298.6466979980469,-3.0970306396484375,3.3621826171875 +20220902130000,vlinder16,299.1857604980469,-3.2767181396484375,3.3221435546875 +20220902130000,vlinder17,299.0568542480469,-2.8558197021484375,2.5135498046875 +20220902130000,vlinder18,299.1330261230469,-2.9476165771484375,2.4481201171875 +20220902130000,vlinder19,298.5646667480469,-3.0628509521484375,3.4217529296875 +20220902130000,vlinder20,298.5646667480469,-3.0628509521484375,3.4217529296875 +20220902130000,vlinder21,297.8478698730469,-4.3636322021484375,1.3563232421875 +20220902130000,vlinder22,298.6623229980469,-2.7435150146484375,2.0614013671875 +20220902130000,vlinder23,298.4806823730469,-3.9339447021484375,3.0516357421875 +20220902130000,vlinder24,298.5822448730469,-3.7093353271484375,2.9061279296875 +20220902130000,vlinder25,298.5802917480469,-3.5892181396484375,2.9891357421875 +20220902130000,vlinder26,299.7951354980469,-2.6976165771484375,3.0145263671875 +20220902130000,vlinder27,298.6252136230469,-3.3704681396484375,2.8162841796875 +20220902130000,vlinder28,298.6369323730469,-3.0950775146484375,2.7947998046875 +20220902140000,vlinder01,298.8973693847656,-2.7010498046875,2.7906494140625 +20220902140000,vlinder02,298.8680725097656,-2.6629638671875,2.7193603515625 +20220902140000,vlinder03,299.7997131347656,-2.4071044921875,2.9439697265625 +20220902140000,vlinder04,299.7997131347656,-2.4071044921875,2.9439697265625 +20220902140000,vlinder05,298.9051818847656,-2.8426513671875,2.9849853515625 +20220902140000,vlinder06,299.3153381347656,-2.7078857421875,3.1783447265625 +20220902140000,vlinder07,299.3153381347656,-2.7078857421875,3.1783447265625 +20220902140000,vlinder08,299.3153381347656,-2.7078857421875,3.1783447265625 +20220902140000,vlinder09,298.8407287597656,-2.7362060546875,3.1138916015625 +20220902140000,vlinder10,298.7879943847656,-2.7176513671875,3.0201416015625 +20220902140000,vlinder11,299.4618225097656,-2.6268310546875,3.4508056640625 +20220902140000,vlinder12,299.4618225097656,-2.6268310546875,3.4508056640625 +20220902140000,vlinder13,299.4618225097656,-2.6268310546875,3.4508056640625 +20220902140000,vlinder14,299.3973693847656,-2.6405029296875,3.5338134765625 +20220902140000,vlinder15,298.8758850097656,-2.7430419921875,3.1861572265625 +20220902140000,vlinder16,299.3973693847656,-2.6405029296875,3.5338134765625 +20220902140000,vlinder17,299.1942443847656,-2.7791748046875,2.2525634765625 +20220902140000,vlinder18,299.2274475097656,-2.9324951171875,2.1588134765625 +20220902140000,vlinder19,298.7840881347656,-2.7528076171875,3.2008056640625 +20220902140000,vlinder20,298.7840881347656,-2.7528076171875,3.2008056640625 +20220902140000,vlinder21,298.1571350097656,-3.7254638671875,2.0328369140625 +20220902140000,vlinder22,298.7098693847656,-2.2987060546875,2.1607666015625 +20220902140000,vlinder23,298.7977600097656,-3.1385498046875,3.4986572265625 +20220902140000,vlinder24,298.8758850097656,-3.0487060546875,3.2447509765625 +20220902140000,vlinder25,298.8778381347656,-2.9256591796875,3.2916259765625 +20220902140000,vlinder26,299.9696350097656,-2.3104248046875,2.8570556640625 +20220902140000,vlinder27,298.9051818847656,-2.8426513671875,2.9849853515625 +20220902140000,vlinder28,298.8973693847656,-2.7010498046875,2.7906494140625 +20220902150000,vlinder01,298.75164794921875,-2.6715087890625,2.2725982666015625 +20220902150000,vlinder02,298.73406982421875,-2.6422119140625,2.2110748291015625 +20220902150000,vlinder03,299.44891357421875,-2.2603759765625,2.4864654541015625 +20220902150000,vlinder04,299.44891357421875,-2.2603759765625,2.4864654541015625 +20220902150000,vlinder05,298.71844482421875,-2.6314697265625,2.5147857666015625 +20220902150000,vlinder06,299.18328857421875,-2.5767822265625,2.7423248291015625 +20220902150000,vlinder07,299.18328857421875,-2.5767822265625,2.7423248291015625 +20220902150000,vlinder08,299.18328857421875,-2.5767822265625,2.7423248291015625 +20220902150000,vlinder09,298.74578857421875,-2.7808837890625,2.5069732666015625 +20220902150000,vlinder10,298.71258544921875,-2.7633056640625,2.4298248291015625 +20220902150000,vlinder11,299.11102294921875,-2.1607666015625,2.9278717041015625 +20220902150000,vlinder12,299.11102294921875,-2.1607666015625,2.9278717041015625 +20220902150000,vlinder13,299.11102294921875,-2.1607666015625,2.9278717041015625 +20220902150000,vlinder14,298.94305419921875,-2.0484619140625,2.9288482666015625 +20220902150000,vlinder15,298.77313232421875,-2.7779541015625,2.5792388916015625 +20220902150000,vlinder16,298.94305419921875,-2.0484619140625,2.9288482666015625 +20220902150000,vlinder17,298.95867919921875,-3.0699462890625,1.8741607666015625 +20220902150000,vlinder18,298.96844482421875,-3.2506103515625,1.7657623291015625 +20220902150000,vlinder19,298.79656982421875,-2.8228759765625,2.6417388916015625 +20220902150000,vlinder20,298.79656982421875,-2.8228759765625,2.6417388916015625 +20220902150000,vlinder21,298.00360107421875,-3.3814697265625,2.0440826416015625 +20220902150000,vlinder22,298.55828857421875,-2.4576416015625,1.4181060791015625 +20220902150000,vlinder23,298.51922607421875,-2.5875244140625,3.0929107666015625 +20220902150000,vlinder24,298.64422607421875,-2.6744384765625,2.8360748291015625 +20220902150000,vlinder25,298.62274169921875,-2.5074462890625,2.8184967041015625 +20220902150000,vlinder26,299.71844482421875,-2.2496337890625,2.4581451416015625 +20220902150000,vlinder27,298.71844482421875,-2.6314697265625,2.5147857666015625 +20220902150000,vlinder28,298.75164794921875,-2.6715087890625,2.2725982666015625 +20220902160000,vlinder01,298.8364715576172,-2.8189544677734375,1.98175048828125 +20220902160000,vlinder02,298.8032684326172,-2.8209075927734375,1.92022705078125 +20220902160000,vlinder03,299.2134246826172,-2.3970794677734375,2.00225830078125 +20220902160000,vlinder04,299.2134246826172,-2.3970794677734375,2.00225830078125 +20220902160000,vlinder05,298.7739715576172,-2.7046966552734375,2.16046142578125 +20220902160000,vlinder06,299.1528778076172,-2.5816497802734375,2.52862548828125 +20220902160000,vlinder07,299.1528778076172,-2.5816497802734375,2.52862548828125 +20220902160000,vlinder08,299.1528778076172,-2.5816497802734375,2.52862548828125 +20220902160000,vlinder09,298.8208465576172,-2.8921966552734375,2.19171142578125 +20220902160000,vlinder10,298.7798309326172,-2.9097747802734375,2.11456298828125 +20220902160000,vlinder11,299.0552215576172,-2.0709075927734375,2.60968017578125 +20220902160000,vlinder12,299.0552215576172,-2.0709075927734375,2.60968017578125 +20220902160000,vlinder13,299.0552215576172,-2.0709075927734375,2.60968017578125 +20220902160000,vlinder14,298.8852996826172,-1.9273529052734375,2.52178955078125 +20220902160000,vlinder15,298.8423309326172,-2.8638763427734375,2.27081298828125 +20220902160000,vlinder16,298.8852996826172,-1.9273529052734375,2.52178955078125 +20220902160000,vlinder17,298.4399871826172,-3.5962982177734375,1.56671142578125 +20220902160000,vlinder18,298.4399871826172,-3.7222747802734375,1.45050048828125 +20220902160000,vlinder19,298.7583465576172,-2.9488372802734375,2.32745361328125 +20220902160000,vlinder20,298.7583465576172,-2.9488372802734375,2.32745361328125 +20220902160000,vlinder21,298.0083465576172,-3.5308685302734375,1.66925048828125 +20220902160000,vlinder22,298.4165496826172,-2.8209075927734375,0.98077392578125 +20220902160000,vlinder23,298.5083465576172,-2.4859466552734375,2.61065673828125 +20220902160000,vlinder24,298.6645965576172,-2.6802825927734375,2.40655517578125 +20220902160000,vlinder25,298.6470184326172,-2.4517669677734375,2.39971923828125 +20220902160000,vlinder26,299.4634246826172,-2.4390716552734375,2.09698486328125 +20220902160000,vlinder27,298.7739715576172,-2.7046966552734375,2.16046142578125 +20220902160000,vlinder28,298.8364715576172,-2.8189544677734375,1.98175048828125 +20220902170000,vlinder01,298.31593322753906,-2.3955841064453125,1.13128662109375 +20220902170000,vlinder02,298.31593322753906,-2.4073028564453125,1.09417724609375 +20220902170000,vlinder03,298.68507385253906,-2.5352325439453125,1.61663818359375 +20220902170000,vlinder04,298.68507385253906,-2.5352325439453125,1.61663818359375 +20220902170000,vlinder05,298.18898010253906,-2.2823028564453125,1.30511474609375 +20220902170000,vlinder06,298.58155822753906,-2.1074981689453125,1.79534912109375 +20220902170000,vlinder07,298.58155822753906,-2.1074981689453125,1.79534912109375 +20220902170000,vlinder08,298.58155822753906,-2.1074981689453125,1.79534912109375 +20220902170000,vlinder09,298.21046447753906,-2.4385528564453125,1.28460693359375 +20220902170000,vlinder10,298.21827697753906,-2.5010528564453125,1.19573974609375 +20220902170000,vlinder11,298.48390197753906,-1.7237091064453125,1.86370849609375 +20220902170000,vlinder12,298.48390197753906,-1.7237091064453125,1.86370849609375 +20220902170000,vlinder13,298.48390197753906,-1.7237091064453125,1.86370849609375 +20220902170000,vlinder14,298.27491760253906,-1.6289825439453125,1.73968505859375 +20220902170000,vlinder15,298.20851135253906,-2.3867950439453125,1.38031005859375 +20220902170000,vlinder16,298.27491760253906,-1.6289825439453125,1.73968505859375 +20220902170000,vlinder17,297.81202697753906,-3.6836700439453125,1.02679443359375 +20220902170000,vlinder18,297.83741760253906,-3.6905059814453125,0.89300537109375 +20220902170000,vlinder19,298.14796447753906,-2.5215606689453125,1.38714599609375 +20220902170000,vlinder20,298.14796447753906,-2.5215606689453125,1.38714599609375 +20220902170000,vlinder21,297.61280822753906,-3.3418731689453125,1.40179443359375 +20220902170000,vlinder22,297.61280822753906,-2.3106231689453125,1.14105224609375 +20220902170000,vlinder23,297.76710510253906,-1.9903106689453125,1.76800537109375 +20220902170000,vlinder24,298.01515197753906,-2.2315216064453125,1.58441162109375 +20220902170000,vlinder25,297.90577697753906,-1.9707794189453125,1.54534912109375 +20220902170000,vlinder26,298.85304260253906,-2.5811309814453125,1.64202880859375 +20220902170000,vlinder27,298.18898010253906,-2.2823028564453125,1.30511474609375 +20220902170000,vlinder28,298.31593322753906,-2.3955841064453125,1.13128662109375 +20220902180000,vlinder01,297.0653839111328,-2.373687744140625,0.3863067626953125 +20220902180000,vlinder02,297.0790557861328,-2.300445556640625,0.3394317626953125 +20220902180000,vlinder03,297.6728057861328,-2.959625244140625,1.0132598876953125 +20220902180000,vlinder04,297.6728057861328,-2.959625244140625,1.0132598876953125 +20220902180000,vlinder05,296.9813995361328,-2.312164306640625,0.5396270751953125 +20220902180000,vlinder06,297.2802276611328,-2.282867431640625,0.9654083251953125 +20220902180000,vlinder07,297.2802276611328,-2.282867431640625,0.9654083251953125 +20220902180000,vlinder08,297.2802276611328,-2.282867431640625,0.9654083251953125 +20220902180000,vlinder09,296.8622589111328,-2.531890869140625,0.5669708251953125 +20220902180000,vlinder10,296.8720245361328,-2.569000244140625,0.4478302001953125 +20220902180000,vlinder11,297.3153839111328,-2.087554931640625,1.1060333251953125 +20220902180000,vlinder12,297.3153839111328,-2.087554931640625,1.1060333251953125 +20220902180000,vlinder13,297.3153839111328,-2.087554931640625,1.1060333251953125 +20220902180000,vlinder14,297.1474151611328,-2.069000244140625,1.0611114501953125 +20220902180000,vlinder15,296.8544464111328,-2.503570556640625,0.6685333251953125 +20220902180000,vlinder16,297.1474151611328,-2.069000244140625,1.0611114501953125 +20220902180000,vlinder17,296.9091339111328,-3.604156494140625,0.3706817626953125 +20220902180000,vlinder18,296.9247589111328,-3.520172119140625,0.3062286376953125 +20220902180000,vlinder19,296.6728057861328,-2.641265869140625,0.5718536376953125 +20220902180000,vlinder20,296.6728057861328,-2.641265869140625,0.5718536376953125 +20220902180000,vlinder21,296.8817901611328,-2.915679931640625,1.2320098876953125 +20220902180000,vlinder22,296.4442901611328,-0.697906494140625,1.6450958251953125 +20220902180000,vlinder23,296.6552276611328,-2.085601806640625,0.9781036376953125 +20220902180000,vlinder24,296.8603057861328,-2.239898681640625,0.7964630126953125 +20220902180000,vlinder25,296.7353057861328,-2.096343994140625,0.8130645751953125 +20220902180000,vlinder26,297.7411651611328,-3.026031494140625,0.9468536376953125 +20220902180000,vlinder27,296.9813995361328,-2.312164306640625,0.5396270751953125 +20220902180000,vlinder28,297.0653839111328,-2.373687744140625,0.3863067626953125 +20220902190000,vlinder01,295.1079864501953,-1.028533935546875,-1.5103759765625 +20220902190000,vlinder02,295.0240020751953,-0.721893310546875,-1.7467041015625 +20220902190000,vlinder03,296.3950958251953,-3.914276123046875,0.4583740234375 +20220902190000,vlinder04,296.3950958251953,-3.914276123046875,0.4583740234375 +20220902190000,vlinder05,295.1372833251953,-0.995330810546875,-1.6617431640625 +20220902190000,vlinder06,295.9400177001953,-3.305877685546875,0.3753662109375 +20220902190000,vlinder07,295.9400177001953,-3.305877685546875,0.3753662109375 +20220902190000,vlinder08,295.9400177001953,-3.305877685546875,0.3753662109375 +20220902190000,vlinder09,295.3267364501953,-2.193572998046875,-0.9195556640625 +20220902190000,vlinder10,295.2134552001953,-1.834197998046875,-1.2359619140625 +20220902190000,vlinder11,295.9654083251953,-3.231658935546875,-0.0845947265625 +20220902190000,vlinder12,295.9654083251953,-3.231658935546875,-0.0845947265625 +20220902190000,vlinder13,295.9654083251953,-3.231658935546875,-0.0845947265625 +20220902190000,vlinder14,295.7583770751953,-3.114471435546875,-0.4420166015625 +20220902190000,vlinder15,295.4204864501953,-2.534393310546875,-0.6265869140625 +20220902190000,vlinder16,295.7583770751953,-3.114471435546875,-0.4420166015625 +20220902190000,vlinder17,295.7349395751953,-4.034393310546875,0.7025146484375 +20220902190000,vlinder18,295.7193145751953,-3.933807373046875,0.7220458984375 +20220902190000,vlinder19,295.3325958251953,-3.208221435546875,-0.4146728515625 +20220902190000,vlinder20,295.3325958251953,-3.208221435546875,-0.4146728515625 +20220902190000,vlinder21,295.2368927001953,-0.870330810546875,-1.9967041015625 +20220902190000,vlinder22,294.4126739501953,0.038848876953125,-1.9801025390625 +20220902190000,vlinder23,295.1919708251953,-1.480682373046875,-1.5826416015625 +20220902190000,vlinder24,295.1958770751953,-1.140838623046875,-1.6715087890625 +20220902190000,vlinder25,295.1157989501953,-1.259979248046875,-1.5767822265625 +20220902190000,vlinder26,296.4419708251953,-4.003143310546875,0.5823974609375 +20220902190000,vlinder27,295.1372833251953,-0.995330810546875,-1.6617431640625 +20220902190000,vlinder28,295.1079864501953,-1.028533935546875,-1.5103759765625 +20220902200000,vlinder01,294.5014953613281,-1.9572906494140625,-1.038787841796875 +20220902200000,vlinder02,294.3804016113281,-1.6272125244140625,-1.355194091796875 +20220902200000,vlinder03,296.2221984863281,-4.5422515869140625,1.042266845703125 +20220902200000,vlinder04,296.2221984863281,-4.5422515869140625,1.042266845703125 +20220902200000,vlinder05,294.3901672363281,-1.9338531494140625,-1.155975341796875 +20220902200000,vlinder06,295.8804016113281,-4.3166656494140625,1.008087158203125 +20220902200000,vlinder07,295.8804016113281,-4.3166656494140625,1.008087158203125 +20220902200000,vlinder08,295.8804016113281,-4.3166656494140625,1.008087158203125 +20220902200000,vlinder09,294.9331359863281,-2.9748687744140625,0.512969970703125 +20220902200000,vlinder10,294.7124328613281,-2.5959625244140625,0.143829345703125 +20220902200000,vlinder11,295.7475891113281,-4.2473297119140625,0.671173095703125 +20220902200000,vlinder12,295.7475891113281,-4.2473297119140625,0.671173095703125 +20220902200000,vlinder13,295.7475891113281,-4.2473297119140625,0.671173095703125 +20220902200000,vlinder14,295.5171203613281,-4.1135406494140625,0.385040283203125 +20220902200000,vlinder15,295.1206359863281,-3.3313140869140625,0.838165283203125 +20220902200000,vlinder16,295.5171203613281,-4.1135406494140625,0.385040283203125 +20220902200000,vlinder17,295.0386047363281,-3.9836578369140625,1.081329345703125 +20220902200000,vlinder18,294.9682922363281,-3.8430328369140625,1.097930908203125 +20220902200000,vlinder19,295.0249328613281,-3.6945953369140625,1.618438720703125 +20220902200000,vlinder20,295.0249328613281,-3.6945953369140625,1.618438720703125 +20220902200000,vlinder21,294.5835266113281,-1.6252593994140625,-1.260467529296875 +20220902200000,vlinder22,293.9077453613281,-0.1887359619140625,-1.785858154296875 +20220902200000,vlinder23,294.2886047363281,-2.4592437744140625,-0.880584716796875 +20220902200000,vlinder24,294.3139953613281,-2.1037750244140625,-1.041717529296875 +20220902200000,vlinder25,294.2593078613281,-2.1819000244140625,-0.974334716796875 +20220902200000,vlinder26,296.1870422363281,-4.5188140869140625,1.095977783203125 +20220902200000,vlinder27,294.3901672363281,-1.9338531494140625,-1.155975341796875 +20220902200000,vlinder28,294.5014953613281,-1.9572906494140625,-1.038787841796875 +20220902210000,vlinder01,294.0086364746094,-2.8529815673828125,0.4811248779296875 +20220902210000,vlinder02,293.8914489746094,-2.6371612548828125,0.1490936279296875 +20220902210000,vlinder03,295.5203552246094,-4.1732940673828125,1.3414764404296875 +20220902210000,vlinder04,295.5203552246094,-4.1732940673828125,1.3414764404296875 +20220902210000,vlinder05,293.9070739746094,-2.9818878173828125,0.1110076904296875 +20220902210000,vlinder06,295.2059020996094,-3.8842315673828125,1.9488983154296875 +20220902210000,vlinder07,295.2059020996094,-3.8842315673828125,1.9488983154296875 +20220902210000,vlinder08,295.2059020996094,-3.8842315673828125,1.9488983154296875 +20220902210000,vlinder09,294.2488708496094,-2.8197784423828125,1.7877655029296875 +20220902210000,vlinder10,294.0223083496094,-2.6029815673828125,1.4449920654296875 +20220902210000,vlinder11,295.2371520996094,-4.3939971923828125,1.5807342529296875 +20220902210000,vlinder12,295.2371520996094,-4.3939971923828125,1.5807342529296875 +20220902210000,vlinder13,295.2371520996094,-4.3939971923828125,1.5807342529296875 +20220902210000,vlinder14,295.1492614746094,-4.5980987548828125,1.3649139404296875 +20220902210000,vlinder15,294.4187927246094,-2.9945831298828125,2.0504608154296875 +20220902210000,vlinder16,295.1492614746094,-4.5980987548828125,1.3649139404296875 +20220902210000,vlinder17,294.2586364746094,-3.6078643798828125,1.3112030029296875 +20220902210000,vlinder18,294.1844177246094,-3.4887237548828125,1.3043670654296875 +20220902210000,vlinder19,294.0769958496094,-2.5639190673828125,2.3453826904296875 +20220902210000,vlinder20,294.0769958496094,-2.5639190673828125,2.3453826904296875 +20220902210000,vlinder21,294.0828552246094,-2.4281768798828125,-0.8860626220703125 +20220902210000,vlinder22,293.4812927246094,-0.1781768798828125,-1.4221954345703125 +20220902210000,vlinder23,293.7976989746094,-3.4740753173828125,-0.1887969970703125 +20220902210000,vlinder24,293.7605895996094,-3.1322784423828125,-0.1438751220703125 +20220902210000,vlinder25,293.7723083496094,-3.2514190673828125,0.0211639404296875 +20220902210000,vlinder26,295.4324645996094,-4.0434112548828125,1.3903045654296875 +20220902210000,vlinder27,293.9070739746094,-2.9818878173828125,0.1110076904296875 +20220902210000,vlinder28,294.0086364746094,-2.8529815673828125,0.4811248779296875 +20220902220000,vlinder01,293.3350372314453,-2.521728515625,1.486602783203125 +20220902220000,vlinder02,293.2393341064453,-2.428955078125,1.360626220703125 +20220902220000,vlinder03,294.9268341064453,-3.550048828125,1.438751220703125 +20220902220000,vlinder04,294.9268341064453,-3.550048828125,1.438751220703125 +20220902220000,vlinder05,293.4502716064453,-3.011962890625,1.245391845703125 +20220902220000,vlinder06,294.5088653564453,-2.958251953125,1.982696533203125 +20220902220000,vlinder07,294.5088653564453,-2.958251953125,1.982696533203125 +20220902220000,vlinder08,294.5088653564453,-2.958251953125,1.982696533203125 +20220902220000,vlinder09,293.4365997314453,-2.274658203125,1.875274658203125 +20220902220000,vlinder10,293.2393341064453,-2.210205078125,1.776641845703125 +20220902220000,vlinder11,294.7315216064453,-3.705322265625,1.879180908203125 +20220902220000,vlinder12,294.7315216064453,-3.705322265625,1.879180908203125 +20220902220000,vlinder13,294.7315216064453,-3.705322265625,1.879180908203125 +20220902220000,vlinder14,294.7490997314453,-4.039306640625,1.794219970703125 +20220902220000,vlinder15,293.5869903564453,-2.336181640625,1.955352783203125 +20220902220000,vlinder16,294.7490997314453,-4.039306640625,1.794219970703125 +20220902220000,vlinder17,293.6084747314453,-3.184814453125,1.312774658203125 +20220902220000,vlinder18,293.5264434814453,-3.140869140625,1.274688720703125 +20220902220000,vlinder19,293.2451934814453,-2.097900390625,2.093048095703125 +20220902220000,vlinder20,293.2451934814453,-2.097900390625,2.093048095703125 +20220902220000,vlinder21,293.9834747314453,-3.042236328125,-0.447967529296875 +20220902220000,vlinder22,293.3408966064453,0.089599609375,-0.420623779296875 +20220902220000,vlinder23,293.7451934814453,-4.040283203125,0.857696533203125 +20220902220000,vlinder24,293.4951934814453,-3.542236328125,0.918243408203125 +20220902220000,vlinder25,293.5264434814453,-3.494384765625,1.158477783203125 +20220902220000,vlinder26,294.8408966064453,-3.359619140625,1.511993408203125 +20220902220000,vlinder27,293.4502716064453,-3.011962890625,1.245391845703125 +20220902220000,vlinder28,293.3350372314453,-2.521728515625,1.486602783203125 +20220902230000,vlinder01,292.4656677246094,-2.249755859375,1.6441192626953125 +20220902230000,vlinder02,292.4285583496094,-2.165771484375,1.5952911376953125 +20220902230000,vlinder03,294.1453552246094,-3.002685546875,1.5200958251953125 +20220902230000,vlinder04,294.1453552246094,-3.002685546875,1.5200958251953125 +20220902230000,vlinder05,292.7273864746094,-2.679443359375,1.6314239501953125 +20220902230000,vlinder06,293.2566833496094,-2.424560546875,1.8872833251953125 +20220902230000,vlinder07,293.2566833496094,-2.424560546875,1.8872833251953125 +20220902230000,vlinder08,293.2566833496094,-2.424560546875,1.8872833251953125 +20220902230000,vlinder09,292.4207458496094,-2.157958984375,1.8228302001953125 +20220902230000,vlinder10,292.2957458496094,-2.110107421875,1.7788848876953125 +20220902230000,vlinder11,293.8172302246094,-3.058349609375,1.9048614501953125 +20220902230000,vlinder12,293.8172302246094,-3.058349609375,1.9048614501953125 +20220902230000,vlinder13,293.8172302246094,-3.058349609375,1.9048614501953125 +20220902230000,vlinder14,294.0340270996094,-3.387451171875,1.8931427001953125 +20220902230000,vlinder15,292.5086364746094,-2.190185546875,1.8609161376953125 +20220902230000,vlinder16,294.0340270996094,-3.387451171875,1.8931427001953125 +20220902230000,vlinder17,292.6980895996094,-2.892333984375,1.3657989501953125 +20220902230000,vlinder18,292.6590270996094,-2.931396484375,1.3443145751953125 +20220902230000,vlinder19,292.0359802246094,-2.014404296875,1.9673614501953125 +20220902230000,vlinder20,292.0359802246094,-2.014404296875,1.9673614501953125 +20220902230000,vlinder21,293.6531677246094,-2.562255859375,0.8189239501953125 +20220902230000,vlinder22,292.7605895996094,0.332275390625,-0.1439666748046875 +20220902230000,vlinder23,293.2566833496094,-3.588623046875,1.6695098876953125 +20220902230000,vlinder24,292.9129333496094,-3.199951171875,1.6382598876953125 +20220902230000,vlinder25,292.8894958496094,-3.037841796875,1.6480255126953125 +20220902230000,vlinder26,293.8855895996094,-2.808349609375,1.5493927001953125 +20220902230000,vlinder27,292.7273864746094,-2.679443359375,1.6314239501953125 +20220902230000,vlinder28,292.4656677246094,-2.249755859375,1.6441192626953125 +20220903000000,vlinder01,291.71234130859375,-2.2999114990234375,1.839599609375 +20220903000000,vlinder02,291.67523193359375,-2.2481536865234375,1.829833984375 +20220903000000,vlinder03,293.29241943359375,-2.8340911865234375,1.461669921875 +20220903000000,vlinder04,293.29241943359375,-2.8340911865234375,1.461669921875 +20220903000000,vlinder05,291.99359130859375,-2.6192474365234375,1.896240234375 +20220903000000,vlinder06,292.35101318359375,-2.3321380615234375,1.720458984375 +20220903000000,vlinder07,292.35101318359375,-2.3321380615234375,1.720458984375 +20220903000000,vlinder08,292.35101318359375,-2.3321380615234375,1.720458984375 +20220903000000,vlinder09,291.69476318359375,-2.1534271240234375,1.907958984375 +20220903000000,vlinder10,291.58929443359375,-2.1407318115234375,1.907958984375 +20220903000000,vlinder11,292.94476318359375,-2.8838958740234375,1.792724609375 +20220903000000,vlinder12,292.94476318359375,-2.8838958740234375,1.792724609375 +20220903000000,vlinder13,292.94476318359375,-2.8838958740234375,1.792724609375 +20220903000000,vlinder14,293.20648193359375,-3.1749114990234375,1.849365234375 +20220903000000,vlinder15,291.75921630859375,-2.1583099365234375,1.897216796875 +20220903000000,vlinder16,293.20648193359375,-3.1749114990234375,1.849365234375 +20220903000000,vlinder17,292.02874755859375,-2.8340911865234375,1.371826171875 +20220903000000,vlinder18,292.04437255859375,-2.8956146240234375,1.406982421875 +20220903000000,vlinder19,291.27874755859375,-2.0001068115234375,1.939208984375 +20220903000000,vlinder20,291.27874755859375,-2.0001068115234375,1.939208984375 +20220903000000,vlinder21,292.99749755859375,-2.0206146240234375,1.383544921875 +20220903000000,vlinder22,292.08929443359375,-0.0049896240234375,0.293701171875 +20220903000000,vlinder23,292.52874755859375,-3.2735443115234375,2.031982421875 +20220903000000,vlinder24,292.18499755859375,-2.9503021240234375,2.002685546875 +20220903000000,vlinder25,292.14984130859375,-2.9053802490234375,1.902099609375 +20220903000000,vlinder26,292.98577880859375,-2.6553802490234375,1.428466796875 +20220903000000,vlinder27,291.99359130859375,-2.6192474365234375,1.896240234375 +20220903000000,vlinder28,291.71234130859375,-2.2999114990234375,1.839599609375 +20220903010000,vlinder01,291.1178436279297,-2.075286865234375,1.929779052734375 +20220903010000,vlinder02,291.0826873779297,-1.993255615234375,1.962982177734375 +20220903010000,vlinder03,292.7584686279297,-2.897552490234375,1.330169677734375 +20220903010000,vlinder04,292.7584686279297,-2.897552490234375,1.330169677734375 +20220903010000,vlinder05,291.3658905029297,-2.343841552734375,2.047943115234375 +20220903010000,vlinder06,291.7272186279297,-2.408294677734375,1.495208740234375 +20220903010000,vlinder07,291.7272186279297,-2.408294677734375,1.495208740234375 +20220903010000,vlinder08,291.7272186279297,-2.408294677734375,1.495208740234375 +20220903010000,vlinder09,291.1315155029297,-2.140716552734375,1.896575927734375 +20220903010000,vlinder10,291.0436248779297,-2.058685302734375,1.935638427734375 +20220903010000,vlinder11,292.3112030029297,-2.909271240234375,1.631927490234375 +20220903010000,vlinder12,292.3112030029297,-2.909271240234375,1.631927490234375 +20220903010000,vlinder13,292.3112030029297,-2.909271240234375,1.631927490234375 +20220903010000,vlinder14,292.5729217529297,-3.167083740234375,1.753997802734375 +20220903010000,vlinder15,291.1862030029297,-2.202239990234375,1.842864990234375 +20220903010000,vlinder16,292.5729217529297,-3.167083740234375,1.753997802734375 +20220903010000,vlinder17,291.5084686279297,-2.800872802734375,1.181732177734375 +20220903010000,vlinder18,291.5260467529297,-2.850677490234375,1.238372802734375 +20220903010000,vlinder19,290.7975311279297,-2.068450927734375,1.872161865234375 +20220903010000,vlinder20,290.7975311279297,-2.068450927734375,1.872161865234375 +20220903010000,vlinder21,292.2701873779297,-2.583099365234375,2.162200927734375 +20220903010000,vlinder22,289.8092498779297,-0.937591552734375,1.478607177734375 +20220903010000,vlinder23,291.8151092529297,-3.022552490234375,2.284271240234375 +20220903010000,vlinder24,291.4987030029297,-2.686614990234375,2.246185302734375 +20220903010000,vlinder25,291.4928436279297,-2.640716552734375,2.059661865234375 +20220903010000,vlinder26,292.4205780029297,-2.724700927734375,1.242279052734375 +20220903010000,vlinder27,291.3658905029297,-2.343841552734375,2.047943115234375 +20220903010000,vlinder28,291.1178436279297,-2.075286865234375,1.929779052734375 +20220903020000,vlinder01,290.6810302734375,-1.8126678466796875,1.9232635498046875 +20220903020000,vlinder02,290.6439208984375,-1.7111053466796875,1.9759979248046875 +20220903020000,vlinder03,292.2103271484375,-2.8321990966796875,1.2191619873046875 +20220903020000,vlinder04,292.2103271484375,-2.8321990966796875,1.2191619873046875 +20220903020000,vlinder05,290.8822021484375,-2.0489959716796875,2.0736541748046875 +20220903020000,vlinder06,291.3255615234375,-2.3702850341796875,1.4086151123046875 +20220903020000,vlinder07,291.3255615234375,-2.3702850341796875,1.4086151123046875 +20220903020000,vlinder08,291.3255615234375,-2.3702850341796875,1.4086151123046875 +20220903020000,vlinder09,290.7962646484375,-1.9552459716796875,1.8617401123046875 +20220903020000,vlinder10,290.7083740234375,-1.8390350341796875,1.9300994873046875 +20220903020000,vlinder11,291.7669677734375,-2.8429412841796875,1.5150604248046875 +20220903020000,vlinder12,291.7669677734375,-2.8429412841796875,1.5150604248046875 +20220903020000,vlinder13,291.7669677734375,-2.8429412841796875,1.5150604248046875 +20220903020000,vlinder14,291.9759521484375,-3.0695037841796875,1.6244354248046875 +20220903020000,vlinder15,290.8509521484375,-2.0499725341796875,1.7884979248046875 +20220903020000,vlinder16,291.9759521484375,-3.0695037841796875,1.6244354248046875 +20220903020000,vlinder17,291.0618896484375,-2.6993865966796875,0.9730682373046875 +20220903020000,vlinder18,291.0911865234375,-2.7452850341796875,1.0179901123046875 +20220903020000,vlinder19,290.5579833984375,-1.9435272216796875,1.9027557373046875 +20220903020000,vlinder20,290.5579833984375,-1.9435272216796875,1.9027557373046875 +20220903020000,vlinder21,291.6986083984375,-2.8155975341796875,3.1224822998046875 +20220903020000,vlinder22,289.4818115234375,-1.0431365966796875,2.1361541748046875 +20220903020000,vlinder23,291.2200927734375,-2.7091522216796875,2.3431854248046875 +20220903020000,vlinder24,290.9447021484375,-2.3790740966796875,2.3138885498046875 +20220903020000,vlinder25,290.9466552734375,-2.3409881591796875,2.0677947998046875 +20220903020000,vlinder26,291.8978271484375,-2.6632537841796875,1.1185760498046875 +20220903020000,vlinder27,290.8822021484375,-2.0489959716796875,2.0736541748046875 +20220903020000,vlinder28,290.6810302734375,-1.8126678466796875,1.9232635498046875 +20220903030000,vlinder01,290.3131408691406,-1.565826416015625,1.7575263977050781 +20220903030000,vlinder02,290.2897033691406,-1.495513916015625,1.8004951477050781 +20220903030000,vlinder03,291.7096252441406,-2.647857666015625,1.0465888977050781 +20220903030000,vlinder04,291.7096252441406,-2.647857666015625,1.0465888977050781 +20220903030000,vlinder05,290.4811096191406,-1.807037353515625,1.9206123352050781 +20220903030000,vlinder06,290.9322814941406,-2.104888916015625,1.3122138977050781 +20220903030000,vlinder07,290.9322814941406,-2.104888916015625,1.3122138977050781 +20220903030000,vlinder08,290.9322814941406,-2.104888916015625,1.3122138977050781 +20220903030000,vlinder09,290.5025939941406,-1.593170166015625,1.7585029602050781 +20220903030000,vlinder10,290.4068908691406,-1.503326416015625,1.8161201477050781 +20220903030000,vlinder11,291.2994689941406,-2.584381103515625,1.4137763977050781 +20220903030000,vlinder12,291.2994689941406,-2.584381103515625,1.4137763977050781 +20220903030000,vlinder13,291.2994689941406,-2.584381103515625,1.4137763977050781 +20220903030000,vlinder14,291.4908752441406,-2.797271728515625,1.5241279602050781 +20220903030000,vlinder15,290.5533752441406,-1.676177978515625,1.6969795227050781 +20220903030000,vlinder16,291.4908752441406,-2.797271728515625,1.5241279602050781 +20220903030000,vlinder17,290.4869689941406,-2.632232666015625,0.7838935852050781 +20220903030000,vlinder18,290.5162658691406,-2.674224853515625,0.8249092102050781 +20220903030000,vlinder19,290.2643127441406,-1.590240478515625,1.8434638977050781 +20220903030000,vlinder20,290.2643127441406,-1.590240478515625,1.8434638977050781 +20220903030000,vlinder21,291.2955627441406,-2.562896728515625,3.672565460205078 +20220903030000,vlinder22,289.4420471191406,-1.088287353515625,2.182331085205078 +20220903030000,vlinder23,290.7584533691406,-2.437896728515625,2.245807647705078 +20220903030000,vlinder24,290.5123596191406,-2.132232666015625,2.189167022705078 +20220903030000,vlinder25,290.5006408691406,-2.078521728515625,1.9342842102050781 +20220903030000,vlinder26,291.3834533691406,-2.510162353515625,0.9430732727050781 +20220903030000,vlinder27,290.4811096191406,-1.807037353515625,1.9206123352050781 +20220903030000,vlinder28,290.3131408691406,-1.565826416015625,1.7575263977050781 +20220903040000,vlinder01,289.913818359375,-1.407135009765625,1.598332405090332 +20220903040000,vlinder02,289.894287109375,-1.370025634765625,1.629582405090332 +20220903040000,vlinder03,291.146240234375,-2.537017822265625,0.877629280090332 +20220903040000,vlinder04,291.146240234375,-2.537017822265625,0.877629280090332 +20220903040000,vlinder05,290.081787109375,-1.665924072265625,1.718449592590332 +20220903040000,vlinder06,290.620849609375,-1.867095947265625,1.215519905090332 +20220903040000,vlinder07,290.620849609375,-1.867095947265625,1.215519905090332 +20220903040000,vlinder08,290.620849609375,-1.867095947265625,1.215519905090332 +20220903040000,vlinder09,290.185302734375,-1.271392822265625,1.674504280090332 +20220903040000,vlinder10,290.073974609375,-1.223541259765625,1.710637092590332 +20220903040000,vlinder11,290.904052734375,-2.340728759765625,1.261418342590332 +20220903040000,vlinder12,290.904052734375,-2.340728759765625,1.261418342590332 +20220903040000,vlinder13,290.904052734375,-2.340728759765625,1.261418342590332 +20220903040000,vlinder14,291.066162109375,-2.534088134765625,1.347355842590332 +20220903040000,vlinder15,290.243896484375,-1.330963134765625,1.626652717590332 +20220903040000,vlinder16,291.066162109375,-2.534088134765625,1.347355842590332 +20220903040000,vlinder17,289.991943359375,-2.549713134765625,0.751652717590332 +20220903040000,vlinder18,290.021240234375,-2.582916259765625,0.802433967590332 +20220903040000,vlinder19,289.962646484375,-1.248931884765625,1.770207405090332 +20220903040000,vlinder20,289.962646484375,-1.248931884765625,1.770207405090332 +20220903040000,vlinder21,290.907958984375,-2.323150634765625,3.625676155090332 +20220903040000,vlinder22,289.243896484375,-1.034088134765625,2.260441780090332 +20220903040000,vlinder23,290.343505859375,-2.263580322265625,1.996769905090332 +20220903040000,vlinder24,290.091552734375,-1.986236572265625,1.955754280090332 +20220903040000,vlinder25,290.079833984375,-1.917877197265625,1.708683967590332 +20220903040000,vlinder26,290.859130859375,-2.414947509765625,0.810246467590332 +20220903040000,vlinder27,290.081787109375,-1.665924072265625,1.718449592590332 +20220903040000,vlinder28,289.913818359375,-1.407135009765625,1.598332405090332 +20220903050000,vlinder01,289.3201141357422,-1.4419097900390625,1.5099868774414062 +20220903050000,vlinder02,289.3337860107422,-1.3803863525390625,1.5461196899414062 +20220903050000,vlinder03,290.3845672607422,-2.5727691650390625,0.8508071899414062 +20220903050000,vlinder04,290.3845672607422,-2.5727691650390625,0.8508071899414062 +20220903050000,vlinder05,289.5486297607422,-1.6762847900390625,1.6056900024414062 +20220903050000,vlinder06,290.0740203857422,-1.9555816650390625,1.1574478149414062 +20220903050000,vlinder07,290.0740203857422,-1.9555816650390625,1.1574478149414062 +20220903050000,vlinder08,290.0740203857422,-1.9555816650390625,1.1574478149414062 +20220903050000,vlinder09,289.6208953857422,-1.3559722900390625,1.5754165649414062 +20220903050000,vlinder10,289.5115203857422,-1.2954254150390625,1.6144790649414062 +20220903050000,vlinder11,290.3005828857422,-2.4116363525390625,1.1603775024414062 +20220903050000,vlinder12,290.3005828857422,-2.4116363525390625,1.1603775024414062 +20220903050000,vlinder13,290.3005828857422,-2.4116363525390625,1.1603775024414062 +20220903050000,vlinder14,290.4470672607422,-2.5971832275390625,1.2160415649414062 +20220903050000,vlinder15,289.6755828857422,-1.4243316650390625,1.5295181274414062 +20220903050000,vlinder16,290.4470672607422,-2.5971832275390625,1.2160415649414062 +20220903050000,vlinder17,289.5037078857422,-2.4360504150390625,0.8176040649414062 +20220903050000,vlinder18,289.5583953857422,-2.4477691650390625,0.8547134399414062 +20220903050000,vlinder19,289.3923797607422,-1.3383941650390625,1.6877212524414062 +20220903050000,vlinder20,289.3923797607422,-1.3383941650390625,1.6877212524414062 +20220903050000,vlinder21,290.5466766357422,-1.9829254150390625,3.6086196899414062 +20220903050000,vlinder22,288.9724578857422,-0.8364410400390625,2.2746353149414062 +20220903050000,vlinder23,289.8767547607422,-2.2202301025390625,1.8273696899414062 +20220903050000,vlinder24,289.5857391357422,-1.9458160400390625,1.8185806274414062 +20220903050000,vlinder25,289.5564422607422,-1.9282379150390625,1.5607681274414062 +20220903050000,vlinder26,290.1423797607422,-2.4311676025390625,0.8224868774414062 +20220903050000,vlinder27,289.5486297607422,-1.6762847900390625,1.6056900024414062 +20220903050000,vlinder28,289.3201141357422,-1.4419097900390625,1.5099868774414062 +20220903060000,vlinder01,289.2379913330078,-1.248138427734375,1.2291717529296875 +20220903060000,vlinder02,289.2790069580078,-1.160247802734375,1.2613983154296875 +20220903060000,vlinder03,290.3043975830078,-2.501068115234375,0.7799530029296875 +20220903060000,vlinder04,290.3043975830078,-2.501068115234375,0.7799530029296875 +20220903060000,vlinder05,289.5172882080078,-1.456146240234375,1.3297576904296875 +20220903060000,vlinder06,290.1559600830078,-1.840911865234375,1.0133514404296875 +20220903060000,vlinder07,290.1559600830078,-1.840911865234375,1.0133514404296875 +20220903060000,vlinder08,290.1559600830078,-1.840911865234375,1.0133514404296875 +20220903060000,vlinder09,289.6579132080078,-1.252044677734375,1.2877655029296875 +20220903060000,vlinder10,289.5387725830078,-1.164154052734375,1.3219451904296875 +20220903060000,vlinder11,290.2751007080078,-2.340911865234375,1.0367889404296875 +20220903060000,vlinder12,290.2751007080078,-2.340911865234375,1.0367889404296875 +20220903060000,vlinder13,290.2751007080078,-2.340911865234375,1.0367889404296875 +20220903060000,vlinder14,290.3649444580078,-2.552825927734375,1.0817108154296875 +20220903060000,vlinder15,289.7282257080078,-1.337982177734375,1.2545623779296875 +20220903060000,vlinder16,290.3649444580078,-2.552825927734375,1.0817108154296875 +20220903060000,vlinder17,289.7047882080078,-2.225677490234375,0.7535858154296875 +20220903060000,vlinder18,289.7926788330078,-2.230560302734375,0.7789764404296875 +20220903060000,vlinder19,289.5290069580078,-1.250091552734375,1.4606170654296875 +20220903060000,vlinder20,289.5290069580078,-1.250091552734375,1.4606170654296875 +20220903060000,vlinder21,290.5075225830078,-1.520599365234375,3.3199920654296875 +20220903060000,vlinder22,289.1442413330078,-0.579193115234375,2.0465545654296875 +20220903060000,vlinder23,289.8610382080078,-1.985443115234375,1.5690155029296875 +20220903060000,vlinder24,289.5583038330078,-1.691497802734375,1.5397186279296875 +20220903060000,vlinder25,289.5231475830078,-1.721771240234375,1.3082733154296875 +20220903060000,vlinder26,290.1325225830078,-2.305755615234375,0.7662811279296875 +20220903060000,vlinder27,289.5172882080078,-1.456146240234375,1.3297576904296875 +20220903060000,vlinder28,289.2379913330078,-1.248138427734375,1.2291717529296875 +20220903070000,vlinder01,290.45704650878906,-0.5351409912109375,0.9864501953125 +20220903070000,vlinder02,290.34767150878906,-0.5429534912109375,0.8995361328125 +20220903070000,vlinder03,291.61720275878906,-1.9921722412109375,1.3038330078125 +20220903070000,vlinder04,291.61720275878906,-1.9921722412109375,1.3038330078125 +20220903070000,vlinder05,290.42970275878906,-0.6562347412109375,1.0001220703125 +20220903070000,vlinder06,291.75587463378906,-0.9872894287109375,1.5401611328125 +20220903070000,vlinder07,291.75587463378906,-0.9872894287109375,1.5401611328125 +20220903070000,vlinder08,291.75587463378906,-0.9872894287109375,1.5401611328125 +20220903070000,vlinder09,291.01954650878906,-0.4609222412109375,1.4210205078125 +20220903070000,vlinder10,290.85939025878906,-0.4394378662109375,1.3048095703125 +20220903070000,vlinder11,291.41407775878906,-1.2665863037109375,1.5186767578125 +20220903070000,vlinder12,291.41407775878906,-1.2665863037109375,1.5186767578125 +20220903070000,vlinder13,291.41407775878906,-1.2665863037109375,1.5186767578125 +20220903070000,vlinder14,291.21095275878906,-1.3408050537109375,1.5001220703125 +20220903070000,vlinder15,291.17189025878906,-0.5097503662109375,1.5167236328125 +20220903070000,vlinder16,291.21095275878906,-1.3408050537109375,1.5001220703125 +20220903070000,vlinder17,291.24220275878906,-2.0370941162109375,0.8800048828125 +20220903070000,vlinder18,291.32032775878906,-2.0693206787109375,0.9005126953125 +20220903070000,vlinder19,291.39649963378906,-0.6611175537109375,1.7608642578125 +20220903070000,vlinder20,291.39649963378906,-0.6611175537109375,1.7608642578125 +20220903070000,vlinder21,290.72462463378906,-2.7734222412109375,2.2042236328125 +20220903070000,vlinder22,289.91407775878906,-2.2050628662109375,1.0792236328125 +20220903070000,vlinder23,290.48243713378906,-0.9706878662109375,1.2354736328125 +20220903070000,vlinder24,290.40040588378906,-0.8740081787109375,1.1593017578125 +20220903070000,vlinder25,290.37892150878906,-0.7216644287109375,1.0440673828125 +20220903070000,vlinder26,291.74024963378906,-1.9160003662109375,1.2022705078125 +20220903070000,vlinder27,290.42970275878906,-0.6562347412109375,1.0001220703125 +20220903070000,vlinder28,290.45704650878906,-0.5351409912109375,0.9864501953125 +20220903080000,vlinder01,292.10011291503906,0.3792724609375,1.1807861328125 +20220903080000,vlinder02,292.04151916503906,0.3548583984375,1.1319580078125 +20220903080000,vlinder03,293.12940979003906,-1.6129150390625,1.1251220703125 +20220903080000,vlinder04,293.12940979003906,-1.6129150390625,1.1251220703125 +20220903080000,vlinder05,292.05519104003906,0.2738037109375,1.2178955078125 +20220903080000,vlinder06,292.98292541503906,-0.0709228515625,1.6036376953125 +20220903080000,vlinder07,292.98292541503906,-0.0709228515625,1.6036376953125 +20220903080000,vlinder08,292.98292541503906,-0.0709228515625,1.6036376953125 +20220903080000,vlinder09,292.34230041503906,0.5609130859375,1.6153564453125 +20220903080000,vlinder10,292.26222229003906,0.5989990234375,1.5430908203125 +20220903080000,vlinder11,292.72511291503906,-0.6021728515625,1.4444580078125 +20220903080000,vlinder12,292.72511291503906,-0.6021728515625,1.4444580078125 +20220903080000,vlinder13,292.72511291503906,-0.6021728515625,1.4444580078125 +20220903080000,vlinder14,292.54933166503906,-0.8131103515625,1.3741455078125 +20220903080000,vlinder15,292.42628479003906,0.5032958984375,1.6817626953125 +20220903080000,vlinder16,292.54933166503906,-0.8131103515625,1.3741455078125 +20220903080000,vlinder17,292.84425354003906,-2.0279541015625,1.2208251953125 +20220903080000,vlinder18,292.93019104003906,-2.1197509765625,1.2872314453125 +20220903080000,vlinder19,292.52980041503906,0.5697021484375,2.0567626953125 +20220903080000,vlinder20,292.52980041503906,0.5697021484375,2.0567626953125 +20220903080000,vlinder21,291.74464416503906,-1.9498291015625,2.8663330078125 +20220903080000,vlinder22,291.38526916503906,-2.0406494140625,1.7872314453125 +20220903080000,vlinder23,291.94776916503906,-0.0494384765625,1.4620361328125 +20220903080000,vlinder24,291.96925354003906,0.1038818359375,1.4093017578125 +20220903080000,vlinder25,291.94581604003906,0.1478271484375,1.2335205078125 +20220903080000,vlinder26,293.25245666503906,-1.4918212890625,1.1251220703125 +20220903080000,vlinder27,292.05519104003906,0.2738037109375,1.2178955078125 +20220903080000,vlinder28,292.10011291503906,0.3792724609375,1.1807861328125 +20220903090000,vlinder01,294.1371154785156,0.9794921875,1.212493896484375 +20220903090000,vlinder02,294.0804748535156,0.9296875,1.226165771484375 +20220903090000,vlinder03,295.1898498535156,-1.2578125,1.242767333984375 +20220903090000,vlinder04,295.1898498535156,-1.2578125,1.242767333984375 +20220903090000,vlinder05,294.0589904785156,0.84765625,1.340423583984375 +20220903090000,vlinder06,295.0101623535156,0.638671875,1.471282958984375 +20220903090000,vlinder07,295.0101623535156,0.638671875,1.471282958984375 +20220903090000,vlinder08,295.0101623535156,0.638671875,1.471282958984375 +20220903090000,vlinder09,294.2074279785156,1.1796875,1.341400146484375 +20220903090000,vlinder10,294.1488342285156,1.2177734375,1.317962646484375 +20220903090000,vlinder11,294.7289123535156,-0.1220703125,1.437103271484375 +20220903090000,vlinder12,294.7289123535156,-0.1220703125,1.437103271484375 +20220903090000,vlinder13,294.7289123535156,-0.1220703125,1.437103271484375 +20220903090000,vlinder14,294.4925842285156,-0.4599609375,1.405853271484375 +20220903090000,vlinder15,294.2796936035156,1.130859375,1.374603271484375 +20220903090000,vlinder16,294.4925842285156,-0.4599609375,1.405853271484375 +20220903090000,vlinder17,294.7328186035156,-1.6171875,1.547454833984375 +20220903090000,vlinder18,294.7503967285156,-1.7490234375,1.608978271484375 +20220903090000,vlinder19,294.3617248535156,1.30859375,1.578704833984375 +20220903090000,vlinder20,294.3617248535156,1.30859375,1.578704833984375 +20220903090000,vlinder21,293.1039123535156,-0.890625,3.450775146484375 +20220903090000,vlinder22,292.9027404785156,-1.22265625,2.411712646484375 +20220903090000,vlinder23,293.7777404785156,0.4453125,1.710540771484375 +20220903090000,vlinder24,293.8617248535156,0.63671875,1.640228271484375 +20220903090000,vlinder25,293.8988342285156,0.6748046875,1.381439208984375 +20220903090000,vlinder26,295.3304748535156,-1.0,1.284759521484375 +20220903090000,vlinder27,294.0589904785156,0.84765625,1.340423583984375 +20220903090000,vlinder28,294.1371154785156,0.9794921875,1.212493896484375 +20220903100000,vlinder01,295.3787841796875,0.7413787841796875,0.9353179931640625 +20220903100000,vlinder02,295.3299560546875,0.6945037841796875,1.0212554931640625 +20220903100000,vlinder03,296.7030029296875,-1.4695587158203125,1.2185211181640625 +20220903100000,vlinder04,296.7030029296875,-1.4695587158203125,1.2185211181640625 +20220903100000,vlinder05,295.3494873046875,0.6261444091796875,1.1921539306640625 +20220903100000,vlinder06,296.3065185546875,0.3380584716796875,0.9128570556640625 +20220903100000,vlinder07,296.3065185546875,0.3380584716796875,0.9128570556640625 +20220903100000,vlinder08,296.3065185546875,0.3380584716796875,0.9128570556640625 +20220903100000,vlinder09,295.5389404296875,1.0665740966796875,0.9558258056640625 +20220903100000,vlinder10,295.4744873046875,1.0441131591796875,0.9860992431640625 +20220903100000,vlinder11,296.1658935546875,-0.2166290283203125,1.1833648681640625 +20220903100000,vlinder12,296.1658935546875,-0.2166290283203125,1.1833648681640625 +20220903100000,vlinder13,296.1658935546875,-0.2166290283203125,1.1833648681640625 +20220903100000,vlinder14,295.9647216796875,-0.4265899658203125,1.3093414306640625 +20220903100000,vlinder15,295.6170654296875,1.0392303466796875,0.9441070556640625 +20220903100000,vlinder16,295.9647216796875,-0.4265899658203125,1.3093414306640625 +20220903100000,vlinder17,296.0643310546875,-1.2390899658203125,1.3757476806640625 +20220903100000,vlinder18,296.0545654296875,-1.3631134033203125,1.4860992431640625 +20220903100000,vlinder19,295.7772216796875,1.0675506591796875,1.0905914306640625 +20220903100000,vlinder20,295.7772216796875,1.0675506591796875,1.0905914306640625 +20220903100000,vlinder21,294.2830810546875,-0.2254180908203125,3.5935211181640625 +20220903100000,vlinder22,294.3377685546875,-0.2976837158203125,2.7302398681640625 +20220903100000,vlinder23,295.1756591796875,0.4093475341796875,1.7819976806640625 +20220903100000,vlinder24,295.2030029296875,0.5255584716796875,1.6257476806640625 +20220903100000,vlinder25,295.2635498046875,0.5255584716796875,1.3435211181640625 +20220903100000,vlinder26,296.8084716796875,-1.1619415283203125,1.1491851806640625 +20220903100000,vlinder27,295.3494873046875,0.6261444091796875,1.1921539306640625 +20220903100000,vlinder28,295.3787841796875,0.7413787841796875,0.9353179931640625 +20220903110000,vlinder01,296.3583526611328,0.3971405029296875,1.3186798095703125 +20220903110000,vlinder02,296.3114776611328,0.2965545654296875,1.4407501220703125 +20220903110000,vlinder03,298.0419464111328,-1.6028594970703125,1.2512969970703125 +20220903110000,vlinder04,298.0419464111328,-1.6028594970703125,1.2512969970703125 +20220903110000,vlinder05,296.3407745361328,0.2106170654296875,1.5003204345703125 +20220903110000,vlinder06,297.4130401611328,0.2946014404296875,1.1077423095703125 +20220903110000,vlinder07,297.4130401611328,0.2946014404296875,1.1077423095703125 +20220903110000,vlinder08,297.4130401611328,0.2946014404296875,1.1077423095703125 +20220903110000,vlinder09,296.5263214111328,0.9684295654296875,1.2932891845703125 +20220903110000,vlinder10,296.4501495361328,0.8688201904296875,1.3802032470703125 +20220903110000,vlinder11,297.3681182861328,-0.1878204345703125,1.2698516845703125 +20220903110000,vlinder12,297.3681182861328,-0.1878204345703125,1.2698516845703125 +20220903110000,vlinder13,297.3681182861328,-0.1878204345703125,1.2698516845703125 +20220903110000,vlinder14,297.1669464111328,-0.3675079345703125,1.3460235595703125 +20220903110000,vlinder15,296.6239776611328,0.9987030029296875,1.2434844970703125 +20220903110000,vlinder16,297.1669464111328,-0.3675079345703125,1.3460235595703125 +20220903110000,vlinder17,297.1786651611328,-1.2786407470703125,1.2581329345703125 +20220903110000,vlinder18,297.1298370361328,-1.3050079345703125,1.3382110595703125 +20220903110000,vlinder19,296.8563995361328,1.0592498779296875,1.4387969970703125 +20220903110000,vlinder20,296.8563995361328,1.0592498779296875,1.4387969970703125 +20220903110000,vlinder21,295.2665557861328,-0.2776641845703125,3.4134063720703125 +20220903110000,vlinder22,295.5888214111328,-0.0305938720703125,2.8636016845703125 +20220903110000,vlinder23,296.1962432861328,-0.0218048095703125,1.8499298095703125 +20220903110000,vlinder24,296.2118682861328,0.0641326904296875,1.8089141845703125 +20220903110000,vlinder25,296.2860870361328,0.1295623779296875,1.5462188720703125 +20220903110000,vlinder26,298.1571807861328,-1.3235626220703125,1.1800079345703125 +20220903110000,vlinder27,296.3407745361328,0.2106170654296875,1.5003204345703125 +20220903110000,vlinder28,296.3583526611328,0.3971405029296875,1.3186798095703125 +20220903120000,vlinder01,297.5061492919922,0.1169586181640625,1.7669830322265625 +20220903120000,vlinder02,297.4905242919922,-0.0080413818359375,1.9007720947265625 +20220903120000,vlinder03,298.9905242919922,-1.0099945068359375,1.4857330322265625 +20220903120000,vlinder04,298.9905242919922,-1.0099945068359375,1.4857330322265625 +20220903120000,vlinder05,297.4827117919922,-0.1232757568359375,1.9222564697265625 +20220903120000,vlinder06,298.4202117919922,0.6745758056640625,1.4437408447265625 +20220903120000,vlinder07,298.4202117919922,0.6745758056640625,1.4437408447265625 +20220903120000,vlinder08,298.4202117919922,0.6745758056640625,1.4437408447265625 +20220903120000,vlinder09,297.5237274169922,0.7937164306640625,1.6165924072265625 +20220903120000,vlinder10,297.4788055419922,0.6286773681640625,1.7454986572265625 +20220903120000,vlinder11,298.3362274169922,0.1521148681640625,1.5228424072265625 +20220903120000,vlinder12,298.3362274169922,0.1521148681640625,1.5228424072265625 +20220903120000,vlinder13,298.3362274169922,0.1521148681640625,1.5228424072265625 +20220903120000,vlinder14,298.0998992919922,-0.1281585693359375,1.5570220947265625 +20220903120000,vlinder15,297.5979461669922,0.9099273681640625,1.5384674072265625 +20220903120000,vlinder16,298.0998992919922,-0.1281585693359375,1.5570220947265625 +20220903120000,vlinder17,298.1389617919922,-0.8605804443359375,1.2523345947265625 +20220903120000,vlinder18,298.0959930419922,-0.9426116943359375,1.2259674072265625 +20220903120000,vlinder19,297.7717742919922,1.1413726806640625,1.7201080322265625 +20220903120000,vlinder20,297.7717742919922,1.1413726806640625,1.7201080322265625 +20220903120000,vlinder21,296.2229461669922,-0.1242523193359375,2.8753814697265625 +20220903120000,vlinder22,296.9592742919922,0.4001617431640625,2.7513580322265625 +20220903120000,vlinder23,297.2541961669922,-0.3683929443359375,2.1009674072265625 +20220903120000,vlinder24,297.3088836669922,-0.2551116943359375,2.1058502197265625 +20220903120000,vlinder25,297.4104461669922,-0.2346038818359375,1.9603424072265625 +20220903120000,vlinder26,299.1116180419922,-0.7228851318359375,1.4779205322265625 +20220903120000,vlinder27,297.4827117919922,-0.1232757568359375,1.9222564697265625 +20220903120000,vlinder28,297.5061492919922,0.1169586181640625,1.7669830322265625 +20220903130000,vlinder01,298.3153076171875,0.1281890869140625,1.654561996459961 +20220903130000,vlinder02,298.3211669921875,0.0529937744140625,1.744405746459961 +20220903130000,vlinder03,299.5614013671875,-0.2331390380859375,1.408468246459961 +20220903130000,vlinder04,299.5614013671875,-0.2331390380859375,1.408468246459961 +20220903130000,vlinder05,298.2059326171875,-7.171630859375E-4,1.808858871459961 +20220903130000,vlinder06,299.0028076171875,0.7990875244140625,1.461202621459961 +20220903130000,vlinder07,299.0028076171875,0.7990875244140625,1.461202621459961 +20220903130000,vlinder08,299.0028076171875,0.7990875244140625,1.461202621459961 +20220903130000,vlinder09,298.2977294921875,0.6145172119140625,1.593038558959961 +20220903130000,vlinder10,298.2723388671875,0.4787750244140625,1.681905746459961 +20220903130000,vlinder11,298.8270263671875,0.4514312744140625,1.538351058959961 +20220903130000,vlinder12,298.8270263671875,0.4514312744140625,1.538351058959961 +20220903130000,vlinder13,298.8270263671875,0.4514312744140625,1.538351058959961 +20220903130000,vlinder14,298.5535888671875,0.2082672119140625,1.569601058959961 +20220903130000,vlinder15,298.3426513671875,0.7287750244140625,1.542257308959961 +20220903130000,vlinder16,298.5535888671875,0.2082672119140625,1.569601058959961 +20220903130000,vlinder17,298.7664794921875,-0.3307952880859375,1.261983871459961 +20220903130000,vlinder18,298.7137451171875,-0.5046234130859375,1.177022933959961 +20220903130000,vlinder19,298.4305419921875,0.9670562744140625,1.690694808959961 +20220903130000,vlinder20,298.4305419921875,0.9670562744140625,1.690694808959961 +20220903130000,vlinder21,296.8094482421875,0.3567047119140625,1.638936996459961 +20220903130000,vlinder22,297.9754638671875,0.8869781494140625,2.009054183959961 +20220903130000,vlinder23,297.7938232421875,-0.0407562255859375,2.010030746459961 +20220903130000,vlinder24,297.9520263671875,0.0197906494140625,1.939718246459961 +20220903130000,vlinder25,298.0360107421875,-0.0573577880859375,1.936788558959961 +20220903130000,vlinder26,299.6688232421875,0.0627593994140625,1.449483871459961 +20220903130000,vlinder27,298.2059326171875,-7.171630859375E-4,1.808858871459961 +20220903130000,vlinder28,298.3153076171875,0.1281890869140625,1.654561996459961 +20220903140000,vlinder01,298.84521484375,0.3382568359375,1.392622947692871 +20220903140000,vlinder02,298.86083984375,0.2991943359375,1.453169822692871 +20220903140000,vlinder03,299.84912109375,0.2034912109375,1.391646385192871 +20220903140000,vlinder04,299.84912109375,0.2034912109375,1.391646385192871 +20220903140000,vlinder05,298.67529296875,0.2962646484375,1.475630760192871 +20220903140000,vlinder06,299.32568359375,0.7279052734375,1.402388572692871 +20220903140000,vlinder07,299.32568359375,0.7279052734375,1.402388572692871 +20220903140000,vlinder08,299.32568359375,0.7279052734375,1.402388572692871 +20220903140000,vlinder09,298.82177734375,0.6663818359375,1.455122947692871 +20220903140000,vlinder10,298.81982421875,0.5794677734375,1.522505760192871 +20220903140000,vlinder11,299.10498046875,0.6175537109375,1.490279197692871 +20220903140000,vlinder12,299.10498046875,0.6175537109375,1.490279197692871 +20220903140000,vlinder13,299.10498046875,0.6175537109375,1.490279197692871 +20220903140000,vlinder14,298.81591796875,0.4915771484375,1.512740135192871 +20220903140000,vlinder15,298.83935546875,0.7376708984375,1.428755760192871 +20220903140000,vlinder16,298.81591796875,0.4915771484375,1.512740135192871 +20220903140000,vlinder17,298.94287109375,0.0501708984375,1.260787010192871 +20220903140000,vlinder18,298.90771484375,-0.1695556640625,1.178755760192871 +20220903140000,vlinder19,298.88623046875,0.8216552734375,1.682662010192871 +20220903140000,vlinder20,298.88623046875,0.8216552734375,1.682662010192871 +20220903140000,vlinder21,296.92333984375,0.2659912109375,-0.2812051773071289 +20220903140000,vlinder22,298.53271484375,0.8909912109375,1.200240135192871 +20220903140000,vlinder23,298.10888671875,0.3919677734375,1.548872947692871 +20220903140000,vlinder24,298.33349609375,0.3695068359375,1.435591697692871 +20220903140000,vlinder25,298.44287109375,0.2991943359375,1.667037010192871 +20220903140000,vlinder26,299.91552734375,0.4046630859375,1.460005760192871 +20220903140000,vlinder27,298.67529296875,0.2962646484375,1.475630760192871 +20220903140000,vlinder28,298.84521484375,0.3382568359375,1.392622947692871 +20220903150000,vlinder01,299.111083984375,0.49798583984375,1.2436676025390625 +20220903150000,vlinder02,299.120849609375,0.44622802734375,1.2758941650390625 +20220903150000,vlinder03,299.734130859375,0.43743896484375,1.4526519775390625 +20220903150000,vlinder04,299.734130859375,0.43743896484375,1.4526519775390625 +20220903150000,vlinder05,298.939208984375,0.44720458984375,1.1860504150390625 +20220903150000,vlinder06,299.363037109375,0.79974365234375,1.4018707275390625 +20220903150000,vlinder07,299.363037109375,0.79974365234375,1.4018707275390625 +20220903150000,vlinder08,299.363037109375,0.79974365234375,1.4018707275390625 +20220903150000,vlinder09,299.021240234375,0.82904052734375,1.4018707275390625 +20220903150000,vlinder10,299.023193359375,0.75384521484375,1.4399566650390625 +20220903150000,vlinder11,299.267333984375,0.84954833984375,1.4917144775390625 +20220903150000,vlinder12,299.267333984375,0.84954833984375,1.4917144775390625 +20220903150000,vlinder13,299.267333984375,0.84954833984375,1.4917144775390625 +20220903150000,vlinder14,299.077880859375,0.80950927734375,1.5102691650390625 +20220903150000,vlinder15,299.017333984375,0.88568115234375,1.3999176025390625 +20220903150000,vlinder16,299.077880859375,0.80950927734375,1.5102691650390625 +20220903150000,vlinder17,298.954833984375,0.10345458984375,1.1674957275390625 +20220903150000,vlinder18,298.972412109375,-0.18560791015625,1.1137847900390625 +20220903150000,vlinder19,298.943115234375,0.93450927734375,1.6967926025390625 +20220903150000,vlinder20,298.943115234375,0.93450927734375,1.6967926025390625 +20220903150000,vlinder21,296.909912109375,-0.19049072265625,-1.4145355224609375 +20220903150000,vlinder22,298.718505859375,0.71185302734375,0.7231597900390625 +20220903150000,vlinder23,298.339599609375,0.50872802734375,0.9985504150390625 +20220903150000,vlinder24,298.546630859375,0.44036865234375,0.9458160400390625 +20220903150000,vlinder25,298.741943359375,0.48040771484375,1.3169097900390625 +20220903150000,vlinder26,299.724365234375,0.57611083984375,1.5190582275390625 +20220903150000,vlinder27,298.939208984375,0.44720458984375,1.1860504150390625 +20220903150000,vlinder28,299.111083984375,0.49798583984375,1.2436676025390625 +20220903160000,vlinder01,298.90525817871094,0.290130615234375,0.71197509765625 +20220903160000,vlinder02,298.92088317871094,0.237396240234375,0.70025634765625 +20220903160000,vlinder03,299.11814880371094,0.887786865234375,1.34674072265625 +20220903160000,vlinder04,299.11814880371094,0.887786865234375,1.34674072265625 +20220903160000,vlinder05,298.70799255371094,0.223724365234375,0.69244384765625 +20220903160000,vlinder06,298.52635192871094,0.918060302734375,1.43365478515625 +20220903160000,vlinder07,298.52635192871094,0.918060302734375,1.43365478515625 +20220903160000,vlinder08,298.52635192871094,0.918060302734375,1.43365478515625 +20220903160000,vlinder09,298.72166442871094,0.636810302734375,0.95025634765625 +20220903160000,vlinder10,298.75291442871094,0.530364990234375,0.89166259765625 +20220903160000,vlinder11,298.87010192871094,1.139739990234375,1.45806884765625 +20220903160000,vlinder12,298.87010192871094,1.139739990234375,1.45806884765625 +20220903160000,vlinder13,298.87010192871094,1.139739990234375,1.45806884765625 +20220903160000,vlinder14,298.94822692871094,1.160247802734375,1.40338134765625 +20220903160000,vlinder15,298.64744567871094,0.736419677734375,1.03814697265625 +20220903160000,vlinder16,298.94822692871094,1.160247802734375,1.40338134765625 +20220903160000,vlinder17,297.78025817871094,-0.031158447265625,1.43463134765625 +20220903160000,vlinder18,297.78611755371094,-0.464752197265625,1.44537353515625 +20220903160000,vlinder19,298.42478942871094,0.833099365234375,1.24322509765625 +20220903160000,vlinder20,298.42478942871094,0.833099365234375,1.24322509765625 +20220903160000,vlinder21,296.57127380371094,-0.683502197265625,-1.66693115234375 +20220903160000,vlinder22,298.41893005371094,0.742279052734375,0.24615478515625 +20220903160000,vlinder23,298.00486755371094,0.314544677734375,0.67193603515625 +20220903160000,vlinder24,298.24510192871094,0.173919677734375,0.58599853515625 +20220903160000,vlinder25,298.47361755371094,0.336029052734375,0.90826416015625 +20220903160000,vlinder26,298.73338317871094,1.003997802734375,1.46197509765625 +20220903160000,vlinder27,298.70799255371094,0.223724365234375,0.69244384765625 +20220903160000,vlinder28,298.90525817871094,0.290130615234375,0.71197509765625 +20220903170000,vlinder01,297.7604064941406,0.21661376953125,0.5320892333984375 +20220903170000,vlinder02,297.7877502441406,0.17364501953125,0.5311126708984375 +20220903170000,vlinder03,296.9322814941406,0.76055908203125,1.6287689208984375 +20220903170000,vlinder04,296.9322814941406,0.76055908203125,1.6287689208984375 +20220903170000,vlinder05,297.7193908691406,0.15899658203125,0.2303314208984375 +20220903170000,vlinder06,297.7525939941406,0.00567626953125,0.7820892333984375 +20220903170000,vlinder07,297.7525939941406,0.00567626953125,0.7820892333984375 +20220903170000,vlinder08,297.7525939941406,0.00567626953125,0.7820892333984375 +20220903170000,vlinder09,297.4166564941406,0.63848876953125,1.1121673583984375 +20220903170000,vlinder10,297.4068908691406,0.58184814453125,1.1131439208984375 +20220903170000,vlinder11,297.8600158691406,0.58087158203125,0.9402923583984375 +20220903170000,vlinder12,297.8600158691406,0.58087158203125,0.9402923583984375 +20220903170000,vlinder13,297.8600158691406,0.58087158203125,0.9402923583984375 +20220903170000,vlinder14,297.8951721191406,0.91387939453125,0.9070892333984375 +20220903170000,vlinder15,297.3951721191406,0.64337158203125,1.1336517333984375 +20220903170000,vlinder16,297.8951721191406,0.91387939453125,0.9070892333984375 +20220903170000,vlinder17,295.3268127441406,-0.24530029296875,1.4949798583984375 +20220903170000,vlinder18,295.3561096191406,-0.55584716796875,1.5506439208984375 +20220903170000,vlinder19,297.1920471191406,0.65704345703125,1.6199798583984375 +20220903170000,vlinder20,297.1920471191406,0.65704345703125,1.6199798583984375 +20220903170000,vlinder21,296.1959533691406,-0.72283935546875,-2.3350982666015625 +20220903170000,vlinder22,297.6295471191406,0.76153564453125,-1.1085357666015625 +20220903170000,vlinder23,297.4303283691406,0.18829345703125,-0.4063873291015625 +20220903170000,vlinder24,297.5318908691406,0.08966064453125,-0.1993560791015625 +20220903170000,vlinder25,297.6490783691406,0.25079345703125,0.1199798583984375 +20220903170000,vlinder26,296.5397033691406,0.73614501953125,1.4549407958984375 +20220903170000,vlinder27,297.7193908691406,0.15899658203125,0.2303314208984375 +20220903170000,vlinder28,297.7604064941406,0.21661376953125,0.5320892333984375 +20220903180000,vlinder01,296.70391845703125,-0.309173583984375,1.8859405517578125 +20220903180000,vlinder02,296.71173095703125,-0.450775146484375,1.8810577392578125 +20220903180000,vlinder03,295.42266845703125,-1.029876708984375,1.2628936767578125 +20220903180000,vlinder04,295.42266845703125,-1.029876708984375,1.2628936767578125 +20220903180000,vlinder05,296.68048095703125,-0.480072021484375,0.9494171142578125 +20220903180000,vlinder06,296.92266845703125,-0.350189208984375,1.4269561767578125 +20220903180000,vlinder07,296.92266845703125,-0.350189208984375,1.4269561767578125 +20220903180000,vlinder08,296.92266845703125,-0.350189208984375,1.4269561767578125 +20220903180000,vlinder09,295.97149658203125,0.496490478515625,1.8830108642578125 +20220903180000,vlinder10,295.94415283203125,0.340240478515625,1.9513702392578125 +20220903180000,vlinder11,297.04962158203125,-0.109954833984375,0.7335968017578125 +20220903180000,vlinder12,297.04962158203125,-0.109954833984375,0.7335968017578125 +20220903180000,vlinder13,297.04962158203125,-0.109954833984375,0.7335968017578125 +20220903180000,vlinder14,297.06915283203125,0.145904541015625,0.3800811767578125 +20220903180000,vlinder15,295.97930908203125,0.554107666015625,1.8117218017578125 +20220903180000,vlinder16,297.06915283203125,0.145904541015625,0.3800811767578125 +20220903180000,vlinder17,293.85235595703125,-0.566986083984375,0.0070343017578125 +20220903180000,vlinder18,293.96173095703125,-0.425384521484375,0.1525421142578125 +20220903180000,vlinder19,295.36407470703125,0.703521728515625,1.9396514892578125 +20220903180000,vlinder20,295.36407470703125,0.703521728515625,1.9396514892578125 +20220903180000,vlinder21,295.43634033203125,-0.929290771484375,-2.9246063232421875 +20220903180000,vlinder22,296.27032470703125,0.721099853515625,-1.3152313232421875 +20220903180000,vlinder23,296.49102783203125,-0.551361083984375,-1.1326141357421875 +20220903180000,vlinder24,296.53009033203125,-0.608001708984375,-0.2751922607421875 +20220903180000,vlinder25,296.65313720703125,-0.441986083984375,0.0421905517578125 +20220903180000,vlinder26,295.07501220703125,-1.204681396484375,0.8498077392578125 +20220903180000,vlinder27,296.68048095703125,-0.480072021484375,0.9494171142578125 +20220903180000,vlinder28,296.70391845703125,-0.309173583984375,1.8859405517578125 +20220903190000,vlinder01,295.69053649902344,-0.1704864501953125,2.1612548828125 +20220903190000,vlinder02,295.65538024902344,-0.1197052001953125,2.3360595703125 +20220903190000,vlinder03,295.25108337402344,-0.4986114501953125,1.0694580078125 +20220903190000,vlinder04,295.25108337402344,-0.4986114501953125,1.0694580078125 +20220903190000,vlinder05,295.35655212402344,-0.5894317626953125,1.2071533203125 +20220903190000,vlinder06,295.55772399902344,-1.3726348876953125,0.8702392578125 +20220903190000,vlinder07,295.55772399902344,-1.3726348876953125,0.8702392578125 +20220903190000,vlinder08,295.55772399902344,-1.3726348876953125,0.8702392578125 +20220903190000,vlinder09,294.98741149902344,0.2425994873046875,1.8790283203125 +20220903190000,vlinder10,294.95420837402344,0.3705291748046875,2.1602783203125 +20220903190000,vlinder11,294.97959899902344,-1.1763458251953125,-0.2352294921875 +20220903190000,vlinder12,294.97959899902344,-1.1763458251953125,-0.2352294921875 +20220903190000,vlinder13,294.97959899902344,-1.1763458251953125,-0.2352294921875 +20220903190000,vlinder14,294.67295837402344,-1.0074005126953125,-0.6903076171875 +20220903190000,vlinder15,294.96592712402344,0.0834197998046875,1.6505126953125 +20220903190000,vlinder16,294.67295837402344,-1.0074005126953125,-0.6903076171875 +20220903190000,vlinder17,294.83506774902344,-0.9712677001953125,1.6456298828125 +20220903190000,vlinder18,294.80381774902344,-0.9781036376953125,1.6417236328125 +20220903190000,vlinder19,294.67295837402344,0.2425994873046875,1.8204345703125 +20220903190000,vlinder20,294.67295837402344,0.2425994873046875,1.8204345703125 +20220903190000,vlinder21,294.98741149902344,-1.9605255126953125,-1.7586669921875 +20220903190000,vlinder22,295.57334899902344,0.7894744873046875,1.2471923828125 +20220903190000,vlinder23,294.52647399902344,-1.4956817626953125,-1.0467529296875 +20220903190000,vlinder24,294.96983337402344,-1.1714630126953125,-0.0145263671875 +20220903190000,vlinder25,294.83702087402344,-1.0025177001953125,0.0098876953125 +20220903190000,vlinder26,295.39952087402344,-0.5601348876953125,1.3536376953125 +20220903190000,vlinder27,295.35655212402344,-0.5894317626953125,1.2071533203125 +20220903190000,vlinder28,295.69053649902344,-0.1704864501953125,2.1612548828125 +20220903200000,vlinder01,293.32557678222656,0.1246795654296875,2.2233123779296875 +20220903200000,vlinder02,293.30213928222656,-0.0677032470703125,2.2633514404296875 +20220903200000,vlinder03,294.10487365722656,0.1686248779296875,1.5924530029296875 +20220903200000,vlinder04,294.10487365722656,0.1686248779296875,1.5924530029296875 +20220903200000,vlinder05,293.32362365722656,-0.7532501220703125,1.5563201904296875 +20220903200000,vlinder06,294.33534240722656,0.5963592529296875,1.8287811279296875 +20220903200000,vlinder07,294.33534240722656,0.5963592529296875,1.8287811279296875 +20220903200000,vlinder08,294.33534240722656,0.5963592529296875,1.8287811279296875 +20220903200000,vlinder09,293.05995178222656,1.1061248779296875,2.1549530029296875 +20220903200000,vlinder10,292.95057678222656,0.8873748779296875,2.2291717529296875 +20220903200000,vlinder11,294.02674865722656,0.0738983154296875,0.7360076904296875 +20220903200000,vlinder12,294.02674865722656,0.0738983154296875,0.7360076904296875 +20220903200000,vlinder13,294.02674865722656,0.0738983154296875,0.7360076904296875 +20220903200000,vlinder14,293.89393615722656,-0.1145782470703125,0.2740936279296875 +20220903200000,vlinder15,293.17713928222656,1.2330780029296875,2.0904998779296875 +20220903200000,vlinder16,293.89393615722656,-0.1145782470703125,0.2740936279296875 +20220903200000,vlinder17,293.75721740722656,-0.2014923095703125,1.8258514404296875 +20220903200000,vlinder18,293.74354553222656,-0.2571563720703125,1.8170623779296875 +20220903200000,vlinder19,293.22206115722656,1.5270233154296875,2.0504608154296875 +20220903200000,vlinder20,293.22206115722656,1.5270233154296875,2.0504608154296875 +20220903200000,vlinder21,294.30213928222656,-3.5042266845703125,-0.2278594970703125 +20220903200000,vlinder22,294.41542053222656,-0.0364532470703125,1.7887420654296875 +20220903200000,vlinder23,293.35682678222656,-2.1751251220703125,0.1002655029296875 +20220903200000,vlinder24,293.44667053222656,-1.6751251220703125,0.8160858154296875 +20220903200000,vlinder25,293.22987365722656,-1.3557891845703125,0.7584686279296875 +20220903200000,vlinder26,294.38807678222656,-0.0032501220703125,1.7867889404296875 +20220903200000,vlinder27,293.32362365722656,-0.7532501220703125,1.5563201904296875 +20220903200000,vlinder28,293.32557678222656,0.1246795654296875,2.2233123779296875 +20220903210000,vlinder01,292.4217224121094,-0.23541259765625,1.506500244140625 +20220903210000,vlinder02,292.4041442871094,-0.50982666015625,1.543609619140625 +20220903210000,vlinder03,293.6170349121094,0.77923583984375,1.703765869140625 +20220903210000,vlinder04,293.6170349121094,0.77923583984375,1.703765869140625 +20220903210000,vlinder05,292.4549255371094,-0.97369384765625,1.313140869140625 +20220903210000,vlinder06,293.4646911621094,1.52728271484375,1.273101806640625 +20220903210000,vlinder07,293.4646911621094,1.52728271484375,1.273101806640625 +20220903210000,vlinder08,293.4646911621094,1.52728271484375,1.273101806640625 +20220903210000,vlinder09,292.3084411621094,0.78900146484375,1.569000244140625 +20220903210000,vlinder10,292.1932067871094,0.39642333984375,1.610992431640625 +20220903210000,vlinder11,293.1541442871094,1.16302490234375,1.310211181640625 +20220903210000,vlinder12,293.1541442871094,1.16302490234375,1.310211181640625 +20220903210000,vlinder13,293.1541442871094,1.16302490234375,1.310211181640625 +20220903210000,vlinder14,293.0057067871094,0.92864990234375,1.353179931640625 +20220903210000,vlinder15,292.4295349121094,1.10150146484375,1.531890869140625 +20220903210000,vlinder16,293.0057067871094,0.92864990234375,1.353179931640625 +20220903210000,vlinder17,293.0057067871094,0.15130615234375,1.771148681640625 +20220903210000,vlinder18,292.9744567871094,0.05560302734375,1.771148681640625 +20220903210000,vlinder19,292.4490661621094,1.37396240234375,1.631500244140625 +20220903210000,vlinder20,292.4490661621094,1.37396240234375,1.631500244140625 +20220903210000,vlinder21,293.5428161621094,-3.90338134765625,0.847320556640625 +20220903210000,vlinder22,293.5310974121094,0.23626708984375,1.845367431640625 +20220903210000,vlinder23,292.5799255371094,-1.88385009765625,0.892242431640625 +20220903210000,vlinder24,292.5857849121094,-1.68658447265625,1.076812744140625 +20220903210000,vlinder25,292.4275817871094,-1.23638916015625,1.112945556640625 +20220903210000,vlinder26,293.7146911621094,0.60638427734375,1.747711181640625 +20220903210000,vlinder27,292.4549255371094,-0.97369384765625,1.313140869140625 +20220903210000,vlinder28,292.4217224121094,-0.23541259765625,1.506500244140625 +20220903220000,vlinder01,291.58619689941406,-0.63623046875,1.719862937927246 +20220903220000,vlinder02,291.56666564941406,-0.86669921875,1.712050437927246 +20220903220000,vlinder03,292.85768127441406,1.33544921875,1.444472312927246 +20220903220000,vlinder04,292.85768127441406,1.33544921875,1.444472312927246 +20220903220000,vlinder05,291.68971252441406,-1.11376953125,1.504042625427246 +20220903220000,vlinder06,292.49440002441406,1.38720703125,1.338027000427246 +20220903220000,vlinder07,292.49440002441406,1.38720703125,1.338027000427246 +20220903220000,vlinder08,292.49440002441406,1.38720703125,1.338027000427246 +20220903220000,vlinder09,291.54322814941406,0.23193359375,1.920058250427246 +20220903220000,vlinder10,291.42604064941406,-0.11279296875,1.922987937927246 +20220903220000,vlinder11,292.31275939941406,1.22021484375,1.359511375427246 +20220903220000,vlinder12,292.31275939941406,1.22021484375,1.359511375427246 +20220903220000,vlinder13,292.31275939941406,1.22021484375,1.359511375427246 +20220903220000,vlinder14,292.13893127441406,1.02490234375,1.447402000427246 +20220903220000,vlinder15,291.65260314941406,0.54931640625,1.884902000427246 +20220903220000,vlinder16,292.13893127441406,1.02490234375,1.447402000427246 +20220903220000,vlinder17,292.23854064941406,0.35693359375,1.690566062927246 +20220903220000,vlinder18,292.13502502441406,0.17138671875,1.704237937927246 +20220903220000,vlinder19,291.58033752441406,0.98583984375,1.855605125427246 +20220903220000,vlinder20,291.58033752441406,0.98583984375,1.855605125427246 +20220903220000,vlinder21,292.98268127441406,-3.14208984375,1.194472312927246 +20220903220000,vlinder22,292.76588439941406,0.59423828125,1.628066062927246 +20220903220000,vlinder23,291.99049377441406,-1.54931640625,1.120253562927246 +20220903220000,vlinder24,291.88111877441406,-1.56591796875,1.259902000427246 +20220903220000,vlinder25,291.74049377441406,-1.14794921875,1.307753562927246 +20220903220000,vlinder26,292.78932189941406,1.30322265625,1.473769187927246 +20220903220000,vlinder27,291.68971252441406,-1.11376953125,1.504042625427246 +20220903220000,vlinder28,291.58619689941406,-0.63623046875,1.719862937927246 +20220903230000,vlinder01,291.24916076660156,-0.527374267578125,2.1723155975341797 +20220903230000,vlinder02,291.23548889160156,-0.639678955078125,2.1674327850341797 +20220903230000,vlinder03,292.07533264160156,1.381805419921875,1.3734874725341797 +20220903230000,vlinder04,292.07533264160156,1.381805419921875,1.3734874725341797 +20220903230000,vlinder05,291.34877014160156,-0.865264892578125,2.0111827850341797 +20220903230000,vlinder06,291.88783264160156,0.811492919921875,1.7738780975341797 +20220903230000,vlinder07,291.88783264160156,0.811492919921875,1.7738780975341797 +20220903230000,vlinder08,291.88783264160156,0.811492919921875,1.7738780975341797 +20220903230000,vlinder09,291.26283264160156,-0.041046142578125,2.2641124725341797 +20220903230000,vlinder10,291.17689514160156,-0.217803955078125,2.2670421600341797 +20220903230000,vlinder11,291.72572326660156,0.650360107421875,1.7240734100341797 +20220903230000,vlinder12,291.72572326660156,0.650360107421875,1.7240734100341797 +20220903230000,vlinder13,291.72572326660156,0.650360107421875,1.7240734100341797 +20220903230000,vlinder14,291.63978576660156,0.484344482421875,1.7602062225341797 +20220903230000,vlinder15,291.33119201660156,0.148406982421875,2.2270030975341797 +20220903230000,vlinder16,291.63978576660156,0.484344482421875,1.7602062225341797 +20220903230000,vlinder17,291.48744201660156,0.561492919921875,1.7523937225341797 +20220903230000,vlinder18,291.36634826660156,0.342742919921875,1.7855968475341797 +20220903230000,vlinder19,291.21009826660156,0.560516357421875,2.1195812225341797 +20220903230000,vlinder20,291.21009826660156,0.560516357421875,2.1195812225341797 +20220903230000,vlinder21,292.61439514160156,-2.155303955078125,1.8295421600341797 +20220903230000,vlinder22,291.94837951660156,0.540985107421875,1.9135265350341797 +20220903230000,vlinder23,291.60853576660156,-1.261749267578125,1.6986827850341797 +20220903230000,vlinder24,291.49720764160156,-1.218780517578125,1.8383312225341797 +20220903230000,vlinder25,291.35462951660156,-0.949249267578125,1.8441905975341797 +20220903230000,vlinder26,291.89564514160156,1.426727294921875,1.4223155975341797 +20220903230000,vlinder27,291.34877014160156,-0.865264892578125,2.0111827850341797 +20220903230000,vlinder28,291.24916076660156,-0.527374267578125,2.1723155975341797 +20220904000000,vlinder01,290.8604278564453,-0.02593994140625,2.4424657821655273 +20220904000000,vlinder02,290.8623809814453,-0.03765869140625,2.4444189071655273 +20220904000000,vlinder03,291.2237091064453,1.01605224609375,1.3750829696655273 +20220904000000,vlinder04,291.2237091064453,1.01605224609375,1.3750829696655273 +20220904000000,vlinder05,290.9365997314453,-0.29547119140625,2.4541845321655273 +20220904000000,vlinder06,291.2686309814453,0.39788818359375,2.0996923446655273 +20220904000000,vlinder07,291.2686309814453,0.39788818359375,2.0996923446655273 +20220904000000,vlinder08,291.2686309814453,0.39788818359375,2.0996923446655273 +20220904000000,vlinder09,290.8701934814453,0.13128662109375,2.4785985946655273 +20220904000000,vlinder10,290.8213653564453,0.08343505859375,2.4971532821655273 +20220904000000,vlinder11,291.1045684814453,0.17034912109375,2.0528173446655273 +20220904000000,vlinder12,291.1045684814453,0.17034912109375,2.0528173446655273 +20220904000000,vlinder13,291.1045684814453,0.17034912109375,2.0528173446655273 +20220904000000,vlinder14,291.1123809814453,0.02386474609375,2.0713720321655273 +20220904000000,vlinder15,290.9014434814453,0.18890380859375,2.4405126571655273 +20220904000000,vlinder16,291.1123809814453,0.02386474609375,2.0713720321655273 +20220904000000,vlinder17,290.8369903564453,0.79241943359375,1.7119970321655273 +20220904000000,vlinder18,290.6787872314453,0.67034912109375,1.7578954696655273 +20220904000000,vlinder19,290.7490997314453,0.35491943359375,2.3975439071655273 +20220904000000,vlinder20,290.7490997314453,0.35491943359375,2.3975439071655273 +20220904000000,vlinder21,292.1592559814453,-0.71929931640625,2.9512548446655273 +20220904000000,vlinder22,291.2256622314453,1.05218505859375,2.1358251571655273 +20220904000000,vlinder23,291.1026153564453,-0.75543212890625,2.4522314071655273 +20220904000000,vlinder24,291.0147247314453,-0.59234619140625,2.5108251571655273 +20220904000000,vlinder25,290.8721466064453,-0.47125244140625,2.3916845321655273 +20220904000000,vlinder26,290.9326934814453,1.08050537109375,1.4522314071655273 +20220904000000,vlinder27,290.9365997314453,-0.29547119140625,2.4541845321655273 +20220904000000,vlinder28,290.8604278564453,-0.02593994140625,2.4424657821655273 +20220904010000,vlinder01,290.7088165283203,0.5087738037109375,2.4130630493164062 +20220904010000,vlinder02,290.6990509033203,0.5302581787109375,2.3827896118164062 +20220904010000,vlinder03,290.5877227783203,0.5331878662109375,1.5927505493164062 +20220904010000,vlinder04,290.5877227783203,0.5331878662109375,1.5927505493164062 +20220904010000,vlinder05,290.7967071533203,0.3378753662109375,2.5400161743164062 +20220904010000,vlinder06,291.0447540283203,0.4589691162109375,2.2265396118164062 +20220904010000,vlinder07,291.0447540283203,0.4589691162109375,2.2265396118164062 +20220904010000,vlinder08,291.0447540283203,0.4589691162109375,2.2265396118164062 +20220904010000,vlinder09,290.7830352783203,0.5165863037109375,2.5019302368164062 +20220904010000,vlinder10,290.7322540283203,0.5243988037109375,2.4872817993164062 +20220904010000,vlinder11,290.8611602783203,0.2577972412109375,2.2597427368164062 +20220904010000,vlinder12,290.8611602783203,0.2577972412109375,2.2597427368164062 +20220904010000,vlinder13,290.8611602783203,0.2577972412109375,2.2597427368164062 +20220904010000,vlinder14,290.9275665283203,0.1572113037109375,2.3075942993164062 +20220904010000,vlinder15,290.8006134033203,0.5097503662109375,2.4902114868164062 +20220904010000,vlinder16,290.9275665283203,0.1572113037109375,2.3075942993164062 +20220904010000,vlinder17,290.4002227783203,0.7626800537109375,1.6982192993164062 +20220904010000,vlinder18,290.2908477783203,0.7617034912109375,1.7138442993164062 +20220904010000,vlinder19,290.6248321533203,0.5556488037109375,2.4579849243164062 +20220904010000,vlinder20,290.6248321533203,0.5556488037109375,2.4579849243164062 +20220904010000,vlinder21,291.8689727783203,0.7997894287109375,3.4775161743164062 +20220904010000,vlinder22,290.7146759033203,1.3154144287109375,2.0712661743164062 +20220904010000,vlinder23,290.9490509033203,-0.0224761962890625,2.8173599243164062 +20220904010000,vlinder24,290.8338165283203,0.1523284912109375,2.7597427368164062 +20220904010000,vlinder25,290.7303009033203,0.1738128662109375,2.5907974243164062 +20220904010000,vlinder26,290.2537384033203,0.6113128662109375,1.6396255493164062 +20220904010000,vlinder27,290.7967071533203,0.3378753662109375,2.5400161743164062 +20220904010000,vlinder28,290.7088165283203,0.5087738037109375,2.4130630493164062 +20220904020000,vlinder01,290.3877716064453,0.74853515625,2.155999183654785 +20220904020000,vlinder02,290.3740997314453,0.78564453125,2.098381996154785 +20220904020000,vlinder03,289.9776153564453,0.18310546875,1.8132257461547852 +20220904020000,vlinder04,289.9776153564453,0.18310546875,1.8132257461547852 +20220904020000,vlinder05,290.5205841064453,0.71533203125,2.287835121154785 +20220904020000,vlinder06,290.6592559814453,0.51708984375,2.198967933654785 +20220904020000,vlinder07,290.6592559814453,0.51708984375,2.198967933654785 +20220904020000,vlinder08,290.6592559814453,0.51708984375,2.198967933654785 +20220904020000,vlinder09,290.4854278564453,0.63818359375,2.338616371154785 +20220904020000,vlinder10,290.4346466064453,0.67333984375,2.287835121154785 +20220904020000,vlinder11,290.4698028564453,0.36083984375,2.296624183654785 +20220904020000,vlinder12,290.4698028564453,0.36083984375,2.296624183654785 +20220904020000,vlinder13,290.4698028564453,0.36083984375,2.296624183654785 +20220904020000,vlinder14,290.5694122314453,0.29541015625,2.367913246154785 +20220904020000,vlinder15,290.4951934814453,0.60498046875,2.362053871154785 +20220904020000,vlinder16,290.5694122314453,0.29541015625,2.367913246154785 +20220904020000,vlinder17,289.8604278564453,0.52490234375,1.7077569961547852 +20220904020000,vlinder18,289.7823028564453,0.56494140625,1.6813898086547852 +20220904020000,vlinder19,290.2764434814453,0.60498046875,2.369866371154785 +20220904020000,vlinder20,290.2764434814453,0.60498046875,2.369866371154785 +20220904020000,vlinder21,291.6397247314453,1.89501953125,3.203850746154785 +20220904020000,vlinder22,290.2901153564453,1.29443359375,1.8854913711547852 +20220904020000,vlinder23,290.7412872314453,0.58837890625,2.647210121154785 +20220904020000,vlinder24,290.5811309814453,0.70654296875,2.525139808654785 +20220904020000,vlinder25,290.4815216064453,0.61083984375,2.383538246154785 +20220904020000,vlinder26,289.5752716064453,0.27099609375,1.8181085586547852 +20220904020000,vlinder27,290.5205841064453,0.71533203125,2.287835121154785 +20220904020000,vlinder28,290.3877716064453,0.74853515625,2.155999183654785 +20220904030000,vlinder01,289.8961639404297,0.855438232421875,2.043813705444336 +20220904030000,vlinder02,289.8590545654297,0.888641357421875,1.987173080444336 +20220904030000,vlinder03,289.8434295654297,0.056610107421875,1.798696517944336 +20220904030000,vlinder04,289.8434295654297,0.056610107421875,1.798696517944336 +20220904030000,vlinder05,290.0778045654297,0.904266357421875,2.127798080444336 +20220904030000,vlinder06,290.4039764404297,0.528289794921875,2.099477767944336 +20220904030000,vlinder07,290.4039764404297,0.528289794921875,2.099477767944336 +20220904030000,vlinder08,290.4039764404297,0.528289794921875,2.099477767944336 +20220904030000,vlinder09,290.0934295654297,0.716766357421875,2.259634017944336 +20220904030000,vlinder10,290.0016326904297,0.762664794921875,2.207876205444336 +20220904030000,vlinder11,290.2301483154297,0.373992919921875,2.182485580444336 +20220904030000,vlinder12,290.2301483154297,0.373992919921875,2.182485580444336 +20220904030000,vlinder13,290.2301483154297,0.373992919921875,2.182485580444336 +20220904030000,vlinder14,290.3238983154297,0.324188232421875,2.249868392944336 +20220904030000,vlinder15,290.1363983154297,0.668914794921875,2.284048080444336 +20220904030000,vlinder16,290.3238983154297,0.324188232421875,2.249868392944336 +20220904030000,vlinder17,289.4781951904297,0.417938232421875,1.741079330444336 +20220904030000,vlinder18,289.3863983154297,0.446258544921875,1.731313705444336 +20220904030000,vlinder19,289.9410858154297,0.643524169921875,2.333852767944336 +20220904030000,vlinder20,289.9410858154297,0.643524169921875,2.333852767944336 +20220904030000,vlinder21,291.3629608154297,2.310516357421875,2.870962142944336 +20220904030000,vlinder22,289.7711639404297,1.034149169921875,1.935415267944336 +20220904030000,vlinder23,290.4332733154297,0.920867919921875,2.398305892944336 +20220904030000,vlinder24,290.1969451904297,0.989227294921875,2.303579330444336 +20220904030000,vlinder25,290.1246795654297,0.842742919921875,2.192251205444336 +20220904030000,vlinder26,289.3805389404297,0.132781982421875,1.805532455444336 +20220904030000,vlinder27,290.0778045654297,0.904266357421875,2.127798080444336 +20220904030000,vlinder28,289.8961639404297,0.855438232421875,2.043813705444336 +20220904040000,vlinder01,289.4844970703125,0.85894775390625,2.0515451431274414 +20220904040000,vlinder02,289.4239501953125,0.84039306640625,2.0124826431274414 +20220904040000,vlinder03,289.6192626953125,0.04937744140625,1.7722482681274414 +20220904040000,vlinder04,289.6192626953125,0.04937744140625,1.7722482681274414 +20220904040000,vlinder05,289.7052001953125,0.90972900390625,2.1062326431274414 +20220904040000,vlinder06,290.1563720703125,0.64508056640625,2.0408029556274414 +20220904040000,vlinder07,290.1563720703125,0.64508056640625,2.0408029556274414 +20220904040000,vlinder08,290.1563720703125,0.64508056640625,2.0408029556274414 +20220904040000,vlinder09,289.7110595703125,0.84625244140625,2.2458810806274414 +20220904040000,vlinder10,289.6094970703125,0.85308837890625,2.2097482681274414 +20220904040000,vlinder11,290.0098876953125,0.45367431640625,2.0915842056274414 +20220904040000,vlinder12,290.0098876953125,0.45367431640625,2.0915842056274414 +20220904040000,vlinder13,290.0098876953125,0.45367431640625,2.0915842056274414 +20220904040000,vlinder14,290.0704345703125,0.39117431640625,2.1404123306274414 +20220904040000,vlinder15,289.7852783203125,0.82379150390625,2.2575998306274414 +20220904040000,vlinder16,290.0704345703125,0.39117431640625,2.1404123306274414 +20220904040000,vlinder17,289.2364501953125,0.46734619140625,1.7820138931274414 +20220904040000,vlinder18,289.0958251953125,0.52593994140625,1.7683420181274414 +20220904040000,vlinder19,289.6661376953125,0.79351806640625,2.3142404556274414 +20220904040000,vlinder20,289.6661376953125,0.79351806640625,2.3142404556274414 +20220904040000,vlinder21,291.0762939453125,1.99859619140625,2.8786935806274414 +20220904040000,vlinder22,289.3087158203125,0.47418212890625,2.1365060806274414 +20220904040000,vlinder23,290.1348876953125,0.96929931640625,2.2986154556274414 +20220904040000,vlinder24,289.8751220703125,1.00543212890625,2.2370920181274414 +20220904040000,vlinder25,289.7969970703125,0.87847900390625,2.1355295181274414 +20220904040000,vlinder26,289.1192626953125,0.12945556640625,1.7732248306274414 +20220904040000,vlinder27,289.7052001953125,0.90972900390625,2.1062326431274414 +20220904040000,vlinder28,289.4844970703125,0.85894775390625,2.0515451431274414 +20220904050000,vlinder01,289.07965087890625,0.6610870361328125,2.0642919540405273 +20220904050000,vlinder02,289.00543212890625,0.6093292236328125,2.0447607040405273 +20220904050000,vlinder03,289.35504150390625,0.0624542236328125,1.7869482040405273 +20220904050000,vlinder04,289.35504150390625,0.0624542236328125,1.7869482040405273 +20220904050000,vlinder05,289.31207275390625,0.6767120361328125,2.1170263290405273 +20220904050000,vlinder06,289.81402587890625,0.6190948486328125,1.9461278915405273 +20220904050000,vlinder07,289.81402587890625,0.6190948486328125,1.9461278915405273 +20220904050000,vlinder08,289.81402587890625,0.6190948486328125,1.9461278915405273 +20220904050000,vlinder09,289.39019775390625,0.7353057861328125,2.1951513290405273 +20220904050000,vlinder10,289.26324462890625,0.7089385986328125,2.1814794540405273 +20220904050000,vlinder11,289.70465087890625,0.3935089111328125,2.0144872665405273 +20220904050000,vlinder12,289.70465087890625,0.3935089111328125,2.0144872665405273 +20220904050000,vlinder13,289.70465087890625,0.3935089111328125,2.0144872665405273 +20220904050000,vlinder14,289.77496337890625,0.3075714111328125,2.0760107040405273 +20220904050000,vlinder15,289.47418212890625,0.7392120361328125,2.1892919540405273 +20220904050000,vlinder16,289.77496337890625,0.3075714111328125,2.0760107040405273 +20220904050000,vlinder17,289.09332275390625,0.4384307861328125,1.7898778915405273 +20220904050000,vlinder18,288.94879150390625,0.5165557861328125,1.7762060165405273 +20220904050000,vlinder19,289.38433837890625,0.7274932861328125,2.2381200790405273 +20220904050000,vlinder20,289.38433837890625,0.7274932861328125,2.2381200790405273 +20220904050000,vlinder21,290.75347900390625,1.3437042236328125,3.1707372665405273 +20220904050000,vlinder22,288.88238525390625,0.0302276611328125,2.3279638290405273 +20220904050000,vlinder23,289.80230712890625,0.6952667236328125,2.2801122665405273 +20220904050000,vlinder24,289.50347900390625,0.7274932861328125,2.2478857040405273 +20220904050000,vlinder25,289.41363525390625,0.6483917236328125,2.1150732040405273 +20220904050000,vlinder26,288.82574462890625,0.1435089111328125,1.7830419540405273 +20220904050000,vlinder27,289.31207275390625,0.6767120361328125,2.1170263290405273 +20220904050000,vlinder28,289.07965087890625,0.6610870361328125,2.0642919540405273 +20220904060000,vlinder01,289.1771697998047,0.4628753662109375,1.9358453750610352 +20220904060000,vlinder02,289.0970916748047,0.4326019287109375,1.9338922500610352 +20220904060000,vlinder03,289.6634979248047,0.0468597412109375,1.4944391250610352 +20220904060000,vlinder04,289.6634979248047,0.0468597412109375,1.4944391250610352 +20220904060000,vlinder05,289.3549041748047,0.4501800537109375,1.9827203750610352 +20220904060000,vlinder06,289.9935760498047,0.3535003662109375,1.6448297500610352 +20220904060000,vlinder07,289.9935760498047,0.3535003662109375,1.6448297500610352 +20220904060000,vlinder08,289.9935760498047,0.3535003662109375,1.6448297500610352 +20220904060000,vlinder09,289.5443572998047,0.4892425537109375,2.016900062561035 +20220904060000,vlinder10,289.4037322998047,0.4794769287109375,2.026665687561035 +20220904060000,vlinder11,289.8529510498047,0.1806488037109375,1.7219781875610352 +20220904060000,vlinder12,289.8529510498047,0.1806488037109375,1.7219781875610352 +20220904060000,vlinder13,289.8529510498047,0.1806488037109375,1.7219781875610352 +20220904060000,vlinder14,289.9349822998047,0.1230316162109375,1.8030328750610352 +20220904060000,vlinder15,289.6400604248047,0.4814300537109375,1.9866266250610352 +20220904060000,vlinder16,289.9349822998047,0.1230316162109375,1.8030328750610352 +20220904060000,vlinder17,289.4681854248047,0.2841644287109375,1.5325250625610352 +20220904060000,vlinder18,289.4017791748047,0.3427581787109375,1.5217828750610352 +20220904060000,vlinder19,289.5892791748047,0.4667816162109375,2.008111000061035 +20220904060000,vlinder20,289.5892791748047,0.4667816162109375,2.008111000061035 +20220904060000,vlinder21,290.6224822998047,0.9238128662109375,3.407525062561035 +20220904060000,vlinder22,288.9681854248047,-0.0332183837890625,2.380181312561035 +20220904060000,vlinder23,289.7689666748047,0.4081878662109375,2.115532875061035 +20220904060000,vlinder24,289.4935760498047,0.4609222412109375,2.118462562561035 +20220904060000,vlinder25,289.4134979248047,0.3915863037109375,1.9290094375610352 +20220904060000,vlinder26,289.2943572998047,0.1064300537109375,1.4963922500610352 +20220904060000,vlinder27,289.3549041748047,0.4501800537109375,1.9827203750610352 +20220904060000,vlinder28,289.1771697998047,0.4628753662109375,1.9358453750610352 +20220904070000,vlinder01,291.0567321777344,0.085906982421875,2.063007354736328 +20220904070000,vlinder02,290.9414978027344,0.065399169921875,2.056171417236328 +20220904070000,vlinder03,291.4454040527344,-0.231475830078125,1.3784370422363281 +20220904070000,vlinder04,291.4454040527344,-0.231475830078125,1.3784370422363281 +20220904070000,vlinder05,291.0430603027344,-0.015655517578125,2.076679229736328 +20220904070000,vlinder06,292.0957946777344,0.050750732421875,1.8852729797363281 +20220904070000,vlinder07,292.0957946777344,0.050750732421875,1.8852729797363281 +20220904070000,vlinder08,292.0957946777344,0.050750732421875,1.8852729797363281 +20220904070000,vlinder09,291.4981384277344,0.186492919921875,2.225116729736328 +20220904070000,vlinder10,291.2754821777344,0.179656982421875,2.227069854736328 +20220904070000,vlinder11,291.5489196777344,-0.228546142578125,1.6967964172363281 +20220904070000,vlinder12,291.5489196777344,-0.228546142578125,1.6967964172363281 +20220904070000,vlinder13,291.5489196777344,-0.228546142578125,1.6967964172363281 +20220904070000,vlinder14,291.4180603027344,-0.336944580078125,1.6460151672363281 +20220904070000,vlinder15,291.6778259277344,0.185516357421875,2.207538604736328 +20220904070000,vlinder16,291.4180603027344,-0.336944580078125,1.6460151672363281 +20220904070000,vlinder17,291.6387634277344,0.104461669921875,1.2436714172363281 +20220904070000,vlinder18,291.8497009277344,0.139617919921875,1.1977729797363281 +20220904070000,vlinder19,291.7188415527344,0.290985107421875,2.335468292236328 +20220904070000,vlinder20,291.7188415527344,0.290985107421875,2.335468292236328 +20220904070000,vlinder21,291.3164978027344,-0.141632080078125,3.737812042236328 +20220904070000,vlinder22,290.2266540527344,-0.072296142578125,2.787616729736328 +20220904070000,vlinder23,291.0567321777344,-0.217803955078125,2.133319854736328 +20220904070000,vlinder24,290.9903259277344,-0.112335205078125,2.202655792236328 +20220904070000,vlinder25,291.0098571777344,-0.132843017578125,1.9809761047363281 +20220904070000,vlinder26,291.5957946777344,-0.131866455078125,1.4253120422363281 +20220904070000,vlinder27,291.0430603027344,-0.015655517578125,2.076679229736328 +20220904070000,vlinder28,291.0567321777344,0.085906982421875,2.063007354736328 +20220904080000,vlinder01,293.01678466796875,0.3127899169921875,2.4459190368652344 +20220904080000,vlinder02,292.89764404296875,0.3127899169921875,2.4586143493652344 +20220904080000,vlinder03,293.14764404296875,-0.1979522705078125,1.6363487243652344 +20220904080000,vlinder04,293.14764404296875,-0.1979522705078125,1.6363487243652344 +20220904080000,vlinder05,292.91522216796875,0.1545867919921875,2.4800987243652344 +20220904080000,vlinder06,293.95819091796875,0.1760711669921875,2.0894737243652344 +20220904080000,vlinder07,293.95819091796875,0.1760711669921875,2.0894737243652344 +20220904080000,vlinder08,293.95819091796875,0.1760711669921875,2.0894737243652344 +20220904080000,vlinder09,293.41522216796875,0.4260711669921875,2.5943565368652344 +20220904080000,vlinder10,293.26873779296875,0.4280242919921875,2.6080284118652344 +20220904080000,vlinder11,293.32928466796875,-0.2301788330078125,1.9781455993652344 +20220904080000,vlinder12,293.32928466796875,-0.2301788330078125,1.9781455993652344 +20220904080000,vlinder13,293.32928466796875,-0.2301788330078125,1.9781455993652344 +20220904080000,vlinder14,293.05780029296875,-0.3922882080078125,1.9840049743652344 +20220904080000,vlinder15,293.52655029296875,0.4133758544921875,2.5572471618652344 +20220904080000,vlinder16,293.05780029296875,-0.3922882080078125,1.9840049743652344 +20220904080000,vlinder17,293.57342529296875,0.1672821044921875,1.4468955993652344 +20220904080000,vlinder18,293.83905029296875,0.2063446044921875,1.4156455993652344 +20220904080000,vlinder19,293.65936279296875,0.5354461669921875,2.6060752868652344 +20220904080000,vlinder20,293.65936279296875,0.5354461669921875,2.6060752868652344 +20220904080000,vlinder21,292.36834716796875,0.5920867919921875,4.020137786865234 +20220904080000,vlinder22,291.84881591796875,0.6038055419921875,2.8912315368652344 +20220904080000,vlinder23,292.71405029296875,-0.1627960205078125,2.5738487243652344 +20220904080000,vlinder24,292.76483154296875,0.0422821044921875,2.6324424743652344 +20220904080000,vlinder25,292.79022216796875,-0.0592803955078125,2.3980674743652344 +20220904080000,vlinder26,293.35662841796875,-0.0963897705078125,1.6324424743652344 +20220904080000,vlinder27,292.91522216796875,0.1545867919921875,2.4800987243652344 +20220904080000,vlinder28,293.01678466796875,0.3127899169921875,2.4459190368652344 +20220904090000,vlinder01,294.8894805908203,0.7274017333984375,2.647012710571289 +20220904090000,vlinder02,294.7664337158203,0.7440032958984375,2.657754898071289 +20220904090000,vlinder03,295.2840118408203,-0.1749420166015625,1.809122085571289 +20220904090000,vlinder04,295.2840118408203,-0.1749420166015625,1.809122085571289 +20220904090000,vlinder05,294.7273712158203,0.5984954833984375,2.711465835571289 +20220904090000,vlinder06,296.0203399658203,0.4285736083984375,2.236856460571289 +20220904090000,vlinder07,296.0203399658203,0.4285736083984375,2.236856460571289 +20220904090000,vlinder08,296.0203399658203,0.4285736083984375,2.236856460571289 +20220904090000,vlinder09,295.3172149658203,0.8484954833984375,2.813028335571289 +20220904090000,vlinder10,295.1648712158203,0.8680267333984375,2.828653335571289 +20220904090000,vlinder11,295.3015899658203,-0.0089263916015625,2.232950210571289 +20220904090000,vlinder12,295.3015899658203,-0.0089263916015625,2.232950210571289 +20220904090000,vlinder13,295.3015899658203,-0.0089263916015625,2.232950210571289 +20220904090000,vlinder14,294.9363555908203,-0.1759185791015625,2.299356460571289 +20220904090000,vlinder15,295.4480743408203,0.8143157958984375,2.770059585571289 +20220904090000,vlinder16,294.9363555908203,-0.1759185791015625,2.299356460571289 +20220904090000,vlinder17,295.6433868408203,0.1443939208984375,1.520059585571289 +20220904090000,vlinder18,295.8640899658203,0.1805267333984375,1.476114273071289 +20220904090000,vlinder19,295.6961212158203,0.9520111083984375,2.800333023071289 +20220904090000,vlinder20,295.6961212158203,0.9520111083984375,2.800333023071289 +20220904090000,vlinder21,293.6179962158203,1.4451751708984375,3.810098648071289 +20220904090000,vlinder22,293.6941680908203,1.1248626708984375,2.832559585571289 +20220904090000,vlinder23,294.3933868408203,0.3211517333984375,2.872598648071289 +20220904090000,vlinder24,294.4969024658203,0.5418548583984375,2.865762710571289 +20220904090000,vlinder25,294.5633087158203,0.3690032958984375,2.699747085571289 +20220904090000,vlinder26,295.5261993408203,-0.0733795166015625,1.755411148071289 +20220904090000,vlinder27,294.7273712158203,0.5984954833984375,2.711465835571289 +20220904090000,vlinder28,294.8894805908203,0.7274017333984375,2.647012710571289 +20220904100000,vlinder01,296.6770782470703,1.243408203125,2.8992042541503906 +20220904100000,vlinder02,296.5442657470703,1.213134765625,2.8718605041503906 +20220904100000,vlinder03,297.1731719970703,0.260986328125,2.2751808166503906 +20220904100000,vlinder04,297.1731719970703,0.260986328125,2.2751808166503906 +20220904100000,vlinder05,296.4329376220703,1.098876953125,2.9011573791503906 +20220904100000,vlinder06,297.8528594970703,1.263916015625,2.6863136291503906 +20220904100000,vlinder07,297.8528594970703,1.263916015625,2.6863136291503906 +20220904100000,vlinder08,297.8528594970703,1.263916015625,2.6863136291503906 +20220904100000,vlinder09,297.0501251220703,1.515869140625,3.1384620666503906 +20220904100000,vlinder10,296.8938751220703,1.488525390625,3.1267433166503906 +20220904100000,vlinder11,297.1848907470703,0.686767578125,2.6667823791503906 +20220904100000,vlinder12,297.1848907470703,0.686767578125,2.6667823791503906 +20220904100000,vlinder13,297.1848907470703,0.686767578125,2.6667823791503906 +20220904100000,vlinder14,296.7825469970703,0.433837890625,2.7204933166503906 +20220904100000,vlinder15,297.1887969970703,1.527587890625,3.1238136291503906 +20220904100000,vlinder16,296.7825469970703,0.433837890625,2.7204933166503906 +20220904100000,vlinder17,297.1673126220703,0.517822265625,1.8435401916503906 +20220904100000,vlinder18,297.2981719970703,0.543212890625,1.8015480041503906 +20220904100000,vlinder19,297.4075469970703,1.785400390625,3.1990089416503906 +20220904100000,vlinder20,297.4075469970703,1.785400390625,3.1990089416503906 +20220904100000,vlinder21,294.7825469970703,1.804931640625,3.3152198791503906 +20220904100000,vlinder22,295.3137969970703,1.247314453125,2.7029151916503906 +20220904100000,vlinder23,295.9016876220703,0.858642578125,2.9558448791503906 +20220904100000,vlinder24,296.0813751220703,1.056884765625,2.9470558166503906 +20220904100000,vlinder25,296.2141876220703,0.876220703125,2.8884620666503906 +20220904100000,vlinder26,297.4134063720703,0.418212890625,2.1833839416503906 +20220904100000,vlinder27,296.4329376220703,1.098876953125,2.9011573791503906 +20220904100000,vlinder28,296.6770782470703,1.243408203125,2.8992042541503906 +20220904110000,vlinder01,297.4977569580078,1.3787994384765625,3.0993309020996094 +20220904110000,vlinder02,297.4235382080078,1.3143463134765625,3.0631980895996094 +20220904110000,vlinder03,298.2946319580078,0.9813385009765625,2.6149559020996094 +20220904110000,vlinder04,298.2946319580078,0.9813385009765625,2.6149559020996094 +20220904110000,vlinder05,297.3473663330078,1.3416900634765625,3.0680809020996094 +20220904110000,vlinder06,298.4626007080078,1.6551666259765625,3.0231590270996094 +20220904110000,vlinder07,298.4626007080078,1.6551666259765625,3.0231590270996094 +20220904110000,vlinder08,298.4626007080078,1.6551666259765625,3.0231590270996094 +20220904110000,vlinder09,297.6676788330078,1.7118072509765625,3.3405418395996094 +20220904110000,vlinder10,297.5700225830078,1.6375885009765625,3.3092918395996094 +20220904110000,vlinder11,298.1208038330078,1.3065338134765625,3.0661277770996094 +20220904110000,vlinder12,298.1208038330078,1.3065338134765625,3.0661277770996094 +20220904110000,vlinder13,298.1208038330078,1.3065338134765625,3.0661277770996094 +20220904110000,vlinder14,297.8395538330078,1.1336822509765625,3.1383934020996094 +20220904110000,vlinder15,297.7672882080078,1.7664947509765625,3.3454246520996094 +20220904110000,vlinder16,297.8395538330078,1.1336822509765625,3.1383934020996094 +20220904110000,vlinder17,298.1891632080078,1.1922760009765625,2.0505027770996094 +20220904110000,vlinder18,298.3141632080078,1.1883697509765625,2.0006980895996094 +20220904110000,vlinder19,297.9333038330078,1.9735260009765625,3.3874168395996094 +20220904110000,vlinder20,297.9333038330078,1.9735260009765625,3.3874168395996094 +20220904110000,vlinder21,295.7770538330078,1.7879791259765625,2.6881980895996094 +20220904110000,vlinder22,296.6676788330078,1.1844635009765625,2.9215965270996094 +20220904110000,vlinder23,296.9293975830078,1.3875885009765625,3.0583152770996094 +20220904110000,vlinder24,297.0661163330078,1.4237213134765625,3.0182762145996094 +20220904110000,vlinder25,297.2106475830078,1.2870025634765625,3.1120262145996094 +20220904110000,vlinder26,298.5211944580078,1.1170806884765625,2.5202293395996094 +20220904110000,vlinder27,297.3473663330078,1.3416900634765625,3.0680809020996094 +20220904110000,vlinder28,297.4977569580078,1.3787994384765625,3.0993309020996094 +20220904120000,vlinder01,298.53204345703125,1.36737060546875,3.2945632934570312 +20220904120000,vlinder02,298.50079345703125,1.28826904296875,3.2896804809570312 +20220904120000,vlinder03,298.97540283203125,1.28045654296875,2.7926101684570312 +20220904120000,vlinder04,298.97540283203125,1.28045654296875,2.7926101684570312 +20220904120000,vlinder05,298.35821533203125,1.32147216796875,3.2701492309570312 +20220904120000,vlinder06,299.05548095703125,1.75213623046875,3.1763992309570312 +20220904120000,vlinder07,299.05548095703125,1.75213623046875,3.1763992309570312 +20220904120000,vlinder08,299.05548095703125,1.75213623046875,3.1763992309570312 +20220904120000,vlinder09,298.59649658203125,1.78924560546875,3.4332351684570312 +20220904120000,vlinder10,298.55938720703125,1.69451904296875,3.4312820434570312 +20220904120000,vlinder11,298.75274658203125,1.59002685546875,3.2887039184570312 +20220904120000,vlinder12,298.75274658203125,1.59002685546875,3.2887039184570312 +20220904120000,vlinder13,298.75274658203125,1.59002685546875,3.2887039184570312 +20220904120000,vlinder14,298.49298095703125,1.50311279296875,3.3873367309570312 +20220904120000,vlinder15,298.63555908203125,1.86053466796875,3.4244461059570312 +20220904120000,vlinder16,298.49298095703125,1.50311279296875,3.3873367309570312 +20220904120000,vlinder17,298.89923095703125,1.50701904296875,2.1646804809570312 +20220904120000,vlinder18,299.05157470703125,1.50213623046875,2.1002273559570312 +20220904120000,vlinder19,298.73907470703125,2.05975341796875,3.4596023559570312 +20220904120000,vlinder20,298.73907470703125,2.05975341796875,3.4596023559570312 +20220904120000,vlinder21,296.69805908203125,1.41717529296875,2.3873367309570312 +20220904120000,vlinder22,297.73321533203125,1.14959716796875,3.1832351684570312 +20220904120000,vlinder23,297.79376220703125,1.39764404296875,3.2301101684570312 +20220904120000,vlinder24,298.03399658203125,1.37615966796875,3.1871414184570312 +20220904120000,vlinder25,298.15118408203125,1.31561279296875,3.3355789184570312 +20220904120000,vlinder26,299.18048095703125,1.36151123046875,2.6754226684570312 +20220904120000,vlinder27,298.35821533203125,1.32147216796875,3.2701492309570312 +20220904120000,vlinder28,298.53204345703125,1.36737060546875,3.2945632934570312 +20220904130000,vlinder01,299.2754211425781,1.4744110107421875,3.103513717651367 +20220904130000,vlinder02,299.2441711425781,1.3992156982421875,3.108396530151367 +20220904130000,vlinder03,299.6211242675781,1.5037078857421875,2.838865280151367 +20220904130000,vlinder04,299.6211242675781,1.5037078857421875,2.838865280151367 +20220904130000,vlinder05,299.0703430175781,1.3650360107421875,3.103513717651367 +20220904130000,vlinder06,299.7734680175781,1.8699188232421875,3.094724655151367 +20220904130000,vlinder07,299.7734680175781,1.8699188232421875,3.094724655151367 +20220904130000,vlinder08,299.7734680175781,1.8699188232421875,3.094724655151367 +20220904130000,vlinder09,299.3418273925781,1.9382781982421875,3.223630905151367 +20220904130000,vlinder10,299.3066711425781,1.8415985107421875,3.223630905151367 +20220904130000,vlinder11,299.3554992675781,1.7009735107421875,3.170896530151367 +20220904130000,vlinder12,299.3554992675781,1.7009735107421875,3.170896530151367 +20220904130000,vlinder13,299.3554992675781,1.7009735107421875,3.170896530151367 +20220904130000,vlinder14,299.0371398925781,1.6111297607421875,3.241209030151367 +20220904130000,vlinder15,299.3750305175781,2.0115203857421875,3.222654342651367 +20220904130000,vlinder16,299.0371398925781,1.6111297607421875,3.241209030151367 +20220904130000,vlinder17,299.5547180175781,1.7156219482421875,2.246091842651367 +20220904130000,vlinder18,299.7051086425781,1.7019500732421875,2.158201217651367 +20220904130000,vlinder19,299.4824523925781,2.2302703857421875,3.291990280151367 +20220904130000,vlinder20,299.4824523925781,2.2302703857421875,3.291990280151367 +20220904130000,vlinder21,297.2890930175781,1.3289031982421875,1.6874980926513672 +20220904130000,vlinder22,298.3535461425781,1.3210906982421875,2.916013717651367 +20220904130000,vlinder23,298.4219055175781,1.3318328857421875,3.104490280151367 +20220904130000,vlinder24,298.7129211425781,1.3601531982421875,3.024412155151367 +20220904130000,vlinder25,298.8379211425781,1.2937469482421875,3.227537155151367 +20220904130000,vlinder26,299.8750305175781,1.5671844482421875,2.744138717651367 +20220904130000,vlinder27,299.0703430175781,1.3650360107421875,3.103513717651367 +20220904130000,vlinder28,299.2754211425781,1.4744110107421875,3.103513717651367 +20220904140000,vlinder01,299.7938995361328,1.5435638427734375,2.795248031616211 +20220904140000,vlinder02,299.7587432861328,1.4849700927734375,2.803060531616211 +20220904140000,vlinder03,299.8798370361328,1.5279388427734375,2.687826156616211 +20220904140000,vlinder04,299.8798370361328,1.5279388427734375,2.687826156616211 +20220904140000,vlinder05,299.5868682861328,1.4449310302734375,2.765951156616211 +20220904140000,vlinder06,300.2763214111328,1.8609466552734375,2.848958969116211 +20220904140000,vlinder07,300.2763214111328,1.8609466552734375,2.848958969116211 +20220904140000,vlinder08,300.2763214111328,1.8609466552734375,2.848958969116211 +20220904140000,vlinder09,299.8544464111328,1.9761810302734375,2.922201156616211 +20220904140000,vlinder10,299.8134307861328,1.8951263427734375,2.920248031616211 +20220904140000,vlinder11,299.8153839111328,1.6734466552734375,2.932943344116211 +20220904140000,vlinder12,299.8153839111328,1.6734466552734375,2.932943344116211 +20220904140000,vlinder13,299.8153839111328,1.6734466552734375,2.932943344116211 +20220904140000,vlinder14,299.4716339111328,1.5748138427734375,2.996419906616211 +20220904140000,vlinder15,299.8896026611328,2.0357513427734375,2.928060531616211 +20220904140000,vlinder16,299.4716339111328,1.5748138427734375,2.996419906616211 +20220904140000,vlinder17,299.7880401611328,1.7896575927734375,2.207357406616211 +20220904140000,vlinder18,299.9540557861328,1.8072357177734375,2.129232406616211 +20220904140000,vlinder19,299.9735870361328,2.2515716552734375,3.000326156616211 +20220904140000,vlinder20,299.9735870361328,2.2515716552734375,3.000326156616211 +20220904140000,vlinder21,297.4794464111328,1.2222747802734375,0.37825584411621094 +20220904140000,vlinder22,298.8212432861328,1.4097747802734375,2.359701156616211 +20220904140000,vlinder23,298.9130401611328,1.4156341552734375,2.677083969116211 +20220904140000,vlinder24,299.2157745361328,1.4420013427734375,2.610677719116211 +20220904140000,vlinder25,299.3661651611328,1.3804779052734375,2.920248031616211 +20220904140000,vlinder26,300.1493682861328,1.5748138427734375,2.612630844116211 +20220904140000,vlinder27,299.5868682861328,1.4449310302734375,2.765951156616211 +20220904140000,vlinder28,299.7938995361328,1.5435638427734375,2.795248031616211 +20220904150000,vlinder01,299.9725341796875,1.515716552734375,2.4421749114990234 +20220904150000,vlinder02,299.9373779296875,1.477630615234375,2.4470577239990234 +20220904150000,vlinder03,300.0115966796875,1.384857177734375,2.4870967864990234 +20220904150000,vlinder04,300.0115966796875,1.384857177734375,2.4870967864990234 +20220904150000,vlinder05,299.7498779296875,1.439544677734375,2.3181514739990234 +20220904150000,vlinder06,300.3944091796875,1.714935302734375,2.5339717864990234 +20220904150000,vlinder07,300.3944091796875,1.714935302734375,2.5339717864990234 +20220904150000,vlinder08,300.3944091796875,1.714935302734375,2.5339717864990234 +20220904150000,vlinder09,299.9979248046875,1.816497802734375,2.5320186614990234 +20220904150000,vlinder10,299.9608154296875,1.764739990234375,2.5290889739990234 +20220904150000,vlinder11,299.9959716796875,1.542083740234375,2.6335811614990234 +20220904150000,vlinder12,299.9959716796875,1.542083740234375,2.6335811614990234 +20220904150000,vlinder13,299.9959716796875,1.542083740234375,2.6335811614990234 +20220904150000,vlinder14,299.6756591796875,1.454193115234375,2.6931514739990234 +20220904150000,vlinder15,300.0252685546875,1.854583740234375,2.5417842864990234 +20220904150000,vlinder16,299.6756591796875,1.454193115234375,2.6931514739990234 +20220904150000,vlinder17,299.8045654296875,1.561614990234375,2.1628780364990234 +20220904150000,vlinder18,299.9666748046875,1.614349365234375,2.0896358489990234 +20220904150000,vlinder19,300.0623779296875,1.998138427734375,2.5945186614990234 +20220904150000,vlinder20,300.0623779296875,1.998138427734375,2.5945186614990234 +20220904150000,vlinder21,297.3221435546875,0.794036865234375,-0.8263797760009766 +20220904150000,vlinder22,298.9100341796875,1.276458740234375,1.7595577239990234 +20220904150000,vlinder23,299.0252685546875,1.395599365234375,1.9988155364990234 +20220904150000,vlinder24,299.3280029296875,1.415130615234375,2.0144405364990234 +20220904150000,vlinder25,299.5369873046875,1.397552490234375,2.4148311614990234 +20220904150000,vlinder26,300.2576904296875,1.390716552734375,2.4275264739990234 +20220904150000,vlinder27,299.7498779296875,1.439544677734375,2.3181514739990234 +20220904150000,vlinder28,299.9725341796875,1.515716552734375,2.4421749114990234 +20220904160000,vlinder01,299.76861572265625,1.280029296875,2.04901123046875 +20220904160000,vlinder02,299.74322509765625,1.252685546875,2.06854248046875 +20220904160000,vlinder03,299.76861572265625,1.178466796875,2.19354248046875 +20220904160000,vlinder04,299.76861572265625,1.178466796875,2.19354248046875 +20220904160000,vlinder05,299.49322509765625,1.162841796875,1.65447998046875 +20220904160000,vlinder06,300.13189697265625,1.403076171875,1.95819091796875 +20220904160000,vlinder07,300.13189697265625,1.403076171875,1.95819091796875 +20220904160000,vlinder08,300.13189697265625,1.403076171875,1.95819091796875 +20220904160000,vlinder09,299.75885009765625,1.498779296875,1.96209716796875 +20220904160000,vlinder10,299.73736572265625,1.476318359375,2.00018310546875 +20220904160000,vlinder11,299.79010009765625,1.203857421875,2.07733154296875 +20220904160000,vlinder12,299.79010009765625,1.203857421875,2.07733154296875 +20220904160000,vlinder13,299.79010009765625,1.203857421875,2.07733154296875 +20220904160000,vlinder14,299.50299072265625,1.111083984375,2.13299560546875 +20220904160000,vlinder15,299.77252197265625,1.518310546875,1.93865966796875 +20220904160000,vlinder16,299.50299072265625,1.111083984375,2.13299560546875 +20220904160000,vlinder17,299.54205322265625,1.239013671875,2.05584716796875 +20220904160000,vlinder18,299.69049072265625,1.323974609375,1.99822998046875 +20220904160000,vlinder19,299.84283447265625,1.614013671875,1.95819091796875 +20220904160000,vlinder20,299.84283447265625,1.614013671875,1.95819091796875 +20220904160000,vlinder21,296.92877197265625,-0.068603515625,-1.88262939453125 +20220904160000,vlinder22,298.74517822265625,0.756591796875,1.11541748046875 +20220904160000,vlinder23,298.64166259765625,0.972412109375,0.69354248046875 +20220904160000,vlinder24,298.97564697265625,1.021240234375,0.98260498046875 +20220904160000,vlinder25,299.24322509765625,1.102294921875,1.45037841796875 +20220904160000,vlinder26,300.03033447265625,1.134521484375,2.13787841796875 +20220904160000,vlinder27,299.49322509765625,1.162841796875,1.65447998046875 +20220904160000,vlinder28,299.76861572265625,1.280029296875,2.04901123046875 +20220904170000,vlinder01,299.2932434082031,0.46262359619140625,1.1544952392578125 +20220904170000,vlinder02,299.2893371582031,0.43527984619140625,1.2052764892578125 +20220904170000,vlinder03,299.3166809082031,0.7731704711914062,1.7111358642578125 +20220904170000,vlinder04,299.3166809082031,0.7731704711914062,1.7111358642578125 +20220904170000,vlinder05,298.9573059082031,0.29660797119140625,0.6730499267578125 +20220904170000,vlinder06,299.6311340332031,0.6178970336914062,0.9181671142578125 +20220904170000,vlinder07,299.6311340332031,0.6178970336914062,0.9181671142578125 +20220904170000,vlinder08,299.6311340332031,0.6178970336914062,0.9181671142578125 +20220904170000,vlinder09,299.2268371582031,0.6647720336914062,0.8449249267578125 +20220904170000,vlinder10,299.2366027832031,0.6432876586914062,0.9376983642578125 +20220904170000,vlinder11,299.2971496582031,0.5495376586914062,1.2921905517578125 +20220904170000,vlinder12,299.2971496582031,0.5495376586914062,1.2921905517578125 +20220904170000,vlinder13,299.2971496582031,0.5495376586914062,1.2921905517578125 +20220904170000,vlinder14,299.0080871582031,0.5173110961914062,1.4103546142578125 +20220904170000,vlinder15,299.2268371582031,0.6872329711914062,0.7853546142578125 +20220904170000,vlinder16,299.0080871582031,0.5173110961914062,1.4103546142578125 +20220904170000,vlinder17,299.0061340332031,0.5915298461914062,1.7589874267578125 +20220904170000,vlinder18,299.1213684082031,0.6979751586914062,1.7111358642578125 +20220904170000,vlinder19,299.3225402832031,0.6882095336914062,0.8214874267578125 +20220904170000,vlinder20,299.3225402832031,0.6882095336914062,0.8214874267578125 +20220904170000,vlinder21,296.3928527832031,-1.3996810913085938,-2.5359344482421875 +20220904170000,vlinder22,298.1252746582031,-0.26882171630859375,-0.0710906982421875 +20220904170000,vlinder23,297.9885559082031,-0.01882171630859375,-0.5603485107421875 +20220904170000,vlinder24,298.3694152832031,0.05149078369140625,-0.1189422607421875 +20220904170000,vlinder25,298.6174621582031,0.23801422119140625,0.2892608642578125 +20220904170000,vlinder26,299.5764465332031,0.5593032836914062,1.5626983642578125 +20220904170000,vlinder27,298.9573059082031,0.29660797119140625,0.6730499267578125 +20220904170000,vlinder28,299.2932434082031,0.46262359619140625,1.1544952392578125 +20220904180000,vlinder01,298.2421112060547,-0.9713640213012695,0.2674407958984375 +20220904180000,vlinder02,298.2147674560547,-0.9879655838012695,0.2830657958984375 +20220904180000,vlinder03,297.8300018310547,-0.10417652130126953,1.2625579833984375 +20220904180000,vlinder04,297.8300018310547,-0.10417652130126953,1.2625579833984375 +20220904180000,vlinder05,297.8925018310547,-1.0026140213012695,-0.1397857666015625 +20220904180000,vlinder06,298.0917205810547,-0.8727312088012695,0.1199798583984375 +20220904180000,vlinder07,298.0917205810547,-0.8727312088012695,0.1199798583984375 +20220904180000,vlinder08,298.0917205810547,-0.8727312088012695,0.1199798583984375 +20220904180000,vlinder09,297.8710174560547,-0.8698015213012695,0.0154876708984375 +20220904180000,vlinder10,297.8651580810547,-0.9030046463012695,0.0721282958984375 +20220904180000,vlinder11,298.2362518310547,-0.6481218338012695,0.5154876708984375 +20220904180000,vlinder12,298.2362518310547,-0.6481218338012695,0.5154876708984375 +20220904180000,vlinder13,298.2362518310547,-0.6481218338012695,0.5154876708984375 +20220904180000,vlinder14,297.8417205810547,-0.5114030838012695,0.6072845458984375 +20220904180000,vlinder15,297.8788299560547,-0.8473405838012695,-0.0225982666015625 +20220904180000,vlinder16,297.8417205810547,-0.5114030838012695,0.6072845458984375 +20220904180000,vlinder17,297.7089080810547,-0.42448902130126953,1.4637298583984375 +20220904180000,vlinder18,297.7714080810547,-0.22917652130126953,1.4988861083984375 +20220904180000,vlinder19,298.2518768310547,-0.9664812088012695,0.0721282958984375 +20220904180000,vlinder20,298.2518768310547,-0.9664812088012695,0.0721282958984375 +20220904180000,vlinder21,295.4842987060547,-2.3990983963012695,-2.5811920166015625 +20220904180000,vlinder22,296.7948455810547,-1.3746843338012695,-1.1700592041015625 +20220904180000,vlinder23,296.6385955810547,-1.0348405838012695,-1.1700592041015625 +20220904180000,vlinder24,297.2538299560547,-1.0846452713012695,-0.8028717041015625 +20220904180000,vlinder25,297.4413299560547,-0.9137468338012695,-0.4610748291015625 +20220904180000,vlinder26,298.2733612060547,-0.5201921463012695,1.1941986083984375 +20220904180000,vlinder27,297.8925018310547,-1.0026140213012695,-0.1397857666015625 +20220904180000,vlinder28,298.2421112060547,-0.9713640213012695,0.2674407958984375 +20220904190000,vlinder01,295.66712951660156,-1.8478717803955078,-1.205474853515625 +20220904190000,vlinder02,295.57142639160156,-1.8703327178955078,-1.172271728515625 +20220904190000,vlinder03,296.18470764160156,0.6824016571044922,0.870697021484375 +20220904190000,vlinder04,296.18470764160156,0.6824016571044922,0.870697021484375 +20220904190000,vlinder05,295.54798889160156,-1.8791217803955078,-1.207427978515625 +20220904190000,vlinder06,295.58509826660156,-1.3107624053955078,-0.776763916015625 +20220904190000,vlinder07,295.58509826660156,-1.3107624053955078,-0.776763916015625 +20220904190000,vlinder08,295.58509826660156,-1.3107624053955078,-0.776763916015625 +20220904190000,vlinder09,295.62025451660156,-2.007051467895508,-1.016021728515625 +20220904190000,vlinder10,295.56166076660156,-2.046113967895508,-0.982818603515625 +20220904190000,vlinder11,297.28041076660156,-0.5373249053955078,-0.479888916015625 +20220904190000,vlinder12,297.28041076660156,-0.5373249053955078,-0.479888916015625 +20220904190000,vlinder13,297.28041076660156,-0.5373249053955078,-0.479888916015625 +20220904190000,vlinder14,297.04603576660156,-0.2511920928955078,-0.436920166015625 +20220904190000,vlinder15,295.62611389160156,-1.9445514678955078,-0.991607666015625 +20220904190000,vlinder16,297.04603576660156,-0.2511920928955078,-0.436920166015625 +20220904190000,vlinder17,295.81556701660156,-0.5607624053955078,1.576751708984375 +20220904190000,vlinder18,295.76673889160156,-0.6681842803955078,1.555267333984375 +20220904190000,vlinder19,295.83509826660156,-2.068574905395508,-0.249420166015625 +20220904190000,vlinder20,295.83509826660156,-2.068574905395508,-0.249420166015625 +20220904190000,vlinder21,295.05970764160156,-3.286348342895508,-1.442779541015625 +20220904190000,vlinder22,294.80775451660156,-2.441621780395508,-0.928131103515625 +20220904190000,vlinder23,295.18080139160156,-1.9152545928955078,-1.238677978515625 +20220904190000,vlinder24,295.45619201660156,-1.9953327178955078,-1.229888916015625 +20220904190000,vlinder25,295.38392639160156,-1.8009967803955078,-1.193756103515625 +20220904190000,vlinder26,296.77064514160156,0.2585735321044922,0.972259521484375 +20220904190000,vlinder27,295.54798889160156,-1.8791217803955078,-1.207427978515625 +20220904190000,vlinder28,295.66712951660156,-1.8478717803955078,-1.205474853515625 +20220904200000,vlinder01,294.54852294921875,-2.254155158996582,-0.732696533203125 +20220904200000,vlinder02,294.60125732421875,-2.209233283996582,-0.772735595703125 +20220904200000,vlinder03,295.84539794921875,-0.626225471496582,0.821014404296875 +20220904200000,vlinder04,295.84539794921875,-0.626225471496582,0.821014404296875 +20220904200000,vlinder05,294.44110107421875,-2.243901252746582,-0.862579345703125 +20220904200000,vlinder06,294.24578857421875,-2.418705940246582,0.005584716796875 +20220904200000,vlinder07,294.24578857421875,-2.418705940246582,0.005584716796875 +20220904200000,vlinder08,294.24578857421875,-2.418705940246582,0.005584716796875 +20220904200000,vlinder09,294.27313232421875,-2.465580940246582,-0.167266845703125 +20220904200000,vlinder10,294.28875732421875,-2.413823127746582,-0.205352783203125 +20220904200000,vlinder11,293.91571044921875,-1.904545783996582,-0.530548095703125 +20220904200000,vlinder12,293.91571044921875,-1.904545783996582,-0.530548095703125 +20220904200000,vlinder13,293.91571044921875,-1.904545783996582,-0.530548095703125 +20220904200000,vlinder14,293.56610107421875,-1.631596565246582,-0.860626220703125 +20220904200000,vlinder15,294.22235107421875,-2.500737190246582,-0.089141845703125 +20220904200000,vlinder16,293.56610107421875,-1.631596565246582,-0.860626220703125 +20220904200000,vlinder17,294.06805419921875,-1.022221565246582,1.525115966796875 +20220904200000,vlinder18,293.96258544921875,-1.051518440246582,1.536834716796875 +20220904200000,vlinder19,294.22235107421875,-2.450932502746582,0.734100341796875 +20220904200000,vlinder20,294.22235107421875,-2.450932502746582,0.734100341796875 +20220904200000,vlinder21,294.66180419921875,-3.613530158996582,-0.721954345703125 +20220904200000,vlinder22,294.49383544921875,-2.540776252746582,-0.435821533203125 +20220904200000,vlinder23,293.98602294921875,-2.291752815246582,-1.031524658203125 +20220904200000,vlinder24,294.29071044921875,-2.344975471496582,-0.925079345703125 +20220904200000,vlinder25,294.07196044921875,-2.186772346496582,-0.980743408203125 +20220904200000,vlinder26,294.70477294921875,-0.923100471496582,1.084686279296875 +20220904200000,vlinder27,294.44110107421875,-2.243901252746582,-0.862579345703125 +20220904200000,vlinder28,294.54852294921875,-2.254155158996582,-0.732696533203125 +20220904210000,vlinder01,294.0596160888672,-2.470388412475586,0.0201873779296875 +20220904210000,vlinder02,294.1338348388672,-2.433767318725586,-0.0911407470703125 +20220904210000,vlinder03,292.7393035888672,-1.843923568725586,0.9860076904296875 +20220904210000,vlinder04,292.7393035888672,-1.843923568725586,0.9860076904296875 +20220904210000,vlinder05,293.9600067138672,-2.475759506225586,-0.2317657470703125 +20220904210000,vlinder06,293.6943817138672,-2.487966537475586,0.8668670654296875 +20220904210000,vlinder07,293.6943817138672,-2.487966537475586,0.8668670654296875 +20220904210000,vlinder08,293.6943817138672,-2.487966537475586,0.8668670654296875 +20220904210000,vlinder09,293.9307098388672,-2.520193099975586,0.8336639404296875 +20220904210000,vlinder10,293.9365692138672,-2.481130599975586,0.7164764404296875 +20220904210000,vlinder11,293.0967254638672,-2.451345443725586,0.0817108154296875 +20220904210000,vlinder12,293.0967254638672,-2.451345443725586,0.0817108154296875 +20220904210000,vlinder13,293.0967254638672,-2.451345443725586,0.0817108154296875 +20220904210000,vlinder14,292.7412567138672,-2.407400131225586,-0.3684844970703125 +20220904210000,vlinder15,293.8760223388672,-2.537282943725586,0.9537811279296875 +20220904210000,vlinder16,292.7412567138672,-2.407400131225586,-0.3684844970703125 +20220904210000,vlinder17,292.8662567138672,-1.393728256225586,1.4625701904296875 +20220904210000,vlinder18,292.7471160888672,-1.348318099975586,1.4899139404296875 +20220904210000,vlinder19,293.7451629638672,-2.355642318725586,1.6256561279296875 +20220904210000,vlinder20,293.7451629638672,-2.355642318725586,1.6256561279296875 +20220904210000,vlinder21,294.3447723388672,-3.824880599975586,-0.0022735595703125 +20220904210000,vlinder22,294.0303192138672,-2.794607162475586,0.0758514404296875 +20220904210000,vlinder23,293.5107879638672,-2.530447006225586,-0.5520782470703125 +20220904210000,vlinder24,293.7568817138672,-2.562185287475586,-0.3684844970703125 +20220904210000,vlinder25,293.5303192138672,-2.429372787475586,-0.4329376220703125 +20220904210000,vlinder26,292.8623504638672,-1.841482162475586,1.2613983154296875 +20220904210000,vlinder27,293.9600067138672,-2.475759506225586,-0.2317657470703125 +20220904210000,vlinder28,294.0596160888672,-2.470388412475586,0.0201873779296875 +20220904220000,vlinder01,293.66265869140625,-2.199451446533203,1.1843414306640625 +20220904220000,vlinder02,293.73687744140625,-2.216053009033203,1.0612945556640625 +20220904220000,vlinder03,291.99664306640625,-2.055896759033203,1.1443023681640625 +20220904220000,vlinder04,291.99664306640625,-2.055896759033203,1.1443023681640625 +20220904220000,vlinder05,293.60601806640625,-2.366443634033203,0.8454742431640625 +20220904220000,vlinder06,293.46148681640625,-2.162342071533203,1.6882476806640625 +20220904220000,vlinder07,293.46148681640625,-2.162342071533203,1.6882476806640625 +20220904220000,vlinder08,293.46148681640625,-2.162342071533203,1.6882476806640625 +20220904220000,vlinder09,293.71734619140625,-1.9982795715332031,1.8855133056640625 +20220904220000,vlinder10,293.68609619140625,-1.9836311340332031,1.7741851806640625 +20220904220000,vlinder11,292.82867431640625,-2.451404571533203,0.9216461181640625 +20220904220000,vlinder12,292.82867431640625,-2.451404571533203,0.9216461181640625 +20220904220000,vlinder13,292.82867431640625,-2.451404571533203,0.9216461181640625 +20220904220000,vlinder14,292.56500244140625,-2.579334259033203,0.5085601806640625 +20220904220000,vlinder15,293.68804931640625,-2.003162384033203,1.9734039306640625 +20220904220000,vlinder16,292.56500244140625,-2.579334259033203,0.5085601806640625 +20220904220000,vlinder17,292.40679931640625,-1.6691780090332031,1.4646148681640625 +20220904220000,vlinder18,292.29937744140625,-1.5959358215332031,1.5085601806640625 +20220904220000,vlinder19,293.43804931640625,-1.7990608215332031,2.3161773681640625 +20220904220000,vlinder20,293.43804931640625,-1.7990608215332031,2.3161773681640625 +20220904220000,vlinder21,294.17437744140625,-4.153553009033203,0.9880523681640625 +20220904220000,vlinder22,293.92047119140625,-3.139881134033203,0.7839508056640625 +20220904220000,vlinder23,293.30914306640625,-2.735584259033203,0.2956695556640625 +20220904220000,vlinder24,293.42242431640625,-2.622303009033203,0.5964508056640625 +20220904220000,vlinder25,293.22125244140625,-2.481678009033203,0.5310211181640625 +20220904220000,vlinder26,291.99468994140625,-1.9973030090332031,1.3591461181640625 +20220904220000,vlinder27,293.60601806640625,-2.366443634033203,0.8454742431640625 +20220904220000,vlinder28,293.66265869140625,-2.199451446533203,1.1843414306640625 +20220904230000,vlinder01,293.42747497558594,-1.6846818923950195,2.1887054443359375 +20220904230000,vlinder02,293.52317810058594,-1.7637834548950195,2.1115570068359375 +20220904230000,vlinder03,291.73216247558594,-1.7901506423950195,1.6125335693359375 +20220904230000,vlinder04,291.73216247558594,-1.7901506423950195,1.6125335693359375 +20220904230000,vlinder05,293.41184997558594,-2.0528459548950195,1.9015960693359375 +20220904230000,vlinder06,293.11302185058594,-1.4630022048950195,2.2560882568359375 +20220904230000,vlinder07,293.11302185058594,-1.4630022048950195,2.2560882568359375 +20220904230000,vlinder08,293.11302185058594,-1.4630022048950195,2.2560882568359375 +20220904230000,vlinder09,293.47239685058594,-1.3585100173950195,2.5412445068359375 +20220904230000,vlinder10,293.46653747558594,-1.4122209548950195,2.4826507568359375 +20220904230000,vlinder11,292.66184997558594,-1.9727678298950195,1.8537445068359375 +20220904230000,vlinder12,292.66184997558594,-1.9727678298950195,1.8537445068359375 +20220904230000,vlinder13,292.66184997558594,-1.9727678298950195,1.8537445068359375 +20220904230000,vlinder14,292.55833435058594,-2.2178850173950195,1.6379241943359375 +20220904230000,vlinder15,293.41575622558594,-1.3194475173950195,2.5695648193359375 +20220904230000,vlinder16,292.55833435058594,-2.2178850173950195,1.6379241943359375 +20220904230000,vlinder17,291.98802185058594,-1.6485490798950195,1.5637054443359375 +20220904230000,vlinder18,291.81809997558594,-1.5997209548950195,1.5822601318359375 +20220904230000,vlinder19,293.04075622558594,-1.1846818923950195,2.6320648193359375 +20220904230000,vlinder20,293.04075622558594,-1.1846818923950195,2.6320648193359375 +20220904230000,vlinder21,294.14231872558594,-4.4805803298950195,1.9738616943359375 +20220904230000,vlinder22,293.72630310058594,-3.1514787673950195,1.7180023193359375 +20220904230000,vlinder23,293.19895935058594,-2.7745256423950195,1.3547210693359375 +20220904230000,vlinder24,293.25364685058594,-2.5323381423950195,1.6379241943359375 +20220904230000,vlinder25,293.04856872558594,-2.2979631423950195,1.6183929443359375 +20220904230000,vlinder26,291.51927185058594,-1.7188615798950195,1.6818695068359375 +20220904230000,vlinder27,293.41184997558594,-2.0528459548950195,1.9015960693359375 +20220904230000,vlinder28,293.42747497558594,-1.6846818923950195,2.1887054443359375 +20220905000000,vlinder01,293.28321838378906,-1.4361505508422852,2.59912109375 +20220905000000,vlinder02,293.41603088378906,-1.4947443008422852,2.59423828125 +20220905000000,vlinder03,291.54884338378906,-1.4205255508422852,2.00927734375 +20220905000000,vlinder04,291.54884338378906,-1.4205255508422852,2.00927734375 +20220905000000,vlinder05,293.30665588378906,-1.7662286758422852,2.53662109375 +20220905000000,vlinder06,292.66212463378906,-1.1763849258422852,2.39111328125 +20220905000000,vlinder07,292.66212463378906,-1.1763849258422852,2.39111328125 +20220905000000,vlinder08,292.66212463378906,-1.1763849258422852,2.39111328125 +20220905000000,vlinder09,293.18751525878906,-1.2984552383422852,2.64306640625 +20220905000000,vlinder10,293.23243713378906,-1.3463068008422852,2.64599609375 +20220905000000,vlinder11,292.39454650878906,-1.5006036758422852,2.41357421875 +20220905000000,vlinder12,292.39454650878906,-1.5006036758422852,2.41357421875 +20220905000000,vlinder13,292.39454650878906,-1.5006036758422852,2.41357421875 +20220905000000,vlinder14,292.44337463378906,-1.6929864883422852,2.42529296875 +20220905000000,vlinder15,293.08204650878906,-1.2584161758422852,2.62255859375 +20220905000000,vlinder16,292.44337463378906,-1.6929864883422852,2.42529296875 +20220905000000,vlinder17,291.43360900878906,-1.3990411758422852,1.67626953125 +20220905000000,vlinder18,291.20509338378906,-1.4107599258422852,1.65283203125 +20220905000000,vlinder19,292.53907775878906,-1.1744318008422852,2.59326171875 +20220905000000,vlinder20,292.53907775878906,-1.1744318008422852,2.59326171875 +20220905000000,vlinder21,294.03517150878906,-4.099236488342285,3.16455078125 +20220905000000,vlinder22,293.62306213378906,-2.451775550842285,2.85595703125 +20220905000000,vlinder23,293.10939025878906,-2.442986488342285,2.38330078125 +20220905000000,vlinder24,293.14649963378906,-2.220330238342285,2.49072265625 +20220905000000,vlinder25,292.96095275878906,-1.9625177383422852,2.44189453125 +20220905000000,vlinder26,291.02149963378906,-1.3394708633422852,1.96337890625 +20220905000000,vlinder27,293.30665588378906,-1.7662286758422852,2.53662109375 +20220905000000,vlinder28,293.28321838378906,-1.4361505508422852,2.59912109375 +20220905010000,vlinder01,293.08056640625,-1.6485786437988281,2.472503662109375 +20220905010000,vlinder02,293.25634765625,-1.6602973937988281,2.508636474609375 +20220905010000,vlinder03,291.38916015625,-1.2462348937988281,2.032073974609375 +20220905010000,vlinder04,291.38916015625,-1.2462348937988281,2.032073974609375 +20220905010000,vlinder05,293.19384765625,-1.7745552062988281,2.606292724609375 +20220905010000,vlinder06,292.26220703125,-1.5011177062988281,2.119964599609375 +20220905010000,vlinder07,292.26220703125,-1.5011177062988281,2.119964599609375 +20220905010000,vlinder08,292.26220703125,-1.5011177062988281,2.119964599609375 +20220905010000,vlinder09,292.85009765625,-1.6729927062988281,2.423675537109375 +20220905010000,vlinder10,292.93994140625,-1.6817817687988281,2.465667724609375 +20220905010000,vlinder11,292.20556640625,-1.5811958312988281,2.335784912109375 +20220905010000,vlinder12,292.20556640625,-1.5811958312988281,2.335784912109375 +20220905010000,vlinder13,292.20556640625,-1.5811958312988281,2.335784912109375 +20220905010000,vlinder14,292.39306640625,-1.6573677062988281,2.468597412109375 +20220905010000,vlinder15,292.70556640625,-1.6563911437988281,2.374847412109375 +20220905010000,vlinder16,292.39306640625,-1.6573677062988281,2.468597412109375 +20220905010000,vlinder17,290.80126953125,-1.1134223937988281,1.717620849609375 +20220905010000,vlinder18,290.56298828125,-1.1407661437988281,1.690277099609375 +20220905010000,vlinder19,292.11572265625,-1.5929145812988281,2.382659912109375 +20220905010000,vlinder20,292.11572265625,-1.5929145812988281,2.382659912109375 +20220905010000,vlinder21,294.01611328125,-3.046039581298828,4.142425537109375 +20220905010000,vlinder22,293.68603515625,-1.9454536437988281,3.222503662109375 +20220905010000,vlinder23,293.11962890625,-2.081195831298828,2.845550537109375 +20220905010000,vlinder24,293.09228515625,-1.9835395812988281,2.794769287109375 +20220905010000,vlinder25,292.93212890625,-1.8272895812988281,2.653167724609375 +20220905010000,vlinder26,290.61376953125,-1.1622505187988281,1.951019287109375 +20220905010000,vlinder27,293.19384765625,-1.7745552062988281,2.606292724609375 +20220905010000,vlinder28,293.08056640625,-1.6485786437988281,2.472503662109375 +20220905020000,vlinder01,292.7074279785156,-1.9868974685668945,2.2153167724609375 +20220905020000,vlinder02,292.8949279785156,-1.9771318435668945,2.2534027099609375 +20220905020000,vlinder03,291.0160217285156,-1.4717607498168945,1.7934417724609375 +20220905020000,vlinder04,291.0160217285156,-1.4717607498168945,1.7934417724609375 +20220905020000,vlinder05,292.8793029785156,-2.0210771560668945,2.3657073974609375 +20220905020000,vlinder06,291.8500061035156,-1.9302568435668945,1.8520355224609375 +20220905020000,vlinder07,291.8500061035156,-1.9302568435668945,1.8520355224609375 +20220905020000,vlinder08,291.8500061035156,-1.9302568435668945,1.8520355224609375 +20220905020000,vlinder09,292.4769592285156,-2.0576982498168945,2.2270355224609375 +20220905020000,vlinder10,292.5804748535156,-2.0479326248168945,2.2719573974609375 +20220905020000,vlinder11,291.8812561035156,-1.9903154373168945,2.0073089599609375 +20220905020000,vlinder12,291.8812561035156,-1.9903154373168945,2.0073089599609375 +20220905020000,vlinder13,291.8812561035156,-1.9903154373168945,2.0073089599609375 +20220905020000,vlinder14,292.1214904785156,-2.0396318435668945,2.1323089599609375 +20220905020000,vlinder15,292.3226623535156,-2.0567216873168945,2.1772308349609375 +20220905020000,vlinder16,292.1214904785156,-2.0396318435668945,2.1323089599609375 +20220905020000,vlinder17,290.1117248535156,-1.1768388748168945,1.6381683349609375 +20220905020000,vlinder18,289.8695373535156,-1.1631669998168945,1.6303558349609375 +20220905020000,vlinder19,291.7562561035156,-1.9820146560668945,2.2651214599609375 +20220905020000,vlinder20,291.7562561035156,-1.9820146560668945,2.2651214599609375 +20220905020000,vlinder21,293.8480529785156,-2.2759599685668945,4.0131683349609375 +20220905020000,vlinder22,293.3226623535156,-1.7564287185668945,2.8950042724609375 +20220905020000,vlinder23,292.9085998535156,-2.1333818435668945,2.6703948974609375 +20220905020000,vlinder24,292.8265686035156,-2.0982255935668945,2.5883636474609375 +20220905020000,vlinder25,292.6703186035156,-2.0308427810668945,2.4184417724609375 +20220905020000,vlinder26,290.0746154785156,-1.4053544998168945,1.7221527099609375 +20220905020000,vlinder27,292.8793029785156,-2.0210771560668945,2.3657073974609375 +20220905020000,vlinder28,292.7074279785156,-1.9868974685668945,2.2153167724609375 +20220905030000,vlinder01,292.50213623046875,-2.1180801391601562,2.022613525390625 +20220905030000,vlinder02,292.69354248046875,-2.0765762329101562,2.036285400390625 +20220905030000,vlinder03,290.57440185546875,-1.7826309204101562,1.494293212890625 +20220905030000,vlinder04,290.57440185546875,-1.7826309204101562,1.494293212890625 +20220905030000,vlinder05,292.70526123046875,-2.1210098266601562,2.106597900390625 +20220905030000,vlinder06,291.52557373046875,-2.1293106079101562,1.776519775390625 +20220905030000,vlinder07,291.52557373046875,-2.1293106079101562,1.776519775390625 +20220905030000,vlinder08,291.52557373046875,-2.1293106079101562,1.776519775390625 +20220905030000,vlinder09,292.24627685546875,-2.2235488891601562,2.123199462890625 +20220905030000,vlinder10,292.36737060546875,-2.2113418579101562,2.147613525390625 +20220905030000,vlinder11,291.63885498046875,-2.2240371704101562,1.786285400390625 +20220905030000,vlinder12,291.63885498046875,-2.2240371704101562,1.786285400390625 +20220905030000,vlinder13,291.63885498046875,-2.2240371704101562,1.786285400390625 +20220905030000,vlinder14,291.93572998046875,-2.2801895141601562,1.842926025390625 +20220905030000,vlinder15,292.07440185546875,-2.2279434204101562,2.091949462890625 +20220905030000,vlinder16,291.93572998046875,-2.2801895141601562,1.842926025390625 +20220905030000,vlinder17,289.51776123046875,-1.4520645141601562,1.431793212890625 +20220905030000,vlinder18,289.26190185546875,-1.3944473266601562,1.440582275390625 +20220905030000,vlinder19,291.51385498046875,-2.1864395141601562,2.238433837890625 +20220905030000,vlinder20,291.51385498046875,-2.1864395141601562,2.238433837890625 +20220905030000,vlinder21,293.66619873046875,-1.2865371704101562,3.562652587890625 +20220905030000,vlinder22,292.92401123046875,-1.1752090454101562,2.328277587890625 +20220905030000,vlinder23,292.78729248046875,-2.1283340454101562,2.305816650390625 +20220905030000,vlinder24,292.67987060546875,-2.0746231079101562,2.265777587890625 +20220905030000,vlinder25,292.53143310546875,-2.1683731079101562,2.106597900390625 +20220905030000,vlinder26,289.52166748046875,-1.7240371704101562,1.472808837890625 +20220905030000,vlinder27,292.70526123046875,-2.1210098266601562,2.106597900390625 +20220905030000,vlinder28,292.50213623046875,-2.1180801391601562,2.022613525390625 +20220905040000,vlinder01,291.9674835205078,-1.537740707397461,1.837677001953125 +20220905040000,vlinder02,292.1549835205078,-1.376607894897461,1.812286376953125 +20220905040000,vlinder03,290.3268585205078,-1.918600082397461,1.334747314453125 +20220905040000,vlinder04,290.3268585205078,-1.918600082397461,1.334747314453125 +20220905040000,vlinder05,292.1764678955078,-1.395162582397461,1.930450439453125 +20220905040000,vlinder06,291.1842803955078,-2.164205551147461,1.814239501953125 +20220905040000,vlinder07,291.1842803955078,-2.164205551147461,1.814239501953125 +20220905040000,vlinder08,291.1842803955078,-2.164205551147461,1.814239501953125 +20220905040000,vlinder09,291.8151397705078,-2.092916488647461,2.045684814453125 +20220905040000,vlinder10,291.9342803955078,-1.928365707397461,2.033966064453125 +20220905040000,vlinder11,291.2428741455078,-2.246236801147461,1.725372314453125 +20220905040000,vlinder12,291.2428741455078,-2.246236801147461,1.725372314453125 +20220905040000,vlinder13,291.2428741455078,-2.246236801147461,1.725372314453125 +20220905040000,vlinder14,291.4987335205078,-2.291646957397461,1.719512939453125 +20220905040000,vlinder15,291.6549835205078,-2.212057113647461,2.047637939453125 +20220905040000,vlinder16,291.4987335205078,-2.291646957397461,1.719512939453125 +20220905040000,vlinder17,289.2545928955078,-1.659322738647461,1.286895751953125 +20220905040000,vlinder18,288.9870147705078,-1.622213363647461,1.276153564453125 +20220905040000,vlinder19,291.2194366455078,-2.235494613647461,2.245880126953125 +20220905040000,vlinder20,291.2194366455078,-2.235494613647461,2.245880126953125 +20220905040000,vlinder21,293.0631866455078,-1.553365707397461,3.647247314453125 +20220905040000,vlinder22,291.9479522705078,-2.062154769897461,1.944122314453125 +20220905040000,vlinder23,292.2506866455078,-1.321920394897461,2.178497314453125 +20220905040000,vlinder24,292.1022491455078,-1.237936019897461,2.130645751953125 +20220905040000,vlinder25,291.9792022705078,-1.464986801147461,1.940216064453125 +20220905040000,vlinder26,289.3112335205078,-1.871236801147461,1.364044189453125 +20220905040000,vlinder27,292.1764678955078,-1.395162582397461,1.930450439453125 +20220905040000,vlinder28,291.9674835205078,-1.537740707397461,1.837677001953125 +20220905050000,vlinder01,291.3289489746094,-1.075582504272461,1.8285675048828125 +20220905050000,vlinder02,291.5125427246094,-1.038473129272461,1.8217315673828125 +20220905050000,vlinder03,290.1394958496094,-1.804586410522461,1.4037628173828125 +20220905050000,vlinder04,290.1394958496094,-1.804586410522461,1.4037628173828125 +20220905050000,vlinder05,291.6531677246094,-1.108785629272461,1.9643096923828125 +20220905050000,vlinder06,291.0496520996094,-1.977437973022461,1.7660675048828125 +20220905050000,vlinder07,291.0496520996094,-1.977437973022461,1.7660675048828125 +20220905050000,vlinder08,291.0496520996094,-1.977437973022461,1.7660675048828125 +20220905050000,vlinder09,291.4559020996094,-1.505758285522461,1.9330596923828125 +20220905050000,vlinder10,291.5144958496094,-1.362691879272461,1.9457550048828125 +20220905050000,vlinder11,291.0535583496094,-1.931539535522461,1.7611846923828125 +20220905050000,vlinder12,291.0535583496094,-1.931539535522461,1.7611846923828125 +20220905050000,vlinder13,291.0535583496094,-1.931539535522461,1.7611846923828125 +20220905050000,vlinder14,291.2664489746094,-1.864156723022461,1.7846221923828125 +20220905050000,vlinder15,291.3582458496094,-1.645406723022461,1.9213409423828125 +20220905050000,vlinder16,291.2664489746094,-1.864156723022461,1.7846221923828125 +20220905050000,vlinder17,289.1141052246094,-1.730367660522461,1.3012237548828125 +20220905050000,vlinder18,288.7801208496094,-1.723531723022461,1.2816925048828125 +20220905050000,vlinder19,291.0320739746094,-1.919332504272461,2.1664581298828125 +20220905050000,vlinder20,291.0320739746094,-1.919332504272461,2.1664581298828125 +20220905050000,vlinder21,292.7625427246094,-2.901266098022461,3.9672393798828125 +20220905050000,vlinder22,291.3230895996094,-2.489156723022461,2.3412628173828125 +20220905050000,vlinder23,291.8797302246094,-1.476461410522461,2.2709503173828125 +20220905050000,vlinder24,291.6512145996094,-1.376363754272461,2.2035675048828125 +20220905050000,vlinder25,291.5008239746094,-1.194723129272461,1.9867706298828125 +20220905050000,vlinder26,289.2059020996094,-1.788961410522461,1.4272003173828125 +20220905050000,vlinder27,291.6531677246094,-1.108785629272461,1.9643096923828125 +20220905050000,vlinder28,291.3289489746094,-1.075582504272461,1.8285675048828125 +20220905060000,vlinder01,291.49452209472656,-1.4586153030395508,1.9901580810546875 +20220905060000,vlinder02,291.62147521972656,-1.5533418655395508,2.0321502685546875 +20220905060000,vlinder03,290.57460021972656,-1.4630098342895508,1.4706268310546875 +20220905060000,vlinder04,290.57460021972656,-1.4630098342895508,1.4706268310546875 +20220905060000,vlinder05,291.75428771972656,-1.7193574905395508,2.1278533935546875 +20220905060000,vlinder06,291.53944396972656,-1.4288301467895508,1.7167205810546875 +20220905060000,vlinder07,291.53944396972656,-1.4288301467895508,1.7167205810546875 +20220905060000,vlinder08,291.53944396972656,-1.4288301467895508,1.7167205810546875 +20220905060000,vlinder09,291.69764709472656,-1.0767793655395508,1.9413299560546875 +20220905060000,vlinder10,291.71327209472656,-1.1749238967895508,1.9921112060546875 +20220905060000,vlinder11,291.34217834472656,-1.5977754592895508,1.8309783935546875 +20220905060000,vlinder12,291.34217834472656,-1.5977754592895508,1.8309783935546875 +20220905060000,vlinder13,291.34217834472656,-1.5977754592895508,1.8309783935546875 +20220905060000,vlinder14,291.42420959472656,-1.6426973342895508,1.9188690185546875 +20220905060000,vlinder15,291.64491271972656,-1.0357637405395508,1.8973846435546875 +20220905060000,vlinder16,291.42420959472656,-1.6426973342895508,1.9188690185546875 +20220905060000,vlinder17,289.68202209472656,-1.4796113967895508,1.3114471435546875 +20220905060000,vlinder18,289.42420959472656,-1.5074434280395508,1.2977752685546875 +20220905060000,vlinder19,291.52967834472656,-1.1978731155395508,2.0995330810546875 +20220905060000,vlinder20,291.52967834472656,-1.1978731155395508,2.0995330810546875 +20220905060000,vlinder21,292.80506896972656,-2.480587959289551,4.3885955810546875 +20220905060000,vlinder22,291.43788146972656,-1.6563692092895508,2.8085174560546875 +20220905060000,vlinder23,291.94178771972656,-2.133908271789551,2.4091033935546875 +20220905060000,vlinder24,291.78749084472656,-1.9786348342895508,2.3690643310546875 +20220905060000,vlinder25,291.62342834472656,-1.8717012405395508,2.1151580810546875 +20220905060000,vlinder26,289.82655334472656,-1.4688692092895508,1.4520721435546875 +20220905060000,vlinder27,291.75428771972656,-1.7193574905395508,2.1278533935546875 +20220905060000,vlinder28,291.49452209472656,-1.4586153030395508,1.9901580810546875 +20220905070000,vlinder01,293.6820068359375,-0.6866607666015625,1.7826080322265625 +20220905070000,vlinder02,293.6722412109375,-0.5694732666015625,1.7230377197265625 +20220905070000,vlinder03,292.9827880859375,-1.4386138916015625,1.8070220947265625 +20220905070000,vlinder04,292.9827880859375,-1.4386138916015625,1.8070220947265625 +20220905070000,vlinder05,293.6136474609375,-0.7999420166015625,1.8695220947265625 +20220905070000,vlinder06,294.1546630859375,-1.6266021728515625,2.2523345947265625 +20220905070000,vlinder07,294.1546630859375,-1.6266021728515625,2.2523345947265625 +20220905070000,vlinder08,294.1546630859375,-1.6266021728515625,2.2523345947265625 +20220905070000,vlinder09,294.1488037109375,-1.1534576416015625,2.2054595947265625 +20220905070000,vlinder10,294.0550537109375,-1.0011138916015625,2.1048736572265625 +20220905070000,vlinder11,293.7308349609375,-1.5479888916015625,2.1790924072265625 +20220905070000,vlinder12,293.7308349609375,-1.5479888916015625,2.1790924072265625 +20220905070000,vlinder13,293.7308349609375,-1.5479888916015625,2.1790924072265625 +20220905070000,vlinder14,293.6077880859375,-1.4698638916015625,2.1576080322265625 +20220905070000,vlinder15,294.1898193359375,-1.2970123291015625,2.2874908447265625 +20220905070000,vlinder16,293.6077880859375,-1.4698638916015625,2.1576080322265625 +20220905070000,vlinder17,292.1761474609375,-1.0968170166015625,1.2386627197265625 +20220905070000,vlinder18,292.2738037109375,-1.1031646728515625,1.1624908447265625 +20220905070000,vlinder19,294.1253662109375,-1.5523834228515625,2.5579986572265625 +20220905070000,vlinder20,294.1253662109375,-1.5523834228515625,2.5579986572265625 +20220905070000,vlinder21,293.6156005859375,-1.2569732666015625,4.0169830322265625 +20220905070000,vlinder22,293.3636474609375,-0.2516021728515625,2.6683502197265625 +20220905070000,vlinder23,293.2796630859375,-1.2398834228515625,2.2943267822265625 +20220905070000,vlinder24,293.3695068359375,-1.0909576416015625,2.1654205322265625 +20220905070000,vlinder25,293.3558349609375,-0.9586334228515625,1.9300689697265625 +20220905070000,vlinder26,292.9320068359375,-1.4039459228515625,1.7787017822265625 +20220905070000,vlinder27,293.6136474609375,-0.7999420166015625,1.8695220947265625 +20220905070000,vlinder28,293.6820068359375,-0.6866607666015625,1.7826080322265625 +20220905080000,vlinder01,295.3935089111328,-0.4793968200683594,2.1651153564453125 +20220905080000,vlinder02,295.2938995361328,-0.5775413513183594,2.1641387939453125 +20220905080000,vlinder03,295.5614776611328,-1.3465843200683594,2.0635528564453125 +20220905080000,vlinder04,295.5614776611328,-1.3465843200683594,2.0635528564453125 +20220905080000,vlinder05,295.0673370361328,-0.8221702575683594,2.2832794189453125 +20220905080000,vlinder06,296.4774932861328,-0.9466819763183594,2.4893341064453125 +20220905080000,vlinder07,296.4774932861328,-0.9466819763183594,2.4893341064453125 +20220905080000,vlinder08,296.4774932861328,-0.9466819763183594,2.4893341064453125 +20220905080000,vlinder09,296.0028839111328,-0.19668197631835938,2.3985137939453125 +20220905080000,vlinder10,295.8446807861328,-0.2860374450683594,2.3653106689453125 +20220905080000,vlinder11,295.7685089111328,-0.6834983825683594,2.5020294189453125 +20220905080000,vlinder12,295.7685089111328,-0.6834983825683594,2.5020294189453125 +20220905080000,vlinder13,295.7685089111328,-0.6834983825683594,2.5020294189453125 +20220905080000,vlinder14,295.3778839111328,-0.4500999450683594,2.5127716064453125 +20220905080000,vlinder15,296.1356964111328,-0.20254135131835938,2.4405059814453125 +20220905080000,vlinder16,295.3778839111328,-0.4500999450683594,2.5127716064453125 +20220905080000,vlinder17,295.4579620361328,-1.2660179138183594,1.3555450439453125 +20220905080000,vlinder18,295.6396026611328,-1.3011741638183594,1.2608184814453125 +20220905080000,vlinder19,296.4540557861328,-0.7826194763183594,2.7647247314453125 +20220905080000,vlinder20,296.4540557861328,-0.7826194763183594,2.7647247314453125 +20220905080000,vlinder21,294.5478057861328,-1.6341819763183594,3.7520294189453125 +20220905080000,vlinder22,294.9521026611328,-0.7093772888183594,2.6641387939453125 +20220905080000,vlinder23,294.5146026611328,-1.4110374450683594,2.6973419189453125 +20220905080000,vlinder24,294.7548370361328,-1.2469749450683594,2.5391387939453125 +20220905080000,vlinder25,294.7411651611328,-1.0091819763183594,2.3701934814453125 +20220905080000,vlinder26,295.8114776611328,-1.4281272888183594,2.0030059814453125 +20220905080000,vlinder27,295.0673370361328,-0.8221702575683594,2.2832794189453125 +20220905080000,vlinder28,295.3935089111328,-0.4793968200683594,2.1651153564453125 +20220905090000,vlinder01,297.0407257080078,-0.2983074188232422,2.6853742599487305 +20220905090000,vlinder02,296.9235382080078,-0.4316082000732422,2.7674055099487305 +20220905090000,vlinder03,298.1715850830078,-0.9447917938232422,2.1140851974487305 +20220905090000,vlinder04,298.1715850830078,-0.9447917938232422,2.1140851974487305 +20220905090000,vlinder05,296.7106475830078,-0.6620769500732422,2.9060773849487305 +20220905090000,vlinder06,298.6540069580078,-0.3139324188232422,2.3738508224487305 +20220905090000,vlinder07,298.6540069580078,-0.3139324188232422,2.3738508224487305 +20220905090000,vlinder08,298.6540069580078,-0.3139324188232422,2.3738508224487305 +20220905090000,vlinder09,297.6579132080078,0.1880207061767578,2.6140851974487305 +20220905090000,vlinder10,297.4743194580078,0.05032539367675781,2.7049055099487305 +20220905090000,vlinder11,297.6442413330078,-0.2348308563232422,2.4597883224487305 +20220905090000,vlinder12,297.6442413330078,-0.2348308563232422,2.4597883224487305 +20220905090000,vlinder13,297.6442413330078,-0.2348308563232422,2.4597883224487305 +20220905090000,vlinder14,296.9977569580078,-0.1361980438232422,2.5398664474487305 +20220905090000,vlinder15,297.8512725830078,0.2407550811767578,2.5496320724487305 +20220905090000,vlinder16,296.9977569580078,-0.1361980438232422,2.5398664474487305 +20220905090000,vlinder17,298.3336944580078,-1.4218425750732422,1.5291242599487305 +20220905090000,vlinder18,298.5192413330078,-1.4623699188232422,1.4773664474487305 +20220905090000,vlinder19,298.4118194580078,-0.1581707000732422,2.8054914474487305 +20220905090000,vlinder20,298.4118194580078,-0.1581707000732422,2.8054914474487305 +20220905090000,vlinder21,295.8903350830078,-1.8276042938232422,3.9744367599487305 +20220905090000,vlinder22,296.5915069580078,-1.0946941375732422,3.0828351974487305 +20220905090000,vlinder23,296.1247100830078,-1.2279949188232422,3.3396711349487305 +20220905090000,vlinder24,296.4215850830078,-1.0400066375732422,3.1883039474487305 +20220905090000,vlinder25,296.3903350830078,-0.8691082000732422,2.9968976974487305 +20220905090000,vlinder26,298.6208038330078,-1.1972332000732422,2.0633039474487305 +20220905090000,vlinder27,296.7106475830078,-0.6620769500732422,2.9060773849487305 +20220905090000,vlinder28,297.0407257080078,-0.2983074188232422,2.6853742599487305 +20220905100000,vlinder01,298.6764221191406,-0.1351165771484375,3.0417137145996094 +20220905100000,vlinder02,298.5338439941406,-0.1722259521484375,3.0827293395996094 +20220905100000,vlinder03,300.2916564941406,-0.7659759521484375,2.2555809020996094 +20220905100000,vlinder04,300.2916564941406,-0.7659759521484375,2.2555809020996094 +20220905100000,vlinder05,298.3424377441406,-0.3372650146484375,3.2301902770996094 +20220905100000,vlinder06,300.5045471191406,-0.2630462646484375,2.7174949645996094 +20220905100000,vlinder07,300.5045471191406,-0.2630462646484375,2.7174949645996094 +20220905100000,vlinder08,300.5045471191406,-0.2630462646484375,2.7174949645996094 +20220905100000,vlinder09,299.2877502441406,0.1187896728515625,3.0583152770996094 +20220905100000,vlinder10,299.0846252441406,0.0572662353515625,3.1178855895996094 +20220905100000,vlinder11,299.4850158691406,-0.3040618896484375,2.7116355895996094 +20220905100000,vlinder12,299.4850158691406,-0.3040618896484375,2.7116355895996094 +20220905100000,vlinder13,299.4850158691406,-0.3040618896484375,2.7116355895996094 +20220905100000,vlinder14,298.7643127441406,-0.2874603271484375,2.7663230895996094 +20220905100000,vlinder15,299.5045471191406,0.1334381103515625,3.0065574645996094 +20220905100000,vlinder16,298.7643127441406,-0.2874603271484375,2.7663230895996094 +20220905100000,vlinder17,300.4869689941406,-1.4993743896484375,1.9997215270996094 +20220905100000,vlinder18,300.6178283691406,-1.5521087646484375,2.0114402770996094 +20220905100000,vlinder19,300.1139221191406,-0.0638275146484375,3.1647605895996094 +20220905100000,vlinder20,300.1139221191406,-0.0638275146484375,3.1647605895996094 +20220905100000,vlinder21,297.1393127441406,-0.4485931396484375,4.039760589599609 +20220905100000,vlinder22,297.8834533691406,0.4430084228515625,3.3190574645996094 +20220905100000,vlinder23,297.7330627441406,-0.6312103271484375,3.6051902770996094 +20220905100000,vlinder24,298.0455627441406,-0.4964447021484375,3.4655418395996094 +20220905100000,vlinder25,298.0455627441406,-0.4896087646484375,3.3346824645996094 +20220905100000,vlinder26,300.7857971191406,-0.9564056396484375,2.2067527770996094 +20220905100000,vlinder27,298.3424377441406,-0.3372650146484375,3.2301902770996094 +20220905100000,vlinder28,298.6764221191406,-0.1351165771484375,3.0417137145996094 +20220905110000,vlinder01,299.90858459472656,0.3202667236328125,2.9685192108154297 +20220905110000,vlinder02,299.76210021972656,0.4325714111328125,2.9353160858154297 +20220905110000,vlinder03,301.76405334472656,-0.4424285888671875,2.9841442108154297 +20220905110000,vlinder04,301.76405334472656,-0.4424285888671875,2.9841442108154297 +20220905110000,vlinder05,299.62147521972656,0.3261260986328125,3.1247692108154297 +20220905110000,vlinder06,301.69374084472656,-0.1650848388671875,3.2146129608154297 +20220905110000,vlinder07,301.69374084472656,-0.1650848388671875,3.2146129608154297 +20220905110000,vlinder08,301.69374084472656,-0.1650848388671875,3.2146129608154297 +20220905110000,vlinder09,300.41835021972656,0.2450714111328125,3.1071910858154297 +20220905110000,vlinder10,300.22108459472656,0.2899932861328125,3.0818004608154297 +20220905110000,vlinder11,300.93788146972656,-0.2461395263671875,3.2302379608154297 +20220905110000,vlinder12,300.93788146972656,-0.2461395263671875,3.2302379608154297 +20220905110000,vlinder13,300.93788146972656,-0.2461395263671875,3.2302379608154297 +20220905110000,vlinder14,300.30506896972656,-0.2568817138671875,3.2400035858154297 +20220905110000,vlinder15,300.62928771972656,0.1894073486328125,3.1394176483154297 +20220905110000,vlinder16,300.30506896972656,-0.2568817138671875,3.2400035858154297 +20220905110000,vlinder17,301.55116271972656,-0.8975067138671875,2.0749645233154297 +20220905110000,vlinder18,301.65858459472656,-0.9365692138671875,2.0026988983154297 +20220905110000,vlinder19,301.13710021972656,0.0419464111328125,3.3103160858154297 +20220905110000,vlinder20,301.13710021972656,0.0419464111328125,3.3103160858154297 +20220905110000,vlinder21,298.01210021972656,2.5253448486328125,3.0056285858154297 +20220905110000,vlinder22,298.63905334472656,2.6718292236328125,2.1159801483154297 +20220905110000,vlinder23,299.05897521972656,0.3935089111328125,3.5017223358154297 +20220905110000,vlinder24,299.33631896972656,0.5263214111328125,3.3112926483154297 +20220905110000,vlinder25,299.38905334472656,0.1669464111328125,3.3044567108154297 +20220905110000,vlinder26,302.18788146972656,-0.5352020263671875,2.8923473358154297 +20220905110000,vlinder27,299.62147521972656,0.3261260986328125,3.1247692108154297 +20220905110000,vlinder28,299.90858459472656,0.3202667236328125,2.9685192108154297 +20220905120000,vlinder01,300.34600830078125,1.524322509765625,1.9179973602294922 +20220905120000,vlinder02,300.11749267578125,1.738189697265625,1.7529582977294922 +20220905120000,vlinder03,302.23468017578125,-0.118255615234375,3.023466110229492 +20220905120000,vlinder04,302.23468017578125,-0.118255615234375,3.023466110229492 +20220905120000,vlinder05,300.00811767578125,1.809478759765625,1.9580364227294922 +20220905120000,vlinder06,302.15655517578125,-0.040130615234375,2.860380172729492 +20220905120000,vlinder07,302.15655517578125,-0.040130615234375,2.860380172729492 +20220905120000,vlinder08,302.15655517578125,-0.040130615234375,2.860380172729492 +20220905120000,vlinder09,301.00421142578125,0.957916259765625,2.315458297729492 +20220905120000,vlinder10,300.76788330078125,1.162017822265625,2.173856735229492 +20220905120000,vlinder11,301.53936767578125,0.144439697265625,3.146512985229492 +20220905120000,vlinder12,301.53936767578125,0.144439697265625,3.146512985229492 +20220905120000,vlinder13,301.53936767578125,0.144439697265625,3.146512985229492 +20220905120000,vlinder14,300.98468017578125,0.325103759765625,3.243192672729492 +20220905120000,vlinder15,301.23272705078125,0.742095947265625,2.451200485229492 +20220905120000,vlinder16,300.98468017578125,0.325103759765625,3.243192672729492 +20220905120000,vlinder17,302.09796142578125,-0.485443115234375,1.7168254852294922 +20220905120000,vlinder18,302.23468017578125,-0.554779052734375,1.6211223602294922 +20220905120000,vlinder19,301.64483642578125,0.259674072265625,2.695341110229492 +20220905120000,vlinder20,301.64483642578125,0.259674072265625,2.695341110229492 +20220905120000,vlinder21,297.62921142578125,4.250885009765625,0.1865520477294922 +20220905120000,vlinder22,297.87139892578125,2.829986572265625,0.0058879852294921875 +20220905120000,vlinder23,299.34014892578125,2.225494384765625,2.184598922729492 +20220905120000,vlinder24,299.59600830078125,2.265533447265625,1.9111614227294922 +20220905120000,vlinder25,299.79718017578125,1.730377197265625,2.232450485229492 +20220905120000,vlinder26,302.54913330078125,-0.279388427734375,2.817411422729492 +20220905120000,vlinder27,300.00811767578125,1.809478759765625,1.9580364227294922 +20220905120000,vlinder28,300.34600830078125,1.524322509765625,1.9179973602294922 +20220905130000,vlinder01,300.5500183105469,1.6141815185546875,-0.18239974975585938 +20220905130000,vlinder02,300.3488464355469,1.6512908935546875,-0.4636497497558594 +20220905130000,vlinder03,302.6047058105469,0.0155487060546875,2.7267799377441406 +20220905130000,vlinder04,302.6047058105469,0.0155487060546875,2.7267799377441406 +20220905130000,vlinder05,300.0109558105469,1.9930877685546875,-0.4294700622558594 +20220905130000,vlinder06,302.5265808105469,0.1825408935546875,2.0051002502441406 +20220905130000,vlinder07,302.5265808105469,0.1825408935546875,2.0051002502441406 +20220905130000,vlinder08,302.5265808105469,0.1825408935546875,2.0051002502441406 +20220905130000,vlinder09,301.1828308105469,1.2880096435546875,0.7209205627441406 +20220905130000,vlinder10,301.0031433105469,1.3651580810546875,0.4426002502441406 +20220905130000,vlinder11,300.9465026855469,0.9940643310546875,2.2414283752441406 +20220905130000,vlinder12,300.9465026855469,0.9940643310546875,2.2414283752441406 +20220905130000,vlinder13,300.9465026855469,0.9940643310546875,2.2414283752441406 +20220905130000,vlinder14,299.9054870605469,1.5331268310546875,2.2209205627441406 +20220905130000,vlinder15,301.3976745605469,1.1317596435546875,1.0207252502441406 +20220905130000,vlinder16,299.9054870605469,1.5331268310546875,2.2209205627441406 +20220905130000,vlinder17,302.4894714355469,-0.1709747314453125,1.4279518127441406 +20220905130000,vlinder18,302.6711120605469,-0.2442169189453125,1.3097877502441406 +20220905130000,vlinder19,302.0500183105469,0.3114471435546875,1.7404518127441406 +20220905130000,vlinder20,302.0500183105469,0.3114471435546875,1.7404518127441406 +20220905130000,vlinder21,296.7648620605469,3.4930877685546875,-3.1589622497558594 +20220905130000,vlinder22,297.5851745605469,1.1180877685546875,-2.7263450622558594 +20220905130000,vlinder23,298.8175964355469,2.7059783935546875,-0.6218528747558594 +20220905130000,vlinder24,299.3058776855469,2.4794158935546875,-0.7917747497558594 +20220905130000,vlinder25,299.5129089355469,2.1708221435546875,-0.2517356872558594 +20220905130000,vlinder26,303.0285339355469,-0.3965606689453125,2.5597877502441406 +20220905130000,vlinder27,300.0109558105469,1.9930877685546875,-0.4294700622558594 +20220905130000,vlinder28,300.5500183105469,1.6141815185546875,-0.18239974975585938 +20220905140000,vlinder01,300.1451416015625,0.1336822509765625,-1.9072265625 +20220905140000,vlinder02,299.9869384765625,-0.0753021240234375,-2.0966796875 +20220905140000,vlinder03,302.6744384765625,0.3202056884765625,2.009765625 +20220905140000,vlinder04,302.6744384765625,0.3202056884765625,2.009765625 +20220905140000,vlinder05,299.4361572265625,0.2948150634765625,-2.470703125 +20220905140000,vlinder06,302.1842041015625,0.2791900634765625,0.876953125 +20220905140000,vlinder07,302.1842041015625,0.2791900634765625,0.876953125 +20220905140000,vlinder08,302.1842041015625,0.2791900634765625,0.876953125 +20220905140000,vlinder09,300.7037353515625,0.7205963134765625,-0.8974609375 +20220905140000,vlinder10,300.5357666015625,0.4500885009765625,-1.1318359375 +20220905140000,vlinder11,301.0396728515625,1.1873931884765625,0.177734375 +20220905140000,vlinder12,301.0396728515625,1.1873931884765625,0.177734375 +20220905140000,vlinder13,301.0396728515625,1.1873931884765625,0.177734375 +20220905140000,vlinder14,300.1666259765625,1.7479400634765625,-0.4169921875 +20220905140000,vlinder15,300.9205322265625,0.8416900634765625,-0.5615234375 +20220905140000,vlinder16,300.1666259765625,1.7479400634765625,-0.4169921875 +20220905140000,vlinder17,302.6373291015625,-0.3555755615234375,1.19140625 +20220905140000,vlinder18,302.8013916015625,-0.3497161865234375,1.048828125 +20220905140000,vlinder19,301.6724853515625,0.0614166259765625,0.7841796875 +20220905140000,vlinder20,301.6724853515625,0.0614166259765625,0.7841796875 +20220905140000,vlinder21,295.7154541015625,1.5496978759765625,-4.955078125 +20220905140000,vlinder22,297.3736572265625,0.0213775634765625,-3.4677734375 +20220905140000,vlinder23,297.9205322265625,1.0438385009765625,-3.27734375 +20220905140000,vlinder24,298.5006103515625,0.6952056884765625,-3.0751953125 +20220905140000,vlinder25,298.8658447265625,0.6034088134765625,-2.7109375 +20220905140000,vlinder26,303.2154541015625,-0.3565521240234375,2.1826171875 +20220905140000,vlinder27,299.4361572265625,0.2948150634765625,-2.470703125 +20220905140000,vlinder28,300.1451416015625,0.1336822509765625,-1.9072265625 +20220905150000,vlinder01,300.1639404296875,-0.77435302734375,-2.313751220703125 +20220905150000,vlinder02,299.9764404296875,-0.94329833984375,-2.428985595703125 +20220905150000,vlinder03,302.5447998046875,0.41217041015625,0.946014404296875 +20220905150000,vlinder04,302.5447998046875,0.41217041015625,0.946014404296875 +20220905150000,vlinder05,299.2420654296875,-0.66497802734375,-2.853790283203125 +20220905150000,vlinder06,302.1600341796875,-0.39154052734375,0.132537841796875 +20220905150000,vlinder07,302.1600341796875,-0.39154052734375,0.132537841796875 +20220905150000,vlinder08,302.1600341796875,-0.39154052734375,0.132537841796875 +20220905150000,vlinder09,300.8572998046875,-0.28997802734375,-1.421173095703125 +20220905150000,vlinder10,300.6717529296875,-0.52239990234375,-1.566680908203125 +20220905150000,vlinder11,300.8201904296875,0.43170166015625,-1.297149658203125 +20220905150000,vlinder12,300.8201904296875,0.43170166015625,-1.297149658203125 +20220905150000,vlinder13,300.8201904296875,0.43170166015625,-1.297149658203125 +20220905150000,vlinder14,299.8612060546875,0.88189697265625,-2.263946533203125 +20220905150000,vlinder15,301.0760498046875,-0.16107177734375,-1.148712158203125 +20220905150000,vlinder16,299.8612060546875,0.88189697265625,-2.263946533203125 +20220905150000,vlinder17,302.5350341796875,-0.70599365234375,1.029998779296875 +20220905150000,vlinder18,302.6795654296875,-0.70697021484375,0.865936279296875 +20220905150000,vlinder19,301.8006591796875,-0.72845458984375,0.351287841796875 +20220905150000,vlinder20,301.8006591796875,-0.72845458984375,0.351287841796875 +20220905150000,vlinder21,295.3612060546875,-0.33001708984375,-4.460235595703125 +20220905150000,vlinder22,297.2498779296875,-0.92474365234375,-3.506134033203125 +20220905150000,vlinder23,297.3416748046875,-0.10931396484375,-3.729766845703125 +20220905150000,vlinder24,298.1131591796875,-0.39349365234375,-3.401641845703125 +20220905150000,vlinder25,298.4686279296875,-0.37298583984375,-3.211212158203125 +20220905150000,vlinder26,303.1190185546875,-0.24603271484375,1.606170654296875 +20220905150000,vlinder27,299.2420654296875,-0.66497802734375,-2.853790283203125 +20220905150000,vlinder28,300.1639404296875,-0.77435302734375,-2.313751220703125 +20220905160000,vlinder01,299.6858825683594,-1.0415802001953125,-2.538818359375 +20220905160000,vlinder02,299.4671325683594,-1.1197052001953125,-2.702880859375 +20220905160000,vlinder03,301.8518981933594,-0.2124786376953125,-0.314208984375 +20220905160000,vlinder04,301.8518981933594,-0.2124786376953125,-0.314208984375 +20220905160000,vlinder05,298.6819763183594,-0.8697052001953125,-3.011474609375 +20220905160000,vlinder06,301.9124450683594,-1.1724395751953125,0.234619140625 +20220905160000,vlinder07,301.9124450683594,-1.1724395751953125,0.234619140625 +20220905160000,vlinder08,301.9124450683594,-1.1724395751953125,0.234619140625 +20220905160000,vlinder09,300.5491638183594,-1.0191192626953125,-1.383544921875 +20220905160000,vlinder10,300.3128356933594,-1.0972442626953125,-1.596435546875 +20220905160000,vlinder11,300.3401794433594,-0.4849395751953125,-1.751708984375 +20220905160000,vlinder12,300.3401794433594,-0.4849395751953125,-1.751708984375 +20220905160000,vlinder13,300.3401794433594,-0.4849395751953125,-1.751708984375 +20220905160000,vlinder14,299.2268981933594,-0.1167755126953125,-2.950927734375 +20220905160000,vlinder15,300.8108825683594,-0.9995880126953125,-1.055419921875 +20220905160000,vlinder16,299.2268981933594,-0.1167755126953125,-2.950927734375 +20220905160000,vlinder17,302.3343200683594,-1.0728302001953125,0.856689453125 +20220905160000,vlinder18,302.4710388183594,-1.1353302001953125,0.696533203125 +20220905160000,vlinder19,301.3108825683594,-1.5074005126953125,0.488525390625 +20220905160000,vlinder20,301.3108825683594,-1.5074005126953125,0.488525390625 +20220905160000,vlinder21,295.1741638183594,-1.2544708251953125,-4.306396484375 +20220905160000,vlinder22,296.8851013183594,-1.6265411376953125,-3.772216796875 +20220905160000,vlinder23,296.7308044433594,-0.4722442626953125,-3.658935546875 +20220905160000,vlinder24,297.5530700683594,-0.7007598876953125,-3.414794921875 +20220905160000,vlinder25,297.8265075683594,-0.5913848876953125,-3.268310546875 +20220905160000,vlinder26,302.7288513183594,-0.5865020751953125,0.749267578125 +20220905160000,vlinder27,298.6819763183594,-0.8697052001953125,-3.011474609375 +20220905160000,vlinder28,299.6858825683594,-1.0415802001953125,-2.538818359375 +20220905170000,vlinder01,298.9026184082031,-1.5207672119140625,-2.4437408447265625 +20220905170000,vlinder02,298.6369934082031,-1.5266265869140625,-2.7337799072265625 +20220905170000,vlinder03,301.3030090332031,-0.8547515869140625,-0.9867095947265625 +20220905170000,vlinder04,301.3030090332031,-0.8547515869140625,-0.9867095947265625 +20220905170000,vlinder05,297.9162902832031,-1.3742828369140625,-2.9544830322265625 +20220905170000,vlinder06,301.0959777832031,-1.4719390869140625,0.9468841552734375 +20220905170000,vlinder07,301.0959777832031,-1.4719390869140625,0.9468841552734375 +20220905170000,vlinder08,301.0959777832031,-1.4719390869140625,0.9468841552734375 +20220905170000,vlinder09,299.8908996582031,-2.0354156494140625,-0.7621002197265625 +20220905170000,vlinder10,299.5744934082031,-2.0529937744140625,-1.1429595947265625 +20220905170000,vlinder11,299.6428527832031,-1.1154937744140625,-1.3148345947265625 +20220905170000,vlinder12,299.6428527832031,-1.1154937744140625,-1.3148345947265625 +20220905170000,vlinder13,299.6428527832031,-1.1154937744140625,-1.3148345947265625 +20220905170000,vlinder14,298.6037902832031,-0.9621734619140625,-2.6097564697265625 +20220905170000,vlinder15,300.1897277832031,-2.0246734619140625,-0.3128814697265625 +20220905170000,vlinder16,298.6037902832031,-0.9621734619140625,-2.6097564697265625 +20220905170000,vlinder17,301.3948059082031,-1.4729156494140625,0.7418060302734375 +20220905170000,vlinder18,301.5022277832031,-1.5901031494140625,0.5943450927734375 +20220905170000,vlinder19,300.1389465332031,-2.2434234619140625,1.3013763427734375 +20220905170000,vlinder20,300.1389465332031,-2.2434234619140625,1.3013763427734375 +20220905170000,vlinder21,294.8752746582031,-1.2688140869140625,-4.9271392822265625 +20220905170000,vlinder22,295.7151184082031,-1.2121734619140625,-3.7894439697265625 +20220905170000,vlinder23,296.1428527832031,-1.1438140869140625,-3.4525299072265625 +20220905170000,vlinder24,296.9221496582031,-1.3088531494140625,-3.3089752197265625 +20220905170000,vlinder25,297.0783996582031,-1.1731109619140625,-3.0794830322265625 +20220905170000,vlinder26,301.8283996582031,-0.8684234619140625,0.0884857177734375 +20220905170000,vlinder27,297.9162902832031,-1.3742828369140625,-2.9544830322265625 +20220905170000,vlinder28,298.9026184082031,-1.5207672119140625,-2.4437408447265625 +20220905180000,vlinder01,297.6101989746094,-1.9875640869140625,-1.8482513427734375 +20220905180000,vlinder02,297.3582458496094,-1.9123687744140625,-2.3101654052734375 +20220905180000,vlinder03,299.8133239746094,-1.3869781494140625,-0.5572357177734375 +20220905180000,vlinder04,299.8133239746094,-1.3869781494140625,-0.5572357177734375 +20220905180000,vlinder05,296.7234802246094,-1.7111968994140625,-2.5845794677734375 +20220905180000,vlinder06,299.3543395996094,-1.4582672119140625,1.8246002197265625 +20220905180000,vlinder07,299.3543395996094,-1.4582672119140625,1.8246002197265625 +20220905180000,vlinder08,299.3543395996094,-1.4582672119140625,1.8246002197265625 +20220905180000,vlinder09,298.2781677246094,-2.6213531494140625,0.5003814697265625 +20220905180000,vlinder10,297.9949645996094,-2.5793609619140625,-0.0162200927734375 +20220905180000,vlinder11,298.4090270996094,-1.3977203369140625,-0.6236419677734375 +20220905180000,vlinder12,298.4090270996094,-1.3977203369140625,-0.6236419677734375 +20220905180000,vlinder13,298.4090270996094,-1.3977203369140625,-0.6236419677734375 +20220905180000,vlinder14,297.6082458496094,-1.4768218994140625,-1.9693450927734375 +20220905180000,vlinder15,298.5223083496094,-2.5910797119140625,1.0257720947265625 +20220905180000,vlinder16,297.6082458496094,-1.4768218994140625,-1.9693450927734375 +20220905180000,vlinder17,299.9832458496094,-2.0705718994140625,0.8919830322265625 +20220905180000,vlinder18,300.0184020996094,-2.1731109619140625,0.7630767822265625 +20220905180000,vlinder19,298.1297302246094,-2.2795562744140625,2.4984283447265625 +20220905180000,vlinder20,298.1297302246094,-2.2795562744140625,2.4984283447265625 +20220905180000,vlinder21,293.9461364746094,-0.1613922119140625,-5.7945404052734375 +20220905180000,vlinder22,294.1394958496094,-0.0315093994140625,-4.4537200927734375 +20220905180000,vlinder23,295.1023864746094,-1.2375640869140625,-3.3931732177734375 +20220905180000,vlinder24,295.7996520996094,-1.4465484619140625,-3.1636810302734375 +20220905180000,vlinder25,295.9441833496094,-1.4817047119140625,-2.8082122802734375 +20220905180000,vlinder26,300.1101989746094,-1.2424468994140625,0.4310455322265625 +20220905180000,vlinder27,296.7234802246094,-1.7111968994140625,-2.5845794677734375 +20220905180000,vlinder28,297.6101989746094,-1.9875640869140625,-1.8482513427734375 +20220905190000,vlinder01,295.21246337890625,-2.0185089111328125,-0.2496185302734375 +20220905190000,vlinder02,295.07965087890625,-2.0810089111328125,-0.0757904052734375 +20220905190000,vlinder03,297.73004150390625,-2.6894073486328125,-1.2261810302734375 +20220905190000,vlinder04,297.73004150390625,-2.6894073486328125,-1.2261810302734375 +20220905190000,vlinder05,295.07183837890625,-2.1894073486328125,-0.1304779052734375 +20220905190000,vlinder06,297.58746337890625,-2.3280792236328125,-0.9507904052734375 +20220905190000,vlinder07,297.58746337890625,-2.3280792236328125,-0.9507904052734375 +20220905190000,vlinder08,297.58746337890625,-2.3280792236328125,-0.9507904052734375 +20220905190000,vlinder09,295.69488525390625,-1.7675323486328125,-0.5396575927734375 +20220905190000,vlinder10,295.49957275390625,-1.8339385986328125,-0.3336029052734375 +20220905190000,vlinder11,296.57183837890625,-2.3690948486328125,-1.6324310302734375 +20220905190000,vlinder12,296.57183837890625,-2.3690948486328125,-1.6324310302734375 +20220905190000,vlinder13,296.57183837890625,-2.3690948486328125,-1.6324310302734375 +20220905190000,vlinder14,295.74176025390625,-2.3183135986328125,-1.9205169677734375 +20220905190000,vlinder15,295.96246337890625,-1.7675323486328125,-0.6841888427734375 +20220905190000,vlinder16,295.74176025390625,-2.3183135986328125,-1.9205169677734375 +20220905190000,vlinder17,298.44488525390625,-1.7431182861328125,-1.1793060302734375 +20220905190000,vlinder18,298.44293212890625,-1.4511260986328125,-1.2330169677734375 +20220905190000,vlinder19,296.70855712890625,-2.2440948486328125,-0.1548919677734375 +20220905190000,vlinder20,296.70855712890625,-2.2440948486328125,-0.1548919677734375 +20220905190000,vlinder21,294.37261962890625,-3.3280792236328125,0.9935455322265625 +20220905190000,vlinder22,294.23199462890625,-2.6825714111328125,0.8431549072265625 +20220905190000,vlinder23,294.87847900390625,-2.5253448486328125,-0.1021575927734375 +20220905190000,vlinder24,294.96832275390625,-2.2577667236328125,0.0101470947265625 +20220905190000,vlinder25,294.96832275390625,-2.3993682861328125,-0.2681732177734375 +20220905190000,vlinder26,298.14801025390625,-2.9237823486328125,-0.9683685302734375 +20220905190000,vlinder27,295.07183837890625,-2.1894073486328125,-0.1304779052734375 +20220905190000,vlinder28,295.21246337890625,-2.0185089111328125,-0.2496185302734375 +20220905200000,vlinder01,294.2678680419922,-1.0804443359375,-0.0844573974609375 +20220905200000,vlinder02,293.9963836669922,-1.4017333984375,0.1147613525390625 +20220905200000,vlinder03,297.2131805419922,-2.5003662109375,-0.1459808349609375 +20220905200000,vlinder04,297.2131805419922,-2.5003662109375,-0.1459808349609375 +20220905200000,vlinder05,294.0530242919922,-1.3411865234375,0.1645660400390625 +20220905200000,vlinder06,296.7737274169922,-1.3011474609375,-0.7944183349609375 +20220905200000,vlinder07,296.7737274169922,-1.3011474609375,-0.7944183349609375 +20220905200000,vlinder08,296.7737274169922,-1.3011474609375,-0.7944183349609375 +20220905200000,vlinder09,295.0959930419922,0.1920166015625,-0.9096527099609375 +20220905200000,vlinder10,294.7307586669922,-0.1419677734375,-0.6596527099609375 +20220905200000,vlinder11,296.2561492919922,-1.5120849609375,-0.8110198974609375 +20220905200000,vlinder12,296.2561492919922,-1.5120849609375,-0.8110198974609375 +20220905200000,vlinder13,296.2561492919922,-1.5120849609375,-0.8110198974609375 +20220905200000,vlinder14,295.6936492919922,-1.3929443359375,-0.8852386474609375 +20220905200000,vlinder15,295.4358367919922,0.3033447265625,-1.0727386474609375 +20220905200000,vlinder16,295.6936492919922,-1.3929443359375,-0.8852386474609375 +20220905200000,vlinder17,297.4045867919922,-1.6956787109375,-0.6137542724609375 +20220905200000,vlinder18,297.1897430419922,-1.5931396484375,-0.5141448974609375 +20220905200000,vlinder19,295.8166961669922,-0.4505615234375,-0.6537933349609375 +20220905200000,vlinder20,295.8166961669922,-0.4505615234375,-0.6537933349609375 +20220905200000,vlinder21,293.4827117919922,-1.7982177734375,0.6928863525390625 +20220905200000,vlinder22,293.3088836669922,-2.0364990234375,-0.0785980224609375 +20220905200000,vlinder23,293.9065399169922,-1.4329833984375,0.2846832275390625 +20220905200000,vlinder24,293.9397430419922,-1.3323974609375,0.2856597900390625 +20220905200000,vlinder25,294.0354461669922,-1.4476318359375,0.2055816650390625 +20220905200000,vlinder26,297.3596649169922,-2.7113037109375,-0.1635589599609375 +20220905200000,vlinder27,294.0530242919922,-1.3411865234375,0.1645660400390625 +20220905200000,vlinder28,294.2678680419922,-1.0804443359375,-0.0844573974609375 +20220905210000,vlinder01,292.8954620361328,-0.885406494140625,-1.1406707763671875 +20220905210000,vlinder02,292.6942901611328,-1.308258056640625,-1.0527801513671875 +20220905210000,vlinder03,295.9638214111328,-1.901031494140625,-1.3603973388671875 +20220905210000,vlinder04,295.9638214111328,-1.901031494140625,-1.3603973388671875 +20220905210000,vlinder05,292.7978057861328,-1.205718994140625,-1.1660614013671875 +20220905210000,vlinder06,295.6063995361328,-0.226226806640625,-1.7881317138671875 +20220905210000,vlinder07,295.6063995361328,-0.226226806640625,-1.7881317138671875 +20220905210000,vlinder08,295.6063995361328,-0.226226806640625,-1.7881317138671875 +20220905210000,vlinder09,293.5634307861328,0.399749755859375,-1.6211395263671875 +20220905210000,vlinder10,293.2450714111328,-0.073883056640625,-1.4990692138671875 +20220905210000,vlinder11,295.4716339111328,-0.767242431640625,-1.7519989013671875 +20220905210000,vlinder12,295.4716339111328,-0.767242431640625,-1.7519989013671875 +20220905210000,vlinder13,295.4716339111328,-0.767242431640625,-1.7519989013671875 +20220905210000,vlinder14,295.0341339111328,-0.819000244140625,-1.6777801513671875 +20220905210000,vlinder15,293.9130401611328,0.644866943359375,-1.7266082763671875 +20220905210000,vlinder16,295.0341339111328,-0.819000244140625,-1.6777801513671875 +20220905210000,vlinder17,296.4013214111328,-1.267242431640625,-1.1709442138671875 +20220905210000,vlinder18,295.9989776611328,-1.308258056640625,-0.8857879638671875 +20220905210000,vlinder19,294.4774932861328,0.129241943359375,-1.4228973388671875 +20220905210000,vlinder20,294.4774932861328,0.129241943359375,-1.4228973388671875 +20220905210000,vlinder21,292.6415557861328,-3.331695556640625,-1.6084442138671875 +20220905210000,vlinder22,292.5478057861328,-2.780914306640625,-1.1826629638671875 +20220905210000,vlinder23,292.8642120361328,-1.263336181640625,-1.4053192138671875 +20220905210000,vlinder24,292.7548370361328,-1.384429931640625,-1.3301239013671875 +20220905210000,vlinder25,292.9052276611328,-1.085601806640625,-1.2500457763671875 +20220905210000,vlinder26,296.2099151611328,-2.026031494140625,-1.4404754638671875 +20220905210000,vlinder27,292.7978057861328,-1.205718994140625,-1.1660614013671875 +20220905210000,vlinder28,292.8954620361328,-0.885406494140625,-1.1406707763671875 +20220905220000,vlinder01,292.08750915527344,-0.9477691650390625,-1.4132080078125 +20220905220000,vlinder02,291.94688415527344,-1.5766754150390625,-1.3985595703125 +20220905220000,vlinder03,295.20860290527344,-1.7094879150390625,-1.8907470703125 +20220905220000,vlinder04,295.20860290527344,-1.7094879150390625,-1.8907470703125 +20220905220000,vlinder05,292.03672790527344,-1.2212066650390625,-1.3975830078125 +20220905220000,vlinder06,293.69883728027344,1.0014495849609375,-1.6104736328125 +20220905220000,vlinder07,293.69883728027344,1.0014495849609375,-1.6104736328125 +20220905220000,vlinder08,293.69883728027344,1.0014495849609375,-1.6104736328125 +20220905220000,vlinder09,292.50938415527344,0.8979339599609375,-1.6993408203125 +20220905220000,vlinder10,292.26914978027344,0.1948089599609375,-1.6885986328125 +20220905220000,vlinder11,294.37852478027344,0.4096527099609375,-1.6944580078125 +20220905220000,vlinder12,294.37852478027344,0.4096527099609375,-1.6944580078125 +20220905220000,vlinder13,294.37852478027344,0.4096527099609375,-1.6944580078125 +20220905220000,vlinder14,293.96641540527344,0.2651214599609375,-1.7081298828125 +20220905220000,vlinder15,292.76133728027344,1.3461761474609375,-1.7198486328125 +20220905220000,vlinder16,293.96641540527344,0.2651214599609375,-1.7081298828125 +20220905220000,vlinder17,295.36485290527344,-1.4624176025390625,-1.3946533203125 +20220905220000,vlinder18,294.90977478027344,-1.3891754150390625,-1.2843017578125 +20220905220000,vlinder19,293.14805603027344,1.0258636474609375,-1.6876220703125 +20220905220000,vlinder20,293.14805603027344,1.0258636474609375,-1.6876220703125 +20220905220000,vlinder21,292.15391540527344,-5.6157379150390625,-1.7296142578125 +20220905220000,vlinder22,291.99571228027344,-4.0590972900390625,-1.2042236328125 +20220905220000,vlinder23,292.12852478027344,-0.9663238525390625,-1.4376220703125 +20220905220000,vlinder24,292.04063415527344,-1.4585113525390625,-1.4102783203125 +20220905220000,vlinder25,292.08360290527344,-0.6333160400390625,-1.3917236328125 +20220905220000,vlinder26,295.48204040527344,-1.9135894775390625,-1.6856689453125 +20220905220000,vlinder27,292.03672790527344,-1.2212066650390625,-1.3975830078125 +20220905220000,vlinder28,292.08750915527344,-0.9477691650390625,-1.4132080078125 +20220905230000,vlinder01,291.6038055419922,-2.092987060546875,-1.4489288330078125 +20220905230000,vlinder02,291.5881805419922,-2.480682373046875,-1.4108428955078125 +20220905230000,vlinder03,294.6956024169922,-0.164276123046875,-1.3629913330078125 +20220905230000,vlinder04,294.6956024169922,-0.164276123046875,-1.3629913330078125 +20220905230000,vlinder05,291.6819305419922,-2.291229248046875,-1.2936553955078125 +20220905230000,vlinder06,292.4553680419922,1.907012939453125,-0.6579132080078125 +20220905230000,vlinder07,292.4553680419922,1.907012939453125,-0.6579132080078125 +20220905230000,vlinder08,292.4553680419922,1.907012939453125,-0.6579132080078125 +20220905230000,vlinder09,291.5745086669922,-1.138885498046875,-1.8385772705078125 +20220905230000,vlinder10,291.5276336669922,-1.650604248046875,-1.8766632080078125 +20220905230000,vlinder11,292.9963836669922,1.551544189453125,-0.5485382080078125 +20220905230000,vlinder12,292.9963836669922,1.551544189453125,-0.5485382080078125 +20220905230000,vlinder13,292.9963836669922,1.551544189453125,-0.5485382080078125 +20220905230000,vlinder14,292.9202117919922,1.052520751953125,-0.6501007080078125 +20220905230000,vlinder15,291.6370086669922,-0.583221435546875,-1.7497100830078125 +20220905230000,vlinder16,292.9202117919922,1.052520751953125,-0.6501007080078125 +20220905230000,vlinder17,294.6858367919922,-1.743377685546875,-0.8786163330078125 +20220905230000,vlinder18,294.0881805419922,-1.725799560546875,-0.8307647705078125 +20220905230000,vlinder19,291.5471649169922,0.369903564453125,-1.9616241455078125 +20220905230000,vlinder20,291.5471649169922,0.369903564453125,-1.9616241455078125 +20220905230000,vlinder21,292.0666961669922,-6.134979248046875,-0.4411163330078125 +20220905230000,vlinder22,291.6702117919922,-4.170135498046875,-0.2702178955078125 +20220905230000,vlinder23,291.7659149169922,-2.094940185546875,-0.9811553955078125 +20220905230000,vlinder24,291.6975555419922,-2.494354248046875,-1.0768585205078125 +20220905230000,vlinder25,291.6819305419922,-1.852752685546875,-1.1286163330078125 +20220905230000,vlinder26,294.6448211669922,-0.072479248046875,-1.0719757080078125 +20220905230000,vlinder27,291.6819305419922,-2.291229248046875,-1.2936553955078125 +20220905230000,vlinder28,291.6038055419922,-2.092987060546875,-1.4489288330078125 +20220906000000,vlinder01,291.3618621826172,-2.7497100830078125,-0.711761474609375 +20220906000000,vlinder02,291.3306121826172,-2.9206085205078125,-0.697113037109375 +20220906000000,vlinder03,292.9419403076172,1.4739227294921875,0.057769775390625 +20220906000000,vlinder04,292.9419403076172,1.4739227294921875,0.057769775390625 +20220906000000,vlinder05,291.4712371826172,-2.7848663330078125,-0.275238037109375 +20220906000000,vlinder06,291.6216278076172,-0.7497100830078125,-0.307464599609375 +20220906000000,vlinder07,291.6216278076172,-0.7497100830078125,-0.307464599609375 +20220906000000,vlinder08,291.6216278076172,-0.7497100830078125,-0.307464599609375 +20220906000000,vlinder09,291.3638153076172,-2.3004913330078125,-1.115081787109375 +20220906000000,vlinder10,291.2974090576172,-2.5524444580078125,-1.141448974609375 +20220906000000,vlinder11,291.6489715576172,-0.5221710205078125,0.292144775390625 +20220906000000,vlinder12,291.6489715576172,-0.5221710205078125,0.292144775390625 +20220906000000,vlinder13,291.6489715576172,-0.5221710205078125,0.292144775390625 +20220906000000,vlinder14,291.9927215576172,-0.6413116455078125,0.394683837890625 +20220906000000,vlinder15,291.3852996826172,-2.0221710205078125,-1.067230224609375 +20220906000000,vlinder16,291.9927215576172,-0.6413116455078125,0.394683837890625 +20220906000000,vlinder17,294.3462371826172,0.2375946044921875,0.083160400390625 +20220906000000,vlinder18,294.1177215576172,-0.4459991455078125,0.074371337890625 +20220906000000,vlinder19,290.9028778076172,-1.6920928955078125,-1.560394287109375 +20220906000000,vlinder20,290.9028778076172,-1.6920928955078125,-1.560394287109375 +20220906000000,vlinder21,291.8364715576172,-5.7751007080078125,1.486480712890625 +20220906000000,vlinder22,291.2310028076172,-4.0543975830078125,0.356597900390625 +20220906000000,vlinder23,291.6216278076172,-2.5778350830078125,0.512847900390625 +20220906000000,vlinder24,291.5278778076172,-2.8532257080078125,0.210113525390625 +20220906000000,vlinder25,291.5181121826172,-2.4333038330078125,0.176910400390625 +20220906000000,vlinder26,292.8774871826172,1.9065399169921875,0.237457275390625 +20220906000000,vlinder27,291.4712371826172,-2.7848663330078125,-0.275238037109375 +20220906000000,vlinder28,291.3618621826172,-2.7497100830078125,-0.711761474609375 +20220906010000,vlinder01,291.23387145996094,-2.685028076171875,-0.05047607421875 +20220906010000,vlinder02,291.21043395996094,-2.772918701171875,-0.03192138671875 +20220906010000,vlinder03,291.78660583496094,-0.789520263671875,0.78546142578125 +20220906010000,vlinder04,291.78660583496094,-0.789520263671875,0.78546142578125 +20220906010000,vlinder05,291.37254333496094,-2.701629638671875,0.42706298828125 +20220906010000,vlinder06,291.28074645996094,-1.920379638671875,-0.11688232421875 +20220906010000,vlinder07,291.28074645996094,-1.920379638671875,-0.11688232421875 +20220906010000,vlinder08,291.28074645996094,-1.920379638671875,-0.11688232421875 +20220906010000,vlinder09,291.12840270996094,-2.590301513671875,-0.33563232421875 +20220906010000,vlinder10,291.07762145996094,-2.686004638671875,-0.32196044921875 +20220906010000,vlinder11,291.48191833496094,-1.586395263671875,0.61846923828125 +20220906010000,vlinder12,291.48191833496094,-1.586395263671875,0.61846923828125 +20220906010000,vlinder13,291.48191833496094,-1.586395263671875,0.61846923828125 +20220906010000,vlinder14,291.72996520996094,-1.534637451171875,0.83819580078125 +20220906010000,vlinder15,291.13426208496094,-2.486785888671875,-0.34735107421875 +20220906010000,vlinder16,291.72996520996094,-1.534637451171875,0.83819580078125 +20220906010000,vlinder17,291.89012145996094,1.574737548828125,1.14971923828125 +20220906010000,vlinder18,292.01316833496094,1.814971923828125,1.23760986328125 +20220906010000,vlinder19,290.56394958496094,-2.441864013671875,-0.53094482421875 +20220906010000,vlinder20,290.56394958496094,-2.441864013671875,-0.53094482421875 +20220906010000,vlinder21,291.99363708496094,-5.275848388671875,2.48272705078125 +20220906010000,vlinder22,291.19285583496094,-3.796356201171875,0.78350830078125 +20220906010000,vlinder23,291.56004333496094,-2.707489013671875,1.31475830078125 +20220906010000,vlinder24,291.45457458496094,-2.864715576171875,0.98956298828125 +20220906010000,vlinder25,291.43504333496094,-2.466278076171875,0.82940673828125 +20220906010000,vlinder26,291.60496520996094,-0.856903076171875,0.81573486328125 +20220906010000,vlinder27,291.37254333496094,-2.701629638671875,0.42706298828125 +20220906010000,vlinder28,291.23387145996094,-2.685028076171875,-0.05047607421875 +20220906020000,vlinder01,290.90411376953125,-2.4245452880859375,1.0861358642578125 +20220906020000,vlinder02,290.90216064453125,-2.4636077880859375,1.0802764892578125 +20220906020000,vlinder03,291.08966064453125,-1.6013031005859375,0.8361358642578125 +20220906020000,vlinder04,291.08966064453125,-1.6013031005859375,0.8361358642578125 +20220906020000,vlinder05,291.05841064453125,-2.4294281005859375,1.3068389892578125 +20220906020000,vlinder06,290.89630126953125,-2.2673187255859375,0.8800811767578125 +20220906020000,vlinder07,290.89630126953125,-2.2673187255859375,0.8800811767578125 +20220906020000,vlinder08,290.89630126953125,-2.2673187255859375,0.8800811767578125 +20220906020000,vlinder09,290.71466064453125,-2.3913421630859375,0.9025421142578125 +20220906020000,vlinder10,290.68145751953125,-2.4372406005859375,0.9123077392578125 +20220906020000,vlinder11,290.99200439453125,-2.1511077880859375,0.9875030517578125 +20220906020000,vlinder12,290.99200439453125,-2.1511077880859375,0.9875030517578125 +20220906020000,vlinder13,290.99200439453125,-2.1511077880859375,0.9875030517578125 +20220906020000,vlinder14,291.26153564453125,-2.1315765380859375,1.0099639892578125 +20220906020000,vlinder15,290.70684814453125,-2.3591156005859375,0.8791046142578125 +20220906020000,vlinder16,291.26153564453125,-2.1315765380859375,1.0099639892578125 +20220906020000,vlinder17,290.80059814453125,-0.7985687255859375,1.0050811767578125 +20220906020000,vlinder18,290.76934814453125,-0.4772796630859375,1.1095733642578125 +20220906020000,vlinder19,290.11895751953125,-2.4470062255859375,0.7394561767578125 +20220906020000,vlinder20,290.11895751953125,-2.4470062255859375,0.7394561767578125 +20220906020000,vlinder21,291.86309814453125,-3.9177093505859375,3.0167999267578125 +20220906020000,vlinder22,290.93731689453125,-3.0046234130859375,1.4279327392578125 +20220906020000,vlinder23,291.27130126953125,-2.4225921630859375,1.6984405517578125 +20220906020000,vlinder24,291.15411376953125,-2.4948577880859375,1.6037139892578125 +20220906020000,vlinder25,291.09552001953125,-2.3122406005859375,1.4162139892578125 +20220906020000,vlinder26,290.88458251953125,-1.5934906005859375,0.8683624267578125 +20220906020000,vlinder27,291.05841064453125,-2.4294281005859375,1.3068389892578125 +20220906020000,vlinder28,290.90411376953125,-2.4245452880859375,1.0861358642578125 +20220906030000,vlinder01,290.4039306640625,-2.0272674560546875,1.8236541748046875 +20220906030000,vlinder02,290.4176025390625,-2.0507049560546875,1.8158416748046875 +20220906030000,vlinder03,290.5797119140625,-1.5487518310546875,1.3715057373046875 +20220906030000,vlinder04,290.5797119140625,-1.5487518310546875,1.3715057373046875 +20220906030000,vlinder05,290.5875244140625,-2.1190643310546875,1.9222869873046875 +20220906030000,vlinder06,290.4547119140625,-1.9188690185546875,1.6361541748046875 +20220906030000,vlinder07,290.4547119140625,-1.9188690185546875,1.6361541748046875 +20220906030000,vlinder08,290.4547119140625,-1.9188690185546875,1.6361541748046875 +20220906030000,vlinder09,290.2457275390625,-1.9852752685546875,1.8236541748046875 +20220906030000,vlinder10,290.2320556640625,-2.0194549560546875,1.8275604248046875 +20220906030000,vlinder11,290.5992431640625,-2.0526580810546875,1.5677947998046875 +20220906030000,vlinder12,290.5992431640625,-2.0526580810546875,1.5677947998046875 +20220906030000,vlinder13,290.5992431640625,-2.0526580810546875,1.5677947998046875 +20220906030000,vlinder14,290.8082275390625,-2.1327362060546875,1.5453338623046875 +20220906030000,vlinder15,290.2301025390625,-1.9628143310546875,1.8050994873046875 +20220906030000,vlinder16,290.8082275390625,-2.1327362060546875,1.5453338623046875 +20220906030000,vlinder17,290.3023681640625,-1.2479705810546875,1.5404510498046875 +20220906030000,vlinder18,290.3199462890625,-1.2176971435546875,1.5873260498046875 +20220906030000,vlinder19,289.8258056640625,-2.0038299560546875,1.8226776123046875 +20220906030000,vlinder20,289.8258056640625,-2.0038299560546875,1.8226776123046875 +20220906030000,vlinder21,291.5738525390625,-3.0321502685546875,3.8636932373046875 +20220906030000,vlinder22,290.5562744140625,-2.1913299560546875,2.3724822998046875 +20220906030000,vlinder23,290.8629150390625,-2.2997283935546875,2.1175994873046875 +20220906030000,vlinder24,290.7008056640625,-2.2421112060546875,2.1244354248046875 +20220906030000,vlinder25,290.6343994140625,-2.1464080810546875,1.9008026123046875 +20220906030000,vlinder26,290.4117431640625,-1.5135955810546875,1.4271697998046875 +20220906030000,vlinder27,290.5875244140625,-2.1190643310546875,1.9222869873046875 +20220906030000,vlinder28,290.4039306640625,-2.0272674560546875,1.8236541748046875 +20220906040000,vlinder01,290.0499725341797,-1.415283203125,2.3021392822265625 +20220906040000,vlinder02,290.0773162841797,-1.400634765625,2.3079986572265625 +20220906040000,vlinder03,290.1593475341797,-1.321533203125,1.8109283447265625 +20220906040000,vlinder04,290.1593475341797,-1.321533203125,1.8109283447265625 +20220906040000,vlinder05,290.2257537841797,-1.579345703125,2.3451080322265625 +20220906040000,vlinder06,290.0343475341797,-1.499267578125,2.0931549072265625 +20220906040000,vlinder07,290.0343475341797,-1.499267578125,2.0931549072265625 +20220906040000,vlinder08,290.0343475341797,-1.499267578125,2.0931549072265625 +20220906040000,vlinder09,289.9952850341797,-1.382080078125,2.3929595947265625 +20220906040000,vlinder10,290.0011444091797,-1.371337890625,2.4085845947265625 +20220906040000,vlinder11,290.1788787841797,-1.804931640625,1.9525299072265625 +20220906040000,vlinder12,290.1788787841797,-1.804931640625,1.9525299072265625 +20220906040000,vlinder13,290.1788787841797,-1.804931640625,1.9525299072265625 +20220906040000,vlinder14,290.3780975341797,-1.954345703125,1.9046783447265625 +20220906040000,vlinder15,289.9659881591797,-1.393798828125,2.3685455322265625 +20220906040000,vlinder16,290.3780975341797,-1.954345703125,1.9046783447265625 +20220906040000,vlinder17,290.0988006591797,-0.919189453125,1.8841705322265625 +20220906040000,vlinder18,290.2023162841797,-0.856689453125,1.9154205322265625 +20220906040000,vlinder19,289.7179412841797,-1.331298828125,2.5081939697265625 +20220906040000,vlinder20,289.7179412841797,-1.331298828125,2.5081939697265625 +20220906040000,vlinder21,291.2902069091797,-1.961181640625,4.5365142822265625 +20220906040000,vlinder22,290.2902069091797,-1.085205078125,3.0912017822265625 +20220906040000,vlinder23,290.4777069091797,-1.949462890625,2.4437408447265625 +20220906040000,vlinder24,290.3155975341797,-1.767822265625,2.5052642822265625 +20220906040000,vlinder25,290.2394256591797,-1.739501953125,2.2513580322265625 +20220906040000,vlinder26,290.0030975341797,-1.258056640625,1.8402252197265625 +20220906040000,vlinder27,290.2257537841797,-1.579345703125,2.3451080322265625 +20220906040000,vlinder28,290.0499725341797,-1.415283203125,2.3021392822265625 +20220906050000,vlinder01,289.9785614013672,-0.640625,2.5009918212890625 +20220906050000,vlinder02,290.0176239013672,-0.6005859375,2.5000152587890625 +20220906050000,vlinder03,289.7695770263672,-0.9599609375,2.0703277587890625 +20220906050000,vlinder04,289.7695770263672,-0.9599609375,2.0703277587890625 +20220906050000,vlinder05,290.0918426513672,-0.82421875,2.5156402587890625 +20220906050000,vlinder06,289.9082489013672,-0.91796875,2.3261871337890625 +20220906050000,vlinder07,289.9082489013672,-0.91796875,2.3261871337890625 +20220906050000,vlinder08,289.9082489013672,-0.91796875,2.3261871337890625 +20220906050000,vlinder09,290.0527801513672,-0.5966796875,2.6484527587890625 +20220906050000,vlinder10,290.0762176513672,-0.5634765625,2.6601715087890625 +20220906050000,vlinder11,289.8809051513672,-1.3115234375,2.2265777587890625 +20220906050000,vlinder12,289.8809051513672,-1.3115234375,2.2265777587890625 +20220906050000,vlinder13,289.8809051513672,-1.3115234375,2.2265777587890625 +20220906050000,vlinder14,290.0117645263672,-1.4794921875,2.1953277587890625 +20220906050000,vlinder15,290.0078582763672,-0.6328125,2.6279449462890625 +20220906050000,vlinder16,290.0117645263672,-1.4794921875,2.1953277587890625 +20220906050000,vlinder17,290.0098114013672,-0.6044921875,2.0849761962890625 +20220906050000,vlinder18,290.1562957763672,-0.5869140625,2.0986480712890625 +20220906050000,vlinder19,289.9316864013672,-0.5234375,2.8037261962890625 +20220906050000,vlinder20,289.9316864013672,-0.5234375,2.8037261962890625 +20220906050000,vlinder21,291.1523895263672,-0.5400390625,4.6797027587890625 +20220906050000,vlinder22,290.2109832763672,0.1298828125,3.2002105712890625 +20220906050000,vlinder23,290.2109832763672,-1.2392578125,2.5625152587890625 +20220906050000,vlinder24,290.1074676513672,-1.0009765625,2.6416168212890625 +20220906050000,vlinder25,290.0078582763672,-1.048828125,2.4023590087890625 +20220906050000,vlinder26,289.6602020263672,-0.845703125,2.1084136962890625 +20220906050000,vlinder27,290.0918426513672,-0.82421875,2.5156402587890625 +20220906050000,vlinder28,289.9785614013672,-0.640625,2.5009918212890625 +20220906060000,vlinder01,290.4132843017578,0.2686309814453125,2.420654296875 +20220906060000,vlinder02,290.4132843017578,0.3496856689453125,2.413818359375 +20220906060000,vlinder03,290.0500030517578,-0.3622283935546875,2.031005859375 +20220906060000,vlinder04,290.0500030517578,-0.3622283935546875,2.031005859375 +20220906060000,vlinder05,290.4347686767578,0.1309356689453125,2.444091796875 +20220906060000,vlinder06,290.5265655517578,-0.1610565185546875,2.294677734375 +20220906060000,vlinder07,290.5265655517578,-0.1610565185546875,2.294677734375 +20220906060000,vlinder08,290.5265655517578,-0.1610565185546875,2.294677734375 +20220906060000,vlinder09,290.6515655517578,0.1582794189453125,2.559326171875 +20220906060000,vlinder10,290.6359405517578,0.2324981689453125,2.565185546875 +20220906060000,vlinder11,290.2492218017578,-0.5331268310546875,2.224365234375 +20220906060000,vlinder12,290.2492218017578,-0.5331268310546875,2.224365234375 +20220906060000,vlinder13,290.2492218017578,-0.5331268310546875,2.224365234375 +20220906060000,vlinder14,290.2648468017578,-0.6932830810546875,2.205810546875 +20220906060000,vlinder15,290.6359405517578,0.0918731689453125,2.544677734375 +20220906060000,vlinder16,290.2648468017578,-0.6932830810546875,2.205810546875 +20220906060000,vlinder17,290.5285186767578,0.0235137939453125,2.056396484375 +20220906060000,vlinder18,290.7023468017578,0.0274200439453125,2.058349609375 +20220906060000,vlinder19,290.6554718017578,0.1836700439453125,2.707763671875 +20220906060000,vlinder20,290.6554718017578,0.1836700439453125,2.707763671875 +20220906060000,vlinder21,291.2570343017578,1.0196075439453125,4.497802734375 +20220906060000,vlinder22,290.3449249267578,1.1172637939453125,2.984130859375 +20220906060000,vlinder23,290.4074249267578,-0.2382049560546875,2.515380859375 +20220906060000,vlinder24,290.3664093017578,0.0244903564453125,2.582763671875 +20220906060000,vlinder25,290.2765655517578,-0.1239471435546875,2.339599609375 +20220906060000,vlinder26,290.0265655517578,-0.2255096435546875,2.067138671875 +20220906060000,vlinder27,290.4347686767578,0.1309356689453125,2.444091796875 +20220906060000,vlinder28,290.4132843017578,0.2686309814453125,2.420654296875 +20220906070000,vlinder01,290.9313659667969,-0.32684326171875,3.37017822265625 +20220906070000,vlinder02,290.9430847167969,-0.30340576171875,3.42681884765625 +20220906070000,vlinder03,290.6559753417969,-1.48114013671875,1.57330322265625 +20220906070000,vlinder04,290.6559753417969,-1.48114013671875,1.57330322265625 +20220906070000,vlinder05,290.9137878417969,-0.58465576171875,3.43463134765625 +20220906070000,vlinder06,291.1423034667969,-0.51239013671875,2.71197509765625 +20220906070000,vlinder07,291.1423034667969,-0.51239013671875,2.71197509765625 +20220906070000,vlinder08,291.1423034667969,-0.51239013671875,2.71197509765625 +20220906070000,vlinder09,291.0212097167969,-0.07000732421875,3.58795166015625 +20220906070000,vlinder10,291.0153503417969,-0.05926513671875,3.64459228515625 +20220906070000,vlinder11,290.8493347167969,-1.11785888671875,2.60260009765625 +20220906070000,vlinder12,290.8493347167969,-1.11785888671875,2.60260009765625 +20220906070000,vlinder13,290.8493347167969,-1.11785888671875,2.60260009765625 +20220906070000,vlinder14,290.7770690917969,-1.36688232421875,2.65631103515625 +20220906070000,vlinder15,291.0192565917969,-0.09051513671875,3.50885009765625 +20220906070000,vlinder16,290.7770690917969,-1.36688232421875,2.65631103515625 +20220906070000,vlinder17,291.5055847167969,-0.44012451171875,1.26275634765625 +20220906070000,vlinder18,291.7282409667969,-0.25164794921875,1.19244384765625 +20220906070000,vlinder19,291.0231628417969,0.11553955078125,3.64947509765625 +20220906070000,vlinder20,291.0231628417969,0.11553955078125,3.64947509765625 +20220906070000,vlinder21,291.2770690917969,-0.51434326171875,6.62994384765625 +20220906070000,vlinder22,291.1833190917969,0.76788330078125,5.05865478515625 +20220906070000,vlinder23,290.7946472167969,-1.10125732421875,3.61236572265625 +20220906070000,vlinder24,290.8395690917969,-0.83758544921875,3.68072509765625 +20220906070000,vlinder25,290.8005065917969,-0.83758544921875,3.30084228515625 +20220906070000,vlinder26,290.9372253417969,-1.20477294921875,1.64849853515625 +20220906070000,vlinder27,290.9137878417969,-0.58465576171875,3.43463134765625 +20220906070000,vlinder28,290.9313659667969,-0.32684326171875,3.37017822265625 +20220906080000,vlinder01,292.5133819580078,2.199859619140625,4.72332763671875 +20220906080000,vlinder02,292.4958038330078,2.390289306640625,4.80242919921875 +20220906080000,vlinder03,292.5055694580078,-1.066741943359375,2.24285888671875 +20220906080000,vlinder04,292.5055694580078,-1.066741943359375,2.24285888671875 +20220906080000,vlinder05,292.4626007080078,2.190093994140625,5.08367919921875 +20220906080000,vlinder06,293.0231475830078,0.887359619140625,3.60906982421875 +20220906080000,vlinder07,293.0231475830078,0.887359619140625,3.60906982421875 +20220906080000,vlinder08,293.0231475830078,0.887359619140625,3.60906982421875 +20220906080000,vlinder09,292.6501007080078,1.751617431640625,4.31024169921875 +20220906080000,vlinder10,292.6168975830078,1.983062744140625,4.47625732421875 +20220906080000,vlinder11,292.5856475830078,0.036773681640625,3.54754638671875 +20220906080000,vlinder12,292.5856475830078,0.036773681640625,3.54754638671875 +20220906080000,vlinder13,292.5856475830078,0.036773681640625,3.54754638671875 +20220906080000,vlinder14,292.3883819580078,-0.317718505859375,3.60223388671875 +20220906080000,vlinder15,292.6872100830078,1.544586181640625,4.14324951171875 +20220906080000,vlinder16,292.3883819580078,-0.317718505859375,3.60223388671875 +20220906080000,vlinder17,293.5524444580078,-0.136077880859375,1.70867919921875 +20220906080000,vlinder18,293.8024444580078,-0.061859130859375,1.56707763671875 +20220906080000,vlinder19,292.8141632080078,1.561187744140625,4.04266357421875 +20220906080000,vlinder20,292.8141632080078,1.561187744140625,4.04266357421875 +20220906080000,vlinder21,292.3571319580078,4.190093994140625,6.77117919921875 +20220906080000,vlinder22,292.4313507080078,4.049468994140625,4.30047607421875 +20220906080000,vlinder23,292.2653350830078,1.834625244140625,5.54266357421875 +20220906080000,vlinder24,292.3473663330078,2.191070556640625,5.46160888671875 +20220906080000,vlinder25,292.3708038330078,1.878570556640625,5.17938232421875 +20220906080000,vlinder26,292.8825225830078,-0.618499755859375,2.32293701171875 +20220906080000,vlinder27,292.4626007080078,2.190093994140625,5.08367919921875 +20220906080000,vlinder28,292.5133819580078,2.199859619140625,4.72332763671875 +20220906090000,vlinder01,294.1761779785156,3.55963134765625,3.22296142578125 +20220906090000,vlinder02,294.1019592285156,3.58990478515625,3.12628173828125 +20220906090000,vlinder03,294.5589904785156,0.23541259765625,2.64385986328125 +20220906090000,vlinder04,294.5589904785156,0.23541259765625,2.64385986328125 +20220906090000,vlinder05,294.0199279785156,3.83990478515625,3.45343017578125 +20220906090000,vlinder06,295.1742248535156,2.60748291015625,3.27374267578125 +20220906090000,vlinder07,295.1742248535156,2.60748291015625,3.27374267578125 +20220906090000,vlinder08,295.1742248535156,2.60748291015625,3.27374267578125 +20220906090000,vlinder09,294.4496154785156,3.34381103515625,3.40264892578125 +20220906090000,vlinder10,294.3441467285156,3.38287353515625,3.31475830078125 +20220906090000,vlinder11,294.6214904785156,2.49713134765625,3.68975830078125 +20220906090000,vlinder12,294.6214904785156,2.49713134765625,3.68975830078125 +20220906090000,vlinder13,294.6214904785156,2.49713134765625,3.68975830078125 +20220906090000,vlinder14,294.3109436035156,2.52740478515625,3.94366455078125 +20220906090000,vlinder15,294.5609436035156,3.24517822265625,3.44073486328125 +20220906090000,vlinder16,294.3109436035156,2.52740478515625,3.94366455078125 +20220906090000,vlinder17,295.7093811035156,0.53424072265625,1.95831298828125 +20220906090000,vlinder18,295.9593811035156,0.51177978515625,1.81671142578125 +20220906090000,vlinder19,294.7621154785156,2.87408447265625,3.34014892578125 +20220906090000,vlinder20,294.7621154785156,2.87408447265625,3.34014892578125 +20220906090000,vlinder21,293.3500061035156,6.05767822265625,4.23760986328125 +20220906090000,vlinder22,293.5902404785156,4.18170166015625,2.86065673828125 +20220906090000,vlinder23,293.6839904785156,4.32720947265625,4.05792236328125 +20220906090000,vlinder24,293.8187561035156,4.23736572265625,3.72882080078125 +20220906090000,vlinder25,293.8851623535156,3.96685791015625,3.75714111328125 +20220906090000,vlinder26,295.0199279785156,0.47369384765625,2.56768798828125 +20220906090000,vlinder27,294.0199279785156,3.83990478515625,3.45343017578125 +20220906090000,vlinder28,294.1761779785156,3.55963134765625,3.22296142578125 +20220906100000,vlinder01,295.4547119140625,3.31488037109375,2.04473876953125 +20220906100000,vlinder02,295.4254150390625,3.24066162109375,2.03497314453125 +20220906100000,vlinder03,296.7476806640625,2.52679443359375,2.27813720703125 +20220906100000,vlinder04,296.7476806640625,2.52679443359375,2.27813720703125 +20220906100000,vlinder05,295.2261962890625,3.53070068359375,2.11700439453125 +20220906100000,vlinder06,296.7633056640625,3.75433349609375,2.26055908203125 +20220906100000,vlinder07,296.7633056640625,3.75433349609375,2.26055908203125 +20220906100000,vlinder08,296.7633056640625,3.75433349609375,2.26055908203125 +20220906100000,vlinder09,295.7105712890625,3.67327880859375,2.24298095703125 +20220906100000,vlinder10,295.6324462890625,3.56390380859375,2.20001220703125 +20220906100000,vlinder11,296.4156494140625,4.00238037109375,2.47833251953125 +20220906100000,vlinder12,296.4156494140625,4.00238037109375,2.47833251953125 +20220906100000,vlinder13,296.4156494140625,4.00238037109375,2.47833251953125 +20220906100000,vlinder14,296.0875244140625,4.09222412109375,2.59747314453125 +20220906100000,vlinder15,295.8414306640625,3.75628662109375,2.28009033203125 +20220906100000,vlinder16,296.0875244140625,4.09222412109375,2.59747314453125 +20220906100000,vlinder17,297.7593994140625,1.27874755859375,1.83477783203125 +20220906100000,vlinder18,298.0015869140625,1.12152099609375,1.77520751953125 +20220906100000,vlinder19,296.2789306640625,3.85101318359375,2.41485595703125 +20220906100000,vlinder20,296.2789306640625,3.85101318359375,2.41485595703125 +20220906100000,vlinder21,294.1148681640625,4.98773193359375,3.33087158203125 +20220906100000,vlinder22,295.0875244140625,3.49359130859375,3.07794189453125 +20220906100000,vlinder23,294.7183837890625,4.18695068359375,2.41680908203125 +20220906100000,vlinder24,294.9156494140625,3.90374755859375,2.28204345703125 +20220906100000,vlinder25,295.0386962890625,3.78753662109375,2.20391845703125 +20220906100000,vlinder26,297.1578369140625,2.42523193359375,2.15606689453125 +20220906100000,vlinder27,295.2261962890625,3.53070068359375,2.11700439453125 +20220906100000,vlinder28,295.4547119140625,3.31488037109375,2.04473876953125 +20220906110000,vlinder01,296.79901123046875,3.1209259033203125,2.0605621337890625 +20220906110000,vlinder02,296.81268310546875,3.0594024658203125,2.1992340087890625 +20220906110000,vlinder03,297.96893310546875,3.3484649658203125,1.3662261962890625 +20220906110000,vlinder04,297.96893310546875,3.3484649658203125,1.3662261962890625 +20220906110000,vlinder05,296.48455810546875,3.1277618408203125,2.1757965087890625 +20220906110000,vlinder06,297.78924560546875,3.6658477783203125,1.3867340087890625 +20220906110000,vlinder07,297.78924560546875,3.6658477783203125,1.3867340087890625 +20220906110000,vlinder08,297.78924560546875,3.6658477783203125,1.3867340087890625 +20220906110000,vlinder09,296.92791748046875,3.5379180908203125,1.7607574462890625 +20220906110000,vlinder10,296.90643310546875,3.4451446533203125,1.8789215087890625 +20220906110000,vlinder11,297.21307373046875,3.5506134033203125,1.4394683837890625 +20220906110000,vlinder12,297.21307373046875,3.5506134033203125,1.4394683837890625 +20220906110000,vlinder13,297.21307373046875,3.5506134033203125,1.4394683837890625 +20220906110000,vlinder14,296.79315185546875,3.4949493408203125,1.5146636962890625 +20220906110000,vlinder15,297.00994873046875,3.6238555908203125,1.6572418212890625 +20220906110000,vlinder16,296.79315185546875,3.4949493408203125,1.5146636962890625 +20220906110000,vlinder17,299.25018310546875,2.7058868408203125,1.4834136962890625 +20220906110000,vlinder18,299.53143310546875,2.5076446533203125,1.5263824462890625 +20220906110000,vlinder19,297.40252685546875,3.8748321533203125,1.6162261962890625 +20220906110000,vlinder20,297.40252685546875,3.8748321533203125,1.6162261962890625 +20220906110000,vlinder21,295.19549560546875,4.2625274658203125,3.9482574462890625 +20220906110000,vlinder22,296.41424560546875,3.1336212158203125,3.9189605712890625 +20220906110000,vlinder23,295.68377685546875,3.3474884033203125,2.3339996337890625 +20220906110000,vlinder24,296.04705810546875,3.2742462158203125,2.3584136962890625 +20220906110000,vlinder25,296.13690185546875,3.1531524658203125,2.1298980712890625 +20220906110000,vlinder26,298.45135498046875,3.4178009033203125,1.3515777587890625 +20220906110000,vlinder27,296.48455810546875,3.1277618408203125,2.1757965087890625 +20220906110000,vlinder28,296.79901123046875,3.1209259033203125,2.0605621337890625 +20220906120000,vlinder01,297.8671569824219,2.984161376953125,1.5191650390625 +20220906120000,vlinder02,297.8671569824219,2.968536376953125,1.6939697265625 +20220906120000,vlinder03,298.9882507324219,3.188262939453125,0.6929931640625 +20220906120000,vlinder04,298.9882507324219,3.188262939453125,0.6929931640625 +20220906120000,vlinder05,297.5839538574219,2.970489501953125,1.8013916015625 +20220906120000,vlinder06,298.7831726074219,3.206817626953125,0.6627197265625 +20220906120000,vlinder07,298.7831726074219,3.206817626953125,0.6627197265625 +20220906120000,vlinder08,298.7831726074219,3.206817626953125,0.6627197265625 +20220906120000,vlinder09,297.9765319824219,3.195098876953125,1.0758056640625 +20220906120000,vlinder10,297.9511413574219,3.160919189453125,1.2301025390625 +20220906120000,vlinder11,298.2460632324219,3.199005126953125,0.9381103515625 +20220906120000,vlinder12,298.2460632324219,3.199005126953125,0.9381103515625 +20220906120000,vlinder13,298.2460632324219,3.199005126953125,0.9381103515625 +20220906120000,vlinder14,297.8183288574219,3.198028564453125,1.1265869140625 +20220906120000,vlinder15,298.0487976074219,3.229278564453125,0.9410400390625 +20220906120000,vlinder16,297.8183288574219,3.198028564453125,1.1265869140625 +20220906120000,vlinder17,300.1952819824219,3.259552001953125,1.0748291015625 +20220906120000,vlinder18,300.4784851074219,3.268341064453125,1.2047119140625 +20220906120000,vlinder19,298.3573913574219,3.362091064453125,0.8287353515625 +20220906120000,vlinder20,298.3573913574219,3.362091064453125,0.8287353515625 +20220906120000,vlinder21,296.1093444824219,3.530059814453125,3.5543212890625 +20220906120000,vlinder22,297.3124694824219,2.924591064453125,3.7086181640625 +20220906120000,vlinder23,296.7948913574219,3.070098876953125,2.2623291015625 +20220906120000,vlinder24,297.1562194824219,3.030059814453125,2.1314697265625 +20220906120000,vlinder25,297.2753601074219,2.958770751953125,1.9224853515625 +20220906120000,vlinder26,299.4628601074219,3.235137939453125,0.6441650390625 +20220906120000,vlinder27,297.5839538574219,2.970489501953125,1.8013916015625 +20220906120000,vlinder28,297.8671569824219,2.984161376953125,1.5191650390625 +20220906130000,vlinder01,298.4978485107422,2.473480224609375,1.0872344970703125 +20220906130000,vlinder02,298.5017547607422,2.524261474609375,1.2522735595703125 +20220906130000,vlinder03,299.5388641357422,2.670745849609375,0.0423126220703125 +20220906130000,vlinder04,299.5388641357422,2.670745849609375,0.0423126220703125 +20220906130000,vlinder05,298.2537078857422,2.513519287109375,1.2141876220703125 +20220906130000,vlinder06,299.3884735107422,2.409027099609375,0.3548126220703125 +20220906130000,vlinder07,299.3884735107422,2.409027099609375,0.3548126220703125 +20220906130000,vlinder08,299.3884735107422,2.409027099609375,0.3548126220703125 +20220906130000,vlinder09,298.5466766357422,2.492034912109375,0.9339141845703125 +20220906130000,vlinder10,298.5290985107422,2.519378662109375,1.0745391845703125 +20220906130000,vlinder11,298.8806610107422,2.533050537109375,0.2786407470703125 +20220906130000,vlinder12,298.8806610107422,2.533050537109375,0.2786407470703125 +20220906130000,vlinder13,298.8806610107422,2.533050537109375,0.2786407470703125 +20220906130000,vlinder14,298.4412078857422,2.602386474609375,0.3128204345703125 +20220906130000,vlinder15,298.6111297607422,2.476409912109375,0.8157501220703125 +20220906130000,vlinder16,298.4412078857422,2.602386474609375,0.3128204345703125 +20220906130000,vlinder17,300.5212860107422,2.627777099609375,0.4710235595703125 +20220906130000,vlinder18,300.7048797607422,2.568206787109375,0.5852813720703125 +20220906130000,vlinder19,298.8884735107422,2.576019287109375,0.8870391845703125 +20220906130000,vlinder20,298.8884735107422,2.576019287109375,0.8870391845703125 +20220906130000,vlinder21,296.7400360107422,2.891448974609375,2.1741485595703125 +20220906130000,vlinder22,298.0564422607422,2.941253662109375,3.1409454345703125 +20220906130000,vlinder23,297.5212860107422,2.640472412109375,1.4075469970703125 +20220906130000,vlinder24,297.8533172607422,2.590667724609375,1.3841094970703125 +20220906130000,vlinder25,297.9783172607422,2.535980224609375,1.2259063720703125 +20220906130000,vlinder26,299.9802703857422,2.600433349609375,0.0960235595703125 +20220906130000,vlinder27,298.2537078857422,2.513519287109375,1.2141876220703125 +20220906130000,vlinder28,298.4978485107422,2.473480224609375,1.0872344970703125 +20220906140000,vlinder01,298.69549560546875,2.1287078857421875,1.666595458984375 +20220906140000,vlinder02,298.65447998046875,2.1960906982421875,1.827728271484375 +20220906140000,vlinder03,299.83026123046875,1.9060516357421875,0.006439208984375 +20220906140000,vlinder04,299.83026123046875,1.9060516357421875,0.006439208984375 +20220906140000,vlinder05,298.49237060546875,2.1316375732421875,1.640228271484375 +20220906140000,vlinder06,299.69354248046875,1.7351531982421875,0.914642333984375 +20220906140000,vlinder07,299.69354248046875,1.7351531982421875,0.914642333984375 +20220906140000,vlinder08,299.69354248046875,1.7351531982421875,0.914642333984375 +20220906140000,vlinder09,298.86151123046875,2.0613250732421875,1.434173583984375 +20220906140000,vlinder10,298.79705810546875,2.1404266357421875,1.568939208984375 +20220906140000,vlinder11,299.21697998046875,1.8123016357421875,0.537689208984375 +20220906140000,vlinder12,299.21697998046875,1.8123016357421875,0.537689208984375 +20220906140000,vlinder13,299.21697998046875,1.8123016357421875,0.537689208984375 +20220906140000,vlinder14,298.79705810546875,1.8748016357421875,0.400970458984375 +20220906140000,vlinder15,298.95721435546875,1.9949188232421875,1.316986083984375 +20220906140000,vlinder16,298.79705810546875,1.8748016357421875,0.400970458984375 +20220906140000,vlinder17,300.76776123046875,1.9187469482421875,0.368743896484375 +20220906140000,vlinder18,301.01190185546875,1.8874969482421875,0.419525146484375 +20220906140000,vlinder19,299.16815185546875,2.0154266357421875,1.294525146484375 +20220906140000,vlinder20,299.16815185546875,2.0154266357421875,1.294525146484375 +20220906140000,vlinder21,296.94940185546875,2.1296844482421875,1.536712646484375 +20220906140000,vlinder22,298.19549560546875,2.2790985107421875,3.177337646484375 +20220906140000,vlinder23,297.88299560546875,2.0779266357421875,1.476165771484375 +20220906140000,vlinder24,298.15643310546875,2.0964813232421875,1.610931396484375 +20220906140000,vlinder25,298.28924560546875,2.0964813232421875,1.524017333984375 +20220906140000,vlinder26,300.24627685546875,1.8445281982421875,0.209564208984375 +20220906140000,vlinder27,298.49237060546875,2.1316375732421875,1.640228271484375 +20220906140000,vlinder28,298.69549560546875,2.1287078857421875,1.666595458984375 +20220906150000,vlinder01,298.459716796875,1.679443359375,1.976470947265625 +20220906150000,vlinder02,298.391357421875,1.661865234375,2.167877197265625 +20220906150000,vlinder03,299.778076171875,1.534912109375,0.489166259765625 +20220906150000,vlinder04,299.778076171875,1.534912109375,0.489166259765625 +20220906150000,vlinder05,298.375732421875,1.523193359375,2.079010009765625 +20220906150000,vlinder06,299.379638671875,1.471435546875,1.181549072265625 +20220906150000,vlinder07,299.379638671875,1.471435546875,1.181549072265625 +20220906150000,vlinder08,299.379638671875,1.471435546875,1.181549072265625 +20220906150000,vlinder09,298.694091796875,1.768310546875,1.476470947265625 +20220906150000,vlinder10,298.615966796875,1.786865234375,1.645416259765625 +20220906150000,vlinder11,299.215576171875,1.366943359375,1.090728759765625 +20220906150000,vlinder12,299.215576171875,1.366943359375,1.090728759765625 +20220906150000,vlinder13,299.215576171875,1.366943359375,1.090728759765625 +20220906150000,vlinder14,298.955810546875,1.334716796875,1.052642822265625 +20220906150000,vlinder15,298.783935546875,1.741943359375,1.342681884765625 +20220906150000,vlinder16,298.955810546875,1.334716796875,1.052642822265625 +20220906150000,vlinder17,300.844482421875,1.334716796875,0.582916259765625 +20220906150000,vlinder18,301.051513671875,1.274169921875,0.611236572265625 +20220906150000,vlinder19,298.998779296875,1.652099609375,1.216705322265625 +20220906150000,vlinder20,298.998779296875,1.652099609375,1.216705322265625 +20220906150000,vlinder21,296.908935546875,0.731201171875,1.403228759765625 +20220906150000,vlinder22,298.119873046875,1.091552734375,3.218658447265625 +20220906150000,vlinder23,298.002685546875,1.157958984375,2.074127197265625 +20220906150000,vlinder24,298.151123046875,1.286865234375,2.102447509765625 +20220906150000,vlinder25,298.319091796875,1.390380859375,2.120025634765625 +20220906150000,vlinder26,300.133544921875,1.510498046875,0.615142822265625 +20220906150000,vlinder27,298.375732421875,1.523193359375,2.079010009765625 +20220906150000,vlinder28,298.459716796875,1.679443359375,1.976470947265625 +20220906160000,vlinder01,298.0599670410156,0.7571258544921875,1.756591796875 +20220906160000,vlinder02,298.0150451660156,0.6819305419921875,2.044677734375 +20220906160000,vlinder03,297.9154357910156,1.1506805419921875,-0.005126953125 +20220906160000,vlinder04,297.9154357910156,1.1506805419921875,-0.005126953125 +20220906160000,vlinder05,298.0072326660156,0.4573211669921875,2.068115234375 +20220906160000,vlinder06,298.9232482910156,0.9153289794921875,0.109130859375 +20220906160000,vlinder07,298.9232482910156,0.9153289794921875,0.109130859375 +20220906160000,vlinder08,298.9232482910156,0.9153289794921875,0.109130859375 +20220906160000,vlinder09,298.3080139160156,1.0745086669921875,0.929443359375 +20220906160000,vlinder10,298.2377014160156,1.0344696044921875,1.235107421875 +20220906160000,vlinder11,298.2181701660156,0.5325164794921875,0.623779296875 +20220906160000,vlinder12,298.2181701660156,0.5325164794921875,0.623779296875 +20220906160000,vlinder13,298.2181701660156,0.5325164794921875,0.623779296875 +20220906160000,vlinder14,297.7943420410156,0.3430633544921875,0.957763671875 +20220906160000,vlinder15,298.3919982910156,1.1018524169921875,0.664794921875 +20220906160000,vlinder16,297.7943420410156,0.3430633544921875,0.957763671875 +20220906160000,vlinder17,300.2044982910156,1.3498992919921875,0.312255859375 +20220906160000,vlinder18,300.5853576660156,1.2131805419921875,0.486083984375 +20220906160000,vlinder19,298.6595764160156,1.1213836669921875,0.563232421875 +20220906160000,vlinder20,298.6595764160156,1.1213836669921875,0.563232421875 +20220906160000,vlinder21,296.9505920410156,-0.6012725830078125,1.434326171875 +20220906160000,vlinder22,297.9212951660156,0.0579071044921875,3.130615234375 +20220906160000,vlinder23,297.7494201660156,-0.1501007080078125,2.322021484375 +20220906160000,vlinder24,297.8822326660156,0.1194305419921875,2.230224609375 +20220906160000,vlinder25,297.9408264160156,0.1838836669921875,2.229248046875 +20220906160000,vlinder26,298.4857482910156,1.2473602294921875,-0.153564453125 +20220906160000,vlinder27,298.0072326660156,0.4573211669921875,2.068115234375 +20220906160000,vlinder28,298.0599670410156,0.7571258544921875,1.756591796875 +20220906170000,vlinder01,297.5189971923828,-0.3674163818359375,1.0380706787109375 +20220906170000,vlinder02,297.4369659423828,-0.4387054443359375,1.3144378662109375 +20220906170000,vlinder03,297.6479034423828,-2.288818359375E-4,-1.1035308837890625 +20220906170000,vlinder04,297.6479034423828,-2.288818359375E-4,-1.1035308837890625 +20220906170000,vlinder05,297.4330596923828,-0.6535491943359375,1.4521331787109375 +20220906170000,vlinder06,298.5912628173828,-0.1515960693359375,-0.7451324462890625 +20220906170000,vlinder07,298.5912628173828,-0.1515960693359375,-0.7451324462890625 +20220906170000,vlinder08,298.5912628173828,-0.1515960693359375,-0.7451324462890625 +20220906170000,vlinder09,297.8998565673828,0.0573883056640625,0.1611175537109375 +20220906170000,vlinder10,297.7748565673828,-0.0158538818359375,0.4550628662109375 +20220906170000,vlinder11,297.9545440673828,-0.7209320068359375,-0.1172027587890625 +20220906170000,vlinder12,297.9545440673828,-0.7209320068359375,-0.1172027587890625 +20220906170000,vlinder13,297.9545440673828,-0.7209320068359375,-0.1172027587890625 +20220906170000,vlinder14,297.5697784423828,-0.9904632568359375,0.3349456787109375 +20220906170000,vlinder15,298.0170440673828,0.1052398681640625,-0.1103668212890625 +20220906170000,vlinder16,297.5697784423828,-0.9904632568359375,0.3349456787109375 +20220906170000,vlinder17,299.3686065673828,1.0612945556640625,-0.9150543212890625 +20220906170000,vlinder18,299.6752471923828,1.1081695556640625,-0.7334136962890625 +20220906170000,vlinder19,298.2572784423828,0.1911773681640625,-0.3379058837890625 +20220906170000,vlinder20,298.2572784423828,0.1911773681640625,-0.3379058837890625 +20220906170000,vlinder21,296.6947784423828,-1.6017913818359375,1.4238128662109375 +20220906170000,vlinder22,297.2182159423828,-0.4806976318359375,2.5702972412109375 +20220906170000,vlinder23,297.1928253173828,-1.1603851318359375,1.9404144287109375 +20220906170000,vlinder24,297.3178253173828,-0.9084320068359375,1.7656097412109375 +20220906170000,vlinder25,297.3510284423828,-0.8937835693359375,1.6845550537109375 +20220906170000,vlinder26,298.1732940673828,0.2693023681640625,-1.3095855712890625 +20220906170000,vlinder27,297.4330596923828,-0.6535491943359375,1.4521331787109375 +20220906170000,vlinder28,297.5189971923828,-0.3674163818359375,1.0380706787109375 +20220906180000,vlinder01,296.2914733886719,-1.1408233642578125,0.15057373046875 +20220906180000,vlinder02,296.3012390136719,-1.0890655517578125,0.44451904296875 +20220906180000,vlinder03,296.8891296386719,-0.8439483642578125,-1.13946533203125 +20220906180000,vlinder04,296.8891296386719,-0.8439483642578125,-1.13946533203125 +20220906180000,vlinder05,296.3285827636719,-1.2462921142578125,0.72381591796875 +20220906180000,vlinder06,297.3754577636719,-1.2189483642578125,-1.48223876953125 +20220906180000,vlinder07,297.3754577636719,-1.2189483642578125,-1.48223876953125 +20220906180000,vlinder08,297.3754577636719,-1.2189483642578125,-1.48223876953125 +20220906180000,vlinder09,296.6918640136719,-1.0646514892578125,-0.86798095703125 +20220906180000,vlinder10,296.5082702636719,-1.0187530517578125,-0.58673095703125 +20220906180000,vlinder11,296.9965515136719,-1.5900421142578125,-0.61700439453125 +20220906180000,vlinder12,296.9965515136719,-1.5900421142578125,-0.61700439453125 +20220906180000,vlinder13,296.9965515136719,-1.5900421142578125,-0.61700439453125 +20220906180000,vlinder14,296.6742858886719,-1.7902374267578125,-0.09454345703125 +20220906180000,vlinder15,296.8559265136719,-1.0900421142578125,-1.11895751953125 +20220906180000,vlinder16,296.6742858886719,-1.7902374267578125,-0.09454345703125 +20220906180000,vlinder17,298.2367858886719,0.0994110107421875,-1.66973876953125 +20220906180000,vlinder18,298.4457702636719,0.2117156982421875,-1.60430908203125 +20220906180000,vlinder19,297.1215515136719,-1.0060577392578125,-1.46759033203125 +20220906180000,vlinder20,297.1215515136719,-1.0060577392578125,-1.46759033203125 +20220906180000,vlinder21,295.8637390136719,-1.6808624267578125,1.95428466796875 +20220906180000,vlinder22,296.0297546386719,-0.2912139892578125,2.30975341796875 +20220906180000,vlinder23,295.9047546386719,-1.5138702392578125,1.57537841796875 +20220906180000,vlinder24,296.1235046386719,-1.3527374267578125,1.28533935546875 +20220906180000,vlinder25,296.1469421386719,-1.3830108642578125,1.05975341796875 +20220906180000,vlinder26,297.3285827636719,-0.6701202392578125,-1.39923095703125 +20220906180000,vlinder27,296.3285827636719,-1.2462921142578125,0.72381591796875 +20220906180000,vlinder28,296.2914733886719,-1.1408233642578125,0.15057373046875 +20220906190000,vlinder01,294.55360412597656,1.4979248046875,-1.1758575439453125 +20220906190000,vlinder02,294.59071350097656,1.6893310546875,-0.9405059814453125 +20220906190000,vlinder03,296.47352600097656,-2.6514892578125,-1.7520294189453125 +20220906190000,vlinder04,296.47352600097656,-2.6514892578125,-1.7520294189453125 +20220906190000,vlinder05,294.58680725097656,1.2791748046875,-0.3213653564453125 +20220906190000,vlinder06,296.55946350097656,-1.6163330078125,-1.3301544189453125 +20220906190000,vlinder07,296.55946350097656,-1.6163330078125,-1.3301544189453125 +20220906190000,vlinder08,296.55946350097656,-1.6163330078125,-1.3301544189453125 +20220906190000,vlinder09,294.97352600097656,0.5067138671875,-1.7139434814453125 +20220906190000,vlinder10,294.69618225097656,0.7762451171875,-1.5469512939453125 +20220906190000,vlinder11,296.28993225097656,-1.4610595703125,-1.3145294189453125 +20220906190000,vlinder12,296.28993225097656,-1.4610595703125,-1.3145294189453125 +20220906190000,vlinder13,296.28993225097656,-1.4610595703125,-1.3145294189453125 +20220906190000,vlinder14,295.83290100097656,-1.1417236328125,-1.3379669189453125 +20220906190000,vlinder15,295.26844787597656,0.1268310546875,-1.7891387939453125 +20220906190000,vlinder16,295.83290100097656,-1.1417236328125,-1.3379669189453125 +20220906190000,vlinder17,297.44032287597656,-1.9971923828125,-1.4688262939453125 +20220906190000,vlinder18,297.51063537597656,-1.8995361328125,-1.4580841064453125 +20220906190000,vlinder19,295.65907287597656,-1.3175048828125,-1.2588653564453125 +20220906190000,vlinder20,295.65907287597656,-1.3175048828125,-1.2588653564453125 +20220906190000,vlinder21,294.59071350097656,2.8485107421875,3.1034393310546875 +20220906190000,vlinder22,293.75868225097656,2.6737060546875,1.1962127685546875 +20220906190000,vlinder23,294.67469787597656,0.3944091796875,1.3260955810546875 +20220906190000,vlinder24,294.61219787597656,0.9110107421875,0.7167205810546875 +20220906190000,vlinder25,294.46571350097656,0.7694091796875,0.3407440185546875 +20220906190000,vlinder26,296.84657287597656,-2.7921142578125,-1.5137481689453125 +20220906190000,vlinder27,294.58680725097656,1.2791748046875,-0.3213653564453125 +20220906190000,vlinder28,294.55360412597656,1.4979248046875,-1.1758575439453125 +20220906200000,vlinder01,292.82196044921875,2.5735931396484375,-1.1751556396484375 +20220906200000,vlinder02,292.80242919921875,2.6800384521484375,-1.0501556396484375 +20220906200000,vlinder03,295.75750732421875,-2.0055084228515625,-1.7171478271484375 +20220906200000,vlinder04,295.75750732421875,-2.0055084228515625,-1.7171478271484375 +20220906200000,vlinder05,292.94891357421875,2.8782806396484375,-0.7649993896484375 +20220906200000,vlinder06,294.65008544921875,-0.0348052978515625,-1.1497650146484375 +20220906200000,vlinder07,294.65008544921875,-0.0348052978515625,-1.1497650146484375 +20220906200000,vlinder08,294.65008544921875,-0.0348052978515625,-1.1497650146484375 +20220906200000,vlinder09,293.15789794921875,1.9749603271484375,-1.8607025146484375 +20220906200000,vlinder10,293.03094482421875,2.1458587646484375,-1.7483978271484375 +20220906200000,vlinder11,294.75750732421875,0.5042572021484375,-0.9866790771484375 +20220906200000,vlinder12,294.75750732421875,0.5042572021484375,-0.9866790771484375 +20220906200000,vlinder13,294.75750732421875,0.5042572021484375,-0.9866790771484375 +20220906200000,vlinder14,294.52313232421875,1.0101165771484375,-0.9554290771484375 +20220906200000,vlinder15,293.35516357421875,1.6771087646484375,-1.9017181396484375 +20220906200000,vlinder16,294.52313232421875,1.0101165771484375,-0.9554290771484375 +20220906200000,vlinder17,296.61688232421875,-2.3512115478515625,-1.2610931396484375 +20220906200000,vlinder18,296.66766357421875,-2.3267974853515625,-1.1800384521484375 +20220906200000,vlinder19,293.93914794921875,0.3040618896484375,-1.7015228271484375 +20220906200000,vlinder20,293.93914794921875,0.3040618896484375,-1.7015228271484375 +20220906200000,vlinder21,292.81219482421875,4.5911712646484375,1.1598052978515625 +20220906200000,vlinder22,292.17938232421875,2.5589447021484375,-0.1321868896484375 +20220906200000,vlinder23,293.19305419921875,3.2386322021484375,-0.0267181396484375 +20220906200000,vlinder24,293.05047607421875,3.2112884521484375,-0.3567962646484375 +20220906200000,vlinder25,293.04852294921875,2.9192962646484375,-0.4769134521484375 +20220906200000,vlinder26,296.08758544921875,-2.1158599853515625,-1.4886322021484375 +20220906200000,vlinder27,292.94891357421875,2.8782806396484375,-0.7649993896484375 +20220906200000,vlinder28,292.82196044921875,2.5735931396484375,-1.1751556396484375 +20220906210000,vlinder01,291.588134765625,1.565704345703125,-1.382232666015625 +20220906210000,vlinder02,291.633056640625,1.383087158203125,-1.349029541015625 +20220906210000,vlinder03,294.228759765625,0.060821533203125,-1.211334228515625 +20220906210000,vlinder04,294.228759765625,0.060821533203125,-1.211334228515625 +20220906210000,vlinder05,291.775634765625,1.646759033203125,-1.193756103515625 +20220906210000,vlinder06,292.308837890625,2.231719970703125,-1.088287353515625 +20220906210000,vlinder07,292.308837890625,2.231719970703125,-1.088287353515625 +20220906210000,vlinder08,292.308837890625,2.231719970703125,-1.088287353515625 +20220906210000,vlinder09,291.457275390625,2.179962158203125,-1.962310791015625 +20220906210000,vlinder10,291.467041015625,1.930938720703125,-1.952545166015625 +20220906210000,vlinder11,292.664306640625,2.349884033203125,-0.734771728515625 +20220906210000,vlinder12,292.664306640625,2.349884033203125,-0.734771728515625 +20220906210000,vlinder13,292.664306640625,2.349884033203125,-0.734771728515625 +20220906210000,vlinder14,292.748291015625,2.398712158203125,-0.641021728515625 +20220906210000,vlinder15,291.494384765625,2.338165283203125,-1.939849853515625 +20220906210000,vlinder16,292.748291015625,2.398712158203125,-0.641021728515625 +20220906210000,vlinder17,295.463134765625,-1.652069091796875,0.453704833984375 +20220906210000,vlinder18,295.595947265625,-1.824920654296875,0.493743896484375 +20220906210000,vlinder19,291.802978515625,1.901641845703125,-2.019927978515625 +20220906210000,vlinder20,291.802978515625,1.901641845703125,-2.019927978515625 +20220906210000,vlinder21,291.414306640625,2.598907470703125,-0.360748291015625 +20220906210000,vlinder22,291.459228515625,0.636016845703125,-0.781646728515625 +20220906210000,vlinder23,291.922119140625,2.198516845703125,-0.860748291015625 +20220906210000,vlinder24,291.853759765625,2.013946533203125,-1.025787353515625 +20220906210000,vlinder25,291.859619140625,1.793243408203125,-1.032623291015625 +20220906210000,vlinder26,294.234619140625,-0.106170654296875,-0.767974853515625 +20220906210000,vlinder27,291.775634765625,1.646759033203125,-1.193756103515625 +20220906210000,vlinder28,291.588134765625,1.565704345703125,-1.382232666015625 +20220906220000,vlinder01,290.968994140625,0.2102508544921875,-2.2515869140625 +20220906220000,vlinder02,290.941650390625,0.0500946044921875,-2.1920166015625 +20220906220000,vlinder03,292.728759765625,1.3538055419921875,-0.4332275390625 +20220906220000,vlinder04,292.728759765625,1.3538055419921875,-0.4332275390625 +20220906220000,vlinder05,291.103759765625,0.1711883544921875,-1.9752197265625 +20220906220000,vlinder06,291.588134765625,1.1204071044921875,-1.6881103515625 +20220906220000,vlinder07,291.588134765625,1.1204071044921875,-1.6881103515625 +20220906220000,vlinder08,291.588134765625,1.1204071044921875,-1.6881103515625 +20220906220000,vlinder09,290.996337890625,0.4514617919921875,-2.5377197265625 +20220906220000,vlinder10,290.945556640625,0.2952117919921875,-2.5279541015625 +20220906220000,vlinder11,291.726806640625,1.4436492919921875,-1.3658447265625 +20220906220000,vlinder12,291.726806640625,1.4436492919921875,-1.3658447265625 +20220906220000,vlinder13,291.726806640625,1.4436492919921875,-1.3658447265625 +20220906220000,vlinder14,291.802978515625,1.5188446044921875,-1.2906494140625 +20220906220000,vlinder15,291.047119140625,0.5911102294921875,-2.4888916015625 +20220906220000,vlinder16,291.802978515625,1.5188446044921875,-1.2906494140625 +20220906220000,vlinder17,293.654541015625,0.3215789794921875,2.2249755859375 +20220906220000,vlinder18,293.988525390625,0.1165008544921875,2.3177490234375 +20220906220000,vlinder19,291.047119140625,0.5237274169921875,-2.3306884765625 +20220906220000,vlinder20,291.047119140625,0.5237274169921875,-2.3306884765625 +20220906220000,vlinder21,290.570556640625,-0.8903350830078125,-0.3570556640625 +20220906220000,vlinder22,290.732666015625,-1.7292022705078125,-0.5123291015625 +20220906220000,vlinder23,291.158447265625,0.2620086669921875,-1.4029541015625 +20220906220000,vlinder24,291.051025390625,0.1077117919921875,-1.6461181640625 +20220906220000,vlinder25,291.109619140625,0.2922821044921875,-1.7144775390625 +20220906220000,vlinder26,292.697509765625,1.1956024169921875,0.0491943359375 +20220906220000,vlinder27,291.103759765625,0.1711883544921875,-1.9752197265625 +20220906220000,vlinder28,290.968994140625,0.2102508544921875,-2.2515869140625 +20220906230000,vlinder01,290.38671875,-0.0972442626953125,-2.1094207763671875 +20220906230000,vlinder02,290.283203125,-0.1079864501953125,-2.0342254638671875 +20220906230000,vlinder03,291.708984375,-0.2857208251953125,-1.0576629638671875 +20220906230000,vlinder04,291.708984375,-0.2857208251953125,-1.0576629638671875 +20220906230000,vlinder05,290.384765625,-0.0865020751953125,-2.1260223388671875 +20220906230000,vlinder06,291.265625,-0.9302520751953125,-2.2197723388671875 +20220906230000,vlinder07,291.265625,-0.9302520751953125,-2.2197723388671875 +20220906230000,vlinder08,291.265625,-0.9302520751953125,-2.2197723388671875 +20220906230000,vlinder09,290.64453125,-0.4409942626953125,-2.1475067138671875 +20220906230000,vlinder10,290.5234375,-0.3169708251953125,-2.1064910888671875 +20220906230000,vlinder11,291.2109375,-0.2954864501953125,-1.9756317138671875 +20220906230000,vlinder12,291.2109375,-0.2954864501953125,-1.9756317138671875 +20220906230000,vlinder13,291.2109375,-0.2954864501953125,-1.9756317138671875 +20220906230000,vlinder14,291.25390625,0.0912322998046875,-1.8379364013671875 +20220906230000,vlinder15,290.6875,-0.5699005126953125,-2.1709442138671875 +20220906230000,vlinder16,291.25390625,0.0912322998046875,-1.8379364013671875 +20220906230000,vlinder17,292.10546875,1.0668182373046875,1.4433135986328125 +20220906230000,vlinder18,292.291015625,1.4525604248046875,1.5517120361328125 +20220906230000,vlinder19,290.701171875,-0.9605255126953125,-1.8564910888671875 +20220906230000,vlinder20,290.701171875,-0.9605255126953125,-1.8564910888671875 +20220906230000,vlinder21,290.439453125,-2.9956817626953125,-0.4746551513671875 +20220906230000,vlinder22,289.72265625,-2.3599395751953125,-0.0391082763671875 +20220906230000,vlinder23,290.546875,-0.3081817626953125,-2.0937957763671875 +20220906230000,vlinder24,290.416015625,-0.4702911376953125,-2.0703582763671875 +20220906230000,vlinder25,290.4765625,0.0463104248046875,-2.2129364013671875 +20220906230000,vlinder26,291.599609375,-0.3277130126953125,-0.8437957763671875 +20220906230000,vlinder27,290.384765625,-0.0865020751953125,-2.1260223388671875 +20220906230000,vlinder28,290.38671875,-0.0972442626953125,-2.1094207763671875 +20220907000000,vlinder01,289.8556823730469,-0.5843353271484375,-1.6502685546875 +20220907000000,vlinder02,289.7209167480469,-0.8274993896484375,-1.5350341796875 +20220907000000,vlinder03,291.1857604980469,-1.0472259521484375,-1.1424560546875 +20220907000000,vlinder04,291.1857604980469,-1.0472259521484375,-1.1424560546875 +20220907000000,vlinder05,289.8908386230469,-0.8773040771484375,-1.6375732421875 +20220907000000,vlinder06,290.9787292480469,-0.3001556396484375,-1.4783935546875 +20220907000000,vlinder07,290.9787292480469,-0.3001556396484375,-1.4783935546875 +20220907000000,vlinder08,290.9787292480469,-0.3001556396484375,-1.4783935546875 +20220907000000,vlinder09,290.1623229980469,0.1285552978515625,-1.7069091796875 +20220907000000,vlinder10,290.0021667480469,-0.0941009521484375,-1.6541748046875 +20220907000000,vlinder11,290.9201354980469,0.2379302978515625,-1.9774169921875 +20220907000000,vlinder12,290.9201354980469,0.2379302978515625,-1.9774169921875 +20220907000000,vlinder13,290.9201354980469,0.2379302978515625,-1.9774169921875 +20220907000000,vlinder14,290.9435729980469,0.5894927978515625,-2.2381591796875 +20220907000000,vlinder15,290.2970886230469,0.2398834228515625,-1.7098388671875 +20220907000000,vlinder16,290.9435729980469,0.5894927978515625,-2.2381591796875 +20220907000000,vlinder17,291.2580261230469,-0.9515228271484375,0.5704345703125 +20220907000000,vlinder18,291.4435729980469,-0.7015228271484375,0.6788330078125 +20220907000000,vlinder19,290.3302917480469,0.0689849853515625,-1.0526123046875 +20220907000000,vlinder20,290.3302917480469,0.0689849853515625,-1.0526123046875 +20220907000000,vlinder21,290.4670104980469,-3.3978118896484375,0.4805908203125 +20220907000000,vlinder22,289.1506042480469,-1.9847259521484375,1.0196533203125 +20220907000000,vlinder23,290.0724792480469,-1.2278900146484375,-1.5653076171875 +20220907000000,vlinder24,289.9220886230469,-1.3187103271484375,-1.4803466796875 +20220907000000,vlinder25,289.9552917480469,-0.7776947021484375,-1.7567138671875 +20220907000000,vlinder26,291.3400573730469,-1.3616790771484375,-0.7098388671875 +20220907000000,vlinder27,289.8908386230469,-0.8773040771484375,-1.6375732421875 +20220907000000,vlinder28,289.8556823730469,-0.5843353271484375,-1.6502685546875 +20220907010000,vlinder01,289.51173400878906,-1.176666259765625,-0.8175811767578125 +20220907010000,vlinder02,289.38282775878906,-1.438385009765625,-0.5929718017578125 +20220907010000,vlinder03,290.52345275878906,-0.290924072265625,-0.7042999267578125 +20220907010000,vlinder04,290.52345275878906,-0.290924072265625,-0.7042999267578125 +20220907010000,vlinder05,289.61329650878906,-1.542877197265625,-0.7199249267578125 +20220907010000,vlinder06,290.51368713378906,0.706146240234375,-1.1769561767578125 +20220907010000,vlinder07,290.51368713378906,0.706146240234375,-1.1769561767578125 +20220907010000,vlinder08,290.51368713378906,0.706146240234375,-1.1769561767578125 +20220907010000,vlinder09,289.85939025878906,-0.079010009765625,-1.2941436767578125 +20220907010000,vlinder10,289.66603088378906,-0.407135009765625,-1.0939483642578125 +20220907010000,vlinder11,290.48829650878906,0.452239990234375,-1.5734405517578125 +20220907010000,vlinder12,290.48829650878906,0.452239990234375,-1.5734405517578125 +20220907010000,vlinder13,290.48829650878906,0.452239990234375,-1.5734405517578125 +20220907010000,vlinder14,290.52540588378906,0.239349365234375,-1.7980499267578125 +20220907010000,vlinder15,289.99220275878906,0.216888427734375,-1.4025421142578125 +20220907010000,vlinder16,290.52540588378906,0.239349365234375,-1.7980499267578125 +20220907010000,vlinder17,290.99610900878906,-0.957916259765625,1.2224578857421875 +20220907010000,vlinder18,291.14649963378906,-0.935455322265625,1.1794891357421875 +20220907010000,vlinder19,289.83399963378906,0.861419677734375,-0.8087921142578125 +20220907010000,vlinder20,289.83399963378906,0.861419677734375,-0.8087921142578125 +20220907010000,vlinder21,290.29689025878906,-3.090728759765625,1.6941375732421875 +20220907010000,vlinder22,288.50978088378906,-1.664947509765625,1.7380828857421875 +20220907010000,vlinder23,289.75978088378906,-1.853424072265625,-0.6847686767578125 +20220907010000,vlinder24,289.59376525878906,-1.839752197265625,-0.5470733642578125 +20220907010000,vlinder25,289.64845275878906,-1.541900634765625,-0.8878936767578125 +20220907010000,vlinder26,290.96485900878906,-0.431549072265625,-0.0578155517578125 +20220907010000,vlinder27,289.61329650878906,-1.542877197265625,-0.7199249267578125 +20220907010000,vlinder28,289.51173400878906,-1.176666259765625,-0.8175811767578125 +20220907020000,vlinder01,288.9608917236328,-1.2479400634765625,0.024658203125 +20220907020000,vlinder02,288.9608917236328,-1.3485260009765625,0.310791015625 +20220907020000,vlinder03,290.1933135986328,0.0196380615234375,-0.556396484375 +20220907020000,vlinder04,290.1933135986328,0.0196380615234375,-0.556396484375 +20220907020000,vlinder05,289.2597198486328,-1.4852447509765625,0.176025390625 +20220907020000,vlinder06,289.9218292236328,0.3497161865234375,-1.048583984375 +20220907020000,vlinder07,289.9218292236328,0.3497161865234375,-1.048583984375 +20220907020000,vlinder08,289.9218292236328,0.3497161865234375,-1.048583984375 +20220907020000,vlinder09,289.3163604736328,-0.4871978759765625,-0.518310546875 +20220907020000,vlinder10,289.2284698486328,-0.6698150634765625,-0.224365234375 +20220907020000,vlinder11,290.0194854736328,-0.1815338134765625,-1.218505859375 +20220907020000,vlinder12,290.0194854736328,-0.1815338134765625,-1.218505859375 +20220907020000,vlinder13,290.0194854736328,-0.1815338134765625,-1.218505859375 +20220907020000,vlinder14,290.1698760986328,-0.5516510009765625,-1.276123046875 +20220907020000,vlinder15,289.4647979736328,-0.2713775634765625,-0.728271484375 +20220907020000,vlinder16,290.1698760986328,-0.5516510009765625,-1.276123046875 +20220907020000,vlinder17,290.8710479736328,-0.0877838134765625,1.687744140625 +20220907020000,vlinder18,291.0116729736328,-0.2069244384765625,1.721923828125 +20220907020000,vlinder19,289.2753448486328,0.5977630615234375,-0.281982421875 +20220907020000,vlinder20,289.2753448486328,0.5977630615234375,-0.281982421875 +20220907020000,vlinder21,290.1562042236328,-2.4051666259765625,2.658447265625 +20220907020000,vlinder22,288.4589385986328,-0.9461822509765625,2.405517578125 +20220907020000,vlinder23,289.5565948486328,-1.6707916259765625,0.198486328125 +20220907020000,vlinder24,289.2655792236328,-1.6444244384765625,0.344970703125 +20220907020000,vlinder25,289.3065948486328,-1.4881744384765625,0.012939453125 +20220907020000,vlinder26,290.6249542236328,0.3165130615234375,0.005126953125 +20220907020000,vlinder27,289.2597198486328,-1.4852447509765625,0.176025390625 +20220907020000,vlinder28,288.9608917236328,-1.2479400634765625,0.024658203125 +20220907030000,vlinder01,288.4165954589844,0.3011322021484375,1.756927490234375 +20220907030000,vlinder02,288.5728454589844,0.1819915771484375,1.866302490234375 +20220907030000,vlinder03,289.8970642089844,0.3333587646484375,0.319427490234375 +20220907030000,vlinder04,289.8970642089844,0.3333587646484375,0.319427490234375 +20220907030000,vlinder05,288.8247985839844,0.0042572021484375,1.792083740234375 +20220907030000,vlinder06,289.3052673339844,1.2230072021484375,0.676849365234375 +20220907030000,vlinder07,289.3052673339844,1.2230072021484375,0.676849365234375 +20220907030000,vlinder08,289.3052673339844,1.2230072021484375,0.676849365234375 +20220907030000,vlinder09,288.5357360839844,0.7396087646484375,1.454193115234375 +20220907030000,vlinder10,288.4068298339844,0.6048431396484375,1.621185302734375 +20220907030000,vlinder11,289.9263610839844,0.6575775146484375,0.121185302734375 +20220907030000,vlinder12,289.9263610839844,0.6575775146484375,0.121185302734375 +20220907030000,vlinder13,289.9263610839844,0.6575775146484375,0.121185302734375 +20220907030000,vlinder14,290.3872985839844,0.2913665771484375,-0.081939697265625 +20220907030000,vlinder15,288.6861267089844,0.8733978271484375,1.291107177734375 +20220907030000,vlinder16,290.3872985839844,0.2913665771484375,-0.081939697265625 +20220907030000,vlinder17,290.5474548339844,0.2181243896484375,1.935638427734375 +20220907030000,vlinder18,290.7505798339844,0.0716400146484375,1.992279052734375 +20220907030000,vlinder19,288.7037048339844,1.1868743896484375,1.311614990234375 +20220907030000,vlinder20,288.7037048339844,1.1868743896484375,1.311614990234375 +20220907030000,vlinder21,290.0005798339844,-1.3043365478515625,3.799896240234375 +20220907030000,vlinder22,288.6626892089844,-0.7877349853515625,2.665130615234375 +20220907030000,vlinder23,289.2017517089844,-0.4732818603515625,1.643646240234375 +20220907030000,vlinder24,288.8521423339844,-0.3023834228515625,1.841888427734375 +20220907030000,vlinder25,288.7154235839844,-0.1422271728515625,1.568450927734375 +20220907030000,vlinder26,289.2369079589844,0.5980072021484375,0.836029052734375 +20220907030000,vlinder27,288.8247985839844,0.0042572021484375,1.792083740234375 +20220907030000,vlinder28,288.4165954589844,0.3011322021484375,1.756927490234375 +20220907040000,vlinder01,288.21192932128906,0.4503936767578125,1.9028167724609375 +20220907040000,vlinder02,288.36817932128906,0.3302764892578125,1.9653167724609375 +20220907040000,vlinder03,288.15138244628906,1.1984405517578125,0.8950042724609375 +20220907040000,vlinder04,288.15138244628906,1.1984405517578125,0.8950042724609375 +20220907040000,vlinder05,288.60450744628906,0.2326202392578125,2.0444183349609375 +20220907040000,vlinder06,288.85060119628906,1.1203155517578125,1.2924652099609375 +20220907040000,vlinder07,288.85060119628906,1.1203155517578125,1.2924652099609375 +20220907040000,vlinder08,288.85060119628906,1.1203155517578125,1.2924652099609375 +20220907040000,vlinder09,288.44435119628906,0.8517608642578125,1.8110198974609375 +20220907040000,vlinder10,288.37403869628906,0.7384796142578125,1.8930511474609375 +20220907040000,vlinder11,288.35646057128906,1.1291046142578125,1.0326995849609375 +20220907040000,vlinder12,288.35646057128906,1.1291046142578125,1.0326995849609375 +20220907040000,vlinder13,288.35646057128906,1.1291046142578125,1.0326995849609375 +20220907040000,vlinder14,288.51466369628906,1.0216827392578125,0.9321136474609375 +20220907040000,vlinder15,288.52442932128906,0.9542999267578125,1.7250823974609375 +20220907040000,vlinder16,288.51466369628906,1.0216827392578125,0.9321136474609375 +20220907040000,vlinder17,290.22560119628906,0.7824249267578125,2.0287933349609375 +20220907040000,vlinder18,290.46388244628906,0.6740264892578125,2.1127777099609375 +20220907040000,vlinder19,288.65138244628906,1.2443389892578125,1.7905120849609375 +20220907040000,vlinder20,288.65138244628906,1.2443389892578125,1.7905120849609375 +20220907040000,vlinder21,289.92481994628906,-0.7400360107421875,4.3559417724609375 +20220907040000,vlinder22,288.80567932128906,-0.3923797607421875,2.9233245849609375 +20220907040000,vlinder23,289.05567932128906,-0.1306610107421875,2.2612152099609375 +20220907040000,vlinder24,288.74903869628906,-0.0232391357421875,2.2807464599609375 +20220907040000,vlinder25,288.46192932128906,0.1613311767578125,2.0053558349609375 +20220907040000,vlinder26,288.49317932128906,1.2785186767578125,1.2123870849609375 +20220907040000,vlinder27,288.60450744628906,0.2326202392578125,2.0444183349609375 +20220907040000,vlinder28,288.21192932128906,0.4503936767578125,1.9028167724609375 +20220907050000,vlinder01,288.4187316894531,0.6270904541015625,2.3023223876953125 +20220907050000,vlinder02,288.4773254394531,0.5714263916015625,2.3404083251953125 +20220907050000,vlinder03,288.0534973144531,0.8546295166015625,1.2173614501953125 +20220907050000,vlinder04,288.0534973144531,0.8546295166015625,1.2173614501953125 +20220907050000,vlinder05,288.6726379394531,0.4552154541015625,2.4439239501953125 +20220907050000,vlinder06,289.0105285644531,0.9688873291015625,1.7202911376953125 +20220907050000,vlinder07,289.0105285644531,0.9688873291015625,1.7202911376953125 +20220907050000,vlinder08,289.0105285644531,0.9688873291015625,1.7202911376953125 +20220907050000,vlinder09,288.6941223144531,0.9552154541015625,2.2779083251953125 +20220907050000,vlinder10,288.6179504394531,0.9005279541015625,2.3316192626953125 +20220907050000,vlinder11,288.3152160644531,0.7686920166015625,1.7105255126953125 +20220907050000,vlinder12,288.3152160644531,0.7686920166015625,1.7105255126953125 +20220907050000,vlinder13,288.3152160644531,0.7686920166015625,1.7105255126953125 +20220907050000,vlinder14,288.3171691894531,0.6036529541015625,1.7300567626953125 +20220907050000,vlinder15,288.7566223144531,1.0059967041015625,2.2056427001953125 +20220907050000,vlinder16,288.3171691894531,0.6036529541015625,1.7300567626953125 +20220907050000,vlinder17,290.0632629394531,1.2237701416015625,1.8540802001953125 +20220907050000,vlinder18,290.3034973144531,1.2247467041015625,1.9429473876953125 +20220907050000,vlinder19,288.8269348144531,1.3663482666015625,2.1978302001953125 +20220907050000,vlinder20,288.8269348144531,1.3663482666015625,2.1978302001953125 +20220907050000,vlinder21,289.8796691894531,0.7452545166015625,4.7202911376953125 +20220907050000,vlinder22,288.7292785644531,0.7579498291015625,3.0581817626953125 +20220907050000,vlinder23,288.9929504394531,0.1339263916015625,2.6831817626953125 +20220907050000,vlinder24,288.7761535644531,0.3048248291015625,2.7027130126953125 +20220907050000,vlinder25,288.5613098144531,0.3214263916015625,2.4156036376953125 +20220907050000,vlinder26,288.5456848144531,1.0450592041015625,1.3394317626953125 +20220907050000,vlinder27,288.6726379394531,0.4552154541015625,2.4439239501953125 +20220907050000,vlinder28,288.4187316894531,0.6270904541015625,2.3023223876953125 +20220907060000,vlinder01,288.6818389892578,1.096832275390625,2.3762054443359375 +20220907060000,vlinder02,288.6701202392578,1.094879150390625,2.3830413818359375 +20220907060000,vlinder03,288.7638702392578,0.703277587890625,1.5236663818359375 +20220907060000,vlinder04,288.7638702392578,0.703277587890625,1.5236663818359375 +20220907060000,vlinder05,288.8791046142578,1.010894775390625,2.4826507568359375 +20220907060000,vlinder06,289.3341827392578,0.977691650390625,1.8928070068359375 +20220907060000,vlinder07,289.3341827392578,0.977691650390625,1.8928070068359375 +20220907060000,vlinder08,289.3341827392578,0.977691650390625,1.8928070068359375 +20220907060000,vlinder09,288.9396514892578,1.245269775390625,2.4367523193359375 +20220907060000,vlinder10,288.8556671142578,1.246246337890625,2.4543304443359375 +20220907060000,vlinder11,288.9845733642578,0.696441650390625,1.9299163818359375 +20220907060000,vlinder12,288.9845733642578,0.696441650390625,1.9299163818359375 +20220907060000,vlinder13,288.9845733642578,0.696441650390625,1.9299163818359375 +20220907060000,vlinder14,289.0099639892578,0.562652587890625,1.9992523193359375 +20220907060000,vlinder15,289.0041046142578,1.234527587890625,2.3869476318359375 +20220907060000,vlinder16,289.0099639892578,0.562652587890625,1.9992523193359375 +20220907060000,vlinder17,290.1330108642578,1.395660400390625,1.7160491943359375 +20220907060000,vlinder18,290.3634796142578,1.491363525390625,1.7678070068359375 +20220907060000,vlinder19,289.0236358642578,1.435699462890625,2.3381195068359375 +20220907060000,vlinder20,289.0236358642578,1.435699462890625,2.3381195068359375 +20220907060000,vlinder21,290.0080108642578,2.173004150390625,4.4953460693359375 +20220907060000,vlinder22,288.8654327392578,1.510894775390625,2.9709320068359375 +20220907060000,vlinder23,289.2072296142578,0.813629150390625,2.7111663818359375 +20220907060000,vlinder24,289.0021514892578,0.979644775390625,2.7131195068359375 +20220907060000,vlinder25,288.8927764892578,0.865386962890625,2.4523773193359375 +20220907060000,vlinder26,289.1603546142578,0.913238525390625,1.5451507568359375 +20220907060000,vlinder27,288.8791046142578,1.010894775390625,2.4826507568359375 +20220907060000,vlinder28,288.6818389892578,1.096832275390625,2.3762054443359375 +20220907070000,vlinder01,290.1764221191406,0.3369903564453125,1.9937591552734375 +20220907070000,vlinder02,290.1158752441406,0.3662872314453125,1.9488372802734375 +20220907070000,vlinder03,291.4596252441406,0.8194122314453125,2.0357513427734375 +20220907070000,vlinder04,291.4596252441406,0.8194122314453125,2.0357513427734375 +20220907070000,vlinder05,290.2525939941406,0.3067169189453125,2.0328216552734375 +20220907070000,vlinder06,291.1627502441406,0.4785919189453125,2.2144622802734375 +20220907070000,vlinder07,291.1627502441406,0.4785919189453125,2.2144622802734375 +20220907070000,vlinder08,291.1627502441406,0.4785919189453125,2.2144622802734375 +20220907070000,vlinder09,290.4752502441406,0.4356231689453125,2.2779388427734375 +20220907070000,vlinder10,290.3697814941406,0.4463653564453125,2.2447357177734375 +20220907070000,vlinder11,290.8463439941406,0.1377716064453125,2.0533294677734375 +20220907070000,vlinder12,290.8463439941406,0.1377716064453125,2.0533294677734375 +20220907070000,vlinder13,290.8463439941406,0.1377716064453125,2.0533294677734375 +20220907070000,vlinder14,290.7291564941406,-0.0497283935546875,2.0064544677734375 +20220907070000,vlinder15,290.5787658691406,0.4444122314453125,2.3091888427734375 +20220907070000,vlinder16,290.7291564941406,-0.0497283935546875,2.0064544677734375 +20220907070000,vlinder17,291.8756408691406,1.8516387939453125,2.4849700927734375 +20220907070000,vlinder18,291.9752502441406,1.9492950439453125,2.3902435302734375 +20220907070000,vlinder19,290.8580627441406,0.7520294189453125,2.5621185302734375 +20220907070000,vlinder20,290.8580627441406,0.7520294189453125,2.5621185302734375 +20220907070000,vlinder21,291.3443908691406,2.7461700439453125,3.8892669677734375 +20220907070000,vlinder22,290.8619689941406,1.8858184814453125,2.4136810302734375 +20220907070000,vlinder23,290.3619689941406,0.2539825439453125,2.2281341552734375 +20220907070000,vlinder24,290.2818908691406,0.4346466064453125,2.1890716552734375 +20220907070000,vlinder25,290.2272033691406,0.1192169189453125,1.9908294677734375 +20220907070000,vlinder26,291.6822814941406,1.0362091064453125,2.2584075927734375 +20220907070000,vlinder27,290.2525939941406,0.3067169189453125,2.0328216552734375 +20220907070000,vlinder28,290.1764221191406,0.3369903564453125,1.9937591552734375 +20220907080000,vlinder01,291.51548767089844,0.0457763671875,3.176788330078125 +20220907080000,vlinder02,291.55064392089844,0.0711669921875,3.174835205078125 +20220907080000,vlinder03,292.41587829589844,0.1864013671875,2.587921142578125 +20220907080000,vlinder04,292.41587829589844,0.1864013671875,2.587921142578125 +20220907080000,vlinder05,291.64634704589844,0.0780029296875,3.097686767578125 +20220907080000,vlinder06,291.93931579589844,0.2186279296875,3.031280517578125 +20220907080000,vlinder07,291.93931579589844,0.2186279296875,3.031280517578125 +20220907080000,vlinder08,291.93931579589844,0.2186279296875,3.031280517578125 +20220907080000,vlinder09,291.44908142089844,0.2205810546875,3.224639892578125 +20220907080000,vlinder10,291.42955017089844,0.1971435546875,3.219757080078125 +20220907080000,vlinder11,291.97056579589844,-0.1046142578125,3.004913330078125 +20220907080000,vlinder12,291.97056579589844,-0.1046142578125,3.004913330078125 +20220907080000,vlinder13,291.97056579589844,-0.1046142578125,3.004913330078125 +20220907080000,vlinder14,292.02525329589844,-0.2657470703125,3.008819580078125 +20220907080000,vlinder15,291.47251892089844,0.2479248046875,3.212921142578125 +20220907080000,vlinder16,292.02525329589844,-0.2657470703125,3.008819580078125 +20220907080000,vlinder17,292.58384704589844,1.6160888671875,2.294952392578125 +20220907080000,vlinder18,292.75572204589844,1.8026123046875,2.246124267578125 +20220907080000,vlinder19,291.42759704589844,0.5203857421875,3.154327392578125 +20220907080000,vlinder20,291.42759704589844,0.5203857421875,3.154327392578125 +20220907080000,vlinder21,292.15025329589844,3.1864013671875,3.825225830078125 +20220907080000,vlinder22,292.17369079589844,2.2889404296875,3.375030517578125 +20220907080000,vlinder23,291.82017517089844,0.2615966796875,2.972686767578125 +20220907080000,vlinder24,291.75962829589844,0.3338623046875,3.051788330078125 +20220907080000,vlinder25,291.69517517089844,-0.0255126953125,2.984405517578125 +20220907080000,vlinder26,292.42369079589844,0.4227294921875,2.614288330078125 +20220907080000,vlinder27,291.64634704589844,0.0780029296875,3.097686767578125 +20220907080000,vlinder28,291.51548767089844,0.0457763671875,3.176788330078125 +20220907090000,vlinder01,292.79486083984375,1.3406219482421875,3.8201141357421875 +20220907090000,vlinder02,292.83001708984375,1.4177703857421875,3.7839813232421875 +20220907090000,vlinder03,293.48626708984375,0.8816375732421875,3.4001922607421875 +20220907090000,vlinder04,293.48626708984375,0.8816375732421875,3.4001922607421875 +20220907090000,vlinder05,292.88079833984375,1.1912078857421875,3.8367156982421875 +20220907090000,vlinder06,293.06243896484375,1.0535125732421875,3.5769500732421875 +20220907090000,vlinder07,293.06243896484375,1.0535125732421875,3.5769500732421875 +20220907090000,vlinder08,293.06243896484375,1.0535125732421875,3.5769500732421875 +20220907090000,vlinder09,292.69329833984375,1.3962860107421875,3.8718719482421875 +20220907090000,vlinder10,292.69915771484375,1.4646453857421875,3.8552703857421875 +20220907090000,vlinder11,293.07220458984375,0.6873016357421875,3.8874969482421875 +20220907090000,vlinder12,293.07220458984375,0.6873016357421875,3.8874969482421875 +20220907090000,vlinder13,293.07220458984375,0.6873016357421875,3.8874969482421875 +20220907090000,vlinder14,293.14642333984375,0.5095672607421875,4.0740203857421875 +20220907090000,vlinder15,292.69329833984375,1.3455047607421875,3.8572235107421875 +20220907090000,vlinder16,293.14642333984375,0.5095672607421875,4.0740203857421875 +20220907090000,vlinder17,293.60736083984375,1.9460906982421875,2.5769500732421875 +20220907090000,vlinder18,293.85736083984375,2.1648406982421875,2.4753875732421875 +20220907090000,vlinder19,292.61322021484375,1.4285125732421875,3.5896453857421875 +20220907090000,vlinder20,292.61322021484375,1.4285125732421875,3.5896453857421875 +20220907090000,vlinder21,292.87689208984375,3.6404266357421875,4.2605438232421875 +20220907090000,vlinder22,293.20501708984375,2.7439422607421875,3.3835906982421875 +20220907090000,vlinder23,292.91204833984375,0.9001922607421875,3.8855438232421875 +20220907090000,vlinder24,292.90032958984375,1.1853485107421875,3.8611297607421875 +20220907090000,vlinder25,292.87689208984375,0.8259735107421875,3.8503875732421875 +20220907090000,vlinder26,293.45892333984375,1.0623016357421875,3.2078094482421875 +20220907090000,vlinder27,292.88079833984375,1.1912078857421875,3.8367156982421875 +20220907090000,vlinder28,292.79486083984375,1.3406219482421875,3.8201141357421875 +20220907100000,vlinder01,293.2789001464844,1.3314361572265625,3.1109771728515625 +20220907100000,vlinder02,293.3121032714844,1.2191314697265625,3.0367584228515625 +20220907100000,vlinder03,294.4292907714844,1.7074127197265625,3.4596099853515625 +20220907100000,vlinder04,294.4292907714844,1.7074127197265625,3.4596099853515625 +20220907100000,vlinder05,293.3394470214844,1.1927642822265625,3.2223052978515625 +20220907100000,vlinder06,293.8999938964844,1.9867095947265625,3.3873443603515625 +20220907100000,vlinder07,293.8999938964844,1.9867095947265625,3.3873443603515625 +20220907100000,vlinder08,293.8999938964844,1.9867095947265625,3.3873443603515625 +20220907100000,vlinder09,293.2105407714844,1.9085845947265625,3.2877349853515625 +20220907100000,vlinder10,293.2007751464844,1.7767486572265625,3.1891021728515625 +20220907100000,vlinder11,293.7261657714844,1.5013580322265625,3.8267974853515625 +20220907100000,vlinder12,293.7261657714844,1.5013580322265625,3.8267974853515625 +20220907100000,vlinder13,293.7261657714844,1.5013580322265625,3.8267974853515625 +20220907100000,vlinder14,293.6539001464844,1.2640533447265625,4.0611724853515625 +20220907100000,vlinder15,293.2496032714844,2.0179595947265625,3.3512115478515625 +20220907100000,vlinder16,293.6539001464844,1.2640533447265625,4.0611724853515625 +20220907100000,vlinder17,294.6597595214844,2.4388580322265625,2.2965240478515625 +20220907100000,vlinder18,294.8609313964844,2.5843658447265625,2.1568756103515625 +20220907100000,vlinder19,293.3843688964844,2.2572174072265625,3.2027740478515625 +20220907100000,vlinder20,293.3843688964844,2.2572174072265625,3.2027740478515625 +20220907100000,vlinder21,293.2906188964844,2.4535064697265625,3.8101959228515625 +20220907100000,vlinder22,293.8433532714844,1.5609283447265625,3.0328521728515625 +20220907100000,vlinder23,293.3394470214844,1.1312408447265625,3.6129302978515625 +20220907100000,vlinder24,293.3472595214844,1.1888580322265625,3.4010162353515625 +20220907100000,vlinder25,293.3218688964844,1.0931549072265625,3.4127349853515625 +20220907100000,vlinder26,294.5406188964844,1.8646392822265625,3.1998443603515625 +20220907100000,vlinder27,293.3394470214844,1.1927642822265625,3.2223052978515625 +20220907100000,vlinder28,293.2789001464844,1.3314361572265625,3.1109771728515625 +20220907110000,vlinder01,293.98292541503906,1.2776947021484375,3.4330291748046875 +20220907110000,vlinder02,293.97901916503906,1.1732025146484375,3.4105682373046875 +20220907110000,vlinder03,295.10792541503906,1.6497650146484375,2.9789276123046875 +20220907110000,vlinder04,295.10792541503906,1.6497650146484375,2.9789276123046875 +20220907110000,vlinder05,293.93605041503906,1.0403900146484375,3.3236541748046875 +20220907110000,vlinder06,294.69776916503906,1.7816009521484375,3.1771697998046875 +20220907110000,vlinder07,294.69776916503906,1.7816009521484375,3.1771697998046875 +20220907110000,vlinder08,294.69776916503906,1.7816009521484375,3.1771697998046875 +20220907110000,vlinder09,294.07862854003906,1.8538665771484375,3.7650604248046875 +20220907110000,vlinder10,294.03175354003906,1.7122650146484375,3.7377166748046875 +20220907110000,vlinder11,294.33253479003906,1.5208587646484375,3.3383026123046875 +20220907110000,vlinder12,294.33253479003906,1.5208587646484375,3.3383026123046875 +20220907110000,vlinder13,294.33253479003906,1.5208587646484375,3.3383026123046875 +20220907110000,vlinder14,294.16261291503906,1.4124603271484375,3.5033416748046875 +20220907110000,vlinder15,294.13917541503906,1.9544525146484375,3.7533416748046875 +20220907110000,vlinder16,294.16261291503906,1.4124603271484375,3.5033416748046875 +20220907110000,vlinder17,295.56886291503906,2.0716400146484375,1.9232635498046875 +20220907110000,vlinder18,295.77589416503906,2.2044525146484375,1.8119354248046875 +20220907110000,vlinder19,294.28956604003906,2.0892181396484375,3.7406463623046875 +20220907110000,vlinder20,294.28956604003906,2.0892181396484375,3.7406463623046875 +20220907110000,vlinder21,293.69972229003906,1.9564056396484375,3.4789276123046875 +20220907110000,vlinder22,294.55128479003906,1.5941009521484375,3.4457244873046875 +20220907110000,vlinder23,293.74073791503906,0.8187103271484375,3.2279510498046875 +20220907110000,vlinder24,293.83448791503906,0.9407806396484375,3.2601776123046875 +20220907110000,vlinder25,293.82667541503906,0.8567962646484375,3.2338104248046875 +20220907110000,vlinder26,295.34425354003906,1.6810150146484375,2.7718963623046875 +20220907110000,vlinder27,293.93605041503906,1.0403900146484375,3.3236541748046875 +20220907110000,vlinder28,293.98292541503906,1.2776947021484375,3.4330291748046875 +20220907120000,vlinder01,294.9109191894531,1.6983489990234375,3.8425445556640625 +20220907120000,vlinder02,294.9324035644531,1.6788177490234375,3.8103179931640625 +20220907120000,vlinder03,296.0554504394531,1.9571380615234375,3.3210601806640625 +20220907120000,vlinder04,296.0554504394531,1.9571380615234375,3.3210601806640625 +20220907120000,vlinder05,294.8601379394531,1.5264739990234375,3.6804351806640625 +20220907120000,vlinder06,295.6355285644531,1.8965911865234375,3.8249664306640625 +20220907120000,vlinder07,295.6355285644531,1.8965911865234375,3.8249664306640625 +20220907120000,vlinder08,295.6355285644531,1.8965911865234375,3.8249664306640625 +20220907120000,vlinder09,294.9187316894531,2.1055755615234375,4.2028961181640625 +20220907120000,vlinder10,294.8894348144531,2.0626068115234375,4.1735992431640625 +20220907120000,vlinder11,295.3269348144531,1.7051849365234375,3.7761383056640625 +20220907120000,vlinder12,295.3269348144531,1.7051849365234375,3.7761383056640625 +20220907120000,vlinder13,295.3269348144531,1.7051849365234375,3.7761383056640625 +20220907120000,vlinder14,295.1609191894531,1.6114349365234375,3.7995758056640625 +20220907120000,vlinder15,294.9773254394531,2.1417083740234375,4.2136383056640625 +20220907120000,vlinder16,295.1609191894531,1.6114349365234375,3.7995758056640625 +20220907120000,vlinder17,296.7292785644531,2.2764739990234375,2.5173492431640625 +20220907120000,vlinder18,296.9226379394531,2.2852630615234375,2.3503570556640625 +20220907120000,vlinder19,295.0847473144531,2.4161224365234375,4.3601226806640625 +20220907120000,vlinder20,295.0847473144531,2.4161224365234375,4.3601226806640625 +20220907120000,vlinder21,294.4968566894531,2.4659271240234375,3.2868804931640625 +20220907120000,vlinder22,295.5788879394531,2.1085052490234375,3.7126617431640625 +20220907120000,vlinder23,294.6218566894531,1.3360443115234375,3.4519195556640625 +20220907120000,vlinder24,294.7292785644531,1.4844818115234375,3.5144195556640625 +20220907120000,vlinder25,294.7566223144531,1.3116302490234375,3.5808258056640625 +20220907120000,vlinder26,296.3445129394531,2.0167083740234375,3.2849273681640625 +20220907120000,vlinder27,294.8601379394531,1.5264739990234375,3.6804351806640625 +20220907120000,vlinder28,294.9109191894531,1.6983489990234375,3.8425445556640625 +20220907130000,vlinder01,295.6728820800781,2.4040069580078125,3.4718017578125 +20220907130000,vlinder02,295.7099914550781,2.4069366455078125,3.4659423828125 +20220907130000,vlinder03,296.4971008300781,1.9469757080078125,3.3634033203125 +20220907130000,vlinder04,296.4971008300781,1.9469757080078125,3.3634033203125 +20220907130000,vlinder05,295.5596008300781,2.2604522705078125,3.3360595703125 +20220907130000,vlinder06,296.1943664550781,2.1637725830078125,3.3829345703125 +20220907130000,vlinder07,296.1943664550781,2.1637725830078125,3.3829345703125 +20220907130000,vlinder08,296.1943664550781,2.1637725830078125,3.3829345703125 +20220907130000,vlinder09,295.7763977050781,2.7194366455078125,3.6534423828125 +20220907130000,vlinder10,295.7549133300781,2.7331085205078125,3.6436767578125 +20220907130000,vlinder11,295.9267883300781,1.9596710205078125,3.6602783203125 +20220907130000,vlinder12,295.9267883300781,1.9596710205078125,3.6602783203125 +20220907130000,vlinder13,295.9267883300781,1.9596710205078125,3.6602783203125 +20220907130000,vlinder14,295.8232727050781,1.9147491455078125,3.8302001953125 +20220907130000,vlinder15,295.8135070800781,2.6920928955078125,3.6495361328125 +20220907130000,vlinder16,295.8232727050781,1.9147491455078125,3.8302001953125 +20220907130000,vlinder17,297.0517883300781,2.2418975830078125,2.7696533203125 +20220907130000,vlinder18,297.2763977050781,2.2985382080078125,2.6729736328125 +20220907130000,vlinder19,295.9736633300781,2.9206085205078125,3.7159423828125 +20220907130000,vlinder20,295.9736633300781,2.9206085205078125,3.7159423828125 +20220907130000,vlinder21,295.0693664550781,2.9049835205078125,2.9376220703125 +20220907130000,vlinder22,296.2588195800781,2.6266632080078125,3.7374267578125 +20220907130000,vlinder23,295.1963195800781,2.0377960205078125,3.1134033203125 +20220907130000,vlinder24,295.3681945800781,2.1842803955078125,3.1622314453125 +20220907130000,vlinder25,295.4033508300781,2.0465850830078125,3.2716064453125 +20220907130000,vlinder26,296.7021789550781,2.0182647705078125,3.2637939453125 +20220907130000,vlinder27,295.5596008300781,2.2604522705078125,3.3360595703125 +20220907130000,vlinder28,295.6728820800781,2.4040069580078125,3.4718017578125 +20220907140000,vlinder01,296.09547424316406,2.7411956787109375,3.0408782958984375 +20220907140000,vlinder02,296.09938049316406,2.6835784912109375,3.0457611083984375 +20220907140000,vlinder03,296.62281799316406,1.9267425537109375,3.3299407958984375 +20220907140000,vlinder04,296.62281799316406,1.9267425537109375,3.3299407958984375 +20220907140000,vlinder05,295.90797424316406,2.6171722412109375,2.9158782958984375 +20220907140000,vlinder06,296.56422424316406,2.7304534912109375,3.0203704833984375 +20220907140000,vlinder07,296.56422424316406,2.7304534912109375,3.0203704833984375 +20220907140000,vlinder08,296.56422424316406,2.7304534912109375,3.0203704833984375 +20220907140000,vlinder09,296.25758361816406,3.1650238037109375,3.1385345458984375 +20220907140000,vlinder10,296.23609924316406,3.1142425537109375,3.1229095458984375 +20220907140000,vlinder11,296.14430236816406,2.4208831787109375,3.2820892333984375 +20220907140000,vlinder12,296.14430236816406,2.4208831787109375,3.2820892333984375 +20220907140000,vlinder13,296.14430236816406,2.4208831787109375,3.2820892333984375 +20220907140000,vlinder14,295.93922424316406,2.3349456787109375,3.4109954833984375 +20220907140000,vlinder15,296.29078674316406,3.1826019287109375,3.1443939208984375 +20220907140000,vlinder16,295.93922424316406,2.3349456787109375,3.4109954833984375 +20220907140000,vlinder17,297.12086486816406,2.1806488037109375,2.7068939208984375 +20220907140000,vlinder18,297.37086486816406,2.2372894287109375,2.6277923583984375 +20220907140000,vlinder19,296.52516174316406,3.3476409912109375,3.1483001708984375 +20220907140000,vlinder20,296.52516174316406,3.3476409912109375,3.1483001708984375 +20220907140000,vlinder21,295.24000549316406,2.8740081787109375,2.5691986083984375 +20220907140000,vlinder22,295.99391174316406,2.4863128662109375,3.4940032958984375 +20220907140000,vlinder23,295.32984924316406,2.4716644287109375,2.7078704833984375 +20220907140000,vlinder24,295.61695861816406,2.5683441162109375,2.7733001708984375 +20220907140000,vlinder25,295.64625549316406,2.4872894287109375,2.8524017333984375 +20220907140000,vlinder26,296.85133361816406,1.9931488037109375,3.1629486083984375 +20220907140000,vlinder27,295.90797424316406,2.6171722412109375,2.9158782958984375 +20220907140000,vlinder28,296.09547424316406,2.7411956787109375,3.0408782958984375 +20220907150000,vlinder01,296.05555725097656,2.590240478515625,2.7809295654296875 +20220907150000,vlinder02,296.02626037597656,2.493560791015625,2.8229217529296875 +20220907150000,vlinder03,296.25477600097656,2.404693603515625,2.9537811279296875 +20220907150000,vlinder04,296.25477600097656,2.404693603515625,2.9537811279296875 +20220907150000,vlinder05,295.91688537597656,2.539459228515625,2.6666717529296875 +20220907150000,vlinder06,296.80751037597656,2.954498291015625,2.6588592529296875 +20220907150000,vlinder07,296.80751037597656,2.954498291015625,2.6588592529296875 +20220907150000,vlinder08,296.80751037597656,2.954498291015625,2.6588592529296875 +20220907150000,vlinder09,296.21961975097656,3.054107666015625,2.8385467529296875 +20220907150000,vlinder10,296.15711975097656,2.946685791015625,2.8668670654296875 +20220907150000,vlinder11,296.26258850097656,2.854888916015625,2.8043670654296875 +20220907150000,vlinder12,296.26258850097656,2.854888916015625,2.8043670654296875 +20220907150000,vlinder13,296.26258850097656,2.854888916015625,2.8043670654296875 +20220907150000,vlinder14,295.96961975097656,2.824615478515625,2.8571014404296875 +20220907150000,vlinder15,296.29383850097656,3.128326416015625,2.8180389404296875 +20220907150000,vlinder16,295.96961975097656,2.824615478515625,2.8571014404296875 +20220907150000,vlinder17,296.80360412597656,2.122467041015625,2.8307342529296875 +20220907150000,vlinder18,296.98719787597656,2.113677978515625,2.7799530029296875 +20220907150000,vlinder19,296.48915100097656,3.295318603515625,2.8639373779296875 +20220907150000,vlinder20,296.48915100097656,3.295318603515625,2.8639373779296875 +20220907150000,vlinder21,295.29383850097656,2.419342041015625,2.5104217529296875 +20220907150000,vlinder22,295.57899475097656,2.174224853515625,3.5260467529296875 +20220907150000,vlinder23,295.46571350097656,2.592193603515625,2.4313201904296875 +20220907150000,vlinder24,295.69618225097656,2.553131103515625,2.5182342529296875 +20220907150000,vlinder25,295.73329162597656,2.580474853515625,2.5846405029296875 +20220907150000,vlinder26,296.63368225097656,2.389068603515625,2.9049530029296875 +20220907150000,vlinder27,295.91688537597656,2.539459228515625,2.6666717529296875 +20220907150000,vlinder28,296.05555725097656,2.590240478515625,2.7809295654296875 +20220907160000,vlinder01,295.68199157714844,2.0027618408203125,2.4557952880859375 +20220907160000,vlinder02,295.66050720214844,1.9109649658203125,2.5153656005859375 +20220907160000,vlinder03,296.22105407714844,2.5486602783203125,2.1413421630859375 +20220907160000,vlinder04,296.22105407714844,2.5486602783203125,2.1413421630859375 +20220907160000,vlinder05,295.56089782714844,1.9138946533203125,2.3249359130859375 +20220907160000,vlinder06,296.43199157714844,2.6678009033203125,2.1432952880859375 +20220907160000,vlinder07,296.43199157714844,2.6678009033203125,2.1432952880859375 +20220907160000,vlinder08,296.43199157714844,2.6678009033203125,2.1432952880859375 +20220907160000,vlinder09,295.82456970214844,2.4646759033203125,2.4489593505859375 +20220907160000,vlinder10,295.76597595214844,2.3523712158203125,2.4997406005859375 +20220907160000,vlinder11,295.95152282714844,2.4510040283203125,2.0466156005859375 +20220907160000,vlinder12,295.95152282714844,2.4510040283203125,2.0466156005859375 +20220907160000,vlinder13,295.95152282714844,2.4510040283203125,2.0466156005859375 +20220907160000,vlinder14,295.68199157714844,2.3162384033203125,2.0026702880859375 +20220907160000,vlinder15,295.89488220214844,2.5681915283203125,2.4020843505859375 +20220907160000,vlinder16,295.68199157714844,2.3162384033203125,2.0026702880859375 +20220907160000,vlinder17,296.82066345214844,2.2410430908203125,2.4704437255859375 +20220907160000,vlinder18,297.01206970214844,2.2273712158203125,2.5143890380859375 +20220907160000,vlinder19,296.03941345214844,2.8338165283203125,2.3522796630859375 +20220907160000,vlinder20,296.03941345214844,2.8338165283203125,2.3522796630859375 +20220907160000,vlinder21,295.10777282714844,2.0164337158203125,2.7292327880859375 +20220907160000,vlinder22,295.31480407714844,1.7547149658203125,3.1745452880859375 +20220907160000,vlinder23,295.14488220214844,1.9187774658203125,2.0407562255859375 +20220907160000,vlinder24,295.35581970214844,1.9099884033203125,2.2038421630859375 +20220907160000,vlinder25,295.37925720214844,1.8982696533203125,2.1364593505859375 +20220907160000,vlinder26,296.57261657714844,2.5369415283203125,2.1491546630859375 +20220907160000,vlinder27,295.56089782714844,1.9138946533203125,2.3249359130859375 +20220907160000,vlinder28,295.68199157714844,2.0027618408203125,2.4557952880859375 +20220907170000,vlinder01,295.1669464111328,1.3488006591796875,2.058685302734375 +20220907170000,vlinder02,295.1649932861328,1.2550506591796875,2.123138427734375 +20220907170000,vlinder03,295.8153839111328,1.9415740966796875,1.067474365234375 +20220907170000,vlinder04,295.8153839111328,1.9415740966796875,1.067474365234375 +20220907170000,vlinder05,295.0829620361328,1.2462615966796875,1.988372802734375 +20220907170000,vlinder06,295.8661651611328,1.9972381591796875,1.273529052734375 +20220907170000,vlinder07,295.8661651611328,1.9972381591796875,1.273529052734375 +20220907170000,vlinder08,295.8661651611328,1.9972381591796875,1.273529052734375 +20220907170000,vlinder09,295.2919464111328,1.7316131591796875,1.869232177734375 +20220907170000,vlinder10,295.2392120361328,1.6202850341796875,1.948333740234375 +20220907170000,vlinder11,295.4677276611328,1.6544647216796875,1.337982177734375 +20220907170000,vlinder12,295.4677276611328,1.6544647216796875,1.337982177734375 +20220907170000,vlinder13,295.4677276611328,1.6544647216796875,1.337982177734375 +20220907170000,vlinder14,295.2353057861328,1.4523162841796875,1.405364990234375 +20220907170000,vlinder15,295.3524932861328,1.8321990966796875,1.768646240234375 +20220907170000,vlinder16,295.2353057861328,1.4523162841796875,1.405364990234375 +20220907170000,vlinder17,296.5204620361328,1.8771209716796875,1.429779052734375 +20220907170000,vlinder18,296.6942901611328,1.8820037841796875,1.502044677734375 +20220907170000,vlinder19,295.4755401611328,2.0870819091796875,1.528411865234375 +20220907170000,vlinder20,295.4755401611328,2.0870819091796875,1.528411865234375 +20220907170000,vlinder21,294.7899932861328,1.4347381591796875,2.467864990234375 +20220907170000,vlinder22,295.0048370361328,1.1339569091796875,2.497161865234375 +20220907170000,vlinder23,294.7392120361328,1.1710662841796875,1.739349365234375 +20220907170000,vlinder24,294.9208526611328,1.2228240966796875,1.905364990234375 +20220907170000,vlinder25,294.9188995361328,1.1984100341796875,1.817474365234375 +20220907170000,vlinder26,296.1532745361328,2.0265350341796875,1.037200927734375 +20220907170000,vlinder27,295.0829620361328,1.2462615966796875,1.988372802734375 +20220907170000,vlinder28,295.1669464111328,1.3488006591796875,2.058685302734375 +20220907180000,vlinder01,294.16770935058594,0.7156524658203125,1.609344482421875 +20220907180000,vlinder02,294.20481872558594,0.6590118408203125,1.707000732421875 +20220907180000,vlinder03,294.84544372558594,1.2478790283203125,0.132781982421875 +20220907180000,vlinder04,294.84544372558594,1.2478790283203125,0.132781982421875 +20220907180000,vlinder05,294.19114685058594,0.5662384033203125,1.621063232421875 +20220907180000,vlinder06,294.76927185058594,1.1726837158203125,0.413055419921875 +20220907180000,vlinder07,294.76927185058594,1.1726837158203125,0.413055419921875 +20220907180000,vlinder08,294.76927185058594,1.1726837158203125,0.413055419921875 +20220907180000,vlinder09,294.31419372558594,1.0574493408203125,1.316375732421875 +20220907180000,vlinder10,294.25950622558594,0.9851837158203125,1.447235107421875 +20220907180000,vlinder11,294.58763122558594,0.8279571533203125,0.678680419921875 +20220907180000,vlinder12,294.58763122558594,0.8279571533203125,0.678680419921875 +20220907180000,vlinder13,294.58763122558594,0.8279571533203125,0.678680419921875 +20220907180000,vlinder14,294.41575622558594,0.6033477783203125,0.853485107421875 +20220907180000,vlinder15,294.37278747558594,1.1267852783203125,1.159149169921875 +20220907180000,vlinder16,294.41575622558594,0.6033477783203125,0.853485107421875 +20220907180000,vlinder17,295.54466247558594,1.2566680908203125,0.312469482421875 +20220907180000,vlinder18,295.73411560058594,1.2547149658203125,0.412078857421875 +20220907180000,vlinder19,294.42942810058594,1.3875274658203125,0.850555419921875 +20220907180000,vlinder20,294.42942810058594,1.3875274658203125,0.850555419921875 +20220907180000,vlinder21,294.27122497558594,0.8787384033203125,2.256805419921875 +20220907180000,vlinder22,294.22044372558594,0.6492462158203125,2.148406982421875 +20220907180000,vlinder23,294.01341247558594,0.3465118408203125,1.470672607421875 +20220907180000,vlinder24,294.11497497558594,0.4998321533203125,1.589813232421875 +20220907180000,vlinder25,294.09349060058594,0.4275665283203125,1.505828857421875 +20220907180000,vlinder26,295.09153747558594,1.3933868408203125,0.021453857421875 +20220907180000,vlinder27,294.19114685058594,0.5662384033203125,1.621063232421875 +20220907180000,vlinder28,294.16770935058594,0.7156524658203125,1.609344482421875 +20220907190000,vlinder01,292.53965759277344,-0.363311767578125,2.4566192626953125 +20220907190000,vlinder02,292.57676696777344,-0.431671142578125,2.4761505126953125 +20220907190000,vlinder03,293.76426696777344,0.242156982421875,1.3501739501953125 +20220907190000,vlinder04,293.76426696777344,0.242156982421875,1.3501739501953125 +20220907190000,vlinder05,292.67637634277344,-0.582061767578125,2.4029083251953125 +20220907190000,vlinder06,293.40684509277344,-0.219757080078125,2.2027130126953125 +20220907190000,vlinder07,293.40684509277344,-0.219757080078125,2.2027130126953125 +20220907190000,vlinder08,293.40684509277344,-0.219757080078125,2.2027130126953125 +20220907190000,vlinder09,292.56309509277344,-0.042022705078125,2.3765411376953125 +20220907190000,vlinder10,292.45372009277344,-0.118194580078125,2.3941192626953125 +20220907190000,vlinder11,293.31309509277344,-0.612335205078125,1.8491973876953125 +20220907190000,vlinder12,293.31309509277344,-0.612335205078125,1.8491973876953125 +20220907190000,vlinder13,293.31309509277344,-0.612335205078125,1.8491973876953125 +20220907190000,vlinder14,293.16075134277344,-0.805694580078125,1.7222442626953125 +20220907190000,vlinder15,292.66661071777344,9.46044921875E-4,2.3462677001953125 +20220907190000,vlinder16,293.16075134277344,-0.805694580078125,1.7222442626953125 +20220907190000,vlinder17,294.29942321777344,0.617156982421875,1.2642364501953125 +20220907190000,vlinder18,294.34043884277344,0.638641357421875,1.1714630126953125 +20220907190000,vlinder19,292.37364196777344,-0.021514892578125,2.2310333251953125 +20220907190000,vlinder20,292.37364196777344,-0.021514892578125,2.2310333251953125 +20220907190000,vlinder21,293.49668884277344,-0.846710205078125,3.3960723876953125 +20220907190000,vlinder22,292.96739196777344,-0.538116455078125,2.9536895751953125 +20220907190000,vlinder23,292.79356384277344,-0.947296142578125,2.2652130126953125 +20220907190000,vlinder24,292.72520446777344,-0.781280517578125,2.3784942626953125 +20220907190000,vlinder25,292.68418884277344,-0.734405517578125,2.2857208251953125 +20220907190000,vlinder26,293.90489196777344,0.429656982421875,1.5269317626953125 +20220907190000,vlinder27,292.67637634277344,-0.582061767578125,2.4029083251953125 +20220907190000,vlinder28,292.53965759277344,-0.363311767578125,2.4566192626953125 +20220907200000,vlinder01,291.84381103515625,-0.71832275390625,2.689361572265625 +20220907200000,vlinder02,291.90045166015625,-0.69879150390625,2.703033447265625 +20220907200000,vlinder03,293.27740478515625,-0.08941650390625,1.913970947265625 +20220907200000,vlinder04,293.27740478515625,-0.08941650390625,1.913970947265625 +20220907200000,vlinder05,292.06256103515625,-0.81890869140625,2.710845947265625 +20220907200000,vlinder06,292.26177978515625,-0.55133056640625,2.579010009765625 +20220907200000,vlinder07,292.26177978515625,-0.55133056640625,2.579010009765625 +20220907200000,vlinder08,292.26177978515625,-0.55133056640625,2.579010009765625 +20220907200000,vlinder09,291.68560791015625,-0.74859619140625,2.604400634765625 +20220907200000,vlinder10,291.64068603515625,-0.74468994140625,2.611236572265625 +20220907200000,vlinder11,292.63677978515625,-0.95269775390625,2.453033447265625 +20220907200000,vlinder12,292.63677978515625,-0.95269775390625,2.453033447265625 +20220907200000,vlinder13,292.63677978515625,-0.95269775390625,2.453033447265625 +20220907200000,vlinder14,292.75592041015625,-1.19488525390625,2.353424072265625 +20220907200000,vlinder15,291.71685791015625,-0.73492431640625,2.592681884765625 +20220907200000,vlinder16,292.75592041015625,-1.19488525390625,2.353424072265625 +20220907200000,vlinder17,293.60552978515625,1.44573974609375,1.172760009765625 +20220907200000,vlinder18,293.70123291015625,1.51214599609375,1.001861572265625 +20220907200000,vlinder19,291.31646728515625,-0.67926025390625,2.469635009765625 +20220907200000,vlinder20,291.31646728515625,-0.67926025390625,2.469635009765625 +20220907200000,vlinder21,293.00592041015625,-0.97222900390625,4.060455322265625 +20220907200000,vlinder22,292.44146728515625,-0.22125244140625,3.487213134765625 +20220907200000,vlinder23,292.32232666015625,-1.07379150390625,2.709869384765625 +20220907200000,vlinder24,292.15435791015625,-0.94390869140625,2.778228759765625 +20220907200000,vlinder25,292.12701416015625,-0.89508056640625,2.671783447265625 +20220907200000,vlinder26,293.21881103515625,0.32269287109375,2.035064697265625 +20220907200000,vlinder27,292.06256103515625,-0.81890869140625,2.710845947265625 +20220907200000,vlinder28,291.84381103515625,-0.71832275390625,2.689361572265625 +20220907210000,vlinder01,291.0135955810547,-1.0124359130859375,2.6482391357421875 +20220907210000,vlinder02,291.1210174560547,-0.9733734130859375,2.6785125732421875 +20220907210000,vlinder03,292.1464080810547,0.1535797119140625,2.5046844482421875 +20220907210000,vlinder04,292.1464080810547,0.1535797119140625,2.5046844482421875 +20220907210000,vlinder05,291.3007049560547,-1.0456390380859375,2.8406219482421875 +20220907210000,vlinder06,291.1210174560547,-0.8122406005859375,2.5164031982421875 +20220907210000,vlinder07,291.1210174560547,-0.8122406005859375,2.5164031982421875 +20220907210000,vlinder08,291.1210174560547,-0.8122406005859375,2.5164031982421875 +20220907210000,vlinder09,290.6405487060547,-1.0593109130859375,2.4294891357421875 +20220907210000,vlinder10,290.8358612060547,-1.0524749755859375,2.4490203857421875 +20220907210000,vlinder11,291.6405487060547,-0.8805999755859375,2.9548797607421875 +20220907210000,vlinder12,291.6405487060547,-0.8805999755859375,2.9548797607421875 +20220907210000,vlinder13,291.6405487060547,-0.8805999755859375,2.9548797607421875 +20220907210000,vlinder14,291.8866424560547,-1.0016937255859375,3.1218719482421875 +20220907210000,vlinder15,290.6171112060547,-1.0427093505859375,2.4099578857421875 +20220907210000,vlinder16,291.8866424560547,-1.0016937255859375,3.1218719482421875 +20220907210000,vlinder17,292.7147674560547,2.0119781494140625,1.4451141357421875 +20220907210000,vlinder18,292.8983612060547,2.1477203369140625,1.2888641357421875 +20220907210000,vlinder19,290.3729705810547,-1.1169281005859375,2.3201141357421875 +20220907210000,vlinder20,290.3729705810547,-1.1169281005859375,2.3201141357421875 +20220907210000,vlinder21,292.5096893310547,-0.6305999755859375,4.5066375732421875 +20220907210000,vlinder22,291.6796112060547,0.2317047119140625,3.3933563232421875 +20220907210000,vlinder23,291.6639862060547,-1.1364593505859375,3.1931610107421875 +20220907210000,vlinder24,291.4569549560547,-1.0866546630859375,3.0740203857421875 +20220907210000,vlinder25,291.3905487060547,-1.0505218505859375,2.9812469482421875 +20220907210000,vlinder26,292.0995330810547,0.4709625244140625,2.4490203857421875 +20220907210000,vlinder27,291.3007049560547,-1.0456390380859375,2.8406219482421875 +20220907210000,vlinder28,291.0135955810547,-1.0124359130859375,2.6482391357421875 +20220907220000,vlinder01,290.44427490234375,-1.225433349609375,2.5458831787109375 +20220907220000,vlinder02,290.51263427734375,-1.184417724609375,2.5556488037109375 +20220907220000,vlinder03,290.71771240234375,-0.054534912109375,2.6660003662109375 +20220907220000,vlinder04,290.71771240234375,-0.054534912109375,2.6660003662109375 +20220907220000,vlinder05,290.75482177734375,-1.195159912109375,2.9052581787109375 +20220907220000,vlinder06,290.47747802734375,-1.471527099609375,2.4726409912109375 +20220907220000,vlinder07,290.47747802734375,-1.471527099609375,2.4726409912109375 +20220907220000,vlinder08,290.47747802734375,-1.471527099609375,2.4726409912109375 +20220907220000,vlinder09,290.16497802734375,-1.306488037109375,2.3857269287109375 +20220907220000,vlinder10,290.16693115234375,-1.283050537109375,2.3974456787109375 +20220907220000,vlinder11,290.60443115234375,-1.262542724609375,2.9951019287109375 +20220907220000,vlinder12,290.60443115234375,-1.262542724609375,2.9951019287109375 +20220907220000,vlinder13,290.60443115234375,-1.262542724609375,2.9951019287109375 +20220907220000,vlinder14,291.06732177734375,-1.171722412109375,3.2519378662109375 +20220907220000,vlinder15,290.18450927734375,-1.336761474609375,2.3740081787109375 +20220907220000,vlinder16,291.06732177734375,-1.171722412109375,3.2519378662109375 +20220907220000,vlinder17,291.85247802734375,2.203277587890625,1.6103363037109375 +20220907220000,vlinder18,292.05364990234375,2.321441650390625,1.4394378662109375 +20220907220000,vlinder19,290.12982177734375,-1.581878662109375,2.3368988037109375 +20220907220000,vlinder20,290.12982177734375,-1.581878662109375,2.3368988037109375 +20220907220000,vlinder21,291.73529052734375,0.369293212890625,4.7783050537109375 +20220907220000,vlinder22,290.88177490234375,0.423980712890625,2.8408050537109375 +20220907220000,vlinder23,291.30950927734375,-1.174652099609375,3.6308441162109375 +20220907220000,vlinder24,291.04193115234375,-1.155120849609375,3.3525238037109375 +20220907220000,vlinder25,290.92083740234375,-1.177581787109375,3.1845550537109375 +20220907220000,vlinder26,290.82513427734375,0.131011962890625,2.5839691162109375 +20220907220000,vlinder27,290.75482177734375,-1.195159912109375,2.9052581787109375 +20220907220000,vlinder28,290.44427490234375,-1.225433349609375,2.5458831787109375 +20220907230000,vlinder01,289.8962860107422,-1.4350738525390625,2.3953094482421875 +20220907230000,vlinder02,289.9060516357422,-1.3676910400390625,2.3757781982421875 +20220907230000,vlinder03,290.2458953857422,-0.4868316650390625,2.6228485107421875 +20220907230000,vlinder04,290.2458953857422,-0.4868316650390625,2.6228485107421875 +20220907230000,vlinder05,290.1951141357422,-1.3149566650390625,2.6638641357421875 +20220907230000,vlinder06,290.0876922607422,-1.8130035400390625,2.4744110107421875 +20220907230000,vlinder07,290.0876922607422,-1.8130035400390625,2.4744110107421875 +20220907230000,vlinder08,290.0876922607422,-1.8130035400390625,2.4744110107421875 +20220907230000,vlinder09,289.9412078857422,-1.5434722900390625,2.3074188232421875 +20220907230000,vlinder10,289.9255828857422,-1.5073394775390625,2.2908172607421875 +20220907230000,vlinder11,290.1521453857422,-1.5522613525390625,2.8494110107421875 +20220907230000,vlinder12,290.1521453857422,-1.5522613525390625,2.8494110107421875 +20220907230000,vlinder13,290.1521453857422,-1.5522613525390625,2.8494110107421875 +20220907230000,vlinder14,290.2595672607422,-1.4067535400390625,3.0251922607421875 +20220907230000,vlinder15,289.9392547607422,-1.5893707275390625,2.3201141357421875 +20220907230000,vlinder16,290.2595672607422,-1.4067535400390625,3.0251922607421875 +20220907230000,vlinder17,291.0388641357422,1.4731292724609375,1.4363250732421875 +20220907230000,vlinder18,291.1423797607422,1.6576995849609375,1.2488250732421875 +20220907230000,vlinder19,289.8083953857422,-1.8003082275390625,2.1218719482421875 +20220907230000,vlinder20,289.8083953857422,-1.8003082275390625,2.1218719482421875 +20220907230000,vlinder21,290.7498016357422,0.0551605224609375,4.2830047607421875 +20220907230000,vlinder22,289.7302703857422,-0.5200347900390625,2.4275360107421875 +20220907230000,vlinder23,290.7576141357422,-1.0805816650390625,3.2683563232421875 +20220907230000,vlinder24,290.5427703857422,-1.0991363525390625,3.0232391357421875 +20220907230000,vlinder25,290.4841766357422,-1.2807769775390625,2.8601531982421875 +20220907230000,vlinder26,290.3337860107422,-0.3930816650390625,2.4841766357421875 +20220907230000,vlinder27,290.1951141357422,-1.3149566650390625,2.6638641357421875 +20220907230000,vlinder28,289.8962860107422,-1.4350738525390625,2.3953094482421875 +20220908000000,vlinder01,289.6813049316406,-1.32061767578125,2.6547088623046875 +20220908000000,vlinder02,289.6813049316406,-1.24053955078125,2.6410369873046875 +20220908000000,vlinder03,289.8141174316406,-0.91632080078125,2.4066619873046875 +20220908000000,vlinder04,289.8141174316406,-0.91632080078125,2.4066619873046875 +20220908000000,vlinder05,289.8824768066406,-1.25811767578125,2.7533416748046875 +20220908000000,vlinder06,289.6578674316406,-1.56768798828125,2.4965057373046875 +20220908000000,vlinder07,289.6578674316406,-1.56768798828125,2.4965057373046875 +20220908000000,vlinder08,289.6578674316406,-1.56768798828125,2.4965057373046875 +20220908000000,vlinder09,289.6051330566406,-1.40557861328125,2.6312713623046875 +20220908000000,vlinder10,289.6129455566406,-1.36163330078125,2.6136932373046875 +20220908000000,vlinder11,289.7750549316406,-1.54815673828125,2.7777557373046875 +20220908000000,vlinder12,289.7750549316406,-1.54815673828125,2.7777557373046875 +20220908000000,vlinder13,289.7750549316406,-1.54815673828125,2.7777557373046875 +20220908000000,vlinder14,289.9273986816406,-1.54913330078125,2.9437713623046875 +20220908000000,vlinder15,289.5758361816406,-1.44268798828125,2.6244354248046875 +20220908000000,vlinder16,289.9273986816406,-1.54913330078125,2.9437713623046875 +20220908000000,vlinder17,290.7066955566406,0.42449951171875,1.2259979248046875 +20220908000000,vlinder18,290.8141174316406,0.64520263671875,0.9672088623046875 +20220908000000,vlinder19,289.3551330566406,-1.51788330078125,2.3763885498046875 +20220908000000,vlinder20,289.3551330566406,-1.51788330078125,2.3763885498046875 +20220908000000,vlinder21,290.0777893066406,-0.78741455078125,4.5550994873046875 +20220908000000,vlinder22,289.1402893066406,-1.15069580078125,2.7865447998046875 +20220908000000,vlinder23,290.4313049316406,-1.11553955078125,3.0160369873046875 +20220908000000,vlinder24,290.1773986816406,-1.09307861328125,2.9476776123046875 +20220908000000,vlinder25,290.0348205566406,-1.29718017578125,2.7709197998046875 +20220908000000,vlinder26,289.8981018066406,-0.92901611328125,2.3129119873046875 +20220908000000,vlinder27,289.8824768066406,-1.25811767578125,2.7533416748046875 +20220908000000,vlinder28,289.6813049316406,-1.32061767578125,2.6547088623046875 +20220908010000,vlinder01,289.3358459472656,-0.5894012451171875,2.892120361328125 +20220908010000,vlinder02,289.3124084472656,-0.4556121826171875,2.895050048828125 +20220908010000,vlinder03,289.2225646972656,-0.9009246826171875,2.391143798828125 +20220908010000,vlinder04,289.2225646972656,-0.9009246826171875,2.391143798828125 +20220908010000,vlinder05,289.4881896972656,-0.6567840576171875,3.117706298828125 +20220908010000,vlinder06,289.2499084472656,-1.3296356201171875,2.290557861328125 +20220908010000,vlinder07,289.2499084472656,-1.3296356201171875,2.290557861328125 +20220908010000,vlinder08,289.2499084472656,-1.3296356201171875,2.290557861328125 +20220908010000,vlinder09,289.2655334472656,-0.7300262451171875,2.794464111328125 +20220908010000,vlinder10,289.2792053222656,-0.5581512451171875,2.808135986328125 +20220908010000,vlinder11,289.3631896972656,-1.4868621826171875,2.819854736328125 +20220908010000,vlinder12,289.3631896972656,-1.4868621826171875,2.819854736328125 +20220908010000,vlinder13,289.3631896972656,-1.4868621826171875,2.819854736328125 +20220908010000,vlinder14,289.5272521972656,-1.5386199951171875,3.141143798828125 +20220908010000,vlinder15,289.2323303222656,-0.8638153076171875,2.735870361328125 +20220908010000,vlinder16,289.5272521972656,-1.5386199951171875,3.141143798828125 +20220908010000,vlinder17,290.3124084472656,-0.2075653076171875,1.240753173828125 +20220908010000,vlinder18,290.5018615722656,-0.0620574951171875,1.031768798828125 +20220908010000,vlinder19,289.0702209472656,-0.8130340576171875,2.479034423828125 +20220908010000,vlinder20,289.0702209472656,-0.8130340576171875,2.479034423828125 +20220908010000,vlinder21,289.5702209472656,-1.2241668701171875,5.862823486328125 +20220908010000,vlinder22,288.7049865722656,-0.7847137451171875,3.674346923828125 +20220908010000,vlinder23,289.6502990722656,-0.9741668701171875,3.586456298828125 +20220908010000,vlinder24,289.5135803222656,-0.8247528076171875,3.479034423828125 +20220908010000,vlinder25,289.5975646972656,-0.8149871826171875,3.191925048828125 +20220908010000,vlinder26,289.4335021972656,-0.8774871826171875,2.162628173828125 +20220908010000,vlinder27,289.4881896972656,-0.6567840576171875,3.117706298828125 +20220908010000,vlinder28,289.3358459472656,-0.5894012451171875,2.892120361328125 +20220908020000,vlinder01,289.13775634765625,0.5719146728515625,2.803680419921875 +20220908020000,vlinder02,289.09478759765625,0.6705474853515625,2.848602294921875 +20220908020000,vlinder03,288.75103759765625,-0.8177337646484375,2.021453857421875 +20220908020000,vlinder04,288.75103759765625,-0.8177337646484375,2.021453857421875 +20220908020000,vlinder05,289.23345947265625,0.4703521728515625,3.195281982421875 +20220908020000,vlinder06,289.12994384765625,-0.7210540771484375,1.927703857421875 +20220908020000,vlinder07,289.12994384765625,-0.7210540771484375,1.927703857421875 +20220908020000,vlinder08,289.12994384765625,-0.7210540771484375,1.927703857421875 +20220908020000,vlinder09,289.21588134765625,0.6021881103515625,2.685516357421875 +20220908020000,vlinder10,289.20220947265625,0.8072662353515625,2.766571044921875 +20220908020000,vlinder11,289.08697509765625,-1.1644134521484375,2.484344482421875 +20220908020000,vlinder12,289.08697509765625,-1.1644134521484375,2.484344482421875 +20220908020000,vlinder13,289.08697509765625,-1.1644134521484375,2.484344482421875 +20220908020000,vlinder14,289.17095947265625,-1.2874603271484375,2.848602294921875 +20220908020000,vlinder15,289.20025634765625,0.4029693603515625,2.576141357421875 +20220908020000,vlinder16,289.17095947265625,-1.2874603271484375,2.848602294921875 +20220908020000,vlinder17,289.83697509765625,-0.9739837646484375,1.532196044921875 +20220908020000,vlinder18,290.10650634765625,-0.9319915771484375,1.416961669921875 +20220908020000,vlinder19,289.11431884765625,0.6353912353515625,2.558563232421875 +20220908020000,vlinder20,289.11431884765625,0.6353912353515625,2.558563232421875 +20220908020000,vlinder21,289.37994384765625,0.3277740478515625,6.641571044921875 +20220908020000,vlinder22,288.80377197265625,0.3814849853515625,3.535125732421875 +20220908020000,vlinder23,289.33306884765625,-0.0247650146484375,3.929656982421875 +20220908020000,vlinder24,289.25103759765625,0.2545318603515625,3.751922607421875 +20220908020000,vlinder25,289.29010009765625,0.2027740478515625,3.335906982421875 +20220908020000,vlinder26,288.92095947265625,-0.8773040771484375,1.814422607421875 +20220908020000,vlinder27,289.23345947265625,0.4703521728515625,3.195281982421875 +20220908020000,vlinder28,289.13775634765625,0.5719146728515625,2.803680419921875 +20220908030000,vlinder01,289.0142517089844,1.454864501953125,2.9701690673828125 +20220908030000,vlinder02,288.9634704589844,1.432403564453125,2.9848175048828125 +20220908030000,vlinder03,288.6568298339844,-1.052947998046875,2.2201690673828125 +20220908030000,vlinder04,288.6568298339844,-1.052947998046875,2.2201690673828125 +20220908030000,vlinder05,289.0728454589844,1.297637939453125,3.2563018798828125 +20220908030000,vlinder06,289.1431579589844,0.477325439453125,2.4809112548828125 +20220908030000,vlinder07,289.1431579589844,0.477325439453125,2.4809112548828125 +20220908030000,vlinder08,289.1431579589844,0.477325439453125,2.4809112548828125 +20220908030000,vlinder09,289.0611267089844,1.733184814453125,2.9613800048828125 +20220908030000,vlinder10,289.0201110839844,1.794708251953125,2.9916534423828125 +20220908030000,vlinder11,289.0103454589844,-0.187713623046875,2.6547393798828125 +20220908030000,vlinder12,289.0103454589844,-0.187713623046875,2.6547393798828125 +20220908030000,vlinder13,289.0103454589844,-0.187713623046875,2.6547393798828125 +20220908030000,vlinder14,289.0552673339844,-0.358612060546875,2.8002471923828125 +20220908030000,vlinder15,289.0689392089844,1.619903564453125,2.9066925048828125 +20220908030000,vlinder16,289.0552673339844,-0.358612060546875,2.8002471923828125 +20220908030000,vlinder17,289.4087829589844,-1.250213623046875,2.3236846923828125 +20220908030000,vlinder18,289.6861267089844,-1.239471435546875,2.2084503173828125 +20220908030000,vlinder19,288.9146423339844,1.814239501953125,2.8930206298828125 +20220908030000,vlinder20,288.9146423339844,1.814239501953125,2.8930206298828125 +20220908030000,vlinder21,289.2779235839844,2.355255126953125,6.5385284423828125 +20220908030000,vlinder22,288.8150329589844,1.174591064453125,3.5805206298828125 +20220908030000,vlinder23,289.1333923339844,0.834747314453125,3.8588409423828125 +20220908030000,vlinder24,289.0689392089844,1.124786376953125,3.7445831298828125 +20220908030000,vlinder25,289.1099548339844,1.034942626953125,3.3109893798828125 +20220908030000,vlinder26,288.8833923339844,-0.924041748046875,2.2533721923828125 +20220908030000,vlinder27,289.0728454589844,1.297637939453125,3.2563018798828125 +20220908030000,vlinder28,289.0142517089844,1.454864501953125,2.9701690673828125 +20220908040000,vlinder01,288.76922607421875,1.6376953125,3.2193145751953125 +20220908040000,vlinder02,288.73211669921875,1.53515625,3.2261505126953125 +20220908040000,vlinder03,288.64227294921875,-0.390625,2.5347442626953125 +20220908040000,vlinder04,288.64227294921875,-0.390625,2.5347442626953125 +20220908040000,vlinder05,288.85711669921875,1.6220703125,3.4497833251953125 +20220908040000,vlinder06,289.14227294921875,1.787109375,2.8990020751953125 +20220908040000,vlinder07,289.14227294921875,1.787109375,2.8990020751953125 +20220908040000,vlinder08,289.14227294921875,1.787109375,2.8990020751953125 +20220908040000,vlinder09,288.76141357421875,1.9453125,3.2681427001953125 +20220908040000,vlinder10,288.71063232421875,1.859375,3.2779083251953125 +20220908040000,vlinder11,289.05047607421875,1.298828125,3.1255645751953125 +20220908040000,vlinder12,289.05047607421875,1.298828125,3.1255645751953125 +20220908040000,vlinder13,289.05047607421875,1.298828125,3.1255645751953125 +20220908040000,vlinder14,289.06805419921875,1.078125,3.2642364501953125 +20220908040000,vlinder15,288.79656982421875,1.9912109375,3.2368927001953125 +20220908040000,vlinder16,289.06805419921875,1.078125,3.2642364501953125 +20220908040000,vlinder17,289.22821044921875,-0.2822265625,2.6675567626953125 +20220908040000,vlinder18,289.39813232421875,-0.4326171875,2.5738067626953125 +20220908040000,vlinder19,288.62664794921875,2.1630859375,3.1870880126953125 +20220908040000,vlinder20,288.62664794921875,2.1630859375,3.1870880126953125 +20220908040000,vlinder21,289.28289794921875,3.1953125,6.2652130126953125 +20220908040000,vlinder22,288.74969482421875,1.560546875,4.1314239501953125 +20220908040000,vlinder23,289.01336669921875,1.6337890625,3.9966583251953125 +20220908040000,vlinder24,288.91961669921875,1.673828125,3.8609161376953125 +20220908040000,vlinder25,288.93328857421875,1.6171875,3.5083770751953125 +20220908040000,vlinder26,288.88055419921875,0.0205078125,2.5796661376953125 +20220908040000,vlinder27,288.85711669921875,1.6220703125,3.4497833251953125 +20220908040000,vlinder28,288.76922607421875,1.6376953125,3.2193145751953125 +20220908050000,vlinder01,288.1888885498047,1.445556640625,3.5731201171875 +20220908050000,vlinder02,288.1791229248047,1.356689453125,3.5877685546875 +20220908050000,vlinder03,288.7142791748047,1.248291015625,2.7752685546875 +20220908050000,vlinder04,288.7142791748047,1.248291015625,2.7752685546875 +20220908050000,vlinder05,288.4271697998047,1.532470703125,3.7684326171875 +20220908050000,vlinder06,288.6810760498047,1.903564453125,3.0399169921875 +20220908050000,vlinder07,288.6810760498047,1.903564453125,3.0399169921875 +20220908050000,vlinder08,288.6810760498047,1.903564453125,3.0399169921875 +20220908050000,vlinder09,288.1420135498047,1.736572265625,3.5321044921875 +20220908050000,vlinder10,288.1049041748047,1.639892578125,3.5662841796875 +20220908050000,vlinder11,288.8236541748047,1.760986328125,3.1756591796875 +20220908050000,vlinder12,288.8236541748047,1.760986328125,3.1756591796875 +20220908050000,vlinder13,288.8236541748047,1.760986328125,3.1756591796875 +20220908050000,vlinder14,288.9330291748047,1.637939453125,3.2938232421875 +20220908050000,vlinder15,288.1830291748047,1.813720703125,3.4715576171875 +20220908050000,vlinder16,288.9330291748047,1.637939453125,3.2938232421875 +20220908050000,vlinder17,288.9681854248047,1.225830078125,2.7244873046875 +20220908050000,vlinder18,289.1342010498047,1.026611328125,2.7313232421875 +20220908050000,vlinder19,288.0482635498047,1.936767578125,3.3631591796875 +20220908050000,vlinder20,288.0482635498047,1.936767578125,3.3631591796875 +20220908050000,vlinder21,289.1381072998047,3.427001953125,6.4598388671875 +20220908050000,vlinder22,288.3842010498047,1.456298828125,4.1414794921875 +20220908050000,vlinder23,288.8470916748047,1.838134765625,4.1864013671875 +20220908050000,vlinder24,288.6224822998047,1.761962890625,4.1268310546875 +20220908050000,vlinder25,288.6263885498047,1.593017578125,3.7547607421875 +20220908050000,vlinder26,288.8314666748047,1.548095703125,2.7020263671875 +20220908050000,vlinder27,288.4271697998047,1.532470703125,3.7684326171875 +20220908050000,vlinder28,288.1888885498047,1.445556640625,3.5731201171875 +20220908060000,vlinder01,287.9246520996094,1.3340301513671875,3.6795806884765625 +20220908060000,vlinder02,287.9012145996094,1.2705535888671875,3.6737213134765625 +20220908060000,vlinder03,288.6668395996094,1.5928192138671875,2.7791900634765625 +20220908060000,vlinder04,288.6668395996094,1.5928192138671875,2.7791900634765625 +20220908060000,vlinder05,288.1883239746094,1.4072723388671875,3.8875885009765625 +20220908060000,vlinder06,288.4031677246094,1.5449676513671875,3.3006744384765625 +20220908060000,vlinder07,288.4031677246094,1.5449676513671875,3.3006744384765625 +20220908060000,vlinder08,288.4031677246094,1.5449676513671875,3.3006744384765625 +20220908060000,vlinder09,287.9598083496094,1.5352020263671875,3.6991119384765625 +20220908060000,vlinder10,287.9109802246094,1.4785614013671875,3.7088775634765625 +20220908060000,vlinder11,288.5496520996094,1.5850067138671875,3.4588775634765625 +20220908060000,vlinder12,288.5496520996094,1.5850067138671875,3.4588775634765625 +20220908060000,vlinder13,288.5496520996094,1.5850067138671875,3.4588775634765625 +20220908060000,vlinder14,288.6805114746094,1.5840301513671875,3.5897369384765625 +20220908060000,vlinder15,288.0008239746094,1.5752410888671875,3.6620025634765625 +20220908060000,vlinder16,288.6805114746094,1.5840301513671875,3.5897369384765625 +20220908060000,vlinder17,288.8035583496094,1.7725067138671875,2.6219635009765625 +20220908060000,vlinder18,288.9930114746094,1.8066864013671875,2.6278228759765625 +20220908060000,vlinder19,287.8875427246094,1.6328582763671875,3.5770416259765625 +20220908060000,vlinder20,287.8875427246094,1.6328582763671875,3.5770416259765625 +20220908060000,vlinder21,289.0379333496094,3.2676239013671875,6.4305572509765625 +20220908060000,vlinder22,288.0086364746094,1.3262176513671875,4.0545806884765625 +20220908060000,vlinder23,288.6687927246094,1.6631317138671875,4.3553619384765625 +20220908060000,vlinder24,288.4207458496094,1.5986785888671875,4.2518463134765625 +20220908060000,vlinder25,288.3875427246094,1.4189910888671875,3.9325103759765625 +20220908060000,vlinder26,288.6941833496094,1.6367645263671875,2.7137603759765625 +20220908060000,vlinder27,288.1883239746094,1.4072723388671875,3.8875885009765625 +20220908060000,vlinder28,287.9246520996094,1.3340301513671875,3.6795806884765625 +20220908070000,vlinder01,289.0707244873047,1.7115478515625,4.401947021484375 +20220908070000,vlinder02,289.0785369873047,1.7115478515625,4.458587646484375 +20220908070000,vlinder03,289.4027557373047,1.9078369140625,2.762298583984375 +20220908070000,vlinder04,289.4027557373047,1.9078369140625,2.762298583984375 +20220908070000,vlinder05,289.1937713623047,1.7261962890625,4.510345458984375 +20220908070000,vlinder06,289.3851776123047,1.5357666015625,3.068939208984375 +20220908070000,vlinder07,289.3851776123047,1.5357666015625,3.068939208984375 +20220908070000,vlinder08,289.3851776123047,1.5357666015625,3.068939208984375 +20220908070000,vlinder09,288.9047088623047,1.7818603515625,4.237884521484375 +20220908070000,vlinder10,288.9125213623047,1.8023681640625,4.348236083984375 +20220908070000,vlinder11,289.4008026123047,1.2896728515625,3.288665771484375 +20220908070000,vlinder12,289.4008026123047,1.2896728515625,3.288665771484375 +20220908070000,vlinder13,289.4008026123047,1.2896728515625,3.288665771484375 +20220908070000,vlinder14,289.4496307373047,1.1568603515625,3.507415771484375 +20220908070000,vlinder15,288.9086151123047,1.7574462890625,4.075775146484375 +20220908070000,vlinder16,289.4496307373047,1.1568603515625,3.507415771484375 +20220908070000,vlinder17,289.3422088623047,2.1842041015625,1.788665771484375 +20220908070000,vlinder18,289.4711151123047,2.3590087890625,1.759368896484375 +20220908070000,vlinder19,288.8578338623047,1.8443603515625,3.675384521484375 +20220908070000,vlinder20,288.8578338623047,1.8443603515625,3.675384521484375 +20220908070000,vlinder21,289.2894744873047,2.6539306640625,6.181243896484375 +20220908070000,vlinder22,288.7074432373047,1.8785400390625,4.948822021484375 +20220908070000,vlinder23,289.3031463623047,1.7154541015625,4.580657958984375 +20220908070000,vlinder24,289.1937713623047,1.7877197265625,4.647064208984375 +20220908070000,vlinder25,289.2562713623047,1.6588134765625,4.438079833984375 +20220908070000,vlinder26,289.5316619873047,2.0220947265625,2.574798583984375 +20220908070000,vlinder27,289.1937713623047,1.7261962890625,4.510345458984375 +20220908070000,vlinder28,289.0707244873047,1.7115478515625,4.401947021484375 +20220908080000,vlinder01,289.7432403564453,2.04437255859375,4.573333740234375 +20220908080000,vlinder02,289.7862091064453,2.04925537109375,4.529388427734375 +20220908080000,vlinder03,290.2432403564453,2.34027099609375,3.435638427734375 +20220908080000,vlinder04,290.2432403564453,2.34027099609375,3.435638427734375 +20220908080000,vlinder05,289.8448028564453,2.11370849609375,4.619232177734375 +20220908080000,vlinder06,289.9658966064453,2.15960693359375,4.204193115234375 +20220908080000,vlinder07,289.9658966064453,2.15960693359375,4.204193115234375 +20220908080000,vlinder08,289.9658966064453,2.15960693359375,4.204193115234375 +20220908080000,vlinder09,289.5108184814453,1.89007568359375,4.451263427734375 +20220908080000,vlinder10,289.5420684814453,1.88812255859375,4.415130615234375 +20220908080000,vlinder11,290.0244903564453,2.22601318359375,4.458099365234375 +20220908080000,vlinder12,290.0244903564453,2.22601318359375,4.458099365234375 +20220908080000,vlinder13,290.0244903564453,2.22601318359375,4.458099365234375 +20220908080000,vlinder14,290.0967559814453,2.23480224609375,4.628021240234375 +20220908080000,vlinder15,289.4971466064453,1.90081787109375,4.433685302734375 +20220908080000,vlinder16,290.0967559814453,2.23480224609375,4.628021240234375 +20220908080000,vlinder17,290.2080841064453,2.63421630859375,2.408294677734375 +20220908080000,vlinder18,290.3018341064453,2.70550537109375,2.276458740234375 +20220908080000,vlinder19,289.4092559814453,1.87933349609375,3.984466552734375 +20220908080000,vlinder20,289.4092559814453,1.87933349609375,3.984466552734375 +20220908080000,vlinder21,289.9365997314453,2.94573974609375,6.066497802734375 +20220908080000,vlinder22,289.9151153564453,2.42132568359375,4.624114990234375 +20220908080000,vlinder23,289.8975372314453,2.25042724609375,4.740325927734375 +20220908080000,vlinder24,289.8428497314453,2.21624755859375,4.732513427734375 +20220908080000,vlinder25,289.8682403564453,2.13616943359375,4.598724365234375 +20220908080000,vlinder26,290.3487091064453,2.36370849609375,3.251068115234375 +20220908080000,vlinder27,289.8448028564453,2.11370849609375,4.619232177734375 +20220908080000,vlinder28,289.7432403564453,2.04437255859375,4.573333740234375 +20220908090000,vlinder01,290.84986877441406,1.796875,3.964813232421875 +20220908090000,vlinder02,290.90260314941406,1.837890625,3.919891357421875 +20220908090000,vlinder03,291.17213439941406,2.3046875,3.762664794921875 +20220908090000,vlinder04,291.17213439941406,2.3046875,3.762664794921875 +20220908090000,vlinder05,290.92799377441406,1.9052734375,4.160125732421875 +20220908090000,vlinder06,290.93385314941406,2.0947265625,4.031219482421875 +20220908090000,vlinder07,290.93385314941406,2.0947265625,4.031219482421875 +20220908090000,vlinder08,290.93385314941406,2.0947265625,4.031219482421875 +20220908090000,vlinder09,290.62916564941406,1.8681640625,4.076141357421875 +20220908090000,vlinder10,290.67018127441406,1.8447265625,4.015594482421875 +20220908090000,vlinder11,290.95143127441406,2.033203125,4.291961669921875 +20220908090000,vlinder12,290.95143127441406,2.033203125,4.291961669921875 +20220908090000,vlinder13,290.95143127441406,2.033203125,4.291961669921875 +20220908090000,vlinder14,291.01979064941406,1.9892578125,4.441375732421875 +20220908090000,vlinder15,290.60182189941406,1.90625,4.106414794921875 +20220908090000,vlinder16,291.01979064941406,1.9892578125,4.441375732421875 +20220908090000,vlinder17,291.41432189941406,2.572265625,2.935516357421875 +20220908090000,vlinder18,291.57252502441406,2.6298828125,2.821258544921875 +20220908090000,vlinder19,290.48658752441406,2.1142578125,3.957000732421875 +20220908090000,vlinder20,290.48658752441406,2.1142578125,3.957000732421875 +20220908090000,vlinder21,290.85963439941406,3.34765625,5.842742919921875 +20220908090000,vlinder22,291.12916564941406,2.8740234375,4.135711669921875 +20220908090000,vlinder23,290.90846252441406,2.2392578125,4.677703857421875 +20220908090000,vlinder24,290.89869689941406,2.15234375,4.493133544921875 +20220908090000,vlinder25,290.93580627441406,1.9853515625,4.318328857421875 +20220908090000,vlinder26,291.27174377441406,2.3857421875,3.617156982421875 +20220908090000,vlinder27,290.92799377441406,1.9052734375,4.160125732421875 +20220908090000,vlinder28,290.84986877441406,1.796875,3.964813232421875 +20220908100000,vlinder01,292.1182403564453,2.3978424072265625,3.6117401123046875 +20220908100000,vlinder02,292.2041778564453,2.3753814697265625,3.5795135498046875 +20220908100000,vlinder03,292.1397247314453,2.2152252197265625,3.4496307373046875 +20220908100000,vlinder04,292.1397247314453,2.2152252197265625,3.4496307373046875 +20220908100000,vlinder05,292.0537872314453,2.3470611572265625,3.7181854248046875 +20220908100000,vlinder06,292.0088653564453,2.4037017822265625,3.6556854248046875 +20220908100000,vlinder07,292.0088653564453,2.4037017822265625,3.6556854248046875 +20220908100000,vlinder08,292.0088653564453,2.4037017822265625,3.6556854248046875 +20220908100000,vlinder09,291.9268341064453,2.7454986572265625,3.8715057373046875 +20220908100000,vlinder10,291.9951934814453,2.7142486572265625,3.8226776123046875 +20220908100000,vlinder11,291.8252716064453,2.0843658447265625,3.7826385498046875 +20220908100000,vlinder12,291.8252716064453,2.0843658447265625,3.7826385498046875 +20220908100000,vlinder13,291.8252716064453,2.0843658447265625,3.7826385498046875 +20220908100000,vlinder14,291.8018341064453,1.9730377197265625,3.9047088623046875 +20220908100000,vlinder15,291.8721466064453,2.7591705322265625,3.8939666748046875 +20220908100000,vlinder16,291.8018341064453,1.9730377197265625,3.9047088623046875 +20220908100000,vlinder17,292.5342559814453,2.7913970947265625,3.0394744873046875 +20220908100000,vlinder18,292.7119903564453,2.8460845947265625,2.9457244873046875 +20220908100000,vlinder19,291.7998809814453,2.9769439697265625,3.9174041748046875 +20220908100000,vlinder20,291.7998809814453,2.9769439697265625,3.9174041748046875 +20220908100000,vlinder21,291.8408966064453,3.2728424072265625,5.0941619873046875 +20220908100000,vlinder22,292.5030059814453,2.7230377197265625,4.0970916748046875 +20220908100000,vlinder23,291.7041778564453,2.3626861572265625,4.0853729248046875 +20220908100000,vlinder24,291.9014434814453,2.4017486572265625,3.9427947998046875 +20220908100000,vlinder25,291.8584747314453,2.2630767822265625,3.8080291748046875 +20220908100000,vlinder26,292.2725372314453,2.3646392822265625,3.3666229248046875 +20220908100000,vlinder27,292.0537872314453,2.3470611572265625,3.7181854248046875 +20220908100000,vlinder28,292.1182403564453,2.3978424072265625,3.6117401123046875 +20220908110000,vlinder01,293.1538391113281,2.8448486328125,3.682281494140625 +20220908110000,vlinder02,293.2046203613281,2.8731689453125,3.681304931640625 +20220908110000,vlinder03,293.0815734863281,2.2481689453125,3.109039306640625 +20220908110000,vlinder04,293.0815734863281,2.2481689453125,3.109039306640625 +20220908110000,vlinder05,293.1128234863281,2.7989501953125,3.740875244140625 +20220908110000,vlinder06,293.4096984863281,2.8380126953125,3.603179931640625 +20220908110000,vlinder07,293.4096984863281,2.8380126953125,3.603179931640625 +20220908110000,vlinder08,293.4096984863281,2.8380126953125,3.603179931640625 +20220908110000,vlinder09,292.9995422363281,3.0577392578125,3.901031494140625 +20220908110000,vlinder10,293.0268859863281,3.0538330078125,3.893218994140625 +20220908110000,vlinder11,293.0503234863281,2.3770751953125,3.584625244140625 +20220908110000,vlinder12,293.0503234863281,2.3770751953125,3.584625244140625 +20220908110000,vlinder13,293.0503234863281,2.3770751953125,3.584625244140625 +20220908110000,vlinder14,292.9175109863281,2.1749267578125,3.620758056640625 +20220908110000,vlinder15,292.9975891113281,3.0606689453125,3.897125244140625 +20220908110000,vlinder16,292.9175109863281,2.1749267578125,3.620758056640625 +20220908110000,vlinder17,293.3159484863281,2.7091064453125,2.960601806640625 +20220908110000,vlinder18,293.4761047363281,2.7501220703125,2.907867431640625 +20220908110000,vlinder19,292.9878234863281,3.2823486328125,4.011383056640625 +20220908110000,vlinder20,292.9878234863281,3.2823486328125,4.011383056640625 +20220908110000,vlinder21,292.6636047363281,4.2862548828125,4.939117431640625 +20220908110000,vlinder22,293.1929016113281,3.7764892578125,4.012359619140625 +20220908110000,vlinder23,292.8100891113281,2.8116455078125,3.940093994140625 +20220908110000,vlinder24,292.9741516113281,2.8985595703125,3.893218994140625 +20220908110000,vlinder25,292.9878234863281,2.6641845703125,3.755523681640625 +20220908110000,vlinder26,293.3120422363281,2.4317626953125,3.112945556640625 +20220908110000,vlinder27,293.1128234863281,2.7989501953125,3.740875244140625 +20220908110000,vlinder28,293.1538391113281,2.8448486328125,3.682281494140625 +20220908120000,vlinder01,294.06060791015625,3.3318634033203125,3.44500732421875 +20220908120000,vlinder02,294.08795166015625,3.2840118408203125,3.39715576171875 +20220908120000,vlinder03,294.09576416015625,2.7996368408203125,3.21063232421875 +20220908120000,vlinder04,294.09576416015625,2.7996368408203125,3.21063232421875 +20220908120000,vlinder05,294.00592041015625,3.3621368408203125,3.46649169921875 +20220908120000,vlinder06,294.32037353515625,3.6746368408203125,3.61395263671875 +20220908120000,vlinder07,294.32037353515625,3.6746368408203125,3.61395263671875 +20220908120000,vlinder08,294.32037353515625,3.6746368408203125,3.61395263671875 +20220908120000,vlinder09,293.91802978515625,3.7049102783203125,3.77801513671875 +20220908120000,vlinder10,293.93560791015625,3.6297149658203125,3.72625732421875 +20220908120000,vlinder11,294.06060791015625,3.2517852783203125,3.64129638671875 +20220908120000,vlinder12,294.06060791015625,3.2517852783203125,3.64129638671875 +20220908120000,vlinder13,294.06060791015625,3.2517852783203125,3.64129638671875 +20220908120000,vlinder14,293.96490478515625,3.0476837158203125,3.67742919921875 +20220908120000,vlinder15,293.91998291015625,3.7654571533203125,3.81317138671875 +20220908120000,vlinder16,293.96490478515625,3.0476837158203125,3.67742919921875 +20220908120000,vlinder17,294.14068603515625,2.9510040283203125,2.95965576171875 +20220908120000,vlinder18,294.27154541015625,2.9676055908203125,2.90301513671875 +20220908120000,vlinder19,293.86138916015625,4.0291290283203125,3.97332763671875 +20220908120000,vlinder20,293.86138916015625,4.0291290283203125,3.97332763671875 +20220908120000,vlinder21,293.20904541015625,4.9763946533203125,4.23309326171875 +20220908120000,vlinder22,293.72271728515625,3.8386993408203125,3.50067138671875 +20220908120000,vlinder23,293.64459228515625,3.5769805908203125,3.64031982421875 +20220908120000,vlinder24,293.82427978515625,3.5779571533203125,3.56121826171875 +20220908120000,vlinder25,293.89068603515625,3.3347930908203125,3.50946044921875 +20220908120000,vlinder26,294.27935791015625,2.9607696533203125,3.21453857421875 +20220908120000,vlinder27,294.00592041015625,3.3621368408203125,3.46649169921875 +20220908120000,vlinder28,294.06060791015625,3.3318634033203125,3.44500732421875 +20220908130000,vlinder01,294.1498718261719,2.7976226806640625,3.13397216796875 +20220908130000,vlinder02,294.2279968261719,2.7273101806640625,3.10174560546875 +20220908130000,vlinder03,294.5229187011719,3.3210601806640625,3.07928466796875 +20220908130000,vlinder04,294.5229187011719,3.3210601806640625,3.07928466796875 +20220908130000,vlinder05,294.1264343261719,2.9060211181640625,3.09490966796875 +20220908130000,vlinder06,294.3627624511719,3.4480133056640625,3.27362060546875 +20220908130000,vlinder07,294.3627624511719,3.4480133056640625,3.27362060546875 +20220908130000,vlinder08,294.3627624511719,3.4480133056640625,3.27362060546875 +20220908130000,vlinder09,293.9350280761719,3.2126617431640625,3.41912841796875 +20220908130000,vlinder10,293.9799499511719,3.1159820556640625,3.38787841796875 +20220908130000,vlinder11,294.2631530761719,3.3220367431640625,3.30487060546875 +20220908130000,vlinder12,294.2631530761719,3.3220367431640625,3.30487060546875 +20220908130000,vlinder13,294.2631530761719,3.3220367431640625,3.30487060546875 +20220908130000,vlinder14,294.2338562011719,3.2194976806640625,3.33807373046875 +20220908130000,vlinder15,293.9213562011719,3.3083648681640625,3.44354248046875 +20220908130000,vlinder16,294.2338562011719,3.2194976806640625,3.33807373046875 +20220908130000,vlinder17,294.5561218261719,3.5212554931640625,2.97772216796875 +20220908130000,vlinder18,294.6498718261719,3.5476226806640625,2.94354248046875 +20220908130000,vlinder19,293.9076843261719,3.6443023681640625,3.61346435546875 +20220908130000,vlinder20,293.9076843261719,3.6443023681640625,3.61346435546875 +20220908130000,vlinder21,293.4975280761719,4.4060211181640625,3.61346435546875 +20220908130000,vlinder22,294.3686218261719,3.2302398681640625,3.27069091796875 +20220908130000,vlinder23,293.8217468261719,3.3083648681640625,3.11248779296875 +20220908130000,vlinder24,293.9701843261719,3.1765289306640625,3.08319091796875 +20220908130000,vlinder25,294.0404968261719,3.0144195556640625,3.08514404296875 +20220908130000,vlinder26,294.7104187011719,3.4538726806640625,3.08709716796875 +20220908130000,vlinder27,294.1264343261719,2.9060211181640625,3.09490966796875 +20220908130000,vlinder28,294.1498718261719,2.7976226806640625,3.13397216796875 +20220908140000,vlinder01,294.5083465576172,2.1772613525390625,3.127349853515625 +20220908140000,vlinder02,294.5786590576172,2.1001129150390625,3.076568603515625 +20220908140000,vlinder03,294.5884246826172,3.0649566650390625,3.002349853515625 +20220908140000,vlinder04,294.5884246826172,3.0649566650390625,3.002349853515625 +20220908140000,vlinder05,294.4497528076172,2.2876129150390625,3.034576416015625 +20220908140000,vlinder06,294.6528778076172,2.8169097900390625,3.288482666015625 +20220908140000,vlinder07,294.6528778076172,2.8169097900390625,3.288482666015625 +20220908140000,vlinder08,294.6528778076172,2.8169097900390625,3.288482666015625 +20220908140000,vlinder09,294.2895965576172,2.5708160400390625,3.465240478515625 +20220908140000,vlinder10,294.3345184326172,2.4633941650390625,3.416412353515625 +20220908140000,vlinder11,294.5142059326172,2.8335113525390625,3.253326416015625 +20220908140000,vlinder12,294.5142059326172,2.8335113525390625,3.253326416015625 +20220908140000,vlinder13,294.5142059326172,2.8335113525390625,3.253326416015625 +20220908140000,vlinder14,294.4829559326172,2.8081207275390625,3.249420166015625 +20220908140000,vlinder15,294.2720184326172,2.6704254150390625,3.498443603515625 +20220908140000,vlinder16,294.4829559326172,2.8081207275390625,3.249420166015625 +20220908140000,vlinder17,294.6587371826172,3.4858551025390625,2.921295166015625 +20220908140000,vlinder18,294.7622528076172,3.5786285400390625,2.911529541015625 +20220908140000,vlinder19,294.2251434326172,2.9467926025390625,3.635162353515625 +20220908140000,vlinder20,294.2251434326172,2.9467926025390625,3.635162353515625 +20220908140000,vlinder21,293.8286590576172,3.8217926025390625,3.433990478515625 +20220908140000,vlinder22,294.6333465576172,2.7173004150390625,3.094146728515625 +20220908140000,vlinder23,294.0708465576172,2.7153472900390625,2.939849853515625 +20220908140000,vlinder24,294.2563934326172,2.5600738525390625,2.963287353515625 +20220908140000,vlinder25,294.3169403076172,2.4116363525390625,2.990631103515625 +20220908140000,vlinder26,294.7583465576172,3.1450347900390625,3.000396728515625 +20220908140000,vlinder27,294.4497528076172,2.2876129150390625,3.034576416015625 +20220908140000,vlinder28,294.5083465576172,2.1772613525390625,3.127349853515625 +20220908150000,vlinder01,294.5538635253906,1.8307952880859375,3.15899658203125 +20220908150000,vlinder02,294.6261291503906,1.7595062255859375,3.08770751953125 +20220908150000,vlinder03,293.9679260253906,2.8513031005859375,2.69219970703125 +20220908150000,vlinder04,293.9679260253906,2.8513031005859375,2.69219970703125 +20220908150000,vlinder05,294.4913635253906,1.9255218505859375,2.98809814453125 +20220908150000,vlinder06,294.3429260253906,2.5593109130859375,3.34942626953125 +20220908150000,vlinder07,294.3429260253906,2.5593109130859375,3.34942626953125 +20220908150000,vlinder08,294.3429260253906,2.5593109130859375,3.34942626953125 +20220908150000,vlinder09,294.3253479003906,2.2272796630859375,3.52423095703125 +20220908150000,vlinder10,294.3878479003906,2.1100921630859375,3.46466064453125 +20220908150000,vlinder11,294.2237854003906,2.5915374755859375,3.15020751953125 +20220908150000,vlinder12,294.2237854003906,2.5915374755859375,3.15020751953125 +20220908150000,vlinder13,294.2237854003906,2.5915374755859375,3.15020751953125 +20220908150000,vlinder14,294.2452697753906,2.5680999755859375,3.05645751953125 +20220908150000,vlinder15,294.2648010253906,2.3395843505859375,3.56329345703125 +20220908150000,vlinder16,294.2452697753906,2.5680999755859375,3.05645751953125 +20220908150000,vlinder17,294.1105041503906,3.3522796630859375,2.71466064453125 +20220908150000,vlinder18,294.2980041503906,3.5085296630859375,2.69708251953125 +20220908150000,vlinder19,294.1632385253906,2.5632171630859375,3.73516845703125 +20220908150000,vlinder20,294.1632385253906,2.5632171630859375,3.73516845703125 +20220908150000,vlinder21,293.8976135253906,3.6247406005859375,3.19512939453125 +20220908150000,vlinder22,294.6515197753906,2.6706390380859375,2.90313720703125 +20220908150000,vlinder23,294.0753479003906,2.3425140380859375,2.73028564453125 +20220908150000,vlinder24,294.2706604003906,2.2009124755859375,2.83184814453125 +20220908150000,vlinder25,294.3390197753906,2.0348968505859375,2.85919189453125 +20220908150000,vlinder26,294.0968322753906,2.8337249755859375,2.72442626953125 +20220908150000,vlinder27,294.4913635253906,1.9255218505859375,2.98809814453125 +20220908150000,vlinder28,294.5538635253906,1.8307952880859375,3.15899658203125 +20220908160000,vlinder01,293.9060516357422,1.5192718505859375,2.6963653564453125 +20220908160000,vlinder02,293.7673797607422,1.5915374755859375,2.5547637939453125 +20220908160000,vlinder03,293.9822235107422,2.4430999755859375,2.6192169189453125 +20220908160000,vlinder04,293.9822235107422,2.4430999755859375,2.6192169189453125 +20220908160000,vlinder05,293.8181610107422,1.6706390380859375,2.4727325439453125 +20220908160000,vlinder06,294.4529266357422,1.8815765380859375,3.2793731689453125 +20220908160000,vlinder07,294.4529266357422,1.8815765380859375,3.2793731689453125 +20220908160000,vlinder08,294.4529266357422,1.8815765380859375,3.2793731689453125 +20220908160000,vlinder09,294.0876922607422,1.5134124755859375,3.2598419189453125 +20220908160000,vlinder10,293.9568328857422,1.5495452880859375,3.1182403564453125 +20220908160000,vlinder11,294.2830047607422,1.9128265380859375,2.9512481689453125 +20220908160000,vlinder12,294.2830047607422,1.9128265380859375,2.9512481689453125 +20220908160000,vlinder13,294.2830047607422,1.9128265380859375,2.9512481689453125 +20220908160000,vlinder14,294.2771453857422,1.8688812255859375,2.7793731689453125 +20220908160000,vlinder15,294.1677703857422,1.5319671630859375,3.3662872314453125 +20220908160000,vlinder16,294.2771453857422,1.8688812255859375,2.7793731689453125 +20220908160000,vlinder17,294.0115203857422,3.0016937255859375,2.6367950439453125 +20220908160000,vlinder18,294.1658172607422,3.1384124755859375,2.6045684814453125 +20220908160000,vlinder19,293.9822235107422,1.8913421630859375,3.5108184814453125 +20220908160000,vlinder20,293.9822235107422,1.8913421630859375,3.5108184814453125 +20220908160000,vlinder21,292.7869110107422,3.8122406005859375,3.1602325439453125 +20220908160000,vlinder22,292.6794891357422,2.6823577880859375,2.5606231689453125 +20220908160000,vlinder23,293.5271453857422,2.0339202880859375,2.2129669189453125 +20220908160000,vlinder24,293.5447235107422,1.9763031005859375,2.3399200439453125 +20220908160000,vlinder25,293.8415985107422,1.6843109130859375,2.3067169189453125 +20220908160000,vlinder26,294.1931610107422,2.5095062255859375,2.7383575439453125 +20220908160000,vlinder27,293.8181610107422,1.6706390380859375,2.4727325439453125 +20220908160000,vlinder28,293.9060516357422,1.5192718505859375,2.6963653564453125 +20220908170000,vlinder01,291.671630859375,1.5210113525390625,2.148505210876465 +20220908170000,vlinder02,291.646240234375,1.4038238525390625,1.9483098983764648 +20220908170000,vlinder03,293.685302734375,1.6567535400390625,2.261786460876465 +20220908170000,vlinder04,293.685302734375,1.6567535400390625,2.261786460876465 +20220908170000,vlinder05,291.687255859375,1.6118316650390625,2.030341148376465 +20220908170000,vlinder06,292.896240234375,1.6801910400390625,3.077216148376465 +20220908170000,vlinder07,292.896240234375,1.6801910400390625,3.077216148376465 +20220908170000,vlinder08,292.896240234375,1.6801910400390625,3.077216148376465 +20220908170000,vlinder09,291.741943359375,1.7856597900390625,3.039130210876465 +20220908170000,vlinder10,291.648193359375,1.7006988525390625,2.812567710876465 +20220908170000,vlinder11,293.296630859375,1.7065582275390625,2.764716148376465 +20220908170000,vlinder12,293.296630859375,1.7065582275390625,2.764716148376465 +20220908170000,vlinder13,293.296630859375,1.7065582275390625,2.764716148376465 +20220908170000,vlinder14,293.396240234375,1.7563629150390625,2.605536460876465 +20220908170000,vlinder15,291.868896484375,1.8305816650390625,3.210028648376465 +20220908170000,vlinder16,293.396240234375,1.7563629150390625,2.605536460876465 +20220908170000,vlinder17,293.652099609375,2.1782379150390625,2.474677085876465 +20220908170000,vlinder18,293.781005859375,2.2553863525390625,2.444403648376465 +20220908170000,vlinder19,291.956787109375,1.9321441650390625,3.495184898376465 +20220908170000,vlinder20,291.956787109375,1.9321441650390625,3.495184898376465 +20220908170000,vlinder21,291.939208984375,2.2143707275390625,3.353583335876465 +20220908170000,vlinder22,292.238037109375,1.2661285400390625,2.255927085876465 +20220908170000,vlinder23,291.732177734375,1.8755035400390625,2.143622398376465 +20220908170000,vlinder24,291.642333984375,1.6958160400390625,2.096747398376465 +20220908170000,vlinder25,291.745849609375,1.7856597900390625,2.029364585876465 +20220908170000,vlinder26,293.816162109375,1.7329254150390625,2.384833335876465 +20220908170000,vlinder27,291.687255859375,1.6118316650390625,2.030341148376465 +20220908170000,vlinder28,291.671630859375,1.5210113525390625,2.148505210876465 +20220908180000,vlinder01,290.4748840332031,0.39794921875,2.470041275024414 +20220908180000,vlinder02,290.4651184082031,0.20947265625,2.371408462524414 +20220908180000,vlinder03,291.7912902832031,1.42529296875,2.573556900024414 +20220908180000,vlinder04,291.7912902832031,1.42529296875,2.573556900024414 +20220908180000,vlinder05,290.5823059082031,0.34326171875,2.345041275024414 +20220908180000,vlinder06,291.0510559082031,1.34521484375,3.049142837524414 +20220908180000,vlinder07,291.0510559082031,1.34521484375,3.049142837524414 +20220908180000,vlinder08,291.0510559082031,1.34521484375,3.049142837524414 +20220908180000,vlinder09,290.4455871582031,1.00634765625,2.999338150024414 +20220908180000,vlinder10,290.3752746582031,0.80029296875,2.886056900024414 +20220908180000,vlinder11,291.0451965332031,1.37841796875,2.711252212524414 +20220908180000,vlinder12,291.0451965332031,1.37841796875,2.711252212524414 +20220908180000,vlinder13,291.0451965332031,1.37841796875,2.711252212524414 +20220908180000,vlinder14,291.0569152832031,1.37255859375,2.532541275024414 +20220908180000,vlinder15,290.5061340332031,1.16943359375,3.095041275024414 +20220908180000,vlinder16,291.0569152832031,1.37255859375,2.532541275024414 +20220908180000,vlinder17,292.5569152832031,1.74072265625,2.569650650024414 +20220908180000,vlinder18,292.8225402832031,1.74462890625,2.537424087524414 +20220908180000,vlinder19,290.3576965332031,1.36669921875,3.385080337524414 +20220908180000,vlinder20,290.3576965332031,1.36669921875,3.385080337524414 +20220908180000,vlinder21,291.5022277832031,1.06396484375,3.689767837524414 +20220908180000,vlinder22,291.5823059082031,0.56494140625,2.847970962524414 +20220908180000,vlinder23,290.7834777832031,0.51513671875,2.292306900024414 +20220908180000,vlinder24,290.7033996582031,0.34326171875,2.346017837524414 +20220908180000,vlinder25,290.6291809082031,0.48779296875,2.243478775024414 +20220908180000,vlinder26,291.8830871582031,1.53173828125,2.664377212524414 +20220908180000,vlinder27,290.5823059082031,0.34326171875,2.345041275024414 +20220908180000,vlinder28,290.4748840332031,0.39794921875,2.470041275024414 +20220908190000,vlinder01,289.77513122558594,1.0601959228515625,2.6154356002807617 +20220908190000,vlinder02,289.76927185058594,1.1725006103515625,2.6310606002807617 +20220908190000,vlinder03,289.92552185058594,0.3326568603515625,2.4289121627807617 +20220908190000,vlinder04,289.92552185058594,0.3326568603515625,2.4289121627807617 +20220908190000,vlinder05,289.86106872558594,0.9283599853515625,2.7609434127807617 +20220908190000,vlinder06,290.07981872558594,-0.3255462646484375,2.0460996627807617 +20220908190000,vlinder07,290.07981872558594,-0.3255462646484375,2.0460996627807617 +20220908190000,vlinder08,290.07981872558594,-0.3255462646484375,2.0460996627807617 +20220908190000,vlinder09,289.70872497558594,1.0719146728515625,2.6173887252807617 +20220908190000,vlinder10,289.66575622558594,1.2340240478515625,2.6623106002807617 +20220908190000,vlinder11,290.02317810058594,-0.3821868896484375,2.4933652877807617 +20220908190000,vlinder12,290.02317810058594,-0.3821868896484375,2.4933652877807617 +20220908190000,vlinder13,290.02317810058594,-0.3821868896484375,2.4933652877807617 +20220908190000,vlinder14,290.07200622558594,-0.2845306396484375,2.7990293502807617 +20220908190000,vlinder15,289.73020935058594,0.8844146728515625,2.5490293502807617 +20220908190000,vlinder16,290.07200622558594,-0.2845306396484375,2.7990293502807617 +20220908190000,vlinder17,290.22825622558594,1.0787506103515625,2.1349668502807617 +20220908190000,vlinder18,290.41770935058594,1.1900787353515625,2.1632871627807617 +20220908190000,vlinder19,289.65989685058594,0.8707427978515625,2.5285215377807617 +20220908190000,vlinder20,289.65989685058594,0.8707427978515625,2.5285215377807617 +20220908190000,vlinder21,290.41966247558594,2.8883209228515625,4.262896537780762 +20220908190000,vlinder22,289.72044372558594,1.7730865478515625,3.0763731002807617 +20220908190000,vlinder23,289.97434997558594,0.5133209228515625,3.0675840377807617 +20220908190000,vlinder24,289.91184997558594,0.8541412353515625,2.9494199752807617 +20220908190000,vlinder25,289.88645935058594,0.5387115478515625,2.8156309127807617 +20220908190000,vlinder26,289.91575622558594,0.3297271728515625,2.1730527877807617 +20220908190000,vlinder27,289.86106872558594,0.9283599853515625,2.7609434127807617 +20220908190000,vlinder28,289.77513122558594,1.0601959228515625,2.6154356002807617 +20220908200000,vlinder01,289.2615509033203,0.790130615234375,2.3688135147094727 +20220908200000,vlinder02,289.2967071533203,0.786224365234375,2.3268213272094727 +20220908200000,vlinder03,289.5799102783203,0.776458740234375,2.6608057022094727 +20220908200000,vlinder04,289.5799102783203,0.776458740234375,2.6608057022094727 +20220908200000,vlinder05,289.3357696533203,0.757904052734375,2.5660791397094727 +20220908200000,vlinder06,289.4998321533203,0.738372802734375,2.6432275772094727 +20220908200000,vlinder07,289.4998321533203,0.738372802734375,2.6432275772094727 +20220908200000,vlinder08,289.4998321533203,0.738372802734375,2.6432275772094727 +20220908200000,vlinder09,289.1345977783203,0.937591552734375,2.5162744522094727 +20220908200000,vlinder10,289.1482696533203,0.920989990234375,2.4615869522094727 +20220908200000,vlinder11,289.5213165283203,0.737396240234375,3.0524072647094727 +20220908200000,vlinder12,289.5213165283203,0.737396240234375,3.0524072647094727 +20220908200000,vlinder13,289.5213165283203,0.737396240234375,3.0524072647094727 +20220908200000,vlinder14,289.5857696533203,0.753997802734375,3.2633447647094727 +20220908200000,vlinder15,289.1306915283203,0.939544677734375,2.5611963272094727 +20220908200000,vlinder16,289.5857696533203,0.753997802734375,3.2633447647094727 +20220908200000,vlinder17,289.7713165283203,0.787200927734375,2.2399072647094727 +20220908200000,vlinder18,289.9744415283203,0.807708740234375,2.2067041397094727 +20220908200000,vlinder19,289.0076446533203,1.068450927734375,2.6861963272094727 +20220908200000,vlinder20,289.0076446533203,1.068450927734375,2.6861963272094727 +20220908200000,vlinder21,290.2049102783203,2.210052490234375,4.424477577209473 +20220908200000,vlinder22,289.3162384033203,1.139739990234375,2.9957666397094727 +20220908200000,vlinder23,289.3865509033203,0.748138427734375,3.1129541397094727 +20220908200000,vlinder24,289.3318634033203,0.833099365234375,2.8658838272094727 +20220908200000,vlinder25,289.2517852783203,0.652435302734375,2.7565088272094727 +20220908200000,vlinder26,289.5818634033203,0.781341552734375,2.5397119522094727 +20220908200000,vlinder27,289.3357696533203,0.757904052734375,2.5660791397094727 +20220908200000,vlinder28,289.2615509033203,0.790130615234375,2.3688135147094727 +20220908210000,vlinder01,288.7602081298828,0.382720947265625,2.6797637939453125 +20220908210000,vlinder02,288.7641143798828,0.402252197265625,2.6455841064453125 +20220908210000,vlinder03,289.2426300048828,1.365142822265625,3.2940216064453125 +20220908210000,vlinder04,289.2426300048828,1.365142822265625,3.2940216064453125 +20220908210000,vlinder05,288.8988800048828,0.428619384765625,2.9317169189453125 +20220908210000,vlinder06,288.9691925048828,0.531158447265625,2.9893341064453125 +20220908210000,vlinder07,288.9691925048828,0.531158447265625,2.9893341064453125 +20220908210000,vlinder08,288.9691925048828,0.531158447265625,2.9893341064453125 +20220908210000,vlinder09,288.7602081298828,0.443267822265625,2.7989044189453125 +20220908210000,vlinder10,288.7484893798828,0.446197509765625,2.7500762939453125 +20220908210000,vlinder11,289.0863800048828,0.766510009765625,3.3653106689453125 +20220908210000,vlinder12,289.0863800048828,0.766510009765625,3.3653106689453125 +20220908210000,vlinder13,289.0863800048828,0.766510009765625,3.3653106689453125 +20220908210000,vlinder14,289.2133331298828,0.843658447265625,3.5323028564453125 +20220908210000,vlinder15,288.7621612548828,0.455963134765625,2.8457794189453125 +20220908210000,vlinder16,289.2133331298828,0.843658447265625,3.5323028564453125 +20220908210000,vlinder17,289.3676300048828,1.316314697265625,3.0762481689453125 +20220908210000,vlinder18,289.5355987548828,1.238189697265625,3.0323028564453125 +20220908210000,vlinder19,288.6117706298828,0.635650634765625,2.9571075439453125 +20220908210000,vlinder20,288.6117706298828,0.635650634765625,2.9571075439453125 +20220908210000,vlinder21,289.7836456298828,1.789947509765625,5.6221466064453125 +20220908210000,vlinder22,288.7875518798828,1.090728759765625,3.6231231689453125 +20220908210000,vlinder23,289.0863800048828,0.574127197265625,3.5723419189453125 +20220908210000,vlinder24,288.9594268798828,0.557525634765625,3.3408966064453125 +20220908210000,vlinder25,288.8930206298828,0.410064697265625,3.1182403564453125 +20220908210000,vlinder26,289.2250518798828,1.414947509765625,3.2334747314453125 +20220908210000,vlinder27,288.8988800048828,0.428619384765625,2.9317169189453125 +20220908210000,vlinder28,288.7602081298828,0.382720947265625,2.6797637939453125 +20220908220000,vlinder01,288.4790496826172,0.775665283203125,3.2164506912231445 +20220908220000,vlinder02,288.4810028076172,0.819610595703125,3.1783647537231445 +20220908220000,vlinder03,288.8970184326172,0.918243408203125,3.3170366287231445 +20220908220000,vlinder04,288.8970184326172,0.918243408203125,3.3170366287231445 +20220908220000,vlinder05,288.6196746826172,0.834259033203125,3.4684038162231445 +20220908220000,vlinder06,288.7642059326172,0.396759033203125,3.3707475662231445 +20220908220000,vlinder07,288.7642059326172,0.396759033203125,3.3707475662231445 +20220908220000,vlinder08,288.7642059326172,0.396759033203125,3.3707475662231445 +20220908220000,vlinder09,288.5356903076172,0.735626220703125,3.3180131912231445 +20220908220000,vlinder10,288.5122528076172,0.782501220703125,3.2730913162231445 +20220908220000,vlinder11,288.7837371826172,0.646759033203125,3.6256303787231445 +20220908220000,vlinder12,288.7837371826172,0.646759033203125,3.6256303787231445 +20220908220000,vlinder13,288.7837371826172,0.646759033203125,3.6256303787231445 +20220908220000,vlinder14,288.8560028076172,0.781524658203125,3.7437944412231445 +20220908220000,vlinder15,288.5474090576172,0.683868408203125,3.3492631912231445 +20220908220000,vlinder16,288.8560028076172,0.781524658203125,3.7437944412231445 +20220908220000,vlinder17,289.1450653076172,1.070587158203125,3.3160600662231445 +20220908220000,vlinder18,289.2954559326172,1.082305908203125,3.3004350662231445 +20220908220000,vlinder19,288.4790496826172,0.706329345703125,3.4156694412231445 +20220908220000,vlinder20,288.4790496826172,0.706329345703125,3.4156694412231445 +20220908220000,vlinder21,289.5513153076172,2.384063720703125,6.5846147537231445 +20220908220000,vlinder22,288.6743621826172,1.827423095703125,4.1803178787231445 +20220908220000,vlinder23,288.8345184326172,0.949493408203125,4.0904741287231445 +20220908220000,vlinder24,288.7075653076172,0.950469970703125,3.9117631912231445 +20220908220000,vlinder25,288.6392059326172,0.791290283203125,3.5973100662231445 +20220908220000,vlinder26,288.9438934326172,0.927032470703125,3.2926225662231445 +20220908220000,vlinder27,288.6196746826172,0.834259033203125,3.4684038162231445 +20220908220000,vlinder28,288.4790496826172,0.775665283203125,3.2164506912231445 +20220908230000,vlinder01,288.39085388183594,1.1049957275390625,3.3611087799072266 +20220908230000,vlinder02,288.39671325683594,1.1118316650390625,3.3454837799072266 +20220908230000,vlinder03,288.55101013183594,0.9653472900390625,3.1638431549072266 +20220908230000,vlinder04,288.55101013183594,0.9653472900390625,3.1638431549072266 +20220908230000,vlinder05,288.54905700683594,1.1020660400390625,3.5954837799072266 +20220908230000,vlinder06,288.60374450683594,0.8481597900390625,3.3943119049072266 +20220908230000,vlinder07,288.60374450683594,0.8481597900390625,3.3943119049072266 +20220908230000,vlinder08,288.60374450683594,0.8481597900390625,3.3943119049072266 +20220908230000,vlinder09,288.43577575683594,1.1548004150390625,3.4812259674072266 +20220908230000,vlinder10,288.41624450683594,1.1674957275390625,3.4558353424072266 +20220908230000,vlinder11,288.60960388183594,0.9174957275390625,3.5407962799072266 +20220908230000,vlinder12,288.60960388183594,0.9174957275390625,3.5407962799072266 +20220908230000,vlinder13,288.60960388183594,0.9174957275390625,3.5407962799072266 +20220908230000,vlinder14,288.67796325683594,0.9712066650390625,3.6247806549072266 +20220908230000,vlinder15,288.43772888183594,1.1274566650390625,3.4939212799072266 +20220908230000,vlinder16,288.67796325683594,0.9712066650390625,3.6247806549072266 +20220908230000,vlinder17,288.80686950683594,0.9965972900390625,3.3005619049072266 +20220908230000,vlinder18,288.96897888183594,1.0258941650390625,3.2751712799072266 +20220908230000,vlinder19,288.33811950683594,1.1548004150390625,3.6111087799072266 +20220908230000,vlinder20,288.33811950683594,1.1548004150390625,3.6111087799072266 +20220908230000,vlinder21,289.49436950683594,2.8286285400390625,6.922632217407227 +20220908230000,vlinder22,288.64866638183594,2.1069488525390625,4.524194717407227 +20220908230000,vlinder23,288.79319763183594,1.1176910400390625,4.183374404907227 +20220908230000,vlinder24,288.65843200683594,1.1645660400390625,4.037866592407227 +20220908230000,vlinder25,288.58226013183594,1.0161285400390625,3.6784915924072266 +20220908230000,vlinder26,288.60765075683594,0.9624176025390625,3.1892337799072266 +20220908230000,vlinder27,288.54905700683594,1.1020660400390625,3.5954837799072266 +20220908230000,vlinder28,288.39085388183594,1.1049957275390625,3.3611087799072266 +20220909000000,vlinder01,288.1691436767578,1.0193634033203125,3.655747413635254 +20220909000000,vlinder02,288.1847686767578,0.9959259033203125,3.668442726135254 +20220909000000,vlinder03,288.2707061767578,0.9773712158203125,3.045395851135254 +20220909000000,vlinder04,288.2707061767578,0.9773712158203125,3.045395851135254 +20220909000000,vlinder05,288.3351593017578,0.9724884033203125,3.887192726135254 +20220909000000,vlinder06,288.3605499267578,1.0017852783203125,3.367661476135254 +20220909000000,vlinder07,288.3605499267578,1.0017852783203125,3.367661476135254 +20220909000000,vlinder08,288.3605499267578,1.0017852783203125,3.367661476135254 +20220909000000,vlinder09,288.2003936767578,1.2029571533203125,3.718247413635254 +20220909000000,vlinder10,288.1769561767578,1.1795196533203125,3.728013038635254 +20220909000000,vlinder11,288.3781280517578,0.8670196533203125,3.518052101135254 +20220909000000,vlinder12,288.3781280517578,0.8670196533203125,3.518052101135254 +20220909000000,vlinder13,288.3781280517578,0.8670196533203125,3.518052101135254 +20220909000000,vlinder14,288.4503936767578,0.8142852783203125,3.636216163635254 +20220909000000,vlinder15,288.2042999267578,1.2107696533203125,3.688950538635254 +20220909000000,vlinder16,288.4503936767578,0.8142852783203125,3.636216163635254 +20220909000000,vlinder17,288.6242218017578,1.3035430908203125,3.041489601135254 +20220909000000,vlinder18,288.7980499267578,1.3797149658203125,3.016098976135254 +20220909000000,vlinder19,288.0792999267578,1.3328399658203125,3.733872413635254 +20220909000000,vlinder20,288.0792999267578,1.3328399658203125,3.733872413635254 +20220909000000,vlinder21,289.3195343017578,2.7752227783203125,7.268052101135254 +20220909000000,vlinder22,288.5519561767578,1.8084259033203125,4.892075538635254 +20220909000000,vlinder23,288.6027374267578,0.9334259033203125,4.423325538635254 +20220909000000,vlinder24,288.4582061767578,1.0310821533203125,4.326645851135254 +20220909000000,vlinder25,288.3761749267578,0.8396759033203125,3.923325538635254 +20220909000000,vlinder26,288.3195343017578,1.0623321533203125,3.027817726135254 +20220909000000,vlinder27,288.3351593017578,0.9724884033203125,3.887192726135254 +20220909000000,vlinder28,288.1691436767578,1.0193634033203125,3.655747413635254 +20220909010000,vlinder01,288.1522216796875,1.2281646728515625,4.065690994262695 +20220909010000,vlinder02,288.1776123046875,1.1773834228515625,4.080339431762695 +20220909010000,vlinder03,288.1893310546875,1.1021881103515625,3.2141284942626953 +20220909010000,vlinder04,288.1893310546875,1.1021881103515625,3.2141284942626953 +20220909010000,vlinder05,288.3162841796875,1.1734771728515625,4.339128494262695 +20220909010000,vlinder06,288.3280029296875,1.3551177978515625,3.6867847442626953 +20220909010000,vlinder07,288.3280029296875,1.3551177978515625,3.6867847442626953 +20220909010000,vlinder08,288.3280029296875,1.3551177978515625,3.6867847442626953 +20220909010000,vlinder09,288.1365966796875,1.4478912353515625,4.084245681762695 +20220909010000,vlinder10,288.1268310546875,1.4058990478515625,4.103776931762695 +20220909010000,vlinder11,288.3416748046875,1.1461334228515625,3.8850269317626953 +20220909010000,vlinder12,288.3416748046875,1.1461334228515625,3.8850269317626953 +20220909010000,vlinder13,288.3416748046875,1.1461334228515625,3.8850269317626953 +20220909010000,vlinder14,288.4061279296875,1.0455474853515625,4.034440994262695 +20220909010000,vlinder15,288.1326904296875,1.4742584228515625,4.042253494262695 +20220909010000,vlinder16,288.4061279296875,1.0455474853515625,4.034440994262695 +20220909010000,vlinder17,288.6092529296875,1.4117584228515625,3.0061206817626953 +20220909010000,vlinder18,288.7772216796875,1.4713287353515625,2.9670581817626953 +20220909010000,vlinder19,288.0194091796875,1.6305084228515625,4.057878494262695 +20220909010000,vlinder20,288.0194091796875,1.6305084228515625,4.057878494262695 +20220909010000,vlinder21,289.2166748046875,2.6822662353515625,7.937761306762695 +20220909010000,vlinder22,288.5545654296875,1.5973052978515625,5.271745681762695 +20220909010000,vlinder23,288.5662841796875,1.1139068603515625,4.941667556762695 +20220909010000,vlinder24,288.4276123046875,1.2008209228515625,4.812761306762695 +20220909010000,vlinder25,288.3533935546875,1.0719146728515625,4.410417556762695 +20220909010000,vlinder26,288.2440185546875,1.2369537353515625,3.1594409942626953 +20220909010000,vlinder27,288.3162841796875,1.1734771728515625,4.339128494262695 +20220909010000,vlinder28,288.1522216796875,1.2281646728515625,4.065690994262695 +20220909020000,vlinder01,288.1587371826172,1.255889892578125,4.462108612060547 +20220909020000,vlinder02,288.1997528076172,1.198272705078125,4.481639862060547 +20220909020000,vlinder03,288.1587371826172,1.293975830078125,3.467967987060547 +20220909020000,vlinder04,288.1587371826172,1.293975830078125,3.467967987060547 +20220909020000,vlinder05,288.3169403076172,1.193389892578125,4.744335174560547 +20220909020000,vlinder06,288.2349090576172,1.470733642578125,4.020702362060547 +20220909020000,vlinder07,288.2349090576172,1.470733642578125,4.020702362060547 +20220909020000,vlinder08,288.2349090576172,1.470733642578125,4.020702362060547 +20220909020000,vlinder09,288.0845184326172,1.511749267578125,4.458202362060547 +20220909020000,vlinder10,288.0903778076172,1.457061767578125,4.483592987060547 +20220909020000,vlinder11,288.2700653076172,1.318389892578125,4.217967987060547 +20220909020000,vlinder12,288.2700653076172,1.318389892578125,4.217967987060547 +20220909020000,vlinder13,288.2700653076172,1.318389892578125,4.217967987060547 +20220909020000,vlinder14,288.3520965576172,1.239288330078125,4.376171112060547 +20220909020000,vlinder15,288.0649871826172,1.551788330078125,4.410350799560547 +20220909020000,vlinder16,288.3520965576172,1.239288330078125,4.376171112060547 +20220909020000,vlinder17,288.5356903076172,1.576202392578125,3.230663299560547 +20220909020000,vlinder18,288.7095184326172,1.634796142578125,3.193553924560547 +20220909020000,vlinder19,287.9067840576172,1.705108642578125,4.381053924560547 +20220909020000,vlinder20,287.9067840576172,1.705108642578125,4.381053924560547 +20220909020000,vlinder21,289.2173309326172,2.377960205078125,8.512889862060547 +20220909020000,vlinder22,288.5806121826172,1.598663330078125,5.682811737060547 +20220909020000,vlinder23,288.5376434326172,1.140655517578125,5.358592987060547 +20220909020000,vlinder24,288.4145965576172,1.199249267578125,5.241405487060547 +20220909020000,vlinder25,288.3384246826172,1.119171142578125,4.800975799560547 +20220909020000,vlinder26,288.1938934326172,1.413116455078125,3.406444549560547 +20220909020000,vlinder27,288.3169403076172,1.193389892578125,4.744335174560547 +20220909020000,vlinder28,288.1587371826172,1.255889892578125,4.462108612060547 +20220909030000,vlinder01,288.26922607421875,1.3417205810546875,4.789886474609375 +20220909030000,vlinder02,288.31024169921875,1.3055877685546875,4.799652099609375 +20220909030000,vlinder03,288.03485107421875,1.0809783935546875,3.623870849609375 +20220909030000,vlinder04,288.03485107421875,1.0809783935546875,3.623870849609375 +20220909030000,vlinder05,288.41571044921875,1.2645721435546875,5.064300537109375 +20220909030000,vlinder06,288.20672607421875,1.3368377685546875,4.355316162109375 +20220909030000,vlinder07,288.20672607421875,1.3368377685546875,4.355316162109375 +20220909030000,vlinder08,288.20672607421875,1.3368377685546875,4.355316162109375 +20220909030000,vlinder09,288.15789794921875,1.5341033935546875,4.804534912109375 +20220909030000,vlinder10,288.17547607421875,1.5087127685546875,4.821136474609375 +20220909030000,vlinder11,288.24188232421875,1.1551971435546875,4.492034912109375 +20220909030000,vlinder12,288.24188232421875,1.1551971435546875,4.492034912109375 +20220909030000,vlinder13,288.24188232421875,1.1551971435546875,4.492034912109375 +20220909030000,vlinder14,288.33172607421875,1.0839080810546875,4.620941162109375 +20220909030000,vlinder15,288.12274169921875,1.5428924560546875,4.759613037109375 +20220909030000,vlinder16,288.33172607421875,1.0839080810546875,4.620941162109375 +20220909030000,vlinder17,288.29266357421875,1.4491424560546875,3.384613037109375 +20220909030000,vlinder18,288.46453857421875,1.5399627685546875,3.334808349609375 +20220909030000,vlinder19,287.89422607421875,1.6610565185546875,4.727386474609375 +20220909030000,vlinder20,287.89422607421875,1.6610565185546875,4.727386474609375 +20220909030000,vlinder21,289.24578857421875,2.6063690185546875,8.881683349609375 +20220909030000,vlinder22,288.65789794921875,1.8016815185546875,5.993011474609375 +20220909030000,vlinder23,288.59149169921875,1.1434783935546875,5.672698974609375 +20220909030000,vlinder24,288.49578857421875,1.2430877685546875,5.566253662109375 +20220909030000,vlinder25,288.41766357421875,1.1503143310546875,5.108245849609375 +20220909030000,vlinder26,288.03289794921875,1.1844940185546875,3.574066162109375 +20220909030000,vlinder27,288.41571044921875,1.2645721435546875,5.064300537109375 +20220909030000,vlinder28,288.26922607421875,1.3417205810546875,4.789886474609375 +20220909040000,vlinder01,288.405517578125,1.45758056640625,4.923725128173828 +20220909040000,vlinder02,288.479736328125,1.42535400390625,4.952045440673828 +20220909040000,vlinder03,288.026611328125,0.97027587890625,3.739154815673828 +20220909040000,vlinder04,288.026611328125,0.97027587890625,3.739154815673828 +20220909040000,vlinder05,288.548095703125,1.37554931640625,5.202045440673828 +20220909040000,vlinder06,288.221923828125,1.41558837890625,4.491107940673828 +20220909040000,vlinder07,288.221923828125,1.41558837890625,4.491107940673828 +20220909040000,vlinder08,288.221923828125,1.41558837890625,4.491107940673828 +20220909040000,vlinder09,288.210205078125,1.67242431640625,4.918842315673828 +20220909040000,vlinder10,288.257080078125,1.64801025390625,4.949115753173828 +20220909040000,vlinder11,288.241455078125,1.16558837890625,4.637592315673828 +20220909040000,vlinder12,288.241455078125,1.16558837890625,4.637592315673828 +20220909040000,vlinder13,288.241455078125,1.16558837890625,4.637592315673828 +20220909040000,vlinder14,288.329345703125,1.06597900390625,4.768451690673828 +20220909040000,vlinder15,288.153564453125,1.67828369140625,4.869037628173828 +20220909040000,vlinder16,288.329345703125,1.06597900390625,4.768451690673828 +20220909040000,vlinder17,288.180908203125,1.27886962890625,3.479389190673828 +20220909040000,vlinder18,288.341064453125,1.37359619140625,3.409076690673828 +20220909040000,vlinder19,287.909423828125,1.77203369140625,4.864154815673828 +20220909040000,vlinder20,287.909423828125,1.77203369140625,4.864154815673828 +20220909040000,vlinder21,289.268798828125,2.86187744140625,8.912006378173828 +20220909040000,vlinder22,288.796142578125,2.27984619140625,6.340717315673828 +20220909040000,vlinder23,288.688720703125,1.24371337890625,5.815326690673828 +20220909040000,vlinder24,288.616455078125,1.35015869140625,5.693256378173828 +20220909040000,vlinder25,288.534423828125,1.25640869140625,5.255756378173828 +20220909040000,vlinder26,288.020751953125,1.08062744140625,3.695209503173828 +20220909040000,vlinder27,288.548095703125,1.37554931640625,5.202045440673828 +20220909040000,vlinder28,288.405517578125,1.45758056640625,4.923725128173828 +20220909050000,vlinder01,288.58827209472656,1.47821044921875,5.080669403076172 +20220909050000,vlinder02,288.66835021972656,1.46356201171875,5.120708465576172 +20220909050000,vlinder03,288.06483459472656,1.02215576171875,3.907817840576172 +20220909050000,vlinder04,288.06483459472656,1.02215576171875,3.907817840576172 +20220909050000,vlinder05,288.70936584472656,1.44403076171875,5.359966278076172 +20220909050000,vlinder06,288.25233459472656,1.49676513671875,4.573833465576172 +20220909050000,vlinder07,288.25233459472656,1.49676513671875,4.573833465576172 +20220909050000,vlinder08,288.25233459472656,1.49676513671875,4.573833465576172 +20220909050000,vlinder09,288.34999084472656,1.72918701171875,5.066997528076172 +20220909050000,vlinder10,288.41249084472656,1.70770263671875,5.111919403076172 +20220909050000,vlinder11,288.32460021972656,1.18914794921875,4.780864715576172 +20220909050000,vlinder12,288.32460021972656,1.18914794921875,4.780864715576172 +20220909050000,vlinder13,288.32460021972656,1.18914794921875,4.780864715576172 +20220909050000,vlinder14,288.45155334472656,1.05145263671875,4.947856903076172 +20220909050000,vlinder15,288.27381896972656,1.73992919921875,5.005474090576172 +20220909050000,vlinder16,288.45155334472656,1.05145263671875,4.947856903076172 +20220909050000,vlinder17,288.08241271972656,1.24090576171875,3.596294403076172 +20220909050000,vlinder18,288.23475646972656,1.30731201171875,3.525005340576172 +20220909050000,vlinder19,287.97694396972656,1.90789794921875,4.990825653076172 +20220909050000,vlinder20,287.97694396972656,1.90789794921875,4.990825653076172 +20220909050000,vlinder21,289.24647521972656,3.28289794921875,8.742778778076172 +20220909050000,vlinder22,288.75233459472656,2.64715576171875,6.206645965576172 +20220909050000,vlinder23,288.77577209472656,1.43719482421875,5.968364715576172 +20220909050000,vlinder24,288.73085021972656,1.51824951171875,5.841411590576172 +20220909050000,vlinder25,288.67225646972656,1.34246826171875,5.413677215576172 +20220909050000,vlinder26,288.02186584472656,1.13543701171875,3.831645965576172 +20220909050000,vlinder27,288.70936584472656,1.44403076171875,5.359966278076172 +20220909050000,vlinder28,288.58827209472656,1.47821044921875,5.080669403076172 +20220909060000,vlinder01,288.83453369140625,1.610595703125,5.334134101867676 +20220909060000,vlinder02,288.88336181640625,1.632080078125,5.352688789367676 +20220909060000,vlinder03,288.31500244140625,1.049072265625,4.138821601867676 +20220909060000,vlinder04,288.31500244140625,1.049072265625,4.138821601867676 +20220909060000,vlinder05,288.88726806640625,1.701416015625,5.617337226867676 +20220909060000,vlinder06,288.63531494140625,1.530517578125,4.853665351867676 +20220909060000,vlinder07,288.63531494140625,1.530517578125,4.853665351867676 +20220909060000,vlinder08,288.63531494140625,1.530517578125,4.853665351867676 +20220909060000,vlinder09,288.65875244140625,1.762939453125,5.353665351867676 +20220909060000,vlinder10,288.68804931640625,1.774658203125,5.382962226867676 +20220909060000,vlinder11,288.68023681640625,1.228759765625,5.080227851867676 +20220909060000,vlinder12,288.68023681640625,1.228759765625,5.080227851867676 +20220909060000,vlinder13,288.68023681640625,1.228759765625,5.080227851867676 +20220909060000,vlinder14,288.79156494140625,1.099853515625,5.264798164367676 +20220909060000,vlinder15,288.60797119140625,1.751220703125,5.299954414367676 +20220909060000,vlinder16,288.79156494140625,1.099853515625,5.264798164367676 +20220909060000,vlinder17,288.31890869140625,1.327392578125,3.807766914367676 +20220909060000,vlinder18,288.46343994140625,1.390869140625,3.742337226867676 +20220909060000,vlinder19,288.30133056640625,1.947509765625,5.249173164367676 +20220909060000,vlinder20,288.30133056640625,1.947509765625,5.249173164367676 +20220909060000,vlinder21,289.17633056640625,3.979736328125,8.578274726867676 +20220909060000,vlinder22,288.71929931640625,3.275634765625,6.153470039367676 +20220909060000,vlinder23,288.85992431640625,1.909423828125,6.248196601867676 +20220909060000,vlinder24,288.84625244140625,1.923095703125,6.110501289367676 +20220909060000,vlinder25,288.81890869140625,1.686767578125,5.675930976867676 +20220909060000,vlinder26,288.29156494140625,1.190673828125,4.035305976867676 +20220909060000,vlinder27,288.88726806640625,1.701416015625,5.617337226867676 +20220909060000,vlinder28,288.83453369140625,1.610595703125,5.334134101867676 +20220909070000,vlinder01,288.89501953125,2.087188720703125,5.573215484619141 +20220909070000,vlinder02,288.88720703125,2.064727783203125,5.573215484619141 +20220909070000,vlinder03,288.99072265625,1.708282470703125,4.855442047119141 +20220909070000,vlinder04,288.99072265625,1.708282470703125,4.855442047119141 +20220909070000,vlinder05,288.93798828125,2.113555908203125,5.851535797119141 +20220909070000,vlinder06,289.16455078125,1.970977783203125,5.268527984619141 +20220909070000,vlinder07,289.16455078125,1.970977783203125,5.268527984619141 +20220909070000,vlinder08,289.16455078125,1.970977783203125,5.268527984619141 +20220909070000,vlinder09,288.92626953125,2.147735595703125,5.436496734619141 +20220909070000,vlinder10,288.89501953125,2.147735595703125,5.484348297119141 +20220909070000,vlinder11,289.08837890625,1.812774658203125,5.546848297119141 +20220909070000,vlinder12,289.08837890625,1.812774658203125,5.546848297119141 +20220909070000,vlinder13,289.08837890625,1.812774658203125,5.546848297119141 +20220909070000,vlinder14,289.10791015625,1.728790283203125,5.698215484619141 +20220909070000,vlinder15,288.94189453125,2.135040283203125,5.388645172119141 +20220909070000,vlinder16,289.10791015625,1.728790283203125,5.698215484619141 +20220909070000,vlinder17,289.13134765625,1.798126220703125,4.501926422119141 +20220909070000,vlinder18,289.30712890625,1.826446533203125,4.404270172119141 +20220909070000,vlinder19,288.80126953125,2.191680908203125,5.444309234619141 +20220909070000,vlinder20,288.80126953125,2.191680908203125,5.444309234619141 +20220909070000,vlinder21,289.14111328125,4.190704345703125,8.09177017211914 +20220909070000,vlinder22,288.83447265625,2.646759033203125,5.283176422119141 +20220909070000,vlinder23,288.95361328125,2.161407470703125,6.389621734619141 +20220909070000,vlinder24,288.91064453125,2.212188720703125,6.228488922119141 +20220909070000,vlinder25,288.92431640625,2.036407470703125,5.934543609619141 +20220909070000,vlinder26,289.06884765625,1.763946533203125,4.695285797119141 +20220909070000,vlinder27,288.93798828125,2.113555908203125,5.851535797119141 +20220909070000,vlinder28,288.89501953125,2.087188720703125,5.573215484619141 +20220909080000,vlinder01,289.2922058105469,1.9837646484375,5.289787292480469 +20220909080000,vlinder02,289.2746276855469,2.0823974609375,5.268302917480469 +20220909080000,vlinder03,289.5910339355469,1.4154052734375,4.683341979980469 +20220909080000,vlinder04,289.5910339355469,1.4154052734375,4.683341979980469 +20220909080000,vlinder05,289.2785339355469,2.1536865234375,5.561271667480469 +20220909080000,vlinder06,289.6945495605469,1.8128662109375,5.434318542480469 +20220909080000,vlinder07,289.6945495605469,1.8128662109375,5.434318542480469 +20220909080000,vlinder08,289.6945495605469,1.8128662109375,5.434318542480469 +20220909080000,vlinder09,289.3371276855469,1.8685302734375,5.533927917480469 +20220909080000,vlinder10,289.2980651855469,1.9183349609375,5.502677917480469 +20220909080000,vlinder11,289.5519714355469,1.5140380859375,5.544670104980469 +20220909080000,vlinder12,289.5519714355469,1.5140380859375,5.544670104980469 +20220909080000,vlinder13,289.5519714355469,1.5140380859375,5.544670104980469 +20220909080000,vlinder14,289.5285339355469,1.3763427734375,5.640373229980469 +20220909080000,vlinder15,289.3703308105469,1.8363037109375,5.558341979980469 +20220909080000,vlinder16,289.5285339355469,1.3763427734375,5.640373229980469 +20220909080000,vlinder17,289.8918151855469,2.0657958984375,4.596427917480469 +20220909080000,vlinder18,290.0793151855469,2.2279052734375,4.585685729980469 +20220909080000,vlinder19,289.2882995605469,2.0745849609375,5.855216979980469 +20220909080000,vlinder20,289.2882995605469,2.0745849609375,5.855216979980469 +20220909080000,vlinder21,289.6203308105469,5.5863037109375,7.597404479980469 +20220909080000,vlinder22,289.4172058105469,4.2943115234375,5.372795104980469 +20220909080000,vlinder23,289.1828308105469,2.5257568359375,6.267326354980469 +20220909080000,vlinder24,289.2121276855469,2.5697021484375,6.081779479980469 +20220909080000,vlinder25,289.1965026855469,2.0814208984375,5.662834167480469 +20220909080000,vlinder26,289.7394714355469,1.5657958984375,4.665763854980469 +20220909080000,vlinder27,289.2785339355469,2.1536865234375,5.561271667480469 +20220909080000,vlinder28,289.2922058105469,1.9837646484375,5.289787292480469 +20220909090000,vlinder01,289.9774932861328,3.08941650390625,5.670682907104492 +20220909090000,vlinder02,289.9931182861328,3.24859619140625,5.562284469604492 +20220909090000,vlinder03,290.3349151611328,1.95465087890625,5.390409469604492 +20220909090000,vlinder04,290.3349151611328,1.95465087890625,5.390409469604492 +20220909090000,vlinder05,290.0224151611328,3.31793212890625,5.809354782104492 +20220909090000,vlinder06,290.3544464111328,2.32769775390625,6.021268844604492 +20220909090000,vlinder07,290.3544464111328,2.32769775390625,6.021268844604492 +20220909090000,vlinder08,290.3544464111328,2.32769775390625,6.021268844604492 +20220909090000,vlinder09,289.9345245361328,2.69390869140625,6.055448532104492 +20220909090000,vlinder10,289.9169464111328,2.83941650390625,5.969511032104492 +20220909090000,vlinder11,290.2235870361328,2.26910400390625,6.200956344604492 +20220909090000,vlinder12,290.2235870361328,2.26910400390625,6.200956344604492 +20220909090000,vlinder13,290.2235870361328,2.26910400390625,6.200956344604492 +20220909090000,vlinder14,290.1923370361328,2.29449462890625,6.328886032104492 +20220909090000,vlinder15,289.9599151611328,2.57183837890625,6.117948532104492 +20220909090000,vlinder16,290.1923370361328,2.29449462890625,6.328886032104492 +20220909090000,vlinder17,290.7567901611328,2.84332275390625,5.034940719604492 +20220909090000,vlinder18,290.9462432861328,2.98004150390625,4.945096969604492 +20220909090000,vlinder19,289.8974151611328,2.67633056640625,6.318143844604492 +20220909090000,vlinder20,289.8974151611328,2.67633056640625,6.318143844604492 +20220909090000,vlinder21,290.4696807861328,6.34918212890625,5.606229782104492 +20220909090000,vlinder22,290.5067901611328,5.44586181640625,4.193143844604492 +20220909090000,vlinder23,290.0146026611328,3.66070556640625,6.240995407104492 +20220909090000,vlinder24,290.0478057861328,3.65386962890625,6.028104782104492 +20220909090000,vlinder25,289.9774932861328,3.31402587890625,5.972440719604492 +20220909090000,vlinder26,290.4950714111328,2.19488525390625,5.320096969604492 +20220909090000,vlinder27,290.0224151611328,3.31793212890625,5.809354782104492 +20220909090000,vlinder28,289.9774932861328,3.08941650390625,5.670682907104492 +20220909100000,vlinder01,291.1991424560547,3.6451568603515625,5.228139877319336 +20220909100000,vlinder02,291.2753143310547,3.7310943603515625,5.038686752319336 +20220909100000,vlinder03,291.0389862060547,2.1363677978515625,5.479116439819336 +20220909100000,vlinder04,291.0389862060547,2.1363677978515625,5.479116439819336 +20220909100000,vlinder05,291.2714080810547,3.7564849853515625,5.174428939819336 +20220909100000,vlinder06,291.2010955810547,3.0250396728515625,5.965444564819336 +20220909100000,vlinder07,291.2010955810547,3.0250396728515625,5.965444564819336 +20220909100000,vlinder08,291.2010955810547,3.0250396728515625,5.965444564819336 +20220909100000,vlinder09,290.9628143310547,3.7564849853515625,5.798452377319336 +20220909100000,vlinder10,291.0057830810547,3.8316802978515625,5.634389877319336 +20220909100000,vlinder11,291.0917205810547,2.7076568603515625,6.064077377319336 +20220909100000,vlinder12,291.0917205810547,2.7076568603515625,6.064077377319336 +20220909100000,vlinder13,291.0917205810547,2.7076568603515625,6.064077377319336 +20220909100000,vlinder14,291.0936737060547,2.6207427978515625,6.136343002319336 +20220909100000,vlinder15,290.9335174560547,3.6725006103515625,5.925405502319336 +20220909100000,vlinder16,291.0936737060547,2.6207427978515625,6.136343002319336 +20220909100000,vlinder17,291.4569549560547,2.7701568603515625,5.057241439819336 +20220909100000,vlinder18,291.6717987060547,2.9029693603515625,4.968374252319336 +20220909100000,vlinder19,290.8065643310547,3.7799224853515625,6.066030502319336 +20220909100000,vlinder20,290.8065643310547,3.7799224853515625,6.066030502319336 +20220909100000,vlinder21,291.3710174560547,6.6461334228515625,3.733022689819336 +20220909100000,vlinder22,291.9217987060547,5.4488677978515625,3.002553939819336 +20220909100000,vlinder23,291.2303924560547,3.9801177978515625,5.275991439819336 +20220909100000,vlinder24,291.2967987060547,4.0719146728515625,5.114858627319336 +20220909100000,vlinder25,291.2323455810547,3.6324615478515625,5.298452377319336 +20220909100000,vlinder26,291.1639862060547,2.3033599853515625,5.373647689819336 +20220909100000,vlinder27,291.2714080810547,3.7564849853515625,5.174428939819336 +20220909100000,vlinder28,291.1991424560547,3.6451568603515625,5.228139877319336 +20220909110000,vlinder01,292.1045837402344,3.8179779052734375,4.45109748840332 +20220909110000,vlinder02,292.2061462402344,3.8882904052734375,4.24406623840332 +20220909110000,vlinder03,291.8467712402344,2.5767669677734375,5.52140998840332 +20220909110000,vlinder04,291.8467712402344,2.5767669677734375,5.52140998840332 +20220909110000,vlinder05,292.1690368652344,4.0240325927734375,4.33195686340332 +20220909110000,vlinder06,291.8799743652344,3.3384857177734375,5.50383186340332 +20220909110000,vlinder07,291.8799743652344,3.3384857177734375,5.50383186340332 +20220909110000,vlinder08,291.8799743652344,3.3384857177734375,5.50383186340332 +20220909110000,vlinder09,291.7080993652344,3.9048919677734375,5.08293342590332 +20220909110000,vlinder10,291.7881774902344,3.9527435302734375,4.88371467590332 +20220909110000,vlinder11,291.9053649902344,3.1148529052734375,5.73332405090332 +20220909110000,vlinder12,291.9053649902344,3.1148529052734375,5.73332405090332 +20220909110000,vlinder13,291.9053649902344,3.1148529052734375,5.73332405090332 +20220909110000,vlinder14,291.9952087402344,3.0523529052734375,5.83293342590332 +20220909110000,vlinder15,291.6436462402344,3.8453216552734375,5.25187873840332 +20220909110000,vlinder16,291.9952087402344,3.0523529052734375,5.83293342590332 +20220909110000,vlinder17,291.7608337402344,2.6587982177734375,5.06633186340332 +20220909110000,vlinder18,291.9170837402344,2.7115325927734375,4.99894905090332 +20220909110000,vlinder19,291.3643493652344,3.8892669677734375,5.40324592590332 +20220909110000,vlinder20,291.3643493652344,3.8892669677734375,5.40324592590332 +20220909110000,vlinder21,291.5655212402344,6.9752044677734375,2.7753162384033203 +20220909110000,vlinder22,292.5811462402344,5.4400482177734375,2.5311756134033203 +20220909110000,vlinder23,292.0420837402344,4.4976654052734375,4.34074592590332 +20220909110000,vlinder24,292.1065368652344,4.4605560302734375,4.17668342590332 +20220909110000,vlinder25,292.1514587402344,4.0132904052734375,4.46672248840332 +20220909110000,vlinder26,291.8897399902344,2.6509857177734375,5.35539436340332 +20220909110000,vlinder27,292.1690368652344,4.0240325927734375,4.33195686340332 +20220909110000,vlinder28,292.1045837402344,3.8179779052734375,4.45109748840332 +20220909120000,vlinder01,292.7295379638672,4.0806884765625,3.920076370239258 +20220909120000,vlinder02,292.7529754638672,4.1861572265625,3.715974807739258 +20220909120000,vlinder03,292.5869598388672,3.0455322265625,5.176424026489258 +20220909120000,vlinder04,292.5869598388672,3.0455322265625,5.176424026489258 +20220909120000,vlinder05,292.5791473388672,4.4049072265625,3.524080276489258 +20220909120000,vlinder06,292.5732879638672,3.5777587890625,5.043123245239258 +20220909120000,vlinder07,292.5732879638672,3.5777587890625,5.043123245239258 +20220909120000,vlinder08,292.5732879638672,3.5777587890625,5.043123245239258 +20220909120000,vlinder09,292.3701629638672,4.1500244140625,4.595857620239258 +20220909120000,vlinder10,292.4424285888672,4.2281494140625,4.386873245239258 +20220909120000,vlinder11,292.6689910888672,3.5543212890625,5.162263870239258 +20220909120000,vlinder12,292.6689910888672,3.5543212890625,5.162263870239258 +20220909120000,vlinder13,292.6689910888672,3.5543212890625,5.162263870239258 +20220909120000,vlinder14,292.7920379638672,3.6080322265625,5.189607620239258 +20220909120000,vlinder15,292.3115692138672,4.0767822265625,4.776033401489258 +20220909120000,vlinder16,292.7920379638672,3.6080322265625,5.189607620239258 +20220909120000,vlinder17,292.3936004638672,2.9088134765625,4.895174026489258 +20220909120000,vlinder18,292.5264129638672,2.9361572265625,4.835603713989258 +20220909120000,vlinder19,292.1436004638672,4.2506103515625,4.963045120239258 +20220909120000,vlinder20,292.1436004638672,4.2506103515625,4.963045120239258 +20220909120000,vlinder21,291.2393035888672,7.3355712890625,1.8302326202392578 +20220909120000,vlinder22,292.6279754638672,5.4234619140625,2.326326370239258 +20220909120000,vlinder23,291.8936004638672,5.1461181640625,2.985017776489258 +20220909120000,vlinder24,292.1709442138672,4.9302978515625,3.072420120239258 +20220909120000,vlinder25,292.3662567138672,4.5435791015625,3.391267776489258 +20220909120000,vlinder26,292.6611785888672,3.1285400390625,5.056795120239258 +20220909120000,vlinder27,292.5791473388672,4.4049072265625,3.524080276489258 +20220909120000,vlinder28,292.7295379638672,4.0806884765625,3.920076370239258 +20220909130000,vlinder01,291.55828857421875,4.2647552490234375,3.685445785522461 +20220909130000,vlinder02,291.68328857421875,4.1036224365234375,3.504781723022461 +20220909130000,vlinder03,292.84344482421875,3.5938568115234375,4.756246566772461 +20220909130000,vlinder04,292.84344482421875,3.5938568115234375,4.756246566772461 +20220909130000,vlinder05,291.48211669921875,4.3272552490234375,2.862203598022461 +20220909130000,vlinder06,291.46063232421875,4.9288177490234375,4.891012191772461 +20220909130000,vlinder07,291.46063232421875,4.9288177490234375,4.891012191772461 +20220909130000,vlinder08,291.46063232421875,4.9288177490234375,4.891012191772461 +20220909130000,vlinder09,291.16961669921875,5.1817474365234375,4.357320785522461 +20220909130000,vlinder10,291.29852294921875,4.9415130615234375,4.147848129272461 +20220909130000,vlinder11,291.45672607421875,4.6514739990234375,4.407613754272461 +20220909130000,vlinder12,291.45672607421875,4.6514739990234375,4.407613754272461 +20220909130000,vlinder13,291.45672607421875,4.6514739990234375,4.407613754272461 +20220909130000,vlinder14,291.47235107421875,4.5948333740234375,4.092672348022461 +20220909130000,vlinder15,291.09735107421875,5.3370208740234375,4.546285629272461 +20220909130000,vlinder16,291.47235107421875,4.5948333740234375,4.092672348022461 +20220909130000,vlinder17,293.07781982421875,2.9864349365234375,4.712789535522461 +20220909130000,vlinder18,293.17938232421875,3.0323333740234375,4.702535629272461 +20220909130000,vlinder19,291.32781982421875,5.3682708740234375,4.770406723022461 +20220909130000,vlinder20,291.32781982421875,5.3682708740234375,4.770406723022461 +20220909130000,vlinder21,290.85125732421875,7.4288177490234375,0.41884422302246094 +20220909130000,vlinder22,291.13055419921875,5.8907318115234375,2.117086410522461 +20220909130000,vlinder23,291.00946044921875,4.9424896240234375,1.504293441772461 +20220909130000,vlinder24,291.27313232421875,4.7891693115234375,1.986227035522461 +20220909130000,vlinder25,291.22821044921875,4.3858489990234375,2.263082504272461 +20220909130000,vlinder26,293.12469482421875,3.5098724365234375,4.786520004272461 +20220909130000,vlinder27,291.48211669921875,4.3272552490234375,2.862203598022461 +20220909130000,vlinder28,291.55828857421875,4.2647552490234375,3.685445785522461 +20220909140000,vlinder01,289.9701385498047,4.3044891357421875,2.5353307723999023 +20220909140000,vlinder02,289.8353729248047,4.1316375732421875,2.3532018661499023 +20220909140000,vlinder03,290.4056854248047,3.7312469482421875,3.2145299911499023 +20220909140000,vlinder04,290.4056854248047,3.7312469482421875,3.2145299911499023 +20220909140000,vlinder05,289.8490447998047,4.3962860107421875,2.1940221786499023 +20220909140000,vlinder06,291.1732635498047,4.2117156982421875,3.4108190536499023 +20220909140000,vlinder07,291.1732635498047,4.2117156982421875,3.4108190536499023 +20220909140000,vlinder08,291.1732635498047,4.2117156982421875,3.4108190536499023 +20220909140000,vlinder09,290.7592010498047,5.1794891357421875,3.4386510848999023 +20220909140000,vlinder10,290.5228729248047,4.9880828857421875,3.2316198348999023 +20220909140000,vlinder11,290.8978729248047,4.2078094482421875,3.1686315536499023 +20220909140000,vlinder12,290.8978729248047,4.2078094482421875,3.1686315536499023 +20220909140000,vlinder13,290.8978729248047,4.2078094482421875,3.1686315536499023 +20220909140000,vlinder14,290.8197479248047,4.3972625732421875,3.0509557723999023 +20220909140000,vlinder15,290.9467010498047,5.2468719482421875,3.5973424911499023 +20220909140000,vlinder16,290.8197479248047,4.3972625732421875,3.0509557723999023 +20220909140000,vlinder17,292.0599822998047,3.9685516357421875,4.519217491149902 +20220909140000,vlinder18,292.4095916748047,3.9509735107421875,4.566092491149902 +20220909140000,vlinder19,291.1127166748047,5.1638641357421875,3.8839635848999023 +20220909140000,vlinder20,291.1127166748047,5.1638641357421875,3.8839635848999023 +20220909140000,vlinder21,289.9017791748047,7.3826141357421875,1.2794713973999023 +20220909140000,vlinder22,290.7338104248047,4.6892547607421875,1.8004674911499023 +20220909140000,vlinder23,289.8881072998047,4.9382781982421875,1.7931432723999023 +20220909140000,vlinder24,289.8275604248047,4.8445281982421875,1.9122838973999023 +20220909140000,vlinder25,289.8842010498047,4.4158172607421875,2.0646276473999023 +20220909140000,vlinder26,290.6283416748047,3.7644500732421875,3.3185338973999023 +20220909140000,vlinder27,289.8490447998047,4.3962860107421875,2.1940221786499023 +20220909140000,vlinder28,289.9701385498047,4.3044891357421875,2.5353307723999023 +20220909150000,vlinder01,290.6858825683594,4.2077484130859375,1.9963359832763672 +20220909150000,vlinder02,290.6976013183594,3.9167327880859375,1.8615703582763672 +20220909150000,vlinder03,290.8831481933594,3.8200531005859375,3.089109420776367 +20220909150000,vlinder04,290.8831481933594,3.8200531005859375,3.089109420776367 +20220909150000,vlinder05,290.4593200683594,4.1667327880859375,1.8703594207763672 +20220909150000,vlinder06,291.3226013183594,5.6833343505859375,3.042234420776367 +20220909150000,vlinder07,291.3226013183594,5.6833343505859375,3.042234420776367 +20220909150000,vlinder08,291.3226013183594,5.6833343505859375,3.042234420776367 +20220909150000,vlinder09,290.8499450683594,5.5720062255859375,2.677000045776367 +20220909150000,vlinder10,290.8167419433594,5.1784515380859375,2.516843795776367 +20220909150000,vlinder11,290.5823669433594,5.4372406005859375,2.878171920776367 +20220909150000,vlinder12,290.5823669433594,5.4372406005859375,2.878171920776367 +20220909150000,vlinder13,290.5823669433594,5.4372406005859375,2.878171920776367 +20220909150000,vlinder14,290.2854919433594,5.3503265380859375,2.741453170776367 +20220909150000,vlinder15,290.9065856933594,5.8600921630859375,2.832273483276367 +20220909150000,vlinder16,290.2854919433594,5.3503265380859375,2.741453170776367 +20220909150000,vlinder17,291.5433044433594,3.6911468505859375,3.551023483276367 +20220909150000,vlinder18,291.6546325683594,3.6862640380859375,3.645750045776367 +20220909150000,vlinder19,291.0550231933594,5.9977874755859375,3.301023483276367 +20220909150000,vlinder20,291.0550231933594,5.9977874755859375,3.301023483276367 +20220909150000,vlinder21,289.9534606933594,6.5915374755859375,1.0412578582763672 +20220909150000,vlinder22,290.7737731933594,4.9587249755859375,1.4133281707763672 +20220909150000,vlinder23,289.9964294433594,4.7302093505859375,1.8635234832763672 +20220909150000,vlinder24,290.1936950683594,4.4968109130859375,1.7824687957763672 +20220909150000,vlinder25,290.1839294433594,4.3503265380859375,1.9377422332763672 +20220909150000,vlinder26,291.2327575683594,3.8630218505859375,3.178953170776367 +20220909150000,vlinder27,290.4593200683594,4.1667327880859375,1.8703594207763672 +20220909150000,vlinder28,290.6858825683594,4.2077484130859375,1.9963359832763672 +20220909160000,vlinder01,290.5747528076172,4.164886474609375,2.0817718505859375 +20220909160000,vlinder02,290.4731903076172,4.059417724609375,1.9704437255859375 +20220909160000,vlinder03,290.7837371826172,4.205902099609375,2.4714202880859375 +20220909160000,vlinder04,290.7837371826172,4.205902099609375,2.4714202880859375 +20220909160000,vlinder05,290.4360809326172,4.276214599609375,1.9411468505859375 +20220909160000,vlinder06,291.3618621826172,4.991058349609375,2.4821624755859375 +20220909160000,vlinder07,291.3618621826172,4.991058349609375,2.4821624755859375 +20220909160000,vlinder08,291.3618621826172,4.991058349609375,2.4821624755859375 +20220909160000,vlinder09,290.7856903076172,4.594573974609375,2.6022796630859375 +20220909160000,vlinder10,290.6841278076172,4.432464599609375,2.5114593505859375 +20220909160000,vlinder11,290.8110809326172,4.616058349609375,2.1706390380859375 +20220909160000,vlinder12,290.8110809326172,4.616058349609375,2.1706390380859375 +20220909160000,vlinder13,290.8110809326172,4.616058349609375,2.1706390380859375 +20220909160000,vlinder14,290.6001434326172,4.455902099609375,2.0475921630859375 +20220909160000,vlinder15,290.8794403076172,4.733245849609375,2.6716156005859375 +20220909160000,vlinder16,290.6001434326172,4.455902099609375,2.0475921630859375 +20220909160000,vlinder17,291.0493621826172,4.012542724609375,3.3473968505859375 +20220909160000,vlinder18,291.2114715576172,3.853363037109375,3.3425140380859375 +20220909160000,vlinder19,290.8091278076172,4.795745849609375,2.9802093505859375 +20220909160000,vlinder20,290.8091278076172,4.795745849609375,2.9802093505859375 +20220909160000,vlinder21,289.9009246826172,6.639495849609375,1.6081390380859375 +20220909160000,vlinder22,289.8677215576172,4.520355224609375,1.3112640380859375 +20220909160000,vlinder23,290.1020965576172,4.798675537109375,1.7936859130859375 +20220909160000,vlinder24,290.1958465576172,4.620941162109375,1.8151702880859375 +20220909160000,vlinder25,290.3149871826172,4.401214599609375,1.8835296630859375 +20220909160000,vlinder26,291.0337371826172,4.402191162109375,2.6706390380859375 +20220909160000,vlinder27,290.4360809326172,4.276214599609375,1.9411468505859375 +20220909160000,vlinder28,290.5747528076172,4.164886474609375,2.0817718505859375 +20220909170000,vlinder01,289.3843078613281,3.7974700927734375,1.849081039428711 +20220909170000,vlinder02,289.3784484863281,3.7261810302734375,1.794393539428711 +20220909170000,vlinder03,290.3843078613281,3.2300872802734375,2.150838851928711 +20220909170000,vlinder04,290.3843078613281,3.2300872802734375,2.150838851928711 +20220909170000,vlinder05,289.4429016113281,3.8521575927734375,1.880331039428711 +20220909170000,vlinder06,290.3335266113281,4.2457122802734375,2.112752914428711 +20220909170000,vlinder07,290.3335266113281,4.2457122802734375,2.112752914428711 +20220909170000,vlinder08,290.3335266113281,4.2457122802734375,2.112752914428711 +20220909170000,vlinder09,289.7534484863281,4.4898529052734375,2.159627914428711 +20220909170000,vlinder10,289.7085266113281,4.4039154052734375,2.107870101928711 +20220909170000,vlinder11,289.9663391113281,3.8336029052734375,2.232870101928711 +20220909170000,vlinder12,289.9663391113281,3.8336029052734375,2.232870101928711 +20220909170000,vlinder13,289.9663391113281,3.8336029052734375,2.232870101928711 +20220909170000,vlinder14,289.7983703613281,3.6910247802734375,2.293416976928711 +20220909170000,vlinder15,289.8413391113281,4.5640716552734375,2.202596664428711 +20220909170000,vlinder16,289.7983703613281,3.6910247802734375,2.293416976928711 +20220909170000,vlinder17,290.5210266113281,3.0757904052734375,2.870565414428711 +20220909170000,vlinder18,290.5952453613281,3.0337982177734375,2.932088851928711 +20220909170000,vlinder19,290.2710266113281,5.0113372802734375,2.465291976928711 +20220909170000,vlinder20,290.2710266113281,5.0113372802734375,2.465291976928711 +20220909170000,vlinder21,289.7085266113281,6.3863372802734375,1.802206039428711 +20220909170000,vlinder22,289.8061828613281,4.4566497802734375,1.732870101928711 +20220909170000,vlinder23,289.5718078613281,4.2193450927734375,2.040487289428711 +20220909170000,vlinder24,289.4995422363281,4.1295013427734375,1.934041976928711 +20220909170000,vlinder25,289.4819641113281,3.8511810302734375,1.977010726928711 +20220909170000,vlinder26,290.6538391113281,3.3902435302734375,2.216268539428711 +20220909170000,vlinder27,289.4429016113281,3.8521575927734375,1.880331039428711 +20220909170000,vlinder28,289.3843078613281,3.7974700927734375,1.849081039428711 +20220909180000,vlinder01,289.16278076171875,3.47735595703125,2.0793838500976562 +20220909180000,vlinder02,289.16473388671875,3.50958251953125,1.9993057250976562 +20220909180000,vlinder03,289.64324951171875,3.13458251953125,2.2932510375976562 +20220909180000,vlinder04,289.64324951171875,3.13458251953125,2.2932510375976562 +20220909180000,vlinder05,289.19207763671875,3.76934814453125,1.9748916625976562 +20220909180000,vlinder06,289.62567138671875,3.52032470703125,2.4084854125976562 +20220909180000,vlinder07,289.62567138671875,3.52032470703125,2.4084854125976562 +20220909180000,vlinder08,289.62567138671875,3.52032470703125,2.4084854125976562 +20220909180000,vlinder09,289.34442138671875,3.67559814453125,2.3420791625976562 +20220909180000,vlinder10,289.33660888671875,3.70391845703125,2.2590713500976562 +20220909180000,vlinder11,289.36004638671875,3.36602783203125,2.3411026000976562 +20220909180000,vlinder12,289.36004638671875,3.36602783203125,2.3411026000976562 +20220909180000,vlinder13,289.36004638671875,3.36602783203125,2.3411026000976562 +20220909180000,vlinder14,289.27020263671875,3.30938720703125,2.3235244750976562 +20220909180000,vlinder15,289.37176513671875,3.66778564453125,2.4036026000976562 +20220909180000,vlinder16,289.27020263671875,3.30938720703125,2.3235244750976562 +20220909180000,vlinder17,290.02215576171875,3.18634033203125,2.6936416625976562 +20220909180000,vlinder18,290.15496826171875,3.16876220703125,2.7727432250976562 +20220909180000,vlinder19,289.60223388671875,4.16680908203125,2.4397354125976562 +20220909180000,vlinder20,289.60223388671875,4.16680908203125,2.4397354125976562 +20220909180000,vlinder21,289.45379638671875,6.37286376953125,1.5246963500976562 +20220909180000,vlinder22,289.24090576171875,4.40216064453125,1.5911026000976562 +20220909180000,vlinder23,289.18231201171875,4.39630126953125,1.8879776000976562 +20220909180000,vlinder24,289.17254638671875,4.22540283203125,1.8909072875976562 +20220909180000,vlinder25,289.15301513671875,3.93341064453125,1.9377822875976562 +20220909180000,vlinder26,289.83270263671875,3.28497314453125,2.2620010375976562 +20220909180000,vlinder27,289.19207763671875,3.76934814453125,1.9748916625976562 +20220909180000,vlinder28,289.16278076171875,3.47735595703125,2.0793838500976562 +20220909190000,vlinder01,288.9925231933594,3.084686279296875,1.6483001708984375 +20220909190000,vlinder02,289.1194763183594,3.095428466796875,1.5779876708984375 +20220909190000,vlinder03,289.1683044433594,2.228240966796875,2.2059173583984375 +20220909190000,vlinder04,289.1683044433594,2.228240966796875,2.2059173583984375 +20220909190000,vlinder05,289.1956481933594,3.011444091796875,1.7127532958984375 +20220909190000,vlinder06,288.6800231933594,3.002655029296875,2.2781829833984375 +20220909190000,vlinder07,288.6800231933594,3.002655029296875,2.2781829833984375 +20220909190000,vlinder08,288.6800231933594,3.002655029296875,2.2781829833984375 +20220909190000,vlinder09,288.5550231933594,3.429412841796875,1.8035736083984375 +20220909190000,vlinder10,288.6468200683594,3.404022216796875,1.7039642333984375 +20220909190000,vlinder11,289.1018981933594,2.893280029296875,2.2293548583984375 +20220909190000,vlinder12,289.1018981933594,2.893280029296875,2.2293548583984375 +20220909190000,vlinder13,289.1018981933594,2.893280029296875,2.2293548583984375 +20220909190000,vlinder14,289.3421325683594,2.859100341796875,2.1775970458984375 +20220909190000,vlinder15,288.4749450683594,3.434295654296875,1.8992767333984375 +20220909190000,vlinder16,289.3421325683594,2.859100341796875,2.1775970458984375 +20220909190000,vlinder17,288.9300231933594,2.499725341796875,2.0574798583984375 +20220909190000,vlinder18,289.0061950683594,2.434295654296875,2.0272064208984375 +20220909190000,vlinder19,288.1897888183594,3.659881591796875,1.9236907958984375 +20220909190000,vlinder20,288.1897888183594,3.659881591796875,1.9236907958984375 +20220909190000,vlinder21,290.5882263183594,5.353240966796875,2.1883392333984375 +20220909190000,vlinder22,289.9007263183594,4.312225341796875,2.0262298583984375 +20220909190000,vlinder23,289.4495544433594,3.025115966796875,1.9695892333984375 +20220909190000,vlinder24,289.3577575683594,3.108123779296875,1.8387298583984375 +20220909190000,vlinder25,289.1956481933594,2.862030029296875,1.8504486083984375 +20220909190000,vlinder26,289.0433044433594,2.389373779296875,2.1981048583984375 +20220909190000,vlinder27,289.1956481933594,3.011444091796875,1.7127532958984375 +20220909190000,vlinder28,288.9925231933594,3.084686279296875,1.6483001708984375 +20220909200000,vlinder01,288.85064697265625,2.8172607421875,2.1853885650634766 +20220909200000,vlinder02,288.93658447265625,2.9100341796875,2.1150760650634766 +20220909200000,vlinder03,288.45220947265625,1.9891357421875,3.0232791900634766 +20220909200000,vlinder04,288.45220947265625,1.9891357421875,3.0232791900634766 +20220909200000,vlinder05,289.04400634765625,2.8719482421875,2.2908573150634766 +20220909200000,vlinder06,288.29400634765625,2.2117919921875,2.8611698150634766 +20220909200000,vlinder07,288.29400634765625,2.2117919921875,2.8611698150634766 +20220909200000,vlinder08,288.29400634765625,2.2117919921875,2.8611698150634766 +20220909200000,vlinder09,288.57916259765625,2.7313232421875,2.3875370025634766 +20220909200000,vlinder10,288.65924072265625,2.8289794921875,2.2840213775634766 +20220909200000,vlinder11,288.57916259765625,2.2498779296875,2.8426151275634766 +20220909200000,vlinder12,288.57916259765625,2.2498779296875,2.8426151275634766 +20220909200000,vlinder13,288.57916259765625,2.2498779296875,2.8426151275634766 +20220909200000,vlinder14,288.80963134765625,2.3074951171875,2.7840213775634766 +20220909200000,vlinder15,288.47955322265625,2.6405029296875,2.4890995025634766 +20220909200000,vlinder16,288.80963134765625,2.3074951171875,2.7840213775634766 +20220909200000,vlinder17,288.32720947265625,2.6766357421875,2.7820682525634766 +20220909200000,vlinder18,288.46392822265625,2.7313232421875,2.7361698150634766 +20220909200000,vlinder19,288.10650634765625,2.6971435546875,2.5818729400634766 +20220909200000,vlinder20,288.10650634765625,2.6971435546875,2.5818729400634766 +20220909200000,vlinder21,290.38775634765625,5.6072998046875,3.2625370025634766 +20220909200000,vlinder22,289.30767822265625,4.0653076171875,2.4705448150634766 +20220909200000,vlinder23,289.27252197265625,2.9481201171875,2.6326541900634766 +20220909200000,vlinder24,289.18853759765625,3.0496826171875,2.5164432525634766 +20220909200000,vlinder25,289.01275634765625,2.7010498046875,2.4256229400634766 +20220909200000,vlinder26,288.31939697265625,2.1239013671875,2.9930057525634766 +20220909200000,vlinder27,289.04400634765625,2.8719482421875,2.2908573150634766 +20220909200000,vlinder28,288.85064697265625,2.8172607421875,2.1853885650634766 +20220909210000,vlinder01,288.4645080566406,2.79119873046875,2.5798816680908203 +20220909210000,vlinder02,288.4977111816406,2.83905029296875,2.5437488555908203 +20220909210000,vlinder03,287.9273986816406,1.88494873046875,2.7947254180908203 +20220909210000,vlinder04,287.9273986816406,1.88494873046875,2.7947254180908203 +20220909210000,vlinder05,288.7047424316406,2.89276123046875,2.7048816680908203 +20220909210000,vlinder06,288.1266174316406,2.15838623046875,2.8806629180908203 +20220909210000,vlinder07,288.1266174316406,2.15838623046875,2.8806629180908203 +20220909210000,vlinder08,288.1266174316406,2.15838623046875,2.8806629180908203 +20220909210000,vlinder09,288.3434143066406,2.90350341796875,2.6404285430908203 +20220909210000,vlinder10,288.3629455566406,2.96600341796875,2.5876941680908203 +20220909210000,vlinder11,288.3375549316406,2.00897216796875,2.9910144805908203 +20220909210000,vlinder12,288.3375549316406,2.00897216796875,2.9910144805908203 +20220909210000,vlinder13,288.3375549316406,2.00897216796875,2.9910144805908203 +20220909210000,vlinder14,288.5484924316406,1.98846435546875,3.0359363555908203 +20220909210000,vlinder15,288.2848205566406,2.82244873046875,2.6882801055908203 +20220909210000,vlinder16,288.5484924316406,1.98846435546875,3.0359363555908203 +20220909210000,vlinder17,287.7027893066406,2.65545654296875,2.4822254180908203 +20220909210000,vlinder18,287.8219299316406,2.74139404296875,2.4519519805908203 +20220909210000,vlinder19,287.9098205566406,2.87518310546875,2.7517566680908203 +20220909210000,vlinder20,287.9098205566406,2.87518310546875,2.7517566680908203 +20220909210000,vlinder21,290.2457580566406,6.48065185546875,3.0525379180908203 +20220909210000,vlinder22,288.8160705566406,4.08807373046875,2.5945301055908203 +20220909210000,vlinder23,289.0973205566406,3.10076904296875,3.0095691680908203 +20220909210000,vlinder24,288.9234924316406,3.21014404296875,2.8865222930908203 +20220909210000,vlinder25,288.7535705566406,2.71697998046875,2.8533191680908203 +20220909210000,vlinder26,287.8121643066406,2.04901123046875,2.7039051055908203 +20220909210000,vlinder27,288.7047424316406,2.89276123046875,2.7048816680908203 +20220909210000,vlinder28,288.4645080566406,2.79119873046875,2.5798816680908203 +20220909220000,vlinder01,288.33197021484375,3.0965423583984375,2.637357711791992 +20220909220000,vlinder02,288.34954833984375,3.0662689208984375,2.608060836791992 +20220909220000,vlinder03,287.68939208984375,2.0897064208984375,2.750638961791992 +20220909220000,vlinder04,287.68939208984375,2.0897064208984375,2.750638961791992 +20220909220000,vlinder05,288.60931396484375,3.1805267333984375,2.747709274291992 +20220909220000,vlinder06,288.07415771484375,2.6502532958984375,2.899076461791992 +20220909220000,vlinder07,288.07415771484375,2.6502532958984375,2.899076461791992 +20220909220000,vlinder08,288.07415771484375,2.6502532958984375,2.899076461791992 +20220909220000,vlinder09,288.24603271484375,3.3504486083984375,2.693021774291992 +20220909220000,vlinder10,288.24798583984375,3.3494720458984375,2.653959274291992 +20220909220000,vlinder11,288.30072021484375,2.5535736083984375,3.076810836791992 +20220909220000,vlinder12,288.30072021484375,2.5535736083984375,3.076810836791992 +20220909220000,vlinder13,288.30072021484375,2.5535736083984375,3.076810836791992 +20220909220000,vlinder14,288.50970458984375,2.5525970458984375,3.155912399291992 +20220909220000,vlinder15,288.20111083984375,3.3094329833984375,2.732084274291992 +20220909220000,vlinder16,288.50970458984375,2.5525970458984375,3.155912399291992 +20220909220000,vlinder17,287.34368896484375,2.4725189208984375,2.628568649291992 +20220909220000,vlinder18,287.43743896484375,2.5379486083984375,2.594388961791992 +20220909220000,vlinder19,287.84759521484375,3.3631439208984375,2.776029586791992 +20220909220000,vlinder20,287.84759521484375,3.3631439208984375,2.776029586791992 +20220909220000,vlinder21,290.37689208984375,6.5418548583984375,2.144193649291992 +20220909220000,vlinder22,288.80072021484375,3.8406829833984375,2.353178024291992 +20220909220000,vlinder23,289.08782958984375,3.4031829833984375,2.990873336791992 +20220909220000,vlinder24,288.90032958984375,3.4774017333984375,2.859037399291992 +20220909220000,vlinder25,288.68743896484375,3.0379486083984375,2.921537399291992 +20220909220000,vlinder26,287.54876708984375,2.1863861083984375,2.697904586791992 +20220909220000,vlinder27,288.60931396484375,3.1805267333984375,2.747709274291992 +20220909220000,vlinder28,288.33197021484375,3.0965423583984375,2.637357711791992 +20220909230000,vlinder01,288.13832092285156,2.767303466796875,2.7812557220458984 +20220909230000,vlinder02,288.16761779785156,2.706756591796875,2.7451229095458984 +20220909230000,vlinder03,287.73402404785156,2.036834716796875,2.7890682220458984 +20220909230000,vlinder04,287.73402404785156,2.036834716796875,2.7890682220458984 +20220909230000,vlinder05,288.48988342285156,2.881561279296875,2.7441463470458984 +20220909230000,vlinder06,288.03089904785156,2.729217529296875,2.9306697845458984 +20220909230000,vlinder07,288.03089904785156,2.729217529296875,2.9306697845458984 +20220909230000,vlinder08,288.03089904785156,2.729217529296875,2.9306697845458984 +20220909230000,vlinder09,288.03480529785156,3.055389404296875,2.9218807220458984 +20220909230000,vlinder10,288.03480529785156,2.999725341796875,2.8925838470458984 +20220909230000,vlinder11,288.25746154785156,2.629608154296875,3.0830135345458984 +20220909230000,vlinder12,288.25746154785156,2.629608154296875,3.0830135345458984 +20220909230000,vlinder13,288.25746154785156,2.629608154296875,3.0830135345458984 +20220909230000,vlinder14,288.45277404785156,2.597381591796875,3.1621150970458984 +20220909230000,vlinder15,288.00355529785156,3.072967529296875,2.9462947845458984 +20220909230000,vlinder16,288.45277404785156,2.597381591796875,3.1621150970458984 +20220909230000,vlinder17,287.31800842285156,2.228240966796875,2.6220760345458984 +20220909230000,vlinder18,287.38636779785156,2.255584716796875,2.5888729095458984 +20220909230000,vlinder19,287.70472717285156,3.174530029296875,2.9814510345458984 +20220909230000,vlinder20,287.70472717285156,3.174530029296875,2.9814510345458984 +20220909230000,vlinder21,290.46839904785156,5.950897216796875,1.0029354095458984 +20220909230000,vlinder22,288.82777404785156,3.366912841796875,1.9912166595458984 +20220909230000,vlinder23,289.12855529785156,3.228240966796875,2.6572322845458984 +20220909230000,vlinder24,288.86488342285156,3.221405029296875,2.6181697845458984 +20220909230000,vlinder25,288.64418029785156,2.836639404296875,2.8388729095458984 +20220909230000,vlinder26,287.62074279785156,2.131561279296875,2.7119197845458984 +20220909230000,vlinder27,288.48988342285156,2.881561279296875,2.7441463470458984 +20220909230000,vlinder28,288.13832092285156,2.767303466796875,2.7812557220458984 +20220910000000,vlinder01,287.9730682373047,2.3670196533203125,2.9091644287109375 +20220910000000,vlinder02,288.0140838623047,2.2869415283203125,2.8525238037109375 +20220910000000,vlinder03,287.5531463623047,1.9129180908203125,2.8066253662109375 +20220910000000,vlinder04,287.5531463623047,1.9129180908203125,2.8066253662109375 +20220910000000,vlinder05,288.3226776123047,2.4734649658203125,2.7773284912109375 +20220910000000,vlinder06,287.8324432373047,2.5261993408203125,3.0888519287109375 +20220910000000,vlinder07,287.8324432373047,2.5261993408203125,3.0888519287109375 +20220910000000,vlinder08,287.8324432373047,2.5261993408203125,3.0888519287109375 +20220910000000,vlinder09,287.8207244873047,2.6717071533203125,3.1611175537109375 +20220910000000,vlinder10,287.8265838623047,2.5935821533203125,3.1152191162109375 +20220910000000,vlinder11,288.0199432373047,2.3670196533203125,3.1816253662109375 +20220910000000,vlinder12,288.0199432373047,2.3670196533203125,3.1816253662109375 +20220910000000,vlinder13,288.0199432373047,2.3670196533203125,3.1816253662109375 +20220910000000,vlinder14,288.2054901123047,2.2879180908203125,3.2411956787109375 +20220910000000,vlinder15,287.7836151123047,2.7166290283203125,3.1933441162109375 +20220910000000,vlinder16,288.2054901123047,2.2879180908203125,3.2411956787109375 +20220910000000,vlinder17,287.2054901123047,2.1404571533203125,2.5468597412109375 +20220910000000,vlinder18,287.2933807373047,2.1599884033203125,2.5312347412109375 +20220910000000,vlinder19,287.4574432373047,2.8621368408203125,3.2792816162109375 +20220910000000,vlinder20,287.4574432373047,2.8621368408203125,3.2792816162109375 +20220910000000,vlinder21,290.3402557373047,5.3943634033203125,0.4892425537109375 +20220910000000,vlinder22,288.7758026123047,2.9168243408203125,1.7031097412109375 +20220910000000,vlinder23,288.9554901123047,2.8299102783203125,2.4990081787109375 +20220910000000,vlinder24,288.7074432373047,2.8103790283203125,2.5341644287109375 +20220910000000,vlinder25,288.4711151123047,2.4373321533203125,2.8124847412109375 +20220910000000,vlinder26,287.4359588623047,2.0496368408203125,2.6923675537109375 +20220910000000,vlinder27,288.3226776123047,2.4734649658203125,2.7773284912109375 +20220910000000,vlinder28,287.9730682373047,2.3670196533203125,2.9091644287109375 +20220910010000,vlinder01,288.09149169921875,2.3987579345703125,3.0856781005859375 +20220910010000,vlinder02,288.15008544921875,2.3264923095703125,3.0134124755859375 +20220910010000,vlinder03,287.49383544921875,1.9553985595703125,2.9040374755859375 +20220910010000,vlinder04,287.49383544921875,1.9553985595703125,2.9040374755859375 +20220910010000,vlinder05,288.42156982421875,2.4583282470703125,2.7790374755859375 +20220910010000,vlinder06,287.79266357421875,2.4944610595703125,3.4020843505859375 +20220910010000,vlinder07,287.79266357421875,2.4944610595703125,3.4020843505859375 +20220910010000,vlinder08,287.79266357421875,2.4944610595703125,3.4020843505859375 +20220910010000,vlinder09,287.84149169921875,2.6927032470703125,3.3874359130859375 +20220910010000,vlinder10,287.87469482421875,2.6233673095703125,3.3278656005859375 +20220910010000,vlinder11,288.03289794921875,2.3870391845703125,3.1725921630859375 +20220910010000,vlinder12,288.03289794921875,2.3870391845703125,3.1725921630859375 +20220910010000,vlinder13,288.03289794921875,2.3870391845703125,3.1725921630859375 +20220910010000,vlinder14,288.23602294921875,2.3430938720703125,3.0749359130859375 +20220910010000,vlinder15,287.78289794921875,2.7278594970703125,3.4372406005859375 +20220910010000,vlinder16,288.23602294921875,2.3430938720703125,3.0749359130859375 +20220910010000,vlinder17,287.15789794921875,2.0891876220703125,2.8288421630859375 +20220910010000,vlinder18,287.24774169921875,2.1311798095703125,2.8073577880859375 +20220910010000,vlinder19,287.42352294921875,2.8509063720703125,3.5925140380859375 +20220910010000,vlinder20,287.42352294921875,2.8509063720703125,3.5925140380859375 +20220910010000,vlinder21,290.06414794921875,5.0052032470703125,-0.0178375244140625 +20220910010000,vlinder22,288.76922607421875,2.7825469970703125,1.7927093505859375 +20220910010000,vlinder23,288.96453857421875,2.7161407470703125,2.1755218505859375 +20220910010000,vlinder24,288.74969482421875,2.7249298095703125,2.3278656005859375 +20220910010000,vlinder25,288.57196044921875,2.3841094970703125,2.6667327880859375 +20220910010000,vlinder26,287.37469482421875,2.0149688720703125,2.9069671630859375 +20220910010000,vlinder27,288.42156982421875,2.4583282470703125,2.7790374755859375 +20220910010000,vlinder28,288.09149169921875,2.3987579345703125,3.0856781005859375 +20220910020000,vlinder01,287.988525390625,2.63543701171875,2.6693115234375 +20220910020000,vlinder02,288.043212890625,2.57977294921875,2.5687255859375 +20220910020000,vlinder03,287.677978515625,2.08953857421875,2.9779052734375 +20220910020000,vlinder04,287.677978515625,2.08953857421875,2.9779052734375 +20220910020000,vlinder05,288.273681640625,2.72723388671875,2.4993896484375 +20220910020000,vlinder06,287.834228515625,2.64813232421875,3.2874755859375 +20220910020000,vlinder07,287.834228515625,2.64813232421875,3.2874755859375 +20220910020000,vlinder08,287.834228515625,2.64813232421875,3.2874755859375 +20220910020000,vlinder09,287.750244140625,2.79949951171875,3.1263427734375 +20220910020000,vlinder10,287.773681640625,2.76043701171875,3.0277099609375 +20220910020000,vlinder11,287.978759765625,2.56219482421875,3.2025146484375 +20220910020000,vlinder12,287.978759765625,2.56219482421875,3.2025146484375 +20220910020000,vlinder13,287.978759765625,2.56219482421875,3.2025146484375 +20220910020000,vlinder14,288.131103515625,2.52313232421875,3.1517333984375 +20220910020000,vlinder15,287.709228515625,2.81512451171875,3.2181396484375 +20220910020000,vlinder16,288.131103515625,2.52313232421875,3.1517333984375 +20220910020000,vlinder17,287.365478515625,2.23797607421875,3.0218505859375 +20220910020000,vlinder18,287.437744140625,2.26629638671875,2.9964599609375 +20220910020000,vlinder19,287.416259765625,2.87078857421875,3.5081787109375 +20220910020000,vlinder20,287.416259765625,2.87078857421875,3.5081787109375 +20220910020000,vlinder21,289.918212890625,5.00360107421875,0.0443115234375 +20220910020000,vlinder22,288.498291015625,2.73797607421875,1.4984130859375 +20220910020000,vlinder23,288.761962890625,2.97918701171875,2.2269287109375 +20220910020000,vlinder24,288.570556640625,2.98016357421875,2.2200927734375 +20220910020000,vlinder25,288.373291015625,2.67645263671875,2.5677490234375 +20220910020000,vlinder26,287.617431640625,2.15496826171875,3.0023193359375 +20220910020000,vlinder27,288.273681640625,2.72723388671875,2.4993896484375 +20220910020000,vlinder28,287.988525390625,2.63543701171875,2.6693115234375 +20220910030000,vlinder01,287.962890625,2.7464447021484375,2.6047821044921875 +20220910030000,vlinder02,287.994140625,2.7347259521484375,2.4827117919921875 +20220910030000,vlinder03,287.66796875,2.1468353271484375,3.1389617919921875 +20220910030000,vlinder04,287.66796875,2.1468353271484375,3.1389617919921875 +20220910030000,vlinder05,288.1796875,2.9427337646484375,2.3674774169921875 +20220910030000,vlinder06,287.84375,2.6478118896484375,3.2600555419921875 +20220910030000,vlinder07,287.84375,2.6478118896484375,3.2600555419921875 +20220910030000,vlinder08,287.84375,2.6478118896484375,3.2600555419921875 +20220910030000,vlinder09,287.771484375,2.8021087646484375,2.9836883544921875 +20220910030000,vlinder10,287.783203125,2.7942962646484375,2.8743133544921875 +20220910030000,vlinder11,287.974609375,2.6458587646484375,3.2512664794921875 +20220910030000,vlinder12,287.974609375,2.6458587646484375,3.2512664794921875 +20220910030000,vlinder13,287.974609375,2.6458587646484375,3.2512664794921875 +20220910030000,vlinder14,288.125,2.6556243896484375,3.2219696044921875 +20220910030000,vlinder15,287.736328125,2.7962493896484375,3.0823211669921875 +20220910030000,vlinder16,288.125,2.6556243896484375,3.2219696044921875 +20220910030000,vlinder17,287.4921875,2.2376556396484375,2.9905242919921875 +20220910030000,vlinder18,287.580078125,2.2718353271484375,2.9582977294921875 +20220910030000,vlinder19,287.41796875,2.8802337646484375,3.2629852294921875 +20220910030000,vlinder20,287.41796875,2.8802337646484375,3.2629852294921875 +20220910030000,vlinder21,289.23046875,5.6136322021484375,-0.2301788330078125 +20220910030000,vlinder22,288.13671875,3.1780853271484375,1.2073211669921875 +20220910030000,vlinder23,288.521484375,3.4144134521484375,1.9348602294921875 +20220910030000,vlinder24,288.296875,3.3167572021484375,2.0022430419921875 +20220910030000,vlinder25,288.25390625,2.9739837646484375,2.3616180419921875 +20220910030000,vlinder26,287.650390625,2.1907806396484375,3.0950164794921875 +20220910030000,vlinder27,288.1796875,2.9427337646484375,2.3674774169921875 +20220910030000,vlinder28,287.962890625,2.7464447021484375,2.6047821044921875 +20220910040000,vlinder01,288.20021057128906,3.371917724609375,2.233367919921875 +20220910040000,vlinder02,288.21192932128906,3.343597412109375,2.094696044921875 +20220910040000,vlinder03,287.67091369628906,2.043792724609375,3.038055419921875 +20220910040000,vlinder04,287.67091369628906,2.043792724609375,3.038055419921875 +20220910040000,vlinder05,288.32130432128906,3.608245849609375,2.066375732421875 +20220910040000,vlinder06,288.09669494628906,2.924652099609375,3.127899169921875 +20220910040000,vlinder07,288.09669494628906,2.924652099609375,3.127899169921875 +20220910040000,vlinder08,288.09669494628906,2.924652099609375,3.127899169921875 +20220910040000,vlinder09,288.14747619628906,3.348480224609375,2.705047607421875 +20220910040000,vlinder10,288.14356994628906,3.357269287109375,2.565399169921875 +20220910040000,vlinder11,288.08302307128906,3.104339599609375,3.051727294921875 +20220910040000,vlinder12,288.08302307128906,3.104339599609375,3.051727294921875 +20220910040000,vlinder13,288.08302307128906,3.104339599609375,3.051727294921875 +20220910040000,vlinder14,288.17286682128906,3.248870849609375,2.969696044921875 +20220910040000,vlinder15,288.12403869628906,3.303558349609375,2.837860107421875 +20220910040000,vlinder16,288.17286682128906,3.248870849609375,2.969696044921875 +20220910040000,vlinder17,287.33106994628906,2.008636474609375,2.990203857421875 +20220910040000,vlinder18,287.41896057128906,2.037933349609375,2.953094482421875 +20220910040000,vlinder19,287.77638244628906,3.185394287109375,3.086883544921875 +20220910040000,vlinder20,287.77638244628906,3.185394287109375,3.086883544921875 +20220910040000,vlinder21,289.08106994628906,5.931488037109375,-0.482452392578125 +20220910040000,vlinder22,288.20216369628906,3.260589599609375,0.797821044921875 +20220910040000,vlinder23,288.53614807128906,4.076019287109375,1.821258544921875 +20220910040000,vlinder24,288.41505432128906,3.955902099609375,1.808563232421875 +20220910040000,vlinder25,288.33106994628906,3.694183349609375,2.151336669921875 +20220910040000,vlinder26,287.63966369628906,2.030120849609375,3.037078857421875 +20220910040000,vlinder27,288.32130432128906,3.608245849609375,2.066375732421875 +20220910040000,vlinder28,288.20021057128906,3.371917724609375,2.233367919921875 +20220910050000,vlinder01,288.1540222167969,3.55938720703125,1.857269287109375 +20220910050000,vlinder02,288.1520690917969,3.49298095703125,1.732269287109375 +20220910050000,vlinder03,287.7145690917969,2.27618408203125,2.682464599609375 +20220910050000,vlinder04,287.7145690917969,2.27618408203125,2.682464599609375 +20220910050000,vlinder05,288.2829284667969,4.00762939453125,1.626800537109375 +20220910050000,vlinder06,288.2204284667969,3.29669189453125,2.626800537109375 +20220910050000,vlinder07,288.2204284667969,3.29669189453125,2.626800537109375 +20220910050000,vlinder08,288.2204284667969,3.29669189453125,2.626800537109375 +20220910050000,vlinder09,288.1676940917969,3.69415283203125,2.313323974609375 +20220910050000,vlinder10,288.1540222167969,3.66387939453125,2.187347412109375 +20220910050000,vlinder11,288.1481628417969,3.49298095703125,2.508636474609375 +20220910050000,vlinder12,288.1481628417969,3.49298095703125,2.508636474609375 +20220910050000,vlinder13,288.1481628417969,3.49298095703125,2.508636474609375 +20220910050000,vlinder14,288.1696472167969,3.65118408203125,2.431488037109375 +20220910050000,vlinder15,288.1598815917969,3.68048095703125,2.429534912109375 +20220910050000,vlinder16,288.1696472167969,3.65118408203125,2.431488037109375 +20220910050000,vlinder17,287.2106628417969,1.87384033203125,2.994964599609375 +20220910050000,vlinder18,287.2712097167969,1.90997314453125,2.984222412109375 +20220910050000,vlinder19,287.9372253417969,3.59747314453125,2.726409912109375 +20220910050000,vlinder20,287.9372253417969,3.59747314453125,2.726409912109375 +20220910050000,vlinder21,289.1149597167969,6.28790283203125,-0.663238525390625 +20220910050000,vlinder22,288.0251159667969,3.47149658203125,0.655120849609375 +20220910050000,vlinder23,288.5173034667969,4.93341064453125,1.259613037109375 +20220910050000,vlinder24,288.3962097167969,4.55743408203125,1.325042724609375 +20220910050000,vlinder25,288.3024597167969,4.40802001953125,1.606292724609375 +20220910050000,vlinder26,287.6911315917969,2.20684814453125,2.724456787109375 +20220910050000,vlinder27,288.2829284667969,4.00762939453125,1.626800537109375 +20220910050000,vlinder28,288.1540222167969,3.55938720703125,1.857269287109375 +20220910060000,vlinder01,288.303466796875,3.7046356201171875,1.6597442626953125 +20220910060000,vlinder02,288.283935546875,3.6333465576171875,1.5454864501953125 +20220910060000,vlinder03,287.856201171875,2.3804168701171875,2.4409942626953125 +20220910060000,vlinder04,287.856201171875,2.3804168701171875,2.4409942626953125 +20220910060000,vlinder05,288.453857421875,4.1997528076171875,1.3697052001953125 +20220910060000,vlinder06,288.516357421875,3.5171356201171875,2.4195098876953125 +20220910060000,vlinder07,288.516357421875,3.5171356201171875,2.4195098876953125 +20220910060000,vlinder08,288.516357421875,3.5171356201171875,2.4195098876953125 +20220910060000,vlinder09,288.354248046875,3.8423309326171875,2.1450958251953125 +20220910060000,vlinder10,288.319091796875,3.8003387451171875,2.0366973876953125 +20220910060000,vlinder11,288.459716796875,3.9214324951171875,2.1138458251953125 +20220910060000,vlinder12,288.459716796875,3.9214324951171875,2.1138458251953125 +20220910060000,vlinder13,288.459716796875,3.9214324951171875,2.1138458251953125 +20220910060000,vlinder14,288.473388671875,4.1987762451171875,1.9400177001953125 +20220910060000,vlinder15,288.367919921875,3.8403778076171875,2.2534942626953125 +20220910060000,vlinder16,288.473388671875,4.1987762451171875,1.9400177001953125 +20220910060000,vlinder17,287.166748046875,1.7300262451171875,2.8501739501953125 +20220910060000,vlinder18,287.186279296875,1.7573699951171875,2.8833770751953125 +20220910060000,vlinder19,288.176513671875,3.7456512451171875,2.6157989501953125 +20220910060000,vlinder20,288.176513671875,3.7456512451171875,2.6157989501953125 +20220910060000,vlinder21,289.360107421875,6.4390106201171875,-1.1781463623046875 +20220910060000,vlinder22,288.299560546875,3.5024871826171875,0.3140411376953125 +20220910060000,vlinder23,288.742919921875,5.2495574951171875,0.8365020751953125 +20220910060000,vlinder24,288.604248046875,4.8081512451171875,0.9898223876953125 +20220910060000,vlinder25,288.490966796875,4.6645965576171875,1.2847442626953125 +20220910060000,vlinder26,287.838623046875,2.2524871826171875,2.5122833251953125 +20220910060000,vlinder27,288.453857421875,4.1997528076171875,1.3697052001953125 +20220910060000,vlinder28,288.303466796875,3.7046356201171875,1.6597442626953125 +20220910070000,vlinder01,289.137451171875,4.15496826171875,1.137603759765625 +20220910070000,vlinder02,289.182373046875,4.09149169921875,1.002838134765625 +20220910070000,vlinder03,288.656982421875,4.16473388671875,2.256744384765625 +20220910070000,vlinder04,288.656982421875,4.16473388671875,2.256744384765625 +20220910070000,vlinder05,289.481201171875,4.30926513671875,0.438385009765625 +20220910070000,vlinder06,289.012451171875,4.57684326171875,2.182525634765625 +20220910070000,vlinder07,289.012451171875,4.57684326171875,2.182525634765625 +20220910070000,vlinder08,289.012451171875,4.57684326171875,2.182525634765625 +20220910070000,vlinder09,288.975341796875,4.48016357421875,1.679595947265625 +20220910070000,vlinder10,289.002685546875,4.39715576171875,1.553619384765625 +20220910070000,vlinder11,289.158935546875,4.50164794921875,1.642486572265625 +20220910070000,vlinder12,289.158935546875,4.50164794921875,1.642486572265625 +20220910070000,vlinder13,289.158935546875,4.50164794921875,1.642486572265625 +20220910070000,vlinder14,289.321044921875,4.42938232421875,1.284088134765625 +20220910070000,vlinder15,288.936279296875,4.54949951171875,1.819244384765625 +20220910070000,vlinder16,289.321044921875,4.42938232421875,1.284088134765625 +20220910070000,vlinder17,288.358154296875,3.59442138671875,2.706939697265625 +20220910070000,vlinder18,288.438232421875,3.44891357421875,2.826080322265625 +20220910070000,vlinder19,288.717529296875,4.71844482421875,2.177642822265625 +20220910070000,vlinder20,288.717529296875,4.71844482421875,2.177642822265625 +20220910070000,vlinder21,290.619873046875,6.36785888671875,-4.058685302734375 +20220910070000,vlinder22,289.641357421875,4.35516357421875,-0.575286865234375 +20220910070000,vlinder23,290.088623046875,4.71063232421875,-0.988372802734375 +20220910070000,vlinder24,289.785888671875,4.63641357421875,-0.518646240234375 +20220910070000,vlinder25,289.656982421875,4.42547607421875,0.083892822265625 +20220910070000,vlinder26,288.614013671875,4.38153076171875,2.363189697265625 +20220910070000,vlinder27,289.481201171875,4.30926513671875,0.438385009765625 +20220910070000,vlinder28,289.137451171875,4.15496826171875,1.137603759765625 +20220910080000,vlinder01,289.9396667480469,4.0765380859375,0.975555419921875 +20220910080000,vlinder02,290.0216979980469,4.0394287109375,0.847625732421875 +20220910080000,vlinder03,289.4884948730469,3.9945068359375,1.748016357421875 +20220910080000,vlinder04,289.4884948730469,3.9945068359375,1.748016357421875 +20220910080000,vlinder05,290.3615417480469,4.1253662109375,0.248992919921875 +20220910080000,vlinder06,289.6330261230469,4.1507568359375,1.787078857421875 +20220910080000,vlinder07,289.6330261230469,4.1507568359375,1.787078857421875 +20220910080000,vlinder08,289.6330261230469,4.1507568359375,1.787078857421875 +20220910080000,vlinder09,289.5802917480469,4.5853271484375,1.236297607421875 +20220910080000,vlinder10,289.6486511230469,4.5423583984375,1.121063232421875 +20220910080000,vlinder11,290.1134948730469,4.1204833984375,1.332000732421875 +20220910080000,vlinder12,290.1134948730469,4.1204833984375,1.332000732421875 +20220910080000,vlinder13,290.1134948730469,4.1204833984375,1.332000732421875 +20220910080000,vlinder14,290.4611511230469,4.1185302734375,0.989227294921875 +20220910080000,vlinder15,289.5099792480469,4.6097412109375,1.351531982421875 +20220910080000,vlinder16,290.4611511230469,4.1185302734375,0.989227294921875 +20220910080000,vlinder17,288.8381042480469,3.9466552734375,2.163055419921875 +20220910080000,vlinder18,288.8595886230469,3.8431396484375,2.294891357421875 +20220910080000,vlinder19,289.2560729980469,4.9486083984375,1.441375732421875 +20220910080000,vlinder20,289.2560729980469,4.9486083984375,1.441375732421875 +20220910080000,vlinder21,291.2189636230469,5.7855224609375,-4.030303955078125 +20220910080000,vlinder22,290.6740417480469,4.4368896484375,-1.155303955078125 +20220910080000,vlinder23,291.0470886230469,4.3079833984375,-1.307647705078125 +20220910080000,vlinder24,290.7131042480469,4.3187255859375,-0.747100830078125 +20220910080000,vlinder25,290.6681823730469,4.1409912109375,-0.178741455078125 +20220910080000,vlinder26,289.3537292480469,4.0745849609375,1.842742919921875 +20220910080000,vlinder27,290.3615417480469,4.1253662109375,0.248992919921875 +20220910080000,vlinder28,289.9396667480469,4.0765380859375,0.975555419921875 +20220910090000,vlinder01,291.0840301513672,4.73785400390625,0.22136592864990234 +20220910090000,vlinder02,291.1504364013672,4.66851806640625,0.0026159286499023438 +20220910090000,vlinder03,290.5840301513672,4.18414306640625,1.5621862411499023 +20220910090000,vlinder04,290.5840301513672,4.18414306640625,1.5621862411499023 +20220910090000,vlinder05,291.3418426513672,4.76910400390625,-0.6428918838500977 +20220910090000,vlinder06,290.7031707763672,4.97711181640625,1.6676549911499023 +20220910090000,vlinder07,290.7031707763672,4.97711181640625,1.6676549911499023 +20220910090000,vlinder08,290.7031707763672,4.97711181640625,1.6676549911499023 +20220910090000,vlinder09,290.6953582763672,4.89898681640625,0.8922643661499023 +20220910090000,vlinder10,290.7598114013672,4.83453369140625,0.6764440536499023 +20220910090000,vlinder11,291.1426239013672,4.97906494140625,0.7067174911499023 +20220910090000,vlinder12,291.1426239013672,4.97906494140625,0.7067174911499023 +20220910090000,vlinder13,291.1426239013672,4.97906494140625,0.7067174911499023 +20220910090000,vlinder14,291.4629364013672,4.94390869140625,0.047537803649902344 +20220910090000,vlinder15,290.6230926513672,4.94390869140625,1.1022253036499023 +20220910090000,vlinder16,291.4629364013672,4.94390869140625,0.047537803649902344 +20220910090000,vlinder17,289.5879364013672,3.94390869140625,2.1686315536499023 +20220910090000,vlinder18,289.5742645263672,3.96929931640625,2.1979284286499023 +20220910090000,vlinder19,290.2812957763672,5.00054931640625,1.3580846786499023 +20220910090000,vlinder20,290.2812957763672,5.00054931640625,1.3580846786499023 +20220910090000,vlinder21,291.3184051513672,5.76226806640625,-4.550118446350098 +20220910090000,vlinder22,291.3516082763672,4.56988525390625,-1.9915246963500977 +20220910090000,vlinder23,291.6602020263672,4.82965087890625,-2.3079309463500977 +20220910090000,vlinder24,291.4844207763672,4.86773681640625,-1.6829309463500977 +20220910090000,vlinder25,291.5293426513672,4.79351806640625,-1.1936731338500977 +20220910090000,vlinder26,290.3926239013672,4.15582275390625,1.8805456161499023 +20220910090000,vlinder27,291.3418426513672,4.76910400390625,-0.6428918838500977 +20220910090000,vlinder28,291.0840301513672,4.73785400390625,0.22136592864990234 +20220910100000,vlinder01,292.09568786621094,5.041595458984375,-0.9022159576416016 +20220910100000,vlinder02,292.06248474121094,4.970306396484375,-1.1541690826416016 +20220910100000,vlinder03,291.83006286621094,4.373626708984375,0.9405574798583984 +20220910100000,vlinder04,291.83006286621094,4.373626708984375,0.9405574798583984 +20220910100000,vlinder05,292.16209411621094,4.960540771484375,-1.5887393951416016 +20220910100000,vlinder06,292.08201599121094,5.263275146484375,1.0352840423583984 +20220910100000,vlinder07,292.08201599121094,5.263275146484375,1.0352840423583984 +20220910100000,vlinder08,292.08201599121094,5.263275146484375,1.0352840423583984 +20220910100000,vlinder09,291.93943786621094,5.162689208984375,0.33020591735839844 +20220910100000,vlinder10,291.89842224121094,5.094329833984375,0.06067466735839844 +20220910100000,vlinder11,292.22654724121094,5.141204833984375,-0.17077064514160156 +20220910100000,vlinder12,292.22654724121094,5.141204833984375,-0.17077064514160156 +20220910100000,vlinder13,292.22654724121094,5.141204833984375,-0.17077064514160156 +20220910100000,vlinder14,292.40232849121094,5.040618896484375,-0.9559268951416016 +20220910100000,vlinder15,291.94139099121094,5.208587646484375,0.6046199798583984 +20220910100000,vlinder16,292.40232849121094,5.040618896484375,-0.9559268951416016 +20220910100000,vlinder17,290.51756286621094,4.192962646484375,2.1095027923583984 +20220910100000,vlinder18,290.47654724121094,4.148040771484375,2.1544246673583984 +20220910100000,vlinder19,291.46678161621094,5.205657958984375,1.3477840423583984 +20220910100000,vlinder20,291.46678161621094,5.205657958984375,1.3477840423583984 +20220910100000,vlinder21,291.66014099121094,5.503509521484375,-4.335809707641602 +20220910100000,vlinder22,291.93357849121094,4.614837646484375,-2.4959659576416016 +20220910100000,vlinder23,292.17771911621094,4.802337646484375,-2.7381534576416016 +20220910100000,vlinder24,292.12693786621094,4.923431396484375,-2.2938175201416016 +20220910100000,vlinder25,292.23240661621094,4.883392333984375,-1.9608097076416016 +20220910100000,vlinder26,291.66209411621094,4.410736083984375,1.4757137298583984 +20220910100000,vlinder27,292.16209411621094,4.960540771484375,-1.5887393951416016 +20220910100000,vlinder28,292.09568786621094,5.041595458984375,-0.9022159576416016 +20220910110000,vlinder01,292.2890319824219,5.0137939453125,-1.085165023803711 +20220910110000,vlinder02,292.2909851074219,4.8848876953125,-1.243368148803711 +20220910110000,vlinder03,292.9511413574219,4.8018798828125,-0.47481346130371094 +20220910110000,vlinder04,292.9511413574219,4.8018798828125,-0.47481346130371094 +20220910110000,vlinder05,292.4159851074219,4.9473876953125,-1.597860336303711 +20220910110000,vlinder06,292.7851257324219,5.6934814453125,0.25272560119628906 +20220910110000,vlinder07,292.7851257324219,5.6934814453125,0.25272560119628906 +20220910110000,vlinder08,292.7851257324219,5.6934814453125,0.25272560119628906 +20220910110000,vlinder09,292.2167663574219,5.4093017578125,-0.13399314880371094 +20220910110000,vlinder10,292.1874694824219,5.2735595703125,-0.30000877380371094 +20220910110000,vlinder11,292.9687194824219,5.3175048828125,-0.8732509613037109 +20220910110000,vlinder12,292.9687194824219,5.3175048828125,-0.8732509613037109 +20220910110000,vlinder13,292.9687194824219,5.3175048828125,-0.8732509613037109 +20220910110000,vlinder14,293.0800476074219,5.0538330078125,-1.582235336303711 +20220910110000,vlinder15,292.2597351074219,5.5216064453125,0.04764747619628906 +20220910110000,vlinder16,293.0800476074219,5.0538330078125,-1.582235336303711 +20220910110000,vlinder17,291.8671569824219,4.6983642578125,1.290811538696289 +20220910110000,vlinder18,291.7773132324219,4.5850830078125,1.379678726196289 +20220910110000,vlinder19,292.1112976074219,5.5909423828125,0.8884677886962891 +20220910110000,vlinder20,292.1112976074219,5.5909423828125,0.8884677886962891 +20220910110000,vlinder21,292.0546569824219,5.5811767578125,-3.661336898803711 +20220910110000,vlinder22,292.3144226074219,4.4864501953125,-2.383993148803711 +20220910110000,vlinder23,292.5898132324219,4.9014892578125,-2.541219711303711 +20220910110000,vlinder24,292.4745788574219,4.9786376953125,-2.118368148803711 +20220910110000,vlinder25,292.5683288574219,4.9278564453125,-1.912313461303711 +20220910110000,vlinder26,292.9120788574219,5.0684814453125,0.14237403869628906 +20220910110000,vlinder27,292.4159851074219,4.9473876953125,-1.597860336303711 +20220910110000,vlinder28,292.2890319824219,5.0137939453125,-1.085165023803711 +20220910120000,vlinder01,292.6289825439453,4.9624786376953125,-1.1883134841918945 +20220910120000,vlinder02,292.6094512939453,4.8511505126953125,-1.2888994216918945 +20220910120000,vlinder03,293.3809356689453,4.7954864501953125,-1.2771806716918945 +20220910120000,vlinder04,293.3809356689453,4.7954864501953125,-1.2771806716918945 +20220910120000,vlinder05,292.7051544189453,4.8941192626953125,-1.7400712966918945 +20220910120000,vlinder06,292.9239044189453,5.6822052001953125,-0.26741504669189453 +20220910120000,vlinder07,292.9239044189453,5.6822052001953125,-0.26741504669189453 +20220910120000,vlinder08,292.9239044189453,5.6822052001953125,-0.26741504669189453 +20220910120000,vlinder09,292.6192169189453,5.3970489501953125,-0.5584306716918945 +20220910120000,vlinder10,292.5860137939453,5.2827911376953125,-0.6668291091918945 +20220910120000,vlinder11,293.2578887939453,5.2749786376953125,-1.4236650466918945 +20220910120000,vlinder12,293.2578887939453,5.2749786376953125,-1.4236650466918945 +20220910120000,vlinder13,293.2578887939453,5.2749786376953125,-1.4236650466918945 +20220910120000,vlinder14,293.4512481689453,4.9615020751953125,-2.1053056716918945 +20220910120000,vlinder15,292.6465606689453,5.5054473876953125,-0.43538379669189453 +20220910120000,vlinder16,293.4512481689453,4.9615020751953125,-2.1053056716918945 +20220910120000,vlinder17,292.2676544189453,4.5825958251953125,0.8058271408081055 +20220910120000,vlinder18,292.2676544189453,4.3648223876953125,1.0206708908081055 +20220910120000,vlinder19,292.5235137939453,5.8199005126953125,0.16910839080810547 +20220910120000,vlinder20,292.5235137939453,5.8199005126953125,0.16910839080810547 +20220910120000,vlinder21,292.2715606689453,5.6421661376953125,-3.6814775466918945 +20220910120000,vlinder22,292.3282012939453,4.5767364501953125,-2.0564775466918945 +20220910120000,vlinder23,292.7657012939453,4.8247833251953125,-2.8250322341918945 +20220910120000,vlinder24,292.6973419189453,4.9234161376953125,-2.3308916091918945 +20220910120000,vlinder25,292.8047637939453,4.8560333251953125,-2.1472978591918945 +20220910120000,vlinder26,293.1797637939453,5.1421661376953125,-0.6746416091918945 +20220910120000,vlinder27,292.7051544189453,4.8941192626953125,-1.7400712966918945 +20220910120000,vlinder28,292.6289825439453,4.9624786376953125,-1.1883134841918945 +20220910130000,vlinder01,292.98374938964844,4.7983856201171875,-1.5515003204345703 +20220910130000,vlinder02,292.97984313964844,4.7251434326171875,-1.6237659454345703 +20220910130000,vlinder03,293.37828063964844,4.2261199951171875,-2.3317737579345703 +20220910130000,vlinder04,293.37828063964844,4.2261199951171875,-2.3317737579345703 +20220910130000,vlinder05,293.01695251464844,4.6987762451171875,-2.2194690704345703 +20220910130000,vlinder06,293.22203063964844,5.5522918701171875,-0.8542346954345703 +20220910130000,vlinder07,293.22203063964844,5.5522918701171875,-0.8542346954345703 +20220910130000,vlinder08,293.22203063964844,5.5522918701171875,-0.8542346954345703 +20220910130000,vlinder09,292.90757751464844,5.2065887451171875,-1.1247425079345703 +20220910130000,vlinder10,292.88999938964844,5.1274871826171875,-1.2009143829345703 +20220910130000,vlinder11,293.46226501464844,4.9302215576171875,-2.1325550079345703 +20220910130000,vlinder12,293.46226501464844,4.9302215576171875,-2.1325550079345703 +20220910130000,vlinder13,293.46226501464844,4.9302215576171875,-2.1325550079345703 +20220910130000,vlinder14,293.61265563964844,4.4966278076171875,-2.8327503204345703 +20220910130000,vlinder15,292.92515563964844,5.3032684326171875,-1.0339221954345703 +20220910130000,vlinder16,293.61265563964844,4.4966278076171875,-2.8327503204345703 +20220910130000,vlinder17,292.32554626464844,4.5405731201171875,0.2268199920654297 +20220910130000,vlinder18,292.30992126464844,4.5640106201171875,0.4914684295654297 +20220910130000,vlinder19,292.79039001464844,5.7124481201171875,-0.5788440704345703 +20220910130000,vlinder20,292.79039001464844,5.7124481201171875,-0.5788440704345703 +20220910130000,vlinder21,292.61656188964844,5.5063934326171875,-4.25267219543457 +20220910130000,vlinder22,292.76890563964844,4.6841278076171875,-2.3083362579345703 +20220910130000,vlinder23,292.96031188964844,4.5376434326171875,-3.5749378204345703 +20220910130000,vlinder24,292.97203063964844,4.7007293701171875,-2.9587268829345703 +20220910130000,vlinder25,293.03453063964844,4.5933074951171875,-2.7917346954345703 +20220910130000,vlinder26,293.21226501464844,4.6060028076171875,-1.6335315704345703 +20220910130000,vlinder27,293.01695251464844,4.6987762451171875,-2.2194690704345703 +20220910130000,vlinder28,292.98374938964844,4.7983856201171875,-1.5515003204345703 +20220910140000,vlinder01,293.250244140625,4.4465484619140625,-2.127592086791992 +20220910140000,vlinder02,293.242431640625,4.3567047119140625,-2.211576461791992 +20220910140000,vlinder03,293.052978515625,3.1516265869140625,-2.495756149291992 +20220910140000,vlinder04,293.052978515625,3.1516265869140625,-2.495756149291992 +20220910140000,vlinder05,293.207275390625,4.2658843994140625,-2.868803024291992 +20220910140000,vlinder06,293.484619140625,5.3020172119140625,-1.3522014617919922 +20220910140000,vlinder07,293.484619140625,5.3020172119140625,-1.3522014617919922 +20220910140000,vlinder08,293.484619140625,5.3020172119140625,-1.3522014617919922 +20220910140000,vlinder09,293.183837890625,4.9094390869140625,-1.6041545867919922 +20220910140000,vlinder10,293.170166015625,4.7951812744140625,-1.6998577117919922 +20220910140000,vlinder11,293.718994140625,4.4524078369140625,-2.614896774291992 +20220910140000,vlinder12,293.718994140625,4.4524078369140625,-2.614896774291992 +20220910140000,vlinder13,293.718994140625,4.4524078369140625,-2.614896774291992 +20220910140000,vlinder14,293.865478515625,3.9533843994140625,-3.288724899291992 +20220910140000,vlinder15,293.199462890625,5.0305328369140625,-1.4986858367919922 +20220910140000,vlinder16,293.865478515625,3.9533843994140625,-3.288724899291992 +20220910140000,vlinder17,290.922119140625,4.0481109619140625,-1.1217327117919922 +20220910140000,vlinder18,290.740478515625,4.1926422119140625,-1.0514202117919922 +20220910140000,vlinder19,293.084228515625,5.4250640869140625,-1.0387248992919922 +20220910140000,vlinder20,293.084228515625,5.4250640869140625,-1.0387248992919922 +20220910140000,vlinder21,292.654541015625,5.0383453369140625,-5.261381149291992 +20220910140000,vlinder22,292.902587890625,4.4455718994140625,-2.843412399291992 +20220910140000,vlinder23,292.988525390625,4.0129547119140625,-4.318021774291992 +20220910140000,vlinder24,293.064697265625,4.2238922119140625,-3.694974899291992 +20220910140000,vlinder25,293.158447265625,4.0822906494140625,-3.464506149291992 +20220910140000,vlinder26,292.881103515625,3.6438140869140625,-1.8805217742919922 +20220910140000,vlinder27,293.207275390625,4.2658843994140625,-2.868803024291992 +20220910140000,vlinder28,293.250244140625,4.4465484619140625,-2.127592086791992 +20220910150000,vlinder01,293.0426788330078,3.95703125,-2.840071678161621 +20220910150000,vlinder02,292.9743194580078,3.8251953125,-2.945540428161621 +20220910150000,vlinder03,293.5094757080078,2.658203125,-2.741438865661621 +20220910150000,vlinder04,293.5094757080078,2.658203125,-2.741438865661621 +20220910150000,vlinder05,292.9977569580078,3.6767578125,-3.444563865661621 +20220910150000,vlinder06,293.5114288330078,4.6923828125,-1.835188865661621 +20220910150000,vlinder07,293.5114288330078,4.6923828125,-1.835188865661621 +20220910150000,vlinder08,293.5114288330078,4.6923828125,-1.835188865661621 +20220910150000,vlinder09,293.1657257080078,4.5625,-2.092024803161621 +20220910150000,vlinder10,293.0739288330078,4.388671875,-2.219954490661621 +20220910150000,vlinder11,293.6286163330078,3.919921875,-3.033431053161621 +20220910150000,vlinder12,293.6286163330078,3.919921875,-3.033431053161621 +20220910150000,vlinder13,293.6286163330078,3.919921875,-3.033431053161621 +20220910150000,vlinder14,293.6969757080078,3.513671875,-3.681868553161621 +20220910150000,vlinder15,293.2301788330078,4.6962890625,-1.954329490661621 +20220910150000,vlinder16,293.6969757080078,3.513671875,-3.681868553161621 +20220910150000,vlinder17,291.2243194580078,3.2880859375,-2.135970115661621 +20220910150000,vlinder18,291.1540069580078,3.2802734375,-2.044173240661621 +20220910150000,vlinder19,292.8903350830078,4.935546875,-1.493391990661621 +20220910150000,vlinder20,292.8903350830078,4.935546875,-1.493391990661621 +20220910150000,vlinder21,292.6891632080078,4.0263671875,-5.628157615661621 +20220910150000,vlinder22,292.7790069580078,3.810546875,-3.409407615661621 +20220910150000,vlinder23,292.8649444580078,3.3408203125,-4.548079490661621 +20220910150000,vlinder24,292.9059600830078,3.5537109375,-4.088118553161621 +20220910150000,vlinder25,292.9821319580078,3.4541015625,-3.864485740661621 +20220910150000,vlinder26,293.2047882080078,2.9833984375,-2.324446678161621 +20220910150000,vlinder27,292.9977569580078,3.6767578125,-3.444563865661621 +20220910150000,vlinder28,293.0426788330078,3.95703125,-2.840071678161621 +20220910160000,vlinder01,291.8588409423828,3.2411041259765625,-2.7346115112304688 +20220910160000,vlinder02,291.9623565673828,3.2391510009765625,-2.9240646362304688 +20220910160000,vlinder03,292.6420440673828,2.2606353759765625,-2.7394943237304688 +20220910160000,vlinder04,292.6420440673828,2.2606353759765625,-2.7394943237304688 +20220910160000,vlinder05,292.1772003173828,3.1112213134765625,-3.4142990112304688 +20220910160000,vlinder06,291.7416534423828,3.3905181884765625,-1.4113693237304688 +20220910160000,vlinder07,291.7416534423828,3.3905181884765625,-1.4113693237304688 +20220910160000,vlinder08,291.7416534423828,3.3905181884765625,-1.4113693237304688 +20220910160000,vlinder09,291.3725128173828,3.3778228759765625,-1.9846115112304688 +20220910160000,vlinder10,291.4311065673828,3.3758697509765625,-2.2101974487304688 +20220910160000,vlinder11,292.5893096923828,3.1297760009765625,-2.8732833862304688 +20220910160000,vlinder12,292.5893096923828,3.1297760009765625,-2.8732833862304688 +20220910160000,vlinder13,292.5893096923828,3.1297760009765625,-2.8732833862304688 +20220910160000,vlinder14,292.9897003173828,2.9618072509765625,-3.6516036987304688 +20220910160000,vlinder15,291.3256378173828,3.3914947509765625,-1.7785568237304688 +20220910160000,vlinder16,292.9897003173828,2.9618072509765625,-3.6516036987304688 +20220910160000,vlinder17,291.0268096923828,2.3582916259765625,-1.6623458862304688 +20220910160000,vlinder18,290.9096221923828,2.4256744384765625,-1.6984786987304688 +20220910160000,vlinder19,290.9330596923828,3.6512603759765625,-1.6418380737304688 +20220910160000,vlinder20,290.9330596923828,3.6512603759765625,-1.6418380737304688 +20220910160000,vlinder21,292.6791534423828,3.3485260009765625,-5.585197448730469 +20220910160000,vlinder22,292.6518096923828,3.3299713134765625,-3.7434005737304688 +20220910160000,vlinder23,292.6147003173828,2.8563385009765625,-4.568595886230469 +20220910160000,vlinder24,292.4193878173828,3.0155181884765625,-4.093009948730469 +20220910160000,vlinder25,292.4369659423828,2.9452056884765625,-3.8752365112304688 +20220910160000,vlinder26,292.2729034423828,2.4080963134765625,-2.1721115112304688 +20220910160000,vlinder27,292.1772003173828,3.1112213134765625,-3.4142990112304688 +20220910160000,vlinder28,291.8588409423828,3.2411041259765625,-2.7346115112304688 +20220910170000,vlinder01,291.8576202392578,2.5590667724609375,-2.425312042236328 +20220910170000,vlinder02,291.9396514892578,2.4750823974609375,-2.586444854736328 +20220910170000,vlinder03,292.0841827392578,1.8647308349609375,-2.102069854736328 +20220910170000,vlinder04,292.0841827392578,1.8647308349609375,-2.102069854736328 +20220910170000,vlinder05,292.0373077392578,2.4174652099609375,-2.903827667236328 +20220910170000,vlinder06,291.6662139892578,3.1030120849609375,-1.0161323547363281 +20220910170000,vlinder07,291.6662139892578,3.1030120849609375,-1.0161323547363281 +20220910170000,vlinder08,291.6662139892578,3.1030120849609375,-1.0161323547363281 +20220910170000,vlinder09,291.4103546142578,2.8657073974609375,-1.7466011047363281 +20220910170000,vlinder10,291.4630889892578,2.7641448974609375,-1.9350776672363281 +20220910170000,vlinder11,292.2521514892578,2.6967620849609375,-2.366718292236328 +20220910170000,vlinder12,292.2521514892578,2.6967620849609375,-2.366718292236328 +20220910170000,vlinder13,292.2521514892578,2.6967620849609375,-2.366718292236328 +20220910170000,vlinder14,292.5392608642578,2.4809417724609375,-3.108905792236328 +20220910170000,vlinder15,291.3595733642578,2.9535980224609375,-1.5483589172363281 +20220910170000,vlinder16,292.5392608642578,2.4809417724609375,-3.108905792236328 +20220910170000,vlinder17,290.8693389892578,2.2201995849609375,-0.9712104797363281 +20220910170000,vlinder18,290.8400421142578,2.2524261474609375,-0.9858589172363281 +20220910170000,vlinder19,290.8908233642578,3.2006683349609375,-1.1294136047363281 +20220910170000,vlinder20,290.8908233642578,3.2006683349609375,-1.1294136047363281 +20220910170000,vlinder21,292.4689483642578,2.6957855224609375,-5.112812042236328 +20220910170000,vlinder22,292.3478546142578,2.4164886474609375,-3.366718292236328 +20220910170000,vlinder23,292.2033233642578,2.2524261474609375,-3.724140167236328 +20220910170000,vlinder24,292.1388702392578,2.3539886474609375,-3.424335479736328 +20220910170000,vlinder25,292.1173858642578,2.3080902099609375,-3.135272979736328 +20220910170000,vlinder26,291.8107452392578,2.0590667724609375,-1.4536323547363281 +20220910170000,vlinder27,292.0373077392578,2.4174652099609375,-2.903827667236328 +20220910170000,vlinder28,291.8576202392578,2.5590667724609375,-2.425312042236328 +20220910180000,vlinder01,291.19390869140625,2.0773162841796875,-2.1936817169189453 +20220910180000,vlinder02,291.24664306640625,1.9630584716796875,-2.2727832794189453 +20220910180000,vlinder03,291.10015869140625,1.6407928466796875,-1.8548145294189453 +20220910180000,vlinder04,291.10015869140625,1.6407928466796875,-1.8548145294189453 +20220910180000,vlinder05,291.32867431640625,1.9308319091796875,-2.5501270294189453 +20220910180000,vlinder06,291.29547119140625,2.6544647216796875,-1.3206348419189453 +20220910180000,vlinder07,291.29547119140625,2.6544647216796875,-1.3206348419189453 +20220910180000,vlinder08,291.29547119140625,2.6544647216796875,-1.3206348419189453 +20220910180000,vlinder09,290.89117431640625,2.4630584716796875,-1.7132129669189453 +20220910180000,vlinder10,290.90679931640625,2.3370819091796875,-1.8167285919189453 +20220910180000,vlinder11,291.54937744140625,2.2716522216796875,-2.3216114044189453 +20220910180000,vlinder12,291.54937744140625,2.2716522216796875,-2.3216114044189453 +20220910180000,vlinder13,291.54937744140625,2.2716522216796875,-2.3216114044189453 +20220910180000,vlinder14,291.66656494140625,2.0929412841796875,-2.8372364044189453 +20220910180000,vlinder15,290.87945556640625,2.5636444091796875,-1.5960254669189453 +20220910180000,vlinder16,291.66656494140625,2.0929412841796875,-2.8372364044189453 +20220910180000,vlinder17,289.71734619140625,2.1017303466796875,-0.9173145294189453 +20220910180000,vlinder18,289.71929931640625,2.1486053466796875,-0.9905567169189453 +20220910180000,vlinder19,290.53375244140625,2.7765350341796875,-1.1692676544189453 +20220910180000,vlinder20,290.53375244140625,2.7765350341796875,-1.1692676544189453 +20220910180000,vlinder21,292.05328369140625,1.9376678466796875,-4.945634841918945 +20220910180000,vlinder22,291.64117431640625,1.6515350341796875,-2.5843067169189453 +20220910180000,vlinder23,291.45758056640625,1.7755584716796875,-3.2024707794189453 +20220910180000,vlinder24,291.41656494140625,1.8370819091796875,-2.9915332794189453 +20220910180000,vlinder25,291.34234619140625,1.8683319091796875,-2.6809864044189453 +20220910180000,vlinder26,290.86578369140625,1.8048553466796875,-1.3587207794189453 +20220910180000,vlinder27,291.32867431640625,1.9308319091796875,-2.5501270294189453 +20220910180000,vlinder28,291.19390869140625,2.0773162841796875,-2.1936817169189453 +20220910190000,vlinder01,289.71607971191406,1.8657684326171875,-0.8180637359619141 +20220910190000,vlinder02,289.76881408691406,1.8061981201171875,-0.8082981109619141 +20220910190000,vlinder03,289.61842346191406,1.5757293701171875,-1.193063735961914 +20220910190000,vlinder04,289.61842346191406,1.5757293701171875,-1.193063735961914 +20220910190000,vlinder05,290.07154846191406,1.6519012451171875,-1.125680923461914 +20220910190000,vlinder06,289.72584533691406,2.2690887451171875,-0.9743137359619141 +20220910190000,vlinder07,289.72584533691406,2.2690887451171875,-0.9743137359619141 +20220910190000,vlinder08,289.72584533691406,2.2690887451171875,-0.9743137359619141 +20220910190000,vlinder09,289.49147033691406,2.2095184326171875,-0.9762668609619141 +20220910190000,vlinder10,289.50514221191406,2.1567840576171875,-0.9459934234619141 +20220910190000,vlinder11,290.00514221191406,1.8257293701171875,-1.189157485961914 +20220910190000,vlinder12,290.00514221191406,1.8257293701171875,-1.189157485961914 +20220910190000,vlinder13,290.00514221191406,1.8257293701171875,-1.189157485961914 +20220910190000,vlinder14,290.19068908691406,1.5786590576171875,-1.289743423461914 +20220910190000,vlinder15,289.47389221191406,2.2642059326171875,-1.002634048461914 +20220910190000,vlinder16,290.19068908691406,1.5786590576171875,-1.289743423461914 +20220910190000,vlinder17,289.01490783691406,2.1577606201171875,-1.289743423461914 +20220910190000,vlinder18,289.04615783691406,2.2144012451171875,-1.301462173461914 +20220910190000,vlinder19,289.19654846191406,2.5952606201171875,-1.232126235961914 +20220910190000,vlinder20,289.19654846191406,2.5952606201171875,-1.232126235961914 +20220910190000,vlinder21,291.37818908691406,1.1011199951171875,-4.065134048461914 +20220910190000,vlinder22,290.65357971191406,1.4526824951171875,-2.162790298461914 +20220910190000,vlinder23,290.70826721191406,1.2681121826171875,-1.908884048461914 +20220910190000,vlinder24,290.43482971191406,1.4419403076171875,-1.649118423461914 +20220910190000,vlinder25,290.30787658691406,1.4839324951171875,-1.309274673461914 +20220910190000,vlinder26,289.54420471191406,1.7876434326171875,-1.132516860961914 +20220910190000,vlinder27,290.07154846191406,1.6519012451171875,-1.125680923461914 +20220910190000,vlinder28,289.71607971191406,1.8657684326171875,-0.8180637359619141 +20220910200000,vlinder01,289.275390625,1.971466064453125,-0.48116302490234375 +20220910200000,vlinder02,289.3203125,1.921661376953125,-0.46944427490234375 +20220910200000,vlinder03,289.13671875,1.487091064453125,-1.1403427124023438 +20220910200000,vlinder04,289.13671875,1.487091064453125,-1.1403427124023438 +20220910200000,vlinder05,289.6640625,1.731231689453125,-0.8698348999023438 +20220910200000,vlinder06,289.38671875,2.154083251953125,-0.6169052124023438 +20220910200000,vlinder07,289.38671875,2.154083251953125,-0.6169052124023438 +20220910200000,vlinder08,289.38671875,2.154083251953125,-0.6169052124023438 +20220910200000,vlinder09,289.095703125,2.201934814453125,-0.5006942749023438 +20220910200000,vlinder10,289.095703125,2.163848876953125,-0.47042083740234375 +20220910200000,vlinder11,289.623046875,1.865997314453125,-1.0192489624023438 +20220910200000,vlinder12,289.623046875,1.865997314453125,-1.0192489624023438 +20220910200000,vlinder13,289.623046875,1.865997314453125,-1.0192489624023438 +20220910200000,vlinder14,289.787109375,1.724395751953125,-1.2106552124023438 +20220910200000,vlinder15,289.087890625,2.232208251953125,-0.5251083374023438 +20220910200000,vlinder16,289.787109375,1.724395751953125,-1.2106552124023438 +20220910200000,vlinder17,288.63671875,1.746856689453125,-1.0758895874023438 +20220910200000,vlinder18,288.658203125,1.789825439453125,-1.0563583374023438 +20220910200000,vlinder19,288.841796875,2.405059814453125,-0.5973739624023438 +20220910200000,vlinder20,288.841796875,2.405059814453125,-0.5973739624023438 +20220910200000,vlinder21,291.30859375,0.748809814453125,-3.8483505249023438 +20220910200000,vlinder22,290.267578125,1.478302001953125,-1.3913192749023438 +20220910200000,vlinder23,290.3828125,1.247833251953125,-1.8024520874023438 +20220910200000,vlinder24,290.05859375,1.433380126953125,-1.4772567749023438 +20220910200000,vlinder25,289.904296875,1.568145751953125,-1.1198348999023438 +20220910200000,vlinder26,289.10546875,1.608184814453125,-1.0426864624023438 +20220910200000,vlinder27,289.6640625,1.731231689453125,-0.8698348999023438 +20220910200000,vlinder28,289.275390625,1.971466064453125,-0.48116302490234375 +20220910210000,vlinder01,288.76158142089844,1.887237548828125,-0.6736278533935547 +20220910210000,vlinder02,288.81626892089844,1.840362548828125,-0.7156200408935547 +20220910210000,vlinder03,288.38462829589844,1.812042236328125,-0.6677684783935547 +20220910210000,vlinder04,288.38462829589844,1.812042236328125,-0.6677684783935547 +20220910210000,vlinder05,289.13853454589844,1.660675048828125,-1.0359325408935547 +20220910210000,vlinder06,288.70494079589844,2.147003173828125,-0.3386669158935547 +20220910210000,vlinder07,288.70494079589844,2.147003173828125,-0.3386669158935547 +20220910210000,vlinder08,288.70494079589844,2.147003173828125,-0.3386669158935547 +20220910210000,vlinder09,288.58970642089844,2.040557861328125,-0.5085887908935547 +20220910210000,vlinder10,288.59947204589844,1.999542236328125,-0.5505809783935547 +20220910210000,vlinder11,288.98423767089844,1.982940673828125,-0.7546825408935547 +20220910210000,vlinder12,288.98423767089844,1.982940673828125,-0.7546825408935547 +20220910210000,vlinder13,288.98423767089844,1.982940673828125,-0.7546825408935547 +20220910210000,vlinder14,289.19322204589844,1.891143798828125,-0.9871044158935547 +20220910210000,vlinder15,288.56040954589844,2.078643798828125,-0.4636669158935547 +20220910210000,vlinder16,289.19322204589844,1.891143798828125,-0.9871044158935547 +20220910210000,vlinder17,288.01939392089844,1.857940673828125,-0.5007762908935547 +20220910210000,vlinder18,288.07603454589844,1.867706298828125,-0.4831981658935547 +20220910210000,vlinder19,288.25767517089844,2.202667236328125,-0.4285106658935547 +20220910210000,vlinder20,288.25767517089844,2.202667236328125,-0.4285106658935547 +20220910210000,vlinder21,290.98619079589844,0.401885986328125,-4.110151290893555 +20220910210000,vlinder22,289.70298767089844,1.330596923828125,-1.7742137908935547 +20220910210000,vlinder23,289.86314392089844,1.198760986328125,-1.8035106658935547 +20220910210000,vlinder24,289.47056579589844,1.351104736328125,-1.5769481658935547 +20220910210000,vlinder25,289.31431579589844,1.539581298828125,-1.1951122283935547 +20220910210000,vlinder26,288.27134704589844,1.894073486328125,-0.5398387908935547 +20220910210000,vlinder27,289.13853454589844,1.660675048828125,-1.0359325408935547 +20220910210000,vlinder28,288.76158142089844,1.887237548828125,-0.6736278533935547 +20220910220000,vlinder01,288.36793518066406,1.893951416015625,-0.5725173950195312 +20220910220000,vlinder02,288.43629455566406,1.857818603515625,-0.6350173950195312 +20220910220000,vlinder03,287.90699768066406,1.730865478515625,-0.6066970825195312 +20220910220000,vlinder04,287.90699768066406,1.730865478515625,-0.6066970825195312 +20220910220000,vlinder05,288.73512268066406,1.700592041015625,-0.8928298950195312 +20220910220000,vlinder06,288.40309143066406,2.025787353515625,-0.14868927001953125 +20220910220000,vlinder07,288.40309143066406,2.025787353515625,-0.14868927001953125 +20220910220000,vlinder08,288.40309143066406,2.025787353515625,-0.14868927001953125 +20220910220000,vlinder09,288.27418518066406,1.959381103515625,-0.33618927001953125 +20220910220000,vlinder10,288.27418518066406,1.940826416015625,-0.39673614501953125 +20220910220000,vlinder11,288.57887268066406,1.913482666015625,-0.6174392700195312 +20220910220000,vlinder12,288.57887268066406,1.913482666015625,-0.6174392700195312 +20220910220000,vlinder13,288.57887268066406,1.913482666015625,-0.6174392700195312 +20220910220000,vlinder14,288.75074768066406,1.843170166015625,-0.8801345825195312 +20220910220000,vlinder15,288.25660705566406,1.977935791015625,-0.27564239501953125 +20220910220000,vlinder16,288.75074768066406,1.843170166015625,-0.8801345825195312 +20220910220000,vlinder17,287.61988830566406,1.898834228515625,-0.25122833251953125 +20220910220000,vlinder18,287.65504455566406,1.930084228515625,-0.22583770751953125 +20220910220000,vlinder19,288.02613830566406,2.044342041015625,-0.18482208251953125 +20220910220000,vlinder20,288.02613830566406,2.044342041015625,-0.18482208251953125 +20220910220000,vlinder21,290.96754455566406,0.310943603515625,-3.5695877075195312 +20220910220000,vlinder22,289.43238830566406,1.138092041015625,-1.6828689575195312 +20220910220000,vlinder23,289.49879455566406,1.261138916015625,-1.5500564575195312 +20220910220000,vlinder24,288.98316955566406,1.404693603515625,-1.3518142700195312 +20220910220000,vlinder25,288.80152893066406,1.595123291015625,-1.0275955200195312 +20220910220000,vlinder26,287.85816955566406,1.794342041015625,-0.43091583251953125 +20220910220000,vlinder27,288.73512268066406,1.700592041015625,-0.8928298950195312 +20220910220000,vlinder28,288.36793518066406,1.893951416015625,-0.5725173950195312 +20220910230000,vlinder01,287.84124755859375,1.9365997314453125,-0.3845024108886719 +20220910230000,vlinder02,287.89202880859375,1.9131622314453125,-0.4069633483886719 +20220910230000,vlinder03,287.63226318359375,1.5684356689453125,-0.6618461608886719 +20220910230000,vlinder04,287.63226318359375,1.5684356689453125,-0.6618461608886719 +20220910230000,vlinder05,288.12835693359375,1.7061309814453125,-0.6852836608886719 +20220910230000,vlinder06,287.82952880859375,2.0030059814453125,-0.18918991088867188 +20220910230000,vlinder07,287.82952880859375,2.0030059814453125,-0.18918991088867188 +20220910230000,vlinder08,287.82952880859375,2.0030059814453125,-0.18918991088867188 +20220910230000,vlinder09,287.74554443359375,2.0020294189453125,-0.24876022338867188 +20220910230000,vlinder10,287.74749755859375,1.9903106689453125,-0.2585258483886719 +20220910230000,vlinder11,288.09320068359375,1.8379669189453125,-0.6384086608886719 +20220910230000,vlinder12,288.09320068359375,1.8379669189453125,-0.6384086608886719 +20220910230000,vlinder13,288.09320068359375,1.8379669189453125,-0.6384086608886719 +20220910230000,vlinder14,288.29632568359375,1.7451934814453125,-0.8708305358886719 +20220910230000,vlinder15,287.72210693359375,2.0117950439453125,-0.22825241088867188 +20220910230000,vlinder16,288.29632568359375,1.7451934814453125,-0.8708305358886719 +20220910230000,vlinder17,287.46429443359375,1.7617950439453125,-0.2761039733886719 +20220910230000,vlinder18,287.54437255859375,1.7881622314453125,-0.24094772338867188 +20220910230000,vlinder19,287.50140380859375,2.0801544189453125,-0.10715866088867188 +20220910230000,vlinder20,287.50140380859375,2.0801544189453125,-0.10715866088867188 +20220910230000,vlinder21,290.92132568359375,0.3858184814453125,-2.936260223388672 +20220910230000,vlinder22,288.99945068359375,1.4854278564453125,-1.1139945983886719 +20220910230000,vlinder23,288.88616943359375,1.1944122314453125,-1.3561820983886719 +20220910230000,vlinder24,288.21429443359375,1.3897247314453125,-1.1315727233886719 +20220910230000,vlinder25,288.11273193359375,1.5430450439453125,-0.8571586608886719 +20220910230000,vlinder26,287.47601318359375,1.6436309814453125,-0.5114555358886719 +20220910230000,vlinder27,288.12835693359375,1.7061309814453125,-0.6852836608886719 +20220910230000,vlinder28,287.84124755859375,1.9365997314453125,-0.3845024108886719 +20220911000000,vlinder01,287.3220672607422,1.95648193359375,-0.0694732666015625 +20220911000000,vlinder02,287.3845672607422,1.96331787109375,-0.0665435791015625 +20220911000000,vlinder03,287.3337860107422,1.58441162109375,-0.4474029541015625 +20220911000000,vlinder04,287.3337860107422,1.58441162109375,-0.4474029541015625 +20220911000000,vlinder05,287.5251922607422,1.72698974609375,-0.3927154541015625 +20220911000000,vlinder06,287.5056610107422,1.87542724609375,-0.0020904541015625 +20220911000000,vlinder07,287.5056610107422,1.87542724609375,-0.0020904541015625 +20220911000000,vlinder08,287.5056610107422,1.87542724609375,-0.0020904541015625 +20220911000000,vlinder09,287.3552703857422,1.93304443359375,0.0320892333984375 +20220911000000,vlinder10,287.3318328857422,1.94769287109375,0.0516204833984375 +20220911000000,vlinder11,287.7966766357422,1.71429443359375,-0.4923248291015625 +20220911000000,vlinder12,287.7966766357422,1.71429443359375,-0.4923248291015625 +20220911000000,vlinder13,287.7966766357422,1.71429443359375,-0.4923248291015625 +20220911000000,vlinder14,288.0154266357422,1.62835693359375,-0.7384185791015625 +20220911000000,vlinder15,287.3552703857422,1.91937255859375,0.0291595458984375 +20220911000000,vlinder16,288.0154266357422,1.62835693359375,-0.7384185791015625 +20220911000000,vlinder17,287.2693328857422,1.75921630859375,-0.0225982666015625 +20220911000000,vlinder18,287.3630828857422,1.76995849609375,0.0125579833984375 +20220911000000,vlinder19,287.2009735107422,1.95257568359375,0.1834564208984375 +20220911000000,vlinder20,287.2009735107422,1.95257568359375,0.1834564208984375 +20220911000000,vlinder21,290.6638641357422,0.65960693359375,-2.5606842041015625 +20220911000000,vlinder22,288.2830047607422,1.82757568359375,-0.6524810791015625 +20220911000000,vlinder23,288.2283172607422,1.18597412109375,-1.1329498291015625 +20220911000000,vlinder24,287.6326141357422,1.42132568359375,-0.8653717041015625 +20220911000000,vlinder25,287.4412078857422,1.52288818359375,-0.6173248291015625 +20220911000000,vlinder26,287.1150360107422,1.63226318359375,-0.2638092041015625 +20220911000000,vlinder27,287.5251922607422,1.72698974609375,-0.3927154541015625 +20220911000000,vlinder28,287.3220672607422,1.95648193359375,-0.0694732666015625 +20220911010000,vlinder01,286.8310546875,1.8492431640625,0.041229248046875 +20220911010000,vlinder02,286.9169921875,1.8511962890625,0.034393310546875 +20220911010000,vlinder03,286.9599609375,1.5318603515625,-0.389434814453125 +20220911010000,vlinder04,286.9599609375,1.5318603515625,-0.389434814453125 +20220911010000,vlinder05,286.9736328125,1.5865478515625,-0.234161376953125 +20220911010000,vlinder06,287.0791015625,1.7896728515625,0.104705810546875 +20220911010000,vlinder07,287.0791015625,1.7896728515625,0.104705810546875 +20220911010000,vlinder08,287.0791015625,1.7896728515625,0.104705810546875 +20220911010000,vlinder09,286.9423828125,1.8277587890625,0.111541748046875 +20220911010000,vlinder10,286.9072265625,1.8345947265625,0.123260498046875 +20220911010000,vlinder11,287.2626953125,1.5963134765625,-0.353302001953125 +20220911010000,vlinder12,287.2626953125,1.5963134765625,-0.353302001953125 +20220911010000,vlinder13,287.2626953125,1.5963134765625,-0.353302001953125 +20220911010000,vlinder14,287.4619140625,1.4898681640625,-0.587677001953125 +20220911010000,vlinder15,286.9443359375,1.8199462890625,0.111541748046875 +20220911010000,vlinder16,287.4619140625,1.4898681640625,-0.587677001953125 +20220911010000,vlinder17,286.8955078125,1.6881103515625,-0.050567626953125 +20220911010000,vlinder18,287.0185546875,1.6988525390625,-0.036895751953125 +20220911010000,vlinder19,286.8037109375,1.8355712890625,0.215057373046875 +20220911010000,vlinder20,286.8037109375,1.8355712890625,0.215057373046875 +20220911010000,vlinder21,290.3642578125,0.6207275390625,-2.385528564453125 +20220911010000,vlinder22,287.6845703125,1.7222900390625,-0.697052001953125 +20220911010000,vlinder23,288.4580078125,0.9810791015625,-0.880645751953125 +20220911010000,vlinder24,287.6787109375,1.2633056640625,-0.657012939453125 +20220911010000,vlinder25,287.4326171875,1.3394775390625,-0.404083251953125 +20220911010000,vlinder26,286.5966796875,1.5963134765625,-0.209747314453125 +20220911010000,vlinder27,286.9736328125,1.5865478515625,-0.234161376953125 +20220911010000,vlinder28,286.8310546875,1.8492431640625,0.041229248046875 +20220911020000,vlinder01,286.6076965332031,1.5987701416015625,0.19488525390625 +20220911020000,vlinder02,286.7190246582031,1.6036529541015625,0.18609619140625 +20220911020000,vlinder03,286.6272277832031,1.5987701416015625,-0.32952880859375 +20220911020000,vlinder04,286.6272277832031,1.5987701416015625,-0.32952880859375 +20220911020000,vlinder05,286.9924621582031,1.2374420166015625,-0.03656005859375 +20220911020000,vlinder06,286.8576965332031,1.6554107666015625,0.27886962890625 +20220911020000,vlinder07,286.8576965332031,1.6554107666015625,0.27886962890625 +20220911020000,vlinder08,286.8576965332031,1.6554107666015625,0.27886962890625 +20220911020000,vlinder09,286.7795715332031,1.5860748291015625,0.21734619140625 +20220911020000,vlinder10,286.7366027832031,1.5850982666015625,0.22515869140625 +20220911020000,vlinder11,286.8850402832031,1.4610748291015625,-0.19769287109375 +20220911020000,vlinder12,286.8850402832031,1.4610748291015625,-0.19769287109375 +20220911020000,vlinder13,286.8850402832031,1.4610748291015625,-0.19769287109375 +20220911020000,vlinder14,287.2307434082031,1.3263092041015625,-0.44964599609375 +20220911020000,vlinder15,286.7795715332031,1.5909576416015625,0.22027587890625 +20220911020000,vlinder16,287.2307434082031,1.3263092041015625,-0.44964599609375 +20220911020000,vlinder17,286.5842590332031,1.5782623291015625,0.23199462890625 +20220911020000,vlinder18,286.7326965332031,1.5753326416015625,0.24273681640625 +20220911020000,vlinder19,286.5901184082031,1.6329498291015625,0.28961181640625 +20220911020000,vlinder20,286.5901184082031,1.6329498291015625,0.28961181640625 +20220911020000,vlinder21,289.8049621582031,0.0099029541015625,-2.07464599609375 +20220911020000,vlinder22,287.0412902832031,1.5440826416015625,-0.43499755859375 +20220911020000,vlinder23,289.9631652832031,0.4395904541015625,-0.59613037109375 +20220911020000,vlinder24,289.0725402832031,0.8009185791015625,-0.40863037109375 +20220911020000,vlinder25,288.6487121582031,0.9093170166015625,-0.16937255859375 +20220911020000,vlinder26,286.1135559082031,1.6475982666015625,-0.07562255859375 +20220911020000,vlinder27,286.9924621582031,1.2374420166015625,-0.03656005859375 +20220911020000,vlinder28,286.6076965332031,1.5987701416015625,0.19488525390625 +20220911030000,vlinder01,286.06858825683594,1.7548065185546875,0.61492919921875 +20220911030000,vlinder02,286.22093200683594,1.7655487060546875,0.64520263671875 +20220911030000,vlinder03,286.25804138183594,1.3319549560546875,-0.82550048828125 +20220911030000,vlinder04,286.25804138183594,1.3319549560546875,-0.82550048828125 +20220911030000,vlinder05,286.46897888183594,1.2118377685546875,0.41473388671875 +20220911030000,vlinder06,286.41429138183594,1.7342987060546875,0.38153076171875 +20220911030000,vlinder07,286.41429138183594,1.7342987060546875,0.38153076171875 +20220911030000,vlinder08,286.41429138183594,1.7342987060546875,0.38153076171875 +20220911030000,vlinder09,286.30882263183594,1.7098846435546875,0.59637451171875 +20220911030000,vlinder10,286.24436950683594,1.7098846435546875,0.64715576171875 +20220911030000,vlinder11,286.40647888183594,1.3202362060546875,-0.30596923828125 +20220911030000,vlinder12,286.40647888183594,1.3202362060546875,-0.30596923828125 +20220911030000,vlinder13,286.40647888183594,1.3202362060546875,-0.30596923828125 +20220911030000,vlinder14,287.10569763183594,1.0839080810546875,-0.60968017578125 +20220911030000,vlinder15,286.32054138183594,1.7089080810546875,0.55535888671875 +20220911030000,vlinder16,287.10569763183594,1.0839080810546875,-0.60968017578125 +20220911030000,vlinder17,286.29515075683594,1.5321502685546875,-0.03839111328125 +20220911030000,vlinder18,286.46311950683594,1.5272674560546875,-0.01593017578125 +20220911030000,vlinder19,286.12132263183594,1.6932830810546875,0.62078857421875 +20220911030000,vlinder20,286.12132263183594,1.6932830810546875,0.62078857421875 +20220911030000,vlinder21,289.65647888183594,-0.1905059814453125,-1.39971923828125 +20220911030000,vlinder22,286.65647888183594,2.0009002685546875,0.22430419921875 +20220911030000,vlinder23,289.74632263183594,0.0487518310546875,-0.10577392578125 +20220911030000,vlinder24,288.73460388183594,0.5653533935546875,0.10125732421875 +20220911030000,vlinder25,288.42601013183594,0.7128143310546875,0.25164794921875 +20220911030000,vlinder26,285.58030700683594,1.4569549560546875,-0.49737548828125 +20220911030000,vlinder27,286.46897888183594,1.2118377685546875,0.41473388671875 +20220911030000,vlinder28,286.06858825683594,1.7548065185546875,0.61492919921875 +20220911040000,vlinder01,285.85333251953125,1.566436767578125,0.6949615478515625 +20220911040000,vlinder02,286.04473876953125,1.556671142578125,0.6959381103515625 +20220911040000,vlinder03,285.69903564453125,0.743194580078125,-0.8968353271484375 +20220911040000,vlinder04,285.69903564453125,0.743194580078125,-0.8968353271484375 +20220911040000,vlinder05,286.01348876953125,1.196319580078125,0.6773834228515625 +20220911040000,vlinder06,286.00958251953125,1.663116455078125,0.4439849853515625 +20220911040000,vlinder07,286.00958251953125,1.663116455078125,0.4439849853515625 +20220911040000,vlinder08,286.00958251953125,1.663116455078125,0.4439849853515625 +20220911040000,vlinder09,286.09552001953125,1.609405517578125,0.7174224853515625 +20220911040000,vlinder10,286.05645751953125,1.583038330078125,0.7369537353515625 +20220911040000,vlinder11,286.37286376953125,1.125030517578125,-0.1429290771484375 +20220911040000,vlinder12,286.37286376953125,1.125030517578125,-0.1429290771484375 +20220911040000,vlinder13,286.37286376953125,1.125030517578125,-0.1429290771484375 +20220911040000,vlinder14,287.62872314453125,0.844757080078125,-0.3685150146484375 +20220911040000,vlinder15,286.07598876953125,1.628936767578125,0.6881256103515625 +20220911040000,vlinder16,287.62872314453125,0.844757080078125,-0.3685150146484375 +20220911040000,vlinder17,286.15802001953125,1.277374267578125,-0.3274993896484375 +20220911040000,vlinder18,286.37481689453125,1.271514892578125,-0.3060150146484375 +20220911040000,vlinder19,285.87481689453125,1.654327392578125,0.6705474853515625 +20220911040000,vlinder20,285.87481689453125,1.654327392578125,0.6705474853515625 +20220911040000,vlinder21,291.20880126953125,0.443389892578125,-0.5774993896484375 +20220911040000,vlinder22,286.80255126953125,1.929718017578125,0.2730865478515625 +20220911040000,vlinder23,289.31231689453125,0.405303955078125,0.5670318603515625 +20220911040000,vlinder24,288.23419189453125,0.778350830078125,0.6187896728515625 +20220911040000,vlinder25,287.36895751953125,0.874053955078125,0.6744537353515625 +20220911040000,vlinder26,285.29864501953125,0.993194580078125,-0.6536712646484375 +20220911040000,vlinder27,286.01348876953125,1.196319580078125,0.6773834228515625 +20220911040000,vlinder28,285.85333251953125,1.566436767578125,0.6949615478515625 +20220911050000,vlinder01,285.8701934814453,1.54742431640625,0.762908935546875 +20220911050000,vlinder02,286.1104278564453,1.54156494140625,0.740447998046875 +20220911050000,vlinder03,286.3877716064453,0.41461181640625,-0.177520751953125 +20220911050000,vlinder04,286.3877716064453,0.41461181640625,-0.177520751953125 +20220911050000,vlinder05,285.8252716064453,1.30328369140625,0.816619873046875 +20220911050000,vlinder06,285.7549591064453,1.53668212890625,0.792205810546875 +20220911050000,vlinder07,285.7549591064453,1.53668212890625,0.792205810546875 +20220911050000,vlinder08,285.7549591064453,1.53668212890625,0.792205810546875 +20220911050000,vlinder09,286.0830841064453,1.57574462890625,0.806854248046875 +20220911050000,vlinder10,286.0889434814453,1.55621337890625,0.796112060546875 +20220911050000,vlinder11,286.0733184814453,1.06988525390625,0.356658935546875 +20220911050000,vlinder12,286.0733184814453,1.06988525390625,0.356658935546875 +20220911050000,vlinder13,286.0733184814453,1.06988525390625,0.356658935546875 +20220911050000,vlinder14,287.5186309814453,0.85406494140625,0.163299560546875 +20220911050000,vlinder15,286.0225372314453,1.58355712890625,0.813690185546875 +20220911050000,vlinder16,287.5186309814453,0.85406494140625,0.163299560546875 +20220911050000,vlinder17,286.0283966064453,1.10015869140625,0.174041748046875 +20220911050000,vlinder18,286.2588653564453,1.09918212890625,0.168182373046875 +20220911050000,vlinder19,285.8174591064453,1.57379150390625,0.800018310546875 +20220911050000,vlinder20,285.8174591064453,1.57379150390625,0.800018310546875 +20220911050000,vlinder21,291.0401153564453,0.77398681640625,-0.160919189453125 +20220911050000,vlinder22,287.0225372314453,1.88140869140625,0.322479248046875 +20220911050000,vlinder23,287.9014434814453,0.77105712890625,0.905487060546875 +20220911050000,vlinder24,286.9678497314453,1.03375244140625,0.862518310546875 +20220911050000,vlinder25,286.5010528564453,1.08941650390625,0.890838623046875 +20220911050000,vlinder26,286.0225372314453,0.67340087890625,0.030487060546875 +20220911050000,vlinder27,285.8252716064453,1.30328369140625,0.816619873046875 +20220911050000,vlinder28,285.8701934814453,1.54742431640625,0.762908935546875 +20220911060000,vlinder01,286.1609191894531,1.31158447265625,0.7122802734375 +20220911060000,vlinder02,286.4148254394531,1.31353759765625,0.7073974609375 +20220911060000,vlinder03,285.6941223144531,0.72174072265625,0.5091552734375 +20220911060000,vlinder04,285.6941223144531,0.72174072265625,0.5091552734375 +20220911060000,vlinder05,286.1765441894531,1.17877197265625,0.7923583984375 +20220911060000,vlinder06,285.7917785644531,1.25494384765625,0.7083740234375 +20220911060000,vlinder07,285.7917785644531,1.25494384765625,0.7083740234375 +20220911060000,vlinder08,285.7917785644531,1.25494384765625,0.7083740234375 +20220911060000,vlinder09,286.3699035644531,1.33990478515625,0.7669677734375 +20220911060000,vlinder10,286.3972473144531,1.33013916015625,0.7718505859375 +20220911060000,vlinder11,286.0456848144531,1.00006103515625,0.4749755859375 +20220911060000,vlinder12,286.0456848144531,1.00006103515625,0.4749755859375 +20220911060000,vlinder13,286.0456848144531,1.00006103515625,0.4749755859375 +20220911060000,vlinder14,286.9812316894531,0.88775634765625,0.3577880859375 +20220911060000,vlinder15,286.2761535644531,1.33892822265625,0.7650146484375 +20220911060000,vlinder16,286.9812316894531,0.88775634765625,0.3577880859375 +20220911060000,vlinder17,286.0710754394531,1.04107666015625,0.5911865234375 +20220911060000,vlinder18,286.3230285644531,1.08892822265625,0.5804443359375 +20220911060000,vlinder19,286.0495910644531,1.36724853515625,0.8177490234375 +20220911060000,vlinder20,286.0495910644531,1.36724853515625,0.8177490234375 +20220911060000,vlinder21,290.1140441894531,1.05572509765625,0.2874755859375 +20220911060000,vlinder22,287.3288879394531,1.67974853515625,0.5882568359375 +20220911060000,vlinder23,287.6394348144531,0.87310791015625,0.9447021484375 +20220911060000,vlinder24,287.0085754394531,1.06549072265625,0.8890380859375 +20220911060000,vlinder25,286.7312316894531,1.03326416015625,0.8597412109375 +20220911060000,vlinder26,285.2702941894531,0.80377197265625,0.6361083984375 +20220911060000,vlinder27,286.1765441894531,1.17877197265625,0.7923583984375 +20220911060000,vlinder28,286.1609191894531,1.31158447265625,0.7122802734375 +20220911070000,vlinder01,287.44970703125,0.3180084228515625,0.1150360107421875 +20220911070000,vlinder02,287.44775390625,0.2603912353515625,0.1023406982421875 +20220911070000,vlinder03,287.53173828125,0.2799224853515625,-0.0841827392578125 +20220911070000,vlinder04,287.53173828125,0.2799224853515625,-0.0841827392578125 +20220911070000,vlinder05,287.92041015625,0.2164459228515625,0.1951141357421875 +20220911070000,vlinder06,287.46923828125,0.6637115478515625,0.1931610107421875 +20220911070000,vlinder07,287.46923828125,0.6637115478515625,0.1931610107421875 +20220911070000,vlinder08,287.46923828125,0.6637115478515625,0.1931610107421875 +20220911070000,vlinder09,287.48486328125,0.5787506103515625,0.1697235107421875 +20220911070000,vlinder10,287.45361328125,0.5172271728515625,0.1589813232421875 +20220911070000,vlinder11,287.86572265625,0.5240631103515625,0.1511688232421875 +20220911070000,vlinder12,287.86572265625,0.5240631103515625,0.1511688232421875 +20220911070000,vlinder13,287.86572265625,0.5240631103515625,0.1511688232421875 +20220911070000,vlinder14,288.31103515625,0.4420318603515625,0.1345672607421875 +20220911070000,vlinder15,287.47705078125,0.6334381103515625,0.1814422607421875 +20220911070000,vlinder16,288.31103515625,0.4420318603515625,0.1345672607421875 +20220911070000,vlinder17,287.50439453125,1.1451568603515625,-0.1408233642578125 +20220911070000,vlinder18,287.67626953125,1.2691802978515625,-0.2394561767578125 +20220911070000,vlinder19,287.29150390625,0.9205474853515625,0.2820281982421875 +20220911070000,vlinder20,287.29150390625,0.9205474853515625,0.2820281982421875 +20220911070000,vlinder21,289.79345703125,0.1002349853515625,0.8259735107421875 +20220911070000,vlinder22,288.12353515625,0.2213287353515625,0.2527313232421875 +20220911070000,vlinder23,288.77587890625,0.0621490478515625,0.4138641357421875 +20220911070000,vlinder24,288.32666015625,0.1266021728515625,0.3289031982421875 +20220911070000,vlinder25,288.19189453125,0.1744537353515625,0.2419891357421875 +20220911070000,vlinder26,287.37158203125,0.3746490478515625,0.0134735107421875 +20220911070000,vlinder27,287.92041015625,0.2164459228515625,0.1951141357421875 +20220911070000,vlinder28,287.44970703125,0.3180084228515625,0.1150360107421875 +20220911080000,vlinder01,289.7681579589844,0.0968170166015625,0.17523193359375 +20220911080000,vlinder02,289.8111267089844,0.0518951416015625,0.18206787109375 +20220911080000,vlinder03,289.1294860839844,0.2384185791015625,-0.07965087890625 +20220911080000,vlinder04,289.1294860839844,0.2384185791015625,-0.07965087890625 +20220911080000,vlinder05,290.1353454589844,0.0528717041015625,0.26702880859375 +20220911080000,vlinder06,289.3169860839844,0.6134185791015625,0.12738037109375 +20220911080000,vlinder07,289.3169860839844,0.6134185791015625,0.12738037109375 +20220911080000,vlinder08,289.3169860839844,0.6134185791015625,0.12738037109375 +20220911080000,vlinder09,289.3033142089844,0.3497467041015625,0.22796630859375 +20220911080000,vlinder10,289.3540954589844,0.2901763916015625,0.23870849609375 +20220911080000,vlinder11,289.7974548339844,0.3048248291015625,0.21917724609375 +20220911080000,vlinder12,289.7974548339844,0.3048248291015625,0.21917724609375 +20220911080000,vlinder13,289.7974548339844,0.3048248291015625,0.21917724609375 +20220911080000,vlinder14,290.0806579589844,0.1212310791015625,0.28363037109375 +20220911080000,vlinder15,289.2193298339844,0.4200592041015625,0.22015380859375 +20220911080000,vlinder16,290.0806579589844,0.1212310791015625,0.28363037109375 +20220911080000,vlinder17,288.6783142089844,0.9395904541015625,-0.09136962890625 +20220911080000,vlinder18,288.8599548339844,1.0225982666015625,-0.17926025390625 +20220911080000,vlinder19,288.7447204589844,0.6925201416015625,0.26116943359375 +20220911080000,vlinder20,288.7447204589844,0.6925201416015625,0.26116943359375 +20220911080000,vlinder21,290.6509704589844,0.3907623291015625,0.83148193359375 +20220911080000,vlinder22,289.6490173339844,0.1485748291015625,0.43890380859375 +20220911080000,vlinder23,290.6294860839844,0.0440826416015625,0.49163818359375 +20220911080000,vlinder24,290.3580017089844,0.0821685791015625,0.38909912109375 +20220911080000,vlinder25,290.3287048339844,0.0216217041015625,0.33831787109375 +20220911080000,vlinder26,288.8716735839844,0.4239654541015625,-0.01129150390625 +20220911080000,vlinder27,290.1353454589844,0.0528717041015625,0.26702880859375 +20220911080000,vlinder28,289.7681579589844,0.0968170166015625,0.17523193359375 +20220911090000,vlinder01,291.53627014160156,0.155609130859375,-0.098724365234375 +20220911090000,vlinder02,291.60462951660156,0.121429443359375,-0.084075927734375 +20220911090000,vlinder03,290.84486389160156,0.224945068359375,-0.032318115234375 +20220911090000,vlinder04,290.84486389160156,0.224945068359375,-0.032318115234375 +20220911090000,vlinder05,291.76283264160156,0.267913818359375,0.077056884765625 +20220911090000,vlinder06,291.04017639160156,0.339202880859375,-0.095794677734375 +20220911090000,vlinder07,291.04017639160156,0.339202880859375,-0.095794677734375 +20220911090000,vlinder08,291.04017639160156,0.339202880859375,-0.095794677734375 +20220911090000,vlinder09,291.08509826660156,0.250335693359375,-0.025482177734375 +20220911090000,vlinder10,291.16712951660156,0.220062255859375,-0.022552490234375 +20220911090000,vlinder11,291.34681701660156,0.231781005859375,0.109283447265625 +20220911090000,vlinder12,291.34681701660156,0.231781005859375,0.109283447265625 +20220911090000,vlinder13,291.34681701660156,0.231781005859375,0.109283447265625 +20220911090000,vlinder14,291.53431701660156,0.157562255859375,0.229400634765625 +20220911090000,vlinder15,290.98548889160156,0.277679443359375,-0.025482177734375 +20220911090000,vlinder16,291.53431701660156,0.157562255859375,0.229400634765625 +20220911090000,vlinder17,290.34877014160156,0.741546630859375,-0.457122802734375 +20220911090000,vlinder18,290.45033264160156,0.786468505859375,-0.557708740234375 +20220911090000,vlinder19,290.54798889160156,0.374359130859375,-0.026458740234375 +20220911090000,vlinder20,290.54798889160156,0.374359130859375,-0.026458740234375 +20220911090000,vlinder21,291.44447326660156,0.606781005859375,0.209869384765625 +20220911090000,vlinder22,291.23548889160156,-0.027008056640625,0.157135009765625 +20220911090000,vlinder23,291.92298889160156,0.526702880859375,0.467681884765625 +20220911090000,vlinder24,291.79603576660156,0.441741943359375,0.259674072265625 +20220911090000,vlinder25,291.84486389160156,0.355804443359375,0.303619384765625 +20220911090000,vlinder26,290.68666076660156,0.374359130859375,-0.044036865234375 +20220911090000,vlinder27,291.76283264160156,0.267913818359375,0.077056884765625 +20220911090000,vlinder28,291.53627014160156,0.155609130859375,-0.098724365234375 +20220911100000,vlinder01,292.74171447753906,-0.0135345458984375,-0.36236572265625 +20220911100000,vlinder02,292.80812072753906,-0.0867767333984375,-0.33306884765625 +20220911100000,vlinder03,292.25538635253906,0.2979888916015625,-0.15435791015625 +20220911100000,vlinder04,292.25538635253906,0.2979888916015625,-0.15435791015625 +20220911100000,vlinder05,292.81983947753906,0.1534576416015625,-0.26275634765625 +20220911100000,vlinder06,292.48194885253906,0.3858795166015625,-0.41802978515625 +20220911100000,vlinder07,292.48194885253906,0.3858795166015625,-0.41802978515625 +20220911100000,vlinder08,292.48194885253906,0.3858795166015625,-0.41802978515625 +20220911100000,vlinder09,292.39405822753906,0.1895904541015625,-0.35748291015625 +20220911100000,vlinder10,292.45851135253906,0.1192779541015625,-0.33892822265625 +20220911100000,vlinder11,292.52882385253906,0.2989654541015625,-0.04498291015625 +20220911100000,vlinder12,292.52882385253906,0.2989654541015625,-0.04498291015625 +20220911100000,vlinder13,292.52882385253906,0.2989654541015625,-0.04498291015625 +20220911100000,vlinder14,292.58741760253906,0.2257232666015625,0.14544677734375 +20220911100000,vlinder15,292.32179260253906,0.2520904541015625,-0.36920166015625 +20220911100000,vlinder16,292.58741760253906,0.2257232666015625,0.14544677734375 +20220911100000,vlinder17,291.93116760253906,0.6036529541015625,-0.67779541015625 +20220911100000,vlinder18,291.99171447753906,0.6358795166015625,-0.73052978515625 +20220911100000,vlinder19,292.00148010253906,0.3624420166015625,-0.39166259765625 +20220911100000,vlinder20,292.00148010253906,0.3624420166015625,-0.39166259765625 +20220911100000,vlinder21,292.03273010253906,-0.0154876708984375,-0.70220947265625 +20220911100000,vlinder22,292.39015197753906,-0.5242767333984375,0.01947021484375 +20220911100000,vlinder23,292.69288635253906,0.5821685791015625,-0.06744384765625 +20220911100000,vlinder24,292.68898010253906,0.3761138916015625,-0.22467041015625 +20220911100000,vlinder25,292.77882385253906,0.3643951416015625,-0.07135009765625 +20220911100000,vlinder26,292.21241760253906,0.4073638916015625,-0.23248291015625 +20220911100000,vlinder27,292.81983947753906,0.1534576416015625,-0.26275634765625 +20220911100000,vlinder28,292.74171447753906,-0.0135345458984375,-0.36236572265625 +20220911110000,vlinder01,293.73460388183594,-0.4469146728515625,-0.493499755859375 +20220911110000,vlinder02,293.82640075683594,-0.5396881103515625,-0.450531005859375 +20220911110000,vlinder03,293.08030700683594,0.4739837646484375,-0.514007568359375 +20220911110000,vlinder04,293.08030700683594,0.4739837646484375,-0.514007568359375 +20220911110000,vlinder05,293.75413513183594,-0.3385162353515625,-0.523773193359375 +20220911110000,vlinder06,293.33811950683594,0.2942962646484375,-0.575531005859375 +20220911110000,vlinder07,293.33811950683594,0.2942962646484375,-0.575531005859375 +20220911110000,vlinder08,293.33811950683594,0.2942962646484375,-0.575531005859375 +20220911110000,vlinder09,293.39866638183594,-0.1090240478515625,-0.549163818359375 +20220911110000,vlinder10,293.48265075683594,-0.2262115478515625,-0.527679443359375 +20220911110000,vlinder11,293.31272888183594,0.3265228271484375,-0.311859130859375 +20220911110000,vlinder12,293.31272888183594,0.3265228271484375,-0.311859130859375 +20220911110000,vlinder13,293.31272888183594,0.3265228271484375,-0.311859130859375 +20220911110000,vlinder14,293.34788513183594,0.2991790771484375,-0.178070068359375 +20220911110000,vlinder15,293.30686950683594,0.0023040771484375,-0.563812255859375 +20220911110000,vlinder16,293.34788513183594,0.2991790771484375,-0.178070068359375 +20220911110000,vlinder17,292.79124450683594,0.5511322021484375,-0.820648193359375 +20220911110000,vlinder18,292.85569763183594,0.5618743896484375,-0.861663818359375 +20220911110000,vlinder19,293.00804138183594,0.2191009521484375,-0.654632568359375 +20220911110000,vlinder20,293.00804138183594,0.2191009521484375,-0.654632568359375 +20220911110000,vlinder21,292.84202575683594,-0.5582427978515625,-1.108734130859375 +20220911110000,vlinder22,293.59788513183594,-0.5230865478515625,0.091461181640625 +20220911110000,vlinder23,293.48265075683594,0.0550384521484375,-0.601898193359375 +20220911110000,vlinder24,293.55491638183594,-0.1764068603515625,-0.627288818359375 +20220911110000,vlinder25,293.63890075683594,-0.1070709228515625,-0.468109130859375 +20220911110000,vlinder26,293.06858825683594,0.5599212646484375,-0.555999755859375 +20220911110000,vlinder27,293.75413513183594,-0.3385162353515625,-0.523773193359375 +20220911110000,vlinder28,293.73460388183594,-0.4469146728515625,-0.493499755859375 +20220911120000,vlinder01,294.50225830078125,-0.7655029296875,-0.102386474609375 +20220911120000,vlinder02,294.60577392578125,-0.7869873046875,0.004058837890625 +20220911120000,vlinder03,293.68389892578125,0.3438720703125,-0.777191162109375 +20220911120000,vlinder04,293.68389892578125,0.3438720703125,-0.777191162109375 +20220911120000,vlinder05,294.46319580078125,-0.7176513671875,-0.206878662109375 +20220911120000,vlinder06,294.09600830078125,-0.1912841796875,-0.609222412109375 +20220911120000,vlinder07,294.09600830078125,-0.1912841796875,-0.609222412109375 +20220911120000,vlinder08,294.09600830078125,-0.1912841796875,-0.609222412109375 +20220911120000,vlinder09,294.23468017578125,-0.5369873046875,-0.304534912109375 +20220911120000,vlinder10,294.32647705078125,-0.6092529296875,-0.210784912109375 +20220911120000,vlinder11,293.94366455078125,-0.1688232421875,-0.499847412109375 +20220911120000,vlinder12,293.94366455078125,-0.1688232421875,-0.499847412109375 +20220911120000,vlinder13,293.94366455078125,-0.1688232421875,-0.499847412109375 +20220911120000,vlinder14,293.91632080078125,-0.2078857421875,-0.404144287109375 +20220911120000,vlinder15,294.14093017578125,-0.4559326171875,-0.384613037109375 +20220911120000,vlinder16,293.91632080078125,-0.2078857421875,-0.404144287109375 +20220911120000,vlinder17,293.50421142578125,0.5274658203125,-0.803558349609375 +20220911120000,vlinder18,293.58428955078125,0.5372314453125,-0.824066162109375 +20220911120000,vlinder19,293.91436767578125,-0.2655029296875,-0.536956787109375 +20220911120000,vlinder20,293.91436767578125,-0.2655029296875,-0.536956787109375 +20220911120000,vlinder21,293.35968017578125,-0.4051513671875,-0.859222412109375 +20220911120000,vlinder22,294.45538330078125,-0.1903076171875,0.499176025390625 +20220911120000,vlinder23,294.07061767578125,-0.4510498046875,-0.517425537109375 +20220911120000,vlinder24,294.20343017578125,-0.5721435546875,-0.402191162109375 +20220911120000,vlinder25,294.29522705078125,-0.6131591796875,-0.304534912109375 +20220911120000,vlinder26,293.69952392578125,0.4395751953125,-0.768402099609375 +20220911120000,vlinder27,294.46319580078125,-0.7176513671875,-0.206878662109375 +20220911120000,vlinder28,294.50225830078125,-0.7655029296875,-0.102386474609375 +20220911130000,vlinder01,295.00975036621094,-0.41094970703125,0.5012054443359375 +20220911130000,vlinder02,295.08396911621094,-0.34649658203125,0.6496429443359375 +20220911130000,vlinder03,294.34764099121094,0.04412841796875,-0.7507476806640625 +20220911130000,vlinder04,294.34764099121094,0.04412841796875,-0.7507476806640625 +20220911130000,vlinder05,294.91795349121094,-0.33575439453125,0.4338226318359375 +20220911130000,vlinder06,294.86326599121094,-0.44512939453125,-0.4528961181640625 +20220911130000,vlinder07,294.86326599121094,-0.44512939453125,-0.4528961181640625 +20220911130000,vlinder08,294.86326599121094,-0.44512939453125,-0.4528961181640625 +20220911130000,vlinder09,294.82810974121094,-0.37579345703125,0.1281585693359375 +20220911130000,vlinder10,294.88279724121094,-0.34649658203125,0.2980804443359375 +20220911130000,vlinder11,294.65037536621094,-0.50860595703125,-0.3152008056640625 +20220911130000,vlinder12,294.65037536621094,-0.50860595703125,-0.3152008056640625 +20220911130000,vlinder13,294.65037536621094,-0.50860595703125,-0.3152008056640625 +20220911130000,vlinder14,294.58592224121094,-0.55743408203125,-0.1706695556640625 +20220911130000,vlinder15,294.77342224121094,-0.38848876953125,-0.0232086181640625 +20220911130000,vlinder16,294.58592224121094,-0.55743408203125,-0.1706695556640625 +20220911130000,vlinder17,294.05662536621094,0.32830810546875,-0.7390289306640625 +20220911130000,vlinder18,294.12889099121094,0.34783935546875,-0.7321929931640625 +20220911130000,vlinder19,294.58982849121094,-0.33282470703125,-0.2126617431640625 +20220911130000,vlinder20,294.58982849121094,-0.33282470703125,-0.2126617431640625 +20220911130000,vlinder21,293.60740661621094,0.21112060546875,-0.5183258056640625 +20220911130000,vlinder22,294.87107849121094,0.16815185546875,0.7453460693359375 +20220911130000,vlinder23,294.47264099121094,-0.13458251953125,0.0812835693359375 +20220911130000,vlinder24,294.60935974121094,-0.14923095703125,0.2199554443359375 +20220911130000,vlinder25,294.74021911621094,-0.34063720703125,0.3137054443359375 +20220911130000,vlinder26,294.37693786621094,0.10467529296875,-0.7458648681640625 +20220911130000,vlinder27,294.91795349121094,-0.33575439453125,0.4338226318359375 +20220911130000,vlinder28,295.00975036621094,-0.41094970703125,0.5012054443359375 +20220911140000,vlinder01,294.9568786621094,-0.0690460205078125,0.6985321044921875 +20220911140000,vlinder02,295.0213317871094,-0.0241241455078125,0.8186492919921875 +20220911140000,vlinder03,294.6658630371094,-0.2018585205078125,-0.4196319580078125 +20220911140000,vlinder04,294.6658630371094,-0.2018585205078125,-0.4196319580078125 +20220911140000,vlinder05,294.8533630371094,0.0373992919921875,0.6985321044921875 +20220911140000,vlinder06,294.9353942871094,-0.5133819580078125,-0.1676788330078125 +20220911140000,vlinder07,294.9353942871094,-0.5133819580078125,-0.1676788330078125 +20220911140000,vlinder08,294.9353942871094,-0.5133819580078125,-0.1676788330078125 +20220911140000,vlinder09,294.8103942871094,-0.0055694580078125,0.3918914794921875 +20220911140000,vlinder10,294.8475036621094,0.0325164794921875,0.5383758544921875 +20220911140000,vlinder11,294.7869567871094,-0.4752960205078125,0.1174774169921875 +20220911140000,vlinder12,294.7869567871094,-0.4752960205078125,0.1174774169921875 +20220911140000,vlinder13,294.7869567871094,-0.4752960205078125,0.1174774169921875 +20220911140000,vlinder14,294.7459411621094,-0.4196319580078125,0.3352508544921875 +20220911140000,vlinder15,294.7732849121094,-0.0592803955078125,0.2581024169921875 +20220911140000,vlinder16,294.7459411621094,-0.4196319580078125,0.3352508544921875 +20220911140000,vlinder17,294.3143005371094,0.1741180419921875,-0.6442413330078125 +20220911140000,vlinder18,294.3709411621094,0.1877899169921875,-0.6540069580078125 +20220911140000,vlinder19,294.6209411621094,-0.1950225830078125,0.0842742919921875 +20220911140000,vlinder20,294.6209411621094,-0.1950225830078125,0.0842742919921875 +20220911140000,vlinder21,293.6697692871094,0.2766571044921875,-0.5983428955078125 +20220911140000,vlinder22,295.0779724121094,0.2229461669921875,0.8762664794921875 +20220911140000,vlinder23,294.4412536621094,0.2737274169921875,0.5051727294921875 +20220911140000,vlinder24,294.5740661621094,0.2307586669921875,0.5129852294921875 +20220911140000,vlinder25,294.6853942871094,0.0637664794921875,0.7248992919921875 +20220911140000,vlinder26,294.6717224121094,-0.1881866455078125,-0.4547882080078125 +20220911140000,vlinder27,294.8533630371094,0.0373992919921875,0.6985321044921875 +20220911140000,vlinder28,294.9568786621094,-0.0690460205078125,0.6985321044921875 +20220911150000,vlinder01,294.9564971923828,-0.096923828125,0.7521820068359375 +20220911150000,vlinder02,295.0229034423828,-0.073486328125,0.8537445068359375 +20220911150000,vlinder03,294.8217315673828,-0.210205078125,0.0461273193359375 +20220911150000,vlinder04,294.8217315673828,-0.210205078125,0.0461273193359375 +20220911150000,vlinder05,294.8764190673828,0.020263671875,0.7189788818359375 +20220911150000,vlinder06,294.9057159423828,-0.572509765625,0.0685882568359375 +20220911150000,vlinder07,294.9057159423828,-0.572509765625,0.0685882568359375 +20220911150000,vlinder08,294.9057159423828,-0.572509765625,0.0685882568359375 +20220911150000,vlinder09,294.7787628173828,0.012451171875,0.4816741943359375 +20220911150000,vlinder10,294.8178253173828,0.039794921875,0.5988616943359375 +20220911150000,vlinder11,294.8881378173828,-0.343017578125,0.5803070068359375 +20220911150000,vlinder12,294.8881378173828,-0.343017578125,0.5803070068359375 +20220911150000,vlinder13,294.8881378173828,-0.343017578125,0.5803070068359375 +20220911150000,vlinder14,294.9213409423828,-0.180908203125,0.8713226318359375 +20220911150000,vlinder15,294.7397003173828,-0.039306640625,0.3762054443359375 +20220911150000,vlinder16,294.9213409423828,-0.180908203125,0.8713226318359375 +20220911150000,vlinder17,294.3666534423828,0.079833984375,-0.4275054931640625 +20220911150000,vlinder18,294.4291534423828,0.115966796875,-0.4685211181640625 +20220911150000,vlinder19,294.5561065673828,-0.227783203125,0.2131195068359375 +20220911150000,vlinder20,294.5561065673828,-0.227783203125,0.2131195068359375 +20220911150000,vlinder21,293.7865753173828,-0.225830078125,-0.6882476806640625 +20220911150000,vlinder22,295.2436065673828,-0.053955078125,1.0490570068359375 +20220911150000,vlinder23,294.5150909423828,0.286865234375,0.4982757568359375 +20220911150000,vlinder24,294.6322784423828,0.170654296875,0.4943695068359375 +20220911150000,vlinder25,294.7416534423828,0.119873046875,0.7609710693359375 +20220911150000,vlinder26,294.7924346923828,-0.237548828125,-0.0485992431640625 +20220911150000,vlinder27,294.8764190673828,0.020263671875,0.7189788818359375 +20220911150000,vlinder28,294.9564971923828,-0.096923828125,0.7521820068359375 +20220911160000,vlinder01,294.84837341308594,-0.3213043212890625,0.962860107421875 +20220911160000,vlinder02,294.89915466308594,-0.3183746337890625,1.049774169921875 +20220911160000,vlinder03,294.70774841308594,-0.1894683837890625,0.380828857421875 +20220911160000,vlinder04,294.70774841308594,-0.1894683837890625,0.380828857421875 +20220911160000,vlinder05,294.75657653808594,-0.2812652587890625,0.840789794921875 +20220911160000,vlinder06,294.80735778808594,-0.5791168212890625,0.364227294921875 +20220911160000,vlinder07,294.80735778808594,-0.5791168212890625,0.364227294921875 +20220911160000,vlinder08,294.80735778808594,-0.5791168212890625,0.364227294921875 +20220911160000,vlinder09,294.71165466308594,-0.1591949462890625,0.753875732421875 +20220911160000,vlinder10,294.74095153808594,-0.1357574462890625,0.853485107421875 +20220911160000,vlinder11,294.73899841308594,-0.2998199462890625,0.849578857421875 +20220911160000,vlinder12,294.73899841308594,-0.2998199462890625,0.849578857421875 +20220911160000,vlinder13,294.73899841308594,-0.2998199462890625,0.849578857421875 +20220911160000,vlinder14,294.74876403808594,-0.1318511962890625,1.101531982421875 +20220911160000,vlinder15,294.67845153808594,-0.1914215087890625,0.662078857421875 +20220911160000,vlinder16,294.74876403808594,-0.1318511962890625,1.101531982421875 +20220911160000,vlinder17,294.32493591308594,-0.0918121337890625,-0.121124267578125 +20220911160000,vlinder18,294.38938903808594,-0.0390777587890625,-0.198272705078125 +20220911160000,vlinder19,294.49095153808594,-0.2539215087890625,0.512664794921875 +20220911160000,vlinder20,294.49095153808594,-0.2539215087890625,0.512664794921875 +20220911160000,vlinder21,293.82298278808594,-1.3056793212890625,-0.420928955078125 +20220911160000,vlinder22,295.11595153808594,-0.7265777587890625,1.234344482421875 +20220911160000,vlinder23,294.36790466308594,-0.1884918212890625,0.458953857421875 +20220911160000,vlinder24,294.51438903808594,-0.2978668212890625,0.554656982421875 +20220911160000,vlinder25,294.60423278808594,-0.1826324462890625,0.767547607421875 +20220911160000,vlinder26,294.72337341308594,-0.2373199462890625,0.284149169921875 +20220911160000,vlinder27,294.75657653808594,-0.2812652587890625,0.840789794921875 +20220911160000,vlinder28,294.84837341308594,-0.3213043212890625,0.962860107421875 +20220911170000,vlinder01,294.4211120605469,-0.8744354248046875,0.909027099609375 +20220911170000,vlinder02,294.4601745605469,-0.8890838623046875,0.968597412109375 +20220911170000,vlinder03,294.3488464355469,-0.3802947998046875,0.574066162109375 +20220911170000,vlinder04,294.3488464355469,-0.3802947998046875,0.574066162109375 +20220911170000,vlinder05,294.3840026855469,-0.9134979248046875,0.789886474609375 +20220911170000,vlinder06,294.4328308105469,-0.8558807373046875,0.533050537109375 +20220911170000,vlinder07,294.4328308105469,-0.8558807373046875,0.533050537109375 +20220911170000,vlinder08,294.4328308105469,-0.8558807373046875,0.533050537109375 +20220911170000,vlinder09,294.3019714355469,-0.6742401123046875,0.788909912109375 +20220911170000,vlinder10,294.3195495605469,-0.6742401123046875,0.854339599609375 +20220911170000,vlinder11,294.3781433105469,-0.5990447998046875,0.874847412109375 +20220911170000,vlinder12,294.3781433105469,-0.5990447998046875,0.874847412109375 +20220911170000,vlinder13,294.3781433105469,-0.5990447998046875,0.874847412109375 +20220911170000,vlinder14,294.3937683105469,-0.4740447998046875,1.042816162109375 +20220911170000,vlinder15,294.2765808105469,-0.6732635498046875,0.730316162109375 +20220911170000,vlinder16,294.3937683105469,-0.4740447998046875,1.042816162109375 +20220911170000,vlinder17,293.9113464355469,-0.2865447998046875,0.170745849609375 +20220911170000,vlinder18,294.0304870605469,-0.2562713623046875,0.079925537109375 +20220911170000,vlinder19,294.0871276855469,-0.6166229248046875,0.653167724609375 +20220911170000,vlinder20,294.0871276855469,-0.6166229248046875,0.653167724609375 +20220911170000,vlinder21,293.7980651855469,-2.2054901123046875,0.024261474609375 +20220911170000,vlinder22,294.6672058105469,-1.1420135498046875,1.065277099609375 +20220911170000,vlinder23,294.1242370605469,-0.9642791748046875,0.472503662109375 +20220911170000,vlinder24,294.2297058105469,-1.0355682373046875,0.571136474609375 +20220911170000,vlinder25,294.2726745605469,-0.8500213623046875,0.696136474609375 +20220911170000,vlinder26,294.3957214355469,-0.4183807373046875,0.533050537109375 +20220911170000,vlinder27,294.3840026855469,-0.9134979248046875,0.789886474609375 +20220911170000,vlinder28,294.4211120605469,-0.8744354248046875,0.909027099609375 +20220911180000,vlinder01,293.17124938964844,-1.3971099853515625,1.075531005859375 +20220911180000,vlinder02,293.20640563964844,-1.3560943603515625,1.119476318359375 +20220911180000,vlinder03,293.20445251464844,-1.0221099853515625,0.728851318359375 +20220911180000,vlinder04,293.20445251464844,-1.0221099853515625,0.728851318359375 +20220911180000,vlinder05,293.24351501464844,-1.4156646728515625,0.900726318359375 +20220911180000,vlinder06,293.36656188964844,-1.5836334228515625,0.854827880859375 +20220911180000,vlinder07,293.36656188964844,-1.5836334228515625,0.854827880859375 +20220911180000,vlinder08,293.36656188964844,-1.5836334228515625,0.854827880859375 +20220911180000,vlinder09,293.12828063964844,-1.4596099853515625,1.018890380859375 +20220911180000,vlinder10,293.12242126464844,-1.4029693603515625,1.064788818359375 +20220911180000,vlinder11,293.43882751464844,-1.3141021728515625,1.088226318359375 +20220911180000,vlinder12,293.43882751464844,-1.3141021728515625,1.088226318359375 +20220911180000,vlinder13,293.43882751464844,-1.3141021728515625,1.088226318359375 +20220911180000,vlinder14,293.50132751464844,-1.1939849853515625,1.192718505859375 +20220911180000,vlinder15,293.13414001464844,-1.4976959228515625,0.980804443359375 +20220911180000,vlinder16,293.50132751464844,-1.1939849853515625,1.192718505859375 +20220911180000,vlinder17,292.71226501464844,-0.7115631103515625,0.496429443359375 +20220911180000,vlinder18,292.70054626464844,-0.6900787353515625,0.399749755859375 +20220911180000,vlinder19,292.99156188964844,-1.4928131103515625,0.972015380859375 +20220911180000,vlinder20,292.99156188964844,-1.4928131103515625,0.972015380859375 +20220911180000,vlinder21,293.27867126464844,-2.3883209228515625,0.304046630859375 +20220911180000,vlinder22,293.46617126464844,-1.4703521728515625,1.282562255859375 +20220911180000,vlinder23,293.20445251464844,-1.4976959228515625,0.493499755859375 +20220911180000,vlinder24,293.22398376464844,-1.5162506103515625,0.639984130859375 +20220911180000,vlinder25,293.22593688964844,-1.4146881103515625,0.748382568359375 +20220911180000,vlinder26,293.13804626464844,-1.0308990478515625,0.765960693359375 +20220911180000,vlinder27,293.24351501464844,-1.4156646728515625,0.900726318359375 +20220911180000,vlinder28,293.17124938964844,-1.3971099853515625,1.075531005859375 +20220911190000,vlinder01,291.3652801513672,-1.5626983642578125,1.3492279052734375 +20220911190000,vlinder02,291.4590301513672,-1.5294952392578125,1.3814544677734375 +20220911190000,vlinder03,291.1328582763672,-1.4972686767578125,1.1392669677734375 +20220911190000,vlinder04,291.1328582763672,-1.4972686767578125,1.1392669677734375 +20220911190000,vlinder05,291.6230926513672,-1.5929718017578125,1.3873138427734375 +20220911190000,vlinder06,291.4238739013672,-1.8410186767578125,0.9625091552734375 +20220911190000,vlinder07,291.4238739013672,-1.8410186767578125,0.9625091552734375 +20220911190000,vlinder08,291.4238739013672,-1.8410186767578125,0.9625091552734375 +20220911190000,vlinder09,291.1269989013672,-1.6867218017578125,1.2857513427734375 +20220911190000,vlinder10,291.1504364013672,-1.6359405517578125,1.3140716552734375 +20220911190000,vlinder11,291.6152801513672,-1.6779327392578125,1.3765716552734375 +20220911190000,vlinder12,291.6152801513672,-1.6779327392578125,1.3765716552734375 +20220911190000,vlinder13,291.6152801513672,-1.6779327392578125,1.3765716552734375 +20220911190000,vlinder14,291.7519989013672,-1.5919952392578125,1.6119232177734375 +20220911190000,vlinder15,291.1016082763672,-1.7316436767578125,1.2408294677734375 +20220911190000,vlinder16,291.7519989013672,-1.5919952392578125,1.6119232177734375 +20220911190000,vlinder17,290.7168426513672,-1.5138702392578125,-0.0501861572265625 +20220911190000,vlinder18,290.7090301513672,-1.5265655517578125,-0.1556549072265625 +20220911190000,vlinder19,290.8535614013672,-1.8048858642578125,1.0933685302734375 +20220911190000,vlinder20,290.8535614013672,-1.8048858642578125,1.0933685302734375 +20220911190000,vlinder21,292.5684051513672,-2.7501983642578125,1.9195404052734375 +20220911190000,vlinder22,291.9277801513672,-1.8156280517578125,1.8580169677734375 +20220911190000,vlinder23,291.9004364013672,-1.7267608642578125,1.4420013427734375 +20220911190000,vlinder24,291.7519989013672,-1.7218780517578125,1.4371185302734375 +20220911190000,vlinder25,291.6914520263672,-1.5968780517578125,1.3970794677734375 +20220911190000,vlinder26,290.9180145263672,-1.5382843017578125,0.9283294677734375 +20220911190000,vlinder27,291.6230926513672,-1.5929718017578125,1.3873138427734375 +20220911190000,vlinder28,291.3652801513672,-1.5626983642578125,1.3492279052734375 +20220911200000,vlinder01,290.3824768066406,-1.4307708740234375,1.4969329833984375 +20220911200000,vlinder02,290.4996643066406,-1.3956146240234375,1.5223236083984375 +20220911200000,vlinder03,290.0895080566406,-1.3575286865234375,1.3279876708984375 +20220911200000,vlinder04,290.0895080566406,-1.3575286865234375,1.3279876708984375 +20220911200000,vlinder05,290.7555236816406,-1.4551849365234375,1.5877532958984375 +20220911200000,vlinder06,290.4586486816406,-1.6407318115234375,1.2225189208984375 +20220911200000,vlinder07,290.4586486816406,-1.6407318115234375,1.2225189208984375 +20220911200000,vlinder08,290.4586486816406,-1.6407318115234375,1.2225189208984375 +20220911200000,vlinder09,290.1988830566406,-1.5674896240234375,1.4461517333984375 +20220911200000,vlinder10,290.2008361816406,-1.5284271240234375,1.4627532958984375 +20220911200000,vlinder11,290.8199768066406,-1.4356536865234375,1.5838470458984375 +20220911200000,vlinder12,290.8199768066406,-1.4356536865234375,1.5838470458984375 +20220911200000,vlinder13,290.8199768066406,-1.4356536865234375,1.5838470458984375 +20220911200000,vlinder14,291.0621643066406,-1.3233489990234375,1.7899017333984375 +20220911200000,vlinder15,290.1773986816406,-1.6006927490234375,1.4158782958984375 +20220911200000,vlinder16,291.0621643066406,-1.3233489990234375,1.7899017333984375 +20220911200000,vlinder17,289.6031799316406,-1.7911224365234375,0.4803314208984375 +20220911200000,vlinder18,289.6402893066406,-1.8028411865234375,0.4490814208984375 +20220911200000,vlinder19,289.7770080566406,-1.6876068115234375,1.2977142333984375 +20220911200000,vlinder20,289.7770080566406,-1.6876068115234375,1.2977142333984375 +20220911200000,vlinder21,291.9820861816406,-2.3702239990234375,2.6775970458984375 +20220911200000,vlinder22,291.0465393066406,-1.4883880615234375,2.2088470458984375 +20220911200000,vlinder23,291.2359924316406,-1.5547943115234375,1.7723236083984375 +20220911200000,vlinder24,290.9371643066406,-1.5528411865234375,1.7234954833984375 +20220911200000,vlinder25,290.8844299316406,-1.4522552490234375,1.6375579833984375 +20220911200000,vlinder26,289.5289611816406,-1.4922943115234375,1.1307220458984375 +20220911200000,vlinder27,290.7555236816406,-1.4551849365234375,1.5877532958984375 +20220911200000,vlinder28,290.3824768066406,-1.4307708740234375,1.4969329833984375 +20220911210000,vlinder01,289.58123779296875,-1.3720855712890625,1.785858154296875 +20220911210000,vlinder02,289.73162841796875,-1.3896636962890625,1.813201904296875 +20220911210000,vlinder03,289.15740966796875,-1.2002105712890625,1.437225341796875 +20220911210000,vlinder04,289.15740966796875,-1.2002105712890625,1.437225341796875 +20220911210000,vlinder05,290.04803466796875,-1.4453277587890625,1.937225341796875 +20220911210000,vlinder06,289.54412841796875,-1.3261871337890625,1.449920654296875 +20220911210000,vlinder07,289.54412841796875,-1.3261871337890625,1.449920654296875 +20220911210000,vlinder08,289.54412841796875,-1.3261871337890625,1.449920654296875 +20220911210000,vlinder09,289.40155029296875,-1.3173980712890625,1.687225341796875 +20220911210000,vlinder10,289.40155029296875,-1.3408355712890625,1.714569091796875 +20220911210000,vlinder11,290.04998779296875,-1.1836090087890625,1.804412841796875 +20220911210000,vlinder12,290.04998779296875,-1.1836090087890625,1.804412841796875 +20220911210000,vlinder13,290.04998779296875,-1.1836090087890625,1.804412841796875 +20220911210000,vlinder14,290.39178466796875,-1.1074371337890625,2.016326904296875 +20220911210000,vlinder15,289.36053466796875,-1.3047027587890625,1.647186279296875 +20220911210000,vlinder16,290.39178466796875,-1.1074371337890625,2.016326904296875 +20220911210000,vlinder17,288.85858154296875,-1.6211090087890625,0.851287841796875 +20220911210000,vlinder18,288.94842529296875,-1.6162261962890625,0.845428466796875 +20220911210000,vlinder19,288.82733154296875,-1.3740386962890625,1.533905029296875 +20220911210000,vlinder20,288.82733154296875,-1.3740386962890625,1.533905029296875 +20220911210000,vlinder21,291.46600341796875,-2.3506011962890625,3.518280029296875 +20220911210000,vlinder22,290.38787841796875,-1.5234527587890625,2.536834716796875 +20220911210000,vlinder23,290.64373779296875,-1.5713043212890625,2.239959716796875 +20220911210000,vlinder24,290.26873779296875,-1.5673980712890625,2.149139404296875 +20220911210000,vlinder25,290.21795654296875,-1.4404449462890625,2.009490966796875 +20220911210000,vlinder26,288.35662841796875,-1.3476715087890625,1.270233154296875 +20220911210000,vlinder27,290.04803466796875,-1.4453277587890625,1.937225341796875 +20220911210000,vlinder28,289.58123779296875,-1.3720855712890625,1.785858154296875 +20220911220000,vlinder01,289.03187561035156,-1.2805328369140625,2.014801025390625 +20220911220000,vlinder02,289.21937561035156,-1.2649078369140625,2.028472900390625 +20220911220000,vlinder03,288.54554748535156,-1.1526031494140625,1.715972900390625 +20220911220000,vlinder04,288.54554748535156,-1.1526031494140625,1.715972900390625 +20220911220000,vlinder05,289.54359436035156,-1.3069000244140625,2.212066650390625 +20220911220000,vlinder06,288.75257873535156,-1.3039703369140625,1.780426025390625 +20220911220000,vlinder07,288.75257873535156,-1.3039703369140625,1.780426025390625 +20220911220000,vlinder08,288.75257873535156,-1.3039703369140625,1.780426025390625 +20220911220000,vlinder09,288.74867248535156,-1.3459625244140625,1.932769775390625 +20220911220000,vlinder10,288.78187561035156,-1.3371734619140625,1.947418212890625 +20220911220000,vlinder11,289.36976623535156,-1.1906890869140625,2.104644775390625 +20220911220000,vlinder12,289.36976623535156,-1.1906890869140625,2.104644775390625 +20220911220000,vlinder13,289.36976623535156,-1.1906890869140625,2.104644775390625 +20220911220000,vlinder14,289.79945373535156,-1.1320953369140625,2.297027587890625 +20220911220000,vlinder15,288.66859436035156,-1.3508453369140625,1.906402587890625 +20220911220000,vlinder16,289.79945373535156,-1.1320953369140625,2.297027587890625 +20220911220000,vlinder17,288.16468811035156,-1.3947906494140625,1.283355712890625 +20220911220000,vlinder18,288.25062561035156,-1.3801422119140625,1.259918212890625 +20220911220000,vlinder19,288.07289123535156,-1.3654937744140625,1.849761962890625 +20220911220000,vlinder20,288.07289123535156,-1.3654937744140625,1.849761962890625 +20220911220000,vlinder21,291.08851623535156,-1.8303375244140625,4.298004150390625 +20220911220000,vlinder22,290.11000061035156,-1.2053375244140625,2.798004150390625 +20220911220000,vlinder23,290.18031311035156,-1.3723297119140625,2.634918212890625 +20220911220000,vlinder24,289.78578186035156,-1.3694000244140625,2.502105712890625 +20220911220000,vlinder25,289.71937561035156,-1.3029937744140625,2.309722900390625 +20220911220000,vlinder26,287.63148498535156,-1.2522125244140625,1.595855712890625 +20220911220000,vlinder27,289.54359436035156,-1.3069000244140625,2.212066650390625 +20220911220000,vlinder28,289.03187561035156,-1.2805328369140625,2.014801025390625 +20220911230000,vlinder01,288.5934143066406,-1.0687103271484375,2.137603759765625 +20220911230000,vlinder02,288.7535705566406,-1.0442962646484375,2.149322509765625 +20220911230000,vlinder03,288.0523986816406,-1.1048431396484375,1.830963134765625 +20220911230000,vlinder04,288.0523986816406,-1.1048431396484375,1.830963134765625 +20220911230000,vlinder05,289.0973205566406,-1.0931243896484375,2.308502197265625 +20220911230000,vlinder06,288.2379455566406,-1.1985931396484375,1.912994384765625 +20220911230000,vlinder07,288.2379455566406,-1.1985931396484375,1.912994384765625 +20220911230000,vlinder08,288.2379455566406,-1.1985931396484375,1.912994384765625 +20220911230000,vlinder09,288.3102111816406,-1.1966400146484375,2.073150634765625 +20220911230000,vlinder10,288.3492736816406,-1.1683197021484375,2.085845947265625 +20220911230000,vlinder11,288.7867736816406,-1.1136322021484375,2.167877197265625 +20220911230000,vlinder12,288.7867736816406,-1.1136322021484375,2.167877197265625 +20220911230000,vlinder13,288.7867736816406,-1.1136322021484375,2.167877197265625 +20220911230000,vlinder14,289.2086486816406,-1.0638275146484375,2.328033447265625 +20220911230000,vlinder15,288.2184143066406,-1.2191009521484375,2.048736572265625 +20220911230000,vlinder16,289.2086486816406,-1.0638275146484375,2.328033447265625 +20220911230000,vlinder17,287.7926330566406,-1.2903900146484375,1.428619384765625 +20220911230000,vlinder18,287.8981018066406,-1.2972259521484375,1.397369384765625 +20220911230000,vlinder19,287.6930236816406,-1.2464447021484375,1.996002197265625 +20220911230000,vlinder20,287.6930236816406,-1.2464447021484375,1.996002197265625 +20220911230000,vlinder21,290.8102111816406,-1.4066009521484375,4.401275634765625 +20220911230000,vlinder22,289.6949768066406,-0.9847259521484375,2.919830322265625 +20220911230000,vlinder23,289.7809143066406,-1.1800384521484375,2.688385009765625 +20220911230000,vlinder24,289.3727111816406,-1.1605072021484375,2.579010009765625 +20220911230000,vlinder25,289.2691955566406,-1.1165618896484375,2.374908447265625 +20220911230000,vlinder26,287.1324768066406,-1.1810150146484375,1.730377197265625 +20220911230000,vlinder27,289.0973205566406,-1.0931243896484375,2.308502197265625 +20220911230000,vlinder28,288.5934143066406,-1.0687103271484375,2.137603759765625 +20220912000000,vlinder01,288.19134521484375,-0.8292999267578125,2.1455535888671875 +20220912000000,vlinder02,288.31829833984375,-0.8009796142578125,2.1475067138671875 +20220912000000,vlinder03,287.88861083984375,-1.0314483642578125,1.7695770263671875 +20220912000000,vlinder04,287.88861083984375,-1.0314483642578125,1.7695770263671875 +20220912000000,vlinder05,288.68548583984375,-0.8302764892578125,2.2705535888671875 +20220912000000,vlinder06,287.92376708984375,-1.0363311767578125,1.8877410888671875 +20220912000000,vlinder07,287.92376708984375,-1.0363311767578125,1.8877410888671875 +20220912000000,vlinder08,287.92376708984375,-1.0363311767578125,1.8877410888671875 +20220912000000,vlinder09,287.97064208984375,-0.9875030517578125,2.0937957763671875 +20220912000000,vlinder10,288.00970458984375,-0.9513702392578125,2.1035614013671875 +20220912000000,vlinder11,288.40618896484375,-1.0138702392578125,2.1113739013671875 +20220912000000,vlinder12,288.40618896484375,-1.0138702392578125,2.1113739013671875 +20220912000000,vlinder13,288.40618896484375,-1.0138702392578125,2.1113739013671875 +20220912000000,vlinder14,288.78118896484375,-0.9865264892578125,2.2607879638671875 +20220912000000,vlinder15,287.88275146484375,-1.0187530517578125,2.0664520263671875 +20220912000000,vlinder16,288.78118896484375,-0.9865264892578125,2.2607879638671875 +20220912000000,vlinder17,287.57611083984375,-1.2179718017578125,1.3594207763671875 +20220912000000,vlinder18,287.69525146484375,-1.2492218017578125,1.3350067138671875 +20220912000000,vlinder19,287.42962646484375,-1.0509796142578125,2.0127410888671875 +20220912000000,vlinder20,287.42962646484375,-1.0509796142578125,2.0127410888671875 +20220912000000,vlinder21,290.58001708984375,-0.8771514892578125,4.1641082763671875 +20220912000000,vlinder22,289.28118896484375,-0.7609405517578125,2.7119598388671875 +20220912000000,vlinder23,289.42181396484375,-0.8781280517578125,2.5508270263671875 +20220912000000,vlinder24,288.99603271484375,-0.8595733642578125,2.4814910888671875 +20220912000000,vlinder25,288.84564208984375,-0.8615264892578125,2.2900848388671875 +20220912000000,vlinder26,286.98431396484375,-1.0646514892578125,1.6602020263671875 +20220912000000,vlinder27,288.68548583984375,-0.8302764892578125,2.2705535888671875 +20220912000000,vlinder28,288.19134521484375,-0.8292999267578125,2.1455535888671875 +20220912010000,vlinder01,287.80381774902344,-0.755035400390625,1.96881103515625 +20220912010000,vlinder02,287.94248962402344,-0.748199462890625,1.96099853515625 +20220912010000,vlinder03,287.47764587402344,-1.018707275390625,1.64361572265625 +20220912010000,vlinder04,287.47764587402344,-1.018707275390625,1.64361572265625 +20220912010000,vlinder05,288.31358337402344,-0.766754150390625,2.08599853515625 +20220912010000,vlinder06,287.51866149902344,-0.904449462890625,1.73834228515625 +20220912010000,vlinder07,287.51866149902344,-0.904449462890625,1.73834228515625 +20220912010000,vlinder08,287.51866149902344,-0.904449462890625,1.73834228515625 +20220912010000,vlinder09,287.61827087402344,-0.876129150390625,1.94732666015625 +20220912010000,vlinder10,287.64561462402344,-0.859527587890625,1.95025634765625 +20220912010000,vlinder11,288.01866149902344,-0.884918212890625,1.94342041015625 +20220912010000,vlinder12,288.01866149902344,-0.884918212890625,1.94342041015625 +20220912010000,vlinder13,288.01866149902344,-0.884918212890625,1.94342041015625 +20220912010000,vlinder14,288.40538024902344,-0.860504150390625,2.07818603515625 +20220912010000,vlinder15,287.53233337402344,-0.896636962890625,1.92486572265625 +20220912010000,vlinder16,288.40538024902344,-0.860504150390625,2.07818603515625 +20220912010000,vlinder17,287.21983337402344,-1.231597900390625,1.19927978515625 +20220912010000,vlinder18,287.38975524902344,-1.273590087890625,1.17584228515625 +20220912010000,vlinder19,287.06944274902344,-0.919097900390625,1.89361572265625 +20220912010000,vlinder20,287.06944274902344,-0.919097900390625,1.89361572265625 +20220912010000,vlinder21,290.29405212402344,-0.847808837890625,3.91314697265625 +20220912010000,vlinder22,288.84678649902344,-0.941558837890625,2.40240478515625 +20220912010000,vlinder23,289.10850524902344,-0.825347900390625,2.35260009765625 +20220912010000,vlinder24,288.65147399902344,-0.800933837890625,2.28912353515625 +20220912010000,vlinder25,288.51280212402344,-0.798980712890625,2.10162353515625 +20220912010000,vlinder26,286.54600524902344,-1.050933837890625,1.52447509765625 +20220912010000,vlinder27,288.31358337402344,-0.766754150390625,2.08599853515625 +20220912010000,vlinder28,287.80381774902344,-0.755035400390625,1.96881103515625 +20220912020000,vlinder01,287.3822021484375,-0.9232025146484375,1.8116607666015625 +20220912020000,vlinder02,287.5501708984375,-0.9388275146484375,1.8018951416015625 +20220912020000,vlinder03,286.9056396484375,-1.0403900146484375,1.5294342041015625 +20220912020000,vlinder04,286.9056396484375,-1.0403900146484375,1.5294342041015625 +20220912020000,vlinder05,287.9212646484375,-0.9651947021484375,1.9259185791015625 +20220912020000,vlinder06,286.9056396484375,-0.9163665771484375,1.5968170166015625 +20220912020000,vlinder07,286.9056396484375,-0.9163665771484375,1.5968170166015625 +20220912020000,vlinder08,286.9056396484375,-0.9163665771484375,1.5968170166015625 +20220912020000,vlinder09,287.2005615234375,-1.0003509521484375,1.7891998291015625 +20220912020000,vlinder10,287.2337646484375,-1.0091400146484375,1.7921295166015625 +20220912020000,vlinder11,287.4818115234375,-0.8792572021484375,1.8018951416015625 +20220912020000,vlinder12,287.4818115234375,-0.8792572021484375,1.8018951416015625 +20220912020000,vlinder13,287.4818115234375,-0.8792572021484375,1.8018951416015625 +20220912020000,vlinder14,287.9271240234375,-0.8626556396484375,1.9356842041015625 +20220912020000,vlinder15,287.0950927734375,-0.9964447021484375,1.7696685791015625 +20220912020000,vlinder16,287.9271240234375,-0.8626556396484375,1.9356842041015625 +20220912020000,vlinder17,286.8646240234375,-1.2982025146484375,1.1104888916015625 +20220912020000,vlinder18,287.1048583984375,-1.3333587646484375,1.0792388916015625 +20220912020000,vlinder19,286.5599365234375,-0.9847259521484375,1.7716217041015625 +20220912020000,vlinder20,286.5599365234375,-0.9847259521484375,1.7716217041015625 +20220912020000,vlinder21,289.8978271484375,-1.1898040771484375,3.6768951416015625 +20220912020000,vlinder22,288.3939208984375,-1.2191009521484375,2.2628326416015625 +20220912020000,vlinder23,288.6829833984375,-1.0677337646484375,2.1954498291015625 +20220912020000,vlinder24,288.2552490234375,-1.0355072021484375,2.1270904541015625 +20220912020000,vlinder25,288.1107177734375,-1.0023040771484375,1.9415435791015625 +20220912020000,vlinder26,285.9876708984375,-1.0882415771484375,1.4190826416015625 +20220912020000,vlinder27,287.9212646484375,-0.9651947021484375,1.9259185791015625 +20220912020000,vlinder28,287.3822021484375,-0.9232025146484375,1.8116607666015625 +20220912030000,vlinder01,287.0187530517578,-1.1080780029296875,1.70220947265625 +20220912030000,vlinder02,287.2179718017578,-1.1129608154296875,1.70318603515625 +20220912030000,vlinder03,286.4210968017578,-1.0299530029296875,1.43951416015625 +20220912030000,vlinder04,286.4210968017578,-1.0299530029296875,1.43951416015625 +20220912030000,vlinder05,287.5851593017578,-1.1637420654296875,1.84869384765625 +20220912030000,vlinder06,286.3332061767578,-1.0406951904296875,1.49029541015625 +20220912030000,vlinder07,286.3332061767578,-1.0406951904296875,1.49029541015625 +20220912030000,vlinder08,286.3332061767578,-1.0406951904296875,1.49029541015625 +20220912030000,vlinder09,286.8527374267578,-1.1754608154296875,1.68463134765625 +20220912030000,vlinder10,286.8878936767578,-1.1783905029296875,1.69537353515625 +20220912030000,vlinder11,287.0343780517578,-1.0319061279296875,1.71392822265625 +20220912030000,vlinder12,287.0343780517578,-1.0319061279296875,1.71392822265625 +20220912030000,vlinder13,287.0343780517578,-1.0319061279296875,1.71392822265625 +20220912030000,vlinder14,287.5109405517578,-1.0387420654296875,1.86334228515625 +20220912030000,vlinder15,286.7257843017578,-1.1686248779296875,1.66217041015625 +20220912030000,vlinder16,287.5109405517578,-1.0387420654296875,1.86334228515625 +20220912030000,vlinder17,286.5695343017578,-1.2379608154296875,1.18658447265625 +20220912030000,vlinder18,286.8410186767578,-1.2799530029296875,1.15826416015625 +20220912030000,vlinder19,286.1496124267578,-1.1012420654296875,1.71295166015625 +20220912030000,vlinder20,286.1496124267578,-1.1012420654296875,1.71295166015625 +20220912030000,vlinder21,289.5519561767578,-1.3639373779296875,3.66314697265625 +20220912030000,vlinder22,288.0421905517578,-1.2096405029296875,2.27642822265625 +20220912030000,vlinder23,288.3000030517578,-1.2906951904296875,2.18267822265625 +20220912030000,vlinder24,287.9132843017578,-1.2496795654296875,2.08502197265625 +20220912030000,vlinder25,287.7550811767578,-1.2086639404296875,1.89459228515625 +20220912030000,vlinder26,285.6164093017578,-1.0426483154296875,1.36041259765625 +20220912030000,vlinder27,287.5851593017578,-1.1637420654296875,1.84869384765625 +20220912030000,vlinder28,287.0187530517578,-1.1080780029296875,1.70220947265625 +20220912040000,vlinder01,286.72276306152344,-1.007720947265625,1.7620697021484375 +20220912040000,vlinder02,286.94151306152344,-0.984283447265625,1.7737884521484375 +20220912040000,vlinder03,285.96104431152344,-1.112213134765625,1.4583587646484375 +20220912040000,vlinder04,285.96104431152344,-1.112213134765625,1.4583587646484375 +20220912040000,vlinder05,287.32432556152344,-1.027252197265625,1.9192962646484375 +20220912040000,vlinder06,285.93760681152344,-1.161041259765625,1.5101165771484375 +20220912040000,vlinder07,285.93760681152344,-1.161041259765625,1.5101165771484375 +20220912040000,vlinder08,285.93760681152344,-1.161041259765625,1.5101165771484375 +20220912040000,vlinder09,286.60362243652344,-1.160064697265625,1.7259368896484375 +20220912040000,vlinder10,286.64659118652344,-1.126861572265625,1.7493743896484375 +20220912040000,vlinder11,286.73838806152344,-1.109283447265625,1.7337493896484375 +20220912040000,vlinder12,286.73838806152344,-1.109283447265625,1.7337493896484375 +20220912040000,vlinder13,286.73838806152344,-1.109283447265625,1.7337493896484375 +20220912040000,vlinder14,287.25791931152344,-1.077056884765625,1.8821868896484375 +20220912040000,vlinder15,286.47080993652344,-1.187408447265625,1.6937103271484375 +20220912040000,vlinder16,287.25791931152344,-1.077056884765625,1.8821868896484375 +20220912040000,vlinder17,285.86338806152344,-1.162017822265625,1.3919525146484375 +20220912040000,vlinder18,286.06260681152344,-1.215728759765625,1.3724212646484375 +20220912040000,vlinder19,285.90635681152344,-1.151275634765625,1.7562103271484375 +20220912040000,vlinder20,285.90635681152344,-1.151275634765625,1.7562103271484375 +20220912040000,vlinder21,289.21299743652344,-1.172760009765625,3.8089447021484375 +20220912040000,vlinder22,287.67588806152344,-1.069244384765625,2.3587493896484375 +20220912040000,vlinder23,288.06260681152344,-1.121978759765625,2.2601165771484375 +20220912040000,vlinder24,287.65245056152344,-1.087799072265625,2.1663665771484375 +20220912040000,vlinder25,287.51182556152344,-1.065338134765625,1.9622650146484375 +20220912040000,vlinder26,285.08409118652344,-1.095611572265625,1.4046478271484375 +20220912040000,vlinder27,287.32432556152344,-1.027252197265625,1.9192962646484375 +20220912040000,vlinder28,286.72276306152344,-1.007720947265625,1.7620697021484375 +20220912050000,vlinder01,286.4893035888672,-0.7064666748046875,1.942230224609375 +20220912050000,vlinder02,286.7080535888672,-0.6761932373046875,1.950042724609375 +20220912050000,vlinder03,285.7412567138672,-1.1107635498046875,1.509613037109375 +20220912050000,vlinder04,285.7412567138672,-1.1107635498046875,1.509613037109375 +20220912050000,vlinder05,287.0889129638672,-0.7162322998046875,2.083831787109375 +20220912050000,vlinder06,285.7412567138672,-1.0619354248046875,1.689300537109375 +20220912050000,vlinder07,285.7412567138672,-1.0619354248046875,1.689300537109375 +20220912050000,vlinder08,285.7412567138672,-1.0619354248046875,1.689300537109375 +20220912050000,vlinder09,286.4287567138672,-0.9164276123046875,1.931488037109375 +20220912050000,vlinder10,286.4697723388672,-0.8627166748046875,1.954925537109375 +20220912050000,vlinder11,286.5127410888672,-0.9994354248046875,1.833831787109375 +20220912050000,vlinder12,286.5127410888672,-0.9994354248046875,1.833831787109375 +20220912050000,vlinder13,286.5127410888672,-0.9994354248046875,1.833831787109375 +20220912050000,vlinder14,287.0381317138672,-0.9427947998046875,1.939300537109375 +20220912050000,vlinder15,286.2998504638672,-0.9691619873046875,1.899261474609375 +20220912050000,vlinder16,287.0381317138672,-0.9427947998046875,1.939300537109375 +20220912050000,vlinder17,285.3330535888672,-1.0609588623046875,1.526214599609375 +20220912050000,vlinder18,285.5107879638672,-1.1156463623046875,1.503753662109375 +20220912050000,vlinder19,285.7920379638672,-1.0092010498046875,1.972503662109375 +20220912050000,vlinder20,285.7920379638672,-1.0092010498046875,1.972503662109375 +20220912050000,vlinder21,288.9346160888672,-0.9271697998046875,4.027191162109375 +20220912050000,vlinder22,287.4209442138672,-0.9232635498046875,2.516448974609375 +20220912050000,vlinder23,287.8291473388672,-0.8285369873046875,2.386566162109375 +20220912050000,vlinder24,287.4111785888672,-0.7855682373046875,2.320159912109375 +20220912050000,vlinder25,287.2686004638672,-0.7631072998046875,2.103363037109375 +20220912050000,vlinder26,284.7275848388672,-1.0824432373046875,1.492034912109375 +20220912050000,vlinder27,287.0889129638672,-0.7162322998046875,2.083831787109375 +20220912050000,vlinder28,286.4893035888672,-0.7064666748046875,1.942230224609375 +20220912060000,vlinder01,286.5871887207031,-0.306671142578125,1.94732666015625 +20220912060000,vlinder02,286.7883605957031,-0.301788330078125,1.95611572265625 +20220912060000,vlinder03,285.8430480957031,-0.826202392578125,1.41217041015625 +20220912060000,vlinder04,285.8430480957031,-0.826202392578125,1.41217041015625 +20220912060000,vlinder05,287.1379699707031,-0.356475830078125,2.09576416015625 +20220912060000,vlinder06,285.9797668457031,-0.625030517578125,1.71392822265625 +20220912060000,vlinder07,285.9797668457031,-0.625030517578125,1.71392822265625 +20220912060000,vlinder08,285.9797668457031,-0.625030517578125,1.71392822265625 +20220912060000,vlinder09,286.6203918457031,-0.459014892578125,1.96978759765625 +20220912060000,vlinder10,286.6477355957031,-0.426788330078125,1.99224853515625 +20220912060000,vlinder11,286.6086730957031,-0.622100830078125,1.78912353515625 +20220912060000,vlinder12,286.6086730957031,-0.622100830078125,1.78912353515625 +20220912060000,vlinder13,286.6086730957031,-0.622100830078125,1.78912353515625 +20220912060000,vlinder14,287.0696105957031,-0.594757080078125,1.86041259765625 +20220912060000,vlinder15,286.5149230957031,-0.500030517578125,1.93853759765625 +20220912060000,vlinder16,287.0696105957031,-0.594757080078125,1.86041259765625 +20220912060000,vlinder17,285.3996887207031,-0.679718017578125,1.48541259765625 +20220912060000,vlinder18,285.5715637207031,-0.730499267578125,1.46392822265625 +20220912060000,vlinder19,286.1184387207031,-0.601593017578125,2.04888916015625 +20220912060000,vlinder20,286.1184387207031,-0.601593017578125,2.04888916015625 +20220912060000,vlinder21,288.8625793457031,-0.678741455078125,4.19537353515625 +20220912060000,vlinder22,287.4543762207031,-0.824249267578125,2.54010009765625 +20220912060000,vlinder23,287.8098449707031,-0.529327392578125,2.41802978515625 +20220912060000,vlinder24,287.4250793457031,-0.458038330078125,2.34967041015625 +20220912060000,vlinder25,287.2785949707031,-0.434600830078125,2.11138916015625 +20220912060000,vlinder26,285.0969543457031,-0.788116455078125,1.41900634765625 +20220912060000,vlinder27,287.1379699707031,-0.356475830078125,2.09576416015625 +20220912060000,vlinder28,286.5871887207031,-0.306671142578125,1.94732666015625 +20220912070000,vlinder01,288.3594055175781,-0.2150115966796875,1.9878692626953125 +20220912070000,vlinder02,288.4023742675781,-0.2491912841796875,1.9859161376953125 +20220912070000,vlinder03,288.0019836425781,-0.2970428466796875,1.6187286376953125 +20220912070000,vlinder04,288.0019836425781,-0.2970428466796875,1.6187286376953125 +20220912070000,vlinder05,288.5918273925781,-0.2706756591796875,2.2105255126953125 +20220912070000,vlinder06,288.2793273925781,-0.3126678466796875,1.8570098876953125 +20220912070000,vlinder07,288.2793273925781,-0.3126678466796875,1.8570098876953125 +20220912070000,vlinder08,288.2793273925781,-0.3126678466796875,1.8570098876953125 +20220912070000,vlinder09,288.2480773925781,-0.2872772216796875,2.0298614501953125 +20220912070000,vlinder10,288.2637023925781,-0.3038787841796875,2.0318145751953125 +20220912070000,vlinder11,288.3887023925781,-0.1974334716796875,2.0318145751953125 +20220912070000,vlinder12,288.3887023925781,-0.1974334716796875,2.0318145751953125 +20220912070000,vlinder13,288.3887023925781,-0.1974334716796875,2.0318145751953125 +20220912070000,vlinder14,288.5840148925781,-0.1271209716796875,2.1490020751953125 +20220912070000,vlinder15,288.2168273925781,-0.2902069091796875,2.0181427001953125 +20220912070000,vlinder16,288.5840148925781,-0.1271209716796875,2.1490020751953125 +20220912070000,vlinder17,287.8027648925781,-0.2208709716796875,1.3521270751953125 +20220912070000,vlinder18,287.9687805175781,-0.2696990966796875,1.3306427001953125 +20220912070000,vlinder19,288.0058898925781,-0.4650115966796875,2.1255645751953125 +20220912070000,vlinder20,288.0058898925781,-0.4650115966796875,2.1255645751953125 +20220912070000,vlinder21,289.7617492675781,-0.7423553466796875,4.6021270751953125 +20220912070000,vlinder22,289.0019836425781,-0.8644256591796875,2.7095489501953125 +20220912070000,vlinder23,288.9668273925781,-0.3956756591796875,2.7212677001953125 +20220912070000,vlinder24,288.7871398925781,-0.3751678466796875,2.5777130126953125 +20220912070000,vlinder25,288.7148742675781,-0.3019256591796875,2.3042755126953125 +20220912070000,vlinder26,287.8535461425781,-0.3048553466796875,1.5523223876953125 +20220912070000,vlinder27,288.5918273925781,-0.2706756591796875,2.2105255126953125 +20220912070000,vlinder28,288.3594055175781,-0.2150115966796875,1.9878692626953125 +20220912080000,vlinder01,290.39683532714844,-0.2135162353515625,2.4810791015625 +20220912080000,vlinder02,290.39878845214844,-0.2701568603515625,2.5133056640625 +20220912080000,vlinder03,290.59996032714844,-0.2594146728515625,1.8453369140625 +20220912080000,vlinder04,290.59996032714844,-0.2594146728515625,1.8453369140625 +20220912080000,vlinder05,290.43003845214844,-0.2877349853515625,2.7008056640625 +20220912080000,vlinder06,290.75035095214844,-0.1842193603515625,2.1549072265625 +20220912080000,vlinder07,290.75035095214844,-0.1842193603515625,2.1549072265625 +20220912080000,vlinder08,290.75035095214844,-0.1842193603515625,2.1549072265625 +20220912080000,vlinder09,290.45152282714844,-0.1676177978515625,2.4332275390625 +20220912080000,vlinder10,290.42808532714844,-0.2164459228515625,2.4713134765625 +20220912080000,vlinder11,290.63902282714844,-0.1168365478515625,2.3795166015625 +20220912080000,vlinder12,290.63902282714844,-0.1168365478515625,2.3795166015625 +20220912080000,vlinder13,290.63902282714844,-0.1168365478515625,2.3795166015625 +20220912080000,vlinder14,290.61949157714844,-0.0699615478515625,2.5279541015625 +20220912080000,vlinder15,290.47691345214844,-0.1461334228515625,2.3892822265625 +20220912080000,vlinder16,290.61949157714844,-0.0699615478515625,2.5279541015625 +20220912080000,vlinder17,290.50816345214844,-0.2779693603515625,1.4771728515625 +20220912080000,vlinder18,290.68003845214844,-0.2818756103515625,1.4332275390625 +20220912080000,vlinder19,290.50621032714844,-0.3355865478515625,2.4674072265625 +20220912080000,vlinder20,290.50621032714844,-0.3355865478515625,2.4674072265625 +20220912080000,vlinder21,290.66246032714844,-0.5601959228515625,4.7418212890625 +20220912080000,vlinder22,290.74449157714844,-0.7252349853515625,3.2740478515625 +20220912080000,vlinder23,290.45933532714844,-0.3883209228515625,3.1529541015625 +20220912080000,vlinder24,290.44175720214844,-0.3668365478515625,3.0338134765625 +20220912080000,vlinder25,290.42808532714844,-0.3277740478515625,2.7886962890625 +20220912080000,vlinder26,290.69371032714844,-0.3385162353515625,1.7760009765625 +20220912080000,vlinder27,290.43003845214844,-0.2877349853515625,2.7008056640625 +20220912080000,vlinder28,290.39683532714844,-0.2135162353515625,2.4810791015625 +20220912090000,vlinder01,292.3015594482422,-0.310791015625,2.4687347412109375 +20220912090000,vlinder02,292.3093719482422,-0.349853515625,2.4833831787109375 +20220912090000,vlinder03,292.7507781982422,-0.100830078125,2.1142425537109375 +20220912090000,vlinder04,292.7507781982422,-0.100830078125,2.1142425537109375 +20220912090000,vlinder05,292.2468719482422,-0.345947265625,2.5273284912109375 +20220912090000,vlinder06,292.7742156982422,-0.226806640625,2.3661956787109375 +20220912090000,vlinder07,292.7742156982422,-0.226806640625,2.3661956787109375 +20220912090000,vlinder08,292.7742156982422,-0.226806640625,2.3661956787109375 +20220912090000,vlinder09,292.4011688232422,-0.213134765625,2.5351409912109375 +20220912090000,vlinder10,292.3718719482422,-0.256103515625,2.5576019287109375 +20220912090000,vlinder11,292.5183563232422,-0.100830078125,2.4355316162109375 +20220912090000,vlinder12,292.5183563232422,-0.100830078125,2.4355316162109375 +20220912090000,vlinder13,292.5183563232422,-0.100830078125,2.4355316162109375 +20220912090000,vlinder14,292.4011688232422,-0.035400390625,2.4765472412109375 +20220912090000,vlinder15,292.4402313232422,-0.188720703125,2.5165863037109375 +20220912090000,vlinder16,292.4011688232422,-0.035400390625,2.4765472412109375 +20220912090000,vlinder17,292.8601531982422,-0.115478515625,1.8769378662109375 +20220912090000,vlinder18,293.0144500732422,-0.075439453125,1.8154144287109375 +20220912090000,vlinder19,292.5339813232422,-0.269775390625,2.6943206787109375 +20220912090000,vlinder20,292.5339813232422,-0.269775390625,2.6943206787109375 +20220912090000,vlinder21,291.9714813232422,-0.220947265625,3.5693206787109375 +20220912090000,vlinder22,292.6101531982422,-0.360595703125,2.8398284912109375 +20220912090000,vlinder23,292.0789031982422,-0.351806640625,2.6620941162109375 +20220912090000,vlinder24,292.1531219482422,-0.349853515625,2.6396331787109375 +20220912090000,vlinder25,292.1570281982422,-0.370361328125,2.5175628662109375 +20220912090000,vlinder26,292.8796844482422,-0.215087890625,2.1142425537109375 +20220912090000,vlinder27,292.2468719482422,-0.345947265625,2.5273284912109375 +20220912090000,vlinder28,292.3015594482422,-0.310791015625,2.4687347412109375 +20220912100000,vlinder01,293.8675231933594,-0.3121337890625,2.0731964111328125 +20220912100000,vlinder02,293.8792419433594,-0.3472900390625,2.0653839111328125 +20220912100000,vlinder03,294.2268981933594,0.2181396484375,2.2313995361328125 +20220912100000,vlinder04,294.2268981933594,0.2181396484375,2.2313995361328125 +20220912100000,vlinder05,293.7679138183594,-0.4078369140625,2.2011260986328125 +20220912100000,vlinder06,294.2776794433594,-0.1002197265625,2.2079620361328125 +20220912100000,vlinder07,294.2776794433594,-0.1002197265625,2.2079620361328125 +20220912100000,vlinder08,294.2776794433594,-0.1002197265625,2.2079620361328125 +20220912100000,vlinder09,293.9690856933594,-0.1510009765625,2.2177276611328125 +20220912100000,vlinder10,293.9436950683594,-0.2017822265625,2.2089385986328125 +20220912100000,vlinder11,293.9983825683594,-0.0826416015625,2.2958526611328125 +20220912100000,vlinder12,293.9983825683594,-0.0826416015625,2.2958526611328125 +20220912100000,vlinder13,293.9983825683594,-0.0826416015625,2.2958526611328125 +20220912100000,vlinder14,293.8733825683594,-0.0904541015625,2.3524932861328125 +20220912100000,vlinder15,294.0003356933594,-0.1119384765625,2.2333526611328125 +20220912100000,vlinder16,293.8733825683594,-0.0904541015625,2.3524932861328125 +20220912100000,vlinder17,294.4476013183594,0.3070068359375,2.1493682861328125 +20220912100000,vlinder18,294.6097106933594,0.3421630859375,2.0673370361328125 +20220912100000,vlinder19,294.0608825683594,-0.1021728515625,2.4345245361328125 +20220912100000,vlinder20,294.0608825683594,-0.1021728515625,2.4345245361328125 +20220912100000,vlinder21,293.1370544433594,-0.4732666015625,3.2909698486328125 +20220912100000,vlinder22,294.0940856933594,-0.4088134765625,2.3173370361328125 +20220912100000,vlinder23,293.4847106933594,-0.5113525390625,2.5458526611328125 +20220912100000,vlinder24,293.5999450683594,-0.4586181640625,2.4091339111328125 +20220912100000,vlinder25,293.6272888183594,-0.4840087890625,2.2890167236328125 +20220912100000,vlinder26,294.3479919433594,0.1644287109375,2.2626495361328125 +20220912100000,vlinder27,293.7679138183594,-0.4078369140625,2.2011260986328125 +20220912100000,vlinder28,293.8675231933594,-0.3121337890625,2.0731964111328125 +20220912110000,vlinder01,295.1840515136719,-0.2674102783203125,1.9283294677734375 +20220912110000,vlinder02,295.2270202636719,-0.3074493408203125,1.9439544677734375 +20220912110000,vlinder03,295.3656921386719,0.1036834716796875,2.3765716552734375 +20220912110000,vlinder04,295.3656921386719,0.1036834716796875,2.3765716552734375 +20220912110000,vlinder05,295.0883483886719,-0.3631134033203125,2.2408294677734375 +20220912110000,vlinder06,295.4340515136719,-0.0916290283203125,1.9156341552734375 +20220912110000,vlinder07,295.4340515136719,-0.0916290283203125,1.9156341552734375 +20220912110000,vlinder08,295.4340515136719,-0.0916290283203125,1.9156341552734375 +20220912110000,vlinder09,295.1938171386719,-0.0564727783203125,1.8853607177734375 +20220912110000,vlinder10,295.1957702636719,-0.1013946533203125,1.8980560302734375 +20220912110000,vlinder11,295.2074890136719,-0.1101837158203125,2.4175872802734375 +20220912110000,vlinder12,295.2074890136719,-0.1101837158203125,2.4175872802734375 +20220912110000,vlinder13,295.2074890136719,-0.1101837158203125,2.4175872802734375 +20220912110000,vlinder14,295.1156921386719,-0.1297149658203125,2.6949310302734375 +20220912110000,vlinder15,295.1996765136719,-0.0232696533203125,1.8795013427734375 +20220912110000,vlinder16,295.1156921386719,-0.1297149658203125,2.6949310302734375 +20220912110000,vlinder17,295.5492858886719,0.1407928466796875,2.1685638427734375 +20220912110000,vlinder18,295.7055358886719,0.1232147216796875,2.1138763427734375 +20220912110000,vlinder19,295.2309265136719,0.0167694091796875,1.9332122802734375 +20220912110000,vlinder20,295.2309265136719,0.0167694091796875,1.9332122802734375 +20220912110000,vlinder21,294.3422546386719,-0.7019805908203125,3.4263763427734375 +20220912110000,vlinder22,295.5492858886719,-0.6482696533203125,2.2027435302734375 +20220912110000,vlinder23,294.7660827636719,-0.4666290283203125,2.9244232177734375 +20220912110000,vlinder24,294.9047546386719,-0.4304962158203125,2.6168060302734375 +20220912110000,vlinder25,294.9360046386719,-0.4304962158203125,2.5181732177734375 +20220912110000,vlinder26,295.4594421386719,0.0812225341796875,2.2535247802734375 +20220912110000,vlinder27,295.0883483886719,-0.3631134033203125,2.2408294677734375 +20220912110000,vlinder28,295.1840515136719,-0.2674102783203125,1.9283294677734375 +20220912120000,vlinder01,296.16505432128906,-0.3495025634765625,2.27447509765625 +20220912120000,vlinder02,296.20997619628906,-0.4032135009765625,2.30865478515625 +20220912120000,vlinder03,296.25880432128906,0.1358489990234375,2.74322509765625 +20220912120000,vlinder04,296.25880432128906,0.1358489990234375,2.74322509765625 +20220912120000,vlinder05,296.08497619628906,-0.3836822509765625,2.56451416015625 +20220912120000,vlinder06,296.36427307128906,-0.1112213134765625,2.10455322265625 +20220912120000,vlinder07,296.36427307128906,-0.1112213134765625,2.10455322265625 +20220912120000,vlinder08,296.36427307128906,-0.1112213134765625,2.10455322265625 +20220912120000,vlinder09,296.13380432128906,-0.0877838134765625,2.05963134765625 +20220912120000,vlinder10,296.14552307128906,-0.1444244384765625,2.09381103515625 +20220912120000,vlinder11,296.16505432128906,-0.0360260009765625,2.77740478515625 +20220912120000,vlinder12,296.16505432128906,-0.0360260009765625,2.77740478515625 +20220912120000,vlinder13,296.16505432128906,-0.0360260009765625,2.77740478515625 +20220912120000,vlinder14,296.08497619628906,-8.697509765625E-4,3.12310791015625 +20220912120000,vlinder15,296.13380432128906,-0.0448150634765625,2.03131103515625 +20220912120000,vlinder16,296.08497619628906,-8.697509765625E-4,3.12310791015625 +20220912120000,vlinder17,296.36622619628906,0.1456146240234375,2.22369384765625 +20220912120000,vlinder18,296.51856994628906,0.1163177490234375,2.16705322265625 +20220912120000,vlinder19,296.12989807128906,0.0547943115234375,1.90240478515625 +20220912120000,vlinder20,296.12989807128906,0.0547943115234375,1.90240478515625 +20220912120000,vlinder21,295.22560119628906,-0.7537994384765625,3.22076416015625 +20220912120000,vlinder22,296.44825744628906,-0.7762603759765625,2.51666259765625 +20220912120000,vlinder23,295.75489807128906,-0.3348541259765625,3.12896728515625 +20220912120000,vlinder24,295.89942932128906,-0.3817291259765625,2.85748291015625 +20220912120000,vlinder25,295.94825744628906,-0.3748931884765625,2.83990478515625 +20220912120000,vlinder26,296.34474182128906,0.1133880615234375,2.51177978515625 +20220912120000,vlinder27,296.08497619628906,-0.3836822509765625,2.56451416015625 +20220912120000,vlinder28,296.16505432128906,-0.3495025634765625,2.27447509765625 +20220912130000,vlinder01,296.8381805419922,-0.1922454833984375,2.775238037109375 +20220912130000,vlinder02,296.9006805419922,-0.2088470458984375,2.805511474609375 +20220912130000,vlinder03,296.8928680419922,0.2433013916015625,2.870941162109375 +20220912130000,vlinder04,296.8928680419922,0.2433013916015625,2.870941162109375 +20220912130000,vlinder05,296.7698211669922,-0.1736907958984375,2.956878662109375 +20220912130000,vlinder06,296.9768524169922,-0.1609954833984375,2.620941162109375 +20220912130000,vlinder07,296.9768524169922,-0.1609954833984375,2.620941162109375 +20220912130000,vlinder08,296.9768524169922,-0.1609954833984375,2.620941162109375 +20220912130000,vlinder09,296.7502899169922,-0.1014251708984375,2.643402099609375 +20220912130000,vlinder10,296.7795867919922,-0.1229095458984375,2.669769287109375 +20220912130000,vlinder11,296.7522430419922,-0.0174407958984375,2.989105224609375 +20220912130000,vlinder12,296.7522430419922,-0.0174407958984375,2.989105224609375 +20220912130000,vlinder13,296.7522430419922,-0.0174407958984375,2.989105224609375 +20220912130000,vlinder14,296.6604461669922,0.0626373291015625,3.183441162109375 +20220912130000,vlinder15,296.7385711669922,-0.0897064208984375,2.619964599609375 +20220912130000,vlinder16,296.6604461669922,0.0626373291015625,3.183441162109375 +20220912130000,vlinder17,296.9944305419922,0.1602935791015625,2.592620849609375 +20220912130000,vlinder18,297.1448211669922,0.1456451416015625,2.535980224609375 +20220912130000,vlinder19,296.7483367919922,-0.0828704833984375,2.515472412109375 +20220912130000,vlinder20,296.7483367919922,-0.0828704833984375,2.515472412109375 +20220912130000,vlinder21,295.9905242919922,-0.4256439208984375,3.263519287109375 +20220912130000,vlinder22,297.3069305419922,-0.3426361083984375,3.046722412109375 +20220912130000,vlinder23,296.4475555419922,-0.0701751708984375,3.314300537109375 +20220912130000,vlinder24,296.6116180419922,-0.1277923583984375,3.146331787109375 +20220912130000,vlinder25,296.6331024169922,-0.1473236083984375,3.124847412109375 +20220912130000,vlinder26,297.0022430419922,0.1632232666015625,2.759613037109375 +20220912130000,vlinder27,296.7698211669922,-0.1736907958984375,2.956878662109375 +20220912130000,vlinder28,296.8381805419922,-0.1922454833984375,2.775238037109375 +20220912140000,vlinder01,297.2695007324219,0.25799560546875,2.799560546875 +20220912140000,vlinder02,297.3241882324219,0.22869873046875,2.825927734375 +20220912140000,vlinder03,297.1913757324219,0.57635498046875,2.750732421875 +20220912140000,vlinder04,297.1913757324219,0.57635498046875,2.750732421875 +20220912140000,vlinder05,297.1952819824219,0.28533935546875,2.977294921875 +20220912140000,vlinder06,297.4316101074219,0.29412841796875,2.715576171875 +20220912140000,vlinder07,297.4316101074219,0.29412841796875,2.715576171875 +20220912140000,vlinder08,297.4316101074219,0.29412841796875,2.715576171875 +20220912140000,vlinder09,297.2187194824219,0.34979248046875,2.781982421875 +20220912140000,vlinder10,297.2343444824219,0.32049560546875,2.802490234375 +20220912140000,vlinder11,297.1405944824219,0.42987060546875,2.993896484375 +20220912140000,vlinder12,297.1405944824219,0.42987060546875,2.993896484375 +20220912140000,vlinder13,297.1405944824219,0.42987060546875,2.993896484375 +20220912140000,vlinder14,297.0214538574219,0.50311279296875,3.144287109375 +20220912140000,vlinder15,297.2167663574219,0.36444091796875,2.767333984375 +20220912140000,vlinder16,297.0214538574219,0.50311279296875,3.144287109375 +20220912140000,vlinder17,297.3241882324219,0.40155029296875,2.688232421875 +20220912140000,vlinder18,297.4726257324219,0.35662841796875,2.652099609375 +20220912140000,vlinder19,297.2167663574219,0.34197998046875,2.775146484375 +20220912140000,vlinder20,297.2167663574219,0.34197998046875,2.775146484375 +20220912140000,vlinder21,296.4628601074219,-0.03204345703125,3.118896484375 +20220912140000,vlinder22,297.7402038574219,-0.07696533203125,3.115966796875 +20220912140000,vlinder23,296.8827819824219,0.41522216796875,3.333740234375 +20220912140000,vlinder24,297.0585632324219,0.34686279296875,3.163818359375 +20220912140000,vlinder25,297.0605163574219,0.31756591796875,3.166748046875 +20220912140000,vlinder26,297.3339538574219,0.50408935546875,2.692138671875 +20220912140000,vlinder27,297.1952819824219,0.28533935546875,2.977294921875 +20220912140000,vlinder28,297.2695007324219,0.25799560546875,2.799560546875 +20220912150000,vlinder01,297.5311737060547,0.2681884765625,2.7413482666015625 +20220912150000,vlinder02,297.5956268310547,0.2066650390625,2.7784576416015625 +20220912150000,vlinder03,297.2811737060547,0.9459228515625,2.6446685791015625 +20220912150000,vlinder04,297.2811737060547,0.9459228515625,2.6446685791015625 +20220912150000,vlinder05,297.4628143310547,0.2545166015625,2.8604888916015625 +20220912150000,vlinder06,297.6073455810547,0.5611572265625,2.6056060791015625 +20220912150000,vlinder07,297.6073455810547,0.5611572265625,2.6056060791015625 +20220912150000,vlinder08,297.6073455810547,0.5611572265625,2.6056060791015625 +20220912150000,vlinder09,297.4413299560547,0.4732666015625,2.7022857666015625 +20220912150000,vlinder10,297.4647674560547,0.4049072265625,2.7335357666015625 +20220912150000,vlinder11,297.3339080810547,0.6802978515625,2.8399810791015625 +20220912150000,vlinder12,297.3339080810547,0.6802978515625,2.8399810791015625 +20220912150000,vlinder13,297.3339080810547,0.6802978515625,2.8399810791015625 +20220912150000,vlinder14,297.2264862060547,0.7369384765625,2.9640045166015625 +20220912150000,vlinder15,297.4276580810547,0.5250244140625,2.6788482666015625 +20220912150000,vlinder16,297.2264862060547,0.7369384765625,2.9640045166015625 +20220912150000,vlinder17,297.3612518310547,0.9654541015625,2.5372467041015625 +20220912150000,vlinder18,297.5096893310547,0.9410400390625,2.5099029541015625 +20220912150000,vlinder19,297.3905487060547,0.5826416015625,2.6866607666015625 +20220912150000,vlinder20,297.3905487060547,0.5826416015625,2.6866607666015625 +20220912150000,vlinder21,296.7928924560547,-0.2171630859375,2.9161529541015625 +20220912150000,vlinder22,298.0780487060547,-0.1341552734375,3.1515045166015625 +20220912150000,vlinder23,297.1405487060547,0.3394775390625,3.0860748291015625 +20220912150000,vlinder24,297.3319549560547,0.2701416015625,2.9757232666015625 +20220912150000,vlinder25,297.3221893310547,0.2974853515625,2.9864654541015625 +20220912150000,vlinder26,297.4139862060547,0.9185791015625,2.5694732666015625 +20220912150000,vlinder27,297.4628143310547,0.2545166015625,2.8604888916015625 +20220912150000,vlinder28,297.5311737060547,0.2681884765625,2.7413482666015625 +20220912160000,vlinder01,297.4274444580078,-0.10858154296875,2.37060546875 +20220912160000,vlinder02,297.4958038330078,-0.16717529296875,2.39501953125 +20220912160000,vlinder03,297.0524444580078,0.88555908203125,2.37548828125 +20220912160000,vlinder04,297.0524444580078,0.88555908203125,2.37548828125 +20220912160000,vlinder05,297.3825225830078,-0.11444091796875,2.42822265625 +20220912160000,vlinder06,297.4743194580078,0.28985595703125,2.32275390625 +20220912160000,vlinder07,297.4743194580078,0.28985595703125,2.32275390625 +20220912160000,vlinder08,297.4743194580078,0.28985595703125,2.32275390625 +20220912160000,vlinder09,297.3278350830078,0.10040283203125,2.43603515625 +20220912160000,vlinder10,297.3532257080078,0.02716064453125,2.45849609375 +20220912160000,vlinder11,297.2008819580078,0.40899658203125,2.43994140625 +20220912160000,vlinder12,297.2008819580078,0.40899658203125,2.43994140625 +20220912160000,vlinder13,297.2008819580078,0.40899658203125,2.43994140625 +20220912160000,vlinder14,297.0934600830078,0.45294189453125,2.50537109375 +20220912160000,vlinder15,297.3122100830078,0.16387939453125,2.42333984375 +20220912160000,vlinder16,297.0934600830078,0.45294189453125,2.50537109375 +20220912160000,vlinder17,297.0543975830078,1.13165283203125,2.26904296875 +20220912160000,vlinder18,297.1930694580078,1.16778564453125,2.23974609375 +20220912160000,vlinder19,297.2516632080078,0.26251220703125,2.47900390625 +20220912160000,vlinder20,297.2516632080078,0.26251220703125,2.47900390625 +20220912160000,vlinder21,296.8883819580078,-0.47869873046875,2.38818359375 +20220912160000,vlinder22,298.0211944580078,-0.21502685546875,2.61279296875 +20220912160000,vlinder23,297.1090850830078,-0.00311279296875,2.54345703125 +20220912160000,vlinder24,297.2868194580078,-0.08123779296875,2.48583984375 +20220912160000,vlinder25,297.2536163330078,-0.06072998046875,2.49169921875 +20220912160000,vlinder26,297.1911163330078,0.85137939453125,2.31298828125 +20220912160000,vlinder27,297.3825225830078,-0.11444091796875,2.42822265625 +20220912160000,vlinder28,297.4274444580078,-0.10858154296875,2.37060546875 +20220912170000,vlinder01,296.68565368652344,-0.63897705078125,1.5109100341796875 +20220912170000,vlinder02,296.75205993652344,-0.66143798828125,1.5226287841796875 +20220912170000,vlinder03,296.31455993652344,0.20477294921875,1.6095428466796875 +20220912170000,vlinder04,296.31455993652344,0.20477294921875,1.6095428466796875 +20220912170000,vlinder05,296.66416931152344,-0.69073486328125,1.5157928466796875 +20220912170000,vlinder06,296.69151306152344,-0.49249267578125,1.5206756591796875 +20220912170000,vlinder07,296.69151306152344,-0.49249267578125,1.5206756591796875 +20220912170000,vlinder08,296.69151306152344,-0.49249267578125,1.5206756591796875 +20220912170000,vlinder09,296.56846618652344,-0.54815673828125,1.6495819091796875 +20220912170000,vlinder10,296.59190368652344,-0.58526611328125,1.6632537841796875 +20220912170000,vlinder11,296.49620056152344,-0.30596923828125,1.5890350341796875 +20220912170000,vlinder12,296.49620056152344,-0.30596923828125,1.5890350341796875 +20220912170000,vlinder13,296.49620056152344,-0.30596923828125,1.5890350341796875 +20220912170000,vlinder14,296.42002868652344,-0.21612548828125,1.6261444091796875 +20220912170000,vlinder15,296.54698181152344,-0.52081298828125,1.6446990966796875 +20220912170000,vlinder16,296.42002868652344,-0.21612548828125,1.6261444091796875 +20220912170000,vlinder17,296.18760681152344,0.45086669921875,1.6271209716796875 +20220912170000,vlinder18,296.29893493652344,0.52801513671875,1.6075897216796875 +20220912170000,vlinder19,296.43565368652344,-0.51007080078125,1.8214569091796875 +20220912170000,vlinder20,296.43565368652344,-0.51007080078125,1.8214569091796875 +20220912170000,vlinder21,296.49229431152344,-1.07550048828125,1.7345428466796875 +20220912170000,vlinder22,297.25401306152344,-0.49249267578125,1.7980194091796875 +20220912170000,vlinder23,296.43955993652344,-0.70831298828125,1.5441131591796875 +20220912170000,vlinder24,296.59385681152344,-0.73468017578125,1.5255584716796875 +20220912170000,vlinder25,296.53330993652344,-0.69561767578125,1.5284881591796875 +20220912170000,vlinder26,296.40245056152344,0.09637451171875,1.5909881591796875 +20220912170000,vlinder27,296.66416931152344,-0.69073486328125,1.5157928466796875 +20220912170000,vlinder28,296.68565368652344,-0.63897705078125,1.5109100341796875 +20220912180000,vlinder01,295.3258514404297,-1.048980712890625,1.6834869384765625 +20220912180000,vlinder02,295.4078826904297,-1.035308837890625,1.7059478759765625 +20220912180000,vlinder03,295.0133514404297,-0.519683837890625,1.7586822509765625 +20220912180000,vlinder04,295.0133514404297,-0.519683837890625,1.7586822509765625 +20220912180000,vlinder05,295.3629608154297,-1.132965087890625,1.6776275634765625 +20220912180000,vlinder06,295.2750701904297,-1.214019775390625,1.5965728759765625 +20220912180000,vlinder07,295.2750701904297,-1.214019775390625,1.5965728759765625 +20220912180000,vlinder08,295.2750701904297,-1.214019775390625,1.5965728759765625 +20220912180000,vlinder09,295.1813201904297,-1.050933837890625,1.7625885009765625 +20220912180000,vlinder10,295.1969451904297,-1.039215087890625,1.7967681884765625 +20220912180000,vlinder11,295.2535858154297,-1.021636962890625,1.6737213134765625 +20220912180000,vlinder12,295.2535858154297,-1.021636962890625,1.6737213134765625 +20220912180000,vlinder13,295.2535858154297,-1.021636962890625,1.6737213134765625 +20220912180000,vlinder14,295.2535858154297,-0.900543212890625,1.7137603759765625 +20220912180000,vlinder15,295.1578826904297,-1.070465087890625,1.7420806884765625 +20220912180000,vlinder16,295.2535858154297,-0.900543212890625,1.7137603759765625 +20220912180000,vlinder17,294.7321014404297,-0.313629150390625,1.8348541259765625 +20220912180000,vlinder18,294.8063201904297,-0.200347900390625,1.8543853759765625 +20220912180000,vlinder19,294.8805389404297,-1.092926025390625,1.9579010009765625 +20220912180000,vlinder20,294.8805389404297,-1.092926025390625,1.9579010009765625 +20220912180000,vlinder21,295.6461639404297,-1.230621337890625,1.9686431884765625 +20220912180000,vlinder22,295.9645233154297,-0.829254150390625,2.0174713134765625 +20220912180000,vlinder23,295.2067108154297,-1.273590087890625,1.6473541259765625 +20220912180000,vlinder24,295.3199920654297,-1.228668212890625,1.6649322509765625 +20220912180000,vlinder25,295.2438201904297,-1.220855712890625,1.6502838134765625 +20220912180000,vlinder26,294.9235076904297,-0.670074462890625,1.7440338134765625 +20220912180000,vlinder27,295.3629608154297,-1.132965087890625,1.6776275634765625 +20220912180000,vlinder28,295.3258514404297,-1.048980712890625,1.6834869384765625 +20220912190000,vlinder01,293.35302734375,-0.94781494140625,1.3550262451171875 +20220912190000,vlinder02,293.50341796875,-0.90386962890625,1.3979949951171875 +20220912190000,vlinder03,293.33349609375,-0.29644775390625,1.1958465576171875 +20220912190000,vlinder04,293.33349609375,-0.29644775390625,1.1958465576171875 +20220912190000,vlinder05,293.46630859375,-1.02789306640625,1.3716278076171875 +20220912190000,vlinder06,293.66357421875,-1.14703369140625,1.2544403076171875 +20220912190000,vlinder07,293.66357421875,-1.14703369140625,1.2544403076171875 +20220912190000,vlinder08,293.66357421875,-1.14703369140625,1.2544403076171875 +20220912190000,vlinder09,293.44677734375,-1.03570556640625,1.4048309326171875 +20220912190000,vlinder10,293.44091796875,-1.00738525390625,1.4614715576171875 +20220912190000,vlinder11,293.62646484375,-0.97418212890625,1.1304168701171875 +20220912190000,vlinder12,293.62646484375,-0.97418212890625,1.1304168701171875 +20220912190000,vlinder13,293.62646484375,-0.97418212890625,1.1304168701171875 +20220912190000,vlinder14,293.49951171875,-0.86187744140625,1.0630340576171875 +20220912190000,vlinder15,293.44482421875,-1.06304931640625,1.3726043701171875 +20220912190000,vlinder16,293.49951171875,-0.86187744140625,1.0630340576171875 +20220912190000,vlinder17,293.68896484375,-0.59136962890625,1.6909637451171875 +20220912190000,vlinder18,293.65380859375,-0.57574462890625,1.7388153076171875 +20220912190000,vlinder19,293.38232421875,-1.06304931640625,1.7427215576171875 +20220912190000,vlinder20,293.38232421875,-1.06304931640625,1.7427215576171875 +20220912190000,vlinder21,293.91552734375,-0.76812744140625,1.7534637451171875 +20220912190000,vlinder22,294.16748046875,-0.33062744140625,1.5005340576171875 +20220912190000,vlinder23,293.30810546875,-1.19586181640625,1.3706512451171875 +20220912190000,vlinder24,293.34326171875,-1.09039306640625,1.4077606201171875 +20220912190000,vlinder25,293.32763671875,-1.15289306640625,1.3169403076171875 +20220912190000,vlinder26,293.27490234375,-0.52301025390625,1.3120574951171875 +20220912190000,vlinder27,293.46630859375,-1.02789306640625,1.3716278076171875 +20220912190000,vlinder28,293.35302734375,-0.94781494140625,1.3550262451171875 +20220912200000,vlinder01,291.98329162597656,-0.620208740234375,1.669097900390625 +20220912200000,vlinder02,292.24501037597656,-0.585052490234375,1.640777587890625 +20220912200000,vlinder03,291.76649475097656,-0.252044677734375,1.785308837890625 +20220912200000,vlinder04,291.76649475097656,-0.252044677734375,1.785308837890625 +20220912200000,vlinder05,292.28797912597656,-0.515716552734375,1.630035400390625 +20220912200000,vlinder06,292.32508850097656,-0.846771240234375,1.894683837890625 +20220912200000,vlinder07,292.32508850097656,-0.846771240234375,1.894683837890625 +20220912200000,vlinder08,292.32508850097656,-0.846771240234375,1.894683837890625 +20220912200000,vlinder09,292.19618225097656,-0.837982177734375,1.794097900390625 +20220912200000,vlinder10,292.22547912597656,-0.788177490234375,1.787261962890625 +20220912200000,vlinder11,292.33485412597656,-0.700286865234375,1.801910400390625 +20220912200000,vlinder12,292.33485412597656,-0.700286865234375,1.801910400390625 +20220912200000,vlinder13,292.33485412597656,-0.700286865234375,1.801910400390625 +20220912200000,vlinder14,292.20204162597656,-0.612396240234375,1.711090087890625 +20220912200000,vlinder15,292.17079162597656,-0.878021240234375,1.814605712890625 +20220912200000,vlinder16,292.20204162597656,-0.612396240234375,1.711090087890625 +20220912200000,vlinder17,292.23133850097656,-0.253021240234375,2.075347900390625 +20220912200000,vlinder18,292.11219787597656,-0.239349365234375,2.066558837890625 +20220912200000,vlinder19,292.20790100097656,-0.872161865234375,2.099761962890625 +20220912200000,vlinder20,292.20790100097656,-0.872161865234375,2.099761962890625 +20220912200000,vlinder21,292.62586975097656,0.028228759765625,1.242340087890625 +20220912200000,vlinder22,292.83680725097656,-0.494232177734375,0.932769775390625 +20220912200000,vlinder23,292.32508850097656,-0.381927490234375,1.558746337890625 +20220912200000,vlinder24,292.10829162597656,-0.406341552734375,1.578277587890625 +20220912200000,vlinder25,292.14930725097656,-0.494232177734375,1.589996337890625 +20220912200000,vlinder26,291.55751037597656,-0.346771240234375,1.909332275390625 +20220912200000,vlinder27,292.28797912597656,-0.515716552734375,1.630035400390625 +20220912200000,vlinder28,291.98329162597656,-0.620208740234375,1.669097900390625 +20220912210000,vlinder01,290.81040954589844,0.1219635009765625,1.569549560546875 +20220912210000,vlinder02,291.02720642089844,0.1131744384765625,1.535369873046875 +20220912210000,vlinder03,290.71080017089844,0.4139556884765625,1.543182373046875 +20220912210000,vlinder04,290.71080017089844,0.4139556884765625,1.543182373046875 +20220912210000,vlinder05,291.11509704589844,0.0829010009765625,1.492401123046875 +20220912210000,vlinder06,291.34947204589844,0.0262603759765625,1.928924560546875 +20220912210000,vlinder07,291.34947204589844,0.0262603759765625,1.928924560546875 +20220912210000,vlinder08,291.34947204589844,0.0262603759765625,1.928924560546875 +20220912210000,vlinder09,291.20689392089844,-0.0098724365234375,1.891815185546875 +20220912210000,vlinder10,291.23033142089844,0.0057525634765625,1.867401123046875 +20220912210000,vlinder11,291.09751892089844,0.1336822509765625,1.592010498046875 +20220912210000,vlinder12,291.09751892089844,0.1336822509765625,1.592010498046875 +20220912210000,vlinder13,291.09751892089844,0.1336822509765625,1.592010498046875 +20220912210000,vlinder14,291.32994079589844,0.2010650634765625,1.383026123046875 +20220912210000,vlinder15,291.19126892089844,-0.0254974365234375,1.931854248046875 +20220912210000,vlinder16,291.32994079589844,0.2010650634765625,1.383026123046875 +20220912210000,vlinder17,291.44908142089844,0.1678619384765625,2.119354248046875 +20220912210000,vlinder18,291.30064392089844,0.1375885009765625,2.130096435546875 +20220912210000,vlinder19,291.42564392089844,-0.0811614990234375,2.341033935546875 +20220912210000,vlinder20,291.42564392089844,-0.0811614990234375,2.341033935546875 +20220912210000,vlinder21,291.92955017089844,-0.2188568115234375,1.332244873046875 +20220912210000,vlinder22,291.50376892089844,-0.3448333740234375,1.439666748046875 +20220912210000,vlinder23,291.28306579589844,-0.0450286865234375,1.383026123046875 +20220912210000,vlinder24,291.12876892089844,0.0086822509765625,1.441619873046875 +20220912210000,vlinder25,291.11900329589844,0.0106353759765625,1.423065185546875 +20220912210000,vlinder26,290.56626892089844,0.3211822509765625,1.791229248046875 +20220912210000,vlinder27,291.11509704589844,0.0829010009765625,1.492401123046875 +20220912210000,vlinder28,290.81040954589844,0.1219635009765625,1.569549560546875 +20220912220000,vlinder01,290.4150085449219,0.6758270263671875,2.009735107421875 +20220912220000,vlinder02,290.7196960449219,0.6689910888671875,2.005828857421875 +20220912220000,vlinder03,290.0068054199219,1.0195770263671875,1.358367919921875 +20220912220000,vlinder04,290.0068054199219,1.0195770263671875,1.358367919921875 +20220912220000,vlinder05,290.6103210449219,0.5732879638671875,1.739227294921875 +20220912220000,vlinder06,290.7821960449219,0.7920379638671875,2.041961669921875 +20220912220000,vlinder07,290.7821960449219,0.7920379638671875,2.041961669921875 +20220912220000,vlinder08,290.7821960449219,0.7920379638671875,2.041961669921875 +20220912220000,vlinder09,290.7470397949219,0.7686004638671875,2.103485107421875 +20220912220000,vlinder10,290.7685241699219,0.7539520263671875,2.105438232421875 +20220912220000,vlinder11,290.4443054199219,0.5879364013671875,1.671844482421875 +20220912220000,vlinder12,290.4443054199219,0.5879364013671875,1.671844482421875 +20220912220000,vlinder13,290.4443054199219,0.5879364013671875,1.671844482421875 +20220912220000,vlinder14,290.6474304199219,0.4941864013671875,1.465789794921875 +20220912220000,vlinder15,290.7157897949219,0.7852020263671875,2.105438232421875 +20220912220000,vlinder16,290.6474304199219,0.4941864013671875,1.465789794921875 +20220912220000,vlinder17,290.8915710449219,1.2744598388671875,1.790008544921875 +20220912220000,vlinder18,290.7763366699219,1.2725067138671875,1.819305419921875 +20220912220000,vlinder19,290.8915710449219,0.8926239013671875,2.272430419921875 +20220912220000,vlinder20,290.8915710449219,0.8926239013671875,2.272430419921875 +20220912220000,vlinder21,291.4228210449219,0.7539520263671875,1.415985107421875 +20220912220000,vlinder22,291.3857116699219,0.7646942138671875,1.993133544921875 +20220912220000,vlinder23,291.0282897949219,0.4268035888671875,1.205047607421875 +20220912220000,vlinder24,290.5653991699219,0.4961395263671875,1.458953857421875 +20220912220000,vlinder25,290.5556335449219,0.4600067138671875,1.444305419921875 +20220912220000,vlinder26,289.7997741699219,1.1025848388671875,1.535125732421875 +20220912220000,vlinder27,290.6103210449219,0.5732879638671875,1.739227294921875 +20220912220000,vlinder28,290.4150085449219,0.6758270263671875,2.009735107421875 +20220912230000,vlinder01,290.235595703125,1.181121826171875,1.34246826171875 +20220912230000,vlinder02,290.563720703125,1.191864013671875,1.28582763671875 +20220912230000,vlinder03,289.704345703125,1.184051513671875,1.46649169921875 +20220912230000,vlinder04,289.704345703125,1.184051513671875,1.46649169921875 +20220912230000,vlinder05,290.462158203125,1.066864013671875,0.99774169921875 +20220912230000,vlinder06,290.544189453125,1.121551513671875,1.84149169921875 +20220912230000,vlinder07,290.544189453125,1.121551513671875,1.84149169921875 +20220912230000,vlinder08,290.544189453125,1.121551513671875,1.84149169921875 +20220912230000,vlinder09,290.641845703125,1.126434326171875,1.77996826171875 +20220912230000,vlinder10,290.704345703125,1.122528076171875,1.72625732421875 +20220912230000,vlinder11,289.952392578125,1.149871826171875,1.23797607421875 +20220912230000,vlinder12,289.952392578125,1.149871826171875,1.23797607421875 +20220912230000,vlinder13,289.952392578125,1.149871826171875,1.23797607421875 +20220912230000,vlinder14,290.260986328125,1.199676513671875,0.89324951171875 +20220912230000,vlinder15,290.591064453125,1.124481201171875,1.84344482421875 +20220912230000,vlinder16,290.260986328125,1.199676513671875,0.89324951171875 +20220912230000,vlinder17,290.528564453125,1.372528076171875,1.68426513671875 +20220912230000,vlinder18,290.389892578125,1.407684326171875,1.68133544921875 +20220912230000,vlinder19,290.757080078125,1.119598388671875,2.24481201171875 +20220912230000,vlinder20,290.757080078125,1.119598388671875,2.24481201171875 +20220912230000,vlinder21,291.604736328125,1.210418701171875,0.63739013671875 +20220912230000,vlinder22,291.858642578125,1.749481201171875,1.11492919921875 +20220912230000,vlinder23,291.450439453125,0.877410888671875,0.39910888671875 +20220912230000,vlinder24,290.946533203125,0.970184326171875,0.67938232421875 +20220912230000,vlinder25,290.923095703125,0.934051513671875,0.66668701171875 +20220912230000,vlinder26,289.468017578125,1.132293701171875,1.62957763671875 +20220912230000,vlinder27,290.462158203125,1.066864013671875,0.99774169921875 +20220912230000,vlinder28,290.235595703125,1.181121826171875,1.34246826171875 +20220913000000,vlinder01,290.6445617675781,1.8455047607421875,1.13458251953125 +20220913000000,vlinder02,290.9648742675781,1.8835906982421875,1.09454345703125 +20220913000000,vlinder03,289.8984680175781,1.2624969482421875,1.43145751953125 +20220913000000,vlinder04,289.8984680175781,1.2624969482421875,1.43145751953125 +20220913000000,vlinder05,290.7812805175781,1.7732391357421875,0.98614501953125 +20220913000000,vlinder06,290.6875305175781,1.5574188232421875,1.60626220703125 +20220913000000,vlinder07,290.6875305175781,1.5574188232421875,1.60626220703125 +20220913000000,vlinder08,290.6875305175781,1.5574188232421875,1.60626220703125 +20220913000000,vlinder09,290.9101867675781,1.7878875732421875,1.45196533203125 +20220913000000,vlinder10,290.9648742675781,1.8152313232421875,1.41876220703125 +20220913000000,vlinder11,290.2383117675781,1.5837860107421875,1.18243408203125 +20220913000000,vlinder12,290.2383117675781,1.5837860107421875,1.18243408203125 +20220913000000,vlinder13,290.2383117675781,1.5837860107421875,1.18243408203125 +20220913000000,vlinder14,290.4746398925781,1.6472625732421875,0.88555908203125 +20220913000000,vlinder15,290.8476867675781,1.7537078857421875,1.50567626953125 +20220913000000,vlinder16,290.4746398925781,1.6472625732421875,0.88555908203125 +20220913000000,vlinder17,290.3906555175781,1.3083953857421875,1.82891845703125 +20220913000000,vlinder18,290.2851867675781,1.3259735107421875,1.82794189453125 +20220913000000,vlinder19,290.9101867675781,1.6707000732421875,1.92364501953125 +20220913000000,vlinder20,290.9101867675781,1.6707000732421875,1.92364501953125 +20220913000000,vlinder21,292.1777648925781,2.2039031982421875,1.34747314453125 +20220913000000,vlinder22,292.0469055175781,2.5017547607421875,1.09747314453125 +20220913000000,vlinder23,290.8496398925781,1.6238250732421875,0.72540283203125 +20220913000000,vlinder24,290.6465148925781,1.7146453857421875,0.87872314453125 +20220913000000,vlinder25,290.5293273925781,1.6677703857421875,0.82208251953125 +20220913000000,vlinder26,289.5898742675781,1.2126922607421875,1.64044189453125 +20220913000000,vlinder27,290.7812805175781,1.7732391357421875,0.98614501953125 +20220913000000,vlinder28,290.6445617675781,1.8455047607421875,1.13458251953125 +20220913010000,vlinder01,291.07000732421875,2.0974273681640625,1.20654296875 +20220913010000,vlinder02,291.30828857421875,2.1423492431640625,1.12060546875 +20220913010000,vlinder03,289.96258544921875,1.5671539306640625,0.69873046875 +20220913010000,vlinder04,289.96258544921875,1.5671539306640625,0.69873046875 +20220913010000,vlinder05,291.17938232421875,2.0378570556640625,1.02001953125 +20220913010000,vlinder06,291.04266357421875,1.9870758056640625,1.66552734375 +20220913010000,vlinder07,291.04266357421875,1.9870758056640625,1.66552734375 +20220913010000,vlinder08,291.04266357421875,1.9870758056640625,1.66552734375 +20220913010000,vlinder09,291.08953857421875,2.0681304931640625,1.44287109375 +20220913010000,vlinder10,291.15399169921875,2.0954742431640625,1.36962890625 +20220913010000,vlinder11,290.46063232421875,1.7517242431640625,0.76318359375 +20220913010000,vlinder12,290.46063232421875,1.7517242431640625,0.76318359375 +20220913010000,vlinder13,290.46063232421875,1.7517242431640625,0.76318359375 +20220913010000,vlinder14,290.51531982421875,1.6579742431640625,0.29931640625 +20220913010000,vlinder15,291.03289794921875,2.0476226806640625,1.51123046875 +20220913010000,vlinder16,290.51531982421875,1.6579742431640625,0.29931640625 +20220913010000,vlinder17,290.65594482421875,1.6140289306640625,1.63623046875 +20220913010000,vlinder18,290.60906982421875,1.6150054931640625,1.68017578125 +20220913010000,vlinder19,291.04461669921875,2.2155914306640625,1.69482421875 +20220913010000,vlinder20,291.04461669921875,2.2155914306640625,1.69482421875 +20220913010000,vlinder21,292.48016357421875,3.4978179931640625,1.38330078125 +20220913010000,vlinder22,291.95672607421875,2.9763336181640625,0.80419921875 +20220913010000,vlinder23,291.16961669921875,1.9089508056640625,0.70458984375 +20220913010000,vlinder24,291.06414794921875,2.0476226806640625,0.90673828125 +20220913010000,vlinder25,290.85321044921875,1.8855133056640625,0.78857421875 +20220913010000,vlinder26,289.79852294921875,1.5915679931640625,1.05322265625 +20220913010000,vlinder27,291.17938232421875,2.0378570556640625,1.02001953125 +20220913010000,vlinder28,291.07000732421875,2.0974273681640625,1.20654296875 +20220913020000,vlinder01,291.11936950683594,2.20526123046875,0.97802734375 +20220913020000,vlinder02,291.29515075683594,2.28924560546875,0.81005859375 +20220913020000,vlinder03,289.99827575683594,1.25506591796875,0.96337890625 +20220913020000,vlinder04,289.99827575683594,1.25506591796875,0.96337890625 +20220913020000,vlinder05,291.30882263183594,2.39764404296875,0.75048828125 +20220913020000,vlinder06,290.80491638183594,2.11541748046875,1.78271484375 +20220913020000,vlinder07,290.80491638183594,2.11541748046875,1.78271484375 +20220913020000,vlinder08,290.80491638183594,2.11541748046875,1.78271484375 +20220913020000,vlinder09,290.89280700683594,1.98651123046875,1.27685546875 +20220913020000,vlinder10,290.76780700683594,2.08026123046875,1.12548828125 +20220913020000,vlinder11,290.64476013183594,1.75018310546875,1.12353515625 +20220913020000,vlinder12,290.64476013183594,1.75018310546875,1.12353515625 +20220913020000,vlinder13,290.64476013183594,1.75018310546875,1.12353515625 +20220913020000,vlinder14,290.63499450683594,1.57928466796875,0.69775390625 +20220913020000,vlinder15,290.81272888183594,1.94158935546875,1.40576171875 +20220913020000,vlinder16,290.63499450683594,1.57928466796875,0.69775390625 +20220913020000,vlinder17,290.74827575683594,2.05975341796875,0.91845703125 +20220913020000,vlinder18,290.77366638183594,2.04217529296875,0.92138671875 +20220913020000,vlinder19,290.61155700683594,2.30584716796875,1.27587890625 +20220913020000,vlinder20,290.61155700683594,2.30584716796875,1.27587890625 +20220913020000,vlinder21,292.50413513183594,4.92596435546875,0.24462890625 +20220913020000,vlinder22,291.49827575683594,2.74530029296875,-0.21533203125 +20220913020000,vlinder23,291.45921325683594,2.66131591796875,0.41064453125 +20220913020000,vlinder24,291.34397888183594,2.71209716796875,0.55224609375 +20220913020000,vlinder25,291.12913513183594,2.35369873046875,0.58056640625 +20220913020000,vlinder26,289.91819763183594,1.57049560546875,1.11669921875 +20220913020000,vlinder27,291.30882263183594,2.39764404296875,0.75048828125 +20220913020000,vlinder28,291.11936950683594,2.20526123046875,0.97802734375 +20220913030000,vlinder01,290.9359893798828,2.0805511474609375,0.31949424743652344 +20220913030000,vlinder02,291.0805206298828,2.0903167724609375,0.14957237243652344 +20220913030000,vlinder03,289.9574737548828,1.1518402099609375,1.5626583099365234 +20220913030000,vlinder04,289.9574737548828,1.1518402099609375,1.5626583099365234 +20220913030000,vlinder05,291.2133331298828,2.3178558349609375,0.31656455993652344 +20220913030000,vlinder06,290.4906768798828,2.0160980224609375,1.1603145599365234 +20220913030000,vlinder07,290.4906768798828,2.0160980224609375,1.1603145599365234 +20220913030000,vlinder08,290.4906768798828,2.0160980224609375,1.1603145599365234 +20220913030000,vlinder09,290.7152862548828,1.8110198974609375,0.44937705993652344 +20220913030000,vlinder10,290.5434112548828,1.8481292724609375,0.29215049743652344 +20220913030000,vlinder11,290.4516143798828,1.6244964599609375,1.3663692474365234 +20220913030000,vlinder12,290.4516143798828,1.6244964599609375,1.3663692474365234 +20220913030000,vlinder13,290.4516143798828,1.6244964599609375,1.3663692474365234 +20220913030000,vlinder14,290.5121612548828,1.4535980224609375,1.3878536224365234 +20220913030000,vlinder15,290.6254425048828,1.7885589599609375,0.5841426849365234 +20220913030000,vlinder16,290.5121612548828,1.4535980224609375,1.3878536224365234 +20220913030000,vlinder17,290.2777862548828,2.1274261474609375,0.8927364349365234 +20220913030000,vlinder18,290.3793487548828,2.1733245849609375,0.8370723724365234 +20220913030000,vlinder19,290.3676300048828,1.8373870849609375,0.44254112243652344 +20220913030000,vlinder20,290.3676300048828,1.8373870849609375,0.44254112243652344 +20220913030000,vlinder21,292.5434112548828,4.7807464599609375,-0.49593544006347656 +20220913030000,vlinder22,291.2680206298828,2.1889495849609375,-0.8133182525634766 +20220913030000,vlinder23,291.5336456298828,2.7065277099609375,0.42203330993652344 +20220913030000,vlinder24,291.3773956298828,2.6948089599609375,0.26968955993652344 +20220913030000,vlinder25,291.1273956298828,2.3129730224609375,0.48062705993652344 +20220913030000,vlinder26,289.7016143798828,1.4174652099609375,1.3917598724365234 +20220913030000,vlinder27,291.2133331298828,2.3178558349609375,0.31656455993652344 +20220913030000,vlinder28,290.9359893798828,2.0805511474609375,0.31949424743652344 +20220913040000,vlinder01,290.7850799560547,1.9651336669921875,-0.05615043640136719 +20220913040000,vlinder02,290.8925018310547,1.9192352294921875,-0.1381816864013672 +20220913040000,vlinder03,289.7206268310547,1.2346649169921875,0.9672870635986328 +20220913040000,vlinder04,289.7206268310547,1.2346649169921875,0.9672870635986328 +20220913040000,vlinder05,291.1151580810547,2.1467742919921875,-0.2905254364013672 +20220913040000,vlinder06,290.3964080810547,1.9026336669921875,0.7016620635986328 +20220913040000,vlinder07,290.3964080810547,1.9026336669921875,0.7016620635986328 +20220913040000,vlinder08,290.3964080810547,1.9026336669921875,0.7016620635986328 +20220913040000,vlinder09,290.1874237060547,1.8293914794921875,0.08154487609863281 +20220913040000,vlinder10,290.2284393310547,1.8079071044921875,-0.014158248901367188 +20220913040000,vlinder11,290.3768768310547,1.7913055419921875,0.5327167510986328 +20220913040000,vlinder12,290.3768768310547,1.7913055419921875,0.5327167510986328 +20220913040000,vlinder13,290.3768768310547,1.7913055419921875,0.5327167510986328 +20220913040000,vlinder14,290.4100799560547,1.7590789794921875,0.4213886260986328 +20220913040000,vlinder15,290.1229705810547,1.8313446044921875,0.1850605010986328 +20220913040000,vlinder16,290.4100799560547,1.7590789794921875,0.4213886260986328 +20220913040000,vlinder17,289.9471893310547,1.5549774169921875,0.9077167510986328 +20220913040000,vlinder18,290.0702362060547,1.5784149169921875,0.9184589385986328 +20220913040000,vlinder19,289.8280487060547,1.6672821044921875,0.3334980010986328 +20220913040000,vlinder20,289.8280487060547,1.6672821044921875,0.3334980010986328 +20220913040000,vlinder21,292.5370330810547,3.5998992919921875,-1.6020488739013672 +20220913040000,vlinder22,291.0897674560547,1.5217742919921875,-0.3891582489013672 +20220913040000,vlinder23,291.5565643310547,2.4924774169921875,-0.6147441864013672 +20220913040000,vlinder24,291.3436737060547,2.4123992919921875,-0.5776348114013672 +20220913040000,vlinder25,291.1073455810547,2.2200164794921875,-0.3969707489013672 +20220913040000,vlinder26,289.4081268310547,1.3137664794921875,0.9116230010986328 +20220913040000,vlinder27,291.1151580810547,2.1467742919921875,-0.2905254364013672 +20220913040000,vlinder28,290.7850799560547,1.9651336669921875,-0.05615043640136719 +20220913050000,vlinder01,290.48252868652344,1.491485595703125,0.6828022003173828 +20220913050000,vlinder02,290.60948181152344,1.452423095703125,0.6544818878173828 +20220913050000,vlinder03,289.48252868652344,1.287384033203125,0.9611225128173828 +20220913050000,vlinder04,289.48252868652344,1.287384033203125,0.9611225128173828 +20220913050000,vlinder05,290.82432556152344,1.580352783203125,0.1447162628173828 +20220913050000,vlinder06,290.17588806152344,1.585235595703125,1.0744037628173828 +20220913050000,vlinder07,290.17588806152344,1.585235595703125,1.0744037628173828 +20220913050000,vlinder08,290.17588806152344,1.585235595703125,1.0744037628173828 +20220913050000,vlinder09,289.91026306152344,1.431915283203125,0.7687397003173828 +20220913050000,vlinder10,289.93370056152344,1.402618408203125,0.7228412628173828 +20220913050000,vlinder11,290.13096618652344,1.538360595703125,0.4913959503173828 +20220913050000,vlinder12,290.13096618652344,1.538360595703125,0.4913959503173828 +20220913050000,vlinder13,290.13096618652344,1.538360595703125,0.4913959503173828 +20220913050000,vlinder14,290.09971618652344,1.525665283203125,0.1837787628173828 +20220913050000,vlinder15,289.87705993652344,1.450469970703125,0.8214740753173828 +20220913050000,vlinder16,290.09971618652344,1.525665283203125,0.1837787628173828 +20220913050000,vlinder17,289.61143493652344,1.286407470703125,1.3214740753173828 +20220913050000,vlinder18,289.73448181152344,1.270782470703125,1.3488178253173828 +20220913050000,vlinder19,289.65635681152344,1.378204345703125,0.9288959503173828 +20220913050000,vlinder20,289.65635681152344,1.378204345703125,0.9288959503173828 +20220913050000,vlinder21,292.49620056152344,2.417266845703125,-1.8025493621826172 +20220913050000,vlinder22,290.89463806152344,1.264923095703125,0.8566303253173828 +20220913050000,vlinder23,291.43760681152344,1.786407470703125,-0.8748149871826172 +20220913050000,vlinder24,291.06651306152344,1.724884033203125,-0.4724712371826172 +20220913050000,vlinder25,290.77745056152344,1.616485595703125,-0.3171977996826172 +20220913050000,vlinder26,289.18370056152344,1.303985595703125,1.0646381378173828 +20220913050000,vlinder27,290.82432556152344,1.580352783203125,0.1447162628173828 +20220913050000,vlinder28,290.48252868652344,1.491485595703125,0.6828022003173828 +20220913060000,vlinder01,290.1944885253906,1.1455078125,1.1592235565185547 +20220913060000,vlinder02,290.3077697753906,1.134765625,1.1504344940185547 +20220913060000,vlinder03,289.2023010253906,0.982421875,1.0674266815185547 +20220913060000,vlinder04,289.2023010253906,0.982421875,1.0674266815185547 +20220913060000,vlinder05,290.4308166503906,1.208984375,0.7607860565185547 +20220913060000,vlinder06,289.9698791503906,1.1953125,1.2871532440185547 +20220913060000,vlinder07,289.9698791503906,1.1953125,1.2871532440185547 +20220913060000,vlinder08,289.9698791503906,1.1953125,1.2871532440185547 +20220913060000,vlinder09,289.7765197753906,1.021484375,1.2109813690185547 +20220913060000,vlinder10,289.8097229003906,1.0078125,1.1973094940185547 +20220913060000,vlinder11,289.8058166503906,1.1318359375,0.9297313690185547 +20220913060000,vlinder12,289.8058166503906,1.1318359375,0.9297313690185547 +20220913060000,vlinder13,289.8058166503906,1.1318359375,0.9297313690185547 +20220913060000,vlinder14,289.7589416503906,1.103515625,0.7305126190185547 +20220913060000,vlinder15,289.7355041503906,1.03125,1.2275829315185547 +20220913060000,vlinder16,289.7589416503906,1.103515625,0.7305126190185547 +20220913060000,vlinder17,289.4698791503906,1.1201171875,1.3994579315185547 +20220913060000,vlinder18,289.6026916503906,1.1376953125,1.4248485565185547 +20220913060000,vlinder19,289.5460510253906,0.9150390625,1.2978954315185547 +20220913060000,vlinder20,289.5460510253906,0.9150390625,1.2978954315185547 +20220913060000,vlinder21,292.2257385253906,1.5078125,-0.9413623809814453 +20220913060000,vlinder22,290.5597229003906,1.046875,1.1982860565185547 +20220913060000,vlinder23,290.9542541503906,1.3095703125,-0.10054206848144531 +20220913060000,vlinder24,290.5343322753906,1.3076171875,0.2725048065185547 +20220913060000,vlinder25,290.3038635253906,1.240234375,0.4307079315185547 +20220913060000,vlinder26,288.9464416503906,0.9912109375,1.1514110565185547 +20220913060000,vlinder27,290.4308166503906,1.208984375,0.7607860565185547 +20220913060000,vlinder28,290.1944885253906,1.1455078125,1.1592235565185547 +20220913070000,vlinder01,292.17059326171875,-0.387664794921875,-0.42618274688720703 +20220913070000,vlinder02,291.84246826171875,-0.395477294921875,-0.524815559387207 +20220913070000,vlinder03,291.48114013671875,0.892608642578125,-0.12149524688720703 +20220913070000,vlinder04,291.48114013671875,0.892608642578125,-0.12149524688720703 +20220913070000,vlinder05,292.02606201171875,-0.334930419921875,-0.768956184387207 +20220913070000,vlinder06,292.62762451171875,0.073272705078125,0.33553600311279297 +20220913070000,vlinder07,292.62762451171875,0.073272705078125,0.33553600311279297 +20220913070000,vlinder08,292.62762451171875,0.073272705078125,0.33553600311279297 +20220913070000,vlinder09,292.30145263671875,-0.530242919921875,-0.15762805938720703 +20220913070000,vlinder10,292.11785888671875,-0.559539794921875,-0.24551868438720703 +20220913070000,vlinder11,292.73114013671875,0.396514892578125,-0.20254993438720703 +20220913070000,vlinder12,292.73114013671875,0.396514892578125,-0.20254993438720703 +20220913070000,vlinder13,292.73114013671875,0.396514892578125,-0.20254993438720703 +20220913070000,vlinder14,292.08074951171875,0.460968017578125,-0.557042121887207 +20220913070000,vlinder15,292.43231201171875,-0.477508544921875,-0.05704212188720703 +20220913070000,vlinder16,292.08074951171875,0.460968017578125,-0.557042121887207 +20220913070000,vlinder17,291.45184326171875,0.958038330078125,0.600184440612793 +20220913070000,vlinder18,291.53582763671875,1.001007080078125,0.623621940612793 +20220913070000,vlinder19,292.35614013671875,-0.469696044921875,0.13924694061279297 +20220913070000,vlinder20,292.35614013671875,-0.469696044921875,0.13924694061279297 +20220913070000,vlinder21,292.94403076171875,-1.188446044921875,-3.089268684387207 +20220913070000,vlinder22,292.34832763671875,-0.504852294921875,-1.677159309387207 +20220913070000,vlinder23,292.61199951171875,-0.263641357421875,-1.462315559387207 +20220913070000,vlinder24,292.30731201171875,-0.334930419921875,-1.215245246887207 +20220913070000,vlinder25,292.13348388671875,-0.189422607421875,-0.959385871887207 +20220913070000,vlinder26,291.77996826171875,0.808624267578125,0.16073131561279297 +20220913070000,vlinder27,292.02606201171875,-0.334930419921875,-0.768956184387207 +20220913070000,vlinder28,292.17059326171875,-0.387664794921875,-0.42618274688720703 +20220913080000,vlinder01,293.6512756347656,-0.4695281982421875,-0.6741180419921875 +20220913080000,vlinder02,293.6122131347656,-0.4753875732421875,-0.7903289794921875 +20220913080000,vlinder03,293.9481506347656,0.3800811767578125,-0.6819305419921875 +20220913080000,vlinder04,293.9481506347656,0.3800811767578125,-0.6819305419921875 +20220913080000,vlinder05,293.6708068847656,-0.5749969482421875,-1.1868133544921875 +20220913080000,vlinder06,294.1688537597656,-0.1648406982421875,0.2243194580078125 +20220913080000,vlinder07,294.1688537597656,-0.1648406982421875,0.2243194580078125 +20220913080000,vlinder08,294.1688537597656,-0.1648406982421875,0.2243194580078125 +20220913080000,vlinder09,293.7860412597656,-0.6492156982421875,-0.2590789794921875 +20220913080000,vlinder10,293.7079162597656,-0.6677703857421875,-0.3831024169921875 +20220913080000,vlinder11,294.0516662597656,-0.0837860107421875,-0.7434539794921875 +20220913080000,vlinder12,294.0516662597656,-0.0837860107421875,-0.7434539794921875 +20220913080000,vlinder13,294.0516662597656,-0.0837860107421875,-0.7434539794921875 +20220913080000,vlinder14,293.9501037597656,-0.1218719482421875,-1.2776336669921875 +20220913080000,vlinder15,293.8446350097656,-0.6150360107421875,-0.1321258544921875 +20220913080000,vlinder16,293.9501037597656,-0.1218719482421875,-1.2776336669921875 +20220913080000,vlinder17,293.7450256347656,0.7091827392578125,0.3209991455078125 +20220913080000,vlinder18,293.7958068847656,0.7755889892578125,0.3297882080078125 +20220913080000,vlinder19,293.8583068847656,-0.7078094482421875,0.1100616455078125 +20220913080000,vlinder20,293.8583068847656,-0.7078094482421875,0.1100616455078125 +20220913080000,vlinder21,293.1376037597656,-1.9832000732421875,-3.5881805419921875 +20220913080000,vlinder22,293.0672912597656,-0.7117156982421875,-1.8166961669921875 +20220913080000,vlinder23,293.5477600097656,-0.8357391357421875,-2.1389617919921875 +20220913080000,vlinder24,293.5790100097656,-0.7771453857421875,-1.7786102294921875 +20220913080000,vlinder25,293.6844787597656,-0.5896453857421875,-1.5266571044921875 +20220913080000,vlinder26,293.9891662597656,0.3976593017578125,-0.2561492919921875 +20220913080000,vlinder27,293.6708068847656,-0.5749969482421875,-1.1868133544921875 +20220913080000,vlinder28,293.6512756347656,-0.4695281982421875,-0.6741180419921875 +20220913090000,vlinder01,294.8528594970703,-0.8721160888671875,-0.61993408203125 +20220913090000,vlinder02,294.7903594970703,-0.9160614013671875,-0.64044189453125 +20220913090000,vlinder03,295.1087188720703,-0.0371551513671875,-0.51055908203125 +20220913090000,vlinder04,295.1087188720703,-0.0371551513671875,-0.51055908203125 +20220913090000,vlinder05,294.6887969970703,-1.0898895263671875,-0.93829345703125 +20220913090000,vlinder06,295.4798126220703,-0.4922332763671875,-0.37286376953125 +20220913090000,vlinder07,295.4798126220703,-0.4922332763671875,-0.37286376953125 +20220913090000,vlinder08,295.4798126220703,-0.4922332763671875,-0.37286376953125 +20220913090000,vlinder09,294.9134063720703,-0.8486785888671875,-0.31524658203125 +20220913090000,vlinder10,294.8313751220703,-0.9082489013671875,-0.32305908203125 +20220913090000,vlinder11,295.1516876220703,-0.6055145263671875,-0.73614501953125 +20220913090000,vlinder12,295.1516876220703,-0.6055145263671875,-0.73614501953125 +20220913090000,vlinder13,295.1516876220703,-0.6055145263671875,-0.73614501953125 +20220913090000,vlinder14,294.9075469970703,-0.6982879638671875,-0.95684814453125 +20220913090000,vlinder15,295.0579376220703,-0.7910614013671875,-0.29083251953125 +20220913090000,vlinder16,294.9075469970703,-0.6982879638671875,-0.95684814453125 +20220913090000,vlinder17,295.2376251220703,0.3446807861328125,0.21697998046875 +20220913090000,vlinder18,295.3040313720703,0.4198760986328125,0.25311279296875 +20220913090000,vlinder19,295.0071563720703,-0.9385223388671875,0.12322998046875 +20220913090000,vlinder20,295.0071563720703,-0.9385223388671875,0.12322998046875 +20220913090000,vlinder21,293.5735626220703,-2.6689910888671875,-2.91094970703125 +20220913090000,vlinder22,294.0950469970703,-1.6289520263671875,-1.26055908203125 +20220913090000,vlinder23,294.2903594970703,-1.4844207763671875,-1.62188720703125 +20220913090000,vlinder24,294.4466094970703,-1.3760223388671875,-1.36114501953125 +20220913090000,vlinder25,294.5755157470703,-1.1992645263671875,-1.14923095703125 +20220913090000,vlinder26,295.2884063720703,-0.0283660888671875,-0.29864501953125 +20220913090000,vlinder27,294.6887969970703,-1.0898895263671875,-0.93829345703125 +20220913090000,vlinder28,294.8528594970703,-0.8721160888671875,-0.61993408203125 +20220913100000,vlinder01,294.90814208984375,-0.710418701171875,-0.102447509765625 +20220913100000,vlinder02,294.85345458984375,-0.748504638671875,-0.203033447265625 +20220913100000,vlinder03,295.59954833984375,0.326690673828125,0.067474365234375 +20220913100000,vlinder04,295.59954833984375,0.326690673828125,0.067474365234375 +20220913100000,vlinder05,294.75775146484375,-0.819793701171875,-0.431549072265625 +20220913100000,vlinder06,295.81439208984375,-0.329559326171875,0.721771240234375 +20220913100000,vlinder07,295.81439208984375,-0.329559326171875,0.721771240234375 +20220913100000,vlinder08,295.81439208984375,-0.329559326171875,0.721771240234375 +20220913100000,vlinder09,295.05267333984375,-0.736785888671875,0.208099365234375 +20220913100000,vlinder10,294.96282958984375,-0.783660888671875,0.112396240234375 +20220913100000,vlinder11,295.27923583984375,-0.211395263671875,0.035247802734375 +20220913100000,vlinder12,295.27923583984375,-0.211395263671875,0.035247802734375 +20220913100000,vlinder13,295.27923583984375,-0.211395263671875,0.035247802734375 +20220913100000,vlinder14,294.93353271484375,-0.221160888671875,-0.389556884765625 +20220913100000,vlinder15,295.17572021484375,-0.685028076171875,0.316497802734375 +20220913100000,vlinder16,294.93353271484375,-0.221160888671875,-0.389556884765625 +20220913100000,vlinder17,296.28118896484375,0.522003173828125,1.046966552734375 +20220913100000,vlinder18,296.37493896484375,0.563018798828125,1.070404052734375 +20220913100000,vlinder19,295.28704833984375,-0.762176513671875,0.625091552734375 +20220913100000,vlinder20,295.28704833984375,-0.762176513671875,0.625091552734375 +20220913100000,vlinder21,293.83197021484375,-2.276824951171875,-2.356353759765625 +20220913100000,vlinder22,294.49407958984375,-1.382293701171875,-1.356353759765625 +20220913100000,vlinder23,294.41790771484375,-1.032684326171875,-1.084869384765625 +20220913100000,vlinder24,294.57025146484375,-1.001434326171875,-0.840728759765625 +20220913100000,vlinder25,294.65228271484375,-0.826629638671875,-0.615142822265625 +20220913100000,vlinder26,295.96087646484375,0.313018798828125,0.462005615234375 +20220913100000,vlinder27,294.75775146484375,-0.819793701171875,-0.431549072265625 +20220913100000,vlinder28,294.90814208984375,-0.710418701171875,-0.102447509765625 +20220913110000,vlinder01,295.4077911376953,-0.670562744140625,-0.5830535888671875 +20220913110000,vlinder02,295.3706817626953,-0.759429931640625,-0.7041473388671875 +20220913110000,vlinder03,296.1402130126953,0.973968505859375,0.1532745361328125 +20220913110000,vlinder04,296.1402130126953,0.973968505859375,0.1532745361328125 +20220913110000,vlinder05,295.2574005126953,-0.738922119140625,-0.9482879638671875 +20220913110000,vlinder06,295.9195098876953,0.065765380859375,0.4901885986328125 +20220913110000,vlinder07,295.9195098876953,0.065765380859375,0.4901885986328125 +20220913110000,vlinder08,295.9195098876953,0.065765380859375,0.4901885986328125 +20220913110000,vlinder09,295.3159942626953,-0.605133056640625,-0.0264129638671875 +20220913110000,vlinder10,295.2574005126953,-0.708648681640625,-0.1484832763671875 +20220913110000,vlinder11,295.7534942626953,0.291351318359375,-0.1934051513671875 +20220913110000,vlinder12,295.7534942626953,0.291351318359375,-0.1934051513671875 +20220913110000,vlinder13,295.7534942626953,0.291351318359375,-0.1934051513671875 +20220913110000,vlinder14,295.6109161376953,0.296234130859375,-0.6133270263671875 +20220913110000,vlinder15,295.3765411376953,-0.499664306640625,0.1151885986328125 +20220913110000,vlinder16,295.6109161376953,0.296234130859375,-0.6133270263671875 +20220913110000,vlinder17,296.4273223876953,1.222015380859375,1.1103057861328125 +20220913110000,vlinder18,296.5835723876953,1.288421630859375,1.1435089111328125 +20220913110000,vlinder19,295.1343536376953,-0.535797119140625,0.5985870361328125 +20220913110000,vlinder20,295.1343536376953,-0.535797119140625,0.5985870361328125 +20220913110000,vlinder21,293.9292755126953,-2.276031494140625,-3.1084442138671875 +20220913110000,vlinder22,294.6441192626953,-1.638336181640625,-2.0146942138671875 +20220913110000,vlinder23,294.8394317626953,-0.815093994140625,-1.5859832763671875 +20220913110000,vlinder24,294.9956817626953,-0.867828369140625,-1.3867645263671875 +20220913110000,vlinder25,295.1441192626953,-0.649078369140625,-1.1152801513671875 +20220913110000,vlinder26,296.2417755126953,0.921234130859375,0.5087432861328125 +20220913110000,vlinder27,295.2574005126953,-0.738922119140625,-0.9482879638671875 +20220913110000,vlinder28,295.4077911376953,-0.670562744140625,-0.5830535888671875 +20220913120000,vlinder01,295.33367919921875,-0.8318634033203125,-0.5018768310546875 +20220913120000,vlinder02,295.29461669921875,-0.9470977783203125,-0.5926971435546875 +20220913120000,vlinder03,296.42547607421875,1.1359100341796875,-0.6083221435546875 +20220913120000,vlinder04,296.42547607421875,1.1359100341796875,-0.6083221435546875 +20220913120000,vlinder05,295.16571044921875,-0.9617462158203125,-1.1493377685546875 +20220913120000,vlinder06,296.10125732421875,0.2823944091796875,0.3760528564453125 +20220913120000,vlinder07,296.10125732421875,0.2823944091796875,0.3760528564453125 +20220913120000,vlinder08,296.10125732421875,0.2823944091796875,0.3760528564453125 +20220913120000,vlinder09,295.19110107421875,-0.4666290283203125,0.2364044189453125 +20220913120000,vlinder10,295.11492919921875,-0.6150665283203125,0.1397247314453125 +20220913120000,vlinder11,295.90203857421875,0.2521209716796875,-0.8036346435546875 +20220913120000,vlinder12,295.90203857421875,0.2521209716796875,-0.8036346435546875 +20220913120000,vlinder13,295.90203857421875,0.2521209716796875,-0.8036346435546875 +20220913120000,vlinder14,295.72430419921875,0.1320037841796875,-1.4130096435546875 +20220913120000,vlinder15,295.27899169921875,-0.3103790283203125,0.3506622314453125 +20220913120000,vlinder16,295.72430419921875,0.1320037841796875,-1.4130096435546875 +20220913120000,vlinder17,296.90008544921875,1.8927459716796875,0.5586700439453125 +20220913120000,vlinder18,297.02703857421875,1.9630584716796875,0.5879669189453125 +20220913120000,vlinder19,295.07781982421875,-0.0603790283203125,1.0147247314453125 +20220913120000,vlinder20,295.07781982421875,-0.0603790283203125,1.0147247314453125 +20220913120000,vlinder21,293.75360107421875,-2.4617462158203125,-3.9403533935546875 +20220913120000,vlinder22,294.58367919921875,-1.4480743408203125,-1.6346893310546875 +20220913120000,vlinder23,294.73016357421875,-1.0594024658203125,-2.3485565185546875 +20220913120000,vlinder24,294.89422607421875,-1.1082305908203125,-1.8895721435546875 +20220913120000,vlinder25,295.06024169921875,-0.8885040283203125,-1.6053924560546875 +20220913120000,vlinder26,296.60906982421875,1.2208709716796875,-0.1073455810546875 +20220913120000,vlinder27,295.16571044921875,-0.9617462158203125,-1.1493377685546875 +20220913120000,vlinder28,295.33367919921875,-0.8318634033203125,-0.5018768310546875 +20220913130000,vlinder01,295.5916442871094,-0.105377197265625,0.2818756103515625 +20220913130000,vlinder02,295.5193786621094,-0.219635009765625,0.2750396728515625 +20220913130000,vlinder03,296.6502380371094,1.074310302734375,-0.7708587646484375 +20220913130000,vlinder04,296.6502380371094,1.074310302734375,-0.7708587646484375 +20220913130000,vlinder05,295.3768005371094,-0.454986572265625,-0.3704681396484375 +20220913130000,vlinder06,296.4002380371094,0.883880615234375,0.4693756103515625 +20220913130000,vlinder07,296.4002380371094,0.883880615234375,0.4693756103515625 +20220913130000,vlinder08,296.4002380371094,0.883880615234375,0.4693756103515625 +20220913130000,vlinder09,295.4861755371094,0.357513427734375,0.6041412353515625 +20220913130000,vlinder10,295.3943786621094,0.224700927734375,0.6207427978515625 +20220913130000,vlinder11,296.2283630371094,0.399505615234375,-0.5989837646484375 +20220913130000,vlinder12,296.2283630371094,0.399505615234375,-0.5989837646484375 +20220913130000,vlinder13,296.2283630371094,0.399505615234375,-0.5989837646484375 +20220913130000,vlinder14,296.0623474121094,0.085052490234375,-1.1380462646484375 +20220913130000,vlinder15,295.5838317871094,0.497161865234375,0.6129302978515625 +20220913130000,vlinder16,296.0623474121094,0.085052490234375,-1.1380462646484375 +20220913130000,vlinder17,296.9822692871094,1.993255615234375,0.2916412353515625 +20220913130000,vlinder18,297.0935974121094,2.041107177734375,0.3248443603515625 +20220913130000,vlinder19,295.2654724121094,0.744232177734375,1.0445709228515625 +20220913130000,vlinder20,295.2654724121094,0.744232177734375,1.0445709228515625 +20220913130000,vlinder21,293.7010192871094,-2.448150634765625,-3.2855072021484375 +20220913130000,vlinder22,294.4021911621094,-1.170806884765625,-1.0931243896484375 +20220913130000,vlinder23,294.8728942871094,-1.016510009765625,-1.7630462646484375 +20220913130000,vlinder24,295.0369567871094,-0.851470947265625,-1.1898040771484375 +20220913130000,vlinder25,295.2576599121094,-0.618072509765625,-0.9261322021484375 +20220913130000,vlinder26,296.7986755371094,1.295989990234375,-0.3187103271484375 +20220913130000,vlinder27,295.3768005371094,-0.454986572265625,-0.3704681396484375 +20220913130000,vlinder28,295.5916442871094,-0.105377197265625,0.2818756103515625 +20220913140000,vlinder01,294.93531799316406,-0.1220703125,-0.7317657470703125 +20220913140000,vlinder02,294.86695861816406,-0.2900390625,-0.8303985595703125 +20220913140000,vlinder03,296.66578674316406,1.271484375,-0.9173126220703125 +20220913140000,vlinder04,296.66578674316406,1.271484375,-0.9173126220703125 +20220913140000,vlinder05,294.83570861816406,-0.419921875,-1.2874298095703125 +20220913140000,vlinder06,295.86305236816406,1.13671875,-0.0940704345703125 +20220913140000,vlinder07,295.86305236816406,1.13671875,-0.0940704345703125 +20220913140000,vlinder08,295.86305236816406,1.13671875,-0.0940704345703125 +20220913140000,vlinder09,294.83570861816406,0.455078125,-0.1468048095703125 +20220913140000,vlinder10,294.73023986816406,0.259765625,-0.2288360595703125 +20220913140000,vlinder11,296.01148986816406,0.724609375,-0.8928985595703125 +20220913140000,vlinder12,296.01148986816406,0.724609375,-0.8928985595703125 +20220913140000,vlinder13,296.01148986816406,0.724609375,-0.8928985595703125 +20220913140000,vlinder14,295.95680236816406,0.435546875,-1.3157501220703125 +20220913140000,vlinder15,294.94313049316406,0.642578125,-0.0598907470703125 +20220913140000,vlinder16,295.95680236816406,0.435546875,-1.3157501220703125 +20220913140000,vlinder17,297.02711486816406,1.9189453125,0.1090545654296875 +20220913140000,vlinder18,297.12086486816406,1.9501953125,0.1617889404296875 +20220913140000,vlinder19,294.66773986816406,0.91015625,0.4108123779296875 +20220913140000,vlinder20,294.66773986816406,0.91015625,0.4108123779296875 +20220913140000,vlinder21,293.33961486816406,-2.58984375,-4.1360626220703125 +20220913140000,vlinder22,293.52906799316406,-1.3798828125,-2.5784454345703125 +20220913140000,vlinder23,294.51539611816406,-0.8076171875,-2.3577423095703125 +20220913140000,vlinder24,294.59156799316406,-0.7314453125,-1.9788360595703125 +20220913140000,vlinder25,294.83570861816406,-0.48046875,-1.6468048095703125 +20220913140000,vlinder26,296.76539611816406,1.4814453125,-0.5471954345703125 +20220913140000,vlinder27,294.83570861816406,-0.419921875,-1.2874298095703125 +20220913140000,vlinder28,294.93531799316406,-0.1220703125,-0.7317657470703125 +20220913150000,vlinder01,294.2227478027344,-0.9927978515625,-1.2781219482421875 +20220913150000,vlinder02,294.1289978027344,-1.0611572265625,-1.3513641357421875 +20220913150000,vlinder03,296.4336853027344,0.8402099609375,-0.9900360107421875 +20220913150000,vlinder04,296.4336853027344,0.8402099609375,-0.9900360107421875 +20220913150000,vlinder05,294.1485290527344,-1.1724853515625,-1.8621063232421875 +20220913150000,vlinder06,295.0313415527344,-0.0728759765625,-0.5681610107421875 +20220913150000,vlinder07,295.0313415527344,-0.0728759765625,-0.5681610107421875 +20220913150000,vlinder08,295.0313415527344,-0.0728759765625,-0.5681610107421875 +20220913150000,vlinder09,294.3594665527344,-0.7623291015625,-0.6238250732421875 +20220913150000,vlinder10,294.2891540527344,-0.8511962890625,-0.6931610107421875 +20220913150000,vlinder11,295.5411071777344,-0.1607666015625,-1.3269500732421875 +20220913150000,vlinder12,295.5411071777344,-0.1607666015625,-1.3269500732421875 +20220913150000,vlinder13,295.5411071777344,-0.1607666015625,-1.3269500732421875 +20220913150000,vlinder14,295.6524353027344,-0.3052978515625,-1.7790985107421875 +20220913150000,vlinder15,294.4336853027344,-0.6451416015625,-0.5349578857421875 +20220913150000,vlinder16,295.6524353027344,-0.3052978515625,-1.7790985107421875 +20220913150000,vlinder17,296.3965759277344,1.5833740234375,0.3332061767578125 +20220913150000,vlinder18,296.5157165527344,1.6126708984375,0.3703155517578125 +20220913150000,vlinder19,294.3379821777344,-0.3697509765625,0.0060577392578125 +20220913150000,vlinder20,294.3379821777344,-0.3697509765625,0.0060577392578125 +20220913150000,vlinder21,292.9297790527344,-3.4439697265625,-4.7058563232421875 +20220913150000,vlinder22,292.9825134277344,-1.8033447265625,-2.5232391357421875 +20220913150000,vlinder23,294.0196228027344,-1.4556884765625,-2.9929656982421875 +20220913150000,vlinder24,294.0625915527344,-1.4381103515625,-2.5740203857421875 +20220913150000,vlinder25,294.3106384277344,-1.1588134765625,-2.2458953857421875 +20220913150000,vlinder26,296.3243103027344,1.0130615234375,-0.5466766357421875 +20220913150000,vlinder27,294.1485290527344,-1.1724853515625,-1.8621063232421875 +20220913150000,vlinder28,294.2227478027344,-0.9927978515625,-1.2781219482421875 +20220913160000,vlinder01,293.7826232910156,-1.3231353759765625,-1.1046905517578125 +20220913160000,vlinder02,293.6830139160156,-1.3573150634765625,-1.2082061767578125 +20220913160000,vlinder03,295.7943420410156,0.1993255615234375,-1.3400421142578125 +20220913160000,vlinder04,295.7943420410156,0.1993255615234375,-1.3400421142578125 +20220913160000,vlinder05,293.4974670410156,-1.4286041259765625,-1.6642608642578125 +20220913160000,vlinder06,294.5228576660156,-0.6297760009765625,-0.3214874267578125 +20220913160000,vlinder07,294.5228576660156,-0.6297760009765625,-0.3214874267578125 +20220913160000,vlinder08,294.5228576660156,-0.6297760009765625,-0.3214874267578125 +20220913160000,vlinder09,294.0169982910156,-1.2030181884765625,-0.5480499267578125 +20220913160000,vlinder10,293.9252014160156,-1.2577056884765625,-0.6457061767578125 +20220913160000,vlinder11,294.8607482910156,-0.6756744384765625,-1.2638702392578125 +20220913160000,vlinder12,294.8607482910156,-0.6756744384765625,-1.2638702392578125 +20220913160000,vlinder13,294.8607482910156,-0.6756744384765625,-1.2638702392578125 +20220913160000,vlinder14,294.8334045410156,-0.7909088134765625,-1.8068389892578125 +20220913160000,vlinder15,294.1068420410156,-1.1200103759765625,-0.4425811767578125 +20220913160000,vlinder16,294.8334045410156,-0.7909088134765625,-1.8068389892578125 +20220913160000,vlinder17,295.6771545410156,0.8301849365234375,0.1980438232421875 +20220913160000,vlinder18,295.8119201660156,0.8526458740234375,0.2595672607421875 +20220913160000,vlinder19,294.1283264160156,-0.8954010009765625,-0.0109405517578125 +20220913160000,vlinder20,294.1283264160156,-0.8954010009765625,-0.0109405517578125 +20220913160000,vlinder21,292.5013732910156,-3.5311431884765625,-4.3585968017578125 +20220913160000,vlinder22,292.6146545410156,-1.9022369384765625,-2.5363311767578125 +20220913160000,vlinder23,293.2728576660156,-1.6268463134765625,-2.7580108642578125 +20220913160000,vlinder24,293.1673889160156,-1.6278228759765625,-2.3332061767578125 +20220913160000,vlinder25,293.5345764160156,-1.3612213134765625,-2.0421905517578125 +20220913160000,vlinder26,295.7142639160156,0.3545989990234375,-0.8078155517578125 +20220913160000,vlinder27,293.4974670410156,-1.4286041259765625,-1.6642608642578125 +20220913160000,vlinder28,293.7826232910156,-1.3231353759765625,-1.1046905517578125 +20220913170000,vlinder01,293.11708068847656,-1.141204833984375,-1.555694580078125 +20220913170000,vlinder02,293.01551818847656,-1.105072021484375,-1.648468017578125 +20220913170000,vlinder03,294.70887756347656,-0.346282958984375,-1.679718017578125 +20220913170000,vlinder04,294.70887756347656,-0.346282958984375,-1.679718017578125 +20220913170000,vlinder05,292.76747131347656,-1.226165771484375,-2.021514892578125 +20220913170000,vlinder06,293.93348693847656,-1.007415771484375,-0.633819580078125 +20220913170000,vlinder07,293.93348693847656,-1.007415771484375,-0.633819580078125 +20220913170000,vlinder08,293.93348693847656,-1.007415771484375,-0.633819580078125 +20220913170000,vlinder09,293.40614318847656,-1.332611083984375,-1.105499267578125 +20220913170000,vlinder10,293.30067443847656,-1.301361083984375,-1.200225830078125 +20220913170000,vlinder11,293.67958068847656,-0.906829833984375,-1.599639892578125 +20220913170000,vlinder12,293.67958068847656,-0.906829833984375,-1.599639892578125 +20220913170000,vlinder13,293.67958068847656,-0.906829833984375,-1.599639892578125 +20220913170000,vlinder14,293.81825256347656,-0.933197021484375,-2.170928955078125 +20220913170000,vlinder15,293.51161193847656,-1.332611083984375,-0.987335205078125 +20220913170000,vlinder16,293.81825256347656,-0.933197021484375,-2.170928955078125 +20220913170000,vlinder17,294.72450256347656,0.155670166015625,0.275360107421875 +20220913170000,vlinder18,294.95106506347656,0.198638916015625,0.334930419921875 +20220913170000,vlinder19,293.54872131347656,-1.378509521484375,-0.542022705078125 +20220913170000,vlinder20,293.54872131347656,-1.378509521484375,-0.542022705078125 +20220913170000,vlinder21,291.63075256347656,-3.384368896484375,-4.317413330078125 +20220913170000,vlinder22,292.13270568847656,-1.779876708984375,-2.721710205078125 +20220913170000,vlinder23,292.19325256347656,-1.507415771484375,-2.907257080078125 +20220913170000,vlinder24,292.38075256347656,-1.460540771484375,-2.564483642578125 +20220913170000,vlinder25,292.52919006347656,-1.203704833984375,-2.332061767578125 +20220913170000,vlinder26,294.75770568847656,-0.270111083984375,-1.025421142578125 +20220913170000,vlinder27,292.76747131347656,-1.226165771484375,-2.021514892578125 +20220913170000,vlinder28,293.11708068847656,-1.141204833984375,-1.555694580078125 +20220913180000,vlinder01,292.417724609375,-0.88970947265625,-1.9528656005859375 +20220913180000,vlinder02,292.306396484375,-0.88385009765625,-1.9987640380859375 +20220913180000,vlinder03,293.355224609375,-0.89361572265625,-1.9235687255859375 +20220913180000,vlinder04,293.355224609375,-0.89361572265625,-1.9235687255859375 +20220913180000,vlinder05,292.034912109375,-1.05865478515625,-2.2819671630859375 +20220913180000,vlinder06,293.234130859375,-0.90826416015625,-1.4831390380859375 +20220913180000,vlinder07,293.234130859375,-0.90826416015625,-1.4831390380859375 +20220913180000,vlinder08,293.234130859375,-0.90826416015625,-1.4831390380859375 +20220913180000,vlinder09,292.786865234375,-1.03717041015625,-1.4645843505859375 +20220913180000,vlinder10,292.667724609375,-1.02740478515625,-1.5036468505859375 +20220913180000,vlinder11,292.661865234375,-0.91900634765625,-2.0778656005859375 +20220913180000,vlinder12,292.661865234375,-0.91900634765625,-2.0778656005859375 +20220913180000,vlinder13,292.661865234375,-0.91900634765625,-2.0778656005859375 +20220913180000,vlinder14,292.421630859375,-0.95709228515625,-2.4177093505859375 +20220913180000,vlinder15,292.892333984375,-1.04302978515625,-1.4089202880859375 +20220913180000,vlinder16,292.421630859375,-0.95709228515625,-2.4177093505859375 +20220913180000,vlinder17,293.710693359375,-0.38873291015625,-0.0759124755859375 +20220913180000,vlinder18,293.736083984375,-0.28814697265625,0.0412750244140625 +20220913180000,vlinder19,292.937255859375,-1.21392822265625,-0.7526702880859375 +20220913180000,vlinder20,292.937255859375,-1.21392822265625,-0.7526702880859375 +20220913180000,vlinder21,291.226318359375,-3.48052978515625,-4.2360687255859375 +20220913180000,vlinder22,291.511474609375,-1.96295166015625,-2.6198577880859375 +20220913180000,vlinder23,291.329833984375,-1.49517822265625,-2.9098968505859375 +20220913180000,vlinder24,291.644287109375,-1.38385009765625,-2.6872406005859375 +20220913180000,vlinder25,291.718505859375,-1.11138916015625,-2.4802093505859375 +20220913180000,vlinder26,293.353271484375,-0.91314697265625,-1.4763031005859375 +20220913180000,vlinder27,292.034912109375,-1.05865478515625,-2.2819671630859375 +20220913180000,vlinder28,292.417724609375,-0.88970947265625,-1.9528656005859375 +20220913190000,vlinder01,291.2035217285156,-1.1581268310546875,-2.647918701171875 +20220913190000,vlinder02,291.0960998535156,-1.1942596435546875,-2.656707763671875 +20220913190000,vlinder03,291.5218811035156,-0.3466033935546875,-2.368621826171875 +20220913190000,vlinder04,291.5218811035156,-0.3466033935546875,-2.368621826171875 +20220913190000,vlinder05,290.9125061035156,-1.2382049560546875,-2.845184326171875 +20220913190000,vlinder06,292.1078186035156,-0.6864471435546875,-2.450653076171875 +20220913190000,vlinder07,292.1078186035156,-0.6864471435546875,-2.450653076171875 +20220913190000,vlinder08,292.1078186035156,-0.6864471435546875,-2.450653076171875 +20220913190000,vlinder09,291.7933654785156,-1.2616424560546875,-2.442840576171875 +20220913190000,vlinder10,291.6742248535156,-1.2977752685546875,-2.433074951171875 +20220913190000,vlinder11,291.3597717285156,-0.6923065185546875,-2.782684326171875 +20220913190000,vlinder12,291.3597717285156,-0.6923065185546875,-2.782684326171875 +20220913190000,vlinder13,291.3597717285156,-0.6923065185546875,-2.782684326171875 +20220913190000,vlinder14,290.9613342285156,-0.7596893310546875,-2.944793701171875 +20220913190000,vlinder15,291.9085998535156,-1.2059783935546875,-2.431121826171875 +20220913190000,vlinder16,290.9613342285156,-0.7596893310546875,-2.944793701171875 +20220913190000,vlinder17,292.8539123535156,0.2715606689453125,-1.757293701171875 +20220913190000,vlinder18,292.9847717285156,0.3946075439453125,-1.670379638671875 +20220913190000,vlinder19,292.2367248535156,-1.2635955810546875,-2.000457763671875 +20220913190000,vlinder20,292.2367248535156,-1.2635955810546875,-2.000457763671875 +20220913190000,vlinder21,290.4867248535156,-3.3876190185546875,-4.217254638671875 +20220913190000,vlinder22,290.5687561035156,-2.2928924560546875,-3.186004638671875 +20220913190000,vlinder23,290.4339904785156,-1.4335174560546875,-3.222137451171875 +20220913190000,vlinder24,290.6605529785156,-1.4374237060546875,-3.122528076171875 +20220913190000,vlinder25,290.6898498535156,-1.1913299560546875,-2.986785888671875 +20220913190000,vlinder26,292.0316467285156,-0.3202362060546875,-2.234832763671875 +20220913190000,vlinder27,290.9125061035156,-1.2382049560546875,-2.845184326171875 +20220913190000,vlinder28,291.2035217285156,-1.1581268310546875,-2.647918701171875 +20220913200000,vlinder01,290.4480895996094,-1.467559814453125,-3.326202392578125 +20220913200000,vlinder02,290.3484802246094,-1.516387939453125,-3.305694580078125 +20220913200000,vlinder03,290.6141052246094,-0.775177001953125,-2.859405517578125 +20220913200000,vlinder04,290.6141052246094,-0.775177001953125,-2.859405517578125 +20220913200000,vlinder05,290.2195739746094,-1.620880126953125,-3.452178955078125 +20220913200000,vlinder06,291.3035583496094,-1.016387939453125,-3.260772705078125 +20220913200000,vlinder07,291.3035583496094,-1.016387939453125,-3.260772705078125 +20220913200000,vlinder08,291.3035583496094,-1.016387939453125,-3.260772705078125 +20220913200000,vlinder09,291.0613708496094,-1.389434814453125,-3.212921142578125 +20220913200000,vlinder10,290.9500427246094,-1.434356689453125,-3.173858642578125 +20220913200000,vlinder11,290.5437927246094,-1.048614501953125,-3.371124267578125 +20220913200000,vlinder12,290.5437927246094,-1.048614501953125,-3.371124267578125 +20220913200000,vlinder13,290.5437927246094,-1.048614501953125,-3.371124267578125 +20220913200000,vlinder14,290.1609802246094,-1.103302001953125,-3.424835205078125 +20220913200000,vlinder15,291.1707458496094,-1.332794189453125,-3.222686767578125 +20220913200000,vlinder16,290.1609802246094,-1.103302001953125,-3.424835205078125 +20220913200000,vlinder17,291.9598083496094,-0.563262939453125,-2.456085205078125 +20220913200000,vlinder18,292.0945739746094,-0.511505126953125,-2.400421142578125 +20220913200000,vlinder19,291.5789489746094,-1.257598876953125,-2.833038330078125 +20220913200000,vlinder20,291.5789489746094,-1.257598876953125,-2.833038330078125 +20220913200000,vlinder21,290.1473083496094,-4.053497314453125,-4.996124267578125 +20220913200000,vlinder22,290.0769958496094,-2.693145751953125,-3.906280517578125 +20220913200000,vlinder23,289.8816833496094,-1.929473876953125,-3.703155517578125 +20220913200000,vlinder24,290.0652770996094,-1.897247314453125,-3.680694580078125 +20220913200000,vlinder25,290.0340270996094,-1.617950439453125,-3.519561767578125 +20220913200000,vlinder26,291.1375427246094,-0.775177001953125,-2.812530517578125 +20220913200000,vlinder27,290.2195739746094,-1.620880126953125,-3.452178955078125 +20220913200000,vlinder28,290.4480895996094,-1.467559814453125,-3.326202392578125 +20220913210000,vlinder01,289.78663635253906,-1.8564605712890625,-3.120697021484375 +20220913210000,vlinder02,289.70655822753906,-1.8994293212890625,-3.106048583984375 +20220913210000,vlinder03,289.83155822753906,-1.1211090087890625,-2.690032958984375 +20220913210000,vlinder04,289.83155822753906,-1.1211090087890625,-2.690032958984375 +20220913210000,vlinder05,289.63624572753906,-1.9873199462890625,-3.229095458984375 +20220913210000,vlinder06,290.51319885253906,-1.3691558837890625,-3.050384521484375 +20220913210000,vlinder07,290.51319885253906,-1.3691558837890625,-3.050384521484375 +20220913210000,vlinder08,290.51319885253906,-1.3691558837890625,-3.050384521484375 +20220913210000,vlinder09,290.33155822753906,-1.7705230712890625,-3.155853271484375 +20220913210000,vlinder10,290.24366760253906,-1.8154449462890625,-3.124603271484375 +20220913210000,vlinder11,289.87648010253906,-1.3320465087890625,-3.129486083984375 +20220913210000,vlinder12,289.87648010253906,-1.3320465087890625,-3.129486083984375 +20220913210000,vlinder13,289.87648010253906,-1.3320465087890625,-3.129486083984375 +20220913210000,vlinder14,289.56593322753906,-1.3554840087890625,-3.178314208984375 +20220913210000,vlinder15,290.41944885253906,-1.7109527587890625,-3.162689208984375 +20220913210000,vlinder16,289.56593322753906,-1.3554840087890625,-3.178314208984375 +20220913210000,vlinder17,291.08155822753906,-1.1074371337890625,-2.399993896484375 +20220913210000,vlinder18,291.21437072753906,-1.1045074462890625,-2.365814208984375 +20220913210000,vlinder19,290.86671447753906,-1.5966949462890625,-2.950775146484375 +20220913210000,vlinder20,290.86671447753906,-1.5966949462890625,-2.950775146484375 +20220913210000,vlinder21,289.82960510253906,-4.5254058837890625,-4.584564208984375 +20220913210000,vlinder22,289.62452697753906,-2.8593902587890625,-3.545501708984375 +20220913210000,vlinder23,289.42921447753906,-2.2334136962890625,-3.471282958984375 +20220913210000,vlinder24,289.55812072753906,-2.2607574462890625,-3.435150146484375 +20220913210000,vlinder25,289.50929260253906,-1.9287261962890625,-3.294525146484375 +20220913210000,vlinder26,290.31593322753906,-1.1494293212890625,-2.649993896484375 +20220913210000,vlinder27,289.63624572753906,-1.9873199462890625,-3.229095458984375 +20220913210000,vlinder28,289.78663635253906,-1.8564605712890625,-3.120697021484375 +20220913220000,vlinder01,289.32212829589844,-1.990447998046875,-2.0544891357421875 +20220913220000,vlinder02,289.24790954589844,-1.994354248046875,-2.0349578857421875 +20220913220000,vlinder03,289.23619079589844,-1.470916748046875,-2.2185516357421875 +20220913220000,vlinder04,289.23619079589844,-1.470916748046875,-2.2185516357421875 +20220913220000,vlinder05,289.20103454589844,-2.068572998046875,-2.3787078857421875 +20220913220000,vlinder06,289.96275329589844,-1.704315185546875,-2.1628875732421875 +20220913220000,vlinder07,289.96275329589844,-1.704315185546875,-2.1628875732421875 +20220913220000,vlinder08,289.96275329589844,-1.704315185546875,-2.1628875732421875 +20220913220000,vlinder09,289.81040954589844,-2.054901123046875,-2.2937469482421875 +20220913220000,vlinder10,289.73033142089844,-2.054901123046875,-2.2488250732421875 +20220913220000,vlinder11,289.40611267089844,-1.716033935546875,-2.5496063232421875 +20220913220000,vlinder12,289.40611267089844,-1.716033935546875,-2.5496063232421875 +20220913220000,vlinder13,289.40611267089844,-1.716033935546875,-2.5496063232421875 +20220913220000,vlinder14,289.14830017089844,-1.746307373046875,-2.7400360107421875 +20220913220000,vlinder15,289.88658142089844,-2.030487060546875,-2.3220672607421875 +20220913220000,vlinder16,289.14830017089844,-1.746307373046875,-2.7400360107421875 +20220913220000,vlinder17,290.34751892089844,-1.216033935546875,-1.9939422607421875 +20220913220000,vlinder18,290.48423767089844,-1.177947998046875,-1.9744110107421875 +20220913220000,vlinder19,290.29869079589844,-1.933807373046875,-2.3289031982421875 +20220913220000,vlinder20,290.29869079589844,-1.933807373046875,-2.3289031982421875 +20220913220000,vlinder21,289.33580017089844,-4.420135498046875,-3.9929656982421875 +20220913220000,vlinder22,289.24009704589844,-2.931854248046875,-2.5671844482421875 +20220913220000,vlinder23,289.05064392089844,-2.258026123046875,-3.1091766357421875 +20220913220000,vlinder24,289.14439392089844,-2.275604248046875,-2.8445281982421875 +20220913220000,vlinder25,289.11119079589844,-2.026580810546875,-2.7039031982421875 +20220913220000,vlinder26,289.68540954589844,-1.462127685546875,-2.1228485107421875 +20220913220000,vlinder27,289.20103454589844,-2.068572998046875,-2.3787078857421875 +20220913220000,vlinder28,289.32212829589844,-1.990447998046875,-2.0544891357421875 +20220913230000,vlinder01,289.0602569580078,-2.0522308349609375,-2.561065673828125 +20220913230000,vlinder02,288.9918975830078,-2.0746917724609375,-2.576690673828125 +20220913230000,vlinder03,288.7633819580078,-1.6176605224609375,-1.964385986328125 +20220913230000,vlinder04,288.7633819580078,-1.6176605224609375,-1.964385986328125 +20220913230000,vlinder05,288.9450225830078,-2.1782073974609375,-2.520050048828125 +20220913230000,vlinder06,289.6051788330078,-1.8022308349609375,-2.251495361328125 +20220913230000,vlinder07,289.6051788330078,-1.8022308349609375,-2.251495361328125 +20220913230000,vlinder08,289.6051788330078,-1.8022308349609375,-2.251495361328125 +20220913230000,vlinder09,289.5192413330078,-2.1723480224609375,-2.422393798828125 +20220913230000,vlinder10,289.4528350830078,-2.1909027099609375,-2.433135986328125 +20220913230000,vlinder11,289.0661163330078,-1.7768402099609375,-2.270050048828125 +20220913230000,vlinder12,289.0661163330078,-1.7768402099609375,-2.270050048828125 +20220913230000,vlinder13,289.0661163330078,-1.7768402099609375,-2.270050048828125 +20220913230000,vlinder14,288.8200225830078,-1.8071136474609375,-2.290557861328125 +20220913230000,vlinder15,289.5856475830078,-2.1440277099609375,-2.392120361328125 +20220913230000,vlinder16,288.8200225830078,-1.8071136474609375,-2.290557861328125 +20220913230000,vlinder17,289.7301788330078,-1.5366058349609375,-1.800323486328125 +20220913230000,vlinder18,289.8610382080078,-1.4907073974609375,-1.808135986328125 +20220913230000,vlinder19,289.9782257080078,-2.2358245849609375,-2.098175048828125 +20220913230000,vlinder20,289.9782257080078,-2.2358245849609375,-2.098175048828125 +20220913230000,vlinder21,289.0094757080078,-4.5912933349609375,-3.358917236328125 +20220913230000,vlinder22,288.9254913330078,-3.1586761474609375,-2.772979736328125 +20220913230000,vlinder23,288.7965850830078,-2.4672698974609375,-2.388214111328125 +20220913230000,vlinder24,288.8883819580078,-2.4526214599609375,-2.523956298828125 +20220913230000,vlinder25,288.8668975830078,-2.1694183349609375,-2.405792236328125 +20220913230000,vlinder26,289.1911163330078,-1.6616058349609375,-1.901885986328125 +20220913230000,vlinder27,288.9450225830078,-2.1782073974609375,-2.520050048828125 +20220913230000,vlinder28,289.0602569580078,-2.0522308349609375,-2.561065673828125 +20220914000000,vlinder01,288.85975646972656,-2.267852783203125,-2.34466552734375 +20220914000000,vlinder02,288.80897521972656,-2.261993408203125,-2.34368896484375 +20220914000000,vlinder03,288.33631896972656,-1.839141845703125,-1.97161865234375 +20220914000000,vlinder04,288.33631896972656,-1.839141845703125,-1.97161865234375 +20220914000000,vlinder05,288.66639709472656,-2.346954345703125,-2.43743896484375 +20220914000000,vlinder06,289.18983459472656,-2.024688720703125,-2.28997802734375 +20220914000000,vlinder07,289.18983459472656,-2.024688720703125,-2.28997802734375 +20220914000000,vlinder08,289.18983459472656,-2.024688720703125,-2.28997802734375 +20220914000000,vlinder09,289.17811584472656,-2.293243408203125,-2.34759521484375 +20220914000000,vlinder10,289.13905334472656,-2.296173095703125,-2.33392333984375 +20220914000000,vlinder11,288.70350646972656,-2.032501220703125,-2.43060302734375 +20220914000000,vlinder12,288.70350646972656,-2.032501220703125,-2.43060302734375 +20220914000000,vlinder13,288.70350646972656,-2.032501220703125,-2.43060302734375 +20220914000000,vlinder14,288.50624084472656,-2.062774658203125,-2.48626708984375 +20220914000000,vlinder15,289.22499084472656,-2.269805908203125,-2.34857177734375 +20220914000000,vlinder16,288.50624084472656,-2.062774658203125,-2.48626708984375 +20220914000000,vlinder17,289.17030334472656,-1.687774658203125,-1.89739990234375 +20220914000000,vlinder18,289.29335021972656,-1.668243408203125,-1.88372802734375 +20220914000000,vlinder19,289.60780334472656,-2.227813720703125,-2.17474365234375 +20220914000000,vlinder20,289.60780334472656,-2.227813720703125,-2.17474365234375 +20220914000000,vlinder21,288.92030334472656,-4.370391845703125,-3.19818115234375 +20220914000000,vlinder22,288.75819396972656,-3.011016845703125,-2.62493896484375 +20220914000000,vlinder23,288.54530334472656,-2.526641845703125,-2.58978271484375 +20220914000000,vlinder24,288.62928771972656,-2.522735595703125,-2.57708740234375 +20220914000000,vlinder25,288.59022521972656,-2.316680908203125,-2.52532958984375 +20220914000000,vlinder26,288.72499084472656,-1.859649658203125,-1.97747802734375 +20220914000000,vlinder27,288.66639709472656,-2.346954345703125,-2.43743896484375 +20220914000000,vlinder28,288.85975646972656,-2.267852783203125,-2.34466552734375 +20220914010000,vlinder01,288.57020568847656,-2.303436279296875,-2.30462646484375 +20220914010000,vlinder02,288.52333068847656,-2.277069091796875,-2.29486083984375 +20220914010000,vlinder03,287.99989318847656,-1.931365966796875,-1.96087646484375 +20220914010000,vlinder04,287.99989318847656,-1.931365966796875,-1.96087646484375 +20220914010000,vlinder05,288.38465881347656,-2.438201904296875,-2.21575927734375 +20220914010000,vlinder06,288.88270568847656,-2.240936279296875,-2.22552490234375 +20220914010000,vlinder07,288.88270568847656,-2.240936279296875,-2.22552490234375 +20220914010000,vlinder08,288.88270568847656,-2.240936279296875,-2.22552490234375 +20220914010000,vlinder09,288.83778381347656,-2.353240966796875,-2.27239990234375 +20220914010000,vlinder10,288.79481506347656,-2.324920654296875,-2.25970458984375 +20220914010000,vlinder11,288.39833068847656,-2.298553466796875,-2.24407958984375 +20220914010000,vlinder12,288.39833068847656,-2.298553466796875,-2.24407958984375 +20220914010000,vlinder13,288.39833068847656,-2.298553466796875,-2.24407958984375 +20220914010000,vlinder14,288.24012756347656,-2.358123779296875,-2.22943115234375 +20220914010000,vlinder15,288.87684631347656,-2.359100341796875,-2.27044677734375 +20220914010000,vlinder16,288.24012756347656,-2.358123779296875,-2.22943115234375 +20220914010000,vlinder17,288.75965881347656,-1.779022216796875,-1.73529052734375 +20220914010000,vlinder18,288.84364318847656,-1.728240966796875,-1.71478271484375 +20220914010000,vlinder19,289.24989318847656,-2.304412841796875,-2.11614990234375 +20220914010000,vlinder20,289.24989318847656,-2.304412841796875,-2.11614990234375 +20220914010000,vlinder21,288.80848693847656,-4.353240966796875,-2.52825927734375 +20220914010000,vlinder22,288.59950256347656,-2.838592529296875,-2.24407958984375 +20220914010000,vlinder23,288.33778381347656,-2.762420654296875,-2.00677490234375 +20220914010000,vlinder24,288.40419006347656,-2.697967529296875,-2.13861083984375 +20220914010000,vlinder25,288.34364318847656,-2.479217529296875,-2.11029052734375 +20220914010000,vlinder26,288.32020568847656,-1.966522216796875,-1.95208740234375 +20220914010000,vlinder27,288.38465881347656,-2.438201904296875,-2.21575927734375 +20220914010000,vlinder28,288.57020568847656,-2.303436279296875,-2.30462646484375 +20220914020000,vlinder01,288.1450653076172,-2.28515625,-1.82305908203125 +20220914020000,vlinder02,288.0962371826172,-2.2529296875,-1.83575439453125 +20220914020000,vlinder03,287.6899871826172,-2.08203125,-1.62969970703125 +20220914020000,vlinder04,287.6899871826172,-2.08203125,-1.62969970703125 +20220914020000,vlinder05,288.1255340576172,-2.3603515625,-1.83380126953125 +20220914020000,vlinder06,288.4185028076172,-2.3037109375,-1.75958251953125 +20220914020000,vlinder07,288.4185028076172,-2.3037109375,-1.75958251953125 +20220914020000,vlinder08,288.4185028076172,-2.3037109375,-1.75958251953125 +20220914020000,vlinder09,288.5220184326172,-2.3369140625,-1.88067626953125 +20220914020000,vlinder10,288.4849090576172,-2.298828125,-1.88262939453125 +20220914020000,vlinder11,288.1001434326172,-2.296875,-1.84747314453125 +20220914020000,vlinder12,288.1001434326172,-2.296875,-1.84747314453125 +20220914020000,vlinder13,288.1001434326172,-2.296875,-1.84747314453125 +20220914020000,vlinder14,287.9790496826172,-2.2978515625,-1.88946533203125 +20220914020000,vlinder15,288.5552215576172,-2.353515625,-1.87481689453125 +20220914020000,vlinder16,287.9790496826172,-2.2978515625,-1.88946533203125 +20220914020000,vlinder17,288.3931121826172,-1.69921875,-1.60040283203125 +20220914020000,vlinder18,288.4849090576172,-1.6259765625,-1.58868408203125 +20220914020000,vlinder19,288.8892059326172,-2.283203125,-1.84747314453125 +20220914020000,vlinder20,288.8892059326172,-2.283203125,-1.84747314453125 +20220914020000,vlinder21,288.6255340576172,-4.08984375,-2.12481689453125 +20220914020000,vlinder22,288.4477996826172,-2.708984375,-2.12384033203125 +20220914020000,vlinder23,288.1294403076172,-2.591796875,-1.83770751953125 +20220914020000,vlinder24,288.1704559326172,-2.564453125,-1.85333251953125 +20220914020000,vlinder25,288.1118621826172,-2.345703125,-1.85919189453125 +20220914020000,vlinder26,287.9712371826172,-2.0771484375,-1.64825439453125 +20220914020000,vlinder27,288.1255340576172,-2.3603515625,-1.83380126953125 +20220914020000,vlinder28,288.1450653076172,-2.28515625,-1.82305908203125 +20220914030000,vlinder01,287.9630432128906,-2.31097412109375,-1.8447723388671875 +20220914030000,vlinder02,287.9317932128906,-2.31195068359375,-1.8555145263671875 +20220914030000,vlinder03,287.4591369628906,-1.89007568359375,-1.5898895263671875 +20220914030000,vlinder04,287.4591369628906,-1.89007568359375,-1.5898895263671875 +20220914030000,vlinder05,287.9767150878906,-2.38714599609375,-1.8418426513671875 +20220914030000,vlinder06,288.1466369628906,-2.07171630859375,-1.7080535888671875 +20220914030000,vlinder07,288.1466369628906,-2.07171630859375,-1.7080535888671875 +20220914030000,vlinder08,288.1466369628906,-2.07171630859375,-1.7080535888671875 +20220914030000,vlinder09,288.2735900878906,-2.25726318359375,-1.8691864013671875 +20220914030000,vlinder10,288.2501525878906,-2.26995849609375,-1.8701629638671875 +20220914030000,vlinder11,287.8907775878906,-2.08538818359375,-1.7393035888671875 +20220914030000,vlinder12,287.8907775878906,-2.08538818359375,-1.7393035888671875 +20220914030000,vlinder13,287.8907775878906,-2.08538818359375,-1.7393035888671875 +20220914030000,vlinder14,287.8048400878906,-2.11956787109375,-1.7627410888671875 +20220914030000,vlinder15,288.2931213378906,-2.23089599609375,-1.8564910888671875 +20220914030000,vlinder16,287.8048400878906,-2.11956787109375,-1.7627410888671875 +20220914030000,vlinder17,288.1466369628906,-1.68304443359375,-1.5674285888671875 +20220914030000,vlinder18,288.2501525878906,-1.62738037109375,-1.5840301513671875 +20220914030000,vlinder19,288.5821838378906,-2.14984130859375,-1.7832489013671875 +20220914030000,vlinder20,288.5821838378906,-2.14984130859375,-1.7832489013671875 +20220914030000,vlinder21,288.5548400878906,-4.13323974609375,-2.4385223388671875 +20220914030000,vlinder22,288.3810119628906,-2.74652099609375,-2.1387176513671875 +20220914030000,vlinder23,288.0294494628906,-2.54827880859375,-1.8271942138671875 +20220914030000,vlinder24,288.0528869628906,-2.55511474609375,-1.8730926513671875 +20220914030000,vlinder25,287.9903869628906,-2.33636474609375,-1.8193817138671875 +20220914030000,vlinder26,287.7071838378906,-1.90570068359375,-1.5771942138671875 +20220914030000,vlinder27,287.9767150878906,-2.38714599609375,-1.8418426513671875 +20220914030000,vlinder28,287.9630432128906,-2.31097412109375,-1.8447723388671875 +20220914040000,vlinder01,287.7644348144531,-2.1221466064453125,-2.153900146484375 +20220914040000,vlinder02,287.7449035644531,-2.1035919189453125,-2.157806396484375 +20220914040000,vlinder03,287.3015441894531,-1.7617950439453125,-1.804290771484375 +20220914040000,vlinder04,287.3015441894531,-1.7617950439453125,-1.804290771484375 +20220914040000,vlinder05,287.8054504394531,-2.1699981689453125,-2.154876708984375 +20220914040000,vlinder06,287.8620910644531,-1.9239044189453125,-2.044525146484375 +20220914040000,vlinder07,287.8620910644531,-1.9239044189453125,-2.044525146484375 +20220914040000,vlinder08,287.8620910644531,-1.9239044189453125,-2.044525146484375 +20220914040000,vlinder09,288.0281066894531,-2.0967559814453125,-2.068939208984375 +20220914040000,vlinder10,288.0163879394531,-2.0801544189453125,-2.058197021484375 +20220914040000,vlinder11,287.6882629394531,-1.9268341064453125,-2.049407958984375 +20220914040000,vlinder12,287.6882629394531,-1.9268341064453125,-2.049407958984375 +20220914040000,vlinder13,287.6882629394531,-1.9268341064453125,-2.049407958984375 +20220914040000,vlinder14,287.6511535644531,-1.9522247314453125,-2.049407958984375 +20220914040000,vlinder15,288.0339660644531,-2.0869903564453125,-2.065032958984375 +20220914040000,vlinder16,287.6511535644531,-1.9522247314453125,-2.049407958984375 +20220914040000,vlinder17,287.8835754394531,-1.5791778564453125,-1.720306396484375 +20220914040000,vlinder18,287.9851379394531,-1.5332794189453125,-1.720306396484375 +20220914040000,vlinder19,288.2761535644531,-1.9512481689453125,-1.899993896484375 +20220914040000,vlinder20,288.2761535644531,-1.9512481689453125,-1.899993896484375 +20220914040000,vlinder21,288.4792785644531,-4.1563262939453125,-2.620697021484375 +20220914040000,vlinder22,288.0886535644531,-2.5576934814453125,-2.481048583984375 +20220914040000,vlinder23,287.9031066894531,-2.3262481689453125,-2.131439208984375 +20220914040000,vlinder24,287.9089660644531,-2.3555450439453125,-2.188079833984375 +20220914040000,vlinder25,287.8386535644531,-2.0782012939453125,-2.133392333984375 +20220914040000,vlinder26,287.4968566894531,-1.7617950439453125,-1.811126708984375 +20220914040000,vlinder27,287.8054504394531,-2.1699981689453125,-2.154876708984375 +20220914040000,vlinder28,287.7644348144531,-2.1221466064453125,-2.153900146484375 +20220914050000,vlinder01,287.58555603027344,-1.8004608154296875,-2.3454437255859375 +20220914050000,vlinder02,287.57188415527344,-1.7750701904296875,-2.3708343505859375 +20220914050000,vlinder03,287.21250915527344,-1.7350311279296875,-2.1042327880859375 +20220914050000,vlinder04,287.21250915527344,-1.7350311279296875,-2.1042327880859375 +20220914050000,vlinder05,287.64024353027344,-1.9039764404296875,-2.3776702880859375 +20220914050000,vlinder06,287.64219665527344,-1.7897186279296875,-2.0573577880859375 +20220914050000,vlinder07,287.64219665527344,-1.7897186279296875,-2.0573577880859375 +20220914050000,vlinder08,287.64219665527344,-1.7897186279296875,-2.0573577880859375 +20220914050000,vlinder09,287.81797790527344,-1.8414764404296875,-2.1364593505859375 +20220914050000,vlinder10,287.81407165527344,-1.8053436279296875,-2.1569671630859375 +20220914050000,vlinder11,287.54063415527344,-1.6559295654296875,-2.2888031005859375 +20220914050000,vlinder12,287.54063415527344,-1.6559295654296875,-2.2888031005859375 +20220914050000,vlinder13,287.54063415527344,-1.6559295654296875,-2.2888031005859375 +20220914050000,vlinder14,287.54063415527344,-1.6041717529296875,-2.3815765380859375 +20220914050000,vlinder15,287.81797790527344,-1.8551483154296875,-2.1042327880859375 +20220914050000,vlinder16,287.54063415527344,-1.6041717529296875,-2.3815765380859375 +20220914050000,vlinder17,287.67539978027344,-1.6363983154296875,-1.8923187255859375 +20220914050000,vlinder18,287.77696228027344,-1.5983123779296875,-1.8864593505859375 +20220914050000,vlinder19,288.03477478027344,-1.7487030029296875,-1.8473968505859375 +20220914050000,vlinder20,288.03477478027344,-1.7487030029296875,-1.8473968505859375 +20220914050000,vlinder21,288.36289978027344,-4.3209686279296875,-2.6384124755859375 +20220914050000,vlinder22,287.99375915527344,-2.4947967529296875,-2.5104827880859375 +20220914050000,vlinder23,287.75743103027344,-2.2096405029296875,-2.3473968505859375 +20220914050000,vlinder24,287.75547790527344,-2.1979217529296875,-2.4050140380859375 +20220914050000,vlinder25,287.68321228027344,-1.8531951904296875,-2.3825531005859375 +20220914050000,vlinder26,287.36485290527344,-1.7672576904296875,-2.0407562255859375 +20220914050000,vlinder27,287.64024353027344,-1.9039764404296875,-2.3776702880859375 +20220914050000,vlinder28,287.58555603027344,-1.8004608154296875,-2.3454437255859375 +20220914060000,vlinder01,287.47068786621094,-1.8579864501953125,-2.4034881591796875 +20220914060000,vlinder02,287.44920349121094,-1.8716583251953125,-2.4405975341796875 +20220914060000,vlinder03,287.14256286621094,-1.6118927001953125,-1.9767303466796875 +20220914060000,vlinder04,287.14256286621094,-1.6118927001953125,-1.9767303466796875 +20220914060000,vlinder05,287.53514099121094,-1.9575958251953125,-2.3995819091796875 +20220914060000,vlinder06,287.50389099121094,-1.6402130126953125,-1.9728240966796875 +20220914060000,vlinder07,287.50389099121094,-1.6402130126953125,-1.9728240966796875 +20220914060000,vlinder08,287.50389099121094,-1.6402130126953125,-1.9728240966796875 +20220914060000,vlinder09,287.68162536621094,-1.7574005126953125,-2.1730194091796875 +20220914060000,vlinder10,287.67185974121094,-1.7583770751953125,-2.2111053466796875 +20220914060000,vlinder11,287.46092224121094,-1.5259552001953125,-2.1779022216796875 +20220914060000,vlinder12,287.46092224121094,-1.5259552001953125,-2.1779022216796875 +20220914060000,vlinder13,287.46092224121094,-1.5259552001953125,-2.1779022216796875 +20220914060000,vlinder14,287.48826599121094,-1.4898223876953125,-2.2745819091796875 +20220914060000,vlinder15,287.68162536621094,-1.7388458251953125,-2.1202850341796875 +20220914060000,vlinder16,287.48826599121094,-1.4898223876953125,-2.2745819091796875 +20220914060000,vlinder17,287.50779724121094,-1.5855255126953125,-1.7452850341796875 +20220914060000,vlinder18,287.60350036621094,-1.5406036376953125,-1.7423553466796875 +20220914060000,vlinder19,287.83982849121094,-1.5816192626953125,-1.8751678466796875 +20220914060000,vlinder20,287.83982849121094,-1.5816192626953125,-1.8751678466796875 +20220914060000,vlinder21,288.25389099121094,-4.3404083251953125,-2.6476287841796875 +20220914060000,vlinder22,287.85935974121094,-2.7505645751953125,-2.6671600341796875 +20220914060000,vlinder23,287.67185974121094,-2.1958770751953125,-2.2882537841796875 +20220914060000,vlinder24,287.65818786621094,-2.2212677001953125,-2.3898162841796875 +20220914060000,vlinder25,287.59178161621094,-1.8833770751953125,-2.3419647216796875 +20220914060000,vlinder26,287.25584411621094,-1.6490020751953125,-1.8898162841796875 +20220914060000,vlinder27,287.53514099121094,-1.9575958251953125,-2.3995819091796875 +20220914060000,vlinder28,287.47068786621094,-1.8579864501953125,-2.4034881591796875 +20220914070000,vlinder01,288.8878479003906,-1.3397674560546875,-1.4515533447265625 +20220914070000,vlinder02,288.8448791503906,-1.3085174560546875,-1.4417877197265625 +20220914070000,vlinder03,287.9015197753906,-1.3016815185546875,-1.9007720947265625 +20220914070000,vlinder04,287.9015197753906,-1.3016815185546875,-1.9007720947265625 +20220914070000,vlinder05,288.5831604003906,-1.4667205810546875,-1.6771392822265625 +20220914070000,vlinder06,289.1124572753906,-1.1346893310546875,-1.5316314697265625 +20220914070000,vlinder07,289.1124572753906,-1.1346893310546875,-1.5316314697265625 +20220914070000,vlinder08,289.1124572753906,-1.1346893310546875,-1.5316314697265625 +20220914070000,vlinder09,289.1515197753906,-1.6102752685546875,-1.1410064697265625 +20220914070000,vlinder10,289.1124572753906,-1.6053924560546875,-1.1058502197265625 +20220914070000,vlinder11,288.3175354003906,-1.3046112060546875,-1.9369049072265625 +20220914070000,vlinder12,288.3175354003906,-1.3046112060546875,-1.9369049072265625 +20220914070000,vlinder13,288.3175354003906,-1.3046112060546875,-1.9369049072265625 +20220914070000,vlinder14,287.9601135253906,-1.4286346435546875,-2.1302642822265625 +20220914070000,vlinder15,289.1788635253906,-1.5936737060546875,-1.1634674072265625 +20220914070000,vlinder16,287.9601135253906,-1.4286346435546875,-2.1302642822265625 +20220914070000,vlinder17,288.4776916503906,-1.3866424560546875,-1.7279205322265625 +20220914070000,vlinder18,288.5206604003906,-1.4325408935546875,-1.7601470947265625 +20220914070000,vlinder19,289.2550354003906,-1.6844940185546875,-0.8275299072265625 +20220914070000,vlinder20,289.2550354003906,-1.6844940185546875,-0.8275299072265625 +20220914070000,vlinder21,288.4581604003906,-3.1278533935546875,-2.4535064697265625 +20220914070000,vlinder22,288.5929260253906,-1.5233612060546875,-1.5619049072265625 +20220914070000,vlinder23,287.9757385253906,-1.7987518310546875,-2.1898345947265625 +20220914070000,vlinder24,288.2862854003906,-1.7001190185546875,-1.9681549072265625 +20220914070000,vlinder25,288.2413635253906,-1.5106658935546875,-1.8753814697265625 +20220914070000,vlinder26,288.2726135253906,-1.1962127685546875,-1.7806549072265625 +20220914070000,vlinder27,288.5831604003906,-1.4667205810546875,-1.6771392822265625 +20220914070000,vlinder28,288.8878479003906,-1.3397674560546875,-1.4515533447265625 +20220914080000,vlinder01,289.27685546875,-1.1684112548828125,-2.2647857666015625 +20220914080000,vlinder02,289.21435546875,-1.1420440673828125,-2.2696685791015625 +20220914080000,vlinder03,288.22802734375,-1.1928253173828125,-2.5684967041015625 +20220914080000,vlinder04,288.22802734375,-1.1928253173828125,-2.5684967041015625 +20220914080000,vlinder05,288.88232421875,-1.5033721923828125,-2.5977935791015625 +20220914080000,vlinder06,289.59521484375,-1.0492706298828125,-2.1114654541015625 +20220914080000,vlinder07,289.59521484375,-1.0492706298828125,-2.1114654541015625 +20220914080000,vlinder08,289.59521484375,-1.0492706298828125,-2.1114654541015625 +20220914080000,vlinder09,289.62451171875,-1.4272003173828125,-1.9952545166015625 +20220914080000,vlinder10,289.56591796875,-1.4164581298828125,-1.9874420166015625 +20220914080000,vlinder11,288.64599609375,-1.2426300048828125,-2.8409576416015625 +20220914080000,vlinder12,288.64599609375,-1.2426300048828125,-2.8409576416015625 +20220914080000,vlinder13,288.64599609375,-1.2426300048828125,-2.8409576416015625 +20220914080000,vlinder14,288.20458984375,-1.3695831298828125,-3.1475982666015625 +20220914080000,vlinder15,289.66943359375,-1.4213409423828125,-1.9854888916015625 +20220914080000,vlinder16,288.20458984375,-1.3695831298828125,-3.1475982666015625 +20220914080000,vlinder17,288.76904296875,-1.2289581298828125,-1.9220123291015625 +20220914080000,vlinder18,288.77685546875,-1.2240753173828125,-1.9161529541015625 +20220914080000,vlinder19,289.86083984375,-1.5785675048828125,-1.6124420166015625 +20220914080000,vlinder20,289.86083984375,-1.5785675048828125,-1.6124420166015625 +20220914080000,vlinder21,288.67529296875,-4.0648956298828125,-3.6954498291015625 +20220914080000,vlinder22,288.97216796875,-1.6322784423828125,-2.7374420166015625 +20220914080000,vlinder23,288.14599609375,-2.2670440673828125,-3.2061920166015625 +20220914080000,vlinder24,288.56982421875,-2.0238800048828125,-2.9835357666015625 +20220914080000,vlinder25,288.49365234375,-1.7104034423828125,-2.9044342041015625 +20220914080000,vlinder26,288.63427734375,-1.1840362548828125,-2.3184967041015625 +20220914080000,vlinder27,288.88232421875,-1.5033721923828125,-2.5977935791015625 +20220914080000,vlinder28,289.27685546875,-1.1684112548828125,-2.2647857666015625 +20220914090000,vlinder01,289.01805114746094,-1.2286834716796875,-2.5623779296875 +20220914090000,vlinder02,288.96531677246094,-1.2316131591796875,-2.4871826171875 +20220914090000,vlinder03,288.37351989746094,-1.2140350341796875,-2.4715576171875 +20220914090000,vlinder04,288.37351989746094,-1.2140350341796875,-2.4715576171875 +20220914090000,vlinder05,288.69773864746094,-1.6554412841796875,-2.4246826171875 +20220914090000,vlinder06,289.38328552246094,-1.0792694091796875,-2.9598388671875 +20220914090000,vlinder07,289.38328552246094,-1.0792694091796875,-2.9598388671875 +20220914090000,vlinder08,289.38328552246094,-1.0792694091796875,-2.9598388671875 +20220914090000,vlinder09,289.44578552246094,-1.1915740966796875,-2.9256591796875 +20220914090000,vlinder10,289.39891052246094,-1.1827850341796875,-2.8221435546875 +20220914090000,vlinder11,288.58641052246094,-1.5148162841796875,-2.8065185546875 +20220914090000,vlinder12,288.58641052246094,-1.5148162841796875,-2.8065185546875 +20220914090000,vlinder13,288.58641052246094,-1.5148162841796875,-2.8065185546875 +20220914090000,vlinder14,288.21531677246094,-1.7423553466796875,-2.6619873046875 +20220914090000,vlinder15,289.49070739746094,-1.1818084716796875,-3.0028076171875 +20220914090000,vlinder16,288.21531677246094,-1.7423553466796875,-2.6619873046875 +20220914090000,vlinder17,289.20945739746094,-1.1769256591796875,-2.5858154296875 +20220914090000,vlinder18,289.21922302246094,-1.1251678466796875,-2.6151123046875 +20220914090000,vlinder19,289.82078552246094,-1.1271209716796875,-2.9881591796875 +20220914090000,vlinder20,289.82078552246094,-1.1271209716796875,-2.9881591796875 +20220914090000,vlinder21,288.61766052246094,-5.0060272216796875,-2.0809326171875 +20220914090000,vlinder22,288.77781677246094,-2.3986053466796875,-2.4813232421875 +20220914090000,vlinder23,288.01805114746094,-2.5802459716796875,-2.2156982421875 +20220914090000,vlinder24,288.35398864746094,-2.2648162841796875,-2.3299560546875 +20220914090000,vlinder25,288.35984802246094,-1.9581756591796875,-2.3914794921875 +20220914090000,vlinder26,288.76805114746094,-1.1700897216796875,-2.5926513671875 +20220914090000,vlinder27,288.69773864746094,-1.6554412841796875,-2.4246826171875 +20220914090000,vlinder28,289.01805114746094,-1.2286834716796875,-2.5623779296875 +20220914100000,vlinder01,288.7667541503906,-1.5292816162109375,-3.1111297607421875 +20220914100000,vlinder02,288.6925354003906,-1.5341644287109375,-3.0124969482421875 +20220914100000,vlinder03,288.7726135253906,-1.2724456787109375,-2.2839813232421875 +20220914100000,vlinder04,288.7726135253906,-1.2724456787109375,-2.2839813232421875 +20220914100000,vlinder05,288.3976135253906,-1.7480316162109375,-2.5876922607421875 +20220914100000,vlinder06,289.3819885253906,-1.5644378662109375,-3.5486297607421875 +20220914100000,vlinder07,289.3819885253906,-1.5644378662109375,-3.5486297607421875 +20220914100000,vlinder08,289.3819885253906,-1.5644378662109375,-3.5486297607421875 +20220914100000,vlinder09,289.2452697753906,-1.5546722412109375,-3.3035125732421875 +20220914100000,vlinder10,289.1612854003906,-1.5273284912109375,-3.1824188232421875 +20220914100000,vlinder11,288.6105041503906,-1.5312347412109375,-2.6833953857421875 +20220914100000,vlinder12,288.6105041503906,-1.5312347412109375,-2.6833953857421875 +20220914100000,vlinder13,288.6105041503906,-1.5312347412109375,-2.6833953857421875 +20220914100000,vlinder14,288.3702697753906,-1.5390472412109375,-2.2087860107421875 +20220914100000,vlinder15,289.3253479003906,-1.5702972412109375,-3.3914031982421875 +20220914100000,vlinder16,288.3702697753906,-1.5390472412109375,-2.2087860107421875 +20220914100000,vlinder17,289.2120666503906,-1.4374847412109375,-2.7996063232421875 +20220914100000,vlinder18,289.1866760253906,-1.3720550537109375,-2.8425750732421875 +20220914100000,vlinder19,289.5909729003906,-1.5595550537109375,-3.1824188232421875 +20220914100000,vlinder20,289.5909729003906,-1.5595550537109375,-3.1824188232421875 +20220914100000,vlinder21,288.5812072753906,-4.6962738037109375,-1.1599578857421875 +20220914100000,vlinder22,288.6222229003906,-2.7890472412109375,-2.4070281982421875 +20220914100000,vlinder23,287.9933166503906,-2.2822113037109375,-1.5789031982421875 +20220914100000,vlinder24,288.2237854003906,-2.1533050537109375,-2.0535125732421875 +20220914100000,vlinder25,288.1632385253906,-1.8535003662109375,-2.1472625732421875 +20220914100000,vlinder26,289.0948791503906,-1.3837738037109375,-2.6013641357421875 +20220914100000,vlinder27,288.3976135253906,-1.7480316162109375,-2.5876922607421875 +20220914100000,vlinder28,288.7667541503906,-1.5292816162109375,-3.1111297607421875 +20220914110000,vlinder01,288.90357971191406,-1.919342041015625,-2.473541259765625 +20220914110000,vlinder02,288.75514221191406,-1.984771728515625,-2.393463134765625 +20220914110000,vlinder03,288.85475158691406,-0.989654541015625,-1.776275634765625 +20220914110000,vlinder04,288.85475158691406,-0.989654541015625,-1.776275634765625 +20220914110000,vlinder05,288.62428283691406,-2.137115478515625,-2.063385009765625 +20220914110000,vlinder06,289.56373596191406,-1.784576416015625,-2.843658447265625 +20220914110000,vlinder07,289.56373596191406,-1.784576416015625,-2.843658447265625 +20220914110000,vlinder08,289.56373596191406,-1.784576416015625,-2.843658447265625 +20220914110000,vlinder09,289.23951721191406,-1.840240478515625,-2.848541259765625 +20220914110000,vlinder10,289.08131408691406,-1.891998291015625,-2.755767822265625 +20220914110000,vlinder11,288.75904846191406,-1.606842041015625,-2.171783447265625 +20220914110000,vlinder12,288.75904846191406,-1.606842041015625,-2.171783447265625 +20220914110000,vlinder13,288.75904846191406,-1.606842041015625,-2.171783447265625 +20220914110000,vlinder14,288.45240783691406,-1.507232666015625,-1.810455322265625 +20220914110000,vlinder15,289.39967346191406,-1.808990478515625,-2.917877197265625 +20220914110000,vlinder16,288.45240783691406,-1.507232666015625,-1.810455322265625 +20220914110000,vlinder17,289.03639221191406,-1.633209228515625,-2.335845947265625 +20220914110000,vlinder18,289.00318908691406,-1.593170166015625,-2.386627197265625 +20220914110000,vlinder19,289.57350158691406,-2.039459228515625,-3.000885009765625 +20220914110000,vlinder20,289.57350158691406,-2.039459228515625,-3.000885009765625 +20220914110000,vlinder21,288.62232971191406,-3.985748291015625,-1.053619384765625 +20220914110000,vlinder22,288.97584533691406,-2.889068603515625,-2.356353759765625 +20220914110000,vlinder23,288.33131408691406,-2.515045166015625,-1.306549072265625 +20220914110000,vlinder24,288.52467346191406,-2.453521728515625,-1.664947509765625 +20220914110000,vlinder25,288.47584533691406,-2.243560791015625,-1.720611572265625 +20220914110000,vlinder26,289.15553283691406,-1.243560791015625,-2.038970947265625 +20220914110000,vlinder27,288.62428283691406,-2.137115478515625,-2.063385009765625 +20220914110000,vlinder28,288.90357971191406,-1.919342041015625,-2.473541259765625 +20220914120000,vlinder01,288.52447509765625,-2.34844970703125,-1.55804443359375 +20220914120000,vlinder02,288.48150634765625,-2.38360595703125,-1.53656005859375 +20220914120000,vlinder03,288.60455322265625,-1.12384033203125,-1.53558349609375 +20220914120000,vlinder04,288.60455322265625,-1.12384033203125,-1.53558349609375 +20220914120000,vlinder05,288.36041259765625,-2.24298095703125,-1.53363037109375 +20220914120000,vlinder06,289.33306884765625,-1.84259033203125,-1.63128662109375 +20220914120000,vlinder07,289.33306884765625,-1.84259033203125,-1.63128662109375 +20220914120000,vlinder08,289.33306884765625,-1.84259033203125,-1.63128662109375 +20220914120000,vlinder09,288.93072509765625,-2.38165283203125,-2.00628662109375 +20220914120000,vlinder10,288.73345947265625,-2.44122314453125,-1.99456787109375 +20220914120000,vlinder11,288.54986572265625,-1.44903564453125,-1.67327880859375 +20220914120000,vlinder12,288.54986572265625,-1.44903564453125,-1.67327880859375 +20220914120000,vlinder13,288.54986572265625,-1.44903564453125,-1.67327880859375 +20220914120000,vlinder14,288.29791259765625,-1.28790283203125,-1.66644287109375 +20220914120000,vlinder15,289.12408447265625,-2.31231689453125,-2.01605224609375 +20220914120000,vlinder16,288.29791259765625,-1.28790283203125,-1.66644287109375 +20220914120000,vlinder17,288.84869384765625,-1.53887939453125,-1.85687255859375 +20220914120000,vlinder18,288.85845947265625,-1.48028564453125,-1.93988037109375 +20220914120000,vlinder19,289.30572509765625,-2.36016845703125,-2.51702880859375 +20220914120000,vlinder20,289.30572509765625,-2.36016845703125,-2.51702880859375 +20220914120000,vlinder21,288.41119384765625,-3.36505126953125,-1.49066162109375 +20220914120000,vlinder22,288.75689697265625,-2.71759033203125,-1.75335693359375 +20220914120000,vlinder23,288.09283447265625,-1.96270751953125,-1.48675537109375 +20220914120000,vlinder24,288.26275634765625,-2.18731689453125,-1.53656005859375 +20220914120000,vlinder25,288.22564697265625,-1.99200439453125,-1.54827880859375 +20220914120000,vlinder26,288.91900634765625,-1.39337158203125,-1.57269287109375 +20220914120000,vlinder27,288.36041259765625,-2.24298095703125,-1.53363037109375 +20220914120000,vlinder28,288.52447509765625,-2.34844970703125,-1.55804443359375 +20220914130000,vlinder01,288.27394104003906,-1.3117218017578125,-1.5659027099609375 +20220914130000,vlinder02,288.25050354003906,-1.3546905517578125,-1.5522308349609375 +20220914130000,vlinder03,288.42433166503906,-0.8468780517578125,-1.7817230224609375 +20220914130000,vlinder04,288.42433166503906,-0.8468780517578125,-1.7817230224609375 +20220914130000,vlinder05,288.19386291503906,-1.3986358642578125,-1.4965667724609375 +20220914130000,vlinder06,288.83448791503906,-1.2667999267578125,-1.5912933349609375 +20220914130000,vlinder07,288.83448791503906,-1.2667999267578125,-1.5912933349609375 +20220914130000,vlinder08,288.83448791503906,-1.2667999267578125,-1.5912933349609375 +20220914130000,vlinder09,288.42042541503906,-1.5343780517578125,-1.5063323974609375 +20220914130000,vlinder10,288.39112854003906,-1.5509796142578125,-1.5053558349609375 +20220914130000,vlinder11,288.28565979003906,-1.1750030517578125,-1.7973480224609375 +20220914130000,vlinder12,288.28565979003906,-1.1750030517578125,-1.7973480224609375 +20220914130000,vlinder13,288.28565979003906,-1.1750030517578125,-1.7973480224609375 +20220914130000,vlinder14,288.19972229003906,-1.1183624267578125,-1.8852386474609375 +20220914130000,vlinder15,288.49269104003906,-1.5255889892578125,-1.5082855224609375 +20220914130000,vlinder16,288.19972229003906,-1.1183624267578125,-1.8852386474609375 +20220914130000,vlinder17,288.40284729003906,-0.6994171142578125,-1.8100433349609375 +20220914130000,vlinder18,288.43019104003906,-0.6496124267578125,-1.8627777099609375 +20220914130000,vlinder19,288.79542541503906,-1.8380889892578125,-1.5815277099609375 +20220914130000,vlinder20,288.79542541503906,-1.8380889892578125,-1.5815277099609375 +20220914130000,vlinder21,288.46339416503906,-2.9787139892578125,-1.1030120849609375 +20220914130000,vlinder22,288.72706604003906,-2.5246124267578125,-1.1948089599609375 +20220914130000,vlinder23,288.08839416503906,-1.6291046142578125,-1.3217620849609375 +20220914130000,vlinder24,288.18019104003906,-1.6222686767578125,-1.3598480224609375 +20220914130000,vlinder25,288.13722229003906,-1.4074249267578125,-1.4672698974609375 +20220914130000,vlinder26,288.60401916503906,-0.9337921142578125,-1.7162933349609375 +20220914130000,vlinder27,288.19386291503906,-1.3986358642578125,-1.4965667724609375 +20220914130000,vlinder28,288.27394104003906,-1.3117218017578125,-1.5659027099609375 +20220914140000,vlinder01,288.2962646484375,-0.9536590576171875,-2.013092041015625 +20220914140000,vlinder02,288.3079833984375,-1.0317840576171875,-1.943756103515625 +20220914140000,vlinder03,288.1146240234375,-0.5044403076171875,-2.153717041015625 +20220914140000,vlinder04,288.1146240234375,-0.5044403076171875,-2.153717041015625 +20220914140000,vlinder05,288.2669677734375,-1.0503387451171875,-1.776763916015625 +20220914140000,vlinder06,288.6419677734375,-0.4878387451171875,-2.345123291015625 +20220914140000,vlinder07,288.6419677734375,-0.4878387451171875,-2.345123291015625 +20220914140000,vlinder08,288.6419677734375,-0.4878387451171875,-2.345123291015625 +20220914140000,vlinder09,288.4056396484375,-1.0259246826171875,-2.114654541015625 +20220914140000,vlinder10,288.4075927734375,-1.1284637451171875,-2.046295166015625 +20220914140000,vlinder11,288.1204833984375,-0.5552215576171875,-2.102935791015625 +20220914140000,vlinder12,288.1204833984375,-0.5552215576171875,-2.102935791015625 +20220914140000,vlinder13,288.1204833984375,-0.5552215576171875,-2.102935791015625 +20220914140000,vlinder14,288.0443115234375,-0.6011199951171875,-1.941802978515625 +20220914140000,vlinder15,288.4114990234375,-0.9438934326171875,-2.170318603515625 +20220914140000,vlinder16,288.0443115234375,-0.6011199951171875,-1.941802978515625 +20220914140000,vlinder17,287.8978271484375,-0.5464324951171875,-2.185943603515625 +20220914140000,vlinder18,287.8587646484375,-0.4653778076171875,-2.211334228515625 +20220914140000,vlinder19,288.6126708984375,-1.3286590576171875,-2.014068603515625 +20220914140000,vlinder20,288.6126708984375,-1.3286590576171875,-2.014068603515625 +20220914140000,vlinder21,288.9739990234375,-1.8491668701171875,-1.049224853515625 +20220914140000,vlinder22,289.1224365234375,-1.5933074951171875,-1.161529541015625 +20220914140000,vlinder23,288.2415771484375,-1.1509246826171875,-1.364654541015625 +20220914140000,vlinder24,288.3060302734375,-1.1675262451171875,-1.503326416015625 +20220914140000,vlinder25,288.2181396484375,-1.0464324951171875,-1.603912353515625 +20220914140000,vlinder26,288.2884521484375,-0.5874481201171875,-2.198638916015625 +20220914140000,vlinder27,288.2669677734375,-1.0503387451171875,-1.776763916015625 +20220914140000,vlinder28,288.2962646484375,-0.9536590576171875,-2.013092041015625 +20220914150000,vlinder01,288.5669860839844,-0.76861572265625,-1.925567626953125 +20220914150000,vlinder02,288.5904235839844,-0.76275634765625,-1.811309814453125 +20220914150000,vlinder03,287.9869079589844,-0.46881103515625,-1.975372314453125 +20220914150000,vlinder04,287.9869079589844,-0.46881103515625,-1.975372314453125 +20220914150000,vlinder05,288.5962829589844,-0.73541259765625,-1.684356689453125 +20220914150000,vlinder06,288.6275329589844,-0.66510009765625,-2.613067626953125 +20220914150000,vlinder07,288.6275329589844,-0.66510009765625,-2.613067626953125 +20220914150000,vlinder08,288.6275329589844,-0.66510009765625,-2.613067626953125 +20220914150000,vlinder09,288.3912048339844,-0.81451416015625,-2.496856689453125 +20220914150000,vlinder10,288.3990173339844,-0.81158447265625,-2.374786376953125 +20220914150000,vlinder11,288.2544860839844,-0.68365478515625,-2.172637939453125 +20220914150000,vlinder12,288.2544860839844,-0.68365478515625,-2.172637939453125 +20220914150000,vlinder13,288.2544860839844,-0.68365478515625,-2.172637939453125 +20220914150000,vlinder14,288.2798767089844,-0.67877197265625,-1.912872314453125 +20220914150000,vlinder15,288.3833923339844,-0.80670166015625,-2.605255126953125 +20220914150000,vlinder16,288.2798767089844,-0.67877197265625,-1.912872314453125 +20220914150000,vlinder17,287.5787048339844,-0.02252197265625,-2.558380126953125 +20220914150000,vlinder18,287.6177673339844,0.05560302734375,-2.589630126953125 +20220914150000,vlinder19,288.4615173339844,-0.84088134765625,-2.832794189453125 +20220914150000,vlinder20,288.4615173339844,-0.84088134765625,-2.832794189453125 +20220914150000,vlinder21,289.3540954589844,-0.88189697265625,-1.310333251953125 +20220914150000,vlinder22,289.2212829589844,-0.96978759765625,-1.219512939453125 +20220914150000,vlinder23,288.8033142089844,-0.66705322265625,-1.374786376953125 +20220914150000,vlinder24,288.7232360839844,-0.71197509765625,-1.472442626953125 +20220914150000,vlinder25,288.5494079589844,-0.69635009765625,-1.560333251953125 +20220914150000,vlinder26,288.0904235839844,-0.43072509765625,-2.206817626953125 +20220914150000,vlinder27,288.5962829589844,-0.73541259765625,-1.684356689453125 +20220914150000,vlinder28,288.5669860839844,-0.76861572265625,-1.925567626953125 +20220914160000,vlinder01,288.3993377685547,-0.517333984375,-1.970855712890625 +20220914160000,vlinder02,288.4442596435547,-0.498779296875,-1.967926025390625 +20220914160000,vlinder03,287.6512908935547,-0.379638671875,-1.573394775390625 +20220914160000,vlinder04,287.6512908935547,-0.379638671875,-1.573394775390625 +20220914160000,vlinder05,288.5770721435547,-0.364990234375,-1.906402587890625 +20220914160000,vlinder06,288.3348846435547,-0.655029296875,-2.055816650390625 +20220914160000,vlinder07,288.3348846435547,-0.655029296875,-2.055816650390625 +20220914160000,vlinder08,288.3348846435547,-0.655029296875,-2.055816650390625 +20220914160000,vlinder09,288.0673065185547,-0.680419921875,-2.129058837890625 +20220914160000,vlinder10,288.0887908935547,-0.661865234375,-2.133941650390625 +20220914160000,vlinder11,288.2235565185547,-0.304443359375,-1.719879150390625 +20220914160000,vlinder12,288.2235565185547,-0.304443359375,-1.719879150390625 +20220914160000,vlinder13,288.2235565185547,-0.304443359375,-1.719879150390625 +20220914160000,vlinder14,288.2801971435547,-0.102294921875,-1.544097900390625 +20220914160000,vlinder15,288.0419158935547,-0.698974609375,-2.132965087890625 +20220914160000,vlinder16,288.2801971435547,-0.102294921875,-1.544097900390625 +20220914160000,vlinder17,287.2782440185547,0.230712890625,-2.343902587890625 +20220914160000,vlinder18,287.3153533935547,0.375244140625,-2.410308837890625 +20220914160000,vlinder19,287.9051971435547,-0.778076171875,-2.398590087890625 +20220914160000,vlinder20,287.9051971435547,-0.778076171875,-2.398590087890625 +20220914160000,vlinder21,289.6356658935547,-0.453857421875,-2.195465087890625 +20220914160000,vlinder22,289.2216033935547,-0.496826171875,-2.047027587890625 +20220914160000,vlinder23,288.9423065185547,-0.079833984375,-1.773590087890625 +20220914160000,vlinder24,288.8134002685547,-0.238037109375,-1.852691650390625 +20220914160000,vlinder25,288.6669158935547,-0.196044921875,-1.824371337890625 +20220914160000,vlinder26,287.7411346435547,-0.432373046875,-1.818511962890625 +20220914160000,vlinder27,288.5770721435547,-0.364990234375,-1.906402587890625 +20220914160000,vlinder28,288.3993377685547,-0.517333984375,-1.970855712890625 +20220914170000,vlinder01,288.0879364013672,-0.34161376953125,-1.756378173828125 +20220914170000,vlinder02,288.1328582763672,-0.35528564453125,-1.731964111328125 +20220914170000,vlinder03,287.5195770263672,0.15643310546875,-1.308135986328125 +20220914170000,vlinder04,287.5195770263672,0.15643310546875,-1.308135986328125 +20220914170000,vlinder05,288.3535614013672,-0.25567626953125,-1.775909423828125 +20220914170000,vlinder06,288.0156707763672,-0.24200439453125,-1.801300048828125 +20220914170000,vlinder07,288.0156707763672,-0.24200439453125,-1.801300048828125 +20220914170000,vlinder08,288.0156707763672,-0.24200439453125,-1.801300048828125 +20220914170000,vlinder09,287.7285614013672,-0.47930908203125,-1.884307861328125 +20220914170000,vlinder10,287.7461395263672,-0.50079345703125,-1.870635986328125 +20220914170000,vlinder11,288.1504364013672,0.19451904296875,-1.557159423828125 +20220914170000,vlinder12,288.1504364013672,0.19451904296875,-1.557159423828125 +20220914170000,vlinder13,288.1504364013672,0.19451904296875,-1.557159423828125 +20220914170000,vlinder14,288.3008270263672,0.41522216796875,-1.421417236328125 +20220914170000,vlinder15,287.7070770263672,-0.46173095703125,-1.893096923828125 +20220914170000,vlinder16,288.3008270263672,0.41522216796875,-1.421417236328125 +20220914170000,vlinder17,286.9375457763672,0.35760498046875,-1.847198486328125 +20220914170000,vlinder18,286.9668426513672,0.47479248046875,-1.863800048828125 +20220914170000,vlinder19,287.5234832763672,-0.63653564453125,-1.981964111328125 +20220914170000,vlinder20,287.5234832763672,-0.63653564453125,-1.981964111328125 +20220914170000,vlinder21,289.6621551513672,-0.64141845703125,-2.815948486328125 +20220914170000,vlinder22,289.0820770263672,-0.50762939453125,-1.936065673828125 +20220914170000,vlinder23,288.8711395263672,-0.06036376953125,-1.812042236328125 +20220914170000,vlinder24,288.6777801513672,-0.21759033203125,-1.858917236328125 +20220914170000,vlinder25,288.5352020263672,-0.10040283203125,-1.743682861328125 +20220914170000,vlinder26,287.3398895263672,0.00213623046875,-1.483917236328125 +20220914170000,vlinder27,288.3535614013672,-0.25567626953125,-1.775909423828125 +20220914170000,vlinder28,288.0879364013672,-0.34161376953125,-1.756378173828125 +20220914180000,vlinder01,287.719482421875,-0.0393218994140625,-1.6288299560546875 +20220914180000,vlinder02,287.754638671875,-0.0529937744140625,-1.5858612060546875 +20220914180000,vlinder03,287.229248046875,0.8005218505859375,-1.0741424560546875 +20220914180000,vlinder04,287.229248046875,0.8005218505859375,-1.0741424560546875 +20220914180000,vlinder05,288.014404296875,7.171630859375E-4,-1.5809783935546875 +20220914180000,vlinder06,287.633544921875,0.0778656005859375,-1.7548065185546875 +20220914180000,vlinder07,287.633544921875,0.0778656005859375,-1.7548065185546875 +20220914180000,vlinder08,287.633544921875,0.0778656005859375,-1.7548065185546875 +20220914180000,vlinder09,287.383544921875,-0.1360015869140625,-1.8290252685546875 +20220914180000,vlinder10,287.395263671875,-0.1516265869140625,-1.7909393310546875 +20220914180000,vlinder11,287.821044921875,0.5427093505859375,-1.4471893310546875 +20220914180000,vlinder12,287.821044921875,0.5427093505859375,-1.4471893310546875 +20220914180000,vlinder13,287.821044921875,0.5427093505859375,-1.4471893310546875 +20220914180000,vlinder14,287.975341796875,0.7809906005859375,-1.2880096435546875 +20220914180000,vlinder15,287.365966796875,-0.1194000244140625,-1.8544158935546875 +20220914180000,vlinder16,287.975341796875,0.7809906005859375,-1.2880096435546875 +20220914180000,vlinder17,286.672607421875,0.7204437255859375,-1.5946502685546875 +20220914180000,vlinder18,286.719482421875,0.7819671630859375,-1.6112518310546875 +20220914180000,vlinder19,287.156982421875,-0.2639312744140625,-1.8856658935546875 +20220914180000,vlinder20,287.156982421875,-0.2639312744140625,-1.8856658935546875 +20220914180000,vlinder21,289.623779296875,-0.6057281494140625,-2.7089080810546875 +20220914180000,vlinder22,288.664794921875,-0.3342437744140625,-1.6698455810546875 +20220914180000,vlinder23,288.545654296875,0.0934906005859375,-1.5555877685546875 +20220914180000,vlinder24,288.358154296875,-0.0285797119140625,-1.6161346435546875 +20220914180000,vlinder25,288.178466796875,0.1257171630859375,-1.4823455810546875 +20220914180000,vlinder26,286.998779296875,0.5847015380859375,-1.2372283935546875 +20220914180000,vlinder27,288.014404296875,7.171630859375E-4,-1.5809783935546875 +20220914180000,vlinder28,287.719482421875,-0.0393218994140625,-1.6288299560546875 +20220914190000,vlinder01,288.5635986328125,-0.5700531005859375,-1.2538299560546875 +20220914190000,vlinder02,288.5128173828125,-0.5065765380859375,-1.2333221435546875 +20220914190000,vlinder03,288.3194580078125,0.0227203369140625,-1.5858612060546875 +20220914190000,vlinder04,288.3194580078125,0.0227203369140625,-1.5858612060546875 +20220914190000,vlinder05,288.6026611328125,-0.3825531005859375,-1.4003143310546875 +20220914190000,vlinder06,288.7686767578125,-0.6589202880859375,-1.3153533935546875 +20220914190000,vlinder07,288.7686767578125,-0.6589202880859375,-1.3153533935546875 +20220914190000,vlinder08,288.7686767578125,-0.6589202880859375,-1.3153533935546875 +20220914190000,vlinder09,288.4346923828125,-0.8815765380859375,-1.7997283935546875 +20220914190000,vlinder10,288.3839111328125,-0.8210296630859375,-1.7870330810546875 +20220914190000,vlinder11,288.4561767578125,-0.0749359130859375,-1.2811737060546875 +20220914190000,vlinder12,288.4561767578125,-0.0749359130859375,-1.2811737060546875 +20220914190000,vlinder13,288.4561767578125,-0.0749359130859375,-1.2811737060546875 +20220914190000,vlinder14,288.5362548828125,0.1936187744140625,-1.2967987060546875 +20220914190000,vlinder15,288.4385986328125,-0.9128265380859375,-1.8085174560546875 +20220914190000,vlinder16,288.5362548828125,0.1936187744140625,-1.2967987060546875 +20220914190000,vlinder17,288.1964111328125,-0.5934906005859375,-2.1903533935546875 +20220914190000,vlinder18,288.2374267578125,-0.6354827880859375,-2.2518768310546875 +20220914190000,vlinder19,287.9112548828125,-0.9616546630859375,-2.5184783935546875 +20220914190000,vlinder20,287.9112548828125,-0.9616546630859375,-2.5184783935546875 +20220914190000,vlinder21,290.6085205078125,-0.6393890380859375,-4.0477752685546875 +20220914190000,vlinder22,288.8546142578125,-0.2106781005859375,-2.3602752685546875 +20220914190000,vlinder23,288.7999267578125,-0.1100921630859375,-1.8602752685546875 +20220914190000,vlinder24,288.6729736328125,-0.2839202880859375,-1.7538299560546875 +20220914190000,vlinder25,288.4229736328125,-0.1550140380859375,-1.4188690185546875 +20220914190000,vlinder26,288.0557861328125,-0.1589202880859375,-1.6796112060546875 +20220914190000,vlinder27,288.6026611328125,-0.3825531005859375,-1.4003143310546875 +20220914190000,vlinder28,288.5635986328125,-0.5700531005859375,-1.2538299560546875 +20220914200000,vlinder01,288.2486114501953,0.757232666015625,-1.891387939453125 +20220914200000,vlinder02,288.1919708251953,0.801177978515625,-1.858184814453125 +20220914200000,vlinder03,287.7154083251953,0.697662353515625,-2.044708251953125 +20220914200000,vlinder04,287.7154083251953,0.697662353515625,-2.044708251953125 +20220914200000,vlinder05,288.3130645751953,0.726959228515625,-2.068145751953125 +20220914200000,vlinder06,288.5279083251953,0.422271728515625,-1.948028564453125 +20220914200000,vlinder07,288.5279083251953,0.422271728515625,-1.948028564453125 +20220914200000,vlinder08,288.5279083251953,0.422271728515625,-1.948028564453125 +20220914200000,vlinder09,288.3501739501953,0.288482666015625,-2.004669189453125 +20220914200000,vlinder10,288.2466583251953,0.344146728515625,-1.965606689453125 +20220914200000,vlinder11,288.0806427001953,0.836334228515625,-2.050567626953125 +20220914200000,vlinder12,288.0806427001953,0.836334228515625,-2.050567626953125 +20220914200000,vlinder13,288.0806427001953,0.836334228515625,-2.050567626953125 +20220914200000,vlinder14,288.1157989501953,1.027740478515625,-2.111114501953125 +20220914200000,vlinder15,288.3892364501953,0.237701416015625,-2.025177001953125 +20220914200000,vlinder16,288.1157989501953,1.027740478515625,-2.111114501953125 +20220914200000,vlinder17,287.9771270751953,0.102935791015625,-2.211700439453125 +20220914200000,vlinder18,288.0142364501953,0.060943603515625,-2.194122314453125 +20220914200000,vlinder19,287.9282989501953,-0.148040771484375,-2.081817626953125 +20220914200000,vlinder20,287.9282989501953,-0.148040771484375,-2.081817626953125 +20220914200000,vlinder21,290.5435333251953,-0.039642333984375,-4.622833251953125 +20220914200000,vlinder22,288.5025177001953,0.400787353515625,-2.532989501953125 +20220914200000,vlinder23,288.6743927001953,0.541412353515625,-2.557403564453125 +20220914200000,vlinder24,288.4497833251953,0.581451416015625,-2.437286376953125 +20220914200000,vlinder25,287.9868927001953,0.692779541015625,-2.103302001953125 +20220914200000,vlinder26,287.7642364501953,0.507232666015625,-2.067169189453125 +20220914200000,vlinder27,288.3130645751953,0.726959228515625,-2.068145751953125 +20220914200000,vlinder28,288.2486114501953,0.757232666015625,-1.891387939453125 +20220914210000,vlinder01,287.6204376220703,1.139129638671875,-1.9260711669921875 +20220914210000,vlinder02,287.6555938720703,1.150848388671875,-1.8899383544921875 +20220914210000,vlinder03,287.3430938720703,0.842254638671875,-1.9319305419921875 +20220914210000,vlinder04,287.3430938720703,0.842254638671875,-1.9319305419921875 +20220914210000,vlinder05,287.8665313720703,1.056121826171875,-2.1516571044921875 +20220914210000,vlinder06,287.6770782470703,0.908660888671875,-1.9563446044921875 +20220914210000,vlinder07,287.6770782470703,0.908660888671875,-1.9563446044921875 +20220914210000,vlinder08,287.6770782470703,0.908660888671875,-1.9563446044921875 +20220914210000,vlinder09,287.5364532470703,0.903778076171875,-2.0432586669921875 +20220914210000,vlinder10,287.5032501220703,0.929168701171875,-2.0071258544921875 +20220914210000,vlinder11,287.6477813720703,1.012176513671875,-2.0930633544921875 +20220914210000,vlinder12,287.6477813720703,1.012176513671875,-2.0930633544921875 +20220914210000,vlinder13,287.6477813720703,1.012176513671875,-2.0930633544921875 +20220914210000,vlinder14,287.7942657470703,1.077606201171875,-2.1741180419921875 +20220914210000,vlinder15,287.5384063720703,0.874481201171875,-2.0608367919921875 +20220914210000,vlinder16,287.7942657470703,1.077606201171875,-2.1741180419921875 +20220914210000,vlinder17,287.5970001220703,0.435028076171875,-1.9954071044921875 +20220914210000,vlinder18,287.6458282470703,0.421356201171875,-1.9836883544921875 +20220914210000,vlinder19,287.2747344970703,0.565887451171875,-2.0598602294921875 +20220914210000,vlinder20,287.2747344970703,0.565887451171875,-2.0598602294921875 +20220914210000,vlinder21,290.4993438720703,0.478973388671875,-4.3977508544921875 +20220914210000,vlinder22,288.5520782470703,0.696746826171875,-2.4661102294921875 +20220914210000,vlinder23,288.5657501220703,0.833465576171875,-2.7122039794921875 +20220914210000,vlinder24,288.1536407470703,0.902801513671875,-2.5510711669921875 +20220914210000,vlinder25,287.6262969970703,0.965301513671875,-2.2659149169921875 +20220914210000,vlinder26,287.2512969970703,0.725067138671875,-1.9504852294921875 +20220914210000,vlinder27,287.8665313720703,1.056121826171875,-2.1516571044921875 +20220914210000,vlinder28,287.6204376220703,1.139129638671875,-1.9260711669921875 +20220914220000,vlinder01,287.36842346191406,1.063629150390625,-1.72607421875 +20220914220000,vlinder02,287.47193908691406,1.017730712890625,-1.70849609375 +20220914220000,vlinder03,286.84693908691406,1.115386962890625,-1.65283203125 +20220914220000,vlinder04,286.84693908691406,1.115386962890625,-1.65283203125 +20220914220000,vlinder05,287.71022033691406,1.019683837890625,-1.93701171875 +20220914220000,vlinder06,287.03834533691406,1.229644775390625,-1.60498046875 +20220914220000,vlinder07,287.03834533691406,1.229644775390625,-1.60498046875 +20220914220000,vlinder08,287.03834533691406,1.229644775390625,-1.60498046875 +20220914220000,vlinder09,287.16725158691406,1.143707275390625,-1.68017578125 +20220914220000,vlinder10,287.19264221191406,1.105621337890625,-1.66455078125 +20220914220000,vlinder11,287.31178283691406,1.204254150390625,-1.81494140625 +20220914220000,vlinder12,287.31178283691406,1.204254150390625,-1.81494140625 +20220914220000,vlinder13,287.31178283691406,1.204254150390625,-1.81494140625 +20220914220000,vlinder14,287.57350158691406,1.192535400390625,-1.93310546875 +20220914220000,vlinder15,287.09303283691406,1.173004150390625,-1.67626953125 +20220914220000,vlinder16,287.57350158691406,1.192535400390625,-1.93310546875 +20220914220000,vlinder17,286.97584533691406,0.718902587890625,-1.68603515625 +20220914220000,vlinder18,287.00904846191406,0.678863525390625,-1.66748046875 +20220914220000,vlinder19,286.77662658691406,1.094879150390625,-1.58154296875 +20220914220000,vlinder20,286.77662658691406,1.094879150390625,-1.58154296875 +20220914220000,vlinder21,290.52857971191406,1.449371337890625,-4.40478515625 +20220914220000,vlinder22,288.68873596191406,0.684722900390625,-2.33740234375 +20220914220000,vlinder23,288.56764221191406,0.997222900390625,-2.43115234375 +20220914220000,vlinder24,288.06178283691406,1.004058837890625,-2.30322265625 +20220914220000,vlinder25,287.45826721191406,0.961090087890625,-2.00732421875 +20220914220000,vlinder26,286.48365783691406,1.055816650390625,-1.64013671875 +20220914220000,vlinder27,287.71022033691406,1.019683837890625,-1.93701171875 +20220914220000,vlinder28,287.36842346191406,1.063629150390625,-1.72607421875 +20220914230000,vlinder01,286.8717346191406,1.228057861328125,-1.079376220703125 +20220914230000,vlinder02,286.9615783691406,1.145050048828125,-1.058868408203125 +20220914230000,vlinder03,286.9264221191406,1.334503173828125,-1.039337158203125 +20220914230000,vlinder04,286.9264221191406,1.334503173828125,-1.039337158203125 +20220914230000,vlinder05,287.2662658691406,1.199737548828125,-1.377227783203125 +20220914230000,vlinder06,286.6197814941406,1.675323486328125,-0.910430908203125 +20220914230000,vlinder07,286.6197814941406,1.675323486328125,-0.910430908203125 +20220914230000,vlinder08,286.6197814941406,1.675323486328125,-0.910430908203125 +20220914230000,vlinder09,286.8912658691406,1.496612548828125,-1.065704345703125 +20220914230000,vlinder10,286.8951721191406,1.411651611328125,-1.047149658203125 +20220914230000,vlinder11,287.0260314941406,1.460479736328125,-1.181915283203125 +20220914230000,vlinder12,287.0260314941406,1.460479736328125,-1.181915283203125 +20220914230000,vlinder13,287.0260314941406,1.460479736328125,-1.181915283203125 +20220914230000,vlinder14,287.3463439941406,1.361846923828125,-1.337188720703125 +20220914230000,vlinder15,286.8346252441406,1.568878173828125,-1.057891845703125 +20220914230000,vlinder16,287.3463439941406,1.361846923828125,-1.337188720703125 +20220914230000,vlinder17,286.4127502441406,1.409698486328125,-1.150665283203125 +20220914230000,vlinder18,286.3482971191406,1.372589111328125,-1.136993408203125 +20220914230000,vlinder19,286.3131408691406,1.633331298828125,-0.991485595703125 +20220914230000,vlinder20,286.3131408691406,1.633331298828125,-0.991485595703125 +20220914230000,vlinder21,290.3111877441406,1.800323486328125,-4.730743408203125 +20220914230000,vlinder22,288.2936096191406,0.869659423828125,-2.052032470703125 +20220914230000,vlinder23,288.3502502441406,1.285675048828125,-2.083282470703125 +20220914230000,vlinder24,287.7193908691406,1.261260986328125,-1.887969970703125 +20220914230000,vlinder25,286.9576721191406,1.167510986328125,-1.491485595703125 +20220914230000,vlinder26,286.3365783691406,1.421417236328125,-1.013946533203125 +20220914230000,vlinder27,287.2662658691406,1.199737548828125,-1.377227783203125 +20220914230000,vlinder28,286.8717346191406,1.228057861328125,-1.079376220703125 +20220915000000,vlinder01,286.697509765625,1.7238006591796875,-0.7615966796875 +20220915000000,vlinder02,286.865478515625,1.6886444091796875,-0.7430419921875 +20220915000000,vlinder03,286.679931640625,1.6329803466796875,-0.7449951171875 +20220915000000,vlinder04,286.679931640625,1.6329803466796875,-0.7449951171875 +20220915000000,vlinder05,287.242431640625,1.6691131591796875,-1.1678466796875 +20220915000000,vlinder06,286.263916015625,1.8585662841796875,-0.5330810546875 +20220915000000,vlinder07,286.263916015625,1.8585662841796875,-0.5330810546875 +20220915000000,vlinder08,286.263916015625,1.8585662841796875,-0.5330810546875 +20220915000000,vlinder09,286.652587890625,1.7286834716796875,-0.8289794921875 +20220915000000,vlinder10,286.711181640625,1.6993865966796875,-0.8153076171875 +20220915000000,vlinder11,286.771728515625,1.9171600341796875,-0.8358154296875 +20220915000000,vlinder12,286.771728515625,1.9171600341796875,-0.8358154296875 +20220915000000,vlinder13,286.771728515625,1.9171600341796875,-0.8358154296875 +20220915000000,vlinder14,287.185791015625,1.9454803466796875,-1.0115966796875 +20220915000000,vlinder15,286.558837890625,1.7511444091796875,-0.8143310546875 +20220915000000,vlinder16,287.185791015625,1.9454803466796875,-1.0115966796875 +20220915000000,vlinder17,286.025634765625,1.7130584716796875,-0.7596435546875 +20220915000000,vlinder18,285.906494140625,1.6857147216796875,-0.7108154296875 +20220915000000,vlinder19,286.084228515625,1.7032928466796875,-0.8260498046875 +20220915000000,vlinder20,286.084228515625,1.7032928466796875,-0.8260498046875 +20220915000000,vlinder21,290.213134765625,1.4210662841796875,-4.8739013671875 +20220915000000,vlinder22,288.510009765625,1.2091522216796875,-1.8309326171875 +20220915000000,vlinder23,288.523681640625,1.5890350341796875,-2.0906982421875 +20220915000000,vlinder24,287.847900390625,1.6075897216796875,-1.8231201171875 +20220915000000,vlinder25,287.041259765625,1.6241912841796875,-1.3680419921875 +20220915000000,vlinder26,285.949462890625,1.6603240966796875,-0.7156982421875 +20220915000000,vlinder27,287.242431640625,1.6691131591796875,-1.1678466796875 +20220915000000,vlinder28,286.697509765625,1.7238006591796875,-0.7615966796875 +20220915010000,vlinder01,286.49253845214844,1.7646942138671875,-1.1712493896484375 +20220915010000,vlinder02,286.67027282714844,1.7617645263671875,-1.1917572021484375 +20220915010000,vlinder03,286.54136657714844,1.8057098388671875,-0.7503509521484375 +20220915010000,vlinder04,286.54136657714844,1.8057098388671875,-0.7503509521484375 +20220915010000,vlinder05,287.19371032714844,1.7100067138671875,-1.5989837646484375 +20220915010000,vlinder06,286.44761657714844,1.7559051513671875,-0.6556243896484375 +20220915010000,vlinder07,286.44761657714844,1.7559051513671875,-0.6556243896484375 +20220915010000,vlinder08,286.44761657714844,1.7559051513671875,-0.6556243896484375 +20220915010000,vlinder09,286.42027282714844,1.7324676513671875,-1.0589447021484375 +20220915010000,vlinder10,286.43003845214844,1.7344207763671875,-1.0735931396484375 +20220915010000,vlinder11,286.95152282714844,1.9277801513671875,-1.0355072021484375 +20220915010000,vlinder12,286.95152282714844,1.9277801513671875,-1.0355072021484375 +20220915010000,vlinder13,286.95152282714844,1.9277801513671875,-1.0355072021484375 +20220915010000,vlinder14,287.39292907714844,2.0146942138671875,-1.2776947021484375 +20220915010000,vlinder15,286.36949157714844,1.7305145263671875,-1.0081634521484375 +20220915010000,vlinder16,287.39292907714844,2.0146942138671875,-1.2776947021484375 +20220915010000,vlinder17,285.95933532714844,1.6875457763671875,-0.4114837646484375 +20220915010000,vlinder18,285.84019470214844,1.6904754638671875,-0.3421478271484375 +20220915010000,vlinder19,285.96128845214844,1.6689910888671875,-0.8118743896484375 +20220915010000,vlinder20,285.96128845214844,1.6689910888671875,-0.8118743896484375 +20220915010000,vlinder21,289.99253845214844,1.0898895263671875,-5.0862884521484375 +20220915010000,vlinder22,288.15855407714844,1.2773895263671875,-2.3997650146484375 +20220915010000,vlinder23,288.60777282714844,1.5752410888671875,-2.5296478271484375 +20220915010000,vlinder24,287.85386657714844,1.6055145263671875,-2.2630462646484375 +20220915010000,vlinder25,287.25035095214844,1.6855926513671875,-1.8069915771484375 +20220915010000,vlinder26,285.88121032714844,1.7324676513671875,-0.6312103271484375 +20220915010000,vlinder27,287.19371032714844,1.7100067138671875,-1.5989837646484375 +20220915010000,vlinder28,286.49253845214844,1.7646942138671875,-1.1712493896484375 +20220915020000,vlinder01,286.9750671386719,1.611328125,-1.353851318359375 +20220915020000,vlinder02,287.1606140136719,1.5791015625,-1.413421630859375 +20220915020000,vlinder03,286.7797546386719,1.8095703125,-0.765960693359375 +20220915020000,vlinder04,286.7797546386719,1.8095703125,-0.765960693359375 +20220915020000,vlinder05,287.5570983886719,1.5244140625,-1.806976318359375 +20220915020000,vlinder06,286.7543640136719,1.8017578125,-0.554046630859375 +20220915020000,vlinder07,286.7543640136719,1.8017578125,-0.554046630859375 +20220915020000,vlinder08,286.7543640136719,1.8017578125,-0.554046630859375 +20220915020000,vlinder09,286.6860046386719,1.6708984375,-0.997406005859375 +20220915020000,vlinder10,286.7289733886719,1.6484375,-1.058929443359375 +20220915020000,vlinder11,287.1410827636719,1.9130859375,-1.202484130859375 +20220915020000,vlinder12,287.1410827636719,1.9130859375,-1.202484130859375 +20220915020000,vlinder13,287.1410827636719,1.9130859375,-1.202484130859375 +20220915020000,vlinder14,287.5258483886719,1.9453125,-1.607757568359375 +20220915020000,vlinder15,286.6117858886719,1.6962890625,-0.903656005859375 +20220915020000,vlinder16,287.5258483886719,1.9453125,-1.607757568359375 +20220915020000,vlinder17,286.2211608886719,1.63671875,0.014312744140625 +20220915020000,vlinder18,286.1781921386719,1.6328125,0.097320556640625 +20220915020000,vlinder19,286.1313171386719,1.7080078125,-0.524749755859375 +20220915020000,vlinder20,286.1313171386719,1.7080078125,-0.524749755859375 +20220915020000,vlinder21,289.9750671386719,0.939453125,-4.970062255859375 +20220915020000,vlinder22,288.5961608886719,1.044921875,-2.595062255859375 +20220915020000,vlinder23,288.6215515136719,1.3154296875,-2.721038818359375 +20220915020000,vlinder24,288.0414733886719,1.3837890625,-2.426116943359375 +20220915020000,vlinder25,287.5883483886719,1.494140625,-2.044281005859375 +20220915020000,vlinder26,286.2797546386719,1.763671875,-0.505218505859375 +20220915020000,vlinder27,287.5570983886719,1.5244140625,-1.806976318359375 +20220915020000,vlinder28,286.9750671386719,1.611328125,-1.353851318359375 +20220915030000,vlinder01,286.6886291503906,1.56781005859375,-1.434356689453125 +20220915030000,vlinder02,286.8702697753906,1.51214599609375,-1.502716064453125 +20220915030000,vlinder03,286.9855041503906,1.73675537109375,-0.949005126953125 +20220915030000,vlinder04,286.9855041503906,1.73675537109375,-0.949005126953125 +20220915030000,vlinder05,287.3077697753906,1.34906005859375,-1.858184814453125 +20220915030000,vlinder06,286.5401916503906,1.94378662109375,-0.541778564453125 +20220915030000,vlinder07,286.5401916503906,1.94378662109375,-0.541778564453125 +20220915030000,vlinder08,286.5401916503906,1.94378662109375,-0.541778564453125 +20220915030000,vlinder09,286.3800354003906,1.77191162109375,-0.960723876953125 +20220915030000,vlinder10,286.3976135253906,1.72601318359375,-1.032012939453125 +20220915030000,vlinder11,287.0226135253906,1.71038818359375,-1.379669189453125 +20220915030000,vlinder12,287.0226135253906,1.71038818359375,-1.379669189453125 +20220915030000,vlinder13,287.0226135253906,1.71038818359375,-1.379669189453125 +20220915030000,vlinder14,287.4503479003906,1.54925537109375,-1.888458251953125 +20220915030000,vlinder15,286.3175354003906,1.82269287109375,-0.855255126953125 +20220915030000,vlinder16,287.4503479003906,1.54925537109375,-1.888458251953125 +20220915030000,vlinder17,286.3273010253906,1.79925537109375,0.139862060546875 +20220915030000,vlinder18,286.3898010253906,1.79339599609375,0.233612060546875 +20220915030000,vlinder19,285.7687072753906,1.96722412109375,-0.350372314453125 +20220915030000,vlinder20,285.7687072753906,1.96722412109375,-0.350372314453125 +20220915030000,vlinder21,289.8546447753906,0.78753662109375,-4.802520751953125 +20220915030000,vlinder22,288.2843322753906,1.07073974609375,-2.431427001953125 +20220915030000,vlinder23,288.4210510253906,0.89886474609375,-2.699005126953125 +20220915030000,vlinder24,287.8312072753906,1.09320068359375,-2.416778564453125 +20220915030000,vlinder25,287.3937072753906,1.18499755859375,-2.072052001953125 +20220915030000,vlinder26,286.4991760253906,1.82171630859375,-0.570098876953125 +20220915030000,vlinder27,287.3077697753906,1.34906005859375,-1.858184814453125 +20220915030000,vlinder28,286.6886291503906,1.56781005859375,-1.434356689453125 +20220915040000,vlinder01,286.6728210449219,1.3362579345703125,-1.4325408935546875 +20220915040000,vlinder02,286.8232116699219,1.2991485595703125,-1.4696502685546875 +20220915040000,vlinder03,287.1630554199219,1.3714141845703125,-1.3759002685546875 +20220915040000,vlinder04,287.1630554199219,1.3714141845703125,-1.3759002685546875 +20220915040000,vlinder05,287.2275085449219,1.0149688720703125,-1.8143768310546875 +20220915040000,vlinder06,286.7528991699219,1.7542266845703125,-0.7880096435546875 +20220915040000,vlinder07,286.7528991699219,1.7542266845703125,-0.7880096435546875 +20220915040000,vlinder08,286.7528991699219,1.7542266845703125,-0.7880096435546875 +20220915040000,vlinder09,286.4657897949219,1.5598907470703125,-1.0096893310546875 +20220915040000,vlinder10,286.4560241699219,1.5296173095703125,-1.0477752685546875 +20220915040000,vlinder11,287.0946960449219,1.3079376220703125,-1.5975799560546875 +20220915040000,vlinder12,287.0946960449219,1.3079376220703125,-1.5975799560546875 +20220915040000,vlinder13,287.0946960449219,1.3079376220703125,-1.5975799560546875 +20220915040000,vlinder14,287.4736022949219,1.0393829345703125,-2.0497283935546875 +20220915040000,vlinder15,286.4423522949219,1.6077423095703125,-0.9384002685546875 +20220915040000,vlinder16,287.4736022949219,1.0393829345703125,-2.0497283935546875 +20220915040000,vlinder17,286.5556335449219,1.9163360595703125,-0.1376190185546875 +20220915040000,vlinder18,286.6220397949219,1.9505157470703125,-0.0399627685546875 +20220915040000,vlinder19,286.0087585449219,1.8684844970703125,-0.4579315185546875 +20220915040000,vlinder20,286.0087585449219,1.8684844970703125,-0.4579315185546875 +20220915040000,vlinder21,289.6005554199219,0.3626251220703125,-4.5321502685546875 +20220915040000,vlinder22,287.9638366699219,1.2483673095703125,-2.1356658935546875 +20220915040000,vlinder23,288.3075866699219,0.3694610595703125,-2.5848846435546875 +20220915040000,vlinder24,287.7255554199219,0.6409454345703125,-2.3163299560546875 +20220915040000,vlinder25,287.2880554199219,0.7454376220703125,-2.0292205810546875 +20220915040000,vlinder26,286.8427429199219,1.5960235595703125,-0.9852752685546875 +20220915040000,vlinder27,287.2275085449219,1.0149688720703125,-1.8143768310546875 +20220915040000,vlinder28,286.6728210449219,1.3362579345703125,-1.4325408935546875 +20220915050000,vlinder01,286.52403259277344,1.0970001220703125,-1.4432220458984375 +20220915050000,vlinder02,286.67247009277344,1.0764923095703125,-1.4344329833984375 +20220915050000,vlinder03,287.14903259277344,1.0169219970703125,-1.5027923583984375 +20220915050000,vlinder04,287.14903259277344,1.0169219970703125,-1.5027923583984375 +20220915050000,vlinder05,287.05137634277344,0.7190704345703125,-1.7000579833984375 +20220915050000,vlinder06,286.69200134277344,1.5120391845703125,-1.1395111083984375 +20220915050000,vlinder07,286.69200134277344,1.5120391845703125,-1.1395111083984375 +20220915050000,vlinder08,286.69200134277344,1.5120391845703125,-1.1395111083984375 +20220915050000,vlinder09,286.39317321777344,1.3567657470703125,-1.1688079833984375 +20220915050000,vlinder10,286.37559509277344,1.3313751220703125,-1.1590423583984375 +20220915050000,vlinder11,287.10606384277344,0.9973907470703125,-1.5887298583984375 +20220915050000,vlinder12,287.10606384277344,0.9973907470703125,-1.5887298583984375 +20220915050000,vlinder13,287.10606384277344,0.9973907470703125,-1.5887298583984375 +20220915050000,vlinder14,287.51426696777344,0.7151641845703125,-1.8289642333984375 +20220915050000,vlinder15,286.38145446777344,1.4026641845703125,-1.1463470458984375 +20220915050000,vlinder16,287.51426696777344,0.7151641845703125,-1.8289642333984375 +20220915050000,vlinder17,286.73497009277344,1.8323516845703125,-0.6590423583984375 +20220915050000,vlinder18,286.85020446777344,1.8928985595703125,-0.5799407958984375 +20220915050000,vlinder19,286.00450134277344,1.7581329345703125,-0.7479095458984375 +20220915050000,vlinder20,286.00450134277344,1.7581329345703125,-0.7479095458984375 +20220915050000,vlinder21,289.41661071777344,-0.1725311279296875,-4.0359954833984375 +20220915050000,vlinder22,287.82872009277344,1.1487579345703125,-1.9119720458984375 +20220915050000,vlinder23,288.25450134277344,0.0130157470703125,-2.2576751708984375 +20220915050000,vlinder24,287.58262634277344,0.2991485595703125,-2.0887298583984375 +20220915050000,vlinder25,287.09629821777344,0.3938751220703125,-1.8133392333984375 +20220915050000,vlinder26,286.81895446777344,1.2757110595703125,-1.2742767333984375 +20220915050000,vlinder27,287.05137634277344,0.7190704345703125,-1.7000579833984375 +20220915050000,vlinder28,286.52403259277344,1.0970001220703125,-1.4432220458984375 +20220915060000,vlinder01,286.5066375732422,0.7266998291015625,-1.16705322265625 +20220915060000,vlinder02,286.6042938232422,0.7149810791015625,-1.12896728515625 +20220915060000,vlinder03,287.1511688232422,0.9278717041015625,-1.25299072265625 +20220915060000,vlinder04,287.1511688232422,0.9278717041015625,-1.25299072265625 +20220915060000,vlinder05,287.0261688232422,0.4376373291015625,-1.33209228515625 +20220915060000,vlinder06,286.7429656982422,1.1300201416015625,-1.19244384765625 +20220915060000,vlinder07,286.7429656982422,1.1300201416015625,-1.19244384765625 +20220915060000,vlinder08,286.7429656982422,1.1300201416015625,-1.19244384765625 +20220915060000,vlinder09,286.5749969482422,0.9532623291015625,-1.14654541015625 +20220915060000,vlinder10,286.5203094482422,0.9308013916015625,-1.09967041015625 +20220915060000,vlinder11,287.1550750732422,0.8526763916015625,-1.31549072265625 +20220915060000,vlinder12,287.1550750732422,0.8526763916015625,-1.31549072265625 +20220915060000,vlinder13,287.1550750732422,0.8526763916015625,-1.31549072265625 +20220915060000,vlinder14,287.5828094482422,0.6964263916015625,-1.37506103515625 +20220915060000,vlinder15,286.5691375732422,0.9981842041015625,-1.16705322265625 +20220915060000,vlinder16,287.5828094482422,0.6964263916015625,-1.37506103515625 +20220915060000,vlinder17,286.8152313232422,1.5792388916015625,-1.04205322265625 +20220915060000,vlinder18,286.9499969482422,1.6397857666015625,-1.00396728515625 +20220915060000,vlinder19,286.1882781982422,1.3702545166015625,-1.00787353515625 +20220915060000,vlinder20,286.1882781982422,1.3702545166015625,-1.00787353515625 +20220915060000,vlinder21,289.4617156982422,-0.3670501708984375,-3.37017822265625 +20220915060000,vlinder22,287.7917938232422,1.0089263916015625,-1.56060791015625 +20220915060000,vlinder23,288.3406219482422,-0.0740814208984375,-1.76763916015625 +20220915060000,vlinder24,287.6160125732422,0.1065826416015625,-1.64947509765625 +20220915060000,vlinder25,287.1394500732422,0.2179107666015625,-1.38873291015625 +20220915060000,vlinder26,286.8132781982422,1.0938873291015625,-1.21881103515625 +20220915060000,vlinder27,287.0261688232422,0.4376373291015625,-1.33209228515625 +20220915060000,vlinder28,286.5066375732422,0.7266998291015625,-1.16705322265625 +20220915070000,vlinder01,287.98980712890625,1.2125091552734375,-0.3286285400390625 +20220915070000,vlinder02,288.06793212890625,1.2183685302734375,-0.3413238525390625 +20220915070000,vlinder03,287.67730712890625,0.6861419677734375,-0.2749176025390625 +20220915070000,vlinder04,287.67730712890625,0.6861419677734375,-0.2749176025390625 +20220915070000,vlinder05,288.38629150390625,1.1089935302734375,-0.5620269775390625 +20220915070000,vlinder06,287.89410400390625,1.0982513427734375,-0.2885894775390625 +20220915070000,vlinder07,287.89410400390625,1.0982513427734375,-0.2885894775390625 +20220915070000,vlinder08,287.89410400390625,1.0982513427734375,-0.2885894775390625 +20220915070000,vlinder09,287.66949462890625,1.5992279052734375,-0.3911285400390625 +20220915070000,vlinder10,287.70269775390625,1.6285247802734375,-0.3794097900390625 +20220915070000,vlinder11,288.10308837890625,0.7515716552734375,-0.2505035400390625 +20220915070000,vlinder12,288.10308837890625,0.7515716552734375,-0.2505035400390625 +20220915070000,vlinder13,288.10308837890625,0.7515716552734375,-0.2505035400390625 +20220915070000,vlinder14,288.33941650390625,0.6128997802734375,-0.2348785400390625 +20220915070000,vlinder15,287.63238525390625,1.5767669677734375,-0.3940582275390625 +20220915070000,vlinder16,288.33941650390625,0.6128997802734375,-0.2348785400390625 +20220915070000,vlinder17,287.13629150390625,1.4586029052734375,-0.6196441650390625 +20220915070000,vlinder18,287.20074462890625,1.6031341552734375,-0.6645660400390625 +20220915070000,vlinder19,287.25543212890625,2.1158294677734375,-0.5307769775390625 +20220915070000,vlinder20,287.25543212890625,2.1158294677734375,-0.5307769775390625 +20220915070000,vlinder21,289.89215087890625,1.7964935302734375,-4.0659332275390625 +20220915070000,vlinder22,288.98394775390625,1.4625091552734375,-1.7065582275390625 +20220915070000,vlinder23,289.06988525390625,0.9107513427734375,-1.1460113525390625 +20220915070000,vlinder24,288.73004150390625,1.0591888427734375,-1.0385894775390625 +20220915070000,vlinder25,288.53863525390625,0.9400482177734375,-0.6069488525390625 +20220915070000,vlinder26,287.62066650390625,0.8433685302734375,-0.3569488525390625 +20220915070000,vlinder27,288.38629150390625,1.1089935302734375,-0.5620269775390625 +20220915070000,vlinder28,287.98980712890625,1.2125091552734375,-0.3286285400390625 +20220915080000,vlinder01,288.7881774902344,1.254547119140625,-0.3761749267578125 +20220915080000,vlinder02,288.9073181152344,1.286773681640625,-0.3986358642578125 +20220915080000,vlinder03,288.7178649902344,0.950836181640625,-0.1974639892578125 +20220915080000,vlinder04,288.7178649902344,0.950836181640625,-0.1974639892578125 +20220915080000,vlinder05,289.1163024902344,1.168609619140625,-0.6564483642578125 +20220915080000,vlinder06,288.5498962402344,1.095367431640625,-0.4337921142578125 +20220915080000,vlinder07,288.5498962402344,1.095367431640625,-0.4337921142578125 +20220915080000,vlinder08,288.5498962402344,1.095367431640625,-0.4337921142578125 +20220915080000,vlinder09,288.3604431152344,1.486968994140625,-0.5753936767578125 +20220915080000,vlinder10,288.3995056152344,1.531890869140625,-0.5646514892578125 +20220915080000,vlinder11,288.7569274902344,0.951812744140625,-0.0880889892578125 +20220915080000,vlinder12,288.7569274902344,0.951812744140625,-0.0880889892578125 +20220915080000,vlinder13,288.7569274902344,0.951812744140625,-0.0880889892578125 +20220915080000,vlinder14,288.9424743652344,0.903961181640625,0.0642547607421875 +20220915080000,vlinder15,288.2881774902344,1.453765869140625,-0.5871124267578125 +20220915080000,vlinder16,288.9424743652344,0.903961181640625,0.0642547607421875 +20220915080000,vlinder17,288.1045837402344,1.450836181640625,-1.0626983642578125 +20220915080000,vlinder18,288.1573181152344,1.546539306640625,-1.1652374267578125 +20220915080000,vlinder19,287.9834899902344,1.780914306640625,-0.8683624267578125 +20220915080000,vlinder20,287.9834899902344,1.780914306640625,-0.8683624267578125 +20220915080000,vlinder21,289.9248962402344,1.708648681640625,-4.8195343017578125 +20220915080000,vlinder22,289.9346618652344,1.814117431640625,-2.2130889892578125 +20220915080000,vlinder23,289.5733337402344,0.998687744140625,-1.4025421142578125 +20220915080000,vlinder24,289.3702087402344,1.120758056640625,-1.2726593017578125 +20220915080000,vlinder25,289.2803649902344,1.014312744140625,-0.6779327392578125 +20220915080000,vlinder26,288.6241149902344,1.017242431640625,-0.4054718017578125 +20220915080000,vlinder27,289.1163024902344,1.168609619140625,-0.6564483642578125 +20220915080000,vlinder28,288.7881774902344,1.254547119140625,-0.3761749267578125 +20220915090000,vlinder01,289.3746032714844,1.3946075439453125,-0.8119049072265625 +20220915090000,vlinder02,289.5308532714844,1.4532012939453125,-0.9759674072265625 +20220915090000,vlinder03,289.5816345214844,1.2334747314453125,-0.7787017822265625 +20220915090000,vlinder04,289.5816345214844,1.2334747314453125,-0.7787017822265625 +20220915090000,vlinder05,289.5367126464844,1.3350372314453125,-1.2992095947265625 +20220915090000,vlinder06,289.1929626464844,1.1358184814453125,-0.5238189697265625 +20220915090000,vlinder07,289.1929626464844,1.1358184814453125,-0.5238189697265625 +20220915090000,vlinder08,289.1929626464844,1.1358184814453125,-0.5238189697265625 +20220915090000,vlinder09,288.8882751464844,1.4746856689453125,-0.6869049072265625 +20220915090000,vlinder10,288.9917907714844,1.5254669189453125,-0.7816314697265625 +20220915090000,vlinder11,289.3472595214844,1.1621856689453125,-0.4290924072265625 +20220915090000,vlinder12,289.3472595214844,1.1621856689453125,-0.4290924072265625 +20220915090000,vlinder13,289.3472595214844,1.1621856689453125,-0.4290924072265625 +20220915090000,vlinder14,289.4742126464844,1.2207794189453125,-0.4369049072265625 +20220915090000,vlinder15,288.8081970214844,1.4326934814453125,-0.6273345947265625 +20220915090000,vlinder16,289.4742126464844,1.2207794189453125,-0.4369049072265625 +20220915090000,vlinder17,289.0757751464844,1.3936309814453125,-1.3538970947265625 +20220915090000,vlinder18,289.1246032714844,1.4571075439453125,-1.3812408447265625 +20220915090000,vlinder19,288.6246032714844,1.5977325439453125,-0.9427642822265625 +20220915090000,vlinder20,288.6246032714844,1.5977325439453125,-0.9427642822265625 +20220915090000,vlinder21,289.9214782714844,1.3496856689453125,-5.6742095947265625 +20220915090000,vlinder22,290.5464782714844,1.9717559814453125,-3.8900299072265625 +20220915090000,vlinder23,289.6324157714844,1.2139434814453125,-2.4124908447265625 +20220915090000,vlinder24,289.5953063964844,1.2832794189453125,-2.1361236572265625 +20220915090000,vlinder25,289.5289001464844,1.2520294189453125,-1.4662017822265625 +20220915090000,vlinder26,289.5289001464844,1.1992950439453125,-0.9085845947265625 +20220915090000,vlinder27,289.5367126464844,1.3350372314453125,-1.2992095947265625 +20220915090000,vlinder28,289.3746032714844,1.3946075439453125,-0.8119049072265625 +20220915100000,vlinder01,289.8987579345703,1.428955078125,-1.88031005859375 +20220915100000,vlinder02,290.0159454345703,1.449462890625,-2.17425537109375 +20220915100000,vlinder03,290.1878204345703,1.923095703125,-1.94769287109375 +20220915100000,vlinder04,290.1878204345703,1.923095703125,-1.94769287109375 +20220915100000,vlinder05,290.0003204345703,1.339111328125,-2.53558349609375 +20220915100000,vlinder06,289.8948516845703,1.261962890625,-0.60198974609375 +20220915100000,vlinder07,289.8948516845703,1.261962890625,-0.60198974609375 +20220915100000,vlinder08,289.8948516845703,1.261962890625,-0.60198974609375 +20220915100000,vlinder09,289.5745391845703,1.513916015625,-1.11859130859375 +20220915100000,vlinder10,289.6487579345703,1.514892578125,-1.41058349609375 +20220915100000,vlinder11,289.8421173095703,1.604736328125,-1.38421630859375 +20220915100000,vlinder12,289.8421173095703,1.604736328125,-1.38421630859375 +20220915100000,vlinder13,289.8421173095703,1.604736328125,-1.38421630859375 +20220915100000,vlinder14,289.8772735595703,1.789306640625,-1.83148193359375 +20220915100000,vlinder15,289.5237579345703,1.500244140625,-0.89300537109375 +20220915100000,vlinder16,289.8772735595703,1.789306640625,-1.83148193359375 +20220915100000,vlinder17,290.1389923095703,1.810791015625,-1.77581787109375 +20220915100000,vlinder18,290.2444610595703,1.872314453125,-1.80316162109375 +20220915100000,vlinder19,289.3811798095703,1.464111328125,-0.99066162109375 +20220915100000,vlinder20,289.3811798095703,1.464111328125,-0.99066162109375 +20220915100000,vlinder21,290.2327423095703,1.134033203125,-6.08050537109375 +20220915100000,vlinder22,290.8362579345703,1.718017578125,-4.52679443359375 +20220915100000,vlinder23,289.9983673095703,1.219970703125,-3.67132568359375 +20220915100000,vlinder24,290.0081329345703,1.252197265625,-3.33441162109375 +20220915100000,vlinder25,289.9495391845703,1.273681640625,-2.79925537109375 +20220915100000,vlinder26,290.2620391845703,1.721923828125,-1.68109130859375 +20220915100000,vlinder27,290.0003204345703,1.339111328125,-2.53558349609375 +20220915100000,vlinder28,289.8987579345703,1.428955078125,-1.88031005859375 +20220915110000,vlinder01,290.1815643310547,1.2843475341796875,-2.8841400146484375 +20220915110000,vlinder02,290.3007049560547,1.2472381591796875,-3.1067962646484375 +20220915110000,vlinder03,289.9608612060547,2.3810272216796875,-2.2855072021484375 +20220915110000,vlinder04,289.9608612060547,2.3810272216796875,-2.2855072021484375 +20220915110000,vlinder05,290.2479705810547,1.2150115966796875,-3.4046478271484375 +20220915110000,vlinder06,289.9960174560547,1.6632537841796875,-1.6224212646484375 +20220915110000,vlinder07,289.9960174560547,1.6632537841796875,-1.6224212646484375 +20220915110000,vlinder08,289.9960174560547,1.6632537841796875,-1.6224212646484375 +20220915110000,vlinder09,289.9784393310547,1.6271209716796875,-2.0501556396484375 +20220915110000,vlinder10,290.0702362060547,1.5646209716796875,-2.2825775146484375 +20220915110000,vlinder11,289.8436737060547,1.7443084716796875,-2.1917572021484375 +20220915110000,vlinder12,289.8436737060547,1.7443084716796875,-2.1917572021484375 +20220915110000,vlinder13,289.8436737060547,1.7443084716796875,-2.1917572021484375 +20220915110000,vlinder14,289.8749237060547,1.7716522216796875,-2.5501556396484375 +20220915110000,vlinder15,289.9042205810547,1.6857147216796875,-1.8489837646484375 +20220915110000,vlinder16,289.8749237060547,1.7716522216796875,-2.5501556396484375 +20220915110000,vlinder17,290.6678924560547,2.5011444091796875,-1.9036712646484375 +20220915110000,vlinder18,290.8104705810547,2.5480194091796875,-1.8978118896484375 +20220915110000,vlinder19,289.8983612060547,1.7745819091796875,-1.5550384521484375 +20220915110000,vlinder20,289.8983612060547,1.7745819091796875,-1.5550384521484375 +20220915110000,vlinder21,290.4315643310547,1.1964569091796875,-6.1956634521484375 +20220915110000,vlinder22,291.0507049560547,1.3458709716796875,-4.6907806396484375 +20220915110000,vlinder23,290.1600799560547,1.2335662841796875,-4.2620697021484375 +20220915110000,vlinder24,290.2284393310547,1.2052459716796875,-4.0208587646484375 +20220915110000,vlinder25,290.1542205810547,1.2013397216796875,-3.5853118896484375 +20220915110000,vlinder26,290.1932830810547,2.3478240966796875,-2.0608978271484375 +20220915110000,vlinder27,290.2479705810547,1.2150115966796875,-3.4046478271484375 +20220915110000,vlinder28,290.1815643310547,1.2843475341796875,-2.8841400146484375 +20220915120000,vlinder01,290.6063690185547,1.2487945556640625,-3.5379791259765625 +20220915120000,vlinder02,290.7294158935547,1.2155914306640625,-3.6454010009765625 +20220915120000,vlinder03,290.2352752685547,2.2234039306640625,-2.2684478759765625 +20220915120000,vlinder04,290.2352752685547,2.2234039306640625,-2.2684478759765625 +20220915120000,vlinder05,290.6962127685547,1.2761383056640625,-3.8973541259765625 +20220915120000,vlinder06,290.0712127685547,1.5691070556640625,-2.5633697509765625 +20220915120000,vlinder07,290.0712127685547,1.5691070556640625,-2.5633697509765625 +20220915120000,vlinder08,290.0712127685547,1.5691070556640625,-2.5633697509765625 +20220915120000,vlinder09,290.2665252685547,1.6550445556640625,-2.9832916259765625 +20220915120000,vlinder10,290.3973846435547,1.6150054931640625,-3.0897369384765625 +20220915120000,vlinder11,290.3446502685547,1.7273101806640625,-2.9901275634765625 +20220915120000,vlinder12,290.3446502685547,1.7273101806640625,-2.9901275634765625 +20220915120000,vlinder13,290.3446502685547,1.7273101806640625,-2.9901275634765625 +20220915120000,vlinder14,290.5926971435547,1.8191070556640625,-3.3055572509765625 +20220915120000,vlinder15,290.1454315185547,1.6989898681640625,-2.8563385009765625 +20220915120000,vlinder16,290.5926971435547,1.8191070556640625,-3.3055572509765625 +20220915120000,vlinder17,290.6669158935547,2.7302398681640625,-1.9715728759765625 +20220915120000,vlinder18,290.8876190185547,2.7966461181640625,-1.9852447509765625 +20220915120000,vlinder19,289.9794158935547,1.9441070556640625,-2.3241119384765625 +20220915120000,vlinder20,289.9794158935547,1.9441070556640625,-2.3241119384765625 +20220915120000,vlinder21,290.4266815185547,1.2497711181640625,-5.9325103759765625 +20220915120000,vlinder22,290.8426971435547,1.0554351806640625,-4.6141510009765625 +20220915120000,vlinder23,290.5555877685547,1.4655914306640625,-4.5418853759765625 +20220915120000,vlinder24,290.6102752685547,1.3435211181640625,-4.3397369384765625 +20220915120000,vlinder25,290.6512908935547,1.3659820556640625,-4.0623931884765625 +20220915120000,vlinder26,290.2606658935547,2.2351226806640625,-2.0692291259765625 +20220915120000,vlinder27,290.6962127685547,1.2761383056640625,-3.8973541259765625 +20220915120000,vlinder28,290.6063690185547,1.2487945556640625,-3.5379791259765625 +20220915130000,vlinder01,290.6864318847656,1.411163330078125,-3.7935638427734375 +20220915130000,vlinder02,290.7469787597656,1.389678955078125,-3.8560638427734375 +20220915130000,vlinder03,290.4813537597656,2.307647705078125,-2.4039154052734375 +20220915130000,vlinder04,290.4813537597656,2.307647705078125,-2.4039154052734375 +20220915130000,vlinder05,290.7215881347656,1.548858642578125,-3.9976654052734375 +20220915130000,vlinder06,290.4247131347656,1.562530517578125,-2.9888763427734375 +20220915130000,vlinder07,290.4247131347656,1.562530517578125,-2.9888763427734375 +20220915130000,vlinder08,290.4247131347656,1.562530517578125,-2.9888763427734375 +20220915130000,vlinder09,290.5106506347656,1.611358642578125,-3.5386810302734375 +20220915130000,vlinder10,290.5731506347656,1.597686767578125,-3.6168060302734375 +20220915130000,vlinder11,290.6356506347656,2.055694580078125,-3.2828216552734375 +20220915130000,vlinder12,290.6356506347656,2.055694580078125,-3.2828216552734375 +20220915130000,vlinder13,290.6356506347656,2.055694580078125,-3.2828216552734375 +20220915130000,vlinder14,290.8407287597656,2.314483642578125,-3.5201263427734375 +20220915130000,vlinder15,290.4422912597656,1.629913330078125,-3.4380950927734375 +20220915130000,vlinder16,290.8407287597656,2.314483642578125,-3.5201263427734375 +20220915130000,vlinder17,290.1649475097656,2.532257080078125,-1.9439544677734375 +20220915130000,vlinder18,290.2919006347656,2.584991455078125,-1.8853607177734375 +20220915130000,vlinder19,290.2079162597656,1.793975830078125,-3.0962982177734375 +20220915130000,vlinder20,290.2079162597656,1.793975830078125,-3.0962982177734375 +20220915130000,vlinder21,290.3329162597656,1.536163330078125,-5.4283294677734375 +20220915130000,vlinder22,290.6356506347656,1.024444580078125,-4.3951263427734375 +20220915130000,vlinder23,290.5301818847656,1.899444580078125,-4.3619232177734375 +20220915130000,vlinder24,290.6024475097656,1.686553955078125,-4.2593841552734375 +20220915130000,vlinder25,290.6688537597656,1.735382080078125,-4.0543060302734375 +20220915130000,vlinder26,290.4501037597656,2.232452392578125,-2.2798919677734375 +20220915130000,vlinder27,290.7215881347656,1.548858642578125,-3.9976654052734375 +20220915130000,vlinder28,290.6864318847656,1.411163330078125,-3.7935638427734375 +20220915140000,vlinder01,290.6155090332031,1.5596923828125,-3.746124267578125 +20220915140000,vlinder02,290.6584777832031,1.4962158203125,-3.766632080078125 +20220915140000,vlinder03,290.6975402832031,2.7413330078125,-2.570343017578125 +20220915140000,vlinder04,290.6975402832031,2.7413330078125,-2.570343017578125 +20220915140000,vlinder05,290.6701965332031,1.7647705078125,-3.893585205078125 +20220915140000,vlinder06,290.6135559082031,1.9190673828125,-3.158233642578125 +20220915140000,vlinder07,290.6135559082031,1.9190673828125,-3.158233642578125 +20220915140000,vlinder08,290.6135559082031,1.9190673828125,-3.158233642578125 +20220915140000,vlinder09,290.4475402832031,1.7100830078125,-3.723663330078125 +20220915140000,vlinder10,290.4807434082031,1.6427001953125,-3.759796142578125 +20220915140000,vlinder11,290.7834777832031,2.4991455078125,-3.335968017578125 +20220915140000,vlinder12,290.7834777832031,2.4991455078125,-3.335968017578125 +20220915140000,vlinder13,290.7834777832031,2.4991455078125,-3.335968017578125 +20220915140000,vlinder14,290.9494934082031,2.7901611328125,-3.506866455078125 +20220915140000,vlinder15,290.4104309082031,1.7677001953125,-3.656280517578125 +20220915140000,vlinder16,290.9494934082031,2.7901611328125,-3.506866455078125 +20220915140000,vlinder17,290.4065246582031,2.5216064453125,-2.003936767578125 +20220915140000,vlinder18,290.5158996582031,2.5948486328125,-1.952178955078125 +20220915140000,vlinder19,290.1623840332031,1.7579345703125,-3.511749267578125 +20220915140000,vlinder20,290.1623840332031,1.7579345703125,-3.511749267578125 +20220915140000,vlinder21,290.2541809082031,1.8927001953125,-5.225616455078125 +20220915140000,vlinder22,290.6252746582031,0.9796142578125,-4.084991455078125 +20220915140000,vlinder23,290.5412902832031,2.3077392578125,-4.214874267578125 +20220915140000,vlinder24,290.5764465332031,1.9952392578125,-4.121124267578125 +20220915140000,vlinder25,290.6623840332031,2.0499267578125,-3.928741455078125 +20220915140000,vlinder26,290.6936340332031,2.5206298828125,-2.426788330078125 +20220915140000,vlinder27,290.6701965332031,1.7647705078125,-3.893585205078125 +20220915140000,vlinder28,290.6155090332031,1.5596923828125,-3.746124267578125 +20220915150000,vlinder01,290.34339904785156,1.76385498046875,-3.4165802001953125 +20220915150000,vlinder02,290.36488342285156,1.67108154296875,-3.4243927001953125 +20220915150000,vlinder03,290.36097717285156,3.04022216796875,-2.4136505126953125 +20220915150000,vlinder04,290.36097717285156,3.04022216796875,-2.4136505126953125 +20220915150000,vlinder05,290.31019592285156,1.99237060546875,-3.6021270751953125 +20220915150000,vlinder06,290.40980529785156,2.24334716796875,-2.8677520751953125 +20220915150000,vlinder07,290.40980529785156,2.24334716796875,-2.8677520751953125 +20220915150000,vlinder08,290.40980529785156,2.24334716796875,-2.8677520751953125 +20220915150000,vlinder09,290.28285217285156,1.86346435546875,-3.5493927001953125 +20220915150000,vlinder10,290.28871154785156,1.76190185546875,-3.5659942626953125 +20220915150000,vlinder11,290.30433654785156,2.78533935546875,-3.0132598876953125 +20220915150000,vlinder12,290.30433654785156,2.78533935546875,-3.0132598876953125 +20220915150000,vlinder13,290.30433654785156,2.78533935546875,-3.0132598876953125 +20220915150000,vlinder14,290.33363342285156,3.03436279296875,-3.1724395751953125 +20220915150000,vlinder15,290.26918029785156,1.94549560546875,-3.4937286376953125 +20220915150000,vlinder16,290.33363342285156,3.03436279296875,-3.1724395751953125 +20220915150000,vlinder17,290.24574279785156,2.70819091796875,-1.8159942626953125 +20220915150000,vlinder18,290.37660217285156,2.75213623046875,-1.7505645751953125 +20220915150000,vlinder19,290.05433654785156,1.81854248046875,-3.4624786376953125 +20220915150000,vlinder20,290.05433654785156,1.81854248046875,-3.4624786376953125 +20220915150000,vlinder21,290.00355529785156,2.32635498046875,-5.2857208251953125 +20220915150000,vlinder22,290.35511779785156,1.14080810546875,-3.8501739501953125 +20220915150000,vlinder23,290.05238342285156,2.59979248046875,-4.0493927001953125 +20220915150000,vlinder24,290.17933654785156,2.28143310546875,-3.9214630126953125 +20220915150000,vlinder25,290.19300842285156,2.28924560546875,-3.6685333251953125 +20220915150000,vlinder26,290.40980529785156,2.80780029296875,-2.2388458251953125 +20220915150000,vlinder27,290.31019592285156,1.99237060546875,-3.6021270751953125 +20220915150000,vlinder28,290.34339904785156,1.76385498046875,-3.4165802001953125 +20220915160000,vlinder01,290.0414276123047,1.9396820068359375,-3.334716796875 +20220915160000,vlinder02,290.0453338623047,1.8137054443359375,-3.317138671875 +20220915160000,vlinder03,290.1136932373047,3.2707366943359375,-2.688232421875 +20220915160000,vlinder04,290.1136932373047,3.2707366943359375,-2.688232421875 +20220915160000,vlinder05,290.0238494873047,2.1662445068359375,-3.589599609375 +20220915160000,vlinder06,290.3695526123047,2.6965179443359375,-3.036865234375 +20220915160000,vlinder07,290.3695526123047,2.6965179443359375,-3.036865234375 +20220915160000,vlinder08,290.3695526123047,2.6965179443359375,-3.036865234375 +20220915160000,vlinder09,290.0550994873047,2.0900726318359375,-3.448974609375 +20220915160000,vlinder10,290.0375213623047,1.9484710693359375,-3.431396484375 +20220915160000,vlinder11,290.1683807373047,3.1545257568359375,-3.322998046875 +20220915160000,vlinder12,290.1683807373047,3.1545257568359375,-3.322998046875 +20220915160000,vlinder13,290.1683807373047,3.1545257568359375,-3.322998046875 +20220915160000,vlinder14,290.1410369873047,3.3381195068359375,-3.535888671875 +20220915160000,vlinder15,290.0726776123047,2.2121429443359375,-3.430419921875 +20220915160000,vlinder16,290.1410369873047,3.3381195068359375,-3.535888671875 +20220915160000,vlinder17,290.1293182373047,3.0265960693359375,-1.907958984375 +20220915160000,vlinder18,290.2367401123047,3.0217132568359375,-1.794677734375 +20220915160000,vlinder19,289.9672088623047,2.1086273193359375,-3.414794921875 +20220915160000,vlinder20,289.9672088623047,2.1086273193359375,-3.414794921875 +20220915160000,vlinder21,289.7035369873047,2.4611663818359375,-5.590576171875 +20220915160000,vlinder22,289.8265838623047,1.1750335693359375,-3.769287109375 +20220915160000,vlinder23,289.8343963623047,2.8049163818359375,-4.222412109375 +20220915160000,vlinder24,289.9164276123047,2.4631195068359375,-4.006591796875 +20220915160000,vlinder25,289.9535369873047,2.4924163818359375,-3.736083984375 +20220915160000,vlinder26,290.2738494873047,3.1271820068359375,-2.522216796875 +20220915160000,vlinder27,290.0238494873047,2.1662445068359375,-3.589599609375 +20220915160000,vlinder28,290.0414276123047,1.9396820068359375,-3.334716796875 +20220915170000,vlinder01,289.2641296386719,1.7672882080078125,-2.5631103515625 +20220915170000,vlinder02,289.2817077636719,1.6676788330078125,-2.5699462890625 +20220915170000,vlinder03,289.4555358886719,2.8434600830078125,-2.3883056640625 +20220915170000,vlinder04,289.4555358886719,2.8434600830078125,-2.3883056640625 +20220915170000,vlinder05,289.3031921386719,1.9499053955078125,-2.8990478515625 +20220915170000,vlinder06,289.5981140136719,2.4840850830078125,-2.3160400390625 +20220915170000,vlinder07,289.5981140136719,2.4840850830078125,-2.3160400390625 +20220915170000,vlinder08,289.5981140136719,2.4840850830078125,-2.3160400390625 +20220915170000,vlinder09,289.2465515136719,1.8932647705078125,-2.5709228515625 +20220915170000,vlinder10,289.2309265136719,1.7838897705078125,-2.5611572265625 +20220915170000,vlinder11,289.4360046386719,2.7604522705078125,-2.6783447265625 +20220915170000,vlinder12,289.4360046386719,2.7604522705078125,-2.6783447265625 +20220915170000,vlinder13,289.4360046386719,2.7604522705078125,-2.6783447265625 +20220915170000,vlinder14,289.4047546386719,2.8405303955078125,-2.9136962890625 +20220915170000,vlinder15,289.2621765136719,1.9997100830078125,-2.5543212890625 +20220915170000,vlinder16,289.4047546386719,2.8405303955078125,-2.9136962890625 +20220915170000,vlinder17,289.5356140136719,2.8590850830078125,-1.7213134765625 +20220915170000,vlinder18,289.6371765136719,2.8698272705078125,-1.6353759765625 +20220915170000,vlinder19,289.1528015136719,2.0006866455078125,-2.4986572265625 +20220915170000,vlinder20,289.1528015136719,2.0006866455078125,-2.4986572265625 +20220915170000,vlinder21,289.4203796386719,2.4440460205078125,-5.7828369140625 +20220915170000,vlinder22,289.2074890136719,1.0954132080078125,-3.5064697265625 +20220915170000,vlinder23,289.2270202636719,2.4645538330078125,-3.7222900390625 +20220915170000,vlinder24,289.2719421386719,2.2145538330078125,-3.4576416015625 +20220915170000,vlinder25,289.2524108886719,2.1784210205078125,-3.0689697265625 +20220915170000,vlinder26,289.6254577636719,2.8102569580078125,-2.2056884765625 +20220915170000,vlinder27,289.3031921386719,1.9499053955078125,-2.8990478515625 +20220915170000,vlinder28,289.2641296386719,1.7672882080078125,-2.5631103515625 +20220915180000,vlinder01,288.6591491699219,1.755340576171875,-2.40814208984375 +20220915180000,vlinder02,288.7216491699219,1.653778076171875,-2.41888427734375 +20220915180000,vlinder03,288.2880554199219,2.416473388671875,-2.20306396484375 +20220915180000,vlinder04,288.2880554199219,2.416473388671875,-2.20306396484375 +20220915180000,vlinder05,288.7528991699219,1.864715576171875,-2.83099365234375 +20220915180000,vlinder06,288.5986022949219,2.397918701171875,-1.99017333984375 +20220915180000,vlinder07,288.5986022949219,2.397918701171875,-1.99017333984375 +20220915180000,vlinder08,288.5986022949219,2.397918701171875,-1.99017333984375 +20220915180000,vlinder09,288.4814147949219,1.916473388671875,-2.31829833984375 +20220915180000,vlinder10,288.5126647949219,1.810028076171875,-2.32415771484375 +20220915180000,vlinder11,288.4521179199219,2.473114013671875,-2.49212646484375 +20220915180000,vlinder12,288.4521179199219,2.473114013671875,-2.49212646484375 +20220915180000,vlinder13,288.4521179199219,2.473114013671875,-2.49212646484375 +20220915180000,vlinder14,288.4364929199219,2.462371826171875,-2.79681396484375 +20220915180000,vlinder15,288.4423522949219,2.013153076171875,-2.28021240234375 +20220915180000,vlinder16,288.4364929199219,2.462371826171875,-2.79681396484375 +20220915180000,vlinder17,288.6083679199219,2.729949951171875,-1.74700927734375 +20220915180000,vlinder18,288.7509460449219,2.758270263671875,-1.69915771484375 +20220915180000,vlinder19,288.1845397949219,2.061004638671875,-2.13470458984375 +20220915180000,vlinder20,288.1845397949219,2.061004638671875,-2.13470458984375 +20220915180000,vlinder21,289.2997741699219,2.307098388671875,-6.29681396484375 +20220915180000,vlinder22,288.8193054199219,1.066864013671875,-3.23040771484375 +20220915180000,vlinder23,288.7157897949219,2.210418701171875,-3.79193115234375 +20220915180000,vlinder24,288.7685241699219,2.052215576171875,-3.49114990234375 +20220915180000,vlinder25,288.6728210449219,2.003387451171875,-3.04095458984375 +20220915180000,vlinder26,288.4306335449219,2.479949951171875,-2.00775146484375 +20220915180000,vlinder27,288.7528991699219,1.864715576171875,-2.83099365234375 +20220915180000,vlinder28,288.6591491699219,1.755340576171875,-2.40814208984375 +20220915190000,vlinder01,288.2201385498047,1.6642608642578125,-1.8701324462890625 +20220915190000,vlinder02,288.3177947998047,1.5832061767578125,-1.8828277587890625 +20220915190000,vlinder03,287.6263885498047,2.3957061767578125,-2.1347808837890625 +20220915190000,vlinder04,287.6263885498047,2.3957061767578125,-2.1347808837890625 +20220915190000,vlinder05,288.3490447998047,1.6466827392578125,-2.5420074462890625 +20220915190000,vlinder06,287.9857635498047,2.3459014892578125,-1.4609527587890625 +20220915190000,vlinder07,287.9857635498047,2.3459014892578125,-1.4609527587890625 +20220915190000,vlinder08,287.9857635498047,2.3459014892578125,-1.4609527587890625 +20220915190000,vlinder09,287.9408416748047,1.9425811767578125,-1.5664215087890625 +20220915190000,vlinder10,287.9974822998047,1.8459014892578125,-1.5996246337890625 +20220915190000,vlinder11,287.8549041748047,2.1925811767578125,-2.3711090087890625 +20220915190000,vlinder12,287.8549041748047,2.1925811767578125,-2.3711090087890625 +20220915190000,vlinder13,287.8549041748047,2.1925811767578125,-2.3711090087890625 +20220915190000,vlinder14,287.8588104248047,2.0783233642578125,-2.8506011962890625 +20220915190000,vlinder15,287.8744354248047,2.0402374267578125,-1.5166168212890625 +20220915190000,vlinder16,287.8588104248047,2.0783233642578125,-2.8506011962890625 +20220915190000,vlinder17,287.5912322998047,2.7433624267578125,-1.3144683837890625 +20220915190000,vlinder18,287.6752166748047,2.7599639892578125,-1.2422027587890625 +20220915190000,vlinder19,287.5228729248047,2.2404327392578125,-1.3584136962890625 +20220915190000,vlinder20,287.5228729248047,2.2404327392578125,-1.3584136962890625 +20220915190000,vlinder21,289.1674041748047,2.2638702392578125,-6.2343902587890625 +20220915190000,vlinder22,289.0072479248047,1.5128936767578125,-2.4580230712890625 +20220915190000,vlinder23,288.3646697998047,1.7707061767578125,-3.9228668212890625 +20220915190000,vlinder24,288.3920135498047,1.7306671142578125,-3.4101715087890625 +20220915190000,vlinder25,288.2533416748047,1.6388702392578125,-2.9970855712890625 +20220915190000,vlinder26,287.7240447998047,2.5138702392578125,-1.8554840087890625 +20220915190000,vlinder27,288.3490447998047,1.6466827392578125,-2.5420074462890625 +20220915190000,vlinder28,288.2201385498047,1.6642608642578125,-1.8701324462890625 +20220915200000,vlinder01,287.5581512451172,1.3114013671875,-2.1971282958984375 +20220915200000,vlinder02,287.6597137451172,1.2215576171875,-2.2010345458984375 +20220915200000,vlinder03,287.0796356201172,2.1239013671875,-2.2361907958984375 +20220915200000,vlinder04,287.0796356201172,2.1239013671875,-2.2361907958984375 +20220915200000,vlinder05,287.7300262451172,1.3104248046875,-2.7899017333984375 +20220915200000,vlinder06,287.3979949951172,2.1405029296875,-1.7332611083984375 +20220915200000,vlinder07,287.3979949951172,2.1405029296875,-1.7332611083984375 +20220915200000,vlinder08,287.3979949951172,2.1405029296875,-1.7332611083984375 +20220915200000,vlinder09,287.3706512451172,1.7176513671875,-1.7068939208984375 +20220915200000,vlinder10,287.4233856201172,1.6004638671875,-1.7303314208984375 +20220915200000,vlinder11,287.2710418701172,1.9412841796875,-2.5399017333984375 +20220915200000,vlinder12,287.2710418701172,1.9412841796875,-2.5399017333984375 +20220915200000,vlinder13,287.2710418701172,1.9412841796875,-2.5399017333984375 +20220915200000,vlinder14,287.2886199951172,1.8074951171875,-2.9510345458984375 +20220915200000,vlinder15,287.3120574951172,1.8377685546875,-1.6561126708984375 +20220915200000,vlinder16,287.2886199951172,1.8074951171875,-2.9510345458984375 +20220915200000,vlinder17,287.2085418701172,2.6512451171875,-1.4236907958984375 +20220915200000,vlinder18,287.2964324951172,2.6815185546875,-1.3387298583984375 +20220915200000,vlinder19,287.0542449951172,2.1180419921875,-1.2479095458984375 +20220915200000,vlinder20,287.0542449951172,2.1180419921875,-1.2479095458984375 +20220915200000,vlinder21,288.5405731201172,2.0096435546875,-6.4441986083984375 +20220915200000,vlinder22,288.3823699951172,1.2303466796875,-2.6248626708984375 +20220915200000,vlinder23,287.8237762451172,1.5155029296875,-3.9520111083984375 +20220915200000,vlinder24,287.7944793701172,1.4422607421875,-3.5682220458984375 +20220915200000,vlinder25,287.6636199951172,1.3338623046875,-3.1404876708984375 +20220915200000,vlinder26,287.1948699951172,2.2713623046875,-1.9764251708984375 +20220915200000,vlinder27,287.7300262451172,1.3104248046875,-2.7899017333984375 +20220915200000,vlinder28,287.5581512451172,1.3114013671875,-2.1971282958984375 +20220915210000,vlinder01,286.9811706542969,1.034820556640625,-2.2535400390625 +20220915210000,vlinder02,287.0456237792969,0.958648681640625,-2.2652587890625 +20220915210000,vlinder03,286.3659362792969,1.938140869140625,-1.7174072265625 +20220915210000,vlinder04,286.3659362792969,1.938140869140625,-1.7174072265625 +20220915210000,vlinder05,287.1745300292969,1.212554931640625,-2.7320556640625 +20220915210000,vlinder06,286.8073425292969,1.794586181640625,-1.7906494140625 +20220915210000,vlinder07,286.8073425292969,1.794586181640625,-1.7906494140625 +20220915210000,vlinder08,286.8073425292969,1.794586181640625,-1.7906494140625 +20220915210000,vlinder09,286.9108581542969,1.451812744140625,-1.8336181640625 +20220915210000,vlinder10,286.9284362792969,1.346343994140625,-1.8551025390625 +20220915210000,vlinder11,286.6862487792969,1.789703369140625,-2.1217041015625 +20220915210000,vlinder12,286.6862487792969,1.789703369140625,-2.1217041015625 +20220915210000,vlinder13,286.6862487792969,1.789703369140625,-2.1217041015625 +20220915210000,vlinder14,286.7389831542969,1.764312744140625,-2.3072509765625 +20220915210000,vlinder15,286.8639831542969,1.561187744140625,-1.7847900390625 +20220915210000,vlinder16,286.7389831542969,1.764312744140625,-2.3072509765625 +20220915210000,vlinder17,286.5690612792969,2.470367431640625,-1.4888916015625 +20220915210000,vlinder18,286.6803894042969,2.516265869140625,-1.4410400390625 +20220915210000,vlinder19,286.5456237792969,1.889312744140625,-1.4146728515625 +20220915210000,vlinder20,286.5456237792969,1.889312744140625,-1.4146728515625 +20220915210000,vlinder21,287.9362487792969,2.480133056640625,-6.5650634765625 +20220915210000,vlinder22,287.4069519042969,1.073883056640625,-3.1568603515625 +20220915210000,vlinder23,287.3444519042969,1.792633056640625,-3.6802978515625 +20220915210000,vlinder24,287.2663269042969,1.558258056640625,-3.4410400390625 +20220915210000,vlinder25,287.1393737792969,1.403961181640625,-2.9234619140625 +20220915210000,vlinder26,286.4303894042969,2.063140869140625,-1.6373291015625 +20220915210000,vlinder27,287.1745300292969,1.212554931640625,-2.7320556640625 +20220915210000,vlinder28,286.9811706542969,1.034820556640625,-2.2535400390625 +20220915220000,vlinder01,286.3246612548828,1.332611083984375,-1.8212738037109375 +20220915220000,vlinder02,286.4105987548828,1.264251708984375,-1.8720550537109375 +20220915220000,vlinder03,285.7699737548828,1.999603271484375,-0.8896331787109375 +20220915220000,vlinder04,285.7699737548828,1.999603271484375,-0.8896331787109375 +20220915220000,vlinder05,286.6254425048828,1.629486083984375,-2.2060394287109375 +20220915220000,vlinder06,286.0863800048828,1.799407958984375,-1.1708831787109375 +20220915220000,vlinder07,286.0863800048828,1.799407958984375,-1.1708831787109375 +20220915220000,vlinder08,286.0863800048828,1.799407958984375,-1.1708831787109375 +20220915220000,vlinder09,286.1605987548828,1.558197021484375,-1.5722503662109375 +20220915220000,vlinder10,286.1820831298828,1.480072021484375,-1.6288909912109375 +20220915220000,vlinder11,286.2563018798828,2.091400146484375,-1.4326019287109375 +20220915220000,vlinder12,286.2563018798828,2.091400146484375,-1.4326019287109375 +20220915220000,vlinder13,286.2563018798828,2.091400146484375,-1.4326019287109375 +20220915220000,vlinder14,286.4691925048828,2.218353271484375,-1.6142425537109375 +20220915220000,vlinder15,286.1039581298828,1.630462646484375,-1.4931488037109375 +20220915220000,vlinder16,286.4691925048828,2.218353271484375,-1.6142425537109375 +20220915220000,vlinder17,285.8188018798828,2.384368896484375,-1.0370941162109375 +20220915220000,vlinder18,285.9398956298828,2.415618896484375,-1.0165863037109375 +20220915220000,vlinder19,285.7113800048828,1.776947021484375,-1.3320159912109375 +20220915220000,vlinder20,285.7113800048828,1.776947021484375,-1.3320159912109375 +20220915220000,vlinder21,287.6488800048828,3.171478271484375,-5.8808441162109375 +20220915220000,vlinder22,287.0199737548828,1.252532958984375,-3.4452972412109375 +20220915220000,vlinder23,286.9633331298828,2.372650146484375,-2.9902191162109375 +20220915220000,vlinder24,286.7641143798828,2.068939208984375,-2.8066253662109375 +20220915220000,vlinder25,286.6879425048828,1.908782958984375,-2.3163909912109375 +20220915220000,vlinder26,285.7230987548828,2.022064208984375,-0.9091644287109375 +20220915220000,vlinder27,286.6254425048828,1.629486083984375,-2.2060394287109375 +20220915220000,vlinder28,286.3246612548828,1.332611083984375,-1.8212738037109375 +20220915230000,vlinder01,286.0865173339844,1.8278350830078125,-1.125885009765625 +20220915230000,vlinder02,286.1724548339844,1.7575225830078125,-1.226470947265625 +20220915230000,vlinder03,285.4205017089844,2.1247100830078125,-0.127838134765625 +20220915230000,vlinder04,285.4205017089844,2.1247100830078125,-0.127838134765625 +20220915230000,vlinder05,286.4126892089844,2.1403350830078125,-1.527252197265625 +20220915230000,vlinder06,285.8365173339844,2.0495147705078125,-0.280181884765625 +20220915230000,vlinder07,285.8365173339844,2.0495147705078125,-0.280181884765625 +20220915230000,vlinder08,285.8365173339844,2.0495147705078125,-0.280181884765625 +20220915230000,vlinder09,285.9927673339844,1.8346710205078125,-0.912017822265625 +20220915230000,vlinder10,286.0005798339844,1.7799835205078125,-1.010650634765625 +20220915230000,vlinder11,285.9830017089844,2.4079132080078125,-0.622955322265625 +20220915230000,vlinder12,285.9830017089844,2.4079132080078125,-0.622955322265625 +20220915230000,vlinder13,285.9830017089844,2.4079132080078125,-0.622955322265625 +20220915230000,vlinder14,286.2017517089844,2.5846710205078125,-0.869049072265625 +20220915230000,vlinder15,285.9361267089844,1.8747100830078125,-0.799713134765625 +20220915230000,vlinder16,286.2017517089844,2.5846710205078125,-0.869049072265625 +20220915230000,vlinder17,285.3404235839844,2.3336944580078125,-0.345611572265625 +20220915230000,vlinder18,285.4439392089844,2.3649444580078125,-0.341705322265625 +20220915230000,vlinder19,285.4966735839844,1.8200225830078125,-0.745025634765625 +20220915230000,vlinder20,285.4966735839844,1.8200225830078125,-0.745025634765625 +20220915230000,vlinder21,287.8462829589844,3.7575225830078125,-5.450103759765625 +20220915230000,vlinder22,286.9458923339844,1.5231475830078125,-2.994049072265625 +20220915230000,vlinder23,286.8501892089844,2.8376007080078125,-2.366119384765625 +20220915230000,vlinder24,286.6353454589844,2.5543975830078125,-2.162994384765625 +20220915230000,vlinder25,286.4790954589844,2.3991241455078125,-1.626861572265625 +20220915230000,vlinder26,285.3072204589844,2.0915069580078125,-0.121978759765625 +20220915230000,vlinder27,286.4126892089844,2.1403350830078125,-1.527252197265625 +20220915230000,vlinder28,286.0865173339844,1.8278350830078125,-1.125885009765625 +20220916000000,vlinder01,285.88572692871094,2.296478271484375,-0.7755584716796875 +20220916000000,vlinder02,285.95603942871094,2.219329833984375,-0.8722381591796875 +20220916000000,vlinder03,285.48728942871094,2.416595458984375,0.0340118408203125 +20220916000000,vlinder04,285.48728942871094,2.416595458984375,0.0340118408203125 +20220916000000,vlinder05,286.30369567871094,2.567962646484375,-1.3155975341796875 +20220916000000,vlinder06,285.70408630371094,2.474212646484375,0.1043243408203125 +20220916000000,vlinder07,285.70408630371094,2.474212646484375,0.1043243408203125 +20220916000000,vlinder08,285.70408630371094,2.474212646484375,0.1043243408203125 +20220916000000,vlinder09,285.78611755371094,2.294525146484375,-0.5782928466796875 +20220916000000,vlinder10,285.78611755371094,2.233978271484375,-0.6769256591796875 +20220916000000,vlinder11,285.92478942871094,2.792572021484375,-0.3243865966796875 +20220916000000,vlinder12,285.92478942871094,2.792572021484375,-0.3243865966796875 +20220916000000,vlinder13,285.92478942871094,2.792572021484375,-0.3243865966796875 +20220916000000,vlinder14,286.17088317871094,2.951751708984375,-0.6398162841796875 +20220916000000,vlinder15,285.74119567871094,2.332611083984375,-0.4630584716796875 +20220916000000,vlinder16,286.17088317871094,2.951751708984375,-0.6398162841796875 +20220916000000,vlinder17,285.09275817871094,2.428314208984375,0.1013946533203125 +20220916000000,vlinder18,285.18455505371094,2.441009521484375,0.1053009033203125 +20220916000000,vlinder19,285.25877380371094,2.212493896484375,-0.3585662841796875 +20220916000000,vlinder20,285.25877380371094,2.212493896484375,-0.3585662841796875 +20220916000000,vlinder21,288.04588317871094,4.317962646484375,-5.6017303466796875 +20220916000000,vlinder22,286.84275817871094,2.032806396484375,-2.5411834716796875 +20220916000000,vlinder23,286.96580505371094,3.180267333984375,-2.4415740966796875 +20220916000000,vlinder24,286.66111755371094,2.957611083984375,-2.1173553466796875 +20220916000000,vlinder25,286.47361755371094,2.764251708984375,-1.5392303466796875 +20220916000000,vlinder26,285.30174255371094,2.352142333984375,0.1433868408203125 +20220916000000,vlinder27,286.30369567871094,2.567962646484375,-1.3155975341796875 +20220916000000,vlinder28,285.88572692871094,2.296478271484375,-0.7755584716796875 diff --git a/tests/test_data/paper_dataset/after_qc.png b/tests/test_data/paper_dataset/after_qc.png new file mode 100644 index 00000000..2f5d9553 Binary files /dev/null and b/tests/test_data/paper_dataset/after_qc.png differ diff --git a/tests/test_data/paper_dataset/qc_stats.png b/tests/test_data/paper_dataset/qc_stats.png new file mode 100644 index 00000000..86f9a71a Binary files /dev/null and b/tests/test_data/paper_dataset/qc_stats.png differ diff --git a/tests/test_data/paper_dataset/regular_timeseries.png b/tests/test_data/paper_dataset/regular_timeseries.png new file mode 100644 index 00000000..c0a9bb82 Binary files /dev/null and b/tests/test_data/paper_dataset/regular_timeseries.png differ diff --git a/tests/test_data/single_station_metadata.csv b/tests/test_data/single_station_metadata.csv index c51f32fe..ee995872 100644 --- a/tests/test_data/single_station_metadata.csv +++ b/tests/test_data/single_station_metadata.csv @@ -1,2 +1,2 @@ -station,lat,lon -whats_the_name,2.51558,3.45585 +"station","lat","lon" +"whats_the_name",51.558,3.45585 diff --git a/tests/test_data/single_station_new_obstype_template.csv b/tests/test_data/single_station_new_obstype_template.csv new file mode 100644 index 00000000..40f3552c --- /dev/null +++ b/tests/test_data/single_station_new_obstype_template.csv @@ -0,0 +1,11 @@ +"varname","template column name","units","description","format" +"lon","lon",,, +"lat","lat",,, +"name","station",,, +"_date","Datum_dummy",,,"%Y-%m-%d" +"_time","Tijd (UTC)",,,"%H:%M:%S" +,,,, +"temp","temperature air","fake_temp","the 2m temperature passive", +,,,, +"humidity",,"%",, +"wetbulptemp","dewpoint temp","°C",, diff --git a/tests/test_data/single_station_new_obstypes.csv b/tests/test_data/single_station_new_obstypes.csv new file mode 100644 index 00000000..8ce1b11f --- /dev/null +++ b/tests/test_data/single_station_new_obstypes.csv @@ -0,0 +1,14 @@ +"Datum_dummy","Tijd (UTC)","temperature air","dewpoint temp" +"2022-10-04","00:00:00",9.3,9.3 +"2022-10-04","00:05:00",9.3,9.3 +"2022-10-04","00:10:00",9.3,9.3 +"2022-10-04","00:15:00",9.4,9.4 +"2022-10-04","00:20:00",9.5,9.5 +"2022-10-04","00:25:00",9.3,9.3 +"2022-10-04","00:30:00",9.1,9.1 +"2022-10-04","00:35:00",9,9 +"2022-10-04","00:40:00",8.9,8.9 +"2022-10-04","00:45:00",8.9,8.9 +"2022-10-04","00:50:00",9,9 +"2022-10-04","00:55:00",9.1,9.1 +"2022-10-04","01:00:00",9.1,9.1 diff --git a/tests/test_data/single_station_template.csv b/tests/test_data/single_station_template.csv index c7f09c1e..b62f25f6 100644 --- a/tests/test_data/single_station_template.csv +++ b/tests/test_data/single_station_template.csv @@ -1,11 +1,11 @@ -varname,template column name,units,description,format -lon,lon,,, -lat,lat,,, -name,station,,, -_date,Datum_dummy,,,%Y-%m-%d -_time,Tijd (UTC),,,%H:%M:%S +"varname","template column name","units","description","format" +"lon","lon",,, +"lat","lat",,, +"name","station",,, +"_date","Datum_dummy",,,"%Y-%m-%d" +"_time","Tijd (UTC)",,,"%H:%M:%S" ,,,, -temp,temperature air,,the 2m temperature passive, +"temp","temperature air","K","the 2m temperature passive", ,,,, -humidity,,,, -wind_speed,windspeed air,,the 2m windspeed, +"humidity",,"%",, +"wind_speed","windspeed air","km/h","the 2m windspeed", diff --git a/tests/test_data/single_station_template_with_options.csv b/tests/test_data/single_station_template_with_options.csv index 2adc31fe..3d401e00 100644 --- a/tests/test_data/single_station_template_with_options.csv +++ b/tests/test_data/single_station_template_with_options.csv @@ -5,7 +5,7 @@ "_date","Datum_dummy",,,"%Y-%m-%d",, "_time","Tijd (UTC)",,,"%H:%M:%S","timezone","UTC" ,,,,,, -"temp","temperature air",,"the 2m temperature passive",,, +"temp","temperature air","farenheit","the 2m temperature passive",,, ,,,,,, "humidity",,,,,, -"wind_speed","windspeed air",,"the 2m windspeed",,, +"wind_speed","windspeed air","m/s","the 2m windspeed",,, diff --git a/tests/test_data/template_breaking.csv b/tests/test_data/template_breaking.csv index fc0075b6..5c722a94 100755 --- a/tests/test_data/template_breaking.csv +++ b/tests/test_data/template_breaking.csv @@ -7,5 +7,5 @@ _time,time,,,%H:%M:%S ,,,, temp,temperature,Celcius,2m-temperature, flags,qc_flags,,, -humidity,humidity,,, -wind_speed,windspeed,,, +humidity,humidity,%,, +wind_speed,windspeed,km/h,,